Package 'civilR'

February 24, 2019

Type Package

Title Civil Engineering R package	
Version 0.1.0	
Author Alena Fournier-Carrie, Marc Fournier-Carrie	
Maintainer Marc Fournier-Carrie <marc@shadowboxingskills.com></marc@shadowboxingskills.com>	
Description Civil Engineering R package	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.1.1	
Imports roxygen2, readxl, devtools	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
axial_compression_force	
calculated_NEd	_
check_overall_buckling_resistance_about_yy_axis	
check_overall_buckling_resistance_about_zz_axis	
civilR	
convert_member_dimensions_string_to_elements	
convert_member_dimensions_to_string	
critical_length_major_axis_y	
effective_length_of_member	
effective_second_moment_of_area	
Euler_buckling_load	
extract_member_dimensions	11
$imperfection_factor_yy $	
imperfection_factor_zz	12 12
main	

18

```
maximum_shear_force_in_the_lacing13overall_buckling_resistance_about_axis13plastic_resistance_of_cross_section_to_compression14relative_slenderness14second_order_bending_moment15shear_stiffness15slenderness_reduction_factor16temperature_load16trial_member_size17yield_strength17
```

axial_compression_force

Calculate the axial compression force

Description

Index

Compute Axial Compression Force, N_{ed} [kN], for member without including Temperature effect. Used as trial for the top level strut where temperature changes could not be neglected. As well can be used to calculate final N_{ed} for struts from low levels of excavation, where temperature effect could be neglected.

Usage

```
axial_compression_force(DL = 1, LL = 1, L, AF, theta = 90,
    spacing = 6, Lcry = 12.7, Lcrz = 12.7, steel_grade = "S355",
    member_type = "UB", alpha_T = 1.2e-05, delta_T = 10, k_T = 0.8,
    E = 210, IL = 50)
```

Arguments

DL	Dead load / self-weight of member $[kN/m]$
LL	Live load / imposed load $[kN/m]$
L	Total length of member $[m]$
AF	Axial compression force of member per meter $\left[kN/m\right]$
theta	Angle to wall $[deg]$
spacing	spacing $[m]$
Lcry	critical length major axis $[m]$
Lcrz	critical length minor axis $[m]$
$steel_grade$	steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'
$member_type$	member_type, categorical: 'UC' or 'UB'
alpha_T	Thermal coef. of expansion $[degC]$
delta_T	Change in temperature from the Installation temperature $[degC]$
k_T	Coefficient Of Temperature Effect [dimensionless]
E	Young's Modulus of Elasticity $[GPa]$
IL	Accidental Impact Load $[kN/m]$

calculated_NEd 3

Details

First of all function check which combination govern in ULS (Ultimate Limit State) without including Temperature load, TL [kN]. Then include TL calculations for Load Combinations applying partial factors based on the Table A1.2(B), EN1990-2002, p53 Compare maximum from ULS and ALS to define which mistake could govern.

Value

 N_{ed} Axial compression force [kN]

calculated_NEd

Generate calculated Ned

Description

Generate calculated N_{E_d} , $N_{E_{dc}}$ [kN].

Usage

calculated_NEd(N_b_Rd, Ieff, MEd, h0, A)

Arguments

N_b_Rd Overall buckling resistance of the struts about the axis [kN]

Ieff Effective second moment of area $[mm^4]$

MEd Second order moment [kN.m]

h0 Distance between centroids of chords [m]

A Cross-section area of strut $[cm^2]$

Value

 $N_{E_{d_c}}$ Calculated N_{E_d} [kN]

check_local_buckling_resistance_about_zz_axis

Perform check #3, calculating the local buckling resistance of struts about minor z - z axis

Description

Calculate the local buckling resistance of member about minor z-z axis, based on EC3 Approach.

$$L_e = kL$$

[mm] where L is the critical length for buckling about minor axis z-z Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d,ch} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,ch} = \frac{\pi^2 E I}{L_e^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_{ch}} = \sqrt{\frac{N_{pl,R_d,ch}}{N_{cr,ch}}}$$

