Summerizing relationships and tidying and joining data

Seung-Ho An, University of Arizona

Agenda

- Housekeeping
- Z-scores and standardization
- Correlation
- Writing our own functions
- Causality review
- Pivoting data longer
- Joining data sets

SQL like functions to find a match (we will cover this during the lecture)

SQL like functions to find a match (we will cover this during the lecture)

Easier tab functions: prop.table(); this is also a tidyway

SQL like functions to find a match (we will cover this during the lecture)

Easier tab functions: prop.table(); this is also a tidyway pull() pulls a vector from an object. It works like a \$ under pipes

(last week's example)

SQL like functions to find a match (we will cover this during the lecture)

Easier tab functions: prop.table(); this is also a tidyway pull() pulls a vector from an object. It works like a \$ under pipes (last week's example)

 You can also call a vector/variable/column with pull() (e.g., pull(.data, var))

SQL like functions to find a match (we will cover this during the lecture)

Easier tab functions: prop.table(); this is also a tidyway pull() pulls a vector from an object. It works like a \$ under pipes (last week's example)

 You can also call a vector/variable/column with pull() (e.g., pull(.data, var))

Here is the link for the another example from Gruber on the powerful DiD tool

This link will expire in a couple of weeks

1. Z-scores and standardization

COVID vaccination rates and votes

```
##
     fips county
                         state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
     <chr> <chr>
                        <chr>
                                        <db1>
                                               <db1>
                                                      <dbl>
                                                             <dbl>
                                                                    <db1>
##
  1 26039 Crawford County MI
                                         55.7
                                                77.3 31.2
                                                              43.8
                                                                     34.0
  2 40015 Caddo County
                         OK
                                         83.3
                                                95
                                                     30.3
                                                             46.4 27.1
## 3 17007 Boone County
                         TI.
                                        71.1
                                                94.5 35.1
                                                              41.8 42.2
## 4 12055 Highlands County FL
                                         68.9
                                                93.7
                                                     24.7
                                                              40.3 32.5
## 5 34029 Ocean County
                         N.T
                                         71
                                                      32.1
                                                              47.2
                                                                     35.0
## 6 01067 Henry County
                        AL
                                         58.5
                                                85.5
                                                     18.2
                                                              40.1 28.0
## 7 27037 Dakota County
                                         81
                                                95
                                                      49.5
                                                              46.9
                                                                     55.7
## 8 27115 Pine County
                                                      31.7
                         MN
                                         56.5
                                                85
                                                              47.0
                                                                     33.9
## 9 51750 Radford city
                         VA
                                         41.5
                                                73.8
                                                     1.79
                                                              46.4
                                                                     53.1
## 10 22009 Avoyelles Parish LA
                                         59.7
                                                80.1
                                                      21.9
                                                              45.7
                                                                     28.8
## # ... with 3,104 more rows, and abbreviated variable names
## #
      1: one_dose_5plus_pct, 2: one_dose_65plus_pct, 3: booster_5plus_pct,
## # 4: dem_pct_2000, 5: dem_pct_2020
```

Is 60% vaccnated a lot?

• How large 60% vaccinated is depends on the distribution!

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group
- Can we transform the values of our variables to be common units?

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:
 - Centering: subtract the mean of the variable from each value

- How large 60% vaccinated is depends on the distribution!
 - Clear to see from the histogram
 - Middling for the 5+ group, but very low for the 65+ group
- Can we transform the values of our variables to be common units?
- Yes, with two transformations:
 - Centering: subtract the mean of the variable from each value
 - Scaling: dividing deviations from the mean by the standard deviation

Original distributions

Centered distributions

Centered and scaled distributions

Z-scores

 Centering tells us immediately if a value is above or below the mean

Z-scores

- Centering tells us immediately if a value is above or below the mean
- Scaling tells us how many standard deviations away from the mean it is

- Centering tells us immediately if a value is above or below the mean
- Scaling tells us how many standard deviations away from the mean it is
- Combine them with the **z-score** transformation:

z-score of
$$x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$$

- Useful heuristic: data more than 3 SDs away from its mean are rare

Z-score example

```
mutate(one_dose_centered = one_dose_5plus_pct -
          mean(one_dose_5plus_pct, na.rm=TRUE)) |>
 select(fips:state, one_dose_5plus_pct, one_dose_centered)
## # A tibble: 3,114 x 5
##
    fips county
                            state one_dose_5plus_pct one_dose_centered
##
     <chr> <chr>
                            <chr>>
                                              <dbl>
                                                                <dbl>
##
   1 26039 Crawford County
                           MΙ
                                               55.7
                                                                -7.35
##
   2 40015 Caddo County
                            ΠK
                                               83.3
                                                                20.2
##
   3 17007 Boone County
                           IL
                                               71.1
                                                                8.05
##
   4 12055 Highlands County FL
                                               68.9
                                                                5.85
##
   5 34029 Ocean County
                            N.T
                                               71
                                                                7.95
##
   6 01067 Henry County
                          ΑL
                                               58.5
                                                                -4.55
## 7 27037 Dakota County
                           MN
                                               81
                                                               17.9
## 8 27115 Pine County
                            MN
                                               56.5
                                                              -6.55
## 9 51750 Radford city
                          VA
                                               41.5
                                                              -21.6
## 10 22009 Avoyelles Parish LA
                                               59.7
                                                                -3.35
```

covid votes |>

... with 3,104 more rows

Z-score example

```
covid votes |>
 mutate(
   one dose z =
     (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm=TRUE)) /
     sd(one_dose_5plus_pct, na.rm=TRUE)) |>
 select(fips:state, one dose 5plus pct, one dose z)
## # A tibble: 3,114 x 5
##
     fips county
                           state one_dose_5plus_pct one_dose_z
## <chr> <chr>
                          <chr>>
                                            <dbl>
                                                       <dbl>
## 1 26039 Crawford County MI
                                             55.7
                                                      -0.508
##
   2 40015 Caddo County
                          ΠK
                                             83.3 1.40
   3 17007 Boone County
                          TT.
                                             71.1
                                                      0.556
##
## 4 12055 Highlands County FL
                                             68.9
                                                      0.404
   5 34029 Ocean County
                          N.T
                                             71
                                                      0.549
##
##
   6 01067 Henry County
                          ΑL
                                             58.5
                                                      -0.314
## 7 27037 Dakota County
                          MN
                                             81
                                                      1.24
## 8 27115 Pine County
                          MN
                                             56.5
                                                      -0.452
## 9 51750 Radford city
                          VA
                                             41.5
                                                      -1.49
## 10 22009 Avoyelles Parish LA
                                             59.7
                                                      -0.231
## # ... with 3.104 more rows
```

• How do variables move together on average?

