Elements of Statistics (Part I)

Prof. Americo Cunha Jr.

Rio de Janeiro State University - UERJ

americo.cunha@uerj.br

www.americocunha.org

Probability vs Statistics

Probability

Given a data generating process, what are the properties of the outcomes?

Statistics

Given the outcomes, what can we say about the process that generated the data?

Statistical Inference

What is inference about?

<u>Statistical inference</u> (or learning) is the process of using data to infer the distribution that generated the data.

A typical inference question:

Given a sample X_1, \dots, X_n with distribution F_X , how to infer F_X ?

Some typical inference problems:

- estimation
- confidence sets
- hypothesis testing
- clustering or classification

Parametric vs Nonparametric

A <u>statistical model</u> is a set of distributions (or densities)

$$\mathfrak{F} = \left\{ p_X(x;\theta) \mid \theta \in \Theta \right\},\,$$

where θ is a (vector/scalar) parameter in a space of parameter Θ .

- Parametric statistics:
 - \$\footnote{\cappa}\$ can be parametrized by a finite number of parameters (finite dimensional problem)
 - probability distribution known a priori
 - seek for distribution parameters
- Nonparametric statistics:
 - \$\mathcal{F}\$ can not be parametrized by a finite number of parameters
 (infinite dimensional problem)
 - probability distribution unknown a priori
 - seeks for distribution shape

Examples of statistical models

Example 1 (parametric):

 X_1, \cdots, X_n are observations of $X \sim \mathcal{N}(\mu, \sigma)$

$$\mathfrak{F} = \left\{ p_X(x; \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left\{ -\frac{(x - \mu)^2}{2 \sigma^2} \right\} \mid \mu \in \mathbb{R}, \ \sigma > 0 \right\}$$

The problem is to estimate μ and σ .

Example 2 (nonparametric):

 X_1, \cdots, X_n are independent observations from an unknwn F_X

$$\mathfrak{F} = \{ \text{set of all possible CDFs} \}$$

The problem is to estimate F_X .

Frequentist vs Bayesian

The two dominant approaches (paradigms) for inference are:

- Frequentist (or classical):
 - probability is a limit frequency
 - parameters are fixed
 - inference based on asymptotic properties
- Bayesian:
 - probability is a degree of belief
 - data are fixed
 - inference based on posterior distribution

Statistical Estimator

A <u>statiscal estimator</u> is a rule for calculating an estimate of a given quantity based on observed data.

Estimation deals with three distinct objects:

- estimand (quantity to be estimated)
- estimator (estimation rule)
- estimate (estimation result)

There are two types of estimators:

- point estimator
- interval estimator

Point Estimator

Let X_1, \dots, X_n be a sequence of independent and identically distributed (iid) data points from some distribution F_X .

A point estimator $\widehat{\theta}_n$ for parameter θ is a random variable

$$\widehat{\theta}_n = g(X_1, \cdots, X_n).$$

This estimator can be thought a single "best guess" of some quantity of interest (a parameter in a parametric model, a CDF, a PDF, etc).

Examples of point estimators

 X_1, \dots, X_n are independent observations of $X \sim \mathcal{N}(\mu, \sigma^2)$

Point estimators for μ and σ^2 are given by:

sample mean

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• sample variance

$$\widehat{\sigma^2}_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \widehat{\mu}_n)^2$$

Quantified properties of a point estimator

• Bias:

$$\operatorname{\mathtt{bias}}\left(\widehat{ heta}_{n}
ight) = \mathbb{E}\left\{\widehat{ heta}_{n}
ight\} - heta$$

If bias $\left(\widehat{\theta}_{n}\right)=0$ the estimator is said to be <u>unbiased</u>

Distance between the average of the collection of estimates, and the single parameter being estimated.

Mean Square Error:

$$\mathtt{MSE}\left(\widehat{\theta}_{n}\right) = \mathbb{E}\left\{\left(\widehat{\theta}_{n} - \theta\right)^{2}\right\} = \mathtt{bias}\left(\widehat{\theta}_{n}\right)^{2} + \mathtt{var}\left(\widehat{\theta}_{n}\right)$$

Indicate how far, on average, the collection of estimates are from the single parameter being estimated.

L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer, 2004.

Behavioral properties of a point estimator

- $\widehat{\theta}_n$ is said to be consistent if $\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$ Increasing the sample size increases the probability of the estimator being close to the population parameter.
- $\widehat{\theta}_n$ is said to be asymptotically normal if

$$\frac{\widehat{\theta}_n - \theta}{\sqrt{\operatorname{var}\left(\widehat{\theta}_n\right)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1),$$

A consistent estimator whose distribution around the true parameter approaches a normal distribution.

Confidence Interval

A $\frac{1-\alpha}{C_n}$ confidence interval for parameter θ is a random interval $C_n=(a,b)$, where $a=a(X_1,\cdots,X_n)$ and $b=b(X_1,\cdots,X_n)$ are random variables such that

$$\mathcal{P}\left\{a\leq \theta\leq b\right\}\geq 1-\alpha, \ \ \text{for all} \ \ \theta\in\Theta.$$

This random interval envelopes θ with probability $1 - \alpha$.

Remark:

 C_n is a random variable, while θ is fixed parameter.

Example of confidence interval

"83% of the population favor invest more on education."

What parameter is estimated on this poll ? p = proportion of people who favor invest more on education

"Poll is accurate to within 4 points 95% of the time."

$$C_n = (79, 87) = 83 \pm 4$$
 is a 95% confidence interval for the poll

If you form a confidence interval this way every day for the rest of your life, 95% of your intervals will contain the true parameter p.

Hypothesis Testing

H₀: null hyphotesis
 The hyphotesis to be retained or rejected

H₁: alternative hyphotesis
 H₁ is rejected if H₀ is true
 H₁ is accepted if H₀ is false

Does the data provide sufficient evidence to reject H_0 ?

	Retain Null	Reject Null
H_0 is true	correct decision	type I error
H_1 is true	type II error	correct decision

Table: Possible outcomes of hypothesis testing.

An example of hypothesis test

Testing if a Coin is Fair

$$X_1, \cdots, X_n \sim \mathsf{Bernoulli}(p)$$

$$H_0: p = 1/2 \text{ versus } H_1: p \neq 1/2$$

It seems reasonable to reject H_0 if

$$T = |\widehat{p}_n - 1/2|$$
 is large

Remarks about hypothesis test

Important remarks about hypothesis test:

- Useful to see if there is evidence to reject H₀
- Not useful to prove that H_0 is true
- Failure to reject H_0 might occur because:
 - H_0 is true
 - test is not effective

References

S. E. Fienberg, What Is Statistics?, Annual Review of Statistics and Its Application, 1:1-9, 2014.

V. Stodden, Reproducing Statistical Results, Annual Review of Statistics and Its Application, 2:1-19, 2015.

G. Claeskens, Statistical Model Choice, Annual Review of Statistics and Its Application, 3:233-256, 2016.

L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer, 2004.

L. Wasserman, All of Nonparametric Statistics, Springer, 2007.

G. Casella, Statistical Inference, Thomson Press (India) Ltd, 2008.

J. Shao, Mathematical Statistics, Springer, 2nd Edition, 2007

J. E. Gentle, Computational Statistics, Springer; 2009

J. E. Gentle, W. K. Härdle, and Y. Mori, Handbook of Computational Statistics: Concepts and Methods, Springer, 2nd revised and updated Edition, 2012.

