Contents

1	Sequences			
	1.1	Definition of Sequences	1	
	1.2	a_n as $n \to \infty$	1	
	1.3	Convergence/Divergence	1	
	1.4	Monotone and Bounded Sequences	1	
2	Series 1			
	2.1	Notation	1	
	2.2	Partial Sum	1	
	2.3	Types of Series	1	
	2.4	Telescoping	1	
3	Convergence Tests 1			
	3.1	The Informal Principle	1	
	3.2	Divergence Test	1	
	3.3	Integral Test	2	
	3.4	Comparison Test	2	
	3.5	Limit Comparison Test	2	
	3.6	Ratio Test	3	
	3.7	Root Test	3	
	3.8	Alternating Series Test	4	
	3.9	Absolute vs Conditional Convergence	4	
4	Pow	ver Series	4	
	4.1	Definition	4	
	4.2	Radius and Interval of Convergence	4	
	4.3	Differentiation and Integration	4	
5	Tay	lor and Maclaurin Series	4	
	5.1	Taylor Series	4	
	5.2	Maclaurin Series	4	
	5.3	Common Maclaurin Series	5	
	5.4	Lagrange Error Bound for Taylor Series	5	
	5.5	Limits and Approximations	6	
6	Applications 6			
	6.1	Numerical Approximation	6	
	6.2	Solving ODEs	6	
	6.3	Non-elementary Integrals	6	

1 Sequences

1.1 Definition of Sequences

A sequence is an ordered list of numbers written in the form

$$a_1, a_2, a_3, \dots, a_n$$
, or a_n or $\{a_n\}_{n=1}^{\infty}$

It is usually represented as a function whose domain is the set of positive integers:

$$a_n = f(n)$$

1.2 a_n as $n \to \infty$

The **limit of a sequence** as $n \to \infty$ describes the long-term behavior of the sequence:

$$\lim_{n \to \infty} a_n = L$$

means that the terms of the sequence get arbitrarily close to L as n becomes large. If such a number L exists, we say the sequence **converges** to L. Otherwise, it **diverges**.

1.3 Convergence/Divergence

A sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if

$$\lim_{n \to \infty} a_n = L \quad \Longleftrightarrow \quad \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ |a_n - L| < \varepsilon.$$

Otherwise, the sequence diverges.

1.4 Monotone and Bounded Sequences

- 2 Series
- 2.1 Notation
- 2.2 Partial Sum
- 2.3 Types of Series
- 2.4 Telescoping

3 Convergence Tests

The necessary condition for a series $\{a_n\}$ to converge is that $\lim_{n\to\infty} a_n = 0$.

3.1 The Informal Principle

$$\sum \frac{4n^3 - n + 1}{n^5 + 7n^2 - 6} \approx \sum \frac{4n^8}{n^8} \approx 4 \sum \frac{1}{n^2}$$

3.2 Divergence Test

If $\lim_{n\to\infty} a_n \neq 0$, Then the series **diverges**.

3.3 Integral Test

If $a_n = f(n)$ where f is continuous, decreasing, and positive on $(c, \infty]$, then $\sum_{n=1}^{\infty}$ converges \iff $\int_{c}^{\infty} f(x) dx$ exists

Example:

Let
$$f(n) = \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$$

f(n) is continuous, decreasing, positive on $[2,\infty)$. Then by Integral Test:

$$\int_{2}^{\infty} \frac{1}{x^2} \sin\left(\frac{\pi}{x}\right) dx = \frac{1}{\pi}$$

Thus,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$$
 converges

3.4 Comparison Test

If $0 \le a_n \le b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges.

Example:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$$

and
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges. Thus

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5}$$
 converges

3.5 Limit Comparison Test

If $0 < a_n$ and $0 < b_n$, if $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, then either both **converges** or **diverges**.

