

Systemy wbudowane

Witold Kozłowski

Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153

https://std2.phys.uni.lodz.pl/mikroprocesory/

Systemy wbudowane

Kierunek: Informatyka PRACOWNIA DYDAKTYCZNA

Uwaga !!!

Proszę o wyłączenie telefonów komórkowych

na wykładzie i laboratorium

Systemy wbudowane

Kierunek: Informatyka PRACOWNIA DYDAKTYCZNA

Wykład 2.

Język Bascom Basic AVR

Obsługa portów I/O

Zestaw znaków

Zestaw znaków BASCOM obejmuje znaki podstawowego alfabetu, liczby oraz znaki specjalne.

W skład liczb języka BASCOM wchodzą liczby z zakresu 0 do 9 a także zapis w postaci binarnej i szesnastkowej:

Zapis szesnastkowy powinien być poprzedzony przedrostkiem - &H

zapis bitowy powinien być poprzedzony przedrostkiem - &B

Za pomocą znaków podstawowego alfabetu możemy definiować stałe i zmienne oraz przydzielać im wartości:

STAŁE ZMIENNE

Const nazwa = liczba

Const nazwa = "tekst"

Const nazwa = wyrażenie

Przykład:

Const H = 5 - definicja stałej liczbowej

Const B = "witaj" - definicja stałej tekstowej

Const X = (H+6)+2 - definicja stałej obliczonej

Przykład:

x = 5 - zmienna x jest typu Byte

X = 5.1 - zmienna x jest typu Single

x = "witaj" - zmienna x jest typu String

x = X+6 - zmiennej przypisano wynik operacji matematycznej

W języku BASCOM BASIC zdefiniowano kilka podstawowych typów danych:

Bit	1/8 bajta	Bit może _l	e przyjmować tylko dwie wartości: <mark>0 i 1</mark> .					
Byte	1 bajt		Bajt może przechowywać dowolną dodatnią liczbę całkowitą z zakresu					
Word	2 bajty	Typ Word	może przechowywać dowolną dodatnią liczbę całkowitą z zakresu 5535.					
Integer	2 bajty	,, J	Typ Integer może przechowywać dowolną liczbę całkowitą z zakresu -32768 do +32767.					
Long	4 bajty	Typ Long może przechowywać dowolną liczbę całkowitą z zakresu -2 ³² do 2 ³² -1 -4294967296 do 4294967295						
Single	4 bajty	Typ Single	e może przechowywać dowolną liczbę stało lub zmiennoprzecinkową.					
String	max. 254	bajty	Typ String przechowuje dowolny ciąg znaków o długości nie większej niż 254 znaki. Ciąg ten zakończony jest zawsze znakiem 0. Każdy znak to jeden bajt. Tak więc tekst o długości 10 znaków zajmuje 11 bajtów.					

Zestaw znaków

Poniżej zestawiono znaki które posiadają szczególne znaczenie w programach w języku BASCOM BASIC:

ENTER	Oznacza koniec linii (Znak ten w nomenklaturze ASCII nazywa się CR)				
	Pusty (lub spacja) – znak rozdzielający				
1	Apostrof – <u>oznacza początek komentarza</u>				
*	Gwiazdka – znak operacji mnożenia				
+	Plus – znak operacji dodawania				
,	Przecinek – <u>znak rozdzielający argumenty instrukcji</u>				
-	Minus – znak operacji odejmowania				
	Kropka – oddziela część całkowitą od ułamkowej				
/	Kreska ukośna – znak operacji dzielenia				
	Dwukropek – <u>rozdziela instrukcje zapisane w jednej linii</u>				
"	Cudzysłów – rozpoczyna i kończy dane tekstowe				
;	Średnik – <u>rozdziela argumenty instrukcji wejścia/wyjścia</u>				
<	Mniejszy niż – znak operacji porównywania				
=	Znak równości – występuje w operacjach przypisania oraz porównywania				
>	Większy niż – znak operacji porównywania				
\	Odwrotna kreska ukośna – <u>znak dzielenia dla liczb całkowitych</u>				
۸	Daszek – znak operacji potęgowania				

