Notes on Tate's thesis

Erzhuo Wang

September 30, 2024

Abstract

This is a note about John Tate's PhD Thesis published in 1950. It gives a beautiful proof of the functional equation of Hecke L-function by using Fourier Analysis on topological group. As a special case, we can obtain analytic continuation and functional equation of Dedekind zeta functions and Dirchlet L-functions.

Moreover, this theory provide a new proof of Analytic Class Number formula

$$\operatorname{res}_{s=1}\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2}h_K R_K}{\omega_K \sqrt{|d_K|}}$$

without using Minkowski Theory which is more elegant that before.

Contents

1	Global Theory		
	1.1	Trace and Norm	7
	1.2	Minkowski Thoery	10
	1.3	Ramification Theory	16
	1.4	Adeles and Ideles	24
2	Local Theory		
	2.1	Topological Group	33
	2.2	Valuations	42
	2.3	p-adic analysis	53
3	Tate's Thesis		
	3.1	Local characters and Haar Measure	59
	3 9	Fourier Transform	62

6 CONTENTS

Chapter 1

Global Theory

1.1 Trace and Norm

Definition 1.1.1 (Trace and Norm). L/K finite fields extension. The trace and norm of an element $x \in L$ are defined to be the trace and determinant, respectively, of the endomorphism

$$T_x: L \to L, \quad T_x(\alpha) = x\alpha,$$

of the K-vector space L:

$$\operatorname{Tr}_{L|K}(x) = \operatorname{Tr}(T_x), \quad N_{L|K}(x) = \det(T_x).$$

Proposition 1.1.2. In the characteristic polynomial

$$f_x(t) = t^n + a_{n-1}t^{n-1} + \dots + a_0 \in K[t]$$

of T_x , n = [L:K], we recognize the trace and the norm as

$$-a_{n-1} = \operatorname{Tr}_{L|K}(x)$$
 and $(-1)^n a_0 = N_{L|K}(x)$.

Since $T_{x+y} = T_x + T_y$ and $T_{xy} = T_x \circ T_y$, we obtain homomorphisms

$$\operatorname{Tr}_{L|K}: L \longrightarrow K$$
 and $N_{L|K}: L^* \longrightarrow K^*$.

Proposition 1.1.3. If L/K is a finite separable extension, the characteristic polynomial $f_x(t)$ is a power

$$f_x(t) = p_x(t)^d, \quad d = [L : K(x)]$$

of the minimal polynomial

$$p_x(t) = t^m + c_1 t^{m-1} + \dots + c_m, \quad m = [K(x) : K]$$

of x.

Proof: In fact, $1, x, \ldots, x^{m-1}$ is a basis of K(x)/K, and if $\alpha_1, \ldots, \alpha_d$ is a basis of L/K(x), then

$$\alpha_1, \alpha_1 x, \dots, \alpha_1 x^{m-1}; \dots; \alpha_d, \alpha_d x, \dots, \alpha_d x^{m-1}$$

is a basis of L/K.

Proposition 1.1.4. If L/K is a finite separable extension and $\sigma: L \to \bar{K}$ varies over the different K-embeddings of L into an algebraic closure \bar{K} of K, then we have

- (1) $f_x(t) = \prod_{\sigma} (t \sigma x),$
- (2) $\operatorname{Tr}_{L|K}(x) = \sum_{\sigma} \sigma x$,
- (3) $N_{L|K}(x) = \prod_{\sigma} \sigma x$.

Proposition 1.1.5. The discriminant of a basis $\alpha_1, \ldots, \alpha_n$ of a separable extension $L \mid K$ is defined by

$$d(\alpha_1, \dots, \alpha_n) = \det((\sigma_i \alpha_j))^2$$

where $\sigma_i, i = 1, \dots, n$, varies over the K-embeddings $L \to \bar{K}$. Because of the relation

$$\operatorname{Tr}_{L|K}\left(\alpha_{i}\alpha_{j}\right) = \sum_{k}\left(\sigma_{k}\alpha_{i}\right)\left(\sigma_{k}\alpha_{j}\right),$$

the matrix $(\operatorname{Tr}_{L|K}(\alpha_i\alpha_j))$ is the product of the matrices $(\sigma_k\alpha_i)^t$ and $(\sigma_k\alpha_j)$. Thus one may also write

$$d(\alpha_1, \ldots, \alpha_n) = \det (\operatorname{Tr}_{L|K} (\alpha_i \alpha_j)).$$

In the special case of a basis of type $1, \theta, \dots, \theta^{n-1}$ one gets

$$d(1, \theta, \dots, \theta^{n-1}) = \prod_{i < j} (\theta_i - \theta_j)^2,$$

where $\theta_i = \sigma_i \theta$.

Remark 1.1.6. Consider a finite separable extension L/K, $(x,y) = \text{Tr}_{L/K}(xy)$ is a bi-linear function from $L \times L$ to K. Above Proposition tells us this bi-linear function is non-degenerated. Hence for any basis $\{\alpha_1, \ldots, \alpha_n\}$,

$$d(\alpha_1,\ldots,\alpha_n)\neq 0$$

Proposition 1.1.7. Integrally closed integral domain A with field of fractions K, and to its integral closure B in the finite separable extension $L \mid K$. If $x \in B$ is an integral element of L, then all of its conjugates σx are also integral. Taking into account that A is integrally closed, i.e., $A = B \cap K$ implies that

$$\operatorname{Tr}_{L/K}(x), \quad N_{L/K}(x) \in A$$

Furthermore, for the group of units of B over A, we obtain the relation

$$x \in B^* \iff N_{L/K}(x) \in A^*.$$

Lemma 1.1.8. Let $\alpha_1, \ldots, \alpha_n$ be a basis of L/K which is contained in \mathcal{O}_L , of discriminant $d = d(\alpha_1, \ldots, \alpha_n)$. Then one has

$$d\mathcal{O}_L \subseteq \mathcal{O}_K \alpha_1 + \dots + \mathcal{O}_K \alpha_n$$

More generally, if O_K be an integral domain, K be its fraction field, L/K be a separable extension and O_L be its integral closure, this Lemma also holds.

Proof: If $\alpha = a_1\alpha_1 + \cdots + a_n\alpha_n \in \mathcal{O}_L$, $a_j \in K$, then the a_j are a solution of the system of linear equations

$$\operatorname{Tr}_{L|K}(\alpha_i \alpha) = \sum_j \operatorname{Tr}_{L|K}(\alpha_i \alpha_j) a_j,$$

Definition 1.1.9 (integral basis). K is an algebraic number field with degree n and all the algebraic integer in K form a subring of K, denoted it by \mathcal{O}_K . For any ideal I of \mathcal{O}_K , there's a basis $\omega_1, \omega_2, \ldots, \omega_n$ for K/\mathbb{Q} such that $w_i, i = 1, \ldots, n \in \mathcal{O}_K$ and $I = \mathbb{Z}\omega_1 \oplus \cdots \oplus \mathbb{Z}\omega_n$. In particular, every ideal of \mathcal{O}_K is a free \mathbb{Z} -module of rank n. We call basis of \mathcal{O}_K as free abelian group integral basis of \mathcal{O}_K

Definition 1.1.10 (discriminant of number field). Define $d_K = d(\omega_1, \omega_2, \dots, \omega_n)$, where $\omega_1, \omega_2, \dots, \omega_n$ is an integral basis of \mathcal{O}_K .

Proposition 1.1.11. Let L/\mathbb{Q} and L'/\mathbb{Q} be two Galois extensions of degree n, resp. n', such that $L \cap L' = K$. Let $\omega_1, \ldots, \omega_n$, resp. $\omega'_1, \ldots, \omega'_{n'}$, be an integral basis of $L \mid \mathbb{Q}$, resp. $L' \mid \mathbb{Q}$, with discriminant d, resp. d'. Suppose that d and d' are relatively prime. Then $\omega_i \omega'_j$ is an integral basis of LL', of discriminant $d^{n'}d'^n$.

Example 1.1.12. integral basis of quadratic number field Let D be a squarefree rational integer $\neq 0, 1$ and d the discriminant of the quadratic number field $K = \mathbb{Q}(\sqrt{D})$. Show that

$$d = D$$
, if $D \equiv 1 \mod 4$,
 $d = 4D$, if $D \equiv 2 \text{ or } 3 \mod 4$,

and that an integral basis of K is given by $\{1, \sqrt{D}\}$ in the second case, by $\{1, \frac{1}{2}(1+\sqrt{D})\}$ in the first case, and by $\{1, \frac{1}{2}(d+\sqrt{d})\}$ in both cases.

Theorem 1.1.13. Assume $f(x) = x^n + \alpha x + b \in \mathbb{Q}[x]$ is a irreducible polynomial, θ is a root of f(x). Then $\mathbb{Q}(\theta)$ is an algebraic number field. In the extension $\mathbb{Q}(\theta)/\mathbb{Q}$,

$$d(1, \theta, \dots, \theta^{n-1}) = d(f) = (-1)^{n(n-1)/2} \left[(-1)^{n-1} (n-1)^{n-1} a^n + n^n b^{n-1} \right]$$

In particular, when n=3, $d(1,\theta,\theta^2)=-(4a^3+27b^2).$

Proposition 1.1.14. The ring \mathcal{O}_K is noetherian, integrally closed, and dim $\mathcal{O}_K = 1$.

Proof: Noetherian: since every ideal is a free \mathbb{Z} -module of rank $[K:\mathbb{Q}].$

integrally closed: $\alpha \in K$ integral over \mathcal{O}_K , then $\mathcal{O}_K[\alpha]$ is integral over \mathcal{O}_K , hence over \mathbb{Z} .

dim = 1: It thus remains to show that each prime ideal $p \neq 0$ is maximal. Now, $p \cap \mathbb{Z}$ is a nonzero prime ideal (p) in \mathbb{Z} : the primality is clear, and if $y \in \mathfrak{p}, y \neq 0$, and

$$y^n + a_1 y^{n-1} + \dots + a_n = 0$$

is an equation for y with $a_i \in \mathbb{Z}$, $a_n \neq 0$, then $a_n \in \mathfrak{p} \cap \mathbb{Z}$. The integral domain $\overline{\mathcal{O}} = \mathcal{O}_K/\mathfrak{p}$ is a field also follows from above equation.

Proposition 1.1.15. (1)

$$\mathfrak{N}((\alpha)) = |N_{K|\mathbb{Q}}(\alpha)|$$

(2) If $\mathfrak{a} = \mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_r^{\nu_r}$ is the prime factorization of an ideal $a \neq 0$, then one has

$$\mathfrak{N}(\mathfrak{a}) = \mathfrak{N}\left(\mathfrak{p}_1\right)^{
u_1} \cdots \mathfrak{N}\left(\mathfrak{p}_r\right)^{
u_r}$$

1.2 Minkowski Thoery

Definition 1.2.1 (Lattice). Let V be an n-dimensional \mathbb{R} -vector space. A lattice in V is a subgroup of the form

$$\Gamma = \mathbb{Z}v_1 + \dots + \mathbb{Z}v_m$$

with linearly independent vectors v_1, \ldots, v_m of V. The m-tuple (v_1, \ldots, v_m) is called a basis and the set

$$\Phi = \{x_1 v_1 + \dots + x_m v_m \mid x_i \in \mathbb{R}, 0 \le x_i < 1\}$$

a fundamental mesh of the lattice. The lattice is called complete or a \mathbb{Z} structure of V, if m=n.

Definition 1.2.2 (Haar measure on euclidean space). Now let V be a euclidean vector space, i.e., an \mathbb{R} -vector space of finite dimension n equipped with a symmetric, positive definite bilinear form

$$\langle,\rangle:V\times V\longrightarrow \mathbb{R}$$

Then we have on V a notion of volume - more precisely a Haar measure. The cube spanned by an orthonormal basis e_1, \ldots, e_n has volume 1, and more generally, the parallelepiped spanned by n linearly independent vectors v_1, \ldots, v_n ,

$$\Phi = \{x_1v_1 + \dots + x_nv_n \mid x_i \in \mathbb{R}, 0 \le x_i < 1\}$$

has volume

$$vol(\Phi) = |\det A|,$$

where $A = (a_{ij})$ is the matrix of the base change from e_1, \ldots, e_n to v_1, \ldots, v_n . Also,

$$\operatorname{vol}(\Phi) = \left| \det \left(\langle v_i, v_j \rangle \right) \right|^{1/2}$$

Let Γ be the lattice spanned by v_1, \ldots, v_n . Then Φ is a fundamental mesh of Γ , and we write for short

$$\operatorname{vol}(\Gamma) = \operatorname{vol}(\Phi)$$

Theorem 1.2.3 (Minkowski's Lattice Point Theorem). Let Γ be a complete lattice in the euclidean vector space V and X a centrally symmetric, convex, measurable subset of V. Suppose that

$$\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma).$$

Then X contains at least one nonzero lattice point $\gamma \in \Gamma$.

Moreover, if in addition X is compact, we only need

$$\operatorname{vol}(X) \ge 2^n \operatorname{vol}(\Gamma)$$

Example 1.2.4 (Minkowski's Theorem on Linear Forms). Let

$$L_i(x_1,...,x_n) = \sum_{j=1}^n a_{ij}x_j, \quad i = 1,...,n,$$

be real linear forms such that $\det(a_{ij}) \neq 0$, and let c_1, \ldots, c_n be positive real numbers such that $c_1 \cdots c_n > |\det(a_{ij})|$. Show that there exist integers $m_1, \ldots, m_n \in \mathbb{Z}$ such that

$$|L_i(m_1,\ldots,m_n)| < c_i, \quad i = 1,\ldots,n.$$

Definition 1.2.5 (Minkowski space). Minkowski space $K_{\mathbb{R}}$ can be given in the following manner. Some of the embeddings $\tau: K \to \mathbb{C}$ are real in that they land already in \mathbb{R} , and others are complex, i.e., not real. Let

$$\rho_1, \ldots, \rho_r : K \longrightarrow \mathbb{R}$$

be the real embeddings. The complex ones come in pairs

$$\sigma_1, \bar{\sigma}_1, \dots, \sigma_s, \bar{\sigma}_s : K \longrightarrow \mathbb{C}$$

of complex conjugate embeddings. Thus n = r + 2s. Define

$$K_{\mathbb{R}} = \left\{ (z_{\tau}) \in \prod_{\tau} \mathbb{C} \mid z_{\rho} \in \mathbb{R}, z_{\bar{\sigma}} = \bar{z}_{\sigma} \right\}$$

And there's canonical map

$$f: K \to K_{\mathbb{R}} \quad x \mapsto (\rho_1(x), \dots, \rho_r, (x), \sigma_1(x), \bar{\sigma}_1(x), \dots, \sigma_s(x), \bar{\sigma}_s(x))$$

Definition 1.2.6. $K_{\mathbb{C}}$ with canonical map and Hermitian inner product is defined to be

$$j: K \longrightarrow K_{\mathbb{C}} := \prod_{\tau} \mathbb{C}, \quad a \longmapsto ja = (\tau a),$$

$$\langle x, y \rangle = \sum_{\tau} x_{\tau} \bar{y}_{\tau}.$$

 $K_{\mathbb{R}}$ is a \mathbb{R} -subspace with inner product $K_{\mathbb{R}} \times K_{\mathbb{R}} \to \mathbb{R}$.

Proposition 1.2.7. If $\mathfrak{a} \neq 0$ is an ideal of \mathcal{O}_K , then $\Gamma = j\mathfrak{a}$ is a complete lattice in $K_{\mathbb{R}}$. Its fundamental mesh has volume

$$\operatorname{vol}(\Gamma) = \sqrt{|d_K|} \left(\mathcal{O}_K : \mathfrak{a} \right)$$

Proposition 1.2.8. Let $\mathfrak{a} \neq 0$ be an integral ideal of K, and let $c_{\tau} > 0$, for $\tau \in \text{Hom}(K, \mathbb{C})$, be real numbers such that $c_{\tau} = c_{\bar{\tau}}$ and

$$\prod_{\tau} c_{\tau} > A\left(\mathcal{O}_{K} : \mathfrak{a}\right)$$

where $A = \left(\frac{2}{\pi}\right)^s \sqrt{|d_K|}$. Then there exists $a \in \mathfrak{a}, a \neq 0$, such that

$$|\tau a| < c_{\tau}$$
 for all $\tau \in \text{Hom}(K, \mathbb{C})$.

Proof: The set $X = \{(z_{\tau}) \in K_{\mathbb{R}} : |z_{\tau}| < c_{\tau}\}$ is centrally symmetric and convex. Its volume vol(X) can be computed via the map

$$f: K_{\mathbb{R}} \xrightarrow{\sim} \prod_{\tau} \mathbb{R}, \quad (z_{\tau}) \longmapsto (x_{\tau}),$$

given by $x_{\rho} = z_{\rho}, x_{\sigma} = \text{Re}(z_{\sigma}), x_{\bar{\sigma}} = \text{Im}(z_{\sigma})$. It comes out to be 2^s times the Lebesgue-volume of the image

$$f(X) = \left\{ (x_{\tau}) \in \prod_{\tau} \mathbb{R} : |x_{\rho}| < c_{\rho}, x_{\sigma}^2 + x_{\bar{\sigma}}^2 < c_{\sigma}^2 \right\}.$$

This gives

$$\operatorname{vol}(X) = 2^{s} \operatorname{vol}_{\text{Lebesgue}} (f(X)) = 2^{s} \prod_{\rho} (2c_{\rho}) \prod_{\sigma} (\pi c_{\sigma}^{2}) = 2^{r+s} \pi^{s} \prod_{\tau} c_{\tau}.$$

Lemma 1.2.9. In Minkowski space

$$K_{\mathbb{R}} = \left[\prod_{ au} \mathbb{C}
ight]^+$$

, the domain

$$X_t = \left\{ (z_\tau) \in K_{\mathbb{R}} : \sum_{\tau} |z_\tau| < t \right\}$$

has volume

$$\operatorname{vol}(X_t) = 2^r \pi^s \frac{t^n}{n!}.$$

Proof: By Change of Variables, it suffices to figure out

$$I(t) = \int u_1 \cdots u_s dx_1 \cdots dx_r du_1 \cdots du_s d\theta_1 \cdots d\theta_s$$

extended over the domain

$$|x_1| + \dots + |x_r| + 2u_1 + \dots + 2u_s \le t.$$

Restricting this domain of integration to $x_i \geq 0$, the integral gets divided by 2^r . Substituting $2u_i = w_i$ gives

$$I(t) = 2^r 4^{-s} (2\pi)^s I_{r,s}(t),$$

where the integral

$$I_{r,s}(t) = \int w_1 \cdots w_s dx_1 \cdots dx_r dw_1 \cdots dw_s$$

has to be taken over the domain $x_i \ge 0, w_j \ge 0$ and

$$x_1 + \dots + x_r + w_1 + \dots + w_s \le t$$

$$I_{r,s}(1) = \int_0^1 I_{r-1,s} (1 - x_1) dx_1 = \int_0^1 (1 - x_1)^{n-1} dx_1 \cdot I_{r-1,s}(1)$$

$$= \frac{1}{n} I_{r-1,s}(1)$$

By induction, this implies that

$$I_{r,s}(1) = \frac{1}{n(n-1)\cdots(n-r+1)}I_{0,s}(1).$$

In the same way, one gets

$$I_{0,s}(1) = \int_0^1 w_1 (1 - w_1)^{2s-2} dw_1 I_{0,s-1}(1),$$

and, doing the integration, induction shows that

$$I_{0,s}(1) = \frac{1}{(2s)!}I_{0,0}(1) = \frac{1}{(2s)!}.$$

Proposition 1.2.10. Show that in every ideal $\mathfrak{a} \neq 0$ of \mathcal{O}_K , there exists an $a \neq 0$ such that

$$|N_{K|\mathbb{Q}}(a)| \leq M(\mathcal{O}_K : \mathfrak{a}),$$

where

$$M = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|d_K|}$$

(the so-called Minkowski bound).

Proof: By Lattice Point Theorem and Lemma 1.2.9.

Remark 1.2.11. If we write

$$\mathfrak{a}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r},$$

 $0 \neq \alpha \in \mathfrak{a}$ means

$$(a)=\mathfrak{P}_1^{e_1+u_1}\cdots\mathfrak{P}_r^{e_r+u_r}\mathfrak{Q}_1^{f_1}\cdots\mathfrak{Q}_r^{f_r}, (\mathfrak{P}_i,\mathfrak{Q}_j)=1.$$

Hence above inequality becomes

$$\mathfrak{N}\left(\mathfrak{P}_{1}\right)^{u_{1}}\ldots\mathfrak{N}\left(\mathfrak{P}_{r}\right)^{u_{r}}\mathfrak{N}\left(\mathfrak{Q}_{1}\right)^{f_{1}}\ldots\mathfrak{N}\left(\mathfrak{Q}_{r}\right)^{f_{r}}\leq M$$

That is to say, every integral ideal can be multipled by a integral ideal whose norm $\leq M$ such that it becomes a integral principal ideal.

Proposition 1.2.12. The ideal class group $Cl_K = J_K/P_K$ is finite. Its order

$$h_K = (J_K : P_K)$$

is called the class number of K.

Proof: If $\mathfrak{p} \neq 0$ is a prime ideal of \mathcal{O}_K and $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, then $\mathcal{O}_K/\mathfrak{p}$ is a finite field extension of $\mathbb{Z}/p\mathbb{Z}$ of degree, say, $f \geq 1$, and we have

$$\mathfrak{N}(\mathfrak{p})=p^f.$$

Given p, there are only finitely many prime ideals \mathfrak{p} such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, because this means that $\mathfrak{p} \mid (p)$. It follows that there are only finitely many prime ideals p of bounded absolute norm. Since every integral ideal admits a representation $a = p_1^{\nu_1} \cdots p_r^{\nu_r}$ where $\nu_i > 0$ and

$$\mathfrak{N}(\mathfrak{a}) = \mathfrak{N}\left(\mathfrak{p}_1\right)^{
u_1} \cdots \mathfrak{N}\left(\mathfrak{p}_r\right)^{
u_r}$$

there are altogether only a finite number of ideals \mathfrak{a} of \mathcal{O}_K with bounded absolute norm $\mathfrak{N}(\mathfrak{a}) \leq M$.

It therefore suffices to show that each class $[\mathfrak{a}] \in Cl_K$ contains an integral ideal \mathfrak{a}_1 satisfying

$$\mathfrak{N}\left(\mathfrak{a}_{1}\right) \leq M = \frac{n!}{n^{n}} \left(\frac{4}{\pi}\right)^{s} \sqrt{|d_{K}|}$$

Then this result follows from Remark 1.2.11.

