import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data=pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/ae

data

	Product	Age	Gender	Education	MaritalStatus
0	KP281	18	Male	14	Single
1	KP281	19	Male	15	Single
2	KP281	19	Female	14	Partnered
3	KP281	19	Male	12	Single
4	KP281	20	Male	13	Partnered
175	KP781	40	Male	21	Single
176	KP781	42	Male	18	Single
177	KP781	45	Male	16	Single
178	KP781	47	Male	18	Partnered
179	KP781	48	Male	18	Partnered

180 rows × 9 columns

data.shape

(180, 9)

data.describe()

-There are 180 records in data.

		Age	Education	Usage	Fitness
С	ount	180.000000	180.000000	180.000000	180.000000
n	nean	28.788889	15.572222	3.455556	3.311111
	std	6.943498	1.617055	1.084797	0.958869
	min	18.000000	12.000000	2.000000	1.000000
2	25%	24.000000	14.000000	3.000000	3.000000
ţ	50%	26.000000	16.000000	3.000000	3.000000
-	75%	33.000000	16.000000	4.000000	4.000000
	max	50.000000	21.000000	7.000000	5.000000

data.columns

```
Index(['Product', 'Age', 'Gender', 'Education',
'MaritalStatus', 'Usage',
            'Fitness', 'Income', 'Miles'],
           dtype='object')
data.keys()
     Index(['Product', 'Age', 'Gender', 'Education',
     'MaritalStatus', 'Usage', 'Fitness', 'Income', 'Miles'],
           dtype='object')
data['Income'].unique()
                             30699, 32973, 35247,
     array([ 29562,
                     31836,
     37521,
            36384, 38658,
             40932,
                     34110,
                             39795,
                                      42069, 44343,
             46617,
     45480,
                     48891,
             53439,
                     43206,
                             52302,
                                      51165,
                                              50028,
     54576, 68220,
                     55713,
             60261, 67083,
                             56850,
                                      59124,
                                             61398,
     57987, 64809, 47754,
             65220, 62535,
                             48658, 54781, 48556,
     58516,
             53536, 61006,
             57271, 52291,
                             49801, 62251, 64741,
             75946, 74701,
     70966,
             69721, 83416,
                                      90886, 92131,
                             88396,
             52290,
                     85906,
            103336, 99601,
                             89641, 95866, 104581,
     955081)
data['Income'].value_counts()
     45480
              14
               9
     52302
     46617
               8
     54576
               8
     53439
              . .
     65220
               1
     55713
               1
     68220
               1
     30699
               1
     95508
               1
     Name: Income, Length: 62, dtype: int64
data.index.values
                                                 7,
     array([ 0,
                        2,
                             3,
                                   4,
                                        5,
                                             6,
                                                        8,
                   1,
     9, 10, 11, 12,
             13, 14,
                       15,
                            16,
                                  17,
                                       18,
                                            19,
                                                 20,
     22,
          23, 24,
                    25,
             26, 27,
                                  30,
                                       31,
                       28,
                             29,
                                            32,
                                                 33,
                                                       34,
     35,
          36, 37, 38,
             39, 40,
                            42,
                                  43,
                                            45,
                                                       47,
                      41,
                                       44,
                                                 46,
     48,
          49, 50, 51,
                            55,
             52, 53, 54,
                                  56,
                                       57,
                                            58,
                                                 59,
                                                       60,
     61,
         62, 63, 64,
             65, 66, 67,
                            68,
                                  69,
                                       70, 71,
                                                 72,
                                                       73,
     74,
          75, 76, 77,
             78, 79, 80,
                            81, 82,
                                      83, 84,
                                                 85,
                                                       86,
     87,
          88,
               89, 90,
```

```
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179])
```

```
usage1=data['Usage'].dropna()
sns.distplot(usage1)
plt.show()
```

<ipython-input-70-f50d3091734f>:2: UserWarning:

`distplot` is a deprecated function and will be remov

Please adapt your code to use either `displot` (a fig similar flexibility) or `histplot` (an axes-level fur