Lista dyrektyw kompilatora

\$ASM

\$BAUD

\$BAUD1

\$BGF

\$BOOT

\$CRYSTAL

\$DATA

\$DBG

\$DEFAULT

\$EEPLEAVE

\$EEPROM

\$EEPROMHEX

\$EXTERNAL

\$INC

\$INCLUDE

\$LCD

\$LCDRS

\$LCDPUTCTRL

\$LCDPUTDATA

\$LCDVFO

\$LIB

\$MAP

\$NOINIT

\$NORAMCLEAR

\$PROG

\$REGFILE

\$ROMSTART

\$SERIALINPUT

\$SERIALINPUT1

\$SERIALINPUT2LCD

\$SERIALOUTPUT

\$SERIALOUTPUT1

\$SIM

\$TINY

\$XRAMSIZE

\$XRAMSTART

Lista instrukcji CONFIG

Określają parametry kompilacji

CONFIG 1WIRE

CONFIG ACI

CONFIG ADC

CONFIG ATEMU

CONFIG BCCARD

CONFIG CLOCK

CONFIG COM1

CONFIG COM2

CONFIG DATE

CONFIG DEBOUNCE

CONFIG GRAPHLCD

CONFIG I2CDELAY

CONFIG I2CSLAVE

CONFIG INTX

CONFIG KBD

CONFIG KEYBOARD

CONFIG LCD

CONFIG LCDBUS

CONFIG LCDMODE

CONFIG LCDPIN

CONFIG PIN

CONFIG PORT

CONFIG PS2EMU

CONFIG RC5

CONFIG SCL

CONFIG SDA

CONFIG SERIALIN

CONFIG SERIALIN1

CONFIG SERIALOUT

CONFIG SERIALOUT1

CONFIG SERVOS

CONFIG SPI

CONFIG TCPIP

CONFIG TIMERO

CONFIG TIMER1

CONFIG TIMER2

CONFIG WAITSUART

CONFIG WATCHDOG

CONFIG X10

Lista instrukcji

LOAD

LOADADR 1WRESET **ELSE** LOADLABEL **1WWRITE ENABLE** LOCATE **ALIAS END** LOCAL LOOKUPSTR() **BAUD EXIT BCCALL FLUSH LOWERLINE BCDEF** FOR - NEXT ON INTERRUPT **BCRESET FOURTHLINE ON VALUE BITWAIT FUNCTION OPEN BYREF, BYVAL GET** OUT CALL **GLCDCMD POKE** CIRCLE **GLCDDATA** POPALL CLS **GOSUB POWERDOWN** GOTO **CLOSE POWERSAVE CLOSESOCKET** HOME **PRINT CONST I2CINIT PRINTBIN CURSOR I2CRECEIVE PS2MOUSEXY I2CSEND** DATA **PSET** DBG **I2CSTART, I2CSTOP, PULSEIN I2CRBYTE, I2CWBYTE DEBOUNCE PULSEOUT DECR IDLE PUSHALL DECLARE SUB** IF - THEN - ELSE - END IF PUT **DECLARE FUNCTION INCR** RC5SEND DEFBIT, DEFBYTE, INITLCD RC6SEND **DEFINT**, **DEFWORD INPUTBIN READ DEFLCDCHAR INPUTHEX READEEPROM DELAY INPUT** READMAGCARD DIM **KILL** REM **DISABLE** LCD RESET **DISPLAY** LCDAT **RESTORE** DO - LOOP **LCDCONTRAST RETURN DTMFOUT** LINE **ROTATE ECHO** LINE INPUT **SEEK**

DRIVEREADSECTOR()

INT()

Lista funkcji

SPACE()

