NIPS 2018 AutoML for Lifelong Machine Learning Challenge

AutoGBT: Automatically Optimized Gradient Boosting Trees for Classifying Large Volume High Cardinality Data Streams under Concept Drift

Jobin Wilson^{1,2}, Amit Meher², Bivin Vinodkumar Bindu^{1,2}, Manoj Sharma³, Vishakha Pareek³, Prof. Santanu Chaudhury¹ and Prof. Brejesh Lall¹

¹Indian Institute of Technology Delhi, ²Flytxt, ³CSIR-CEERI

Agenda

- Problem Overview & Unique Aspects
- Existing Approaches
- AutoGBT Model Architecture
- Experiments & Results
- Conclusion

Motivation

- Lack of ML/domain experts; need self-maintaining autonomous end-to-end
 ML pipelines
- Real-world data arrives as streams/batches ordered in time
- Data distributions evolve; need to handle non-i.i.d data
 - Ability to retain knowledge, adapt to changes and transfer knowledge across time; subject to limited resources
- Relaxing AutoML constraints; large data volume, slow concept-drift, lifelong machine learning

Challenge Scope

Unique Aspects

- Algorithm scalability; varying data volume & feature count
- Varied features: numeric, categorical, multi-categorical, temporal & binary;
 missing values; dataset skew
- Categorical/multi-categorical features with large number of values, following power law
- Absence of domain information; slow concept-drift
- Resource constraints (CPU, RAM, Disk & time budget)
- Lifelong setting; predict-evaluate-update over multiple batches

Prediction Problem

Image source: https://www.4paradigm.com/competition/nips2018

Evaluation Metric : Average AUC across all batches

Existing Approaches

- PoSH Auto-sklearn [2] (Feurer, Matthias, et al. 2018)
 - Automatically pre-selected portfolio, ensemble building and Bayesian optimization with successive halving
 - ML Pipeline optimization using Sequential Model Based Algorithm Configuration (SMAC)
 - Doesnt handle concept-drift, multicategorical features, categorical features with large number of unique values with power-law distribution
 - Not designed for very large data volume and lifelong learning setting

Image source:[2], Feurer, Matthias, et al. 2018

Existing Approaches

- "LML extension for Auto-sklearn" [1] (Jorge G. Madrid, et al. 2018)
 - Auto-sklearn extended by adding explicit drift detection using Fast Hoeffding Drift Detection Method (FHDDM)
 - Doesnt explicitly handle multi-categorical features and categorical features with large number of unique values with power-law distribution
 - Not designed for very large data volume; performance dependency on type of drift

```
Data: D(X, y) examples

Take a batch D'_t of size n, D'_t(X', y') \in D(X, y); T_t \leftarrow learn a model with auto-sklearn using D'_t

while there is data in D do

Take next batch D'_{t+1}; \hat{y} \leftarrow Make predictions with T_t; for y_j \in \hat{y} do

drift_detected = Detector(y_j == y'_j \in y') //drift will be detected with model performance end

if drif_detected then

T_{t+1} = adapt(T, D'_{t+1}); Detector.reset(); t = t + 1

else

T_{t+1} = T_t; t = t + 1

end

end
```

Source: [1], Jorge G. Madrid, et al. 2018

AutoGBT

- Automatically Optimized Gradient Boosting Trees
 - Frequency encoding allows to exploit semantic similarity across batches to counter slow concept-drift through adaptation, without explicit drift detection.
 - Stream processing, sampling strategy, single model portfolio & lazy model training significantly reduces resource and time budget requirements; scales to large data volume
 - ML Pipeline optimization using hyperopt SMBO

AutoGBT System

AutoGBT Model Architecture

Experiments & Results (Feedback Phase Datasets)

