UM0401 RTL872xD Datasheet

COPYRIGHT

©2022 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Please Read Carefully:

Realtek Semiconductor Corp., (Realtek) reserves the right to make corrections, enhancements, improvements and other changes to its products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions in Realtek data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Realtek is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions.

Buyers and others who are developing systems that incorporate Realtek products (collectively, "Customers") understand and agree that Customers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Customers have full and exclusive responsibility to assure the safety of Customers' applications and compliance of their applications (and of all Realtek products used in or for Customers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Customer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Customer agrees that prior to using or distributing any applications that include Realtek products, Customer will thoroughly test such applications and the functionality of such Realtek products as used in such applications.

Realtek's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation kits, (collectively, "Resources") are intended to assist designers who are developing applications that incorporate Realtek products; by downloading, accessing or using Realtek's Resources in any way, Customer (individually or, if Customer is acting on behalf of a company, Customer's company) agrees to use any particular Realtek Resources solely for this purpose and subject to the terms of this Notice.

Realtek's provision of Realtek Resources does not expand or otherwise alter Realtek's applicable published warranties or warranty disclaimers for Realtek's products, and no additional obligations or liabilities arise from Realtek providing such Realtek Resources. Realtek reserves the right to make corrections, enhancements, improvements and other changes to its Realtek Resources. Realtek has not conducted any testing other than that specifically described in the published documentation for a particular Realtek Resource.

Customer is authorized to use, copy and modify any individual Realtek Resource only in connection with the development of applications that include the Realtek product(s) identified in such Realtek Resource. No other license, express or implied, by estoppel or otherwise to any other Realtek intellectual property right, and no license to any technology or intellectual property right of Realtek or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Realtek products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of Realtek Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from Realtek under the patents or other Realtek's intellectual property.

Realtek's Resources are provided "as is" and with all faults. Realtek disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any epidemic failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights.

Realtek shall not be liable for and shall not defend or indemnify Customer against any claim, including but not limited to any infringement claim that related to or is based on any combination of products even if described in Realtek Resources or otherwise. In no event shall Realtek be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of Realtek's Resources or use thereof, and regardless of whether Realtek has been advised of the possibility of such damages. Realtek is not responsible for any failure to meet such industry standard requirements.

Where Realtek specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Customers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any Realtek products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death. Such equipment includes, without limitation, all medical devices identified by the U.S.FDA as Class III devices and equivalent classifications outside the U.S.

Customers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Customers' own risk. Customers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Customer will fully indemnify Realtek and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

Ordering Information

Part Number	Package	Status
RTL8720DN-VA1-CG	QFN48	MP
RTL8720DN-VA1-CGT	QFN48	tape-and-reel, MP
RTL8720DN-VT1-CG	QFN48	MP
RTL8720DM-VA1-CG	QFN48	MP
RTL8720DF-VA1-CG	QFN48	MP
RTL8720DF-VT1-CG	QFN48	MP
RTL8721DM-VA1-CG	QFN68	MP
RTL8721DM-VA1-CGT	QFN68	tape-and-reel, MP
RTL8721DF-VT1-CG	QFN68	MP
RTL8722DM-VA1-CG	QFN88	MP
RTL8722DM-VA1-CGT	QFN88	tape-and-reel, MP

Contents

0	rderin	g Inf	formation	4
c	ontent	ts		5
1	Pro	duct	Overview	8
_	1.1		neral Description	
			tem Architecture	
	1.2	•		
	1.3		itures	
	1.3. 1.3.		System and Memory Wireless	
	1.3. 1.3.		Security	
	1.3.		Communication Interface	
	1.3.	.5	Audio	
	1.3.		Timer	
	1.3.		Human-Machine Interaction	
	1.3.		Analog	
	1.4		kage Comparison	
	1.4.		Peripheral Counts	
	1.4.		Memory	
2	Pac	kage	2	17
	2.1	Pac	kage Types	17
	2.1.	1	QFN48	19
	2.1.		QFN68	
	2.1.	.3	QFN88	23
	2.2	Low	v Power Pins	24
	2.3	Pin	Default Configuration	24
	2.4	Tra	p Pins	24
3	Ana	alog	Pin Descriptions	26
	3.1	Pov	wer on Trap Pin	26
	3.2		Pins	
	3.3		p Enable Pin	_
	3.4		ver Pins	
	_		AL Pins	
	3.5			
	3.6		C and Cap-Touch Pins	
	3.7		3 Pins	
	3.8		dio Codec Pins	
4	Me	mor	y Organization	29
	4.1	Intr	oduction	29
	4.2	KM	4 Memory	29
	4.2.	.1	Memory Map and Register Boundary Addresses	29
	4.2.		Embedded SRAM	

	4.2.	2.2.3 Extension SRAM	31
	4.3	KM0 Memory	31
	4.3.	3.1 Memory Map and Register Boundary Addresses	31
	4.3.	2.3.2 Embedded SRAM	31
	4.4	Retention SRAM	31
	4.5	SPI Flash Memory	32
	4.6	PSRAM	32
5	Nes	lested Vectored Interrupt Controller (NVIC)	33
	5.1	Features	33
	5.2	NVIC Diagram	33
	5.3	NVIC Table	33
6	Rad	Radio Characteristics	36
	6.1	_	36
	6.2		36
	6.2. 6.2.	· · ·	36 37
	6.2.		
	6.2.	· · ·	38
	6.3	BT Radio Characteristics	39
	6.3.	3.3.1 BT RF Transmitter Specifications	39
	6.3.	3.3.2 BT RF Receiver Specifications	39
7	Elec	lectrical Characteristics	40
	7.1	Temperature Limit Ratings	40
	7.2	Thermal Characteristics	40
	7.3	ESD Characteristics	40
	7.4	DC Characteristics	40
	7.4.	7.4.1 Power Supply	40
	7.4.	'.4.2 Digital I/O Pin	
	7.5		41
			42
		XTAL Oscillator	42 42
		XTAL Oscillator	42
	7.6	XTAL Oscillator Power Consumption Power State and Power Sequence	
	7.6 7.7 7.8 <i>7.8</i> .	XTAL Oscillator Power Consumption Power State and Power Sequence Z.8.1 Power-on or Resuming from Deepsleep Sequence	
	7.6 7.7 7.8 <i>7.8.</i> <i>7.8.</i>	XTAL Oscillator Power Consumption Power State and Power Sequence Z.8.1 Power-on or Resuming from Deepsleep Sequence Z.8.2 Power-down Sequence	
	7.6 7.7 7.8 <i>7.8.</i> <i>7.8.</i> <i>7.8.</i>	XTAL Oscillator Power Consumption Power State and Power Sequence 2.8.1 Power-on or Resuming from Deepsleep Sequence 2.8.2 Power-down Sequence	
	7.6 7.7 7.8 <i>7.8.</i> <i>7.8.</i> 7.8.	XTAL Oscillator Power Consumption	
	7.6 7.7 7.8 <i>7.8.</i> <i>7.8.</i> <i>7.8.</i>	XTAL Oscillator Power Consumption Power State and Power Sequence 2.8.1 Power-on or Resuming from Deepsleep Sequence 2.8.2 Power-down Sequence 2.8.3 Shutdown Sequence I/O Port Characteristics	
8	7.6 7.7 7.8 <i>7.8.</i> <i>7.8.</i> 7.9 7.9	XTAL Oscillator Power Consumption	
8	7.6 7.7 7.8 7.8. 7.8. 7.9 7.9. Pacl	XTAL Oscillator Power Consumption	
	7.6 7.7 7.8 7.8. 7.8. 7.9 7.9. Pacl	XTAL Oscillator Power Consumption	
	7.6 7.7 7.8 7.8. 7.8. 7.9 7.9. Pacl	XTAL Oscillator Power Consumption	

Revision History......52

1 Product Overview

1.1 General Description

RTL872xD is a highly integrated single-chip low power dual bands (2.4GHz and 5GHz) Wireless LAN (WLAN) and Bluetooth Low Energy (BLE 5.0) communication controller. It consists of a high performance MCU (Armv8-M, Cortex-M33 instruction set compatible) called Real-M300 (or KM4 thereafter) and a low power MCU (Armv8-M, Cortex-M23 instruction set compatible) called Real-M200 (or KM0 thereafter), WLAN (802.11 a/b/g/n) MAC, an 1T1R capable WLAN baseband, RF, Bluetooth and peripherals.

High speed connectivity interfaces, SDIO and USB are provided. There are also audio codec, Key-Scan and touch keys integrated into this IC. Besides, flexible design configures GPIO to different functions according to applications.

RTL872xD also integrates memories (ROM/SRAM/PSRAM) for IoT (Internet of Things) Wi-Fi protocol functions and applications. The user-friendly development kits (SDK and HDK) are supported to customers for developing IoT applications.

The KM4 MCU is a 32-bit core that offers system enhancements such as low power consumption, enhanced debug features, floating point computation, DSP instructions and a high level of support block integration. The KM4 MCU incorporates a 3-stage pipeline.

The KM0 coprocessor is an energy-efficient and easy-to-use 32-bit core which is code- and tool-compatible with the KM4 core. The KM0 coprocessor offers up to 20MHz performance with a simple instruction set and reduced code size.

1.2 System Architecture

The system architecture of RTL872xD is shown in Figure 1-1.

Figure 1-1 System architecture

In RTL872xD, the main system consists of 32-bit multilayer AXI bus matrix that interconnects all the masters and the slaves. The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously.

A multilayer AXI bus matrix connects the CPU buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing peripherals on different slave ports of the matrix to be accessed simultaneously by different bus masters.

APB peripherals are connected to the AXI bus matrix via APB buses using separate slave ports from the multilayer AXI bus matrix. This allows for better performance by reducing collisions between the CPU and the DMA controller, and also for peripherals on the asynchronous bridge to have a fixed clock that does not track the system clock.

1.3 Features

1.3.1 System and Memory

The system and memory features of RTL872xD are listed in Table 1-1.

Table 1-1 System and memory features

Items	Description
Processor	Dual processor core
	KM4: Armv8-M architecture with Cortex-M33 instruction set compatible
	KM0: Armv8-M architecture with Cortex-M23 instruction set compatible
	 Equal access to address space including SRAM, peripherals and registers
KM4 CPU	Cortex-M33 instruction set compatible
	■ Floating Point Unit (FPU)
	■ DSP
	■ TrustZone-M
	Running at a frequency of up to 200MHz (configurable)
	Memory Protection Unit (MPU)
	Built-in Nested Vectored Interrupt Controller (NVIC)
	Non-maskable Interrupt (NMI) with a selection of sources
	 Serial Wire Debug (SWD) with 2 HW breakpoints and 1 watchpoint (without Serial Wire Output
	(SWO) for enhanced debug capabilities)
	System tick timer
	32KB I-Cache and 4KB D-Cache
KM0 CPU	Cortex-M23 instruction set compatible
	Running at a frequency of up to 20MHz
	Built-in Nested Vectored Interrupt Controller (NVIC)
	Non-maskable Interrupt (NMI) with a selection of sources
	SWD with 2 HW breakpoints and 1 watchpoint
	System tick timer
	16KB I-Cache and 4KB D-Cache
KM4 CPU On-Chip memory	● Up to 512KB contiguous main SRAM @200MHz
	• Optional 4MB PSRAM @ 50MHz, 8-bit DDR, refer to 1.4.2
KM0 CPU On-Chip memory	Up to 64KB contiguous main SRAM
	Up to 1KB retention SRAM for keeping data in power saving modes
GDMA	KM4 and KM0 both have a GDMA controller
	HS-GDMA0 supports six channels with TrustZone-M
	LP-GDMA0 supports six channels without TrustZone-M
Flash	 Optional internal 4M bytes (32M bits) Flash, refer to 1.4.2
	SPI/DSPI/QSPI¹ Flash controller with cache
	Flash In-Circuit Programming (ICP) supported
General-Purpose I/O (GPIO)	• Up to 64 General-Purpose I/O (GPIO) pins. All GPIOs have configurable pull-up/pull-down resistors.
	GPIO interrupt trigger could be configured with rising, falling or both input edges.
IPC	Inter-Processor communication

Only QFN88 supports QSPI, while QFN48 and QFN68 just support SPI/DSPI.

1.3.2 Wireless

The wireless features of RTL872xD are listed in Table 1-2.

Table 1-2 Wireless features

Items	Description
Wi-Fi	● 802.11 a/b/g/n 1x1, 2.4GHz & 5GHz
	Supports 20MHz/40MHz up to MCS7
	Low power architecture
	 Low power Tx/Rx for short range application @1.8V
	Low power beacon listen mode
	Low power Rx mode
	 Very low power suspends mode (DLPS)
	Built-in PA, also supports external PA and LNA
	Supports Antenna diversity
	• Internal PTA interface for arbitrating data transmission between Wi-Fi and internal Bluetooth or external 2.4G devices
Bluetooth	● BLE 5.0
	Both central and peripheral modes
	High power mode (8dbm, shares the same PA with Wi-Fi)
	Internal co-existence mechanism between Wi-Fi and BT to share the same antenna

1.3.3 Security

The security features of RTL872xD are listed in Table 1-3.

Table 1-3 Security features

Items	Description
Security	AES/DES/SHA hardware engine
	Arm TrustZone-M
	Secure boot
	Debug port access protection and prohibition modes
	Secure eFuse
	Flash decryption on-the-fly

1.3.4 Communication Interface

The communication interface features of RTL872xD are listed in Table 1-4.

