Árvores

Prof. Denio Duarte

duarte@uffs.edu.br

Prof. Claunir Pavan

claunir.pavan@uffs.edu.br

Árvore

Exemplo de uso: organograma de uma empresa

Exemplo de uso: organograma de uma empresa

Exemplo de uso: descendência de uma pessoa

Árvores - uso na Computação

- Árvores são amplamente utilizadas na Computação
 - o como uma ferramenta para descrever propriedades de algoritmos e
 - o como uma estrutura de dados de fato

• Um **nó** (ou vértice) contém uma informação útil

- Um nó (ou vértice) contém uma informação útil
- Uma aresta é uma conexão entre dois nós

Aresta

- Um nó (ou vértice) contém uma informação útil
- Uma aresta é uma conexão entre dois nós
- Um caminho é uma sequência de nós < v₀, v₁, v₂, ..., v_k > tal que
 - todos os nós da sequência são distintos
 - existe uma aresta conectando v_{i-1} e v_i para i = 1, 2, ..., k

Caminhos

- Um nó (ou vértice) contém uma informação útil
- Uma aresta é uma conexão entre dois nós
- Um caminho é uma sequência de nós < v₀, v₁, v₂, ..., v_k > tal que
 - todos os nós da sequência são distintos
 - existe uma aresta conectando v_{i-1} e v_i para i = 1, 2, ..., k
- Uma árvore é formada por nós e arestas tais que
 - existe exatamente um caminho conectando cada par de vértices
- A ordem de uma árvore é dada pelo nó com maior número de arestas

É uma árvore!

É uma árvore!

Não é uma árvore!

Não é uma árvore!

Árvore enraizada

Árvore não enraizada

Nó

Filhos

Pai

Nó

Filhos

Pai Nó Irmãos Filhos

Subárvore

Raiz da subárvore

Subárvore

- (Definição recursiva.) Uma árvore binária
 - ou não contém nenhum nó
 - ou é composta de um nó conectado
 - a uma árvore binária chamada de subárvore esquerda do nó e
 - a uma árvore binária chamada de subárvore direita do nó

Estas árvores binárias são iguais?

Estas árvores binárias são iguais?

Estas árvores binárias são iguais? NÃO

- (Definição recursiva.) Uma árvore binária
 - ou não contém nenhum nó
 - ou é composta de um nó conectado
 - a uma árvore binária chamada de subárvore esquerda do nó e
 - a uma árvore binária chamada de subárvore direita do nó
- Em uma árvore binária, um filho de um nó é chamado de
 - o filho esquerdo se ele é a raiz da subárvore esquerda do nó e
 - o filho direito se ele é a raiz da subárvore direita do nó

Referências

- Esta apresentação é baseada nas seguintes referências:
 - Capítulo 5 do livro Sedgewick, R., Algorithms in C, Addison-Wesley, 1998.
 - Apêndice B.5 do livro Cormen, T., Leiserson, C., Rivest, R., Stein, C., Introduction To Algorithms, MIT Press, 2001.
- Leitura
 - Capítulo 9 Livro e-Book C -1 (Moodle)