IST 5535: Machine Learning Algorithms and Applications

Langtao Chen, Spring 2021

Linear Model Selection and Regularization

Reading

▶ Book Chapter 6 (6.1, 6.2, 6.5, 6.6)

OUTLINE

- ▶ (I) Need of Linear Model Selection and Regularization
- ▶ (II) Subset Selection
 - Best Subset Selection
 - Stepwise Selection
 - Choosing the Optimal Model
- ► (III) Shrinkage Methods
 - Ridge Regression
 - The Lasso

AGENDA

- ▶ Need of Linear Model Selection and Regularization
- Subset Selection
- Shrinkage/Regularization Methods

Linear Models

▶ Recap: linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

- Despite its simplicity, linear model has distinct advantages:
 - Model interpretation is easy;
 - Predictive performance is often good on real-world problems.
- We usually use OLS to estimate linear model. However, other methods may yield better prediction accuracy and model interpretability.

OLS Failure: Include All Predictors in a Model

- ▶ A dataset with complete information is not available or expensive to collect
- May have a serious missing data issue with more predictors
- May not be able to accurately measure some predictors
- Using predictors that are unrelated with the response will increase the variance of the prediction

A parsimonious model helps to unveil the underlying relationships with stable estimates of coefficients (especially for an explanatory model).

When OLS May Not Work?

▶ 1. Prediction Accuracy

- Given that the true relationship between the response and predictors is approximately linear, the OLS estimates have low bias.
- According to the tradeoff between bias and variance, an optimal model should also have low variance.
 - ▶ If n >> p, OLS estimates tend to have low variability.
 - However, if *n* is not much larger than *p*, OLS estimates can have high variability and lead to over fitting and poor prediction.
 - ▶ If n < p, OLS will fail (variance is infinite).

When OLS May Not Work? (cont.)

▶ 2. Model Interpretability

- When we have a large number of predictors, some or many variables will be in fact not associated with the response.
- Including such *irrelevant* variables leads to unnecessarily complexity in the model, thus making the model hard to interpret.
- The model could be easier to interpret if we remove those irrelevant variables (or set their coefficients as zeros).

Three Classes of Methods Alternative to OLS

- ▶ Subset Selection (a.k.a. Feature Selection or Variable Selection)
 - Identify a subset of the p predictors that we believe to be related to the response.
 - Then fit a model using least squares on the reduced set of variables.
- Shrinkage (a.k.a. Regularization)
 - Fit a model involving all *p* predictors. However, the estimated coefficients are shrunken towards zero relative to the least squares estimates.
 - This shrinkage has the effect of reducing variance.
 - Some of the coefficients may be estimated to be exactly zero. Hence, shrinkage methods can also perform variable selection.

Dimension Reduction

- Project the p predictors into a M-dimensional subspace, where M < p.
- Then these *M* projections are used as predictors to fit a linear regression model by least squares.

AGENDA

Need of Model Selection and Regularization

- **▶** Subset Selection
- Shrinkage/Regularization Methods

Subset Selection

Best Subset Selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Quiz

- Given a dataset with potentially 3 predictors, how many models will be evaluated during the best subset selection process?
 - (A) 3
 - (B) 4
 - (C) 7
 - (D) 8

Quiz

- Given a dataset with potentially 3 predictors, how many models will be evaluated during the best subset selection process?
 - (A) 3
 - (B) 4
 - (C) 7
 - (D) 8

Answer

Null model $M_{0:}$ 1

Models with one predictor $M_{1:} {1 \choose 3} = 3$

Models with two predictors $M_{2:} {2 \choose 3} = 3$

Models with three predictors $M_{3:} {3 \choose 3} = 1$

In total: 1 + 3 + 3 + 1 = 8 models

Subset Selection

- ▶ Best Subset Selection is computationally intensive especially when p is large.
- More attractive alternative: stepwise selection
 - Forward Stepwise Selection
 - Start with no predictors
 - Add them one by one (add the one with largest contribution)
 - ▶ Stop when the addition is not statistically significant
 - Backward Stepwise Selection
 - Start with all predictors
 - Successively eliminate least useful predictors one by one
 - ▶ Stop when all remaining predictors have statistically significant contribution

Choose the Optimal Model

- As the number of predictors increases, RSS always decreases and R² always increases.
- Thus, RSS and R² are not suitable for selecting the best model among models with different number of predictors.

