

TD2 - Automates et Langages

septembre 2018

Langages rationnels

Exercice 1:

On dit que deux expressions rationnelles e_1 et e_2 sont *équivalentes*, ce qu'on dénote $e_1 \equiv e_2$, ssi ces expressions représentent les mêmes langages, i.e.

$$e_1 \equiv e_2 \operatorname{ssi} \mathcal{L}(e_1) = \mathcal{L}(e_2)$$

- $\boldsymbol{Q}\ \boldsymbol{1}$. Montrer que \equiv est effectivement une relation d'équivalence.
- Q 2 . On ne considèrera ici que les expressions rationnelles parenthésées.

Une congruence est une relation d'équivalence compatible avec les opérations de la structure algébrique considérée (ici, la structure algébrique est celle des expressions rationnelles munie des opérations *, + et de la concaténation). Pour montrer que \equiv est une congruence , il faut montrer que :

pour toutes expressions rationnelles e_1,e_1^\prime,e_2 et $e_2^\prime,$

si
$$e_1 \equiv e_2$$
 et $e_1' \equiv e_2'$ alors

$$(e_1) + (e'_1) \equiv (e_2) + (e'_2)$$

 $(e_1).(e'_1) \equiv (e_2).(e'_2)$
 $(e_1)^* \equiv (e_2)^*$

Montrer que \equiv est une congruence.

Exercice 2:

(extrait du livre de P. Wolper) Simplifier les expressions rationnelles suivantes.

Q 1.
$$(\epsilon + a^* + b^* + a + b)^*$$

Q 2.
$$a(a+b)^*b + (ab)^* + (ba)^*$$

Exercice 3:

Démontrez les équivalences suivantes.

Q 1.
$$(\epsilon + a)(a + b)^* \equiv (a + b)^*(\epsilon + b)$$

Q 2 .
$$b(ab)^* \equiv (ba)^*b$$

Q 3.
$$(b(aa)^*b + a)^* \equiv (ba(aa)^*ab + a + bb)^*$$