

Application of:

Hu et al.

Serial No.:

09/854,844

Group Art Unit:

1652

Filed:

05/14/2001

Examiner:

D. Ramirez

For:

TCH CENTER BOOZOO Novel Human Protease and Polynucleotides Attorney Docket No.: LEX-0176-USA

Encoding the Same

APPEAL BRIEF

Mail Stop Appeal Brief - Patents Assistant Commissioner for Patents Alexandria, VA 22313

BEST AVAILABLE COPY

TABLE OF CONTENTS

I.	REAL PARTY IN INTEREST					
П.	RELATED APPEALS AND INTERFERENCES					
ш.	STATUS OF THE CLAIMS					
IV.	STATUS OF THE AMENDMENTS					
V.	SUMMARY OF THE INVENTION					
VI.	ISSUES ON APPEAL					
VII.	GROUPING OF THE CLAIMS4					
VIII.	ARGUMENT					
IX.	APPENDIX					
X	CONCLUSION 27					

RECEIVED

JUL 1 0 2003

TECH CENTER 1600/2900

APPEAL BRIEF

Appellants hereby submit an original and two copies of this Appeal Brief to the Board of Patent Appeals and Interferences ("the Board") in response to the Final Office Action mailed on December 2, 2002. The Notice of Appeal was timely submitted on March 31, 2003, and was received in the Patent and Trademark Office ("the Office") on April 3, 2003. This Appeal Brief is timely submitted in light of the concurrently filed Petition for an Extension of Time of one month to and including July 3, 2003, and authorization to deduct the fee as required under 37 C.F.R. § 1.17(a)(1) from Appellants' Representatives' deposit account. The Commissioner is also authorized to charge the fee for filing this Appeal Brief (\$160.00), as required under 37 C.F.R. § 1.17(c), to Lexicon Genetics Incorporated Deposit Account No. 50-0892.

Appellants believe no fees in addition to the fee for filing the Appeal Brief and the fee for the extension of time are due in connection with this Appeal Brief. However, should any additional fees under 37 C.F.R. §§ 1.16 to 1.21 be required for any reason related to this communication, the Commissioner is authorized to charge any underpayment or credit any overpayment to Lexicon Genetics Incorporated Deposit Account No. 50-0892.

I. **REAL PARTY IN INTEREST**

The real party in interest is the Assignee, Lexicon Genetics Incorporated, 8800 Technology Forest Place, The Woodlands, Texas, 77381.

RELATED APPEALS AND INTERFERENCES II.

Appellants know of no related appeals or interferences that will directly affect or be directly affected by or have a bearing on the Board's decision in the pending appeal.

JUL 1 0 2003

TECH CENTER 1600/2900

III. STATUS OF THE CLAIMS

The present application was filed on May 14, 2001, claiming the benefit of U.S. Provisional Application Number 60/205,275, which was filed on May 18, 2000, and included original claims 1-4. A First Official Action on the merits ("the First Action") was issued on December 3, 2001, in which claims 1-3 were rejected under 35 U.S.C. § 101 as allegedly lacking a patentable utility, claims 1-4 were rejected under 35 U.S.C. § 112, first paragraph, as allegedly unusable by the skilled artisan due to the alleged lack of patentable utility, claims 1-3 were variously rejected under 35 U.S.C. § 112, second paragraph, as allegedly indefinite, and claim 1 was rejected under 35 U.S.C. § 112, first paragraph, as allegedly lacking sufficient written description. In a response to the First Action submitted to the Office on March 1, 2002 ("Response to the First Action"), Appellants amended claims 1-3 to further improve their clarity and addressed the rejections of claims 1-4.

A Second and Non-Final Official Action on the merits ("the Second Action") was issued on May 7, 2002, indicating that the rejection of claims 1 and 3 under 35 U.S.C. § 112, second paragraph, as allegedly indefinite had been overcome by the amendments and remarks submitted in the Response to the First Action, but maintaining the rejection of claims 1-4 under 35 U.S.C. § 101 as allegedly lacking a patentable utility, claims 1-4 under 35 U.S.C. § 112, first paragraph, as allegedly unusable by the skilled artisan due to the alleged lack of patentable utility, claim 2 under 35 U.S.C. § 112, second paragraph, as allegedly indefinite, and claim 1 under 35 U.S.C. § 112, first paragraph, as allegedly lacking sufficient written description, and newly rejecting claim 1 under 35 U.S.C. § 112, first paragraph, as allegedly not enabled. In a response to the Second Action submitted to the Office on September 5, 2002 ("Response to the Second Action"), Appellants added claims 5-8, and addressed the rejections of claims 1-4.

A Third and Final Official Action ("the Final Action") was mailed on December 2, 2002, maintaining the rejection of claims 1-4 (and including newly added claims 5-8) under 35 U.S.C. § 101 as allegedly lacking a patentable utility, claims 1-4 (and including newly added claims 5-8) under 35 U.S.C. § 112, first paragraph, as allegedly unusable by the skilled artisan due to the alleged lack of patentable utility, claim 2 under 35 U.S.C. § 112, second paragraph, as allegedly indefinite, claim 1 (and including newly added claims 5 and 8) under 35 U.S.C. § 112, first paragraph, as allegedly lacking

sufficient written description, and claim 1 (and including newly added claims 5 and 8) under 35 U.S.C. § 112, first paragraph, as allegedly not enabled. In a response to the Final Action submitted on March 31, 2003 ("Response to the Final Action"), Appellants again addressed the rejections of claims 1-8. An Advisory Action ("the Advisory Action") was mailed on April 29, 2003, maintaining the rejection of claims 1-8 under 35 U.S.C. § 101 as allegedly lacking a patentable utility, claims 1-8 under 35 U.S.C. § 112, first paragraph, as allegedly unusable by the skilled artisan due to the alleged lack of patentable utility, claim 2 under 35 U.S.C. § 112, second paragraph, as allegedly indefinite, claims 1, 5, and 8 under 35 U.S.C. § 112, first paragraph, as allegedly lacking sufficient written description, and claims 1, 5, and 8 under 35 U.S.C. § 112, first paragraph, as allegedly not enabled. Therefore, claims 1-8 are the subject of this appeal. A copy of the appealed claims are included below in the Appendix (Section IX).

IV. STATUS OF THE AMENDMENTS

As no amendments subsequent to the Final Action have been filed, Appellants believe that no outstanding amendments exist.

V. SUMMARY OF THE INVENTION

The present invention relates to Appellants' discovery and identification of novel human polynucleotide sequences that encode a novel protein that shares structural similarity with mammalian proteases (specification at page 1, lines 11-12), and particularly serine proteases (specification at page 2, lines 1-2).

The presently claimed polynucleotide sequences were compiled from gene trapped cDNAs, in conjunction with cDNAs prepared from human brain, cerebellum, testis, kidney, skeletal muscle, thymus and salivary gland mRNAs (specification at page 3, lines 11-13). Two coding single nucleotide polymorphisms were identified in the claimed sequence - specifically, a G/A polymorphism at nucleotide position 343 of SEQ ID NO:1, which can result in a valine or isoleucine being present at corresponding amino acid position 115 of SEQ ID NO:2; and a C/T polymorphism at nucleotide position 868 of

SEQ ID NO:1, which can result in a cysteine or arginine being present at corresponding amino acid position 290 of SEQ ID NO:2.

The specification details a number of uses for the presently claimed polynucleotide sequences, including in diagnostic assays such as forensic analysis (see, for example, the specification at page 10, line 28), in identification of protein coding sequence and identification of exon splice junctions (see, for example, the specification at page 2, lines 23-25, and page 10, lines 28-33), in mapping the sequences to a specific region of a human chromosome (see, for example, the specification at page 2, lines 25-26), and in assessing gene expression patterns, particularly using a high throughput "chip" format (see, for example, the specification at page 5, lines 18-21).

VI. ISSUES ON APPEAL

- 1. Do claims 1-8 lack a patentable utility?
- 2. Are claims 1-8 unusable by a skilled artisan due to a lack of patentable utility?
- 3. Is claim 2 indefinite?
- 4. Do claims 1, 5 and 8 lack sufficient written description?
- 5. Are claims 1, 5 and 8 enabled?

VII. GROUPING OF THE CLAIMS

For the purposes of the outstanding rejections under 35 U.S.C. § 101 and 35 U.S.C. § 112, first paragraph, associated with the utility rejection, the claims will stand or fall together. For the purposes of the outstanding rejection under 35 U.S.C. § 112, second paragraph, claim 2 will stand or fall alone. For the purposes of the outstanding rejections under 35 U.S.C. § 112, first paragraph, associated with written description and enablement, claims 1, 5, and 8 will stand or fall together.

VIII. ARGUMENT

A. Do Claims 1-8 Lack a Patentable Utility?

The Final Action first rejects claims 1-8 under 35 U.S.C. § 101, as allegedly lacking a patentable

utility due to not being supported by either a specific and substantial or a well-established utility.

Appellants pointed out in the Response to the Final Action that the present nucleic acid sequences have utility in forensic analysis, as described in the specification as originally filed (see, for example, page 10, line 28). As described in the specification from page 15, line 29 to page 16, line 2, the presently claimed sequence defines two coding single nucleotide polymorphisms - specifically, a G/A polymorphism at nucleotide position 343 of SEQ ID NO:1, which can result in a valine or isoleucine being present at corresponding amino acid position 115 of SEQ ID NO:2; and a C/T polymorphism at nucleotide position 868 of SEQ ID NO:1, which can result in a cysteine or arginine being present at corresponding amino acid position 290 of SEQ ID NO:2. As such polymorphisms are the basis for forensic analysis, which in undoubtedly a "real world" utility, the presently claimed sequence <u>must</u> in itself be useful.

The Advisory Action states that the use of the present sequences in forensic analysis is not a specific utility because "it is unclear to the Examiner as to how this can be a specific utility for the claimed polynucleotides absent an indication as to how these polymorphisms can be used to distinguish between one person from another" (the Advisory Action at page 3). Appellants respectfully point out that the presently described polymorphisms can be used by those skilled in the art to "distinguish between one person from another" simply based on the presence or absence of the described polymorphism. The Examiner has provided no evidence of record that establishes that skilled artisans would not be able to use the presently described polymorphisms in forensic analysis exactly as they were described in the specification as originally filed, without any additional research. It is important to note that simply because the use of these polymorphic markers will necessarily provide additional information on the percentage of particular subpopulations that contain these polymorphic markers does not mean that additional research is needed in order for these markers as they are presently described in the instant specification to be used in forensic science. Thus, the Examiner has failed to meet her evidentiary burden of proving that the present invention lacks utility.

This is also not a case of a potential utility. In the response to the Final Action, Appellants pointed out that even in the <u>worst case</u> scenario, the described polymorphisms are each useful to distinguish 50% of the population (in other words, the marker being present in half of the population). The Advisory Action

states that "the Examiner has not been able to locate any support in the specification in regard to this assertion nor can the Examiner find any information in the art in regard to how one can use these specific polymorphisms in the claimed polynucleotides as a marker to distinguish 50% of the population" (the Advisory Action at page 3). First, Appellants point out that the ability of a polymorphic marker to distinguish at least 50% of the population is an inherent feature of any polymorphic marker, and this feature is well understood by those of skill in the art. Appellants note that as a matter of law, it is well settled that a patent need not disclose what is well known in the art. In re Wands, 8 USPQ 2d 1400 (Fed. Cir. 1988). Second, the assertion that the present claims lack utility because the Examiner cannot "find any information in the art in regard to how one can use these specific polymorphisms in the claimed polynucleotides as a marker to distinguish 50% of the population" (the Advisory Action at page 3, emphasis added) strains credulity. The Examiner seems to be suggesting that because the presently claimed sequences and polymorphisms are novel, that they cannot have a patentable utility. However, this is clearly not the standard under 35 U.S.C. § 101. Appellants respectfully point out that all that is required to support Appellants assertion of utility is for the skilled artisan to believe that the presently described polymorphic markers could be useful in forensic analysis. The fact that forensic biologists use polymorphic markers such as those described by Appellants every day provides more that ample support for the assertion that forensic biologists would also be able to use the specific polymorphic markers described by Appellants in the same fashion. Therefore, these allegations are completely without merit, and in no way establish that the present invention lacks utility.

Additionally, the Examiner seems to be confusing the requirements of a <u>specific</u> utility with a <u>unique</u> utility. The fact that other polymorphic markers have been identified in <u>other</u> genetic loci, or that the use of the presently described polymorphic markers will provide additional information concerning the prevalence of these markers in certain subpopulations, does not mean that Appellants' identification of polymorphic markers in SEQ ID NO:1 is not <u>specific</u>. As clearly stated by the Federal Circuit in *Carl Zeiss Stiftung v. Renishaw PLC*, 20 USPQ2d 1101 (Fed. Cir. 1991):

An invention need not be the best or only way to accomplish a certain result, and it need only be useful to some extent and in certain applications: "[T]he fact that an invention has only limited utility and is only operable in certain applications is not grounds for finding a

lack of utility." Envirotech Corp. v. Al George, Inc., 221 USPQ 473, 480 (Fed. Cir. 1984)

In other words, just because other (possibly better) polymorphic markers from the human genome have been described, or that additional information about the presently described polymorphic markers can be gained through the use of these markers, does not establish that the presently described polymorphic markers lack a specific utility. The requirement for a specific utility, which is part of the standard for utility under 35 U.S.C. § 101 presently being applied by the Office, should not be confused with the requirement for a unique utility, which is not the legal standard. If every invention were required to have a unique utility, the Patent and Trademark Office would no longer be issuing patents on batteries, automobile tires, golf balls, golf clubs, and treatments for a variety of human diseases, just to name a few particular examples, because other examples of each of these have already been described and patented. However, only the briefest perusal of virtually any issue of the Official Gazette provides numerous examples of patents being granted on each of the above compositions every week. Furthermore, if each invention needed to have a unique utility in order to be patented, the entire class and subclass system would be an effort in futility, as the class and subclass system serves solely to group such common inventions, which would not be required if each invention needed to have a unique utility. In view of the above standards and "common sense" analysis, there can be little question that the present sequence clearly meets the requirements of 35 U.S.C. § 101.

Furthermore, as the presently described polymorphisms are a part of the family of polymorphisms that have a well established utility, the Federal Circuit's holding in *In re Brana*, (34 USPQ2d 1436 (Fed. Cir. 1995), "*Brana*") is directly on point. In *Brana*, the Federal Circuit admonished the Patent and Trademark Office for confusing "the requirements under the law for obtaining a patent with the requirements for obtaining government approval to market a particular drug for human consumption". *Brana* at 1442. The Federal Circuit went on to state:

At issue in this case is an important question of the legal constraints on patent office examination practice and policy. The question is, with regard to pharmaceutical inventions, what must the applicant provide regarding the practical utility or usefulness of the invention for which patent protection is sought. This is not a new issue; it is one which we would have thought had been settled by case law years ago.

Brana at 1439, emphasis added. The choice of the phrase "utility or usefulness" in the foregoing quotation is highly pertinent. The Federal Circuit is evidently using "utility" to refer to rejections under 35 U.S.C. § 101, and is using "usefulness" to refer to rejections under 35 U.S.C. § 112, first paragraph. This is made evident in the continuing text in Brana, which explains the correlation between 35 U.S.C. §§ 101 and 112, first paragraph. The Federal Circuit concluded:

FDA approval, however, is not a prerequisite for finding a compound useful within the meaning of the patent laws. Usefulness in patent law, and in particular in the context of pharmaceutical inventions, necessarily includes the expectation of further research and development. The stage at which an invention in this field becomes useful is well before it is ready to be administered to humans. Were we to require Phase II testing in order to prove utility, the associated costs would prevent many companies from obtaining patent protection on promising new inventions, thereby eliminating an incentive to pursue, through research and development, potential cures in many crucial areas such as the treatment of cancer.

Brana at 1442-1443, citations omitted, emphasis added. As set forth above, the present polymorphisms are useful in forensic analysis as described in the specification as originally filed, without the need for any further research. As discussed above, even if the use of these polymorphic markers provided additional information on the percentage of particular subpopulations that contain these polymorphic markers, this would not mean that "additional research" is needed in order for these markers as they are presently described in the instant specification to be of use to forensic science. As stated above, using the polymorphic marker as described in the specification as originally field can definitely distinguish members of a population from one another. However, even if, arguendo, further research might be required in certain aspects of the present invention, this does not preclude a finding that the invention has utility, as set forth by the Federal Circuit's holding in Brana, which clearly states, as highlighted in the quote above, that "pharmaceutical inventions, necessarily includes the expectation of further research and development" (Brana at 1442-1443, emphasis added). In assessing the question of whether undue experimentation would be required in order to practice the claimed invention, the key term is "undue", not "experimentation". In re Angstadt and Griffin, 190 USPQ 214 (CCPA 1976). The need for some experimentation does not render the claimed invention unpatentable. Indeed, a considerable amount of experimentation may be permissible if such experimentation is routinely practiced in the art. In re Angstadt and Griffin, supra; Amgen, Inc. v. Chugai Pharmaceutical Co., Ltd., 18 USPQ2d 1016 (Fed. Cir. 1991). Again, as a matter of law, it is well settled that a patent need not disclose what is well known in the art (In re Wands, supra).

Although Appellants need only make one credible assertion of utility to meet the requirements of 35 U.S.C. § 101 (Raytheon v. Roper, 220 USPQ 592 (Fed. Cir. 1983); In re Gottlieb, 140 USPQ 665 (CCPA 1964); In re Malachowski, 189 USPQ 432 (CCPA 1976); Hoffman v. Klaus, 9 USPQ2d 1657 (Bd. Pat. App. & Inter. 1988)), Appellants noted in the response to the First Action, the response to the Second Action, and the response to the Final Action, as a further example of the utility of the presently claimed polynucleotide, as described in the specification at least at page 2, lines 24-26, the present nucleotide sequences have a specific utility in "identification of protein coding sequence" and "mapping a unique gene to a particular chromosome". This is evidenced by the fact that SEQ ID NO:1 can be used to map the 5 coding exons of the gene comprising the presently claimed sequence on chromosome 4 (present within a chromosome 4 clone; Genbank Accession Number AC104819; alignment and the first page from the Genbank report are presented in Exhibit A). Appellants respectfully remind the Board that only a minor percentage (2-4%) of the genome actually encodes exons, which in-turn encode amino acid sequences. The presently claimed polynucleotide sequence provides biologically validated empirical data (e.g., showing which sequences are transcribed, spliced, and polyadenylated) that specifically define that portion of the corresponding genomic locus that actually encodes exon sequence. Equally significant is that the claimed polynucleotide sequence defines how the encoded exons are actually spliced together to produce an active transcript (i.e., the described sequences are useful for functionally defining exon splicejunctions). Such biologically validated splice junctions are superior to splice junctions that may have been predicted from genomic sequence alone, and, as detailed in the specification, at least at page 10, lines 28-33, that "sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics". Appellants respectfully submit that the practical scientific value of biologically validated, expressed, spliced, and polyadenylated mRNA sequences is readily apparent to those skilled in the relevant biological and biochemical arts.

Clearly, the present polynucleotide provides exquisite specificity in localizing the specific region of human chromosome 4 that contains the gene encoding the given polynucleotide, a utility not shared by virtually any other nucleic acid sequences. In fact, it is this specificity that makes this particular sequence so useful. Early gene mapping techniques relied on methods such as Giemsa staining to identify regions of chromosomes. However, such techniques produced genetic maps with a resolution of only 5 to 10 megabases, far too low to be of much help in identifying specific genes involved in disease. The skilled artisan readily appreciates the significant benefit afforded by markers that map a specific locus of the human genome, such as the present nucleic acid sequence. For further evidence in support of the Appellants' position, the Board is requested to review, for example, section 3 of Venter *et al.* (2001, Science 291:1304, at pp. 1317-1321, including Fig. 11 at pp.1324-1325; **Exhibit B**), which demonstrates the significance of expressed sequence information in the structural analysis of genomic data. The presently claimed polynucleotide sequence defines a biologically validated sequence that provides a unique and specific resource for mapping the genome essentially as described in the Venter *et al.* article. Thus, the present claims clearly meet the requirements of 35 U.S.C. § 101.

The Examiner also questions these asserted utilities in the Advisory Action. The Examiner states that "while Applicants assert that the claimed polynucleotide encodes 5 exons, no empirical determination has been made to corroborate that the claimed polynucleotide contains 5 exons" (The Advisory Action bridging pages 5 and 6). Appellants are completely at a loss to understand what corroboration is required to confirm that, as asserted by Appellants, and shown above in Exhibit A, that the presently claimed sequence contains 5 exons. In Exhibit A, Appellants have conducted the exact analysis used by those of skill in the art to determine the number of exons present in a cDNA sequence - specifically, by comparing the cDNA sequence (in this case, SEQ ID NO:1) to human genomic sequence, the exons present in the cDNA clone are indicated by stretches of homologous sequences in one or more genomic clones that are separated by introns (which, by definition, are missing from the cDNA clone). The Advisory Action further states that "it is unclear to the Examiner as to how the information provided by Applicants is validated empirical data or if one can use the claimed polynucleotide to map coding exons" (the Advisory Action at

page 6, emphasis added). By providing the information shown in **Exhibit A**, there can be <u>no doubt</u> that the presently claimed sequence can be used to "map coding exons". Thus, the Examiner's position does <u>not</u> support the alleged lack of utility.

With regard to the utility of mapping the protein coding regions of chromosome 4, the Advisory Action states that this utility is not specific because "any polynucleotide in human chromosome 4 can be used to identify that chromosome" (the Advisory Action at page 5). This argument fails to support the Examiner's allegation of a lack of utility in at least two respects. First, Appellants respectfully point out that while non-coding nucleotide sequences from this precise region of chromosome 4 could be used to map the introns and exons as described above, it would only be possible using the information provided by Appellants in the specification as originally filed - specifically, one needs to know which sequences correspond to the coding regions in order to use non-coding sequences to map intron/exon junctions. This is a classic case of hindsight reconstruction, using the information provided for the first time in Appellants own application against them in an attempt to question Appellants assertion of utility, and does not serve as a proper foundation for such an allegation. Second, and most importantly, the Examiner again seems to be confusing the requirements of a specific utility with a unique utility. The fact that a small number of other nucleotide sequences could be used to map the protein coding regions in this specific region of chromosome 4 does not mean that the use of Appellants' sequence to map the protein coding regions of chromosome 4 is not specific (Carl Zeiss Stiftung v. Renishaw PLC, supra).

Additionally, Appellants noted in the response to the First Action, the response to the Second Action, and the response to the Final Action, that a sequence sharing 99% percent homology over an extended region with the described sequence is present in the leading scientific repository for biological sequence data (GENBANK), and has been annotated by third party scientists wholly unaffiliated with Appellants a sequence "similar to epidermis specific serine protease" from humans (GenBank accession number XM_093852; alignment shown in Exhibit C). Furthermore, there is another sequence that shares over 99% percent homology over an extended region with the described sequence, which is present in the GenBank patent database, and has been annotated by third party scientists wholly unaffiliated with Appellants as a "protease" (GenBank patent database accession number AX360076; alignment and patent

information provided in **Exhibit D**). The legal test for utility simply involves an assessment of whether those skilled in the art would find any of the utilities described for the invention to be credible or believable. Given these GenBank citations, there can be no doubt that those skilled in the art would clearly believe that Appellants' sequence is a serine protease.

The Examiner has repeatedly questioned Appellants' assertion that the presently claimed sequence encodes a serine protease. In the First Action, the Examiner cited Bork (Genome Research 10:398-400, 2000) as supporting the proposition that those skilled in the art would not believe that a protein has a given biochemical activity if it displays less than 70% homology with related proteins annotated as having that activity. First, even if, *arguendo*, one accepts the Examiner's contention that greater than 70% homology is required for one skilled in the art to believe that a sequence encodes a certain activity, the presently claimed sequence has exceeded the Examiner's, albeit arbitrary, threshold of sequence relatedness. Second, and more importantly, the 70% figure cited from the Bork article relates to the 70% accuracy of the resulting prediction, not 70% homology. In fact, nowhere in Bork is there a comparison of the prediction accuracy based on the percentage homology between two proteins or two classes of proteins, and thus does not support the alleged lack of utility for the present invention.

The First Action next cited Smith and Zhang (Nature Biotechnology 15:1222-1223, 1997) as teaching "that there are numerous cases in which proteins of very different functions are homologous" (the First Action at page 4). However, the Smith and Zhang article also states "the major problems associated with nearly all of the current automated annotation approaches are - paradoxically - minor database annotation inconsistencies (and a <u>few</u> outright errors)" (page 1222, second column, first paragraph, emphasis added). Thus, Smith and Zhang do not in fact seem to stand for the proposition that prediction of function based on homology is fraught with uncertainty, and thus also does not support the alleged lack of utility.

The First Action next cited Brenner (TIG 15:132-133, 1999) as teaching that "most homologs must have different molecular and cellular functions" (the First Action at page 4). However, this statement is based on the assumption that "if there are only 1000 superfamilies in nature, then most homologs must have different molecular and cellular functions" (page 132, second column). Furthermore, Brenner suggests that

one of the main problems in using homology to predict function is "an issue solvable by appropriate use of modern and accurate sequence comparison procedures" (page 132, second column), and in fact references an article by Altschul *et al.*, which is the basis for one of the "modern and accurate sequence comparison procedures" used by Appellants. Thus, the Brenner article also does not support the alleged lack of utility.

Finally, the First Action cited Broun *et al.* (Science 282:1315-1317, 1998) and Van de Loo *et al.* (Proc. Natl. Acad. Sci. USA 92:6743-6747, 1995) as teaching that prediction of function based on homology is unpredictable. The Final Action and the Advisory Action reiterate these citations. However, these papers cite only <u>one</u> example, microsomal oleate desaturase/oleate 12-hydroxylase, where function based on sequence homology proved to be incorrect. One example out of the <u>thousands</u> of predictions of function based on homology that exist in the art is <u>hardly</u> indicative of a high level of uncertainty, and thus also does not support the alleged lack of utility.

The Advisory Action, continuing on this theme, now cites articles by Seffernick *et al.* (J. Bacteriol. 183:2405-2410, 2001) and Witkowski *et al.* (Biochemistry 38:11643-11650, 1999) to again attempt to support the proposition that prediction of protein function from homology information is somewhat unpredictable. However, while Appellants have provided evidence of record that conclusively establishes that those skilled in the art would believe that the specifically claimed sequence encodes a serine protease, the Examiner has provided <u>no</u> evidence that <u>directly</u> establishes that the <u>specifically claimed sequence</u> does not encode a serine protease. Accordingly, the evidence of record compels a finding that the present invention has a patentable utility.

Furthermore, with regard to the citation of journal articles to support an allegation of a lack of utility, the PTO has repeatedly attempted to deny the utility of nucleic acid sequences based on a small number of publications that call into doubt prediction of protein function from homology information and the usefulness of bioinformatic predictions, of which these articles are merely the latest examples. Appellants readily agree that there is not 100% consensus within the scientific community regarding prediction of protein function from homology information, and further agree that prediction of protein function from homology information is not 100% accurate. However, Appellants respectfully point out that the lack of 100% consensus on prediction of protein function from homology information is completely irrelevant

to the question of whether the claimed nucleic acid sequence has a substantial and specific utility, and that 100% accuracy of prediction of protein function from homology information is **not the standard** for patentability under 35 U.S.C. § 101. Appellants respectfully point out that, as discussed above, the legal test for utility simply involves an assessment of whether those skilled in the art would find any of the utilities described for the invention to be **believable**. Appellants submit that the <u>overwhelming majority</u> of those of skill in the relevant art would **believe** prediction of protein function from homology information and the usefulness of bioinformatic predictions to be powerful and useful tools, as evidenced by hundreds if not thousands of journal articles (which Appellants will submit to the Office if the Board truly doubts Appellants' assertion that the overwhelming majority of those of skill in the art place a high value on prediction of protein function from homology information and the usefulness of bioinformatic predictions), and would thus **believe** that Appellants sequence is a serine protease. As **believability** is the standard for meeting the utility requirement of 35 U.S.C. § 101, and **not** 100% consensus or 100% accuracy, Appellants submit that the present claims must <u>clearly</u> meet the requirements of 35 U.S.C. § 101.

Thus, those of skill in the art would readily appreciate the importance of tracking the expression of the gene encoding the described protein, for example using high-throughput DNA chips, as the specification details on page 5, lines 19-21. Such "DNA chips" clearly have utility, as evidenced by hundreds of issued U.S. Patents, as exemplified by U.S. Patent Nos. 5,445,934 (Exhibit E), 5,556,752 (Exhibit F), 5,744,305 (Exhibit G), 5,837,832 (Exhibit H), 6,156,501 (Exhibit I) and 6,261,776 (Exhibit J). Evidence of the "real world" <u>substantial</u> utility of the present invention is further provided by the fact that there is an entire industry established based on the use of gene sequences or fragments thereof in a gene chip format. Perhaps the most notable gene chip company is Affymetrix. However, there are many companies that have, at one time or another, concentrated on the use of gene sequences or fragments, in gene chip and non-gene chip formats, for example: Gene Logic, ABI-Perkin-Elmer, HySeq and Incyte. In addition, one such company (Rosetta Inpharmatics) was viewed to have such "real world" value that it was acquired by large a pharmaceutical company (Merck) for significant sums of money (net equity value of the transaction was \$620 million). The "real world" <u>substantial</u> industrial utility of gene sequences or fragments would, therefore, appear to be widespread and well established. Clearly, there can be no doubt

that the skilled artisan would know how to use the presently claimed sequences (see Section VIII(B), below), strongly arguing that the claimed sequences have utility. Given the widespread utility of such "gene chip" methods using *public domain* gene sequence information, there can be little doubt that the use of the presently described *novel* sequences would have great utility in such DNA chip applications. As the present sequences are <u>specific</u> markers of the human genome (see above), and such <u>specific</u> markers are targets for the discovery of drugs that are associated with human disease, those of skill in the art would instantly recognize that the present nucleotide sequences would be ideal, novel candidates for assessing gene expression using such DNA chips. Clearly, compositions that <u>enhance</u> the utility of such DNA chips, such as the presently claimed nucleotide sequences, must in themselves be useful. Thus, the present claims clearly meet the requirements of 35 U.S.C. § 101.

The Advisory Action also questions this utility, stating "the specification is silent in regard to its substrate or its biological function" (the Advisory Action at page 5). The Advisory Action goes on to cite articles by Walker et al. (Cellular and Molecular Life Sciences 58:596-624, 2001) and Caughey (Am. R. Respir. Crit. Care. Med. 150:5138-5142, 1994) to show that proteases have different substrates and different specific biological roles, and concludes that therefore "further research" (the Advisory Action at page 5) would be required in order for the skilled artisan to use the presently claimed sequence. However, this argument is thwarted by the fact that expression profiling (as well as the utilities discussed above) does **not** require a knowledge of the function of the particular nucleic acid on the chip - rather the gene chip indicates which DNA fragments are expressed at greater or lesser levels in two or more particular tissue types. Skilled artisans already have used and continue to use sequences such as Appellants in gene chip applications without further experimentation. Appellants respectfully point out that this is exactly how most gene chip applications are carried out. Furthermore, the fact that additional information concerning the presently claimed sequence might make it even more useful in certain gene chip embodiments does not mean that the use of Appellants' sequence to track gene expression on a gene chip is not specific (Carl Zeiss Stiftung v. Renishaw PLC, supra). Therefore, this argument also fails to support the alleged lack of utility of the presently claimed compositions.

Clearly, persons of skill in the art, as well as venture capitalists and investors, readily recognize the

utility, both scientific and commercial, of genomic data in general, and specifically human genomic data. Billions of dollars have been invested in the human genome project, resulting in useful genomic data (see, e.g., Venter et al., supra; Exhibit B). The results have been a stunning success as the utility of human genomic data has been widely recognized as a great gift to humanity (see, e.g., Jasny and Kennedy, 2001, Science 291:1153; Exhibit K). Clearly, the usefulness of human genomic data, such as the presently claimed nucleic acid molecules, is <u>substantial</u> and <u>credible</u> (worthy of billions of dollars and the creation of numerous companies focused on such information) and <u>well-established</u> (the utility of human genomic information has been clearly understood for many years).

Importantly, it has been clearly established that a statement of utility in a specification must be accepted absent reasons why one <u>skilled in the art</u> would have reason to doubt the objective truth of such statement. *In re Langer*, 503 F.2d 1380, 1391, 183 USPQ 288, 297 (CCPA, 1974; "*Langer*"); *In re Marzocchi*, 439 F.2d 220, 224, 169 USPQ 367, 370 (CCPA, 1971). As clearly set forth in *Langer*:

As a matter of Patent Office practice, a specification which contains a disclosure of utility which corresponds in scope to the subject matter sought to be patented <u>must</u> be taken as sufficient to satisfy the utility requirement of § 101 for the entire claimed subject matter <u>unless</u> there is a reason for one skilled in the art to question the objective truth of the statement of utility or its scope.

Langer at 297, emphasis in original. As set forth in the MPEP, "Office personnel must provide evidence sufficient to show that the statement of asserted utility would be considered 'false' by a person of ordinary skill in the art" (MPEP, Eighth Edition at 2100-40, emphasis added). Thus, the present claims clearly meet the requirements of 35 U.S.C. § 101.

Furthermore, regarding the utility requirements under 35 U.S.C. § 101, the Federal Circuit has clearly stated "(t)he threshold of utility is not high: An invention is 'useful' under section 101 if it is capable of providing some identifiable benefit." *Juicy Whip Inc. v. Orange Bang Inc.*, 185 F.3d 1364, 51 USPQ2d 1700 (Fed. Cir. 1999) (citing *Brenner v. Manson*, 383 U.S. 519, 534 (1966)). Additionally, the Federal Circuit has stated that "(t)o violate § 101 the claimed device must be totally incapable of achieving a useful result." *Brooktree Corp. v. Advanced Micro Devices, Inc.*, 977 F.2d 1555, 1571, 24 USPQ2d 1401 (Fed. Cir. 1992), emphasis added. *Cross v. Iizuka* (753 F.2d 1040, 224 USPQ 739 (Fed. Cir. 1985); "*Cross*") states "any utility of the claimed compounds is sufficient to satisfy 35 U.S.C.

§ 101". Cross at 748, emphasis added. Indeed, the Federal Circuit recently emphatically confirmed that "anything under the sun that is made by man" is patentable (State Street Bank & Trust Co. v. Signature Financial Group Inc., 149 F.3d 1368, 47 USPQ2d 1596, 1600 (Fed. Cir. 1998), citing the U.S. Supreme Court's decision in Diamond vs. Chakrabarty, 447 U.S. 303, 206 USPQ 193 (U.S., 1980)). Thus, based on the relevant case law, the present claims clearly meet the requirements of 35 U.S.C. § 101.

Finally, While Appellants are well aware of the new Utility Guidelines set forth by the USPTO, Appellants respectfully point out that the current rules and regulations regarding the examination of patent applications is and always has been the patent laws as set forth in 35 U.S.C. and the patent rules as set forth in 37 C.F.R., not the Manual of Patent Examination Procedure or particular guidelines for patent examination set forth by the USPTO. Furthermore, it is the job of the judiciary, not the USPTO, to interpret these laws and rules. Appellants are unaware of any significant recent changes in either 35 U.S.C. § 101, or in the interpretation of 35 U.S.C. § 101 by the Supreme Court or the Federal Circuit that is in keeping with the new Utility Guidelines set forth by the USPTO. This is underscored by numerous patents that have been issued over the years that claim nucleic acid fragments that do not comply with the new Utility Guidelines. As examples of such issued U.S. Patents, the Board is invited to review U.S. Patent Nos. 5,817,479 (Exhibit L), 5,654,173 (Exhibit M), and 5,552,281 (Exhibit N; each of which claims short polynucleotides), and recently issued U.S. Patent No. 6,340,583 (Exhibit O; which includes no working examples), none of which contain examples of the "real-world" utilities that the Examiner seems to be requiring. As issued U.S. Patents are presumed to meet all of the requirements for patentability, including 35 U.S.C. §§ 101 and 112, first paragraph (see Section VIII(B), below), Appellants submit that the present polynucleotides must also meet the requirements of 35 U.S.C. § 101. While Appellants understand that each application is examined on its own merits, Appellants are unaware of any changes to 35 U.S.C. § 101, or in the interpretation of 35 U.S.C. § 101 by the Supreme Court or the Federal Circuit, since the issuance of these patents that render the subject matter claimed in these patents, which is similar to the subject matter in question in the present application, as suddenly non-statutory or failing to meet the requirements of 35 U.S.C. § 101. Thus, holding Appellants to a different standard of utility would be arbitrary and capricious, and, like other clear violations of due process, cannot stand.

For each of the foregoing reasons, Appellants submit that the rejection of claims 1-8 under 35 U.S.C. § 101 must be overruled.

B. Are Claims 1-8 Unusable Due to a Lack of Patentable Utility?

The Final Action next rejects claims 1-8 under 35 U.S.C. § 112, first paragraph, since allegedly one skilled in the art would not know how to use the invention, as the invention allegedly is not supported by either a clear asserted utility or a well-established utility.

The arguments detailed above in Section VIII(A) concerning the utility of the presently claimed sequences are incorporated herein by reference. As the Federal Circuit and its predecessor have determined that the utility requirement of Section 101 and the how to use requirement of Section 112, first paragraph, have the same basis, specifically the disclosure of a credible utility (*In re Brana, supra; In re Jolles*, 628 F.2d 1322, 1326 n.11, 206 USPQ 885, 889 n.11 (CCPA 1980); *In re Fouche*, 439 F.2d 1237, 1243, 169 USPQ 429, 434 (CCPA 1971)), Appellants submit that as claims 1-8 have been shown to have "a specific, substantial, and credible utility", as detailed in Section VIII(A) above, the present rejection of claims 1-8 under 35 U.S.C. § 112, first paragraph, cannot stand.

Appellants therefore submit that the rejection of claims 1-8 under 35 U.S.C. § 112, first paragraph, must be overruled.

C. Is Claim 2 Indefinite?

The Final Action next rejected claim 2 under 35 U.S.C. § 112, second paragraph, as allegedly being indefinite for failing to particularly point out and distinctly claim the invention.

The Final Action rejects claim 2 as allegedly indefinite based on the term "sequence" in relation to nucleic acid hybridization, since "(h)ybridization occurs only between molecules" (the Final Action at page 6), and the term "the complement thereof", since this term is allegedly indefinite "for reasons of record" (the Final Action at page 6). First, Appellants stress that "a claim need not 'describe' the invention, such description being the role of the disclosure". *Orthokinetics, Inc. v. Safety Travel Chairs, Inc.*, 1 USPQ2d 1081, 1088 (Fed. Cir. 1986). Appellants respectfully point out that the skilled artisan would

clearly understand how the <u>nucleotide sequence</u> could hybridize, within the parameters set forth in claim 2, and would also understand that the skilled artisan would understand the term "the complement" (as clearly opposed to "a" complement) to refer to the complete complement of SEQ ID NO:1. The claims are therefore sufficiently definite when read in light of the specification, which reasonably apprises those skilled in the art both of the utilization and scope of the invention. *Shatterproof Glass Corp. v. Libbey Owens Ford Co.*, 225 USPQ 634, 641 (Fed. Cir. 1985); *Miles Laboratories, Inc. v. Shandon*, 997 F.2d 870, 875, 27 USPQ2d 1123, 1126 (Fed. Cir. 1993); *Union Pacific Resources Co. v. Chesapeake Energy Corp.*, 236 F.3d 684, 692, 57 USPQ2d 1293, 1297 (Fed. Cir. 2001); *North American Vaccine, Inc. v. American Cyanamid Co.*, F.3d 1571, 1579, 28 USPQ2d 1333, 1339 (Fed. Cir. 1993); *Hybritech, Inc. v. Monoclonal Antibodies*, 802 F.2d 1367, 1385, 231 USPQ 81, 94-95 (Fed. Cir. 1986).

More importantly, however, Appellants submit that the United States Patent and Trademark Office itself finds this exact language to meet the requirements of 35 U.S.C. § 112, second paragraph, as evidenced at least by issued U.S. Patent Nos. 6,531,309 (Exhibit P), 6,511,840 (Exhibit Q), 6,476,210 (Exhibit R), 6,465,632 (Exhibit S), 6,462,186 (Exhibit T), 6,448,388 (Exhibit U), 6,444,456 (Exhibit V), 6,444,153 (Exhibit W) and 6,403,784 (Exhibit X), each of which each of which is assigned to the same entity as the present application and contains the exact same language that the Examiner finds indefinite in the present case. As issued U.S. Patents are presumed to meet all of the requirements for patentability, including 35 U.S.C. § 112, second paragraph, Appellants submit that claim 2 must also meet the requirements of 35 U.S.C. § 112, second paragraph. Holding Appellants to a different standard of definiteness would be arbitrary and capricious, and, like other clear violations of due process, cannot stand.

For each of the foregoing reasons, Appellants submit that the rejection of claim 2 under 35 U.S.C. § 112, second paragraph, must be overruled.

D. Do Claims 1, 5 and 8 Lack Sufficient Written Description?

The Final Action next rejected claims 1, 5 and 8 under 35 U.S.C. § 112, first paragraph, as allegedly containing subject matter that was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventors, at the time the application was filed,

had possession of the claimed invention.

The Examiner seems to be requiring that the function of each of the members of the genus be known in order to satisfy the written description requirement. However, the Examiner's stated position completely misreads the written description requirement. The repeated citations of Broun et al. (supra), Van de Loo et al. (supra), Seffernick et al. (supra), and Witkowski et al. (supra), each of which were dealt with in Section VIII(A), above, for the proposition that changes in protein sequence can lead to changes in protein function, are completely irrelevant to the present question of compliance with 35 U.S.C. § 112, first paragraph. As set forth in the response to the Second Action and the response to the Final Action, the relevant section of the written description guidelines is herein reproduced with numbers corresponding to the ways in which the written description requirement can be satisfied: (1) by actual reduction to practice, (2) reduction to drawings, or (3) by disclosure of relevant, identifying characteristics, i.e., (4) structure or other physical and/or chemical properties, (5) by functional characteristics coupled with a known or disclosed correlation between function and structure, or (6) by a combination of such identifying characteristics. Thus, the written description requirements can be satisfied by (1), (2), or (3), and part (3) can be satisfied by (4), (5), or (6). Appellants submit that claim 1 provides "structure or other physical or chemical properties", specifically, the <u>nucleotide sequence itself</u>. There is <u>no requirement</u> within section (4) for <u>functional</u> characteristics, this being included in sections (5) and (6) <u>only</u>. Thus, since claims 1,5 and 8 satisfy section (3) by satisfying section (4), claims 1,5 and 8 must meet the written description requirement.

35 U.S.C. § 112, first paragraph, requires that the specification contain a written description of the invention. The Federal Circuit in *Vas-Cath Inc. v. Mahurkar* (19 USPQ2d 1111 (Fed. Cir. 1991); "*Vas-Cath*") held that an "applicant must convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession *of the invention*." *Vas-Cath*, at 1117, emphasis in original. However, it is important to note that the above finding uses the terms <u>reasonable</u> clarity to those <u>skilled in the art</u>. Further, the Federal Circuit in *In re Gosteli* (10 USPQ2d 1614 (Fed. Cir. 1989); "*Gosteli*") held:

Although [the applicant] <u>does not have to describe exactly the subject matter claimed</u>, ... the description must clearly allow persons of ordinary skill in the art to recognize that [he or she] invented what is claimed.

Gosteli at 1618, emphasis added. Additionally, *Utter v. Hiraga* (6 USPQ2d 1709 (Fed. Cir. 1988); "*Utter*"), held "(a) specification may, within the meaning of 35 U.S.C. § 112 ¶1, contain a written description of a broadly claimed invention without describing all species that claim encompasses" (*Utter*, at 1714). Therefore, all Appellants must do to comply with 35 U.S.C. § 112, first paragraph, is to convey the invention with <u>reasonable</u> clarity to the <u>skilled artisan</u>.

Further, the Federal Circuit has held that an adequate description of a chemical genus "requires a precise definition, such as by structure, formula, chemical name or physical properties" sufficient to distinguish the genus from other materials. *Fiers v. Revel*, 25 USPQ2d 1601, 1606 (Fed. Cir. 1993; "*Fiers*"). *Fiers* goes on to hold that the "application satisfies the written description requirement since it sets forth the . . . nucleotide sequence" (*Fiers* at 1607). In other words, provision of a structure and formula - the nucleotide sequence - renders the application in compliance with 35 U.S.C. § 112, first paragraph.

More recently, the standard for complying with the written description requirement in claims involving chemical materials has been explicitly set forth by the Federal Circuit:

In claims involving chemical materials, generic formulae usually indicate with specificity what the generic claims encompass. One skilled in the art can distinguish such a formula from others and can identify many of the species that the claims encompass. Accordingly, such a formula is normally an adequate description of the claimed genus. *Regents of Univ. of California v. Eli Lilly and Co.*, 43 USPQ2d 1398, 1406 (Fed. Cir. 1997).

Thus, a claim describing a genus of nucleic acids by structure, formula, chemical name or physical properties sufficient to allow one of ordinary skill in the art to distinguish the genus from other materials meets the written description requirement of 35 U.S.C. § 112, first paragraph. As further elaborated by the Federal Circuit in *Regents of Univ. of California v. Eli Lilly and Co.*:

In claims to genetic material ... a generic statement such as 'vertebrate insulin cDNA' or 'mammalian insulin cDNA', without more, is not an adequate written description of the genus because it does not distinguish the claimed genus from others, except by function. It does not specifically define any of the genes that fall within its definition. It does not define any <u>structural features commonly possessed by members of the genus</u> that distinguish them from others. One skilled in the art cannot, as one can do with a fully described genus, visualize or recognize the identity of members of the genus. (Emphasis added)

Thus, as opposed to the situation set forth in *Regents of Univ. of California v. Eli Lilly and Co.* and *Fiers*, the nucleic acid sequences of the present invention are not distinguished on the basis of function, or a method of isolation, but in fact are distinguished by <u>structural features</u> - a chemical <u>formula</u>, *i.e.*, the *sequence itself*.

Using the nucleic acid sequences of the present invention (as set forth in the Sequence Listing), the skilled artisan would readily be able to <u>distinguish</u> the claimed nucleic acids from other materials on the basis of the specific <u>structural</u> description provided. Polynucleotides comprising at least 24 contiguous bases from SEQ ID NO:1 are within the genus of the instant claims, while those that lack this <u>structural</u> feature lie outside the genus. Importantly, the Final Action <u>admitted</u> that claims 1, 5 and 8 do in fact include a distinguishing feature, specifically, that the nucleic acid molecule must include "at least 24 consecutive nucleotides of the polynucleotide of SEQ ID NO:1" (the Final Action at page 7). Additionally, the Advisory Action the Examiner agrees "that the claimed genus of polynucleotides is defined in structural terms" (the Advisory Action at page 7). Appellants respectfully point out that this is <u>all that is required</u> of claims 1, 5 and 8 to meet the written description requirement of 35 U.S.C. § 112, first paragraph.

For each of the foregoing reasons, Appellants submit that the rejection of claims 1, 5 and 8 under 35 U.S.C. § 112, first paragraph, must be overruled.

E. Are Claims 1, 5 and 8 Enabled?

The Final Action next rejected claims 1, 5 and 8 under 35 U.S.C. § 112, first paragraph, as allegedly not described in the specification in such a way as to enable one skilled in the art to make and/or use the invention.

The Final Action stated that "this enablement rejection was applied due to the lack of information as to how one of skill in the art can <u>reasonably</u> make and use the polynucleotides, as encompassed by the claims" (the Final Action at page 9; emphasis in original). The Final Action once again contends that the specification provides insufficient guidance regarding the biological function or activity of certain of the claimed compositions. As set forth in Section VIII(D), above, the <u>repeated</u> citations of Broun *et al.* (*supra*) and Van de Loo *et al.* (*supra*), Seffernick *et al.* (*supra*), and Witkowski *et al.* (*supra*), for the

proposition that changes in protein sequence can lead to changes in protein function, are once again **completely irrelevant** to the present question of compliance with 35 U.S.C. § 112, first paragraph. Importantly, such an enablement standard conflicts with established patent law.

Appellants point out that significant commercial exploitation of nucleic acid sequences requires no more information than the <u>nucleic acid sequence itself</u>. Applications ranging from gene expression analysis or profiling (utilizing, for example, arrays of short, overlapping or non-overlapping, oligonucleotides and DNA chips, as described in Section VIII(A), above) to chromosomal mapping (utilizing, for example, short oligonucleotide probes or full length DNA sequences, as described in Section VIII(A), above) are practiced utilizing nucleic acid sequences and techniques that are well-known to those of skill in the art. The widespread commercial exploitation of nucleic acid sequence information points to the level of skill in the art, and the enablement provided by disclosures such as the present specification, which include specific nucleic acid sequences and guidance regarding the various uses of such sequences. Thus, the skilled artisan can clearly make and use the claimed polynucleotides, which is <u>all that is required</u> to meet the enablement requirement under 35 U.S.C. § 112, first paragraph.

The Examiner states that the present invention could not be practiced without "undue experimentation" (the Final Action bridging pages 10 and 11). However, it is important to remember that in assessing the question of whether undue experimentation would be required in order to practice the claimed invention, the key term is "undue", not "experimentation". *In re Angstadt and Griffin, supra*. In *In re Wands* (*supra*; "*Wands*"), the P.T.O. took the position that the applicant failed to demonstrate that the disclosed biological processes of immunization and antibody selection could reproducibly result in a useful biological product (antibodies from hybridomas) within the scope of the claims. In its decision overturning the P.T.O.'s rejection, the Federal Circuit found that Wands' demonstration of success in four out of nine cell lines screened was sufficient to support a conclusion of enablement. The court emphasized that the need for some experimentation requiring, *e.g.*, production of the biological material followed by routine screening, was <u>not</u> a basis for a finding of non-enablement, stating:

Disclosure in application for the immunoassay method patent does not fail to meet enablement requirement of 35 USC 112 by requiring 'undue experimentation,' even though production of monoclonal antibodies necessary to practice invention first requires

production and screening of numerous antibody producing cells or 'hybridomas,' since practitioners of art are prepared to screen negative hybridomas in order to find those that produce desired antibodies, since in monoclonal antibody art one 'experiment' is not simply screening of one hybridoma but rather is entire attempt to make desired antibody, and since record indicates that amount of effort needed to obtain desired antibodies is not excessive, in view of Applicants' success in each attempt to produce antibody that satisfied all claim limitations.

Wands at 1400. Thus, the need for some experimentation does not render the claimed invention unpatentable under 35 U.S.C. § 112, first paragraph. Indeed, a considerable amount of experimentation may be permissible if such experimentation is routinely practiced in the art. In re Angstadt and Griffin, supra; Amgen, Inc. v. Chugai Pharmaceutical Co., Ltd., supra.

The Final Action questioned the teaching and guidance in the specification for certain aspects of the present invention. However, as discussed above, this requirement is completely misplaced. There is sufficient knowledge and technical skill in the art for a skilled artisan to be able to make and use the claimed DNA species in a <u>number</u> of different aspects of the invention <u>entirely</u> without further details in a patent specification. For example, it is not unreasonable to expect a Ph.D. level molecular biologist to be able to use the disclosed sequence to design oligonucleotide probes and primers and use them in, for example, PCR based screening and detection methods to obtain the described sequences and/or determine tissue expression patterns. Nevertheless, the present specification provides highly detailed descriptions of techniques that can be used to accomplish many different aspects of the claimed invention, including recombinant expression, site-specific mutagenesis, *in situ* hybridization, and large scale nucleic acid screening techniques, and properly incorporates by reference a montage of standard texts into the specification, such as Sambrook *et al.* (*Molecular Cloning, A Laboratory Manual*) and Ausubel *et al.* (*Current Protocols in Molecular Biology*) to provide even further guidance to the skilled artisan. Incorporation of material into the specification by reference is proper. *Exparte Schwarze*, 151 USPQ 426 (PTO Bd. App. 1966). The § 112, first paragraph rejection is thus *prima facie* improper:

As a matter of patent office practice, then, a specification disclosure which contains a teaching of the manner and process of making and using the invention in terms which correspond in scope to those used in describing and defining the subject matter sought to be patented <u>must</u> be taken as in compliance with the enabling requirement of the first

paragraph of § 112 <u>unless</u> there is reason to doubt the objective truth of the statements contained therein which must be relied on for enabling support.

In re Marzocchi, supra, emphasis as in original. In any event, an alleged lack of express teaching is insufficient to support a first paragraph rejection where one of skill in the art would know how to perform techniques required to perform at least one aspect of the invention. As a matter of law, it is well settled that a patent need not disclose what is well known in the art. In re Wands, supra. In fact, it is preferable that what is well known in the art be omitted from the disclosure. Hybritech, Inc. v. Monoclonal Antibodies, Inc., supra. As standard molecular biological techniques are routine in the art, such protocols do not need to described in detail in the specification.

As discussed *In re Brana* (*supra*, "*Brana*"), the Federal Circuit admonished the P.T.O. for confusing "the requirements under the law for obtaining a patent with the requirements for obtaining government approval to market a particular drug for human consumption". *Brana* at 1442. Furthermore, a specification "need describe the invention <u>only</u> in such detail as to enable a person skilled in the most relevant art to make and use it." *In re Naquin*, 158 USPQ 317, 319 (CCPA 1968); emphasis added. The present claims are thus enabled as they are supported by a specification that provides sufficient description to enable the skilled person to make and use the invention as claimed. Appellants stress that enablement must be analyzed, not in a vacuum, but "as it would be interpreted by one possessing the ordinary level of skill in the pertinent art." *In re Moore*, 169 USPQ 236, 238 (CCPA 1971).

It has long been established that claims are enabled by defining any practical use. *In re Nelson*, 126 USPQ 242 (CCPA 1960); *Cross v. Iizuka*, *supra*. "The enablement requirement is met if the description enables any mode of making and using the invention." *Johns Hopkins Univ. v. CellPro, Inc.*, 47 USPQ2d 1705, 1719 (Fed. Cir. 1998), citing *Engel Indus., Inc. v. Lockformer Co.*, 20 USPQ2d 1300, 1304 (Fed. Cir. 1991). As described in detail above, the specification details numerous applications in which claimed nucleotide sequences can be used, for example, to track gene expression using gene chips. Further, since public domain nucleotide sequences that have not been associated with any particular biological function, let alone validated as coding sequences, are used every day in gene chip applications, it defies logic that undue experimentation would be required to use the presently described nucleotide sequences, which have been biologically validated as coding sequences, in the very same gene chip

applications.

Appellants therefore submit that the rejection of claims 1, 5 and 8 under 35 U.S.C. § 112, first paragraph, must be overruled.

IX. APPENDIX

The claims involved in this appeal are as follows:

- 1. (Amended) An isolated nucleic acid molecule comprising at least 24 contiguous bases of nucleotide sequence from SEQ ID NO:1.
 - 2. (Amended) An isolated nucleic acid molecule comprising a nucleotide sequence that:
 - (a) encodes the amino acid sequence shown in SEQ ID NO:2; and
 - (b) hybridizes under highly stringent conditions to the nucleotide sequence of SEQ IDNO:1 or the complement thereof.
- 3. (Amended) An isolated nucleic acid molecule according to Claim 1 wherein said nucleotide sequence is a cDNA sequence.
- 4. An isolated nucleic acid molecule according to Claim 3 encoding the amino acid sequence described in SEQ ID NO:2.
 - 5. A recombinant expression vector comprising the isolated nucleic acid molecule of claim 1.
- 6. The recombinant expression vector of claim 5, wherein said isolated nucleic acid molecule encodes the amino acid sequence of SEQ ID NO:2.
- 7. The recombinant expression vector of claim 6, wherein said isolated nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:1.
 - 8. A host cell comprising the recombinant expression vector of claim 5.

X. CONCLUSION

Appellants respectfully submit that, in light of the foregoing arguments, the Final Action's conclusion that claims 1-8 lack a patentable utility and are unusable by the skilled artisan due to a lack of patentable utility, that claim 2 is indefinite, and that claims 1, 5 and 8 lack sufficient written description and are not enabled, are unwarranted. It is therefore requested that the Board overturn the Final Action's rejections.

Respectfully submitted,

July 3, 2003

Date

Davil W. Hobbu

David W. Hibler

Reg. No. 41,071

Agent For Appellants

LEXICON GENETICS INCORPORATED 8800 Technology Forest Place The Woodlands, TX 77381 (281) 863-3399

24231

PATENT TRADEMARK OFFICE

TABLE OF AUTHORITIES

CASES

Amgen, Inc. v. Chugai Pharmaceutical Co., Ltd., 927 F.2d 1200, 18 USPQ2d 1016 (Fed. Cir.				
1991)				
Brooktree Corp. v. Advanced Micro Devices, Inc., 977 F.2d 1555, 1571, 24 USPQ2d 1401 (Fed.				
Cir. 1992)				
Carl Zeiss Stiftung v. Renishaw PLC, 20 USPQ2d 1101 (Fed. Cir. 1991) (citing Envirotech Corp.				
v. Al George, Inc., 221 USPQ 473, 480 (Fed. Cir. 1984)) 6, 7, 11, 15				
Cross v. Iizuka, 753 F.2d 1040, 224 USPQ 739 (Fed. Cir. 1985) 16, 17, 25				
T				
Diamond vs. Chakrabarty, 447 U.S. 303, 206 USPQ 193 (U.S., 1980)				
Ex parte Schwarze, 151 USPQ 426 (PTO Bd. App. 1966)				
Ex parte Schwarze, 131 OSI Q 420 (1 10 Bd. App. 1900)				
Fiers v. Revel, 984 F.2d 1164, 25 USPQ2d 1601 (Fed. Cir. 1993)				
Hoffman v. Klaus, 9 USPQ2d 1657 (Bd. Pat. App. & Inter. 1988)				
Hybritech, Inc. v. Monoclonal Antibodies, 802 F.2d 1367, 1385, 231 USPQ 81, 94-95 (Fed. Cir.				
1986)				
In re Angstadt and Griffin, 537 F.2d 498, 190 USPQ 214 (CCPA 1976) 8, 9, 23, 24				

In re Brana, 51 F.3d 1560, 34 USPQ2d 1436 (Fed. Cir. 1995)
In re Fouche, 439 F.2d 1237, 1243, 169 USPQ 429, 434 (CCPA 1971)
In re Gosteli, 872 F.2d 1008, 10 USPQ2d 1614 (Fed. Cir. 1989)
In re Gottlieb, 328 F.2d 1016, 140 USPQ 665 (CCPA 1964)
<i>In re Jolles</i> , 628 F.2d 1322, 1326 n.11, 206 USPQ 885, 889 n.11 (CCPA 1980)
In re Langer, 503 F.2d 1380, 183 USPQ 288 (CCPA 1974)
In re Malachowski, 530 F.2d 1402, 189 USPQ 432 (CCPA 1976)
In re Marzocchi, 439 F.2d 220, 224, 169 USPQ 367, 370 (CCPA, 1971)
In re Moore, 439 F.2d 1232, 169 USPQ 236 (CCPA 1971)
In re Naquin, 158 USPQ 317, 319 (CCPA 1968)
In re Nelson, 280 F.2d 172, 126 USPQ 242 (CCPA 1960)
In re Wands, 858 F.2d 731, 8 USPQ 2d 1400 (Fed. Cir. 1988) 6, 9, 23-25
Johns Hopkins Univ. v. CellPro, Inc., 152 F.3d 1342, 47 USPQ2d 1705, 1719 (Fed. Cir. 1998) (citing Engel Indus., Inc. v. Lockformer Co., 946 F.2d 1528, 20 USPQ2d 1300, 1304 (Fed. Cir. 1991))

Juicy Whip Inc. v. Orange Bang Inc., 185 F.3d 1364, 51 USPQ2d 1700 (Fed. Cir. 1999) (cit	ing
Brenner v. Manson, 383 U.S. 519, 534 (1966))	16
Miles Laboratories, Inc. v. Shandon, 997 F.2d 870, 27 USPQ2d 1123 (Fed. Cir. 1993)	19
North American Vaccine, Inc. v. American Cyanamid Co., F.3d 1571, 1579, 28 USPQ2d 133 (Fed. Cir. 1993)	
Orthokinetics, Inc. v. Safety Travel Chairs, Inc., 1 USPQ2d 1081, 1088 (Fed. Cir. 1986)	18
Raytheon Co. v. Roper Corp., 724 F.2d 951, 220 USPQ 592 (Fed. Cir. 1983)	9
Regents of Univ. of California v. Eli Lilly and Co., 119 F.3d 1559, 43 USPQ2d 1398 (Fed. C 1997)	
Shatterproof Glass Corp. v. Libbey Owens Ford Co., 758 F.2d 613, 225 USPQ 634 (Fed. Ci	
State Street Bank & Trust Co. v. Signature Financial Group Inc., 149 F.3d 1368, 47 USPQ2 1596, 1600 (Fed. Cir. 1998)	
Union Pacific Resources Co. v. Chesapeake Energy Corp., 236 F.3d 684, 692, 57 USPQ2d 1297 (Fed. Cir. 2001)	
Utter v. Hiraga, 845 F.2d 993, 6 USPQ2d 1709 (Fed. Cir. 1988)	21
Vas-Cath Inc. v. Mahurkar, 935 F.2d 1555, 19 USPQ2d 1111 (Fed. Cir. 1991)	20

STATUTES

35 U.S.C. § 101	 	2-4, 7-10, 14-18
35 II S C & 112		2-4, 8, 17-20

A

This Page Blank (uspto)

Query= SEQ ID NO:1 (1041 letters)

	Score (bits)	E Value
AC104819.4.1.129203	766	0.0
>AC104819.4.1.129203 Length = 129203		
Score = 766 bits (386), Expect = 0.0 Identities = 390/392 (99%) Strand = Plus / Plus		
Query: 650 agggtgattctggagggcctctgtcgtgtcacattgatggtgtatggatccagac	aggag	709
Sbjct: 46368 agggtgattctggagggcctctgtcgtgtcacattgatggtgtatggatccagac	aggag:	46427
Query: 710 tagtaagctggggattagaatgtggtaaatctcttcctggagtctacaccaatgt	aatct	769
Sbjct: 46428 tagtaagctggggattagaatgtggtaaatctcttcctggagtctacaccaatgt	:aatct	46487
Query: 770 actaccaaaaatggattaatgccactatttcaagagccaacaatctagacttctc	tgact	829
Sbjct: 46488 actaccaaaaatggattaatgccactatttcaagagccaacaatctagacttctc		
Query: 830 tettgttecetattgtectaetetetetggeteteetgygteeeteetgtgeett	tggac	889
Sbjct: 46548 tettgtteetattgteetaetetetetggeteteetgegteeteetgtgeett		
Query: 890 ctaacactatacacagagtaggcactgtagctgaagctgttgcttgc		
		•
Query: 950 aagagaatgcatggagatttagtcccaggggcagagaactcacaggagagccact		
Sbjct: 46668 aagagaatgcatggagatttagtcccaggggcagataactcacaggagagccact	igctaa	46/2/
Query: 1010 ccctgggtgactttatttacaatttgaaatga 1041		
Sbjct: 46728 ccctgggtgactttatttacaatttgaaatga 46759		

Score = 524 bits (264), Expect = e-146
Identities = 265/266 (99%)
Strand = Plus / Plus

Query: 396 tatttgcttgcccagtgtcacaaagcagttggcaattccacccttttgttgggtgaccgg 455

Sbjct: 37580 tatttgcttgcccagtgtcacaaagcagttggcaattccacccttttgttgggtgaccgg 37639

Query: 456 atggggaaaagttaaggaaagttcag 481

Sbjct: 37640 atggggaaaagttaaggaaagttcag 37665

Score = 345 bits (174), Expect = 3e-92
Identities = 174/174 (100%)
Strand = Plus / Plus

Query: 479 cagatagagattaccattctgcccttcaggaagcagaagtacccattattgaccgccagg 538

Sbjct: 38366 cagatagagattaccattctgccttcaggaagcagaagtaccattattgaccgccagg 38425

Query: 539 cttgtgaacagctctacaatcccatcggtatcttcttgccagcactggagccagtcatca 598

Sbjct: 38426 cttgtgaacagctctacaatcccatcggtatcttcttgccagcactggagccagtcatca 38485

Query: 599 aggaagacaagatttgtgctggtgatactcaaaacatgaaggatagttgcaagg 652

Sbjct: 38486 aggaagacaagatttgtgctggtgatactcaaaacatgaaggatagttgcaagg 38539

Score = 322 bits (162), Expect = 4e-85 Identities = 169/171 (98%), Gaps = 1/171 (0%)Strand = Plus / Plus

tctc-agtqtgtgggcaacctgtatactccagccgcgttgtaggtggccaggatgctgct 105 Ouery: 47

Sbjct: 35041 tetetagtgtgtgggcaacetgtatactecageegegttgtaggtggeeaggatgetget 35100

gcagggcgctggccttggcaggtcagcctacactttgaccacaactttatctatggaggt 165 Query: 106

Sbjct: 35101 gcagggcgctggccttggcaggtcagcctacactttgaccacaactttatctgtggaggt 35160

Query: 166 tccctcgtcagtgagaggttgatactgacagcagcacactgcatacaaccg 216

Sbjct: 35161 tccctcgtcagtgagaggttgatactgacagcagcacactgcatacaaccg 35211

Score = 103 bits (52), Expect = 2e-19Identities = 52/52 (100%) Strand = Plus / Plus

 ${\tt atgggccctgctgctgttgccttcacgctgctccttctgctggggatctcag} \ \ 52$

Sbjct: 32425 atgggccctgctggctgtgccttcacgctgctccttctgctggggatctcag 32476

Nucleotide

OMIM **PMC** Taxonomy Boo Structure Nucleotide Protein Genome Go Clear Search Nucleotide **▼** for Clipboard Details Limits Preview/Index History Get Subsequence Send to Display. File Show: |20 default

1: AC104819. Homo sapiens BAC ...[gi:20177800]

Links

LOCUS AC104819 129203 bp DNA linear PRI 29-MAY-2002

DEFINITION Homo sapiens BAC clone RP11-731D1 from 4, complete sequence.

ACCESSION AC104819

VERSION AC104819.4 GI:20177800

KEYWORDS HTG.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 129203)

AUTHORS Sulston, J.E. and Waterston, R.

TITLE Toward a complete human genome sequence JOURNAL Genome Res. 8 (11), 1097-1108 (1998)

MEDLINE 99063792 PUBMED 9847074

REFERENCE 2 (bases 1 to 129203)

AUTHORS Pearman, C., Abbott, A. and Spalding, L.

TITLE The sequence of Homo sapiens BAC clone RP11-731D1

JOURNAL Unpublished (2001)
REFERENCE 3 (bases 1 to 129203)

AUTHORS Waterston, R.H.
TITLE Direct Submission

JOURNAL Submitted (21-DEC-2001) Genome Sequencing Center, Washington

University School of Medicine, 4444 Forest Park Parkway, St. Louis,

MO 63108, USA

REFERENCE 4 (bases 1 to 129203)

AUTHORS Waterston, R.H.
TITLE Direct Submission

JOURNAL Submitted (20-MAR-2002) Genome Sequencing Center, Washington

University School of Medicine, 4444 Forest Park Parkway, St. Louis,

MO 63108, USA

REFERENCE 5 (bases 1 to 129203)

AUTHORS Waterston, R.H.
TITLE Direct Submission

JOURNAL Submitted (18-APR-2002) Genome Sequencing Center, Washington

University School of Medicine, 4444 Forest Park Parkway, St. Louis,

MO 63108, USA

REFERENCE 6 (bases 1 to 129203)

AUTHORS Waterston, R.

TITLE Direct Submission

JOURNAL Submitted (29-MAY-2002) Department of Genetics, Washington

University, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA

COMMENT On Apr 18, 2002 this sequence version replaced gi: 19551227.

----- Genome Center

Center: Washington University Genome Sequencing Center

Center code: WUGSC

Web site: http://genome.wustl.edu/gsc

7

This Page Blank (uspto)

The Sequence of the Human Genome

J. Craig Venter, 1* Mark D. Adams, 1 Eugene W. Myers, 1 Peter W. Li, 1 Richard J. Mural, 1 Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, 1 Qing Zhang, 1 Chinnappa D. Kodira, 1 Xiangqun H. Zheng, 1 Lin Chen, 1 Marian Skupski, 1 Gangadharan Subramanian, 1 Paul D. Thomas, 1 Jinghui Zhang, 1 George L. Gabor Miklos,² Catherine Nelson,³ Samuel Broder,¹ Andrew G. Clark,⁴ Joe Nadeau,⁵ Victor A. McKusick, Norton Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, 9 Carolyn Slayman, 10 Michael Hunkapiller, 11 Randall Bolanos, 1 Arthur Delcher, 1 Ian Dew, 1 Daniel Fasulo, 1 Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz, Samuel Levy, Clark Mobarry, 1 Knut Reinert, 1 Karin Remington, 1 Jane Abu-Threideh, 1 Ellen Beasley, 1 Kendra Biddick, 1 Vivien Bonazzi, Rhonda Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, 1 Kabir Chaturvedi, ¹ Zuoming Deng, ¹ Valentina Di Francesco, ¹ Patrick Dunn, ¹ Karen Eilbeck, ¹ Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E. Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, ¹ Yiding Lei, ¹ Zhenya Li, ¹ Jiayin Li, ¹ Yong Liang, ¹ Xiaoying Lin, ¹ Fu Lu, ¹ Gennady V. Merkulov, 1 Natalia Milshina, 1 Helen M. Moore, 1 Ashwinikumar K Naik, 1 Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, 2 Wei Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides, Schunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong, Shiaoping C. Zhu, Shaying Zhao, 2 Dennis Gilbert, Suzanna Baumhueter, Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage, Feroze Ali, Huijin An, Aderonke Awe, 1 Danita Baldwin, ¹ Holly Baden, ¹ Mary Barnstead, ¹ Ian Barrow, ¹ Karen Beeson, ¹ Dana Busam, ¹ Amy Carver, Angela Center, Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond Desilets, Susanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, Andres Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes, Cheryl Heiner, Suzanne Hladun, Damon Hostin, ¹ Jarrett Houck, ¹ Timothy Howland, ¹ Chinyere Ibegwam, ¹ Jeffery Johnson, ¹ Francis Kalush, Lesley Kline, Shashi Koduru, Amy Love, Felecia Mann, David May, Steven McCawley, ¹ Tina McIntosh, ¹ Ivy McMullen, ¹ Mee Moy, ¹ Linda Moy, ¹ Brian Murphy, ¹ Keith Nelson, 1 Cynthia Pfannkoch, 1 Eric Pratts, 1 Vinita Puri, 1 Hina Qureshi, 1 Matthew Reardon, 1 Robert Rodriguez, ¹ Yu-Hui Rogers, ¹ Deanna Romblad, ¹ Bob Ruhfel, ¹ Richard Scott, ¹ Cynthia Sitter, ¹ Michelle Smallwood, Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint, Sukyee Tse, 1 Claire Vech, 1 Gary Wang, 1 Jeremy Wetter, 1 Sherita Williams, 1 Monica Williams, 1 Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri, Josep F. Abril, ¹⁴ Roderic Guigó, ¹⁴ Michael J. Campbell, ¹ Kimmen V. Sjolander, ¹ Brian Karlak, ¹ Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas Hatton, Apurva Narechania, Karen Diemer, Anushya Muruganujan, ¹ Nan Guo, ¹ Shinji Sato, ¹ Vineet Bafna, ¹ Sorin Istrail, ¹ Ross Lippert, ¹ Russell Schwartz, Brian Walenz, Shibu Yooseph, David Allen, Anand Basu, James Baxendale, Louis Blick, Marcelo Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne, Carl Dahlke, Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely, Shiva Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser, Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Harris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine Jordan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft, Alexander Levitsky, Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma, William Majoros, Joe McDaniel, Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc Nguyen, Marc Nodell, Sue Pan, 1 Jim Peck, 1 Marshall Peterson, 1 William Rowe, 1 Robert Sanders, 1 John Scott, 1 Michael Simpson, Thomas Smith, Arlan Sprague, Timothy Stockwell, Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, Xiaohong Zhu

Life Isra

stitı

Pon *Tc

dence of the euchromatic portion of A 2.91-billion base pair (bp) consensus the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies—a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional \sim 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

Decoding of the DNA that constitutes the human genome has been widely anticipated for the contribution it will make toward un-

¹Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. ²GenetixXpress, 78 Pacific Road, Palm Beach, Sydney 2108, Australia. ³Berkeley *Drosophila* Genome Project, University of California, Berkeley, CA 94720, USA. *Department of Biology, Penn State University, 208 Mueller Lab, University Park, PA 16802, USA. 5Department of Genetics, Case Western Reserve University School of Medicine, BR8-630, 10900 Euclid Avenue, Cleveland, OH 44106, USA. 6 Johns Hopkins University School of Medicine, Johns Hopkins Hospital, 600 North Wolfe Street, Blalock 1007, Baltimore, MD 21287-4922, USA. 7Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA. 8New England BioLabs, 32 Tozer Road, Beverly, MA 01915, USA. ⁹Division of Biology, 147-75, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. 10Yale University School of Medicine, 333 Cedar Street, P.O. Box 208000, New Haven, CT 06520-8000, USA. 11Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA. ¹²The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. 13Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900 Israel. 14Grup de Recerca en Informàtica Mèdica, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, 08003-Barcelona, Catalonia, Spain.

*To whom correspondence should be addressed. E-mail: humangenome@celera.com

derstanding human evolution, the causation of disease, and the interplay between the environment and heredity in defining the human condition. A project with the goal of determining the complete nucleotide sequence of the human genome was first formally proposed in 1985 (1). In subsequent years, the idea met with mixed reactions in the scientific community (2). However, in 1990, the Human Genome Project (HGP) was officially initiated in the United States under the direction of the National Institutes of Health and the U.S. Department of Energy with a 15-year, \$3 billion plan for completing the genome sequence. In 1998 we announced our intention to build a unique genomesequencing facility, to determine the sequence of the human genome over a 3-year period. Here we report the penultimate milestone along the path toward that goal, a nearly complete sequence of the euchromatic portion of the human genome. The sequencing was performed by a whole-genome random shotgun method with subsequent assembly of the sequenced segments.

The modern history of DNA sequencing began in 1977, when Sanger reported his method for determining the order of nucleotides of

ing chain-terminating nucleotide analogs . In the same year, the first human gene was isolated and sequenced (4). In 1986, Hood and co-workers (5) described an improvement in the Sanger sequencing method that included attaching fluorescent dyes to the nucleotides, which permitted them to be sequentially read by a computer. The first automated DNA sequencer, developed by Applied Biosystems in California in 1987, was shown to be successful when the sequences of two genes were obtained with this new technology (6). From early sequencing of human genomic regions (7), it became clear that cDNA sequences (which are reverse-transcribed from RNA) would be essential to annotate and validate gene predictions in the human genome. These studies were the basis in part for the development of the expressed sequence tag (EST) method of gene identification (8), which is a random selection, very high throughput sequencing approach to characterize cDNA libraries. The EST method led to the rapid discovery and mapping of human genes (9). The increasing numbers of human EST sequences necessitated the development of new computer algorithms to analyze large amounts of sequence data, and in 1993 at The Institute for Genomic Research (TIGR), an algorithm was developed that permitted assembly and analysis of hundreds of thousands of ESTs. This algorithm permitted characterization and annotation of human genes on the basis of 30,000 EST assemblies (10).

The complete 49-kbp bacteriophage lambda genome sequence was determined by a shotgun restriction digest method in 1982 (11). When considering methods for sequencing the smallpox virus genome in 1991 (12), a whole-genome shotgun sequencing method was discussed and subsequently rejected owing to the lack of appropriate software tools for genome assembly. However, in 1994, when a microbial genome-sequencing project was contemplated at TIGR, a whole-genome shotgun sequencing approach was considered possible with the TIGR EST assembly algorithm. In 1995, the 1.8-Mbp Haemophilus influenzae genome was completed by a whole-genome shotgun sequencing method (13). The experience with several subsequent genome-sequencing efforts established the broad applicability of this approach (14, 15).

A key feature of the sequencing approach used for these megabase-size and larger genomes was the use of paired-end sequences (also called mate pairs), derived from subclone libraries with distinct insert sizes and cloning characteristics. Paired-end sequences are sequences 500 to 600 bp in length from both ends of double-stranded DNA clones of prescribed lengths. The success of using end sequences from long segments (18 to 20 kbp) of DNA cloned into bacteriophage lambda in assembly of the microbial genomes led to the suggestion (16) of an approach to simulta-

neously map and sequence the human genome by means of end sequences from 150-kbp bacterial artificial chromosomes (BACs) (17, 18). The end sequences spanned by known distances provide long-range continuity across the genome. A modification of the BAC end-sequencing (BES) method was applied successfully to complete chromosome 2 from the Arabidopsis thaliana genome (19).

In 1997, Weber and Myers (20) proposed whole-genome shotgun sequencing of the human genome. Their proposal was not well received (21). However, by early 1998, as less than 5% of the genome had been sequenced, it was clear that the rate of progress in human genome sequencing worldwide was very slow (22), and the prospects for finishing the genome by the 2005 goal were uncertain.

In early 1998, PE Biosystems (now Applied Biosystems) developed an automated, highthroughput capillary DNA sequencer, subsequently called the ABI PRISM 3700 DNA Analyzer. Discussions between PE Biosystems and TIGR scientists resulted in a plan to undertake the sequencing of the human genome with the 3700 DNA Analyzer and the whole-genome shotgun sequencing techniques developed at TIGR (23). Many of the principles of operation of a genome-sequencing facility were established in the TIGR facility (24). However, the facility envisioned for Celera would have a capacity roughly 50 times that of TIGR, and thus new developments were required for sample preparation and tracking and for wholegenome assembly. Some argued that the required 150-fold scale-up from the H. influenzae genome to the human genome with its complex repeat sequences was not feasible (25). The Drosophila melanogaster genome was thus chosen as a test case for whole-genome assembly on a large and complex eukaryotic genome. In collaboration with Gerald Rubin and the Berkeley Drosophila Genome Project, the nucleotide sequence of the 120-Mbp euchromatic portion of the Drosophila genome was determined over a 1-year period (26-28). The Drosophila genome-sequencing effort resulted in two key findings: (i) that the assembly algorithms could generate chromosome assemblies with highly accurate order and orientation with substantially less than 10-fold coverage, and (ii) that undertaking multiple interim assemblies in place of one comprehensive final assembly was not of value.

These findings, together with the dramatic changes in the public genome effort subsequent to the formation of Celera (29), led to a modified whole-genome shotgun sequencing approach to the human genome. We initially proposed to do 10-fold sequence coverage of the genome over a 3-year period and to make interim assembled sequence data available quarterly. The modifications included a plan to perform random shotgun sequencing to ~5-fold

coverage and to use the unordered and unoriented BAC sequence fragments and subassemblies published in GenBank by the publicly funded genome effort (30) to accelerate the project. We also abandoned the quarterly announcements in the absence of interim assemblies to report.

Although this strategy provided a reasonable result very early that was consistent with a whole-genome shotgun assembly with eightfold coverage, the human genome sequence is not as finished as the Drosophila genome was with an effective 13-fold coverage. However, it became clear that even with this reduced coverage strategy. Celera could generate an accurately ordered and oriented scaffold sequence of the human genome in less than 1 year. Human genome sequencing was initiated 8 September 1999 and completed 17 June 2000. The first assembly was completed 25 June 2000, and the assembly reported here was completed 1 October 2000. Here we describe the whole-genome random shotgun sequencing effort applied to the human genome. We developed two different assembly approaches for assembling the ~3 billion bp that make up the 23 pairs of chromosomes of the Homo sapiens genome. Any Gen-Bank-derived data were shredded to remove potential bias to the final sequence from chimeric clones, foreign DNA contamination, or misassembled contigs. Insofar as a correctly. and accurately assembled genome sequence with faithful order and orientation of contigs is essential for an accurate analysis of the human genetic code, we have devoted a considerable portion of this manuscript to the documentation of the quality of our reconstruction of the genome. We also describe our preliminary analysis of the human genetic code on the basis of computational methods. Figure 1 (see fold-out chart associated with this issue; files for each chromosome can be found in Web fig. 1 on Science Online at www.sciencemag.org/cgi/content/full/291/ 5507/1304/DC1) provides a graphical overview of the genome and the features encoded in it. The detailed manual curation and interpretation of the genome are just beginning.

To aid the reader in locating specific analytical sections, we have divided the paper into seven broad sections. A summary of the major results appears at the beginning of each section

- 1 Sources of DNA and Sequencing Methods
- 2 Genome Assembly Strategy and Characterization
- 3 Gene Prediction and Annotation
- 4 Genome Structure
- 5 Genome Evolution
- 6 A Genome-Wide Examination of Sequence Variations
- 7 An Overview of the Predicted Protein-Coding Genes in the Human Genome
- 8 Conclusions

1 Sources of DNA and Sequencing Methods

Summary. This section discusses the rationale and ethical rules governing donor selection to ensure ethnic and gender diversity along with the methodologies for DNA extraction and library construction. The plasmid library construction is the first critical step in shotgun sequencing. If the DNA libraries are not uniform in size, nonchimeric, and do not randomly represent the genome, then the subsequent steps cannot accurately reconstruct the genome sequence. We used automated high-throughput DNA sequencing and the computational infrastructure to enable efficient tracking of enormous amounts of sequence information (27.3 million sequence reads; 14.9 billion bp of sequence). Sequencing and tracking from both ends of plasmid clones from 2-, 10-, and 50-kbp libraries were essential to the computational reconstruction of the genome. Our evidence indicates that the accurate pairing rate of end sequences was greater than 98%.

Control of the second s

inci

1.1

seq

Cent

ing |

mid

pair:

one

High

tion

of c

fron:

and.

each

ies ii

kbp.

· I

cess

syste

and

fecti

No. 1

Fold

Fold

Inse

Inse

4 %

•Inse

Various policies of the United States and the World Medical Association, specifically the Declaration of Helsinki, offer recommendations for conducting experiments with human subjects. We convened an Institutional Review Board (IRB) (31) that helped us establish the protocol for obtaining and using human DNA and the informed consent process used to enroll research volunteers for the DNA-sequencing studies reported here. We adopted several steps and procedures to protect the privacy rights and confidentiality of the research subjects (donors). These included a two-stage consent process, a secure random alphanumeric coding system for specimens and records, circumscribed contact with the subjects by researchers, and options for off-site contact of donors. In addition, Celera applied for and received a Certificate of Confidentiality from the Department of Health and Human Services. This Certificate authorized Celera to protect the privacy of the individuals who volunteered to be donors as provided in Section 301(d) of the Public Health Service Act 42 U.S.C. 241(d).

Celera and the IRB believed that the initial version of a completed human genome should be a composite derived from multiple donors of diverse ethnic backgrounds Prospective donors were asked, on a voluntary basis, to self-designate an ethnogeographic category (e.g., African-American, Chinese, Hispanic, Caucasian, etc.). We enrolled 21 donors (32).

Three basic items of information from each donor were recorded and linked by confidential code to the donated sample: age, sex, and self-designated ethnogeographic group. From females, ~130 ml of whole, heparinized blood was collected. From males, ~130 ml of whole, heparinized blood was

le to th li-n-un ii-

out raor-1.3 seoth bp ral rce

nd

the

he iaian
leibiuiss
the
Ve

of

idinciith
for
era
onelth

onolth nothe as olic

inime

roary hic se, 21

onige,
shic
ole,
les,

was

om

collected, as well as five specimens of semen, collected over a 6-week period. Permanent lymphoblastoid cell lines were created by Epstein-Barr virus immortalization. DNA from five subjects was selected for genomic DNA sequencing: two males and three females-one African-American, one Asian-Chinese, one Hispanic-Mexican, and two Caucasians (see Web fig. 2 on Science Online at www.sciencemag.org/cgi/content/291/5507/ 1304/DC1). The decision of whose DNA to sequence was based on a complex mix of factors, including the goal of achieving diversity as well as technical issues such as the quality of the DNA libraries and availability of immortalized cell lines.

1.1 Library construction and sequencing

Central to the whole-genome shotgun sequencing process is preparation of high-quality plasmid libraries in a variety of insert sizes so that pairs of sequence reads (mates) are obtained, one read from both ends of each plasmid insert. High-quality libraries have an equal representation of all parts of the genome, a small number of clones without inserts, and no contamination from such sources as the mitochondrial genome and *Escherichia coli* genomic DNA. DNA from each donor was used to construct plasmid libraries in one or more of three size classes: 2 kbp, 10 kbp, and 50 kbp (Table 1) (33).

In designing the DNA-sequencing process, we focused on developing a simple system that could be implemented in a robust and reproducible manner and monitored effectively (Fig. 2) (34).

Current sequencing protocols are based on

the dideoxy sequencing method (35), which typically yields only 500 to 750 bp of sequence per reaction. This limitation on read length has made monumental gains in throughput a prerequisite for the analysis of large eukaryotic genomes. We accomplished this at the Celera facility, which occupies about 30,000 square feet of laboratory space and produces sequence data continuously at a rate of 175,000 total reads per day. The DNA-sequencing facility is supported by a high-performance computational facility (36).

The process for DNA sequencing was modular by design and automated. Intermodule sample backlogs allowed four principal modules to operate independently: (i) library transformation, plating, and colony picking; (ii) DNA template preparation; (iii) dideoxy sequencing reaction set-up and purification; and (iv) sequence determination with the ABI PRISM 3700 DNA Analyzer. Because the inputs and outputs of each module have been carefully matched and sample backlogs are continuously managed, sequencing has proceeded without a single day's interruption since the initiation of the Drosophila project in May 1999. The ABI 3700 is a fully automated capillary array sequencer and as such can be operated with a minimal amount of hands-on time, currently estimated at about 15 min per day. The capillary system also facilitates correct associations of sequencing traces with samples through the elimination of manual sample loading and lanetracking errors associated with slab gels. About 65 production staff were hired and trained, and were rotated on a regular basis

the four production modules. A central laboratory information management system (LIMS) tracked all sample plates by unique bar code identifiers. The facility was supported by a quality control team that performed raw material and in-process testing and a quality assurance group with responsibilities including document control, validation, and auditing of the facility. Critical to the success of the scale-up was the validation of all software and instrumentation before implementation, and production-scale testing of any process changes.

1.2 Trace processing

An automated trace-processing pipeline has been developed to process each sequence file (37). After quality and vector trimming, the average trimmed sequence length was 543 bp, and the sequencing accuracy was exponentially distributed with a mean of 99.5% and with less than 1 in 1000 reads being less than 98% accurate (26). Each trimmed sequence was screened for matches to contaminants including sequences of vector alone, E. coli genomic DNA, and human mitochondrial DNA. The entire read for any sequence with a significant match to a contaminant was discarded. A total of 713 reads matched E. coli genomic DNA and 2114 reads matched the human mitochondrial genome.

1.3 Quality assessment and control

The importance of the base-pair level accuracy of the sequence data increases as the size and repetitive nature of the genome to be sequenced increases. Each sequence read must be placed uniquely in the ge-

Table 1. Celera-generated data input into assembly.

			Number of reads for diff	erent insert libra	ies	Total number of
	Individual	2 kbp	10 kbp	50 kbp	Total	base pairs
No. of sequencing reads	A	0	0	2,767,357	2,767,357	1,502,674,851
140. Of Sequencing reads	В	11,736,757	7,467,755	66,930	19,271,442	10,464,393,006
•	c	853,819	881,290	0	1,735,109	942,164,187
	. D	952,523	1,046,815	0	1,999,338	1,085,640,534
	F	0	1,498,607	0	1,498,607	813,743,601
	Total	13,543,099	10,894,467	2,834,287	27,271,853	14,808,616,179
Fold sequence coverage	A	0	0	0.52	0.52	
(2.9-Gb genome)	В	2.20	1.40	0.01	3.61	
	C	0.16	1.17	• 0	0.32	
	D	0.18	0,20	0	0.37	
	F	0	0.28	0	0.28	•
	Total	2.54	2.04	0.53	5.11	
Fold clone coverage	Α	0	0	18.39	18.39	
	В	2.96	11.26	0.44	14.67	
	. C	0.22	1.33	0	1.54	
	D	0.24	1.58	0	1.82	
•	F	0	2.26	0	2.26	
	Total	3.42	16.43	18.84	38.68	
Insert size* (mean)	Average	1,951 bp	10,800 bp	50,715 bp		
Insert size* (SD)	Average	6.10%	8.10%	14.90%		
% Mates†	Average	74.50	80.80	75.60		

^{*}Insert size and SD are calculated from assembly of mates on contigs. †% Mates is based on laboratory tracking of sequencing runs.

nome, and even a modest error rate can reduce the effectiveness of assembly. In addition, maintaining the validity of matepair information is absolutely critical for the algorithms described below. Procedural controls were established for maintaining the validity of sequence mate-pairs as sequencing reactions proceeded through the process, including strict rules built into the LIMS. The accuracy of sequence data produced by the Celera process was validated in the course of the Drosophila genome project (26). By collecting data for the

entire human genome in a single facility, we were able to ensure uniform quality standards and the cost advantages associated with automation, an economy of scale, and process consistency.

2 Genome Assembly Strategy and Characterization

Summary. We describe in this section the two approaches that we used to assemble the genome. One method involves the computational ... was the principal sequence used for the analysis combination of all sequence reads with shredded data from GenBank to generate an indepen-

dent, nonbiased view of the genome. The second approach involves clustering all of the fragments to a region or chromosome on the basis of mapping information. The clustered data were then shredded and subjected to computational assembly. Both approaches provided essentially the same reconstruction of assembled DNA sequence with proper order and orientation. The second method provided slightly greater sequence coverage (fewer gaps) and phase. In addition, we document the completeness and correctness of this assembly process

Fig. 2. Flow diagram for sequencing pipeline. Samples are received, selected, and processed in compliance with standard operating procedures, with a focus on quality within and across departments. Each process has defined inputs and outputs with the capability to exchange

samples and data with both internal and external entities according to defined quality guidelines. Manufacturing pipeline processes, products, quality control measures, and responsible parties are indicated and are described further in the text.

and provide a comparison to the public genome sequence, which was reconstructed largely by an independent BAC-by-BAC approach. Our assemblies effectively covered the euchromatic regions of the human chromosomes. More than 90% of the genome was in scaffold assemblies of 100,000 bp or greater, and 25% of the genome was in scaffolds of 10 million bp or larger.

àg-

:sis

ata

ıta-

es-

led

ıta-

tly،

≅nd

'sis

te-

225

ts

to

cts,

Shotgun sequence assembly is a classic example of an inverse problem: given a set of reads randomly sampled from a target sequence, reconstruct the order and the position of those reads in the target. Genome assembly algorithms developed for Drosophila have now been extended to assemble the ~25-fold larger human genome. Celera assemblies consist of a set of contigs that are ordered and oriented into scaffolds that are then mapped to chromosomal locations by using known markers. The contigs consist of a collection of overlapping sequence reads that provide a consensus reconstruction for a contiguous interval of the genome. Mate pairs are a central component of the assembly strategy. They are used to produce scaffolds in which the size of gaps between consecutive contigs is known with reasonable precision. This is accomplished by observing that a pair of reads, one of which is in one contig, and the other of which is in another, implies an orientation and distance between the two contigs (Fig. 3). Finally, our assemblies did not incorporate all reads into the final set of reported scaffolds. This set of unincorporated reads is termed "chaff," and typically consisted of reads from within highly repetitive regions, data from other organisms introduced through various routes as found in many genome projects, and data of poor quality or with untrimmed vector.

1 Assembly data sets

Ve used two independent sets of data for our assemblies. The first was a random shotgun data set of 27.27 million reads of average length 543 bp produced at Celera. This consisted largely of mate-pair reads from 16 libraries constructed from DNA samples taken from five different donors. Libraries with insert sizes of 2, 10, and 50 kbp were used. By looking at how mate pairs from a library were positioned in known sequenced stretches of the genome, we were able to characterize the range of insert sizes in each library and determine a mean and standard deviation. Table 1 details the number. of reads, sequencing coverage, and clone coverage achieved by the data set. The clone coverage is the coverage of the genome in cloned DNA, considering the entire insert of each clone that has sequence from both ends. The clone coverage provides a measure of the amount of physical DNA coverage of the genome. Assuming a genome size of 2.9 Gbp, the Celera trimmed sequences gave a 5.1× coverage of the genome, and clone coverage was $3.42 \times 16.40 \times$, and $18.84 \times$ for the 2-, 10-, and 50-kbp libraries, respectively, for a total of 38.7× clone coverage.

The second data set was from the publicly funded Human Genome Project (PFP) and is primarily derived from BAC clones (30). The BAC data input to the assemblies came from a download of GenBank on 1 September 2000 (Table 2) totaling 4443.3 Mbp of sequence. The data for each BAC is deposited at one of four levels of completion. Phase 0 data are a set of generally unassembled sequencing reads from a very light shotgun of the BAC, typically less than 1×. Phase 1 data are unordered assemblies of contigs, which we call BAC contigs or bactigs. Phase 2 data are ordered assemblies of bactigs. Phase 3 data are complete BAC

sequences. In the past 2 years the PFP has focusion a product of lower quality and completeness, but on a faster time-course, by concentrating on the production of Phase 1 data from a 3× to 4× light-shotgun of each BAC clone.

We screened the bactig sequences for contaminants by using the BLAST algorithm against three data sets: (i) vector sequences in Univec core (38), filtered for a 25-bp match at 98% sequence identity at the ends of the sequence and a 30-bp match internal to the sequence; (ii) the nonhuman portion of the High Throughput Genomic (HTG) Sequences division of GenBank (39), filtered at 200 bp at 98%; and (iii) the nonredundant nucleotide sequences from Gen-Bank without primate and human virus entries, filtered at 200 bp at 98%. Whenever 25 bp or more of vector was found within 50 bp of the end of a contig, the tip up to the matching vector was excised. Under these criteria we removed 2.6 Mbp of possible contaminant and vector from the Phase 3 data, 61.0 Mbp from the Phase 1 and 2 data, and 16.1 Mbp from the Phase 0 data (Table 2). This left us with a total of 4363.7 Mbp of PFP sequence data 20% finished, 75% rough-draft (Phase 1 and 2), and 5% single sequencing reads (Phase 0). An additional 104,018 BAC end-sequence mate pairs were also downloaded and included in the data sets for both assembly processes (18).

2.2 Assembly strategies

Two different approaches to assembly were pursued. The first was a whole-genome assembly process that used Celera data and the PFP data in the form of additional synthetic shotgun data, and the second was a compartmentalized assembly process that first partitioned the Celera and PFP data into sets localized to large chromosomal segments and then performed ab initio shotgun assembly on each set. Figure 4 gives a schematic of the overall process flow.

For the whole-genome assembly, the PFP data was first disassembled or "shredded" into a synthetic shotgun data set of 550-bp reads that form a perfect 2× covering of the bactigs. This resulted in 16.05 million "faux" reads that were sufficient to cover the genome 2.96× because of redundancy in the BAC data set, without incorporating the biases inherent in the PFP assembly process. The combined data set of 43.32 million reads (8×), and all associated mate-pair information, were then subjected to our whole-genome assembly algorithm to produce a reconstruction of the genome. Neither the location of a BAC in the genome nor its assembly of bactigs was used in this process. Bactigs were shredded into reads because we found strong evidence that 2.13% of them were misassembled (40). Furthermore, BAC location

Fig. 3. Anatomy of whole-genome assembly. Overlapping shredded bactig fragments (red lines) and internally derived reads from five different individuals (black lines) are combined to produce a contig and a consensus sequence (green line). Contigs are connected into scaffolds (red) by using mate pair information. Scaffolds are then mapped to the genome (gray line) with STS (blue star) physical map information.

information was ignored because some BACs were not correctly placed on the PFP physical map and because we found strong evidence that

at least 2.2% of the BACs contained sequence data that were not part of the given BAC (41), possibly as a result of sample-tracking errors

Table 2. GenBank data input into assembly.

Comton	Statistics	Completion phase sequence				
Center	Statistics	0	1 and 2	3		
Whitehead Institute/	Number of accession records	2,825	6,533	36		
MIT Center for	Number of contigs	243,786	138,023	36.		
Genome Research,	Total base pairs	194,490,158	1,083,848,245			
USA	Total vector masked (bp)	1,553,597	875,618			
USA	Total contaminant masked (bp)	13,654,482	4,417,055			
	Average contig length (bp)	798	7,853	134,510		
Washington University,	Number of accession records	19	3,232	1,300		
USA	Number of contigs	2,127	61,812	1,300		
	Total base pairs	1,195,732	561,171,788	164,214,39		
•	Total vector masked (bp)	21,604	270,942	8,28		
	Total contaminant masked (bp)	22,469	1,476,141	469,48		
	Average contig length (bp)	562	9,079	126,319		
Baylor College of	Number of accession records	, .0	1,626	363		
Medicine, USA	Number of contigs	0	44,861	363		
·	Total base pairs	0	265,547,066	49,017,104		
•	· Total vector masked (bp)	0	218,769	4,960		
	Total contaminant masked (bp)	,	1,784,700	485,137		
•	Average contig length (bp)	0	5,919	135,033		
Production Sequencing	Number of accession records	135	2,043	754		
Facility, DOE joint	Number of contigs	7,052	34,938	75		
Genome Institute	Total base pairs	8,680,214	294,249,631	60,975,328		
USA	Total vector masked (bp)	22,644	162,651	7,27		
	Total contaminant masked (bp)	665,818	4,642,372	118,38		
	Average contig length (bp)	1,231	8,422	80,867		
The Institute of Physical	Number of accession records	0	1,149	300		
and Chemical	Number of contigs	0	25,772	300		
Research (RIKEN),	Total base pairs	. 0	182,812,275	20,093,920		
japan	Total vector masked (bp)	0	203,792	2,37		
	Total contaminant masked (bp)	0	308,426	27,78		
	Average contig length (bp)	0	7,093	66,978		
anger Centre, UK	Number of accession records	Ō	4,538	2,599		
	Number of contigs	0	74,324	2,599		
	Total base pairs	0	689,059,692	246,118,000		
	Total vector masked (bp)	0	427,326	25,054		
	Total contaminant masked (bp)	0	2,066,305	374,561		
	Average contig length (bp)	0	9,271	94,697		
thers*	Number of accession records	.42	1,894	3,458		
	Number of contigs	5,978	29,898	3,458		
	Total base pairs	5,564,879	283,358,877	246,474,157		
	Total vector masked (bp)	57,448	279,477	32,136		
	Total contaminant masked (bp)	575,366	1,616,665	1,791,849		
	Average contig length (bp)	931	9,478	71,277		
ll centers combined†	Number of accession records	3,021	21,015	9,137		
	Number of contigs	258,943	409,628	9,137		
	Total base pairs		3,360,047,574			
	Total vector masked (bp)	1,655,293	2,438,575			
	Total contaminant masked (bp)	14,918,135	16,311,664	3,365,230		
	1001					

^{*}Other centers contributing at least 0.1% of the sequence include: Chinese National Human Genome Center, Genomanalyse Gesellschaft fuer Biotechnologische Forschung mbH; Genome Therapeutics Corporation; GENOSCOPE; Chinese Academy of Sciences; Institute of Molecular Biotechnology; Keio University School of Medicine; Lawrence Livermore National Laboratory; Cold Spring Harbor Laboratory; Los Alamos National Laboratory; Max-Planck Institut fuer Molekulare, Genetik; Japan Science and Technology Corporation; Stanford University; The Institute for Genomic Research; The Institute of Physical and Chemical Research, Gene Bank; The University of Oklahoma; University of Texas Southwestern Medical Center, University of Washington. †The 4,405,700,825 bases contributed by all centers were shredded into faux reads resulting in 2.96× coverage of the genome.

(see below). In short, we performed a true, ab initio whole-genome assembly in which we took the expedient of deriving additional sequence coverage, but not mate pairs, assembled bactigs, or genome locality, from some externally generated data.

In the compartmentalized shotgun assembly (CSA), Celera and PFP data were partitioned into the largest possible chromosomal segments or "components" that could be determined with confidence, and then shotgun assembly was applied to each partitioned subset wherein the bactig data were again shredded into faux reads to ensure an independent ab initio assembly of the component. By subsetting the data in this way, the overall computational effort was reduced and the effect of interchromosomal dunlications was ameliorated. This also resulted in a reconstruction of the genome that was relatively independent of the whole-genome assembly results so that the two assemblies could be compared for consistency. The quality of the partitioning into components was crucial so that different genome regions were not mixed together. We constructed components from (i) the longest scaffolds of the sequence from each BAC and (ii) assembled scaffolds of data unique to Celera's data set. The BAC assemblies were obtained by a combining assembler that used the bactigs and the 5× Celera data mapped to those bactigs as input. This effort was undertaken as an interim step solely because the more accurate and complete the scaffold for a given sequence stretch, the more accurately one can tile these scaffolds into contiguous components on the basis of sequence overlap and mate-pair information. We further visually inspected and curated the scaffold tiling of the components to further increase its accuracy. For the final CSA assembly, all but the partitioning was ignored. and an independent, ab initio reconstruction of the sequence in each component was obtained by applying our whole-genome assembly algorithm to the partitioned, relevant Celera data and the shredded, faux reads of the partitioned, relevant bactig data.

2.3 Whole-genome assembly

The algorithms used for whole-genome assembly (WGA) of the human genome were enhancements to those used to produce the sequence of the *Drosophila* genome reported in detail in (28).

The WGA assembler consists of a pipeline composed of five principal stages: Screener. Overlapper, Unitigger, Scaffolder, and Repeal Resolver, respectively. The Screener finds and marks all microsatellite repeats with less than a 6-bp element, and screens out all known interspersed repeat elements, including Alu, Line, and ribosomal DNA. Marked regions get searched for overlaps, whereas screened regions do not get searched, but can be part of an overlap that involves unscreened matching segments.

The Overlapper compares every read against every other read in search of complete end-to-end overlaps of at least 40 bp and with no more than 6% differences in the match. Because all data are scrupulously vectortrimmed, the Overlapper can insist on complete overlap matches. Computing the set of all overlaps took roughly 10,000 CPU hours with a suite of four-processor Alpha SMPs with 4 gigabytes of RAM. This took 4 to 5 days in elapsed time with 40 such machines operating in parallel.

d

đ

h

Every overlap computed above is statistically a 1-in-1017 event and thus not a coincidental event. What makes assembly combinatorially difficult is that while many overlaps are actually sampled from overlapping regions of the genome, and thus imply that the sequence reads should be assembled together, even more overlaps are actually from two distinct copies of a low-copy repeated element not screened above, thus constituting an error if put together. We call the former "true overlaps" and the latter "repeat-induced overlaps." The assembler must avoid choosing repeat-induced overlaps, especially early in the process.

We achieve this objective in the Unitigger. We first find all assemblies of reads that appear to be uncontested with respect to all other reads. We call the contigs formed from these subassemblies unitigs (for uniquely assembled contigs). Formally, these unitigs are the uncontested interval subgraphs of the graph of all overlaps (42). Unfortunately, although empirically many of these assemblies are correct (and thus involve only true overlaps), some are in fact collections of reads from several copies of a repetitive element that have been overcollapsed into a single subassembly. However, the overcollapsed unitigs are easily identified because their average coverage depth is too high to be consistent with the overall level of sequence coverage. We developed a simple statistical discriminator that gives the logarithm of the odds ratio that a unitig is composed of unique DNA or of a repeat consisting of two or more copies. The discriminator, set to a sufficiently stringent threshold, identifies a subset of the unitigs that we are certain are correct. In addition, a second, less stringent threshold identifies a subset of remaining unitigs very likely to be correctly assembled, of which we select those that will consistently scaffold (see below), and thus are again almost certain to be correct. We call the union of these two sets U-unitigs. Empirically, we found from a 6× simulated shotgun of human chromosome 22 that we get U-unitigs covering 98% of the stretches of unique DNA that are >2 kbp long. We are further able to identify the boundary of the start of a repetitive element at the ends of a U-unitig and leverage this so that U-unitigs span more than 93% of all

ingly interspersed Alu elements and other 100-to 400-bp repetitive segments.

The result of running the Unitigger was thus a set of correctly assembled subcontigs covering an estimated 73.6% of the human genome. The Scaffolder then proceeded to use mate-pair information to link these together into scaffolds. When there are two or more mate pairs that imply that a given pair of U-unitigs are at a certain distance and orientation with respect to each other, the probability of this being wrong is again roughly 1 in 1010, assuming that mate pairs are false less than 2% of the time. Thus, one can with high confidence link together all U-unitigs that are linked by at least two 2- or 10-kbp mate pairs producing intermediatesized scaffolds that are then recursively linked together by confirming 50-kbp mate pairs and BAC end sequences. This process yielded scaffolds that are on the order of megabase pairs in size with gaps between their contigs that generally correspond to repetitive elements and occasionally to small sequencing gaps. These scaffolds reconstruct the majority of the unique sequence within a

For the Drosophila assembly, we engaged

sive and thus more likely to make a mistake. For the human assembly, we continued to use the first "Rocks" substage where all unitigs with a good, but not definitive, discriminator score are placed in a scaffold gap. This was done with the condition that two or more mate pairs with one of their reads already in the scaffold unambiguously place the unitig in the given gap. We estimate the probability of inserting a unitig into an incorrect gap with this strategy to be less than 10⁻⁷ based on a probabilistic analysis.

We revised the ensuing "Stones" substage of the human assembly, making it more like the mechanism suggested in our earlier work (43). For each gap, every read R that is placed in the gap by virtue of its mated pair M being in a contig of the scaffold and implying R's placement is collected. Celera's mate-pairing information is correct more than 99% of the time. Thus, almost every, but not all, of the reads in the set belong in the gap, and when a read does not belong it rarely agrees with the remainder of the reads. Therefore, we simply assemble this set of reads within the gap, eliminating any reads that conflict with the assembly. This operation proved much more reliable than the one it replaced for the in a three-stage repeat resolution strategy Drosophila assembly, in the assembly of a where each stage was progressively more simulated shotgun data set of human chromo-

Fig. 4. Architecture of Celera's two-pronged assembly strategy. Each oval denotes a computation process performing the function indicated by its label, with the labels on arcs between ovals describing the nature of the objects produced and/or consumed by a process. This figure summarizes the discussion in the text that defines the terms and phrases used.

some 22, all stones were placed correctly.

The final method of resolving gaps is to fill them with assembled BAC data that cover the gap. We call this external gap "walking." We did not include the very aggressive "Pebbles" substage described in our *Drosophila* work, which made enough mistakes so as to produce repeat reconstructions for long interspersed elements whose quality was only 99.62% correct. We decided that for the human genome it was philosophically better not to introduce a step that was certain to produce less than 99.99% accuracy. The cost was a somewhat larger number of gaps of somewhat larger size.

At the final stage of the assembly process, and also at several intermediate points, a consensus sequence of every contig is produced. Our algorithm is driven by the principle of maximum parsimony, with quality-value—weighted measures for evaluating each base. The net effect is a Bayesian estimate of the correct base to report at each position. Consensus generation uses Celera data whenever it is present. In the event that no Celera data cover a given region, the BAC data sequence is used.

A key element of achieving a WGA of the human genome was to parallelize the Overlapper and the central consensus sequence-constructing subroutines. In addition, memory was a real issue—a straightforward application of the software we had built for *Drosophila* would

have required a computer with a 600-gigabyte RAM. By making the Overlapper and Unitigger incremental, we were able to achieve the same computation with a maximum of instantaneous usage of 28 gigabytes of RAM. Moreover, the incremental nature of the first three stages allowed us to continually update the state of this part of the computation as data were delivered and then perform a 7-day run to complete Scaffolding and Repeat Resolution whenever desired. For our assembly operations, the total compute infrastructure consists of 10 four-processor SMPs with 4 gigabytes of memory per cluster (Compaq's ES40, Regatta) and a 16processor NUMA machine with 64 gigabytes of memory (Compaq's GS160, Wildfire). The total compute for a run of the assembler was roughly 20,000 CPU hours.

The assembly of Celera's data, together with the shredded bactig data, produced a set of scaffolds totaling 2.848 Gbp in span and consisting of 2.586 Gbp of sequence. The chaff, or set of reads not incorporated in the assembly, numbered 11.27 million (26%), which is consistent with our experience for *Drosophila*. More than 84% of the genome was covered by scaffolds >100 kbp long, and these averaged 91% sequence and 9% gaps with a total of 2.297 Gbp of sequence. There were a total of 93,857 gaps among the 1637 scaffolds >100 kbp. The average scaffold size was 1.5 Mbp, the average contig size was 24.06 kbp, and the average gap size was 2.43 kbp, where the dis-

tribution of each was essentially exponential. More than 50% of all gaps were less than 50% bp long, >62% of all gaps were less than 1 kbj long, and no gap was >100 kbp long. Similar ly, more than 65% of the sequence is in contigs >30 kbp, more than 31% is in contigs >100 kbp, and the largest contig was 1.22 Mbp long. Table 3 gives detailed summary statistics for the structure of this assembly with a direct comparison to the compartmentalized shotgun assembly.

2.4 Compartmentalized shotgun assembly

In addition to the WGA approach, we pursued a localized assembly approach that was intended to subdivide the genome into segments, each of which could be shotgun assembled individually. We expected that this would help in resolution of large interchromosomal duplications and improve the statistics for calculating U-unitigs. The compartmentalized assembly process involved clustering Celera reads and bactigs into large, multiple megabase regions of the genome, and then running the WGA assembler on the Celera data and shredded, faux reads obtained from the bactig data.

The first phase of the CSA strategy was to separate Celera reads into those that matched the BAC contigs for a particular PFP BAC entry, and those that did not match any public data. Such matches must be guaranteed to

Table 3. Scaffold statistics for whole-genome and compartmentalized shotgun assemblies.

			Scaffold size		
	All	>30 kbp	>100 kbp	>500 kbp	>1000 kbp
No of the second	C	ompartmentalized shotgu	ın assembly		
No. of bp in scaffolds (including intrascaffold gaps)	2,905,568,203	2,748,892,430	2,700,489,906	2,489,357,260	2,248,689,12
No. of bp in contigs	2,653,979,733	2,524,251,302	2,491,538,372	2 222 4 4 5 5 5 5	
No. of scaffolds	53,591	2,845		2,320,648,201	2,106,521,90
No. of contigs	170,033	112,207	1,935	1,060	72 ⁻
No. of gaps	116,442	109,362	107,199	93,138	82,009
No. of gaps ≤1 kbp	72,091	69,175	105,264	92,078	81,288
Average scaffold size (bp)	54,217	966,219	67,289	59,915	53,354
Average contig size (bp)	15,609	• • • •	1,395,602	2,348,450	3,118,848
Average intrascaffold gap size	2,161	22,496	23,242	24,916	25,686
(bp)	2,101	2,054	1,985	1,832	1,749
Largest contig (bp)	1,988,321	1 000 224		•	.,
% of total contigs	1,508,521	1,988,321	1,988,321	1,988,321	1,988,321
	100	95	94	' 87	79
No. of bp in scaffolds		Whole-genome assem	nbly		
linduding incomes 11	2,847,890,390	2,574,792,618	2,525,334,447	:	N 1 S - 4 2 14 15 15 15 1
(including intrascaffold gaps)				2,328,535,466	2,140,943,032
No. of bp in contigs No. of scaffolds	2,586,634,108	2,334,343,339	2,297,678,935	2 142 002 104	
No. of contigs	118,968	2,507	1,637	2,143,002,184	1,983,305,432
No. of contigs	221,036	99,189	95,494	818	554
No. of gaps	102,068	96,682	93.857	84,641	76,285
No. of gaps ≤1 kbp	62,356	60,343	59,156	83,823	75,731
Average scaffold size (bp)	23,938	1,027,041	• -	54,079	49,592
Average contig size (bp)	11,702	23,534	1,542,660	2,846,620	3,864,518
Average intrascaffold gap size	2,560	2,487	24,061	25,319	25,999
(bp)		£, 7 0 <i>1</i>	2,426	2,213	2,082
argest contig (bp)	1,224,073	1,224,073	1 22 4 070		
6 of total contigs	100	90	1,224,073	1,224,073	1,224,073
			89	83	77

properly place a Celera read, so all reads were first masked against a library of common repetitive elements, and only matches of at least 40 bp to unmasked portions of the read constituted a hit. Of Celera's 27.27 million reads, 20.76 million matched a bactig and another 0.62 million reads, which did not have any matches, were nonetheless identified as belonging in the region of the bactig's BAC because their mate matched the bactig. Of the remaining reads, 2.92 million were completely screened out and so could not be matched, but the other 2.97 million reads had unmasked sequence totaling 1.189 Gbp that were not found in the GenBank data set. Because the Celera data are 5.11 × redundant, we estimate that 240 Mbp of unique Celera sequence is not in the GenBank data set.

In the next step of the CSA process, a combining assembler took the relevant 5× Celera reads and bactigs for a BAC entry, and produced an assembly of the combined data for that locale. These high-quality sequence reconstructions were a transient result whose utility was simply to provide more reliable information for the purposes of their tiling into sets of overlapping and adjacent scaffold sequences in the next step. In outline, the combining assembler first examines the set of matching Celera reads to determine if there are excessive pileups indicative of unscreened repetitive elements. Wherever these occur, reads in the repeat region whose mates have not been mapped to consistent positions are removed. Then all sets of mate pairs that consistently imply the same relative position of two bactigs are bundled into a link and weighted according to the number of mates in the bundle. A "greedy" strategy then attempts to order the bactigs by selecting bundles of mate-pairs in order of their weight. A selected mate-pair bundle can tie together two formative scaffolds. It is incorporated to form a single scaffold only if it is consistent with the majority of links between contigs of the scaffold. Once scaffolding is complete, gaps are filled by the "Stones" strategy described above for the WGA assembler.

The GenBank data for the Phase 1 and 2 BACs consisted of an average of 19.8 bactigs per BAC of average size 8099 bp. Application of the combining assembler resulted in individual Celera BAC assemblies being put together into an average of 1.83 scaffolds (median of 1 scaffold) consisting of an average of 8.57 contigs of average size 18.973 bp. In addition to defining order and orientation of the sequence fragments, there were 57% fewer gaps in the combined result. For Phase 0 data, the average GenBank entry consisted of 91.52 reads of average length 784 bp. Application of the combining assembler resulted in an average of 54.8 scaffolds consisting of an average of 58.1 contigs of average size 873 bp. Basically, some small amount of

ably took place, but not enough Celera data were matched to truly assemble the 0.5× to 1× data set represented by the typical Phase 0 BACs. The combining assembler was also applied to the Phase 3 BACs for SNP identification, confirmation of assembly, and localization of the Celera reads. The phase 0 data suggest that a combined wholegenome shotgun data set and 1× light-shotgun of BACs will not yield good assembly of BAC regions; at least 3× light-shotgun of each BAC is needed.

The 5.89 million Celera fragments not matching the GenBank data were assembled with our whole-genome assembler. The assembly resulted in a set of scaffolds totaling 442 Mbp in span and consisting of 326 Mbp of sequence. More than 20% of the scaffolds were >5 kbp long, and these averaged 63% sequence and 27% gaps with a total of 302 Mbp of sequence. All scaffolds >5 kbp were forwarded along with all scaffolds produced by the combining assembler to the subsequent tiling phase.

At this stage, we typically had one or two scaffolds for every BAC region constituting at least 95% of the relevant sequence, and a collection of disjoint Celera-unique scaffolds. The next step in developing the genome components was to determine the order and overlap tiling of these BAC and Celera-unique scaffolds across the genome. For this, we used Celera's 50-kbp mate-pairs information, and BAC-end pairs (18) and sequence tagged site (STS) markers (44) to provide longrange guidance and chromosome separation. Given the relatively manageable number of scaffolds, we chose not to produce this tiling in a fully automated manner, but to compute an initial tiling with a good heuristic and then use human curators to resolve discrepancies or missed join opportunities. To this end, we developed a graphical user interface that displayed the graph of tiling overlaps and the evidence for each. A human curator could then explore the implication of mapped STS data, dot-plots of sequence overlap, and a visual display of the mate-pair evidence supporting a given choice. The result of this process was a collection of "components," where each component was a tiled set of BAC and Celera-unique scaffolds that had been curator-approved. The process resulted in 3845 components with an estimated span of 2.922 Gbp.

In order to generate the final CSA, we assembled each component with the WGA algorithm. As was done in the WGA process, the bactig data were shredded into a synthetic 2× shotgun data set in order to give the assembler the freedom to independently assemble the data. By using faux reads rather than bactigs, the assembly algorithm could correct errors in the assembly of bactigs and remove chimeric content in a PFP data entry.

Chimer contaminating sequence (from another of the genome) would not be incorporated into the reassembly of the component because it did not belong there. In effect, the previous steps in the CSA process served only to bring together Celera fragments and PFP data relevant to a large contiguous segment of the genome, wherein we applied the assembler used for WGA to produce an ab initio assembly of the region.

WGA assembly of the components resulted in a set of scaffolds totaling 2.906 Gbp in span and consisting of 2.654 Gbp of sequence. The chaff, or set of reads not incorporated into the assembly, numbered 6.17 million, or 22%. More than 90.0% of the genome was covered by scaffolds spanning >100 kbp long, and these averaged 92.2% sequence and 7.8% gaps with a total of 2.492 Gbp of sequence. There were a total of 105,264 gaps among the 107,199 contigs that belong to the 1940 scaffolds spanning >100 kbp. The average scaffold size was 1.4 Mbp, the average contig size was 23.24 kbp, and the average gap size was 2.0 kbp where each distribution of sizes was exponential. As such, averages tend to be underrepresentative of the majority of the data. Figure 5 shows a histogram of the bases in scaffolds of various size ranges. Consider also that more than 49% of all gaps were <500 bp long, more than 62% of all gaps were <1 kbp, and all gaps are <100 kbp long. Similarly, more than 73% of the sequence is in contigs > 30 kbp, more than 49% is in contigs >100 kbp, and the largest contig was 1.99 Mbp long. Table 3 provides summary statistics for the structure of this assembly with a direct comparison to the WGA assembly.

2.5 Comparison of the WGA and CSA scaffolds

Having obtained two assemblies of the human genome via independent computational processes (WGA and CSA), we compared scaffolds from the two assemblies as another means of investigating their completeness, consistency, and contiguity. From each assembly, a set of reference scaffolds containing at least 1000 fragments (Celera sequencing reads or bactig shreds) was obtained; this amounted to 2218 WGA scaffolds and 1717 CSA scaffolds, for a total of 2.087 Gbp and 2.474 Gbp. The sequence of each reference scaffold was compared to the sequence of all scaffolds from the other assembly with which it shared at least 20 fragments or at least 20% of the fragments of the smaller scaffold. For each such comparison, all matches of at least 200 bp with at most 2% mismatch were tabulated.

From this tabulation, we estimated the amount of unique sequence in each assembly in two ways. The first was to determine the number of bases of each assembly that were

Commence of the second

not covered by a matching segment in the other assembly. Some 82.5 Mbp of the WGA (3.95%) was not covered by the CSA, whereas 204.5 Mbp (8.26%) of the CSA was not covered by the WGA. This estimate did not require any consistency of the assemblies or any uniqueness of the matching segments. Thus, another analysis was conducted in which matches of less than 1 kbp between a pair of scaffolds were excluded unless they were confirmed by other matches having a consistent order and orientation. This gives some measure of consistent coverage: 1.982 Gbp (95.00%) of the WGA is covered by the CSA, and 2.169 Gbp (87.69%) of the CSA is covered by the WGA by this more stringent measure.

The comparison of WGA to CSA also permitted evaluation of scaffolds for structural inconsistencies. We looked for instances in which a large section of a scaffold from one assembly matched only one scaffold from the other assembly, but failed to match over the full length of the overlap implied by the matching segments. An initial set of candidates was identified automatically, and then each candidate was inspected by hand. From this process, we identified 31 instances in which the assemblies appear to disagree in a nonlocal fashion. These cases are being further evaluated to determine which assembly is in error and why.

In addition, we evaluated local inconsistencies of order or orientation. The following results exclude cases in which one contig in one assembly corresponds to more than one overlapping contig in the other assembly (as long as the order and orientation of the latter agrees with the positions they match in the former). Most of these small rearrangements involved segments on the order of hundreds of base pairs and rarely >1 kbp. We found a total of 295 kbp (0.012%) in the CSA assemblies that were locally inconsistent with the WGA assemblies, whereas 2.108 Mbp (0.11%) in the WGA assembly were inconsistent with the CSA assembly.

The CSA assembly was a few percentage points better in terms of coverage and slightly more consistent than the WGA, because it was in effect performing a few thousand shotgun assemblies of megabase-sized problems, whereas the WGA is performing a shotgun assembly of a gigabase-sized problem. When one considers the increase of two-and-a-half orders of magnitude in problem size, the information loss between the two is remarkably small. Because CSA was logistically easier to deliver and the better of the two results available at the time when downstream analyses needed to be begun, all subsequent analysis was performed on this assembly.

2.6 Mapping scaffolds to the genome

The final step in assembling the genome was to order and orient the scaffolds on the chromosomes. We first grouped scaffolds together on the basis of their order in the components from CSA. These grouped scaffolds were reordered by examining residual mate-pairing data between the scaffolds. We next mapped the scaffold groups onto the chromosome using physical mapping data. This step depends on having reliable high-resolution map information such that each scaffold will overlap multiple markers. There are two genome-wide types of map information available: high-density STS maps and fingerprint maps of BAC clones developed at Washington University (45). Among the genome-wide STS maps, GeneMap99 (GM99) has the most markers and therefore was most useful for mapping scaffolds. The two different mapping approaches are complementary to one another. The fingerprint maps should have better local order because they were built by comparison of overlapping BAC clones. On the other hand, GM99 should have a more reliable long-range order, because the framework markers were derived from well-validated genetic maps. Both types of maps were used as a reference for human curation of the components that were the input to the regional assembly, but they did not determine the order of sequences produced by the assembler.

In order to determine the effectiveness of the fingerprint maps and GM99 for mapping scaffolds, we first examined the reliability of these maps by comparison with large scaffolds. Only 1% of the STS markers on the 10 largest scaffolds (those >9 Mbp) were mapped on a different chromosome on GM99. Two percent of the STS markers disagreed in position by more than five framework bins. However, for the fingerprint maps, a 2% chromosome discrepancy was observed, and on average 23.8% of BAC locations in the scaffold sequence disagreed with fingerprint map placement by more than five BACs. When further examining the source of discrepancy, it was found that most of the discrepancy came from 4 of the 10 scaffolds, indicating this there is variation in the quality of either the map or the scaffolds. All four scaffolds were assembled, as well as the other six, as judged by clone coverage analysis, and showed the same low discrepancy rate to GM99, and thus we concluded that the fingerprint map global order in these cases was not reliable. Smaller scaffolds had a higher discordance rate with GM99 (4.21% of STSs were discordant by more than five framework bins), but a lower discordance rate with the fingerprint maps (11% of BACs disagreed with fingerprint maps by more than five BACs). This observation agrees with the clone coverage analysis (46) that Celera scaffold construction was better supported by long-range mate pairs in larger scaffolds than in small scaffolds.

We created two orderings of Celera scaffolds on the basis of the markers (BAC or STS) on these maps. Where the order of scaffolds agreed between GM99 and the WashU BAC map, we had a high degree of confidence that that order was correct; these scaffolds were termed "anchor scaffolds." Only scaffolds with a low overall discrepancy rate with both maps were considered anchor scaffolds. Scaffolds in GM99 bins were allowed to permute in their order to match WashU ordering, provided they did not violate their framework orders. Orientation of individual scaffolds was determined by the presence of multiple mapped markers with consistent order. Scaffolds with only one marker have insufficient information to assign orientation. We found 70.1% of the genome in anchored scaffolds, more than 99% of which are also oriented (Table 4). Because GM99 is of lower resolution than the WashU map, a number of scaffolds without STS matches could be ordered relative to the anchored scaffolds because they included sequence from the same or adjacent BACs on the WashU map. On the other hand, because of occasional WashU global ordering discrepancies, a number of scaffolds determined to be "unmappable" on the WashU map could be ordered relative to the anchored scaffolds

Fig. 5. Distribution of scaffold sizes of the CSA. For each range of scaffold sizes, the percent of total sequence is indicated.

with GM99. These scaffolds were termed "ordered scaffolds." We found that 13.9% of the assembly could be ordered by these additional methods, and thus 84.0% of the genome was ordered unambiguously.

Next, all scaffolds that could be placed, but not ordered, between anchors were assigned to the interval between the anchored scaffolds and were deemed to be "bounded" between them. For example, small scaffolds having STS hits from the same Gene-Map bin or hitting the same BAC cannot be ordered relative to each other, but can be assigned a placement boundary relative to other anchored or ordered scaffolds. The remaining scaffolds either had no localization information, conflicting information, or could only be assigned to a generic chromosome location. Using the above approaches, ~98% of the genome was anchored, ordered, or bounded.

Finally, we assigned a location for each scaffold placed on the chromosome by spreading out the scaffolds per chromosome. We assumed that the remaining unmapped scaffolds, constituting 2% of the genome, were distributed evenly across the genome. By dividing the sum of unmapped scaffold lengths with the sum of the number of mapped scaffolds, we arrived at an estimate of interscaffold gap of 1483 bp. This gap was used to separate all the scaffolds on each chromosome and to assign an offset in the chromosome.

During the scaffold-mapping effort, we encountered many problems that resulted in additional quality assessment and validation analysis. At least 978 (3% of 33,173) BACs were believed to have sequence data from more than one location in the genome (47). This is consistent with the bactig chimerism analysis reported above in the Assembly Strategies section. These BACs could not be assigned to unique positions within the CSA assembly and thus could not be used for ordering scaffolds. Likewise, it was not always possible to assign STSs to unique locations in the assembly because of genome duplications, repetitive elements, and pseudogenes.

Because of the time required for an exhaustive search for a perfect overlap, CSA generated 21,607 intrascaffold gaps where the mate-pair data suggested that the contigs should overlap, but no overlap was found. These gaps were defined as a fixed 50 bp in length and make up 18.6% of the total 116,442 gaps in the CSA assembly.

We chose not to use the order of exons implied in cDNA or EST data as a way of ordering scaffolds. The rationale for not using this data was that doing so would have biased certain regions of the assembly by rearranging scaffolds to fit the transcript data and made validation of both the assembly and gene definition processes more difficult.

7 embly and validation analysis

We analyzed the assembly of the genome from the perspectives of completeness (amount of coverage of the genome) and correctness (the structural accuracy of the order and orientation and the consensus sequence of the assembly).

Completeness. Completeness is defined as the percentage of the euchromatic sequence represented in the assembly. This cannot be known with absolute certainty until the euchromatin sequence has been completed. However, it is possible to estimate completeness on the basis of (i) the estimated sizes of intrascaffold gaps; (ii) coverage of the two published chromosomes, 21 and 22 (48, 49); and (iii) analysis of the percentage of an independent set of random sequences (STS markers) contained in the assembly. The whole-genome libraries contain heterochromatic sequence and, although no attempt has been made to assemble it, there may be instances of unique sequence embedded in regions of heterochromatin as were observed in Drosophila (50, 51).

The sequences of human chromosomes 21 and 22 have been completed to high quality and published (48, 49). Although this sequence served as input to the assembler, the finished sequence was shredded into a shotgun data set so that the assembler had the opportunity to assemble it differently from the original sequence in the case of structural polymorphisms or assembly errors in the BAC data. In particular, the assembler must be able to resolve repetitive elements at the scale of components (generally multimegabase in size), and so this comparison reveals the level to which the assembler resolves repeats. In certain areas, the assembly structure differs from the published versions of chromosomes 21 and 22 (see below). The consequence of the flexibility to assemble "finished" sequence differently on the basis of Celera data resulted in an assembly with more segments than the chromosome 21 and 22 sequences. We examined the reasons why there are more gaps in the Celera sequence than in chromosomes 21 and 22 and expect that they may be typical of gaps in other regions of the genome. In the Celera assembly, there are 25 scaffolds, each containing at least 10 kb of sequence, that collectively span 94.3% of chromosome 21. Sixty-two scaffolds span 95.7% of chromosome 22. The total length of the gaps remaining in the Celera assembly for these two chromosomes is 3.4 Mbp. These gap sequences were analyzed by RepeatMasker and by searching against the entire genome assembly (52). About 50% of the gap sequence consisted of common repetitive elements identified by RepeatMasker; more than half of the remainder was lower copy number repeat elements.

A more global way of assessing complete-

re the content of an independent ness is to n set of sequence data in the assembly. We compared 48,938 STS markers from Genemap99 (51) to the scaffolds. Because these markers were not used in the assembly processes, they provided a truly independent measure of completeness. ePCR (53) and BLAST (54) were used to locate STSs on the assembled genome. We found 44,524 (91%) of the STSs in the mapped genome. An additional 2648 markers (5.4%) were found by searching the unassembled data or "chaff." We identified 1283 STS markers (2.6%) not found in either Celera sequence or BAC data as of September 2000, raising the possibility that these markers may not be of human origin. If that were the case, the Celera assembled sequence would represent 93.4% of the human genome and the unassembled data 5.5%, for a total of 98.9% coverage. Similarly, we compared CSA against 36,678 TNG radiation hybrid markers (55a) using the same method. We found that 32,371 markers (88%) were located in the mapped CSA scaffolds, with 2055 markers (5.6%) found in the remainder. This gave a 94% coverage of the genome through another genomewide survey.

Correctness. Correctness is defined as the structural and sequence accuracy of the assembly. Because the source sequences for the Celera data and the GenBank data are from different individuals, we could not directly compare the consensus sequence of the as-

Table 4. Summary of scaffold mapping. Scaffolds were mapped to the genome with different levels of confidence (anchored scaffolds have the highest confidence; unmapped scaffolds have the lowest). Anchored scaffolds were consistently ordered by the WashU BAC map and GM99. Ordered scaffolds were consistently ordered by at least one of the following: the WashU BAC map, GM99, or component tiling path. Bounded scaffolds had order conflicts between at least two of the external maps, but their placements were adjacent to a neighboring anchored or ordered scaffold. Unmapped scaffolds had, at most, a chromosome assignment. The scaffold subcategories are given below each category.

Mapped scaffold category	Number	Length (bp)	% Total length
Anchored	1,526	1,860,676,676	70
Oriented	1,246	1,852,088,645	70
Unoriented	280	8,588,031	0.3
Ordered	2,001	369,235,857	14
Oriented	839	329,633,166	12
Unoriented	1,162	39,602,691	2
Bounded	38,241	368,753,463	14
Oriented	7,453	274,536,424	10
Unoriented	30,788	94,217,039	4
Unmapped	11,823	55,313,737	2
Known chromosome	281	2,505,844	0.1
Unknown chromosome	11,542	52,807,893	2

sembly against other finished sequence for determining sequencing accuracy at the nucleotide level, although this has been done for identifying polymorphisms as described in Section 6. The accuracy of the consensus sequence is at least 99.96% on the basis of a statistical estimate derived from the quality values of the underlying reads.

The structural consistency of the assembly can be measured by mate-pair analysis. In a correct assembly, every mated pair of sequencing reads should be located on the consensus sequence with the correct separation and orientation between the pairs. A pair is termed "valid" when the reads are in the correct orientation and the distance between them is within the mean ± 3 standard deviations of the distribution of insert sizes of the library from which the pair was sampled. A pair is termed "misoriented" when the reads are not correctly oriented, and is termed "misseparated" when the distance between the reads is not in the correct range but the reads are correctly oriented. The mean ± the standard deviation of each library used by the assembler was determined as described above. To validate these, we examined all reads mapped to the finished sequence of chromosome 21 (48) and determined how many incorrect mate pairs there were as a result of laboratory tracking errors and chimerism (two different segments of the genome cloned into the same plasmid), and how tight the distribution of insert sizes was for

those that were correct (Table 5). The standard deviations for all Celera libraries were quite small, less than 15% of the insert length, with the exception of a few 50-kbp libraries. The 2- and 10-kbp libraries contained less than 2% invalid mate pairs, whereas the 50-kbp libraries were somewhat higher (~10%). Thus, although the mate-pair information was not perfect, its accuracy was such that measuring valid, misoriented, and misseparated pairs with respect to a given assembly was deemed to be a reliable instrument for validation purposes, especially when several mate pairs confirm or deny an ordering.

The clone coverage of the genome was 39×, meaning that any given base pair was, on average, contained in 39 clones or, equivalently, spanned by 39 mate-paired reads. Areas of low clone coverage or areas with a high proportion of invalid mate pairs would indicate potential assembly problems. We computed the coverage of each base in the assembly by valid mate pairs (Table 6). In summary, for scaffolds >30 kbp in length, less than 1% of the Celera assembly was in regions of less than 3× clone coverage. Thus, more than 99% of the assembly, including order and orientation, is strongly supported by this measure alone.

We examined the locations and number of all misoriented and misseparated mates. In addition to doing this analysis on the CSA assembly (as of 1 October 2000), we also performed a study of the PFP assembly as of

5 September 2000 (30, 55b). In this latter case, Celera mate pairs had to be mapped to the PFP assembly. To avoid mapping errors due to high-fidelity repeats, the only pairs mapped were those for which both reads matched at only one location with less than 6% differences. A threshold was set such that sets of five or more simultaneously invalid mate pairs indicated a potential breakpoint. where the construction of the two assemblies differed. The graphic comparison of the CSA chromosome 21 assembly with the published sequence (Fig. 6A) serves as a validation of this methodology. Blue tick marks in the panels indicate breakpoints. There were a similar (small) number of breakpoints on both chromosome sequences. The exception was 12 sets of scaffolds in the Celera assembly (a total of 3% of the chromosome length in 212 single-contig scaffolds) that were mapped to the wrong positions because they were too small to be mapped reliably. Figures 6 and 7 and Table 6 illustrate the mate-pair differences and breakpoints between the two assemblies. There was a higher percentage of misoriented and misseparated mate pairs in the large-insert libraries (50 kbp and BAC ends) than in the small-insert libraries in both assemblies (Table 6). The large-insert libraries are more likely to identify discrepancies simply because they span a larger segment of the genome. The graphic comparison between the two assemblies for chromosome 8 (Fig. 6, B and C) shows that there are many

br.

25

Sic

Ci

m

(>

m

g

П

st

25

π.

is

3

S:

a:

ir

ir

Γ.

Ε

l:

(.

3

\$

6

(

v

Ĩ

Table 5. Mate-pair validation. Celera fragment sequences were mapped to the published sequence of chromosome 21. Each mate pair uniquely mapped was evaluated for correct orientation and placement (number

of mate pairs tested). If the two mates had incorrect relative orientation or placement, they were considered invalid (number of invalid mate pairs).

	Chromosome 21							Genome		
Library type	Library no.	Mean insert size (bp)	SD (bp)	SD/ mean (%)	No. of mate pairs tested	No. of invalid mate pairs	% invalid	Mean insert size (bp)	SD (bp)	SD/ mean (%)
2 kbp	1	2,081	106	5.1	3,642	38	10	2.000		4.5
	2	1,913	152	7.9	28,029	413	1.0	2,082	90	4.3
	3	2,166	175	8.1	4,405	57	1.5	1,923	118	6.1
10 kbp	4	11,385	851				1.3	2,162	158	7.3
• •	5	14,523	1,875	· 7.5	4,319	80	1.9	11,370	. 696	6.1
	6	9,635		12.9	7,355	156	2.1	14,142	1,402	9.9
	7	10,223	1,035 928	10.7	5,573	109	2.0	9,606	934	9.7
50 kbp				9.1	34,079	. 399	1.2	10,190	777	7.6
so kbp	0	64,888	2,747	4.2	16	1	6.3	65,500	5,504	8.4
	9 10	53,410	5,834	10.9	914	170	18.6	53,311	5,546	10.4
		52,034	7,312	- 14.1	5,871	569	9.7	51,498	6,588	12.8
	11	52,282	7,454	14.3	2,629	213	8.1	52,282	7,454	14.3
	12	46,616	7,378	15.8	2,153	215	10.0	45,418	9,068	20.0
	13	55,788	10,099	18.1	2,244	249	11.1	53,062	10,893	20.5
	14	39,894	5,019	12.6	199	7	3.5	36,838	9,988	27.1
BES	15	48,931	9,813	20.1	144	10				
	16	48,130	4,232	8.8	195	14	6.9	47,845	4,774	10.0
	17	106,027	27,778	26.2	330	16	7.2	47,924	4,581	9.6
	18	160,575	54,973	34.2	155	8	4.8	152,000	26,600	17.5
	19	164,155	19,453	11.9	642	44	5.2	161,750	27,000	16.7
um	•	-	,				6.9	176,500	19,500	11.05
					102,894	2,768	2.7			
						(mean = 2.7)				

more breakpoints for the PFP assembly than for the Celera assembly. Figure 7 shows the breakpoint map (blue tick marks) for both assemblies of each chromosome in a side-byside fashion. The order and orientation of Celera's assembly shows substantially fewer breakpoints except on the two finished chromosomes. Figure 7 also depicts large gaps (>10 kbp) in both assemblies as red tick marks. In the CSA assembly, the size of all gaps have been estimated on the basis of the mate-pair data. Breakpoints can be caused by structural polymorphisms, because the two assemblies were derived from different human genomes. They also reflect the unfinished nature of both genome assemblies.

ŗ

3

S

S

.S

n

зt

ď

it,

3S

Α

:d

of

ıe

а

эn

эn

m-

ŗth

ж

ey

res

air

WO

of

in

4C

oth

:ar-

:ies

t of

be-

.e 8

any

nta-

nate

3D/

rean

(%)

4.3

6.1

7.3

6.1

9.9

9.7

7.6

8.4

0.4

12.8

14.3

20.0 20.5

27.1

10.0

9.6

17.5

16.7 11.05

3 Gene Prediction and Annotation

Summary. To enumerate the gene inventory, we developed an integrated, evidence-based approach named Otto. The evidence used to increase the likelihood of identifying genes includes regions conserved between the mouse and human genomes, similarity to ESTs or other mRNA-derived data, or similarity to other proteins. A comparison of Otto (combined Otto-RefSeq and Otto homology) with Genscan, a standard gene-prediction algorithm, showed greater sensitivity (0.78 versus 0.50) and specificity (0.93 versus 0.63) of Otto in the ability to define gene structure. Otto-predicted genes were complemented with a set of genes from three gene-prediction programs that exhibited weaker, but still significant, evidence that they may be expressed. Conservative criteria, requiring at least two lines of evidence, were used to define a set of 26,383 genes with good confidence that were used for more detailed analysis presented in the subsequent sections. Extensive manual curation to establish precise characterization of gene structure will be necessary to improve the results from this initial computational approach.

3.1 Automated gene annotation

A gene is a locus of cotranscribed exons. A single gene may give rise to multiple transcripts, and thus multiple distinct proteins with multiple functions, by means of alterna-

tive splicing and alternative transcription initiation and termination sites. Our cells are able to discern within the billions of base pairs of the genomic DNA the signals for initiating transcription and for splicing together exons separated by a few or hundreds of thousands of base pairs. The first step in characterizing the genome is to define the structure of each gene and each transcription unit.

The number of protein-coding genes in mammals has been controversial from the outset. Initial estimates based on reassociation data placed it between 30,000 to 40,000, whereas later estimates from the brain were >100,000 (56). More recent data from both the corporate and public sectors, based on extrapolations from EST, CpG island, and transcript density-based extrapolations, have not reduced this variance. The highest recent number of 142,634 genes emanates from a report from Incyte Pharmaceuticals, and is based on a combination of EST data and the association of ESTs with CpG islands (57). In stark contrast are three quite different, and much lower estimates: one of ~35,000 genes derived with genome-wide EST data and sampling procedures in conjunction with chromosome 22 data (58); another of 28,000 to 34,000 genes derived with a comparative methodology involving sequence conservation between humans and the puffer fish Tetraodon nigroviridis (59); and a figure of 35,000 genes, which was derived simply by extrapolating from the density of 770 known and predicted genes in the 67 Mbp of chromosomes 21 and 22, to the approximately 3-Gbp euchromatic genome.

The problem of computational identification of transcriptional units in genomic DNA sequence can be divided into two phases. The first is to partition the sequence into segments that are likely to correspond to individual genes. This is not trivial and is a weakness of most de novo gene-finding algorithms. It is also critical to determining the number of genes in the human gene inventory. The second challenge is to construct a gene model that reflects the probable structure of the transcript(s) encoded in the region. This can

be done with reasonable accuracy when a full-length cDNA has been sequenced or a highly homologous protein sequence is known. De novo gene prediction, although less accurate, is the only way to find genes that are not represented by homologous proteins or ESTs. The following section describes the methods we have developed to address these problems for the prediction of protein-coding genes.

We have developed a rule-based expert system, called Otto, to identify and characterize genes in the human genome (60). Otto attempts to simulate in software the process that a human annotator uses to identify a gene and refine its structure. In the process of annotating a region of the genome, a human curator examines the evidence provided by the computational pipeline (described below) and examines how various types of evidence relate to one another. A curator puts different levels of confidence in different types of evidence and looks for certain patterns of evidence to support gene annotation. For example, a curator may examine homology to a number of ESTs and evaluate whether or not they can be connected into a longer, virtual mRNA. The curator would also evaluate the strength of the similarity and the contiguity of the match, in essence asking whether any ESTs cross splice-junctions and whether the edges of putative exons have consensus splice sites. This kind of manual annotation process was used to annotate the Drosophila genome.

The Otto system can promote observed evidence to a gene annotation in one of two ways. First, if the evidence includes a high-quality match to the sequence of a known gene [here defined as a human gene represented in a curated subset of the RefSeq database (61)], then Otto can promote this to a gene annotation. In the second method, Otto evaluates a broad spectrum of evidence and determines if this evidence is adequate to support promotion to a gene annotation. These processes are described below.

Initially, gene boundaries are predicted on the basis of examination of sets of overlapping protein and EST matches generated by a computational pipeline (62). This pipeline searches the scaffold sequences against protein, EST, and genome-sequence databases to define regions of sequence similarity and runs three de novo gene-prediction programs.

To identify likely gene boundaries, regions of the genome were partitioned by Otto on the basis of sequence matches identified by BLAST. Each of the database sequences matched in the region under analysis was compared by an algorithm that takes into account both coordinates of the matching sequence, as well as the sequence type (e.g., protein, EST, and so forth). The results were used to group the matches into bins of related sequences that may define a gene and identify

Table 6. Genome-wide mate pair analysis of compartmentalized shotgun (CSA) and PFP assemblies.*

Table 6. Genor	ne-wide ma	ate pair analysis (PFP	
Genome library	%	% mis-	% mis-	% valid	% mis- oriented	% mis- separated
2 kbp 10 kbp 50 kbp	98.5 96.7 93.9	0.6 1.0 4.5 2.1	1.0 2.3 1.5 3.8	95.7 81.9 64.2 62.0 87.3	2.0 9.6 22.3 19.3 6.8	2.3 8.6 13.5 18.8 5.9
BES Mean	94.1 97.4	1.0		87.3		g.org/cgi/co

^{*}Data for individual chromosomes can be found in Web fig. 3 on Science Online at www.sciencemag.org/cgi/content/full/291/5507/1304/DC1. †Mates are misseparated if their distance is >3 SD from the mean library size.

gene boundaries. During this process, multiple hits to the same region were collapsed to a coherent set of data by tracking the coverage of a region. For example, if a group of bases was represented by multiple overlapping ESTs, the union of these regions matched by the set of ESTs on the scaffold was marked as being supported by EST evidence. This resulted in a series of "gene bins," each of which was believed to contain a single gene. One weakness of this initial implementation of the algorithm was in predicting gene boundaries in regions of tandemly duplicated genes. Gene clusters frequently resulted in homologous neighboring genes

being joined together, resulting in an annotation that artificially concatenated these gene models.

Next, known genes (those with exact matches of a full-length cDNA sequence to the genome) were identified, and the region corresponding to the cDNA was annotated as a predicted transcript. A subset of the curated human gene set RefSeq from the National Center for Biotechnology Information (NCBI) was included as a data set searched in the computational pipeline. If a RefSeq transcript matched the genome assembly for at least 50% of its length at >92% identity, then the SIM4 (63) alignment of the RefSeq transcript to

the region of the genome under analysis was promoted to the status of an Otto annotation. Because the genome sequence has gaps and sequence errors such as frameshifts, it was not always possible to predict a transcript that agrees precisely with the experimentally determined cDNA sequence. A total of 6538 genes in our inventory were identified and transcripts predicted in this way.

Regions that have a substantial amount of sequence similarity, but do not match known genes, were analyzed by that part of the Otto system that uses the sequence similarity information to predict a transcript. Here, Otto

0 50.0 Mbp 100.0 Mbp

Fig. 6. Comparison of the CSA and the PFP assembly. (A) All of chromosome 21, (B) all of chromosome 8, and (C) a 1-Mb region of chromosome 8 representing a single Celera scaffold. To generate the figure, Celera fragment sequences were mapped onto each assembly. The PFP assembly is indicated in the upper third of each panel; the Celera assembly is indicated in the lower third. In the center of the panel, green lines show Celera sequences that are in the same order and orientation in both assemblies and form the longest consistently ordered run of sequences. Yellow lines indicate sequence blocks that are in the same orientation, but out of order. Red lines indicate sequence blocks that are not in the same orientation. For clarity, in the latter two cases, lines are only drawn between segments of matching sequence that are at least 50 kbp long. The top and bottom thirds of each panel show the extent of Celera mate-pair violations (red, misoriented; yellow, incorrect distance between the mates) for each assembly grouped by library size. (Mate pairs that are within the correct distance, as expected from the mean library insert size, are omitted from the figure for clarity.) Predicted breakpoints, corresponding to stacks of violated mate pairs of the same type, are shown as blue ticks on each assembly axis. Runs of more than 10,000 Ns are shown as cyan bars. Plots of all 24 chromosomes can be seen in Web fig. 3 on Science Online at www.sciencemag.org/cgi/ content/full/291/5507/1304/DC1.

evaluates evidence generated by the computational pipeline, corresponding to conservation between mouse and human genomic DNA, similarity to human transcripts (ESTs

as

n.

ıd

ot

at

·s ts

ıf n

0

Э

and cDNAs), similarity to rodent transcripts (ESTs and cDNAs), and similarity of the translation of human genomic DNA to known extracted, and the subsequences supported by proteins to predict potential genes in the hu-

man genome. The sequence from the region of genomic DNA contained in a gene bin was any homology evidence were marked (plus 100

Fig. 7. Schematic view of the distribution of breakpoints and large gaps on all chromosomes. For each chromosome, the upper pair of lines represent the PFP assembly, and the lower pair of lines represent Celera's

assembly. Blue tick marks represent breakpoints, whereas red tick marks represent a gap of larger than 10,000 bp. The number of breakpoints per chromosome is indicated in black, and the chromosome numbers in red.

bases flanking these regions). The other bases in the region, those not covered by any homology evidence, were replaced by N's. This sequence segment, with high confidence regions represented by the consensus genomic sequence and the remainder represented by N's, was then evaluated by Genscan to see if a consistent gene model could be generated. This procedure simplified the gene-prediction task by first establishing the boundary for the gene (not a strength of most gene-finding algorithms), and by eliminating regions with no supporting evidence. If Genscan returned a plausible gene model, it was further evaluated before being promoted to an "Otto" annotation. The final Genscan predictions were often quite different from the prediction that Genscan returned on the same region of native genomic sequence. A weakness of using Genscan to refine the gene model is the loss of valid, small exons from the final annotation.

The next step in defining gene structures based on sequence similarity was to compare each predicted transcript with the homologybased evidence that was used in previous steps to evaluate the depth of evidence for each exon in the prediction. Internal exons were considered to be supported if they were covered by homology evidence to within ±10 bases of their edges. For first and last exons, the internal edge was required to be within 10 bases, but the external edge was allowed greater latitude to allow for 5' and 3' untranslated regions (UTRs). To be retained, a prediction for a multi-exon gene must have evidence such that the total number of "hits," as defined above, divided by the number of exons in the prediction must be >0.66 or must correspond to a RefSeq sequence. A single-exon gene must be covered by at least three supporting hits (±10 bases on each side), and these must cover the complete predicted open reading frame. For a single-exon gene, we also required that the Genscan prediction include both a start and a stop codon. Gene models that did not meet these criteria were disregarded, and

Table 7. Sensitivity and specificity of Otto and Genscan. Sensitivity and specificity were calculated by first aligning the prediction to the published RefSeq transcript, tallying the number (N) of uniquely aligned RefSeq bases. Sensitivity is the ratio of N to the length of the published RefSeq transcript. Specificity is the ratio of N to the length of the prediction. All differences are significant (Tukey HSD; P < 0.001).

Method	Sensitivity	Specificity
Otto (RefSeq only)* Otto (homology)†	0.939 0.604	0.973 0.884
Genscan	0.501	0.633

^{*}Refers to those annotations produced by Otto using only the Sim4-polished RefSeq alignment rather than an evidence-based Genscan prediction. †Refers to those annotations produced by supplying all available evidence to Genscan.

those that passed were promoted to Otto predictions. Homology-based Otto predictions do not contain 3' and 5' untranslated sequence. Although three de novo gene-finding programs [GRAIL, Genscan, and FgenesH (63)] were run as part of the computational analysis, the results of these programs were not directly used in making the Otto predictions. Otto predicted 11,226 additional genes by means of sequence similarity.

3.2 Otto validation

To validate the Otto homology-based process and the method that Otto uses to define the structures of known genes, we compared transcripts predicted by Otto with their corresponding (and presumably correct) transcript from a set of 4512 RefSeq transcripts for which there was a unique SIM4 alignment (Table 7). In order to evaluate the relative performance of Otto and Genscan, we made three comparisons. The first involved a determination of the accuracy of gene models predicted by Otto with only homology data other than the corresponding RefSeq sequence (Otto homology in Table 7). We measured the sensitivity (correctly predicted bases divided by the total length of the cDNA) and specificity (correctly predicted bases divided by the sum of the correctly and incorrectly predicted bases). Second, we examined the sensitivity and specificity of the Otto predictions that were made solely with the Ref-Seg sequence, which is the process that Otto uses to annotate known genes (Otto-RefSeq). And third, we determined the accuracy of the Genscan predictions corresponding to these RefSeq sequences. As expected, the alignment method (Otto-RefSeq) was the most accurate, and Otto-homology performed better than Genscan by both criteria. Thus, 6.1% of true RefSeq nucleotides were not represented in the Ottorefseq annotations and 2.7% of the nucleotides in the Otto-RefSeq transcripts were not contained in the original RefSeq transcripts. The discrepancies could come from legitimate differences between the Celera assembly and the RefSeq transcript due to polymorphisms, incomplete or incorrect data in the Celera assembly, errors introduced by Sim4 during the alignment process, or the presence of alternatively spliced forms in the data set used for the comparisons.

Because Otto uses an evidence-based approach to reconstruct genes, the absence of experimental evidence for intervening exons may inadvertantly result in a set of exons that cannot be spliced together to give rise to a transcript. In such cases, Otto may "split genes" when in fact all the evidence should be combined into a single transcript. We also examined the tendency of these methods to incorrectly split gene predictions. These trends are shown in Fig. 8. Both RefSeq and homology-based predictions by Otto split known genes into fewer segments than Genscan alone.

3.3 Gene number

Recognizing that the Otto system is quite conservative, we used a different gene-prediction strategy in regions where the homology evidence was less strong. Here the results of de novo gene predictions were used. For these genes, we insisted that a predicted transcript have at least two of the following types of evidence to be included in the gene set for further analysis; protein. human EST, rodent EST, or mouse genome fragment matches. This final class of predicted genes is a subset of the predictions made by the three gene-finding programs that were used in the computational pipeline. For these, there was not sufficient sequence similarity information for Otto to attempt to predict a gene structure. The three de novo gene-finding programs resulted in about 155,695 predictions, of which ~76,410 were nonredundant (nonoverlapping with one another). Of these, 57,935 did not overlap known genes or predictions made by Otto. Only 21,350 of the gene predictions that did not overlap Otto predictions were partially supported by at least one type of sequence similarity evidence, and 8619 were partially supported by two types of evidence (Table 8).

The sum of this number (21,350) and the number of Otto annotations (17,764), 39,114, is near the upper limit for the human gene complement. As seen in Table 8, if the requirement for other supporting evidence is made more stringent, this number drops rapidly so that demanding two types of evidence reduces the total gene number to 26,383 and demanding three types reduces it to \sim 23,000. Requiring that a prediction be supported by all four categories of evidence is too stringent because it would eliminate genes that encode novel proteins (members of currently undescribed protein families). No correction for pseudogenes has been made at this point in the analysis.

In a further attempt to identify genes that were not found by the autoannotation process or any of the de novo gene finders, we examined regions outside of gene predictions that were similar to the EST sequence, and where the EST matched the genomic sequence across a splice junction. After correcting for potential 3' UTRs of predicted genes, about 2500 such regions remained. Addition of a requirement for at least one of the following evidence types—homology to mouse genomic sequence fragments, rodent ESTs, or cDNAs—or similarity to a known protein reduced this number to 1010. Adding this to the numbers from the previous paragraph would give us estimates of about 40,000, 27,000, and 24,000 potential genes in the human genome, depending on the stringency of evidence considered. Table 8 illustrates the number of genes and presents the degree of

confidence based on the supporting evidence. Transcripts encoded by a set of 26,383 genes were assembled for further analysis. This set includes the 6538 genes predicted by Otto on the basis of matches to known genes, 11,226 transcripts predicted by Otto based on homology evidence, and 8619 from the subset of transcripts from de novo gene-prediction programs that have two types of supporting evidence. The 26,383 genes are illustrated along chromosome diagrams in Fig. 1. These are a very preliminary set of annotations and are subject to all the limitations of an automated process. Considerable refinement is still necessary to improve the accuracy of these transcript predictions. All the predictions and descriptions of genes and the associated evidence that we present are the product of completely computational processes, not expert curation. We have attempted to enumerate the genes in the human genome in such a way that we have different levels of confidence based on the amount of supporting evidence: known genes, genes with good protein or EST homology evidence, and de novo gene predictions confirmed by modest homology evidence.

3.4 Features of human gene transcripts

We estimate the average span for a "typical" gene in the human DNA sequence to be about 27,894 bases. This is based on the average span covered by RefSeq transcripts, used because it represents our highest confidence set.

The set of transcripts promoted to gene annotations varies in a number of ways. As can be seen from Table 8 and Fig. 9, transcripts predicted by Otto tend to be longer, having on average about 7.8 exons, whereas those promoted from gene-prediction programs average about 3.7 exons. The largest number of exons that we have identified in a transcript is 234 in the titin mRNA. Table 8 compares the amounts of evidence that sup-

port the Otto and other predicted transcripts. For example, one can see that a typical Otto transcript has 6.99 of its 7.81 exons supported by protein homology evidence. As would be expected, the Otto transcripts generally have more support than do transcripts predicted by the de novo methods.

