Exploration Enhanced Particle Swarm Optimization using Guided Re-Initialization

Karan Kumar Budhraja, Ashutosh Singh, Gaurav Dubey, Arun Khosla

The Authors

- List of Authors
 - Karan Kumar Budhraja, Ashutosh Singh,
 Gaurav Dubey, Arun Khosla
- Affiliation
 - National Institute of Technology,
 Jalandhar, India

Introduction

- Multidimensional problems highly complex
 - Conventional computational algorithms not suitable
- PSO may be used
 - computationally cheaper and more robust
 - Single version of PSO covers many applications

Particle Swarm Optimization

- Swarm intelligence
 - Based on collective nature of unsophisticated entities/agents
- Multidimensional space represents solutions
- Movement governed by factors
 - Social
 - specific to the swarm as a whole
 - Cognitive
 - specific to the individual

Particle Swarm Optimization

- Algorithm
 - Boid described by position and velocity
 - Maintain individual personal best
 - Sharing of information gives rise to global best

Velocity and position for boid [i] updated as

$$v_i = wv_i + c_1r_1(p_i - x_i) + c_2r_2(g - x_i)$$

 $x_i = x_i + v_i$

Velocity calculation for a particle in PSO

Particle Swarm Optimization

- Limitations
 - Extensive information flow
 - Premature convergence
 - Suboptimal solution
 - Redundant calculations when converging
 - We know that particles are converging

Particle Swarm Optimization

- Some PSO Variants
 - Re-initialization or disturbance to particles
 - Adaptive PSO, Heuristic PSO, Perturbation PSO
 - Radius
 - Species in a Particle Swarm Optimizer (SPSO)
 - Some other variants
 - Comprehensive learning PSO, Dynamic Multi-Swarm PSO and Fully Informed Particle Swarm

- Inspired by the concept of teleportation
- Region (portal) located around global best
 - Variable Radius of Effect (RoE)

- Algorithm
 - Particles may stay outside/inside RoE
 - Exploration vs convergence
 - Particles outside RoE
 - Particles approaching gbest enter RoE
 - Position and velocity reinitialized to outside location
 - RoE increased (limited to maximum)
 - Particles inside RoE
 - Particles trajectory might go out of RoE
 - Position and velocity reinitialized to inside location
 - RoE decreased

• RoE limit

- Algorithm
 - Particles initially stay outside RoE
 - Exploration boost
 - Individual particles converted to stay inside RoE
 - Over time
 - Convergence boost

- Single Portal Model
 - One portal around gbest
 - Portal is like hollow hypersphere
 - No thickness
 - RoE initially increases then decreases

- Two Portal Model
 - Outer and inner portals
 - Different portals dedicated to exploration and convergence
 - Outer RoE only increases
 - Inner RoE only decreases
 - Region between two portals is empty

Single portal and two portal model

Single Portal Model	Two Portal Model
Conflict for <i>RoE</i> manipulation between exploration and conversion particle groups if single portal	Separate <i>RoE</i> values for exploration and convergence. Better precision achievable
RoE reset controlled by particles outside portal	Different RoE values controlled by different particle groups
Particles may explore entire hyperspace. More exhaustive search	Region between two portals remained possibly unexplored

- PSO models executed several times
 - Average fitness value calculated
- Input and output parameters tuned
 - Unimodal and multimodal separately
- Fitness values compared against original PSO model

Results

- Best performance improvement for Rastrigin F1
 - Two portal better than single portal
- Parameter tuning done for unimodal and multimodal
 - Collective fitness of respective functions used

Function	Original Model	Single Portal Model	Two Portal Model
DeJong	0.0000	0.0000	0.9604
Griewank	0.9995	0.9995	0.9995
Rastrigin F1	6.9647	2.9879	0.1392
Rosenbrock	146.7320	123.6780	109.0720
Schaffer F6	0.0372	0.0262	0.0235

Fitness value for Rastrigin F1 function

- Discussion
 - Dejong
 - Deviation in fitness for two portal model
 - Due to nature of particle distribution
 - Rosenbrock
 - Premature convergence avoided by proposed models
 - Improvement in fitness value
 - Single portal suffers from RoE conflict
 - Two portal generates better fitness value

