E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2010/2011

Estructuras Algebraicas para la Computación

Relación de Ejercicios 5

- 1. Determina $a, b \in \mathbb{R}$ para que el vector (1, 0, a, b) pertenezca al subespacio generado por el sistema $\{(1, 4, -5, 2), (1, 2, 3, -1)\}$
- 2. En el espacio vectorial real \mathbb{R}^3 se considera el sistema

$$S = \{(1, 1, a), (1, a, 1), (a, 1, 1)\}$$

Estudia, en función de a, qué dimensión tiene el subespacio generado $\mathcal{L}(S)$

3. En el espacio vectorial real \mathbb{R}^4 se consideran los subespacios:

$$\mathcal{V}_{1} = L\{(1, 2, 0, 1)\}$$

$$\mathcal{V}_{2} = \{(x, y, z, t) \mid x - y + z + t = 0, z = 0\}$$

$$\mathcal{V}_{3} \equiv \begin{cases} x_{1} = \lambda \\ x_{2} = \lambda + \mu \\ x_{3} = \gamma \\ x_{4} = \mu \end{cases}$$

¿Pertenece el vector $\vec{v} = (2, 4, 0, 2)$ a $\mathcal{V}_1, \mathcal{V}_2$ ó \mathcal{V}_3 ?

- 4. Determina una base de cada uno de los subespacios de \mathbb{R}^4 siguientes:
 - a) L, generado por el sistema de vectores

$$\{(1,2,3,1),(2,3,2,3),(0,1,4,-1),(2,-3,1,1),(4,1,7,3)\}$$

b) N, que tiene por ecuaciones paramétricas:

$$x_1 = \lambda + \alpha + \beta$$

$$x_2 = \lambda - \alpha + 3\beta$$

$$x_3 = \lambda + \alpha$$

$$x_4 = 2\lambda + 4\alpha + \beta$$

c) la intersección de los subespacios

$$U = \langle (1, 2, 1, 0), (-1, 1, 1, 1) \rangle, \quad W = \langle (2, -1, 0, 1), (1, -1, 3, 7) \rangle$$

- d) la suma U + W de los subespacios del apartado anterior.
- 5. Determina las ecuaciones cartesianas de cada uno de los subespacios vectoriales del ejercicio anterior.
- 6. En el espacio vectorial $\mathbb{R}_3(t)$ de los polinomios de una variable con coeficientes en \mathbb{R} de grado menor o igual a 3 se considera el subconjunto

1

$$P = \{at^3 + bt^2 + ct + d \in \mathbb{R}_3(t) \mid a = b \quad c = d\}$$

Demuestra que P es un espacio vectorial y determina una base.

7. En el espacio vectorial $\mathbb{R}_3(t)$ de los polinomios de una variable con coeficientes en \mathbb{R} de grado menor o igual a 3 se considera el subconjunto

$$Q = \{at^3 + bt^2 + ct + d \in \mathbb{R}_3(t) \mid b = d\}$$

Demuestra que Q es un espacio vectorial y determina una base.

- 8. Sea el espacio vectorial $\mathcal{V} = \mathcal{M}_{2\times 2}(\mathbb{R})$. Estudia si los subconjuntos siguientes son subespacios vectoriales de \mathcal{V} .
 - $a) \ \mathcal{U} = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid |A| = 0 \}$
 - b) $\mathcal{W} = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid A^2 = A \}$
- 9. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ se considera el subconjunto \mathcal{A} formado por las matrices de la forma

$$A = \left(\begin{array}{cc} a & b \\ -b & a \end{array}\right)$$

- a) Demuestra que \mathcal{A} es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$.
- b) Halla una base de \mathcal{A}
- 10. Sea $\mathcal{M}_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas reales de orden dos y sea \mathcal{E}_1 el conjunto de las matrices de la forma

$$\left(\begin{array}{cc}
a & b+c \\
-b+c & a
\end{array}\right)$$

Prueba que \mathcal{E}_1 es un subespacio vectorial y que $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ es una base.

11. Sea $\mathcal{M}_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas reales de orden dos y sea \mathcal{E}_2 el conjunto de las matrices de la forma

$$\left(\begin{array}{cc}
a & b-d \\
c-b & 0
\end{array}\right)$$

Prueba que \mathcal{E}_2 es un subespacio vectorial y halla una base.

- 12. Sea $\mathcal{B}_1 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ una base de un espacio vectorial \mathcal{V} .
 - a) Prueba que $\mathcal{B}_2 = \{2\vec{v}_1, -\vec{v}_1 + \vec{v}_2, \vec{v}_4 \vec{v}_2, \vec{v}_1 + \vec{v}_3\}$ también es una base de \mathcal{V} .
 - b) Encuentra las matrices del cambio de base de \mathcal{B}_1 a \mathcal{B}_2 y de \mathcal{B}_2 a \mathcal{B}_1 .
 - c) Si un vector de \mathcal{V} tiene coordenadas $(0, \alpha, 0, \alpha)$ respecto de la base \mathcal{B}_1 , ¿qué coordenadas tendrá respecto de la base \mathcal{B}_2 ?