4 Genome Structure

Summary. This section describes several of the noncoding attributes of the assembled genome sequence and their correlations with the predicted gene set. These include an analysis of G+C content and gene density in the context of cytogenetic maps of the genome, an enumerative analysis of CpG islands, and a brief description of the genome-wide repetitive elements.

4.1 Cytogenetic maps

Perhaps the most obvious, and certainly the most visible, element of the structure of the genome is the banding pattern produced by Giemsa stain. Chromosomal banding studies have revealed that about 17% to 20% of the human chromosome complement consists of C-bands, or constitutive heterochromatin (64). Much of this heterochromatin is highly polymorphic and consists of different families of alpha satellite DNAs with various higher order repeat structures (65). Many chromosomes have complex inter- and intrachromosomal duplications present in pericentromeric regions (66). About 5% of the sequence reads were identified as alpha satellite sequences; these were not included in the assembly.

Fig. 8. Analysis of split genes resulting from different annotation methods. A set of 4512 Sim4-based alignments of RefSeq transcripts to the genomic assembly were chosen (see the text for criteria), and the numbers of overlapping Genscan, Otto (RefSeq only) annotations based solely on Sim4-polished RefSeq alignments, and Otto (homology) annotations (annotations produced by supplying all available evidence to Genscan) were tallied. These data show the degree to which multiple Genscan predictions and/or Otto annotations were associated with a single RefSeq transcript. The zero class for the Otto-homology predictions shown here indicates that the Otto-homology calls were made without recourse to the RefSeq transcript, and thus no Otto call was made because of insufficient evidence.

Table 8. Numbers of exons and transcripts supported by various types of evidence for Otto and de novo gene prediction methods. Highlighted cells indicate the gene sets analyzed in this paper (boldface, set of genes selected for protein analysis; italic, total set of accepted de novo predictions).

			·. : :				· · · · · · · · · · · · · · · · · · ·		<u> </u>	
·	•	Total	· · <u>· · · · · · · · · · · · · · · · · </u>	Types o	f evidence			No. of lines o	f evidence*	
			Mouse	Rodent	Protein	Human	≥1	≥2	≥3	≥4
Otto	Number of transcripts	17,969	17,065	14,881	15,477	16,374	17,968†	17,501	15,877	12,451
	Number of exons	141,218	111,174	89,569	108,431	118,869	140,710	127,955	99,574	59,804
De novo	Number of transcripts	58,032	14,463	5,094	8,043	9,220	21,350	8,619	4,947	1,904
	Number of exons	319,935	48,594	19,344	26,264	40,104	79,148	31,130	17,508	6,520
No. of exons per transcript	Otto De novo	7.84 5.53	5.77 3.17	6.01 3.80	6.99 3.27	7.24 4.36	7.81 3.7	7.19 3.56	6.00 3.42	4.28 3.16

^{*}Four kinds of evidence (conservation in 3× mouse genomic DNA, similarity to human EST or cDNA, similarity to rodent EST or cDNA, and similarity to known proteins) were considered to support gene predictions from the different methods. The use of evidence is quite liberal, requiring only a partial match to a single exon of predicted transcript. †This number includes alternative splice forms of the 17,764 genes mentioned elsewhere in the text.

Examination of pericentromeric regions is ongoing.

The remaining ~80% of the genome, the euchromatic component, is divisible into G-, R-, and T-bands (67). These cytogenetic bands have been presumed to differ in their nucleotide composition and gene density, although we have been unable to determine precise band boundaries at the molecular level. T-bands are the most G+C- and gene-rich, and G-bands are G+C-poor (68). Bernardi has also offered a description of the euchromatin at the molecular level as long stretches of DNA of differing base composition, termed isochores (denoted L, H1, H2, and H3), which are >300 kbp in length (69). Bernardi defined the L (light) isochores as G+C-poor (<43%), whereas the H (heavy) isochores fall into three G+C-rich classes representing 24, 8, and 5% of the genome. Gene concentration has been claimed to be very low in the L isochores and 20-fold more enriched in the H2 and H3 isochores (70). By examining contiguous 50-kbp windows of G+C content across the assembly, we found that regions of G+C content >48% (H3 isochores) averaged 273.9 kbp in length, those with G+C content between 43 and 48% (H1+H2 isochores) averaged 202.8 kbp in length, and the average span of regions with <43% (L isochores) was 1078.6 kbp. The correlation between G+C content and gene density was also examined in 50-kbp windows along the assembled sequence (Table 9 and Figs. 10 and 11). We found that the density of genes was greater in regions of high G+C than in regions of low G+C content, as expected. However, the correlation between G+C content and gene density was not as skewed as previously predicted (69). A higher proportion of genes were located in the G+Cpoor regions than had been expected.

Chromosomes 17, 19, and 22, which have a disproportionate number of H3-containing bands, had the highest gene density (Table 10). Conversely, of the chromosomes that we

found to have the lowest gene density, X, 4, 18, 13, and Y, also have the fewest H3 bands. Chromosome 15, which also has few H3 bands, did not have a particularly low gene density in our analysis. In addition, chromosome 8, which we found to have a low gene density, does not appear to be unusual in its H3 banding.

How valid is Ohno's postulate (71) that mammalian genomes consist of oases of genes in otherwise essentially empty deserts? It appears that the human genome does indeed contain deserts, or large, gene-poor regions. If we define a desert as a region >500 kbp without a gene, then we see that 605 Mbp, or about 20% of the genome, is in deserts. These are not uniformly distributed over the various chromosomes. Gene-rich chromosomes 17, 19, and 22 have only about 12% of their collective 171 Mbp in deserts, whereas gene-poor chromosomes 4, 13, 18, and X have 27.5% of their 492 Mbp in deserts (Table 11). The apparent lack of predicted genes in these regions does not necessarily imply that they are devoid of biological function.

4.2 Linkage map

Linkage maps provide the basis for genetic analysis and are widely used in the study of the inheritance of traits and in the positional cloning of genes. The distance metric, centimorgans (cM), is based on the recombination rate between homologous chromosomes during meio-

sis. In general, the rate of recombination in females is greater than that in males, and this degree of map expansion is not uniform across the genome (72). One of the opportunities enabled by a nearly complete genome sequence is to produce the ultimate physical map, and to fully analyze its correspondence with two other maps that have been widely used in genome and genetic analysis: the linkage map and the cytogenetic map. This would close the loop between the mapping and sequencing phases of the genome project.

n

iı

4

а

C

I

d

g

p

h

5

ŀ

ir

ti

tŀ

4

(:

0

a. (:

ti

g

of Total

We mapped the location of the markers that constitute the Genethon linkage map to the genome. The rate of recombination, expressed as cM per Mbp, was calculated for 3-Mbp windows as shown in Table 12. Higher rates of recombination in the telomeric region of the chromosomes have been previously documented (73). From this mapping result, there is a difference of 4.99 between lowest rates and highest rates and the largest difference of 4.4 between males and females (4.99 to 0.47 on chromosome 16). This indicates that the variability in recombination rates among regions of the genome exceeds the differences in recombination rates between males and females. The human genome has recombination hotspots, where recombination rates vary fivefold or more over a space of 1 kbp, so the picture one gets of the magnitude of variability in recombination rate will depend on the size of the window

Table 9. Characteristics of G+C in isochores.

Isochore	G+C (%)	Fraction o	f genome	Fraction	of genes	
	G (C (%)	Predicted*	Observed	Predicted*	Observed	
НЗ	>48	5	9.5	37	24.8	
H1/H2	43–48	25	21.2	32	26.6	
L <43 6		67	69.2	31	48.5	

*The predictions were based on Bernardi's definitions (70) of the isochore structure of the human genome.

Fig. 9. Comparison of the number of exons per transcript between the 17,968 Otto transcripts and 21,350 de novo transcript predictions with at least one line of evidence that do not overlap with an Otto prediction. Both sets have the highest number of transcripts in the two-exon category, but the de novo gene predictions are skewed much more toward smaller transcripts. In the Otto set, 19.7% of the transcripts have one or two exons, and 5.7%

have more than 20. In the de novo set, 49.3% of the transcripts have one or two exons, and 0.2% have more than 20.

examined. Unfortunately, too few meiotic crossovers have occurred in Centre d'Étude du Polymorphism Humain (CEPH) and other reference families to provide a resolution any finer than about 3 Mbp. The next challenge will be to determine a sequence basis of recombination at the chromosomal level. An accurate predictor for the rate for variation in recombination rates between any pair of markers would be extremely useful in designing markers to narrow a region of linkage, such as in positional cloning projects.

4.3 Correlation between CpG islands and genes

CpG islands are stretches of unmethylated DNA with a higher frequency of CpG dinucleotides when compared with the entire genome (74). CpG islands are believed to preferentially occur at the transcriptional start of genes, and it has been observed that most housekeeping genes have CpG islands at the 5' end of the transcript (75, 76). In addition, experimental evidence indicates that CpG island methylation is correlated with gene inactivation (77) and has been shown to be important during gene imprinting (78) and tissue-specific gene expression (79)

Experimental methods have been used that resulted in an estimate of 30,000 to 45,000 CpG islands in the human genome (74, 80) and an estimate of 499 CpG islands on human chromosome 22 (81). Larsen et al. (76) and Gardiner-Garden and Frommer (75) used a computational method to identify CpG islands and defined them as regions of DNA of >200 bp that have a G+C content of >50% and a ratio of observed

versus expected frequency of CG dinucleotide ≥0.6.

THE HUMAN GENOME

It is difficult to make a direct comparison of experimental definitions of CpG islands with computational definitions because computational methods do not consider the methylation state of cytosine and experimental methods do not directly select regions of high G+C content. However, we can determine the correlation of CpG island with gene starts, given a set of annotated genomic transcripts and the whole genome sequence. We have analyzed the publicly available annotation of chromosome 22, as well as using the entire human genome in our assembly and the computationally annotated genes. A variation of the CpG island computation was compared with Larsen et al. (76). The main differences are that we use a sliding window of 200 bp, consecutive windows are merged only if they overlap, and we recompute the CpG value upon merging, thus rejecting any potential island if it scores less than the threshold.

To compute various CpG statistics, we used two different thresholds of CG dinucleotide likelihood ratio. Besides using the original threshold of 0.6 (method 1), we used a
higher threshold of CG dinucleotide likelihood ratio of 0.8 (method 2), which results in
the number of CpG islands on chromosome
22 close to the number of annotated genes on
this chromosome. The main results are summarized in Table 13. CpG islands computed
with method 1 predicted only 2.6% of the
CSA sequence as CpG, but 40% of the gene
starts (start codons) are contained inside a

Fig. 10. Relation between G+C content and gene density. The blue bars show the percent of the genome (in 50-kbp windows) with the indicated G+C content. The percent of the total number of genes associated with each G+C bin is represented by the yellow bars. The graph shows that about 5% of the genome has a G+C content of between 50 and 55%, but that this portion contains nearly 15% of the genes.

CpG island. This is comparable to ratios reported by others (82). The last two rows of the table show the observed and expected average distance, respectively, of the closest CpG island from the first exon. The observed average closest CpG islands are smaller than the corresponding expected distances, confirming an association between CpG island and the first exon.

We also looked at the distribution of CpG island nucleotides among various sequence classes such as intergenic regions, introns, exons, and first exons. We computed the likelihood score for each sequence class as the ratio of the observed fraction of CpG island nucleotides in that sequence class and the expected fraction of CpG island nucleotides in that sequence class. The result of applying method 1 on CSA were scores of 0.89 for intergenic region, 1.2 for intron, 5.86 for exon, and 13.2 for first exon. The same trend was also found for chromosome 22 and after the application of a higher threshold (method 2) on both data sets. In sum, genome-wide analysis has extended earlier analysis and suggests a strong correlation between CpG islands and first coding exons.

4.4 Genome-wide repetitive elements

The proportion of the genome covered by various classes of repetitive DNA is presented in Table 14. We observed about 35% of the genome in these repeat classes, very similar to values reported previously (83). Repetitive sequence may be underrepresented in the Celera assembly as a result of incomplete repeat resolution, as discussed above. About 8% of the scaffold length is in gaps, and we expect that much of this is repetitive sequence. Chromosome 19 has the highest repeat density (57%), as well as the highest gene density (Table 10). Of interest, among the different classes of repeat elements, we observe a clear association of Alu elements and gene density, which was not observed between LINEs and gene density.

5 Genome Evolution

Summary. The dynamic nature of genome evolution can be captured at several levels. These include gene duplications mediated by RNA intermediates (retrotransposition) and segmental genomic duplications. In this section, we document the genome-wide occurrence of retrotransposition events generating functional (intronless paralogs) or inactive genes (pseudogenes). Genes involved in translational processes and nuclear regulation account for nearly 50% of all intronless paralogs and processed pseudogenes detected in our survey. We have also cataloged the extent of segmental genomic duplication and provide evidence for 1077 duplicated blocks covering 3522 distinct genes.

Fig. 11. Genome structural features.

Fig. 11 (continued). Relation among gene density (orange), G+C content (green), EST density (blue), and Alu density (pink) along the lengths of each of the chromosomes. Gene density was calculated in 1-Mbp win-

dows. The percent of G+C nucleotides was calculated in 100-kbp windows. The number of ESTs and Alu elements is shown per 100-kbp window.

5.1 Retrotransposition in the human genome

Retrotransposition of processed mRNA transcripts into the genome results in functional genes, called intronless paralogs, or inactivated genes (pseudogenes). A paralog refers to a gene that appears in more than one copy in a given organism as a result of

a duplication event. The existence of both intron-containing and intronless forms of genes encoding functionally similar or identical proteins has been previously described (84, 85). Cataloging these evolutionary events on the genomic landscape is of value in understanding the functional consequences of such gene-duplication

events in cellular biology. Identification of conserved intronless paralogs in the mouse or other mammalian genomes should provide the basis for capturing the evolutionary chronology of these transposition events and provide insights into gene loss and accretion in the mammalian radiation.

A set of proteins corresponding to all 901

4

m

	THE HUMAN GENOME
Otto + de novo/ 2×	11 12 13 14 15 16 17 17 17 17 17 17 17 17 17 17
Otto + de novo/ any	5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
De novo/ 2×	mимиимимимимими 4 и 4 и м 4 и и и 4 и и и 4 и и и 4 и и и и
De novo/ any	8779777787788687678698
Office	8 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Se- quence in deserts >1	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Se- quence in deserts >500/ kbp	29 55 55 55 55 55 56 33 33 54 57 57 57 57 57 57 57 57 57 57 57 57 57
Total (Otto + de novo/ any)	2,453 1,816 1,611 1,145 1,366 1,467 1,219 940 1,027 1,586 1,342 582 873 804 995 1,210 1,409 697 286 641 104 104 104 104 104 104 104 104 104 1
Total (Otto + de novo/ any)	3,453 2,954 2,427 1,861 2,136 2,257 1,560 1,560 1,537 1,633 1,198 1,198 1,198 1,198 1,283 1,198 1,421
De novo/ 2×	710 633 598 449 474 474 524 460 357 329 329 342 535 417 241 246 247 246 247 248 189 189 102 102 103 103 103 103 103 103 103 103 103 103
De novo/ any	1,710 1,771 1,414 1,165 1,165 1,244 1,314 1,072 968 1,134 969 691 700 640 640 640 640 640 640 640 673 648 543 534 155 265 341 860 155
Otto	1,743 1,183 1,183 1,013 696 892 943 759 689 685 1,051 925 341 583 748 897 283 1,141 517 605
No of CpG islands	2,335 1,703 1,271 1,081 1,384 1,406 948 1,315 1,087 1,461 1,131 644 913 722 1,533 1,489 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10
% G	44488444444444444444444444444444444444
% repeat	37 37 37 37 37 37 38 38 38 38 39 37 40 40 40 40 40 40 40 40 40 40 40 40 40
total se- quence in scaf- folds >500	88 89 89 89 89 89 89 89 89 89 89 67 67 67 67
Se- quence covered by scaf- folds >500 kbp	192 217 173 169 169 160 135 110 116 116 117 91 70 70 62 61 62 63 83 83 83 70 62 62 62 62 62 63 72 83 72 83 83 72 62 62 62 62 62 62 62 62 62 62 62 62 62
No. of scaf- folds >500 kbp	82 78 70 70 53 53 53 54 44 44 51 54 71 71 71 71 70 70 70 70 70 70 70 70 70 70 70 70 70
Largest scaf- fold (Mbp)	
No. of scaf- folds	2,549 3,532 3,532 2,180 3,231 1,713 1,713 1,713 1,616 2,614 1,616 2,614 1,038 5,76 1,520 1,520 1,533 2,282 2,282 2,282 3,33 1,346 1,346 3,346 1,346 3,346 1,547 1,
Size (Mbp)	220 240 250 260 186 182 172 146 146 113 113 113 113 113 113 114 114 115 115 116 117 117 117 117 117 117 117 117 117
_ ,	
	No. of quence total No. of quence total No. of quence total Scaf. Se- Scaf. covered se- scaf. folds by in C CpC Otto novo/ novo/ + de + de in in in Otto novo/ novo/ novo/ + de + de in in ovo/ novo/ hbp Nbp Nbp Any 2x novo/ any

Otto-predicted, single-exon genes were subjected to BLAST analysis against the proteins encoded by the remaining multiexon predicted transcripts. Using homology criteria of 70% sequence identity over 90% of the length, we identified 298 instances of single-to multi-exon correspondence. Of these 298 sequences, 97 were represented in the Gen-Bank data set of experimentally validated full-length genes at the stringency specified and were verified by manual inspection.

We believe that these 97 cases may represent intronless paralogs (see Web table 1 on Science Online at www.sciencemag.org/cgi/content/full/291/5507/1304/DC1) of known genes. Most of these are flanked by direct repeat sequences, although the precise nature of these repeats remains to be determined. All of the cases for which we have high confidence contain polyadenylated [poly(A)] tails characteristic of retrotransposition.

Recent publications describing the phenomenon of functional intronless paralogs speculate that retrotransposition may serve as a mechanism used to escape X-chromosomal inactivation (84, 86). We do not find a bias toward X chromosome origination of these retrotransposed genes; rather, the results show a random chromosome distribution of both the intron-containing and corresponding intronless paralogs. We also have found several cases of retrotransposition from a single source chromosome to multiple target chromosomes. Interesting examples include the retrotransposition of a five exon-containing ribosomal protein L21 gene on chromosome 13 onto chromosomes 1, 3, 4, 7, 10, and 14, respectively. The size of the source genes can also show variability. The largest example is the 31-exon diacylglycerol kinase zeta gene on chromosome 11 that has an intronless paralog on chromosome 13. Regardless of route, retrotransposition with subsequent gene changes in coding or noncoding regions that lead to different functions or expression patterns, represents a key route to providing an enhanced functional repertoire in mammals (87).

Our preliminary set of retrotransposed intronless paralogs contains a clear overrepresentation of genes involved in translational processes (40% ribosomal proteins and 10% translation elongation factors) and nuclear regulation (HMG nonhistone proteins, 4%), as well as metabolic and regulatory enzymes. EST matches specific to a subset of intronless paralogs suggest expression of these intronless paralogs. Differences in the upstream regulatory sequences between the source genes and their intronless paralogs could account for differences in tissue-specific gene expression. Defining which, if any, of these processed genes are functionally expressed and translated will require further elucidation and experimental validation.

THE HUMAN GENOME Pseudogenes

A pseudogene is a nonfunctional copy that is very similar to a normal gene but that has been altered slightly so that it is not expressed. We developed a method for the preliminary analysis of processed pseudogenes in the human genome as a starting point in elucidating the ongoing evolutionary forces

Table 11. Genome overview.

	
Size of the genome (including gaps)	2.91 Gbp
Size of the genome (excluding gaps)	2.66 Gbp
Longest contig	1.99 Mbp
Longest scaffold	14.4 Mbp
Percent of A+T in the genome	54
Percent of G+C in the genome	38
Percent of undetermined bases in the genome	9
Most GC-rich 50 kb	Chr. 2 (66%)
Least GC-rich 50 kb	Chr. X (25%)
Percent of genome classified as repeats	35
Number of annotated genes	26,383
Percent of annotated genes with unknown function	42 .
Number of genes (hypothetical and annotated)	39,114
Percent of hypothetical and annotated genes with unknown function	59
Gene with the most exons	Titin (234 exons)
Average gene size	27 kbp
Most gene-rich chromosome	Chr. 19 (23 genes/Mb)
Least gene-rich chromosomes	Chr. 13 (5 genes/Mb),
	Chr. Y (5 genes/Mb)
Total size of gene deserts (>500 kb with no annotated genes)	605 Mbp
Percent of base pairs spanned by genes	25.5 to 37.8*
Percent of base pairs spanned by exons	1.1 to 1.4*
Percent of base pairs spanned by introns	24.4 to 36.4*
Percent of base pairs in intergenic DNA	74.5 to 63.6*
Chromosome with highest proportion of DNA in annotated exons	Chr. 19 (9.33)
Chromosome with lowest proportion of DNA in annotated exons	Chr. Y (0.36)
Longest intergenic region (between annotated + hypothetical genes)	Chr. 13 (3,038,416 bp)
Rate of SNP variation	1/1250 bp

^{*}In these ranges, the percentages correspond to the annotated gene set (26, 383 genes) and the hypothetical + annotated gene set (39,114 genes), respectively.

Table 12. Rate of recombination per physical distance (cM/Mb) across the genome. Genethon markers were placed on CSA-mapped assemblies, and then relative physical distances and rates were calculated in 3-Mb windows for each chromosome. NA, not applicable.

Chrom.	-	Male			Sex-average			Female	
	Max.	Avg.	Min.	Max.	Avg.	Min.	Max.	. Avg.	Min.
1	2.60	1.12	0.23	2.81	1.42	0.52	3.39	1.76	0.68
2 3	2.23	0.78	0.33	. 2.65	1.12	0.54	3.17	1.40	0.61
	2.55	0.86	0.23	2.40	1.07	0.42	2.71	1.30	0.33
4	1.66	0.67	0.15	2.06	1.04	0.60	2.50	1.40	0.77
5	2.00	0.67	0.18	1.87	1.08	0.42	2.26	1.43	0.62
6	1.97	0.71	0.28	2.57	1.12	0.37	3.47	1.67	0.64
7	2.34	1.16	0.48	1.67	1.17	0.47	2.27	1.21	0.34
8	1.83	0,73	0.14	2.40	1.05	0.46	3.44	1.36	0.43
9	2.01	0.99	0.53	1.95	1.32	0.77	2.63	1.66	0.82
10	3.73	1.03	0.22	3.05	1.29	0.66	2.84	1.51	0.76
11	1.43	0.72	0.31	2.13	0.99	0.47	3.10	1.32	0.49
12	4.12	0.76	0.26	3.35	1.16	0.49	2.93	1.55	0.59
13	1.60	0.75	0.01	1.87	0.95	0.17	2.49	1.19	0.32
14	3.15	0.98	0.18	2.65	1.30	0.62	3.14	1.63	0.75
15	2.28	0.94	0.34	2.31	1.22	0.42	2.53	1.56	0.54
16	1.83	1.00	0.47	2.70	1.55	0.63	4.99	2.32	1.12
17	3.87	0.87	0.00	3.54	1.35	0.54	4.19	1.83	0.94
18	3.12	1.37	0.86	3.75	1.66	0.43	4.35	2.24	0.72
19	3.02	0.97	0.10	2.57	1.41	0.49	2.89	1.75	0.87
20	3.64	0.89	0.00	2.79	1.50	0.83	3.31	2.15	1.34
21	3.23	1.26	0.69	2.37	1.62	1.08	2.58	1.90	1.18
2	1.25	1.10	0.84	1.88	1.41	1.08	3.73	2.08	0.93
ζ	NA	NA	NA	NA	NA	NA	3.12	1.64	0.72
, ,	NA	NA	NA	NA	NA	NA	NA	NA	NA
ienome	4.12	0.88	0.00	3.75	1.22	0.17	4.99	1.55	0.32

that account for gene inactivation. The general structural characteristics of these processed pseudogenes include the complete lack of intervening sequences found in the functional counterparts, a poly(A) tract at the 3' end, and direct repeats flanking the pseudogene sequence. Processed pseudogenes occur as a result of retrotransposition, whereas unprocessed pseudogenes arise from segmental genome duplication.

We searched the complete set of Ottopredicted transcripts against the genomic sequence by means of BLAST. Genomic regions corresponding to all Otto-predicted transcripts were excluded from this analysis. We identified 2909 regions matching with greater than 70% identity over at least 70% of the length of the transcripts that likely represent processed pseudogenes. This number is probably an underestimate because specific methods to search for pseudogenes were not used.

We looked for correlations between structural elements and the propensity for retrotransposition in the human genome. GC content and transcript length were com-

pseudogenes (1177 source genes) versus the remainder of the predicted gene set. Transcripts that give rise to processed pseudogenes have shorter average transcript length (1027 bp versus 1594 bp for the Otto set) as compared with genes for which no pseudogene was detected. The overall GC content did not show any significant difference, contrary to a recent report (88). There is a clear trend in gene families that are present as processed pseudogenes. These include ribosomal proteins (67%), lamin receptors (10%), translation elongation factor alpha (5%), and HMG-non-histone proteins (2%). The increased occurrence of retrotransposition (both intronless paralogs and processed pseudogenes) among genes involved in translation and nuclear regulation may reflect an increased transcriptional activity of these genes.

5.3 Gene duplication in the human genome

Building on a previously published procedure (27), we developed a graph-theoretic algorithm, called Lek, for grouping the predicted pared between the genes with processed human protein set into protein families (89).

Table 13. Characteristics of CpG islands identified in chromosome 22 (34-Mbp sequence length) and the whole genome (2.9-Gbp sequence length) by means of two different methods. Method 1 uses a CG likelihood ratio of ≥0.6. Method 2 uses a CG likelihood ratio of ≥0.8.

	Chromosome 22		Whole genome (CS assembly)	
	Method 1	Method 2	Method 1	Method 2
Number of CpG islands detected	5,211	522	195,706	26,876
Average length of island (bp)	390	535	395	497
Percent of sequence predicted as CpG	5.9	0.8	. 2.6	0.4
Percent of first exons that overlap a CpG island	. 44	25	42	22
Percent of first exons with first position of exon contained inside a CpG island	. 37	22	40	21
Average distance between first exon and closest CpG island (bp)	1,013	10,486	2,182	17,021
Expected distance between first exon and closest CpG island (bp)	3,262	32,567	7,164	55,811

Table 14. Distribution of repetitive DNA in the compartmentalized shotgun assembly sequence.

Repetitive elements	Megabases in assembled sequences	Percent of assembly	Previously predicted (%) (83)
Alu	288	9.9	10.0
Mammalian interspersed repeat (MIR) Medium reiteration (MER)	66	2.3	1.7
	50	1.7	1.6
Long terminal repeat (LTR)	155	5.3	5.6
Long interspersed nucleotide element (LINE)	466	16.1	16.7
Total	1025	35.3	35.6

The complete clusters that result from the Lek clustering provide one basis for comparing the role of whole-genome or chromosomal duplication in protein family expansion as opposed to other means, such as tandem duplication. Because each complete cluster represents a closed and certain island of homology, and because Lek is capable of simultaneously clustering protein complements of several organisms, the number of proteins contributed by each organism to a complete cluster can be predicted with confidence depending on the quality of the annotation of each genome. The variance of each organism's contribution to each cluster can then be calculated, allowing an assessment of the relative importance of large-scale duplication versus smaller-scale, organism-specific expansion and contraction of protein families, presumably as a result of natural selection operating on individual protein families within an organism. As can be seen in Fig. 12, the large variance in the relative numbers of human as compared with D. melanogaster and Caenorhabditis elegans proteins in complete clusters may be explained by multiple events of relative expansions in gene families in each of the three animal genomes. Such expansions would give rise to the distribution that shows a peak at 1:1 in the ratio for human-worm or human-fly clusters with the slope spread covering both human and fly/ worm predominance, as we observed (Fig. 12). Furthermore, there are nearly as many clusters where worm and fly proteins predominate despite the larger numbers of proteins in the human. At face value, this analysis suggests that natural selection acting on individual protein families has been a major force driving the expansion of at least some elements of the human protein set. However, in our analysis, the difference between an ancient whole-genome duplication followed by loss, versus piecemeal duplication, cannot be easily distinguished. In order to differentiate these scenarios, more extended analyses were performed.

5.4 Large-scale duplications

Using two independent methods, we searched for large-scale duplications in the human genome. First, we describe a protein family-based method that identified highly conserved blocks of duplication. We then describe our comprehensive method for identifying all interchromosomal block duplications. The latter method identified a large number of duplicated chromosomal segments covering parts of all 24 chromosomes.

The first of the methods is based on the idea of searching for blocks of highly conserved homologous proteins that occur in more than one location on the genome. For this comparison, two genes were considered equivalent if their protein products were de-

termined to be in the same family and the same complete Lek cluster (essentially paralogous genes) (89). Initially, each chromosome was represented as a string of genes ordered by the start codons for predicted genes along the chromosome. We considered the two strands as a single string, because local inversions are relatively common events relative to large-scale duplications. Each gene was indexed according to the protein family and Lek complete cluster (89). All pairs of indexed gene strings were then aligned in both the forward and reverse directions with the Smith-Waterman algorithm (90). A match between two proteins of the same Lek complete cluster was given a score of 10 and a mismatch -10, with gap open and extend penalties of -4 and -1. With these parameters, 19 conserved interchromosomal blocks of duplication were observed, all of which were also detected and expanded by the comprehensive method described below. The detection of only a relatively small number of block duplications was a consequence of using an intrinsically conservative method grounded in the conservative constraints of the complete Lek clusters.

In the second, more comprehensive approach, we aligned all chromosomes directly with one another using an algorithm based on the MUMmer system (91). This alignment method uses a suffix tree data structure and a linear-time algorithm to align long sequences very rapidly; for example, two chromosomes of 100 Mbp can be aligned in less than 20 min (on a Compaq Alpha computer) with 4 gigabytes of memory. This procedure was used recently to identify numerous largescale segmental duplications among the five chromosomes of A. thaliana (92); in that organism, the method revealed that 60% of the genome (66 Mbp) is covered by 24 very large duplicated segments. For Arabidopsis, a DNA-based alignment was sufficient to reveal the segmental duplications between chromosomes; in the human genome, DNA alignments at the whole-chromosome level are insufficiently sensitive. Therefore, a modified procedure was developed and applied, as follows. First, all 26,588 proteins (9,675,713 million amino acids) were concatenated end-to-end in order as they occur along each of the 24 chromosomes, irrespective of strand location. The concatenated protein set was then aligned against each chromosome by the MUMmer algorithm. The resulting matches were clustered to extract all sets of three or more protein matches that occur in close proximity on two different chromosomes (93); these represent the candidate segmental duplications. A series of filters were developed and applied to remove likely false-positives from this set; for example, small blocks that were spread across many proteins were removed. To refine the

ering methods, a shuffled protein set was first created by taking the 26,588 proteins. randomizing their order, and then partitioning them into 24 shuffled chromosomes, each containing the same number of proteins as the true genome. This shuffled protein set has the identical composition to the real genome; in particular, every protein and every domain appears the same number of times. The complete algorithm was then applied to both the real and the shuffled data, with the results on the shuffled data being used to estimate the false-positive rate. The algorithm after filtering yielded 10,310 gene pairs in 1077 duplicated blocks containing 3522 distinct genes; tandemly duplicated expansions in many of the blocks explain the excess of gene pairs to distinct genes. In the shuffled data, by contrast, only 370 gene pairs were found, giving a false-positive estimate of 3.6%. The most likely explanation for the 1077 block duplications is ancient segmental duplications. In many cases, the order of the proteins has been shuffled, although proximity is preserved. Out of the 1077 blocks, 159 contain only three genes, 137 contain four genes, and 781 contain five or more genes.

To illustrate the extent of the detected duplications, Fig. 13 shows all 1077 block duplications indexed to each chromosome in 24 panels in which only duplications mapped to the indexed chromosome are displayed. The figure makes it clear that the duplications are ubiquitous in the genome. One feature that it displays is many relatively small chromosomal stretches, with one-to-many duplication relationships that are graphically striking. One such example captured by the analysis is the well-documented olfactory receptor (OR) family, which is scattered in blocks throughout the genome and which has been analyzed for genome-deployment reconstruc-

everal evolutionary stages (94). The figure also illustrates that some chromosomes, such as chromosome 2, contain many more detected large-scale duplications than others. Indeed, one of the largest duplicated segments is a large block of 33 proteins on chromosome 2, spread among eight smaller blocks in 2p, that aligns to a paralogous set on chromosome 14, with one rearrangement (see chromosomes 2 and 14 panels in Fig. 13). The proteins are not contiguous but span a region containing 97 proteins on chromosome 2 and 332 proteins on chromosome 14. The likelihood of observing this many duplicated proteins by chance, even over a span of this length, is 2.3×10^{-68} (93). This duplicated set spans 20 Mbp on chromosome 2 and 63 Mbp on chromosome 14, over 70% of the latter chromosome. Chromosome 2 also contains a block duplication that is nearly as large, which is shared by chromosome arm 2q and chromosome 12. This duplication incorporates two of the four known Hox gene clusters, but considerably expands the extent of the duplications proximally and distally on the pair of chromosome arms. This breadth of duplication is also seen on the two chromosomes carrying the other two Hox clusters.

An additional large duplication, between chromosomes 18 and 20, serves as a good example to illustrate some of the features common to many of the other observed large duplications (Fig. 13, inset). This duplication contains 64 detected ordered intrachromosomal pairs of homologous genes. After discounting a 40-Mb stretch of chromosome 18 free of matches to chromosome 20, which is likely to represent a large insert (between the gene assignments "Krup rel" and "collagen rel" on chromosome 18 in Fig. 13), the full duplication segment covers 36 Mb on chromosome 18 and 28 Mb on chromosome 20.

Fig. 12. Gene duplication in complete protein clusters. The predicted protein sets of human, worm, and fly were subjected to Lek clustering (27). The numbers of clusters with varying ratios (whole number) of human versus worm and human versus fly proteins per cluster were plotted.

By this measure, the duplication segment spans nearly half of each chromosome's net length. The most likely scenario is that the whole span of this region was duplicated as a single very large block, followed by shuffling owing to smaller scale rearrangements. As such, at least four subsequent rearrangements relative insertions and inversions seen in the duplicated segment interval. The 64 protein pairs in this alignment occur among 217 protein assignments on chromosome 18, and among 322 protein assignments on chromosome 20, for a density of involved proteins of 20 to 30%. This is consistent with an ancient large-scale duplication followed by subsequent gene loss on one or both chromosomes. Loss of just one member of a gene pair subsequent to the duplication would result in a failure to score a gene pair in the block; less than 50% gene loss on the chromosomes would lead to the duplication density observed here. As an independent verification of the significance of the alignments detected, it can be seen that a substantial number of the pairs of aligning proteins in this duplication, including some of those annotated (Fig. 13), are those populating small Lek complete clusters (see above). This indicates that they are members of very small families of paralogs; their relative scarcity within the genome validates the uniqueness and robust nature of their alignments.

Two additional qualitative features were observed among many of the large-scale duplications. First, several proteins with disease associations, with OMIM (Online Mendelian Inheritance in Man) assignments, are members of duplicated segments (see web table 2 on Science Online at www.sciencemag.org/cgi/content/full/291/5507/1304/DC1). We have also observed a few instances where paralogs on both duplicated segments are associated with similar disease conditions. Notable among these genes are proteins involved in hemostasis (coagulation factors) that are associated with bleeding disorders, transcriptional regulators like the homeobox proteins associated with developmental disorders, and potassium channels associated with cardiovascular conduction abnormalities. For each of these disease genes, closer study of the paralogous genes in the duplicated segment may reveal new insights into disease causation, with further investigation needed to determine whether they might be involved in the same or similar genetic diseases. Second, although there is a conserved number of proteins and coding exons predicted for specific large duplicated spans within the chromosome 18 to 20 alignment, the genomic DNA of chromosome 18 in these specific spans is in some cases more than 10-fold longer than the corresponding chromosome 20 DNA. This selective accretion of noncoding DNA (or conversely, loss of noncoding DNA) on one of a

pair of duplicated chromosome regions was observed in many compared regions. Hypotheses to explain which mechanisms foster these processes must be tested.

Evaluation of the alignment results gives some perspective on dating of the duplications. As noted above, large-scale ancient segmental would need to be invoked to explain the ... duplication in fact best explains many of the blocks detected by this genome-wide analysis. The regions of human chromosomes involved in the large-scale duplications expanded upon above (chromosomes 2 to 14, 2 to 12, and 18 to 20) are each syntenic to a distinct mouse chromosomal region. The corresponding mouse chromosomal regions are much more similar in sequence conservation, and even in order, to their human synteny partners than the human duplication regions are to each other. Further, the corresponding mouse chromosomal regions each bear a significant proportion of genes orthologous to the human genes on which the human duplication assignments were made. On the basis of these factors, the corresponding mouse chromosomal spans, at coarse resolution, appear to be products of the same largescale duplications observed in humans. Although further detailed analysis must be carried out once a more complete genome is assembled for mouse, the underlying large duplications appear to predate the two species' divergence. This dates the duplications, at the latest, before divergence of the primate and rodent lineages. This date can be further refined upon examination of the synteny between human chromosomes and those of chicken, pufferfish (Fugu rubripes), or zebrafish (95). The only substantial syntenic stretches mapped in these species corresponding to both pairs of human duplications are restricted to the Hox cluster regions. When the synteny of these regions (or others) to human chromosomes is extended with further mapping, the ages of the nearly chromosome-length duplications seen in humans are likely to be dated to the root of vertebrate divergence.

The MUMmer-based results demonstrate large block duplications that range in size from a few genes to segments covering most of a chromosome. The extent of segmental duplications raises the question of whether an ancient whole-genome duplication event is the underlying explanation for the numerous duplicated regions (96). The duplications have undergone many deletions and subsequent rearrangements; these events make it difficult to distinguish between a whole-genome duplication and multiple smaller events. Further analysis, focused especially on comparing the estimated ages of all the block duplications, derived partially from interspecies genome comparisons, will be necessary to determine which of these two hypotheses is more likely. Comparisons of genomes of different vertebrates, and even crossphyla genome comparisons, will allow for the deconvolution of duplications to eventually reveal the stagewise history of our genome, and with it a history of the emergence of many of the key functions that distinguish us from other living things.

6 A Genome-Wide Examination of Sequence Variations

Summary. Computational methods were used to identify single-nucleotide polymorphisms (SNPs) by comparison of the Celera sequence. to other SNP resources. The SNP rate between two chromosomes was ~1 per 1200 to 1500 bp. SNPs are distributed nonrandomly throughout the genome. Only a very small proportion of all SNPs (<1%) potentially impact protein function based on the functional analysis of SNPs that affect the predicted coding regions. This results in an estimate that only thousands, not millions, of genetic variations may contribute to the struc. tural diversity of human proteins.

Having a complete genome sequence enables researchers to achieve a dramatic acceleration in the rate of gene discovery, but only through analysis of sequence variation in DNA can we discover the genetic basis for variation in health among human beings. Whole-genome shotgun sequencing is a particularly effective method for detecting sequence variation in tandem with whole-genome assembly. In addition, we compared the distribution and attributes of SNPs ascertained by three other methods: (i) alignment of the Celera consensus sequence to the PFP assembly, (ii) overlap of high-quality reads of genomic sequence (referred to as "Kwok"; 1,120,195 SNPs) (97), and (iii) reduced representation shotgun sequencing (referred to as "TSC"; 632,640 SNPs) (98). These data were consistent in showing an overall nucleotide diversity of $\sim 8 \times 10^{-4}$, marked heterogeneity across the genome in SNP density, and an overwhelming preponderance of noncoding variation that produces no change in expressed proteins.

6.1 SNPs found by aligning the Celera consensus to the PFP assembly

Ideally, methods of SNP discovery make full use of sequence depth and quality at every site. and quantitatively control the rate of false-positive and false-negative calls with an explicit sampling model (99). Comparison of consensus sequences in the absence of these details necessitated a more ad hoc approach (quality scores could not readily be obtained for the PFP assembly). First, all sequence differences between the two consensus sequences were identified; these were then filtered to reduce the contribution of sequencing errors and misassembly. As a measure of the effectiveness of the filtering step, we monitored the ratio of transition and transversion substitutions, because a 2:1 ratio has been well documented as typical in mammalian evolution (100) and in human SNPs

(101, 102). The filtering steps consisted of removing variants where the quality score in the Celera consensus was less than 30 and where the density of variants was greater than 5 in 400 bp. These filters resulted in shifting the transition-to-transversion ratio from 1.57:1 to 1.89:1. When applied to 2.3 Gbp of alignments between the Celera and PFP consensus sequences, these filters resulted in identification of 2,104,820 putative SNPs from a total of 2,778,474 substitution differences. Overlaps between this set of SNPs and those found by other methods are described below.

6.2 Comparisons to public SNP databases

Additional SNPs, including 2,536,021 from dbSNP (www.ncbi.nlm.nih.gov/SNP) and 13,150 from HGMD (Human Gene Mutation Database, from the University of Wales, UK), were mapped on the Celera consensus sequence by a sequence similarity search with the program PowerBlast (103). The two largest data sets in dbSNP are the Kwok and TSC sets, with 47% and 25% of the dbSNP records. Low-quality alignments with partial coverage of the dbSNP sequence and alignments that had less than 98% sequence identity between the Celera sequence and the dbSNP flanking sequence were eliminated. dbSNP sequences mapping to multiple locations on the Celera genome were discarded. A total of 2,336,935 dbSNP variants were mapped to 1,223,038 unique locations on the Celera sequence, implying considerable redundancy in dbSNP. SNPs in the TSC set mapped to 585,811 unique genomic locations, and SNPs in the Kwok set mapped to 438,032 unique locations. The combined unique SNPs counts used in this analysis, including Celera-PFP, TSC, and Kwok, is 2,737,668. Table 15 shows that a substantial fraction of SNPs identified by one of these methods was also found by another method. The very high overlap (36.2%) between the Kwok and Celera-PFP SNPs may be due in part to the use by Kwok of sequences that went into the PFP assembly. The unusually low overlap (16.4%) between the Kwok and TSC sets is due

Table 15. Overlap of SNPs from genome-wide SNP databases. Table entries are SNP counts for each pair of data sets. Numbers in parentheses are the fraction of overlap, calculated as the count of overlapping SNPs divided by the number of SNPs in the smaller of the two databases compared. Total SNP counts for the databases are: Celera-PFP, 2,104,820; TSC, 585,811; and Kwok 438,032. Only unique SNPs in the TSC and Kwok data sets were included.

	TSC	Kwok
Celera-PFP TSC	188,694 (0.322)	158,532 (0.362)
		72,024 (0.164)

heir being the smallest two sets. In addition, 24.5% of the Celera-PFP SNPs overlap with SNPs derived from the Celera genome sequences (46). SNP validation in population samples is an expensive and laborious process, so confirmation on multiple data sets may provide an efficient initial validation "in silico" (by computational analysis).

One means of assessing whether the three sets of SNPs provide the same picture of human variation is to tally the frequencies of the six possible base changes in each set of SNPs (Table 16). Previous measures of nucleotide diversity were mostly derived from small-scale analysis on candidate genes (101), and our analysis with all three data sets validates the previous observations at the whole-genome scale. There is remarkable homogeneity between the SNPs found in the Kwok set, the TSC set, and in our whole-genome shotgun (46) in this substitution pattern. Compared with the rest of the data sets, Celera-PFP deviates slightly from the 2:1 transition-totransversion ratio observed in the other SNP sets. This result is not unexpected, because some fraction of the computationally identified SNPs in the Celera-PFP comparison may in fact be sequence errors. A 2:1 transition:transversion ratio for the bona fide SNPs would be obtained if one assumed that 15% of the sequence differences in the Celera-PFP set were a result of (presumably random) sequence errors.

6.3 Estimation of nucleotide diversity from ascertained SNPs

The number of SNPs identified varied widely across chromosomes. In order to normalize these values to the chromosome size and sequence coverage, we used π , the standard statistic for nucleotide diversity (104). Nucleotide diversity is a measure of per-site heterozygosity, quantifying the probability that a pair of chromosomes drawn from the population will differ at a nucleotide site. In order to calculate nucleotide diversity for each chromosome, we need to know the number of nucleotide sites that were surveyed for variation, and in methods like reduced respresentation sequencing, we need to know the sequence quality and the depth of coverage at each

site. These data are not readily available, so we could not estimate nucleotide diversity from the TSC effort. Estimation of nucleotide diversity from high-quality sequence overlaps should be possible, but again, more information is needed on the details of all the alignments.

Estimation of nucleotide diversity from a shotgun assembly entails calculating for each column of the multialignment, the probability that two or more distinct alleles are present, and the probability of detecting a SNP if in fact the alleles have different sequence (i.e., the probability of correct sequence calls). The greater the depth of coverage and the higher the sequence quality, the higher is the chance of successfully detecting a SNP (105). Even after correcting for variation in coverage, the nucleotide diversity appeared to vary across autosomes. The significance of this heterogeneity was tested by analysis of variance, with estimates of π for 100-kbp windows to estimate variability within chromosomes (for the Celera-PFP comparison, F = 29.73, P <0.0001).

Average diversity for the autosomes estimated from the Celera-PFP comparison was 8.94×10^{-4} . Nucleotide diversity on the X chromosome was 6.54×10^{-4} . The X is expected to be less variable than autosomes, because for every four copies of autosomes in the population, there are only three X chromosomes, and this smaller effective population size means that random drift will more rapidly remove variation from the X (106).

Having ascertained nucleotide variation genome-wide, it appears that previous estimates of nucleotide diversity in humans based on samples of genes were reasonably accurate (101, 102, 106, 107). Genome-wide, our estimate of nucleotide diversity was 8.98×10^{-4} for the Celera-PFP alignment, and a published estimate averaged over 10 densely resequenced human genes was 8.00×10^{-4} (108).

6.4 Variation in nucleotide diversity across the human genome

Such an apparently high degree of variability among chromosomes in SNP density raises the question of whether there is heterogeneity at a finer scale within chromo-

Table 16. Summary of nucleotide changes in different SNP data sets.

SNP data set	A/G	C/T	A/C	A/T	C/G	T/G	Transition:
	(%)	(%)	(%)	(%)	(%)	(%)	transversion
Celera-PFP	30.7	30.7	10.3	8.6	9.2	10.3	1.59:1
Kwok*	33.7	33.8	8.5	7.0	8.6	8.4	2.07:1
TSC†	33.3	33.4	8.8	7.3	8.6	8.6	1.99:1

*November 2000 release of the NCBI database dbSNP (www.nci.nlm.nih.gov/SNP/) with the method defined as Overlap SnpDetectionWithPolyBayes. The submitter of the data is Pui-Yan Kwok from Washington University. †November 2000 release of NCBI dbSNP (www.ncbi.nlm.nih.gov/SNP/) with the methods defined as TSC-Sanger, TSC-WICGR, and TSC-WUGSC. The submitter of the data is Lincoln Stein from Cold Spring Harbor Laboratory.

Fig. 13. Segmental duplica-tions between chromosomes in the human ge-nome. The 24 panels show the 1077 duplicated blocks of genes, containing 10,310 pairs of genes in total. Each line represents a pair of homologous genes belonging to a block; all blocks contain at least three genes on each of the chromosomes where they appear. Each panel shows all the duplications between a single chromosome and other chromosomes with shared blocks. The chromosome at the center of each panel is shown as a thick red line for emphasis. Other chromosomes are displayed from top to bot-tom within each panel ordered by chromosome number. The inset (bottom, center right) shows a close-up of one duplication between chromo-somes 18 and 20, expanded to display the gene names of 12 of the 64 gene pairs shown.

greater than expected by chance. If SNPs cleotide diversities in 100-kbp windows then it would seem that there ought to be a Poisson distribution of numbers of SNPs in fragments of arbitrary constant size. The observed dispersion in the distribution of SNPs in 100-kbp fragments was far greater than predicted from a Poisson distribution (Fig. 14). However, this simplistic model ignores the different recombination rates and population histories that exist in different regions of the genome. Population genetics theory holds that we can account for this variation with a mathematical formulation called the neutral coalescent (109). Applying well-tested algorithms for simulating the neutral coalescent with recombination (110), and using an effective population size of 10,000 and a perbase recombination rate equal to the mutation rate (111), we generated a distribution of numbers of SNPs by this model as well (112). The observed distribution of SNPs has a much larger variance than either the Poisson model or the coalescent model, and the difference is highly significant. This implies that there is significant variability across the genome in SNP density, an observation that begs an explanation.

Several attributes of the DNA sequence may affect the local density of SNPs, including the rate at which DNA polymerase makes errors and the efficacy of mismatch repair. One key factor that is likely to be associated with SNP density is the G+C content, in part because methylated cytosines in CpG dinucleotides tend to undergo deamination to form thymine, accounting for a nearly 10-fold increase in the mutation rate of CpGs over other dinucle-

somes, and whether this heterogeneity is otides. We tallied the GC content and nuoccur by random and independent mutations, across the entire genome and found that the correlation between them was positive (r =0.21) and highly significant (P < 0.0001), but G+C content accounted for only a small part of the variation.

6.5 SNPs by genomic class

To test homogeneity of SNP densities across functional classes, we partitioned sites into intergenic (defined as >5 kbp from any predicted transcription unit), 5'genes, derived from the NCBI RefSeq da--tabase and all human genes predicted from the Celera Otto annotation. In coding regions, SNPs were categorized as either silent, for those that do not change amino acid sequence, or missense, for those that change the protein product. The ratio of missense to silent coding SNPs in Celera-PFP, TSC, and Kwok sets (1.12, 0.91, and 0.78, respectively) shows a markedly reduced frequency of missense variants compared with the neutral expectation, consistent with the elimination by natural selection of a fraction of the deleterious amino acid changes (112). These ratios are comparable to the missense-to-silent ratios of. 0.88 and 1.17 found by Cargill et al. (101) and by Halushka et al. (102). Similar results were observed in SNPs derived from Celera shotgun sequences (46).

It is striking how small is the fraction of SNPs that lead to potentially dysfunctional alterations in proteins. In the 10,239 Ref-Seq genes, missense SNPs were only about

0.12, 0.14, and 0.17% of the total SNP counts in Celera-PFP, TSC, and Kwok SNPs, respectively. Nonconservative protein changes constitute an even smaller fraction of missense SNPs (47, 41, and 40% in Celera-PFP, Kwok, and TSC). Intergenic regions have been virtually unstudied (113), and we note that 75% of the SNPs we identified were intergenic (Table 17). The SNP rate was highest in introns and lowest in exons. The SNP rate was lower in intergenic regions than in introns, providing one of the first discriminators between these two classes of DNA. These SNP UTR, exonic (missense and silent), in- rates were confirmed in the Celera SNPs, which tronic, and 3'-UTR for 10,239 known also exhibited a lower rate in exons than in introns, and in extragenic regions than in introns (46). Many of these intergenic SNPs will provide valuable information in the form of markers for linkage and association studies, and some fraction is likely to have a regulatory function as well.

7 An Overview of the Predicted Protein-Coding Genes in the Human

Summary. This section provides an initial computational analysis of the predicted protein set with the aim of cataloging prominent differences and similarities when the human genome is compared with other fully sequenced eukaryotic genomes. Over 40% of the predicted protein set in humans cannot be ascribed a molecular function by methods that assign proteins to known families. A protein domain-based analysis provides a detailed catalog of the prominent differences in the human genome when compared with the fly and worm genomes. Prominent among these are domain expansions in proteins involved in developmental regulation and in cellular processes such as neuronal function, hemostasis, acquired immune response, and cytoskeletal complexity. The final enumeration of protein families and details of protein structure will rely on additional experimental work and comprehensive manual curation.

A preliminary analysis of the predicted human protein-coding genes was conducted. Two methods were used to analyze and classify the molecular functions of 26,588 predicted proteins that represent 26,383 gene predictions with at least two lines of evidence as described above. The first method was based on an analysis at the level of protein families, with both the publicly available Pfam database (114, 115) and Celera's Panther Classification (CPC) (Fig. 15) (116). The second method was based on an analysis at the level of protein domains, with both the Pfam and SMART databases (115, 117).

The results presented here are preliminary and are subject to several limitations.

Fig. 14. SNP density in each 100-kbp interval as determined with Celera-PFP SNPs. The color codes are as follows: black, Celera-PFP SNP density; blue, coalescent model; and red, Poisson distribution. The figure shows that the distribution of SNPs along the genome is nonrandom and is not entirely accounted for by a coalescent model of regional history.

Both the gene predictions and functional assignments have been made by using computational tools, although the statistical models in Panther, Pfam, and SMART have been built, annotated, and reviewed by expert biologists. In the set of computationally predicted genes, we expect both false-positive predictions (some of these may in fact be inactive pseudogenes) and false-negative predictions (some human genes will not be computationally predicted). We also expect errors in delimiting the boundaries of exons and genes. Similarly, in the automatic functional assignments, we also expect both false-positive and false-negative predictions. The functional assignment protocol focuses on protein families that tend to be found across several organisms, or on families of known human genes. Therefore, we do not assign a function to many genes that are not in large families, even if the function is known. Unless otherwise specified, all enumeration of the genes in any given family or functional category was taken from the set of 26,588 predicted proteins, which were assigned functions by using statistical score cutoffs defined for models in Panther, Pfam, and SMART.

For this initial examination of the predicted human protein set, three broad questions were asked: (i) What are the likely molecular functions of the predicted gene products, and how are these proteins categorized with current classification methods? (ii) What are the core functions that appear to be common across the animals?

(iii) How does the human protein complement differ from that of other sequenced eukaryotes?

7.1 Molecular functions of predicted human proteins

Figure 15 shows an overview of the putative molecular functions of the predicted 26,588 human proteins that have at least two lines of supporting evidence. About 41% (12,809) of the gene products could not be classified from this initial analysis and are termed proteins with unknown functions. Because our automatic classification methods treat only relatively large protein families, there are a number of "unclassified" sequences that do, in fact, have a known or predicted function. For the 60% of the protein set that have automatic functional predictions, the specific protein functions have been placed into broad classes. We focus here on molecular function (rather than higher order cellular processes) in order to classify as many proteins as possible. These functional predictions are based on similarity to sequences of known function.

In our analysis of the 12,731 additional low-confidence predicted genes (those with only one piece of supporting evidence), only 636 (5%) of these additional putative genes were assigned molecular functions by the automated methods. One-third of these 636 predicted genes represented endogenous retroviral proteins, further suggesting that the majority of

these unknown-function genes are not real genes. Given that most of these additional 12,095 genes appear to be unique among the genomes sequenced to date, many may simply represent false-positive gene predictions.

The most common molecular functions are the transcription factors and those involved in nucleic acid metabolism (nucleic acid enzyme). Other functions that are highly represented in the human genome are the receptors, kinases, and hydrolases. Not surprisingly, most of the hydrolases are proteases. There are also many proteins that are members of proto-oncogene families, as well as families of "select regulatory molecules": (i) proteins involved in specific steps of signal transduction such as heterotrimeric GTP-binding proteins (G proteins) and cell cycle regulators, and (ii) proteins that modulate the activity of kinases, G proteins, and phosphatases.

Table 17. Distribution of SNPs in classes of genomic regions.

Genomic region class	Size of region examined (Mb)	Celera-PFF SNP density (SNP/Mb)
Intergenic	2185	707
Gene (intron + exon)	646	917
Intron	615	921
First intron	164	808
Exon	31	529
First exon	10	592

Fig. 15. Distribution the molecular functions of 26,383 human genes. Each slice lists the numbers and percentages (in parentheses) of human gene functions assigned to a given category of molecular function. The outer circle shows the assignment to molecular function categories in the Gene Ontology (GO) (179), and the inner circle the assignment to Celera's Panther molecular function categories (116).

Because of the various "model organism" genome-sequencing projects that have already been completed, reasonable comparative information is available for beginning the analysis of the evolution of the human genome. The genomes of S. cerevisiae ("bakers' yeast") (118) and two diverse invertebrates, C. elegans (a nematode worm) (119) and D. melanogaster (fly) (26), as well as the first plant genome, A. thaliana, recently completed (92), provide a diverse background for genome comparisons.

We enumerated the "strict orthologs" conserved between human and fly, and between human and worm (Fig. 16) to address the question, What are the core functions that appear to be common across the animals? The concept of orthology is important because if two genes are orthologs, they can be traced by descent to the common ancestor of the two organisms (an "evolutionarily conserved protein set"), and therefore are likely to perform similar conserved functions in the different organisms. It is critical in this analysis to separate orthologs (a gene that appears in two organisms by descent from a common ancestor) from paralogs (a gene that appears in more than one copy in a given organism by a duplication event) because paralogs may subsequently diverge in function. Following the yeast-worm ortholog comparison in

THE HUMAN GENOME

7.2 Evolutionary conservation of core (120), we identified two different cases for each pairwise comparison (human-fly and human-worm). The first case was a pair of genes, one from each organism, for which . there was no other close homolog in either organism. These are straightforwardly identified as orthologous, because there are no additional members of the families that complicate separating orthologs from paralogs. The second case is a family of genes with more than one member in either or both of the organisms being compared. Chervitz et al. (120) deal with this case by analyzing a phylogenetic tree that described the relationships between all of the sequences in both organisms, and then looked for pairs of genes that were nearest neighbors in the tree. If the nearest-neighbor pairs were from different organisms, those genes were presumed to be orthologs. We note that these nearest neighbors can often be confidently identified from pairwise sequence comparison without having to examine a phylogenetic tree (see legend to Fig. 16). If the nearest neighbors are not from different organisms, there has been a paralogous expansion in one or both organisms after the speciation event (and/or a gene loss by one organism). When this one-to-one correspondence is lost, defining an ortholog becomes ambiguous. For our initial computational overview of the predicted human protein set, we could not answer this question for every predicted protein. Therefore, we con-

sider only "strict orthologs," i.e., the proteins with unambiguous one-to-one relationships (Fig. 16). By these criteria, there are 2758 strict human-fly orthologs, 2031 humanworm (1523 in common between these sets). We define the evolutionarily conserved set as those 1523 human proteins that have strict orthologs in both D. melanogaster and C. elegans.

The distribution of the functions of the conserved protein set is shown in Fig. 16. Comparison with Fig. 15 shows that, not surprisingly, the set of conserved proteins is not distributed among molecular functions in the same way as the whole human protein set. Compared with the whole human set (Fig. 15), there are several categories that are overrepresented in the conserved set by a factor of ~2 or more. The first category is nucleic acid enzymes, primarily the transcriptional machinery (notably DNA/RNA methyltransferases, DNA/RNA polymerases, helicases, DNA ligases, DNA- and RNA-processing factors, nucleases, and ribosomal proteins). The basic transcriptional and translational machinery is well known to have been conserved over evolution, from bacteria through to the most complex eukaryotes. Many ribonucleoproteins involved in RNA splicing also appear to be conserved among the animals. Other enzyme types are also overrepresented (transferases, oxidoreductases, ligases, lyases, and isomerases). Many of these en-

zymes are involved in intermediary metabolism. The only exception is the hydrolase

category, which is not significantly overrepresented in the shared protein set. Proteases form the largest part of this category, and several large protease families have expanded in each of these three organisms after their divergence. The category of select regulatory molecules is also overrepresented in the conserved set. The major conserved families are small guanosine triphosphatases (GTPases) (especially the Ras-related superfamily, including ADP ribosylation factor) and cell cycle regulators (particularly the cullin family, cyclin C family, and several cell division protein kinases). The last two significantly overrepresented categories are protein transport and trafficking, and chaperones. The most conserved groups in these categories are proteins involved in coated vesicle-mediated transport, and chaperones involved in protein folding and heat-shock response [particularly the DNAJ family, and heat-shock protein 60 (HSP60), HSP70, and HSP90 families]. These observations provide only a conservative estimate of the protein families in the context of specific cellular processes that were likely derived from the last common ancestor of the human, fly, and worm. As stated before, this analysis does not provide a complete estimate of conservation across the three animal genomes, as paralogous duplication makes the determination of true orthologs difficult within the members of conserved protein families.

7.3 Differences between the human genome and other sequenced eukaryotic genomes

To explore the molecular building blocks of the vertebrate taxon, we have compared the human genome with the other sequenced eukaryotic genomes at three levels: molecular functions, protein families, and protein domains.

Molecular differences can be correlated with phenotypic differences to begin to reveal the developmental and cellular processes that are unique to the vertebrates. Tables 18 and 19 display a comparison among all sequenced eukaryotic genomes, over selected protein/ domain families (defined by sequence similarity, e.g., the serine-threonine protein kinases) and superfamilies (defined by shared molecular function, which may include several sequence-related families, e.g., the cytokines). In these tables we have focused on (super) families that are either very large or that differ significantly in humans compared with the other sequenced eukaryote genomes. We have found that the most prominent human expansions are in proteins involved in (i) acquired immune functions; (ii) neural development, structure, and functions; (iii) intercellular and intracellular signaling pathways

in development and homeostasis; (iv) hemostasis; and (v) apoptosis.

Acquired immunity. One of the most striking differences between the human genome and the Drosophila or C. elegans genome is the appearance of genes involved in acquired immunity (Tables 18 and 19). This is expected, because the acquired immune response is a defense system that only occurs in vertebrates. We observe 22 class I and 22 (MHC) antigen genes and 114 other immunoglobulin genes in the human genome. Inaddition, there are 59 genes in the cognate immunoglobulin receptor family. At the domain level, this is exemplified by an expansion and recruitment of the ancient immunoglobulin fold to constitute molecules such as MHC, and of the integrin fold to form several of the cell adhesion molecules that mediate interactions between immune effector cells and the extracellular matrix. Vertebrate-specific proteins include the paracrine immune regulators family of secreted 4-alpha helical chemokines. Some of the cytoplasmic signal transduction components associated with cytokine receptor signal transduction are also features that are poorly represented in the fly and worm. These include protein domains found in the signal transducer and activator of transcription (STATs), the suppressors of cytokine signaling (SOCS), and protein inhibitors of activated STATs (PIAS). In contrast, many of the animal-specific protein domains that play a role in innate immune response. such as the Toll receptors, do not appear to be significantly expanded in the human genome.

Neural development, structure, and function. In the human genome, as compared with the worm and fly genomes, there is a marked increase in the number of members of protein families that are involved in neural development. Examples include neurotrophic factors such as ependymin, nerve growth factor, and signaling molecules such as semaphorins, as well as the number of proteins involved directly in neural structure and function such as myelin proteins, voltage-gated ion channels, and synaptic proteins such as synaptotagmin. These observations correlate well with the known phenotypic differences between the nervous systems of these taxa, notably (i) the increase in the number and connectivity of neurons; (ii) the increase in number of distinct neural cell types (as many as a thousand or more in human compared with a few hundred in fly and worm) (121); (iii) the increased length of individual axons; and (iv) the significant increase in glial cell number, especially the appearance of myelinating glial cells, which are electrically inert supporting cells differentiated from the same stem cells as neurons. A number

of prominent protein expansions are involved in the processes of neural development. Of the extracellular domains that mediate cell adhesion, the connexin domaincontaining proteins (122) exist only in humans. These proteins, which are not present in the Drosophila or C. elegans genomes, appear to provide the constitutive subunits of intercellular channels and the structural basis for electrical coupling. Pathway findclass: II major histocompatibility complex ing by axons and neuronal network formation is mediated through a subset of ephrins , and their cognate receptor tyrosine kinases that act as positional labels to establish topographical projections (123). The probable biological role for the semaphorins (22 in human compared with 6 in the fly and 2 in the worm) and their receptors (neuropilins and plexins) is that of axonal guidance molecules (124). Signaling molecules such as neurotrophic factors and some cytokines have been shown to regulate neuronal cell survival, proliferation, and axon guidance (125). Notch receptors and ligands play bundle proteins, namely the cytokines and a important roles in glial cell fate determination and gliogenesis (126).

Other human expanded gene families play key roles directly in neural structure and function. One example is synaptotagmin (expanded more than twofold in humans relative to the invertebrates), originally found to regulate synaptic transmission by serving as a Ca2+ sensor (or receptor) during synaptic vesicle fusion and release (127). Of interest is the increased co-occurrence in humans of PDZ and the SH3 domains in neuronalspecific adaptor molecules; examples include proteins that likely modulate channel activity at synaptic junctions (128). We also noted expansions in several ion-channel families (Table 19), including the EAG subfamily (related to cyclic nucleotide gated channels), the voltage-gated calcium/sodium channel family, the inward-rectifier potassium channel family, and the voltage-gated potassium channel, alpha subunit family. Voltage-gated sodium and potassium channels are involved in the generation of action potentials in neurons. Together with voltage-gated calcium channels, they also play a key role in coupling action potentials to neurotransmitter release, in the development of neurites, and in short-term memory. The recent observation of a calcium-regulated association between sodium channels and synaptotagmin may have consequences for the establishment and regulation of neuronal excitability (129).

Myelin basic protein and myelin-associated glycoprotein are major classes of protein components in both the central and peripheral nervous system of vertebrates. Myelin P0 is a major component of peripheral myelin, and myelin proteolipid and myelin oligodendrocyte glycopotein are found in the central nervous system. Mutations in any of these

Table 18. Domain-based comparative analysis of proteins in *H. sapiens* (H), *D. melanogaster* (F), *C. elegans* (W), *S. cerevisiae* (Y), and *A. thaliana* (A). The predicted protein set of each of the above eukaryotic organisms was analyzed with Pfam version 5.5 using E value cutoffs of 0.001. The number of proteins containing the specified Pfam domains as well as the total number of domains (in parentheses) are shown in each column. Domains were categorized into cellular processes for presentation. Some domains (i.e., SH2) are listed in

more than one cellular process. Results of the Pfam analysis may differ from results obtained based on human curation of protein families, owing to the limitations of large-scale automatic classifications. Representative examples of domains with reduced counts owing to the stringent E value cutoff used for this analysis are marked with a double asterisk (**). Examples include short divergent and predominantly alpha-helical domains, and certain classes of cysteine-rich zinc finger proteins.

Accession	Domain name	Domain description	Н	F	. 117	<u> </u>	
			<u> </u>	r 	w	Y 	. A
PF02039	Adrenomedullin	Developmental and homeosta	tic regulators				
PF00212	ANP	Adrenomedullin	1	. 0	0	0	0
		Atrial natriuretic peptide	. 2	. 0	Ō	Ö	ŏ
PF00028	Cadherin	Cadherin domain	100 (550)		16 (66)	ŏ	ŏ
PF00214	Calc_CGRP_IAPP	Calcitonin/CGRP/IAPP family	` á	0	.0 (00)	ő	_
PF01110	CNTF	Ciliary neurotrophic factor	. 1	. 0	Ö	0	0
PF01093	: Clusterin	Clusterin	3	ŏ	ŏ		0.
PF00029	Connexin	Connexin	14 (16)	Ö		0	. 0
PF00976	ACTH_domain	Corticotropin ACTH domain	17(10)	0	0	. 0	0
PF00473	CRF	Corticotropin-releasing factor family	,	0	0	0	0
PF00007	Cys_knot	Cystine-knot domain	10/11\		0	. 0	0
PF00778	DIX	Dix domain	10 (11)	2	0	0	0
PF00322	Endothelin	Endothelin family	. 5	2	4	0	0
PF00812	Ephrin		3	. 0	0	0	0
PF01404	EPh_Ibd	Ephrin	7 (8)	2	4.	0	0
PF00167	FGF	Ephrin receptor ligand binding domain	12	2	1	0	Ō
		Fibroblast growth factor	23	1	1	Ŏ	ō
PF01534	Frizzled	Frizzled/Smoothened family membrane region	9	7	3	ŏ	Ö
PF00236	Hormone6	Glycoprotein hormones	1	ò	õ	Ö	-
PF01153	Glypican	Glypican	14	2	-	-	0
PF01271	Granin	Grainin (chromogranin or secretogranin)	. 3		1	. 0	0
PF02058	Guanylin	Guanylin precursor	_	0	0	0	0
PF00049	Insulin	Insulin/IGF/Relaxin family	1	. 0	0	0	0
PF00219	IGFBP	Insulin like grounds for the binding of the	7	4	0	0	0
PF02024	Leptin	Insulin-like growth factor binding proteins	10	0	0	0	0
PF00193	Xlink	Leptin	. 1	0	. 0	0	10
PF00243		LINK (hyaluron binding)	13 (23)	0	1	o .	Ö
	NGF	Nerve growth factor family	. ` . ` . `	0	o	ŏ	Ö
PF02158	Neuregulin	Neuregulin family	4	Ŏ.	·	0	
PF00184	Hormone5	Neurohypophysial hormones	1	Ö	Ö	. •	0
PF02070	NMU	Neuromedin U	1	0	-	0	0
PF00066	Notch	Notch (DSL) domain	2 (5)	•	0	0	0
PF00865	Osteopontin	Osteopontin	3 (5)	2 (4)	2 (6)	0	0
PF00159	Hormone3	Pancreatic hormone peptides	<u> </u>	0	0	0	0
PF01279	Parathyroid	Parathyroid hormone family	3	0	0	0	0
PF00123	Hormone2		2	` 0	0	0	0
PF00341	PDGF	Peptide hormone	5 (9)	0	0	0	0
PF01403		Platelet-derived growth factor (PDGF)	5	1	0	Ó	Ŏ.
	Sema	Sema domain	27 (29)	8 (10)	3 (4)	Ö	Õ
PF01033	Somatomedin_B	Somatomedin B domain	s (8)	3	0	Ö	Ö
PF00103	Hormone	Somatotropin	. i	ő	ŏ	Ö	
PF02208	Sorb	Sorbin homologous domain	,	ŏ	0	-	0
PF02404	SCF ·	Stem cell factor	2	0	•	0	. 0
PF01034	Syndecan	Syndecan domain	2	0	0	0	0
PF00020	TNFR_c6	TNFR/NGFR cysteine-rich region	3 (24)	1	1	0	0
PF00019	TGF-β	Transforming growth factor β-like domain	17 (31)	1	0	0	0
PF01099	Uteroglobin	Utoroglobia formitic	27 (28)	6	. 4	0	0
PF01160	Opiods_neuropep	Uteroglobin family	3	0.	. 0	0	0
F00110		Vertebrate endogenous opioids neuropeptide	· 3	0	0	0	ñ.
100110	Wnt	Wnt family of developmental signaling proteins	18	7 (10)	5	Ö	Ö
		Hemostasis		. ()	•	v	U
F01821	ANATO	Anaphylotoxin-like domain	6 (14)	•	_		
F00386	C1q	C1q domain	6 (14)	0	0	0	0
F00200	Disintegrin		24	0	0	0	0
F00754		Disintegrin FF (2)	18	2	3	0	Ō
F01410	F5_F8_type_C	F5/8 type C domain	15 (20)	5 (6)	2	ō	Ö
	COLFI	Fibrillar collagen C-terminal domain	.10	`ó	ō	. 0	
F00039	Fn1	Fibronectin type I domain	5 (18)	0 :	ŏ		0
F00040	Fn2	Fibronectin type II domain	11 (16)	Ö		0	0
F00051	Kringle	Kringle domain	15 (24)		0		0
F01823	MACPF	MAC/Perforin domain	15 (24)	2	2	0	0
F00354	Pentaxin	Pentaxin family	6	0	0	0	0
F00277	SAA_proteins	Construction of the second sec	9 .	0	0	0	0
00277		Serum amyloid A protein	4	0	Ö	Ŏ	Ö
	Sushi	Sushi domain (SCR repeat)	53 (191)	11 (42)	8 (45)	Ö	
	TSPN	Thrombospondin N-terminal-like domains	14	1 (12)		-	0
	Tissue_fac	Tissue factor	1	,	0	0	0
00868	Transglutamin_N	Transglutaminase family		. 0	0	0	0
	Transglutamin_C	Transglutaminase family	6	1	0	0	0
		· · - · · · · · · · · · · · · · · · · ·	8	1	0	0 .	0

Accession number	Domain name	Domain description	Н	F	w	Y	A
PF00594	Gla ,	Vitamin K-dependent carboxylation/gamma- carboxyglutamic (GLA) domain	. 11	0	0. (0	. 0
PF00711	Defensin_beta	Immune response					
PF00748	Calpain_inhib	Beta defensin	1	0	0	0	0
PF00666	Cathelicidins	Calpain inhibitor repeat	3 (9)	, 0	. 0	. 0	. 0
PF00129	The second secon	Cathelicidins	2	0	0	0	Ö
1100123	MHC_I	Class I histocompatibility antigen, domains alpha 1 and 2	18 (20)	. 0	0	Ō	ŏ
PF00993	MHC_II_alpha**			•			
PF00969	MHC_II_beta**	Class II histocompatibility antigen, alpha domain	5 (6)	0	0	0	0
PF00879	Defensin_propep	Class II histocompatibility antigen, beta domain Defensin propeptide	7	0	0	0	0
PF01109	GM_CSF	Granular do marca de marca de la constante de	, З	. 0	. 0	0	0
PF00047	lg	Granulocyte-macrophage colony-stimulating factor	1	0	. 0	0	0
PF00143	Interferon	Immunoglobulin domain	381 (930)	125 (291)	67 (323)	0	0
PF00714	IFN-gamma	Interferon alpha/beta domain	7 (9)	. 0	Ó	0	0
PF00726	IL10	Interferon gamma	1	0	0	0	0
PF02372	IL15	Interleukin-10	1	0	. 0	0	0
PF00715	IL2	Interleukin-15	1	0	0	0	. 0
PF00727	IL4	Interleukin-2	1	0	. 0	Ō	ŏ
PF02025		Interleukin-4	1	0	0	ō	Ö
	ILS	Interleukin-5	1	0	Ō	ō	ŏ
PF01415	IL7	Interleukin-7/9 family	1	0	ō	ŏ	ŏ
PF00340	IL1	Interleukin-1	7	ō	ŏ	ŏ	Ö
PF02394	IL1_propep	Interleukin-1 propeptide	1	ō	ŏ	ő	Ö
PF02059	IL3	Interleukin-3	i	ŏ	. 0	0	
PF00489	IL6	Interleukin-6/G-CSF/MGF family	,	ő	. 0	0	0
PF01291	LIF_OSM	Leukemia inhibitory factor (LIF)/oncostatin (OSM) family	2	ŏ	ŏ	Ö	0 0
PF00323	Defensins	Mammalian defensin	. 2	0	•	-	_
F01091	PTN_MK	PTN/MK heparin-binding protein	2	0	0	0	0
F00277	SAA_proteins	Serum amyloid A protein	_	0	0	0	0
F00048	IL8	Small cytokines (intecrine/chemokine), interleukin-8 like	. 4 32	0 0	0 0	0	· 0
F01582	TIR	TIR domain		·			
F00229	TNF	TNF (tumor necrosis factor) family	18 12	8	2	0	131 (143)
F00088	Trefoil	Trefoil (P-type) domain	5 (6)	0	0	. 0	0
		PI-PY-rho GTPase signaling		v	2	U	. 0
F00779	BTK	BTK motif			_	_	
F00168	C2	C2 domain	5 72 (101)	77 (44)	0	0	. 0
F00609	DAGKa	Diacylglycerol kinase accessory domain (presumed)	73 (101)	32 (44)	24 (35)	6 (9)	66 (90)
F00781	DAGKc	Diacytalycerol kinase accessory domain (presumed)	9	4	7	0	6
F00610	DEP	Diacylglycerol kinase catalytic domain (presumed)	10	8	8	2	11 (12)
	٠	Domain found in Dishevelled, Egl-10, and Pleckstrin (DEP)	12 (13)	4	10	5	. 2
01363	FYVE	FYVE zinc finger	28 (30)	14	15	5	15
00996	GDI	GDP dissociation inhibitor	` é	2	1	1	3
00503	G-alpha	G-protein alpha subunit	27 (30)	10	20 (23)	2	5
00631	G-gamma	G-protein gamma like domains	16	5	5	1	ő
00616	RasGAP	GTPase-activator protein for Ras-like GTPase	11	5	8	3	0
00618	RasGEFN	Guanine nucleotide exchange factor for Ras-like	9	ž	. 3	5	0
		GTPases; N-terminal motif	-	-	3	,	U
00625	Guanylate_kin	Guanylate kinase	12	8	7	4	
02189	ITAM	Immunoreceptor tyrosine-based activation motif	3	ő	. 0	,	4
00169	PH	PH domain	193 (212)	72 (78)		. 0	0
00130	DAG_PE-bind	Phorbol esters/diacylglycerol binding domain (C1	45 (56)	25 (31)	65 (68) 26 (40)	24 1 (2)	23 4
00388	PI-PLC-X	domain) Phosphatidylinositol-specific phospholipase C, X	12	3	7	· ₁	8
00387	PI-PLC-Y	domain Phosphatidylinositol-specific phospholipase C, Y	11	2	7	1	8
		domain		_	•	•	
	PID	Phosphotyrosine interaction domain (PTB/PID)	24 (27)	13	11 (12)	0	
	PI3K_p85B	PI3-kinase family, p85-binding domain	- ()	1	11(12)	0	0
0794	PI3K_rbd	PI3-kinase family, ras-binding domain	6	3	1		0
	ArfGAP	Putative GTP-ase activating protein for Arf	16	o .	. 1	6	0
2196	RBD	Raf-like Ras-binding domain		9	8	["] 6	15
2145	Rap_GAP	Rap/ran-GAP	6 (7)	4	1	. 0	0
	RA	Ras association (RalGDS/AF-6) domain	5 ·	7(0)	2	0	0
	Ras	Ras family	18 (19)	7 (9)	6	1	0
	RasGEF	_	126	56 (57)	51	23	. 78
	_	RasGEF domain	21	8	. 7	5	0
		Regulator of G protein signaling domain Regulatory subunit of type II PKA R-subunit	27	6 (7)	12 (13)	1	0
2 13/ ·			4				

Table 18 (Continued)

Access numb	Domain name	Domain description	н	F	w	Υ	Α	_
PF0062	O RhoGAP	RhoGAP domain					<u> </u>	
PF0062	**	RhoGEF domain	5:		20		9	R
PF0053		SAM domain (Sterile alpha motif)	4		18 (19)			n
PF0136	9 Sec7	Sec7 domain	29 (31		8		3	6
. PF0001	7 SH2	Src homology 2 (SH2) domain	1:		5	5	5	9
PF0001	8 SH3	Src homology 3 (SH3) domain	87 (95		44 (48)	1		3
PF0101	7 STAT	STAT protein	143 (182	55 (75)	46 (61)	23 (27))	4
PF0079	0 VHS	VHS domain		1	1 (2)	Ó		0
PF00568	8 WH1	WH1 domain	4	2	. 4	4		8
		•	7	2	2 (3)	1	(0
PF00452	2 Bcl-2	Domains involved in apop Bcl-2						
PF02180	D: % BH4	Bcl-2 homology region 4	9	_	1	0	C	0
PF00619	CARD	Caspase recruitment domain	3		1	. 0)
PF00531	Death	Death domain	16	-	2	Ó	. 0)
PF01335		Death effector domain	16	•	7	0	0)
PF02179	BAG	Domain present in Hsp70 regulators	4 (5)	0	0	0	0)
PF00656	·	ICE-like protease (caspase) p20 domain	5 (8)	3	2	1	· 5	;
PF00653	BIR	Inhibitor of Apoptosis domain	11	7	. 3	0	0)
		• •	8 (14)	5 (9)	2 (3)	1 (2)	. 0)
PF00022	Actin	Cytoskeletal Actin			•			
PF00191	Annexin	Annexin	61 (64)	15 (16)	12	9 (11)	24	
PF00402	Calponin	Calponin family	16 (55)	4 (16)	4 (11)	Ò	6 (16)	
PF00373	Band_41	FERM domain (Band 4:1 family)	13 (22)	3	7 (19)	0	ó	
PF00880		Nebulin repeat	29 (30)	17 (19)	. 11 (14)	⁻ 0	Ō	
· PF00681	Plectin_repeat	Plectin repeat	4 (148)	1 (2)	· 1	0	Ō	
PF00435	Spectrin	Spectrin repeat	2 (11)	. 0	0	0	0	
PF00418	Tubulin-binding	Tau and MAP proteins, tubulin-binding	31 (195)	13 (171)	10 (93)	0	0	
PF00992	Troponin	Troponin	4 (12)	1 (4)	2 (8)	0	0	
PF02209	VHP	Villin headpiece domain	4	6	8	0	0	
PF01044	Vinculin	Vinculin family	5	2	2	. 0	5	
		ECM adhesion	4	2	1	0	0	
PF01391	Collagen	Collagen triple helix repeat (20 copies)	CE (270)					
PF01413	C4	C-terminal tandem repeated domain in type 4	65 (279)	10 (46)	174 (384)	. 0	. 0	
		procollagen	6 (11)	2 (4)	3 (6)	0	0	
PF00431	CUB	CUB domain	47 (50)	- 4			•	
PF00008	EGF	EGF-like domain	47 (69)	9 (47)	43 (67)	0	. 0	
PF00147	Fibrinogen_C	Fibrinogen beta and gamma chains, C-terminal	108 (420)	45 (186)	54 (157)	0	1	
		globular domain	26	10 (11)	6	0	0	
PF00041	Fn3	Fibronectin type III domain	106 (545)	47 (450)				
PF00757	Furin-like	Furin-like cysteine rich region	100 (343)	42 (168)	34 (156)	0	· 1	
PF00357	Integrin_A	Integrin alpha cytoplasmic region	2	2	1	0	. 0	
PF00362	Integrin_B	Integrins, beta chain	٥		2	0	0	
PF00052	Laminin_B	Laminin B (Domain IV)	8 (12)	4 (7)	2	Q	0	
PF00053	Laminin_EGF	Laminin EGF-like (Domains III and V)	24 (126)	4 (7) 9 (62)	6 (10)	0	0	
PF00054	Laminin_G	Laminin G domain	30 (57)	18 (42)	11 (65)	0	. 0	
PF00055	Laminin_Nterm	Laminin N-terminal (Domain VI)	10	6	14 (26)	0	Ō	
PF00059 PF01463	Lectin_c	Lectin C-type domain	47 (76)	23 (24)	91 (132)	0	0	
PF01463	LRRCT	Leucine rich repeat C-terminal domain	69 (81)	23 (30)	7 (9)	0	0	
PF00057	LRRNT	Leucine rich repeat N-terminal domain	40 (44)	7 (13)	7 (5) 3 (6)	0	0	
PF00058	Ldl_recept_a	Low-density lipoprotein receptor domain class A	35 (127)	33 (152)	27 (113)	0 0	0	
PF00530	Ldl_recept_b	Low-density lipoprotein receptor repeat class R	15 (96)	9 (56)	7 (22)	Ö	. 0	
PF00084	SRCR Sushi	Scavenger receptor cysteine-rich domain	11 (46)	4 (8)	1 (2)	- 0	.0	
PF00090	Tsp_1	Sushi domain (SCR repeat)	53 (191)	11 (42)	8 (45)	0	. 0	
PF00092	Vwa	Thrombospondin type 1 domain	41 (66)	11 (23)	18 (47)	Ö	0	
PF00093	Vwc	von Willebrand factor type A domain	34 (58)	ó.	17 (19)	ŏ	0	•
PF00094	Vwd	von Willebrand factor type C domain	19 (28)	6 (11)	2 (5)	Ö	1	
	, , , , , , , , , , , , , , , , , , , 	von Willebrand factor type D domain	15 (35)	3 (7)	- (3)	0	0	
PF00244	14.3.3	Protein interaction domains				•	U	•
PF00023	14-3-3	14-3-3 proteins	20	3	3			
PF00514	Ank Armadilla sas	Ank repeat	145 (404)			2 12 (20)	15	
PF00168	Armadillo_seg	Armadillo/beta-catenin-like repeats	22 (56)	11 (38)	3 (11)	12 (20) 2 (10)	66 (111)	
PF00027	C2 cNMD binding	CZ domain .	73 (101)	32 (44)	24 (35)	* . *	25 (67) 66 (00)	
PF01556	cNMP_binding	Cyclic nucleotide-binding domain	26 (31)	21 (33)	15 (20)	6 (9) 2 (3)	66 (90)	
	Dnaj_C Dnaj	DnaJ C terminal region	12	9	5	2 (3) 3	22	
PF00226		Dnaj domain EF hand	44	34	33	20	19 92	
PF00226 PF00036							93	
PF00036	Efhand** FCH		83 (151)	64 (117)	41 (86)	4(]]) 1	120 (328)	
	FCH	Fes/CIP4 homology domain	9	64 (117) 3	41 (86) 2	4 (11) - 1 4	120 (328) 0	
PF00036 PF00611			83 (151) 9 4 (11)	64 (117) 3 4 (10)		4 (11) -1 4 2 (5)	120 (328) 0 4 (8)	

myelin proteins result in severe demyelination, which is a pathological condition in which the myelin is lost and the nerve conduction is severely impaired (130). Humans have at least 10 genes belonging to four different families involved in myelin produc-

tion (five myelin P0, three myelin proteolipid, myelin basic protein, and myelin-oligodendrocyte glycoprotein, or MOG), and possibly more-remotely related members of the MOG family. Flies have only a single myelin proteolipid, and worms have none at all.

Intercellular and intracellular signaling pathways in development and homeostasis. Many protein families that have expanded in humans relative to the invertebrates are involved in signaling processes, particularly in response to development and differentiation

Table 18 (Continued)

	- (continued)						
Accessio number	Domain name	Domain description		F	w	Y	A
PF00254		FKBP-type peptidyl-prolyl cis-trans isomerases	15 (20)	7 (8)	7 (13)		24 (20)
PF01590		GAF domain	7 (8)	2 (4)	, , , , ,	0	- ()
PF01344		Kelch motif	54 (157)	12 (48)	13 (41)		
PF00560		Leucine Rich Repeat	25 (30)	24 (30)			
PF00917	MATH	MATH domain	11	24 (30)			
PF00989	PAS	PAS domain	18 (19)	9 (10)	88 (161)		~
PF00595	PDZ	PDZ domain (Also known as DHR or GLGF)	96 (154)	60 (87)	46 (66)	1	. = (2
PF00169	PH	PH domain	193 (212)		46 (66)	2	_
PF01535	PPR**	PPR repeat	133 (212)	72 (78)	` :	24	
PF00536	SAM	SAM domain (Sterile alpha motif)	29 (31)	3 (4)	0	1	
PF01369	Sec7	Sec7 domain	13	15	8	3	•
PF00017	. SH2	Src homology 2 (SH2) domain	87 (95)	33 (39)	44 (40)	5	9
PF00018	SH3	Src homology 3 (SH3) domain	143 (182)		44 (48)	. 22 (27)	3
PF01740	STAS	STAS domain	173 (102)	55 (75)	46 (61)	23 (27)	4
PF00515	TPR**	TPR domain	_	30 (101)	5 70 (54)	2 (7.2)	13
PF00400	WD40**	WD40 domain	72 (131)	39 (101)	28 (54)	16 (31)	65 (124)
PF00397	WW	WW domain	136 (305)	98 (226)	72 (153)	56 (121)	167 (344)
PF00569	ZZ	ZZ-Zinc finger present in dystrophin, CBP/p300	32 (53)	24 (39)	16 (24)	5 (8)	11 (15)
			10 (11)	13	10	2	10
PF01754	Zf-A20	Nuclear interaction don A20-like zinc finger		_	•		
PF01388	ARID	ARID DNA binding domain	2 (8)	2	2	0	8
PF01426	BAH	BAH domain	11	6	. 4	2	7
PF00643	Zf-B_box**	B-box zinc finger	8 (10)	7 (8)	- 4 (5)	5	21 (25)
PF00533	BRCT	BRCA1 C Terminus (BRCT) domain	32 (35)	1	2	0	0
PF00439	Bromodomain	Bromodomain	17 (28)	10 (18)	23 (35)	10 (16)	12 (16)
PF00651	ВТВ	BTB/POZ domain	37 (48)	16 (22)	18 (26)	10 (15)	28
PF00145	DNA_methylase	C-5 cytosine-specific DNA methylase	97 (98)	62 (64)	86 (91)	1 (2)	30 (31)
PF00385	Chromo	chromo' (CHRromatin Organization MOdifier) domain	3 (4) 24 (27)	1 14 (15)	0 17 (18)	0 1 (2)	13 (15) 12
PF00125	Histone	Core histone H2A/H2B/H3/H4	75 (81)	. 5	71 (73)	8	. 40
PF00134	Cyclin	Cyclin	19	10	10	11	48 35
PF00270	DEAD	DEAD/DEAH box helicase	63 (66)	48 (50)	55 (57)	50 (52)	
PF01529	Zf-DHHC	DHHC zinc finger domain	. 15	20	16	30 (32) 7	84 (87)
PF00646	F-box**	F-box domain	16	15	309 (324)	9	22 165 (167)
PF00250	Fork_head	Fork head domain	35 (36)	20 (21)	15	4	03 (107)
PF00320	GATA	GATA zinc finger	11 (17)	5(6)	8 (10)	. 9	_
PF01585	G-patch	G-patch domain	18	16	13	4	26 '
PF00010	HLH**	Helix-loop-helix DNA-binding domain	60 (61)	44 -	24	4	14 (15) 39
PF00850	Hist_deacetyl	Histone deacetylase family	12	5 (6)	8 (10)	5	10
PF00046	Homeobox	Homeobox domain	160 (178)	100 (103)	82 (84)	6	. 66
PF01833	TIG	IPT/TIG domain	29 (53)	11 (13)	5 (7)	2	. 00
PF02373	JmjC	JmjC domain	10	4	6	4	7
PF02375	JmjN	JmjN domain	7	4	ž	3	7
PF00013	KH-domain	KH domain	28 (67)	· 14 (32)	. 17 (46)	4 (14)	27 (61)
PF01352	KRAB	KRAB box	204 (243)	Ó	ó	ó	- 0 0
PF00104	Hormone_rec	Ligand-binding domain of nuclear hormone receptor	47	17	142 (147)	Ō	ŏ
PF00412	LIM	LIM domain containing proteins	62 (129)	33 (83)	33 (79)	4 (7)	10 (16)
PF00917	MATH	MATH domain	` 11	` Ś	88 (161)	. 1	61 (74)
PF00249	Myb_DNA-binding	Myb-like DNA-binding domain	32 (43)	18 (24)	17 (24)	15 (20)	243 (401)
PF02344	Myc-LZ	Myc leucine zipper domain	ìi	` ó	ó	0	()
PF01753	Zf-MYND	MYND finger	14	14	. 9	1	7
PF00628	PHD	PHD-finger .	68 (86)	40 (53)	32 (44)	14 (15)	96 (105)
PF00157	Pou	Pou domain—N-terminal to homeobox domain	`1Ś	`ś	4	ó	0
PF02257 PF00076	RFX_DNA_binding Rrm	RFX DNA-binding domain RNA recognition motif (a.k.a. RRM, RBD, or RNP	7 224 (324)	2 127 (199)	1 94 (145)	1 43 (73)	0 232 (369)
0502027	CAO.	domain) .		,,		·- (· •)	
PF02037	SAP.	SAP domain	15	. 8	5	5	6 (7)
PF00622	SPRY	SPRY domain	44 (51)	10 (12)	5 (7)	3	6
PF01852	START	START domain		• •			
PF00907	T-box	T-box	10 17 (19)	۷.	6	0	23

Table 18 (Continued)

Accession number	Domain name	Domain description	н	F	w	Y	Α
PF02135	Zf-TAZ	TAZ finger	2 (2)				
PF01285	TEA	TEA domain	. 2(3)	1 (2)	6 (7)	0	10 (15)
PF02176	Zf-TRAF	TRAF-type zinc finger	. 4 . (0)	7	1	- 1	` ó
PF00352	TBP	Transcription factor TFIID (or TATA-binding	6 (9)	1 (3)	1	0	2
•		protein, TBP)	2 (4)	4 (8)	2 (4)	1 (2)	. · 2 (4)
PF00567	TUDOR	TUDOR domain	0 (24)			171	• •
PF00642	Zf-CCCH	Zinc finger C-x8-C-x5-C-x3-H type (and similar)	9 (24)	9 (19)	4 (5)	0	2
PF00096	Zf-C2H2**	Zinc finger, C2H2 type	17 (22)	6 (8)	-22 (42)	3 (5)	31 (46)
PF00097	Zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	564 (4500)	234 (771)	68 (155)	34 (S6)	21 (24)
PF00098	Zf-CCHC	Zinc knuckle	135 (137)	57	88 (89)	18	298 (304)
		ZIIIC KITUCKIE	9 (17)	6 (10)	17 (33)	7 (13)	68 (91)

(Tables 18 and 19). They include secreted hormones and growth factors, receptors, intracellular signaling molecules, and transcription factors.

Developmental signaling molecules that are enriched in the human genome include growth factors such as wnt, transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), nerve growth factor, platelet derived growth factor (PDGF), and ephrins. These growth factors affect tissue differentiation and a wide range of cellular processes involving actin-cytoskeletal and nuclear regulation. The corresponding receptors of these developmental ligands are also expanded in humans. For example, our analysis suggests at least 8 human ephrin genes (2 in the fly, 4 in the worm) and 12 ephrin receptors (2 in the fly, 1 in the worm). In the wnt signaling pathway, we find 18 wnt family genes (6 in the fly, 5 in the worm) and 12 frizzled receptors (6 in the fly, 5 in the worm). The Groucho family of transcriptional corepressors downstream in the wnt pathway are even more markedly expanded, with 13 predicted members in humans (2 in the fly, 1 in the worm).

Extracellular adhesion molecules involved in signaling are expanded in the human genome (Tables 18 and 19). The interactions of several of these adhesion domains with extracellular matrix proteoglycans play a critical role in host defense, morphogenesis, and tissue repair (131). Consistent with the well-defined role of heparan sulfate proteoglycans in modulating these interactions (132), we observe an expansion of the heparin sulfate sulfotransferases in the human genome relative to worm and fly. These sulfotransferases modulate tissue differentiation (133). A similar expansion in humans is noted in structural proteins that constitute the actin-cytoskeletal architecture. Compared with the fly and worm, we observe an explosive expansion of the nebulin (35 domains per protein on average), aggrecan (12 domains per protein on average), and plectin (5 domains per protein on average) repeats in humans. These repeats are present in proteins involved in modulating the actin-cytoskeleton with predominant expression in neuronal, muscle, and vascular tissues.

Comparison across the five sequenced eukaryotic organisms revealed several expanded protein families and domains involved in cytoplasmic signal transduction (Table 18). In particular, signal transduction pathways playing roles in developmental regulation and acquired immunity were substantially enriched. There is a factor of 2 or greater expansion in humans in the Ras superfamily GTPases and the GTPase activator and GTP exchange factors associated with them. Although there are about the same number of tyrosine kinases in the human and C. elegans genomes, in humans there is an increase in the SH2, PTB, and ITAM domains involved in phosphotyrosine signal transduction. Further, there is a twofold expansion of phosphodiesterases in the human genome compared with either the worm or fly genomes.

The downstream effectors of the intracellular signaling molecules include the transcription factors that transduce developmental fates. Significant expansions are noted in the ligandbinding nuclear hormone receptor class of transcription factors compared with the fly genome, although not to the extent observed in the worm (Tables 18 and 19). Perhaps the most striking expansion in humans is in the C2H2 zinc finger transcription factors. Pfam detects a total of 4500 C2H2 zinc finger domains in 564 human proteins, compared with 771 in 234 fly proteins. This means that there has been a dramatic expansion not only in the number of C2H2 transcription factors, but also in the number of these DNA-binding motifs per transcription factor (8 on average in humans, 3.3 on average in the fly, and 2.3 on average in the worm). Furthermore, many of these transcription factors contain either the KRAB or SCAN domains, which are not found in the fly or worm genomes. These domains are involved in the oligomerization of transcription factors and increase the combinatorial partnering of these factors. In general, most of the transcription factor domains are shared between the three animal genomes, but the reassortment of these domains results in organism-specific transcription factor families. The domain combinations found in the human, fly, and worm include the BTB with C2H2 in the fly and humans, and

homeodomains alone or in combination with Pou and LIM domains in all of the animal genomes. In plants, however, a different set of transcription factors are expanded, namely, the myb family, and a unique set that includes VP1 and AP2 domain—containing proteins (134). The yeast genome has a paucity of transcription factors compared with the multicellular eukaryotes, and its repertoire is limited to the expansion of the yeast-specific C6 transcription factor family involved in metabolic regulation.

While we have illustrated expansions in a subset of signal transduction molecules in the human genome compared with the other eukaryotic genomes, it should be noted that most of the protein domains are highly conserved. An interesting observation is that worms and humans have approximately the same number of both tyrosine kinases and serine/threonine kinases (Table 19). It is important to note, however, that these are merely counts of the catalytic domain; the proteins that contain these domains also display a wide repertoire of interaction domains with significant combinatorial diversity.

Hemostasis. Hemostasis is regulated primarily by plasma proteases of the coagulation pathway and by the interactions that occur between the vascular endothelium and platelets. Consistent with known anatomical and physiological differences between vertebrates and invertebrates, extracellular adhesion domains that constitute proteins integral to hemostasis are expanded in the human relative to the fly and worm (Tables 18 and 19). We note the evolution of domains such as FIMAC, FN1, FN2, and C1q that mediate surface interactions between hematopoeitic cells and the vascular matrix. In addition, there has been extensive recruitment of more-ancient animal-specific domains such as VWA, VWC, VWD, kringle, and FN3 into multidomain proteins that are involved in hemostatic regulation. Although we do not find a large expansion in the total number of serine proteases, this enzymatic domain has been specifically recruited into several of these multidomain proteins for proteolytic regulation in the vascular compartment. These are represented in plasma proteins that belong to the kinin and complement pathways. There is a

significant expansion in two families of matrix metalloproteases: ADAM (a disintegrin and metalloprotease) and MMPs (matrix metalloproteases) (Table 19). Proteolysis of extracellular matrix (ECM) proteins is critical for tissue development and for tissue degradation in diseases such as cancer, arthritis, Alzheimer's disease, and a variety of inflammatory conditions (135, 136). ADAMs are a family of integral membrane proteins with a pivotal role in fibrinogenolysis and modulating interactions between hematopoietic components and the vascular matrix components. These proteins have been shown to cleave matrix proteins, and even signaling molecules: ADAM-17 converts tumor necrosis factor-α, and ADAM-10 has been implicated in the Notch signaling pathway (135). We have identified 19 members of the matrix metalloprotease family, and a total of 51 members of the ADAM and ADAM-TS families.

Apoptosis. Evolutionary conservation of some of the apoptotic pathway components across eukarya is consistent with its central role in developmental regulation and as a response to pathogens and stress signals. The signal transduction pathways involved in programmed cell death, or apoptosis, are mediated by interactions between well-characterized domains that include extracellular domains, adaptor (protein-protein interaction) domains, and those found in effector and regulatory enzymes (137). We enumerated the protein counts of central adaptor and effector enzyme domains that are found only in the apoptotic pathways to provide an estimate of divergence across eukarya and relative expansion in the human genome when compared with the fly and worm (Table 18). Adaptor domains found in proteins restricted only to apoptotic regulation such as the DED domains are vertebrate-specific, whereas others like BIR, CARD, and Bcl2 are represented in the fly and worm (although the number of Bcl2 family members in humans is significantly expanded). Although plants and yeast lack the caspases, caspase-like molecules, namely the para- and meta-caspases, have been reported in these organisms (138). Compared with other animal genomes, the human genome shows an expansion in the adaptor and effector domain-containing proteins involved in apoptosis, as well as in the proteases involved in the cascade such as the caspase and calpain families.

Expansions of other protein families. Metabolic enzymes. There are fewer cytochrome P450 genes in humans than in either the fly or worm. Lipoxygenases (six in humans), on the other hand, appear to be specific to the vertebrates and plants, whereas the lipoxygenase-activating proteins (four in humans) may be vertebrate-specific. Lipoxygenases are involved in arachidonic acid metabolism, and they and their activators have been implicated

in diverse human pathology ranging from allergic responses to cancers. One of the most surprising human expansions, however, is in the number of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes (46 in humans, 3 in the fly, and 4 in the worm). There is, however, evidence for many retrotrans-

posed GAPDH pseudogenes (139), which may account for this apparent expansion. However, it is interesting that GAPDH, long known as a conserved enzyme involved in basic metabolism found across all phyla from bacteria to humans, has recently been shown to have other functions. It has a second cat-

Table 19. Number of proteins assigned to selected Panther families or subfamilies in *H. sapiens* (H), *D. melanogaster* (F), C. elegans (W), S. cerevisiae (Y), and A. thaliana (A).

Panther family/subfamily*	Н	F	w		
	l structure, fund			Y	A
cpenaymin	_				
Ion channels	. 1	0	. 0	0	0
Acetylcholine receptor	17	12			
Amiloride-sensitive/degenerin	11	12	56	, O	0
CNG/EAG	22	24 9	27	0	0
IRK .	16	3	9	0	30
ITP/ryanodine	10	2	3	0	0
Neurotransmitter-gated	61	51	4 59	0	0
P2X purinoceptor	10	Ö	0	0	19
TASK	12	12	48	0 1	0
Transient receptor	15	3	3	1	5
Voltage-gated Ca ²⁺ alpha	22	4	8	. 2	0
Voltage-gated Ca ²⁺ alpha-2	10	3	2	0	2 0
Voltage-gated Ca ²⁺ beta	5	2	- 2	ŏ	. 0
Voltage-gated Ca ²⁺ gamma	. 1	0	ō	·õ	. 0
Voltage-gated K ⁺ alpha	33	5	11	ŏ	ŏ
Voltage-gated KQT	6	2	3	ŏ	Ö
Voltage-gated Na ⁺ Myelin basic protein	11	4	4	ğ	1
Myelin PO	1	0	0	ŏ	ó
Myelin proteolipid	5	0	0	ō	. 0
Myelin-oligodendrocyte glycoprotein	3	1	0	Ō	. 0
Neuropilin	1	0	0	0	Ö
Plexin	2	0	0	0	
Semaphorin	9 22	2 .	0	0	Ó
Synaptotagmin	22 10	6	2	0	0
	Immune resp	onse	3	0	0
Defensin	3	0	0	^	•
Cytokine†	86	14	1	0	0
GCSF	1	Ö	o di	0	0
GMCSF	1	ŏ	0	0	. 0
Intercrine alpha	[`] 15	ŏ	ŏ	0	0
Intercrine beta	5	Ö	ŏ.	Ö	0
Inteferon	8	0	. ŏ	. 0	0
Interleukin	26	1	1	. 0	Ö
Leukemia inhibitory factor MCSF	1 1	. 0	0	0	Ō
Peptidoglycan recognition protein	2	13	ő	0	0
Pre-B cell enhancing factor	1	0	ŏ	0.	0
Small inducible cytokine A	14	Ö	ŏ	0	0
SI cytokine	2	.0 .	Ŏ.	o :	. 0
TNF	9	0.	Ö	ŏ	Ö
ytokine receptor†	62	8 1 J	Ō	ō	ŏ
Bradykinin/C-C chemokine receptor	7	0	Ó	Ö	Ö
Fl cytokine receptor Interferon receptor	2	0	0	ŏ	0
Interieron receptor Interieukin receptor	3	0	0	Ö	Ö
Leukocyte tyrosine kinase	32	0	0	ō	ŏ
receptor	3	0	0	Ö	ŏ
MCSF receptor					•
TNF receptor	1	. 0	0	0	0
munoglobulin receptor†	3	0	0	Ο,	0
r-cell receptor alpha chain	59	0	0	0	0
-cell receptor beta chain	16 15	0	0	0	0
-cell receptor gamma chain	15	0	0	0	0
-cell receptor delta chain	1	0 .	0	0	0
mmunoglobulin FC receptor	1 8	0	0	0	,0
iller cell receptor	16	0	0 ,	. 0	0
olymeric-immunoglobulin receptor	4	0	0	0	0
2 Since the second		0	0	0	0

alytic activity, as a uracil DNA glycosylase

man expansions has occurred in certain fam- thesis; for example, L13a and the related L7 mentary expression pattern to the ubiquitousilies involved in the translational machinery. subunits (36 copies in humans) have been ly expressed eEF1A (146). We identified 28 different ribosomal subunits a shown to induce apoptosis (144). Ribonucleoproteins. Alternative splicing that each have at least 10 copies in the genome; on average, for all ribosomal proteins in the elongation factor 1-alpha family gene, and can therefore generate additional there is about an 8- to 10-fold expansion in (eEF1A; 56 human genes). Many of these diversity in an organism's protein complethe number of genes relative to either the expansions likely represent intronless para-

may account for many of these expansions and again there is evidence that proteins have secondary functions indepen-

(140) and functions as a cell cycle regulator [see the discussion above and (143)]. Recent many of these may be pseudogenes (145).

(141) and has even been implicated in apo- evidence suggests that a number of ribosomal However, a second form (eEF1A2) of this However, a second form (eEF1A2) of this factor has been identied with tissue-specific Translation. Another striking set of hu- dent of their involvement in protein biosyn- expression in skeletal muscle and a comple-

ment. We have identified 269 genes for riworm or fly. Retrotransposed pseudogenes logs that have presumably arisen from retro- bonucleoproteins. This represents over 2.5 times the number of ribonucleoprotein genes in the worm, two times that of the fly, and about the same as the 265 identified in the Arabidopsis genome. Whether the diversity of ribonucleoprotein genes in humans contributes to gene regulation at either the splicing or translational level is unknown.

Posttranslational modifications. In this set of processes, the most prominent expansion is the transglutaminases, calcium-dependent enzymes that catalyze the cross-linking of proteins in cellular processes such as hemostasis and apoptosis (147). The vitamin K-dependent gamma carboxylase gene product acts on the GLA domain (missing in the fly and worm) found in coagulation factors, osteocalcin, and matrix GLA protein (148). Tyrosylprotein sulfotransferases participate in the posttranslational modification of proteins involved in inflammation and hemostasis, including coagulation factors and chemokine receptors (149). Although there is no significant numerical increase in the counts for domains involved in nuclear protein modification, there are a number of domain arrangements in the predicted human proteins that are not found in the other currently sequenced genomes. These include the tandem association of two histone deacetylase domains in HD6 with a ubiquitin finger domain, a feature lacking in the fly genome. An additional example is the co-occurrence of important nuclear regulatory enzyme PARP (poly-ADP ribosyl transferase) domain fused to protein-interaction domains-BRCT and VWA in humans.

Concluding remarks. There are several possible explanations for the differences in phenotypic complexity observed in humans when compared to the fly and worm. Some of these relate to the prominent differences in the immune system, hemostasis, neuronal, vascular, and cytoskeletal complexity. The finding that the human genome contains fewer genes than previously predicted might be compensated for by combinatorial diversity generated at the levels of protein architecture, transcriptional and translational control, posttranslational modification of proteins, or posttranscriptional regulation. Extensive domain shuffling to increase or alter combinatorial diversity can provide an exponential

Table 19 (Continued)

Panther family/subfamily*		F	w	Y	Α
MHC class I	22	0	0	0	
MHC class II	20	ŏ	. 0	. 0	0
Other immunoglobulin†	114	ō	ŏ	. 0	0
Toll receptor—related	10	6	Ō	. 0	. 0
Signaling molecules†	opmental and hor	neostatic re	gulators	• •	
Calcitonin	3	•	•	_	
Ephrin	8	· 0 2	0	0	0
FGF	24	1	4	0	0
Glucagon	4	. 0	. 0	0	0
Glycoprotein hormone beta chain	2	Ŏ	0	0	0
Insulin	1	ő	. 0	0	0
insulin-like hormone	. 3	. 0	. 0	0	0
Nerve growth factor	3	Ŏ	. 0	0	0
Neuregulin/heregulin	6	·ŏ	Ö	. 0	0
neuropeptide Y	4	Ō	ŏ	Ö	0
PDGF	1	1	ŏ	ŏ	0
Relaxin	3	Ö	ŏ	0.	. 0
Stannocalcin	2	Ö	ŏ	0.	. 0
Thymopoeitin	2	Õ	ĭ	Ö	0
Thyomosin beta	4	2	ó	ŏ	0
TGF-β	29	6	4	Ö	Ö
VEGF	4	0	ó	Ŏ	Ö
Wnt	18	6	5	ŏ	0.
Receptors†					0.
Ephrin receptor FGF receptor	12	2	1	0	Ô
Frizzled receptor	4	4	0	0	. 0
Parathyroid hormone receptor	12	6	5	0	Ö
VEGF receptor	2	0	0	0	Ö
BDNF/NT-3 nerve growth factor	5	0	0	0	Ŏ
receptor	4	0	0	0	0
	Kinases and phosp	ohatases ·			
page-specificity protein phosphatase	29	8	10		
S/T and dual-specificity protein				7.	11
kinase†	395	198	315	114	1102
S/T protein phosphatase	15	19	51	13	29
Y protein kinase†	106	47	100	5	16
Y protein phosphatase	56	22	95	5	6
	Signal transduc	tion		-	U
ARF family	55	29	27	19	. 45
Cyclic nucleotide phosphodiesterase	25	8	6	12	45
O protein-coupled receptors††	616	146	284	0	0
G-protein alpha	27	10	22	· ģ	
G-protein beta	5	3	2	1	. 5 `1
G-protein gamma	13	2	Ž	ò	Ó
Ras superfamily	141	64	62	26	86
G-protein modulators†					
ARF GTPase-activating	20	8 -	9	5	15
Neurofibromin	7	2	ō	2	•
Ras GTPase-activating Tuberin	9	3	8	ī	0 1
Vav proto-oncogene family	7	3	2	ó	, 0 I
Y 9Y DIOLO-ONCOGENE tamily	35	15	13	3	o r

Table 19 (Continued)

increase in the ability to mediate protein- protein interactions without dramatically in- creasing the absolute size of the protein com- plement (150). Evolution of apparently new (from the perspective of sequence analysis) protein domains and increasing regulatory complexity by domain accretion both quanti- tatively and qualitatively (recruitment of nov- el domains with preexisting ones) are two features that we observe in humans. Perhaps the best illustration of this trend is the C2H2 zinc finger-containing transcription factors, where we see expansion in the number of domains per protein, together with verte- brate-specific domains such as KRAB and SCAN. Recent reports on the prominent use of internal ribosomal entry sites in the human genome to regulate translation of specific classes of proteins suggests that this is an area that needs further research to identify the full extent of this process in the human genome (151). At the posttranslational level, although we provide examples of expansions of some protein families involved in these modifica- tions, further experimental evidence is re- quired to evaluate whether this is correlated with increased complexity in protein process- ing. Posttranscriptional processing and the extent of isoform generation in the human remain to be cataloged in their entirety. Given the conserved nature of the spliceosomal ma- chinery, further analysis will be required to
dissect regulation at this level.

8 Conclusions

8.1 The whole-genome sequencing approach versus BAC by BAC

Experience in applying the whole-genome shotgun sequencing approach to a diverse group of organisms with a wide range of genome sizes and repeat content allows us to assess its strengths and weaknesses. With the success of the method for a large number of microbial genomes, Drosophila, and now the human, there can be no doubt concerning the utility of this method. The large number of microbial genomes that have been sequenced by this method (15, 80, 152) demonstrate that megabase-sized genomes can be sequenced efficiently without any input other that the de novo mate-paired sequences. With more complex genomes like those of Drosophila or human, map information, in the form of wellordered markers, has been critical for longrange ordering of scaffolds. For joining scaffolds into chromosomes, the quality of the map (in terms of the order of the markers) is more important than the number of markers per se. Although this mapping could have been performed concurrently with sequencing, the prior existence of mapping data was beneficial. During the sequencing of the A. thaliana genome, sequencing of individual BAC clones permitted extension of the se-

v ————	* н	F	W	Υ	Α
) C2H2 ring finger as 1 1 1	ranscription factors/ci	hromatin org	anization		
C2H2 zinc finger-containing†	607	232	79	. 28	8
CREB	7	1	1	0	ō
ETS-related	7	1	2	0	ō
Forkhead-related	25 34	8	10	0	ō
FOS	34 8	19	15	4	0
Groucho	13	2 2	1	. 0	0
Histone H1	5	0	1	. 0	0
Histone H2A	24	1	17	0	0
Histone H2B	21	i	17	3	13
Histone H3	28	ż	24	2	12
Histone H4	9	1	16	2 1	16
Homeotic†	168 ´	104	74	4	8
ABD-B	5	Ö	0	Ō	78
Bithoraxoid	1	8	ĭ	0	0
Iroquois class	7	3	1	0	0
Distal-less Engrailed	5	2	1	ŏ	0
LIM-containing	2	2	1	ŏ	Ö
MEIS/KNOX class	17	8	3	ŏ	Ö
NK-3/NK-2 class	. 9	4	4	ž	26
Paired box	. 9	4	5	ō	0
Six	38	28	23	ŏ	2
Leucine zipper	5	3	4	. 0	ō
Nuclear hormone receptor	_6	. 0	0	Ö	ő
Pou-related	59	25	183	1	4
Runt-related	15	5	4	1	ó
- Clased	3	4	2	0	ŏ
	ECM adhes	ion			•
Cadherin	113	17	16	_	
Claudin	20	ő	16 0	0	0
Complement receptor-related	22	. 8	6	0	0
Connexin	14		•	∵0 .	.0
	. 17	. 0	Λ.		
Galectin	12	0 5	0 22	0	0
Glypican		5	22	0	0
Glypican ICAM	12		22 1	0 0	0
Glypican ICAM Integrin alpha	12 13	5 2	22 1 0	0 0 0	0
Glypican ICAM Integrin alpha Integrin beta	12 13 6	5 2 0	22 1 0 4	0 0 0	0 0 0 1
Glypican ICAM Integrin alpha Integrin beta LDL receptor family	12 13 6 24 9 26	5 2 0 7	22 1 0 4 2	0 0 0 0	0 0 0 1 0
Glypican ICAM Integrin alpha Integrin beta	12 13 6 24 9	5 2 0 7 2	22 1 0 4	0 0 0 0 0	0 0 0 1 0 2
Glypican ICAM Integrin alpha Integrin beta LDL receptor family	12 13 6 24 9 26 22	5 2 0 7 2 19	22 1 0 4 2 20	0 0 0 0	0 0 0 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2	12 13 6 24 9 26 22 Apoptasis	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0	0 0 0 1 0 2
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain	12 13 6 24 9 26 22 <i>Apoptasis</i>	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor	12 13 6 24 9 26 22 Apoptasis 12	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain	12 13 6 24 9 26 22 <i>Apoptasis</i> 12 22	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor	12 13 6 24 9 26 22 Apoptasis 12 22 4	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase	12 13 6 24 9 26 22 Apoptasis 12 22 4 13 Hemostasis	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase	12 13 6 24 9 26 22 Apoptasis 12 22 4	5 2 0 7 2 19 9	22 1 0 4 2 20 7	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin	12 13 6 24 9 26 22 <i>Apoptasis</i> 12 22 4 13 <i>Hemostasis</i> 51	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin	12 13 6 24 9 26 22 Apoptasis 12 22 4 13 Hemostasis	5 2 0 7 2 19 9	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease	12 13 6 24 9 26 22 <i>Apoptasis</i> 12 22 4 13 <i>Hemostasis</i> 51	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease Gerum amyloid A	12 13 6 24 9 26 22 <i>Apoptosis</i> 12 22 4 13 <i>Hemostasis</i> 51 3	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 1 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease Gerum amyloid A Gerum amyloid P (subfamily of	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin)	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 2	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 2	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease Serum amyloid A Serum amyloid A Serum amyloid P (subfamily of Pentaxin) Pentaxin) Perum paraoxonase/arylesterase Perum albumin	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2	5 2 0 7 2 19 9 1 4 0 7	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0 0 0 3 3 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0	22 1 0 4 2 20 7 0 11 0 3	0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0	000000000000000000000000000000000000000	0 0 0 1 0 2 5 0 3 1 0 0 0 3 3 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease Gerum amyloid A Gerum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase ytochrome p450 APDH	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0 0 0 3 3 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease Gerum amyloid A Gerum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase ytochrome p450 APDH	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2 4 4 10 Other enzymes 60 46	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0 0 0 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2 4 4 10 Other enzymes 60 46 11	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0 0 1	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 3 1 0 0 0 0 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase ytochrome p450 APDH eparan sulfotransferase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2 4 4 10 Other enzymes 60 46 11 Splicing and transla	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0 0 1	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 0 0 0 0 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase ytochrome p450 APDH eparan sulfotransferase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2 4 10 Other enzymes 60 46 11 Splicing and transla	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 0 0 0 1	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 0 0 0 0 0 0 0 0 0
Glypican ICAM Integrin alpha Integrin beta LDL receptor family Proteoglycans Bcl-2 Calpain Calpain inhibitor Caspase ADAM/ADAMTS Fibronectin Globin Matrix metalloprotease ierum amyloid A ierum amyloid P (subfamily of Pentaxin) erum paraoxonase/arylesterase erum albumin ransglutaminase ytochrome p450 APDH eparan sulfotransferase	12 13 6 24 9 26 22 Apoptosis 12 22 4 13 Hemostasis 51 3 10 19 4 2 4 4 10 Other enzymes 60 46 11 Splicing and transla	5 2 0 7 2 19 9 1 4 0 7 9 0 2 2 2 0 0 0 1	22 1 0 4 2 20 7 0 11 0 3 12 0 3 7 0 0 0 3 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 2 5 0 0 0 0 0 0 0

*The table lists Panther families or subfamilies relevant to the text that either (i) are not specifically represented by Pfam (Table 18) or (ii) differ in counts from the corresponding Pfam models.

†This class represents a number of different class, and metabotropic glutamate-class GPCRs.

quence well into centromeric regions and allowed high-quality resolution of complex repeat regions. Likewise, in Drosophila, the BAC physical map was most useful in regions near the highly repetitive centromeres and telomeres. WGA has been found to deliver excellent-quality reconstructions of the unique regions of the genome. As the genome price for the number of genes it can possibly size, and more importantly the repetitive content, increases, the WGA approach delivers less of the repetitive sequence.

The cost and overall efficiency of clone-byclone approaches makes them difficult to justify as a stand-alone strategy for future large-scale genome-sequencing projects. Specific applications of BAC-based or other clone mapping and sequencing strategies to resolve ambiguities in sequence assembly that cannot be efficiently resolved with computational approaches alone are clearly worth exploring. Hybrid approaches to whole-genome sequencing will only work if there is sufficient coverage in both the wholegenome shotgun phase and the BAC clone sequencing phase. Our experience with human genome assembly suggests that this will require at least 3× coverage of both whole-genome and BAC shotgun sequence data.

8.2 The low gene number in humans

We have sequenced and assembled ~95% of the euchromatic sequence of H. sapiens and used a new automated gene prediction method to produce a preliminary catalog of the human genes. This has provided a major surprise: We have found far fewer genes (26,000 to 38,000) than the earlier molecular predictions (50,000 to over 140,000). Whatever the reasons for this current disparity, only detailed annotation, comparative genomics (particularly using the Mus musculus genome), and careful molecular dissection of complex phenotypes will clarify this critical issue of the basic "parts list" of our genome. Certainly, the analysis is still incomplete and considerable refinement will occur in the years to come as the precise structure of each transcription unit is evaluated. A good place to start is to determine why the gene estimates derived from EST data are so discordant with our predictions. It is likely that the following contribute to an inflated gene number derived from ESTs: the variable lengths of 3'- and 5'-untranslated leaders and trailers; the little-understood vagaries of RNA processing that often leave intronic regions in an unspliced condition; the finding that nearly 40% of human genes are alternatively spliced (153); and finally, the unsolved technical problems in EST library construction where contamination from heterogeneous nuclear RNA and genomic DNA are not uncommon. Of course, it is possible that there are genes that remain unpredicted owing to the absence of EST or protein data to support them, although our use of mouse genome data for

predicting genes should limit this number. As of RNA editing in which coding changes ing, ultimately it will be necessary to measure mRNA in specific cell types to demonstrate the presence of a gene.

J. B. S. Haldane speculated in 1937 that a population of organisms might have to pay a carry. He theorized that when the number of genes becomes too large, each zygote carries so many new deleterious mutations that the population simply cannot maintain itself. On the basis of this premise, and on the basis of available mutation rates and x-ray-induced mutations at specific loci, Muller, in 1967 (154), calculated that the mammalian genome would contain a maximum of not much more than 30,000 genes (155). An estimate of 30,000 gene loci for humans was also arrived at by Crow and Kimura (156). Muller's estimate for D. melanogaster was 10,000 genes, compared to 13,000 derived by annotation of the fly genome (26, 27). These arguments for the theoretical maximum gene number were based on simplified ideas of genetic loadthat all genes have a certain low rate of mutation to a deleterious state. However, it is clear that many mouse, fly, worm, and yeast knockout mutations lead to almost no discernible phenotypic perturbations.

The modest number of human genes means that we must look elsewhere for the mechanisms that generate the complexities inherent in human development and the sophisticated signaling systems that maintain homeostasis. There are a large number of ways in which the functions of individual genes and gene products are regulated. The degree of "openness" of chromatin structure and hence transcriptional activity is regulated by protein complexes that involve histone and DNA enzymatic modifications. We enumerate many of the proteins that are likely involved in nuclear regulation in Table 19. The location, timing, and quantity of transcription are intimately linked to nuclear signal transduction events as well as by the tissue-specific expression of many of these proteins. Equally important are regulatory DNA elements that include insulators, repeats, and endogenous viruses (157); methylation of CpG islands in imprinting (158); and promoter-enhancer and intronic regions that modulate transcription. The spliceosomal machinery consists of multisubunit proteins (Table 19) as well as structural and catalytic RNA elements (159) that regulate transcript structure through alternative start and termination sites and splicing. Hence, there is a need to study different classes of RNA molecules (160) such as small nucleolar RNAs, antisense riboregulator RNA, RNA involved in X-dosage compensation, and other structural RNAs to appreciate their precise role in regulating gene expression. The phenomenon

was true at the beginning of genome sequenc- occur directly at the level of mRNA is of clinical and biological relevance (161). Finally, examples of translational control include internal ribosomal entry sites that are found in proteins involved in cell cycle regulation and apoptosis (162). At the protein level, minor alterations in the nature of proteinprotein interactions, protein modifications, and localization can have dramatic effects on cellular physiology (163). This dynamic system therefore has many ways to modulate activity, which suggests that definition of complex systems by analysis of single genes is unlikely to be entirely successful.

In situ studies have shown that the human genome is asymmetrically populated with G+C content, CpG islands, and genes (68). However, the genes are not distributed quite as unequally as had been predicted (Table 9) (69). The most G+C-rich fraction of the genome, H3 isochores, constitute more of the genome than previously thought (about 9%), and are the most gene-dense fraction, but contain only 25% of the genes, rather than the predicted ~40%. The low G+C L isochores make up 65% of the genome, and 48% of the genes. This inhomogeneity, the net result of millions of years of mammalian gene duplication, has been described as the "desertification" of the vertebrate genome (71). Why are there clustered regions of high and low gene density, and are these accidents of history or driven by selection and evolution? If these deserts are dispensable, it ought to be possible to find mammalian genomes that are far smaller in size than the human genome. Indeed, many species of bats have genome sizes that are much smaller than that of humans; for example, Miniopterus, a species of Italian bat, has a genome size that is only 50% that of humans (164). Similarly, Muntiacus, a species of Asian barking deer, has a genome size that is ~70% that of humans.

8.3 Human DNA sequence variation and its distribution across the genome

This is the first eukaryotic genome in which a nearly uniform ascertainment of polymorphism has been completed. Although we have identified and mapped more than 3 million SNPs, this by no means implies that the task of finding and cataloging SNPs is complete. These represent only a fraction of the SNPs present in the human population as a whole. Nevertheless, this first glimpse at genome-wide variation has revealed strong inhomogeneities in the distribution of SNPs across the genome. Polymorphism in DNA carries with it a snapshot of the past operation of population genetic forces, including mutation, migration, selection, and genetic drift. The availability of a dense array of SNPs will allow questions related to each of these factors to be addressed on a genome-wide basis. SNP studies can establish the range of haplo-

types present in subjects of different ethnogeographic origins, providing insights into population history and migration patterns. Although such studies have suggested that modern human lineages derive from Africa, many important questions regarding human origins remain unanswered, and more analyses using detailed SNP maps will be needed to settle these controversies. In addition to providing evidence for population expansions, migration, and admixture, SNPs can serve as markers for the extent of evolutionary constraint acting on particular genes. The correlation between patterns of intraspecies and interspecies genetic variation may prove to be especially informative to identify sites of reduced genetic diversity that may mark loci where sequence variations are not tolerated.

The remarkable heterogeneity in SNP density implies that there are a variety of forces acting on polymorphism-sparse regions may have lower SNP density because the mutation rate is lower, because most of those regions have a lower fraction of mutations that are tolerated, or because recent strong selection in favor of a newly arisen allele "swept" the linked variation out of the population (165). The effect of random genetic drift also varies widely across the genome. The nonrecombining portion of the Y chromosome faces the strongest pressure from random drift because there are roughly one-quarter as many Y chromosomes in the population as there are autosomal chromosomes, and the level of polymorphism on the Y is correspondingly less. Similarly, the X chromosome has a smaller effective population size than the autosomes, and its nucleotide diversity is also reduced. But even across a single autosome, the effective population size can vary because the density of deleterious mutations may vary. Regions of high density of deleterious mutations will see a greater rate of elimination by selection, and the effective population size will be smaller (166). As a result, the density of even completely neutral SNPs will be lower in such regions. There is a large literature on the association between SNP density and local recombination rates in Drosophila, and it remains an important task to assess the strength of this association in the human genome, because of its impact on the design of local SNP densities for disease-association studies. It also remains an important task to validate SNPs on a genomic scale in order to assess the degree of heterogeneity among geographic and ethnic populations.

8.4 Genome complexity

We will soon be in a position to move away from the cataloging of individual components of the system, and beyond the simplistic notions of "this binds to that, which then docks on this, and then the complex moves there..." (167) to the exciting area of network perturbations, nonlinear responses and thresholds, and their pivotal role in human diseases.

The enumeration of other "parts lists" reveals that in organisms with complex nervous systems, neither gene number, neuron number, nor number of cell types correlates in any meaningful manner with even simplistic measures of structural or behavioral complexity. Nor would they be expected to; this is the realm of nonlinearities and epigenesis (168). The 520 million neurons of the common octopus exceed the neuronal number in the brain of a mouse by an order of magnitude. It is apparent from a comparison of genomic data on the mouse and human, and from comparative mammalian neuroanatomy (169), that the morphological and behavioral diversity found in mammals is underpinned by a similar gene repertoire and similar neuroanatomies. For example, when one compares a pygmy marmoset (which is only 4 inches tall and weighs about 6 ounces) to a chimpanzee, the brain volume of this minute primate is found to be only about 1.5 cm³, two orders of magnitude less than that of a chimp and three orders less than that of humans. Yet the neuroanatomies of all three brains are strikingly similar, and the behavioral characteristics of the pygmy marmoset are little different from those of chimpanzees. Between humans and chimpanzees, the gene number, gene structures and functions, chromosomal and genomic organizations, and cell types and neuroanatomies are almost indistinguishable, yet the developmental modifications that predisposed human lineages to cortical expansion and development of the larynx, giving rise to language, culminated in a massive singularity that by even the simplest of criteria made humans more complex in a behavioral sense.

Simple examination of the number of neurons, cell types, or genes or of the genome size does not alone account for the differences in complexity that we observe. Rather, it is the interactions within and among these sets that result in such great variation. In addition, it is possible that there are "special cases" of regulatory gene networks that have a disproportionate effect on the overall system. We have presented several examples of "regulatory genes" that are significantly increased in the human genome compared with the fly and worm. These include extracellular ligands and their cognate receptors (e.g., wnt, frizzled, TGF-β, ephrins, and connexins), as well as nuclear regulators (e.g., the KRAB and homeodomain transcription factor families), where a few proteins control broad developmental processes. The answers to these "complexities" perhaps lie in these expanded gene families and differences in the regulatory control of ancient genes, proteins, pathways, and cells.

8.5 Beyond single components

While few would disagree with the intuitive conclusion that Einstein's brain was more complex than that of *Drosophila*, closer comparisons such as whether the set of predicted human proteins is more complex than the protein set of *Drosophila*, and if so, to what degree, are not straightforward, since protein, protein domain, or protein-protein interaction measures do not capture context-dependent interactions that underpin the dynamics underlying phenotype.

Currently, there are more than 30 different mathematical descriptions of complexity (170). However, we have yet to understand the mathematical dependency relating the number of genes with organism complexity. One pragmatic approach to the analysis of biological systems, which are composed of nonidentical elements (proteins, protein complexes, interacting cell types, and interacting neuronal populations), is through graph theory (171). The elements of the system can be represented by the vertices of complex topographies, with the edges representing the interactions between them. Examination of large networks reveals that they can self-organize, but more important, they can be particularly robust. This robustness is not due to redundancy, but is a property of inhomogeneously wired networks. The error tolerance of such networks comes with a price; they are vulnerable to the selection or removal of a few nodes that contribute disproportionately to network stability. Gene knockouts provide an illustration. Some knockouts may have minor effects, whereas others have catastrophic effects on the system. In the case of vimentin, a supposedly critical component of the cytoplasmic intermediate filament network of mammals, the knockout of the gene in mice reveals them to be reproductively normal, with no obvious phenotypic effects (172), and yet the usually conspicuous vimentin network is completely absent. On the other hand, ~30% of knockouts in Drosophila and mice correspond to critical nodes whose reduction in gene product, or total elimination, causes the network to crash most of the time, although even in some of these cases, phenotypic normalcy ensues, given the appropriate genetic background. Thus, there are no "good" genes or "bad" genes, but only networks that exist at various levels and at different connectivities, and at different states of sensitivity to perturbation. Sophisticated mathematical analysis needs to be constantly evaluated against hard biological data sets that specifically address network dynamics. Nowhere is this more critical than in attempts to come to grips with "complexity," particularly because deconvoluting and correcting complex networks that have undergone perturbation, and have resulted in human diseases, is the greatest significant challenge now facing us.

It has been predicted for the last 15 years that complete sequencing of the human ge-

nome would open up new strategies for human biological research and would have a major impact on medicine, and through medicine and public health, on society. Effects on biomedical research are already being felt. This assembly of the human genome sequence is but a first, hesitant step on a long and exciting journey toward understanding the role of the genome in human biology. It has been possible only because of innovations in instrumentation and software that have allowed automation of almost every step of the process from DNA preparation to annotation. The next steps are clear: We must define the complexity that ensues when this relatively modest set of about 30,000 genes is expressed. The sequence provides the framework upon which all the genetics, biochemistry, physiology, and ultimately phenotype depend. It provides the boundaries for scientific inquiry. The sequence is only the first level of understanding of the genome. All genes and their control elements must be identified; their functions, in concert as well as in isolation, defined; their sequence variation worldwide described; and the relation between genome variation and specific phenotypic characteristics determined. Now we know what we have to explain.

Another paramount challenge awaits: public discussion of this information and its potential for improvement of personal health. Many diverse sources of data have shown that any two individuals are more than 99.9% identical in sequence, which means that all the glorious differences among individuals in our species that can be attributed to genes falls in a mere 0.1% of the sequence. There are two fallacies to be avoided: determinism, the idea that all characteristics of the person are "hard-wired" by the genome; and reductionism, the view that with complete knowledge of the human genome sequence, it is only a matter of time before our understanding of gene functions and interactions will provide a complete causal description of human variability. The real challenge of human biology, beyond the task of finding out how genes orchestrate the construction and maintenance of the miraculous mechanism of our bodies, will lie ahead as we seek to explain how our minds have come to organize thoughts sufficiently well to investigate our own existence.

References and Notes

- R. L. Sinsheimer, Genomics 5, 954 (1989); U.S. Department of Energy, Office of Health and Environmental Research, Sequencing the Human Genome: Summary Report of the Santa Fe Workshop, Santa Fe, NM, 3 to 4 March 1986 (Los Alamos National Laboratory, Los Alamos, NM, 1986).
- R. Cook-Deegan, The Gene Wars: Science, Politics, and the Human Genome (Norton, New York, 1996).
 F. Sanger et al., Nature 265, 687 (1977).
- P. H. Seeburg et al., Trans. Assoc. Am. Physicians 90, 109 (1977).

 E. C. Strauss, J. A. Kobori, G. Siu, L. E. Hood, Anal. Biochem. 154, 353 (1986).

 J. Gocayne et al., Proc. Natl. Acad. Sci. U.S.A. 84, 8296 (1987).

A. Martin-Gallardo et al., DNA Sequence 3, 237 (1992); W. R. McCombie et al., Nature Genet. 1, 348 (1992); M. A. Jensen et al., DNA Sequence 1, 233 (1991).

8. M. D. Adams et al., Science 252, 1651 (1991).

- M. D. Adams et al., Nature. 355, 632 (1992); M. D. Adams, A. R. Kerlavage, C. Fields, J. C. Venter, Nature Genet. 4, 256 (1993); M. D. Adams, M. B. Soares, A. R. Kerlavage, C. Fields, J. C. Venter, Nature Genet. 4, 373 (1993); M. H. Polymeropoulos et al., Nature Genet. 4, 381 (1993); M. Marra et al., Nature Genet. 21, 191 (1999).
- M. D. Adams et al., Nature 377, 3 (1995); O. White et al., Nucleic Acids Res. 21, 3829 (1993).

 F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, J. Mol. Biol. 162, 729 (1982).

 B. W. J. Mahy, J. J. Esposito, J. C. Venter, Am. Soc. Microbiol. News 57, 577 (1991).

R. D. Fleischmann et al., Science 269, 496 (1995).
 C. M. Fraser et al., Science 270, 397 (1995).

 C. J. Bult et al., Science 273, 1058 (1996); J. F. Tomb et al., Nature 388, 539 (1997); H. P. Klenk et al., Nature 390, 364 (1997).

 J. C. Venter, H. O. Smith, L. Hood, Nature 381, 364 (1996).

17. H. Schmitt et al., Genomics 33, 9 (1996).

18. S. Zhao et al., Genomics 63, 321 (2000).

- 19. X. Lin et al., Nature 402, 761 (1999).
- 20. J. L. Weber, E. W. Myers, Genome Res. 7, 401 (1997).
- P. Green, Genome Res. 7, 410 (1997).
 E. Pennisi, Science 280, 1185 (1998).
- 23. J. C. Venter et al., Science 280, 1540 (1998).
- 24. M. D. Adams et al., Nature 368, 474 (1994).
- 25. E. Marshall, E. Pennisi, Science 280, 994 (1998).
- 26. M. D. Adams et al., Science 287, 2185 (2000).
- 27. G. M. Rubin et al., Science 287, 2204 (2000).
- 28. E. W. Myers et al., Science 287, 2196 (2000).
- F. S. Collins et al., Science 282, 682 (1998).
 International Human Genome Sequencing Consortium (2001), Nature 409, 860 (2001).
- Institutional review board: P. Calabresi (chairman),
 H. P. Freeman, C. McCarthy, A. L. Caplan, G. D. Rogell, J. Karp, M. K. Evans, B. Margus, C. L. Carter,
 R. A. Millman, S. Broder.
- 32. Eligibility criteria for participation in the study were as follows: prospective donors had to be 21 years of age or older, not pregnant, and capable of giving an informed consent. Donors were asked to self-define their ethnic backgrounds. Standard blood bank screens (screening for HIV, hepatitis viruses, and so forth) were performed on all samples at the clinical laboratory prior to DNA extraction in the Celera laboratory. All samples that tested positive for transmissible viruses were ineligible and were discarded. Karyotype analysis was performed on peripheral blood lymphocytes from all samples selected for sequencing; all were normal. A two-staged consent process for prospective donors was employed. The first stage of the consent process provided information about the genome project, procedures, and risks and benefits of participating. The second stage of the consent process involved answering follow-up questions and signing consent forms, and was conducted about 48 hours after the first.
- 33. DNA was isolated from blood (173) or sperm. For sperm, a washed pellet (100 μl) was lysed in a suspension (1 ml) containing 0.1 M NaCl, 10 mM tris-CI-20 mM EDTA (pH 8), 1% SDS, 1 mg proteinase K, and 10 mM dithiothreitol for 1 hour at 37°C. The lysate was extracted with aqueous phenol and with phenol/chloroform. The DNA was ethanol precipitated and dissolved in 1 ml TE buffer. To make genomic libraries, DNA was randomly sheared, endpolished with consecutive BAL31 nuclease and T4 DNA polymerase treatments, and size-selected by electrophoresis on 1% low-melting-point agarose. After ligation to Bst XI adapters (Invitrogen, catalog no. N408-18), DNA was purified by three rounds of gel electrophoresis to remove excess adapters, and the fragments, now with 3'-CACA overhangs, were

. inserted into Bst XI-linearized plasmid vector with 3'-TGTG overhangs. Libraries with three different average sizes of inserts were constructed: 2, 10, and 50 kbp. The 2-kbp fragments were cloned in a high-copy pUC18 derivative. The 10- and 50-kbp fragments were cloned in a medium-copy pBR322 derivative. The 2- and 10-kbp libraries yielded uniform-sized large colonies on plating. However, the 50-kbp libraries produced many small colonies and inserts were unstable. To remedy this, the 50-kbp libraries were digested with Bgl II, which does not cleave the vector, but generally cleaved several times within the 50-kbp insert. A 1264-bp Barn HI kanamycin resistance cassette (purified from pUCK4; Amersham Pharmacia, catalog no. 27-4958-01) was added and ligation was carried out at 37°C in the continual presence of Bgl II. As Bgl II-Bgl II ligations occurred, they were continually cleaved, whereas Bam HI-Bgl II ligations were not cleaved. A high yield of internally deleted circular library molecules was obtained in which the residual insert ends were separated by the kanamycin cassette DNA. The internally deleted libraries, when plated on agar containing ampicillin (50 µg/ml), carbenicillin (50 μg/ml), and kanamycin (15 μg/ml), produced relatively uniform large colonies. The resulting clones could be prepared for sequencing using the same procedures as clones from the 10-kbp libraries.

34. Transformed cells were plated on agar diffusion plates prepared with a fresh top layer containing no antibiotic poured on top of a previously set bottom layer containing excess antibiotic, to achieve the correct final concentration. This method of plating permitted the cells to develop antibiotic resistance before being exposed to antibiotic without the potential clone bias that can be introduced through liquid outgrowth protocols. After colonies had grown, QBot (Genetix, UK) automated colony-picking robots were used to pick colonies meeting stringent size and shape criteria and to inoculate 384well microtiter plates containing liquid growth medium. Liquid cultures were incubated overnight, with shaking, and were scored for growth before passing to template preparation. Template DNA was extracted from liquid bacterial culture using a procedure based upon the alkaline lysis miniprep method (173) adapted for high throughput processing in 384-well microtiter plates. Bacterial cells were lysed; cell debris was removed by centrifugation; and plasmid DNA was recovered by isopropanol precipitation and resuspended in 10 mM tris-HCl buffer. Reagent dispensing operations were accomplished using Titertek MAP 8 liquid dispensing systems. Plate-to-plate liquid transfers were performed using Tomtec Quadra 384 Model 320 pipetting robots. All plates were tracked throughout processing by unique plate barcodes. Mated sequencing reads from opposite ends of each clone insert were obtained by preparing two 384-well cycle sequencing reaction plates from each plate of plasmid template DNA using ABI-PRISM BigDye Terminator chemistry (Applied Biosystems) and standard M13 forward and reverse primers. Sequencing reactions were prepared using the Tomtec Quadra 384-320 pipetting robot. Parent-child plate relationships and, by extension, forward-reverse sequence mate pairs were established by automated plate barcode reading by the onboard barcode reader and were recorded by direct LIMS communication. Sequencing reaction products were purified by alcohol precipitation and were dried, sealed, and stored at 4°C in the dark until needed for sequencing, at which time the reaction products were resuspended in deionized formamide and sealed immediately to prevent degradation. All sequence data were generated using a single sequencing platform, the ABI PRISM 3700 DNA Analyzer. Sample sheets were created at load time using a Java-based application that facilitates barcode scanning of the sequencing plate barcode, retrieves sample information from the central LIMS, and reserves unique trace identifiers. The application permitted a single sample sheet file in the linking directory and deleted previously created sample sheet files immediately upon scanning of a

sample plate barcode, thus enhancing sample sheet to-plate associations.

35. F. Sanger, S. Nicklen, A. R. Coulson, Proc. Natl. Acad. Sci. U.S.A. 74, 5463 (1977); J. M. Prober et al., Science 238, 336 (1987).

36. Celera's computing environment is based on Compaq Computer Corporation's Alpha system technology running the Tru64 Unix operating system. Celera uses these Alphas as Data Servers and as nodes in a Virtual Compute Farm, all of which are connected to a fully switched network operating at Fast Ethernet speed (for the VCF) and gigabit Ethernet speed (for data servers). Load balancing and scheduling software manages the submission and execution of jobs, based on central processing unit (CPU) speed, memory requirements, and priority. The Virtual Compute Farm is composed of 440 Alpha CPUs, which includes model EV6 running at a clock speed of 400 MHz and EV67 running at 667 MHz. Available memory on these systems ranges from 2 GB to 8 GB. The VCF is used to manage trace file processing, and annotation. Genome assembly was performed on a GS 160 running 16 EV67s (667 MHz) and 64 GB of memory, and 10 ES40s running 4 EV6s (500 MHz) and 32 GB of memory. A total of 100 terabytes of physical disk storage was included in a Storage Area Network that was available to systems across the environment. To ensure high availability, file and database servers were configured as 4-node Alpha TruClusters, so that services would fail over in the event of hardware or software failure. Data availability was further enhanced by using hardware- and software-based disk mirroring (RAID-0), disk striping (RAID-1), and disk striping with parity (RAID-5).

37. Trace processing generates quality values for base calls by means of Paracel's TraceTuner, trims sequence reads according to quality values, trims vector and adapter sequence from high-quality reads, and screens sequences for contaminants. Similar in design and algorithm to the phred program (174), TraceTuner reports quality values that reflect the log-odds score of each base being correct. Read quality was evaluated in 50-bp windows, each read being trimmed to include only those consecutive 50-bp segments with a minimum mean accuracy of 97%. End windows (both ends of the trace) of 1, 5, 10, 25, and 50 bases were trimmed to a minimum mean accuracy of 98%. Every read was further checked for vector and contaminant matches of 50 bp or more, and if found, the read was removed from consideration. Finally, any match to the 5' vector splice junction in the initial part of a read was

38. National Center for Biotechnology Information (NCBI); available at www.ncbi.nlm.nih.gov/.

39. NCBI; available at www.ncbi.nlm.nih.gov/HTGS/. 40. All bactigs over 3 kbp were examined for coverage by Celera mate pairs. An interval of a bactig was deemed an assembly error where there were no mate pairs spanning the interval and at least two reads that should have their mate on the other side of the interval but did not. In other words, there was no mate pair evidence supporting a join in the breakpoint interval and at least two mate pairs contradicting the join. By this criterion, we detected and broke apart bactigs at 13,037 locations, or equivalently, we found 2.13% of the bactigs to be misassembled.

41. We considered a BAC entry to be chimeric if, by the Lander-Waterman statistic (175), the odds were 0.99 or more that the assembly we produced was inconsistent with the sequence coming from a single source. By this criterion, 714 or 2.2% of BAC entries were deemed chimeric.

42. G. Myers, S. Selznick, Z. Zhang, W. Miller, J. Comput. Biol. 3, 563 (1996).

43. E. W. Myers, J. L. Weber, in Computational Methods in Genome Research, S. Suhai, Ed. (Plenum, New York, 1996), pp. 73-89.

P. Deloukas et al., Science 282, 744 (1998).
 M. A. Marra et al., Genome Res. 7, 1072 (1997).

46. J. Zhang et al., data not shown.

47. Shre ded bactigs were located on long CSA scaffolds (>500 kbp) and the distribution of these

THE HUMAN GENOME

fragments on the scaffolds was analyzed. If the spread of these fragments was greater than four times the reported BAC length, the BAC was considered to be chimeric. In addition, if >20% of bactigs of a given BAC were found on a different scaffolds that were not adjacent in map position, then the BAC was also considered as chimeric. The total chimeric BACs divided by the number of BACs used for CSA gave the minimal estimate of chimer-

48. M. Hattori et al., Nature 405, 311 (2000). 49. I. Dunham et al., Nature 402, 489 (1999).

50. A. B. Carvalho, B. P. Lazzaro, A. G. Clark, Proc. Natl. Acad. Sci. U.S.A. 97, 13239 (2000).

51. The International RH Mapping Consortium, available at www.ncbi.nlm.nih.gov/genemap99/.

52. See http://ftp.genome.washington.edu/RM/Repeat-Masker.htmL

53. G. D. Schuler, Trends Biotechnol. 16, 456 (1998).

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 215, 403 (1990).

55a.M. Olivier et al., Science 291, 1298 (2001).

55b.See http://genome.ucsc.edu/.

56. N. Chaudhari, W. E. Hahn, Science 220, 924 (1983); R. J. Milner, J. G. Sutcliffe, Nucleic Acids Res. 11, 5497 (1983).

57. D. Dickson, Nature 401, 311 (1999).

58. B. Ewing, P. Green, Nature Genet. 25, 232 (2000).

59. H. Roest Crollius et al., Nature Genet. 25, 235

60. M. Yandell, in preparation.

61. K. D. Pruitt, K. S. Katz, H. Sicotte, D. R. Maglott,

Trends Genet. 16, 44 (2000). 62. Scaffolds containing greater than 10 kbp of sequence were analyzed for features of biological importance through a series of computational steps, and the results were stored in a relational database. For scaffolds greater than one megabase, the sequence was cut into single megabase pieces before computational analysis. All sequence was masked for complex repeats using Repeatmasker (52) before gene finding or homology-based analysis. The computational pipeline required ~7 hours of CPU time per megabase, including repeat masking, or a total compute time of about 20,000 CPU hours. Protein searches were performed against the nonredundant protein database available at the NCBI. Nucleotide searches were performed against human, mouse, and rat Celera Gene Indices (assemblies of cDNA and EST sequences), mouse genomic DNA reads generated at Celera (3×), the Ensembl gene database available at the European Bioinformatics Institute (EBI), human and rodent (mouse and rat) EST data sets parsed from the dbEST database (NCBI), and a curated subset of the RefSeq experimental mRNA database (NCBI). Initial searches were performed on repeat-masked sequence with BLAST 2.0 (54) optimized for the Compaq Alpha computeserver and an effective database size of $3 imes 10^9$ for BLASTN searches and 1 imes 10 9 for BLASTX searches. Additional processing of each query-subject pair was performed to improve the alignments. All protein BLAST results having an expectation score of < 1 \times 10⁻⁴, human nucleotide BLAST results having an expectation score of $<1 \times 10^{-8}$ with >94%identity, and rodent nucleotide 8LAST results having an expectation score of $<1 \times 10^8$ with >80%identity were then examined on the basis of their high-scoring pair (HSP) coordinates on the scaffold to remove redundant hits, retaining hits that supported possible alternative splicing. For BLASTX searches, analysis was performed separately for selected model organisms (yeast, mouse, human, C. elegans, and D. melanogaster) so as not to exclude HSPs from these organisms that support the same gene structure. Sequences producing BLAST hits judged to be informative, nonredundant, and sufficiently similar to the scaffold sequence were then realigned to the genomic sequence with Sim4 for ESTs, and with Lap for proteins. Because both of these algorithms take splicing into account, the resulting alignments usually give a better representation of intron-exon boundaries than standard BLAST analyses and thus facilitate further annotation (both machine and human). In addition to the

nomology-based analysis described above, three ab initio gene prediction programs were used (63).

63. E. C. Uberbacher, Y. Xu, R. J. Mural, Methods Enzymol. 266, 259 (1996); C. Burge, S. Karlin, J. Mol. Biol. 268, 78 (1997); R. J. Mural, Methods Enzymol. 303, 77 (1999); A. A. Salamov, V. V. Solovyev, Genome Res. 10, 516 (2000); Floreal et al., Genome Res. 8, 967 (1998).

G. L. Miklos, B. John, Am. J. Hum. Genet. 31, 264 (1979); U. Francke, Cytogenet. Cell Genet. 65, 206

65. P. E. Warburton, H. F. Willard, in Human Genome

Evolution, M. S. Jackson, T. Strachan, G. Dover, Eds. (BIOS Scientific, Oxford, 1996), pp. 121-145. 66. J. E. Horvath, S. Schwartz, E. E. Eichler, Genome Res. 10, 839 (2000).

67. W. A. Bickmore, A. T. Sumner, Trends Genet. 5, 144 (1989).

68. G. P. Holmquist, Am. J. Hum. Genet. 51, 17 (1992).

69. G. Bernardi, Gene 241, 3 (2000).

70. S. Zoubak, O. Clay, G. Bernardi, Gene 174, 95 (1996).

71. S. Ohno, Trends Genet. 1, 160 (1985).

72. K. W. Broman, J. C. Murray, V. C. Sheffield, R. L. White, J. L. Weber, Am. J. Hum. Genet. 63, 861 (1998).

73. M. J. McEachern, A. Krauskopf, E. H. Blackburn, Annu. Rev. Genet. 34, 331 (2000).

74. A. Bird, Trends Genet. 3, 342 (1987).

75. M. Gardiner-Garden, M. Frommer, J. Mol. Biol. 196, 261 (1987).

76. F. Larsen, G. Gundersen, R. Lopez, H. Prydz, Genomics 13, 1095 (1992).

77. S. H. Cross, A. Bird, Curr. Opin. Genet. Dev. 5, 309 (1995).

78. J. Peters, Genome Biol. 1, reviews1028.1 (2000) (http://genomebiology.com/2000/1/5/reviews/ 1028).

79. C. Grunau, W. Hindermann, A. Rosenthal, Hum. Mol. Genet. 9, 2651 (2000).

F. Antequera, A. Bird, Proc. Natl. Acad. Sci. U.S.A. 90, 11995 (1993).

81. S. H. Cross et al., Mamm. Genome 11, 373 (2000).

82. D. Slavov et al., Gene 247, 215 (2000).

A. F. Smit, A. D. Riggs, Nucleic Acids Res. 23, 98 (1995).84. D. J. Elliott et al., Hum. Mol. Genet. 9, 2117 (2000).

A. V. Makeyev, A. N. Chkheidze, S. A. Lievhaber, J. Biol. Chem. 274, 24849 (1999).

Y. Pan, W. K. Decker, A. H. H. M. Huq, W. J. Craigen, Genomics 59, 282 (1999).

87. P. Nouvel, Genetica 93, 191 (1994).

88. I. Goncalves, L. Duret, D. Mouchiroud, Genome Res. 10, 672 (2000).

89. Lek first compares all proteins in the proteome to one another. Next, the resulting BLAST reports are parsed, and a graph is created wherein each protein constitutes a node; any hit between two proteins with an expectation beneath a user-specified threshold constitutes an edge. Lek then uses this graph to compute a similarity between each protein pair ij in the context of the graph as a whole by simply dividing the number of BLAST hits shared in common between the two proteins by the total number of proteins hit by I and J. This simple metric has several interesting properties. First, because the similarity metric takes into account both the similarity and the differences between the two sequences at the level of BLAST hits, the metric respects the multidomain nature of protein space. Two multidomain proteins, for instance, each containing domains A and B, will have a greater pairwise similarity to each other than either one will have to a protein containing only A or B domains, so long as A-Bcontaining multidomain proteins are less frequent in the proteome than are single-domain proteins containing A or B domains. A second interesting property of this similarity metric is that it can be used to produce a similarity matrix for the proteome as a whole without having to first produce a multiple alignment for each protein family, an error-prone and very time-consuming process. Finally, the metric does not require that either sequence have significant homology to the other in order to have a defined similarity to each other, only that they

share at least one significant BLAST hit in common. This is an especially interesting property of the metric, because it allows the rapid recovery of protein families from the proteome for which no multiple alignment is possible, thus providing a computational basis for the extension of protein homology searches beyond those of current HMM- and profilebased search methods. Once the whole-proteome similarity matrix has been calculated, Lek first partitions the proteome into single-linkage clusters (27) on the basis of one or more shared BLAST hits between two sequences. Next, these single-linkage clusters are further partitioned into subclusters, each member of which shares a user-specified pairwise similarity with the other members of the cluster, as described above. For the purposes of this publication, we have focused on the analysis of single-linkage clusters and what we have termed "complete clusters," e.g., those subclusters for which every member has a similarity metric of 1 to every other member of the subcluster. We believe that the single-linkage and complete clusters are of special interest, in part, because they allow us to estimate and to compare sizes of core protein sets in a rigorous manner. The rationale for this is as follows: if one imagines for a moment a perfect clustering algorithm capable of perfectly partitioning one or more perfectly annotated protein sets into protein families, it is reasonable to assume that the number of clusters will always be greater than, or equal to, the number of single-linkage clusters, because single-linkage clustering is a maximally agglomerative clustering method. Thus, if there exists a single protein in the predicted protein set containing domains A and B, then it will be clustered by single linkage together with all single-domain proteins containing domains A or B. Likewise, for a predicted protein set containing a single multidomain protein, the number of real clusters must always be less than or equal to the number of complete clusters, because it is impossible to place a unique multidomain protein into a complete cluster. Thus, the single-linkage and complete clusters plus singletons should comprise a lower and upper bound of sizes of core protein sets, respectively, allowing us to compare the relative size and complexity of different organisms' predicted protein set. T. F. Smith, M. S. Waterman, J. Mol. Biol. 147, 195

- (1981). A. L. Delcher et al., Nucleic Acids Res. 27, 2369 (1999).
- 92. Arabidopsis Genome Initiative, Nature 408, 796 (2000).
- The probability that a contiguous set of proteins is the result of a segmental duplication can be estimated approximately as follows. Given that protein A and B occur on one chromosome, and that A' and B' (paralogs of A and B) also exist in the genome, the probability that B' occurs immediately after A' is 1/N, where N is the number of proteins in the set (for this analysis, N = 26,588). Allowing for B' to occur as any of the next J-1 proteins [leaving a gap between A' and B' increases the probability to (1-1)/N; allowing B'A' or A'B' gives a probability of 2(/ - 1)/N]. Considering three genes ABC, the probability of observing A'B'C' elsewhere in the genome, given that the paralogs exist, is 1/N 2. Three proteins can occur across a spread of five positions in six ways; more generally, we compute the number of ways that K proteins can be spread across J positions by counting all possible arrangements of K \cdot 2 proteins in the J-2 positions between the first and last protein. Allowing for a spread to vary from K positions (no gaps) to J gives

$$L = \sum_{X=K-2}^{J-2} {X \choose K-2}$$

arrangements. Thus, the probability of chance occurrence is L/NK-1. Allowing for both sets of genes (e.g., ABC and A'B'C') to be spread across J positions increases this to L^2/N^{K-1} . The duplicated segment might be rearranged by the operations of reversal or translocation; allowing for M such rearrangements gives us a probability $P = L^2M/N^{K-1}$. For example, the

probability of observing a duplicated set of three genes in two different locations, where the three genes occur across a spread of five positions in both locations, is 36/N2; the expected number of such matched sets in the predicted protein set is approximately (N)36/N² = 36/N, a value \ll 1. Therefore, any such duplications of three genes are unlikely to result from random rearrangements of the genome. If any of the genes occur in more than two copies, the probability that the apparent duplication has occurred by chance increases. The algorithm for selecting candidate duplications only generates matched protein sets with $P \ll 1$.

