

ESCUELA DE INGENIERÍA DE FUENLABRADA

GRADO EN INGENÍERIA EN SISTEMAS AUDIOVISUALES Y MULTIMEDIA

TRABAJO FIN DE GRADO

TÍTULO DEL TRABAJO CON LETRAS MAYÚSCULAS PARA SUSTANTIVOS Y ADJETIVOS

Autor: Juan José Arias Rojas

Tutor: Dr. Jesús María González Barahona

Curso académico 2024/2025

©2025 Juan José Arias Rojas
Algunos derechos reservados
Este documento se distribuye bajo la licencia
"Atribución-CompartirIgual 4.0 Internacional" de Creative Commons,
disponible en
https://creativecommons.org/licenses/by-sa/4.0/deed.es

Dedicado a todos aquellos que me animaron y apollaron incluso en mis momentos de debilidad

Agradecimientos

Aquí vienen los agradecimientos... Aunque está bien acordarse de la pareja, no hay que olvidarse de dar las gracias a tu madre, que aunque a veces no lo parezca disfrutará tanto de tus logros como tú... Además, la pareja quizás no sea para siempre, pero tu madre sí.

Resumen

Aquí viene un resumen del proyecto. Ha de constar de tres o cuatro párrafos, donde se presente de manera clara y concisa de qué va el proyecto. Han de quedar respondidas las siguientes preguntas:

- ¿De qué va este proyecto? ¿Cuál es su objetivo principal?
- ¿Cómo se ha realizado? ¿Qué tecnologías están involucradas?
- ¿En qué contexto se ha realizado el proyecto? ¿Es un proyecto dentro de un marco general?

Lo mejor es escribir el resumen al final.

VI RESUMEN

Summary

Here comes a translation of the "Resumen" into English. Please, double check it for correct grammar and spelling. As it is the translation of the "Resumen", which is supposed to be written at the end, this as well should be filled out just before submitting.

VIII SUMMARY

Índice general

1.	Intr	oducción	1
	1.1.	Sección	1
		1.1.1. Estilo	2
	1.2.	Estructura de la memoria	4
2.	Tecn	nologías utilizadas	5
	2.1.	Tecnologías principales	5
		2.1.1. HTML5	5
		2.1.2. JavaScript	6
		2.1.3. WebXR	7
		2.1.4. Three.js	8
		2.1.5. Aframe	8
	2.2.	Objetivos específicos	8
	2.3.	Planificación temporal	8
3.	Esta	do del arte	9
	3.1.	Sección 1	10
4.	Dise	ño e implementación	11
	4.1.	Arquitectura general	11
5.	Exp	erimentos y validación	13
6	Resi	ıltados	15

X	ÍNDICE GENERAL

7.	Conclusiones 1		
	7.1.	Consecución de objetivos	17
	7.2.	Aplicación de lo aprendido	17
	7.3.	Lecciones aprendidas	18
	7.4.	Trabajos futuros	18
A.	Man	ual de usuario	19
Bib	oliogr	afía	21

Índice de figuras

1.1.	Página con enlaces a hilos	3
1.2.	Estructura del parser básico	4
4.1.	Estructura del parser básico	12

Introducción

En este capítulo se introduce el proyecto. Debería tener información general sobre el mismo, dando la información sobre el contexto en el que se ha desarrollado.

No te olvides de echarle un ojo a la página con los cinco errores de escritura más frecuentes¹.

Aconsejo a todo el mundo que mire y se inspire en memorias pasadas. Las memorias de los proyectos que he llevado yo están (casi) todas almacenadas en mi web del GSyC².

En mayo de 2023 me apunté a un curso de innovación docente donde nos pidieron hacer un podcast con temática docente. Aproveché entonces para hacer un podcast de unos 30 minutos donde en los primeros quince minutos introducía LaTeX y la memoria, y en los segundos hacía hincapién en aquellas cosas que más os cuestan utilizar en la memoria: las figuras, las tablas y las citas. Podéis escuchar el podcast en Internet³.

1.1. Sección

Esto es una sección, que es una estructura menor que un capítulo.

Por cierto, a veces me comentáis que no os compila por las tildes. Eso es un problema de codificación. Al guardar el archivo, guardad la codificación de "ISO-Latin-1" a "UTF-8" (o viceversa) y funcionará.

¹http://www.tallerdeescritores.com/errores-de-escritura-frecuentes

²https://gsyc.urjc.es/~grex/pfcs/

³https://podcasters.spotify.com/pod/show/gregorio-robles9/episodes/

Tu-memoria-de-Trabajo-Fin-de-Grado-o-de-Mster-en-LaTeX-e23hucr/a-a58kp2

1.1.1. Estilo

Recomiendo leer los consejos prácticos sobre escribir documentos científicos en L^AT_EX de Diomidis Spinellis⁴.

