GHRH sequence (SeqID #4), and a 3'end of human growth hormone (SeqID #8). Other examples of optimized synthetic plasmids include pAV0202 (SeqID #17), pAV0203 (SeqID #18), pAV0204 (SeqID #19), pAV0205 (SeqID #20), pAV0206 (SeqID #21), pAV0207 (SeqID #28). The therapeutic encoded gene for such optimized plasmids may also include optimized nucleic acid sequences that encode modified GHRH molecules or functional biological equivalents thereof.

In the Claims:

WHAT IS CLAIMED:

1. (Currently Amended) A method of decreasing an involuntary cull in farm animals comprising: introducing into muscle cells of the farm animal an effective amount of an isolated nucleic acid expression construct that encodes a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof; wherein the nucleic acid expression construct comprises a synthetic muscle specific promoter; a nucleotide sequence capable of expressing the GHRH or functional biological equivalent under conditions that promote expression of the nucleotide sequence; and a 3' untranslated region, wherein the involuntary cull comprises infection, disease, morbidity, or mortality of the farm animals; and wherein the farm animals comprises ruminant animals, food animals, or work animals.

A method for decreasing an involuntary cull in farm animals comprising:

- (a) penetrating a muscle tissue in the farm animals with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;
- (b) <u>introducing an isolated nucleic acid expression construct that encodes a growth-hormone-releasing-hormone ("GHRH") into the muscle tissue between the plurality of needle electrodes, wherein the encoded GHRH has at least 95% identical to (SEQ ID NO.: 1) and is capable of binding to a GHRH receptor; and</u>
- (c) applying a constant current electrical pulse to the plurality of needle electrodes;

wherein, the isolated nucleic acid expression construct comprises a synthetic muscle specific promoter; a nucleotide sequence capable of expressing the GHRH molecule having at least 95% identical to (SEQ ID NO.: 1); and a 3' untranslated region that are in an operatively positioned arrangement capable of expressing the encoded GHRH molecule under conditions that promote expression of the nucleotide sequence in the muscle tissue, wherein the involuntary cull comprises infection, disease, morbidity, or mortality of the farm animals; and wherein the farm animals comprises ruminant animals, food animals, or work animals.

- 2. (Previously Amended) The method of claim 1, wherein the involuntary cull from mortality is decreased from about 20% in farm animals not having the isolated nucleic acid expression construct delivered into muscle cells to less than 15% in farm animals having the isolated nucleic acid expression construct delivered.
- 3. (Original) The method of claim 1, wherein the involuntary cull comprises mortality at birth of newborns of the farm animals.
- 4. (Original) The method of claim 1, wherein the involuntary cull comprises post-natal mortality of newborns of the farm animals.
- 5. (Canceled) The method of claim 1, wherein delivering into the muscle cells of the farm animals the isolated nucleic acid expression construct is via, a viral vector, in conjunction with a carrier, by parenteral route, or a combination thereof.
- 6. (Canceled) The method of claim 1, wherein introducing into muscle cells of the farm animal the effective amount of the isolated nucleic acid expression construct that encodes the growth-hormone-releasing-hormone ("GHRH") or functional biological equivalent thereof further-comprising:
 - (a) penetrating a tissue in the farm animals with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;

- (b) introducing the isolated nucleic acid expression construct into the tissue between the plurality of needle electrodes; and
- (c) applying an electrical pulse to the plurality of needle electrodes.
- 7. (Original) The method of claim 1, wherein the isolated nucleic acid expression construct is delivered in a single dose.
- 8. (Original) The method of claim 7, wherein the single dose comprises about a 2mg quantity of nucleic acid expression construct.
- 9. (Previously Amended) The method of claim 1, wherein the muscle cells of the farm animals comprise diploid cells.
- 10. (Canceled) The method of claim 1, wherein the tissue of the farm animals comprise muscle cells.
- 11. (Currently Amended) The method of claim 1, wherein the isolated nucleic acid expression construct comprises <u>SEQID No.: 11. a HV-GHRH plasmid (SEQID#11)</u>.
- 12. (Withdrawn) The method of claim 1, wherein the isolated nucleic acid expression construct comprises an optimized pAV0204 bGHRH plasmid (SEQID#19).
- 13. (Withdrawn) The method of claim 1, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), or pSP-wt-GHRH plasmid.
- 14. (Withdrawn) The method of claim 1, wherein the isolated-nucleic acid expression construct is an optimized pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).

