SBML Model Report

Model name: "Bertram1995 PancreaticBetaCell CRAC"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Ishan Ajmera¹ and Catherine Lloyd² at September 29th 2011 at 10:07 p. m. and last time modified at April eighth 2016 at 5:07 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity	
compartment types	0	compartments	1	
species types	0	species	5	
events	0	constraints	0	
reactions	0	function definitions	0	
global parameters	50	unit definitions	0	
rules	30	initial assignments	0	

Model Notes

This a model from the article:

A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells.

Bertram R, Smolen P, Sherman A, Mears D, Atwater I, Martin F, Soria B. Biophys J1995

¹EMBL-EBI, ajmera@ebi.ac.uk

²The University of Auckland, The Bioengineering Institute, c.lloyd@aukland.ac.nz

Jun;68(6):2323-32 7647236,

Abstract:

S. Bordin and colleagues have proposed that the depolarizing effects ofacetylcholine and other muscarinic agonists on pancreatic beta-cells are mediated by a calcium release-activated current (CRAC). We support this hypothesis with additional data, and present a theoretical model which accounts for most known data on muscarinic effects. Additional phenomena, such as the biphasic responses of beta-cells to changes in glucose concentration and the depolarizing effects of the sarco-endoplasmic reticulum calcium ATP ase pumppoison thap sigargin, are also accounted for by our model. The ability of this single hypothesis, that CRAC is present in beta-cells, to explain so many phenomena motivates a more complete characterization of this current.

This model was taken from the CellML repository and automatically converted to SBML. The original model was:Bertram R, Smolen P, Sherman A, Mears D, Atwater I, Martin F, Soria B. (1995) - version=1.0

The original CellML model was created by:

Catherine Lloyd

c.lloyd@auckland.ac.nz

The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	COMpartment		3	1	litre	Ø	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name COMpartment

4 Species

This model contains five species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
V_membrane	V_membrane	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		
n	n	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box
jm	jm	${\tt COMpartment}$	$\text{mol} \cdot 1^{-1}$		\Box
Ca_er_Ca_equations	ca_er_ca_equations	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box
Ca_i	Ca_i	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains 50 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Cm	Cm	0000258	6158.000		✓
i_K	i_K		17.550		
g_K	g_K	0000009	3900.000		
$\mathtt{n}_{-}\mathtt{infinity}$	n_infinity	4.	67956725632935 · 10	$)^{-4}$	
tau_n	tau_n		9.086		
$lambda_n$	lambda_n	0000009	1.850		
i_K_ATP	i_K_ATP		1350.000		
g_K_ATP	g_K_ATP		150.000		
i_Ca_f	i_Ca_f		-548.702		
$V_{-}Ca$	V_Ca	0000009	100.000		
g_Ca_f	g_Ca_f	0000009	810.000		$\overline{\mathbf{Z}}$
$\mathtt{m_f_infinity}$	m_f_infinity		0.004		
i_Ca_s	i_Ca_s		-793.881		
g_Ca_s	g_Ca_s	0000009	510.000		
$\mathtt{m_s_infinity}$	m_s_infinity		0.011		
j	j		0.880		\Box
${\tt jm_infinity}$	jm_infinity		0.018		\Box
$\mathtt{tau}_{\mathtt{-}}\mathtt{j}$	tau_j		8145.056		
i_Ca	i_Ca		-1342.583		
i_K_Ca	i_K_Ca		3.455		
g_K_Ca	g_K_Ca	0000009	1200.000		
kdkca	kdkca	0000009	0.550		$ \overline{\mathbf{Z}} $
i_CRAC	i_CRAC		-11.312		
g_CRAC	g_CRAC	0000009	75.000		
$V_{-}CRAC$	V_CRAC	0000009	0.000		
$\mathtt{r}_{ extsf{-}}\mathtt{infinity}$	r_infinity		0.002		\Box
Ca_er_bar	Ca_er_bar	0000009	3.000		
i_leak	i_leak		0.000		
${ t g}_{-}{ t leak}$	g_leak	0000009	0.000		
J_er_p	J_er_p		0.131		
IP3	IP3	0000196	0.000		
kerp	kerp	0000009	0.100		
verp	verp	0000009	0.240		
dact	dact	0000009	0.100		
dinh	dinh	0000009	0.400		
dip3	dip3	0000009	0.200		$ \overline{\mathbf{Z}} $
$\mathtt{a}_{-}\mathtt{infinity}$	a_infinity		0.524		

