

Bases de Datos a Gran Escala

Master Universitario en Tecnologías de Análisis de Datos Masivos: Big Data Escola Técnica Superior de Enxeñaría (ETSE) Universidade de Santiago de Compostela (USC)

MongoDB

José R.R. Viqueira

Centro Singular de Investigación en Tecnoloxías Intelixentes (CITIUS) Rúa de Jenaro de la Fuente Domínguez,

15782 - Santiago de Compostela.

Despacho: 209 **Telf**: 881816463

Mail: jrr.viqueira@usc.es

Skype: jrviqueira

URL: https://citius.gal/team/jose-ramon-rios-viqueira

Curso 2022/2023

Guion

- **■** Introducción
- Modelado de Datos
- Replicación
- **■** Particionamiento (Sharding)
- Consistencia

Introducción

Estructura anidada compuesta de pares (campo, valor)

Introducción

Base de datos de documentos

Modelado

Documento

Replicación

Valores complejos

Sharding

Otros documentos anidados

Similar a objetos **JSON**

- _ Arrays
- Arrays de documentos

```
field: value
age: 26,
status: "A",
groups: [ "news", "sports" ]
field: value
field: value
field: value
field: value
field: value
```

- Almacenamiento
 - Colecciones de documentos
 - > vistas de solo lectura y vistas materializadas
- Ventajas
 - Correspondencia con estructuras usadas en lenguajes de programación
 - Reducción de la necesidad de realizar JOINS
 - **Esquema dinámico**
 - _ Proporciona polimorfismo fluido.

Introducción

Introducción

Alto rendimiento en la persistencia de datos

Uso de un modelo anidado: Permite reducir el coste de E/S

lndexación: Permite usar claves de documentos anidados y arrays.

Lenguaje de consulta expresivo

Operaciones de lectura y escritura (CRUD)

Agregación

Consultas de texto completo y geoespaciales.

Alta disponibilidad

Replica set: Grupo de servidores con el mismo conjunto de datos

Recuperación automática ante fallos

Redundancia de datos

Escalabilidad horizontal

El particionamiento (sharding) distribuye los datos entre máquinas

> Se pueden crear zonas de datos (usando los valores de la clave)

Varios motores de almacenamiento

Replicación

Modelado

Sharding

Introducción

Modelado

Replicación

Sharding

Consistencia

Durante el diseño del modelo de datos, tener en cuenta

- Estructura inherente a los propios datos

Flexibilidad en el esquema

- > Las colecciones de MongoDB no necesitan tener un esquema declarado
 - No es necesario que tengan los mismos campos con los mismos tipos de dato.
 - Para modificar el esquema (añadir campos, etc.) solo es necesario realizar las modificaciones necesarias en los datos.
- Cada documento se puede adaptar así a un objeto concreto, sin que todos los objetos tengan que ser idénticos en estructura
- En la práctica los documentos de una colección serán similares
 - Se pueden realizar validaciones de esquema si es necesario

Introducción

Modelado

Replicación

Sharding

Consistencia

Estructura de los documentos

- Decisión de diseño clave
 - Definir la estructura de los documentos y la representación de las relaciones entre datos

Datos Anidados

- Los datos relacionado se almacenan en un único documento de estructura más compleja.
- Un campo puede tener varias campos dentro o arrays

Introducción

Estructura de los documentos

Referencias

_ También se pueden almacenar relaciones entre documentos con referencias.

Modelado

Replicación

Sharding

Introducción

Modelado

Replicación

Sharding

Consistencia

Atomicidad y operaciones de escritura

- Atomicidad a nivel de documento
 - _ Una operación de escritura es atómica a nivel de cada documento.
 - El uso de los agregados simplifica la atomicidad
 - Si una operación modifica varias documentos, la operación en su conjunto no es atómica
 - Se pueden entrelazar otras operaciones
- Transacciones sobre varios documentos
 - Se pueden ejecutar cuando se necesita atomicidad al gestionar (leer y escribir) varios documentos

Impacto de la estructura definida en el rendimiento

- Considerar la forma de acceso durante el diseño.
- Usar también de forma apropiada la indexación

Validación del esquema

- Se pueden especificar reglas de validación al crear una colección
 - Se pueden aplicar de forma más o menos estricta y también generar errores o avisos (warnings)
- Soporte para JSON Schema desde la versión 3.6

Introducción

Modelado

Introducción

- Replica set: grupo de procesos mongod que mantienen el mismo conjunto de datos.
- > Proporciona redundancia y alta disponibilidad

Replicación

Redundancia y disponibilidad de los datos

- - _ Tolerancia ante el fallo de algún servidor
- > Se puede mejorar la localidad de los datos y la disponibilidad de los mismos

Sharding

Introducción

Modelado

Replicación

Consistencia

Replicación en MongoDB

- - _ Un nodo primario
 - Varios nodos secundarios
 - Opcionalmente un nodo arbiter
- Nodo primario
 - Recibe todas las escrituras
- Nodos Secundarios
 - Replican los cambios que se van produciendo en el primario
 - _ Si el primario falla, uno de los secundarios puede ser elegido como primario
- Nodo Arbiter
 - Participa en las elecciones pero no tiene datos
 - No pueden transformarse en secundarios o primarios