Corollary 1.2.13. The discriminant of an algebraic number field K of degree n satisfies

$$\left|d_K\right|^{1/2} \ge \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{n/2}.$$

Definition 1.2.14. The \mathbb{R} -vector space $[\prod_{\tau} \mathbb{R}]^+$ is explicitly given as follows. Separate as before the embeddings $\tau: K \to \mathbb{C}$ into real ones, ρ_1, \ldots, ρ_r , and pairs of complex conjugate ones, $\sigma_1, \bar{\sigma}_1, \ldots, \sigma_s, \bar{\sigma}_s$. We obtain a decomposition which is analogous to the one we saw above for $[\Pi_{\tau}\mathbb{C}]^+$,

$$\left[\prod_{\tau}\mathbb{R}\right]^{+}=\prod_{\rho}\mathbb{R}\times\prod_{\sigma}[\mathbb{R}\times\mathbb{R}]^{+}$$

The factor $[\mathbb{R} \times \mathbb{R}]^+$ now consists of the points (x, x), and we identify it with \mathbb{R} by the map $(x, x) \mapsto 2x$. In this way we obtain an isomorphism.

$$\left[\prod_{\tau}\mathbb{R}\right]^{+}\cong\mathbb{R}^{r+s}$$

Definition 1.2.15. Consider a commutative diagram as follow:

$$K^* \xrightarrow{j} K_{\mathbb{R}}^* \xrightarrow{l} [\prod_{\tau} \mathbb{R}]^+$$

$$\downarrow^{N_{K/\mathbb{Q}}} \qquad \qquad \downarrow^{\text{Tr}}$$

$$\mathbb{Q}^* \longrightarrow \mathbb{R}^* \xrightarrow{\log |\cdot|} \mathbb{R}$$

where $l: K_{\mathbb{R}}^* \to [\prod_{\tau} \mathbb{R}]^+ : (z_{\tau}) \mapsto (\log(|z_{\tau}|))$ and Tr is sum of the elements in $[\prod_{\tau} \mathbb{R}]^+$. In the upper part of the diagram we consider the subgroups

$$\mathcal{O}_{K}^{*} = \left\{ \varepsilon \in \mathcal{O}_{K} \mid N_{K|\mathbb{Q}}(\varepsilon) = \pm 1 \right\}, \quad \text{the group of units,}$$

$$S = \left\{ y \in K_{\mathbb{R}}^{*} \mid N(y) = \pm 1 \right\}, \quad \text{the "norm-one surface",}$$

$$H = \left\{ x \in \left[\prod_{\tau} \mathbb{R} \right]^{+} \mid \operatorname{Tr}(x) = 0 \right\}, \quad \text{the "trace-zero hyperplane".}$$

We obtain the homomorphisms

$$\mathcal{O}_K^* \xrightarrow{j} S \xrightarrow{\ell} H$$

and the composite $\lambda := \ell \circ j : \mathcal{O}_K^* \to H$. The image will be denoted by

$$\Gamma = \lambda \left(\mathcal{O}_K^* \right) \subseteq H$$

Proposition 1.2.16 (roots of unit). The sequence

$$1 \to \mu(K) \to \mathcal{O}_K^* \xrightarrow{\lambda} \Gamma \longrightarrow 0$$

is exact, where $\mu(K)$ is the roots of unity lie in K.

Definition 1.2.17 (Directlet Unit Theorem). The group Γ is a complete lattice in the (r+s-1) dimensional vector space H, and is therefore isomorphic to \mathbb{Z}^{r+s-1} .

Definition 1.2.18 (regulator). Identifying $[\prod_{\tau} \mathbb{R}]^+ = \mathbb{R}^{r+s}$, H becomes a subspace of the euclidean space \mathbb{R}^{r+s} and thus itself a euclidean space. We may therefore speak of the volume of the fundamental mesh vol $(\lambda(\mathcal{O}_K^*))$ of the unit lattice $\Gamma = \lambda(\mathcal{O}_K^*) \subseteq H$, and will now compute it. Let $\varepsilon_1, \ldots, \varepsilon_t, t = r + s - 1$, be a system of fundamental units and Φ the fundamental mesh of the unit lattice $\lambda(\mathcal{O}_K^*)$, spanned by the vectors $\lambda(\varepsilon_1), \ldots, \lambda(\varepsilon_t) \in H$. The vector

$$\lambda_0 = \frac{1}{\sqrt{r+s}}(1,\dots,1) \in \mathbb{R}^{r+s}$$

is obviously orthogonal to H and has length 1. The t-dimensional volume of Φ therefore equals the (t+1)-dimensional volume of the parallelepiped spanned by $\lambda_0, \lambda\left(\varepsilon_1\right), \ldots, \lambda\left(\varepsilon_t\right)$ in \mathbb{R}^{t+1} . But this has volume

$$|\det \begin{pmatrix} \lambda_{01} & \lambda_{1}(\varepsilon_{1}) & \cdots & \lambda_{1}(\varepsilon_{t}) \\ \vdots & \vdots & & \vdots \\ \lambda_{0t+1} & \lambda_{t+1}(\varepsilon_{1}) & \cdots & \lambda_{t+1}(\varepsilon_{t}) \end{pmatrix}|$$

where $[\lambda_1(\varepsilon_i), \ldots, \lambda_{t+1}(\varepsilon_i)] = \lambda(\varepsilon_i) \in \mathbb{R}^{r+s}$. Adding all rows to a fixed one, say the *i*-th row, this row has only zeroes, except for the first entry, which equals $\sqrt{r+s}$. We therefore get the the volume of the fundamental mesh of the unit lattice $\lambda(\mathcal{O}_K^*)$ in H is

$$\operatorname{vol}\left(\lambda\left(\mathcal{O}_{K}^{*}\right)\right) = \sqrt{r+s}R$$

where R is the absolute value of the determinant of an arbitrary t = r + s - 1 rows of the following matrix:

$$\begin{pmatrix} \lambda_{1}\left(\varepsilon_{1}\right) & \cdots & \lambda_{1}\left(\varepsilon_{t}\right) \\ \vdots & & \vdots \\ \lambda_{t+1}\left(\varepsilon_{1}\right) & \cdots & \lambda_{t+1}\left(\varepsilon_{t}\right) \end{pmatrix}.$$

This absolute value R is called the regulator of the field K.

Definition 1.2.19 (cyclotomic units). Let ζ be a primitive m-th root of unity, $m \geq 3$. Show that the numbers $\frac{1-\zeta^k}{1-\zeta}$ for (k,m)=1 are units in the ring of integers of the field $\mathbb{Q}(\zeta)$. The subgroup of the group of units they generate is called the group of cyclotomic units.

1.3 Ramification Theory

Assume some notations: L/K is an extension of number field, \mathcal{O}_L , \mathcal{O}_K are ring of integers of L and K respectively. For $0 \neq \mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_K)$, denote the ideal generated by \mathfrak{p} by in \mathcal{O}_L by $\mathfrak{p}\mathcal{O}_L$.

Proposition 1.3.1. $\mathfrak{p}\mathcal{O}_L \neq \mathcal{O}_L$ and $\mathfrak{p}\mathcal{O}_L \cap \mathcal{O}_K = \mathfrak{p}$.

Proof: Take $\pi \in \mathfrak{p} - \mathfrak{p}^2$, we have $(\pi) = \mathfrak{pa}$, where $(\mathfrak{p}, \mathfrak{a}) = (1)$. Take $b + s = 1, b \in \mathfrak{p}, s \in \mathfrak{a}$. Then

$$s\mathcal{O}_L = s\mathfrak{p}\mathcal{O}_L \subset \pi\mathcal{O}_L$$

Hence there's $x \in \mathcal{O}_L$ such that $s = \pi x$, which implies $x \in K \cap \mathcal{O}_L = \mathcal{O}_K$. Hence $s \in \mathfrak{p}$, a contradiction!

Proposition 1.3.2. \mathfrak{P} is an ideal of \mathcal{O}_L , Let $\mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}$, and $e = e(\mathfrak{P}/\mathfrak{p})$. Then $\mathfrak{P}^t \cap \mathcal{O}_K = \mathfrak{p}^d$, where $d = \left\lceil \frac{t}{e} \right\rceil$.

Proof: Notice that

$$x \in \mathfrak{P}^t \cap \mathcal{O}_K \iff x \in \mathcal{O}_K, \mathfrak{P}^t \supset x\mathcal{O}_L \iff x \in \mathcal{O}_K, \mathfrak{p}^d \supset x\mathcal{O}_K \text{ with } de \geq t$$

Corollary 1.3.3. \mathfrak{A} is an ideal of \mathcal{O}_K , then $\mathfrak{A}\mathcal{O}_L \cap \mathcal{O}_K = \mathfrak{A}$

Corollary 1.3.4. If $\mathfrak{A} = \mathfrak{p}\mathcal{O}_L$ and \mathfrak{B} are coprime in \mathcal{O}_L , then $\mathfrak{A} \cap \mathcal{O}_K$ and $\mathfrak{B} \cap \mathcal{O}_K$ are coprime in \mathcal{O}_K .

Definition 1.3.5. A prime ideal $\mathfrak{p} \neq 0$ of the ring \mathcal{O}_K decomposes in \mathcal{O}_L in a unique way into a product of prime ideals,

$$\mathfrak{p}O_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}.$$

The prime ideals \mathfrak{P}_i occurring in the decomposition are precisely those prime ideals \mathfrak{P} of \mathcal{O}_L which lie over \mathfrak{p} in the sense that one has the relation

$$\mathfrak{p}=\mathfrak{P}\cap\mathcal{O}_K$$
.

This we also denote for short by $\mathfrak{P} \mid \mathfrak{p}$, and we call \mathfrak{P} a prime divisor of \mathfrak{p} . The exponent e_i is called the ramification index, and the degree of the field extension

$$f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$$

Theorem 1.3.6 (fundamental identity).

$$\sum_{i=1}^{r} e_i f_i = n.$$

Theorem 1.3.7. Suppose now that the number field extension L/K which is given by a primitive element $\theta \in \mathcal{O}_L$ with minimal polynomial

$$p(X) \in \mathcal{O}_K[X],$$

so that $L = K(\theta)$.

First, conductor is defined to be the biggest ideal \mathfrak{F} of \mathcal{O}_L which is contained in $\mathcal{O}[\theta]$. In other words

$$\mathfrak{F} = \{ \alpha \in \mathcal{O}_L : \alpha \mathcal{O}_L \subseteq \mathcal{O}_K[\theta] \}$$

To show \mathfrak{F} is non-zero, we consider $1, \theta, \dots, \theta^{n-1}$ a basis of L/K. By Lemma 1.1.8, we have

$$d(1, \theta, \dots, \theta^{n-1})\mathcal{O}_L \subset \mathcal{O}_K + \dots + \mathcal{O}_K \theta^{n-1} = \mathcal{O}_K[\theta].$$

Hence $d(1, \theta, \dots, \theta^{n-1}) \in \mathfrak{F}$

Let Let $\mathfrak p$ be a prime ideal of $\mathcal O$ which is relatively prime to the conductor $\mathfrak F$ and let

$$\bar{p}(X) = \bar{p}_1(X)^{e_1} \cdots \bar{p}_r(X)^{e_r}$$

be the factorization of the polynomial $\bar{p}(X) = p(X) \mod \mathfrak{p}$ into irreducibles $\bar{p}_i(X) = p_i(X) \pmod \mathfrak{p}$ over the residue class field $\mathcal{O}_K/\mathfrak{p}$, with all $p_i(X) \in \mathcal{O}_K[X]$ monic. Then

$$\mathfrak{P}_i = \mathfrak{p}\mathcal{O}_L + p_i(\theta)\mathcal{O}_L, \quad i = 1, \dots, r,$$

are the different prime ideals of \mathcal{O}_L above \mathfrak{p} . The inertia degree f_i of \mathfrak{P}_i is the degree of $\bar{p}_i(X)$, and one has

$$\mathfrak{p}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r}.$$

Corollary 1.3.8. If $K = \mathbb{Q}$, $p \nmid |\mathcal{O}_L/\mathcal{O}_K[\alpha]|$ implies $p\mathcal{O}_L$ is coprime to \mathfrak{F} .

Proof: Let $d = |\mathcal{O}_L/\mathcal{O}_K[\alpha]|$, since (p) + (d) = (1), we have $p\mathcal{O}_L + d\mathcal{O}_L = \mathcal{O}_L$. Notice that $d\mathcal{O}_L \subset \mathfrak{F}$, we have

$$\mathfrak{F} + p\mathcal{O}_L = \mathcal{O}_L$$

Definition 1.3.9. The prime ideal \mathfrak{p} is said to split completely (or to be totally split) in L, if in the decomposition

$$\mathfrak{p}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r},$$

one has r = n = [L : K], so that $e_i = f_i = 1$ for all i = 1, ..., r.

 \mathfrak{p} is called nonsplit, or indecomposed, if r=1, i.e., if there is only a single prime ideal of L over \mathfrak{p} .

The prime ideal \mathfrak{P}_i in the decomposition $\mathfrak{p} = \prod_{i=1}^r \mathfrak{P}_i^{e_i}$ is called unramified over $\mathcal{O}_{\mathcal{K}}$ if $e_i = 1$. If not, it is called ramified, and totally ramified if furthermore $f_i = 1$.

The prime ideal \mathfrak{p} is called unramified if all \mathfrak{P}_i are unramified, otherwise it is called ramified.

Theorem 1.3.10. p unramified over K if and only if p divides d_K .

Theorem 1.3.11. Assume $K = \mathbb{Q}(\sqrt{d}), p$ is a prime number.

- (1) If $p \mid d(K)$, $p\mathcal{O}_K = \mathfrak{P}^2$, $\mathfrak{N}(\mathfrak{P}) = p$, i.e. p is ramified over K.
- (2) If $p \ge 3$, and $p \nmid d(K)$

(a) if
$$\left(\frac{d}{p}\right) = 1$$
, $pO_K = \mathfrak{p}_1\mathfrak{p}_2$, where $\mathfrak{p}_1 \neq \mathfrak{p}_2$, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.

(b) if
$$\left(\frac{d}{p}\right) = -1$$
, $pO_K = \mathfrak{p}$, $N(\mathfrak{p}) = p^2$.

- (3) If p = 2 and $p \nmid d(K)$, then $d \equiv 1 \pmod{4}$.
 - (a) if $d \equiv 1 \pmod{8}$, 2 is totally spilt.
 - (b) if $d \equiv 5 \pmod{8}$, $2\mathcal{O}_K$ is a prime ideal.

Proposition 1.3.12. Let L/K be a Galois extension. The Galois group G acts transitively on the set of all prime ideals \mathfrak{P} of \mathcal{O} lying above p, i.e., these prime ideals are all conjugates of each other.

Proof: Let \mathfrak{P} and \mathfrak{P}' be two prime ideals above \mathfrak{p} . Assume $\mathfrak{P}' \neq \sigma \mathfrak{P}$ for any $\sigma \in G$. By the Chinese remainder theorem there exists $x \in \mathcal{O}$ such that $x \equiv 0 \mod \mathfrak{P}'$ and $x \equiv 1 \mod \sigma \mathfrak{P}$ for all $\sigma \in G$. Then the norm $N_{L|K}(x) = \prod_{\sigma \in G} \sigma x$ belongs to $\mathfrak{P}' \cap \mathcal{O}_K = \mathfrak{p}$. On the other hand, $x \notin \sigma \mathfrak{P}$ for any $\sigma \in G$, hence $\sigma x \notin \mathfrak{P}$ for any $\sigma \in G$. Consequently $\prod_{\sigma \in G} \sigma x \notin \mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}$, a contradiction.

Definition 1.3.13. If \mathfrak{P} is a prime ideal of \mathcal{O} , then the subgroup

$$G_{\mathfrak{P}} = \{ \sigma \in G \mid \sigma \mathfrak{P} = \mathfrak{P} \}$$

is called the decomposition group of \mathfrak{P} over K. The fixed field

$$Z_{\mathfrak{P}} = \{ x \in L \mid \sigma x = x \text{ for all } \sigma \in G_{\mathfrak{P}} \}$$

is called the decomposition field of \mathfrak{P} over K.

Proposition 1.3.14. $[G:G_{\mathfrak{P}}]$ = the number of prime ideal over \mathfrak{p} . In particular, one has

$$G_{\mathfrak{P}} = 1 \Longleftrightarrow Z_{\mathfrak{P}} = L \Longleftrightarrow \mathfrak{p}$$
 is totally split,
 $G_{\mathfrak{P}} = G \Longleftrightarrow Z_{\mathfrak{P}} = K \Longleftrightarrow \mathfrak{p}$ is nonsplit.

Proposition 1.3.15. In the Galois case, the inertia degrees f_1, \ldots, f_r and the ramification indices e_1, \ldots, e_r in the prime decomposition

$$\mathfrak{p}=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_r^{e_r}$$

of a prime ideal \mathfrak{p} of K are both independent of i,

$$f_1 = \cdots = f_r = f$$
, $e_1 = \cdots = e_r = e$

In fact, writing $\mathfrak{P} = \mathfrak{P}_1$, we find $\mathfrak{P}_i = \sigma_i \mathfrak{P}$ for suitable $\sigma_i \in G$, and the isomorphism $\sigma_i : \mathcal{O} \to \mathcal{O}$ induces an isomorphism

$$\mathcal{O}/\mathfrak{P} \xrightarrow{\sim} \mathcal{O}/\sigma_i \mathfrak{P}, \quad a \bmod \mathfrak{P} \longmapsto \sigma_i a \bmod \sigma_i \mathfrak{P},$$

so that

$$f_i = [\mathcal{O}/\sigma_i \mathfrak{P} : \mathcal{O}/\mathfrak{p}] = [\mathcal{O}/\mathfrak{P} : \mathcal{O}/\mathfrak{p}], \quad i = 1, \dots, r$$

Furthermore, since $\sigma_i(\mathfrak{pO}) = \mathfrak{pO}$, we deduce from

$$\mathfrak{P}^{\nu} |\mathfrak{p}\mathcal{O} \iff \sigma_i(\mathfrak{P}^{\nu})| \sigma_i(\mathfrak{p}\mathcal{O}) \iff (\sigma_i\mathfrak{P})^{\nu} | \mathfrak{p}\mathcal{O}$$

the equality of the $e_i, i = 1, ..., r$. Thus the prime decomposition of \mathfrak{p} in \mathcal{O} takes on the following simple form in the Galois case:

$$\mathfrak{p} = \left(\prod_{\sigma} \sigma \mathfrak{P}\right)^e$$

where σ varies over a system of representatives of $G/G_{\mathfrak{P}}$.

Proposition 1.3.16. Let $\mathfrak{P}_Z = \mathfrak{P} \cap Z_{\mathfrak{P}}$ be the prime ideal of $Z_{\mathfrak{P}}$ below \mathfrak{P} .

Then we have:

- (1) \mathfrak{P}_Z is nonsplit in L, i.e., \mathfrak{P} is the only prime ideal of L above \mathfrak{P}_Z .
- (2) \mathfrak{P} over $Z_{\mathfrak{P}}$ has ramification index e and inertia degree f.
- (3) The ramification index and the inertia degree of \mathfrak{P}_Z over K both equal 1.

Proposition 1.3.17. Every $\sigma \in G_{\mathfrak{P}}$ induces an automorphism

$$\bar{\sigma}: \mathcal{O}/\mathfrak{P} \longrightarrow \mathcal{O}/\mathfrak{P}, \quad a \bmod \mathfrak{P} \longmapsto \sigma a \bmod \mathfrak{P}$$

of the residue class field \mathcal{O}/\mathfrak{P} . Putting $\kappa(\mathfrak{P}) = \mathcal{O}/\mathfrak{P}$ and $\kappa(\mathfrak{p}) = \mathcal{O}/\mathfrak{p}$,

$$G_{\mathfrak{P}} \longrightarrow \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})), \sigma \mapsto \bar{\sigma}$$

is surjective.

Definition 1.3.18. The kernel $I_{\mathfrak{P}} \subseteq G_{\mathfrak{P}}$ of the homomorphism,

$$G_{\mathfrak{P}} \longrightarrow \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p}))$$

is called the inertia group of \mathfrak{P} over K. The fixed field

$$T_{\mathfrak{P}} = \{ x \in L \mid \sigma x = x \text{ for all } \sigma \in I_{\mathfrak{P}} \}$$

is called the inertia field of \mathfrak{P} over K.

This inertia field $T_{\mathfrak{P}}$ appears in the tower of fields

$$K \subseteq Z_{\mathfrak{P}} \subseteq T_{\mathfrak{P}} \subseteq L$$

and we have the exact sequence

$$1 \longrightarrow I_{\mathfrak{P}} \longrightarrow G_{\mathfrak{P}} \longrightarrow \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})) \longrightarrow 1$$

Proposition 1.3.19. One has

(1) $I_{\mathfrak{P}}$ is a normal subgroup of $G_{\mathfrak{P}}$ and

$$\operatorname{Gal}(T_{\mathfrak{P}}/Z_{\mathfrak{P}}) \cong \operatorname{Gal}(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})), \quad \operatorname{Gal}(L/T_{\mathfrak{P}}) = I_{\mathfrak{P}}$$

(2)

$$\#I_{\mathfrak{P}} = [L:T_{\mathfrak{P}}] = e, \quad (G_{\mathfrak{P}}:I_{\mathfrak{P}}) = [T_{\mathfrak{P}}:Z_{\mathfrak{P}}] = f$$

- (3) The ramification index of \mathfrak{P} over \mathfrak{P}_T is e and the inertia degree is 1.
- (4) The ramification index of \mathfrak{P}_T over \mathfrak{P}_Z is 1 and the inertia degree is f.

Proposition 1.3.20.

$$G_{\sigma\mathfrak{P}} = \sigma G_{\mathfrak{P}} \sigma^{-1}, I_{\sigma\mathfrak{P}} = \sigma I_{\mathfrak{P}} \sigma^{-1}, Z_{\sigma\mathfrak{P}} = \sigma(Z_{\mathfrak{P}}), T_{\sigma\mathfrak{P}} = \sigma(T_{\mathfrak{P}})$$

The following diagram demonstrates what we obtain

Definition 1.3.21 (Frobenius automorphism). If L/K is a Galois extension of algebraic number fields, and \mathfrak{P} a prime ideal which is unramified over K, then there is only one automorphism

$$\left(\frac{L/K}{\mathfrak{P}}\right) \in \operatorname{Gal}(L/K)$$

such that

$$\left(\frac{L/K}{\mathfrak{P}}\right)a \equiv a^q(\operatorname{mod}\mathfrak{P}) \quad \text{ for all } a \in \mathcal{O}_{\mathcal{L}}$$

where $q = |\kappa(\mathfrak{p})|$. It is called the Frobenius automorphism. The decomposition group $G_{\mathfrak{P}}$ is cyclic and $\varphi_{\mathfrak{P}}$ is a generator of $G_{\mathfrak{P}}$.

If L/K is abelian, usually we denote Frobenius automorphism by $\left(\frac{L/K}{\mathfrak{p}}\right)$ since it is independent of the choice of prime ideal over \mathfrak{p} .

Proposition 1.3.22. L/K is a Galois extension of algebraic number fields, and \mathfrak{P} a prime ideal which is unramified over K. Let $\left(\frac{L/K}{\mathfrak{P}}\right)$ be the Frobenius automorphism.

(1) The order of $\left(\frac{L/K}{\mathfrak{P}}\right)$ is f.

(2)

$$\left(\frac{L/K}{\sigma(\mathfrak{P})}\right) = \sigma\left(\frac{L/K}{\mathfrak{P}}\right)\sigma^{-1}$$

(3) If E is an intermediate field and E/K is a Galois extension. then

$$\left. \left(\frac{L/K}{\mathfrak{P}} \right) \right|_{E} = \left(\frac{E/K}{\mathfrak{P}_{E}} \right)$$

Theorem 1.3.23. Assume E_1/K , E_2/K are Galois extension, $L = E_1E_2$, then L/K is also Galois extension.

