0.5 setgray0 0.5 setgray1

Консультация 8

ВЕКТОРНЫЕ УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 1. Составить уравнение плоскости, проходящей через точку $M_0(\mathbf{r}_0)$ и перпендикулярной к прямой пересечения двух плоскостей

$$(\mathbf{r}, \mathbf{n}_1) = D_1$$
 и $(\mathbf{r}, \mathbf{n}_2) = D_2$.

Рис. 1. К задаче 1.

P е ш е н и е . Очевидно, что векторы нормалей \mathbf{n}_1 и \mathbf{n}_2 соответствующих плоскостей параллельны искомой плоскости. Поэтому вектор нормали искомой плоскости имеет следующий вид: $\mathbf{n} = [\mathbf{n}_1, \mathbf{n}_2]$. Поэтому нормальное уравнение плоскости имеет следующий вид:

$$(\mathbf{n}, \mathbf{r}) = D.$$

Величина D находится из того условия, что точка $M_0(\mathbf{r}_0)$ принадлежит искомой плоскости. Следовательно,

$$D = (\mathbf{n}, \mathbf{r}_0).$$

Поэтому уравнение плоскости следующее:

$$([\mathbf{n}_1,\mathbf{n}_2],\mathbf{r}-\mathbf{r}_0)=0$$
 или $(\mathbf{r}-\mathbf{r}_0,\mathbf{n}_1,\mathbf{n}_2)=0.$

ЗАДАЧА 2. Найти точку пересечения прямой ${f r}={f r}_0+{f a}t$ с плоскостью ${f r}={f r}_1+u{f b}+v{f c}.$

Рис. 2. К задаче 2.

Решение. Перепишем уравнение плоскости в следующем виде:

$$(\mathbf{r} - \mathbf{r}_1, [\mathbf{b}, \mathbf{c}]) = 0.$$

Тогда для параметра t_0 , соответствующего точке пересечения плоскости с прямой имеет место равенство

$$t_0 = \frac{(\mathbf{r}_1 - \mathbf{r}_0, [\mathbf{b}, \mathbf{c}])}{(\mathbf{a}, \mathbf{b}, \mathbf{c})}.$$

Радиус-вектор точки имеет следующий вид:

$$\mathbf{r}_2 = \mathbf{r}_0 + \frac{(\mathbf{r}_1 - \mathbf{r}_0, [\mathbf{b}, \mathbf{c}])}{(\mathbf{a}, \mathbf{b}, \mathbf{c})} \mathbf{a}.$$

ЗАДАЧА 3. Найти условия, необходимые и достаточные для того, чтобы две прямые

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{a}_1 t$$
 и $\mathbf{r} = \mathbf{r}_2 + \mathbf{a}_2 \tau$:

1. скрещивались; 2. были компланарны; 3. пересекались; 4. были параллельны; 5. совпадали.

Решение. Прежде всего рассмотрим равенство

$$\mathbf{r}_1 + \mathbf{a}_1 t = \mathbf{r}_2 + \mathbf{a}_2 \tau. \tag{0.1}$$

1. Скрещивающиеся прямые таковы, что они не коллинеарны, т.е. $[\mathbf{a}_1,\mathbf{a}_2]\neq\mathbf{0}$, и уравнение (0.1) не имеет решений, т.е. векторы $\mathbf{r}_1-\mathbf{r}_2$, \mathbf{a}_1 и \mathbf{a}_2 не компланарны. Итак, условие скрещивания следующее:

$$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1, \mathbf{a}_2) \neq 0.$$

2. <u>Прямые компланарны,</u> если они лежат в одной плоскости. Условие, очевидно, следующее вектор $\mathbf{r}_1-\mathbf{r}_2$, соединяющий начальные точки $M_1(\mathbf{r}_1)$ и $M_2(\mathbf{r}_2)$ прямых, лежит в одной плоскости с направляющими векторами \mathbf{a}_1 и \mathbf{a}_2 прямых, т. е.

$$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1, \mathbf{a}_2) = 0.$$

3. <u>Прямые пересекаются,</u> если они <u>лежат</u> в одной плоскости, а значит в одной плоскости лежат векторы $\overrightarrow{M_1M_2}=\mathbf{r}_2-\mathbf{r}_1,\ \mathbf{a}_1$ и $\mathbf{a}_2,$ но направ-

ляющие векторы ${\bf a}_1$ и ${\bf a}_2$ не коллинеарны, т. е. выполнены следующие два условия:

$$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1, \mathbf{a}_2) = 0$$
 и $[\mathbf{a}_1, \mathbf{a}_2] \neq \mathbf{0}$.

4. <u>Прямые параллельны, если</u> направляющие векторы прямых ${f a}_1$ и ${f a}_2$ коллинеарны, но вектор $\overrightarrow{M_1M_2}={f r}_2-{f r}_1$ не коллинеарен прямым, т. е. если

$$[{f a}_1,{f a}_2]=0$$
 и $[{f a}_1,{f r}_2-{f r}_1]
eq {f 0}.$

5. <u>Прямые совпадают,</u> если их направляющие векторы \mathbf{a}_1 и \mathbf{a}_2 коллинеарны и вектор $\overrightarrow{M_1M_2} = \mathbf{r}_2 - \mathbf{r}_1$ лежит на обеих прямых, т.е.

$$[\mathbf{a}_1, \mathbf{a}_2] = [\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1] = \mathbf{0}.$$

3 А Д А Ч А 4. Найти ортогональную проекцию $M_2({f r}_2)$ точки $M_0({f r}_0)$ на прямую ${f r}={f r}_1+{f a}t.$

Рис. 3. К задаче 4.

Решение. Проведём плоскость через точку $M_0({f r}_0)$, перпендикулярно прямой:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{a}) = 0.$$

Подставим в это уравнение параметрическое уравнение прямой и получим, что для точки пересечения $M_0(t_0)$ прямой и плоскости имеет место следующее равенство:

$$t_0 = \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \Rightarrow \mathbf{r}_2 = \mathbf{r}_1 + \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \mathbf{a}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 5. Найти точку $M_3(\mathbf{r}_3)$, симметричную точке $M_0(\mathbf{r}_0)$ относительно прямой

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{a}t.$$

Рис. 4. К задаче 5.

Решение. Пусть $M_2({\bf r}_2)$ — это ортогональная проекция точки $M_0({\bf r}_0)$ на прямую. Тогда справедливо следующее равенство:

$$\overrightarrow{M_0M_2} = \overrightarrow{M_2M_3} \Leftrightarrow \mathbf{r}_2 - \mathbf{r}_0 = \mathbf{r}_3 - \mathbf{r}_2.$$

Для радиус-вектора ${f r}_3$ искомой точки M_3 имеем равенство

$$\mathbf{r}_3 = 2\mathbf{r}_2 - \mathbf{r}_0 = 2\mathbf{r}_1 - \mathbf{r}_0 + 2\frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})}\mathbf{a}.$$

ЗАДАЧА 6. Найти ортогональную проекцию точки $M_1({f r}_1)$ на плоскость $({f r},{f n})+D=0.$

Рис. 5. К задачам 6 и 7.