Table 1-4 Communication interface features

Items	Description
SD/SDIO	SD card host supported
	SDIO 2.0 SDR25 supported
	 Realtek SPI provides high efficiency SPI interface with interrupt and full duplex mode
	SDIO inic mode (SDIO to Wi-Fi transformation)
	Clock rate variable up to 50MHz
	Internal DMA supported
	 SDIO device time consuming from power on to initialization completion: 64.14635ms
USB	● USB 2.0
	HS/FS/LS mode
	 Internal DMA support, DMA works based on register settings
	1.5KByte bulk-in buffer and 1.5KByte bulk-out buffer
SPI	Motorola SPI Serial interface operation
	Master or slave operation mode
	Providing two SPI ports:
İ	SPIO (High speed): configured as master or slave with max. baud rate: 50MHz.

DMA interface for DMA transfer supported Independent masking of interrupts		
Independent masking of interrupts FIFO depith—The transmit and receive FIFO buffers 64 words deep. The FIFO width is fixed at 16-bit. FIFO depith—The transmit and receive FIFO buffers 64 words deep. The FIFO width is fixed at 16-bit. Hardware/software slave-select — Dedicated hardware slave-select lines can be used or software control can be used to target the serial-slave device Programmable features: Clock bit-rate—Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Data item size (4 to 16 bits)—Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) UART format: start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Incorpack mode for test Fractional baud rate generator Low power mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IR (Infra Ray) IR (Infra Ray) Option for LUART Rx to be DMA flow controller Carrier frequency from 25ktz to 500kHz Duty from 1/2 to 1/5 IR diod input supported IR receiver module input supported IR receiver and be captured by capture events. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer can be an be		- · - (· · · · · · · · · · · · · · · · ·
FIFO depth — The transmit and receive FIFO buffers 64 words deep. The FIFO width is fixed at 16-bit. Hardware/software slave-select — Dedicated hardware slave-select lines can be used or software control can be used to target the serial-slave device Programmable leatures:		
Hardware/software slave-select — Dedicated hardware slave-select lines can be used or software control can be used to target the serial-slave device Programmable features: Clock bit-rate — Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Data item size (4 to 16 bits) — Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) OUART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Dupback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Ry Lamber		
control can be used to target the serial-slave device Programmable features: Clock bit-rate — Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Bata item size (4 to 16 bits) — Items size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit supports up to 6MHz baud rate Auto flow control supported Interrupt con		• FIFO depth – The transmit and receive FIFO buffers 64 words deep. The FIFO width is fixed at 16-bit.
Programmable features: Clock bit-rate — Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Data item size (4 to 16 bits) — Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial databit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported Interrupt control supported Interrupt control baud rate generator Low power mode for Rx path Monitor and ellminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Duty from 1/2 to 1/5 R id diode input supported R receiver module input supported R receiver module input supported R receiver module input supported Tx carrier frequency can be configured R x and Multiple Timer can stop, reset, and interrupt by match events. R x and Multiple Timer can stop, reset, and interrupt by match events. R x and multiple timer can stop, reset, and interrupt by match events. R x and multiple Timer can stop, reset, and interrupt by match events. R x and multiple Timer can stop, reset, and interrupt by match events. R x and multiple Timer can stop, reset, and interrupt by match events. R x and multiple Timer can stop, reset, and interrupt by match events. R x timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. External Output Mode: External Output Mode: External Output Mode: Send the ser		 Hardware/software slave-select – Dedicated hardware slave-select lines can be used or software
Clock bit-rate — Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Data item size id to 16 bits) — Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) UART format: Start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported IrDA supported IrDA supported IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and ellminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported IR receiver module input supported Tx carrier frequency can be configured Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture wents can be Tx frigger events. Capture events can be Tx frigger events. Capture wents can be Tx frigger events. External Output Mode: External Output Mode: Shift the input value to a 32-bit FIFO by match events. Shift the input value to a 32-bit FIFO by match events.		control can be used to target the serial-slave device
Clock bit-rate — Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation. Data item size id to 16 bits) — Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) UART format: Start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported IrDA supported IrDA supported IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and ellminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported IR receiver module input supported Tx carrier frequency can be configured Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture wents can be Tx frigger events. Capture events can be Tx frigger events. Capture wents can be Tx frigger events. External Output Mode: External Output Mode: Shift the input value to a 32-bit FIFO by match events. Shift the input value to a 32-bit FIFO by match events.		Programmable features:
master mode of operation. Data item size (4 to 16 bits) – Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates. UART (HS_UART/LP_UART) UART (HS_UART/LP_UART) UART (format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported Interrupt control supported Interrupt control supported Uoppoak mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Interrupt (Part Mart) IR (Infra Ray) IR (Infra Ray) Or Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR Receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Tx FIFO 32*4 bytes Tx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and multiple timer/counter can stop, reset, and interrupt by match events. Rx and multiple timer can be captured by capture events. Rx and multiple timer can be captured by capture events. Rx and multiple timer can be captured by capture events. Rx timer can be captured by capture events. Facternal Output Mode: Rx External Output Mode: Setternal Output Mode: Setternal Output Mode: External Output Mode: Setternal Output Value to a 32-bit FIFO by match events.		
Data item size (4 to 16 bits) – Item size of each data transfer under the control of programmer. Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial databit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6 MHz baud rate Auto flow control supported Interrupt control supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path Option for UART Rx to be DMR flow controller IR (Infra Ray) UR (Infra Ray) IR (Infra Ray) Occini frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported IR raceiver module input supported IR raceiver module input supported IR raceiver module input supported IR x carrier frequency can be configured Tx carrier frequency can be configured One wire (SGPIO) One wire (SGPIO) One wire communication interface for security element Timer Mode: IR Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. IR Rx and Multiple Timer can stop, reset, and interrupt by match events. IR x and multiple timer/counter can stop and reset to each other. Capture Mode: IR Rx itmer can be captured by capture events. IR x and multiple timer can be transferred to '0' or '1' by comparing the value. Counter Mode: IR Rx timer can be transferred to '0' or '1' by comparing the value. Counter Mode: IR Rx timer can be transferred to '0' or '1' by comparing the value. Counter Mode: IR Rx timer can be captured by capture events. IR Sternal Output Mode: IR Sternal Output can be transferred to '0' or '1' by comparing the value. Counter Mode: IR Sternal Output Mode: IR Sternal Output Lanset high, low or toggle on the match event. Get the serial input: IR Shift the input		
Configurable clock polarity and phase Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial databit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR (linfra Ray) IR (linfra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported R receiver module input supported R receiver module input supported Tx carrier frequency can be configured Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Timer Mode: R x and Multiple Timer are 16-bit timer with a 16-bit prescaler. R x and multiple Timer can stop, reset, and interrupt by match events. R x and multiple Timer can stop, reset, and interrupt by match events. R x and multiple Timer can be x frigger events or the multiple match events. R x timer can be captured by capture events. Capture words: R x timer can be captured by capture events. Counter Mode: R x timer can be captured by capture events. External Output Mode: Reternal Output Mode: External Output Mode: External Output Mode: External Output Mode: Setternal Output Mode: Setternal Output Value to a 32-bit FIFO by match events. Sight the input value to a 32-bit FIFO by match events.		·
Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial databit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit		
in Master Mode; enables programmable control of routing delays resulting in higher serial databits rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Lp_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) IR (Infra Ray) One wire (SGPIO) In and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx and multiple timer can stop, reset, and interrupt by match events. Rx and multiple timer can stop, reset, and interrupt by match events. Rx and multiple timer can stop, reset, and interrupt by match events. Rx and multiple timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture vents can be Rx trigger events or the multiple match events. Rx timer can be captured by capture events. Hx timer can be captured by capture events. External Output Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Send the serial output can set high, low or toggle on the match event.		
Dit rates. UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported IrDA supported IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported 32*4 bytes Rx FIFO 32*4 bytes Rx FIFO 32*4 bytes Rx FIFO Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events or the multiple match events. Rx imer can be captured by capture events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. External Output Mode: External Output Amode: External Output Amode: External Output and set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
UART (HS_UART/LP_UART) UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported IrDA supported IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for fix path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART: DMA mode on KM4 platform not supported IP_UART: DMA mode on KM4 platform not supported IP_UART: DMA mode on KM4 platform not supported IR receiver module input supported IX carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Tx carrier fourty by companied Tx carrier fourty cycle can be configured Tx carrier companies to the cycle c		
Supports up to 6MHz baud rate Auto flow control supported Interrupt control supported Interrupt control supported Into Supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Interrupt control Mark Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported Interrupt Carrier Mark of be DMA flow controller Option for UART Rx to be DMA flow controller Option for UART Rx to be DMA flow controller Option for UART Rx to be DMA flow controller Interrupt Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 Interrupt Carrier flow flow flow flow flow flow flow flow		
Auto flow control supported Interrupt control supported Interrupt control supported Interrupt control supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART Rx to be DMA flow controller Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported IR receiver module input supported Tx carrier frequency can be configured Tx carrier frequency can be configured Tx carrier frequency can be configured Tx carrier druty cycle can be configured Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output don set high, low or toggle on the match event. External output can set high, low or toggle on the match event. Shift the input value to a 32-bit FIFO by match events.	UART (HS_UART/LP_UART)	
Interrupt control supported IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported Rreceiver module input supported 32*4 bytes Tx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire (SGPIO) One wire (SGPIO) Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		· · · · ·
IrDA supported Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier frequency can be configured Tx carrier fre		Auto flow control supported
Loopback mode for test Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported IR receiver module input supported Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and multiple Timer can stop, reset, and interrupt by match events. Rx and multiple Timer can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External Output can set high, low or toggle on the match event. Get the serial input: Shiff the input value to a 32-bit FIFO by match events.		Interrupt control supported
Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported Rreceiver module input supported Rreceiver modele input supported Rreceiver modele input supported Tx carrier duty cycle can be configured Tx carrier frequency can be configured Timer Mode: Rreceiver mode: Rreceiver modele input supported interrupt by match events. Rreceiver mode: Rreceiver mode: Rreceiver mode: Rreceiver mode: Rreceiver mode: Multiple Timer can stop, reset, and interrupt by match events. Capture works can be Rx trigger events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Send the serial input: Shift the input value to a 32-bit FIFO by match events.		IrDA supported
Fractional baud rate generator Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported Rreceiver module input supported Rreceiver modele input supported Rreceiver modele input supported Tx carrier duty cycle can be configured Tx carrier frequency can be configured Timer Mode: Rreceiver mode: Rreceiver modele input supported interrupt by match events. Rreceiver mode: Rreceiver mode: Rreceiver mode: Rreceiver mode: Rreceiver mode: Multiple Timer can stop, reset, and interrupt by match events. Capture works can be Rx trigger events or the multiple match events. The capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Send the serial input: Shift the input value to a 32-bit FIFO by match events.		Loopback mode for test
Low power mode for Rx path Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported IP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported Rr receiver module input supported Rr receiver module input supported Tx carrier frequency can be configured Tx carrier frequency can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Send the serial input: Shift the input value to a 32-bit FIFO by match events.		· · · · · · · · · · · · · · · · · · ·
Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Tx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Timer Mode:		y
DMA mode supported LP_UART: DMA mode on KM4 platform not supported Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Tx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
IR (Infra Ray) IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: M Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		
Option for UART Rx to be DMA flow controller Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported IR receiver module input supported 32*4 bytes Tx FIFO Tx carrier frequency can be configured Tx carrier frequency can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: Kxternal Output Mode: Steternal Output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		· ·
IR (Infra Ray) Carrier frequency from 25kHz to 500kHz Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Tx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Tx carrier Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture events can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
Duty from 1/2 to 1/5 IR diode input supported IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
IR diode input supported IR receiver module input supported 32*4 bytes Rx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Andee: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.	IR (Infra Ray)	
IR receiver module input supported 32*4 bytes Tx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
32*4 bytes Tx FIFO 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		IR diode input supported
 32*4 bytes Rx FIFO Tx carrier frequency can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: The community of the counter can see the counter can set high, low or toggle on the match event. 		IR receiver module input supported
Tx carrier frequency can be configured Tx carrier duty cycle can be configured One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		• 32*4 bytes Tx FIFO
One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		• 32*4 bytes Rx FIFO
One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		Tx carrier frequency can be configured
One wire (SGPIO) One wire communication interface for security element Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		
 Timer Mode: Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 	One wire (SGPIO)	
Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler. Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
Rx and Multiple Timer can stop, reset, and interrupt by match events. Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
Rx and multiple timer/counter can stop and reset to each other. Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output:		· · · · · · · · · · · · · · · · · · ·
 Capture Mode: Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		
Rx timer can be captured by capture events. Capture events can be Rx trigger events or the multiple match events. The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events.		
 ■ Capture events can be Rx trigger events or the multiple match events. ■ The capture value can be transferred to '0' or '1' by comparing the value. ● Counter Mode: ■ Multiple Counter can count Rx trigger events. ● External Output Mode: ■ External output can set high, low or toggle on the match event. ● Get the serial input: ■ Shift the input value to a 32-bit FIFO by match events. ● Send the serial output: 		·
 The capture value can be transferred to '0' or '1' by comparing the value. Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		
 Counter Mode: Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		· · · · · · · · · · · · · · · · · · ·
 Multiple Counter can count Rx trigger events. External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		
 External Output Mode: External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		
 External output can set high, low or toggle on the match event. Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		Multiple Counter can count Rx trigger events.
 Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		External Output Mode:
 Get the serial input: Shift the input value to a 32-bit FIFO by match events. Send the serial output: 		External output can set high, low or toggle on the match event.
Shift the input value to a 32-bit FIFO by match events.Send the serial output:		Get the serial input:
Send the serial output:		
, ,		
■ Seliu ilie u or i waveroffi by Shifting the ontoni value or a 37-bit eteu. This official value		Send the '0' or '1' waveform by shifting the output value of a 32-bit FIFO. This output value
decides that the external match uses the match value of group 0 or group 1.		
 Change the output value by using the multiple FIFO data to update the multiple match value. 		
Change the output value by using the multiple FIFO data to update the multiple match value. Monitor Mode:		
Monitor the receiving value to make the interrupt in the power saving mode.	120	
Two-wire I ² C serial interface – consists of a serial data line (SDA) and a serial clock (SCL)	I ² C	·
• One I ² C port supported		
Two Speed mode:		Two Speed mode:

	■ Standard (up to 100Kbps) ■ Fast (up to 400Kbps) • Master or Slave I²C operation 7- or 10-bit addressing • Transmit and receive buffers with depth of 16 • Tx and Rx DMA • Multi-master ability including bus arbitration scheme • Slave mode address match wakeup for power save (up to 100Kbps) • Clock stretch in master/slave mode • 7- or 10-bit combined format transfers • General Call • Component parameters for configurable software driver support (programmable SDA hold time, slave address, etc.) • Filter to eliminate the glitches on signal of SDA and SCL. Programmable digital noise Filter. • Status flags (Bus busy flag, activity flag, FIFO status flag, etc.) and Error flags (arbitration lost, acknowledge failure, etc.)
USI (Universal Serial interface)	 Configured as SPI, UART or I²C USI I²C can support High Speed Mode

1.3.5 Audio

The audio features of RTL872xD are listed in Table 1-5.

