SNARGs for P from LWE

Abhishek Jain
Johns Hopkins University

Zhengzhong Jin
Johns Hopkins University

Arka Rai Choudhuri

University of California, Berkeley

Common Reference String (CRS)

 \mathcal{M} , x

Common Reference String (CRS)

 \mathcal{M} , x

wants to delegate computation to

No PPT \searrow can produce accepting x, Π if $x \longrightarrow \mathcal{M}$ accept

What kind of computation can we hope to delegate based on standard assumptions?

What kind of computation can we hope to delegate based on standard assumptions?

- Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]

What kind of computation can we hope to delegate based on standard assumptions?

- Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]
- Deterministic computation?

What kind of computation can we hope to delegate based on standard assumptions?

- Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]
- Deterministic computation?
- Sub-classes of NP?

CRS

$$C, x_1, \cdots, x_k$$

$$C, x_1, \cdots, x_k$$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS \square C, x_1, \cdots, x_k C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

No PPT $\overline{\mathbb{Z}}$ can produce accepting Π if

$$\exists i^* \in [k], (C, x_{i^*}) \times SAT$$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

Verifier running time: $k \cdot |x| + |\Pi|$

 $\boldsymbol{\Pi}$ is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

Verifier running time: $k \cdot |x| + |\Pi|$

 Π is publicly verifiable

$$SAT^{\otimes k} = \{ (C, x_1, \dots, x_k) \mid \forall i \in [k], (C, x_i) \in SAT \}$$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'17]

Some works can delegate NP

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'17]

"Less standard" assumptions

[Canetti-Holmgren-Jain-Vaikuntanathan'15, Koppula-Lewko-Waters'15, Bitansky-Garg-Lin-Pass-Telang'15, Canetti-Holmgren'16, Ananth-Chen-Chung-Lin-Lin'16, Chen-Chow-Chung-Lai-Lin-Zhou'16, Paneth-Rothblum'17, Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Kalai-Paneth-Yang'19]

Some works can delegate NP

Delegation for P and some for batch NP

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa

Goldwasser-Lin-Rubi

CRS

"Less standard" as:
[Canetti-Holmgren-J
Canetti-Holmgren'16
Rothblum'17, Canett

Verify(\Pi, CRS, sk)

rg-Lin-Pass-Telang'15, '16, Paneth-Paneth-Yang'191 Some works can delegate NP

Delegation for P and some for batch NP

Designated Verifier (standard assumptions)

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa

Goldwasser-Lin-Rubi

CRS

"Less standard" as:
[Canetti-Holmgren-J
Canetti-Holmgren'16
Rothblum'17, Canett

Verify(\(\Pi\), CRS, sk\)

Some works can delegate NP

Delegation for P and some for batch NP

Designated Verifier (standard assumptions)

[Kalai-Raz-Rothblum'13, Kalai-Raz-Rothblum'14, Kalai-Paneth'16, Brakerski-Holgren-Kalai'17, Badrinarayanan-Kalai-Khurana-Sahai-Wichs'18, Holmgren-Rothblum'18, Brakerski-Kalai'20]

Delegation for P and some for batch NP

Do there exists SNARGs for P and batch NP based on standard assumptions?

Do there exists SNARGs for P based on standard assumptions?

Previously best known: [Jawale-Kalai-Khurana-Zhang'21] for depth bounded computation based on sub-exponential hardness of LWE.

Do there exists SNARGs for batch NP based on standard assumptions?

Previously best known: [C-Jain-Jin'21a] assuming QR + (LWE/sub-exp DDH)

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

QR - Quadratic residuosity, LWE - Learning with Error, DDH - Decisional Diffie-Hellman

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

LWE – Learning with Error

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

LWE – Learning with Error

LWE – Learning with Error

 β is a random string

 β is a random string

FS methodology is secure for certain protocols under a variety of assumptions (via

correlation intractable hash functions

[Kalai-Rothblum-Rothblum'17, Canetti-Chen-Reyzin-Rothblum'18, Holmgren-Lombardi'18, Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Peikert-Sheihian'19, Brakerski-Koppula-Mour'20, Couteau-Katsumata-Ursu'20, Jain-Jin'21, Jawale-Kalai-Khurana-Zhang'21, Holmgren-Lombardi-Rothblum'21]

[Kilian'92]

[Kilian'92]

Succinct interactive arguments for NP.

Succinct interactive arguments for NP.

[Bartusek-Bronfman-Holmgren-Ma-Rothblum'19]

Instantiating hash function for Fiat-Shamir transformation of Kilian's protocol is hard.

Succinct interactive arguments for NP.

Succinct interactive arguments for NP.

Known instantiations of CI Hash for Fiat-Shamir transform are for proofs.

[Goldwasser-Kalai-Rothblum'08]

Succinct interactive proof for depth bounded computation.

[Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Jawale-Kalai-Khurana-Zhang'21]

[Goldwasser-Kalai-Rothblum'08]

Succinct interactive proof for depth bounded computation.

[Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Jawale-Kalai-Khurana-Zhang'21]

- Interactive proofs for all polynomial time computation unlikely to exist.
- No known interactive proof for batch NP.

A Different Starting Point

Dual-Mode Interactive Batch Arguments [C-Jain-Jin'21a]

Security Intuition

Security Intuition

Security Intuition

SNARGs for Batch NP → SNARGs for P

This talk: Bounded space computation

Prove for every $i \in [0, ..., T-1]$ $\operatorname{st}_i \to \operatorname{st}_{i+1}$ is the correct transition.

SNARG for Batch NP

For every $i \in [0, ..., T-1]$

- . Commitment contains St_i and St_{i+1}
- 2. Valid transition $\operatorname{st}_i \to \operatorname{st}_{i+1}$

Verifier needs to read all the instances $\Omega(T)$

SNARG for Batch NP

For every $i \in [0, ..., T-1]$

- . Commitment contains St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARGs for Batch Index

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

Π

C, k

Verifier running time: poly(log k, |C|)

SNARG for Batch Index

For every $i \in [0, ..., T-1]$

- . Commitment contains St_i and St_{i+1}
- 2. Valid transition $\operatorname{st}_i \to \operatorname{st}_{i+1}$

Further Challenges: Ensuring Global consistency across all states

Use Somewhere Statistical Binding (SSB) Commitments [Hubáček - Wichs'15] and No-Signaling SSB Commitments [González-Zacharakis'21]

X

and st_{i+1}

SNARGs for Batch Index

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

 $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$

 $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$

 $\forall i \in [k], i \in L_C$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

Somewhere Statistically
Binding (SSB) Commitment
Scheme

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

Somewhere Statistically
Binding (SSB) Commitment
Scheme

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

Somewhere Statistically
Binding (SSB) Commitment
Scheme

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

[Holmgren-Lombardi-Rothblum'21]
Assuming LWE, the
transformation is sound.

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], \ i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on ${\it Q}$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$| \delta | = \Omega(k)$$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], \ i \in L_C$

- Commitment openings are valid.
- 2. PCP responses verify on ${\it Q}$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$
 $\forall i \in [k], i \in L_C$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$| \delta | = \Omega(k)$$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], \ i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on ${\it Q}$

Verify

 W_k

Recurse log(k) times

Further Challenges: Prevent exponential growth in Verify

- Tool: PCP with Fast Online verification

Recap

Thank you. Questions?

Arka Rai Choudhuri arkarc@berkeley.edu