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}[(\mathsf{z}\text{-score for }x_i)\times(\mathsf{z}\text{-score for }y_i)]$$

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}[(\text{z-score for }x_i)\times(\text{z-score for }y_i)]$$

• Interpretation:

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1} \sum_{i=1}^{n} [(\text{z-score for } x_i) \times (\text{z-score for } y_i)]$$

- Interpretation:
 - Correlation is between -1 and 1

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1} \sum_{i=1}^{n} [(\text{z-score for } x_i) \times (\text{z-score for } y_i)]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1} \sum_{i=1}^{n} [(\text{z-score for } x_i) \times (\text{z-score for } y_i)]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association
 - Positive correlations pprox positive associations

Correlation

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the **correlation coefficient**:

$$\frac{1}{n-1} \sum_{i=1}^{n} [(\text{z-score for } x_i) \times (\text{z-score for } y_i)]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association
 - Positive correlations \approx positive associations
 - Negative correlations ≈ negative associations

Correlation

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: When x_i is big, y_i is also big
 - Negative correlation: When x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the **correlation coefficient**:

$$\frac{1}{n-1}\sum_{i=1}^{n}[(\text{z-score for }x_i)\times(\text{z-score for }y_i)]$$

- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association
 - Positive correlations pprox positive associations
 - Negative correlations \approx negative associations
 - Closer to -1 or 1 means stronger association

Large values of X tend to occur with large values of Y:

Large values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) × (z-score for y_i) = (pos. num.) × (pos. num) = +

Large values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (pos. num) = +

Small values of X tend to occur with small values of Y:

Large values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (neg. num.) \times (neg. num) = +

Large values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (pos. num) = +

Small values of X tend to occur with small values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (neg. num.) \times (neg. num) = +

If these dominate \approx positive correlation

Large values of X tend to occur with small values of Y:

Large values of X tend to occur with small values of Y:

$$(z$$
-score for $x_i) \times (z$ -score for $y_i) = (pos. num.) \times (neg. num) = -$

Large values of X tend to occur with small values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (neg. num) = -

Small values of X tend to occur with large values of Y:

Large values of X tend to occur with small values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (neg. num.) \times (pos. num) = -

Large values of X tend to occur with small values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (pos. num.) \times (neg. num) = -

Small values of X tend to occur with large values of Y:

(z-score for
$$x_i$$
) \times (z-score for y_i) = (neg. num.) \times (pos. num) = -

If these dominate \approx negative correlation

Correlation examples

19 / 66

• Correlation measures linear association

- Correlation measures linear association
- Order doesn't matter: cor(x,y) = cor(y,x)

- Correlation measures linear association
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:

- Correlation measures linear association
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)

- Correlation measures linear association
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)
 - Celsius vs. Fahrenheit: dollars vs. pesos; cm vs. in.

All 4 relationships have 0.816 correlation

21 / 66

Correlation in R

```
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020)

## [1] NA

Missing values: set the use = "pairwise" -> available case analysis
cor(covid_votes$one_dose_5plus_pct, covid_votes$dem_pct_2020, use="pairwise")
```

Use the cor() function:

Comparing correlations

```
covid_votes |>
  ggplot(aes(x = dem_pct_2020, y = one_dose_5plus_pct)) +
  geom_point(alpha = 0.5)
 75 -
one_dose_5plus_pct
 25 -
                           25
                                           dem_pct_2020
```

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2020, use="pairwise")

Comparing correlations

```
covid_votes |>
  ggplot(aes(x = dem_pct_2000, y = one_dose_5plus_pct)) +
  geom_point(alpha = 0.5)
 75 -
one_dose_5plus_pct
 25 -
                         25
                                           dem_pct_2000
                                                                            75
```

cor(covid_votes\$one_dose_5plus_pct, covid_votes\$dem_pct_2000, use="pairwise")

Comparing correlations

```
covid_votes |>
  ggplot(aes(x = dem_pct_2020, y = one_dose_65plus_pct)) +
  geom_point(alpha = 0.5)
 80 -
one_dose_65plus_pct
 40 -
 20 -
                            25
                                                                             75
                                             dem_pct_2020
```

cor(covid_votes\$one_dose_65plus_pct, covid_votes\$dem_pct_2020, use="pairwise")

3. Writing our own functions.

Why write functions?

copy-pasting codes is tedious and prone to failure:

```
covid votes |>
 mutate(
    one_dose_5p_z=
      (one_dose_5plus_pct - mean(one_dose_5plus_pct, na.rm = TRUE)) /
      sd(one_dose_5plus_pct, na.rm=TRUE),
    one dose 65p z=
      (one_dose_65plus_pct - mean(one_dose_65plus_pct, na.rm = TRUE)) /
      sd(one_dose_65plus_pct, na.rm=TRUE),
    booster z =
      (booster_5plus_pct - mean(booster_5plus_pct, na.rm = TRUE)) /
      sd(booster_5plus_pct, na.rm=TRUE),
    dem pct 2000 z =
      (dem_pct_2000 - mean(dem_pct_2000, na.rm = TRUE)) /
      sd(dem pct 2000, na.rm = TRUE),
    dem_pct_2020_z =
      (dem_pct_2020 - mean(dem_pct_2020, na.rm = TRUE)) /
      sd(dem_pct_2020, na.rm = TRUE)
```

Writing a new function

Notice that all of the mutations follow the same template:

```
(x- mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
```

Only one thing varies: the column (or the vector) of data (variable), represented with \boldsymbol{x}

We create functions like so:

```
name <- function(arguments) {
  body
}</pre>
```

We create functions like so:

```
name <- function(arguments) {
  body
}</pre>
```

Three components:

We create functions like so:

```
name <- function(arguments) {
  body
}</pre>
```

Three components:

• Name: the name of the function that we'll use to call it. Maybe z_score?