Решение. Проведём прямую через точку $M_1(\mathbf{r}_1)$, перпендикулярную к указанной плоскости:

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{n}t.$$

Стандартным образом получим радиус-вектор \mathbf{r}_2 искомой точки M_2 :

$$\mathbf{r}_2 = \mathbf{r}_1 - \frac{(\mathbf{r}_1, \mathbf{n}) + D}{(\mathbf{n}, \mathbf{n})} \mathbf{n}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 7. Найти точку, симметричную точке $M_1(\mathbf{r}_1)$ относительно плоскости $(\mathbf{r},\mathbf{n})+D=0.$

Решение. Для искомой точки $M_3(\mathbf{r}_3)$ имеем

$$\mathbf{r}_3 = 2\mathbf{r}_2 - \mathbf{r}_1 = \mathbf{r}_1 - 2\frac{(\mathbf{r}_1, \mathbf{n}) + D}{(\mathbf{n}, \mathbf{n})}\mathbf{n}.$$

ЗАДАЧА 8. Найти ортогональную проекцию точки $M_1({f r}_1)$ на плоскость

$$\mathbf{r} = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}.$$

Решение. Воспользуемся результатом задачи 6. Плоскость можно переписать в следующей форме:

$$(\mathbf{r}, \mathbf{n}) + D = 0$$
, $\mathbf{n} = [\mathbf{a}, \mathbf{b}]$, $D = -(\mathbf{r}_0, \mathbf{n})$.

то справедлива следующая формула:

$$\mathbf{r}_2 = \mathbf{r}_0 - rac{(\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}, \mathbf{b})}{|[\mathbf{a}, \mathbf{b}]|^2}[\mathbf{a}, \mathbf{b}].$$

ЗАДАЧА 9. Найти условия, необходимые и достаточные для того, чтобы три плоскости

$$(\mathbf{r}, \mathbf{n}_k) + D_k = 0, \quad k = 1, 2, 3,$$

имели единственную общую точку.

Решение. Пусть $\{O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ — это общая декартова система координат. Введём обозначения

$$A_k = (\mathbf{n}_k, \mathbf{e}_1), \quad B_k = (\mathbf{n}_k, \mathbf{e}_2), \quad C_k = (\mathbf{n}_k, \mathbf{e}_3).$$

Тогда в системе координат $\{O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ имеем систему трёх уравнений

$$A_1x + B_1y + C_1z + D_1 = 0$$
, $A_2x + B_2y + C_2z + D_2 = 0$,
 $A_3x + B_3y + C_3z + D_3 = 0$.

Необходимое и достаточное условие того, чтобы эта система уравнений имела единственное решение — это требование, чтобы

$$\Delta = \left| \begin{array}{ccc} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{array} \right| = \left| \begin{array}{ccc} (\mathbf{n}_1, \mathbf{e}_1) & (\mathbf{n}_1, \mathbf{e}_2) & (\mathbf{n}_1, \mathbf{e}_3) \\ (\mathbf{n}_2, \mathbf{e}_1) & (\mathbf{n}_2, \mathbf{e}_2) & (\mathbf{n}_2, \mathbf{e}_3) \\ (\mathbf{n}_3, \mathbf{e}_1) & (\mathbf{n}_3, \mathbf{e}_2) & (\mathbf{n}_3, \mathbf{e}_3) \end{array} \right| \neq 0.$$

Заметим, что справедливо равенство

$$\Delta = (\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3)(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3).$$

Поскольку $\{e_1, e_2, e_3\}$ — это базис, то

$$(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \neq 0$$
,

то приходим к следующему необходимому и достаточному условию

$$(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) \neq 0.$$

 $3 \, A \, \Box \, B$ плоскостей

$$(\mathbf{r}, \mathbf{n}_k) + D_k = 0, \quad k = 1, 2, 3.$$

Решение. Поскольку по условию $(\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3)\neq 0$, то можно ввести взаимный базис $\{\mathbf{f}_1,\mathbf{f}_2,\mathbf{f}_3\}$ к базису $\{\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3\}$ следующим образом:

$$egin{aligned} \mathbf{f}_1 &= rac{[\mathbf{n}_2,\mathbf{n}_3]}{(\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3)}, \ &\mathbf{f}_2 &= rac{[\mathbf{n}_3,\mathbf{n}_1]}{(\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3)}, \ &\mathbf{f}_3 &= rac{[\mathbf{n}_1,\mathbf{n}_2]}{(\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3)}. \end{aligned}$$

Будем искать искомую точку в следующем виде:

$$\mathbf{r} = \alpha \mathbf{f}_1 + \beta \mathbf{f}_2 + \gamma \mathbf{f}_3.$$

Нетрудно убедиться, что

$$(\mathbf{r}, \mathbf{n}_1) = \alpha, \quad (\mathbf{r}, \mathbf{n}_2) = \beta, \quad (\mathbf{r}, \mathbf{n}_3) = \gamma.$$

Поэтому искомая общая точка имеет следующий вид:

$$\mathbf{r} = -D_1 \mathbf{f}_1 - D_2 \mathbf{f}_2 - D_3 \mathbf{f}_3.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 11. Дана прямая $\mathbf{r}=\mathbf{r}_0+\mathbf{a}t$ и плоскость $(\mathbf{r},\mathbf{n})+D=0$. Найти условия, необходимые и достаточные для того, чтобы прямая: 1. пересекала плоскость; 2. была параллельна ей; 3. лежала в плоскости.

 $P\,e\, \mathrm{m}\, e\, \mathrm{h}\, \mathrm{u}\, e\, .$ После подстановки уравнения прямой в уравнение плоскости получим следующее равенство:

$$(\mathbf{a}, \mathbf{n})t = -(\mathbf{r}_0, \mathbf{n}) - D. \tag{0.2}$$

- 1. <u>Прямая пересекает плоскость</u>. Уравнение (0.2) имеет единственное решение. Необходимое и достаточное условие, чтобы $(\mathbf{a},\mathbf{n}) \neq 0$.
- 2. Прямая параллельна плоскости. Уравнение (0.2) не имеет решений. Необходимое и достаточное условие, чтобы

$$({\bf a},{\bf n})=0, \quad ({\bf r}_0,{\bf n})+D\neq 0.$$

3. Прямая лежит в плоскости. Уравнение (0.2) имеет бесконечно много решений. Необходимое и достаточное условие, чтобы

$$(a, n) = 0, \quad (r_0, n) + D = 0.$$

 $3\,A\,J\,A\,J\,A$ 12. Написать уравнения общего перпендикуляра к двум прямым

$$l_1: \quad \mathbf{r} = \mathbf{r}_1 + \mathbf{a}_1 t, \quad l_2: \quad \mathbf{r} = \mathbf{r}_2 + \mathbf{a}_2 \tau$$

при условии $[{\bf a}_1,{\bf a}_2] \neq {\bf 0}.$

Рис. 6. К задаче 12.

