CS60065: Cryptography and Network Security

Assignment 2

Total: 40 points

Instructor: Monosij Maitra Due: 11.59 pm, Aug 20, 2024

Note: The basic policies are stated in the course page. Using GPT (or similar tools) to solve problems from the assignment is **strictly prohibited**. Use of any other (possibly online) source(s) **must** be clearly stated in the solution. **Any dishonesty, if caught, will yield zero credits for the entire assignment.**

A. [Perfect Secrecy : $4 \times 4 = 16$ points.]

1. Consider an encryption scheme $(\mathbf{M}, \mathbf{C}, \mathbf{K}, \mathbf{E}, \mathbf{D})$ with the usual notations introduced in class. Let \mathbf{M}_R and \mathbf{C}_R be discrete random variables representing the message and ciphertext distributions on \mathbf{M} and \mathbf{C} respectively. Perfect secrecy is achieved when

$$Pr[\mathbf{C}_R = C \mid \mathbf{M}_R = \mathsf{M}_1] = Pr[\mathbf{C}_R = \mathsf{C} \mid \mathbf{M}_R = \mathsf{M}_2], \ \forall \mathsf{M}_1, \mathsf{M}_2 \in \mathbf{M}, \mathsf{C} \in \mathbf{C}.$$

Prove or refute if the following condition also implies perfect secrecy or not.

$$\mathsf{Pr}[\mathbf{M}_R = \mathsf{M}_1 \mid \mathbf{C}_R = \mathsf{C}] = \mathsf{Pr}[\mathbf{M}_R = \mathsf{M}_2 \mid \mathbf{C}_R = \mathsf{C}], \ \ \forall \mathsf{M}_1, \mathsf{M}_2 \in \mathbf{M}, \mathsf{C} \in \mathbf{C}.$$

- 2. Prove that in a perfectly secure encryption scheme $(\mathbf{M}, \mathbf{C}, \mathbf{K}, \mathbf{E}, \mathbf{D})$ with $|\mathbf{K}| = |\mathbf{C}| = |\mathbf{M}|$, every ciphertext is equally probable.
- 3. Recall the Affine cipher defined on \mathbb{Z}_{26} . Prove that this encryption scheme achieves perfect secrecy when the keys are sampled uniformly at random.
- 4. Recall the one-time pad encryption scheme with $M, K, C = \{0, 1\}^n$ $(n \in \mathbb{N})$ we discussed in class. Using the key $K = 0^n$ we have $E_K(M) = K \oplus M = M$, i.e., the message is sent in the clear! One suggestion is to modify this scheme to encrypt only with nonzero keys $K \neq 0^n$ (i.e., to have the key generation algorithm choose a uniform random key $K \neq 0^n$ from the set $\{0, 1\}^n$. Prove or disprove formally if this modified scheme is perfectly secure or not.

B. [Entropy: $4 + (4 \times 2) + (4 \times 2) + (3 + 1) = 24$ points.]

Let $H(\mathbf{Z})$ denotes the Shannon entropy of a random variable \mathbf{Z} defined on some set Z.

- 1. Let $(\mathbf{M}, \mathbf{C}, \mathbf{K}, \mathbf{E}, \mathbf{D})$ be any secret-key encryption scheme with \mathbf{M}_R , \mathbf{C}_R and \mathbf{K}_R as the discrete random variables associated to \mathbf{M} , \mathbf{C} and \mathbf{K} respectively. Prove that $H(\mathbf{K}_R|\mathbf{C}_R) \geq H(\mathbf{M}_R|\mathbf{C}_R)$.
- 2. Compute $H(\mathbf{K}_R|\mathbf{C}_R)$ and $H(\mathbf{K}_R|\mathbf{M}_R,\mathbf{C}_R)$ for the Affine cipher over \mathbb{Z}_{26} assuming messages and keys used are equiprobable.
- 3. Let **D** and **R** be discrete random variables defined on finite sets D and R respectively. Define a function $f: D \to R$. Compute the relationship between $H(\mathbf{D})$ and $H(\mathbf{R})$ if:
 - $f(x) = 7^x$ for all $x \in D$.
 - $f(x) = \sin x$ for all $x \in D$.
- 4. Recall the definition of min-entropy we discussed in class: $H_{\infty}(\mathbf{Z}) = -\log_2 \left(\max_{z \in Z} \Pr[\mathbf{Z} = z] \right)$. Show that $0 \le H_{\infty}(\mathbf{Z}) \le H(\mathbf{Z})$. When is $H_{\infty}(\mathbf{Z}) = H(\mathbf{Z})$?

1