94. B. J. Trask et al., Hum. Mol. Genet. 7, 13 (1998); D. Sharon et al., Genomics 61, 24 (1999).

95.: W. B. Barbazuk et al., Genome Res. 10, 1351 (2000); A. McLysaght, A. J. Enright, L. Skrabanek, K. H. Wolfe, Yeast 17, 22 (2000); D. W. Burt et al., Nature 402, 411 (1999).

96. Reviewed in L. Skrabanek, K. H. Wolfe, Curr. Opin. Genet. Dev. 8, 694 (1998).

97. P. Taillon-Miller, Z. Gu, Q. Li, L. Hillier, P. Y. Kwok, Genome Res. 8, 748 (1998); P. Taillon-Miller, E. E. Piernot, P. Y. Kwok, Genome Res. 9, 499 (1999).

98. D. Altshuler et al., Nature 407, 513 (2000).

99. G. T. Marth et al., Nature Genet. 23, 452 (1999) W.-H. Li, Molecular Evolution (Sinauer, Sunderland, MA. 1997).

101. M. Cargill et al., Nature Genet. 22, 231 (1999).

102. M. K. Halushka et al., Nature Genet. 22, 239 (1999).

103. J. Zhang, T. L. Madden, Genome Res. 7, 649 (1997). M. Nei, Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

105. From the observed coverage of the sequences at each site for each individual, we calculated the probability that a SNP would be detected at the site if it were present. For each level of coverage, there is a binomial sampling of the two homologs for each individual, and a heterozygous site could only be ascertained if both homologs are present, or if two ... alleles from different individuals are present. With coverage x from a given individual, both homologs are present in the assembly with probability 1 (1/2)x-1. Even if both homologs are present, the probability that a SNP is detected is <1 because a fraction of sites failed the quality criteria. Integrating over coverage levels, the binomial sampling, and the quality distribution, we derived an expected number of sites in the genome that were ascertained for polymorphism for each individual. The

sites ascertained. 106. M. W. Nachman, V. L. Bauer, S. L. Crowell, C. F. Aquadro, Genetics 150, 1133 (1998).

nucleotide diversity was then the observed number

of variable sites divided by the expected number of

D. A. Nickerson et al., Nature Genet. 19, 233 (1998); D. A. Nickerson et al., Genomic Res. 10, 1532 (2000); L. Jorde et al., Am. J. Hum. Genet. 66, 979 (2000); D. G. Wang et al., Science 280, 1077 (1998). 108. M. Przeworski, R. R. Hudson, A. Di Rienzo, Trends

Genet. 16, 296 (2000).

109. S. Tavare, Theor. Popul. Biol. 26, 119 (1984).

110. R. R. Hudson, in Oxford Surveys in Evolutionary Biology, D. J. Futuyma, J. D. Antonovics, Eds. (Oxford Univ. Press, Oxford, 1990), vol. 7, pp. 1-44.

111. A. G. Clark et al., Am. J. Hum. Genet. 63, 595 (1998).

M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

H. Kaessmann, F. Heissig, A. von Haeseler, S. Paabo, Nature Genet. 22, 78 (1999).

E. L. Sonnhammer, S. R. Eddy, R. Durbin, Proteins 28, 405 (1997).

115. A. Bateman et al., Nucleic Acids Res. 28, 263 (2000).

116. Brief description of the methods used to build the Panther classification. First, the June 2000 release of the GenBank NR protein database (excluding sequences annotated as fragments or mutants) was partitioned into clusters using BLASTP. For the clustering, a seed sequence was randomly chosen, and the cluster was defined as all sequences matching the seed to statistical significance (E-value $< 10^{-5}$ and "globally" alignable (the length of the match region must be >70% and <130% of the length of the seed). If the cluster had more than five mem-

bers, and at least one from a multicellular eukaryote, the cluster was extended. For the extension step, a hidden Markov Model (HMM) was trained for the cluster, using the SAM software package, version 2. The HMM was then scored against GenBank NR (excluding mutants but including fragments for this step), and all sequences scoring better than a specific (NLL-NULL) score were added to the cluster. The HMM was then retrained (with fixed model length) and all sequences in the cluster were aligned to the HMM to produce a multiple sequence alignment. This alignment was assessed by a number of quality measures. If the alignment failed the quality check, the initial cluster was rebuilt around the seed using a more restrictive E-value, followed by extension, alignment, and reassessment. This process was repeated until the alignment quality was good. The multiple alignment and "general" (i.e., describing the entire cluster, or "family") HMM (176) were then used as input into the BETE program (177). BETE calculates a phylogenetic tree for the sequences in the alignment. Functional information about the sequences in each cluster were parsed from SwissProt (178) and GenBank records. "Tree-attribute viewer" software was used by biologist curators to correlate the phylogenetic tree with protein function. Subfamilies were manually defined on the basis of shared function across subtrees, and were named accordingly. HMMs were then built for each subfamily, using information from both the subfamily and family (K. Sjölander, in preparation). Families were also manually named according to the functions contained within them. Finally, all of the families and subfamilies were classified into categories and subcategories based on their molecular functions. The categorization was done by manual review of the family and subfamily names, by examining SwissProt and GenBank records, and by review of the literature as well as resources on the World Wide Web. The current version (2.0) of the Panther molecular function schema has four levels: category, subcategory, family, and subfamily. Protein sequences for whole eukaryotic genomes (for the predicted human proteins and annotated proteins for fly, worm, yeast, and Arabidopsis) were scored against the Panther library of family and subfamily HMMs. If the score was significant (the NLL-NULL score cutoff depends on the protein family), the protein was assigned to the family or subfamily function with the most significant score.

117. C. P. Ponting, J. Schultz, F. Milpetz, P. Bork, Nucleic Acids Res. 27, 229 (1999).

118. A. Goffeau et al., Science 274, 546, 563 (1996).

119. C. elegans Sequencing Consortium, Science 282, 2012 (1998).

120. S. A. Chervitz et al., Science 282, 2022 (1998).

121. E. R. Kandel, J. H. Schwartz, T. Jessell, Principles of Neural Science (McGraw-Hill, New York, ed. 4, 2000).

122. D. A. Goodenough, J. A. Goliger, D. L. Paul, Annu. Rev. Biochem. 65, 475 (1996).

123. D. G. Wilkinson, Int. Rev. Cytol. 196, 177 (2000).

124. F. Nakamura, R. G. Kalb, S. M. Strittmatter, J. Neurobiol. 44, 219 (2000).

P. J. Horner, F. H. Gage, Nature 407, 963 (2000); P. Casaccia-Bonnefil, C. Gu, M. V. Chao, Adv. Exp. Med. Biol. 468, 275 (1999).

126. S. Wang, B. A. Barres, Neuron 27, 197 (2000).

127. M. Geppert, T. C. Sudhof, Annu. Rev. Neurosci. 21, 75 (1998); J. T. Littleton, H. J. Bellen, Trends Neurosci. 18, 177 (1995).

128. A. Maximov, T. C. Sudhof, I. Bezprozvanny, J. Biol. Chem. 274, 24453 (1999).

B. Sampo et al., Proc. Natl. Acad. Sci. U.S.A. 97, 3666 (2000).

130. G. Lemke, Glia 7, 263 (1993).

131. M. Bernfield et al., Annu. Rev. Biochem. 68, 729 (1999).

132. N. Perrimon, M. Bernfield, Nature 404, 725 (2000).

133. U. Lindahl, M. Kusche-Gullberg, L. Kjellen, J. Biol. Chem. 273, 24979 (1998).

134. J. L. Riechmann et al., Science 290, 2105 (2000).

135. T. L. Hurskainen, S. Hirohata, M. F. Seldin, S. S. Apte, J. Biol. Chem. 274, 25555 (1999).

- 136. R. A. Black, J. M. White, Curr. Opin. Cell Biol. 10, 654 (1998).
- L. Aravind, V. M. Dixit, E. V. Koonin, Trends Biochem. Sci. 24, 47 (1999).
- 138. A. G. Uren et al., Mol. Cell 6, 961 (2000).
- 139. P. Garcia-Meunier, M. Etienne-Julan, P. Fort, M. Piechaczyk, F. Bonhomme, Mamm. Genome 4, 695 (1993).
- 140. K. Meyer-Siegler et al., Proc. Natl. Acad. Sci. U.S.A. 88, 8460 (1991).
- 141. N. R. Mansur, K. Meyer-Siegler, J. C. Wurzer, M. A. Sirover, Nucleic Acids Res. 21, 993 (1993).
- 142. N. A. Tatton, Exp. Neurol. 166, 29 (2000).
- 143. N. Kenmochi et al., Genome Res. 8, 509 (1998).
- 144. F. W. Chen, Y. A. Ioannou, Int. Rev. Immunol. 18, 429 (1999).
- 145. H. O. Madsen, K. Poulsen, O. Dahl, B. F. Clark, J. P. Hjorth, Nucleic Acids Res. 18, 1513 (1990).
- 146. D. M. Chambers, J. Peters, C. M. Abbott, Proc. Natl. Acad. Sci. U.S.A. 95, 4463 (1998); A. Khalyfa, B. M. Carlson, J. A. Carlson, E. Wang, Dev. Dyn. 216, 267 (1999).
- 147. D. Aeschlimann, V. Thomazy, Connect. Tissue Res. 41, 1 (2000).
- 148. P. Munroe et al., Nature Genet. 21, 142 (1999); S. M. Wu, W. F. Cheung, D. Frazier, D. W. Stafford, Science 254, 1634 (1991); B. Furie et al., Blood 93, 1798
- 149. J. W. Kehoe, C. R. Bertozzi, Chem. Biol. 7, R57 (2000).
- 150. T. Pawson, P. Nash, Genes Dev. 14, 1027 (2000).
- 151. A. W. van der Velden, A. A. Thomas, Int. J. Biochem. Cell Biol. 31, 87 (1999).
- 152. C. M. Fraser et al., Science 281, 375 (1998); H. Tettelin et al., Science 287, 1809 (2000).
- 153. D. Brett et al., FEBS Lett. 474, 83 (2000).
- 154. H. J. Muller, H. Kern, Z. Naturforsch. B 22, 1330 (1967).

- 55. H. J. Muller, in Heritage from Mendel, R. A. Brink, Ed. (Univ. of Wisconsin Press, Madison, WI, 1967), p. 419.
- 156. J. F. Crow, M. Kimura, Introduction to Population Genetics Theory (Harper & Row, New York, 1970).
- 157. K. Kobayashi et al., Nature 394, 388 (1998).
- 158. A. P. Feinberg, Curr. Top. Microbiol. Immunol. 249, 87 (2000).
- 159. C. A. Collins, C. Guthrie, Nature Struct. Biol. 7, 850 (2000).
- 160. S. R. Eddy, Curr. Opin. Genet. Dev. 9, 695 (1999).
- 161. Q. Wang, J. Khillan, P. Gadue, K. Nishikura, Science 290, 1765 (2000).
- 162. M. Holcik, N. Sonenberg, R. G. Korneluk, Trends Genet. 16, 469 (2000).
- 163. T. A. McKinsey, C. L. Zhang, J. Lu, E. N. Olson, Nature 408, 106 (2000).
- 164. E. Capanna, M. G. M. Romanini, Caryologia 24, 471 (1971).
- 165. J. Maynard Smith, J. Theor. Biol. 128, 247 (1987). .
- 166. D. Charlesworth, B. Charlesworth, M. T. Morgan, Genetics 141, 1619 (1995).
- 167. J. E. Bailey, Nature Biotechnol. 17, 616 (1999).
- 168. R. Maleszka, H. G. de Couet, G. L. Miklos, Proc. Natl. Acad. Sci. U.S.A. 95, 3731 (1998).
- 169. G. L. Miklos, J. Neurobiol. 24, 842 (1993).
- 170. J. P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989); M. Gell-Mann, S. Lloyd, Complexity 2, 44 (1996).
- 171. A. L. Barabasi, R. Albert, Science 286, 509 (1999).
- 172. E. Colucci-Guyon et al., Cell 79, 679 (1994).
- 173. J. Sambrook, E. F. Fritch, T. Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, ed. 2,
- 174. B. Ewing, P. Green, Genome Res. 8, 186 (1998); B.

- ng, L. Hillier, M. C. Wendl, P. Green, Genome Res. 8, 175 (1998).
- 175. E. S. Lander, M. S. Waterman, Genomics 2, 231 (1988)
- 176. A. Krogh, K. Sjölander, J. Mol. Biol. 235, 1501 (1994).
- 177. K. Sjölander, Proc. Int. Soc. Mol. Biol. 6, 165 (1998).
- 178. A. Bairoch, R. Apweiler, Nucleic Acids Res. 28, 45 (2000)
- 179. GO, available at www.geneontology.org/.
- 180. R. L. Tatusov, M. Y. Galperin, D. A. Natale, E. V. Koonin, Nucleic Acids Res. 28, 33 (2000).
- 181. We thank E. Eichler and J. L. Goldstein for many helpful discussions and critical reading of the manuscript, and A. Caplan for advice and encouragement. We also thank T. Hein, D. Lucas, G. Edwards, and the Celera IT staff for outstanding computational support. The cost of this project was underwritten by the Celera Genomics Group of the Applera Corporation. We thank the Board of Directors of Applera Corporation: J. F. Abely Jr. (retired), R. H. Ayers, J.-L. Bélingard, R. H. Hayes, A. J. Levine, T. E. Martin, C. W. Slayman, O. R. Smith, G. C. St. Laurent Jr., and J. R. Tobin for their vision, enthusiasm, and unwavering support and T. L. White for leadership and advice. Data availability: The genome sequence and additional supporting information are available to academic scientists at the Web site (www.celera.com). Instructions for obtaining a DVD of the genome sequence can be obtained through the Web site. For commercial scientists wishing to verify the results presented here, the genome data are available upon signing a Material Transfer Agreement, which can also be found on the Web site.
 - 5 December 2000; accepted 19 January 2001

This Page Blank (uspto)

>XM_093852 ACCESSION:XM_093852 NID: gi 18556797 ref XM_093852.1 Homo sapiens similar to epidermis specific serine protease (LOC166414), mRNA Length = 1095

Score = 507 bits (1291), Expect = e-141Identities = 242/244 (99%), Positives = 242/244 (99%), Gaps = 1/244 (0%) Frame = +1

- MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQDAAAGRWPWQVSLHFDHNFIYGGSLVSE 60 Query: 1 MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQDAAAGRWPWQVSLHFDHNFI GGSLVSE
- MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQDAAAGRWPWQVSLHFDHNFICGGSLVSE 180 Sbjct: 1
- RLILTAAHCIQPTWTTFSYTVWLGSITVGDSRKRVKYYVSKIVIHPKYQDTTAD-ALLKL 119 Query: 61 RLILTAAHCIQPTWTTFSYTVWLGSITVGDSRKRVKYYVSKIVIHPKYQDTTAD ALLKL
- Sbjct: 181 RLILTAAHCIQPTWTTFSYTVWLGSITVGDSRKRVKYYVSKIVIHPKYQDTTADVALLKL 360
- Query: 120 SSQVTFTSAILPICLPSVTKQLAIPPFCWVTGWGKVKESSDRDYHSALQEAEVPIIDRQA 179 SSQVTFTSAILPICLPSVTKQLAIPPFCWVTGWGKVKESSDRDYHSALQEAEVPIIDRQA
- Sbjct: 361 SSQVTFTSAILPICLPSVTKQLAIPPFCWVTGWGKVKESSDRDYHSALQEAEVPIIDRQA 540
- Query: 180 CEQLYNPIGIFLPALEPVÎKEDKICAGDTQNMKDSCKGDSGGPLSCHIDGVWIQTGVVSW 239 CEQLYNPIGIFLPALEPVIKEDKICAGDTQNMKDSCKGDSGGPLSCHIDGVWIQTGVVSW
- Sbjct: 541 CEQLYNPIGIFLPALEPVIKEDKICAGDTQNMKDSCKGDSGGPLSCHIDGVWIQTGVVSW 720

Query: 240 GLEC 243

GLEC

Sbjct: 721 GLEC 732

This Page Blank (uspto)

>AX360076 ACCESSION:AX360076 NID:18675702 Homo sapiens Sequence 32 from Patent W00200860. gbPatent Length = 987

<pre>Score = 675 bits (1724), Expect = 0.0 Identities = 325/328 (99%), Positives = 32 Frame = +1</pre>	5/328 (99%), Gaps = 2/328 (0%)
Query: 1 MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQ MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQ	DAAAGRWPWQVSLHFDHNFIYGGSLVSE 60
Sbjct: 1 MGPAGCAFTLLLLLGISVCGQPVYSSRVVGGQ	DAAAGRWPWQVSLHFDHNFICGGSLVSE 180
Query: 61 RLILTAAHCIQPTWTTFSYTVWLGSITVGDSR	KRVKYYVSKIVIHPKYQDTTAD-ALLKL 119
RLILTAAHCIQPTWTTFSYTVWLGSITVGDSR Sbjct: 181 RLILTAAHCIQPTWTTFSYTVWLGSITVGDSR	KRVKYYVSKIVIHPKYQDTTADVALLKL 360
Query: 120 SSQVTFTSAILPICLPSVTKQLAIPPFCWVTG SSQVTFTSAILPICLPSVTKQLAIPPFCWVTG	WGKVKESSDRDYHSALQEAEVPIIDRQA 179
Sbjct: 361 SSQVTFTSAILPICLPSVTKQLAIPPFCWVTG	WGKVKESSDRDYHSALQEAEVPIIDRQA 540
Query: 180 CEQLYNPIGIFLPALEPVIKEDKICAGDTQNM CEQLYNPIGIFLPALEPVIKEDKICAGDTQNM	KDSCKGDSGGPLSCHIDGVWIQTGVVSW 239 KDSCKGDSGGPLSCHIDGVWIQTGVVSW
Sbjct: 541 CEQLYNPIGIFLPALEPVIKEDKICAGDTQNM	KDSCKGDSGGPLSCHIDGVWIQTGVVSW 720
Query: 240 GLECGKSLPGVYTNVIYYQKWINATISRANNL GLECGKSLPGVYTNVIYYQKWINATISRANNL	DFSDFLFPIVLLSLALL PSCAFGPNTI
Sbjct: 721 GLECGKSLPGVYTNVIYYQKWINATISRANNL	DFSDFLFPIVLLSLALLRPSCAFGPNTI 900
Query: 299 HRVGTVAEAVACIQGWEENAWRFSPRGR 326 HRVGTVAEAVACIQGWEENAWRFSPRGR	
Sbjct: 901 HRVGTVAEAVACIQGWEENAWRFSPRGR 984	

1 of 6

PUBLISHED INTERNATIONAL APPLICATION

- (13)A2 WO 02/00860 (11)
- PCT/US01/20171 (21)
- 26 June 2001 (26.06.2001) (22)
- **ENG** (26)(25)
- **ENG**
- US 26 June 2000 (26.06.2000) 60/214,047 (32)(31)
- 03 January 2002 (03.01.2002) (43)
- C12N 9/00 $(51)^7$
- (54) **NOVEL PROTEASES**
- SUGEN, INC. 230 East Grand Avenue, South San Francisco, CA (71)94080-4811; (US). [US/US].(for all designated States except US)
- PLOWMAN, Gregory 35 Winding Way, San Carlos, CA 94070; (US) (72)(75)[US/US].WHYTE, David WHYTE, David; (US) [US/US].SUDARSANAM, Sucha SUDARSANAM, Sucha; (US) [US/US].MANNING, Gerard MANNING, Gerard; (US) [US/IE].CAENEPEEL, Sean CAENEPEEL, Sean; (US) [US/US].CHARYDCZAK, Glen CHARYDCZAK, Glen; (US) [US/US].
- BURROUS, Beth, A. Foley & Lardner, Washington Harbour, Suite 500, (74)3000 K Street, N.W., Washington, DC 20007-5109; (US).
- (81)AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW
- (84)ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

For information on time limits for entry into the national phase please click here Published without international search report and to be republished

upon receipt of that report

Abstract

The present invention relates to protease polypeptides, nucleotide sequences encoding the protease polypeptides, as well as various products and methods useful for the diagnosis and treatment of various protease-related diseases and conditions.

Français

1 of 6

E

This Page Blank (uspto)

United States Patent [19]

Fodor et al.

 \mathcal{U}

[11] Patent Number:

5,445,934

[45] Date of Patent:

Aug. 29, 1995

[54] ARRAY OF OLIGONUCLEOTIDES ON A SOLID SUBSTRATE

[75] Inventors: Stephen P. A. Fodor, Palo Alto,

Calif.; Michael C. Pirrung, Durham, N.C.; J. Leighton Read, Palo Alto; Lubert Stryer, Stanford, both of

Calif

[73] Assignee: Affymax Technologies N.V.,

Curação, Netherlands Antilles

[21] Appl. No.: 954,646

[22] Filed: Sep. 30, 1992

Related U.S. Application Data

[60] Division of Ser. No. 850,356, Mar. 12, 1992, which is a division of Ser. No. 492,462, Mar. 7, 1990, Pat. No. 5,143,854, which is a continuation-in-part of Ser. No. 362,901, Jun. 7, 1989, abandoned.

[56] References Cited

U.S. PATENT DOCUMENTS

4,562,157	12/1985	Lowe 435/291			
4,689,405	8/1987	Frank et al 536/27			
4,728,591	3/1988	Clark et al 430/5			
4,886,741	12/1989	Schgwartz 435/5			
4,888,278	12/1989	Singer et al 435/6			
(List continued on next page.)					

FOREIGN PATENT DOCUMENTS

0328256	8/1989	European Pat. Off B01J 20/32
		WIPO C12Q 1/68
WO90/03382	5/1990	WIPO C07H 21/00

OTHER PUBLICATIONS

BioRad Chromatography, Electrophoresis, Immunochemistry, Molecular Biology, HPLC Catalogue M 1987 p. 182.

Hames & Heggins (ed). Nucleic Acid Hybridization: A Practical Approach (1985) IRL Press Oxford England. Science, 253, p. 1489, Sep. 27, 1991 "Will DNA Chip Speed Genome Initiative?"

Khrapko et al., FEB, 256, pp. 118-122, Oct. 1989 "An oligonucleotide hybridization approach to DNA sequencing".

Mirzabekov, Tibtech, 12, pp. 27-32, Jan. 1994 "DNA sequencing by hybridization—a megasequencing method and a diagnostic tool?"

Southern et al., Genomics, 13, pp. 1008-1017, 1992 "Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides: Evaluation Using Experimental Models".

Haridasan et al., "Peptide Synthesis Using Photolyti-(List continued on next page.)

Primary Examiner—Esther M. Kepplinger
Assistant Examiner—Lora M. Green
Attorney, Agent, or Firm—Townsend and Townsend
Khourie and Crew

ABSTRACT

A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.

10 Claims, 20 Drawing Sheets

App Serial # 09/854,844 Hu et al.

Exhibit E LEX-0176-USA

Novel Human Protease and Polynucleotides Encoding the Same

U.S. PATENT DOCUMENTS

		Koester et alGuire	
		Schnur et al.	
5,143,854	9/1992	Pirrung et al	436/518
5,202,231	4/1993	Drmanac et al	435/6

OTHER PUBLICATIONS

cally Cleavable 2-Nitrobenzyloxycarbonyl Protecting Group," Proc. Indian Natl. Sci. Acad., Part A (1987) 53:717-728.

Sze/McGillis, *VLSI Technology*, Chapter 7, pp. 267–301, McGraw-Hill, 1983.

Geysen et al., "Strategies for epitope analysis using peptide synthesis," J. Immunol. Meth. (1987) 102:259-274.

Furka et al., "More Peptides by Less Labor," Abstract No. 288 from Xth International Symposium on Medicinal Chemistry, Budapest, Hungary, Aug. 15-19, 1988.

Ohtsuka et al., "Studies on transfer ribonucleic acids and related compounds. IX(1) Ribooligonucleotide synthesis... 2'-hydroxyl group," Nucleic Acids Research (1974) 1:1351-1357.

Kleinfeld et al., "Controlled Outgrowth of Dissociated Neurons on Patterned Substrates," J. of Neuroscience, 8(11):4098-4120, Nov. 1988.

FIG._4.

FIG._8a.

 $\sim 2 \times 10^{-6}$ CHROMOPHORE/ A^2 FIG._IIA.

FIG._ IIB.

FIG._13A.

147419.2

617735.5

417730.7

142724.2

127723.9

117723.6

112723.5

107723.4

67722.45

57722.21

47721.98

17721.27

MEAN: VAR:

117723.6 1.000047E+10

100002.3.

FIG._13B.

104567.2 8.025189E+09 MEAN:

FIG._13C.

Aug. 29, 1995

FIG._13D.

VAR:

FIG._148.

50780.26 54141.69 30813.97 28595.5 27486.26 26377.02 17503.12 11956.92 6410.734 -15774.03 37958.79

MEAN: 28595.5 VAR: 4.921637E÷06 σ: 22184.76

FIG._15A.

Aug. 29, 1995

879976.1

600504.3

216230.6

195270.2

181296.6

174309.8

167323

111428.7

97455.07

63481.48

41560.72

MEAN: VAR:

1812966 1.9526125+10 139735.9

FIG._158.

- 676588 £ 428583.8 142577.9 126977.5 116577.3 111377.2 106177.1 64576.25 54176.03 43775.82 12575.18

116777.7 1.081647E÷10 104002.1 MEAN: VAR:

FIG._16.

667348.3 453053 158397 142324.9 131610.1 126252.7 120895.3 78036.29 67321.52 56606.77 24462.47

MEAN: 131610.1 VAR: 1.148062E÷10

FIG._17.

Р	A	5	۵	_	
<u>L</u> PGFL	<u>LA</u> GFL	L5GFL	<u>L4</u> GFL	L	
<u>FP</u> GFL	<u>FA</u> GFL	<u>F5</u> 4FL	<u>Fű</u> GFL	F	L SET
WPGFL	<u>wa</u> gfl	<u>W5</u> GFL	<u>wg</u> gFL	M	L /L1
<u>Y</u> PGFL	YAGFL	<u>Y5</u> 6FL	<u>Y64FL</u>	Y	

FIG._18A.

Р	a	5	4		
YpGFL	YaGFL	YsGFL	YGGFL	Y	
fpGFL	<u>fa</u> GFL	15GFL	<u>f</u> ugfl	ŧ	D SET
WPGFL	waGFL	<u>ws</u> GFL	<u>wa</u> afl	w	V)L1
YPGFL	yaGFL	<u>ys</u> GFL	y66FL	У	

FIG._18B.

Aug. 29, 1995

FIG._ 19.

Aug. 29, 1995

FIG._20.

ARRAY OF OLIGONUCLEOTIDES ON A SOLID SUBSTRATE

CROSS-REFERENCE TO RELATED **APPLICATIONS**

This application is a Rule 60 Division of U.S. application Ser. No. 850,356, filed Mar. 12, 1992, which is a Rule 60 Division of U.S. application Ser. No. 492,462, filed Mar. 7, 1990, now U.S. Pat. No. 5,143,854, which 10 is a Continuation-in-Part of U.S. application Ser. No. 362,901, filed Jun. 7, 1989, now abandoned, all assigned to the assignee of the present invention.

The file of this patent contains drawings executed in color. Copies of this patent with color drawings will be 15 provided by the Patent and Trademark Office upon request and payment of the necessary fee.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document 20 contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise 25 reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

The present inventions relate to the synthesis and placement of materials at known locations. In particu- 30 lar, one embodiment of the inventions provides a method and associated apparatus for preparing diverse chemical sequences at known locations on a single substrate surface. The inventions may be applied, for example, in the field of preparation of oligomer, peptide, 35 nucleic acid, oligosaccharide, phospholipid, polymer, or drug congener preparation, especially to create sources of chemical diversity for use in screening for biological activity.

The relationship between structure and activity of 40 molecules is a fundamental issue in the study of biological systems. Structure-activity relationships are important in understanding, for example, the function of enzymes, the ways in which cells communicate with each

Certain macromolecules are known to interact and bind to other molecules having a very specific three-dimensional spatial and electronic distribution. Any large molecule having such specificity can be considered a receptor, whether it is an enzyme catalyzing hydrolysis 50 of a metabolic intermediate, a cell-surface protein mediating membrane transport of ions, a glycoprotein serving to identify a particular cell to its neighbors, an IgGclass antibody circulating in the plasma, an oligonucleotide sequence of DNA in the nucleus, or the like. The 55 various molecules which receptors selectively bind are known as ligands.

Many assays are available for measuring the binding affinity of known receptors and ligands, but the information which can be gained from such experiments is 60 cient variety of polypeptides for effective screening. often limited by the number and type of ligands which are available. Novel ligands are sometimes discovered by chance or by application of new techniques for the elucidation of molecular structure, including x-ray crystallographic analysis and recombinant genetic tech- 65 niques for proteins.

Small peptides are an exemplary system for exploring the relationship between structure and function in biol-

ogy. A peptide is a sequence of amino acids. When the twenty naturally occurring amino acids are condensed into polymeric molecules they form a wide variety of three-dimensional configurations, each resulting from a particular amino acid sequence and solvent condition. The number of possible pentapeptides of the 20 naturally occurring amino acids, for example, is 205 or 3.2 million different peptides. The likelihood that molecules of this size might be useful in receptor-binding studies is supported by epitope analysis studies showing that some antibodies recognize sequences as short as a few amino acids with high specificity. Furthermore, the average molecular weight of amino acids puts small peptides in the size range of many currently useful pharmaceutical products.

Pharmaceutical drug discovery is one type of research which relies on such a study of structure-activity relationships. In most cases, contemporary pharmaceutical research can be described as the process of discovering novel ligands with desirable patterns of specificity for biologically important receptors. Another example is research to discover new compounds for use in agriculture, such as pesticides and herbicides.

Sometimes, the solution to a rational process of designing ligands is difficult or unyielding. Prior methods of preparing large numbers of different polymers have been painstakingly slow when used at a scale sufficient to permit effective rational or random screening. For example, the "Merrifield" method (J. Am. Chem. Soc. (1963) 85:2149-2154, which is incorporated herein by reference for all purposes) has been used to synthesize peptides on a solid support. In the Merrifield method, an amino acid is covalently bonded to a support made of an insoluble polymer. Another amino acid with an alpha protected group is reacted with the covalently bonded amino acid to form a dipeptide. After washing, the protective group is removed and a third amino acid with an alpha protective group is added to the dipeptide. This process is continued until a peptide of a desired length and sequence is obtained. Using the Merrifield method, it is not economically practical to synthesize more than a handful of peptide sequences in a day.

To synthesize larger numbers of polymer sequences, other, as well as cellular control and feedback systems. 45 it has also been proposed to use a series of reaction vessels for polymer synthesis. For example, a tubular reactor system may be used to synthesize a linear polymer on a solid phase support by automated sequential addition of reagents. This method still does not enable the synthesis of a sufficiently large number of polymer sequences for effective economical screening.

Methods of preparing a plurality of polymer sequences are also known in which a porous container encloses a known quantity of reactive particles, the particles being larger in size than pores of the container. The containers may be selectively reacted with desired materials to synthesize desired sequences of product molecules. As with other methods known in the art, this method cannot practically be used to synthesize a suffi-

Other techniques have also been described. These methods include the synthesis of peptides on 96 plastic pins which fit the format of standard microtiter plates. Unfortunately, while these techniques have been somewhat useful, substantial problems remain. For example, these methods continue to be limited in the diversity of sequences which can be economically synthesized and screened.

From the above, it is seen that an improved method and apparatus for synthesizing a variety of chemical sequences at known locations is desired.

SUMMARY OF THE INVENTION

An improved method and apparatus for the preparation of a variety of polymers is disclosed.

In one preferred embodiment, linker molecules are provided on a substrate. A terminal end of the linker molecules is provided with a reactive functional group 10 protected with a photoremovable protective group. Using lithographic methods, the photoremovable protective group is exposed to light and removed from the linker molecules in first selected regions. The substrate is then washed or otherwise contacted with a first mon- 15 omer that reacts with exposed functional groups on the linker molecules. In a preferred embodiment, the monomer is an amino acid containing a photoremovable protective group at its amino or carboxy terminus and the linker molecule terminates in an amino or carboxy acid 20 group bearing a photoremovable protective group.

A second set of selected regions is, thereafter, exposed to light and the photoremovable protective group on the linker molecule/protected amino acid is removed at the second set of regions. The substrate is then 25 contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained. 30 Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped. Side chain protective groups, if present, are also removed.

By using the lithographic techniques disclosed herein, it is possible to direct light to relatively small 35 and precisely known locations on the substrate. It is, therefore, possible to synthesize polymers of a known chemical sequence at known locations on the substrate.

The resulting substrate will have a variety of uses including, for example, screening large numbers of pol- 40 ymers for biological activity. To screen for biological activity, the substrate is exposed to one or more receptors such as antibodies whole cells, receptors on vesicles, lipids, or any one of a variety of other receptors. The receptors are preferably labeled with, for example, 45 a fluorescent marker, radioactive marker, or a labeled antibody reactive with the receptor. The location of the marker on the substrate is detected with, for example, photon detection or autoradiographic techniques. Through knowledge of the sequence of the material at 50 the location where binding is detected, it is possible to quickly determine which sequence binds with the receptor and, therefore, the technique can be used to screen large numbers of peptides. Other possible applications of the inventions herein include diagnostics in 55 "B" which various antibodies for particular receptors would be placed on a substrate and, for example, blood sera would be screened for immune deficiencies. Still further applications include, for example, selective "doping" of organic materials in semiconductor devices, and the 60 and exposed to light respectively; like.

In connection with one aspect of the invention an improved reactor system for synthesizing polymers is also disclosed. The reactor system includes a substrate mount which engages a substrate around a periphery 65 thereof. The substrate mount provides for a reactor space between the substrate and the mount through or into which reaction fluids are pumped or flowed. A

mask is placed on or focused on the substrate and illuminated so as to deprotect selected regions of the substrate in the reactor space. A monomer is pumped through the reactor space or otherwise contacted with the substrate and reacts with the deprotected regions. By selectively deprotecting regions on the substrate and flowing predetermined monomers through the reactor space, desired polymers at known locations may be synthesized.

Improved detection apparatus and methods are also disclosed. The detection method and apparatus utilize a substrate having a large variety of polymer sequences at known locations on a surface thereof. The substrate is exposed to a fluorescently labeled receptor which binds to one or more of the polymer sequences. The substrate is placed in a microscope detection apparatus for identification of locations where binding takes place. The microscope detection apparatus includes a monochromatic or polychromatic light source for directing light at the substrate, means for detecting fluoresced light from the substrate, and means for determining a location of the fluoresced light. The means for detecting light fluoresced on the substrate may in some embodiments include a photon counter. The means for determining a location of the fluoresced light may include an x/y translation table for the substrate. Translation of the slide and data collection are recorded and managed by an appropriately programmed digital computer.

A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates masking and irradiation of a substrate at a first location. The substrate is shown in cross-

FIG. 2 illustrates the substrate after application of a monomer "A";

FIG. 3 illustrates irradiation of the substrate at a second location:

FIG. 4 illustrates the substrate after application of monomer "B";

FIG. 5 illustrates irradiation of the "A" monomer;

FIG. 6 illustrates the substrate after a second application of "B":

FIG. 7 illustrates a completed substrate;

FIGS. 8A and 8B illustrate alternative embodiments of a reactor system for forming a plurality of polymers on a substrate;

FIG. 9 illustrates a detection apparatus for locating fluorescent markers on the substrate;

FIGS. 10A-10M illustrate the method as it is applied to the production of the trimers of monomers "A" and

FIGS. 11A and 11B are fluorescence traces for standard fluorescent beads;

FIGS. 12A and 12B are fluorescence curves for NVOC (6-nitroveratryloxycarbonyl) slides not exposed

FIGS. 13A to 13D are fluorescence plots of slides exposed through 100 µm, 50 µm, 20 µm, and 10 µm masks; 14A and 14B illustrate formation of YGGFL (a peptide of sequence H2N-tyrosine-glycine-glycinephenylalanine-leucine-CO2H) and GGFL (a peptide of sequence H2N-glycine-glycine-phenylalanine-leucine-CO₂H), followed by exposure to labeled Herz antibody (an antibody that recognizes YGGFL but not GGFL);

35

6

FIGS. 15A and 15B fluorescence plots of a slide with a checkerboard pattern of YGGFL and GGFL exposed to labeled Herz antibody; FIG. 15A illustrates a $500 \times 500 \,\mu m$ mask which has been focused on the substrate according to FIG. 8A while FIG. 15B illustrates 5 a $50 \times 50 \,\mu m$ mask placed in direct contact with the substrate in accord with FIG. 8B;

FIG. 16 is a fluorescence plot of YGGFL and PGGFL synthesized in a 50 μm checkerboard pattern; FIG. 17 is a fluorescence plot of YPGGFL and 10

YGGFL synthesized in a 50 µm checkerboard pattern; FIGS. 18A and 18B illustrate the mapping of sixteen sequences synthesized on two different glass slides;

FIG. 19 is a fluorescence plot of the slide illustrated in FIG. 18A; and

FIG. 20 is a fluorescence plot of the slide illustrated in FIG. 10B.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

CONTENTS

I. Glossary

II. General

III. Polymer Synthesis

IV. Details of One Embodiment of a Reactor System 25

V. Details of One Embodiment of a Fluorescent Detection Device

VI. Determination of Relative Binding Strength of Receptors

VII. Examples

A. Slide Preparation

B. Synthesis of Eight Trimers of "A" and "B"

C. Synthesis of a Dimer of an Aminopropyl Group and a Fluorescent Group

D. Demonstration of Signal Capability

- E. Determination of the Number of Molecules Per Unit Area
- F. Removal of NVOC and Attachment of a Fluorescent Marker

G. Use of a Mask in Removal of NVOC

H. Attachment of YGGFL and Subsequent Exposure to Herz Antibody and Goat Antimouse

I. Monomer-by-Monomer Formation of YGGFL and Subsequent Exposure to Labeled Antibody

- J. Monomer-by-Monomer Synthesis of YGGFL and 45 PGGFL
- K. Monomer-by Monomer Synthesis of YGGFL and YPGGFL

L. Synthesis of an Array of Sixteen Different Amino Acid Sequences and Estimation of Relative Binding 50 Affinity to Herz Antibody

VIII. Illustrative Alternative Embodiment

IX. Conclusion

I. Glossary

The following terms are intended to have the follow- 55 ing general meanings as they are used herein:

- Complementary: Refers to the topological compatibility or matching together of interacting surfaces of a ligand molecule and its receptor. Thus, the receptor and its ligand can be described as complementary, 60 and furthermore, the contact surface characteristics are complementary to each other.
- Epitope: The portion of an antigen molecule which is delineated by the area of interaction with the subclass of receptors known as antibodies.
- Ligand: A ligand is a molecule that is recognized by a particular receptor. Examples of ligands that can be investigated by this invention include, but are not

restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs (e.g., opiates, etc.), lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.

4. Monomer: A member of the set of small molecules which can be joined together to form a polymer. The set of monomers includes but is not restricted to, for example, the set of common L-amino acids, the set of D-amino acids, the set of synthetic amino acids, the set of nucleotides and the set of pentoses and hexoses. As used herein, monomers refers to any member of a basis set for synthesis of a polymer. For example, dimers of L-amino acids form a basis set of 400 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer.

5. Peptide: A polymer in which the monomers are alpha amino acids and which are joined together through amide bonds and alternatively referred to as a polypeptide. In the context of this specification it should be appreciated that the amino acids may be the Loptical isomer or the D-optical isomer. Peptides are more than two amino acid monomers long, and often more than 20 amino acid monomers long. Standard abbreviations for amino acids are used (e.g., P for proline). These abbreviations are included in Stryer, Biochemstry, Third Ed., 1988, which is incorporated herein by reference for all purposes.

6. Radiation: Energy which may be selectively applied including energy having a wavelength of between 10-14 and 104 meters including, for example, electron beam radiation, gamma radiation, x-ray radiation, ultraviolet radiation, visible light, infrared radiation, microwave radiation, and radio waves. "Irradiation" refers to the application of radiation to a surface.

40 7. Receptor: A molecule that has an affinity for a given ligand. Receptors may be naturally-occuring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Receptors may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of receptors which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Receptors are sometimes referred to in the art as anti-ligands. As the term receptors is used herein, no difference in meaning is intended. A "Ligand Receptor Pair" is formed when two macromolecules have combined through molecular recognition to form a complex.

Other examples of receptors which can be investigated by this invention include but are not restricted to:

a) Microorganism receptors: Determination of ligands which bind to receptors, such as specific transport proteins or enzymes essential to survival of microorganisms, is useful in a new class of antibiotics. Of particular value would be antibiotics against opportunistic fungi, protozoa, and those bacteria resistant to the antibiotics in current use. 7

- b) Enzymes: For instance, the binding site of enzymes such as the enzymes responsible for cleaving neurotransmitters; determination of ligands which bind to certain receptors to modulate the action of the enzymes which cleave the different neurotransmitters is useful in the development of drugs which can be used in the treatment of disorders of neurotransmission.
- c) Antibodies: For instance, the invention may be useful in investigating the ligand-binding site on the 10 antibody molecule which combines with the epitope of an antigen of interest; determining a sequence that mimics an antigenic epitope may lead to the development of vaccines of which the immunogen is based on one or more of such sequences or 15 lead to the development of related diagnostic agents or compounds useful in therapeutic treatments such as for auto immune diseases (e.g., by blocking the binding of the "self" antibodies).

d) Nucleic Acids: Sequences of nucleic acids may be 20 synthesized to establish DNA or RNA binding sequences.

- e) Catalytic Polypeptides: Polymers, preferably polypeptides, which are capable of promoting a chemical reaction involving the conversion of one or 25 more reactants to one or more products. Such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the binding site, which functionality is capable of 30 chemically modifying the bound reactant. Catalytic polypeptides are described in, for example, U.S. application Ser. No. 404,920, which is incorporated herein by reference for all purposes.
- f) Hormone receptors: For instance, the receptors for 35 insulin and growth hormone. Determination of the ligands which bind with high affinity to a receptor is useful in the development of, for example, an oral replacement of the daily injections which diabetics must take to relieve the symptoms of diabetes, and 40 in the other case, a replacement for the scarce human growth hormone which can only be obtained from cadavers or by recombinant DNA technology. Other examples are the vasoconstrictive hormone receptors; determination of those 45 ligands which bind to a receptor may lead to the development of drugs to control blood pressure.

g) Opiate receptors: Determination of ligands which bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.

tifying epitopes recognized by antibodies, and evaluation of a variety of drugs for clinical and diagnost applications, as well as combinations of the above.

The invention preferably provides for the use

- 8. Substrate: A material having a rigid or semi-rigid surface. In many embodiments, at least one surface of the substrate will be substantially flat, although in some embodiments it may be desirable to physically 55 separate synthesis regions for different polymers with, for example, wells, raised regions, etched trenches, or the like. According to other embodiments, small beads may be provided on the surface which may be released upon completion of the syn-60 thesis.
- Protective Group: A material which is bound to a
 monomer unit and which may be spatially removed
 upon selective exposure to an activator such as electromagnetic radiation. Examples of protective groups 65
 with utility herein include Nitroveratryloxy carbonyl, Nitrobenzyloxy carbonyl, Dimethyl dimethoxybenzyloxy carbonyl, 5-Bromo-7-nitroindolinyl,

8

o-Hydroxy-α-methyl cinnamoyl, and 2-Oxymethylene anthraquinone. Other examples of activators include ion beams, electric fields, magnetic fields, electron beams, x-ray, and the like.

10. Predefined Region: A predefined region is a localized area on a surface which is, was, or is intended to be activated for formation of a polymer. The predefined region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc. For the sake of brevity herein, "predefined regions" are sometimes referred to simply as "regions."

11. Substantially Pure: A polymer is considered to be "substantially pure" within a predefined region of a substrate when it exhibits characteristics that distinguish it from other predefined regions. Typically, purity will be measured in terms of biological activity or function as a result of uniform sequence. Such characteristics will typically be measured by way of binding with a selected ligand or receptor.

II. General

The present invention provides methods and apparatus for the preparation and use of a substrate having a plurality of polymer sequences in predefined regions. The invention is described herein primarily with regard to the preparation of molecules containing sequences of amino acids, but could readily be applied in the preparation of other polymers. Such polymers include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either α -, β -, or ω -amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure. In a preferred embodiment, the invention herein is used in the synthesis of peptides.

The prepared substrate may, for example, be used in screening a variety of polymers as ligands for binding with a receptor, although it will be apparent that the invention could be used for the synthesis of a receptor for binding with a ligand. The substrate disclosed herein will have a wide variety of other uses. Merely by way of example, the invention herein can be used in determining peptide and nucleic acid sequences which bind to proteins, finding sequence-specific binding drugs, identifying epitopes recognized by antibodies, and evaluation of a variety of drugs for clinical and diagnostic applications, as well as combinations of the above.

The invention preferably provides for the use of a substrate "S" with a surface. Linker molecules "L" are optionally provided on a surface of the substrate. The purpose of the linker molecules, in some embodiments, is to facilitate receptor recognition of the synthesized polymers.

with, for example, wells, raised regions, etched trenches, or the like. According to other embodiments, small beads may be provided on the surface which may be released upon completion of the synthesis.

Protective Group: A material which is bound to a monomer unit and which may be spatially removed upon selective exposure to an activator such as elective protected for storage purposes. A chemical storage protective group such as t-BOC (t-butoxycarbonyl) may be used in some embodiments. Such chemically removed upon exposure to, for example, acidic solution and would serve to protect the surface during storage and be removed prior to polymer preparation.

On the substrate or a distal end of the linker molecules, a functional group with a protective group P_0 is provided. The protective group P_0 may be removed upon exposure to radiation, electric fields, electric cur-

rents, or other activators to expose the functional group.

In a preferred embodiment, the radiation is ultraviolet (UV), infrared (IR), or visible light. As more fully described below, the protective group may alternatively 5 be an electrochemically-sensitive group which may be removed in the presence of an electric field. In still further alternative embodiments, ion beams, electron beams, or the like may be used for deprotection.

In some embodiments, the exposed regions and, 10 therefore, the area upon which each distinct polymer sequence is synthesized are smaller than about 1 cm^2 or less than 1 mm^2 . In preferred embodiments the exposed area is less than about $10,000 \mu\text{m}^2$ or, more preferably, less than $100 \mu\text{m}^2$ and may, in some embodiments, encompass the binding site for as few as a single molecule. Within these regions, each polymer is preferably synthesized in a substantially pure form.

Concurrently or after exposure of a known region of the substrate to light, the surface is contacted with a 20 first monomer unit M_1 which reacts with the functional group which has been exposed by the deprotection step. The first monomer includes a protective group P_1 . P_1 may or may not be the same as P_0 .

Accordingly, after a first cycle, known first regions 25 of the surface may comprise the sequence:

S-L-M₁-P₁

while remaining regions of the surface comprise the $_{30}$ sequence:

S-L-Po

Thereafter, second regions of the surface (which may include the first region) are exposed to light and contacted with a second monomer M₂ (which may or may not be the same as M₁) having a protective group P₂. P₂ may or may not be the same as P₀ and P₁. After this second cycle, different regions of the substrate may comprise one or more of the following sequences:

or any one of a variety of other receptors. In one ferred embodiment the polymers are exposed to a fundable defect receptor of interest and, thereafter, expending the companion of the substrate may which is, for example, an antibody. This process provide signal amplification in the detection stage.

The receptor molecules may bind with one or may not be the same as P₀ and P₁. After this second cycle, different regions of the substrate may an antibody.

S-L-M₁-M₂-P₂ S-L-M₂-P₂ S-L-M₁-P₁ and/or S-L-P₀.

The above process is repeated until the substrate includes desired polymers of desired lengths. By controlling the locations of the substrate exposed to light and the reagents exposed to the substrate following exposure, the location of each sequence will be known.

Thereafter, the protective groups are removed from 50 some or all of the substrate and the sequences are, optionally, capped with a capping unit C. The process results in a substrate having a surface with a plurality of polymers of the following general formula:

 $S-[L]-(M_i)-(M_j)-(M_k)...(M_x)-[C]$

where square brackets indicate optional groups, and M_i ... M_x indicates any sequence of monomers. The number of monomers could cover a wide variety of values, 60 but in a preferred embodiment they will range from 2 to 100.

In some embodiments a plurality of locations on the substrate polymers are to contain a common monomer subsequence. For example, it may be desired to synthesize a sequence S-M₁-M₂-M₃ at first locations and a sequence S-M₄-M₂-M₃ at second locations. The process would commence with irradiation of the first locations

followed by contacting with M₁-P, resulting in the sequence S-M₁-P at the first location. The second locations would then be irradiated and contacted with M₄-P, resulting in the sequence S-M₄-P at the second locations. Thereafter both the first and second locations would be irradiated and contacted with the dimer M₂-M₃, resulting in the sequence S-M₁-M₂-M₃ at the first locations and S-M₄-M₂-M₃ at the second locations. Of course, common subsequences of any length could be utilized including those in a range of 2 or more monomers, 2 to 100 monomers, 2 to 20 monomers, and a most preferred range of 2 to 3 monomers.

According to other embodiments, a set of masks is used for the first monomer layer and, thereafter, varied light wavelengths are used for selective deprotection. For example, in the process discussed above, first regions are first exposed through a mask and reacted with a first monomer having a first protective group P₁, which is removable upon exposure to a first wavelength of light (e.g., IR). Second regions are masked and reacted with a second monomer having a second protective group P₂, which is removable upon exposure to a second wavelength of light (e.g., UV). Thereafter, masks become unnecessary in the synthesis because the entire substrate may be exposed alternatively to the first and second wavelengths of light in the deprotection cycle.

The polymers prepared on a substrate according to the above methods will have a variety of uses including, for example, screening for biological activity. In such screening activities, the substrate containing the sequences is exposed to an unlabeled or labeled receptor such as an antibody, receptor on a cell, phospholipid vesicle, or any one of a variety of other receptors. In one preferred embodiment the polymers are exposed to a first, unlabeled receptor of interest and, thereafter, exposed to a labeled receptor-specific recognition element, which is, for example, an antibody. This process will provide signal amplification in the detection stage.

The receptor molecules may bind with one or more polymers on the substrate. The presence of the labeled receptor and, therefore, the presence of a sequence which binds with the receptor is detected in a preferred embodiment through the use of autoradiography, detection of fluorescence with a charge-coupled device, fluorescence microscopy, or the like. The sequence of the polymer at the locations where the receptor binding is detected may be used to determine all or part of a sequence which is complementary to the receptor.

Use of the invention herein is illustrated primarily with reference to screening for biological activity. The invention will, however, find many other uses. For example, the invention may be used in information storage (e.g., on optical disks), production of molecular electronic devices, production of stationary phases in separation sciences, production of dyes and brightening agents, photography, and in immobilization of cells, proteins, lectins, nucleic acids, polysaccharides and the like in patterns on a surface via molecular recognition of specific polymer sequences. By synthesizing the same compound in adjacent, progressively differing concentrations, a gradient will be established to control chemotaxis or to develop diagnostic dipsticks which, for example, titrate an antibody against an increasing amount of antigen. By synthesizing several catalyst molecules in close proximity, more efficient multistep conversions may be achieved by "coordinate immobilization." Coordinate immobilization also may be used for electron transfer systems, as well as to provide both structural integrity and other desirable properties to materials such as lubrication, wetting, etc.

According to alternative embodiments, molecular 5 biodistribution or pharmacokinetic properties may be examined. For example, to assess resistance to intestinal or serum proteases, polymers may be capped with a fluorescent tag and exposed to biological fluids of interest.

III. Polymer Synthesis

FIG. 1 illustrates one embodiment of the invention disclosed herein in which a substrate 2 is shown in cross-section. Essentially, any conceivable substrate may be employed in the invention. The substrate may 15 be biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc. The substrate may have any convenient shape, such as a 20 disc, square, sphere, circle, etc. The substrate is preferably flat but may take on a variety of alternative surface configurations. For example, the substrate may contain raised or depressed regions on which the synthesis takes place. The substrate and its surface preferably form a 25 rigid support on which to carry out the reactions described herein. The substrate and its surface is also chosen to provide appropriate light-absorbing characteristics. For instance, the substrate may be a polymerized Langmuir Blodgett film, functionalized glass, Si, 30 Ge, GaAs, GaP, SiO2, SIN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof. Other substrate materials will be readily apparent to those of 35 skill in the art upon review of this disclosure. In a preferred embodiment the substrate is flat glass or singlecrystal silicon with surface relief features of less than 10

According to some embodiments, the surface of the 40 substrate is etched using well known techniques to provide for desired surface features. For example, by way of the formation of trenches, v-grooves, mesa structures, or the like, the synthesis regions may be more closely placed within the focus point of impinging light, 45 be provided with reflective "mirror" structures for maximization of light collection from fluorescent sources, or the like.

Surfaces on the solid substrate will usually, though not always, be composed of the same material as the 50 substrate. Thus, the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials. In some 55 embodiments the surface may provide for the use of caged binding members which are attached firmly to the surface of the substrate. Preferably, the surface will contain reactive groups, which could be carboxyl, amino, hydroxyl, or the like. Most preferably, the surface Si—OH functionalities, such as are found on silica surfaces.

The surface 4 of the substrate is preferably provided with a layer of linker molecules 6, although it will be 65 understood that the linker molecules are not required elements of the invention. The linker molecules are preferably of sufficient length to permit polymers in a

completed substrate to interact freely with molecules exposed to the substrate. The linker molecules should be 6-50 atoms long to provide sufficient exposure. The linker molecules may be, for example, aryl acetylene, ethylene glycol oligomers containing 2-10 monomer units, diamines, diacids, amino acids, or combinations thereof. Other linker molecules may be used in light of this discloure.

According to alternative embodiments, the linker molecules are selected based upon their hydrophilic/hydrophobic properties to improve presentation of synthesized polymers to certain receptors. For example, in the case of a hydrophilic receptor, hydrophilic linker molecules will be preferred so as to permit the receptor to more closely approach the synthesized polymer.

According to another alternative embodiment, linker molecules are also provided with a photocleavable group at an intermediate position. The photocleavable group is preferably cleavable at a wavelength different from the protective group. This enables removal of the various polymers following completion of the synthesis by way of exposure to the different wavelengths of light.

The linker molecules can be attached to the substrate via carbon-carbon bonds using, for example, (poly)trifluorochloroethylene surfaces, or preferably, by siloxane bonds (using, for example, glass or silicon oxide surfaces). Siloxane bonds with the surface of the substrate may be formed in one embodiment via reactions of linker molecules bearing trichlorosilyl groups. The linker molecules may optionally be attached in an ordered array, i.e., as parts of the head groups in a polymerized Langmuir Blodgett film. In alternative embodiments, the linker molecules are adsorbed to the surface of the substrate.

The linker molecules and monomers used herein are provided with a functional group to which is bound a protective group. Preferably, the protective group is on the distal or terminal end of the linker molecule opposite the substrate. The protective group may be either a negative protective group (i.e., the protective group renders the linker molecules less reactive with a monomer upon exposure) or a positive protective group (i.e., the protective group renders the linker molecules more reactive with a monomer upon exposure). In the case of negative protective groups an additional step of reactivation will be required. In some embodiments, this will be done by heating.

The protective group on the linker molecules may be selected from a wide variety of positive light-reactive groups preferably including nitro aromatic compounds such as o-nitrobenzyl derivatives or benzylsulfonyl. In a preferred embodiment, 6-nitroveratryloxycarbonyl (NVOC), 2-nitrobenzyloxycarbonyl (NBOC) or α , α -dimethyl-dimethoxybenzyloxycarbonyl (DDZ) is used. In one embodiment, a nitro aromatic compound containing a benzylic hydrogen ortho to the nitro group is used, i.e., a chemical of the form:

$$\begin{array}{c|c} R_4 & R_5 & O \\ \hline R_1 & NO_2 & \end{array}$$

13

where R1 is alkoxy, alkyl, halo, aryl, alkenyl, or hydrogen; R2 is alkoxy, alkyl, halo, aryl, nitro, or hydrogen; R₃ is alkoxy, alkyl, halo, nitro, aryl, or hydrogen; R₄ is alkoxy, alkyl, hydrogen, aryl, halo, or nitro; and R5 is alkyl, alkynyl, cyano, alkoxy, hydrogen, halo, aryl, or 5 alkenyl. Other materials which may be used include o-hydroxy-a-methyl cinnamoyl derivatives. Photoremovable protective groups are described in, for example, Patchornik, J. Am. Chem. Soc. (1970) 92:6333 and Amit et al., J. Org. Chem. (1974) 39:192, both of which 10 are incorporated herein by reference.

In an alternative embodiment the positive reactive group is activated for reaction with reagents in solution. For example, a 5-bromo-7-nitro indoline group, when bound to a carbonyl, undergoes reaction upon exposure 15 to light at 420 nm.

In a second alternative embodiment, the reactive group on the linker molecule is selected from a wide variety of negative light-reactive groups including a cinammate group.

Alternatively, the reactive group is activated or deactivated by electron beam lithography, x-ray lithography, or any other radiation. Suitable reactive groups for electron beam lithography include sulfonyl. Other methods may be used including, for example, exposure 25 to a current source. Other reactive groups and methods of activation may be used in light of this disclosure.

As shown in FIG. 1, the linking molecules are preferably exposed to, for example, light through a suitable mask 8 using photolithographic techniques of the type 30 known in the semiconductor industry and described in, for example, Sze, VLSI Technology, McGraw-Hill (1983), and Mead et al., Introduction to VLSI Systems, Addison-Wesley (1980), which are incorporated herein by reference for all purposes. The light may be directed 35 at either the surface containing the protective groups or at the back of the substrate, so long as the substrate is transparent to the wavelength of light needed for removal of the protective groups. In the embodiment shown in FIG. 1, light is directed at the surface of the 40 substrate containing the protective groups. FIG. 1 illustrates the use of such masking techniques as they are applied to a positive reactive group so as to activate linking molecules and expose functional groups in areas 10a and 10b.

The mask 8 is in one embodiment a transparent support material selectively coated with a layer of opaque material. Portions of the opaque material are removed. leaving opaque material in the precise pattern desired on the substrate surface. The mask is brought into close 50 proximity with, imaged on, or brought directly into contact with the substrate surface as shown in FIG. 1. "Openings" in the mask correspond to locations on the substrate where it is desired to remove photoremovable protective groups from the substrate. Alignment may be 55 performed using conventional alignment techniques in which alignment marks (not shown) are used to accurately overlay successive masks with previous patterning steps, or more sophisticated techniques may be used. For example, interferometric techniques such as the one 60 described in Flanders et al., "A New Interferometric Alignment Technique," App. Phys. Lett. (1977) 31:426-428, which is incorporated herein by reference, may be used.

it is desirable to provide contrast enhancement materials between the mask and the substrate according to some embodiments. This contrast enhancement layer may 14

comprise a molecule which is decomposed by light such as quinone diazide or a material which is transiently bleached at the wavelength of interest. Transient bleaching of materials will allow greater penetration where light is applied, thereby enhancing contrast. Alternatively, contrast enhancement may be provided by way of a cladded fiber optic bundle.

The light may be from a conventional incandescent source, a laser, a laser diode, or the like. If non-collimated sources of light are used it may be desirable to provide a thick- or multi-layered mask to prevent spreading of the light onto the substrate. It may, further, be desirable in some embodiments to utilize groups which are sensitive to different wavelengths to control synthesis. For example, by using groups which are sensitive to different wavelengths, it is possible to select branch positions in the synthesis of a polymer or eliminate certain masking steps. Several reactive groups along with their corresponding wavelengths for deprotection are provided in Table 1.

TABLE 1

Group	Approximate Deprotection Wavelength
Nitroveratryloxy carbonyl (NVOC)	UV (300-400 nm)
Nitrobenzyloxy carbonyl (NBOC)	UV (300-350 nm)
Dimethyl dimethoxybenzyloxy carbonyl	UV (280-300 nm)
5-Bromo-7-nitroindolinyl	UV (420 nm)
o-Hydroxy-a-methyl cinnamoyl	UV (300-350 nm)
2-Oxymethylene anthraquinone	UV (350 nm)

While the invention is illustrated primarily herein by way of the use of a mask to illuminate selected regions the substrate, other techniques may also be used. For example, the substrate may be translated under a modulated laser or diode light source. Such techniques are discussed in, for example, U.S. Pat. No. 4,719,615 (Feyrer et al.), which is incorporated herein by reference. In alternative embodiments a laser galvanometric scanner is utilized. In other embodiments, the synthesis may take place on or in contact with a conventional liquid crystal (referred to herein as a "light valve") or fiber optic light sources. By appropriately modulating 45 liquid crystals, light may be selectively controlled so as to permit light to contact selected regions of the substrate. Alternatively, synthesis may take place on the end of a series of optical fibers to which light is selectively applied. Other means of controlling the location of light exposure will be apparent to those of skill in the

The substrate may be irradiated either in contact or not in contact with a solution (not shown) and is, preferably, irradiated in contact with a solution. The solution contains reagents to prevent the by-products formed by irradiation from interfering with synthesis of the polymer according to some embodiments. Such by-products might include, for example, carbon dioxide, nitrosocarbonyl compounds, styrene derivatives, indole derivatives, and products of their photochemical reactions. Alternatively, the solution may contain reagents used to match the index of refraction of the substrate. Reagents added to the solution may further include, for example, acidic or basic buffers, thiols, substituted hydrazines and To enhance contrast of light applied to the substrate, 65 hydroxylamines, reducing agents (e.g., NADH) or reagents known to react with a given functional group (e.g., aryl nitroso+glyoxylic acid→aryl formhydroxamate $+ CO_2$).

Either concurrently with or after the irradiation step, the linker molecules are washed or otherwise contacted with a first monomer, illustrated by "A" in regions 12a and 12b in FIG. 2. The first monomer reacts with the activated functional groups of the linkage molecules 5 which have been exposed to light. The first monomer, which is preferably an amino acid, is also provided with a photoprotective group. The photoprotective group on the monomer may be the same as or different than the protective group used in the linkage molecules, and 10 may be selected from any of the above-described protective groups. In one embodiment, the protective groups for the A monomer is selected from the group NBOC and NVOC.

thereafter repeated, with a mask repositioned so as to remove linkage protective groups and expose functional groups in regions 14a and 14b which are illustrated as being regions which were protected in the previous masking step. As an alternative to repositioning of the 20 first mask, in many embodiments a second mask will be utilized. In other alternative embodiments, some steps may provide for illuminating a common region in successive steps. As shown in FIG. 3, it may be desirable to provide separation between irradiated regions. For ex- 25 ample, separation of about 1-5 µm may be appropriate to account for alignment tolerances.

As shown in FIG. 4, the substrate is then exposed to a second protected monomer "B," producing B regions 16a and 16b. Thereafter, the substrate is again masked so 30 as to remove the protective groups and expose reactive groups on A region 12a and B region 16b. The substrate is again exposed to monomer B, resulting in the formation of the structure shown in FIG. 6. The dimers B-A and B-B have been produced on the substrate.

A subsequent series of masking and contacting steps similar to those described above with A (not shown) provides the structure shown in FIG. 7. The process provides all possible dimers of B and A, i.e., B-A, A-B, A-A, and B-B.

The substrate, the area of synthesis, and the area for synthesis of each individual polymer could be of any size or shape. For example, squares, ellipsoids, rectangles, triangles, circles, or portions thereof, along with irregular geometric shapes, may be utilized. Duplicate 45 synthesis areas may also be applied to a single substrate for purposes of redundancy.

In one embodiment the regions 12a, 12b and 16a, 16b on the substrate will have a surface area of between about 1 cm^2 and 10^{-10} cm^2 . In some embodiments the 50 regions 12a, 12b and 16a, 16b have areas of less than about 10^{-1} cm², 10^{-2} cm², 10^{-3} cm², 10^{-4} cm², 10^{-5} cm², 10^{-6} cm², 10^{-7} cm², 10^{-8} cm², or 10^{-10} cm². In a preferred embodiment, the regions 12a, 12b and 16a, 16b are between about $10 \times 10 \,\mu\text{m}$ and $500 \times 500 \,\mu\text{m}$.

In some embodiments a single substrate supports more than about 10 different monomer sequences and perferably more than about 100 different monomer sequences, although in some embodiments more than about 103, 104, 105, 106, 107, or 108 different sequences 60 are provided on a substrate. Of course, within a region of the substrate in which a monomer sequence is synthesized, it is preferred that the monomer sequence be substantially pure. In some embodiments, regions of the substrate contain polymer sequences which are at least 65 about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97% 98% or 99% pure.

According to some embodiments, several sequences are intentionally provided within a single region so as to provide an initial screening for biological activity, after which materials within regions exhibiting significant binding are further evaluated.

IV. Details of One Embodiment of a Reactor System

FIG. 8A schematically illustrates a preferred embodiment of a reactor system 100 for synthesizing polymers on the prepared substrate in accordance with one aspect of the invention. The reactor system includes a body 102 with a cavity 104 on a surface thereof. In preferred embodiments the cavity 104 is between about 50 and 1000 μm deep with a depth of about 500 μm preferred.

The bottom of the cavity is preferably provided with As shown in FIG. 3, the process of irradiating is 15 an array of ridges 106 which extend both into the plane of the Figure and parallel to the plane of the Figure. The ridges are preferably about 50 to 200 µm deep and spaced at about 2 to 3 mm. The purpose of the ridges is to generate turbulent flow for better mixing. The bottom surface of the cavity is preferably light absorbing so as to prevent reflection of impinging light.

A substrate 112 is mounted above the cavity 104. The substrate is provided along its bottom surface 114 with a photoremovable protective group such as NVOC with or without an intervening linker molecule. The substrate is preferably transparent to a wide spectrum of light, but in some embodiments is transparent only at a wavelength at which the protective group may be removed (such as UV in the case of NVOC). The substrate in some embodiments is a conventional microscope glass slide or cover slip. The substrate is preferably as thin as possible, while still providing adequate physical support. Preferably, the substrate is less than about 1 mm thick, more preferably less than 0.5 mm 35 thick, more preferably less than 0.1 mm thick, and most preferably less than 0.05 mm thick. In alternative preferred embodiments, the substrate is quartz or silicon.

The substrate and the body serve to seal the cavity except for an inlet port 108 and an outlet port 110. The body and the substrate may be mated for sealing in some embodiments with one or more gaskets. According to a preferred embodiment, the body is provided with two concentric gaskets and the intervening space is held at vacuum to ensure mating of the substrate to the gaskets.

Fluid is pumped through the inlet port into the cavity by way of a pump 116 which may be, for example, a model no. B-120-S made by Eldex Laboratories. Selected fluids are circulated into the cavity by the pump. through the cavity, and out the outlet for recirculation or disposal. The reactor may be subjected to ultrasonic radiation and/or heated to aid in agitation in some embodiments.

Above the substrate 112, a lens 120 is provided which may be, for example, a 2"100 mm focal length fused silica lens. For the sake of a compact system, a reflective mirror 122 may be provided for directing light from a light source 124 onto the substrate. Light source 124 may be, for example, a Xe(Hg) light source manufactured by Oriel and having model no. 66024. A second lens 126 may be provided for the purpose of projecting a mask image onto the substrate in combination with lens 120. This form of lithography is referred to herein as projection printing. As will be apparent from this disclosure, proximity printing and the like may also be used according to some embodiments.

Light from the light source is permitted to reach only selected locations on the substrate as a result of mask 128. Mask 128 may be, for example, a glass slide having etched chrome thereon. The mask 128 in one embodiment is provided with a grid of transparent locations and opaque locations. Such masks may be manufactured by, for example, Photo Sciences, Inc. Light passes freely through the transparent regions of the mask, but 5 is reflected from or absorbed by other regions. Therefore, only selected regions of the substrate are exposed to light.

As discussed above, light valves (LCD's) may be used as an alternative to conventional masks to selectively expose regions of the substrate. Alternatively, fiber optic faceplates such as those available from Schott Glass, Inc, may be used for the purpose of contrast enhancement of the mask or as the sole means of restricting the region to which light is applied. Such 15 faceplates would be placed directly above or on the substrate in the reactor shown in FIG. 8A. In still further embodiments, flys-eye lenses, tapered fiber optic faceplates, or the like, may be used for contrast enhancement.

In order to provide for illumination of regions smaller than a wavelength of light, more elaborate techniques may be utilized. For example, according to one preferred embodiment, light is directed at the substrate by way of molecular microcrystals on the tip of, for example, micropipettes. Such devices are disclosed in Lieberman et al., "A Light Source Smaller Than the Optical Wavelength," Science (1990) 247:59-61, which is incorporated herein by reference for all purposes.

In operation, the substrate is placed on the cavity and 30 sealed thereto. All operations in the process of preparing the substrate are carried out in a room lit primarily or entirely by light of a wavelength outside of the light range at which the protective group is removed. For example, in the case of NVOC, the room should be lit 35 with a conventional dark room light which provides little or no UV light. All operations are preferably conducted at about room temperature.

A first, deprotection fluid (without a monomer) is circulated through the cavity. The solution preferably is 40 of 5 mM sulfuric acid in dioxane solution which serves to keep exposed amino groups protonated and decreases their reactivity with photolysis by-products. Absorptive materials such as N,N-diethylamino 2,4-dinitrobenzene, for example, may be included in the deprotection 45 fluid which serves to absorb light and prevent reflection and unwanted photolysis.

The slide is, thereafter, positioned in a light raypath from the mask such that first locations on the substrate are illuminated and, therefore, deprotected. In preferred embodiments the substrate is illuminated for between about 1 and 15 minutes with a preferred illumination time of about 10 minutes at 10-20 mW/cm² with 365 nm light. The slides are neutralized (i.e., brought to a pH of about 7) after photolysis with, for example, a 55 solution of di-isopropylethylamine (DIEA) in methylene chloride for about 5 minutes.

The first monomer is then placed at the first locations on the substrate. After irradiation, the slide is removed, treated in bulk, and then reinstalled in the flow cell. 60 Alternatively, a fluid containing the first monomer, preferably also protected by a protective group, is circulated through the cavity by way of pump 116. If, for example, it is desired to attach the amino acid Y to the substrate at the first locations, the amino acid Y (bearing 65 a protective group on its α -nitrogen), along with reagents used to render the monomer reactive, and/or a carrier, is circulated from a storage container 118,

through the pump, through the cavity, and back to the inlet of the pump.

The monomer carrier solution is, in a preferred embodiment, formed by mixing of a first solution (referred to herein as solution "A") and a second solution (referred to herein as solution "B"). Table 2 provides an illustration of a mixture which may be used for solution A

TABLE 2

Representative Monomer Carrier Solution "A"

100 mg NVOC amino protected amino acid 37 mg HOBT (1-Hydroxybenzotriazole) 250 µl DMF (Dimethylformamide) 86 µl DIEA (Diisopropylethylamine)

The composition of solution B is illustrated in Table 3. Solutions A and B are mixed and allowed to react at room temperature for about 8 minutes, then diluted 20 with 2 ml of DMF, and 500 µl are applied to the surface of the slide or the solution is circulated through the reactor system and allowed to react for about 2 hours at room temperature. The slide is then washed with DMF, methylene chloride and ethanol.

TABLE 3

Representative Monomer Carrier Solution "B"

250 µl DMF

111 mg BOP (Benzotriazolyl-n-oxy-tris(dimethylamino) phosphoniumhexafluorophosphate)

As the solution containing the monomer to be attached is circulated through the cavity, the amino acid or other monomer will react at its carboxy terminus with amino groups on the regions of the substrate which have been deprotected. Of course, while the invention is illustrated by way of circulation of the monomer through the cavity, the invention could be practiced by way of removing the slide from the reactor and submersing it in an appropriate monomer solution.

After addition of the first monomer, the solution containing the first amino acid is then purged from the system. After circulation of a sufficient amount of the DMF/methylene chloride such that removal of the amino acid can be assured (e.g., about 50×times the volume of the cavity and carrier lines), the mask or substrate is repositioned, or a new mask is utilized such that second regions on the substrate will be exposed to light and the light 124 is engaged for a second exposure. This will deprotect second regions on the substrate and the process is repeated until the desired polymer sequences have been synthesized.

The entire derivatized substrate is then exposed to a receptor of interest, preferably labeled with, for example, a fluorescent marker, by circulation of a solution or suspension of the receptor through the cavity or by contacting the surface of the slide in bulk. The receptor will preferentially bind to certain regions of the substrate which contain complementary sequences.

Antibodies are typically suspended in what is commonly referred to as "supercocktail," which may be, for example, a solution of about 1% BSA (bovine serum albumin), 0.5% Tween TM non-ionic detergent in PBS (phosphate buffered saline) buffer. The antibodies are diluted into the supercocktail buffer to a final concentration of, for example, about 0.1 to 4 µg/ml.

FIG. 8B illustrates an alternative preferred embodiment of the reactor shown in FIG. 8A. According to

this embodiment, the mask 128 is placed directly in contact with the substrate. Preferably, the etched portion of the mask is placed face down so as to reduce the effects of light dispersion. According to this embodiment, the imaging lenses 120 and 126 are not necessary 5 because the mask is brought into close proximity with the substrate.

For purposes of increasing the signal-to-noise ratio of the technique, some embodiments of the invention provide for exposure of the substrate to a first labeled or 10 unlabeled receptor followed by exposure of a labeled, second receptor (e.g., an antibody) which binds at multiple sites on the first receptor. If, for example, the first receptor is an antibody derived from a first species of an animal, the second receptor is an antibody derived from 15 a second species directed to epitopes associated with the first species. In the case of a mouse antibody, for example, fluorescently labeled goat antibody or antiserum which is antimouse may be used to bind at multiple sites on the mouse antibody, providing several times the 20 fluorescence compared to the attachment of a single mouse antibody at each binding site. This process may be repeated again with additional antibodies (e.g., goatmouse-goat, etc.) for further signal amplification.

In preferred embodiments an ordered sequence of 25 masks is utilized. In some embodiments it is possible to use as few as a single mask to synthesize all of the possible polymers of a given monomer set.

If, for example, it is desired to synthesize all 16 dinu-

pled; followed by a third mask, for the C column; and a final mask that exposes the right-most column, for D. The first, second, third, and fourth masks may be a single mask translated to different locations.

The process is repeated in the horizontal direction for the second unit of the dimer. This time, the masks allow exposure of horizontal rows, again 0.25 cm wide. A, B, C, and D are sequentially coupled using masks that expose horizontal fourths of the reaction area. The resulting substrate contains all 16 dinucleotides of four

The eight masks used to synthesize the dinucleotide are related to one another by translation or rotation. In fact, one mask can be used in all eight steps if it is suitably rotated and translated. For example, in the example above, a mask with a single transparent region could be sequentially used to expose each of the vertical columns, translated 90°, and then sequentially used to allow exposure of the horizontal rows.

Tables 4 and 5 provide a simple computer program in Quick Basic for planning a masking program and a sample output, respectively, for the synthesis of a polymer chain of three monomers ("residues") having three different monomers in the first level, four different monomers in the second level, and five different monomers in the third level in a striped pattern. The output of the program is the number of cells, the number of "stripes" (light regions) on each mask, and the amount of translation required for each exposure of the mask.

TABLE 4

```
Mask Strategy Program
DEFINT A-Z
DIM b(20), w(20), 1(500)
FS = "LPT1:"
OPEN IS FOR OUTPUT AS #1
jmax = 3
                    'Number of residues
b(1) = 3: b(2) = 4: b(3) = 5
                                      Number of building blocks for res 1,2,3
   = 1: 1 \max(1) = 1
FOR j = 1 TO jmax: g = g * b(j): NEXT j
w(0) = 0: w(1) = g / b(1)
PRINT #1, "MASK2.BAS", DATES, TIMES: PRINT #1,
PRINT #1, USING "Number of residues=##"; jmax
FOR j = 1 TO jmax
PRINT #1, USING "
                              Residue ##
                                                ## building blocks"; j; b(j)
NEXT j
PRINT #1. "
PRINT #1, USING "Number of cells=####"; g: PRINT #1, FOR j = 2 TO jmax lmax(j) = lmax(j - 1) * b(j - 1)
w(j) = w(j-1) / b(j)
NEXT j
PRINT #1, USING "Mask for residue ##"; j: PRINT #1, PRINT #1, USING "Number of stripes = ###"; lmax(j) PRINT #1, USING "Width of each stripe = ###"; w(j)
FOR 1 = 1 TO lmax(j)
a = 1 + (1 - 1) * w(j - 1)
 ae = a + w(j) - 1
PRINT #1, USING " Stripe ## begins at location ### and ends at ###"; 1; a; ae
NEXT 1
PRINT #1.
PRINT #1, USING " For each of ## building blocks, translate mask by ##
cell(s)"; b(j); w(j),
PRINT #1, : PRINT #1, : PRINT #1,
NEXT j
Copyright 1990, Affymax Research Institute
```

cleotides from four bases, a 1 cm square synthesis region is divided conceptually into 16 boxes, each 0.25 cm wide. Denote the four monomer units by A, B, C, and D. The first reactions are carried out in four vertical 65 columns, each 0.25 cm wide. The first mask exposes the left-most column of boxes, where A is coupled. The second mask exposes the next column, where B is cou-

	TABLE 5	
	Masking Strategy Output	
Number of residue	s= 3	
Residue 1	3 building blocks	
Residue 2	4 building blocks	
Residue 3	5 building blocks	
	Residue 1 Residue 2	Number of residues = 3 Residue 1 3 building blocks Residue 2 4 building blocks

TABLE 5-continued

Masking Strategy Output

```
Number of cells = 60
Mask for residue 1
     Number of stripes = 1
     Width of each stripe = 20
     Stripe 1 begins at location 1 and ends at 20
    For each of 3 building blocks, translate mask by 20 ceil(s)
Mask for residue 2
    Number of stripes = 3
     Width of each stripe = 5
    Stripe 1 begins at location 1 and ends at 5
    Stripe 2 begins at location 21 and ends at 25
    Stripe 3 begins at location 41 and ends at 45
    For each of 4 building blocks, translate mask by 5 cell(s)
Mask for residue 3
    Number of stripes = 12
    Width of each stripe = 1
    Stripe 1 begins at location 1 and ends at 1
    Stripe 2 begins at location 6 and ends at 6
    Stripe 3 begins at location 11 and ends at 11
    Stripe 4 begins at location 16 and ends at 16
    Stripe 5 begins at location 21 and ends at 21
    Stripe 6 begins at location 26 and ends at 26
    Stripe 7 begins at location 31 and ends at 31
    Stripe 8 begins at location 36 and ends at 36
    Stripe 9 begins at location 41 and ends at 41
    Stripe 10 begins at location 46 and ends at 46
    Stripe 11 begins at location 51 and ends at 51
    Stripe 12 begins at location 56 and ends at 56
    For each of 5 building blocks, translate mask by 1 cell(s)
```

© Copyright 1990, Affymax Research Institute

V. Details of One Embodiment of A Fluorescent Detection Device

FIG. 9 illustrates a fluorescent detection device for detecting fluorescently labeled receptors on a substrate. A substrate 112 is placed on an x/y translation table 202. In a preferred embodiment the x/y translation table is a 35 model no. PM500-A1 manufactured by Newport Corporation. The x/y translation table is connected to and controlled by an appropriately programmed digital computer 204 which may be, for example, an appropriately programmed IBM PC/AT or AT compatible 40 computer. Of course, other computer systems, special purpose hardware, or the like could readily be substituted for the AT computer used herein for illustration. Computer software for the translation and data collection functions described herein can be provided based 45 on commercially available software including, for example, "Lab Windows" licensed by National Instruments, which is incorporated herein by reference for all purposes.

The substrate and x/y translation table are placed 50 under a microscope 206 which includes one or more objectives 208. Light (about 488 nm) from a laser 210, which in some embodiments is a model no. 2020-05 argon ion laser manufactured by Spectraphysics, is directed at the substrate by a dichroic mirror 207 which 55 passes greater than about 520 nm light but reflects 488 nm light. Dichroic mirror 207 may be, for example, a model no. FT510 manufactured by Carl Zeiss. Light reflected from the mirror then enters the microscope 206 which may be, for example, a model no. Axioscop 60 20 manufactured by Carl Zeiss. Fluorescein-marked materials on the substrate will fluoresce >488 nm light, and the fluoresced light will be collected by the microscope and passed through the mirror. The fluorescent light from the substrate is then directed through a wave- 65 length filter 209 and, thereafter through an aperture plate 211. Wavelength filter 209 may be, for example, a model no. OG530 manufactured by Melles Griot and

aperture plate 211 may be, for example, a model no. 477352/477380 manufactured by Carl Zeiss.

The fluoresced light then enters a photomultiplier tube 212 which in some embodiments is a model no. R943-02 manufactured by Hamamatsu, the signal is amplified in preamplifier 214 and photons are counted by photon counter 216. The number of photons is recorded as a function of the location in the computer 204. Pre-Amp 214 may be, for example, a model no. SR440 10 manufactured by Stanford Research Systems and photon counter 216 may be a model no. SR400 manufactured by Stanford Research Systems. The substrate is then moved to a subsequent location and the process is repeated. In preferred embodiments the data are ac-15 quired every 1 to 100 µm with a data collection diameter of about 0.8 to 10 µm preferred. In embodiments with sufficiently high fluorescence, a CCD (change coupled device) detector with broadfield illumination is

20 By counting the number of photons generated in a given area in response to the laser, it is possible to determine where fluorescent marked molecules are located on the substrate. Consequently, for a slide which has a matrix of polypeptides, for example, synthesized on the surface thereof, it is possible to determine which of the polypeptides is complementary to a fluorescently marked receptor.

According to preferred embodiments, the intensity and duration of the light applied to the substrate is controlled by varying the laser power and scan stage rate for improved signal-to-noise ratio by maximizing fluorescence emission and minimizing background noise.

While the detection apparatus has been illustrated primarily herein with regard to the detection of marked receptors, the invention will find application in other areas. For example, the detection apparatus disclosed herein could be used in the fields of catalysis, DNA or protein gel scanning, and the like.

VI. Determination of Relative Binding Strength of Receptors

The signal-to-noise ratio of the present invention is sufficiently high that not only can the presence or absence of a receptor on a ligand be detected, but also the relative binding affinity of receptors to a variety of sequences can be determined.

In practice it is found that a receptor will bind to several peptide sequences in an array, but will bind much more strongly to some sequences than others. Strong binding affinity will be evidenced herein by a strong fluorescent or radiographic signal since many receptor molecules will bind in a region of a strongly bound ligand. Conversely, a weak binding affinity will be evidenced by a weak fluorescent or radiographic signal due to the relatively small number of receptor molecules which bind in a particular region of a substrate having a ligand with a weak binding affinity for the receptor. Consequently, it becomes possible to determine relative binding avidity (or affinity in the case of univalent interactions) of a ligand herein by way of the intensity of a fluorescent or radiographic signal in a region containing that ligand.

Semiquantitative data on affinities might also be obtained by varying washing conditions and concentrations of the receptor. This would be done by comparison to known ligand receptor pairs, for example.

VII. Examples

The following examples are provided to illustrate the efficacy of the inventions herein. All operations were

conducted at about ambient temperatures and pressures unless indicated to the contrary.

A. Slide Preparation

Before attachment of reactive groups it is preferred to clean the substrate which is, in a preferred embodiment 5 a glass substrate such as a microscope slide or cover slip. According to one embodiment the slide is soaked in an alkaline bath consisting of, for example, I liter of 95% ethanol with 120 ml of water and 120 grams of sodium hydroxide for 12 hours. The slides are then 10 washed under running water and allowed to air dry, and rinsed once with a solution of 95% ethanol.

The slides are then aminated with, for example, aminopropyltriethoxysilane for the purpose of attaching amino groups to the glass surface on linker mole- 15 cules, although any omega functionalized silane could also be used for this purpose. In one embodiment 0.1% aminopropyltriethoxysilane is utilized, although solutions with concentrations from $10^{-7}\%$ to 10% may be used, with about $10^{-3}\%$ to 2% preferred. A 0.1% mix- 20 ture is prepared by adding to 100 ml of a 95% ethanol/5% water mixture, 100 microliters (µl) of aminopropyltriethoxysilane. The mixture is agitated at about ambient temperature on a rotary shaker for about 5 minutes. 500 µl of this mixture is then applied to the 25 surface of one side of each cleaned slide. After 4 minutes, the slides are decanted of this solution and rinsed three times by dipping in, for example, 100% ethanol.

After the plates dry, they are placed in a 110°-120° C. vacuum oven for about 20 minutes, and then allowed to 30 in FIG. 10E. The process proceeds, consecutively cure at room temperature for about 12 hours in an argon environment. The slides are then dipped into DMF (dimethylformamide) solution, followed by a thorough washing with methylene chloride.

The aminated surface of the slide is then exposed to 35 about 500 µl of, for example, a 30 millimolar (mM) solution of NVOC-GABA (gamma amino butyric acid) NHS (N-hydroxysuccinimide) in DMF for attachment of a NVOC-GABA to each of the amino groups.

The surface is washed with, for example, DMF, 40 methylene chloride, and ethanol.

Any unreacted aminopropyl silane on the surfacethat is, those amino groups which have not had the NVOC-GABA attached—are now capped with acetyl groups (to prevent further reaction) by exposure to a 1:3 45 where: mixture of acetic anhydride in pyridine for 1 hour. Other materials which may perform this residual capping function include trifluoroacetic anhydride, formicacetic anhydride, or other reactive acylating agents. Finally, the slides are washed again with DMF, methy- 50 length 1 will be: lene chioride, and ethanol.

B. Synthesis of Eight Trimers of "A" and "B"

FIG. 10 illustrates a possible synthesis of the eight trimers of the two-monomer set: gly, phe (represented by "A" and "B," respectively). A glass slide bearing 55 silane groups terminating in 6-nitroveratryloxycarboxamide (NVOC-NH) residues is prepared as a substrate. Active esters (pentafluorophenyl, OBt, etc.) of gly and phe protected at the amino group with NVOC are prepared as reagents. While not pertinent to this example, if 60 side chain protecting groups are required for the monomer set, these must not be photoreactive at the wavelength of light used to protect the primary chain.

For a monomer set of size n, $n \times 1$ cycles are required to synthesize all possible sequences of length l. A cycle 65 the total number of masks (and, therefore, the number consists of:

1. Irradiation through an appropriate mask to expose the amino groups at the sites where the next residue is to be added, with appropriate washes to remove the by-products of the deprotection.

2. Addition of a single activated and protected (with the same photochemically-removable group) monomer, which will react only at the sites addressed in step 1, with appropriate washes to remove the excess reagent from the surface.

The above cycle is repeated for each member of the monomer set until each location on the surface has been extended by one residue in one embodiment. In other embodiments, several residues are sequentially added at one location before moving on to the next location. Cycle times will generally be limited by the coupling reaction rate, now as short as 20 min in automated peptide synthesizers. This step is optionally followed by addition of a protecting group to stabilize the array for later testing. For some types of polymers (e.g., peptides), a final deprotection of the entire surface (removal of photoprotective side chain groups) may be required.

More particularly, as shown in FIG. 10A, the glass 20 is provided with regions 22, 24, 26, 28, 30, 32, 34, and 36. Regions 30, 32, 34, and 36 are masked, as shown in FIG. 10B and the glass is irradiated and exposed to a reagent containg "A" (e.g., gly), with the resulting structure shown in FIG. 10C. Thereafter, regions 22, 24, 26, and 28 are masked, the glass is irradiated (as shown in FIG. 10D) and exposed to a reagent containing "B" (e.g., phe), with the resulting structure shown masking and exposing the sections as shown until the structure shown in FIG. 10M is obtained. The glass is irradiated and the terminal groups are, optionally, capped by acetylation. As shown, all possible trimers of gly/phe are obtained.

In this example, no side chain protective group removal is necessary. If it is desired, side chain deprotection may be accomplished by treatment with ethanedithiol and trifluoroacetic acid.

In general, the number of steps needed to obtain a particular polymer chain is defined by:

n=the number of monomers in the basis set of monomers, and

l=the number of monomer units in a polymer chain. Conversely, the synthesized number of sequences of

Of course, greater diversity is obtained by using masking strategies which will also include the synthesis of polymers having a length of less than l. If, in the extreme case, all polymers having a length less than or equal to I are synthesized, the number of polymers synthesized will be:

$$\mathbf{n}^l + \mathbf{n}^{l-1} + \dots + \mathbf{n}^1. \tag{3}$$

The maximum number of lithographic steps needed will generally be n for each "layer" of monomers, i.e., of lithographic steps) needed will be $n \times l$. The size of the transparent mask regions will vary in accordance with the area of the substrate available for synthesis and

26

the number of sequences to be formed. In general, the size of the synthesis areas will be:

size of synthesis areas=(A)/(Sequences)

A is the total area available for synthesis; and Sequences is the number of sequences desired in the area.

It will be appreciated by those of skill in the art that 10 the above method could readily be used to simultaneously produce thousands or millions of oligomers on a substrate using the photolithographic techniques disclosed herein. Consequently, the method results in the ability to practically test large numbers of, for example, di, tri, tetra, penta, hexa, hepta, octapeptides, dodecapeptides, or larger polypeptides (or correspondingly, polynucleotides).

The above example has illustrated the method by way of a manual example. It will of course be appreciated that automated or semi-automated methods could be used. The substrate would be mounted in a flow cell for automated addition and removal of reagents, to minimize the volume of reagents needed, and to more carefully control reaction conditions. Successive masks could be applied manually or automatically.

Synthesis of a Dimer of an Aminopropyl Group and a Fluorescent Group

In synthesizing the dimer of an aminopropyl group and a fluorescent group, a functionalized durapore membrane was used as a substrate. The durapore membrane was a polyvinylidine difluoride with aminopropyl groups. The aminopropyl groups were protected with the DDZ group by reaction of the carbonyl chloride with the amino groups, a reaction readily known to those of skill in the art. The surface bearing these groups was placed in a solution of THF and contacted with a mask bearing a checkerboard pattern of 1 mm opaque and transparent regions. The mask was exposed to ultraviolet light having a wavelength down to at least about 280 nm for about 5 minutes at ambient temperature, although a wide range of exposure times and temperatures may be appropriate in various embodiments of the invention. For example, in one embodiment, an exposure time of between about 1 and 5000 seconds may be used at process temperatures of between -70° and 45 +50° C.

In one preferred embodiment, exposure times of between about 1 and 500 seconds at about ambient pressure are used. In some preferred embodiments, pressure b above ambient is used to prevent evaporation.

The surface of the membrane was then washed for about 1 hour with a fluorescent label which included an active ester bound to a chelate of a lanthanide. Wash times will vary over a wide range of values from about a few minutes to a few hours. These materials fluoresce 55 in the red and the green visible region. After the reaction with the active ester in the fluorophore was complete, the locations in which the fluorophore was bound could be visualized by exposing them to ultraviolet light and observing the red and the green fluorescence. It 60 was observed that the derivatized regions of the substrate closely corresponded to the original pattern of the mask.

D. Demonstration of Signal Capability

low-level standard fluorescent bead kit manufactured by Flow Cytometry Standards and having model no. 824. This kit includes 5.8 µm diameter beads, each impregnated with a known number of fluorescein molecules.

One of the beads was placed in the illumination field on the scan stage as shown in FIG. 9 in a field of a laser spot which was initially shuttered. After being positioned in the illumination field, the photon detection equipment was turned on. The laser beam was unblocked and it interacted with the particle bead, which then fluoresced. Fluorescence curves of beads impregnated with 7,000 and 13,000; fluorescein molecules, are shown in FIGS. 11A and 11B respectively. On each curve, traces for beads without fluorescein molecules are also shown. These experiments were performed with 488 nm excitation, with 100 µW of laser power. The light was focused through a 40 power 0.75 NA

The fluorescence intensity in all cases started off at a high value and then decreased exponentially. The falloff in intensity is due to photobleaching of the fluorescein molecules. The traces of beads without fluorescein molecules are used for background subtraction. The difference in the initial exponential decay between labeled and nonlabeled beads is integrated to give the total number of photon counts, and this number is related to the number of molecules per bead. Therefore, it is possible to deduce the number of photons per fluorescein molecule that can be detected. For the curves illustrated in FIG. 11A and 11B, this calculation indicates the radiation of about 40 to 50 photons per fluorescein molecule are detected.

E. Determination of the Number of

Molecules Per Unit Area

Aminopropylated glass microscope slides prepared according to the methods discussed above were utilized in order to establish the density of labeling of the slides. The free amino termini of the slides were reacted with FITC (fluorescein isothiocyanate) which forms a covalent linkage with the amino group. The slide is then scanned to count the number of fluorescent photons generated in a region which, using the estimated 40-50 photons per fluorescent molecule, enables the calculation of the number of molecules which are on the surface per unit area.

A slide with aminopropyl silane on its surface was immersed in a 1 mM solution of FITC in DMF for 1 hour at about ambient temperature. After reaction, the slide was washed twice with DMF and then washed with ethanol, water, and then ethanol again. It was then dried and stored in the dark until it was ready to be examined.

Through the use of curves similar to those shown in FIG. 11A and 11B, and by integrating the fluorescent counts under the exponentially decaying signal, the number of free amino groups on the surface after derivatization was determined. It was determined that slides with labeling densities of 1 fluorescein per $10^3 \times 10^3$ to ~2×2 nm could be reproducibly made as the concentration of aminopropyltriethoxysilane varied from $10^{-5}\%$ to $10^{-1}\%$.

F. Removal of NVOC and Attachment of A Fluorescent Marker

NVOC-GABA groups were attached as described above. The entire surface of one slide was exposed to Signal detection capability was demonstrated using a 65 light so as to expose a free amino group at the end of the gamma amino butyric acid. This slide, and a duplicate which was not exposed, were then exposed to fluorescein isothiocyanate (FITC).

FIG. 12A illustrates the slide which was not exposed to light, but which was exposed to FITC. The units of the x axis are time and the units of the y axis are counts. The trace contains a certain amount of background fluorescence. The duplicate slide was exposed to 350 nm broadband illumination for about 1 minute (12 mW/cm², ~350 nm illumination), washed and reacted with FITC. The fluorescence curves for this slide are shown in FIG. 12B. A large increase in the level of fluorescence is observed, which indicates photolysis has 10 TFA to remove the t-BOC protecting group. Eexposed a number of amino groups on the surface of the slides for attachment of a fluorescent marker.

G. Use of a Mask in Removal of NVOC

The next experiment was performed with a 0.1% aminopropylated slide. Light from a Hg—Xe arc lamp 15 was imaged onto the substrate through a laser-ablated chrome-on-glass mask in direct contact with the substrate.

This slide was illuminated for approximately 5 minutes, with 12 mW of 350 nm broadband light and then reacted with the 1 mM FITC solution. It was put on the laser detection scanning stage and a graph was plotted as a two-dimensional representation of position colorcoded for fluorescence intensity. The fluorescence intensity (in counts) as a function of location is given on the color scale to the right of FIG. 13A for a mask having $100 \times 100 \mu m$ squares.

The experiment was repeated a number of times through various masks. The fluorescence pattern for a $50 \mu m$ mask is illustrated in FIG. 13B, for a 20 μm mask in FIG. 13C, and for a 10 μm mask in FIG. 13D. The mask pattern is distinct down to at least about 10 µm squares using this lithographic technique.

H. Attachment of YGGFL and Subsequent Exposure 35

Herz Antibody and Goat Antimouse

In order to establish that receptors to a particular polypeptide sequence would bind to a surface-bound peptide and be detected, Leu enkephalin was coupled to 40 the surface and recognized by an antibody. A slide was derivatized with 0.1% amino propyl-triethoxysilane and protected with NVOC. A 500 μm checkerboard mask was used to expose the slide in a flow cell using backside contact printing. The Leu enkephalin sequence (H2Ntyrosine, glycine, glycine, phenylalanine, leucine-CO2H, otherwise referred to herein as YGGFL) was attached via its carboxy end to the exposed amino groups on the surface of the slide. The peptide was added in DMF solution with the BOP/HOBT/DIEA coupling rea- 50 gents and recirculated through the flow cell for 2 hours at room temperature.

A first antibody, known as the Herz antibody, was applied to the surface of the slide for 45 minutes at 2 μ g/ml in a supercocktail (containing 1% BSA and 1% 55 ovalbumin also in this case). A second antibody, goat anti-mouse fluorescein conjugate, was then added at 2 μg/ml in the supercocktail buffer, and allowed to incubate for 2 hours. An image taken at 10 µm steps indicated that not only can deprotection be carried out in a 60 well defined pattern, but also that (1) the method provides for successful coupling of peptides to the surface of the substrate, (2) the surface of a bound peptide is available for binding with an antibody, and (3) that the detection apparatus capabilities are sufficient to detect 65 binding of a receptor.

I. Monomer-by-Monomer Formation of YGGFL and Subsequent Exposure to Labeled Antibody

Monomer-by-monomer synthesis of YGGFL and GGFL in alternate squares was performed on a slide in a checkerboard pattern and the resulting slide was exposed to the Herz antibody. This experiment and the results thereof are illustrated in FIGS. 14A, 14B, 15A,

In FIG. 14A, a slide is shown which is derivatized with the aminopropyl group, protected in this case with t-BOC (t-butoxycarbonyl). The slide was treated with aminocaproic acid, which was t-BOC protected at its amino group, was then coupled onto the aminopropyl groups. The aminocaproic acid serves as a spacer between the aminopropyl group and the peptide to be synthesized. The amino end of the spacer was deprotected and coupled to NVOC-leucine. The entire slide was then illuminated with 12 mW of 325 nm broadband illumination. The slide was then coupled with NVOC-phenylalanine and washed. The entire slide was again illuminated, then coupled to NVOC-glycine and washed. The slide was again illuminated and coupled to NVOC-glycine to form the sequence shown in the last portion of FIG. 14A.

As shown in FIG. 14B, alternating regions of the slide were then illuminated using a projection print using a 500×500 µm checkerboard mask; thus, the amino group of glycine was exposed only in the lighted areas. When the next coupling chemistry step was carried out, NVOC-tyrosine was added, and it coupled only at those spots which had received illumination. The entire slide was then illuminated to remove all the NVOC groups, leaving a checkerboard of YGGFL in the lighted areas and in the other areas, GGFL. The Herz antibody (which recognizes the YGGFL, but not GGFL) was then added, followed by goat anti-mouse fluorescein conjugate.

The resulting fluorescence scan is shown in FIG. 15A, and the color coding for the fluorescence intensity is again given on the right. Dark areas contain the tetrapeptide GGFL, which is not recognized by the Herz antibody (and thus there is no binding of the goat antimouse antibody with fluorescein conjugate), and in the red areas YGGFL is present. The YGGFL pentapeptide is recognized by the Herz antibody and, therefore, there is antibody in the lighted regions for the fluorescein-conjugated goat anti-mouse to recognize.

Similar patterns are shown for a 50 µm mask used in direct contact ("proximity print") with the substrate in FIG. 15B. Note that the pattern is more distinct and the corners of the checkerboard pattern are touching when the mask is placed in direct contact with the substrate (which reflects the increase in resolution using this technique).

J. Monomer-by-Monomer Synthesis of YGGFL and PGGFL

A synthesis using a 50 µm checkerboard mask similar to that shown in FIG. 15B was conducted. However, P was added to the GGFL sites on the substrate through an additional coupling step. P was added by exposing protected GGFL to light and subsequent exposure to P in the manner set forth above. Therefore, half of the regions on the substrate contained YGGFL and the remaining half contained PGGFL.

The fluorescence plot for this experiment is provided in FIG. 16. As shown, the regions are again readily discernable. This experiment demonstrates that antibodies are able to recognize a specific sequence and that the recognition is not length-dependent.

K. Monomer-by-Monomer Synthesis of YGGFL and YPGGFL

In order to further demonstrate the operability of the invention, a 50 µm checkerboard pattern of alternating YGGFL and YPGGFL was synthesized on a substrate 5 using techniques like those set forth above. The resulting fluorescence plot is provided in FIG. 17. Again, it is seen that the antibody is clearly able to recognize the YGGFL sequence and does not bind significantly at the YPGGFL regions.

L. Synthesis of an Array of Sixteen Different Amino Acid Sequences and Estimation of Relative Binding Affinity to Herz Antibody

Using techniques similar to those set forth above, an array of 16 different amino acid sequences (replicated 15 four times) was synthesized on each of two glass substrates. The sequences were synthesized by attaching the sequence NVOC-GFL across the entire surface of the slides. Using a series of masks, two layers of amino 20 acids were then selectively applied to the substrate. Each region had dimensions of 0.25 cm × 0.0625 cm. The first slide contained amino acid sequences containing only L amino acids while the second slide contained selected D amino acids. FIGS. 18A and 18B illustrate a 25 map of the various regions on the first and second slides, respectively. The patterns shown in FIGS. 18A and 18B were duplicated four times on each slide. The slides were then exposed to the Herz antibody and fluorescein-labeled goat anti-mouse.

FIG. 19 is a fluorescence plot of the first slide, which contained only L amino acids. Red indicates strong binding (149,000 counts or more) while black indicates little or no binding of the Herz antibody (20,000 counts or less). The bottom right-hand portion of the slide 35 appears "cut off" because the slide was broken during processing. The sequence YGGFL is clearly most strongly recognized. The sequences YAGFL and YSGFL also exhibit strong recognition of the antibody. By contrast, most of the remaining sequences show little 40 or no binding. The four duplicate portions of the slide are extremely consistent in the amount of binding shown therein.

FIG. 20 is a fluorescence plot of the second slide. Again, strongest binding is exhibited by the YGGFL 45 sequence. Significant binding is also detected to YaGFL, YsGFL, and YpGFL (where L-amino acids are identified by one upper case letter abbreviation, and abbreviation). The remaining sequences show less binding with the antibody. Note the low binding efficiency of the sequence yGGFL.

Table 6 lists the various sequences tested in order of relative fluorescence, which provides information regarding relative binding affinity.

TABLE 6

Apparent Bir	iding to Herz Ab	
 L-22 Set	D-a.a. Set	
YGGFL	YGGFL	
YAGFL	YaGFL	
YSGFL	YsGFL	
LGGFL	Y_pGFL	
FGGFL	fGGFL	
YPGFL	yGGFL	
LAGFL	faGFL	,
FAGFL	wGGFL	
WGGFL ·	yaGFL	
	fpGFL	

TABLE 6-continued

Apparent Bi	nding to Herz Ab	
L-a.a. Set	D-a.a. Set	
	waGFL	

VIII. Illustrative Alternative Embodiment

According to an alternative embodiment of the invention, the methods provide for attaching to the surface a caged binding member which in its caged form has a relatively low affinity for other potentially binding species, such as receptors and specific binding substances.

According to this alternative embodiment, the invention provides methods for forming predefined regions on a surface of a solid support, wherein the predefined regions are capable of immobilizing receptors. The methods make use of caged binding members attached to the surface to enable selective activation of the predefined regions. The caged binding members are liberated to act as binding members ultimately capable of binding receptors upon selective activation of the predefined regions. The activated binding members are then used to immobilize specific molecules such as receptors on the predefined region of the surface. The above procedure is repeated at the same or different sites on the surface so as to provide a surface prepared with a plurality of regions on the surface containing, for example, the same or different receptors. When receptors immobilized in this way have a differential affinity for one or more ligands, screenings and assays for the ligands can be conducted in the regions of the surface containing the receptors.

The alternative embodiment may make use of novel caged binding members attached to the substrate. Caged (unactivated) members have a relatively low affinity for receptors of substances that specifically bind to uncaged binding members when compared with the corresponding affinities of activated binding members. Thus, the binding members are protected from reaction until a suitable source of energy is applied to the regions of the surface desired to be activated. Upon application of a suitable energy source, the caging groups labilize, thereby presenting the activated binding member. A typical energy source will be light.

Once the binding members on the surface are activated they may be attached to a receptor. The receptor chosen may be a monoclonal antibody, a nucleic acid D-amino acids are identified by one lower case letter 50 sequence, a drug receptor, etc. The receptor will usually, though not always, be prepared so as to permit attaching it, directly or indirectly, to a binding member. For example, a specific binding substance having a strong binding affinity for the binding member and a strong affinity for the receptor or a conjugate of the receptor may be used to act as a bridge between binding members and receptors if desired. The method uses a receptor prepared such that the receptor retains its activity toward a particular ligand.

Preferably, the caged binding member attached to the solid substrate will be a photoactivatable biotin complex, i.e., a biotin molecule that has been chemically modified with photoactivatable protecting groups so that it has a significantly reduced binding affinity for 65 avidin or avidin analogs than does natural biotin. In a preferred embodiment, the protecting groups localized in a predefined region of the surface will be removed upon application of a suitable source of radiation to give binding members, that are biotin or a functionally analogous compound having substantially the same binding affinity for avidin or avidin analogs as does biotin.

In another preferred embodiment, avidin or an avidin analog is incubated with activated binding members on 5 the surface until the avidin binds strongly to the binding members. The avidin so immobilized on predefined regions of the surface can then be incubated with a desired receptor or conjugate of a desired receptor. The otinylated antibody, when avidin is immobilized on the predefined regions of the surface. Alternatively, a preferred embodiment will present an avidin/biotinylated receptor complex, which has been previously prepared, to activated binding members on the surface. IX. Conclusion

The present inventions provide greatly improved methods and apparatus for synthesis of polymers on substrates. It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those of skill in the art upon reviewing the above description. By way of example, the invention has been described primarily with reference to the use of photoremovable protective groups, but it will be readily recognized by those of skill in the art that sources of radiation other than light could also be used. For example, in some embodiments it may be desirable to use protective groups which are sensitive to electron beam irradiation, x-ray irradiation, in 30 combination with electron beam lithograph, or x-ray lithography techniques. Alternatively, the group could be removed by exposure to an electric current. The scope of the invention should, therefore, be determined not with reference to the above description, but should 35 instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A substrate with a surface comprising 10³ or more 40 groups of oligonucleotides with different, known sequences covalently attached to the surface in discrete known regions, said 103 or more groups of oligonucleotides occupying a total area of less than 1 cm2 on said substrate, said groups of oligonucleotides having differ- 45 ent nucleotide sequences.

2. The substrate as recited in claim 1 wherein said substrate comprises 104 or more different groups of oligonucleotide with known sequences covalently coupled to discrete known regions of said substrate. 50

3. The substrate as recited in claim 1 wherein said substrate comprises 105 or more different groups of oligonucleotides with known sequences in discrete known regions.

4. The substrate as recited in claim 1 wherein said substrate comprises 106 or more different groups of oligonucleotides with known sequences in discrete

known regions.

5. The substrate as recited in claim 1 wherein said receptor will preferably be biotinylated, e.g., a bi. 10 groups of oligonucleotides are at least 50% pure within said discrete known regions.

6. The substrate as recited in claim 1 wherein the groups of oligonucleotides are attached to the surface

by a linker.

- 7. An array of more than 1,000 different groups of oligonucleotide molecules with known sequences covalently coupled to a surface of a substrate, said groups of oligonucleotide molecules each in discrete known regions and differing from other groups of oligonucleo-20 tide molecules in monomer sequence, each of said discrete known regions being an area of less than about 0.01 cm² and each discrete known region comprising oligonucleotides of known sequence, said different groups occupying a total area of less than 1 cm2.
 - 8. The array as recited in claim 7 wherein said area is less than 10,000 microns².
 - 9. The array as recited in claim 7 made by the process of:

exposing a first region of said substrate to light to remove photoremovable groups from nucleic acids in said first region, and not exposing a second region of said surface to light;

covalently coupling a first nucleotide to said nucleic acids on said part of said substrate exposed to light, said first nucleotide covalently coupled to said

photoremovable group;

exposing a part of said first region of said substrate to light, and not exposing another part of said first region of said substrate to light to remove said photoremovable groups;

covalently coupling a second nucleotide to said part

of said first region exposed to light; and

repeating said steps of exposing said substrate to light and covalently coupling nucleotides until said more than 500 different groups of nucleotides are formed on said surface.

10. The array as recited in claim 7 comprising more than 10,000 groups of oligonucleotides of known sequences.

55

This Page Blank (uspto)

US005556752A

United States Patent [19]

Lockhart et al.

[11] Patent Number:

5,556,752

Date of Patent:

Sep. 17, 1996

[54] SURFACE-BOUND, UNEMOLECULAR, DOUBLE-STRANDED DNA

[75] Inventors: David J. Lockhart, Santa Clara, Calif.; Dirk Vetter, Freiburg, Germany; Martin Diggelmann, Niederdorf,

Switzerland

[73] Assignee: Affymetrix, Inc., Santa Clara, Calif.

[21] Appl. No.: 327,687

[22] Filed: Oct. 24, 1994

[51] Int. Cl. ... ____ C12Q 1/68; C07H 21/00 435/6; 536/23.1 [52] U.S. CL

[56]

References Cited

U.S. PATENT DOCUMENTS

4,376,110	3/1983	David et al.	435/5
4,562,157	12/1985	Lowe et al 4	35/287.2
4,728,502	3/1988	Hamili	422/116
5,143,854	9/1992	Pirrung et al.	436/518
5,288,514	2/1994	Eliman	165/155

FOREIGN PATENT DOCUMENTS

WO89/10977 11/1989 WIPO WO89/11548 11/1989 WIPO . WO90/00626 1/1990 WIPO WO90/15070 12/1990 WIPO WO92/00091 1/1992 WIPO

OTHER PUBLICATIONS

Duncan, C. H. etal (1988) Analytical Biochemistry 169: 104-108. "Affinity Chromatography of a Sequence-specific DNA binding protein using Teflon linked . . . '

Ma, M. Y.-X. et al (1993) Biochemistry 32: 1751-1758. "Design & Synthesis of RNA Miniduplicates via a synthetic linker approach."Markiewicz, W T et al (1989) Nucleic Acids Research 17: 7149-7157. "Universal solid supports for the synthesis of oligonucleotides with 3'- PO4s".

10922-10926 "Complex Synthetic Chemical Libraries Indexed with molecular Tags." Geysen, et al., J. Immun. Meth. 102:259-274 (1987). Frank and Doring, Tetrahedron, 44:6031-6040 (1988). Fodor et al., Science, 251:767-777 (1991). Lam et al., Nature, 354:82-84 (1991). Houghten et al., Nature, 354:84-86 (1991). Galas et al., Nucleic Acid Res. 5(9):3157-3170 (1978). Murphy et al., Science 262:1025-1029 (1993). Lysov et al., Dokl. Akad. Nauk SSSR, 303:1508-1511 (1988) (See footnote provided, P. 436). Bains et al., J. Theor. Biol., 135:303-307 (1988). Drmanac et al., Genomics, 4:114-128 (1989). Strezoska et al., Proc. Natl. Acad. Sci. USA, 88:10089-10093 (1991).

Ohlmeyer, M H J et al (1993) Proc. Natl. Acad. Sci. USA 90:

Drmanac et al., Science, 260:1649-1652 (1993).

Needels, et al., Proc. Natl. Acad. Sci., 90:10700-10704 (1993).

Scaria, P. V., et al. J. of Biol. Chem., 266(9): 5417-5423 (1993).

(List continued on next page.)

Primary Examiner-Mindy Fleisher Assistant Examiner-Scott David Priebe Anomey, Agent, or Firm-Townsend and Townsend and Crew LLP

ABSTRACT [57]

Libraries of unimolecular, double-stranded oligonucleotides on a solid support. These libraries are useful in pharmaceutical discovery for the screening of numerous biological samples for specific interactions between the doublestranded oligonucleotides, and peptides, proteins, drugs and RNA. In a related aspect, the present invention provides libraries of conformationally restricted probes on a solid support. The probes are restricted in their movement and flexibility using double-stranded oligonucleotides as scaffolding. The probes are also useful in various screening procedures associated with drug discovery and diagnosis. The present invention further provides methods for the preparation and screening of the above libraries.

6 Claims, 1 Drawing Sheet

OTHER PUBLICATIONS

Durand, M., et al., Nucleic Acid Res., 18(21): 6353-5469 (1990).

Famulok, M., et al., Angew. Chem. Int. Ed. Engl., 31:979-988 (1992).

Chattopadhyaya, R., et al., Nature, 334:175-179 (1988).

Bock, L. C., et al., Nature, 355:564-566 (1992).

Parham, Peter, Nature, 360:300-301 (1992).

Tuerk, C., et al., Science, 249:505-510 (1990).

Mergny, J.-L., et al., Nucleic Acids Res., 19(7): 1521-1526 (1991).

Brossalina, E., et al., J. Am. Chem. Soc., 115:796-797 (1993). Härd, T., et al., Biochemistry, 29:959-965 (1990).

Hard, T., et al., Biochemistry, 29:939-903 (1990).

Cook, J., et al., Analytical Biochemistry, 190:331-339 (1990).

Cuniberti, C. et al., Biophysical Chemistry, 38:11-22 (1990). Berman, H. M., et al., Ann. Rev. Biophys. Bioeng., 10:87-114 (1981).

White et al. "Principles of Biochemistry" New York: McGraw-Hill, 1978 pp. 124-128.

SURFACE-BOUND, UNIMOLECULAR, DOUBLE-STRANDED DNA

GOVERNMENT RIGHTS

Research leading to the invention was funded in part by NIH Grant No. R01HG00813-03 and the government may have certain fights to the invention.

BACKGROUND OF THE INVENTION

The present invention relates to the field of polymer synthesis and the use of polymer libraries for biological screening. More specifically, in one embodiment the invention provides arrays of diverse double-stranded oligonucle-otide sequences. In another embodiment, the invention provides arrays of conformationally restricted probes, wherein the probes are held in position using double-stranded DNA sequences as scaffolding. Libraries of diverse unimolecular double-stranded nucleic acid sequences and probes may be used, for example, in screening studies for determination of binding affinity exhibited by binding proteins, drugs, or DNA

Methods of synthesizing desired single stranded DNA sequences are well known to those of skill in the art. In particular, methods of synthesizing oligonucleotides are found in, for example, Oligonucleotide Synthesiz: A Practical Approach, Gait, ed., IRL Press, Oxford (1984), incorporated herein by reference in its entirety for all purposes. Synthesizing unimolecular double-stranded DNA in solution has also been described. Sec. Durand, et al. Nucleic Acids Res. 18:6353-6359 (1990) and Thomson, et al. Nucleic Acids Res. 21:5600-5603 (1993), the disclosures of both being incorporated herein by reference.

Solid phase synthesis of biological polymers has been evolving since the early "Merrifield" solid phase peptide synthesis, described in Merrifield, J. Am. Chem. Soc. 85:2149–2154 (1963), incorporated herein by reference for all purposes. Solid-phase synthesis techniques have been provided for the synthesis of several peptide sequences on, for example, a number of "pins." See e.g., Geysen et al., J. Immun. Meth. 102:259–274 (1987), incorporated herein by reference for all purposes. Other solid-phase techniques involve, for example, synthesis of various peptide sequences on different cellulose disks supported in a column. See Frank and Doring, Tetrahedron 44:6031–6040 (1988), incorporated herein by reference for all purposes. Still other solid-phase techniques are described in U.S. Pat. No. 4,728,502 issued to Hamiil and WO 90/00626 (Beattie, inventor).

Each of the above techniques produces only a relatively low density array of polymers. For example, the technique described in Geysen et al. is limited to producing 96 different polymers on pins spaced in the dimensions of a standard microtiter plate.

Improved methods of forming large arrays of oligonucleotides, peptides and other polymer sequences in a short
period of time have been devised. Of particular note, Pirung
et al., U.S. Pat. No. 5,143,854 (see also PCT Application No.
WO 90/15070) and Fodor et al., PCT Publication No. WO
92/10092, all incorporated herein by reference, disclose
methods of forming vast arrays of peptides, oligonucleotides
and other polymer sequences using, for example, lightdirected synthesis techniques. See also, Fodor et al., Science,
251:767-777 (1991), also incorporated herein by reference
for all purposes. These procedures are now referred to as
VLSIPS™ procedures.

2

In the above-referenced Fodor et al., PCT application, an elegant method is described for using a computer-controlled system to direct a VLSIPSTM procedure. Using this approach, one beterogenous array of polymers is converted, through simultaneous coupling at a number of reaction sites, into a different heterogenous array. See, U.S. Pat. No. 5,384,261 and U.S. application Ser. No. 07/980,523, the disclosures of which are incorporated herein for all purposes.

The development of VLSIPSTM technology as described in the above-noted U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092, is considered pioneering technology in the fields of combinatorial synthesis and screening of combinatorial libraries. More recently, patent application Ser. No. 08/082,937, filed Jun. 25, 1993 now abandoned, describes methods for making arrays of oligonucleotide probes that can be used to check or determine a partial or complete sequence of a target nucleic acid and to detect the presence of a nucleic acid containing a specific oligonucleotide sequence.

A number of biochemical processes of pharmaceutical interest involve the interaction of some species, e.g., a drug, a peptide or protein, or RNA, with double-stranded DNA. For example, protein/DNA binding interactions are involved with a number of transcription factors as well as tumor suppression associated with the p53 protein and the genes contributing to a number of cancer conditions.

SUMMARY OF THE INVENTION

High-density arrays of diverse unimolecular, doublestranded oligonucleotides, as well as arrays of conformationally restricted probes and methods for their use are provided by virtue of the present invention. In addition, methods and devices for detecting duplex formation of oligonucleotides on an array of diverse single-stranded oligonucleotides are also provided by this invention. Further, an adhesive based on the specific binding characteristics of two arrays of complementary oligonucleotides is provided in the present invention.

According to one aspect of the present invention, libraries of unimolecular, double-stranded oligonucleotides are provided. Each member of the library is comprised of a solid support, an optional spacer for attaching the double-stranded oligonucleotide to the support and for providing sufficient space between the double-stranded oligonucleotide and the solid support for subsequent binding studies and assays, an oligonucleotide attached to the spacer and further attached to a second complementary oligonucleotide by means of a flexible linker, such that the two oligonucleotide portions exist in a double-stranded configuration. More particularly, the members of the libraries of the present invention can be represented by the formula:

$$A-\Gamma_1-X_1-\Gamma_2-X_3$$

in which Y is a solid support, L^1 is a bond or a spacer, L^2 is a flexible linking group, and X^1 and X^2 are a pair of complementary oligonucleotides.

In a specific aspect of the invention, the library of different unimolecular, double-stranded oligonucleotides can be used for screening a sample for a species which binds to one or more members of the library.

In a related aspect of the invention, a library of different conformationally-restricted probes attached to a solid support is provided. The individual members each have the formula: -x"-z-x"

in which X^{11} and X^{12} are complementary oligonucleotides and Z is a probe having sufficient length such that X^{11} and X^{12} form a double-stranded oligonucleotide portion of the member and thereby restrict the conformations available to the probe. In a specific aspect of the invention, the library of different conformationally-restricted probes can be used for screening a sample for a species which binds to one or more probes in the library.

According to yet another aspect of the present invention, methods and devices for the bioelectronic detection of duplex formation are provided.

According to still another aspect of the invention, an adhesive is provided which comprises two surfaces of 15 complementary oligonucleotides.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1F illustrate the preparation of a member of a library of surface-bound, unimolecular double-stranded DNA as well as binding studies with receptors having specificity for either the double stranded DNA portion, a probe which is held in a conformationally restricted form by DNA scaffolding, or a bulge or loop region of RNA.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Abbreviations

The following abbreviations are used herein: phi, phenanthrenequinone diimine; phen', 5-amido-glutarie acid-1,10phenanthroline; dppz, dipyridophenazine. Glossary

The following terms are intended to have the following general meanings as they are used herein:

Chemical terms: As used herein, the term "alkyl" refers to a saturated hydrocarbon radical which may be straight-chain or branched-chain (for example, ethyl, isopropyl, t-amyl, or 2,5-dimethylhexyl). When "alkyl" or "alkylene" is used to refer to a linking group or a spacer, it is taken to be a group 40 having two available valences for covalent attachment, for --CH2CH2-, -CH2CH2CH2example. -CH2CH2CH(CH3)CH2- and -CH2(CH2CH2)CH2-Preferred alkyl groups as substituents are those containing 1 to 10 carbon atoms; with those containing 1 to 6 carbon 45 atoms being particularly preferred. Preferred alkyl or alkylene groups as linking groups are those containing 1 to 20 carbon atoms, with those containing 3 to 6 carbon atoms being particularly preferred. The term "polyethylene glycol" is used to refer to those molecules which have repeating 50 units of ethylene glycol, for example, hexaethylene glycol (HO-(CH2CH2O)3-CH2CH2OH). When the term "polyethylene glycol" is used to refer to linking groups and spacer groups, it would be understood by one of skill in the art that other polyethers or polyols could be used as well (i. c. 55 polypropylene glycol or mixtures of ethylene and propylene giycols).

The term "protecting group" as used herein, refers to any of the groups which are designed to block one reactive site in a molecule while a chemical reaction is carried out at 60 another reactive site. More particularly, the protecting groups used herein can be any of those groups described in Greene, et al., Protective Groups In Organic Chemistry, 2nd Ed., John Wiley & Sons, New York, N.Y., 1991, incorporated herein by reference. The proper selection of protecting groups for a panicular synthesis will be governed by the overall methods employed in the synthesis. For example, in

"light-directed" synthesis, discussed below, the protecting groups will be photolabile protecting groups such as NVOC, MeNPOC, and those disclosed in co-pending Application PCT/US93/10162 (filed Oct. 22, 1993), incorporated herein by reference. In other methods, protecting groups may be removed by chemical methods and include groups such as FMOC, DMT and others known to those of skill in the art.

Complementary or substantially complementary: Refers to the hybridization or base pairing between nucleotides or nucleic acids, such as, for instance, between the two strands of a double stranded DNA molecule or between an oligo-nucleotide primer and a primer binding site on a single stranded nucleic acid to be sequenced or amplified. Complementary nucleotides are, generally, A and T (or A and U), or C and G. Two single stranded RNA or DNA molecules are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared and with appropriate nucleotide insertions or deletions, pair with at least about 80% of the nucleotides of the other strand, usually at least about 90% to 95%, and more preferably from about 98 to 100%.

Alternatively, substantial complementary exists when an RNA or DNA strand will hybridize under selective hybridization conditions to its complement. Typically, selective hybridization will occur when there is at least about 65% complementary over a stretch of at least 14 to 25 nucleiotides, preferably at least about 75%, more preferably at least about 90% complementary. S. ee, M. Kanchisa Nucleic Acids Res. 12:203 (1984), incorporated herein by reference.

Stringent hybridization conditions will typically include salt concentrations of less than about 1M, more usually less than about 500 mM and preferably less than about 200 mM. Hybridization temperatures can be as low as 5° C., but are typically greater than 22° C., more typically greater than about 30° C. and preferably in excess of about 37° C. Longer fragments may require higher hybridization temperatures for specific hybridization. As other factors may affect the stringency, of hybridization, including base composition and length of the complementary strands, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone.

Epitope: The portion of an antigen molecule which is delineated by the area of interaction with the subclass of receptors known as antibodies.

Identifier tag: A means whereby one can identify which molecules have experienced a particular reaction in the synthesis of an oligomer. The identifier tag also records the step in the synthesis series in which the molecules experienced that particular monomer reaction. The identifier tag may be any recognizable feature which is, for example: microscopically distinguishable in shape, size, color, optical density, etc.; differently absorbing or emitting of light; chemically reactive; magnetically or electronically encoded; or in some other way distinctively marked with the required information. A preferred example of such an identifier tag is an oligonucleotide sequence.

Ligand/Probe: A ligand is a molecule that is recognized by a particular receptor. The agent bound by or reacting with a receptor is called a "ligand," a term which is definitionally meaningful only in terms of its counterpart receptor. The term "ligand" does not imply any particular molecular size or other structural or compositional feature other than that the substance in question is capable of binding or otherwise interacting with the receptor. Also, a ligand may serve either as the natural ligand to which the receptor binds, or as a functional analogue that may act as an agonist or antagonist.

1

Examples of ligands that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opiates, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, substrate analogs, transition state analogs, cofactors, drugs, proteins, and antibodies. The term "probe" refers to those molecules which are expected to act like ligands but for which binding information is typically unknown. For example, if a receptor is known to bind a ligand which is a peptide β-turn, a 10 "probe" or library of probes will be those molecules designed to mimic the peptide β-turn. In instances where the particular ligand associated with a given receptor is unknown, the term probe refers to those molecules designed as potential ligands for the receptor.

Monomer: Any member of the set of molecules which can be joined together to form an oligomer or polymer. The set of monomers useful in the present invention includes, but is not restricted to, for the example of oligonucleotide synthesis, the set of nucleotides consisting of adenine, thymine, 20 cytosine, guanine, and uridine (A, T, C, G, and U, respectively) and synthetic analogs thereof. As used herein, monomers refers to any member of a basis set for synthesis of an oligomer. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer.

Oligomer or Polymer: The oligomer or polymer sequences of the present invention are formed from the chemical or enzymatic addition of monomer subunits. Such oligomers include, for example, both linear, cyclic, and branched polymers of nucleic acids, polysaccharides, phos- 30 pholipids, and peptides having either α-; β-, or ω-amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyac- 35 ctates, or other polymers which will be readily apparent to one skilled in the art upon review of this disclosure. As used herein, the term oligomer or polymer is meant to include such molecules as B-turn mimetics, prostaglandins and benzodiazepines which can also be synthesized in a stepwise 40 fashion on a solid support.

Peptide: A peptide is an oligomer in which the monomers are amino acids and which are joined together through amide bonds and alternatively referred to as a polypeptide. In the context of this specification it should be appreciated 45 that when α-amino acids are used, they may be the L-optical isomer or the D-optical isomer. Other amino acids which are useful in the present invention include unnatural amino acids such a β-alanine, phenylglycine, homoarginine and the like. Peptides are more than two amino acid monomers long, and often more than 20 amino acid monomers long. Standard abbreviations for amino acids are used (e.g., P for proline). These abbreviations are included in Stryer, Biochemistry, Third Ed. (1988), which is incorporated herein by reference for all purposes.

Oligonucleotides: An oligonucleotide is a single-stranded DNA or RNA molecule, typically prepared by synthetic means. Alternatively, naturally occurring oligonucleotides, or fragments thereof, may be isolated from their natural sources or purchased from commercial sources. Those olifonucleotides employed in the present invention will be 4 to 100 nucleotides in length, preferably from 6 to 30 nucleotides, although oligonucleotides of different length may be appropriate. Suitable oligonucleotides may be prepared by the phosphoramidite method described by Beaucage and 65 Carruthers, Tetrahedron Lett., 22:1859-1862 (1981), or by the triester method according to Matteucci, et al., J. Am

Chem. Soc., 103:3185 (1981), both incorporated herein by reference, or by other chemical methods using either a commercial automated oligonucleotide synthesizer or VLSIPSTM technology (discussed in detail below). When oligonucleotides are referred to as "double-stranded," it is understood by those of skill in the art that a pair of oligonucleotides exist in a hydrogen-bonded, helical array typically associated with, for example, DNA. In addition to the 100% complementary form of double-stranded oligonucleotides, the term "double-stranded" as used herein is also meant to refer to those forms which include such structural features as bulges and loops, described more fully in such biochemistry texts as Stryet, Biochemistry, Third Ed., (1988), previously incorporated herein by reference for all purposes.

Receptor: A molecule that has an affinity for a given ligand or probe. Receptors may be naturally-occurring or manmade molecules. Also, they can be employed in their unaltered natural or isolated state or as aggregates with other species. Receptors may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of receptors which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs. polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Receptors are sometimes referred to in the art as anti-ligands. As the term receptors is used herein, no difference in meaning is intended. A "ligand-receptor pair" is formed when two molecules have combined through molecular recognition to form a complex. Other examples of receptors which can be investigated by this invention include but are not restricted to:

- a) Microorganism receptors: Determination of ligands or probes that bind to receptors, such as specific transport proteins or enzymes essential to survival of microorganisms, is useful in a new class of antibiotics. Of particular value would be antibiotics against oppormnistic fungi, protozoa, and those bacteria resistant to the antibiotics in current use.
- b) Enzymes: For instance, the binding site of enzymes such as the enzymes responsible for cleaving neurotransmitters. Determination of ligands or probes that bind to certain receptors, and thus modulate the action of the enzymes that cleave the different neurotransmitters, is useful in the development of drugs that can be used in the treatment of disorders of neurotransmission.
- c) Antibodies: For instance, the invention may be useful in investigating the ligand-binding site on the antibody molecule which combines with the epitope of an antigen of interest. Determining a sequence that mimics an antigenic epitope may lead to the development of vaccines of which the immunogen is based on one or more of such sequences, or lead to the development of related diagnostic agents or compounds useful in therapeutic treatments such as for autoimmune diseases (e.g., by blocking the binding of the "self" antibodies).
- d) Nucleic Acids: The invention may be useful in investigating sequences of nucleic acids acting as binding sites for cellular proteins ("trans-acting factors"). Such sequences may include, e.g., transcription factors, suppressors, enhancers or promoter sequences.
- e) Catalytic Polypeptides: Polymers, preferably polypeptides, which are capable of promoting a chemical

reaction involving the conversion of one or more reactants to one or more products. Such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the binding site, which functionality is capable of chemically modifying the bound reactant. Catalytic polypeptides are described in, Lerner, R.A. et al., Science 252: 659 (1991), which is incorporated herein by reference.

- f) Hormone receptors: For instance, the receptors for insulin and growth hormone. Determination of the ligands which bind with high affinity to a receptor is useful in the development of, for example, an oral replacement of the daily injections which diabetics must take to relieve the symptoms of diabetes, and in the other case, a replacement for the scarce human growth hormone that can only be obtained from cadavers or by recombinant DNA technology. Other examples are the vasoconstrictive hormone receptors; determination of those ligands that bind to a receptor may lead to the development of drugs to control blood pressure.
- g) Opiate receptors: Determination of ligands that bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.

Substrate or Solid Support: A material having a rigid or semi-rigid surface. Such materials will preferably take the form of plates or slides, small beads, pellets, disks or other convenient forms, although other forms may be used. In some embodiments, at least one surface of the substrate will be substantially flat. In other embodiments, a roughly spherical shape is preferred.

Synthetic: Produced by in vitro chemical or enzymatic synthesis. The synthetic libraries of the present invention may be contrasted with those in viral or plasmid vectors, for instance, which may be propagated in bacterial, yeast, or other living hosts.

DESCRIPTION OF THE INVENTION

The broad concept of the present invention is illustrated in FIGS. 1A to 1F. FIGS. 1A, 1B and 1C illustrate the preparation of surface-bound unimolecular double stranded DNA, while FIGS. 1D, 1E, and 1F illustrate uses for the libraries of the present invention.

FIG. 1A shows a solid support 1 having an attached spacer 2, which is optional. Attached to the distal end of the spacer is a first oligomer 3, which can be attached as a single unit 50 or synthesized on the support or spacer in a monomer by monomer approach. FIG. 1B shows a subsequent stage in the preparation of one member of a library according to the present invention. In this stage, a flexible linker 4 is attached to the distal end of the oligomer 3. In other embodiments, the 55 flexible linker will be a probe. FIG. 1C shows the completed surface-bound unimolecular double stranded DNA which is one member of a library, wherein a second oligomer 5 is now attached to the distal end of the flexible linker (or probe). As shown in FIG. 1C, the length of the flexible linker (or probe) 60 4 is sufficient such that the first and second oligomers (which are complementary) exist in a double-stranded conformation. It will be appreciated by one of skill in the art, that the libraries of the present invention will contain multiple, individually synthesized members which can be screened for 65 various types of activity. Three such binding events are illustrated in FIGS. 1 D, 1E and 1F.

In FIG. 1D, a receptor 6, which can be a protein, RNA molecule or other molecule which is known to bind to DNA, is introduced to the library. Determining which member of a library binds to the receptor provides information which is useful for diagnosing diseases, sequencing DNA or RNA, identifying genetic characteristics, or in drug discovery.

In FIG. 1E, the linker 4 is a probe for which binding information is sought. The probe is held in a conformationally restricted manner by the flanking oligomers 3 and 5, which are present in a double-stranded conformation. As a result, a library of conformationally restricted probes can be screened for binding activity with a receptor 7 which has specificity for the probe.

The present invention also contemplates the preparation of libraries of unimolecular, double-stranded oligonucleotides having bulges or loops in one of the strands as depicted in FIG. 1F. In FIG. 1F, one oligonucleotide 5 is shown as having a bulge 8. Specific RNA bulges are often recognized by proteins (e.g., TAR RNA is recognized by the TAT protein of HIV). Accordingly, libraries of RNA bulges or loops are useful in a number of diagnostic applications. One of skill in the art will appreciate that the bulge or loop can be present in either oligonucleotide portion 3 or 5. Libraries of Unimolecular, Double-Stranded Oligonucleotides

In one aspect, the present invention provides libraries of unimolecular double-stranded oligonucleotides, each member of the library having the formula:

in which Y represents a solid support, X^1 and X^2 represent a pair of complementary oligonucleotides, L^1 represents a bond or a spacer, and L^2 represents a linking group having sufficient length such that X^1 and X^2 form a double-stranded oligonucleotide.

The solid support may be biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc. The solid support is preferably flat but may take on alternative surface configurations. For example, the solid support may contain raised or depressed regions on which synthesis takes place. In some embodiments, the solid support will be chosen to provide appropriate light-absorbing characteristics. For example, the support may be a polymenzed Langmuir Blodgett film, functionalized glass, Si, Gc, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidendifluoride, polystyrene, polycarbonate, or combinations thereof. Other suitable solid support materials will be readily apparent to those of skill in the art. Preferably, the surface of the solid support will contain reactive groups, which could be carboxyl, amino, hydroxyl, thiol, or the like. More preferably, the surface will be optically transparent and will have surface Si-OH functionalities, such as are found on silica surfaces.

Attached to the solid support is an optional spacer, L¹. The spacer molecules are preferably of sufficient length to permit the double-stranded oligonucleotides in the completed member of the library to interact freely with molecules exposed to the library. The spacer molecules, when present, are typically6-50 atoms long to provide sufficient exposure for the attached double-stranded DNA molecule. The spacer, L¹, is comprised of a surface attaching portion and a longer chain portion. The surface attaching portion is that part of L¹ which is directly attached to the solid support. This portion

can be attached to the solid support via carbon-carbon bonds using, for example, supports having (poly)trifluorochloro-ethylene surfaces, or preferably, by siloxane bonds (using, for example, glass or silicon oxide as the solid support). Siloxane bonds with the surface of the support are formed in 5 one embodiment via reactions of surface attaching portions bearing trichlorosilyl or trialkoxysilyl groups. The surface attaching groups will also have a site for attachment of the longer chain portion. For example, groups which are suitable for attachment to a longer chain portion would include amines, hydroxyl, thiol, and carboxyl. Preferred surface attaching portions include aminoalkylsilanes and hydroxy-alkylsilanes. In particularly preferred embodiments, the surface attaching portion of L¹ is either bis(2-hydroxyethyl)-aminopropyltriethoxysilane,

2-hydroxyethylaminopropyltriethoxysilane, aminopropyltriethoxysilane or hydroxypropyltriethoxysilane.

The longer chain portion can be any of a variety of molecules which are inert to the subsequent conditions for polymer synthesis. These longer chain portions will typi- 20 cally be aryl acceptene, ethylene glycol oligomers containing 2-14 monomer units, diamines, diacids, amino acids, peptides, or combinations thereof. In some embodiments, the longer chain portion is a polynucleotide. The longer chain portion which is to be used as part of L1 can be selected 25 based upon its hydrophilic/hydrophobic properties to improve presentation of the double-stranded oligonucleotides to certain receptors, proteins or drugs. The longer chain portion of L1 can be constructed of polyethyleneglycols, polynucleotides, alkylenc, polyalcohol, polyester, 30 polyamine, polyphosphodiester and combinations thereof. Additionally, for use in synthesis of the libraries of the invention, L' will typically have a protecting group, attached to a functional group (i.e., hydroxyl, amino or carboxylic acid) on the distal or terminal end of the chain portion 35 (opposite the solid support). After deprotection and coupling, the distal end is covalently bound to an oligomer.

Attached to the distal end of L¹ is an oligonucleotide, X¹.

Attached to the distal end of L¹ is an oligonucleotide, X¹, which is a single-stranded DNA or RNA molecule. The oligonucleotides which are part of the present invention are 40 typically of from about 4 to about 100 nucleotides in length. Preferably, X¹ is an oligonucleotide which is about 6 to about 30 nucleotides in length. The oligonucleotide is typically linked to L¹ via the 3'-hydroxyl group of the oligonucleotide and a functional group on L¹ which results in the 45 formation of an ether, ester, carbamate or phosphate ester linkage.

Attached to the distal end of X' is a linking group, L'. which is flexible and of sufficient length that X tively hybridize with X2. The length of the linker will 50 typically be a length which is at least the length spanned by two nucleotide monomers, and preferably at least four nucleotide monomers, while not be so long as to interfere with either the pairing of X1 and X2 or any subsequent assays. The linking group itself will typically be an alkylene 55 group (of from about 6 to about 24 carbons in length), a polyethyleneglycol group (of from about 2 to about 24 ethyleneglycol monomers in a linear configuration), a polyalcohol group, a polyamine group (e.g., spermine, spermidine and polymeric derivatives thereof), a polyester group 60 (e.g., poly(ethyl acrylate) having of from 3 to 15 ethyl acrylate monomers in a linear configuration), a polyphosphodiester group, or a polynucleotide (having from about 2 to about 12 nucleic acids). Preferably, the linking group will be a polyethyleneglycol group which is at least a tetraeth- 65 yieneglycol, and more preferably, from about 1 to 4 hexaethyleneglycols linked in a linear array. For use in synthesis

of the compounds of the invention, the linking group will be provided with functional groups which can be suitably protected or activated. The linking group will be covalently attached to each of the complementary oligonucleotides, X and X2, by means of an ether, ester, carbamate, phosphate ester or armine linkage. The flexible linking group L2 will be attached to the 5'-hydroxyl of the terminal monomer of X' and to the 3'-hydroxyl of the initial monomer of X2. Preferred linkages are phosphate ester linkages which can be formed in the same manner as the oligonucleotide linkages which are present in X¹ and X². For example, hexaethyleneglycol can be protected on one terminus with a photolabile protecting group (i.e., NVOC or MeNPOC) and activated on the other terminus with 2-cyanoethyl-N.Ndisopropylamino-chlorophusphite to form a phosphoramidite. This linking group can then be used for construction of the libraries in the same manner as the photolabile-protected, phosphoramidite-activated nucleotides. Alternatively, ester linkages to X1 and X2 can be formed when the L2 has terminal carboxylic acid moieties (using the 5'-hydroxyl of X1 and the 3'-hydroxyl of X2). Other methods of forming ether, carbamate or amine linkages are known to those of skill in the art and particular reagents and references can be found in such texts as March, Advanced Organic Chemistry, 4th Ed., Wiley-Interscience, New York, N.Y, 1992, incorporated herein by reference.

The oligonucleotide, X², which is covalently attached to the distal end of the linking group is, like X¹, a single-stranded DNA or RNA molecule. The oligonucleotides which are part of the present invention are typically of from about 4 to about 100 nucleotides in length. Preferably, X² is an oligonucleotide which is about 6 to about 30 nucleotides in length and exhibits complementary to X¹ of from 90 to 100%. More preferably, X¹ and X² are 100% complementary. In one group of embodiments, either X¹ or X² will further comprise a bulge or loop portion and exhibit complementary of from 90 to 100% over the remainder of the oligonucleotide.

In a particularly preferred embodiment, the solid support is a silica support, the spacer is a polyethyleneglycol conjugated to an aminoalkylsilane, the linking group is a polyethyleneglycol group, and X¹ and X² are complementary oligonucleotides each comprising of from 6 to 30 nucleic acid monomers.

The library can have virtually any number of different members, and will be limited only by the number or variety of compounds desired to be screened in a given application and by the synthetic capabilities of the practitioner. In one group of embodiments, the library will have from 2 up to 100 members. In other groups of embodiments, the library will have between 100 and 10000 members, and between 10000 and 1000000 members, preferably on a solid support. In preferred embodiments, the library will have a density of more than 100 members at known locations per cm², preferably more than 1000 per cm², more preferably more than 1000 per cm².

Libraries of Conformationally Restricted Probes

In still another aspect, the present invention provides libraries of conformationally-restricted probes. Each of the members of the library comprises a solid support having an optional spacer which is attached to an oligomer of the formula:

in which X^{11} and X^{12} are complementary oligonucleotides and Z is a probe. The probe will have sufficient length such that X^{11} and X^{12} form a double-stranded DNA portion of

each member. X¹¹ and X¹² are as described above for X¹ and X² respectively, except that for the present aspect of the invention, each member of the probe library can have the same X¹¹ and the same X¹², and differ only in the probe portion. In one group of embodiments, X¹¹ and X¹² are either a poly-A oligonucleotide or a poly-T oligonucleotide.

As noted above, each member of the library will typically have a different probe portion. The probes, Z, can be any of a variety of structures for which receptor-probe binding information is sought for conformationally-restricted forms. 10 For example, the probe can be an agonist or antagonist for a cell membrane receptor, a toxin, venom, vital epitope, hormone, peptide, enzyme, collector, drug, protein or antibody. In one group of embodiments, the probes are different peptides, each having of from about 4 to about 12 amino 15 acids. Preferably the probes will be linked via polyphosphate diesters, although other linkages are also suitable. For example, the last monomer employed on the X11 chain can be a S-aminopropyl-functionalized phosphoramidite nucleotide (available from Glen Research, Sterling, Va., USA or 20 Genosys Biotechnologies, The Woodlands, Tex., USA) which will provide a synthesis initiation site for the carboxy to amino synthesis of the peptide probe. Once the peptide probe is formed, a 3'-succinylated nucleoside (from Cruachem, Sterling, Va., USA) will be added under peptide 25 coupling conditions. In yet another group of embodiments, the probes will be oligonucleotides of from 4 to about 30 nucleic acid monomers which will form a DNA or RNA hairpin structure. For use in synthesis, the probes can also have associated functional groups (i.e., hydroxyl, amino, 30 carboxylic acid, anhydride and derivatives thereof) for attaching two positions on the probe to each of the complementary oligonucleotides.

The surface of the solid support is preferably provided with a spacer molecule, although it will be understood that 35 the spacer molecules are not elements of this aspect of the invention. Where present, the spacer molecules will be as described above for L.

The libraries of conformationally restricted probes can also have virtually any number of members. As above, the 40 number of members will be limited only by design of the particular screening assay for which the library will be used, and by the synthetic capabilities of the practitioner. In one group of embodiments, the library will have from 2 to 100 members. In other groups of embodiments, the library will 45 have between 100 and 10000 members, and between 10000 and 1000000 members. Also as above, in preferred embodiments, the library will have a density of more than 100 members at known locations per cm², preferably more than 1000 per cm², more preferably more than 10,000 per cm². Preparation of the Libraries

The present invention further provides methods for the preparation of diverse unimolecular, double-stranded oligonucleotides on a solid support. In one group of embodiments, the surface of a solid support has a plurality of 55 preselected regions. An oligonucleotide of from 6 to 30 monomers is formed on each of the preselected regions. A linking group is then attached to the distal end of each of the oligonucleotides. Finally, a second oligonucleotide is formed on the distal end of each linking group such that the 60 second oligonucleotide is complementary to the oligonucleotide already present in the same preselected region. The linking group used will have sufficient length such that the complementary oligonucleotides form a unimolecular, double-stranded oligonucleotide. In another group of 65 embodiments, each chemically distinct member of the library will be synthesized on a separate solid support.

Libraries on a Single Substrate Light-Directed Methods

For those embodiments using a single solid support, the oligonucleotides of the present invention can be formed using a variety of techniques known to those skilled in the art of polymer synthesis on solid supports. For example, "light directed" methods (which are one technique in a family of methods known as VLSIPSIM methods) are described in U.S. Pat. No. 5,143,854, previously incorporated by reference. The light directed methods discussed in the '854 patent involve activating predefined regions of a substrate or solid support and then contacting the substrate with a preselected monomer solution. The predefined regions can be activated with a light source, typically shown through a mask (much in the manner of photolithography techniques used in integrated circuit fabrication). Other regions of the substrate remain inactive because they are blocked by the mask from illumination and remain chemically protected. Thus, a light pattern defines which regions of the substrate react with a given monomer. By repentedly activating different sets of predefined regions and contacting different monomer solutions with the substrate, a diverse array of polymers is produced on the substrate. Of course, other steps such as washing unreacted monomer solution from the substrate can be used as necessary. Other techniques include mechanical techniques such as those described in PCT No. 92/10183, U.S. Pat. No. 5,384,261 also incorporated herein by reference for all purposes. Still further techniques include bead based techniques such as those described in PCT US/93/04145, also incorporated herein by reference, and pin based methods such as those described in U.S. Pat. No. 5,288,514, also incorporated herein by reference.

The VLSIPSTM methods are preferred for making the compounds and libraries of the present invention. The surface of a solid support, optionally modified with spacers having photolabile protecting groups such as NVOC and McNPOC, is illuminated through a photolithographic mask, yielding reactive groups (typically hydroxyl groups) in the illuminated regions. A 3'-O-phosphoramidite activated deoxynucleoside (protected at the 5'-hydroxyl with a photolabile protecting group) is then presented to the surface and chemical coupling occurs at sites that were exposed to light. Following capping, and oxidation, the substrate is rinsed and the surface illuminated through a second mask, to expose additional hydroxyl groups for coupling. A second 5'-protected, 3'-O-phosphoramidite activated deoxynucleoside is presented to the surface. The selective photodeprotection and coupling cycles are repeated until the desired set of oligonucleotides is produced. Alternatively, an oligomer of from, for example, 4 to 30 nucleotides can be added to each of the preselected regions rather than synthesize each member in a monomer by monomer approach. At this point in the synthesis, either a flexible linking group or a probe can be attached in a similar manner. For example, a flexible linking group such as polyethylene glycol will typically having an activating group (i.c., a phosphoramidite) on one end and a photolabile protecting group attached to the other end. Suitably derivatized polyethylene glycol linking groups can be prepared by the methods described in Durand, et al. Nucleic Acids Res. 18:6353-6359 (1990). Briefly, a polyethylene glycol (i.e., hexacthylene glycol) can be monoprotected using MeNPOC-chloride. Following purification of the mono-protected glycol, the remaining hydroxy moiety can be activated with 2-cyanocthyl-N,N-diisopropylaminochlorophosphite. Once the flexible linking group has been attached to the first oligonucleotide (X1), deprotection and coupling cycles will proceed using 5'-protected, 3'-O-phosphoramidite activated deoxynucleosides or intact oligomers. Probes can be attached in a manner similar to that used for the flexible linking group. When the desired probe is itself an oligomer, it can be formed either in stepwise fashion on 5 the immobilized oligonucleotide or it can be separately synthesized and coupled to the immobilized oligomer in a single step. For example, preparation of conformationally restricted B-turn mimetics will typically involve synthesis of an oligonucleotide as described above, in which the last 10 nucleoside monomer will be derivatized with an aminoalkylfunctionalized phosphoramidite. See, U.S. Pat. No. 5,288, 514, previously incorporated by reference. The desired peptide probe is typically formed in the direction from carboxyl to amine terminus. Subsequent coupling of a 15 3'-succinylated nucleoside, for example, provides the first monomer in the construction of the complementary oligonucleotide strand (which is carried out by the above methods). Alternatively, a library of probes can be prepared by first derivatizing a solid support with multiple poly(A) or 20 poly(T) oligonucleotides which are suitably protected with photolabile protecting groups, deprotecting at known sites and constructing the probe at those sites, then coupling the complementary poly(T) or poly(A) oligonucleotide.

Flow Channel or Spotting Methods

Additional methods applicable to library synthesis on a single substrate are described in co-pending applications

Ser. No. 07/980,523, filed Nov. 20, 1992, and U.S. Pat. No.

5.384,261, incorporated herein by reference for all purposes. In the methods disclosed in these applications, reagents are

delivered to the substrate by either (1) flowing within a channel defined on predefined regions or (2) "spotting" on predefined regions. However, other approaches, as well as combinations of spotting and flowing, may be employed. act instance, certain activated regions of the substrate are mechanically separated from other regions when the monomer solutions are delivered to the various reaction sites.

A typical "flow channel" method applied to the compounds and libraries of the present invention can generally be described as follows. Diverse polymer sequences are 40 synthesized at selected regions of a substrate or solid support by forming flow channels on a surface of the substrate through which appropriate reagents flow or in which appropriate reagents are placed. For example, assume a monomer 'A" is to be bound to the substrate in a first group of selected 45 regions. If necessary, all or part of the surface of the substrate in all or a part of the selected regions is activated for binding by, for example, flowing appropriate reagents through all or some of the channels, or by washing the entire substrate with appropriate reagents. After placement of a 50 channel block on the surface of the substrate, a reagent having the monomer A flows through or is placed in all or some of the channel(s). The channels provide fluid contact to the first selected regions, thereby binding the monomer A on the substrate directly or indirectly (via a spacer) in the 55 first selected regions.

Thereafter, a monomer B is coupled to second selected regions, some of which may be included among the first selected regions. The second selected regions will be in fluid contact with a second flow channel(s) through translation, 60 rotation, or replacement of the channel block on the surface of the substrate; through opening or closing a selected valve; or through deposition of a layer of chemical or photoresist. If necessary, a step is performed for activating at least the second regions. Thereafter, the monomer B is Bowed 63 through or placed in the second flow channel(s), binding monomer B at the second selected locations. In this particu-

lar example, the resulting sequences bound to the substrate at this stage of processing will be, for example, A, B, and AB. The process is repeated to form a vast array of sequences of desired length at known locations on the substrate.

After the substrate is activated, monomer A can be flowed through some of the channels, monomer B can be flowed through other channels, a monomer C can be flowed through still other channels, etc. In this manner, many or all of the reaction regions are reacted with a monomer before the channel block must be moved or the substrate must be washed and/or reactivated. By making use of many or all of the available reaction regions simultaneously, the number of washing and activation steps can be minimized.

One of skill in the art will recognize that there are alternative methods of forming channels or otherwise protecting a portion of the surface of the substrate. For example, according to some embodiments, a protective coating such as a hydrophilic or hydrophobic coating (depending upon the nature of the solvent) is utilized over portions of the substrate to be protected, sometimes in combination with materials that facilitate wetting by the reactant solution in other regions. In this manner, the flowing solutions are further prevented from passing outside of their designated flow paths.

The "spotting" methods of preparing compounds and libraries of the present invention can be implemented in much the same manner as the flow channel methods. For example, a monomer A can be delivered to and coupled with a first group of reaction regions which have been appropriately activated. Thereafter, a monomer B can be delivered to and reacted with a second group of activated reaction regions. Unlike the flow channel embodiments described above, reactants are delivered by directly depositing (rather than flowing) relatively small quantities of them in selected regions. In some steps, of course, the entire substrate surface can be sprayed or otherwise coated with a solution. In preferred embodiments, a dispenser moves from region to region, depositing only as much monomer as necessary at each stop. Typical dispensers include a micropipette to deliver the monomer solution to the substrate and a robotic system to control the position of the micropipette with respect to the substrate, or an ink-jet printer. In other embodiments, the dispenser includes a series of tubes, a manifold, an array of pipettes, or the like so that various reagents can be delivered to the reaction regions simultancously.

Pin-Based Methods

Another method which is useful for the preparation of compounds and libraries of the present invention involves "pin based synthesis." This method is described in detail in U.S. Pat. No. 5,288,514, previously incorporated herein by reference. The method utilizes a substrate having a plurality of pins or other extensions. The pins are each inserted simultaneously into individual reagent containers in a tray. In a common embodiment, an array of 96 pins/containers is utilized.

Each tray is filled with a particular reagent for coupling in a particular chemical reaction on an individual pin. Accordingly, the trays will often contain different reagents. Since the chemistry disclosed herein has been established such that a relatively similar set of reaction conditions may be utilized to perform each of the reactions, it becomes possible to conduct multiple chemical coupling steps simultaneously. In the first step of the process the invention provides for the use of substrate(s) on which the chemical coupling steps are conducted. The substrate is optionally provided with a

spacer having active sites. In the particular case of oligonucleotides, for example, the spacer may be selected from a wide variety of molecules which can be used in organic environments associated with synthesis as well as aqueous environments associated with binding studies. Examples of 5 suitable spacers are polyethyleneglycols, dicarboxylic acids. polyamines and alkylenes, substituted with, for example, methoxy and ethoxy groups. Additionally, the spacers will have an active site on the distal end. The active sites are optionally protected initially by protecting groups. Among a 10 wide variety of protecting groups which are useful are FMOC, BOC, t-butyl esters, t-butyl ethers, and the like. Various exemplary protecting groups are described in, for example, Atherton et al., Solid Phase Peptide Synthesis, IRL Press (1989), incorporated herein by reference. In some 15 embodiments, the spacer may provide for a cleavable function by way of, for example, exposure to acid or base. Libraries on Multiple Substrates

Bead Based Methods

Yet another method which is useful for synthesis of 20 compounds and libraries of the present invention involves "bead based synthesis." A general approach for bead based synthesis is described copending application Ser. Nos. 07/762,522 (filed Sep. 18, 1991 now abandoned); 07/946, 239 (filed Sep. 16, 1992); 08/146,886 (filed Nov. 2, 1993); 25 07/876,792 (filed Apr. 29, 1992) and PCT/US93/04145 (filed Apr. 28, 1993), the disclosures of which are incorporated herein by reference.

For the synthesis of molecules such as oligonucleotides on beads, a large plurality of beads are suspended in a 30 suitable carrier (such as water) in a container. The beads are provided with optional spacer molecules having an active site. The active site is protected by an optional protecting group.

In a first step of the synthesis, the beads are divided for 35 coupling into a plurality of containers. For the purposes of this brief description, the number of containers will be limited to three, and the monomers denoted as A. B. C. D. E. and F. The protecting groups are then removed and a first portion of the molecule to be synthesized is added to each of 40 the three containers (i. c., A is added to container 1, B is added to container 2 and C is added to container 3).

Thereafter, the various beads are appropriately washed of excess reagents, and remixed in one container. Again, it will be recognized that by virtue of the large number of beads utilized at the outset, there will similarly be a large number of beads randomly dispersed in the container, each having a particular first portion of the monomer to be synthesized on a surface thereof.

Thereafter, the various beads are again divided for coupling in another group of three containers. The beads in the first container are deprotected and exposed to a second monomer (D), while the beads in the second and third containers are coupled to molecule portions E and F respectively. Accordingly, molecules AD, BD, and CD will be present in the first container, while AE, BE, and CE will be present in the second container, and molecules AF, BF, and CF will be present in the third container. Each bead, however, will have only a single type of molecule on its surface. Thus, all of the possible molecules formed from the first 60 portions A, B, C, and the second portions D, E, and F have been formed.

