(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2587596号

(45)発行日 平成9年(1997)3月5日

(24)登録日 平成8年(1996)12月5日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ		技術表示箇所
HOSK	1/14			H05K	1/14	Α
	3/46				3/46	N

請求項の数14(全 13 頁)

(21)出顧番号	特顧平6-211074	(73)特許権者	000005821 松下電器産業株式会社
(22)出願日	平成6年(1994)9月5日	(72)発明者	大阪府門真市大字門真1006番地 中谷 献一
(65)公開番号 (43)公開日	特開平7-147464 平成7年(1995)6月6日		大阪府門真市大字門真1006番地 松下電 器産業株式会社内
(31)優先権主張番号 (32)優先日 (33)優先権主張国		(72)発明者	畠山 秋仁 大阪府門真市大宇門真1006番地 松下電 器産業株式会社内
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張国		(72)発明者	川北 晃司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内
	Mil (e e e	(74)代理人	弁理士 池内 寛幸 (外1名)
早期審查対象出顧		審查官	加藤 友也
			最終頁に続く

(54) 【発明の名称】 回路基板接続材とそれを用いた多層回路基板の製造方法

1

(57)【特許請求の範囲】

【請求項1】 離型性フィルムを両面に備えた多孔質基 材の所望の位置に貫通孔を有し、前記貫通孔に導電性樹 脂組成物が前記離型性フィルム表面まで充填されている ことを特徴とする回路基板接続材。

【請求項2】 <u>離型性フィルムを両面に備えた多孔質基材の所望の位置に貫通孔を有し、前記貫通孔に導電性樹脂組成物が前記離型性フィルム表面まで充填され、その後前記離型性フィルムが剥離されて前記導電性樹脂組成物が前記多孔質基材の両表面から凸状に出た状態に形成</u> 10 されていることを特徴とする回路基板接続材。

【請求項3】 少なくとも2<u>層の</u>回路パターンを有す<u>る</u> 回路基板と、少なくとも1<u>層の</u>回路パターンを有する回 路基板との間に、<u>請求項2に記載の多孔質基材の両表面</u> から凸状に出た状態に形成されている回路基板接続材を 2

挟持し、加熱加圧することを特徴とする多層回路基板の 製造方法。

【請求項4】 少なくとも2<u>層の</u>回路パターンを有す<u>る</u>回路基板の両面に、<u>請求項2に記載の多孔質基材の両表面から凸状に出た状態に形成されている回路基板接続材を配置して前記回路基板を挟持し、さらに前記回路基板接続材の最外層表面に金属箔を重ね後、加熱加圧し、前記金属箔を加工して回路パターンを形成することを特徴とする多層回路基板の製造方法。</u>

① 【請求項5】 <u>多孔質基材</u>が、耐熱性合成繊維製不織布に <u>未硬化状態の</u>熱硬化性樹脂を含浸させた複合材である 請求項1または2に記載の回路基板接続材。

【請求項6】 耐熱性合成繊維製不織布がアラミド樹脂からなり、<u>未硬化状態の</u>熱硬化性樹脂がエポキシ樹脂からなる請求項5に記載の回路基板接続材。

【請求項7】 耐熱性合成繊維製不織布が紙からなり、 未硬化状態の熱硬化性樹脂がフェノール樹脂またはエポ キシ樹脂からなる請求項 5 に記載の回路基板接続材。

【請求項8】 導電性樹脂組成物中の導電物質が、銀、 ニッケル、銅及びこれらの合金から選ばれる少なくとも 一つの金属粉末である請求項1または2に記載の回路基 板接続材。

【請求項9】 少なくとも2層の回路パターンを有する 回路基板及び少なくとも1層の回路パターンを有する回 路基板が、銅箔配線と銅メッキスルーホールを有するガ 10 作し、問題が発生すれば再度設計からやり直す方法がと ラスエポキシ回路基板からなる請求項<u>3または4</u>に記載 の多層回路基板の製造方法。

【請求項10】 少なくとも2層の回路パターンを有す る回路基板及び少なくとも1層の回路パターンを有する 回路基板が、アラミド製不織布と熱硬化エポキシ樹脂回 路基板からなる請求項<u>3または4</u>に記載の多層回路基板 の製造方法。

【請求項11】 貫通孔をレーザー光照射<u>によって形成</u> する請求項3または4に記載の多層回路基板の製造方

【請求項12】 導電性樹脂組成物が充填されている部 分の直径が50μm~1mmの範囲である請求項<u>1また</u> は2に記載の回路基板接続材。

【請求項13】 導電性樹脂組成物が充填されている部 分のピッチが 50μ m以上である請求項1または2に記 載の回路基板接続材。

【請求項14】 導電性樹脂組成物が充填されている部 分の電気抵抗が、0.05~5.0mΩの範囲である請 求項1または2に記載の回路基板接続材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、回路基板同士を電気的 機械的に接続する回路基板接続材とそれを用いた簡便な 多層回路基板の製造方法に関するものである。

[0002]

【従来の技術】近年電子機器の小型軽量化に伴い、これ らを構成する実装基板もより高密度なものが要求されて おり、新規な電子機器の開発にはこれらの実装技術その ものの開発も重要な要素となっている。実装技術には、 半導体やチップ部品などの面実装部品とそれらを登載し 40 電気的接続を行うための基板およびその実装方式とに大 別することができる。半導体は周知の通り集積度の増大 と高機能化のためチップサイズおよび端子数がますます 増大している。そのため端子ピッチが0.5mmから現 在では0.3mmピッチまでの狭ピッチ化が進んでお り、それ以上では半田による従来の実装方法は困難とな る。したがって今後はパッケージではなく半導体を直接 基板に実装するCOB (chip on board)技術が重要と考 えられておりCOB技術の開発も各方面で検討されてい る。また、チップ部品も小型化が進んでおり現在では1 50 ポキシ基材による内層および外層の電気的接続のために

0 0 5 チップ (1. 0 × 0. 5 mm) が普通に使用される にいたっている。今後は半導体と同様、実装方式の観点 からこれ以上の小型化は困難となり、かえって実装コス トが高くなる。

【0003】一方電子機器の動向は、回路のディジタル 化が趨勢となっておりこれに伴う高周波化、高速化が進 展している。その結果、実装基板もノイズおよび熱の問 題を今以上に避けて通れない状況となっている。このよ うな高周波、高速化の問題に対し現状では実装基板を試 られている。このため機器の開発に長時間を有し開発期 間の長期化を招いている。今後はこのような基板開発に 際し設計段階で熱、伝送線路およびノイズのシミュレー ションを行いその結果を基板設計にフィードバックさせ 一回の試作で完結する手法が望まれている。しかしこの ような基板設計システムが完全に稼働するためには、ま だまだ時間が必要と思われ、これまでの経験を生かした ノウハウによる設計が当面は主流となると考えられる。 いずれにしても、このような高周波化に対して、基板お 20 よび実装形態は、その配線長が短くなるような手法が基 本となることは確かである。

【0004】以上述べたように、今後の電子機器の高密 度実装を実現する上で、表面実装部品とともに基板技術 も重要なポイントである。現在高密度実装基板として一 般的なものにガラスエポキシ基板がある。これは、ガラ ス織布に耐熱性のエポキシ樹脂を含浸させたものを絶縁 基板材料として用いたものである。ガラスエポキシ多層 基板(ガラエポ多層と称される)は、過去コンピュータ -用として開発されたものであるが、現在では民生用に 30 も広く利用されている。ガラエポ多層基板の製造プロセ スは、