Решение. Пусть ${f b}=[{f a}_1,{f a}_2]$. Проведём плоскость p_1 через прямую l_1 параллельно вектору ${f b}$:

$$p_1: (\mathbf{r} - \mathbf{r}_1, \mathbf{a}_1, [\mathbf{a}_1, \mathbf{a}_2]) = 0.$$

Теперь проведём плоскость p_2 через прямую l_2 параллельно вектору \mathbf{b} :

$$p_2: (\mathbf{r} - \mathbf{r}_2, \mathbf{a}_2, [\mathbf{a}_1, \mathbf{a}_2]) = 0.$$

Искомый перпендикуляр — это $p_1 \cap p_2$.

ЗАДАЧА 13. Составить уравнение перпендикуляра, опущенного из точки $M_0(\mathbf{r}_0)$ на прямую $\mathbf{r} = \mathbf{r}_1 + \mathbf{a}t$.

Решение. Проведём плоскость p_1 через точку $M_0(\mathbf{r}_0)$ перпендикулярно прямой:

$$p_1: (\mathbf{r} - \mathbf{r}_0, \mathbf{a}) = 0.$$

Теперь проведём плоскость p_2 через точку $M_0(\mathbf{r}_0)$ и прямую:

$$p_2: (\mathbf{r} - \mathbf{r}_0, \mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}) = 0.$$

Рис. 7. К задаче 13.

 \square Действительно, векторы ${\bf a}$ и $\overrightarrow{M_0M_1}$ не коллинеарны, если M_0 не лежит на прямой и поэтому вектор нормали плоскости p_2 можно взять равным

$$\mathbf{n} = [\overrightarrow{M_0 M_1}, \mathbf{a}] = [\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}]. \quad \boxtimes$$

Искомые уравнения перпендикуляра — это $p_1 \cap p_2$:

$$(\mathbf{r}-\mathbf{r}_0,\mathbf{a})=0$$
 и $(\mathbf{r}-\mathbf{r}_0,\mathbf{r}_1-\mathbf{r}_0,\mathbf{a})=0.$

 $3\,A\,J\,A\,V\,A$ 14. Найти условия, необходимые и достаточные для того, чтобы три плоскости

$$(\mathbf{r}, \mathbf{n}_k) + D_k = 0, \quad k = 1, 2, 3,$$

образовывали призму.

Рис. 8. К задаче 14.

 ${\sf Peшeнue}$. ${\underline{\sf Первое\ условие}}$ — три плоскости попарно не совпадают

$$[\mathbf{n}_1,\mathbf{n}_2] \neq \mathbf{0}, \quad [\mathbf{n}_2,\mathbf{n}_3] \neq \mathbf{0}, \quad [\mathbf{n}_3,\mathbf{n}_1] \neq \mathbf{0}.$$
 (0.3)

Второе условие — это требование, чтобы две боковые грани призмы были одновременно ортогональны всем трём плоскостям, т. е. векторы нормали к трём плоскостям были компланарны (были параллельны одной плоскости — параллельным между собой боковым граням призмы):

$$(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) = 0.$$
 (0.4)

Но нам нужно исключить теперь случай когда призма вырождается в одну прямую, т.е. когда все три различные плоскости пересекаются по одной прямой. Докажем, что это третье требование сводится к условию, чтобы

$$D_1[\mathbf{n}_2, \mathbf{n}_3] + D_2[\mathbf{n}_3, \mathbf{n}_1] + D_3[\mathbf{n}_1, \mathbf{n}_2] \neq \mathbf{0}.$$
 (0.5)

Рис. 9. Случай вырождения призмы.

Докажем это. Предположим, что выполнено равенство

$$D_1[\mathbf{n}_2, \mathbf{n}_3] + D_2[\mathbf{n}_3, \mathbf{n}_1] + D_3[\mathbf{n}_1, \mathbf{n}_2] = \mathbf{0}.$$
 (0.6)

Согласно условиям (0.3) и (0.4) без ограничения общности можно считать, что

$$\mathbf{n}_3 = \alpha \mathbf{n}_1 + \beta \mathbf{n}_2. \tag{0.7}$$

Подставим это равенство в равенство (0.6) и в результате получим следующее равенство:

$$(D_1\alpha + D_2\beta - D_3)[\mathbf{n}_2, \mathbf{n}_1] = \mathbf{0} \Rightarrow D_3 = \alpha D_1 + \beta D_2.$$

В совокупности с равенством (0.7) это означает, что плоскость

$$(\mathbf{r}, \mathbf{n}_3) + D_3 = 0$$

принадлежит к пучку плоскостей

$$\alpha[(\mathbf{r}, \mathbf{n}_1) + D_1] + \beta[(\mathbf{r}, \mathbf{n}_2) + D_2] = 0,$$

т.е. все три плоскости проходят через одну прямую. Следовательно, третье условие (0.5) доказано.

ЗАДАЧА 15. Найти условие, необходимые и достаточные для того, чтобы три плоскости

$$(\mathbf{r}, \mathbf{n}_k) + D_k = 0, \quad k = 1, 2, 3,$$

имели единственную общую прямую.

Решение. Йз решения задачи 14 следует, что это следующие условия:

$$(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) = 0,$$

 $D_1[\mathbf{n}_2, \mathbf{n}_3] + D_2[\mathbf{n}_3, \mathbf{n}_1] + D_3[\mathbf{n}_1, \mathbf{n}_2] = \mathbf{0}$

И

$$|[\mathbf{n}_1, \mathbf{n}_2]|^2 + |[\mathbf{n}_2, \mathbf{n}_3]|^2 + |[\mathbf{n}_3, \mathbf{n}_1]|^2 > 0.$$

ЗАДАЧА 16. Найти условие, необходимое и достаточное для того, чтобы четыре плоскости

$$(\mathbf{r}, \mathbf{n}_k) + D_k = 0, \quad k = 1, 2, 3, 4,$$

образовывали тетраэдр.

