RS232/485/422-LORA 产品手册

(支持中继款)

--V2.1

东莞市艾莫迅自动化科技有限公司

Dongguan Amsamotion Automation Technology Co.,Ltd.

目录

—,	产品概述	1
	1.1、产品简介	
	1.2、特点功能	
	1.3、应用场景	
_	技术参数	2
<u> </u>	1X小多致	2
三、	产品规格	3
	3.1、安装尺寸	3
	3.2、端子说明	3
	3.2.1、端子定义	3
	3.2.2、Reset 按键说明	5
四、	快速入门	6
五、	功能说明	9
	5.1、数据传输模式	9
	5.1.1、点对点通讯	10
	5.1.2、点对多点通讯	11
	5.2、串口参数设置模式	13
	5.3、远程测试模式	13
	5.4、远程设置参数模式	14
	5.5、中继通讯	15
	5.5.1、一级中继	15
	5.5.2、二级中继	16
	5.5.3、多级中继	17
	5.6、按键复位功能	18
	5.7、固件升级功能	
六、	AT 指令与模块参数	19
	6.1、AT 指令格式说明	19
	6.2、空中波特率	22
七、	模块参数配置工具	24
	7.1、配置前准备	24
	7.2、开始配置	
	7.2.1 配置工具的连接与读取模块参数	25
	7.2.2 设置模块参数	26

八、	不同版本对比与搭配使用	26
	8.1、功能对比	27
	8.2、参数搭配	28
九、	模块常见问题分析	28
/.kz \=		

修订历史

关于我们

一、产品概述

1.1、产品简介

LORA 无线串口透传模块(简称"LORA 模块")提供 RS232、RS485、RS422 透明的数据接口,能适应大多标准或非标准的用户协议。在数据传输状态,进行透明数据传输。在此状态下,LORA 模块把从 RS232(或 RS485 或 RS422)串口收到的设备数据,都直接从空中发送出去;把从空中收到数据,都从 RS232(或 485 或 422)串口直接发送给设备,所发即所得。

RS232/485/422-LORA(支持中继款)产品是一款工作在"410-525MHz"频段,半双工通讯的LORA模块。它在初代RS232/485/422-LORA型号产品的基础上,增加了作为中继时的数据转发功能。

1.2、特点功能

RS232/485/422-LORA 模块体积小、灵敏度高、低功耗,特点包括:

- 先进的 LORA 调制技术,具有远距离抗干扰的优点
- 多种串口波特率通讯参数,灵活通讯,适用场景广
- 可接收 RS232、RS422、RS485 三种信号,数据透明传输,适应大多数标准或非标准的用户协议,适用设备十分广泛
- 成对通讯,简易配对,迅速上手
- 支持多级中继组网,增大无线通讯距离
- 支持远程配置参数模式,更改参数
- 通讯过程可加密,保证数据传输安全性
- 支持固件升级功能
- 金属黑外壳,安装空间小,立式安装,带导轨卡座

1.3、应用场景

LORA 无线串口透传模块适用于大部分使用 RS422、RS485、RS232 串口通讯场景,如:PLC、工业制造、仪器仪表、无线抄表、智慧农业、工业遥控、遥测、自动化数据采集系统、楼宇自动化、安防机房设备无线监控等。

二、技术参数

参数		描述说明	
LORA 模组特性		纯射频模组, 支持发送、接收数据信号	
LORA	芯片方案	SX1278	
工	作频段	410-525Mhz, 支持 ISM 频段, 默认 433Mhz, 信道间隔 2Mhz 为宜	
LORA	传输模式	半双工, 透明传输	
调	制方式	LORA 调制解调技术	
发:	射功率	最大发射功率(出厂默认) 20dbm, 一般默认设为最大即可	
通·	讯接口	RS232(DB9 公头)、RS485、RS422(接线端子)三种串口	
串	口参数	串口波特率 1200-115200, 14 种串口通讯格式 (详见表 6.1)	
空中	'波特率	300~19200, 空中波特率越小, 通讯距离越远, 但传输速率也慢	
I,	作电压	DC9-28V, 推荐 12V 或 24V, 端子接线供电, 电源防反接	
	守候	DC12V 时, 66ma; DC24V 时, 32ma	
电流参数	发射 (瞬间)	发射功率 20dbm 时,73ma(DC12V)或 43ma(DC24V)	
	接收 (瞬间)	17ma (DC12V) 或 7ma (DC24V)	
数:	据长度	单包容量超出模块内部环形 FIFO 缓存 255Byte 时,自动打包发出; 最大缓存容量 2048Byte	
通讯距离		晴朗空旷下 3000m (空中波特率 1200), 安装高度高于地面 2 米	
工作环境		工作温度: -40~+85℃; 存储温度: -40~+125℃	
天线接口		RF-SMA 吸盘天线,特性阻抗 50 Ω	
	尺寸	83*60*25 (L*W*H, 除天线外整体尺寸,单位:mm)	

三、产品规格

3.1、安装尺寸

图 3.1 RS232/485/422-LORA 尺寸图

3.2、端子说明

3.2.1、端子定义

(1) RS422/485、电源、指示灯端子定义

名称	说明
422/R+	RXD+ (RS422)
422/R-	RXD- (RS422)
422/T+	TXD+ (RS422)
422/T-	TXD- (RS422)
485/A+	A (RS485)
485/B-	B (RS485)