The beads are then recombined into one container and additional steps such as are conducted to complete the synthesis of the polymer molecules. In a preferred embodiment, the beads are tagged with an identifying tag which is unique to the particular double-stranded oligonucleotide or

probe which is present on each bend. A complete description of identifier tags for use in synthetic libraries is provided in co-pending application Ser. No. 08/146,886 (filed Nov. 2, 1993) previously incorporated by reference for all purposes. Methods of Library Screening

A library prepared according to any of the methods described above can be used to screen for receptors having high affinity for either unimolecular, double-stranded oligonucleotides or conformationally restricted probes. In one group of embodiments, a solution containing a marked (labelled) receptor is introduced to the library and incubated for a suitable period of time. The library is then washed free of unbound receptor and the probes or double-stranded oligonucleotides having high affinity for the receptor are identified by identifying those regions on the surface of the library where markers are located. Suitable markers include, but are not limited to, radiolabels, chromophores, fluorophores, chemiluminescent moieties, and transition metals. Alternatively, the presence of receptors may be detected using a variety of other techniques, such as an assay with a labelled enzyme, antibody, and the like. Other techniques using various marker systems for detecting bound receptor will be readily apparent to those skilled in the art.

In a preferred embodiment, a library prepared on a single solid support (using, for example, the VLSIPSTM technique) can be exposed to a solution containing marked receptor such as a marked antibody. The receptor can be marked in any of a variety of ways, but in one embodiment marking is effected with a radioactive label. The marked antibody binds with high affinity to an immobilized antigen previously localized on the surface. After washing the surface free of unbound receptor, the surface is placed proximate to x-ray film or phosphorimagers to identify the antigens that are recognized by the antibody. Alternatively, a fluorescent marker may be provided and detection may be by way of a charge-coupled device (CCD), fluorescence microscopy or laser scanning.

When autoradiography is the detection method used, the marker is a radioactive label, such as ³²P. The marker on the surface is exposed to X-ray film or a phosphorimager, which is developed and read out on a scanner. An exposure time of about 1 hour is typical in one embodiment. Fluorescence detection using a fluorophore label, such as fluorescein, attached to the receptor will usually require shorter exposure times.

Quantitative assays for receptor concentrations can also be performed according to the present invention. In a direct assay method, the surface containing localized probes prepared as described above, is incubated with a solution containing a marked receptor for a suitable period of time. The surface is then washed free of unbound receptor. The amount of marker present at predefined regions of the surface is then measured and can be related to the amount of receptor in solution. Methods and conditions for performing such assays are well-known and are presented in, for example, L. Hood et al., Immunology, Benjamin/Cummings (1978), and E. Harlow et al., Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory, (1988). Sec, also U.S. Pal. No. 4,376,110 for methods of performing sandwich assays. The precise conditions for performing these steps will be apparent to one skilled in the art.

A competitive assay method for two receptors can also be employed using the present invention. Methods of conducting competitive assays are known to those of skill in the art. One such method involves immobilizing conformationally restricted probes on predefined regions of a surface as described above. An unmarked first receptor is then bound

to the probes on the surface having a known specific binding affinity for the receptors. A solution containing a marked second receptor is then introduced to the surface and incubated for a suitable time. The surface is then washed free of unbound reagents and the amount of marker remaining on 5 the surface is measured. In another form of competition assay, marked and unmarked receptors can be exposed to the surface simultaneously. The amount of marker remaining on predefined regions of the surface can be related to the amount of unknown receptor in solution. Yet another form of 10 competition assay will utilize two receptors having different labels, for example, two different chromophores.

In other embodiments, in order to detect receptor binding, the double-stranded oligonucleotides which are formed with attached probes or with a flexible linking group will be 15 treated with an intercalating dye, preferably a fluorescent dye. The library can be scanned to establish a background fluorescence. After exposure of the library to a receptor solution, the exposed library will be scanned or illuminated and examined for those areas in which fluorescence has 20 changed. Alternatively, the receptor of interest can be labeled with a fluorescent dye by methods known to those of skill in the art and incubated with the library of probes. The library can then be scanned or illuminated, as above, and examined for areas of fluorescence.

In instances where the libraries are synthesized on beads in a number of containers, the beads are exposed to a receptor of interest. In a preferred embodiment the receptor is fluorescently or radioactively labelled. Thereafter, one or more beads are identified that exhibit significant levels of, 30 for example, fluorescence using one of a variety of techniques. For example, in one embodiment, mechanical separation under a microscope is utilized. The identity of the molecule on the surface of such separated beads is then identified using, for example, NMR, mass spectrometry, 35 PCR amplification and sequencing of the associated DNA, or the like. In another embodiment, automated sorting (i.e., fluorescence activated cell sorting) can be used to separate beads (bearing probes) which bind to receptors from those which do not bind. Typically the beads will be labeled and 40 identified by methods disclosed in Needels, et al., Proc. Natl. Acad. Sci., USA 90:10700-10704 (1993), incorporated herein by reference.

The assay methods described above for the libraries of the present invention will have tremendous application in such 45 endeavors as DNA "footprinting" of proteins which bind DNA. Currently, DNA footprinting is conducted using DNasc I digestion of double-stranded DNA in the presence of a putative DNA binding protein. Gel analysis of cut and protected DNA fragments then provides a "footprint" of 50 where the protein contacts the DNA. This method is both labor and time intensive. See, Galas et al., Nucleic Acid Res. 5:3157 (1978). Using the above methods, a "footprint" could be produced using a single array of unimolecular, doublestranded oligonucleotides in a fraction of the time of con- 55 ventional methods. Typically, the protein will be labeled with a radioactive or fluorescent species and incubated with a library of unimolecular, double-stranded DNA. Phosphorimaging or fluorescence detection will provide a footprint of those regions on the library where the protein has bound. 60 Alternatively, unlabeled protein can be used. When unlabeled protein is used, the double-stranded oligonucleotides in the library will all be labeled with a marker, typically a fluorescent marker. Incorporation of a marker into each member of the library can be carried out by terminating the 65 oligonucleotide synthesis with a commercially available fluorescing phosphoramidite nucleotide derivative. Follow-

ing incubation with the uniabeled protein, the library will be treated with DNase I and examined for areas which are protected from cleavage.

The assay methods described above for the libraries of the present invention can also be used in reverse drug discovery. In such an application, a compound having known pharmacological safety or other desired properties (e.g., aspirin) could be screened against a variety of double-stranded oligonucleotides for potential binding. If the compound is shown to bind to a sequence associated with, for example, tumor suppression, the compound can be further examined for efficacy in the related diseases.

In other embodiments, probe arrays comprising β -turn mimetics can be prepared and assayed for activity against a particular receptor. β -turn mimetics are compounds having molecular structures similar to β -turns which are one of the three major components in protein molecular architecture. β -turns are similar in concept to hairpin turns of oligonucleotide strands, and are often critical recognition features for various protein-ligand and protein-protein interactions. As a result, a library of β -turn mimetic probes can provide or suggest new therapeutic agents having a particular affinity for a receptor which will correspond to the affinity exhibited by the β -turn and its receptor.

Bioelectronic Devices and Methods

In another aspect, the present invention provides a method for the bioelectronic detection of sequence-specific oligonucleotide hybridization. A general method and device which is useful in diagnostics in which a biochemical species is attached to the surface of a sensor is described in U.S. Pat. No. 4,562,157 (the Lowe patent), incorporated herein by reference. The present method utilizes arrays of immobilized oligonucleotides (prepared, for example, using VLSIPSTM (cchnology) and the known photo-induced electron transfer which is mediated by a DNA double helix structure. See, Murphy et al., Science 262:1025-1029 (1993). This method is useful in hybridizationbased diagnostics, as a replacement for fluorescence-based detection systems. The method of bioelectronic detection also offers higher resolution and potentially higher sensitivity than earlier diagnostic methods involving sequencing/detecting by hybridization. As a result, this method finds applications in genetic mutation screening and primary sequencing of oligonucleotides. The method can also be used for Sequencing By Hybridization (SBH), which is described in copending application Scr. Nos. 08/082,937 (filed Jun. 25, 1993 now abandoned) and 08/168,904 (filed Dec. 15, 1993), each of which are incorporated herein by reference for all purposes. This method uses a set of short oligonucleotide probes of defined sequence to search for complementary sequences on a longer target strand of DNA. The hybridization pattern is used to reconstruct the target DNA sequence. Thus, the hybridization analysis of large numbers of probes can be used to sequence long stretches of DNA. In immediate applications of this hybridization methodology, a small number of probes can be used to interrogate local DNA sequence.

In the present inventive method, hybridization is monitored using bioelectronic detection. In this method, the target DNA, or first oligonucleotide, is provided with an electrondonor tag and then incubated with an array of oligonucleotide probes, each of which bears an electron-acceptor tag and occupies a known position on the surface of the array. After hybridization of the first oligonucleotide to the array has occurred, the hybridized array is illuminated to induce an electron transfer reaction in the direction of the surface of the array. The electron transfer reaction is then detected at the location on the surface where hybridization has taken place. Typically, each of the oligonucleotide probes in an array will have an attached electron-acceptor tag located near the surface of the solid support used in preparation of the array. In embodiments in which the arrays are prepared by light-directed methods (i.e, typically 3' to 5' direction), the electronacceptor tag will be located near the 3' position. The electron-acceptor tag can be attached either to the 3 monomer by methods known to those of skill in the art, or it can be attached to a spacing group between the 3' monomer and the solid support. Such a spacing group will have, in addition to functional groups for attachment to the solid support and the oligonucleotide, a third functional group for attachment of the electronacceptor tag. The target oligonucleotide will typically have the electron-donor tag 15 attached at the 3' position. Alternatively, the target oligonucleotide can be incubated with the array in the absence of an electron-donor tag. Following incubation, the electrondonor tag can be added in solution. The electron-donor tag will then intercalate into those regions where hybridization 20 has occurred. An electron transfer reaction can then be detected in those regions having a continuous DNA double helix.

The electron-donor tag can be any of a variety of complexes which participate in electron transfer reactions and 25 which can be attached to an oligonucleotide by a means which does not interfere with the electron transfer reaction. In preferred embodiments, the electron-donor tag is a ruthenium (II) complex, more preferably a ruthenium (II) (phen')₂(dppz) complex.

The electron-acceptor tag can be any species which, with the electron-donor tag, will participate in an electron transfer reaction. An example of an electron-acceptor tag is a rhodium (III) complex. A preferred electron-acceptor tag is a rhodium (III) (phi)₂(phen) complex.

In a particularly preferred embodiment, the electrondonor tag is a ruthenium (II) (phen')₂(dppz) complex and the electron-acceptor tag is a rhodium (III) (phi)₂(phen') complex.

In still another aspect, the present invention provides a 40 device for the bioelectronic detection of sequence-specific oligonucleotide hybridization. The device will typically consist of a sensor having a surface to which an array of oligonucleotides are stached. The oligonucleotides will be attached in pre-defined areas on the surface of the sensor and 45 have an electron-acceptor tag attached to each oligonucleotide. The electron-acceptor tag will be a tag which is capable of producing an electron transfer signal upon illumination of a hybridized species, when the complementary oligonucleotide bears an electrondonating tag. The signal 50 will be in the direction of the sensor surface and be detected by the sensor.

In a preferred embodiment, the sensor surface will be a silicon-based surface which can sense the electronic signal induced and, if necessary, amplify the signal. The metal 55 contacts on which the probes will be synthesized can be treated with an oxygen plasma prior to synthesis of the probes to enhance the silane adhesion and concentration on the surface. The surface will further comprise a multi-gated field effect transistor, with each gate serving as a sensor and 60 different oligonucleotides attached to each gate. The oligonucleotides will typically be attached to the metal contacts on the sensor surface by means of a spacer group.

The spacer group should not be too long, in order to ensure that the sensing function of the device is easily activated by the binding interaction and subsequent illumination of the "tagged" hybridized oligonucleotides. Prefer-

ably, the spacer group is from 3 to 12 atoms in length and will be as described above for the surface modifying portion of the spacer group, L¹.

The oligonucleorides which are strached to the spacer group can be formed by any of the solid phase techniques which are known to those of skill in the art. Preferably, the oligonucleotides are formed one base at a time in the direction of the 3' terminus to the 5' terminus by the 'light-directed" methods described above. The oligonucleotide can then be modified at the 3' end to attach the electron-acceptor tag. A number of suitable methods of attachment are known. For example, modification with the reagent Aminolink2 (from Applied Biosystems, Inc.) provides a terminal phosphate moiety which is derivatized with an aminohexyl phosphate ester. Coupling of a carboxylic acid, which is present on the electron-acceptor tag, to the amine can then be carried out using HOBT and DCC. Alternatively, synthesis of the oligonucleotide can begin with a suitably derivatized and protected monomer which can then be deprotected and coupled to the electron-acceptor tag once the complete oligonucleotide has been synthesized.

The silica surface can also be replaced by silicon nitride or oxynitride, or by an oxide of another metal, especially aluminum, titanium (IV) or iron (III). The surface can also be any other film, membrane, insulator or semiconductor overlying the sensor which will not interfere with the detection of electron transfer detection and to which an oligonucleotide can be coupled.

Additionally, detection devices other than an FET can be used. For example, sensors such as bipolar transistors, MOS transistors and the like are also useful for the detection of electron transfer signals.

Adhesives

In still another aspect, the present invention provides an adhesive comprising a pair of surfaces, each having a plurality of attached oligonucleotides, wherein the singlestranded oligonucleotides on one surface are complementary to the single-stranded oligonucleotides on the other surface. The strength and position/orientation specificity can be controlled using a number of factors including the number and length of oligonucleotides on each surface, the degree of complementary, and the spatial arrangement of complementary oligonucleotides on the surface. For example, increasing the number and length of the oligonucleotides on each surface will provide a stronger adhesive. Suitable lengths of oligonucleotides are typically from about 10 to about 70 nucleotides. Additionally, the surfaces of oligonucleotides can be prepared such that adhesion occurs in an extremely position-specific manner by a suitable arrangement of complementary oligonucleotides in a specific pattern. Small deviations from the optimum spatial arrangement are energetically unfavorable as many hybridization bonds must be broken and are not reformed in any other relative orienta-

The adhesives of the present invention will find use in numerous applications. Generally, the adhesives are useful for adhering two surfaces to one another. More specifically, the adhesives will find application where biological compatibility of the adhesive is desired. An example of a biological application involves use in surgical procedures where tissues must be held in fixed positions during or following the procedure. In this application, the surfaces of the adhesive will typically be membranes which are compatible with the tissues to which they are attached.

A particular advantage of the adhesives of the present invention is that when they are formed in an orientation specific manner, the adhesive portions will be "self-finding," that is the system will go to the thermodynamic equilibrium in which the two sides are matched in the predetermined, orientation specific manner.

EXAMPLES

Example 1

This example illustrates the general synthesis of an array of unimolecular, double-stranded oligonucleotides on a solid support.

Unimolecular double stranded DNA molecules were synthesized on a solid support using standard light-directed methods (VLSIPS™ protocols). Two hexaethylene glycol (PEG) linkers were used to covalently attach the synthesized oligonucleotides to the derivatized glass surface. Synthesis of the first (inner) strand proceeded one nucleotide at a time using repeated cycles of photo-deprotection and chemical coupling of protected nucleotides. The nucleotides each had a protecting group on the base portion of the monomer as 20 well as a photolabile MeNPoc protecting group on the 5' hydroxyl. Upon completion of the inner strand, another MeNPoc-protected PEG linker was covalently attached to the 5' end of the surface-bound oligonucleotide. After addition of the internal PEG linker, the PEG is photodeprotected, 25 and the synthesis of the second strand proceeded in the normal fashion. Following the synthesis cycles, the DNA bases were deprotected using standard protocols. The sequence of the second (outer) strand, being complementary to that of the inner strand, provided molecules with short, 30 hydrogen bonded, unimolecular double-stranded structure as a result of the presence of the internal flexible PEG linker.

An array of 16 different molecules were synthesized on a derivatized glass slide in order to determine whether short, unimolecular DNA structures could be formed on a surface 35 and whether they could adopt structures that are recognized by proteins. Each of the 16 different molecular species occupies a different physical region on the glass surface so that there is a one-to-one correspondence between molecular identity and physical location. The molecules are of the form 40

\$-P-P-C-C-A/T-A/T-A/T-A/T-G-C-P-G-C-A/T-A/T-A/T-A/T-A/T-A/T-G-G-F

where S is the solid surface having silyl groups, P is a PEG linker, A, C, G, and T are the DNA nucleotides, and F is a fluorescent tag. The DNA sequence is listed from the 3' to 45 the 5' end (the 3' end of the DNA molecule is attached to the solid surface via a silyl group and 2 PEG linkers). The sixteen molecules synthesized on the solid support differed in the various permutations of A and T in the above formula.

Example 2

This example illustrates the ability of a library of surfacebound, unimolecular, double-stranded oligonucleotides to exist in duplex form and to be recognized and bound by a protein.

A library of 16 different members was prepared as described in Example 1. The 16 molecules all have the same composition (same number of As, Cs, Gs and Ts), but the order is different. Four of the molecules have an outer strand 60 that is 100% complementary to the inner strand (these molecules will be referred to as DS, doublestranded, below). One of the four DS oligonucleotides has a sequence that is recognized by the restriction enzyme EcoR1. If the molecule can loop back and form a DNA duplex, it should be 65 recognized and cut by the restriction enzyme, thereby releasing the fluorescent tag. Thus, the action of the enzyme

provided a functional test for DNA structure, and also served to demonstrate that these structures can be recognized at the surface by proteins. The remaining 12 molecules had outer strands that were not complementary to their inner strands (referred to as SS, single-stranded, below). Of these, three had an outer strand and three had an inner strand whose sequence was an EcoR1 half-site (the sequence on one strand was correct for the enzyme, but the other half was not). The solid support with an array of molecules on the surface is referred to as a "chip" for the purposes of the following discussion. The presence of fluorescently labelled molecules on the chip was detected using confocal fluorescence microscopy. The action of various enzymes was determined by monitoring the change in the amount of fluorescence from the molecules on the chip surface (e.g. "reading" the chip) upon treatment with enzymes that can cut the DNA and release the fluorescent tag at the 5' end.

The three different enzymes used to characterize the structure of the molecules on the chip were:

- Mung Bean Nuclease—sequence independent, singlestrand specific DNA endonuclease;
- DNasc I—sequence independent, double-strand specific endonuclease;
- EcoR1—restriction endonuclease that recognizes the sequence (5'-3')

GAATTC in double stranded DNA, and cuts between the G and the first A. Mung Bean Nuclease and EcoR1 were obtained from New England Biolabs, and DNase I was obtained from Boehringer Mannheim. All enzymes were used at a concentration of 200 units per mL in the buffer recommended by the manufacturer. The enzymatic reactions were performed in a 1 mL flow cell at 22° C., and were typically allowed to proceed for 90 minutes.

Upon treatment of the chip with the enzyme EcoR1, the fluorescence signal in the DS EcoR1 region and the 3 SS regions with the EcoR1 half-site on the outer strand was reduced by about 10% of its initial value. This reduction was at least 5 times greater than for the other regions of the chip, indicating that the action of the enzyme is sequence specific on the chip. It was not possible to determine if the factor is greater than 5 in these preliminary experiments because of uncertainty in the constancy of the fluorescence background. However, because the purpose of these early experiments was to determine whether unimolecular double-stranded structures could be formed and whether they could be specifically recognized by proteins (and not to provide a quantitative measure of enzyme specificity), qualitative differences between the different synthesis regions were sufficient.

The reduction in signal in the 3 SS regions with the EcoR1 half-site on the outer strand indicated either that the enzyme cuts single-stranded DNA with a particular sequence, or that these molecules formed a double-stranded structure that was recognized by the enzyme. The molecules on the chip surface were at a relatively high density, with an average spacing of approximately 100 angstroms. Thus, it was possible for the outer strand of one molecule to form a double-stranded structure with the outer strand of a neighboring molecule. In the case of the 3 SS regions with the EcoR1 half-site on the outer strand, such a bimolecular double-stranded region would have the correct sequence and structure to be recognized by EcoR1. However, it would differ from the unimolecular double-stranded molecules in that the inner strand remains single-stranded and thus amenable to cleavage by a single-strand specific endonuclease such as Mung Bean Nuclease. Therefore, it was possible to distinguish unimolecular from bimolecular double-stranded DNA molecules on the surface by their ability to be cut by single and double-strand specific endonucleases.

In order to remove all molecules that have single-stranded structures and to identify unimolecular double-stranded molecules, the chip was first exhaustively treated with Mung 5 Bean Nuclease. The reduction in the fluorescence signal was greater by about a factor of 2 for the SS regions of the chip, including those with the EcoR1 half-site on the outer strand that were cleaved by EcoR1, than for the 4 DS regions. Following Mung Bean Nuclease treatment, the chip was 10 treated with either DNase I (which cuts all remaining double-stranded molecules) or EcoR1 (which should cut only the remaining double-stranded molecules with the correct sequence). Upon treatment with DNase I, the fluorescence signal in the 4 DS regions was reduced by at least 15 5-fold more than the signal in the SS regions. Upon EcoR1 treatment, the signal in the single DS region with the correct EcoRI sequence was reduced by at least a factor of 3 more than the signal in any other region on the chip. Taken together, these results indicated that the surface-bound mol- 20 ecules synthesized with two complementary strands separated by a flexible PEG linker form intramolecular doublestranded structures that were resistant to a single-strand specific endonuclease and were recognized by both a double-strand specific endonuclease, and a sequence-spe- 25 cific restriction enzyme.

What is claimed is:

 A synthetic unimolecular, double-stranded oligonucleotide library comprising a plurality of different members, each member having the formula: 11 01 12 02

wherein,

Y is a solid support;

 X^1 and X^2 are a pair of complementary oligonucleotides; L^1 is a spacer;

L² is a linking group having sufficient length such that X¹ and X² form a double-stranded oligonucleotide.

2. A library in accordance with claim 1, wherein \mathbb{L}^2 is a polyethylene glycol group.

A library in accordance with claim 1, wherein X¹ and X² are complementary oligonucleotides each comprising of from 6 to 30 nucleic acid monomers.

4. A library in accordance with claim 1, wherein said solid support is a silica support and L¹ comprises an aminoalkyl-silane and from 1 to 4 hexaethyleneglycols.

5. A library in accordance with claim 1, wherein said solid support is a silica support, L^1 comprises an aminoalkylsilane and from 1 to 4 hexaethyleneglycols, L^2 is a polyethyleneglycol group and X^1 and X^2 are complementary oligonucleotides each comprising of from 6 to 30 nucleic acid monomers.

6. A synthetic unimolecular, double-stranded oligonucleotide library of claim 1, wherein a portion of said doublestranded oligonucleotides formed by X^1 and X^2 further comprise a loop.

7

G

This Page Blank (uspto)

United States Patent [19]

Fodor et al.

Patent Number: [11]

5,744,305

Date of Patent: [45]

*Apr. 28, 1998

[54]	ARRAYS OF MATERIALS ATTACHED TO A
	SUBSTRATE

[75] Inventors: Stephen P.A. Fodor, Palo Alto; Lubert

Stryer, Stanford; J. Leighton Read. Palo Alto, all of Calif.; Michael C.

Pirrung, Durham, N.C.

[73] Assignee: Affymetrix, Inc., Santa Clara, Calif.

The term of this patent shall not extend [*] Notice:

beyond the expiration date of Pat. No.

5.445,934.

[21] Appl. No.: 466,632

Jun. 6, 1995 [22] Filed:

Related U.S. Application Data

[60] Division of Ser. No. 390,272, Feb. 16, 1995, Pat. No. 5,489,678, and a communition-in-part of Ser. No. 456,887, Jun. 1, 1995, which is a division of Ser. No. 954,646, Sep. 30, 1992, Pat No. 5,445,934, which is a division of Ser No. 850,356, Mar. 12, 1992, Pat. No. 5,405,783, which is a division of Ser No. 492,462, Mar. 7, 1990, Pat. No. 5,143, 854, which is a continuation-in-part of Ser. No. 362,901, Jun. 7, 1989, abandoned, said Ser. No. 390,272, is a conjun. 1, 189, anendomed, sand Sec. No. 590, 2, is a continuation of Ser. No. 624,120, Dec. 6, 1990, abandoned, which is a continuation-in-part of Ser. No. 492,462, Mar. 7, 1990, Par. No. 5,143,854, which is a continuation-in-part of Ser. No. 362,901, Jun. 7, 1989, abandoned.

[51]	Int CL6	·	C120	1/68; C07H 21/04;
נינן			•	C07H 21/02

435/6; 435/7.92; 435/7.94; [52] U.S. CL _ 435/7.95; 435/969; 435/973; 436/518; 436/527; 436/807; 436/809; 530/334; 536/24.3; 536/25.3; 536/25.32

435/6, 7.92, 7.95, [58] Field of Search . 435/7.94, 9.73, 969; 436/518, 527, 807. 809; 530/334; 536/24.3, 25.3, 25.32

References Cited [56]

U.S. PATENT DOCUMENTS

3,849,137 11/1974 Barzynski et al. . 5/1981 Pazos . 4 269 933 5/1985 Pusck . 4.516.833

4.517.338	5/1985	Urdea et al
4,537,861	8/1985	Elings et al
4.562,157	12/1985	Lowe et al 435/291
4,631,211	12/1986	Houghton
4.689,405	8/1987	Frank et al.
4,704,353	11/1987	Humphries et al 435/4
4.713.326	12/1987	Dattagupta et al 435/6
4,728,591	3/1988	Clark et al.
4,762,881	8/1988	Kauer 525/54.11

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 046 083	2/1982	European Pat. Off B01F 17/00
0 103 197	3/1984	European Pat. Off C07C 79/46
0.228.310	10/1988	European Pat. Off
328 256 AL	1/1989	European Pat. Off B01J 20/32
0 392 546	10/1990	European Pat. Off C12Q 1/68

(List continued on next page.)

OTHER PUBLICATIONS

Barinaga, "Will 'DNA Chip' Spped Genome Initiative?" Science, 253:1489 (1991). BioRad Catalogue M 1987, p. 182.

Geyson et al., "Strategies for epitope analysis using peptide synthesis," J. Immunol. Methods, 102:259-274 (1987).

(List continued on next page.)

Primary Examiner-Stephanie W. Zitomer Assistant Examiner-Paul B. Tran Attorney, Agent, or Firm-Vern Norviel; Nancy J. DeSantis; Joseph Liebeschuetz

ABSTRACT

A synthetic strategy for the creation of large scale chemical diversity. Solid-phase chemistry, photolabile protecting groups, and photolithography are used to achieve lightdirected spatially-addressable parallel chemical synthesis. Binary masking techniques are utilized in one embodiment. A reactor system, photoremovable protective groups, and improved data collection and handling techniques are also disclosed. A technique for screening linker molecules is also provided.

26 Claims, 17 Drawing Sheets

U.S. PATENT DOCUMENTS

4,811,062	3/1989	Taba et al
4,833,092	5/1989	Geysen436/501
4,846,552	7/1989	Veldkamp et al 350/162.2
4,886,741	12/1989	Schwartz .
4,888,278	12/1989	Singer et al
4,923,901	5/1990	Koester et al
4,946,942	8/1990	Fuller et al 530/335
4,973,493		Gaire .
4,981,985	1/1991	Kaplan et al
4,984,100	1/1991	Takayama et al 360/49
5.079,600	1/1992	Schaur et al
5,143,854		Pirrung et al
5.202.231	4/1993	Dimanac et al
5,252,743	10/1993	Barrett et al
5.258,506	11/1993	Urdea et al
5,445,934	8/1995	Fodor et al

FOREIGN PATENT DOCUMENTS

1-233 447	9/1989	Japan .
2 196 476	2/1990	United Kingdom H01L 21/46
WO 84/03564	9/1984	WIPO GOIN 33/54
WO 86/06487	11/1986	WIPO GOIN 33/53
WO 89/10977	11/1989	WIPO C12Q 1/68
WO 89/11548	11/1989	WIPO C12Q 1/68
WO 90/03382	4/1990	WIPO C07H 21/00
WO 90/04652	5/1990	WIPO C12Q 1/68
WO 90/15070	12/1990	WIPO C07K 1/104
WO 91/07087	5/1991	WIPO A01N 1/02

OTHER PUBLICATIONS

Haynes & Higgens (eds.), Nucleic Acid Hybridization: A Practical Approach. IRL Press, Oxford, England, pp. 126-128 (1985).

Mirzabekov. "DNA sequencing by hybridization —a megasequencing method and a diagnostic tool?" TIBTECH, 12:27-32 (1994).

Southern et al., "Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of oligonucleotides: Evaluation Using Experimental Models." Genomics, 13:1008-1017 (1992).

"A Sequencing Reality Check", Research News [Science] (1988) 242:1245.

"Affymax Raises \$25 Million to Develop High Speed Drug Discovery System" *Biotechnology News*, vol. 10, No. 3, Feb. 1, 1990, pp. 7–8.

Adams et al., "Photolabile chelators that 'cage' calcium with improved speed of release and pre-photolysis affinity," J. General Physiology (Dec. 1986).

Adams et al., "Biologically useful chelators that take up Ca²⁺ upon illumination," J. Am. Chem. Soc. 111:7957-7968 (1989).

Amir et al. "Photosensitive protecting groups of amino sugars and their use in glycoside synthesis. 2-Nitrobenzy-loxycarbonylamino and 6-Nitroveratryloxy-carbonylamino derivatives," J. Org. Chem. (1974) 39-197-196

Amit et al.. "Photosensitive protecting groups -A review," Israel J. of Chem. 12(1-2):103-113 (1974).

Bains et al., "A novel method for nucleic acid sequence determination." J. Theor. Biol. (1988) 135:303-307.

Baldwin et al., "New photolabile phosphate protecting groups." Tetrahedron 46(19):6879-6884 (1990).

Barltrop et al., "Photosensitive protective groups," Chemical Communications, p. 822 (Nov. 22, 1966).

Cameron et al. "Photogeneration of organic bases from o-nitrobenzyl-derived carbamates," J. Am. Chem. Soc. (1991) 113, 4303–4313.

Craig et al. "Ordering of cosmid clones covering the herpes simplex virus type 1 (HSV-1) genome: a test case for fingerprinting by hybridisation." Nucl. Acids Res. (1990) 18:2653-2660.

Cummings et al., "Photoactivable fluorophores. 1. Synthesis and photoactivation of o-nitrobenzyl-quenched fluorescent carbamates." Tetrahedron Letters (1988) 29:65-68.

Drmanac et al., "Sequencing of megabase plus DNA by hybridization: theory of the method," *Genomics* (1989) 4:114-128.

Dulcey et al., "Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies." Science (1991) 252:551-554.

Flanders et al., "A new interferometric alignment technique," App. Phys. Lett. (1977) 31:426-428.

Fodor et al., "Light-directed Spatially-addressable Parallel Chemical Synthesis," Science 251:767-773 (1991).

Forka et al., "General method for rapid synthesis of multicomponent peptide mixtures," Int. J. Peptide Protein Res. (1991) 37:487-493.

Furka, et al., "Cornucopia of peptides by synthesis," 14th Int'l Congress of Biochem., Abstract No. FR:013, Prague, Czechoslovakia, Jul. 10-15, 1988.

Furka et al., "More peptides by less labour," Xth Int'l Symposium on Medicinal Chemistry, (Abstract No. 288) Budapest, Hungary, Aug. 15–19, 1988.

Gurney et al. Activation of a potassium current by rapid photochemically generated step increases of intracellular calcium in rat sympathetic neurons, *PNAS USA* 84:3496-3500 (May 1987).

Haridasan et al., "Peptide synthesis using photolytically cleavable 2-mitrobenzyloxycarbonyl protecting group," Proc. Indian Natl. Sci. Acad. Part A (1987) 53:717-728.

Iwamura et al., "1-pyrenylmethyl esters, photolabile protecting groups for carboxylic acids," Tetrahedron Letters (1987) 28:679-682.

Iwamura et al., "1-x-Diazobenyl pyrene: A reagent for photolabile and fluorescent protection of carboxyl groups of amino acids and peptides," *Chemical Abstracts*, vol. 114(23) (1991).

Iwamura et al., "1-(α-Diazobenyl pyrene: A reagent for photolabile and fluorescent protection of carboxyl groups of amino acids and peptides," (1991) Synlett 35-36.

Kaplan et al., "Photolabile chelators for the rapid photorelease of divalent carions," *PNAS USA* 85:6571-6575 (Sep. 1988).

Khrapko et al., "An oligonucleotide hybridization approach to DNA sequencing." FEBS. Lett. (1989) 256:118-122.

Kleinfeld et al., "Controlled outgrowth of dissociated neurons on patterned substrates," J. of Neuroscience 8(11):4098-4120 (Nov. 1988).

Krile et al., "Multiplex holography with chip-modulated binary phase-coded reference-beam masks," Applied Optics (1979) 18:52-56.

Lam et al., "A new type of synthetic peptide library for identifying ligand-binding activity," Nature (1991) 354:82-86.

Logue et al., "General approaches to mask design for binary optics," SPIE (1989) 1052:19-24.

Lysov et al., "A new method for determining the DNA nucleotide sequence by hybridization with oligonucleotides," *Doklady Akademii Nauk SSR* (1988) 303:1508–1511.

McCray et al. "Properties and uses of photoreactive caged compounds." Ann. Rev. Biophys. and Biophys. Chem. (1989) 18:239–270.

McGillis, "Lithography," VISI Technology, S. Sze, ed., McGraw-Hill Book Company, 1983, pp. 267-301.

Ohtsuka et al. "Studies on transfer ribonucleic acids and related compounds. IX(1) Ribooligonucleotide synthesis using a photosensitive o-nitrobenzyl protection at the 2'-hydroxyl group," Nucleic Acids Research (1974) 1:1351-1357.

Patchornik et al., "Photosensitive protecting groups," J. Am. Chem. Soc. (1970) 92:6333-6335.

Patent Abstracts of Japan from the EPO, Abst. vol. 13:557, pub. date 12-28-89 abstracting Japanese Patent 01-233

Pillai et al., "3-nitro 4-aminomethyl-benzoylderivate von poly-ethylengiykolen: eine neue klasse von photosensitiven loslichen polymeren tragern zur synthese von c-terminalen peptidamiden." Tetrahedron Letters (1979) No. 36. pp. 3409-3412.

Pillai et al., "Photoremovable protecting groups in organic synthesis," Synthesis pp. 1-26 (Jan. 1980).

Poustka et al., "Molecular approaches to mammalian genetics." CSH Symp. Quant. Biol. (1986) 51:131-139.

Reichmanis et al., "o-nitrobenzyl photochemistry: Solution vs. solid-state behavior," J. Polymer Sc. Polymer Chem. Ed. 23-1-2 (1985)

Robertson et al., "A general and efficient route for chemical aminoacylation of transfer RNAs," Chemical Abstracts, vol. 114, No. 15 (1991).

Robertson et al., "A general and efficient route for chemical aminoacylation of transfer RNAs," (1991) J. Am. chem. Soc. 113:2722-2729.

Schuup et al., "Mechanistic studies of the photorearrangement of o-nitrobenzyl esters." J. Photochem. 36:85-97 (1987)

Shin et al. "Dehydrooligopeptides. XI. Facile syntheses of various kinds of dehydrodi—and tripeptides. and dehydroen-kephalins containing Atyr residence by using N—carboxyde-hydrotyrosine anhydride." (1989) Bull Chem. Soc. Jpn. 62:1127-1135.

Shin et al., "Dehydrooligopeptides. XI. Facile synthesis of various kinds of dehydrooli-and tripeptides, and dehydroen-kephalins containing tyr residence by using N-carboxyde-hydrotyrosine anhydride," Chemical Abstracts, 112(11) 1990).

Tsien et al., "Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzyhydrol chelators," Biophys. J.50:843-853 (Nov. 1986).

Veldkamp, "Binary optics: the optics technology of the 1990s," CLEO 90, May 21, 1990, Paper No. CMG6.

Walker et al., "Photolabile protecting groups for an acetyl-choline receptor ligand. Synthesis and photochemistry of a new class of o-nitrobenzyl derivatives and their effects on receptor function," *Biochemistry* 25:1799–1805 (1986).

Zehavi et al., "Light-sensitive glycosides. I. 6-nitroveratryl β-D-glucopyranoside and 2-nitrobenzyl β-D-glucopyranoside," J. Org. Chem. (1972) 37:2281-2285.

Wilcox et al.. "Synthesis of photolabile 'precursors' of amino acid neurotransmitters," J. Org. Chem. 55:1585–1589 (1990).

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

Apr. 28, 1998

FIG. 5A.

U.S. Patent

FIG. 6A.

F1G. 6B.

FIG. 7A.

FIG. 7B.

FIG. 8A.

FIG. 8B.

FIG. 98.

₩[<u> </u>	>		~				_		<u>. </u>
S				⋖		-		_		<u> </u>
શ		>	ပ	«	၁	.		ب		<u> </u>
82		•	ی	×	ပ	-		ت		<u> </u>
23	-	>	ပ		၅			_		<u>. </u>
92			9		ఆ			_		<u>. </u>
22	_	>						_		<u> </u>
22								_		<u> </u>
N	-	_		~		-	<u>.</u>	_	တ	
22				~		-	<u>. </u>		တ	
ਨ	-	>	ပ	~	ی	_	<u>.</u>	_	S	-
8			دے	¥	ပ		<u>. </u>	_	တ	٠.,
<u></u>	_	>	ය		9		٠	_	ဟ	
œ			9		ပ		<u>. </u>	_	တ	•
=		>		•			<u>. </u>	<u>ب</u>	ဟ	-
9							<u>. </u>		တ	4
55	-	> -		~		-	<u></u>		တ	•
4				~		<u>-</u>	<u>. </u>		S	
2	-	>	9	~	ပ	-	<u></u>		S	
2			ပ	~	ပ	-	L		ဟ	
=	_	>	ی		ပ		<u> </u>		တ	
9			S		ي		<u>.</u>		က	
6	_	>			•		L		ဟ	
~							ـيا		S	
_	-	-		~		-				
9			. •	~		-		,		
Š	-	. >-	ی	×	ဟ	-				
4			ى	~	9	-				
•		· >-	ے .)	و					
~	•		ع)	ပ					
_	-	. >-	•							
	•									

-16. 10.

FIG. II.

Apr. 28, 1998

FIG. 13.

FIG. 14.

ARRAYS OF MATERIALS ATTACHED TO A SUBSTRATE

CROSS REFERENCE TO RELATED **APPLICATIONS**

This application is a division of U.S. patent application Ser. No. 08/390,272, filed Feb. 16. 1995, now U.S. Pat. No. 5,489,678, which is a continuation of U.S. patent application Ser. No. 07/624,120, filed Dec. 6. 1990, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 07/492.462, filed Mar. 7, 1990, now U.S. Pat. No. 5.143.854, which is a continuation-in-part of U.S. patent application Scr. No. 07/362,901, filed Jun. 7, 1989, now abandoned, and hereby incorporated herein by reference for all purposes. This application is also a continuation-in-part of U.S. patent application Ser. No. 08/456.887, filed Jun. 1, 1995, which is a division of U.S. patent application Ser. No. 07/954.646. filed Sep. 30, 1992. now U.S. Pat. No. 5.445, 934, which is a division of U.S. patent application Ser. No. 07/850.356. filed Mar. 12, 1992, now U.S. Pat. No. 5,405, 783, which is a division of U.S. patent application Ser. No. 07/492,462, filed Mar. 7, 1990, now U.S. Par. Ser. No. 5.143,854, which is a continuation-in-part of U.S. patent application Ser. No. 07/362,901 filed Jun. 7, 1989, now 25 abandoned.

This application is also related to U.S. patent application Scr. No. 08/670,118 filed Jun. 25, 1996, which is a division of U.S. patent application Ser. No. 08/168,104, filed Dec. 15, 1993, which is a continuation of U.S. patent application Ser. 30 No. 07/624.114, filed Dec. 6, 1990, now abandoned, and U.S. patent application Ser. No. 07/626.730, filed Dec. 6. 1990, now U.S. Pat. No. 5.547,839, and also incorporated herein by reference for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent 40 disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates to the field of polymer synthesis. More specifically, the invention provides a reactor system, a masking strategy, photoremovable protective groups, data collection and processing techniques, and applications for light directed synthesis of diverse polymer sequences on substrates.

SUMMARY OF THE INVENTION

use of diverse polymer sequences on a substrate are disclosed, as well as applications thereof.

According to one aspect of the invention, an improved reactor system for synthesis of diverse polymer sequences on a substrate is provided. According to this embodiment the 60 invention provides for a reactor for contacting reaction fluids to a substrate; a system for delivering selected reaction fluids to the reactor; a translation stage for moving a mask or substrate from at least a first relative location relative to a second relative location; a light for illuminating the substrate 65 through a mask at selected times; and an appropriately programmed digital computer for selectively directing a

flow of fluids from the reactor system, selectively activating the translation stage, and selectively illuminating the substrate so as to form a plurality of diverse polymer sequences on the substrate at predetermined locations.

The invention also provides a technique for selection of linker molecules in a very large scale immobilized polymer synthesis (VLSIPSTM) method. According to this aspect of the invention, the invention provides a method of screening a plurality of linker polymers for use in binding affinity 10 studies. The invention includes the steps of forming a plurality of linker polymers on a substrate in selected regions, the linker polymers formed by the steps of recursively: on a surface of a substrate, irradiating a portion of the selected regions to remove a protective group, and contacting the surface with a monomer, contacting the plurality of linker polymers with a ligand; and contacting the ligand with a labeled receptor.

According to another aspect of the invention, improved photoremovable protective groups are provided. According 20 to this aspect of the invention a compound having the

wherein n=0 or 1; Y is selected from the group consisting of an oxygen of the carboxyl group of a natural or unnatural amino acid, an amino group of a natural or unnatural amino acid, or the C-5' oxygen group of a natural or unnatural 35 deoxyribonucleic or ribonucleic acid; R1 and R2 independently are a hydrogen atom, a lower alkyl, aryl, benzyl, halogen, hydroxyl, alkoxyl, thiol, thioether, amino, nitro. carboxyl, formate, formamido, sulfido, or phosphido group; and R3 is a alkoxy, alkyl, aryl, hydrogen, or alkenyl group is provided.

The invention also provides improved masking techniques for the VLSIPSTM methodology. According to one aspect of the masking technique, the invention provides an ordered method for forming a plurality of polymer 45 sequences by sequential addition of reagents comprising the step of serially protecting and deprotecting portions of the plurality of polymer sequences for addition of other portions of the polymer sequences using a binary synthesis strategy.

Improved data collection equipment and techniques are 50 also provided. According to one embodiment, the instrumentation provides a system for determining affinity of a receptor to a ligand comprising: means for applying light to a surface of a substrate, the substrate comprising a plurality of ligands at predetermined locations, the means for provid-Methods, apparams, and compositions for synthesis and 55 ing simultaneous illumination at a plurality of the predetermined locations; and an array of detectors for detecting light fluoresced at the plurality of predetermined locations. The invention further provides for improved data analysis techniques including the steps of exposing fluorescently labelled receptors to a substrate, the substrate comprising a plurality of ligands in regions at known locations; at a plurality of data collection points within each of the regions, determining an amount of light fluoresced from the data collection points; removing the data collection points deviating from a predetermined statistical distribution; and determining a relative binding affinity of the receptor to remaining data collection points.

where R is a side chain of a natural or unnatural amino acid and X is a photoremovable protecting group.

A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates light-directed spatiallyaddressable parallel chemical synthesis;

FIG. 2 schematically illustrates one example of lightdirected peptide synthesis;

FIG. 3 is a three-dimensional representation of a portion of the checkerboard array of YGGFL and[PGGFL;

FIG. 4 schematically illustrates an automated system for synthesizing diverse polymer sequences;

FIGS. 5a and 5b illustrate operation of a program for polymer sythesis;

FIGS. 60 and 60 are a schematic illustration of a "pure" binary masking strategy;

FIGS. 7a and 7b are a schematic illustration of a gray code 35 binary masking strategy;

FIGS. 8g and 8b are a schematic illustration of a modified gray code binary masking strategy;

four step synthesis;

FIG. 96 schematically illustrates synthesis of all 400 peptide dimers;

FIG. 10 is a coordinate map for the ten-step binary synthesis;

FIG. 11 schematically illustrates a data collection system;

FIG. 12 is a block diagram illustrating the architecture of the data collection system;

for the data collection/analysis system; and

FIG. 14 illustrates a three-dimensional plot of intensity versus position for light directed synthesis of a dinucleotide.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

CONTENTS

L Definitions

IL General

Deprotection and Addition

- 1. Example
- 2. Example
- B. Antibody recognition
 - 1. Example

III. Synthesis

A. Reactor System

B. Binary Synthesis Strategy

- 1. Example
- 2. Example
- 3. Example
- 4. Example
- 5. Example
- 6. Example

C. Linker Selection

- D. Protecting Groups 1. Use of Photoremovable Groups During Solid-Phase Synthesis of Peptides
 - 2. Use of Photoremovable Groups During Solid-Phase Synthesis of Oligonucleotides
- E. Amino Acid N-Carboxy Anhydrides Protected with a Photoremovable Group

IV. Data Collection

- A. Data Collection System
- B. Data Analysis
- V. Other Representative Applications
 - A. Oligonucleotide Synthesis
 - 1. Example
 - VI. Conclusion

L DEFINITIONS

Certain terms used herein are intended to have the following general definitions:

1. Complementary:

Refers to the topological compatibility or matching 30 together of interacting surfaces of a ligand molecule and its receptor. Thus, the receptor and its ligand can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other.

The portion of an antigen molecule which is delineated by the area of interaction with the subclass of receptors known as antibodies.

3. Ligand:

A ligand is a molecule that is recognized by a particular FIG. 9a schematically illustrates a masking scheme for a 40 receptor. Examples of ligands that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones, hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs (e.g. opiates, 45 steriods, etc.), lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibod-

4. Monomer:

A member of the set of small molecules which can be FIG. 13 is a flow chart illustrating operation of software 50 joined together to form a polymer. The set of monomers includes but is not restricted to, for example, the set of common L-amino acids, the set of D-amino acids, the set of synthetic amino acids, the set of nucleotides and the set of pentoses and hexoses. As used herein, monomers refers to 55 any member of a basis set for synthesis of a polymer. For example, dimers of the 20 naturally occurring L-amino acids form a basis set of 400 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer. Furthermore, 60 each of the sets may include protected members which are modified after synthesis.

Peptide:

A polymer in which the monomers are alpha amino acids and which are joined together through amide bonds and 65 alternatively referred to as a polypeptide. In the context-of this specification it should be appreciated that the amino acids may be the L-optical isomer or the D-optical isomer.

Peptides are often two or more amino acid monomers long. and often more than 20 amino acid monomers long. Standard abbreviations for amino acids are used (e.g., P for proline). These abbreviations are included in Stryer. Biochemistry, Third Ed., 1988, which is incorporated herein 5 by reference for all purposes. 6. Radiation:

Energy which may be selectively applied including energy having a wavelength of between 10-14 and 10 meters including, for example, electron beam radiation. 10 gamma radiation, x-ray radiation, ultraviolet radiation, visible light, infrared radiation, microwave radiation, and radio waves. "Irradiation" refers to the application of radiation to a surface.

7. Receptor:

A molecule that has an affinity for a given ligand. Receptors may-be naturally-occurring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Receptors may be attached. covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of receptors which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or 25 other materials), drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Receptors are sometimes referred to in the art as anti-ligands. As the term receptors is used herein, no difference in meaning is 30 intended. A "Ligand Receptor Pair" is formed when two macromolecules have combined through molecular recognition to form a complex. Other examples of receptors which can be investigated by this invention include but are not restricted to:

a) Microorganism receptors:

Determination of ligands which bind to receptors, such as specific transport proteins or enzymes essential to survival of microorganisms, is useful in developing a new class of antibiotics. Of particular value would 40 be antibiotics against opportunistic fungi, protozoa, and those bacteria resistant to the antibiotics in current use.

b) Enzymes:

For instance, one type of receptor is the binding site of 45 enzymes such as the enzymes responsible for cleaving neurotransmitters; determination of ligands which bind to certain receptors to modulate the action of the enzymes which cleave the different neurotransmitters is useful in the development of 50 drugs which can be used in the treatment of disorders of neurotransmission.

c) Antibodies:

For instance, the invention may be useful in investiecule which combines with the epitope of an antigen of interest; determining a sequence that mimics an antigenic epitope may lead to the-development of vaccines of which the immunogen is based on one or more of such sequences or lead to the development 60 of related diagnostic agents or compounds useful in therapeutic treatments such as for auto-immune diseases (e.g., by blocking the binding of the "self" antibodies).

d) Nucleic Acids:

Sequences of nucleic acids may be synthesized to establish DNA or RNA binding sequences.

e) Catalytic Polypeptides:

Polymers, preferably polypeptides, which are capable of promoting a chemical reaction involving the conversion of one or more reactants to one or more products. Such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the binding site, which functionality is capable of chemically modifying the bound reactant. Catalytic polypeptides are described in. for example, U.S. Pat. No. 5.215,899, which is incorporated herein by reference for all purposes.

f) Hormone receptors:

Examples of hormones receptors include, e.g., the receptors for insulin and growth hormone. Determination of the ligands which bind with high affinity to a receptor is useful in the development of, for example, an oral replacement of the daily injections which diabetics must take to relieve the symptoms of diabetes, and in the other case, a replacement for the scarce human growth hormone which can only be obtained from cadavers or by recombinant DNA technology. Other examples are the vasoconstrictive hormone receptors; determination of those ligands which bind to a receptor may lead to the development of drugs to control blood pressure.

g) Opiate receptors:

Determination of ligands which bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.

8. Substrate:

A material having a rigid or semi-rigid surface. In many embodiments, at least one surface of the substrate will be 35 substantially flat, although in some embodiments it may be desirable to physically separate synthesis regions for different polymers with, for example, wells, raised regions, etched trenches, or the like. According to other embodiments, small beads may be provided on the surface which may be released upon completion of the synthesis.

9. Protective Group:

A material which is chemically bound to a monomer unit and which may be removed upon selective exposure to an activator such as electromagnetic radiation. Examples of protective groups with utility herein include those comprising nitropiperonyl, pyrenylmethoxy-carbonyl, nitroveratryl, nitrobenzyl, dimethyl dimethoxybenzyl, 5-bromo-7nitroindolinyl, o-hydroxy-a-methyl cinnamoyl, and 2-oxymethylene anthraquinone.

10. Predefined Region:

A predefined region is a localized area on a surface which is, was, or is intended to be activated for formation of a polymer. The predefined region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, gating the ligand-binding site on the antibody mol- 55 etc. For the sake of brevity herein, "predefined regions" are sometimes referred to simply as "regions."

11. Substantially Pure:

A polymer is considered to be "substantially pure" within a predefined region of a substrate when it exhibits characteristics that distinguish it from other predefined regions. Typically, purity will be measured in terms of biological activity or function as a result of uniform sequence. Such characteristics will typically be measured by way of binding with a selected ligand or receptor.

65 12. Activator refers to an energy source adapted to render a group active and which is directed from a source to a predefined location on a substrate. A primary illustration of

an activator is light. Other examples of activators include ion beams, electric fields, magnetic fields, electron beams, x-ray, and the like

13. Binary Synthesis Strategy refers to an ordered strategy for parallel synthesis of diverse polymer sequences by sequential addition of reagents which may be represented by a reactant matrix, and a switch matrix, the product of which is a product matrix. A reactant matrix is a 1xn matrix of the building blocks to be added. The elements of the switch matrix are binary numbers. In preferred embodiments, a binary strategy is one in which at least two successive steps illuminate half of a region of interest on the substrate. In most preferred embodiments, binary synthesis refers to a synthesis strategy which also factors a previous addition step. For example, a strategy in which a switch matrix for a masking strategy halves regions that were previously 15 a small number of chemical steps. illuminated, illuminating about half of the previously illuminated region and protecting the remaining half (while also protecting about half of previously protected regions and illuminating about half of previously protected regions). It will be recognized that binary rounds may be interspersed 20 with non-binary rounds and that only a portion of a substrate may be subjected to a binary scheme, but will still be considered to be a binary masking scheme within the definition herein. A binary "masking" strategy is a binary synthesis which uses light to remove protective groups from 25 materials for addition of other materials such as amino acids. In preferred embodiments, selected columns of the switch matrix are arranged in order of increasing binary numbers in the columns of the switch matrix.

14. Linker refers to a molecule or group of molecules attached to a substrate and spacing a synthesized polymer from the substrate for exposure/binding to a receptor.

II. General

The present invention provides synthetic strategies and devices for the creation of large scale chemical diversity. 35 Solid-phase chemistry, photolabile protecting groups, and photolithography are brought together to achieve lightdirected spatially-addressable parallel chemical synthesis in preferred embodiments.

The invention is described herein for purposes of illus- 40 tration primarily with regard to the preparation of peptides and nucleotides, but could readily be applied in the preparation of other polymers. Such polymers include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either 45 α-, β-, or ω-amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides. polyethyleneimines, polygrylene sulfides, polysiloxanes. polyimides, polyacetates, or other polymers which will be 50 apparent upon review of this disclosure. It will be recognized further, that illustrations herein are primarily with reference to C- to N-terminal synthesis, but the invention could readily be applied to N- to C-terminal synthesis without departing from the scope of the invention.

A. Deprotection and Addition

The present invention uses a masked light source or other activator to direct the simultaneous synthesis of many different chemical compounds. FIG. 1 is a flow chart illustrating the process of forming chemical compounds according 60 to one embodiment of the invention. Synthesis occurs on a solid support 2. A pattern of illumination through a mask 4a using a light source 6 determines which regions of the support are activated for chemical coupling. In one preferred embodiment activation is accomplished by using light to 65 remove photolabile protecting groups from selected areas of the substrate.

After deprotection, a first of a set of building blocks (indicated by "A" in FIG. 1), each bearing a photolabile protecting group (indicated by "X") is exposed to the surface of the substrate and it reacts with regions that were addressed by light in the preceding step. The substrate is then illuminated through a second mask 4b, which activates another region for reaction with a second protected building block "B". The pattern of masks used in these illuminations and the sequence of reactants define the ultimate products and their locations, resulting in diverse sequences at predefined locations, as shown with the sequences ACEG and BDFH in the lower portion of FIG. 1. Preferred embodiments of the invention take advantage of combinatorial masking strategies to form a large number of compounds in

A high degree of miniaturization is possible because the density of compounds is determined largely with regard to spatial addressability of the activator, in one case the diffraction of light. Each compound is physically accessible and its position is precisely known. Hence, the array is spatially-addressable and its interactions with other molecules can be assessed.

In a particular embodiment shown in FIG. 1, the substrate contains amino groups that are blocked with a photolabile protecting group. Amino acid sequences are made accessible for coupling to a receptor by removal of the photoprotective groups.

When a polymer sequence to be synthesized is, for example, a polypeptide, amino groups at the ends of linkers attached to a glass substrate are derivatized with nitroveratryloxycarbonyl (NVOC), a photoremovable protecting group. The linker molecules may be, for example, aryl acetylene, ethylene glycol oligomers containing from 2-10 monomers, diamines, diacids, amino acids, or combinations thereof. Photodeprotection is effected by illumination of the substrate through, for example, a mask wherein the pattern has transparent regions with dimensions of, for example, less than 1 cm², 10⁻¹ cm², 10⁻² cm², 10⁻³ cm², 10⁻⁴ cm² 10^{-5} cm², 10^{-6} cm², 10^{-7} cm², 10^{-6} cm², or 10^{-10} cm². In a preferred embodiment, the regions are between about 10×10 μm and 500×500 μm. According to some embodiments, the masks are arranged to produce a checkerboard array of polymers, although any one of a variety of geometric configurations may be utilized.

Example

In one example of the invention, free amino groups were fluorescently labelled by treatment of the entire substrate surface with fluorescein isothiocynate (FITC) after photodeprotection. Glass microscope slides were cleaned, aminated by treatment with 0.1% aminopropyltriethoxysilane in 95% ethanol, and incubated at 110° C. for 20 min. The aminated surface of the slide was then exposed to a 30 mM solution of the N-hydroxysuccinimide ester of NVOC-GABA (nitroveratryloxycarbonyl-t-amino butyric acid) in 55 DMF. The NVOC protecting group was photolytically removed by imaging the 365 nm output from a Hg arc lamp through a chrome on glass 100 µm checkerboard mask onto the substrate for 20 min at a power density of 12 mW/cm². The exposed surface was then treated with 1 mM FITC in DMF. The substrate surface was scanned in an epifluorescence microscope (Zeiss Axioskop 20) using 488 nm excitation from an argon ion laser (Spectra-Physics model 2025). The fluorescence emission above 520 nm was detected by a cooled photomultiplier (Hamamatsu 943-02) operated in a photon counting mode. Fluorescence intensity was translated into a color display with red in the highest intensity and black in the lowest intensity areas. The pres-

10

ence of a high-contrast fluorescent checkerboard pattern of 100×100 µm elements revealed that free amino groups were generated in specific regions by spatiallylocalized photodeprotection.

2. EXAMPLE

FIG. 2 is a flow chart illustrating another example of the invention. Carboxy-activated NVOC-lencine was allowed to react with an aminated substrate. The carboxy activated HOBT ester of leucine and other amino acids used in this amino protected amino acid with 37 mg HOBT (1-hydroxybenzotriazole), 111 mg BOP (benzotriazolyl-noxy-tris (dimethylamino)-phosphoniumhexafluorophosphate) and 86 ul DIEA (diisopropylethylamine) in 2.5 ml DMF. The NVOC protecting group was removed by 15 uniform illumination. Carboxy-activated NVOCphenylalanine was coupled to the exposed amino groups for 2 hours at room temperature, and then washed with DMF and methylene chloride. Two unmasked cycles of photodeprotection and coupling with carboxy-activated NVOC- 20 glycine were carried out. The surface was then illuminated through a chrome on glass 50 µl checkerboard pattern mask. Carboxy-activated Not-tBOC-O-tButyl-L-tyrosine was then added. The entire surface was uniformly illuminated to activated NVOC-L-proline was added, the NVOC group was removed by illumination, and the t-BOC and t-butyl protecting groups were removed with TFA. After removal of the protecting groups, the surface consisted of a 50 µm checkerboard array of Tyr-Gly-Gly-Phe-Leu (YGGFL) 30 (Seq. ID No:1) and Pro-Gly-Gly-Phe-Leu (PGGFL)(Seq. ID No:2).

B. Antibody Recognition

In one preferred embodiment the substrate is used to recognized by an antibody of interest.

1. EXAMPLE

In one example, the array of pentapeptides in the example illustrated in FIG. 2 was probed with a mouse monoclonal antibody directed against \(\beta\)-endorphin. This antibody (called 40 3E7) is known to bind YGGFL and YGGFM (Seq. ID No:21) with nanomolar affinity and is discussed in Meo et al., Proc. Natl. Acad. Sci. USA (1983) 80:4084, which is incorporated by reference herein for all purposes. This antibody requires the amino terminal tyrosine for high 45 affinity binding. The array of peptides formed as described in FIG. 2 was incubated with a 2 µg/ml mouse monoclonal antibody (3E7) known to recognize YGGFL 3E7 does not bind PGGFL. A second incubation with fluoresceinated goat surface was scanned with an epi-fluorescence microscope. The results showed alternating bright and dark 50 µm squares indicating that YGGFL and PGGFL were synthesized in geometric array determined by the mask. A high image shows that (a) YGGFL and PGGFL were synthesized in alternate 50 µm squares, (b) YGGFL attached to the surface is accessible for binding to antibody 3E7, and (c) antibody 3E7 does not bind to PGGFL.

A three-dimensional representation of the fluorescence 60 mask intensity data in a portion of the checkboard is shown in FIG. 3. This figure shows that the border between synthesis sites is sharp. The height of each spike in this display is linearly proportional to the integrated fluorescence intensity in a 2.5 µm pixel. The transition between PGGFL and YGGFL 65 occurs within two spikes (5 µm). There is little variation in the fluorescence intensity of different YGGFL squares. The

mean intensity of sixteen YGGFL synthesis sites was 2.03× 10⁵ counts and the standard deviation was 9.6×10³ counts.

III. Synthesis

A. Reactor System

FIG. 4 schematically illustrates a device used to synthesize diverse polymer sequences on a substrate. The substrate, the area of synthesis, and the area for synthesis of each individual polymer could be of any size or shape. For example, squares, ellipsoids, rectangles, triangles, circles, or synthesis was formed by mixing 0.25 mmol of the NVOC 10 portions thereof, along with irregular geometric shapes may be utilized. Duplicate synthesis areas may also be applied to a single substrate for purposes of redundancy.

In one embodiment, the predefined regions on the substrate will have a surface area of between about 1 cm² and 10⁻¹⁰cm². In some embodiments the regions have areas of less than about 10^{-1} cm², 10^{-2} cm², 10^{-3} cm², 10^{-4} cm², 10^{-5} cm², 10^{-5} cm², 10^{-5} cm², 10^{-5} cm², 10^{-5} cm² or 10^{-10} cm². In a preferred embodiment, the regions are between about

in some embodiments a single substrate supports more than about 10 different monomer sequences and perferably more than about 100 different monomer sequences, although in some embodiments more than about 103, 104, 105, 106, 107, or 108 different sequences are provided on a substrate. photolyze the remaining NVOC groups. Finally, carboxy- 25 Of course, within a region of the substrate in which a monomer sequence is synthesized, it is preferred that the monomer sequence be substantially pure. In some embodiments, regions of the substrate contain polymer sequences which are at least about 1%, 5%, 10%, 15%, 20%. 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% pure. The device includes an automated peptide synthesizer 401. The automated peptide synthesizer is a device which flows selected reagents through a flow cell 482 under the direction of a computer determine which of a plurality of amino acid sequences is 35 404. In a preferred embodiment the synthesizer is an ABI Peptide Synthesizer, model no. 431A. The computer may be selected from a wide variety of computers or discrete logic including for, example, an IBM PC-AT or similar computer linked with appropriate internal control systems in the peptide synthesizer. The PC is provided with signals from the board computer indicative of, for example, the end of a coupling cycle.

Substrate 406 is mounted on the flow cell, forming a cavity between the substrate and the flow cell. Selected reagents flow through this cavity from the peptide synthesizer at selected times, forming an array of peptides on the face of the substrate in the cavity. Mounted above the substrate, and preferably in contact with the substrate is a mask 408. Mask 408 is transparent in selected regions to a anti-mouse antibody labeled the regions that bound 3E7. The 50 selected wavelength of light and is opaque in other regions to the selected wavelength of light. The mask is illuminated with a light source 410 such as a UV light source. In one specific embodiment the light source 410 is a model no. 82420 made by Oriel. The mask is held and translated by an contrast (>12:1 intensity ratio) fluorescence checkerboard 55 x-y-z translation stage 412 such as an x-y translation stage made by Newport Corp. The computer coordinates action of the peptide synthesizer, x-y translation stage, and light source. Of course, the invention may be used in some embodiments with translation of the substrate instead of the

> In operation, the substrate is mounted on the reactor cavity. The slide, with its surface protected by a suitable photo removable protective group, is exposed to light at selected locations by positioning the mask and illuminating the light source for a desired period of time (such as, for example, 1 sec to 60 min in the case of peptide synthesis). A selected peptide or other monomer/polymer is pumped

through the reactor cavity by the peptide synthesizer for binding at the selected locations on the substrate. After a selected reaction time (such as about 1 sec to 300 min in the case of peptide reactions) of the monomer is washed from the system, the mask is appropriately repositioned or 5 replaced, and the cycle is repeated. In most embodiments of the invention, reactions may be conducted at or near ambient temperature.

FIGS. 5a and 5b are flow charts of the software used in operation of the reactor system. At step 502 the peptide 10 synthesis software is initialized. At step 504 the system calibrates positioners on the x-y translation stage and begins a main loop. At step 506 the system determines which, if any, of the function keys on the computer have been pressed. If F1 has been pressed, the system prompts the user for input 15 of a desired synthesis process. If the user enters F2, the system allows a user to edit a file for a synthesis process at step 510. If the user enters F3 the system loads a process from a disk at step 512. If the user enters F4 the system saves an entered or edited process to disk at step 514. If the user 20 selects F5 the current process is displayed at step 516 while selection of F6 starts the main portion of the program, i.e., the actual synthesis according to the selected process. If the user selects F7 the system displays the location of the synthesized peptides, while pressing F10 returns the user to 25 the disk operating system.

FIG. 5b illustrates the synthesis step 518 in greater detail. The main loop of the program is started in which the system first moves the mask to a next position at step 526. During the main loop of the program, necessary chemicals flow 30 through the reaction cell under the direction of the on-board computer in the peptide synthesizer. At step 528 the system then waits for an exposure command and, upon receipt of the exposure command exposes the substrate for a desired time at step 530. When an acknowledge of exposure complete is 35 received at step 532 the system determines if the process is complete at step 534 and, if so, waits for additional keyboard input at step 536 and, thereafter, exits the perform synthesis process.

A computer program used for operation of the system 40 described above is included as microfiche Appendix A (Copyright, 1990, Affymax Technologies N.V., all rights reserved). The program is written in Turbo C++ (Bodland Int'l) and has been implemented in an IBM compatible system. The motor control software is adapted from software 45 produced by Newport Corporation. It will be recognized that a large variety of programming languages could be utilized without departing from the scope of the invention herein Certain calls are made to a graphics program in "Programmer Guide to PC and PS2 Video Systems" (Wilton. 50 Microsoft Press, 1987), which is incorporated herein by reference for all purposes.

Alignment of the mask is achieved by one of two methods in preferred embodiments. In a first embodiment the system relies upon relative alignment of the various components, 55 which is normally acceptable since x-y-z translation stages are capable of sufficient accuracy for the purposes herein. In alternative embodiments, alignment marks on the substrate are coupled to a CCD device for appropriate alignment.

According to some embodiments, pure reagents are not 60 added at each step, or complete photolysis of the protective groups is not provided at each step. According to these embodiments, multiple products will be formed in each synthesis site. For example, if the monomers A and B are mixed during a synthesis step, A and B will bind to deprotected regions, roughly in proportion to their concentration in solution. Hence, a mixture of compounds will be formed

in a synthesis region. A substrate formed with mixtures of compounds in various synthesis regions may be used to perform, for example, an initial screening of a large number of compounds, after which a smaller number of compounds in regions which exhibit high binding affinity are further screened. Similar results may be obtained by only partially photylizing a region, adding a first monomer, re-photylizing the same region, and exposing the region to a second monomer.

B. Binary Synthesis Strategy

In a light-directed chemical synthesis, the products formed depend on the pattern and order of masks, and on the order of reactants. To make a set of products there will in general be "n" possible masking schemes. In preferred embodiments of the invention herein a binary synthesis strategy-is utilized. The binary synthesis strategy is illustrated herein primarily with regard to a masking strategy, although it will be applicable to other polymer synthesis strategies such as the pin strategy, and the like.

In a binary synthesis strategy, the substrate is irradiated with a first mask, exposed to a first building block, irradiated with a second mask, exposed to a second building block, etc. Each combination of masked irradiation and exposure to a building block is referred to herein as a "cycle."

In a preferred binary masking scheme, the masks for each cycle allow irradiation of half of a region of interest on the substrate and protection of the remaining half of the region of interest. By "half" it is intended herein not to mean exactly one-half the region of interest, but instead a large fraction of the region of interest such as from about 30 to 70 percent of the region of interest. It will be understood that the entire masking scheme need not take a binary form; instead non-binary cycles may be introduced as desired between binary cycles.

In preferred embodiments of the binary masking scheme, a given cycle illuminates only about half of the region which was illuminated in a previous cycle, while protecting the remaining half of the illuminated portion from the previous cycle. Conversely, in such preferred embodiments, a given cycle illuminates half of the region which was protected in the previous cycle and protects half the region which was protected in a previous cycle.

The synthesis strategy is most readily illustrated and handled in matrix notation. At each synthesis site, the determination of whether to add a given monomer is a binary process. Therefore, each product element P_j is given by the dot product of two vectors, a chemical reactant vector, e.g., C=[A,B,C,D], and a binary vector σ_j . Inspection of the products in the example below for a four-step synthesis, shows that in one four-step synthesis $\sigma_j=[1,0,1,0]$, $\sigma_2=[1,0,0,1]$, $\sigma_3=[0,1,1,0]$, and $\sigma_4=[0,1,0,1]$, where a 1 indicates illumination and a 0 indicates protection. Therefore, it becomes possible to build a "switch matrix" S from the column vectors σ_j (j=1,k where k is the number of products).

The outcome P of a synthesis is simply P=CS, the product of the chemical reactant matrix and the switch matrix.

The switch matrix for an n-cycle synthesis yielding k products has n rows and k columns. An important attribute of S is that each row specifies a mask. A two-dimensional mask m, for the jth chemical step of a synthesis is obtained

directly from the jth row of S by placing the elements s_{ji} ... s_{jk} into, for example, a square format. The particular arrangement below provides a square format, although linear or other arrangements may be utilized.

Of course, compounds formed in a light-activated synthesis can be positioned in any defined geometric array. A square or rectangular matrix is convenient but not required. The rows of the switch matrix may be transformed into any convenient array as long as equivalent transformations are used for each row.

For example, the masks in the four-step synthesis below are then denoted by:

where 1 denotes illumination (activation) and 0 denotes no illumination.

The matrix representation is used to generate a desired set of products and product maps in preferred embodiments. Each compound is defined by the product of the chemical vector and a particular switch vector. Therefore, for each synthesis address, one simply saves the switch vector, assembles all of them into a switch matrix, and extracts each of the rows to form the masks.

In some cases, particular product distributions or a maximal number of products are desired. For example, for C=[A.B.C.D], any switch vector (σ_i) consists of four bits. Sixteen four-bit vectors exist. Hence, a maximum of 16 different products can be made by sequential addition of the reagents [A.B.C.D]. These 16 column vectors can be assembled in 16! different ways to form a switch matrix. The order of the column vectors defines the masking patterns, and therefore, the spatial ordering of products but not their makeup. One ordering of these columns gives the following switch matrix (in which "null" (θ) additions are included in brackets for the sake of completeness, although such null additions are elsewhere ignored herein):

σι															o ≥	
1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	A
[0	0	0	0	0	0	0	0	1	1	1	i	1	1	1	1]	ø
1	1	1	1	0	0	0	0	1	ı	1	1	0	0	0	0	B
S = {0	0	0	0	i	1	1	1	0	0	0	0	ı	1	1	1]	•
1	1	0	0	1	1	0	0	. 1	1	0	0	ı	1	0	0	C
(0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1]	•
1	0	i	0	1	0	1	0	1	0	1	0	1	0	1	0	D
OJ	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1]	ф

The columns of S according to this aspect of the invention are the binary representations of the numbers 15 to 0. The sixteen products of this binary synthesis are ABCD, ABC, 60 ABD, AB, ACD, AC, AD, A, BCD, BC, BD, B, CD, C, D, and 0 (null). Also note that each of the switch vectors from the four-step synthesis masks above (and hence the synthesis products) are present in the four bit binary switch matrix. (See columns 6, 7, 10, and 11)

This synthesis procedure provides an easy way for mapping the completed products. The products in the various

locations on the substrate are simply defined by the columns of the switch matrix (the first column indicating, for example, that the product ABCD will be present in the upper left-hand location of the substrate). Furthermore, if only 5 selected desired products are to be-made, the mask sequence can be derived by extracting the columns with the desired sequences. For example, to form the product set ABCD, ABD, ACD, AD, BCD, BD, CD, and D, the masks are formed by use of a switch matrix with only the 1st, 3rd, 5th, 10 7th, 9th, 11th, 13th, and 15th columns arranged into the switch matrix:

$$S = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

To form all of the polymers of length 4, the reactant matrix [ABCDABCDABCDABCD] is used. The switch matrix will be formed from a matrix of the binary numbers from 0 to 2¹⁶ arranged in columns. The columns having four monomers are than selected and arranged into a switch matrix. Therefore, it is seen that the binary switch matrix in general will provide a representation of all the products which can be made from an n-step synthesis, from which the desired products are then extracted.

The rows of the binary switch matrix will, in preferred embodiments, have the property that each masking step illuminates half of the synthesis area. Each masking step also factors the preceding masking step; that is, half of the region that was illuminated in the preceding step is again illuminated, whereas the other half is not. Half of the region that was unilluminated in the preceding step is also illuminated, whereas the other half is not. Thus, masking is recursive. The masks are constructed, as described previously, by extracting the elements of each row and placing them in a square array. For example, the four masks in S for a four-step synthesis are:

The recursive factoring of masks allows the products of a light-directed synthesis to be represented by a polynomial. (Some light activated syntheses can only be denoted by irreducible, i.e., prime polynomials.) For example, the polynomial corresponding to the top synthesis of FIG. 9a (discussed below) is

A reaction polynomial may be expanded as though it were an algebraic expression, provided that the order of joining of reactants X_1 and X_2 is preserved $(X_1X_2 \not\equiv X_2X_1)$, i.e., the products are not commutative. The product then is AC+AD+BC+BD. The polynomial explicitly specifies the reactant and implicitly specifies the mask for each step. Each pair of parentheses demarcates a round of synthesis. The chemical reactants of a round (e.g., A and B) react at nonoverlapping sites and hence cannot combine with one other. The synthe-

sis area is divided equally amongst the elements of a round (e.g., A is directed to one-half of the area and B to the other half). Hence, the masks for a round (e.g., the masks mand mB) are orthogonal and form an orthonormal set. The polynomial notation also signifies that each element in a 5 round is to be joined to each element of the next round (e.g., A with C. A with D. B with C. and B with D). This is accomplished by having mc overlap m, an m, equally, and likewise for m_D. Because C and D are elements of a round. m. and mo are orthogonal to each other and form an 10 orthonormal set.

The polynomial representation of the binary synthesis described above, in which 16 products are made from 4 reactants, is

P=(A+8)(B+8) (C+8) (D+8)

which gives ABCD, ABC, ABD, AB, ACD, AC, AD, A. BCD, BC, BD, B, CD, C, D, and 0 when expanded (with the rule that 0X=X and X0=X, and remembering that joining is ordered). In a binary synthesis, each round contains one reactant and one null (denoted by θ). Half of the synthesis area receives the reactant and the other half receives nothing. Fach mask overlaps every other mask equally.

Binary rounds and non-binary rounds can be interspersed as desired, as in

$P=(A+\theta)(B)(C+D+\theta)(E+F+G)$

The 18 compounds formed are ABCE. ABCF. ABCG. BDE, BDF, BDG, BE, BF, and BG. The switch matrix S for this 7-step synthesis is

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 S=0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 100100100100100100 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

The round denoted by (B) places B in all products because the reaction area was uniformly activated (the mask for B consisted entirely of 1's).

The number of compounds k formed in a synthesis consisting of r rounds, in which the ith round has b, chemical reactants and z, nulls, is

EE I (b+z,)

and the number of chemical steps n is

<u>-Σ</u>

The number of compounds synthesized when best and z=0 in ss all rounds is a me, compared with 2" for a binary synthesis. For n=20 and a=5, 625 compounds (all tetrameros) would be formed, compared with 1.049×106 compounds in a binary synthesis with the same number of chemical steps.

It should also be noted that rounds in a polynomial can be nested, as in

(A+(B+0)(C+0)(D+0)

The products are AD, BCD, BD, CD, D, A, BC, B, C, and

Binary syntheses are attractive for two reasons. First, they generate the maximal number of products (2") for a given

number of chemical steps (a). For four reactants, 16 compounds are formed in the binary synthesis, whereas only 4 are made when each round has two reactants. A 10-step binary synthesis yields 1.024 compounds, and a 20-step synthesis yields 1.048.576. Second. products formed in a binary synthesis are a complete nested set with lengths ranging from 0 to n. All compounds that can be formed by deleting one or more units from the longest product (the n-mer) are present. Contained within the binary set are the smaller sets that would be formed from the same reactants using any other set of masks (e.g., AC, AD, BC, and BD formed in the synthesis shown in FIG. 6 are present in the set of 16 formed by the binary synthesis). In some cases, however, the experimentally achievable spatial resolution may not suffice to accommodate all the compounds formed. 15 Therefore, practical limitations may require one to select a particular subset of the possible switch vectors for a given synthesis.

1. EXAMPLE

FIG. 6 illustrates a synthesis with binary masking scheme. The binary masking scheme provides the greatest number of sequences for a given number of cycles. According to this embodiment, a mask ml allows illumination of half of the substrate. The substrate is then exposed to the building block A, which binds at the illuminated regions.

Thereafter, the mask m2 allows illumination of half of the previously illuminated region, while protecting half of the previously illuminated region. The building block B is then added, which binds at the illuminated regions from m2.

The process continues with masks m3, m4, and m5, ABDE, ABDF, ABDG, ABE, ABF, ABG, BCE, BCF, BCG. 30 resulting in the product array shown in the bottom portion of the figure. The process generates 32 (2 raised to the power of the number of monomers) sequences with 5 (the number of monomers) cycles.

2. EXAMPLE

FIG. 7 illustrates another preferred binary masking scheme which is referred to herein as the gray code masking scheme. According to this embodiment, the masks m1 to m5 are selected such that a side of any given synthesis region is defined by the edge of only one mask. The site at which the sequence BCDE is formed, for example, has its right edge defined by m5 and its left side formed by mask m4 (and no other mask is aligned on the sides of this site). Accordingly, problems created by misalignment, diffusion of light under the mask and the like will be minimized.

3. EXAMPLE

FIG. 8 illustrates another binary masking scheme. According to this scheme, referred to herein as a modified gray code masking scheme, the number of masks needed is minimized. For example, the mask m2 could be the same 50 mask as m1 and simply translated laterally. Similarly, the mask m4 could be the same as mask m3 and simply translated laterally.

4. EXAMPLE

A four-step synthesis is shown in FIG. 9a. The reactants are the ordered set {A,B,C,D}. In the first cycle, illumination through m, activates the upper half of the synthesis area. Building block A is then added to give the distribution 602. Illumination through mask m2 (which activates the lower half), followed by addition of B yields the next intermediate 60 distribution 604. C is added after illumination through m3 (which activates the left half) giving the distribution 644, and D after illumination through m4 (which activates the right half), to yield the final product pattern 608 (AC,AD, BC,BD).

5. EXAMPLE

The above masking strategy for the synthesis may be extended for all 400 dipeptides from the 20 naturally occurring amino acids as shown in FIG. 9b. The synthesis consists of two rounds, with 20 photolysis and chemical coupling cycles per round. In the first cycle of round 1. mask 1 activates 1/20th of the substrate for coupling with the first of 20 amino acids. Nineteen subsequent illumination/coupling 5 cycles in round 1 yield a substrate consisting of 20 rectangular stripes each bearing a distinct member of the 20 amino acids. The masks of round 2 are perpendicular to round 1 masks and therefore a single illumination/coupling cycle in cycles of round 2 complete the synthesis of the 400 dipeptides.

6. EXAMPLE

The power of the binary masking strategy can be appreciated by the outcome of a 10-step synthesis that produced 15 1,024 peptides. The polynomial expression for this 10-step binary synthesis was:

$(f+\theta)(Y+\theta)(G+\theta)(A+\theta)(G+\theta)(T+\theta)(F+\theta)(L+\theta)(S+\theta)(F+\theta)$

Each peptide occupied a 400×400 µm square. A 32x32 20 peptide array (1.024 peptides, including the null peptide and 10 peptides of l=1, and a limited number of duplicates) was clearly evident in a fluorescence scan following side group deprotection and treatment with the antibody 3E7 and fluorescinated antibody. Each synthesis site was a 400×400 µm 25 square.

The scan showed a range of fluorescence intensities, from a background value of 3,300 counts to 22,400 counts in the brightest square (x=20, y=9). Only 15 compounds exhibited an intensity greater than 12.300 counts. The median value of 30 the array was 4,800 counts.

The identity of each peptide in the array could be determined from its x and y coordinates (each range from 0 to 31) and the map of FIG. 10. The chemical units at positions 2. 5, 6, 9, and 10 are specified by the y coordinate and those at 35 positions 1, 3, 4, 7, 8 by the x coordinate. All but one of the peptides was shorter than 10 residues. For example, the peptide at x=12 and y=3 is YGAGF (SEQ. ID No:3) (positions 1, 6, 8, 9, and 10 are nulls). YGAFLS (SEQ. ID No:4), the brightest element of the array, is at x=20 and y=9. 40

It is often desirable to deduce a binding affinity of a given peptide from the measured fluorescence intensity. Conceptually, the simplest case is one in which a single peptide binds to a univalent antibody molecule. The fluorescence scan is carried out after the slide is washed with 45 buffer for a defined time. The order of fluorescence intensities is then a measure primarily of the relative dissociation rates of the antibody-peptide complexes. If the on-rate constants are the same (e.g., if they are diffusion-controlled), the order of fluorescence intensities will correspond to the 50 order of binding affinities. However, the situation is sometimes more complex because a bivalent primary antibody and a bivalent secondary antibody are used. The density of peptides in a synthesis area corresponded to a mean separation of ~7 nm, which would allow multivalent antibody- 55 peptide interactions. Hence, fluorescence intensities obtained according to the method herein will often be a qualitative indicator of binding affinity.

Another important consideration is the fidelity of synthesis. Deletions are produced by incomplete photodeprotection 60 or incomplete coupling. The coupling yield per cycle in these experiments is typically between 85% and 95%. Implementing the switch matrix by masking is imperfect because of light diffraction, internal reflection, and scattering. Consequently, stowaways (chemical units that should 65 not be on board) arise by unintended illumination of regions that should be dark. A binary synthesis array contains many

of the controls needed to assess the fidelity of a synthesis. For example, the fluorescence signal from a synthesis area nominally containing a tetrapeptide ABCD could come from a tripeptide deletion impurity such as ACD. Such an artifact would be ruled out by the finding that the fluorescence intensity of the ACD-site is less than that of the ABCD site.

The fifteen most highly labelled peptides in the array obtained with the synthesis of 1.024 peptides described above, were YGAFLS (SEQ. ID No:5). YGAFS (SEQ. ID round 2 yields 20 dipeptides. The 20 illumination/coupling 10 No:6), YGAFL (SEQ. ID No:7), YGGFLS (SEQ. ID No:8). YGAF (SEQ. ID No:8), YGALS (SEQ. ID No:9), YGGFS (SEQ. ID No:10), YGAL (SEQ. ID No:11), YGAFLF (SEQ. ID No:12), YGAF (SEQ. ID No:13). YGAFF (SEQ. ID No:14), YGGLS (SEQ. ID No:15). YGGFL (SEQ. ID No:16), SEQ. ID No:17), and YGAFLSF (SEQ. I fifteen begin with YG, which agrees with previous work showing that an amino-terminal tyrosine is a key determinant of binding. Residue 3 of this set is either A or G, and residue 4 is either F or L. The exclusion of S and T from these positions is clear cut. The finding that the preferred sequence is YG (A/G) (F/L) fits nicely with the outcome of a study in which a very large library of peptides on phage generated by recombinant DNA methods was screened for binding to antibody 3E7 (see Cwirls et al., Proc. Natl. Acad. Sci. USA. (1990) 87:6378, incorporated herein by reference). Additional binary syntheses based on leads from peptides on phage experiments show that YGAFMQ (SEQ. ID No:18), YGAFM (SEQ. ID No:19), and YGAFQ (SEQ. ID No:20) give stronger fluorescence signals than does YGGFM, the immunogen used to obtain antibody 3E7.

Variations on the above masking strategy will be valuable in certain circumstances. For example, if a "kernel" sequence of interest consists of PQR separated from XYZ and that the aim is to synthesize peptides in which these units are separated by a variable number of different residues, then the kernel can be placed in each peptide by using a mask that has 1's everywhere. The polynomial representation of a suitable synthesis is:

$(P)(Q)(R)(A+\theta)(B+\theta)(C+\theta)(D+\theta)(X)(Y)(Z)$

Sixteen peptides will be formed, ranging in length from the 6-mer PQRXYZ to the 10-mer PQRABCDXYZ.

Several other masking strategies will also find value in selected circumstances. By using a particular mask more than once, two or more reactants will appear in the same set of products. For example, suppose that the mask for an 8-step synthesis is

A 11110000			
B 00001111			
C 11001100			
D 00110011			•
E 10101010			
F 01010101			
G 11110000			
H 00001111			

The products are ACEG, ACFG, ADEG, ADFG, BCEH. BCFH, BDEH, and BDFH. A and G always appear together because their additions were directed by the same mask, and likewise for B and H.

C. Linker Selection

According to preferred embodiments the linker molecules used as an intermediary between the synthesized polymers and the substrate are selected for optimum length and/or type for improved binding interaction with a receptor. According to this aspect of the invention diverse linkers of varying length and/or type are synthesized for subsequent attachment of a ligand. Through variations in the length and type of linker, it becomes possible to optimize the binding interaction between an immobilized ligand and its receptor.

The degree of binding between a ligand (peptide, '5 inhibitor, hapten, drug, etc.) and its receptor (enzyme. antibody, etc.) when one of the partners is immobilized on to a substrate will in some embodiments depend on the accessibility of the receptor in solution to the immobilized ligand. The accessibility in turn will depend on the length 10 and/or type of linker molecule employed to immobilize one of the partners. Preferred embodiments of the invention therefore employ the ULSIPSTM technology described herein to generate an array of, preferably, inactive or inert linkers of varying length and/or type, using photochemical 15 protecting groups to selectively expose different regions of the substrate and to build upon chemically-active groups.

In the simplest embodiment of this concept, the same unit is attached to the substrate in varying multiples or lengths in known locations on the substrate via VLSIPSTM techniques 20 to generate an array of polymers of varying length. A single ligand (peptide, drug, hapten, etc.) is attached to each of them, and an assay is performed with the binding site to evaluate the degree of binding with a receptor that is known impacts the ability of the receptor to bind to the ligand, varying levels of binding will be observed. In general, the linker which provides the highest binding will then be used to assay other ligands synthesized in accordance with the techniques berein.

According to other embodiments the binding between a single ligand/receptor pair is evaluated for linkers of diverse monomer sequence. According to these embodiments, the linkers are synthesized in an array in accordance with the techniques herein and have different monomer sequence 35 (and, optionally, different lengths). Thereafter, all of the linker molecules are provided with a ligand known to have at least some binding affinity for a given receptor. The given receptor is then exposed to the ligand and binding affinity is deduced. Linker molecules which provide adequate binding 40 between the ligand and receptor are then utilized in screening studies.

D. Protecting Groups

As discussed above, selectively removable protecting groups allow creation of well defined areas of substrate 45 surface having differing reactivities. Preferably, the protecting groups are selectively removed from the surface by applying a specific activator, such as electromagnetic radiation of a specific wavelength and intensity. More preferably, the specific activator exposes selected areas of surface to 50 has the general formula: remove the protecting groups in the exposed areas.

Protecting groups of the present invention are used in conjunction with solid phase oligomer syntheses, such as peptide syntheses using natural or unnatural amino acids, nucleotide syntheses using deoxyribonucleic and ribo- 55 nucleic acids, oligosaccharide syntheses, and the like. In addition to protecting the substrate surface from unwanted reaction, the protecting groups block a reactive end of the monomer to prevent self-polymerization. For instance, attachment of a protecting group to the amino terminus of an 60 activated amino acid, such as an N-hydroxysuccinimideactivated ester of the amino acid, prevents the amino terminus of one monomer from reacting with the activated ester portion of another during peptide synthesis. Alternatively, the protecting group may be attached to the carboxyl group 65 of an amino acid to prevent reaction at this site. Most protecting groups can be attached to either the amino or the

carboxyl group of an amino acid, and the nature of the chemical synthesis will dictate which reactive group will require a protecting group. Analogously, attachment of a protecting group to the 5'-hydroxyl group of a nucleoside during synthesis using for example, phosphate-triester coupling chemistry, prevents the 5-hydroxyl of one nucleoside from reacting with the 3'-activated phosphate-triester of

Regardless of the specific use, protecting groups are employed to protect a moiety on a molecule from reacting with another reagent. Protecting groups of the present invention have the following characteristics: they prevent selected reagents from modifying the group to which they are attached; they are stable (that is, they remain attached to the molecule) to the synthesis reaction conditions; they are removable under conditions that do not adversely affect the remaining structure; and once removed, do not react appreciably with the surface or surface-bound oligomer. The selection of a suitable protecting group will depend, of course, on the chemical nature of the monomer unit and oligomer, as well as the specific reagents they are to protect against.

In a preferred embodiment, the protecting groups are photoactivatable. The properties and uses of photoreactive protecting compounds have been reviewed. See, McCray et to bind to the ligand. In cases where the linker length 25 al., Ann. Rev. of Biophys. and Biophys. Chem. (1989) 18:239-270, which is incorporated herein by reference. Preferably, the photosensitive protecting groups will be removable by radiation in the ultraviolet (UV) or visible portion of the electromagnetic spectrum. More preferably, the protecting groups will be removable by radiation in the near UV or visible portion of the spectrum. In some embodiments, however, activation may be performed by other methods such as localized heating, electron beam lithography, laser pumping, oxidation or reduction with microelectrodes; and the like. Sulfonyl compounds are suitable reactive groups for electron beam lithography. Oxidative or reductive removal is accomplished by exposure of the protecting group to an electric current source, preferably using microelectrodes directed to the predefined regions of the surface which are desired for activation. Other methods may be used in light of this disclosure.

Many, although not all, of the photoremovable protecting groups will be aromatic compounds that absorb near-UV and visible radiation. Suitable photoremovable protecting groups are described in, for example, McCray et al., Patchornik, J. Amer. Chem. Soc. (1970) 92:6333, and Amit et al., J. Org. Chem. (1974) 39:192, which are incorporated herein by reference.

A preferred class of photoremovable protecting groups

where R1, R2, R3, and R4 independently are a hydrogen atom, a lower alkyl, aryl, benzyl, halogen, hydroxyl, alkoxyl, thiol, thioether, amino, nitro, carboxyl, formate, formamido or phosphido group, or adjacent substituents (i.e., R1-R2, R2-R3, R3-R4) are substituted oxygen groups that together form an cyclic acetal or ketal; R5 is a hydrogen atom, a alkoxyl, alkyl, hydrogen, halo, aryl, or alkenyl group, and n=0 or 1.

10

25

40

55

A preferred protecting group, 6-nitroveratryl (NV), which is used for protecting the carboxyl terminus of an amino acid or the hydroxyl group of a nucleotide, for example, is formed when R^2 and R^3 are each a methoxygroup, R^1 , R^4 and R^5 are each a hydrogen atom, and n=0:

A preferred protecting group, 6-nitroveratryloxycarbonyl (NVOC), which is used to protect the amino terminus of an amino acid, for example, is formed when R² and R³ are each a methoxy group, R¹, R⁴ and R⁵ are each a hydrogen atom, and rest:

Another preferred protecting group, 6-nitropiperonyl ³⁰ (NP), which is used for protecting the carboxyl terminus of an amino acid or the hydroxyl group of a nucleotide, for example, is formed when R² and R³ together form a methylene acetal, R¹, R⁴ and R⁵ are each a hydrogen atom, and 35 n=0:

Another preferred protecting group. 6-nitropiperonyloxycarbonyl (NPOC), which is used to protect the amino terminus of an amino acid, for example, is formed when \mathbb{R}^2 and \mathbb{R}^3 together form a methylene acetal. 50 \mathbb{R}^1 , \mathbb{R}^4 and \mathbb{R}^5 are each a hydrogen atom, and n=1:

A most preferred protecting group, methyl-6-nitroveratryl (MeNV), which is used for protecting the carboxyl terminus of an amino acid or the hydroxyl group of a nucleotide, for example, is formed when R² and R³ are each a methoxy 65 group, R¹ and R⁴ are each a hydrogen atom, R³ is a methyl group, and n=0:

Another most preferred protecting group, methyl-6-nitroveratryloxycarbonyl (MeNVOC), which is used to protect the amino terminus of an amino acid, for example, is formed when \mathbb{R}^2 and \mathbb{R}^3 are each a methoxy group, \mathbb{R}^1 and \mathbb{R}^4 are each a hydrogen atom. \mathbb{R}^5 is a methyl group, and n=1:

Another most preferred protecting group, methyl-6-nitropiperonyl (MeNP), which is used for protecting the carboxyl terminus of an amino acid or the hydroxyl group of a nucleotide, for example, is formed when R² and R³ together form a methylene acetal, R¹ and R⁴ are each a hydrogen atom, R⁵ is a methyl group, and n=0:

Another most preferred protecting group, methyl-6nitropiperonyloxycarbonyl (MeNPOC), which is used to 45 protect the amino terminus of an amino acid, for example, is formed when R² and R³ together form a methylene acetal, R¹ and R⁴ are each a hydrogen atom, R⁵ is a methyl group,

A protected amino acid having a photoactivatable oxycarbonyl protecting group, such NVOC or NPOC or their corresponding methyl derivatives, MeNVOC or MeNPOC, respectively, on the amino terminus is formed by acylating the amine of the amino acid with an activated oxycarbonyl ester of the protecting group. Examples of activated oxycarbonyl esters of NVOC and MeNVOC have the general formula:

where X is halogen, mixed anhydride, phenoxy, 20 p-nitrophenoxy, N-hydroxysuccinimide, and the like.

A protected amino acid or nucleotide having a photoactivatable protecting group, such as NV or NP or their corresponding methyl derivatives, MeNV or MeNP, 25 respectively, on the carboxy terminus of the amino acid or 5-hydroxy terminus of the nucleotide, is formed by acylating the carboxy terminus or 5-OH with an activated benzyl derivative of the protecting group. Examples of activated benzyl derivatives of MeNV and MeNP have the general 30 hydrogen, or alkenyl group, and n=0 or 1. formula:

where X is halogen, hydroxyl, tosyl, mesyl, trifluormethyl, diazo, azido, and the like.

Another method for generating protected monomers is to react the benzylic alcohol derivative of the protecting group with an activated ester of the monomer. For example, to protect the carboxyl terminus of an amino acid, an activated ester of the amino acid is reacted with the alcohol derivative of the protecting group, such as 6-nitroverstrol (NVOH). Examples of activated esters suitable for such uses include: halo-formate, mixed anhydride, imidazoyl formater acyl halide, and also includes formation of the activated ester in 55 situ the use of common reagents such as DCC and the like. See Atherton et al. for other examples of activated esters.

A further method for generating protected monomers is to react the benzylic alcohol derivative of the protecting group 60 with an activated carbon of the monomer. For example, to protect the 5'-hydroxyl group of a nucleic acid, a derivative having a 5'-activated carbon is reacted with the alcohol derivative of the protecting group, such as methyl-6nitropiperonol (McPyROH). Examples of nucleotides hav- 65 ing activating groups attached to the 5'-hydroxyl group have the general formula:

where Y is a halogen atom, a tosyl, mesyl, trifluoromethyl. 10 azido, or diazo group, and the like.

Another class of preferred photochemical protecting groups has the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5

where R¹, R², and R³ independently are a hydrogen atom, a lower alkyl, aryl, benzyl, halogen, hydroxyl, alkoxyl, thiol, thioether, amino, nitro, carboxyl, formate, formamido, sulfanates, sulfido or phosphido group, R4 and R5 independently are a hydrogen atom, an alkoxy, alkyl, halo, aryl,

preferred protecting 1-pyrenylmethyloxycarbonyl (PyROC), which is used to protect the amino terminus of an amino acid, for example, is formed when R1 through R5 are each a hydrogen atom and 35 n=1:

Another preferred protecting group, 1-pyrenylmethyl (PyR), which is used for protecting the carboxy terminus of an amino acid or the hydroxyl group of a nucleotide, for example, is formed when R1 through R5 are each a hydrogen atom and n=0:

An amino acid having a pyrenylmethyloxycarbonyl protecting group on its amino terminus is formed by acylation of the free amine of amino acid with an activated oxycarbonyl ester of the pyrenyl protecting group. Examples of

35

5 mM H-SO /Dicress

activated oxycarbonyl esters of PyROC have the general formula:

where X is halogen, or mixed anhydride, p-nitrophenoxy. or 15 N-hydroxysuccinimide group, and the like.

A protected amino acid or nucleotide having a photoactivatable protecting group, such as PyR, on the carboxy terminus of the amino acid or 5'-hydroxy terminus of the nucleic acid, respectively, is formed by acylating the car- 20 boxy terminus or 5'-OH with an activated pyrenylmethyl derivative of the protecting group. Examples of activated pyrenylmethyl derivatives of PyR have the general formula:

where X is a halogen atom, a hydroxyl, diazo, or azido group, and the like.

Another method of generating protected monomers is to react the pyrenylmethyl alcohol moiety of the protecting group with an activated ester of the monomer. For example, an activated ester of an amino acid can be reacted with the alcohol derivative of the protecting group, such as pyrenyl- 40 methyl alcohol (PyROH), to form the protected derivative of the carboxy terminus of the amino acid. Examples of activated esters include halo-formate, mixed anhydride, imidazoyl formate, acyl halide, and also includes formation of the activated ester in situ and the use of common reagents such 45 remove 50% of the starting amount of protecting group. as DCC and the like.

Clearly, many photosensitive protecting groups are suitable for use in the present invention.

In preferred embodiments, the substrate is irradiated to remove the photoremovable protecting groups and create 50 was carried out in the indicated solvent with 362/364 regions having free reactive moieties and side products resulting from the protecting group. The removal rate of the protecting groups depends on the wavelength and intensity of the incident radiation, as well as the physical and chemical properties of the protecting group itself. Preferred pro- 55 tecting groups are removed at a faster rate and with a lower intensity of radiation. For example, at a given set of conditions, MeNVOC and MeNPOC are photolytically removed from the N-terminus of a peptide chain faster than their unsubstituted parent compounds, NVOC and NPOC, 60 dioxane. respectively.

Removal of the protecting group is accomplished by irradiation to liberate the reactive group and degradation products derived from the protecting group. Not wishing to NVOC- and MeNVOC-protected oligomers occurs by the following reaction schemes:

NVOC-AA-3,4-dimethoxy-6-nitrosobenzaldehyde+ CO2+AA

MeNVOC-AA-3.4-dimethoxy-6-nitrosoacetophenone+ CO2+AA

5 where AA represents the N-terminus of the amino acid oligomer.

Along with the unprotected amino acid, other products are liberated into solution: carbon dioxide and a 2.3-dimethoxy-6-mitrosophenylcarbonyl compound, which can react with nucleophilic portions of the oligomer to form unwanted secondary reactions. In the case of an NVOC-protected amino acid, the degradation product is a nitrosobenzaldehyde, while the degradation product for the other is a nitrosophenyl ketone. For instance, it is believed that the product aldehyde from NVOC degradation reacts with free amines to form a Schiff base (imine) that affects the remaining polymer synthesis. Preferred photoremovable protecting groups react slowly or reversibly with the oligomer on the support.

Again not wishing to be bound by theory, it is believed that the product ketone from irradiation of a MeNVOCprotected oligomer reacts at a slower rate with nucleophiles on the oligomer than the product aldehyde from irradiation of the same NVOC-protected oligomer. Although not unambiguously determined, it is believed that this difference in reaction rate is due to the difference in general reactivity between aldehyde and ketones towards nucleophiles due to. steric and electronic effects.

The photoremovable protecting groups of the present invention are readily removed. For example, the photolysis of N-protected L-phenylalanine in solution and having different photoremovable protecting groups was analyzed, and the results are presented in the following table:

TABLE

Photolysis of Protected L-Phe-OH NBOC NVOC MeNVOC McNPOC Solven 19 1288 110

The half life, t1/2, is the time in seconds required to NBOC is the 6-mitrobenzyloxycarbonyl group, NVOC is the 6-nitroverarryloxycarbonyl group, MeNVOC is the methyl-6-nitroveratryloxycarbonyl group, and McNPOC is the methyl-6-nitropiperonyloxycarbonyl group. The photolysis nm-wavelength irradiation having an intensity of 10 mW/cm², and the concentration of each protected phenylalanine was 0.10 mM.

The table shows that deprotection of NVOC-, MeNVOC-, and MeNPOC-protected phenylalanine proceeded faster than the deprotection of NBOC. Furthermore, it shows that the deprotection of the two derivatives that are substituted on the benzylic carbon. MeNVOC and MeNPOC, were photolyzed at the highest rates in both dioxane and acidified

1. Use of Photoremovable Groups During Solid-Phase Synthesis of Peptides

The formation of peptides on a solid-phase support requires the stepwise attachment of an amino acid to a be bound by theory, it is believed that irradiation of an 65 substrate-bound growing chain. In order to prevent unwanted polymerization of the monomeric amino acid under the reaction conditions, protection of the amino ter-

minus of the amino acid is required. After the monomer is coupled to the end of the peptide, the N-terminal protecting group is removed, and another amino acid is coupled to the chain. This cycle of coupling and deprotecting is continued for each amino acid in the peptide sequence. See Merrifield. J. Am. Chem. Soc. (1963) 85:2149, and Atherton et al., "Solid Phase Peptide Synthesis" 1989, IRL Press, London. both incorporated herein by reference for all purposes. As described above, the use of a photoremovable protecting group allows removal of selected portions of the substrate surface, via patterned irradiation, during the deprotection cycle of the solid phase synthesis. This selectively allows spatial control of the synthesis—the next amino acid is coupled only to the irradiated areas.

In one embodiment, the photoremovable protecting groups of the present invention are attached to an activated ester of an amino acid at the amino terminus:

where R is the side chain of a natural or unnatural amino acid, X is a photoremovable protecting group, and Y is an activated carboxylic acid derivative. The photoremovable protecting group. X, is preferably NVOC, NPOC, PyROC, MeNVOC. MeNPOC, and the like as discussed above. The activated ester, Y. is preferably a reactive derivative having 30 a high coupling efficiency, such as an acyl halide, mixed anhydride, N-hydroxysuccinimide ester, perfluorophenyl ester, or urethane protected acid, and the like. Other activated esters and reaction conditions are well known (See Atherton et al.).

2. Use of Photoremovable Groups During Solid-Phase Synthesis of Oligonucleotides

The formation of oligonucleotides on a solid-phase support requires the stepwise attachment of a nucleotide to a substrate-bound growing oligomer. In order to prevent unwanted polymerization of the monomeric nucleotide under the reaction conditions, protection of the 5'-hydroxyl group of the nucleotide is required. After the monomer is coupled to the end of the oligomer, the 5'-hydroxyl protecting group is removed, and another nucleotide is coupled to the chain. This cycle of coupling and deprotecting is continued for each nucleotide in the oligomer sequence. See Gait, "Oligonucleotide Synthesis: A Practical Approach" 1984. IRL Press, London, incorporated herein by reference 50 for all purposes. As described above, the use of a photoremovable protecting group allows removal, via patterned irradiation, of selected portions of the substrate surface during the deprotection cycle of the solid phase synthesis. next nucleotide is coupled only to the irradiated areas.

Oligonucleotide synthesis generally involves coupling an activated phosphorous derivative on the 3'-hydroxyl group of a nucleotide with the 5'-hydroxyl group of an oligomer bound to a solid support. Two major chemical methods exist to perform this coupling: the phosphate-triester and phosphoramidite methods (See Gait). Protecting groups of the present invention are suitable for use in either method.

In a preferred embodiment, a photoremovable protecting 65 group is attached to an activated nucleotide on the 5'-hydroxyl group:

where B is the base attached to the sugar ring; R is a 10 hydrogen atom when the sugar is deoxyribose or R is a hydroxyl group when the sugar is ribose; P represents an activated phosphorous group; and X is a photoremovable protecting group. The photoremovable protecting group, X. is preferably NV, NP, PyR. MeNV. MeNP. and the like as 15 described above. The activated phosphorous group, P, is preferably a reactive derivative having a high coupling efficiency, such as a phosphate-triester, phosphoramidite or the like. Other activated phosphorous derivatives, as well as reaction conditions, are well known (See Gait).

E. Amino Acid N-Carboxy Anhydrides Protected With a Photoremovable Group

During Merrifield peptide synthesis, an activated ester of one amino acid is coupled with the free amino terminus of a substrate-bound oligomer. Activated esters of amino acids suitable for the solid phase synthesis include halo-formate, mixed anhydride, imidazoyl formate, acyl halide, and also includes formation of the activated ester in situ and the use of common reagents such as DCC and the like (See Atherton et al.). A preferred protected anact activated amino acid has the general formula:

where R is the side chain of the amino acid and X is a photoremovable protecting group. This compound is a urethane-protected amino acid having a photoremovable protecting group attach to the amine. A more preferred activated amino acid is formed when the photoremovable protecting group has the general formula:

$$R^1$$
 R^2
 R^3

where R1, R2, R3, and R4 independently are a hydrogen This selectively allows spatial control of the synthesis-the 55 atom. a lower alkyl, aryl, benzyl, halogen, hydroxyl, alkoxyl, thiol, thioether, amino, nitro, carboxyl, formate, formamido or phosphido group, or adjacent substituents (i.e., R¹-R², R²-R³, R³-R⁴) are substituted oxygen groups that together form a cyclic acetal or ketal; and R⁵ is a 60 hydrogen atom, an alkoxyl, alkyl, hydrogen, halo, aryl, or alkenyl group.

> A preferred activated amino acid is formed when the photoremovable photoremovable protecting group is 6-mitroveratryloxycarbonyl. That is, R¹ and R⁴ are each a hydrogen atom, R² and R³ are each a methoxy group, and R⁵ is a hydrogen atom. Another preferred activated amino acid is formed when the photoremovable group is

6-nitropiperonyl: R¹ and R⁴ are each a hydrogen atom. R² and R³ together form a methylene acetal, and R³ is a hydrogen atom. Other protecting groups are possible. Another preferred activated ester is formed when the photoremovable group is methyl-6-nitroveratryl or methyl-6-5 nitropiperonyl.

Another preferred activated amino acid is formed when the photoremovable protecting group has the general formula:

where R¹, R², and R³ independently are a hydrogen atom, a lower alkyl, aryl, benzyl, halogen, hydroxyl, alknxyl, thiol, thioether, amino, nitro, carboxyl, formate, formamido, sulfanates, sulfido or phosphido group, and R⁴ and R³ independently are a hydrogen atom, an alkoxy, alkyl, halo, aryl, hydrogen, or alkenyl group. The resulting compound is a trethane-protected amino acid having a pyrenylmethyloxycarbonyl protecting group attached to the amine. A more preferred embodiment is formed when R¹ through R³ are each a hydrogen atom.

The urethane-protected amino acids having a photore-movable protecting group of the present invention are prepared by condensation of an N-protected amino acid with an acylating agent such as an acyl halide, anhydride, chloroformate and the like (See Fuller et al., U.S. Pat. No. 4,946,942 and Fuller et al., J. Amer. Chem. Soc. (1990) 112:7414-7416, both herein incorporated by reference for all purposes).

Urethane-protected amino acids having photoremovable protecting groups are generally useful as reagents during solid-phase peptide synthesis, and because of the spatially selectivity possible with the photoremovable protecting group, are especially useful for the spatially addressable peptide synthesis. These amino acids are diffunctional: the urethane group first serves to activate the earboxy terminus for reaction with the amine bound to the surface and, once the peptide bond is formed, the photoremovable protecting group protects the newly formed amino terminus from further reaction. These amino acids are also highly reactive to nucleophiles, such as deprotected amines on the surface of the solid support, and due to this high reactivity, the solid-phase peptide coupling times are significantly reduced, and yields are typically higher.

IV. Data Collection

A. Data Collection System

Substrates prepared in accordance with the above description are used in one embodiment to determine which of the plurality of sequences thereon bind to a receptor of interest. FIG. 11 illustrates one embodiment of a device used to 60 detect regions of a substrate which contain flourescent markers. This device would be used, for example, to detect the presence or absence of a labeled receptor such as an antibody which has bound to a synthesized polymer on a substrate

Light is directed at the substrate from a light source 1002 such as a laser light source of the type well known to those

of skill in the art such as a model no. 2025 made by Spectra Physics. Light from the source is directed at a lens 1004 which is preferably a cylindrical lens of the type well known to those of skill in the art. The resulting output from the lens 1004 is a linear beam rather than a spot of light, resulting in the capability to detect data substantially simultaneously along a linear array of pixels rather than on a pixel-by-pixel basis. It will be understood that a cylindrical lens is used herein as an illustration of one technique for generating a linear beam of light on a surface, but that other techniques could also be utilized.

The beam from the cylindrical lens is passed through a dichroic mirror or prism (1006) and directed at the surface of the suitably prepared substrate 1008. Substrate 1008 is placed on an x-y translation stage 1009 such as a model no. 15 PM500-8 made by Newport. Light at certain locations on the substrate will be fluoresced and transmitted along the path indicated by dashed lines back through the dichroic mirror. and focused with a suitable lens 1010 such as an f/1.4 camera lens on a linear detector 1012 via a variable f stop 20 focusing lens 1014. Through use of a linear light beam, it becomes possible to generate data over a line of pixels (such as about 1 cm) along the substrate, rather than from individual points on the substrate. In alternative embodiments, light is directed at a 2-dimensional area of the substrate and 25 fluoresced light detected by a 2-dimensional CCD array. Linear detection is preferred because substantially higher power densities are obtained.

Detector 1012 detects the amount of light fluoresced from the substrate as a function of position. According to one subodiment the detector is a linear CCD array of the type commonly known to those of skill in the art. The x-y translation stage, the light source, and the detector 1012 are all operably connected to a computer 1016 such as an IBM PC-AT or equivalent for control of the device and data so collection from the CCD array.

In operation, the substrate is appropriately positioned by the translation stage. The light source is then illuminated, and intensity data are gathered with the computer via the detector.

FIG. 12 illustrates the architecture of the data collection system in greater detail. Operation of the system occurs under the direction of the photon counting program 1102 (photon), included herewith as Appendix B. The user inputs the scan dimensions, the number of pixels or data points in a region, and the scan speed to the counting program. Via a GP1B bus 1104 the program (in an IBM PC compatible computer, for example) interfaces with a multichannel scaler 1106 such as a Stanford Research SR 430 and an x-y stage controller 1108 such as a PM500. The signal from the light from the fluorescing substrate enters a photon counter 1110. providing output to the scaler 1106. Data are output from the scaler indicative of the number of counts in a given region. After scanning a selected area, the stage controller is activated with commands for acceleration and velocity, which in 55 turn drives the scan stage 1112 such as a PM500-A to another region.

Data are collected in an image data file 1114 and processed in a scaling program 1116, also included in Appendix B. A scaled image is output for display on, for example, a VGA display 1118. The image is scaled based on an input of the percentage of pixels to clip and the minimum and maximum pixel levels to be viewed. The system outputs for use the min and max pixel levels in the raw data.

B. Data Analysis

The output from the data collection system is an array of data indicative of fluorescent intensity versus location on the substrate. The data are typically taken over regions substan-

tially smaller than the area in which synthesis of a given polymer has taken place. Merely by way of example, if polymers were synthesized in squares on the substrate having dimensions of 500 microns by 500 microns, the data may be taken over regions having dimensions of 5 microns 3 by 5 microns. In most preferred embodiments, the regions over which flourescence data are taken across the substrate are less than about 1/2 the area of the regions in which individual polymers are synthesized, preferably less than 1/10 the area in which a single polymer is synthesized, and most 10 nucleic acid synthesis. preferably less than 1/100 the area in which a single polymer is synthesized. Hence, within any area in which a given polymer has been synthesized, a large number of fluorescence data points are collected.

A plot of number of pixels versus intensity for a scan of 15 a ceil when it has been exposed to, for example, a labeled antibody will typically take the form of a bell curve, but spurious data are observed, particularly at higher intensities. Since it is desirable to use an average of fluorescent intensity over a given synthesis region in determining relative binding 20 affinity, these spurious data will tend to undesirably skew the data.

Accordingly, in one embodiment of the invention the data are corrected for removal of these spurious data points, and an average of the data points is thereafter utilized in determining relative binding efficiency.

FIG. 13 illustrates one embodiment of a system for removal of spurious data from a set of fluorescence data such as data used in affinity screening studies. A user or the system inputs data relating to the chip location and cell corners at step 1302. From this information and the image 30 file, the system creates a computer representation of a histogram at step 1304, the histogram (at least in the form of a computer file) plotting number of data pixels versus

For each cell, a main data analysis loop is then performed. 35 For each cell, at step 1306, the system calculates the total intensity or number of pixels for the bandwidth centered around varying intensity levels. For example, as shown in the plot to the right of step 1306, the system calculates the number of pixels within the band of width w. The system then "moves" this bandwidth to a higher center intensity, and again calculates the number of pixels in the bandwidth. This process is repeated until the entire range of intensities has been scanned, and at step 1368 the system determines which band has the highest total number of pixels. The data within this bandwidth are used for further analysis. Assuming the bandwidth is selected to be reasonably small, this procedure will have the effect of eliminating spurious data located at the higher intensity levels. The system then repeats at step 1310 if all cells have been evaluated, or repeats for the next

At step 1312 the system then integrates the data within the bandwidth for each of the selected cells, sorts the data at step 1314 using the synthesis procedure file, and displays the data to a user on, for example, a video display or a printer.

V. Representative Applications

A. Oligonucleotide Synthesis

The generality of light directed spatially addressable parallel chemical synthesis is demonstrated by application to

1. Example

Light activated formation of a thymidinecytidine dimer was carried out. A three dimensional representation of a fluorescence scan showing a checkerboard pattern generated by the light-directed synthesis of a dinucleotide is shown in FIG. 8. 5-nitroveratryl thymidine was attached to a synthesis substrate through the 3' hydroxyl group. The nitroveratryl protecting groups were removed by illumination through a 500 mm checkerboard mask. The substrate was then treated with phosphoramidite activated 2'-deoxycytidine. In order to follow the reaction fluorometrically, the deoxycytidine had been modified with an FMOC protected aminohexyl linker attached to the exocyclic amine (5'-O-dimethoxytrityl-4-N-(6-N-fluorenylmethylcarbamoyl-hexylcarboxy)-2'deoxycytidine). After removal of the FMOC protecting group with base, the regions which contained the dinucleotide were fluorescently labelled by treatment of the substrate with 1 mM FITC in DMF for one hour.

The three-dimensional representation of the fluorescent intensity data in FIG. 14 clearly reproduces the checkerboard illumination pattern used during photolysis of the substrate. This result demonstrates that oligonucleotides as well as peptides can be synthesized by the light-directed method.

. VI. Conclusion

The inventions herein provide a new approach for the simultaneous synthesis of a large number of compounds. The method can be applied whenever one has chemical building blocks that can be coupled in a solid-phase format, and when light can be used to generate a reactive group.

The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. Merely by way of example, while the invention is illustrated primarily with regard to peptide and nucleotide synthesis, the invention is not so limited. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

SEQUENCE LISTENO

- (1) GENERAL INFORMATION:
 - (i i i) NUMBER OF SEQUENCES: 21
- (2) INFORMATION FOR SEQ ID NO:1:
 - (1) SBOURNCE CHARACTERISTICS:
 - (A)LENGTH: 5
 - (B) TYPE: maior acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: Incom

-continued

```
( i i ) MOLECULE TYPE: popido
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:1:
         Tyr Gly Gly Phe Len
(2) INFORMATION FOR SEQ ID NO:2:
         ('i ') SEQUENCE CHARACTERISTICS:
                   (A) LENOTE: 5 amino mids
(B) TYPE: amino acid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Boser
       ( i i ) MOLECULE TYPE: popide
       ( z i ) SEQUENCE DESCRIPTION: SEQ ID NO:2:
         Pro Gly Gly Pbe Len
( 2 ) INFORMATION FOR SBQ ID NO:3:
     . . . (.i ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGIE: 5 amino acida
                   (B) TYPE: serion acid
(C) STRANDEDNESS: single
                   ( D ) TOPOLOUT: Been
       ( i i ) MOLECULE TYPE popule
       ( \mathbf{x},\mathbf{i} ) SEQUENCE DESCRIPTION; SEQ ID NO:3:
        Tyr Gly Ala Gly Phe
( 2 ) INFORMATION FOR SBQ ID NO:4:
       9 ( i ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTE: 6 amino árida
                   (B) TYPE: amino sold
(C) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Emer
       ( i i ) MOLECULE TYPE: popide
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:4:
( 2 ) INFORMATION FOR SEQ ID NO.5:
         ( i ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTE: 5 amino acida
( B ) TYPE: anino acid
                   ( C ) STRANDEDNESS: migh
                 (D) TOPOLOGY: Heer
       ( i i ) MOLECULE TYPE: popula
       ( \mathbf{z}.\mathbf{i}. ) SEQUENCE DESCRIPTION: SEQ ID NO.5:
( 2 ) INFORMATION FOR 58Q ID NO:6:
```

(i) SEQUENCE CHARACTERISTICS:

- (A)LENGTE: 5 mains saids (B)TYPE: mains said
- (C) STRANDEDNESS: mingle
- (D) TOPOLOGY: limes

```
( i i ) MOLECULE TYPE: pepide
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:6:
         Tyr Oly Ala Phe Let
( 2 ) INFORMATION FOR SEQ ID NO:7:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 6 amino acids
                  (B) TYPE: amino acid
(C) STRANDEDNESS: single
                  (D) TOPOLOGY: Inter
       ( i i ) MOLECULE TYPE: pepide
       ( \mathbf{x},\mathbf{i} ) SEQUENCE DESCRIPTION: SEQ TO NO:7:
         Tyr Gly Gly Phe Len Ser
( 2 ) INFORMATION FOR SEQ ID NO:4:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENOTE: 4 amino acids
                   ( B ) TYPE: series said
                   ( C ) STRANDEDNESS: migh
                   ( D ) TOPOLOGY: Same
       ( i i ) MOLECULE TYPE: pupids
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:4:
         Tyr Oly Ala Pho
(2) INFORMATION FOR SBQ ID NO-9:
         ( i ) SEQUENCE CHARACTERISTICS:
                  (A) LENGTE: 5 amino scide
(B) TYPE: smino scid
                   ( C ) STRANDEDNESS:
                  (D) TOPOLOGY: Inner
       ( i i ) MOLECULE TYPE: paptide
       ( x i ) SEQUENCE DESCRIPTION: SEQ TO NO.9:
         Tyr Gly Ala Leu Ser
( 2 ) INFORMATION FOR SEQ ID NO:10:
         ( i ) SEQUENCE CHARACTERISTICS:
                   (A)LENGTE: 5 mins
                   ( D ) Tittl: miss and
                   ( C ) STRANDEDNESS:
                  (D) TOPOLOGY: See
       ( i i ) MOLECULE TYPE: popula
       ( \mathbf{x}.\mathbf{i}. ) SEQUENCE DESCRIPTION: SEQ ID NO:10:
         Tyr Oly Oly Phe Ser
( 2 ) INFORMATION FOR SEQ ID NO:11:
         ( i ) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 4 amino acids
(B) TYPE: amino acid
(C) STRANDELNESS: imple
```

(D) TOPOLOGY: Sener

```
( i i ) MOLECULE TYPE: pupido
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:U:
         Tyr Gly Ala Leu
( 2 ) INFORMATION FOR SEQ ID NO:12:
          ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGIE: 6 amino acids
                    ( B ) TYPE: some and
( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: Base
       ( i i ) MOLECULE TYPE: pupide
     . ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:12:
          Tyr Gly Ala Pho Lou Pho
( 2 ) INFORMATION FOR SBQ ID NO:13:
          ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTE: 5 amiso acids
                    ( B ) TYPE: smino and
                    ( C ) STRANDEDNESS:
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: popide
        ( \mathbf{x} \mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:13:
(2) INFORMATION FOR SEQ ID NO:14:
          ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTE: 5 amino acids
                    (B) TYPE: miso sid
(C) STRANDEDNESS: might
                    ( D ) TOPOLOGY: Smear
        ( i i ) MOLECULE TYPE popula
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:14:
          Tyr Gly Gly Les Ser
( 2 ) INFORMATION FOR SEQ ID NO:15:
          ( i ) SEQUENCE CHARACTERISTICS:
                    (A) LENTIE: 5 amino soids
(B) TYPE: amino acid
                    ( C ) STRANDEDNESS:
                (D) TOPOLOGY: Inter
        ( i i ) MOLECULE TYPE: papido
        ( \mathbf{z},\mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:15:
 ( 2 ) INFORMATION FOR SEQ ID NO:16:
           ( i ) SEQUENCE CEARACTERISTICS:
                    ( A ) LENGTH: 6 mino mids
( B ) TYPE: mino mid
( C ) STRANDEDNESS: might
```

(D) TOPOLOGY: Essen

```
( i i ) MOLECULE TYPE: papida
       ( \mathbf{x}.\mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:16:
         Tyr Oly Ala Phe Ser Phe
( 2 ) INFORMATION FOR SBQ ID NO:17:
         ( i ) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 7 amiso acids
                  (B)TYPE: amino acid
(C)STRANDEDNESS: single
                  (D) TOPOLOGY: Been
       ( i i ) MOLECULE TYPE: papids
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:17:
(2) INFORMATION FOR SEQ ID NO:18:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTE: 6 series acids
                  ( D ) TYPE: amino acid
                  ( C ) STRANDEDNESS: migh
                  ( D ) TOPOLOGY: limer
       ( i i ) MOLECULE TYPE: popide
       ( \mathbf{x},\mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:18:
         Tyr Gly Ala Phe Met Gla
( 2 ) INFORMATION FOR SBQ ID NO:19:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 5 amino exide
                  ( B ) TYPE: seizo acid
                  ( C ) STRANDEDNESS:
                  ( D ) TOPOLOGY: News
       ( i i ) MOLECULE TYPE: popide
       ( \mathbf{z},\mathbf{i} ) SEQUENCE DESCRIPTION: SEQ ID NO:19:
(2) INFORMATION FOR SEQ ID NO:30:
         ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 5 amino acida
                   ( 3 ) TOTE: series said
                  (C) STRANDEDNESS: migh
                  (D) TOPOLOGY: I
       ( i i ) MOLECULE TYPE: popula
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:30:
         Tyr Gly Ala Pho Gla
( 2 ) INFORMATION FOR $8Q ID NO:21:
```

- $(\ i\)$ SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino mids
 - (B) TYPE: mains and (C) STRANDEDNESS: might

 - (D) TOPOLOGY: News

H

This Page Blank (uspto)

United States Patent [19]

Chee et al.

[11] Patent Number:

5,837,832

[45] Date of Patent:

Nov. 17, 1998

[54]	ARRAYS OF NUCLEIC ACID	PF	ROBE	ES	0	N
[0.1	BIOLOGICAL CHIPS					

[75] Inventors: Mark Chee, Palo Alto; Maureen T.
Cronin, Los Altos; Stephen P. A.
Fodor, Palo Alto; Xiaohua/X. Huang;
Earl A. Hubbell, both of Mt. View;
Robert J. Lipshutz; Peter E. Lobban,
both of Palo Alto; MacDonald S.
Morris, San Jose; Edward L. Sheldon,
Menlo Park, all of Calif.

[73] Assignee: Affymetrix, Inc., Santa Clara, Calif.

[21] Appl. No.: 441,887

[22] Filed: May 16, 1995

Related U.S. Application Data

[63]	Continuation of Ser. No. 143,312, Oct. 26, 1993, abandoned which is a continuation-in-part of Ser. No. 82,937, Jun. 2: 1993, abandoned.	d, 5,
------	---	----------

[51]	Int. Cl. 6
[22]	U.S. Cl 536/22.1; 435/6; 435/91.1;
[52]	U.S. Cl
• •	436/501; 536/23.1; 536/24.1; 536/24.3;
	536/24.31; 536/24.32; 536/24.33; 536/25.3;

[56] References Cited

U.S. PATENT DOCUMENTS

4,656,127 4,683,195 5,002,867 5,143,854 5,202,231 5,273,632 5,527,681	7/1987 3/1991 9/1992 4/1993	Mundy 435/6 Mallis et al. 435/6 Macevicz 435/6 Pirrung et al. 436/518 Drmanac et al. 435/6 Stockham et al. 204/180.1 Homes 435/6

FOREIGN PATENT DOCUMENTS

WO 89/10977	11/1989	WIPO	***************************************	CIZQ	1100	
-------------	---------	------	---	------	------	--

WO 90/00626 WO 90/03382 WO 92/10092	1/1990 4/1990 6/1992	WIPO WIPO WIPO	C12Q 1/68 C12Q 1/68 C07H 21/00 A01N 1/02 C12Q 1/68
11/A 02/10588	6/1997	WIPO	C12Q 1/68
WO 93/17126	9/1993	WIFU	

OTHER PUBLICATIONS

Maram et al. (1980) Methods in Enzymology, vol. 65, pp. 449-559.

Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989, pp. 1145-1147

Stratagene 1988 Catalog, pp. 39.

Elder, J.K., "Analysis of DNA oligonucleotide hybridization data by maximum entropy," Maximum Entropy and Bayesian Methods, pp. 1-10, Paris (1992).

Lipshutz, Robert J., "Likelihood DNA sequencing by hybridization," J. of Biomolecular Structure & Dynamics 11:637-653 (1993).

Ying Luo et al., "Cellular protein modulates effects of human immunodeficiency virus type 1 rev," J. of Virology 68:3850-3856 (1994).

Querat et al., "Nucleotide sequence analysis of SA-OMVV, a Visna-related ovine lentivirus: phylogenetic history of lentiviruses," Virology 175:434-447 (1990).

Ratner et al., "Complete nucleotide sequence of the AIDS virus, HTLV-III," Nature 313:277-284 (1985).

(List continued on next page.)

Primary Examiner—Ardin H. Marschel
Attorney, Agent, or Firm—Townsend & Townsend & Crew

ABSTRACT

DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

18 Claims, 40 Drawing Sheets

0110 1/60

3' - CCGACTGCAGTCGTT 3' - CCGACTACAGTCGTT 3' - CCGACTCCAGTCGTT

3' - CCGACTGCAGTCGTT 3' - CCGACTTCAGTCGTT

OTHER PUBLICATIONS

Wain-Hobson et al., "Nucleotide sequence of the AIDS virus, LAV," Cell 40:9-17 (1985).

Southern et al., "Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides: Evaluation Using Experimental Models," Genomics (1992) 13:1008-1017.

Sanger et al., "DNA sequencing with chain-terminating inhibitors," *Proc. Natl. Acad. Sci. USA* (1977) 74:5463-5467.

M. Cronin et al., Hybridization to Arrays of Oligonucleotides, Poster Presentation: Nucleic Acids In Medical Applications Conference sponsored by AACC, Jan. 1993, published in conference syllabus, Cancun, Mexico. M.S. Chee et al., Towards Sequencing Mitochondrial DNA Polymorphisms by Hybridization to a Custom Oligonucleotide Probe Array, American Society of Human Genetics 43rd Annual Meeting, Oct. 5-9, 1993, New Orleans, LA.

M.S. Chee et al., Genetic Analysis by Hybridization to Sequence-Specific DNA Arrays, Genome Sequencing and Analysis Conference V, Oct. 23-27, 1993, Hilton Head, SC.

P.E. Lobban et al., DNA Chips for Genetic Analysis, Genome Sequencing and Analysis Conference V, Oct. 23-27, 1993, Hilton Head, SC.

R. Lipshutz et al., Oligonucleotide Arrays for Hybridization Analysis, Genome Sequencing and Analysis Conference V, Oct. 23-27, 1993, Hilton Head, SC.

Nov. 17, 1998

Fig. 1

G Wild-Type Lane
A-Lane
C-Lane
G-Lane
T-Lane
Blank Lane
Wild-Type Lane
A-Lane
C-Lane
G-Lane
T-Lane
G-Lane
Blank Lane

1

- 3' CCGACTGCAGTCGTT
- 3' CCGACT**A**CAGTCGTT
- 3' CCGACT**C**CAGTCGTT
- 3' CCGACT**G**CAGTCGTT
- 3' CCGACTTCAGTCGTT

Fig. 2

S-CATTARAGRAPHTATCAT -- TESTSTTTCCTATS
S'-CATTARAGRAPHTATCAT

Probe set that detects the deletim best FIG. 3

FIG. 5

INTENSITY (ADJUSTED FOR BACKGROUND)

Nov. 17, 1998

Torget

FIG. 7

Fig. 9

U.S. Patent

mt4

FIG. 10

Nov. 17, 1998

FIG. 11

Fig. 12

FIG. 13

Fig. 14A

	ת מסקר ה		מי אסטי	THUBE TOOL IN HOW TO UT THUBE		
PROBE POSITON	0	1	2	3	4	5
PROBE LENGTH	13	13	12	12	12	12
SAMPLE (mt1 → 6)	4	4	4	2,5	2,5	2,5
MISMATCH POSITION FROM 3' OF PROBE	12	၁	3	12	7	2
BASE CHANGE	$t \rightarrow a$ $t \rightarrow a$ $t \rightarrow c$ $t \rightarrow c$ $t \rightarrow c$	t→a	t→a	t→c	t→c	t→c

				_	
	12	12	2	ო	g →a g →a
	12	12	2	မ	g →a
PROBE POSITON IN ROW 11 OF ARRAY	=	13	2, 4, 5	11, 3, DOÚBLE	g → a t → c DOUBLE
IN ROW 11	10	14	3,4,5	4, 11, DOUBLE	t→c DOUBLE
SITON	6	13	3,6	11, 5	t → c
ROBE PC	8	12	2, 5, 6	9,10 3,4,11 11,5	c → t t → c
п.	7	12	2, 5	9, 10	c → t c → t
	9	13	2	13	c → t
	PROBE POSITON	PROBE LENGTH	SAMPLE (mt1 → 6)	MISMATCH POSITION FROM 3' OF PROBE	BASE CHANGE

Fig. 14B

Nov. 17, 1998

 \[
 \times \ υυσα το σο συστο σο σο σο σο a o o t a a a a t o o o + 00000000+++00 ם ה הש משם הדה ה a a a a a a a a a a a a a a a ה מ האם הש אה מח ח ח מ הלהם לם הלהלם a a a o a a o o a o a o a a n a a a a a a a a a a a a a a a n a n a n th th th n n a 0 + a + 0 0 0 0 0 0 + 0 + 0 0 0 8 0 0 0 0 8 8 8 0 ם ממט מש למ לה לה לה לה 4400000H40000 ם ם דר מם מחד ב ב a o o o o o o o o o o o o o o o + 0 0 0 0 0 0 0 + 0 0 0 + חם הם ההה מ הדם הם a 4 2 0 0 0 4 2 2 0 0 0 2 2 2 0 2 0 2 th 0 2 th 2 0 2 0 ם הש ההמחח שהה מ 4 94 0 90 0 844 8 0 8 0 2 4 2 2 0 0 0 0 4 0 4 0 2 0 0 0 0 0 0 th a at a a a 0 ם מ הרחש הבש שר ה מ מ *©* רוומ ס וווע ס הווע ס המה הוה הדמ המש הה a a a a o o o o o a a o o o + 0 2 + 2 0 0 2 2 4 2 0 0 a + a a + a a + a a + a. a a a a a b t t u u u a a a a aぃぃaघघघぃы≠◀ぃ 0 0 1 0 0 0 1 0 0 0 1 0 0 0 402460024604 4×00000000000×

Fig. 1

FIG. 18

U.S. Patent

FIG. 19

0. 1. 2. 3.						G	A	Τ	G	C G	A	GUUUU	A T T T T	G	GOOOO	T	C	C		000	G	G	T
5. 5. 6. 7. 8. 9.				Ţ	ŢŢŢ	0000	TTTTT	AAAAA		9999	A	COCOCO	T			TTTT		C	С.				
10. 11. 12. C	C	T T T	AAA	TTT	† T T	000	† T T	AAA	000		AAAA	Č	Ť	•					Fi	g. 2	20		

Nov. 17, 1998

WT ("G" Substitution) Target 12-mer

"A" Substitution 12-mer Torget

"T" Substitution Target 12-mer

"C" Substitution Target 12-mer

FIG. 22

Fig. 23A

Fig. 23B

TARGET: C SUBSTITUTION IN POSITION 77

TARGET: A SUBSTITUTION IN POSITION 7

4:1 Mixture of WT and "A" Substitution 12-mer Targets

FIG. 24

Fig. 25A

TARGET: WT 12 MER

TARGET: T SUBSTITUTION IN POSITION 7

Fig. 25B

FIG. 26

Fig. 27

Fig. 28

Fig. 29

IN POLYNOMIAL NOTATION: $(T + C + A + G)^2 = ALL DIMERS$

TRIMERS

Nov. 17, 1998

Fig. 32

This is a Continuation of application Ser. No. 08/143,312, filed Oct. 26, 1993, now abandoned, which is a continuation in part of U.S. patent application Ser. No. 082,937, filed 25 Jun. 1993, now abandoned, incorporated herein by refer-

Research leading to the invention was funded in part by NIH grant No. 1R01HG00813-01 and DOE grant No. DE-FG03-92-ER81275, and the government may have certain rights to the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention provides arrays of oligonucleotide chips for analyzing molecular interactions of biological interest. The invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine, and medical diagnostics.

2. Description of Related Art

Oligonucleotide probes have long been used to detect complementary nucleic acid sequences in a nucleic acid of interest (the "target" nucleic acid). In some assay formats, the oligonucleotide probe is tethered, i.e., by covalent attachment, to a solid support, and arrays of oligonucleotide probes immobilized on solid supports have been used to detect specific nucleic acid sequences in a target nucleic acid. See, e.g., PCT patent publication Nos. WO 89/10977 and 89/11548. Others have proposed the use of large numbers of oligonucleotide probes to provide the complete nucleic acid sequence of a target nucleic but failed to provide an enabling method for using arrays of immobilized probes for this purpose. See U.S. Pat. Nos. 5,202,231 and 5,002,867 and PCT patent publication No. WO 93/17126.

The development of VLSIPS™ technology has provided methods for making very large arrays of oligonucleotide probes in very small arrays. See U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092, each of which is incorporated herein by reference. U.S. 45 patent application Ser. No. 082,937, filed Jun. 25, 1993, describes methods for making arrays of oligonucleotide probes that can be used to provide the complete sequence of a target nucleic acid and to detect the presence of a nucleic acid containing a specific nucleotide sequence.

Microfabricated arrays of large numbers of oligonucleotide probes, called "DNA chips" offer great promise for a wide variety of applications. New methods and reagents are required to realize this promise, and the present invention helps meet that need.

SUMMARY OF THE INVENTION

The present invention provides methods for making highdensity arrays of oligonucleotide probes on silica chips and for using those probe arrays to detect specific nucleic acid 60 sequences contained in a target nucleic acid in a sample. The invention also provides arrays of oligonucleotide probes on DNA chips, in which the probes have specific sequences and locations in the array to facilitate identification of a specific target nucleic acid. In another aspect, the invention provides 65 methods for detecting whether one or more specific sequences of a target nucleic acid in a sample varies from a

previously characterized sequence or reference sequence. The methods of the invention can be used to detect variations between a target and reference sequence, including single or multiple base substitutions, and deletions and insertions of bases, as well as detecting the presence, location, and sequence of other more complex variations between a target and reference sequence in a nucleic acid.

The present invention provides arrays of oligonucleotide probes immobilized on a solid support. The arrays are preferably synthesized directly on the support using VLSIPSTM technology, but other synthesis methods and immobilization of pre-synthesized oligonucleotide probes can be used to make the oligonucleotide probe arrays, called "DNA chips", of the invention. In general, these arrays comprise a set of oligonucleotide probes such that, for each base in a specific reference sequence, the set includes a probe (called the "wild-type" or "WT" probe) that is exactly complementary to a section of the reference sequence including the base of interest and four additional probes (called "substitution probes"), which are identical to the WT probes immobilized in microfabricated patterns on silica 20 probe except that the base of interest has been replaced by one of a predetermined set (typically 4) of nucleotides. In the preferred embodiment, one of the four substitution probes is identical to the wild type probe; the other three are complementary to targets that have a single-base substitution at this 25 position.

> In another aspect, the invention relates to the arrangement of individual probes in the array. In one embodiment, the probes are arranged on the chip so that probes for a given position in the sequence are adjacent, and probes for adjacent positions in the reference sequence are also adjacent to one another on the chip. One method arranges the probes for a single base in a short column (alternately row) and arranges the columns in the order of the base position to form horizontal (alternately vertical) stripes. The wild-type and each of the substitution probes have specified positions within the column so that all the probes corresponding to an A substitution, for example, are in a single row. The stripes may be separated on the chip by a blank row or column.

The DNA chips of the invention can be made in a wide number of variations. For some applications, leaving out the wild-type row, leaving out unimportant bases, pooling bases, including insertion and deletion probes, varying the length of the probes within a set to make the probes have the same or similar Tm relative to the target or to avoid secondary structure, varying the mutation position, using multiple probes for a single mutation, providing replicate probes or arrays, placing blank "streets" (no probe) between rows, columns, or individual probes, and using control probes may be appropriate.

The present invention also provides DNA chips for detecting mutations associated with cystic fibrosis, including mutations in exons 4, 7, 9, 10, 11, 20, and 21 of the CFTR gene. The invention also provides DNA chips for detecting mutations in the p53 gene, a gene in which mutations are known to be associated with a wide variety of cancers. Other DNA chips of the invention provide probe arrays for detecting specific sequences of mitochondrial DNA, useful for identification and forensic purposes. The invention also provides DNA chips for detecting specific sequences of nucleotides or mutations associated with the acquisition of a drug resistant phenotype in an infectious organism, such as rifampicin or other drug resistant TB strains and HIV, in which mutations in an RNA polymerase gene are known to give rise to drug resistance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows how the tiling method of the invention defines a set of DNA probes relative to a target nucleic acid.

In the figure, the target is a DNA molecule, the probes are single-stranded nucleic acids 16 nucleotides in length, and only a portion of the probes defined by the method is shown.

FIG. 2 shows an illustrative tiled array of the invention with probes for the detection of point mutations. The base at the position of substitution in each of the wild-type probes is shown in the wild-type lane, and the shading shows the location of the substitution probe having the wild-type sequence. The SEQ ID. NOS. corresponding to the two peptide sequences shown in the top portion of FIG. 2 are 311 10 and 312, respectively. The SEQ ID. NOS. corresponding to the five peptide sequences listed at the bottom of FIG. 2 are 313, 314, 315, 313, and 316, respectively.

FIG. 3, in panels A, B, and C, shows an image made from the region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to a wild-type target; in panel C, the chip was hybridized to a mutant &F508 target; and in panel B, the chip was hybridized to a mixture of the wild-type and mutant targets. The SEQ ID. NOS. corresponding to the four peptide sequences shown in FIG. 3 are 317-320, respectively.

FIG. 4, in sheets 1-3, corresponding to panels A, B, and C of FIG. 3, shows graphs of fluorescence intensity versus tiling position. The labels on the horizontal axis show the bases in the wild-type sequence corresponding to the position of substitution in the respective probes. Plotted are the intensities observed from the features (or synthesis sites) containing wild-type probes, the features containing the substitution probes that bound the most target ("called"), and the feature containing the substitution probes that bound the target with the second highest intensity of all the substitution probes ("2nd Highest"). The SEQ ID. NOS. corresponding to the two peptide sequences shown in sheet 1 of FIG. 4 are 321 and 318, respectively; the SEQ ID. NOS. corresponding 35 to the two peptide sequences shown in sheet 2 of FIG. 4 are 322 and 318, respectively; and the SEQ ID. NOS. corresponding to the two peptide sequences shown in sheet 3 of FIG. 4 are 323 and 318, respectively.

FIG. 5, in panels A, B, and C, shows an image made from 40 a region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to the wt480 target; in panel C, the chip was hybridized to the mu480 target; and in panel B, the chip was hybridized to a mixture of the wild-type and mutant targets. The SEQ ID. NOS. corre- 45 sponding to the peptide sequences shown in FIG. 5 are 324-327, respectively.

FIG. 6, in sheets 1-3, corresponding to panels A, B, and C of FIG. 5, shows graphs of fluorescence intensity versus tiling position. The labels on the horizontal axis show the 50 bases in the wild-type sequence corresponding to the position of substitution in the respective probes. Plotted are the intensities observed from the features (or synthesis sites) containing wild-type probes, the features containing the the feature containing the substitution probes that bound the target with the second highest intensity of all the substitution probes ("2nd Highest"). The SEQ ID. NOS. corresponding to the two peptide sequences shown in sheet 1 of FIG. 6 are 328 and 329, respectively; the SEQ ID. NOS. corresponding 60 to the two peptide sequences shown in sheet 2 of FIG. 6 are 330 and 329, respectively; and the SEQ ID. NOS. corresponding to the two peptide sequences shown in sheet 3 of FIG. 6 are 331 and 329, respectively.

region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to nucleic acid derived from the genomic DNA of an individual with wild-type ΔF508 sequences; in panel B, the target nucleic acid originated from a heterozygous (with respect to the AF508 mutation) individual.

FIG. 8, in sheets 1 and 2, corresponding to panels A and B of FIG. 7, shows graphs of fluorescence intensity versus tiling position. The labels on the horizontal axis show the bases in the wild-type sequence corresponding to the position of substitution in the respective probes. Plotted are the intensities observed from the features (or synthesis sites) containing wild-type probes, the features containing the substitution probes that bound the most target ("called"), and the feature containing the substitution probes that bound the target with the second highest intensity of all the substitution probes ("2nd Highest"). The SEQ ID NOS, corresponding to the two peptide sequences shown in sheet 2 of FIG. 8 are 332 and 318, respectively.

FIG. 9 shows the human mitochondrial genome; "O_H" is the H strand origin of replication, and arrows indicate the cloned unshaded sequence.

FIG. 10 shows the image observed from application of a sample of mitochondrial DNA derived nucleic acid (from the mt4 sample) on a DNA chip.

FIG. 11 is similar to FIG. 10 but shows the image observed from the mt5 sample.

FIG. 12 shows the predicted difference image between the mt4 and mt5 samples on the DNA chip based on mismatches between the two samples and the reference sequence.

FIG. 13 shows the actual difference image observed for the mt4 and mt5 samples.

FIG. 14, in sheets 1 and 2, shows a plot of normalized intensities across rows 10 and 11 of the array and a tabulation of the mutations detected.

FIG. 15 shows the discrimination between wild-type and mutant hybrids obtained with the chip. A median of the six normalized hybridization scores for each probe was taken; the graph plots the ratio of the median score to the normalized hybridization score versus mean counts. A ratio of 1.6 and mean counts above 50 yield no false positives.

FIG. 16 illustrates how the identity of the base mismatch may influence the ability to discriminate mutant and wildtype sequences more than the position of the mismatch within an oligonucleotide probe. The mismatch position is expressed as % of probe length from the 3'-end. The base change is indicated on the graph.

FIG. 17 provides a 5' to 3' sequence listing of one target corresponding to the probes on the chip. X is a control probe. Positions that differ in the target (i.e., are mismatched with the probe at the designated site) are in bold. The SEQ ID. NO. corresponding to the peptide sequence shown in FIG.

FIG. 18 shows the fluorescence image produced by scansubstitution probes that bound the most target ("called"), and 55 ning the chip described in FIG. 17 when hybridized to a

> FIG. 19 illustrates the detection of 4 transitions in the target sequence relative to the wild-type probes on the chip in FIG. 18.

FIG. 20 shows the alignment of some of the probes on a p⁵³ DNA chip with a 12-mer model target nucleic acid. The SEQ ID. NOS. corresponding to the fourteen peptide sequences shown in FIG. 20 are 334-347, respectively.

FIG. 21 shows a set of 10-mer probes for a p53 exon 6 FIG. 7, in panels A and B, shows an image made from a 65 DNA chip. The SEQ ID. NOS. corresponding to the thirteen peptide sequences shown in FIG. 21 are 334 and 348-359, respectively.

FIG. 22 shows that very distinct patterns are observed after hybridization of p53 DNA chips with targets having different 1 base substitutions. In the first image in FIG. 22, the 12-mer probes that form perfect matches with the wild-type target are in the first row (top). The 12-mer probes s with single base mismatches are located in the second, third, and fourth rows and have much lower signals.

FIG. 23, in graphs 2, 3, and 4, graphically depicts the data in FIG. 22. On each graph, the X ordinate is the position of the probe in its row on the chip, and the Y ordinate is the 10 signal at that probe site after hybridization.

FIG. 24 shows the results of hybridizing mixed target populations of WT and mutant p53 genes to the p53 DNA chip.

FIG. 25, in graphs 1-4, shows (see FIG. 23 as well) the 15 hybridization efficiency of a 10-mer probe array as compared to a 12-mer probe array

FIG. 26 shows an image of a p53 DNA chip hybridized to a target DNA.

FIG. 27 illustrates how the actual sequence was read from the chip shown in FIG. 26. Gaps in the sequence of letters in the WT rows correspond to control probes or sites. Positions at which bases are miscalled are represented by letters in italic type in cells corresponding to probes in which the WT bases have been substituted by other bases. The SEQ ID. NO. corresponding to the peptide sequence shown in FIG. 27 is 360.

FIG. 28 illustrates the VLSIPS™ technology as applied to shone through a mask (M₁) to activate functional groups (—OH) on a surface by removal of a protecting group (X). Nucleoside building blocks protected with photoremovable protecting groups (T-X, C-X) are coupled to the activated areas. By repeating the irradiation and coupling steps, very 35 complex arrays of oligonucleotides can be prepared.

FIG. 29 illustrates how the VLSIPSTM process can be used to prepare "nucleoside combinatorials" or oligonucleotides synthesized by coupling all four nucleosides to form dimers,

FIG. 30 shows the deprotection, coupling, and oxidation steps of a solid phase DNA synthesis method.

FIG. 31 shows an illustrative synthesis route for the nucleoside building blocks used in the VLSIPSTM method.

FIG. 32 shows a preferred photoremovable protecting 45 group, MeNPOC, and how to prepare the group in active

FIG. 33 illustrates an illustrative detection system for scanning a DNA chip.

DETAILED DESCRIPTION OF THE INVENTION

Using the VLSIPS™ method, one can synthesize arrays of many thousands of oligonucleotide probes on a substrate, such as a glass slide or chip. The method can be used, for 55 instance, to synthesize "combinatorial" arrays consisting of, for example, all possible octanucleotides. Such arrays can be used for primary sequencing-by-hybridization on genomic DNA fragments or other nucleic acids or to detect mutations in a target nucleic acid for which the normal or "wild-type" 60 nucleotide sequence is already known. Using the preferred method of the invention, one employs a strategy called "tiling" to synthesize specific sets of probes or at spatiallydefined locations on a substrate, creating the novel probe arrays and "DNA chips" of the invention.

To illustrate the tiling method of the invention, consider the problem of detecting mutations at one or more position

in the nucleotide sequence of a target nucleic acid with oligonucleotide probes of defined length. The length (L) of the probe is typically expressed as the number of nucleotides or bases in a single-stranded nucleic acid probe. For purposes of the present invention, lengths ranging from 12 to 18 bases are preferred, although shorter and longer lengths can also be employed. To employ the tiling method, one synthesizes a set of probes defined by the particular nucleotide sequence of interest in the target nucleic acid. For each base in the target DNA segment, one synthesizes a probe complementary to the subsequence of the target nucleic acid beginning at that base and ending L-1 bases to the 3'-side (see FIG. 1).

In a preferred embodiment of the invention, the probes are arranged (either by immobilization, typically by covalent attachment, of a pre-synthesized probe or by synthesis of the probe on the substrate) on the substrate or chips in lanes stretching across the chip and separated, and these lanes are in turned arranged in blocks of preferably 5 lanes, although blocks of other sizes will have useful application, as will be apparent from the following illustration. The first of these five lanes, called the "wild-type lane", contains probes arranged in order of sequence, and all of the probes are complementary to a specified wild-type nucleic acid 25 sequence. The other four lanes contain probe sets for detecting all possible single-base mutations in the defined sequence; in turn, these probe sets are defined by a position of potential non-complementarity in the probe relative to the target (i.e., a single base mismatch) and the identity of the the light directed synthesis of oligonucleotides. Light (hv) is 30 nucleotide in the probe at that position (i.e., whether the nucleotide is an A, C, G, or T nucleotide). The position of mismatch, also called the position of substitution, is preferably selected to be near the center of the probes, i.e., position 7 of a probe of L=15.

> For each probe in the wild-type lane, one synthesizes four probes (one for each of the lanes other than the wild-type lane), Three of these four probes is identical to the corresponding wild-type probe but for the base at the position of substitution, and the remaining probe is identical to the 40 wild-type probe. This set of four substitution probes is preferably placed in a column directly below (or above) the corresponding wild-type probe, thus creating an A-lane, a C-lane, a G-lane, and a T-lane. FIG. 2 shows an illustrative tiled array of the invention with probes for the detection of point mutations. The base at the position of substitution in each of the wild-type probes is shown in the wild-type lane, and the shading shows the location of the substitution probe having the wild-type sequence. Below are the probes that would be placed in the column marked by the arrow if the probe length were 15 and the position of substitution were

3'-CCGACTGCAGTCGTT (SEQ. ID. NO:1)

3'-CCGACTACAGTCGTT (SEQ. ID. NO:2)

3'-CCGACTCCAGTCGTT (SEQ. ID. NO:3)

3'-CCGACTGCAGTCGTT (SEQ. ID. NO:1)

3'-CCGACTTCAGTCGTT (SEQ. ID. NO:4)

Thus, the substitution lanes occupy four of the five lanes separating successive wild-type lanes on the chip; the blocks of five lanes can be separated by a sixth lane for measurement of background signals.

The DNA chips of the invention have a wide variety of applications. In one embodiment, the DNA chip is used to select an optimal probe from an array of probes. In this embodiment, an array of probes of variable length and 65 sequences is synthesized and then hybridized to a target nucleic acid of known sequence. The pattern of hybridization reveals the optimal length and sequence composition of

probes to detect a particular mutation or other specific sequence of nucleotides. In some circumstances, i.e., target nucleic acids with repeated sequences or with high G/C content, very long probes may be required for optimal detection. In one embodiment for detecting specific 5 sequences in a target nucleic acid with a DNA chip, repeat sequences are detected as follows. The chip comprises probes of length sufficient to extend into the repeat region varying distances from each end. The sample, prior to hybridization, is treated with a labeled oligonucleotide that 10 is complementary to a repeat region but shorter than the full length of the repeat. The target nucleic is labeled with a second, distinct label. After hybridization, the chip is scanned for probes that have bound both the labeled target and the labeled oligonucleotide probe; the presence of such 15 bound probes shows that at least two repeat sequences are

A variety of methods can be used to enhance detection of labeled targets bound to a probe on the array. In one embodiment, the protein MutS (from E. coli) or equivalent 20 proteins such as yeast MSH1, MSH2, and MSH3; mouse Rep-3, and Streptococcus Hex-A, is used in conjunction with target hybridization to detect probe-target complex that contain mismatched base pairs. The protein, labeled directly or indirectly, can be added to the chip during or after 25 hybridization of target nucleic acid, and differentially binds to homo- and heteroduplex nucleic acid. A wide variety of dyes and other labels can be used for similar purposes. For instance, the dye YOYO-1 is known to bind preferentially to nucleic acids containing sequences comprising runs of 3 or 30 more G residues.

The DNA chips produced by the methods of the invention can be used to study and detect mutations in exons of human genes of clinical interest, including point mutations and invention is illustrated by the detection of mutations in a . variety of clinically and medically significant human nucleic acid sequences. Thus, the invention is illustrated first with respect to the preparation of DNA chips for the detection of mutations associated with cystic fibrosis, then with DNA 40 lane but for the deletion of the base in position 7 and chips for the detection of human mitochondrial DNA sequences, then with DNA chips for the detection of mutations in the human p53 gene associated with cancer, and finally with respect to the detection of mutations in the HIV RT gene associated with drug resistance.

Detection of Cystic Fibrosis Mutations with DNA Chips A number of years ago, cystic fibrosis, the most common severe autosomal recessive disorder in humans, was shown to be associated with mutations in a gene thereafter named the Cystic Fibrosis Transmembrane Conductance Regulator 50 substitution probes in a column set has exactly the same (CFTR) gene. The sequences of the exons and parts of the introns in the gene are known, as are the changes corresponding to several hundred known mutations. Several tests have been developed for detecting the most frequent of these mutations. The present invention provides CFTR gene oli- 55 gonucleotide arrays (DNA chips) that can be used to identify mutations in the CFTR gene rapidly and efficiently.

The methods used to make the high-density DNA chips of the invention allow probes for long stretches of DNA coding regions to be directly "written" onto the chips in the form of 60 sets of overlapping oligonucleotides. These methods have been used to develop a number of useful CFTR gene chips, one illustrative chip bears an array of 1296 probes covering the full length of exon 10 of the CFTR gene arranged in a 36×36 array of 356 \text{\text{\text{M}}} elements. The probes in the array can 65 have any length, preferably in the range of from 10 to 18 residues and can be used to detect and sequence any single-

base substitution and any deletion within the 192-base exon, including the three-base deletion known as AF508. As described in detail below, hybridization of sub-nanomolar concentrations of wild-type and AF508 oligonucleotide target nucleic acids labeled with fluorescein to these arrays produces highly specific signals (detected with confocal scanning fluorescence microscopy) that permit discrimination between mutant and wild-type target sequences in both homozygous and heterozygous cases. The method and chips of the invention can also be used to detect other known mutations in the CFTR gene, as described in detail below.

The most common cystic fibrosis mutation is known as ΔF508, because the mutation is a three-base deletion that results in the removal of amino acid #508 from the CFTR protein. The present invention provides DNA chips for detecting AF508, one such chip results from applying the tiling method to exon 10 of the CFTR gene, the exon to which $\Delta F508$ has been mapped. The tiling method involved the synthesis of a set of probes of a selected length in the range of from 10 to 18 bases and complementary to subsequences of the known wild-type CFTR sequence starting at a position a few bases into the intron on the 5'-side of exon 10 and ending a few bases into the intron on the 3'-side." There was a probe for each possible subsequence of the given segment of the gene, and the probes were organized into a "lane" in such a way that traversing the lane from the upper left-hand corner of the chip to the lower righthand corner corresponded to traversing the gene segment baseby-base from the 5'-end. The lane containing that set of probes is, as noted above, called the "wild-type lane."

Relative to the wild-type lane, a "substitution" lane, called the "A-lane", was synthesized on the chip. The A-lane probes were identical in sequence to an adjacent (immediately below the corresponding) wild-type probe but contained, regardless of the sequence of the wild-type probe, deletions. In the following sections, the method of the 35 a dA residue at position 7 (counting from the 3'-end). In similar fashion, substitution lanes with replacement bases dC, dG, and dT were placed onto the chip in a "C-lane," a "G-lane," and a "T-lane," respectively. A sixth lane on the chip consisted of probes identical to those in the wild-type restoration of the original probe length by addition to the 5'-end the base complementary to the gene at that position.

