PHYSIK

UNTERRICHT - ABITUR 2025

Inhaltsverzeichnes

Welle	enoptik	1
1.1	2024-06-06 - Interferenz Gitter Versuch	1
1.1.1	Beobachtung	1
1.1.2	Auswertung	1
1.1.3	Aufgaben	1
	1.1.3.1 1	1
1.1.4	Versuch Wiederholung	1
1.1.5	Worauf muss man achten:	1
1.1.6	Links	2
	1.1.6.1 a	2
1.1.7	Zweite Runde	2
	1.1.7.1 Messung der verschiedenen Wellen / LED's	2
	Rot	2
1.1.8	Bedeutung der einzelnen Bestandteile	2
1.2	2024-08-14 - Überlagerung von Wellen	2
1.3	2024-09-04 - Interferenze Auswerten	3
1.4	2024-09-13 - Interferometer	4
1.4.1	Video - Gravitationswellen	4
1.4.2	Das Michelson-Interferometer	4
1.4.3	Modelle des Lcihtes (alt)	5
Form	eln	6
Biblio	ographie	7

Wellenoptik

1.1 2024-06-06 - Interferenz Gitter Versuch

1.1.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

1.1.2 Auswertung

1.1.3 Aufgaben

1.1.3.1 1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{g}$$
 und $\tan \alpha = \frac{a}{l}$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

•
$$2a_1 = 0, 12m$$
; $a_1 = 0, 06m$; $l = 27cm = 0, 27m$

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0, 12}{0, 27}))$$

$$= 434 \cdot 10^{-9} m$$

1.1.4 Versuch Wiederholung

$$2a_2 = 0.127m$$
; $a_2 = 0.635m$; $l = 0.38m$

Berechnung der Wellenlaenge λ :

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$
$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0, 07}{0, 38}))$$
$$= 6, 34 \cdot 10^{-7} m = 634 nm$$

1.1.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

1.1.6 Links

1.1.6.1 a

2a ist zwischen den Maxima der Ordnung n. Also von einem Maxima bis zur mitte ist nur a

1.1.7 Zweite Runde

• 2024-06-18

1.1.7.1 Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1. Ordnung in cm ¹	A. 2. Ordnung
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

Rот

1. Ordnung

$$2a = 0.103m$$
; $a = 0.0515m$; $l = 0.15m$

Berechnung der Wellenlaenge λ :

$$\lambda = \frac{g}{n} \cdot \sin(\tan^{-1}(\frac{a_n}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0.0515}{0.15}))$$

$$= 6.49 \cdot 10^{-7} m$$

1.1.8 Bedeutung der einzelnen Bestandteile

1.2 2024-08-14 - Überlagerung von Wellen

Abbildung 1.1 Überlagerung zwei exakt gleicher Wellen

¹ Abstand 1. Ordnung zur 1. Ordnung

Abbildung 1.2 Überlagerung zwei unterschiedlicher Wellen

Im ersten Beispiel² wird die Amplitude *verdoppelt*, im zweiten Beispiel³ gleichen sich die beiden Wellen zu *keiner* Welle aus.

Hier betrachten wir immer 2 gleichartige Wellen und interesieren uns für die Wällenlänge: λ

Abbildung 1.3 Überlagerung von Wellen durch ein Gitter

Abstand zwischen 2 Maxima gleicher Ordnung messen und durch zwei Dividieren.

1.3 2024-09-04 - Interferenze Auswerten

- S. 171 A5
- Mit Tabelle

$$2a_1 = 1.90cm$$

$$2a_2 = 3.85cm$$

$$2a_3 = 5.80cm$$

^{2 &}lt;fig:waves_no_offset>

^{3 &}lt;fig:waves_offset>

$$a_1 \approx 3.27 cm = 3.27 \cdot 10^{-2} m$$

 $a_2 \approx 6.64 cm = 6.64 \cdot 10^{-2} m$
 $a_3 = 10 cm = 10 \cdot 10^{-2} m$

$$\lambda = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n} \quad | \cdot n$$

$$n\lambda = g \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \quad | \div \sin(\tan^{-1}(\frac{a_n}{l}))$$

$$\frac{n\lambda}{\sin(\tan^{-1}(\frac{a_n}{l}))} = g$$

Dabei ist:

- l = 2.6m
- $6.35 \cdot 10^{-7} m$

1. Ordnung
$$g_1 \approx 5.05 \cdot 10^{-5} m$$

2. Ordnung
$$g_2 \approx 4.97 \cdot 10^{-5} m$$

3. Ordnung
$$g_3 \approx 4.96 \cdot 10^{-5} m$$

$$\overline{x} = \frac{g_1 + g_2 + g_3}{3} \approx 4.99 \cdot 10^{-5} m$$

1.4 2024-09-13 - Interferometer

1.4.1 Video - Gravitationswellen

- Gravitationswellen stauchen und strecken materie minimal
- · Solche wellen werden unter anderem durch die Kollision von schwarzen Löchern verursacht

1.4.2 Das Michelson-Interferometer

Aufgabe: Erklären Sie mithilfe der S. 173 unter Erstellung einer Skizze das Funktionsprinzip eines Michelson Interferometers und die Messung kleiner Längenänderungen damit

Durch die Trennung und die wieder Zusammenführung des Laser kann mit der Interferenz eine beeinflussende Kraft mit sehr hoher präzision festgestelt werden.

Gangunterschied

Der Gangunterschied δs ist der Unteschied der Laufwege der beiden Wellen bei Interferenz

Aufgabe bei Leifiph

1.4.3 Modelle des Lcihtes (alt)

Michelson-Interferometer

Formeln

Bibliographie