1WIRECOUNT()	DRIVERESET()	IP2STR()	SPC()
1WREAD()	DRIVERESET()	ISCHARWAITING()	SPIMOVE()
1WSEARCHFIRST()	DRIVEWRITESECTOR()	LCASE()	SQR()
1WSEARCHNEXT()	EOF()	LEFT()	STR()
1WVERIFY()	EXP()	LEN()	STRING()
ABS()	FIX()	LOC()	TAN()
ACOS()	FILEATTR()	LOF()	TANH()
ASC()	FILEDATE()	LOG()	TRIM()
ASIN()	FILEDATETIME()	LOG10()	UCASE()
ATN()	FILELEN()	LOOKUP()	VAL()
ATN2()	FILETIME()	LOOKUPSTR()	VARPTR()
BASE6DEC()	FRAC()	LOOKDOWN()	WAITKEŸ()
BCD()	FREEFILE()	LOW()	X10DETEČT()
BIN()	FUSING()	LTRIM()	SELECT CASE - END
BINVAL()	GETADC()	MAKEBCD()	SELECT
BIN2GREY()	GETATKBD()	MAKEDEC()	SENDSCAN
CHECKSUM()	GETDSTIP()	MAKEINT()	SENDSCANKBD
CHR()	GETDSTPORT()	MAX()	SERIN
cos()	GETKBD()	MID()	SEROUT
COSH()	GETRC()	MIN()	SET
CPEEK()	GETRC5()	PEEK()	SETFONT
CPEEKH()	GETSOCKET()	POWER()	SETTCP
CRC8()	GREY2BIN()	RAD2DEG()	SHIFT
CRC16()	HEX()	RIGHT()	SHIFTCURSOR
DEG2RAD()	HEXVAL()	RND()	SHIFTIN , SHIFTOUT
DIR()	HIGH()	ROUND()	SHIFTLCD
DISKFREE()	HIGHW()	RTRIM()	SHOWPIC
DISKSIZE()	INITFILESYSTEM()	SEEK()	SHOWPICE
DRIVECHECK()	INKEY()	SGN()	SOUND
DRIVEGETIDENTITY		SIN()	SONYSEND
DRIVEINIT()	INSTR()	SINH()	SPIIN

SWAP SPIOUT START STOP SUB THIRDLINE TOGGLE UPPERLINE VARPTR() WAIT WAITMS WAITUS WHILE - WEND **WRITE WRITEEEPROM** X10SEND

SPIINIT

Pisanie programu w Baskom Basicu nie jest trudne ale aby zwiększyć jego przejrzystość programu można podzielić go na bloki:

Dyrektywy dla kompilatora

\$regfile = "m8def.dat"

\$crystal = 8000000

'....

'-----

'informuje kompilator o pliku dyrektyw wykorzystywanego mikrokontrolera

'informuje kompilator o częstotliwości oscylatora taktującego mikrokontroler

Instrukcje konfiguracji peryferiów oraz urządzeń zewnętrznych

Config Watchdog = 2048

Config Timer0 = Timer, Prescale = 1024

Config Portc = Output

'....

'....

'konfiguracja Watchdoga

'konfiguracja Timer0

'konfiguracja portu C

Deklaracje nagłówków funkcji oraz procedur a także instrukcji konfigurujących przerwania

Declare Sub Inkrementuj(liczb As Byte) Declare Function Dodaj(c As Integer, D As Integer On Timer0 prze_licz	Procedura inkrementacji ger) 'funkcja dodawania 'przerwanie od przepełnienia Timer0
Definicje zmiennych, stałych i aliasów	
Dim Liczba As Byte	'definicja zmiennej typu Byte
Dim A As Integer , B As Integer	'definicje zmiennych typu Integer
Dim Wynik As Integer	'definicja zmiennej typu Integer
Const $X = 5$	'definicja stałej X
W Alias A	'definicja aliasu, W wskazuje na zmienną A

Program główny

End

A = 100
B = 80
Liczba = 5
Call Inkrementuj(liczba)
Print Liczba
Wynik = Dodaj(a, B)
Print Wynik
......

