Iterative Hard Thresholding: Theory and Practice

T. Blumensath

Institute for Digital Communications

Joint Research Institute for Signal and Image Processing

The University of Edinburgh

February, 2009

What to Expect

- I) Iterative Hard Thresholding for Sparse Inverse Problems What's the probeim?
- II) Theory and Practice
 Nice theory, bad attitude
- III) Stability Beyond the Grave (RIP)
 Operating beyond the limits
- IV) Results
 Up there with the best

PART 1

Iterative Hard Thresholding for Sparse Inverse Problems

The Problem and Solution

THE PROBLEM: Given

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{e},$$

where $y \in \mathbb{R}^M$, $x \in \mathbb{R}^N$, $\Phi \in \mathbb{R}^{M \times N}$ and e is observation noise, estimate x given y and Φ when M << N but x is approximately K-sparse.

THE SOLUTION: The Iterative Hard Thresholding (IHT) algorithm uses the iteration

$$\mathbf{x}^{n+1} = P_K(\mathbf{x}^n + \mathbf{\Phi}^T(\mathbf{y} - \mathbf{\Phi}\mathbf{x}^n)),$$

where P_K is a hard thresholding operator that keeps the largest (in magnitude) K elements of a vector (Or, more generally, a projector onto the closest element in the model).

PART 2

Theory and Practice

Convergence and Recovery Performance

CONVERGENCE: IHT is guaranteed to converge to a local minimum of $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2$ s. t. $\|\mathbf{x}\|_0 \leq K$ whenever $\|\mathbf{\Phi}\|_2 \leq 1$.

RECOVERY: If $\delta_{3K}(\Phi) \leq 1/\sqrt{32}$, then after at most $\left\lceil \log_2\left(\frac{\|\mathbf{x}_K\|_2}{\tilde{\epsilon}_K}\right) \right\rceil$ iterations, the IHT approximation \mathbf{x}^\star satisfies

$$\|\mathbf{x}^* - \mathbf{x}\|_2 \le 7\tilde{\epsilon}_K.$$

where $\tilde{\epsilon}_K = \|\mathbf{x} - \mathbf{x}_K\|_2 + \frac{\|\mathbf{x} - \mathbf{x}_K\|_1}{\sqrt{K}} + \|\mathbf{e}\|_2$ and where $\delta_K(\mathbf{\Phi})$ is the smallest constant for which

$$(1 - \delta_K(\mathbf{\Phi})) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Phi}\mathbf{x}\|_2^2 \le (1 + \delta_K(\mathbf{\Phi})) \|\mathbf{x}\|_2^2$$

holds for all K sparse \mathbf{x} .

But

PART 3

Stability Beyond RIP

The Normalised Iterative Hard Thresholding Algorithm

The Normalised Iterative Hard Thresholding (NIHT) algorithm uses the iteration

$$\mathbf{x}^{n+1} = P_K(\mathbf{x}^n + \mu^n \mathbf{\Phi}^T(\mathbf{y} - \mathbf{\Phi}\mathbf{x}^n)),$$

where P_K is a hard thresholding operator that keeps the largest (in magnitude) K elements of a vector (or, more generally, a projector onto the closest element in the model) and μ^n is a step-size.

Calculating the step size

Assume the support of $\mathbf{x}^n = \Gamma^n$ and that the support of $\mathbf{x}^{n+1} = \Gamma^{n+1} = \Gamma^n$, then the optimal step-size is (in terms of reduction in squared approximation error)

$$\mu^n = \frac{\mathbf{g}_{\Gamma^n}^T \mathbf{g}_{\Gamma^n}}{\mathbf{g}_{\Gamma^n}^T \mathbf{\Phi}_{\Gamma^n}^T \mathbf{\Phi}_{\Gamma^n} \mathbf{g}_{\Gamma^n}},$$

where $\mathbf{g} = \mathbf{\Phi}^T (\mathbf{y} - \mathbf{\Phi} \mathbf{x}^n)$.

However, if $\Gamma^{n+1} \neq \Gamma^n$, this step-size might not be optimal and does not guarantee convergence. For guaranteed convergence we require that:

$$\mu \le (1 - c) \frac{\|\mathbf{x}^{n+1} - \mathbf{x}^n\|_2^2}{\|\mathbf{\Phi}(\mathbf{x}^{n+1} - \mathbf{x}^n)\|_2^2},$$

for some c>0.

Hence, if $\Gamma^{n+1} \neq \Gamma^n$, calculate $\omega = (1-c)\frac{\|\mathbf{x}^{n+1} - \mathbf{x}^n\|_2^2}{\|\Phi(\mathbf{x}^{n+1} - \mathbf{x}^n)\|_2^2}$ and, if $\mu^n > \omega$, set $\mu^n \leftarrow \mu^n/(\kappa(1-c))$ or, alternatively, set $\mu^n \leftarrow \omega$.

Why the Hassle?

CONVERGENCE: NIHT is guaranteed to converge to a local minimum of $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2$ s. t. $\|\mathbf{x}\|_0 \leq K$.

RECOVERY: If Φ satisfies $0 < \alpha_{2K} \le \frac{\|\Phi\mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le \beta_{2K}$ for all $\mathbf{x} : \|\mathbf{x}\|_0 \le 2K$. Given a noisy observation $\mathbf{y} = \Phi\mathbf{x} + \mathbf{e}$, where \mathbf{x} is an arbitrary vector, let \mathbf{x}^K be the best K-term approximation to \mathbf{x} .

If $\gamma_{2K} = \max\{1 - \frac{\alpha_{2K}^2}{\kappa \beta_{2K}^2}, \frac{\beta_{2K}^2}{\alpha_{2K}^2} - 1\} < 1/8$, then after at most $n^\star = \left\lceil \log_2\left(\|\mathbf{x}^K\|_2/\tilde{\epsilon}_K\right) \right\rceil$ iterations, IHT_K estimates \mathbf{x} with accuracy given by

$$\|\mathbf{x} - \mathbf{x}^{n^*}\|_2 \le 9\tilde{\epsilon}_K,\tag{1}$$

where

$$\tilde{\epsilon}_K = \|\mathbf{x} - \mathbf{x}^K\|_2 + \frac{\|\mathbf{x} - \mathbf{x}^K\|_1}{\sqrt{K}} + \frac{1}{\alpha_{2K}} \|\mathbf{e}\|_2. \tag{2}$$
home · prev · next · page

PART 4

Results

Before and After

Comparison to other Algorithms

Comparison to other Algorithms

Speed Comparison

Robustness to Noise

Robustness to Non-Exact-Sparsesness $x_n = n^{-1}$

Larger Problems

Original / Reconstruction Haar Wavelet Transform

Frequency Domain

Observation

Larger Problems

Sparse representations for the processing of large scale data Compressed sensing theory and algorithms with particular application to dynamic MRI

Salary scale: 28,290 - 33,779 pa. (pounds sterling)
Informal enquiries to Prof. Mike Davies (mike.davies@ed.ac.uk) 20 of 20
For further details please go to: http://www.jobs.ed.ac.uk/