

Faculty Of Engineering and Technology Electrical and Computer Engineering Department CIRCUITS AND ELECTRONICS LABORATORY ENEE 2103

Experiment #: 6

Diode Characteristic and Applications

Prepared by: Rahaf Naser 1201319

Instructor: Dr. Mahran Quraan

Teacher assistant: Eng. Rafah Rahhal

Date: 8/11/2023

Table of contents

1. DIODE CHARACTERISTICS	1
2. RECTIFICATION	5
2.1. Half-wave rectification	5
2.2. Full-wave rectification.	9
3. OTHER APPLICATIONS	12
3.1. Clipping.	12
3.2. Clamping	18

Table of Figures
Figure 1.1: RD series circuit implementation
Figure 1.2: RD series circuit simulation result
Figure 1.3: RD series circuit implementation—When reverse the diode
Fig 2.1.1: Half-Wave Rectification circuit implementation
Fig 2.1.2 : Half-Wave Rectification circuit implementation
Fig 2.1.3 :Half-Wave Rectification circuit implementation - When Reverse the diode6
Fig 2.1.4 : Half-Wave Rectification circuit implementation - Reverse the diode-wave form6
Fig 2.1.5 : Half-Wave Rectification circuit implementation after adding 2.2 μF capacitor7
Fig 2.1.6 : Half-Wave Rectification circuit after adding 2.2 μF capacitor -wave form
Fig 2.1.7:: Half-Wave Rectification circuit after adding 47 μF capacitor8
Fig 2.1.8:: Half-Wave Rectification circuit after adding 47 μF capacitor-wave form
Figure 2.2.1: Full-Wave Rectification9
Figure 2.2.2: Full-Wave Rectification wave form
Figure 2.2.3: Full-Wave Rectification when adding the capacitor of 2.2 μF voltage response10
Figure 3.1.1: Clipping circuit implementation when dc =0v
Figure 3.1.2: Clipping circuit implementation-wave form when dc = 0v
Figure 3.1.3: Clipping circuit implementation when dc =1.5v
Figure 3.1.4: Clipping circuit implementation -wave form when dc = 1.5v14
Figure 3.1.5: Clipping circuit implementation when dc =4v
Figure 3.1.6: Clipping circuit implementation -wave form when dc = 4v
Figure 3.2.1: Clamping circuit implementation when dc=0v
Figure 3.2.2: Clamping circuit implementation- wave form when dc = 0v
Figure 3.2.3: Clamping circuit implementation when dc=1.5v
Figure 3.2.4: Clamping circuit implementation- wave form when dc = 1.5v
Figure 3.2.5: Clamping circuit implementation when dc=4v

Figure 3.2.6: Clamping circuit implementation- wave form when dc = 4v......21

List of Tables

1. DIODE CHARACTERISTICS

Figure 1.1: RD series circuit implementation

Figure 1.2: RD series circuit simulation result

VS	VR	VD	ID
0	0	0	0
0.2	0	0.2	0
0.4	0	0.4	0
0.6	0.009	0.591	0.00009
0.8	0.137	0.663	0.001
1	0.315	0.685	0.003
1.5	0.791	0.709	0.008
2	1.278	0.722	0.013
2.5	1.769	0.731	0.018
3	2.262	0.738	0.023

Table 1: Diode characteristics table

In this case VR = VS-VD

ID = VR * R

Using KVL:

->when VS = 0.2: -0.2+0+VD=0->VD=0.2v

ID = VR/R = 0/100 = 0

->when VS = 0.4: -0.4+0+VD=0->VD=0.4v

ID = VR/R = 0/100 = 0

->when VS = 0.6: -0.6+0.009+VD=0->VD=0.591v

ID = VR/R = 0.009/100 = 0.00009A

->when VS = 0.8: -0.8+0.137+VD=0->VD=0.663v

ID = VR/R = 0.137/100 = 0.001A

->when VS = 1: -1+0.315+VD=0->VD =0.685V

ID = VR/R = 0.315/100 = 0.0032A

->when VS = 1.5: -1.5+0.791+VD=0->VD=0.709v

ID = VR/R = 0.791/100 = 0.008A

->when VS = 2: -2+1.278+VD=0->VD=0.722v

ID = VR/R = 1.278/100 = 0.013A

->when VS = 2.5: -2.5+1.769+VD=0->VD=0.731v

ID = VR/R = 1.769/100 = 0.018A

->when VS = 3: -3+2.262+VD=0->VD=0.738v

ID = VR/R = 2.262/100 = 0.023A

Reverse the diode:

Figure 1.3: RD series circuit implementation—When reverse the diode

The diode will behave as an open circuit after being reversed since the voltage across the anode is greater than the voltage across the cathode. So, VD = VS and ID=0 VR=0

VS	VR	VD	ID
0	0	0	0
0.2	0	0.2	0
0.4	0	0.4	0
0.6	0	0.6	0
0.8	0	0.8	0
1	0	1	0
1.5	0	1.5	0
2	0	2	0
2.5	0	2.5	0
3	0	3	0

Table 2: Reverse diode characteristic table

2.RECTIFICATION

2.1. Half-wave rectification

Fig 2.1.1: Half-Wave Rectification circuit implementation

Fig 2.1.2: Half-Wave Rectification circuit implementation

➤ Period T and dc value

$$-> T = 1 / f = 1/200 = 5 \text{ ms}$$

-> peak value V peak (experimentally) = 4.4683v

->dc value = V peak/ $\pi = 1.42305v$

When reverse the diode:

Fig 2.1.3: Half-Wave Rectification circuit implementation - When Reverse the diode

Fig 2.1.4: Half-Wave Rectification circuit implementation - When Reverse the diode-wave form

➤ Period T and dc value

$$-> T = 1 / f = 1/200 = 5 \text{ ms}$$

-> peak value V peak (experimentally) = - 4 .4516v

-> dc value = V peak/
$$\pi$$
 = - 1.4177v

->When Adding $C = 2.2 \mu F$:

Fig 2.1.5 : Half-Wave Rectification circuit implementation after adding 2.2 μF capacitor

Fig 2.1.6 : Half-Wave Rectification circuit after adding 2.2 μF capacitor -wave form

• dc value:

-> peak value V peak (experimentally) = 4.4273 v

$$->$$
 VLR-pp = $4.4273 - 3.6310 = 0.7963v$

-> dc value = V avg = V peak -0.5 VL-pp = 4.4273 - 0.5 * 0.7962 = 4.02915 v

Ripple factor:

```
r% (experimentally) = ((VLR-PP)/2\sqrt{3})/V avg) * 100\% = 5.7052\%
r% (theoretically) = (1/\sqrt{3}[2f0RC-1]) * 100\%
= (1/((3^0.5)((2*200*10*100*2.2*10^-6)-1))*100\%=7.4019
```

->Using $C = 47 \mu F$:

Fig 2.1.7:: Half-Wave Rectification circuit after adding 47 μF capacitor

Fig 2.1.8:: Half-Wave Rectification circuit after adding 47 μF capacitor-wave form

dc value:

$$->$$
 VLR-pp = $4.3234 - 4.2810 = 0.0424v$

$$->$$
 dc value = V avg = V peak -0.5 VL,p $-$ p = $4.3234 - 0.5 * 0.0424 = 4.3022 v$

Ripple factor:

$$r\%$$
 (experimentally) = $(((VLR-PP)/2\sqrt{3})/Vavg) * 100\% = 0.2845\%$

$$r\%$$
 (theoretically) = $(1/\sqrt{3}[2f0RC-1]) * 100\%$

$$=1/(\sqrt{3}[2*200*10*1000*47*10^{-6}])*100\% = 0.3087\%$$

->We note that when the capacitor value is increased, the ripple factor decreases and the value of the mean voltage increases.

2.2. Full-wave rectification

Figure 2.2.1: Full-Wave Rectification

Figure 2.2.2: Full-Wave Rectification wave form

- ➤ Period T and dc value
- -> T = 1 / f = 1/2000 = 0.5 ms
- -> peak value V peak(experimentally) = 3.9355v
- ->dc value = V peak/ π = 1.2533v

When Adding C = 2.2 μ F:

Figure 2.2.3: Full-Wave Rectification when adding the capacitor of 2.2 μF voltage response

Figure 2.2.4: Full-Wave Rectification when adding the capacitor of 2.2 μF wave form

dc value:

- -> peak value V peak (experimentally) = 3.7431v
- -> VLR-pp = 3.7431–3.7114= 0.0317v
- -> dc value = V avg = V peak -0.5 VL,p-p = 3.7431 0.5 * 0.0317 = <math>3.7272v

ripple factor:

r% (experimentally) =(((VLR-PP)/2
$$\sqrt{3}$$
)/V avg) * 100% = 0.2455 % r% (theoretically) =(1/ $\sqrt{3}$ [4f0RC-1]) * 100% = (1/ $\sqrt{3}$ [4* 2000 * 10 * 1000 * 2.2 * 10-6]) *100% =0.3299%

3. OTHER APPLICATIONS

3.1. Clipping

When dc=0v

Figure 3.1.1: Clipping circuit implementation when dc =0v

Figure 3.1.2: Clipping circuit implementation-wave form when dc = 0v

When dc=1.5

Figure 3.1.3: Clipping circuit implementation when dc = 1.5v

Figure 3.1.4: Clipping circuit implementation -wave form when dc = 1.5v

When dc=4v

Figure 3.1.5: Clipping circuit implementation when dc =4v

Figure 3.1.6: Clipping circuit implementation -wave form when dc =4v

3.2. Clamping

When dc = 0v

Figure 3.2.1: Clamping circuit implementation when dc=0v

Figure 3.2.2: Clamping circuit implementation- wave form when dc = 0v

Figure 3.2.3: Clamping circuit implementation when dc=1.5v

Figure 3.2.4: Clamping circuit implementation- wave form when dc = 1.5v

Figure 3.2.5: Clamping circuit implementation when dc=4v

Figure 3.2.6: Clamping circuit implementation- wave form when dc = 4v