Решение. <u>Первое требование</u> — это требование, чтобы каждые три различные плоскости из четырёх пересекались в одной точке, т. е. это требование, чтобы каждые три различных векторов нормалей к плоскостям были не компланарны:

$$(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) \neq 0, \quad (\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_4) \neq 0, \quad (\mathbf{n}_1, \mathbf{n}_3, \mathbf{n}_4) \neq 0, \quad (\mathbf{n}_2, \mathbf{n}_3, \mathbf{n}_4) \neq 0.$$

<u>Второе требование</u> — это требование, чтобы все четыре плоскости не перескались в одной точке. Пусть

$$\mathbf{r}_0 = -\frac{D_1[\mathbf{n}_2, \mathbf{n}_3] + D_2[\mathbf{n}_3, \mathbf{n}_1] + D_3[\mathbf{n}_1, \mathbf{n}_2]}{(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3)}$$

— это общая точка первой, второй и третьей плоскостей. Тогда эта точка не должна принадлежать четвёртой плоскости:

$$(\mathbf{r}_0, \mathbf{n}_4) + D_4 \neq 0,$$

т. е.

$$-D_1(\mathbf{n}_2, \mathbf{n}_3, \mathbf{n}_4) - D_2(\mathbf{n}_3, \mathbf{n}_1, \mathbf{n}_4) - D_3(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_4) + D_4(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) \neq 0.$$

ЗАДАЧА 17. Вершины треугольника находятся в точках $M_1({\bf r}_1)$, $M_2({\bf r}_2)$ и $M_3({\bf r}_3)$. Найти условия, необходимые и достаточные для того, чтобы прямая

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$$

пересекала плоскость в его внутренней точке.

Рис. 10. К задаче 17.

Решение. Без ограничения общности считаем, что точка $M_0(\mathbf{r}_0)$ не лежит в плоскости треугольника. Тогда необходимое и достаточное условие, чтобы точка $M_4(\mathbf{r}_4)$ лежала во внутренней области треугольника — это то, чтобы тройки векторов

$$\{\overrightarrow{M_0M_1},\overrightarrow{M_0M_2},\overrightarrow{M_0M_4}\}, \quad \{\overrightarrow{M_0M_2},\overrightarrow{M_0M_3},\overrightarrow{M_0M_4}\},\\ \{\overrightarrow{M_0M_3},\overrightarrow{M_0M_1},\overrightarrow{M_0M_4}\}.$$

были одинаковой ориентации, т.е. знаки следующих чисел совпадали:

$$\left(\overrightarrow{M_0M_1}, \overrightarrow{M_0M_2}, \overrightarrow{M_0M_4} \right), \quad \left(\overrightarrow{M_0M_2}, \overrightarrow{M_0M_3}, \overrightarrow{M_0M_4} \right),$$

$$\left(\overrightarrow{M_0M_3}, \overrightarrow{M_0M_1}, \overrightarrow{M_0M_4} \right).$$

Заметим, что

$$\mathbf{r}_4 = \mathbf{r}_0 + \mathbf{a}t_4, \quad t_4 \neq 0.$$

Поэтому имеем равенства

$$\left(\overrightarrow{M_0M_1}, \overrightarrow{M_0M_2}, \overrightarrow{M_0M_4}\right) = (\mathbf{r}_1 - \mathbf{r}_0, \mathbf{r}_2 - \mathbf{r}_0, t_4\mathbf{a}) = t_4 (\mathbf{r}_1 - \mathbf{r}_0, \mathbf{r}_2 - \mathbf{r}_0, \mathbf{a}),
\left(\overrightarrow{M_0M_2}, \overrightarrow{M_0M_3}, \overrightarrow{M_0M_4}\right) = (\mathbf{r}_2 - \mathbf{r}_0, \mathbf{r}_3 - \mathbf{r}_0, t_4\mathbf{a}) = t_4 (\mathbf{r}_2 - \mathbf{r}_0, \mathbf{r}_3 - \mathbf{r}_0, \mathbf{a}),
\left(\overrightarrow{M_0M_3}, \overrightarrow{M_0M_1}, \overrightarrow{M_0M_4}\right) = (\mathbf{r}_3 - \mathbf{r}_0, \mathbf{r}_1 - \mathbf{r}_0, t_4\mathbf{a}) = t_4 (\mathbf{r}_3 - \mathbf{r}_0, \mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}).$$

Поэтому числа

$$(\mathbf{r}_1 - \mathbf{r}_0, \mathbf{r}_2 - \mathbf{r}_0, \mathbf{a}), \quad (\mathbf{r}_2 - \mathbf{r}_0, \mathbf{r}_3 - \mathbf{r}_0, \mathbf{a}),$$

 $(\mathbf{r}_3 - \mathbf{r}_0, \mathbf{r}_1 - \mathbf{r}_0, \mathbf{a})$

одного знака.

ЗАДАЧА 18. Даны две плоскости

$$(\mathbf{r}, \mathbf{n}_1) + D_1 = 0, \quad (\mathbf{r}, \mathbf{n}_2) + D_2 = 0.$$
 (0.8)

Найти условия, необходимые и достаточные для того, чтобы эти плоскости: 1. пересекались; 2. были параллельны; 3. совпадали.

Решение. Для того чтобы <u>плоскости пересекались</u>, необходимо и достаточно, чтобы векторы нормалей к плоскостям были неколлинеарны:

 $[\mathbf{n}_1, \mathbf{n}_2] \neq \mathbf{0}.$

Для того, чтобы <u>плоскости были параллельны</u>, необходимо и достаточно, чтобы с одной стороны, векторы нормалей были коллинеарны, т.е.

$$[\mathbf{n}_1, \mathbf{n}_2] = \mathbf{0},\tag{0.9}$$

а с другой стороны, система уравнений (0.8) не имела решений. Из равенства (0.9) вытекает, что

$$\mathbf{n}_2 = \lambda \mathbf{n}_1, \quad \lambda \neq 0. \tag{0.10}$$

Но тогда справедливы следующие выражения:

$$(\mathbf{r}, \mathbf{n}_2) + D_2 = 0 \Leftrightarrow \lambda(\mathbf{r}, \mathbf{n}_1) + D_2 = 0.$$

Тогда для того чтобы система уравнений (0.8) не имела решение нужно потребовать, чтобы

$$D_2 \neq \lambda D_1 \Leftrightarrow D_2 \mathbf{n}_1 - D_1 \mathbf{n}_2 \neq \mathbf{0}.$$

Необходимое и достаточное условие того, чтобы плоскости совпадали – это условия

$$[\mathbf{n}_1, \mathbf{n}_2] = \mathbf{0}$$
 и $D_2 \mathbf{n}_1 - D_1 \mathbf{n}_2 = \mathbf{0}$.

