

DISTANCE LEARNING PROGRAMME

(Academic Session : 2024 - 2025)

JEE (Main)
UNIT TEST # 08

10-11-2024

JEE(Main): LEADER TEST SERIES / JOINT PACKAGE COURSE

ANSWER KEY

PART-1: PHYSICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	С	Α	С	D	В	С	D	А	D	Α
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	Α	В	D	В	С	В	С	В	D	С
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	1	3	2	10	4	90	2	887	200	16

PART-2: CHEMISTRY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	D	D	D	В	В	С	Α	С	D	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	D	В	А	D	В	В	В	С	С	D
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	2	4	3	5	9	4	34	4	1	9

PART-3: MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	В	D	С	В	С	А	Α	А	А	В
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	В	D	В	А	D	А	С	А	В	А
SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	2	39	8	26	45	800	62	5	14	0

(HINT - SHEET)

PART-1: PHYSICS

SECTION-I

1. Ans (C)

$$P_{av} = V_{rms} i_{rms} \cos \phi$$

2. Ans (A)

When 100 V D.C. apply

$$I = \frac{V}{R_{coil}} = \frac{100}{R_{coil}} = 1 \ ; \ R_{coil} = 100\Omega$$

When 100 V A.C. of 50 Hz apply then $I = \frac{1}{2}A$

$$z = \frac{100}{\frac{1}{2}} = 200$$
; $z = \sqrt{R_{coil}^2 + \omega^2 L^2}$

$$200 = \sqrt{(100)^2 + \omega^2 L^2} \; ; \; L = \frac{\sqrt{3}}{\pi} H$$

3. Ans (C)

$$\tan \phi = \frac{X_L}{R}$$

5. Ans (B)

$$V^2 = V_R^2 + V_C^2$$

6. Ans (C)

$$f = \frac{1}{2\pi\sqrt{LC}}, f' = \frac{1}{2\pi\sqrt{1.25L \times 0.8C}}$$

7. Ans (D)

$$\eta = \frac{V_s i_s}{V_p i_p} \times 100 = \frac{100 \times 100}{220 \times 0.5}$$

8. Ans (A)

Resonant frequency,
$$\omega_R = \frac{1}{\sqrt{(LC)}}$$

$$= \frac{1}{\sqrt{(10 \times 10^{-3} \text{H}) \times (1 \times 10^{-6} \text{F})}} = 10^4 \text{ per sec}$$

The frequency 10% lower than this is

$$w = 104 - 104 \times \frac{10}{100} = 9 \times 10^3 \text{ per sec.}$$

At this frequency, we have

$$X_L = \omega L = 9 \times 10^3 \times (10 \times 10^{-3}) = 90 \text{ ohm}$$

$$X_{C} = \frac{1}{\omega c} = 111.11\Omega,$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = 21.32\Omega$$

$$i_0 = \frac{V_0}{Z} = 0.704A$$
, $\cos \phi = \frac{R}{Z} = 0.141$

$$P_{av} = \frac{V_0 i_0}{2} \cos \phi$$

$$= \frac{1}{2} \times 15 \times 0.704 \times 0.141 = 0.744 \text{ W}$$

9. Ans (D)

$$X_L = X_C$$

10. Ans (A)

$$ms\Delta\theta = i^2Rt, I = \frac{V}{Z}$$

$$2 \times 10 = i^2 \times 100 \times t$$

11. Ans (A)

$$U = \frac{1}{2} \times F \times I = \frac{1}{2} \times 200 \times 10^{-3} = 0.1 J$$

$$Y = \frac{8g \times 2.5}{\left(\frac{15.6 \times 10^{-3}}{7800 \times 2.5}\right) 1.25 \times 10^{-3}}$$

$$Y = \frac{8 \times 10 \times 2.5 \times 7800 \times 2.5}{15.6 \times 10^{-6} \times 1.25}$$

$$Y = 4 \times 10^{10} \times 5$$

13. Ans (D)

Let the length of the pendulum at $0^{\circ}C$ and $t^{\circ}C$ is l_0 and l_t respectively.

