국내 문학 신간 서적의 판매량 예측 모델 개발

- 선형 회귀분석 기법 활용 -

> **분석5기4조** <- data.frame(이름 = c("나성호", "고민정", "박대건", "최태웅", "유성용"), 호칭 = c("**K**evin", "**P**eter", "**D**avid", "**C**amel", "**H**arvey"))

	1. 나는 궁금합니다!!
[개요]	2. 그래서 물었습니다. 왜 필요하신가요?
	3. MD의 요구사항
	4. Data를 확보하라! (브레인스토밍)
[데이터 마트]	5. 종속변수, 이렇게 생겼습니다.
	6. 주요 독립변수의 생성
	7. 독립변수는 어떻게 선택하면 좋을까요?
[분석 방법론]	8. 선형관계를 확인해봅시다!
	9. 무한 삽질의 시작, 회귀분석을 하다 #1~5
	10. 회귀방정식의 완성 및 해석
[결론]	11. KPDCH의 솔루션, 이렇게 활용해보세요.
	12. 프로젝트를 마무리하며

나는 궁금합니다!!

그래서 물었습니다. 왜 필요하신가요?

✓ 판매 후, 월말 악성재고로 남아매몰비용이 증가됨

[Case II]

- ✓ 판매 전, 출판사는 마음 상하고
 MD는 민망해질 뿐만 아니라,
- ✓ 판매 후, 영업기회 상실에 따라
 이 증가됨

국내문학 신간 서적의 판매량을 가능한 정확하게 예측하고 싶습니다.

> **구체적인 판매량**을 알고 싶으신가요? 아니면 **예상 등급** 정도면 될까요?

KPDCH

MD

구체적인 수량으로 알려주시면 제가 예상 등급을 만들어 사용할 수 있을 것 같아요.

그렇다면, **회귀분석**으로 해야 되겠네요. **정확도는 대략 80%** 정도면 될까요?

KPDCH

Data를 확보하라! (브레인스토밍)

텍스트 마이닝도 하죠. 네이버 책 사이트에는 대형 온라인 서점들의 베스트셀러 정보가 제공되고 있어요.

종속변수부터 확정하죠! 신간서적이 출시된 후, "14일간의 판매량"으로 결정하면 될 것 같네요.

Y사의 거래 데이터로 저자와 출판사별로 과거 출판된 서적의 개수와 누적 총 판매량 등의 파생 변수를 만들어보죠.

우리가 분석할 서적들은 2013년 한 해 동안 새로 출간된 국내문학 서적이 좋겠습니다.

필요한 독립변수로는, 우선 **서점이 보유**하고 있는 데이터 중에서 저자와 출판사 정보를 들 수 있겠습니다.

통계청 자료에 보면, 가구당 소득과 지출과 같은 통계량이 있는데, **가처분소득** 정보를 새로 만들면 어떨까 싶네요~

종속변수, 이렇게 생겼습니다.

종속변수의 정의

: **2013년 국내문학 신간 도서 866권**의 출간 이후 14일간 판매량 합계

종속변수에 log10을 씌워서 다시 그려 볼까요?

주요 독립변수의 생성

독립변수는 3가지 대분류로 나뉘며, 대분류별 주요 독립변수는 다음과 같습니다.

정형 데이터 (서점 DB)

■ 저자 출판 종 수

- 저자 총 판매량 (누적)
- 저자 평균 판매량
- 저자 최근 판매량
 - 1M / 3M / 6M / 12M
- 출판사 출판 종 수
- 출판사 총 판매량
- 출판사 평균 판매량
- 출판사 최근 판매량
 - 1M / 3M / 6M / 12M
- 신간 서적 가격 (정가)

비정형 데이터 (베스트셀러)

- 저자 베스트셀러 지수 (기간 중 BS 등록 횟수)
 - 신간 서적의 출판일 전 1~4주간 등록 건 집계
 - "네이버 책" 사이트에서6대 온라인 서점 데이터크롤링하여 확보
- 장르별 판매 지수 개발
 - 6대 서점의 장르별 BS 권 수 × '12년 M/S

정형 데이터 (통계청)

- 가구당 소득 지수
 - 분기별 가구당 소득/지출
 - 분기별 가구당 서적 소비
- 서적 판매량
 - 월별 상품군별 판매액
 - 월별 온라인몰 판매액
- 월별 출판업 매출 전망
- 월별 실업률

주요 독립변수의 생성 ① 정형 데이터 (서점 DB)

온라인 서점 Y사로부터 받은 원본 데이터로 몇 가지 파생변수를 만들었습니다.

