Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 4 «Корреляционный анализ»

студента Шамаева Сергея гр	уппы <u> Б21-514</u> . Да [,]	га сдачи:
Ведущий преподаватель:	оценка:	

Вариант №_4_

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проведения корреляционного анализа данных.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>п</i>
X	$X \sim R(5, 15)$	a = 5 $b = 15$	10	8.33	300
Y	Y ~ N(10, 5)	m = 10 $std = 5$	10	25	300

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	КК по Пирсону, $\tilde{r}_{_{XY}}$	КК по Спирмену, $\tilde{ ho}_{_{XY}}$	КК по Кендаллу, $\tilde{\tau}_{_{XY}}$
X	9.808	7.890	0.002	0.015	0.010
Y	10.334	24.963	0.002	0.013	0.010

Проверка значимости коэффициентов корреляции:

Статистическая гипотеза, H_0	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $r_{XY} = 0$	0.975	Н0 принимается	нет
H_0 : $\rho_{XY} = 0$	0.793	Н0 принимается	нет
H_0 : $\tau_{XY} = 0$	0.796	Н0 принимается	нет

Примечание: для проверки гипотез использовать функцию **corr** (scipy.stats.pearsonr)

2. Визуальное представление двумерной выборки

Диаграмма рассеяния случайных величин Х и У:

Примечание: для построения диаграммы использовать функции plot, scatter (matplotlib.pyplot.scatter)

3. Проверка независимости методом таблиц сопряженности

Статистическая гипотеза: $H_0: F_Y(y \mid X \in \Delta_1) = ... = F_Y(y \mid X \in \Delta_k) = F_Y(y)$

Эмпирическая/теоретическая таблицы сопряженности:

Y	[-5.689; -	[-1.6e-02;	[5.657;	[11.330;	[17.003;	
X	1.6e-02)	5.667)	11.330)	17.003)	22.676]	
$\Delta_1 = [5.036; 7.00]$	8) 0	10	29	20	4	
$\Delta_2 = [7.008; 8.98]$	0) 3	7	28	21	4	
$\Delta_3 = [8.980; 10.98]$	1	11	23	28	5	

Лабораторный практикум по курсу «Математическая статистика»

$\Delta_4 = [10.952;$ $12.925])$	2	12	13	18	6
$\Delta_5 = [12.925;$ $14.897]$	0	10	25	16	4

Примечание: для группировки использовать функцию hist3

(matplotlib.pyplot.hist2d)

Выборочное		Статистическое	
значение статистики	p-value	решение при	Ошибка стат. решения
критерия		α =	
16.132	0.443	Н0 принимается	нет

Примечание: для проверки гипотезы использовать функцию **crosstab** (scipy.stats.chi2_contingency)

4. Исследование корреляционной связи

Случайная величина $U = \lambda X + (1-\lambda)Y$, $\lambda \in [0; 1]$

Случайная величина $V = \lambda X^3 + (1-\lambda)Y^3$ $\lambda \in [0; 1]$

Графики зависимостей коэффициента корреляции $\tilde{r}_{xU}(\lambda)$, рангового коэффициента корреляции по Спирмену $\tilde{\rho}_{xU}(\lambda)$, по Кендаллу $\tilde{\tau}_{xU}(\lambda)$

Графики зависимостей коэффициентов корреляции X и U от lambda

Графики зависимостей $\tilde{r}_{_{XV}}(\lambda)$, $\tilde{\rho}_{_{XV}}(\lambda)$, $\tilde{\tau}_{_{XV}}(\lambda)$

Графики зависимостей коэффициентов корреляции X и V от lambda

Выводы: При приближении lambda к единице, коэфф. корреляции приближаются к 1, так как в этот случае ситуация стремится к зависимости X от X. Также мы можем наблюдать, что все графики — строго возрастающие функции. На графике 1 все кэфф. достигли единицы, так при приближении к 1 есть линейная зависимость. Однако, на рисунке 2 мы можем наблюдать, что коэфф. корреляции Пирсона не достигает 1, так кубическая связь не является линейной. Коэффициент корреляции по Спирмену и по Кендаллу достигает 1, так как они рассматривают монотонность функций (для X и X^3 монотонность есть).

Выводы: На первых двух графиках отсутствует какая-либо видимая взаимосвязь, т.к. там рассматриваются (X и Y^3). Причем, мы можем также говорить и об отсутствии какой-либо монотонности, исходя из рисунка 2 (нет связи рангов). На графике 3 мы наблюдаем чёткую функциональную зависимость (кубическую), что согласуется с нашими данными (X и X^3). Рисунок 4 также показывает монотонность этой связи (чёткая линейная функция).