Table 1-5 Audio features

Table 1-5 Audio features	
Items Description	
Audio DAC and earphone driver	Sampling Frequency: 8/16/32/44.1/48/88.2/96kHz Integrates earphone driver 40mW on 16Ω load 20mW on 32Ω load Gain Control in DAC Path Gain Step: 0.375dB/step Gain Range: -64.5dB ~ 0dB Audio output mode Line-Out Cap-less mode (QFN88) Line-Out Single-ended mode
Audio ADC	 Sampling Frequency: 8/16/32/44.1/48/88.2/96kHz ADC input gain range Gain Step: 0.375dB/step Gain Range: -17.625dB ~ 30dB (digital) MIC input boost gain stage: 0/20/30/40dB (analog) Audio input mode Line-In Analog MICx2 or Digital MIC x2
l ² S	 Sample rate 8/12/16/24/32/48/64/96/192/384/7.35/11.025/14.7/22.05/29.4/44.1/58.8/88.2/176.4kHz I²S channel number mono stereo 5.1 channel Sample bit for mono 16-bit 32-bit Sample bit for stereo & 5.1 channel 16-bit 24-bit 32-bit

•	Integrated DMA engine to minimize the software efforts
•	Mono and stereo Tx or Rx, or Tx & Rx mode
•	5.1 Tx mode (DAC) supported, Rx mode (ADC) not supported
•	PCM mode not supported

1.3.6 Timer

The timer features of RTL872xD are listed in Table 1-6.

Table 1-6 Timer features

Items	Description
Basic Timers	Channels: x1
(HS_TIM0 ~ HS_TIM3)	Clock source: 32kHz
(LP_TIM0 ~ LP_TIM3)	Resolution: 32-bit
	Counter mode: up
	Interrupt generation
	Sleep mode wakeup
PWM Timers (HS_TIM5 & LP_TIM5)	● Channels: HS_TIM5 x18, LP_TIM5 x6
	Clock source: XTAL
	Resolution: 16-bit
	Prescaler: 8-bit
	Counter mode: up
	Statistics pulse width
	Statistics pulse counter
	• Input capture pin: x2
	Interrupt generation
	LP_TIM5 can work at sleep mode
Pulse Timers (HS_TIM4 & LP_TIM4)	• Channels: HS_TIM5 x18, LP_TIM5 x6
	Clock source: XTAL
	Resolution: 16-bit
	Prescaler: 8-bit
	Counter mode: up
	One pulse mode
	PWM mode with polarity selection
	• Input capture pin: x2
	Interrupt generation
Real-Time clock (RTC)	Independent BCD timer/counter
	• Time with seconds, minutes, hours, days (12- or 24-hour format)
	Daylight saving compensation programmable by software
	One programmable alarm with interrupt function. The alarm can be triggered by any
	combination of the time fields.
	Maskable interrupts/events
	■ Alarm
	Digital calibration circuit
	Register write protection

1.3.7 Human-Machine Interaction

The human-machine interaction (HMI) features of RTL872xD are listed in Table 1-7.

Table 1-7 Human- machine interaction features

Items	Description					
Key-matrix	Up to 8*8 (64) Keypad Array with use of 16 GPIOs					
	Configurable Rows and Columns of Keypad Array					
	Hardware debounce with configurable time at each scan					
	Configurable Scan Clock, Scan Interval and Release Time					

	 Support interrupts, provide interrupts mask, interrupts clear, interrupts status Multi-keys detect FIFO with width of 12 bits and depth of 16 to store Key Press and Release Events Low power mode. Key press event can wakeup CPU from sleep.
Cap-Touch	 4 capacitive sensor channels Automatic channel scan: hardware scan each enabled channel automatically in sequence Programmable scan period: sample number and scan interval Difference or Absolute threshold judgement mode (with ETC function enable) Automatic environment sensor capacitance tracking and calibration (ETC) Hardware baseline initial automatically Automatic baseline and threshold update for different noise environment Programmable button debounce function Programmable interrupt enabled for each interrupt source 4*12 bits FIFO Low power consumption
LCD	 Thin Film Transistor (TFT) color display 8-bit MCU I8080 parallel interface Resolution of 8-bit mode, (1024x1024) for still picture display Resolution of 8-bit mode, (645x645) for dynamic display when refresh rate is 30F/S 6-bit RGB parallel interface Resolution of 6-bit mode, less than (527x527) for dynamic display when refresh rate is 60F/S RGB565 data format for input & output Programmable timings for different display panels Programmable polarity for HSYNC, VSYNC and Data Enable DMA frame buffer for RGB/MCU I/F I/O mode for MCU I/F

1.3.8 Analog

The analog features of RTL872xD are listed in Table 1-8.

Table 1-8 Analog features

1.4 Package Comparison

1.4.1 Peripheral Counts

The peripheral counts of RTL872xD under different packages are shown in Table 1-9.

Table 1-9 Peripheral counts under different packages

Item	Peripheral	Description	QFN48		QFN68	QFN88	
			RTL8720DN RTL8720DM	RTL8720DF	RTL8721DM	RTL8721DF	RTL8722DM
UART	HS_UART0		-	✓	✓	✓	✓
	HS_USI_UART		✓	✓	-	✓	✓
	LP_UART1	Low power mode wakeup	✓	✓	✓	✓	✓
	LP_UART0	LOGUART/low power mode wakeup	✓	✓	✓	✓	✓
SPI	HS_SPI0	Max. 50MHz, Master/Slave	-	✓	✓	✓	✓
	HS_SPI1	Max. 25MHz, Master	✓	✓	✓	✓	✓
	HS_USI_SPI	Max. 25MHz, Master/Slave	✓	✓	✓	✓	✓
RTC	RTC_OUT		✓	✓	✓	✓	✓
	EXT_32K		✓	✓	✓	✓	✓
	LP_TIM4_TRIG	Timer capture	-	✓	✓	✓	✓
	LP_TIM5_TRIG	Timer capture	-	✓	✓	✓	✓
IR	IR	·	✓	✓	✓	✓	✓
I ² C	LP_I ² C	Standard (up to 100Kbps) Fast (up to 400Kbps)	√	√	√	√	√
	HS_USI_I2C	Standard/fast/high speed mode (up to 3.33Mbps)	√	√	-	~	√
SDIO	SDIO 2.0 Device	Max. 50MHz	-	✓	-	-	✓
	SD HOST	Max. 50MHz	-	✓	-	-	✓
PWM	HS_PWM0 ~ 17		8	13	11	12	17
	LP_PWM0 ~ 5	Low power mode	4	6	6	6	6
I ² S	I ² S		-	✓	✓	✓	✓
DMIC	DMIC		✓	-	✓	✓	✓
LCD	LCD	6-bit RGB mode 8-bit MCU mode LED mode	-	-	-	-	✓
Q-Decoder	Q-Decoder		-	✓	✓	✓	✓
SGPIO	SGPIO		✓	✓	✓	✓	✓
Key-Scan	Key-Scan		5x2/4x3	5x2/4x3	7x3/5x5	4x8/6x6	4x8/6x6
Wake Pin	Wake Pin	Wakeup from deepsleep	7	7	10	12	12
HS Timer	HS_TIM4_TRIG	Timer capture	✓	✓	✓	✓	✓
	HS_TIM5_TRIG	Timer capture	✓	-	✓	✓	✓
Analog Pin	USB	USB host or device (selectable)	✓	✓	✓	✓	✓
	ADC	0~3.3V	х3	x2	x7	x7	x7
	VBAT_MEAS	0~5V	-	-	✓	✓	✓
	Cap-Touch		-	-	x4	x4	x4
	Audio Output	Analog audio codec output	-	-	Single-ended	Single-ended	Differential Single-ended
	Audio Input	Analog audio codec input	-	-	Single-ended	Single-ended	Differential Single-ended AUXIN

1.4.2 Memory

The memory of RTL872xD under different packages are shown in Table 1-10.

Table 1-10 Memory under different packages

Item	QFN48			QFN68		QFN88
	RTL8720DN	RTL8720DM	RTL8720DF	RTL8721DM	RTL8721DF	RTL8722DM

RTL872xD

Embedded Flash	-	-	4M bytes	-	4M bytes	-
Embedded PSRAM	-	4M bytes	-	4M bytes	-	4M bytes

2 Package

2.1 Package Types

There are three package types named QFN48, QFN68 and QFN88 in RTL872xD, the details are shown in Table 2-1.

Table 2-1 Package types

Port Name	QFN48		QFN68		QFN88	Trap
1 ore realise	RTL8720DN	RTL8720DF	RTL8721DM	RTL8721DF	RTL8722DM	— ·····
	RTL8720DM	KTE8720DI	KILO/ZIDIVI	KILO/ZIDI	KILO/22DIVI	
PA[0]	KTEG/ EGBIVI		✓	✓	✓	
PA[1]					✓	
PA[2]			✓	✓	✓	
PA[3]						
PA[4]			✓	✓	✓	
PA[5]					✓	
PA[6]					✓	
PA[7]	✓	✓	✓	✓	✓	UART_DOWNLOAD
PA[8]	✓	✓	✓	✓	✓	
PA[9]					✓	
PA[10]					✓	
PA[11]					✓	
PA[12]	✓	✓	✓	✓	✓	ICFG0
PA[13]	✓	✓	✓	✓	✓	ICFG1
PA[14]	✓	✓	✓	✓	✓	ICFG2
PA[15] ¹	✓	✓	✓	✓	✓	ICFG3
PA[16] ¹	✓	✓	✓	✓	✓	
PA[17]			✓	✓	✓	
PA[18]			✓	✓	✓	
PA[19]			✓	✓	✓	
PA[20]				✓	✓	
PA[21]				✓	✓	
PA[22]					✓	
PA[23]					✓	
PA[24]					✓	
PA[25]	✓	✓	✓	✓	✓	
PA[26]	✓	✓	✓	✓	✓	
PA[27]	✓	✓	✓	✓	✓	NORMAL_MODE_SEL
PA[28]	✓	✓	✓	✓	✓	
PA[29]						
PA[30]	✓	✓	✓	✓	✓	SPS_SEL
PA[31]					✓	
PB[0]					✓	
PB[1]	✓	✓	✓	✓	✓	
PB[2]	✓	✓	✓	✓	✓	
PB[3]	✓	✓	✓	✓	✓	
PB[4]			✓	✓	✓	
PB[5]			✓	✓	✓	
PB[6]			✓	✓	✓	
PB[7]			✓	✓	✓	
PB[8]						
PB[9]						
PB[10]						

PB[11]						
PB[12]					✓	
PB[13]	✓		✓		✓	
PB[14]	✓		✓		✓	
PB[15]					✓	
PB[16]	✓		✓		✓	
PB[17]	✓		✓		✓	
PB[18]		✓		✓	✓	
PB[19]		✓		✓	✓	
PB[20]	✓	✓		✓	✓	
PB[21]	✓	✓		✓	✓	
PB[22]		✓	✓	✓	✓	
PB[23] ²		✓	✓	✓	✓	
PB[24] ²		✓				
PB[25]						
PB[26]			✓	✓		
PB[27]						
PB[28]					✓	
PB[29]			✓	✓	✓	
PB[30]					✓	
PB[31]			✓	✓	✓	

1 NOTE

- 1. For QFN48, PA[15] & PA[16] are co-bonded and selectable, do not use them at the same time.
- 2. For RTL8720DF, PB[23] and PB[24] are co-bonded and selectable, do not use them at the same time.