ISBN(1	13)	도서명	출간일자	작가번호	출판시	∤코드	정가	분야번호
978899 	94	별을 사랑	20130615	1556	100	634	6000	001006
978899	97	이어령의	20130506	1703	107	513	45000	001006
97889 <u></u>	54	그 여자의	20130114	51032	(3	11000	001006
9788932		견딜 수	20130115	51036	7	9	8000	001006
		:	:	:			:	:

✓ 전체 출판 종수 : 20만 여권

✓ '13년 일 판매량 : 100만 여건

✓ 작가 수 : 7만 여명

✓ 출판사 수 : 2만 여개

ISBN(13)	날짜	판매량
9788994	20130615	1
9788994 	20130616	3
9788994	20130617	2
9788994	20130618	2
:	•	<u>.</u>

작가번호	출판 종수	누적판매량
1556	2	4301
1703	45	20054
51032	13	2435
51036	7	521
:	:	:

출판사코드	출판 종수	누적판매량	
100634	302	10296	
107513	1745	242154	
6	25	7568	
79	61	14325	
:	:	:	

주요 독립변수의 생성 ② 비정형 데이터 (베스트셀러)

네이버 책 사이트에서 6대 온라인 서점의 베스트셀러 정보를 크롤링하였습니다.

- ✓ 온라인 서점명
- ✓ 날짜 정보(년/월/주차)
- ✓ 베스트셀러 순위 (1~100 위)
- ✓ 도서명
- √ 저자명
- √ 출판사명
- √ ISBN(13)
- √ 장르명

독립변수는 어떻게 선택하면 좋을까요?

준비된 독립변수는 총 42개 입니다. 보통 회귀분석 모형을 만들 때, 가용한 독립 변수들을 모두 포함하여 stepwise 방식으로 돌리면 변수를 자동으로 선택해주던데요.

먼저 종속변수와 독립변수간 상관관계를 확인해보세요. 유의확률 0.05 이하인 변수를 선택하시는 게 좋습니다.

정형 데이터 (서점 DB)

비정형 데이터 (베스트셀러)

비정형 데이터 (통계청)

독립변수	상관계수	P-value	독립변수	상관계수	P-value	5	독립변수 -	상관계수	P-value
저자 출판종수	0.165	9.5e ⁻⁰⁷	판매지수(경영)	-0.027	0.436	가구 총	소득(Q)	-0.037	0.270
저자 총판매량	0.433	2.:					소비(Q)	-0.034	0.452
저자 평균판매량	0.408	2.:	사용 가능 독	사용 가능 독립변수의 개수 42개 → 24개				-0.012	0.725
출판사 출판종수	0.080	0.						-0.014	0.680
출판사 총판매량	0.148	1.	40711					0.004	0.898
출판사 평균판매량	0.263	3.	42/11 -					-0.012	0.732
가격(정가)	-0.021	0.					판매액(M)	-0.032	0.342
최근 12M 판매량	0.280	2.2e ⁻¹⁶	출판사지수(4w)	출판사지수(4w) 0.240 7.6e ⁻¹³ 실업			(M)	-0.015	0.664
:	:	:	:	:	:		:	:	:

선형관계를 확인해봅시다!

정형 데이터 중 종속변수와 상관계수가 큰 "저자 총 판매량" 데이터로 선형관계를 확인해 보았습니다.

날씬한 직선일수록 강한 "선형관계"입니다.

종속변수와 독립변수 앞에 log10을 씌우고 다시 해보죠. 종속변수 값에 '0'이 있으니 '+1'을 하는 방법이 있습니다.

먼저, 모델링과 검증을 위해 전체 데이터를 Training Data(80%)♀ Test Data(20%)로 나눈 후, 24개 독립변수를 가지고 stepwise 방식의 다중회귀분석을 돌려보았습니다.

