ΛΥΣΗ

α) Από την γνωστή ανισότητα $-1 \le \eta \mu x \le 1$ προκύπτει ότι $-2 \le 2\eta \mu x \le 2$, οπότε $-3 \le 2\eta \mu x - 1 \le 1$, δηλαδή $-3 \le f(x) \le 1$. Επιπλέον στο διάστημα $[0, 2\pi]$ η ισότητα f(x) = -3 ισχύει όταν $\eta \mu x = -1$ δηλαδή $x = \frac{3\pi}{2}$, ενώ η f(x) = 1 ισχύει όταν $\eta \mu x = 1$ δηλαδή $x = \frac{\pi}{2}$. Επομένως η f παρουσιάζει:

- Ολικό ελάχιστο για $x = \frac{3\pi}{2}$, το $f\left(\frac{3\pi}{2}\right) = -3$.
- Ολικό μέγιστο για $x = \frac{\pi}{2}$, το $f\left(\frac{\pi}{2}\right) = 1$.

β) Με x=0 έχουμε f(0)=-1, οπότε η $C_{_f}$ τέμνει τον άξονα y'y στο σημείο A(0,-1) .

 $\begin{aligned} &\text{Mε} \quad \text{y} = \text{f}(\text{x}) = 0 \quad \text{έχουμε} \quad 2\eta\mu\text{x} - 1 = 0 \\ &\Leftrightarrow \eta\mu\text{x} = \frac{1}{2} \,, \quad \text{οπότε} \quad \text{για} \quad \text{x} \in [0, 2\pi] \quad \text{βρίσκουμε} \quad \text{x} = \frac{\pi}{6} \quad \text{\'} \\ &\text{x} = \frac{5\pi}{6} \,. \quad \text{Επομένως τα κοινά σημεία της} \quad \text{C}_{\text{f}} \quad \text{με τον άξονα} \quad \text{x'x} \quad \text{είναι τα} \quad \text{B}\left(\frac{\pi}{6}, 0\right), \Gamma\left(\frac{5\pi}{6}, 0\right). \end{aligned}$

γ) Συμπληρώνουμε τον παρακάτω πίνακα τιμών.

х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
ημχ	0	1	0	-1	0
f(x)	-1	1	-1	-3	-1

Με τη βοήθεια του παραπάνω πίνακα προκύπτει η επόμενη γραφική παράσταση $\, {\sf C}_{\!{}_{\!f}} \,$ της f.

δ) Από την ισότητα $f(\alpha) = f\left(\frac{\pi}{2} - \alpha\right)$, έχουμε:

$$2\eta\mu\alpha-1=2\eta\mu\left(\frac{\pi}{2}-\alpha\right)-1$$

 $2\eta\mu\alpha-1=2\eta\mu\bigg(\frac{\pi}{2}-\alpha\bigg)-1$ απ' όπου προκύπτει ότι $\,\eta\mu\alpha=$ συνακαι λόγω του περιορισμού $\,\alpha\in\!\left(0,\frac{\pi}{2}\right)\,$ συμπεραίνουμε ότι $\alpha = \frac{\pi}{4}$.