- (1) \mathfrak{p} unramified in L if and only if unramified in E_1 and E_2 .
- (2) \mathfrak{p} totally split in L if and only if totally split in E_1 and E_2 .

Proof: (1): Let \mathfrak{P} be a prime ideal over \mathfrak{p} and $\mathfrak{P}_1 = \mathfrak{P} \cap E_1$, $\mathfrak{P}_2 = \mathfrak{P} \cap E_1$. Notice that a prime ideal is unramified if and only if its inertia group is trivial, then it suffices to show the inertia group $I_{\mathfrak{P}}$ is trivial. Notice that the embedding

$$\varphi: \operatorname{Gal}(L/K) \to \operatorname{Gal}(E_1/K) \times \operatorname{Gal}(E_2/K), \sigma \mapsto (\sigma|_{E_1}, \sigma|_{E_2})$$

preserves inertia group and decomposition group.

(2): Since \mathfrak{p} is totally split over E_1 and E_2 , it is unramified over E_1 and E_2 , hence unramified over L. Consider the Frobenius automorphism $\frac{L/K}{\mathfrak{P}}$, under the embedding φ and by Proposition 1.3.22,

$$\mathfrak{P}$$
 totally split \iff $\left(\frac{L/K}{\mathfrak{P}}\right) = \mathrm{id} \iff \left(\frac{E_1/K}{\mathfrak{P}_1}\right) = \mathrm{id}, \left(\frac{E_2/K}{\mathfrak{P}_2}\right) = \mathrm{id}$

Corollary 1.3.24. If L/K is abelian, $Z_{\mathfrak{P}}$ is the maximal intermediate field such that \mathfrak{p} is totally spilt and $T_{\mathfrak{P}}$ is the maximal intermediate field such that \mathfrak{p} is unramified.

Example 1.3.25. The Lucas sequence

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

, where α, β are roots of polynomial $X^2 - X - \frac{q-1}{4}$ with q a prime number congruent to $1 \pmod{4}$, we have

$$a_p \equiv \left(\frac{p}{q}\right) \bmod p$$

For prime number $p \neq 2, q$

Proof: Consider the Frobenius automorphism $\left(\frac{\mathbb{Q}(\sqrt{q})/\mathbb{Q}}{p}\right)$, on the one hand, $a_p \equiv 1 \pmod{p}$ iff $\left(\frac{\mathbb{Q}(\sqrt{q})/\mathbb{Q}}{p}\right)$ is trivial. On the other hand, $\left(\frac{\mathbb{Q}(\sqrt{q})/\mathbb{Q}}{p}\right)$ is trivial iff f = 1 i.e. p is totally spilt over $\mathbb{Q}(\sqrt{q})$.

Proposition 1.3.26. Let n be a prime power ℓ^{ν} and put $\lambda = 1 - \zeta$. Then the principal ideal (λ) in the ring \mathcal{O} of integers of $\mathbb{Q}(\zeta)$ is a prime ideal of in inertia degree, and we have

$$\ell \mathcal{O} = (\lambda)^d$$
, where $d = \varphi(\ell^{\nu}) = [\mathbb{Q}(\zeta) : \mathbb{Q}]$

Furthermore, the basis $1, \zeta, \ldots, \zeta^{d-1}$ of $\mathbb{Q}(\zeta)/\mathbb{Q}$ has the discriminant

$$d(1, \zeta, \dots, \zeta^{d-1}) = \pm \ell^s, \quad s = \ell^{\nu-1}(\nu\ell - \nu - 1)$$

Proposition 1.3.27. A \mathbb{Z} -basis of ring of integers of $\mathbb{Q}(\zeta_n)$ is given by $1, \zeta, \ldots, \zeta^{d-1}$, with $d = \varphi(n)$, in other words,

$$\mathcal{O} = \mathbb{Z} + \mathbb{Z}\zeta + \dots + \mathbb{Z}\zeta^{d-1} = \mathbb{Z}[\zeta]$$

Proposition 1.3.28. Let $n = \prod_p p^{\nu_p}$ be the prime factorization of n and, for every prime number p, let f_p be the smallest positive integer such that

$$p^{f_p} \equiv 1 \pmod{m}$$
, where $m = n/p^{\nu_p}$

Then one has in $\mathbb{Q}(\zeta)$ the factorization

$$p = (\mathfrak{p}_1 \cdots \mathfrak{p}_r)^{\varphi(p^{\nu_p})}$$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are distinct prime ideals, all of degree f_p and $r = \frac{\varphi(m)}{f_p}$.

Proof: Consider the Frobenius Automorphic of p over $\mathbb{Q}(\zeta_m)$, f_p is the root of the Frobenius Automorphic hence equals to the order of p in $(\mathbb{Z}/m\mathbb{Z})^{\times}$. By Proposition 1.3.26, we have $e = \varphi(p^{\nu_p})$, $f = f_p$, $g = \frac{\varphi(m)}{f_n}$.

Moreover, $\mathbb{Q}(\zeta_m)$ is the inertia field of the cyclotomic extension.

In the following content we assume L/K is a finite extension of number fields or a finte extension of \mathbb{Q}_p and \mathcal{O}_L , \mathcal{O}_K be their ring of integers respectively.

Definition 1.3.29. Assume \mathfrak{A} is a fractional ideal of L. Define

$$^*\mathfrak{A} = \{x \in L : \mathrm{Tr}_{L/K}(x\mathfrak{A}) \subset \mathcal{O}_K\}$$

Since \mathfrak{A} is fractional ideal, ${}^*\mathfrak{A} \neq 0$. If $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_L$ is a basis of L/K and $d = \det(\operatorname{Tr}(\alpha_i \alpha_j))$ its discriminant, by Proposition 1.3.2, there's $0 \neq a \in \mathcal{O}_K \cap \mathfrak{A}$. We have $ad^*\mathfrak{A} \subseteq \mathcal{O}_L$. Indeed, if $x = x_1\alpha_1 + \cdots + x_n\alpha_n \in {}^*\mathfrak{A}$, with $x_i \in K$, then the ax_i satisfy the system of linear equations $\sum_{i=1}^n ax_i \operatorname{Tr}(\alpha_i \alpha_j) = \operatorname{Tr}(xa\alpha_j) \in \mathcal{O}_K$. This implies $dx_i a \in \mathcal{O}_K$ and thus $dax \in \mathcal{O}_L$. Hence ${}^*\mathfrak{A}$ is also a fractional ideal.

Definition 1.3.30. The fractional ideal

$$\mathfrak{C}_{\mathcal{O}_L|\mathcal{O}_K} =^* \mathcal{O}_L = \{ x \in L : \operatorname{Tr}(x\mathcal{O}_L) \subseteq \mathcal{O}_K \}$$

is called Dedekind's complementary module, or the inverse different. Its inverse,

$$\mathfrak{D}_{\mathcal{O}_L|\mathcal{O}_K} = \mathfrak{C}_{\mathcal{O}_L|\mathcal{O}_K}^{-1}$$

is called the different of $\mathcal{O}_L|\mathcal{O}_K$, an integral ideal of \mathcal{O}_L . We also denote it by $\mathfrak{D}_{L|K}$.

Definition 1.3.31 (different of the element). $f(X) \in \mathcal{O}_K[X]$ be the minimal polynomial of α . We define the different of the element α by

$$\delta_{L|K}(\alpha) = \begin{cases} f'(\alpha) & \text{if } L = K(\alpha) \\ 0 & \text{if } L \neq K(\alpha) \end{cases}$$

Lemma 1.3.32. $f(X) = a_0 + a_1 X + \cdots + a_n X^n \in F[X]$ with $a_n \neq 0$, F algebraically closed, and $\alpha_1, \ldots, \alpha_n$ be roots of f(X). Suppose $\alpha_1, \ldots, \alpha_n$ are distinct, then

$$\sum_{i=1}^{n} \frac{f(X)}{X - \alpha_i} \frac{\alpha_i^r}{f'(\alpha_i)} = X^r, \quad 0 \le r \le n - 1$$

Proposition 1.3.33. If $\mathcal{O}_L = \mathcal{O}_K[\alpha]$, the different is the principal ideal

$$\mathfrak{D}_{L|K} = \left(\delta_{L|K}(\alpha)\right)$$

Proof: Let $f(X) = a_0 + a_1 X + \cdots + a_n X^n$, $a_n = 1, \in \mathcal{O}_K[X]$ be the minimal polynomial of α and

$$\frac{f(X)}{X - \alpha} = b_0 + b_1 X + \dots + b_{n-1} X^{n-1}$$

By above Lemma,

$$\operatorname{Tr}\left[\frac{f(X)}{X-\alpha}\frac{\alpha^r}{f'(\alpha)}\right] = X^r$$

Considering now the coefficient of each of the powers of X, we obtain

$$\operatorname{Tr}\left(\alpha^{i} \frac{b_{j}}{f'(\alpha)}\right) = \delta_{ij}, 0 \le i, j \le n-1$$

Since $\mathcal{O}_L = \mathcal{O}_K + \cdots + \mathcal{O}_K \alpha^{n-1}$, $b_j/f'(\alpha) \in \mathcal{O}_L$, $j = 0, \dots, n-1$ form a basis of L/K and

$$\mathfrak{C}_{\mathcal{O}_{L}|\mathcal{O}_{K}} = f'(\alpha)^{-1} \left(\mathcal{O}_{K} b_{0} + \dots + \mathcal{O}_{K} b_{n-1} \right) = f'(\alpha)^{-1} \mathcal{O}_{L}$$

Theorem 1.3.34. A prime ideal \mathfrak{P} of L is ramified over K if and only if $\mathfrak{P} \mid \mathfrak{D}_{L|K}$. Let \mathfrak{P}^s be the maximal power of \mathfrak{P} dividing $\mathfrak{D}_{L|K}$, and let e be the ramification index of \mathfrak{P} over K. Then one has

$$s=e-1, \quad \mathfrak{P}$$
 is tamely ramified, $e \leq s \leq e-1+v_{\mathfrak{P}}(e), \quad \mathfrak{P}$ is widely ramified

Proposition 1.3.35. If K is an algebraic number field, $\mathfrak{D}_{K/\mathbb{Q}}$ be its different. Then

$$|d_K| = \mathfrak{N}(\mathfrak{D}_{K/\mathbb{Q}})$$

Proposition 1.3.36. K is an algebraic number field, if $\mathfrak{D}_{K|\mathbb{Q}} = P_1^{e_1} \dots P_s^{e_s}$. We have

$$\mathfrak{D}_{K_{P_i}|\mathbb{Q}_{p_i}}=\mathfrak{p}_i^{e_i}$$

where \mathfrak{p}_i be the unique maximal ideal in the ring of integers of K_{P_i} .

1.4 Adeles and Ideles

Definition 1.4.1. Let K be a number field. Let K_{ν} be the completion of K at the ν th place of K. The restricted direct product of K_{ν} , under addition, with respect to \mathfrak{o}_{ν} , is called the adele group of K, and is denoted \mathbb{A}_{K} . We set $J_{\infty} = \{\nu : \nu \text{ an infinite place of } K\}$. Note that K_{ν} is an LCHA and \mathfrak{o}_{K} is a compact-open subgroup of K_{ν} for all finite places ν of K. Every element of K is divisible by finitely many prime ideals, and hence the embedding of K into K_{ν} for all ν lies in \mathfrak{o}_{ν} for all but finitely many places. Therefore, K embeds diagonally into \mathbb{A}_{K} :

$$K \to \mathbb{A}_K$$

 $x \mapsto (x, x, x, \ldots)$

The idele group, denoted \mathbb{I}_K , is the restricted direct product of K_{ν}^* , as a multiplicative group, with respect to $\mathfrak{o}_{\nu}^{\times}$, an open compact subgroup of K_{ν}^* . Since every element of K^* is locally an integer, and hence a unit for all but finitely many places, K^* diagonally embeds into \mathbb{I}_K :

$$K^* \to \mathbb{I}_K$$

 $x \mapsto (x, x, x, \ldots)$

Proposition 1.4.2. K is a number field, \mathbb{A}_K be the adele group of K and \mathbb{I}_K be the idele group of K.

- (1) \mathbb{A}_K is a commutative ring with identity and $\mathbb{A}_K^{\times} = \mathbb{I}_K$.
- (2) Restricted direct product topology on \mathbb{I}_K is stronger than subspace topology from \mathbb{A}_K on \mathbb{I}_K

(3) \mathbb{I}_K is a topological isomorphism onto its image in \mathbb{A}^2_K under the map

$$\phi: \mathbb{I}_K \longrightarrow \mathbb{A}_K^2$$
$$x \mapsto \left(x, \frac{1}{x}\right)$$

(4) Define the subgroup \mathbb{A}_{∞} of \mathbb{A}_K to be

$$\mathbb{A}_{\infty} := \{ x = (x_{\nu}) \in \mathbb{A}_K : x_{\nu} \in \mathfrak{o}_{\nu} \text{ for all } \nu \notin J_{\infty} \}$$

We have

$$\mathbb{A}_K = K + \mathbb{A}_{\infty}$$
 and $K \cap \mathbb{A}_{\infty} = \mathcal{O}_K$

(5) K is discrete subgroup of Adele group and \mathbb{A}_K/K is compact.

Proof: (2): Take $K = \mathbb{Q}$ as an example,

$$U = \mathbb{R}^{\times} \times \prod_{p \neq \infty} \mathbb{Z}_p^{\times}$$

is open in restricted direct product topology but not open in subspace topology.

(3): Notice that ϕ is continous since

$$K_{\nu}^* \to K_{\nu}^* \times K_{\nu}^*, x \mapsto (x, \frac{1}{x})$$

is continous for all ν . Conversely, to show the inverse map

$$\varphi : \phi(\mathbb{I}_K) \longrightarrow \mathbb{I}_K$$

$$\left(x, \frac{1}{x}\right) \mapsto x$$

is continous, it suffices to check that for

$$U = \prod_{\nu \in S} N_{\nu}^* \times \prod_{\nu \in S^c} \mathfrak{o}_{\nu}^*$$

where S is finite set of places containing the infinite places and N_{ν}^{*} are open subsets of K_{ν}^{*} , we have

$$\varphi^{-1}(U) = (\prod_{\nu \in S} N_{\nu}^* \times \prod_{\nu \in S^c} \mathfrak{o}_v \times \prod_{\nu \in T} (N_{\nu}^*)^{-1} \times \prod_{\nu \in T^c} \mathfrak{o}_v) \cap \phi(\mathbb{I}_K).$$

(4): Take $x = (x_{\nu}) \in \mathbb{A}_K$, there's $0 \neq m \in \mathbb{Z}$ such that $mx_{\nu} \in \mathfrak{o}_{\nu}$ for all finite place ν . Assume

$$S = \{ \nu \text{ finite } : |m|_{\nu} \neq 1 \text{ or } x_{\nu} \notin \mathfrak{o}_{\nu} \}.$$

By Chinese Remainder Theorem, there's $y \in \mathcal{O}_K$ such that $|y_{\nu} - mx_{\nu}| \leq \varepsilon$ for all $\nu \in S(\varepsilon)$ sufficiently small). Then $x_{\nu} - y/m \in \mathfrak{o}_{\nu}$.

Proposition 1.4.3. K is a discrete subgroup of \mathbb{A}_K (hence closed by Proposition 2.1.13) and \mathbb{A}_K/K is compact.

Proof: Consider

 $C_1 = \{x = (x_{\nu}) \in \mathbb{A}_K : |x_{\nu}|_{\nu} < 1/([K : \mathbb{Q}]!) \text{ for infinite place and } |x_{\nu}| \le 1 \text{ for finite place} \}$

and

$$C_2 = \{x = (x_{\nu}) \in \mathbb{A}_K : |x_{\nu}| \le M \text{ for infinite place and } |x_{\nu}| \le 1 \text{ for finite place} \}$$

for M sufficiently large. By definition of restricted direct topology, C_1 is an open subset. If $k_1, k_2 \in K$ and $k_1 + c = k_2$ for some $c \in C_1$, notice that $k_2 - k_1 = c \in K \cap C \subset \mathcal{O}_K$, we have

$$\prod_{\sigma} (x - \sigma(c)) = p_c(x)^d, d = [K : \mathbb{Q}(c)].$$

where $p_c(x)$ is the minimal polynomial of c. Hence $\prod_{\sigma}(x - \sigma(c)) \in \mathbb{Z}[x]$. Therefore, $x^n = \prod_{\sigma}(x - \sigma(c))$, which implies c = 0. Hence, K is a discrete subgroup of Adele. On the other hand, by Proposition 2.1.43, C_2 is compact for arbitrary M > 0. Since \mathcal{O}_K is a complete lattice in $K_{\mathbb{R}}$ and $\mathbb{A}_K = K + \mathbb{A}_{\infty}$, we have $\mathbb{A}_K = K + C_2$. Hence, \mathbb{A}_K/K is compact.

Proposition 1.4.4. K^* is a discrete subgroup of \mathbb{I}_K (hence closed by Proposition 2.1.13) and \mathbb{I}_K/K^* is a LCHG but not compact. We call \mathbb{I}_K/K^* idele class group and denoted by C_K .

Definition 1.4.5. Let F be a local field of characteristic zero. We define the normalized absolute value on F as follows:

- (1) If $F = \mathbb{R}$, then let $|\cdot|_F$ be the standard absolute value.
- (2) If $F = \mathbb{C}$, then let $|\cdot|_F$ be the square of the standard absolute value.
- (3) If F is non-Archimedean, then let $|\cdot|_F$ be such that $|\pi_F|_F = \frac{1}{q}$, where π_F is the uniformizing parameter of F, and q is the order of the residue field $\mathfrak{o}_F/\pi_F\mathfrak{o}_F$.

Definition 1.4.6. Now we will fix a Haar measure for each completion of K.

- (1) If $F = \mathbb{R}$, then let dx be the standard Lesbesgue measure.
- (2) IF $F = \mathbb{C}$, then let dx be twice the standard Lebesgue measure.
- (3) If F is non-Archimedean, then let dx be such that $\operatorname{Vol}(\mathfrak{o}_F, dx) = N(\mathfrak{D}_F)^{-1/2}$, where \mathfrak{D}_F denotes the different of F, which is an integral ideal of \mathfrak{o}_F .

Remark 1.4.7. By Theorem 1.3.34, for all the completion K_{ν} , there are only finite many finite places such that $\operatorname{Vol}(\mathfrak{o}_F, dx) \neq 1$.

Theorem 1.4.8. Let $|\cdot|_F$ be the normalized absolute value of F. If μ is a Haar measure on F, then

$$\frac{\mu(y \cdot M)}{\mu(M)} = |y|_F$$

for any $y \in F^{\times}$ and for any measurable set M with $0 < \mu(M) < \infty$.

Proof: The cases when $F = \mathbb{R}$ and \mathbb{C} are trivial. Now we show the case when F is a p-adic field. Notice that

$$\mu(\pi_F^s \mathfrak{o}_F) = \sum_{a \in \pi_F^s \mathfrak{o}_F / \pi_F^{s+1} \mathfrak{o}_F} \mu(a + \pi_F^s \mathfrak{o}_F) = |\pi_F|_F^{-1} \mu(\pi_F^{s+1} \mathfrak{o}_F)$$

for all $s \in \mathbb{Z}$.

Definition 1.4.9. Define

$$|\cdot|_{\mathbb{I}_K}: \mathbb{I}_K \to \mathbb{R}_{>0}, (x_{\nu}) \mapsto \prod_{\nu} |x_{\nu}|_{\nu}$$

to be the absolute value on \mathbb{I}_K . By Proposition 2.1.50, $|\cdot|_{\mathbb{I}_K}$ is continous and surjective. Hence, \mathbb{I}_K/K^* cannot be compact.

Theorem 1.4.10 (Artin's product formula). For all $x \in K^*$, $|x|_{\mathbb{I}_K} = 1$ and $|\cdot|_{\mathbb{I}_K}$ is surjective.

Proof: By Theorem 2.2.41, we have

$$|x|_{\mathbb{I}_K} = |N_{K/\mathbb{Q}}(x)| \prod_{p} \prod_{\nu|p} |x_{\nu}|_{\nu}$$

$$= |N_{K/\mathbb{Q}}(x)| \prod_{p} \prod_{i=1}^{r} |N_{\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p}(\sigma_i(x))|_p$$

$$= |N_{K/\mathbb{Q}}(x)| \prod_{p} |N_{K/\mathbb{Q}}(x)|_p$$

$$= 1$$

Definition 1.4.11. Define Ker $|\cdot|_{\mathbb{I}_K} = \mathbb{I}_K^1$ and we call it ideles of norm one.

Proposition 1.4.12. For every $\alpha = (\alpha_{\nu}) \in \mathbb{I}_K$, let $|\alpha|_{\mathbb{I}_K} = \prod_{\nu} |\alpha_{\nu}|_{\nu}$. If μ is a Haar measure on \mathbb{A}_K , then

$$\frac{\mu(\alpha \cdot M)}{\mu(M)} = |\alpha|_{\mathbb{I}_K}$$

for any $\alpha \in \mathbb{I}_K$ and for any measurable set M with $0 < \mu(M) < \infty$.

Proof: By Proposition 2.1.50.

Proposition 1.4.13. LCHA $C_K^1 = \mathbb{I}_K^1/K^*$ is compact.

Definition 1.4.14. For $\xi = (\xi_v) \in \mathbf{A}_K^{\times} = \mathbb{I}_K$, define the closed subset

$$X_{\xi} = \{(x_v) \in \mathbf{A}_K \mid ||x_v||_v \le ||\xi_v||_v\} \subseteq \mathbf{A}_K$$

There exists $C = C_K > 0$ such that if $|\xi|_{\mathbb{I}_K} > C$ then $X_{\xi} \cap K$ contains a nonzero element.

Proof: Let μ be the unique Haar measure on \mathbf{A}_K that is adapted to counting measure on the discrete subgroup K and the volume-1 measure on the compact quotient \mathbf{A}_K/K . Let $Z \subseteq \mathbf{A}_K$ denote the compact set of adeles $z = (z_v)$ such that $|z_v|_v \leq 1$ for non-archimedean $v, |z_v|_v \leq |1/2|_v$ for $v \mid \infty$, so if $z, z' \in Z$ then $||z_v - z_v'||_v \leq 1$ for all v. Since Z is compact and contains an open neighborhood around the origin, $\mu(Z)$ is finite and positive.