- (1) 前述のガラス織布にエポキシ樹脂を含浸させたも の (プリプレグと呼称) に C u 箔を熱プレスにより接着 させる工程。
- (2) フォトリソグラフィー技術により前記Cu箔をパ ターン形成し、内層配線を形成する工程。
- (3) これに別のプリプレグとCu箔でさらに熱プレス することで多層積層体を形成する工程。
- (4) この積層体にドリルによりスルーホール穴明けを 行いその内壁に電解メッキ法によってCu電極を形成し それぞれの層間の電気的接続を行う工程。
 - (5) そして表面のCuパターン形成をエッチング法で 行う工程。により作製されるのが一般的である。

【0005】図6にこのガラスエポキシ多層基板の概略 断面図を示す。図6において、500はガラス織布にエ ポキシ樹脂を含浸させた絶縁基材であり、501は内層 Cu配線層、502は多層積層後に加工したドリル穴、 503はメッキ法で形成された内壁のCu層であり、5 04は最上層配線パターンである。このようなガラスエ 行うドリルとC uメッキスルーホール(貫通スルー)は、長年の技術開発により確立されたもので広く世の中で認められている。

【0006】しかし、前述のように今後の更なる高密度化の要求に対して、十分であるとはいえない。それは、通常のガラエポ多層基板が貫通スルーホールであるため高密度な配線を行う場合、貫通穴が配線スペースを阻害し引き回したい配線を迂回させる必要が生じ、結果的に配線長が長くなる。また配線スペースが少ないため、CAD(comouter aided design)による自動配線が困難となら今以上にドリル加工に要するコスト比率が高くなっている。また、貫通スルーに必要なCuメッキ工程は、地球環境の上からも問題となっている。

【0007】このような課題に対し、多層基板業界では種々の新しい多層基板が開発されている。まず、現状のドリルを用いたCuメッキスルー基板技術の延長上にある技術として、SVH (Semi-Buried Via Hole)多層基板がある。SVH基板は、貫通スルーホールだけでなく、表層部だけビア接続を行う方法で、貫通スルーホール基 20板に比べ高密度な配線が可能となる。また表層部のビア部を絶縁樹脂で充填し、さらにその上にCuメッキを形成して、ビア部分の上にも部品実装用パッドを形成できるようにしたものである。この方法によれば、表面には挿入部品用の貫通穴しか存在せず、高密度な部品実装が可能となる。しかし、両者は前述のガラスエポキシ多層技術の改良であり、ドリル加工の困難さ、Cuメッキが必要な点は変わらない。

【0008】一方新しい試みとして、完全なインナービ アホール (IVH: interstitional ViaHole) 構成を有する多 30 層基板が提案されている。代表的なものとしてSLC基 板(Surface Laminated Circuit. IBM社登録商標) 基板 と熱可塑性樹脂を用いた多層基板が上げられる。SLC 基板は、通常のCuパターン層を有する両面基板上に絶 縁材料としての樹脂を表面コーティングしフォトリソ法 によってビア穴を形成し、次にCuメッキを全面に付加 して、下部導体とビア穴部および表面層敗戦の接続を行 う。そして同じくフォトリソ法によってパターン形成 し、この工程を繰り返すことにより、多層化するもので る。この方法によれば非常に安価で、高精度な配線が形 40 成できるため現在特に注目されている。この方法の課題 は、絶縁材料とCu電極の密着強度が弱い点とコアーの 基板と樹脂との熱膨張の違いから基板反りが生じ易いこ となどが上げられる。

【0009】次に熱可塑樹脂による多層基板は、熱可塑性のシート状基材に穴加工後、シート表面にAg系の樹脂導電ペーストでパターン印刷を行い、別途作成したシートを重ね合わせて熱プレスすることで多層化する基板である。熱可塑性樹脂を使用するため耐熱性がなく、また樹脂導電性ペーストであるため配線抵抗が高く、かつ 50

表層部の半田付けが困難という課題がある。しかし、いずれの方法も完全なインナービアIVH構成の多層基板であることは大きなメリットであり、注目されている。【0010】また、たとえば液晶素子のネサガラスとフレキシブルブリント基板(FPC)とを接続する電気コネクター(ゴムコネクター)として、シリコンゴムにカーボンブラックを混合した層としない層の積層体で形成されていた(特開昭50-944.95号公報、米国特許

6

[0011]

第3620873号明細書)。

【発明が解決しようとする課題】しかしながら上記の従来の構成では、次のような課題を有していた。従来の構成においては、多層板積層後の貫通孔の加工が容易でないことがあげられる。これはこれからの高密度配線に対応するために、より微細な穴加工が必要とされる点と、内層の配線に正確に穴加工することが難しい点にある。微細な穴加工としては、ドリル径が今後は益々小さいものが要求されそれによるドリル加工コストが無視でききくなる。また微細なドリルでは正確な穴加工が厚み方向でさらに困難が予想される。また内層配線と外層配線の位置合わせ精度が益々高精度化に向かう反面、基板材料の寸法ズレや伸びのバラツキのため正確な位置に穴加工することが難しくなりつつある。このことは、より多層化が進む現在、なお内層どうしの位置あわせが困難となっている。

【0012】以上のような課題を有しているために、従来の回路形成用基板では単位面積当たりに形成できるスルーホール接続の個数および回路パターン密度に限界があり、今後ますます需要が増大する高密度実装用多層基板を実現することが困難である。

【0013】さらに、前記特開昭50-94495号公報、米国特許第3620873号明細書出提案されているタイプのゴムコネクターは、シリコンゴムにカーボンプラックを混合しているので、電気抵抗が数kΩ/mm²と高いという問題があった。

【0014】本発明は上記従来の課題を解決するもので、インナビアホール接続を可能にし、高信頼性及び高品質の回路基板接続材を実現することを第1番目の目的とする。本発明の第2番目の目的は、前記回路基板接続材を用いて構成される多層回路基板を提供することである。本発明の第3番目の目的は、電気抵抗が低い電気コネクターに好適な回路基板接続材を提供することである。

[0015]

【課題を解決するための手段】この目的を達成するために本発明の<u>第1番目の</u>回路基板接続材は、離型性フィルムを両面に備え<u>た多孔質基材の</u>所望の位置に貫通孔を有し、前記貫通孔に導電性樹脂組成物が前記離型性フィルム表面まで充填されていることを特徴とする。<u>次に本発明の第2番目の回路基板接続材は、離型性フィルムを両</u>

面に備えた多孔質基材の所望の位置に貫通孔を有し、前 記貫通孔に導電性樹脂組成物が前記離型性フィルム表面 まで充填され、その後前記離型性フィルムが剥離されて 前記導電性樹脂組成物が前記多孔質基材の両表面から凸 状に出た状態に形成されていることを特徴とする。

【0016】次に本発明の多層回路基板の第1番目の製 造方法は、少なくとも2層以上の回路パターンを有する 多層回路基板と、少なくとも1層以上の回路パターンを 有する回路基板との間に、前記回路基板接続材の離型フ ィルムを取り除いたものを挟持し、加熱加圧することを 特徴とする。

【0017】次に本発明の多層回路基板の第2番目の製造方法は、少なくとも2<u>層の</u>回路パターンを有す<u>る回</u>路基板の両面に、<u>本発明の第2番目の</u>回路基板接続材で挟持し、<u>さらに前記回路基板接続材の最外層表面に金属箔を重ね</u>た後、加熱加圧し、前記金属箔を加工して回路パターンを形成することを特徴とする。

