Transformations, Ceva and Menelaus Theorems, and harmonic points

Viktoriya Krakovna January 10, 2010

Transformations: rotations and the Fermat point

The following lemmas demonstrate a very nice use of rotations:

Lemma 1. Let ABC be a triangle with no angle greater than 120° . Construct equilateral triangles BCD, ACE and ABF on the sides of $\triangle ABC$. Then AD, BE, CF are equal in length and concurrent at a point P, called the *Fermat point*.

Proof. Suppose BE and FC intersect at a point P. Since $\triangle FAC$ is congruent to $\triangle BAE$,

and $\angle FAB = 60^{\circ}$, $\triangle FAC$ is taken to $\triangle BAE$ by a 60° rotation about A. Thus FC = BE, and FC and BE are at a 60° angle to each other, so $\angle FPB = 60^{\circ}$.

Since $\angle FAB = \angle BDC = 60^{\circ}$, FAPB and BPCD are concyclic. Then, $\angle FPA = \angle FBA = 60^{\circ}$, and $\angle BPD = \angle BCD = 60^{\circ}$. Thus, $\angle FPA + \angle FPB + \angle BPD = 180^{\circ}$, so P lies on AD.

Lemma 2. Let P be a point inside $\triangle ABC$. Prove that AP + BP + CP is minimized when P is the Fermat point.

Proof. Construct point Q such that $\triangle PCQ$ is equilateral. Since $\angle PCQ = \angle BCD = 60^{\circ}$, PC = QC and BC = CD, the triangles BPC and DQC are congruent, and related by a 60° rotation. Thus, PB = QC, so

$$AP + BP + CP = AP + DQ + PQ$$

This is the length of the path APQD, whose minimum value is the length of AD. This minimum is attained when P and Q both lie on AD, which implies that $\angle APC = 180^{\circ} - 60^{0} = 120^{\circ}$, and $\angle BPC = \angle DQC = 180^{\circ} - 60^{0} = 120^{\circ}$. Thus, APBF, APCE and BPCD are concyclic, and it follows that P must be the Fermat point.

Example 1. Given a parallelogram ABCD, construct squares externally on its four sides. Prove that the centres of these squares form a square.

Proof. Let the centres of the squares be E, F, G, and H. We show that $\triangle EDH \sim \triangle EAF$. From the square constructed on side AD, we get that AE = DE. Since AB = CD, the squares constructed on these sides have the same side length, and so AF = DH. Also,

$$\angle EAF = 360^{\circ} - \angle EAD - \angle FAB - \angle DAB$$
$$= 270^{\circ} - \angle DAB$$
$$= 90^{\circ} + \angle ADC$$
$$= \angle EDH$$

Thus, a rotation about E by 90^o takes $\triangle EDH$ to $\triangle EAF$. In particular, EH is taken to EF, so EH = EF and $\angle HEF = 90^o$. Similarly, we show this for the other sides of EFGH, so it must be a square.

More problems on rotations

- 1. Let ABC be a triangle with $\angle BAC = 90^{\circ}$. Let D be the foot of the perpendicular from A onto BC. Let I, J be the incentres of triangles BAD, CAD respectively. Prove the angle bisector from A in $\triangle ABC$ is perpendicular to IJ.
- 2. $A_1B_1C_1D_1$ and $A_2B_2C_2D_2$ are two squares such that $A_1 = A_2$ but $B_1 \neq B_2$, $C_1 \neq C_2$, $D_1 \neq D_2$. Show that the lines B_1B_2 , C_1C_2 , D_1D_2 are concurrent.

- 3. Let ABC and BCD be equilateral triangles that share a side (A and D are distinct). A line passes through D, intersecting AC extended at M and AB at N. Let CN intersect BM at P. Prove that $\angle BPC = 60^{\circ}$. ("Mathematical Olympiad Challenges")
- 4. A point N is chosen on the longest side AC of triangle ABC. Perpendicular bisectors of AN and NC intersect AB and BC at K and M respectively. Prove that the circumcentre O of triangle ABC lies on the circumcircle of $\triangle KBM$. (Hint: you can use that the composition of two rotations is a rotation plus a translation.)

Miscellaneous problems on transformations and constructions

- 1. A knight is riding from city A to city B on the same side of a straight river. It's a long way, so he needs to stop by the river to give his horse a drink. What path should he take to spare his horse and minimize the total distance covered? In other words, if he reaches the river at point X, choose X so that AX + XB is minimized.
- 2. P is a point inside rectangle ABCD such that $\angle APD + \angle BPC = 180^{\circ}$. Find $\angle BAP + \angle DCP$. (MOSP 1995)
- 3. An equilateral triangle ABC of side length 1 is stacked on top of a square BCDE of side length 1. Find the circumradius of $\triangle ADE$.
- 4. Let C_1 and C_2 be circles whose centers are 10 units apart and whose radii are 1 and 3. Find, with proof, the locus of points M for which there exist points X on C_1 and Y on C_2 such that M is the midpoint of the segment XY. (Putnam 1996, A2)
- 5. Let AC be a chord in a circle, and D be the midpoint of the minor arc AC. Let B be a point on the minor arc DC. Drop a perpendicular from D to AB at E. Prove that AE = BE + BC. (Archimedes' broken chord theorem)

Ceva and Menelaus Theorems, and harmonic points

The following results are useful in many geometry problems:

Ceva's Theorem. In $\triangle ABC$, let D, E, F be points on sides BC, AC, AB respectively. Then AD, BE, CF are concurrent iff

$$\frac{BD}{CD} \cdot \frac{CE}{AE} \cdot \frac{AF}{BF} = 1$$

Menelaus Theorem. In $\triangle ABC$, let E and F be points on sides AC and AB respectively, and let D be a point on BC extended. Then D, E and F are collinear iff

$$\frac{BD}{CD} \cdot \frac{CE}{AE} \cdot \frac{AF}{BF} = 1$$

The following lemma is a nice application of Ceva and Menelaus:

Definition. Four points A, B, C and D that are on a line (in the given order) are called harmonic if

$$\frac{AB}{AD} = \frac{BC}{CD}$$

Lemma 3. In $\triangle ABC$, let D, E, F be points on sides BC, AC, AB respectively. Let G be the intersection of lines BC and EF, and K be the intersection of AD and EF. Then,

- a) AD, BE, CF are concurrent iff G, B, D and C are harmonic (Pappus' Harmonic Theorem).
- b) If AD, BE, CF are concurrent, then G, F, K and E are harmonic.
- c) Also, for any collinear points G, B, D, C (in that order), and for M the midpoint of $BC \xrightarrow{BD} = \xrightarrow{BG} \Leftrightarrow GD \cdot GM = GB \cdot GC \Leftrightarrow DM \cdot DG = DB \cdot DC$.

Proof. a) By Menelaus' Theorem in $\triangle ABC$,

$$\frac{BG}{GC} \cdot \frac{CG}{AG} \cdot \frac{AF}{BF} = 1$$

Thus, $\frac{BD}{DC} \cdot \frac{CG}{AG} \cdot \frac{AF}{BF} = 1$ (AD, BE, CF are concurrent by Ceva's Theorem) iff $\frac{BD}{DC} = \frac{BG}{GC}$.

- b) Proven using 3 applications of Menelaus try it:).
- c) Since G, D, B and C are harmonic, $BD \cdot GC = GB \cdot DC$.

$$GD \cdot GM = (GB + BD) \cdot \frac{GB + GC}{2}$$

$$= \frac{1}{2}(GB^2 + GB \cdot BD + GB \cdot GC + BD \cdot GC)$$

$$= \frac{1}{2}(GB^2 + GB \cdot BD + GB \cdot GC + GB \cdot DC)$$

$$= \frac{1}{2}GB \cdot (GB + BD + DC + GC)$$

$$= \frac{1}{2}GB \cdot 2GC$$

$$= GB \cdot GC$$

$$DG \cdot DM = (GB + DB) \cdot \frac{DC - DB}{2}$$

$$= \frac{1}{2}(GB \cdot DC + DB \cdot DC - GB \cdot DB - DB^2)$$

$$= \frac{1}{2}(DB \cdot GC + DB \cdot DC - GB \cdot DB - DB^2)$$

$$= \frac{1}{2}DB \cdot (GC + DC - GB - DB)$$

$$= \frac{1}{2}DB \cdot 2DC$$

$$= DB \cdot DC$$

The converses are proven similarly.

Example 2. Consider a point P inside a triangle ABC. Let AD, BE, CF be cevians through P. The midpoint M of BC different from D, and T is the intersection of AD and EF. Prove that if the circumcircle of $\triangle BTC$ is tangent to the line EF, then $\angle BTD = \angle MTC$. ("Mathematical Reflections", 2009, Issue 2, S119)

Proof. Let lines EF and BC intersect at G. By part b) of the Lemma, we have $GD \cdot GM = GB \cdot GC = GT^2$ (by Power of a Point). Thus, the circumcircle of $\triangle DTM$ is tangent to the line EF at T. Then,

$$\angle BTD = \angle GTD - \angle GTB = \angle DMT - \angle BCT = \angle MTC$$

More problems on harmonic points

- 1. In a convex quadrilateral ABCD, AC and BD intersect at E, AB and CD intersect at F. Line EF intersects AD and BC at X and Y. Let M and N be the midpoints of AD and BC, respectively. Prove that quadrilateral BCMX is cyclic iff AYND is cyclic. ("Mathematical Reflections", 2009, Issue 5, O135)
- 2. Consider triangle ABC with altitudes AD, BE, CF, and orthocentre H. Let lines EF and BC intersect at G, and let M be the midpoint of BC. Prove that $AM \perp GH$.
- 3. Let ABC be a triangle, and let D, E, F be the points of tangency of its incircle with the sides BC, AC and AB respectively. Let X be in the interior of $\triangle ABC$ such that the incircle of XBC touches XB, XC and BC in Z, Y and D respectively. Prove that EFZY is cyclic. (IMO Shortlist 1995)

- 4. Let ABC be a right triangle with $\angle A = 90^{\circ}$. Let BN be the angle bisector of $\angle ABC$, and let D be a point on side AC between N and C. Denote by E the reflection of A across the line BD and F the intersection point of CE with the perpendicular to BC through D. Prove that AF, DE and BC are concurrent. (Junior Balkan TST 2007)
- 5. In $\triangle ABC$, I is the incentre, and E is the excentre opposite A. Suppose the excircle opposite A touches BC at F. Let AD be the altitude from A, with midpoint M. Prove that F, I, and M are collinear.

References

- [1] Mathematical Reflections, Problem Column, http://reflections.awesomemath.org.
- [2] Cosmin Pohoata, *Harmonic Division and its Applications*. Mathematical Reflections, 2007, Issue 4.
- [3] H.S.M. Coxeter, S.L. Greitzer, *Geometry Revisited*. Mathematical Association of America, 1967.
- [4] Titu Andreescu, Razvan Gelca, *Mathematical Olympiad Challenges*. Birkhauser, Boston, 2005.