'przypisanie zmiennej A wartości 100
'przypisanie zmiennej B wartości 80
'przypisanie zmiennej Liczba wartości 5
'wywołanie procedury Inkrementacji
'wyświetlenie wartości zmiennej liczba (wartość 6)
'wywołanie funkcji Dodaj
'wyświetlenie wartości zmiennej Wynik (wartość 180)

'Koniec programu głównego

Definicje wcześniej zadeklarowanych funkcji oraz procedur

Sub Inkrementuj(liczb As Byte)

Incr Liczb

End Sub

Function Dodaj(c As Integer, D As Integer) As Integer

Dodaj = C + D

End Function

.....

.....

'Treść procedury inkrementującej wartość parametru Liczb

'inkrementacja zmiennej Liczb

'koniec procedury

'Treść funkcji dodającej wartości parametrów C i D

'instrukcja dodaje wartości

'koniec funkcji

Pozostałe procedury lub funkcje użytkownika

<u>Dodatkowo w tej części programu mogą znajdować się podprogramy, podprogramy obsługi przerwań oraz tablice stałych</u>.

Podstawy języka – struktura pliku piku podstawy języka – struktura pliku podstawy języka – struktura pliku

Konfiguracja portów

Każdy mikrokontroler wyposażony jest w porty służące do komunikowania się mikrokontrolera z otoczeniem.

Liczba dostępnych portów jest różna i zależna od typu mikrokontrolera.

Port składa się z kilku linii, dla mikrokontrolerów 8 bitowych nie więcej niż 8.

Porty w mikrokontrolerze AVR są dwukierunkowe, tzn. mogą być wejściami albo wyjściami.

Konfiguracja portów

W przestrzeni adresowej rejestrów specjalnych są aż trzy rejestry do obsługi portu:

- PORTx wartość wpisana do tego rejestru jest dostępna na zewnętrznych liniach portu
- DDRx rejestr ten służy do konfigurowania linii portu jako wejścia lub wyjścia
- PINx rejestr ten odwzorowuje bezpośrednio stan logiczny wyprowadzeń danego portu
- Gdzie x nazwa portu B,C,D...

