

Bi-Weekly Colloquium

10 December 2021

Özge Erten, ESR8

Dynamic Word Embeddings for Evolving Semantic Discovery

Authors: Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, Hui Xiong

Year: 2018

Dynamic Word Embeddings for Evolving Semantic Discovery

- → Problem: Adequately capturing the evolving language structure and vocabulary.
- → Proposed Model: A dynamic statistical model to learn time-aware word vector representation.

For instance;

Methodology

T = time

D = text corpus and Dt, t = 1,...T, is the corpus of all documents in the t -th time slice.

V = words present in the corpus at any point in time and V = $\{w1, ..., wV\}$ overall vocabulary

L = window size, for exp. This is a sample sentence for explaining window size.

uw = The static embedding for word w

U(t) = The embedding matrix of all words

Let's assume we have a time period from January to April and we have collections about magazine. D1 denotes text corpus of magazines in January and DT denotes text corpus of magazines in April. V contains all vocabulary from January to April.

Time-Agnostic Embeddings

- → Pointwise Mutual Information (PMI) matrix
 - Observation: "Semantically similar words often have similar neighboring words in a corpus".

$$PMI(\mathcal{D}, L)_{w,c} = \log \left(\frac{\#(w,c) \cdot |\mathcal{D}|}{\#(w) \cdot \#(c)} \right)$$

PMI matrix calculates for w and c-th entry to find embedding vectors uw and uc.

The Alignment Problem

- → Alignment for different time periods is an issue in general if embeddings are learned independently for each time slice.
- → Solution: In the paper, the word embeddings learn across time jointly
 - Thus obviating the need to solve a separate alignment problem.
- → Proposed method:

Temporal Word Embeddings

→ An extension: Using matrix factorization technique on each time slice Dt separately.

$$PPMI(t, L)_{w,c} = \max\{PMI(\mathcal{D}_t, L)_{w,c}, 0\}. := Y(t).$$

→ The model;

$$\min_{U(1),...,U(T)} \frac{1}{2} \sum_{t=1}^{T} \|Y(t) - U(t)U(t)^{T}\|_{F}^{2} + \frac{\lambda}{2} \sum_{t=1}^{T} \|U(t)\|_{F}^{2} + \frac{\tau}{2} \sum_{t=2}^{T} \|U(t - 1) - U(t)\|_{F}^{2},$$

Dataset and Experiments

- → New York Times, published a total of 99,872 articles
 - Between January 1990 and July 2016.
 - ◆ D1 = articles in January 1990 and DT = articles in July 2016.
 - Time: They use yearly time slices, dividing the corpus into T = 27 partitions.
 - ◆ V: 20, 936 unique words.

→ Trajectory visualization:

→ Equivalence searching

Question	US president	NYC mayor
Query	obama, 2016	blasio, 2015
90-92	bush	dinkins
93	clinton	
94-00		giuliani
01	bush	
02-05		bloomberg
06		n/a*
07		bloomberg
08		
09-10	obama	
11		cuomo*
12		bloomberg
13-16		blasio

→ Popularity determination

Conclusion

- → Higher interpretability for embeddings,
- → Better quality with less data,
- → More reliable alignment for across-time querying.

Reference

• Yao, Z., Sun, Y., Ding, W., Rao, N., & Xiong, H. (2018, February). Dynamic word embeddings for evolving semantic discovery. In Proceedings of the eleventh acm international conference on web search and data mining (pp. 673-681).

Thank you!