К-1. Базовые понятия комбинаторики

5 октября 2024 г.

o Kondunamopure. Buergun.

- ★ Комбинаторика наука, которая работает с дискретными объектами и отвечает на два основных вопроса:
 - существует ли объект с заданными свойствами?
 - сколько существует объектов с заданными свойствами?

Основные комбинаторные объекты

- · Hamypalbhole rucid
- MHOSICECMBO
- PYHEKUU
- TPA PI
- 1.2064
- LEOWENDARCEME CONSALON NOWORLAND
- Есть такие понятия, как
 - комбинаторная алгебра
 - комбинаторная геометрия
 - комбинаторные алгоритмы
 - комбинаторная теория графов
 - комбинаторика слов

 - в русскоязычной математической литературе есть еще термин комбинаторный анализ (синоним комбинаторики, к матанализу отношения не имеет)

Основной инструмент комбинаторики - построение Биекций.

Биекции. 2 ПРОстых ПРИМЕРЛ

Пример: на плоскости даны 5 точек с целочисленными координатами; доказать, что середина некоторого отрезка с концами в этих точках имеет целочисленные координаты

Решение: воспользуемся принципом Дирихле (кролики и клетки)

- \star если f:A o B функция и $|B|<|A|<leph_0$, то $\exists a_1,a_2\in A:f(a_1)=f(a_2)$
- \bullet пусть A- заданное множество точек, $B=\{(1,1),(1,0),(0,1),(0,0)\},$ $f(x,y) = (x \bmod 2, y \bmod 2)$
- \Rightarrow по принципу Дирихле найдутся (x_1,y_1) и (x_2,y_2) с одинаковым образом $\Rightarrow x_1+x_2$ и y_1+y_2 четные $\Rightarrow \frac{x_1+x_2}{2}$ и $\frac{y_1+y_2}{2}$ целые

Пример: натуральное число п представляют в виде суммы меньших натуральных чисел разными способами (порядок слагаемых не важен); каких представлений больше — тех, в которых ровно k слагаемых или тех, в которых максимальное слагаемое равно k?

Решение: такие представления натуральных чисел (их называют разбиениями) обычно визуализируют при помощи диаграмм Ферре:

- 8=4+3+1 ullet Пусть f отображает каждое разбиение числа n с диаграммой D в разбиение с «отраженной» диаграммой D'
- ullet f биекция множества разбиений n на k слагаемых на множество разбиений n с 10,18,13,13, 3 900 максимальным слагаемым к

Построили биекцию, => мощность множеств одинакова.

Реккурентные срормулы. Асимптотика.

Еще о разбиениях натуральных чисел.

Рассмотрим более сложную задачу о разбиениях:

Задача: дано натуральное число n, вычислить число P(n) различных разбиений n на натуральные слагаемые

Возможное решение: найти рекуррентную формулу, выражающую P(n) через $P(1),\dots,P(n-1)$

- ullet такая формула действительно есть: $P(n) = \sum_{k=1}^{n-1} lpha_k P(k)$, где $lpha_k \in \{-1,0,1\}$
- ullet значение коэффициента $lpha_k$ определяется пентагональной теоремой Эйлера
 - https://en.wikipedia.org/wiki/Pentagonal_number_theorem
- Попробуем найти формулу попроще
 - ullet пусть $P_k(n)$ число разбиений n на ровно k слагаемых; тогда $P(n) = \sum_{k=1}^n P_k(n)$
- $\bigstar P_k(n) = P_{k-1}(n-1) + P_k(n-k)$ при начальном условии $P_0(0) = 1$

Доказательство на картинке:

- Разбиения числа 8

- Разбиение п на k слагаемых либо содержит слагаемое 1 (левая диаграмма), либо нет (правая)
 - Закрашенные квадраты объясняют, почему первых разбиений $P_{k-1}(n-1)$, а вторых $P_k(n-k)$ смрок осталесь смолько жее.

m.e. moi Pin) pazoun na gba kracea u noempoun k num buenguro.

Асимптотика числа разбиений

- Основной недостаток рекуррентной формулы трудно оценить значение функции при большом n, не вычисляя все предыдущие значения
- ★ Часто на рекуррентных формулах не останавливаются, а выводят из них асимптотические оценки для функции
- Например, асимптотика функции P(n) задается так:
 - $P(n)\sim rac{1}{4\sqrt{3}\,n}{
 m e}^{\pi\sqrt{2n/3}}$ (формула Харди-Рамануджана-Успенского)
- ... Как-то так выглядит «взрослая» комбинаторика

BUHOMUANHHE KOSPUKUEHME

```
* База многих комбинаторных подсчетов — биномиальные коэффициенты \binom{n}{k}
• в России принято писать «цешки» C_n^k
• в англоязычной терминологии говорят «n choose k»; я буду говорить «n по k»

Определение 1: \binom{n}{k} есть число k-элементных подмножеств n-элементного множества
• говорят также «число способов выбрать k элементов из набора в n элементов»
```

