

DEPARTMENT OF INFORMATION & COMMUNICATION TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

Digital Systems Lab [ICT 2163]/ Digital System Design Lab [ICT 2165]

Second Year B. Tech. (IT/CCE) Degree – (2021-22)

INSTRUCTIONS TO THE STUDENTS

- The students need to report to the labs/departments with clearance card issued by the institute/MAHE. They need to wear mask and gloves in the lab classes.
- Students should carry a book for noting observations and required stationeries to every lab session
- For every lab, exercise problems have to be solved depicting all design steps in the observation book before coming to the lab.
- Be well within the time and must sign in the log register provided
- Make sure to occupy the allotted seat and answer the attendance
- Show the program/circuit with results to the faculty in charge, on completion of experiments
- On receiving approval, copy the program/circuit with obtained results in the lab record
- Plagiarism (copying from others) is strictly prohibited and would invite severe penalty in evaluation
- Adhere to the rules, follow the institution dress code and maintain the decorum.

STUDENTS SHOULD NOT

- Bring mobile phones or any other electronic gadgets to the lab except calculators.
- Bring eatables to the lab.
- Go out of the lab without permission.

Lab		Sylla	bus	cov	ered	and	llist	of ex	perir	nents	6			
No														
	Syllabus: K-Map													
	 F= XY + Z' (Demonstration) Simplify the Boolean function 'F' using K maps & implement using NAI gates only F = x'z'+y'z'+yz'+xyz. 													
												NAND		
	2. Design a combinational circuit that accepts a 3 bit number and generates an output binary number equal to the square of the input number. [Hint : Since the maximum 3 bit number is 7, and the square of it is 49, the number of output lines required is 6]. Realize using basic logic gates Truth Table:												: Since	
	Truth Table	· X	Y	Z	P ₅	P ₄	P 3	P ₂	P ₁	Po	1			
		0	0	0	<u> </u>	1	4 3		- 1	- 0	1			
		0	0	1										
Lab		0	1	0										
1		0	1	1										
		1	0	0			+							
		1	0 1	0										
		1	1	1										
	Simplified S		_								J			
Hardware Requirements:														
Lab	Syllabus : Code Cor	nverters												
	Symanus . Code Co.													
2	Docion fallai	do co	4 a == :											
	Design following co 1. BCD to exce Truth Table:				gate	es on	ıly							
		Decimal	Decimal BCD Excess -3											
			A			C	D	W	X	Y	Z			
		0	0	0		0	0							
		1	0	0		0	1					-		
		3	0	$0 \ 0$	-	1 1	0 1					-		
		4	0	1		0	0							
		5	0	1		0	1					1		
		6	0	1		1	0							
		7	0	1		1	1							

		8	1	0	0	0						
		9	1	0	0	1					1	
	Hardware Requi	_	1	U	U	1 -			1		J	
	Tax a war a requirements											
	2. Self-comp	lementary 8	4 -2 -	-1 to	self-c	comp	lemer	ntary	2 4 2	2 1 us	ing N	OF
	Truth Table:											
		Decimal	8	4	-2	-1	2	4	2	1]	
			A	В	C	D	W	X	Y	Z	1	
		0	0	0	0	0						
		1	0	1	1	1						
		2	0	1	1	0						
		3	0	1	0	1						
		4	0	1	0	0					1	
		5	1	0	1	1					1	
		6	1	0	1	0					-	
		7	1	0	0	1						
		8	1	0	0	0					4	
	II 1 D	9	1	1	1	1						
	Hardware Requi	rements:										
ab	Syllabus :Adders	Multiplior	3									
แบ	Synabus Auders	, windpliers	•									
	1. Design a f	full subtracto	r.									
							_					_
	2. Design a	1-bit binary a	ıddeı	r/sub	tract	or us	ing 7	483 I	C an	d ext	ernal	l ga
									_		_	
	3. Design 21	oit X 3 bit bii	nary	mult	iplie	r usin	ıg 748	3 IC	s and	exte	rnal	gat
Lab	Syllabus Magnitu	ıde Compara	ators	and	Deco	der						
,												
-	1. Design a 1	hit magnitu	de co	mna	rata	r with	Laco	adina	, inn	nte m	cing '	haci
	1. Design a	on magmu	ut tt	лира	iaw	. WILL	i casc	aum	չ ար	uis ui	anig	vast

- 2. Design 5-bit magnitude comparator using 7485 ICs
- 3. Implement one-bit full adder using 74138 IC and external NAND gates only.