2.1.1 QFN48

The QFN48 pin assignments of RTL8720DN/RTL8720DM are shown in Figure 2-1.

Note: For #23, PA[15] & PA[16] are co-bonded and selectable, do not use them at the same time.

Figure 2-1 QFN48 pin assignments of RTL8720DN/RTL8720DM

The QFN48 pin assignments of RTL8720DF is shown in Figure 2-2.

Note:

- · For #23, PA[15] & PA[16] are co-bonded and selectable, do not use them at the same time.
- \cdot For #46, PB[23] & PB[24] are co-bonded and selectable, do not use them at the same time.

Figure 2-2 QFN48 pin assignments of RTL8720DF

2.1.2 QFN68

The QFN68 pin assignments of RTL8721DM are shown in Figure 2-3.

Figure 2-3 QFN68 pin assignment of RTL8721DM

The QFN68 pin assignments of RTL8721DF are shown in Figure 2-4.

Figure 2-4 QFN68 pin assignment of RTL8721DF

2.1.3 QFN88

The QFN88 pin assignments of RTL8722DM are shown in Figure 2-5.

Figure 2-5 QFN88 pin assignments of RTL8722DM

2.2 Low Power Pins

These pins can work and wakeup MCU under deepsleep mode, as Table 2-2 shows. All these pins are located at Key-Scan pins.

Table 2-2 Low power pins

Pin Name/GPIO	Ext32K	Key-Scan Row	Key-Scan Column	Wakeup
PA[12]		KEY_ROW0		LGPIO[0]
PA[13]		KEY_ROW1		LGPIO[1]
PA[14]	RTC_OUT	KEY_ROW2		LGPIO[2]
PA[15]	RTC EXT_32K	KEY_ROW3	KEY_COL6	LGPIO[3]
PA[16]		KEY_ROW4	KEY_COL5	LGPIO[0]
PA[17]		KEY_ROW6	KEY_COL3	LGPIO[1]
PA[18]	RTC_OUT	KEY_ROW5	KEY_COL4	LGPIO[2]
PA[19]			KEY_COL2	LGPIO[3]
PA[20]			KEY_COL7	LGPIO[0]
PA[21]		KEY_ROW7		LGPIO[1]
PA[25]			KEY_COL1	LGPIO[2]
PA[26]			KEY_COL0	LGPIO[3]

2.3 Pin Default Configuration

All pins are configured as GPIO without pull resistors except some special function like SWD or LOGUART. The pin default configuration is listed in Table 2-3.

Table 2-3 Pin default configuration

Pin Name	Default Function	Default PU/PD
PA[7]	LOGUART	Internal UP
PA[8]	LOGUART	Internal UP
PA[13]	PA[13]	eFuse Pull Control 0
PA[15]	PA[15]	eFuse Pull Control 1
PA[25]	PA[25]	eFuse Pull Control 2
PA[27] ¹	SWD_DATA when eFuse enable	Internal UP
PA[28]	PA[28]	eFuse Pull Control 3
PA[30]	PA[30]	External UP
PB[1]	PB[1]	eFuse Pull Control 4
PB[3] ¹	SWD_CLK when eFuse enable	No pull
PB[7]	PB[7]	eFuse Pull Control 5
PB[18] ²	SWD_CLK when eFuse enable, or SD_D2 when eFuse enable SDIO	No pull
PB[19] ²	SWD_DATA when eFuse enable, or SD_D3 when eFuse enable SDIO	eFuse Pull Control 6
PB[20]	SD_CMD when eFuse enable SDIO	No pull
PB[21]	SD_CLK when eFuse enable SDIO	No pull
PB[22]	SD_D0 when eFuse enable SDIO	eFuse Pull Control 7
PB[23]	SD_D1 when eFuse enable SDIO	No pull

NOTE

- When bit[0] of logical eFuse 0x0e is '1' by default, PA[27] and PB[3] are used for SWD function, and PA[27] is internal pull up.
- 2. When bit[0] of logical eFuse 0x0e is programmed to '0', PB[18] and PB[19] are used for SWD function, and PB[19] is internal pull up.

2.4 Trap Pins

The trap pins are listed in Table 2-4.

Table 2-4 Trap pins

Pin Name	Trap Function	Description			
PA[7]	UART_DOWNLOAD	Trigger ISP ROM code Flash download, low active.			
PA[12]	ICFG0	Realtek test mode			
PA[13]	ICFG1	Realtek test mode			
PA[14]	ICFG2	Realtek test mode			
PA[15]	ICFG3	Realtek test mode			
PA[27]	NORMAL_MODE_SEL	It is not allowed to pull down when power on, otherwise:			
		Realtek test mode will be selected.			
		Boot will fail.			
		When this pin is not pull-down, the state of PA[12] ~ PA[15] can be ignored.			
PA[30]	SPS_SEL	1: Internal 1.1V regulator works at SPS mode			
		0: Internal 1.1V regulator works at LDO mode			

3 Analog Pin Descriptions

The signal type used in RTL872xD are shown in Table 3-1.

Table 3-1 Pin type description

Symbol	Туре	Symbol	Туре
1	Input pin	0	Output pin
Р	Power pin	AH	Analog and digital hybrid programmable pin
PI	Power input pin	PO	Power Output pin

3.1 Power on Trap Pin

The power on trap pins in RTL872xD are shown in Table 3-2.

Table 3-2 Power on trap pins

Symbol	Туре	QFN48	QFN68		QFN88	Description	
			RTL8721DM	RTL8721DF			
NORMAL_MODE_SEL	1	26	33	33	48	Shared with PA[27]	
						 1: Normal operation mode 	
						0: Enter into test/debug mode	
UART_DOWNLOAD	1	3	7	7	12	Shared with PA[7]	
						1: Boot from Flash	
						0: Download image from UART	
SPS_SEL	1	27	36	38	51	Shared with PA[30]	
						1: Internal 1.1V regulator works at SPS mode	
						0: Internal 1.1V regulator works at LDO mode	

3.2 RF Pins

The RF pins in RTL872xD are shown in Table 3-3.

Table 3-3 RF pins

Symbol	Туре	QFN48	QFN68	QFN88	Description
· /	Турс	-	•		
RFGND	Р	15	20	25	RF ground
RFIO_A	I/O	13	18	23	WL 5GHz RF signal
RXIN_A/GND	1	14	19	24	WL 5GHz RF input signal or RF ground
RFIN_G	1	16	21	26	WL/BT 2.4GHz RF input signal
RFOUT_G	0	17	22	27	WL/BT 2.4GHz RF output signal

3.3 Chip Enable Pin

The chip enable pin in RTL872xD is shown in Table 3-4.

Table 3-4 Chip enable pin

Symbol	Туре	QFN48	QFN68	QFN88	Description
CHIP_EN	1	1	6	11	Enable chip
					• 1: Enable chip
					0: Shut down chip

3.4 Power Pins

The power pins in RTL872xD are shown in Table 3-5.

Table 3-5 Power pins

Symbol	Туре	QFN48	QFN68	Table .	QFN88	Description
- Symbol	·ype	Q1 1440	RTL8721DM	RTL8721DF	Q1 1400	Description
VA1833 XTAL	Р	5	10	10	15	1.8V/3.3V power for Crystal Oscillator
VA11 AFE	P	4	9	9	14	1.1V power for WL/BT Analog Front End
VR1833 SYN	P	8	13	13	18	1.8V/3.3V power for RF Synthesizer
VR11 SYN	P	9	14	14	19	1.1V power for RF Synthesizer
VR1833 PA A	Р	12	17	17	22	1.8V/3.3V power for RF 5G Power amplifier
VR1833 PAD A	Р	11	16	16	21	1.8V/3.3V power for RF
VR11_RF2	Р	10	15	15	20	1.1V power for RF 5G path
VR1833_PA_G	Р	18	23	23	28	1.8V/3.3V power for RF 2.4G Power amplifier
VR11_RF1	Р	19	24	24	29	1.1V power for RF 2.4G path
VD11_CORE	Р	47, 25	62, 35	62, 37	83, 46	1.1V power for digital core power
VD1833_SPS/VD183	Р	40	55	55	70	1.8V/3.3V power for Flash I/O power and internal regulator input from
3_FLASH						1.8V/3.3V to 1.1V
SW_LX	Р	39	54	54	69	1.1V power output from Switching/Linear Regulator
GNDSPS	Р	38	53	53	68	Ground for Switching/Linear Regulator
VA1833_USB	Р	31	37	36	52	3.3V power for USB analog
VA1833_PLL	Р	31	49	50	64	1.8V/3.3V power for PLL
VA11_PLL	Р	35	50	51	65	1.1V power for PLL
VD18_PSRAM	Р	36	51	-	66	1.8V power output from internal Linear regulator for PSRAM
VD1833_PMU	Р	37	52	52	67	1.8V/3.3V power for Power Management Unit
AVCC_DRIV	Р	-	66	66	88	1.8V/3.3V power supply for internal audio codec LDO.
AVCC	Р	-	67	67	2	AVCC output from internal audio codec LDO, add a 1uF cap as close as
						possible.
AUDIO_VREF	Р	-	1	1	3	Codec bandgap reference output, add a 4.7nF cap as close as possible.
MIC_BIAS	Р	-	2	2	4	Microphone bias output
VD1833_GPIO	Р	24, 48	5, 34	5, 36	10, 45	1.8V/3.3V power for digital GPIO
AUDIO_GND	Р	-	68	68	1	Audio ground

3.5 XTAL Pins

The XTAL pins in RTL872xD are shown in Table 3-6.

Table 3-6 XTAL pins

Symbol	Туре	QFN48	QFN68	QFN88	Description	
XI	1	7	12	17	Input of 40MHz Crystal Clock Reference	
XO	0	6	11	16	Output of 40MHz Crystal Clock Reference	

3.6 ADC and Cap-Touch Pins

The ADC and Cap-Touch pins in RTL872xD are shown in Table 3-7.

Table 3-7 ADC and Cap-Touch pins

Symbol	Туре	QFN48	QFN68		QFN88	Description
			RTL8721DM	RTL8721DF		
ADC_0/TOUCH_KEY0	1	ı	44	45	59	ADC or Cap-Touch input pin, 3.3V tolerance
ADC_1/TOUCH_KEY1	1	ī	45	46	60	ADC or Cap-Touch input pin, 3.3V tolerance
ADC_2/TOUCH_KEY2	1	ı	46	47	61	ADC or Cap-Touch input pin, 3.3V tolerance
ADC_3/TOUCH_KEY3	1	ı	47	48	62	ADC or Cap-Touch input pin, 3.3V tolerance
ADC_4	1	33	41	42	57	ADC input pin, 3.3V tolerance

ADC_5	I	32	42	43	56	ADC input pin, 3.3V tolerance	
ADC_6	1	34	43	44	58	ADC input pin, 3.3V tolerance	
VBAT_MEAS	I	-	48	49	63	ADC input pin, 5V tolerance	

3.7 USB Pins

The USB pins in RTL872xD are shown in Table 3-8.

Table 3-8 USB pins

Symbol	Туре	QFN48	QFN68		QFN88	Description	
			RTL8721DM	RTL8721DF			
HSDP	1/0	29	39	40	54	USB differential bus	
HSDM	1/0	30	40	41	55	USB differential bus	
RREF	1	28	38 39 5		53	External reference resistor for USB analog, 1%	
						accuracy	

3.8 Audio Codec Pins

The audio codec pins in RTL872xD are shown in Table 3-9.

Table 3-9 Audio codec pins

Symbol	Туре	QFN48	QFN68	QFN88	Description	
MIC1_P	AH	-	3	5	MIC1 input positive pad. Used as main MIC in dual MIC application.	
					Programmable digital I/O, refer to pinmux table (UM0402 RTL872xD pinmux table).	
MIC2_N	AH	-	-	7	MIC2 input negative pad. Used as 2 nd MIC in dual MIC application.	
					Programmable digital I/O, refer to pinmux table.	
MIC2_P	AH	-	4	6	MIC2 input positive pad. Used as 2 nd MIC in dual MIC application.	
					Programmable digital I/O, refer to pinmux table.	
AOUTN_R	AH	-	-	85	Right channel analog output negative pad.	
					Programmable digital I/O, refer to pinmux table.	
AOUTP_R	AH	-	64	84	Right channel analog output positive pad.	
					Programmable digital I/O, refer to pinmux table.	
AOUTN_L	AH	-	-	86	Left channel analog output negative pad.	
					Programmable digital I/O, refer to pinmux table.	
AOUTP_L	AH	-	65	87	Left channel analog output positive pad.	
					Programmable digital I/O, refer to pinmux table.	
AUXIN_R	AH	-	-	9	AUX input right channel pad.	
					Programmable digital I/O, refer to pinmux table.	
AUXIN_L	AH	-	-	8	AUX input left channel pad.	
					Programmable digital I/O, refer to pinmux table.	
AVCC_DRIV	PI	-	66	88	1.8V/3.3V power supply for internal audio codec LDO.	
MIC_BIAS	PO	-	2	4	Microphone bias output	
AUDIO_VREF	PO	-	1	3	Codec bandgap reference output, add a 4.7nF cap as close as possible.	
AVCC	PO	-	67	2	AVCC output from internal audio codec LDO, add a 1uF cap as close as possible.	
AUDIO_GND	PO	-	68	1	Audio ground	

Memory Organization

4 Memory Organization

4.1 Introduction

The RTL872xD incorporates several distinct memory regions. Program memory, data memory, registers and I/O ports are organized within the same linear 4Gbytes address space. The bytes are coded in memory in Little-Endian format.

