中国农业大学

2024~2025 学年春季学期

数学分析 II 课程考试试题

题号	 <u> </u>	三	四	总分
分数				

(本试卷共4道大题)

考生诚信承诺

本人承诺自觉遵守考试纪律,诚信应考,服从监考人员管理。

本人清楚学校考试考场规则,如有违纪行为,将按照学校违纪处分规定严肃处理。

- 一、选择题: 本题共 5 小题, 每小题 3 分, 共 15 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
 - 1. 以下集合是紧集的是

()

A.
$$\{(x_1, \dots, x_n) \in \mathbb{R}^n : |x_1| + \dots + |x_n| = 1\}$$

B.
$$\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1, \dots, x_n \in \mathbb{Q} \cap [-1, 1]\}$$

C.
$$\bigcup_{n=1}^{\infty} [n, n+1/2]$$

D.
$$\left\{\frac{1}{n} : n \in \mathbb{N}_+\right\}$$

2. 以下是道路连通集的是

()

A.
$$\{(0,y) : -1 \le y \le 1\} \cup \{(x,\sin(1/x)) : 0 < x < 1\}$$

B.
$$n$$
 可逆阶实系数方阵全体 $\mathrm{GL}_n(\mathbb{R})=\{A\in M_{n\times n}(\mathbb{R}): \det A\neq 0\}$

C.
$$n$$
 阶实系数正交方阵全体 $\mathcal{O}_n(\mathbb{R})=\{A\in M_{n\times n}(\mathbb{R})\,:\,A^TA=AA^T=I_n\}$

D. 行列式等于 1 的 n 阶实系数方阵全体 $\mathrm{SL}_n(\mathbb{R})=\{A\in M_{n\times n}(\mathbb{R})\,:\,\det A=1\}$

3. 以下说法正确的是

()

- A. 设 $E \in \mathbb{R}^n$ 中的非空点集, $x \in \mathbb{R}^n$ 为一点, 若存在点列 (序列) $x_n \in E, n = 1, 2, \cdots$, 使 得 $\lim_{n \to \infty} x_n = x$, 则 x 是集合 E 的聚点.
- B. 设 f 是定义在 \mathbb{R}^n 上取值在 \mathbb{R}^m 中的连续向量值函数, E 是 \mathbb{R}^n 中的非空有界闭集, 那 么 E 在 f 下的像集 f(E) 必然是 \mathbb{R}^m 中的闭集.
- C. 设 f 是定义在 \mathbb{R}^n 上取值在 \mathbb{R}^m 中的连续向量值函数, E 是 \mathbb{R}^n 中的非空有界开集, 那 么 E 在 f 下的像集 f(E) 必然是 \mathbb{R}^m 中的开集.

