Linear Regression Quiz

6/6 points (100%)

Quiz, 6 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Consider linear regression for a response, Y and predictor, X. Let $e=Y-\hat{eta}_0-\hat{eta}_1X$ be the residuals. The residuals must satisfy < e, h(X)>=0 for any function $h:\mathbb{R}^n\to\mathbb{R}^n$.

False

Correct

1/1 points

2.

Consider linear regression for a response, Y and predictor, X. Let $e=Y-\beta_0-\hat{\beta}_1X$ be the residuals. The residuals must satisfy $< e,X>=< e,J_n>=0$

True

Correct

Now we have a true statement. The residuals are always orthogonal to the columns of the design matrix.

False

1 /

Linear Regression Quitz

6/6 points (100%)

Quiz, 6 questions

3.

Let X_i be a predictor and Y_i be a response. Let $\tilde{X}_i = (X_i - \bar{X})/S_x$ and $\tilde{Y}_i = (Y_i - \bar{Y})/S_y$ where S_X is the standard deviation of the X_i and S_Y is the standard deviation of the Y_i . Consider fitting a linear model where $\tilde{Y}_i = \beta_0 + \beta_1 \tilde{X}_i + \epsilon_i$. What can be said about the estimates of β_0 and β_1 ? (Check all that apply.)

The estimate of β_0 will be 0.

Correct

Remember that we centered and scaled the data before we fit the model.

The fitted line, $(\hat{eta}_0,\hat{eta}_1)$ will pass through (\bar{X},\bar{Y}) .

Un-selected is correct

The fitted slope will be the correlation of the X_i and Y_i times S_Y/S_X .

Un-selected is correct

The estimate of eta_1 will be the correlation between the X_i and Y_i

Correct

Recall that we centered and scaled the data first. So both variances are 1.

1/1 points

4.

Take the mtcars data set and fit a model with hp as the outcome and wt as the predictor in a linear regression model. Predict the hp for a 3,000 pound car.

119.12

Linear Regression Quiz

6/6 points (100%)

Quiz, 6 questions

Correct

130.89

1/1 points

5.

Consider two vectors, Y and X. The standard deviation of Y is twice that of X. Consider dividing the linear regression estimate treating Y as a response and X as a predictor by the one with X as a response and Y as a predictor. What would that value be?

- 0.5
- 0.25
- 2
- It can not be determined from the information given
- **O** 4

Correct

Y as the outcome we get: $ho\sigma_y/\sigma_x=
ho 2$. With X as the outcome we get $ho\sigma_x/\sigma_y=
ho.5$

1/1 points

6.

Suppose vectors X and Y have been scaled to have standard deviations 1. (However, they have not been mean centered). Imagine further that < X, Y> = 0. What is the linear regression slope estimate?

Correct

Linear Regres Fibility Quit $X-\bar{X}J_n, Y-\bar{Y}J_n>/||X-\bar{X}J_n||^2$. Because of the unit SD, $||X-\bar{X}J_n||^2=(n-1)SD(X)=(n-1)$.

6/6 points (100%)

Quiz, 6 questions

Furthermore, $< X - \bar{X}J_n, Y - \bar{Y}J_n > = < X, Y > -n\bar{X}\bar{Y} = n\bar{X}\bar{Y}.$

0

It can't be ascertained from the information given

