Arthur Zhang Winter 2018

FIRST Robotics Climber System

In six weeks, I led a team of six students to design, manufacture, and test a climber system from scratch using Solidworks and Autodesk Inventor for the 2018 FIRST robotics competition. This is a highly adjustable system capable of lifting two other 150 lb robots, one on either side, in three seconds or lifting the attached robot in a second. It is comprised of three distinct mechanical assemblies: the gearbox, swing arm, and lifting forks.

Note: I included the original excel spreadsheets I used for calculations under the Robotics folder. The MotorCalculations.xlsx is for the Gearbox and LiftAnalysis.xlsx is for the Lifting Forks and tilt analysis

Gearbox/Winch System

System of equations for calculating optimal eyehook position

$$F(\theta) = W L_2 - T_y \left(L_1 - H t_y \right) - T_x (H + L_1 \tan(\theta))$$

$$T_y = W + \mu T_x$$

$$T_x = \frac{W \tan(\alpha)}{1 - \mu \tan(\alpha)}$$

$$\tan(\alpha) = l_1 - L_3$$

$$l_1 = (L_1 - H \tan(\theta)) \times \cos(\theta)$$

Robot Tilt Calculations

I simulated all possible weight distribution scenarios and determined that we could tolerate up to a 50 lb weight difference between two alliance robots before tipping. Through testing, I found that it is beneficial to route the climbing through an eye hook. Then, I derived a system of equations to balance the torque of the robot system during the climb. After setting up an excel spreadsheet with my system of equations, I tested all possible eye hook locations to minimize the range of angles my robot would tilt during the climbing process.

Material Strength Calculations

Unadjusted Tooth Force					
4140 Steel					
Tooth Force at 10,000 psi stress	136.72 lb				
4140 Steel safe limit	20066.667 psi				
Steel:	2.0067 ul	Max Torque for Hex Shafts			
Steel Tooth Force without Y' factor	274.349 lb		07 11- /: 42		
Y' Tooth Factor (larger gear)	0.364 lb	7075 T-6 Aluminum Hardness, Rockwell B	87 lb/in^2	P = F / A	
Max Tooth Force with Y' factor	99.86 lb	7076 T-6 Aluminum Tensile Strength	83000 psi	$\Gamma = F \times r$	
7075 T-6 Aluminum for (20dp 24 or smaller)		7076 T-6 Aluminum Yield Strength	73000 psi	$1 - r \wedge r$	
Tooth Force at 10,000 psi stress	237.50 lb	Safety Factor	2 ul		
7075 T-6 Aluminum safe limit	24333.33 psi	Shaft Diameter	0.5 in		
Aluminum:	2.43 ul	Torque on shaft	413.44 lb-in		
Aluminum Tooth Force without Y' factor	577.92 lb	Radius from Center to Edge	0.285 in	Measured from CAD model	
Y' Tooth Factor (smaller gear)	0.27 lb	Force on Hex Shaft	1450.66 lb	Weasured Holli CAD Illodel	
Max Tooth Force with Y' factor	156.04 lb	Number of Edges Engaged	6 ul		
7075 T-6 Aluminum for (20dp 30T or larger)		Force on Each Edge	241.78 lb		
Tooth Force at 10,000 psi stress	187.50 lb	Torce on Each Eage	241.70 15		
7075 T-6 Aluminum safe limit	24333.33 psi	Width of Each Edge Engaged	0.02 in	Measured from CAD model	
Aluminum:	2.43 ul	Width of Versahub for Plate Sprocket	0.5 in	Taken from VexPro Drawings	
Aluminum Tooth Force without Y' factor	456.25 lb	Pressure on each edge	24177.63 psi	Taken from Vexi to Drawings	
Y' Tooth Factor (smaller gear)	0.31 lb	7076 Aluminum Yield Strength with safety	36500 psi		
Max Tooth Force with Y' factor	143.26 lb		33.76% cushion		

Calculations ensuring hex shaft durability on the climber gearbox

Using Y' tooth form factor and gear dimensions, I found the max allowable force of each gear I planned on using. To avoid breaking gear teeth on the output stage of the gearbox, I used #35 chain on the output stage for its strength. I also wanted to make sure that I wasn't at risk of stripping the hex shafts used, so I calculated maximum torque each shaft would experience and the maximum torque each hex shaft could tolerate.

Gearbox Calculations

Adjusting the gear ratios automatically adjusts all further calculations

I designed the gearbox to be highly adjustable, allowing me to switch the gear reduction of the gearbox from 640:1, producing 878 lbs of force, to 167:1, producing 230 lbs of force. This allows me to optimize the climb time before matches depending on the weight lifted.