We create functions like so:

```
name <- function(arguments) {
  body
}</pre>
```

Three components:

- Name: the name of the function that we'll use to call it. Maybe z_score?
- 2 Arguments: things that we want to vary across calls of our function. We will use x

We create functions like so:

```
name <- function(arguments) {
  body
}</pre>
```

Three components:

- Name: the name of the function that we'll use to call it. Maybe z_score?
- 2 Arguments: things that we want to vary across calls of our function. We will use x
- 3 Body: the code that the function performs

Our first function

Convert our template to a function:

```
z_score <- function(x){
  (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}</pre>
```

Our first function

Convert our template to a function:

```
z_score <- function(x){
  (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}</pre>
```

Let's check this if it works:

```
z_score(c(1, 2, 3, 4, 5))
```

Now, cleaning up our code

```
covid_votes |>
 mutate(
   one_dose_5p_z=z_score(one_dose_5plus_pct),
   one dose 65p z=z score(one dose 65plus pct),
   booster z =z score(booster 5plus pct).
   dem_pct_2000_z =z_score(dem_pct_2000),
   dem_pct_2020_z =z_score(dem_pct_2020)
## # A tibble: 3,114 x 13
##
     fips county state one d~1 one d~2 boost~3 dem p~4 dem p~5 one d~6 one d~7
     <chr> <chr>
                    <chr>
                            <dbl>
                                    <dbl>
                                           <dbl>
                                                   <db1>
                                                          <dbl>
                                                                  <dbl>
##
                                                                          <db1>
  1 26039 Crawford~ MI
                             55.7
                                   77.3
                                           31.2
                                                    43.8
                                                           34.0 -0.508 -0.829
                                           30.3
## 2 40015 Caddo Co~ OK
                             83.3
                                    95
                                                    46.4
                                                           27.1 1.40
                                                                         0.843
## 3 17007 Boone Co~ IL
                             71.1
                                  94.5
                                           35.1
                                                    41.8
                                                          42.2 0.556 0.795
  4 12055 Highland~ FL
                             68.9
                                    93.7
                                           24.7
                                                    40.3
                                                           32.5 0.404 0.720
                                                    47.2
## 5 34029 Ocean Co~ NJ
                             71
                                     95
                                           32.1
                                                           35.0 0.549 0.843
## 6 01067 Henry Co~ AL
                             58.5
                                    85.5
                                           18.2
                                                    40.1
                                                           28.0 -0.314 -0.0545
## 7 27037 Dakota C~ MN
                                     95
                                           49.5
                                                    46.9
                                                           55.7 1.24 0.843
                             81
  8 27115 Pine Cou~ MN
                             56.5
                                     85
                                           31.7
                                                    47.0
                                                           33.9 -0.452 -0.102
## 9 51750 Radford ~ VA
                             41.5
                                    73.8
                                           1.79
                                                    46.4
                                                           53.1 -1.49 -1.16
## 10 22009 Avoyelle~ LA
                             59.7
                                    80.1
                                           21.9
                                                    45.7
                                                           28.8 -0.231 -0.564
## # ... with 3,104 more rows, 3 more variables: booster_z <dbl>,
## #
      dem pct 2000 z <dbl>, dem pct 2020 z <dbl>, and abbreviated variable names
      1: one_dose 5plus_pct, 2: one_dose 65plus_pct, 3: booster_5plus_pct,
## #
      4: dem pct 2000, 5: dem pct 2020, 6: one dose 5p z, 7: one dose 65p z
## #
```

If we want to replace our variables with z-scores, we can use the across() function to perform many mutations at once:

```
covid votes |>
 mutate(across(one dose 5plus pct:dem pct 2020, z score))
## # A tibble: 3.114 x 8
     fips county
                          state one dose 5plus~1 one d~2 boost~3 dem p~4 dem p~5
##
     <chr> <chr>>
                          <chr>>
                                          <dh1>
                                                  <dh1>
                                                         <dh1>
                                                                 <dh1>
                                                                        <dh1>
## 1 26039 Crawford County
                                         -0.508 -0.829
                                                        0.531 0.340
                                                                       0.0471
## 2 40015 Caddo County
                          ΩK
                                         1.40 0.843 0.439 0.556 -0.387
## 3 17007 Boone County
                          TI.
                                         0.556 0.795 0.927 0.163
                                                                       0.563
## 4 12055 Highlands County FL
                                         0.404 0.720
                                                        -0.135 0.0402 -0.0487
## 5 34029 Ocean County
                                         0.549 0.843
                                                        0.623 0.624
                                                                       0.109
## 6 01067 Henry County
                                        -0.314 -0.0545
                                                        -0.799 0.0255 -0.328
## 7 27037 Dakota County
                         MN
                                         1.24 0.843
                                                        2.40 0.598
                                                                      1.41
## 8 27115 Pine County
                                        -0.452 -0.102 0.577 0.612 0.0393
   9 51750 Radford city
                                        -1.49 -1.16
                                                        -2.47
                                                               0.556 1.25
## 10 22009 Avovelles Parish LA
                                         -0.231 -0.564
                                                        -0.424 0.501 -0.280
## # ... with 3.104 more rows, and abbreviated variable names
      1: one dose 5plus pct, 2: one dose 65plus pct, 3: booster 5plus pct,
      4: dem pct 2000, 5: dem pct 2020
```