Take $C=1/\mu(Z)$, if $|\xi|>C$, we have $\mu(\xi Z)>1$. We claim that this forces the existence of a pair of distinct elements in ξZ with the same image in \mathbf{A}_K/K , which is to say that the projection map $\pi: \xi Z \to \mathbf{A}_K/K$ has some fiber with size at least 2. Indeed, if χ on \mathbf{A}_K is the characteristic function of the subset ξZ , then by Theorem 2.1.38(we need to find $f_n \in C_c(\mathbb{A}_K), n=1,\ldots$ such that $f_n \to \chi$ pointwise and $f_n \leq f_{n+1}$ for all $n \geq 1$)

$$\mu(\xi Z) = \int_{\mathbf{A}_K} \chi d\mu = \int_{\mathbf{A}_K/K} \left(\sum_{c \in K} \chi(c+x) \right) \bar{\mu} = \int_{\mathbf{A}_K/K} \#\pi^{-1}(x+K)\bar{\mu}$$

with $\bar{\mu}$ the volume-1 Haar measure on \mathbf{A}_K/K , and so if all fibers of π have size at most 1 then we get $\mu(\xi Z) \leq \int_{\mathbf{A}_K/K} d\bar{\mu} = 1$, contradicting that $\mu(\xi Z) > 1$.

We conclude that there exists $x, x' \in \xi Z$ such that $x - x' = a \in K^{\times}$. Thus, if we write $x = \xi z$ and $x' = \xi z'$ with $z, z' \in Z$ then

$$|a|_v = \|\xi_v (z_v - z_v')\|_v \le |\xi|_v$$

for all places v. Hence, $a \in X_{\xi} \cap K^{\times}$.

Theorem 1.4.15 (strong approximation). Let $M_K = S \sqcup T \sqcup \{w\}$ be a partition of the places of K with S finite(contains infinite place). Given any $a_v \in K$ and $\epsilon_v \in \mathbb{R}_{>0}$ with $v \in S$, there exists an $x \in K$ for which

$$||x - a_v||_v \le \epsilon_v$$
 for all $v \in S$
 $||x||_v \le 1$ for all $v \in T$

(note that there is no constraint on $||x||_w$).

Proof: Consider C_2 a compact subset of \mathbb{A}_K . For any nonzero $u \in K \subseteq \mathbb{A}_K$ we also have $\mathbb{A}_K = K + uC_2$. Now choose $z \in \mathbb{A}_K$ such that

$$0 < \|z\|_v \le \epsilon_v / M \text{ for } v \in S, \quad 0 < \|z\|_v \le 1 \text{ for } v \in T, \quad \|z\|_w > C_K \prod_{v \ne w} \|z\|_v^{-1}$$

We have ||z|| > B, so there is a nonzero $u \in K \subseteq \mathbb{A}_K$ with $||u||_v \le ||z||_v$ for all $v \in M_K$.

Now let $a = (a_v) \in \mathbb{A}_K$ be the adele with a_v given by the hypothesis of the theorem for $v \in S$ and $a_v = 0$ for $v \notin S$. We have $\mathbb{A}_K = K + uW$, so a = x + y for some $x \in K$ and $y \in uW$. Therefore

$$||x - a_v||_v = ||y||_v \le ||u||_v \le ||z||_v \le \begin{cases} \epsilon_v & \text{for } v \in S \\ 1 & \text{for } v \in T \end{cases}$$

as desired.

Definition 1.4.16. Let K be a global field. Let ν be a place of K and K_{ν} be the completion of K with respect to ν . Define

$$S(\mathbb{A}_K) = \bigotimes_{\nu}' S(K_{\nu}) = \{ f = \bigotimes f_{\nu} : f_{\nu} \in S(K_{\nu}) \, \forall \nu \text{ and } f_{\nu} = \mathbf{1}_{\mathfrak{o}_{\nu}} \text{ for almost all } \nu \}$$

where $\mathbf{1}_{\mathfrak{o}_{\nu}}$ is a characteristic function of \mathfrak{o}_{ν} . A function $f \in S(\mathbb{A}_K)$ is called an adelic Schwartz-Bruhat function.

Proposition 1.4.17. For each place ν of K, let ψ_{ν} be the standard unitary character on K_{ν} . Then the restriction of ψ_{ν} to \mathfrak{o}_{ν} is trivial for almost all ν . Hence,

$$\psi_K \left(\prod_{\nu} x_{\nu} \right) = \prod_{\nu} \psi_{\nu} \left(x_{\nu} \right) \text{ for } x = (x_{\nu}) \in \mathbb{A}_K$$

is a well-defined non-trivial character on \mathbb{A}_K . And ψ_K is trivial on K.

Proof:

$$\psi_K(\alpha) = \prod_p \prod_{\nu \mid p} \psi_p \left(\operatorname{tr}_{K_\nu/\mathbb{Q}_p}(\alpha) \right) = \prod_p \psi_p \left(\sum_{\nu \mid p} \operatorname{tr}_{K_\nu/\mathbb{Q}_p}(\alpha) \right) = \prod_p \psi_p \left(\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = 1 \right)$$

Proposition 1.4.18. Let K be a number field with the standard character ψ_K , as defined above. Then the following assertions hold:

- (1) The map $\alpha_{\psi_K}: \mathbb{A}_K \to \widehat{\mathbb{A}_K}$, defined by $y \mapsto \psi_{K,y}$, where $\psi_{K,y}(x) = \psi_K(xy)$, is an isomorphism(as topological groups).
- (2) The map $\beta_{\psi_K}: K \to \widehat{\mathbb{A}}_K/K$, defined by $x \mapsto \psi_{K,x}$, where x is identified with its embedding in \mathbb{A}_K , is an isomorphism(as topological groups).

Proof: (1): Since the different of K_{ν} is trivial for all but finite many ν .

(2): We still denote the image of K under the self-dual map defined in (1) by K. Hence $\mathbb{A}_K/K \cong \widehat{\mathbb{A}_K}/K$. Notice that K^{\perp} is a closed subgroup of $\widehat{\mathbb{A}_K}$, we have K^{\perp}/K is a closed(hence compact) subgroup of $\widehat{\mathbb{A}_K}/K$. On the other hand, $K^{\perp} \cong \widehat{\mathbb{A}_K}/K$, hence K^{\perp} is discrete. For all $x \in K^{\perp}$, there's U open in $\widehat{\mathbb{A}_K}$ such that $U \cap K^{\perp} = x$, hence

$$x + K = K^{\perp} \cap \bigcup_{y \in K} y + U$$

Therefore, K^{\perp}/K is discrete. Notice that $\alpha(\psi K) = (y \mapsto \psi(\alpha y))K$ is a well-defind K-vector space structure on K^{\perp}/K . Hence $K^{\perp} = K$.

Proposition 1.4.19. The mapping $f \mapsto \hat{f}$ defines an automorphism of $S(\mathbb{A}_K)$ that, moreover, extends to an isometry of $L^2(\mathbb{A}_K)$.

Theorem 1.4.20 (Poisson summation formula for \mathbb{A}_K). If $f \in S(\mathbb{A}_K)$, then

$$\sum_{\kappa \in K} f(\kappa) = \sum_{\kappa \in K} \widehat{f}(\kappa).$$

Proof: Fix a self-dual Haar measure on \mathbb{A}_K and a suitable measure on \mathbb{A}_K/K such that Theorem 2.1.38 holds.(Haar measure on K is counting measure). Then, we define

$$F: \mathbb{A}_K/K \to \mathbb{C}, x+K \mapsto \int_K f(x+y)dy$$

Hence,

$$\hat{F}(z) = \int_{\mathbb{A}_K/K} \int_K f(x+y)\psi_{K,z}(x)dydx = \int_{\mathbb{A}_K} f(x)\psi_{K,z}(x)dx = \hat{f}(z), \forall z \in K$$

Then by Fourier Inversion Formula, we have

$$CF(-x) = \hat{\hat{F}}(x) = \int_{K} \hat{f}(t)\psi_{K,x}(t)dt, x \in \mathbb{A}_{K}/K$$

for some C > 0. Take x = 0, we have

$$C\sum_{\kappa\in K}f(\kappa)=\sum_{\kappa\in K}\widehat{f}(\kappa).$$

Replace f by \hat{f} , we have

$$C\sum_{\kappa \in K} \hat{f}(\kappa) = \sum_{\kappa \in K} \hat{f}(\kappa) = \sum_{\kappa \in K} f(\kappa)$$

Then C=1.

Corollary 1.4.21. Above content shows that there's unique measure on \mathbb{A}_K/K such that Fourier Inversion Theorem(with respect to counting measure on K) and Theorem 2.1.38 hold simultaneously. Moreover, under this measure, the volume of the entire group \mathbb{A}_K/K is 1.

Proof: Let D_{∞} be a fundamental domain for $K_{\mathbb{R}}/\mathcal{O}_K$, and let $D = D_{\infty} \times \prod_{v \text{ finite}} \mathcal{O}_v$. Then

$$Vol(D) = Vol(D_{\infty}) \prod_{v \text{ finite}} Vol(\mathcal{O}_{v})$$
$$= (d_{K})^{1/2} \prod_{v \text{ finite}} \left(N(\mathfrak{D}_{K_{P_{i}}|\mathbb{Q}_{p_{i}}}) \right)^{-1/2} = 1$$

Notice that

$$\operatorname{Vol}(D) = \int_{\mathbb{A}_K} \chi_D = \int_{\mathbb{A}_K/K} \int_K \chi_D = \operatorname{Vol}(\mathbb{A}_K/K)$$

Corollary 1.4.22 (Poisson summation formula, anothor form). Let $x \in \mathbb{I}_K$. Let $f \in S(\mathbb{A}_K)$. Then

$$\sum_{\gamma \in K} f(\gamma x) = \frac{1}{|x|_{\mathbb{I}_K}} \sum_{\gamma \in K} \hat{f}\left(\gamma x^{-1}\right)$$

Proposition 1.4.23. Every idele-class character χ has the factorization $\chi = \chi_0 |\cdot|^s$ where χ_0 is a unitary character. Moreover, real part of s and the value of χ_0 on norm-one idèle are uniquely determined by χ .

Definition 1.4.24. An idele-class character, χ , is called unramified if $\chi|_{\mathbb{I}_1} = 1$. We say that two idele-class characters are equivalent if their quotient is unramified. Each equivalence class is of the form

$$\{\chi_0|\cdot|^s:s\in\mathbb{C}\}$$

for some fixed unitary character χ_0 . Hence, if we fix a unitary character for each equivalence class, s is uniquely determined by χ .

Definition 1.4.25. An idèle-class character or Hecke character or Größencharakter is a continuous homomorphism $\chi: \mathbb{I}_K \to \mathbb{C}^{\times}$ such that $\chi|_{K^{\times}} = 1$.

Proposition 1.4.26. There's a ono-to-one correspondence between primitive Dirchlet character and continuous homemorphism from $\hat{\mathbb{Z}}^{\times}$ to \mathbb{C}^{\times} .

Proof: Notice that if $N = p_1^{e_1} \dots p_s^{e_s}$,

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{\times} \times \dots (\mathbb{Z}/p_s^{e_s}\mathbb{Z})^{\times}$$

Since each \mathbb{Z}_p^{\times} is compact group, each quasi-character is induced by Dirchlet character (mod p^n) for sufficiently large n. Hence, by Lemma 2.1.45, Each quasi-character of $\hat{\mathbb{Z}}^{\times}$ is induced by a primitive Dirchlet character.

Theorem 1.4.27. For any Dirchlet character $\chi: \hat{\mathbb{Z}}^{\times} \to \mathbb{S}^1$, it induces an idèle-class character as follow: Consider the canonical isomorphism

$$\mathbb{I}_{\mathbb{Q}} \cong \mathbb{Q}^* \times \mathbb{R}_+^{\times} \times \hat{\mathbb{Z}}^{\times}.$$

This holds since for every idèle $(x_v)_v \in \mathbb{I}_{\mathbb{Q}}$, there's unique $q \in \mathbb{Q}^*$ such that $x_{\infty}/q \in \mathbb{R}_{>0}$ and $x_p/q \in \mathbb{Z}_p^{\times}$.

Moreover, all the finite order idèle-class character $\chi \in \operatorname{Hom}_{cont}(\mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^*, \mathbb{C}^*)$ are induced by Dirchlet Character.

Chapter 2

Local Theory

2.1 Topological Group

Definition 2.1.1. A topological group is a group G with a topology such that the maps $(g,h) \mapsto gh$ from $G \times G$ (with the product topology) to G and $g \mapsto g^{-1}$ from G to G are continuous.

Theorem 2.1.2 (topology defined by neighborhood basis). Let G be a topological group, and let \mathcal{N} be a neighbourhood base for the identity element e of G. Then

- (1) for all $N_1, N_2 \in \mathcal{N}$, there exists an $N' \in \mathcal{N}$ such that $e \in N' \subset N_1 \cap N_2$;
- (2) all $a \in N \in \mathcal{N}$, there exists an $N' \in \mathcal{N}$ such that $N'a \subset N$;
- (3) all $N \in \mathcal{N}$, there exists an $V \in \mathcal{N}$ such that $V^{-1}V \subset N$;
- (4) all $N \in \mathcal{N}$ and all $g \in G$, there exists an $N' \in \mathcal{N}$ such that $g^{-1}N'g \subset N$;

Conversely, if G is a group and \mathcal{N} is a nonempty set of subsets of G contain e satisfying (1), (2), (3), (4), then there is a (unique) topology on G such that G is a topological group and \mathcal{N} form a neighborhood base at e. Morover, if subsets in \mathcal{N} are all subgroup of G, we only need (1) and (4)

Proposition 2.1.3. G is a topological group.

- (1) If H is a subgroup of G, so is H.
- (2) Every open subgroup of G is also closed.
- (3) If K_1, K_2 are compact subsets of G, so is K_1K_2 .
- (4) Every subgroup of G, endowed with the subspace topology, is a topological group.
- (5) Let G_1 and G_2 be topological groups. The direct product $G_1 \times G_2$ endowed with the product topology and componentwise group operation is a topological group.

Proposition 2.1.4. G, H are topological groups. $\varphi : G \to H$ is a group homomorphism, then φ is continuous if and only if φ is continuous at identity.

Definition 2.1.5. Let f be a function on a group G. We define left and right translates of f by $L_h f(g) = f(h^{-1}g)$ and $R_h f(g) = f(gh)$, respectively. If f is a continuous function from G to \mathbb{R} or \mathbb{C} , then we say that f is left uniformly continuous if, for all $\epsilon > 0$, there exists a neighborhood V of the identity such that

$$||L_h f - f||_u < \epsilon \quad \forall h \in V$$

where $\| \|_u$ is the uniform, or supremum, norm. And right uniform continuity is defined similarly. Let $C_c(G)$ be the space of continuous functions on G with compact support.

Proposition 2.1.6. Let G be a topological group. Every function $f \in C_c(G)$ is both left and right uniformly continuous.

Proposition 2.1.7. Let G be a topological group. Then the following assertions are equivalent:

- (1) G is T_1 .
- (2) G is Hausdorff.
- (3) The identity e is closed in G.
- (4) Every point of G is closed in G.

Definition 2.1.8. X is a topological space, G is a topological group. If a topological group action is a group $G \times S \to S$ which is also continuous. If in addition the action is transitive, we call it transitive topological group action.

Example 2.1.9. G is a topological group and H be a subgroup of G. Give G/H, the set of left cosets, quotient topology. Then the group action $\rho: G \times G/H \to G/H: (g, aH) \mapsto gaH$ is a transtive topological group action.

Proof: If U open in G/H, let

$$W = \bigcup_{u \in U} u$$

and $\varphi: G \times G \to G$ be the multiplication and $\pi: G \times G \to G \times G/H$ be the product of identity and projection, we have $\rho^{-1}(U) = \pi(\varphi^{-1}(W))$.

Proposition 2.1.10. Let G be a topological group and let H be a subgroup of G. Then the following assertions hold:

- (1) The canonical projection $\rho: G \to G/H$ is an open map.
- (2) The quotient space G/H is T_1 if and only if H is closed.

35

- (3) The quotient space G/H is discrete if and only if H is open. Moreover, if G is compact, then H is open if and only if G/H is finite.
- (4) If H is normal in G, then G/H is a topological group with respect to coset multiplication and the quotient topology.

Proposition 2.1.11. Let G be a Hausdorff topological group. Then:

- (1) The product of a closed subset F and a compact subset K is closed.
- (2) If H is a compact subgroup of G, then $\rho: G \to G/H$ is a closed map.

Proposition 2.1.12. Let $\{G_i\}_i \in I$ be a set of LCHG(locally compact Hausdorff) such that G_i is compact for all but finitely many $i \in I$. Then

$$\prod_{i\in I}G_i$$

is a LCHG.

Proposition 2.1.13 (LCHG subgroup). Let G be a Hausdorff topological group. Then a subgroup H of G is a LCHG (in the subspace topology) if and only if H is closed. In particular, every discrete subgroup of G is closed.

Proposition 2.1.14 (LCHG quotient group). If G is LCHG and H is a closed subgroup, then G/H is a locally compact and Hausdorff space.

Theorem 2.1.15. Inverse limit exists in category of topological group.

Proof:

Example 2.1.16 (completion of \mathbb{Z}). Define

$$\widehat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$$

Since $\widehat{\mathbb{Z}}$ is completion, by Chinese Remainder Theorem, and Tychonoff theorem

$$\widehat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$$

Hence

$$\widehat{\mathbb{Z}}^{\times} = \varprojlim (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \prod_{p} \mathbb{Z}_{p}^{\times}$$

Definition 2.1.17 (pro-finite group). A topological group is pro-finite if it is isomorphic to a inverse limit of finite discrete topological group.

Proposition 2.1.18. A pro-finite group is compact, Hausdorff and totally disconnected.

Proof: Let G be a pro-finite group and $G \cong \varprojlim G_i$, since G_i is compact for each $i \in I$, it suffice to show $\varprojlim G_i$ is closed in product of G_i and also totally disconnected (connected component is one-point set).

Given $(g_i)_{i\in I} \notin \underline{\lim} G_i$, then there will exist p_{ij} such that $p_{ij}(g_j) \neq g_i$. Define

$$U = \{g_i\} \times \{g_j\} \times \prod_{k \neq i,j} G_k$$

which is open in $\prod_i G_i$ since G_i 's are discrete. Then $(g_i) \in U$, but $U \cap \varprojlim G_i = \emptyset$, which means $\prod_i G_i - \lim G_i$ is open.

Given any two elements $(g_i)_i$ and $(h_i)_i$ in $\prod_i G_i$ such that $(g_i)_i \neq (h_i)_i$, then there will exist some $j, g_j \neq h_j$. Define open subsets $U_j = \{g_j\} \times \prod_{i \neq j} G_i$ and $V_j = (G_j - \{g_j\}) \times \prod_{i \neq j} G_i$. Then $(g_i)_i \in U_j$ and $(h_i)_i \in V_j$ but $U_j \cap V_j = \emptyset$. Hence any subspace containing more than one element of X is not connected.

Definition 2.1.19 (compact-open topology). Let G be a locally compact Hausdorff abelian group(LCHA). We will write the group operation multiplicatively. Define \hat{G} (group of unitary characters) to be the set of all continuous homomorphisms of G into the circle group, $S^1 := \{z \in \mathbb{C} : |z| = 1\}$, of the complex numbers.

Sets of the form

$$W(K,V) = \{ \chi \in \hat{G} : \chi(K) \subseteq V \}$$

where K is a compact subset of G and V is a neighborhood of the identity in S^1 satisfies the four conditions in Theorem 2.1.2. Hence, it induces a topological group structure of \hat{G} . We call it compact-open topology.

Proposition 2.1.20. G is discrete, then \hat{G} is compact.

Proof: G is compact, then by Yychonoff's Theorem, $(S^1)^G$ with product topology is compact. And its compact subspace \hat{G} with subspace topology is the same as \hat{G} itself with compact-open topology.

Proposition 2.1.21. G is comact, then \hat{G} is discrete.

Proposition 2.1.22. χ_n converges to χ in \hat{G} if and only if for each compact set K in G, $\chi_n|_K$ converges uniformly to $\chi|_K$. If G is compact, then the compact open topology coincides the topology of uniform convergence. If G is finite, then the compact-open topology coincides with the topology of pointwise convergence.

Proposition 2.1.23. G is a LCHA, then \hat{G} is also LCHA.

Proof: Consider universal covering map $\phi: \mathbb{R} \to \mathbb{S}^1, x \mapsto e^{2\pi i x}$, define $N(\varepsilon) = \phi((-\frac{\varepsilon}{3}, \frac{\varepsilon}{3}))$.

Hausdorff: if $\chi_1 \neq \chi_2$, there's $g \in G$ such that $\chi_1(g) \neq \chi_2$. Then there's $g \in K \subset U$, where K compact and U open, such that $|\chi_1 - \chi_2| \geq \varepsilon$ in U. Consider a sufficiently small ε_0 , we have $\chi_1 U(K, N(\varepsilon_0)) \cap \chi_2 U(K, N(\varepsilon_0)) = \emptyset$.

Locally compact: Show that for every compact neighborhood K of G,

$$W(K, \overline{N(1/4)})$$

is a compact subset of \hat{G} .

Proposition 2.1.24. For a LCHA G, \hat{G} is also LCHA. The (G, \hat{G})

(1) $\hat{\mathbb{R}} \cong \mathbb{R}$ as topological group with isometric map

$$\xi \mapsto (x \mapsto e^{2\pi i x \xi})$$

(2) $\hat{S}^1 \cong \mathbb{Z}$ as topological group, with isometric map

$$n \mapsto (z \mapsto z^n)$$

(3) $\hat{\mathbb{Z}} \cong S^1$, with isometric map

$$\alpha \mapsto (n \mapsto \alpha^n)$$

(4) $\widehat{\mathbb{Z}/n\mathbb{Z}} \cong \mathbb{Z}/n\mathbb{Z}$, with isometric map

$$m \mapsto (k \mapsto e^{\frac{2\pi i k m}{n}})$$

Definition 2.1.25. A left Haar measure is a non-zero Radon measure on a LCHG such that it is left-invariant.

Proposition 2.1.26. Let G be a LCHG. Define

$$C_c^+(G) = \{ f \in C_c(G) : f \ge 0 \text{ and } ||f||_u > 0 \}.$$

we have

- (1) A Radon measure μ on G is a left Haar measure iff the measure $\tilde{\mu}$ defined by $\tilde{\mu}(E) = \mu(E^{-1})$ is a right Haar measure.
- (2) A nonzero Radon measure μ on G is a left Haar measure iff $\int f d\mu = \int L_y f d\mu$ for all $f \in C_c^+$ and $y \in G$.
- (3) If μ is a left Haar measure on G, then $\mu(U) > 0$ for every nonempty open $U \subset G$, and $\int f d\mu > 0$ for all $f \in C_c^+$.
- (4) If μ is a left Haar measure on G, then $\mu(G) < \infty$ iff G is compact.

Proposition 2.1.27. Every LCHG group G possesses a left Haar measure and it is unique up to a constant.

Example 2.1.28 (Haar measure on \mathbb{T}^n .). Define $\varphi : Q = [0,1)^n \to \mathbb{T}^n : x \mapsto x + \mathbb{Z}^n$ a bijection map. and notive that $\mu : E \in B_{\mathbb{T}^n} \mapsto m(\varphi^{-1}(E))$ is a left invariant Radon measure.

And by Risez Representation Theorem, we can show that the measure induced by the positive linear functional

$$f \in C_c(\mathbb{T}^n) \mapsto \int_Q f \circ \pi$$

is left invariant, hence also Haar measure on \mathbb{T}^n .

Theorem 2.1.29 (Pontrjagin Duality). G LCHA. Then the map $G \to \hat{G} : g \mapsto (\chi \mapsto \chi(g))$ is an isomorphic between topological group.

