2019. 5. 20. Untitled

Homework 9

Due 5/24

Problem 1.

FInd SVD for the following matrices.

1-1.

$$A = [1101]$$

1-2.

$$\begin{bmatrix} 110 \\ 011 \end{bmatrix}$$

1-3.

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Problem 2.

Let $A = U\Sigma V^T$ be the SVD of $m \times n$ matrix A. Let u_1, \dots, u_m be the column vectors of U and v_1, \dots, v_n be the column vectors of V.

2-1.

Show that A can be expressed as

$$A = u_1 \sigma_1 v_1^T + \dots + u_r \sigma_r v_r^T$$

where $\sigma_1, \dots, \sigma_r$ is the nonzero diagonal entries of Σ .

2-2.

Explain how r is determined in the equation above.

Problem 3.

3-1.

Prove that symmetric matrix is diagonalizable.

3-2.

Show that the number of nonzero entries in Σ in the SVD is the rank of A.

Problem 4.

In terms of basis change, explain the meaning following decompositions:

4-1.

LDU decomposition: A = LDU

4-2.

QR decomposition: A=QR

4-3.

Triangularization by Schur's lemma: $U^{-1}AU = T$

4-4.

Jordan form: $M^{-1}AM = J$

4-5.

SVD: $A = U\Sigma V^T$