SUSTECH CS202(2022s) Lab Assignment 1

Q1. Read a positive integer 'x' from the keyboard, print its bit-width while under the binary representation and the number of digits while under the hexadecimal representation.

NOTE: Input and output of your code should follow the following sample input and output.

Sample input and	1
output (1)	Its binary bit-width is 1, its number of hexadecimal digits in hexadecimal is 1
Sample input and	3
output (2)	Its binary bit-width is 2, its number of hexadecimal digits in hexadecimal is 1
Sample input and	27
output (3)	Its binary bit-width is 5, its number of hexadecimal digits in hexadecimal is 2
Sample input and	65535000
output (4)	Its binary bit-width is 26, its number of hexadecimal digits in hexadecimal is 7

Q2. Read a positive integer 'x' from the keyboard, suppose 'x2' is x in binary, 'x16' is x in hexadecimal, 'x2r' is the reverse order of 'x2', 'x16r' is the reverse order of 'x16', print them out.

NOTE:

- 1) x in binary(x2) and its reverse in binary(x2r):
 - a. Suppose x is 3, its x2 is 2'b11, its x2r is 2'b11.
 - b. Suppose x is **6**, its x2 is **3'b110**, its x2r is **3'b011**.
- 2) x in hexadecimal(x16) and its reverse in hexadecimal(x16r):
 - a. Suppose x is 16, its x16 is 2'h10, its x16r is 2'h01.
 - b. Suppose x is 27, its x16 is 2'h1b, its x16r is 2'hb1.
- 3) Use syscall #34 to print x16 and x16r, use syscall #35 to print x2 and x2r.
- 4) Input and output of your code should follow the following sample input and output.

4) Input and output of your code should follow the following sample input and output.		
Sample input and	1	
output (1)	x2: 000000000000000000000000000000000000	
	x2r: 000000000000000000000000000000000000	
	x16: 0x00000001	
	x16r: 0x00000001	
Sample input and	3	
output (2)	x2: 000000000000000000000000000000000000	
	x2r: 000000000000000000000000000000000000	
	x16: 0x00000003	
	x16r: 0x00000003	
Sample input and	16	
output (3)	x2: 000000000000000000000000000000000000	
	x2r: 000000000000000000000000000000000000	
	x16: 0x00000010	
	x16r: 0x00000001	
Sample input and	27	
output (4)	x2: 00000000000000000000000000000000011011	
	x2r: 00000000000000000000000000000000011011	
	x16: 0x0000001b	
	x16r: 0x000000b1	

Q3. Read a positive integer 'x' from the keyboard, check if the x is binary palindrome, hexadecimal palindrome, print the check result and the numbers.

NOTE:

- 1) Suppose 'x2' is x in binary, 'x16' is x in hexadecimal, 'x2r' is the reverse order of 'x2', 'x16r' is the reverse order of 'x16'.
- 2) While x is **binary palindrome**, it means x2 is same with x2r. e.g.
 - a. x is 3, x2 is 2'b11, x2r is 2'b11
 - x2 is same with x2r, 3 is binary palindrome;
 - b. x is **16**, x2 is **5'b10000**, x2r is **5'b00001**
 - x2 is different from x2r, 16 is NOT binary palindrome;
- 3) While x is **hexadecimal palindrome**, it means x16 is same with x16r. e.g.
 - a. x is **16**, x16 is **2'h10**, x16r is **2'h01**
 - x16 is different from x16r, 16 is NOT hexadecimal palindrome;
 - b. x is **17**, x16 is **2'h11**, x16r is **2'h11**
 - x16 is same with x16r, 17 is hexadecimal palindrome;
- 4) Use syscall #34 to print x16 and x16r, use syscall #35to print x2 and x2r.
- 5) Input and output of your code should follow the following sample input and output.

Sample input and	3
output (1)	3 is binary palindrome, 3 is hexadecimal palindrome
	x2: 000000000000000000000000000000000000
	x2r: 000000000000000000000000000000000000
	x16: 0x00000003
	x16r: 0x00000003
Sample input and	16
output (2)	16 is NOT binary palindrome, 16 is NOT hexadecimal palindrome
	x2: 000000000000000000000000000000000000
	x2r: 000000000000000000000000000000000000
	x16: 0x00000010
	x16r: 0x00000001
Sample input and	170
output (3)	170 is NOT binary palindrome, 170 is hexadecimal palindrome
	x2: 000000000000000000000010101010
	x2r: 000000000000000000000000000000000000
	x16: 0x000000aa
	x16r: 0x000000aa