Rejestry specjalne mikrokontrolera Atmega 8 Jest ich 64

> PortB PortC PortD

Address	Name	Bit 7	Bit 6	Bit 6	Bit 4	Bit 3	BIÉ 2	Blt 1	Bit 0
0x3F (0x5F)	SREG	1	т	н	8	v	N	z	С
0x3E (0x5E)	SPH	-	-	-	-	-	SP10	SP9	SP8
0x3D (0x5D)	SPL	8P7	SP6	8P5	SP4	SP3	8P2	SP1	SP0
0x3C (0x5C)	Reserved								
0x3B (0x5B)	GICR	INT1	INTO	-	-	-	-	IVSEL	IVCE
0x3A (0x5A)	GFR	INTF1	INTFO	-	-	-	-	-	-
0x39 (0x59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	-	TOIE0
0x38 (0x58)	TIER	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOVD
0x37 (0x57)	SPMCR	SPMIE	RWWSB	-	RWWSRE	BLBSET	POWRT	PGERS	SPMEN
0x38 (0x56)	TWCR	TWINT	TWEA	ATSWT	TWSTO	TWWC	TWEN	-	TWIE
0x35 (0x55)	MCUCR	SE	SM2	SM1	SMO	18011	ISC10	18001	19000
0x34 (0x54)	MCUCSR TCCR0	-	-	-	-	WDRF	BORF CB02	EXTRF	PORF
0x33 (0x53) 0x32 (0x52)	TONTO	-	-	-	TimesCou	nter0 (8 Bits)	0802	C801	C800
0x31 (0x51)	OSCCAL					Ibration Register			
0x30 (0x50)	SFIOR	-	-	-	-	ACME	PUD	PSR2	PSR10
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WOM11	WOM10
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WOM12	CS12	CS11	CS10
0x2D (0x4D)	TCNT1H			Time	edCounter1 - Co	unter Register His	th byte		
0x2C (0x4C)	TCNT1L					unter Register Lo			
0x2B (0x4B)	OCR1AH			Timer/Coo	unter1 - Output C	Compare Register	A High byte		
0x2A (0x4A)	OCR1AL			Timer/Co	unter1 - Output 0	compare Register	A Low byte		
0x29 (0x49)	OCR18H			Timer/Cor	unter1 - Output C	Compare Register	B High byte		
0x28 (0x48)	OCR1BL			Timer/Co	unter1 - Output 0	compare Register	B Low byte		
0x27 (0x47)	ICR1H					Capture Register			
0x26 (0x46)	ICR1L			Timers	Counter1 - Input	Capture Register	Low byte		
0x25 (0x45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	C822	C821	CS20
0x24 (0x44)	TCNT2			-		nter2 (8 Bits)			
0x23 (0x43)	OCR2				men/Counter2 Out	put Compare Re		0.000410	money m
0x22 (0x42)	ASSR	-	-	-	-	A82	TCN2UB	OCR2UB	TCR2UB
0x21 (0x41)	WDTCR UBRRH	URSEL	-	-	WDCE	WDE	WDF2	WDP1 R[11:8]	WDP0
0x20 ⁽¹⁾ (0x40) ⁽¹⁾	UCSRC	URSEL	UMSEL	UPM1	UPMO	USBS	UCSZ1	UCSZ0	UCPOL
0x1F (0x3F)	EEARH	ONSEL	UWIGEL	-	OF-MO	0000	- UCSE1	OCGEO	EEARS
0x1E (0x3E)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEARO
0x1D (0x3D)	EEDR	and the same of	557	20110		Data Register	ELD-ITE	Large	
0x1C (0x3C)	EECR	-							
0x1B (0x3B)	Reserved								
0x1A (0x3A)	Reserved	1							
0x19 (0x39)	Reserved								
0x18 (0x38)	PORTB	PORTB7	PORTES	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DD82	DOB1	DDB0
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINBO
0x15 (0x35)	PORTC	-	PORTO8	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTCO
0x14 (0x34)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0
0x13 (0x33)	PINC	-	PINO8	PINC5	PINC4	PINC3	PINC2	PINC1	PINCO
0x12 (0x32)	PORTD	PORTD7	PORTD6	PORTD6	PORTD4	PORTO3	PORTD2	PORTD1	PORTDO
0x10 (0x31)	DDRD	DDD7	DDD8	DDD6	DDD4	DDD3	DDD2	DDD1	DDDD
0x0F (0x2F)	SPDR	PIND7 PIND8 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 SPI Data Register							
OxDE (Ox2E)	SPSR	SPIF	WCOL		GF1 DB	- Augusti	-	_	SPI2X
0x0D (0x2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPRO
0x0C (0x2C)	UDR			22.0		Data Register		2.71	2.74
0x0B (0x2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM
0xDA (0x2A)	UCSRB	ROCCIE	TXCIE	UDRIE	RXEN	TXEN	UC8Z2	FXB8	TXB8
0x09 (0x29)	UBRRL					te Register Low b			
0x06 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0
0x07 (0x27)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUXD
0x06 (0x26)	ADCSRA	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0
0x05 (0x25)	ADCH	ADC Data Register High byte							
0x04 (0x24)	ADCL	ADC Data Register Low byte							
0x03 (0x23)	TWDR					terface Data Regi			,
0x02 (0x22)	TWAR	TWAS	TWA5	TWA4	TWA3	TWA2	TWA1	TWAD	TWGCE

