

İÇİNDEKİLER

- Bölüm 1 **GİRİŞ**
- Bölüm 2 MATERYAL VE YÖNTEM
- Bölüm 3 BULGULAR VE TARTIŞMA
- Bölüm 4 **SONUÇLAR**

GIRIŞ

Yük Dengeleme Nedir?

Yük dengeleme, ağ veya uygulama trafiğini birden fazla sunucuya dağıtma işlemidir. Bu, tek bir sunucunun çok fazla yük altında ezilmemesini sağlar, bu da performans düşüşüne veya arızaya yol açabilir. Yük dengeleme, yükü yayarak uygulamaların, web sitelerinin ve veritabanlarının yanıt verebilirliğini ve kullanılabilirliğini artırır.

GIRIŞ

Algoritmaları Kıyaslarken Gözetilen Hedefler

- Performans Değerlendirmesi
- Ölçeklenebilirlik Değerlendirmesi
- Güvenilirlik ve Hata Toleransı
- Kaynak Tüketimi
- Farklı Ortamlar için Uygunluk

ÇALIŞMADA HEDEFLENENLER

En İyi Uygulamaların Belirlenmesi

Farklı algoritmalar kıyaslanarak optimal stratejinin belirlenmesi amaçlandı.

Bilinçli Karar Alma

Sistem mimarlarının ve ağ mühendislerinin bir yük dengeleme çözümü seçerken bilinçli kararlar almalarına yardımcı olmak

Literatüre Katkı Sağlamak

Farklı algoritmalar hakkında ayrıntılı analiz ve karşılaştırmalı veriler sağlayarak yük dengeleme konusundaki mevcut bilgi birikimine katkıda bulunmak

ARAŞTIRMANIN ODAKLANDIĞI SORUNLAR

ARAŞTIRMANIN ODAKLANDIĞI SORUNLAR

Verimli Yük Dağıtımı için Artan Talep

Web trafiği ve veri işleme hacmi arttıkça yanıt süresi artar.

Çeşitli Yük Dengeleme Algoritmaları

Farklı algoritmalar belirli koşullar altında iyi performans gösterirken diğer koşullar altında kötü performans gösterebilir. Bu değişkenlik, tutarlı uygulama performansının sürdürülmesini zorlaştırabilir.

Kapsamlı Çalışmaların Eksikliği

Yük dengeleme algoritmaları üzerine kapsamlı araştırmalar olsa da, bu algoritmaların performansını çok çeşitli metrikler ve koşullarda karşılaştıran kapsamlı çalışmalar bulunmamaktadır.

Operasyonel Maliyetler

Verimsiz yük dengeleme, daha fazla sunucu ihtiyacı ve artan enerji tüketimi nedeniyle daha yüksek işletme maliyetlerine yol açabilir.

LİTERATÜR TARAMASI

MEVCUT ÇALIŞMALAR

- Malek Al-Zewairi ve arkadaşları gerçekleştirdikleri çalışmada, Yazılım Tanımlı Ağ (SDN) üzerinde IP ve MAC spoofing saldırılarını tespit etmeyi ve önlemeyi amaçlayan Open vSwitch Denetleyicisine dayalı Yazılım Tanımlı Güvenlik için deneysel bir denetleyici önermişlerdir. Yazarlar, çalışmada sistem yönetimi ve ağ yönetimini kıyaslayarak; sistem yönetiminde ölçek büyüdükçe maliyetin azaldığını fakat ağ yönetiminde bunun tersine yapının karmaşıklaştığını ve maliyetin arttığını belirtmişlerdir. Bu sebepten ağ yönetiminde geleneksel modelin yerine SDN kullanılarak bu gibi dezavantajlardan kaçınılabileceğini öngörmektedirler.
- Jagdish Chandra Patni ve arkadaşları bu çalışmada her türlü grid yapısını idare edebilen dağıtık bir yük dengeleme algoritması önermişlerdir. Önerilen algoritma iki adıma ayrılmıştır: İşlerin yürütülmesi için geçen süreyi azaltmak veya bir grid mimarisinde işlerin bir hesaplama düğümünden diğerine aktarılması arasındaki yanıt süresini ve iletişim maliyetini azaltmak diyebiliriz. Önerilen algoritmada, iletişim maliyetini azaltmak için yükün öncelikle yerel düzeyde dengeleneceği gösterilmiştir

KIYASLANAN ALGORITMALAR

Round Robin Ağırlıklı Round Robin

Least Connections

Basit ve sıkça kullanılır

Eşit trafik dağıtımı

Kolay kurulum

Daha efektif yük dağıtımı

Eşit olmayan trafik dağıtımı

Yüksek ağırlıklı sunuculardan daha fazla trafik geçer

Dinamik yük dağıtımı

Yüksek uyarlanabilirlik

Etkin kaynak kullanımı

ROUND ROBIN

AĞIRLIKLI ROUND ROBİN

EN AZ BAĞLANTI ALGORİTMASI

METODOLOJi

 Karşılaştırına kriterleri: Yük dengeleme algoritmalarını karşılaştırırken temel kriterler arasında performans, ölçeklenebilirlik, güvenilirlik, kaynak kullanımı ve ek yük yer alır. Performans ve ölçeklenebilirlik artan yükler altında hız ve verimliliği değerlendirirken, güvenilirlik arızalar sırasında hizmet sürekliliğini inceler. Kaynak kullanımı eşit yük dağılımını sağlar ve genel giderler uygulamanın hesaplama maliyetlerini değerlendirir.

ALGORITMALARIN KIYASLANMASI

 Yük dengeleme algoritmalarını karşılaştırırken temel kriterler arasında performans, ölçeklenebilirlik, güvenilirlik, kaynak kullanımı ve ek yük yer alır. Performans ve ölçeklenebilirlik artan yükler altında hız ve verimliliği değerlendirirken, güvenilirlik arızalar sırasında hizmet sürekliliğini inceler. Kaynak kullanımı eşit yük dağılımını sağlar ve genel giderler uygulamanın hesaplama maliyetlerini değerlendirir.

KURULAN TEST ORTAMI

• https://github.com/aesaganda/simple_lb

• Yukarıdaki adresten PoC için yazdığım kodlara ulaşabilirsiniz.

KURULAN TEST ORTAMI – REVERSE PROXY

KURULAN TEST ORTAMI - OPNSENSE

ÖZET

Çalışmada yük dengeleme performansı, Proxmox hypervisor üzerinde çalışan OPNsense Firewall ve HAproxy Loadbalancer ile test edilmiştir. Host web sunucuları Docker platformunda barındırılmıştır. Altyapıda CAT6 Ethernet kablolar ve 1 Gbit hız destekleyen 5 portlu PoE switch kullanılmıştır. Web sunucularının internete erişimi Hurricane Electric IPv6 Tunnelbroker ile sağlanmıştır. Donanım hızlandırma, UDP bağlantısını olumsuz etkilediği için devre dışı bırakılmıştır. HAproxy, sunduğu opsiyonlar nedeniyle yük dengeleme için tercih edilmiştir. Apache Benchmark ile stres testleri yapılmış, veriler Gnuplot ile grafikleştirilmiştir. Sistem, L7 HTTP katmanında yük dengeleme performansı odaklı test edilmiştir.

