Lycée Buffon Année 2020-2021 MPSI

Devoir du 10/10/2020

Exercice 1: Pour tout complexe z distinct de 2i, on pose $f(z) = \frac{z^2}{z^2}$

1. Déterminer les racines carrées complexes de 8-6i. Soit $(a,b) \in \mathbb{R}^2$. On a

$$(a+ib)^{2} = 8 - 6i \Leftrightarrow \begin{cases} a^{2} - b^{2} &= 8 \\ a^{2} + b^{2} &= 10 \\ 2ab &= -6 \end{cases} \Leftrightarrow \begin{cases} a^{2} &= 9 \\ b^{2} &= 1 \\ ab &= -3 \end{cases} \Leftrightarrow a+ib = \pm (3-i)$$

Les racines carrées de 8+6i sont donc $\pm (3-i)$.

2. En déduire l'ensemble des complexes z tels que f(z) = 1 + i. Soit $z \in \mathbb{C} \setminus \{2i\}$.

$$f(z) = 1 + i \Leftrightarrow z^2 - (1+i)z + 2i(1+i) = 0$$

Le discriminant du polynôme $X^2 - (1+i)X + 2i(1+i)$ est 8-6i et ses racines sont 2 et i-1 qui sont distinctes de 2i.

Par conséquent, l'ensemble des complexes z tels que f(z) = 1 + i est $\{2, i-1\}$.

3. Soit z_0 un complexe.

Discuter suivant les valeurs de z_0 le nombre de complexes z tels que $f(z) = z_0$. Soit $z \in \mathbb{C} \setminus \{2i\}$.

$$f(z) = z_0 \Leftrightarrow z^2 - z_0 z + 2iz_0 = 0$$

Le polynôme $X^2-z_0X+2iz_0$ possède deux racines dans $\mathbb C$ éventuellement confondues.

Son discriminant étant égal à $z_0^2 - 8iz_0$, si $z_0 \notin \{0, 8i\}$, alors il possède deux racines distinctes. Sinon, il n'en possède qu'une.

Il reste à vérifier si 2i est racine. Comme $(2i)^2 - 2iz_0 + 2iz_0 \neq 0$, ce n'est jamais le cas.

Ainsi, l'équation $f(z) = z_0$ possède deux solutions distinctes si $z_0 \notin \{0, 8i\}$ et une seule sinon.

Exercice 2 : Soit $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 + z + 1$.

1. Déterminer $f(\mathbb{C})$, $f(\mathbb{C}^*)$, $f(\mathbb{R})$.

DS 2

On a $f(\mathbb{C}) \subset \mathbb{C}$ et pour tout $z_0 \in \mathbb{C}$, l'équation $z^2 + z + 1 = z_0$ a au moins une solution complexe donc $\mathbb{C} \subset f(\mathbb{C})$ puis $f(\mathbb{C}) = \mathbb{C}$.

On a $f(\mathbb{C}^*) \subset \mathbb{C}$ et pour tout $z_0 \in \mathbb{C}$, l'équation $z^2 + z + 1 = z_0$ a au moins une solution complexe non nulle car la somme des deux solutions vaut -1 donc $\mathbb{C} \subset f(\mathbb{C}^*)$ puis $f(\mathbb{C}^*) = \mathbb{C}$.

Soit $z_0 \in \mathbb{C}$. On s'intéresse à l'existence d'au moins une solution réelle à l'équation $z^2+z+1=z_0$. Les solutions de cette équation sont $\frac{-1\pm\delta}{2}$ où δ est une racine carrée de $\Delta = 4z_0 - 3$. Elle sont donc simultanément réelles et le sont si, et seulement si, $\delta \in \mathbb{R}$. Or, $\delta \in \mathbb{R} \Leftrightarrow \Delta \in \mathbb{R}^+$ donc l'équation $z^2 + z + 1 = z_0$ a des solutions réelles si, et seulement si, $z_0 \in]3/4, +\infty[$.

