第二章 矩阵及其运算

§1 矩阵

一、线性方程组

二、引入矩阵的其他例子

三、矩阵的定义

四、特殊的矩阵

五、矩阵与线性变换

一、线性方程组

具有n个未知数和m个方程的方程组记为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

其中 a_{ij} 为第i个方程第j个未知数的系数, b_i 为第i个方程的常数项

若常数项全为零,则该线性方程组称为齐次线性方程组, 否则称为非齐次线性方程组.

对一个方程组我们关心下面三个问题

- (1) 是否有解?
- (2) 有解时,解是否唯一?
- (3) 无穷多解是怎样表示所有解?

注意到方程组有下面数表完全决定

 $egin{aligned} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \ dots & dots & dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{aligned}$

抓住

主要

忘掉自变量直接研究这个数表可以更清楚的研究方 程组,以便回答上面三个问题

二、引入矩阵的其他例子

例 某航空公司在 *A、B、C、D* 四座 城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.

A

城市间的航班图情况常用表格来表示:

目	的	地
	\neg	~

	$oldsymbol{A}$	В	Ç	\boldsymbol{D}
\boldsymbol{A}	,	$\sqrt{}$	√	
\boldsymbol{B}			V	,
\boldsymbol{C}	$\sqrt{}$			V
\boldsymbol{D}		V		

始发地

其中√表示有 航班

为了便于计算,把表中的√改成1,空白地方填上0,就得到一个数表:

0	1	1	0
1	0	1	0
1	0	0	1
0	1	0	0

这个数表反映了四个城市之间交通联接的情况.

0	1	1	0
1	0	1	0
1	0	0	1
0	1	0	0

这个数表反映了四个城市之间交通联接的情况.

例 某工厂生产四种货物,它向三家商店发送的货物数量可用数表表示为:

这四种货物的单价及单件重量也可列成数表:

三、矩阵的定义

由 $m \times n$ 个数 a_{ij} $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$ 排成的 m 行 n 列的数表

称为m 行n 列矩阵,简称 $m \times n$ 矩阵. 记作

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

简记为
$$A = A_{m \times n} = (a_{ij})_{m \times n} = (a_{ij})$$

这 $m \times n$ 个数称为矩阵A的元素,简称为元.

元素是实数的矩阵称为实矩阵,

元素是复数的矩阵称为复矩阵.

行列式	矩阵	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{pmatrix}$	
■行数等于列数	■行数可以不等于列数	
■共有 n^2 个元素	■共有m×n个元素	
■元素为数时,行列式是一个数	■本质上就是一个数表	
$\det(a_{ij})$	$(a_{ij})_{m\times n}$	

例子: 对于方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

下面几个矩阵非常常用

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 系数矩阵

$$m{B} = egin{pmatrix} m{a}_{11} & m{a}_{12} & \cdots & m{a}_{1n} & m{b}_1 \ m{a}_{21} & m{a}_{22} & \cdots & m{a}_{2n} & m{b}_2 \ dots & dots & dots & dots \ m{a}_{m1} & m{a}_{m2} & \cdots & m{a}_{mn} & m{b}_m \end{pmatrix}$$
 增广矩阵

$$oldsymbol{x} = egin{pmatrix} oldsymbol{x}_1 \\ oldsymbol{x}_2 \\ drampsymbol{drampsymbol{drampsymbol{x}}} \\ oldsymbol{x}_n \end{pmatrix} oldsymbol{b} = egin{pmatrix} oldsymbol{b}_1 \\ oldsymbol{b}_2 \\ drampsymbol{drampsymbol{drampsymbol{x}}} \\ oldsymbol{k}_n \end{pmatrix}$$
 未知数矩阵 常数项矩阵

四、特殊的矩阵

- 1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵. 可记作 A_n
- 2. 只有一行的矩阵 $A = (a_1, a_2, \dots, a_n)$ 称为行矩阵(或行向量).

只有一列的矩阵
$$B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 称为列矩阵(或列向量).

3. 元素全是零的矩阵称为零距阵. 可记作 O.

例如:
$$O_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 $O_{1\times 4} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$

$$\lambda_1 \quad 0 \quad \cdots \quad 0$$

$$0 \quad \lambda_2 \quad \cdots \quad 0$$

$$0 \quad 0 \quad \cdots \quad \lambda_n$$

Diagonal matrix

4. 形如 $\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$ 的方阵称为对角阵. 记作: $A = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$

$$A = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

方阵
$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 称为单位阵. 记作: E_n

$$0 \quad 0 \quad \cdots \quad \lambda$$

特别的对于n 阶方阵A

由一个
$$n$$
 阶方阵 $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$

定义的一个
$$n$$
 阶行列式 $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$

称为矩阵A 的行列式,记作|A|.

若:
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}, C = \begin{pmatrix} c_{11} & \cdots & c_{1k} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nk} \end{pmatrix}$$

P14例10可以表示为: $\begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|$

м

同型矩阵与矩阵相等的概念

1. 两个矩阵的行数相等、列数相等时,称为同型矩阵.

例如
$$\begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 3 & 7 \end{pmatrix}$$
与 $\begin{pmatrix} 14 & 3 \\ 8 & 4 \\ 3 & 9 \end{pmatrix}$ 为同型矩阵.

2. 两个矩阵 $A = (a_{ij})$ 与 $B = (b_{ij})$ 为同型矩阵,并且对应元素相等,即 $a_{ij} = b_{ij}$ $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$ 则称矩阵A与B相等,记作A = B.

注意:不同型的零矩阵是不相等的.

五、矩阵与线性变换

n 个变量 x_1, x_2, \dots, x_n 与 m 个变量 y_1, y_2, \dots, y_m 之间的 关系式

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots & \dots & \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n. \end{cases}$$

表示一个从变量 x_1, x_2, \dots, x_n 到变量 y_1, y_2, \dots, y_m 线性变换, 其中 a_{ij} 为常数.

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n. \end{cases}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{pmatrix}$$
系数矩阵

线性变换与系数矩阵之间存在着一一对应关系.

例 线性变换
$$\begin{cases} y_1 = x_1, \\ y_2 = x_2, \\ \dots \\ y_n = x_n \end{cases}$$
 称为恒等变换.
$$y_n = x_n$$

$$\begin{cases} y_1 = x_1, \\ y_2 = x_2, \\ \dots = \begin{cases} y_1 = 1 \cdot x_1 + 0 \cdot x_2 + \dots + 0 \cdot x_n, \\ y_2 = 0 \cdot x_1 + 1 \cdot x_2 + \dots + 0 \cdot x_n, \\ \dots & \dots \\ y_n = x_n \end{cases}$$

对应
$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 单位阵 E_n

例: 投影变换对应的 2 阶方阵

$$\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}$$

$$\begin{cases}
x_1 = x = x + 0y, \\
y_1 = 0 = 0x + 0y.
\end{cases}$$

例: 旋转变换对应的 2 阶方阵

$$\begin{pmatrix}
\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi
\end{pmatrix}$$

以原点为中心逆时针 旋转 φ 角的旋转变换

$$\begin{cases} x_1 = \cos \varphi x - \sin \varphi y, \\ y_1 = \sin \varphi x + \cos \varphi y. \end{cases}$$