【0018】前記構成においては、<u>多孔質基材</u>が、耐熱性合成繊維製不織布に<u>未硬化状態の</u>熱硬化性樹脂を含浸させた複合材であることが好ましい。また前記構成においては、耐熱性合成繊維製不織布がアラミド樹脂からなり、<u>未硬化状態の</u>熱硬化性樹脂がエポキシ樹脂からなることが好ましい。

【0019】また前記構成においては、耐熱性合成繊維 製不織布が紙からなり、未硬化状態の熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなることが好ましい。また前記構成においては、導電性樹脂組成物中の導 電物質が、銀、ニッケル、銅及びこれらの合金から選ば れる少なくとも一つの金属粉末であることが好ましい。

【0020】また前記構成においては、導電性樹脂組成 30 物中の樹脂成分が、有機質多孔質基材の熱硬化性樹脂と実質的に同一であることが好ましい。また前記構成においては、少なくとも2層以上の回路バターンを有する多層回路基板及び少なくとも1層以上の回路バターンを有する回路基板が、銅箔配線と銅メッキスルーホールを有するガラスエポキシ多層回路基板からなることが好ましい。

【0021】また前記構成においては、少なくとも2層以上の回路パターンを有する多層回路基板及び少なくとも1層以上の回路パターンを有する回路基板が、アラミド製不織布と熱硬化エポキシ樹脂多層回路基板からなることが好ましい。

【0022】また前記構成においては、貫通孔がレーザー光照射によって開けられていることが好ましい。また前記構成においては、導電性樹脂組成物が充填されている部分の直径が 50μ 0~ 1μ 000年間であることが好ましい。

【0023】また前記構成においては、導電性樹脂組成 る。さらに、被圧縮性を有し个織布と熟硬化性樹脂の複物が充填されている部分のピッチが 50μ m以上である 合材からなる多孔質基材を使用することによって、回路ことが好ましい。また前記構成においては、導電性樹脂 50 基板どうしの接続が可能であるだけでなく、最上層配線

組成物が充填されている部分の電気抵抗が、0.05~5.0mΩの範囲であることが好ましい。

[0024]

【作用】前記した本発明の第1番目の回路基板接続材の 構成によれば、離型性フィルムを両面に備えた<u>多孔質基</u> <u>材</u>で構成される回路基板接続材であって、前記回路基板 接続材は所望の位置に貫通孔を有し、前記貫通孔に導電 性樹脂組成物が前記離型性フィルム表面まで充填されて いることにより、インナビアホール接続を可能にし、高 た、導電部分のファインピッチ化が容易で、かつ電気抵 抗が低い電気コネクターに好適な回路基板接続材を実現 できる。すなわち、被圧縮性を有し不織布と熱硬化性樹 脂の複合材からなる多孔質基材に、穴あけ加工し、導電 性ペーストを離型フィルム表面まで埋め込んだ構造を有 する回路基板接続材は、安定に作製でき、ファインピッ チ化が容易で、高信頼性に優れたものとなる。したがっ て、両面板や4層基板を簡便により高多層な基板にする 事も可能となる。次に本発明の第2番目の回路基板接続 材の構成によれば、導電性樹脂組成物を離型フィルムの 表面まで充填していることで、離型フィルムの剥離後導 電性ペーストが<u>多孔質基材</u>の表面より凸状に突出してい る。これにより、たとえば電気コネクターに使用したと きは、突出部が電気的接続に有利に作用する。突出部に より、電気的接続が容易になるからである。

【0025】次に本発明の多層回路基板の第1番目の製 造方法の構成によれば、少なくとも 2 <u>層の</u>回路パターン を有する多層回路基板と、少なくとも1<u>層の</u>回路パター ンを有する回路基板との間に、前記回路基板接続材の離 型フィルムを取り除いたものを挟持し、加熱加圧するこ とにより、被圧縮性を有し不織布と熱硬化性樹脂の複合 材からなる<u>多孔質基材</u>を使用しているので、多孔質基材 が加熱加圧によって圧縮される工程において導電性ペー ストも圧縮される。そのときに導電物質間からバインダ 成分が押し出され、導電物質同士および導電物質と金属 箔間の結合が強固になり、導電性ペースト中の導電物質 が緻密化される。また導電性ペーストを離型フィルムの 表面まで充填していることで、離型フィルムの剥離後導 電性ペーストが多孔質基材の表面より凸状に飛び出し、 これにより積層後の導電物質の充填量がアップし接続抵 抗が極めて小さくなる。

【0026】加えて、被圧縮性を有する多孔質基材を使用することによって、貫通孔に充填された導電性ペーストのバインダ成分が多孔質基材側に浸透するため充填量が減少し、多孔質基材とその両面に張り付けられた金属箔との間に導電性ペーストが侵入することがなくなり、近接する回路パターン間の短絡不良の発生を防止できる。さらに、被圧縮性を有し不織布と熱硬化性樹脂の複合材からなる多孔質基材を使用することによって、回路共振どう1の接続が可能であるだけでなく、最上層配線

囲である。

用の金属箔をも加熱加圧によって強固に接着する事ができる。また、多層回路基板の作製では、メッキ加工が不要となり、地球環境上有利である。

【0027】次に本発明の多層回路基板の第2番目の製造方法の構成によれば、少なくとも2層以上の回路パターンを有する多層回路基板の両面に、前記回路基板接続材の離型フィルムを取り除いたもので挟持し、さらにその両面に金属箔を張り付けた後、加熱加圧し、前記金属箔を加工して回路パターンを形成することにより、第1番目の製造方法と同様に多層回路基板を合理的に効率よ 10く製造できる。

【0028】前記において、<u>多孔質基材</u>が、耐熱性合成 繊維製不織布に<u>未硬化状態の</u>熱硬化性樹脂を含浸させた 複合材であるという好ましい例によれば、熱的にも機械 的強度にも優れる。

【0029】また前記において、耐熱性合成繊維製不織布がアラミド樹脂からなり、未硬化状態の熱硬化性樹脂がエポキシ樹脂からなるという好ましい例によれば、さらに熱的にも機械的強度にも優れる。

【0030】また前記において、耐熱性合成繊維製不織 20 布が紙からなり、未硬化状態の熱硬化性樹脂がフェノール樹脂またはエポキシ樹脂からなるという好ましい例によれば、さらに熱的にも機械的強度にも優れる。

【0031】また前記において、導電性樹脂組成物中の 導電物質が、銀、ニッケル、銅及びこれらの合金から選 ばれる少なくとも一つの金属粉末であるという好ましい 例によれば、電気的伝導性に優れる。

【0032】また前記において、導電性樹脂組成物中の 樹脂成分が、有機質多孔質基材の熱硬化性樹脂と実質的 に同一であるという好ましい例によれば、導電性樹脂組 30 成物と有機質多孔質基材との接着性に優れる。

【0033】また前記において、少なくとも2層以上の 回路パターンを有する多層回路基板及び少なくとも1層 以上の回路パターンを有する回路基板が、銅箔配線と銅 メッキスルーホールを有するガラスエポキシ多層回路基 板からなるという好ましい例によれば、従来のガラスエ ポキシ多層回路基板と組み合わせて使用できる。

【0034】また前記において、少なくとも2層以上の 回路パターンを有する多層回路基板及び少なくとも1層 以上の回路パターンを有する回路基板が、アラミド製不 40 織布と熱硬化エポキシ樹脂多層回路基板からなるという 好ましい例によれば、多層化を容易に行える。