3 А Д АЧ А 19. Найти расстояние от точки $M_0(\mathbf{r}_0)$ до плоскости

$$(\mathbf{r}, \mathbf{n}) + D = 0.$$

Решение. Напишем уравнение перпендикуляра к плоскости, проходящего через точку $M_0({f r}_0)$:

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{n}t.$$

Тогда для точки пересечения прямой с плоскостью имеем

$$t = -\frac{D + (\mathbf{r}_0, \mathbf{n})}{(\mathbf{n}, \mathbf{n})}.$$

Тогда для радиус-вектора \mathbf{r}_1 точки пересечения имеем

$$\mathbf{r}_1 = \mathbf{r}_0 - \frac{D + (\mathbf{r}_0, \mathbf{n})}{(\mathbf{n}, \mathbf{n})} \mathbf{n}.$$

Тогда

$$d = |\mathbf{r}_1 - \mathbf{r}_0| = \frac{|(\mathbf{r}_0, \mathbf{n}) + D|}{|\mathbf{n}|}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}$ 20. Найти расстояние от точки $M_0(\mathbf{r}_0)$ до прямой

$$l: \mathbf{r} = \mathbf{r}_1 + \mathbf{a}t.$$

Решение. Проведём плоскость p, проходящую через точку $M_0({\bf r}_0)$ перпендикулярно прямой l :

$$p: \quad (\mathbf{r} - \mathbf{r}_0, \mathbf{a}) = 0.$$

Находим точку пересечения $M_2(t_2) = p \cap l$:

$$t_2 = \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})}.$$

Тогда для радиус-вектора \mathbf{r}_2 точки $M_2(\mathbf{r}_2) = p \cap l$ имеем равенство

$$\mathbf{r}_2 = \mathbf{r}_1 + \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \mathbf{a}.$$

Тогда

$$d = |\mathbf{r}_2 - \mathbf{r}_0| = \left| \mathbf{r}_1 - \mathbf{r}_0 + \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \mathbf{a} \right|.$$

3 A Д A Ч A 21. Найти расстояние d между двумя прямыми

$$l_1: \mathbf{r} = \mathbf{r}_1 + \mathbf{a}_1 t, \quad l_2: \mathbf{r} = \mathbf{r}_2 + \mathbf{a}_2 \tau$$

при условии, что 1. $[\mathbf{a}_1, \mathbf{a}_2] \neq \mathbf{0};$ 2. $[\mathbf{a}_1, \mathbf{a}_2] = \mathbf{0}.$ Решение.

Рис. 11. К первому заданию задачи 21.

 $\it 3a$ дание 1. Проведём плоскость $\it p$ через прямую $\it l_1$ параллельно прямой $\it l_2$:

$$p: \quad (\mathbf{r} - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2) = 0.$$

Тогда расстояние d между прямыми l_1 и l_2 равно в точности расстоянию между точкой $M_2({\bf r}_2)\in l_2$ и плоскостью p :

$$d = \frac{|(\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2)|}{|[\mathbf{a}_1, \mathbf{a}_2]|}.$$

3адание 2. Пусть теперь $[{f a}_1,{f a}_2]={f 0}$. Проведём плоскость p перпендикулярно к обеим прямым через точку $M_1({f r}_1)\in l_1$:

$$(\mathbf{r}-\mathbf{r}_1,\mathbf{a}_1)=0.$$

Найдём точку $M_3(\mathbf{r}_3)$ пересечения этой плоскости с прямой l_2 :

$$\mathbf{r}_3 = \mathbf{r}_2 + rac{(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1)}{(\mathbf{a}_1, \mathbf{a}_2)} \mathbf{a}_2.$$

Искомое расстояние равно

$$d = |\mathbf{r}_3 - \mathbf{r}_1| = \left|\mathbf{r}_2 - \mathbf{r}_1 + \frac{(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1)}{(\mathbf{a}_1, \mathbf{a}_2)} \mathbf{a}_2\right|.$$

ЗАДАЧА 22. Составить уравнения прямой l_b , лежащей в плоскости

$$p: \quad (\mathbf{r}, \mathbf{n}) + D = 0,$$

пересекающей прямую l_a : $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$ и перпендикулярно к этой прямой, при условии, что $(\mathbf{a}, \mathbf{n}) \neq 0$.

Рис. 12. К задаче 22.

Решение. Прежде всего найдём точку пересечения плоскости p и прямой l_a . Это точка с радиус-вектором

$$\mathbf{r}_1 = \mathbf{r}_0 - \frac{(\mathbf{r}_0, \mathbf{n}) + D}{(\mathbf{a}, \mathbf{n})} \mathbf{a}.$$

Направляющий вектор ${\bf b}$ по условию задачи должен быть ортогональным как вектору ${\bf n}$ (поскольку искомая прямая лежит в плоскости с вектором нормали ${\bf n}$), так и вектору ${\bf a}$. Поэтому можно взять ${\bf b}=[{\bf n},{\bf a}]$. Таким образом, имеем

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{b}\tau.$$

ЗАДАЧА 23. Составьте уравнение прямой, пересекающей две скрещивающиеся прямые $\mathbf{r} = \mathbf{r}_1 + t_1\mathbf{a}_1$ и $\mathbf{r} = \mathbf{r}_2 + t_2\mathbf{a}_2$ и проходящей через точку $M_0(\mathbf{r}_0)$, не лежащую ни на одной из этих прямых.

Решение.

Первый способ. Будем искать уравнение искомой прямой в векторной форме ${\bf r}={\bf r}_0+ {\bf \tau}{\bf b}$. Из условия, что искомая прямая проходит через

точку $M_0(\mathbf{r}_0)$ и пересекает первую прямую приходим к выводу о том, что найдутся такие числа t_1 и au, что

$$\mathbf{r}_1 + t_1 \mathbf{a}_1 = \mathbf{r}_0 + \tau \mathbf{b} \Leftrightarrow \mathbf{r}_1 - \mathbf{r}_0 = \tau \mathbf{b} - t_1 \mathbf{a}_1 \Leftrightarrow (\mathbf{r}_1 - \mathbf{r}_0, [\mathbf{b}, \mathbf{a}_1]) = 0 \Leftrightarrow (\mathbf{b}, [\mathbf{a}_1, \mathbf{r}_1 - \mathbf{r}_0]) = 0.$$

Аналогичным образом получим равенство для второй прямой

$$(\mathbf{b}, [\mathbf{a}_2, \mathbf{r}_2 - \mathbf{r}_0]) = 0.$$

Таким образом, в качестве направляющего вектора ${\bf b}$ искомой прямой можно взять вектор

$$\mathbf{b} = [[\mathbf{a}_1, \mathbf{r}_1 - \mathbf{r}_0], [\mathbf{a}_2, \mathbf{r}_2 - \mathbf{r}_0]].$$

Bторой способ. Проведём плоскость p_1 через первую прямую ${f r}=={f r}_1+t_1{f a}_1$ и точку $M_0({f r}_0)$:

$$p_1: (\mathbf{r} - \mathbf{r}_0, [\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}_1]) = 0.$$

Затем проведём плоскость p_2 через вторую прямую ${\bf r}={\bf r}_2+t_2{\bf a}_2$ и точку $M_0({\bf r}_0)$:

$$p_2: \quad (\mathbf{r} - \mathbf{r}_0, [\mathbf{r}_2 - \mathbf{r}_0, \mathbf{a}_2]) = 0.$$

Искомое уравнение прямой — это $p_1 \cap p_2$.