I used CAD to design the gearbox as compactly as possible and check for interferences.

Num of Motors	3	ul						
em Resistance								
Battery Resistance (old experiments d.g)					single mot			
Battery at 300A	6	V						
Battery Resistance	0.02	ohm						
multiplied by number of motors	0.060	ul	this is the eff	nis is the effective resistance per motor branch				
additional resistance (wire + esc)	0.010	ohm	estimated	estimated				
Total System Resistance per Branch	0.070	ohm						
Motor Resistance								
R = 12 / I_s	0.090	ohm	o. II					
Effective Total Motor Resistance	0.160	ohm		Stall current and stall torque are reduced by system resistance R _m + R _{cus}				
Stall Torque and Current Reduction Factor	1.782	ul	system r					
				$\zeta = \frac{R_m + R_{sys}}{R_m}$ where R_{sys} is the effective branch resistance of				
Stall Torque of one motor	100.54		where R					
Stall Torque of all motors	301.62		the batte	ce				
Reduced Stall Torque from System Resistance	169.29	oz-in						
Reduced Stall Torque from System Resistance	1.20	N-m	Max Pov	Max Power occurs at point of half torque and				
			half spec	ed .	•			
Stall Current of one motor	134.00	Α		$P_{max} = \frac{\Gamma_s * \omega_f}{\Gamma_s}$				
Stall Current of all motors	402.00	Α		Γ 2 π rnm				
Reduced Stall Current from System Resistance	225.63	Α		$P_{\text{max}} = \frac{\Gamma_{\text{s}} * \omega_{\text{f}}}{4}$ $P_{\text{max}} = \frac{\Gamma_{\text{s}} 2 \pi rpm}{4 \times 60}$				
Maximum possible output power	586.19	W						
Quick check at 75% speed we develop 3/4 of P mc	439.64	W	Looks promising					

System resistances for each 775pro motor, which influenced motor operating efficiency.

In addition, I considered the system resistance, which significantly reduces the maximum stall torque and current of the 775pro motors used. By considering these factors, I accurately determined if the maximum power output is enough to meet my lifting requirements.

nook Loss Calculations		
Angle Between Eyehook and Rung (to horizontal)	65.78	deg
Rope Pull Force Required	483.56	lb
Wrap Angle	27.47	deg
Cof between Aluminum & Amsteel	0.20	ul
Ratio of Extra Force	1.10	ul
Extra Force Required	48.66	lb
nper Tower Friction Loss Calculations		
Cof between Polycarb and Sail Cloth	0.23	ul
Normal Force on Tower from Bumper	26.83	lb
Friction Loss to Tower	6.17	lb

Using the capstan equation, I found exactly how much extra force we needed.

To calculate how much force was needed to lift three robots, I determined the force loss to the eye hook using the capstan equation, friction loss from our bumpers against the tower, and force loss due to the angle we pulling from. Combining these factors, we calculated that the maximum force our gearbox should be capable of pulling with is 550 lbs.

Swing Arm Hook Deployment System

FEA stress analysis for optimizing the swing arm hook's design.

I designed a swing arm connected to the lift that deploys hooks for climbing. The final iteration of the design consists of a perfectly counterbalanced arm powered by a pneumatic cylinder attached to a pulley.

Using Autodesk Inventor's stress analysis feature, I optimized the hook design to withstand 700-800 lbf of load. This is roughly three times stronger than needed. To ensure the hook never swings off, I designed a one way gate latch mechanism that allows the rung to enter the hook and act as a hardstop to keep the hook from coming off the bar. Using 3D printing prototype hooks, I tested the effectiveness of this mechanism.

The weight is perfectly balanced at all angles from -90° to +90°, provided $HK = W \times L/R!$

To counterbalance the arm, I calculated the torque of the arms specific locations and then stretched a piece of surgical tubing to act as a spring, effectively counterbalancing the arm. When done correctly the torque provided by surgical tubing equals the torque of the arm at all positions and reduces the power required to lift the arm.

Fork System

The forks consists of a set of forklifts on either side and a "finger" that stabilizes the robot laterally, which extends using pneumatic tubing and springs.

Comparison between the forks and a suspension bridge

Material Strength Calculation

The materials required to withstand the forces on this system needed to be very rigid with a high modulus of elasticity. After considering different metal options, I chose to use 6061 alloy aluminum for its superior strength and relatively low cost. Simulations demonstrated safety margin of 1.75 and in real life testing, the forks survived a load more than double the expected worst-case load.

FEA stress analysis on the robot's chassis

The "finger" mechanism, which wedges between a protrusion on the climbing wall to resist lateral torque.

During the design process, I constrained sketches in Inventor to simulate a side climb and make sure the robots were not tilting too far.