【0035】また前記において、貫通孔がレーザー光照射によって開けられているという好ましい例によれば、ドリルを用いるのに比べてファインピッチ化できるうえ、粉塵の発生も抑えることができる。

【0036】また前記において、導電性樹脂組成物が充 明の回填されている部分の直径が 50μ m~ 1μ mmの範囲であるという好ましい例によれば、所望の直径の導電部を作 スの電成できる。より好ましい直径は $100~300\mu$ mの範 50 ない。

【0037】また前記において、導電性樹脂組成物が充填されている部分のピッチ(充填部と充填部の間隔の距離)が50μm以上であるという好ましい例によれば、

10

充填部どうしの絶縁を完全にとることができる。

【0038】また前記において、導電性樹脂組成物が充填されている部分の電気抵抗が、0.05~5.0mΩの範囲であるという好ましい例によれば、回路基板やコネクターとして実用上十分な導通をはかることができ

る。より好ましくは、 $0.1\sim0.8$ m Ω の範囲である。

【0039】このように被圧縮性を有し耐熱性有機質補強材と未硬化な熱硬化性樹脂の複合材からなる多孔質基材に穴加工し、導電性ペーストを離型フィルム表面まで埋め込んだ構造を有する回路基板接続材として使用することによって、比較的安定に作製できる両面板や4層基板などの基板同士を簡便に、電気的機械的に接続することができる。このことは両面基板から容易にインナービア構造を有する多層基板が得られる。

【0040】また、被圧縮性を有する多孔質基材として、有機質の補強材と未硬化の熱硬化性樹脂の複合材を使用することが可能である。これによって、多孔質基材が加熱加圧によって圧縮される工程において導電性ペーストも圧縮されるる。そのとき導電物質問から有機バインダ成分が押し出されて硬化するため、導電物質同士および導電物質と金属箔間の結合が強固になり、導電性ペースト中の導電物質が緻密化される。これにより、極めて抵抗の低いビア接続が得られる。また導電性ペーストを離型フィルムの表面まで充填することで、離型フィルムの剥離後導電性ペーストが有機質多孔質基材の表面より凸状に飛び出し、これにより積層後の導電物質の充填量がアップし接続抵抗が極めて小さくなる。

【0041】加えて、被圧縮性を有する多孔質基材を使用することによって、貫通孔に充填された導電性ペーストの有機バインダ成分が多孔質基材側に浸透する。このため貫通孔中の充填導電性ペースト量が減少し、多孔質基材とその両面に張り付けられた金属箔との間に導電性ペーストが侵入することがない。よって近接する回路バターン間の短絡不良の発生を防止できる。さらに、被圧縮性を有し補強材と未硬化の熱硬化性樹脂の複合材からなる多孔質基材の加熱加圧による熱硬化反応を利用することによって、回路基板どうしの機械的接続が可能であるだけでなく、金属箔配線間も加熱加圧によって電気的接続も得られる。

【0042】また、多層回路基板の作製では、メッキ加工が不要となり、地球環境上有利である。加えて、本発明の回路基板接続材を用いることで、回路基板同士の接続に適していることは既に述べたが、回路基板とデバイスの電気的機械的接続にも有効であることは云うまでも

[0043]

【実施例】以下本発明の一実施例における回路基板接続 材とそれを用いた多層回路基板の製造方法について、よ り具体的に説明する。

(A) 導電性ペースト

(a) フィラー

本発明の導電性ペーストは金属フィラーと熱硬化樹脂お よび硬化剤より構成される。まず、導体フィラーについ て説明する。導体フィラーは本目的から言って導体組成 中に高濃度に含有される必要がある。その理由は、前記 10 したように導体フィラー同士の接触確率を高めることに よって、接続ビアホールの低抵抗化および熱あるいは機 械的応力による基板歪みが加わった際にも導通信頼性を 保持する必要があるからである。導体フィラーを高濃度 に分散させるためには、導体フィラーの平均粒径が0. 2-20 μ mの範囲にあっても、その比表面積が小さい 程よく、その値は0.1-1.5 m² / gが適当であ り、更に望ましくは0.1-1.0m²/gである。導 体フィラーとしては、銀、銅またはニッケルなどのもの が挙げられるが、これら2種以上を併用することもでき 20 る。また、導体フィラーの形状についても球状、フレー ク状等の上記特性を有するものであれば使用可能であ る。特に銅粉末を導体フィラーとして用いることは、マ イグレーションの抑制、経済的供給と価格の安定性の面 から望ましい。しかし、銅粉末は一般に酸化され易いた め、本発明の回路基板接続材のビアホール充填用として 用いる場合には、銅粉末の酸化が導電性を阻害すること となる。そのため、加熱加圧による接着工程における雰 囲気は、酸素濃度が1.0%以下であることが必要であ る。

(b) エポキシ樹脂

次に、特定性状のエポキシ樹脂について説明する。本発明の回路基板接続材は上記したように、金属箔間で電気的接続をさせるため、密閉構造で加圧加熱する。そのため導電性ペーストに溶剤などの揮発成分を含むことは内部でブリスタの発生につながり不都合である。したがって一液で無溶剤型の導体組成物を形成するために、エポキシ樹脂としては液状樹脂が基本的に必要である。前記した導体フィラーを高濃度に分散するためには、エポキシ樹脂の粘度が15Pa・s以下が必要でる。それ以上の粘度のエポキシ樹脂を用いると導体組成物をベースト化した際ペーストの粘度が著しく高くなる。その結果、ペースト粘度が2、000Pa・s以上ではビアホール充填作業が出来ないと言う不具合を生じる。

具合は起こらない。

【0045】使用し得るエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、アミン型エポキシ樹脂等2ヶ以上のエポキシ基を含有した液状エポキシ樹脂があるが、揮発分を少なくするために液状エポキシ樹脂を分子蒸留したものも使用され得る。

12

【0046】硬化剤については、一般的な硬化剤が使用可能である。ジシアンジアミド、カルボン酸ヒドラジド等のアミン系硬化剤、3-(3.4ージクロロフェニル)-1、1ージメチル尿素等の尿素系硬化剤、無水フタル酸、無水メチルナジック酸、無水ピロメリット酸、無水ヘキサヒドロフタール酸等の酸無水物系硬化剤、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン酸等の芳香族アミン系(アミンアダクト)硬化剤が代表的に用いられる。これらのうちでも、特に組成物の安定性および作業性の観点より、固形状の潜在性硬化剤粉末が望ましい。

(B) 離型フィルム

離型性フィルムは、本発明の回路基板接続材に対し、穴加工および導電性ペーストの充填時、さらには搬送時の汚染防止フィルムである。そして回路基板の接続時には剥離して使用する、そのため使用するまでは十分な接着強度が必要であり、使用時には剥離しやすいことが大切である。

【0047】また離型フィルムの接着には、使用する多 孔質基材の熱硬化樹脂が硬化反応を起こさない程度の温 度で加熱して行うことが望ましい。かつその際に熱収縮 が起こらないフィルムであることが望ましい。

30 【0048】本発明では、上記した観点から、片面にSi系の離型剤を塗布した厚さ約10μmのプラスチックシートを使用する。例えばポリエチレンテレフタレート(以下PETシートと称する)、PPなどが使用できて