The four substitution lanes enable one to deduce the sequence of a target exon 10 nucleic acid from the relative 45 intensities with which the target hybridizes to the probes in the various lanes. The probe organization on the chip can be conveniently columnar, and the set of probes consisting of a wild-type probe and four corresponding substitution probes is referred to as a "column set." One and only one of the four sequence as the wild-type probe in the set. Those of skill in the art will appreciate that, in other embodiments of the invention, one could delete one or more lanes or columns and still benefit from the invention. Various versions of such exon 10 DNA chips were made as described above with probes 15 bases long, as well as chips with probes 10, 14, and 18 bases long. For the results described below, the probes were 15 bases long, and the position of substitution was 7 from the 3'-end.

To demonstrate the ability of the chip to distinguish the ΔF508 mutation from the wild-type, two synthetic target nucleic acids were made. The first, a 39-mer complementary to a subsequence of exon 10 of the CFTR gene having the three bases involved in the $\Delta F508$ mutation near its center, is called the "wild-type" or wt508 target, corresponds to positions 111-149 of the exon, and has the sequence shown below:

5'-CATTAAAGAAAATATCATCTTTGGTGTTTCCTAT-GATGA (SEQ. ID NO: 5).

The second, a 36-mer probe derived from the wild-type target by removing those same three bases, is called the "mutant" target or mu508 target and has the sequence shown 5 below, first with dashes to indicate the deleted bases, and then without dashes but with one base underlined (to indicate the base detected by the T-lane probe, as discussed below):

5' - CATTAAAGAAAATATCAT--- 10 TGGTGTTTCCTATGATGA; (SEQ. ID NO:6) 5'-CATTAAAGAAAATATCATTGGTGTTTCCTATGATGA. (SEQ. ID NO:7)

Both targets were labeled with fluorescein at the 5'-end. In three separate experiments, the wild-type target, the 15 mutant target, and an equimolar mixture of both targets was exposed (0.1 nM wt508, 0.1 nM mu508, and 0.1 nM wt508 plus 0.1 nM mu508, respectively, in a solution compatible with nucleic acid hybridization) to a CF chip. The hybridization mixture was incubated overnight at room 20 temperature, and then the chip was scanned on a reader (a confocal fluorescence microscope in photon-counting mode; images of the chip were constructed from the photon counts) at several successively higher temperatures while still in contact with the target solution. After each temperature 25 case and also conditions that simulate the heterozygous case. change, the chip was allowed to equilibrate for approximately one-half hour before being scanned. After each set of scans, the chip was exposed to denaturing solvent and conditions to wash, i.e., remove target that had bound, the chip so that the next experiment could be done with a clean 30 chip.

The results of the experiments are shown in FIGS. 3. 4. 5. and 6. FIG. 3, in panels A, B, and C, shows an image made from the region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to a wild-type target; in panel C, the chip was hybridized to a mutant delta 508 target; and in panel B, the chip was hybridized to a mixture of the wild-type and mutant targets. FIG. 4, in sheets 1-3, corresponding to panels A, B, and C of FIG. 3, shows graphs of fluorescence intensity versus tiling position. The 40 labels on the horizontal axis show the bases in the wild-type sequence corresponding to the position of substitution in the respective probes. Plotted are the intensities observed from the features (or synthesis sites) containing wild-type probes, the features containing the substitution probes that bound the 45 most target ("called"), and the feature containing the substitution probes that bound the target with the second highest intensity of all the substitution probes ("2nd Highest").

These figures show that, for the wild-type target and the equimolar mixture of targets, the substitution probe with a 50 nucleotide sequence identical to the corresponding wildtype probe bound the most target, allowing for an unambiguous assignment of target sequence as shown by letters near the points on the curve. The target wt508 thus hybridized to the probes in the wild-type lane of the chip, although 55 the strength of the hybridization varied from probe-to-probe, probably due to differences in melting temperature. The sequence of most of the target can thus be read directly from the chip, by inference from the pattern of hybridization in the lanes of substitution probes (if the target hybridizes most 60 intensely to the probe in the A-lane, then one infers that the target has a T in the position of substitution, and so on).

For the mutant target, the sequence could similarly be called on the 3'-side of the deletion. However, the intensity of binding declined precipitously as the point of substitution 65 approached the site of the deletion from the 3'-end of the target, so that the binding intensity on the wild-type probe

whose point of substitution corresponds to the T at the 3'-end of the deletion was very close to background. Following that pattern, the wild-type probe whose point of substitution corresponds to the middle base (also a T) of the deletion bound still less target. However, the probe in the T-lane of that column set bound the target very well.

Examination of the sequences of the two targets reveals that the deletion places an A at that position when the sequences are aligned at their 3'-ends and that the T-lane probe is complementary to the mutant target with but two mismatches near an end (shown below in lower-case letters, with the position of substitution underlined):

Target: 5'-CATTAAAGAAAATATCATTGGTGT-TTCCTATGATGA

Probe: 3'-TagTAGTAACCACAA (SEQ. ID NO:8) Thus the T-lane probe in that column set calls the correct base from the mutant sequence. Note that, in the graph for the equimolar mixture of the two targets, that T-lane probe binds almost as much target as does the A-lane probe in the same column set, whereas in the other column sets, the probes that do not have wild-type sequence do not bind target at all as well. Thus, that one column set, and in particular the T-lane probe within that set, detects the AF508 mutation under conditions that simulate the homozygous

The present invention thus provides individual probes. sets of probes, and arrays of probe sets on chips, in specific patterns, as the probes provide important benefits for detecting the presence of specific exon 10 sequences. The sequences of several important probes of the invention are shown below. In each case, the letter "X" stands for the point of substitution in a given column set, so each of the sequences actually represents four probes, with A. C. G. and T, respectively, taking the place of the "X." Sets of shorter probes derived from the sets shown below by removing up to five bases from the 5'-end of each probe and sets of longer probes made from this set by adding up to three bases from the exon 10 sequence to the 5'-end of each probe, are also useful and provided by the invention.

3'-TTTATAXTAGAAACC (SEQ. ID NO:9) 3'-TTATAGXAGAAACCA (SEQ. ID NO:10) 3'-TATAGTXGAAACCAC (SEQ. ID NO:11) 3'-ATAGTAXAAACCACA (SEQ. ID NO:12) 3'-TAGTAGXAACCACAA (SEQ. ID NO:13) 3'-AGTAGAXACCACAAA (SEQ. ID NO:14) 3'-GTAGAAXCCACAAAG (SEQ. ID NO:15) 3'-TAGAAAXCACAAAGG (SEQ. ID NO:16) 3'-AGAAACXACAAAGGA (SEQ. ID NO:17)

Although in this example the sequence could not be reliably deduced near the ends of the target, where there is not enough overlap between target and probe to allow effective hybridization, and around the center of the target, where hybridization was weak for some other reason, perhaps high AT-content, the results show the method and the probes of the invention can be used to detect the mutation of interest. The mutant target gave a pattern of hybridization that was very similar to that of the wt508 target at the ends, where the two share a common sequence, and very different in the middle, where the deletion is located. As one scans the image from right to left, the intensity of hybridization of the target to the probes in the wild-type lane drops off much more rapidly near the center of the image for mu508 than for wt508; in addition, there is one probe in the T-lane that hybridizes intensely with mu508 and hardly at all with wt508. The results from the equimolar mixture of the two targets, which represents the case one would encounter in testing a heterozygous individual for the mutation, are a

blend of the results for the separate targets, showing the power of the invention to distinguish a wild-type target sequence from one containing the AF508 mutation and to detect a mixture of the two sequences.

The results above clearly demonstrate how the DNA chips 5 of the invention can be used to detect a deletion mutation, ΔF508; another model system was used to show that the chips can also be used to detect a point mutation as well. One of the more frequent mutations in the CFTR gene is G480C, which involves the replacement of the G in position 46 of 10 exon 10 by a T, resulting in the substitution of a cysteine for the glycine normally in position #480 of the CFTR protein. The model target sequences included the 21-mer probe wt480 to represent the wild-type sequence at positions 37-55 of exon 10: 5'-CCTTCAGAGGGTAAAATTAAG 15 (SEQ. ID NO:18) and the 21-mer probe mu480 to represent the mutant sequence: 5'-CCTTCAGAGTGTAAAATTAAG (SEQ. ID NO:19).

terns. The wild-type sequence could easily be read from the chip, but the probe that bound the mu 480 target so well when only the mu480 target was present also bound it well when both the mutant and wild-type targets were present in a mixture, making the hybridization pattern easily distinguishable from that of the wild-type target alone. These results again show the power of the DNA chips of the invention to detect point mutations in both homo- and heterozygous individuals.

To demonstrate clinical application of the DNA chips of the invention, the chips were used to study and detect mutations in nucleic acids from genomic samples. Genomic samples from a individual carrying only the wild-type gene and an individual heterozygous for $\Delta F508$ were amplified by PCR using exon 10 primers containing the promoter for T7 RNA polymerase. Illustrative primers of the invention are shown below.

Exon	Name	Sequence	<u>.</u>			*,
10	CFi9-T7	TAATACGAC	TCACTAL	AGGGAGatgac	ctastastgatgggttt	(SEQ. ID. NO:20
10	CFi10c-T7	TAATACGAC	TCACTATA	AGGGAGtagtgt	gaagggticatatec	(SEQ. ID. NO:21)
0	CFi10c-T3	CTCGGAATT	AACCCTC	ACTAAAGGta	gigigaagggiicatatg	(SEQ. ID. NO:22)
0, 11	CFi10-T7	TAATACGAC	TCACTATA	AGGGAGagcatt	ctaaaagtgactete	(SEQ. ID. NO:23)
1	CFi11c-17	TAATACGAC	TCACTATA	AGGGAGacatga	algacalitacagcaa	(SEQ. ID. NO:24)
1	CFille-T3	CGGAATTAA	CCCTCAC	TAAAGGacatg	algacatttacagcaa	(SEQ. ID. NO:25)

In separate experiments, a DNA chip was hybridized to 30 These primers can be used to amplify exon 10 or exon 11 each of the targets wt480 and mu480, respectively, and then scanned with a confocal microscope. FIG. 5, in panels A, B, and C, shows an image made from the region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to the wt480 target; in panel C, the chip was 35 for the RNA polymerase, with fluoresceinated UTP present hybridized to the mu480 target; and in panel B, the chip was hybridized to a mixture of the wild-type and mutant targets. FIG. 6, in sheets 1-3, corresponding to panels A, B, and C of FIG. 5, shows graphs of fluorescence intensity versus tiling position. The labels on the horizontal axis show the 40 scope. A useful positive control included on many CF exon bases in the wild-type sequence corresponding to the position of substitution in the respective probes. Plotted are the intensities observed from the features (or synthesis sites) containing wild-type probes, the features containing the substitution probes that bound the most target ("called"), and 45 the feature containing the substitution probes that bound the target with the second highest intensity of all the substitution probes ("2nd Highest").

These figures show that the chip could be used to sequence a 16-base stretch from the center of the target 50 wt480 and that discrimination against mismatches is quite good throughout the sequenced region. When the DNA chip was exposed to the target mu480, only one probe in the portion of the chip shown bound the target well: the probe in the set of probes devoted to identifying the base at 55 position 46 in exon 10 and that has an A in the position of substitution and so is fully complementary to the central portion of the mutant target. All other probes in that region of the chip have at least one mismatch with the mutant target and therefore bind much less of it. In spite of that fact, the 60 sequence of mu480 for several positions to both sides of the mutation can be read from the chip, albeit with muchreduced intensities from those observed with the wild-type target.

The results also show that, when the two targets were 65 mixed together and exposed to the chip, the hybridization pattern observed was a combination of the other two patsequences; in another embodiment, multiplex PCR is employed, using two or more pairs of primers to amplify more than one exon at a time.

The product of amplification was then used as a template to label the RNA product. After sufficient RNA was made, it was fragmented and applied to an exon 10 DNA chip for 15 minutes, after which the chip was washed with hybridization buffer and scanned with the fluorescence micro-10 chips is the 8-mer 3'-CGCCGCCG-5'. FIG. 7, in panels A and B, shows an image made from a region of a DNA chip containing CFTR exon 10 probes; in panel A, the chip was hybridized to nucleic acid derived from the genomic DNA of an individual with wild-type $\Delta F508$ sequences; in panel B. the target nucleic acid originated from a heterozygous (with respect to the AF508 mutation) individual. FIG. 8, in sheets 1 and 2, corresponding to panels A and B of FIG. 7, shows graphs of fluorescence intensity versus tiling position.

These figures show that the sequence of the wild-type RNA can be called for most of the bases near the mutation. In the case of the $\Delta F508$ heterozygous carrier, one particular probe, the same one that distinguished so clearly between the wild-type and mutant oligonucleotide targets in the model system described above, in the T-lane binds a large amount of RNA, while the same probe binds little RNA from the wild-type individual. These results show that the DNA chips of the invention are capable of detecting the AF508 mutation in a heterozygous carrier.

Thus, the present invention provides methods for synthesizing large numbers of oligonucleotide probes on a glass substrate and unique probe sets in a defined array in which the probes are arranged in the array by the "tiling" method of the invention. The DNA chips produced by the method can be used to detect mutations in particular sequences of a target nucleic acid, such as genomic DNA or RNA produced from transcription of an amplified genomic DNA. These

chips can be used to detect both point mutations and small deletions. Moreover, the pattern of hybridization to the chip allows inferences to be drawn about the sequences of the mutant DNAs.

For example, in the model system involving the cystic 5 fibrosis point mutation G480C, the A-lane probe whose position of substitution corresponds to the position of the mutation does not bind much wild-type target, because in the wild-type sequence, a G occupies that position. However, it binds mutant target very well, allowing one to infer correctly 10 that the mutation involves a change of that G to a T. Similarly, in the case of the three-base deletion in cystic fibrosis known as $\Delta F508$, the T-lane probe that binds mutant target so intensely is responding to the fact that the deletion has brought a CAT sequence into the position occupied by 15 a CTT sequence in the wild-type target. The DNA chips of the invention can be used to detect and sequence not only known mutations in an organism's genome but also new mutations not previously characterized. The DNA chips and methods of the invention can also be used to detect specific 20 sequences in other CFTR exons as well as other human genes for purposes of research and clinical genetic analysis, as demonstrated below.

Detection of Specific Human Mitochondrial DNA Sequences with DNA Chips

As noted above, the present invention provides DNA chips on which a known DNA sequence is represented as an array of overlapping oligonucleotides on a solid support. This set of oligonucleotides is used to probe a target nucleic acid comprising the known sequence, allowing mutations to 30-3'-end of the probe, which is covalently attached to the chip be detected. As also noted above, there are advantages in

some applications to using a minimal set of oligonucleotides specific to the sequence of interest, rather than a set of all possible N-mers. Some of these advantages include: (i) each position in the array is highly informative, whether or not hybridization occurs; (ii) nonspecific hybridization is minimized; (iii) it is straightforward to correlate hybridization differences with sequence differences, particularly with reference to the hybridization pattern of a known standard; and (iv) the ability to address each probe independently during synthesis, using high resolution photolithography, allows the array to be designed and optimized for any sequence. For example the length of any probe can be varied independently of the others.

The present invention illustrates these advantages by providing DNA chips and analytical methods for detecting specific sequences of human mitochondrial DNA. In one preferred embodiment, the invention provides a DNA chip for analyzing sequences contained in a 1.3 kb fragment of human mitochondrial DNA from the "D-loop" region, the most polymorphic region of human mitochondrial DNA. One such chip comprises a set of 269 overlapping oligonucleotide probes of varying length in the range of 9→14 nucleotides with varying overlaps arranged in -600×600 25 micron features or synthesis sites in an array 1 cm×1 cm in size. The probes on the chip are shown in columnar form below. An illustrative mitochondrial DNA chip of the invention comprises the following probes (X, Y coordinates are shown, followed by the sequence; "DL3" represents the

				9	- 1	2 DL3GGTAGGATGGGT	(SEQ ID. NO:67)
0	0	DL3AGTGGGGTATTT	(SEQ ID. NO:26)	10	2	DL3GGATGGGTCGTG	(SEQ ID. NO:68)
1	0	DL3GGGTATTTAGTT	(SEQ ID. NO:27)	1:	1 2	DLIGGTCGTGTGTGT	(SEQ ID. NO:69)
2	0	DL3TTAGTTTATCCAA	(SEQ ID. NO:28)	13	2 2	DL3GTGTGTGTGGCG	(SEQ ID. NO:70)
3	0	DL3ATCCAAACCAGG	(SEQ ID. NO:29)	13	3 2	DLITGTGGCGACGAT	(SEQ ID. NO:71)
4	0	DL3ACCAGGATCGGA	(SEQ ID. NO:30)	14	2	DL3GACGATTGGGGT	(SEQ ID. NO:72)
5	0	DL3CGTGTGTGTGTGG	(SEQ ID. NO:31)	15	2	DLJATTGGGGTATGG	(SEQ ID. NO:73)
6	0	DL3CGTGTGTGTGTGGG	(SEQ ID. NO:32)	16	2	DL3GTATGGGGCTTG	(SEQ ID. NO:74)
7	0	DL3TCGTGTGTGTGTG	(SEQ ID. NO:33)	0	3		(SEQ ID. NO:75)
8	0	DL3GTAGGATGGGTC	(SEQ ID. NO:34)	1	3		(SEQ ID. NO:76)
9	0	DL3AGGATGGGTCGT	(SEQ ID. NO:35)	2	3		(SEQ ID. NO:77)
10	0	DL3GATGGGTCGTGT	(SEQ ID. NO:36)	3	3		(SEQ ID. NO:78)
11	0	DL3TGGCGACGATTG	(SEQ ID. NO:37)	4	3		(SEQ ID. NO:79)
12	0	DL3GCGACGATTGGG	(SEQ ID. NO:38)	5	3		(SEQ ID. NO:80)
13	0	DL3TGGGGGGGA		6	3	DLJAGAAAAACCGC	(SEQ ID. NO:81)
14	0	DL3GAGGGGGCG		7	3	DLJAACCGCCATAC	(SEQ ID. NO:82)
15	0	DL3GGAGGGGGCGA	(SEQ ID. NO:39)	8	3	DL3CCATACGTGAAAA	(SEQ ID. NO:83)
16	0	DL3GAGGGGGCGA	(SEQ ID. NO:40)	9	3	DLJACGTGAAAATTGT	(SEQ ID. NO:84)
0	1	DL3GGCTTGGTTGG	(SEQ ID. NO:41)	10	3	DL3AATTGTCAGTGGG	(SEQ ID. NO:85)
1	1	DLIGGTTGGTTTGGG	(SEQ ID. NO:42)	11	3		(SEQ ID. NO:86)
2	. 1	DL3TGGGGTTTCTAG	(SEQ ID. NO:43)	- 12	3	DLITGGGGTTGA	(SEQ ID. NO:87)
3	1	DL3GTTTCTAGTGGG	(SEQ ID. NO:44)	13	.3	DL3GGGTTGATTGTGT	(SEQ ID. NO:88)
4	1	DL3AGTGGGGGGTGT	(SEQ ID. NO:45)	14	3	DLJTTGTGTAATAAAA	(SEQ ID. NO:89)
5	1	DL3GGGGTGTCAAAT	(SEQ ID. NO:46)	15	3	DLJAATAAAAGGGGA	(SEQ ID. NO:90)
6	1	DL3GTCAAATACATCG	(SEQ ID. NO:47)	16	3	DLJTAAAAGGGGAGG	(SEQ ID. NO:91)
7	1	DLJACATCGAATGGAG	(SEQ ID. NO:48)	0	4	DL3GTTTTTTAAAGG	(SEQ ID. NO:92)
8	1	DL3CGAATGGAGGAG	(SEQ ID. NO:49)	1	4	DLITTTAAAGGTGG	(SEQ ID. NO:93)
9	1	DL3GAGGAGTTTCGT	(SEQ ID. NO:50)	2	4	DLJAGGTGGTTTGG	(SEQ ID. NO:94)
10	1	DLITTICGTTATGTGA	(SEQ ID. NO:51)	3	4	DLITTGGGGGGGAG	(SEQ ID. NO:95)
11	1	DLIATGTGACTTTTAC	(SEQ ID. NO:52)	4	4	DL3GGAGGGGGCG	(SEQ ID. NO:96)
12	1	DL3GACTTTTACAAAT	(SEQ ID. NO:53)	5	4	DL3GGGGCGAAGAC	(SEQ ID. NO:97)
13	1	DLJAAATCTGCCCGA	(SEQ ID. NO:54)	6	4	DL3GAAGACCGGATG	(SEQ ID. NO:98)
14	1	DL3AATCTGCCCGAG	(SEQ ID. NO:55)	7	4	DL3CCGGATGTCGTG	(SEQ ID. NO:99)
15	1	DL3CCCGAGTGTAGT	(SEQ ID. NO:56)	8	4	DL3GTCGTGAATTTGT	(SEQ ID. NO:100)
16	1	DLJAGTGTAGTGGGG	(SEQ ID. NO:57)	9	4	DL3CGTGAATTTGTGT	(SEQ ID. NO:101)
0	2	DL3GGGAGGGTGAG	(SEQ ID. NO.58)	10	4	DLJTTGTGTAGAGACG	(SEQ ID. NO:102)
1	2	DL3GGTGAGGGTATG	(SEQ ID. NO:59)	11	4	DL3TAGAGACGGTTT	(SEQ ID. NO:103)
2	2	DL3GGTATGATGATTAG	(SEQ ID. NO:60)	12	4	DL3ACGGTTTGGGG	(SEQ ID. NO:104)
3	2	DL3GATTAGAGTAAGT	(SEQ ID. NO:61)	13	4	DLITGGGGTTTTTGT	(SEQ ID. NO:105)
4	2		(SEQ ID. NO:62)	14	4	DL3GGGTTTTTGTTT	(SEQ ID. NO:106)
			•				

-continued

	_					лини	ıcu		
	5	2	DLJAAGTTATGTT	GGG : (SEO ID	P.O.437	15	•	DI ATTOTTOMOS	
	6	2	DLIGTTGGGGGCC			15	4	DLITTGTTTCTTGG	
	7	2		(16	4	DLITCITGGGATTG	
			DLIGGGGGGGGTA			0	5	DLITGTATGAATGAI	TT (SEQ ID. NO:109)
	8	2	DL3GCGGGTAGGA		NO:66)	1	5	DLITGATTICACAC	AA (SEQ ID. NO:110)
	2	٠5	DLJACACAATTAA	ITAA (SEQ ID. I	NO:111)	14	.7	DLICTCTGCGACCT	
	3	٠ 5	DLJAATTAATTACG	AA (SEQ ID. I		. 15	7	DL3GACCTCGGCCT	
	4	5	DL3TACGAACATCC			16	7	DLITCGGCCTCGTG	
	5	5	DLJACGAACATCC						(SEQ ID. NO:159)
	6	5	DISTCCTGTATTAT			0	8	DLIGATGAAGTCCC	
						1	8	DLJAGTCCCAGTATI	T (SEQ ID. NO:161)
	7	5	DL3GTATTATTATTC		NO:116)	2	8	DL3GTATTTCGGATT	T (SEQ ID. NO:162)
	8	5	DLJATTGTTAAACT		NO:117)	3	8	DLITCGGATTTATCG	(SEQ ID. NO:163)
	9	5	DLJAAACTTACAGA	ACG (SEQ ID. N		4	8	DL3GATTTATCGGGT	
:	10	5	DL3ACAGACGTGTC	CG (SEQ ID. N		5	8	DLIATCGGGTGTGCA	
	11	5	DLIGTGTCGGTGA						
	12	5				6	8	DLITGTGCAAGGGG,	
			DLIGTGAAAGGTG	\\-		7	8	DL3CAAGGGGAATTT	(SEQ ID. NO:167)
	13	5	DLIGGTGTGTCTGT		O:122)	8	8	DL3GAATTTATTCTGT	(SEQ ID. NO:168)
	14	5	DLITGTGTCTGTAG		O:123)	9	8	DLITCTGTAGTGCTA	
1	5	5	DLIGTAGTATTGTT	IT (SEQ ID. N	O:124)	10	8	DL3GTAGTGCTACCT	(SEQ ID. NO:170)
1	6	5	DL3AGTATTGTTTT				8	DL3GCTACCTAGTAG	
0)	6	DIJCCTCGTGGGAT						(SEQ ID. NO:171)
1		6	DLITGGGATACAGC				8	DL3CTAGTAGTCCAG.	,
2		6					8	DLJTCCAGATA9TGG	
		_	DLIGATACAGCGTC		O:128)	14 8	8	DLJAGATAGTGGGATA	(SEQ ID. NO:174)
3		6	DLIGCGTCATAGAC		O:129)	15 8	8	DL3GGGATAATTGGT	(SEQ ID. NO:175)
4		6	DL3AGACAGAAACT	TAA (SEQ ID. NO	0:130)	16 8	8	DL3TAATTGGTGAGTG	
5		6	DL3CAGAAACTAAG	GA (SEQ ID. NO		0 9		DLITATAGGGCGTGT	(SEQ ID. NO:177)
6		6	DL3TAAGGACGGAG			1 5			
7		6	DL3GACGGAGTAGG	(u u u u u u u				DL3GGGCGTGTTCTC/	
8		6	DLIGTAGGATAATAA			2 9		DLIGTGTTCTCACGAI	
9				, , , , , , , , , , , , , , , , , , , ,	•	3 9		DLITCACGATGAGAG	G (SEQ ID. NO:180)
-		6	DLJTAATAAATAGCG		D:135)	4 9)	DL3ATGAGAGGAGCG	(SEQ ID. NO:181)
10			DLJATAGCGTAGGAT	' (SEQ ID. NO	D:136)	5 9)	DLJAGGAGCGAGGC	(SEQ ID. NO:182)
11		5	DL3TAGCGTAGGATG	SEQ ID. NO	D:137)	6 . 9		DL3CGAGGCCCGG	(SEQ ID. NO:183)
12	! (5	DL3AGGATGCAAGT7			7 9		DL3GCCCGGGTATT	
13			DLJATGCAAGTTATA			89			(SEQ ID. NO:184)
14			DLIGTTATAATGTCCC					DL3CGGGTATTGTGA	(SEQ ID. NO:185)
15						9 9		DLIGTGAACCCCCAT	(SEQ ID. NO:186)
			DLJATGTCCGCTTGT			10 9		DL3CCCCATCGATTT	(SEQ ID. NO:187)
.16			DLITCCGCTTGTATG	(SEQ ID. NO	1:142)	11 · 9	1	DLJATCGATTTCACTT	(SEQ ID. NO:188)
0	7		DLIGTGAGTGCCCTC		:143)	12 9	1	DISTITICACTIGACAT	(SEQ ID. NO:189)
1	7	' 1	DLITGCCCTCGAGAG	(SEQ ID. NO	:144)	13 9		DLJTTGACATAGAGCT	(SEQ ID. NO:190)
2	7	1	DL3CCTCGAGAGGTA	(SEQ ID. NO		14 9		DLJTAGAGCTGTAGAC	
3	7		DL3AGAGGTACGTAA	(SEQ ID. NO		15 9			
4	7	_	LIACGTAAACCATA					LIGTAGACCAAGGA	(SEQ ID. NO:192)
5	7	_	DLJACCATAAAAGCA	(SEQ ID. NO:		6 9		LIACCAAGGATGAAG	
		_ =						L3CGTGTAATGTCAG	(SEQ ID. NO:194)
6	7		LIAAAGCAGACCC	(SEQ ID. NO:	:149) 1	. 10) D	LITOTCAGTTTAGGG	(SEQ ID. NO:195)
7	7	Ľ	LIAGACCCCCCAT	(SEQ ID. NO:	150) 2	10	D	LITCAGTTTAGGGA	(SEQ ID. NO:196)
8	7	Ε	LICCCCCATACGT	(SEQ ID. NO:		10		L3TAGGGAAGAGCA	(SEQ ID. NO:197)
9	7	E	LICATACGTGCGCT	(SEQ ID. NO:				LJAAGAGCAGGGGT	(SEQ ID. NO:198)
10	7		LIGTGCGCTATCAG	(SEQ ID. NO:				L3CAGGGGTACCTA	
11	7		LIGCGCTATCAGTA						(SEQ ID. NO:199)
12	7		LITCAGTAACGCTC	(SEQ ID. NO:				LIGGTACCTACTGG	(SEQ ID. NO:200)
13	7			(SEQ ID. NO:		10		LITACTGGGGGGA	(SEQ ID. NO:201)
			LIGTAACGCTCTGC	(SEQ ID. NO:		10	D.	L3GGGGGAGTCTAT	(SEQ ID. NO:202)
9	10		LIAGTCTATCCCCA	(SEQ ID. NO:	203) 11	1 13	D)	L3CATGTATTTTTGG	(SEQ ID. NO:246)
10	10	D	L3ATCCCCAGGGA	(SEQ ID. NO:	204) 13	2 13	D	L3TTTTGGGTTAGG	(SEQ ID. NO:247)
11	10	D	L3CAGGGAACTGGT	(SEQ ID. NO:2		3 13		LIGGGTTAGGATGT	(SEQ ID. NO:248)
12	10	D	LJACTGGTGGTAGG	(SEQ ID. NO:2				LIGGATGTAGTTTTG	(SEQ ID. NO:249)
13	10	D	LICTGGTGGTAGGA	(SEQ ID. NO:2					
4	10		LIGTAGGAGGCACA					LITGTAGTTTTTGGG	(SEQ ID. NO:250)
	10		LIGGCACATTTAGT	(SEQ ID. NO:2				JTTTGGGGGAGG	(SEQ ID. NO:251)
		5	BOOCACATTIAGT	(SEQ ID. NO:2		14		JGGGTTCATAACTG	(SEQ ID. NO:252)
	10	D	STTTAGTTATAGGG	(SEQ ID. NO:2	10) 6	14	DI	JATAACTGAGTGGG	(SEQ ID. NO:253)
,	11		JAGGTTTACGGTG	(SEQ ID. NO:2	11) 7	14	DL	JAACTGAGTGGGT	(SEQ ID. NO:254)
	11	DI	JTACGGTGGGGA	(SEQ ID. NO:2	12) 8	14		JGTGGGTAGTTGT	(SEQ ID. NO:255)
	11	DI	JGTGGGGAGTGG	(SEQ ID. NO:2				3GTAGTTGTTGGC	(SEQ ID. NO:256)
	11		JGGGAGTGGGTGA	(SEQ ID. NO:2					
	11		JGGGTGATCCTATG					3GTTGGCGATACA	(SEQ ID. NO:257)
				(SEQ ID. NO:2)		14		3CGATACATAAAAG	(SEQ ID. NO:258)
	11	טנ	3CCTATGGTTGTTT	(SEQ ID. NO:21		14		3TAAAAGCATGTAA	(SEQ ID. NO:259)
	11		3GGTTGTTTGGATG	(SEQ ID. NO:21	17) 13	14	DL	3GCATGTAATGACG	(SEQ ID. NO:260)
	11	DL,	3GTTTGGATGGGT	(SEQ ID. NO:21	18) 14	14	DL	3ATGACGGTCGGT	(SEQ ID. NO:261)
:	11		3ATGGGTGGGAAT	(SEQ ID. NO:21		14		3GTCGGTGGTACT	(SEQ ID. NO:262)
	11		3GGGAATTGTCATG	(SEQ ID. NO:22		14		3GGTACTTATAACA	
	11		3GTCATGTATCATGT	(SEQ ID. NO:22					(SEQ ID. NO:263)
	11	Di	TCATGTATTTCGG					TCGATTCTAAGAT	(SEQ ID. NO:264)
				(SEQ ID. NO:22				STAAGATTAAATTT	(SEQ ID. NO:265)
	1		TATTTCGGTAAA	(SEQ ID. NO:22					(SEQ ID. NO:266)
	1		TTCGGTAAATGG	(SEQ ID. NO:22	4) 8	15	DL		(SEQ ID. NO:267)
1	1	DL	GTAAATGGCATGT	(SEQ ID. NO:22					(SEQ ID. NO:268)
1	1	DL	GCATGTAATCGTG	(SEQ ID. NO:22					(SEQ ID. NO:269)
	1	DL	GTAATCGTGTAAT	(SEQ ID. NO:22					
	2	חו ז	GGGAGGGGTAC						(SEQ ID. NO:270)
		D	CCCTICC	(SEQ ID. NO:22)					(SEQ ID. NO:271)
1		ULJ	GGGTACGAATGT	(SEQ ID. NO:229		15	DLJ	CTTCGTCTAAAC	(SEQ ID. NO:272)
1			ACGAATGTTCGTT	(SEQ ID. NO:230	0) 14	15	בום	CTAAACCCCATGG	(SEQ ID. NO:273)
1	2	DL3	TGTTCGTTCATGT	(SEQ ID. NO:231	1) 15	15 1	DL3		(SEQ ID. NO:274)
1:			CGTTCATGTCGTT	(SEQ ID. NO:232					SEQ ID. NO:275)
-				~~~ .D. 110.2D	-, 10		د.ر		(vica m. 110:213)

-continued

-				
	12 12 12	DLIGTCGTTAGTTGG DLITAGTTGGGAGTT DLIGGAGTTGATAGTG DLIATAGTGTGTGTAGTT	(SEQ ID. NO:233) 5 16 DL3TTGGAAAA (SEQ ID. NO:234) 6 16 DL3AAAAGGTT (SEQ ID. NO:235) 7 16 DL3GGTTCCTG (SEQ ID. NO:236) 8 16 DL3CCTGTTTAC	CCTG (SEQ ID. NO:277) ITTA (SEQ ID. NO:278)
		DLIGIFTAGTTGACGT DLITGACGTTGAGGTTA DLITGACGTTGAGGTTTA DLITGACATGCCAT	(SEQ ID. NO:237) 9 16 DL3TTAGTCTCT (SEQ ID. NO:238) 10 16 DL3CTTTTTCAG (SEQ ID. NO:249) 11 16 DL3AGAAATTGAG (SEQ ID. NO:240) 12 16 DL3AGATTGAG (SEQ ID. NO:241) 13 16 DL3GGTGGTAAT	TTIT (SEQ ID. NO:280) AAAAT (SEQ ID. NO:281) AGGTG (SEQ ID. NO:282) TTGGT (SEQ ID. NO:283)
7 8 9 10	13 13 13 13	DL3CCATGGTATTAT DL3ATTTATGAACTGG DL3ACTGGTGGACAT DL3TGGACATCATGTA	(SEQ ID. NO:242) 14 16 DL3TAATCGTGG (SEQ ID. NO:243) 15 16 DL3GTGGGTTTC (SEQ ID. NO:244) 16 16 DL3GGTTTCGAT (SEQ ID. NO:245)	GTT (SEQ ID. NO:285) GAT (SEQ ID. NO:286)

No probes were present in positions X, Y=0, 12 to X, Y=4, 12; X, Y=0, 13 to X, Y=4, 13; X, Y=0, 14 to X, Y=4, 14; X, Y=0, 15 to X, Y=4, 15; X, Y=0, 16 to X, Y=4, 16; The length of each of the probes on the chip was variable to minimize differences in melting temperature and potential for cross-hybridization. Each position in the sequence is represented by at least one probe and most positions are represented by 2 or more probes. As noted above, the amount of overlap between the oligonucleotides varies from probe to probe. FIG. 9 shows the human mitochondrial genome; "O_H" is the H strand origin of replication, and arrows indicate the cloned 25 unshaded sequence.

DNA was prepared from hair roots of six human donors (mtl to mt6) and then amplified by PCR and cloned into M13; the resulting clones were sequenced using chain terminators to verify that the desired specific sequences were 30 present. DNA from the sequenced M13 clones was amplified by PCR, transcribed in vitro, and labeled with fluorescein-UTP using T3 RNA polymerase. The 1.3 kb RNA transcripts were fragmented and hybridized to the chip. The results showed that each different individual had DNA that pro- 35 duced a unique hybridization fingerprint on the chip and that the differences in the observed patterns could be correlated with differences in the cloned genomic DNA sequence. The results also demonstrated that very long sequences of a target nucleic acid can be represented comprehensively as a 40 specific set of overlapping oligonucleotides and that arrays of such probe sets can be usefully applied to genetic analy-

The sample nucleic acid was hybridized to the chip in a solution composed of 6xSSPE, 0.1% Triton-X 100 for 60 45 minutes at 15° C. The chip was then scanned by confocal scanning fluorescence microscopy. The individual features on the chip were 588×588 microns, but the lower left 5×5 square features in the array did not contain probes. To quantitate the data, pixel counts were measured within each 50 synthesis site. Pixels represent 50x50 microns. The fluorescence intensity for each feature was scaled to a mean determined from 27 bright features. After scanning, the chip was stripped and rehybridized; all six samples were hybridized to the same chip. FIG. 10 shows the image observed 55 from the mt4 sample on the DNA chip. FIG. 11 shows the image observed from the mt5 sample on the DNA chip. FIG. 12 shows the predicted difference image between the mt4 and mt5 samples on the DNA chip based on mismatches between the two samples and the reference sequence (see 60 Anderson et al., 1981, Nature 290: 457-465, incorporated herein by reference). FIG. 13 shows the actual difference image observed.

The results show that, in almost all cases, mismatched probe/target hybrids resulted in lower fluorescence intensity 65 than perfectly matched hybrids. Nonetheless, some probes detected mutations (or specific sequences) better than others,

and in several cases, the differences were within noise levels. Improvements can be realized by increasing the amount of overlap between probes and hence overall probe density and, for duplex DNA targets, using a second set of probes, either on the same or a separate chip, corresponding to the second strand of the target. FIG. 14, in sheets 1 and 2, shows a plot of normalized intensities across rows 10 and 11 of the array and a tabulation of the mutations detected.

FIG. 15 shows the discrimination between wild-type and mutant hybrids obtained with this chip. The median of the six normalized hybridization scores for each probe was taken. The graph plots the ratio of the median score to the normalized hybridization score versus mean counts. On this graph, a ratio of 1.6 and mean counts above 50 yield no false positives, and while it is clear that detection of some mutants can be improved, excellent discrimination is achieved, considering the small size of the array. FIG. 16 illustrates how the identity of the base mismatch may influence the ability to discriminate mutant and wild-type sequences more than the position of the mismatch within an oligonucleotide probe. The mismatch position is expressed as % of probe length from the 3'-end. The base change is indicated on the graph. These results show that the DNA chip increases the capacity of the standard reverse dot blot format by orders of magnitude, extending the power of that approach many fold and that the methods of the invention are more efficient and easier to automate than gel-based methods of nucleic acid sequence and mutation analysis.

These advantages become more apparent as chips with more and more probes are employed. To illustrate, the present invention provides a DNA chip for analyzing human mitochondrial DNA (mtDNA) that "tiles" through 648 nucleotides of human H strand mtDNA from positions 16280 to 356. The probes in the array are 15 nucleotides in length, and each position in the target sequence is represented by a set of 4 probes (A, C, G, T substitutions), which differed from one another at position 7 from the 3'-end. The array consists of 13 blocks of 4x50 probes: each block scans through 50 nucleotides of contiguous mtDNA sequence. The blocks are separated by blank rows. The 4 corner columns contain control probes; there are a total of 2600 probes in a 1.28 cm×1.28 cm square area (feature), and each area is 256x197 microns.

Labeled RNA target DNA was prepared by PCR amplification of a 1.3 kb region of human mtDNA spanning positions 15935 to 667, cloning into M13 (sequence verification was performed), and reamplification of the cloned sequences using primers tagged with T3 and T7 RNA polymerase promoter sequences and in vitro transcription to produce fluorescein-UTP labeled RNA. The RNA was fragmented and hybridized to the oligonucleotide array in a solution composed of 6xSSPE, 0.1% Triton X-100 for 60 minutes at 18° C. Unhybridized material was washed away with buffer, and the chip was scanned at 25 micron pixel resolution.

FIG. 17 provides a 5' to 3' sequence listing of one target corresponding to the probes on the chip. X is a control probe. Positions that differ in the target (i.e., are mismatched with the probe at the designated site) are in bold. FIG. 18 shows the fluorescence image produced by scanning the chip when hybridized to this sample. About 95% of the sequence could be read correctly from only one strand of the original duplex target nucleic acid. Although some probes did not provide excellent discrimination and some probes did not appear to hybridize to the target efficiently, excellent results were 10 achieved. The target sequence differed from the probe set at six positions: 4 transitions and 2 insertions. All 4 transitions were detected, and specific probes could readily be incorporated into the array to detect insertions or deletions. FIG. 19 illustrates the detection of 4 transitions in the target 15 sequence relative to the wild-type probes on the chip.

These results illustrate that longer sequences can be read using the DNA chips and methods of the invention, as compared to conventional sequencing methods, where reading length is limited by the resolution of gel electrophoresis. 20 Similar results were observed when genomic DNA samples were prepared from human hair roots. Hybridization and signal detection require less than an hour and can be readily shortened by appropriate choice of buffers, temperatures, probes, and reagents. In principle, longer sequence reads can 25 be obtained than by conventional sequencing, where reading length is limited by the resolution of gel electrophoresis. P53 Sequencing and Diagnostic DNA Chips

P53 is a tumor suppressor gene that has been found to be mutated in most forms of cancer (see Levine et al, 1991, 30 Nature 351: 453-456, and Hollstein et al., 1991, Science 253: 49-53, each of which is incorporated herein by reference). In addition, there is a hereditary syndrome, Li-Fraumeni, in which individuals inherit mutant alleles of p53 and tend to have cancer at relatively young ages 35 (Frebourg et al., 1992, PNAS 89: 6413-6417, incorporated herein by reference). During the development of a cancer, p53 is inactivated. The course of p53 inactivation generally involves a mutation in one copy of p53 and is often followed by deletion of the other copy. After p53 is inactivated, 40 chromosomal abnormalities begin to appear in tumors. In the best understood form of cancer, colorectal cancer, well over 50%, perhaps 80%, of all patients with tumors have p53 mutations. In addition, p53 mutations have been found in a high proportion of lung, breast, and other tumors (Rodrigues 45 et al., 1990, PNAS 87: 7555-7559, incorporated herein by reference). According to data presented by David Sidransky (1992 San Diego Conference), over 400 mutations in p53 are

The p53 gene spans 20 kbp in humans and has 11 exons, 50 10 of which are protein coding (see Tominaga et al., 1992, Critical Reviews in Oncogenesis 3: 257-282, incorporated herein by reference). The gene produces a 53 kilodalton phosphoprotein that regulates DNA replication. The protein acts to halt replication at the G1/S boundary in the cell cycle 55 and is believed to act as a "molecular policeman," shutting down replication when the DNA is damaged or blocking the reproduction of DNA viruses (see Lane, 1992, Nature 358: 15-16, incorporated herein by reference). There is substantial interest in the cancer research community in analyzing 60 p53 mutations. The NCI is currently funding contracts to characterize the p53 mutation spectra caused by various carcinogens. In addition, there are research projects which involve sequencing p53 from spontaneously arising tumors. A major resource in these studies is the huge supply of 65 biopsy material stored in paraffin blocks. Also, there are projects which are aimed at analyzing the relationship

between the particular mutation in p53 and the functioning of the resulting protein. Furthermore, there are projects looking at the germline inheritance of p53 mutations and the development of cancer. The present invention provides useful DNA chips and methods for such studies.

In addition, the present invention also provides a diagnostic test kit and method and p53 probes immobilized on a DNA chip in an organized array. Currently available diagnostic tests for cancer typically have a sensitivity of about 50%. The present invention provides significant advantages over such tests, and in one embodiment provides a method for detecting cancer-causing mutations in p53 that involves the steps of (1) obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population. The DNA or RNA is then extracted, amplified, and analyzed with a DNA chip for the presence of p53 mutations correlated with malignancy.

To illustrate the value of the DNA chips of the present invention in such a method, a DNA chip was synthesized by the VLSIPS™ method to provide an array of overlapping probes which represent or tile across a 60 base region of exon 6 of the p53 gene. To demonstrate the ability to detect substitution mutations in the target, twelve different single substitution mutations (wild type and three different substitutions at each of three positions) were represented on the chip along with the wild type. Each of these mutations was represented by a series of twelve 12-mer oligonucleotide probes, which were complementary to the wild type target except at the one substituted base. Each of the twelve probes was complementary to a different region of the target and contained the mutated base at a different position, e.g., if the substitution was at base 32, the set of probes would be complementary-with the exception of base 32-to regions of the target 21-32, 22-33, and 32-43). This enabled investigation of the effect of the substitution position within the probe. The alignment of some of the probes with a 12-mer model target nucleic acid is shown in FIG. 20.

To demonstrate the effect of probe length, an additional series of ten 10-mer probes was included for each mutation (see FIG. 21). In the vicinity of the substituted positions, the wild-type sequence was represented by every possible overlapping 12-mer and 10-mer probe. To simplify comparisons, the probes corresponding to each varied position were arranged on the chip in the rectangular regions with the following structure: each row of cells represents one substitution, with the top row representing the wild type. Each column contains probes complementary to the same region of the target, with probes complementary to the 3'-end of the target on the left and probes complementary to the 5'-end of the target on the right. The difference between two adjacent columns is a single base shift in the positioning of the probes. Whenever possible, the series of 10-mer probes were placed in four rows immediately underneath and aligned with the 4 rows of 12-mer probes for the same mutation.

To provide model targets, 5' fluoresceinated 12-mers containing all possible substitutions in the first position of codon 192 were synthesized (see the started position in the target in FIG. 20). Solutions containing 10 nM target DNA in 6xSSPE, 0.25% Triton X-100 were hybridized to the chip at room temperature for several hours. While target nucleic was hybridized to the chip, the fluorophores on the chip were excited by light from an argon laser, and the chip was scanned with an autofocusing confocal microscope. The emitted signals were processed by a PC to produce an image using image analysis software. By 1 to 3 hours, the signal had reached a plateau; to remove the hybridized target and

allow hybridization to another target, the chip was stripped with 60% formamide, 2xSSPE at 17° C. for 5 minutes. The washing buffer and temperature can vary, but the buffer typically contains 2-to-3×SSPE, 10-to-60% formamide (one can use multiple washes, increasing the formamide concen- 5 tration by 10% each wash, and scanning between washes to determine when the wash is complete), and optionally a small percentage of Triton X-100, and the temperature is typically in the range of 15° to 18° C.

Very distinct patterns were observed after hybridization 10 samples stored in paraffin blocks. with targets with 1 base substitutions and visualization with a confocal microscope and software analysis, as shown in FIG. 22. In general, the probes which form perfect matches with the target retain the highest signal. For example, in the first image in Figure PC, the 12-mer probes that form perfect 15 matches with the wild-type (WT) target are in the first row (top). The 12-mer probes with single base mismatches are located in the second, third, and fourth rows and have much lower signals. The data is also depicted graphically in FIG. 23. On each graph, the X ordinate is the position of the probe 20 in its row on the chip, and the Yordinate is the signal at that probe site after hybridization.

When a target with a different one base substitution is hybridized the complementary set of probes has the highest signal (see pictures 2, 3, and 4 in FIG. 22 and graphs 2, 3, 25 5'-TAATACGACTCACTATAGGGAGGACCCTGGGCAand 4 in FIG. 23). In each case, the probe set with no mismatches with the target has the highest signals. Within a 12-mer probe set, the signal was highest at position 6 or 7. The graphs show that the signal difference between 12-mer probes at the same X ordinate tended to be greatest at 30 positions 5 and 8 when the target and the complementary probes formed 10 base pairs and 11 base pairs, respectively. Because tumors often have both WT and mutant p53 genes, mixed target populations were also hybridized to the chip, as shown in FIG. 24. When the hybridization solution consisted 35 of a 1:1 mixture of WT 12-mer and a 12-mer with a substitution in position 7 of the target, the sets of probes that were perfectly matched to both targets showed higher signals than the other probe sets.

The hybridization efficiency of a 10-mer probe array as 40 compared to a 12-mer probe array was also compared. The 10-mer and 12-mer probe arrays gave comparable signals (see graphs 1-4 in FIG. 23 and graphs 1-4 in FIG. 25). However, the 10-mer probe sets, which are in rows 5-8 (see images in FIG. 22), seemed to be better in this model system 45 than the 12-mer probe sets at resolving one target from another, consistent with the expectation that one base mismatches are more destabilizing for 10-mers than 12-mers. Hybridization results within probe sets perfectly matched to target also followed the expectation that, the more matches 50 the individual probe formed with the target, the higher the signal. However, duplexes with two 3' dangles (see FIG. 23, position 6 in graphs 1-4) have about as much signal as the probes which are matched along their entire length (see FIG. 23, position 7, in graphs 1-4).

This illustrative model system shows that 12-mer targets that differ by one base substitutions can be readily distinguished from one another by the novel probe array provided by the invention and that resolution of the different 12-mer targets was somewhat better with the 10-mer probe sets than 60 with the 12-mer probe sets. The value of having several overlapping probes hybridizing to a target demonstrates the value of the multiple hybridization events that take place on a DNA chip of the invention. The results also demonstrate the feasibility of constructing a probe set to sequence the 65 entire 1.4 kbp protein coding region of p53 or alternatively the 0.6 kbp of exons 5-9 containing mutation hot spots.

For sequencing, the p53 DNA can be closed from the sample or directly amplified from genomic DNA by PCR. If genomic PCR is used, then the DNA can be diluted prior to amplification so that a single copy of the gene is amplified. For diagnostic purposes, the genomic DNA can be isolated from a tumor biopsy in which the tumor cells may be the majority population. As noted above, the proportion of tumor cells in a sample can be enriched by cryostat sectioning. DNA can also be isolated and amplified from tumor

The p53 DNA in the sample can be amplified by PCR (although other amplification methods can be used) using 3-4 primer pairs generating amplicons of <3 kbp each. Illustrative primers of the invention for amplifying exon 5 of the p53 gene are shown below (B is biotin; F is fluorescein). 5'-B-CACTTGTGCCCTGACTTTCAAC-3'(SEQ. ID NO:288)

5'-F-CACTTGTGCCCTGACTTTCAAC-3'

5'-ATGCAATTAACCCTCACTAAAGGGAGACACTTG-TGCCCTGACTTTCAAC-3'(SEQ. ID NO:289) (has T3 promoter)

5'-B-GACCCTGGGCAACCAGCCCTGTCGT-3'(SEQ. ID' NO:290)

5'-F-GACCCTGGGCAACCAGCCCTGTCGT-3'

ACCAGCCCTGTCGT-3'(SEQ. ID NO:291) (bas T3 promoter)

After PCR amplification of the target (the amplified target is called the "amplicon") one strand of the amplicon can then be isolated, i.e., using a biotinylated primer that allows capture of the undesired strand on streptavidin beads. Alternatively, asymmetric PCR can be used to generate a single-stranded target. Another approach involves the generation of single stranded RNA form the PCR product by incorporating a T7 or other RNA polymerase promoter in one of the primers. The single-stranded material can optionally be fragmented to generate smaller nucleic acids with less significant secondary structure than longer nucleic

In one such method, fragmentation is combined with labeling. To illustrate, degenerate 8-mers or other degenerate short oligonucleotides are hybridized to the single-stranded target material. In the next step, a DNA polymerase is added with the four different dideoxynucleotides, each labeled with a different fluorophore. Fluorophore-labeled dideoxynucleotide are available from a variety of commercial suppliers, such as ABI. Hybridized 8-mers are extended by a labeled dideoxynucleotide. After an optional purification step, i.e., with a size exclusion column, the labeled 9-mers are hybridized to the chip. Other methods of target fragmentation can be employed. The single-stranded DNA can be fragmented by partial degradation with a DNAse or partial depurination with acid. Labeling can be accomplished in a separate step, i.e., fluorophore-labeled nucleotides are incorporated before 55 the fragmentation step or a DNA binding fluorophore, such as ethidium homodimer, is attached to the target after fragmentation.

In one embodiment, the DNA chip has an array of 10⁴ to 10⁵ probes tiling across the protein coding regions of p53, which comprise about 1200 bp; smaller arrays specific for the 600 bp mutational hot spot region are also useful. The probes overlap for N-2 to N-4 bases, where N is the length of the probe in bases. N is typically 10 to 14 bases long, but as will be seen below, probes 15 to 19 bases and longer are also useful. Every possible single base substitution occurring one at a time is represented in the array. The number of unique 10-mer probes with 7 base overlaps would be about

(1200/3)×4×10 or about 1.6×10⁴. To allow 3 replicates of each probe, one might have a total array size on the order of 4.8×10⁴ probes. Of course, arrays of probes within the ranges of 10² to 10⁶ probes are also useful for applications; for example, very large arrays of 10⁶ or more probes are 5 useful for sequencing or sequence checking large genomic DNA fragments. Optionally fragmented and labeled target nucleic acid hybridized to the chip is detected by a confocal microscope or other imaging device. The pattern of sites "lighting up" with target is preferably analyzed with computer assistance to provide the sequence of the target from the pattern of sites producing signals.

The invention is illustrated below with examples of DNA chips comprising very large arrays of DNA probes to "resequence" p53 target nucleic acid in a sample. To analyze 15 DNA from exon 5 of the p53 tumor suppressor gene, a set of overlapping 17-mer probes was synthesized on a chip. The probes for the WT allele were synthesized so as to tile across the entire exon with single base overlaps between probes. For each WT probe, a sets of 4 additional probes, 20 one for each possible base substitution at position 7, were synthesized and placed in a column relative to the WT probe. Exon 5 DNA was amplified by PCR with primers flanking the exon. One of the primers was labeled with fluorescein; the other primer was labeled with biotin. After amplification, 25 the biotinylated strand was removed by binding to streptavidin beads. The fluoresceinated strand was used in hybridization.

About 1/3 of the amplified, single-stranded nucleic acid was hybridized overnight in 5xSSPE at 60° C. to the probe 30 chip (under a cover slip). After washing with 6xSSPE, the chip was scanned using confocal microscopy. FIG. 26 shows an image of the p53 chip hybridized to the target DNA. Analysis of the intensity data showed that 93.5% of the 184 bases of exon 5 were called in agreement with the WT 35 sequence (see Buchman et al., 1988, Gene 70: 245-252, incorporated herein by reference). The miscalled bases were from positions where probe signal intensities were tied (1.6%) and where non-WT probes had the highest signal intensity (4.9%). FIG. 27 illustrates how the actual sequence 40 was read. Gaps in the sequence of letters in the WT rows correspond to control probes or sites. Positions at which bases are miscalled are represented by letters in italic type in cells corresponding to probes in which the WT bases have been substituted by other bases.

As the diagram indicates, the miscalled bases are from the low intensity areas of the image, which may be due to secondary structure in the target or probes preventing intermolecular hybridization. To diminish the effects due to secondary structure, one can employ shorter targets (i.e., by 50 target fragmentation) or use more stringent hybridization conditions. In addition, the use of a set of probes synthesized by tiling across the other strand of a duplex target can also provide sequence information buried in secondary structure in the other strand. It should be appreciated, however, that 55 the pattern of low intensity areas that forms as a result of secondary structure in the target itself provides a means to identify that a specific target sequence is present in a sample. Other factors that may contribute to lower signal intensities include differences in probe densities and hybridization 60 stabilities.

These results demonstrate the advantages provided by the DNA chips of the invention to genetic analysis. As another example, heterozygous mutations are currently sequenced by an arduous process involving cloning and repurification 65 of DNA. The cloning step is required, because the gel sequencing systems are poor at resolving even a 1:1 mixture

of DNA. First, the target DNA is amplified by PCR with primers allowing easy ligation into a vector, which is taken up by transformation of *E. coli* which in turn must be cultured, typically on plates overnight. After growth of the bacteria, DNA is purified in a procedure that typically takes about 2 hours; then, the sequencing reactions are performed, which takes at least another hour, and the samples are run on the gel for several hours, the duration depending on the length of the fragment to be sequenced. By contrast, the present invention provides direct analysis of the PCR amplified material after brief transcription and fragmentation steps, saving days of time and labor.

An interesting clinical application for the characterization of heterozygous mutations with DNA chips is as follows. Individuals with germline cancer mutations have a very high risk for secondary tumors after treatment by irradiation. About 10% of all cancer patients may have germline mutations for p53 or other tumor suppressor genes. Thus, before deciding on a treatment modality, a physician could use the method and DNA chips of the invention to test for a germline suppressor gene mutation.

DNA Chips for Rational Therapeutic Management

The present invention also provides DNA chips that can be used by physicians to determine optimum therapeutic protocols by early, rapid detection of biologically mediated resistance to a therapeutic agent in a variety of disease states. The benefits of such DNA chips are many, as the chips will help physicians recognize health care cost savings, achieve rapid therapeutic benefits, limit administration of ineffective (due to the resistance) yet toxic drugs, monitor changes in pathogen resistance, and decrease pathogen acquisition of resistance. Important applications include the treatment of HIV, other infectious diseases, and cancer.

HIV has infected a large and expanding number of people, resulting in massive health care expenditures. HIV can rapidly become resistant to drugs used to treat the infection, primarily due to the action of the heterodimeric protein (51 kD and 66 kD) HIV reverse transcriptase (RT) encoded by the 1.7 kb pol gene. The high error rate (5-10 per round) of the RT protein is believed to account for the hypermutability of HIV. The nucleoside analogues, i.e., AZT, ddI, ddC, and d4T, commonly used to treat HIV infection are converted to nucleotide analogues by sequential phosphorylation in the cytoplasm of infected cells, where incorporation of the analogue into the viral DNA results in termination of viral replication, because the 5'→3' phosphodiester linkage cannot be completed. However, within after 6 months to 1 year of treatment, HIV typically mutates the RT gene so as to become incapable of incorporating the analogue and so resistant to treatment. Several known mutations are shown in tabular form below.

RT MUTATIONS ASSOCIATED WITH DRUG RESISTANCE

ANTI- VIRAL	CODON	22 CHANGE	nt CHANGE
AZT	67	Asp -> Asa	GAC -> AAC
AZT	70	Lys -> Arg	AAA -> AGA
AZT	215	Thr -> Phe or Tyr	ACC -> TTC or TAC
AZT	219	Lys -> Gin or Giu	AAA -> CAA or GAA
AZT	41	Met -> Leu	ATG -> TTG or CTG
Obb bas 1bb	184	Met -> Val	ATG -> GTG
Obb bas 1bb	74	Leu -> Val	
TIBO 82150	100	Leu -> Ile	

N.B. other mutations confer resistance to other drugs in vitro

The present invention provides DNA chips for detecting the multiple mutations in the HIV RT gene associated with resistance to different therapeutics. These DNA chips will enable physicians to monitor mutations over time and to change therapeutics if resistance develops. The DNA chip will provide redundant confirmation of conserved HIV RT and other gene sequences, and the probes on the chip will tile 5 through, with overlap, in important mutational hot spot regions. The chip will optionally have probes that span the entire coding region of the RT and optionally the genes for other HIV proteins, such as coat proteins. HIV target nucleic acid can be isolated from blood samples (peripheral blood 10 lymphocytes or PBMC) and amplified by PCR, primers for which are shown in the table below.

to gain primary structure information of the DNA target. This format has important applications in sequencing by hybridization, DNA diagnostics and in elucidating the thermodynamic parameters affecting nucleic acid recognition.

Conventional DNA sequencing technology is a laborious procedure requiring electrophoretic size separation of labeled DNA fragments. An alternative approach, termed Sequencing By Hybridization (SBH), has been proposed (Lysov et al., 1988, Dokl. Akad. Nauk SSSR 303: 1508-1511; Bains et al., 1988, I. Theor. Biol. 135: 303-307; and Drmanac et al., 1989, Genomics 4: 114-128, incorporated herein by reference). This method uses a set of short

	AMPLIFICATION OF TARGET				
TARGET SIZE	PRIMER 1	PRIMER 2			
1, 742bp	GTAGAATTCTGTTGACTCAGATTGG (SEQ ID. NO:292)	GATAAGCTTGGGCCTTATCTATTCCAT (SEQ ID. NO:294)			
535bp	AAATCCATACAATACTCCAGTATTTGC (SEQ ID. NO:293)	ACCCATCCAAAGGAATGGAGGTTCTTTC (SEO ID. NO:295)			
323bp	Genbank#K02013 1839-1908	bases 2211-2192			

The HIVRT gene chips of the invention, as well as the CF, mtDNA, and p53 DNA chips of the invention, illustrate the diverse application of the methods and probe arrays of the invention. The examples that follow describe methods for preparing nucleic acid targets from samples for application to the DNA chips of the invention and provide additional details of the methods of the invention.

EXAMPLES

I. VLSIPS™ Technology

As noted above, the VLSIPS™ technology is described in 35 a number of patent publications and is preferred for making the oligonucleotide arrays of the invention. For completeness, a brief description of how this technology can be used to make and screen DNA chips is provided in this Example and the accompanying Figures. In the VLSIPS method, light is shone through a mask to activate functional (for oligonucleotides, typically an -OH) groups protected with a photoremovable protecting group on a surface of a solid support. After light activation, a nucleoside building block, itself protected with a photoremovable protecting 45 group (at the 5'-OH), is coupled to the activated areas of the support. The process can be repeated, using different masks or mask orientations and building blocks, to prepare very dense arrays of many different oligonucleotide probes. The process is illustrated in FIG. 28; FIG. 29 illustrates how 50 the process can be used to prepare "nucleoside combinatorials" or oligonucleotides synthesized by coupling all four nucleosides to form dimers, trimers, etc.

New methods for the combinatorial chemical synthesis of peptide, polycarbamate, and oligonucleotide arrays have 55 recently been reported (see Fodor et al., 1991, Science 251: 767-773; Cho et al., 1993, Science 261: 1303-1305; and Southern et al., 1992, Genomics 13: 1008-10017, each of which is incorporated herein by reference). These arrays, or biological chips (see Fodor et al., 1993, Nature 364: 60 555-556, incorporated herein by reference), harbor specific chemical compounds at precise locations in a high-density, information rich format, and are a powerful tool for the study of biological recognition processes. A particularly exciting application of the array technology is in the field of 65 DNA sequence analysis. The hybridization pattern of a DNA target to an array of shorter oligonucleotide probes is used

oligonucleotide probes of defined sequence to search for complementary sequences on a longer target strand of DNA. The hybridization pattern is used to reconstruct the target DNA sequence. It is envisioned that hybridization analysis of large numbers of probes can be used to sequence long stretches of DNA. In immediate applications of this hybridization methodology, a small number of probes can be used to interrogate local DNA sequence.

The strategy of SBH can be illustrated by the following example. A 12-mer target DNA sequence, AGCCTAGCTGAA, (SEQ. ID NO:296) is mixed with a complete set of octanucleotide probes. If only perfect complementarity is considered, five of the 65,536 octamer probes -TCGGATCG, CGGATCGA, GGATCGAC, GATCGACT, and ATCGACTT will hybridize to the target. Alignment of the overlapping sequences from the hybridizing probes reconstructs the complement of the original 12-mer target:

TCGGATCGA
CGGATCGAC
GGATCGACT
ATCGACTT
TCGGATCGACTT (SEQ. ID NO:297)

Hybridization methodology can be carried out by attaching target DNA to a surface. The target is interrogated with a set of oligonucleotide probes, one at a time (see Strezoska et al., 1991, Proc. Natl. Acad. Sci. USA 88: 10089-10093, and Drmanac et al., 1993, Science 260: 1649-1652, each of which is incorporated herein by reference). This approach can be implemented with well established methods of immobilization and hybridization detection, but involves a large number of manipulations. For example, to probe a sequence utilizing a full set of octanucleotides, tens of thousands, of hybridization reactions must be performed. Alternatively, SBH can be carried out by attaching probes to a surface in an array format where the identity of the probes at each site is known. The target DNA is then added to the array of probes. The hybridization pattern determined in a single experiment directly reveals the identity of all complementary probes.

As noted above, a preferred method of oligonucleotide probe array synthesis involves the use of light to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays. Photolabile 5'-protected N-acyldeoxynucleoside phosphoramidites, surface linker 5 chemistry, and versatile combinatorial synthesis strategies have been developed for this technology. Matrices of spatially-defined oligonucleotide probes have been generated, and the ability to use these arrays to identify hybridizing fluorescent labeled oligonucleotides to the DNA chips produced by the methods. The hybridization pattern demonstrates a high degree of base specificity and reveals the sequence of oligonucleotide targets.

The basic strategy for light-directed oligonucleotide syn- 15 thesis (1) is outlined in FIG. 28. The surface of a solid support modified with photolabile protecting groups (X) is illuminated through a photolithographic mask, yielding reactive hydroxyl groups in the illuminated regions. A at the 5'-hydroxyl with a photolabile group) is then presented to the surface and coupling occurs at sites that were exposed to light. Following capping, and oxidation, the substrate is rinsed and the surface illuminated through a second mask, to 5'-protected, 3'-O-phosphoramidite activated deoxynucleoside is presented to the surface. The selective photodeprotection and coupling cycles are repeated until the desired set of products is obtained.

Light directed chemical synthesis lends itself to highly 30 efficient synthesis strategies which will generate a maximum number of compounds in a minimum number of chemical steps. For example, the complete set of 4n polynucleotides (length n), or any subset of this set can be produced in only 4xn chemical steps. See FIG. 29. The patterns of illumina- 35 tion and the order of chemical reactants ultimately define the products and their locations. Because photolithography is used, the process can be miniaturized to generate highdensity arrays of oligonucleotide probes. For an example of the nomenclature useful for describing such arrays, an array 40 containing all possible octanucleotides of dA and dT is written as (A+T)8. Expansion of this polynomial reveals the identity of all 256 octanucleotide probes from AAAAAAA to TTTTTTT. A DNA array composed of complete sets of dinucleotides is referred to as having a complexity of 2. The 45 array given by (A+T+C+G)8 is the full 65,536 octanucleotide array of complexity four.

To carry out hybridization of DNA targets to the probe arrays, the arrays are mounted in a thermostatically controlled hybridization chamber. Fluorescein labeled DNA 50 targets are injected into the chamber and hybridization is allowed to proceed for 1/2 to 2 hours. The surface of the matrix is scanned in an epifluorescence microscope (Zeiss Axioscop 20) equipped with photon counting electronics using 50-100 μ W of 488 nm excitation from an Argon ion 55 organisms. laser (Spectra Physics model 2020). All measurements are acquired with the target solution in contact with the probe matrix. Photon counts are stored and image files are presented after conversion to an eight bit image format. See

When hybridizing a DNA target to an oligonucleotide array, N-Lt-(Lp-1) complementary hybrids are expected, where N is the number of hybrids, Lt is the length of the DNA target, and Lp is the length of the oligonucleotide probes on the array. For example, for an 11-mer hybridized 65 to an octanucleotide array, N=4. Hybridizations with mismatches at positions that are 2 to 3 residues from either end

of the probes will generate detectable signals. Modifying the above expression for N, one arrives at a relationship estimating the number of detectable hybridizations (Nd) for a DNA target of length Lt and an array of complexity C. Assuming an average of 5 positions giving signals above background: Nd=(1+5(C-1))[Lt-(Lp-1)].

Arrays of oligonucleotides can be efficiently generated by light-directed synthesis and can be used to determine the identity of DNA target sequences. Because combinatorial complementary sequences has been demonstrated by 10 strategies are used, the number of compounds increases exponentially while the number of chemical coupling cycles increases only linearly. For example, expanding the synthesis to the complete set of 48 (65,536) octanucleotides will add only four hours to the synthesis for the 16 additional cycles. Furthermore, combinatorial synthesis strategies can be implemented to generate arrays of any desired composition. For example, because the entire set of dodecamers (4¹²) can be produced in 48 photolysis and coupling cycles (b" compounds requires bxn cycles), any subset of the dodecam-3'-O-phosphoramidite activated deoxynucleoside (protected 20 ers (including any subset of shorter oligonucleotides) can be constructed with the correct lithographic mask design in 48 or fewer chemical coupling steps. In addition, the number of compounds in an array is limited only by the density of synthesis sites and the overall array size. Recent experiexpose additional hydroxyl groups for coupling. A second 25 ments have demonstrated hybridization to probes synthesized in 25 µm sites. At this resolution, the entire set of 65,536 octanucleotides can be placed in an array measuring 0.64 cm square, and the set of 1,048,576 dodecanucleotides requires only a 2.56 cm array.

Genome sequencing projects will ultimately be limited by DNA sequencing technologies. Current sequencing methodologies are highly reliant on complex procedures and require substantial manual effort. Sequencing by hybridization has the potential for transforming many of the manual efforts into more efficient and automated formats. Light-directed synthesis is an efficient means for large scale production of miniaturized arrays for SBH. The oligonucleotide arrays are not limited to primary sequencing applications. Because single base changes cause multiple changes in the hybridization pattern, the oligonucleotide arrays provide a powerful means to check the accuracy of previously elucidated DNA sequence, or to scan for changes within a sequence. In the case of octanucleotides, a single base change in the target DNA results in the loss of eight complements, and generates eight new complements. Matching of hybridization patterns may be useful in resolving sequencing ambiguities from standard gel techniques, or for rapidly detecting DNA mutational events. The potentially very high information content of light-directed oligonucleotide arrays will change genetic diagnostic testing. Sequence comparisons of hundreds to thousands of different genes will be assayed simultaneously instead of the current one, or few at a time format. Custom arrays can also be constructed to contain genetic markers for the rapid identification of a wide variety of pathogenic

Oligonucleotide arrays can also be applied to study the sequence specificity of RNA or protein-DNA interactions. Experiments can be designed to elucidate specificity rules of non Watson-Crick oligonucleotide structures or to investigate the use of novel synthetic nucleoside analogs for antisense or triple helix applications. Suitably protected RNA monomers may be employed for RNA synthesis. The oligonucleotide arrays should find broad application deducing the thermodynamic and kinetic rules governing formation and stability of oligonucleotide complexes.

Other than the use of photoremovable protecting groups, the nucleoside coupling chemistry is very similar to that

used routinely today for oligonucleotide synthesis. FIG. 30 shows the deprotection, coupling, and oxidation steps of a solid phase DNA synthesis method. FIG. 31 shows an illustrative synthesis route for the nucleoside building blocks used in the method. FIG. 32 shows a preferred photoremovable protecting group, MeNPOC, and how to prepare the group in active form. The procedures described below show how to prepare these reagents. The nucleoside building blocks are 5'-MeNPOC-THYMIDINE-3'-OCEP; 5'-Menpoc-n'-t-Butyl Phenoxyacetyl-DEOXYCYTIDINE-3'-OCEP; 5'-McNPOC-N4-t-BUTYL PHENOXYACETYL-DEOXYGUANOSINE-3'-OCEP; and 5'-MeNPOC-N4-t-BUTYL PHENOXYACETYL-DEOXYADENOSINE-3'-OCEP.

A. Preparation of 4, 5-methylenedioxy-2-nitroacetophenone 15

A solution of 50 g (0.305 mole) 3,4-25 methylenedioxyacetophenone (Aldrich) in 200 mL glacial acetic acid was added dropwise over 30 minutes to 700 mL of cold (2-4° C.) 70% HNO3 with stirring (NOTE: the reaction will overheat without external cooling from an ice temperatures below 0° C., however, the reaction can be sluggish. A temperature of 3°-5° C. seems to be optimal). The mixture was left stirring for another 60 minutes at 3°-5° C., and then allowed to approach ambient temperature. Analysis by TLC (25% EtOAc in hexane) indicated complete conversion of the starting material within 1-2 hr. When the reaction was complete, the mixture was poured into -3 liters of crushed ice, and the resulting yellow solid was filtered off, washed with water and then suction-dried. Yield -53 g (84%), used without further purification.

B. Preparation of 1-(4,5-Methylenedioxy-2-nitrophenyl)

ethanol

Sodium borohydride (10 g; 0.27 mol) was added slowly to a cold, stirring suspension of 53 g (0.25 mol) of 4,5methylenedioxy-2-nitroacetophenone in 400 mL methanol. The temperature was kept below 10° C. by slow addition of 55 the NaBH₄ and external cooling with an ice bath. Stirring was continued at ambient temperature for another two hours, at which time TLC (CH₂Cl₂) indicated complete conversion of the ketone. The mixture was poured into one liter of ice-water and the resulting suspension was neutralized with 60 ammonium chloride and then extracted three times with 400 mL CH₂Cl₂ or EtOAc (the product can be collected by filtration and washed at this point, but it is somewhat soluble in water and this results in a yield of only -60%). The combined organic extracts were washed with brine, then 65 dried with MgSO4 and evaporated. The crude product was purified from the main byproduct by dissolving it in a

minimum volume of CH₂Cl₂ or THF(-175 ml) and then precipitating it by slowly adding hexane (1000 ml) while stirring (yield 51 g; 80% overall). It can also be recrystallized (eg., toluene-hexane), but this reduces the yield. C. Preparation of 1-(4,5- methylenedioxy-2-nitrophenyl) ethyl chloroformate (McNPOC-Cl)

Phosgene (500 mL of 20% w/v in toluene from Fluka: 965 mmole; 4 eq.) was added slowly to a cold, stirring solution of 50 g (237 mmole; 1 eq.) of 1-(4,5-methylenedioxy-2nitrophenyl)ethanol in 400 mL dry THF. The solution was stirred overnight at ambient temperature at which point TLC bath, which can be dangerous and lead to side products). At 30 (20% Et₂O/hexane) indicated >95% conversion. The mixture was evaporated (an oil-less pump with downstream aqueous NaOH trap is recommended to remove the excess phosgene) to afford a viscous brown oil. Purification was effected by flash chromatography on a short (9×13 cm) column of silica gel eluted with 20% Et₂O/hexane. Typically 55 g (85%) of the solid yellow MeNPOC-Cl is obtained by this procedure. The crude material has also been recrystallized in 2-3 crops from 1:1 ether/hexane. On this scale, -100 ml is used for the first crop, with a few percent THF added 40 to aid dissolution, and then cooling overnight at -20° C. (this procedure has not been optimized). The product should be stored dessicated at -20° C.

D. Synthesis of 5'-MeNPOC-2'-DEOXYNUCLEOSIDE-3'-(N,N-DIISOPROPYL 2-CYANOETHYL PHOSPHORA-45 MIDITES

(1) 5'-MeNPOC-Nucleosides

Base=THYMIDINE (T); N-4-ISOBUTYRYL 2'-DEOXYCYTIDINE (ibu-dC); N-2-PHENOXYACETYL 2'DEOXYGUANOSINE (PAC-dG); and N-6-PHENOXYACETYL 2'DEOXYADENOSINE (PAC-dA)

All four of the 5'-MeNPOC nucleosides were prepared from the base-protected 2'-deoxynucleosides by the following procedure. The protected 2'-deoxynucleoside (90 mmole) was dried by co-evaporating twice with 250 mL anhydrous pyridine. The nucleoside was then dissolved in

300 mL anhydrous pyridine (or 1:1 pyridine/DMF, for the dGAC nucleoside) under argon and cooled to ~2° C. in an ice bath. A solution of 24.6 g (90 mmole) MeNPOC-Cl in 100 mL dry THP was then added with stirring over 30 minutes. The ice bath was removed, and the solution allowed to stir overnight at room temperature (TLC: 5-10% MeOH in CH2Cl2; two diastereomers). After evaporating the solvents under vacuum, the crude material was taken up in 250 mL ethyl acetate and extracted with saturated aqueous NaHCO3 and brine. The organic phase was then dried over 10 Na₂SO₄, filtered and evaporated to obtain a yellow foam. The crude products were finally purified by flash chromatography (9x30 cm silica gel column eluted with a stepped gradient of 2%-6% MeOH in CH2Cl2). Yields of the purified diastereomeric mixtures are in the range of 65-75%.

(2) 5'-MeNPOC-2'-DEOXYNUCLEOSIDE-3'-(N,N-DIISOPROPYL 2-CYANOETHYL PHOSPHORAMIDITES)

The four deoxynucleosides were phosphitylated using 35 2-cyanocthyl-N, N-diisopropyl chlorophosphoramidite, or 2-cyanoethyl-N,N,N',N'tetraisopropylphosphorodiamidite. The following is a typical procedure. Add 16.6 g (17.4 ml; 55 mmole) of to a solution of 50 mmole 5'-MeNPOC-nucleoside and 4.3 g (25 mmole) diisopropylammonium tetrazolide in 250 mL dry CH2Cl2 under argon at ambient temperature. Continue stirring for 4-16 hours (reaction monitored by TLC: 45:45:10 hexane/CH₂Cl₂/Et₃N). Wash the organic phase with saturated aqueous NaHCO3 and brine, then dry over Na, SO4, and evaporate to dryness. Purify the crude amidite by flash chromatography (9x25 cm silica gel column eluted with hexane/CH2CL/TEA -45:45:10 for A, C, T; or 0:90:10 for G). The yield of purified amidite is about 90%. II. PREPARATION OF LABELED DNA/ HYBRIDIZATION TO ARRAY

PCR

PCR amplification reactions are typically conducted in a mixture composed of per reaction: $1 \mu l$ genomic DNA; $10 \mu l$ 55 each primer (10 pmol/µl stocks); 10 µl 10×PCR buffer (100 mM Tris.Cl pH8.5, 500 mM KCl, 15 mM MgCl₂); 10 µl 2 mM dNTPs (made from 100 mM dNTP stocks); 2.5 U Taq polymerase (Perkin Elmer AmpliTaq™, 5 U/µl); and H₂O to 100 μ l. The cycling conditions are usually 40 cycles (94° C. 60 45 sec, 55° C. 30 sec, 72° C. 60 sec) but may need to be varied considerably from sample type to sample type. These conditions are for 0.2 mL thin wall tubes in a Perkin Elmer 9600 thermocycler. See Perkin Elmer 1992/93 catalogue for 9600 cycle time information. Target, primer length and 65 sequence composition, among other factors, may also affect parameters.

For products in the 200 to 1000 bp size range, check 2 μ l of the reaction on a 1.5% 0.5xTBE agarose gel using an appropriate size standard (phiXI74 cut with HaeIII is convenient). The PCR reaction should yield several picomoles of product. It is helpful to include a negative control (i.e., 1 ul TE instead of genomic DNA) to check for possible contamination. To avoid contamination, keep PCR products from previous experiments away from later reactions, using filter tips as appropriate. Using a set of working solutions and storing master solutions separately is helpful, so long as one does not contaminate the master stock solutions.

For simple amplifications of short fragments from genomic DNA it is, in general, unnecessary to optimize Mg2+ concentrations. A good procedure is the following: make a master mix minus enzyme; dispense the genomic DNA samples to individual tubes or reaction wells; add enzyme to the master mix; and mix and dispense the master solution to each well, using a new filter tip each time.

2) PURIFICATION

Removal of unincorporated nucleotides and primers from 20 PCR samples can be accomplished using the Promega Magic PCR Preps DNA purification kit. One can purify the whole sample, following the instructions supplied with the kit (proceed from section IIIB, 'Sample preparation for direct purification from PCR reactions'). After elution of the PCR product in 50 μ l of TE or H_2O , one centrifuges the eluate for 20 sec at 12,000 rpm in a microfuge and carefully transfers 45 μ l to a new microfuge tube, avoiding any visible pellet. Resin is sometimes carried over during the elution step. This transfer prevents accidental contamination of the linear amplification reaction with 'Magic PCR' resin. Other methods, e.g. size exclusion chromatography, may also be

3) LINEAR AMPLIFICATION

In a 0.2 mL thin-wall PCR tube mix: 4 μ l purified PCR product; 2 µl primer (10 pmol/µl); 4 µl 10×PCR buffer; 4 µl dNTPs (2 mM dA, dC, dG, 0.1 mM dT); $4 \mu l$ 0.1 mM dUTP; 1 µl 1 mM fluorescein dUTP (Amersham RPN 2121); 1 U Taq polymerase (Perkin Elmer, 5 U/µl); and add H₂O to 40 μl. Conduct 40 cycles (92° C. 30 sec, 55° C. 30 sec, 72° C. 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite 40 90 sec) of PCR. These conditions have been used to amplify a 300 nucleotide mitochondrial DNA fragment but are generally applicable. Even in the absence of a visible product band on an agarose gel, there should still be enough product to give an easily detectable hybridization signal. If one is not treating the DNA with uracil DNA glycosylase (see Section 4), dUTP can be omitted from the reaction.

4) FRAGMENTATION

Purify the linear amplification product using the Promega Magic PCR Preps DNA purification kit, as per Section 2 50 above. In a 0.2 mL thin-wall PCR tube mix: 40 µl purified labeled DNA; 4 μ l 10xPCR buffer; and 0.5 μ l uracil DNA glycosylase (BRL 1U/µl). Incubate the mixture 15 min at 37° C., then 10 min at 97° C.; store at -20° C. until ready to use.

5) HYBRIDIZATION SCANNING & STRIPPING

A blank scan of the slide in hybridization buffer only is helpful to check that the slide is ready for use. The buffer is removed from the flow cell and replaced with 1 mL of (fragmented) DNA in hybridization buffer and mixed well. The scan is performed in the presence of the labeled target. FIG. 33 illustrates an illustrative detection system for scanning a DNA chip. A series of scans at 30 min intervals using a hybridization temperature of 25° C. yields a very clear signal, usually in at least 30 min to two hours, but it may be desirable to hybridize longer, i.e., overnight. Using a laser power of 50 μW and 50 μm pixels, one should obtain maximum counts in the range of hundreds to low thousands/

pixel for a new slide. When finished, the slide can be stripped using 50% formamide, rinsing well in deionized $\rm H_2O$, blowing dry, and storing at room temperature. III. PREPARATION OF LABELED RNA/HYBRIDIZATION TO ARRAY

1) TAGGED PRIMERS

The primers used to amplify the target nucleic acid should have promoter sequences if one desires to produce RNA from the amplified nucleic acid. Suitable promoter sequences are shown below and include:

(1) the T3 promoter sequence:

5'-CGGAATTAACCCTCACTAAAGG (SEQ. ID NO:298) 5'-AATTAACCCTCACTAAAGGGAG; (SEQ. ID NO:299) (2) the T7 promoter sequence:

5' TAATACGACTCACTATAGGGAG; (SEQ. ID NO:300) 15 and (3) the SP6 promoter sequence:

5' ATTTAGGTGACACTATAGAA. (SEQ. ID NO:301)
The desired promoter sequence is added to the 5' end of the
PCR primer. It is convenient to add a different promoter to
each primer of a PCR primer pair so that either strand may 20
be transcribed from a single PCR product.

Synthesize PCR primers so as to leave the DMT group on. DMT-on purification is unnecessary for PCR but appears to be important for transcription. Add 25 μ l 0.5M NaOH to collection vial prior to collection of oligonucleotide to keep 25 the DMT group on. Deprotect using standard chemistry—55° C. overnight is convenient.

HPLC purification is accomplished by drying down the oligonucleotides, resuspending in 1 mL 0.1M TEAA (dilute 2.0M stock in deionized water, filter through 0.2 micron 30 filter) and filter through 0.2 micron filter. Load 0.5 mL on reverse phase HPLC (column can be a Hamilton PRP-1 semi-prep, #79426). The gradient is 0→50% CH₃CN over 25 min (program 0.2 μ mol.prep.0-50, 25 min). Pool the desired fractions, dry down, resuspend in 200 μ l 80% HAc. 35 30 min RT. Add 200 µl EtOH; dry down. Resuspend in 200 μl H₂O, plus 20 μl NaAc pH5.5, 600 μl EtOH. Leave 10 min on ice; centrifuge 12,000 rpm for 10 min in microfuge. Pour off supernatant. Rinse pellet with 1 mL EtOH, dry, resuspend in 200 μ l H2O. Dry, resuspend in 200 μ l TE. Measure A260, prepare a 10 pmol/µl solution in TE (10 mM Tris.Cl pH 8.0, 0.1 mM EDTA). Following HPLC purification of a 42 mer, a yield in the vicinity of 15 nmol from a 0.2 μ mol scale synthesis is typical.

2) GENOMIC DNA PREPARATION

For obtaining genomic DNA from human hair, one can extract as few as 5 hairs, including hair roots. On a clean and sterile surface, one places the hair on a piece of parafilm, and after wiping a new razor blade with EtOH cutting off the roots, the roots are transferred to a 1.5 mL microfuge tube 50 using a pair of Millipore forceps cleaned with EtOH. Add 500 µl (10 mM Tris. Cl pH8.0, 10 mM EDTA, 100 mM NaCl, 2% (w/v) SDS, 40 mM DTT, filter sterilized) to the sample. Add 1.25 µl 20 mg/ml proteinase K (Boehringer) Incubate at 55° C. for 2 hours, vortexing once or twice. Perform 2x0.5 55 mL 1:1 phenol: CHCl₃ extractions. After each extraction, centrifuge 12,000 rpm 5 min in a microfuge and recover 0.4 mL supernatant. Add 35 µl NaAc pH5.2 plus 1 mL EtOH. Place sample on ice 45 min; then centrifuge 12,000 rpm 30 min, rinse, air dry 30 min, and resuspend in 100 µl TE.

PCR

PCR is performed in a mixture containing, per reaction: 1 μ l genomic DNA; 4μ l each primer (10 pmol/ μ l stocks); 4μ l 10 ×PCR buffer (100 mM Tris.Cl pH8.5, 500 mM KCl, 15 mM MgCl₂); 4μ l 2 mM dNTPs (made from 100 mM dNTP 65 stocks); 1 U Taq polymerase (Perkin Elmer, 5 U/ μ l); H₂O to 40 μ l. About 40 cycles (94° C. 30 sec, 55° C. 30 sec, 72° C.

30 sec) are performed, but cycling conditions may need to be varied. These conditions are for 0.2 mL thin wall tubes in Perkin Elmer 9600. For products in the 200 to 1000 bp size range, check 2μ l of the reaction on a 1.5% 0.5×TBE agarose gel using an appropriate size standard. For larger or smaller volumes (20-100 μ l), one can use the same amount of genomic DNA but adjust the other ingredients accordingly.

4) IN VITRO TRANSCRIPTION

Mix: $3 \mu l$ PCR product; $4 \mu l$ 5×buffer; $2 \mu l$ DTT; $2.4 \mu l$ 10 10 mM rNTPs (100 mM solutions from Pharmacia); 0.48 μ l 10 mM fluorescein-UTP (Fluorescein-12-UTP, 10 mM solution, from Boehringer Mannheim); 0.5 µl RNA polymerase (Promega T3 or T7 RNA polymerase); and add H2O to 20 µl. Incubate at 37° C. for 3 h. Check 2 µl of the reaction on a 1.5% 0.5×TBE agarose gel using a size standard. 5xbuffer is 200 mM Tris pH 7.5, 30 mM MgCl2, 10 mM spermidine, 50 mM NaCl, and 100 mM DTT (supplied with enzyme). The PCR product needs no purification and can be added directly to the transcription mixture. A 20 μ l reaction is suggested for an initial test experiment and hybridization; a 100 μ l reaction is considered "preparative" scale (the reaction can be scaled up to obtain more target). The amount of PCR product to add is variable; typically a PCR reaction will yield several picomoles of DNA. If the PCR reaction does not produce that much target, then one should increase the amount of DNA added to the transcription reaction (as, well as optimize the PCR). The ratio of fluorescein-UTP to UTP suggested above is 1:5, but ratios from 1:3 to 1:10-all work well. One can also label with biotin-UTP and detect with streptavidin-FITC to obtain similar results as with fluorescein-UTP detection.

For nondenaturing agarose gel electrophoresis of RNA, note that the RNA band will normally migrate somewhat faster than the DNA template band, although sometimes the two bands will comigrate. The temperature of the gel can effect the migration of the RNA band. The RNA produced from in vitro transcription is quite stable and can be stored for months (at least) at -20° C. without any evidence of degradation. It can be stored in unsterilized 6xSSPE 0.1% triton X- 100 at -20° C. for days (at least) and reused twice (at least) for hybridization, without taking any special precautions in preparation or during use. RNase contamination should of course be avoided. When extracting RNA from cells, it is preferable to work very rapidly and to use strongly 45 denaturing conditions. Avoid using glassware previously contaminated with RNases. Use of new disposable plasticware (not necessarily sterilized) is preferred, as new plastic tubes, tips, etc., are essentially RNase free. Treatment with DEPC or autoclaving is typically not unnecessary.

5) FRAGMENTATION

In a 0.2 mL thin-wall PCR tube mix: 18 μ l RNA (direct from transcription reaction—no purification required); 18 μ l H₂O; and 4 μ l 1M Tris.Cl pH9.0. Incubate at 99.9° C. for 60 min. Add to 1 mL hybridization buffer and store at -20° C. until ready to use. The alkaline hydrolysis step is very reliable. The hydrolysed target can be stored at -20° C. in 6xSSPE/0.1% Triton X-100 for at least several days prior to use and can also be reused.

6) HYBRIDIZATION SCANNING, & STRIPPING

A blank scan of the slide in hybridization buffer only is helpful to check that the slide is ready for use. The buffer is removed from the flow cell and replaced with 1 mL of (hydrolysed) RNA in hybridization buffer and mixed well. Incubate for 15–30 min at 18° C. Remove the hybridization solution, which can be saved for subsequent experiments. Rinse the flow cell 4–5 times with fresh changes of 6×SSPE/0.1% Triton X-100, equilibrated to 18° C. The rinses can be

performed rapidly, but it is important to empty the flow cell before each new rinse and to mix the liquid in the cell thoroughly. The scan is performed in the presence of the labeled target. A series of scans at 30 min intervals using a hybridization temperature of 25° C. yields a very clear 5 signal, usually in at least 30 min to two hours, but it may be desirable to hybridize longer, i.e., overnight. Using a laser power of 50 μW and 50 μm pixels, one should obtain maximum counts in the range of hundreds to low thousands/ stripped using 50% to 100% formamide at 50° C. for 30 min,

rinsing well in deionized H2O, blowing dry, and storing at room temperature.

These conditions are illustrative and assume a probe length of -15 nucleotides. The stripping conditions suggested are fairly severe, but some signal may remain on the slide if the washing is not stringent. Nevertheless, the counts remaining after the wash should be very low in comparison to the signal in presence of target RNA. In some cases, much gentler stripping conditions are effective. The lower the hybridization temperature and the longer the duration of pixel for a new slide. When finished, the slide can be 10 hybridization, the more difficult it is to strip the slide. Longer targets may be more difficult to strip than shorter targets.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(I I I) NUMBER OF SEQUENCES: 360

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: medeic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(| |) MOLECULE TYPE: DNA (probe)

(* I) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTGCTGACGT CAGCC

(2) INFORMATION FOR SEQ ID NO:2:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: audeic scid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(| |) MOLECULE TYPE: DNA (probe)

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TTGCTGACAT CAGCC

(2) INFORMATION FOR SEQ ID NO.3:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: mdeic seid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(1 1) MOLECULE TYPE: DNA (probe)

(x 1) SEQUENCE DESCRIPTION: SEO ID NO:1:

TIGCTGACCT CAGCC

(2) Information for SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: medeic seid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (probe)

(= 1) SEQUENCE DESCRIPTION: SEQ ID NO:4:

15

-continued

```
TTGCTGACTT CAGCC :
                                                                                                                              15
  ( 2 ) INFORMATION FOR SEQ ID NO.5:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 39 base pairs
                      ( B ) TYPE: aucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
            ( | | ) MOLECULE TYPE: DNA (oligonucleotide)
            ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:5:
    CATTAAAGAA AATATCATCT TTGGTGTTTC CTATGATGA
    ( 2 ) INFORMATION FOR SEQ ID NO:6:
             ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 36 base pairs
                     ( B ) TYPE: aucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: Ihear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:6:
   CATTANAGAA AATATCATTG GTGTTTCCTA TGATGA
                                                                                                                           3 6
   ( 2 ) INFORMATION FOR SEQ ID NO:7:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 36 base pairs
                    ( B ) TYPE: aucleic scid
                    (C) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Ilnear
         ( i i ) MOLECULE TYPE: DNA (genomie)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:7:
  CATTAAAGAA AATATCATTG GTGTTTCCTA TGATGA
                                                                                                                          36
  ( 2 ) INFORMATION FOR SEQ ID NO.8:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 15 base pairs
                   ( B ) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:8:
 AACACCAATG ATGAT
 (2) INFORMATION FOR SEQ ID NO:9:
         ( I ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 15 base pairs
                 ( B ) TYPE: auclele seld
                  ( C ) STRANDEDNESS: single
                 ( D ) TOPOLOGY: Illiear
       ( | | ) MOLECULE TYPE: DNA (probe)
       ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO-9:
CCAAAGATNA TATTT
                                                                                                                        15
```

(2) INFORMATION FOR SEQ ID NO:10:

```
-continued
( 1 ) SEQUENCE CHARACTERISTICS:
```

(A) LENGTH: 15 base pairs

(B) TYPE: ancleie seid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(I I) MOLECULE TYPE: DNA (probe)

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ACCAAAGANG ATATT

1 5

(2) INFORMATION FOR SEQ ID NO:11:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: nucleic seid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(| | |) MOLECULE TYPE: DNA (probe)

(* I) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CACCAAAGNT GATAT

(2) INFORMATION FOR SEQ ID NO:12:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: aucleic scid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(I I) MOLECULE TYPE: DNA (probe)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ACACCAAANA TGATA

(2) INFORMATION FOR SEQ ID NO:13:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pales

(B) TYPE: nocleic soid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (probe)

(* I) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AACACCAANG ATGAT

15

(2) INFORMATION FOR SEQ ID NO:14:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: nucleic sold

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(1 1) MOLECULE TYPE: DNA (probe)

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAACACCANA GATGA

(2) INFORMATION FOR SEQ ID NO:15:

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 base pairs

(B) TYPE: nucleic seid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

15

```
-continued
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:15:
    ( 2 ) INFORMATION FOR SEQ ID NO:16:
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 15 base pairs
                       ( B ) TYPE: nucleic acid
                       ( C ) STRANDEDNESS: single
                       (D) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:16:
   GGAAACACNA AAGAT
   ( 2 ) INFORMATION FOR SEQ ID NO:17:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 15 base pairs
                      ( B ) TYPE: aucleic seid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:17:
  ( 2 ) INFORMATION FOR SEQ ID NO:18:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 21 base pairs
                    ( B ) TYPE: nucleic scid
                    (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probc)
         ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:18:
CCTTCAGAGG GTAAAATTAA G
( 2 ) INFORMATION FOR SEQ ID NO:19:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 21 base pairs
                    ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:19:
CCTTCAGAGT GTAAAATTAA G
( 2 ) INFORMATION FOR SEQ ID NO:20:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 44 base pairs
```

(B) TYPE: nucleic scid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(I I) MOLECULE TYPE: DNA (probe)

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:20:

-continued TAATACGACT CACTATAGGG AGATGACCTA ATAATGATGG GTTT (2) INFORMATION FOR SEQ ID NO.21: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Imear (i i) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:21: TAATACGACT CACTATAGGG AGTAGTGTGA AGGGTTCATA TGC (2) INFORMATION FOR SEQ ID NO:22: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilinear (| |) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:22: CTCGGAATTA ACCCTCACTA AAGGTAGTGT GAAGGGTTCA TATGC 4 5 (2) INFORMATION FOR SEQ ID NO:23: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (grobe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:23: TAATACGACT CACTATAGGG AGAGCATACT AAAAGTGACT CTC 4 3 (2) INFORMATION FOR SEO ID NO:24: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Ihear (1 1) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:24: TAATACGACT CACTATAGGG AGACATGAAT GACATTTACA GCAA (2) INFORMATION FOR SEQ ID NO:25: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic seld (C) STRANDEDNESS: single (D) TOPOLOGY: Ilinear (i i) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:25: CGGAATTAAC CCTCACTAAA GGACATGAAT GACATTTACA GCAA

(2) INFORMATION FOR SEQ ID NO:26:

```
( 1 ) SEQUENCE CHARACTERISTICS:
                         ( A ) LENGTH: 12 base pairs
                         ( B ) TYPE: nucleic scid
                         ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
             ( 1 1 ) MOLECULE TYPE: DNA (probe)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:26:
    TTTATGGGGT GA
                                                                                                                                          1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:27:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic soid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:27:
   TTGATTTATG GG
   ( 2 ) INFORMATION FOR SEQ ID NO:28:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                      (B) TYPE: nucleic seid
(C) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:25:
  AACCTATTTG ATT
  ( 2 ) INFORMATION FOR SEQ ID NO:29:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( 1 1 ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:29:
 GGACCAAACC TA
                                                                                                                                       1 2
 ( 2 ) INFORMATION FOR SEQ ID NO:30:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nocleic scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO-JO:
AGGCTAGGAC CA
                                                                                                                                      1 2
( 2 ) INFORMATION FOR SEQ ID NO:31:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic seid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:36:

```
( i i ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:31:
   GCTGTGTGTG TGC
   ( 2 ) INFORMATION FOR SEQ ID NO:32:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 14 base pairs
                      ( B ) TYPE: ancleic seid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:32:
  CGGTGTGTGT GTGC
  ( 2 ) INFORMATION FOR SEQ ID NO:33:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 14 base pairs
                     ( B ) TYPE: aucleic seld
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: Imear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:33:
 GGTGTGTGTG TGCT
  ( 2 ) INFORMATION FOR SEQ ID NO:34:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:34:
CTGGGTAGGA TG
( 2 ) INFORMATION FOR SEQ ID NO:35:
          ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 12 base pairs
( B ) TYPE: sucleic solid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( # 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:35:
TGCTGGGTAG GA
                                                                                                                                       1 2
( 2 ) INFORMATION FOR SEQ ID NO:36:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: aucleic sold
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
      ( I I ) MOLECULE TYPE: DNA (probe)
```

```
TGTGCTGGGT AG
                                                                                                                                        12
     ( 2 ) INFORMATION FOR SEQ ID NO.37:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                        ( B ) TYPE: aucleic seid
                        ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: Ihear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:37:
    GTTAGCAGCG GT
                                                                                                                                       1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:38:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucleic scid
                      (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
          ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:38:
   GGGTTAGCAG CG
                                                                                                                                      1 2
   ( 2 ) INFORMATION FOR SEQ ID NO:39:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 11 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( | | | ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO.39:
  AGCGGGGGAG G
                                                                                                                                     11
 ( 2 ) INFORMATION FOR SEQ ID NO:40:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 10 base pairs
                    ( B ) TYPE: aucleic scid
                    ( C ) STRANDEDNESS: shale
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( = 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:40:
 AGCGGGGGAG
( 2 ) INFORMATION FOR SEQ ID NO:41:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 11 base pairs
                   ( B ) TYPE: nucleic seid
                   ( C ) STRANDEDNESS: shgle
                   ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:41:
GGTTGGTTCG G
                                                                                                                                   11
( 2 ) INFORMATION FOR SEQ ID NO:42:
```

```
51
                                                                                                                52
                                                                    -continued
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: nucleic scid
                       ( C ) STRANDEDNESS: single
                      ( D.) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:42:
   GGGTTTGGTT GG
   ( 2 ) INFORMATION FOR SEQ ID NO:43:
            ( I ) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 base pairs
(B) TYPE: nucleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
         ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:43:
  GATCTTTGGG GT
  ( 2 ) INFORMATION FOR SEQ ID NO:44:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
         ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:44:
GGGTGATCTT TG
( 2 ) INFORMATION FOR SEQ ID NO:45:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic acid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:45:
TGTGGGGGGT GA
                                                                                                                                       1 2
( 2 ) INFORMATION FOR SEQ ID NO:46:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: nucleic sold
                  (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
      ( I I ) MOLECULE TYPE: DNA (probe)
       ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:46:
```

1 2

(2) INFORMATION FOR SEQ ID NO:47:

TAAACTGTGG GG

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 base pairs
- (B) TYPE: nucleic sold
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: these

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:52:

```
( I I ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:47:
   ( 2 ) INFORMATION FOR SEQ ID NO:48:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: nucleic sold
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:48:
  GAGGTAAGCT ACA
  ( 2 ) INFORMATION FOR SEQ ID NO:49:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:49:
 GAGGAGGTAA GC
  ( 2 ) INFORMATION FOR SEQ ID NO:50:
           ( i ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: aucleic soid
                    (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:50:
                                                                                                                                        1 2
TGCTTTGAGG AG
( 2 ) INFORMATION FOR SEQ ID NO:51:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: accieic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:51:
AGTGTATTGC TTT
                                                                                                                                       13
( 2 ) INFORMATION FOR SEQ ID NO:52:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: aucleic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Ilbear
       ( I I ) MOLECULE TYPE: DNA (probe)
```

56

12

-continued CATTTTCAGT GTA (2) INFORMATION FOR SEQ ID NO:53: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:53: TAAACATTTT CAG (2) INFORMATION FOR SEQ ID NO:54: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ihear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:54: AGCCCGTCTA AA (2) INFORMATION FOR SEQ ID NO:55: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:55: GAGCCCGTCT AA (2) INFORMATION FOR SEQ ID NO:56: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ibear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:56: TGATGTGAGC CC . (2) INFORMATION FOR SEQ ID NO:57: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pales (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:57:

(2) INFORMATION FOR SEQ ID NO:58:

GGGGTGATGT GA

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
( I ) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 11 base pairs
(B) TYPE: nucleic soid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:58:
   GAGTGGGAGG G
                                                                                                                                        1 1
   ( 2 ) INFORMATION FOR SEQ ID NO:59:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( 1 I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEO ID NO.59:
  GTATGGGAGT GG
 ( 2 ) INFORMATION FOR SEQ ID NO:60:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 14 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:60:
 GATTAGTAGT ATGG
 ( 2 ) INFORMATION FOR SEQ ID NO:61:
           ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: aucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:61:
TGAATGAGAT TAG
 ( 2 ) INFORMATION FOR SEQ ID NO:62:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic scid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( | 1 ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO.62:
ATTGAATGAG ATT
( 2 ) INFORMATION FOR SEQ ID NO:63:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 13 base pairs
                  ( B ) TYPE: nucleic seid
```

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:68:

```
( I I ) MOLECULE TYPE: DNA (probe)
            ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:63:
    GGGTTGTATT GAA
    ( 2 ) INFORMATION FOR SEQ ID NO:64:
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 10 base pairs
                       (B) TYPE: nucleic scid
(C) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:64:
   GCGGGGGTTG
   ( 2 ) INFORMATION FOR SEQ ID NO:65:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 10 base pairs
                      ( B ) TYPE: aucteic sold
                      ( C ) STRANDEDNESS: shgle
                      ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:65:
  ATGGGCGGG
  ( 2 ) INFORMATION FOR SEQ ID NO:66:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 11 base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: Imear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:66:
 TAGGATGGGC G
 ( 2 ) INFORMATION FOR SEQ ID NO:67:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: ancleic soid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:67:
TGGGTAGGAT GG
                                                                                                                                      1 2
( 2 ) INFORMATION FOR SEQ ID NO:68:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: aucleic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
```

GTGCTGGGTA GG 1 2 (2) INFORMATION FOR SEQ ID NO:69: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilnear (I I) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:69: TGTGTGTGCT GG (2) INFORMATION FOR SEQ ID NO:70: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilnear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:70: GCGGTGTGTG TG 1 2 (2) INFORMATION FOR SEQ ID NO:71: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilnear (i i) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:71: TAGCAGCGGT GT (2) INFORMATION FOR SEQ ID NO:72: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: auclele seld (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:72: TGGGGTTAGC AG (2) INFORMATION FOR SEQ ID NO:73: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: anciele sold (C) STRANDEDNESS: single (D) TOPOLOGY: Ilbert (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:73: GGTATGGGGT TA (2) INFORMATION FOR SEQ ID NO:74:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

-continued (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:74: GTTCGGGGTA TG (2) INFORMATION FOR SEQ ID NO:75: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:75: GCTGGTGTTA GG (2) INFORMATION FOR SEQ ID NO:76: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:76: GGTTAGGCTG GT (2) INFORMATION FOR SEQ ID NO:77: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:77: 13 AAATCTGGTT AGG (2) INFORMATION FOR SEQ ID NO:78: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:78: AAATTTGAAA TCT (2) INFORMATION FOR SEQ ID NO:79: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pains (B) TYPE: nucleic scid

```
66
```

65

(D) TOPOLOGY: linear

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:84:

(I I) MOLECULE TYPE: DNA (probe)

```
-continued
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:79;
  AAGATAAAAT TTG
  ( 2 ) INFORMATION FOR SEQ ID NO:80:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: aucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:80:
                                                                                                                                     12
 GCCAAAAGA TA
 ( 2 ) INFORMATION FOR SEQ ID NO:81:
           ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 11 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (prote)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:81:
 CGCCAAAAA A
( 2 ) INFORMATION FOR SEQ ID NO.82:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 11 base pairs
                    ( B ) TYPE: nucleic seid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( 1 1 ) MOLECULE TYPE: DNA (probe)
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:82:
CATACCGCCA A
( 2 ) INFORMATION FOR SEQ ID NO:83:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nociele seid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( | | ) MOLECULE TYPE: DNA (probe)
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:83:
AAAAGTGCAT ACC
( 2 ) INFORMATION FOR SEQ ID NO:84:
        ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic scid
                   ( C ) STRANDEDNESS: single
```

-continued TGTTAAAAGT GCA (2) INFORMATION FOR SEQ ID NO:85: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:85: 1 3 GGGTGACTGT TAA (2) INFORMATION FOR SEQ ID NO:85: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: ancleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: Imear (1 1) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:85: 1 2 GGGGGTGACT GT (2) INFORMATION FOR SEQ ID NO:87: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs. (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:87: AGTTGGGGGG T (2) INFORMATION FOR SEQ ID NO:88: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:88: TGTGTTAGTT GGG (2) INFORMATION FOR SEQ ID NO:89: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: ancieic soid (C) STRANDEDNESS: shgle (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:89: 13 AAAATAATGT GTT (2) INFORMATION FOR SEQ ID NO:90:

(D) TOPOLOGY: linear

```
( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: ancicic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( 1 1 ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:90:
                                                                                                                                         1 2
 AGGGGAAAAT AA
 ( 2 ) INFORMATION FOR SEQ ID NO:91:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( Å ) LENGTH: 12 base pairs
( B ) TYPE: nucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:91:
 GGAGGGGAAA AT
 ( 2 ) INFORMATION FOR SEQ ID NO:92:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: ancleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( | | ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO.92:
                                                                                                                                       1 2
GGAAATTTTT TG
 ( 2 ) INFORMATION FOR SEQ ID NO:93:
          ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:93:
                                                                                                                                       1 2
GGTGGAAATT TT
( 2 ) INFORMATION FOR SEQ ID NO.94:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: II base pairs
                    ( B ) TYPE: ancleic sold
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
       ( | | ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:94:
GGTTTGGTGG A
( 2 ) INFORMATION FOR SEQ ID NO:95:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 11 base pairs
                    ( B ) TYPE: aucleic scid
                   ( C ) STRANDEDNESS: single
```

```
( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:95:
   GAGGGGGGT T
   ( 2 ) INFORMATION FOR SEQ ID NO:96:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 10 base pairs
                      ( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:96:
  GCGGGGGAGG
                                                                                                                                       10
  ( 2 ) INFORMATION FOR SEQ ID NO:97:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: LI base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:97:
 CAGAAGCGGG G
 ( 2 ) INFORMATION FOR SEQ ID NO:98:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic acid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:98:
GTAGGCCAGA AG
                                                                                                                                     12
( 2 ) INFORMATION FOR SEQ ID NO:99:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: auciele seld
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probc)
        ( = 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:99:
GTGCTGTAGG CC
( 2 ) INFORMATION FOR SEQ ID NO:100:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 13 base pales
                  ( B ) TYPE: nucleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:100:
```

```
TGTTTAAGTG CTG
  ( 2 ) INFORMATION FOR SEQ ID NO:101:
            ( 1:) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
          ( | | ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:101:
  TGTGTTTAAG TGC
  ( 2 ) INFORMATION FOR SEQ ID NO:102:
           ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: sucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( 1 1 ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:102:
                                                                                                                                         1 3
 GCAGAGATGT GTT
 ( 2 ) INFORMATION FOR SEQ ID NO:103:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( | | ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:103:
                                                                                                                                         1 2
TTTGGCAGAG AT
( 2 ) INFORMATION FOR SEQ ID NO:104:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 11 base pairs
                     ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( | | ) MOLECULE TYPE: DNA (probe)
      ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:104:
( 2 ) INFORMATION FOR SEQ ID NO:105:
          ( I ) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 12 base pairs
(B) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
                   (D) TOPOLOGY: Ihear
       ( 1 1 ) MOLECULE TYPE: DNA (probe)
       ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:105:
TGTTTTTGGG GT
( 2 ) INFORMATION FOR SEQ ID NO:106:
```

76

(D) TOPOLOGY: linear

```
( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: aucleic scid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:106:
  TTTGTTTTTG GG
  ( 2 ) INFORMATION FOR SEQ ID NO:107:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:107:
 GGGTTCTTTG TT
 ( 2 ) INFORMATION FOR SEQ ID NO:108:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:108:
                                                                                                                                    1 3
GTGTTAGGGT TCT
 ( 2 ) INFORMATION FOR SEQ ID NO:109:
          ( i ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 14 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( | | ) MOLECULE TYPE: DNA (probe)
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:109:
TTTAGTAAGT ATGT
( 2 ) INFORMATION FOR SEQ ID NO:110:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: L3 base pairs
                   ( B ) TYPE: audeic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
       ( | | ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:110:
AACACACTTT AGT
( 2 ) INFORMATION FOR SEQ ID NO:UL:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 14 base pairs
                   ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
```

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:116:

```
( I I ) MOLECULE TYPE: DNA (probe)
          . ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:111:
   ( 2 ) INFORMATION FOR SEQ ID NO:112:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: aucleic acid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:112:
   AAGCATTAAT TAA
                                                                                                                                         13
  ( 2 ) INFORMATION FOR SEQ ID NO:113:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:113:
  GTCCTACAAG CAT
  ( 2 ) INFORMATION FOR SEQ ID NO:114:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:114:
 TGTCCTACAA GCA
 ( 2 ) INFORMATION FOR SEQ ID NO:115:
          ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:115:
ATTATTATGT CCT
( 2 ) INFORMATION FOR SEQ ID NO:116:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 14 base pairs
                   ( B ) TYPE: aucleic scid
                   (C) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
```

TIGITATIAT TATG (2) INFORMATION FOR SEQ ID NO:117: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: ancleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:117: ATTCAAATTG TTA 13 (2) INFORMATION FOR SEQ ID NO:118: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: queleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ihear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:118: GCAGACATTC AAA 13 (2) INFORMATION FOR SEQ ID NO:119: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: queleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:119: GCTGTGCAGA CA (2) INFORMATION FOR SEQ ID NO:120: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nocleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:120: (2) INFORMATION FOR SEQ ID NO:121: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: anciele seld (C) STRANDEDNESS: single (D) TOPOLOGY: Ilmen (I I) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:121: TGTGTGGAAA GTG (2) INFORMATION FOR SEQ ID NO:122:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                       ( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
           ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:122:
   GATGTCTGTG TGG
                                                                                                                                      1 3
   ( 2 ) INFORMATION FOR SEQ ID NO:123:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic seid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:123:
  ATGATGTCTG TGT
  ( 2 ) INFORMATION FOR SEQ ID NO:124:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: ancleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( 1 1 ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:124:
 TTTTGTTATG ATG
 ( 2 ) INFORMATION FOR SEQ ID NO:125:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    (D) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * ! ) SEQUENCE DESCRIPTION: SEQ ID NO:125:
TTTTTTGTTA TGA
                                                                                                                                    13
( 2 ) INFORMATION FOR SEQ ID NO:126:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: ancleic scid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:126:
ATAGGGTGCT CC
                                                                                                                                   1 2
( 2 ) INFORMATION FOR SEQ ID NO:127:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: andele seid
```

```
( I I ) MOLECULE TYPE: DNA (probe)
           ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO.127:
   ( 2 ) INFORMATION FOR SEQ ID NO:128:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: aucleic acid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:128:
  TACTGCGACA TAG
                                                                                                                                       13
  ( 2 ) INFORMATION FOR SEQ ID NO:129:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:129:
 GACAGATACT GCG
 ( 2 ) INFORMATION FOR SEQ ID NO:130:
           ( I ) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 13 base pairs
(B) TYPE: nucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:130:
AATCAAAGAC AGA
                                                                                                                                     1 3
( 2 ) INFORMATION FOR SEQ ID NO:131:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:131:
AGGAATCAAA GAC
                                                                                                                                    13
( 2 ) INFORMATION FOR SEQ ID NO:132:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: apcleic sold
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
      ( I I ) MOLECULE TYPE: DNA (probe)
      ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:132:
```

```
TGAGGCAGGA AT
     ( 2 ) INFORMATION FOR SEQ ID NO:133:
               ( 1 ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic acid
                         ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( | | ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:133:
    AGGATGAGGC AG
    ( 2 ) INFORMATION FOR SEQ ID NO:134:
             ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 13 base pairs
( B ) TYPE: author seed
                        ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: Ihear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:134:
   AAATAATAGG ATG
                                                                                                                                              1 3
   ( 2 ) INFORMATION FOR SEQ ID NO:L35:
             (1) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucleie seid
                       ( C ) STRANDEDNESS: shale
                       ( D ) TOPOLOGY: Ilnear
           ( i i ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:135:
  GCGATAAATA AT
  ( 2 ) INFORMATION FOR SEQ ID NO:136:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:136:
. ( 2 ) INFORMATION FOR SEQ ID NO:137:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: sligte
                     (D) TOPOLOGY: Ihear
         ( 1 1 ) MOLECULE TYPE: DNA (probe)
         ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:137:
 GTAGGATGCG AT
 ( 2 ) INFORMATION FOR SEQ ID NO:LJ8:
```

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: nucleic scid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
           ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:138:
   TTGAACGTAG GA
   ( 2 ) INFORMATION FOR SEQ ID NO:139:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:139:
  AATATTGAAC GTA
  ( 2 ) INFORMATION FOR SEQ ID NO:140:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: aucleic seid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:140:
 GCCTGTAATA TTG
 ( 2 ) INFORMATION FOR SEQ ID NO:141:
           ( I ) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 12 base pairs
(B) TYPE: nucleic acid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:141:
TGTTCGCCTG TA
                                                                                                                                     1 2
( 2 ) INFORMATION FOR SEQ ID NO:142
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: socieic soid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:142:
GTATGTTCGC CT
                                                                                                                                    12
( 2 ) INFORMATION FOR SEQ ID NO:143:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nocleic seid
```

```
( I I ) MOLECULE TYPE: DNA (probe)
           ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:14):
   ( 2 ) INFORMATION FOR SEQ ID NO:144:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nocleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:144:
  GAGAGCTCCC GT
                                                                                                                                          1 2
  ( 2 ) INFORMATION FOR SEQ ID NO:145:
            ( I ) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:145:
  ATGGAGAGCT CC
  ( 2 ) INFORMATION FOR SEQ ID NO:146:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:146:
 AATGCATGGA GA
                                                                                                                                        1 2
 ( 2 ) INFORMATION FOR SEQ ID NO:147:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Ihear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:147:
ATACCAAATG CA
                                                                                                                                       1 2
( 2 ) INFORMATION FOR SEQ ID NO:148:
         ( i ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: aucleic scid
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:148:
```

GACGAAAATA CCA 13 (2) INFORMATION FOR SEQ ID NO:149: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: tinear (i i) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:149: CCCAGACGAA A 11 (2) INFORMATION FOR SEQ ID NO:LSO: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: aucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:150: TACCCCCCAG A 11 (2) INFORMATION FOR SEQ ID NO:151: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:151: TGCATACCCC 11 (2) INFORMATION FOR SEQ ID NO:152: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: uncleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:152: TCGCGTGCAT AC (2) INFORMATION FOR SEQ ID NO:153: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: (Incar (1 1) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:153: GACTATCGCG TG (2) INFORMATION FOR SEQ ID NO:154:

(D) TOPOLOGY: linear

```
( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: nucleic soid
                       ( C ) STRANDEDNESS: single
                      (D) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:154:
   ATGACTATCG CG
                                                                                                                                         1 2
   ( 2 ) INFORMATION FOR SEQ ID NO:155:
            ( i ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pales
                      ( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:155:
  CTCGCAATGA CT
  ( 2 ) INFORMATION FOR SEQ ID NO:156:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: aucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
       ( I I ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:156:
 CGTCTCGCAA TG
                                                                                                                                      1 2
 ( 2 ) INFORMATION FOR SEQ ID NO:157:
          ( i ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic acid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:157:
CTCCAGCGTC TC
                                                                                                                                      1 2
( 2 ) INFORMATION FOR SEQ ID NO:158:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 11 base pairs
                   ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: alagle
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:158:
TCCGGCTCCA G
( 2 ) INFORMATION FOR SEQ ID NO:159:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 11 base pairs
                  ( B ) TYPE: anciele seld
                  ( C ) STRANDEDNESS: single
```

```
( i i ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:159:
   GTGCTCCGGC T
   ( 2 ) INFORMATION FOR SEQ ID NO:160:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: nucleic scid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:160:
  GACCCTGAAG TAG
  ( 2 ) INFORMATION FOR SEQ ID NO:161:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: uncleic soid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:161:
 TTTATGACCC TGA
 ( 2 ) INFORMATION FOR SEQ ID NO:162:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: aucleic sold
                    ( C ) STRANDEDNESS: single
                    (D) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:162:
TTTAGGCTTT ATG
                                                                                                                                   1 3
( 2 ) INFORMATION FOR SEQ ID NO:163:
          ( i ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nucleic acid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:163:
GCTATTTAGG CT
( 2 ) INFORMATION FOR SEQ ID NO:164:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: nucleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: times
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:164:
```

```
97
                                                                                                                98
                                                                    -continued
     TGGGCTATTT AG
     ( 2 ) INFORMATION FOR SEQ ID NO:165:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic scid
                        ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:165:
   ACGTGTGGGC TA
   ( 2 ) INFORMATION FOR SEQ ID NO:166:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: aucleic soid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:166:
  AGGGGAACGT GT
                                                                                                                                         1 2
  ( 2 ) INFORMATION FOR SEQ ID NO:167:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( B ) TYPE: nucleic acid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( | | ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:167:
 TTTAAGGGGA AC
 ( 2 ) INFORMATION FOR SEQ ID NO:168:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 14 base pairs
                    ( B ) TYPE: ancleic sold
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Ilmear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:168:
( 2 ) INFORMATION FOR SEQ ID NO:169:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: aucleic sold
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

(2) INFORMATION FOR SEQ ID NO:170:

CATCGTGATG TCT

(I I) MOLECULE TYPE: DNA (probe)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:169:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
( 1 ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: nucleic soid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:170:
    TCCATCGTGA TG
                                                                                                                                      1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:171:
             ( i ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:171:
   GATGATCCAT CG
   ( 2 ) INFORMATION FOR SEQ ID NO:172:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic acid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( 1 i ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:172:
  AGACCTGATG ATC
  ( 2 ) INFORMATION FOR SEQ ID NO:173:
           ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nacleic soid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:173:
 GGGTGATAGA CCT
                                                                                                                                   13
( 2 ) INFORMATION FOR SEQ ID NO:174:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: ancleic sold
                    C) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:174:
ATAGGGTGAT AGA
( 2 ) INFORMATION FOR SEQ ID NO:175:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: nocleic seid
```

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:180:

```
( I I ) MOLECULE TYPE: DNA (probe)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:175:
    ( 2 ) INFORMATION FOR SEQ ID NO:176:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 13 base pairs
                       ( B ) TYPE: nucleic acid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:176:
   GTGAGTGGTT AAT
                                                                                                                                        13
   ( 2 ) INFORMATION FOR SEQ ID NO:177:
             ( 1 ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic sold
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:177:
  TGTGCGGGAT AT
  ( 2 ) INFORMATION FOR SEQ ID NO:178:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: ancleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:178:
 ACTCTTGTGC GG
 ( 2 ) INFORMATION FOR SEQ ID NO:179:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: ancleic scid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
       ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:179:
TAGCACTETT GTG
                                                                                                                                    1 3
( 2 ) INFORMATION FOR SEQ ID NO:180:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: L3 base pairs
                  ( B ) TYPE: ancleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
      ( I I ) MOLECULE TYPE: DNA (probe)
```

13

103 104 -continued GGAGAGTAGC ACT (2) INFORMATION FOR SEQ ID NO:181: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:181: GCGAGGAGAG TA 1 2 (2) INFORMATION FOR SEQ ID NO:182 (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:182: CGGAGCGAGG A 11 (2) INFORMATION FOR SEQ ID NO:18J: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Imear (I I) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:183: GGCCCGGAGC 10 (2) INFORMATION FOR SEQ ID NO:184: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: aucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:184: TTATGGGCCC G (2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (probe)
- (# 1) SEQUENCE DESCRIPTION: SEQ ID NO:185:

AGTGTTATGG GC

1 2

(2) INFORMATION FOR SEQ ID NO:186:

(D) TOPOLOGY: Ilmear

```
( I ) SEQUENCE CHARACTERISTICS:
                           ( A ) LENGTH: 12 base pairs
                           ( B ) TYPE: nucleic acid
                           ( C ) STRANDEDNESS: single
                           ( D ) TOPOLOGY: linear
               ( | | ) MOLECULE TYPE: DNA (probe)
               ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:186:
       TACCCCCAAG TG
                                                                                                                                              1 2
       ( 2 ) INFORMATION FOR SEQ ID NO:187:
                ( I ) SEQUENCE CHARACTERISTICS:
                          ( A ) LENGTH: 12 base pairs
                          ( B ) TYPE: aucleic scid
                          ( C ) STRANDEDNESS: single
                          ( D ) TOPOLOGY: linear
              ( I I ) MOLECULE TYPE: DNA (probe)
              ( * I ) SEQUENCE DESCRIPTION: SEO ID NO:187:
      TTTAGCTACC CC
                                                                                                                                            1 2
      ( 2 ) INFORMATION FOR SEQ ID NO:188:
               ( i ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 13 base pairs
                        ( B ) TYPE: nucleic scid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
             ( 1 1 ) MOLECULE TYPE: DNA (probe)
             ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:188:
    TTCACTTTAG CTA
                                                                                                                                           13
    ( 2 ) INFORMATION FOR SEQ ID NO:189:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 13 base pairs
                       ( B ) TYPE: sucleic sold
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( | | ) MOLECULE TYPE: DNA (probe)
           ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:189:
   TACAGTTCAC TTT
                                                                                                                                         13
   ( 2 ) INFORMATION FOR SEQ ID NO:190:
             ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: andeic sold
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( | | | ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:190:
. TCGAGATACA GTT
                                                                                                                                        1 3
  ( 2 ) Information for seq ID No:191:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: mucleic sold
                    ( C ) STRANDEDNESS: single
```

```
-continued
               ( I I ) MOLECULE TYPE: DNA (probe)
              ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:191:
      ( 2 ) INFORMATION FOR SEQ ID NO:192:
                ( I ) SEQUENCE CHARACTERISTICS:
                         ( A ) LENGTH: 12 base pairs
                         ( B ) TYPE: nucleic acid
                         ( C ) STRANDEDNESS: single
                         ( D ) TOPOLOGY: linear
             ( I I ) MOLECULE TYPE: DNA (probe)
             ( * i ) SEQUENCE DESCRIPTION; SEQ ID NO:192:
    AGGAACCAGA TG
                                                                                                                                             1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:193:
              ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 13 base pairs
                        ( B ) TYPE: aucleic scid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
           ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:193:
   GAAGTAGGAA CCA
   ( 2 ) INFORMATION FOR SEQ ID NO:194:
            ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENOTH: 13 base pairs
( B ) TYPE: aucleic acid
( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: Imear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:194:
 GACTGTAATG TGC
 ( 2 ) INFORMATION FOR SEQ ID NO:195:
           ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic sold
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:195:
GGGATTTGAC TGT
                                                                                                                                        1 3
( 2 ) INFORMATION FOR SEQ ID NO:196:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
```

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: Unear

(I I) MOLECULE TYPE: DNA (probe)

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:196:

109 110 -continued AGGGATTTGA CT (2) INFORMATION FOR SEQ ID NO:197: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:197: ACGAGAAGGG AT (2) INFORMATION FOR SEQ ID NO:198: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:198: TGGGGACGAG AA 1 2 (2) INFORMATION FOR SEQ ID NO:199: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:199: ATCCATGGGG AC (2) INFORMATION FOR SEQ ID NO:200: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:200: GGTCATCCAT GG (2) INFORMATION FOR SEQ ID NO:201: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: anciele seid

(2) INFORMATION FOR SEQ ID NO:202:

AGGGGGGTCA T

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:201:

(1 1) MOLECULE TYPE: DNA (probe)

1 1

```
-continued
               ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 12 base pairs
                        ( B ) TYPE: aucleic acid
                        ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:202:
    TATCTGAGGG GG
                                                                                                                                         1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:203:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucleic acid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:203:
   ACCCCTATCT GA
                                                                                                                                       1 2
   ( 2 ) INFORMATION FOR SEQ ID NO:204:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 11 base pairs
                      ( B ) TYPE: nucleic acid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION; SEO ID NO:204:
  AGGGACCCCT A
                                                                                                                                       1 1
  ( 2 ) INFORMATION FOR SEQ ID NO:205:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( I i ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:205:
TGGTCAAGGG AC
( 2 ) INFORMATION FOR SEQ ID NO:206:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pales
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:206:
GGATGGTGGT CA
                                                                                                                                     1 2
( 2 ) INFORMATION FOR SEQ ID NO:207:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: macleic scid
                  ( C ) STRANDEDNESS: slagte
                  ( D ) TOPOLOGY: linear
```

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:212:

```
-continued
              ( I I ) MOLECULE TYPE: DNA (probe)
              ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:207:
      ( 2 ) INFORMATION FOR SEQ ID NO:208:
               ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 12 base pairs
                        (B) TYPE: nucleic soid
(C) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
             ( I I ) MOLECULE TYPE: DNA (probe)
            ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:208:
    ACACGGAGGA TG
                                                                                                                                          12
    ( 2 ) INFORMATION FOR SEQ ID NO:209:
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucieic scid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
           ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:209:
   TGATTTACAC GG
   ( 2 ) INFORMATION FOR SEQ ID NO:210:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( | | ) MOLECULE TYPE: DNA (probe)
         ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:210:
 GGGATATTGA TTT
                                                                                                                                        1 3
 ( 2 ) INFORMATION FOR SEQ ID NO:211:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: auclele scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:211:
GTGGCATTTG GA
( 2 ) INFORMATION FOR SEQ ID NO:212:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 11 base pairs
                   B) TYPE: nucleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: Illear
      ( I I ) MOLECULE TYPE: DNA (probe)
```

-continued AGGGGTGGCA T (2) INFORMATION FOR SEQ ID NO:213: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:213: GGTGAGGGGT G 1 1 (2) INFORMATION FOR SEQ ID NO:214: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: their (| |) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO.214: AGTGGGTGAG GG 1 2 (2) INFORMATION FOR SEQ ID NO:215: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:215: GTATCCTAGT GGG 1 3 (2) INFORMATION FOR SEQ ID NO:216: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: aucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:216: TTTGTTGGTA TCC (2) INFORMATION FOR SEQ ID NO:217: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Ihear (I I) MOLECULE TYPE: DNA (grobe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:217: GTAGGTTTGT TGG

(2) INFORMATION FOR SEQ ID NO:218:

(B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
-continued
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: aucleic seid
                       (C) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( 1 I ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:218:
   TGGGTAGGTT TG
                                                                                                                                      1 2
   ( 2 ) INFORMATION FOR SEQ ID NO:219:
             ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic seid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:219:
  TAAGGGTGGG TA
  ( 2 ) INFORMATION FOR SEQ ID NO:220:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic seid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:220:
 GTACTGTTAA GGG
                                                                                                                                    1 3
 ( 2 ) INFORMATION FOR SEQ ID NO:221:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 14 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:221:
TGTACTATGT ACTG
( 2 ) INFORMATION FOR SEQ ID NO:222:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic scid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:222:
GGCTTTATGT ACT
( 2 ) INFORMATION FOR SEQ ID NO:223:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
```

(11)	MOLECULE TYPE: D.YA (prot)e)			.	
(xi)s	SEQUENCE DESCRIPTION: S	EQ ID NO:223:				
AAATGGCT						1 2
(2) INFORMATI	ON FOR SEQ ID NO:224:					
(1)\$	EQUENCE CHARACTERISTI (A) LENGTH: 12 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: a (D) TOPOLOGY: linear	airs				•
(II)	OLECULE TYPE: DNA (probe	:)				
(x i) S	EQUENCE DESCRIPTION: SE	Q ID NO:224:				
GGTAAATGG	с тт					1 2
(2) INFORMATIO	ON FOR SEQ ID NO:225:					
(I) SE	QUENCE CHARACTERISTIC (A) LENGTH: 13 base pai (B) TYPE: nucleic sold (C) STRANDEDNESS: sir (D) TOPOLOGY: linear	irs		. .	. **	
(II)MO	DLECULE TYPE: DNA (probe)			•		
(* i) SEC	QUENCE DESCRIPTION: SEQ	ID NO:225:				
(1)5EQ	N FOR SEQ ID NO:226: DUENCE CHARACTERISTICS (A) LENGTH: 13 base pain (B) TYPE: nucleic seld (C) STRANDEDNESS: sing (D) TOPOLOGY: linear	•				
(11) MOI	LECULE TYPE: DNA (probe)					
(xi)SEQ	UENCE DESCRIPTION: SEQ	ID NO:226:				
GTGCTAATGT	ACG			•		1 3
(2) INFORMATION	FOR SEQ ID NO:227:					
	UENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: aucleic sold (C) STRANDEDNESS: singl (D) TOPOLOGY: linear	.				
(11) моц	ECULE TYPE: DNA (probe)					
(z i) SEQU	ENCE DESCRIPTION: SEQ II	D NO:227;	•	•		
TAATGTGCTA	ATG				•	1 3
(2) INFORMATION F	FOR SEQ ID NO:228:	•		•		•
(ENCE CHARACTERISTICS: A) LENGTH: 11 base pairs B) TYPE: nucleic soid C) STRANDEDNESS: single D) TOPOLOGY: linear					
(II)MOLE	CULE TYPE: DNA (probe)					
(xi)SEQUE	ENCE DESCRIPTION: SEQ ID	NO:228:				

CATGGGGAGG G (2.) INFORMATION FOR SEQ ID NO:229: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:229: TGTAAGCATG GG 12 (2) INFORMATION FOR SEQ ID NO:210: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilmear (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:230: TTGCTTGTAA GCA 13 (2) INFORMATION FOR SEQ ID NO:231: . (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:231: TGTACTTGCT TGT 1 3 (2) INFORMATION FOR SEQ ID NO:232: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:232: TTGCTGTACT TGC (2) INFORMATION FOR SEQ ID NO:233: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:233: GGTTGATTGC TG 12 (2) INFORMATION FOR SEQ ID NO:234:

```
-continued
               ( I ) SEQUENCE CHARACTERISTICS:
                         ( A ) LENGTH: 12 base pairs
                         ( B ) TYPE: ancieic seid
                         ( C ) STRANDEDNESS: single
                         ( D ) TOPOLOGY: linear
             ( I I ) MOLECULE TYPE: DNA (probe)
             ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:234:
    TTGAGGGTTG AT
                                                                                                                                             1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:235:
              ( i ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 13 base pairs
( B ) TYPE: nucleic soid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( | | ) MOLECULE TYPE: DNA (probe)
           ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:235:
   GTGATAGTTG AGG
   ( 2 ) INFORMATION FOR SEQ ID NO:236:
             ( 1 ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                       ( B ) TYPE: nucleic sold
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:236:
  TTGATGTGTG ATA
                                                                                                                                          1 3
  ( 2 ) INFORMATION FOR SEQ ID NO:237:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: mucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:237:
 TGCAGTTGAT GTG
                                                                                                                                         1 3
 ( 2 ) INFORMATION FOR SEQ ID NO:238:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic acid
                    (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:238:
TGGAGTTGCA GT
( 2 ) INFORMATION FOR SEQ ID NO:239:
```

(I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 base pairs

(B) TYPE: nucleic scid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

13

13

```
-continued
            ( i i ) MOLECULE TYPE: DNA (probe)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:239:
    ( 2 ) INFORMATION FOR SEQ ID NO:240:
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 13 base pairs
                       (B) TYPE: nucleic seld
(C) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
           ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:240:
   TACCGTACAA TAT
   ( 2 ) INFORMATION FOR SEQ ID NO:241:
            ( I ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: aucleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:241:
  TGGTACCGTA CAA
  ( 2 ) INFORMATION FOR SEQ ID NO:242:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: L3 base pairs
                    ( B ) TYPE: auciele scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:242:
 TATTTATGGT ACC
 ( 2 ) INFORMATION FOR SEQ ID NO:243:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic acid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( 1 1 ) MOLECULE TYPE: DNA (probe)
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:243:
GGTCAAGTAT TTA
( 2 ) INFORMATION FOR SEQ ID NO:244:
```

(I) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 base pairs
- (B) TYPE: nucleic sold
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (I I) MOLECULE TYPE: DNA (probe)
- (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:241:

-continued TACAGGTGGT CAA (2) INFORMATION FOR SEQ ID NO:245: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:245: ATGTACTACA GGT (2) INFORMATION FOR SEQ ID NO:246: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: uncleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:246: GGTTTTTATG TAC 1 3 (2) INFORMATION FOR SEQ ID NO:247: (1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 base pairs
(B) TYPE nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilhear (i i) MOLECULE TYPE: DNA (probe) (x I) SEQUENCE DESCRIPTION: SEQ ID NO:247: GGATTGGGTT TT 1 2 (2) INFORMATION FOR SEQ ID NO:248: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:248: TGTAGGATTG GG (2) INFORMATION FOR SEQ ID NO:249: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Unear (I I) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:249: GTTTTGATGT AGG 1 3 (2) INFORMATION FOR SEQ ID NO:250:

(C) STRANDEDNESS: single (D) TOPOLOGY: linear •

```
-continued
                ( 1 ) SEQUENCE CHARACTERISTICS:
                         ( A ) LENGTH: 12 base pairs
                         ( B ) TYPE: nucleic acid
                         ( C ) STRANDEDNESS: single
( D ) TOPOLOGY: linear
              ( 1 1 ) MOLECULE TYPE: DNA (probe)
             ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:250:
     GGGTTTTGAT GT
                                                                                                                                             1 2
     ( 2 ) INFORMATION FOR SEQ ID NO:251:
              ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 11 base pairs
                       (B) TYPE: nucleic scid
(C) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:251:
    GGAGGGGGTT T
   ( 2 ) INFORMATION FOR SEQ ID NO:252
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                       ( B ) TYPE: nucleic scid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:252:
  GTCAATACTT GGG
  ( 2 ) INFORMATION FOR SEQ ID NO:253:
            ( 1 ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 13 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( | | | ) MOLECULE TYPE: DNA (probe)
         ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:253:
 GGGTGAGTCA ATA
                                                                                                                                         13
 ( 2 ) INFORMATION FOR SEQ ID NO:254:
          ( i ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:254:
TGGGTGAGTC AA
                                                                                                                                        1 2
( 2 ) INFORMATION FOR SEQ ID NO:255:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nucleic seid
```

1 2

```
. •
```

```
-continued
              ( i i ) MOLECULE TYPE: DNA (probe)
              ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:255:
      TGTTGATGGG TG
      ( 2 ) INFORMATION FOR SEQ ID NO:256:
               ( I ) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 12 base pairs
(B) TYPE: aucleic seid
(C) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( i i ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:256:
    CGGTTGTTGA TG
    ( 2 ) INFORMATION FOR SEQ ID NO:257:
             ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       ( B ) TYPE: nucleic sold
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:257:
   ACATAGCGGT TG
   ( 2 ) INFORMATION FOR SEQ ID NO:258.
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 13 base pairs
                      ( B ) TYPE: aucleic scid
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:258:
 GAAAATACAT AGC
 ( 2 ) INFORMATION FOR SEQ ID NO:259:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 13 base pairs
                    ( B ) TYPE: nucleic sold
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
      ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO-259:
AATGTACGAA AAT
( 2 ) INFORMATION FOR SEQ ID NO:260:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 13 base pairs
                   ( B ) TYPE: nucleic acid
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: Ilinear
```

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:260:

(I I) MOLECULE TYPE: DNA (probe)

133 134 -continued GCAGTAATGT ACG 1 3 (2) INFORMATION FOR SEQ ID NO:261: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nocleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:261: TGGCTGGCAG TA 12 (2) INFORMATION FOR SEQ ID NO:252: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* i) SEQUENCE DESCRIPTION: SEQ ID NO:262: TCATGGTGGC TG 12 (2) INFORMATION FOR SEQ ID NO:253: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:263: ACAATATTCA TGG 1 3 (2) INFORMATION FOR SEQ ID NO:264: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: uncleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) . (x i) SEQUENCE DESCRIPTION: SEQ ID NO:264: TAGAATCTTA GCT (2) INFORMATION FOR SEQ ID NO:265: (I) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: Ihear

(I I) MOLECULE TYPE: DNA (probe)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:265:

TTTAAATTAG AAT

(2) INFORMATION FOR SEQ ID NO:266:

13

(1)51	EQUENCE CHARACTERISTICS:							
	(A) LENGTH: 13 base pairs							
/	(B) TYPE: nucleic seid							
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear			1.6	4.7		e et jarret tid	
	(b) iorocoon. imear					الرواد والأستان		
(11)м	OLECULE TYPE: DNA (probe)							
(x i) SE	QUENCE DESCRIPTION: SEQ ID	NO:266:			•			
GAATAAGTT	T AAA							1 3
(2) INFORMATIO	N FOR SEQ ID NO:267:	•				ı	•	
(I) SE	QUENCE CHARACTERISTICS:							
	(A) LENGTH: 13 base pairs				•			
	(B) TYPE: nucleic scid							
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear							
(іі)мо	LECULE TYPE: DNA (probe)		·					
(* 1) SEC	UENCE DESCRIPTION: SEQ ID I	NO:267:						
GAACAGAGAA	TAA			• • •	. •-			1 3
(2) INFORMATION	200 SEO IN 20,240.	•						
	VENCE CHARACTERISTICS:							
(1)520	(A) LENGTH: 13 base pairs							
	(B) TYPE: nucleic scid							
	(C) STRANDEDNESS: single			•				
	(D) TOPOLOGY: linear						٠	
	ECULE TYPE: DNA (probe)							٠.
	JENCE DESCRIPTION: SEQ ID N	O:268: ·				* .		
AAAGAACAGA	GAA						1	3
(2) INFORMATION	FOR SEQ ID NO:269:							
(i)SEQU	ENCE CHARACTERISTICS:				•			
	A) LENGTH: 12 base pairs							
	B) TYPE: sucleic scid		•					
	C) STRANDEDNESS: single D) TOPOLOGY: linear							
(11) MOLE	CULE TYPE: DNA (probe)							
(x1)SEQU	ENCE DESCRIPTION: SEQ ID NO	D:269:						
CCCATGAAAG	AA						1:	2
(2) INFORMATION F	OR SEQ ID NO:270:							
(I) SEOUE	NCE CHARACTERISTICS:	•						
	A) LENGTH: 12 base pairs							
(B) TYPE: aucleic sold			•				
	C) STRANDEDNESS: single D) TOPOLOGY: linear							
(II) MOLEC	CULE TYPE: DNA (probe)							
(x1)SEQUE	NCE DESCRIPTION: SEQ ID NO:	270:						
TTCCCCATGA	•						1 2	
(2) INFORMATION FO	R SEQ ID NO:271:					. •		
(i) SEQUE	NCE CHARACTERISTICS:							
) LENGTH: 12 base pairs							
	3) TYPE: ancleic scid							
) STRANDEDNESS: single) TOPOLOGY: linear							

(I I) MOLECULE TYPE: DNA (probe)

(* I) SEQUENCE DESCRIPTION: SEQ ID NO:276:

```
( I I ) MOLECULE TYPE: DNA (probe)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:271:
    ( 2 ) INFORMATION FOR SEQ ID NO:272:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: ancleic scid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:272:
   CAAATCTGCT TC
   ( 2 ) INFORMATION FOR SEQ ID NO:273:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( i i ) MOLECULE TYPE: DNA (probe)
          ( * 1 ) SEQUENCE DESCRIPTION: SEQ (D NO:273:
  ( 2 ) INFORMATION FOR SEQ ID NO:274:
           ( I ) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 12 base pairs
                    ( B ) TYPE: anciele acid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:274:
 GGTGGTACCC AA
 ( 2 ) INFORMATION FOR SEQ ID NO:275:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: auciele seld
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
       ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:275:
TACTTGGGTG GT
                                                                                                                                       1 2
( 2 ) INFORMATION FOR SEQ ID NO:276:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                  ( B ) TYPE: uncleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

TGGAAAAAGG TT 1 2 (2) INFORMATION FOR SEQ ID NO:277: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:277: GTCCTTGGAA AA 12 (2) INFORMATION FOR SEQ ID NO:278: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Unear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:278: ATTTGTCCTT GG 12 (2) INFORMATION FOR SEQ ID NO:279: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: aucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Unear (| | |) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:279: CTCTGATTTG TCC 1 3 (2) INFORMATION FOR SEQ ID NO:280: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1 1) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:280: TTTTTCTCTG ATT (2) INFORMATION FOR SEQ ID NO:281: · (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Ilmear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:281: TAAAGACTTT TTC 13 (2) INFORMATION FOR SEQ ID NO:282:

```
-continued
                ( 1 ) SEQUENCE CHARACTERISTICS:
                         ( A ) LENGTH: 13 base pairs
                         ( B ) TYPE: nucleic sold
                         (C) STRANDEDNESS: single
                         ( D ) TOPOLOGY: linear
             ( | | ) MOLECULE TYPE: DNA (probe)
             ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:282:
     GTGGAGTTAA AGA -
     ( 2 ) INFORMATION FOR SEQ ID NO:283:
              ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 13 base pairs
                        ( B ) TYPE: aucleic soid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( 1 1 ) MOLECULE TYPE: DNA (probe)
            ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:283:
    TGGTGGAGTT AAA
    ( 2 ) INFORMATION FOR SEQ ID NO:284:
             ( i ) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 12 base pairs
(B) TYPE: nucleic solid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:284:
  TGCTAATGGT GG
  ( 2 ) INFORMATION FOR SEQ ID NO:285:
            ( i ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic soid
                     (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:285:
 TTGGGTGCTA AT
 ( 2 ) INFORMATION FOR SEQ ID NO:286:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: sucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( 1 i ) MOLECULE TYPE: DNA (probe)
        ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:286:
TAGCTTTGGG TG
                                                                                                                                      1 2
( 2 ) INFORMATION FOR SEQ ID NO:287:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nocleic sold
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

```
( I I ) MOLECULE TYPE: DNA (probe)
              ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:287:
      TCTTAGCTTT GG
      ( 2 ) INFORMATION FOR SEQ ID NO:238:
               ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 22 base pairs
                        ( B ) TYPE: nucleic seid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( i i ) MOLECULE TYPE: DNA (probs)
            ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:288:
     CACTTGTGCC CTGACTTTCA AC
                                                                                                                                    2 2
    ( 2 ) INFORMATION FOR SEQ ID NO:289:
              ( I ) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 49 base pairs
(B) TYPE: nucleic seid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:289:
   ATGCAATTAA CCCTCACTAA AGGGAGACAC TTGTGCCCTG ACTTTCAAC
   ( 2 ) INFORMATION FOR SEQ ID NO:290:
            ( I ) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 25 base pairs
(B) TYPE: nucleic soid
                     ( C ) STRANDEDNESS: single
                     (D) TOPOLOGY: linear .
          ( i i ) MOLECULE TYPE: DNA (prote)
          ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:290:
  GACCCTGGGC AACCAGCCCT GTCGT
                                                                                                                                 2 5
 ( 2 ) INFORMATION FOR SEQ ID NO:291:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 47 base pairs
                    ( B ) TYPE: nucleic seid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:291:
TAATACGACT CACTATAGGG AGGACCCTGG GCAACCAGCC CTGTCGT
( 2 ) INFORMATION FOR SEQ ID NO:292:
         ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 25 base pales
                   ( B ) TYPE: nucleic sold
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: Linear
       ( I I ) MOLECULE TYPE: DNA (probe)
       ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:292:
```

```
145
                                                                                                        146
                                                                  -continued
      GTAGAATICT GTTGACTCAG ATTGG
     ( 2 ) INFORMATION FOR SEQ ID NO:293:
              ( 1 ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 27 base pairs
                       ( B ) TYPE: aucleic acid
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
            ( | | ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:293:
    AAATCCATAC AATACTCCAG TATTTGC
    ( 2 ) INFORMATION FOR SEQ ID NO:294:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 27 base pairs
                      ( B ) TYPE: nucleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( | | ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:294:
   GATAAGCTIG GGCCTTATCT ATTCCAT
                                                                                                                                2 7
  ( 2 ) INFORMATION FOR SEQ ID NO:295:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 28 base pairs
                    ( B ) TYPE: nucleic acid
                    ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:295:
 ACCCATCCAA AGGAATGGAG GTTCTTTC.
 ( 2 ) INFORMATION FOR SEQ ID NO:296:
          ( i ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: ancleic sold
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: Ilmest
       ( i i ) MOLECULE TYPE: DNA (oligonucleotide)
       ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:296:
AGCCTAGCTG AA
( 2 ) INFORMATION FOR SEQ ID NO:297:
        ( I ) SEQUENCE CHARACTERISTICS:
                 ( A ) LENGTH: 12 base pairs
                 ( B ) TYPE: nucleic sold
```

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (oligonucleotide) (# 1) SEQUENCE DESCRIPTION: SEQ ID NO:297:

TCGGATCGAC TT

(2) INFORMATION FOR SEQ ID NO:298:

12

2 5

2 7

(I) SEQUENCE CHARACTERISTICS:					
(A) LENGTH: 22 base pairs					
(B) TYPE: nucleic sold (C) STRANDEDNESS: single					
(D) TOPOLOGY: linear					
(I I) MOLECULE TYPE: DNA (probe)					
(* 1) SEQUENCE DESCRIPTION: SEQ ID NO:298:	:				
CGGAATTAAC CCTCACTAAA GG	•				2
(2) Information for seq ID No:299:	•	•		i	
(1) SEQUENCE CHARACTERISTICS:					
(A) LENGTH: 22 base pairs					
(B) TYPE: nucleic acid (C) STRANDEDNESS: single					
(D) TOPOLOGY: linear			•		
(1 i) MOLECULE TYPE: DNA (probe)					
(* 1) SEQUENCE DESCRIPTION: SEQ ID NO:299:			•		
AATTAACCCT CACTAAAGGG AG	•	•••	••		2 2
(2) INFORMATION FOR SEQ ID NO.300:					
(I) SEQUENCE CHARACTERISTICS:					
(A) LENGTH: 22 base pairs					
(B) TYPE: nucleic soid . (C) STRANDEDNESS: single					
(D) TOPOLOGY: linear					
(I I) MOLECULE TYPE: DNA (probe)					
(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:300:					
TAATACGACT CACTATAGGG AG					2 2
(2) Information for seq ID no.301:					
(I) SEQUENCE CHARACTERISTICS:					
(A) LENGTH: 20 base pairs					
(B) TYPE: nucleic seid (C) STRANDEDNESS: single					
(D) TOPOLOGY: linear			,	•	
(i i) MOLECULE TYPE: DNA (probe)			•		
(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:301:					
ATTTAGGTGA CACTATAGAA					2 0
(2) Information for SEQ ID NO-302			٠		•
(i) SEQUENCE CHARACTERISTICS:					•
(A) LENGTH: 10 base pairs					
(B) TYPE: nucleic seid	•		•		•
(C) STRANDEDNESS: single (D) TOPOLOGY: linear			•		
() MOLECULE TYPE: DNA (probe) () SEQUENCE DESCRIPTION: SEQ ID NO:302:					
ATNATATT					10
2) INFORMATION FOR SEQ ID NO.303:					
(1) SEQUENCE CHARACTERISTICS:					
(A) LENGTH: 10 base pairs (B) TYPE: nucleic acid					
(C) STRANDEDNESS: single					
(D) TOPOLOGY: linear					

(I I) MOLECULE TYPE: DNA (probe)

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:108:

```
( I I ) MOLECULE TYPE: DNA (probe)
             ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:303:
    ( 2 ) INFORMATION FOR SEQ ID NO:304:
               ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 10 base pairs
                        ( B ) TYPE: nucleic acid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:304:
   AAGNTGATAT
                                                                                                                                                10
   ( 2 ) INFORMATION FOR SEQ ID NO.305:
             ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 10 base pairs
                       ( B ) TYPE: nucleic sold
                       ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
           ( i i ) MOLECULE TYPE: DNA (probe)
          ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:305:
  ( 2 ) INFORMATION FOR SEQ ID NO:306:
           ( I ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 10 base pairs
( B ) TYPE: modele seid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
         ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:306:
 CAANGATGAT
 ( 2 ) INFORMATION FOR SEQ ID NO:307:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 10 base pairs
                     ( B ) TYPE: aucleic sold
                     ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( = 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:307:
CCANAGATGA
                                                                                                                                            10
( 2 ) INFORMATION FOR SEQ ID NO:308:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 10 base pairs
                   ( B ) TYPE: aucleic scid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
```

ACCNAAGATG (2) INFORMATION FOR SEQ ID NO:309: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:309: CACNAAAGAT 10 (2) INFORMATION FOR SEQ ID NO:310: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (* I) SEQUENCE DESCRIPTION: SEQ ID NO:310: AGAAACNACA 10 (2) INFORMATION FOR SEQ ID NO:311: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: aucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:311: ATTTCATTCT GTATTG (2) INFORMATION FOR SEQ ID NO.312: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: single (D) TOPOLOGY: Ihear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:312: CCGACTGCAG TCGTTA (2) INFORMATION FOR SEQ ID NO:313: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:313: CCGACTGCAG TCGTT (2) INFORMATION FOR SEQ ID NO:314:

```
( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 15 base pairs
                        ( B ) TYPE: nucleic seid
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
             ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:314:
    CCGACTACAG TCGTT
                                                                                                                                      15
    ( 2 ) INFORMATION FOR SEQ ID NO:315:
              ( i ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 15 base pairs
                       ( B ) TYPE: aucteic scid
                       (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
           ( 1 1 ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:315:
   CCGACTCCAG TCGTT
   ( 2 ) INFORMATION FOR SEQ ID NO:316:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 15 base pairs
                     ( B ) TYPE: nucleic scid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x ! ) SEQUENCE DESCRIPTION: SEQ ID NO:316:
  CCGACTTCAG TCGTT
                                                                                                                                    1 5
  ( 2 ) INFORMATION FOR SEQ ID NO:317:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 35 base pairs
                     ( B ) TYPE: sucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO.317:
 GTAATTTCTT TTATAGTAGA AACCACAAAG GATAC
                                                                                                                                  3 5
 ( 2 ) INFORMATION FOR SEQ ID NO-318:
          ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 35 base pairs
                   ( B ) TYPE: modeic sold
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: Ibear
        ( I I ) MOLECULE TYPE: DNA (oligonucleotide)
        ( = 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:318:
CATTAAAGAA AATATCATCT TTGGTGTTTC CTATG
                                                                                                                                 3 5
( 2 ) INFORMATION FOR SEQ ID NO:319:
         ( I ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 32 base pairs
                  ( B ) TYPE: uncleic sold
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: [mear
```

(* I) SEQUENCE DESCRIPTION: SEQ ID NO:324:

```
( i i ) MOLECULE TYPE: DNA (oligonucleotide)
              ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO.319:
                         AATATCATTG GTGTTTCCTA TG
      ( 2 ) INFORMATION FOR SEQ ID NO:320:
               ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 18 base pairs
                        ( B ) TYPE: nucleic seid
                         ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
             ( i i ) MOLECULE TYPE: DNA (probe)
             ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:320:
     CATTAAAGAA AATATCAT
     ( 2 ) INFORMATION FOR SEQ ID NO:321:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 35 base pairs
                        ( B ) TYPE: aucleic seid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( i i ) MOLECULE TYPE: DNA (oligonucleotide)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:321:
    TATTAAAGAA AATATCATCT TTGGTGTTTC CTATC
    ( 2 ) INFORMATION FOR SEQ ID NO:322:
             ( 1 ) SEQUENCE CHARACTERISTICS:
( A ) LENGTH: 35 base pairs
( B ) TYPE: aucleic acid
                      (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (oligonucleotide)
           ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:322:
   CCTTAAAGAA AATATCATCT TTGGTGTTTC CTAAA
   ( 2 ) INFORMATION FOR SEQ ID NO:323:
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 35 base pairs
                      ( B ) TYPE: nucleic sold
                      ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: Ihrear
          ( i i ) MOLECULE TYPE: DNA (oligonocletide)
          ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:323:
..CTTTAAAGAA AATAAAAAAA TTGGTGTTTC CTAAA
 ( 2 ) INFORMATION FOR SEQ ID NO:324:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 20 base pales
                     ( B ) TYPE: ancleic soid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
```

-continued GGAAGTCTCC CATTTTAATT (2) DIFORMATION FOR SEQ ID NO:325: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: shgle (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO.325: CCTTCAGAGG GTAAAATTAA 20 (2) INFORMATION FOR SEQ ID NO:326: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: aucleic scid C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ED NO:326: CCTTCAGAGK GTAAAATTAA 2 0 (2) EXFORMATION FOR SEQ ID NO:327: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilmean (I I) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:327: CCTTCAGAGT GTAAAATTAA (2) INFORMATION FOR SEQ ID NO:328: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: Ilmear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:328: CCTTCAGAGG GTAAAATCA (2) INFORMATION FOR SEQ ID NO:329: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic sold (C) STRANDEDNESS: single

- (D) TOPOLOGY: Ihear
- (I I) MOLECULE TYPE: DNA (probe)
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:329:

CCTTCAGAGG GTAAAATTA

(2) INFORMATION FOR SEQ ID NO:330:

600

·	-continued
() SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: models acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (1) MOLECULE TYPE: DNA (probe)	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:330:	
GATTCAGAGT GTAAAATAC	19
(2) INFORMATION FOR SEQ ID NO.331:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: modele sold (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i i) MOLECULE TYPE: DNA (probe)	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:331:	
AAAAAGAGT GTAAAATGA	19
(2) INFORMATION FOR SEQ ID NO.332:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: madeic seid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (eligenucleoide)	
(x 1) SEQUENCE DESCRIPTION: SEQ ID NO.312:	C CTATG 35
CATTAAAGAA AATAACATCA TIGGTGTTT	CLIAIG
(2) Information for seq id no.333:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 648 base pairs (B) TYPE: andele acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i i) MOLECULE TYPE: DNA (oligonucleolide)	
(* i) SEQUENCE DESCRIPTION: SEQ ID NO.333:	
AACAAACCTA CCCACCCTTA ACAGTACATA	A GTACATAAAG CCATTTACCG TACATAGCAC 60
	GATGACCCCC CTCAGATAGG GGTCCCTTGA 120
	ACAAGAGTGC TACTCTCCTC GCTCCGGGCC 180
CATAACACTT GGGGGTAGCT AAAGTGAACI	GTATCCGACA TCTGGTTCCT ACTTCAGGGT 240
	TTAAATAAGA CATCACGATG GATCACAGGT 300
	CTCCATGCAT TTGGTATTTT CGTCTGGGGG 360
	GAGCCGGAGC ACCCTATGTC GCAGTATCTG 420
•	TCGCACCTAC GTTCAATATT ACAGGCGAAC 480

