# Introduction to the STAT430 Unsupervised Learning Course

August 25, 2020



### Introduction to this Course



About you



**Class Information** 



About me



Learning content tips/course goals



What is machine learning?



Lecture tips



Supervised vs. unsupervised learning

1

General course tips



Most common unsupervised learning algorithms

### About You



 What types of data sets would you like to gain insights from, make predictions with, and/or use to help make

better decisions?



https://www.kaggle.com/datasets

### About Me



- Online Advertising
- TV Advertising
- Narcotics Detection
- Gene Expression Analysis
- Get Out the Vote Initiatives





# What is machine learning?



# What is machine learning?

- Area: Branch of computer science
- Goal:
  - Use <u>data</u> to implement <u>descriptive models</u> and <u>predictive models</u>

**Descriptive Analytics** 



**Prescriptive Analytics** 



#### Two main kinds:

- Supervised Learning Algorithms: types of *predictive analytics algorithms*
- Unsupervised Learning Algorithms: types of descriptive analytics algorithms
- Supervised Learning Algorithms:

Labels

- Input:
  - Training Data:  $X = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$

**Feature Vectors** 

- Output:
  - Function  $g: X \to Y$ 
    - $x_1, x_2, \dots, x_n \in X$  (Input Space)
    - $y_1, y_2, ..., y_n \in Y$  (Output Space)

Supervised Learning Algorithms:

Labels

- Input:
  - Training Data:  $X = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$

**Feature Vectors** 

|           | I          | Feature Vectors |           |  |
|-----------|------------|-----------------|-----------|--|
|           | Highschool | _               |           |  |
|           | Graduation | Graduation      | Percent   |  |
|           | Rate       | Rate            | Uninsured |  |
| <b>x1</b> | 0.8        | 0.7             | 0.8       |  |
| x2        | 0.2        | 0.33            | 0.35      |  |
|           |            |                 |           |  |
| xn        | 0.3        | 0.4             | 0.88      |  |

#### **Example:**

• Linear regression

$$\hat{y} = b_0 + b_{hs} x_{hs} + b_{coll} x_{coll} + b_{unins} x_{unins}$$

|    | Labels       |
|----|--------------|
|    | Poverty Rate |
| y1 | 0.4          |
| y2 | 0.2          |
|    |              |
| yn | 0.3          |

- Output:
  - Function  $g: X \to Y$ 
    - $x_1, x_2, \dots, x_n \in X$  (Input Space)
    - $y_1, y_2, ..., y_n \in Y$  (Output Space)

#### Supervised Learning Algorithms:

#### **Training Data**

|           | Feature Vectors |            |           |
|-----------|-----------------|------------|-----------|
|           | Highschool      | _          |           |
|           | Graduation      | Graduation |           |
|           | Rate            | Rate       | Uninsured |
| <b>x1</b> | 0.8             | 0.7        | 0.8       |
| x2        | 0.2             | 0.33       | 0.35      |
|           |                 |            |           |
| xn        | 0.3             | 0.4        | 0.88      |

|    | Labels       |
|----|--------------|
|    | Poverty Rate |
| y1 | 0.4          |
| у2 | 0.2          |
|    |              |
| yn | 0.3          |

# **Common Supervised Learning Algorithms:**

- Linear regression
- Logistic regression
- Naïve Bayes
- Decision Trees/Random Forests
- Linear Discriminant Analysis
- K-nearest neighbors algorithms
- Support vector machines
- Neural networks

#### **Key point:**

- The **training data** in supervised learning algorithms always has **labels**.
- General goal is to predict the labels.

#### Unsupervised Learning Algorithms:



# **Common Supervised Learning Algorithms:**

- Clustering algorithms
- Dimensionality reduction algorithms

#### **Key point:**

- The training data in UNsupervised learning algorithms doesn't have labels.
- General goal discover hidden patterns in the feature vectors.

#### Unsupervised Learning Algorithms:



# **Common Supervised Learning Algorithms:**

- Clustering algorithms
- Dimensionality reduction algorithms

#### **Key point:**

- The training data in UNsupervised learning algorithms doesn't have labels.
- General goal discover hidden patterns in the feature vectors.

# Types of Unsupervised Learning Algorithms

- Common Types of Unsupervised Learning Algorithms:
  - Clustering algorithms
    - <u>Goal</u>: Hidden 'grouping' relationships in the data.



### Types of Unsupervised Learning Algorithms

#### Common Types of Unsupervised Learning Algorithms:

- Dimensionality Reduction Algorithms
  - Goal: Represent a high-dimensional datasets in a lower-dimensional space, while preserving certain aspects of the original datasets underlying structure.

#### **Original Data**



<u>Structure</u>: Total Variance of Height (inches) and Height (cm) = 29.8

#### **Dimensionality Reduced Data**



<u>Structure</u>: Total variability of dimensionality reduced data = 29.8

### Course Website and Syllabus



Course Website: http://courses.las.illinois.edu/fall2020/stat430

- Schedule
- Syllabus
- Course information
- Assignments
- Python Resource Help Pages

Compass Page: <a href="https://compass2g.illinois.edu/">https://compass2g.illinois.edu/</a>

- Zoom links for:
  - Lectures
  - My office hours + TA office hours
- Videos Posted of the lecture
- Grades

Piazza: <a href="https://piazza.com/illinois/fall2020/stat430">https://piazza.com/illinois/fall2020/stat430</a>

Content and non-personal course related questions.

### Learning Content Tips



#### **General Goal:**

Learn a series of tools (algorithms) that allow us to **discover** and **describe hidden insights** contained in **high-dimensional** unlabeled data.

#### **Full Unsupervised Learning Analyses:**

- Specifically given real-world data sets, students should be able to code a full unsupervised learning analysis in Python.
   This includes the following.
  - Be able to justify when/if it is useful to use a clustering algorithm or dimensionality reduction algorithm for a given dataset, research question, and research scenario.
  - Be able to justify <u>which</u> clustering and/or dimensionality reduction <u>algorithms</u> are most appropriate to use for a given dataset, research question, and research scenario.
  - If the clustering and/or dimensionality reduction algorithm has different settings/parameters that can be utilized, be able to justify which parameters to use
  - Be able to justify the **evaluation metric(s)/methods** that were used to: a.) select which algorithm/model/parameters to use as well b.) describe the nature of the results.
  - Be able to interpret the results of the algorithms and effectively communicate as many hidden insights as possible
    about the dataset.
  - Be able to understand how different aspects of data pre-processing might affect the results of the unsupervised learning algorithms.
  - Be able to use these unsupervised learning insights to help make predictions as well as make good business
    decisions.

### Learning Content Tips



#### **General Goal:**

Learn a series of tools (algorithms) that allow us to **discover** and **describe hidden insights** contained in **high-dimensional unlabeled data**.

#### **Develop Knowledgebase and Intuition about Unsupervised Learning Algorithms:**

- In general, students should also know the following.
  - How each algorithm works and the output of each algorithm.
  - How each algorithm evaluation metric works.
  - Develop an intuition for what happens when we apply to these algorithms and evaluation metrics to 2-d
    datasets.
  - Students should know how to conduct at least one iteration of these algorithms and calculate these evaluation metrics **by hand.**
  - Students should know how to code these algorithms and evaluation metrics in **Python**.
  - Students should demonstrate **best practices** when effectively **communicating** and presenting data science results. (Ie: titles on graphs, label the axes etc.)

### Learning Content Tips



### Lecture Tips - Synchronous

• **Synchronous:** strongly encouraged if you are able to, but not required!

### Each class download these (posted by 8am CST before class)

- Python Notebooks
- Pdf

### Note-taking Ideas

- Printing the pdf, hand written notes
- Onenote (or other similar notetaking software)
- Make notes in your Python Notebook



#### Following Along with Code

 Download .ipynb before class and try to follow along (not all class notes will be in .ipynbs, but all code will be in the pdf)

#### Engaging during Lecture

- Zoom chatroom
- Private chatroom messages to TA.

#### Breakout Rooms

- Ask classmates for help in the breakout rooms.
- Ask me/CAs for help in the breakout rooms.

### Lecture Tips - Asynchronous

- Expectation: Watch videos within 24 hours of posting
  - Try watching with classmates
  - Try watching during office hours/lab to ask question.
  - Ask questions on Piazza.





# General Course Tips •

- Check your email regularly!
- Go to office hours
  - <u>Tori</u>: Fridays 9:30-10:30am CST
  - Rong: Wednesdays 5:30-7:30pm CST
  - More coming soon (after survey)
- Start working on your assignments early.
- Piazza can be helpful!
- Ask questions if you get stuck.

 New Idea: After class, write around 4 sentences describing what you just learned.

