

Algorithms – I (CS29003/203)

Autumn 2022, IIT Kharagpur

Analysis of Algorithms

Analyzing Algorithms

- Predict how your algorithm performs in practice
- By analyzing several candidate algorithms for a problem we can identify efficient ones
- Criteria
 - Running time
 - Space usage
 - Cache I/O
 - Main memory I/O
 - Lines of codes

Analyzing Running Time

- Random Access Machine (RAM) model
- Every operation including memory access, arithmetic operations etc. takes same amount of time.
- Is it precise?
- Not really. But precise model would be tedious would yield very little insight into algorithm design and analysis
- · However, we should be careful not to abuse it
- We only care about "Order of the cost", i.e., we omit
 - Lower order terms
 - Constants

Why Asymptotic Analysis

- Because we only care about how fast a function grows!
- Would you rather have a million rupees one time or one paisa on day one, doubled every day for a month?
- Actually, the second option can get you more than 1 million (in around 27 days itself)
- $1+2+4+\cdots+2^{i-1}=(2^i-1)$ paisa = 1.342 million (for i=27)

Running Time Analysis of Insertion Sort

- · Lets go back to insertion sort and see its running time
- Our expression will evolve from a messy formula that assumes each line of the code takes a constant amount of time

Insertion-Sort(A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

 t_j denotes the number of times the lines in while loop executes for that value of j.

Running Time Analysis of Insertion Sort

- $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j 1) + c_7 \sum_{j=2}^n (t_j 1) + c_8 (n-1)$
- Best case: (Array is already sorted) -> $t_j = ? \boxed{1}$
- $T(n) = c_1 n + (c_2 + c_4 + c_5 + c_8)(n-1) = an + b \rightarrow a$ linear function of n
- Worst case: (Array is reverse sorted) -> $t_i = ?$
- t_i is maximum each time, i.e., $t_i = j$
- $T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \left(\frac{n(n+1)}{2} 1\right) + (c_6 + c_8)(n-1) + c_5 \left(\frac{n(n+1)}{2} 1\right) + c_6 + c_8$

Best/Average/Worst Case Analysis

- We looked at both `best case' (input array was already sorted) and `worst case' (input array was reverse sorted)
- In this course, we shall usually concentrate on worst-case running time

- Major reasons
 - Gives an upper bound on the running time for any input
 - For some algorithms, worst case occurs fairly often, e.g., searching
 - Average case is often roughly as bad as the worst case.

Order of Growth

- In analyzing running time for 'insertion sort', we started with constants c_i to represent the cost of each statement
- Then we observed that they give more detail than we need and we discarded them
- We shall go ahead with more simplifying abstraction: Rate/Order of Growth
- For the function f(n) we care when n is large enough. When n is small, f(n) is small anyway
- The constant factors and lower order terms doesn't affect the growth of the function
- One algorithm is more efficient than another if its worst-case running time has a lower order of growth

Order of Growth

$$g_2(n) = 0.1 \times 2^n$$

$$g_1(n) = n^2$$

$$f_2(n) = 9n$$

$$f_1(n) = 3n$$

Omit the constant factors

When n is large enough, $g_1(n)$ will be much larger than $f_1(n)$ or $f_2(n)$ $f_1(n)$ and $f_2(n)$ will have similar growth trend

Order of Growth

$$g_1(n) = n^2$$

$$g_2(n) = n^2 - 6n$$

$$f(n) = 6n$$

Omit the lower-order terms

When n is large enough, $g_1(n)$ or $g_2(n)$ will still be much larger than f(n) $g_1(n)$ and $g_2(n)$ will have similar growth trend because -6n is much smaller compared to n^2

Asymptotic Notations

- These notations are used to describe the asymptotic running time of an algorithm
- However, asymptotic notations can apply to other functions that have nothing to do whatsoever with algorithms

$$O(g(n)) = \{f(n): \exists c > 0, n_0 > 0, such that 0 \le f(n) \le cg(n) \forall n \ge n_0\}$$

- Asymptotic upper bound
- Note the ≤: can be of the same order, but can be smaller as well

•
$$n = O(n^2), n^2 = O(n^2), n^3 \neq O(n^2)$$

O (Big-O) $[\leq]$

$$O(g(n)) = \{f(n): \exists c > 0, n_0 > 0, such that 0 \le f(n) \le cg(n) \forall n \ge n_0\}$$

