Permit Number 20289

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rate	es
No. (1)		Name (3)	lbs/hour	TPY (4)
104A (8)	Flare 104A	СО	27.88	9.70
		NO _x	13.97	4.86
		SO ₂	1.20	0.36
		VOC	60.01	31.38
		H2S/TRS	0.01	0.01
	MSS	СО	286.01	8.26
		NO _X	143.44	4.15
		SO ₂	<0.01	<0.01
		VOC	532.30	14.32
104B	Flare 104B	СО	3.02	13.22
		NO _x	1.51	6.62
		PM ₁₀	0.01	0.02
		SO ₂	0.01	0.01
		VOC	0.57	2.50
105	Thermal Oxidizing Flare (6)	СО	30.57	22.90
		NO _x	11.14	10.09
		SO ₂	17.29	12.17
		VOC	48.53	16.22

		MTBE	32.73	11.82
		MEOH	1.60	0.65
MVCS 1	Marine Vapor Control	CO	4.46	
	System 1 (6)	NOx	11.16	
		SO ₂	50.52	
		VOC (7)	6.55	
		РМ	0.42	
		PM ₁₀	0.42	
		PM _{2.5}	0.42	
		H₂S/TRS	0.03	
		MTBE (7)	6.55	
		MEOH (7)	0.32	
MVCS 2	Marine Vapor Control System 2 (6)	СО	4.46	
		NOx	11.16	
		SO ₂	50.52	
		VOC (7)	6.55	
		РМ	0.42	
		PM _{2.5}	0.42	
		PM _{2.5}	0.42	
		H₂S/TRS	0.03	
		MTBE (7)	6.55	
		MEOH (7)	0.32	

MVCS 1 & 2	Marine Vapor Control	СО		8.40
	System 1 & 2 Annual Cap (6)	NO _X		21.01
		SO ₂		35.32
		VOC (7)		3.71
		PM		0.78
		PM ₁₀		0.78
		PM _{2.5}		0.78
		H₂S/TRS		0.02
		MTBE (7)		2.36
		MEOH (7)		0.13
106	Storage Tank	VOC	1.37	3.41
107	Storage Tank	VOC	3.31	5.19
108	Storage Tank	VOC	3.31	5.19
107 & 108	Storage Tanks Annual Cap	VOC		5.56
109	Storage Tank	MTBE	1.25	1.87
111	Storage Tank	VOC	0.06	0.09
114	CPI Separator	VOC	1.50	0.58
117	OSBL Tank Area Fugitives (5)	VOC	0.43	1.93
119	Wastewater Treatment Area Fugitives (5)	VOC	0.43	1.58
023	Barge Loading Fugitives (5)	VOC	0.30	1.33
TRLoadFug	Truck Rail Load Fugitives	VOC	0.66	0.49
121	Diesel Fired Generator	СО	0.90	0.09
		NO _x	4.15	0.43
		PM ₁₀	0.30	0.03

		SO ₂	0.28	0.03
		VOC	0.33	0.03
123	Fire Water Engine	СО	0.43	0.05
		NO _x	2.01	0.21
		PM ₁₀	0.14	0.02
		SO ₂	0.13	0.01
		VOC	0.19	0.02
124	Diesel Storage Tank	VOC	0.06	0.01
NGST-FLARE (8)	Natural Gasoline Storage Flare	СО	3.18	7.97
		NO _X	1.60	4.00
		SO ₂	0.02	0.04
		VOC	0.90	2.05
	MSS	СО	1.96	0.03
		NO _x	0.98	0.02
		SO ₂	0.01	<0.01
		VOC	3.64	0.05
MSS-FLARE (8)	Temporary Flare	СО	16.99	0.10
		NO _X	8.52	0.05
		SO ₂	0.01	0.01
		VOC	31.60	0.17
104A,	MSS flare CAP	СО	286.14	9.66
NGST-FLARE, MSS-FLARE (8)		NO _X	143.44	4.84
		SO ₂	0.01	<0.01