(C) プリプレグ

本発明の国路基板接続材に使用する基材としては、現在知られている積層基材が使える。一般に回路基板に使用される基材は、無機質もしくは有機質の補強材と熱硬化樹脂の複合材料である。補強材は回路基板そのも強度を得るためと、基板に部品を実装するときの加熱はよるそりを抑制するための働きがある。無機質の補強おとしては、例えば、ガラス繊維を組んだガラス繊維を数mm~数10mm程度に裁断した直径50が5なる不織布が用いられる。ガラスクロスは、熱のいちなる不織布が用いられる。ガラスクロスは、熱のいちなる不織布が用いられる。ガラスクロスは、とのいるを経れて、大力を縦糸として織り込んだのである。通常でリント基板に使用されるガラスは、Eーガラスと呼ばれるSiO、CaO、Al,O。B,O。を主成分としたガラスが用いられる。またガラス不織布は、上記がラス繊維を裁断したものを抄紙し、水分散型のエボキシ樹脂

で接着させたガラス不織布ペーパーが代表的なものである。また寸法安定性を改良する意味で無機充填剤を添加する場合がある。

【0049】一方有機質の補強材としては、紙もしくは 芳香族ポリアミド繊維(例えば E.I. DuPont社製 商品 名ケブラー)の織布もしくは不織布 (E.I. Dupont 社製 商品名サーマウント)などが代表的なものである。The rmount(R)は、前記のパラ系アラミドである、ケブラー 繊維を6.7mm 程度の長さで裁断し、さらにフィルム状の メタ系アラミドを約10~15重量%加えて抄紙し、乾 燥の後高温、高圧下でカレンダー処理したものが用いら れる(例えばUSP-4、729、921)。

【0050】アラミドを利用した基板は、耐熱性に富み、熱膨張係数が小さいことからMCM用基板として注目されている(例えば IEEE TRANSACTIONS OF COMPONEN TS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, VOL.13, NO.3, SEPTEMBER 1990, PP570—PP575)。

【0051】プリプレグとは、上記補強材に熱硬化性樹脂を含浸し、溶剤を除去させた未硬化樹脂と補強材の複合材料を云う。通常ガラスエポキシプリプレグ、アラミ 20ドエポキシプリプレクなどと表現され、前者はガラス織布とエポキシ樹脂のプリプレグ、後者はアラミド補強材とエポキシ樹脂によるプリプレグである。両面板および、多層基板作製時の加熱加圧による樹脂硬化する前までの段階をプリプレグと表現する。

(D) 熱硬化樹脂

熱硬化樹脂とは、その分子が熱によって溶融、成長反応、架橋反応を行い、三次元的に編状構造をもつ不溶不融の高分子のことである。プリント基板用熱硬化樹脂としては、耐熱性、耐溶剤性の面から、エポキシ、フェノール、メラミン、ポリエステルなどが使用される。また副材料として、硬化剤、変性剤、充填剤などを加え種々の反応温度のものが得られる。

【0052】もっとも一般的に利用される熱硬化樹脂は、エポキシ樹脂である。エポキシ樹脂は、熱硬化性樹脂のなかでもっとも汎用的に使用される樹脂で、機械的、電気的化学的特性に優れたものである。最近では、高密度実装、高耐熱への要求から一般的なエポキシ樹脂に対し、種々の形で変性されることが多くなってきている。

【0053】耐熱性を向上させる目的で、ノボラック型のフェノールを反応させたノボラックエポキシ樹脂がある。また耐熱性とともに難燃性を得るために難燃剤を添加する場合もある。

(E) 銅箔

本発明の金属箔に使用される導体は、通常銅を箔状にした状態のものを使用する。銅箔の厚さは、18~70ミクロン厚みのものが汎用的であり、電解銅箔が一般的である。本発明の回路基板接続材に使用する銅箔は、銅電性ペーストによるビア接続を行う観点から、通常電気的 50

接続面には粗化された銅箔面がくるようにする。これは、接続の信頼性の面から粗化度合いが粗い方が接続抵抗、機械的強度、信頼性の面で良好だからである。

14

【0054】また本発明の回路基板接続材を用いた多層 基板作製時には、接続する回路基板の電気的接続部分 は、黒化処理された銅箔が使用できない。これは、黒化 処理された面は酸化銅層が形成されており、そのため電 気的に絶縁されるため接続が得られない。望ましくは、 接続される基板表面の接続される部分の銅箔表面は前記 同様粗化された銅箔がよい。

【0055】以下の実施例においては、下記の評価方法 によって評価した。

(1) ビア接続抵抗

本発明の回路基板接続材によって作製される回路基板の ビア接続抵抗の評価方法は、各ビア1ヶ当たりの接続抵 抗の測定とビア接続が直列に500ヶのチェーン配線を 接続した抵抗測定と2種類行う。

【0056】ピア1ヶ当たりの接続抵抗はピア両端の金属配線の両端に抵抗の4端子測定で測定する。また500ヶのシリーズ抵抗の評価は、おもに信頼性試験において使用する方法で、500ヶ分の抵抗と金属配線の抵抗分の総和を前記4端子測定法で求め、試験後の測定値から初期抵抗値をマイナスしたもので評価する。つまり、500ヶ分のピア抵抗値の変化量を求めるものである。

(2) 各種ビア接続信頼性試験

① 温度サイクル試験

温度サイクル試験は、気相中にて-55℃で30分放置し、後+125℃で30分放置を繰り返し1000回実施したとき、ビア接続抵抗の変化量で判断する。判断基30 準は、500個ピアシリーズ基板でその変化量が250mΩ以下であること。ビア1ヶ当たり0.5mΩ以下の変化に相当する。

② 半田ディップ試験

半田ディップ試験は、230℃に加熱溶解した半田槽に 10秒間漬けた後、同様にピア接続抵抗の変化量を測定 する。判断基準は前記と同じ。

③ オイルディップ試験

オイルディップ試験は、オイルによる液相中の温度サイクル試験である。試験基板を高温260℃に加熱したオイル中に10秒間漬け、室温で10秒保持し、さらに20℃のオイル中に10秒間漬ける。評価はこの温度サイクルを200回繰り返し行う。その時高温側、低温側それぞれの漬けてる時の抵抗を測定しに200回の間断線がないこと。および試験前後での抵抗変化量を測定し判断する。抵抗変化量の判断基準は、前記の通りである。

【0057】以下具体的実施例を説明する。

(実施例1~4)以下本発明の一実施例における回路基板接続材とそれを用いた多層回路基板の製造方法について、図面を参照しながら説明する。

0 【0058】まず使用する回路基板接続材のプリブレグ

をプリプレグ1~4に示す。

(1) プリプレグ1

無機質補強材としてのガラス織布にフィラメント径4. 6 ミクロンのE - ガラスを1インチ当たり4.4 の撚り数 のものを用いた。熱硬化樹脂には、高ガラス転移点のエ ポキシ樹脂として、シェルエポン (Shell EPON 1151B6 0)、ガラス転移点180℃ のものを用いた。この樹脂に 希釈溶剤として、メチルエチルケトン(MEK)を使用 して樹脂含浸を行った。使用したプリプレグラインは樹 脂含浸および溶剤除去の為の乾燥が連続して行えるもの 10 ラフト紙を使用し、熱硬化樹脂として、アルキルフェノ である。乾燥後の樹脂量は、ガラスクロスに対して約3 0 wt% であった。乾燥後のプリプレク厚みは120μm であった。