ATTORNEY DOCKET: AVSI-0033 (108328.00170) Patent Application

15. (Original) The method of claim 1, wherein the isolated nucleic acid expression construct further comprises, a transfection-facilitating polypeptide.

- 16. (Original) The method of claim 15, wherein the transfection-facilitating polypeptide comprises a charged polypeptide.
- 17. (Original) The method of claim 15, wherein the transfection-facilitating polypeptide comprises poly-L-glutamate.
- 18. (Original) The method of claim 1, wherein the delivering into the cells of the farm animals the isolated nucleic acid expression construct initiates expression of the encoded GHRH or functional biological equivalent thereof.
- 19. (Original) The method of claim 1, wherein the encoded GHRH is a biologically active polypeptide; and the encoded functional biological equivalent of GHRH is a polypeptide that has been engineered to contain a distinct amino acid sequence while simultaneously having similar or improved biologically activity when compared to the GHRH polypeptide.
- 20. (Currently Amended) The method of claim 1, <u>further comprising selecting the encoded</u>

 GHRH that is at least 95% identical to (SEQ ID NO.: 1), is capable of binding to a

 GHRH receptor, and has an amino acid tyrosine ("Y"), or histidine ("H") at position 1;

 has a an amino acid alanine ("A"), valine ("V"), or isoleucine ("I") at position 2; has an

 amino acid alanine ("A") or glycine ("G") at position 15; has an amino acid methionine

 ("M"), or leucine ("L") at position 27; or an amino acid serine ("S") or asparagine ("N")

 at position 28.

wherein the encoded GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₋₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

4333708v.4 108328/00170 Page 6 of 37

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D-or L-isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine
("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G"); X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L"); X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N"); or a combination thereof.

- 21. (Canceled) The method of claim 1, wherein the farm animals comprises ruminant animals, food animals, or work animals.
- 22. (Original) The method of claim 1, wherein the farm animals comprise dairy cows.
- 23. (Currently Amended) A method of improving a body condition score ("BCS") in farm animals comprising: introducing into muscle cells of the farm animal an effective amount of an isolated nucleic acid expression construct that encodes a growth-hormone-releasing hormone ("GHRH") or functional biological equivalent thereof; wherein the nucleic acid expression construct comprises a synthetic muscle specific promoter; a nucleotide sequence capable of expressing the GHRH or functional biological equivalent under conditions that promote expression of the nucleotide sequence; and a 3' untranslated region, wherein the BSC is an aid used to evaluate an overall nutritional state of the farm animals; and wherein the farm animals comprises ruminant animals, food animals, or work animals.

A method for improving a body condition score ("BCS") in farm animals comprising:

- (a) penetrating a muscle tissue in the farm animals with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;
- (b) <u>introducing an isolated nucleic acid expression construct that encodes a growth-hormone-releasing-hormone ("GHRH")</u> into the muscle tissue between the

plurality of needle electrodes, wherein the encoded GHRH has at least 95% identical to (SEQ ID NO.: 1) and is capable of binding to a GHRH receptor; and

(c) applying a constant current electrical pulse to the plurality of needle electrodes;

wherein, the isolated nucleic acid expression construct comprises a synthetic muscle specific promoter; a nucleotide sequence capable of expressing the GHRH molecule having at least 95% identical to (SEQ ID NO.: 1); and a 3' untranslated region that are in an operatively positioned arrangement capable of expressing the encoded GHRH molecule under conditions that promote expression of the nucleotide sequence in the muscle tissue, wherein the BSC is an aid used to evaluate an overall nutritional state of the farm animals; and wherein the farm animals comprises ruminant animals, food animals, or work animals.