Konfiguracja portów

DDBn	PORTBn	Tryb pracy	Podciąganie	Komentarz
0	0	Wejście	Nie	Trójstanowe (Hi-Z)
0	1	Wejście	Tak	Z linii PBn może wypływać prąd, gdy końcówka będzie ściągnięta do masy.
1	0	Wyjście	Nie	Stopień wyjściowy typu Push-Pull, stan 0
1	1	Wyjście	Nie	Stopień wyjściowy typu Push-Pull, stan 1

Wyjście typu "Push-Pull" - PP

Wyjście typu Push-Pull posiada dwa stany aktywne. W stanie załączenia na wyjście podawane jest napięcie zasilania (+VCC), a w stanie wyłączenia na wyjście podawany jest sygnał masy (GND).

Wyjście

Konfiguracja portów

Wyjście ustawione na stan "1"

Wyjście ustawione na stan "0"

Port PB (i inne) może także bezpośrednio sterować diodami LED, gdyż prąd wpływający (linia portu na poziomie niskim) może mieć wartość nawet do 20mA.

Uwaga: Łączna obciążalność prądowa portów mikrokontrolera AVR nie powinna przekraczać 200mA, gdyż może nastąpić jego uszkodzenie

Wejście

Konfiguracja portów

Wszystkie końcówki portów (B,C,D) posiadają rezystory podciągające, które mogą być włączane osobno dla każdego wyprowadzenia.

Gdy końcówki np. portu PB pracując jako wejścia i są zewnętrznie ściągnięte do masy, to przy włączonym wewnętrznym podciąganiu będą źródłem prądu wypływającego.

Konfiguracja portów w Bascom Basic

Ustawia kierunek działania portu.

Składnia:

Config Portx = tryb

Config Pinx.y = tryb

gdzie:

x – nazwa porty (B,C,D)

y – numer lini portu (0...7)

tryb - możliwe jest podanie:

INPUT OUTPUT

- gdy port (końcówka) ma być wejściem
- gdy port (końcówka) ma być wyjściem.

Konfiguracja portów w Bascom Basic

Przykład:

Konfiguracja całego portu jako wejścia lub wyjścia:

Config Portb = Input

- wszystkie linie portu B ustanowione jako wejścia

Config Portd = Ouput

- wszystkie linie portu D ustanowione jako wyjścia

Konfigurowanie poszczególnych linii portów:

Config Pinb.0 = Input

- linia 0 portu B ustawiona jako wejście

Config Pinb.0 = 0

- zapis równorzędny powyższemu

Config Pinb.2 = Ouput

- linia 2 portu B ustawiona jako wyjście

Config Pinb.2 = 1

zapis równorzędny powyższemu

Instrukcja Config Portx umożliwia także selektywne ustawienie linii portów:

Config Portd = &B0001111

- linie 7...4 portu D będą wejściami

- linie 3...0 portu D będą wyjściami

Cel ćwiczenia

- 1. Analiza pracy Programu 0 przy użyciu symulatora programowego i sprzętowego
- 2. Badanie zależności czasowych wykonywanych instrukcji (*Set* i *Reset*) Programu 0 podczas symulacji i rzeczywistej pracy mikrokontrolera
- 3. Wyznaczenie powyższych wartości wykorzystując przyrządy pomiarowe (oscyloskop i analizator stanów logicznych)
- 4. Określenie ilości cykli pracy mikrokontrolera przypadających na wykonywane instrukcje
- 5. Zaprogramowanie mikrokontrolera programem napisanym w asemblerze realizującym to samo zadanie co program 0 napisany w języku wysokiego poziomu w Bascom Basic
- 6. Porównanie zależności czasowych sterowania portem Pb0 realizowanych programem napisanym w asemblerze i Bascom Basic
- 7. Określenie ilości cykli pracy mikrokontrolera przypadających na wykonywane instrukcje wysłania do port PB0 stanu wysokiego "1" oraz niskiego "0" realizowanych za pomocą dwóch programów: napisanych w asemblerze i Bascom Basic