GTCTGCACAG CCACTTTCCA CACAGACATC ATAACAAAAA ATTTCCACCA AACCCCCCCT

CTCCCCGCT TCTGGCCACA GCACTTAAAC ACATCTCTGC CAAACCCC

```
161
                                                                                                              162
                                                                     -continued
              ( I ) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 12 base pairs
(B) TYPE: nucleic acid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:334:
    GATGCTGAGG AG
                                                                                                                                         1 2
    ( 2 ) INFORMATION FOR SEQ ID NO:335:
             ( i ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
( B ) TYPE: nucleic sold
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * I ) SEQUENCE DESCRIPTION: SEQ ID NO:335:
  CTCCTCCCCG GT
  ( 2 ) INFORMATION FOR SEQ ID NO:336:
         ( ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( I I ) MOLECULE TYPE: DNA (probe)
         ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:336:
 ACTCCTCCCC GG
                                                                                                                                       1 2
 ( 2 ) INFORMATION FOR SEQ ID NO:337:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pairs
                    ( B ) TYPE: nucleic sold
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:337:
GACTCCTCCC CG
                                                                                                                                     12
( 2 ) INFORMATION FOR SEQ ID NO.338:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nucleic seid
                   ( C ) STRANDEDNESS: single
                   ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
       ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:338:
CGACTCCTCC CC
                                                                                                                                     1 2
```

(2) INFORMATION FOR SEQ ID NO:339:

(I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs

- (B) TYPE: sucleic sold
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(D) TOPOLOGY: linear

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:344:

(I I) MOLECULE TYPE: DNA (probe)

```
-continued
            ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO.339:
    ACGACTCCTC CC
    ( 2 ) INFORMATION FOR SEQ ID NO:340:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 12 base pairs
                       (B) TYPE: nucleic sold
(C) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:340:
   TACGACTCCT CC
   ( 2 ) INFORMATION FOR SEQ ID NO:341:
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 12 base pairs
                      ( B ) TYPE: nucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x I ) SEQUENCE DESCRIPTION: SEQ ID NO:341:
  CTACGACTCC TC
  ( 2 ) INFORMATION FOR SEQ ID NO:342
            ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 12 base pairs
                     ( B ) TYPE: nucleic seld
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:342:
 TCTACGACTC CT
                                                                                                                                      12
 ( 2 ) INFORMATION FOR SEQ ID NO:343:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 12 base pales
                    ( B ) TYPE: nucleic seid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( i i ) MOLECULE TYPE: DNA (probe)
        ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:343:
TTCTACGACT CC
( 2 ) INFORMATION FOR SEQ ID NO:344:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 12 base pairs
                   ( B ) TYPE: nucleic scid
                   ( C ) STRANDEDNESS: single
```

10

```
-continued
```

ATTCTACGAC TC 12 (2) INFORMATION FOR SEQ ID NO:345: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (* 1) SEQUENCE DESCRIPTION: SEQ ID NO:345: TATTCTACGA CT 1 2 (2) INFORMATION FOR SEQ ID NO:346: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (probe) (= 1) SEQUENCE DESCRIPTION: SEQ ID NO.146: CTATTCTACG AC 1 2 (2) INFORMATION FOR SEQ ID NO:347: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: aucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (| |) MOLECULE TYPE: DNA (probe) (x 1) SEQUENCE DESCRIPTION: SEQ ID NO:347: CCTATTCTAC GA 1 2 (2) ENFORMATION FOR SEQ ID NO:348: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: Ilnear (I I) MOLECULE TYPE: DNA (probe) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:348: TCCTCCCGG (2) INFORMATION FOR SEQ ID NO:349: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: sucleic sold (C) STRANDEDNESS: single (D) TOPOLOGY: these (I I) MOLECULE TYPE: DNA (probe)

(2) INFORMATION FOR SEQ ID NO:350:

CTCCTCCCG

(x I) SEQUENCE DESCRIPTION: SEQ ID NO:349:

```
( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 10 base pairs
                        ( B ) TYPE: nucleic acid
                         C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
             ( I I ) MOLECULE TYPE: DNA (probe)
            ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:350:
    ACTCCTCCCC
                                                                                                                                          10
    ( 2 ) INFORMATION FOR SEQ ID NO:351:
              ( I ) SEQUENCE CHARACTERISTICS:
                       ( A ) LENGTH: 10 base pairs
                       ( B ) TYPE: ancleic scid
                       ( C ) STRANDEDNESS: single
                       ( D ) TOPOLOGY: linear
           ( I I ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:351:
   GACTCCTCCC
   ( 2 ) INFORMATION FOR SEQ ID NO:352
            ( I ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 10 base pairs
                      ( B ) TYPE: aucleic scid
                      ( C ) STRANDEDNESS: single
                      ( D ) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:352:
  CGACTCCTCC
                                                                                                                                       10
  ( 2 ) INFORMATION FOR SEQ ID NO:353:
           ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 10 base pairs
                     ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
         ( i i ) MOLECULE TYPE: DNA (probe)
         ( x 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:353:
 ACGACTCCTC
                                                                                                                                      10
 ( 2 ) INFORMATION FOR SEQ ID NO:354:
          ( I ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 10 base pairs
                    ( B ) TYPE: ancieic scid
                    ( C ) STRANDEDNESS: single
                  (D) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( = 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:354:
TACGACTCCT
                                                                                                                                     10
( 2 ) INFORMATION FOR SEQ ID NO:355:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                  ( A ) LENGTH: 10 base pairs
                  ( B ) TYPE: nucleic scid
                  ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

```
-continued
             ( 1 1 ) MOLECULE TYPE: DNA (probe)
            ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:355:
     ( 2 ) INFORMATION FOR SEQ ID NO:356:
              ( I ) SEQUENCE CHARACTERISTICS:
                        ( A ) LENGTH: 10 base pairs
                        ( B ) TYPE: nucleic sold
                        ( C ) STRANDEDNESS: single
                        ( D ) TOPOLOGY: linear
            ( i i ) MOLECULE TYPE: DNA (probe)
           ( * 1 ) SEQUENCE DESCRIPTION: SEQ ID NO:356:
    TCTACGACTC
                                                                                                                                          10
   ( 2 ) INFORMATION FOR SEQ ID NO:357:
             ( ) SEQUENCE CHARACTERISTICS:
                      ( A ) LENGTH: 10 base pairs
                       ( B ) TYPE: nucleic scid
                      (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
          ( I I ) MOLECULE TYPE: DNA (probe)
          ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:357:
  TTCTACGACT
  ( 2 ) INFORMATION FOR SEQ ID NO:338:
           ( I ) SEQUENCE CHARACTERISTICS:
                     ( A ) LENGTH: 10 base pairs
                     ( B ) TYPE: mucleic soid
                     ( C ) STRANDEDNESS: single
                     ( D ) TOPOLOGY: linear
         ( | | | ) MOLECULE TYPE: DNA (probe)
         ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:358:
 ATTCTACGAC
 ( 2 ) INFORMATION FOR SEQ ID NO:359:
          ( I ) SEQUENCE CHARACTERISTICS:
                    ( A ) LENGTH: 10 base pairs
                    ( B ) TYPE: nucleic scid
                    ( C ) STRANDEDNESS: single
                    ( D ) TOPOLOGY: linear
        ( I I ) MOLECULE TYPE: DNA (probe)
        ( * i ) SEQUENCE DESCRIPTION: SEQ ID NO:359:
TATTCTACGA
                                                                                                                                      10
( 2 ) INFORMATION FOR SEQ ID NO:360:
         ( 1 ) SEQUENCE CHARACTERISTICS:
                   ( A ) LENGTH: 184 base pairs
                   ( B ) TYPE: aucleic seid
                   ( C ) STRANDEDNESS: single
                  ( D ) TOPOLOGY: linear
```

(I I) MOLECULE TYPE: DNA (oligonucleotide)

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:360:

		Сопитиса		
TACTCCCCTG	CCCTCAACAA GATG	TTTTGC CAACTGGCC	A AGACCTGCCC TGTGCA	GCWG 60
KGGGWWGATT	CCACACCCCC GCCC	GGCACC CGCGTCCGC	G CCATGGCCAT CTACAA	GCAG 120
CACAGCACA	TGACGGAGGW WGKG	AGGCGC TGCCCCCACO	C ATGAGCGCYG CYCAGA	TAGC 180
AVC				

We claim:

1. An array of oligonucleotide probes immobilized on a solid support, said array having at least 100 probes and no more than 100,000 different oligonucleotide probes 9 to 20 nucleotides in length occupying separate known sites in said array, said oligonucleotide probes comprising at least four sets of probes: (1) a first set that is exactly complementary to a reference sequence and comprises probes that completely span the reference sequence and, relative to the reference sequence, overlap one another in sequence; and (2) three additional sets of probes, each of which is identical to said first set of probes but for at least one different nucleotide, which different nucleotide is located in the same position in each of the three additional sets but which is a different nucleotide in each set.

2. The array of claim 1, further comprising a fourth additional set of probes, which fourth additional set is identical to probes in the first set.

3. The array of claim 1, wherein said reference sequence is a double-stranded nucleic acid and probes complementary 30 to both strands of said reference are in said array.

4. The array of claim 1, wherein said probes are 12 to 17 nucleotides in length.

5. The array of claim 4, wherein said probes are 15 nucleotides in length and attached by a covalent linkage to 35 a site on a 3'-end of said probes, and said different nucleotide is located at position 7, relative to the 3'-end of said probes.

6. The array of claim 1, wherein said reference sequence is exon 10 of a CFTR gene, and said array has between 1000 and 100,000 oligonucleotide probes 10 to 18 nucleotides in 40 length.

7. The array of claim 6, wherein said array comprises a set of probes comprising a specific nucleotide sequence selected from the group of sequences consisting of:

3'-TTTATAXTAG (SEQ ID. NO:302);

3'-TTATAGXAGA (SEQ ID. NO:303);

3'-TATAGTXGAA (SEQ ID. NO:304);

3'-ATAGTAXAAA (SEQ ID. NO:305);

3'-TAGTAGXAAC (SEQ ID. NO:306); 3'-AGTAGAXACC (SEQ ID. NO:307);

3'-GTAGAAXCCA (SEQ ID. NO:308);

3'-TAGAAAXCAC (SEQ ID. NO:309); and

3'-AGAAACXACA (SEQ ID. NO:310); wherein each set comprises 4 probes, and X is individually A, G, C, and T for each set.

8. The array of claim 6, wherein said group of sequences consists of:

3'-TTTATAXTAGAAACC (SEQ ID. NO:9);

3'-TTATAGXAGAAACCA (SEQ ID. NO:10);

3'-TATAGTXGAAACCAC (SEQ ID. NO:11);

3'-ATAGTAXAAACCACA (SEQ ID. NO:12);

3'-TAGTAGXAACCACAA (SEQ ID. NO:13);

3'-AGTAGAXACCACAAA (SEQ ID. No:14);

3'-GTAGAAXCCACAAAG (SEQ ID. NO:15);

C, and T for each set.

3'-TAGAAAXCACAAAGG (SEQ ID. NO:16); and 15 3'-AGAAACXACAAAGGA (SEQ ID. NO:17); wherein each set comprises 4 probes, and X is individually A, G,

9. The array of claim 1, wherein said reference sequence is a sequence of a D-loop region of human mitochondrial DNA.

10. The array of claim 9, wherein said probes are 15 nucleotides in length, and said array comprises a first set of probes exactly complementary to a sequence contained in a sequence bounded by positions 16280 to 356 of the reference sequence and four additional sets of probes identical to said first set but for position 7, relative to a 3'-end of a probe, which 3'-end is covalently attached to the substrate, where, for each of the four additional probe sets, a different nucleotide is located, such that, for each probe in said first set, there is an identical probe in one of the four additional sets, and such that the array has between 2500 and 100,000 oligonucleotide probes.

11. The array of claim 1, wherein said reference sequence is a sequence from an exon of a human p53 gene.

12. The array of claim 11, wherein said reference sequence comprises at least a 60 nucleotide contiguous sequence from exon 6 of a p53 gene.

13. The array of claim 11, wherein said reference sequence is exon 5 of a p53 gene, said probes are 17 nucleotides long, and said array comprises a first set of probes exactly complementary to said sequence and at least three additional sets of probes, each set comprising probes identical to said first set but for a nucleotide at position 7, relative to a 3'-end of a probe, which 3'-end is covalently attached to the substrate, which nucleotide is different from a nucleotide at this position in a corresponding probe of said first set.

14. The array of claim 1, wherein said probes are oli-50 godeoxyribonucleotides.

15. The array of claim 1, wherein said array has between 10,000 and 100,000 probes.

16. The array of claim 1, wherein the reference sequence is from a human immunodeficiency virus.

17. The array of claim 16, wherein the reference sequence is from a reverse transcriptase gene of the human immunodeficiency virus.

18. The array of claim 1, wherein said probes are immobilized to said solid support via a linker.

.

I

This Page Blank (uspto)

United States Patent [19]

McGall et al.

Patent Number: [11]

6,156,501

Date of Patent: [45]

*Dec. 5, 2000

[54]	ARRAYS OF MODIFIED NUCLEIC ACID
	PROBES AND METHODS OF USE

[75] Inventors: Glenn Hugh McGall; Charles Garrett Miyada, both of Mountain View; Maureen T. Cronin, Los Altos; Jennifer Dee Tan, Newark; Mark S.

Chee, Palo Alto, all of Calif.

[73] Assignee: Affymetrix, Inc., Santa Clara, Calif.

This patent issued on a continued pros-[*] Notice: ecution application filed under 37 CFR

1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C.

154(a)(2).

[21] Appl. No.: 08/630,427

[22] Filed: Apr. 3, 1996

Related U.S. Application Data

Continuation-in-part of application No. 08/440,742, May
10, 1995, abandoned, which is a continuation-in-part of
application No. PCT/US94/12305, Oct. 26, 1994, which is a
continuation-in-part of application No. 08/284,064, Aug. 2,
1994, abandoned, which is a continuation-in-part of appli-
cation No. 08/143,312, Oct. 26, 1993, abandoned.

[51]	Int. Cl.'.	C12Q 1/68; C07H 21/00
[52]	U.S. Cl	
	43:	5/283.1; 435/287.1; 435/287.2; 435/288.3
	43:	5/288.7; 435/289.1; 435/299.1; 435/305.1
		436/501; 536/22.1; 536/24.1; 536/24.3
		536MA 31 · 536MA 30 · 536MA 33

536/24.31; 536/24.32; 536/24.33 [58] Field of Search 422/50, 68.1; 435/6, 435/810, 283.1, 287.1, 287.2, 288.3, 288.7, 289.1, 299.1, 305.1; 436/501; 536/23.1, 24.1, 22.1, 24.3-24.33; 935/77, 78

[56] References Cited

> U.S. PATENT DOCUMENTS 5,002,867 3/1991 Macevicz 435/6

5,143,854	9/1992	Pirrung et al 436/518
5,200,051	4/1993	Cozzette et al 204/403
5,202,231	4/1993	Drmanac et al 435/6
5,217,866	6/1993	Summerton et al 435/6
5,412,087	5/1995	McGall et al 536/24.3
5,474,796	12/1995	Brennan 427/2.13
5,484,908	1/1996	Froehler et al 536/24.31
5,527,681	6/1996	Holmes 435/6
5,556,752	9/1996	Lockhart et al 435/6
5,556,961	9/1996	Foote et al 536/27.1
5,604,097	2/1997	Brenner 435/6
5,800,992	9/1998	Fodor et al 435/6
5,821,060	10/1998	Arlinghaus et al 435/6
B1 4,683,202	11/1990	Mullis 435/91

FOREIGN PATENT DOCUMENTS

9/1986 WI	PO.		
1/1989 WI	PO .		
1/1989 WI	PO.		
5/1990 WI	PO	C12Q	1/68
6/1992 WI	PO.		
9/1993 WI	PO.		
	1/1989 WI 1/1989 WI 5/1990 WI 5/1992 WI	0/1986 WIPO . 1/1989 WIPO . 1/1989 WIPO . 5/1990 WIPO . 5/1992 WIPO . 0/1993 WIPO .	1/1989 WIPO . 1/1989 WIPO . 5/1990 WIPO

OTHER PUBLICATIONS

Durland, Ross H., et al. (1995) "Selective Binding of Pyrido[2, 3-d]pyrimidine 2'-Deoxyribonucleoside to AT Base Pairs in Antiparallel Triple Helices", Bioconjugate Chem 6:278-282.

Primary Examiner-Ardin H. Marschel Attorney, Agent, or Firm-Townsend and Townsend and Crew

[57]

ABSTRACT

Oligonucleotide analogue arrays attached to solid substrates and methods related to the use thereof are provided. The oligonucleotide analogues hybridize to nucleic acids with either higher or lower specificity than corresponding unmodified oligonucleotides. Target nucleic acids which comprise nucleotide analogues are bound to oligonucleotide and oligonucleotide analogue arrays.

72 Claims, 5 Drawing Sheets

target: DNA

113.0 s12.0

> 62.8 s7.9

55.8 s6.1

166 .4 s21.7

FIG. 1C

target: RNA

2399.6 s41.6

DNA(P)

683.0 s5.8

87.2 s17.9

226.9 s16.3

2'OMe(P)

2'OMe(M)

DNA(M)

DNA(P)

(20°C)

FIG. 1D

FIG. 2

ARRAYS OF MODIFIED NUCLEIC ACID PROBES AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. Ser. No. 08/440,742 filed May 10, 1995 abandoned, which is a continuation-in-part of PCT application (designating the United States) SN PCT/US94/12305 filed Oct. 26, 1994, which is a continuation-in-part of U.S. Ser. No. 08/284,064 filed Aug. 2, 1994 abandoned, which is a continuation-in-part of U.S. Ser. No 08/143,312 filed Oct. 26, 1993 abandoned, each of which is incorporated herein by reference in its entirety for all purposes.

FIELD OF THE INVENTION

The present invention provides probes comprised of nucleotide analogues immobilized in arrays on solid substrates for analyzing molecular interactions of biological 20 interest, and target nucleic acids comprised of nucleotide analogues. The invention therefore relates to the molecular interaction of polymers immobilized on solid substrates including related chemistry, biology, and medical diagnostic uses.

BACKGROUND OF THE INVENTION

The development of very large scale immobilized polymer synthesis (VLSIPSTM) technology provides pioneering methods for arranging large numbers of oligonucleotide probes in very small arrays. See, U.S. application Ser. No. 07/805,727 now U.S. Pat. No. 5,424,186 and PCT patent publication Nos. WO 90/15070 and 92/10092, each of which is incorporated herein by reference for all purposes. U.S. patent application Ser. No. 08/082,937, filed Jun. 25, 1993, and incorporated herein for all purposes, describes methods for making arrays of oligonucleotide probes that are used, e.g., to determine the complete sequence of a target nucleic acid and/or to detect the presence of a nucleic acid with a specified sequence.

VLSIPSTM technology provides an efficient means for large scale production of miniaturized oligonucleotide arrays for sequencing by hybridization (SBH), diagnostic testing for inherited or somatically acquired genetic diseases, and forensic analysis. Other applications include determination of sequence specificity of nucleic acids, protein-nucleic acid complexes and other polymer-polymer interactions.

SUMMARY OF THE INVENTION

The present invention provides arrays of oligonucleotide analogues attached to solid substrates. Oligonucleotide analogues have different hybridization properties than oligonucleotides based upon naturally occurring nucleotides. By incorporating oligonucleotide analogues into the arrays of the invention, hybridization to a target nucleic acid is optimized.

The oligonucleotide analogue arrays have virtually any number of different members, determined largely by the 60 number or variety of compounds to be screened against the array in a given application. In one group of embodiments, the array has from 10 up to 100 oligonucleotide analogue members. In other groups of embodiments, the arrays have between 100 and 10,000 members, and in yet other embodiments the arrays have between 10,000 and 1,000,0000 members. In preferred embodiments, the array will have a

2

density of more than 100 members at known locations per cm², or more preferably, more than 1000 members per cm². In some embodiments, the arrays have a density of more than 10,000 members per cm².

The solid substrate upon which the array is constructed includes any material upon which oligonucleotide analogues are attached in a defined relationship to one another, such as beads, arrays, and slides. Especially preferred oligonucleotide analogues of the array are between about 5 and about 20 nucleotides, nucleotide analogues or a mixture thereof in length.

In one group of embodiments, nucleoside analogues incorporated into the oligonucleotide analogues of the array will have the chemical formula:

wherein R¹ and R² are independently selected from the group consisting of hydrogen, methyl, hydroxy, alkoxy (e.g., 25 methoxy, ethoxy, propoxy, allyloxy, and propargyloxy), alkylthio, halogen (Fluorine, Chlorine, and Bromine), cyano, and azido, and wherein Y is a heterocyclic moiety, e.g., a base selected from the group consisting of purines, purine analogues, pyrimidines, pyrimidine analogues, universal bases (e.g., 5-nitroindole) or other groups or ring systems capable of forming one or more hydrogen bonds with corresponding moieties on alternate strands within a double- or triple-stranded nucleic acid or nucleic acid analogue, or other groups or ring systems capable of forming nearest-neighbor base-stacking interactions within a doubleor triple-stranded complex. In other embodiments, the oligonucleotide analogues are not constructed from nucleosides, but are capable of binding to nucleic acids in solution due to structural similarities between the oligonucleotide analogue and a naturally occurring nucleic acid. An example of such an oligonucleotide analogue is a peptide nucleic acid or polyamide nucleic acid in which bases which hydrogen bond to a nucleic acid are attached to a polyamide

The present invention also provides target nucleic acids hybridized to oligonucleotide arrays. In the target nucleic acids of the invention, nucleotide analogues are incorporated into the target nucleic acid, altering the hybridization properties of the target nucleic acid to an array of oligonucleotide probes. Typically, the oligonucleotide probe arrays also comprise nucleotide analogues.

The target nucleic acids are typically synthesized by providing a nucleotide analogue as a reagent during the enzymatic copying of a nucleic acid. For instance, nucleotide analogues are incorporated into polynucleic acid analogues using taq polymerase in a PCR reaction. Thus, a nucleic acid containing a sequence to be analyzed is typically amplified in a PCR or RNA amplification procedure with nucleotide analogues, and the resulting target nucleic acid analogue amplicon is hybridized to a nucleic acid analogue array.

Oligonucleotide analogue arrays and target nucleic acids are optionally composed of oligonucleotide analogues which are resistant to hydrolysis or degradation by nuclease enzymes such as RNAase A. This has the advantage of providing the array or target nucleic acid with greater longevity by rendering it resistant to enzymatic degradation.

4

For example, analogues comprising 2'-O-methyloligoribonucleotides are resistant to RNAase A.

Oligonucleotide analogue arrays are optionally arranged into libraries for screening compounds for desired characteristics, such as the ability to bind a specified oligonucleotide analogue, or oligonucleotide analoguecontaining structure. The libraries also include oligonucleotide analogue members which form conformationallyrestricted probes, such as unimolecular double-stranded probes or unimolecular double-stranded probes which present a third chemical structure of interest. For instance, the array of oligonucleotide analogues optionally include a plurality of different members, each member having the formula: $Y-L^1-X^1-L^2-X^2$, wherein Y is a solid substrate, X^1 and X^2 are complementary oligonucleotides containing at least one nucleotide analogue, L1 is a spacer, 15 and L² is a linking group having sufficient length such that X1 and X2 form a double-stranded oligonucleotide. An array of such members comprise a library of unimolecular doublestranded oligonucleotide analogues. In another embodiment, the members of the array of oligonucleotide are arranged to 20 present a moiety of interest within the oligonucleotide analogue probes of the array. For instance, the arrays are optionally conformationally restricted, having the formula $-X^{11}-Z-X^{12}$, wherein X^{11} and X^{12} are complementary oligonucleotides or oligonucleotide analogues and Z is a chemical structure comprising the binding site of interest.

Oligonucleotide analogue arrays are synthesized on a solid substrate by a variety of methods, including light-directed chemical coupling, and selectively flowing synthetic reagents over portions of the solid substrate. The solid substrate is prepared for synthesis or attachment of oligonucleotides by treatment with suitable reagents. For example, glass is prepared by treatment with silane reagents.

The present invention provides methods for determining whether a molecule of interest binds members of the oligonucleotide analogue array. For instance, in one embodiment, a target molecule is hybridized to the array and the resulting hybridization pattern is determined. The target molecule includes genomic DNA, cDNA, unspliced RNA, mRNA, and rRNA, nucleic acid analogues, proteins and chemical polymers. The target molecules are optionally amplified prior to being hybridized to the array, e.g., by PCR, LCR, or cloning methods.

The oligonucleotide analogue members of the array used in the above methods are synthesized by any described 45 method for creating arrays. In one embodiment, the oligonucleotide analogue members are attached to the solid substrate, or synthesized on the solid substrate by lightdirected very large scale immobilized polymer synthesis, e.g., using photo-removable protecting groups during synthesis. In another embodiment, the oligonucleotide members are attached to the solid substrate by forming a plurality of channels adjacent to the surface of said substrate, placing selected monomers in said channels to synthesize oligonucleotide analogues at predetermined portions of selected 55 regions, wherein the portion of the selected regions comprise oligonucleotide analogues different from oligonucleotide analogues in at least one other of the selected regions, and repeating the steps with the channels formed along a second portion of the selected regions. The solid substrate is 60 any suitable material as described above, including beads, slides, and arrays, each of which is constructed from, e.g., silica, polymers and glass.

DEFINITIONS

An "Oligonucleotide" is a nucleic acid sequence composed of two or more nucleotides. An oligonucleotide is

optionally derived from natural sources, but is often synthesized chemically. It is of any size. An "oligonucleotide analogue" refers to a polymer with two or more monomeric subunits, wherein the subunits have some structural features in common with a naturally occurring oligonucleotide which allow it to hybridize with a naturally occurring oligonucleotide in solution. For instance, structural groups are optionally added to the ribose or base of a nucleoside for incorporation into an oligonucleotide, such as a methyl or allyl group at the 2'-O position on the ribose, or a fluoro group which substitutes for the 2'-O group, or a bromo group on the ribonucleoside base. The phosphodiester linkage, or "sugar-phosphate backbone" of the oligonucleotide analogue is substituted or modified, for instance with methyl phosphonates or O-methyl phosphates. Another example of an oligonucleotide analogue for purposes of this disclosure includes "peptide nucleic acids" in which native or modified nucleic acid bases are attached to a polyamide backbone. Oligonucleotide analogues optionally comprise a mixture of naturally occurring nucleotides and nucleotide analogues. However, an oligonucleotide which is made entirely of naturally occurring nucleotides (i.e., those comprising DNA or RNA), with the exception of a protecting group on the end of the oligonucleotide, such as a protecting group used during standard nucleic acid synthesis is not considered an oligonucleotide analogue for purposes of this invention.

A "nucleoside" is a pentose glycoside in which the aglycone is a heterocyclic base; upon the addition of a phosphate group the compound becomes a nucleotide. The major biological nucleosides are β -glycoside derivatives of D-ribose or D-2-deoxyribose. Nucleotides are phosphate esters of nucleosides which are generally acidic in solution due to the hydroxy groups on the phosphate. The nucleosides of DNA and RNA are connected together via phosphate units attached to the 3' position of one pentose and the 5' position of the next pentose. Nucleotide analogues and/or nucleoside analogues are molecules with structural similarities to the naturally occurring nucleotides or nucleosides as discussed above in the context of oligonucleotide analogues.

A "nucleic acid reagent" utilized in standard automated oligonucleotide synthesis typically caries a protected phosphate on the 3' hydroxyl of the ribose. Thus, nucleic acid reagents are referred to as nucleotides, nucleotide reagents, nucleoside reagents, nucleoside phosphates, nucleoside-3'-phosphates, nucleoside phosphoramidites, phosphoramidites, nucleoside phosphonates, phosphonates and the like. It is generally understood that nucleotide reagents carry a reactive, or activatible, phosphoryl or phosphonyl moiety in order to form a phosphodiester linkage.

A "protecting group" as used herein, refers to any of the groups which are designed to block one reactive site in a molecule while a chemical reaction is carried out at another reactive site. More particularly, the protecting groups used herein are optionally any of those groups described in Greene, et al., Protective Groups In Organic Chemistry, 2nd Ed., John Wiley & Sons, New York, NY, 1991, which is incorporated herein by reference. The proper selection of protecting groups for a particular synthesis is governed by the overall methods employed in the synthesis. For example, in "light-directed" synthesis, discussed herein, the protecting groups are photolabile protecting groups such as NVOC, MeNPoc, and those disclosed in co-pending Application PCT/US93/10162 (filed Oct. 22, 1993), incorporated herein 65 by reference. In other methods, protecting groups are removed by chemical methods and include groups such as FMOC, DMT and others known to those of skill in the art.

A "purine" is a generic term based upon the specific compound "purine" having a skeletal structure derived from the fusion of a pyrimidine ring and an imidazole ring. It is generally, and herein, used to describe a generic class of compounds which have an atom or a group of atoms added to the parent purine compound, such as the bases found in the naturally occurring nucleic acids adenine (6-aminopurine) and guanine (2-amino-6-oxopurine), or less commonly occurring molecules such as 2-amino-adenine, N⁶-methyladenine, or 2-methylguanine.

A "purine analogue" has a heterocyclic ring with structural similarities to a purine, in which an atom or group of atoms is substituted for an atom in the purine ring. For instance, in one embodiment, one or more N atoms of the purine heterocyclic ring are replaced by C atoms.

A "pyrimidine" is a compound with a specific heterocyclic diazine ring structure, but is used generically by persons of skill and herein to refer to any compound having a 1,3-diazine ring with minor additions, such as the common nucleic acid bases cytosine, thymine, uracil, 5-methylcytosine and 5-hydroxymethylcytosine, or the non-naturally occurring 5-bromo-uracil.

A "pyrimidine analogue" is a compound with structural similarity to a pyrimidine, in which one or more atom in the pyrimidine ring is substituted. For instance, in one embodiment, one or more of the N atoms of the ring are substituted with C atoms.

A "solid substrate" has fixed organizational support matrix, such as silica, polymeric materials, or glass. In some 30 embodiments, at least one surface of the substrate is partially planar. In other embodiments it is desirable to physically separate regions of the substrate to delineate synthetic regions, for example with trenches, grooves, wells or the like. Example of solid substrates include slides, beads and 35 arrays.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows four panels (FIG. 1A, FIG. 1B, FIG. 1C and FIG. 1D). FIGS. 1A and 1B graphically display the difference in fluorescence intensity between the matched and mismatched DNA probes. FIGS. 1C and 1D illustrate the difference in fluorescence intensity verses location on an example chip for DNA and RNA targets, respectively.

FIG. 2 is a graphic illustration of specific light-directed ⁴⁵ chemical coupling of oligonucleotide analogue monomers to an array.

FIG. 3 shows the relative efficiency and specificity of hybridization for immobilized probe arrays containing adenine versus probe arrays containing 2,6-diaminopurine nucleotides. (3'-CATCGTAGAA-5' (SEQ ID NO:1)).

FIG. 4 shows the effect of substituting adenine with 2,6-diaminopurine (D) in immobilized poly-dA probe arrays. (AAAANAAAAA (SEQ ID NO:2)).

FIG. 5 shows the effects of substituting 5-propynyl-2'-deoxyuridine and 2-amino-2' deoxyadenosine in AT arrays on hybridization to a target nucleic acid. (ATATAATATA (SEQ ID NO:3) and CGCGCCGCGC (SEQ ID NO:4)).

FIG. 6 shows the effects of dI and 7-deaza-dG substitu- 60 tions in oligonucleotide arrays. (3'-ATGTT(G1G2G3G4G5) CGGGT-5' (SEQ ID NO:5)).

DETAILED DESCRIPTION

Methods of synthesizing desired single stranded oligonucleotide and oligonucleotide analogue sequences are known to those of skill in the art. In particular, methods of

synthesizing oligonucleotides and oligonucleotide analogues are found in, for example, Oligonucleotide Synthesis: A Practical Approach, Gait, ed., IRL Press, Oxford (1984); W. H. A. Kuijpers Nucleic Acids Research 18(17), 5197 5 (1994); K. L. Dueholm J. Org. Chem. 59, 5767-5773 (1994), and S. Agrawal (ed.) Methods in Molecular Biology, volume 20, each of which is incorporated herein by reference in its entirety for all purposes. Synthesizing unimolecular double-stranded DNA in solution has also been described. See, copending application Ser. No. 08/327,687, now U.S. Pat. No. 5,556,752 which is incorporated herein for all purposes.

Improved methods of forming large arrays of oligonucleotides, peptides and other polymer sequences with a minimal number of synthetic steps are known. See, Pirrung et al., U.S. Pat. No. 5,143,854 (see also, PCT Application No. WO 90/15070) and Fodor et al., PCT Publication No. WO 92/10092, which are incorporated herein by reference, which disclose methods of forming vast arrays of peptides, oligonucleotides and other molecules using, for example, light-directed synthesis techniques. See also, Fodor et al., (1991) Science, 251, 767-77 which is incorporated herein by reference for all purposes. These procedures for synthesis of polymer arrays are now referred to as VLSIPS™ procedures.

Using the VLSIPTM approach, one heterogenous array of polymers is converted, through simultaneous coupling at a number of reaction sites, into a different heterogenous array. See, U.S. application Ser. No. 07/796,243 now U.S. Pat. No. 5,384,261 and U.S. application Ser. No. 07/980,523 now U.S. Pat. No. 5,677,195, the disclosures of which are incorporated herein for all purposes.

The development of VLSIPS™ technology as described in the above-noted U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092 is considered pioneering technology in the fields of combinatorial synthesis and screening of combinatorial libraries. More recently, patent application Ser. No. 08/082,937, filed Jun. 25, 1993 (incorporated herein by reference), describes methods for making arrays of oligonucleotide probes that are used to check or determine a partial or complete sequence of a target nucleic acid and to detect the presence of a nucleic acid containing a specific oligonucleotide sequence.

Combinatorial Synthesis of Oligonucleotide Arrays

VLSIPS™ technology provides for the combinatorial synthesis of oligonucleotide arrays. The combinatorial VLSIPS™ strategy allows for the synthesis of arrays containing a large number of related probes using a minimal number of synthetic steps. For instance, it is possible to synthesize and attach all possible DNA 8mer oligonucleotides (48, or 65,536 possible combinations) using only 32 chemical synthetic steps. In general, VLSIPS™ procedures provide a method of producing 4n different oligonucleotide probes on an array using only 4n synthetic steps.

In brief, the light-directed combinatorial synthesis of oligonucleotide arrays on a glass surface proceeds using automated phosphoramidite chemistry and chip masking techniques. In one specific implementation, a glass surface is derivatized with a silane reagent containing a functional group, e.g., a hydroxyl or amine group blocked by a photolabile protecting group. Photolysis through a photolithogaphic mask is used selectively to expose functional groups which are then ready to react with incoming 5'-photoprotected nucleoside phosphoramidites. See, FIG. 2. The phosphoramidites react only with those sites which are illuminated (and thus exposed by removal of the photolabile

blocking group). Thus, the phosphoramidites only add to those areas selectively exposed from the preceding step. These steps are repeated until the desired array of sequences have been synthesized on the solid surface. Combinatorial synthesis of different oligonucleotide analogues at different locations on the array is determined by the pattern of illumination during synthesis and the order of addition of coupling reagents.

In the event that an oligonucleotide analogue with a polyamide backbone is used in the VLSIPSTM procedure, it is generally inappropriate to use phosphoramidite chemistry to perform the synthetic steps, since the monomers do not attach to one another via a phosphate linkage. Instead, peptide synthetic method are substituted. See, e.g., Pirrung et al. U.S. Pat. No. 5,143,854.

Peptide nucleic acids are commercially available from, e.g., Biosearch, Inc. (Bedford, Mass.) which comprise a polyamide backbone and the bases found in naturally occurring nucleosides. Peptide nucleic acids are capable of binding to nucleic acids with high specificity, and are considered "oligonucleotide analogues" for purposes of this disclosure. Note that peptide nucleic acids optionally comprise bases other than those which are naturally occurring.

Hybridization of Nucleotide Analogues

The stability of duplexes formed between RNAs or DNAs generally in the order RNA:RNA>RNA:DNA>DNA:DNA, in solution. Long probes have better duplex stability with a target, but poorer mismatch discrimination than shorter probes (mismatch 30 discrimination refers to the measured hybridization signal ratio between a perfect match probe and a single base mismatch probe. Shorter probes (e.g., 8-mers) discriminate mismatches very well, but the overall duplex stability is low. In order to optimize mismatch discrimination and duplex 35 stability, the present invention provides a variety of nucleotide analogues incorporated into polymers and attached in an array to a solid substrate.

Altering the thermal stability (T_m) of the duplex formed between the target and the probe using, e.g., known oligo- 40 nucleotide analogues allows for optimization of duplex stability and mismatch discrimination. One useful aspect of altering the T_m arises from the fact that Adenine-Thymine (A-T) duplexes have a lower T_m than Guanine-Cytosine (G-C) duplexes, due in part to the fact that the A-T duplexes 45 have 2 hydrogen bonds per base-pair, while the G-C duplexes have 3 hydrogen bonds per base pair. In heterogeneous oligonucleotide arrays in which there is a nonuniform distribution of bases, it can be difficult to optimize hybridization conditions for all probes simultaneously. Thus, 50 in some embodiments, it is desirable to destabilize G-C-rich duplexes and/or to increase the stability of A-T-rich duplexes while maintaining the sequence specificity of hybridization. This is accomplished, e.g., by replacing one or more of the native nucleotides in the probe (or the target) with certain 55 modified, non-standard nucleotides. Substitution of guanine residues with 7-deazaguanine, for example, will generally destabilize duplexes, whereas substituting adenine residues with 2,6-diaminopurine will enhance duplex stability. A variety of other modified bases are also incorporated into 60 nucleic acids to enhance or decrease overall duplex stability while maintaining specificity of hybridization. The incorporation of 6-aza-pyrimidine analogs into oligonucleotide probes generally decreases their binding affinity for complementary nucleic acids. Many 5-substituted pyrimidines sub- 65 stantially increase the stability of hybrids in which they have been substituted in place of the native pyrimidines in the

sequence. Examples include 5-bromo-, 5-methyl-, 5-propynyl-, 5-(imidazol-2-yl)-and 5-(thiazol-2-yl)-derivatives of cytosine and uracil.

Many modified nucleosides, nucleotides and various bases suitable for incorporation into nucleosides are commercially available from a variety of manufacturers, including the SIGMA chemical company (Saint Louis, Mo.), R&D systems (Minneapolis, Minn.), Pharmacia LKB Biotechnology (Piscataway, N.J.), CLONTECH Laboratories, Inc. (Palo Alto, Calif.), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, Wis.), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersberg, Md.), Fluka Chemica-Biochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), Invitrogen, San Diego, Calif., and Applied Biosystems (Foster City, Calif.), as well as many other commercial sources known to one of skill. Methods of attaching bases to sugar moieties to form nucleosides are known. See, e.g., Lukevics and Zablocka (1991), Nucleoside Synthesis: Organosilicon Methods Ellis Horwood Limited Chichester, West Sussex, England and the references therein. Methods of phosphorylating nucleosides to form nucleotides, and of incorporating nucleotides into oligonucleotides are also known. See, e.g., Agrawal (ed) (1993) Protocols for Oligonucleotides and Analogues, Synthesis and Properties, Methods in Molecular Biology volume 20, Humana Press, Towota, N.J., and the references therein. See also, Crooke and Lebleu, and Sanghvi and Cook, and the references cited therein, both supra.

Groups are also linked to various positions on the nucleoside sugar ring or on the purine or pyrimidine rings which may stabilize the duplex by electrostatic interactions with the negatively charged phosphate backbone, or through hydrogen bonding interactions in the major and minor groves. For example, adenosine and guanosine nucleotides are optionally substituted at the N² position with an imidazolyl propyl group, increasing duplex stability. Universal base analogues such as 3-nitropyrrole and 5-nitroindole are optionally included in oligonucleotide probes to improve duplex stability through base stacking interactions.

Selecting the length of oligonucleotide probes is also an important consideration when optimizing hybridization specificity. In general, shorter probe sequences are more specific than longer ones, in that the occurrence of a singlebase mismatch has a greater destabilizing effect on the hybrid duplex. However, as the overall thermodynamic stability of hybrids decreases with length, in some embodiments it is desirable to enhance duplex stability for short probes globally. Certain modifications of the sugar moiety in oligonucleotides provide useful stabilization, and these can be used to increase the affinity of probes for complementary nucleic acid sequences. For example, 2'-O-methyl-, 2'-Opropyl-, and 2'-O-allyl-oligoribonucleotides have higher binding affinities for complementary RNA sequences than their unmodified counterparts. Probes comprised of 2'-fluoro-2'-deoxyollgoribonucleotides also form more stable hybrids with RNA than do their unmodified counter-

Replacement or substitution of the internucleotide phosphodiester linkage in oligo- or poly-nucleotides is also used to either increase or decrease the affinity of probe-target interactions. For example, substituting phosphodiester linkages with phosphorothioate or phosphorodithioate linkages generally lowers duplex stability, without affecting sequence specificity. Substitutions with a non-ionic methylphosphonate linkage (racemic, or preferably, Rp stereochemistry) have a stabilizing influence on hybrid formation. Neutral or cationic phosphoramidate linkages also result in enhanced

duplex stabilization. The phosphate diester backbone has been replaced with a variety of other stabilizing, non-natural linkages which have been studied as potential antisense therapeutic agents. See, e.g., Crooke and Lebleu (eds) (1993) Antisense Research Applications CRC Press; and, 5 Sanghvi and Cook (eds) (1994) Carbohydrate modifications in Antisense Research ACS Symp. Ser. #580 ACS, Washington DC. Very stable hybrids are formed between nucleic acids and probes comprised of peptide nucleic acids, in which the entire sugar-phosphate backbone has been 10 replaced with a polyamide structure.

Another important factor which sometimes affects the use of oligonucleotide probe arrays is the nature of the target nucleic acid. Oligodeoxynucleotide probes can hybridize to DNA and RNA targets with different affinity and specificity. For example, probe sequences containing long "runs" of consecutive deoxyadenosine residues form less stable hybrids with complementary RNA sequences than with the complementary DNA sequences. Substitution of dA in the probe with either 2,6-diaminopurine deoxyriboside, or 20 2'-alkoxy- or 2'-fluoro-dA enhances hybridization with RNA targets.

Internal structure within nucleic acid probes or the targets also influences hybridization efficiency. For example, GC-rich sequences, and sequences containing "runs" of 25 consecutive G residues frequently self-associate to form higher-order structures, and this can inhibit their binding to complementary sequences. See, Zimmermann et al. (1975) J. Mol Biol 92: 181; Kim (1991) Nature 351: 331; Sen and Gilbert (1988) Nature 335: 364; and Sunquist and Klug 30 (1989) Nature 342: 825. These structures are selectively destabilized by the substitution of one or more guanine residues with one or more of the following purines or purine analogs: 7-deazaguanine, 8-aza-7-deazaguanine, 2-aminopurine, 1H-purine, and hypoxanthine, in order to 35 enhance hybridization.

Modified nucleic acids and nucleic acid analogs can also be used to improve the chemical stability of probe arrays. For example, certain processes and conditions that are useful for either the fabrication or subsequent use of the arrays, 40 may not be compatible with standard oligonucleotide chemistry, and alternate chemistry can be employed to overcome these problems. For example, exposure to acidic conditions will cause depurination of purine nucleotides, ultimately resulting in chain cleavage and overall degrada- 45 tion of the probe array. In this case, adenine and guanine are replaced with 7-deazaadenine and 7-deazaguanine, respectively, in order to stabilize the oligonucleotide probes towards acidic conditions which are used during the manufacture or use of the arrays.

Base, phosphate and sugar modifications are used in combination to make highly modified oligonucleotide analogues which take advantage of the properties of each of the various modifications. For example, oligonucleotides which than their unmodified counterparts (e.g., 2'-O-methyl-, 2'-Opropyl-, and 2'-O-allyl oligonucleotides) can be incorporated into oligonucleotides with modified bases (deazaguanine, 8-aza-7-deazaguanine, 2-aminopurine, 1H-purine, hypoxanthine and the like) with non-ionic meth- 60 a nucleotide analogue. ylphosphonate linkages or neutral or cationic phosphoramidate linkages, resulting in additive stabilization of duplex formation between the oligonucleotide and a target nucleic acid. For instance, one preferred oligonucleotide comprises a 2'-O-methyl-2,6-diaminopurineriboside phosphorothioate. 65 Similarly, any of the modified bases described herein can be incorporated into peptide nucleic acids, in which the entire

sugar-phosphate backbone has been replaced with a polyamide structure.

Thermal equilibrium studies, kinetic "on-rate" studies, and sequence specificity analysis is optionally performed for any target oligonucleotide and probe or probe analogue. The data obtained shows the behavior of the analogues upon duplex formation with target oligonucleotides. Altered duplex stability conferred by using oligonucleotide analogue probes are ascertained by following, e.g., fluorescence signal intensity of oligonucleotide analogue arrays hybridized with a target oligonucleotide over time. The data allow optimization of specific hybridization conditions at, e.g., room temperature (for simplified diagnostic applications).

Another way of verifying altered duplex stability is by following the signal intensity generated upon hybridization with time. Previous experiments using DNA targets and DNA chips have shown that signal intensity increases with time, and that the more stable duplexes generate higher signal intensities faster than less stable duplexes. The signals reach a plateau or "saturate" after a certain amount of time due to all of the binding sites becoming occupied. These data allow for optimization of hybridization, and determination of equilibration conditions at a specified temperature.

Graphs of signal intensity and base mismatch positions are plotted and the ratios of perfect match versus mismatches calculated. This calculation shows the sequence specific properties of nucleotide analogues as probes. Perfect match/mismatch ratios greater than 4 are often desirable in an oligonucleotide diagnostic assay because, for a diploid genome, ratios of 2 have to be distinguished (e.g., in the case of a heterozygous trait or sequence).

Target Nucleic Acids Which Comprise Nucleotide Ana-

Modified nucleotides and nucleotide analogues are incorporated synthetically or enzymatically into DNA or RNA target nucleic acids for hybridization analysis to oligonucleotide arrays. The incorporation of nucleotide analogues in the target optimizes the hybridization of the target in terms of sequence specificity and/or the overall affinity of binding to oligonucleotide and oligonucleotide analogue probe arrays. The use of nucleotide analogues in either the oligonucleotide array or the target nucleic acid, or both, improves optimizability of hybridization interactions. Examples of useful nucleotide analogues which are substituted for naturally occurring nucleotides include 7-deazaguanosine, 2,6diaminopurine nucleotides, 5-propynyl and other 5-substituted pyrimidine nucleotides, 2'-fluro and 2'-methoxy -2'-deoxynucleotides and the like.

These nucleotide analogues are incorporated into nucleic acids using the synthetic methods described supra, or using DNA or RNA polymerases. The nucleotide analogues are preferably incorporated into target nucleic acids using in vitro amplification methods such as PCR, LCR, have higher binding affinities for complementary sequences 55 Qβ-replicase expansion, in vitro transcription (e.g., nick translation or random-primer transcription) and the like. Alternatively, the nucleotide analogues are optionally incorporated into cloned nucleic acids by culturing a cell which comprises the cloned nucleic acid in media which includes

> Similar to the use of nucleotide analogues in probe arrays, 7-deazaguanosine is used in target nucleic acids to substitute for G/dG to enhance target hybridization by reducing secondary structure in sequences containing runs of poly-G/dG. 6diaminopurine nucleotides substitute for A/dA to enhance target hybridization through enhanced H-bonding to T or U rich probes. 5-propynyl and other 5-substituted pyrimidine

12

nucleotides substitute for natural pyrimidines to enhance target hybridization to certain purine rich probes. 2'-fluro and 2'-methoxy-2'-deoxynucleotides substitute for natural nucleotides to enhance target hybridization to similarly substituted probe sequences.

Synthesis of 5'-photoprotected 2'-O alkyl ribonucleotide analogues

The light-directed synthesis of complex arrays of nucleotide analogues on a glass surface is achieved by derivatizing cyanoethyl phosphoramidite nucleotides and nucleotide analogues (e.g., nucleoside analogues of uridine, thymidine, cytidine, adenosine and guanosine, with phosphates) with, for example, the photolabile MeNPoc group in the 5'-hydroxyl position instead of the usual dimethoxytrityl group. See, application SN PCT/US94/12305.

Specific base-protected 2'-O alkyl nucleosides are commercially available, from, e.g., Chem Genes Corp. (MA). The photolabile MeNPoc group is added to the 5'-hydroxyl position followed by phosphitylation to yield cyanoethyl phosphoramidite monomers. Commercially available nucleosides are optionally modified (e.g., by 2-O-alkylation) to create nucleoside analogues which are used to generate oligonucleotide analogues.

Modifications to the above procedures are used in some 25 embodiments to avoid significant addition of MenPoc to the 3'-hydroxyl position. For instance, in one embodiment, a 2'-O-methyl ribonucleotide analogue is reacted with DMT-Cl {di(p-methoxyphenyl)phenylchloride} in the presence of pyridine to generate a 2'-O-methyl-5'-O-DMT ribonucleotide analogue. This allows for the addition of TBDMS to the 3'-O of the ribonucleoside analogue by reaction with TBDMS-Triflate (t-butyldimethylsilyltrifluoromethanesulfonate) in the presence of triethylamine in THF (tetrahydrofuran) to yield a 2'-O-methyl-3'-O-TBDMS-5'-O-DMT ribonucleotide base analogue. This analogue is treated with TCAA (trichloroacetic acid) to cleave off the DMT group, leaving a reactive hydroxyl group at the 5' position. MeNPoc is then added to the oxygen of the 5' hydroxyl group using MenPoc-Cl in the presence of pyridine. The TBDMS group is then cleaved with F (e.g., NaF) to yield a ribonucleotide base analogue with a MeNPoc group attached to the 5' oxygen on the nucleotide analogue. If appropriate, this analogue is phosphitylated to yield a phosphoramidite for oligonucleotide analogue synthesis. Other 45 nucleosides or nucleoside analogues are protected by similar procedures.

Synthesis of Oligonucleotide Analogue Arrays on Chips Other than the use of photoremovable protecting groups, the nucleoside coupling chemistry used in VLSIPS™ tech- 50 nology for synthesizing oligonucleotides and oligonucleotide analogues on chips is similar to that used for oligonucleotide synthesis. The oligonucleotide is typically linked to the substrate via the 3'-hydroxyl group of the oligonucleotide and a functional group on the substrate which results 55 in the formation of an ether, ester, carbamate or phosphate ester linkage. Nucleotide or oligonucleotide analogues are attached to the solid support via carbon-carbon bonds using, for example, supports having (poly)trifluorochloroethylene surfaces, or preferably, by siloxane bonds (using, for 60 example, glass or silicon oxide as the solid support). Siloxane bonds with the surface of the support are formed in one embodiment via reactions of surface attaching portions bearing trichlorosilyl or trialkoxysilyl groups. The surface attaching groups have a site for attachment of the oligo- 65 nucleotide analogue portion. For example, groups which are suitable for attachment include amines, hydroxyl, thiol, and

carboxyl. Preferred surface attaching or derivitizing portions include aminoalkylsilanes and hydroxyalkylsilanes. In particularly preferred embodiments, the surface attaching portion of the oligonucleotide analogue is either bis(2-hydroxyethyl)-aminopropyltriethoxysilane, n-(3-triethoxysilylpropyl)-4-hydroxybutylamide, aminopropyltriethoxysilane or hydroxypropyltriethoxysilane.

The oligoribonucleotides generated by synthesis using ordinary ribonucleotides are usually base labile due to the presence of the 2'-hydroxyl group. 2'-O-methyloligoribonucleotides (2'-OMeORNs), analogues of RNA where the 2'-hydroxyl group is methylated, are DNAse and RNAse resistant, making them less base labile. Sproat, B. S., and Lamond, A. I. in Oligonucleotides and Analogues: A Practical Approach, edited by F. Eckstein, New York: IRL Press at Oxford University Press, 1991, pp. 49-86, incorporated herein by reference for all purposes, have reported the synthesis of mixed sequences of 2'-O-Methoxy-oligoribonucleotides (2'-O-MeORNs) using dimethoxytrityl phosphoramidite chemistry. These 2'-O-MeORNs display greater binding affinity for complementary nucleic acids than their unmodified counterparts.

Other embodiments of the invention provide mechanical means to generate oligonucleotide analogues. These techniques are discussed in co-pending application Ser. No. 07/796,243, filed Nov. 22, 1991, which is incorporated herein by reference in its entirety for all purposes. Essentially, oligonucleotide analogue reagents are directed over the surface of a substrate such that a predefined array of oligonucleotide analogues is created. For instance, a series of channels, grooves, or spots are formed on or adjacent to a substrate. Reagents are selectively flowed through or deposited in the channels, grooves, or spots, forming an array having different oligonucleotides and/or oligonucleotide analogues at selected locations on the substrate.

Detection of Hybridization

In one embodiment, hybridization is detected by labeling a target with, e.g., fluorescein or other known visualization agents and incubating the target with an array of oligonucle-otide analogue probes. Upon duplex formation by the target with a probe in the array (or triplex formation in embodiments where the array comprises unimolecular double-stranded probes), the fluorescein label is excited by, e.g., an argon laser and detected by viewing the array, e.g., through a scanning confocal microscope.

Sequencing by hybridization

Current sequencing methodologies are highly reliant on complex procedures and require substantial manual effort. Conventional DNA sequencing technology is a laborious procedure requiring electrophoretic size separation of labeled DNA fragments. An alternative approach involves a hybridization strategy carried out by attaching target DNA to a surface. The target is interrogated with a set of oligonucleotide probes, one at a time (see, application SN PCT/US94/12305).

A preferred method of oligonucleotide probe array synthesis involves the use of light to direct the synthesis of oligonucleotide analogue probes in high-density, miniaturized arrays. Matrices of spatially-defined oligonucleotide analogue probe arrays were generated. The ability to use these arrays to identify complementary sequences was demonstrated by hybridizing fluorescent labeled oligonucleotides to the matrices produced.

Oligonucleotide analogue arrays are used, e.g., to study sequence specific hybridization of nucleic acids, or proteinnucleic acid interactions. Oligonucleotide analogue arrays are used to define the thermodynamic and kinetic rules governing the formation and stability of oligonucleotide and oligonucleotide analogue complexes.

Oligonucleotide analogue Probe Arrays and Libraries

The use of oligonucleotide analogues in probe arrays provides several benefits as compared to standard oligonucleotide arrays. For instance, as discussed supra, certain oligonucleotide analogues have enhanced hybridization characteristics to complementary nucleic acids as compared with oligonucleotides made of naturally occurring nucleotides. One primary benefit of enhanced hybridization characteristics is that oligonucleotide analogue probes are optionally shorter than corresponding probes which do not include nucleotide analogues.

Standard oligonucleotide probe arrays typically require fairly long probes (about 15-25 nucleotides) to achieve strong binding to target nucleic acids. The use of such long probes is disadvantageous for two reasons. First, the longer the probe, the more synthetic steps must be performed to make the probe and any probe array comprising the probe. This increases the cost of making the probes and arrays. Furthermore, as each synthetic step results in less than 100% coupling for every nucleotide, the quality of the probes degrades as they become longer. Secondly, short probes provide better mis-match discrimination for hybridization to a target nucleic acid. This is because a single base mismatch for a short probe-target hybridization is less destabilizing than a single mismatch for a long probe-target hybridization. Thus, it is harder to distinguish a single probe-target mismatch when the probe is a 20-mer than when the probe is an 8-mer. Accordingly, the use of short oligonucleotide analogue probes reduces costs and increases mismatch discrimination in probe arrays.

The enhanced hybridization characteristics of oligonucleotide analogues also allows for the creation of oligonucleotide analogue probe arrays where the probes in the arrays have substantial secondary structure. For instance, the oligonucleotide analogue probes are optionally configured to an be fully or partially double stranded on the array. The probes are optionally complexed with complementary nucleic acids, or are optionally unimolecular oligonucleotides with self-complementary regions. Libraries of diverse doublestranded oligonucleotide analogue probes are used, for 45 example, in screening studies to determine binding affinity of nucleic acid binding proteins, drugs, or oligonucleotides (e.g., to examine triple helix formation). Specific oligonucleotide analogues are known to be conducive to the formation of unusual secondary structure. See, Durland (1995) Bio- 50 conjugate Chem. 6: 278-282. General strategies for using unimolecular double-stranded oligonucleotides as probes and for library generation is described in application Ser. No 08/327,687, and similar strategies are applicable to oligonucleotide analogue probes.

In general, a solid support, which optionally has an attached spacer molecule is attached to the distal end of the oligonucleotide analogue probe. The probe is attached as a single unit, or synthesized on the support or spacer in a monomer by monomer approach using the VLSIPSTM or mechanical partitioning methods described supra. Where the oligonucleotide analogue arrays are fully double-stranded, oligonucleotides (or oligonucleotide analogues) complementary to the probes on the array are hybridized to the array.

In some embodiments, molecules other than oligonucleotides, such as proteins, dyes, co-factors, linkers

and the like are incorporated into the oligonucleotide analogue probe, or attached to the distal end of the oligomer, e.g., as a spacing molecule, or as a probe or probe target. Flexible linkers are optionally used to separate complementary portions of the oligonucleotide analogue.

The present invention also contemplates the preparation of libraries of oligonucleotide analogues having bulges or loops in addition to complementary regions. Specific RNA bulges are often recognized by proteins (e.g., TAR RNA is recognized by the TAT protein of HIV). Accordingly, libraries of oligonucleotide analogue bulges or loops are useful in a number of diagnostic applications. The bulge or loop can be present in the oligonucleotide analogue or linker portions.

Unimolecular analogue probes can be configured in a variety of ways. In one embodiment, the unimolecular probes comprise linkers, for example, where the probe is arranged according to the formula Y-L¹-X¹-L²-X², in which Y represents a solid support, X1 and X2 represent a pair of complementary oligonucleotides or oligonucleotide analogues, L1 represents a bond or a spacer, and L2 represents a linking group having sufficient length such that X1 and X² form a double-stranded oligonucleotide. The general synthetic and conformational strategy used in generating the double-stranded unimolecular probes is similar to that described in co-pending application Ser. No. 08/327,687, except that any of the elements of the probe (L1, X1, L2 and X²) comprises a nucleotide or an oligonucleotide analogue. For instance, in one embodiment X is an oligonucleotide analogue.

The oligonucleotide analogue probes are optionally arranged to present a variety of moieties. For example, structural components are optionally presented from the middle of a conformationally restricted oligonucleotide analogue probes. In these embodiments, the analogue probes generally have the structure—X¹—Z—X² wherein X¹¹ and X¹² are complementary oligonucleotide analogues and Z is a structural element presented away from the surface of the probe array. Z can include an agonist or antagonist for a cell membrane receptor, a toxin, venom, viral epitope, hormone, peptide, enzyme, cofactor, drug, protein, antibody or the like.

General tiling strategies for detection of a Polymorphism in a target oligonucleotide

In diagnostic applications, oligonucleotide analogue arrays (e.g., arrays on chips, slides or beads) are used to determine whether there are any differences between a reference sequence and a target oligonucleotide, e.g., whether an individual has a mutation or polymorphism in a known gene. As discussed supra, the oligonucleotide target is optionally a nucleic acid such as a PCR amplicon which comprises one or more nucleotide analogues. In one embodiment, arrays are designed to contain probes exhibiting complementarity to one or more selected reference sequence whose sequence is known. The arrays are used to read a target sequence comprising either the reference sequence itself or variants of that sequence. Any polynucleotide of known sequence is selected as a reference sequence. Reference sequences of interest include sequences known to include mutations or polymorphisms associated with phenotypic changes having clinical significance in human patients. For example, the CFTR gene and P53 gene in humans have been identified as the location of several mutations resulting in cystic fibrosis or cancer respectively. Other reference sequences of interest include those that serve to identify pathogenic microorganisms and/or are the site of mutations by which such microorganisms acquire

drug resistance (e.g., the HIV reverse transcriptase gene for HIV resistance). Other reference sequences of interest include regions where polymorphic variations are known to occur (e.g., the D-loop region of mitochondrial DNA). These reference sequences also have utility for, e.g., 5 forensic, cladistic, or epidemiological studies.

Other reference sequences of interest include those from the genome of pathogenic viruses (e.g., hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, CMV, and Epstein Barr virus), adenovirus, influenza virus, 10 flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumps virus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus. Other reference sequences of interest are from genomes or episomes of pathogenic bacteria, particularly regions that confer drug resistance or allow phylogenic characterization of the host (e.g., 16S rRNA or corresponding DNA). For example, such bacteria include chlamydia, 20 rickettsial bacteria, mycobacteria, staphylococci, treptocci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lymes disease bacteria. Other 25 reference sequences of interest include those in which mutations result in the following autosomal recessive disorders: sickle cell anemia, \u03b3-thalassemia, phenylketonuria, galactosemia, Wilson's disease, hemochromatosis, severe combined immunodeficiency, alpha-1-antitrypsin 30 deficiency, albinism, alkaptonuria, lysosomal storage diseases and Ehlers-Danlos syndrome. Other reference sequences of interest include those in which mutations result in X-linked recessive disorders: hemophilia, glucose-6phosphate dehydrogenase, agammaglobulimenia, diabetes 35 insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease and fragile X-syndrome. Other reference sequences of interest includes those in which mutations result in the following autosomal dominant disorders: familial hypercholesterolemia, polycys- 40 tic kidney disease, Huntington's disease, hereditary spherocytosis, Marfan's syndrome, von Willebrand's disease, neurofibromatosis, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, myotonic dystrophy, muscular 45 dystrophy, osteogenesis imperfecta, acute intermittent porphyria, and von Hippel-Lindau disease.

Although an array of oligonucleotide analogue probes is usually laid down in rows and columns for simplified data processing, such a physical arrangement of probes on the 50 solid substrate is not essential. Provided that the spatial location of each probe in an array is known, the data from the probes is collected and processed to yield the sequence of a target irrespective of the physical arrangement of the probes on, e.g., a chip. In processing the data, the hybridization signals from the respective probes is assembled into any conceptual array desired for subsequent data reduction, whatever the physical arrangement of probes on the substrate.

In one embodiment, a basic tiling strategy provides an 60 array of immobilized probes for analysis of a target oligonucleotide showing a high degree of sequence similarity to one or more selected reference oligonucleotide (e.g., detection of a point mutation in a target sequence). For instance, a first probe set comprises a plurality of probes exhibiting 65 perfect complementarity with a selected reference oligonucleotide. The perfect complementarity usually exists

throughout the length of the probe. However, probes having a segment or segments of perfect complementarity that is/are flanked by leading or trailing sequences lacking complementarity to the reference sequence can also be used. Within a segment of complementarity, each probe in the first probe set has at least one interrogation position that corresponds to a nucleotide in the reference sequence. The interrogation position is aligned with the corresponding nucleotide in the reference sequence when the probe and reference sequence are aligned to maximize complementarity between the two. If a probe has more than one interrogation position, each corresponds with a respective nucleotide in the reference sequence. The identity of an interrogation position and corresponding nucleotide in a particular probe in the first probe set cannot be determined simply by inspection of the probe in the first set. An interrogation position and corresponding nucleotide is defined by the comparative structures of probes in the first probe set and corresponding probes from additional probe sets.

For each probe in the first set, there are, for purposes of the present illustration, multiple corresponding probes from additional probe sets. For instance, there are optionally probes corresponding to each nucleotide of interest in the reference sequence. Each of the corresponding probes has an interrogation position aligned with that nucleotide of interest. Usually, the probes from the additional probe sets are identical to the corresponding probe from the first probe set with one exception. The exception is that at the interrogation position, which occurs in the same position in each of the corresponding probes from the additional probe sets. This position is occupied by a different nucleotide in the corresponding probe sets. Other tiling strategies are also employed, depending on the information to be obtained.

The probes are oligonucleotide analogues which are capable of hybridizing with a target nucleic sequence by complementary base-pairing. Complementary base pairing includes sequence-specific base pairing, which comprises, e.g., Watson-Crick base pairing or other forms of base pairing such as Hoogsteen base pairing. The probes are attached by any appropriate linkage to a support. 3' attachment is more usual as this orientation is compatible with the preferred chemistry used in solid phase synthesis of oligonucleotides and oligonucleotide analogues (with the exception of, e.g., analogues which do not have a phosphate backbone, such as peptide nucleic acids).

EXAMPLES

The following examples are provided by way of illustration only and not by way of limitation. A variety of parameters can be changed or modified to yield essentially similar results.

One approach to enhancing oligonucleotide hybridization is to increase the thermal stability (T_m) of the duplex formed between the target and the probe using oligonucleotide analogues that are known to increase T_m 's upon hybridization to DNA. Enhanced hybridization using oligonucleotide analogues is described in the examples below, including enhanced hybridization in oligonucleotide arrays.

Example 1

Solution oligonucleotide melting T_m

The T_m of 2'-O-methyl oligonucleotide analogues was compared to the T_m for the corresponding DNA and RNA sequences in solution. In addition, the T_m of 2'-O-methyl oligonucleotide:DNA, 2'-O-methyl oligonucleotide:RNA and RNA:DNA duplexes in solution was also determined.

The T_m was determined by varying the sample temperature and monitoring the absorbance of the sample solution at 260 nm. The oligonucleotide samples were dissolved in a 0.1M NaCl solution with an oligonucleotide concentration of 2 μ M. Table 1 summarizes the results of the experiment. The results show that the hybridization of DNA in solution has approximately the same T_m as the hybridization of DNA with a 2'-O-methyl-substituted oligonucleotide analogue. The results also show that the T_m for the 2'-O-methyl-substituted oligonucleotide duplex is higher than that for the corresponding RNA:2'-O-methyl-substituted oligonucleotide duplex, which is higher than the T_m for the corresponding DNA:DNA or RNA:DNA duplex.

TABLE 1

Solution Oligonucleotide Melting Experiments
(+) = Target Sequence
(5'-CTGAACGGTAGCATCTTOAC-3')(SEQ ID NO: 6)*
(-) = Complementary Sequence
(5'GTCAAGATGCTACCGTTCAG-3')(SEQ ID NO: 7)*

Type of Oligonucleotide, Target Sequence (+)	Type of Oligonucleotide, Complementary Sequence (+)	T _m (° C.)	
DNA(+)	DNA(-)	61.6	
DNA(+)	2'OMe(-)	58.6	
2'OMe(+)	DNA(-)	61.6	
2'OMe(+)	2'OMe(-)	78.0	
RNA(+)	DNA(-)	58.2	
RNA(+)	2'OMe(-)	73.6	

^{*}T refers to thymine for the DNA oligonucleotides, or uracil for the RNA oligonucleotides.

Example 2

Array hybridization experiments with DNA chips and oligonucleotide analogue targets

A variable length DNA probe array on a chip was designed to discriminate single base mismatches in the 3 corresponding sequences 5'-CTGAACGGTAGCATCTTGAC-3' (SEQ ID NO:6) (DNA target), 5'-CUGAACGGUAGCAUCUUGAC-3' (SEQ ID NO:8) (RNA target) and 5'-CUGAACGGUAGCAUCUUGAC-3' (SEQ ID NO:9) (2'-O-methyl oligonucleotide target), and generated by the VLSIPS™ procedure. The Chip was designed with adjacent 12-mers and 8-mers which overlapped with the 3 target sequences as shown in Table 2.

rate of increase in intensity was then plotted for each probe position. The rate of increase in intensity was similar for both targets in the 8-mer probe arrays, but the 12-mer probes hybridized more rapidly to the DNA target oligonucleotide.

Plots of intensity versus probe position were generated for the RNA, DNA and 2-O-methyl oligonucleotides to ascertain mismatch discrimination. The 8-mer probes displayed similar mismatch discrimination against all targets. The 12-mer probes displayed the highest mismatch discrimination for the DNA targets, followed by the 2'-O-methyl target, with the RNA target showing the poorest mismatch discrimination.

Thermal equilibrium experiments were performed by hybridizing each of the targets to the chip for 90 minutes at 5° C. temperature intervals. The chip was hybridized with the target in 5x SSPE at a target concentration of 10 nM. Intensity measurements were taken at the end of the 90 minute hybridization at each temperature point as described above. All of the targets displayed similar stability, with minimal hybridization to the 8-mer probes at 30° C. In addition, all of the targets showed similar stability in hybridizing to the 12-mer probes. Thus, the 2'-O-methyl oligonucleotide target had similar hybridization characteristics to DNA and RNA targets when hybridized against DNA probes.

Example 3

2'-O-methyl-substituted oligonucleotide chips

DMT-protected DNA and 2'-O-methyl phosphoramidites were used to synthesize 8-mer probe arrays on a glass slide using the VLSIPS™ method. The resulting chip was hybridized to DNA and RNA targets in separate experiments. The target sequence, the sequences of the probes on the chip and the general physical layout of the chip is described in Table 3

The chip was hybridized to the RNA and DNA targets in successive experiments. The hybridization conditions used were 10 nM target, in 5× SSPE. The chip and solution were heated from 20° C. to 50° C., with a fluorescence measurement taken at 5 degree intervals as described in SN PCT/US94/12305. The chip and solution were maintained at each temperature for 90 minutes prior to fluorescence measurements. The results of the experiment showed that DNA probes were equal or superior to 2'-O-methyl oligonucleotide analogue probes for hybridization to a DNA target, but that the 2'-O-methyl analogue oligonucleotide probes

TABLE 2

Array hybridization Experiments			
Target 1 (DNA) 8-mer probe (complement) 12-mer probe (complement) Target 2 (RNA) 8-mer probe (complement) 12-mer probe (complement) 12-mer probe (complement) Target 3 (2'-O-Me oligo) 8-mer probe (complement) 12-mer probe (complement)	5'-CTGAACGGTAGCATCTTGAC-3' (SEQ ID NO: 6) 5'-CUGAACGGUAGCAUCUUGAC-3' (SEQ ID NO: 8) 5'-CUGAACGGUAGCAUCUUGAC-3' (SEQ ID NO: 9)		

Target oligos were synthesized using standard techniques. The DNA and 2'-O-methyl oligonucleotide analogue target oligonucleotides were hybridized to the chip at a concentration of 10 nM in 5x SSPE at 20° C. in sequential 65 experiments. Intensity measurements were taken at each probe position in the 8-mer and 12-mer arrays over time. The

showed dramatically better hybridization to the RNA target than the DNA probes. In addition, the 2'-O-methyl analogue oligonucleotide probes showed superior mismatch discrimination of the RNA target compared to the DNA probes. The difference in fluorescence intensity between the matched and mismatched analogue probes was greater than the difference

20

between the matched and mismatched DNA probes, dramatically increasing the signal-to-noise ratio. FIG. 1 displays the results graphically (FIGS. 1A and 1B). (M) and (P) indicate mismatched and perfectly matched probes, respectively. (FIGS. 1C and 1D) illustrates the fluorescence intensity versus location on an example chip for the various probes at 20° C. using DNA and RNA targets, respectively.

TARIE 3

2'-O-methyl Oligonucleotide Analogues on a Chip.				
Target Sequence (DNA):	5'-CTGAACGGTAGCATCTTGAC-3' (SEQ ID NO: 6)			
Target Sequence (RNA):	5'-CUGAACGGUAGCAUCUUGAC-3 (SEQ ID NO: 8)			
Matching DNA oligonucleotide probe {DNA (M)}	5'-CTTGCCAT (SEQ ID NO: 10)			
Matching 2'-O-methyl oligonucleotide analogue probe {2'OMe (M)}	5'-CUUGCCAU (SEQ ID NO: 11)			
DNA oligonucleotide probe with 1 base mismatch {DNA (P)}	5'-CTTGCTAT (SEQ ID NO: 12)			
2'-O-methyl oligonucleotide analogue probe with 1 base mismatch {2'OMe (M)}	5'-CUUGCUAU (SEQ ID NO: 13)			

SCHEMATIC REPRESENTATION OF 2'-O-METHYL/DNA CHIP

Matching 2'-O-methyl oligonucleotide analogue probe 2'-O-methyl oligonucleotide analogue probe with 1 base mismatch DNA oligonucleotide probe with 1 base mismatch Matching DNA oligonucleotide probe

Example 4

Synthesis of oligonucleotide analogues

The reagent MeNPoc-Cl group reacts non-selectively with both the 5' and 3' hydroxyls on 2'-O-methyl nucleoside analogues. Thus, to generate high yields of 5'-O-MeNPoc-2'-O-methylribonucleoside analogues for use in oligonucleotide analogue synthesis, the following protection-deprotection scheme was utilized.

The protective group DMT was added to the 5'-O position of the 2'-O-methylribonucleoside analogue in the presence of pyridine. The resulting 5'-O-DMT protected analogue was reacted with TBDMS-Triflate in THF, resulting in the addition of the TBDMS group to the 3'-O of the analogue. The 5'-DMT group was then removed with TCAA to yield a free OH group at the 5' position of the 2'-O-methyl ribonucleoside analogue, followed by the addition of 45 MeNPoc-Cl in the presence of pyridine, to yield 5'-O-MeNPoc-3'-O-TBDMS-2'-O-methyl ribonucleoside analogue. The TBDMS group was then removed by reaction with NaF, and the 3'-OH group was phosphitylated using standard techniques.

Two other potential strategies did not result in high specific yields of 5'-O-MeNPoc-2'-O-methylribonucleoside. In the first, a less reactive MeNPoc derivative was synthesized by reacting MeNPoc-Cl with N-hydroxy succimide to yield MeNPoc-NHS. This less reactive photocleavable group (MeNPoc-NHS) was found to react exclusively with the 3' hydroxyl on the 2'-O-methylribonucleoside analogue. In the second strategy, an organotin protection scheme was used. Dibutyltin oxide was reacted with the 2'-O-methylribonucleoside analogue followed by reaction with MeNPoc. Both 5'-O-MeNPoc and 3'-O-MeNPoc 2'-O-methylribonucleoside analogues were obtained.

Example 5

Hybridization to mixed-sequence oligodeoxynucleotide probes substituted with 2-amino-2'-deoxyadenosine (D)

To test the effect of a 2-amino-2'-deoxyadenosine (D) substitution in a heterogeneous probe sequence, two 4x4

oligodeoxynucleotide arrays were constructed using VLSIPS™ methodology and 5'-O-MeNPOC-protected deoxynucleoside phosphoramidites. Each array was comprised of the following set of probes based on the sequence (3')-CATCGTAGAA-(5') (SEQ ID NO:1):

1. (HEG)-(3')-CATN₁GTAGAA-(5') (SEQ ID NO:14) 2. (HEG)-(3')-CATCN₂TAGAA-(5') (SEQ ID NO:15) 3. (HEG)-(3')-CATCGN₃AGAA-(5') (SEQ ID NO:16) 4. (HEG)-(3')-CATCGTN₄GAA-(5') (SEQ ID NO:17)

10 where HEG=hexaethyleneglycol linker, and N is either A,G,C or T, so that probes are obtained which contain single mismatches introduced at each of four central locations in the sequence. The first probe array was constructed with all natural bases. In the second array, 2-amino-2'-15 deoxyadenosine (D) was used in place of adenosine (A). Both arrays were hybridized with a 5'-fluorescein-labeled oligodeoxynucleotide target, (CTGAACGGTAGCATCTTGAC)-(3') (SEQ ID NO:18), which contained a sequence (in bold) complementary to the 20 base probe sequence. The hybridization conditions were: 10 nM target in 5x SSPE buffer at 22° C. with agitation. After 30 minutes, the chip was mounted on the flowcell of a scanning laser confocal fluorescence microscope, rinsed briefly with 5x SSPE buffer at 22° C., and then a surface 25 fluorescence image was obtained.

The relative efficiency of hybridization of the target to the complementary and single-base mismatched probes was determined by comparing the average bound surface fluorescence intensity in those regions of the of the array containing the individual probe sequences. The results (FIG. 3) show that a 2-amino-2'-deoxyadenosine (D) substitution in a heterogeneous probe sequence is a relatively neutral one, with little effect on either the signal intensity or the specificity of DNA-DNA hybridization, under conditions where the target is in excess and the probes are saturated.

Example 6

Hybridization to a dA-homopolymer oligodeoxynucleotide probe substituted with 2-amino-2'-deoxyadenosine (D)

The following experiment was performed to compare the hybridization of 2'-deoxyadenosine containing homopolymer arrays with 2-amino-2'-deoxyadenosine homopolymer arrays. The experiment was performed on two 11-mer oligodeoxynucleotide probe containing arrays. Two 11-mer oligodeoxynucleotide probe sequences were synthesized on a chip using 5'-O-MeNPOC-protected nucleoside phosphoramidites and standard VLSIPSTM methodology.

The sequence of the first probe was: (HEG)-(3')-d (AAAAANAAAAA)-(5') (SEQ ID NO:19); where HEG= 50 hexaethyleneglycol linker, and N is either A,G,C or T. The second probe was the same, except that dA was replaced by 2-amino-2'-deoxyadenosine (D). The chip was hybridized with a 5'-fluorescein-labeled oligodeoxynucleotide target, (5')-Fl-d(TTTTGTTTTT)-(3') (SEQ ID NO:20), which contained a sequence complementary to the probe sequences where N=C. Hybridization conditions were 10 nM target in 5x SSPE buffer at 22° C. with agitation. After 15 minutes, the chip was mounted on the flowcell of a scanning laser confocal fluorescence microscope, rinsed briefly with 5× SSPE buffer at 22° C. (low stringency), and a surface fluorescence image was obtained. Hybridization to the chip was continued for another 5 hours, and a surface fluorescence image was acquired again. Finally, the chip was washed briefly with 0.5× SSPE (high-stringency), then with 65 5x SSPE, and re-scanned.

The relative efficiency of hybridization of the target to the complementary and single-base mismatched probes was

22

determined by comparing the average bound surface fluorescence intensity in those regions of the of the array containing the individual probe sequences. The results (FIG. 4) indicate that substituting 2'-deoxyadenosine with 2-amino-2'-deoxyadenosine in a d(A)_n homopolymer probe sequence results in a significant enhancement in specific hybridization to a complementary oligodeoxynucleotide

Example 7

probes substituted with 5-propynyl-2'-deoxyuridine (P) and 2-amino-2'-deoxyadenosine (D)

Commercially available 5'-DMT-protected 2'-deoxynucleoside/nucleoside-analog phosphoramidites (Glen Research) were used to synthesize two decanucleotide 15 probe sequences on separate areas on a chip using a modified VLSIPS™ procedure. In this procedure, a glass substrate is initially modified with a terminal-MeNPOC-protected hexaethyleneglycol linker. The substrate was exposed to light through a mask to remove the protecting group from the linker in a checkerboard pattern. The first probe sequence was then synthesized in the exposed region using DMTphosphoramidites with acid-deprotection cycles, and the sequence was finally capped with (MeO)₂PNiPr₂/tetrazole followed by oxidation. A second checkerboard exposure in a different (previously unexposed) region of the chip was then performed, and the second probe sequence was synthesized by the same procedure. The sequence of the first "control" probe was: -(HEG)-(3')-CGCGCCGCGC-(5')
(SEQ ID NO:21); and the sequence of the second probe was one of the following:

1.-(HEG)-(3')-d(ATATAATATA)-(5') (SEQ ID NO:22) 2.-(HEG)-(3')-d(APAPAAPAPA)-(5') (SEQ ID NO:23) 3.-(HEG)-(3')-d(DTDTDDTDTD)-(5') (SEQ ID NO:24) 4.-(HEG)-(3')-d(DPDPDDPDPD)-(5') (SEQ ID NO:25)
where HEG=hexaethyleneglycol linker, A=2'-35 deoxyadenosine, T=thymidine, D=2-amino-2'deoxyadenosine, and P=5-propynyl-2'-deoxyuridine. Each chip was then hybridized in a solution of a fluoresceinlabeled oligodeoxynucleotide target, (5')-Fluorescein-d (TATATTATAT)-(HEG)-d(GCGCGĞCGCG)-(3') (SEQ ID NO:26 and SEQ ID NO:27), which is complementary to both the A/T and G/C probes. The hybridization conditions were: 10 nM target in 5x SSPE buffer at 22° C. with gentle shaking. After 3 hours, the chip was mounted on the flowcell of a scanning laser confocal fluorescence microscope, rinsed briefly with 5x SSPE buffer at 22° C., and then a surface fluorescence image was obtained. Hybridization to the chip was continued overnight (total hybridization time=20hr), and a surface fluorescence image was acquired again.

The relative efficiency of hybridization of the target to the A/T and substituted A/T probes was determined by comparing the average surface fluorescence intensity bound to those parts of the chip containing the A/T or substituted probe to the fluorescence intensity bound to the G/C control probe sequence. The results (FIG. 5) show that 5-propynyl-dU and 2-amino-dA substitution in an A/T-rich probe significantly 55 according to ³H-NMR and HPLC analysis). enhances the affinity of an oligonucleotide analogue for complementary target sequences. The unsubstituted A/Tprobe bound only 20% as much target as the all-G/C-probe of the same length, while the D- & P-substituted A/T probe bound nearly as much (90%) as the G/C-probe. Moreover, the kinetics of hybridization are such that, at early times, the amount of target bound to the substituted A/T probes exceeds that which is bound to the all-G/C probe.

Example 8

Hybridization to oligodeoxynucleotide probes substituted 65 with 7-deaza-2'-deoxyguanosine (ddG) and 2'-deoxyinosine (dI)

A 16x64 oligonucleotide array was constructed using VLSIPS™ methodology, with 5'-O-MeNPOC-protected nucleoside phosphoramidites, including the analogs ddG, and dI. The array was comprised of the set of probes represented by the following sequence: -(linker)-(3')-d(A T G T T G₁ G₂ G₃ G₄ G₅ C G G G T)-(5'); (SEQ ID NO:28) where underlined bases are fixed, and the five internal deoxyguanosines (G₁₋₅) are substituted with G, ddG, dI, and T in all possible (1024 total) combinations. A complemen-Hybridization to alternating A-T oligodeoxynucleotide 10 tary oligonucleotide target, labeled with fluorescein at the 5'-end: (5')-FI-d(CAATACAACCCCCGCCA T C C)-(3') (SEQ ID NO:29), was hybridized to the array. The hybridization conditions were: 5 nM target in 6x SSPE buffer at 22° C. with shaking. After 30 minutes, the chip was mounted on the flowcell of an Affymetrix scanning laser confocal fluorescence microscope, rinsed once with 0.25 × SSPE buffer at 22° C., and then a surface fluorescence image was acquired.

The "efficiency" of target hybridization to each probe in the array is proportional to the bound surface fluorescence intensity in the region of the chip where the probe was synthesized. The relative values for a subset of probes (those containing dG-ddG and dG-dl substitutions only) are shown in FIG. 6. Substitution of guanosine with 7-deazaguanosine within the internal run of five G's results in a significant enhancement in the fluorescence signal intensity which measures hybridization. Deoxyinosine substitutions also enhance hybridization to the probe, but to a lesser extent. In this example, the best overall enhancement is realized when the dG "run" is ~40-60% substituted with 7-deaza-dG, with the substitutions distributed evenly throughout the run (i.e., alternating dG/deaza-dG).

Example 9

Synthesis of 5'-MeNPOC-2'-deoxyinosine-3'-(N,Ndiisopropyl-2-cyanoethyl)phosphoramidite

2'-deoxyinosine (5.0 g, 20 mmole) was dissolved in 50 ml of dry DMF, and 100 ml dry pyridine was added and 40 evaporated three times to dry the solution. Another 50ml pyridine was added, the solution was cooled to -20° C. under argon, and 13.8 g (50 mmole) of MeNPOC-chloride in 20 ml dry DCM was then added dropwise with stirring over 60 minutes. After 60 minutes, the cold bath was 45 removed, and the solution was allowed to stir overnight at room temperature. Pyridine and DCM were removed by evaporation, 500 ml of ethyl acetate was added, and the solution was washed twice with water and then with brine (200 ml each). The aqueous washes were combined and back-extracted twice with ethyl acetate, and then all of the organic layers were combined, dried with Na₂SO₄, and evaporated under vacuum. The product was recrystallized from DCM to obtain 5.0 g (50% yield) of pure 5'-O-MeNPOC-2'-deoxyinosine as a yellow solid (99% purity,

The MeNPOC-nucleoside (2.5 g, 5.1 mmole) was suspended in 60 ml of dry CH₃CN and phosphitylated with 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite (1.65 g/1.66 ml; 5.5 mmole) and 0.47 g (2.7 mmole) of diisopropylammonium tetrazolide, according to the published procedure of Barone, et al. (Nucleic Acids Res. (1984) 12, 4051-61). The crude phosphoramidite was purified by flash chromatography on silica gel (90:8:2 DCM-MeOH-Et₂N), co-evaporated twice with anhydrous acetonitrile and dried under vacuum for -24 hours to obtain 2.8 g (80%) of the pure product as a yellow solid (98% purity as determined by ¹H/³¹P-NMR and HPLC).

	-continued		
((ii) MOLECULE TYPE: RNA		
3	(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION: 120 (D) OTHER INFORMATION: /note= "Target RNA sequence"		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:		
CUGAA	ACGGUA GCAUCUUGAC	20	
(2) I	INFORMATION FOR SEQ ID NO:9:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear		
	illy workers mynn, athen analyie and		

- (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "2'-O-methyl oligonucleotide"
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= cm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /mod_base= um
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /mod_base= gm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 4
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-O-methyladenosine"
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-O-methyladenosine"
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 6
 - (D) OTHER INFORMATION: /mod_base= cm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 7
 - (D) OTHER INFORMATION: /mod_base= gm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 8
 - (D) OTHER INFORMATION: /mod_base= gm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 9
 - (D) OTHER INFORMATION: /mod_base= um
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-O-methyladenosine"

-continued (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 11 (D) OTHER INFORMATION: /mod_base= gm (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 12 (D) OTHER INFORMATION: /mod_base= cm (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 13 (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-0-methyladenosine" (ix) FEATURE: (A) NAME/KEY: modified_base
(B) LOCATION: 14 (D) OTHER INFORMATION: /mod_base= um (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 15 (D) OTHER INFORMATION: /mod_base= cm (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 16 (D) OTHER INFORMATION: /mod_base= um (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 17 (D) OTHER INFORMATION: /mod_base= um (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 18 (D) OTHER INFORMATION: /mod_base= gm (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 19 (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-0-methyladenosine" (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 20 (D) OTHER INFORMATION: /mod_base= cm (ix) FEATURE: (A) NAME/KEY: -(B) LOCATION: 1..20 (D) OTHER INFORMATION: /note= "Target 2'-O-methyl oligonucleotide sequence" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: NUNNUNNUN NUNNUNNUNN

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: -
 - (B) LOCATION: 1..8
 - (D) OTHER INFORMATION: /note= "Matching DNA oligonucleotide probe"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTTGCCAT

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "2'-0-methyl oligonucleotide"
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= cm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /mod_base= um
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /mod_base= um
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 4
 - (D) OTHER INFORMATION: /mod_base= gm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base (B) LOCATION: 5

 - (D) OTHER INFORMATION: /mod_base= cm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 6
 - (D) OTHER INFORMATION: /mod_base= cm
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 7
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-O-methyladenosine"
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 8
 - (D) OTHER INFORMATION: /mod_base= um
- (ix) FEATURE:

NNNNNNN

- (A) NAME/KEY: -
- (B) LOCATION: 1..8
- (D) OTHER INFORMATION: /note= "Matching 2'-O-methyl oligonucleotide analogue probe"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 1..8
- (D) OTHER INFORMATION: /note= "DNA oligonucleotide probe with 1 base mismatch"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CTTGCTAT

- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "2'-O-methyl oligonucleotide"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= cm
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /mod_base= um
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /mod_base= um
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 4
 - (D) OTHER INFORMATION: /mod_base= gm
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /mod_base= cm
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 6
 - (D) OTHER INFORMATION: /mod_base= um
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 7
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "2'-O-methyladenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 8
 - (D) OTHER INFORMATION: /mod_base= um
 - (ix) FEATURE:

NNNNNNN

- (A) NAME/KEY: -
- (B) LOCATION: 1..8
- (D) OTHER INFORMATION: /note= "2'-O-methyl oligonucleotide analogue probe with 1 base mismatch"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently
 modified at the 3' phosphate group with
 a hexaethyleneglycol (HEG) linker"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAGATGNTAN

10

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

AAGATNCTAN

10

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

AAGANGCTAN

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base

 - (B) LOCATION: 10
 (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified

at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

AAGNTGCTAN

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified at the 5' phosphate group with a fluorescein molecule"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

NTGAACGGTA GCATCTTGAC

20

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 11
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = adenine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

AAAAANAAAA N

11

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = thymine covalently modified at the 5' phosphate group with a fluorescein molecule"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

NTTTTGTTTT T

11

```
(2) INFORMATION FOR SEQ ID NO:21:
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGCGCCGCGN

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "2'-deoxynucleoside/nucleoside analogue decanucleotide probe"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /mod_base= OTHER /note- "N = 2'-deoxyadenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 6
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 8
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

```
-continued
(2) INFORMATION FOR SEQ ID NO:23:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 10 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "2'-deoxynucleoside/nucleoside
                analogue decanucleotide probe"
    (ix) FEATURE:
          (A) NAME/KEY: modified_base
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /mod_base= OTHER
                /note= "N = 2'-deoxyadenosine"
```

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 2
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 3
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base (B) LOCATION: 4
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 5
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 6
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 7
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 8
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 9
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2'-deoxyadenosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

-continued (2) INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "2'-deoxynucleoside/nucleoside analogue decanucleotide probe" (ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 1 (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

- (ix) FEATURE: (A) NAME/KEY: modified_base
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 5
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 6
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 8
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified base
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

NTNTNNTNTN

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "2'-deoxynucleoside/nucleoside analogue decanucleotide probe"

(ix) FEATURE:

- (A) NAME/KEY: modified_base (B) LOCATION: 1
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 2
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 3
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 4
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 5
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 6
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 7
 (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 8
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine"

- (A) NAME/KEY: modified_base
- (B) LOCATION: 9
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5-propynyl-2'-deoxyuridine"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 2-amino-2'-deoxyadenosine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

NNNNNNNNN

10

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 1
- (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = thymine covalently modified at the 5' hydroxyl group with a fluorescein molecule"

(ix) FEATURE:

- (A) NAME/KEY: modified_base
- (B) LOCATION: 10
- (D) OTHER INFORMATION: /mod_base- OTHER

/note= "N = thymine covalently modified at the 3' phosphate group with a hexaethyleneglycol (HEG) linker which is covalently bound to the 5' phosphate group of the 5' guanine (N in pos. 1) of SEQ ID No:27" SEQ ID NO:27"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

NATATTATAN

10

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /mod_base= OTHER /note- "N = guanine covalently modified at the 5' phosphate group with a hexaethyleneglycol (HEG) linker which is covalently bound to the 3' phosphate group of the 3' thymine (N in pos. 10) of SEQ ID NO:26"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

NCGCGGCGCG

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 6..10
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = guanine (G), 2',3'-dideoxyguanine (ddG), 2'-deoxyinosine (dI) or thymine (T)"
 - (ix) FEATURE:
 - (A) NAME/KEY: modified_base
 - (B) LOCATION: 15
 - (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified
 at the 5' phosphate group with a hexaethyleneglycol (HEG) linker"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TGGGCNNNNN TTGTN

15

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

ks(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: modified_base

(B) LOCATION: 1

(D) OTHER INFORMATION: /mod_base= OTHER /note= "N = cytosine covalently modified at the 5' phosphate group with a fluorescein molecule"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

NAATACAACC CCCGCCCATC C

21

What is claimed is:

1. A composition for analyzing interactions between oligonucleotide targets and oligonucleotide probes comprising an array of a plurality of oligonucleotide analogue probes having different sequences, wherein said oligonucleotide analogue probes are coupled to a solid substrate at known locations and wherein said plurality of oligonucleotide analogue probes are selected to bind to complementary oligonucleotide targets with a similar hybridization stability 25 across the array.

2. The composition of claim 1, wherein at least one of said oligonucleotide analogue probes is selected to maintain hybridization specificity or mismatch discrimination with

said complementary oligonucleotide targets.

3. The composition of claim 1, wherein at least one of said oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to 35 the complementary oligonucleotide target with which said oligonucleotide analogue probe anneals.

4. The composition of claim 1, wherein at least one of said oligonucleotide analogue probes has decreased the thermal stability between said oligonucleotide analogue probe and 40 said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said

oligonucleotide analogue probe anneals.

5. The composition of claim 2, wherein at least one of said 45 oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said 50 oligonucleotide analogue probe anneals.

6. The composition of claim 2, wherein at least one of said oligonucleotide analogue probes has decreased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said oligonucleotide analogue probe anneals.

7. The composition of claims 1-5 or 6, wherein said solid substrate is selected from the group consisting of silica, 60 polymeric materials, glass, beads, chips, and slides.

8. The composition of claims 1-5 or 6, wherein said composition comprises an array of oligonucleotide analogue probes 5 to 20 nucleotides in length.

9. The composition of claims 1-5 or 6, wherein said array 65 of oligonucleotide analogue probes comprises a nucleoside analogue with the formula

wherein:

the nucleoside analogue is not a naturally occurring DNA or RNA nucleoside;

R¹ is selected from the group consisting of hydrogen, methyl, hydroxyl, alkoxy, alkythio, halogen, cyano, and azido;

R² is selected from the group consisting of hydrogen, methyl, hydroxyl, alkoxy, alkythio, halogen, cyano, and azido;

Y is a heterocyclic moiety;

and wherein said nucleoside analogue is incorporated into the oligonucleotide analogue by attachment to a 3' hydroxyl of the nucleoside analogue, to a 5' hydroxyl of the nucleoside analogue, or both the 3' nucleoside and the 5' hydroxyl of the nucleoside analogue.

10. The composition of claims 1-5 or 6, wherein said array of

oligonucleotide analogue probes comprises a nucleoside analogue with the formula

wherein

the nucleoside analogue is not a naturally occurring DNA or RNA nucleoside;

R¹ is selected from the group consisting of hydrogen, hydroxyl, methyl, methoxy, ethoxy, propoxy, allyloxy, propargyloxy, Fluorine, Chlorine, and Bromine;

R² is selected from the group consisting of hydrogen, hydroxyl, methyl, methoxy, ethoxy, propoxy, allyloxy, propargyloxy, Fluorine, Chlorine, and Bromine; and

Y is a base selected from the group consisting of purines, purine analogues pyrimidines, pyrimidine analogues, 3-nitropyrrole and 5-nitroindole;

and wherein said nucleoside analogue is incorporated into the oligonucleotide analogue by attachment to a 3'

hydroxyl of the nucleoside analogue, to a 5' hydroxyl of the nucleoside analogue, or both the 3' nucleoside and the 5' hydroxyl of the nucleoside analogue.

11. The composition of claims 1-5 or 6, wherein each probe of said plurality of oligonucleotide analogue probes has at least one oligonucleotide analogue, and wherein at least one of said oligonucleotide analogues comprises a peptide nucleic acid.

12. The composition of claims 1-5 or 6, wherein at least one of said plurality of oligonucleotide analogue probes said array of oligonucleotide analogue probes is resistant to RNAase A.

13. The composition of claims 1-5 or 6, wherein said solid substrate is attached to over 1000 different oligonucleotide analogue probes.

14. The composition of claims 1-5 or 6, wherein each ¹⁵ probe of said plurality of oligonucleotide analogue probes has at least one oligonucleotide analogue, and wherein at least one of said oligonucleotide analogues comprises 2'-O-methyl nucleotides.

15. The composition of claims 1-5 or 6, wherein said 20 array of oligonucleotide analogue probes and said solid substrate comprises a plurality of different oligonucleotide analogue probes, each oligonucleotide analogue probes having the formula:

$$Y-L^1-X^1-L^2-X^2$$

wherein.

Y is a solid substrate;

X¹ and X² are complementary oligonucteotides containing at least one nucleotide analogue;

L¹ is a spacer;

 L^2 is a linking group having sufficient length such that X^1 and X^2 form a double-stranded oligonucleotide.

16. The composition of claim 15, wherein said composition comprises a library of unimolecular double-stranded oligonucleotide analogue probes.

17. The composition of claims 1-5 or 6, wherein said array of oligonucleotide analogue probes comprises a conformationally restricted array of oligonucleotide analogue probes with the formula:

wherein X¹¹ and X¹² are complementary oligonucleotides or oligonucleotide analogues and Z is a presented 45 moiety.

18. The composition of claims 1-5 or 6, wherein each probe of said plurality of oligonucleotide analogue probes has at least one oligonucleotide analogue, and wherein at least one of said oligonucleotide analogues comprises a 50 nucleotide with a base selected from the group of bases consisting of 5-propynyluracil, 5-propynylcytosine, 2-aminoadenine, 7-deazaguanine, 2-aminopurine, 8-aza-7-deazaguanine, 1H-purine, and hypoxanthine.

19. The composition of claims 1-5 or 6, wherein said 55 plurality of oligonucleotide analogue probes are coupled to said solid substrate by light-directed chemical coupling.

20. The composition of claim 19, wherein said solid substrate is derivitized with a silane reagent prior to synthesis of said plurality of oligonucleotide analogue probes. 60

21. The composition of claims 1-5 or 6, wherein said plurality of oligonucleotide analogue probes are coupled to said solid substrate by flowing oligonucleotide analogue reagents over known locations of the solid substrate.

22. The composition of claim 21, wherein said solid 65 substrate is derivitized with a silane reagent prior to synthesis of said plurality of oligonucleotide analogue probes.

23. The composition of claims 1-5 or 6, wherein at least one of plurality of said oligonucleotide analogue probes forms a first duplex with a target oligonucleotide sequence, wherein said oligonucleotide analogue probe has a corresponding oligonucleotide sequence that forms a second duplex with said target oligonucleotide sequence, wherein said second duplex is rich in A-T or G-C nucleotide pairs, and wherein said oligonucleotide analogue probe has at least one nucleotide analogue in place of an A, T, G, or C nucleotide of said corresponding oligonucleotide sequence at a position within said oligonucleotide analogue probe such that said first duplex has an increased hybridization stability than said second duplex.

24. The composition of claim 23, wherein said oligonucleotide analogue probe contains fewer bases than said

corresponding oligonucleotide sequence.

25. The composition of claims 1-5 or 6, wherein said oligonucleotide analogue probe forms a first duplex with a target oligonucleotide sequence, wherein said oligonucleotide analogue probe has a corresponding oligonucleotide sequence that forms a second duplex with said target polynucleotide sequence, and wherein said oligonucleotide analogue probe is shorter than said corresponding polynucleotide sequence.

26. A composition for analyzing the interaction between an oligonucleotide target and an oligonucleotide probe comprising an array of a plurality of oligonucleotide probes having different sequences hybridized to complementary oligonucleotide analogue targets, wherein said oligonucleotide analogue targets bind to complementary oligonucleotide probes with a similar hybridization stability across the array.

27. The composition of claim 26, wherein at least one of said oligonucleotide analogue target is selected to maintain hybridization specificity or mismatch discrimination with said complementary oligonucleotide probes.

28. The composition of claim 26, wherein at least one of said oligonucleotide analogue targets has increased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

29. The composition of claim 26, wherein at least one of said oligonucleotide analogue targets has decreased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

30. The composition of claim 27, wherein at least one of said oligonucleotide analogue targets has increased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

31. The composition of claim 27, wherein at least one of said oligonucleotide analogue targets has decreased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

32. The composition of claims 26-30 or 31, wherein the oligonucleotide analogue target is a PCR amplicon.

33. The composition of claims 26-30 or 31, wherein at least one of said plurality of oligonucleotide probes comprise at least one oligonucleotide analogue.

- 34. The composition of claims 26-30 or 31, wherein at least one target oligonucleotide analogue acid is an RNA nucleic acid.
- 35. A method analyzing interactions between an oligonucleotide target and an oligonucleotide probe, comprising 5
 - (a) synthesizing an oligonucleotide analogue array comprising a plurality of oligonucleotide analogue probes having different sequences, wherein said oligonucleotide analogue probes are coupled to a solid substrate 10 at known locations, said solid substrate having a sur-
 - (b). exposing said oligonucleotide analogue probe array to a plurality of oligonucleotide targets under hybridization conditions such that said plurality of oligonucle- 15 otide analogue probes bind to complementary oligonucleotide targets with a similar hybridization stability across the array; and
 - (c). determining whether an oligonucleotide analogue probe of said oligonucleotide analogue probe array 20 binds to at least one of said target nucleic acids.
- 36. The method in accordance of claim 35, wherein at least one of said oligonucleotide analogue probes is selected to maintain hybridization specificity or mismatch discrimination with said complementary oligonucleotide targets.
- 37. The method in accordance of claim 35, wherein at least one of said oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the 30 perfect complement to the complementary oligonucleotide target with which said oligonucleotide analogue probe
- 38. The method in accordance of claim 35, wherein at least one of said oligonucleotide analogue probes has 35 decreased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said oligonucleotide analogue probe 40 anneals.
- 39. The method in accordance of claim 36, wherein at least one of said oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide 45 target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said oligonucleotide analogue probe anneals.
- 40. The method in accordance of claim 36, wherein at 50 least one of said oligonucleotide analogue probes has decreased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the target with which said oligonucleotide analogue probe anneals.
- 41. The method of claims 35-39 or 40, wherein said oligonucleotide target is selected from the group comprising genomic DNA, cDNA, unspliced RNA, mRNA, and rRNA. 60
- 42. The method of claims 35-39 or 40, wherein said target nucleic acid is amplified prior to said hybridization step.
- 43. The method of claims 35-39 or 40, wherein said plurality of oligonucleotide analogue probes is synthesized on said solid support by light-directed synthesis.
- 44. The method of claims 35-39 or 40, wherein said plurality of said oligonucleotide analogue probes is synthe-

- sized on said solid support by causing oligonucleotide analogue synthetic reagents to flow over known locations of said solid support.
- 45. The method of claims 35-39 or 40, wherein said step (a). comprises the steps of:
 - i). forming a plurality of channels adjacent to the surface of said substrate;
 - ii), placing selected reagents in said channels to synthesize oligonucleotide analogue probes at known locations; and
 - iii). repeating steps i). and ii). thereby forming an aπay of oligonucleotide analogue probes having different sequences at known locations on said substrate.
- 46. The method of claims 35-39 or 40, wherein said solid substrate is selected from the group consisting of beads, slides, and chips.
- 47. The method of claims 35-39 or 40, wherein said solid substrate is comprised of materials selected from the group consisting of silica, polymers and glass.
- 48. The method of claims 35-39 or 40, wherein the oligonucleotide analogue probes of said array are synthesized using photoremovable protecting groups.
- 49. The method of claims 35-39 or 40, further comprising selectively incorporating MeNPoc onto the 3' or 5' hydroxvl of at least one nucleoside analogue and selectively incorporating said nucleoside analogue into at least one of said oligonucleotide analogue probes.
- 50. The method of claims 35-39 or 40, wherein at least one of said oligonucleotide analogue probes is synthesized from phosphoramidite nucleoside reagents.
- 51. A method of detecting an oligonucleotide target, comprising enzymatically copying an oligonucleotide target using at least one nucleotide analogue, thereby producing multiple oligonucleotide analogue targets, selecting said oligonucleotide analogue targets such that said oligonucleotide analogue targets bind to the complementary oligonucleotide probes coupled to a solid surface at known locations of an array with a similar hybridization stability across the array, hybridizing the oligonucleotide analogue targets to complementary oligonucleotide probes, and detecting whether at least one of said oligonuclotide analogue targets binds to said complementary oligonucleotide acid probe.
- 52. The method of claim 51, wherein at least one of said oligonucleotide analogue targets is selected to maintain hybridization specificity or mismatch discrimination with said complementary oligonucleotide probes.
- 53. The method of claim 51, wherein at least one of said oligonucleotide analogue targets has increased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.
- 54. The method of claim 51, wherein at least one of said perfect complement to the complementary oligonucleotide 55 oligonucleotide analogue targets has decreased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.
 - 55. The method of claim 52, wherein at least one of said oligonucleotide analogue targets has increased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to 65 an oligonucleotide target that is the perfect complement to the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

56. The method of claim 52, wherein at least one of said oligonucleotide analogue targets has decreased the thermal stability between said oligonucleotide analogue target and said complementary oligonucleotide probe as compared to an oligonucleotide target that is the perfect complement to 5 the complementary oligonucleotide probe with which said oligonucleotide analogue target anneals.

57. The method of claims 51-55 or 56, wherein the oligonucleotide probe array comprises at least one oligoleast one of said oligonucleotide analogue targets.

58. A method of making an array of oligonucleotide probes, comprising providing a plurality of oligonucleotide analogue probes having at least one oligonucleotide analogue, said oligonucleotide analogue probes having dif- 15 ferent sequences at known locations on an array, selecting the oligonucleotide analogue probes to hybridize with complementary oligonucleotide target sequences under hybridization conditions such that said oligonucleotide analogue probes bind to complementary oligonucleotide targets 20 with a similar hybridization stability, across the array.

59. The method of claim 58, wherein at least one of said oligonucleotide analogue probes is selected to maintain hybridization specificity or mismatch discrimination with

said complementary oligonucleotide targets.

60. The method of claim 58, wherein at least one of said oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to 30 the complementary oligonucleotide target with which said oligonucleotide analogue probe anneals.

61. The method of claim 58, wherein at least one of said oligonucleotide analogue probes has decreased the thermal stability between said oligonucleotide analogue probe and 35 said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said

oligonucleotide analogue probe anneals.

62. The method of claim 59, wherein at least one of said 40 oligonucleotide analogue probes has increased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to an oligonucleotide probe that is the perfect complement to the complementary oligonucleotide target with which said 45 oligonucleotide analogue probe anneals.

63. The method of claim 59, wherein at least one of said oligonucleotide analogue probes has decreased the thermal stability between said oligonucleotide analogue probe and said complementary oligonucleotide target as compared to 50 an oligonucleotide probe that is the perfect complement to

the complementary oligonucleotide target with which said oligonucleotide analogue probe anneals.

64. The method in accordance with claims 58-62, or 63, further comprising incorporating at least one oligonucleotide analogue into at least one of the oligonucleotide analogue probes of the array to reduce or prevent the formation of secondary structure in the oligonucleotide of

65. The method in accordance with claims 58-62, or 63, nucleotide analogue probe which is complementary to at 10 further comprising incorporating at least one oligonucleotide analogue into at least one of the oligonucleotide target to reduce or prevent the formation of secondary structure in the target polynucleotide sequence.

> 66. The method in accordance with claims 58-62, or 63, further comprising incorporating at least one oligonucleotide analogue into at least one of the oligonucleotide analogue probes of the array to create secondary structure in the oligonucleotide of the array.

> 67. The method in accordance with claims 58-62, or 63, further comprising incorporating a base selected from the group consisting of 5-propynyluracil, 5-propynylcytosine, 2-aminoadenine, 7-deazaguanine, 2-aminopurine, 8-aza-7deazaguanine, 1H-purine, and hypoxanthine into the oligonucleotide analogue probes of the array.

> 68. The method of claim 67 further comprising selecting said at least one oligonucleotide analogue such that the oligonucleotide analogue probe is a homopolymer.

> 69. The method in accordance with claims 58-62, or 63, further comprising selecting said at least one oligonucleotide analogue from the group consisting essentially of oligonucleotide analogues comprising 2'-O-methyl nucleotides and oligonucleotides comprising a base selected from the group of bases consisting of 5 -propynyluracil, 5-propynylcytosine, 7-deazaguanine, 2-aminoadenine, 8-aza-7-deazaguanine, 1H-purine, and hypoxanthine.

> 70. The method in accordance with claims 58-62 or 63. further comprising selecting said at least one oligonucleotide analogue such that oligonucleotide analogue probes com-

prises at least one peptide nucleic acid.

71. The method in accordance with claims 58-62, or 63, further comprising selecting said at least one oligonucleotide analogue to increase image brightness when the oligonucleotide target and the oligonucleotide analogue probe hybridize in the presence of a fluorescent indicator, in comparison to a oligonucleotide probe without oligonucleotide analogs.

72. The method in accordance with claims 58-62, or 63, further comprising providing said plurality of oligonucleotide analogue probes in an array with at least 1000 other oligonucleotide analogue probes.

J

This Page Blank (uspto)

(12) United States Patent

Pirrung et al.

(10) Patent No.:

US 6,261,776 B1

(45) Date of Patent:

*Jul. 17, 2001

Inventors: Michael C. Pirrung, Durham, NC (US); J. Leighton Read; Stephen P. A. Fodor, both of Palo Alto, CA (US); Lubert Stryer, Stanford, CA (US)

Assignee: Affymetrix, Inc., Santa Clara, CA (US)

Subject to any disclaimer, the term of this Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

> This patent is subject to a terminal disclaimer.

(21) Appl. No.: 09/292,455

(22) Filed: Apr. 15, 1999

Related U.S. Application Data

- Continuation of application No. 09/129,470, filed on Aug. 4, 1998, which is a continuation of application No. 08/456,598, filed on Jun. 1, 1995, which is a division of application No. 07/954,646, filed on Sep. 30, 1992, now Pat. No. 5,445,934, which is a division of application No. 07/850,356, filed on Mar. 12, 1992, now Pat. No. 5,405,783, which is a division of application No. 07/492,462, filed on Mar. 7, 1990, now Pat. No. 5,143,854, which is a continuation-in-part of application No. 07/362,901, filed on Jun. 7, 1989, now abandoned
- (51) Int. Cl.⁷ C12Q 1/68; G01N 33/543; A61K 38/00; C07H 21/04; C07H 21/00
- 435/795; 435/969; 435/973; 436/518; 436/527; 436/807; 436/809; 530/334; 536/24.3; 536/24.32; 536/25.32
- 435/6, 7.92, 7.94, Field of Search 435/7.95, 969, 973; 436/518, 527, 807, 809; 530/334; 536/24.3, 25.3, 25.32

References Cited (56)

U.S. PATENT DOCUMENTS

11/1974 Barzynski et al. 96/67 3,849,137

	3,862,056	1/1975	Hartman	252/511
	3,939,350		Arwin et al	
	4.072,576	2/1978	Arwin et al	195/103.5 R
٠.	4,180,739	12/1979	Abu-Shumays	250/461
	4,238,757	12/1980	Abu-ShumaysSchenck	357/25
	4,269,933	5/1981	Pazos	430/291
	4,314,821		Rice	
	4,327,073		Huang	
	4,339,528		Goldman	
	4,342,905	8/1982	Fujii et al	250/201
	4,373,071		Itakura	
	4,405,771	9/1983	Jagur	528/266
	4,444,878		Paulus	

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

2242394	3/1974	(DE).
3440141	5/1986	(DE).
3505287	3/1988	(DE).

(List continued on next page.)

OTHER PUBLICATIONS

Bannwarth "Gene Technology: A Challenge for a Chemist" Chimia, 41:302-317 (Sep. 1987).

(List continued on next page.)

Primary Examiner-Jezia Riley (74) Attorney, Agent, or Firm-Townsend and Townsend and Crew LLP

ABSTRACT (57)

A method and apparatus for preparation of a substrate containing a plurality of sequences. Photoremovable groups are attached to a surface of a substrate. Selected regions of the substrate are exposed to light so as to activate the selected areas. A monomer, also containing a photoremovable group, is provided to the substrate to bind at the selected areas. The process is repeated using a variety of monomers such as amino acids until sequences of a desired length are obtained. Detection methods and apparatus are also disclosed.

39 Claims, 20 Drawing Sheets

App Serial # 09/854,844

Hu et al.

Exhibit J LEX-0176-USA Novel Human Protease and Polynucleotides Encoding the Same

US 6,261,776 B1 Page 2

							50 4 100
	ı	U.S. PATE	NT DOCUMENTS		5,026,840	6/1991	Dattagupta et al
					5,028,525 5,043,265	7/1991 8/1001	Tanke et al
•	4,444,892	4/1984	Malmros		5,047,524	9/1991	Andrus et al 536/27
٠.	4,448,534 4,458,066	. 7/1084	Carnthers et al 330/2/		5,079,600	1/1992	Schnur et al 357/4
	4,483,920	11/1984	Gillespie et al 435/0		5,081,584	1/1992	Omichinski et al 364/497
	4,500,707	2/1985	Caruthers et al 330//		5,082,830	1/1992	Brakel et al 514/44
	4,516,833	5/1985	Fusek		5,091,652	2/1992	Mathies et al
	4,517,338	5/1985	Urdea et al 525/54.11		5,112,962	5/1992	Letsinger et al
	4,537,861	8/1985	Elings et al 436/518		5,141,813	0/1992	Pirrung et al
	4,542,102	9/1985	Dattagupta et al		5,143,854 5,153,319	10/1992	Caruthers et al 536/27
	4,555,490	11/1985	Merril		5,192,980	3/1993	Dixon et al 356/326
	4,562,157	2/1086	Kornreich et al 323/34.11		5,200,051	4/1993	Cozzette et al 204/403
	4,569,967 4,580,895	4/1986	Patel 330/39		5,202,231	4/1993	Drmanac et al 435/6
	4,584,277	4/1086	Illman 436/509		5,206,137	4/1993	Ip et al
	4,613,566	0/1086	Potter 433/0		5,215,882	6/1993	Bahl et al
	4,624,915	11/1986	Schindler et al 433/4		5,215,889	6/1003	Longiaru et al
	4,626,684	12/1986	Landa		5,232,829 5,235,028	8/1993	Barany et al 528/335
	4,631,211	12/1986	Houghten		5,242,974	9/1993	Holmes 525/54.11
	4,637,861	6/1027	White et al 433/0		5,252,743	10/1993	Barrett et al 548/303.7
	4,677,054 4,681,859	7/1987	Kramer 430/301		5,256,549	10/1993	Urdea et al 435/91
	4,683,202	7/1987	Mullis 433/91		5,258,506	11/1993	Urdea et al 536/23.1
	4,689,405	8/1987	Frank et al 530/2/		5,306,641	4/1994	Saccocio
	4,704,353	11/1087	Humphries et al 435/4		5,310,893	5/1994	Erlich et al
	4,711,955	12/1987	Ward et al 536/29		5,324,633	0/1994	Dattagupta et al
	4,713,326	12/1987	Dattagupta et al		5,348,855 5,384,261	1/1995	Winkler et al 436/518
	4,713,347	12/198/	Mitchell et al		5,405,783	4/1995	Pirrung et al 436/518
	4,719,615	2/1088	Guire 430/301		5,424,186	6/1995	Fodor et al 433/0
	4,722,906 4,728,502	3/1088	Hamill 422/110		5,436,327	7/1995	Southern et al 536/25.34
	4,728,591	3/1088	Clark et al 430/3		5,445,934	 8/1995. 	Fodor et al
	4,731,325	3/1088	Palva et al 433/3		5,447,841	9/1995	Gray et al
	4,755,458	7/1088	Rahhani et al 433/3		5,486,452	2/1006	Chehab
	4,762,881	8/1988	Kauer		5,489,507 5,489,678	2/1996	Fodor et al 536/22.1
	4,777,019	10/1988	Buendia et al 525/54.11		5,492,806	2/1996	Drmanac et al 435/5
	4,780,504	11/1988	Groebler		5,510,270	4/1996	Fodor et al 436/518
	4,786,170 4,786,684	11/1099	Glass 525/54.1		5,525,464	6/1996	Dramanac et al 435/6
	4,794,150	12/1088	Steel 525/34.11		5,527,681	6/1996	Holmes
	4,808,508	2/1989	Platzer 430/143		5,552,270	9/1996	Khrapko et al
	4,810,869	2/1020	Vahe et al 250/301		5,556,961	9/1990	Hollenberg et al
	4,811,062		Tabata et al		5,561,071 5,571,639	11/1996	Hubbell et al 430/5
	4,812,512	3/1989	Taub		5,593,839	1/1997	Hubbell et al 435/6
	4,820,630	4/1989			5,653,939	8/1997	Hollis et al 422/50
	4,822,566 4,833,092	5/1989	Gevsen 436/501		5,667,667	9/1997	Southern 205/687
	4,844,617	7/1989	Kelderman et al 356/3/2		5,667,972	9/1997	Drmanac et al
	4,846,552	7/1080	Veldkamp et al		5,695,940	12/1997	Drmanac et al
	4,849,513	7/1989	Smith et al 330/2/		5,698,393	12/1997	Southern
	4,855,225	8/1989	Fung et al		5,700,637 5,707,806	1/1998	Shuber 435/6
	4,865,990	9/1989	Stead et al		5,744,305	• 4/1998	Fodor et al 435/6
	4,868,103	10/1080	Madou et al		5,777,888	7/1998	Rine et al 364/496
•	4,874,500 4,886,741	12/1989	Schwartz 433/3		5,800,992	9/1998	Fodor et al
	4,888,278	12/1080	Singer et al 433/0		5,807,522	9/1998	Brown et al 422/50
	4,923,901	5/1990	Koester et al 521/53		5,830,645	11/1998	Pinkel et al 435/287.1
	4,925,785	5/1990	Wang et al 433/0	•	5,843,767	12/1998	Beattie
	4,946,942	8/1990	Fuller et al 530/335		5,846,708	2/1999	- 11 A22/68 1
	4,973,493	11/1990	Guire		5,871,697 5,972,619	10/1999	Drmanac et al 435/6
	4,979,959	1/1990	Augenlicht		6,018,041	1/2000	Drmanac et al 536/24.3
	4,981,783	1/1991	Kaplan et al		6,025,136	2/2000	Drmanac et al 433/0
	4,981,985 4,984,100	1/1991	Takayama et al 300/49		6,054,270	4/2000	Southern 435/6
	4,987,065	1/1991	Stavrianopoulos et al 433/3				ATTENTE DOCUMENTS
	4,988,617	1/1991	Landegren et al 433/0		FC	KEIGN P	ATENT DOCUMENTS
	4,992,583	2/1991	Farnsworth 430/89		046 083	2/1982	(EP) .
	4,994,373	2/1991	Stavrianopoulos et al		088 636		(EP).
	5,002,867	3/1991	Macevicz		103 197	3/1984	(EP).
	5,021,550 5,026,773	6/1901 6/1901	Steel 525/54.11		127 0438	12/1984	(EP) .
	5,026,773	U/1771					

US 6,261,776 B1 Page 3

062 810	2/1096	(EP)	WO 97/27317 7/1997 (WO).
063 810 194 132	3/1986 9/1986		WO 97/29212 8/1997 (WO).
228 075	7/1987	1 1	WO 98/31836 7/1998 (WO)
245 662	11/1987	11	OTHER PUBLICATIONS
268 237	5/1988	(EP)	
281 927	9/1988	(EP).	Bannwarth et al. "A System for the Simultaneous Chemical
228 310	10/1988	(EP).	Synthesis of Different DNA Fragments on Solid Support"
288 310	10/1988	(EP).	DNA. 5:413-419 (Oct. 1986).
304 202	2/1989	(EP).	Sequencing by Hybridization Workshop, listing of partici-
307 476	3/1989	(EP).	pants and workshop presentation summaries (1991).
319 012	6/1989	(EP).	"A Sequencing Reality Check," Science 242:1245 (1988).
328 256	8/1989	(EP).	"Affymax raises \$25 million to develop high-speed drug
333 561	9/1989	(EP).	discovery system," Biotechnology News, 10(3):7-8 (1990).
337 498	10/1989	(Er).	"Preparation of fluorescent-labeled DNA and its use as a
386 229 373 203	4/1990 6/1990	\ <u></u> '.	probe in molecular hybridization," Bioorg Khim,
392 546	10/1990	(EP).	12(11):1508–1513 (1986).
173 339	1/1992	(EP).	Abbott et al. "Manipulation of the Wettability of Surfaces
171 150	3/1992	(EP).	on the 0.1- to 1-Micrometer Scale Through Micromachin-
237 362	3/1992	(EP).	ing and Molecular Self-Assembly," Science,
185 547	6/1992	1	257:1380–1382 (1992).
260 634	6/1992 4/1993		Adams et al., "Complementary DNA Sequencing:
232 967 235 726	5/1993		Expressed Sequence Tags and Human Genome Project,"
476 014	8/1994	*:	Science, 252(5013):1651-1656 (1991).
225 807	10/1994	1	Adams et al., "Photolabile Chelators That "Cage" Calcium
717 113	6/1996		with Improved Speed of Release and Pre-Photolysis Affin-
848 067	6/1998		ity." J. Gen. Physiol., p. 9a (Dec. 1986).
619 321	1/1999		Adams et al., "Biologically Useful Chelators That Take Up
2156074	3/1988	(GB)	Ca2+ upon Illumination," J. Am. Chem. Soc.,
2559783 2196476		(GB).	111:7957–7968 (1989).
2248840		(GB).	Amit et al., "Photosensitive Protecting Groups of Amino
49-110601	10/1974		Sugars and Their Use in Glycoside Synthesis. 2-Nitroben-
60-248669	12/1985		zyloxycarbonylamino and 6-Nitroveratryloxycarbony-
63-084499	4/1988		lamino Derivatives," J. Org. Chem, 39(2):192-196 (1974).
63-223557 1-233447	9/1988 9/1989	11	Amit et al., "Photosensitive Protecting Groups-A Review,"
WO 84/03151		(wo).	Israel J. Chem., 12(1-2):103-113 (1974).
VO 84/03564		(wo)	Applied Biosystems, Model 431A Peptide Synthesizer
VO 85/01051		(wo).	User's manual, Sections 2 and 6, (Aug. 15, 1989).
NO 86/00991		(WO).	Ajayaghosh et al., "Solid-Phase Synthesis of N-Methyl-
NO 86/06487		(WO).	and N-Ethylamides of Peptides Using Photolytically
8810400 WO 88/04777		(WO) . (WO) .	Detachable
WO 89/05616		(wo).	((3-Nitro-4((alkylamino)methyl)benzamido)methyl)polystyrene
WO 89/08834		(wo)	Resin," J.Org. Chem., 55(9):2826-2829 (1990).
WO 89/11548	11/1989	(wo).	Ajayaghosh et al., "Solid-phase synthesis of C-terminal
WO 89/10977	• 11/1989	(wo).	peptide amides using a photoremovable α-methylphenacy-
WO 89/12819		(WO).	lamido anchoring linkage," Proc. Ind. Natl. Sci (Chem.Sci.),
WO 90/00887		(WO) .	100(5):389–396 (1988).
WO 90/15070 WO 90/03382		(WO) . (WO) .	Ajayaghosh et al., "Polymer-supported Solid-phase Syn-
WO 90/03382 WO 90/04652		(WO).	thesis of C-Terminal Peptide N-Methylamides Using a
WO 91/04266		(wo).	Modified Photoremovable 3-Nitro-4-N-methylaminomethylpolystyrene Support,"
WO 91/07087		(wo).	3-11HO-4 1, more/rem
WO 92/16655		(wo).	Ind.J.Chem., 27B:1004-1008 (1988).
WO 92/10092		(WO).	Ajayaghosh et al., "Polymer-Supported Synthesis of Pro-
WO 92/10588		(WO).	
WO 93/02992 WO 93/09668		(WO) . (WO) .	0-11HO(d-McH):/Diomocon-/
WO 88/01302		(wo).	44(21):6661-6666 (1988).
WO 93/11262		(wo).	Arnold et al., "A Novel Universal Support for DNA & RNA Synthesis." abstract from Federation Proceedings,
WO 93/22480	-	(wo).	
WO 93/22546		(WO).	43(7):abstract No. 3669 (1984).
WO 95/11995		(WO).	Atherton et al., Solid Phase Peptide Synthesis: A Practical
WO 95/33846		(WO). (WO).	Approach, IRL Press, (1989), the of cont., pp. vii-ix.
WO 96/23078 WO 97/10365		(WO).	Augenlicht et al., "Cloning and Screening of Sequences
WO 97/10303 WO 97/17317		(wo).	Expressed in a Mouse Colon Tumor," Cancer Research,
WO 97/17317 WO 97/19410		(wo).	42:1088–1093 (1982).
	-	•	

Augenlicht et al., "Expression of Cloned Sequences in Biopsies of Human Colonic Tissue and in Colonic Carcinoma Cells Induced to Differentiate in Vitro," Cancer Res., 47:6017-6021 (1987).

Bains, W., "Hybridization Methods for DNA Sequencing," Genomics, 11(2):294-301 (1991).

Bains et al., "A Novel Method for Nucleic Acid Sequence Determination," J. Theor. Biol., 135:303-307 (1988).

Bains, W., "Alternative Routes Through the Genome," Biotechnology, 8:1251-1256 1990.

Balachander et al., "Functionalized Siloxy-Anchored Monolayers with Exposed Amino, Azido, Bromo, or Cyano Groups," *Tetrahed. Ltrs.*, 29(44):5593-5594 (1988).

Baldwin et al., "New Photolabile Phosphate Protecting Groups," Tetrahed., 46(19):6879–6884 (1990).

Barltrop et al., "Photosensitive Protective Groups," Chemical Communications, pp. 822-823 (1966).

Barinaga, M., "Will 'DNA Chip' Speed Genome Initiative," Science, 253:1489 (1985).

Bart et al., "Microfabricated Electrohydrodynamic Pumps," Sensors and Actuators, A21-A23:193-197 (1990).

Bartsh et al., "Cloning of mRNA sequences from the human colon: Preliminary characterisation of defined mRNAs in normal and neoplastic tissues," *Br.J. Can.*, 54:791-798 (1986).

Baum, R., "Fledgling firm targets drug discovery process," Chem. Eng. News, pp. 10-11 (1990).

Beltz et al., "Isolation of Multigene Families and Determination of Homologies by Filter Hybridization Methods," *Methods in Enzymology*, 100:266-285 (1983).

Benschop, Chem. Abstracts 114(26):256643 (1991).

Bhatia et al., "New Approach To Producing Patterned Biomolecular Assemblies," J. American Chemical Society, 114:4432–4433 (1992).

Biorad Chromatography Electrophoresis Immunochemistry Molecular Biology HPLC catalog M 1987 p. 182.

Blawas et al., "Step-and-Repeat Photopatterning of Protein Features Using Caged-Biotin-BSA: Characterization and Resolution," *Langmuir*, 14(15):4243-4250 (1998).

Blawas, A.S., "Photopatterning of Protein Features using Caged-biotin-Bovine Serum Albumin," dissertation for Ph.D at Duke University in 1998.

Bos et al., "Amino-acid substitutions at coddon 13 of the N-ras oncogene in human acute myeloid leukaemia," *Nature*, 315:726-730 (1985).

Boyle et al., "Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization," PNAS, 87:7757-7761 (1990).

Brock et al., "Rapid fluorescence detection of in situ hybridization with biotinylated bovine herpesvirus-1 DNA probes," J. Veterinary Diagnostic Invest., 1:34-38 (1989).

Burgi et al., "Optimization in Sample Stacking for High-Performance Capillary Electrophoresis," Anal. Chem., 63:2042-2047 (1991).

Cameron et al., "Photogeneration of Organic Bases from o-Nitrobenzyl-Derived Carbamates," J. Am. Chem. Soc., 113:4303-4313 (1991).

Carrano et al., "A High-Resolution, Fluorescence-Based, Semiautomated Method for DNA Fingerprinting," Genomics, 4:129-136 (1989).

Caruthers, M.H., "Gene Synthesis Machines: DNA Chemistry and Its Uses," Science, 230:281-285 (1985).

Chatterjee et al., "Inducible Alkylation of DNA Using an Oligonucleotide-Quinone Conjugate," Am. J. Chem. Soc., 112:6397-6399 (1990).

Chee et al., "Accessing Genetic Information with High--Density DNA Arrays," Science, 274:610-614 (1996).

Chehab et al., "Detection of sicle cell anaemia mutation by colour DNA amplification," Lancet, 335:15-17 (1990).

Chehab et al., "Detection of specific DNA sequences by fluorescence amplification: A color complementation assay," PNAS, 86:9178-9182 (1989).

Clevite Corp., Piezolelectric Technology, Data for Engineers.

Corbett et al., "Reaction of Nitroso Aromatics with Glyoxylic Acid. A New Path to Hydroxamic Acids," J. Org. Chem., 45:2834–2839 (1980).

Craig et al., "Ordering of cosmid clones covering the Herpes simplex virus type 1 (HSV-1) genome: a test case for fingerprinting by hybridization," Nuc. Acid. Res., 18(9):2653-2660 (1990).

Cummings et al., "Photoactivable Fluorophores. I. Synthesis and Photoactivation of o-Nitrobenzyl-Quenched Fluorescent Carbamates," *Tetrahedron Letters*, 29(1):65-68 (1988). Diggelmann, "Investigating the VLSIPS synthesis process," Sep. 9, 1994.

Di Mauro et al., "DNA Technology in Chip Construction," Adv. Mater., 5(5):384-386 (1993).

Drmanac et al., "Partial Sequencing by Oligo-Hybridization Concept and Applications in Genome Analysis," 1st Int. Conf. Electrophor., Supercomp., Hum. Genome pp. 60-74 (1990).

Drmanac et al., "Sequencing by Oligonucleotide Hybridization: A Promising Framework in Decoding of the Genome Program?," 1st Int. Conf. Electrophor., Supercomp., Hum. Genome pp. 47-59 (1990).

Drmanac et al., "Laboratory Methods, Reliable Hybridization of Oligonucleotides as Short as Six Nucleotides," DNA and Cell Biol., 9(7):527-534 (1990).

Drmanac et al., "Sequencing of Megabase Plus DNA by Hybridization: theory of the Method," Genomics, 4:114-128 (1989).

Dramanac et al., "Sequencing of Megabase Plus DNA by Hybridization: Theory of the Method," abstract of presentation given at Cold Spring Harbor Symposium on Genome Mapping and Sequencing, Apr. 27, 1988 thru May 1, 1988. Dulcey et al., "Deep UV Photochemistry of Chemisorbed Monolayers: Patterned Coplanar Molecular Assemblies," Science, 252:551-554 (1991).

Duncan et al., "Affinity Chromatography of a Sequence-Specific DNA Binding Protein Using Teflon-Linked Oligonucleotides," Analytical Biochemistry, 169:104-108 (1988).

Effenhauser et al., "Glass Chips for High-speed Capillary Electrophoresis Separations with Submicrometer Plate Heights," Anal. Chem., 65:2637-2642 (1993).

Effenhauser et al., "High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device," Anal. Chem., 66:2949-2953 (1994).

Ekins et al., "High Specific Activity Chemiluminescent and Fluorescent Markers: their Potential Application to High Sensitivity and 'Multi-analyte' Immunoassays," J. Bioluminescence Chemiluminescence, 4:59-78 (1989).

Ekins et al., "Development of Microspot Multi-Analyte Rationmetric Immunoassay Using dual Fluorescent-Labelled Antibodies," Anal. Chemica Acta, 227:73-96 (1989).

Ekins et al., "Multianalyte Microspot Immunoassay-Microanalytical 'Compact Disk' of the Future," Clin. Chem., 37(11):1955-1967 (1991).

Ekins, R.P., "Multi-Analyte immunoassay*," J. Pharmaceut. Biomedical Analysis, 7(2):155-168 (1989).

Evans et al., "Microfabrication for Automation of Molecular processes in Human Genome Analysis," O Clin. Chem., 41(11):1681 (1995).

Evans et al., "Physical mapping of complex genomes by cosmid multiplex analysis," PNAS, 86:5030-5034 (1989).

Ezaki et al., "Small-Scale DNA Preparation for Rapid Genetic Identification of campylobacter Species with Radio-isotope," Microbiol. Immunology, 32(2):141-150 (1988).

Fan et al., "Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes," PNAS, 87(16):6223-6227 (1990).

Fan et al., "Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections," Anal. Chem., 66:177–184 (1994).

Fettinger et al., "Stacked modules for micro flow systems in chemical analysis: concept and studies using an enlarged model," Sensors and Actuators, B17:19-25 (1993).

Flanders et al., "A new interferometric alignment technique," App. Phys. Ltrs., 31(7):426-429 (1977).

Fodor et al., "Multiplexed biochemical assays with biological chips," *Nature*, 364:555-556 (1993).

Fodor et al., "Light-directed, Spatially Addressable Parallel Chemical Synthesis," Science, 251:767-773 (1991).

Forman et al., "Thermodynamics of Duplex Formation and Mismatch Discrimination on Photolithographically Synthesized Oligonucleotide Arrays," chapter 13 pp. 206–228 from Molecular Modeling of Nucleic Acids, ACS Symposium Series 682, Apr. 13–17, 1997, Leontis et al., eds.

Frank et al., "Simultaneous Multiple Peptide Synthesis Under Continuous flow Conditions on Cellulose Paper Discs as Segmental Solid Supports," Tetrahedron, 44(19):6013-6040 (1988).

Frank et al., "Automation of DNA Sequencing Reactions and Related Techniques: A Workstation for Micromanipulation of Liquids," *Bio/Technology*, 6:1211-1212 (1988).

Frank et al., "Simultaneous Synthesis and Biological Applications of DNA Fragments: An Efficient and Complete Methodology," *Methods in Enzymology*, 154:221-250 (1987).

Fuhr et al., "Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids," J. Micromech. Microeng., 4:217-226 (1994).

Fuller et al., "Urethane-Protected Amino Acid N-Carboxy Anhydrides and Their Use in Peptide Synthesis," J. Amer. Chem. Soc., 112(20):7414-7416 (1990).

Furka et al., "General method for rapid synthesis of multi-component peptide mixtures," Int. J. Peptide Protein Res., 37:487-493 (1991).

Furka et al., "Cornucopia of Peptides by Synthesis," 14th Int. Congress of Biochem. abst.#FR:013, Jul. 10-15, 1988 Prague, Czechoslovakia.

Furka et al., "More Peptides by Less Labour," abst. 288, Int. Symp. Med. Chem., Budapest Hungary Aug. 15-19, 1988. Gait, eds., pp. 1-115 from Oligonucleotide Synthesis: A Practical Approach, IRL Press, (1984).

Gazard et al., "Lithographic Technique Using Radiation-Induced Grafting of Acrylic Acid into Poly(Methyl Methacrylate) Films," Polymer Engineering and Science, 20(16):1069-1072 (1980).

Gergen et al., "Filter replicas and permanent collections of recombinant DNA plasmids," Nuc. Acids Res., 7(8):2115-2137 (1979).

Getzoff et al., "Mechanisms of Antibody Binding to a Protein," Science, 235:1191-1196 (1987).

Geysen et al., "Strategies for epitope analysis using peptide synthesis," J. Immunol. Meth., 102:259-274 (1987).

Geysen et al., "Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid," PNAS, 81:3998-4002 (1984).

Geysen et al., "A synthetic strategy for epitope mapping" from Peptides: Chem. & Biol., Proc. of 10th Am. Peptide Symp., May 23-28, 1987, pp. 519-523, (1987).

Geysen, "Antigen-antibody interactions at the molecular level: adventures in peptide synthesis," *Immunol. Today*, 6(12):364-369 (1985).

Geysen et al., "Cognitive Features of Continuous Antigenic Determinants," from Synthetic Peptides: Approaches to Biological Probes, pp. 19–30, (1989).

Geysen et al., "Chemistry of Antibody Binding to a Protein," Science, 235:1184-1190 (1987).

Geysen et al., "The delineation of peptides able to mimic assembled epitopes," 1986 CIBA Symp., pp. 130-149.

Geysen et al., "Cognitive Features of Continuous Antigenic Determinants," Mol. Recognit., 1(1):1-10 (1988).

Geysen et al., "A Prio Ri Delineation of a Peptide Which Mimics A Discontinuous Antigenic Determinant," Mol. Immunol., 23(7):709-715 (1986).

Gilon et al., "Backbone Cyclization: A New Method for Conferring Conformational Constraint on Peptides," Biopolymers, 31(6):745-750 (1991).

Gineras et al., "Hybridization properties of immobilized nucleic acids," Nuc. Acids Res., 15(13):5373-5390 (87).

Gummerlock et al., "RAS Enzyme-Linked Immunoblot Assay Discriminates p21 Species: A Technique to Dissect Gene Family Expression," *Anal. Biochem.*, 180:158-168 (1989).

Gurney et al., "Activation of a potassium current by rapid photochemically generated step increases of intracellular calcium in rat sympathetic neurons," PNAS, 84:3496-3500 (1987).

Haase et al., "Detection of Two Viral Genomes in Single Cells by Double-Label Hybridization in Situ and Color Microradioautography," Science, 227:189-192 (1985).

Hacia, et al., "Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes," *Nuc. Acids Res.*, 26(16):3865-3866 (1998).

Hack, M.L., "Conics Formed to Make Fluid & Industrial Gas Micromachines," Genetic Engineering News, 15(18):1, 29 (1995).

Hagedorn et al., "Pumping of Water Solutions in Microfabricatedd Electrohydrodynamic Systems," from Micro Electro Mechanical Systems conference in Travemunde Germany (1992).

Hanahan et al., "Plasmid Screening at High Colony Density," Meth. Enzymology, 100:333-342 (1983).

Hanahan et al., "Plasmid screening at high colony density," Gene, 10:63-67 (1980).

Haridasan et al., "Peptide Synthesis using Photolytically Cleavable 2-Nitrobenzyloxycarbonyl Protecting Group, Proc. Indian Natn. Sci. Adad., 53A(6):717-728 (1987). Harrison et al., "Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip," Anal. Chem., 64:1926-1932 (1992).

Harrison et al., "Micromachining a Minaturized Capillary Electrophoresis-Based Chemical Analysis System on a

Chip," Science, 261:895-897 (1993).

Harrison et al., "Towards minaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors*," Sensors and Actuators, B10:107-116

Harrison et al., "Rapid separation of fluorescein derivatives using a micromachined capillary electrophoresis system," Analytica Chemica Acta, 283:361-366 (1993).

Hellberg et al., "Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships," Int. J. Peptide Protein Res., 37:414-424 (1991).

Hilser et al., "Protein and peptide mobility in capillary zone electrophoresis, A comparison of existing models and further analysis," J. Chromatography, 630:329-336 (1993). Ho et al., "Highly Stable Biosensor Using an Artificial

Enzyme," Anal. Chem., 59:536-537 (1987).

Hochgeschwender et al., "Preserential expression of a defined T-cell receptor β-chain gene in hapten-specific cytotoxic T-cell clones," Nature, 322:376-378 (1986).

Hodgson, J., "Assays A La Photolithography," Biotech., 9:419 (1991).

Hopman et al., "Bi-color detection of two target DNAs by non-radioactive in situ hybridization*," Histochem., 85:1-4

Iwamura et al., "1-Pyrenylmethyl Esters, Photolabile Protecting Groups for Carboxlic Acids," Tetrahedron Ltrs., 28(6):679-682 (1987).

Iwamura et al., "1-(\alpha-Diazobenzyl)pyrene: A Reagent for Photolabile and Fluorescent Protection of Carboxyl Groups of Amino Acids and Peptides," Synlett, pp. 35-36 (1991). Jacobson et al., "Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices," Anal. Chem., 66:1107-1113 (1994).

Jacobsen et al., "Open Channel Electrochromatography on a Microchip," Anal. chem., 66:2369-2373 (1994).

Jacobson et al., "Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor" Anal. Chem., 66:3472-3476 (1994).

Jacobson et al., "Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip," Anal. Chem., 66:4127-4132 (1994).

Jacobson et al., "Microfabricated chemical measurement systems," Nature Medicine, 1(10):1093-1096 (1995).

Jacobsen et al., "Fused Quartz Substrates for Microchip Electrophoresis," Anal. chem., 67:2059-2063 (1995).

Jacobson et al., "High-Speed Separtions on a Microchip,"

Anal. Chem., 66:1114-1118 (1994).

Jacobson et al., "Microchip electrophoresis with sample stacking," Electrophoresis, 16:481-486 (1995).

Jayakumari, "Peptide synthesis in a triphasic medium catalysed by papain immobilized on a crosslinked polysty-'Indian J. Chemistry, 29B:514-517 (1990). rene support,' Kaiser et al., "Peptide and Protein Synthesis by Segment Synthesis-Condensation," Science, 243:187-192 (1989). Kaplan et al., "Photolabile chelators for the rapid photorelease of divalent cations," PNAS, 85:6571-6575 (1988).

Karube, "Micro-biosensors based on silicon fabrication technology," chapter 25 from Biosensors:Fundamentals and Applications, Turner et al., eds., Oxford Publ., 1987, pp. 471-480 (1987).

Kates et al., "A Novel, Convenient, Three-dimensional Orthogonal Strategy for Solid-Phase Synthesis of Cyclic Peptides 1-3," Tetrahed. Letters, 34(10):1549-1552 (1993). Kerkof et al., "A Procedure for Making Simultaneous Determinations of the Relative Levels of Gene Transcripts in Tissues or Cells," Anal. Biochem., 188:349-355 (1990).

Khrapko et al., "An Oligonucleotide hybridization approach to DNA sequencing," FEBS Lett., 256(1,2):118-122 (1989). Kievits et al., "Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization," Cytogenetics Cell Genetics, 53(2-3):134-136 (1990).

Kimura et al., "An Immobilized Enzyme Membrane Fabrication Method using an Ink Jet Nozzle," Biosensors, 4:41-52 (1988).

Kimura et al., "An Integrated SOF/FET Multi-Biosensor," Sensors & Actuators, 9:373-387 (1986).

Kitazawa et al., "In situ DNA-RNA hybridization using in vivo bromodeoxyuridine-labeled DNA probe," Histochemistry, 92:195-199 (1989).

Kleinfeld et al., "Controlled Outgrowth of Dissociated Neu-Substrates," J. Neurosci., rons on Patterned 8(11):4098-4120 (1988)

Knight, P., "Materials and Methods/Microsequencers for Proteins and Oligosaccharides," Bio/Tech., 7:1075-76 (1989).

Kohara et al., "The Physical Map of the Whole E. coli Chromosome: Application of a New Strategy for Rapid Analysis and Sorting of a Large Genomic Library," Cell, 50:495-508 (1987).

Krile et al., "Multiplex holography with chirp-modulated binary phase-coded reference-beam masks," Applied Opt., 18(1):52-56 (1979).

Labat, I., "Subfragments as an informative characteristic of the DNA molecule—computer simulation," research report submitted to the University of Belgrade College of Nature Sciences and Mathematics, (1988).

Lainer et al., "Human Lymphocyte Subpopulations Identified by Using Three-Color Immunofluorescence and Flow Cytometry Analysis: Correlation of Leu-2, Leu-3, Leu-7, Leu-8, and Leu-11 Clee Surface Antigen Expression," Journal of Immunology, 132(1):151-156 (1984).

Lam et al., "A new type of synthetic peptide library for identifying ligand-binding activity," Nature, 354:82-84 (1991).

Laskey et al., "Messenger RNA prevalence in sea urchin embryos measured with cloned cDNAs," PNAS, 77(9):5317-5321 (1980).

Lee et al., "synthesis of a Polymer Surface Containing Covalently Attached Triethoxysilane Functionality: Adhesion to Glass," Macromolecules, 21:3353-3356 (1988).

Allister et al., "Labelling oligonucleotides to high specific activity (1)," Nuc. Acids Res., 17(12):4605-4610 (89).

Frischauf et al., "Phage Vectors-EMBL Series," Meth. Enzymology, 153:103-115 (1987).

Levy, M.F., "Preparing Additive Printed Circuits," IBM Tech. Discl. Bull., 9(11):1473 (1967).

Lichter et al., "High-Resolution Mapping of Human Chromosome 11 by in Situ hybridization with Cosmid Clones," Science, 247:64-69 (1990).

Lichter et al., "Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines," *PNAS*, 87:6634-6638 (1990).

Lichter et al., "Rapid detection of human chromosome 21 aberrations by in situ hybridization," PNAS, 85:9664-9668 (1988).

Lichter et al., "Is non-isotopic in situ hybridization finally coming of age," *Nature*, 345:93-94 (1990).

Lieberman et al., "A Light source Smaller Than the Optical Wavelength," Science, 247:59-61 (1990).

Lipshutz et al., "Using Oligonucleotide Probe Arrays To Access Genetic Diversity," BioTech., 19(3):442-7 (1995). Liu et al., "Sequential Injection Analysis in Capillary Format with an Electroosmotic Pump," Talanta, 41(11):1903-1910 (1994).

Lockhart et al., "Expression monitoring by hybridization to high-density oligonucleotide arrays," Nat. Biotech., 14:1675-1680 (1996).

Logue et al., "General Approaches to Mask Design for Binary Optics," SPIE, 1052:19-24 (1989).

Loken et al., "three-color Immunofluorescence Analysis of Leu Antigens on Human Peripheral Blood Using Two Lasers on a Fluorescence-Activated Cell Sorter," *Cymoetry*, 5:151-158 (1984).

Love et al., "Screening of γ Library for Differentially Expressed Genes Using in Vitro Transcripts," Anal. Biochem., 150:429-441 (1985).

Lowe, C.R., "Biosensors," Trends in Biotech., 2:59-65 (1984).

Lowe, C.R., "An Introduction to the Concepts and Technology of Biosensors," *Biosensors*, 1:3-16 (1985).

Lowe, C.R., Biotechnology and Crop Improvement and Protection, BCPC Publications, pp. 131-138 (1986).

Lowe et al., "Solid-Phase Optoelectronic Biosensors," Methods in Enzymology, 137:338-347 (1988).

Lowe, C.R., "Biosensors," Phil. Tran. R. Soc. Lond., 324:487-496 (1989).

Lu et al., "Differential screening of murine ascites cDNA libraries by means of in vitro transcripts of cell-cycle-phase-specific cDNA and digital image processing," Gene, 86:185-192 (1990).

Lysov et al., "A new method for determining the DNA nucleotide sequence by hybridization with oligonucleotides," *Doklady Biochem.*, 303(1-6):436-438 (1989).

Lysov et al., "DNA Sequencing by Oligonucleotide Hybridization," First International Conference on Electrophoresis, Supercomputing and the Human Genome, Apr. 10-13, 1990 p. 157.

MacDonald et al., "A Rapid ELISA for Measuring Insulin in a Large Number of Research Samples," Metabolism, 38(5):450-452 (1989).

Manz et al., "Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing," Sensors and Actuators, B1:244-248 (1990).

Manz et al., "Micromachining of monocrystalline silicon and glass for chemical analysis systems, A look into next century's technology or just a fashionable craze?," Trends in Analytical Chem., 10(5):144-149 (1991).

Manz et al., "Planar chips technology for minaturization and integration of separation techniques into monitoring systems, Capillary electrophoresis on a chip," J. Chromatography, 593:253-258 (1992).

Manz et al., "Planar Chips Technology for Miniaturization of Separation Systems: A Developing Perspective in Chemical Monitoring," chapter 1, 1-64 (1993).

Manz et al., "Electroosmotic pumping and electrophoretic separations for minaturized chemical analysis systems," J. Micromech. Microeng., 4:257-265 (1994).

Masiakowski et al., "Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line," *Nuc. Acids Res.*, 10(24):7895-7903 (1982). Matsumoto et al., "Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension," *IEEE*, pp. 105-110 (1990).

Matsuzawa et al., "Containment and growth of neuroblastoma cells on chemically patterned substrates," J. Neurosci. Meth., 50:253-260 (1993).

McCray et al., "Properties and Uses of Photoreactive Caged Compounds," Ann. Rev. Biophys. Biophys. Chem., 18:239-270 (1989).

McGall et al., "The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates," J. American Chem. Soc., 119(22):5081-5090 (1997).

McGillis, VLSI Technology, Sze, eds., Chapter 7, "Lithography," pp. 267-301 (1983).

McMurray, J.S., "Solid Phase Synthesis of a Cyclic Peptide Using Fmoc Chemistry," Tetrahedron Letters, 32(52):7679-7682 (1991).

Meinkoth et al., "Review: Hybridization of Nucleic Acids Immobilized on solid Supports," Analytical Biochem., 138:267-284 (1984).

Melcher et al., "Traveling-Wave Bulk Electroconvection Induced across a Temperature Gradient," Physics of Fluids, 10(6):1178-1185 (1967).

Merrifield, R.B., "Solid Phase peptide Synthesis. I. The Synthesis of a Tetrapeptide," J.Am. Chem. Soc., 85:2149-2154 (1963).

Michiels et al., "Molecular approaches to genome analysis: a strategy for the construction of ordered overlapping clone libraries," CABIOS, 3(3):203–10 (1987).

Mirzabekov, A.D., "DNA sequencing by hybridization—a megasequencing method and a diagnostic tool?," TIBTECH, 12:27–32 (1994).

Monaco et al., "Human Genome Linking with Cosmids and Yeast Artificial Chromosomes", abstract from CSHS, p. 50, (1989).

Morrison et al., "Solution-Phase Detection of Polynucleotides Using Interacting Fluorescent Labels and Competitive Hybridization," Anal. Biochem., 183:231-244 (1989). Mutter et al., "Impact of Conformation on the Synthetic Strategies for Peptide Sequences," pp. 217-228 from Chemistry of Peptides and Proteins, vol. 1, Proceedings of the Third USSR-FRG Symp., in USSR (1982).

Nakamori et al., "A Simple and Useful Method for Simultaneous Screening of Elevated Levels of Expression of a Variety of Oncogenes in Malignant Cells," Jpn. J. Cancer Res., 79:1311-1317 (1988).

Nederlof et al., "Multiple Fluorescence In Situ Hybridization," Cytometry, 11:126-131 (1990).

Nyborg, W., "Acoustic Streaming," chapter 11 pp. 265–329 from Physical Acoustics, Principles and Methods, Mason, eds., vol. II, part B, Academic Press, New York and London

Ocvirk et al., "High Performance Liquid Chromatography Partially Integrated onto a Silicon Chip," Analyt. Meth. Instrumentation, 2(2):74-82 (1995). Ohtsuka et al., "Studies on transfer ribonucleic acids and related compounds. IX Ribonucleic oligonucleotide synthesis using a photosensitive 0-nitrobenzyl protection at the 2-hydroxyl group," *Nuc.Acids.Res.*, 1(10):1351-1357 (1974).

Olefirowicz et al., "Capillary Electrophoresis for Sampling Single Nerve Cells," *Chimia*, 45(4):106–108 (1991). Patchornik et al., "Photosensitive Protecting Groups," *JAm*-

Chem.Soc., 92(21):6333–6335 (1970).

Patent Abstracts of Japan from EPO, Abst. 13:557, JP 1-233

447 (1989). Pease et al., "Light-generated oligonucleotide arrays for rapid DNA sequence analysis," PNAS, 91:5022-26 (1994). Pevzner, P.A., "1-Tuple DNA Sequencing: Computer Analysis," J. Biomol. Struct. Dynam., 7(1):63-69 (1989). Pfahler et al., "Liquid Transport in Micron and Submicron Channels," Sensors and Actuators, A21-A23:431-4 (90). Pidgeon et al., "Immobilized Artificial Membrane Chromatography: Supports Composed of Membrane Lipids," Anal. Biochem., 176:36-47 (89).

Pillai, V.N., "Photoremovable Protecting Groups in Organic

Synthesis," Synthesis, pp. 1-26 (1980).

Pillai et al., "3-Nitro-4-Aminomethylbenzoylderivative von Polyethylenglykolen: Eine neue Klasse von Photosensitiven loslichen Polymeren Tragern zur Synthese von C-terminalen Peptidamiden," Tetrah. ltr., # 36 pp. 3409-3412 (1979).

Pillai et al., "Synthetic Hydrophilic Polymers, Biomedical and Chemical Applications," Naturwisserischaften, 68:558-566 (1981).

Pirrung et al., "Proofing of Photolithographic DNA Synthesis with 3',5'-Dimethoxybenzoinyloxycarbonyl-Protected Deoxynucleoside Phosphoramidites," J. Org. Chem., 63(2):241-246 (1998).

Pirrung et al., "Comparison of Methods for Photochemical Phosphoramidite-Based DNA Synthesis," J. Org. Chem., 60:6270-6276 (1995).

Ploax et al., "Cyclization of peptides on a solid support," Int. J. Peptide Protein Research, 29:162–169 (1987).

Polsky-Cynkin et al., "Use of DNA Immobilized on Plastic and Agarose Supports to Detect DNA by Sandwich Hybridization," Clin. Chem., 31(9):1428-1443 (1985).

Poustka et al., "Molecular Approaches to Mammalian Genetics," Cold Spring Harbor Symposia on Quantitative Biology, 51:131-139 (1986).

Purushothaman et al., "Synthesis of 4,5—diarylimidazoline-2-thiones and their photoconversion to bis(4,5-diarylimidzaol-2-yl) sulphides," *Ind. J. Chem.*, 29B:18-21 (1990).

Quesada et al., "High-Sensitivity DNA Detection with a Laser-Exited Confocal Fluorescence Gel Scanner," Biotechniques, 10:616 (1991).

Reichmanis et al., J. Polymer Sci. Polymer Chem. Edition, 23:1-8 (1985).

Richter et al., "An Electrohydrodynamic Micropump," IEEE, pp. 99-104 (1990).

Richter et al., "Electrohydrodynamic Pumping and Flow Measurement," *IEEE*, pp. 271-276 (1991).

Richter et al., "A Micromachined electrohydrodynamic (EHD) pump," Sensors and Actuators, A29:159-168 (91). Robertson et al., "A General and Efficient Route for Chemical Aminoacylation of Transfer RNAs," J. Am. Chem. Soc., 113:2722-2729 (1991).

Rodda et al., "The Antibody Response to Myoglobin-I. Systematic Synthesis of Myglobin Peptides Reveals Location and Substructure of Species-Dependent Continuous Antigenic Determinants," Mol. Immunol., 23(6):603-610 (1986).

Rodgers, R.P., "Data Processing of Immunoassay Results," Manual of Clin. Lab. Immunol., 3rd ed., ch. 15, pp. 82-87

(1986).

Rose, D.J., "Free-solution reactor for post-column fluorescence detection in capillary zone electrophoresis," *J. Chromatography*, 540:343-353 (1991).

Rovero et al., "Synthesis of Cylic Peptides on solid Support," Tetrahed. Letters, 32(23):2639-2642 (1991).

Saiki et al., "Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes," *PNAS*, 86:6230-6234 (1989).

Saiki et al., "Analysis of enzymatically amplified β-globin and HLA-DQα DNA with Allele-specific oligonucleotide probes," Nature, 324:163-166 (1986).

Scharf et al., "HLA class II allelic variation and susceptibility to pemphigus vulgaris," *PNAS*, 85(10):3504–3508 (1988).

Schuup et al., "Mechanistic Studies of the Photorearrangement of o-Nitrobenzyl Esters," J. Photochem., 36:85-97 (1987).

Seiler et al., "Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficency," Anal. Chem., 65:1481-1488 (1993).

Seller et al., "Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip," Anal. Chem., 66:3485–3491 (1994).

Sheldon et al., "Matrix DNA Hybridization," Clinical Chemistry, 39(4):718-719 (1993).

Shin et al., "Dehydrooligonpeptides. XI. Facile Synthesis of Various Kinds of Dehydrodi- and tripeptides, and Dehydroenkephalins Containing Tyr Residue by Using N-Carboxydehydrotyrosine Anhydride," Bull. Chem. Soc. Jpn., 62:1127-1135 (1989).

Sim et al., "Use of a cDNA Library for Studies on Evolution and Development Expression of the Chorion Multigene Families," Cell, 18:1303-1316 (1979).