For a guide to updating your code to use the new funchttps://gist.github.com/mwaskom/de44147ed2974457ad637

sns.distplot(usage1)

age1=data['Age'].dropna()
sns.distplot(age1)
plt.show()

<ipython-input-71-21029d567d9e>:2: UserWarning:

`distplot` is a deprecated function and will be remov

Please adapt your code to use either `displot` (a fig similar flexibility) or `histplot` (an axes-level fur

For a guide to updating your code to use the new funchttps://gist.github.com/mwaskom/de44147ed2974457ad63

Palak Vyas
6:12 PM Today

-Male customers are more as compared with females.

sns.countplot(x="Gender", data=data)
plt.show()


```
sns.countplot(x="MaritalStatus", data=data)
plt.show()
```


plt.hist(data['Education'],bins=5) plt.show()

fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10)) fig.subplots_adjust(top=1.2)

```
sns.boxplot(data=data, x="Age", orient='h', ax=axis[0,0])
sns.boxplot(data=data, x="Education", orient='h', ax=axis[0,1])
sns.boxplot(data=data, x="Usage", orient='h', ax=axis[1,0])
sns.boxplot(data=data, x="Fitness", orient='h', ax=axis[1,1])
```

```
sns.boxplot(data=data, x="Income", orient='h', ax=axis[2,0])
sns.boxplot(data=data, x="Miles", orient='h', ax=axis[2,1])
plt.show()
```


sns.boxplot(y=data["Usage"])

data.corr()

<ipython-input-77-c44ded798807>:1: FutureWarning: The
 data.corr()

	Age	Education	Usage	Fitness	:
Age	1.000000	0.280496	0.015064	0.061105	0.
Education	0.280496	1.000000	0.395155	0.410581	0.6
Usage	0.015064	0.395155	1.000000	0.668606	0.
Fitness	0.061105	0.410581	0.668606	1.000000	0.
Income	0.513414	0.625827	0.519537	0.535005	1.0
Miles	0.036618	0.307284	0.759130	0.785702	0.!

sns.heatmap(data.corr(),annot=True,cmap='Blues')

<ipython-input-78-215bc2d2a1fc>:1: FutureWarning: The sns.heatmap(data.corr(),annot=True,cmap='Blues') <Axes: >

df1 = data[['Product']].melt()
df1.groupby(['variable', 'value'])[['value']].count()

		value	1	ılı
variable	value			
Product	KP281	80		
	KP481	60		
	KP781	40		

d=pd.crosstab(data['Product'],data['Gender'])
print(d)

Gender	Female	Male
Product		
KP281	40	40
KP481	29	31
KP781	7	33

d=pd.crosstab(data['Product'],data['Education'])
print(d)

Education	12	13	14	15	16	18	20	21
Product								
KP281	2	3	30	4	39	2	0	0
KP481	1	2	23	1	31	2	0	0
KP781	0	0	2	0	15	19	1	3

d=pd.crosstab(data['Product'],data['MaritalStatus'])
print(d)

MaritalStatus	Partnered	Single
Product		
KP281	48	32
KP481	36	24
KP781	23	17

-People with education 16 are more tend to buy products whereas higher educatin people dont buy KP281 and least education level dont buy KP781.

Partnered tend to buy more KP281 whereas KP781 is least bought by singles.

-People with mid fitness level prefer KP281 and KP481.

Palak Vyas 7:49 PM Today

/

-Data shows people with high usage dont opt for KP281 and KP481.

```
d=pd.crosstab(data['Product'],data['Fitness'])
print(d)
    Fitness 1 2 3 4
    Product
    KP281 1 14 54 9
                       2
    KP481 1 12 39 8 0
    KP781 0 0 4 7 29
d=pd.crosstab(data['Product'],data['Usage'])
print(d)
    Usage
           2 3 4
                    5 6 7
    Product
    KP281 19 37 22
                    2 0 0
                    3 0 0
    KP481 14 31 12
    KP781 0
              1 18 12 7 2
```

Double-click (or enter) to edit

✓ 0s completed at 7:53 PM

×