CPT_S 434/534 Neural network design and application

Core questions to answer

- What can be learned by machine learning models?
- What conditions are required to successfully learn?

concept $c: \mathfrak{X} \to \mathfrak{Y}$

An underlying concept function (mapping)

concept
$$c: \mathfrak{X} \to \mathfrak{Y}$$

A hypothesis class

Definition 2.1 (Generalization error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by

$$R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}\left[1_{h(x) \neq c(x)}\right], \tag{2.1}$$

where 1_{ω} is the indicator function of the event ω .²

A hypothesis class

Definition 2.1 (Generalization error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathfrak{D} , the generalization error or risk of h is defined by

$$R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}\left[1_{h(x) \neq c(x)}\right], \tag{2.1}$$

where 1_{ω} is the indicator Risk: in population level

scan all samples in the world (not feasible in general)

Q: What is it? A hypothesis class

Definition 2.1 (Generalization error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathfrak{D} , the generalization error or risk of h is defined by

$$R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}\left[1_{h(x) \neq c(x)}\right], \tag{2.1}$$

where 1_{ω} is the indicator Risk: in population level

scan all samples in the world (not feasible in general)

Review: Build a model

What is a model

A hypothesis class

A linear function

or

An ellipse (nonlinear function)

Another hypothesis class

Q: what are their parameters?

Q: What is it?
A hypothesis class

Definition 2.1 (Generalization error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq c(x)] = \underset{x \sim \mathcal{D}}{\mathbb{E}}\left[1_{h(x) \neq c(x)}\right], \tag{2.1}$$
 where 1_{ω} is the indicator Risk: in population level
$$\xrightarrow{}$$
 Expected mistakes that h scan all samples in the world (not feasible in general)

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathbb{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}$$

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathbb{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} R(h_S) \le \epsilon \ge 1 - \delta.$$
(2.4)

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathbb{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathbb{D}^m} R(h_S) \leq \epsilon \geq 1 - \delta. \text{ Probably} \qquad (2.4)$$
 Approximately Correct
$$1/\epsilon, 1/\delta, n, size(c)), \text{ then } \mathcal{C} \text{ is said to be efficiently PAC-}$$

Polynomial:
$$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0,$$

Definition 2.3 (PAC-learning) A concept class $\mathbb C$ is said to be PAC-learnable if there exists an algorithm $\mathcal A$ and a polynomial function $poly(\cdot,\cdot,\cdot,\cdot)$ such that for any $\epsilon>0$ and $\delta>0$, for all distributions $\mathbb D$ on $\mathbb X$ and for any target concept $c\in\mathbb C$, the following holds for any sample size $m\geq poly(1/\epsilon,1/\delta,n,size(c))$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}$$

Polynomial:
$$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0,$$

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathbb{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}$$

$$m \rightarrow S \rightarrow h_S$$

Agnostic PAC learning

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$ the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta.$$
 (2.21)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq c(x)] = \underset{x \sim \mathcal{D}}{\mathbb{E}}\left[1_{h(x) \neq c(x)}\right],$$

$$\mathsf{c(x)} \text{ is deterministic}$$

$$R(h) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y] = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}}[1_{h(x) \neq y}].$$

Definition 2.14 (Agnostic PAC-learning) Let \mathbb{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} over $\mathbb{X} \times \mathbb{Y}$ the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta.$$
 (2.21)

If A further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq c(x)] = \underset{x \sim \mathcal{D}}{\mathbb{E}} \left[1_{h(x) \neq c(x)} \right],$$

$$R(h) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y] = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [1_{h(x) \neq y}].$$

$$C(x) \text{ is deterministic}$$

$$stochastic: joint distribution D$$

Definition 2.14 (Agnostic PAC-learning) Let \mathbb{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} over $\mathbb{X} \times \mathbb{Y}$ the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta.$$
 (2.21)

If A further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Bayes error

Definition 2.15 (Bayes error) Given a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathcal{X} \to \mathcal{Y}$:

$$R^* = \inf_{\substack{h \text{ measurable}}} R(h). \tag{2.22}$$

A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier.

All possible hypotheses (may not be included in H)

Bayes error

Definition 2.15 (Bayes error) Given a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathcal{X} \to \mathcal{Y}$:

The best risk we may reach
$$-R^* = \inf_{\substack{h \text{ } measurable}} R(h).$$
 (2.22)

A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier.

All possible hypotheses (may not be included in H)

$$R(h) - R^*$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

Q: can we enlarge H?

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

Trade-off: estimation and approximation

Trade-off: estimation and approximation

Q: how to control the richness of H?

Constrained problem

$$h(x) = ||x||_2^2$$
$$= |x_1|^2 + x_2|^2 + \dots + x_n|^2$$

 $\|x\|_2$

Regularized problem

$$h(x) = ||x||_{2}^{2}$$
$$= |x_{1}|^{2} + x_{2}|^{2} + \dots + x_{n}|^{2}$$

 $\|x\|_2$

Regularized problem

$$h(x) = ||x||_{2}^{2}$$

$$= |x_{1}|^{2} + x_{2}|^{2} + \dots + x_{n}|^{2}$$

 $\|x\|_1$

Equivalence between (CP) and (RP):

$$\lambda \leftarrow \rightarrow b$$

We can find a b given λ such that:

Corresponding optimal solutions of (CP) and (RP) are identical

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \dots, x_m)$ the empirical error or empirical risk of h is defined by Training set $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m 1_{h(x_i) \neq c(x_i)}. \tag{2.2}$

Interpret: average mistakes a hypothesis h makes on a sample

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \ldots, x_m)$ the empirical error or empirical risk of h is defined by

Training set

$$\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m 1_{h(x_i) \neq c(x_i)}.$$
(2.2)

stochastic version

$$\widehat{R}_{\mathcal{S}}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{f(x) \neq y}.$$

Interpret: average mistakes a hypothesis h makes on a sample

$$R(h) = \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim\mathcal{D}}[1_{h(x)\neq y}].$$

risk (in population): not accessible

Empirical risk minimization

$$h_S^{\mathrm{ERM}} = \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{R}_S(h).$$
 Empirical risk

Empirical risk minimization

Empirical risk minimization

Proposition 4.1 For any sample S, the following inequality holds for the hypothesis returned by ERM:

$$\mathbb{P}\left[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\right] \le \mathbb{P}\left[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\right]. \tag{4.3}$$

Corollary 3.19 (VC-dimension generalization bounds) Let \mathcal{H} be a family of functions taking values in $\{-1,+1\}$ with VC-dimension d. Then, for any $\delta > 0$, with probability at least $1-\delta$, the following holds for all $h \in \mathcal{H}$:

$$R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2d \log \frac{em}{d}}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}} \cdot = O(\sqrt{1/m}) \quad (3.29)$$