Aufgabenblatt 8

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023 Prof. Dr. Tim Downie

Transportproblem

mit Lösungen

Aufgabe 1 Transportproblem

Eine Firma produziert Wäschetrockner an zwei Standorten. Von den beiden Produktionsorten werden drei verschiedene Warenhäuser beliefert. Die Transportkosten, um einen Trockner aus einem gegebenen Produktionsort zu einem gegebenen Warenhaus zu bringen, stehen in der Tabelle. Man möchte zu minimalen Kosten den Bedarf der Warenhäuser bedecken, unter der Berücksichtigung der Kapazitäten der Produktionsstandorte.

	Warenhaus W1	Warenhaus W2	Warenhaus W3	Kapazität
Produktionsort P1	20	16	18	100
Produktionsort P2	12	17	16	100
Bedarf	70	60	70	

Alle Kosten sind in Euro.

- (a) Stellen Sie das Transportproblem als eine LP in Grundform.
- (b) Finden Sie eine zulässige Anfangslösung mit Hilfe der Nordwesteckenregel.
- (c) Lösen Sie das TP durch Austauschschritte (Basiszickzackwege).

Aufgabe 2 Transportproblem

Ein Mietwagenunternehmen hat Filialen in Berlin, Hamburg, Köln und München. Das Unternehmen kauft jedes Jahr eine Menge Neuwagen und verkauft die älteren Autos. 2015 sollen 30 Standardautos und 50 Luxusautos gekauft werden. Die wöchentlichen Gewinn per Auto für jede Wagensorte und Stadt bzw. die Anzahl der verfügbaren Parkplätze jeder Stadt sind in der gegebenen Tabelle.

	Berlin	Hamburg	Köln	München	Nachfrage
Standard	80	120	100	80	30
Luxus	100	135	130	150	50
Parkplätze	25	20	20	15	

- (a) Formulieren Sie das Transportproblem (TP) als eine LP.
- (b) Stellen Sie das TP als ein Graf dar (wie im Skript).
- (c) Finden Sie eine zulässige Basislösung mit Hilfe der Nordwesteckenregel.
- (d) Lösen Sie das TP durch Austauschschritte (Basiszickzackwege).

Aufgabe 1

$$\max Z(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}) = -20x_{11} - 16x_{12} - 18x_{13} - 12x_{21} - 17x_{22} - 16x_{23}$$

 $\begin{array}{lllll} \textit{unter den Nebenbedingungen:} & x_{11} + x_{12} + x_{13} & \leqslant & 100 \\ & -x_{11} - x_{12} - x_{13} & \leqslant & -100 \\ & x_{21} + x_{22} + x_{23} & \leqslant & 100 \\ & -x_{21} - x_{22} - x_{23} & \leqslant & -100 \\ & x_{11} + x_{21} & \leqslant & 70 \\ & -x_{11} - x_{21} & \leqslant & -70 \\ & x_{12} + x_{22} & \leqslant & 60 \\ & -x_{12} - x_{22} & \leqslant & -60 \\ & x_{13} + x_{23} & \leqslant & 70 \\ & -x_{13} - x_{23} & \leqslant & -70 \end{array}$

Zulässige Basislösung: Verwende die Nordwesteckenregel

	Warenhaus	Warenhaus	Warenhaus	
	W1	W2	<i>W3</i>	Kapazität
Produktionsort P1	70	<i>30</i>	0	100
Produktionsort P2	0	<i>30</i>	<i>70</i>	100
Bedarf	70	60	70	Z=3510

Optimale Tabelle ist:

	Warenhaus	Warenhaus	Warenhaus	
	<i>W1</i>	W2	<i>W3</i>	Kapazität
Produktionsort P1	0	<i>60</i>	<i>40</i>	100
Produktionsort P2	70	0	<i>30</i>	100
Bedarf	70	60	70	Z=3000

Optimallösung:
$$Z^* = 3000$$
, $x_{1,1}^* = 0$, $x_{1,2}^* = 60$, $x_{1,3}^* = 40$, $x_{2,1}^* = 70$, $x_{2,2}^* = 0$, $x_{2,3}^* = 30$

Aufgabe 2

Maximiere $Z=80x_{11}+120x_{12}+100x_{13}+80x_{14}+100x_{21}+135x_{22}+130x_{23}+150x_{24}$ unter den Nebenbedingungen:

$$x_{11} + x_{12} + x_{13} + x_{14} = 30$$

$$x_{21} + x_{22} + x_{23} + x_{14} = 50$$

$$x_{11} + x_{21} = 25$$

$$x_{12} + x_{22} = 20$$

$$x_{13} + x_{23} = 20$$

$$x_{14} + x_{24} = 15$$

Zulässige Basislösung: Nordwesteckenregel

	Berlin	Hamburg	Köln	München	Nachfrage
Standard	25	5	0	0	30
Luxus	0	15	<i>20</i>	15	50
Parkplätze	25	20	20	15	9475

Nach einem Austausch

	Berlin	Hamburg	Köln	München	Nachfrage
Standard	10	20	0	0	30
Luxus	15	0	<i>20</i>	15	50
Parkplätze	25	20	20	15	9550

Optimallösung erreicht. Optimallösung: $Z^*=9550$, $x_{1,1}^*=10$, $x_{1,2}^*=20$, $x_{1,3}^*=0$, $x_{1,4}^*=0$, $x_{2,1}^*=15$, $x_{2,2}^*=0$, $x_{2,3}^*=20$ $x_{2,4}^*=15$