Alternative approach

We could also target all the numeric variables:

```
covid_votes |>
 mutate(across(where(is.numeric), z score))
## # A tibble: 3.114 x 8
##
     fips county
                           state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
##
     <chr> <chr>
                           <chr>>
                                           <dh1>
                                                   <dh1>
                                                          <dbl>
                                                                  <dbl>
                                                                         <db1>
  1 26039 Crawford County
                           МΤ
                                          -0.508 -0.829
                                                         0.531 0.340
                                                                        0.0471
  2 40015 Caddo County
                           ΩK
                                                0.843 0.439 0.556 -0.387
                                           1.40
## 3 17007 Boone County
                                           0.556 0.795 0.927 0.163
                                                                        0.563
                           TI.
## 4 12055 Highlands County FL
                                           0.404 0.720
                                                         -0.135 0.0402 -0.0487
## 5 34029 Ocean County
                           N.J
                                          0.549 0.843
                                                         0.623 0.624
                                                                        0.109
## 6 01067 Henry County
                           AT.
                                         -0.314 -0.0545
                                                         -0.799 0.0255 -0.328
## 7 27037 Dakota County
                                          1.24 0.843
                                                          2.40
                                                                0.598
                                                                       1.41
## 8 27115 Pine County
                          MN
                                         -0.452 -0.102 0.577 0.612 0.0393
## 9 51750 Radford city
                           VA
                                         -1.49 -1.16
                                                         -2.47
                                                                0.556
                                                                       1.25
                                                         -0.424 0.501 -0.280
## 10 22009 Avovelles Parish LA
                                          -0.231 -0.564
## # ... with 3.104 more rows, and abbreviated variable names
      1: one dose 5plus pct, 2: one dose 65plus pct, 3: booster 5plus pct,
## #
      4: dem pct 2000, 5: dem pct 2020
```

Alternative approach

We could also target only the first dose variables:

```
covid_votes |>
 mutate(across(starts with("one dose"), z score))
## # A tibble: 3.114 x 8
##
     fips county
                          state one_dose_5plus~1 one_d~2 boost~3 dem_p~4 dem_p~5
##
     <chr> <chr>
                          <chr>>
                                           <dh1>
                                                  <db1>
                                                          <dbl>
                                                                 <db1>
                                                                         <db1>
## 1 26039 Crawford County
                           МΤ
                                          -0.508 -0.829
                                                         31.2
                                                                  43.8
                                                                          34.0
## 2 40015 Caddo County
                          ΩK
                                                 0.843
                                                         30.3
                                          1.40
                                                                  46.4
                                                                         27.1
## 3 17007 Boone County
                                          0.556 0.795
                                                         35.1
                                                                         42.2
                          TI.
                                                                  41.8
## 4 12055 Highlands County FL
                                          0.404 0.720
                                                         24.7
                                                                  40.3
                                                                         32.5
## 5 34029 Ocean County
                          N.J
                                         0.549 0.843
                                                         32.1
                                                                  47.2
                                                                         35.0
## 6 01067 Henry County
                          AT.
                                        -0.314 -0.0545
                                                         18.2
                                                                  40.1
                                                                         28.0
## 7 27037 Dakota County
                                         1.24 0.843
                                                         49.5
                                                                  46.9
                                                                         55.7
## 8 27115 Pine County
                         MN
                                         -0.452 -0.102
                                                         31.7
                                                                  47.0
                                                                         33.9
## 9 51750 Radford city
                          VA
                                                                  46.4 53.1
                                         -1.49 -1.16
                                                         1.79
## 10 22009 Avovelles Parish LA
                                          -0.231 -0.564
                                                         21.9
                                                                  45.7
                                                                         28.8
## # ... with 3.104 more rows, and abbreviated variable names
      1: one dose 5plus pct, 2: one dose 65plus pct, 3: booster 5plus pct,
## #
      4: dem pct 2000, 5: dem pct 2020
```

starts_with is a tidyway (tidyselect)

starts_with is a tidyway (tidyselect)
It looks for an exact match from the beginning of characters

starts_with is a tidyway (tidyselect)
It looks for an exact match from the beginning of characters
There are other functions too such as:

```
starts_with is a tidyway (tidyselect)
It looks for an exact match from the beginning of characters
There are other functions too such as:
ends_with(): ends with an exact suffix
```

starts_with is a tidyway (tidyselect)
It looks for an exact match from the beginning of characters
There are other functions too such as:
ends_with(): ends with an exact suffix
contains(): contains a literal string

```
starts_with is a tidyway (tidyselect)
It looks for an exact match from the beginning of characters
There are other functions too such as:
ends_with(): ends with an exact suffix
contains(): contains a literal string
matches(): matches a regular expression
```

starts_with is a tidyway (tidyselect)

It looks for an exact match from the beginning of characters

There are other functions too such as:

ends_with(): ends with an exact suffix

contains(): contains a literal string

matches(): matches a regular expression

num_range(): matches a numerical range like x01, x02, x03, etc.

Adding arguments to our function

What if we want to be able to control na.rm in the calls to mean() and sd() in our z_score function? Add an argument!

```
z_score2 <- function(x, na.rm = FALSE){
  (x - mean(x, na.rm = na.rm)) / sd(x, na.rm = na.rm)
}
head(z_score2(covid_votes$one_dose_5plus_pct))</pre>
```

```
## [1] NA NA NA NA NA NA NA NA head(z_score2(covid_votes$one_dose_5plus_pct, na.rm=TRUE))
## [1] -0.5076545 1.3982427 0.5557809 0.4038615 0.5488754 -0.3143026
```

4. Causality review

Potential outcomes

Potential outcomes:

Y_i(1) is the value that the outcome would take if gave unit i
treatment and changed nothing else about them

Potential outcomes

Potential outcomes:

- Y_i(1) is the value that the outcome would take if gave unit i
 treatment and changed nothing else about them
- Y_i(0) is the value that the outcome would take if gave unit i
 no treatment and changed nothing else about them

Potential outcomes

Potential outcomes:

- Y_i(1) is the value that the outcome would take if gave unit i
 treatment and changed nothing else about them
- Y_i(0) is the value that the outcome would take if gave unit i
 no treatment and changed nothing else about them
- Not the **possible values** of the outcome

COVID-19 vaccine trials

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Outcome: $Y_i = 1$ if acquired COVID after 12 weeks, $Y_i = 0$ if not

- What are the potential outcomes $Y_i(0)$ and $Y_i(1)$?
- Why not compare early volunteers for the vaccine to the overall population?

