Detect to Track and Track to Detect

Анна Воронцова

ФКН НИУ ВШЭ

Москва, 2017

Детектировать объекты на видео (Detect) и отслеживать траектории их перемещения (Track).

Детектировать объекты на видео (Detect) и отслеживать траектории их перемещения (Track).

- ▶ быстрое перемещение объекта в кадре => размытое изображение
- низкое качество видео (ср. с фото)
- в кадр попадает только часть объекта
- объект находится в нетипичном положении

(a) bicycle, bird, rabbit; (b) dog; (c) fox; (d) red panda

Детектировать объекты на видео (Detect) и отслеживать траектории их перемещения (Track).

Стандартный подход: Detect o Track (frame-level).

I. Detect

- ► Region Proposal (R-CNN[1] \rightarrow Fast R-CNN[2] \rightarrow Faster R-CNN[3], R-FCN[4])
- One-step (SSD[5], YOLO[6])
- [1] R. Girshick. Rich feature hierarchies for accurate object detection and semantic segmentation.
- [2] R. Girshick. Fast R-CNN.
- [3] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks.
- [4] J. Dai, Y. Li, K. He, J. Sun. R-FCN: Object Detection via Region-based Fully Convolutional Networks.
- [5] W. Liu, D. Anguelov, D. Erhan, Ch. Szegedy, S. Reed, Ch.-Y. Fu, A. C. Berg. SSD: Single Shot MultiBox Detector.
- [6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection.

II. Track

- Regression-based (GOTURN[6], FCNT[7])
- Correlation-based ([8], SiamFC[9])

- [6] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 FPS with deep regression networks.
- [7] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks.
- [8] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking.
- [9] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional siamese networks for object tracking.

Детектировать объекты на видео (Detect) и отслеживать траектории их перемещения (Track).

Стандартный способ решения: Detect o Track (покадрово).

Предложение: Detect & Track.

R-FCN

C – кол-во классов; d – размерность признакового пр-ва

R-FCN

RPN[10] — полносверточная н/с на базе VGG16, сверточная н/с — ResNet101 [11]

[10] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

D&Т: Архитектура

D&Т: принцип работы

Rol transformation: $\Delta^{t+\tau} = (\Delta_x^{t+\tau}, \Delta_y^{t+\tau}, \Delta_h^{t+\tau}, \Delta_w^{t+\tau})$

Correlation Layer

«Локальная» корреляция:

$$x_{corr}^{t,t+\tau}(i,j,p,q) = \left\langle x_l^t(i,j), x_l^{t+\tau}(i+p,j+q) \right\rangle$$

 $-d\leqslant p,q\leqslant d$, d - максимальное смещение.

Расположение объекта – $\max p, q$ по карте корреляций.

```
\{p_i\}_{i=1}^N — предсказания после softmax \{b_i\}_{i=1}^N — bounding boxes \{\Delta_i\}_{i=1}^N — траектории Rol [c^*=0] — фон
```

$$N_{fg}$$
 – #RoI, отн. к какому-либо классу = $\sum_{i=1}^{N} [c_i^* > 0]$ N_{tra} – #RoI, соотносящихся на последовательных кадрах

$$\{p_i\}_{i=1}^N$$
 — предсказания после softmax $\{b_i\}_{i=1}^N$ — bounding boxes $[c^*=0]$ — фон $\{\Delta_i\}_{i=1}^N$ — траектории Rol

$$N_{fg}$$
 – #RoI, отн. к какому-либо классу = $\sum_{i=1}^{N} [c_i^* > 0]$

$$egin{aligned} L(\{p_i\},\{b_i\},\{\Delta_i\}) &= rac{1}{N} \sum_{i=1}^{N} L_{cls}(p_{i,c^*}) + \ &+ rac{1}{N_{fg}} \sum_{i=1}^{N} [c_i^* > 0] L_{reg}(b_i,b_i^*) + \ &+ rac{1}{N_{tra}} \sum_{i=1}^{N_{tra}} L_{tra}(\Delta_i^{t+ au},\Delta_i^{*,t+ au}) \end{aligned}$$