学院.	班级:	学号.	姓名:
子州:	グエジス・	すり・	ユコ・

- D. 设数项级数 $\sum_{n=1}^{\infty}a_n, \sum_{n=1}^{\infty}b_n$ 满足 $|a_n|>|b_n|, \ \forall n\in\mathbb{N}_+,$ 那么若 $\sum_{n=1}^{\infty}a_n$ 收敛, 则 $\sum_{n=1}^{\infty}b_n$ 必然也收敛.
- 4. 设 $\{f_n(x)\}_{n\in\mathbb{N}}$ 是定义在 [0,1] 区间上的黎曼可积函数列, 并且有公共的界, 即存在正实数M, 使得 $|f_n(x)| \leq M$ 对任意的 $n\in\mathbb{N}$, 以及任意的 $x\in[0,1]$ 都成立. 若 $\{f_n(x)\}_{n\in\mathbb{N}}$ 的极限函数存在 $f(x)=\lim_{n\to\infty}f_n(x)$, 那么以下说法正确的是
 - A. 若积分值序列的极限 $\lim_{n\to\infty}\int_0^{+\infty}f_n(x)\,\mathrm{d}x$ 也存在, 则极限函数 f(x) 必然黎曼可积
 - B. 若积分值序列的极限 $\lim_{n\to\infty}\int_0^{+\infty}f_n(x)\,\mathrm{d}x$ 也存在, 则 $\{f_n(x)\}_{n\in\mathbb{N}}$ 必然一致收敛到 f(x)
 - C. 若极限函数 f(x) 黎曼可积,则 $\{f_n(x)\}_{n\in\mathbb{N}}$ 必然一致收敛到 f(x)
 - D. 若极限函数 f(x) 黎曼可积, 则积分值序列的极限 $\lim_{n\to\infty}\int_0^{+\infty}f_n(x)\,\mathrm{d}x$ 也必存在, 并且 $f\lim_{n\to\infty}\int_0^{+\infty}f_n(x)\,\mathrm{d}x = \int_0^{+\infty}f(x)\,\mathrm{d}x$
- 5. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径是 $R, 0 < R < +\infty,$ 那么下面正确的论断是 ()
 - A. 极限 $\lim_{n \to \infty} \sqrt[n]{|a_n|}$ 必然存在且等于 $\frac{1}{R}$
 - B. 极限 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ 必然存在且等于 $\frac{1}{R}$
 - C. 极限 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ 可能不存在, 若极限存在则必等于 $\frac{1}{R}$
 - D. 以上说法都不对
- 二、填空题: 本题共 5 小题, 每小题 3 分, 共 15 分。
 - 1. 柯西主值积分 (cpv) $\int_{-1}^{1} \frac{2}{2x-1} dx =$ _____.
- 2. 设 a > 0 为常数, 那么星形线 $\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t \end{cases}$ 的长度等于 _____.
- 3. 积分 $\int_{-\pi}^{3\pi} \cos(2025x) \cos(2024x) \, \mathrm{d}x = \underline{\qquad}.$
- 4. 幂级数 $\sum_{n=1}^{\infty} \frac{(-2)^n \ln n}{n} (x-1)^n$ 的收敛域为 ______.

- 5. 设 $\{a_n\}_{n\in\mathbb{N}}$ 为斐波那契数列,即满足 $a_1=a_2=1,\,a_{n+2}=a_{n+1}+a_n$,那么正项级数 $\sum_{n=1}^\infty \frac{a_n}{3^n}=\underline{\qquad}.$
- 三、计算题: 本题共 2 小题, 共 20 分。本题应写出具体演算步骤。
- 1. (10 分) 考虑二元函数 $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$, 问二重极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 以及二次 极限 $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ 是否分别存在? 若存在, 求出相应的值; 若不存在, 说明原因.
- 2. (10 分)设 $n \in \mathbb{N}_+$ 为正整数,请计算定积分 $I_n = \int_0^{\frac{\pi}{2}} \left(\frac{\sin(nx)}{\sin x}\right)^2 \mathrm{d}x$. (提示: 先计算 $I_{n+1} I_n$.)
- 四、解答题: 本题共 5 小题, 共 50 分。解答应写出文字说明或者证明过程。注意, 若一道题分为多个小问,则该题前面小问的结论可以用于后面的小问,但反过来不行。
 - 1. (8分) 设 $\{x_n\}_{n\in\mathbb{N}}$ 为一实数列, 请证明 $\overline{\lim}_{n\to\infty}(-x_n)=-\underline{\lim}_{n\to\infty}x_n$.
 - 2. (10 分)设函数 f(x) 在点 x_0 处无穷次可微,请问是否必然存在 x_0 的某个邻域 $O(x_0, \rho) = (x_0 \rho, x_0 + \rho), \rho > 0$,使得 f(x) 在 $O(x_0, \rho)$ 上可以展开成幂级数? 若是,请给出证明;若 否,请举反例并简要说明该反例不能展开成幂级数的原因.
 - 3. (10 分)设 $x=(x_1,\cdots,x_n)\in\mathbb{R}^n,E$ 是 \mathbb{R}^n 中的非空点集,定义点 x 到集合 E 的距离为