ЗАДАЧА 24. (Развёрнутое решение задачи 12.) Составьте уравнение прямой, пересекающей две скрещивающиеся прямые $\mathbf{r} = \mathbf{r}_1 + t_1\mathbf{a}_1$ и $\mathbf{r} = \mathbf{r}_2 + t_2\mathbf{a}_2$ под прямыми углами (т.е. уравнение общего перпендикуляра к этим прямым).

Рис. 13. К задаче 20.

Решение. Будем искать уравнение искомого перпендикуляра в следующем виде:

 $\mathbf{r} = \mathbf{r}_0 + \mathbf{b}\tau$, $\mathbf{b} = [\mathbf{a}_1, \mathbf{a}_2]$.

Составим уравнение плоскости, проходящей через первую прямую $\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{a}_1$ и искомую прямую $\mathbf{r} = \mathbf{r}_0 + \mathbf{b}\tau$. Уравнение плоскости имеет следующий вид:

 $(\mathbf{r} - \mathbf{r}_1, [\mathbf{a}_1, \mathbf{b}]) = 0.$

Аналогично уравнение плоскости, проходящей через вторую прямую ${f r}={f r}_2+t_2{f a}_2$ и общий перпендикуляр имеет следующий вид:

$$(\mathbf{r} - \mathbf{r}_2, [\mathbf{a}_2, \mathbf{b}]) = 0.$$

Найдём радиус-вектор \mathbf{r}_0 какой-нибудь точки, лежащей на общем перпендикуляре. Будем искать этот радиус-вектор как пересечение уже указанных двух плоскостей и плоскости, проходящей через начало координат и перпендикулярную к первым двум. Итак, имеет место следующая система уравнений:

$$(\mathbf{r}_0, \mathbf{n}_1) = D_1, \quad \mathbf{n}_1 = [\mathbf{a}_1, \mathbf{b}], \quad D_1 = (\mathbf{r}_1, \mathbf{n}_1),$$

 $(\mathbf{r}_0, \mathbf{n}_2) = D_2, \quad \mathbf{n}_2 = [\mathbf{a}_2, \mathbf{b}], \quad D_2 = (\mathbf{r}_2, \mathbf{n}_2),$
 $(\mathbf{r}_0, [\mathbf{n}_1, \mathbf{n}_2]) = 0.$

Заметим, что

$$[\mathbf{n}_1,\mathbf{n}_2]=A[\mathbf{a}_1,\mathbf{a}_2],\quad A=\left|\begin{array}{cc} (\mathbf{a}_1,\mathbf{a}_1) & (\mathbf{a}_1,\mathbf{a}_2) \\ (\mathbf{a}_1,\mathbf{a}_2) & (\mathbf{a}_2,\mathbf{a}_2) \end{array}\right|.$$

□ Действительно, имеем

$$\begin{split} [\mathbf{n}_1,\mathbf{n}_2] &= [[\mathbf{a}_1,\mathbf{b}],[\mathbf{a}_2,\mathbf{b}]] = -\mathbf{b}([\mathbf{a}_1,\mathbf{b}],\mathbf{a}_2) = \\ &= -[\mathbf{a}_1,\mathbf{a}_2] \left([\mathbf{a}_1,[\mathbf{a}_1,\mathbf{a}_2]],\mathbf{a}_2 \right) = [\mathbf{a}_1,\mathbf{a}_2] \left[(\mathbf{a}_1,\mathbf{a}_1)(\mathbf{a}_2,\mathbf{a}_2) - (\mathbf{a}_1,\mathbf{a}_2)^2 \right]. \quad \boxtimes \end{split}$$

Поэтому

$$\mathbf{r}_0 = \frac{D_1[\mathbf{n}_2, [\mathbf{n}_1, \mathbf{n}_2]] + D_2[[\mathbf{n}_1, \mathbf{n}_2], \mathbf{n}_1]}{\left|[\mathbf{n}_1, \mathbf{n}_2]\right|^2} = \frac{\left[[[\mathbf{n}_1, \mathbf{n}_2], D_2\mathbf{n}_1 - D_1\mathbf{n}_2\right]}{\left|[\mathbf{n}_1, \mathbf{n}_2]\right|^2}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 25. Найти ортогональную проекцию прямой $l:[\mathbf{r}-\mathbf{r}_0,\mathbf{a}]=0$ на плоскость $(\mathbf{r},\mathbf{n})=D.$

Решение. Будем искать уравнение ортогональной проекции в следующем виде:

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{b}t.$$

Найдём сначала радиус-вектор ${f r}_1$, как точку пересечения прямой и плоскости:

$$(\mathbf{r}_1,\mathbf{n})=D,\quad \mathbf{r}_1=\mathbf{r}_0+t_0\mathbf{a},$$
 $\mathbf{r}_1=\mathbf{r}_0+rac{D-(\mathbf{r}_0,\mathbf{n})}{(\mathbf{a},\mathbf{n})}\mathbf{a}$ при $(\mathbf{a},\mathbf{n})
eq 0.$

Рис. 14. К задаче 21.

Найдём теперь направляющий вектор ${\bf b}$ как ортогональную проекцию на плоскость вектора ${\bf a}$:

$$\mathbf{a} = \mathbf{b} + \lambda \mathbf{n}, \quad (\mathbf{a}, \mathbf{n}) = \lambda(\mathbf{n}, \mathbf{n}),$$

$$\mathbf{b} = \mathbf{a} - \frac{(\mathbf{a}, \mathbf{n})}{(\mathbf{n}, \mathbf{n})} \mathbf{n}.$$

Итак,

$$\mathbf{r} = \mathbf{r}_0 + \frac{D - (\mathbf{r_0}, \mathbf{n})}{(\mathbf{a}, \mathbf{n})} \mathbf{a} + \left(\mathbf{a} - \frac{(\mathbf{a}, \mathbf{n})}{(\mathbf{n}, \mathbf{n})} \mathbf{n} \right) t.$$

ЗАДАЧА 26. Прямая задана как пересечение двух плоскостей $(\mathbf{r},\mathbf{n}_1)=D_1$ и $(\mathbf{r},\mathbf{n}_2)=D_2$. Запишите векторное параметрическое уравнение этой прямой, т.е. уравнение вида $\mathbf{r}=\mathbf{r}_0+t\mathbf{a}$.