Primary

Heartbeat

Arbiter

Secondary

Introducción

Modelado

Replicación

Consistencia

Replicación asíncrona

- Los nodos secundarios replican los cambios de los primarios de forma asíncrona.
- Existe cierto retraso entre que un cambio se hace en el primario y se replica en todos los secundarios
 - Para limitar este retraso se puede limitar el ratio de modificaciones que acepta el primario
- Recuperación automática ante fallos
 - Cuando el primario no responde durante cierto tiempo, los secundarios eligen otro primario

Introducción

Modelado

Replicación

- Operaciones de lectura
 - > Por defecto se realizan del primario.
 - Los clientes pueden indicar como preferencia de lectura hacerlo desde un secundario
 - Los secundarios pueden no tener los últimos cambios del primario
 - Las transacciones multi-documento deben de leer preferentemente del primario. Todas las operaciones deben de guiarse hacia el mismo miembro.
 - Dependiendo del compromiso de lectura usado, los clientes pueden ver cambios antes de que estén confirmado (durables).
 - _ Si se usa el compromiso "local" o "available" se pueden leer datos con cambios que pueden todavía deshacerse.

Introducción

Modelado

Replicación

Sharding

Consistencia

Transacciones

- Las cambios no serán visibles hasta que se compromete
- Si se escriben varias particiones (shards), otro lector podría ver los cambios en una y no los cambios en otra.

Otras características

- Subscripción a flujos de cambios
- > Se puede controlar la forma de elegir primarios
- > Se pueden desplegar miembros en centros de datos distintos
- > Se pueden dedicar miembros para backup, etc.

Introducción

Modelado

Replicación

Sharding

Introducción

- Distribución de los datos entre varias máquinas
 - Gran volumen de datos
 - _ Muchas operaciones por segundo
- Escalamiento vertical
 - _ Incrementar la capacidad de un único servidor (CPU, RAM, etc.).
 - Límite en las capacidades del hardware actual.
- Escalamiento horizontal
 - Particionar los conjuntos de datos para ser repartidos entre múltiples servidores.
 - Añadir nuevos servidores es en general más sencillo que mejorar el hardware de un servidor.
 - La contrapartida es la mayor complejidad de la infraestructura y del mantenimiento

Introducción

Modelado

Replicación

Sharding

Cluster particionado (Sharded Cluster) en MongoDB

- Componentes
 - Shards: Puede ser un simple proceso o un replica set. Contiene los datos de una partición
 - _ mongos: Enrutador de consultas. Interfaz entre los clientes y el cluster.
 - config server: Almacenan los metadatos y la información de configuración del cluster

Introducción

Modelado

Replicación

Sharding

- Clave de particionamiento (Shard key)
 - Un campo o varios campos del documento
 - Determina como se distribuyen los documentos en las particiones (shards)
 - Debe de existir un índice que empieza por la clave de particionamiento
- Chunks
- Balanceador
 - Para lograr una distribución uniforme de los chuncks en el cluster un balanceador se ejecuta en segundo plano para mover chuncks entre los shards
- Ventajas del particionamiento
 - Distribución de lecturas y escrituras entre los shards. Consultas sobre la clave se pueden dirigir a shards concretos
 - El espacio de almacenamiento se incremente añadiendo nuevos shards

Introducción

Modelado

Replicación

Sharding

Consistencia

Consideraciones antes del particionamiento

La complejidad de la infraestructura demanda cierta planificación para la

ejecución y el mantenimiento

Una vez se particiona, no se puede desparticionar

Una base de datos puede tener colecciones particionadas y no particionadas

primario

 La conexión con un cluster particionado se hace a través de mongos

Shard A

Shard B

Introducción

Modelado

Replicación

Sharding

Consistencia

Estrategia de particionamiento

Hashed Sharding

 Se evalúa una función hash sobre la clave.
 Cada chunk almacena documentos para un rango de valores resultantes del hash.

- Consiguen buena distribución sobre todo cuando se aplican sobre claves que cambian monotónicamente.
- Las búsquedas por rango pueden necesitar acceder va muchos chunks

Ranged Sharding

- Los chunks se construyen sobre rangos de la clave
- Las búsquedas por rango se pueden dirigir a shards concretos

La elección de la clave es muy importante para conseguir una buena distribución

Introducción

Modelado

Replicación

Sharding

Consistencia

Elección de la clave

Cardinalidad

 Si elegimos una clave con pocos valores diferentes tendremos el problema de que el cluster podrá tener pocos shards

Frecuencia

- La distribución de los valores de la clave influye.
- _ Si los valores están muy concentrados
 - los datos se almacenarían en unos pocos chuncks
 - los accesos a los shards no estarían bien distribuídos, que es lo que se busca
- Lo ideal sería tener una distribución uniforme de las claves

Monotonicidad

- Si la clave crece o decrece de forma monotónica
 - la mayoría de documentos irán a shards que almacenan valores extremos