$$\{p_i\}_{i=1}^N$$
 — предсказания после softmax $\{b_i\}_{i=1}^N$ — bounding boxes $\{\Delta_i\}_{i=1}^N$ — траектории Rol $*$ — истинные значения $[c^*=0]$ — фон

$$N_{fg}$$
 – #Rol, отн. к какому-либо классу = $\sum\limits_{i=1}^{N} [c_i^* > 0]$

$$L(\{p_i\},\{b_i\},\{\Delta_i\}) = rac{1}{N} \sum_{i=1}^N L_{cls}(p_{i,c^*}) + \Big|$$
 классификация $+rac{1}{N_{fg}} \sum_{i=1}^N [c_i^*>0] L_{reg}(b_i,b_i^*) + \Big|$ регрессия (Rol) $+rac{1}{N_{tra}} \sum_{i=1}^{N_{tra}} L_{tra}(\Delta_i^{t+ au},\Delta_i^{*,t+ au}) \Big|$ траектории

$$\{p_i\}_{i=1}^N$$
 — предсказания после softmax $\{b_i\}_{i=1}^N$ — bounding boxes $\{\Delta_i\}_{i=1}^N$ — траектории Rol $*$ — истинные значения $[c^*=0]$ — фон

$$N_{fg}$$
 – #Rol, отн. к какому-либо классу = $\sum_{i=1}^{N} [c_i^* > 0]$

$$L(\{p_i\}, \{b_i\}, \{\Delta_i\}) = \frac{1}{N} \sum_{i=1}^{N} L_{cls}(p_{i,c^*}) + \left| L_{cls}(\cdot) = -\log(\cdot) + \frac{1}{N_{fg}} \sum_{i=1}^{N} [c_i^* > 0] L_{reg}(b_i, b_i^*) + \left| L_{reg}(\cdot) = smooth_{L1} + \frac{1}{N_{tra}} \sum_{i=1}^{N_{tra}} L_{tra}(\Delta_i^{t+\tau}, \Delta_i^{*,t+\tau}) \right| L_{tra}(\cdot) = smooth_{L1}$$

Smooth L1

$$smooth_{L1}(x) = egin{cases} 0.5x^2, & |x| < 1 \ |x| - 0.5 & otherwise \end{cases}$$

$$\{p_i\}_{i=1}^N$$
 — предсказания после softmax $\{b_i\}_{i=1}^N$ — bounding boxes $[c^*=0]$ — фон $\{\Delta_i\}_{i=1}^N$ — траектории Rol

$$N_{fg}$$
 – #Rol, отн. к какому-либо классу = $\sum_{i=1}^{N} [c_i^* > 0]$

$$L(\{p_i\}, \{b_i\}, \{\Delta_i\}) = \frac{1}{N} \sum_{i=1}^{N} -\log(p_{i,c^*}) + \\ + \frac{1}{N_{fg}} \sum_{i=1}^{N} [c_i^* > 0] smooth_{L1}(b_i, b_i^*) + \\ + \frac{1}{N_{tra}} \sum_{i=1}^{N_{tra}} smooth_{L1}(\Delta_i^{t+\tau}, \Delta_i^{*,t+\tau})$$

$$\left\{p_i
ight\}_{i=1}^N$$
 — предсказания после softmax $\left\{b_i
ight\}_{i=1}^N$ — bounding boxes $\left[c^*=0\right]$ — фон $\left\{\Delta_i
ight\}_{i=1}^N$ — траектории Rol

$$N_{fg}$$
 – #RoI, отн. к какому-либо классу = $\sum\limits_{i=1}^{N} [c_i^*>0]$ N_{tra} – #RoI, соотносящихся на последовательных кадрах

Rol совпадает с истинным, если:

- **▶** c^* , b^* если $IoU \geqslant 0.5$
- $\Delta^{*,t+\tau}$ если соотнесены объекты, присутствующему на обоих кадрах.

Class-wise linking score

Object tube – последовательность детекций.

В момент
$$t$$
 : $D_i^{t,c} = \left\{x_i^t, y_i^t, h_i^t, w_i^t, p_{i,c}^*\right\}$

Tracklet – изменение bounding boxes во времени.

$$\begin{array}{l} t \to t + \tau : \ T_i^{t,t+\tau} = \left\{ x_i^t, y_i^t, h_i^t, w_i^t, \\ x_i^t + \Delta_x^{t+\tau}, y_i^t + \Delta_y^{t+\tau}, h_i^t + \Delta_h^{t+\tau}, w_i^{t+\tau} + \Delta_w^{t+\tau} \right\} \end{array}$$

Задача: связать object tubes и tracklets.