Dataset	Instances#	Features#	Cat#	Num#	MVC#	Time#	Duration (Sec)	Splits #	Avg. AUC
Α	~10 M	82	51	23	6	2	2112.20	10	0.5171
В	~1.9 M	25	17	7	1	0	219.52	10	0.3088
С	~2 M	79	44	20	9	6	610.41	10	0.5645
D	~1.5 M	76	17	54	1	4	427.27	10	0.4779
Е	~17 M	34	25	6	1	2	1178.25	10	0.7273

Note: Based on logs from codalab server (4 Cores, 16 GB RAM); leaderboard position = 7th in feedback phase

Experiments & Results (Other Datasets)

Dataset	Instances#	Features#	Cat#	Num#	Time#	Duration (Sec)	Splits #	Avg. AUC
Avazu CTR Prediction	~40.42 M	22	21	0	1	950.68	9	0.4517
Amazon Challenge	~0.03 M	9	8	1	0	54.14	5	0.5757
Airline Dataset	~1.07 M	29	16	13	0	136.65	6	0.5175
Bank Marketing Dataset	~0.04 M	20	10	10	0	48.24	5	0.7303
RI-AutoML3 starter kit	~0.05 M	22	14	8	0	72.2	4	0.3974
Ada-AutoML3 starter kit	~0.17 M	48	0	48	0	61.71	4	0.8492

Note: Executed locally using codalab docker image on a workstation with 20 cores, 64 GB RAM

AutoML Phase Rankings

Bundle		Avg. rank	Set 1	Set 2	Set 3	Set 4	Set 5	Duration
Py3	autodidact.ai	2.2	2	4	1	2	2	5882.13
Ру3	harryfootball	2.4	3	1	. 2	1	5	8700.47
Ру3	fanqiechaodan	4.2	4	6	4	3	4	7912.14
Ру3	Ml-Intelligence	4.2	1	3	6	10	1	9426.68
Ру3	linc326	4.6	6	5	5	4	3	8843.15
Ру3	rcarson	6.4	9	2	7	6	8	5471.59
Ру3	jimliu	7.8	5	8	15	5	6	5581.74
Ру3	PGijsbers	8.4	7	7	14	7	7	10427.18
Ру3	gxr_6666	11.4	13	14	10	8	12	6674.08
Py2	pipi_	12	10	10	8	18	14	8334.86
Ру3	Jie_NJU	12	11	23	3	13	10	8282.08
Py2	nomo	15	14	15	18	12	16	4165.99
Ру3	mlg.postech	16.2	12	26	9	23	11	7357.6
Py2	Cheng_Zi	18.4	19	17	19	22	15	4532.53

Conclusion

- A simple adaptive pipeline having automatic hyperparameter tuning using SMBO is performing well, even though the model portfolio is limited
- Specialized preprocessing pipeline is essential to handle large number of categorical/multicategorical values following a power law distribution
- Our save-retrain strategy & frequency encoding performed reasonably well to counter slow concept-drift, even in the absence of explicit drift detection
- Heuristic checks proved to be helpful to handle budget constraints in our local experiments; its effect on blind phase performance is yet to be studied

References

- Jorge G. Madrid et al. <u>Towards AutoML in the presence of drift: First results</u>. In: ICML
 2018 Workshop on AutoML
- Feurer, M. et al. <u>Practical Automated Machine Learning for the AutoML Challenge</u>
 2018., In: ICML 2018 Workshop on AutoML
- 3. Feurer, Matthias, et al. <u>Efficient and robust automated machine learning</u>. In: Advances in Neural Information Processing Systems. 2015.
- 4. Ganin, Yaroslav, and Victor Lempitsky. "<u>Unsupervised domain adaptation by backpropagation</u>." arXiv preprint arXiv:1409.7495 (2014).
- 5. Bergstra, James at al. "Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms." Proceedings of the 12th Python in Science Conference. 2013.
- 6. Ke, Guolin, et al. "Lightgbm: A highly efficient gradient boosting decision tree." Advances in Neural Information Processing Systems. 2017.

Thank You