Ainsi, $f(\mathbb{R}) = 3/4, +\infty$

2. Déterminer $f^{-1}(\mathbb{C}), f^{-1}(\mathbb{C}^*), f^{-1}(\mathbb{R}).$

Par définition $f^{-1}(\mathbb{C}) = \{z \in \mathbb{C} : z^2 + z + 1 \in \mathbb{C}\} \text{ donc } f^{-1}(\mathbb{C}) = \mathbb{C}.$ Par définition $f^{-1}(\mathbb{C}^*) = \{z \in \mathbb{C} : z^2 + z + 1 \neq 0\} \text{ donc } f^{-1}(\mathbb{C}^*) = \mathbb{C} \setminus \{j, j^2\}.$ Par définition $f^{-1}(\mathbb{R}) = \{z \in \mathbb{C} : z^2 + z + 1 \in \mathbb{R}\}.$

Soit $z \in \mathbb{R}$, on a:

$$z^{2} + z + 1 \in \mathbb{R} \Leftrightarrow z^{2} + z \in \mathbb{R} \Leftrightarrow z^{2} + z = \overline{z}^{2} + \overline{z} \Leftrightarrow (z - \overline{z})(z + \overline{z} + 1) = 0$$

donc
$$f^{-1}(\mathbb{R}) = \mathbb{R} \cup \left\{ z \in \mathbb{C} : \Re(z) = -\frac{1}{2} \right\}.$$

Exercice 3: Soit $f: \mathbb{N} \to \mathbb{N}$ une application. Montrer que:

1. On suppose que f est injective et que $\forall n \in \mathbb{N}, f(n) \leq n$. Montrer que $f = Id_{\mathbb{N}}$. Initialisation: On a $f(0) \in \mathbb{N}$ et f(0 < 0 donc f(0) = 0.

Hérédité : Soit $n \in \mathbb{N}$ tel que pour tout $k \in [0, n]$, f(k) = k.

On a $f(n+1) \in \mathbb{N}$ et f(n+1) < n+1 donc $f(n+1) \in [0, n+1]$. Comme f est injective, $\forall k \in [0, n], f(n+1) \neq f(k) = k$. Par conséquent, f(n+1) = n+1.

Par suite, on a prouvé par récurrence forte que $\forall n \in \mathbb{N}, f(n) = n$ c'est-à-dire que $f = Id_{\mathbb{N}}.$

2. On suppose que f est surjective et que $\forall n \in \mathbb{N}, f(n) \geq n$. Montrer que $f = id_{\mathbb{N}}$. Initialisation: Comme f est surjective, 0 possède un antécédent $k \in \mathbb{N}$.

Comme $0 = f(k) \ge k$, on en déduit que k = 0 et donc que f(0) = 0.

Hérédité : Soit $n \in \mathbb{N}$ tel que pour tout $k \in [0, n]$, f(k) = k.

Comme f est surjective, n+1 possède un antécédent $k \in \mathbb{N}$. D'après l'hypothèse de récurrence $k \notin [0, n]$. Comme $n+1=f(k) \geq k$, on en déduit que k=n+1. Par suite, on a prouvé par récurrence forte que $\forall n \in \mathbb{N}, f(n) = n$ c'est-à-dire que $f = Id_{\mathbb{N}}$.

3. On suppose que $\forall n \in \mathbb{N}$, $f(n) + (f \circ f)(n) = 2n$. Prouver que f est injective puis que $f = id_{\mathbb{N}}$.

Soit $(n, n') \in \mathbb{N}^2$ tel que f(n) = f(n'). Alors, f(n) + f(f(n)) = f(n') + f(f(n')) soit 2n = 2n' et donc n = n'.

Ainsi, f est injective.

Prouvons par récurrence forte que $\forall n \in \mathbb{N}, f(n) = n$.

Initialisation : Comme f(0) et f(f(0)) sont deux entiers naturels vérifiant f(0) + f(f(0)) = 0, on a f(0) = 0.

Hérédité : Soit $n \in \mathbb{N}$ tel que pour tout $k \in [0, n]$, f(k) = k.