5. Pivoting data longer

Mortality data

```
library(TPDdata)
mortality
```

```
## # A tibble: 217 x 52
##
                   count~1 indic~2 `1972` `1973` `1974` `1975` `1976` `1977`
      country
##
      <chr>
                   <chr>
                           <chr>
                                    <dbl>
                                           <dbl>
                                                   <dbl>
                                                          <dbl>
                                                                 <dbl>
                                                                        <dbl>
    1 Aruba
                   ABW
                                     NA
                                            NA
                                                    NA
                                                           NA
                                                                  NA
                                                                         NA
##
                           Mortal~
##
    2 Afghanistan
                   AFG
                           Mortal~
                                    291
                                           285.
                                                   280.
                                                          274.
                                                                 268
                                                                        262.
                                                                               2
##
    3 Angola
                   AGO
                           Mortal~
                                     NA
                                            NA
                                                    NA
                                                           NA
                                                                  NA
                                                                         NA
##
    4 Albania
                   ALB
                           Mortal~
                                     NA
                                            NA
                                                    NA
                                                           NA
                                                                  NA
                                                                         NA
##
    5 Andorra
                   AND
                           Mortal~
                                     NΑ
                                            NA
                                                    NA
                                                           NΑ
                                                                  NA
                                                                         NA
##
   6 United Arab~ ARE
                           Mortal~
                                     80.1
                                            72.6
                                                   65.7
                                                          59.4
                                                                  53.6
                                                                         48.3
##
    7 Argentina
                   ARG
                           Mortal~
                                     69.7
                                            68.2
                                                    66.1
                                                           63.3
                                                                  59.8
                                                                         55.7
##
   8 Armenia
                   AR.M
                           Mortal~
                                     NΑ
                                            NA
                                                    NΑ
                                                           NA
                                                                  87.1
                                                                         83.6
    9 American Sa~ ASM
                           Mortal~
                                     NA
                                            NA
                                                    NA
                                                           NA
                                                                  NΑ
                                                                         NA
##
## 10 Antigua and~ ATG
                           Mortal~
                                     26.9
                                            25.1
                                                   23.5
                                                           22.1
                                                                  20.8
                                                                         19.5
## # ... with 207 more rows, 42 more variables: `1979` <dbl>, `1980` <dbl>,
## #
       `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>, `1985` <dbl>,
## #
       `1986` <dbl>, `1987` <dbl>, `1988` <dbl>, `1989`
                                                        <dbl>, `1990` <dbl>,
       `1991` <dbl>, `1992` <dbl>, `1993` <dbl>, `1994` <dbl>, `1995` <dbl>,
## #
## #
       `1996` <dbl>, `1997` <dbl>, `1998` <dbl>, `1999` <dbl>, `2000` <dbl>,
## #
       '2001' <dbl>, '2002' <dbl>, '2003' <dbl>, '2004' <dbl>, '2005' <dbl>,
## #
       '2006' <dbl>, '2007' <dbl>, '2008' <dbl>, '2009' <dbl>, '2010' <dbl>, ...
```

Pivoting longer

```
Mortality data in a "wide" format (years in columns)
We can convert this to country-year rows with pivot_longer()
mydata |>
  pivot_longer(
    cols = <variables to pivot>>,
    names_to = <new variable to put column names>,
    values_to = <new variable to put column values>
)
```

Pivoting the mortality data

```
mortality |>
  select(-indicator) |>
  pivot_longer(
    cols=`1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
)
```

```
## # A tibble: 10,633 x 4
     country_code year child_mortality
##
##
     <chr> <chr>
                          <chr>>
                                          dbl>
   1 Aruba
             ABW
                          1972
                                             NΑ
##
             ABW
                          1973
##
   2 Aruba
                                             NΑ
##
   3 Aruba ABW
                          1974
                                             NA
   4 Aruba
             ABW
                          1975
                                             NΑ
##
##
   5 Aruba
             ABW
                          1976
                                             NA
##
   6 Aruba
             ABW
                          1977
                                             NA
##
   7 Aruba
             ABW
                          1978
                                             NΑ
##
   8 Aruba
             ABW
                          1979
                                             NA
##
   9 Aruba
             ABW
                          1980
                                             NΑ
## 10 Aruba
             ABW
                                             NΑ
                          1981
## # ... with 10,623 more rows
```

Let's do line plots!

```
mortality |>
  select(-indicator) |>
  pivot_longer(
    cols=`1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
  ) |>
  ggplot(mapping = aes(x = year, y = child_mortality, groupgeom_line(alpha = 0.25)
```

Hmm, what's going on?

Making sure year is numeric

By default, pivoted column names are characters, but we can transform them:

```
mortality_long <- mortality |>
  select(-indicator) |>
  pivot_longer(
    cols=`1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
) |>
    mutate(year = as.integer(year))
mortality_long
```

```
## # A tibble: 10,633 x 4
##
      country country_code
                              year child_mortality
##
      <chr>
               <chr>>
                             <int>
                                              <dbl>
##
    1 Aruba
              ABW
                              1972
                                                 NA
    2 Aruba
              ABW
                              1973
                                                 NΑ
##
##
    3 Aruba
              ABW
                              1974
                                                 NA
              ABW
                              1975
##
    4 Aruba
                                                 NΑ
    5 Aruba
              ABW
                              1976
                                                 NΑ
##
##
    6 Aruba
              ABW
                              1977
                                                 NA
               ABW
                              1978
                                                 NΑ
##
    7 Aruba
##
               ABW
                              1979
                                                 NA
    8 Aruba
##
    9 Aruba
               ABW
                              1980
                                                 NA
```

Let's (re)do line plots!

```
mortality_long |>
  ggplot(mapping = aes(x = year, y = child_mortality, group= country)) +
  geom_line(alpha=0.25)
```

