Teoretická informatika (TIN) – 2015/2016 Úkol 1

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

- 1. Uvažte jazyk $L_1 = \{a^i b^j c^i d^k \mid i, j, k \ge 0\}.$
 - (a) Sestavte gramatiku G_1 takovou, že $L(G_1) = L_1$.
 - (b) Jakého typu (dle Chomského hierarchie jazyků) je G_1 a jakého typu je L_1 ? Mohou se tyto typy obecně lišit? Svoje tvrzení zdůvodněte (formální důkaz není požadován).

8 bodů

- 2. Uvažte regulární výraz $r_2 = (abc)^*(a+\varepsilon)(abc)^*$.
 - (a) Převeď te r_2 algoritmicky na redukovaný deterministický konečný automat M_2 (tj. RV \longrightarrow RKA \longrightarrow DKA \longrightarrow redukovaný DKA), přijímající jazyk popsaný výrazem r_2 .
 - (b) Pro jazyk $L(M_2)$ určete počet tříd ekvivalence relace \sim_L (viz Myhill-Nerodova věta) a vypište tyto třídy. Jednotlivé třídy můžete popsat například konečným automatem, který akceptuje všechna slova patřící do dané třídy.

12 bodů

3. Uvažte NKA M_3 nad abecedou $\Sigma = \{a, b, c\}$ z obrázku 1:

Obrázek 1: NKA M_3

K tomuto automatu sestavte soustavu rovnic nad regulárními výrazy a jejím řešením sestavte ekvivalentní regulární výraz.

8 bodů

4. Pro dva formální jazyky L_1 a L_2 definujme operaci restrict následovně:

$$restrict(L_1, L_2) = \{ w \mid w \in L_1 \land \exists w' \in L_2 : |w| = |w'| \}$$

Navrhněte a formálně popište algoritmus, který má na vstupu dva konečné automaty $M_1=(Q_1,\Sigma_1,\delta_1,q_1^0,F_1)$ a $M_2=(Q_2,\Sigma_2,\delta_2,q_2^0,F_2)$ (mohou být nedeterministické), a jehož výstupem bude konečný automat $M_{restrict}$ takový, že $L(M_{restrict})=restrict(L(M_1),L(M_2))$.

8 bodů

5. Mějme jazyk $L = \{a^ib^{2i}c^j \mid i > 0 \land i < j < 2i\}$. Je jazyk L regulární? Dokažte nebo vyvračte.

8 bodů

- 6. Uvažujme algebru regulárních množin (A_{RM}) nad abecedou $\Sigma.$
 - (a) Ukažte, že pro A_{RM} platí následující vztah: $\{\varepsilon\} \cup A.A^* = A^*$, kde A je libovolná regulární množina. Nepoužívejte fakt, že A_{RM} je Kleeneho algebrou.
 - (b) Určete, zdali je \subseteq totální uspořádání v A_{RM} . Tedy že pro libovolné dvě regulární množiny A a B platí vždy alespoň jedna z nerovností $A\subseteq B$ nebo $B\subseteq A$. Své tvrzení dokažte.

6 bodů