The truth table of 1-bit full adder is given below. The circuit diagram using the 74138 and NAND gates is shown below.

Input bit for number A	Input bit for number B	Carry bit input C _{IN}	Sum bit output S	Carry bit output C _{OUT}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Lab

Syllabus MUX, Flip Flops

5

1. Design a 4:1 MUX using basic logic gates.

Select 1	Lines	Output (Y)			
S_1	S_0				
0	0	I_0			
0	1	I_1			
1	0	I_2			
1	1	I ₃			

2. Design a combinational circuit using 74151 IC and external gates to implement the following functions.

$$F_1(w,x,y,z) = wx'y'+w'xy'z$$

$$F_2(w,x,y,z) = xz'+wx'y$$

3. Convert a given D flip flop to work as a JK flip flop.

Lab

Syllabus: Asynchronous and Synchronous counters

6

- 1. Design a counter that performs UP count from 00 to 81 using 7490 IC and external gates.
- 2. Design an asynchronous counter that counts from 00h to 24H using 7493 IC and external gates.

	3.	_			binar ARY Ul	-					that	when co	ontrol	input	Y=0, it
Lab	Syllab	us : So	eque	nce (Genera	tors a	nd Shif	ft Re	giste	rs					
7															
	1. Design a sequential logic circuit to generate a binary sequence 110010 u Johnson counter.												0 using		
	2. Design a 4 - bit universal shift register using D flip flops and 74153 ICs Function Table of Universal Shift Register:													ICs	
	Select Lines Function performed														
		S ₁		S ₀	F	ион р	C110111	icu							
		0				hange									
		0	1		Left										
		1	(t Shift	t								
		1	1	1		llel Lo									
		Hard	Hardware Requirements:												
	3. Design a 4-bit ring counter using JK flip flops Hardware Requirements:														
			C) D	Qc	QB	QA								
Lab 8	Syllab	ous : So	eque	nce I	Detecto	rs									
		Desig	gn a	sequ	ential 1	model						1011 us		flip fl	ops and
		Desig exter	gn a mal g	seque gates.	ential 1 Assun	model ne tha	t overl		ng se	quen	ce is to			flip fl	ops and
		Desig exter	gn a mal g	seques.	ential 1 Assun	model ne tha	t overla		ng se	quen				flip fl	ops and
		Desig exter	gn a mal g	seques.	ential 1 Assun	model ne tha	t overla sitation State		ng se	quen	ce is to	be dete		flip fl	ops and
		Desig exter	gn a mal g	seques.	ential 1 Assun	model ne tha lop exc	t overlandstation State		ng se D fli	quen	ce is to	be dete		flip fl	ops and
		Desig exter State	gn a mal g Table	seque gates.	ential 1 Assum T flip fl	model ne tha lop exc Next X=0	t overlandstation State	appi	D fli	queno p flop	input	Output		flip fl	ops and
		Desig exter State Press	gn a gnal g	sequegates. with	ential 1 Assum T flip fl Input	model ne tha lop exc Next X=0	t overlandstation State	appi	D fli	queno p flop	input	Output		flip fl	ops and
		Desig exter State Press	gn a mal gent Stent Sten	sequegates. e with tate QA	ential 1 Assum T flip fl Input X	model ne tha lop exc Next X=0	t overlandstation State	appi	D fli	queno p flop	input	Output		flip fl	ops and
		Desig exter State Press Qc 0 0	gn a gnal grad gent Storent St	sequesates. with tate QA 0	ential 1 Assum T flip fl Input X 0	model ne tha lop exc Next X=0	t overlandstation State	appi	D fli	queno p flop	input	Output		flip fl	ops and
		Desig exter State Press Qc 0 0 0	gn a mal gent Stent Sten	sequegates. e with cate QA 0 0	ential 1 Assum T flip fl Input X 0 1	model ne tha lop exc Next X=0	t overlandstation State	appi	D fli	queno p flop	input	Output		flip fl	ops and

0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

2. Design a sequential model that detects the sequence 101 using JK Flip Flop. Assume non overlapping sequence is to be detected.