1. Sturm Sequences

(1.1) DEFINITION. Let K be an ordered field and let $c := (c_0, ..., c_n) \in K^{n+1}$. We define the variance of the tuple c to be

$$var(c) = card\{i \in \{0, ..., n-1\} \mid \exists j > i : c_i \cdot c_j < 0 \text{ and } c_k = 0 \text{ } (i < k < j)\}.$$

Hence var(c) is the number of sign changes in $(c_0, ..., c_n)$ after crossing out all c_i which are zero.

Observe that

(+)
$$\operatorname{var} c = \operatorname{var}(c_0, ..., c_k) + \operatorname{var}(c_k, ..., c_n)$$
 whenever $k \in \{1, ..., n-1\}$ and $c_k \neq 0$.

(1.2) DEFINITION. Let K be a field and let $f(X) \in K[X]$ be a polynomial. The Sturm sequence \mathfrak{f} of f is the following tuple $\mathfrak{f} := (f_0, f_1, ..., f_d)$ of polynomials $f_i \in K[X]$: $f_0 := f$, $f_1 := f'$ and for each i > 1 let f_{i+1} be the negative of the remainder if we divide f_{i-1} by f_i . Hence

$$f_{0} = f$$

$$f_{1} = f'$$

$$f_{0} = q_{1} \cdot f_{1} - f_{2} \text{ with } q_{1} \in K[X], \text{ deg } f_{2} < \text{deg } f_{1}$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$f_{i-1} = q_{i} \cdot f_{i} - f_{i+1} \text{ with } q_{i} \in K[X], \text{ deg } f_{i+1} < \text{deg } f_{i}$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$f_{d-1} = q_{d} \cdot f_{d} \text{ with } q_{i} \in K[X]$$

By induction we see that the natural number d as well as the polynomials $f_0, ..., f_d$ are well defined. The construction of \mathfrak{f} differs from the euclidean algorithm applied to f and f' only in the choice of the sign of the remainders. The proof that the euclidean algorithm applied for f and f' computes the greatest common divisor of f and f' can be literally copied in order to see

$$f_d = \gcd(f, f').$$

(1.3) THEOREM. (Sturm, 1829)

Let R be real closed, let $f(X) \in R[X]$ with $f \neq 0$ and let $(f_0, ..., f_d)$ be the Sturm sequence of f. If a < b are elements from R such that $f(a), f(b) \neq 0$ then the number of different roots (so we don't count multiplicities) of f in (a, b) is

$$var(f_0(a), ..., f_d(a)) - var(f_0(b), ..., f_d(b))$$

PROOF. For $i \in \{0,...,d\}$ let $h_i := \frac{f_i}{f_d} \in K[X]$. Observe that by the definition of the

Sturm sequence $f_0, ..., f_d$ we have

$$f_{i-1} = q_i \cdot f_i - f_{i+1}$$
 with $q_i \in K[X]$, $\deg f_{i+1} < \deg f_i$

and therefore

(*)
$$h_{i-1} = q_i \cdot h_i - h_{i+1}, \operatorname{deg} h_{i+1} < \operatorname{deg} h_i \ (1 \le i < d).$$

Moreover for each $i \in \{1, ..., d\}$,

(†) h_{i-1} and h_i do not have common zeroes in R,

otherwise (*) implies that h_d has a zero; but $h_d = 1$. For $x \in R$ let

$$W(x) := var(h_0(x), ..., h_d(x)).$$

Claim 1. If $c \in R$ with $f(c) \neq 0$, then $W(c) = \text{var}(f_0(c), ..., f_d(c))$.

This is so, since $f(c) \neq 0$ implies $f_d(c) \neq 0$ and therefore

$$var(f_0(c), ..., f_d(c)) = var(f_d(c)h_0(c), ..., f_d(c)h_d(c)) = W(x).$$

<u>Claim 2.</u> h_0 and f have the same zero set in R.

To see claim 2 it is enough to prove $h_0(c) = 0$ for each zero c of f. Let k > 0 and $g(X) \in R[X], g(X) \neq 0$ with $f(X) = (X - c)^k \cdot g(X)$. Since k > 0 we have

$$f'(X) = (X - c)^{k-1} \cdot (kg(X) + (X - c)g'(X)).$$

As $g(c) \neq 0$ the multiplicity of X - c is k - 1 in f'. Since $f_d = \gcd(f, f')$ this shows that X - c divides $h_0 = f/f_d$, in other words $h_0(c) = 0$.

