EAIiIB		Autor	Rok II	Grupa 5	Zespół 6	
	Temat:		Numer ćwiczenia:			
Opraco	wanie danych po	0				
Data wykonania	Data oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena	

1 Cel ćwiczenia

Zapoznanie się z typowymi metodami opracowania danych pomiarowych i szacowania niepewności w pomiarach laboratoryjnych.

2 Wstęp teoretyczny

2.1 Niepewność pomiaru

Niepewność pomiaru – parametr, związany z wynikiem pomiaru, charakteryzujący rozrzut wyników, które można w uzasadniony sposób przypisać wartości mierzonej. Charakteryzuje ona rozrzut wartości (szerokość przedziału), wewnątrz którego można z zadowalającym prawdopodobieństwem usytuować wartość wielkości mierzonej. Z definicji niepewności pomiarowej wynika, że nie może być ona wyznaczona doskonale dokładnie.

2.2 Wahadło matematyczne

Wahadłem matematycznym nazywamy punktową masę zwieszoną na nieważkiej nici. Podczas ćwiczenia będziemy korzystać z wahadła i kuli zawieszonej na realnych niciach. Wychylając wahadło z położenia równowagi wprowadzamy je w ruch drgający prosty. Okres drgań takiego wahadła jest określony zależnością:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

3 Układ pomiarowy

Zestaw ćwiczeniowy stanowi kulka zawieszona na nici, którą wprowadza się w ruch drgający. Potrzebne przyrządy pomiarowe to przymiar milimetrowy oraz sekundomierz.

Rysunek 1: Zestaw wahadła prostego

4 Wykonanie ćwiczenia

- 1. Pomiar długości wahadła.
- 2. Wprowadzenie wahadła w ruch drgający przy wychyleniu nie przekraczającym 10° . Pomiar 10 okresów drgań.
- 3. Powtórzenie pomiarów dla innej długości wahadła.

5 Opracowanie wyników

- 1. Sprawdzenie wyników pomiarów w poszukiwaniu wartości odstających (błędu grubego).
- 2. Ustalamy niepewność pomiaru długości wahadła u(l) = 1 [mm].
- 3. Obliczamy niepewność pomiaru okresu. Dla bardzo małych próbek przyjmujemy $u(T)=25\ [ms]$ (czas reakcji człowieka).
- 4. Z otrzymanych wyników pomiarów l i T, podstawiając do wzoru obliczamy przyspieszenie ziemskie:

$$g = \frac{4\pi^2 l}{T^2}$$

5. Obliczamy niepewność złożoną zmierzonej wartości przyspieszenia ziemskiego $u_c(g)$:

$$u_c(g) = \sqrt{\left(\frac{\partial g}{\partial l}u(l)\right)^2 + \left(\frac{\partial g}{\partial T}u(T)\right)^2} = \sqrt{\left(\frac{4\pi^2}{T^2}u(l)\right)^2 + \left(-\frac{8\pi^2 l}{T^3}u(T)\right)^2}$$

6. Porównanie uzyskanej wartości przyspieszenia ziemskiego z wartością tabelaryczną $g_0 = 9,811 \frac{m}{s^2}$:

$$|g - g_0| < U(g) = 2u_c(g)$$

7. Wyznaczenie prostej regresji i korzystając z niej wyznaczenie przyspieszenia ziemskiego wraz z niepewnością.

6 Wyniki pomiarów

Tabela 1: Podsumowanie wyników

Lp.	l [mm]	t [s]	T_i [s]	$u(T_i)$ [ms]	$g_i \left[\frac{m}{s^2} \right]$	$u(g_i) \left[\frac{m}{s^2}\right]$	$U(g) \left[\frac{m}{s^2} \right]$ $k = 2$	$ g-g_i $	Zgadza się z wartością tabelaryczną $g = 9,811 \; \left[\frac{m}{s^2} \right]$
1	398	12,63	1,264	25,07	9,838	0,3905	0,7811	0,02809	Tak
2	485	13,85	1,385	25,95	9,986	0,3743	0,7486	0,1749	Tak
3	161	8,066	0,8066	44,56	9,769	1,079	2,159	0,04157	Tak
4	400	12,73	1,273	33,10	9,738	0,5063	1,012	0,07254	Tak
5	281	10,60	1,060	25	9,873	0,4657	0,9314	0,06212	Tak
6	340	11,59	1,159	25	9,992	0,4311	0,8622	0,1814	Tak
7	540	14,72	1,472	25	9.839	0,3342	0,6684	0,02770	Tak

Po naniesieniu pomiarów wraz z ich niepewnościami można zauważyć, że zależność długości wahadła i okresu nie jest liniowa. Jest to funkcja typu:

 $T = f(l) = k\sqrt{l}$

gdzie

$$k = \frac{2\pi}{\sqrt{g}}$$

Rysunek 2: Wykres zależności okresu od długości wahadła

Natomiast zależność długości wahadła i kwadratu okresu jest zbliżona do funkcji liniowej. Obliczyłem więc prostą korzystając z metody najmniejszych kwadratów:

$$T^{2} = f(l) = 3,984l$$

 $u(a) = 0,0528 \left[\frac{s^{2}}{m} \right]$

Porównując oba wzory na T^2 otrzymujemy następującą zależność, z której możemy policzyć $g\colon$

$$3,984l = 4\pi^{2} \frac{l}{g}$$

$$g = \frac{4\pi^{2}}{3,984} = 9,9092 \left[\frac{m}{s^{2}}\right]$$

$$u(g) = \frac{4\pi^{2}}{a^{2}} u(a) = 0,131 \left[\frac{m}{s^{2}}\right]$$

Sprawdzenie z wartością tabelaryczną:

$$U(g) = 2u(g) = 0,263 \left[\frac{m}{s^2} \right]$$
$$|9,811 - 9,9092| = 0,0982 \left[\frac{m}{s^2} \right]$$
$$0,263 \left[\frac{m}{s^2} \right] > 0,0982 \left[\frac{m}{s^2} \right]$$

Wartość g wyznaczona z prostej regresji jest zgodna z wartością tablicową.

Rysunek 3: Wykres zależności kwadratu okresu od długości wahadła

7 Wnioski

W powyższym ćwiczeniu dokonano prezentacji pomiaru jednokrotnego, pomiarów wielokrotnych. Wyniki zostały opracowane w oparciu o teorię niepewności pomiarów, której podstawowe zasady przedstawiono w sprawozdaniu.

Patrząc na podsumowanie wyników w tabeli 1 można zobaczyć, że wszystkim grupom udało się wyznaczyć przyspieszenie ziemskie zgodne z wartością tabelaryczną. Trzeci pomiar posiada bardzo dużą niepewność u(g) wynika to najprawdopodobniej z tego, że zmierzony okres jest bardzo krótki, ponieważ długość nici również była mała. Im krótsza nić tym wahadła szybciej drga i trudniej zmierzyć dokładnie okres.

Żaden pomiar nie jest idealnie dokładny, wszystkie są obarczone niepewnością pomiaru wynikającą z niedokładności przyrządu pomiarowego, przypadkowości działania ludzkich zmysłów. Osobnym problemem jest tzw. błąd gruby. Takie drastyczne różnice między otrzymaną a spodziewaną wartością sugerują popełnienie błędu podczas doświadczenia (błędne obliczenia, pomyłka przy odczytywaniu i zapisie wyników itp.).