0V	9-28V 直流供电电源负极
24V+	9-28V 直流供电电源正极
Reset	复位、工作模式切换等功能按钮,具体操作参考章节 3.2.3
PWR	电源指示灯,上电后常亮
SYS	工作状态灯
RFD	代表无线模块的收发状态指示灯,上电时常灭,数据收发时会闪烁
RXD	串口接收指示灯,上电时常灭,当串口有数据接收时会闪烁
TXD	串口发送指示灯,上电时常灭,当串口有数据发送时会闪烁
RF	RF 连接器
232	RS232C 标准 DB9 公头接口

上电时如果 LORA 模块正常, SYS 灯会闪烁两次后熄灭, 然后进入正常通讯状态。

(2) RS232接口(DB9公头)定义

引脚顺序	引脚作用	引脚名称
2	数据接收	RXD
3	数据发射	TXD
5	地	GND
其余	空	NC

(3) 赠配线的引脚定义

随产品赠送 DB9 串口线为 232 交叉线,引脚定义如下图所示:

3.2.2、Reset 按键说明

Reset 按键有功能模式切换(数据传输、远程测试、远程设置参数三种模式,详细模式说明参考第五章 节对应内容)、参数复位2种功能:

- 1)在任意模式下,长按 Reset 按键直到 SYS 灯常亮后松开按键,SYS 灯熄灭,RXD 灯以亮 1 秒灭 1 秒的周期闪烁,模块进入远程测试模式。
- 2) 在任意模式下,长按 Reset 按键直到 SYS 灯常亮再闪烁后松开按键, SYS 灯熄灭, RXD 灯以 1 秒频率闪烁,进入远程设置参数模式,此时设备 TX 和 RX 指示灯跑马慢闪。
- 3) 长按 Reset 按键,直到 SYS 灯变亮再闪烁然后熄灭后松开按键, SYS 灯闪烁两次后熄灭,此时:
 - ①如果是在数据传输模式下操作的,则使模块恢复出厂参数(默认参数见表 5.6);
 - ②如果是在远程测试模式下操作的,则使模块回到数据传输模式,不会复位参数;
- ③如果是在远程设置参数模式下操作的,则使被远程设置参数的模块的参数生效,并回到数据传输模式。

四、快速入门

LORA 模块的作用在于替代用户设备的有线通讯,因此用户应在保证有线通讯形式能成功的情况下, 方可使用 LORA 模块连接设备通讯。一般的使用流程如图 4.1 所示:

图 4.1 LORA 模块一般使用流程

当需要设置模块参数,以及进行测试安装时,参考以下步骤:

1)使用准备:

A.材料:至少需要2台LORA模块及其天线,DC24V电源,连接设备与模块的串口线,USB转串口线等。

B.用户应提前知晓用户设备的串口参数为多少,如果用户设备串口参数与模块默认参数"9600、1、8、None"不一致,即进行第2)步操作,一致即尝试第3)步通讯测试。

2)用 USB 转 RS485或 RS232或 RS422线连接电脑和模块(三种串口信号都可以配置模块参数,用户按实际方便程度选择串口线),然后结合第六、七章内容,设置相关参数。

3) 模块参数 OK 后,进行通讯测试:

- ①如果用户设备在工程测试人员附近,可将模块直接接上设备检验通讯情况。
- ②也可以通过 2 条 USB 转串口线分别连接 2 个模块,使用串口调试助手发送任意数据,如果两个模块之间通讯正常,发送什么即接收什么,如下图所示:

③或者使用远程测试模式进行测试,步骤可参考5.3章节。

♪说明:

②、③方法只能保证模块之间通讯正常,不一定保证安装到设备上通讯正常。

实际通讯情况有时需要工程技术人员结合现场情况调整,若通讯不成功,继续第2)步调整模块相关参数,建议用户测试好两个模块可以通讯后,再进行现场安装。

4)安装

安装时天线安装高度尽可能高于地面2米,周围较少或无障碍物。

若实际安装过程中,设备通讯不上,但是第2)步通讯测试又是成功的,可尝试下列方法:

- ①适当缩短设备之间的通讯距离;
- ②调整天线安装位置;
- ③适当降低模块空中波特率(参考章节6.2空中波特率说明,然后回到第2)步设置参数)。
- ④采用中继通讯(参考章节 5.5 内容)

五、功能说明

RS232/485/422-LORA 模块支持数据传输、参数设置、远程测试三种工作模式,以及按键恢复出厂、 固件升级的功能,功能的简单说明和进入退出方式用户可浏览下图进行了解,详细的功能说明还请参考本 章节中的对应内容。

图 5.1 LORA 功能导图 (图片不清晰,可放大文档显示比例查看)

5.1、数据传输模式

LORA 无线串口透传模块的数据传输方式是透明传输。即可互相通讯的 2 个 LORA 模块,一个模块发送什么数据,另一个模块就接收什么接收,数据完全透明,所发即所得。

一般情况下,发送数据的 LORA 模块数量为 1 台,根据接收数据的 LORA 模块数量,可分为点对点、 点对多点 2 种通讯形式。

5.1.1、点对点通讯

即连接串口设备的2个LORA模块互相通讯。

此时模块参数应保证 2 个模块的接收发送频率匹配(即 A 发送频率=B 接收频率, A 接收频率=B 发送频率),地址、加密启用情况一致(启用时,地址、网络 ID、密码应相等),空中波特率(由扩频因子、带宽决定,参见 6.2 章节)相等,即参数保持匹配或一致。