P е ш е н и е . Направляющий вектор искомой прямой равен ${\bf a}=[{\bf n}_1,{\bf n}_2].$ Будем искать радиус-вектор ${\bf r}_0$ как пересечение трёх плоскостей:

$$(\mathbf{r}_0, \mathbf{n}_1) = D_1, \quad (\mathbf{r}_0, \mathbf{n}_2) = D_2, \quad (\mathbf{r}_0, \mathbf{a}) = 0.$$

Решение этой системы уравнений согласно задаче 10 имеет следующий вид:

$$\mathbf{r}_0 = \frac{D_1[\mathbf{n}_2, \mathbf{a}] + D_2[\mathbf{a}, \mathbf{n}_1]}{\left| [\mathbf{n}_1, \mathbf{n}_2] \right|^2}.$$

3 А Д А Ч А 27. Найдите радиус-вектор точки пересечения прямой $[{f r},{f a}]={f b}$ с плоскостью $({f r},{f n})=D$.

Решение. Перепишем уравнение прямой в следующем виде:

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t, \quad \mathbf{r}_0 = rac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})}.$$

Поскольку прямая и плоскость пересекаются, то $(\mathbf{a},\mathbf{n})\neq 0$. Поэтому после подстановки векторного параметрического уравнения прямой в уравнение плоскости получим, что

$$t_0 = \frac{D - (\mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})}.$$

Итак,

$$\mathbf{r} = \mathbf{r}_0 + \frac{D - (\mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})} \mathbf{a}.$$

3 А Д А Ч А 28. Найдите проекцию точки $M_0(\mathbf{r}_0)$ на плоскость $(\mathbf{r},\mathbf{n})=D$ параллельно прямой $\mathbf{r}=\mathbf{r}_1+t\mathbf{a}$ при условии $(\mathbf{a},\mathbf{n})\neq 0$.

Решение. Заметим, что просто нужно найти радиус-вектор ${\bf r}_2$ точки пересечения прямой ${\bf r}={\bf r}_0+{\bf a}t$ и плоскости $({\bf r},{\bf n})=D.$ В результате получим

$$\mathbf{r}_2 = \mathbf{r}_0 + \frac{D - (\mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})} \mathbf{a}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 29. Найдите проекцию точки $M_0(\mathbf{r}_0)$ на прямую $\mathbf{r}=\mathbf{r}_1+t\mathbf{a}$ параллельно плоскости $(\mathbf{r},\mathbf{n})=D$ при условии $(\mathbf{a},\mathbf{n})\neq 0$.

Решение. Нужно найти радиус-вектор ${\bf r}_2$ точки пересечения плоскости $({\bf r}-{\bf r}_0,{\bf n})$ и прямой ${\bf r}={\bf r}_1+t{\bf a}$. Действительно, имеем

$$\mathbf{r}_2 = \mathbf{r}_1 + \frac{(\mathbf{r}_1 - \mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})} \mathbf{a}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}\,$ 30. Найдите ортогональную проекцию точки $M_0(\mathbf{r}_0)$ на прямую $[\mathbf{r},\mathbf{a}]=\mathbf{b}.$

Решение. Пусть $M_2({\bf r}_2)$ — это искомая точка ортогональной проекции точки $M_0({\bf r}_0)$ на прямую. Тогда выполнено следующее условие:

$$\left(\overrightarrow{M_0M_2}, \mathbf{a}\right) = 0 \Leftrightarrow (\mathbf{r}_2 - \mathbf{r}_0, \mathbf{a}) = 0.$$
 (0.11)

Уравнение прямой в форме Плюккера можно переписать в следующем виде:

$$\mathbf{r}_2 = \mathbf{r}_1 + \mathbf{a}t, \quad \mathbf{r}_1 = \frac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})}.$$

Тогда при некотором t_0 эта прямая пересечёт плоскость (0.11). Справедливо следующее равенство:

$$t_0 = rac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} = rac{(\mathbf{r}_0, \mathbf{a})}{(\mathbf{a}, \mathbf{a})}, \quad \mathbf{r}_2 = \mathbf{r}_1 + rac{(\mathbf{r}_0, \mathbf{a})}{(\mathbf{a}, \mathbf{a})}\mathbf{a}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}\,$ 31. Найдите ортогональную проекцию точки $M_0(\mathbf{r}_0)$ на плоскость $\mathbf{r}=\mathbf{r}_0+u\mathbf{a}+v\mathbf{b}.$

Решение. Нужно найти точку $M_2(\mathbf{r}_2)$ пересечения прямой $\mathbf{r}=\mathbf{r}_0+t[\mathbf{a},\mathbf{b}]$ и плоскости $(\mathbf{r}-\mathbf{r}_1,[\mathbf{a},\mathbf{b}])=0$. Итак,

$$\mathbf{r}_2 = \mathbf{r}_0 + \frac{(\mathbf{r}_1 - \mathbf{r}_0, [\mathbf{a}, \mathbf{b}])}{\left|\left[\mathbf{a}, \mathbf{b}\right]\right|^2} [\mathbf{a}, \mathbf{b}].$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 32. Найдите расстояние между двумя параллельными плоскостями $\mathbf{r}=\mathbf{r}_1+u\mathbf{a}+v\mathbf{b}$ и $\mathbf{r}=\mathbf{r}_2+u\mathbf{a}+v\mathbf{b}$.

Решение. Общая формула для вычисления расстояния от точки $M_1(\mathbf{r}_1)$ до плоскости $(\mathbf{r},\mathbf{n})=D$ имеет следующий вид:

$$d = \frac{|(\mathbf{r}_1, \mathbf{n}) - D|}{|\mathbf{n}|}.$$

Исходя из этой формулы получаем

$$d = \frac{|(\mathbf{r}_1 - \mathbf{r}_2, [\mathbf{a}, \mathbf{b}])|}{|[\mathbf{a}, \mathbf{b}]|},$$

поскольку ${\bf n}$ — вектор нормали к плоскости можно выбрать равным $[{\bf a},{\bf b}].$

 $\vec{3}$ А Д А Ч А $\vec{3}$ 33. Найдите расстояние между двумя параллельными плоскостями $(\mathbf{r}, \mathbf{n}) = D_1$ и $(\mathbf{r}, \mathbf{n}) = D_2$.

Решение. В соответствии с предыдущей задачей имеем

$$d = \frac{|(\mathbf{r}_2, \mathbf{n}) - D_1|}{|\mathbf{n}|} = \frac{|D_2 - D_1|}{|\mathbf{n}|}.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 34. Найдите расстояние от точки $M_0(\mathbf{r}_0)$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}.$

 \dot{P} е ш е н и е . Запишем уравнение прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$ в векторной параметрической форме

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{a}t, \quad \mathbf{r}_1 = \frac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})}.$$

Пусть $M_2({\bf r}_2)$ — это ортогональная проекция точки $M_0({\bf r}_0)$ на прямую. Тогда в силу задачи 30 имеем

$$\mathbf{r}_2 = \mathbf{r}_1 + \frac{(\mathbf{r}_0 - \mathbf{r}_1, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \mathbf{a} = \mathbf{r}_1 + \frac{(\mathbf{r}_0, \mathbf{a})}{(\mathbf{a}, \mathbf{a})} \mathbf{a}.$$

Таким образом, имеем

$$d = |\mathbf{r}_2 - \mathbf{r}_0| = \left| \frac{[\mathbf{a}, \mathbf{b}] + (\mathbf{r}_0, \mathbf{a})\mathbf{a}}{(\mathbf{a}, \mathbf{a})} - \mathbf{r}_0 \right|.$$

ЗАДАЧА 35. Составьте уравнение плоскости, содержащей параллельные прямые $\mathbf{r} = \mathbf{r}_1 + t\mathbf{a}$ и $\mathbf{r} = \mathbf{r}_2 + t\mathbf{a}$.