Definition 2.1.30 (Fourier Transform). Let $f \in L_1(G)$. Then we define $\hat{f} : \hat{G} \to \mathbb{C}$, the Fourier transform of f, to be

$$\hat{f}(\chi) = \int_G f(y)\chi(y)dy$$
 for $\chi \in \hat{G}$

Moreover, The Fourier Transform of $f \in L^1(G)$ is a continous function vanishes at infty. $(\in C_0(G))$.

Theorem 2.1.31 (The Plancherel Theorem). The Fourier transform on $L^1(G) \cap L^2(G)$ extends uniquely to a unitary map(in the category of Hilbert space) from $L^2(G)$ to $L^2(\widehat{G})$.

Theorem 2.1.32 (The Fourier Inversion Theorem). Let $\mathfrak{B}(G)$ denote the set of functions $f \in L^1(G)$ such that f is continuous and $\hat{f} \in L^1(\hat{G})$. There exists a Haar measure $d\chi$ on \hat{G} such that for all $f \in \mathfrak{B}(G)$,

$$f(y) = \int_{\hat{G}} \hat{f}(\chi) \overline{\chi(y)} d\chi$$

That is, $\hat{f}(y) = f(-y)$. In addition, the Fourier transform $f \mapsto \hat{f}$ identifies $\mathfrak{B}(G)$ with $\mathfrak{B}(\hat{G})$.

Definition 2.1.33 (modular function). If μ is a left Haar measure on G and $x \in G$, the measure $\mu_x(E) = \mu(Ex)$ is again a left Haar measure, because of the commutativity of left and right translations. Hence, by there is a positive number $\Delta(x)$ such that $\mu_x = \Delta(x)\mu$. The function $\Delta: G \to (0, \infty)$ thus defined. It is called the modular function of G.

Proposition 2.1.34. Δ is a continuous homomorphism from G to the multiplicative group of positive real numbers. Moreover, if μ is a left Haar measure on G, for any $f \in L^1(\mu)$ and y in G we have

$$\int (R_y f) d\mu = \Delta \left(y^{-1} \right) \int f d\mu$$

Proposition 2.1.35. The left Haar measures on G are also right Haar measures precisely when Δ is identically 1, in which case G is called unimodular.

- (1) If G/[G,G] is finite or G is compact, then G is unimodular.
- (2) If H is a compact subgroup of G, then $\Delta_G|H=\Delta_H=1$

Proposition 2.1.36. Let G be a LCHG, S a LCH space, $\rho: G \times S \to S$ a transitive G-action on S. Take $s_0 \in S$, define $\varphi: G \to S, g \mapsto gs_0$. Let H be the stabilizer at s_0 , a closed subgroup of G. It induces a continous bijection $\Phi: G/H \to S$.

If G is σ -compact, Φ is a homemorphism.

Definition 2.1.37. G is a LCHG with left Haar measure dx, H is a closed subgroup of G with left Haar measure $d\xi$, $q: G \to G/H$ is the canonical quotient map q(x) = xH, and Δ_G and Δ_H are the modular functions of G and H. We define a map $P: C_c(G) \to C_c(G/H)$ by

$$Pf(xH) = \int_{H} f(x\xi)d\xi.$$

Theorem 2.1.38. Suppose G is a LCHG and H is a closed subgroup. There is a G-invariant Radon measure μ on G/H if and only if $\Delta_G|_H = \Delta_H$. In this case, μ is unique up to a constant factor, and if this factor is suitably chosen we have

$$\int_{G} f(x)dx = \int_{G/H} Pfd\mu = \int_{G/H} \int_{H} f(x\xi)d\xi d\mu \quad (f \in C_{c}(G)).$$

Proposition 2.1.39. G a LCHA. Suppose H is a closed subgroup of G. Then H^{\perp} is a closed subgroup of \widehat{G} . We have

- $(1) (H^{\perp})^{\perp}) = H$
- (2) Define $\Phi: (G/H)^{\wedge} \to H^{\perp}$ and $\Psi: \widehat{G}/H^{\perp} \to \widehat{H}$ by

$$\Phi(\eta) = \eta \circ q, \quad \Psi\left(\xi H^{\perp}\right) = \xi|_{H},$$

where $q:G\to G/H$ is the canonical projection. Then Φ and Ψ are isomorphisms of topological groups.

Definition 2.1.40 (Restricted Direct Product). Let $J = \{\nu\}$ be a set of indices for which we are given G_{ν} , a LCHG, and let J_{∞} be a fixed finite subset of J such that for each $\nu \notin J_{\infty}$ we are given a compact open subgroup $H_{\nu} \leq G_{\nu}$. The restricted direct product of G_{ν} with respect to H_{ν} is defined by

$$G = \prod_{\nu \in J}' G_{\nu} = \{(x_{\nu}) : x_{\nu} \in G_{\nu} \text{ with } x_{\nu} \in H_{\nu} \text{ for all but finitely many } \nu\}$$

Definition 2.1.41 (topology on restricted direct product). Notice that subsets

$$B = \left\{ \prod N_{\nu} : N_{\nu} \text{ a neighborhood of } 1 \in G_{\nu} \text{ and } N_{\nu} = H_{\nu} \text{ for all but finitely many } \nu \right\}$$
 of G induces a topological group structure by Theorem 2.1.2.

Moreover, for any $S \subseteq J$, which necessarily contains J_{∞} , define G_S by

$$G_S = \prod_{\nu \in S} G_{\nu} \times \prod_{\nu \notin S} H_{\nu}$$

 G_S is a open subgroup of G and product topology on G_S is identical to the subspace topology induced by restricted direct topology defined above.

Proposition 2.1.42. *G* itself is a LCHG.

Proposition 2.1.43. A subset Y of G has compact closure if and only if $Y \subseteq \prod K_{\nu}$, for some family of compact subsets $K_{\nu} \subseteq G_{\nu}$, such that $K_{\nu} = H_{\nu}$ for all but finitely many indices ν .

Proposition 2.1.44. There exists a topological embedding of $G_{\nu} \longrightarrow G$ given by

$$x \longmapsto (\dots, 1, 1, x, 1, 1, \dots)$$

where the x is in the ν th component. And image of G_{ν} is a closed subgroup of G.

Lemma 2.1.45. Let $\chi \in \operatorname{Hom}_{\operatorname{Cont}}(G, \mathbb{C}^{\times})$ (quasi-characters). Then χ is trivial on all but finitely many H_{ν} . Therefore, for $y \in G$, $\chi(y_{\nu}) = 1$ for all but finitely many ν , and

$$\chi(y) = \prod_{\nu} \chi(y_{\nu}).$$

Lemma 2.1.46. For each ν let $\chi_{\nu} \in \operatorname{Hom}_{\operatorname{Cont}} (G_{\nu}, \mathbb{C}^{\times})$ and $\chi_{\nu}|_{H_{\nu}} = 1$ for all but finitely many indices ν . Then we have that $\chi = \prod_{\nu} \chi_{\nu} \in \operatorname{Hom}_{\operatorname{Cont}} (G, \mathbb{C}^{\times})$.

Theorem 2.1.47. Let G be the restricted direct product of LCHA G_{ν} with respect to compactopen subgroups H_{ν} . As topological groups, we have that

$$\hat{G} \cong \prod' \hat{G}_{\nu}$$

where the restricted direct product on the right is taken with respect to subgroups defined by

$$K(G_{\nu}, H_{\nu}) = \left\{ \chi_{\nu} \in \hat{G}_{\nu} : \chi_{\nu}|_{H_{\nu}} = 1 \right\}$$

for $\nu \notin J_{\infty}$. This subgroup traditionally is denoted H_{ν}^{\perp} .

Proof: We will begin by showing that $K(G_{\nu}, H_{\nu})$ is a compact-open subgroup of \hat{G}_{ν} . It is clear that $K(G_{\nu}, H_{\nu})$ is a subgroup of G_{ν} . Let U be a neighborhood of 1 in \mathbb{C}^{\times} that contains no other subgroup besides the trivial subgroup. Consider the neighborhood of the trivial character on G_{ν} defined by

$$W(H_{\nu}, U) = \left\{ \chi \in \hat{G}_{\nu} : \chi(H_{\nu}) \subseteq U \right\}$$

Since $\chi(H_{\nu})$ is a subgroup of U, then $\chi(H_{\nu}) = \{1\}$, and hence

$$W(H_{\nu}, U) = K(G_{\nu}, H_{\nu})$$

This shows that $K(G_{\nu}, H_{\nu})$ is an open subgroup of \hat{G}_{ν} . By Proposition 2.1.10 and 2.1.39, $K(G_{\nu}, H_{\nu})$ is a compact open subgroup.

Now, we assume Haar measure on G_v are all σ -finite.

Definition 2.1.48 (Restricted Direct Integration). Let dg_{ν} denote a left (right) Haar measure on G_{ν} normalized so that

$$\int_{H_{\nu}} dg_{\nu} = 1$$

for almost all $\nu \notin J_{\infty}$. Then there is a unique left (respectively, right) Haar measure dg on G such that for each finite set of indices S containing J_{∞} , the restriction of dg_s of dg to G_S (open subgroup of G) is precisely the product measure (infinite Radon product described in Analysis 2.6.18, hence also Haar measure on G_S). We will write $dg = \prod_{\nu} dg_{\nu}$ for this measure.

Proposition 2.1.49. Let $f \in L^1(G)$, for all $S \supset J_{\infty}$, we have $f|_{G_S} \in L^1(G_S)$. And if S_n be a sequence of subsets of J such that $S_n \supset J_{\infty}$ with $S_n \subset S_{n+1}$ and

$$\bigcup_{i=1}^{\infty} S_n = J,$$

then

$$\int_{G} f(g) = \lim_{n \to \infty} \int_{G_{S_n}} f(g_s) dg_S$$

Proposition 2.1.50. Let S_0 denote the finite set of indices containing both J_{∞} and the set of indices for which $\operatorname{Vol}(H_{\nu}, dg_{\nu}) \neq 1$. Suppose that for each index ν , we are given a continuous and integrable function f_{ν} on G_{ν} , such that $f_{\nu}|_{H_{\nu}} = 1$ for all ν outside some finite set S_1 . Then for $g = (g_{\nu}) \in G$ we can define the function

$$f(g) = \prod_{\nu} f_{\nu} \left(g_{\nu} \right)$$

The function f is well-defined and continuous on G. Furthermore, if S is any finite set of indices including S_0 and S_1 , then we have $f|_{G_S} \in L^1(G_S)$ and

$$\int_{G_S} f(g)dg_S = \prod_{\nu \in S} \left(\int_{G_{\nu}} f_{\nu} \left(g_{\nu} \right) dg_{\nu} \right)$$

Furthermore, if

$$\prod_{\nu} \left(\int_{G_{\nu}} \left| f_{\nu} \left(g_{\nu} \right) \right| dg_{\nu} \right) < \infty$$

then $f \in L^1(G)$ and

$$\int_{G} f(g)dg = \prod_{\nu} \left(\int_{G_{\nu}} f_{\nu} \left(g_{\nu} \right) dg_{\nu} \right)$$

Now we assume G_v are all abelian group.

Proposition 2.1.51. Let $f_{\nu} \in L^1(G) \cap C(G)$ and of f_{ν} being a characteristic function of H_{ν} for all but finite many ν . Then $f \in L^1(G)$ and the Fourier transform of f is given by

$$\hat{f}(g) = \prod_{\nu} \hat{f}_{\nu} \left(g_{\nu} \right)$$

Moreover, if we additionally assume $f_{\nu} \in \mathfrak{B}(G_{\nu})$ for all $\nu, f \in \mathfrak{B}(G)$.

Proof: The key point is to notice that

$$\hat{f}_{\nu}\left(\chi_{\nu}\right) = \operatorname{Vol}\left(H_{\nu}, dg_{\nu}\right) \mathbf{1}_{H_{\nu}^{\perp}}\left(\chi_{\nu}\right).$$

Now we need to define dual measure on \hat{G} such that Fourier Inversion Theorem holds.

Theorem 2.1.52. The measure $d\chi = \prod_{\nu} d\chi_{\nu}$, where $d\chi_{\nu} = \widehat{dg_{\nu}}$, is dual the measure $dg = \prod_{\nu} dg_{\nu}$. Therefore,

$$f(g) = \int_{\hat{G}} \hat{f}(\chi) \chi(g) d\chi,$$

for all $f \in \mathfrak{B}(G)$.

Proof: Notice that

$$\hat{f}_{\nu}\left(g_{\nu}\right) = \operatorname{Vol}\left(H_{\nu}, dg_{\nu}\right) \int_{\hat{G}_{\nu}} \mathbf{1}_{H_{\nu}^{\perp}}\left(\chi_{\nu}\right) \chi_{\nu}\left(g_{\nu}\right) d\chi_{\nu} = \operatorname{Vol}\left(H_{\nu}, dg_{\nu}\right) \int_{H_{\nu}^{\perp}} \chi_{\nu}\left(g_{\nu}\right) d\chi_{\nu} = \operatorname{Vol}\left(H_{\nu}, dg_{\nu}\right) \operatorname{Vol}\left(H_{\nu}^{\perp}, d\chi_{\nu}\right) \mathbf{1}_{\left(H_{\nu}^{\perp}\right)^{\perp}}$$

and $(H_{\nu}^{\perp})^{\perp} = H_{\nu}$. We have $\operatorname{Vol}(H_{\nu}, dg_{\nu}) \operatorname{Vol}(H_{\nu}^{\perp}, d\chi_{\nu}) = 1$

2.2 Valuations

Definition 2.2.1. A valuation of a field K is a non-trivial function

$$|\cdot|:K\to\mathbb{R}$$

enjoying the properties

- (1) |x| > 0, and $|x| = 0 \iff x = 0$,
- (2) |xy| = |x||y|,
- (3) $|x+y| \le |x| + |y|$

Definition 2.2.2. Two valuations of K are called equivalent if they satisfy one of the following equivalent conditions

- (1) they define the same topology on K.
- (2) there exists a real number s > 0 such that one has

$$|x|_1 = |x|_2^s$$

for all $x \in K$

2.2. VALUATIONS 43

(3)

$$|x|_1 < 1 \Longrightarrow |x|_2 < 1$$

Definition 2.2.3. The valuation $|\cdot|$ is called nonarchimedean if |n| stays bounded, for all $n \in \mathbb{N}$. Otherwise it is called archimedean.

Proposition 2.2.4. The valuation $|\cdot|$ is nonarchimedean if and only if it satisfies the strong triangle inequality

$$|x+y| \le \max\{|x|, |y|\}.$$

Proposition 2.2.5. K be a field with non-archimedean valuation. Then

- (1) $a, b \in K, a \neq b$, then $|a + b| = \max(|a|, |b|)$.
- (2) If $a_1 + \cdots + a_n = 0$, at least two of them take the maximal valuation.

Definition 2.2.6 (prime divisor).

Theorem 2.2.7 (weak Approximation Theorem). Let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise inequivalent valuations of the field K and let $a_1, \ldots, a_n \in K$ be given elements. Then for every $\varepsilon > 0$ there exists an $x \in K$ such that

$$|x - a_i|_i < \varepsilon$$
 for all $i = 1, \dots, n$

Theorem 2.2.8. Every valuation of \mathbb{Q} is equivalent to one of the valuations $|\cdot|_p$ or $|\cdot|_{\infty}$.

Definition 2.2.9. Let $|\cdot|$ be a nonarchimedean valuation of the field K. Putting

$$v(x) = -\log|x|$$
 for $x \neq 0$, and $v(0) = \infty$

we obtain a function

$$v: K \longrightarrow \mathbb{R} \cup \{\infty\}$$

verifying the properties

- (1) $v(x) = \infty \iff x = 0$,
- (2) v(xy) = v(x) + v(y),
- (3) $v(x+y) \ge \min\{v(x), v(y)\}$

A non-zero(on K^*) function v on K with these properties is called an exponential valuation of K. Two exponential valuations v_1 and v_2 of K are called equivalent if $v_1 = sv_2$, for some real number s > 0. For every exponential valuation v we obtain a valuation by putting

$$|x| = q^{-v(x)}$$

for some fixed real number q > 1. To distinguish it from v, we call $|\cdot|$ an associated multiplicative valuation, or absolute value. Moreover, there's a one-to-one correspondence between equivalence class of non-archimedean absolute value and and equivalence class of exponential valuation.

Definition 2.2.10. The subset

$$\mathcal{O} = \{ x \in K \mid v(x) \ge 0 \} = \{ x \in K : |x| \le 1 \}$$

is a ring with group of units

$$\mathcal{O}^* = \{x \in K \mid v(x) = 0\} = \{x \in K : |x| = 1\}$$

and the unique maximal ideal

$$\mathfrak{p} = \{ x \in K \mid v(x) > 0 \} = \{ x \in K : |x| < 1 \}.$$

Theorem 2.2.11. For finite finite \mathbb{F}_q and $K = \mathbb{F}_q(t)$ the function field in one variable. The valuations $v_{\mathfrak{q}}$ associated to the prime ideals $\mathfrak{p} = (p(t))$ of $\mathbb{F}_q[t]$, together with the degree valuation

$$v_{\infty}: \frac{f}{q} \mapsto \deg g - \deg f$$

, are the only valuations of K, up to equivalence.

Proof: If \mathcal{O} (ring of integers) $\supset \mathbb{F}_q[t]$, we have $\mathfrak{p} \cap \mathbb{F}_q[t]$ is a prime ideal of $\mathbb{F}_q[t]$. Hence there's a monic irreducible polynomial p(t) over $\mathbb{F}_q[t]$ such that $\mathfrak{p} \cap \mathbb{F}_q[t] = (p(t))$. Hence v is equivalent to $v_{\mathfrak{p}}$.

If $\mathbb{F}_q[t]$ is not a subset of \mathcal{O} . We have v(t) < 0. Hence v is equivalent to v_{∞} .

Theorem 2.2.12 (Product Formula). Consider q > 1 be a fixed real number and $\mathbb{F}_q(t)$, for irreducible polynomial p(t), we put

$$|f|_p = q^{-\deg(p)v(f)}$$

and $|f|_{\infty} = q^{-v_{\infty}(f)}$. Then

$$\prod_{p} |f|_p = 1$$

where p varies over ∞ and irreducible polynomial of $\mathbb{F}_q(t)$.

Definition 2.2.13 (discrete valuation). An exponential valuation v is called discrete if it admits a smallest positive value s. In this case, one finds

$$v\left(K^*\right) = s\mathbb{Z}$$

It is called normalized if s = 1. Dividing by s we may always pass to a normalized valuation without changing the invariants $\mathcal{O}, \mathcal{O}^*, \mathfrak{p}$. Having done so, an element

$$\pi \in \mathcal{O}$$
 such that $v(\pi) = 1$

is a prime element, and every element $x \in K^*$ admits a unique representation

$$x = u\pi^m$$

2.2. VALUATIONS 45

with $m \in \mathbb{Z}$ and $u \in \mathcal{O}^*$. For if v(x) = m, then $v(x\pi^{-m}) = 0$, hence $u = x\pi^{-m} \in \mathcal{O}^*$. If v is a discrete exponential valuation of K, then

$$\mathcal{O} = \{ x \in K \mid v(x) \ge 0 \}$$

is a principal ideal domain. Suppose v is normalized. Then the nonzero ideals of \mathcal{O} are given by

$$\mathfrak{p}^n = \pi^n \mathcal{O} = \{ x \in K \mid v(x) \ge n \}, \quad n \ge 0$$

where π is a prime element, i.e., $v(\pi) = 1$. One has

$$\mathfrak{p}^n/\mathfrak{p}^{n+1}\cong \mathcal{O}/\mathfrak{p}$$

In a discretely valued field K the chain

$$\mathcal{O}\supset\mathfrak{p}\supset\mathfrak{p}^2\supset\mathfrak{p}^3\supset\cdots$$

consisting of the ideals of the valuation ring \mathcal{O} forms a basis of neighbourhoods of the zero element. Indeed, if v is a normalized exponential valuation and $|\cdot| = q^{-\nu}(q > 1)$ an associated multiplicative valuation, then

$$\mathfrak{p}^n = \left\{ x \in K : |x| < \frac{1}{q^{n-1}} \right\}$$

As a basis of neighbourhoods of the element 1 of K^* , we obtain in the same way the descending chain

$$\mathcal{O}^* = U^{(0)} \supset U^{(1)} \supset U^{(2)} \supset \cdots$$

of subgroups

$$U^{(n)} = 1 + p^n = \left\{ x \in K^* : |1 - x| < \frac{1}{q^{n-1}} \right\}, \quad n > 0$$

of \mathcal{O}^* .

Theorem 2.2.14. Let K be a field which is complete with respect to an archimedean valuation $| \cdot |$. Then there is an isomorphism σ from K onto \mathbb{R} or \mathbb{C} satisfying

$$|a| = |\sigma a|^s$$
 for all $a \in K$

for some fixed $s \in (0, 1]$.

Proposition 2.2.15. Assume E/F be a field extension, P be a non-archimedean prime divisor on F and Q be an extension of P on E. Define

$$e = e(Q/P) = [v(E^{\times}) : v(F^{\times})]$$

$$f = f(Q/P) = [\bar{E} : \bar{F}]$$

Proposition 2.2.16. Assume E/F be a field extension, and P be a non-archimedean prime divisor on F. Q be an extension of P on E. Denote ring of integers of E by O_E . If E/F is finite,

(1) If $w_1, \dots, w_r \in O_E$, and $\bar{w}_1, \dots, \bar{w}_r \in \bar{E}$ are \bar{F} —linearly independent, then for $a_1, \dots, a_r \in F$, we have

$$v(a_1w_1 + \dots + a_rw_r) = \min_{1 \le i \le r} \{v(a_i)\}$$

In particular, w_1, \dots, w_r are F- lineary independent. Hence $f(Q/P) \leq [E:F]$.

(2) If $\pi_0, \dots, \pi_s \in E^{\times}$, and $v(\pi_j)(0 \leq j \leq s)$ are representatives for $v(F^{\times})/v(E^{\times})$, then for $b_0, \dots, b_s \in F$, we have

$$v(b_0\pi_0 + \dots + b_s\pi_s) = \min_{0 \le j \le s} \{v(b_j\pi_j)\}$$

In particular, π_0, \dots, π_s are F-linearly independent. Hence, $e(Q/P) \leq [E:F]$.

Proposition 2.2.17. P is a non-archimedean prime divisor on K. $(K,P) \subset (\hat{K},\hat{P})$ be the completion of (K,P). Then $f(\hat{P}/P) = e(\hat{P}/P) = 1$ and the closure of ring of integers of K is the ring of integers of \hat{K} .

Theorem 2.2.18. For arbitrary discrete valuation v of the field K, let $R \subseteq \mathcal{O}$ be a system of representatives for $K = \mathcal{O}/\mathfrak{p}$ such that $0 \in R$, and let $\pi \in \mathcal{O}$ be a prime element. Then every $x \neq 0$ in \widehat{K} admits a unique representation as a convergent series

$$x = \pi^m \left(a_0 + a_1 \pi + a_2 \pi^2 + \cdots \right)$$

where $a_i \in R, a_0 \neq 0, m \in \mathbb{Z}$.