•
$$f(n) = 3n^2, g(n) = n^2$$

- How can we show, f(n) = O(g(n))
- Let c = 3, $n_0 = 5$
- $cg(n) = 3n^2$, so $f(n) \le cg(n)$
- Similarly, let $c = 10, n_0 = 2$
- $cg(n) = 10n^2$, so $f(n) \le cg(n)$

Always larger than $n^2 + 2n$

- $f(n) = n^2 + 2n$, $g(n) = n^3$; How can we show, f(n) = O(g(n))?
- Let c = 3, $n_0 = 10$; $cg(n) = 3n^3 = n^3 + 2n^3 = n(n^2 + 2n^2)$
- so $f(n) \le cg(n)$

$$\Omega$$
 (Big- Ω) [\geq]

$$\Omega\big(g(n)\big) = \{f(n) \colon \exists \ c > 0, n_0 > 0, such \ that \ 0 \le cg(n) \le f(n) \ \forall \ n \ge n_0\}$$

- Asymptotic lower bound
- can be of the same order, but can be larger as well

•
$$n \neq \Omega(n^2), n^2 = \Omega(n^2), n^3 = \Omega(n^2)$$

Θ (Big-theta) [=]

$$\Theta(g(n)) = \{f(n): \exists c_1, c_2 > 0, n_0 > 0, s.t. 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0\}$$

- Asymptotic tight bound
- Must be of the same order
- $f(n) = \Theta(g(n))$ means f(n) = O(g(n)) [\leq] and $f(n) = \Omega(g(n))$ [\geq], must be =

• $n \neq \Theta(n^2), n^2 = \Theta(n^2), n^3 \neq \Theta(n^2)$

What This also Means

- O(g(n)): class of functions f(n) that grow no faster than g(n)
- $\Theta(q(n))$: class of functions f(n) that grow at same rate as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

Analogy to Real Numbers

functions	Real Numbers
f(n) = O(g(n))	$a \leq b$
$f(n) = \Omega(g(n))$	$a \ge b$
$f(n) = \Theta(g(n))$	a = b

o (small-o) [<] and ω (small ω)

$$o\big(g(n)\big) = \{f(n): for \ any \ c > 0, \exists \ n_0 > 0, such \ that \ 0 \le f(n) < cg(n) \forall \ n \ge n_0\}$$

- Asymptotic non-tight upper bound
- Note the <: must be smaller
- Equivalently, if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- By analogy, $\omega\big(g(n)\big) = \{f(n): for\ anyc>0, \exists n_0>0, such\ that\ 0\leq cg(n)< f(n)\ \forall\ n\geq n_0\}$
- Asymptotic non-tight lower bound
- Note the >: must be larger
- Equivalently, if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$

Analogy to Real Numbers

functions	Real Numbers
f(n) = O(g(n))	$a \leq b$
$f(n) = \Omega(g(n))$	$a \ge b$
$f(n) = \Theta(g(n))$	a = b
f(n) = o(g(n))	a < b
$f(n) = \omega(g(n))$	a > b

18

Time Complexity

- Consider an $\Theta(2^n)$ algorithm running on a computer that can execute 10^8 ops/sec
- For n = 50, what amount of time will be required?

Subset Sum Selection Problem

- Given a set S of integers and a target T, determine if S has a subset that sums to T exactly.
- $S = \{1, 2, 5, 9, 10\}$ and T = 22?
- What about T = 23?

20

Complexity of Parts to Whole

 Suppose you have 3 sections of an algorithm for which you know the complexities are like this.

What can you tell about the complexity of the overall algorithm?

Theorem

- If $t_1(n) = O(g_1(n))$ and $t_2(n) = O(g_2(n))$, then $t_1(n) + t_2(n) = O(max\{g_1(n), g_2(n)\})$
- The algorithm's overall efficiency will be determined by the part with a larger order of growth, i.e., its least efficient part.
- For example, $5n^2 + 3nlogn = O(n^2)$

Proof. There exist constants c_1 , c_2 , n_1 , n_2 such that

$$t_1(n) \le c_1 * g_1(n) \forall n \ge n_1$$

 $t_2(n) \le c_2 * g_2(n) \forall n \ge n_2$

Define
$$c_3 = c_1 + c_2$$
 and $n_3 = \max\{n_1, n_2\}$, then
$$t_1(n) + t_2(n) \le c_3 * \max\{g_1(n), g_2(n)\} \ \forall \ n \ge n_3$$

Thank You!!