Lista De Exercícios 03

Consideramos que:

O alfabeto lógico possui:

Símbolos de pontuação: "(" e ")"

Símbolos de Verdade: True e False

Símbolos Proposicionais: P, Q, R, S P1, Q1, R1.....

Conectivos:¬,∧,∨,→ e ↔

Prove que os alfabetos $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{nand\}$ e $\{nor\}$ são completos:

Primeiramente faremos o Alfabeto {¬, ^}:

A negação (¬) e conjunção (∧) são conectivos básicos, então não preciso me deter aqui.

Para disjunção (v), aplicando De Morgan, temos:

$$P \lor Q \equiv \neg \neg (P \lor Q) \equiv \neg (\neg P \land \neg Q)$$

Original $\equiv Dupla \ negação \equiv De \ Morgan$

Para Implicação (\rightarrow) , p \rightarrow q , pela propriedade de substituição,percebemos que P $\land \neg Q$, caso negado, se equivale. Logo:

$$P \rightarrow Q \equiv \neg P \lor Q \equiv \neg \neg (\neg P \lor Q) \equiv \neg (\neg \neg P \land \neg Q) \equiv \neg (P \land \neg Q)$$

Original = Propriedade de Substituição = Dupla negação = De Morgan

A Equivalência (\leftrightarrow) , p \leftrightarrow q, pode ser representada como $(P \to Q) \land (Q \to P)$, pela propriedade de substituição. Logo: $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$.

Usando a propriedade de contraposição teremos: $\neg(P \land \neg Q) \land \neg(Q \land \neg P)$. Tal fórmula nos mostra que o alfabeto $\{\neg, \land\}$ é completo.

Todos os modelos acima estão representados e provados na tabela verdade abaixo:

Р	Q	¬P	¬Q	$\neg P \land \neg Q$	P∨Q	P⊕Q	$\neg(P \land \neg Q)$	P⇔Q	$\neg(Q \land \neg P)$	$\neg(P \land \neg Q) \land \neg(Q \land \neg P)$
Т	Т	F	F	F	Т	Τ	Т	Т	Т	Т
Т	F	F	Т	F	Т	F	F	F	Т	F
F	Т	Т	F	F	Т	Т	Т	F	F	F
F	F	Т	Т	Т	F	Т	Т	Т	Т	Т

Em seguida, o alfabeto {¬, ∨}:

A negação (¬) e disjunção (∨) são conectivos básicos desse alfabeto.

Para conjunção (^):

$$P \vee Q \equiv \neg \neg (P \wedge Q) \equiv \neg (\neg P \wedge \neg Q)$$

Original = Dupla negativa = De Morgan

Para Implicação (→):

$$P \rightarrow Q \equiv \neg P \lor Q$$

Original ≡ Propriedade Substituição.

Equivalência (⇔):

$$\begin{array}{ll} P \Leftrightarrow Q \equiv (P \to Q) \wedge (Q \to P) \equiv (\neg P \vee Q) \wedge (\neg Q \vee P) \equiv \neg \neg ((\neg P \vee Q) \wedge (\neg Q \vee P)) \equiv \neg (\neg (\neg P \vee Q) \vee \neg (\neg Q \vee P)) \\ \text{Original} \equiv & \text{Propriedade Substituição} \equiv & \text{Dupla Negativa} \equiv & \text{De Morgan} \\ \end{array}$$

Todos os modelos acima estão representados e provados na tabela verdade abaixo:

Р	Q	¬P	¬Q	PvQ	$\neg(\neg P \land \neg Q)$	$P \rightarrow Q$	¬P∨Q	¬Q∨P	P ↔ Q	$\neg(\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P))$
Т	Т	F	F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	Т	F	F	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	F	F	F
F	F	Т	Т	F	F	Т	Т	Т	Т	Т

O Alfabeto {nand}:

Definição: P {nand} Q $\triangleq \neg (P \land Q)$

$$P \equiv (P \wedge P)$$

 $\neg P \equiv \neg (P \land P) \equiv P \text{ nand } P \text{ (Tal qual a definição acima)}$

$$P \lor Q \equiv \neg \neg (P \lor Q) \equiv \neg (\neg P \land \neg Q) \equiv \neg P \text{ nand } \neg Q \equiv (P \text{ nand } P) \text{ nand } (Q \text{ nand } Q)$$

Original $\equiv Dupla \ Negação \equiv De \ Morgan$

$$P \wedge Q \equiv \neg \neg (P \wedge Q) \equiv \neg (P \text{ nand } Q) \equiv (P \text{ nand } Q) \text{ nand } (P \text{ nand } Q) \text{ (Tal qual } \neg (P \wedge P) \equiv P \text{ nand } P \text{ Original } \equiv Dupla \text{ negação} \equiv Definição} \equiv Definição$$

$$P \rightarrow Q \equiv (\neg P \lor Q) \equiv \neg \neg (\neg P \lor Q) \equiv \neg (P \land \neg Q) \equiv P \text{ nand } \neg Q \equiv P \text{ nand } (Q \text{ nand } Q)$$

Original = Propriedade Substituição = Dupla Negação = De morgan = Definição = Definição

$$P \leftrightarrow Q \equiv (\neg P \lor Q) \land (\neg Q \lor P)$$
. Vamos dividir para facilitar

$$(\neg P \lor Q) \equiv P \text{ nand } (Q \text{ nand } Q) \text{ (como já demonstrado.)}$$

$$(\neg Q \lor P) \equiv \neg \neg (\neg Q \lor P) \equiv \neg (Q \land \neg P) \equiv Q \text{ nand } \neg P \equiv Q \text{ nand } (P \text{ nand } P)$$

$$(\neg P \lor Q) \land (\neg Q \lor P) \equiv$$

P nand $(Q \text{ nand } Q) \land Q \text{ nand } (P \text{ nand } P) \equiv$
 $\neg \neg (P \text{ nand } (Q \text{ nand } Q) \land Q \text{ nand } (P \text{ nand } P)) \equiv$
 $\neg (P \text{ nand } (Q \text{ nand } Q) \text{ nand } Q \text{ nand } (P \text{ nand } P))$

Logo:

 $P \Leftrightarrow Q \equiv \neg (P \text{ nand } (Q \text{ nand } Q) \text{ nand } Q \text{ nand } (P \text{ nand } P))$

Por motivos de: Preguiça, não vou montar a tabela verdade disso não. Afinal é só uma extensão da implicação.