The addressable memory space is divided into multiple main blocks, as shown in Table 4-1. All the memory areas that are not allocated to onchip memories and peripherals are considered "RSVD" (reserved).

Table 4-1 Address space main blocks

Base Address	Top Address	Size	Function	Description
0x0000_0000	0x0001_FFFF	128KB	KM0 ITCM ROM (actually 96KB)	32MB: KM0 Memory Address
0x0002_0000	0x0002_7FFF	32KB	KM0 DTCM ROM (actually 16KB)	
0x0002_8000	0x0007_FFFF	352KB	RSVD	
0x0008_0000	0x0008_FFFF	64KB	KM0 SRAM	
0x0009_0000	0x000B_FFFF	192KB	RSVD	
0x000C_0000	0x000C_3FFF	16KB	Retention SRAM (actually 1KB) (the same port	
			with KM0 SRAM)	
0x000C_4000	0x000F_FFFF	240KB	RSVD	
0x0010_0000	0x01FF_FFFF	31MB	RSVD	
0x0200_0000	0x07FF_FFFF	96MB	External PSRAM	224MB: External Memory Address
0x0800_0000	0x0FFF_FFFF	128MB	External Flash	
0x1000_0000	0x1007_FFFF	512KB	KM4 SRAM	256MB: KM4 Memory Address
0x1008_0000	0x100D_FFFF	384KB	RSVD	
0x100E_0000	0x100F_FFFF	128KB	Extension SRAM (the same port with KM4 SRAM)	
0x1010_0000	0x101B_FFFF	768KB	KM4 ITCM ROM (actually 256KB)	
0x101C_0000	0x101D_7FFF	96KB	KM4 DTCM ROM	
0x101D_8000	0x101F_FFFF	160KB	RSVD	
0x1020_0000	0x1FFF_FFFF	254MB	RSVD	
0x2000_0000	0x3FFF_FFFF	512MB	RSVD	Reserved
0x4000_0000	0x47FF_FFFF	128MB	KM4 Peripherals	KM4 Peripherals Address
0x4800_0000	0x4FFF_FFFF	128MB	KM0 Peripherals	KM4 Peripherals Secure Address
0x5000_0000	0x57FF_FFFF	128MB	KM4 Peripherals Secure	KM0 Peripherals Address
0x5800_0000	0xDFFF_FFFF	2176MB	RSVD	Reserved
0xE000_0000	0xE0FF_FFFF	16MB	System PPB Device	RAM predefined
0xE100_0000	0xFFFF_FFFF	496MB	RSVD	Reserved

For the detailed mapping of available memory and register areas, refer to the following sections.

4.2 KM4 Memory

4.2.1 Memory Map and Register Boundary Addresses

Table 4-2 gives the boundary addresses of the peripherals available in the KM4 devices.

Table 4-2 KM4 register boundary addresses

Port Name	Security	Base Address	Top Address	Size	
KM4_SRAM1	IDAU	0x1000_0000	0x1003_FFFF	256KB	
KM4_SRAM2	IDAU	0x1004_0000	0x1007_FFFF	256KB	
Extension SRAM	IDAU	0x100E_0000	0x100F_FFFF	128KB	
PSRAM Memory	IDAU	0x0200_0000	0x07FF_FFFF	96MB	

RTL872xD

HS_SYSON	Non-Secure	0x4000_0000	0x4000_0FFF	4KB
	Secure	0x5000_0000	0x5000_0FFF	4KB
HS_TIM0 ~ 3/4/5	Non-Secure	0x4000_2000	0x4000_2FFF	4KB
HS_UART0	Non-Secure	0x4000_4000	0x4000_4FFF	4KB
HS_IPC	Non-Secure	0x4000_6000	0x4000_6FFF	4KB
HS_USI	Non-Secure	0x4000_8000	0x4000_83FF	1KB
HS_UART1 (Bluetooth)	Non-Secure	0x4000_A000	0x4000_AFFF	4KB
RXI300_KM4	Non-Secure	0x4000_C000	0x4000_CFFF	4KB
	Secure	0x5000_C000	0x5000_CFFF	4KB
HS_SPI1	Non-Secure	0x4000_E000	0x4000_E7FF	2KB
Audio Codec	Non-Secure	0x4001_0000	0x4001_0FFF	4KB
HS_IR	Non-Secure	0x4001_2000	0x4001_2FFF	4KB
PSRAM Controller	Non-Secure	0x4001_4000	0x4001_4FFF	4KB
I ² S	Non-Secure	0x4002_0000	0x4002_03FF	1KB
Secure Engine	Non-Secure	0x4002_2000	0x4002_5FFF	16KB
	Secure	0x5002_2000	0x5002_5FFF	16KB
SDIO Host	Non-Secure	0x4002_6000	0x4002_9FFF	16KB
HS_GDMA0	Non-Secure	0x4002_A000	0x4002_BFFF	8KB
	Secure	0x5002_A000	0x5002_BFFF	8KB
SDIO Device	Non-Secure	0x4002_C000	0x4002_FFFF	16KB
USB	Non-Secure	0x4004_0000	0x4006_FFFF	192KB
LCD Controller	Non-Secure	0x4007_0000	0x4007_4FFF	20KB
HS_SPI0	Non-Secure	0x4007_8000	0x4007_87FF	2KB
Wi-Fi	Non-Secure	0x4008_0000	0x400A_FFFF	192KB
KM0 BRG	Non-Secure	0x0008_0000	0x0008_FFFF	64KB
		0x000C_0000	0x000C_3FFF	16KB
		0x4800_0000	0x4803_FFFF	256KB
Flash Controller	Non-Secure	0x4808_0000	0x4808_0FFF	4KB
Flash Memory	IDAU	0x0800_0000	0x0FFF_FFFF	128MB

4.2.2 Embedded SRAM

The KM4 contains up to a total 512KB of contiguous, on-chip static RAM memory. This embedded SRAM can be accessed as bytes (8 bits), halfwords (16 bits) or full words (32 bits). It is divided into the following two blocks which can be accessed by both KM4 and KM0.

- KM4 SRAM1 (up to 256KB)
- KM4 SRAM2 (up to 256KB)

Dividing SRAM into two slave ports allows user's program to potentially obtain better performance. For example, simultaneous access to SRAM1 by the CPU and by the system DMA controller does not result in any bus stalls for either master.

Generally speaking, the CPU reads or writes all peripheral data at some point, even when all such data is read from or sent to a peripheral by DMA. So, minimizing stalls is likely to involve putting data to/from different peripherals in RAM on each port.

Alternatively, sequences of data from the same peripheral can be alternated between RAM on each port. This could be helpful if DMA fills or empties a RAM buffer, and signals the CPU before proceeding on to a second buffer. The CPU then tends to access the data while the DMA is using the other RAM.

In power domains, the entire SRAM is also divided into three blocks:

- SRAM_PD1 (up to 256KB)
- SRAM_PD2 (up to 128KB)
- SRAM_PD3 (up to 128KB)

Each block can be disabled or enabled individually in the Power Management Unit (PMU) block to save power, and the entire SRAM can also keep power for quickly resuming from sleep mode when system enters sleep mode.

4.2.3 Extension SRAM

When Bluetooth is disabled, more 64KB SRAM will be extended. This SRAM can also be accessed by both KM4 and KM0, up to 50MHz*32 bits.

4.3 KM0 Memory

4.3.1 Memory Map and Register Boundary Addresses

Table 4-3 gives the boundary addresses of the peripherals available in the KMO devices.

Table 4-3 KM0 register boundary addresses

Port Name	Base Address	Top Address	Size
KM0_SRAM	0x0008 0000	0x0008_FFFF	64KB
1KB Retention SRAM	0x0008_0000	0x0008_1111	16KB
KM4 BRG			512KB
KIVI4 BKG	0x1000_0000	0x1007_FFFF	
	0x4000_0000	0x4007_FFFF	512KB
Wi-Fi FW	0x4008_0000	0x400A_FFFF	192KB
LP_SYSON	0x4800_0000	0x4800_0FFF	4KB
LP_TIM0 ~ 3/4/5	0x4800_2000	0x4800_2FFF	4KB
LP_RTC	0x4800_4000	0x4800_43FF	1KB
LP_IPC	0x4800_6000	0x4800_63FF	1KB
Key-Scan	0x4800_A000	0x4800_A3FF	1KB
I ² C0	0x4800_C000	0x4800_C3FF	1KB
UART3	0x4800_E000	0x4800_E3FF	1KB
LP_GDMA0	0x4801_0000	0x4801_07FF	2KB
UART2 (LOGUART)	0x4801_2000	0x4801_23FF	1KB
GPIOA/B	0x4801_4000	0x4801_47FF	2KB
RXI300_KM0	0x4801_8000	0x4801_8FFF	4KB
SGPIO	0x4801_A000	0x4801_AFFF	4KB
Cap-Touch	0x4801_C000	0x4801_C7FF	2KB
ADC	0x4801_C800	0x4801_CBFF	1KB
Comparator	0x4801_CC00	0x4801_CFFF	1KB
Q-Decoder	0x4801_E000	0x4801_EFFF	4KB
Flash Controller	0x4808_0000	0x4808_0FFF	4KB
Flash Memory	0x0800_0000	0x0FFF_FFFF	128MB

4.3.2 Embedded SRAM

The KMO features 64KB of system SRAM, the embedded SRAM can be accessed as bytes (8 bits), half-words (16 bits) or full words (32 bits).

This SRAM can be accessed by both KM4 and KM0.

4.4 Retention SRAM

The RTL872xD features 1KB of retention SRAM in order to allow saving data with minimal power usage during deepsleep mode.

This SRAM can be accessed by both KM4 and KM0.

4.5 SPI Flash Memory

The SPI Flash Controller manages CPU I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations, and the read/write protection mechanisms. It accelerates code execution with a system of instruction prefetch and cache lines.

4.6 PSRAM

4MB 8IO DDR PSRAM is included in RTL872xD, up to 50MHz DDR.

5 Nested Vectored Interrupt Controller (NVIC)

5.1 Features

All interrupts including the core exceptions are managed by the NVIC. The nested vector interrupt controller NVIC includes the following features:

- Nested Vectored Interrupt Controller that is an integral part of each CPU.
- Tightly coupled interrupt controller provides low interrupt latency.
- Controls system exceptions and peripheral interrupts.
- The NVIC of the KM4 supports:
 - 58 vectored interrupts.
 - 8 programmable interrupt priority levels with hardware priority level masking.
 - Vector table offset register VTOR.
- The NVIC of the KM0 supports:
 - 32 vectored interrupts.
 - 4 programmable interrupt priority levels with hardware priority level masking.
 - Vector table offset register VTOR.
- Support for NMI from any interrupt.

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

5.2 NVIC Diagram

The diagram of NVIC is shown in Figure 5-1.

Figure 5-1 NVIC diagram

Most of KM0 interrupt signals are linked to KM4 NVIC at the same interrupt number like LOGUART, and other KM0 interrupt signals are not linked to KM4 NVIC like WDG/RXI300/IPC.

This mechanism let KM4 use KM0's peripheral like it is KM4's peripheral. But if an interrupt signal is shared by KM0 and KM4, just only one CPU can open this interrupt, if not, software will hang.

5.3 NVIC Table

Table 5-1 lists the interrupt sources for each peripheral function. Each peripheral device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent more than one interrupt source. The interrupt number does not imply any interrupt priority.

not

The macro "configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY", which is used to define the highest interrupt priority controlled by FreeRTOS, is very important to interrupt. If the interrupt safe FreeRTOS API functions are called by the interrupt service routine, the priority of it must not be higher than this macro. Do not call RTOS_ISR functions from any interrupt that has a higher priority than this macro.