(2) ブリプレグ2

同様に無機質補強材としてガラス不織布を用いたもの で、含浸樹脂は、プリブレグ1と同一のものである。使 用したガラス不織布は、前記と同じガラス繊維を裁断し たものを抄紙し、水分散型のエポキシ樹脂で接着させた ガラス不織布ペーパーとしたものである。また寸法安定 性を改良する意味で無機充填剤としてアルミナ粉末を添 20 加した。樹脂含浸量は、ガラス織布に対し約40wt% で、プリプレグ厚みは140μmである。

(3) プリプレグ3

有機質補強材として芳香属ポリアミドを用いたもので デュポン (E.I.Dupont)社製サーマウント("THERMOUN *

* T': 商標名)を使用した。これたは坪量が72 g/m²、ペ ーパー密度が0.5q/cc のものである。含浸樹脂はエポキ シ樹脂、Dow DER 532A80、ガラス転移点140 ℃である。 プリプレグ1と同様の方法で樹脂含浸、乾燥を行った。 樹脂含浸量は52wt%、プリプレグ厚みが150μmであっ

16

(4) プリプレグ4

同様に有機質補強材である紙を使用したものとして紙フ ェノールプリプレグがある。紙には坪量70 **a/㎡** のク ール類を加えた変性樹脂を使用した。樹脂量はクラフト 紙に対し48 wt%、プリプレグ厚みが145μmであった。

(5) 導電性ペースト

本発明の導電性ペースト組成を表1に示す。金属フィラ ーとして、銀、銅、ニッケルの球形状ならびにフレーク 形状のものを使用した。樹脂組成としてビスフェノール A型エポキシ樹脂 (エピコート828 油化シェルエポ キシ製)、硬化剤としてアミンアダクト硬化剤(MY-24 味の素製)を使用した。

【0059】上記組成物を三本ロールにて混練したもの をペーストとした。表1に金属粒子の形状、平均粒径と 配合量(重量%)およびペーストの室温におけるE型粘 度計で0.5 грm時の粘度を示す。

[0060]

【表 1】

$\overline{}$		金	展		樹脂組成			
ペースト	金属	形状	粒径	金属量	樹脂量	硬化剂量	粘度	
No.	1		μm	wt%	wt%	wt%	Pa•s	
P-1	Cu	球	2	85	12	3	120	
P-2	Cu	球	2	87. 5	10	2. 5	340	
P-3	Ni	球	1. 2	85	12	3	300	
P-4	Ni	球	1.2	87. 5	10	2, 5	550	
P-5	Ag	フレーク	1.8	85	12	3	220	
P-6	Ag	71-7	1.8	87. 5	10	2. 5	475	

【0061】図1 (a)~(c)は上記したプリプレグ 1~4を使用した本発明の実施例における回路基板接続 材の製造工程の一例を示す工程断面図である。まず図1 (a) に示すように、両面にポリエステルの離型性フィ ルム101(厚み約12μmン)を備えたプリプレグ3 による多孔質基材102を準備した。離型フィルムの接 40 合方法は、上記プリプレグの両面に離型フィルムで挟 み、さらにステンレス鋼板で挟み、110℃の温度で、 20 Kg/cm の圧力で4分間加熱加圧したものである。こ のときプリプレグは加熱加圧により、プリプレグが圧縮 され内部のポアー102aが減少する。

【0062】これにより離型フィルムを有するアラミド ーエポキシシートが得られる。次に図1 (b) に示すよ うに、アラミドーエポキシシート102(厚み約130 um) の所定の箇所に炭酸ガスレーザ加工により貫通孔 103 (穴径約250μm)を形成した。次に図1

(c) に示すように、貫通孔103に導電性ペースト1 0 4 を充填することで本発明の回路基板接続材が作製で きる。導電性ペースト104を充填する方法としては、 貫通孔103を有するアラミドーエポキシシート102 を印刷機(図示せず)のテーブル上に設置し、直接導電 性ペースト104を離型性フィルム101の上から印刷 した。このとき、上面の離型性フィルム101は印刷マ スクの役割と、アラミド-エポキシシート102の表面 の汚染防止の役割を果たしている。

【0063】(実施例5~8)このようにして作製した 回路基板接続材実施例1~4を使用して以下に両面回路 基板の作製方法を説明する。

【0064】図2(a)は前記の回路基板接続材であ る。この回路基板接続材の両面にある離型フィルム10 1を剥離し、別途作製した同一の位置に導電性ペースト 50 を埋め込んだ未硬化基板材を3枚用意し、基準ピンで位 置合わせ(図示せず。)して重ね合わせた。

【0065】図2 (b) のように重ね合わせた未硬化回 路基板材に厚さ35μmの片面を粗化処理した銅箔10 5 を粗化面を内側にして両面に重ね合わせ、熱プレスに より真空中にて170℃の温度で約1時間加熱加圧(4 0 Kq/cm²) して基材の硬化と銅箔の接着を行った。1 07は硬化後の導電性樹脂組成物である。積層後の構成 を図2(c)に示す。次に最上層配線106を形成する ためフォトリソグラフィー法にて回路パターンを形成し た。詳細には、前記積層基板の両面にドライフィルムを * 10

* 熱ロールにて張り合わせ、パターンを紫外線露光して銅 箔を残す部分だけ硬化させた。次に未硬化部分を現像処 理で取り除き、塩化銅溶液中でエッチングした。さらに 余分なドライフィルムを剥離して配線パターンを形成す る方法により形成した。図2 (d) に本実施例の両面回 路基板の完成図を示す。このようにして、作製された両 面回路基板の評価結果を表2に示す。

18

[0066] 【表 2】

				ヴィア接続係数 (ΔR mQ/500via)			
		導電性	ヴィア	熱	半田	オイル	
	オリプレグ	ペースト	抵抗值	サイクル	ディップ	ディップ	
No.	No.	No.	mQ/via	1000サイクル後	10秒後	200サイクル後	
5a	1	P-1	12.8	22	45	155	
5b	1	P-2	6. 1	15	23	87	
5c	1	P-3	35. 9	-103	- 55	11	
5 d	1	P-4	17.5	- 45	- 15	57	
5e	1	P-5	12.3	155	187	205	
5 f	1	P-6	14.3	88	122	117	
6a	2	P-1	10.8	33	35	63	
6b	2	P-2	7. 2	25	18	53	
6c	2	P-3	25. 3	3	- 21	- 21	
64	2	P-4	18. 2	- 5	- 19	33	
6e	2	P-5	9. 1	198	215	198	
6f	2	P-6	4. 3	76	113	112	
7a	3	P-1	1.8	56	24	76	
7b	3	P-2	1.2	37	13	34	
7c	3	P-3	15.3	- 99	- 12	89	
7d	3	P-4	7, 2	- 78	- 11	122	
7e	3	P-5	2. 1	19	112	198	
7f	3	P-6	1.3	22	62	109	
8a	4	P-1	3.8	78	47	97	
8b	4	P-2	2. 9	7	63	23	
8c	4	P-3	31.3	-203	22	11	
8d	4	P-4	22.1	-134	5	98	
8e	4	P-5	15.1	285	85	101	
8f	4	P-6	9. 6	118	45	61	

【0067】この両面基板におけるスルーホールの接続 抵抗はいずれもスルーホール1ヶあたり約1.2mΩ~ 35.9mΩと非常に小さい値を示した。またこの両面 回路基板を各種の信頼性評価を行った結果、オイルディ ップ試験、半田ディップ試験において(230℃10 秒) で同じく抵抗変化率250 mΩ以内、オイルディップ 試験でも断線なしと、いずれにおいても良好な結果を示