Определение 2: $\binom{n}{k}$ есть коэффициент при $x^k y^{n-k}$ многочлена $(x+y)^n$ термин биномиальные коэффициенты как раз отсюда

Определение 3: $\binom{n}{k} = \Delta(n,k)$, где $\Delta(n,k)$ задана рекуррентным соотношением $\Delta(n,k) = \Delta(n-1,k-1) + \Delta(n-1,k)$; $\Delta(n,0) = \Delta(n,n) = 1$

• таблица значений функции Δ называется треугольником Паскаля

Эквивалентность определений:

* перемножив n скобок $(x+y)(x+y)\cdots(x+y)$, получим сумму одночленов одночлен x^ky^{n-k} получится, если из k скобок выбрать x, а из остальных — y

 \Rightarrow коэффициент при $x^k y^{n-k}$ равен числу способов выбрать k скобок из n

 \Rightarrow определение 2 задает $\binom{n}{k}$

* $\binom{n}{0} = 1$ (пустое подмножество), $\binom{n}{n} = 1$ (само множество) k-элементные подмножества разобьем на 2 группы: содержащие n-й элемент и не содержащие n-й элемент

ullet первых $\binom{n-1}{k-1}$, вторых $\binom{n-1}{k}$

 $\Rightarrow \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

 \Rightarrow $\binom{n}{k} = \Delta(n,k)$, т.е. определение 3 задает $\binom{n}{k}$

Choucmba:

Cb-bo 1. (= onpegenerue 4)
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

D-bo: Onpegenul cnocoo butopa K-enemento nogunoncecombo:

Засриксируем перестановку на [1. n] (ogny uz n!) и возынем первые к ее элементов.

порядок первых к элементов / последних (п-к) элементов

=> κ angoe nogunoneembo oygem buopano $\kappa!(n-\kappa)!$ paz.

=> δ uero nogun- $\delta:\frac{n!}{\kappa!(n-\kappa)!}$

Chegembue: $\Delta(n, K) = \binom{n}{n-K}$ (умножение коммутотивно)

CBoucmbo 2.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$\mathcal{D}-60:$$

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{k} \cdot 1^{n-k} = \sum_{k=0}^{n} {n \choose k}$$

CBOUCMBO 3.

1)-60:

$$0 = (-1+1)^n = \mathop{\mathcal{E}}_{k=0}^n \binom{n}{k} (-1)^k = \mathop{\mathcal{E}}_{k \text{ with}} \binom{n}{k} - \mathop{\mathcal{E}}_{k \text{ Heritim}} \binom{n}{k}$$

(ROUCMBO 4:

$$\sum_{k=0}^{n} k\binom{n}{k} = n \cdot 2^{n-1}$$

$$\frac{2}{8} \frac{K(n)}{K(n)} = \frac{1}{8} \frac{|B|}{|B|} = \frac{1}{8} \frac{|B| + |B|}{2} = \frac{1}{2} \frac{2}{8} \frac{n}{8} = \frac{1}{2} \frac{n^{2}}{100} = n^{2} \frac{n^{-1}}{100}$$
Here noguers

BCE 21.Mbl BO beek nogun·box

Биномиальные коэфы. Асимптотика

Вопрос: чему равен $\binom{n}{k}$ при больших n, k, т.е. асимптотически?

- \star сумма (n+1) биномиальных коэффициентов равна 2^n , т.е. наибольший из них имеет порядок между $\frac{2^n}{n}$ и 2^n \star если k — константа, то $\binom{n}{k}$ — полином k-й степени
- \bigstar Для более точных оценок есть формула Стирлинга: $n! \sim \sqrt{2\pi n} \cdot \left(\frac{n}{a}\right)^n$
 - доказательство матан с двумя красивыми интегралами
- Оценим центральный биномиальный коэффициент:
 - n четное, при нечетном n аналогичную формулу для $\binom{n}{(n-1)/2}$ выведите сами

$$\binom{n}{n/2} = \frac{\frac{n!}{(\frac{n}{2})!(\frac{n}{2})!}}{(\frac{n}{2})!(\frac{n}{2})!} \sim \frac{\sqrt{2\pi n} \cdot \left(\frac{n/2}{e}\right)^n}{\sqrt{\pi n} \cdot \left(\frac{n/2}{e}\right)^{n/2} \sqrt{\pi n} \cdot \left(\frac{n/2}{e}\right)^{n/2}} = \sqrt{\frac{2}{\pi n}} \cdot 2^n$$

• Еще одна оценка:

$$\binom{n}{n/3} = \frac{n!}{(\frac{n}{3})!(\frac{2n}{3})!} \sim \frac{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n}{\sqrt{\frac{2}{3}\pi n} \cdot \left(\frac{n/3}{e}\right)^{n/3} \sqrt{\frac{4}{3}\pi n} \cdot \left(\frac{2n/3}{e}\right)^{2n/3}} = \frac{3}{2} \sqrt{\frac{1}{\pi n}} \cdot \left(\frac{3}{\sqrt[3]{4}}\right)^n$$