The time period of oscillations of the pendulum

is given by

$$T = 2\pi\sqrt{\frac{1}{g}} \text{ i.e., } T \propto \sqrt{1}$$

$$\frac{T_t}{T_0} = \sqrt{\frac{l_t}{l_0}} = \sqrt{\frac{l_0(1+\alpha t)}{l_0}} = \sqrt{1+\alpha t}$$

$$= (1+\alpha t)^{1/2} = 1 + \frac{1}{2}\alpha t$$

$$\frac{T_t}{T_0} - 1 = \frac{1}{2}\alpha t$$

$$\frac{T_t - T_0}{T_0} = \frac{1}{2}\alpha t$$

This is the time loss per second.

Thus, time loss per day

$$=\frac{1}{2} \alpha t \times 24 \times 60 \times 60 = \frac{1}{2} \alpha t \times 86400 s$$

14. Ans (B)

$$VT^2 = constant$$

$$\frac{\mathrm{d}}{\mathrm{dT}} \left(\mathrm{V} \, \mathrm{T}^{\, 2} \right) = 0$$

$$V2T + T^2 \frac{dV}{dT} = 0$$

$$\gamma = \frac{dV}{V dT} = -\frac{2}{T}$$

15. Ans (C)

Heat gained by ice = heat lost by copper

$$m \times 3.5 \times 10^5 = 2 \times 400 \times (500 - 0)$$

where, m is the mass of ice melts

Thus,
$$m = \frac{2 \times 400 \times 500}{3.5 \times 10^5} = \frac{8}{7} \text{kg}$$

16. Ans (B)

$$1 \times 540 + 1 \times 1 \times 100 = 640$$
 cal

$$640 \text{ cal} = \text{m} \times 80$$

$$m = 8 gm$$

17. Ans (C)

On heating the system, thermal expansion occurs i.e. radius, diameter and gap all increases.

18. Ans (B)

$$H = H_1 + H_2$$

$$= \frac{200 \times 10^{-4}}{1} (60 - 20) + \frac{390 \times 10^{-4}}{1} (60 - 20)$$

$$= 0.8 + 1.56 = 2.36 \text{ J}$$

19. Ans (D)

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{K_A}{K_B} = \frac{A_B}{A_A}$$

$$= \left(\frac{r_B}{r_A}\right)^2 = \frac{1}{4} \Rightarrow K_A = \frac{K_B}{4} \Rightarrow K_A = \frac{K_B}{4}$$

20. Ans (C)

$$K = \frac{2K_1K_2}{K_1 + K_2} = \frac{2.K.2K}{K + 2K} = \frac{4}{3}K$$

PART-1: PHYSICS

SECTION-II

1. Ans (1)

$$L \longrightarrow \text{Removed, } \tan \frac{\pi}{3} = \frac{X_C}{R}$$

$$X_C = R\sqrt{3}$$

$$C \longrightarrow \text{Removed, } \tan \frac{\pi}{3} = \frac{X_L}{R}$$

$$X_L = R\sqrt{3}\,$$

$$\therefore X_L = X_C$$

$$\therefore Z = R$$

$$\therefore \cos \phi = \frac{R}{Z} = 1$$

2. Ans (3)

At angular frequency $\boldsymbol{\omega},$ the current in RC circuit is given by

$$I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{\omega c}\right)^2}} \dots (i)$$

Also
$$\frac{I_{rms}}{2} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{\frac{\omega}{3}c}\right)^2}} = \frac{V_{rms}}{\sqrt{R^2 + \frac{9}{\omega^2c^2}}} \dots (ii)$$

from (i) and (ii)

$$\frac{x_c}{R} = \sqrt{\frac{3}{5}}$$

3. Ans (2)

$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$
$$= \sqrt{V_R^2 + (3V_R - 2V_R)^2} = \sqrt{2}V_R$$

4. Ans (10)

$$V_L = V_C = V_R = 10 \Rightarrow X_L = X_C = R$$

$$V_{\text{source}} = 10V$$

$$V_{\tau} = i X_{\tau}$$

$5. \quad Ans (4)$

$$Z = \sqrt{R^2 + X_C^2}$$

6. Ans (90)

Bulk modulous

$$K = \frac{P}{\Delta V/V}$$
 Here $\frac{\Delta V}{V} \times 100 = 0.1$
 $\frac{9 \times 10^8}{1} = \frac{2gh \times 100}{0.1}$ $\rho = 1000 \text{ kg/m}^3$

$$\Rightarrow$$
 h = 90 m g = 10 m/s²

7. Ans (2)

$$\gamma = \frac{\Delta V}{V\,t}$$

Given
$$\frac{\Delta V}{V} = 0.12\%$$
 or 0.0012

$$\gamma = \frac{0.0012}{20} = 6 \times 10^{-5} / \text{C}$$

Since
$$\alpha = \frac{\gamma}{3} = 2 \times 10^{-5} / ^{\circ}C$$

8. Ans (887)

$$\frac{E}{t} = s AT^4$$
= $6 \times 10^{-8} \times 1.6 \times 310^4$
= $9.6 \times 10^{-8} = 887$

