	Arquitetura de Computadores I	
	Aritmética binária	
	António do Duito Fornovi	
	António de Brito Ferrari	
	ferrari@ua.pt	
ı		
	1. Soma e subtração	
	21 001110 0 0000101900	
	ABF - AC 1 - Aritmética 2	
,		
ı		
	. ~	
	Representação de Inteiros	
	• No. de bits = comprimento de palavra da	
	arquitetura	
	- MIPS: 32-bits	
	 Representação de valores negativos - 	
	2's complement	
	 Bit de sinal: bit mais significativo (com peso -2ⁿ⁻¹) 	
	 – Gama de representação: -2ⁿ⁻¹ (2ⁿ⁻¹ − 1) 	

Soma de inteiros

- Unsigned: se valor da soma > (2ⁿ 1) carry-out da posição mais significativa (C_n = 1) então valor da soma excede a gama de representação - não representável em n bits: $A+B > (2^n - 1)$
- 2's complement: se $C_n \neq C_{n-1} (C_n \mathbf{xor} C_{n-1} = 1)$ overflow - valor da soma excede a gama de representação não representável em n bits: $A+B > (2^{n-1}-1)$ ou A+B <
 - MIPS: quando ocorre overflow em add, addi, sub é gerada uma exceção

Subtração de inteiros

• Em 2's complement: subtrair é somar ao subtraendo o complemento para 2 do subtrator:

$$A-B=A+(2^n-B)$$

• Obtenção do 2's complement:

Somadores

• Somador de 1 bit: Full-Adder (FA) Entradas: \mathbf{a} , \mathbf{b} , \mathbf{c}_{in}

Saídas: s, c_{out} $s = a xor b xor <math>c_{in}$

- $c_{out} = (a.b)$ or $(a. c_{in})$ or $(b. c_{in})$
- Somadores de n-bits:
 - Ripple-Carry Adder (RCA) ligação em série de n FAs
 - Lento: t_{delay} = nt_{FA}
 - Carry-Lookahead Adder (CLA)
 - Mais rápido, mais caro

-			
-			
_			
-			
-			
-			
-			
-			
_			
_			
-			
-			
-			
_			
-			
-			

2. Multiplicação

Multiplicador série: otimização

- Modifique o algoritmo add-shift de modo a utilizar uma ALU de 32-bits e um registo de 32bits para armazenar o multiplicando. Desenhe o respetivo esquema do multiplicador.
- Usando o desenho otimizado em 1 melhore-o assumindo que inicialmente o multiplicador está armazenado na metade direita do registo produto. Escreva o algoritmo modificado e desenhe o respetivo multiplicador.
- 3. Que modificações teria de introduzir para multiplicar em 2's complement?

AC 1. Asitro-Atico

Algoritmo de Booth (signed multiplication)

Recodificação do multiplicador:

y _i	y _{i-1}	Operação	
0	0	Shift	
0	1	Add - Shift	Fim de sequência de 1s
1	0	Add 2's complement - Shift	Início de sequência de 1s
1	1	Shift	

• Algoritmo baseia-se na decomposição de sequências de 1s:

 $\sum_{i=0}^{k-1} y_i = 2^k - 2^0$ Exemplo: 1111 = 10000 - 0001

• Algoritmo para multiplicador de n-bits: $i = 0 \dots n$; $i_{-1} = 0$

Algoritmo de Booth "2 bits at a time"

y _{i+1}	y _i	y i-1	Operação	
0	0	0	Shift 2 bits	Sequência de Os
0	0	1	Add X – shift 2 bits	Fim de sequência de 1s na posição (i-1)
0	1	0	Add X - shift 2 bits	1 isolado na posição i
0	1	1	Add 2*X - shift 2 bits	Fim de sequência de 1s na posição i
1	0	0	Sub 2*X - shift 2 bits	Início de sequência de 1s na posição (i+1)
1	0	1	Sub X - shift 2 bits	Fim de sequência de 1s na posição (i-1) e Início de sequência de 1s na posição (i+1)
1	1	0	Sub X - shift 2 bits	Início de sequência de 1s na posição i
1	1	1	Shift 2 bits	Sequência de 1s

Metade do número de Produtos Parciais gerados – **n/2 ciclos**

Multiplicação no MIPS

- Dois registos de 32-bit para o produto
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instruções

 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits

 - mul rd, rs, rtLeast-significant 32 bits of product -> rd

Divisor otimizado Divisor otimizado Divisor otimizado Divisor otimizado Divisor otimizado Semin right on the properties of the proper

_ , ,	
Exercício	
 Reescrever o fluxograma da divisão para a versão otimizada do divisor 	
ABF - AC 1 - Aritmética 22	
Divisão no MIPS	
 Registos HI/LO usados para o resultado HI: resto da divisão 	
LO: quocienteInstruções	
-div rs, rt / divu rs, rt	

- No divide-by-0 checking

• Cabe ao software fazer o teste, se necessário — mfhi, mflo para aceder ao resultado