- 24. (Canceled) The method of claim 23, wherein delivering into the muscle cells of the farm animals the isolated nucleic acid expression construct is via, a viral vector, in conjunction with a carrier, by parenteral route, or a combination thereof.
- 25. (Canceled) The method of claim 23, wherein introducing into muscle cells of the farm animal the effective amount of the isolated nucleic acid expression construct that encodes the growth-hormone-releasing-hormone ("GHRH") or functional biological equivalent thereof further comprising:
 - (a) penetrating a tissue in the farm animals with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;
 - (b) introducing the isolated nucleic acid expression construct into the tissue between the plurality of needle electrodes; and
 - (c) applying an electrical pulse to the plurality of needle electrodes.
- 26. (Original) The method of claim 23, wherein the isolated nucleic acid expression construct is delivered in a single dose.

- 27. (Original) The method of claim 26, wherein the single dose comprises about a 2mg quantity of nucleic acid expression construct.
- 28. (Previously Amended) The method of claim 26, wherein the muscle cells of the farm animals comprise diploid cells.
- 29. (Canceled) The method of claim 26, wherein the tissues of the farm animals comprise muscle cells.
- 30. (Currently Amended) The method of claim 26, wherein the isolated nucleic acid expression construct comprises SEQID No.: 11. a HV GHRH plasmid (SEQID#11).
- 31. (Withdrawn) The method of claim 26, wherein the isolated nucleic acid expression construct comprises an optimized pAV0204 bGHRH plasmid (SEQID#19).
- 32. (Withdrawn) The method of claim 26, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), or pSP-wt-GHRH plasmid.
- 33. (Withdrawn) The method of claim 26, wherein the isolated nucleic acid expression construct is an optimized pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).
- 34. (Original) The method of claim 26, wherein the isolated nucleic acid expression construct further comprises, a transfection-facilitating polypeptide.
- 35. (Original) The method of claim 34, wherein the transfection-facilitating polypeptide comprises a charged polypeptide.

- 36. (Original) The method of claim 34, wherein the transfection-facilitating polypeptide comprises poly-L-glutamate.
- 37. (Original) The method of claim 26, wherein the delivering into the cells of the farm animals the isolated nucleic acid expression construct initiates expression of the encoded GHRH or functional biological equivalent thereof.
- 38. (Original) The method of claim 26, wherein the encoded GHRH is a biologically active polypeptide; and the encoded functional biological equivalent of GHRH is a polypeptide that has been engineered to contain a distinct amino acid sequence while simultaneously having similar or improved biologically activity when compared to the GHRH polypeptide.
- 39. (Currently Amended) The method of claim 26, <u>further comprising selecting the encoded</u>

 GHRH that is at least 95% identical to (SEQ ID NO.: 1), is capable of binding to a

 GHRH receptor, and has an amino acid tyrosine ("Y"), or histidine ("H") at position 1;

 has a an amino acid alanine ("A"), valine ("V"), or isoleucine ("I") at position 2; has an

 amino acid alanine ("A") or glycine ("G") at position 15; has an amino acid methionine

 ("M"), or leucine ("L") at position 27; or an amino acid serine ("S") or asparagine ("N")

 at position 28.

wherein the encoded GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D-or L-isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid-methionine ("M"), or leucine ("L");

ATTORNEY DOCKET: AVSI-0033 (108328.00170)

Patent Application

X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N"); or a combination thereof.

