ECE 2050 Digital Logic and Systems

Chapter 7: Sequential Logic Design

Instructor: Yue ZHENG, Ph.D.

Last Week

- □ Half and Full Adders
- □ Parallel Binary Adders
- ☐ Ripple Carry and Look-Ahead Carry Adders
- □ Comparators
- \square Decoders (n input lines \rightarrow max. 2^n output lines)
- ☐ Encoders (e.g. Decimal-to-BCD Priority Encoder)
- ☐ Code Converters (e.g. BCD-to-Binary Conversion)
- Multiplexers (To route several inputs onto a single output line)
- □ Demultiplexers
- ☐ Timing

How to design a multiplier by FA/HA?

State Elements

Introduction

 Outputs of sequential logic depend on current and prior input values – it has memory.

- Some definitions:
 - State: all the information about a circuit necessary to explain its future behavior
 - Latches and flip-flops: state elements that store one bit of state
 - Synchronous sequential circuits: Sequential circuits using flip-flops sharing a common clock

Sequential Circuits

- Give sequence to events
- Have memory (short-term)
- Use feedback from output to input to store information

State Elements

- State: everything about the prior inputs to the circuit necessary to predict its future behavior
 - Usually just 1 bit, the last value captured
- State elements store state
 - Bistable circuit
 - SR Latch
 - D Latch
 - D Flip-flop

Bistable Circuit

Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q, Q
- No inputs

Same circuit!

Back-to-back inverters

Cross-coupled inverters

Bistable Circuit Analysis

Consider the two possible cases:

$$-Q = 0$$
:
then $\overline{Q} = 1$, $Q = 0$ (consistent)

$$-Q = 1$$
:
then $\overline{Q} = 0$, $Q = 1$ (consistent)

SR Latch

SR (Set/Reset) Latch

SR Latch

Consider the four possible cases:

$$-S=1, R=0$$

$$-S=0, R=1$$

$$-S=0, R=0$$

$$-S=1, R=1$$

SR Latch Analysis

$$-S = 1$$
, $R = 0$:
then $Q = 1$ and $\overline{Q} = 0$
Set the output

$$-S = 0$$
, $R = 1$:
then $Q = 0$ and $\overline{Q} = 1$
Reset the output

SR Latch Analysis

$$-S = 0$$
, $R = 0$:
then $Q = Q_{prev}$
Memory!

$$-S = 1$$
, $R = 1$:
then $Q = 0$, $\overline{Q} = 0$
Invalid State
 $\overline{Q} \neq \text{NOT } Q$

SR Latch

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
 - Set: Make the output 1
 - S = 1, R = 0, Q = 1
 - Reset: Make the output 0
 - S = 0, R = 1, Q = 0
 - Memory: Retain value
 - $S = 0, R = 0, Q = Q_{prev}$

SR Latch symbol

• Must do something to avoid invalid state (when S = R = 1)

D Latch

D Latch

- Two inputs: CLK, D
 - CLK: controls when the output changes
 - D (the data input): controls what the output changes to

Function

- When CLK = 1,
- D passes through to Q (transparent)
- When CLK = 0,
- Q holds its previous value (opaque)

D Latch Internal Circuit

D Flip Flop

D Flip-Flop

• Inputs: CLK, D

Truth Table:

Truth table for a positive edge-triggered D flip-flop.

Inputs		Ou		
D	CLK	Q	$\overline{oldsymbol{arrho}}$	Comments
0	1	0	1	RESET
1	\uparrow	1	0	SET

⁼ clock transition LOW to HIGH

- Called edge-triggered
 - Activated on the clock edge

D Flip-Flop Internal Circuit

- Two back-to-back D latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q

- Thus, on the edge of the clock (when CLK rises from $0 \rightarrow 1$)
 - D passes through to Q

Edge-Triggered Operation

 By exploiting a small delay through the inverter on one input to the NAND gate, generate a very short-duration spike on the positive-going transition of the clock pulse.

A type of pulse transition detector

D Latch vs. D Flip-Flop

J-K Flip Flop

J-K Flip Flop

• Inputs: CLK, J, K

Truth Table:

Truth table for a positive edge-triggered J-K flip-flop.

Inputs			Outputs		
J	\boldsymbol{K}	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0	1	Q_0	$\overline{\overline{Q}}_0$	No change
0	1	^	0	1	RESET
1	0	^	1	0	SET
1	1	↑	\overline{Q}_0	Q_0	Toggle

 $[\]uparrow$ = clock transition LOW to HIGH

Toggle State

 $Q_0 =$ output level prior to clock transition

J-K Flip-Flop Internal Circuit

J	K	Q_N	Q _{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Variations on a Flop

Registers: One or More Flip-Flops

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - **EN** = 1: D passes through to Q on the clock edge
 - **EN** = 0: the flip-flop retains its previous state

Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - **Reset** = 1: Q is forced to 0
 - Reset = 0: flip-flop behaves

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Settable Flip-Flops

- Inputs: CLK, D, Set
- Function:
 - **Set** = 1: Q is set to 1
 - **Set** = **0**: the flip-flop behaves as ordinary D flip-flop

Symbols D Q Set

Chapter Review

- ☐ State Elements
- ☐ Bistable Circuit
- ☐ D Latch
- ☐ D Flip Flop
- ☐ J-K Flip Flop
- □ Variations on a Flop
 - ☐ Registers
 - ☐ Enabled Flip-Flops
 - ☐ Resettable Flip-Flops
 - ☐ Settable Flip-Flops

True/False Quiz

- A latch has one stable state.
- A latch is considered to be in the RESET state when the Q output is low.
- X A gated D latch cannot be used to change state.
- Flip-flops and latches are both bistable devices.
- An edge-triggered D flip-flop changes state whenever the D input changes.
- A clock input is necessary for an edge-triggered flip-flop.
- When both the J and K inputs are HIGH, an edge-triggered J-K flip-flop changes state on each clock pulse.