There we go

Spotify data

```
library(TPDdata)
spotify
## # A tibble: 490 x 54
                Track N~1 Artist week1 week2 week3 week4 week5 week6 week7 week8 week9 week10
##
                <chr>
                                            <chr> <dbl> 
##
           1 The Box
                                           Roddv~
##
                                                                          1
                                                                                           1
                                                                                                           1
                                                                                                                                                                                                               1
                                                                                                                                                                                                                                  1
          2 ROXANNE
                                           Arizo~
                                                                                                                                                                                                                               21
##
           3 Yummy
                                           Justi~
                                                                                                        17
                                                                                                                         17
                                                                                                                                         17
                                                                                                                                                          24
                                                                                                                                                                                                            NA
                                                                                                                                                                                                                               NA
                                                                                         7
##
          4 Circles
                                         Post ~
                                                                                                                         10
                                                                                                                                                          10
                                                                                                                                                                           11
                                                                                                                                                                                            10
                                                                                                                                                                                                            17
                                                                                                                                                                                                                               26
                                                                          5
                                                                                          5
                                                                                                        7
                                                                                                                         5
##
         5 BOP
                                           DaBaby
                                                                                                                                         11
                                                                                                                                                          12
                                                                                                                                                                          18
                                                                                                                                                                                           18
                                                                                                                                                                                                           32
                                                                                                                                                                                                                               47
          6 Falling
                                         Trevo~
                                                                          6
                                                                                                        10
                                                                                                                                           6
                                                                                                                                                                          10
                                                                                                                                                                                                           18
                                                                                                                                                                                                                               28
                                                                                                                                                                                           11
## 7 Dance Mo~ Tones~
                                                                                       13
                                                                                                        13
                                                                                                                         12
                                                                                                                                         12
                                                                                                                                                          13
                                                                                                                                                                          17
                                                                                                                                                                                           13
                                                                                                                                                                                                           21
                                                                                                                                                                                                                               33
        8 Bandit (~ Juice~
                                                                                       11
                                                                                                                         14
                                                                                                                                          15
                                                                                                        14
                                                                                                                                                          20
                                                                                                                                                                          27
                                                                                                                                                                                           26
                                                                                                                                                                                                           42
                                                                                                                                                                                                                               NA
          9 Futsal S- Lil U-
                                                                          9
                                                                                          9
                                                                                                        19
                                                                                                                         21
                                                                                                                                          24
                                                                                                                                                          32
                                                                                                                                                                          40
                                                                                                                                                                                           49
                                                                                                                                                                                                           NA
                                                                                                                                                                                                                               NA
## 10 everythi~ Billi~
                                                                       10
                                                                                       17
                                                                                                        28
                                                                                                                           9
                                                                                                                                            8
                                                                                                                                                          11
                                                                                                                                                                          14
                                                                                                                                                                                           17
                                                                                                                                                                                                            29
                                                                                                                                                                                                                               NA
## # ... with 480 more rows, 42 more variables: week11 <dbl>, week12 <dbl>,
## #
                   week13 <dbl>, week14 <dbl>, week15 <dbl>, week16 <dbl>, week17 <dbl>,
                  week18 <dbl>, week19 <dbl>, week20 <dbl>, week21 <dbl>, week22 <dbl>,
## #
## #
                   week23 <dbl>, week24 <dbl>, week25 <dbl>, week26 <dbl>, week27 <dbl>,
## #
                   week28 <dbl>, week29 <dbl>, week30 <dbl>, week31 <dbl>, week32 <dbl>,
                  week33 <dbl>, week34 <dbl>, week35 <dbl>, week36 <dbl>, week37 <dbl>,
## #
## #
                   week38 <dbl>, week39 <dbl>, week40 <dbl>, week41 <dbl>, week42 <dbl>, ...
```

Last approach isn't ideal because of the week prefix:

```
spotify |>
 pivot_longer(
   cols = c(-`Track Name`, -Artist),
   names_to = "week_of_year",
   values to = "rank"
## # A tibble: 25,480 x 4
##
   `Track Name` Artist week_of_year
                                          rank
##
     <chr>
                 <chr>
                            <chr>
                                          <dbl>
## 1 The Box
                 Roddy Ricch week1
                  Roddy Ricch week2
##
   2 The Box
##
   3 The Box
                  Roddy Ricch week3
## 4 The Box
                  Roddy Ricch week4
##
   5 The Box
                  Roddy Ricch week5
##
   6 The Box
                  Roddy Ricch week6
##
  7 The Box
                  Roddy Ricch week7
                  Roddy Ricch week8
## 8 The Box
   9 The Box
                  Roddy Ricch week9
##
                  Roddy Ricch week10
## 10 The Box
## # ... with 25,470 more rows
```

Removing a column name prefix

```
spotify |>
  pivot_longer(
    cols = c(-`Track Name`, -Artist),
    names to = "week of year",
    values_to = "rank",
   names_prefix = "week"
  ) |>
  mutate(
    week_of_year = as.integer(week_of_year)
```

Removing a column name prefix

```
## # A tibble: 25,480 x 4
     `Track Name` Artist week_of_year rank
##
##
     <chr>
                  <chr>
                                    <int> <dbl>
##
   1 The Box
                  Roddy Ricch
   2 The Box
                  Roddy Ricch
##
##
   3 The Box
                  Roddy Ricch
   4 The Box
##
                  Roddy Ricch
   5 The Box
                  Roddy Ricch
##
##
   6 The Box
                  Roddy Ricch
   7 The Box
                  Roddy Ricch
##
##
   8 The Box
                  Roddy Ricch
                  Roddy Ricch
##
   9 The Box
## 10 The Box
                  Roddy Ricch
                                       10
## # ... with 25,470 more rows
```

6. Joining datasets

Gapminder data

```
library(gapminder)
gapminder
```

```
## # A tibble: 1,704 x 6
##
                            year lifeExp
                                             pop gdpPercap
     country
                 continent
##
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                            <int>
                                                     <dbl>
   1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                      779.
##
##
   2 Afghanistan Asia
                            1957
                                    30.3 9240934
                                                      821.
##
   3 Afghanistan Asia
                            1962
                                    32.0 10267083
                                                      853.
##
   4 Afghanistan Asia
                            1967
                                    34.0 11537966
                                                      836.
##
   5 Afghanistan Asia
                            1972
                                    36.1 13079460
                                                      740.
##
   6 Afghanistan Asia
                            1977
                                    38.4 14880372
                                                      786.
   7 Afghanistan Asia
                            1982
                                    39.9 12881816
                                                      978.
##
##
   8 Afghanistan Asia
                            1987
                                    40.8 13867957
                                                      852.
##
   9 Afghanistan Asia
                            1992
                                    41.7 16317921
                                                      649.
## 10 Afghanistan Asia
                            1997
                                    41.8 22227415
                                                      635.
## # ... with 1,694 more rows
```

Joining data sets

What if we want to add the child_motality variable to the gapminder data?

Joining data sets

What if we want to add the child_motality variable to the gapminder data?

Just add the columns?

Joining data sets

What if we want to add the child_motality variable to the gapminder data?