- 40. (Original) The method of claim 26, wherein the farm animals comprises a ruminant animals, a food animals, or a work animals.
- 41. (Original) The method of claim 26, wherein the farm animals comprises a pig, sheep, goat or chicken.
- 42. (Original) The method of claim 26, wherein the farm animals comprise bovine.
- 43. (Previously Amended) The method of claim 42, wherein the farm animals comprise dairy cows.
- 44. (Currently Amended) A method of increasing milk production in a dairy cow comprising: introducing into muscle cells of the dairy cow an effective amount of an isolated nucleic acid expression construct that encodes a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof; wherein the nucleic acid expression construct comprises—a—synthetic—muscle—specific promoter;—a—nucleotide—sequence—capable—of expressing the GHRH or functional biological equivalent under-conditions that promote expression of the nucleotide sequence; and a 3' untranslated region; wherein delivering into the muscle cells of the farm animals the isolated nucleic acid expression construct is via electroporation in conjunction with a carrier, and wherein the isolated nucleic acid expression construct is delivered in a single dose.

A method for increasing milk production in a dairy cow comprising:

- (d) penetrating a muscle tissue in the dairy cow with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;
- (e) <u>introducing a single dose of an isolated nucleic acid expression construct that</u> encodes a growth-hormone-releasing-hormone ("GHRH") into the muscle tissue

Patent Application

ATTORNEY DOCKET: AVSI-0033 (108328.00170)

between the plurality of needle electrodes, wherein the encoded GHRH has at least 95% identical to (SEQ ID NO.: 1) and is capable of binding to a GHRH receptor; and

(f) applying a constant current electrical pulse to the plurality of needle electrodes;

wherein, the isolated nucleic acid expression construct comprises a synthetic muscle specific promoter; a nucleotide sequence capable of expressing the GHRH molecule having at least 95% identical to (SEQ ID NO.: 1); and a 3' untranslated region that are in an operatively positioned arrangement capable of expressing the encoded GHRH molecule under conditions that promote expression of the nucleotide sequence in the muscle tissue.

- 45. (Original) The method of claim 44, wherein the increase in milk production is increased from about 8% to about 18% in farm animals having the isolated nucleic acid expression construct delivered when compared to animals not having the isolated nucleic acid expression construct delivered.
- 46. (Canceled) The method of claim 44, wherein introducing into muscle cells of the dairy cow the effective amount of the isolated nucleic acid expression construct that encodes the growth-hormone-releasing-hormone ("GHRH") or functional biological equivalent thereof further comprising:
 - (a) penetrating a tissue in dairy cow with a plurality of needle electrodes, wherein the plurality of needle electrodes are arranged in a spaced relationship;
 - (b) introducing the isolated nucleic acid expression construct into the tissue between the plurality of needle electrodes; and
 - (c) applying an electrical pulse to the plurality of needle electrodes.
- 47. (Original) The method of claim 44, wherein the single dose comprises about a 2mg quantity of nucleic acid expression construct.

- 48. (Currently Amended) The method of claim 44, wherein the isolated nucleic acid expression construct comprises <u>SEQID No.: 11.</u> a <u>HV-GHRH plasmid (SEQID#11)</u>.
- 49. (Withdrawn) The method of claim 44, wherein the isolated nucleic acid expression construct comprises an optimized pAV0204 bGHRH plasmid (SEQID#19).
- 50. (Withdrawn) The method of claim 44, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), or pSP-wt-GHRH plasmid.
- 51. (Withdrawn) The method of claim 44, wherein the isolated nucleic acid expression construct is an optimized pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).
- 52. (Original) The method of claim 44, wherein the isolated nucleic acid expression construct further comprises, a transfection-facilitating polypeptide.
- 53. (Original) The method of claim 52, wherein the transfection-facilitating polypeptide comprises a charged polypeptide.
- 54. (Original) The method of claim 52, wherein the transfection-facilitating polypeptide comprises poly-L-glutamate.
- Original) The method of claim 44, wherein the delivering into the cells of the farm animals the isolated nucleic acid expression construct initiates expression of the encoded GHRH or functional biological equivalent thereof.