$$\rho(x, E) = \inf_{y \in E} \|x - y\|,$$

其中
$$\|x-y\| = \sqrt{(x_1-y_1)^2 + \dots + (x_n-y_n)^2}.$$

- (1) 设F为 \mathbb{R}^n 中的非空闭集,证明存在点 $y_0 \in F$,使得 $\rho(x,F) = \|x y_0\|$.
- (2)设 F_1, F_2 为 \mathbb{R}^n 中两个不交的非空闭集, 请构造一个 \mathbb{R}^n 上的连续函数 f(x), 同时满足以下两个条件
 - (a) $0 \leqslant f(x) \leqslant 1, \ \forall \ x \in \mathbb{R}^n;$
 - (b) f(x) 在 F_1 上取值恒等于 0, 在 F_2 上取值恒等于 1.
- 4. (10 分)设 a>0, b>0 为常数, f(x) 为定义在 $[0,+\infty)$ 上的连续函数, 并且当 $x\to +\infty$ 时有极限 $\lim_{x\to +\infty} f(x)=c_\infty\in\mathbb{R}$. 记 $c_0=f(0)$.

(1) 请证明:
$$\int_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx = (c_0 - c_\infty) \ln \frac{b}{a}.$$

(2) 计算反常积分
$$\int_0^{+\infty} \ln \frac{1+2e^{-ax}}{1+2e^{-bx}} \cdot \frac{\mathrm{d}x}{x}$$
的值.

学院:	班级.	学号.	姓名.
1 150.	ツェルス・	1 1.	∕т·п•

- 5. $(12\, \mathcal{G})$ 设 $\{p_n\}_{n\in\mathbb{N}}, \{q_n\}_{n\in\mathbb{N}}$ 是通项恒不为零的数列, 满足 $\lim_{n\to\infty} \frac{q_n}{q_n-q_{n-1}}\cdot \frac{p_n-p_{n-1}}{p_n}=c,$ $c\in\mathbb{R}.$
 - (1) 假设数列 $\{q_n\}_{n\in\mathbb{N}}$ 单调递增且 $\lim_{n\to\infty}q_n=+\infty$,请证明: 对任意数列 $\{a_n\}_{n\in\mathbb{N}}$,若极限 $\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{1}{p_n}\sum_{k=1}^np_ka_k=B$ 存在,那么极限 $\lim_{n\to\infty}\frac{1}{q_n}\sum_{k=1}^nq_ka_k$ 也必存在,且等于 Bc. (提示: 由 $b_n=\frac{1}{p_n}\sum_{k=1}^np_ka_k$ 反推 a_n 的表达式,并代入 $\frac{1}{q_n}\sum_{k=1}^nq_ka_k$ 中进行分析.)
 - $(2) \ \ \mbox{ 设级数} \sum_{n=1}^{\infty} a_n \ \mbox{ 收敛}, \{q_n\}_{n\in\mathbb{N}} \ \mbox{ 单调递增且} \lim_{n\to\infty} q_n = +\infty, \ \mbox{证明} \lim_{n\to\infty} \frac{1}{q_n} \sum_{k=1}^n q_k a_k = 0.$
 - (3) 设级数 $\sum_{n=1}^{\infty}a_n$ 收敛, 并且 $\{a_n\}_{n\in\mathbb{N}}$ 单调递减, 证明 $\lim_{n\to\infty}na_n=0$.
 - (4) 设级数 $\sum_{n=1}^{\infty}a_n$ 收敛,并且 $\{na_n\}_{n\in\mathbb{N}}$ 单调递减,证明 $\lim_{n\to\infty}na_n\sum_{k=1}^n\frac{1}{k}=0$,并由此进一步证明 $\lim_{n\to\infty}(n\ln n)a_n=0$.