Table 5-1 NVIC table

IRQ	KM4 Name	KM0 Name	Description				
	Reset	Reset	Reset				
	NMI	NMI	Non-maskable interrupts (external NMI input). The WDG is linked to the NMI				
			vector				
	Hard Fault	Hard Fault	All fault conditions if the corresponding fault handler is not enabled				
	MemManager Fault	MemManager Fault	Memory management fault; Memory Protection Unit (MPU) violation or access to				
			illegal locations				
	Bus Fault	Bus Fault	Bus error; occurs when Advanced High-Performance Bus (AHB) interface receives				
			an error response from a bus slave (also called pre-fetch abort if it is an				
			instruction fetch or data abort if it is a data access)				
	Usage Fault	Usage Fault	Exceptions resulting from program error or trying to access coprocessor (the				
			Cortex-M4 does not support a coprocessor)				
	RSVD	RSVD	Reserved				
	SVC	SVC	Supervisor Call				
	Debug Monitor	Debug Monitor	Debug monitor (breakpoints, watch-points, or external debug requests)				
	RSVD	RSVD	Reserved				
	PendSV	PendSV	Pendable Service Call				
	SYSTICK	SYSTICK	System Tick Timer				
0	KM4_System_ISR	KM0_System_ISR	KM4: System ISR include wakeup event, like HS BT/-USB-dev/SDIO-				
			dev/UARTO				
			KM0: LS peripheral wakeup event, like GPIO/LUART/I2C0, etc.				
1	WDG_ISR_H	WDG_ISR_L	KM4 & KM0 watchdog warning interrupt				
2	RXI300_IRQ_H	RXI300_IRQ_L	KM4 & KM0 RXI300 platform interrupt				
3	UART log	UART log	KM4 & KM0 LP_UART0 (LOGUART) interrupt				
4	GPIOA	GPIOA	KM4 & KM0 GPIO PortA Interrupt (GPIO IPO PORTA)				
5	RTC	RTC	KM4 & KM0 RTC interrupt				
6	12C0	12C0	KM4 & KM0 I2C0 interrupt				
7	SPI_FLASH	SPI_FLASH	KM4 & KM0 SPI FLASH interrupt				
8	GPIOB	GPIOB	KM4 & KM0 GPIO PortB Interrupt (GPIO IP1 PORTA)				
9	LUART	LUART	KM4 & KM0 LP_UART1 interrupt				
10	Key-Scan	Key-Scan	KM4 & KM0 Key-Scan interrupt				
11	Cap-Touch	Cap-Touch	KM4 & KM0 Cap-Touch interrupt				
12	BOR2	BOR2	KM4 & KM0 BOR Interrupt				
13	SGPIO	SGPIO	KM4 & KM0 SGPIO interrupt				
14	IPC_KM0	IPC_KM4	IPC interrupt:				
			KM0 IPC interrupt KM4				
45	100	100	KM4 IPC interrupt KM0 KM4 IPC interrupt KM0				
15	ADC	ADC	KM4 & KM0 ADC interrupt				
16	Q-Decoder	Q-Decoder	KM4 & KM0 Q-Decoder interrupt				
17	HTimer0	LTimer0	• KM4 HTimer0 interrupt				
10	LITime and	LTime a u1	KM0 LTimer0 interrupt KM4 HTimer1 interrupt				
18	HTimer1	LTimer1					
19	HTimer2	LTimer2	 KM0 LTimer1 interrupt KM4 HTimer2 interrupt 				
19	n i iiilei z	Lillieiz	KM0 LTimer2 interrupt				
20	HTimer3	LTimer3	KM4 HTimer3 interrupt				
20	TITILLEIS	Lillieis	KM0 LTimer3 interrupt				
21	HTimer4	LTimer4	KM4 HTimer4 interrupt				
_ 1	111111111111	LIMICIT	KM0 LTimer4 interrupt				
22	HTimer5	LTimer5	KM4 HTimer5 interrupt				
		Limicia	KM0 LTimer5 interrupt				
	İ	-					
23	LCDC	IGDMA0 Channel0	I ■ KIVI4 I CDC Interrupt				
23	LCDC	LGDMA0_Channel0	KM4 LCDC interrupt KM0 LGDMA0 Channel0 interrupt				
23	LCDC USB	LGDMA0_Channel0 LGDMA0_Channel1	· ·				

25	SDIO_DEV	LGDMA0_Channel2	KM4 SDIO_DEV interrupt			
			KM0 LGDMA0_Channel2 interrupt			
26	SD_HOST	Wi-Fi FISR (0x134) +	KM4 SD_HOST interrupt			
		FESR (0x124)	KM0 Wi-Fi FISR + FESR interrupt			
27	IPSEC	Wi-Fi FTSR (0x13C) +	KM4 SD_HOST interrupt			
		mailbox	KM0 Wi-Fi FTSR + mailbox interrupt			
28	12S0	LGDMA0_Channel3	KM4 I2S0 interrupt			
			● KM0 LGDMA0_Channel3 interrupt			
29	PWR_DOWN	PWR_DOWN	KM4 & KM0 PWR_DOWN interrupt, this interrupt will be triggered when power			
			down pin push under power down interrupt mode			
30	ADC_COMP	ADC_COMP	KM4 & KM0 ADC comparator interrupt			
31	WL_DMA	KM4_WAKE_ISR	KM4 WL_DMA interrupt			
			KM0: KM4 peripherals wake interrupt, the same as KM4_System_ISR			
32	WL_PROTOCOL (0xB4)	=	KM4 WL_PROTOCOL interrupt			
33	PSRAMC	-	KM4 PSRAMC interrupt			
34	UARTO	-	KM4 HS_UART0 interrupt			
35	UART1_BT	-	KM4 HS_UART1_BT interrupt			
36	SPI0	-	KM4 HS_SPI0 interrupt			
37	SPI1	-	KM4 HS_SPI1 interrupt			
38	HUSI0	=	KM4 HS_USI0 interrupt			
39	IR	-	KM4 IR interrupt			
40	BT_SCORE_BOARD	=	KM4 BT_SCORE_BOARD interrupt			
41	GDMA0_Channel0	=	KM4 HS_GDMA0_Channel0 interrupt			
42	GDMA0_Channel1	-	KM4 HS_GDMA0_Channel1 interrupt			
43	GDMA0_Channel2	-	KM4 HS_GDMA0_Channel2 interrupt			
44	GDMA0_Channel3	-	KM4 HS_GDMA0_Channel3 interrupt			
45	GDMA0_Channel4	-	KM4 HS_GDMA0_Channel4 interrupt			
46	GDMA0_Channel5	-	KM4 HS_GDMA0_Channel5 interrupt			
47	RSVD	-	Reserved			
48	RSVD	-	Reserved			
49	RSVD	-	Reserved			
50	IPSEC_S	-	KM4 HS IPSEC TrustZone interrupt			
51	RXI300 IRQ S	-	KM4 HS RXI300 TrustZone interrupt			
52	GDMA0 Channel0 S	-	KM4 HS GDMA0 Channel0 TrustZone interrupt			
53	GDMA0_Channel1_S	-	KM4 HS_GDMA0_Channel1 TrustZone interrupt			
54	GDMA0_Channel2_S	-	KM4 HS GDMA0 Channel2 TrustZone interrupt			
55	GDMA0 Channel3 S	-	KM4 HS_GDMA0_Channel3 TrustZone interrupt			
56	GDMA0 Channel4 S	-	KM4 HS GDMA0 Channel4 TrustZone interrupt			
57	GDMA0 Channel5 S	-	KM4 HS GDMA0 Channel5 TrustZone interrupt			

6 Radio Characteristics

6.1 RF Block Diagram

The radio frequency (RF) block diagram of RTL872xD, including Wi-Fi and BLE modem, is given in Figure 6-1.

Figure 6-1 RF block diagram

6.2 Wi-Fi Radio Characteristics

The RF specifications of Wi-Fi are described in the tables below. These values are measured on the QFN68 board.

6.2.1 Wi-Fi 2.4GHz Band RF Receiver Specifications

Parameter	Description	Performance (1.8V)			Performance (3.3V)			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range	Center channel frequency	2412	-	2484	2412	-	2484	MHz
Rx Sensitivity	1Mbps CCK	-	-98	-	-	-98	-	dBm
	2Mbps CCK	-	-96	-	-	-96	-	
	5.5Mbps CCK	-	-94	-	-	-94	-	
	11Mbps CCK	-	-91	-	-	-91	-	
Rx Sensitivity	BPSK rate 1/2, 6Mbps OFDM	-	-96	-	-	-95	-	dBm
	BPSK rate 3/4, 9Mbps OFDM	-	-94	-	-	-94	-	
	QPSK rate 1/2, 12Mbps OFDM	-	-93	-	-	-93	-	
	QPSK rate 3/4, 18Mbps OFDM	-	-90	-	-	-90	-	

	16QAM rate 1/2, 24Mbps OFDM	-	-87	-	-	-87	-	
	16QAM rate 3/4, 36Mbps OFDM	-	-84	-	-	-84	-	
	64QAM rate 1/2, 48Mbps OFDM	-	-79	-	-	-79	-	
	64QAM rate 3/4, 54Mbps OFDM	-	-77	-	-	-77	-	
Rx Sensitivity	MCS 0, BPSK rate 1/2	-	-95	-	-	-95	-	dBm
BW = 20MHz	MCS 1, QPSK rate 1/2	-	-92	-	-	-92	-	
Mixed Mode	MCS 2, QPSK rate 3/4	-	-89	-	-	-89	-	
800ns Guard Interval	MCS 3, 16QAM rate 1/2	-	-86	-	-	-86	-	
Non-STBC	MCS 4, 16QAM rate 3/4	-	-83	-	-	-83	-	
	MCS 5, 64QAM rate 2/3	-	-78	-	-	-78	-	
	MCS 6, 64QAM rate 3/4	-	-77	-	-	-77	-	
	MCS 7, 64QAM rate 5/6	-	-75	-	-	-75	-	
Rx Sensitivity	MCS 0, BPSK rate 1/2	-	-93	-	-	-93	-	dBm
BW = 40MHz	MCS 1, QPSK rate 1/2	-	-89	-	-	-89	-	
Mixed Mode	MCS 2, QPSK rate 3/4	-	-86	-	-	-86	-	
800ns Guard Interval Non-STBC	MCS 3, 16QAM rate 1/2	-	-83	-	-	-83	-	
	MCS 4, 16QAM rate 3/4	-	-80	-	-	-80	-	
	MCS 5, 64QAM rate 2/3	-	-75	-	-	-75	-	
	MCS 6, 64QAM rate 3/4	-	-74	-	-	-74	-	
	MCS 7, 64QAM rate 5/6	-	-72	-	-	-72	-	
Maximum Receive	6Mbps OFDM	-	0	-	-	0	-	dBm
Level	54Mbps OFDM	-	0	-	-	0	-	
	MCS 0	-	0	-	-	0	-	
	MCS 7	-	0	-	-	0	-	
Receive Adjacent	1Mbps CCK	-	43	-	-	43	-	dBm
Channel Rejection	11Mbps CCK	-	40	-	-	41	-	
	BPSK rate 1/2, 6Mbps OFDM	-	40	-	-	40	-	
	64QAM rate 3/4, 54Mbps OFDM	-	22	-	-	22	-	
	HT20, MCS 0, BPSK rate 1/2	-	39	-	-	39	-	
	HT20, MCS 7, 64QAM rate 5/6	-	20	-	-	20	-	
	HT40, MCS 0, BPSK rate 1/2	-	30	-	-	29	-	
	HT40, MCS 7, 64QAM rate 5/6	-	11	-	-	10	-	

6.2.2 Wi-Fi 2.4GHz Band RF Transmitter Specifications

Parameter	Description	Perform	ance (1.8\	/)	Perforn	nance (3.	3V)	Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range	Center channel frequency	2412	-	2484	2412	-	2484	MHz
Output power with	1Mbps CCK	-	14	15	-	20	21	dBm
spectral mask and EVM	11Mbps CCK	-	12	15	-	18	21	
compliance ¹	BPSK rate 1/2, 6Mbps OFDM	-	14	15	-	20	21	
	64QAM rate 3/4, 54Mbps OFDM	-	11	12	-	17	18	
	HT20-MCS 0, BPSK rate 1/2	-	13	14	-	19	20	
	HT20-MCS 7, 64QAM rate 5/6	-	10	11	-	16	17	
	HT40-MCS 0, BPSK rate 1/2	-	13	14	-	19	20	
	HT40-MCS 7, 64QAM rate 5/6	-	10	11	-	16	17	
Tx EVM	BPSK rate 1/2, 6Mbps OFDM	-	-	-5	-	-	-5	dB
	64QAM rate 3/4, 54Mbps OFDM	-	-	-25	-	-	-25	
	HT20-MCS 0, BPSK rate 1/2	-	-	-5	-	-	-5	
	HT20-MCS 7, 64QAM rate 5/6	-	-	-28	-	-	-28	
	HT40-MCS 0, BPSK rate 1/2	-	-	-5	-	-	-5	
	HT40-MCS 7, 64QAM rate 5/6	-	-	-28	-	-	-28	
Output power variation ²	After do power trim at FT	-1.5	-	1.5	-1.5	-	1.5	dBm
Carrier suppression		-	-	-30	-	-	-30	dBm

Harmonic output power	2nd harmonic	-	-36	-34	-	-23	-21.9	dBm
(IC port)	3rd harmonic	-	-26	-24	-	-15	-14	

^{1.} Power level is tested after DPK on.