4. Calculate Φ_{ch} parameter for slenderness reduction factor

$$\Phi_{ch} = 0.5 \left[1 + \alpha \left(\overline{\lambda_{ch}} - 0.2 \right) + \overline{\lambda_{ch}}^{2} \right]$$

5. Slenderness reduction factor [dimensionless]

$$X_{ch} = \frac{1}{\Phi_{ch} + \sqrt{\Phi_{ch}^2 - \bar{\lambda_{ch}}^2}}$$

6. Output overall buckling resistance of the struts about z-z minor axis [kN]

$$N_{b,R_d,ch} = X_{ch} N_{pl,R_d,ch}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

```
check_local_buckling_resistance_about_zz_axis(trial_member_size,
  member_type, steel_grade, k, L, E)
```

Arguments

trial_member_size

Trial member size

member_type, categorical: 'UC' or 'UB'

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

k Coefficient [dimensionless]

L Total length of member [m]

E Young's Modulus of Elasticity [GPa]

Value

 $N_{b,Rd,X}$ Local buckling resistance of struts about z-z axis [kN]

check_overall_buckling_resistance_about_yy_axis

Perform check #1, calculating the overall buckling resistance of member about major y - y axis

Description

Calculate the overall buckling resistance of member about y-y axis, based on EC3 Approach.

$$L_e = kL$$

[mm] where L is the critical length for buckling about major axis y-y Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,X} = \frac{\pi^2 E I}{L_c^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_X} = \sqrt{\frac{N_{pl,R_d}}{N_{cr,X}}}$$

4. Calculate Φ_X parameter for slenderness reduction factor

$$\Phi_X = 0.5 \left[1 + \alpha \left(\bar{\lambda_X} - 0.2 \right) + \bar{\lambda_X}^2 \right]$$

5. Slenderness reduction factor [dimensionless]

$$X_{x} = \frac{1}{\Phi_{X} + \sqrt{\Phi_{X}^{2} - \bar{\lambda_{X}^{2}}^{2}}}$$

6. Output overall buckling resistance of the struts about y - y axis [kN]

$$N_{b,R_d,X} = X_X N_{pl,R_d}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

check_overall_buckling_resistance_about_yy_axis(trial_member_size,
 member_type, steel_grade, k, L, E)

Arguments

trial_member_size

Trial member size

 ${\tt member_type} \qquad {\tt member_type}, \ {\tt categorical:} \ {\tt 'UC'} \ {\tt or} \ {\tt 'UB'}$

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

 $\begin{array}{ccc} \mathsf{k} & & \text{Coefficient [dimensionless]} \\ \mathsf{L} & & \text{Total length of member } [m] \end{array}$

E Young's Modulus of Elasticity [GPa]

Value

 $N_{b,Rd,X}$ Overall buckling resistance of struts about major y-y axis [kN]

check_overall_buckling_resistance_about_zz_axis

Perform check #2, calculating the overall buckling resistance of struts about major z - z axis

Description

Calculate the overall buckling resistance of member about z-z axis, based on EC3 Approach.

$$L_e = k L$$

[mm] where L is the critical length for buckling about major axis z-z Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,Y} = \frac{\pi^2 E I}{L_e^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_Y} = \sqrt{\frac{N_{pl,R_d}}{N_{cr,Y}}}$$

4. Calculate Φ_Y parameter for slenderness reduction factor

$$\Phi_Y = 0.5 \left[1 + \alpha \left(\bar{\lambda_Y} - 0.2 \right) + \bar{\lambda_Y}^2 \right]$$

5. Slenderness reduction factor [dimensionless]

$$X_{Y} = \frac{1}{\Phi_{Y} + \sqrt{{\Phi_{Y}}^{2} - \bar{\lambda_{Y}}^{2}}}$$

6. Output overall buckling resistance of the struts about z-z axis [kN]

$$N_{b,R_d,Y} = X_Y N_{pl,R_d}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

check_overall_buckling_resistance_about_zz_axis(trial_member_size,
 member_type, steel_grade, k, L, E)

civilR 7

Arguments

trial_member_size

Trial member size

member_type, categorical: 'UC' or 'UB'

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

 $\begin{tabular}{ll} K & Coefficient [dimensionless] \\ L & Total length of member $[m]$ \\ \end{tabular}$

E Young's Modulus of Elasticity [GPa]

Value

 $N_{b,Rd,Y}$ Overall buckling resistance of struts about z-z axis [kN]

civilR

Package civilR

Description

Civil Engineering package.