Решение. Очевидно, уравнение следующее:

$$\left(\mathbf{r}-\mathbf{r}_1,[\mathbf{r}_2-\mathbf{r}_1,\mathbf{a}]\right)=0.$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 36. Найдите расстояние между параллельными прямыми $\mathbf{r}=\mathbf{r}_1+t\mathbf{a}$ и $\mathbf{r}=\mathbf{r}_2+t\mathbf{a}$.

Рис. 15. К задаче 32.

 ${\rm P\,e\, m\,e\, n\, n\, e}$. C одной стороны, площадь треугольника $\triangle A_1 A_2 A_3$ равна

$$S_{A_1A_2A_3} = |[\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}]|.$$

С другой стороны, равна

$$S_{A_1A_2A_3} = h|\mathbf{a}|,$$

где h — это искомое расстояние. Итак, имеем

$$h = \frac{|[\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}]|}{|\mathbf{a}|}.$$

 $3\,A\,J\,A\,V\,A$ 37. Найдите расстояние между параллельными прямыми $[{f r},{f a}]={f b}_1$ и $[{f r},{f a}]={f b}_2$.

Решение. Запишем уравнения этих прямых в векторной параметрической форме:

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{a}t, \quad \mathbf{r}_1 = \frac{[\mathbf{a}, \mathbf{b}_1]}{(\mathbf{a}, \mathbf{a})},$$

$$\mathbf{r} = \mathbf{r}_2 + \mathbf{a}t, \quad \mathbf{r}_1 = \frac{[\mathbf{a}, \mathbf{b}_2]}{(\mathbf{a}, \mathbf{a})}.$$

Тогда в соответствии с задачей 36 получим

$$h = \frac{|[\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}]|}{|\mathbf{a}|} = \frac{|\mathbf{b}_1 - \mathbf{b}_2|}{|\mathbf{a}|}.$$

ЗАДАЧА 38. Составьте уравнение плоскости, проходящей через линию пересечения плоскостей $(\mathbf{r},\mathbf{n}_1)=D_1$ и $(\mathbf{r},\mathbf{n}_2)=D_2$ перпендикулярно плоскости $(\mathbf{r},\mathbf{n}_3)=D_3$.

Рис. 16. К задаче 38.

Решение. По условию задачи векторы $[\mathbf{n}_1,\mathbf{n}_2]$ и \mathbf{n}_3 параллельны плоскости. Предположим, что $[\mathbf{n}_3,[\mathbf{n}_1,\mathbf{n}_2]]\neq \vartheta$. Тогда уравнение искомой плоскости имеет следующий вид:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{n}) = 0, \quad \mathbf{n} = [\mathbf{n}_3, [\mathbf{n}_1, \mathbf{n}_2]].$$

Осталось найти радиус-вектор ${\bf r}_0$ какой-нибудь точки M_0 , лежащей на плоскости. Будем искать эту точку как точку пересечения трёх плоскостей:

$$(\mathbf{r}_0, \mathbf{n}_1) = D_1, \quad (\mathbf{r}_0, \mathbf{n}_2) = D_2, \quad (\mathbf{r}_0, [\mathbf{n}_1, \mathbf{n}_2]) = 0$$

Таким образом, имеем

$$\mathbf{r}_0 = \frac{D_1[\mathbf{n}_2[\mathbf{n}_1, \mathbf{n}_2]] + D_2[[\mathbf{n}_1, \mathbf{n}_2], \mathbf{n}_1]}{|[\mathbf{n}_1, \mathbf{n}_2]|^2}$$

 $3\,\mathrm{A}\,\mathrm{J}\,\mathrm{A}\,\mathrm{H}\,\mathrm{A}$ 39. Составьте уравнение плоскости, проходящей через точку $M_0(\mathbf{r}_0)$ и прямую $[\mathbf{r},\mathbf{a}]=\mathbf{b}.$

Решение. Запишем уравнение прямой в векторной параметрической форме:

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{a}t, \quad \mathbf{r}_1 = \frac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})}.$$

Тогда уравнение плоскости имеет следующий вид:

$$(\mathbf{r} - \mathbf{r}_0, [\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}]) = 0.$$

3 А Д А Ч А $\ 40$. Найдите расстояние между скрещивающимися прямыми $[{f r},{f a}_1]={f b}_1$ и $[{f r},{f a}_2]={f b}_2$.

Решение. Запишем уравнения прямых в векторной параметрической форме

$$egin{aligned} \mathbf{r} &= \mathbf{r}_1 + \mathbf{a}_1 t, \quad \mathbf{r}_1 &= rac{[\mathbf{a}_1, \mathbf{b}_1]}{(\mathbf{a}_1, \mathbf{a}_1)}; \ \mathbf{r} &= \mathbf{r}_2 + \mathbf{a}_2 t, \quad \mathbf{r}_2 &= rac{[\mathbf{a}_2, \mathbf{b}_2]}{(\mathbf{a}_2, \mathbf{a}_2)}. \end{aligned}$$

Тогда искомое расстояние равно

$$h = \frac{|(\mathbf{r}_1 - \mathbf{r}_2, [\mathbf{a}_1, \mathbf{a}_2])|}{|[\mathbf{a}_1, \mathbf{a}_2]|}.$$

Справедливы следующие равенства:

$$(\mathbf{r}_1, [\mathbf{a}_1, \mathbf{a}_2]) = \frac{1}{(\mathbf{a}_1, \mathbf{a}_1)} ([\mathbf{a}_1, \mathbf{b}_1], [\mathbf{a}_1, \mathbf{a}_2]) = (\mathbf{b}_1, \mathbf{a}_2),$$

 $(\mathbf{r}_2, [\mathbf{a}_1, \mathbf{a}_2]) = -(\mathbf{a}_1, \mathbf{b}_2).$

Тогда приходим к следующей формуле:

$$h = \frac{|(\mathbf{b}_1, \mathbf{a}_2) + (\mathbf{a}_1, \mathbf{b}_2)|}{|[\mathbf{a}_1, \mathbf{a}_2]|}.$$