- Discussion
 - Rastrigin F1 and Schaffer F6
 - Highly multimodal
 - Original PSO converges at local optima
 - Models provide better fitness
 - Two portal better than single portal model
 - Griewank
 - Same result
 - All models have same base implementation of algorithm

- Discussion
 - Forbidden region in two portal model does not degrade results
 - Probably due to forbidden region being on "slant" of "mountain"
 - Number of tunable parameters increased
 - More difficult tuning
 - More customizable

- Future Work
 - Current RoE modifications time dependent
 - Make dependent on particle group population ratios
 - Current RoE modifications simple
 - Make complex
 - Particles start from staying outside portal to inside
 - Reverse process may be added where suitable
 - Comparisons with other PSO versions

Conclusion

- Original PSO model and drawbacks discussed
- Two implementation of variant proposed
- Proposed model good for multimodal functions
 - Able to avoid premature convergence

References

- Eberhart, R. C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Proc. of the IEEE Cong. on Evol. Comp., vol. 1, pp. 81–86 (2001)
- Poli, R.: An Analysis of Publications on Particle Swarm Optimization Applications. Technical Report CSM-469, Department of Computer Science, University of Essex, Colchester, Essex, UK (2007)
- Shi, Y., Eberhart, R. C.: Empirical Study of Particle Swarm Optimization. In: Proc. of the IEEE Cong. on Evol. Comp. (CEC 1999), vol. 3, pp. 1945-1950 (1999)
- Hu, X.: Particle Swarm Optimization. http://www.swarmintelligence.org/index.php (2006)
- Schutte, J. F.: The Particle Swarm Optimization Algorithm. EGM 6365 Structural Optimization, Fall 2005, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (2005)
- Sedighizadeh, D., Masehian, E.: Particle Swarm Optimization: Methods, Taxonomy and Applications. In: International Journal of Computer Theory and Engineering, vol. 1, pp. 1793-8201 (2009)
- Xie, X.-F., Zhang, W.-J., Yang, Z. L.: Adaptive Particle Swarm Optimization on Indi-vidual Level. In: In Proc. of the 6th Int. Conf. on Signal Processing. vol. 2, pp. 1215-1218 (2002)
- Lam, H. T., Nikolaevna, P. N., Quan, N. T. M.: A Heuristic Particle Swarm Optimization. In: Proc. of the 9th Annual Conf. on Genetic and evol. comp. (2007)
- Shen, X., Li, Y., Yang, J., Yu, L.: A Heuristic Particle Swarm Optimization for Cut-ting Stock Problem Based on Cutting Pattern. In: Lecture Notes in Computer Science, vol. 4490, pp. 1175-1178 (2007)
- Xinchao, Z.: A Perturbed Particle Swarm Algorithm for Numerical Optimization. In: Applied Soft Computing, vol. 10, pp. 119-124 (2010)

References

- Zhang, X., Hu, W., Li, W., Qu, W., Maybank, S.: Multi-Object Tracking via Species Based Particle Swarm Optimization. In: IEEE 12th Int. Conf. on Computer Vision Workshops, ICCV Workshops, pp. 1105-1112 (2009)
- Li, X.: Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization. In: Proc. Genetic Evol. Comput. Conf., pp. 105–116 (2004)
- Sugathan, P. N.: Particle Swarm Optimization & Differential Evolution.
 http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/CEC2007/P N Suganthan.pdf (2007)
- Liang, J. J., Qin, A. K., Suganthan, P. N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. In: IEEE Trans. Evol. Comput., vol. 10, pp. 281–295 (2006)
- Zhao, S. Z., Liang, J. J., Suganthan, P. N., Tasgetiren, M. F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proc. of IEEE Cong. on Evol. Comp., pp.3845-3852 (2008)
- Zhao, S. Z., Suganthana, P. N., Pan, Q.-K., Tasgetiren, M. F.: Dynamic Multi -Swarm Particle Swarm Optimizer with Harmony Search. In: Expert Systems with Applica-tion, vol. 38, pp. 3735-3742 (2011)
- Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. In: IEEE Trans. Evol. Comput., vol. 8, pp. 204–210 (2004)
- Molga, M., Smutnicki, C.: Test Functions for Optimization Needs. http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf (2005)
- Katebi, S.D.: Function Optimization Using GA, ES and EP. http://pasargad.cse.shirazu.ac.ir/~mhaji/ec2/EC_OPT/Project1.htm (2005)