НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 - Программная инженерия Дисциплина — Вычислительная математика

> Лабораторная работа №3 Вариант №11

> > Выполнил: Мухсинов С.П

Группа: Р3217

Преподаватель: Малышева

T.A

Санкт-Петербург 2024

Цель работы:

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами

Задание:

Обязательное задание (до 80 баллов)

Исходные данные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной (ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления.

Метод прямоугольников

На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени — отрезком, параллельным оси абсцисс. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из

n - прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы

n- элементарных прямоугольников.

$$\int_{a}^{b} f(x)dx \approx S_{n} = \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

Различают метод левых, правых и средних прямоугольников.

В качестве точек $\,\xi_i\,$ могут выбираться левые ($\,\xi_i=x_{i-1}\,$) или правые $\,$ ($\,\xi_i=x_i\,$) границы отрезков, получим формулы левых и правых прямоугольников.

Метод прямоугольников

$$\int_a^b f(x) dx pprox h_1 y_0 + h_2 y_1 + \dots + h_n y_{n-1} = \sum_{i=1}^n h_i \, y_{i-1}$$
 - левые прямоугольники

$$\int_a^b f(x) dx pprox h_1 y_1 + h_2 y_2 + \dots + h_n y_n = \sum_{i=1}^n h_i y_i$$
 - правые прямоугольники

При
$$h_i = h = \frac{b-a}{n} = const$$
:

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i-1}$$

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i}$$

Метод прямоугольников. Метод средних

Для аналитически заданных функций более точным является использование значений в средних точках элементарных отрезков (полуцелых узлах):

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} h_{i} f(x_{i-1/2})$$

$$x_{i-1/2} = \frac{x_{i-1} + x_{i}}{2} = x_{i-1} + \frac{h_{i}}{2}, i = 1, 2, \dots n$$

При
$$h_i = h = \frac{b-a}{n} = const$$
:
$$\int_a^b f(x) dx = h \sum_{i=1}^n f(x_{i-1/2})$$

Метод трапеций

Подынтегральную функцию на каждом отрезке $[x_i; x_{i+1}]$ заменяют интерполяционным многочленом первой степени:

$$f(x) \approx \varphi_i(x) = a_i x + b$$

Используют линейную интерполяцию, т.е. график функции y=f(x) представляется в виде ломаной, соединяющий точки (x_i,y_i) . Площадь всей фигуры (криволинейной трапеции):

$$S_{\text{общ}} = S_1 + S_2 + \dots + S_n = \frac{y_0 + y_1}{2} h_1 + \frac{y_1 + y_2}{2} h_2 + \dots + \frac{y_{n-1} + y_n}{2} h_n$$
$$y_0 = f(a), \qquad y_n = f(b), \qquad y_i = f(x_i), \qquad h_i = x_i - x_{i-1}$$

Складывая все эти равенства, получаем формулу трапеций для численного интегрирования:

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \sum_{i=1}^{n} h_{i}(y_{i-1} + y_{i})$$

При $h_i = h = \frac{b-a}{n} = const$ формула трапеций:

$$\int_{a}^{b} f(x)dx = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right)$$

или
$$\int\limits_a^b f(x)dx = \frac{h}{2} \cdot \left(y_0 + y_n + 2 \sum_{i=1}^{n-1} y_i \right)$$

Метод Симпсон Томас (20.08.1710–14.05.1751) — английский математик)

Разобьем отрезок интегрирования [a,b] на четное число n равных частей с шагом h. На каждом отрезке $[x_0,x_2],[x_2,x_4]$, ..., $[x_{i-1},x_{i+1}],$..., $[x_{n-2},x_n]$ подынтегральную функцию заменим интерполяционным многочленом второй степени:

$$f(x) \approx \varphi_i(x) = a_i x^2 + b_i x + c_i, \quad x_{i-1} \le x \le x_{i+1}$$

Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена и подынтегральной функции в узловых точках.

