

Strawberry Greenhouse Monitoring System

Maroua LADDADA & Issa SIDIBE

Supervisor: Thomas DARGENT

Academic year:

2023/2024

OUTLINE

CHAPTER 1 - Project Background

- Introduction
- IoT in Agriculture
- Benefits of lot in Agriculture
- · Project's idea

CHAPTER 2 - Hardware components CHAPTER 3 - Design & Fabrication

- Programmation
- Connection to Thingsboard
- PCB Realisation

CONCLUSION

Introduction

The world's climate is changing rapidly, and this will continue to do so in the future which means new risks for food and agriculture.

IoT in Agriculture

In the agricultural world, IOT solutions take the form of sensors connected to the Internet to collect environmental and mechanical measurements.

Benefits of IOT in Agriculture

- Increase productivity and the quality of the product.
- Increases profits / incomes and reduces significantly the costs
- Having access promptly to exact accurate data helps in increasing the efficiency level in the use of water, pesticides, and fertilizers amounts managements.

Project's idea

- 1. Temperature Control
- Maintaining optimal temperature for growth (15-25°C)
- 2. Humidity Management
 - Need for high humidity (60-80%) for optimal growth
- 3. Light Requirements
 - Sufficient light intensity and duration (10-14 hours daily)
- 4. Pest and Disease Control
 - Monitoring and managing common pests (e.g., spider mites)
- 5. Nutrient Supply
 - Ensuring balanced nutrient supply through soil or hydroponics
 - 6. Watering Systems
 - Efficient irrigation systems (drip irrigation, hydroponics)

Hardware Components

Our prject depends on IOT technology using ESP32 as a microcontroller and a set of sensors.

ESP 32 [1]

It is a microcontroller board
That receives inputs from many
sensors and turn it into outputs
to control a system.

DHT 22 [2]

It mesures temperature and humidity.

Soil Moisture Sensor [3]

It mesures the scale of the water in the soil

^[1] https://www.orient.lv/wp-content/uploads/2020/11/v_nodemcu_esp_wroom32_bt_wifi-600x600.jpg

^[2] http://akademia.nettigo.pl/dht22/

^[3] https://th.bing.com/th/id/OIP.gjFeVvS2yNaeRqQbCzaVpgHaHa?w=600&h=600&rs=1&pid=ImgDetMain

Hardware Components

Water Level Sensor [1]

Carbone Dioxyde Sensor

It mesures the amount of CO2 in the desired area.

Light Sensor

It is used to detect the light radiation

CHAPTER 3 Design & Fabrication

KiCad Overwiew

An open-source software suite for electronic design automation (EDA).

Key Features:

<u>Schematic Capture</u>: Create and edit electronic circuit diagrams.

<u>PCB Editor:</u> Design and layout printed circuit boards (PCBs) with multiple layers.

<u>3D Viewer</u>: Visualize PCB designs in 3D for better understanding and error checking.

<u>Component Libraries:</u> Extensive libraries for components, footprints, and symbols.

Light Sensor design and Fabrication

Using KiCad to do design the PCB to put the sensor

Fabrication of the PCB using PhotoLaser machine

Wiring

Using breadboard to connect all the sensors to ESP32

Programmation

Arduino IDE

- Libraries definitions
- WiFi and ThingsBoard Configuration
- Pin Definitions
- Setup Function:

Initializes serial communication; Sets up sensors; Connects to WiFi and ThingsBoard.

• Loop Function:

Reads sensor data:Temperature and humidity from DHT22; CO2 levels, water level, light intensity, and soil moisture.

Connection with Thingsboard

Thingsboard principles

Device definition

We create a device which will be associated to the hardware to show the sensors result

Alarms setup

In the alarm rules, we use the device profil and write the **conditions** that must be respected

User dashboard

Real time data widgets

Alarms widget

The PCB of the project

From Design to Fabrication

Electronic schematic and PCB design

Fabricated PCB

Final Project

Conclusion and Perspectibves

With IOT SYSTEM WE CAN:

- SAVE THE WORLD
- INCREASE PRODUCTION PERFORMANCE
- HAVE A REAL TIME CONTROL