 $convert_member_dimensions_string_to_elements$

Convert individual member dimensions to a string

Description

Convert individual member dimensions to a string.

Usage

```
convert_member_dimensions_string_to_elements(s)
```

Arguments

s String of the member dimensions

Value

- h Member height [mm]
- b Member width [mm]
- m Member weight [kg/m]

convert_member_dimensions_to_string

Convert the member size individual dimensions to a standard string

Description

Generate a combined string from given three individual elements, separated by "x".

Usage

```
convert_member_dimensions_to_string(h, b, m)
```

Arguments

h	Member height $[mm]$
b	Member width $[mm]$
m	Member mass $[kg/m]$

Value

String of the member dimensions

```
critical_length_major_axis_y
```

 $Calculate\ the\ critical\ length\ along\ major\ y\ axis$

Description

Calculate the critical length along major y axis, $L_{cry}\ [m]$

Usage

```
critical_length_major_axis_y(L, Lkp, Lsp)
```

Arguments

L	Total length of member $[m]$
Lkp	Length to king post $[m]$
Lsp	Length from splays $[m]$

Value

 L_{cry} Critical length along major y axis [m]

critical_length_minor_axis_z

Calculate the critical length along major z axis

Description

Calculate the critical length along major z axis, L_{crz} [m]

Usage

```
critical_length_minor_axis_z(L, Lkp, Lsp)
```

Arguments

Value

 L_{crz} Critical length along major z axis [m]

effective_length_of_member

Calculate the effective length of member

Description

Calculate the effective length of member, $L_e\ [mm].$

Usage

```
effective_length_of_member(k, L)
```

Arguments

k Effective length coefficient [dimensionless]
L Length of strut between restraints [mm]

Value

 L_e Effective length of strut [mm]

10 Euler_buckling_load

effective_second_moment_of_area

Calculate the effective second moment of area

Description

Compute the effective second moment of area $[mm^4]$. I_{eff} is a function of the distance between the centroids of the chords and the section area of a chord, calculated as $I_{eff} = 0.5 h_0^2 A$.

Usage

```
effective_second_moment_of_area(h0, A)
```

Arguments

h0 Distance between centroids of chords [m]

A Cross-section area of strut $[cm^2]$

Value

 I_{eff} Effective second moment of area $[mm^4]$

Euler_buckling_load Calculate the Euler buckling load

Description

Calculate the Euler buckling load [kN]

$$N_{cr,ch} = \frac{\pi^2 E I}{L_e^2}$$

Usage

Euler_buckling_load(Le, E, I)

Arguments

Le Effective length of strut [mm] E Young modulus $[GPa \text{ or } GN/m^2]$

I - check 1: I_{yy} , second moment of area Axis y - y [cm^4]. Check 2: I_{eff} ,

Effective second moment of area $[mm^4]$. Check 3: I_{eff} or I_{zz} $[mm^4]$

Value

 N_{cr} Euler buckling load [kN]

extract_member_dimensions

Extract dimensions from reference table

Description

Function that looks into the Blue Book https://www.steelforlifebluebook.co.uk/ for dimensions and properties.

Usage

```
extract_member_dimensions(h, b, m, member_type)
```

Arguments

 $\begin{array}{lll} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

Value

- A Area of section $[cm^2]$
- tw Thickness of web [mm]
- tf Thickness of flange [mm]
- Iyy Second moment of area axis y y [cm^4]
- sh Depth of section [mm]
- sb Width of section [mm]

imperfection_factor_yy Calculate the imperfection factor α _yy for rolled section [dimensionless]

Description

Calculate the imperfection factor α_{yy} for rolled section [dimensionless].