例如:模块 A、B 地址(16 进制)相同为 OA OF, 网络 ID 相同为 FA, 地址启用为开启,

A 发送频率=B 接收频率, A 接收频率=B 发送频率, 其余参数默认或者匹配,即这 2 个 LORA 模块之间可以通讯,则:

设备 A 发送: 0A 0F FA 00 12 34 (12 34 为用户设备发送数据)

设备 B 接收: 0A 0F FA 00 12 34

或

设备 B 发送: 0A 0F FA 00 FF 00 (FF 00 为用户设备发送数据)

设备 A 接收: 0A 0F FA 00 FF 00

图 5.1.1.1 点对点通讯

对于连接模块串口的设备端,由于地址启用为开启,实际上此时接收模块经校验发送方数据中地址和 网络 ID 与之匹配后,已将其去除,只保留了设备数据给串口端(如 12 34 或 FF 00)。

点对点通讯的节点 B 可以连接一台或者多台用户设备(多台设备时一般属于 MODBUS RTU 通讯的总 线连接情况)。如图 5.1.1.2 与图 5.1.1.3 都属于点对点通讯应用。

图 5.1.1.3 点对点多设备通讯

5.1.2、点对多点通讯

即一个 LORA 模块发送 ,多个 LORA 模块接收。发送与接收模块没有站号之分 ,站号取决于连接 LORA 模块的用户设备。

点对多的模块参数与点对点一样应保证相关参数匹配或一致,只不过此时不止一台数量接收数据的 LORA 模块参数,要与发送数据的 LORA 模块一致。

假如,有 A、B、C、D、E 五台模块 LORA 模块,<mark>仅 A、B 模块参数完全匹配</mark>,其余模块参数一至多处不匹配,它们的部分参数情况如下:

	模块 A	模块 B	模块 C	模块 D	模块 E
发送频率	435	433	433	433	480
(AT+TFRQ)	455	433	433	433	460
接收频率	433	435	435	435	450
(AT+RFRQ)	455	435	435	435	450
设备地址	0102	0102	09AA	0102	0102
(AT+ADDR)	0102	0102	UYAA	0102	0102
网络地址	01	01	01	03	01
(AT+NTID)	01	01	01	03	U1
地址启用	开启	开启	开启	开启	开启
(AT+USAD)	月石	1 月 / 日	1 1 / / /	1 1 / 1 / 1 / 1	八石

此时,只有参数完全匹配的 A、B 模块之间能传输数据(其余模块如果要和 A 模块通讯,就需要像 B 模块一样与 A 模块参数匹配),如下:

设备 A 发送: 01 02 01 00 12 34 (12 34 为用户设备发送数据)

设备 B 接收: 01 02 01 00 12 34

设备 C 接收: 无

设备 D 接收: 无

设备 E 接收: 无

图 5.1.2.1 点对多通讯

与点对点通讯的情况一样,对于连接模块串口的设备端,只保留了设备数据给串口端(如1234)。

图 5.1.2.2 点对多通讯案例

5.2、串口参数设置模式

在数据传输状态时,使用 USB 转串口线连接 LORA 模块与电脑,可通过我们提供的"配置工具"或串口助手,进入"AT 命令模式"对模块参数进行修改,包括串口波特率,校验位,空中波特率,功率,通讯频率等。具体 AT 指令说明参考 6.1 章节,配置工具的使用参考第七章节。

图 5.2 LORA 模块参数设置接线示意图

5.3、远程测试模式

当 LORA 模块已经部署于远距离的两端,远程测试模式便适用于方便用户远距离测试 2 台 LORA 模块是否可以通讯成功(当然短距离通讯测试亦可)。

远程测试模式一般的使用步骤如下:

1) 使需测试的 2 台 LORA 模块进入远程测试模式,操作方法:

模块上电后,长按住 Reset 按键,直到 SYS 灯变常亮后放开,模块即进入远程测试模式,

没有干扰或其他 LORA 模块传送数据下,此时除 PWR 灯亮,仅 RXD 灯以亮 1 秒灭 1 秒的周期闪烁。

- 2) 选择其中任意一个模块,再短按一下 Reset 按键。
- 3)根据再短按按键的模块的 TXD 与 RXD 灯闪烁情况,判断两台模块是否能够通讯成功:

A.通讯成功:RFD 灯每闪烁 1 次,TXD 与 RXD 两个指示灯将亮 1 秒灭 1 秒双闪 2 次;

B.收到错误数据:TXD与RXD两个指示灯将快闪;

C.如果没有通讯成功也没有收到错误数据:仅 RXD、RFD 灯持续闪烁。

4)需要回到数据传输模式时,在模块不断电的情况下,可通过长按 Reset 按键,一直到 SYS 灯变亮再闪烁然后灭掉,等灭掉后松开按键,模块即退出远程测试模式,回到数据传输模式。