Lee sobre el uso de las comas⁵. Las comas en español no se ponen al tuntún. Y nunca, nunca entre el sujeto y el predicado (p.ej. en "Yo, hago el TFG" sobre la coma). La coma no debe separar el sujeto del predicado en una oración, pues se cortaría la secuencia natural del discurso. No se considera apropiado el uso de la llamada coma respiratoria o *coma criminal*. Solamente se suele escribir una coma para marcar el lugar que queda cuando omitimos el verbo de una oración, pero es un caso que se da de manera muy infrecuente al escribir un texto científico (p.ej. "El Real Madrid, campeón de Europa").

A continuación, viene una figura, la Figura 1.1. Observarás que el texto dentro de la referencia es el identificador de la figura (que se corresponden con el "label" dentro de la misma). También habrás tomado nota de cómo se ponen las "comillas dobles" para que se muestren correctamente. Nota que hay unas comillas de inicio (") y otras de cierre ("), y que son diferentes. Volviendo a las referencias, nota que al compilar, la primera vez se crea un diccionario con las referencias, y en la segunda compilación se "rellenan" estas referencias. Por eso hay que compilar dos veces tu memoria. Si no, no se crearán las referencias.

A continuación un bloque "verbatim", que se utiliza para mostrar texto tal cual. Se puede utilizar para ofrecer el contenido de correos electrónicos, código, entre otras cosas.

```
From gaurav at gold-solutions.co.uk Fri Jan 14 14:51:11 2005
From: gaurav at gold-solutions.co.uk (gaurav_gold)
Date: Fri Jan 14 19:25:51 2005
Subject: [Mailman-Users] mailman issues
Message-ID: <003c01c4fa40$1d99b4c0$94592252@gaurav7klgnyif>

Dear Sir/Madam,
How can people reply to the mailing list? How do i turn off this feature? How can i also enable a feature where if someone replies the newsletter the email gets deleted?

Thanks
```

⁴https://github.com/dspinellis/latex-advice

⁵http://narrativabreve.com/2015/02/opiniones-de-un-corrector-de-estilo-11-recetas-parhtml

Figura 1.1: Página con enlaces a hilos

```
From msapiro at value.net Fri Jan 14 19:48:51 2005
```

From: msapiro at value.net (Mark Sapiro)

Date: Fri Jan 14 19:49:04 2005

Subject: [Mailman-Users] mailman issues

In-Reply-To: <003c01c4fa40\$1d99b4c0\$94592252@gaurav7klgnyif>

Message-ID: <PC173020050114104851057801b04d55@msapiro>

gaurav_gold wrote:

>How can people reply to the mailing list? How do i turn off this feature? How can i also enable a feature where if someone replies the newsletter the email gets deleted?

```
See the FAO
```

>Mailman FAQ: http://www.python.org/cgi-bin/faqw-mm.py article 3.11

Figura 1.2: Estructura del parser básico

1.2. Estructura de la memoria

En esta sección se debería introducir la estructura de la memoria.

Así:

- En el primer capítulo se hace una intro al proyecto.
- En el capítulo 2 (ojo, otra referencia automática) se muestran los objetivos del proyecto.
- A continuación se presenta el estado del arte en el capítulo 3.
-

Tecnologías utilizadas

En esta sección se muestran las distintas tecnologías que han sido necesarias para el desarroyo de este proyecto

2.1. Tecnologías principales

2.1.1. HTML5

HTML5 es la quinta iteración del lenguaje de HTML (*marcado de hipertexto*), el cual es la estructura básica y principal de toda página web. Desarrollado conjuntamente por W3C (*World Wide Web Consortium*) y WHATWG (*Web Hypertext Application Technology Working Group*). HTML5 introduce mejoras sustanciales respecto a sus anteriores versiones, incluyendo nuevas etiquetas semánticas, soporte multimedia mejorado y compatibilidad ampliada con diversos navegadores y dispositivos, dándole mayor flexibilidad y dinamismo a la creación de páginas web.