Just add the columns?

```
gapminder |>
                                        mortality long |>
  select(country, year) |>
                                          select(country, year) |>
  head()
                                          head()
## # A tibble: 6 x 2
                                        ## # A tibble: 6 x 2
##
     country
                                        ##
                                             country
                 year
                                                     year
##
     <fct>
                <int>
                                        ##
                                             <chr>
                                                     <int>
                 1952
                                        ## 1 Aruba
                                                     1972
## 1 Afghanistan
## 2 Afghanistan
                1957
                                        ## 2 Aruba 1973
## 3 Afghanistan
                 1962
                                        ## 3 Aruba 1974
## 4 Afghanistan
                 1967
                                        ## 4 Aruba 1975
## 5 Afghanistan
                 1972
                                        ## 5 Aruba 1976
## 6 Afghanistan
                 1977
                                        ## 6 Aruba
                                                     1977
```

Rows are not aligned properly!

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data

• {country, year} in the gapminder data

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data

• {country, year} in the gapminder data

A foreign key is the corresponding variable(s) in another table

• {country, year} in the mortality_long data

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data

• {country, year} in the gapminder data

A foreign key is the corresponding variable(s) in another table

• {country, year} in the mortality_long data

If we align the two tables based on these variables, we can add variables from one to the other

Checking that the keys are unique

Things get weird if these keys are not unique. Let's check.

Checking primary key is unique

```
gapminder |>
  count(country, year) |>
  filter(n>1)
```

A tibble: 0 x 3

Checking foreign key is unique

```
mortality_long |>
  count(country, year) |>
  filter(n>1)
```

A tibble: 0 x 3

left_join(): add variables to primary table

left_join() keeps all rows from the first argument/piped data: gapminder |> left_join(mortality_long) |> select(country, year, lifeExp, pop, gdpPercap, child_mortality) |> head(n = 6)## Joining with `by = join_by(country, year)` ## # A tibble: 6 x 6 pop gdpPercap child_mortality ## country vear lifeExp ## <chr> <int> <dbl> <int> <dbl> <dbl> ## 1 Afghanistan 1952 28.8 8425333 779. NA ## 2 Afghanistan 1957 30.3 9240934 821. NΑ ## 3 Afghanistan 1962 32.0 10267083 853. NA ## 4 Afghanistan 1967 34.0 11537966 836. NΑ ## 5 Afghanistan 1972 740. 291 36.1 13079460 ## 6 Afghanistan 1977 38.4 14880372 786. 262.

Rows in primary table not in foreign table: new values are NA

inner_join(): add and filter

inner_join() adds the variables from the foreign table and dilters
to rows in both tables:

```
gapminder |>
 inner_join(mortality_long) |>
  select(country, year, lifeExp, pop, gdpPercap, child_mortality) |>
 head(n=6)
## Joining with 'by = join by(country, year)'
## # A tibble: 6 x 6
##
    country
             vear lifeExp
                               pop gdpPercap child_mortality
##
    <chr>
              <int>
                       <dbl>
                                <int>
                                         <dbl>
                                                        <dbl>
## 1 Afghanistan 1972
                        36.1 13079460
                                          740.
                                                         291
## 2 Afghanistan 1977 38.4 14880372
                                          786.
                                                         262.
## 3 Afghanistan 1982 39.9 12881816
                                          978.
                                                         231.
## 4 Afghanistan 1987 40.8 13867957
                                          852.
                                                         198.
## 5 Afghanistan 1992 41.7 16317921
                                          649.
                                                         166.
## 6 Afghanistan 1997
                        41.8 22227415
                                          635.
                                                         142.
```

How inner joins work

Two data sets:

Finding matching keys:

How left joins work

Two data sets:

Keep all x keys:

More complicated example

```
library(nycflights13)
flights2 <- flights |>
 select(year, time_hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 x 6
##
      vear time hour
                                origin dest tailnum carrier
##
      <int> <dttm>
                                <chr>
                                       <chr> <chr>
                                                     <chr>>
##
       2013 2013-01-01 05:00:00 EWR
                                       IAH
                                             N14228
                                                     UA
##
      2013 2013-01-01 05:00:00 LGA
                                       TAH
                                           N24211
                                                     IJΑ
##
      2013 2013-01-01 05:00:00 JFK
                                       MIA
                                             N619AA
                                                     AA
##
      2013 2013-01-01 05:00:00 JFK
                                       BON
                                             N804JB
                                                     B6
##
      2013 2013-01-01 06:00:00 LGA
                                       ATT.
                                             N668DN
                                                     DI.
##
      2013 2013-01-01 05:00:00 EWR
                                       \Omega R.D
                                             N39463
                                                     UA
##
       2013 2013-01-01 06:00:00 EWR
                                       FLI.
                                             N516JB
                                                     B6
##
      2013 2013-01-01 06:00:00 LGA
                                       IAD
                                             N829AS
                                                     EV
      2013 2013-01-01 06:00:00 JFK
##
                                       MCO
                                             N593JB
                                                     В6
## 10
      2013 2013-01-01 06:00:00 LGA
                                       OR.D
                                             N3AT.AA AA
    ... with 336,766 more rows
```

Planes data

```
planes2 <- planes |>
  select(tailnum, year, type, engine, seats)
planes2
## # A tibble: 3.322 x 5
##
     tailnum year type
                                            engine
                                                     seats
    <chr>
             <int> <chr>
                                            <chr>
##
                                                     <int>
##
    1 N10156
              2004 Fixed wing multi engine Turbo-fan
                                                        55
##
    2 N102UW
             1998 Fixed wing multi engine Turbo-fan
                                                       182
##
    3 N103US
             1999 Fixed wing multi engine Turbo-fan
                                                       182
##
    4 N104UW
              1999 Fixed wing multi engine Turbo-fan
                                                        182
##
    5 N10575
              2002 Fixed wing multi engine Turbo-fan
                                                        55
    6 N105UW
              1999 Fixed wing multi engine Turbo-fan
                                                        182
##
##
    7 N107US
              1999 Fixed wing multi engine Turbo-fan
                                                        182
    8 N108UW
              1999 Fixed wing multi engine Turbo-fan
                                                       182
##
##
    9 N109UW
             1999 Fixed wing multi engine Turbo-fan
                                                        182
## 10 N110UW
             1999 Fixed wing multi engine Turbo-fan
                                                        182
## # ... with 3.312 more rows
```