6.2.3 Wi-Fi 5GHz Band RF Receiver Specifications

Parameter	Description	Perform	ance (1.8V)		Performa	ance (3.3V)		Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range	Center channel frequency	5180	-	5825	5180	-	5825	MHz
Rx Sensitivity	BPSK rate 1/2, 6Mbps OFDM	-	-94	-	-	-93	-	dBm
	BPSK rate 3/4, 9Mbps OFDM	-	-93	-	-	-93	-	
	QPSK rate 1/2, 12Mbps OFDM	-	-92	-	-	-92	-	
	QPSK rate 3/4, 18Mbps OFDM	-	-89	-	-	-89	-	
	16QAM rate 1/2, 24Mbps OFDM	-	-86	-	-	-86	-	
	16QAM rate 3/4, 36Mbps OFDM	-	-83	-	-	-83	-	
	64QAM rate 1/2, 48Mbps OFDM	-	-78	-	-	-78	-	
	64QAM rate 3/4, 54Mbps OFDM	-	-76	-	-	-76	-	
Rx Sensitivity	MCS 0, BPSK rate 1/2	-	-94	-	-	-93	-	dBm
BW = 20MHz HT	MCS 1, QPSK rate 1/2	-	-91	-	-	-91	-	
Mixed Mode	MCS 2, QPSK rate 3/4	-	-88	-	-	-88	-	
800ns Guard Interval	MCS 3, 16QAM rate 1/2	-	-85	-	-	-85	-	
Non-STBC	MCS 4, 16QAM rate 3/4	-	-82	-	-	-82	-	
	MCS 5, 64QAM rate 2/3	-	-77	-	-	-77	-	
	MCS 6, 64QAM rate 3/4	-	-76	-	-	-75	-	
	MCS 7, 64QAM rate 5/6	-	-74	-	-	-74	-	
Rx Sensitivity	MCS 0, BPSK rate 1/2	-	-91	-	-	-91	-	dBm
BW = 40MHz HT	MCS 1, QPSK rate 1/2	-	-88	-	-	-88	-	
Mixed Mode	MCS 2, QPSK rate 3/4	-	-85	-	-	-85	-	
800ns Guard Interval	MCS 3, 16QAM rate 1/2	-	-82	-	-	-82	-	
Non-STBC	MCS 4, 16QAM rate 3/4	-	-79	-	-	-79	-91 - dB -88 - -85 - -82 -	
	MCS 5, 64QAM rate 2/3	-	-74	-	-	-74	-	
	MCS 6, 64QAM rate 3/4	-	-73	-	-	-73	-	
	MCS 7, 64QAM rate 5/6	-	-71	-	-	-71	-	
Maximum Receive	6Mbps OFDM	-	0	-	-	0	-	dBm
Level	54Mbps OFDM	-	0	-	-	0	-	
	MCS 0	-	0	-	-	0	-	
	MCS 7	-	0	-	-	0	-	
Receive Adjacent	BPSK rate 1/2, 6Mbps OFDM	-	21	-	-	21	-	dBm
Channel Rejection	64QAM rate 3/4, 54Mbps OFDM	-	12	-	-	11	-	
	HT20, MCS 0, BPSK rate 1/2	-	21	-	-	19	-	
	HT20, MCS 7, 64QAM rate 5/6	-	7	-	-	7	-	
	HT40, MCS 0, BPSK rate 1/2	-	30	-	-	30	-	
	HT40, MCS 7, 64QAM rate 5/6	-	12	-	-	13	-	

6.2.4 Wi-Fi 5GHz Band RF Transmitter Specifications

Parameter	Description	Performance (1.8V)		Performance (3.3V)			Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range	Center channel frequency	5180	-	5825	5180	-	5825	MHz
Output power with	BPSK rate 1/2, 6Mbps OFDM	-	12	13	-	18	19	dBm
spectral mask and EVM	64QAM rate 3/4, 54Mbps OFDM	-	9	10		14	15	
compliance ¹	HT20-MCS 0, BPSK rate 1/2	-	11	12	-	17	18	

^{2.} VDD18 voltage is within ±5% of typical value.

	HT20-MCS 7, 64QAM rate 5/6	-	8	9	-	13	14	
	HT40-MCS 0, BPSK rate 1/2	-	11	12	-	17	18	
	HT40-MCS 7, 64QAM rate 5/6	-	8	9	-	13	14]
Tx EVM	BPSK rate 1/2, 6Mbps OFDM	-	-	-5	-	-	-5	dB
	64QAM rate 3/4, 54Mbps OFDM	-	-	-25	-	=-	-25	
	HT20-MCS 0, BPSK rate 1/2	-	-	-5	-	=-	-5	
	HT20-MCS 7, 64QAM rate 5/6	-	-	-28	-	-	-28	
	HT40-MCS 0, BPSK rate 1/2	-	-	-5	-	=-	-5	
	HT40-MCS 7, 64QAM rate 5/6	-	-	-28	-	=-	-28	
Output power variation ²	After doing power trim at FT	-1.5	-	1.5	-1.5	-	1.5	dBm
Carrier suppression		-	-	-30	-	-	-30	dBm

Power level is tested after DPK on.

6.3 BT Radio Characteristics

The RF specifications of BT are described in the tables below. Both the transmitter specifications and the receiver specifications basically follow the Bluetooth SIG specifications.

6.3.1 BT RF Transmitter Specifications

Parameter	Condition	Min.	Тур.	Max.	Unit
Frequency Range		2402		2480	MHz
Tx Output Power	LE1M	-10	4.5	10	dBm
	LE2M				
Modulation Characteristics (LE1M)	ΔF1 Avg.	225		275	kHz
	ΔF2 Max.	185			kHz
	Modulation Index (ΔF2 Avg./ΔF1 Avg.)	0.8			
Modulation Characteristics (LE2M)	ΔF1 Avg.	450		550	kHz
	ΔF2 Max.	370			kHz
	Modulation Index (ΔF2 Avg./ΔF1 Avg.)	0.8			
Modulation Characteristics	ΔF1 Avg.	247.5		252.5	kHz
Stable Modulation (LE1M)	ΔF2 Max.	185			kHz
	Modulation Index (ΔF2 Avg./ΔF1 Avg.)	0.8			
Modulation Characteristics	ΔF1 Avg.	495		505	kHz
Stable Modulation (LE2M)	ΔF2 Max.	370			kHz
	Modulation Index (ΔF2 Avg./ΔF1 Avg.)	0.8			

6.3.2 BT RF Receiver Specifications

Parameter	Condition	Min.	Тур.	Max.	Unit
Frequency Range		2402	-	2480	MHz
Rx Sensitivity	LE1M	-100.9	-	-	dBm
	LE2M	-96.8	-	-	

^{2.} VDD18 voltage is within ±5% of typical value.

7 Electrical Characteristics

7.1 Temperature Limit Ratings

The temperature limit ratings are the parameter values or ranges which can cause permanent damage if exceeded.

Table 7-1 Temperature limit ratings

Parameter	Package	Minimum	Maximum	Unit
Storage Temperature	QFN48/QFN68/QFN88	-55	+125	°C
Ambient Operating Temperature (T _a)	QFN48/QFN68/QFN88	-20	+85	°C
	QFN48 wide-range temperature	-40	+105	
Junction Temperature (T _j)	QFN48/QFN68/QFN88	-40	+125	°C

7.2 Thermal Characteristics

Table 7-2 presents the thermal resistance mounted on 2L/4L JEDEC PCB using Finite Element Modeling (FEM) or Finite Differential Modeling (FDM) method. The junction temperature is utilized to evaluate thermal performance and then to predict the power dissipation capability by given ambient and maximum junction temperatures.

Table 7-2 Thermal properties

Package	Conditions	JEDEC PCB	Theta JA	Theta JC	Theta JB	Psi JT	Psi JB	Unit
QFN48	Input power: 0.55W (total)	2 layers	33.2	10.5	8.5	0.23	8.1	°C/W
	Air flow = 0 m/s	4 layers	27.1	9.5	8.0	0.21	7.6	
QFN68	Input power: 1.07W Air flow = 0 m/s	2 layers	57.9	11.9	16.1	0.9	15.8	
QFN88	Input power: 1.07W (total)	2 layers	26.1	8.3	9.5	0.3	9.2	
	Air flow = 0 m/s	4 layers	21.8	7.5	8.5	0.3	8.2	

1 NOTE

- Ambient temperature = $85 \, \%$.
- Thermal performance is under natural convection.

7.3 ESD Characteristics

The Electro-Static discharge (ESD) characteristics of RTL872xD are listed in Table 7-3.

Table 7-3 ESD characteristics

Reliability test	Standards	Test condition	Result
Human Body Model (HBM)	JEDEC EIA/JESD22-A114	±2000V	Pass
Charge Device Model (CDM)	JEDEC EIA/JESD22-C101	±500V	Pass

7.4 DC Characteristics

The direct current (DC) characteristics of power supply and digital I/O pin are illustrated in the following sections.

7.4.1 Power Supply

The power supply DC characteristics of RTL872xD are shown in Table 7-4.

Table 7-4 Power supply DC characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VA1833_XTAL, VR1833_SYN, VR1833_PAD_A,	3.3V Supply Voltage	3.0	3.3	3.6	V
VR1833_PA_A, VR1833_PA_G, VA1833_USB,					
VA1833_PLL, VD1833_PMU,	1.85V Supply Voltage	1.76	1.85	2.035	V
VD1833_SPS/VD1833_FLASH, AVCC_DRIV					
VD1833_GPIO	Digital I/O Supply Voltage	1.76	1.8 ~ 3.3	3.6	V
VA11_AFE, VA11_SYN, VA11_RF1, VA11_RF2,	1.1V Core Supply Voltage	1.05	1.1	1.21	V
VD11_CORE, VA11_PLL					
IDD33 ¹	3.3V Rating Current (with internal	-	-	450	mA
	regulator and integrated CMOS PA)				
IDD18 ¹	1.85V Rating Current (with internal			800	mA
	regulator and integrated CMOS PA)				
IDD_IO	I/O Rating Current (including VDD_IO)	-	-	200	mA
IDD_IO_1833	1.85V or 3.3V I/O Rating Current	-	-	50	mA

IDD33 is for 3.3V supply voltage, and IDD18 is for 1.85V supply voltage, to supply pins "VA1833_XTAL, VR1833_SYN, VR1833_PAD_A, VR1833_PA_A, VR1833_PA_G, VA1833_USB, VA1833_PLL, VD1833_PMU, VD1833_SPS/VD1833_FLASH, AVCC_DRIV".

There are some restrictions both for the application of 1.85V supply voltage and 3.3V supply voltage.

- On 1.85V supply voltage module, make sure to use wide-range voltage Flash; otherwise, the Flash cannot be accessed.
- On 3.3V supply voltage module, make sure your circuit satisfy the following two points; otherwise, you should refer to HDK to add a Reset IC.
 - The power-on voltage waveform is consistent with Figure 7-1.
 - The power-off voltage can drop to under 0.3V finally.

Figure 7-1 Power-on waveform

7.4.2 Digital I/O Pin

The digital I/O pin DC characteristics of RTL872xD are shown in Table 7-5 and Table 7-6, which illustrate 3.3V and 1.8V respectively.

Table 7-5 Digital I/O pin DC characteristics (3.3V)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{IH}	Input-High Voltage	LVTTL	2.0	-	-	V
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	٧
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	٧
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V
I _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
I _T .	Schmitt-trigger Low Level		1.36	1.45	1.56	٧
I _{IL}	Input-Leakage Current	$V_{IN} = 3.3V \text{ or } 0$	-10	±1	10	μΑ

Table 7-6 Digital I/O pin DC characteristics (1.8V)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{IH}	Input-High Voltage	CMOS	0.65 * Vcc	-	-	٧

V_{IL}	Input-Low Voltage	CMOS	-	-	0.35 * Vcc	V
V_{OH}	Output-High Voltage	CMOS	Vcc-0.45	-	-	V
V _{OL}	Output-Low Voltage	CMOS	-	-	0.45	V
I _{T+}	Schmitt-trigger High Level	-	1.02	1.09	1.14	V
I _T .	Schmitt-trigger Low Level	-	0.67	0.73	0.87	V
I _{IL}	Input-Leakage Current	V _{IN} = 1.8V or 0	-10	±1	10	μΑ

7.5 ADC Characteristics

The ADC characteristics of RTL872xD are shown in Table 7-7.

Table 7-7 SAR ADC characteristics

Parameter	Conditions	Min.	Тур.	Max.	Unit
Temperature		-40	25	125	°C
Resolution	Bypass mode		12		Bits
	Resistor divider mode (1/3.3)		12		Bits
Clock Source	From digital			1000	kHz
DC Offset Error	Cover VBAT=1.62~3.63V		2		LSB
	Temperature=-40~125°C				
Gain Error	Cover VBAT=1.62~3.63V		2		LSB
	Temperature=-40~125°C				
DNL			-1		LSB
INL			±3		LSB
Input Voltage Range	External channel (ch0 ~ ch7)	0		3.63	V
	External channel 0 (VBAT)	0		5	V
Input Impedance	Bypass mode		4		ΜΩ
	Resistor divider mode (1/3.3)		500		kΩ
Sampling Capacitance	Bypass mode		1.9		pF
	Resistor divider mode (1/3.3)		1.9		pF
Conversion Time			1		us
Sampling Rate ¹				1	MHz
Power Consumption	1 Msample/s		190		uA

^{1.} Sampling rate depends on the output impedance of sensor and resistor divider, 8.4 * R_{OUT} * 1.9 pF – 0.5 us < 1/f_s.

7.6 XTAL Oscillator

The RTL872xD has a built-in 40MHz crystal oscillation circuit to provide a stable, controllable system clock. With the built-in capacitor, the clock offset can be fine-tuned in the mass production process. The maximum internal cap is 32pF typically, and we suggest following the Realtek crystal design specification and QVL.

The external capacitor, C1 and C2, could be replaced by an internal capacitor, to reduce the BOM cost, minimize the PCB dimensions, and provide flexibility for clock fine-tuning.

Figure 7-2 40MHz crystal specification suggestion

The specification of XTAL oscillation is listed in Table 7-8.

Table 7-8 Specification of crystal oscillator

rable 7 department of or formation					
Parameter	Min.	Тур.	Max.	Unit	
Frequency	40			MHz	
Mode of oscillation	Fundamental				
Frequency tolerance (25°C ± 3°C)	-10		+10	ppm	
Equivalent Series Resistance (RR)		< 25	40	Ω	
Temperature stability (-30°C ~ +85°C)	-10		+10	ppm	
Load capacitance (CL)		12		pF	
Drive level (DL)		150 ~ 200	300	uW	
Shunt capacitance (C0)		< 0.88	2.0	pF	

7.7 Power Consumption

The specification of power consumption is listed in Table 7-9.