- 56. (Original) The method of claim 44, wherein the encoded GHRH is a biologically active polypeptide; and the encoded functional biological equivalent of GHRH is a polypeptide that has been engineered to contain a distinct amino acid sequence while simultaneously having similar or improved biologically activity when compared to the GHRH polypeptide.
- 67. (Currently Amended) The method of claim 44,-further comprising selecting the encoded GHRH that is at least 95% identical to (SEQ ID NO.: 1), is capable of binding to a GHRH receptor, and has an amino acid tyrosine ("Y"), or histidine ("H") at position 1; has a an amino acid alanine ("A"), valine ("V"), or isoleucine ("I") at position 2; has an amino acid alanine ("A") or glycine ("G") at position 15; has an amino acid methionine ("M"), or leucine ("L") at position 27; or an amino acid serine ("S") or asparagine ("N") at position 28.

The method of claim 44, wherein the encoded GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₄-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D or L isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L");

X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N");

or a combination thereof.

58. (Canceled) A method of decreasing an involuntary cull in farm animals comprising: delivering into a muscle tissue of the farm animals an isolated nucleic acid expression construct that encodes a growth hormone-releasing-hormone ("GHRH") or functional biological equivalent thereof; wherein;

the involuntary cull comprises infection, disease, morbidity, or mortality of the farm animals;

delivering is via an in vivo electroporation method;

the isolated nucleic acid expression construct is delivered in a single dose; and

the encoded GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₋₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH wherein the formula has the following characteristics:

X₁-is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂-is a D-or L isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine

("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G"); X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L"); X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N"); or a combination thereof.

- 59. (Canceled) The method of claim 58, wherein the involuntary cull comprises mortality at birth of newborns of the farm animals.
- 60. (Canceled) The method of claim 58, wherein the involuntary cull further comprises postnatal mortality of newborns of the farm animals.
- 61. (Canceled) The method of claim 58, wherein the single dose-comprises about a 2mg quantity of nucleic acid expression construct.

- 62. (Canceled) The method of claim 58, wherein the isolated nucleic acid expression construct is <u>SEQID No.: 11</u>, a HV-GHRH plasmid (SEQID#11) or an optimized pAV0204 bGHRH plasmid (SEQID#19).
- 63. (Withdrawn) The method of claim 58, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28-GHRH plasmid (SEQID#14), pSP-wt-GHRH plasmid, pAV0202-mGHRH plasmid (SEQID#17), pAV0203-rGHRH plasmid (SEQID#18), pAV0205-oGHRH plasmid (SEQID#20), pAV0206-cGHRH plasmid (SEQID#21), or pAV0207-pGHRH plasmid (SEQID#28).
- 64. (Canceled) The method of claim 58, wherein the isolated nucleic acid expression construct further comprises, poly-L-glutamate.
- 65. (Canceled) The method of claim 58, wherein the farm animals comprises a bovine.

66. (Canceled) A method of improving a body condition score ("BCS") in farm animals comprising: delivering into a muscle tissue of the farm animals an isolated nucleic acid expression construct that encodes a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof;

wherein:

the BSC is an aid used to evaluate an overall nutritional state of the farm animals;

delivering is via an in vivo electroporation method;

the isolated nucleic acid-expression construct is delivered in a single dose;

the encoded GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₋₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH wherein the formula has the following characteristics:

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D-or L-isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L");

X₅ is a D-or L-isomer of the amino acid-serine ("S") or asparagine ("N");

or a combination thereof.

- 67. (Canceled) The method of claim-66, wherein the single-dose comprises about a 2mg quantity of nucleic acid expression construct.
- 68. (Canceled) The method of claim 66, wherein the isolated nucleic acid expression construct is <u>SEQID No.: 11</u>, a HV-GHRH plasmid (SEQID#11) or an optimized pAV0204 bGHRH plasmid (SEQID#19).