On a f(n+1)+f(f(n+1))=2(n+1). Comme f est injective, l'hypothèse de récurrence implique que l'entier f(n+1) est supérieur ou égal à n+1. Ainsi, $f(f(n+1)) \leq n+1$. De plus, pour tout $k \in [0,n]$, $f(n+1) \neq k$ donc, par injectivité de f, pour tout $k \in [0,n]$, $f(f(n+1)) \neq f(k) = k$. Par suite, f(f(n+1)) = n+1 puis f(n+1) = n+1.

Par conséquent, on a prouvé par récurrence forte que $\forall n \in \mathbb{N}, f(n) = n$ c'est-à-dire que $f = Id_{\mathbb{N}}$.

Exercice 4: On dit qu'une fonction $f: \mathbb{C} \to \mathbb{C}$ est involutive si :

$$\forall z \in \mathbb{C}, (f \circ f)(z) = f(f(z)) = z.$$

1. Pour tout $(a,b) \in \mathbb{R}^2$, on note $f_{a,b}$ la fonction définie de \mathbb{C} dans \mathbb{C} telle que :

$$\forall z \in \mathbb{C}, \ f_{a,b}(z) = az + b\bar{z}.$$

(a) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}$, $f_{a,b}(z) = 0$. Soit $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}$, $f_{a,b}(z) = 0$. On a alors $f_{a,b}(1) = f_{a,b}(i) = 0$ c'est-à-dire a+b=ia-ib=0 donc a=b=0.

Réciproquement, on a $\forall z \in \mathbb{C}, f_{0,0}(z) = 0$.

Ainsi, l'ensemble cherché est $\{(0,0)\}$.

(b) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}$, $f_{a,b}(z) = 0$. Soit $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}$, $f_{a,b}(z) = z$. On a alors $f_{a,b}(1) = 1$ et $f_{a,b}(i) = i$ c'est-à-dire a + b = 1 et ia - ib = i donc (a,b) = (1,0).

Réciproquement, on a $\forall z \in \mathbb{C}, f_{1,0}(z) = Z$.

Ainsi, l'ensemble cherché est $\{(1,0)\}$.

(c) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $f_{a,b}$ soit involutive. Soit $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}$, $f_{a,b}(z) = z$. On a alors $f_{a,b}(1) = f_{a,b} \circ f_{a,b}(1)$ soit $1 = (a+b)^2$ donc $a+b=\pm 1$. On a, de plus, $f_{a,b}(i) = f_{a,b} \circ f_{a,b}(i)$ soit $i = i(a-b)^2$ donc $a-b=\pm 1$ Ainsi, $(a,b) \in \{(1,0),(0,1),(-1,0),(0,-1)\}$. Réciproquement, si $(a,b) \in \{(1,0),(0,1),(-1,0),(0,-1)\}$, alors $f_{a,b}$ est involutive.

Ainsi, l'ensemble cherché est $\{(1,0),(0,1),(-1,0),(0,-1)\}.$

2. On considère dans cette partie, la fonction $g:\mathbb{C}\to\mathbb{C}$ définie par :

$$\forall z \in \mathbb{C}, \ g(z) = e^{i\frac{\pi}{4}}\bar{z} = \frac{\sqrt{2}}{2}(1+i)\bar{z}.$$

(a) La fonction g est-elle involutive?

Soit $z \in \mathbb{C}$. On a $g(g(z)) = e^{i\frac{\pi}{4}}e^{i\frac{\pi}{4}}\bar{z} = e^{i\frac{\pi}{4}}e^{-i\frac{\pi}{4}}\bar{z} = z$ donc g est involutive.

Dans le plan usuel (O, \vec{i}, \vec{j}) , on considère un point M quelconque. On note z son affixe et l'on considère le point M' d'affixe z'=g(z). On note Δ l'ensemble des points M du plan tels que M'=M.

(b) Prouver que Δ est une droite dont on donnera l'équation et un vecteur directeur que l'on notera \vec{w} .

