```
Deriving the Hum: / tourian in Matrix form
           < \hat{G}^{2}(e)> = < \psi | U + \hat{G}^{2} U | \psi > \quad \text{with } U = \frac{1}{e} + \epsilon \text{if } e
= \langle \gamma | e^{iH\epsilon} \hat{G}^{2} e^{-iH\epsilon} | \gamma \rangle
eigen basis of G^{2} : \{ \emptyset \} \{ 11 >, 14 > \} \}
                H = J \sum_{i=1}^{N} \overline{I}_{i} \cdot \overline{I}_{i+1} + \sum_{i=1}^{N} \beta_{i} \overline{I}_{i}^{2}
                           = \int_{-1}^{\infty} \left( \overline{\underline{\mathbf{I}}}_{i}^{\times} \, \overline{\mathbf{I}}_{i+1}^{\times} + \overline{\underline{\mathbf{I}}}_{i+1}^{\times} + \overline{\underline{\mathbf{I}}}_{i+1}^{\times} + \overline{\underline{\mathbf{I}}}_{i+1}^{\times} \right) + \sum_{i=1}^{\infty} \mathcal{B}_{i} \, \overline{\underline{\mathbf{I}}}_{i}^{\times}
For N=3: 3 11117, 11112, 11112, 11112, In eigen basis 14:
                                                                     11177 > , 1112 > , 1117 > , 11112 3 H 1 \q; > = E; 1\q; >
                   Simplifications for starters
                              I. Only Coupling in Z-direction
                               II. B_i = O + i
                             => H'= J \( \frac{1}{2} \) \( 
     = 2 + \frac{10}{11} = < 10 \cdot 1 \cdot 1 \cdot \frac{3}{2} \cdot \frac{1}{11} \cdot \frac{1}{11} \cdot \frac{1}{11} \cdot \frac{1}{11} \cdot \frac{1}{11} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{2}
                                  Ho = < 11/ Ho | 11/1 > = J · (1 - 1) = 0
                                    H_{33}^{o} = < 1411 H01141> = J \cdot (-\frac{1}{4} - \frac{1}{4}) = -J_{3}
                                        |+_{11}^{0}| = \langle S_{1}S_{2}S_{3}| + |+_{11}^{0}| S_{1}S_{2}S_{3} \rangle = J \cdot (S_{1} \cdot S_{2} + S_{2} \cdot S_{3})
                                                                                                                                                          = \frac{\Im}{4} \left( sgn(s_1 \cdot s_2) + sgn(s_1 \cdot s_3) \right)
```

$$\begin{aligned} &H_{1:1}^{7} &= \langle s_{1}s_{2}s_{3} | H^{7} | s_{1}^{7} s_{2}^{7} s_{3}^{7} \rangle \\ &= \frac{1}{2} \left(\delta s_{1} | s_{1}^{7} + 1 \right) \left(s_{2}s_{2}^{7} + 1 \right) \left(\delta s_{2} | s_{2}^{7} + 1 \right) \left(s_{2}s_{2}^{7} + 1 \right) \left(s_{3}s_{2}^{7} + 1 \right) \left(s_{3}s_{2}^{7}$$

```
Diagonalization;
 With eigenstates of H: 14;
   H | \varphi_i \rangle = \mathcal{E}_i | \varphi_i \rangle
=> < Y | e G = 14>
 = Z < 4 | (2) < (2) | e | + E | 2 | - i | + E | (4) > (4) | 14 >
 14CE)
    < 40 e 40 62 e 140>
= < y0 | Ut e i D + U & 2 Ut e i D + U | W0>
                                       14(4)>
Verivation of 62;
 |\psi(\epsilon)\rangle \equiv (\psi_{1}(\epsilon), \psi_{2}(\epsilon)... \psi_{p}(\epsilon))^{T} \quad \text{with } D = 2^{N}
 For N=3
 \hat{S}^2 = \sum_{i} \psi_i(\epsilon) \cdot (\hat{S}_{i,1} \hat{S}_{i,2} \hat{S}_{i,3}) = S \cdot |\psi\rangle
(3 \times D) (D \times 1) - 2(3 \times 1)
       (G_1^2 \otimes 1_2 \otimes 1_3) | \varphi_1 >
Cigen State of G_1^2
```

```
Explicitly for N=3:
          6^2 = \gamma_6 \cdot \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right) + \gamma_1 \left(-\frac{1}{2} - \frac{1}{2} + \frac{1}{2}\right) + \dots
                0 + 4, (0 6 7) + ...
   Time evo vectorized:
  for one specific to (not vectorized):
 |\psi(\varepsilon)\rangle = |u^{\dagger}| e^{i\mathcal{D}_{\varepsilon}} |u| |\psi(\varepsilon = 0)\rangle |with
                                                           dim (H) = dim (D)
as matrices; (dxd) (dxd) (dxd) (dx1)
                                                         = dim(u) \equiv d
          \Rightarrow (d \times 1)
with vectorized & with array of size Ex:
   goal: 14(E)>; (dx EN)
      (U^{+} e^{iD\epsilon})^{\dagger}
                                   U Yo
       (d \times d) (E_{N} \times d \times d) (d \times 1)
           (\epsilon_{N} \times d \times d)^{T}
                             (E_N \times d \times d) (d \times 1)
                                          (\epsilon_N \times d \times 1) = (\epsilon_N \times d)
```

0	6	14 (oup	lin	g	t	eru	1	(αΙ	4	V	γ /	u	2 2	0	7)											
7 =		ceutral								<	<u>_</u>	6		7	,	8	9		10	1	1	12	1	3	14		15		
		spin ins		1111	IJ.	111	1711	 W	ſζ	111	ן,'	L11 &	<u> </u>	(M)	14	↓ ↑	14	۸,	1111	11;	ا 1	J1 1	\ ^}/	11	J17'	1 1	171		
0	2P	1 W/L	3/2																									-	
1		141		1/2	2										,	1													
2		171 1			1	1/2									7	7												_	
3		1111					-1,						ļ				1		1										
4		1111						1	/2						/	1													
2		161 4								-1	, Z						1					7							
6		111 U										-1/2							1			1						_	
7		111 1												3/2						1				7	1				
8		W 1		1	7	1			1				†		-3	} ₂												-	
9		1411					1			1							-1/2											_	
70		1117					1					1							-1/2										
17		1127												1						1/	, 2							_	
72		411								1	,	1	+									1/2						_	
13		71/1												1									1	/ 2				-	
13 14 15		1777												1											1/2				
15	-	MAT											†					+									3/z	-	