【0068】(実施例9~12)次に本発明の回路基板 接続材を用いた多層基板の製造方法の例を示す。組み合 わせる回路基板として、ガラスエポキシ基材による両面 板を2組用いた。本ガラスエポキシ両面板の作製条件 は、ガラス織布に前記と同様FR-4相当の熱硬化性樹 50 例1~4の回路基板接続材の両面にある離型フィルムを

脂を含浸させたプリプレグ(厚み約100μm)を4枚 重ねた。さらに厚み35μmの両面を粗化処理した銅箔 を両面に重ね合わせた。熱プレスにより真空中にて17 0℃の温度で約1時間加熱加圧(40 Kq/cm²)して基 材の硬化と銅箔の接着を行った。このようにして作製さ れた基板の所定の位置にドリル加工機にて穴径0.6m mの穴加工を行い、さらに銅メッキしてスルーホール内 壁と上層部全面に銅メッキ皮膜を形成した。この後、上 層配線を形成するためフォトリソグラフィー法にて回路 パターンを形成する。以上の様にして作製されたガラス エポキシ両面板と、同様にして作製した別パターンのガ ラスエポキシ両面板を用い、両両面板の中間に前記実施 剥離して位置合わせして積層し、熱プレスにより前記と同様の条件下で加熱加圧した。図3に積層前の本実施例の断面構成図を示す。305はガラスエポキシ基材、307はドリル加工穴、308は銅メッキスルー、306は銅配線パターンである。回路基板接続材309を中間にし、前記両面板で挟持した構造を有している。

19

【0069】このとき、前記両面板の電気的に接続すべき箇所には、接続のためのランドを有しており、前記ランド部分に前記回路基板接続材の導電性ペースト304が位置するようにした。したがって前記ドリル加工によ*10

* って形成されたスルーホール部には前記回路基板接続材 の導電性ペースト部分がこないような構造にする必要が ある。以上の様にして作製された多層体は、配線層が4 層存在する4層基板であり、前記両面板のスルーホール 部分には、前記回路基板接続材のエポキシ樹脂が流入し ており、完全に密閉された構造を有していた。この4層 基板を各種の信頼性評価を行った結果を表3に示す。

20

[0070]

【表3】

				ヴィア接続係数 (△R m2/500via)			
ı	回路	導電性	ヴィア	熟	半田	オイル	
1	接続材	ペースト	抵抗値	サイクル	ディップ	ディップ	
No.	No.	No.	∎Q/via	10009194後	10秒後	200117#後	
9	5b	P-2	0.51	16	21	89	
10	6 b	P-2	0.45	9	14	55	
11	7Ъ	P-2	0.44	-3	5	33	
12	8ь	P-2	0.45	15	2	71	

【0071】表3に示すように、オイルディップ試験、 半田フロー試験、半田リフロー試験のいずれにおいても 20 良好な結果を示した。なお、本多層基板作製において、 回路基板接続材に挟持したガラスエポキシ両面回路基板 の代わりに前記回路基板接続材より作製したアラミドエ ポキシ両面基板(実施例7)を使用した場合も良好な性 能を示した。

【0072】(実施例13~16)本発明の実施例における回路基板接続材について説明する。回路基板接続材は、実施例1~4と同様のものを用いた。

【0073】図4は、本発明の一実施例における多層回 路基板の積層前の断面構成図であり、図面を参照しなが 30 ら説明する。組み合わせる回路基板として、ガラスエポ キシ基材による4層基板を用いた。本4層基板の作製条 件は、ガラス織布に前記と同様の熱硬化性樹脂を含浸さ せたプリプレグ (厚み約100μm)を4枚重ねさらに 厚み35μmの片面を粗化処理した銅箔を両面に重ね合 わせ、熱プレスにより真空中にて170℃の温度で約1 時間加熱加圧(40 Kq/cm²) して基材の硬化と銅箔の 接着を行った。銅箔の接着の後、フォトリソグラフィー 法で配線パターンの形成を行った。具体的には、ドライ フィルムをラミネータを用いて両面に張り合わせ、パタ 40 ーンを露光後、現像、エッチング、ドライフィルム剥離 を行う方法である。次に、前記パターン形成した基板の 銅箔表面を黒化処理し、さらにその両面に、前記プリプ レグを2枚ずつ配置し、片面粗化銅箔を粗化面を内側に して同様に両面に配置して再度熱プレスにより積層し た。本基板をドリル加工機で所望の位置に穴明け加工を 行った。穴径0.6mmの穴加工を行い、さらに銅メッ

キしてスルーホール内壁と上層部全面に銅メッキ皮膜を形成した。この後、上層配線を形成するためフォトリソ法にて回路バターンを形成した。以上の様にして作製されたガラスエポキシ4層基板を中間層として、前記回路基板接続材の両面に位置合わせして重ね合わせ再度片面粗化銅箔を図4の様に配して積層し、熱プレスにより前記と同様の条件下で加熱加圧した。このようにして作製された多層基板の表層銅箔を前記と同様フォトリソ法でバターン形成を行った。図4において410は前記ガラスエポターン形成を行った。図4において410は前記ガラスエポッキスルー、413はフォトリソ法で作製した銅配線バターンである。回路基板接続材414、415を前記ガラスエポキシ4層基板の両面に配し、さらに片面粗化銅箔416、417で挟持した構造を有している。

【0074】このとき、前記4層基板と回路基板接続材の電気的に接続すべき箇所には、接続のためのランド419と導電性ペースト部418を有しており、前記ランド部分に前記回路基板接続材の導電性ペースト418が位置するようにした。したがって前記ドリル加工によって形成されたスルーホール部には前記回路基板接続材の導電性ペースト部分がこないような構造にする必要がある。以上の様にして作製された多層体は、配線層が6層存在する6層基板であり、前記両面板のスルーホール部分には、前記回路基板接続材のエポキシ樹脂が流入しており、完全に密閉された構造を有している。この4層基板を各種の信頼性評価を行った結果を表4に示す。

[0075]

【表 4 】

				ヴィア接続	条係数(△R I	m2/500via)	
	回路 導電性		ヴィア	熱	半田	オイル	
	接続材	ペースト	抵抗値	サイクル	ディップ	ディップ	
No.	No.	No.	■Q/via	1000+194後	10秒後	2009イクル後	
13	5 b	P-2	1. 21	45	38	101	
14	6b	P-2	2. 22	27	29	79	
15	7b	P-2	1.78	19	39	83	
16	8b	P-2	1. 15	41	52	72	

30

【0076】表4において、オイルディップ試験、半田フロー試験、半田リフロー試験のいずれにおいても良好 10 な結果を示した。またさらに積層数の多い多層回路基板を製造するには、前記の工程を必要な回数繰り返し行うことでより多層体を作製する事ができる。また前記中間多層体と前記回路基板接続材を所望の枚数用意し、一括して積層を行うことでも同様により多層配線を有する基板が得られる。

【0077】なお、本多層基板作製において、回路基板接続材で挟持されたガラスエボキシ4層回路基板の代わりに前記回路基板接続材より作製したアラミドエポキシ両面基板(実施例7)を使用した場合も良好な性能を示 20した。

【0078】以上説明した多層回路基板の製造方法においては、検査済みの回路基板と回路基板接続材を用いて行うため、高い工程歩留まりが確保でき、コスト上昇が抑えられた。