독립변수가 2개 이상인 다중 회귀분석인 경우 모델 적합도 확인은 Adjusted R²로 해야죠. 이 모델은 0.7769이네요.

linear model

- $> reg <- D14_SALE \sim .$
- > lm.tr <- step(lm(reg, data=bookdb.tr), direction="backward"))
- > summary(lm.tr)

```
Console D:/bigdata/project/data/ 🖒
                                                                lm(formula = D14_SALE ~ AU_W_CNT + AU_S_CNT + PU_S_CNT + AU_BS_W1 +
                                                                   AU_BS_W2 + AU_BS_W3 + AU_BS_W4 + PU_BS_W4 + AU_S_{12M} + AU_S_{03M} +
                                                                   PU_5_{12M} + PU_5_{03M}, data = bookdb.lm.tr)
                                                                Residuals:
                                                                    Min
                                                                            10 Median
                                                                -1138.39 -23.76 -12.17
                                                                                         14.05 1434.67
                                                                Coefficients:
                                                                            Estimate Std. Error t value Pr(>|t|)
                                                                (Intercept) 2.386e+01 8.887e+00 2.685 0.007434 **
                                                                AU_W_CNT
                                                                          -3.037e-01 1.183e-01 -2.567 0.010466 *
                                                                AU_S_CNT
                                                                           2.180e-03 2.411e-04 9.041 < 2e-16 ***
                                                                PU_S_CNT
                                                                          -4.634e-05 3.234e-05 -1.433 0.152407
                                                                AU_BS_W1
                                                                          -6.517e+01 8.742e+00 -7.455 2.77e-13 ***
Residual standard error: 169.6 on 676 degrees of freedom
                                                                                                 39 0.000886 ***
                                                                                                 43 0.065787 .
Multiple R-squared: 0.7808, Adjusted R-squared: 0.7769
F-statistic: 200.6 on 12 and 676 DF, p-value: < 2.2e-16
                                                                                                 58 0.031263 *
                                                                                                  76 0.076195 .
                                                                Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                Residual standard error: 169.6 on 676 degrees of freedom
                                                                Multiple R-squared: 0.7808, Adjusted R-squared: 0.7769
                                                                F-statistic: 200.6 on 12 and 676 DF, p-value: < 2.2e-16
```


[참고] 회귀방정식 탐색 과정 (Data Selection)

[참고] 회귀방정식 탐색 과정 (Model Selection)

이번엔 종속변수의 분포에 맞는 일반화선형모델(GLM)을 검토해 볼까요? 먼저 Y값의 평균과 분산을 확인해 보시죠.

mean & variance of y

- > mean(bookdb.tr\$D14_SALE)
 [1] 84.77021
- > var(bookdb.tr\$D14_SALE)
 [1] 116558.7

종속변수의 평균과 분산을 구해보니, 평균에 비해 분산이 매우 크네요. 이것으로 무엇을 알 수 있나요???

GLM, poisson regression

- > glm.pos <- glm(reg, data=bookdb.tr, family=poisson(link=log)))
- > summary(glm.pos)

GLM, Negative Binomial regression

- > glm.nbr <- glm.nb(reg, data= bookdb.tr, method="glm.fit", link=log))
- > summary(glm.nbr)

GLM에는 다양한 링크함수가 존재하는데요. 평균과 분산이 같을 땐 poisson을, 평균보다 분산이 매우 클 때는 Negativ e Binomial을 적용합니다.

일반화선형모델(GLM) 2가지 모델을 만들어 summary를 살펴보니 Adjusted R²를 확인 할 수 없네요.

모델 적합도는 무엇으로 비교할 수 있나요?

보통 선형 모델간 적합도를 평가를 하기 위한 방법으로 MAPE(평균절대백분율오차)를 사용합니다.

Mean Absolute Percentage Error

실제값 대비 실제값과 예측값 편차 비율의 평균. 0에 가까울수록 모델 적합도 좋음

모형 평가 지표

Max Error, 오분류율, Min/Max Error, sMAPE, MAE, RSS 등이 있음

선형모델간 적합도 비교 (w/ MAPE)

선형모델	MAPE
1. linear model	0.4517
2. GLM Poisson	0.4635
3. GLM Negative Binom ial	0.7605

회귀분석에는 수많은 형태가 있지만,

어떤 모델이든 **쉽게 이해할 수 있고,** 적용이 편리한 모델을 사용하는 것이 정답!!

앞서 몇 개 독립변수들의 회귀계수가 유의수준 0.05를 초과하는 경우도 있던데, 이들변수들은 제거해야 하지 않을까요? 또 다중공선성 문제는 어떻게 해결하나요?

다중공선성이 높은 독립변수 들을 먼저 제거하는 것도 좋은 방법입니다. 이 경우 VIF(분산 팽창지수) 10 이상인 변수를 제외합니다.

multicollinearity

- > install.packages("alr3")
- > library(alr3)
- > vif(lm.tr)

VIF가 10 이상인 독립변수를 제거할 때는 **종속변수와의 상관계수가 가장 낮은 것부터** 차례대로 삭제합니다.

remove : PU_S_03M, ...