- 69. (Withdrawn) The method of claim 66, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28-GHRH plasmid (SEQID#14), pSP-wt-GHRH plasmid, pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).
- 70. (Canceled) The method of claim 66, wherein the isolated nucleic acid expression construct further comprises, poly L-glutamate.
- 71. (Canceled) The method of claim 66, wherein the farm animals comprise bovine.
- 72. (Canceled) A method of increasing milk production in a dairy cow comprising: delivering into tissues of the dairy cow an isolated nucleic acid expression construct that encodes a growth-hormone-releasing-hormone ("GHRH") or functional biological equivalent thereof;

wherein:

delivering is via an in-vivo electroporation method;

the isolated nucleic acid expression construct is delivered in a single dose;

the encoded GHRH-or-functional biological equivalent-thereof is of formula (SEQID No: 6):

-X₋₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D-or L-isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D-or L-isomer of the amino acid alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L");

X₅ is a D-or-L-isomer of the amino acid serine ("S") or asparagine ("N"); or a combination thereof.

- 73. (Canceled) The method of claim 72, wherein the single dose comprises about a 2mg quantity of nucleic acid expression construct.
- 74. (Canceled) The method of claim 72, wherein the isolated nucleic acid expression construct is <u>SEQID No.: 11</u>, a HV GHRH plasmid (SEQID#11) or an optimized pAV0204 bGHRH plasmid (SEQID#19).
- 75. (Withdrawn) The method of claim 72, wherein the isolated nucleic acid expression construct is a TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), pSP-wt-GHRH plasmid, pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).
- 76. (Canceled) The method of claim 72, wherein the isolated nucleic acid expression construct further comprises, poly-L-glutamate.
- (Withdrawn) A method of decreasing an involuntary cull in a farm animal comprising: delivering into the farm animal an isolated a growth hormone secretagogue molecule; wherein the involuntary cull comprises infection, disease, morbidity, or mortality of the farm animal; wherein the isolated growth hormone secretagogue molecule facilitates growth hormone ("GH") secretion in the farm animal; the farm animal comprises a ruminant animal, a food animal, or a work animal; and wherein the growth hormone secretagogue comprises an isolated biologically active polypeptide generated from a recombinant nucleic acid expression construct that encodes a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.

- 78. (Canceled) The method of claim 77, wherein delivering into the tissue of the farm animals the growth hormone secretagogue molecule is via an electroporation method, a viral vector or nucleic acid expression construct, in conjunction with a carrier, by parenteral route, orally, or a combination thereof.
- 79. (Withdrawn) The method of claim 77, wherein the involuntary cull comprises mortality at birth of newborns of the farm animals.
- 80. (Withdrawn) The method of claim 77, wherein the involuntary cull comprises post-natal mortality of newborns of the farm animals.
- 81. (Canceled) The method of claim 77, wherein the growth hormone secretagogue molecule comprises a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.
- 82. (Canceled) The method of claim 77, wherein growth hormone secretagogue comprises an isolated nucleic acid expression construct that encodes the growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.
- 83. (Canceled) The method of claim 81, wherein the isolated nucleic acid expression construct comprises a HV-GHRH plasmid (SEQID#11).
- 84. (Canceled) The method of claim 81, wherein the isolated nucleic acid expression construct is an optimized pAV0204 bGHRH plasmid (SEQID#19), TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), pSP-wt-GHRH plasmid, an optimized pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).

- 85. (Canceled) The method of claim 81, wherein the encoded GHRH is a biologically active polypeptide; and the encoded functional biological equivalent of GHRH is a polypeptide that has been engineered to contain a distinct amino acid sequence while simultaneously having similar or improved biologically activity when compared to the GHRH polypeptide.
- 86. (Withdrawn) The method of claim 81, wherein isolated biologically active polypeptide generated from the recombinant nucleic acid expression construct that encodes the GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

 -X_1-X_2-DAIFTNSYRKVL-X_3-QLSARKLLQDI-X_4-X_5-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

X₁ is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D or L isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D or L isomer of the amino acid alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L");

X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N");

or a combination thereof.

