

A Software approach to

Mathematical Programming

Arian Razmi Farooji

4 March 2015

List of Contents

- Introduction
- Mathematical Programming
- Mathematical Programming techniques
- Solving a Mathematical Model
- Mathematical Programming Software
- GAMS Software
- Heuristics and Metaheuristics
- References

Introduction

Mathematical Programming

Mathematical Programming techniques

- 1.Linear Programming
- 2.Integer Programming
- 3. Mixed Integer Programming
- 4. Dynamic Programming
- 5. Network Programming
- 6. Nonlinear programming

Solving a Mathematical Programming

- Goal :
- "To find an Optimum solution"
- Algorithms:
 - provides fixed computational rules
 - are applied repeatedly to the problem
 - each repetition (iteration) moving the solution closer to the optimum.

Solving a Mathematical Programming

Simplex Method

- solves LP problems
- tests adjacent vertices of the feasible sets
- at each iteration Simplex chooses the variable that will produce the largest change towards optimum solution

Software

- GAMS
- AMPL
- Lingo
- **–** ...

What is GAMS?

- General Algebraic Modeling System
- High-level modeling system for mathematical optimization
- GAMS solves
 - Linear optimizations
 - Non-linear optimizations
 - Mixed-integer optimizations
- Tailored for large scales optimization problems

Transportation Problem

Decision Variable

 x_{ij} The amount shipped from *i* to *j*

Parameters

 C_{ij} Shipping Cost from i to j

 a_i Supply Capacity of source i

 b_i Demand of Destination j

Mathematical Formulation

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} \leq a_i \text{ for } i = 1, , , , m$$

$$\sum_{j=1}^{m} x_{ij} \geq b_j \text{ for } j = 1, , , , n$$

$$x_{ij} \geq 0 \text{ for all } i \text{ and } j$$

Example (Hamdy Taha, 2011)

Example-Parameters

Table (1). Transportation Cost per Car						
	Denver	Miami				
Los Angeles	\$80	\$215				
Detroit	\$100	\$108				
New Orleans	\$102	\$68				

Mathematical Formulation

$$\min z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$$

$$x_{11} + x_{12} = 1000$$
 Los Angeles

$$x_{21} + x_{22} = 1500$$
 Detroit

$$x_{31} + x_{32} = 1200$$
 New Orleans

$$x_{11} + x_{21} + x_{31} = 2300$$
 Denver

$$x_{12} + x_{22} + x_{32} = 1400$$
 Miami

$$x_{ij} \ge 0$$
 for $i = 1,2,3$ and $j = 1,2$

Heuristics and Metaheuristics

 Both find "good and satisfactory" solutions in shorter time

- The quality of algorithms is usually based on a tradeoff between:
 - Optimality
 - Completeness
 - Accuracy
 - Execution Time

Assignment

 Formulate the following transportation problem and solve it in GAMS.

Shipping Costs								
		Warehouses			Supply			
		1	2	3	4			
Factories	1	470	520	654	890	75		
	2	350	416	690	750	100		
	3	995	670	350	685	125		
Demand		85	70	65	80			

Download GAMS <u>here</u>

References

- 1. Taha, H., Operations Research an Introduction, Pearson, New Jersey, 2011
- 2. INFORMS: What is Operations Research?
- 3. GAMS Website
- 4. Richard E. Rosenthal's GAMS Tutorial
- 5. Wikipedia: General Algebraic Modeling System
- 6. Education.com: Algorithms and Heuristics

Question and Answer

A Software approach to

Mathematical Programming

Arian Razmi Farooji

arian.razmifarooji@student.oulu.fi

4 March 2015