В качестве $\varphi_i(x)$ можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки $(x_{i-1},y_{i-1}),(x_i,y_i),(x_{i+1},y_{i+1}).$

Метод Симпсона

Для точек x_0, x_1, x_2 :

$$\varphi_1(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2.$$

При $x_0 = 0$; $x_1 = h$; $x_2 = 2h$, получим:

$$\varphi_{1}(x) = \frac{(x-h)(x-2h)}{h\cdot 2h}y_{0} + \frac{x(x-2h)}{-h\cdot h}y_{1} + \frac{x(x-h)}{2h\cdot h}y_{2} = \frac{x^{2}-x\cdot 3h+2h^{2}}{2h^{2}}y_{0} + \frac{x^{2}-2h\cdot x}{-h^{2}}y_{1} + \frac{x^{2}-h\cdot x}{2h^{2}}y_{2}$$

$$S_{1} = \int_{x_{0}}^{x_{0}+2h} \varphi_{1}(x)dx = \int_{0}^{2h} \left(\frac{x^{2}-x\cdot 3h+2h^{2}}{2h^{2}}y_{0} + \frac{x^{2}-2h\cdot x}{-h^{2}}y_{1} + \frac{x^{2}-h\cdot x}{2h^{2}}y_{2}\right)dx =$$

$$= \frac{y_{0}}{2h^{2}}\left(\frac{x^{3}}{3} - 3h\frac{x^{2}}{2} + 2h^{2}x\right) \left| \frac{2h}{0} - \frac{y_{1}}{h^{2}}\left(\frac{x^{3}}{3} - 2h\frac{x^{2}}{2}\right) \right| \frac{2h}{0} + \frac{y_{2}}{2h^{2}}\left(\frac{x^{3}}{3} - h\frac{x^{2}}{2}\right) \left| \frac{2h}{0} = \frac{y_{0}h}{3} + \frac{4y_{1}h}{3} + \frac{y_{2}h}{3}$$

$$= \frac{h}{3}(y_{0} + 4y_{1} + y_{2})$$

Для каждого элементарного отрезка [x_{i-1}, x_{i+1}]: $S_i = \frac{h}{3} (y_{i-1} + 4y_i + y_{i+1})$ $S_{\text{общ}} = S_1 + S_2 + \dots + S_n = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + 2y_n)$

Методы Ньютона-Котеса

Для семейства методов Ньютона-Котеса можно записать общее выражение:

$$\int_{a}^{b} f(x)dx \approx \frac{n \cdot h}{C_n} \sum_{i=0}^{n} c_n^{i} f(x_i)$$
 (*)

где n — порядок метода Ньютона-Котеса

		n	
C_n	=	$\sum_{i=0}$	c_n^i

Из выражения (*) можно получить формулу прямоугольников для n=0, формулу трапеций для n=1, формулу Симпсона для n=2.

	n	C_n	c_n^0	c_n^1	c_n^2	c_n^3	c_n^4	c_n^5
	0	1	1					
Ь	1	2	1	1				
),	2	6	1	4	1			
	3	8	1	3	3	1		
	4	90	7	32	12	32	7	
	5	288	19	75	50	50	75	19

Вычислительная реализация

1. Вычислить интеграл, приведенный в таблице 1, точно:

$$f(x) = 2x^3 - 9x^2 - 7x + 11$$

$$F(x) = \frac{x^4}{4} - 3x^3 - \frac{7x^2}{2} + 11x$$

$$I = \int_1^3 (2x^3 - 9x^2 - 7x + 11) dx = F(3) - F(1) = -44$$

2. Вычислить интеграл по формуле Ньютона – Котеса при n = 6

n	Коэффициенты Котеса c_i^n				
1	$c_1^0 = c_1^1 = \frac{b-a}{2}$				
2	$c_2^0 = c_2^2 = \frac{b - a}{6}$	$c_2^1 = \frac{4(b-a)}{6}$			
3	$c_3^0 = c_3^3 = \frac{b - a}{8}$	$c_3^1 = c_3^2 = \frac{3(b-a)}{8}$			
4	$c_4^0 = c_4^4 = \frac{7(b-a)}{90}$	$c_4^1 = c_4^3 = \frac{32(b-a)}{90}$	$c_4^2 = \frac{12(b-a)}{90}$		
5	$c_5^0 = c_5^5 = \frac{19(b-a)}{288}$	$c_5^1 = c_5^4 = \frac{75(b-a)}{288}$	$c_5^2=c_5^3=\frac{50(b-a)}{288}$		
6	$c_6^0 = c_6^6 = \frac{41(b-a)}{840}$	$c_6^1 = c_6^5 = \frac{216(b-a)}{840}$	$c_6^2 = c_6^4 = \frac{27(b-a)}{840}$	$c_6^3 = \frac{272(b-a)}{840}$	

$$N=6$$
, следовательно $h=rac{b-a}{N}=rac{3-1}{6}=rac{1}{3}$
$$\int\limits_{1}^{3}(2x^3-9x^2-7x+11)dx=\sum\limits_{i=0}^{N}f(x_i)c_n^i=f(1)\cdot c_6^0+f\left(rac{4}{3}
ight)\cdot c_6^1+f\left(rac{5}{3}
ight)\cdot c_6^2+f(2)\cdot c_6^3+f\left(rac{7}{3}
ight)\cdot c_6^4+f\left(rac{8}{3}
ight)\cdot c_6^5+f(3)\cdot c_6^6=-44.0$$
 Ошибка: $|I-(-44.0)|=|-44-(-44)|=0$