		VOC	532.32	16.76
MSS-ATM	MSS	VOC	117.50	0.32
Liquid Natural	Gas (NGL) Marine Loading Facility	<u> </u>	I	1
WSAC1	WSAC System – Train 1	PM	0.57	2.49
		PM ₁₀	0.27	1.19
		PM _{2.5}	0.01	0.01
WSAC2	WSAC System – Train 2	PM	0.57	2.49
		PM ₁₀	0.27	1.19
		PM _{2.5}	0.01	0.01
HTR1	Regeneration Heater No 1 – Train 1	СО	0.77	3.36
		NO _X	0.32	1.40
		SO ₂	0.02	0.08
		VOC	0.07	0.30
		PM ₁₀	0.10	0.42
		PM _{2.5}	0.10	0.42
	Regeneration Heater No 1 – Start-up and shutdown	СО	1.54	0.02
	Start up and shatdown	NO _X	0.64	0.01
HTR2	Regeneration Heater No 2 – Train 2	СО	0.77	3.36
		NO _X	0.32	1.40
		SO ₂	0.02	0.08
		VOC	0.07	0.30
		PM ₁₀	0.10	0.42

		PM _{2.5}	0.10	0.42
	Regeneration Heater No 2 – Start-up and shutdown	СО	1.54	0.02
	Start up and shatdown	NO _X	0.64	0.01
FUG-1	Process Fugitives Train 1 (5)	VOC	0.23	1.03
FUG-2	Process Fugitives Train 2 (5)	VOC	0.23	1.03
TO-1	Thermal Oxidizer Fuel Gas Emissions (9)	СО	5.05	0.05
	Emissions (3)	NO _X	6.01	0.06
		SO ₂	0.04	0.01
		VOC	0.33	0.01
		PM ₁₀	0.46	0.01
		PM _{2.5}	0.46	0.01
	Thermal Oxidizer Dry Dock Vessel Purging (9)	СО	20.57	0.12
		NO _X	15.32	0.11
		VOC	0.68	0.03
		PM ₁₀	1.63	1.63
		PM _{2.5}	1.63	1.63
TO-PORT	Thermal Oxidizer Fuel Gas Emissions (9)	СО	5.05	0.05
		NO _X	6.01	0.06
		SO ₂	0.04	0.01
		VOC	0.33	0.01
		PM ₁₀	0.46	0.01
		PM _{2.5}	0.46	0.01

	Thermal Oxidizer Dry Dock Vessel Purging (9)	СО	20.57	0.12
		NO _X	15.32	0.11
		VOC	0.68	0.03
		PM ₁₀	1.63	0.02
		PM _{2.5}	1.63	0.02
TO-1, TO-PORT	Thermal Oxidizer Dry Dock Vessel Purging Annual	СО		0.12
	Emissions CAP (9)	NO _X		0.11
		VOC		0.03
		PM ₁₀		0.02
		PM _{2.5}		0.02
Flare-1	Flare Pilot Gas Emissions	СО	0.04	0.15
		NO _X	0.04	0.18
		SO ₂	0.01	0.01
		VOC	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
	NGL Facility Maintenance, Startup, and Shutdown Activities	СО	621.55	1.75
		NO _X	311.34	0.88
		VOC	443.38	1.09
MSS-ATM2	NGL Facility Maintenance, Startup, and Shutdown Activities	VOC	23.16	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

Cl₂ - chlorine

HCl - hydrogen chloride

H₂S/TRS - hydrogen sulfide/total reduced sulfur

MEOH - methanol

MTBE - methyl-tert-butyl-ether

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) All non- isobutylene marine loading emissions shall be controlled by either the TOF or the MVCSs. Once the MVCSs are fully operational the TOF will be removed from service.
- (7) MEOH and MTBE emissions are included in the VOC emission rates.
- (8) Total MSS emissions from 104A, NGST-FLARE and MSS-FLARE may not exceed the hourly and annual flare MSS CAP.
- (9) Thermal Oxidizers TO-1 and TO-PORT shall not operate at the same time. Combined annual emissions from both TOs shall not exceed the CAP.

Date:	August 4, 2014