Example:

$$\sum_{n=1}^{\infty} \frac{1}{4n+3}$$

By approximating

$$\sum_{n=1}^{\infty} \frac{1}{4n+3} \approx \sum_{n=1}^{\infty} \frac{1}{n}$$

We choose $\frac{1}{n}$ as b_n

$$\lim_{n \to \infty} \frac{\frac{1}{4n+3}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\mathcal{H}}{4n+3} = \frac{1}{4}$$

Since $\sum \frac{1}{n}$ diverges,

$$\sum_{n=1}^{\infty} \frac{1}{4n+3} \text{ diverges}$$

3.6 Ratio Test

Given a_n and a_{n+1} , we find the limit of their absolute ratio, i.e. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \begin{cases} < 1, & \textbf{Converges} \\ = 1, & \textbf{Inconclusive} \\ > 1, & \textbf{Diverges} \end{cases}$$

Example:

$$\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n!}$$

We find the limit of their absolute ratio

$$\lim_{n \to \infty} \left(\frac{2^{n+1}(n+2)}{(n+1)!} \cdot \frac{n!}{2^n(n+1)} \right)$$

$$= \lim_{n \to \infty} \left(\frac{2^{n+1}(n+2)}{(n+1)!} \cdot \frac{n!}{2^n(n+1)} \right)$$

$$= \lim_{n \to \infty} \frac{2(n+2)}{(n+1)^2}$$

$$= 0 < 1$$

Thus,

$$\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n!}$$
 converges

3.7 Root Test

Given $\sum a_n$, we find the limit of the n-th root of a_n , i.e. $\lim_{n\to\infty} \sqrt[n]{|a_n|}$. The limit measures the asymptotic size of the terms by looking at their n-th root.

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \begin{cases} <1, & \text{Converges} \\ =1, & \text{Inconclusive} \\ >1, & \text{Diverges} \end{cases}$$

Example:

$$\sum_{n=1}^{\infty} \frac{n^3}{5^n} \left(1 + \frac{1}{n} \right)^n.$$

Apply Root Test:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$= \lim_{n \to \infty} \sqrt[n]{n^3} \cdot \sqrt[n]{\frac{1}{5^n}} \cdot \sqrt[n]{\left(1 + \frac{1}{n}\right)^n}$$

Evaluate:

 $\sqrt[n]{n^3} \to 1$ because $n^{3/n} \to 1$.

$$\sqrt[n]{\frac{1}{5^n}} = \frac{1}{5}.$$

$$\sqrt[n]{\left(1+\frac{1}{n}\right)^n} \to e^{1/n} \to 1$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1 \cdot \left(\frac{1}{5}\right) \cdot 1 = \frac{1}{5} < 1$$

Thus,

$$\sum_{n=1}^{\infty} \frac{2^n(n+1)}{n!} =$$
 converges

- 3.8 Alternating Series Test
- 3.9 Absolute vs Conditional Convergence
- 4 Power Series
- 4.1 Definition
- 4.2 Radius and Interval of Convergence
- 4.3 Differentiation and Integration
- 5 Taylor and Maclaurin Series
- 5.1 Taylor Series

A Taylor series is an infinite sum that represents a function as a power series centered at a point a. If a function f(x) is infinitely differentiable at x = a, then its Taylor series is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

This expansion approximates the function near x = a

5.2 Maclaurin Series

A Maclaurin Series is a special case of Taylor Series centered at x = 0

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

5.3 Common Maclaurin Series

$$\bullet \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

•
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

•
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n!} x^{2n}$$

$$\bullet \ \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

•
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

•
$$\ln(1-x) = \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$$

•
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$$

5.4 Lagrange Error Bound for Taylor Series

The Lagrange error bound provides a way to estimate how close the Taylor polynomial $T_n(x)$ is to the actual function f(x). Let f be a function with (n+1) continuous derivatives on an interval containing a and x. The Taylor polynomial of degree n centered at a is

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

The remainder/error term in Lagrange form is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

for some $c \in [x, a]$.

Error Bound

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
, where M is $\max(|f^{n+1}(c)|)$

for some $c \in [x, a]$

- 5.5 Limits and Approximations
- 6 Applications
- 6.1 Numerical Approximation
- 6.2 Solving ODEs
- ${\bf 6.3}\quad {\bf Non\text{-}elementary\ Integrals}$