SAP ID: 60003220250

#### DEPARTMENT OF INFORMATION TECHNOLOGY

**COURSE CODE:** DJS22ITL504 **DATE:** 24/09/2024

**COURSE NAME**: Cryptography and Network Security Laboratory CLASS: TYBTech

#### **EXPERIMENT NO. 5**

**CO/LO:** Design secure system using appropriate security mechanism

### **AIM / OBJECTIVE:**

Analysis of Modern Block Ciphers (use crypt APIs)

#### **DESCRIPTION OF EXPERIMENT:**

A block cipher takes a block of plaintext bits and generates a block of ciphertext bits, generally of same size. The size of block is fixed in the given scheme. The choice of block size does not directly affect to the strength of encryption scheme. The strength of cipher depends up on the key length.



#### **Analysis:**

- 1. Use crypt API to encrypt/decrypt a plaintext block using AES, DES
- 2. Avalanche Effect: Change in Plaintext
- 3. Avalanche Effect: Change in key

### **SOURCE CODE:**

pip install pycryptodome

from Crypto.Cipher import AES, DES from Crypto.Util.Padding import pad, unpad import binascii import time

# AES encryption/decryption def aes\_encrypt\_decrypt(plaintext, key): # Ensure the key is 16 bytes long for AES-128 key = key.ljust(16, '')[:16].encode('utf-8') cipher = AES.new(key, AES.MODE\_ECB)

# Pad plaintext to be a multiple of block size (16 bytes for AES) padded\_text = pad(plaintext.encode('utf-8'), 16)

# Encrypt and measure encryption time
start\_time = time.time()
ciphertext = cipher.encrypt(padded\_text)
encryption\_time = time.time() - start\_time



## Shri Vile Parle Kelavani Mandal's

# DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING



(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
print("AES Ciphertext:", binascii.hexlify(ciphertext).decode('utf-8'))
  print("AES Encryption Time: {:.6f} seconds".format(encryption_time))
  # Decrypt and measure decryption time
  start_time = time.time()
  decrypted_text = unpad(cipher.decrypt(ciphertext), 16)
  decryption_time = time.time() - start_time
  print("AES Decrypted Text:", decrypted_text.decode('utf-8'))
  print("AES Decryption Time: {:.6f} seconds".format(decryption_time))
# DES encryption/decryption
def des_encrypt_decrypt(plaintext, key):
  # Ensure the key is 8 bytes long for DES
  key = key.ljust(8, ' ')[:8].encode('utf-8')
  cipher = DES.new(key, DES.MODE_ECB)
  # Pad plaintext to be a multiple of block size (8 bytes for DES)
  padded_text = pad(plaintext.encode('utf-8'), 8)
  # Encrypt and measure encryption time
  start_time = time.time()
  ciphertext = cipher.encrypt(padded_text)
  encryption_time = time.time() - start_time
  print("DES Ciphertext:", binascii.hexlify(ciphertext).decode('utf-8'))
  print("DES Encryption Time: {:.6f} seconds".format(encryption_time))
  # Decrypt and measure decryption time
  start_time = time.time()
  decrypted_text = unpad(cipher.decrypt(ciphertext), 8)
  decryption_time = time.time() - start_time
  print("DES Decrypted Text:", decrypted_text.decode('utf-8'))
  print("DES Decryption Time: {:.6f} seconds".format(decryption_time))
# Test with plaintext and keys
plaintext = "123456"
aes key = "122"
des_key = "122"
print("AES Encryption/Decryption:")
aes_encrypt_decrypt(plaintext, aes_key)
print("\nDES Encryption/Decryption:")
des_encrypt_decrypt(plaintext, des_key)
```

# **OBSERVATIONS AND CONCLUSION:**

|                 | AES-128                          | DES              |
|-----------------|----------------------------------|------------------|
| plaintext       | 123456                           | 123456           |
| ciphertext      | 1a51af062d20914c80f2fd5d258e02ea | 0d9f7cc175816137 |
| Encryption time | 0.000000 seconds                 | 0.000000 seconds |
| Decryption time | 0.000000 seconds                 | 0.000210 seconds |





| Avalanche effect (1 bit change in | AES                              | DES              |
|-----------------------------------|----------------------------------|------------------|
| plaintext)                        |                                  |                  |
| Original plaintext                | 123456                           | 123456           |
| ciphertext                        | 1a51af062d20914c80f2fd5d258e02ea | 0d9f7cc175816137 |
| Changed plaintext                 | 123454                           | 123454           |
| New CT                            | a64ef772d4b3d6818741c71987e393dc | b50282e41779b491 |
| No of bits changed                | 65                               | 36               |

| Avalanche effect (1 bit change in key) | AES                              | DES              |
|----------------------------------------|----------------------------------|------------------|
| Original plaintext                     | 123456                           | 123456           |
| Original Key                           | 123                              | 123              |
| ciphertext                             | 1a51af062d20914c80f2fd5d258e02ea | 0d9f7cc175816137 |
| Changed key                            | 122                              | 122              |
| New CT                                 | 516a676a6dbafdbf592610e368a9fae6 | 0d9f7cc175816137 |
| No of bits changed                     | 67                               | 0                |

**Q1**) Based on amount of time taken for encryption/decryption comment wrt to performance. **Ans**) AES has a better performance compared to DES in terms of decryption time since it took significantly less time for decryption. Both algorithms have the same encryption time in this case.

Q2) Which algo exhibits better avalanche effect wrt to change in plaintext?

**Ans**) AES: A 1-bit change in the plaintext resulted in 65 bits changing in the ciphertext.

DES: A 1-bit change in the plaintext resulted in 36 bits changing in the ciphertext.

AES exhibits a better avalanche effect with respect to changes in plaintext, as it causes a greater number of bits to change in the ciphertext.

Q3) Which algo exhibits better avalanche effect wrt to change in key?

**Ans**) AES: A 1-bit change in the key resulted in 67 bits changing in the ciphertext.

DES: A 1-bit change in the key resulted in 0 bits changing in the ciphertext.

AES demonstrates a much stronger avalanche effect with respect to key changes, as it causes significant changes in the ciphertext, whereas DES does not exhibit any change in the ciphertext.