9. Ans (200)

$$\frac{T_2}{T_1} = \frac{\lambda m_1}{\lambda m_2} = \frac{1.75}{14.35} = T_2 = \frac{1.75}{14.35} \times 1640 = 200K$$

10. Ans (16)

Area under given curve represents emissive power and emissive power $\propto T^4 \Rightarrow A \propto T^4$

$$\Rightarrow \frac{A_2}{A_1} = \frac{T_2^4}{T_1^4} = \frac{(273 + 327)^4}{(273 + 27)^4} = \left(\frac{600}{300}\right)^4 = \frac{16}{1}$$

PART-2: CHEMISTRY

SECTION-I

1. Ans (D)

Cl ion gives positive chromyl chloride test

$$Fe^{+3} + K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3$$

Prussian blue

2. Ans (D)

$$Ni^{+2} + 2DMG \rightarrow \left[Ni(DMG)_2\right]$$
Rosy red

3. Ans (D)

(A)
$$5SO_3^{-2} + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{+2} + 5SO_4^{-2} + 3H_2O$$

(B)
$$2MnO_4^- + 5NO_2^- + 6H^+ \rightarrow 2Mn^{+2} + 5NO_3^- + 3H_2O_3^-$$

(C)
$$2MnO_4^- + H_2S + 6H^+ \rightarrow 2Mn^{+2}, 4Sd + 8H_2O$$

4. Ans (B)

5. Ans (B)

$$I^- + H_2SO_4(Conc) \rightarrow I_2$$
 (Violet vapours)

6. Ans (C)

$$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$$

$$(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$$

Black lead

sulphide

7. Ans (A)

As, Sb, Sn are present in group II (B). Their sulphides are soluble in YAS.

8. Ans (C)

Brown ring test is performed for the qualitative detection of

9. Ans (D)

$$\frac{\Delta R_1}{\Delta R_2} = \frac{(r_4 - r_3)_{4^{2^+}}}{(r_4 - r_3)_{He^+}} = \frac{\frac{4^2}{3} - \frac{3}{3}^2}{\frac{4}{2} - \frac{3}{2}^2} = \frac{7/3}{7/2} = \frac{2}{3}$$

10. Ans (C)

So, on x-axis e density maximum

11. Ans (D)

$$\left(\frac{e}{m}\right)_{Li^{+2}} = \frac{2}{7} = 0.28$$

$$\left(\frac{e}{m}\right)_{He^{+2}} = \frac{2}{4} = 0.50$$

$$\left(\frac{\mathrm{e}}{\mathrm{m}}\right)_{\mathrm{H}^+} = \frac{1}{1} = 1.00$$

So
$$Li^{+2} < He^{+2} < H^{+}$$

12. Ans (B)

$$r_1 \, \alpha \, \frac{n_1^2}{z_1} \qquad r_2 \, \alpha \, \frac{n_2^2}{z_2}$$

$$\mathbf{z}_1 = \mathbf{z}_2 = 1$$

$$\frac{r_1}{r_2} = \left(\frac{n_1}{n_2}\right) = \left(\frac{1}{5}\right)^2 = \frac{1}{25}$$

$$\frac{\mathbf{r}}{\mathbf{r}_2} = \frac{1}{25}$$

$$r_2 = 25 r$$

13. Ans (A)

$$V_1 = 200 \qquad \lambda = \frac{h}{\sqrt{2m \text{ eV}}}$$

$$V_2 = 50 \qquad \lambda \propto \frac{1}{\sqrt{V}}$$

If we are concern about e- then mass and

charge (e) are same

so
$$\lambda \propto \frac{1}{\sqrt{V}}$$
 \Rightarrow $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{50}{200}} = \frac{1}{2} = 1:2$