Относительная погрешность: 0%

- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n = 10.
- 3.1 Формула средних прямоугольников:

$$N=\mathbf{10}$$
, следовательно $h=\frac{b-a}{N}=\frac{3-1}{10}=\frac{1}{5}$
$$\int_{1}^{3}(2x^{3}-9x^{2}-7x+11)dx=h\sum_{i=1}^{N}f\left(x_{i-\frac{1}{2}}\right)=\frac{1}{5}\cdot\left(f\left(1+\frac{1}{10}\right)+f\left(1+\frac{3}{10}\right)+f\left(1+\frac{3}{10}\right)+f\left(1+\frac{1}{10}\right)+f\left(1+\frac{$$

Относительная погрешность: 0.045%

3.2 Формула трапеций

$$\int_{1}^{3} (2x^{3} - 9x^{2} - 7x + 11) dx = \frac{h}{2} \left(y_{0} + y_{N} + 2 \sum_{i=1}^{N-1} y_{i} \right) = \frac{1}{10} \cdot (f(1) + f(3) + 2(f(1.2) + f(1.4) + f(1.6) + f(1.8) + f(2) + f(2.2) + f(2.4) + f(2.6) + f(2.8)) = -43.96$$
Ошибка: $|I - (-43.96)| = |-44 - (-43.96)| = 0.04$

Относительная погрешность: 0.09%

3.3 Формула Симпсона

$$\int_{1}^{3} (2x^{3} - 9x^{2} - 7x + 11)dx = \frac{h}{3} [y_{1} + 4(y_{1} + y_{3} + \cdots y_{n-1}) + 2(y_{2} + y_{4} + \cdots + y_{n-2}) + y_{n}] = -44.0$$
 Ошибка: $|I - (-44)| = |-44 - (-44)| = 0$

Относительная погрешность: 0%

Программная реализация

Метод левых прямоугольников:

```
@Override
public double calculateIntegral(int n) {
    double h = (B - A)/n;
    double s = 0;
    for(int i = 0; i < n; i++){
        s += f.at(A + i * h);
    }
    return h*s;
}</pre>
```

Метод правых прямоугольников:

```
@Override
public double calculateIntegral(int n) {
    double h = (B - A)/n;
    double s = 0;
    for(int i = 1; i <= n; i++){
        s += f.at(A + i * h);
    }
    return h*s;
}</pre>
```

Метод средних прямоугольников:

```
@Override
public double calculateIntegral(int n) {
    double s = 0;
    double h = (B - A)/n;
    double m;
    for(int i = 1; i <= n; i++){
        m = ((A + (i - 1) * h) + (A + i * h))/2;
        s += f.at(m);
    }
    return h*s;
}</pre>
```

Метод трапеций:

```
@Override
public double calculateIntegral(int n) {
    double h = (B - A)/n;
    double s = 0;
    for(int i = 1; i <= n; i++){
        s += (f.at(A + (i -1) * h) + f.at(A + i * h))/2;
    }
    return s*h;
}</pre>
```

Метод Симпсона:

```
@Override
public double calculateIntegral(int n) {
    n = 2 * n;
    double h = (B - A) / n;
    double s = f.at(A) + f.at(B);
    for(int i = 1; i < n; i+=2){
        s += 4 * (f.at(A + i*h));
    }
    for(int i = 2; i < n; i+=2){
        s+= 2 * (f.at(A + i * h));
    }
    return (s*h)/3;
}</pre>
```

Пример работы программы

```
Выберите функцию, которую необходимо проинтегрировать:

1) 2x^3 - 9x^2 - 7x + 11

2) x^3 + 2x^2 - 3x - 12

3) sin(x)

1
Введите начало и конец интервала через пробел:

1 3
Введите значение погрешности вычислений:

8.01
Выберите метод:
1) Метод левых прямоугольников
2) Метод правых прямоугольников
3) Метод средних прямоугольников
4) Метод трапеций
5) Метод Симпсона
3
Найденное значение интеграла: -44.001953125
Число разбиений интервала : 32
```

Вывод

В ходе выполнения лабораторной работы мы изучили некоторые методы численного интегрирования и реализовали программу, вычисляющую приближенное значение определенного интеграла с требуемой точностью.