【0079】また以上説明した製造方法により製造された多層回路基板では、第1の回路基板と第2の回路基板とが加熱加圧により圧縮する回路基板接続材を用いて相互接続されており、高積層基板が比較的容易に作製することができる。

【0080】 (実施例17) 実施例1で用いた厚み約1 50~170μm多孔質基材の両面に、厚み約30μm のフッ素系フィルム(テトラフルオロエチレンーエチレ ン共重合体:旭硝子製"アフレックス" (商品名))の 離型性フィルムを貼り付けた。次にYAGレーザーを用 いて穴径約200μmの貫通孔を形成した。穴と穴の間 隔(ピッチ)は約200μmとした。次に貫通孔に導電 性ペーストを充填した。導電性ペーストを充填する方法 としては、貫通孔を有するアラミドーエポキシシートを 印刷機(図示せず)のテーブル上に設置し、直接導電性 ペーストを離型性フィルム1の上から印刷した。このと き、上面の離型性フィルムは印刷マスクの役割と、アラ ミドーエポキシシートの表面の汚染防止の役割を果たし ている。このとき使用した導電性ペーストは、導電性の フィラーとして平均粒径約2μmの銀粉末を用い、樹脂 としては前記基板材料と同様の熱硬化エポキシ樹脂(無 溶剤型)、硬化剤として酸無水物系の硬化剤をそれぞれ 85重量部、12.5重量部、2.5重量部となるよう に3本ロールにて十分に混練して得たものである。次に 熱プレスにより真空中にて170℃の温度で約1時間加 熱加圧(40 ka/cm²)した。次に離型性フィルムを剥 離することにより、厚さ約100μmの電気コネクター を得た。図5 (a) (b) は、このようにして得られた 電気コネクターの例である。図 5 (a)は電気コネクタ ーの斜視図、図5 (b) は同断面図である。図5 (a) (b) において、102は有機質多孔質基材(アラミド エポキシシート)、104は導電性樹脂組成物部であ る。この電気コネクターは、上下方向にのみ電気を通 し、水平方向には電気を通さない。しかも、導電性樹脂 組成物104の部分は1mmあたり3本ピッチ間隔であ った。また導電性樹脂組成物部104は約30 μ m突出 しているので、たとえば液晶素子のネサガラスとフレキ シブルプリント基板(FPC)との接続などに好適であ る。さらに、表面A及び裏面Bの部分に粘着剤または接 着剤を形成することにより、他の回路基板に対する貼り 付けが容易になる。

22

【0081】前記本実施例の回路基板接続材は、たとえば液晶素子のネサガラスとフレキシブルプリント基板 (FPC) とを接続する電気コネクター、移動電話の電気的信号線のドライバー回路とFPCとを接続する電気コネクターなどに用いることができる。

【0082】以上説明した通り、本発明の実施例によれ ば、離型フィルムを表面に有する被圧縮性を有し不織布 と熱硬化性樹脂の複合材からなる有機質多孔質基材に穴 加工し、導電性ペーストを離型フィルム表面まで埋め込 んだ構造を有する回路基板接続材として使用することに よって、比較的安定に作製できる両面板や4層基板を簡 便により高多層な基板にする事が可能となるものであ る。本実施例の回路基板接続材は、多孔質基材が加熱加 圧によって圧縮され導電性ペーストも圧縮されるが、そ のときに導電物質間からバインダ成分が押し出され、導 電物質同士および導電物質と金属箔間の結合が強固にな り、導電性ペースト中の導電物質が緻密化される。また 導電性ペーストを離型フィルムの表面まで充填すること で、離型フィルムの剥離後導電性ペーストが有機質多孔 質基材の表面より凸状に飛び出し、これにより積層後の 導電物質の充填量がアップし接続抵抗が極めて小さくな

【0083】さらに、被圧縮性を有し不織布と熱硬化性 樹脂の複合材からなる多孔質基材を使用することによっ て、回路基板どうしの接続が可能であるだけでなく、最 50 上層配線用の金属箔をも加熱加圧によって強固に接着す

る事ができる。また、多層回路基板の作製では、ドリル 加工およびメッキ加工が不要となり、地球環境上有利で ある。

[0084]

【発明の効果】前記したとおり本発明によれば、離型性 フィルムを両面に備えた<u>多孔質基材</u>で構成される回路基 板接続材であって、前記回路基板接続材は所望の位置に 貫通孔を有し、前記貫通孔に導電性樹脂組成物が前記離 型性フィルム表面まで充填されていることにより、イン ナビアホール接続を可能にし、高信頼性及び高品質の回 10 105 銅箔 路基板接続材を実現できる。また、導電部分のファイン ピッチ化が容易<u>である。さらに、離型性フィルムを剥離</u> することにより、導電性樹脂組成物が突出し、電気抵抗 が低い電気コネクターも実現できる。

【図面の簡単な説明】

【図1】本発明の実施例1~4における回路基板接続材 の製造方法を示す工程断面図で、(a)は有機質多孔質 基材の両面に離型性フィルムを配置した工程、(b)は 貫通孔を開けた工程、(c)は貫通孔に導電性ペースト を充填させた工程を示す。

【図2】本発明の実施例5~8における回路基板接続材 を用いた多層回路基板の断面図で、(a)は回路基板接 続材、(b)は未硬化回路基板材に銅箔を両面に重ね合 わせた工程、(c)は加熱プレス後の工程、(d)はエ ッチング後の工程を示す。

【図3】本発明の実施例9~12における回路基板接続 材を用いた多層回路基板の断面図を示す。

【図4】本発明の実施例13~16における回路基板接 続材を用いた多層回路基板の断面図を示す。

【図5】本発明の実施例17における回路基板接続材を 30 504 最上層配線パターン 用いた電気コネクターの斜視図(a)と断面図(b)を*

* 示す。

【図6】従来法によるガラスエポキシ多層基板の断面構 成図を示す。

24

【符号の説明】

- 101 離型性フィルム
- 102 有機質多孔質基材(アラミドエポキシシート)
- 102a 内部ポアー
- 103 貫通孔
- 104 導電性ペースト
- - 106 最上層配線パターン
 - 107 導電性樹脂組成物
 - 305 ガラスエポキシ基材
 - 306 銅配線パターン
 - 3 0 7 ドリル加工穴
 - 308 銅メッキスルー
 - 309 回路基板接続材
 - 410 ガラスエポキシ4層基板
 - 411 ドリル加工穴
- 412 銅メッキスルーホール
 - 4 1 3 銅配線パターン
 - 414、415 回路基板接続材
 - 416、417 銅箔
 - 4 1 8 導電性ペースト
 - 419 ランド
 - 500 ガラスエポキシ4層基板
 - 501 内層Cu配線層
 - 502 ドリル加工穴
 - 503 銅メッキスルー

【図1】

【図3】

フロントページの続き

(72)発明者	十河 寬				
	大阪府門真市大字門真1006番地	松下電	(56)参考文献	特開	昭 61-3497 (JP,A)
	器産業株式会社内			特開	平 5 - 175649 (JP, A)
(72)発明者	小川 立夫			特開	平3-269978 (JP. A)
(12)50 71 11	大阪府門真市大字門真1006番地	松下電		特開	平6-132667 (JP. A)
	器産業株式会社内			特開	平 6 - 268345 (JP, A)
(72)発明者	小島 環生			特開	平 2 - 106991 (JP. A)
(,2),2,,1	大阪府門真市大字門真1006番地	松下電		実公	平 2 - 31802 (JP, Y2)
	器産業株式会社内				