On a $M \in \Delta \Leftrightarrow z = \frac{\sqrt{2}}{2}(1+i)\bar{z}$. En notant z = x + iy, on a donc :

$$M \in \Delta \Leftrightarrow \left\{ \begin{array}{ll} x & = \frac{\sqrt{2}}{2}(x+y) \\ y & = \frac{\sqrt{2}}{2}(x-y) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} y & = \left(\sqrt{2}-1\right)x \\ y & = \frac{1}{\sqrt{2}+1}x \end{array} \right. \Leftrightarrow y = \left(\sqrt{2}-1\right)x$$

L'ensemble Δ est donc une droite dont un vecteur directeur est \vec{w} de coordonnées $(1,\sqrt{2}-1)$.

(c) Démontrer que, pour tout point M, le vecteur $\overrightarrow{MM'}$ est orthogonal à \vec{w} . En notant z=x+iy, le vecteur $\overrightarrow{MM'}$ a pour coordonnées :

$$\left(\left(\frac{\sqrt{2}}{2}-1\right)x+\frac{\sqrt{2}}{2}y;\frac{\sqrt{2}}{2}x-y\left(\frac{\sqrt{2}}{2}+1\right)\right).$$

On vérifie alors que

$$\left(\frac{\sqrt{2}}{2} - 1\right)x + \frac{\sqrt{2}}{2}y + \left(\sqrt{2} - 1\right)\left(\frac{\sqrt{2}}{2}x - y\left(\frac{\sqrt{2}}{2} + 1\right)\right) = 0.$$

Le vecteur \overrightarrow{MM}' est donc orthogonal à \vec{w} .

(d) Soit I le milieu du segment [MM']. Prouver que $I \in \Delta$.

En notant
$$z=x+iy$$
, les coordonnées de I sont données par
$$\begin{cases} x_I=\frac{x_M+x_{M'}}{2}=\frac{1}{2}\left(x\left(\frac{\sqrt{2}}{2}+1\right)+\frac{\sqrt{2}}{2}y\right)\\ y_I=\frac{y_M+y_{M'}}{2}=\frac{1}{2}\left(\frac{\sqrt{2}}{2}x+\left(1-\frac{\sqrt{2}}{2}\right)y\right) \end{cases}$$

On vérifie alors que $y_I = (\sqrt{2} - 1) x_I$ et donc que $I \in \Delta$

(e) Par quelle transformation géométrique simple, le point M' se déduit-il du point M?

Comme I est le milieu de [MM'] et puisque $(MM')\bot \Delta$, le point M' est l'image du point M par la symétrie orthogonale par rapport à l'axe Δ .

Exercice 5

1. Prouver que :
$$\forall n \in \mathbb{N}^*, \ \forall (z_1, \dots, z_n) \in \mathbb{C}^n, \ \left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|.$$

Pour tout $n \in \mathbb{N}^*$, on pose $H(n) = "\forall (z_1, \dots, z_n) \in \mathbb{C}^n$, $\left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|$."

Initialisation : Soit
$$z_1 \in \mathbb{C}$$
, alors, $\left| \sum_{k=1}^1 z_k \right| = |z_1|$ et $\sum_{k=1}^1 |z_k| = |z_1|$. ainsi,

$$\left| \sum_{k=1}^{1} z_k \right| = \sum_{k=1}^{1} |z_k| = |z_1|, \text{ et donc, } H(1) \text{ est vraie}$$

Hérédité: Soit $n \in \mathbb{N}^*$ tel que H(n) soit vraie. Soit $(z_1, \dots, z_n, z_{n+1}) \in \mathbb{C}^{n+1}$.

Alors,
$$\left|\sum_{k=1}^{n+1} z_k\right| = \left|\left(\sum_{k=1}^{n} z_k\right) + z_{n+1}\right|$$
 et donc, d'après l'inégalité triangulaire :

$$\left| \left(\sum_{k=1}^{n} z_k \right) + z_{n+1} \right| \leqslant \left| \sum_{k=1}^{n} z_k \right| + \left| z_{n+1} \right|$$

et, en appliquant l'hypothèse de récurrence, on a, donc,

$$\left| \sum_{k=1}^{n+1} z_k \right| \leqslant \sum_{k=1}^n |z_k| + |z_{n+1}| = \sum_{k=1}^{n+1} |z_k|$$

ce qui prouve H(n+1).

