Sample Talk Slides

Collin Kofroth

Name of University

January 10, 2022

Sample Slide

Define

$$\Box := \frac{\partial^2}{\partial t^2} - \Delta, \qquad \Delta := \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.$$

The wave equation on $\mathbb{R}_+ \times \mathbb{R}^n$:

$$\begin{cases}
\Box u = 0 \\
u(0, x) = f(x) \\
\partial_t u(0, x) = g(x)
\end{cases}$$

Sample Slide II

Suppose that

$$\Box u = 0$$

For every
$$t$$
, $u(t,x) = 0$ for $|x|$ large

Then,

$$E[u](t) := \frac{1}{2} \int \left(|\partial_t u|^2 + |\nabla_x u|^2 \right) dx$$

is constant in t (and equals E[u](0)).

Proof.

Literally differentiate with respect to t.

Sample Slide III

A random theorem, a special case of the main theorem in [1]:

Theorem

Solutions to the homogeneous wave equation on the Schwarzschild space-time enjoy a pointwise decay rate of t^{-3} for compactly-supported Cauchy data.

Figure: Schwarzschild black hole embedding diagram

References

[1] D. Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math. 135 (2013), no. 2, 361–401.