- Более подробно про асимптотику биномиальных коэффициентов в теории вероятностей при изучении схемы Бернулли и биномиального распределения

Пути в целочисленной решетке

- Рассмотрим специальный вид графа целочисленную решетку (grid)
 - ullet вершины (n,k)-решетки целочисленные точки (x,y) на плоскости, $0 \leqslant x \leqslant n, 0 \leqslant y \leqslant k$
 - каждая пара вершин, находящихся на расстоянии 1, соединена ребром:

Вопрос: Сколько существует кратчайших путей из (0,0) в (n,k)?

Решение: кратчайший путь имеет длину n + k и состоит из n горизонтальных и *k* вертикальных ребер

- \Rightarrow Путь записывается словом длины n+k в алфавите $\{\uparrow, \rightarrow\}$
- \Rightarrow Число путей равно числу способов выбрать позиции символов \rightarrow , т.е. $\binom{n+k}{n}$ \Box

Числа Каталана

Путь в (n,n)-решетке — верхний, если он не опускается ниже диагонали y=x:

- Число Каталана C_n это число верхних путей в (n,n)-решетке
- $C_0 = C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, C_6 = 132, \dots$

Теорема

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Доказательство: Поскольку количество всех путей в (n, n)-решетке известно из предыдущего слайда и равно $\binom{2n}{n}$, вместо верхних путей будем подсчитывать все остальные (назовем их неверхними) ->

Добавим к (n, n)-решетке один ряд снизу и проведем нижнюю диагональ y = x-1:

- ullet Рассмотрим (n-1,n+1)-решетку с углами (1,-1) и (n,n)
 - ullet любой путь P из (1,-1) в (n,n) начинается ниже нижней диагонали, а заканчивается выше ее
 - \Rightarrow P пересекает эту диагональ; рассмотрим первую (нижнюю) точку касания K
 - фрагмент Р ниже К отразим относительно нижней диагонали
 - остальная часть Р не изменяется

 - получим путь P' из (0,0) в (n,n)
 ★ P' неверхний, потому что проходит через точку K
- \bigstar Положив f(P) = P' для всех P, получили функцию из множества путей в (n-1,n+1)-решетке во множество неверхних путей в (n,n)-решетке

★ Положив f(P) = P' для всех P, получили функцию из множества путей в (n-1,n+1)-решетке во множество неверхних путей в (n,n)-решетке

⋆ f — инъекция:

- пути P_1 и P_2 отличаются фрагментом до точки K или фрагментом после нее $\Rightarrow f(P_1)$ и $f(P_2)$ тоже отличаются этим фрагментом
- \star f сюръекция:
 - ullet для неверхнего пути P' возьмем самую левую точку K на диагонали y=x-1
 - ullet отразим фрагмент P' до точки K относительно этой диагонали
 - \Rightarrow полученный путь P будет прообразом P' относительно f
- $\Rightarrow f$ биекция
 - \Rightarrow число неверхних путей в (n,n)-решетке равно числу путей в (n-1,n+1)-решетке
- ⇒ Число верхних путей в (n, n)-решетке есть

$$C_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{(2n)!}{n!n!} - \frac{(2n)!}{(n-1)!(n+1)!} = \frac{(n+1)(2n)! - n(2n)!}{n!(n+1)!} = \frac{1}{n+1} \binom{2n}{n}$$

C_n — это...

 \star Число Par(n) правильных расстановок n пар скобок

- правильность расстановки проверяется простым правилом:
- * в расстановке левых скобок столько же, сколько правых, а в любом префиксе расстановки не меньше чем правых
- ! докажите достаточность этого условия

Доказательство: верхний путь в (n,n)-решетке, закодированный как слово над $\{\uparrow,\to\}$, удовлетворяет тому же самому условию, если положить $\uparrow=(,\to=)$

- \Rightarrow значит, между этими множествами есть биекция и $Par(n) = C_n$
- ★ Число Tr(n+1) полных бинарных корневых деревьев с n+1 листьями
 - полное означает, что каждая вершина в дереве имеет 0 либо 2 детей

Доказательство: начиная с корня, обойдем дерево в глубину, спускаясь из каждой вершины вначале в левого ребенка, а затем в правого

- запишем порядок обхода ребер, кодируя левое ребро как (, а правое как)
- в бинарном дереве с n+1 листьями 2n ребер (n правых и n левых)
- по расстановке скобок можно однозначно восстановить дерево

$$\Rightarrow Tr(n+1) = Par(n) = C_n$$

- Дальнейшие примеры на практике
 - желающие могут заглянуть на https://oeis.org/A000108 (не для слабонервных)