Id	Name	SBO	Value	Unit	Constant
b_infinity	b_infinity		0.000		
$h_{\tt infinity}$	h_infinity		0.784		\Box
0	O		0.000		\Box
$J_{\tt er_tot}$	J_er_tot		0.046		
$J_{er}IP3$	J_er_IP3		0.000		
$J_{\tt er_leak}$	J_er_leak		0.178		
perl	perl	0000009	0.020		\square
lambda_er	lambda_er	0000009	250.000		$\overline{\mathbf{Z}}$
sigma_er	sigma_er	0000009	5.000		$\overline{\mathbf{Z}}$
k_Ca	k_Ca	0000009	0.070		$\overline{\mathbf{Z}}$
gamma	gamma	0000009	$3.607 \cdot 10^{-}$	-6	$\overline{\mathbf{Z}}$
$J_{\mathtt{mem_tot}}$	J_mem_tot	-2.	8573018487523 · 10	5	
f	f	0000009	0.010		Ø

6 Rules

This is an overview of 30 rules.

6.1 Rule i_K

Rule i_K is an assignment rule for parameter i_K:

$$i_K = g_K \cdot [n] \cdot ([V_membrane] + 70)$$
 (1)

6.2 Rule n_infinity

Rule n_infinity is an assignment rule for parameter n_infinity:

$$n_infinity = \frac{1}{1 + \exp\left(\frac{15 - [V_membrane]}{6}\right)}$$
 (2)

6.3 Rule tau_n

Rule tau_n is an assignment rule for parameter tau_n:

$$tau_n = \frac{9.09}{1 + exp\left(\frac{15 + [V_membrane]}{6}\right)}$$
(3)

6.4 Rule i_K_ATP

Rule i_K_ATP is an assignment rule for parameter i_K_ATP:

$$i_K_ATP = g_K_ATP \cdot ([V_membrane] + 70)$$
 (4)

6.5 Rule m_f_infinity

Rule m_f_infinity is an assignment rule for parameter m_f_infinity:

$$m_f = \frac{1}{1 + \exp\left(\frac{20 - [V_membrane]}{7.5}\right)}$$
 (5)

6.6 Rule i_Ca_f

Rule i_Ca_f is an assignment rule for parameter i_Ca_f:

$$i_{Ca}f = g_{Ca}f \cdot m_{f_{infinity}} \cdot ([V_{membrane}] - V_{Ca})$$
(6)

6.7 Rule m_s_infinity

Rule m_s_infinity is an assignment rule for parameter m_s_infinity:

$$m_s = \frac{1}{1 + \exp\left(\frac{16 - [V_membrane]}{10}\right)}$$
 (7)

6.8 Rule i_Ca_s

Rule i_Ca_s is an assignment rule for parameter i_Ca_s:

$$i_{Ca_s} = g_{Ca_s} \cdot m_{s_i} \cdot m_{s_i} \cdot (1 - [jm]) \cdot ([V_{membrane}] - V_{Ca})$$
(8)

6.9 Rule i_Ca

Rule i_Ca is an assignment rule for parameter i_Ca:

$$i_{Ca} = i_{Ca}f + i_{Ca}s$$
 (9)

6.10 Rule j

Rule j is an assignment rule for parameter j:

$$\mathbf{j} = 1 - [\mathbf{jm}] \tag{10}$$

6.11 Rule jm_infinity

Rule jm_infinity is an assignment rule for parameter jm_infinity:

jm_infinity =
$$1 - \frac{1}{1 + \exp\left(\frac{53 + [V_membrane]}{2}\right)}$$
 (11)

6.12 Rule tau_j

Rule tau_j is an assignment rule for parameter tau_j:

$$tau_{j} = \frac{50000}{\exp\left(\frac{53 + [V_membrane]}{4}\right) + \exp\left(\frac{53 - [V_membrane]}{4}\right)} + 1500$$
 (12)

6.13 Rule i_K_Ca

Rule i_K_Ca is an assignment rule for parameter i_K_Ca:

$$i_{-}K_{-}Ca = \frac{g_{-}K_{-}Ca \cdot [Ca_{-}i]^{5}}{[Ca_{-}i]^{5} + kdkca^{5}} \cdot ([V_{-}membrane] + 70)$$
(13)

6.14 Rule r_infinity

Rule r_infinity is an assignment rule for parameter r_infinity:

$$r_infinity = \frac{1}{1 + exp\left(1 \cdot \left(\left[Ca_er_Ca_equations \right] - Ca_er_bar \right) \right)} \tag{14}$$

6.15 Rule i_CRAC

Rule i_CRAC is an assignment rule for parameter i_CRAC:

$$i_CRAC = g_CRAC \cdot r_infinity \cdot ([V_membrane] - V_CRAC)$$
 (15)

6.16 Rule i_leak

Rule i_leak is an assignment rule for parameter i_leak:

$$i_leak = g_leak \cdot ([V_membrane] - V_CRAC)$$
 (16)