Una de sus nuevas introducciones clave es la introducción de etiquetas semánticas como: <header>, <article>, <section> y <footer>, que facilitan una estructuración clara y accesible del contenido web. Estas etiquetas no solo ayudan a mejorar la organización de la información, si no que también facilitan la búsqueda de información por parte de los motores de búsqueda y facilitan la interpretación por parte de los desarrolladores. Además, HTML5 incorpora nuevas interfaces de programación de aplicaciones (*API*), destacándose las funcionalidades de almacenamiento local mediante localStorage y sessionStorage, que permiten la

gestión eficiente de datos directamente en el navegador, eliminando la necesidad de bases de datos externas. [3]

HTML5 también introduce mejoras significativas en la gestión de contenido multimedia, eliminando la necesidad de complementos externos. Para esto se implementaron las etiquetas <audio> y <video> las cuales permiten la incorporación directa de archivos de sonido y video en las páginas web, permitiendo mayor dinamismo en el desarrollo. Otro elemento que se añadió fue el elemento <canvas> el cual habilita la generación de gráficos y animaciones en tiempo real a través de JavaScript, permitiendo el desarrollo de aplicaciones interactivas y videojuegos en línea.

HTML5 se ha establecido firmemente como un estándar en el desarrollo de aplicaciones web progresivas (*PWA*) y en entornos multiplataforma. Su integración con tecnologías como CSS3 y JavaScript permite la creación de interfaces dinámicas y adaptativas, compatibles con una amplia gama de dispositivos, desde ordenadores hasta tabletas y teléfonos.

2.1.2. JavaScript

JavaScript es un lenguaje de programación ligero y multiplataforma utilizado principalmente para la creación de contenido dinámico e interactivo para páginas web. Su felixibilidad permite desarrollar elementos para mejorar la interacción del usuario en páginas web tanto del lado del servidor como del lado del cliente. En 1997, JavaScript fue estandarizado por *ECMA* como ECMAScript y poco después como un éstandar *ISO*.

JavaScript, creado por Brendan Eich de Netscape en 1995 bajo el nombre de *Mocha*, posteriormente se renombró a LiveScript y finalmente a JavaScript. En el año 2000, JavaScript se extendió al lado de los servidores con la introducción de tecnologías como *Node.js*, y posteriormente su popularidad creció con la llegada de *AJAX*. Y Con la llegada de ECMAScript 6 en 2015, se introdujeron características mas avanzadas y actualizaciones anuales, haciendo que hoy en día sea uno de los lenguajes mas importantes en el desarrollo web.

JavaScript es un lenguaje de programación de alto nivel, lo que significa que su leguaje esta diseñado para ser lo mas 'humano' posible, permitiendo una rapida comprensión del codigo sin necesidad de un nivel alto de conocimientos. Es un lenguaje basado en eventos ya sean entradas de ratón o entradas de teclado, permitiendo la creación de interfaces de usuario interactivas. JavaScript puede integrarse en un HTML dentro de la etiqueta <script> de forma directa,

escribiendo el codigo. También, se puede introducir codigos de JavaScript, los cuales estén en archivos distintos con la extensión correspondiente al lenguaje (.js), esto es posible vinculando dicho archivo en la cabecera del HTML.

2.1.3. WebXR

WebXR [4] es una tecnología desarrollada por W3C (*World Wide Web Consortium*) que permite crear experiencias inmersivas desde el navegador. Esta tecnología combina la Realidad Aumentada (*AR*) y la Realidad Virtual (*VR*) con la accesibilidad de un navegador web. Lo cual permite a los usuarios experimentar e interactuar con entornos tridimensionales a través de cualquier dispositivo con acceso a un navegador compatible.

A medida que la tecnología de WebXR ha ido evolucionando, se han desarrollado distintos tipos de experiencias para poder adaptarse a distintos contextos y necesidades. Hoy en día, se podria clasificar los distintos tipos en 3 categorias:

- WebXR AR: Este tipo de WebXR combina el mundo virtual y el mundo real, permitiendo que distintos elementos del mundo virtual puedan superponerse en el entorno físico a través de la cámara de un dispositivo compatible, pero sin que llegue a influir el mundo real en los elementos virtuales.
- WebXR VR: Este modo permite a los usuarios sumergirse en el entorno virtual creado, y con la ayuda de dispositivos suplementarios como auriculares, la experiencia es aún mayor. Esta tecnología permite a los usuarios interactuar y experimentar en primera persona distintos entornos virtuales, desde juegos y entretenimiento, hasta simulaciones virtuales y visualizaciones en 3D.
- WebXR MR(Mixed Reality): Esta tecnología combina el mundo real y el virtual de forma mas profunda que la tecnología AR. Permite a los usuarios poder interactuar con elementos tantos virtuales como físicos y que estos puedan interactuar entre si. Este tipo de combinación proporciona un nivel mayor de interacción entre el usuario y y su entorno, dando mayor numero de posibilidades para la creación de contenido.

Estos distintos tipos de WebXR ofrecen distintos tipos de experiencias dependiendo del entorno virtual que se quiera diseñar.

2.1.4. Three.js

Three.js [6] es una biblioteca de codigo abierto de JavaScript utilizada para la creación de gráficos 3D en los navegadores web. Three.js funciona sobre WebGL [2], la cual permite generar y visualizar animaciones y escenas 3D en el navegador sin necesidad de complementos. La tecnologia de WebGL tambiénpuede usarse junto con el elemento <canva> de HTML.

Esta biblioteca proporciona una API de alto nivel la cual permite al usuario la creación y manipulación de geometrías 3D como cubos, esfera o planos, así como la aplicación de texturas o la aplicación de tanto camaras como de efectos de iluminación en las escena, permitiendo que el desarrollo de dichas escenas sea mucho mas simplificado. También, Three.js permite la posibilidad de importar modelos 3D desde archivos distintos creados desde aplicaciones distintas.

2.1.5. Aframe

2.2. Objetivos específicos

Los objetivos específicos se pueden entender como las tareas en las que se ha desglosado el objetivo general. Y, sí, también vienen en infinitivo.

2.3. Planificación temporal

A mí me gusta que aquí pongáis una descripción de lo que os ha llevado realizar el trabajo. Hay gente que añade un diagrama de GANTT. Lo importante es que quede claro cuánto tiempo llevas (tiempo natural, p.ej., 6 meses) y a qué nivel de esfuerzo (p.ej., principalmente los fines de semana).

Estado del arte

Descripción de las tecnologías que utilizas en tu trabajo. Con dos o tres párrafos por cada tecnología, vale. Se supone que aquí viene todo lo que no has hecho tú.

Puedes citar libros, como el de Bonabeau et al., sobre procesos estigmérgicos [1]. Me encantan los procesos estigmérgicos. Deberías leer más sobre ellos. Pero quizás no ahora, que tenemos que terminar la memoria para sacarnos por fin el título. Nota que el ~ añade un espacio en blanco, pero no deja que exista un salto de línea. Imprescindible ponerlo para las citas.

Citar es importantísimo en textos científico-técnicos. Porque no partimos de cero. Es más, partir de cero es de tontos; lo suyo es aprovecharse de lo ya existente para construir encima y hacer cosas más sofisticadas. ¿Dónde puedo encontrar textos científicos que referenciar? Un buen sitio es Google Scholar¹. Por ejemplo, si buscas por "stigmergy libre software" para encontrar trabajo sobre software libre y el concepto de *estigmergia* (¿te he comentado que me gusta el concepto de estigmergia ya?), encontrarás un artículo que escribí hace tiempo cuyo título es "Self-organized development in libre software: a model based on the stigmergy concept". Si pulsas sobre las comillas dobles (entre la estrella y el "citado por ...", justo debajo del extracto del resumen del artículo, te saldrá una ventana emergente con cómo citar. Abajo a la derecha, aparece un enlace BibTeX. Púlsalo y encontrarás la referencia en formato BibTeX, tal que así:

```
@inproceedings{robles2005self,
   title={Self-organized development in libre software:
        a model based on the stigmergy concept},
   author={Robles, Gregorio and Merelo, Juan Juli\'an
```

http://scholar.google.com

Uno	2	3
Cuatro	5	6
Siete	8	9

Cuadro 3.1: Ejemplo de tabla. Aquí viene una pequeña descripción (el *caption*, el pie de tabla/figura) del contenido de la tabla. Si la tabla no es autoexplicativa, siempre viene bien aclararla aquí.

```
and Gonz\'alez-Barahona, Jes\'us M.},
booktitle={ProSim'05},
year={2005}
```

Copia el texto en BibTeX y pégalo en el fichero memoria.bib, que es donde están las referencias bibliográficas. Para incluir la referencia en el texto de la memoria, deberás citarlo, como hemos hecho antes con [1], lo que pasa es que en vez de el identificador de la cita anterior (bonabeau: swarm), tendrás que poner el nuevo (robles2005self). Compila el fichero memoria.tex (pdflatex memoria.tex), añade la bibliografía (bibtex memoria.aux) y vuelve a compilar memoria.tex (pdflatex memoria.tex)...y voilà ¡tenemos una nueva cita [5]!

También existe la posibilidad de poner notas al pie de página, por ejemplo, una para indicarte que visite la página del GSyC².

3.1. Sección 1

Hemos hablado de cómo incluir figuras. Pero no hemos dicho nada de tablas. A mí me gustan las tablas. Mucho. Aquí un ejemplo de tabla, la Tabla 3.1 (siento ser pesado, pero nota cómo he puesto la referencia).