Introducción

Modelado

Replicación

Sharding

Zonas en clusters particionados

- Cuando un cluster se expande por varios centros de datos las zonas pueden ayudar a mejorar la localidad de los datos
- Las zonas se crean en función de la clave de particionamiento
- Cada zona se puede asociar con uno o varias particiones (shards) del cluster
- El balanceador mueve chunks de una zona solo a shards de la misma zona

Introducción

Modelado

Replicación

Sharding

Consistencia

Preferencias de lectura y compromisos de lectura y escritura

- Impacto en la consistencia
- Compromiso entre consistencia y disponibilidad
- Preferencias de lectura
 - https://docs.mongodb.com/manual/core/read-preference/
 - Se puede especificar en la conexión y cambiar en la Shell
 - _ db.getMongo().setReadPref('nearest')
 - Opciones
 - _ primary (opción por defecto): Se lee del nodo primario del replica set.
 - primaryPreferred: Intenta en el primario y si no puede lee del secundario
 - secondary: Se lee de un nodo secundario.
 - secondaryPreferred: Intenta en el secundario, y si no puede lee del primario
 - _ nearest: Lee de cualquier nodo intentando minimizar un cálculo de latencia previo

Introducción

Modelado

Replicación

Sharding

Consistencia

Consistencia causal

- https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/#
- Las operaciones futuras ven el efecto de operaciones pasadas.
 - _ Ejemplo: Después de hacer un borrado, no de debería de poder leer el dato borrado.
- ▷ En MongoDB se puede conseguir dentro de una sesión de usuario.
 - Usando compromiso "majority" en lecturas y escrituras.
- Garantías proporcionadas
 - Read your writes: Lectura posterior leer el valor actualizado por una escritura anterior.
 - _ Monotonic reads: Lectura no puede obtener estado previo a una lectura anterior.
 - _ Monotonic writes: Las escrituras se ejecutan en orden.
 - Writes follow reads: Las escrituras que se solicitan después de la lectura se ejecutan en ese orden
- No se proporciona aislamiento entre las operaciones de una sesión y otras sesiones de usuario.

Introducción

Modelado

Replicación

Sharding

Consistencia

Compromiso de lectura (Read Concern)

- https://docs.mongodb.com/manual/reference/read-concern/
- > Se puede especificar en las operaciones de lectura (find, count, distinct, etc.)
 - _ db.collection.find().readConcern('majority')
- Niveles
 - local (defecto en lecturas de primario en sesiones de consistencia causal)
 - No se verifica que se haya escrito en la mayoría de nodos.
 - _ available (defecto en lecturas de secundario fuera de consistencia causal)
 - No se verifica escritura en mayoría de nodos. Latencia menor cuando hay sharding (solo cuando hay sharding se diferencia del nivel "local". No espera a tener consistencia en la particiones.
 - majority: Lee datos que han sido comprometidos en la mayoría de replicas. Datos leídos son durables.
 - linearizable: Obtiene datos comprometidos. Puede tener que esperar por escrituras en curso. No se puede usar en transacciones. Solo en lecturas del primario.
 - snapshot: Solo se puede usar con transacciones. Lee datos comprometidos por la mayoría.

Introducción

Modelado

Replicación

Sharding

- Compromiso de escritura (Write Concern)
 - https://docs.mongodb.com/manual/reference/write-concern/
 - Se especifica usando una estructura los siguientes campos
 - _ w: Nivel de compromiso de escritura
 - w:1 Se necesita confirmación de escritura en el primario. Las escrituras en los secundarios se hacen después de forma asíncrona
 - w:0 No requiere confirmación de escritura alguna.
 - w:número mayor que 1 Confirmación en el primario y varios secundarios (w:2 confirma el primario y un secundario)
 - w:majority Confirmación de la mayoría de nodos
 - w:nodo Confirmación de un nodo concreto.
 - j: Confirmación de que se ha escrito en el on-disk journal (registro histórico o log de MongoDB)
 - wtimeout: Solo cuando w>1. Si se sobrepasa el tiempo indicado se genera un error.
 - Se puede especificar a nivel de transacción o a nivel de operación. Se puede especificar de forma global

```
db.adminCommand(
    {
        setDefaultRWConcern : 1,
        defaultReadConcern: { <read concern> },
        defaultWriteConcern: { <write concern> },
        writeConcern: { <write concern> },
        comment: <any>
        }
    )sd
```


Bases de Datos a Gran Escala

Master Universitario en Tecnologías de Análisis de da Datos Masivos: Big Data Escola Técnica Superior de Enxeñaría (ETSE) Universidade de Santiago de Compostela (USC)

MongoDB

https://docs.mongodb.com/manual/

José R.R. Viqueira

Centro Singular de Investigación en Tecnoloxías Intelixentes (CITIUS) Rúa de Jenaro de la Fuente Domínguez, 15782 - Santiago de Compostela.

Despacho: 209 **Telf**: 881816463

Mail: jrr.viqueira@usc.es

Skype: jrviqueira

URL: https://citius.gal/team/jose-ramon-rios-viqueira

Curso 2022/2023