14. Ans (D)

$$n = 3$$
, max^m. No. of $e^- = 2n^2 = 2 \times 3^2 = 18$

9 clockwise, 9 anticlockwise

15. Ans (B)

$$x = \frac{n_1^2}{R_2^2} = \frac{1}{R},$$

for Balmer $n_1 = 2$, $n_2 = 3$

$$\lambda = \frac{1}{R} \left[\frac{4 \times 9}{9 - 4} \right] = \frac{36}{5}$$

16. Ans (B)

$$\Psi_{n} \ell_{m} = \Psi_{310} \quad \ell = 1 \\
m = 0$$

$$3p_{z}$$

17. Ans (B)

$$C1(17) = 1s^2 2s^2 2p^6 3s^2 3p^5$$

$$n = 3$$
, $\ell = 1$, $m = +1$, 0 , -1 , $s = -1/2$ or $+1/2$

18. Ans (C)

 $\ell = 3$, for f orbital

19. Ans (C)

$$\Delta E = E_3 - E_2 = 47.2$$

$$\Delta E = E_3 - E_2 = 1.89$$
 (For H atom)

$$=47.2 = Z^2 (1.89)$$

$$Z^2 = \frac{47.2}{1.89} \Rightarrow Z = 5$$

20. Ans (D)

Order of frequency & energy Lyman > Balmer >

Paschen >

PART-2 : CHEMISTRY

SECTION-II

1. Ans (2)

Ag+ and Pb²⁺ forms white ppt of AgCl and PbCl₂

2. Ans (4)

 $Cl_2 \rightarrow Greenish yellow$

 $NO_2 \rightarrow Brown gas$

 $CdS \rightarrow Yellow$

 $Cu_2[Fe(CN)_6] \rightarrow Chocolate brown$

3. Ans (3)

 $NH_4^+ \rightarrow Zero group$

 $Al^{+3} \rightarrow III$ -group

 Zn^{+2} , Mn^{+2} , $Ni^{+2} \rightarrow IV$ -group

 $Ca^{+2} \rightarrow V$ -group

 $Pb^{+2} \rightarrow I$ -group

4. Ans (5)

$$Pb(NO_3)_2 \rightarrow PbO + NO_2 + O_2$$

$$Fe(NO_3)_2 \longrightarrow Fe_2O_3 + NO_2 + O_2$$

$$Ag(NO_3)_2 \longrightarrow Ag + NO_2 + O_2$$

$$HNO_2 \rightarrow H_2O + NO_2 + O_2$$

$$LiNO_3 \rightarrow H_2O + NO_2 + O_2$$

$$NaNO_3 \rightarrow NaNO_2 + O_2$$

5. Ans (9)

$$6 \longrightarrow 1 \Rightarrow 5 + 4 + 3 + 2 + 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$
U.V. Visible I.R.

$$5 + 4 = 9$$

6. Ans (4)

$$v_n = \frac{v_1}{n}$$

$$v_1 = v$$

$$v_4 = \frac{v}{4} = \frac{v}{x} \Rightarrow x = 4$$

7. Ans (34)

Outormost/ultimate shell = nth shell

Penultimate orbit is \Rightarrow $(n-1)^{th}$ shell

Pre penultimate orbit is $\Rightarrow (n-2)^{th}$ shell

Kernel = Remaining part after removing outermost

shell electrons

$$A1 \Rightarrow 1s_1^2 2s_2^2 2p_1^6 3s_2^3 p_1 \Rightarrow n = 3, (n-1) = 2 \Rightarrow 8e^- = x$$

$$K \Rightarrow 1s^22s^22p^63s^23p_1^64s^1 \Rightarrow n = 4 \Rightarrow 18e = y$$

$$Zn \Rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} \Rightarrow 8e = z$$

$$n = 4^{th}$$
, $(n-1) = 3^{rd}$, $(n-2) = 2^{nd}$ shell

$$8 + 18 + 8 = 34$$

8. Ans (4)

$$\lambda = \frac{h}{mv}$$

$$\Rightarrow \lambda = 4.0 \times 10^{-33} \text{ cm}$$

$$\therefore x = 4$$

9. Ans (1)

$$\Delta v = 90 \times \frac{5}{100} = 4.5 \text{ m/s}$$

$$\Delta v. \ \Delta x = \frac{h}{4\pi m}$$

$$\Delta x = \frac{h}{4\pi m. \, \Delta v}$$

$$= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 0.01 \times 4.5} = 1.17 \times 10^{-33}$$