Class-wise linking score

Object tube – последовательность детекций.

В момент
$$t:~D_{i}^{t,c}=\left\{ x_{i}^{t},y_{i}^{t},h_{i}^{t},w_{i}^{t},p_{i,c}^{*}
ight\}$$

Tracklet – изменение bounding boxes во времени.

$$\begin{array}{l} t \to t + \tau : \ T_i^{t,t+\tau} = \big\{ x_i^t, y_i^t, h_i^t, w_i^t, \\ x_i^t + \Delta_x^{t+\tau}, y_i^t + \Delta_y^{t+\tau}, h_i^t + \Delta_h^{t+\tau}, w_i^{t+\tau} + \Delta_w^{t+\tau} \big\} \end{array}$$

Class-wise linking score:

$$s_c(D_{i,c}^t, D_{j,c}^{t+\tau}, T^{t,t+\tau}) = p_{i,c}^t + p_{j,c}^{t+\tau} + \left[D_i^t, D_j^{t+\tau} \in T^{t,t+\tau}\right]$$

Оптимальный путь

Class-wise linking score:

$$s_c(D_{i,c}^t, D_{j,c}^{t+ au}, T^{t,t+ au}) = p_{i,c}^t + p_{j,c}^{t+ au} + \left[D_i^t, D_j^{t+ au} \in T^{t,t+ au}\right]$$

Оптимальный путь:

$$\overline{D}_c^* = rac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}- au} s_c(D^t, D^{t+ au}, \mathcal{T}^{t,t+ au})$$

[Алгоритм Витерби – алгоритм поиска наиболее подходящего списка состояний (т.н. *путь Витерби*), который в контексте цепей Маркова получает наиболее вероятную последовательность произошедших событий]

Эксперименты

ImageNet object detection from video (VID) dataset:

- ▶ 30 классов
- ▶ 3862(обуч.) / 555(вал.) видео
- ▶ Bounding Boxes с аннотациями и track ID.

Метрика – mAP.

Эксперименты

	•	Ø)									- 5		.0	-		
	aiplane	antelope	\$	bicycle	.5	6		cattle	90	d Cat	clephant	_	8. Panda	hamster	horse	
Methods	100	S. Carrier	bear	100	ping	Par	<i>_</i>	8	Sos	6	30	O.	ಹ	4	40.	tion
TCN [18]	72.7	75.5	42.2	39.5	25.0	64.1	36.3	51.1	24.4	48.6	65.6	73.9	61.7	82.4	30.8	34.4
TPN+LSTM [16]	84.6	78.1	72.0	67.2	68.0	80.1	54.7	61.2	61.6	78.9	71.6	83.2	78.1	91.5	66.8	21.6
Winner ILSVRC'15 [17]	83.7	85.7	84.4	74.5	73.8	75.7	57.1	58.7	72.3	69.2	80.2	83.4	80.5	93.1	84.2	67.8
D (R-FCN)	87.4	79.4	84.5	67.0	72.1	84.6	54.6	72.9	70.9	77.3	76.7	89.7	77.6	88.5	74.8	57.9
D (& T loss)	89.4	80.4	83.8	70.0	71.8	82.6	56.8	71.0	71.8	76.6	79.3	89.9	83.3	91.9	76.8	57.3
$D&T (\tau = 1)$	90.2	82.3	87.9	70.1	73.2	87.7	57.0	80.6	77.3	82.6	83.0	97.8	85.8	96.6	82.1	66.7
$D&T (\tau = 10)$	89.1	79.8	87.5	68.8	72.9	86.1	55.7	78.6	76.4	83.4	82.9	97.0	85.0	96.0	82.2	66.0
	The Mark										*					_
			ైస్		and the second	_	ં					.5			- 66.	
	Austr	Monkey	80	rabbit	red panda	Sheep	Spake	Squine	:50	Tain	turue.	Watercaff	Whale	ebra	1114P	
Methods																
TCN [18]	54.2	1.6	61.0	36.6	19.7	55.0	38.9	2.6	42.8	54.6	66.1	69.2	26.5	68.6	47.5	
TPN+LSTM [16]	74.4	36.6	76.3	51.4	70.6	64.2	61.2	42.3	84.8	78.1	77.2	61.5	66.9	88.5	68.4	
Winner ILSVRC'15 [17]	80.3	54.8	80.6	63.7	85.7	60.5	72.9	52.7	89.7	81.3	73.7	69.5	33.5	90.2	73.8	
Winner ILSVRC'16 [39]	(single model performance)											76.2				
D (R-FCN)	76.8	50.1	80.2	61.3	79.5	51.9	69.0	57.4	90.2	83.3	81.4	68.7	68.4	90.9	74.2	
D (& T loss)	79.0	54.1	80.3	65.3	85.3	56.9	74.1	59.9	91.3	84.9	81.9	68.3	68.9	90.9	75.8	
$D&T (\tau = 1)$	83.4	57.6	86.7	74.2	91.6	59.7	76.4	68.4	92.6	86.1	84.3	69.7	66.3	95.2	79.8	
$D&T (\tau = 10)$	83.1	57.9	79.8	72.7	90.0	59.4	75.6	65.4	90.5	85.6	83.3	68.3	66.5	93.2	78.6	

 $D\&T(\tau = 1)$ – mAP 79.8%, winner ILSVRC'16 – mAP 76.2%

- [16] K. Kang et al. Object detection in videos with tubelet proposal networks.
- [17] K. Kang et al. T-CNN: tubelets with convolutional neural networks for object detection from videos.
- [18] K. Kang et al. Object detection from video tubelets with convolutional neural networks.
- [39] J. Yang et al. ILSVRC2016 object detection from video.

Заключение'

- №Т фреймворк на основе сверточных нейросетей для детекции и отслеживания объектов на видео
- извлечение признаков с помощью корреляции
 по ним можно определить соотношение
 между объктами на разных кадрах
- ightharpoonup детекция на уровне кадра, основанная на tracklet ightharpoonup высокое качество на уровне видео.

Заключение

D&T:

- простота за счет одновременного решения двух подзадач: детекции и отслеживания
- эффективность: достигает результатов, сравнимых с результатами победителя конкурса ImageNet 2016 года

Эксперименты

```
https://www.robots.ox.ac.uk/ vgg/research/detect-track/
```

https://www.robots.ox.ac.uk/ vgg/research/detect-track/videos/DT_detections.mp4

Список литературы

- Ch. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to Track and Track to Detect. In ICCV, 2017. [1710.03958]
- ▶ J. Dai, Y. Li, K. He, J. Sun. R-FCN: Object Detection via Region-based Fully Convolutional Networks [1605.06409]
- ▶ J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. [1411.4038]

Список литературы (дополнительно)

- S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. [1506.01497]
- R. Girshick. Fast R-CNN. In ICCV, 2015. [1504.08083]
- R. Girshick. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. [1311.2524]
- W. Liu, D. Anguelov, D. Erhan, Ch. Szegedy, S. Reed, Ch.-Y. Fu, A. C. Berg. SSD: Single Shot MultiBox Detector. In ECCV, 2016. [1512.02325]
- ▶ J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection [1506.02640]

Список литературы (дополнительно)

- L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In *ICCV*, 2015.
- ▶ D. Held, S. Thrun, and S. Savarese. Learning to track at 100 FPS with deep regression networks. In ECCV, 2016.
- C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang.
 Hierarchical convolutional features for visual tracking. In ICCV, 2015.
- L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional siamese networks for object tracking. In *ECCV*, 2016. [1606.09549]

Список литературы (дополнительно)

- K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object detection in videos with tubelet proposal networks. In CVPR, 2017. [1702.06355]
- K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang, and W. Ouyang. T-CNN: tubelets with convolutional neural networks for object detection from videos, 2016. [1604.02532]
- K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016. [1604.04053]
- ▶ J. Yang, H. Shuai, Z. Yu, R. Fan, Q. Ma, Q. Liu, and J. Deng. ILSVRC2016 object detection from video.