这样的按键操作虽然与按键复位的操作一样,但此时不会复位模块参数。

5.4、远程设置参数模式

远程设置模式可以通过 1 台 LORA 模块,用 USB 转串口连接电脑直接发送 AT 指令,远距离给另一台能够与之通讯的 LORA 模块设置参数。

因此远程设置参数模式一般在用户通过远程测试模式,测试2个模块之间可以通讯的情况后选择使用。 假设现在有A、B两台模块,模块A给模块B远程设置参数,一般的使用步骤如下:

- 1)模块 B 上电后任何模式下,长按住 Reset 按键,直到 SYS 灯变亮再变闪烁后放开,模块即进入远程设置参数模式,此时除 PWR 灯亮,仅 RXD 灯以 1 秒频率闪烁。
- 2)使用 USB 转串口线连接模块 A 的串口和电脑,并使模块 A 上电。
- 3)通过串口调试助手直接发送需要设置的参数对应的 AT 指令(不需要发送"+++"进入命令模式,否则是配置本模块 A 的参数),模块 B 如果被配置成功,串口调试助手会收到"OK!"。
- 4) 使远程设置参数生效的方式有以下几种:
 - ①模块断电重启即生效新参数;
 - ②不断电重启模块的情况下:

A.发送"AT+EXIT、AT+REST"(适用单个改变参数情况),或"AT+DEFA"(参数复位指令)、 "AT+WRIT=<批量参数>"等指令(具体指令含义参考 6.1 中内容), SYS 灯闪烁两次熄灭后,模块即回 到数据传输模式,并生效新参数;

B.通过长按 Reset 按键,可通过长按 Reset 按键,一直到 SYS 灯变亮再闪烁然后灭掉,等灭掉后松开按键,模块即退出远程设置参数模式,回到数据传输模式。

这样的按键操作虽然与按键复位的操作一样,但此时不会复位模块参数。

5.5、中继通讯

中继通讯用于延长 LORA 模块之间的通讯距离,其中最重要的参数是网络 ID 和地址参数,作为中继的模块的地址为终端两个网段的网络 ID 组合,因此,它可以在两个网段之间进行数据转发,并且,中继器本身的接收和发送频率不能设置为一样,网络 ID 不能相同,也就是不能在相同网段中实现转发。

以作为中继转发的 LORA 模块数量,分为一级、二级...多级通讯。

5.5.1、一级中继

假设有 A、B、C 三台 LORA 模块, A、C 两个模块为直接连接用户设备串口的通讯节点, B 模块作为中继器,用于转发 A 与 C 之间的通讯数据,因此延长了 A 与 C 的通讯距离,这种通讯形式为一级中继。

一级通讯中,相关参数必须满足以下关系:

1) 发送、接收频率:

- A 发送频率 = B 接收频率 = C 发送频率;
- ② A 接收频率 = B 发送频率 = C 接收频率;

即一级中继时,A与C的收发频率都是互相相等的,然后通过B中继器来转发通讯数据,在A与C收发频率不相等的情况下,它们是不能互相收发数据的。

2)网络 ID 与设备地址:

- ① 作为中继器的 B 模块的网络 ID 无需设置,默认即可;A 与 C 的网络 ID 不能相等;
- ② A 与 C 的设备地址应相等, B 的设备地址为 A 与 C 的网络 ID 组合(不分先后)。

3)中继、地址启用:

A、B、C 地址启用应均开启,仅作为中继器的 B 模块中继启用为开启。

4)A、B、C其余参数应相等。

一级中继需要设置的参数可参考下表:

	模块 A	模块B(作为中继)	模块 C
网络地址(AT+NTID)	01	默认,不需要设置	03
设备地址(AT+ADDR)	0102	0103	0102
地址启用(AT+USAD)	开启	开启	开启
中继启用(AT+RELY)	关闭	开启	关闭
发送频率(AT+TFRQ)	<mark>435</mark>	<mark>433</mark>	<mark>435</mark>
接收频率(AT+RFRQ)	<mark>433</mark>	<mark>435</mark>	<mark>433</mark>

关于一级中继通讯距离:在没有中继通讯的情况下,根据实际现场及设备情况,假设 2 个 LORA 模块的最大通讯距离为 600 米,则一级中继通讯距离理论上最大为 2*600=1200 米。

5.5.2、二级中继

一级通讯距离不够时,再添加一个作为中继器的 LORA 模块,用于接力转发一级中继中中继器与通讯 节点的通讯数据,此时的通讯形式为二级中继。

假设 A、B、C、D 四台 LORA 模块, A、D 两个模块为直接连接用户设备串口的通讯节点, B、C 两个模块作为中继器。

1) 发送、接收频率:

- ① A 发送频率 = B 接收频率 = C 发送频率 = D 接收频率;
- ② A 接收频率 = B 发送频率 = C 接收频率 = D 发送频率;

即二级中继时, A与D的收发频率都是互相相反的, 然后通过B、C中继器来转发通讯数据, 在A与D收发频率相等的情况下, 它们是不能互相收发数据的。

2)网络ID与设备地址:

- ① 作为中继器的 B、C 模块的网络 ID 无需设置,默认即可; A 与 D 的网络 ID 不能相等;
- ② A 与 D 的设备地址应相等,B、C 的设备地址为 A、D 的网络 ID 分别与 2 位十六进制数组合(如图中 02,但不能与 A、D 网络 ID 相等,每组组合不分先后)。

3)中继、地址启用:

A、B、C、D 地址启用应均开启,仅作为中继器的B、C 模块中继启用为开启。

4)A、B、C其余参数应相等。

二级中继需要设置的参数可参考下表:

	模块 A	模块B(作为中继)	模块 C (作为中继)	模块 D
设备地址	0102	0102	0203	0102
(AT+ADDR)	0102	0102	0203	0102
网络地址	01	不需要设置	不需要设置	03
(AT+NTID)	O I	小而安以且	小而安以且	03
地址启用	开启	开启	开启	开启
(AT+USAD)	开石	T 石	开石	开石
中继启用	关闭	开启	开启	关闭
(AT+RELY)	大机	71 <i>/</i> D	71 <i>h</i>	大利
发送频率	435	433	435	433
(AT+TFRQ)	435 	433	435	433
接收频率	433	435	433	425
(AT+RFRQ)	433	435	433	<mark>435</mark>

关于二级中继通讯距离:在没有中继通讯的情况下,根据实际现场及设备情况,假设 2 个 LORA 模块的最大通讯距离为 600 米,则二级中继通讯距离理论上最大为 3*600=1800 米。

5.5.3、多级中继

参照一级、二级中继的配置方法,增加作为中继器的 LORA 模块数量,可以实现多级中继转发,以此来延长更远的通讯距离。

5.6、按键复位功能

在数据传输模式下,长按 Reset 按键,直到 SYS 灯变亮再变闪烁最后熄灭时松开按键,即进入复位模式,SYS 灯闪烁两次熄灭后,模块即完成复位,此时模块参数恢复为出厂默认参数(如表 5.6 所示)。

参数名称	参数默认值
网络 ID	00(2 位 16 进制)
串口通讯参数	波特率 9600,8 位数据位,1 位停止位,无校验
发射功率	20db(参数设置为 20)
通讯发送和接收频率	433MHZ(频率范围为 410Mhz-525Mhz)
本机地址	01 02(四位 16 进制)
带宽	250KHz (参数为 8)
扩频因子	128 位(参数为 7)
编码率	4/6(参数为 2)
是否使用加密传输功能	否(参数为 0)
是否使用地址配置功能	否(参数为 0)
是否使用中继功能	否(参数为 0)
初始密码	00000000

表 5.6 LORA 模块出厂默认参数

5.7、固件升级功能

当功能有必要升级时,通过模块串口可进行固件升级功能,由技术人员负责升级操作。

六、AT 指令与模块参数

6.1、AT 指令格式说明

AT 指令用来进行模块的参数读取与设置,但非特殊情况时,用户无需知晓,通过我们提供的上位机进行模块参数读取与设置即可。如需了解 AT 指令详细内容,可见以下内容:

1) AT 指令中模块参数的索引及对应含义,如表 6.1 所示:

参数号	对应参数	数值说明
01	无线发送频率	3 位十进制数值(范围 410-525, 单位: Mhz)
02	无线接收频率	3 位十进制数值(范围 410-525, 单位: Mhz)
03	串口波特率	数值 0-7, 对应的串口波特率如下: 0:1200 1:2400 2:4800 3:9600 4:19200 5:38400 6:57600 7:115200
04	串口通讯格式	数值 0-14, 分别对应格式 (Usart Format): 0: 7位数据位 1 位停止位 奇校验 (ODD); 1: 7位数据位 1 位停止位 禹校验 (EVEN); 2: 8 位数据位 1 位停止位 无校验 (NONE); 3: 8 位数据位 1 位停止位 奇校验 (ODD); 4: 8 位数据位 1 位停止位 奇校验 (EVEN); 5: 7位数据位 1.5 位停止位 奇校验 (ODD); 6: 7位数据位 1.5 位停止位 禹校验 (EVEN); 7: 8 位数据位 1.5 位停止位 无校验 (NONE); 8: 8 位数据位 1.5 位停止位 奇校验 (ODD); 9: 8 位数据位 1.5 位停止位 禹校验 (EVEN); 10: 7位数据位 2 位停止位 禹校验 (EVEN); 11: 7位数据位 2 位停止位 禹校验 (EVEN); 12: 8 位数据位 2 位停止位 禹校验 (NONE); 13: 8 位数据位 2 位停止位 禹校验 (ODD);
05	无线功率	数值 9-20 (单位: db)
	1 2 1 4 7 7	25 E : - T 5 E T TT /

		w/4 0 0 0 dd-1 -> T //3 ## ch / 2 / 2 · · · · >
		数值 0-9,分别对应无线带宽(单位 kHz):
		0: 7.8
		1: 10.4
		2: 15.6
		3: 20.8
06	信号带宽	4: 31.2
		5: 41.6
		6: 62.5
		7: 125
		8: 250
		9: 500
		数值 7-12,分别对应无线扩频因子(单位: chips)
		7: 128
		8: 256
07	扩频因子	9: 512
		10: 1024
		11: 2048
		12: 4096
		数值 1-4,分别对应编码率:
	编码率	1: 4/5
08		2: 4/6
		3: 4/7
		4: 4/8
09	是否启用地址	0 为不启用, 1 为启用
10	是否启用加密	0 为不启用, 1 为启用
11	设备地址	由 4 位 0-9 数字及 a-f 字符混合组成 (如 af 09)
12	网络 ID	由 2 位 0-9 数字及 a-f 字符混合组成(如 0f)
13	是否中继启用	0 为不启用, 1 为启用
14	RSSI 值 (无线接收灵敏度)	如-99 (单位: dBMhz)