- 87. (Canceled) The method of claim 77, wherein the farm animals comprises ruminant animals, food animals, or work animals.
- 88. (Canceled) The method of claim 77, wherein the farm animals comprise dairy cows.

- 89. (Withdrawn) A method of improving a body condition score ("BCS") in farm animals comprising: delivering into the farm animal an isolated a growth hormone secretagogue molecule; wherein the BSC is an aid used to evaluate an overall nutritional state of the farm animal; wherein the isolated growth hormone secretagogue molecule facilitates growth hormone ("GH") secretion in the farm animal; the farm animal comprises a ruminant animal, a food animal, or a work animal; and wherein the growth hormone secretagogue comprises an isolated biologically active polypeptide generated from a recombinant nucleic acid expression construct that encodes a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof:
- 90. (Canceled) The method of claim 89, wherein delivering into the tissue of the farm animals the isolated nucleic acid expression construct is via electroporation method, a viral vector, in conjunction with a carrier, by parenteral route, orally, or a combination thereof.
- 91. (Canceled) The method of claim 89, wherein the growth hormone secretagogue molecule comprises a growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.
- 92. (Canceled) The method of claim 89, wherein growth hormone secretagogue comprises an isolated nucleic acid expression construct that encodes the growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.
- 93. (Canceled) The method of claim 89, wherein growth hormone secretagogue comprises an isolated nucleic acid expression construct that encodes the growth hormone releasing hormone ("GHRH") or functional biological equivalent thereof.
- 94. (Canceled) The method of claim 93, wherein the isolated nucleic acid expression construct comprises a HV-GHRH plasmid (SEQID#11).

- 95. (Canceled) The method of claim 93, wherein the isolated nucleic acid expression construct is an optimized pAV0204 bGHRH plasmid (SEQID#19), TI-GHRH plasmid (SEQID#12), TV-GHRH Plasmid (SEQID#13), 15/27/28 GHRH plasmid (SEQID#14), pSP-wt-GHRH plasmid, an optimized pAV0202 mGHRH plasmid (SEQID#17), pAV0203 rGHRH plasmid (SEQID#18), pAV0205 oGHRH plasmid (SEQID#20), pAV0206 cGHRH plasmid (SEQID#21), or pAV0207 pGHRH plasmid (SEQID#28).
- 96. (Canceled) The method of claim 93, wherein the encoded GHRH is a biologically active polypeptide; and the encoded functional biological equivalent of GHRH is a polypeptide that has been engineered to contain a distinct amino acid sequence while simultaneously having—similar—or—improved—biologically—activity—when—compared—to—the—GHRH polypeptide.
- 97. (Withdrawn) The method of claim 93, wherein the isolated biologically active polypeptide generated from the recombinant nucleic acid expression construct that encodes the GHRH or functional biological equivalent thereof is of formula (SEQID No: 6):

-X₋₁-X₂-DAIFTNSYRKVL-X₃-QLSARKLLQDI-X₄-X₅-RQQGERNQEQGA-OH

wherein the formula has the following characteristics:

X₁-is a D-or L-isomer of the amino acid tyrosine ("Y"), or histidine ("H");

X₂ is a D-or L isomer of the amino acid alanine ("A"), valine ("V"), or isoleucine ("I");

X₃ is a D-or L-isomer of the amino acid-alanine ("A") or glycine ("G");

X₄ is a D-or L-isomer of the amino acid methionine ("M"), or leucine ("L");

X₅ is a D-or L-isomer of the amino acid serine ("S") or asparagine ("N");

or a combination thereof.

98. (Canceled) The method of claim-89, wherein the farm animals comprises ruminant animals, food animals, or work animals.

99. (Withdrawn) The method of claim 89, wherein the farm animal comprise a dairy cow.

4333708v.4 108328/00170 Page 24 of 37