- > lm.tr <- step(lm(reg2, data=bookdb.tr),
 direction="backward"))</pre>
- > vif(lm.tr)

새로운 회귀식의 모델 적합도

- Adj R^2 : 0.7769 \rightarrow **0.7763** (-0.0006)

- MAPE : $0.4517 \rightarrow 0.4479 (-0.0038)$

이제 다중공선성 문제도 해결했고, 회귀식과 계수들의 p-value들도 통계적으로 유의한 수준을 만족하고 있는 듯 합니다.

마지막으로 outliers가 있는지 확인해볼까요? 보통 Cook's Distance로 확인 할 수 있습니다.

이상치를 제거한 회귀식의 모델 적합도

- Adj $R^2: 0.7763 \rightarrow \mathbf{0.8040} \ (+0.0277)$

- MAPE : $0.4479 \rightarrow 0.4476 (-0.0003)$

테스트 데이터로 회귀모형을 검증한 결과

- Adj R² : **0.7624**

- MAPE: 0.4645

회귀방정식의 완성

최종 회귀방정식을 정리하면 아래와 같습니다.

국내 문학 신간 서적의 출판 후 14일간 판매량

Y절편 14.7

- ➡ (0.0004 × 저자 총 판매량)
- ➡ (-0.02 × 저자 최근 3M 판매량)
- ◆ (-47.2 × 저자 베스트셀러 지수 w1)
- ◆ (90.2 × 저자 베스트셀러 지수 w2)
- ★ (215.7 × 저자 베스트셀러 지수_w3)
- ◆ (-30.3 × 저자 베스트셀러 지수 w4)
- ◆ (7.84 × 출판사 베스트셀러 지수 w4)

회귀방정식의 해석

각 독립변수마다 측정 단위가 다르므로 표준화 회귀계수를 통해 종속변수에 대한 설명력 비교가 가능합니다!

Standardized Beta Coefficient

- > library(QuantPsyc)
- > Im.beta(Im.tr)

AU S CNT 0.06335878

AU_BS_W1 -0.19753887

AU BS W2 0.32146338

AU_BS_W3 0.80222298

AU BS W4 -0.09416640

PU BS W4 0.07138233

AU S 03M -0.08274352

우리는 이 회귀방정식으로부터,

- ✓ 저자의 기존 서적들이 베스트셀러에 등록 될수록 신간 서적이 더 많이 팔리며,
- ✓ 출판사보다 저자의 영향력이 더 크며,
- ✓ 특히, 신간 서적의 출판일 3주 전에 저자가 베스트셀러로 등록된 경우, 판매량에 가장 큰 영향을 미치게 됨을 알 수 있다.

종속변수에 영향을 크게 주는 변수의 순서

- ① 저자 베스트셀러 지수 3w
- ② 저자 베스트셀러 지수 2w
- ③ 저자 베스트셀러 지수_1w

KPDCH의 솔루션, 이렇게 활용해보세요.

먼저 예측하고 싶은 신간 서적들을 대상으로 **"출판 후 14일 판매량을 추정"**해보세요.

예측값 (누적)	1,000권 이상	100권 이상	10권 이상	1권 이 이	1권 미만
종 수	6종	20종	162종	169종	177종
100권 점유비	66.7%	50.0%	9.9%	10.1%	10.2%

* 1, 2위 서적의 순위를 정확하게 맞힘

[ROC curve & Lift chart]

KPDCH의 솔루션, 이렇게 활용해보세요.

프로젝트를 마무리하며...

비록 결과는 미약하나,

그간의 과정을 이렇게

공유해 드립니다. 사람들이 책을 구매하는 Web Crawling도 하고, 부족한 실력 때문에 꽤 오랜 시간을 들여 사유에 대한 인사이트가 통계청 자료도 가져와 의사소통력 많이 필요했습니다. 파생변수도 만들었구요. 작업해야 했구요. (Commun ica-tion) 정보력 통찰력 노력 (Know-w (Passion) (Insight) here) 문제해결력 상상력 (Know-ho (Creative) w) 브레인스토밍을 통해 헌데, 회귀분석에 대해 인사이트를 도출하고, 제대로 알고 있는 게 **KPDCH** 열심히 구글링도 했죠. 그리 많지 않았습니다.

QnA

나성호 kevin.na74@gmail.com