Математическая статистика

14 июня 2020 г.

Содержание

1	Постановка задач математической статистики	2
	1.1 Задачи теории вероятностей	2
	1.2 Задачи математической статистики	2
2	Частота как оценка вероятности события и её свойства. Построение доверительного интервала для вероятности события на базе асимптотической нормальности частоты.	
3	Постановка выборочной статистической модели. Точечная оценка параметра и характеристики.	6
4	Функции потерь и функции риска, состоятельность оценки характеристики, достаточное условие для состоятельности оценки.	7
5	Вид квадратичного риска в случае одномерной характеристики.	9
6	Постановка задачи доверительного оценивания, доверительный интервал.	10
7	Определение несмещенности и асимптотической нормальности оценки характеристики. Построение доверительного интервала для характеристики на базе асимптотической нормальности ее оценки.	
8	Постановка задачи проверки гипотез	12
9	Ошибки первого и второго рода и их вероятности как критерий качества критерия (теста) проверки гипотез. Подход Неймана-Пирсона.	13

1 Постановка задач математической статистики

Сравним задачи теории вероятностей и математической статистики

1.1 Задачи теории вероятностей

Заданы:

- Вероятностное пространство $\langle \Omega, \Sigma, P \rangle$.
- Случайная величина $X: \Omega \to \mathbb{R}^n$.

Требуется получить различного рода характеристики величины X и величин , получающихся из X .

1.2 Задачи математической статистики

Определение. Статистическим экспериментом называется четверка

$$\langle \mathfrak{X}, \mathcal{A}, P_{\theta}, \Theta \rangle$$
.

Здесь:

- \mathfrak{X} множество наблюдений.
- $A \sigma$ -алгебра подмножеств X.
- P_{θ} известная с точностью до неизвестного параметра θ вероятностная мера закон распределения наблюдаемых данных.
- Θ множество допустимых значений неизвестного параметра, то есть $\theta \in \Theta$.

Задачей математической статистики является получение той или иной информации о законе распределения наблюдаемых данных $P = P_{\theta}$.

Определение. Статистикой называется измеримая функция

$$f: \mathfrak{X} \to A$$
.

Для произвольного A.

Определение. Пусть

$$\overline{X} = \langle X_1, \dots, X_n \rangle.$$

Где $X_i \sim X$ — одинаково распределенные случайные величины. Соответствующая модель называется моделью независимой однородной выборки.

Определение. *Гипотезой H* называется подмножество Θ :

$$H \subseteq \Theta$$
.

Перечислим некоторые задачи математической статистики.

- Оценивание параметра θ или какой-либо функции $g(\theta)$, то есть построение статистики $\hat{g}: \mathcal{X} \to \Theta$. Оценивание может быть:
 - точечным, то есть указание численной оценки $g(\theta)$
 - ∂ лительным, то есть указание множества, с фиксированной вероятностью содержащего $g(\theta)$
- Проверка гипотез. Пусть имеется разбиение Θ на гипотезы: $\Theta = \bigsqcup_{n \in N} H_n$. Тогда проеркой гипотезы назовем построение *теста* (*критерия*), то есть отображения

$$\varphi: \mathfrak{X} \to N$$
.

Которое по наблюдению выдает номер гипотезы, которому это наблюдение "соответствует".

Естественно, перечисленные задачи можно оценивать с точки зрения качества. В этом смысле всегда требуется с точки зрения какой-либо метрики построить "лучшую" оценку.

2 Частота как оценка вероятности события и её свойства. Построение доверительного интервала для вероятности события на базе асимптотической нормальности частоты.

Теорема 2.1. (Яков, Бернулли)

Пусть имеется $\xi_i \sim \xi$ – последовательность одинаково распределенных и попарно независимых случайных величин. Пусть

$$\overline{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_n = \frac{k_n}{n}.$$

Тогда

$$\overline{\xi}_n \underset{n \to +\infty}{\Longrightarrow} p.$$

Теорема 2.2. (Центральная предельная теорема, простейший вариант) Пусть случайные величины $X_i \sim X$ независимы и одинаково распределены, причем $\exists E(X), D(X)$. Тогда для случайной величины

$$Y_n = \frac{\overline{X}_n - E(\overline{X}_n)}{\sigma(\overline{X}_n)}.$$

Верно:

$$F_{Y_n} \stackrel{\Longrightarrow}{\Longrightarrow} F_{N(0,1)}.$$

Теорема 2.3. (Свойства частоты как оценки p)

Пусть $\xi \sim B(p)$. Тогда

$$\hat{p} = \frac{k_n}{n}$$

Является несмещенной асимптотически нормальной оценкой р, то есть

$$E(\hat{p}) = p$$

$$\sqrt{n} \cdot (\hat{p} - p) = Y_n \xrightarrow{P_{n,\theta}} Y \sim N(0, \Delta^2(p)), \ \Delta^2(p) = p(1 - p).$$

Доказательство.

• Покажем несмещенность:

$$E(\hat{p}) = E\left(\frac{k_n}{n}\right) = \frac{1}{n}np = p.$$

• Асимптотическая нормальность с нормирующим множителем $\Delta^2(p) = p(1-p)$ следует непосредственно из центральной предельной теоремы.

На базе асимптотической нормальности можно построить доверительный интервал. Проделаем это на примере частоты. Выпишем определение асимптотической нормальности:

$$Y_n = \frac{\sqrt{n} \cdot (\hat{p} - p)}{\sqrt{p(1-p)}} \to N(0, 1).$$

Это буквально означает:

$$P_{n,\theta}(Y_n < t) \to F_{N(0,1)}(t).$$

Раскроем определение Y_n , возьмем его по модулю и воспользуемся квантилью:

$$\left|P_{n,\theta}\left(\left|\frac{\sqrt{n}\cdot(\hat{p}-p)}{\sqrt{p(1-p)}}\right|< t_{\gamma}\right) \to \gamma \Longleftrightarrow P_{n,\theta}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}t_{\gamma}+\hat{p}>p>-\frac{\sqrt{p(1-p)}}{\sqrt{n}}t_{\gamma}+\hat{p}\right) \to \gamma.$$

Здесь $\gamma = P(|\xi| < t_{\gamma}), \ \xi \sim N(0,1)$. Построим д

3 Постановка выборочной статистической модели. Точечная оценка параметра и характеристики.

Определение. Напомним, что *точечной оценкой* параметра θ или какой-либо функции $g(\theta)$ называют численную оценку этой величины.

Пусть \hat{g}_n является некоторой точечной оценкой $g = g(\theta)$.

Определение. \hat{g}_n называется несмещенной, если $E(\hat{g}_n) = g(\theta)$.

Определение. \hat{g}_n называется состоятельной, если $\hat{g}_n \Longrightarrow_p g(\theta)$ при $n \to \infty$.

Определение. \hat{g}_n называется асимптотически нормальной, если

$$\frac{\sqrt{n}(\hat{g}_n - g(\theta))}{\sigma(g(\theta))} \xrightarrow[n \to \infty]{} N(0,1).$$

Определение. \hat{g}_n называется $\partial \phi$ ективной в классе оценок K, если для любой другой оценки $\hat{g}_n^* \in K$ имеет место неравенство:

$$E(\hat{g}_n - g(\theta))^2 \leq E(\hat{g}_n^* - g(\theta))^2.$$

4 Функции потерь и функции риска, состоятельность оценки характеристики, достаточное условие для состоятельности оценки.

Определение. Оценкой $g(\theta)$ называется статистика вида

$$\hat{g}: \mathcal{X} \to g(\Theta).$$

Определение. Пусть $\hat{g}(\theta)$ – оценка $g(\theta)$. Тогда функцией потерь называется неотрицательная функция $l(\hat{g}, g(\theta))$, характеризующая "близость" оценки к настоящему значению.

Замечание. Обычно в качестве функции потерь рассматривают функцию вида

$$l(\hat{g}, g(\theta)) = \omega(||\hat{g}, g(\theta)||).$$

Здесь ω – неотрицательная монотонно возрастающая функция, $\omega(0) = 0$.

Замечание. *l* являтся случайной величиной.

Определение. Риском называется функция

$$R(\hat{g}, \theta) \stackrel{def}{=} E_{\theta}(l(\hat{g}, g(\theta))).$$

Замечание. Риск – функция параметра θ и способа оценивания \hat{g} .

Опишем самые важные для нас виды функции потерь и риска.

Определение. Определим функцию потерь индикатором отклонений:

$$l^{\delta}(\hat{g}, g(\theta)) = \omega^{\delta}(\|\hat{g}, g(\theta)\|).$$

Где

$$\omega(t) = \mathbb{1}_{\delta}(t) = \begin{cases} 0, \ t < \delta \\ 1, \ t \ge \delta \end{cases}.$$

Соответствующий риск будет вероятностью отклонения:

$$R^{\delta}(\hat{g}, \theta) = E_{\theta}(l(\hat{g}, g(\theta))) = 0 \cdot P_{\theta}(\|\hat{g} - g(\theta)\| < \delta) + 1 \cdot P_{\theta}(\|\hat{g} - g(\theta)\| \ge \delta) = P_{\theta}(\|\hat{g} - g(\theta)\| \ge \delta).$$

Определение. При асимптотическом подходе оценка называется *состоятельной*, если

$$\forall \delta > 0 \ R^{\delta}(\hat{g}_n, \theta) = P_{n,\theta}(\|\hat{g}_n - g(\theta)\| \ge \delta) \xrightarrow[n \to +\infty]{} 0.$$

Или, что то же самое:

$$\hat{g}_n \xrightarrow[n \to +\infty]{P_{n,\theta}} g(\theta).$$

Определение. Квадратичной функцией потерь называется функция

$$l_2(\hat{g}, g(\theta)) = ||\hat{g} - g(\theta)||^2.$$

Соответствующий ей риск называется квадратичным:

$$R_2(\hat{g}, \theta) = E_{\theta}(\|\hat{g} - g(\theta)\|^2).$$

Теорема 4.1. (Достаточное условие для состоятельности оценки) $R_2(\hat{g}_n,\theta) \xrightarrow[n \to +\infty]{} 0 \Longrightarrow$ оценка состоятельна.

Доказательство.

$$\begin{split} \forall \delta > 0 \ R^{\delta}(\hat{g}_n, \theta) &= P(\|\hat{g}_n - g(\theta)\| \ge \delta) = P(\|\hat{g}_n - g(\theta)\|^2 \ge \delta^2) \\ &\leq \frac{E_{\theta}(\|\hat{g}_n - g(\theta)\|^2)}{\delta^2} = \frac{R_2(\hat{g}_n, \theta)}{\delta^2} \xrightarrow[n \to +\infty]{} 0. \end{split}$$

5 Вид квадратичного риска в случае одномерной характеристики.

Определение. Смещением оценки называется величина

$$b(\hat{g},\theta) = g(\theta) - E_{\theta}(\hat{g}).$$

Определение. Оценка называется несмещенной, если $b(\hat{g},\theta) = 0$.

Теорема 5.1. $R_2(\hat{g}, \theta) = D_{\theta}(\hat{g}) + b^2(\hat{g}, \theta)$.