Table 7-9 Specification of power consumption

Parameter	Condition	Typical	Maximum	Unit
Current	In sleep mode	38	105	uA
	In deepsleep mode	10	25	

7.8 Power State and Power Sequence

The timing specification of the power sequence is listed in Table 7-10.

Table 7-10 Timing specification of power sequence

Symbol	Parameter	Minimum	Typical	Maximum	Unit
T _{PRDY}	VDDx ready time	0.6	0.6	1	ms
T _{CLK}	Internal ring clock stable time after VDD1833 ready	1	-	-	ms
T _{core}	LP core power ready time	1.5	1.5	-	ms
T _{boot}	HS MCU boot time	200	200	-	ms
V_{pd_low}	Power-down low voltage	0	0	0.3	V
V_{RST}	Shutdown occurs after CHIP_EN lower than this voltage	0	0	0.2 * VDDx	V
T _{RST}	The required time that CHIP_EN lower than V _{RST}	1	1	-	ms

note 1

■ VDDx indicates the power supply of VD1833 power pin, and VDD_IO indicates the power supply of VD1833_GPIO0 & VD1833_GPIO1 power pins. The VDDx, VDD_IO and CHIP_EN in the timing sequence are all from the same power source, o their behaviors are the

same.

- LP core voltage and RCO are the internal voltage and clock of the IC, and they cannot be measured specifically. HS core power is the 1.1V output from the regulator inside the IC, which supplies all the 1.1V power pins. These three signals are automatically controlled by the IC internal hardware, so you only need to check whether the power-on and power-down process of VD1833 is in accordance with the specification.
- During power-on, the voltage needs to rise steadily, and needs to rise above 1.8V or 3V (depending on whether the IC is powered by 1.8V or 3.3V) within the required time.
- During power-down, the voltage needs to drop below $V_{pd_{-}low}$ in Table 7-10 before the IC can be powered-on again.
- there is no restriction whether the CHIP_EN is pulled up before or after VD1833 is pulled up. After the voltage of VD1833 is stabilized, you can enter the shutdown mode by pulling CHIP_EN down, and pull up the CHIP_EN again to re-initialize, the time of CHIP_EN pull down should be no less than 1ms.

7.8.1 Power-on or Resuming from Deepsleep Sequence

The timing sequence of power-on or resuming from deepsleep is given in Figure 7-3.

Figure 7-3 Timing sequence of power on or resuming from deepsleep

7.8.2 Power-down Sequence

The timing sequence of power-down is illustrated in Figure 7-4.

Figure 7-4 Timing sequence of power-down

7.8.3 Shutdown Sequence

The timing sequence of shutdown is illustrated in Figure 7-5.

Figure 7-5 Timing sequence of shutdown

7.9 I/O Port Characteristics

7.9.1 GPIO Sink and Source Current

Test condition: I/O output mode.
 Sink current: I/O output low
 Source current: I/O output high

Figure 7-6 GPIO sink and source current test circuit

Table 7-11 GPIO sink and source current with 3.3V and 1.8V power supply

Pad type	Pin name	<u> </u>	Driving strength (3.3V)		Driving strength (1.8V)		
	PA	PB	Source current (mA)	Sink current (mA)	Source current (mA)	Sink current (mA)	
Normal ¹	PA[7] PA[8] PA[9] PA[10] PA[11] PA[22] PA[23] PA[24] PA[27] PA[28]	PB[8] PB[9] PB[10] PB[11] PB[12] PB[13] PB[14] PB[15] PB[16] PB[17]	5.9/10.96/15.1/18.8	5.1/9.6/13.3/16.7	2.0/3.8/5.4/6.9	1.9/3.5/5.0/6.4	
SDIO ¹		PB[18] PB[19] PB[20] PB[21] PB[22] PB[23] PB[24] PB[25]	4.2/7.9/11.2/14.2/19.2/23.3	3.6/6.9/9.9/12.6/17.5/22.1	1.3/2.6/3.7/4.8/6.8/8.5	1.3/2.4/3.5/4.6/6.5/8.3	
Key-Scan ¹	PA[12] PA[13] PA[14] PA[15] PA[16] PA[17] PA[18] PA[19] PA[20] PA[21] PA[25] PA[26]		11.0/18.9	9.7/16.8	3.9/7.1	3.6/6.7	
Audio ¹	PA[0] PA[1] PA[2] PA[3] PA[4] PA[5] PA[6]	PB[28] PB[29] PB[30] PB[31]	6.1/13.9	6.1/15.3	2.1/5.4	2.2/6.2	
Cap-Touch ²		PB[4] PB[5] PB[6] PB[7]	7.8/14.5	7.2/13.6	3.0/5.8	2.6/5.0	
I2C¹	PA[29] PA[30] PA[31]	PB[0] PB[26] PB[27] PB[1] PB[2]	10.9/18.6	9.4/16.3	3.9/7.2	3.5/6.5	

	PB[3]		

- For this type of GPIO pins with 3.3V power supply, external power supplies are set in 0.33V and 2.97V for testing sink current and source current respectively. For this type of GPIO pins with 1.8V power supply, external power supplies are set in 0.18V and 1.62V for testing sink current and source current respectively.
- 2. For this type of GPIO pins with 3.3V power supply, external power supplies are set in 0.4V and 2.4V for testing sink current and source current respectively. For this type of GPIO pins with 1.8V power supply, external power supplies are set in 0.22V and 1.31V for testing sink current and source current respectively.

7.9.2 GPIO Pull Low Restriction

When one of the GPIOs listed below needs to be pulled low by a resistor on PCB, the pull low resistor value must > 1K Ohm.

Port Name	Schematic	Resistor Value
PA[7] ~ PA[31]	GPIO	R > 1kΩ
PB[0] ~ PB[3]		
PB[8] ~ PB[17]	$R \gtrsim R > 1k\Omega$	
PB[26]	K \le K > 1K77	
PB[27]		
	- GND	

8 Package Specifications

8.1 QFN48

The QFN48 package specification of RTL872xD is shown in Figure 8-1 and Table 8-1.

Figure 8-1 QFN48 package specification

Table 8-1 QFN48 package specification

Symbol	Dimension (n	Dimension (mm)			Dimension (inch)		
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum	
Α	0.8	0.85	0.9	0.031	0.033	0.035	
A ₁	0.00	0.02	0.05	0.000	0.001	0.002	
A ₃	0.20REF			0.008REF			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	6.00BSC	6.00BSC			0.236BSC		
E	6.00BSC	6.00BSC			0.236BSC		
D2/E2	4.50	4.60	4.70	0.177	0.181	0.185	
е	0.40BSC			0.016BSC			
L	0.30	0.40	0.50	0.012	0.016	0.020	
K	0.20	-	-	0.008	-	-	
R	0.075	-	0.125	0.003	-	0.005	
aaa	0.10	0.10			0.004		
bbb	0.07	0.07			0.003		
ссс	0.10	0.10			0.004		
ddd	0.05		•	0.002			

eee	0.08	0.003
fff	0.10	0.004

Controlling dimension: millimeter (mm).Reference document: JEDEC MO-220.

8.2 QFN68

The QFN68 package specification of RTL872xD is shown in Figure 8-2 and Table 8-2.

Figure 8-2 QFN68 package specification

Table 8-2 QFN68 package specification

Table 8.2 QL 1408 package specification						
Symbol	Dimension (mm)			Dimension (inch)		
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
Α	0.80	0.85	0.90	0.031	0.033	0.035
A ₁	0.00	0.02	0.05	0.000	0.001	0.002
A ₃	0.2 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	7.90	8.00	8.10	0.311	0.315	0.319
E	7.90	8.00	8.10	0.311	0.315	0.319

D ₂	5.80	5.90	6.00	0.205	0.209	0.213	
E ₂	5.35	5.45	5.55	0.217	0.220	0.224	
е	0.40 BSC	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020	
K	0.20	=	-	0.008	=	-	
R	0.075	-	0.125	0.003	-	0.005	
aaa	0.10	0.10			0.004		
bbb	0.07	0.07			0.003		
ссс	0.10	0.10			0.004		
ddd	0.05	0.05			0.002		
eee	0.08	0.08			0.003		
fff	0.10	0.10			0.004		

Controlling dimension: millimeter (mm).Reference document: JEDEC MO-220.

8.3 QFN88

The QFN88 package specification of RTL872xD is shown in Figure 8-3 and Table 8-3.

Figure 8-3 QFN88 package specification

Table 8-3 QFN88 package specification

Symbol	Dimension (mm)			Dimension (inch)		
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum

Α	0.80	0.85	0.90	0.031	0.033	0.035
A_1	0.00	0.02	0.05	0.000	0.001	0.002
A ₃	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	9.90	10.00	10.10	0.390	0.394	0.398
Е	9.90	10.00	10.10	0.390	0.394	0.398
D ₂	6.10	6.20	6.30	0.240	0.244	0.248
E ₂	5.83	5.93	6.03	0.230	0.233	0.237
е	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
К	0.20	-	-	0.008	-	-
R	0.075	-	0.125	0.003	-	0.005
aaa	0.10			0.004		
bbb	0.07			0.003		
ССС	0.10			0.004		
ddd	0.05			0.002		
eee	0.08			0.003		
fff	0.10			0.004		

■ Controlling dimension: millimeter (mm).

■ Reference document: JEDEC MO-220.

Revision History

Date	Version	Description
2022-03-03	v3.7	Update Table 1-9: RTL8720DF supports SDIO host and device.
2022-01-12	v3.6	Add the information of RTL8721DF (QFN68)
2021-12-02	v3.5	Remove the function of VBAT_MEAS
2021-08-03	v3.4	Update the section: Peripheral Counts of LCDC description
2021-06-23	v3.3	Fix the max. Bluetooth Tx output power to 10dBm
		 Update the table: Table 7-2 Thermal properties
2021-05-24	v3.2	Add the section: Thermal Characteristics
		 Update the number of breakpoint and watchpoint for KM0 and KM4 in Table 1-1
2021-03-03	v3.1	Update Table 7-10 and add the table note
		Add the section: Power-down Sequence
		 Update the pin assignment of RTL8720DF (QFN48)
2021-02-08	v3.0	Update the ordering information
2021-01-20	v2.9	Update the ordering information
2020-11-4	v2.8	Add the section: GPIO Sink and Source Current
		Add the section: ESD Characteristics
		Add the information of RTL8720DF (QFN48)
2020-08-17	v2.7	Add the section: ADC Characteristics
		Update the ordering information
2020-06-24	v2.6	Update the ordering information
		Update the chapter: Memory Organization
		Update the RF receiver specification
		Update the figure: System architecture
		Add the section: XTAL Oscillator
		• Add the section: Power Consumption
		Update the feature of UART
2000 00 10		Add some restrictions for Power Supply
2020-02-18	v2.5	Update the feature of USB
2020-02-13	v2.4	Add some description of PA[15] & PA[16] for QFN48
2020-01-13	v2.3	Update the features
2019-12-25	v2.2	Update the temperature limit
2010 12 00	2.4	Update the part number and ordering information
2019-12-09	v2.1	Update the chapter: Memory Organization
		Update the section: General Description Update the specifications of Wij Fig. 4 GHz /F GHz PF transmitter systems are trained.
2010 00 20	2.0	 Update the specifications of Wi-Fi 2.4GHz/5GHz RF transmitter output power Add the section: BT Radio Characteristics
2019-09-20	v2.0	 Add the section: BT Radio Characteristics Update the value of Wi-Fi RF transmitter
2019-07-19	v1.9	Update the value of Wi-ri Kr transmitter Update the section: Package Types
2019-07-19	v1.9	Update the description of Flash features
2019-06-03	V1.8	Update the description of Flash leatures Update the BLE Tx power to 8dbm
		Update the BELL IX power to adding Update the table: Power supply DC characteristics
2019-04-10	v1.7	Add the chapter: Radio Characteristics
2013-04-10	V1.7	Update the table: Timing specification of power sequence
		Update the table: Power supply DC characteristics
		Add the note of interrupt priority
		Add the section: GPIO Pull Low Restriction
		Update the pin assignments for
		● QFN88
2019-02-21	v1.6	Add RFGND pin to RF pins table
		Re-organize the section: DC Characteristics
2019-01-25	v1.5	Modify the pin name (pin49) of QFN88 package
		1 - 1 - W - 1 - 3 - 1 1 - 1 - 3 - 1 1 - 1 - 3 - 1 1 - 1 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 1 1 - 1 - 3 - 3 - 3 - 1 1 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -

		Update the memory address		
2018-12-26	v1.4	Update the package specification of QFN68		
2018-12-20	v1.3	Update the peripherals under different packages		
		Revise the incorrect pin number		
2018-12-17	v1.2	Update the description of power pins		
2018-12-13	v1.1	Re-organize the structure of document		
		 Update package types of RTL872xD and QFN68/QFN88 pin assignments 		
		Update the operating temperature limit		
2018-10-18	v1.0	Add the description about AUDIO_GND		
2018-10-09	v0.9	Add description about SDIO device time consuming		
		Unify and normalize the technical items and expression		
2018-07-04	v0.8	Add pin default configuration when boot		
2018-07-04	v0.7	Change audio & Secure		
2018-07-04	v0.6	Change system architecture		
2018-07-03	v0.5	Update system architecture		
2018-06-29	v0.4	Update power architecture		
2018-06-28	v0.3	Add Peripherals		
2018-06-27	v0.2	Add all features		
2018-06-24	v0.1	Draft version		