Calcolatori Elettronici T Ing. Informatica

Traccia soluzione 23 Dicembre 2022

Dispositivi e segnali presenti nel sistema.

Dispositivi di memoria:

RAM_512_H	E0000000h:FFFFFFFh,	4	banchi	da	128	MB
RAM_512_M	C0000000h:DFFFFFFh,	4	banchi	da	128	MB
RAM_512_L	A0000000h:BFFFFFFh,	4	banchi	da	128	MB
EPROM_512	40000000h:5FFFFFFh,	4	banchi	da	128	MB
EPROM 1GB	00000000h:3FFFFFFh,	4	banchi	da	256	MB

Porte di input, output e altri chip-select e/o segnali:

CS_INPUT_PORT_0	60000000h
CS_INPUT_PORT_1	60000001h
CS_OUTPUT_PORT_0	60000000h
CS_OUTPUT_PORT_1	60000001h
CS_INT_STATUS	60000002h

Il segnale INPUT_ACTIVE definito in seguito, quando asserito, codifica che deve essere eseguito un trasferimento dalle porte in INPUT.

Segnali di decodifica di memorie, periferiche e segnali:

```
CS RAM 512 H 0
                    = BA31 · BA30 · BA29 · BE0
CS RAM 512 H 1 = BA31 \cdot BA30 \cdot BA29 \cdot BE1
CS_{RAM_512_H_2} = BA31 \cdot BA30 \cdot BA29 \cdot BE2
                        = BA31 · BA30 · BA29 · BE3
CS RAM 512 H 3
CS RAM 512 M 0 = BA31 \cdot BA30 \cdot BA29 * \cdot BE0
CS RAM 512 M 1 = BA31 \cdot BA30 \cdot BA29 * \cdot BE1
CS RAM 512 M 2 = BA31 \cdot BA30 \cdot BA29 * \cdot BE2
CS RAM 512 M 3
                       = BA31 \cdot BA30 \cdot BA29 * \cdot BE3
CS RAM 512 L 0 = BA31 \cdot BA30 \times \cdot BE0
CS_RAM_512_L_1 = BA31 \cdot BA30 * \cdot BE1
CS_RAM_512_L_2 = BA31 \cdot BA30 * \cdot BE2
CS RAM 512 L 3
                       = BA31 \cdot BA30 * \cdot BE3
                  = BA31*\cdot BA30\cdot BA29\cdot BE1\cdot BE0
                                                          mappato a 6000000/1h
CS PORT
CS INT STATUS = BA31*·BA30·BA29·BE2
                                                          mappato a 6000002h
CS RAM 512 0
                         = BA31*\cdot BA30\cdot BA29*\cdot BE0
CS RAM 512 1 = BA31**BA30*BA29**BE1
CS RAM 512 2
                 = BA31* · BA30 · BA29* · BE2
CS RAM 512 3
                          = BA31* \cdot BA30 \cdot BA29* \cdot BE3
CS EPROM 1GB 0 = BA31*\cdot BA30*\cdot BE0
CS EPROM 1GB 1 = BA31*\cdot BA30*\cdot BE1
CS EPROM 1GB 2 = BA31*\cdot BA30*\cdot BE2
CS EPROM 1GB 3 = BA31*\cdot BA30*\cdot BE3
```

Nel sistema sono presenti due porte in input, INPUT_PORT_1 e INPUT_PORT_0 connesse a due unità esterne indipendenti. Il condizionamento con INPUT_ACTIVE non è indispensabile e può essere omesso.

La stabilità del segnale **DIV64** non è garantita durante i trasferimenti dalle porte in input. Pertanto, si procede alla sua sincronizzazione mediante la rete seguente.

In accordo al segnale **DIV64_STABLE** si connettono le uscite delle porte in input al bus dati come segue:

La rete seguente memorizza il dato letto dalle porta in input al fine di poterlo inviare successivamente alle porte in output.

Nel sistema sono presenti due porte in output, OUTPUT_PORT_0 e OUTPUT_PORT_1 connesse a due unità esterne indipendenti. Il condizionamento dei CS con INPUT_ACTIVE* non è indispensabile e può essere omesso.

La rete seguente, consente di gestire l'alternanza tra letture e scritture nelle porte con *handshake* mediante l'elaborazione dei segnali C1 e C0 (C1C0=00->input, 10->output, 11->input, 01->output, 00->input, etc) generati dalla rete seguente. Il segnale INPUT_ACTIVE, se asserito, indica che è necessario un trasferimento in input:

INPUT_ACTIVE = NOT(C1 XOR C0)

Il segnale INPUT_ACTIVE, è utilizzato per condizionare le richieste di interrupt al DLX nel modo seguente.

Come mostrato nella pagina successiva, il segnale INPUT_ACTIVE può essere letto all'interno dell'interrupt handler al fine di determinare quale trasferimento eseguire.

output: equivale a $16_{10} = 10_{16}$

Interfacciamento RAM 512 H

Interfacciamento RAM 512 M

Interfacciamento RAM_512_L

Interfacciamento EPROM_512

Interfacciamento EPROM 1GB

