CSCI 532 – Algorithm Design Assignment 4

Name: Badarika Namineni CWID: 50233279

Question 1: Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the array A = (6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2).

Solution:

1) Array A = (6,0,2,0,1,3,4,6,1,3,2)			
mere are Il elements in the assay			
max = 0			
that a index from 0 to 6			
index 0 1 2 3 4 5 6			
Array C (Count) 2 2 2 1 0 2			
my c has the count of each element of the			
Now, lets sort them by summing the court with			
Previous index. 2 3 4 5 6			
SumCount 2 4 6 8 9 9 11			
Lets write an away with the indices of no. of			
· ·			
In our case, it is 11. So, we have 11 indices.			
A: 0 3 4 5 6 7 8 9 10 11			
8: 0 0 1 1 2 a 3 3 4 6 6			
Step1: After 6 is added under 11, the count is reduced			
by 1 which makes 10.			
Stepa: By adding o at 2, the value is 1 in 0.			
Step3: The 6 becomes 5 in index 2.			
Step4: Since o has I it is placed under I in A.			
Steps: The count 4 becomes 3 in 1.			
Step4: 8 becomes 7 after adding 3.			
Steps: Since a has 5 in c it is added on 5 in A.			
Array: 0 1 2 3 4 5 6 = index			
Array: 0 1 & 3 4 5 6 = index 0 & 4 6 8 9 9 = Sum count			
Final Sorted away			
B: 1 2 3 4 5 6 7 8 9 10 11 = index			
B: $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \Rightarrow \text{ under} \\ 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 6 & 6 = Sorted array$			
assay			

Question 2: Suppose that we were to rewrite the for loop header in line 10 of the COUNTING-SORT as for j = 1 to A.length

Show that the algorithm still works properly. Is the modified algorithm stable?

Solution:

The algorithm works properly even with the "for j = 1 to A.length". The placement of the elements does not affect with the change in the for loop but it is NOT STABLE because the equal elements will be placed in the reverse order.

Question 3: Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the following list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

Solution:

Given words	Sorting by right most	Sorting by middle	Sorting by left most
	letter	letter	letter
COW	SEA	TAB	BAR
DOG	TEA	BAR	BIG
SEA	MOB	EAR	BOX
RUG	TAB	TAR	COW
ROW	DOG	SEA	DIG
MOB	RUG	TEA	DOG
BOX	DIG	DIG	EAR
TAB	BIG	BIG	FOX
BAR	BAR	MOB	MOB
EAR	EAR	DOG	NOW
TAR	TAR	COW	ROW
DIG	COW	ROW	RUG
BIG	ROW	NOW	SEA
TEA	NOW	вох	TAB
NOW	вох	FOX	TAR
FOX	FOX	RUG	TEA

It is sorted using Radix-sort

Question 4: Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array A = [.79, .13, .16, .64, .39, .20, .89, .53, .71, .42]

Solution:

Question 5: Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming simple uniform hashing, what is the expected number of collisions? More precisely, what is the expected cardinality of $\{\{k, l\}: k \neq l \text{ and } h(k) = h(l) \text{ (k and } l \text{ where } k \text{ is not equal to } l \text{ and } h(k) = h(l)\}\}$?

Solution:

Let's use linearity of expectation to solve this. Suppose all the keys are ordered. Let X_i be the number of $l > k_i$ so that $h(l) = h(k_i)$ which is same as $\sum_{j>i} Pr(h(k_j) = h(k_i)) = \sum_{j>i} 1/m = (n-i)/m$.

Now define the random variable Y to be the total number of collisions, so that Y = $\sum_{k=l} X_{kl}$. The expected number of collisions is

$$E[Y] = E \left[\sum_{k=1} X_{kl} \right]$$

$$= \sum_{k=1} E[X_{kl}]$$

$$= (n/2)*1/m$$

$$= n(n-1)/2*1/m$$

$$= n^2 - n/2m$$

Question 6: For the set of keys {1, 4, 5, 10, 16, 17, 21}, draw binary search trees of height 2, 3, 4, 5, and 6.

Solution:

