The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #01

Review on Limits and Differentiations

A function $f: I \to \mathbb{R}$ is called *continuous* at x = c if $\lim_{x \to c} f(x) = f(c)$.

A function $f: I \to \mathbb{R}$ is called *differentiable* at x if $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \in \mathbb{R}$.

Some Properties on Limits

- 1. $\lim_{x \to c} f(x)$ exists in \mathbb{R} $\iff \lim_{x \to c^+} f(x)$, $\lim_{x \to c^-} f(x)$ exist in \mathbb{R} and $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$.
- 2. $f(x) \le g(x) \le h(x)$ and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L \implies \lim_{x \to c} g(x) = L$
- 3. $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{\cos x 1}{x} = 0$, $\lim_{x \to 0} \frac{e^x 1}{x} = 1$
- 4. In case of **indeterminate forms** $\frac{0}{0}$ or $\frac{\infty}{\infty}$, and if $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L$ or $\pm \infty$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$
 (l'Hôpital's rule)

Some Properties on Derivatives

1.
$$(f \pm g)' = f' \pm g'$$
, $(fg)' = fg' + f'g$, $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$

2. If
$$f = g \circ h$$
, then $f'(x) = g'(h(x))h'(x)$ (Chain rule)

Some Special Derivatives

1.
$$\frac{d}{dx}$$
 (constant) = 0, $\frac{d}{dx}(x^n) = nx^{n-1}$, $\frac{d}{dx}(e^x) = e^x$, $\frac{d}{dx}(\ln x) = \frac{1}{x}$

2.
$$\frac{d}{dx}(\sin x) = \cos x$$
, $\frac{d}{dx}(\cos x) = -\sin x$, $\frac{d}{dx}(\tan x) = \sec^2 x$, $\frac{d}{dx}(\cot x) = -\csc^2 x$, $\frac{d}{dx}(\sec x) = \sec x \tan x$, $\frac{d}{dx}(\csc x) = -\csc x \cot x$

Elementary Functions

Exponential function continuous on the whole real lines

Logarithm function continuous on $(0, +\infty)$

Question 1 (Basic Level)

(a) Find the derivatives of each of the following functions.

(1)
$$f(x) = 2x^3 - 9x^2 - 24x + 7$$
 (2) $f(x) = x^{2/3}$

(2)
$$f(x) = x^{2/3}$$

(3)
$$f(x) = e^{x^2}$$

(4)
$$f(x) = \tan(3x - 1)$$

(5)
$$f(x) = \tan^{-1} x$$

(6)
$$f(x) = 2x^2 - \ln x$$

(b) Find the second derivatives of each of the functions in (a).

Stationary Points

A real number $c \in \mathbb{R}$ is called a stationary point of f if f'(c) = 0.

Question 2 (Standard Level)

- (a) Find all stationary points of $f(x) = 2x^3 9x^2 24x + 7$.
- (b) Find all stationary points of $f(x) = 2x^2 \ln x$.
- (c) Find all stationary points of $f(x) = \frac{x}{1+x^2}$.
- (d) Find all stationary points of $f(x) = x^2 e^{-x}$.

Intervals of Monotonicity

A function f is called (strictly) monotone if either f is (strictly) increasing, i.e. $f' \ge 0$ (f'>0), or f is (strictly) decreasing, i.e. $f' \le 0$ (f'<0).

In general, f is not monotone everywhere, however we can determine the intervals of **monotonicity** where f is strictly increasing (f' > 0) or strictly decreasing (f' < 0).

Question 3 (Standard Level)

(a) Determine the intervals of strict monotonicity of $f(x) = 2x^3 - 9x^2 - 24x + 7$.

- 3 -

- (b) Determine the intervals of monotonicity of $f(x) = 2x^2 \ln x$.
- (c) Determine the intervals of monotonicity of $f(x) = \frac{x}{1+x^2}$.
- (d) Determine the intervals of monotonicity of $f(x) = x^2 e^{-x}$.

Classification of Stationary Points

We can classify a stationary point c (f'(c) = 0) by first derivative test.

- 1. If f'(x) $\begin{cases} < 0 & \text{if } c \delta < x < c \\ > 0 & \text{if } c + \delta > x > c \end{cases}$, then x = c is called a **local minimum**.

 2. If f'(x) $\begin{cases} > 0 & \text{if } c \delta < x < c \\ < 0 & \text{if } c + \delta > x > c \end{cases}$, then x = c is called a **local maximum**.

If f is twice differentiable, we can also classify a stationary point by second derivative test.

- 3. If f''(c) > 0, then x = c is called a **local minimum**.
- 4. If f''(x) < 0, then x = c is called a **local maximum**.

(Standard Level) **Question 4**

- (a) Classify all stationary points of $f(x) = 2x^3 9x^2 24x + 7$.
- (b) Classify all stationary points of $f(x) = 2x^2 \ln x$.
- (c) Classify all stationary points of $f(x) = \frac{x}{1 + x^2}$.

Rolle's Theorem

Let f be a real-valued function which is continuous on [a, b], differentiable in (a, b) and satisfies f(a) = f(b). Then there is a point $\xi \in (a, b)$ such that $f'(\xi) = 0$.

Mean Value Theorem

Let f be a real-valued function which is continuous on [a, b], differentiable in (a, b). Then there is a point $\xi \in (a, b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Question 5* (Concept)

- (a) Explain the Rolle's Theorem.
- (b) By Rolle's Theorem, prove the Mean Value Theorem.

Question 6 (Intermediate Level)

Find a number ξ , if exists, that is described by the Mean Value Theorem for

(a)
$$f(x) = x^3 - x^2 - x + 1$$
 on [1, 2]

(b)
$$f(x) = x^{2/3}$$
 on $[-8, 8]$

Question 7 (Standard Level)

By making use of Mean Value Theorem, prove that for $0 < x \le 1$, we have

$$1 + x < e^x < 1 + ex$$
.

Question 8 (Standard Level)

Prove that $2x - 2x^2 \le \ln(1 + 2x) \le 2x$ for $x \ge 0$.

Question 9 (Standard Level)

By making use of Mean Value Theorem, prove that for 0 < a < b,

$$\frac{b-a}{1+b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b-a}{1+a^2}$$

and hence show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.

Question 10 (Standard Level)

What does the Mean Value Theorem say about the function $f(x) = 2x + \sin 3x$ in the interval $[a, b] = [0, \pi]$? Find a point inside the interval $(0, \pi)$ that satisfies the conclusion of the Mean Value Theorem.