表 6.1 参数设置开始与退出指令

2)参数设置开始指令与退出指令,如表 6.2 所示:

指令	说明(指令字母大写,字符英文半角输入)
+++	在数据传输状态,输入该指令后等待300ms,串口没收到其他数据,返回字符"Setup",LORA模块进入AT命令模式。只有先发送该指令让模块进入命令模式,才可有效发送其他AT指令
AT+EXIT	退出命令模式,进入数据传输状态

表 6.2 参数设置开始与退出指令

3) AT 命令参数读取命令格式为: AT+4个命令字符=?, 如表 6.3 所示:

指令	说明(指令字母大写,字符英文半角输入)			
AT+BUAD=?	获取串口的波特率的设置值,输入该命令会返回 0-7 中某个数值,分别对应串口波特率: 1200、2400、4800、9600、19200、38400、57600、115200			
AT+UAMF=?	获取串口通讯格式,返回数值0-14,对应数值详见表5.1中串口通讯格式的数值说明			
AT+TFRQ=?	返回数值 410-525MHZ,获取 LORA 无线发送频率			
AT+RFRQ=?	返回数值 410-525MHZ,获取 LORA 无线接收频率			
AT+RAPW=?	获取无线发送功率,无线功率从9到20db,越大发射距离越远			
AT+RSSI=?	获取无线接收信号强度			
AT+ADDR=?	本机地址读取功能,由 4 位 0-9 数字及 a-f 字符混合组成(不区分大小写)			
AT+BAND=?	获取无线带宽,输入该命令会返回 0-9 中某个数值,分别对应无线带宽(单位 kHz):7.8、10.4、15.6、20.8、31.2、41.6、62.5、125、250、500			
AT+SPFT=?	获取无线扩频因子,输入该命令会返回 7-12 中某个数值,分别对应无线扩频因子 (单位 chips):128、256、512、1024、2048、4096			
AT+CDRT=?	获取无线编码率,输入该命令会返回 1-4 中某个数值,分别对应编码率:4/5、4/6、4/7、4/8			
AT+USAD=?	查询是否启用地址头码:0为不启用,1为启用			
AT+USPW=?	查询是否启用密码: 0 为不启用, 1 为启用			
AT+QUEY	查询所有参数指令,返回各类参数			
AT+DEVC=?	设备类型查看指令,返回数字2,表示本产品			
AT+NTID=?	获取网络 ID 地址,由 2 位 0-9 数字及 a-f 字符混合组成(不区分大小写)			
AT+RELY=?	查询是否启用中继: 0 为不启用, 1 为启用			
AT+READ=<0000>	读取所有参数命令,返回值按表 5.1 的参数号排序,小参数号对应的参数的数值在前			
•				

表 6.3 参数读命令

4) AT 命令参数设置命令格式为: AT+4 个命令字符=<设置值>, 如表 6.4 所示:

指令	说明(指令字母大写,字符英文半角输入)
AT+BUAD=<値>	设置波特率, <>中为具体整数, 数字范围为 0-7, 具体选择见 "AT+BUAD=?"命令说明
AT+UAMF=<値>	设置串口通讯格式, <>中输入整数 0-4, 具体选择见 "AT+UAMF=?"命令说明
AT+TFRQ=<值>	设置无线发送频率, <>中输入整数 410-525 (单位: MHZ)
AT+RFRQ=<值>	设置无线接收频率, <>中输入整数 410-525 (单位: MHZ)
AT+RAPW=<値>	设置无线功率, <>中输入整数 9-20 (单位: db)
AT+ADDR=<値>	设置本机 4 位地址, <>中输入 4 个"0-9"整数或者"a-f"字母中某一个字符, 例如 <af19>, 不区分大小写</af19>
AT+BAND=<値>	设置无线带宽, <>中输入 0-9, 具体选择见 "AT+BAND=?"命令说明
AT+SPFT=<值>	设置无线扩频因子, <>中输入 7-12, 具体选择见 "AT+SPFT=?"命令说明

AT+CDRT=<值>	设置无线编码率, <>中输入 1-4, 具体选择见 "AT+CDRT=?"命令说明		
AT+USAD=<値>	设置通讯是否启用地址头码, <>中输入 0-1 (0 为不启用, 1 为启用)		
AT+USPW=<値>	设置通讯过程是否加密, <>中输入 0-1 (0 为不加密, 1 为加密)		
AT+VFPW=<8 位已设	本机无线通讯当前密码校验,校验成功当前密码,方可设置新的密码, <>中输入8位0-9		
置的密码字符〉	> 数字及 a-f 字符混合组成,例如 <afaa0199>,区分大小写</afaa0199>		
AT+STPW=	设置本机无线通讯新密码,在设置新密码前先使用 VFPW AT 指令校验当前密码,◇中输		
<8 位新密码字符>	符〉 入 8 位 0-9 数字及 a-f 字符混合组成,例如 <afaa0199>, 区分大小写</afaa0199>		
AT+RELY=<值>	设置是否启用中继, <>中输入 0-1 (0 为不启用中继, 1 启用中继)		
AT+NTID=<値>	设置网络 ID, <>中输入 2 位 0-9 数字及 a-f 字符混合组成,例如 <a9>,不区分大小写</a9>		
AT+REST	软重启模块指令,在不断电重启的情况下,发送该指令使模块设置参数生效, SYS 灯闪		
AITRESI	烁两次并熄灭即重启完成		
ATIDEEA	参数复位指令,发送该指令后,设备会将参数恢复到出厂设置(默认参数见表 4.6),		
AT+DEFA	并软重启生效(SYS 灯闪烁两次并熄灭后重启完成,即不用断电重启)		
AT+WRIT=	批量设置参数命令, <>中输入表 5.1 中所有参数号对应的参数的数值,参数号较小的对		
く所有参数号对	应数值排在前,数值之间以","(英文半角输入)间隔。发送成功后, SYS 灯闪烁两次		
应参数的数值>	并熄灭后,批量设置的新参数即生效。		