Usage

```
imperfection_factor_yy(h, b, tf)
```

Arguments

h	Member height $[mm]$
b	Member width $[mm]$

tf thickness of the flange [mm]

Value

 α_{yy} Imperfection factor for y-y axis [dimensionless]

12 main

 ${\tt imperfection_factor_zz} \ \ {\it Calculate the imperfection factor} \ \alpha_{\it zz for rolled section}$

Description

Calculate the imperfection factor α_{zz} for rolled section.

Usage

```
imperfection_factor_zz(h, b, tf)
```

Arguments

h Member height [mm] b Member width [mm]

tf thickness of the flange [mm]

Value

```
\alpha_{zz} Imperfection factor for z-z axis [dimensionless]
```

main

Run the high-level main flow

Description

Run the high-level main flow.

Usage

main()

Value

Final results

maximum_shear_force_in_the_lacing

Calculate the maximum shear force in the lacing

Description

Calculate the maximum shear force in the lacing, V_{E_d} [kN] (for a laced strut subject to a compressive axial force only)

 $V_{E_d} = \pi \, \frac{M_{E_d}}{L}$

Usage

maximum_shear_force_in_the_lacing(MEd, L)

Arguments

MEd Second order moment [kN.m]

Length of strut between restraints [m]

Value

 V_{E_d} Maximum shear force in the lacing [kN] (for a laced strut subject to a compressive axial force only)

overall_buckling_resistance_about_axis

Calculate the overall buckling resistance of the memeber about the axis

Description

General case to compute the overall buckling resistance of the member, N_{b,R_d} [kN], about the axis, calculated as:

$$N_{b,R_d} = X N_{pl,R_d}$$

Usage

overall_buckling_resistance_about_axis(X, N_pl_Rd)

Arguments

X Slenderness reduction factor [dimentionless]

N_pl_Rd Plastic resistance of the cross-section to compression [kN]

Value

 N_{b,R_d} Overall buckling resistance of the struts about the axis [kN]

14 relative_slenderness

$\verb|plastic_resistance_of_cross_section_to_compression|\\$

Calculate the plastic resistance of the cross-section to compression

Description

Calculate the plastic resistance of the cross-section to compression [kN], based on cross-section area A and yield strength f_y .

Usage

```
plastic_resistance_of_cross_section_to_compression(A, fy)
```

Arguments

A Cross-section area of the strut $[cm^2]$

fy Yield strength $[kN/mm^2]$

Value

 N_{pl,R_d} Plastic resistance of the cross-section to compression [kN]

 $relative_slenderness$ $Calculate\ the\ relative\ slenderness$

Description

Calculate the relative slenderness [dimensionless]

$$\bar{\lambda} = \sqrt{\frac{N_{pl,R_d}}{N_{cr}}}$$

Usage

relative_slenderness(N_pl_Rd, Ncr)

Arguments

 N_pl_Rd Plastic resistance of the cross-section to compression [kN]

Ncr Euler buckling load [kN]

Value

 $\bar{\lambda}$ Relative slenderness [dimentionless]

second_order_bending_moment

Calculate the second order bending moment

Description

Compute the second order bending moment, M_{E_d} [kN.m]. The maximum bending moment, including the bow imperfection and the second order effects, calculated as:

$$M_{E_d} = \frac{N_{E_d} e_0 + M_{E_d}^{I}}{1 - \frac{N_{E_d}}{N_{cr,Y}} - \frac{N_{E_d}}{S_v}}$$

Usage

second_order_bending_moment(L, Ned, Sv, Ncr)

Arguments

Length of strut between restraints [mm]

Ned axial_compression_force [kN]

Sv Shear stiffness for K-shape lacing [kN]

Ncr Euler buckling load from check #2 global zz [kN]

Value

 M_{E_d} Second order moment [kN.m]

 $shear_stiffness$

Calculate the shear stiffness for K-shape lacing

Description

Calculate the shear stiffness for K-shape lacing [kN]. The expression of shear stiffness is:

$$S_v = \frac{n E A_d L_{ch} h_0^2}{d^3}$$

Usage

 $shear_stiffness(n = 2, Ad, Lch, E, h0)$

Arguments

n	Number of planes of lacing, default $[n=2]$
Ad	Section area of diagonal (lacing), $[cm^2]$