2. Soit $n \in \mathbb{N}^*$ et $(z_1, \dots, z_n) \in \mathbb{C}^n$. Prouver que

$$\left(\exists u \in \mathbb{C}, \ \exists (\lambda_1, \cdots, \lambda_n) \in \left(\mathbb{R}^+\right)^n, \ \forall k \in \llbracket 1n \rrbracket, \ z_k = \lambda_k u \right) \Longleftrightarrow \left(\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|\right)\right|.$$

Supposons qu'il existe $u \in \mathbb{C}$ et $(\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n$ tels que

$$\forall k \in [1, n], \ z_k = \lambda_k u.$$

Alors,
$$\left|\sum_{k=1}^{n} z_{k}\right| = \left|\sum_{k=1}^{n} \lambda_{k} u\right| = |u| \left|\sum_{k=1}^{n} \lambda_{k}\right|$$
, et puisque $\forall k \in [1, n]$, $\lambda_{k} \geqslant 0$, on a : $\left|\sum_{k=1}^{n} \lambda_{k}\right| = \sum_{k=1}^{n} \lambda_{k}$ et donc, $\left|\sum_{k=1}^{n} z_{k}\right| = \sum_{k=1}^{n} \lambda_{k} |u| = \sum_{k=1}^{n} |\lambda_{k} u| = \sum_{k=1}^{n} |z_{k}|$

Réciproquement, raisonnons par récurrence. Pour tout $n \in \mathbb{N}^*$, on pose

$$H(n) = "\forall (z_1, \dots, z_n) \in \mathbb{C}^n,$$

$$\left(\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|\right) \Rightarrow \left(\exists u \in \mathbb{C}, \ \exists (\lambda_1, \dots, \lambda_n) \in \left(\mathbb{R}^+\right)^n, \ \forall k \in \llbracket 1n \rrbracket, \ z_k = \lambda_k u\right)"$$

Initialisation : H(1) est évidente.

Hérédité : soit $n \in \mathbb{N}^*$ tel que H(n) soit vraie.

Soit
$$(z_1, \dots, z_n, z_{n+1}) \in \mathbb{C}^{n+1}$$
 tel que $\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} |z_k|$. Alors, comme :

$$\left| \sum_{k=1}^{n+1} z_k \right| \le \left| \sum_{k=1}^n z_k \right| + |z_{n+1}| \le \sum_{k=1}^{n+1} |z_k|$$

on a:
$$\begin{cases} (1) & \left| \left(\sum_{k=1}^{n} z_k \right) + z_{n+1} \right| = \left| \sum_{k=1}^{n} z_k \right| + |z_{n+1}| \\ (2) & \left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k| \end{cases}$$

Distinguons deux cas:

• Si $\sum_{k=1}^{n} z_k \neq 0$, alors, d'après (2) et l'hypothèse de récurrence, il existe $u \in \mathbb{C}$ et $(\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n$ tels que : $\forall k \in [\![1, n]\!], \ z_k = \lambda_k u$. D'après (1), et le cas d'égalité de l'inégalité triangulaire, il existe $\lambda \in \mathbb{R}^+$ tel que $z_{n+1} = \lambda \sum_{k=1}^{n} z_k$.

Ainsi,
$$z_{n+1} = \lambda_{n+1} u$$
 où $\lambda_{n+1} = \lambda \sum_{k=1}^{n} \lambda_k \in \mathbb{R}^+$.

• Si $\sum_{k=1}^{n} z_k = 0$, alors, d'après (2), $\forall k \in [1, n]$, $z_k = 0$. Alors, en posant $u = z_{n+1}$ et $\forall k \in [1, n]$, $\lambda_k = 0$ et $\lambda_{n+1} = 1$ on a bien le résultat souhaité.

3. Soient $n \in \mathbb{N}$. On se place dans un repère orthonormé direct et on considère des points M_1, \dots, M_n d'affixes respectives z_1, \dots, z_n non nulles.

Pour tout $k \in [1n]$, on note $a_k = \frac{z_k}{|z_k|}$ et on suppose $\sum_{k=1}^n a_k = 0$.

(a) Donner, en le justifiant rapidement, pour $n \in \mathbb{N}$, $n \geqslant 2$ quelconque, un exemple de n nombres complexes z_1, \dots, z_n vérifiant $\sum_{n=0}^{\infty} a_k = 0$.

