

Wireless Communications Principles

The communication channel

Reminder: What is this course about?

Fundamental!

Claude Shannon

34

The Mathematical Theory of Communication

Fig. 1. — Schematic diagram of a general communication system.

$$C = B \log_2\left(1 + \frac{S}{N}\right)$$

The AWGN Channel Model

AWGN Channel Model

We will recap on noise and consider its effect next week (when we look at signal reception)

Twisted-Pair Cable

Coaxial Cable

Optical Fibre

Band-Limited Channel Model

Example: Bandwidth Effects

- The periodic pulse signal can be reproduced by adding multiple sinusoidal signals together.
- A periodic square waveform can be approximated by adding numbers of waveforms with different harmonic frequency components.
- So, a band-limited channel has the reverse effect – removing the high frequency content, for example

The wireless channel introduces interference

The Wireless Channel Model

Wireless Channel Model

Modulation and encoding

- How we encode and modulate the signal for transmission over the channel is important
- Why consider power spectral density?
 - How much bandwidth the signal occupies
- Why consider energy and power in a signal?
 - Power/energy efficiency
- Will examine a number of metrics for defining performance
 - Bit rate
 - Spectral efficiency
 - Energy efficiency
 - Bit error rate (after detection)
 - Complexity (cost)

Self-assessment Example

A sinc-shaped pulse $x(t) = \operatorname{sinc}(t)$ is passed through a channel with an impulse response given by $h(t) = \operatorname{sinc}^2(t)$.

Find the Fourier spectrum of the output signal y(t) = x(t) * h(t).

Sketch your result and comment on it.

(Hint: if you don't already know it, you need to think about how to obtain the Fourier transform of $sinc(t) \times sinc(t)$ first.)