Length of chord of between restrains (lace points) [m]

E Young modulus $[GPa \text{ or } GN/m^2]$

h0 Distance between centroids of chords [m]

Value

 S_v Shear stiffness for K-shape lacing [kN]

16 temperature_load

slenderness_reduction_factor

Calculate the slenderness reduction factor

Description

Calculate the slenderness reduction factor X [dimentionless] for the general case.

$$\Phi = 0.5 \left[1 + \alpha \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right]$$
$$X = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}}$$

Usage

slenderness_reduction_factor(alpha, lambda_bar)

Arguments

alpha Check #1: imperfection factor α_{yy} for rolled section [dimentionless].

Check 2 & 3: imperfection factor α_{zz} for rolled section [dimentionless]

lambda_bar, Relative slenderness $\bar{\lambda}$ [dimentionless]

Value

X Slenderness reduction factor [dimentionless]

Description

Calculate Temperature Load as a function of a surface changes of temperature, TL [kN]. Usually used for calculation of Axial Compression Force for the top level member.

$$TL = \alpha_T \, \delta_T \, k_T \, E \, A$$

Usage

temperature_load(alpha_T = 1.2e-05, delta_T = 10,
$$k_T = 0.8$$
, $E = 210$, A)

Arguments

alpha $_{-}$ T Thermal coefficient of expansion [degC]

delta_T Change in temperature from the Installation temperature [deqC]

 $k_T \hspace{1cm} {\rm Coefficient} \hspace{0.1cm} {\rm Of} \hspace{0.1cm} {\rm temperature} \hspace{0.1cm} {\rm effect} \hspace{0.1cm} [{\rm dimensionless}]$

E Young's Modulus of Elasticity [GPa]

A Sectional area from table for given member size $[cm^2]$

Value

TL Temperature load [kN]

trial_member_size 17

trial_member_size

Determine member size

Description

Find optimized designation [height (mm) x width (mm) x mass (kg/m)] (also called member size) for given Axial Compression Force and critical length for major and minor axis. Searching into the tables based on the 'Compression' tables of the Blue Book https://www.steelforlifebluebook.co.uk/

Usage

```
trial_member_size(Lcry, Lcrz, Ned, steel_grade, member_type)
```

Arguments

 $\begin{array}{lll} \textbf{Lcry} & \text{critical length major axis } [m] \\ \textbf{Lcrz} & \text{critical length minor axis } [m] \\ \textbf{Ned} & \text{Axial compression force } [kN] \\ \end{array}$

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

member_type, categorical: 'UC' or 'UB'

Value

Member size [height (mm) x width (mm) x mass (kg/m)]

 $yield_strength$

Calculate the yield strength

Description

```
Calculate the yield strength, f_y [N/mm<sup>2</sup>]
```

Usage

```
yield_strength(tw, tf, steel_grade)
```

Arguments

tw Thickness of the web [mm]tf Thickness of the flange [mm]

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

Value

```
f_y Yield strength [N/mm^2]
```

Examples

```
yield_strength(tw=47.6, tf=77, steel_grade="S355")
```

Index

```
axial_compression_force, 2
calculated_NEd, 3
check_local_buckling_resistance_about_zz_axis,
check_overall_buckling_resistance_about_yy_axis,
check_overall_buckling_resistance_about_zz_axis,
civilR, 7
civilR-package (civilR), 7
convert_member_dimensions_string_to_elements,
convert_member_dimensions_to_string, 8
critical_length_major_axis_y, 8
critical_length_minor_axis_z, 9
effective_length_of_member, 9
effective_second_moment_of_area, 10
Euler_buckling_load, 10
extract_member_dimensions, 11
{\tt imperfection\_factor\_yy},\, 11
imperfection_factor_zz, 12
main, 12
maximum_shear_force_in_the_lacing, 13
overall_buckling_resistance_about_axis,
plastic_resistance_of_cross_section_to_compression,
relative_slenderness, 14
{\tt second\_order\_bending\_moment},\, 15
shear_stiffness, 15
slenderness\_reduction\_factor, 16
temperature_load, 16
trial_member_size, 17
yield_strength, 17
```