Il suffit de prendre, pour tout $k \in [1, n]$, $z_k = e^{\frac{2ik\pi}{n}}$ car la somme des racines n-ièmes de l'unité est nulle.

(b) Soit z un complexe. On pose $\varphi(z) = \sum_{k=1}^{n} \overline{a_k}(z - z_k)$

Prouver que $\varphi(z) = -\sum_{k=1}^{n} |z_k| \ puis \ que \ |\varphi(z)| = -\varphi(z).$

On a

$$\varphi(z) = \sum_{k=1}^{n} \overline{a_k} z - \sum_{k=1}^{n} \overline{a_k} z_k = z \sum_{k=1}^{n} \overline{a_k} - \sum_{k=1}^{n} \frac{|z_k|^2}{|z_k|} = z \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} |z_k| = -\sum_{k=1}^{n} |z_k|$$

En particulier, $\varphi(z) \in \mathbb{R}_{-}^{*}$ et donc $|\varphi(z)| = -\varphi(z)$.

(c) Prouver que $\forall z \in \mathbb{C}, \sum_{k=1}^{n} |z_k| \leq \sum_{k=1}^{n} |z - z_k|$.

Soit $z \in \mathbb{C}$. Alors, d'après l'inégalité triangulaire précédemment démontrée :

$$\sum_{k=1}^{n} |z_k| = -\varphi(z) = |\varphi(z)| = \left| \sum_{k=1}^{n} \overline{a_k}(z - z_k) \right| \leqslant \sum_{k=1}^{n} |\overline{a_k}(z - z_k)| = \sum_{k=1}^{n} |z - z_k|$$

car, pour tout $k \in [1, n], |\overline{a_k}| = 1$.

(d) Déterminer l'ensemble des points M du plan tels que $\sum_{k=1}^{n} MM_k = \sum_{k=1}^{n} OM_k$ Il s'agit donc de déterminer les points dont l'affixe z vérifie

$$(*) : \sum_{k=1}^{n} |z_k| = \sum_{k=1}^{n} |z - z_k|$$

On a donc,
$$\sum_{k=1}^{n} |z-z_k| = \sum_{k=1}^{n} |z_k| \iff \left| \sum_{k=1}^{n} \overline{a_k} (z-z_k) \right| = \sum_{k=1}^{n} |\overline{a_k} (z-z_k)|.$$

D'après le cas d'égalité, vu en amont, dans l'inégalité triangulaire, on a

$$(*) \Leftrightarrow \exists u \in \mathbb{C}, \ \exists (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n, \ \forall k \in [1, n], \ \overline{a_k}(z - z_k) = \lambda_k u$$

Supposons
$$\sum_{k=1}^{n} |z - z_k| = \sum_{k=1}^{n} |z_k|$$
.

Il existe donc $u \in \mathbb{C}$ et $(\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n$ tels que

$$\forall k \in [1, n], \quad \overline{a_k}(z - z_k) = \lambda_k u.$$

Alors,
$$\varphi(z) = \sum_{k=1}^{n} \overline{a_k}(z - z_k) = u \sum_{k=1}^{n} \lambda_k$$
. Or $\varphi(x) < 0$ et $\sum_{k=1}^{n} \lambda_k \geqslant 0$, donc $u \in \mathbb{R}^*$.

Soit $\forall k \in [\![1,n]\!]$, soit $z=z_k$ soit $\operatorname{Arg}\left(-\overline{a_k}(z-z_k)\right) \equiv 0$ $[\![2\pi]\!]$, c'est-à-dire $\operatorname{Arg}\left(z_k-z\right) \equiv \operatorname{Arg}\left(a_k\right)$ $[\![2\pi]\!]$, ce qui prouve que les points O, M et M_k sont alignés. Par suite :

- Si M_1, \dots, M_n sont alignés sur une droite passant par O, l'ensemble demandé est le plus petit segment joignant deux des points M_1, \dots, M_n et passant par O.
- Sinon, seul O convient.

La réciproque est immédiate.