Chapter ONE Probably Approximately Correct (PAC)

Siheng Zhang zhangsiheng@cvte.com

September 2, 2020

The notes is mainly based on the following book

- Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David, 2014 ¹
- pattern recognition and machine learning, Christopher M. Bishop, 2006 ²
- Probabilistic Graphical Models: Principles and Techniques, Daphne Koller and Nir Friedman, 2009
- Graphical Models, Exponential Families, and Variational Inference, Martin J. Wainwright and Michael I. Jordan, 2008

Corresponding to Chapter 2-5 in UML. This part mainly answers the question:

- What can we know about the generalization error?
- How does the hypothesis set (in application, the choice of classifier/regressor or so on) reflect our prior knowledge, or, inductive bias?

 $^{{\}tt lhttps://www.cs.huji.ac.il/\ shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf}$

 $^{^2} http://users.isr.ist.utl.pt/ \\ wurmd/Livros/school/Bishop\%20-\%20 Pattern\%20 Recognition\%20 And\%20 Machine\%20 Learning\%20-\%20 Springer\%20\%202006.pdf$

³https://mitpress.mit.edu/books/probabilistic-graphical-models

⁴https://people.eecs.berkeley.edu/wainwrig/Papers/WaiJor08_FTML.pdf

Contents

1	Formulation	2
	1.1 The learner's input, output, and evaluation	2
	1.2 From Empirical Risk Minimization (ERM) to Probably Approximately Correct (PAC)	2
	1.2.1 ERM may lead to overfitting	2

1 Formulation

- 1.1 The learner's input, output, and evaluation
 - input:
 - Domain Set: instance $x \in \mathcal{X}$.
 - Label Set: label $y \in \mathcal{Y}$. Currently, just consider the binary classification task.
 - Training data: $S = ((x_1, y_1), \dots, (x_m, y_m))$ is a finite sequence.
 - output: hypothesis (or classifier, regressor) $h: \mathcal{X} \to \mathcal{Y}$.
 - data generation model: Assume that the instances are generated by some probability distribution \mathcal{D} , and there is some 'correct' labeling function (currently): $f: \mathcal{X} \to \mathcal{Y}$.

remark1: The learner is blind to the data generation model.

remark2: usually called 'training set', but must be 'training sequence', because the same sample may repeat, and some training algorithms is order-sensitive.

• Generalization error: a.k.a, true error/risk.

$$L_{\mathcal{D},f}(h) \stackrel{def}{=} \underset{x \sim \mathcal{D}}{\mathbb{P}} [h(x) \neq f(x)] \stackrel{def}{=} \mathcal{D}(x : h(x) \neq f(x)) \tag{1}$$

- 1.2 From Empirical Risk Minimization (ERM) to Probably Approximately Correct (PAC)
- 1.2.1 ERM may lead to overfitting