Hoogi Shi

D.
$$L(y_i|X_i, w) = y_i \log(c(w^T X_i)) + (1-y) \log(c(-w^T X_i))$$

Derive the godient of $L(y_i|X_iw)$ respect to W_j

According to the derivative of sigmoid function

 $C(x) = G(x) (1 - C(x))$

For first assume $Z = G(w^T x_i)$
 $L(y_i|X_iw) = \frac{2}{2} \frac{2z}{2}$ Chain rule

 $L(x) = \frac{1}{2} \frac{2z}{2} \frac{2z}{2}$ Chain rule

 $L(x) = \frac{1}{2} \frac{2z}{2} \frac{2z}{2} \frac{2z}{2}$ Chain rule

 $L(x) = \frac{1}{2} \frac{2z}{2} \frac{2z}$

= (1-y) G(-WTXi) G(-WTXi) · (1-G(-WTXi) · -Xi

= (1-y). (1-6(-w7xi)).-xij

$$\frac{62c \, y_{:} | x_{i} v_{j}|}{6w_{j}} = y \left(1 - 6(w_{j}^{T} x) \cdot x_{ij} + \frac{1}{6w_{j}^{T}} x_{ij}\right) \cdot - x_{ij}$$

$$= y \left(1 - 6(w_{j}^{T} x) \cdot x_{ij} + (1 - y) \cdot 6(w_{j}^{T} x_{i}) \cdot - x_{ij}\right)$$

$$= x_{ij} \left(y - y \ge (w_{j}^{T} x_{i}) + y \ge (w_{j}^{T} x_{i})\right)$$

$$= x_{ij} \left(y - 6(w_{j}^{T} x_{i})\right)$$

3)
$$f(w) = \frac{1}{2} \|W\|_{2}^{2} + C \sum_{i=1}^{\infty} mox (o, i-y_{i}(w^{T}x_{i} + b))$$

$$find \lim_{i \to \infty} f(w)$$

$$for gradient of hongo loss$$

$$if L = 0, \quad \text{then the gradient is } 0$$

$$if L > 0,$$

$$I-y_{i}(w^{T}x_{i} + b) \lim_{i \to \infty} (-x_{i} + y_{i}) \lim_{i \to \infty} (-x_{i} + y_{i})$$

HW₂

Question2

Logistic Regression

eta_value	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	Std
0.001	0.0.0125	0.00625	0.0125	0.0125	0.01875	0.0125	0.00625	0	0.00625	0.03125	0.0118	0.008125
0.01	0.01875	0.0125	0.0125	0.0125	0.01875	0.0125	0.0125	0	0.01252	0.03125	0.01437	0.007421
0.1	0.025	0.00625	0.0125	0.01875	0.01875	0.01875	0	0.0125	0.0375	0.01875	0.016875	0.0097

Which value of η is optimal?

• Best η for logistic regression with eta 0.001: MSE is 0.005

According to training average loss plot, the loss keep going lower until 5000 iteration. If I using Gradient Decent, the loss will be more smoother.

Question4

SVM

С	Learning Rate	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	Std
1	1e-05	0.075	0.025	0.05	0.05	0.075	0.075	0.075	0	0.075	0.15	0.065	0.03741657
10	1e-05	0.075	0.05	0.05	0.05	0.075	0.075	0.075	0	0.025	0.125	0.06	0.03201562
100	1e-05	0.05	0.025	0.05	0.025	0.075	0.05	0	0	0.05	0.125	0.0575	0.03172144
1	0.0001	0.075	0.025	0.05	0.05	0.075	0.075	0.075	0	0.05	0.15	0.0625	0.0375
10	0.0001	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0	0.05	0.125	0.0525	0.02839454
100	0.0001	0.05	0.075	0.05	0.05	0.05	0.05	0.075	0	0.05	0.125	0.0575	0.02968586
1	0.001	0.05	0.025	0.025	0.05	0.1	0.075	0.075	0.05	0.075	0.15	0.0675	0.03544362
10	0.001	0.075	0.025	0.05	0.05	0.075	0.075	0.05	0	0.025	0.125	0.055	0.03316625
100	0.001	0.1	0.075	0.005	0.025	0.05	0.075	0.075	0.025	0.075	0.175	0.0725	0.041

Which value of η and C are optimal?

• Best η for logistic regression with eta 0.00001 and C 100: MSE is 0.02 and zero_one loss is 0.005

According to training average loss plot, the loss keep going lower until 2000 ~ 4000 iteration. Also, the training loss is very noisy. If I using Gradient Decent, the loss will be more smoother.