Math 552 Final Review

Trevor Klar

May 12, 2019

Ch 2 Corr 3.8 Suppose f(x) is a non-negative function on \mathbb{R}^d , and let $\mathcal{A} = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq y \leq f(x)\}$. Prove:

- (i) f is measurable on \mathbb{R}^d if and only if \mathcal{A} is measurable in \mathbb{R}^{d+1} .
- (ii) If the conditions in (i) hold, then $\int_{\mathbb{R}^d} f(x) dx = m(\mathcal{A})$.

ex 2.19 Suppose f is integrable on \mathbb{R}^d . For each $\alpha > 0$, let $E_{\alpha} = \{x : |f(x)| > \alpha\}$. Prove that

$$\int_{\mathbb{R}^d} |f(x)| \, dx = \int_0^\infty m(E_\alpha) \, d\alpha.$$

Def:	Write the definition of a function of bounded variation.
Гhm 3.3	Prove that a real-valued function F on $[a,b]$ is of bounded variation if and only if F is the difference of two increasing bounded functions.

Def: Write the definition of a point of Lebesgue density.

Cor 1.5 Suppose E is a measurable subset of \mathbb{R}^d .

Prove:

- (a) Almost every $x \in E$ is a point of density of E.
- (b) Almost every $x \notin E$ is not a point of density of E.

- Ex 3.3 Suppose 0 is a point of (Lebesgue) density of the set $E \subset \mathbb{R}$. Show that for each of the individual conditions below there is an infinite sequence of points $x_n \in E$, with $x_n \neq 0$, and $x_n \to 0$ as $n \to \infty$.
 - (a) The sequence also satisfies $-x_n \in E$ for all n.

Ex 3.6 In one dimension there is a version of the basic inequality (1) for the maximal function in the form of an identity. We define the "one-sided" maximal function

$$f_+^* = \sup_{h>0} \frac{1}{h} \int_x^{x+h} |f(y)| \, dy.$$

Prove that if $E_{\alpha}^{+}=\{x\in\mathbb{R}:f_{+}^{*}(x)>\alpha\},$ then

$$m(E_{\alpha}^{+}) = \frac{1}{\alpha} \int_{E_{\alpha}^{+}} |f(y)| \, dy.$$

Ex 3.7 Use Corollary 1.5 to prove that if a measurable subset E of [0,1] satisfies $m(E \cap I) \ge \alpha m(I)$ for some $\alpha > 0$ and all intervals in [0, 1], then E has measure 1.

Ex 3.14 (a) Suppose F is continuous on [a, b]. Show that

$$D^{+}(F)(x) = \limsup_{\substack{h \to 0 \\ h > 0}} \frac{F(x+h) - F(x)}{h}$$

 $is\ measurable.$

Ex 3.14 (b) Let $F:[a,b]\to\mathbb{R}$ be increasing and bounded, and let $J(x)=\sum_{n=1}^{\infty}\alpha_nj_n(x)$ be the jump function associated with F. Show that

$$\limsup_{h \to 0} \frac{J(x+h) - J(x)}{h}$$

is measurable.

- Ex 3.20 This exercise deals with functions F that are absolutely continuous on [a,b] and are increasing. Let A=F(a) and B=F(b).
 - (a) There exists such an F that is in addition strictly increasing, but such that F'(x) = 0 on a set of positive measure.

- Ex 3.20 This exercise deals with functions F that are absolutely continuous on [a,b] and are increasing. Let A=F(a) and B=F(b).
 - (b) Show that $F(x) = \int_a^x \chi_K(t) dt$ has a measurable subset $E \subset [A, B]$ with m(E) = 0 and $F^{-1}(E)$ nonmeasurable.

- Ex 3.20 This exercise deals with functions F that are absolutely continuous on [a,b] and are increasing. Let A=F(a) and B=F(b).
 - (c) Modified version solved in class: Prove that for any increasing absolutely continuous F and O, an open subset of [A,B], $m(O)=\int_F^{-1}(0)F'(x)dx$.

Def: State the definition of Caratheodory measurability. Ex 6.3 Consider the exterior Lebesgue measure m_* introduced in Chapter 1. Prove that a set E in \mathbb{R}^d is Caratheodory measurable if and only if E is Lebesgue measurable in the sense of Chapter 1.