EECS 489 Discussion 7

Announcement

- Assignment 3 is due in ~2 weeks
- (Online) Autograder coming soon
- Midterm grades (almost) out

Plans

- UDP basics
- UDP socket program
- Problem set

UDP: Basics

User Datagram Protocol: best-effort delivery of message

- Connectionless: no handshaking before data transfer -> support multicast
- Unreliable: no reliability guarantee -> fast
- Stateless: no connection states such as send/recv buffering, congestion-control parameters, and sequence numbers. -> scalable

UDP: Example Flow

UDP: socket()

Create a UDP socket

```
int socket(int domain, int type, int protocol);
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
```

UDP: sendto()

Send data to a socket.

UDP: recvfrom()

Recy data from a socket.

UDP: Example Flow

UDP: A quick demo...

QI forwarding table

Consider a datagram network using 32-bit host addresses. Suppose a router has 4 links, numbered 0 through 3, and packets are to be forwarded to the link interfaces as follows:

Destination Address Range	Link Interface
11100000 00000000 00000000 00000000 through	0
11100000 00111111 11111111 11111111	
11100000 01000000 00000000 00000000 through	1
11100000 01000000 11111111 11111111	
11100000 01000001 00000000 00000000 through	2
11100001 01111111 11111111 11111111	
otherwise	3

Provide a forwarding table that have 5 entries, uses longest prefix matching, and forwards packets to the correct link interfaces.

QI forwarding table

Destination Address Range	Link Interface
11100000 00 (/10)	0
11100000 01000000 (/16)	1
11100000 (/8)	2
11100001 0 (/9)	2
otherwise	3

Q2 forwarding table

Consider a datagram network using 8-bit host addresses. Suppose a router uses longest prefix matching and has the following table:

Prefix Match	Link Interface
00	0
010	1
011	2
10	2
11	3

Complete the forwarding table by providing the correct address range for each link interface.

Q2 forwarding table

Prefix Match	Link Interface	Range
00	0	0000 0000 to 0011 1111 (63)
010	1	0100 0000 (64) to 0101 1111 (95)
011	2	0110 0000 (96) to 0111 1111 (127)
10	2	1000 0000 (128) to 1011 1111 (191)
11	3	1100 0000 (192) to 1111 1111 (255)