表 6.4 参数写命令

6.2、空中波特率

空中波特率是 LORA 模块在空中传输数据的实际速率,它由无线带宽和扩频因子共同决定,一般规律是,扩频因子越小,无线带宽越大,空中波特率越大,接收灵敏度越低,最大空中波特率在19200左右(即扩频因子为128、带宽为500时),因此用户尽可能保证设备的串口波特率不超过最大空中波特率太多。

同时,空中波特率越小,通讯距离越远,空中波特率越大,通讯距离越短。用户在设置参数时,应保证收发数据的两个模块的空中波特率相等,即扩频因子、无线带宽相等。

编码率 4/6 时,不同扩频因子与无线带宽对应的空中波特率可参考表 6.2,具体以实际为准。

扩频因子 (chips)	无线带宽 (Khz)	空中波特率(bps)
4096	125	244
2048	125	448
4096	250	488
1024	125	814

2048	250	895
4096	500	977
512	125	1465
1024	250	1628
2048	500	1790
256	125	2604
512	250	2930
1024	500	3255
128	125	4557
256	250	5208
512	500	5859
<mark>128</mark>	<mark>250</mark>	<mark>9115</mark>
256	500	10417
<mark>128</mark>	<mark>500</mark>	<mark>18229</mark>

表 6.2 空中波特率参考数值

七、模块参数配置工具

LORA 模块的参数配置工具,用户可到"艾莫迅官网—资料下载—软件配置工具下载—Lora 模块配置工具"下载,或联系销售获取。

7.1、配置前准备

1)将 USB转 RS485 串口线连接电脑,并安装好相应的驱动,确保 Windows 已经识别到串口,并在设备管理器中能够找到串口号,如图 7.1.1 中 COM1:

图 7.1.1 USB 转串口线连接

2)打开配置工具,在串口号的下拉选项中选择对应的串口号(如 COM1,如果选项没有显示对应串口,可以点击"搜索串口"),如图 7.1.2:

图 7.1.2 配置工具

3)将 USB 转串口线和模块对应串口正确连接,模块上电,PWR 指示灯亮。

7.2、开始配置

7.2.1 配置工具的连接与读取模块参数

结合图 7.2.1,使用配置工具连接模块的步骤一般如下:

- 1)确保选择了对应串口号(如 com1),同时选择模块当前的串口通讯参数(默认波特率 9600、校验位 None、数据位 8、停止位 1,如果忘记参数可通过复位键复位至默认参数),然后点击"打开串口"按钮。
 2)点击"进入命令模式"按钮,成功进入命令模式后(如果 3 分钟内没有有效 AT 命令,则退出命令状态,进入数据传输状态):
 - ①按钮上文字变为"退出命令模式"(再次点击将退出命令模式);
- ②如图 7.2.1 中位置 5 处提示"Setup"信息,位置 6 区域将读取一次模块当前参数,同时也可通过点击"读出参数"按钮进行读取参数。

图 7.2.1 配置工具的连接与读取

7.2.2 设置模块参数

在模块进入命令模式后,用户在图 7.2.2 区域 2 选择或填入需要设置的模块参数(如果要点击"恢复出厂设置"复位参数,则不用选择,出厂参数见章节 5.6 中表),然后可通过以下 2 种方法设置模块参数:

①发送+重启模块(或模块断电重启)

点击所有需要设置的参数的对应"发送"按钮后,再点击"重启模块"按钮,然后在模块 SYS 灯闪烁 2 次熄灭后,新的参数即可生效。

②(批量)写入参数

点击"写入"参数按钮,图 7.2.2 区域 2 的所有模块参数将被批量设置到模块,然后在模块 SYS 灯闪 烁 2 次熄灭后,新的参数即可生效。

图 7.2.2 设置模块参数

八、不同版本对比与搭配使用

目前我司在售 LORA 芯片方案为 SX1278 的 LORA 模块版本有两种(无法与采用 LORA 芯片方案 SX1268 的 RS485-LORA-M 模块搭配):一种初代产品不支持中继,第二种就是本手册介绍的带中继的产品,它们的型号都是一样的,可以互相通讯,但功能和使用上有部分区别。

8.1、功能对比

带中继款 LORA 与初代 LORA 的功能区别,可由 AT 指令对比,见表 8.1:

AT 指令	初代不带中继	中继款	备注
+++	√	√	
AT+EXIT	√	√	初代产品在30s分钟没有有效AT命令下,自动退出AT命令模式,而中继款为3分钟
AT+BUAD=?	√	√	
AT+UAMF=?	√	√	初代产品串口通讯格式支持5种,中继款有14种
AT+TFRQ=?	√	√	
AT+RFRQ=?	√	√	
AT+RAPW=?	√	√	
AT+DAMD=?	√	×	中继款只支持包模式传输
AT+RSSI=?	√	√	
AT+ADDR=?	√	√	初代产品设备地址为8位;中继款为4位
AT+BAND=?	√	√	
AT+SPFT=?	√	√	
AT+CDRT=?	√	√	
AT+SLAV=?	√	×	中继款该指令无效
AT+USAD=?	√	√	
AT+USPW=?	√	√	
AT+HELP	√	√	
AT+QUEY	√	√	
AT+NTID=?	×	√	2 位网络 ID
AT+RELY=?	×	√	中继启用情况
AT+READ=<0000>	×	√	读所有参数指令
AT+BUAD=<値>	√	√	
AT+UAMF=<値>	√	√	初代产品串口通讯格式支持5种,中继款有14种
AT+TFRQ=<值>	√	√	
AT+RFRQ=<値>	√	√	
AT+RAPW=<値>	√	√	
AT+DAMD=<値>	√	X	流模式、包模式设置, 中继款只支持包模式
AT+ADDR=<值>	√	√	初代产品设备地址为8位;中继款为4位
AT+BAND=<値>	√	√	
AT+SPFT=<值>	√	√	
AT+CDRT=<值>	√	√	
AT+USAD=<值>	√	√	
AT+USPW=<值>	√	√	
AT+VFPW=<值>	√	√	
AT+STPW=<值>	√	√	
AT+NTID=<値>	×	√	2位网络 ID

AT+RELY=<值>	×	√	中继是否启用
AT+REST	×	√	模块软重启指令
AT+DEFA	×	√	复位模块参数指令
AT+WRIT=<值>	×	√	批量设置参数指令

表 8.1 不同版本 AT 指令对比

结合以上对比及其他区别,两个模块之间不能远程测试和远程设置参数,以及中继通讯。

8.2、参数搭配

首先,用户需要区分手头上的 LORA 模块哪一个支持中继,双天线 LORA 是支持中继的,对于单天线 黑色金属外壳 LORA,由于型号一样,所以从外形无法区分,因此介绍通过 AT 指令分辨两款产品的方法:

- 1)发送"+++"使模块进入命令模式后,再发送"AT+DEVC=?"设备类型查看指令:
- 2) 如果收到 "error cmd!" 回复,即代表是我司生产的初代 LORA 模块产品;

如果收到数字 "2" 回复(双天线回复3),即代表是支持中继款的产品。

关于两种模块的搭配使用:

- 1)当2个模块地址启用为关闭时,则按照正常点对点,点对多通讯使用。
- 2) 当2个模块地址启用为开启时,应满足以下条件:

初代产品的设备地址,前4位与中继款LORA的设备地址相等,第5、6位与中继款LORA的网络ID相等,第7、8位固定为00。

例如,中继款的设备地址为 0A0F, 网络 ID 位 11,则初代产品的设备地址应为: 0A0F1100。

另外,如果地址启用为开启,两种模块之间不能再启用加密通讯,如果地址启用关闭,两种模块之间可以启用加密通讯。

九、模块常见问题分析

1)通讯距离不理想

- 现场环境复杂,存在直线通信障碍,通讯距离会相应减短,可将天线架高或引至室外;
- 天气不好,如雾霾、沙尘、雨雪天气;
- 地面吸收、反射无线电波,靠近地面通讯效果较差;
- 天线安装不正确,天线离地平面垂直高度两米左右时效果最佳;

- 海水具有极强的吸收无线电波能力,因此海边通讯效果差。
- 2) 丢包/误码率过高
- 附近可能有同频干扰,远离干扰源,或者修改频率、信道;
- 电源不理想可能造成乱码,请保证电源的稳定可靠;
- 馈线、串口通讯线品质太差或太长,也会造成乱码/丢包;
- 通讯设备的串口波特率过高于模块空中波特率,可适当调小设备波特率。
- 3)无法通信
- 两端的串口参数配置不一致,如点对点通讯,A发送频率≠B接收频率;
- 修改模块参数后未使之生效;
- 模块串口和设备接线不正确,参照模块与用户设备接线图;
- 用户设备通讯速率较快,通讯数据较大,可适当调高设备通讯延迟;
- 误把 LORA 芯片方案为 SX1268 的模块与 SX1278 的模块是搭配通信。
- 4)模块易受损
- 确保供电电源的电压在推荐范围内,若超出最大值可能造成模块永久性损坏;
- 保证供电电源的电压稳定性,电压不能大幅频繁波动;

安装使用过程中避免在湿度过高,或温度过高、过低的情况下使用。

修订历史

版本	修订日期	修订说明	维护人
1.0	2020.2.28	初始版本	LIN
2.0	2021.1.29	支持中继通讯版本	LIN
2.1	2021.8.13	内容修订	LIN

关于我们

官方网站: http://amsamotion.com 邮箱: amx@amsamotion.com 技术热线: 4001-522-518 拨 1 销售热线: 4001-522-518 拨 2 公司地址: 广东省东莞市南城区袁屋边艺展路 9 号兆炫制造园 B 栋 1 楼