Schemat połączenia diody LED do linii PBO portu B mikrokontrolera

Program 0 Symulacja programowa

Program 0 Symulacja sprzętowa

Wpisanie programu monitora do pamięci Flash ROM

Schemat połączenia diody LED Oraz przyrządów pomiarowych

Program 0

Zaprogramowanie mikrokontrolera docelowym programem 0

Przebadanie zależności czasowych podczas rzeczywistej pracy mikrokontrolera realizującego programO i porównanie ich z praca podczas symulacji sprzętowej

Przebadanie zależności czasowych podczas rzeczywistej pracy mikrokontrolera realizującego program0 i porównanie ich z praca podczas symulacji sprzętowej

Program 0 - Asembler

Zaprogramowanie mikrokontrolera programem napisanym w <u>asemblerze</u> realizującym to samo zadanie co Program 0

Onboard parallel Mode: EPP/SPP

Authorizat device predisabluer

Wpisanie do pamięci Flash ROM

Programu asemblera

Program 0 - Asembler

Zaprogramowanie mikrokontrolera programem napisanym w <u>asemblerze</u> realizującym to samo zadanie co Program O

```
E:\Mikroprocesory\Asembler\CwiczeniaAemble... -
  nolist
  .include"m8def.inc"
  ldi r16,0b00000001
  out ddrb.r16
  ldi r17.0b00000000
  loop:
  out portb, r16
  out portb,r17
  rjmp loop
  .exit
```

Program 0- Asembler

Przebadanie zależności czasowych podczas rzeczywistej pracy mikrokontrolera realizującego <u>program napisany w asemblerze</u> i porównanie ich z pracą programu O napisanego w Bascom Basic

Program 2

Instrukcja *Toggle* zmieniająca stan portu na przeciwny.

Jest równoznaczna dwom instrukcją

Set i Reset

Program 2

Schemat połączenia diody LED do linii PBO portu B mikrokontrolera

Instrukcja Toggle zmieniająca stan portu na przeciwny.

Program 2

Cel ćwiczenia 0 - 2

1. Celem przeprowadzonych ćwiczeń jest zapoznanie się z generowaniem impulsów o określonym czasie trwania.

	Program0 - Bascom instrukcje <i>Set, Reset</i>	ProgramO - asembler	Program2 – Bascom Instrukcja <i>Toggle</i>
Czas trwania stanu "0" na wyjściu portu PB0			
Czas trwania stanu "1" na wyjściu portu PB0			
T – okres			
f – częstotliwość			

Częstotliwość sygnału

$$f = 1/T$$

Konfiguracja portów

Porty PB, PC, PD mogą bezpośrednio sterować diodami LED, gdyż prąd wpływający (linia portu na poziomie niskim) może mieć wartość

tylko do 20mA !!!

Uwaga: Łączna obciążalność prądowa portów mikrokontrolera AVR nie powinna przekraczać 200mA, gdyż może nastąpić jego uszkodzenie

Oscyloskop cyfrowy

Możemy rejestrować przebiegi napięć zmienne w czasie oraz zapisywać je w pamięci wewnętrznej oscyloskopu

Analizator Stanów Logicznych

Możemy rejestrowane w czasie stany logiczne ("0", "1") oraz zapamiętywać je w pamięci wewnętrznej analizatora

Analizator Stanów Logicznych ASL - 2016

Połączenie analizatora z komputerem

Port drukarkowy

LPT1

Adres 378H

Tryb pracy portu EPP

Analizator Stanów Logicznych ASL - 2016

Analizator Stanów Logicznych ASL - 2016

Analizator Stanów Logicznych ASL - 2016

Na koniec
Program 1
dodatkowy
waż świetlny

Program 1 dodatkowy

Schemat dołączenia diod LED do mikrokontrolera

Program węża świetlnego sterującego 8-mioma diodami LED dołączonymi do portu D mikrokontrolera