Example 2.2.19. Consider $\mathbb{F}_q((t))$ to be the ring of formal laurent series, and it can be shown that $\mathbb{F}_q((t))$ is a field. Define

$$v(a_r x^r + \dots) = r$$
, where $a_r \neq 0$

Then $\mathbb{F}_q(t)$ becomes a complete, discrete exponential valuation with finite residue field.

Lemma 2.2.20 (Hensel's Lemma). Let K again be a field which is complete with respect to a nonarchimedean valuation $|\cdot|$. Let \mathcal{O} be the corresponding valuation ring with maximal ideal \mathfrak{p} and residue class field $K = \mathcal{O}/\mathfrak{p}$. We call a polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathcal{O}[x]$ primitive if $f(x) \not\equiv 0 \mod \mathfrak{p}$, i.e., if

$$|f| = \max\{|a_0|, \dots, |a_n|\} = 1$$

If a primitive polynomial $f(x) \in \mathcal{O}[x]$ admits a factorization

$$f(x) \equiv \bar{g}(x)\bar{h}(x) \bmod \mathfrak{p}$$

2.2. VALUATIONS 47

into relatively prime polynomials $\bar{g}, \bar{h} \in \kappa[x]$, then f(x) admits a factorization

$$f(x) = g(x)h(x)$$

into polynomials $g, h \in \mathcal{O}[x]$ such that $\deg(g) = \deg(\bar{g})$ and

$$g(x) \equiv \bar{g}(x) \bmod \mathfrak{p}$$
 and $h(x) \equiv \bar{h}(x) \bmod \mathfrak{p}$

Corollary 2.2.21. Let the field K be complete with respect to the nonarchimedean valuation $|\cdot|$ (e.g. \mathbb{C}_p or finite extension of \mathbb{Q}_p). Then, for every irreducible polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in K[x]$ such that $a_0 a_n \neq 0$, one has

$$|f| = \max\{|a_0|, |a_n|\}$$

In particular, $a_n = 1$ and $a_0 \in \mathcal{O}$ imply that $f \in \mathcal{O}[x]$.

Theorem 2.2.22. Let K be complete with respect to the valuation $| \cdot |$. Then $| \cdot |$ may be extended in a unique way to a valuation of any given algebraic extension L/K. This extension is given by the formula

$$|\alpha| = \sqrt[n]{|N_{L/K}(\alpha)|}$$

when L/K has finite degree n. In this case L is again complete.

Definition 2.2.23. For a Global field, we mean finite extension of \mathbb{Q} or $\mathbb{F}_q(t)$. For a Local field, we mean a field with discrete, complete valuation such that the residue field is finite.

Proposition 2.2.24. A local field is locally compact and its valuation ring is compact.

Theorem 2.2.25. Let L be a local field. Then L is isomorphic to a finite extension of \mathbb{Q}_p or $\mathbb{F}_q((t))$.

Proposition 2.2.26. The multiplicative group of a local field K admits the decomposition

$$K^* = (\pi) \times \mu_{q-1} \times U^{(1)}$$

Here π is a prime element, $(\pi) = \{\pi^k \mid k \in \mathbb{Z}\}$, $q = \#\kappa$ is the number of elements in the residue class field $\kappa = \mathcal{O}/\mathfrak{p}$, μ_{q-1} be the group of q-1-th roots of unit, and $U^{(1)} = 1 + \mathfrak{p}$ is the group of principal units.

Now we assume E/F is an extension of p-adic fields with $O_E, O_F, \bar{E}, \bar{F}$ their rings of integers and residue fields.

Theorem 2.2.27. If $\alpha_1, \alpha_2, \ldots, \alpha_f \in \mathcal{O}_E$ are preimage of a basis for extension \bar{E}/\bar{F} , then elements

$$\alpha_1, \alpha_2, \dots, \alpha_f$$

$$\pi \alpha_1, \pi \alpha_2, \dots, \pi \alpha_f$$

$$\pi^2 \alpha_1, \pi^2 \alpha_2, \dots, \pi^2 \alpha_f$$

$$\dots$$

$$\pi^{e-1} \alpha_1, \pi^{e-1} \alpha_2, \dots, \pi^{e-1} \alpha_m$$

form a basis of E/F. In particular, ef = [E : F].

Proof: By Hensel's Lemma, we find that the order of group of (q-1)-th roots of unit is q-1.

Proposition 2.2.28. $x \in O_E$ iff x is a root of polynomial with coefficients in O_K , i.e. O_K is the integral closure of O_E .

Proof: By the definition of absolute value on K and Proposition 1.1.3.

Proposition 2.2.29. O_E is a free O_K -module with rank n.

Proof: By structure of finitely generated module over PID and Lemma 1.1.8.

Proposition 2.2.30. E/F is unramified if e = 1, f = n.

- (1) E/F 是不分歧扩张. 如果 $\bar{E} = \bar{F}(\alpha_0)$, 取元素 $\alpha \in O_E$, 使得 $\bar{\alpha} = \alpha_0$, 则 $E = F(\alpha)$, 并且 若 f(x) 是 α 在 F 上的极小多项式,则 $\bar{f}(x)$ 是 $\bar{\alpha}$ 在 \bar{F} 上的极小多项式。
- (2) 若 $E = F(\alpha)$, $\alpha \in O_E$, g(x) 是 $O_F[x]$ 中首 1 多项式, $g(\alpha) = 0$. 如果 $\bar{g}(x)$ (在 \bar{F} 的代数闭包 $\bar{\Omega}$ 中) 没有重根, 则 E/F 是不分歧扩张.

Example 2.2.31. Consider all the $(p^f - 1)$ -th roots of unity in $\overline{\mathbb{Q}_p}$. ζ is a primitive $(p^f - 1)$ -th root of unity. Then $\mathbb{Q}_p(\zeta)$ is the unique unramified extension with degree f.

Proof: Let K be a finte extension of \mathbb{Q}_p with uniformlizer π . By Hensel's Lemma, since $x^{p^f-1}-1\equiv 0 \pmod{\pi}$ have $p^{f-1}-1$ different solution on O_K/P , all the (p^f-1) -th root of unity lie in O_K . If ζ is a primitive (p^f-1) -th root of unity, notice that $\bar{\zeta},\ldots,\bar{\zeta}^{p^f-1}$ are all distinct in the residue field of $\mathbb{Q}_p(\zeta)$, we have $f=f(\mathbb{Q}_p(\zeta)/\mathbb{Q}_p)$.

Hence if we find an unramified extension K_1 of degree f, then $K_1 = \mathbb{Q}_p(\zeta)$ which shows that $\mathbb{Q}_p(\zeta)$ is the unique unramified subfield of algebraic closure of \mathbb{Q}_p .

Let

$$\bar{g}(X) = X^f + \bar{a}_{f-1}X^{f-1} + \dots + \bar{a}_1X + \bar{a}_0$$

be an irreducible polynomial over \mathbb{F}_p . Lifting $\bar{g}(X)$ to $g(X) \in \mathbb{Z}_p[X]$ any way we like, we get an irreducible polynomial over \mathbb{Q}_p . If α is a root of g(X), then $K = \mathbb{Q}_p(\alpha)$ is an unramified extension of degree f.

Proposition 2.2.32. E/F fintil extension of p-adic field.

- (1) 若 K/F 是 p-adic fields 的有限扩张, E/F 不分歧, 则 KE/K 不分歧.
- (2) 若 E_1/F , E_2/F 均不分歧, 则 E_1E_2/F 不分歧.

Example 2.2.33. Let ζ_n be primitive n-th root of unit in algebraic closure of \mathbb{Q}_p , $p \nmid n$, then $\mathbb{Q}_p(\zeta_n) = \mathbb{Q}_p(\zeta_{p^m-1})$ where m is the order of p module n.

2.2. VALUATIONS 49

Proof: On the one hand, $\mathbb{Q}_p(\zeta_n) \subset \mathbb{Q}_p(\zeta_{p^m-1})$, hence $m \geq f(\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p)$

On the other hand, by Proposition 2.2.30, $\mathbb{Q}_p(\zeta_n)$ is unramified. Since $p \nmid n, x^n - 1 = (x-1)\dots(x-\zeta_n^{n-1})$ shows that the order of $\bar{\zeta_n}$ is n. Then

$$m = [\mathbb{F}_p(\bar{\zeta_n}) : \mathbb{F}_p] \le f(\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p) = [\mathbb{Q}_p(\zeta_n) : \mathbb{Q}_p]$$

The first equality holds because $x \mapsto x^p$ is a generator of the Galois group of $\mathbb{F}_p(\bar{\zeta_n})/\mathbb{F}_p$.

Proposition 2.2.34. E/F fintil extension of p-adic field.

- (1) 若 E/F 是完全分歧的,则 $E=F(\pi)$,并且 π 在 F 上的最小多项式为 Eisenstein 多项式.
- (2) 反之, 若 $E = F(\alpha)$ 并且 α 在 F 上的最小多项式是 Eisenstein 多项式,则 E/F 是完全分歧扩张,并且 α 是 E 的一个素元.

Proposition 2.2.35. Let ζ be a primitive p^m -th root of unity. Then one has:

- (1) $\mathbb{Q}_p(\zeta) \mid \mathbb{Q}_p$ is totally ramified of degree $\varphi(p^m) = (p-1)p^{m-1}$.
- (2) Gal $(\mathbb{Q}_p(\zeta) \mid \mathbb{Q}_p) \cong (\mathbb{Z}/p^m\mathbb{Z})^*$.
- (3) $\mathbb{Z}_p[\zeta]$ is the valuation ring of $\mathbb{Q}_p(\zeta)$.
- (4) 1ζ is a prime element of $\mathbb{Z}_p[\zeta]$ with norm p.

Proposition 2.2.36. If $n = p^{l}m$, (m, p) = 1, then

$$f(\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p) = f(\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p) = \text{order of } p \text{ module } m$$

, and

$$e(\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p) = e(\mathbb{Q}_p(\zeta_{p^l})/\mathbb{Q}_p) = \varphi(p^l)$$

Theorem 2.2.37. Let K be a p-adic field and $q = p^f$ the number of elements in the residue class field. Then

$$K^* \cong \mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} \oplus \mathbb{Z}/p^a\mathbb{Z} \oplus \mathbb{Z}_p^d$$

where

$$p^a = \# \bigcup_{n=1}^{\infty} \mu_{p^n} \cap K^*$$

and $d = [K : \mathbb{Q}_p]$. (μ_{p^n}) is the group of all the p^n -th root of unity in algebraic closure of \mathbb{Q}_p)

Proof: Since

$$K^* = (\pi) \times \mu_{q-1} \times U^{(1)} \cong \mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} \oplus U^{(1)}$$

This reduces us to the computation of the \mathbb{Z}_p -module $U^{(1)}$.

For n sufficiently big, log and exp gives us the isomorphism

$$\log: U^{(n)} \longrightarrow \mathfrak{p}^n = \pi^n \mathcal{O} \cong \mathcal{O}$$

Moreover, \mathcal{O} admits an integral basis $\alpha_1, \ldots, \alpha_d$ over \mathbb{Z}_p , i.e., $\mathcal{O} = \mathbb{Z}_p \alpha_1 \oplus \cdots \oplus \mathbb{Z}_p \alpha_d \cong \mathbb{Z}_p^d$. Therefore $U^{(n)} \cong \mathbb{Z}_p^d$. Since the index $(U^{(1)} : U^{(n)})$ is finite and $U^{(n)}$ is a finitely generated free \mathbb{Z}_p -module of rank d, so is free part of $U^{(1)}$. The torsion subgroup of $U^{(1)}$ is the group μ_{p^a} of roots of unity in K of p-power order. (consider the kernel of log). By the main theorem on modules over principal ideal domains, there exists in $U^{(1)}$ a free, finitely generated \mathbb{Z}_p -submodule V of rank d such that

$$U^{(1)} = \mu_{p^a} \times V \cong \mathbb{Z}/p^a \mathbb{Z} \oplus \mathbb{Z}_p^d$$

Corollary 2.2.38.

$$(K^*:K^{*n}) = n(U:U^n) = n \times p^{dv_p(n)} \# \mu_n(K).$$

Theorem 2.2.39. Fix an algebraic closure of $\mathbb{Q}_p(p=\infty)$ or a prime number). For a finite extension of \mathbb{Q} , if $\sigma: K \to \overline{\mathbb{Q}_p}$ is a \mathbb{Q} -embedding, define

$$v: K \mapsto \mathbb{R} = |\cdot|_p \circ \sigma$$

Then, v is an extension of $|\cdot|_p$ and for the completion (\hat{K}, \hat{v}) of (K, v), there's unique way extends σ to \hat{K} continuously and preserves absolute value. Meanwhile, the image of the completion coincides with the composition of K and \mathbb{Q}_p which also be a fintie extension of \mathbb{Q}_p .

Theorem 2.2.40. K is a algebraic number field, $|\cdot|_p$ (finite or infinite) is an absolute value on \mathbb{Q} . Fix an algebraic closure of \mathbb{Q}_p .

- (1) every absolute value on K which extends $|\cdot|_p$ is given by \mathbb{Q} -embedding from K to $\overline{\mathbb{Q}}_p$.
- (2) σ_1 and σ_2 induce the same absolute value if and only if $\sigma_1 = \varphi \circ \sigma_2$ for some φ in absolute Galois group of \mathbb{Q}_p .

Theorem 2.2.41. Assume $p = \infty$ or a prime number. Suppose the extension K/\mathbb{Q} is generated by the zero α of the irreducible polynomial $f(X) \in \mathbb{Q}[X]$. Then the valuations w_1, \ldots, w_r extending $|\cdot|_p$ to K correspond 1-1 to the irreducible factors f_1, \ldots, f_r in the decomposition

$$f(X) = f_1(X) \cdots f_r(X)$$

of f over the completion \mathbb{Q}_p . Moreover, the completion of K at w_i is isomorphic to $\mathbb{Q}_p(\alpha_i)$ where α_i is a root of f_i .

2.2. VALUATIONS 51

Moreover, consider \mathbb{Q}_p -algebra $\prod_{i=1}^r \mathbb{Q}_p(\alpha_i)$ and $K \otimes_{\mathbb{Q}} \mathbb{Q}_p$, the map

$$\varphi: K \otimes_{\mathbb{Q}} \mathbb{Q}_p \to \prod_{i=1}^r \mathbb{Q}_p(\alpha_i), x \otimes \beta \mapsto (\beta \sigma_i(x))_i$$

gives an isomorphism between \mathbb{Q}_p -algebra. This is because, by previous theorem, the dimension of these two \mathbb{Q}_p -algebra are the same and to show $\operatorname{Ker}\varphi = 0$, notice that $1 \otimes 1, \alpha \otimes 1, \ldots, \alpha^{n-1} \otimes 1$ form a basis of $K \otimes_{\mathbb{Q}} \mathbb{Q}_p$. Then $\operatorname{Ker}\varphi = 0$ follows from the determinant of Vandermonde matrix.

Therefore, consider the characteristic polynomial of $x \otimes 1 \in K \otimes_{\mathbb{Q}} \mathbb{Q}_p$ and $\sigma_i(x)$ in $\mathbb{Q}_p(\alpha_i)$, we have

char.
$$\operatorname{polynomial}_{K/\mathbb{Q}}(x) = \prod_{i=1}^r \operatorname{char. polynomial}_{\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p}(\sigma_i(x)).$$

And we can obtain some basis corollary of this formula: for all $x \in K$,

$$N_{K/\mathbb{Q}}(x) = \prod_{i=1}^{r} N_{\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p}(\sigma_i(x)), \quad \operatorname{Tr}_{K/\mathbb{Q}}(x) = \sum_{i=1}^{r} \operatorname{Tr}_{\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p}(\sigma_i(x))$$

Corollary 2.2.42. K is an algebraic number field, assume

$$p\mathcal{O}_K = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g}$$

Then the valuation that extends $|\cdot|_p$ are precisely $v_{\mathfrak{P}_i}(\cdot), i=1,\ldots,g$. And $e(K_{\mathfrak{P}_i}/\mathbb{Q}_p)=e_i, f(K_{\mathfrak{P}_i}/\mathbb{Q}_p)=f_i$.

Lemma 2.2.43 (Krasner's Lemma). Let K be a non-archimedean complete valued field of characteristic zero, and let a and b be elements of the algebraic closure of K. Let $a_1 = a, a_2, \ldots, a_n$ be the conjugates of a over K. Suppose that b is closer to a than any of conjugates of a, i.e.,

$$|b - a| < |a - a_i|$$

for $i = 2, 3, \ldots, n$. Then $K(a) \subset K(b)$.

Theorem 2.2.44. Let K be a non-archimedean complete valued field of characteristic zero. Let

$$f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \in K[X]$$

be a monic irreducible polynomial of degree n with coefficients in K, let λ be a root of f(X), and let $L = K(\lambda)$ be the extension of K obtained by adjoining that root. Then there exists a real number $\varepsilon > 0$ such that the following holds: If $g(X) = X^n + b_{n-1}X^{n-1} + \cdots + b_1X + b_0 \in K[X]$ is any monic polynomial of degree n for which we have

$$|a_i - b_i| < \varepsilon$$
 for all $i = 0, 1, \dots, n - 1$

then g(X) is irreducible over K and has a root in L.

Definition 2.2.45 (\mathbb{C}_p). Let $\overline{\mathbb{Q}_p}$ be algebraic closure of \mathbb{Q}_p . Firstly we show that $\overline{\mathbb{Q}_p}$ is not complete.

Firstly, assume $\overline{\mathbb{Q}_p}$ is complete. Choose integers f_0, f_1, f_2, \ldots such that $f_i < f_{i+1}$. For each i, let $m_i = p^{f_i} - 1$ and let ζ_i be a primitive m_i -th root of unity, so that $\mathbb{Q}_p(\zeta_i)$ is the unique unramified extension of degree f_i . Now construct the series

$$\sum_{i=0}^{\infty} \zeta_i p^i$$

The partial sums of this series clearly form a Cauchy sequence in $\overline{\mathbb{Q}}_p$. Define

$$c = \zeta_0 + \zeta_1 p + \zeta_2 p^2 + \dots$$

Assume $d = [\mathbb{Q}_p(c) : \mathbb{Q}_p]$, P be the set of non-unit elements of ring of integers of $\mathbb{Q}_p(c)$ and $p_i(x) \in \mathbb{Z}_p[x]$ is the minimal polynomial of ζ_i for $i = 0, 1, 2 \dots$ By Hensel's Lemma over $\mathbb{Q}_p(c)$, since $p_0(c) \equiv 0 \pmod{P}$, $\mathbb{Q}_p(c) \supset \mathbb{Q}_p(\zeta_0)$. Let $c_1 = (c - \zeta_0)/p$. Since $\zeta_0 \in \mathbb{Q}_p(c)$, we have $c_1 \in \mathbb{Q}_p(c)$ as well. Hence $\mathbb{Q}_p(c) \supset \mathbb{Q}_p(\zeta_1)$ as well. Hence we have $d \geq f_i$, a contradiction! Definte \mathbb{C}_p be the completion of $\overline{\mathbb{Q}_p}$.

Proposition 2.2.46. \mathbb{C}_p is algebraic closed.

Proof: Take an irreducible polynomial f(X) with coefficients in \mathbb{C}_p . Since $\overline{\mathbb{Q}}_p$ is dense in \mathbb{C}_p , we can find polynomials of the same degree and with coefficients in $\overline{\mathbb{Q}}_p$ whose coefficients are as close as we like to the coefficients of f(X). By Theorem 2.2.44, if we choose such an $f_0(X)$ with coefficients close enough to those of f(X), it will be irreducible over \mathbb{C}_p , and a fortiori also irreducible over $\overline{\mathbb{Q}}_p$. Since $\overline{\mathbb{Q}}_p$ is algebraically closed, this means that $f_0(X)$ will have degree one. Since f(X) and $f_0(X)$ have the same degree, it follows that f(X) has degree one.

Theorem 2.2.47 (Newton's Polygon). Fix a absolute value $|\cdot|$ and valuation v_p on \mathbb{C}_p such that it extends normal absolute value and valuation on \mathbb{Q} . Let $f(X) = 1 + a_1 X + a_2 X^2 + \cdots + a_n X^n \in \mathbb{C}_p[X]$ be a polynomial, and let m_1, m_2, \ldots, m_r be the slopes of its Newton polygon (in increasing order). Let i_1, i_2, \ldots, i_r be the corresponding lengths. Then, for each $k, 1 \leq k \leq r, f(X)$ has exactly i_k roots (in \mathbb{C}_p , counting multiplicities) of absolute value p^{m_k} .

Lemma 2.2.48 (Lucas' Theorem). Let n, m be positive integers with k < n, written in base p as $n = b_0 + b_1 p + \cdots + b_s p^s$ and $m = a_0 + a_1 p + \cdots + a_s p^s$. (We add extra zeros to the base p expansion of m if necessary so that the two expansions have the same length.) Then

$$\binom{n}{m} \equiv \binom{b_0}{a_0} \binom{b_1}{a_1} \cdots \binom{b_s}{a_s} \pmod{p}$$

Example 2.2.49. Exponential Taylor polynomials

$$E_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

and the Laguerre polynomials

$$L_n(x) = \sum_{j=0}^{n} (-1)^j \binom{n}{j} \frac{x^j}{j!}$$

are irreducible over \mathbb{Q} for all n.

Proof: If we write $n = b_1 p^{n_1} + b_2 p^{n_2} + \dots + b_s p^{n_s}$ with $n_1 > n_2 > \dots > n_s$ and $0 < b_i < p$, then the vertices of the Newton polygon of $E_n(x)$ are $x_0 = (0,0)$ and $(x_i, -\operatorname{ord}_p(x_i!))$ for $1 \le i \le s$, where $x_i = b_1 p^{n_1} + \dots + b_i p^{n_i}$, and the corresponding slopes of $E_n(x)$ are

$$m_i = \frac{-(p^{n_i} - 1)}{p^{n_i}(p - 1)}$$

.

Moreover, p-adic Newton polygon for $L_n(x)$ is equal to the Newton polygon for $E_n(x)$. Indeed, each coefficient of $L_n(x)$ has valuation at least as big as the corresponding coefficient of $E_n(x)$, and it follows from Lucas' theorem that $\binom{n}{x_i} \equiv 1 \pmod{p}$, so in particular $\operatorname{ord}_p\left(\binom{n}{x_i}\right) = 0$.

Indeed, if p^m divides n then p^m divides the denominator of each m_i in lowest terms, hence the denominator of the valuation of each root of f(x) in lowest terms. This implies that p^m divides the degree of every irreducible factor of f(x) over \mathbb{Q}_p , hence over \mathbb{Q} as well. Thus every irreducible factor of f(x) over \mathbb{Q} has degree divisible by $n = \prod_p p^{\text{ord } p(n)}$.

2.3 p-adic analysis

Assume K is a finite extension of \mathbb{Q}_p with π an uniformlizer.