10. Ans (9)

K.E. =
$$\frac{hc}{\lambda} = \phi = \frac{1240}{248} - 3.0eV = 2eV$$

$$\lambda_{e} = \frac{h}{\sqrt{2m\left(KE\right)}} = 9nm$$

PART-3: MATHEMATICS

SECTION-I

1. Ans (B)

Let T_{1+1} is max.

$$T_{1+1} = \frac{\frac{100}{c_r}}{\frac{(r+1)(r+2)(r+3)(r+4)}{104c_{r+4}}}$$

$$= \frac{100}{101 \cdot 102 \cdot 103 \cdot 104} \text{ is max, when}$$

$$r+4=52$$

$$r = 48$$

so term is 49th

2. Ans (D)

from rational term

$$r = 0,11,22,33,44...$$

$$r = 4,11,18,25...$$

common terms \Rightarrow 11,88,.....

$$11 + (n-1)77 \leqslant 711$$

$$n - 1 \le 9.09$$

$$n \le 10.09 \implies 10 \text{ terms}$$

3. Ans (C)

Put
$$x = i$$
 $\Rightarrow (1 + i + i^2)^5$

$$= a_0 + a_1 i - a_2 - a_3 i + a_4 + a_5 i....$$

So
$$i^5 = (a_0 - a_2 + a_4....) + i(a_1 - a_3 + a_5....)$$

$$a_0 - a_2 + a_4 \dots = 0$$
 and $a_1 - a_3 + a_5 \dots = 1$

$$(a_0 - a_2 + a_4...)^2 + (a_1 - a_3 + a_5...)^2 = 1$$

4. Ans (B)

Coefficient of

$$x^5 = {}^5C_5 \cdot 5^5 + {}^6C_5 \cdot 5^5 + \dots + {}^{19}C_5 \cdot 5^5$$

$$\Rightarrow 5^5 (^5C_5 + ^6C_5 + \dots + ^{19}C_5)$$

$$\Rightarrow$$
 ²⁰C₆.5⁵

6. Ans (A)

Here 5^{55...5} (23 times) is odd natural number

so
$$x = 5^{2m+1} = 5(25)^m = 5 (1+24)^m$$
 so remainder is 5

8. Ans (A)

$$1\times15\times15\times15=3375$$

9. Ans (A)

Vowels = A, A, I, U

Case 1:
$$\boxed{A}$$
 = $\boxed{\frac{6}{2}}$

Case 2:
$$\boxed{A}$$
 - - - $\boxed{I/U}$ = $2 \times \frac{\boxed{6}}{\boxed{2}}$

Case 3:
$$\boxed{\frac{I/U}{2}}$$
 - - - - \boxed{A} = $2 \times \frac{6}{2}$

Case 4 :
$$\frac{I/U}{2} - - - \frac{I \text{ or } U}{1} = 2 \times \frac{6}{|2||2||2|}$$

$$\Rightarrow$$
 360 + 720 + 720 + 360 = 2160

12. Ans (D)

$$\underbrace{\frac{4}{4} \underbrace{\frac{3}{3}}_{\text{No. of ways}} \underbrace{\frac{3}{10 \text{ cases}}}_{\text{10 cases}} \longrightarrow 10 \times 4 \times 4 \times 3 \times 3$$

13. Ans (B)

$$xyzw = 360 = 2^3.3^2.5^1$$

$$^{3+4-1}C_{4-1} \times ^{2+4-1}C_{4-1} \times ^{1+4-1}C_{4-1}$$

$${}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{3} = 800$$

So No. of Int. soln = $16 \times 800 = 12800$

14. Ans (A)

$$\hat{a} + \hat{b} = \left(\frac{7i - 4j - 4k}{9}\right) + \left(\frac{-2\hat{i} - \hat{j} + 2\hat{k}}{3}\right)$$

$$= \frac{(7i - 4j - 4k) + (-6i - 3j + 6k)}{9} = \frac{i - 7j + 2k}{9}$$

$$\therefore \text{ Vector mag.} = 3\sqrt{6} \times \frac{3\sqrt{6}(i-7j+2k)}{\sqrt{54}}$$