Other Measures to Consider for Model Comparison

- ▶ The following measures add a heavier penalty on models with many variables:
 - C_p statistic

$$C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$$
 where d is the number of predictors

• AIC (Akaike information criterion)

$$AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$$

BIC (Bayesian information criterion)

$$BIC = \frac{1}{n\hat{\sigma}^2} (RSS + \log(n)d\hat{\sigma}^2)$$

Adjusted R²

$$R_{adj}^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

Smaller C_p, AIC, and BIC are better; Larger adjusted R² is better.

An Example of Model Selection

- ▶ Smaller C_p, AIC, and BIC are better;
- ▶ Larger adjusted R² is better.

AGENDA

- Need of Model Selection and Regularization
- Subset Selection
- ➤ Shrinkage/Regularization Methods

Shrinkage/Regularization Methods

- The above subset selection methods involve using OLS to fit a linear model that contains a subset of the predictors.
- As an alternative, we can fit a model containing all *p* predictors using a technique that *constrains* or *regularizes* the coefficient estimates, or equivalently, that *shrinks* the coefficient estimates towards zero.
- ▶ Shrinking the coefficient estimates can significantly <u>reduce their variance</u>.
- ▶ Regularization reduces parameters and shrinks the model, thus avoiding over-fit.
- Two best known shrinkage methods: *ridge regression* and the *lasso*

Ridge Regression

▶ The OLS fitting procedure minimizes the RSS

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

▶ The ridge regression minimizes

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \left(\lambda \sum_{j=1}^{p} \beta_j^2 \right)$$

where $\lambda \geq 0$ is a tuning parameter.

shrinkage penalty

Shrinkage Penalty

- The ℓ_2 penalty term $||\beta_j||_2 = \sum_{j=1}^p \beta_j^2$ has the effect of shrinking coefficient estimates β_i towards zero.
- The tuning parameter $\lambda \ge 0$ controls the relative importance of the penalty term in the overall optimization of the objective function.
 - When $\lambda = 0$, the penalty term does not have effect. Ridge regression results in OLS estimates;
 - When λ is large, the impact of the penalty term grows. $\beta_j (j = 1, 2, ..., p)$ has to be close to zero.
- It's critical to select an appropriate value for λ . In practice, cross-validation is used to tune this parameter.

Example: Ridge Regression on Credit Data

 \triangleright As λ increases, the ridge coefficient estimates shrink towards zero.

Why Does Ridge Regression Improve Over OLS?

- OLS estimates have low bias. However, if the condition n >> p does not hold,
 OLS estimates may have large variance.
- By adding the shrinkage penalty, ridge regression leads to more biased but less variable estimates.
- Ridge regression can make a better trade-off between bias and variance, thus improving over OLS.
- Ridge regression works best in situations where OLS estimates have high variance.

Black: Squared Bias

Green: Variance
Purple: Test MSE

The Lasso

- One problem for ridge regression:
 - It shrinks all coefficients towards zero, but it will not set any of them exactly to zero;
 - Thus, ridge regression cannot conduct variable selection.
 - As all *p* variables will be included in the final model, there could be a challenge in model interpretation.
- Lasso is a more recent alternative to ridge regression that overcomes this disadvantage. Lasso coefficients minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso works in similar way as ridge regression, except using an ℓ_1 penalty.

Lasso Penalty Term

- The lasso ℓ_1 penalty $||\beta_j||_1 = \sum_{j=1}^p |\beta_j|$ can force some coefficient estimates to be exactly equal to zero, when the tuning parameter λ is large enough.
- ▶ Thus, lasso performs variable selection.
- Models generated from lasso are generally much easier to interpret than those produced by ridge regression.

Example: Lasso on Credit Data

 \triangleright Depending on the value of λ , lasso can produce a model with any number of variables.

Selecting the Tuning Parameter

- Implementing ridge regression and the lasso requires a method of selecting an optimal value for the tuning parameter λ .
- Cross-validation provides a simple way to tune parameters.

```
Define a grid of parameter values
for each parameter value do
    for each cross-validation iteration do
        Hold-out specification samples
        [Optional] Pre-process the data
        Fit the model on the remainder
       Predict the hold-out samples
    end
    Calculate the average performance across all iterations
end
Determine the optimal parameter value
Fit the final model to all training data using the optimal parameter value
```

Example: Tuning λ for Ridge Regression

RECAP: OUTLINE

- ▶ (I) Need of Linear Model Selection and Regularization
- ▶ (II) Subset Selection
 - Best Subset Selection
 - Stepwise Selection
 - Choosing the Optimal Model
- ► (III) Shrinkage Methods
 - Ridge Regression
 - The Lasso