Proposition 2.3.1. (1) A sequence (a_n) in K is Cauchy if and only if

$$\lim_{n \to \infty} |a_{n+1} - a_n| = 0$$

- (2) If a sequence (a_n) converges to a non-zero limit a, then we have $|a_n| = |a|$ for all sufficiently large n.
- (3) Let $b_{ij} \in K$, and suppose that for every i, $\lim_{j\to\infty} b_{ij} = 0$, and $\lim_{i\to\infty} b_{ij} = 0$ uniformly in j. Then both series

$$\sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} b_{ij} \right) \quad \text{and} \quad \sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} b_{ij} \right)$$

converge, and their sums are equal.

Proposition 2.3.2. Let $f(X) = \sum_{n=0}^{\infty} a_n X^n$, and define

$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

where we use the usual conventions when the limit is zero or infinity, so that $0 \le \rho \le \infty$.

- (1) If $\rho = 0$, then f(x) converges only when x = 0.
- (2) If $\rho = \infty$, then f(x) converges for every $x \in K$.
- (3) If $0 < \rho < \infty$ and $\lim_{n \to \infty} |a_n| \rho^n = 0$, then f(x) converges if and only if $|x| \le \rho$.
- (4) If $0 < \rho < \infty$ and $|a_n| \rho^n$ does not tend to zero as n goes to infinity, then f(x) converges if and only if $|x| < \rho$.

Theorem 2.3.3 (uniqueness of coefficients). If $f(X) = \sum a_n X^n$ and $g(X) = \sum b_n X^n$ are power series with coefficients in K, x_m is a convergent sequence (since every open ball is closed, the limit still lies in the open ball) contained in the intersection of the disks of convergence of f and g, and we have $f(x_m) = g(x_m)$ for all m, then $a_n = b_n$ for all n.

Proposition 2.3.4. Let $f(X) = \sum a_n X^n$ and $g(X) = \sum b_n X^n$ be formal power series with $b_0 = 0$, and let h(X) = f(g(X)) be their formal composition. Suppose that

- (1) g(x) converges,
- (2) f(g(x)) converges,
- (3) for every n, we have $|b_n x^n| \leq |g(x)|$ (in other words, no term of the series converging to g(x) is bigger than the sum).

Then h(x) also converges, and f(g(x)) = h(x).

Proposition 2.3.5. Let f(X) and g(X) be formal power series, and suppose $x \in \mathbb{Q}_p$. If f(x) and g(x) both converge, then:

- (1) (f+g)(x) converges and is equal to f(x)+g(x), and
- (2) (fg)(x) converges and is equal to f(x)g(x).

Proposition 2.3.6. Given a power series $f(X) = \sum_{n=0}^{\infty} a_n X^n$, we define its formal derivative to be $f'(X) = \sum_{n=1}^{\infty} n a_n X^{n-1}$. Show that this has the usual properties of a derivative:

- (1) (f+g)'(X) = f'(X) + g'(X).
- (2) (fq)'(X) = f'(X)q(X) + f(X)q'(X).
- (3) If h(X) = f(g(X)) where $g(X) = b_1 X + \dots$, then h'(X) = f'(g(X))g'(X).

Proposition 2.3.7. Let $f(X) = \sum a_n X^n$ be a power series with non-zero radius of convergence and let f'(X) be its formal derivative. Let $x \in K$. If f(x) converges, then so does f'(x).

Proposition 2.3.8. Suppose f(X) and g(X) are power series, and suppose that both series converge for $|x| < \rho$. If f'(x) = g'(x) for all $|x| < \rho$, then there exists a constant $c \in K$ such that f(X) = g(X) + c as power series.

Since every point in open ball is the center of the ball, we hope every power series has the same radius after a translation.

Proposition 2.3.9. Let $f(X) = \sum a_n X^n$ be a power series with coefficients in K, and let $\alpha \in K$, $\alpha \neq 0$, be a point for which $f(\alpha)$ converges. For each $m \geq 0$, define

$$b_m = \sum_{n > m} \binom{n}{m} a_n \alpha^{n-m}$$

and consider the power series

$$g(X) = \sum_{m=0}^{\infty} b_m (X - \alpha)^m$$

- (1) The series defining b_m converges for every m, so that the b_m are welldefined.
- (2) The power series f(X) and g(X) have the same region of convergence, that is, $f(\lambda)$ converges if and only if $g(\lambda)$ converges.
- (3) For any λ in the region of convergence, we have $g(\lambda) = f(\lambda)$.

Theorem 2.3.10 (Strassman). Let

$$f(X) = \sum_{n=0}^{\infty} a_n X^n = a_0 + a_1 X + a_2 X^2 + \cdots$$

be a non-zero power series with coefficients in K, and suppose that we have $\lim_{n\to\infty} a_n = 0$, so that f(x) converges for all $x \in O_K$. Let N be the integer defined by the two conditions

$$|a_N| = \max_{n} |a_n|$$
 and $|a_n| < |a_N|$ for $n > N$

Then the function $f: O_K \longrightarrow K$ defined by $x \mapsto f(x)$ has at most N zeros.

Definition 2.3.11 (log on p-adic field). For a p-adic number field K there is a uniquely determined continuous homomorphism

$$\log: K^* \to K$$

such that $\log p = 0$ which on principal units $(1+x) \in U^{(1)}$ is given by the series

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

Proof: It's clear that log is unique and by Proposition 2.3.1(4), log is continuous.

It suffice to show log is homomorphism. For $x \in \pi O_K$, we have

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$$

Hence by Proposition 2.3.5, for all $\alpha \in \mathbb{Z}$,

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} {\alpha \choose k} x^k$$

Since

$$a_{n,k} = \frac{(-1)^{n-1}}{n} \binom{n}{k} x^k (1+y)^k y^{n-k} \to 0 \text{ as } n \to \infty$$

and

$$a_{n,k} = \frac{(-1)^{n-1}}{n} \binom{n}{k} x^k (1+y)^k y^{n-k} \to 0 \text{ as } k \to \infty \text{ uniformly,}$$

we have

$$\log((1+x)(1+y)) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(y+(1+y)x)^n}{n}$$

$$= \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{n-1}}{n} \binom{n}{k} x^k (1+y)^k y^{n-k}$$

$$= \log(1+y) + \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{(-1)^{n-1}}{n} \binom{n}{k} x^k (1+y)^k y^{n-k}$$

$$= \log(1+y) + \log(1+x)$$

Theorem 2.3.12. Let K/\mathbb{Q}_p be a p-adic number field with valuation ring O_K and maximal ideal πO_K , and let $pO_K = \pi^e O_K$. Then the power series

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

and

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

, yield, for $n > \frac{e}{p-1}$, two mutually inverse isomorphisms (and homeomorphisms)

$$(\mathfrak{p})^n \longleftrightarrow U^{(n)}.$$

Definition 2.3.13 (p-aid Interpolation). K is a p-adic field and $x \in U^{(1)}$, define

$$f: \mathbb{Z} \to K, n \mapsto x^n$$

Since f is uniformly continous, by extension theorem, there's $\tilde{f}: \mathbb{Z}_p \to K$ extends f such that \tilde{f} is uniformly continous.

Hence there's a natural \mathbb{Z}_p -module structure on $U^{(1)}$.

Proposition 2.3.14. Let K/\mathbb{Q}_p be a *p*-adic number field. For $1+x\in U^{(1)}$ and $z\in\mathbb{Z}_p$ one has

$$(1+x)^z = \sum_{\nu=0}^{\infty} {z \choose \nu} x^{\nu}$$

and series on the right hand converges even for $x \in \pi^n O_K$ where $n > \frac{e}{p-1}$.

Proposition 2.3.15. For $1 + x \in U^{(1)}$ and $z \in \mathbb{Z}_p$

$$(1+x)^z = \exp(z\log(1+x))$$
 and $\log(1+x)^z = z\log(1+x)$

Proof: It suffices to show the case when $z \in \mathbb{Z}$.

Chapter 3

Tate's Thesis

 $F = \mathbb{R}$, \mathbb{C} or finite extension of \mathbb{Q}_p . Denote the ring of integers by \mathcal{O}_F if F is a p-adic field. μ is the Haar measure we have already defined on F.

3.1 Local characters and Haar Measure

Definition 3.1.1. A $\chi \in \operatorname{Hom_{cont}}(F^{\times}, \mathbb{C}^{\times})$ is unramified if it is trivial on norm-one subgroup u of F. That is, χ is trivial on

$$u = \begin{cases} \{\pm 1\}, & F = \mathbb{R} \\ \mathbb{S}^1, & F = \mathbb{C} \\ \mathcal{O}_F^{\times}, & F \text{ be p-adic field} \end{cases}$$

It's obvious that all the quasi-character factor through

$$V(F) := \left\{ y \in \mathbb{R}_+^\times : y = |x|_F, \text{ for some } x \in F^\times \right\} = \begin{cases} \mathbb{R}_{>0}^*, & F = \mathbb{R} \\ \mathbb{R}_{>0}^*, & F = \mathbb{C} \\ q^{\mathbb{Z}}, & F \text{ be p-adic field} \end{cases}$$

continuously. Hence we only need to classify quasi-character on V(F).

Proposition 3.1.2. For every unramified quasi-character χ of F^{\times} there exists a complex number s such that $\chi(\alpha) = |\alpha|_F^s$ for $\alpha \in F^{\times}$.

Proof: Notice that $\mathbb{C} \to \mathbb{C}^*, z \mapsto \exp(z)$ is an universal covering. Hence every quasi-character on $\mathbb{R}^*_{>0}$ factors through exp. By functional equation of log,

$$t \mapsto t^s, s \in \mathbb{C}$$

are all the unramified quasi-character on $\mathbb{R}^*_{>0}$.

Proposition 3.1.3. Every quasi-character χ of F^{\times} has the form

$$\chi(x) = \chi_0 |x|_F^s$$

where χ_0 is a (unitary)character of F^{\times} and $s \in \mathbb{C}$. The real part of s and the value of χ_0 on u are uniquely determined by the quasi-character, but the imaginary part of s is not. We denote by σ the real part of s and call it the exponent of χ .

Remark 3.1.4. We can virsualize quasi-characters of F^{\times} as follow:

- (1) Let $F = \mathbb{R}$. A quasi-character of \mathbb{R}^{\times} is either of the form $|\cdot|^s$ or $\mathrm{sgn}|\cdot|^s$.
- (2) Let $F = \mathbb{C}$. Every quasi-character of \mathbb{C}^{\times} takes the form

$$\chi_{s,n}: re^{i\theta} \mapsto r^s e^{in\theta}, s \in \mathbb{C}, n \in \mathbb{Z}$$

(3) Let F be non-Archimedean and \mathfrak{p} be the unique prime ideal in F. There exists an $n \in \mathbb{N}$ such that $\chi_0(1+\mathfrak{p}^n)=\{1\}$. For the smallest n with this property, we call \mathfrak{p}^n the conductor of χ_0 . If χ_0 is trivial (n=0), then we say the conductor is $\mathfrak{p}^0=\mathfrak{o}_F^{\times}$. Consequently, χ_0 is induced by a character on the finite group $\mathfrak{o}_F^{\times}/(1+\mathfrak{p}^n)$.

In addition, if we fix π_F a generator \mathfrak{p} , we can find a unique unitary character χ_0 with $\chi_0(\pi_F) = 1$ and a unique $s \in \mathbb{C}/\frac{2\pi i}{\log a}\mathbb{Z}$ such that $\chi = \chi_0|\cdot|^s$.

Definition 3.1.5. We will now construct the standard non-trivial additive characters for each of the local fields.

- (1) $(F = \mathbb{R})$. Let $\psi(x) = e^{-2\pi ix}$.
- (2) $(F = \mathbb{C})$. Set $\psi(x) = e^{-2\pi i \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(x)}$.
- (3) (F non-Archimedean). First, we will define a non-trivial character on \mathbb{Q}_p . Recall that every $x \in \mathbb{Q}_p$ can be represented in the form

$$x = x_{-r}p^{-r} + x_{1-r}p^{1-r} + \dots + x_{-1}p^{-1} + x_0 + x_1p + \dots$$

Define $\lambda(x) = x_{-r}p^{-r} + x_{1-r}p^{1-r} + \cdots + x_{-1}p^{-1}$. Then ψ_p is defined to be

$$\psi_p: \mathbb{Q}_p \to S^1, x \mapsto e^{2\pi i \lambda(x)}.$$

Now, for finite extension F of \mathbb{Q}_p , we define $\psi(x) = \psi_p(\operatorname{Tr}_{F/\mathbb{Q}_p}(x))$.

Proposition 3.1.6. The conductor of an additive-character of a non-Archimedean local field is defined to be \mathfrak{p}^m where \mathfrak{p} is the unique prime ideal of F and

$$m = \inf \left\{ r \in \mathbb{Z} : \psi|_{\mathfrak{p}^r} = 1 \right\}$$

Then \mathfrak{p}^{-m} is the different of F/\mathbb{Q}_p .

Proof:

$$\psi|_{\mathfrak{p}^m} \equiv 1 \text{ iff } \operatorname{Tr}_{F/\mathbb{Q}_p}(\mathfrak{p}^m) \subset \mathbb{Z}_p \text{ iff } \mathfrak{p}^m \subset \text{ inverse different}$$

Theorem 3.1.7. If ψ is a non-trivial character on F, for each $a \in F$, define $\psi_a : F \to \mathbb{S}^1$ by $\psi_a(x) = \psi(ax)$. Then the map $\alpha_{\psi} : F \to \hat{F}$ given by $a \mapsto \psi_a$ is a topological group isomorphism. For example,

$$\mathbb{R} \to \hat{\mathbb{R}}, a \mapsto (x \mapsto e^{-2\pi i a x})$$

and

$$\mathbb{C} \to \hat{\mathbb{C}}, a \mapsto (x \mapsto e^{-2\pi i \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(ax)})$$

are topological group isomorphisms.

Theorem 3.1.8. By Theorem 3.1.7, we can give a Haar measure on \hat{F} , and under this Haar measure, Fourier Inverse Theorem holds.

Proof: We only show the case when F is non-archimedean. Let f(x) be the characteristic function of \mathfrak{o}_F . Let ψ be the standard non-trivial character. Then,

$$\hat{f}(y) = \int_{F} f(x)\psi(xy)dx = \int_{\mathfrak{o}_{F}} \psi(xy)dx$$

We see that for all $x \in \mathfrak{o}_F$, $\psi(xy) = 1$ if and only if $y \in \mathfrak{D}_F^{-1}$. Otherwise, if there's $a \in \mathfrak{o}_F$ such that $\psi(ay) \neq 1$, we have

$$\hat{f}(y) = \int_{\mathfrak{o}_F} \psi((x+a)y) dx = \psi(ay) \int_{\mathfrak{o}_F} \psi(xy) dx$$

Hence

$$\int_{\mathbb{R}^n} \psi(xy) dx = 0$$

To sum up,

$$\hat{f}(y) = \chi_{\mathfrak{D}_F^{-1}} \mu(\mathfrak{o}_F)$$

Hence

$$\hat{\hat{f}}(x) = \int_{\mathfrak{D}_F^{-1}} N\left(\mathfrak{D}_F\right)^{-1/2} \chi(yx) dy = N\left(\mathfrak{D}_F\right)^{-1/2} \mu(\mathfrak{D}_F) \chi_{\mathfrak{o}_F}(x) = \chi_{\mathfrak{o}_F}(x)$$

Definition 3.1.9 (Haar measure on multiplicative group of F). Define a constant

$$c_F = \begin{cases} 1, & F = \mathbb{R}, \mathbb{C} \\ \frac{q}{q-1}, & F = \text{ p-adic field} \end{cases}$$

If $E \in B_{F^{\times}}$, define

$$\mu(E) = c_F \int_{F - \{0\}} \chi_E \frac{dx}{|x|_F}$$

Since F^* is a open subspace of F, by Analysis 2.6.11, μ is a Haar measure on F^{\times} . We denote it by d^*x .

Then, there is a one-to-one correspondence of $L^1(F^{\times})$ and $L^1(F - \{0\})$ given by $g(x) \mapsto g(x)|x|_F^{-1}$, and for these functions we have

$$\int_{F^{\times}} g(x)d^*x = c_F \int_{F-\{0\}} g(x) \frac{dx}{|x|_F}.$$

If F is non-archimedean, have

$$\operatorname{Vol}\left(\mathfrak{o}_{F}^{\times}, d^{*}x\right) = \frac{q}{q-1} \int_{\mathfrak{o}_{F}^{\times}} dx = \operatorname{Vol}\left(\mathfrak{o}_{F}, dx\right) - \operatorname{Vol}\left(\pi_{F}\mathfrak{o}_{F}, dx\right)\right) q/(q-1) = \operatorname{Vol}\left(\mathfrak{o}_{F}, dx\right)$$

3.2 Fourier Transform

Definition 3.2.1 (Schwarz-Bruhat Function for F). Now we define Schwarz-Bruhat Function for F, recall $\mathcal{S}(\mathbb{R}^n)$ is the Schwarz space for n-dimension euclidean space.

$$S(F) = \begin{cases} S(\mathbb{R}), & F = \mathbb{R} \\ S(\mathbb{R}^2), & F = \mathbb{C} \\ \text{locally constant and compactly supported}, & F = \text{ p-adic field} \end{cases}$$

Proposition 3.2.2. For every $f \in S(F)$, F non-Archimedean, there exist integers m and n, $-m \le n$, such that f(x) = 0 for $x \notin \mathfrak{p}^{-m}$, and for $x \in \mathfrak{p}^{-m}$, f(y) = f(x) for all $y \in x + \mathfrak{p}^n$.

Lemma 3.2.3. Assume F is non-archimedean. The local Fourier transform of $f = 1_{a+p^l}$, the characteristic function of the set $a + \mathfrak{p}^{\ell}$, is

$$\hat{f}(y) = \psi(ay)N(\mathfrak{D}_F)^{-\frac{1}{2}}N(\mathfrak{p})^{-l}1_{\mathfrak{p}^{-l}\mathfrak{D}_F^{-1}}(y)$$

Corollary 3.2.4. By Lemma 3.2.3, and Proposition 3.1.6, Fourier Transform gives a linear isomorphism between S(F).

Definition 3.2.5 (local L-function). Let $\chi \in \text{Hom}_{\text{cont}}$ $(F^{\times}, \mathbb{C}^{\times})$.

(1) If $F = \mathbb{C}$, then let

$$L\left(\chi_{s,n}\right) = \Gamma_{\mathbb{C}}\left(s + \frac{|n|}{2}\right) = (2\pi)^{-\left(s + \frac{|n|}{2}\right)}\Gamma\left(s + \frac{|n|}{2}\right)$$

(2) If $F = \mathbb{R}$ and $\chi = |\cdot|^s$ or $\chi = \operatorname{sgn}|\cdot|^s$, then let

$$L(\chi) = \begin{cases} \Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2) & \text{if } \chi = |\cdot|^s \\ \Gamma_{\mathbb{R}}(s+1) & \text{if } \chi = \text{sgn}|\cdot|^s \end{cases}$$

(3) If F is non-Archimedean, then let

$$L(\chi) = \begin{cases} (1 - \chi(\pi_F))^{-1} & \text{if } \chi \text{ is unramified} \\ 1 & \text{otherwise} \end{cases}$$

Then $L(\chi)$ be a meromorphic function on \mathbb{C} .

Proposition 3.2.6. Given any quasi-character χ of F^{\times} and a complex number s, the product $\chi|\cdot|_F^s$ is also a character. And we write $L(s,\chi)$ for $L(\chi|\cdot|_F^s)$. We define the shifted dual of χ to be

$$\check{\chi} = \chi^{-1}|\cdot|_F$$

so that

$$L((\chi |\cdot|^s)^{\vee}) = L(1-s,\chi^{-1})$$

Definition 3.2.7 (local zeta function). For $f \in S(F)$ and $\chi \in \text{Hom}_{\text{cont}}(F^{\times}, \mathbb{C}^{\times})$, we define the associated local zeta function to be

$$Z(f,\chi) = \int_{E^{\times}} f(x)\chi(x)d^*x$$

Note that $Z(f,\chi)$ is dependent on the multiplicative measure d^*x . If we fix an additive measure dx and choose $d^*x = c_F dx/|x|_F$, then $Z(f,\chi)$ is dependent on dx.

Lemma 3.2.8 (Gauss sum). Assume F is non-archimedean. Given characters $\omega: \mathcal{O}_F^{\times} \to \mathbb{C}^{\times}$ and $\psi: \mathcal{O}_F \to \mathbb{C}^{\times}$, define the Gauss sum

$$g(\omega, \psi) := \int_{\mathcal{O}_{F}^{\times}} \omega(x) \psi(x) d^{\times} x.$$

Suppose ω is of conductor \mathfrak{p}^n with n>0, and ψ is of conductor \mathfrak{p}^m with $m\geq 0$.

- (1) If $m \neq n$, then $g(\omega, \psi) = 0$.
- (2) If m = n, then $|g(\omega, \psi)|^2 = c_F^2 q^{-m} \operatorname{Vol}(\mathcal{O}_F, dx)^2$.

Proof: (1): If m > n, then the integral over each coset of $1 + \mathfrak{p}^n$ is 0 since ω is constant and ψ is a nontrivial character on \mathfrak{p}^n . If m < n, then the integral over each coset of $1 + \mathfrak{p}^m$ is 0 since ψ is constant and ω is a nontrivial character on $1 + \mathfrak{p}^m$.

(2): If m = n > 0, then

$$|g(\omega, \psi)|^2 = \int_{\mathcal{O}_F^{\times}} \omega(x) \psi(x) d^{\times} x \overline{\int_{\mathcal{O}_F^{\times}} \omega(y) \psi(y) d^{\times} y}$$

$$= \int_{\mathcal{O}_F^{\times}} \int_{\mathcal{O}_F^{\times}} \omega(xy^{-1}) \psi(x - y) d^{\times} x d^{\times} y$$

$$= \int_{\mathcal{O}_F^{\times}} \int_{\mathcal{O}_F^{\times}} \omega(z) \psi(yz - y) d^{\times} y d^{\times} z$$

$$= \int_{\mathcal{O}_F^{\times}} \omega(z) h(z) d^{\times} z$$

where

$$\begin{split} h(z) &= \int_{\mathcal{O}_F^\times} \psi(yz-y) d^\times y \\ &= \int_{\mathcal{O}_F^\times} \psi(y(z-1)) dy \quad \big(\text{ since } |y| = 1 \text{ on } \mathcal{O}_F^\times \big) \\ &= c_F \int_{\mathcal{O}_F} \psi(y(z-1)) dy - c_F \int_{1+\mathfrak{p}} \psi(y(z-1)) dy \\ &= c_F \times \operatorname{Vol}(\mathcal{O}_F, dx) \times \begin{cases} 1 - q^{-1} & \text{if } v(z-1) \geq m \quad \text{(both integrands are 1)} \\ -q^{-1} & \text{if } v(z-1) = m-1 \quad \text{(second integrand is 1)} \\ 0 & \text{if } v(z-1) < m-1 \quad \text{(neither integrand is constant)} \end{cases} \end{split}$$

Thus

$$|g(\omega,\psi)|^2 = c_F \times \operatorname{Vol}(\mathcal{O}_F, dx) \left(\int_{1+\mathfrak{p}^m} \omega(z) d^{\times} z - q^{-1} \int_{1+\mathfrak{p}^{m-1}} \omega(z) d^{\times} z \right) = c_F^2 q^{-m} \operatorname{Vol}(\mathcal{O}_F, dx)^2$$

Proposition 3.2.9. Let $f \in S(F)$, and $\chi = \chi_0 |\cdot|^s$ where χ_0 is the unitary part of the quasicharacter χ . Let $\sigma = \Re(s)$. Then the following statements hold:

- (1) $Z(f,\chi)$ is holomorphic and absolutely convergent if $\sigma > 0$.
- (2) There exists a nonvanishing holomorphic function $\epsilon(\chi, \psi, dx)$ such that

$$\frac{Z(\hat{f}, \chi^{\vee})}{L(\chi^{\vee})} = \epsilon(\chi, \psi, dx) \frac{Z(f, \chi)}{L(\chi)}$$

for all $f \in S(F)$. Hence $Z(f,\chi)$ has a meromorphic continuation to the whole complex plane.