18. Ans (A)

The vector $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$ has magnitude

double that of $\hat{i} + x\hat{j} + 3\hat{k}\hat{i} + x\hat{j} + 3\hat{k}$. Thus,

$$\left| 4\hat{i} + (4x - 2)\hat{j} + 2\hat{k} \right| = 2|\hat{i} + x\hat{j} + 3\hat{k} \right|$$

$$\Rightarrow$$
 16 + $(4x - 2)^2$ + 4 = 4 $(1 + x^2 + 9)$

$$\Rightarrow 12x^2 - 16x - 16 = 0$$

$$\Rightarrow 3x^2 - 4x - 4 = 0$$

$$\Rightarrow (3x+2)(x-2) = 0$$

$$\Rightarrow x = -\frac{2}{3}, 2$$

$$\Rightarrow x \in \left\{-\frac{2}{3}, 2\right\}$$

19. Ans (B)

$$|a-b|^2 + |b-c|^2 + |c-a|^2$$

$$=2(a^2+b^2+c^2)-2(a.b+b.c+c.a)$$

$$= 2 \times 3 - 2(a.b + b.c + c.a)$$

$$=6 - \{(a+b+c)^2 - a^2 - b^2 - c^2\} = 9 - |a+b+c|^2 < 9.$$

20. Ans (A)

Point P lies on $x^2 + 3y^2 = 3$...(i)

Now from the diagram, according to the given

conditions,
$$AP = AB$$

or
$$(x + \sqrt{3})^2 + (y - 0)^2 = 4$$

or
$$(x + \sqrt{3})^2 + y^2 = 4$$
 ...(ii)

Solving (i) and (ii), we get x = 0 and $y = \pm 1$

Hence, point P has position vector $\pm \hat{j}$

PART-3: MATHEMATICS SECTION-II

2. Ans (39)

$$T_{13} = {}^{n}C_{12}(x^{2})^{n-12} \left(\frac{2}{x}\right)^{12} \longrightarrow x^{0}$$

power of $x \Rightarrow 2x - 36 = 0 \Rightarrow \boxed{n = 18}$

M-I: So sum of division of 18

$$= 1 + 2 + 3 + 6 + 9 + 18 = 39$$

M-II:
$$18 = 2^1 \times 3^2$$

Sum of divisions of 18

$$=(2^0+2^1)(3^0+3^1+3^2)=39$$

3. Ans (8)

$$2^{35}.3^{16}$$

$$=8(4\times3)^{16}$$

$$= 8 (11 + 1)^{16} = 8$$

6. Ans (800)

$$^{18}C_3 - ^{16}C_1 = 816 - 16 = 800$$

7. Ans (62)

$$({}^{5}C_{2} \times 1) + ({}^{4}C_{2} \times 2) + ({}^{5}C_{1} \times {}^{4}C_{1} \times 2)$$

$$10 + 12 + 40 = 62$$

8. Ans (5)

Let \vec{a} , \vec{b} , \vec{c} , \vec{d} are (1, 1, 1), (-1, 1, 1)

(1, -1, 1), (-1, -1, 1) and rest of the vector are $-\vec{a}, -\vec{b}, -\vec{c}, -\vec{d}$

Here 3 vectors will be coplanar if two will be collinear (anti parallel)

Number of ways of selecting two anti parallel pair = 4

Number of ways of selecting third vector = 6

Total number of ways = 24

Total number of ways of non coplaner selection

$$= {}^{8}\mathrm{C}_{3} - 24 = 32 = 25$$

9. Ans (14)

$$\left| \frac{(\overline{x} \times \overline{y}) \cdot \overline{z}}{|\overline{z}|} \right| = \frac{\begin{vmatrix} 3 & -6 & 1 \\ 1 & 4 & -3 \\ 3 & -4 & -12 \end{vmatrix}}{\sqrt{9 + 16 + 144}} = 14$$

10. Ans (0)

$$(b-a)$$
. $\left(c-\frac{a+b}{2}\right)$

$$= b.c - b.\left(\frac{a+b}{2}\right) - a.c + \frac{a}{2}(a+b)$$

and
$$|a - c| = |b - c| \Rightarrow |a - c|^2 = |b - c|^2$$

$$\therefore$$
 a + b = 2c

Therefore,
$$(b-a)$$
. $\left(c-\frac{a+b}{2}\right)=0$