What happens with naive join?

```
flights2 |>
 left join(planes2)
## Joining with 'by = join_by(year, tailnum)'
## # A tibble: 336,776 x 9
##
       year time_hour
                               origin dest tailnum carrier type engine seats
##
      <int> <dttm>
                                <chr> <chr> <chr>
                                                      <chr>>
                                                              <chr> <chr>
                                                                           <int>
##
       2013 2013-01-01 05:00:00 EWR
                                       IAH
                                              N14228
                                                              <NA>
                                                                    <NA>
                                                                              NΑ
       2013 2013-01-01 05:00:00 LGA
                                       TAH
                                              N24211
                                                              <NA>
                                                                    <NA>
                                                                              NA
##
##
       2013 2013-01-01 05:00:00 JFK
                                       MIA
                                             N619AA
                                                              <NA>
                                                                    <NA>
                                                                              NΑ
##
       2013 2013-01-01 05:00:00 JFK
                                       BON
                                             N804JB
                                                              <NA>
                                                                    <NA>
                                                                              NA
                                        ATL
                                                                    <NA>
                                                                              NA
##
       2013 2013-01-01 06:00:00 LGA
                                             N668DN
                                                              <NA>
##
       2013 2013-01-01 05:00:00 EWR
                                       ORD
                                             N39463
                                                      UA
                                                              <NA>
                                                                    <NA>
                                                                              NA
       2013 2013-01-01 06:00:00 EWR
                                       FLL
                                             N516JB
                                                              <NA>
                                                                    <NA>
                                                                              NA
##
                                                      B6
## 8
       2013 2013-01-01 06:00:00 LGA
                                       IAD
                                             N829AS
                                                      F.V
                                                              <NA>
                                                                    <NA>
                                                                              NA
       2013 2013-01-01 06:00:00 JFK
                                       MCO
## 9
                                             N593JB
                                                      B6
                                                              <NA>
                                                                    <NA>
                                                                              NA
       2013 2013-01-01 06:00:00 LGA
                                        ORD
                                             N3ALAA AA
                                                              <NA>
                                                                    <NA>
                                                                              NA
## # ... with 336,766 more rows
```

Specify the joining variables

```
flights2 |>
 left join(planes2, by = "tailnum")
## # A tibble: 336,776 x 10
##
      year.x time_hour
                               origin dest tailnum carrier year.y type
                                                                             engine
##
       <int> <dttm>
                                 <chr>>
                                        <chr> <chr>
                                                      <chr>>
                                                               <int> <chr>
                                                                             <chr>>
##
       2013 2013-01-01 05:00:00 EWR
                                        IAH
                                              N14228
                                                      IΙΔ
                                                                1999 Fixed ~ Turbo~
       2013 2013-01-01 05:00:00 LGA
                                        IAH
                                              N24211 UA
                                                                1998 Fixed ~ Turbo~
##
##
       2013 2013-01-01 05:00:00 JFK
                                        MIA
                                              N619AA AA
                                                                1990 Fixed ~ Turbo~
##
        2013 2013-01-01 05:00:00 JFK
                                        BON
                                              N804JB B6
                                                                2012 Fixed ~ Turbo~
## 5
       2013 2013-01-01 06:00:00 LGA
                                              N668DN
                                                                1991 Fixed ~ Turbo~
                                        ATL
                                                     DI.
##
        2013 2013-01-01 05:00:00 EWR
                                        ORD
                                              N39463 UA
                                                                2012 Fixed ~ Turbo~
## 7
       2013 2013-01-01 06:00:00 EWR
                                        FLL
                                              N516JB B6
                                                                2000 Fixed ~ Turbo~
## 8
       2013 2013-01-01 06:00:00 LGA
                                        TAD
                                              N829AS EV
                                                                1998 Fixed ~ Turbo~
       2013 2013-01-01 06:00:00 JFK
                                              N593JB B6
## 9
                                        MCO
                                                                2004 Fixed ~ Turbo~
## 10
        2013 2013-01-01 06:00:00 LGA
                                        ORD
                                              N3ALAA AA
                                                                  NA <NA>
                                                                             <NA>
     ... with 336,766 more rows, and 1 more variable: seats <int>
```

Change variables names

```
flights2 |>
 left_join(planes2 |> rename(manufacture_year = year))
## Joining with 'by = join by(tailnum)'
## # A tibble: 336,776 x 10
##
      year time_hour
                             origin dest tailnum carrier manufac~1 type engine
##
     <int> <dttm>
                              <chr> <chr> <chr>
                                                   <chr>>
                                                              <int> <chr> <chr>
  1 2013 2013-01-01 05:00:00 EWR
                                     TAH N14228 UA
                                                              1999 Fixe~ Turbo~
   2 2013 2013-01-01 05:00:00 LGA
                                     TAH N24211 UA
                                                               1998 Fixe~ Turbo~
  3 2013 2013-01-01 05:00:00 JFK
                                     MIA
                                           N619AA AA
                                                               1990 Fixe~ Turbo~
## 4 2013 2013-01-01 05:00:00 JFK
                                     BON
                                           N804JB B6
                                                               2012 Fixe~ Turbo~
      2013 2013-01-01 06:00:00 LGA
                                     ATL
                                           N668DN
                                                               1991 Fixe~ Turbo~
## 5
                                                  DI.
##
  6 2013 2013-01-01 05:00:00 EWR
                                     ORD
                                           N39463 UA
                                                               2012 Fixe~ Turbo~
## 7 2013 2013-01-01 06:00:00 EWR
                                     FLL
                                          N516JB B6
                                                               2000 Fixe~ Turbo~
## 8 2013 2013-01-01 06:00:00 LGA
                                   TAD N829AS EV
                                                               1998 Fixe~ Turbo~
## 9 2013 2013-01-01 06:00:00 JFK
                                     MCO N593JB B6
                                                               2004 Fixe~ Turbo~
## 10 2013 2013-01-01 06:00:00 LGA
                                     ORD
                                           N3ALAA AA
                                                                 NA <NA> <NA>
## # ... with 336,766 more rows, 1 more variable: seats <int>, and abbreviated
      variable name 1: manufacture_year
## #
```