6.17 Rule J_er_p

Rule J_er_p is an assignment rule for parameter J_er_p:

$$J_er_p = \frac{\text{verp} \cdot [\text{Ca.i}]^2}{[\text{Ca.i}]^2 + \text{kerp}^2}$$
 (17)

6.18 Rule a_infinity

Rule a_infinity is an assignment rule for parameter a_infinity:

$$a_infinity = \frac{1}{1 + \frac{dact}{[Ca.i]}}$$
 (18)

6.19 Rule b_infinity

Rule b_infinity is an assignment rule for parameter b_infinity:

$$b_infinity = \frac{IP3}{IP3 + dip3}$$
 (19)

6.20 Rule h_infinity

Rule h_infinity is an assignment rule for parameter h_infinity:

$$h_infinity = \frac{1}{1 + \frac{[Ca.i]}{dinh}}$$
 (20)

6.21 Rule 0

Rule 0 is an assignment rule for parameter 0:

$$O = a_infinity^3 \cdot b_infinity^3 \cdot h_infinity^3 \cdot 1$$
 (21)

6.22 Rule J_er_IP3

Rule J_er_IP3 is an assignment rule for parameter J_er_IP3:

$$J_{er}IP3 = O \cdot ([Ca_{er}Ca_{equations}] - [Ca_{i}])$$
 (22)

6.23 Rule J_er_leak

Rule J_er_leak is an assignment rule for parameter J_er_leak:

$$J_{er} = perl \cdot ([Ca_{er} - Ca_{equations}] - [Ca_{i}])$$
 (23)

6.24 Rule J_er_tot

Rule J_er_tot is an assignment rule for parameter J_er_tot:

$$J_{er_tot} = J_{er_leak} + J_{er_IP3} - J_{er_p}$$
 (24)

6.25 Rule J_mem_tot

Rule J_mem_tot is an assignment rule for parameter J_mem_tot:

$$J_{-}mem_{-}tot = f \cdot (gamma \cdot i_{-}Ca + k_{-}Ca \cdot [Ca_{-}i])$$
(25)

6.26 Rule V_membrane

Rule V_membrane is a rate rule for species V_membrane:

$$\frac{d}{dt}V_{-}membrane = \frac{(i_{-}Ca + i_{-}K + i_{-}K_{-}ATP + i_{-}K_{-}Ca + i_{-}CRAC + i_{-}leak)}{Cm}$$
(26)

6.27 Rule n

Rule n is a rate rule for species n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \frac{\mathrm{lambda}_{-}\mathbf{n} \cdot (\mathbf{n}_{-}\mathrm{infinity} - [\mathbf{n}])}{\mathrm{tau}_{-}\mathbf{n}}$$
(27)

6.28 Rule jm

Rule jm is a rate rule for species jm:

$$\frac{d}{dt}jm = \frac{jm_infinity - [jm]}{tau_j}$$
 (28)

6.29 Rule Ca_er_Ca_equations

Rule Ca_er_Ca_equations is a rate rule for species Ca_er_Ca_equations:

$$\frac{d}{dt}Ca_er_Ca_equations = \frac{J_er_tot}{lambda_er \cdot sigma_er}$$
 (29)

6.30 Rule Ca_i

Rule Ca_i is a rate rule for species Ca_i:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ca}_{-i} = \frac{\mathrm{J}_{-\mathrm{er}_{-}\mathrm{tot}}}{\mathrm{lambda}_{-\mathrm{er}}} + \mathrm{J}_{-\mathrm{mem}_{-}\mathrm{tot}}$$
(30)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species V_membrane

Name V_membrane

SBO:0000259 voltage

Initial amount -61 mol

Involved in rule V_membrane

One rule which determines this species' quantity.

7.2 Species n

Name n

Initial amount $5 \cdot 10^{-4} \text{ mol}$

Involved in rule n

One rule which determines this species' quantity.

7.3 Species jm

Name jm

SBO:0000412 biological activity

Initial amount 0.25 mol

Involved in rule jm

One rule which determines this species' quantity.

7.4 Species Ca_er_Ca_equations

Name ca_er_ca_equations

Initial amount 9 mol

Involved in rule Ca_er_Ca_equations

One rule which determines this species' quantity.

7.5 Species Ca_i

Name Ca_i

Initial amount 0.11 mol

Involved in rule Ca_i

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- SBO:0000196 concentration of an entity pool: The amount of an entity per unit of volume.
- **SBO:0000258 capacitance:** Measure of the amount of electric charge stored (or separated) for a given electric potential. The unit of capacitance id the Farad
- **SBO:0000259 voltage:** Difference of electrical potential between two points of an electrical network, expressed in volts
- **SBO:0000412 biological activity:** The potential action that a biological entity has on other entities. Example are enzymatic activity, binding activity etc

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany