Devoir à la maison n° 21

À rendre le 6 juin

On considère l'espace vectoriel $E=\mathbb{R}^3$ et f l'endomorphisme de E dont la matrice dans la base canonique $\mathscr{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est la matrice A:

$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 1) Calcul des puissances de A.
 - a) Trouver les réels λ_1 et λ_2 tels que $A \lambda_i I_3$ n'est pas injective (c'est à dire $\operatorname{Ker}(A - \lambda_i I_3) \neq \{0_3\}$), avec $\lambda_1 < \lambda_2$.
 - **b)** La matrice A est-elle inversible?
 - c) Déterminer une base (et donc la dimension) de $Ker(f \lambda_1 Id_E)$ et $Ker(f \lambda_2 Id_E)$
 - d) Montrer qu'il n'existe pas de base dans laquelle la matrice de f serait diago-
 - e) Déterminer le vecteur $\overrightarrow{u_1}$ de E vérifiant :
 - f) Déterminer le vecteur $\overrightarrow{u_2}$ de E vérifiant :
 - $\overrightarrow{u_1} \in \operatorname{Ker}(f \lambda_2 \operatorname{Id}_E);$
 - la deuxième composante de $\overrightarrow{u_2}$ est 1.
 - g) Soit $\overrightarrow{u_3} = (1, 1, 1)$. Montrer que $\mathscr{C} = (\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ est une base de E.
 - h) Déterminer

$$P=\operatorname{Mat}_{\mathscr{B}}(\mathscr{C})\operatorname{et} Q=\operatorname{Mat}_{\mathscr{C}}(\mathscr{B})$$

Quelle relation y a t'il entre P et Q?

- i) Donner la matrice de f dans la base \mathscr{C} , que l'on notera T.
- **j**) Quelle relation y a t'il entre A, T, P et Q?
- **k)** Prouver que, pour tout entier naturel n non nul, il existe $a_n \in \mathbb{R}$ tel que

$$T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & \alpha_n \\ 0 & 0 & 2^n \end{pmatrix}.$$

On donnera le réel α_1 ainsi qu'une relation entre α_{n+1} et α_n .

l) Montrer que:

$$\forall n \in \mathbb{N}^*, \ \alpha_n = n2^{n-1}.$$

En déduire l'écriture matricielle de A^n en fonction de n.

2) Matrices commutant avec A. $\mathcal{M}_3(\mathbb{R})$ désignant l'ensemble des matrices carrées d'ordre 3, on considère le sous-ensemble C(A) de $\mathcal{M}_3(\mathbb{R})$ des matrices M telles que :

$$AM = MA$$
.

- a) Montrer que C(A) est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- **b)** Pour M appartenant à $\mathcal{M}_3(\mathbb{R})$, on pose $M' = P^{-1}MP$. Montrer que :

$$AM = MA \Leftrightarrow TM' = M'T.$$

c) Montrer qu'une matrice M' de $\mathcal{M}_3(\mathbb{R})$ vérifie TM'=M'T si et seulement si M' est de la forme

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & c \\
0 & 0 & b
\end{pmatrix}$$

où a, b et c sont trois réels.

d) En déduire que M appartient à C(A) si et seulement s'il existe des réels $a,\,b$ et c tels que :

$$M = \begin{pmatrix} -a+2b & 2a-2b & -a+b+2c \\ -a+b & 2a-b & -a+b+c \\ 0 & 0 & b \end{pmatrix}.$$

e) Déterminer une base et la dimension de C(A).