Proof: (1): Since $f \in S(F)$, f factors through the finite quotient group $\mathfrak{p}^{-m}/\mathfrak{p}^n, m, n \in \mathbb{Z}, -m \leq n$. Hence, we only need to consider $f = \chi_{\mathfrak{p}^n}$. Let π_F be a uniformizing parameter of \mathfrak{p} . From

$$\pi_F^n \mathfrak{o}_F - \{0\} = \bigcup_n^\infty \pi_F^k \mathfrak{o}_F^\times$$

and the translation invariance of the multiplicative measure, it follows that

$$|Z(f,\chi)| \le c_F \int_{F-\{0\}} |f(x)| |x|_F^{\sigma-1} dx = c_F \int_{F-\{0\}} \chi_{(\pi_F^n)} |x|_F^{\sigma-1} dx = \sum_{k=n}^{\infty} \int_{\pi_F^k \mathfrak{o}_F^{\times}} |x|_F^{\sigma} d^* x = \sum_{k=n}^{\infty} \int_{\mathfrak{o}_F^{\times}} |\pi_F^k x|_F^{\sigma} d^* x = \sum_{k=n}^{\infty} q^{-k\sigma} \int_{\mathfrak{o}_F^{\times}} d^* x = \frac{q^{-n\sigma}}{1 - q^{-\sigma}} \operatorname{Vol}(\mathfrak{o}_F, dx)$$

(2): Choose dx, ψ to be standard Haar measure and additive character on F, we have: (a):If $F = \mathbb{R}$, $\chi = |\cdot|^s$, take $f = e^{-\pi x^2}$, we have

$$Z(f,\chi) = L(\chi), Z(\hat{f},\chi^{\vee}) = L(\chi^{\vee})$$

Hence, $\epsilon = 1$.

(b):If
$$F = \mathbb{R}$$
, $\chi = \operatorname{sgn} \cdot |\cdot|^s$, take $f = xe^{-\pi x^2}$, we have

$$Z(f,\chi) = L(\chi), Z(\hat{f},\chi^{\vee}) = -iL(\chi^{\vee})$$

Hence, $\epsilon = -i$.

(c): If $F = \mathbb{C}$, $\chi = \chi_{s,n}$, take

$$f_n(z) = \begin{cases} (2\pi)^{-1} \bar{z}^{|n|} e^{-2\pi z \bar{z}} & \text{for } n \ge 0\\ (2\pi)^{-1} z^{|n|} e^{-2\pi z \bar{z}} & \text{for } n < 0 \end{cases}$$

, we have $\hat{f}_n = (-i)^{|n|} f_{-n}$ and

$$Z(f_n, \chi_{s,n}) = L(\chi_{s,n}), Z(\hat{f}_n, \chi^{\vee}) = (-i)^{|n|} L(\chi^{\vee}) = (-i)^{|n|} L(\chi_{-n,1-s})$$

Hence, $\epsilon = (-i)^{|n|}$.

(d): If F is non-archimedean and $\chi = \chi_{s,n} = \chi_0 |\cdot|^s$ with $\mathfrak{p}^n, n \geq 1$ to be the conductor of χ_0 . Fix a uniformlizer π_F , assume $\mathfrak{p}^{-d}, d \geq 0$ be the conductor of ψ and $\chi_0(\pi_F) = 1$. Define

$$f_n(x) = \psi(x) \mathbf{1}_{\mathfrak{p}^{-d-n}}(x)$$

If χ is unramified, i.e χ_0 is trivial, we have

$$Z(f_{0}, \chi_{s,0}) = \int_{F^{\times}} f_{0}(x)\chi_{s,0}(x)d^{*}x = \int_{\pi_{F}^{-d}-\{0\}} |x|_{F}^{s}d^{*}x =$$

$$= \sum_{k=-d_{\pi_{F}^{k}\mathfrak{o}_{F}^{\times}}} |x|_{F}^{s}d^{*}x = \sum_{k=-d}^{\infty} q^{-ks}\operatorname{Vol}\left(\mathfrak{o}_{F}^{\times}, d^{*}x\right) =$$

$$= \operatorname{Vol}\left(\mathfrak{o}_{F}^{\times}, d^{*}x\right) \frac{q^{ds}}{1-q^{-s}} = q^{ds}\operatorname{Vol}\left(\mathfrak{o}_{F}^{\times}, d^{*}x\right) (1-|\pi_{F}|_{F}^{s})^{-1} =$$

$$= q^{ds}\operatorname{Vol}\left(\mathfrak{o}_{F}, dx\right) L\left(\chi_{s,0}\right)$$

(e): If χ is ramified, i.e. $n \geq 1$, we have

$$Z(f_{n},\chi_{s,n}) = \int_{F^{\times}} f_{n}(x)\chi_{s,n}(x)d^{*}x = \int_{\pi_{F}^{-d-n}\mathfrak{o}_{F}-\{0\}} \psi(x)\chi_{0}(x)|x|_{F}^{s}d^{*}x =$$

$$= \sum_{k=-d-n}^{\infty} \int_{\mathfrak{o}_{F}^{\times}} \psi(\pi_{F}^{k}u)\chi_{0}(u)|\pi_{F}^{k}u|_{F}^{s}d^{*}u = \sum_{k=-d-n}^{-d} q^{-ks} \int_{\mathfrak{o}_{F}^{\times}} \psi(\pi_{F}^{k}u)\chi_{0}(u)d^{*}u$$

By Proposition 3.2.8, $Z(f_n, \chi_{s,n}) = q^{(-d-n)s} g(\chi_0, \psi_{\pi_F^{-d-n}}).$

Now we want to calculate the Fourier Transform of f_n . Notice that for n=0, we have $\hat{f}_0(y) = \operatorname{Vol}\left(\mathfrak{p}^{-d}, dx\right) \mathbf{1}_{\mathfrak{o}_F}(y)$, where $\mathbf{1}_{\mathfrak{o}_F}(y)$ is the characteristic function of \mathfrak{o}_F . For n>0 we have $\hat{f}_n(y) = \operatorname{Vol}\left(\mathfrak{p}^{-d-n}, dx\right) \mathbf{1}_{\mathfrak{p}^n-1}(y)$, where $\mathbf{1}_{\mathfrak{p}^n-1}(y)$ is the characteristic function of \mathfrak{p}^n-1 .

Hence,

$$Z(\hat{f}_0, \chi_{s,0}^{\vee}) = q^d \operatorname{Vol}(\mathfrak{D}_F, dx)^2 L(\chi_{s,0}^{\vee})$$

and

$$\epsilon (\chi_{s,0}, \psi, dx) = q^{-d(s-1)} \operatorname{Vol} (\boldsymbol{o}_F, dx)$$

If $n \geq 1$, we have

$$Z\left(\hat{f}_{n}, \chi_{s,n}^{\vee}\right) = c_{F} q^{d} \operatorname{Vol}\left(\mathfrak{o}_{F}, dx\right)^{2} \chi_{0}(-1) L(\chi_{s,n}^{\vee})$$

and

$$\epsilon\left(\chi_{s,n},\psi,dx\right) = \frac{c_F q^d q^{-(d+n)s} \operatorname{Vol}^2\left(\mathfrak{o}_F,dx\right) \chi_0(-1)}{g\left(\chi_0,\psi_{\pi_F^{-d-n}}\right)}$$

where the conductor of characters in the p-adic Gauss sum are all \mathfrak{p}^n .

Corollary 3.2.10. If we choose standard non-trivial character (then conductor = inverse different), self-dual measure (Vol(\mathcal{O}_F , dx) = $q^{-d/2}$) and s = 1/2, $|\epsilon(\chi)| = 1$.

Theorem 3.2.11. For all idele-class characters $\chi = \chi_0 |\cdot|^s$ and $f \in S(\mathbb{A}_K)$, the global zeta function $Z(f,\chi)$ is uniformly convergent in every compact subset of $\sigma = \Re(s) > 1$, hence holomorphic in $\sigma = \Re(s) > 1$. Furthermore, $Z(f,\chi)$ extends to a meromorphic function of s and satisfies the functional equation

$$Z(f,\chi) = Z(\hat{f},\chi^{\vee})$$

For $\chi = \chi_0 |\cdot|^s$, if χ_0 is non-trivial, the continuation of $Z(f,\chi)$ is entire. If χ_0 is trivial, the continuation of $Z(f,\chi)$ has simple poles at s=0 and s=1, with corresponding residues given by

$$-\operatorname{Vol}\left(C_K^1\right)f(0)$$
 and $\operatorname{Vol}\left(C_K^1\right)\hat{f}(0)$

respectively. The volume of C_K^1 is taken with respect to the quotient measure on C_K defined by both d^*x and the counting measure on K^* .

Proof: If we fix an infinite place of K, then $\mathbb{I}_K \simeq \mathbb{R}_+^{\times} \times \mathbb{I}_K^1$. Haar measure on $\mathbb{I}_K/\mathbb{I}_K^1 \cong \mathbb{R}_{>0}^{\times}$ is defined to be dt/t, then there's unquie Haar measure on \mathbb{I}_K^1 such that Theorem 2.1.38 holds for $G = \mathbb{I}_K$ and $H = \mathbb{I}_K^1$. And we also denote this Haar measure on \mathbb{I}_K^1 by d^*x .

Hence for $\sigma > 1$ and $f \in S(\mathbb{A}_K)$.

$$Z(f,\chi) = \int_{\mathbb{I}_K} f(x)\chi(x)d^*x = \int_0^\infty \int_{\mathbb{I}_K^1} f(tx)\chi(tx)d^*x \frac{dt}{t}$$

Define

$$Z_t(f,\chi) = \int_{\mathbb{I}_K^1} f(tx) \chi(tx) d^*x$$

We will now apply Poisson Summation Formula to establish a functional equation for $Z_t(f,\chi)$. We claim that The function $Z_t(f,\chi)$ satisfies the relation

$$Z_t(f,\chi) = Z_{t-1}(\hat{f},\chi^{\vee}) + \hat{f}(0) \int_{C_K^1} \check{\chi}(x/t) d^*x - f(0) \int_{C_K^1} \chi(tx) d^*x$$

Now we give a proof of the proposition. Fix a Haar measure on \mathbb{I}^1/K^* such that Theorem 2.1.38 holds for counting measure on K^* . Then

$$Z_t(f,\chi) = \int_{C_K^1} \left(\sum_{a \in K^*} f(atx) \chi(atx) \right) d^*x = \int_{C_K^1} \left(\sum_{a \in K^*} f(atx) \right) \chi(tx) d^*x$$

since $\chi|_{K^*}=1$, by hypothesis. To apply the Poisson Summation Formula, we need to sum over K, not K^* . In order to do this, we add $f(0)\int_{C^1_K}\chi(tx)d^*x$ to $Z_t(f,\chi)$. That is,

$$Z_t(f,\chi) + f(0) \int_{C_K^1} \chi(tx) d^*x = \int_{C_K^1} \left(\sum_{a \in K} f(atx) \right) \chi(tx) d^*x$$

Applying the Poisson Summation Formula to the sum on the right-hand side and then using the change of variable $x \mapsto x^{-1}$, we obtain

$$\begin{split} \int_{C_K^1} \left(\sum_{a \in K} f(atx) \right) \chi(tx) d^*x &= \int_{C_K^1} \left(\sum_{a \in K} \hat{f} \left(at^{-1}x^{-1} \right) \right) \frac{\chi(tx)}{|tx|_{\mathbb{I}_K}} d^*x \\ &= \int_{C_K^1} \left(\sum_{a \in K} \hat{f} \left(at^{-1}x \right) \right) |t^{-1}x|_{\mathbb{I}_K} \chi\left(tx^{-1} \right) d^*x \\ &= \int_{C_K^1} \left(\sum_{a \in K^*} \hat{f} \left(at^{-1}x \right) \right) \check{\chi}(x/t) d^*x + \hat{f}(0) \int_{C_K^1} \check{\chi}(x/t) d^*x \\ &= Z_{t^{-1}}(\hat{f}, \check{\chi}) + \hat{f}(0) \int_{C_K^1} \check{\chi}(x/t) d^*x \end{split}$$

We may break up $Z(f,\chi)$ as follows:

$$Z(f,\chi) = \int_0^1 Z_t(f,\chi) \frac{1}{t} dt + \int_1^\infty Z_t(f,\chi) \frac{1}{t} dt$$

We see that

$$\int_{1}^{\infty} Z_t(f,\chi) \frac{1}{t} dt = \int_{\left\{x \in \mathbb{I}_K : |x|_{\mathbb{I}_K} \ge 1\right\}} f(x) \chi(x) d^*x$$

The integral on the right-hand side is uniformly convergent on every compact subset of \mathbb{C} . This is because, f_v are supported on a compact subset for all finite place ν and $|f_{\nu}|$ decrease rapidly for all infinite place ν . Hence, $\int_1^{\infty} Z_t(f,\chi)$ is an entire function.

$$\int_0^1 Z_t(f,\chi) \frac{1}{t} dt = \int_0^1 \left(Z_{t^{-1}}(\hat{f},\check{\chi}) + \hat{f}(0)\check{\chi}\left(t^{-1}\right) \int_{C_K^1} \check{\chi}(x) d^*x - f(0)\chi(t) \int_{C_K^1} \chi(x) d^*x \right) \frac{1}{t} dt$$

Applying the change of variable $t \mapsto t^{-1}$ to the first integral in the sum, we obtain

$$\int_{0}^{1} Z_{t^{-1}}(\hat{f}, \check{\chi}) \frac{1}{t} dt = \int_{1}^{\infty} Z_{t}(\hat{f}, \check{\chi}) \frac{1}{t} dt$$

$$R(f,\chi) := \int_0^1 \hat{f}(0) \check{\chi}\left(t^{-1}\right) \int_{C_K^1} \check{\chi}(x) d^* x \frac{1}{t} dt - \int_0^1 f(0) \chi(t) \int_{C_K^1} \chi(x) d^* x \frac{1}{t} dt$$

There are two cases to consider.

Firstly, if χ is nontrivial on \mathbb{I}^1_K , then

$$\int_{C_K^1} \check{\chi}(x) d^*x \text{ and } \int_{C_K^1} \chi(x) d^*x$$

are both zero by orthogonality of characters $(R(f,\chi)=0)$. Therefore,

$$\int_0^1 Z_t(f,\chi) \frac{1}{t} dt = \int_1^\infty Z_t(\hat{f}, \check{\chi}) \frac{1}{t} dt$$

, and hence

$$Z(f,\chi) = \int_{1}^{\infty} Z_t(f,\chi) \frac{1}{t} dt + \int_{1}^{\infty} Z_t(\hat{f}, \check{\chi}) \frac{1}{t} dt$$

So, when χ is nontrivial on \mathbb{I}^1_K , then $Z(f,\chi)$ extends to an entire function.

Secondly, if $\chi = |\cdot|^s$ is trivial on \mathbb{I}_K^1 , then

$$\begin{split} R(f,\chi) &= \hat{f}(0)\operatorname{Vol}\left(C_K^1\right)\int_0^1 t^{s-2}dt - f(0)\operatorname{Vol}\left(C_K^1\right)\int_0^1 t^{s-1}dt \\ &= \frac{\hat{f}(0)\operatorname{Vol}\left(C_K^1\right)}{s-1} - \frac{f(0)\operatorname{Vol}\left(C_K^1\right)}{s} \end{split}$$

Consequently,

$$\int_0^1 Z_t(f,\chi) \frac{1}{t} dt = \int_1^\infty Z_t(\hat{f}, \check{\chi}) \frac{1}{t} dt + \frac{\hat{f}(0) \operatorname{Vol}(C_K^1)}{s-1} - \frac{f(0) \operatorname{Vol}(C_K^1)}{s}$$

, and hence

$$Z(f,\chi) = \int_{1}^{\infty} Z_{t}(f,\chi) \frac{1}{t} dt + \int_{1}^{\infty} Z_{t}(\hat{f}, \check{\chi}) \frac{1}{t} dt + \frac{\hat{f}(0) \operatorname{Vol}(C_{K}^{1})}{s-1} - \frac{f(0) \operatorname{Vol}(C_{K}^{1})}{s}$$

Definition 3.2.12. We define the global L-function of χ in terms of its local versions by the product expansion

$$L(\chi) = \prod_{\nu} L\left(\chi_{\nu}\right)$$

It' clear that $L(\chi)$ uniformly converges on all compact subsets of Re(s)>1 and holomorphic in Re(s)>1

Definition 3.2.13 (Hecke L-function). Let $\chi \in \text{Hom}_{\text{cont}}$ (\mathbb{I}_K/K^* , \mathbb{C}^{\times})(an idele-class character). For complex s, define the Hecke L-function $L(s,\chi)$ by

$$L(s,\chi) = L\left(\chi|\cdot|^s\right)$$

Let $\chi \in \text{Hom}_{\text{cont}} (\mathbb{I}_K/K^*, \mathbb{C}^{\times})$ (an idele-class character). For complex s, define the Hecke L-function $L(s,\chi)$ by

$$L(s,\chi) = L\left(\chi|\cdot|^s\right)$$

If $\chi = \otimes' \chi_{\nu}$, define

$$L\left(s,\chi_{f}\right) = \prod_{\nu \text{ finite}} L\left(s,\chi_{\nu}\right)$$

and

$$L\left(s,\chi_{\infty}\right) = \prod_{\nu\mid\infty} L\left(s,\chi_{\nu}\right)$$

respectively. Then

$$L(s,\chi) = L(s,\chi_f)L(s,\chi_\infty)$$

Example 3.2.14. For χ equals to identity character 1 on $\operatorname{Hom}_{\operatorname{cont}}$ ($\mathbb{I}_K/K^*, \mathbb{C}^{\times}$), we have

$$L(s, 1_f) = \prod_{\nu \text{ finite}} \frac{1}{1 - |\pi_{\nu}|^s} = \zeta_K(s)$$

which is so-call Dedekind zeta-function.

For a Dirchlet character $\chi: \mathbb{I}_{\mathbb{Q}} \xrightarrow{\pi} \widehat{\mathbb{Z}}^{\times} \xrightarrow{\chi_1} \mathbb{S}^1$, if χ correspondes to χ_0 , a primitive Dirchlet character module m, where $m = p_1^{e_1} \dots p_s^{e_s}$, we have

$$L(s, \chi_f) = \prod_{p \nmid m} \frac{1}{1 - \chi_p(p)p^{-s}} = \prod_{p \nmid m} \frac{1}{1 - \chi_0^{-1}(p)p^{-s}}$$

Theorem 3.2.15.

$$\operatorname{Vol}\left(C_K^1\right) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{\omega_K \sqrt{|d_K|}}$$

Theorem 3.2.16. Let χ be a unitary idele-class character with factorization $\chi = \prod_{\nu} \chi_{\nu}$. ψ_{ν} be the standard unitary character on K_{ν} , then $\psi = \prod_{\nu} \psi_{\nu}$ be a non-trivial adelic character that is trivial on K. Then $L(s,\chi)$, which is holomorphic in $\{s \in \mathbb{C} : \Re(s) > 1\}$, admits a meromorphic continuation to the whole complex plane, and satisfies the functional equation

$$L(1-s,\chi^{-1}) = \epsilon(s,\chi)L(s,\chi)$$

where

$$\epsilon(s,\chi) = \prod_{\nu} \epsilon(\chi_{\nu}|\cdot|^{s}, \psi_{\nu}, dx_{\nu}) \in \mathbb{C}^{\times}$$

Furthermore, if χ is ramified, $L(s,\chi)$ is entire. If χ unramified, $L(s,\chi)$ is a meromorphic function with simple poles at 0 and 1. And residue at 0 and 1 are

$$-|d_K|^{1/2}(2\pi)^{-r_2} \operatorname{Vol}(C_K^1), \quad (2\pi)^{-r_2} \operatorname{Vol}(C_K^1)$$

respectively.

Hence, Dedekind zeta function $\zeta_K(s)$ can be extended to a meromorphic function with only simple pole at s=1 with residue

Vol
$$(C_K^1) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{\omega_K \sqrt{|d_K|}}$$

and the order of zeros at s=0 equals to rank of unit group, that is r_1+r_2-1 .

Proof: Dedekind zeta function: Take f_v for all ν as the form in Theorem 3.2.9, we have

$$Z(f, |\cdot|^s) = \prod_{\nu} \int_{K_{\nu}} Z(f_{\nu}, |\cdot|^s) = L(s, 1) |d_K|^{s-1/2}$$

Notice that

$$f(0) = (2\pi)^{-r_2}$$
 $\hat{f}(0) = (2\pi)^{-r_2} |d_K|^{1/2}$

Hence, the residues at 0 and 1 for Hecke L-function $L(s, |\cdot|^s)$ are

$$-|d_K|^{1/2}(2\pi)^{-r_2} \operatorname{Vol}(C_K^1), \quad (2\pi)^{-r_2} \operatorname{Vol}(C_K^1)$$

Since

$$\zeta_K(s) \prod_{\nu \text{ infinite}} L(|\cdot|^s) |d_K|^{s-1/2} = Z(f, |\cdot|^s)$$

and Gamma function has simple pole at s=1, the order of zero of $\zeta_K(s)$ at s=0 is r_1+r_2-1 . Moreover, the residue of $\zeta_K(s)$ at s=1 is $\operatorname{Vol}(C_K^1)$ because $\Gamma(1)=1,\Gamma(1/2)=\sqrt{\pi}$.

To obtain functional equation, notice that

$$L(1-s,1) = Z(\hat{f}, |\cdot|^{1-s}) = Z(f, |\cdot|^s) = \prod_{\nu} \int_{K_{\nu}} Z(f_{\nu}, |\cdot|^s) = L(s,1) |d_K|^{s-1/2}$$

Hence,

$$|d_K|^{s/2}L(s,1) = L(1-s,1)|d_K|^{(1-s)/2}$$

Corollary 3.2.17. For an arbitrary unitary idèle class character $\chi_0 = \otimes'_{\nu} \chi_{\nu}$, define

$$C_{\chi_0} = \prod_{
u ext{ finite}} q_
u^{n_
u}$$

where $\mathfrak{p}_{\nu}^{n_{\nu}}$ be the conductor of χ_{ν} . Then

$$L(s,\chi_0)(|d_K|C_{\chi_0})^{s/2} = CL(1-s,\chi_0^{-1})(|d_K|C_{\chi_0})^{(1-s)/2}$$

for some C with |C| = 1.