## Contributions of Mineral and Organic Components to Tidal Marsh Accretion

Scott C. Neubauer

Virginia Commonwealth University, Department of Biology



## Marshes can grow by accumulating mineral and/or organic materials



» Feedbacks between hydrology, plant production, and sedimentation allow marshes to grow vertically

- 1) Which is more important organic matter or mineral accumulation?
- 2) What evidence is there for allochthonous C inputs?
- 3) How can we quantify autochthonous vs. allochthonous C inputs?

# The diversity of coastal wetland types is tremendous



- 1) Which is more important organic matter or mineral accumulation?
- 2) What evidence is there for allochthonous C inputs?
- 3) How can we quantify autochthonous vs. allochthonous C inputs?

#### Tidal freshwater marsh accretion

| Location               | n               | Method            |
|------------------------|-----------------|-------------------|
| Abagadasset River, ME  | 1               | <sup>210</sup> Pb |
| Hudson River, NY       | 6               | <sup>210</sup> Pb |
| Delaware River, NJ     | 11 <sup>b</sup> | <sup>210</sup> Pb |
| (20)                   | 10°             | <sup>137</sup> Cs |
|                        | 1               | Pollen            |
|                        | 1               | Sand layer        |
| Otter Point Creek, MD  | 3               | <sup>210</sup> Pb |
| Patuxent River, MD     | 25              | <sup>210</sup> Pb |
|                        | 2               | Pollen            |
| Pamunkey River, VA     | 3 <sup>d</sup>  | <sup>137</sup> Cs |
| Altamaha River, GA     | 4               | <sup>137</sup> Cs |
| Gulf of Mexico, LA     | 7 <sup>d</sup>  | <sup>137</sup> Cs |
| Scheldt River, Belgium | 2               | Macrofossils      |
| All sites              | 76 <sup>e</sup> | Various           |

- » Accretion rates and soil properties from literature
- » Multiple techniques used to determine accretion
- Soil bulk density:
  = 0.040-0.846 g cm<sup>-3</sup>
- Soil organic content:= 5.8-87.9% by weight
- » Similar analyses done for salt marshes (Turner et al. 2000)

#### Vertical accretion and mass accumulation







- » Large range in vertical accretion: (0.11-2.19 cm y<sup>-1</sup>)
- On a mass basis, mineral accumulation>> organic accumulation
- » Carbon accumulation rates are comparable in tidal freshwater and salt marshes



Neubauer. 2008. Est. Coast Shelf Sci.

#### Accretion vs. accumulation



- » Vertical marsh accretion is correlated with both mineral and organic accumulation.
- » Mineral and organic accumulation are correlated with each other
- » Similar relationships for tidal salt marshes (dashed lines)

## Volumetric leverage

| Region            | n  | Slope (cm <sup>3</sup> g <sup>-1</sup> ) |         | Intercept                                   | Adj. $r^2$ |
|-------------------|----|------------------------------------------|---------|---------------------------------------------|------------|
|                   |    | Mineral                                  | Organic | $(\operatorname{cm} \operatorname{y}^{-1})$ |            |
| Northeast U.S.A.  | 18 | n.s.                                     | 18.80** | 0.22                                        | 0.220      |
| Southeast U.S.A.  | 37 | 0.52*                                    | 8.99*** | 0.08                                        | 0.917      |
| Gulf coast U.S.A. | 7  | 4.45**                                   | n.s.    | 0.63                                        | 0.516      |
| All sites         | 64 | (1.18***)                                | 5.50*** | 0.27                                        | 0.618      |

- » Input of organic matter has ~4x leverage of same mass of mineral matter
  - Similar relationship for east coast USA salt marshes (Turner et al. 2000)
- For the average tidal freshwater marsh,
  62% of accretion driven by organic matter accumulation



- 1) Which is more important organic matter or mineral accumulation?
- 2) What evidence is there for allochthonous C inputs?
- 3) How can we quantify autochthonous vs. allochthonous C inputs?

### Evidence for allochthonous C inputs – 1



- » Correlation reflects co-deposition of allochthonous mineral and organic matter
- » Alternately: High autochthonous production promotes mineral deposition.
- » Alternately again: High mineral deposition promotes autochthonous production.
- » Alternately again, again: Any or all of the above are true.

#### Evidence for allochthonous C inputs - 2



- » Suspended material in creek has high %OM (~20-60% phytoplankton).
- » Material deposited on the marsh surface has considerable organic content.
- » Increases in OM with depth reflect plant influences

## Evidence for allochthonous C inputs - 3

#### A tidal freshwater marsh carbon budget



(Sweet Hall marsh, Pamunkey River, Virginia)

- Gross primary production fixes
  1000 g C m<sup>-2</sup> y<sup>-1</sup>
- » Sedimentation delivers ~500 g C m<sup>-2</sup> y<sup>-1</sup> to marsh surface
- Conclusion: Sedimentation is a significant source of allochthonous
   (and N) in marsh elemental budgets
- » Greenhouse gas balance:
  - C sequestration
    = 840 g CO<sub>2</sub>-eq m<sup>-2</sup> y<sup>-1</sup>
  - CH<sub>4</sub> emissions
    = 2400 g CO<sub>2</sub>-eq m<sup>-2</sup> y<sup>-1</sup>

- 1) Which is more important organic matter or mineral accumulation?
- 2) What evidence is there for allochthonous C inputs?
- 3) How can we quantify autochthonous vs. allochthonous C inputs?

## Mudflat vs. vegetated marsh?





» Highest sedimentation (and organic deposition) in unvegetated mudflat.

### Mixing models



- » Assume soil/sediment C = mixture of two distinct sources
- Use mixing model to determine relative contributions of each source
- » Simple and straightforward if end-members are compositionally distinct
  - May work best in Spartina salt marshes

#### But what if it's a C<sub>3</sub>-dominated marsh?



» No isotopic separation between autochthonous and allochthonous C sources ... mixing model won't work!



#### Sorptive preservation of organic matter

- » Organic matter sorption to mineral sediments protects against decay
- » "Monolayer" of 0.5-1.0 mg organic C per m<sup>2</sup> sediment surface area
- » Is sorbed C ~ allochthonous C?





(Columbia River estuary, Washington/Oregon)

(Winyah Bay estuary, South Carolina)

Hedges and Keil, 1995. Mar. Chem.; Goñi et al. 2003. Est. Coast. Shelf Sci.

#### New slide title



Marine plants (seagrass) are generally devoid of lignin (Hedges and Mann)