Since f(a), $f(b) \neq 0$, claim 1 and claim 2 reduce the problem to show that the number of different zeroes of h_0 in (a, b) is equal to W(a) - W(b). Let

$$h := h_0 \cdot ... \cdot h_d$$
.

Claim 3. If c < d are elements from R and h does not vanish in the interval [c, d], then W(X) is constant on [c, d].

Claim 3 holds by the intermediate value property for polynomials.

<u>Claim 4.</u> If $i \in \{1, ..., d-1\}$ and $c \in R$ is a zero of h_i , then there is some $\varepsilon > 0$ such that $var(h_{i-1}(x), h_i(x), h_{i+1}(x)) = 1$ for $x \in (c - \varepsilon, c + \varepsilon)$.

As $h_i(c) = 0$, we get $h_{i-1}(c) = -h_{i+1}(c)$ from (*). Since not both, h_i and h_{i+1} are zero in c, it follows $h_{i-1}(c) = -h_{i+1}(c) \neq 0$ and we may choose ε so that sign $h_{i-1}(x) = -\operatorname{sign} h_i(x) \neq 0$ for all $x \in (c - \varepsilon, c + \varepsilon)$. Then, no matter what $h_i(x)$ is in $(c - \varepsilon, c + \varepsilon)$, we always have $\operatorname{var}(h_{i-1}(x), h_i(x), h_{i+1}(x)) = 1$ for $x \in (c - \varepsilon, c + \varepsilon)$.

For $i \in \{0, ..., d-1\}$ let

$$W_i(x) := var(h_i(x), ..., h_d(x)).$$

<u>Claim 5.</u> If $c \in R$ and $i \in \{0, ..., d-1\}$ with $h_i(c) \neq 0$, then there is some $\varepsilon > 0$ such that $W_i(X)$ is constant on $(c - \varepsilon, c + \varepsilon)$.

Let $j_1 < ... < j_l$ be an enumeration of those indices $j \in \{i, ..., d\}$ such that $h_j(c) \neq 0$. Take ε so that

(a) sign
$$h_{j_{\alpha}}(x) = \text{sign } h_{j_{\alpha}}(c) \neq 0$$
 for all $x \in (c - \varepsilon, c + \varepsilon)$ and all $\alpha \in \{1, ..., l\}$.

By claim 4 we may shrink ε such that

(b) for each $j \in \{i + 1, ..., d - 1\}$ with $h_j(c) = 0$, $var(h_{j-1}(x), h_j(x), h_{j+1}(x)) = 1$ for $x \in (c - \varepsilon, c + \varepsilon)$.

As $h_i(c) \neq 0$ by assumption and $h_d(c) \neq 0$ we have $j_1 = i$ and $j_l = d$. Thus by (+) and (a),

$$W_i(X) = w_1(x) + ... + w_{l-1}(x)$$
, with $w_{\alpha}(x) := \text{var}(h_{i_{\alpha}}(x), ..., h_{i_{\alpha+1}}(x))$ $(x \in (c - \varepsilon, c + \varepsilon))$.

By (\dagger) , $j_{\alpha+1} \leq j_{\alpha} + 2$. Hence, either $w_{\alpha}(x) = \text{var}(h_{j_{\alpha}}(x), h_{j_{\alpha}+1}(x))$ $(x \in (c - \varepsilon, c + \varepsilon), \alpha \in \{1, ..., l-1\})$, which is constant on $(c - \varepsilon, c + \varepsilon)$ by (a), or,

$$w_{\alpha}(x) = \text{var}(h_{j_{\alpha}}(x), h_{j_{\alpha}+1}(x), h_{j_{\alpha}+2}(x)) \ (x \in (c - \varepsilon, c + \varepsilon), \alpha \in \{1, ..., l - 1\}),$$

which is constant on $(c - \varepsilon, c + \varepsilon)$ by (b).

Since $W_i(X) = w_1(x) + ... + w_{l-1}(x)$, with $w_{\alpha}(x)$ for $x \in (c - \varepsilon, c + \varepsilon)$, this shows claim 5.

Claim 6. If $c \in R$ is a zero of h_0 , then there is some $\varepsilon > 0$ such that

$$W(x) = W(y) + 1$$
 for all x, y with $c - \varepsilon < x < c < y < c + \varepsilon$.

Since $h_0(c) = 0$ we have $h_1(c) \neq 0$ by (†). Choose $\varepsilon > 0$ such that

- (i) $W_1(X)$ is constant on $(c-\varepsilon, c+\varepsilon)$ (this is possible by claim 5),
- (ii) sign $h_1(x) = \text{sign } h_1(c) \neq 0 \ (x \in (c \varepsilon, c + \varepsilon))$ (this is possible, since $h_1(c) \neq 0$).
- (iii) c is the unique zero of f in $(c-\varepsilon, c+\varepsilon)$. DAS BRAUCHT MAN VIELLEICHT NICHT

Let
$$k > 0$$
 and $g(X) \in R[X]$, $g(X) \neq 0$ with $f(X) = (X - c)^k \cdot g(X)$. Since $k > 0$ we have $f'(X) = (X - c)^{k-1} \cdot (kg(X) + (X - c)g'(X))$.

For $x \in (c, c+\varepsilon)$ we have sign $f(x) = \operatorname{sign} g(x)$ and sign $f'(x) = \operatorname{sign}(kg(x) + (X-c)g'(x))$. By shrinking ε if necessary and since $g(c) \neq 0$ we see that sign $f'(x) = \operatorname{sign} g(x)$ $(x \in (c, c+\varepsilon))$. It follows that sign $h_0(x) = \operatorname{sign} h_1(x) \neq 0$ for all $x \in (c, c+\varepsilon)$, in other words

(**)
$$\operatorname{var}(h_0(x), h_1(x)) = 0 \text{ for all } x \in (c, c + \varepsilon).$$

As $g(c) \neq 0$ the multiplicity of X - c is k - 1 in f'. Since $f_d = \gcd(f, f')$ and $h_0 = \frac{f}{f_d}$ the multiplicity of X - c in h_0 is 1. Hence h_0 changes sign in c. By (**) and (ii) we get

$$(***) \quad \operatorname{var}(h_0(x), h_1(x)) = 1 \text{ for all } x \in (c - \varepsilon, c).$$

Now for $y \in (c, c+\varepsilon)$ we have $W(y) \stackrel{(+),(ii)}{=} \operatorname{var}(h_0(y), h_1(y)) + W_1(y) \stackrel{(**)}{=} W_1(y)$. Whereas for $x \in (c-\varepsilon, c)$ we have $W(x) \stackrel{(+),(ii)}{=} \operatorname{var}(h_0(x), h_1(x)) + W_1(x) \stackrel{(**)}{=} W_1(x) + 1$. Since $W_1(x)$ is constant on $(c-\varepsilon, c+\varepsilon)$ by (i), this shows claim 6.

Now we prove the Theorem. Let $c_1 < ... < c_m$ be the enumeration of the zeroes of h in [a, b]. Choose $\varepsilon > 0$ such that for each $j \in \{1, ..., m\}$ the following conditions are satisfied:

- (1) If $h_0(c_j) = 0$, then W(x) = W(y) + 1 for all x, y with $c \varepsilon < x < c < y < c + \varepsilon$. This is possible by claim 6.
- (2) If $h_0(c_j) \neq 0$, then W(X) is constant on $(c_j \varepsilon, c_j + \varepsilon)$. This is possible by claim 5 applied to i = 0.
- (3) $c_j + \varepsilon < c_{j+1} \varepsilon \ (j \in \{1, ..., m-1\}).$

Choose
$$d_j \in (c_j - \varepsilon, c_j)$$
 and $e_j \in (c_j, c_j + \varepsilon)$ $(1 \le j \le m)$, in particular $d_1 < c_1 < e_1 < d_2 < c_2 < e_2 < \dots < d_m < c_m < e_m$.

By enlarging d_1 and shrinking e_m if necessary, we may assume that all zeros of h in $[d_1, e_m]$ are among the $c_1, ..., c_m$ (note that a or b might be zeros of h).

By the choice of ε in (1), W(x) decreases in the interval $[d_j, e_j]$ by 1 if and only c_j is a zero of h_0 , whereas in in all other intervals $[d_j, e_j]$, W(x) is constant by the choice of ε in (2). Finally W(x) is constant in every interval $[e_i, d_{i+1}]$ $(1 \le i < m)$ by claim 3.

Thus $W(d_1) - W(e_m)$ is the number of zeroes of h_0 in (d_1, e_m) .

Since $f(a) \neq 0$, also $h_0(a) \neq 0$ and by our choice of d_1 , h_0 does not have zeroes in the closed interval between a and d_1 . Thus $W(d_1) = W(a)$. Similarly $W(e_m) = W(b)$. Hence W(a) - W(b) is the number of zeroes of h_0 in (d_1, e_m) , which is the number of zeroes of h_0 in (a, b).