Misura dell'accelerazione di gravitá

Francesco Sacco

28 Giugno 2017

1 Scopo dell'esperienza

Lo scopo dell'esperienza é misurare l'accelerazione di gravitá

2 Apparato Sperimentale

- Molla
- Piattello
- Supporto per la molla
- Pesetti da 50g,20g, due da 10g e uno da 5g
- Metro a nastro
- Cronometro

3 Cenni Teorici

Il periodo T di una molla di massa non trascurabile é uguale a

$$T = 2\pi \sqrt{\frac{m_p + m_i + m_m/3}{k}} \tag{1}$$

dove m_p é la massa del piattello, m_i é la somma delle masse poggiate sul piattello, m_m é la lunghezza della molla e k é la costante di allungamento della molla.

Essendo tutti di dati noti, eccetto per k é possibile usare questa equazione per ricavarsi la costante di allungamento.

In condizione di riposo la molla si allunga secondo la seguente equazione

$$\Delta l = \frac{(m_p + m_i)g}{k} \tag{2}$$

dove Δl $\tilde{A}l$ l'allungamento e g é l'accelerazione di gravitá.

4 Raccolta dati

Il primo set di misure é stato effettuato per determinare il peso delle masse m_i e l'allungamento della molla.

$m_i(g)$	$\Delta l(cm)$
$19,998 \pm 0,001$	$7,6 \pm 0,05$
$30,001 \pm 0,001$	$11, 4 \pm 0, 05$
$39,970 \pm 0,001$	$15,0 \pm 0,05$
$50,017 \pm 0,001$	$18,6\pm0,05$

5 Analisi dati

5.1 Misura di k

Dati	Parametri ottimali
$\tau_0[\mathrm{s}]$	$16,24 \pm 0,02$
$A_0[\mathrm{cm}]$	$4,51 \pm 6,01(10^{-6})$
$\omega_0[\mathrm{s}^{-1}]$	$4,42\pm 2,7(10^{-7})$
ϕ_0	$3,94 \pm 3,16$

Si osservi che i punti sperimentali non seguono per-

fettamente una curva esponenziale, poiché il modello teorico non tiene in considerazione distubi esterni come l'attrito del perno e rumore esterno, e a causa di ció il chi quadro risulta enorme, tuttavia la precisione sull'ampiezza e sul periodo é comunque parecchio elevata

5.2 Pendoli in fase

In seguito abbiamo raccolto i dati degli oscillatori in fase, come si puó notare ω_1 che τ_1 sono praticamente uguali a ω_0 e τ_0 , questo perché la molla resta alla sua posizione di riposo e quindi é come se non ci fosse

Dati	Parametri ottimali
$\tau_f[\mathrm{s}]$	$15,72 \pm 0,02$
$A_f[\mathrm{cm}]$	$17,29 \pm 6,75(10^{-7})$
$\omega_f[\mathrm{s}^{-1}]$	$4,17\pm2,41(10^{-5})$
ϕ_f	$4,45\pm2,63(10^{-7})$

In questo grafico abbiamo traslato il centro dell'oscil-

lazione a 0, perché la molla spostava la posizione d'equilibrio verso l'altro pendolo, inoltre abbiamo messo solo il grafico di uno dei due pendoli, visto che inserire l'altro risultava ridondante

5.3 Pendoli in controfase

Prima di effettuare la misura dei battimenti abbiamo fatto quella dei pendoli in controfase cosicché ottiniamo i valori di ω_c per verificare che ció che é scritto nei cenni teorici

Dati	Parametri ottimali
$ au_c[\mathrm{s}]$	$17,27 \pm 0,03$
$A_c[\mathrm{cm}]$	$1,53 \pm 4,89(10^{-7})$
$\omega_c[\mathrm{s}^{-1}]$	$6,51 \pm 2,11(10^{-5})$
ϕ_c	$4,61 \pm 2,87(10^{-7})$

La prima cosa che salta all'occhio é che ω é aumentato

come si ci aspettava, mentr τ non cambia di molto é

5.4 Battimenti

Dulcis in fundu, abbiamo fatto la raccolta dati dei battimenti e fatto il fit. Questo fit é risultato parecchio impegnativo perché sembrava non voler trovare il minimo χ^2 , ma alla fine cel'abbiamo fatta.

Dati	Parametri ottimali
$\tau[s]$	$64,30 \pm 0,09$
$A[{ m cm}]$	$7,05 \pm 5,67(10^{-7})$
$\omega_a[\mathrm{s}^{-1}]$	$4,51 \pm 4,70(10^{-9})$
$\omega_b[\mathrm{s}^{-1}]$	$6,48 \pm 6,64 (10^{-9})$
ϕ_a	$2,05 \pm 4,37(10^{-6})$
ϕ_b	$3,19 \pm 9,50(10^{-6})$

dalla lettura dei dati si ci accorge che ω_a é molto

simile a ω_f e ω_b a ω_c , ció é previsto dalla teoria.

6 Conclusione

La raccolta dati ci conferma che il modello teorico è corretto anche se il χ^2 risulta straordinariamente alto (nell'ordine dei milioni) e il p-value viene 0 spaccato