Доказательство.

$$R_{2}(\hat{g}, \theta) = E_{\theta}(\|\hat{g} - g(\theta)\|^{2}) = E_{\theta}(\hat{g} - E_{\theta}(\hat{g}) - (g(\theta) - E_{\theta}(\hat{g})))^{2}$$

$$= E_{\theta}(\hat{g} - E_{\theta}(\hat{g}))^{2} + (g(\theta) - E_{\theta}(\hat{g}))^{2} - \underbrace{2(g(\theta) - E_{\theta}(\hat{g}))(E_{\theta}\hat{g} - E_{\theta}\hat{g})}_{0}$$

$$= D_{\theta}(\hat{g}) + b^{2}(\hat{g}, \theta).$$

Следствие 5.2. Для одномерных несмещенных оценок квадратичный риск в точности равен дисперсии оценки:

$$R_2(\hat{g}, \theta) = D_{\theta}(\hat{g}).$$

6 Постановка задачи доверительного оценивания, доверительный интервал.

При оценивании параметров или характеристик распределений мы в качестве результата получаем числовое значение $\hat{g}(X) \in g(\Theta)$. Такой способ оценивания мы называем *точечной оценкой*. Заранее не понятно, насколько результат соответствует действительности. Для того, чтобы можно было оценивать качество результата, нужно предъявлять не точку, а подмножество в $g(\Theta)$, содержащее в некотором смысле наиболее подходящие значения.

Задача доверительного оценивания ставится следующим образом: задана величина $\gamma \in (0,1)$, называемая *уровнем надежности*. По заданному наблюдению X и значению надежности требуется построить доверительную область надежности.

Определение. Доверительной областью надежности называется $\widetilde{G}_{\gamma} \subseteq G = g(\Theta)$, обладающая свойством:

$$\forall \theta \in \Theta \ P_{\theta}(g(\theta) \in \widetilde{G}_{\gamma}) \geq \gamma.$$

То есть множество, с достаточной вероятностью содержащее оцениваемую величину.

Определение. В случае одномерной оценки чаще всего доверительные области надежности выбирают в виде промежутков, которые называются *доверительными интервалами*.

Определение. В асимптотическом случае (когда имеется последовательность оценок и статистических экспериментов) последовательность асимптотических областей надежности $\tilde{G}_{n,\gamma}$ задается условием:

$$\forall \theta \in \Theta \lim P_{n,\theta}(g(\theta) \in \widetilde{G}_{n,\gamma}) \geq \gamma.$$

Определение. Аналогично задается последовательность асимптотических доверительных интервалов в случае одномерной характеристики.

7 Определение несмещенности и асимптотической нормальности оценки характеристики. Построение доверительного интервала для характеристики на базе асимптотической нормальности ее оценки.

Определение. Напомним, оценка называется несмещенной, если

$$b(\hat{g},\theta) = g(\theta) - E_{\theta}(\hat{g}) = 0.$$

Определение. Последовательность оценок \hat{g}_n называется асимптотически нормальной, если

$$\sqrt{n} \cdot (\hat{g}_n - g(\theta)) = Y_n \xrightarrow{P_{n,\theta}} Y \sim N(0, \Delta^2(\theta)).$$

Определение. Величина $\Delta(\theta)$ из определения асимптотически нормальной оценки называется *нормирующим множителем*.

Замечание. Определение асимптотически нормальной оценки можно переписать так:

$$\frac{\sqrt{n}\cdot(\hat{g}_n-g(\theta))}{\Delta(\theta)}\stackrel{P_{n,\theta}}{\longrightarrow} Y\sim N(0,1).$$

На базе асимптотической нормальности можно построить доверительный интервал. Выпишем определение асимптотической нормальности:

$$Y_n = \frac{\sqrt{n} \cdot (\hat{g} - g(\theta))}{\Delta(\theta)} \to N(0, 1).$$