Hay un sitio en Internet donde puedes diseñar las tablas fácilmente y luego hacer un corta y pega del resultado en tu editor. Puedes probarlo en https://www.tablesgenerator.com/.

²http://gsyc.es

Diseño e implementación

Aquí viene todo lo que has hecho tú (tecnológicamente). Puedes entrar hasta el detalle. Es la parte más importante de la memoria, porque describe lo que has hecho tú. Eso sí, normalmente aconsejo no poner código, sino diagramas.

4.1. Arquitectura general

Si tu proyecto es un software, siempre es bueno poner la arquitectura (que es cómo se estructura tu programa a "vista de pájaro").

Por ejemplo, puedes verlo en la figura 1.2. LATEX pone las figuras donde mejor cuadran. Y eso quiere decir que quizás no lo haga donde lo hemos puesto... Eso no es malo. A veces queda un poco raro, pero es la filosofía de LATEX: tú al contenido, que yo me encargo de la maquetación.

Recuerda que toda figura que añadas a tu memoria debe ser explicada. Sí, aunque te parezca evidente lo que se ve en la figura 1.2, la figura en sí solamente es un apoyo a tu texto. Así que explica lo que se ve en la figura, haciendo referencia a la misma tal y como ves aquí. Por ejemplo: En la figura 1.2 se puede ver que la estructura del *parser* básico, que consta de seis componentes diferentes: los datos se obtienen de la red, y según el tipo de dato, se pasará a un *parser* específico y bla, bla, bla...

Si utilizas una base de datos, no te olvides de incluir también un diagrama de entidadrelación.

Figura 4.1: Estructura del parser básico

Experimentos y validación

Este capítulo se introdujo como requisito en 2019. Describe los experimentos y casos de test que tuviste que implementar para validar tus resultados. Incluye también los resultados de validación que permiten afirmar que tus resultados son correctos.

Resultados

En este capítulo se incluyen los resultados de tu trabajo fin de grado.

Si es una herramienta de análisis lo que has realizado, aquí puedes poner ejemplos de haberla utilizado para que se vea su utilidad.

Conclusiones

7.1. Consecución de objetivos

Esta sección es la sección espejo de las dos primeras del capítulo de objetivos, donde se planteaba el objetivo general y se elaboraban los específicos.

Es aquí donde hay que debatir qué se ha conseguido y qué no. Cuando algo no se ha conseguido, se ha de justificar, en términos de qué problemas se han encontrado y qué medidas se han tomado para mitigar esos problemas.

Y si has llegado hasta aquí, siempre es bueno pasarle el corrector ortográfico, que las erratas quedan fatal en la memoria final. Para eso, en Linux tenemos aspell, que se ejecuta de la siguiente manera desde la línea de *shell*:

```
aspell --lang=es_ES -c memoria.tex
```

7.2. Aplicación de lo aprendido

Aquí viene lo que has aprendido durante el Grado/Máster y que has aplicado en el TF-G/TFM. Una buena idea es poner las asignaturas más relacionadas y comentar en un párrafo los conocimientos y habilidades puestos en práctica.

- 1. a
- 2. b

7.3. Lecciones aprendidas

Aquí viene lo que has aprendido en el Trabajo Fin de Grado/Máster.

- 1. Aquí viene uno.
- 2. Aquí viene otro.

7.4. Trabajos futuros

Ningún proyecto ni software se termina, así que aquí vienen ideas y funcionalidades que estaría bien tener implementadas en el futuro.

Es un apartado que sirve para dar ideas de cara a futuros TFGs/TFMs.

Apéndice A

Manual de usuario

Esto es un apéndice. Si has creado una aplicación, siempre viene bien tener un manual de usuario. Pues ponlo aquí.

Bibliografía

- [1] E. Bonabeau, M. Dorigo, and G. Theraulaz. *Swarm Intelligence: From Natural to Articial Systems*. Oxford University Press, Inc., 1999.
- [2] EncodeBiz. Parte 1: Webgl y su impacto en el desarrollo web moderno, 2024.
- [3] E. Freeman and E. Robson. *Head First HTML and CSS*. O'Reilly Media, 2nd edition, 2018.
- [4] Onirix. Webxr: Ejemplos y desarrollo en realidad extendida, 2024.
- [5] G. Robles, J. J. Merelo, and J. M. González-Barahona. Self-organized development in libre software: a model based on the stigmergy concept. In *ProSim'05*, 2005.
- [6] Wikipedia contributors. Three.js, 2024.