Это буквально означает:

$$P_{n,\theta}(Y_n < t) \to F_{N(0,1)}(t).$$

Раскроем определение Y_n , возьмем его по модулю и воспользуемся квантилью:

$$P_{n,\theta}\left(\left|\frac{\sqrt{n}\cdot(\hat{g}-g(\theta))}{\Delta(\theta)}\right| < t_{\gamma}\right) \to \gamma \iff P_{n,\theta}\left(\frac{\Delta(\theta)}{\sqrt{n}}t_{\gamma} + \hat{g} > g(\theta) > -\frac{\Delta(\theta)}{\sqrt{n}}t_{\gamma} + \hat{g}\right) \to \gamma.$$

Здесь $\gamma = P(|\xi| < t_{\gamma}), \; \xi \sim N(0, 1).$

8 Постановка задачи проверки гипотез

Определение. *Гипотезой* называется множесто предполагаемых зафиксированных значений некоторого подмножества неизвестных параметров:

$$H: \theta \in \Theta_H \subseteq \Theta$$
.

Определение. Гипотезу называют *простой*, если |H| = 1.

Определение. Гипотезу называют *сложной*, если |H| > 1.

Определение. Гипотезами *согласия* называют набор из двух гипотез: основной H_0 и альтернативы H_1 , причем $H_0 = \overline{H_1}$.

Определение. Правило принятия или отклонения основной гипотезы H_0 называют *тестом* (*критерием*) проверки гипотезы:

$$\varphi(\mathfrak{X}):\mathfrak{X}_n\to\{0,1\}.$$

При этом:

- $\mathfrak{X}_{n,0}$ называют допустимым множеством.
- $\mathfrak{X}_{n,1}$ называют критическим множеством.
- $\mathfrak{X}_{n,0} \sqcup \mathfrak{X}_{n,1} = \mathfrak{X}_n$.

Определение. Случайная величина $L(\overline{X}): \mathcal{X}_n \to \mathbb{R}$ называется *тестовой статистикой*, если она служит порогом для правила принятия или отклонения основной гипотезы:

$$\varphi(\overline{X}) = \begin{cases} 0, \ L(\overline{X}) < T(H_0) \\ 1, \ L(\overline{X}) \ge T(H_1) \end{cases}.$$

Где T называют порогом принятия решения.

9 Ошибки первого и второго рода и их вероятности как критерий качества критерия (теста) проверки гипотез. Подход Неймана-Пирсона.

Определение. *Ошибкой I рода* называют отклонение основной гипотезы, в то время как она была верна.

Определение. *Ошибкой II рода* называют принятие основной гипотезы, в то время как она не была верна.

Определение. α называют вероятностью ошибки І рода:

$$\alpha(\varphi,\theta) \stackrel{def}{=} P_{\theta}(\mathcal{X}_{n,1}), \ \theta \in \Theta_{H_0}.$$

Определение. Уровнем значимости теста называют верхнюю границу вероятности ошибки I рода по всем возможным наблюдаемым значениям неизвестных параметров, отвечающих основной гипотезе:

$$lpha(arphi) \stackrel{def}{=} \sup_{ heta \in \Theta_{Ho}} lpha(arphi, heta).$$

Определение. β называют вероятностью ошибки II рода:

$$\beta(\varphi,\theta) \stackrel{def}{=} P_{\theta}(\mathcal{X}_{n,0}), \ \theta \in \Theta_{H_1}.$$

Определение. Мощностью теста называют следующую величину:

$$\gamma(\varphi,\theta) \stackrel{def}{=} 1 - \beta(\varphi,\theta).$$

Подход Неймана-Пирсона. Зафиксируем $\alpha \in (0,1)$ (обычно выбирают малое значение). Будем считать это значение минимальной допустимой величиной ошибки I рода (допустимый уровень значимости).

Рассмотрим множество всех тестов таких, что:

$$\overline{\Phi}_{\alpha} = \{ \varphi = \varphi(x) \mid \alpha(\varphi) \leq \alpha \}.$$

Среди этих тестов выбирается тест с минимальным значением β . В асимптотических задачах ограничения накладываются на предельные значения.