Smith et al., "A Novel Method for Delineating Antigenic Determinants: Peptide Synthesis and Radioimmunoassay Using the Same Solid Support," Immunochemistry, 14:565-568 (1977).

Southern et al., "Report on the Sequencing by Hybridization Workshop," Genomics, 13:1378-1383 (1992).

Southern et al., "Oligonucleotide hybridisations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ," Nuc. Acids Res., 20(7):1679–1684 (1992).

Southern et al., "Analyzing and Comparing Nucleic Acid Sequences by Hybridization to Arrays of Oligonucleotides: Evaluation Using Experimental Models," Genomics, 13:1008-10017 (1992).

Stemme et al., "A valveless diffuser/nozzle-based fluid pump," Sensors and Actuators, A39:159-167 (1993).

Stryer, L., "DNA Probes and Genes Can be Synthesized by Automated Solid-Phase Methods," from Biochemistry, Third Edition, published by W.H. Freeman & Co., (1988). Stuber et al., "Synthesis and photolytic cleavage of bovine insulin B22-30 on a nitrobenzoylglycyl-poly (ethylene glycol) support," Int. J. Peptide Protein Res., 22(3):277-283 (1984).

Sundberg et al., "Spatially-Addressable Immobilization of Macromolecules on Solid Supports," J. Am. Chem. Soc., 117(49):12050-12057 (1995).

Swedberg, S.A., "Use of non-ionic and zwitterionic surfactants to enhance selectivity in high-performance capillary electrophoresis, An apparant micellar electrokinetic capillary chromatography mechanism," J. Chromatography, 503:449-452 (1990).

Titus et al., "Texas Red, a Hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter plow microfluorometric and fluorescence microscopic studies," J. Immunol. Meth., 50:193-204 (1982).

Tkachuk et al., "Detection of bcr-abl Fusion in chronic Myelogeneous Leukemia by in situ Hybridization," Science, 250:559-562 (90).

Trzeciak et al., "Synthesis of 'Head-to-Tail' Cyclized Peptides on Solid Support by FMOC Chemistry," *Tetrahed. Letters*, 33(32):4557-4560 (1992).

Tsien et al., "Control of Cytoplasmic Calcium with Photolabile Tetracarboxylate 2-Nitrobenzhydrol Chelators," *Biophys. J.*, 50:843-853 (1986).

Tsutsumi et al., "Expression of L- and M-Type Pyruvate Kinase in Human Tissues," Genomics, 2:86-89 (1988).

Turchinskii et al., "Multiple Hybridization in Genome Analysis, Reaction of Diamines and Bisulfate with Cytosine for Introduction of Nonradioactive labels Into DNA," Molecular Biology, 22:1229–1235 (1988).

Turner et al., "Photochemical Activation of Acylated α-Thrombin," J. Am. Chem. Soc., 109:1274-1275 (1987). Urdea et al., "A novel method for the rapid detection of specific nucleotide sequences in crude biological sample without blotting or radioactivity; application to the analysis of hepatitis B virus in human serum," Gene, 61:253-264 (1987).

Urdea et al., "A comparison of non-radioisotope hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligodeoxyribonucleotide probes," Nuc. Acids Res., 16(11):4937-4956 (1988).

Van der Voort et al., "Design and Use of a Computer Controlled Confocal Microscopic for Biological Applications," Scanning, 7(2):66-78 (1985).

Van Hijfte et al., "Intramolecular 1,3-Diyl Trapping Reactions. A Formal Total Synthesis of -Coriolin," J. Organic Chemistry, 50:3942-3944 (1985).

Veldkamp, W.B., "Binary optics: the optics technology of the 1990s," CLEO 90, vol. 7, paper # CMG6 (1990).

Verlaan—de Vries et al., "A dot-blot screening procedure for mutated ras oncogenes using synthetic oligodeoxynucleotides," *Gene*, 50:313–320 (1986).

Verpoorte et al., "Three-dimensional micro flow manifolds for miniaturized chemical analysis systems," J. Micromech. Microeng., 4:246-256 (1994).

Volkmuth et al., "DNA electrophoresis in microlithographic arrays," *Nature*, 358:600-602 (1992).

Voss et al., "The immobilization of oligonucleotides and their hybridization properties," *Biochem. Soc. Transact.*, 16:216–217 (1988).

Walker et al., "Photolabile Protecting Groups for an Acetylcholine Receptor Ligand. Synthesis and Photochemistry of a New Class of o-Nitrobenzyl Derivatives and their Effects on Receptor Function," *Biochemistry*, 25:1799-1805 (1986).

Wallace et al., "Hybridization of synthetic oligodeoxyribonucleotides to $\Phi\chi$ 174 DNA: the effect of single base pair mismatch," *Nuc. Acids Res.*, 11(6):3543–3557 (1979).

Washizu et al., "Handling Biological Cells Using a Fluid Integrated Circuit," *IEEE Transactions Industry Applications*, 26(2):352-358 (1990).

Werner et al., "Size-Dependent Separation of Proteins Denatured in SDS by Capillary Electrophoresis Using a Replaceable Sieving Matrix," Anal. Biochem., 212:253-258 (1993).

White et al., "An Evaluation of Confocal Versus Conventional Imaging of Biological Structures by Fluorescence Light Microscopy," J. Cell Biol., 105(1):41–48 (1987).

Widacki et al., "Biochemical Differences in Qa-2 Antigens Expressed by Qa-2+,6+ and Qa-2a+,6- Strains. Evidence for Differential Expression of the Q7 and Q9 Genes," Mol. Immunology, 27(6):559-570 (1990).

Wilcox et al., "Synthesis of Photolabile 'Precursors' of Amino Acid Neurotransmitters," J. Org. Chem., 55:1585-1589 (1990).

Wilding et al., "PCR in a Silicon Microstructure," Clin. Chem., 40(9):1815-1818 (1994).

Wilding et al., "Manipulation and Flow of Biological Fluids in Straight Channels Micromachined in Silicon," Clin. Chem., 40(1):43–47 (1994).

Wittman-Liebold, eds., Methods in Protein Sequence Analysis, from Proceedings of 7th Int'l Conf., Berlin, Germany, Jul. 3-8, 1988, table of contents, pp. xi-xx* (1989).

Woolley et al., "Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips," PNAS, 91:11348-11352 (1994).

Wu et al., "Synthesis and Properties of Adenosine-5'-triphosphoro-γ-5-(5-sulfonic acid)naphthyl Ethylamidate: A Fluorescent Nucleotide Substrate for DNA-Dependent RNA Polymerase from Escherichia coli," Arch. Biochem. Biophys., 246(2):564-571 (1986).

Wu et al., "Laboratory Methods, Direct Analysis of Single Nucleotide Variation in Human DNA and RNA Using In Situ Dot Hybridization," DNA, 8(2):135-142 (1989).

Yamamoto et al., "Features and applications of the laser scanning microscope," J. Mod. Optics, 37(11):1691-1701 (1990).

Yarbrough et al., "Synthesis and Properties of Fluorescent Nucleotide Substrates for DNA-dependent RNA Polymerases," J. Biol. Chem., 254(23):12069–12073 (1979).

Yosomiya et al., "Performance, Glass fiber Having Isocyanate Group on the Surface. Preparation and Reaction with Amino Acid," *Polymer Bulletin*, 12:41–48 (1984).

Young, W.S., "Simultaneous Use of Digoxigenin- and Radiolabeled Oligodeoxyribonucleotide Probes for Hybridization Histochemistry," *Neuropeptides*, 13:271-275 (1989).

Yue et al., "Minaiture Field-Flow Fractionation System for Analysis of Blood Cells," Clin. Chem., 40(9):1810-1814 (1994).

Zehavi et al., "Light-Sensitive Glycosides. I. 6-Nitroveratryl β-D-Glucopyranoside and 2-Nitrobenzyl β-D-Glucopyranoside," J. Org. Chem., 37(14):2281-2285 (1972).

Zengerle et al., "Transient measurements on miniaturized diaphragm pumps in microfluid systems," Sensors and Actuators, A46-47:557-561 (1995).

US 6,261,776 B1

Page 10

Ekins et al., "Fluorescence Spectroscopy and its Application to a New Generation of High Sensitivity, Multi-Microspot, Multianalyte, Immunoassay," Clin. Chim. Acta, 194:91-114

Hames et al., Nuclear acid hybridization, a practical approach, cover page and table of contents (1985).

Mairanovsky, V. G., "Electro-Deprotection-Electro-

chemical Removal of Protecting Groups**," Agnew. Chem. Int. Ed. Engl., 15(5):281-292 (1976).

Morita et al., "Direct pattern fabrication on silicone resin by

vapor phase electron beam polymerization," J. Vac. Sci. Technol., B1(4):1171-1173 (1983).

Munegumi et al., "thermal Synthesis of Polypeptides from $N\text{--}Boc\text{--}Amino\,Acid\,(Aspartic\,Acid,\,\beta\text{--}Aminoglutaric\,Acid)}$ Anhydrides, " Chem. Letters, pp. 1643-1646 (1988).

Sambrook, Molecular Cloning -A Laboratory Manual, publ. in 1989 (not included).

Semmelhack et al., "Selective Removal of Protecting Groups Using Controlled Potential Electrolysis," J. Am. Chem. Society, 94(14):5139-5140 (1972).

* cited by examiner

FIG._4.

FIG._7.

FIG._ IIB.

FIG._12A.

x10⁴

20

16

12

\$\frac{1}{2}\text{8}\text{8}\text{10}\text{1

Jul. 17, 2001

FIG._13A.

Sheet 10 of 20

F/G._/3B.

Jul. 17, 2001

104567.2 8.025189E+09 MEAN: VAR:

FIG._13C.

MEAN: 96546.92 VAR: 6358437E+09 o: 79739.8

F/G.__/3D.

FIG._148.

50780.26 34141.69 70813.97 28595.5 27486.26 26377.02 17503.12 11956.92 6410.134 -15774.03 37958.79

MEAN: 28595.5 VAR: 4.921637E+08 σ: 22184.76

FIG._15A.

819976.1 600504.3 Z16230.6 195270.2 181296.6 174309.8 167323 111428.7 97455.07 83481.48

41560.72

MEAN: 1812966 VAR: 1.952612E+10 σ: 139735.9

FIG._15B.

- 676588

428583.8

142577.9

126977.9

116577.3

111377.2

106177.1

64576.25

54176.03

, , , , , ,

43775.82

12575.18

MEAN: 116777.3 VAR: 1.081645E+10 c: 104002.1

FIG._16.

667348.3 453053 158397 142324.9 131610.1 126252.7 120895.3 78036.29 67321.52 56606.77 24462.47

MEAN: 131610.1 VAR: 1.148062E+10 o: 107147.6

FIG._17.

Р	A	5	۵	
<u>L</u> PGFL	<u>LA</u> GFL	L5GFL	<u>L4</u> 6FL	L
<u>F</u> PGFL	FAGFL	F54FL	<u>Fű</u> úfl	F
<u>W</u> PGFL	<u>WA</u> GFL	W54FL	WG6FL	W L SET
<u>YP</u> GFL	<u>YA</u> GFL	<u>Y5</u> 6FL	<u>YG</u> GFL	Y

FIG._18A.

ሪ P 5 a YPGFL Ya4FL YSGFL YGGFL Y fpGFL f **faGFL** fs4FL **fGGFL** wpGFL WSGFL w6aFL waGFL YP GFL ya4FL ys GFL y66FL Y

FIG._18B.

FIG.__19.

FIG._20.

I NUCLEIC ACID ARRAYS

This application is a continuation of Ser. No. 09/129,470 filed Aug. 4, 1998, which is a continuation of Ser. No. 08/456,598 filed Jun. 1, 1995, which is a divisional of Ser. No. 07/954,646 filed Sep. 30, 1992, now issued as U.S. Pat. No. 5,445,934, which is a divisional of Ser. No. 07/850,356, filed Mar. 12, 1992, now issued as U.S. Pat. No. 5,405,783, which is a divisional of Ser. No. 07/492,462 filed Mar. 7, 1990, now issued as U.S. Pat. No. 5,143,854, which is a continuation-in-part of Ser. No. 07/362,901 filed Jun. 7, 1989, now abandoned, the disclosures of which are incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

The present inventions relate to the synthesis and placement materials at known locations. In particular, one embodiment of the inventions provides a method and associated apparatus for preparing diverse chemical sequences at known locations on a single substrate surface. The inventions may be applied, for example, in the field of preparation of oligomer, peptide, nucleic acid, oligosaccharide, phospholipid, polymer, or drug congener preparation, especially to create sources of chemical diversity for use in screening for biological activity.

The relationship between structure and activity of molecules is a fundamental issue in the study of biological systems. Structure-activity relationships are important in understanding, for example, the function of enzymes, the ways in which cells communicate with each other, as well as cellular control and feedback systems.

Certain macromolecules are known to interact and bind to other molecules having a very specific three-dimensional spatial and electronic distribution. Any large molecule having such specificity can be considered a receptor, whether it is an enzyme catalyzing hydrolysis of a metabolic intermediate, a cell-surface protein mediating membrane transport of ions, a glycoprotein serving to identify a particular cell to its neighbors, an IgG-class antibody circulating in the plasma, an oligonucleotide sequence of DNA in the nucleus, or the like. The various molecules which receptors selectively bind are known as ligands.

Many assays are available for measuring the binding affinity of known receptors and ligands, but the information which can be gained from such experiments is often limited 55 by the number and type of ligands which are available. Novel ligands are sometimes discovered by chance or by application of new techniques for the elucidation of molecular structure, including x-ray crystallographic analysis and recombinant genetic techniques for proteins.

Small peptides are an exemplary system for exploring the relationship between structure and function in biology. A peptide is a sequence of amino acids. When the twenty naturally occurring amino acids are condensed into polymeric molecules they form a wide variety of three-65 dimensional configurations, each resulting from a particular amino acid sequence and solvent condition. The number of

possible pentapeptides of the 20 naturally occurring amino acids, for example, is 20⁵ or 3.2 million different peptides. The likelihood that molecules of this size might be useful in receptor-binding studies is supported by epitope analysis studies showing that some antibodies recognize sequences as short as a few amino acids with high specificity. Furthermore, the average molecular weight of amino acids puts small peptides in the size range of many currently useful pharmaceutical products.

Pharmaceutical drug discovery is one type of research which relies on such a study of structure-activity relationships. In most cases, contemporary pharmaceutical research can be described as the process of discovering novel ligands with desirable patterns of specificity for biologically important receptors. Another example is research to discover new compounds for use in agriculture, such as pesticides and herbicides.

Sometimes, the solution to a rational process of designing ligands is difficult or unyielding. Prior methods of preparing large numbers of different polymers have been painstakingly slow when used at a scale sufficient to permit effective rational or random screening. For example, the "Merrifield" method (J. Am. Chem. Soc. (1963) 85:2149-2154, which is incorporated herein by reference for all purposes) has been used to synthesize peptides on a solid support. In the Merrifield method, an amino acid is covalently bonded to a support made of an insoluble polymer. Another amino acid with an alpha protected group is reacted with the covalently bonded amino acid to form a dipeptide. After washing, the protective group is removed and a third amino acid with an alpha protective group is added to the dipeptide. This process is continued until a peptide of a desired length and sequence is obtained. Using the Merrifield method, it is not economically practical to synthesize more than a handful of peptide sequences in a day.

To synthesize larger numbers of polymer sequences, it has also been proposed to use a series of reaction vessels for polymer synthesis. For example, a tubular reactor system may be used to synthesize a linear polymer on a solid phase support by automated sequential addition of reagents. This method still does not enable the synthesis of a sufficiently large number of polymer sequences for effective economical screening.

Methods of preparing a plurality of polymer sequences are also known in which a foraminous container encloses a known quantity of reactive particles, the particles being larger in size than foramina of the container. The containers may be selectively reacted with desired materials to synthesize desired sequences of product molecules. As with other methods known in the art, this method cannot practically be used to synthesize a sufficient variety of polypeptides for effective screening.

Other techniques have also been described. These methods include the synthesis of peptides on 96 plastic pins which fit the format of standard microtiter plates. Unfortunately, while these techniques have been somewhat useful, substantial problems remain. For example, these methods continue to be limited in the diversity of sequences which-can be economically synthesized and screened.

From the above, it is seen that an improved method and apparatus for synthesizing a variety of chemical sequences at known locations is desired.

SUMMARY OF THE INVENTION

An improved method and apparatus for the preparation of a variety of polymers is disclosed.

In one preferred embodiment, linker molecules are provided on a substrate. A terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group. Using lithographic methods, the photoremovable protective group is exposed to 5 light and removed from the linker molecules in first selected regions. The substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules. In a preferred embodiment, the monomer is an amino acid containing a photoremovable 10 protective group at its amino or carboxy terminus and the linker molecule terminates in an amino or carboxy acid group bearing a photoremovable protective group.

A second set of selected regions is, thereafter, exposed to molecule/protected amino acid is removed at the second set of regions. The substrate is then contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a 20 drawings. desired length and desired chemical sequence are obtained. Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped. Side chain protective groups, if present, are also removed.

By using the lithographic techniques disclosed herein, it is possible to direct light to relatively small and precisely known locations on the substrate. It is, therefore, possible to synthesize polymers of a known chemical sequence at known locations on the substrate.

The resulting substrate will have a variety of uses including, for example, screening large numbers of polymers for biological activity. To screen for biological activity, the substrate is exposed to one or more receptors such as antibody whole cells, receptors on vesicles, lipids, or any 35 one of a variety of other receptors. The receptors are preferably labeled with, for example, a fluorescent marker, radioactive marker, or a labeled antibody reactive with the receptor. The location of the marker on the substrate is detected with, for example, photon detection or autoradiographic techniques. Through knowledge of the sequence of the material at the location where binding is detected, it is possible to quickly determine which sequence binds with the receptor and, therefore, the technique can be used to screen large numbers of peptides. Other possible applications of the inventions herein include diagnostics in which various antibodies for particular receptors would be placed on a substrate and, for example, blood sera would be screened for immune deficiencies. Still further applications include, for example, selective "doping" of organic materials in semiconductor devices, and the like.

In connection with one aspect of the invention an improved reactor system for synthesizing polymers is also disclosed. The reactor system includes a substrate mount which engages a substrate around a periphery thereof. The 55 substrate mount provides for a reactor space between the substrate and the mount through or into which reaction fluids are pumped or flowed. A mask is placed on or focused on the substrate and illuminated so as to deprotect selected regions of the substrate in the reactor space. A monomer is pumped 60 through the reactor space or otherwise contacted with the substrate and reacts with the deprotected regions. By selectively deprotecting regions on the substrate and flowing predetermined monomers through the reactor space, desired polymers at known locations may be synthesized.

Improved detection apparatus and methods are also disclosed. The detection method and apparatus utilize a sub-

strate having a large variety of polymer sequences at known locations on a surface thereof. The substrate is exposed to a fluorescently labeled receptor which binds to one or more of the polymer sequences. The substrate is placed in a microscope detection apparatus for identification of locations where binding takes place. The microscope detection apparatus includes a monochromatic or polychromatic light source for directing light at the substrate, means for detecting fluoresced light from the substrate, and means for determining a location of the fluoresced light. The means for detecting light fluoresced on the substrate may in some embodiments include a photon counter. The means for determining a location of the fluoresced light may include an x/y translation table for the substrate. Translation of the slide light and the photoremovable protective group on the linker 15 and data collection are recorded and managed by an appropriately programmed digital computer.

> A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates masking and irradiation of a substrate at a first location. The substrate is shown in cross-section;

FIG. 2 illustrates the substrate after application of a monomer "A";

FIG. 3 illustrates irradiation of the substrate at a second location:

FIG. 4 illustrates the substrate after application of monomer "B";

FIG. 5 illustrates irradiation of the "A" monomer;

FIG. 6 illustrates the substrate after a second application of "B";

FIG. 7 illustrates a completed substrate;

FIGS. 8A and 8B illustrate alternative embodiments of a reactor system for forming a plurality of polymers on a substrate;

FIG. 9 illustrates a detection apparatus for locating fluorescent markers on the substrate;

FIGS. 10A-10M illustrate the method as it is applied to the production of the trimers of monomers "A" and "B";

FIGS. 11A and 11B are fluorescence traces for standard 45 fluorescent beads;

FIGS. 12A and 12B are fluorescence curves for NVOC slides not exposed and exposed to light respectively;

FIGS. 13A to 13D are fluorescence plots of slides exposed through 100 μ m, 50 μ m, 20 μ m, and 10 μ m masks;

FIG. 14A and 14B illustrates fluorescence of a slide pith the peptide YGGFL on selected regions of-its surface which has been exposed to labeled Herz antibody specific for this

FIGS. 15A and 15D illustrate formation of and a fluorescence plot of a slide with a checkerboard pattern of YGGFL and GGFL exposed to labeled Herz antibody. FIG. 15A illustrates a 500×500 µm mask which has been focused on the substrate according to FIG. 8A while FIG. 15B illustrates a $50\times50 \,\mu\mathrm{m}$ mask placed in direct contact with the substrate in accord with FIG. 8B;

FIG. 16 is a fluorescence plot of YGGFL and PGGFL synthesized in a 50 µm checkerboard pattern;

FIG. 17 is a fluorescence plot of YPGGFL and is YGGFL 65 synthesized in a 50 μm checkerboard pattern;

FIGS. 18A and 18B illustrate the mapping of sixteen sequences synthesized on two different glass slides;

FIG. 19 is a fluorescence plot of the slide illustrated in FIG. 18A; and

FIG. 20 is a fluorescence plot of the slide illustrated in FIG. 10B.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

CONTENTS

- I. Glossary
- II. General
- III. Polymer Synthesis
- IV. Details of One Embodiment of a Reactor System
- V. Details of One Embodiment of a Fluorescent Detection 15
 Device
- VI. Determination of Relative Binding Strength of Receptors

VII. Examples

- A. Slide Preparation
- B. Synthesis of Eight Trimers of "A" and "B"
- C. Synthesis of a Dimer of an Aminopropyl Group and a Fluorescent Group
- D. Demonstration of Signal Capability
- E. Determination of the Number of Molecules Per Unit Area
- F. Removal of NVOC and Attachment of a Fluorescent Marker
- G. Use of a Mask in Removal of NVOC
- H. Attachment of YGGFL and Subsequent Exposure to Herz Antibody and Goat Antimouse
- I. Monomer-by-Monomer Formation of YGGFL and Subsequent Exposure to Labeled Antibody
- J. Monomer-by-Monomer Synthesis of YGGFL and 35 PGGFL
- K. Monomer-by Monomer Synthesis of YGGFL and YPGGFL
- L. Synthesis of an Array of Sixteen Different Amino Acid Sequences and Estimation of Relative Binding Affinity to Herz Antibody

VIII. Illustrative Alternative Embodiment

IX. Conclusion

I. Glossary

The following terms are intended to have the following general meanings as they are used herein:

- 1. Complementary: Refers to the topological compatibility or matching together of interacting surfaces of a ligand molecule and its receptor. Thus, the receptor and its ligand 50 can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other.
- Epitope: The portion of an antigen molecule which is delineated by the area of interaction with the subclass of receptors known as antibodies.
- 3. Ligand: A ligand is a molecule that is recognized by a particular receptor. Examples of ligands that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, 60 toxins and venoms, viral epitopes, hormones (e.g., opiates, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.
- Monomer: A member of the set of small molecules which can be joined together to form a polymer. The set of

monomers includes but is not restricted to, for example, the set of common L-amino acids, the set of D-amino acids, the set of synthetic amino acids, the set of nucleotides and the set of pentoses and hexoses. As used herein, monomers refers to any member of a basis set for synthesis of a polymer. For example, dimers of L-amino acids form a basis set of 400 monomers for synthesis of polypeptides. Different basis sets of monomers may be used at successive steps in the synthesis of a polymer.

- 5. Peptide: A polymer in which the monomers are alpha amino acids and which are joined together through amide bonds and alternatively referred to as a polypeptide. In the context of this specification it should be appreciated that the amino acids may be the L-optical isomer or the D-optical isomer. Peptides are more than two amino acid monomers long, and often more than 20 amino acid are used (e.g., P for proline). These abbreviations are included in Stryer, Biochemstry, Third Ed., 1988, which is incorporated herein by reference for all purposes.
 - 6. Radiation: Energy which may be selectively applied including energy having a wavelength of between 10⁻¹⁴ and 10⁴ meters including, for example, electron beam radiation, gamma radiation, x-ray radiation, ultra-violet radiation, visible light, infrared radiation, microwave radiation, and radio waves. "Irradiation" refers to the application of radiation to a surface.
 - 7. Receptor: A molecule that has an affinity for a given ligand. Receptors may be naturally-occuring or manmade molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Receptors may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of receptors which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Receptors are sometimes referred to in the art as anti-ligands. As the term receptors is used herein, no difference in meaning is intended. A "Ligand Receptor Pair" is formed when two macromolecules have combined through molecular recognition to form a complex.

Other examples of receptors which can be investigated by this invention include but are not restricted to:

- a) Microorganism receptors: Determination of ligands which bind to receptors, such as specific transport proteins or enzymes essential to survival of microorganisms, is useful in a new class of antibiotics. Of particular value would be antibiotics against opportunistic fungi, protozoa, and those bacteria resistant to the antibiotics in current use.
- b) Enzymes: For instance, the binding site of enzymes such as the enzymes responsible for cleaving neurotransmitters; determination of ligands which bind to certain receptors to modulate the action of the enzymes which cleave the different neurotransmitters is useful in the development of drugs which can be used in the treatment of disorders of neurotransmission.
- c) Antibodies: For instance, the invention may be useful in investigating the ligand-binding site on the antibody molecule which combines with the epitope of an antigen of interest; determining a sequence that mimics an antigenic epitope may lead to the development of

vaccines of which the immunogen is based on one or more of such sequences or lead to the development of related diagnostic agents or compounds useful in therapeutic treatments such as for auto-immune diseases (e.g., by blocking the binding of the "self" antibodies). 5

d) Nucleic Acids: Sequences of nucleic acids may be synthesized to establish DNA or RNA binding sequences.

- e) Catalytic Polypeptides: Polymers, preferably polypeptides, which are capable of promoting a chemical reaction involving the conversion of one or more reactants to one or more products. Such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the binding site, which functionality is capable of chemically modifying the bound reactant. Catalytic polypeptides are described in, for example, U.S. application Ser. No. 404,920, which is incorporated herein by reference for all purposes.
- f) Hormone receptors: For instance, the receptors for 10 insulin and growth hormone. Determination of the ligands which bind with high affinity to a receptor is useful in the development of, for example, an oral replacement of the daily injections which diabetics must take to relieve the symptoms of diabetes, and in 125 the other case, a replacement for the scarce human growth hormone which can only be obtained from cadavers or by recombinant DNA technology. Other examples are the vasoconstrictive hormone receptors; determination of those ligands which bind to a receptor may lead to the development of drugs to control blood pressure.
- g) Opiate receptors: Determination of ligands which bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.
- 8. Substrate: A material having a rigid or semi-rigid surface. In many embodiments, at least one surface of the substrate will be substantially flat, although in some embodiments it may be desirable to physically separate synthesis regions for different polymers with, for example, wells, raised regions, etched trenches, or the like. According to other embodiments, small beads may be provided on the surface which may be released upon completion of the synthesis.
- Protective Group: A material which is bound to a monomer unit and which may be spatially removed upon selective exposure to an activator such as electromagnetic radiation. Examples of protective groups with utility herein include Nitroveratryloxy carbonyl, Nitrobenzyloxy carbonyl, Dimethyl dimethoxybenzyloxy carbonyl, 5-Bromo-7-nitroindolinyl, o-Hydroxy-α-methyl cinnamoyl, and 2-oxymethylene anthraquinone. Other examples of activators include ion beams, electric fields, magnetic fields, electron beams, x-ray, and the like.

10. Predefined Region: A predefined region is a localized area on a surface which is, was, or is intended to be activated for formation of a polymer. The predefined region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc. For the sake of brevity herein, "predefined regions" are sometimes referred to simply as "regions."

11. Substantially Pure: A polymer is considered to be "substantially pure" within a predefined region of a substrate when it exhibits characteristics that distinguish it from 65 other predefined regions. Typically, purity will be measured in terms of biological activity or function as a result

of uniform sequence. Such characteristics will typically be measured by way of binding with a selected ligand or receptor.

II. General

The present invention provides methods and apparatus for the preparation and use of a substrate having a plurality of polymer sequences in predefined regions. The invention is described herein primarily with regard to the preparation of molecules containing sequences of amino acids, but could readily be applied in the preparation of other polymers. Such polymers include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either α-, β-, or ω-amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure. In a preferred embodiment, the invention herein is used in the synthesis of peptides.

The prepared substrate may, for example, be used in screening a variety of polymers as ligands for binding with a receptor, although it will be apparent that the invention could be used for the synthesis of a receptor for binding with a ligand. The substrate disclosed herein will have a wide variety of other uses. Merely by way of example, the invention herein can be used in determining peptide and nucleic acid sequences which bind to proteins, finding sequence-specific binding drugs, identifying epitopes recognized by antibodies, and evaluation of a variety of drugs for clinical and diagnostic applications, as well as combinations of the above.

The invention preferably provides for the use of a substrate "S" with a surface. Linker molecules "L" are optionally provided on a surface of the substrate. The purpose of the linker molecules, in some embodiments, is to facilitate receptor recognition of the synthesized polymers.

Optionally, the linker molecules may be chemically protected for storage purposes. A chemical storage protective group such as t-BOC (t-butoxycarbonyl) may be used in some embodiments. Such chemical protective groups would be chemically removed upon exposure to, for example, acidic solution and would serve to protect the surface during storage and be removed prior to polymer preparation.

On the substrate or a distal end of the linker molecules, a functional group with a protective group P_0 is provided. The protective group P_0 may be removed upon exposure to radiation, electric fields, electric currents, or other activators to expose the functional group

In a preferred embodiment, the radiation is ultraviolet (UV), infrared (IR), or visible light. As more fully described below, the protective group may alternatively be an electrochemically-sensitive group which may be removed in the presence of an electric field. In still further alternative embodiments, ion beams, electron beams, or the like may be used for deprotection.

In some embodiments, the exposed regions and, therefore, the area upon which each distinct polymer sequence is synthesized are smaller than about 1 cm² or less than 1 mm². In preferred embodiments the exposed area is less than about 10,000 μ m² or, more preferably, less than 100 μ m² and may, in some embodiments, encompass the binding site for as few as a single molecule. Within these regions, each polymer is preferably synthesized in a substantially pure form.

Concurrently or after exposure of a known region of the substrate to light, the surface is contacted with a first

monomer unit M1 which reacts with the functional group which has been exposed by the deprotection step. The first monomer includes a protective group P1. P1 may or may not be the same as P₀.

Accordingly, after a first cycle, known first regions of the 5 surface may comprise the sequence:

S-L-M,-P,

while remaining regions of the surface comprise the 10 above methods will have a variety of uses including, for sequence:

Thereafter, second regions of the surface (which may include the first region) are exposed to light and contacted 15 with a second monomer M2 (which may or may not be the same as M₁) having a protective group P₂. P₂ may or may not be the same as Po and P1. After this second cycle, different regions of the substrate may comprise one or more of the following sequences:

S-L-M1-M2-P2

S-L-M,-P,

S-L-M1-P1 and/or

S-L-Pa

The above process is repeated until the substrate includes desired polymers of desired lengths. By controlling the locations of the substrate exposed to light and the reagents exposed to the substrate following exposure, the location of each sequence will be known.

Thereafter, the protective groups are removed from some or all of the substrate and the sequences are, optionally, capped with a capping unit C. The process results in a substrate having a surface with a plurality of polymers of the following general formula:

$$S-[L]-(M_i)-(M_i)-(M_k)...(M_k)-[C]$$

where square brackets indicate optional groups, and Mi... M, indicates any sequence of monomers. The number of monomers could cover a wide variety of values, but in a preferred embodiment they will range from 2 to 100.

In some embodiments a plurality of locations on the 45 substrate polymers are to contain a common monomer subsequence. For example, it may be desired to synthesize a sequence S-M₁-M₂-M₃ at first locations and a sequence S-M₄-M₂-M₃ at second locations. The process would commence with irradiation of the first locations followed by 50 contacting with M₁-P, resulting in the sequence S-M₁-P at the first location. The second locations would then be irradiated and contacted with M4-P, resulting in the sequence S-M₄-P at the second locations. Thereafter both the first and second locations would be irradiated and contacted with the 55 dimer M2-M3, resulting in the sequence S-M1-M2-M3 at the first locations and S-M₄-M₂-M₃ at the second locations. Of course, common subsequences of any length could be utilized including those in a range of 2 or more monomers, 2 to 100 monomers, 2 to 20 monomers, and a most preferred 60 closed herein in which a substrate 2 is shown in crossrange of 2 to 3 monomers.

According to other embodiments, a set of masks is used for the first monomer layer and, thereafter, varied light wavelengths are used for selective deprotection. For example, in the process discussed above, first regions are 65 first exposed through a mask and reacted with a first monomer having a first protective group P1, which is removable

upon exposure to a first wavelength of light (e.g., IR). Second regions are masked and reacted with a second monomer having a second protective group P2, which is removable upon exposure to a second wavelength of light (e.g., UV). Thereafter, masks become unnecessary in the synthesis because the entire substrate may be exposed alternatively to the first and second wavelengths of light in the deprotection cycle.

The polymers prepared on a substrate according to the example, screening for biological activity. In such screening activities, the substrate containing the sequences is exposed to an unlabeled or labeled receptor such as an antibody, receptor on a cell, phospholipid vesicle, or any one of a variety of other receptors. In one preferred embodiment the polymers are exposed to a first, unlabeled receptor of interest and, thereafter, exposed to a labeled receptor-specific recognition element, which is, for example, an antibody. This process will provide signal amplification in the detection 20 stage.

The receptor molecules may bind with one or more polymers on the substrate. The presence of the labeled receptor and, therefore, the presence of a sequence which binds with the receptor is detected in a preferred embodi-25 ment through the use of autoradiography, detection of fluorescence with a charge-coupled device, fluorescence microscopy, or the like. The sequence of the polymer at the locations where the receptor binding is detected may be used to determine all or part of a sequence which is complementary to the receptor.

Use of the invention herein is illustrated primarily with reference to screening for biological activity. The invention will, however, find many other uses. For example, the invention may be used in information storage (e.g., on optical disks), production of molecular electronic devices, production of stationary phases in separation sciences, production of dyes and brightening agents, photography, and in immobilization of cells, proteins, lectins, nucleic acids, polysaccharides and the like in patterns on a surface via molecular recognition of specific polymer sequences. By synthesizing the same compound in adjacent, progressively differing concentrations, a gradient will be established to control chemotaxis or to develop diagnostic dipsticks which, for example, titrate an antibody against an increasing amount of antigen. By synthesizing several catalyst molecules in close proximity, more efficient multistep conversions may be achieved by "coordinate immobilization." Coordinate immobilization also may be used for electron transfer systems, as well as to provide both structural integrity and other desirable properties to materials such as lubrication, wetting, etc.

According to alternative embodiments, molecular biodistribution or pharmacokinetic properties may be examined. For example, to assess resistance to intestinal or serum proteases, polymers may be capped with a fluorescent tag and exposed to biological fluids of interest.

III. Polymer Synthesis

FIG. 1 illustrates one embodiment of the invention dissection. Essentially, any conceivable substrate may be employed in the invention. The substrate may be biological, nonbiological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, containers, capillaries, pads, slices, films, plates, slides, etc. The substrate may have any convenient shape, such as a disc, square, sphere, circle, etc. The

substrate is preferably flat but may take on a variety of alternative surface configurations. For example, the substrate may contain raised or depressed regions on which the synthesis takes place. The substrate and its surface preferably form a rigid support on which to carry out the reactions 5 described herein. The substrate and its surface is also chosen to provide appropriate light-absorbing characteristics. For instance, the substrate may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO₂, SiN₄, modified silicon, or any one of a wide variety of gels 10 or polymers such as (poly)tetrafluoroethylene, (poly) vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof. Other substrate materials will be readily apparent to those of skill in is the art upon review of this disclosure. In a preferred embodiment the substrate is flat 15 glass or single-crystal silicon with surface relief features of less than 10 Å.

According to some embodiments, the surface of the substrate is etched using well known techniques to provide for desired surface features. For example, by way of the 20 formation of trenches, v-grooves, mesa structures, or the like, the synthesis regions may be more closely placed within the focus point of impinging light, be provided with reflective "mirror" structures for maximization of light collection from fluorescent sources, or the like.

Surfaces on the solid substrate will usually, though not always, be composed of the same material as the substrate. Thus, the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the abovelisted substrate materials. In some embodiments the surface may provide for the use of caged binding members which are attached firmly to the surface of the substrate in accord with the teaching of copending application Ser. No. 404,920, previously incorporated herein by reference. Proferably, the surface will contain reactive groups, which could be carboxyl, amino, hydroxyl, or the like. Most preferably, the surface will be optically transparent and will have surface Si—OH functionalities, such as are found on silica surfaces.

The surface 4 of the substrate is preferably provided with a layer of linker molecules 6, although it will be understood that the linker molecules are not required elements of the invention. The linker molecules are preferably of sufficientlength to permit polymers in a completed substrate to interact freely with molecules exposed to the substrate. The linker molecules should be 6-50 atoms long to provide sufficient exposure. The linker molecules may be, for example, aryl acetylene, ethylene glycol oligomers containing 2-10 monomer units, diamines, diacids, amino acids, or combinations thereof. Other linker molecules may be used in light of this disclsoure.

According to alternative embodiments, the linker molecules are selected based upon their hydrophilic/hydrophobic properties to improve presentation of synthesized polymers to certain receptors. For example, in the case of a hydrophilic receptor, hydrophilic linker molecules will be preferred so as to permit the receptor to more closely approach the synthesized polymer.

According to another alternative embodiment, linker molecules are also provided with a photocleavable group at an intermediate position. The photocleavable group is preferably cleavable at a wavelength different from the protective group. This enables removal of the various polymers following completion of the synthesis by way of exposure to the different wavelengths of light.

The linker molecules can be attached to the substrate via 65 carbon-carbon bonds using, for example, (poly) trifluorochloroethylene surfaces, or preferably, by siloxane

bonds (using, for example, glass or silicon oxide surfaces). Siloxane bonds with the surface of the substrate may be formed in one embodiment via reactions of linker molecules bearing trichlorosilyl groups. The linker molecules may optionally be attached in an ordered array, i.e., as parts of the head groups in a polymerized Langmuir Blodgett film. In alternative embodiments, the linker molecules are adsorbed to the surface of the substrate.

The linker molecules and monomers used herein are provided with a functionial group to which is bound a protective group. Preferably, the protective group is on the distal or terminal end of the linker molecule opposite the substrate. The protective group may be either a negative protective group (i.e., the protective group renders the linker molecules less reactive with a monomer upon exposure) or a positive protective group (i.e., the protective group renders the linker molecules more reactive with a monomer upon exposure). In the case of negative protective groups an additional step of reactivation will be required. In some embodiments, this will be done by heating.

The protective group on the linker molecules may be selected from a wide variety of positive light-reactive groups preferably including nitro aromatic compounds such as o-nitrobenzyl derivatives or benzylsulfonyl. In a preferred embodiment, 6-nitroveratryloxy-carbonyl (NVOC), 25 2-nitrobenzyloxycarbonyl (NBOC) or α,α-dimethyldimethoxybenzyloxycarbonyl (DDZ) is used. In one embodiment, a nitro aromatic compound containing a benzylic hydrogen ortho to the nitro group is used, i.e., a chemical of the form:

where R_1 is alkoxy, alkyl, halo, aryl, alkenyl, or hydrogen; R_2 is alkoxy, alkyl, halo, aryl, nitro, or hydrogen; R_3 is alkoxy, alkyl, halo, nitro, aryl, or hydrogen; R_4 is alkoxy, alkyl, hydrogen, aryl, halo, or nitro; and R_5 is alkyl, alkynyl, cyano, alkoxy, hydrogen, halo, aryl, or alkenyl. Other materials which may be used include o-hydroxy- α -methyl cinnamoyl derivatives. Photoremovable protective groups are described in, for example, Patchornik, J. Am. Chem. Soc. (1970) 92:6333 and Amit et al., J. Org. Chem. (1974) 39:192, both of which are incorporated herein by reference.

In an alternative embodiment the positive reactive group is activated for reaction with reagents in solution. For example, a 5-bromo-7-nitro indoline group, when bound to a carbonyl, undergoes reaction upon exposure to light at 420 nm.

In a second alternative embodiment, the reactive group on the linker molecule is selected from a wide variety of negative light-reactive groups including a cinammate group.

Alternatively, the reactive group is activated or deactivated by electron beam lithography, x-ray lithography, or any other radiation. Suitable reactive groups for electron beam lithography include sulfonyl. Other methods may be used including, for example, exposure to a current source. Other reactive groups and methods of activation may be used in light of this disclosure.

As shown in FIG. 1, the linking molecules are preferably exposed to, for example, light through a suitable mask 8 using photolithographic techniques of the type known in the semiconductor industry and described in, for example, Sze,

VLSI Technology, McGraw-Hill (1983), and Mead et al., Introduction to VLSI Systems, Addison-Wesley (1980), which are incorporated herein by reference for all purposes. The light may be directed at either the surface containing the protective groups or at the back of the substrate, so long as the substrate is transparent to the wavelength of light needed for removal of the protective groups. In the embodiment shown in FIG. 1, light is directed at the surface of the substrate containing the protective groups. FIG. 1 illustrates the use of such masking techniques as they are applied to a positive reactive group so as to activate linking molecules 10 and expose functional groups in areas 10a and 10b.

The mask 8 is in one embodiment a transparent support material selectively coated with a layer of opaque material. Portions of the opaque material are removed, leaving opaque material in the precise pattern desired on the substrate 15 surface. The mask is brought into close proximity with, imaged on, or brought directly into contact with the substrate surface as shown in FIG. 1. "Openings" in the mask correspond to locations on the substrate where it is desired to remove photoremovable protective groups from the substrate. Alignment may be performed using conventional alignment techniques in which alignment marks (not shown) are used to accurately overlay successive masks with previous patterning steps, or more sophisticated techniques may be used. For example, interferometric techniques such as the one described in Flanders et al., "A New Interferometric 25 Alignment Technique," App. Phys. Lett. (1977) 31:426-428, which is incorporated herein by reference, may be used.

To enhance contrast of light applied to the substrate, it is desirable to provide contrast enhancement materials between the mask and the substrate according to some ambodiments. This contrast enhancement layer may comprise a molecule which is decomposed by light such as quinone diazid or a material which is transiently bleached at the wavelength of interest. Transient bleaching of materials will allow greater penetration where light is applied, thereby enhancing contrast. Alternatively, contrast enhancement may be provided by way of a cladded fiber optic bundle.

The light may be from a conventional incandescent source, a laser, a laser diode, or the like. If non-collimated sources of light are used it may be desirable to provide a thick- or multi-layered mask to prevent spreading of the light onto the substrate. It may, further, be desirable in some embodiments to utilize groups which are sensitive to different wavelengths to control synthesis. For example, by using groups which are sensitive to different wavelengths, it is possible to select branch positions in the synthesis of a 45 polymer or eliminate certain masking steps. Several reactive groups along with their corresponding wavelengths for deprotection are provided in Table 1.

TABLE 1

Group	Approximate Deprotection Wavelength	
Nitroveratryloxy carbonyl (NVOC)	UV (300-400 nm)	
Nitrobenzyloxy carbonyl (NBOC)	UV (300-350 nm)	
Dimethyl dimethoxybenzyloxy carbonyl	UV (280-300 nm)	
5-Bromo-7-nitroindolinyl	UV (420 nm)	
o-Hydroxy-a-methyl cinnamoyl	UV (300-350 nm)	
2-Oxymethylene anthraquinone	UV (350 nm)	

While the invention is illustrated primarily herein by way of the use of a mask to illuminate selected regions the substrate, other techniques may also be used. For example, the substrate may be translated under a modulated laser or diode light source. Such techniques are discussed in, for example, U.S. Pat. No. 4,719,615 (Feyrer et al.), which is incorporated herein by reference. In alternative embodiments a laser galvanometric scanner is utilized. In other

embodiments, the synthesis may take place on or in contact with a conventional liquid crystal (referred to herein as a "light valve") or fiber optic light sources. By appropriately modulating liquid crystals, light may be selectively controlled so as to permit light to contact selected regions of the substrate. Alternatively, synthesis may take place on the end of a series of optical fibers to which light is selectively applied. Other means of controlling the location of light exposure will be apparent to those of skill in the art.

The substrate may be irradiated either in contact or not in contact with a solution (not shown) and is, preferably, irradiated in contact with a solution. The solution contains reagents to prevent the by-products formed by irradiation from interfering with synthesis of the polymer according to some embodiments. Such by-products might include, for example, carbon dioxide, nitrosocarbonyl compounds, styrene derivatives, indole derivatives, and products of their photochemical reactions. Alternatively, the solution may contain reagents used to match the index of refraction of the substrate. Reagents added to the solution may further include, for example, acidic or basic buffers, thiols, substituted hydrazines and hydroxylamines, reducing agents (e.g., NADH) or reagents known to react with a given functional group (e.g., aryl nitroso+glyoxylic acid→aryl formhydroxamate+CO₂).

Either concurrently with or after the irradiation step, the linker molecules are washed or otherwise contacted with a first monomer, illustrated by "A" in regions 12a and 12b in FIG. 2. The first monomer reacts with the activated functional groups of the linkage molecules which have been exposed to light. The first monomer, which is preferably an amino acid, is also provided with a photoprotective group. The photoprotective group on the monomer may be the same as or different than the protective group used in the linkage molecules, and may be selected from any of the above-described protective groups. In one embodiment, the protective groups for the A monomer is selected from the group NBOC and NVOC.

As shown in FIG. 3, the process of irradiating is thereafter repeated, with a mask repositioned so as to remove linkage protective groups and expose functional groups in regions 14a and 14b which are illustrated as being regions which were protected in the previous masking step. As an alternative to repositioning of the first mask, in many embodiments a second mask will be utilized. In other alternative embodiments, some steps may provide for illuminating a common region in successive steps. As shown in FIG. 3, it may be desirable to provide separation between irradiated regions. For example, separation of about $1-5 \mu m$ may be appropriate to account for alignment tolerances.

As shown in FIG. 4, the substrate is then exposed to a second protected monomer "B," producing B regions 16a and 16b. Thereafter, the substrate is again masked so as to remove the protective groups and expose reactive groups on A region 12a and B region 16b. The substrate is again exposed to monomer B, resulting in the formation of the structure shown in FIG. 6. The dimers B-A and B-B have been produced on the substrate.

A subsequent series of masking and contacting steps similar to those described above with A (not shown) provides the structure shown in FIG. 7. The process provides all possible dimers of B and A, i.e., B-A, A-B, A-A, and B-B.

The substrate, the area of synthesis, and the area for synthesis of each individual polymer could be of any size or shape. For example, squares, ellipsoids, rectangles, triangles, circles, or portions thereof, along with irregular geometric shapes, may be utilized. Duplicate synthesis areas may also be applied to a single substrate for purposes of redundancy.

In one embodiment the regions 12 and 16 on the substrate will have a surface area of between about 1 cm² and 10⁻¹⁰

cm². In some embodiments the regions 12 and 16 have areas of less than about 10^{-1} cm², 10^{-2} cm², 10^{-3} cm², 10^{-4} cm², 10^{-5} cm², 10^{-6} cm², 10^{-7} cm², 10^{-8} cm², or 10^{-10} cm². In a preferred embodiment, the regions 12 and 16 are between about $10 \times 10 \ \mu m$ and $500 \times 500 \ \mu m$.

In some embodiments a single substrate supports more than about 10 different monomer sequences and perferably more than about 100 different monomer sequences, although in some embodiments more than about 10³, 10⁴, 10⁵, 10⁶, 10⁷, or 10⁸ different sequences are provided on a substrate. Of course, within a region of the substrate in which a monomer sequence is synthesized, it is preferred that the monomer sequence be substantially pure. In some embodiments, regions of the substrate contain polymer sequences which are at least about 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, 90%, 1595%, 96%, 97%, 98%, or 99% pure.

According to some embodiments, several sequences are intentionally provided within a single region so as to provide an initial screening for biological activity, after which materials within regions exhibiting significant binding are further 20 evaluated.

IV. Details of One Embodiment of a Reactor System

FIG. 8A schematically illustrates a preferred embodiment of a reactor system 100 for synthesizing polymers on the prepared substrate in accordance with one aspect of the invention. The reactor system includes a body 102 with a cavity 104 on a surface thereof. In preferred embodiments the cavity 104 is between about 50 and 1000 μ m deep with ³⁰ a depth of about 500 μ m preferred.

The bottom of the cavity is preferably provided with an array of ridges 106 which extend both into the plane of the Figure and parallel to the plane of the Figure. The ridges are preferably about 50 to 200 μ m deep and spaced at about 2 to 3mm. The purpose of the ridges is to generate turbulent flow for better mixing. The bottom surface of the cavity is preferably light absorbing so as to prevent reflection of impinging light.

A substrate 112 is mounted above the cavity 104. The substrate is provided along its bottom surface 114 with a photoremovable protective group such as NVOC with or without an intervening linker molecule. The substrate is preferably transparent to a wide spectrum of light, but in some embodiments is transparent only at a wavelength at which the protective group may be removed (such as UV in the case of NVOC). The substrate in some embodiments is a conventional microscope glass slide or cover slip. The substrate is preferably as thin as possible, while still providing adequate physical support. Preferably, the substrate is less than about 1 mm thick, more preferably less than 0.5 mm thick, more preferably less than 0.1 mm thick, and most preferably less than 0.05 mm thick. In alternative preferred embodiments, the substrate is quartz or silicon.

The substrate and the body serve to seal the cavity except for an inlet port 108 and an outlet port 110. The body and the substrate may be mated for sealing in some embodiments with one or more gaskets. According to a preferred embodiment, the body is provided with two concentric gaskets and the intervening space is held at vacuum to ensure mating of the substrate to the gaskets.

Fluid is pumped through the inlet port into the cavity by way of a pump 116 which may be, for example, a model no. B-120-S made by Eldex Laboratories. Selected fluids are circulated into the cavity by the pump, through the cavity, and out the outlet for recirculation or disposal. The reactor and be subjected to ultrasonic radiation and/or heated to aid in agitation in some embodiments.

Above the substrate 112, a lens 120 is provided which may be, for example, a 2" 100 mm focal length fused silica lens. For the sake of a compact system, a reflective mirror 122 may be provided for directing light from a light source 124 onto the substrate. Light source 124 may be, for example, a Xe(Hg) light source manufactured by Oriel and having model no. 66024. Asecond lens 126 may be provided for the purpose of projecting a mask image onto the substrate in combination with lens 112. This form of lithography is referred to herein as projection printing. As will be apparent from this disclosure, proximity printing and the like may also be used according to some embodiments.

Light from the light source is permitted to reach only selected locations on the substrate as a result of mask 128. Mask 128 may be, for example, a glass slide having etched chrome thereon. The mask 128 in one embodiment is provided with a grid of transparent locations and opaque locations. Such masks may be manufactured by, for example, Photo Sciences, Inc. Light passes freely through the transparent regions of the mask, but is reflected from or absorbed by other regions. Therefore, only selected regions of the substrate are exposed to light.

As discussed above, light valves (LCD's) may be used as an alternative to conventional masks to selectively expose regions of the substrate. Alternatively, fiber optic faceplates such as those available from Schott Glass, Inc, may be used for the purpose of contrast enhancement of the mask or as the sole means of restricting the region to which light is applied. Such faceplates would be placed directly above or on the substrate in the reactor shown in FIG. 8A. In still further embodiments, flys-eye lenses, tapered fiber optic faceplates, or the like, may be used for contrast enhancement.

In order to provide for illumination of regions smaller than a wavelength of light, more elaborate techniques may be utilized. For example, according to one preferred embodiment, light is directed at the substrate by way of molecular microcrystals on the tip of, for example, micropipettes. Such devices are disclosed in Lieberman et al., "A Light Source Smaller Than the Optical Wavelength," Science (1990) 247:59-61, which is incorporated herein by reference for all purposes.

In operation, the substrate is placed on the cavity and sealed thereto. All operations in the process of preparing the substrate are carried out in a room lit primarily or entirely by light of a wavelength outside of the light range at which the protective group is removed. For example, in the case of NVOC, the room should be lit with a conventional dark room light which provides little or no UV light. All operations are preferably conducted at about room temperature.

A first, deprotection fluid (without a monomer) is circulated through the cavity. The solution preferably is of 5 mM sulfuric acid in dioxane solution which serves to keep exposed amino groups protonated and decreases their reactivity with photolysis by-products. Absorptive materials such as N,N-diethylamino 2,4-dinitrobenzene, for example, may be included in the deprotection fluid which serves to absorb light and prevent reflection and unwanted photolysis.

The slide is, thereafter, positioned in a light raypath from the mask such that first locations on the substrate are illuminated and, therefore, deprotected. In preferred embodiments the substrate is illuminated for between about 1 and 15 minutes with a preferred illumination time of about 10 minutes at 10-20 mW/cm² with 365 nm light. The slides are neutralized (i.e., brought to a pH of about 7) after photolysis with, for example, a solution of di-isopropylethylamine (DIEA) in methylene chloride for about 5 minutes.

The first monomer is then placed at the first locations on the substrate. After irradiation, the slide is removed, treated

18

in bulk, and then reinstalled in the flow cell. Alternatively, a fluid containing the first monomer, preferably also protected by a protective group, is circulated through the cavity by way of pump 116. If, for example, it is desired to attach the amino acid Y to the substrate at the first locations, the amino acid Y (bearing a protective group on its α -nitrogen), along with reagents used to render the monomer reactive, and/or a carrier, is circulated from a storage container 118, through the pump, through the cavity, and back to the inlet of the pump.

The monomer carrier solution is, in a preferred ¹⁰ embodiment, formed by mixing of a first solution (referred to herein as solution "A") and a second solution (referred to herein as solution "B"). Table 2 provides an illustration of a mixture which may be used for solution A.

TABLE 2

Representative Monomer Carrier Solution "A"

100 mg NVOC amino protected amino acid 37 mg HOBT (1-Hydroxybenzotriazole) 250 µl DMF (Dimethylformamide) 86 µl DIEA (Diisopropylethylamine)

The composition of solution B is illustrated in Table 3. Solutions A and B are mixed and allowed to react at room temperature for about 8 minutes, then diluted with 2 ml of DMF, and $500\,\mu$ l are applied to the surface of the slide or the solution is circulated through the reactor system and allowed to react for about 2 hours at room temperature. The slide is then washed with DMF, methylene chloride and ethanol.

TABLE 3

Representative Monomer Carrier Solution "B"

250 بنا DXF 111 mg BOP (Benzotriazolyl-n-oxy-tris(dimethylamino) phosphoniumhexaftuorophosphate)

As the solution containing the monomer to be attached is circulated through the cavity, the amino acid or other monomer will react at its carboxy terminus with amino groups on the regions of the substrate which have been deprotected. Of course, while the invention is illustrated by way of circulation of the monomer through the cavity, the invention could be practiced by way of removing the slide from the reactor and submersing it in an appropriate monomer solution.

After addition of the first monomer, the solution containing the first amino acid is then purged from the system. After circulation of a sufficient amount of the DMF/methylene chloride such that removal of the amino acid can be assured (e.g., about 50x times the volume of the cavity and carrier lines), the mask or substrate is repositioned, or a new mask is utilized such that second regions on the substrate will be exposed to light and the light 124 is engaged for a second exposure. This will deprotect second regions on the substrate and the process is repeated until the desired polymer sequences have been synthesized.

The entire derivatized substrate is then exposed to a receptor of interest, preferably labeled with, for example, a fluorescent marker, by circulation of a solution or suspension of the receptor through the cavity or by contacting the surface of the slide in bulk. The receptor will preferentially bind to certain regions of the substrate which contain complementary sequences.

Antibodies are typically suspended in what is commonly referred to as "supercocktail," which may be, for example,

a solution of about 1% BSA (bovine serum albumin), 0.5% Tween in PBS (phosphate buffered saline) buffer. The antibodies are diluted into the supercocktail buffer to a final concentration of, for example, about 0.1 to 4 μ g/ml.

FIG. 8B illustrates an alternative preferred embodiment of the reactor shown in FIG. 8A. According to this embodiment, the mask 128 is placed directly in contact with the substrate. Preferably, the etched portion of the mask is placed face down so as to reduce the effects of light dispersion. According to this embodiment, the imaging lenses 120 and 126 are not necessary because the mask is brought into close proximity with the substrate.

For purposes of increasing the signal-to-noise ratio of the technique, some embodiments of the invention provide for 15 exposure of the substrate to a first labeled or unlabeled receptor followed by exposure of a labeled, second receptor (e.g., an antibody) which binds at multiple sites on the first receptor. If, for example, the first receptor is an antibody derived from a first species of an animal, the second receptor is an antibody derived from a second species directed to epitopes associated with the first species. In the case of a mouse antibody, for example, fluorescently labeled goat antibody or antiserum which is antimouse may be used to bind at multiple sites on the mouse antibody, providing several times the fluorescence compared to the attachment of a single mouse antibody at each binding site. This process may be repeated again with additional antibodies (e.g., goat-mouse-goat, etc.) for further signal amplification.

In preferred embodiments an ordered sequence of masks is utilized. In some embodiments it is possible to use as few as a single mask to synthesize all of the possible polymers of a given monomer set.

If, for example, it is desired to synthesize all 16 dinucleotides from four bases, a 1 cm square synthesis region is divided conceptually into 16 boxes, each 0.25 cm wide. Denote the four monomer units by A, B, C, and D. The first reactions are carried out in four vertical columns, each 0.25 cm wide. The first mask exposes the left-most column of boxes, where A is coupled. The second mask exposes the next column, where B is coupled; followed by a third mask, for the C column; and a final mask that exposes the rightmost column, for D. The first, second, third, and fourth masks may be a single mask translated to different locations.

The process is repeated in the horizontal direction for the second unit of the dimer. This time, the masks allow exposure of horizontal rows, again 0.25 cm wide. A, B, C, and D are sequentially coupled using masks that expose horizontal fourths of the reaction area. The resulting substrate contains all 16 dinucleotides of four bases.

The eight masks used to synthesize the dinucleotide are related to one another by translation or rotation. In fact, one mask can be used in all eight steps if it is suitably rotated and translated. For example, in the example above, a mask with a single transparent region could be sequentially used to expose each of the vertical columns, translated 90°, and then sequentially used to allow exposure of the horizontal rows.

Tables 4 and 5 provide a simple computer program in Quick Basic for planning a masking program and a sample output, respectively, for the synthesis of a polymer chain of three monomers ("residues") having three different monomers in the first level, four different monomers in the second level, and five different monomers in the third level in a striped pattern. The output of the program is the number of cells, the number of "stripes" (light regions) on each mask, and the amount of translation required for each exposure of the mask.

TABLE 4

```
Mask Strategy Program
 DEFINT A-Z
 DIM b(20), w(20), 1(500)
F$ - "LPT1:"
 OPEN IS FOR OUTPUT AS #1
                       'Number of residues
 jmax = 3
 b(1) = 3: b(2) = 4: b(3) = 5
                                       'Number of building blocks for res 1, 2, 3
g = 1: 1max(1) = 1

FOR j = 1 TO jmax: g= g * b(j): NEXT j

w(0) = 0: w(1) = g/b(1)

PRINT #1, "MASK2.BAS", DATES, TIMES: PRINT #1,
 PRINT #1, USING "Number of residues-##"; jmax
 FOR j = 1 TO jmax
 PRINT #1, USING "
                            Residue ##
                                                 ## building blocks"; j; b(j)
 NEXT j
PRINT #1, "
PRINT #1, USING "Number of cells-####"; g: PRINT #1,
FOR j = 2 TO jmax

1 \max(j) = 1 \max(j - 1) \circ b(j - 1)

w(j) = w(j - 1) / b(j)
Number of stripes-###"; 1max(j)
Width of each stripe-###"; w(j)
a = 1 + (1 - 1) * w(j - 1)
ac = a + w(j) - 1
PRINT #1, USING *
                            Stripe ## begins at location ### and ends at ###"; 1; a; ac
NEXT 1
PRINT #1,
PRINT #1, USING "
                            For each of ## building blocks, translate mask by ##
cell(s)"; b(j); w(j),
PRINT #1, : PRINT #1, : PRINT #1,
NEXT j.
```

8 Copyright 1990, Affyrax N.V.

35

TABLE 5

Masking Strategy Output

Number of residues= 3 Residue 1 Residue 2

3 building blocks 4 building blocks 5 building blocks

Residue 3

Number of cells= 60

Mask for residue 1 Number of stripes = 1

Width of each stripe= 20 Stripe 1 begins at location 1 and ends at 20 For each of 3 building blocks, translate mask by 20 cell(s) Mask for residue 2

Number of stripes = 3 Width of each stripe = 5 Stripe 1 begins at location 1 and ends at 5 Stripe 2 begins at location 21 and ends at 25 Stripe 3 begins at location 41 and ends at 45 For each of 4 building blocks, translate mask by 5 cell(s) Mask for residue 3

Number of stripes= 12 Width of each stripe= 1 Stripe 1 begins at location 1 and ends at 1 Stripe 2 begins at location 6 and ends at 6 Stripe 3 begins at location 11 and ends at 11 Stripe 4 begins at location 16 and ends at 16

TABLE 5-continued

Masking Strategy Output				
:	Stripe 5 begins at location 21 and ends at 21			
	Stripe 6 begins at location 26 and ends at 26			
	Stripe 7 begins at location 31 and ends at 31			
٠.	Stripe 8 begins at location 36 and ends at 36			
	Stripe 9 begins at location 41 and ends at 41			
	Stripe 10 begins at location 46 and ends at 46			
	Stripe 11 begins at location 51 and ends at 51			
	Stripe 12 begins at location 56 and ends at 56			
	For each of 5 building blocks, translate mask by 1 cell(s)			

Copyright 1990, Affymax N.V.

V. Details of One Embodiment of A Fluorescent Detection Device

FIG. 9 illustrates a fluorescent detection device for detecting fluorescently labeled receptors on a substrate. A substrate 112 is placed on an x/y translation table 202. In a preferred embodiment the x/y translation table is a model no. PM500-A1 manufactured by Newport Corporation. The x/y translation table is connected to and controlled by an appropriately programmed digital computer 204 which may be, for example, an appropriately programmed IBM PC/AT or AT compatible computer. Of course, other computer systems, special purpose hardware, or the like could readily be substituted for the AT computer used herein for illustration. Computer software for the translation and data collection functions described herein can be provided based on commercially available software including, for example, "Lab Windows" licensed by National Instruments, which is incorporated herein by reference for all purposes.

The substrate and x/y translation table are placed under a microscope 206 which includes one or more objectives 208. Light (about 488 nm) from a laser 210, which in some embodiments is a model no. 2020-05 argon ion laser manufactured by Spectraphysics, is directed at the substrate by a dichroic mirror 207 which passes greater than about 520 nm light but reflects 488 nm light. Dichroic mirror 207 may be, for example, a model no. FT510 manufactured by Carl Zeiss. Light reflected from the mirror then enters the microscope 206 which may be, for example, a model no. Axioscop 20 manufactured by Carl Zeiss. Fluorescein-marked materials on the substrate will fluoresce >488 nm light, and the fluoresced light will be collected by the microscope and passed through the mirror. The fluorescent light from the 45 substrate is then directed through a wavelength filter 209 and, thereafter through an aperture plate 211. Wavelength filter 209 may be, for example, a model no. OG530 manufactured by Melles Griot and aperture plate 211 may be, for example, a model no. 477352/477380 manufactured by Carl 50

The fluoresced light then enters a photomultiplier tube 212 which in some embodiments is a model no. R943-02 manufactured by Hamamatsu, the signal is amplified in preamplifier 214 and photons are counted by photon counter 216. The number of photons is recorded as a function of the location in the computer 204. Pre-Amp 214 may be, for example, a model no. SR440 manufactured by Stanford Research Systems and photon counter 216 may be a model no. SR400 manufactured by Stanford Research Systems. The substrate is then moved to a subsequent location and the process is repeated. In preferred embodiments the data are acquired every 1 to $100~\mu m$ with a data collection diameter of about 0.8 to $10~\mu m$ preferred. In embodiments with sufficiently high fluorescence, a CCD detector with broadfield illumination is utilized.

By counting the number of photons generated in a given area in response to the laser, it is possible to determine where fluorescent marked molecules are located on the substrate.

Consequently, for a slide which has a matrix of polypeptides, for example, synthesized on the surface thereof, it is possible to determine which of the polypeptides is complementary to a fluorescently marked receptor.

According to preferred embodiments, the intensity and duration of the light applied to the substrate is controlled by varying the laser power and scan stage rate for improved signal-to-noise ratio by maximizing fluorescence emission and minimizing background noise.

While the detection apparatus has been illustrated primarily herein with regard to the detection of marked receptors, the invention will find application in other areas. For example, the detection apparatus disclosed herein could be used in the fields of catalysis, DNA or protein gel scanning, and the like.

VI. Determination of Relative Binding Strength of Receptors

The signal-to-noise ratio of the present invention is sufficiently high that not only can the presence or absence of a receptor on a ligand be detected, but also the relative binding affinity of receptors to a variety of sequences can be determined.

In practice it is found that a receptor will bind to several peptide sequences in an array, but will bind much more strongly to some sequences than others. Strong binding affinity will be evidenced herein by a strong fluorescent or radiographic signal since many receptor molecules will bind in a region of a strongly bound ligand. Conversely, a weak binding affinity will be evidenced by a weak fluorescent or radiographic signal due to the relatively small number of receptor molecules which bind in a particular region of a substrate having a ligand with a weak binding affinity for the receptor. consequently, it becomes possible to determine relative binding avidity (or affinity in the case of univalent interactions) of a ligand herein by way of the intensity of a fluorescent or radiographic signal in a region containing that ligand.

Semiquantitative data on affinities might also be obtained 55 by varying washing conditions and concentrations of the receptor. This would be done by comparison to known ligand receptor pairs, for example.

VII. Examples

The following examples are provided to illustrate the efficacy of the inventions herein. All operations were conducted at about ambient temperatures and pressures unless indicated to the contrary.

A. Slide Preparation

Before attachment of reactive groups it is preferred to clean the substrate which is, in a preferred embodiment a glass substrate such as a microscope slide or cover slip. According to one embodiment the slide is soaked in an alkaline bath consisting of, for example, 1 liter of 95% ethanol with 120 ml of water and 120 grams of sodium hydroxide for 12 hours. The slides are then washed under running water and allowed to air dry, and rinsed once with a solution of 95% ethanol.

The slides are then aminated with, for example, aminopropyltriethoxysilane for the purpose of attaching amino groups to the glass surface on linker molecules, although any omega functionalized silane could also be used for this purpose. In one embodiment 0.1% aminopropyltriethoxysilane is utilized, although solutions with concentrations from $10^{-7}\%$ to 10% may be used, with about $10^{-3}\%$ to 2% preferred. A 0.1% mixture is prepared by adding to 100 ml of a 95% ethanol/5% water mixture, 100 microliters (μ l) of aminopropyltriethoxysilane. The mixture is agitated at about ambient temperature on a rotary shaker for about 5 minutes. 500 μ l of this mixture is then applied to the surface of one side of each cleaned slide. After 4 minutes, the slides are decanted of this solution and rinsed three times by dipping in, for example, 100% ethanol.

After the plates dry, they are placed in a 110-120° C. vacuum oven for about 20 minutes, and then allowed to cure at room temperature for about 12 hours in an argon environment. The slides are then dipped into DMF (dimethylformamide) solution, followed by a thorough washing with methylene chloride.

The aminated surface of the slide is then exposed to about 500 μ l of, for example, a 30 millimolar (mM) solution of NVOC-GABA (gamma amino butyric acid) NHS (N-hydroxysuccinimide) in DMF for attachment of a NVOC-GABA to each of the amino groups.

The surface is washed with, for example, DMF, methylene chloride, and ethanol.

Any unreacted aminopropyl silane on the surface—that is, those amino groups which have not had the NVOC-GABA attached—are now capped with acetyl groups (to prevent 35 further reaction) by exposure to a 1:3 mixture of acetic anhydride in pyridine for 1 hour. Other materials which may perform this residual capping function include trifluoroacetic anhydride, formicacetic anhydride, or other reactive acylating agents. Finally, the slides are washed again with 40 DMF, methylene chloride, and ethanol.

B. Synthesis of Eight Trimers of "A" and "B"

FIG. 10 illustrates a possible synthesis of the eight trimers of the two-monomer set: gly, phe (represented by "A" and "B," respectively). A glass slide bearing silane groups terminating in 6-nitroveratryloxycarboxamide (NVOC-NH) residues is prepared as a substrate. Active esters (pentafluorophenyl, OBt, etc.) of gly and phe protected at the amino group with NVOC are prepared as reagents. While not pertinent to this example, if side chain protecting groups are required for the monomer set, these must not be photoreactive at the wavelength of light used to protect the primary chain.

For a monomer set of size n, nxl cycles are required to synthesize all possible sequences of length l. A cycle consists of:

- Irradiation through an appropriate mask to expose the amino groups at the sites where the next residue is to be added, with appropriate washes to remove the by-products of the deprotection.
- Addition of a single activated and protected (with the 60 same photochemically-removable group) monomer, which will react only at the sites addressed in step 1, with appropriate washes to remove the excess reagent from the surface.

The above cycle is repeated for each member of the 65 monomer set until each location on the surface has been extended by one residue in one embodiment. In other

embodiments, several residues are sequentially added at one location before moving on to the next location. Cycle times will generally be limited by the coupling reaction rate, now as short as 20 min in automated peptide synthesizers. This step is optionally followed by addition of a protecting group to stabilize the array for later testing. For some types of polymers (e.g., peptides), a final deprotection of the entire surface (removal of photoprotective side chain groups) may be required.

More particularly, as shown in FIG. 10A, the glass 20 is provided with regions 22, 24, 26, 28, 30, 32, 34, and 36. Regions 30, 32, 34, and 36 are masked, as shown in FIG. 10B and the glass is irradiated and exposed to a reagent containing "A" (e.g., gly), with the resulting structure shown in FIG. 10C. Thereafter, regions 22, 24, 26, and 28 are masked, the glass is irradiated (as shown in FIG. 10D) and exposed to a reagent containing "B" (e.g., phe), with the resulting structure shown in FIG. 10E. The process proceeds, consecutively masking and exposing the sections as shown until the structure shown in FIG. 10M is obtained. The glass is irradiated and the terminal groups are, optionally, capped by acetylation. As shown, all possible trimers of gly/phe are obtained.

In this example, no side chain protective group removal is necessary. If it is desired, side chain deprotection may be accomplished by treatment with ethanedithiol and trifluoroacetic acid.

In general, the number of steps needed to obtain a particular polymer chain is defined by:

where:

n=the number of monomers in the basis set of monomers,

1=the number of monomer units in a polymer chain.

Conversely, the synthesized number of sequences of length 1 will be:

$$n'$$
. (2)

Of course, greater diversity is obtained by using masking strategies which will also include the synthesis of polymers having a length of less than 1. If, in the extreme case, all polymers having a length less than or equal to 1 are synthesized, the number of polymers synthesized will be:

$$n'+n^{l-1}+\ldots+n^{1}. \tag{3}$$

The maximum number of lithographic steps needed will generally be n for each "layer" of monomers, i.e., the total number of masks (and, therefore, the number of lithographic steps) needed will be nxl. The size of the transparent mask regions will vary in accordance with the area of the substrate available for synthesis and the number of sequences to be formed. In general, the size of the synthesis areas will be:

size of synthesis areas=(A)/(S)

where:

A is the total area available for synthesis; and

S is the number of sequences desired in the area.

It will be appreciated by those of skill in the art that the above method could readily be used to simultaneously produce thousands or millions of oligomers on a substrate using the photolithographic techniques disclosed herein. Consequently, the method results in the ability to practically test large numbers of, for example, di, tri, tetra, penta, hexa, hepta, octapeptides, dodecapeptides, or larger polypeptides (or correspondingly, polynucleotides).

The above example has illustrated the method by way of a manual example. It will of course be appreciated that automated or semi-automated methods could be used. The substrate would be mounted in a flow cell for automated addition and removal of reagents, to minimize the volume of reagents needed, and to more carefully control reaction conditions. Successive masks could be applied manually or automatically.

C. Synthesis of a Dimer of an Aminopropyl Group and a Fluorescent Group

In synthesizing the dimer of an aminopropyl group and a 10 fluorescent group, a functionalized durapore membrane was used as a substrate. The durapore membrane was a polyvinylidine difluoride with aminopropyl groups. The aminopropyl groups were protected with the DDZ group by reaction of the carbonyl chloride with the amino groups, a reaction readily known to those of skill in the art. The surface bearing these groups was placed in a solution of THF and contacted with a mask bearing a checkerboard pattern of 1 mm opaque and transparent regions. The mask was exposed to ultraviolet light having a wavelength down to at least about 280 nm for about 5 minutes at ambient temperature, although a wide range of exposure times and temperatures may be appropriate in various embodiments of the invention. For example, in one embodiment, an exposure time of between about 1 and 5000 seconds may be used at process temperatures of between -70 and +50° C.

In one preferred embodiment, exposure times of between about 1 and 500 seconds at about ambient pressure are used. In some preferred embodiments, pressure above ambient is used to prevent evaporation.

The surface of the membrane was then washed for about 1 hour with a fluorescent label which included an active ester bound to a chelate of a lanthanide. Wash times will vary over a wide range of values from about a few minutes to a few hours. These materials fluoresce in the red and the green visible region. After the reaction with the active ester in the fluorophore was complete, the locations in which the fluorophore was bound could be visualized by exposing them to ultraviolet light and observing the red and the green fluorescence. It was observed that the derivatized regions of the substrate closely corresponded to the original pattern of the mask.

D. Demonstration of Signal Capability

Signal detection capability was demonstrated using a low-level standard fluorescent bead kit manufactured by Flow Cytometry Standarda and having model no. 824. This kit includes 5.8 µm diameter beads, each impregnated with 45 a known number of fluorescein molecules.

One of the beads was placed in the illumination field on the scan stage as shown in FIG. 9 in a field of a laser spot which was initially shuttered. After being positioned in the illumination field, the photon detection equipment was surfaced on. The laser beam was unblocked and it interacted with the particle bead, which then fluoresced. Fluorescence curves of beads impregnated with 7,000; 13,000; and 29,000 fluorescein molecules, are shown in FIGS. 11A, 11B, and 11C respectively. On each curve, traces for beads without fluorescein molecules are also shown. These experiments were performed with 488 nm excitation, with 100 μ W of laser power. The light was focused through a 40 power 0.75 NA objective.

The fluorescence intensity in all cases started off at a high value and then decreased exponentially. The fall-off in intensity is due to photobleaching of the fluorescein molecules. The traces of beads without fluorescein molecules are used for background subtraction. The difference in the initial exponential decay between labeled and nonlabeled beads is integrated to give the total number of photon counts, 65 and this number is related to the number of molecules per bead. Therefore, it is possible to deduce the number of

photons per fluorescein molecule that can be detected. For the curves illustrated in FIG. 11, this calculation indicates the radiation of about 40 to 50 photons per fluorescein molecule are detected.

E. Determination of the Number of Molecules Per Unit Area Aminopropylated glass microscope slides prepared according to the methods discussed above were utilized in order to establish the density of labeling of the slides. The free amino termini of the slides were reacted with FITC (fluorescein isothiocyanate) which forms a covalent linkage with the amino group. The slide is then scanned to count the number of fluorescent photons generated in a region which, using the estimated 40-50 photons per fluorescent molecule, enables the calculation of the number of molecules which are on the surface per unit area.

A slide with aminopropyl silane on its surface was immersed in a 1 mM solution of FITC in DMF for 1 hour at about ambient temperature. After reaction, the slide was washed twice with DMF and then washed with ethanol, water, and then ethanol again. It was then dried and stored in the dark until it was ready to be examined.

Through the use of curves similar to those shown in FIG. 11, and by integrating the fluorescent counts under the exponentially decaying signal, the number of free amino groups on the surface after derivitization was determined. It was determined that slides with labeling densities of Iluoroscein per $10^3 \times 10^3$ to -2×2 nm could be reproducibly made as the concentration of aminopropyltriethoxysilane varied from $10^{-5}\%$ to $10^{-1}\%$.

F. Removal of NVOC and Attachment of a Fluorescent Marker

The surface of the membrane was then washed for about nour with a fluorescent label which included an active ester und to a chelate of a lanthanide. Wash times will vary over wide range of values from about a few minutes to a few urs. These materials fluoresce in the red and the green (FITC).

NVOC-GABA groups were attached as described above. The entire surface of one slide was exposed to light so as to expose a free amino group at the end of the gamma amino butyric acid. This slide, and a duplicate which was not exposed, were then exposed to fluoresce in isothiocyanate (FITC).

FIG. 12A illustrates the slide which was not exposed to light, but which was exposed to FITC. The units of the x axis are time and the units of the y axis are counts. The trace contains a certain amount of background fluorescence. The duplicate slide was exposed to 350 nm broadband illumination for about 1 minute (12 mW/cm², ~350 nm illumination), washed and reacted with FITC. The fluorescence curves for this slide are shown in FIG. 12B. A large increase in the level of fluorescence is observed, which indicates photolysis has exposed a number of amino groups on the surface of the slides for attachment of a fluorescent marker.

G. Use of a Mask in Removal of NVOC

The next experiment was performed with a 0.1% aminopropylated slide. Light from a Hg—Xe are lamp was imaged onto the substrate through a laser-ablated chrome-on-glass mask in direct contact with the substrate.

This slide was illuminated for approximately 5 minutes, with 12 mW of 350 nm broadband light and then reacted with the 1 mM FITC solution. It was put on the laser detection scanning stage and a graph was plotted as a two-dimensional representation of position versus fluorescence intensity. The fluorescence intensity (in counts) as a function of location is given on the scale to the right of FIG. 13A for a mask having $100 \times 100 \ \mu m$ squares.

The experiment was repeated a number of times through various masks. The fluorescence pattern for a 50 μ m mask is illustrated in FIG. 13B, for a 20 μ m mask in FIG. 13C, and for a 10 μ m mask in FIG. 13D. The mask pattern is distinct down to at least about 10 μ m squares using this lithographic technique.

H. Attachment of YGGFL and Subsequent Exposure to Herz Antibody and Goat Antimouse

In order to establish that receptors to a particular polypeptide sequence would bind to a surface-bound peptide and be

detected, Leu enkephalin was coupled to the surface and recognized by an antibody. A slide was derivatized with 0.1% amino propyl-triethoxysilane and protected with NVOC. A 500 μ m checkerboard mask was used to expose the slide in a flow cell using backside contact printing. The Leu enkephalin sequence (H2N-tyrosine,glycine,glycine, phenylalanine, leucine-CO₂H, otherwise referred to herein as YGGFL) was attached via its carboxy end to the exposed amino groups on the surface of the slide. The peptide was added in DMF solution with the BOP/HOBT/DIEA coupling reagents and recirculated through the flow cell for 2 10 hours at room temperature.

A first antibody, known as the Herz antibody, was applied to the surface of the slide for 45 minutes at $2 \mu g/ml$ in a supercocktail (containing 1% BSA and 1% ovalbumin also in this case). A second antibody, goat anti-mouse fluorescein conjugate, was then added at $2 \mu g/ml$ in the supercocktail

buffer, and allowed to incubate for 2 hours.

The results of this experiment are provided in FIG. 14. Again, this figure illustrates fluorescence intensity as a function of position. The fluorescence scale is shown on the right. This image was taken at 10 μ m steps. This figure indicates that not only can deprotection be carried out in a well defined pattern, but also that (1) the method provides for successful coupling of peptides to the surface of the substrate, (2) the surface of a bound peptide is available for binding with an antibody, and (3) that the detection appa- 25 ratus capabilities are sufficient to detect binding of a recep-

I. Monomer-by-Monomer Formation of YGGFL and Sub-

sequent Exposure to Labeled Antibody

Monomer-by-monomer synthesis of YGGFL and GGFL 30 in alternate squares was performed on a slide in a checkerboard pattern and the resulting slide was exposed to the Herz antibody. This experiment and the results thereof are illustrated in FIGS. 15A, 15B, 15C, and 15D.

In FIG. 15A, a slide is shown which is derivatized with the aminopropyl group, protected in this case with t-BOC (t-butoxycarbonyl). The slide was treated with TFA to remove the t-BOC protecting group. E-aminocaproic acid, which was t-BOC protected at its amino group, was then coupled onto the aminopropyl groups. The aminocaproic acid serves as a spacer between the aminopropyl group and the peptide to be synthesized. The amino end of the spacer was deprotected and coupled to NVOC-leucine. The entire slide was then illuminated with 12 mW of 325 nm broadband illumination. The slide was then coupled with NVOCphenylalanine and washed. The entire slide was again 45 illuminated, then coupled to NVOC-glycine and washed. The slide was again illuminated and coupled to NVOCglycine to form the sequence shown in the last portion of FIG. 15A.

As shown in FIG. 15B, alternating regions of the slide 50 were then illuminated using a projection print using a 500×500 μm checkerboard mask; thus, the amino group of glycine was exposed only in the lighted areas. When the next coupling chemistry step was carried out, NVOC-tyrosine was added, and it coupled only at those is spots which had received illumination. The entire slide was then illuminated to remove all the NVOC groups, leaving a checkerboard of YGGFL in the lighted areas and in the other areas, GGFL. The Herz antibody (which recognizes the YGGFL, but not GGFL) was then added, followed by goat anti-mouse fluorescein conjugate.

The resulting fluorescence scan is shown in FIG. 15C, and the scale for the fluorescence intensity is again given on the right. Dark areas contain the tetrapeptide GGFL, which is not recognized by the Herz antibody (and thus there is no binding of the goat anti-mouse antibody with fluorescein 65 conjugate), and in the red areas YGGFL is present. The YGGFL pentapeptide is recognized by the Herz antibody

and, therefore, there is antibody in the lighted regions for the fluorescein-conjugated goat anti-mouse to recognize.

Similar patterns are shown for a 50 µm mask used in direct contact ("proximity print") with the substrate in FIG. 15D. Note that the pattern is more distinct and the corners of the checkerboard pattern are touching when the mask is placed in direct contact with the substrate (which reflects the increase in resolution using this technique).

J. Monomer-by-Monomer Synthesis of YGGFL and PGGFL

A synthesis using a 50 μm checkerboard mask similar to that shown in FIG. 15 was conducted. However, P was added to the GGFL sites on the substrate through an additional coupling step. P was added by exposing protected GGFL to light through a mask, and subsequence exposure to P in the manner set forth above. Therefore, half of the regions on the substrate contained YGGFL and the remaining half contained PGGFL.

The fluorescence plot for this experiment is provided in FIG. 16. As shown, the regions are again readily discernable. This experiment demonstrates that antibodies are able to recognize a specific sequence and that the recognition is not length-dependent.

K. Monomer-by-Monomer Synthesis of YGGFL and YPG-

GFL

In order to further demonstrate the operability of the invention, a 50 µm checkerboard pattern of alternating YGGFL and YPGGFL was synthesized on a substrate using techniques like those set forth above. The resulting fluorescence plot is provided in FIG. 17. Again, it is seen that the antibody is clearly able to recognize the YGGFL sequence and does not bind significantly at the YPGGFL regions. L. Synthesis of an Array of Sixteen Different Amino Acid

Sequences and Estimation of Relative Binding Affinity to

Herz Antibody

Using techniques similar to those set forth above, an array of 16 different amino acid sequences (replicated four times) was synthesized on each of two glass substrates. The sequences were synthesized by attaching the sequence NVOC-GFL across the entire surface of the slides. Using a series of masks, two layers of amino acids were then selectively applied to the substrate. Each region had dimensions of 0.25 cm×0.0625 cm. The first slide contained amino acid sequences containing only L amino acids while the second slide contained selected D amino acids. FIGS. 18A and 18B illustrate a map of the various regions on the first and second slides, respectively. The patterns shown in FIGS. 18A and 18B were duplicated four times on each slide. The slides were then exposed to the Herz antibody and fluorescein-labeled goat anti-mouse.

FIG. 19 is a fluorescence plot of the first slide, which contained only L amino acids. Red indicates strong binding (149,000 counts or more) while black indicates little or no binding of the Herz antibody (20,000 counts or less). The bottom right-hand portion of the slide appears "cut off" because the slide was broken during processing. The sequence YGGFL is clearly most strongly recognized. The sequences YAGFL and YSGFL also exhibit strong recognition of the antibody. By contrast, most of the remaining sequences show little or no binding. The four duplicate portions of the slide are extremely consistent in the amount of binding shown therein.

FIG. 20 is a fluorescence plot of the second slide. Again, strongest binding is exhibited by the YGGFL sequence. Significant binding is also detected to YaGFL, YsGFL, and YpGFL. The remaining sequences show less binding with the antibody. Note the low binding efficiency of the sequence yGGFL.

Table 6 lists the various sequences tested in order of relative fluorescence, which provides information regarding relative binding affinity.

K

This Page Blank (uspto)

THE HUMAN GENOME

umanity has been given a great gift. With the completion of the human genome sequence, we have received a powerful tool for unlocking the secrets of our genetic heritage and for finding our place among the other participants in the adventure of life.

This week's issue of Science contains the report of the sequencing of the human genome from a group of authors led by Craig Venter of Celera Genomics. The report of the sequencing of the human genome from the publicly funded consortium of laboratories led by Francis Collins appears in this week's Nature. This stunning achievement has been portrayed—often unfairly—as a competition between two

ventures, one public and one private. That characterization detracts from the awesome accomplishment jointly unveiled this week. In truth, each project contributed to the other. The inspired vision that launched the publicly funded project roughly 10 years ago reflected, and now rewards, the confidence of those who believe that the pursuit of large-scale fundamental problems in the life sciences is in the national interest. The technical innovation and drive of Craig Venter and his colleagues made it possible to celebrate this accomplishment far sooner than was believed possible. Thus, we can salute what has become, in the end, not a contest but a marriage (perhaps encouraged by shotgun) between public funding and private entrepreneurship.

A historic moment for the scientific endeavor.

There are excellent scientific reasons for applauding an outcome that has given us two winners. Two sequences are better than one; the opportunity for comparison and convergence is invaluable. Indeed, a real-world proof of the importance of access to both sets of data can be found in the pages of this issue of *Science*, in the comparative analysis by Olivier *et al.* (p. 1298).

Although we have made the point before, it is worth repeating that the sequencing of the human genome represents, not an ending, but the beginning of a new approach to biology. As Galas says in his Viewpoint (p. 1257), the knowledge that all of the genetic components of any process can be identified will give extraordinary new power to scientists. Because of this breakthrough, research can evolve from analyzing the effects of individual genes to a more integrated view that examines whole ensembles of genes as they interact to form a living human being. Several articles in this issue highlight how this approach is already beginning to revolutionize the way we look at human disease.

This has been a massive project, on a scale unparalleled in the history of biology, but of course it has built on the scientific insights of centuries of investigators. By coincidence, this landmark announcement falls during the week of the anniversary of the birth of Charles Darwin. Darwin's message that the survival of a species can depend on its ability to evolve in the face of change is peculiarly pertinent to discussions that have gone on in the past year over access to the Celera data. (Full information regarding the agreements that were reached to make the data available can be found at www.sciencemag.org/feature/data/announcement/gsp.shl.) We are willing to be flexible in allowing data repositories other than the traditional GenBank, while insisting on access to all the data needed to verify conclusions. In this domain, change is everywhere: Commercial researchers are producing more and more potentially valuable sequences, yet (at least in the United States) laws governing databases provide scant protection against piracy. Had the Celera data been kept secret, it would have been a serious loss to the scientific community. We hope that our adaptability in the face of change will enable other proprietary data to be published after peer review, in a way that satisfies our continuing commitment to full access.

It should be no surprise that an achievement so stunning, and so carefully watched, has created new challenges for the scientific venture. Science is proud to have played a role in bringing this discovery onto the public stage. It is literally true that this is a historic moment for the scientific endeavor. The human genome has been called the Book of Life. Rather, it is a library, in which, with rules that encourage exploration and reward creativity, we can find many of the books that will help define us and our place in the great tapestry of life.

Barbara R. Jasny and Donald Kennedy

App Serial # 09/854,844 Exhibit K
Hu et al.
Novel Human Protease and Polynucleotides Encoding the Same

This Page Blank (uspto)

United States Patent [19]

Au-Young et al.

. 6

Patent Number: [11]

5,817,479

Date of Patent: [45]

Oct. 6, 1998

[54] HUMAN KINASE HOMOLOGS

Inventors: Janice Au-Young, Berkeley; Olga

Bandman; Phillip R. Hawkins, both of

Mountain View; Craig G. Wilde,

Sunnyvale, all of Calif.

Assignee: Incyte Pharmaceuticals, Inc., Palo

Alto, Calif.

Appl. No.: 700,575 [21]

Filed: Aug. 7, 1996

Int. Cl.⁶ C12P 21/06; C12N 15/64 [51]

U.S. Cl. 435/69.1; 435/91.4; 435/320.1; [52] 435/325; 435/252.1; 536/23.2; 536/23.5

Field of Search 536/23.1, 23.2, [58]

536/23.5; 435/91.4, 325, 320.1, 69.1, 252.1

[56] References Cited

PUBLICATIONS

Taniguchi, "Cytokine Signaling Through Nonreceptor Protein Tyrosine Kinases," Science, 268:251-55 (14 Apr. 1995). Egan et al., "The pathway to signal achievement," Nature, 365:781-783.

Derijard et al., "Independent Human MAP Kinase Signal Transduction Pathways Defined by MEK and MKK Isoforms," Science, 267:682-686 (3 Feb. 1995).

R. Davis, "MAPKs: new JNK expands the group," TIBS, 19:470-473 (1994).

Han et al., "A MAP Kinase Targeted by Endotoxin and Hyperosmolarity in Mammalian Cells," 265:808-811 (1994).

Levitzki et al., "Tyrosine Kinase Inhibition: An Approach to Drug Development," Science, 267:1782-1788 (Mar. 24, 1995).

Stroberg, "Functional expression of receptors in microorganisms," Trends in Pharmacol., 13(3)95-98.

Hanes et al. Gen Bank J. Mol. Biol. 244: 665-672, 1994.

Hanes et al. (1994) J. Mol. Biol. 244, 665-672.

Tamagnone et al. (1994) Oncogene 9(12), 3683-3688.

Bennett et al. (1994) J. Biol. Chem. 269(19), 14211-14218.

Primary Examiner-Frank C. Eisenschenk Assistant Examiner-Patrick J. Nolan Attorney, Agent, or Firm-Lucy J. Billings; Sheela Mohan-Peterson; Incyte Pharmaceuticals, Inc.

ABSTRACT

The present invention provides polynucleotides (kin) which identify and encode novel protein kinases (KIN) expressed in various human cells and tissues. The present invention also provides for antisense sequences and oligonucleotides designed from the nucleotide sequences or their complements. The invention further provides genetically engineered expression vectors and host cells for the production of purified KIN peptides, antibodies capable of binding KIN, and inhibitors specifically bind KIN. The invention specifically provides for diagnostic kits and assays which identify a disorder or disease with altered kinase expression and allow monitoring of patients during drug therapy. These assays utilize oligonucleotides or antibodies produced using the kin polynucleotides.

4 Claims, No Drawings

HUMAN KINASE HOMOLOGS

FIELD OF THE INVENTION

The present invention is in the field of molecular biology; more particularly, the present invention describes nucleic acid sequences for novel human kinase homologs.

BACKGROUND OF THE INVENTION

Kinases regulate many different cell proliferation, differentiation, and signalling processes by adding phosphate groups to proteins. Uncontrolled signalling has been implicated in inflammation, oncogenesis, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate which drives activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases.

Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analogous to the turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein family, a 30 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, after some aspect of a mutant phenotype or arbitrarily. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The N-terminal 35 domain, which contains subdomains I-IV, generally folds into a two-lobed structure and binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VIA-XI, binds the protein substrate and carries out the transfer of the gamma phosphate from 40 specificity such as myosin light chain kinase which activates ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 100 residues) located on either side of, or inserted into loops 45 of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided into 12 subdomains. The following residues are relatively 50 synapses. In those neurons, Ca++ influx stimulates both the (~95%) invariant: G_{50} and G_{52} in subdomain I, K_{72} in subdomain II, G₉₁ in subdomain III, E₂₀₈ in subdomain VIII, D₂₂₀ and G₂₂₅ in subdomain IX, and the motifs or patterns of amino acids in subdomains VIB, VIII and IX (Hardie G. and Hanks S. (1995) The Protein Kinase Facts Books, I and 55 II, Academic Press, San Diego, Calif.).

The cyclin dependent protein kinase (cdk) family includes proteins which are turned on and off as the cell proceeds through the cell cycle. A cdk is active as a kinase only when it is bound to a cyclin. Cdk activation simultaneously 60 requires both the addition of a high energy phosphate to a threonine residue by a kinase and the removal of a covalently-bound phosphate from a specific tyrosine residue by a phosphatase. The concentration of some cyclins rises gradually through a particular part of the cell cycle until their 65 targeted proteolysis ends the coordinated interaction among the cyclin, kinase, and phosphatase molecules.

The second-messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP) cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADPribose, arachidonic acid and diacylglycerol. For purposes of example, the structure and function of cyclic AMPdependent protein kinase (A-kinase) will be described. Mammalian cells generally contain at least two forms of A-kinase; type 1 which is cytosolic, and type 2 which is bound to plasma membrane, nuclear membrane or microtubules. In its inactive state, A-kinase consists of a complex of two catalytic subunits and two regulatory subunits. When each regulatory subunit has bound two molecules of cAMP, the catalytic subunit is activated and can transfer a high energy phosphate from ATP to the serine or threonine of a substrate protein. Substrate proteins are usually marked by the presence of two or more basic amino acids on their amino terminal sides. A-kinase is important in metabolism of glycogen, for inactivation of phosphatase inhibitor protein, in transcription of genes which contain a regulatory region called the cAMP response element (CRE), and in regulation of the ion channels of olfactory neurons.

Protein kinase C (PKC) is a water-soluble, Ca++dependent kinase, commonly found in brain tissue, which moves to the plasma membrane in the presence of Ca++ ions. Approximately half of the known isoforms of PKC are activated initially by diacylglycerol and phosphatidylserine. Prolonged activation of PKC depends on continued production of diacyglycerol molecules which are formed when phospholipases cleave phosphatidylcholine. In nerve cells, PKC phosphorylates ion channels and alters the excitability of the cell membrane. In other cells, activation of PKC increases gene transcription either by triggering a protein kinase cascade which activates a regulatory element (much like CRE above) or by phosphorylating and deactivating an inhibitor of the regulatory protein.

Ca++/calmodulin-dependent protein kinases (CaMkinases) mediate most of the actions of Ca++ in human cells. The CaM-kinases include enzymes with narrow substrate smooth muscle contraction and phosphorylase kinase which activates glycogen breakdown and the multifunctional enzyme, CaM-kinase II which is found in all cells. Phosphorylase kinase has four subunits: y is the catalytic moiety and α , β and $\square \delta$ are regulatory. Since subunits α and β are phosphorylated by A-kinase and subunit □δ is Ca++/ calmodulin, glycogen breakdown can be activated by either cAMP or Ca+

CaM-kinase II is particularly enriched in catecholamine release of dopamine, noradrenaline or adrenaline and also their resynthesis through the activation of CaM-kinase II. Although the main role of CaM-kinase II is phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, CaM-kinase II also autophosphorylates and remains active until phosphotases overwhelm it.

Transmembrane protein-tyrosine kinases are receptors for most growth factors. The first characterized receptor for epidermal growth factor (EGF) is a single pass transmembrane protein of about 1200 amino acids with an extracellular glycosylated portion that interacts with the 53 amino acid EGF molecule. Binding activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Other protein receptors with similar structure include the following growth and differentiation factors (GF)-platelet derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve

GF, vascular endothelial GF, macrophage colony stimulating factor, etc. Each protein phosphorylates itself by receptor dimerization to initiate the intracellular signalling cascade.

Many protein-tyrosine kinases lack transmembrane regions and form a complex with the intercellular regions of other cell surface receptors. The best known NR-PTKs are the Src kinase family (Src, Yes, Fgr, Fyn, Lck, Lyn, Hck, Blk, etc) and the Janus kinase family (Jak1, Jak2, Jak3, Tyk2, etc). The Src PTKs are located on the cytoplasmic side of the plasma membrane and are characterized by Src homology regions 2 and 3 (SH2 and SH3). Src PTKs recognize short peptide motifs bearing phosphotyrosine or proline residues, respectively, and mediate protein-protein interactions that regulate a whole range of intracellular signalling molecules. Janus PTKs contain PTK or PTK-like 15 domains and interact with growth hormone, prolactin, and some of the same cytokine receptors as Src PTKs. The cytokine receptors are unique both in their ability to recruit multiple PTKs and in the diversity of their intracellular domains which allow flexibility in their responses within 20 different cell types (Taniguchi T. (1995) Science 268:251-55). Src and Jak kinases were first identified as the products of mutant oncogenes in cancer cells where their activation was no longer subject to normal cellular controls.

Extracellular signalling proteins such as transforming growth factor- β (TGF- β), activins, bone morphogenetic protein, and related members of the TGF- β superfamily interact with receptor serine/threonine kinases. Like EGF above, these receptor kinases have a single pass transmembrane domain with a serine/threonine kinase residue on the cytosolic side of the plasma membrane. The signalling pathways which are activated by binding the extracellular signalling molecules are presently under investigation.

Mitogen-activated protein (MAP) kinases also regulate intracellular signalling pathways. They mediate signal transduction from cell surface to nuclei via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan S. E. and Weinberg R. A. (1993) Nature 365:781–783).

MAP kinase signalling pathways are present in mammalian cells as well as in yeast. The extracellular stimuli which activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). In Saccharomyces cerevisiae, exposure to mating pheromone or hyperosmolar environments activate the various MAP kinase signalling pathways. 50

Mammalian cells have at least three subgroups of MAP kinases (Derijard B. et al (1995) Science 267:682-5), each distinguished by a tripeptide motif. They are extracellular signal-regulated protein kinases (ERK) characterized by Thr-Glu-Tyr; c-Jun amino-terminal kinases (JNK) characterized by Thr-Gly-Tyr. Each subgroup is activated by dual phosphorylation of threonine and tyrosine residues by MAP kinase kinases located upstream of the phosphorylation cascade. Activated MAP kinases, in turn, phosphorylate downstream 60 effectors ultimately leading to intracellular changes.

The ERK signal transduction pathway is activated via tyrosine kinase receptors on the plasmalemma. When growth factors bind to tyrosine, they bind to noncatalytic, Src homology (SH) adaptor proteins (SH2-SH3-SH2) and a 65 guanine nucleotide releasing protein (GNRP). GNRP reduces GTP and activates Ras proteins, members of the

large family of guanine nucleotide binding proteins (G-proteins). Activated Ras proteins bind to a protein kinase C-Raf-1 and activate the Raf-1 proteins. The activated Raf-1 kinase subsequently phosphorylates MAP kinase kinase (MKK) which, in turn, activate ERKs.

ERKs are proline-directed protein kinases which phosphorylate Ser/Thr-Pro motifs. In fact, cytoplasmic phospholipase A2 (cPLA2) and transcription factor Elk-1 are substrates of ERKs. The ERKs phosphorylate Ser₅₀₅ of cPLA2 thereby increasing its enzymatic activity and resulting in release of arachidonic acid and the formation of lysophospholipids from membrane phospholipids. Likewise, phosphorylation of the transcription factor Elk-1 by ERK ultimately increases transcriptional activity.

JNK is distantly related to the ERK and is similarly activated by dual phosphorylation of Thr and Tyr and by MKK4 (Davis R (1994) TIBS 19:470–473). The JNK signal transduction pathway is also initiated by ultraviolet light, osmotic stress, and the pro-inflammatory cytokines, TNF and IL-1. Phosphorylation of Ser₆₃ and Ser₇₃ in the NH₂-terminal domain of the transcription factor c-Jun increases transcriptional activity.

p38 is a 41 kD protein containing 360-amino acids. Its dual phosphorylation is activated by the MKK3 and MKK4, heat shock, hyperosmolar medium, IL-1 or LPS endotoxin (Han J. et al (1994) Science 265:808-811). Sepsis produced by LPS is characterized by fever, chills, tachypnea, and tachycardia, and severe cases may result in septic shock which includes hypotension and multiple organ failure.

Cells respond to LPS as a stress signal because it alters normal cellular processes and induces the release of systemic mediators such as TNF. CD14 is a glycosylphosphatidyl-inositol-anchored membrane glycoprotein which serves as a LPS receptor on the plasmalemma of monocytic cells. The binding of LPS to CD14 causes rapid protein tyrosine phosphorylation of the 44- and 42-/40-kD isoforms of MAP kinases. Although they bind LPS, these MAP kinase isoforms do not appear to belong to the p38 subgroup.

An detailed understanding of kinase pathways and signal transduction is beginning to reveal some mechanisms for interceding in the progression of inflammatory illnesses and of uncontrolled cell proliferation. The cDNAs, oligonucleotides, peptides and antibodies for the human kinases, which are the subject of this invention and are listed in Table 1, provide a plurality of tools for studying signalling cascades in various cells and tissues and for diagnosing and selecting inhibitors or drugs with the potential to intervene in various disorders or diseases in which altered kinase expression is implicated. The disorders or diseases include, but not limited to, human X-linked agammaglobulinemia, nonspherocytic hemolytic anemia, atherosclerosis, carcinomas (breast, ovary, renal, squamous cell and prostate), diabetes, gliomas, glomerular disease, hepatomegaly, Karposi's sarcoma, lymphoblastic and myelogenous leukemias, myoglobinuria, peptic ulcer disease, psoriasis, pulmonary fibrosis, restenosis, and septic shock due to cholera, Clostridium difficile, E. coli and Shigella (Isselbacher K. J. et al (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York City; Levitzki A. and A. Gazit (1995) Science 267:1782-88).

SUMMARY OF THE INVENTION

The subject invention provides unique polynucleotides (SEQ ID NOs 1-44) which have been identified as novel human kinases (kin). These partial cDNAs were identified

among the polynucleotides which comprise various Incyte cDNA libraries.

The invention comprises polynucleotides which are complementary to the kin sequences (SEQ ID Nos 1-44).

The invention also comprises the use of kin sequences to identify and obtain a full length human kinase cDNAs such as SEQ ID NO 45.

The invention further comprises the use of oligomers from these kin sequences in a kinases kit which can be used to identify a disorder or disease with altered kinase expression and provide a method for monitoring progress of a patient during drug therapy.

Aspects of the invention include use of kin sequences or recombinant nucleic acids derived from them to produce 15 purified peptides. Still further aspects of the invention use these purified peptides to identify antibodies or other molecules with inhibitory activity toward a particular kinase, group of kinases or disease.

antibodies in assays to identify a disorder or disease with altered kinase expression and provides a method to monitor the progress of a patient during drug therapy.

DESCRIPTION OF THE FIGURE

FIGS. 1A and 1B display the full length nucleotide sequence for human MAP kinase from stomach tissue (SEQ ID NO 45; Incyte Clone 214915E) and its predicted amino acid sequence.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein, the abbreviation for kinase in lower case (kin) refers to a gene, cDNA, RNA or nucleic acid sequence 35 while the upper case version (KIN) refers to a protein, polypeptide, peptide, oligopeptide, or amino acid sequence.

An "oligonucleotide" or "oligomer" is a stretch of nucleotide residues which has a sufficient number of bases to be used in a polymerase chain reaction (PCR). These short 40 sequences are based on (or designed from) genomic or cDNA sequences and are used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides or oligomers comprise portions of a DNA sequence having at 45 least about 10 nucleotides and as many as about 50 nucleotides, preferably about 15 to 30 nucleotides. They are chemically synthesized and may be used as probes.

"Probes" are nucleic acid sequences of variable length, preferably between at least about 10 and as many as about 50 6,000 nucleotides, depending on use. They are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligomers. They may be 55 single- or double-stranded and carefully designed to have specificity in PCR, hybridization membrane-based, or ELISA-like technologies.

'Reporter" molecules are chemical moieties used for labelling a nucleic or amino acid sequence. They include, 60 but are not limited to, radionuclides, enzymes, fluorescent, chemi-luminescent, or chromogenic agents. Reporter molecules associate with, establish the presence of, and may allow quantification of a particular nucleic or amino acid sequence.

A "portion" or "fragment" of a polynucleotide or nucleic acid comprises all or any part of the nucleotide sequence

having fewer nucleotides than about 6 kb, preferably fewer than about 1 kb which can be used as a probe. Such probes may be labelled with reporter molecules using nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. After pretesting to optimize reaction conditions and to eliminate false positives, nucleic acid probes may be used in Southern, northern or in situ hybridizations to determine whether DNA or RNA encoding the protein is present in a biological sample, cell type, tissue, organ or organism.

"Recombinant nucleotide variants" are polynucleotides which encode a protein. They may be synthesized by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce specific restriction sites or codon usage-specific mutations, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic host system, respectively.

"Linkers" are synthesized palindromic nucleotide In addition, the invention comprises the use of kin specific 20 sequences which create internal restriction endonuclease sites for ease of cloning the genetic material of choice into various vectors. "Polylinkers" are engineered to include multiple restriction enzyme sites and provide for the use of both those enzymes which leave 5' and 3' overhangs such as 25 BamHI, EcoRI, Pstl, KpnI and Hind III or which provide a blunt end such as EcoRV, SnaBI and StuI.

> "Control elements" or "regulatory sequences" are those nontranslated regions of the gene or DNA such as enhancers, promoters, introns and 3' untranslated regions which interact with cellular proteins to carry out replication, transcription, and translation. They may occur as boundary sequences or even split the gene. They function at the molecular level and along with regulatory genes are very important in development, growth, differentiation and aging processes.

> "Chimeric" molecules are polynucleotides or polypeptides which are created by combining one or more of nucleotide sequences of this invention (or their parts) with additional nucleic acid sequence(s). Such combined sequences may be introduced into an appropriate vector and expressed to give rise to a chimeric polypeptide which may be expected to be different from the native molecule in one or more of the following kinase characteristics: cellular location, distribution, ligand-binding affinities, interchain affinities, degradation/turnover rate, signalling, etc.

> "Active" is that state which is capable of being useful or of carrying out some role. It specifically refers to those forms, fragments, or domains of an amino acid sequence which display the biologic and/or immunogenic activity characteristic of the naturally occurring kinase.

> "Naturally occurring KIN" refers to a polypeptide produced by cells which have not been genetically engineered or which have been genetically engineered to produce the same sequence as that naturally produced. Specifically contemplated are various polypeptides which arise from posttransnational modifications. Such modifications of the polypeptide include but are not limited to acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

> "Derivative" refers to those polypeptides which have been chemically modified by such techniques as ubiquitination, labelling (see above), pegylation (derivatization with polyethylene glycol), and chemical insertion or substitution of amino acids such as ornithine which do not normally occur in human proteins.

> "Recombinant polypeptide variant" refers to any polypeptide which differs from naturally occurring KIN by amino acid insertions, deletions and/or substitutions, created using

recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing characteristics of interest may be found by comparing the sequence of KIN with that of related polypeptides and minimizing the number of amino acid 5 sequence changes made in highly conserved regions.

Amino acid "substitutions" are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.

Amino acid "insertions" or "deletions" are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids. The variation allowed in 15 a particular amino acid sequence may be experimentally determined by producing the peptide synthetically or by systematically making insertions, deletions, or substitutions of nucleotides in the kin sequence using recombinant DNA techniques.

A "signal or leader sequence" is a short amino acid sequence which or can be used, when desired, to direct the polypeptide through a membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous sources by recombinant DNA techniques.

An "oligopeptide" is a short stretch of amino acid residues and may be expressed from an oligonucleotide. It may be functionally equivalent to and either the same length as or considerably shorter than a "fragment", "portion", or 30 "segment" of a polypeptide. Such sequences comprise a stretch of amino acid residues of at least about 5 amino acids and often about 17 or more amino acids, typically at least about 9 to 13 amino acids, and of sufficient length to display biologic and/or immunogenic activity.

An "inhibitor" is a substance which retards or prevents a chemical or physiological reaction or response. Common inhibitors include but are not limited to antisense molecules, antibodies, antagonists and their derivatives.

A "standard" is a quantitative or qualitative measurement 40 for comparison. Preferably, it is based on a statistically appropriate number of samples and is created to use as a basis of comparison when performing diagnostic assays, running clinical trials, or following patient treatment profiles. The samples of a particular standard may be normal or 45 similarly abnormal.

"Animal" as used herein may be defined to include human, domestic (cats, dogs, etc), agricultural (cows, horses, sheep, goats, chicken, fish, etc) or test species (frogs, mice, rats, rabbits, simians, etc).

"Disorders or diseases" in which altered kinase activity have been implicated specifically include, but are not limited to, human X-linked agammaglobulinemia, nonspherocytic hemolytic anemia, atherosclerosis, carcinomas (breast, ovary, renal, squamous cell and prostate), diabetes, gliomas, 55 glomerular disease, hepatomegaly, Karposi's sarcoma, lymphoblastic and myelogenous leukemias, myoglobinuria, peptic ulcer disease, psoriasis, pulmonary fibrosis, restenosis, and septic shock due to cholera, Clostridium difficile, E. coli and Shigella.

Since the list of technical and scientific terms cannot be all encompassing, any undefined terms shall be construed to have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. Furthermore, the singular forms "a", "an" and "the" include 65 plural referents unless the context clearly dictates otherwise. For example, reference to a "restriction enzyme" or a "high

fidelity enzyme" may include mixtures of such enzymes and any other enzymes fitting the stated criteria, or reference to the method includes reference to one or more methods for obtaining cDNA sequences which will be known to those skilled in the art or will become known to them upon reading this specification.

Before the present sequences, variants, formulations and methods for making and using the invention are described, it is to be understood that the invention is not to be limited only to the particular sequences, variants, formulations or methods described. The sequences, variants, formulations and methodologies may vary, and the terminology used herein is for the purpose of describing particular embodiments. The terminology and definitions are not intended to be limiting since the scope of protection will ultimately depend upon the claims.

DESCRIPTION OF THE INVENTION

The present invention provides for purified partial protein kinase cDNAs which were expressed in various human tissues and isolated therefrom. These sequences were identified by their similarity to published or known open reading frames or untranslated control regions. Since protein kinases are associated with basic cellular processes such as cell proliferation, differentiation and cell signalling, these nucleotide sequences are useful in the characterization of and delineation of normal and abnormal processes. Kinase nucleotide sequences are useful in diagnostic assays used to evaluate the role of a specific kinase in normal, diseased, or therapeutically treated cells.

Purified kinase nucleotide sequences have numerous applications in techniques known to those skilled in the art of molecular biology. These techniques include their use as hybridization probes, for chromosome and gene mapping, in PCR technologies, in the production of sense or antisense nucleic acids, in screening for new therapeutic molecules, etc. These examples are well known and are not intended to be limiting. Furthermore, the nucleotide sequences disclosed herein may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including but not limited to such properties as the triplet genetic code and specific base pair interactions.

As a result of the degeneracy of the genetic code, a multitude of kinase-encoding nucleotide sequences may be produced and some of these will bear only minimal homology to the endogenous sequence of any known and naturally occurring kinase. This invention has specifically contemplated each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring kinases, and all such variations are to be considered as being specifically disclosed.

Although the kinase nucleotide sequences and their derivatives or variants are preferably capable of identifying the nucleotide sequence of the naturally occurring kinase under optimized conditions, it may be advantageous to produce kinase-encoding nucleotide sequences possessing a substantially different codon usage. Codons can be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic expression host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding the kinase without

altering the encoded amino acid sequence include the production of RNA transcripts having more desirable properties, such as a longer half-life, than transcripts produced from the naturally occurring sequence.

Nucleotide sequences encoding a kinase may be joined to a variety of other nucleotide sequences by means of well established recombinant DNA techniques (Sambrook J. et al (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; or Ausubel F. M. et al (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York City). Useful sequences for joining to the kinase include an assortment of cloning vectors such as plasmids, cosmids, lambda phage derivatives, phagemids, and the like. Vectors of interest include vectors for replication, expression, probe generation, sequencing, and the like. In general, vectors of interest may contain an origin of replication functional in at least one organism, convenient restriction endonuclease sensitive sites, and selectable markers for one or more host cell systems.

PCR as described in U.S. Pat. Nos. 4,683,195; 4,800,195; and 4,965,188 provides additional uses for oligonucleotides based upon the kinase nucleotide sequence. Such oligomers are generally chemically synthesized, but they may be of recombinant origin or a mixture of both. Oligomers generally comprise two nucleotide sequences, one with sense orientation (5'→3') and one with antisense (3' to 5') employed under optimized conditions for identification of a specific gene or diagnostic use. The same two oligomers, nested sets of oligomers, or even a degenerate pool of oligomers may be employed under less stringent conditions for identification and/or quantitation of closely related DNA or RNA sequences.

Full length genes may be cloned utilizing partial nucleotide sequence and various methods known in the art. Gobinda et al (1993; PCR Methods Applic 2:318-22) disclose "restriction-site PCR" as a direct method which uses universal primers to retrieve unknown sequence adjacent to a known locus. First, genomic DNA is amplified in the presence of primer to linker and a primer specific to the known region. The amplified sequences are subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase. Gobinda et al present data concerning Factor IX for which they identified a conserved stretch of 20 nucleotides in the 3' noncoding region of the gene.

Inverse PCR is the first method to report successful acquisition of unknown sequences starting with primers based on a known region (Triglia T. et al (1988) Nucleic Acids Res 16:8186). The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Divergent primers are designed from the known region. The multiple rounds of restriction enzyme digestions and ligations that are necessary prior to PCR make the procedure slow and expensive (Gobinda et al, supra).

Capture PCR (Lagerstrom M. et al (1991) PCR Methods Applic 1:111-19) is a method for PCR amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. As noted by Gobinda et al (supra), capture PCR also requires multiple restriction enzyme digestions and ligations 65 to place an engineered double-stranded sequence into an unknown portion of the DNA molecule before PCR.

Although the restriction and ligation reactions are carried out simultaneously, the requirements for extension, immobilization and two rounds of PCR and purification prior to sequencing render the method cumbersome and time consuming.

Parker J. D. et al (1991; Nucleic Acids Res 19:3055–60), teach walking PCR, a method for targeted gene walking which permits retrieval of unknown sequence. Promoter-Finder is a new kit available from Clontech (Palo Alto, Calif.) which uses PCR and primers derived from p53 to walk in genomic DNA. Nested primers and special Promoter-Finder libraries are used to detect upstream sequences such as promoters and regulatory elements. This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

Another new PCR method, "Improved Method for Obtaining Full Length cDNA Sequences" by Guegler et al, patent application Ser. No 08/487,112, filed Jun. 7, 1995 and hereby incorporated by reference, employs XL-PCR (Perkin-Elmer, Foster City, Calif.) to amplify and extend partial nucleotide sequence into longer pieces of DNA. This method was developed to allow a single researcher to process multiple genes (up to 20 or more) at one time and to obtain an extended (possibly full-length) sequence within 6-10 days. This new method replaces methods which use labelled probes to screen plasmid libraries and allow one researcher to process only about 3-5 genes in 14-40 days.

In the first step, which can be performed in about two days, any two of a plurality of primers are designed and synthesized based on a known partial sequence. In step 2, which takes about six to eight hours, the sequence is extended by PCR amplification of a selected library. Steps 3 and 4, which take about one day, are purification of the amplified cDNA and its ligation into an appropriate vector. Step 5, which takes about one day, involves transforming and growing up host bacteria. In step 6, which takes approximately five hours, PCR is used to screen bacterial clones for extended sequence. The final steps, which take about one day, involve the preparation and sequencing of selected clones.

If the full length cDNA has not been obtained, the entire procedure is repeated using either the original library or some other preferred library. The preferred library may be one that has been size-selected to include only larger cDNAs or may consist of single or combined commercially available libraries, eg. lung, liver, heart and brain from Gibco/BRL (Gaithersburg, Md.). The cDNA library may have been prepared with oligo (dT) or random priming. Random primed libraries are preferred in that they will contain more sequences which contain 5' ends of genes. A randomly primed library may be particularly useful if an oligo (dT) library does not yield a complete gene. It must be noted that the larger and more complex the protein, the less likely it is that the complete gene will be found in a single plasmid.

A new method for analyzing either the size or the nucleotide sequence of PCR products is capillary electrophoresis. Systems for rapid sequencing are available from Perkin Elmer (Foster, City Calif.), Beckman Instruments (Fullerton, Calif.), and other companies. Capillary sequencing employs flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled devise camera. Output/light intensity is converted to electrical signal using appropriate software (eg. GenotyperTM and Sequence NavigatorsTM from Perkin Elmer) and the entire process from loading of samples to

computer analysis and electronic data display is computer controlled. Capillary electrophoresis provides greater resolution and is many times faster than standard gel based procedures. It is particularly suited to the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample. The reproducible sequencing of up to 350 bp of M13 phage DNA in 30 min has been reported (Ruiz-Martinez M. C. et al (1993) Anal Chem 65:2851-8).

Another aspect of the subject invention is to provide for 10 kinase hybridization probes which are capable of hybridizing with naturally occurring nucleotide sequences encoding kinases. The stringency of the hybridization conditions will determine whether the probe identifies only the native nucleotide sequence of that specific kinase or sequences of closely related molecules. If degenerate kinase nucleotide 15 sequences of the subject invention are used for the detection of related kinase encoding sequences, they should preferably contain at least 50% of the nucleotides of the sequences presented herein. Hybridization probes of the subject invention may be derived from the nucleotide sequences of the 20 SEQ ID NOs 1-44, or from surrounding or included genomic sequences comprising untranslated regions such as promoters, enhancers and introns. Such hybridization probes may be labelled with appropriate reporter molecules. Means for producing specific hybridization probes for kinases 25 include oligolabelling, nick translation, end-labelling or PCR amplification using a labelled nucleotide. Alternatively, the cDNA sequence may be cloned into a vector for the production of mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3 or SP6 and labelled nucleotides. A number of companies (such as Pharmacia Biotech, Piscataway, N.J.; Promega, Madison, Wis.; US Biochemical Corp. Cleveland, Ohio; etc.) supply commercial kits and 35 protocols for these procedures.

It is also possible to produce a DNA sequence, or portions thereof, entirely by synthetic chemistry. Sometimes the source of information for producing this sequence comes from the known homologous sequence from closely related organisms. After synthesis, the nucleic acid sequence can be used alone or joined with a preexisting sequence and inserted into one of the many available DNA vectors and their respective host cells using techniques well known in the art. Moreover, synthetic chemistry may be used to introduce specific mutations into the nucleotide sequence. Alternatively, a portion of sequence in which a mutation is desired can be synthesized and recombined with a portion of an existing genomic or recombinant sequence.

The kinase nucleotide sequences can be used individually, 50 or in panels, in a diagnostic test or assay to detect disorder or disease processes associated with abnormal levels of kinase expression. The nucleotide sequence is added to a sample (fluid, cell or tissue) from a patient under hybridizing conditions. After an incubation period, the sample is washed 55 with a compatible fluid which optionally contains a reporter molecule which will bind the specific nucleotide. After the compatible fluid is rinsed off, the reporter molecule is quantitated and compared with a standard for that fluid, cell or tissue. If kinase expression is significantly different from 60 the standard, the assay indicates the presence of disorder or disease. The form of such qualitative or quantitative methods may include northern analysis, dot blot or other membrane based technologies, dip stick, pin or chip technologies, PCR, ELISAs or other multiple sample format technologies. 65

This same assay, combining a sample with the nucleotide sequence, is applicable in evaluating the efficacy of a particular therapeutic treatment regime. It may be used in animal studies, in clinical trials, or in monitoring the treatment of an individual patient. First, standard expression must be established for use as a basis of comparison. Second, samples from the animals or patients affected by the disorder or disease are combined with the nucleotide sequence to evaluate the deviation from the standard or normal profile. Third, an existing therapeutic agent is administered, and a treatment profile is generated. The assay is evaluated to determine whether the profile progresses toward or returns to the standard pattern. Successive treatment profiles may be used to show the efficacy of treatment over a period of several days or several months.

The nucleotide sequence for any particular kinase (SEQ ID NOs 1-45) can also be used to generate probes for mapping the native genomic sequence. The sequence may be mapped to a particular chromosome or to a specific region of the chromosome using well known techniques. These include in situ hybridization to chromosomal spreads (Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York City), flow-sorted chromosomal preparations, or artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions or single chromosome cDNA libraries.

In situ hybridization of chromosomal preparations and physical mapping techniques such as linkage analysis using established chromosomal markers are invaluable in extending genetic maps. Examples of genetic maps can be found in the 1994 Genome Issue of Science (265:1981f). Often the placement of a gene on the chromosome of another mammalian species may reveal associated markers even if the number or arm of a particular human chromosome is not known. New partial nucleotide sequences can be assigned to chromosomal arms, or parts thereof, by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once a disease or syndrome, such as ataxia telangiectasia (AT), has been crudely localized by genetic linkage to a particular genomic region, for example, AT to 11q22-23 (Gatti et al (1988) Nature 336:577-580), any sequences mapping to that area may represent genes for further investigation. The nucleotide sequences of the subject invention may also be used to detect differences in the chromosomal location of nucleotide sequences due to translocation, inversion, etc. between normal and carrier or affected individuals.

The partial nucleotide sequence encoding a particular kinase may be used to produce an amino acid sequence using well known methods of recombinant DNA technology. Goeddel (1990, Gene Expression Technology, Methods and Enzymology, Vol 185, Academic Press, San Diego, Calif.) is one among many publications which teach expression of an isolated, purified nucleotide sequence. The amino acid or peptide may be expressed in a variety of host cells, either prokaryotic or eukaryotic. Host cells may be from the same species from which the nucleotide sequence was derived or from a different species. Advantages of producing an amino acid sequence or peptide by recombinant DNA technology include obtaining adequate amounts for purification and the availability of simplified purification procedures.

Cells transformed with a kinase nucleotide sequence may be cultured under conditions suitable for the expression and recovery of peptide from cell culture. The peptide produced by a recombinant cell may be secreted or may be contained intracellularly depending on the sequence itself and/or the vector used. In general, it is more convenient to prepare

recombinant proteins in secreted form, and this is accomplished by ligating kin to a recombinant nucleotide sequence which directs its movement through a particular prokaryotic or eukaryotic cell membrane. Other recombinant constructions may join kin to nucleotide sequence encoding a polypeptide domain which will facilitate protein purification (Kroll D. J. et al (1993) DNA Cell Biol 12:441-53).

Direct peptide synthesis using solid-phase techniques (Stewart et al (1969) Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco, Calif.; Merrifield J. (1963) J ¹⁰ Am Chem Soc 85:2149-2154) is an alternative to recombinant or chimeric peptide production. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer in accordance with the instructions provided by the manufacturer. Additionally a particular kinase sequence or any part thereof may be mutated during direct synthesis and combined using chemical methods with other kinase sequence(s) or a part thereof. This chimeric nucleotide sequence can also be placed in an appropriate vector and host cell to produce a variant peptide. ²⁰

Although an amino acid sequence or oligopeptide used for antibody induction does not require biological activity, it must be immunogenic. KIN used to induce specific antibodies may have an amino acid sequence consisting of at least five amino acids and preferably at least 10 amino acids. Short stretches of amino acid sequence may be fused with those of another protein such as keyhole limpet hemocyanin, and the chimeric peptide used for antibody production. Alternatively, the oligopeptide may be of sufficient length to contain an entire domain.

Antibodies specific for KIN may be produced by inoculation of an appropriate animal with an antigenic fragment of the peptide. An antibody is specific for KIN if it is produced against an epitope of the polypeptide and binds to at least part of the natural or recombinant protein. Antibody production includes not only the stimulation of an immune response by injection into animals, but also analogous processes such as the production of synthetic antibodies, the screening of recombinant immunoglobulin libraries for specific-binding molecules (Orlandi R. et al (1989) PNAS 86:3833-3837, or Huse W. D. et al (1989) Science 256:1275-1281), or the in vitro stimulation of lymphocyte populations. Current technology (Winter G. and Milstein C. (1991) Nature 349:293-299) provides for a number of highly specific binding reagents based on the principles of antibody formation. These techniques may be adapted to produce molecules which specifically bind kinase peptides. Antibodies or other appropriate molecules generated against a specific immunogenic peptide fragment or oligopeptide can be used in Western analysis, enzyme-linked immunosorbent assays (ELISA) or similar tests to establish the presence of or to quantitate amounts of kinase active in normal, diseased, or therapeutically treated cells or tissues.

The examples below are provided to illustrate the subject invention. These examples are provided by way of illustration and are not included for the purpose of limiting the invention.

EXAMPLES

I cDNA Library Construction

The kinase sequences of this application (Table 1) were first identified among the sequences comprising various libraries. Technology has advanced considerably since the first cDNA libraries were made. Many small variations in both chemicals and machinery have been instituted over 65 time, and these have improved both the efficiency and safety of the process. Although the cDNAs could be obtained using

an older procedure, the procedure presented in this application is exemplary of one currently being used by persons skilled in the art. For the purpose of providing an exemplary method, the tissue preparation, mRNA isolation and cDNA library construction described here is for the rheumatoid synovium library from which the Incyte Clones 191283 and 192268 for ser/thr kinases were obtained.

Rheumatoid synovial tissue was obtained from the hip joint removed from a 68 year old female with erosive, nodular rheumatoid arthritis. The tissue was frozen, ground to powder in a mortar and pestle, and lysed immediately in buffer containing guanidinium isothiocyanate. The lysate was centrifuged over a CsCl cushion (18 hrs at 25,000 rpm using a Beckman SW28 rotor and ultracentrifuge; Beckman Instruments, Palo Alto, Calif.), ethanol precipitated, resuspended in water and DNase treated for 15 min at 37° C. The RNA was extracted with phenol chloroform and precipitated with ethanol. Polyadenylated messages were isolated using Qiagen Oligotex (QIAGEN Inc, Chatsworth, Calif.), and a custom cDNA library was constructed by Stratagene (La Jolla, Calif.).

First strand cDNA synthesis was accomplished using an oligo (dT) primer/linker which also contained an XhoI restriction site. Second strand synthesis was performed using a combination of DNA polymerase I, E. coli ligase and RNase H, followed by the addition of an EcoRI linker to the blunt ended cDNA. The EcoRI linked, double-stranded cDNA was then digested with XhoI restriction enzyme, extracted with phenol chloroform, and fractionated by size on Sephacryl S400. DNA of the appropriate size was then ligated to dephosphorylated Lambda Zap® arms (Stratagene) and packaged using Gigapack extracts (Stratagene). pBluescript (Stratagene) phagemid DNAs were excised en masse from the library.

In the alternative, DNAs were purified using Miniprep Kits (Catalog #77468; Advanced Genetic Technologies Corporation, Gaithersburg, Md.). These kits provide a 96-well format and enough reagents for 960 purifications. The recommended protocol supplied with each kit has been employed except for the following changes. First, the 96 wells are each filled with only 1 ml of sterile Terrific broth (LIFE TECHNOLGIES™, Gaithersburg, Md.) with carbenicillin at 25 mg/L (2xCarb) and glycerol at 0.4%. After the wells are inoculated, the bacteria are cultured for 24 hours and lysed with 60 μ l of lysis buffer. A centrifugation step (2900 rpm for 5 minutes) is performed before the contents of the block are added to the primary filter plate. The optional step of adding isopropanol to TRIS buffer is not routinely performed. After the last step in the protocol, samples are transferred to a Beckman 96-well block for storage.

II Sequencing of cDNA Clones

The cDNA inserts from random isolates of the rheumatoid synovium or other appropriate library were sequenced in part. Methods for DNA sequencing are well known in the art and employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE® (US Biochemical Corp) or Taq polymerase. Methods to extend the DNA from an oligonucleotide primer annealed to the DNA template of interest have been developed for both single- and double-stranded templates. Chain termination reaction products were separated using electrophoresis and detected via their incorporated, labelled precursors. Recent improvements in mechanized reaction preparation, sequencing and analysis have permitted expansion in the number of sequences that can be determined per day. Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200

(Hamilton, Reno, Nev.), Peltier Thermal Cycler (PTC200; MJ Research, Watertown Mass.) and the Applied Biosystems Catalyst 800 and 377 and 373 DNA sequencers.

The quality of any particular cDNA library may be determined by performing a pilot scale analysis of 192 5 cDNAs and checking for percentages of clones containing vector, lambda or *E. coli* DNA, mitochondrial or repetitive DNA, and clones with exact or homologous matches to public databases. The number of unique sequences—those having no known match in any available database—were 10 recorded.

III Homology Searching of cDNA Clones and Their Deduced Proteins

Each sequence so obtained was compared to sequences in GenBank using a search algorithm developed by Applied 15 Biosystems and incorporated into the INHERITTM 670 Sequence Analysis System. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, Calif.) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window 20 size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of homology to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homolo- 25 gous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERITTM 670 Sequence Analysis System in a way similar to that used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance matches.

Alternatively, BLAST, which stands for Basic Local Alignment Search Tool, is used to search for local sequence 40 alignments (Altschul S. F. (1993) J Mol Evol 36:290–300; Altschul, S. F. et al (1990) J Mol Biol 215:403–10). BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful 45 in determining exact matches or in identifying homologs. While it is useful for matches which do not contain gaps, it is inappropriate for performing motif-style searching. The fundamental unit of BLAST algorithm output is the Highscoring Segment Pair (HSP).

An HSP consists of two sequence fragments of arbitrary but equal lengths whose alignment is locally maximal and for which the alignmentBLAST approach is to look threshold or cutoff score set by the user. The BLAST approach is to look for HSPs between a query sequence and a database sequence, to evaluate the statistical significance of any matches found, and to report only those matches which satisfy the user-selected threshold of significance. The parameter E establishes the statistically significant threshold for reporting database sequence matches. E is interpreted as 60 the upper bound of the expected frequency of chance occurrence of an HSP (or set of HSPs) within the context of the entire database search. Any database sequence whose match satisfies E is reported in the program output.

All the kinase molecules presented in this application 65 were examined using INHERIT. Although their identification was based on the criteria above, their homology to

known kinase molecules and name are subject to change when additional computer analysis against additional or more recent database information is employed. For example, whereas the first two kinases in Table 1 were initially identified as unique Incyte clones, homologous mouse and human kinases are now known. In other cases, additional sequence information has become available and its review against the known databases has precipitated a name change. Occasionally a clone number will also disappear from the LIFESEQTM database (Incyte Pharmaceuticals Inc, Palo Alto, Calif.). This situation generally arises during the regular review of clones and assembly of contiguous sequences.

16

IV Extension of cDNAs to Full Length

The kinase sequences presented here can be used to design oligonucleotide primers for the extension of the cDNAs to full length. In fact, the partial map kinase cDNA sequence (SEQ ID NO 38) initially identified in Incyte clone 214915 among the sequences comprising the human stomach cell library was extended to full length as shown in "A Novel Human Map Kinase Homolog" by Hawkins et al. Incyte Docket PF-036P, filed on Jun. 28, 1995, incorporated herein by reference. The coding region of this full length sequence (SEQ ID NO 45; Incyte Clone 214915E) begins at nucleotide 58 and ends at nucleotide 1156.

Primers are designed based on known sequence; one primer is synthesized to initiate extension in the antisense direction (XLR) and the other to extend sequence in the sense direction (XLF). The primers allow the sequence to be extended "outward" generating amplicons containing new, unknown nucleotide sequence for the gene of interest. The primers may be designed using Oligo 4.0 (National Biosciences Inc, Plymouth, Minn.), or another appropriate program, to be 22–30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68°-72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

The stomach cDNA library was used as a template, and XLR=AAG ACA TCC AGG AGC CCA ATG AC and XLF=AGG TGA TCC TCA GCT GGA TGC AC primers were used to extend and amplify the 214915 sequence. By following the instructions for the XL-PCR kit and thoroughly mixing the enzyme and reaction mix, high fidelity amplification is obtained. Beginning with 25 pMol of each primer and the recommended concentrations of all other components of the kit, PCR is performed using the Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) and the following parameters:

Step 1 94° C. for 60 sec (initial denaturation)

Step 2 94° C. for 15 sec

Step 3 65° C. for 1 min

Step 4 68° C. for 7 min

Step 5 Repeat step 2-4 for 15 additional cycles

Step 6 94° C. for 15 sec

Step 7 65° C. for 1 min

Step 8 68° C. for 7 min+15 sec/cycle

Step 9 Repeat step 6-8 for 11 additional cycles

Step 10 72° C. for 8 min

Step 11 4° C. (and holding)

At the end of 28 cycles, 50 μ l of the reaction mix was removed; and the remaining reaction mix was run for an additional 10 cycles as outlined below:

Step 1 94° C. for 15 sec

Step 2 65° C. for 1 min

Step 3 68° C. for (10 min+15 sec)/cycle

Step 4 Repeat step 1-3 for 9 additional cycles

Step 5 72° C. for 10 min

A 5-10 µl aliquot of the reaction mixture is analyzed by electrophoresis on a low concentration (about 0.6-0.8%) sagarose mini-gel to determine which reactions were successful in extending the sequence. Although all extensions potentially contain a full length gene, some of the largest products or bands are selected and cut out of the gel. Further purification involves using a commercial gel extraction method such as QIAQuick™ (QIAGEN Inc). After recovery of the DNA, Klenow enzyme is used to trim single-stranded, nucleotide overhangs creating blunt ends which facilitate religation and cloning.

After ethanol precipitation, the products are redissolved in 15 13 μ l of ligation buffer. Then, 1 μ l T4-DNA ligase (15 units) and $1 \mu l$ T4 polynucleotide kinase are added, and the mixture is incubated at room temperature for 2-3 hours or overnight at 16° C. Competent E. coli cells (in 40 μ l of appropriate media) are transformed with 3 μ l of ligation mixture and cultured in 80 μ l of SOC medium (Sambrook J. et al, supra). After incubation for one hour at 37° C., the whole transformation mixture is plated on Luria Bertani (LB)-agar (Sambrook J. et al, supra) containing 2×Carb. The following day, 12 colonies are randomly picked from each plate and cultured in 150 µl of liquid LB/2×Carb medium placed in an individual well of an appropriate, commercially-available, sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture is transferred into a non-sterile 96-well plate and after dilution 1:10 with water, 5 μ l of each sample is transferred into a PCR array.

For PCR amplification, 15 μ l of concentrated PCR reaction mix (1.33×) containing 0.75 units of Taq polymerase, a vector primer and one or both of the gene specific primers used for the extension reaction are added to each well.

Amplification is performed using the following conditions:

Step 1 94° C. for 60 sec

Step 2 94° C. for 20 sec

Step 3 55° C. for 30 sec

Step 4 72° C. for 90 sec

Step 5 Repeat steps 2-4 for an additional 29 cycles

Step 6 72° C. for 180 sec

Step 7 4° C. (and holding)

Aliquots of the PCR reactions are run on agarose gels 45 together with molecular weight markers. The sizes of the PCR products are compared to the original partial cDNAs, and appropriate clones are selected, ligated into plasmid and sequenced.

V Diagnostic Assays Using Kinase Specific Oligomers

In those cases where a specific disorder or disease (see definitions supra) is suspected to involve altered quantities of a particular kinase, oligomers may be designed to establish the presence and/or quantity of mRNA expressed in a biological sample. There are several methods currently 55 being used to quantitate the expression of a particular molecule. Most of these methods use radiolabelled (Melby P. C. et al 1993 J Immunol Methods 159:235-44) or biotinylated (Duplaa C. et al 1993 Anal Biochem 229-36) nucleotides, coamplification of a control nucleic acid, and 60 standard curves onto which the experimental results are interpolated. For example, phosphorylase B kinase deficiency may manifest as hepatomegaly which is inherited as either an X-linked or autosomal recessive trait or myoglobinuria whose inheritance is unknown.

Oligomers for phosphorylase B kinase are first used in quantitative PCR to establish a normal range for expression

of phosphorylase B kinase. Then, these same oligomers are used with extracts of cells from patients with inherited phosphorylase B kinase deficiency. The information from such studies is used to define different inheritance patterns and to diagnose future patients displaying phosphorylase B kinase deficiency-like symptoms. In like manner, this same assay can be used to monitor progress of the patient as his/her physiological situation moves toward the normal range during therapy for the condition.

VI Kinases Kit The kinases of the subject invention are used to produce a kinases kit for diagnosing disorders or diseases associated with altered kinase expression. This involves the designing a plurality of oligomers, one set of which is specific for each kinase or kinase regulatory sequence. Specificity in this case refers to sequence similarity, to the length of the nucleic acid molecule amplified, to cell or tissue type being screened or to the disorder or disease. These oligomers are combined with a biological sample obtained from a patient in a solution sufficient for PCR and amplified. The PCR products are examined first, to detect the expression of each kinase, and second to quantify the expression of each kinase. Kinase expression is compared with standard ranges for normal and abnormal expression. In the case(s) where kinase expression is altered, use of the kit has provided the physician with a named disorder or disease which can be treated or further investigated.

A further use of the oligomers from the kinases kit is in a diagnostic assay of example V (above) used to monitor patient response to drug therapy. Once the disease has been named and a therapy chosen, the oligomers specific to the patient's disease may be used periodically to monitor the efficacy of the chosen therapy. In this case, the specific oligomers are combined with a biological sample from the patient in a solution sufficient for PCR and amplified. The 35 PCR product is quantified and compared with a normal standard and with the pretreatment profile of the patient. If the kinase expression is tending toward normal, the therapy may be considered effective; if the expression is even more abnormal, therapy should be discontinued and an alternative 40 treatment instituted.

VII Sense or Antisense Molecules

Knowledge of the correct cDNA sequence of any particular kinase, its regulatory elements or parts thereof will enable its use as a tool in sense (Youssoufian H. and H. F. Lodish 1993) Mol Cell Biol 13:98-104) or antisense (Eguchi et al (1991) Annu Rev Biochem 60:631-652) technologies for the investigation of gene function. Oligonucleotides, from genomic or cDNAs, comprising either the sense or the antisense strand of the cDNA sequence can be used in vitro or in vivo to inhibit expression. Such technology is now well known in the art, and oligonucleotides or other fragments can be designed from various locations along the sequences.

The gene of interest can be turned off in the short term by transfecting a cell or tissue with expression vectors which will flood the cell with sense or antisense sequences until all copies of the vector are disabled by endogenous nucleases. Stable transfection of appropriate germ line cells or preferably a zygote with a vector containing the fragment will produce a transgenic organism (U.S. Pat. No. 4,736,866, 12 Apr. 1988), which produces enough copies of the sense or antisense sequence to significantly compromise or entirely eliminate normal activity of the particular kinase gene. Frequently, the function of the gene can be ascertained by observing behaviors such as lethality, loss of a physiological pathway, changes in morphology, etc. at the intracellular, cellular, tissue or organismal level.

In addition to using fragments constructed to interrupt transcription of the open reading frame, modifications of gene expression can be obtained by designing antisense sequences to promoters, enhancers, introns, or even to trans-acting regulatory genes. Similarly, inhibition can be achieved using Hogeboom base-pairing methodology, also known as "triple helix" base pairing.

VIII Expression of Kinases

Expression of the kinases may be accomplished by subcloning the cDNAs into appropriate vectors and transfecting 10 the vectors into host cells. In some cases, the cloning vector previously used for the generation of the tissue library also provides for direct expression of kinase sequences in E. coli. Upstream of the cloning site, this vector contains a promoter for β -galactosidase, followed by sequence containing the 15 amino-terminal Met and the subsequent 7 residues of β -galactosidase. Immediately following these eight residues is a bacteriophage promoter useful for transcription and a linker containing a number of unique restriction sites.

Induction of an isolated, transfected bacterial strain with 20 IPTG using standard methods will produce a fusion protein corresponding to the first seven residues of β -galactosidase, about 5 to 15 residues which correspond to linker, and the peptide encoded within the kinase cDNA. Since cDNA clone inserts are generated by an essentially random process, 25 there is one chance in three that the included cDNA will lie in the correct frame for proper translation. If the cDNA is not in the proper reading frame, it can be obtained by deletion or insertion of the appropriate number of bases by well known methods including in vitro mutagenesis, digestion 30 with exonuclease III or mung bean nuclease, or oligonucleotide linker inclusion.

The kinase cDNA can be shuttled into other vectors known to be useful for expression of protein in specific hosts. Oligonucleotide linkers containing cloning sites as well as a stretch of DNA sufficient to hybridize to the end of the target cDNA (25 bases) can be synthesized chemically by standard methods. These primers can then used to amplify the desired gene fragments by PCR. The resulting fragments can be digested with appropriate restriction enzymes under standard conditions and isolated by gel electrophoresis. Alternatively, similar gene fragments can be produced by digestion of the cDNA with appropriate restriction enzymes and filling in the missing gene sequence with chemically synthesized oligonucleotides. Partial nucleotide sequence from more than one gene can be ligated together and cloned in appropriate vectors to optimize expression.

Suitable expression hosts for such chimeric molecules include but are not limited to mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect 50 cells such as Sf9 cells, yeast cells such as Saccharomyces cerevisiae, and bacteria such as E. coli. For each of these cell systems, a useful expression vector may also include an origin of replication to allow propagation in bacteria and a selectable marker such as the β-lactamase antibiotic resistance gene to allow selection in bacteria. In addition, the vectors may include a second selectable marker such as the neomycin phosphotransferase gene to allow selection in transfected eukaryotic host cells. Vectors for use in eukaryotic expression hosts may require RNA processing elements 60 such as 3' polyadenylation sequences if such are not part of the cDNA of interest.

Additionally, some of the kinase vectors may contain native promoters which will allow induction of gene expression in human cells such as the 293 line mentioned above. Other available promoters are host specific and may be specifically combined with the coding region of the kinase

of interest. They include MMTV, SV40, and metallothionine promoters for CHO cells; trp, lac, tac and T7 promoters for bacterial hosts; and alpha factor, alcohol oxidase and PGH promoters for yeast. In addition, transcription enhancers, such as the rous sarcoma virus (RSV) enhancer, may be used in mammalian host cells. Once homogeneous cultures of recombinant cells are obtained through standard culture methods, large quantities of recombinantly produced peptide can be recovered from the conditioned medium and analyzed using methods known in the art.

IX Isolation of Recombinant KIN

KIN may be expressed as a recombinant protein with one or more additional polypeptide domains added to facilitate protein purification. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle, Wash.) The inclusion of a cleavable linker sequence such as Factor XA or enterokinase (Invitrogen) between the purification domain and the kin sequence may be useful to facilitate expression of KIN. X Testing for Kinase Activity

The sequences in this application represent many different domains of different kinase families. These domains (and subdomains as detailed in the background of the invention) may be utilized: 1) individually for the production of

subdomains as detailed in the background of the invention) may be utilized: 1) individually for the production of antibodies, 2) in functional groups (eg. to span a membrane), and 3) as interchangable, usable parts of a chimeric kinase. The various partial cDNA sequences of this application represent the different kinase domains of the various families (Hardie G. and Hanks S., supra), and they may be recombined in numerous ways to produce chimeric nucleic acid molecules. For example, a known, full length kinase such as the human map kinase of this application (Seq ID No 45) may be used to swap related portions of the nucleic acid sequence, analogous to domains or subdomains of MAP kinase polypeptides. The chimeric nucleotides, so produced, may be introduced into prokaryotic host cells (as reviewed in Strosberg A. D. and Marullo S. (1992) Trends Pharma Sci 13:95-98) or eukaryotic host cells. These host cells are then employed in procedures to determine what molecules activate the kinase or what molecules are activated by a kinase. Such activating or activated molecules may be of extracellular, intracellular, biologic or chemical origin.

An example of a test system, in this case for protein tyrosine kinases, can be based on the interaction of protein tyrosine kinases with chemokine receptors (Taniguchi T. (1995) Science 268:251-255). These receptors are capable of activating a variety of nonreceptor protein tyrosine kinases when stimulated by an extracellular chemokine. C-X-C chemokines such as platelet factor 4, interleukin-8, connective tissue activating protein III, neutrophil activating peptide 2, are soluble activators of neutrophils.

A standard measure of neutrophil activation involves measuring the mobilization of Ca⁺⁺ as part of the signal transduction pathway. The experiment involves several steps. First, blood cells obtained from venipuncture are fractionated by centrifugation on density gradients. Enriched populations of neutrophils are further fractionated on columns by negative selection using antibodies specific for other blood cells types. Next, neutrophils are transformed with an expression vector containing the kinase nucleic acid sequence of interest and preloaded fluorescent probe whose emission characteristics have been altered by Ca⁺⁺ binding. Or in the alternative, the neutrophil is preloaded with the

purified kinase of interest and fluorescent probe. Then, when the cells are exposed to an appropriate chemokine, the chemokine receptor activates the kinase which, in turn, initiates Ca++ flux. Ca++ mobilization is observed and measured using fluorometry as has been described in Grynk- 5 ievicz G. et al (1985) J Biol Chem 260:3440, and McColl S. et al (1993) J Immunol 150:4550-4555, incorporated herein by reference.

XI Identification of or Production of Kinase Specific Antibodies

Purified KIN is used to screen a pre-existing antibody library or to raise antibodies. using either polyclonal or monoclonal methodology. For polyclonal antibody production, denatured peptide from the reverse phase HPLC separation is obtained in quantities up to 75 mg. This 15 denatured protein can be used to immunize mice or rabbits using standard protocols; about 100 micrograms are adequate for immunization of a mouse, while up to 1 mg might be used to immunize a rabbit. In identifying mouse hybridomas, the denatured protein can be labelled and used 20 to screen potential murine B-cell hybridomas for those which produce antibody. This procedure requires only small quantities of protein, such that 20 mg would be sufficient for labelling and screening of several thousand clones.

For monoclonal antibody production, the amino acid 25 sequence, as deduced from translation of the cDNA, is analyzed to determine regions of high immunogenicity. Peptides comprising appropriate hydrophilic regions are expressed from recombinant cDNA or synthesized and used in suitable immunization protocols to raise antibodies. 30 Selection of appropriate epitopes is described by Ausubel F. M. et al (supra). The optimal amino acid sequences for immunization are usually located at the C-terminus or N-terminus and in intervening, hydrophilic regions of the environment when the protein is in its natural conformation.

Typically, selected oligopeptides, about 15 residues in length, are synthesized using an Applied Biosystems Peptide Synthesizer Model 431A using fmoc-chemistry and coupled to keyhole limpet hemocyanin (KLH, Sigma) by reaction 40 with M-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS; Ausubel F. M. et al, supra). If necessary, a cysteine may be introduced at the N-terminus of the peptide to permit coupling to KLH. Rabbits are immunized with the peptide-KLH complex in complete Freund's adjuvant. The resulting 45 antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% bovine serum albumin, reacting with antisera, washing and reacting with labelled, affinity purified, specific goat anti-rabbit IgG.

Hybridomas may also be prepared and screened using 50 antibody to an activated chromatographic resin. standard techniques. Hybridomas of interest are detected by screening with labelled KIN to identify those fusions producing the monoclonal antibody with the desired specificity. In a typical protocol, wells of plates (FAST; Becton-Dickinson, Palo Alto, Calif.) are coated during incubation 55 with affinity purified, specific rabbit anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml. The coated wells are blocked with 1% BSA, washed and incubated with supernatants from hybridomas. After washing the wells are incubated with labelled KIN at 1 mg/ml. Supernatants with 60 specific antibodies bind more labelled KIN than is detectable in the background. Then clones producing specific antibodies are expanded and subjected to two cycles of cloning at limiting dilution. Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal 65 antibody is purified from mouse ascitic fluid by affinity chromatography on Protein A. Monoclonal antibodies with

22

affinities of at least 108/M, preferably 109 to 1010 or stronger, will typically be made by standard procedures as described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; and in Goding (1986) Monoclonal Antibodies: Principles and Practice, Academic Press, New York City, both incorporated herein by reference.

XII Diagnostic Assays Using KIN Specific Antibodies

Particular KIN antibodies are useful for investigation of various disorders or diseases which may be characterized by differences in the amount or distribution of KIN. Given the usual role of the kinases, KIN might be expected to be upregulated (or downregulated) in its involvement in activation of signal cascades.

Diagnostic assays for KIN include methods utilizing the antibody and a reporter molecule to detect KIN in human body fluids, membranes, cells, tissues or extracts thereof. The antibodies of the present invention may be used with or without modification. Frequently, the antibodies will be labelled by joining them, either covalently or noncovalently, with a substance which provides for a detectable signal. A wide variety of reporter molecules and conjugation techniques are known and have been reported extensively in both the scientific and patent literature. Suitable reporter molecules or labels include those radionuclides, enzymes, fluorescent, chemi-luminescent, or chromogenic agents previously mentioned as well as substrates, cofactors, inhibitors, magnetic particles and the like. Patents teaching the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant immuno-globulins may be produced as shown in U.S. Pat. No. 4,816,567, incorporated herein by reference.

A variety of protocols for measuring soluble or polypeptide which are likely to be exposed to the external 35 membrane-bound KIN, using either polyclonal or monoclonal antibodies specific for the protein, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS). A two-site monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on KIN is preferred, but a competitive binding assay may be employed. These assays are described, among other places, in Maddox, D. E. et al (1983, J Exp Med 158:1211).

XIII Purification of Native KIN Using Antibodies

Native or recombinant protein kinases can be purified by immunoaffinity chromatography using antibodies specific for that particular KIN. In general, an immunoaffinity column is constructed by covalently coupling the anti-KIN

Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia Biotech). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated Sepharose (Pharmacia Biotech). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.

Such immunoaffinity columns may be utilized in the purification of KIN by preparing a fraction from cells containing KIN in a soluble form. This preparation may be derived by solubilization of whole cells or of a subcellular fraction obtained via differential centrifugation (with or without addition of detergent) or by other methods well

known in the art. Alternatively, soluble KIN containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.

A soluble KIN-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of KIN (eg, high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/KIN binding (eg, a buffer of pH 2-3 or a high concentration of a chaotrope such as urea or thiocyanate ion), and KIN is collected.

XIV Drug Screening

This invention is particularly useful for screening therapeutic compounds by using binding fragments of KIN in any of a variety of drug screening techniques. The molecules to be screened may be of extracellular, intracellular, biologic or chemical origin. The peptide fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One may measure, for example, the formation of complexes between KIN and the agent being tested. Alternatively, one can examine the diminution in complex formation between KIN and a receptor caused by the agent being tested.

Methods of screening for drugs or any other agents which can affect signal transduction comprise contacting such an agent with KIN fragment and assaying for the presence of a complex between the agent and the KIN fragment. In such assays, the KIN fragment is typically labelled. After suitable incubation, free KIN fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to

KIN.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the KIN polypeptides and is described in detail in European Patent Application 84/03564, published on Sep. 13, 1984, incorporated herein by reference. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with KIN fragment and washed. Bound KIN fragment is then detected by methods well known in the art. Purified KIN can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, nonneutralizing antibodies can be used to capture the peptide and immobilize it on the solid support.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding KIN specifically compete with a test compound for binding to KIN fragments. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with KIN. XV Identification of Molecules Which Interact with KIN 50

The inventive purified KIN is a research tool for identification, characterization and purification of interacting, signal transduction pathway proteins. Appropriate labels are incorporated into KIN by various methods known in the art and KIN is used to capture soluble or interact with membrane-bound molecules. A preferred method involves labeling the primary amino groups in KIN with 125 I Bolton-Hunter reagent (Bolton, A. E. and Hunter, W. M. (1973) Biochem J 133:529). This reagent has been used to label various molecules without concomitant loss of biological activity (Hebert C. A. et al (1991) J Biol Chem 266:18989-94; McColl S. et al (1993) J Immunol 150:4550-4555). Membrane-bound molecules are incubated with the labelled KIN molecules, washed to removed unbound molecules, and the KIN complex is quantified. Data obtained using different concentrations of KIN are used 65 to calculate values for the number, affinity, and association of KIN with the signal transduction complex.

Labelled KIN fragments are also useful as a reagent for the purification of molecules with which KIN interacts, specifically including inhibitors. In one embodiment of affinity purification, KIN is covalently coupled to a chromatography column. Cells and their membranes are extracted, KIN is removed and various KIN-free subcomponents are passed over the column. Molecules bind to the column by virtue of their KIN affinity. The KIN-complex is recovered from the column, dissociated and the recovered molecule is subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligomers for cloning its gene from an appropriate cDNA library.

In an alternate method, monoclonal antibodies raised against KIN fragments are screened to identify those which inhibit the binding of labelled KIN. These monoclonal antibodies are then used in affinity purification or expression cloning of associated molecules. Other soluble binding molecules are identified in a similar manner. Labelled KIN is incubated with extracts or other appropriate materials derived from rheumatoid synovium. After incubation, KIN complexes (which are larger than the lone KIN fragment) are identified by a sizing technique such as size exclusion chromatography or density gradient centrifugation and are purified by methods known in the art. The soluble binding protein(s) are subjected to N-terminal sequencing to obtain information sufficient for database identification, if the soluble protein is known, or for cloning, if the soluble protein is unknown.

XVI Use and Administration of Antibodies or Other Inhibi-

tory Molecules

Antibodies, inhibitors, receptors or antagonists of KIN fragments (or other treatments to limit signal transduction, TST), can provide different effects when administered therapeutically. TSTs will be formulated in a nontoxic, inert, pharmaceutically acceptable aqueous carrier medium preferably at a pH of about 5 to 8, more preferably 6 to 8, although the pH may vary according to the characteristics of the antibody, inhibitor, or antagonist being formulated and the condition to be treated. Characteristics of TSTs include solubility of the molecule, half-life and antigenicity/immunogenicity; these and other characteristics may aid in defining an effective carrier. Native human proteins are preferred as TSTs, but organic or synthetic molecules resulting from drug screens may be equally effective in particular situations.

TSTs may be delivered by known routes of administration including but not limited to topical creams and gels; transmucosal spray and aerosol; transdermal patch and bandage; injectable, intravenous and lavage formulations; and orally administered liquids and pills particularly formulated to resist stomach acid and enzymes. The particular formulation, exact dosage, and route of administration will be determined by the attending physician and will vary according to each specific situation.

Such determinations are made by considering multiple variables such as the condition to be treated, the TST to be administered, and the pharmacokinetic profile of the particular TST. Additional factors which may be taken into account include disease state (e.g. severity) of the patient, age, weight, gender, diet, time and frequency of administration, drug combination, reaction sensitivities, and tolerance/response to therapy. Long acting TST formulations might be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular TST.

Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature. See U.S. Pat. No. 4,657,760; 5,206,344; or 5,225,212. Those

·

skilled in the art will employ different formulations for different TSTs. Administration to cells such as nerve cells necessitates delivery in a manner different from that to other cells such as vascular endothelial cells.

It is contemplated that disorders or diseases which trigger 5 defensive signal transduction may precipitate damage that is treatable with TSTs. These disorders or diseases may be specifically diagnosed by the tests discussed above, and such testing should be performed in cases where physiologic or pathologic problems are suspected to be associated with abnormal signal transduction.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various

modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

26

TABLE 1

		IADLE I				
Clone	Library	GenBank/SwissProt Identifier, Name				
297	U937	P00540 Mouse protooncogene ser/thr kinase				
1622	U937	HUMCLK3B clk3 gene product				
10007	THP-1 Phorbol LPS	HSPLK1 protein kinase				
12702	THP-1 Phorbol LPS	RATSGPK ser/thr kinase				
23789	Inflamed Adenoid	CHKFRNK chicken tyr kinase				
35652	HUVEC	KEK5 Chicken Y kinase receptor				
35855	HUVEC	HUMANBTK37 tyr kinase				
40194	T + B Lymphoblast	KRB1 VARV Variola virus protein kinase				
42170	T + B Lymphoblast	HSU09564 serine kinase				
46081	Corneal Stroma	YSCKIN1 yeast protein kinase				
46651	Corneal Stroma	CDK4, P11802				
53840	Fibroblast	HSDAPK, Death-associated protein kinase				
54065	Fibroblast	SCPROKIN 1 yeast 35.6 kD				
56494	Fibroblast	KLMC RAT, myosin light chain kinasc				
58029	Skeletal Muscle	ATHCTRIA 1 A. Thaliana Y kinase receptor				
64663	Placenta	KIN3 Yeast protein kinase P22209				
67967	HUVEC Sheer Stress	YAK1 Yeast protein kinase				
68963	HUVEC Sheer Stress	KATK Human Y kinase				
71904	Placenta	KIN3 P22209SwP				
75289	THP-1 Phorbol	H5U08023 Avian retrovirus rp130				
81865	Rheumatoid Synovium	SNF1 Yeast C catabolite derepressing				
82056	HUVEC Sheer Stress	P34314 C. elegans ser/thr kinase				
108485	AML Blast	KAPA Pig cAMP-dependent protein kinase				
114973	Testis	CC2B ARATH Mouse-ear cress cdc				
118591	Skeletal Muscle	PBO192 mixed lineage kinase 1				
119819	Skeletal Muscle	H5U09564 ser kinase				
120376	Skeletal Muscle	U01064 Y kinase				
132750	Bone Marrow	MLK2 mixed lineage kinase 2				
140052	T Lymphocyte	G-protein coupled receptor kinase				
146392	T Lymphocyte	SCYAK1 Yeast Yak1 kinase				
156108	THP-1 Phorbol LPS	U01064 Dictyostelium Y kinase				
173627	Bone Marrow	MMU14166 Kiz				
181971	Placenta	HUMTKR Y kinase receptor				
182538	Placenta	HSNEK2R kinase				
184416*	Cardiac Muscle	KPKS Human proto-oncogene Ser/Thr kinase				
191283	Rheumatoid Synovium	RATSGPK Ser/Thr kinase				
192268	Rheumatoid Synovium	ATHAPK1A Ser/Thr kinase				
214915	Stomach	XLMPK2K Map kinase				
223163	Pancreas	TGF-β receptor ser/thr kinase				
237002	Small Intestine	P16227 Mouse Y kinase blk				
239990	Hippocampus	SHC Human transforming protein				
240142	Hippocampus	HSNEK2R				
275781	Testes	BOVCKIA casein kinase				
285465	Eosinophils	DDIMLCK myosin light chain kinase				
203403	Созшорина	DELIVIDOR II JOSE II I CIMIII AMASO				

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i i i) NUMBER OF SEQUENCES: 45
- ($\,2\,$) Information for SEQ ID No:1:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs

-continued

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA

(1 1) 1102200122 11121 1211

- (v i i) IMMEDIATE SOURCE: (A) LIBRARY: U937
 - (B) CLONE: 297

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAAGGGTTG TAATTAAAGG CGATTTTGAA ACAATTAAAA TCTGTGATGT AGGAGTCTCT CTACCACTGG ATGAAAATAT GACTGTGACT GACCCTGAGG CTTGTTACAT TGGCACAGAG 120 CCATGGAAAC CCAAAGAAGC TGTGGAGGAG AATGGTGTTA TTACTGCAAG GCAGACATAT 180 TTGCCTTTGG CTTACTTTGT GGGAAATGAT GACTTTATCG ATTCCACACA TTAATCTTTC 2 4 0 AAATGATGAT GATGATGAAG TAAAAACTTT TTGATGAAAA GTAATTTTGA TGTTGAAGCA 300 TTACTATGCA AGCCCTTTGG ACCTAAGGCC ACCCTATTTT AATATTGGAG GACCTTGGTG 360 AATCATACCC AGGAAGGTAA TTTGACCTCT TCTCTGATCA CCCTTATTGA AGCCCCCAAG 4 2 0 CACCCTTCTT GTGACAATTT TAGGTTGGAC CAGTTGCTTT GGGCCAACTT AACTAAAGTT 4 8 0 5 2 6 GTTCGAAAAA CTTTTTCCA AAAATTTCCA TAGGCCTCCC AAGTTT

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 378 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE:

- (A) LIBRARY: U937
- (B) CLONE: 1622

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AGAACACCAC ATCCGAGTGG CTGACTTTGG CAGTGCCACA TTTGACCATG AGCACCACAC 60
CACCATTGTG GCCACCCGTC ACTATCGCCG CCTGAGGTGA TCCTTGAGCT GGGCTGGGCA 120
CAGCCTGGTG ACGTCTGGGC ATTGGCTGCA TTCTCTTTGA GTACTACCGG GGCTTCACAC 180
TCTTCCAGAC CCACGAAAAC CGAGAGCACC TGGTGATGAT GGAGAAGATC CTAGGGCCCA 240
TCCCATCACA CATGATCCAC CGTACCAGGA AGCAGAATAT TTCTACAAAAG GGGGCCTAGT 300
TTGGGATGGA CAGCTCTTAC GGCCGGTATG TAAGGGACTC AAACCTTTAA GGTTCATGTT 360
CAAGCTTCCT GGGAAGTG

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 326 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA
- (v i i) IMMEDIATE SOURCE:
 - (A) LIBRARY: THP-1 Phorbol LPS
 - (B) CLONE: 10007
- (* i) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGGCTGGCAG CCCGGTTGGA GCCTCCGGAG CAGAGGAAGA AGACCATCTT GGCACCCCCA

60

-continued ACTATGTGGC TCCAGAAGTG CTGCTGAGAC AGGGCCACGG CCCTGAGGCG GATGTATGGT 120 CACTGGGCTG TGTCATGTAC ACGCTGCTCT GCGGGACCCT CCCTTTGAGA CGGCTGACCT 180 GAAGGAGACG TACCGCTGCA TCAAGAAGGT TCACTACAAC GGTGCCTGCC AGCTCTTAAT 2 4 0 GCCTGCCCGA GTCCTTGGCC GCAATCCTTC GGGCCTTAAC CCGAGAACCG GCCCTCTATT 300 3 2 6 GACAGATCCT TGCGGCAATT AACTTT (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 257 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: THP-1 Phorbol LPS (B) CLONE: 12702 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:4: CCGCAAGACA CCTCCTGGAG GGCCTCCTGA GAAGGACAGG CAAAGGGCTG GGCCAAGGAT 60 GACTTCATGG AGATTAAGAG TCATGTTTCT TCTCCTTAAT TAACTGGGAT GATCTCATTA 120 ATAAGAAGAT TACTCCCCCT TTTACCCAAA TGTGAGTGGG CCCAACGCCT ACGGACTTTG CCCCGAGTTT ACGAAGAGCC TTCCCCAATC CATTGGAAGT CCCCTGAAAG GTCCTATACA 2 4 0 257 AGTCAGTTAA GGAAGTT (2) INFORMATION FOR SEQ ID NO:5: () SEQUENCE CHARACTERISTICS: (A) LENGTH: 252 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Inflamed Adenoid (B) CLONE: 23789 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:5: GTGAAGAATG TGGGGCTGAC CCTCGGAAGT CATCGGGAGC GTGGATGATC TCCTGCCTTC 60 CTTGCCGTCA TCTCACGGAC AGAGATCGAG GGCACCCAGA AACTGCTCAA CAAAGACCTG 120 GCAGAGCTCA TCAACAAGAT GCGCTGGCGC AAGAACGCGT GACCTCCCTG TAGGAGTAAG AGGCAGATCT GACGGTTCAC AACCCTGGCT GTGACGCAAG AACCTCTTAC GTGTGCCAGG 2 4 0

(2) INFORMATION FOR SEQ ID NO:6:

CCCAAAGTTC TG

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA
- (v i i) IMMEDIATE SOURCE:
 - (A) LIBRARY: Huvec
 - (B) CLONE: 35652
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:6:

32 31 -continued CAAAATCGTG GCCCGGAGAA TGGCGGGGCC TCAACCCTCT CCTGGACCAG CGGCAGCTCA 60 CTACTCAGCT TTTGGCCTGT GGGCGAGTGG CTTCGGGCCA TCAAAATGGG AAGATACGAA 120 GAAAGTTTCG CAGCCGCTGG CTTTGGCTCC TTCAGCTGGT CAGCCAGATC TCTGCTGAGG 180 ACCTGCTCCG AATCGAGTCA CTCTGGCGGG ACACCAGAAG AAAATTTGGC CAGTTCCAGC 240 255 ACATGAGTCC CAGGT (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 238 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA

(A) LIBRARY: Havec (B) CLONE: 35855

(v i i) IMMEDIATE SOURCE:

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATACCCCA TATACATAGT GACTGATATA TAAGCAATGG CTGCTTGCTG AATACCTGAG 6.0 GAGTCACGGA AAAGGCTTAA CCTTCCCAGT CTTAGAAATG TGCTACGATG TCTGTAAGGC 120 ATGGCCTTCT TGGAGAGTCA CCAATTCATA CACCGGGCTT GGCTGCTCGT AACTGCTTGG TGGACAGAGA TCTCTGTGTG AAAGTTCTCC ATTTGGATGA CAAGGTATGT TCTTGATG 238

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 261 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA
- (v i i) IMMEDIATE SOURCE:
 - (A) LIBRARY: T+B Lymphoblast
 - (B) CLONE: 40194

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AAACAACTTG ATTATTTAGG AATTCCTCTG TTTTATGGAT CTGGTCTGAC TGAATTCAAG GGAAGAAGTT ACAGATTTAT GGTAATGGAA AGACTAGGAA TAGATTTACA GAAGATCTCA 120 GGCCAGAATG GTACCTTTAA AAAGTCAACT GTCCTGCAAT TAGGATCCGA ATGTTGGATG 180 TACTGGAATA TATACATGAA AATGAATATG TTCATGGTGA TATAAAAGCA GCAAATCTAC 261 TTTTGGGTTA CAAAATCCT T

(2) INFORMATION FOR SEQ ID NO:9:

- () SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 base pairs
 - (B) TYPE: nucleic scid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA
- (v i i) IMMEDIATE SOURCE:
 - (A) LIBRARY: T+B Lymphoblast
 - (B) CLONE: 42170
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	33				34	
			-continued			
TAAGAAACCT	GAAGATCGAG	CCACTGCTGA	AGAATGTCTA	AAGCACCCCT	GGTTGACACA	6 0
GAGCAGTATT	CAAGAGCCTT	CTTTCAGGAT	GGAAAAGGCA	CTAGAAGAAG	CAAATGCCCT	1 2 0
CCAAGAAGGT	CATTCTGTGC	CTGAAATTAA	TTCGGATACC	GACAAATCAG	AAACCGAGGA	180
ATCCATTGTA	ACCGAAGAGT	TAATTGTAGT	TACTTCATAT	ACTCTAGGGC	AATGCAGACA	2 4 0
GT						2 4 2
(2) INFORMATION	FOR SEO ID NO:10:					
	UENCE CHARACTERIST: (A) LENGTH: 222 base (B) TYPE: nucleic scid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs single				
(ii)MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Corneal (B) CLONE: 46081	Stroma				
(x i) SEQI	JENCE DESCRIPTION: S	EQ ID NO:10:				
GCAAAGGACA	GTCCGCCGAG	GTGCTCGGTG	GAGTCATGGC	ATTCCCTTTT	GGAAGACTGG	6 0
	AACCCTGGAG					1 2 0
AACTAAGAAG	CAGTCGCAGT	GAAGATTTAG	ATATAAGCGT	GCCGTAGACT	GTCCCGAAAA	180
TATTAAGTAG	ATCTGTATCA	ATAAAATGCT	AATCATGAAA	тт		2 2 2
(2) INFORMATION	FOR SEQ ID NO:11:				. •	
, ,	JENCE CHARACTERISTI (A) LENGTH: 225 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs	•			
(ii)MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Corneal (B) CLONE: 46651	Stroma				
(xi)SEQU	JENCE DESCRIPTION: S	EQ ID NO:11:				
ATGCTCCGCC	AGTGAGAAGG	GCGGCTGCCT	GAGCGCCTCA	CCAGTCCTCA	TCACCCAGAT	6 0
CCTGTGGCTT	TGAGACACCT	TCACTTAAGA	ACATTTGCCA	CTTGACTTAA	ACCAGAAACG	1 2 0
TGTTTTGTGG	CATCAGCAGA	CCCTTTCTCA	GGTAAGTTGT	GCTTTGCTTT	TAGCATACGT	180
GAGAAGTTGT	TCCGCTCCAT	TTTGTGGGAC	GTCTTTCTTT	CCTTG		2 2 5
(2) INFORMATION	FOR SEQ ID NO:12:	21 21				•
	JENCE CHARACTERISTI (A) LENGTH: 256 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs	• •			
(ii)MOL	ECULE TYPE: cDNA					
, ,	EDIATE SOURCE: (A) LIBRARY: Fibrobla: (B) CLONE: 53840	st				
(x i) SEQU	JENCE DESCRIPTION: SI	EQ ID NO:12:				
CAGCGCCTTA	CATCTCGCAG	CCAAGAACAG	CCACCATGAA	TGCATCAGGA	AGCTGCTTCA	6 0
TCTAAATGCC	CAGCCGAAAG	TTTTGACAGC	TCTGGGAAAA	CAGCTTTACA	TTATGCAGCG	120

*64

			-continued			
GCTCAGGGCT	GCCTTCAAGC	TGTGCAGATT	CTTGCGAACA	CAAGAGCCCC	ATAAACCTCA	180
AAGATTTGGA	TGGGAATATA	ссствствс	TTGCTGTACA	AAATGGTCAC	AGTGAGATCT	2 4 0
GTCACTTTTC	стостс					256
(2) INFORMATION I	FOR SEQ ID NO:13:					
· · · · · · · · · · · · · · · · · · ·	IENCE CHARACTERISTIC (A) LENGTH: 240 base (B) TYPE: nucleic acid (C) STRANDEDNESS: a (D) TOPOLOGY: linear	pairs				
(ii) MOLL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Fibroblas (B) CLONE: 54065	ι				
(xi)SEQU	IENCE DESCRIPTION: SE	Q ID NO:13:				
GTTGACATCT	GGTCCCTGGG	CATATGGCCA	TCGAAATGAT	TGAAGGGGAG	CCTCATACCT	6 0
CAATGAAAAC	CCTTGAGAGC	CTTGTACCTC	ATTGCCACCA	ATGGGACCCC	AGAACTTCAG	1 2 0
	AGCTGTCAGC					180
GTGGAGAAGA	GAGGTTCAGC	TAAAGAGCTG	CTACAGCATC	AATTCCTGAA	GATTGCCAAT	2 4 0
(2) INFORMATION I	FOR SEQ ID NO:14:					
	JENCE CHARACTERISTIC (A) LENGTH: 195 base; (B) TYPE: nucleic scid (C) STRANDEDNESS: s (D) TOPOLOGY: linear ECULE TYPE: cDNA	pairs	• • • •	t in		
•	EDIATE SOURCE: (A) LIBRARY: Fibroblas (B) CLONE: 56494	ţ				
, , -	JENCE DESCRIPTION: SE					
	AGCTCCGAGA					6 0
	AAGCATGGCA					1 2 0
TACAGGAATA	TCACCTTTTT	AGGCAATGAT	AAACAAGAAA	CATTCTTAAA	CATCTCACAG	180
ATGATTTAA	GTTAT					195
(2) INFORMATION	FOR SEQ ID NO:15:					
	JENCE CHARACTERISTI((A) LENGTH: 207 base (B) TYPE: nucleic acid (C) STRANDEDNESS: a (D) TOPOLOGY: linear					
(іі) МОЦ	ECULE TYPE: cDNA					
•	EDIATE SOURCE: (A) LIBRARY: Skeletal I (B) CLONE: 58029	Muscle				
(x i) SEQU	JENCE DESCRIPTION: SE	Q ID NO:15:				
GGAGTGTTTA	TCGAGCCAAA	TGGATATCAC	AGGACAAGGA	GGTGGCTGTA	AAGAAGCTCC	6 0
TCAAAATAGA	GAAAGAGGCA	GAAATACTCA	GTGTCCTCAG	TCACAGAAAC	ATCATCCAGT	1 2 0

TTTATGGAGT AATTTTGAAC CTCCCAACTA TGGCATTGTC ACAGAATATG CTTCTTGGGT 180

5,817,479

38

268

37

AAAAAGGACT TTTAACCCTT CCCGCTTG

-continued

CACTCTATGA TTACATTAAC AGTACAA 207 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 184 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Placenta (B) CLONE: 64663 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:16: CGGGGTGGTA AAACTTGGAG ATCTTGGGAT TGGCGGTTTT AGCTCAAAAA CCACAGCTGC ACATTCTTTA GTTGGTACGC CTATTCATGT TCCAGAGGAT ACAGAAATGG ATACAACTTC 120 AAATCTCATC TGGTCTCTTG GCTGTCTACT ATATGGATGG CTGCATTACA AAGTCCTTTC 180 184 TATG (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: HUVEC Sheer Stress (B) CLONE: 67967 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:17: TGAATTGCTG AGCATAGACC TTTATGAGCT GATTAAAAAA AATAAGTTTC AGGTTTTAGC 60 GTCCAGTTGG TACGCAAGTT TGCCCAGTCC ATCTTGCAAT CTTTGGTGCC CTCCACAAAA 120 TAAGATTATT CACTGCGATC TGAGCCAGAA AACATTCTCC TGAAACACCA CGGGCGCAGT 180 206 TCAACCAAGG TCATTGACTT TGGGTT (2) INFORMATION FOR SEQ ID NO:18: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 268 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: HUVEC Sheer Stress (B) CLONE: 68963 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:18: GGGAAGTGGC CAGTTTGGAG TGGTCAGCTG GGCAAGTGGA AGGGGCAGTA TGATGTTGCT 60 GTTAAGATGA TCAAGGAGGG CTCCATGTCA GAAGATGAAT TTTTCAGGAG GCCCAGACTA 120 TATGAAACTC AGCCATCCCA AGCTGGTTAA ATTCTATGGA GTGTGTTAAA GGATTACCCC 180 ATATACATGT GACTAATATA TAGCAATGCT TGCTTTTCTG AATTACCTGG GGAGTCACGG 2 4 0

-continued

(2) INFORMATION I	FOR SEQ ID NO:19:					
	ENCE CHARACTERISTIC (A) LENGTH: 224 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs				· :
(ii) MOLI	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Placenta (B) CLONE: 71904					
(xi)SEQU	ENCE DESCRIPTION: SE	Q ID NO:19:			1	
сстоооотоо	TAAAACTTGG	AGACTTGGCT	TGGCCGGTTT	TCCACCTCAA	AAACCACAGC	6 0
IGCACATCCT	TTAGTTGGTA	CGCCTTATTA	CATGTTCCAG	AGAGATACAT	GAAAATGGAT	1 2 0
ACAACTCAAA	CTGACATCTG	GCCTTTGGCT	GTTACTATAT	GAATGGCTGC	TTACAAAGCC	180
TTCCTATGGT	GACAAAATGA	TTTTACTCAT	TGTGTAAGAG	ATAG		2 2 4
(2) INFORMATION I	FOR SEQ ID NO:20:	•				
1	JENCE CHARACTERISTIC (A) LENGTH: 195 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs .				
(іі) МОЦ	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: THP-1 Pi (B) CLONE: 75289	norbol 				
(xi)SEQU	JENCE DESCRIPTION: SE	Q ID NO:20:	•			
GCGGGGAATG	ACTCCCTATC	CTGGGGTCCA	GAACCATGAG	ATGTATGATA	TCTTCTCCAT	6 0
GGCCACAGGT	TGAAGCAGCC	CGAAGACTGC	CTGGTGAACT	GTATGAAATA	ATGTACTCTT	1 2 0
GCTGGAGAAC	CGATCCCTTA	GACCGCCCCA	CCTTTTCATA	TTGAGGCTGC	AGCTAGAAAA	180
ACTCTTAGAA	AGTTT					195
(2) INFORMATION	FOR SEQ ID NO:21:					
	JENCE CHARACTERISTIC (A) LENGTH: 219 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs				
(ii)MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Rheumate (B) CLONE: 81865					
, ,	ENCE DESCRIPTION: SE					
	GCAGAAACAC	•				6 0
	GCACCTTCGG					1 2 0
AGCTGTAAGA	TACTCATCGA	CAGAAGATTC	GGAGCCTTGA	TGTGGTAGGA	AAATCCCAG	180
GAAATTCAGA	ACCTCAAGCT	TTTCAGGCAT	CCTCATATA			219
(2) INFORMATION	FOR SEQ ID NO:22:					

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 181 base pairs
 (B) TYPE: nucleic scid

-continued

((;)	STRAI	NDEDI	VESS:	single
/ T	٠,	TOROI	OCV.	linear	

(i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE:

- (A) LIBRARY: HUVEC Sheer Stress
- (B) CLONE: 82056

(x 1) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CCACCAAAGA TCTCAAATAA AGTTGATGTG TGGTCGGTGG GTGTATCTCT ATCAGTGTCT 6.0 TTATGGAAGG AAGCCTTTTG GCCATAACCA GTCTCAGCAA GACATCCTAC AAGAGAATAC 120 GATTTTAAAG CTACTGAAGT GCAGTTCCCG CCAAAGCCAG TAGTAACACC TGAAGCAAAG 180 181 G

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 218 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE:

- (A) LIBRARY: AML Blast
- (B) CLONE: 108485

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TATGGTTATA TGGAAGAGA TGTGACTGGT GGTCGGTTGG GGTATTTTTA TACGAAATGC 60 TTGTAGGTGA TACACCTTTT TATGCAGATT CTTTGGTTGG AACTTACAGT AAAATTATGA 120 ACCATAAAAA TTCACTTACC TTTCCTGATG ATAATGACAT ATCAAAAGAA GCAAAAAACC 180 2 1 8 TTATTTGTGC CTTCCTTACT GACAGGGAAG TGAGGTTA

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 264 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE:

- (A) LIBRARY: Testis
- (B) CLONE: 114973

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GACGGTGGCC ATTTGACATG TGGAGCCTGG GTGCATCACG GTGGAGTTGT ACACGGGCTA CCCCCTGTTC CCCGGGAGAA TGAGGTGGAG CAGCTGGCCT GCATCATGGA GGTGCTGGGT 120 CTGCCGCCAG CCGGCTTCAT TCAGACAGCC TCCAGGAGAC AGACATTCTT TGATTCCAAA 180 GGTTTTCCTA AAAATATAAC CACAACCAGG GGAAAAAAG ATTCCAGATT CCAAGGGCCC 240 264 TCACGGATTG GTGCTGAAAA AACT

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 236 base pairs
- (B) TYPE: nucleic scid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-continued

(II)MOL	ECULE TYPE: cDNA					
·	EDIATE SOURCE: (A) LIBRARY: Skeltal M (B) CLONE: 118591	fuscle				
(xi)SEQU	TENCE DESCRIPTION: SI	EQ ID NO:25:				
GACTGAGGAC	ACTGAAACAT	CATCCAGTTT	TATGGAGTAA	TTCTTGAACC	TCCCAACTAT	6 0
GGCATTGTCA	CAGAATATGC	TTCTCTGGGA	TCACTCTATG	ATTACATTAA	CAGTAACAGA	1 2 0
AGTGAGGAGA	TGGATATGGT	CACATTATGA	CCTGGGCCAC	TGATGTAGCC	AAAGGAATGC	180
ATTATTTACA	TATGGGGCTC	CTGTCAAGGT	GATTCACAGA	GACCTCAAGT	CAAGGA	2 3 6
(2) INFORMATION	FOR SEQ ID NO:26:					
1	JENCE CHARACTERISTI (A) LENGTH: 200 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
(ii)MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Skeltal M (B) CLONE: 119819	fuscle				
(xi)SEQL	ENCE DESCRIPTION: S	EQ ID NO:26:				
CCTGCATGGC	CTTCGAGCTG	GCCACTGGTG	ACTACCTGTT	CGAGCCGCAT	TCTGGAGAAG	6 0
ACTACAGTCG	TGATGAGGGT	AAGGGGTGAG	GGCTCTGGGC	TCAGCCTCCC	GGCCTCCCGG	1 2 0
сствсствсс	CCCAACCTCC	TCTTTTGCCC	ACAGACCACA	TCGCTCACAT	AGTGGAGCTT	180
CTGGGGGACA	TCCCCCCAGC				•	200
(2) INFORMATION I	FOR SEQ ID NO:27:					
	JENCE CHARACTERISTI (A) LENGTH: 217 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
(ii)MOL	ECULE TYPE: cDNA					
, ,	EDIATE SOURCE: (A) LIBRARY: Skeletal (B) CLONE: 120376	Muscle	•			
(xi)SEQU	TENCE DESCRIPTION: ST	EQ ID NO:27:				
GATTACAAGT	AGCTTGGTTG	TAGTGGAAAA	AAACGAGAGA	TTAACCATTC	CAAGCAGTTG	6 0
				TGATGCCAAG		1 2 0
CATTCAAGCA	AATCATTTCA	ATCCTGGGTC	CATGTCAAAT	GACACGAGCC	TTCCTGCAAG	180
TGTAACTCAT	TCCTACACAA	CAAGGCGGAG	TGGAGGT			2 1 7
(2) INFORMATION I	FOR SEQ ID NO:28:					
	ENCE CHARACTERISTI (A) LENGTH: 156 base (B) TYPE: nucleic acid (C) STRANDEDNESS:	poirs				

(i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE: (A) LIBRARY: Bone Marrow (B) CLONE: 132750

5,817,479

-continued

(xi)SEQ	UENCE DESCRIPTION: S	EQ ID NO:28:				
GTAGATTTGA	стстоттотт	TTCTCTCGTA	GTTCCCAAAC	TCATGGAAGT	CTGTTTTAT	6
CAATATGATG	TAAAGTCTGA	AATATACAGC	TTTGGAATCG	TCCTCTGGGA	AATCGCCACT	1 2
GGAGATATCC	CGTTTCAAGG	CTGTAATTCT	GAGAAG			1 5
(2) INFORMATION	FOR SEQ ID NO:29:		·			
	UENCE CHARACTERISTI (A) LENGTH: 224 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs			,	
(ii)MOL	ECULE TYPE: cDNA					
, ,	EDIATE SOURCE: (A) LIBRARY: T Lympt (B) CLONE: 140052	nocyte				
(xi)SEQU	UENCE DESCRIPTION: SI	EQ ID NO:29:				
TGTAAATAAG	GCCCTTCTCC	ACTTGACTTC	AGGCAGCAGA	TTGTCTAGAA	GCCTAAGGAC	6 (
AGCAATTTCT	CTGACAAGAC	AAAGTAGATA	TTTTATACCA	GGGGTTGGCA	AACTACTGCC	1 2 0
CACGGGCCGA	ATTTGGCCCA	GTCTGTTTT	GTATGGTGCA	AACTAAAAAT	GATTTTTACA	180
TTTTAAAGA	GTTATAAAAG	AAAAAATA T	GTGGTCTGTG	AAAT		2 2 4
(2) INFORMATION	FOR SEQ ID NO:30:					
	JENCE CHARACTERISTI (A) LENGTH: 198 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
(ii) MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: T Lymph (B) CLONE: 146392	ocyte				
(xi)SEQU	JENCE DESCRIPTION: SE	EQ ID NO:30:				
гтттстттст	GTTTTTTTT	GTTCCAGTTT	ATTTTAAATG	CATATTTAG	TTGATTGCTT	6 0
TTTAAAAAG	CCCCCTCTGG	CCTCCTGATT	CCAGCTAGTG	TCAGCAGTGG	GATACCTGCG	1 2 0
TTGAAGGAC	ATCATCCACC	GTGACATCAA	GGATGAGAAC	ATCGTGATCG	CCGAGGACTT	180
CACAATCAAG	CTGATAGT					198
2) INFORMATION I	FOR SEQ ID NO:31:	:				:
()	JENCE CHARACTERISTIC (A) LENGTH: 210 base (B) TYPE: nucleic acid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs				•
(іі) моц	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: THP-1 PI (B) CLONE: 156108	norbol LPS				
(xi)SEQU	ENCE DESCRIPTION: SE	Q ID NO:31:				
GAAAACTAT	GAACCTGGAC	AAAATCAAG	GGCCAGTATC	AAGCACGATA	TATATAGCTA	6 0

	47				48	
			-continued			
TTTGCAGATA	ATGTATAGTG	TGTCACAAGG	ACATCGACCT	GTTATTAATG	AAGAAAGTTT	1 8
GCCATATGAT	ATACCTCACC	GAGCACGTAT				2 1
(2) INFORMATION	FOR SEQ ID NO:32:					
, , ,	UENCE CHARACTERISTI (A) LENGTH: 202 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
(ii) MOL	ECULE TYPE: cDNA					
, ,	EDIATE SOURCE: (A)LIBRARY: Bone Ma (B)CLONE: 173627	arrow				
(xi)SEQU	JENCE DESCRIPTION: SI	EQ ID NO:32:				
AGAAGATCGG	GGCCGGCTTC	TTCTCTGAGG	TCTACAAGGT	TCGGCACCGA	CAGTCAGGGC	. 6
AAGTATGGTG	CTGAAGATGA	ACAAGCTCCC	CAGTAACCGG	GGCAACACAC	TACGGGAAGT	1 2
GCAGCTGATG	AACCGGCTCA	GGCACCCCAA	CATCCTAAGG	TTCATGGGAG	TCTGTGTGCA	18
CCAGGGACAG	CTGCACGCTC	TT				20:
(2) INFORMATION	FOR SEQ ID NO:33:					
, , -	JENCE CHARACTERISTI (A) LENGTH: 222 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
	ECULE TYPE: cDNA					
	EDIATE SOURCE:					
	(A) LIBRARY: Placenta (B) CLONE: 181971					
(xi)SEQU	JENCE DESCRIPTION: SI	EQ ID NO:33:				
CGTTTTTGGA	GGGTTCACAC	CTGTCCCTTT	CAAATGCTGG	CGCTTTCACA	CACTCCTTCT	6 (
CTCCTGCCAG	CACCTTCTGG	TCTCAGGAGC	ATTGCAGGAT	GTTGTGTGAG	TAAGTATGGG	120
AGACACTTTA	GTATGGCTTT	TTTCAGCTTA	GCCTCCTGTT	ATCAGAGAGC	AGTCTCTTTC	18
AGTGTCAAGG	TTTGAGTACT	AGATGGTGGA	GAAAGCCTGT	т т		2 2 3
(2) INFORMATION	FOR SEQ ID NO:34:					
	JENCE CHARACTERISTI (A) LENGTH: 192 base (B) TYPE: nucleic acid (C) STRANDEDNESS:	pairs .		·		
	(D) TOPOLOGY: linear					

(i i) MOLECULE TYPE: cDNA

(v i i) IMMEDIATE SOURCE: (A) LIBRARY: Placenta (B) CLONE: 182538

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:34:

,	CTTGGGGTGG	TAAAACTTGG	AGATCTTGGG	CTTGGCCGGT	TTTTCAGCTC	AAAACCACA	6 0
,	GCTGCACATT	CTTTAGTTGG	TACGCCTTAT	TACATGTCTC	CAGAGAGAAT	ACATGAAAAT	1 2 0
,	GGATACAACT	TCAAATCTGA	CATCTGGTCT	сттоостотс	TACTATATGA	GATGGCTGCA	180
	TTACAAAGTC	СТ					192

-continued

(2) INFORMATION	FOR SEQ ID NO:35:					
	JENCE CHARACTERISTI (A) LENGTH: 152 base (B) TYPE: nucleic acid (C) STRANDEDNESS: 2 (D) TOPOLOGY: linear	pairs				
(ii) MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Cardiac I (B) CLONE: 184416	Muscle				
(x i) SEQU	ENCE DESCRIPTION: SE	EQ ID NO:35:				
CTATGGAAGG	CCGCTGGCAG	GGCAATGACA	TTGTCGTGAA	GGTGCTGAAG	GTTCGAGACT	6 0
GGAGTACAAG	GAAGAGCAGG	GACTTCAATG	AAGAGTGTCC	CCGGCTCAGG	ATTTTTCGCA	1 2 0
TCCAAATGTG	CTCCCAGTGC	TAGGTGCCTG	сс			1 5 2
(2) INFORMATION I	FOR SEQ ID NO:36:					
	TENCE CHARACTERISTIC (A) LENGTH: 152 base (B) TYPE: nucleic acid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs				
(ii)MOL	ECULE TYPE: cDNA			•		
, ,	EDIATE SOURCE: (A) LIBRARY: Rheumate (B) CLONE: 191283	oid Synovium				
	ENCE DESCRIPTION: SE	Q ID NO:36:				. :
CAACTACAGT	GAACCTAAAA	TGCCTCTAAT	ACCTTTGCAA	TTATCTTTAA	GAGGATATCT	60
TATGAGTGAA	ATTAACTTGT	GCAACTACTT	TCCTATTCAC	TTTTTTACAG	AGACTTAAAA	1 2 0
CCAGAGAATA	TTTCTAGATT	CACAGGGACA	ст			1 5 2
(2) INFORMATION I	OD SEO ID NO.37.					
(i)SEQU	ENCE CHARACTERISTIC (A) LENGTH: 199 base; (B) TYPE: nucleic scid (C) STRANDEDNESS: s (D) TOPOLOGY: linear	pairs				
(ii) MOLI	ECULE TYPE: cDNA					
` (DIATE SOURCE: (A) LIBRARY: Rheumato (B) CLONE: 192268	oid Synovium				
(xi)SEQU	ENCE DESCRIPTION: SE	Q ID NO:37:				
AGTGGACTGC	AGTAAGCAGA	GCTTCCTGAC	CGAGGTGGAG	CAGCTGTCCA	GGTTTCGTCA	6 0
CCAAACATT	GTGGACTTTC	TGGCTACTGT	GCTCAGAACG	GCTTCTACTG	CCTGGTGTAC	1 2 0
Э	CCAACGGCTC	CCTGGAGGAC	CGTTCCACTG	CCAGACCCAG	GCCTGCCCAC	180
тстстсств	GCCTCAGCG					199
2) Information i	FOR SEQ ID NO:38:					
	ENCE CHARACTERISTIC A) LENGTH: 189 base p B) TYPE: nucleic acid C) STRANDEDNESS: s D) TOPOLOGY: linear	pairs				

(i i) MOLECULE TYPE: cDNA

-continued

			Continue			
(vii)IMM	EDIATE SOURCE: (A) LIBRARY: Stomach (B) CLONE: 214915					
(xi)SEO	UENCE DESCRIPTION: SI	EQ ID NO:38:				
AGAAGATCCA	GTACCTGGTG	TATCAATGCT	CAAAGGCCTT	AAGTACATCC	ACTCTCTGGG	6 0
	GGGACCTGAA					1 2 0
	GGGCTGGCGC		·			180
CTGGTACCT			•			189
(2) INFORMATION						
	UENCE CHARACTERISTI (A) LENGTH: 167 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs		·		
(ii)MOL	ECULE TYPE: cDNA	•				
	EDIATE SOURCE: (A) LIBRARY: Pancreas (B) CLONE: 223163					
(xi)SEQ	UENCE DESCRIPTION: SI	EQ ID NO:39:				
сттвстсттс	TGACAGGATG	AGAGTTATTA	TAAGCAAATC	CTACCTAGAG	GCTTTTAACT	6 0
CTAATGGGAA	TAACTTGCAA	CTAAAAGACC	CAACTTGCAG	ACCAAAATTA	TCAAATGTTG	1 2 0
TGGATTTTCT	GTCCCTCTTA	ATGGATGTGG	TACAATCAGA	AAGGTAG		167
(2) INFORMATION	FOR SEO ID NO 40			•		
(i) SEQI	UENCE CHARACTERISTIC (A) LENGTH: 197 base (B) TYPE: nucleic acid (C) STRANDEDNESS: 2 (D) TOPOLOGY: linear	pairs		·		
(ii)MOL	ECULE TYPE: cDNA					
	EDIATE SOURCE: (A) LIBRARY: Small Int (B) CLONE: 237002	testine				
(xi)SEQU	JENCE DESCRIPTION: SE	EQ ID NO:40:				
CCAAACCTG	CCCAGCCAGC	CCTGAAAATG	CAAGTTTTGT	ACGATTTTGA	AGCTAGGAAC	6 0
CCACGGGAAC	TGACTGTGGT	CCAGGGAGAG	AAGCTGGAGG	TTTGGACCAC	AGCAAGCGGT	1 2 0
сстсстсст	GAAGAATAGG	CGGGACGGAG	CGGCTACATT	CCAAGCAACA	TCTGGGCCCC	180
TACAGCCGGG	GACCCCG			•		197
(2) INFORMATION	FOR SEQ ID NO:41:					
` , -	JENCE CHARACTERISTI (A) LENGTH: 207 base (B) TYPE: nucleic acid (C) STRANDEDNESS: a (D) TOPOLOGY: linear	pairs				
(ii)MOL	ECULE TYPE: cDNA					
, ,	EDIATE SOURCE: (A) LIBRARY: Hippocan (B) CLONE: 239990	npus				
(x i) SEQU	JENCE DESCRIPTION: SE	Q ID NO:41:				

5,817,479

53 54 -continued CCAAGATGCT GGAGGAACTC AAGCCGAGAC TTGTACCAAG GAGAGATGAG CAGGAAGGAG 60 120 GCAGAGGGCT CTGAGAAAGA CGGGACTTCC TGGTCAGGAA GAGCACCACC AACCCGGGCT CCTTTTCCTC ACGGGCATGC ACAATGGCCA GGCAAGCACC TGCTGCTCTT GGACCCAGAA 180 207 GGCACGTCCG GACAAAGGCA GAGTCTT (2) INFORMATION FOR SEQ ID NO:42: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 195 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Hippocampus (B) CLONE: 240142 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:42: GTCACCGGAG AGGATCCATG AGAACGGCTA CAACTTCAAG TCCGACATCT GGTCCTTGGG 6.0 CTGTCTGCTG TACGAGATGG CAGCCCTCCA GAGCCCCTTC TATGGAGATA AGATGAATCT 1 2 0 TTCTCCCTGT GCCAGAAGAT CGAGCAGTGT GACTACCCCC CACTCCCCGG GGAGCACTAC 180 195 TCCGAGAAGT TACGT (2) INFORMATION FOR SEQ ID NO:43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Testes (B) CLONE: 275781 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:43: CTCGTCTATT CGGCACGAGT TTCATTGTCG AAGGAAATAT AAACTGTCTG GAAGATCTGG 60 TGTAGCTCCT TCGAGACATC TTTGGCGATC AGCATCACCA ACGGTAAGAA GTGTAGTAAG . 120 CCAGATCTCA GGGCCAGGCA TCCCCAGTTG CTGTACAAGA GCAGGCTTTC AAGATGCTTC 180 AAGGTCCCTG TCCATCAATA TGCTACACAT TTG 213 (2) INFORMATION FOR SEQ ID NO:44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 425 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: cDNA (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Eosinophils (B) CLONE: 285465 (x i) SEQUENCE DESCRIPTION: SEQ ID NO:44: AAATACTTGA AGGAGTTTAT TATCTACATC AGAATAACAT TGTACACCTT GATTTAAAGC 60

CACAGAATAT ATTACTGAGC AGCATATACC CTCTCGGGGA CATTAAAATA GTAGATTTTG

GAATGTCTCG AAAAATAGGG CATGCGTGTG AACTTCGGGA AATCATGGGA ACACCAGAAT

120

180

-continued

ATTTAGCTCC	AGAATCCTG	AACTATGATC	CCATTACCAC	AGCAACAGAT	ATGTGGAATA	2 4 0
TTGGTATAAT	AGCATATATG	TTGTTAACTC	ACACATCACC	A T T T G T G G G A	GAAGATAATC	3 0 0
AAGAAACATA	CCTCAATATC	TCTCAAGTTA	ATGTAGATTA	TTCGGAAGGA	ACTTTTCAT	3 6 0
CAGTTTCACA	GCTGGCACAG	ACTTTATTCA	GAGCTTTTAG	TAAAATCAGA	GGAAAGGCCC	4 2 0
ACAGC						4 2 5

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENOTH: 1851 base pairs
 (B) TYPE: nucleic sold
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: cDNA

- (v i i) IMMEDIATE SOURCE: (A) LIBRARY: Stomach (B) CLONE: 214915E

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GCCCGTTGGG	CCGCGAACGC	AGCCGCCACG	ccggggccgc	CGAGATCGGG	TGCCCGGGAT	6 0
GAGCCTCATC	CGGAAAAAGG	GCTTCTACAA	GCAGGACGTC	AACAAGACCG	CCTGGGAGCT	1 2 0
GCCCAAGACC	TACGTGTCCC	CGACGCACGT	CGGCAGCGGG	GCCTATGGCT	CCGTGTGCTC	180
GGCCATCGAC	AAGCGGTCAG	GGGAGAAGGT	GGCCATCAAG	AAGCTGAGCC	GACCCTTTCA	2 4 0
GTÇCGAGATC	TTCGCCAAGC	GCGCCTACCG	GGAGCTGCTG	TTGCTGAAGC	ACATGCAGCA	3 0 0
TGAGAACGTC	ATTGGGCTCC	TGGATGTCTT	CACCCCAGCC	TCCTCCCTGG	AACTTCTATG	3 6 0
ACTTCTACCT	GGTGATGCCC	TTCATGCAGA	CGGATCTGCA	GAAGATCATG	GGGATGGAGT	4 2 0
TCAGTGAGGA	GAAGATCCAG	TACCTGGTGT	ATCAGATGCT	CAAAGGCCTT	AAGTACATCC	480
ACTCTGCTGG	GGTCGTGCAC	AGGGACCTGA	AGCCAGGCAA	сстоостото	AATGAGGACT	5 4 0
GTGAACTGAA	GATTCTGGAT	TTGGGGCTGG	CGCGACATGC	AGACGCCGAG	ATGACTGGCT	600
A C G T G G T G A C	CCGCTGGTAC	CGAGCCCCCG	AGGTGATCCT	CAGCTGGATG	CACTACAACC	660
AGACAGTGGA	CATCTGGTCT	GTGGGCTGTA	TCATGGCAGA	GATGCTGACA	GGGAAACTC	720
TGTTCAAGGG	GAAAGATTAC	CTGGACCAGC	TGACCCAGAT	CCTGAAAGTG	ACCGGGGTGC	780
CTGGCACGGA	GTTTGTGCAG	AAGCTGAACG	ACAAAGCGGC	CAAATCCTAC	ATCCAGTCCC	8 4 0
TGCCACAGAC	CCCCAGGAAG	GATTTCACTC	AGCTGTTCCC	ACGGGCCAGC	CCCCAGCCTG	900
CGGACCTGCT	GGAGAAGATG	CTGGAGCTAG	ACGTGGACAA	GCGCCTGACG	GCCGCGCAGG	960
CCCTCACCCA	тсссттсттт	GAACCCTTCC	GGGACCCTGA	GGAAGAGACG	GAGGCCCAGC	1020
AGCCGTTTGA	TGATTCCTTA	GÁACACGAGA	AACTCACAGT	GGATGAATGG	AAGCAGCACA	1080
TCTACAAGGA	GATTGTGAAC	TTCAGCCCCA	TTGCCCGGAA	GGACTCACGG	CGCCGGAGTG	1140
GCATGAAGCT	GTAGGGACTC	ATCTTGCATG	GCACCGCCGG	CCAGACACTG	CCCAAGGACC	1 2 0 0
AGTATTTGTC	ACTACCAAAC	TCAGCCCTTC	TTGGAATACA	GCCTTTCAAG	CAGAGGACAG	1260
AAGGGTCCTT	CTCCTTATGT	GGGAAATGGG	CCTAGTAGAT	GCAGAATTCA	AAGATGTCGG	1 3 2 0
TTGGGAGAAA	CTAGCTCTGA	TCCTAACAGG	CCACGTTAAA	CTGCCCATCT	GGAGAATCGC	1380
CTGCAGGTGG	GGCCCTTTCC	TTCCCGCCAG	AGTGGGGCTG	AGTGGGCGCT	GAGCCAGGCC	1 4 4 0
GGGGGCCTAT	GGCAGTGATG	CTGTGTTGGT	TTCCTAGGGA	TGCTCTAACG	AATTACCACA	1500
AACCTGGTGG	ATTGAAACAG	CAGAACTTGA	TTCCCTTACA	GTTCTGGAGG	CTGGAAATCT	1560

-continued

GGGATGGAGG	TGTTGGCAGG	GCTGTGGTCC	CTTTGAAGGC	TCTGGGGAAG	AATCCTTCCT	1620
TGGCTCTTT	TAGCTTGTGG	CGGCAGTGGG	CAGTCCGTGG	CATTCCCCAG	CTTATTGCTG	1680
		•			ATTGGATTTA	
GGGCCCACCC	TAATCCTGTG	TGATCTTATC	TTGATCCTTA	TTAATTAAAC	CTGCAAATAC	1800
TCTAGTTCCA	AATAAAGTCA	CATTCTCAGG	TAAAAAAA	****	A	1851

We claim:

1. A purified polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, 20 said method comprising the steps of: SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID

NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, and SEQ ID NO:44.

- 2. An expression vector comprising the polynucleotide of claim 1.
- 3. A host cell transformed with the expression vector of claim 2.
- 4. A method for producing and purifying a polypeptide,
- a) culturing the host cell of claim 3 under conditions suitable for the expression of the peptide; and
 - b) recovering the polypeptide from the host cell culture.

 \mathcal{N}

This Page Blank (uspto)

United States Patent [19]

Jacobs et al.

Patent Number: [11]

5,654,173

Date of Patent: [45]

Aug. 5, 1997

[54] SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM

[75] Inventors: Kenneth Jacobs, Newton; John M. McCoy, Reading; Edward R. LaVallie, Tewksbury; Lisa A. Racie; David Merberg, both of Acton; Maurice

Treacy, Chestnut Hill; Vikki Spaulding. Billerica, all of Mass.

[73] Assignce: Genetics Institute, Inc., Cambridge,

Mass.

[21] Appl. No.: 702,080

Aug. 23, 1996 [22] Filed:

[51] Int. Cl.⁶ C12P 21/02; C12N 1/21; C12N 5/10; C07H 21/04

[52] U.S. Cl. 435/69.1; 435/252.3; 435/326; 536/23.5

.... 435/69.1, 326, [58] Field of Search ... 435/252.3; 536/23.5 [56]

References Cited

PUBLICATIONS

Hunt. Human DNA sequence from cosmid L190B4, Huntington's Disease Region, chromosome 4p 16.3. Direct submission to GenBank, Accession No. Z68276. Dec. 19,

Sambrook et al. Molecular Cloning: A Laboratory Manual. 2d ed. CSHL Press, Cold Spring Harbor, NY. Chapters 9 and 11. 1989.

Primary Examiner-Vasu S. Jagannathan Assistant Examiner-Brian Lathrop

Attorney, Agent, or Firm-Scott A. Brown; Thomas J. Des-Rosier

[57]

ABSTRACT

Novel polynucleotides and the proteins encoded thereby are disclosed.

14 Claims, No Drawings

Exhibit M

SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM

FIELD OF THE INVENTION

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.

BACKGROUND OF THE INVENTION

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides 15 "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of 25 DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques. It is to these proteins and the polynucleotides encoding them that the present invention is directed.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1;
- (b) a polynucleotide comprising the nucleotide sequence 40 of SEQ ID NO:1 from nucleotide 247 to nucleotide 432;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 328 to nucleotide 432.
- (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146;
- (e) a polynucleotide encoding the full length protein 50 encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146;
- (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146:
- (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;

2

(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:1 from nucleotide 247 to nucleotide 432; the nucleotide sequence of SEQ ID NO:1 from nucleotide 328 to nucleotide 432; the nucleotide sequence of the full length protein coding sequence of clone BD372_3 deposited under accession number ATCC 98146; or the nucleotide sequence of the mature protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:1 or SEQ ID NO:3.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group 20 consisting of:

- (a) the amino acid sequence of SEQ ID NO:2;
- (b) fragments of the amino acid sequence of SEQ ID NO:2; and
- (c) the amino acid sequence encoded by the cDNA insert of clone

BD372_5 deposited under accession number ATCC 98146; the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:2.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:4;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:4 from nucleotide 316 to nucleotide 501;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein, coding sequence of clone BR533_4 deposited under accession number ATCC 98146;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BR533_4 deposited under accession number ATCC 98146;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BR533_4 deposited under accession number ATCC 98146;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BR533_4 deposited under accession number ATCC 98146;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:5;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:5 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(d) above;
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:4 from nucleotide 316 to nucleotide 501; the nucleotide sequence of the full length protein coding sequence of clone BR533_4 deposited under accession number ATCC 98146; or the nucleotide sequence of the

3

mature protein coding sequence of clone BR533_4 deposited under accession number ATCC 98146. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone BR533_4 deposited under accession number ATCC 98146

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:4 or SEQ ID NO:6.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:5;
- (b) fragments of the amino acid sequence of SEQ ID NO:5; and
- (c) the amino acid sequence encoded by the cDNA insert of clone

BR533_4 deposited under accession number ATCC 98146; the protein being substantially free from other mammalian proteins. Preferably such protein comprises the 20 amino acid sequence of SEQ ID NO:5.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence 25 of SEQ ID NO:7;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7 from nucleotide 113 to nucleotide 433:
- (c) a polynucleotide comprising the nucleotide sequence ³⁰ of the full length protein coding sequence of clone CC288_9 deposited under accession number ATCC 98146;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone CC288_9 deposited under accession number ATCC 98146;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone CC288_9 deposited under accession number ATCC 98146:
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone CC288_9 deposited under accession number ATCC 98146;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:8;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity;
- (i) a polynucleotide which is an allelic variant of a 50 polynucleotide of (a)-(d) above;
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ D NO:7 from nucleotide 113 to nucleotide 55 433; the nucleotide sequence of the full length protein coding sequence of clone CC288_9 deposited under accession number ATCC 98164; or the nucleotide sequence of the mature protein coding sequence of clone CC288_9 deposited under accession number ATCC 98146. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone CC288_9 deposited under accession number ATCC 98146. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein 65 comprising the amino acid sequence of SEQ ID NO:8 from amino acid 1 to amino acid 77.

4

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:7.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:8;
- the amino acid sequence of SEQ ID NO:8 from amino acid 1 to amino acid 77;
- (c) fragments of the amino acid sequence of SEQ ID NO:8; and
- (d) the amino acid sequence encoded by the cDNA insert of clone

CC288_9 deposited under accession number ATCC 98146; the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:8 or the amino acid sequence of SEQ ID NO:8 from amino acid 1 to amino acid 77.

In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions.

Processes are also provided for producing a protein, which comprise:

- (a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and
- (b) purifying the protein from the culture.
 The protein produced according to such methods is also provided by the present invention. Preferred embodiments include those in which the protein produced by such process
 is a mature form of the protein.

Protein compositions of the present invention may further comprise a pharmaceutically acceptable carrier. Compositions comprising an antibody which specifically reacts with such protein are also provided by the present invention.

Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.

DETAILED DESCRIPTION

ISOLATED PROTEINS AND POLYNUCLEOTIDES

Nucleotide and amino acid sequences are reported below for each clone and protein disclosed in the present application. In some instances the sequences are preliminary and may include some incorrect or ambiguous bases or amino acids. The actual nucleotide sequence of each clone can readily be determined by sequencing of the deposited clone in accordance with known methods. The predicted amino acid sequence (both full length and mature) can then be determined from such nucleotide sequence. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein and determining its sequence.

For each disclosed protein applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. Because of the partial ambiguity in reported sequence information, reported protein sequences include "Xaa" designators. These "Xaa" designators indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined nucleotide sequence where applicants believe one should not exist (if the nucleotide sequence were determined more 5 accurately).

As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins 10 include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum. Clone "BD372 5"

A polynucleotide of the present invention has been identified as clone "BD372_5". BD372_5 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins. BD372_5 corresponding to the foregoing nucleotide sequence is a full-length clone, including the entire coding sequence 20 reported in SEQ ID NO:8. of a secreted protein (also referred to herein as "BD372_5 protein").

The nucleotide sequence of the 5' portion of BD372_5 as presently determined is reported in SEQ ID NO:1. What applicants presently believe is the proper reading frame for 25 the coding region is indicated in SEQ ID NO:2. The predicted acid sequence of the BD372_5 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:2. Amino acids 1 to 27 are the predicted leader/signal sequence, with the predicted mature amino acid sequence 30 beginning at amino acid 28. Additional nucleotide sequence from the 3' portion of BD372_5, including the polyA tail, is reported in SEO ID NO:3.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BD372_5 should be approxi- 35 mately 2300 bp.

The nucleotide sequence disclosed herein for BD372_5 was searched against the GenBank database using BLASTA/ BLASTX and FASTA search protocols. BD372_5 demonstrated at least some identity with ESTs identified as 40 "yc90f12.s 1 Homo sapiens cDNA clone 23278 3"" (R39276, BlastN) and "EST05537 Homo sapiens cDNA clone HFBEM26" (T07647, Fasta). Based upon identity, BD372_5 proteins and each identical protein or peptide may share at least some activity. Clone "BR533 4"

A polynucleotide of the present invention has been identified as clone "BR533_4". BR533_4 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins. BR533_4 50 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BR533_4 protein").

The nucleotide sequence of the 5' portion of BR533_4 as presently determined is reported in SEQ ID NO:4. What 55 applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:5. The predicted acid sequence of the BR533_4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:5. Additional nucleotide sequence from the 3' portion of 60 follow these parameters: BR533_4, including the polyA tail, is reported in SEQ ID

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BR533_4 should be approximately

The nucleotide sequence disclosed herein for BR533_4 was searched against the GenBank database using BLASTA/ BLASTX and FASTA search protocols. BR533_4 demonstrated at least some homology with murine semaphorin E (X85994, BlastN). BR533_4 also shows at least some identity with an EST identified as "yy80d10.s 1 Homo sapiens cDNA clone 279859 3" (N38844, BlastN). Based upon homology, BR533_4 proteins and each homologous protein or peptide may share at least some activity. Clone "CC288 9"

A polynucleotide of the present invention has been identified as clone "CC288_9". CC288_9 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins. CC288_9 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "CC288_9 protein").

The nucleotide sequence of CC288_9 as presently determined is reported in SEQ ID NO:7. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the CC288_9 protein

The nucleotide sequence disclosed herein for CC288_9 was searched against the GenBank database using BLASTA/ BLASTX and FASTA search protocols. No hits were found in the database.

Deposit of Clones

Clones BD372_5, BR533_4 and CC288_9 were deposited on Aug. 22, 1996 with the American Type Culture Collection under accession number ATCC 98146, from which each clone comprising a particular polynucleotide is obtainable. Each clone has been transfected into separate bacterial cells (E. coli) in this composite deposit. Each clone can be removed from the vector in which it was deposited by performing an EcoRI/NotI digestion (5' cite, EcoRI; 3' cite, NotI) to produce the appropriately sized fragment for such clone (approximate clone size fragment are identified below). Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The sequence of the oligonucleotide probe that was used to isolate each full-length clone is identified below, and should be most reliable in isolating the clone of interest.

Clone	Probe Sequence
 BD372 5	SEQ ID NO: 9
BR533_4	SEQ ID NO: 10
CC288_9	SEQ ID NO: 11

In the sequences listed above which include an N at position 2, that position is occupied in preferred probes/primers by a biotinylated phosphoaramidite residue rather than a nucleotide (such as, for example, that produced by use of biotin phosphoramidite (1-dimethoxytrityloxy-2-(N-biotinyl-4aminobutyl)-propyl-3-O-(2-cyanoethyl)-(N,N-diisopropyl)phosphoramadite) (Glen Research, cat. no. 10-1953)).

The design of the oligonucleotide probe should preferably

- (a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;
- (b) It should be designed to have a T_m of approx. 80° C. (assuming 2° for each A or T and 4 degrees for each G

The oligonucleotide should preferably be labeled with g-32P ATP (specific activity 6000 Ci/mmole) and T4 polynucle-

8

otide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantitated by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4e+6 dmp/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 µl of the stock 10 used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 µg/ml. The culture should preferably be grown to saturation at 37° C., and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 µg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37° C. Other known 20 methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 65° C. for 1 hour with gentle agitation in 6× SSC (20× stock is 175.3 g NaCl/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 μg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). 30 Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1e+6 dpm/ml. The filter is then preferably incubated at 65° C. with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2× SSC/0.5% SDS at room temperature without 35 agitation, preferably followed by 500 mL of 2× SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1×SSC/0.5% SDS at 65° C. for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to 40 visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known 50 methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins 55 for many purposes, including increasing the valency of protein binding sites. For example, fragments of the protein may be fused through "linker" sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. 60 Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein-IgM fusion would generate a decavalent form of the protein of the invention.

The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form 65 of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed

clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein may also be determinable from the amino acid sequence of the full-length form.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.

Where the protein of the present invention is membranebound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485–4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537–566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein

produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

The protein may also be produced by operably linking the 5 isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San 10 Diego, Calif., U.S.A. (the MaxBat® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide 15 of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from 20 culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-Stransferase (GST) or thioredoxin (TRX). Kits for expression 35 and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and In Vitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such 40 epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant 45 methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of 50 other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those 60 skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be 65 employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic

compounds and in immunological processes for the development of antibodies.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. protein; one or more column steps over such affinity resins 25 Such modifications are believed to be encompassed by the present invention.

USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention 30 are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for milk of transgenic cows, goats, pigs, or sheep which are 55 selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

12

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in 5 assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); 10 and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of 15 the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory 25 Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity
A protein of the present invention may exhibit cytokine,

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell 45 differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the sassays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/55 G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; 65 Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

nol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, B. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin γ , Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11-Bennett, F., Giannotti, J., Clark, S. 30 C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9-Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by vital (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this

regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflam- 10 function in vivo on the development of that disease. matory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, 15 organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune 20 response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, 25 non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the 30 tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte anti- 35 gen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue 40 destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 45 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior 50 to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as 55 an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these 60 blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using 65 animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include

allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to longterm relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-vital immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigenpulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection 10 in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune 15 response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a 20 cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II 25 MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associ- 30 ated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in 35 a human subject may be sufficient to overcome tumorspecific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity 40 include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 45 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., L Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 50 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 55 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, 60 proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In 65 Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1–3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494–3500, 1986; Takai et al., J. Immunol. 140:508–512, 1988; Bertagnolli et al., J. Immunol. 149:3778–3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795–808, 1992; Gorczyca et al., Leukemia 7:659–670, 1993; Gorczyca et al., Cancer Research 53:1945–1951, 1993; Itoh et al., Cell 66:233–243, 1991; Zacharchuk, Journal of Immunology 145:4037–4045, 1990; Zamai et al., Cytometry 14:891–897, 1993; Gorczyca et al., International Journal of Oncology 1:639–648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelosuppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, 15 those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which 20 will identify, among others, proteins that regulate lymphohematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; 25 Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; 30 Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, 35 Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, 40 Wiley-Liss, Inc., New York, N.Y. 1994. Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for 45 wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone 50 fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair 60 processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction

(collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for . promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among 5 other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, 10 neuronal); International Patent Publication No. WO91/ 07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. L and Rovee, D. T., 15 eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, 25 to be useful in treatment of various coagulation disorders alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility 30 in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of 35 the anterior pituitary. See, for example, U.S. Pat. No. 4,798, 885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs. 40

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; 45 Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic 50 or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell 55 population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of 60 other means, be measured by the following methods: infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell 65 population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a

particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis. The activity of a protein of the invention may, among

other means, be measured by the following methods: Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. A protein of the present invention may also exhibit 20 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988. Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995. Anti-Inflammatory Activity

Proteins of the present invention may also exhibit antiinflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhib- 10 iting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities 15 can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, 20 complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and 25 hypersensitivity to an antigenic substance or material. Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein 30 may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily 45 characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic 50 cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behav- 55 ioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic 60 tion. stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); 65 immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act

as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

ADMINISTRATION AND DOSING

A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNFO, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.

A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the inven-

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include,

without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. Nos. 4,235,871; 4,501.728; 4,837,028; and 4,737,323, all of 5 which are incorporated herein by reference.

As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or antithrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or antithrombotic factors.

Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may addi- 50 tionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such 55 as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or 60 glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous

or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection. Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.

The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein of the present invention per kg body weight.

The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.

Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R. P. Merrifield, J. Amer. Chem. Soc. 85, 2149-2154 (1963); J. L. Krstenansky, et al., FEBS Lett. 211, 10 (1987). Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the 65 protein.

For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration,

the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may 5 desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be 10 included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of deliver- 15 ing the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical 20 applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate 25 formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as 30 bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised 35 of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminatephosphate and processing to alter pore size, particle size, 40 particle shape, and biodegradability.

Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other pre-

ferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5–20 wt %, preferably 1–10 wt % based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.

In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.

The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).

Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

SEQUENCE LISTING

^(1) GENERAL INFORMATION:

⁽ i i i) NUMBER OF SEQUENCES: 11

	(i) SI	(A) LENG	RACTERI TH: 432 b : nucleic a	aso pairs														•	
			(c) STRA	NDEDNE	S: doub	lc					,									
1			· (D	TOPO	LOGY: lin	car										•	- :				
	(ii) M	OLEC	JLE TYP	E: cDNA			•													•
	(x i) SI	QUEN	CE DES	CRIPTION	: SEQ II) NO:1:														
GGTT	TGA	. A A	A C	TCTC	CTTC	C T	TTGTC	AATT	ΤG	GTG	TTA	GG	AGTI	CI	TAT	r G	TTA	TT	CTG	С	6 0
AGCC	TTT	A C	T A	TTGI	CCTT	T A 7	OATT	TGAA	CA	CAG	T G A	A T	ACCA	DA.	CAC	r G	TTI	AT	TAG	A	120
GGTT	A G G	A G	T A	GGGG	CAGG	T G	ATTA		A C	AAA	AAA	G C	TAAT	' A A '	CTC	c	TCA	AG	CAA	T	180
TTCT	666	CT	A A	TAGA	ATTA	TAC	TAGA	CAGT	G A	AGT.	ATC	T A	AACC	CAC	3 G G A	. A	TCA	GA	TTG	A	2 4 0
GGCA	CCA	TG	T C	CATO	GCCT	T GA	GAAT	TAAT	AG	GCT	G C A	T	TCTG	G G 1	TC	С	CNT	TT	TTT	T	300
TTTT	TTT	TT	G C	CCAA	CTGA	G T	TTTC	TGTG	G A	CTT.	ACA:	I G	GAAC	TTC	TTA	T	TCT	CT	FAA.	A	3 6 0
TCAT	TAA	ĢΤ	T A	CTTG	ACAA	TAT	TCTI	GGAT	TT	GGA	GAA	A C	TGGA	TGI	AGC	3 G	CCG	TA	rg A	A	4 2 0
***	TCA	ΤT	C G	٨																	432
(2) IN	FORM	OITA	n for	SEQ ID	NO:2:																
	(i) SE			RACTERIS																
					IH: 62 am amino aci																
			(C) STRAN	OGY: line	S:															
	(ii) M(OLECU	LE TYPI	E: protein										-						
٠.	(x i) SE	QUEN	CE DESC	RIPTION:	SEQ ID	NO:2:										•	•		•	
	М с 1	ŧ.	Ser	116	Ala	Leu 5	Arg	I 1 c	A s :	n A 1	-	. e u	His	PЬ	o T	r p	V a		6 u 5	Xaa	
	Рh	e :	Phe	Pbe	Phe 20	Phe	Ala	Gln	Let	3 S e		. e u	Ser	V a	1 A	s p	L e 3 0	u H	i :	G 1 y	
	T b	r	Ser	T y r 3 5	Ser	Lou	L y s	Ser	L c t	ı Se	r T	УI	Leu	ть		1 c 5	Рb	e L	e u	Asp	
	L c		G I u 5 0	Lys	Leu	A s p	V a l	G 1 y	Pro	. т,	r G	l u	L y s	I 1 6 0	c I	1 0	A r	g			
(2)IN				-	•																
	(i) SE	-		ACTERIS H: 219 ba																
			-	-	meleic aci	_															
			-	-	DEDNESS		:														
2.5			()) IOPOL	OGY: line	ar .	٠.	•													
:	(ii) MC	LECU	LE TYPE	: cDNA					•			:								
	(xi) SEC	QUENC	E DESC	RIPTION:	SEQ ID	NO:3:		•		•	٠				•				٠.	
ATAG	JAT.	A C I	4 G:	TATC	TNGC	тт	TTTC	ATTT	AAA	CGI	CGN	G	AGCA	ATT	TTC	C	CAA	GAC	ATA		60
ACAAA	ACT	3 T (T	FNGA.		i GG	A A A A	CATT	NGC	3 G G C	TOT	C	AGCA	NAA	CNG	A	AAA	TGT	TTI	•	120
CTGGG	3 T G 2	A G A	. c	ACAT	GTATO	тт	NGNA.	ATGG	GT 1	GGA	TTT	A	GTGT	GCT	TTA	T	TTC.	A A T	**		180
AATTO	CAG	[A]	T	ATAA'	TTTA	AA	AAAA.	***	AAA	AAA											2 1 9
(2) INF	ORMA	10TE	FOR	SEQ ID I	NO:4:				•												
				T (TIA		MOC.															

- QUENCE CHARACTERISTICS:

 (A) LENGTH: 501 base pairs
 (B) TYPE: mucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCCACAGGTG TCCANTCCCA GGTCCAACTG CAGATTTCGA ATTCGGCCTT CATGGCCTAG 6.0 AGCGACGCGG AGAARAGCTC CGGGTGCCGC GGCACTGCAG CGCTGAGATT CCTTTACAAA GAAACTCAGA GGACCGGGAA GAAAGAATTT CACCTTTGCG ACGTGCTAGA AAATAARGTC 180 GTCTGGGAAA AGGACTGGAG ACACAAGCGC ATCSCAAS Y Y SRGTGAAGGA SAAASNGAKG 240 GANBTAKWWM MGWGSWGAAA AATKT Y WWKC AAMMWMGGTA TTTTCCCTTG GATATTAACT 300 TGCATATCTG AAGAAATGGC ATTCCGGACA ATTTGCGTGT TGGTTGGAGT ATTTATTTGT 3 6 0 TCTATCTGTG TGAAAGGATC TTCCCAGCCC CAAGCAAGAG TTTATTTAAC ATTTGATGAA 420 CTTCGAGAAA CCAAGACCTC TGAATACTTC AGCCTTTCCC ACCATCCTTT AGACTACAGG 501 ATTTTATTAA TGGATGAAGA T

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 62 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(2) INFORMATION FOR SEQ ID NO.5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 302 base pairs
 - (B) TYPE: nucleic scid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CTAGCACTAG ACATGTCATG GTCTTCATGG TGCATATAAA TATATTTAAC TTAACCAGA 60
TITTATTTAT ATCTTTATTC ACCTTTTCTT CAAAATCGAT ATGGTGGCTG CAAAACTAGA 120
ATTGTTGCAT CCCTCAATNG AATGAGGGCC ATATCCCTGT GGTATTCCTT TCCTGCTTNG 180
GGGCTTTAGA ATTCTAATTG TCAGTGATTT TGTATATGAA AACAAGTTCC AAAATCCACAG 240
CTTTTACGTA GTAAAAGTCA TAAATGCATA TGACAGAATG GCTATCAAAA GAAAAAAAAA 300

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 448 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D)	TOPOLOGY: linear
-----	------------------

- (i i) MOLECULE TYPE: cDNA
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGCGAARGCA GCGGCAGGTC GGGAGCAARA TGGCGCTGCG GCCAGGAGCT GGTTCTGGTG 60

GCGGCGGGGC CGCGARGAK Y ATRR Y G Y GRK KT Y Y R Y Y SKG KEWKSMGGST TCATGTTTCC 120

TGTTGCAGGT GGGATAAGAC CCCCTCAAGG CCTGATGCCG ATGCAGCAAC AAGGATTTCC 180

TATGGTCTCT GTCATGCAGC CTAATATGCA AGGCATTATG GGAATGAATT ACAGCTCTCA 240

GATGTCCCAA GGACCTATTG CTATGCAGGC AGGAATACCA ATGGGACCAA TGCCAGCAGC 300

GGGAATGCCT TACCTAGGAC AAGCACCCTT CCTGGGCATG CGTCCTCCAG GCCCACAGTA 360

CACTCCAGAC ATGCAGAAGC AGTTTGCCGA AGAGCAGCAG AAACGATTTG AACAGCAGCA 420

AAAACTCTTA GAAAAAAAAA AAAAAAAA

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

 Met 1
 Phe 2
 Pro 3
 Ala 5
 Gly 2
 Gly 1le Arg 10
 Pro 10
 Pro 3le Gln Gly Lew Met 15
 Pro 15

 Met 2
 Gln Gln Gln Gln 20
 Gly Phe Pro Met 25
 Val Ser Val Met Gln Gln Gln Pro 30
 Asn Met 30

 Gln Gly 1le Wet 35
 Met 35
 Ser Gln Met 30
 Gln Met 30
 Gln Gly Pro 45

 Ile Ala Met 50
 Met 61
 Ala Met 61
 Gln Gly Fro 60
 Pro 60
 Ala Ala Ala Gly 60

 Met 50
 Tyr Leu Gly Gln Ala Pro Pro 60
 Pro 70
 Asp Met Gln Lys Gln Phe Ala Glu Glu Gln Gln Gln 95
 Gln Gln Gln Gln 95

Gin Gin Gin Lys Leu Leu Giu

(2) INFORMATION FOR SEQ ID NO.9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs

Glu

100

- (B) TYPE: mucheic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: Finear
- (i i) MOLECULE TYPE: other nucleio acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- GNGCCTCAAT CTGATTCCCT GGGTTTAGA

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: finest

(i i) MOLECULE TYPE: other nucleic scid (A) DESCRIPTION: /desc = "oligonucleotide"

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GNCCGGAATG CCATTTCTTC AGATATGCA

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: mckeic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "oligonucleotide
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TNCCATTGGT ATTCCTGCCT GCATAGCAA

2 9

What is claimed is:

- 1. An isolated polynucleotide selected from the group ²⁵ consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1;
 - (b) a polynucleotide comprising the nucleotide sequence 30 of SEQ ID NO:1 from nucleotide 247 to nucleotide 432:
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 328 to nucleotide 432:
 - (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146;
 - (e) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146;
 - (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146:
 - (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146; and
 - (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2.
- 2. The polynucleotide of claim 1 comprising the nucleotide sequence of SEQ ID NO:1.
- 3. The polynucleotide of claim 1 comprising the nucle- 55 of SEQ ID NO:1. otide sequence of SEQ ID NO:1 from nucleotide 247 to nucleotide 432.

- 4. The polynucleotide of claim 1 comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 328 to nucleotide 432.
- 5. The polynucleotide of claim 1 comprising the nucleotide sequence of the full length protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146.
- 6. The polynucleotide of claim 1 encoding the full length protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146.
- 7. The polynucleotide of claim 1 comprising the nucleotide sequence of the mature protein coding sequence of clone BD372_5 deposited under accession number ATCC 98146.
- 8. The polynucleotide of claim 1 encoding the mature protein encoded by the cDNA insert of clone BD372_5 deposited under accession number ATCC 98146.
 - 9. The polynucleotide of claim 1 encoding a protein comprising the amino acid sequence of SEQ ID NO:2.
- A vector comprising a polynucleotide of claim 1
 wherein said polynucleotide is operably linked to an expression control sequence.
 - 11. A host cell transformed with a vector of claim 2.
- 12. The host cell of claim 3, wherein said cell is a mammalian cell.
- 13. A process for producing a protein, which comprises:
- (a) growing a culture of the host cell of claim 3 in a suitable culture medium; and
- (b) purifying the protein from the culture.
- 14. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:1.

* * * * *

 \mathcal{N}

This Page Blank (uspto)

TIS005552281A

United States Patent [19]

Stashenko et al.

Patent Number:

5,552,281

Date of Patent:

Sep. 3, 1996

[54] HUMAN OSTEOCLAST-SPECIFIC AND -RELATED GENES

[75] Inventors: Philip Stashenko, Norfolk; Yi-Ping Li,

Boston; Anne L. Wucherpfennig,

Brookline, all of Mass.

[73] Assignee: Forsyth Dental Infirmary for

Children, Boston, Mass.

[21] Appl. No.: 392,678

[22] Filed: Feb. 23, 1995

Related U.S. Application Data

[63] Continuation of Ser. No. 45,270, Apr. 6, 1993, abandoned.

[51] Int. Cl.6 C07H 21/04; C12N 5/10; C12N 15/70; C12Q 1/68

435/6; 435/69.1; 435/172.3;

435/252.3; 435/320.1; 536/23.1

435/6, 320.1, 252.3, [58] Field of Search 435/69.1, 172.3; 536/23.1

[56]

References Cited

PUBLICATIONS

Blair, Harry C., et al., "Extracellular-matrix degradation at acid pH. Avian osteoclast acid collagenase isolation and characterization", Biochemical Journal 290(3):873-884 (15 Mar. 1993).

Tezuka, Ken-Ichi, et al., "Identification of osteopontin in isolated rabbit osteoclasts", Biochemical and Biophysical Research Communications 186(2):914-916 (31 Jul. 1992). Tezuka, Ken-Ichi, et al., "Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts", Journal of Biological Chemistry 269(2):1106-1108, (14 Jan.

Horton, Michael A. et al., "Monoclonal Antibodies to Osteoclastomas (Giant Cell Bone Tumors): Definition of Ostcoclast-specific Cellular Antigens," Cancer Research 45, 5663-5669 (Nov. 1985).

Davies, John et al., "The Osteoclast Functional Antigen, Implicated in the Regulation of Bone Resorption, Is Biochemically Related to the Vitronectin Receptor," The Journal of Cell-Biology 109, 1817-1826 (Oct. 1989).

Hayman, Alison, R. et al., "Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas," Biochem. J. 261, 601-609 (1989).

Sandberg, M. et al., "Localization of the Expression of Types I, III, and IV Collagen, TGF-\$\beta\$1 and c-fos Genes in Developing Human Calvarial Bones," Developmental Biology 130, 324-334 (1988).

Sandberg, M. et al., "Enhanced expression of TGF-β and c-fos mRNAs in the growth plates of developing human long bones," Development 102, 461-470 (1988).

Ek-Rylander, Barbro et al., "Cloning, Sequence, and Developmental Expression of a Type 5, Tartrate-resistant, Acid Phoshatase of Rat Bone," The Journal of Biological Chemistry 266(36), 24684-24689 (Dec. 25, 1991).

GenBank/EMBL Sequence Search Printout, pp. 1-19 (Jun. 24, 1993).

Primary Examiner-W. Gary Jones Assistant Examiner-Paul B. Tran Attorney, Agent, or Firm-Hamilton, Brook, Smith & Reynolds, P.C.

[57]

ABSTRACT

The present invention relates to purified DNA sequences encoding all or a portion of an osteoclast-specific or -related gene products and a method for identifying such sequences. The invention also relates to antibodies directed against an osteoclast-specific or -related gene product. Also claimed are DNA constructs capable of replicating DNA encoding all or a portion of an osteoclast-specific or -related gene product, and DNA constructs capable of directing expression in a host cell of an osteoclast-specific or -related gene product.

5 Claims, 1 Drawing Sheet

```
AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
61
      GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
121
      CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
      CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
181
241
      CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
301
      GCGAACCCCA CGGTGCGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
361
      CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
421
      GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
481
      CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
      GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
541
      TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
601
661
      GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
721
      CATCITCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGGTTGCC
781
      CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
841
      GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
901
      CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
961
      CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
1021
      CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
1081
     GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
1141
      TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
1201
     TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
     GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
1261
1321
     CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCT GAACCTGAGC CACGGCCTCC
     AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
1381
1441
     TGTCCACCCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
1501
     AGGTCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
1561
     TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
1621
     CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
1681
     CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
1741
     GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
1801
     GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
     CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
     GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT.
1921
     CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
     CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
2101
     GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
2161
     GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
2221
     CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
2281
     TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
```

35

HUMAN OSTEOCLAST-SPECIFIC AND -RELATED GENES

RELATED APPLICATION

This application is a continuation of application Ser. No. 08/045,270 filed on Apr. 6, 1993 now abandoned.

BACKGROUND OF THE INVENTION

Excessive bone resorption by osteoclasts contributes to the pathology of many human diseases including arthritis, osteoporosis, periodontitis, and hypercalcemia of malignancy. During resorption, osteoclasts remove both the mineral and organic components of bone (Blair, H. C., et al., J. Cell Biol. 102:1164 (1986)). The mineral phase is solubilized by acidification of the sub-osteoclastic lacuna, thus allowing dissolution of hydroxyapatite (Vaes, G., Clin. Orthop. Relat. 231:239 (1988)). However, the mechanism(s) by which type I collagen, the major structural protein of 20 bone, is degraded remains controversial. In addition, the regulation of osteoclastic activity is only partly understood. The lack of information concerning osteoclast function is due in part to the fact that these cells are extremely difficult to isolate as pure populations in large numbers. Furthermore, 25 there are no osteoclastic cell lines available. An approach to studying ostcoclast function that permits the identification of heretofore unknown osteoclast-specific or -related genes and gene products would allow identification of genes and gene products that are involved in the resorption of bone and in 30 the regulation of osteoclastic activity. Therefore, identification of osteclast-specific or -related genes or gene products would prove useful in developing therapeutic strategies for the treatment of disorders involving aberrant bone resorption.

SUMMARY OF THE INVENTION

The present invention relates to isolated DNA sequences encoding all or a portion of osteoclast-specific or -related gene products. The present invention further relates to DNA constructs capable of replicating DNA encoding osteoclastspecific or -related gene products. In another embodiment, the invention relates to a DNA construct capable of directing expression of all or a portion of the osteoclast-specific or 45 -related gene product in a host cell.

Also encompassed by the present invention are prokaryotic or eukaryotic cells transformed or transfected with a DNA construct encoding all or a portion of an osteoclastspecific or -related gene product. According to a particular 50 embodiment, these cells are capable of replicating the DNA construct comprising the DNA encoding the osteoclastspecific or -related gene product, and, optionally, are capable of expressing the osteoclast-specific or -related gene product. Also claimed are antibodies raised against osteoclast- 55 specific or -related gene products, or portions of these gene products.

The present invention further embraces a method of identifying osteoclast-specific or -related DNA sequences and DNA sequences identified in this manner. In one 60 embodiment, cDNA encoding osteoclast is identified as follows: First, human giant cell tumor of the bone was used to 1) construct a cDNA library; 2) produce 32P-labelled cDNA to use as a stromal cell⁺; osteoclast⁺ probe, and 3) produce (by culturing) a stromal cell population lacking 65 osteoclasts. The presence of osteoclasts in the giant cell tumor was confirmed by histological staining for the ostcoclast marker, type 5 tartrate-resistant acid phosphatase (TRAP) and with the use of monoclonal antibody reagents.

The stromal cell population lacking osteoclasts was produced by dissociating cells of a giant cell tumor, then growing and passaging the cells in tissue culture until the cell population was homogeneous and appeared fibroblastic. The cultured stromal cell population did not contain osteoclasts. The cultured stromal cells were then used to produce a stromal cell+, osteoclast- 32P-labelled cDNA probe.

The cDNA library produced from the giant cell tumor of the bone was then screened in duplicate for hybridization to the cDNA probes: one screen was performed with the giant cell tumor cDNA probe (stromal cell+, ostcoclast+), while a duplicate screen was performed using the cultured stromal cell cDNA probe (stromal cell+, osteoclast-). Hybridization to a stromal+, osteoclast+ probe, accompanied by failure to hybridize to a stromal*, osteoclast probe indicated that a clone contained nucleic acid sequences specifically expressed by osteoclasts.

In another embodiment, genomic DNA encoding osteoclast -specific or -related gene products is identified through known hybridization techniques or amplification techniques. In one embodiment, the present invention relates to a method of identifying DNA encoding an osteoclast-specific or -related protein, or gene product, by screening a cDNA library or a genomic DNA library with a DNA probe comprising one or more sequences selected from the group consisting of the DNA sequences set out in Table I (SEQ ID NOs: 1-32). Finally, the present invention relates to an osteoclast-specific or related protein encoded by a nucleotide sequence comprising a DNA sequence selected from the group consisting of the sequences set out in Table I, or their complementary strands.

BRIEF DESCRIPTION OF FIG. 1

The FIG. 1 shows cDNA sequence (SEQ ID NO: 33) of buman gelatinase B, and highlights those portions of the sequence represented by the osteoclast-specific or -related cDNA clones of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

As described herein, Applicant has identified osteoclastspecific or osteoclast-related nucleic acid sequences. These sequences were identified as follows: Human giant cell tumor of the bone was used to 1) construct a cDNA library; 2) produce 32P-labelled cDNA to use as a stromal cell+ osteoclast*probe, and 3) produce (by culturing) a stromal cell population lacking osteoclasts. The presence of osteclasts in the giant cell tumor was confirmed by histological staining for the osteoclast marker, type 5 acid phosphatase (TRAP). In addition, monoclonal antibody reagents were used to characterize the multinucleated cells in the giant cell tumor, which cells were found to have a phenotype distinct from macrophages and consistent with osteoclasts.

The stromal cell population lacking osteoclasts was produced by dissociating cells of a giant cell tumor, then growing the cells in tissue culture for at least five passages. After five passages the cultured cell population was homogeneous and appeared fibroblastic. The cultured population contained no multinucleated cells at this point, tested negative for type 5 acid phosphatase, and tested variably alkaline phosphatase positive. That is, the cultured stromal cell population did not contain osteoclasts. The cultured stromal

cells were then used to produce a stromal cell*, osteoclast⁻³²P-labelled cDNA probe.

The cDNA library produced from the giant cell tumor of the bone was then screened in duplicate for hybridization to the cDNA probes: one screen was performed with the giant 5 cell tumor cDNA probe (stromal cell*, osteroclast*), while a duplicate screen was performed using the cultured stromal cell cDNA probe (stromal cell* osteoclast*) Clones that hybridized to the giant cell tumor cDNA probe (stromal*, osteoclast*), but not to the stromal cell cDNA probe (stromal*, osteoclast*), were assumed to contain nucleic acid sequences specifically expressed by osteoclasts.

As a result of the differential screen described herein, DNA specifically expressed in osteoclast cells characterized as described herein was identified. This DNA, and equivalent DNA sequences, is referred to herein as osteoclast-specific or osteoclast-related DNA. Osteoclast-specific or -related DNA of the present invention can be obtained from sources in which it occurs in nature, can be produced recombinantly or synthesized chemically; it can be cDNA, genomic DNA, recombinantly-produced DNA or chemically-produced DNA. An equivalent DNA sequence is one which hybridizes, under standard hybridization conditions, to an osteoclast-specific or -related DNA identified as described herein or to a complement thereof.

Differential screening of a human osteoclastoma cDNA library was performed to identify genes specifically expressed in osteoclasts. Of 12,000 clones screened, 195 clones were identified which are either uniquely expressed in osteoclasts, or are osteoclast-related. These clones were further identified as osteoclast-specific, as evidenced by failure to hybridize to mRNA derived from a variety of unrelated human cell types, including epithelium, fibroblasts, lymphocytes, myelomonocytic cells, osteoblasts, and neuroblastoma cells. Of these, 32 clones contain novel cDNA sequences which were not found in the GenBank database.

A large number of cDNA clones obtained by this procedure were found to represent 92 kDa type IV collagenase 40 (gelatinase B; E.C. 3.4.24.35) as well as tartrate resistant acid phosphatase. In situ hybridization localized mRNA for gelatinase B to multinucleated giant cells in human osteoclastomas. Gelatinase B immunoreactivity was demonstrated in giant cells from 8/8 osteoclastomas, osteoclasts in normal bone, and in osteoclasts of Paget's disease by use of a polyclonal antisera raised against a synthetic gelatinase B peptide. In contrast, no immunoreactivity for 72 kDa type IV collagenase (gelatinase A; E.C. 3.4.24.24), which is the product of a separate gene, was detected in osteoclastomas 50 or normal osteoclasts.

The present invention has utility for the production and identification of nucleic acid probes useful for identifying osteoclast-specific or -related DNA. Osteoclast-specific or -related DNA of the present invention can be used to 55 produce osteoclast-specific or -related gene products useful in the therapeutic treatment of disorders involving aberrant bone resorption. The osteoclast-specific or -related sequences are also useful for generating peptides which can then be used to produce antibodies useful for identifying 60 osteoclast-specific or -related gene products, or for altering the activity of osteoclast-specific or -related gene products. Such antibodies are referred to as osteoclast-specific antibodies. Osteoclast-specific antibodies are also useful for identifying osteoclasts. Finally, osteoclast -specific or -re- 65 lated DNA sequences of the present invention are useful in gene therapy. For example, they can be used to alter the

expression in osteoclasts of an aberrant osteoclast -specific or -related gene product or to correct aberrant expression of an osteoclast-specific or -related gene product. The sequences described herein can further be used to cause osteoclast-specific or related gene expression in cells in which such expression does not ordinarily occur, i.e., in cells which are not osteoclasts.

Example 1-Osteoclast cDNA Libary Construction

Messenger RNA (mRNA) obtained from a human osteoclastoma ('giant cell tumor of bone'), was used to construct an osteoclastoma cDNA library. Osteoclastomas are actively bone resorptive tumors, but are usually non-metastatic. In cryostat sections, osteoclastomas consist of -30% multinucleated cells positive for tartrate resistant acid phosphatase (TRAP), a widely utilized phenotypic marker specific in vivo for osteoclasts (Minkin, Calcif. Tissue Int. 34:285-290 (1982)). The remaining cells are uncharacterized 'stromal' cells, a mixture of cell types with fibroblastic/ mesenchymal morphology. Although it has not yet been definitively shown, it is generally held that the osteoclasts in these tumors are non-transformed, and are activated to resorb bone in vivo by substance(s) produced by the stromal cell element.

Monoclonal antibody reagents were used to partially characterize the surface phenotype of the multinucleated cells in the giant cell tumors of long bone. In frozen sections, all multinucleated cells expressed CD68, which has previously been reported to define an antigen specific for both osteoclasts and macrophages (Horton, M. A. and M. H. Helfrich, In Biology and Physiology of the Osteoclast, B. R. Rifkin and C. V. Gay, editors, CRC Press, Inc. Boca Raton, Fla., 33-54 (1992)). In contrast, no staining of giant cells was observed for CD11b or CD14 surface antigens, which are present on monocyte/macrophages and granulocytes (Arnaout, M. A. et al. J. Cell. Physiol. 137:305 (1988); Haziot, A. et al. J. Immunol. 141:547 (1988)). Cytocentrifuge preparations of human peripheral blood monocytes were positive for CD68, CD11b, and CD14. These results demonstrate that the multinucleated giant cells of osteoclastomas have a phenotype which is distinct from that of macrophages, and which is consistent with that of osteo-

Osteoclastoma tissue was snap frozen in liquid nitrogen and used to prepare poly A⁺ mRA according to standard methods. cDNA cloning into a pcDNAII vector was carried out using a commercially-available kit (Librarian, InVitrogen). Approximately 2.6×10⁶ clones were obtained, >95% of which contained inserts of an average length 0.6 kB.

Example 2—Stromal Cell mRNA Preparation

A portion of each osteoclastoma was snap frozen in liquid nitrogen for mRNA preparation. The remainder of the tumor was dissociated using brief trypsinization and mechanical disaggregation, and placed into tissue culture. These cells were expanded in Dulbecco's MEM (high glucose, Sigma) supplemented with 10% newborn calf serum (MA Bioproducts), gentamycin (0.5 mg/ml), 1-glutamine (2 mM) and non-essential amino acids (0.1 mM) (Gibco). The stromal cell population was passaged at least five times, after which it showed a homogenous, fibroblastic looking cell population that contained no multinucleated cells. The stromal cells were mononuclear, tested negative acid phosphatase, and tested variably alkaline phosphatase positive. These findings indicate that propagated stromal cells (i.e., stromal cells that

Example 3—Identification of DNA Encoding
Osteoclastoma-Specific or -Related Gene Products
by Differential screening of an Osteoclastoma
cDNA Library

A total of 12,000 clones drawn from the osteoclastoma cDNA library were screened by differential hybridization, using mixed 32P labelled cDNA probes derived from (1) giant cell tumor mRNA (stromal cell+, OC+), and (2) mRNA from stromal cells (stromal cell*, OC*) cultivated from the same tumor. The probes were labelled with 32[P]dCTP by random priming to an activity of -10°CPM/µg. Of these 12,000 clones, 195 gave a positive hybridization signal with giant cell (i.e., osteoclast and stromal cell) mRNA, but not with stromal cell mRNA. Additionally, these clones failed to hybridize to cDNA produced from mRNA derived from a variety of unrelated human cell types including epithelial cells, fibroblasts, lymphocytes, myelomonocytic cells, osteoblasts, and neuroblastoma cells. The failure of these clones to hybridize to cDNA produced from mRNA derived from other cell types supports the conclusion that these clones are either uniquely expressed in osteoclasts, or are 25 osteoclast-related.

The osteoclast (OC) cDNA library was screened for differential hybridization to OC cDNA (suromal cell⁺, OC⁺) and stromal cell cDNA (stromal cell⁺, OC⁻) as follows:

NYTRAN filters (Schleicher & Schuell) were placed on 30 agar plates containing growth medium and ampicillin. Individual bacterial colonies from the OC library were randomly picked and transferred, in triplicate, onto filters with preruled grids and then onto a master agar plate. Up to 200 colonies were inoculated onto a single 90-mm filter/plate using these techniques. The plates were inverted and incubated at 37° C. until the bacterial inoculates had grown (on the filter) to a diameter of 0.5–1.0 mm.

The colonies were then lysed, and the DNA bound to the filters by first placing the filters on top of two pieces of 40 Whatman 3 MM paper saturated with 0.5N NaOH for 5 minutes. The filters were neutralized by placing on two pieces of Whatman 3 MM paper saturated with 1M Tris-HCL, pH 8.0 for 3-5 minutes. Neutralization was followed by incubation on another set of Whatman 3 MM papers 45 saturated with 1M Tris-HCL, pH 8.0/1.5M NaCl for 3-5 minutes. The filters were then washed briefly in 2×SSC.

DNA was immobilized on the filters by baking the filters at 80° C. for 30 minutes. Filters were best used immediately, but they could be stored for up to one week in a vacuum jar so at room temperature.

Filters were prehybridized in 5-8 ml of hybridization solution per filter, for 2-4 hours in a heat sealable bag. An additional 2 ml of solution was added for each additional filter added to the hybridization bag. The hybridization

buffer consisted of 5xSSC, 5xDenhardt's solution, 1% SDS and 100 µg/ml denatured heterologous DNA.

Prior to hybridization, labeled probe was denatured by heating in 1×SSC for 5 minutes at 100° C., then immediately chilled on ice. Denatured probe was added to the filters in hybridization solution, and the filters hybridized with continuous agitation for 12-20 hours at 65° C.

After hybridization, the filters were washed in 2×SSC/0.2% SDS at 50°-60° C. for 30 minutes, followed by washing in 0.2×SSC/0.2% SDS at 60° C. for 60 minutes.

The filters were then air dried and autoradiographed using an intensifying screen at -70° C. overnight.

Example 4-DNA Sequencing of Selected Clones

Clones reactive with the mixed tumor probe, but unreactive with the stromal cell probe, are expected to contain either osteoclast-related, or in vivo 'activated' stromal-cell-related gene products. One hundred and forty-four cDNA clones that hybridized to tumor cell cDNA, but not to stromal cell cDNA, were sequenced by the dideoxy chain termination method of Sanger et al. (Sanger F., et al. Proc. Natl. Acad. Sci. USA 74:5463 (1977)) using sequenase (US Biochemical). The DNASIS (Hitatchi) program was used to carry out sequence analysis and a homology search in the GenBank/EMBL database.

Fourieen of the 195 tumor* stromal clones were identified as containing inserts with a sequence identical to the osteoclast marker, type 5 tartrate-resistant acid phosphatase (TRAP) (GenBank accession number J04430 M19534). The high representation of TRAP positive clones also indicates the effectiveness of the screening procedure in enriching for clones which contain osteoclast-specific or related cDNA sequences.

Interestingly, an even larger proportion of the tumor* stromal clones (77/195; 39.5%) were identified as human gelatinase B (macrophage-derived gelatinase) (Wilhelm, S. M. J. Biol. Chem. 264:17213 (1989)), again indicating high expression of this enzyme by osteoclasts. Twenty-five of the gelatinase B clones were identified by dideoxy sequence analysis; all 25 showed 100% sequence homology to the published gelatinase B sequence (Genbank accession number J05070). The portions of the gelatinase B cDNA sequence covered by these clones is shown in the FIGURE (SEQ ID NO: 33). An additional 52 gelatinase B clones were identified by reactivity with a ³²P-labelled probe for gelatinase B.

Thirteen of the sequenced clones yielded no readable sequence. A DNASIS search of GenBank/EMBL databases revealed that, of the remaining 91 clones, 32 clones contain novel sequences which have not yet been reported in the databases or in the literature. These partial sequences are presented in Table I. Note that three of these sequences were repeats, indicating fairly frequent representation of mRNA related to this sequence. The repeat sequences are indicated by a b superscripts (Clones 198B, 223B and 32C of Table I).

TABLE I

		_ PARTIAL S	SEQUENCES OF 32 NO EXPRESSED GENT	VEL OC-SPECIFIC OR ES (cDNA CLONES)	-RELATED	
1 61 121	(SEQ ID NO: 1) GCAAATATCT AATGTTTCTA GTGATATCT	AAGTTTATTG GGGTTTTTT CTTTGAATAA	CTTGGATTTC AGTTTGTTTT ACCTATAATA	TAOTGAGAGC TATTGAAAAA GAAAATAGCA	TGTTGAATTT TITAATTATT GCAGACAACA	GGTGATGTCA TATGCTATAG
4B (SEQ ID NO: 2) GTGTCAACCT	GCATATCCTA	AAAATGTCAA	AATGCTGCAT	CTOCTTAATG	TCGGGGTAGG

TABLE I-continued

PARTIAL SEQUENCES OF 32 NOVEL OC SPECIFIC OR -RELATED EXPRESSED GENES (-DNA CLONES)

•		EXPRESSED GEN	ES (cDNA CLONES)		•
61 GGG			•		
12B (SEQ ID NO: 3)					
CTTCCCTCTC	TTGCTTCCCT	TTCCCAAGCA	GAGGTGCTCA	CTCCATGGCC	ACCGCCACCA
61 CAGGCCCACA	GGGAGTACTG	CCAGACTACT	GCTGATGTTC	TCTTAAGGCC	CAGGGAGTCT
121 CAACCAGCTG	GTGGTGAATG	CTGCCTGGCA	CGGGACCCCC	CCC	
28B (SEQ ID NO: 4)	0.00.00.00	0.000.000.	0000100000		
1 TTTTATTTGT	AAATATATGT	ATTACATCCC	TAGAAAAAGA	ATCCCAGGAT	TITICCCTCCT
61 GTGTGTTTTC	GTCTTGCTTC.	TTCATGGTCC	ATGATGCCAG	CTGAGGTTGT	CAGTACAATG
121 AAACCAAACT	GGCGGGATGG	AAGCAGATTA	TTCTGCCATT	TTTCCAGGTC	TTT
37B (SEQ ID NO: 5)		121001011111			
GGCTGGACAT	GGGTGCCCTC	CACGTCCCTC	ATATCCCCAG	GCACACTCTG	GCCTCAGGTT
61 TTGCCCTGGC	CATGTCATCT	ACCTGGAGTG	GGCCCTCCCCC	TTCTTCAGCC	TTGAATCAAA
121 AGCCACTITG	TTAGGCGAGG	ATTTCCCAGA	CCACTCATCA	CATTAAAAAA	TATTTTGAAA
181 ACAAAAAAA	AAAAAA				
55B (SEQ ID NO: 6)				•	
I TTGACAAAGC	TGITTATITC	CACCAATAAA	TAGTATATGG	TGATTGGGGT	TTCTATTTAT
61 AAGAGTAGTG	GCTATTATAT	GGGGTATCAT	GTTGATGCTC	ATAAATAGTT	CATATCTACT
121 TAATTTGCCT	TC				
60B (SEQ ID NO: 7)	••				
I GAAGAGAGTT	GTATGTACAA	CCCCAACAGG	CAAGGCAGCT	AAATGCAGAG	GGTACAGAGA
61 GATCCCGAGG	GAATT	CCCCAACAGG	CIDIOCHOC!	7001.COTONO	OGINCAOAGA
86B (SEQ ID NO: 8)	O/Mil I				
I GGATGGAAAC	ATGTAGAAGT	CCAGAGAAAA	ACAATTITAA	AAAAAGGTGG	AAAAGTTACG
61 GCAAACCTGA	GATTTCAGCA	TAAAATCTTT	AGTTAGAAGT	GAGAGAAAGA	AGAGGGAGGC
121 TGGTTGCTGT	TGCACGTATC	AATAGGTTAT	C	CACAGAAAAA	AUAUUUAUUC
87B (SEQ ID NO: 9)	IOCACOTAIC	WINDOLIVI	_		
1 TTCTTGATCT	TTACAACACT	ATCA ATA CCC	AAAAAAGAAA	A A A CTECTURE A	A A ATA A A ATC
61 TAGGAGCCGT	TTAGAACACT GCTTTTGGAA	ATGAATAGGG		AAACTGTTCA	AAATAAAATG
181 CAATGATAAA	ACTTGACAAA	TGCTTGAGTG	AGGAGCTCAA	CAAGTCCTCT	CCCAAGAAAG
98B (SEQ ID NO: 10)	ACTIONCANA	A			•
1 ACCCATTICT	AACAATTTTT	A CTCTA A A AT	TTTTCCTCAA	AGTTCTAAGC	TTA ATCACAT
		ACTGTAAAAT	TTTTGGTCAA		TTAATCACAT
	AGAGGCAATA	TATAGCCCAT	CTTACTAGAC	ATACAGTATT	AAACTGGACT
121 GAATATGAGG 110B (SEQ ID NO: 11)	ACAAGCTCTA	GTGGTCATTA	AACCCCTCAG	AA	
	ACACCATTCA .	Free C C C A A A	ATCT A C A CCT	*******	
	ACAGCATTCA	TTTGGCCAAA	ATCTACACGT	TTGTAGAATC	CTACTGTATA
	ATGTATCAAG	TATAGACTAT	GAAAGTGCAA	ATAACAAGTC	AAGGTTAGAT
	TITITACATT	ATAAAATTAA	CITOITT		
118B (SEQ ID NO: 12) 1 CCAAATTTCT	CTCC+ 1200+		C.TC. CC.T.		
	CTGGAATCCA	TCCTCCCTCC	CATCACCATA	GCCTCGAGAC	GTCATTICIG
61 TITGACTACT	CCAGC				
133B (SEQ ID NO: 13)	CTCCC+6000	******			
I AACTAACCTC	CTCGGACCCC	TGCCTCACTC	ATTTACACCA	ACCACCCAAC	TATCTATAAA
61 CCTGAGCCAT	GGCCATCCCT	TATGAGCGGC	GCAGTGATTA	TAGGCTTTCG	CTCTAAGATA
121 AAAT			•		
140B (SEQ ID NO: 14)	-	· · · · · · · · · · · · · · · · · · ·			
1 ATTATTATTC	TTTTTTTATG	TTAGCTTAGC	CATGCAAAAT	TTACTGGTGA	AGCAGTTAAT
61 AAAACACACA	TCCCATTGAA	GGGTTTTGTA	CATTTCAGTC	CTTACAAATA	ACAAAGCAAT
121 GATAAACCOG	GCACGTCCTG	ATAGGAAATT	С		
144B (SEQ ID NO: 15)					
1 CGTGACACAA	ACATGCATTC	GITTTATTCA	TAAAACAGCC	TGGTTTCCTA	AAACAATACA
61 AACAGCATGT	TCATCAGCAG	GAAGCTGGCC	GTGGGCAGGG	GGGCC	
198B* (SEQ ID NO: 16)					-
1 ATAGGTTAGA	TTCTCATTCA	CGGGACTAGT	TAGCTTTAAG	CACCCTAGAG	GACTAGGGTA
61 ATCTGACTTC	TCACTTCCTA	AGTTCCCTCT	TATATCCTCA	AGGTAGAAAT	GTCTATGTTT
121 TCTACTCCAA	TTCATAAATC	TATTCATAAG	TCTTTGGTAC	AAGTTACATG	ATAAAAAGAA
181 ATGTGATTTG	TCTTCCCTTC	TTTGCACTTT	TRAAATAAAG	TATTTATCTC	CTGTCTACAG
241 TITAAT		•	-		
212B (SEQ ID NO: 17)					
1 GTCCAGTATA	AAGGAAAGCG	TTAAGTCGGT	AAGCTAGAGG	ATTOTAAATA	TCTTTTATGT
61 CCTCTAGATA	AAACACCCGA	TTAACAGATG	TTAACCTTTT	ATGITTTGAT	TTGCTTTAAA
121 AATGGCCTTC	TACACATTAG	CTCCAGCTAA	AAAGACACAT	TGAGAGCTTA	GAGGATAGTC
181 TCTGGAGC					
223Bb (SEQ ID NO: 18)					
1 GCACTTGGAA	GGGAGTTGGT	GTOCTATTIT	TGAAGCAGAT	GTGGTGATAC	TGAGATTGTC
61 TGTTCAGTTT	CCCCATTTGT	TTGTGCTTCA	AATGATOCTT	CCTACTTTGC	TTCTCTCCAC
121 CCATGACCTT	TTTCACTGTG	GCCATCAAGG	ACTITCCTGA	CAGCTTGTGT	ACTCTTAGGC
181 TAAGAGATGT	GACTACAGCC	TGCCCCTGAC	TG		
241B (SEQ ID NO: 19)					
I TOTTAGTTTT	TAGGAAGGCC	TGTCTTCTGG	GAGTGAGGTT	TATTAGTCCA	CTTCTTGGAG
61 CTAGACGTCC	TATAGTTAGT	CACTGGGGAT	GGTGAAAGAG	GGAGAAGAGG	AAGGGCGAAG
121 GGAAGGGCTC	TTTGCTAGTA	TCTCCATTTC	TAGAAGATGG	TTTAGATGAT	AACCACAGGT
181 CTATATGAGC	ATAGTAAGGC	TCT	_		
32C* (SEQ ID NO: 20)					
I CCTATTTCTG	ATCCTGACTT	TGGACAAGGC	CCTTCAGCCA	GAAGACTGAC	AAAGTCATCC
121 TCCGTCTACC	AGAGCGTGCA	CTTGTGATCC	TAAAATAAGC	TTCATCTCCG	GCTGTGCCTT
161 GGGTGGAAGG	GGCAGGATTC	TGCAGCTGCT	TTTGCATTTC	TCTTCCTAAA	TTICATT

	PARTIAL S	SEQUENCES OF 32 NO EXPRESSED GEN	OVEL OC-SPECIFIC OF ES (cDNA CLONES)	R-RELATED	•
34C (SEQ ID NO: 21)				•	·
1 CGGAGCOTAG	GTGTGTTTAT	TCCTGTACAA	ATCATTACAA	AACCAAGTCT	GGGGCAGTCA
61 CCGCCCCCAC	CCATCACCCC	AGTGCAATGG	CTAGCTGCTG	GCCTTT	
47C (SEQ ID NO: 22)		•			
1 TTAGTTCAGT	CAAAGCAGGC	AACCCCCTTT	GGCACTGCTG	CCACTGGGGT	CATGGCGGTT
61 GTGGCAGCTG	GGGAGGTTTC	CCCAACACCC	TOCTCTGCTT	CCCTGTGTGT	CGGGGTCTCA
121 GGAGCTGACC	CAGAGTGGA		*		
65C (SEQ ID NO: 23)					
1 GCTGAATGTT	TAAGAGAGAT	TITGGTCTTA	AAGGCTTCAT	CATGAAAGTG	TACATGCATA
61 TGCAAGTGTG	AATTACGTGG	TATGGATGGT	TGCTTGTTTA	TTAACTAAAG	ATGTACAGCA
121 AACTGCCCGT	TTAGAGTCCT	CTTAATATTG	ATGTCCTAAC	ACTGGGTCTG	CTTATGC
79C (SEQ ID NO: 24)		•			
1 GGCAGTGGGA	TATEGAATCC	AGAAGGGAAA	CAAGCACTGG	AAAATTAAAA	ACAGCTGGGG
61 AGAAAACTGG.	GGAAACAAAG	GATATATOCT	CATGGCTCGA	AATAAGAACA	ACCCCTGTGG
121 CATTGCCAAC	CTGGCCAGCT	TCCCCAAGAT	GTGACTCCAG	CCAGAAA	
84C (SEQ ID NO: 25)		•			
1 GCCAGGGCGG	ACCGTCTTTA	TTCCTCTCCT	GCCTCAGAGG	TCAGGAAGGA	GGTCTGGCAG
61 GACCTGCAGT	GGGCCCTAGT	CATCTGTGGC	AGCGAAGGTG	AAGGGACTCA	CCTTGTCGCC
121 CGTGCCTGAG	TAGAACTTGT	TCTGGAATTC	C		
86C (SEQ ID NO: 26)					
1 AACTCTTTCA	CACTCTGGTA	TTTTTAGTTT	AACAATATAT	GTGTTGTGTC	TTGGAAATTA
61 GTTCATATCA	ATTCATATTG	AGCTGTCTCA	TICTITITI	AATGGTCATA	TACAGTAGTA
121 TTCAATTATA	AGAATATATC	CTAATACTTT	TTAAAA		
87C (SEQ ID NO: 27)					
1 GGATAAGAAA	GAAGGCCTGA	GGCCTAGGGG	CCGRGGCTGG	CCTGCGTCTC	AGTOCTGGGA
61 CGCAGCAGCC	CGCACAGGTT	GAGAGGGGCA	CTTCCTCTTG	CTTAGGTTGG	TGAGGATCTG
121 GTCCTGGTTG	GCCGGTGGAG	AGCCACAAAA			
88C (SEQ ID NO: 28)			ATA COTTA CTC	CCGCTATGAC	TCGGTCAGCG
I CTGACCTTCG	AGAGTTTGAC	CTGGAGCCGG	ATACCTACTG GTGGGGAAGT	TCTGCGGCGA	T
61 TGTTCAACGG	AGCCGTGAGC	GACGACTCCG	GIGGGGAAGI	ICIOCOGCOA -	. •
89C (SEQ ID NO: 29) 1 ATCCCTGGCT	GTGGATAGTG	CTITTGTGTA	GCAAATGCTC	CCTCCTTAAG	GTTATAGGGC
1 ATCCCTGGCT 61 TCCCTGAGTT	TGGGAGTGTG	GAAGTACTAC	TTAACTGTCT	GTCCTGCTTG	GCTGTOGTTA
	GTGATGTTGT	GCTAACAATA	AGAATAC	diccident	OCIGIOGIIA
121 TCGTTTTCTG 101C (SEQ ID NO: 30)	OTGATGITOL	OCIAACAAIA	AUAAIAC		
1 GGCTGGGCAT	CCCTCTCCTC	CTCCATCCCC	ATACATCACC	AGGTCTAATG	TTTACAAACG
61 GTGCCAGCCC	GGCTCTGAAG	CCAAGGGCCG	TCCGTGCCAC	GGTGGCTGTG	AGTATTCCTC
121 CGTTAGCTTT	CCCATAAGGT	TGGAGTATCT	GC	0010001010	AGIAI ICCIC
112C (SEO ID NO: 31)	CCCAIAAGGI	IOONGIAICI	UC.		
1 CCAACTCCTA	CCGCGATACA	GACCCACAGA	GTGCCATCCC	TGAGAGACCA	GACCGCTCCC
161 CAATACTCTC	CTAAAATAAA	CATGAAGCAC	GIOCCAICCE	. JAUAUAUA	SACCOLLEGE
114C (SEO ID NO: 32)	CIMANAIAM	CALGRAGEAC			
1 CATGGATGAA	TGTCTCATGG	TGGGAAGGAA	CATGGTACAT	TTC	
i CAIUUAIUAA	IGICICAIGG	JOOGAAGGAA	CURRINCH		

Repeated 3 times

Repeated 2 times

Sequence analysis of the OC+ stromal cell-cloned DNA sequences revealed, in addition to the novel sequences, a 45 number of previously-described genes. The known genes identified (including type 5 acid phosphatase, gelatinase B, cystatin C (13 clones), Alu repeat sequences (11 clones), creamine kinase (6 clones) and others) are summarized in Table II. In situ hybridization (described below) directly 50 demonstrated that gelatinase B mRNA is expressed in multinucleated osteoclasts and not in stromal cells. Although gelatinase B is a well-characterized protease, its expression at high levels in osteoclasts has not been previously described. The expression in osteoclasts of cystatin C, a 55 cysteine protease inhibitor, is also unexpected. This finding has not yet been confirmed by in situ hybridization. Taken together, these results demonstrate that most of these identified genes are osteoclast-expressed, thereby confirming the effectiveness of the differential screening strategy for identifying DNA encoding osteoclast-specific or -related gene products. Therefore, novel genes identified by this method have a high probability of being OC-specific or related.

In addition, a minority of the genes identified by this screen are probably not expressed by OCs (Table II). For 65 example, type III collagen (6 clones), collagen type I (1 clone), dermatansulfate (1 clone), and type VI collagen (1

clone) are more likely to originate from the stromal cells or from osteoblastic cells which are present in the tumor. These cDNA sequences survive the differential screening process either because the cells which produce them in the tumor in vivo die out during the stromal cell propagation phase, or because they stop producing their product in vitro. These clones do not constitute more than 5-10% of the all sequences selected by differential hybridization.

TABLE II

SEQUENCE ANALYSIS OF CLONES ENCODING KNOWN
SEQUENCES FROM AN OSTEOCLASTOMA cDNA
LIBRARY

	Clones with Sequence Homology	25 total
	to Collagenase Type IV	
Λ	Clones with Sequence Homology to	14 total
~	Type 5 Tertrate Resistant Acid Phosphatase	•
	Clones with Sequence Homology to	13 total
	Cystatin C:	
	Clones with Sequence Homology to	11 total
	Alu-repent Sequences	
_	Clones with Sequence Homology to	6 total
5	Creatnine Kinase	
	Clones with Sequence Homology to	6 total
	- · · · · · · · · · · · · · · · · · · ·	

TABLE II-continued

SEQUENCE ANALYSIS OF CLONES ENCODING KNOWN SEQUENCES FROM AN OSTEOCLASTOMA CDNA LIBRARY

Type III Collagen	
Clones with Sequence Homology to	5 total
MHC Class I y Invariant Chain	JUL
Clones with Sequence Homology to	3 total
MHC Class II B Chain	
One or Two Clone(s) with Sequence Homology to Each	10 total
of the Following:	
tal collagen type 1	
y interferon inducible protein	
osteopontin	
Human chondroitin/dermatansulfate	
α globin	
β glucosidase/sphingolipid activator	
Human CAPL protein (Ca binding)	
Human EST 01024	
Type VI collagen	
Human EST 00553	

Example 5—In situ Hybridiation of OC-Expressed Genes

In situ hybridization was performed using probes derived from novel cloned sequences in order to determine whether the novel putative OC-specific or -related genes are differentially expressed in osteoclasts (and not expressed in the stromal cells) of human giant cell tumors. Initially, in situ hybridization was performed using antisense (positive) and 30 sense (negative control) cRNA probes against human type IV collagenase/gelatinase B labelled with 35 S-UTP.

A thin section of human giant cell tumor reacted with the antisense probe resulted in intense labelling of all OCs, as indicated by the deposition of silver grains over these cells, but failed to label the stromal cell elements. In contrast, only minimal background labelling was observed with the sense (negative control) probe. This result confirmed that gelatinase B is expressed in human OCs.

In situ hybridization was then carried out using cRNA probes derived from 11/32 novel genes, labelled with digoxigenin UTP according to known methods.

The results of this analysis are summarized in Table III. Clones 28B, 118B, 140B, 198B, and 212B all gave positive 45 reactions with OCs in frozen sections of a giant cell tumor, as did the positive control gelatinase B. These novel clones therefore are expressed in OCs and fulfill all criteria for OC-relatedness. 198B is repeated three times, indicating relatively high expression. Clones 4B, 37B, 88C and 98B 50 produced positive reactions with the tumor tissue; however the signal was not well-localized to OCs. These clones are therefore not likely to be useful and are eliminated from further consideration. Clones 86B and 87B failed to give a positive reaction with any cell type, possibly indicating very low level expression. This group of clones could still be useful but may be difficult to study further. The results of this analysis show that 5/11 novel genes are expressed in OCs. indicating that -50% of novel sequences likely to be OCrelated.

To generate probes for the in sim hybridizations, cDNA derived from novel cloned osteoclast-specific or -related cDNA was subcloned into a BlueScript II SK(-) vector. The orientation of cloned inserts was determined by restriction analysis of subclones. The T7 and T3 promoters in the 65 BlueScriptII vector was used to generate ³⁵S-labelled (³⁵S-UTP 850 Ci/mmol, Amersham, Arlington Heights, Ill.), or

UTP digoxygenin labelled cRNA probes.

TABLE III

h Situ H	YBRIDIZATION	USING PROBES
DERIVE	D FROM NOVI	EL SEQUENCES

		Reactivity with:				
	Clone	Osteoclasts	Stromal Cells			
10 -	4B -	+	+			
	28B*	+	· -			
•	37B	+	+			
	86B	-	-			
	87B	-	-			
	88C	+	+			
15	98B	+	+			
	118B*	+	_			
	140B*	+	_			
	198B*	+	_			
	212B*	+ "	- .			
	Gelatinase B*	· +	_			

*OC-expressed, as indicated by reactivity with antisense probe and lack of reactivity with sense probe on OCs only.

In situ hybridization was carried out on 7 micron cryostat sections of a human osteoclastoma as described previously (Chang, L.-C. et al. Cancer Res. 49:6700 (1989)). Briefly, tissue was fixed in 4% paraformaldehyde and embedded in OCT (Miles Inc., Kankakee, Ill.). The sections were rehydrated, postfixed in 4% paraformaldehyde, washed, and pretreated with 10 mM DTT, 10 mM iodoacetamide, 10 mM N-ethylmaleimide and 0.1 triethanolamine-HCL. Prehybridization was done with 50% deionized formamide, 10 mM Tris-HCl, pH 7.0, 1× Denhardt's, 500 mg/ml tRNA, 80 mg/ml salmon sperm DNA, 0.3M NaCl, mM EDTA, and 100 mM DTT at 45° C. for 2 hours. Fresh hybridization solution containing 10% dextran sulfate and 1.5 ng/ml 35S-labelled or digoxygenin labelled RNA probe was applied after heat denaturation. Sections were coverslipped and then incubated in a moistened chamber at 45°-50° C. overnight. Hybridized sections were washed four times with 50% formamide, 2× SSC, containing 10 mM DTT and 0.5% Triton X-100 at 45° C. Sections were treated with RNase A and RNase T1 to digest single-stranded RNA, washed four times in 2x SSC/10 mM DTT.

In order to detect ³⁵S-labelling by autoradiography, slides were dehydrated, dried, and coated with Kodak NTB-2 emulsion. The duplicate slides were split, and each set was placed in a black box with desiccant, sealed, and incubated at 4° C. for 2 days. The slides were developed (4 minutes) and fixed (5 minutes) using Kodak developer D19 and Kodak fixer. Hematoxylin and eosin were used as counterstains.

In order to detect digoxygenin-labelled probes, a Nucleic Acid Detection Kit (Boehringer-Mannheim, Cat. #1175041) was used. Slides were washed in Buffer 1 consisting of 100 mM Tris/150 mM NaCl, pH7.5, for 1 minute. 100 µl Buffer 2 was added (made by adding 2 mg/ml blocking reagent as provided by the manufacturer) in Buffer 1 to each slide. The slides were placed on a shaker and gently swirled at 20° C.

Antibody solutions were diluted 1:100 with Buffer 2 (as provided by the manufacturer). 100 µl of diluted antibody solution was applied to the slides and the slides were then incubated in a chamber for 1 hour at room temperature. The slides were monitored to avoid drying. After incubation with antibody solution, slides were washed in Buffer 1 for 10 minutes, then washed in Buffer 3 containing 2 mM levarnisole for 2 minutes.

After washing, 100 µl color solution was added to the slides. Color solution consisted of nitroblue/tetrazolium salt

15

(NBT) (1:225 dilution) 4.5 µl, 5-bromo-4-chloro-3-indolyl phosphate (1:285 dilution) 3.5 µl, levamisole 0.2 mg in Buffer 3 (as provided by the manufacturer) in a total volume of 1 ml. Color solution was prepared immediately before use.

After adding the color solution, the slides were placed in a dark, humidified chamber at 20° C. for 2-5 hours and monitored for color development. The color reaction was stopped by rinsing alides in TE Buffer.

The slides were stained for 60 seconds in 0.25% methyl ¹⁰ green, washed with tap water, then mounted with water-based Permount (Fisher).

Example 6-Immunohistochemistry

Immunohistochemical staining was performed on frozen and paraffin embedded tissues as well as on cytospin preparations (see Table IV). The following antibodies were used: polyclonal rabbit anti-human gelatinase antibodies; Ab110 for gelatinase B; monoclonal mouse anti-human CD68 antibody (clone KP1) (DAKO, Denmark); Mol (anti-CD11b) and Mo2 (anti-CD14) derived from ATCC cell lines HB CRL 8026 and TIB 228/HB44. The anti-human gelatinase B antibody Ab110 was raised against a synthetic peptide with the amino acid sequence EALMYPMYRFTEGPPLHK 25 (SEQ ID NO: 34), which is specific for human gelatinase B (Corcoran, M. L. et al. J. Biol. Chem., 267:515 (1992)).

Detection of the immunohistochemical staining was achieved by using a goat anti-rabbit glucose oxidase kit (Vector Laboratories, Burlingame Calif.) according to the 30 manufacturer's directions. Briefly, the sections were rehydrated and pretested with either acetone or 0.1% trypsin. Normal goat serum was used to block nonspecific binding. Incubation with the primary antibody for 2 hours or overnight (Abl10:1/500 dilution) was followed by either a glu-35 cose oxidase labeled secondary anti-rabbit serum, or, in the case of the mouse monoclonal antibodies, were reacted with purified rabbit anti-mouse Ig before incubation with the secondary antibody.

Paraffin embedded and frozen sections from osteoclasto- 40 mas (GCT) were reacted with a rabbit antiserum against gelatinase B (antibody 110) (Corcoran, M. L. et al. J. Biol. chem. 267:515 (1992)), followed by color development with glucose oxidase linked reagents. The osteoclasts of a giant cell tumor were uniformly strongly positive for gelatinase B, 45 whereas the stromal cells were unreactive. Control sections reacted with rabbit preimmune serum were negative. Identical findings were obtained for all 8 long bone giant cell tumors tested (Table IV). The osteoclasts present in three out of four central giant cell granulomas (GCG) of the mandible 50 were also positive for gelatinase B expression. These neoplasms are similar but not identical to the long bone giant cell tumors, apart from their location in the jaws (Shafer, W. G. et al., Textbook of Oral Pathology, W. B. Saunders Company, Philadelphia, pp. 144-149 (1983)). In contrast, 55 the multinucleated cells from a peripheral giant cell tumor, which is a generally non-resorptive tumor of oral soft tissue.

were unreactive with antibody (Shafer, W. G. et. al., Textbook of Oral Pathology, W. B. Saunders Company, Philadelphia, pp. 144-149 (1983)).

Antibody 110 was also utilized to assess the presence of gelatinase B in normal bone (n=3) and in Paget's disease, in which there is elevated bone remodeling and increased osteoclastic activity. Strong staining for gelatinase B was observed in osteoclasts both in normal bone (mandible of a 2 year old), and in Paget's disease. Staining was again absent in controls incubated with preimmune serum. Osteoblasts did not stain in any of the tissue sections, indicating that gelatinase B expression is limited to osteoclasts in bone. Finally, peripheral blood monocytes were also reactive with antibody 110 (Table IV).

TABLE IV

DISTRIBUTION OF GE	LATINASE B IN VARIOUS SSUES
Samples	Antibodics tested Ab 110 gelatinase B
GCT frozen	
(n = 2)	
giant cells	+
stromal cells	_
GCT paraffin	
(n = 6)	
giant cells	•
stromal cells	
central GCG	
(n = 4)	
giant cells	+(%)
stromal cells	-
peripheral GCT	
(n - 4)	
giant cells	
stromal cells	-
Paget's discase	
(a = 1)	
osteoclasts	•
osteoblasts	-
normal bone	
(n = 3)	
osteoclasts	+
ostcoblasts	. -
monocytes	+ '
(cytospin)	

Distribution of gelatinase B in multimedeated giant cells, osteoclasts, osteoblasts and stromal cells in various tissues. In general, peraffin embedded tissues were used for these experiments; exceptions are indicated.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. Such equivalents are intended to be encompassed by the following claims.

(2) INFORMATION	FOR SEQ ID NO.1:			•		
(i) SEQ	UENCE CHARACTERISTIC (A) LENGTH: 170 base p (B) TYPE: nucleic sold	airs				
	(C) STRANDEDNESS: de (D) TOPOLOGY: linear	ouble				
(ii)MOI	ECULE TYPE: DNA (genom	nic)				
(= i) SEQ	UENCE DESCRIPTION: \$EA	Q ID NO:1:		•		
GCAAATATCT	AAGTTTATTG	CTTGGATTTC	TAGTGAGAGC	TGTTGAATTT	GGTGATGTCA	6 0
AATGTTTCTA	GOGTTTTTTT	AGTTTGTTT _. T	TATTGAAAAA	TTTAATTATT	TATGCTATAG	120
GTGATATTCT	CTTTGAATAA	ACCTATAATA	GAAAATAGCA	GCAGACAACA	,	170
(2) INFORMATION	FOR SEQ ID NO:2:					
(i) SEQ	LIENCE CHARACTERISTIC	S :				
	(A) LENGTH: 63 base pai (B) TYPE: sucleic said	ins			•	
	(C) STRANDEDNESS: de	ruble				
	(D) TOPOLOGY: linear	•				
(ii)MOL	ECULE TYPE: DNA (genom	ic)				
(x i) SEQI	UENCE DESCRIPTION: SEC) ID NO:2:	•			
GTGTCAACCT	GCATATCCTA	AAAATGTCAA	AATGCTGCAT	CTGGTTAATG	TCGGGGTAGG	6 O
GGG	. "					63
(2) INFORMATION	FOR SEQ ID NO:3:		• •			•
(i) SEQU	JENCE CHARACTERISTIC	S:				
	(A) LENGTH: 163 base pa (B) TYPE: mucleic acid	irs				
	(C) STRANDEDNESS: do	mble				
	(D) TOPOLOGY: lizear					
	ECULE TYPE: DNA (genom					
(x i) SEQU	JENCE DESCRIPTION: SEQ	1D NO:3:				
	TTGCTTCCCT		i		•	6 0
	GGGAGTACTG				CAGGGAGTCT	120
CAACCAGCTG	GTGGTGAATG (CTGCCTGGCA	CGGGACCCCC	ccc	•	163
(2) INFORMATION	FOR SEQ ID NO:4:					
	TENCE CHARACTERISTICS					
	(A) LENGTH: 173 base pa (B) TYPE: nucleic seid	iirs · ·				•
	(C) STRANDEDNESS: do	npp.				:
1	(D) TOPOLOGY: linear		•			
(ii)MOL	ECULE TYPE: DNA (genomi	ie)				
(x I)SEQU	TENCE DESCRIPTION: SEQ	ID NO:4:				•
TTTTATTTGT	AAATATATGT /	ATTACATCCC	TAGAAAAGA	ATCCCAGGAT	TTTCCCTCCT	6 0
GTGTGTTTTC	GTCTTGCTTC 1	TTCATGGTCC	ATGATGCCAG	CTGAGGTTGT	CAGTACAATG	120
AAACCAAACT	GGCGGGATGG A	AGCAGATTA	TTCTOCCATT	TTTCCAGGTC	TTT	173
(2) Information i	FOR SEQ ID NO:5:					
(i) SEQU	ENCE CHARACTERISTICS	i:				
	(A) LENGTH: 197 base pa					
	(B) TYPE: sucleic seid (C) STRANDEDNESS: do:	uble			•	

(i i) MOLECULE TYPE: DNA (genomic)

•			-continued			
	(D) TOPOLOGY: linear					
(li)MOL	ECULE TYPE: DNA (grad	omic)			•	•
(xi)SEQU	UENCE DESCRIPTION: S	EQ ID NO:5:	•	•		
GGCTGGACAT	GGGTGCCCTC	CACGTCCCTC	ATATCCCCAG	GCACACTCTG	GCCTCAGGTT	6 0
TTGCCCTGGC	CATGTCATCT	ACCTGGAGTG	GGCCCTCCCC	TTCTTCAGCC	TTGAATCAAA	120
AGCCACTTTG	TTAGGCGAGG	ATTTCCCAGA	CCACTCATCA	CATTAAAAAA	TATTTTGAAA	1 8 0
******	****					197
			•			
(2) INFORMATION	-				•	
	JENCE CHARACTERISTI (A) LENGTH: 132 base (B) TYPE: markin sold (C) STRANDEDNESS: (D) TOPOLOGY: linear	prirs				
(ii) MOL	ECULE TYPE: DNA (geno	mic)				
(z i) SEQU	JENCE DESCRIPTION: SI	EQ ID NO:6:	•			
TTGACAAAGC	TGTTTATTTC	CACCAATAAA	TAGTATATGG	TOATTGGGGT	TTCTATTTAT	6 C
AAGAGTAGTG	GCTATTATAT	GGGGTATCAT	GTTGATGCTC	ATAAATAGTT	CATATCTACT	120
TAATTTGCCT	TC			- •		132
(2) INFORMATION I	FOR SEC ID NO.7		• .		•	
	IENCE CHARACTERISTI	CS.				:
	(A) LENGTII: 75 base p (B) TYPE: micleic acid (C) STRANDEDNESS: ((D) TOPOLOGY: linear	airs				
(ii) MOLE	ECULE TYPE: DNA (geno	mic)		,		
(= i) SEQU	IENCE DESCRIPTION: SE	EQ ID NO:7:			•	
GAAGAGAGTT	GTATGTACAA	CCCCAACAGG	CAAGGCAGCT	AAATGCAGAG	GGTACAGAGA	6 0
GATCCCGAGG	GAATT					7 5
(2) INFORMATION I	FOR SEQ ID NO:8:			. •		
	TENCE CHARACTERISTIC (A) LENGTH: 151 base; (B) TYPE: pucleic acid (C) STRANDEDNESS: c	pairs double				
	(D) TOPOLOGY: linear					
(ii) MOLE	ECULE TYPE: DNA (geno	mic)				• .
	ENCE DESCRIPTION: SE	•				
1	ATGTAGAAGT			. •		6 0
GCAAACCTGA	GATTTCAGCA	TAAAATCTTT	AGTTAGAAGT	GAGAGAAAGA	AGAGGGAGGC	110
TGOTTGCTGT	TGCACGTATC	AATAGGTTAT	С			151
(2) INFORMATION E	FOR SEQ ID NO-9:			•		
	TENCE CHARACTERISTIC (A) LENGTH: 141 base (B) TYPE: pucker seid (C) STRANDEDNESS: (C) TOPOLOGY: linear	pairs				

120

19 -continued (x i) SEQUENCE DESCRIPTION: SEQ ID NO:9: TTCTTGATCT TTAGAACACT ATGAATAGGG AAAAAAGAAA AAACTGTTCA AAATAAAATG TAGGAGCCGT GCTTTTGGAA TGCTTGAGTG AGGAGCTCAA CAAGTCCTCT CCCAAGAAAG 120 141 CAATGATAAA ACTTGACAAA A (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 162 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:10: ACCCATTICT AACAATITT ACTGTAAAAT TTTTGGTCAA AGTTCTAAGC TTAATCACAT 60 CTCAAAGAAT AGAGGCAATA TATAGCCCAT CTTACTAGAC ATACAGTATT AAACTGGACT 120 GAATATGAGG ACAAGCTCTA GTGGTCATTA AACCCCTCAG AA 162 (2) INFORMATION FOR SEQ ID NO:11: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 base pairs (B) TYPE: mudeic seid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (a i) SEQUENCE DESCRIPTION: SEQ ID NO:11: ACATATATA ACAGCATICA TITGGCCAAA ATCTACACGT TIGTAGAATC CTACIGTATA TAAAGTGGGA ATGTATCAAG TATAGACTAT GAAAGTGCAA ATAACAAGTC AAGGTTAGAT TAACTTTTT TTTTTACATT ATAAAATTAA CTTGTTT 157 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (x i) SEQUENCE DESCRIPTION: SEQ ID NO:12: CCAAATTTCT CTGGAATCCA TCCTCCCTCC CATCACCATA GCCTCGAGAC GTCATTTCTG 6.0 7 5 TTTGACTACT CCAGC (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic)

AACTAACCTC CTCGGACCCC TGCCTCACTC ATTTACACCA ACCACCCAAC TATCTATAAA CCTGAGCCAT GGCCATCCCT TATGAGCGGC GCAGTGATTA TAGGCTTTCG CTCTAAGATA

(a i) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AAAT						124
(2) INFORMATION	N FOR SEQ ID NO:14:					
(i) SEC	QUENCE CHARACTERIST (A) LENGTH: 151 bas (B) TYPE: muchic soic (C) STRANDEDNESS (D) TOPOLOGY: linea	c pairs ! : double				
(11)MO	LECULE TYPE: DNA (gc:	nosaic)				
(x i) SEC	QUENCE DESCRIPTION:	SEQ ID NO:14:			•	
ATTATTATTO	TTTTTTTATG	TTAGCTTAGC	CATGCAAAAT	TTACTGGTGA	AGCAGTTAAT	6 0
AAAACACACA	TCCCATTGAA	GGGTTTTGTA	CATTTCAGTC	CTTACAAATA	ACAAAGCAAT	1 2 0
GATAAACCC	GCACGTCCTG	ATAGGAAATT	c .			151
(2) INFORMATION	FOR SEQ ED NO:15:					
(i)SEQ	PUENCE CHARACTERIST (A) LENGTH: 105 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: fineau	o puire double				
(i i) MOI	LECULE TYPE: DNA (gen	omic)				
(zi)SEQ	UENCE DESCRIPTION: S	EQ ID NO:15:	•			
CGTGACACAA	ACATGCATTC	GTTTTATTCA	TAAAACAGCC	TGGTTTCCTA	AAACAATACA	6 0
AACAGCATGT	TCATCAGCAG	GAAGCTGGCC	GTGGGCAGGG	000CC		105
(2) INFORMATION	FOR SEQ ID NO:16:					
(i)SEQ	UENCE CHARACTERIST (A) LENGTH: 246 base (B) TYPE: muleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs double		,		
(ii) MOL	ECULE TYPE: DNA (gen	omic)				
(xi)SEQ	UENCE DESCRIPTION: S	EQ ID NO:16:				
ATAGGTTAGA	TTCTCATTCA	COOGACTAGT	TAGCTTTAAG	CACCCTAGAG	GACTAGGGTA	6 0
ATCTGACTTC	TCACTTCCTA	AGTTCCCTCT	TATATCCTCA	AGGTAGAAAT	GTCTATGTTT	120
	TTCATAAATC		TCTTTGGTAC	AAGTTACATG	ATAAAAGAA	180
	TCTTCCCTTC	TTTGCACTTT	TGAAATAAAG	TATTTATCTC	CTGTCTACAG	2 4 0
TTTAAT.	•	•				246
(2) INFORMATION	FOR SEQ ID NO:17:					
	JENCE CHARACTERISTI (A) LENGTH: 188 base (B) TYPE: muchoic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs double		<i>,</i>		
(ii) MOL	ECULE TYPE: DNA (gene	omic)		•		
(a i) SEQ	JENCE DESCRIPTION: SI	EQ ID NO:17:		•		
GTCCAGTATA	AAGGAAAGCG	TTAAGTCOGT	AAGCTAGAGG	ATTGTAAATA	TCTTTTATGT	6 0
CCTCTAGATA	AAACACCCGA	TTAACAGATG	TTAACCTTTT	ATGTTTTGAT	TTGCTTTAAA	120
AATGGCCTTC	TACACATTAG	CTCCAGCTAA	AAAGACACAT	TGAGAGCTTA	GAGGATAGTC	1 8 0

	•		-commueu			•
TCTGGAGC						188
(2) INFORMATION	N FOR SEQ ID NO:18:	,				•
(1) SE	QUENCE CHARACTERIS (A) LENGTH: 212 be (B) TYPE: muckic aci (C) STRANDEDNESS (D) TOPOLOGY: Exc.	sc pairs d i: double				
(ii) MO	LECULE TYPE: DNA (go	nomic)			•	
(x i) SE(QUENCE DESCRIPTION:	SEQ ID NO:18:				
GCACTTGGAA	GGGAGTTGG1	GTGCTATTT	TGAAGCAGAT	GTGGTGATAC	· : TGAGATTGTG	° 60
TGTTCAGTTI	CCCCATTTG1	TTGTGCTTCA	AATGATCCTT	CCTACTTTGC	TTCTCTCCAC	. 120
CCATGACCTI	TTTCACTGT	. GCCATCAAGG	ACTTTCCTGA	CAGCTTGTGT	ACTETTAGG	. 180
TAAGAGATGI	GACTACAGC	: TGCCCCTGAC	TO			212
(2) INFORMATION	FOR SEQ ID NO:19:			•		
	UENCE CHARACTERIS' (A) LENGTH: 203 bas (B) TYPE: suckic ack (C) STRANDEONESS (D) TOPOLOGY: lines	e pairs l : double				
(ii) MOI	LECULE TYPE: DNA (822	omic)				i
(x i) SEQ	UENCE DESCRIPTION:	EQ ID NO:19:				•
TGTTAGTTTT	TAGGAAGGCC	TOTCTTCTGG	GAGTGAGGTT	TATTAGTCCA	CTTCTTOGAG	60.
CTAGACGTCC	TATAGTTAGT	CACTGGGGAT	GGTGAAAGAG	GGAGAAGAGG	AAGGGCGAAG	120
GGAAGGGCTC	TTTGCTAGTA	TCTCCATTTC	TAGAAGATGG	TTTAGATGAT	AACCACAGGT	180
CTATATGAGC	ATAGTAAGGC	TGT				203
(2) INFORMATION	FOR SEQ ID NO:20:					
	JENCE CHARACTERIST (A) LENGTH: 177 base (B) TYPE: suckie seid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs double				j
(ii)MOL	ECULE TYPE: DNA (gen	mic)				
(z i) SEQU	JENCE DESCRIPTION: 8	EQ ID NO:20:				
CCTATTTCTG	ATCCTGACTT	TGGACAAGGC	CCTTCAGCCA	GAAGACTGAC	AAAGTCATCC	6 0
TCCGTCTACC	AGAGCGTGCA	CTTGTGATCC	TAAAATAAGC	TTCATCTCCG	GCTGTGCCTT	120
GGGTGGAAGG	GGCAGGATTC	TGCAGCTGCT	TTTGCATTTC	TCTTCCTAAA	TTTCATT	177
(2) INFORMATION	FOR SEQ ID NO:21:		•			
	IENCE CHARACTERISTI (A) LENGTH: 106 base (B) TYPE: mackic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs				
(ii) MOLI	ECULE TYPE: DNA (pond	mic)				
(x i) SEQU	ENCE DESCRIPTION: SI	Q ID NO:21:				
CGGAGCGTAG	GTGTGTTTAT	TCCTGTACAA	ATCATTACAA	AACCAAGTCT	OOGGCAGTCA	6 0
CCGCCCCAC	CCATCACCCC	AGTGCAATGG	CTAGCTGCTG	GCCTTT		106

(i) SEQUENCE CHARACTERISTICS:

-continued

(2) INFORMATION	FOR SPQ ID NO:22:					
	UENCE CHARACTERIS (A) LENGTH: 139 ba	sc pairs				•
	(B) TYPE: machine aci (C) STRANDEDNESS (D) TOPOLOGY: limit	i: doeble				
(ii) MOL	ECULE TYPE: DNA (po	nomic)				•
(1 ±) SEQ	UENCE DESCRIPTION:	SEQ ID NO:22:				
TTAGTTCAGT	CAAAGCAGG	AACCCCCTT1	C GGCACTGCTG	CCACTGGGG	F CATGGCGGTT	6.0
					CGOGGTCTCA	
GGAGCTGACC		·		ccc1010101	COUNTRICK	120
(2) INFORMATION)	FOR SEQ ID NO:23:					
(i)SEQU	JENCE CHARACTERIST	ncs:				
	(A) LENGTH: 177 bus (B) TYPE: nucleic scid					
((C) STRANDEDNESS (D) TOPOLOGY: linear	double				
(ii) MOLE	ECULE TYPE: DNA (gr	owic)				
(zi)SEQU	ENCE DESCRIPTION: S	EQ ID NO:23:				
CTGAATGTT	TAAGAGAGAT	TTTGGTCTTA	AAGGCTTCAT	CATGAAAGTG	TACATGCATA	60
TGCAAGTGTG	AATTACGTGG	TATGGATGGT	TGCTTGTTTA	TTAACTAAAG	ATGTACAGCA	120
ACTGCCCGT	TTAGAGTCCT	CTTAATATTG	ATGTCCTAAC	ACTGGGTCTG	CTTATGC .	177
2) INFORMATION F	OR SEQ ID NO:24:					
(i)SEQU	ENCE CHARACTERIST	ICS:				
(A) LENGTH: 167 base B) TYPE: nucleic soid					
(C) STRANDEDNESS: D) TOPOLOGY: linear					
(ii) MOLE	CULE TYPE: DNA (grad	omic)		•		
(a i) SEQUE	ENCE DESCRIPTION: S	EQ ID NO24:				
GCAGTGGGA	TATOGAATCC	AGAAGGGAAA	CAAGCACTGG	ATAATTAAA	ACAGCTGGGG	6 0
GAAAACTGG	OGAAACAÀAG	GATATATCCT	CATGGCTCGA	AATAAGAACA	ACGCCTGTGG	1 2 0
ATTGCCAAC	CTOGCCAGCT	TCCCCAAGAT	GTGACTCCAG	CCAGAAA		167
2) INFORMATION FO	OR SEQ ID NO:25:					
	NCE CHARACTERISTI					
(A) LENGTH: 151 base B) TYPE: sucleic seid					
	C) STRANDEDNESS: (D) TOPOLOGY: lines	double				
(ii) MOLEC	CULE TYPE: DNA (geno	mic)				
(: i) SEQUE	NCE DESCRIPTION: SE	Q ID NO:25:				
CCAGGGCGG .	ACCUTCTITA	ттестетест	GCCTCAGAGG	TCAGGAAGGA	GGTCTGGCAG	6 0
ACCTGCAGT T	GGGCCCTAGT	CATCTGTGGC	AGCGAAGGTG	AAGGGACTCA	CCTTGTCGCC	120
OTGCCTGAG '	TAGAACTTGT	TCTGGAATTC	c	•	•	151
2) Information Po	0R SEQ ID NO:26:					

		<u> </u>	-continued			•
	(A) LENGTH: 156 ba (B) TYPE: nochcie aci (C) STRANDEDNES: (D) TOPOLOGY: fine	id S: double				
(ii)M0	LECULE TYPE: DNA (p	momic)				
(z i)SE(QUENCE DESCRIPTION:	SEQ ID NO:26:		. •		
AACTCTTTCA	CACTCTOGT	TTTTTAGTT	AACAATATA		TIGGAAATTA	. 6
GTTCATATCA	. ATTCATATTO	-		. AATGGTCATA	TACAGTAGTA	1 2
TTCAATTATA	AGAATATAT	CTAATACTT	TTAAAA			1 5
(2) INFORMATION	FOR SEQ ID NO27:	•				
(i)SEQ	UENCE CHARACTERIST (A) LENGTH: 150 bas (B) TYPE: suchic scic (C) STRANDEDNESS (D) TOPOLOGY: linea	e pairs . 1 : double				
(ii)MO	LECULE TYPE: DNA (ger	oomic)				
(= i) SEQ	UENCE DESCRIPTION:	SEQ ID NO:27:		•		
GGATAAGAAA	GAAGGCCTGA	GGGCTAGGGG	CCGGGGCTGG	CCTGCGTCTC	AGTCCTGGGA	6
CGCAGCAGCC	CGCACAGGTT	GAGAGGGGCA	CTTCCTCTTG	CTTAGGTTGG	TGAGGATCTG	1 2
GTCCTGGTTG	GCCGGTGGAG	AGCCACAAAA				. 1 5
(2) INFORMATION	FOR SEQ ID NO.28:		• ,		•	
	UENCE CHARACTERIST (A) LENGTH: 212 bass (B) TYPE: mucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: Encar ECULE TYPE: DNA (gen	e pairs double				
(x i) \$EQU	JENCE DESCRIPTION: S	EQ ID NO:28:				
GCACTTGGAA	GGGAGTTGGT	GTGCTATTTT	TGAAGCAGAT	GTGGTGATAC	TGAGATTGTC	6
TGTTCAGTTT	CCCCATTTGT	TTGTGCTTCA	AATGATCCTT	CCTACTTTGC	TICTCTCCAC	121
CCATGACCTT	TTTCACTGTG	GCCATCAAGG	ACTTTCCTGA	CAGCTTGTGT	ACTCTTAGGC	180
FAAGAGATGT	GACTACAGCC	TGCCCCTOAC	TG			2 1 2
(2) INFORMATION I	FOR SEQ ID NO:29:		. • .			
	ENCE CHARACTERISTI (A) LENGTH: 157 base (B) TYPE: nucleic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs double				
(ii) MOLE	ECULE TYPE: DNA (gene	mic)				
(= i) SEQU	ENCE DESCRIPTION: SI	EQ ID NO:29:				•
тссстббст	GTGGATAGTG	CTTTTGTGTA	GCAAATGCTC	CCTCCTTAAG	GTTATAGGGC	6 0
CCCTGAGTT	TGGGAGTGTG	GAAGTACTAC	TTAACTGTCT	GTCCTGCTTG	GCTGTCGTTA	120
COTTTTCTG	GTGATGTTGT	OCTAACAATA	AGAATAC			157
2) INFORMATION F	FOR SEQ ED NO:30:					

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid

			-continued			
	(C) STRANDEDNESS (D) TOPOLOGY: lines					
(ii)M0	LECULE TYPE: DNA (gc:	nomic)				•
(xi)SEQ	UENCE DESCRIPTION:	SEQ ID NO:30:	-			
GGCTGGGCAT	ссстстсстс	CTCCATCCC	ATACATCACC	AGGTCTAATG	TTTACAAACG	6 0
GTGCCAGCCC	GGCTCTGAAG	CCAAGGGCCG	TCCGTGCCAC	остоостата	AGTATTCCTC	120
COTTAGCTTT	CCCATAAGGT	TGGAGTATCT	GC			152
(2)INFORMATION	FOR SEO ID NO:31:					
	UENCE CHARACTERIST (A) LENGTH: 90 base (B) TYPE: Backie acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	pairs : : double		·		
(ii) MOL	ECULE TYPE: DNA (gen	omic)				
(= i) SEQ!	UENCE DESCRIPTION: S	EQ ID NO31:				
CCAACTCCTA	CCGCGATACA	GACCCACAGA	GTGCCATCCC	TGAGAGACCA	GACCGCTCCC	6 0
CAATACTCTC	CTAAAATAAA	CATGAAGCAC				9 0
(2) INFORMATION	FOR SEQ ID NO:32:	•				
	JENCE CHARACTERIST (A) LENGTH: 43 base (B) TYPE: nucleic seid (C) STRANDEDNESS: (D) TOPOLOGY: Encar	pairs double				
(ii) MOU	ECULE TYPE: DNA (gen	amic)	•			
(xi)SEQU	JENCE DESCRIPTION: S	EQ ID NO:32:				
CATGGATGAA	TGTCTCATGG	TGGGAAGGAA	CATGGTACAT	TTC		4 3
(2) INFORMATION I	FOR SEQ ID NO:33:					
	TENCE CHARACTERISTI (A) LENGTH: 233 bas (B) TYPE: suckin soid (C) STRANDEDNESS: (D) TOPOLOGY: linear	c pairs				
(ii) MOLE	SCULE TYPE: DNA (gene	omic)		-	•	
(zi)SEQU	ENCE DESCRIPTION: SI	EQ ID NO:33:		•		
GACACCTCT	GCCCTCACCA	TGAGCCTCTG	GCAGCCCCTG	GTCCTGGTGC	тсстобтост	6.0
OGGCTGCTGC	TTTGCTGCCC	CCAGACAGCG	CCAGTCCACC	CTTGTGCTCT	TCCCTGGAGA	120
CTGAGAACC	AATCTCACCG	ACAGGCAGCT	GGCAGAGGAA	TACCTOTACC	GCTATGGTTA	180
CACTCGGGTG	GCAGAGATGC	GTOGAGAGTC	GAAATCTCTG	GGGCCTGCGC	TGCTGCTTCT	2 4 0
CAGAAGCAA	стотссстос	CCGAGACCGG	TOAGCTGGAT	AGCGCCACGC	TGAAGGCCAT	300
CGAACCCCA	состососо	TCCCAGACCT	GGGCAGATTC	CAAACCTTTG	AGGGCGACCT	360
CAAGTGGCAC	CACCACAACA	TCACCTATTG	OATCCAAAAC	TACTCGGAAG	ACTTGCCGCG	4 2 0
GCGGTGATT	GACGACGCCT	TTGCCCGCGC	CTTCGCACTG	TGGAGCGCGG	TGACGCCGCT	4 8 0
ACCTTCACT	CGCGTGTACA	GCCGGGACGC	AGACATCGTC	ATCCAGTTTG	GTGTCGCGGA	5 4 0

GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA

				<u> </u>			
	GGGCGTCGT	GTTCCAACTC	GGTTTGGAAA	CGCAGATGGC	GCGGCCTGC	ACTTCCCCTT	720
	CATCTTCGAC	боссостсст	ACTCTGCCTG	CACCACCGAC	GGTCGCTCCG	ACGGGTTGCC	. 7 8 0
	CTGGTGCAGT	ACCACGGCCA	ACTACGACAC	CGACGACCGO	TTTGGCTTCT	GCCCAGCGA	140
	GAGACTCTAC	ACCCGGGACG	GCAATGCTGA	TOOOAAACCC	TGCCAGTTTC	CATTCATCTT	900
	CCAAGGCCAA	TCCTACTCCG	CCTGCACCAC	GGACGGTCGC	TCCGACGGCT	ACCOCTOGTG	960
	CGCCACCACC	GCCAACTACG	ACCGGGACAA	GCTCTTCGGC	TTCTGCCCGA	CCCGAGCTGA	1020
	CTCGACGGTG	ATGGGGGGCA	ACTCGGCGGG	GGAGCTGTGC	GTCTTCCCCT	TCACTTTCCT	1080
	GGGTAAGGAG	TACTCGACCT	GTACCAGCGA	GGGCCGCGGA	GATGGGCGCC	TCTGOTGCGC	1140
	TACCACCTCG	AACTTTGACA	GCGACAAGAA	OTGGGGCTTC	TGCCCGGACC	AAGGATACAG	1200
	TTTGTTCCTC	GTGGCGGCGC	ATGAGTTCGG	CCACGCGCTG	GGCTTAGATC	ATTCCTCAGT	1260
	GCCGGAGGCG	CTCATGTACC	CTATGTACCG	CTTCACTGAG	GGGCCCCCCT	TGCATAAGGA	1320
	CGACGTGAAT	GGCATCCGGC	ACCTCTATGG	TCCTCGCCCT	GAACCTGAGC	CACGGCCTCC	1380
	AACCACCACC	ACACCGCAGC	CCACGGCTCC	CCCGACGGTC	TGCCCCACCG	GACCCCCAC	1 4'4 0
	TGTCCACCCC	TCAGAGCGCC	CCACAGCTGG	CCCCACAGGT	CCCCCTCAG	CTGGCCCCAC	1500
	AGGTCCCCC	ACTGCTGGCC	CTTCTACGGC	CACTACTGTG	CCTTTGAGTC	CGGTGGACGA	1560
	TGCCTGCAAC	GTGAACATCT	TCGACGCCAT	CGCGGAGATT	GGGAACCAGC	TGTATTTGTT	1620
	CAAGGATGGG	AAGTACTGGC	GATTCTCTGA	GGGCAGGGG	AGCCGGCCGC	AGGGCCCCTT	1680
	CCTTATCGCC	GACAAGTGGC	ссесствес	CCGCAAGCTG	GACTCGGTCT	TTGAGGAGCC	1740
	GCTCTCCAAG	AAGCTTTTCT	TCTTCTCG	GCGCCAGGTG	TGGGTGTÄCA	CAGGCGCGTC	1800
	GGTGCTGGGC	CCOAGGCGTC	TGGACAAGCT	GGGCCTGGGA	GCCGACGTGG	CCCAGGTGAC	1860
	CGGGGCCCTC	CGGAGTGGCA	GGGGAAGAT	GCTGCTGTTC	AGCGGGGGGC	GCCTCTGGAG	1920
	GTTCGACGTG	AAGGCGCAGA	TGGTGGATCC	CCGGAGCGCC	AOCGAGGTGG	ACCGGATGTT	1980
	CCCCGGGGTG	CCTTTGGACA	CGCACGACGT	CTTCCAGTAC	CGAGAGAAAG	CCTATTTCTG	2040
	CCAGGACCGC	TTCTACTGGC	GCGTGAGTTC	CCGGAGTGAG	TTGAACCAGG	TOGACCAAGT	2100
	GGGCTACGTG	ACCTATGACA	TCCTGCAGTG	CCCTGAGGAC	TAGGGCTCCC	GTCCTGCTTT	2160
4	GCAGTGCCAT	GTAAATCCCC	ACTGGGACCA	ACCCTGGGGA	AGGAGCCAGT	TTGCCGGATA	2 2 2 0
•	CAAACTGGTÀ	TTCTGTTCTG	GAGGAAAGGG	AGGAGTGGAG	GTGGGCTGGG	СССТСТСТТС	2280
٠	FCACCTTTGT	TTTTTGTTGG	AGTGTTTCTA	ATAAACTTGG	ATTCTCTAAC	CTTT	2334

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
- (i i) MOLECULE TYPE: peptide
- (a i) SEQUENCE DESCRIPTION: SEQ ID NO:34:
- His Lys

a) DNA sequences set forth in the group consisting of SEQ ID NOS. 12, 14, 16 and 17, or their complementary strands; and

We claim:

1. An isolated osteoclast-specific or -related DNA sequence, or its complementary sequence, the DNA 65 sequence comprising a nucleic acid sequence selected from the group consisting of:

- b) DNA sequences which hybridize under standard con-
- ditions to the DNA sequences defined in a).

 2. A DNA construct capable of replicating, in a host cell, osteoclast-specific or -related DNA, said construct compris
 - a) a DNA sequence of claim 1; and
 - b) sequences, in addition to said DNA sequence, necessary for transforming or transfecting a host cell, and for replicating, in a host cell, said DNA sequence.
- 3. A DNA construct capable or replicating and expressing, in a host cell, osteoclast-specific or -related DNA, said construct comprising:
- a) a DNA sequence of claim 2; and
- b) sequences, in addition to said DNA sequence, necessary for transforming or transfecting a host cell, and for replicating and expressing, in a host cell, said DNA sequence.
- 4. A cell stably transformed or transfected with a DNA construct according to claim 3.
- 5. A cell stably transformed or transfected with a DNA

This Page Blank (uspto)

(12) United States Patent Yan et al.

(10) Patent No.:

US 6,340,583 B1

(45) Date of Patent:

Jan. 22, 2002

ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN KINASE PROTEINS, AND USES THEREOF

(75) Inventors: Chunhua Yan, Boyds; Karen A.

Ketchum, Germantown; Valentina Di Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

Assignee: PE Corporation (NY), Norwalk, CT (US)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

Mar. 22, 2001 Filed:

Int. Cl.⁷ C12N 9/12; C12N 1/20; C12N 15/00; C12N 5/00; C07H 21/04

U.S. Cl. 435/194; 435/320.1; 435/252.3; 435/325; 536/23.2

...... 435/194, 252.3, Field of Search 435/325, 320.1; 536/23.2

References Cited (56)

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.* Sambrook et al., Molecular Cloning Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

Primary Examiner-Rebecca E. Prouty Assistant Examiner-M. Monshipouri (74) Attorney, Agent, or Firm-Celera Genomics; Robert A. Millman; Justin D. Karjala

ABSTRACT (57)

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

				00000000000	OCTOTOTOT
1	CCCAGGGCGC	CGTAGGCGGT	GCATCCCGTT	CGCGCCTGGG	GUIGIGGIUI
51	TCCCGCGCCCT	GAGGCGGCGG	CGGCAGGAGC	TGAGGGGAGT	IGIAGGGAAC
101	TGAGGGGAGC	TECTETETCC	CCCGCCTCCT	CCTCCCCATT	TCCGCGCTCC
151	CGGGACCATG	TCCGCGCTGG	CGGGTGAAGA	TGTCTGGAGG	TGTCCAGGCT
201	GTGGGGACCA	CATTGCTCCA	AGCCAGATAT	GGTACAGGAC	TGTCAACGAA
251	ACCTGGCACG	GCTCTTGCTT	CCGGTGAAAG	TGATGCGCAG	CCTGGACCAC
201	CCCAATGTGC	TCAAGTTCAT	TGGTGTGCTG	TACAAGGATA	AGAAGCTGAA
351	CCTGCTGACA	GAGTACATTG	AGGGGGGCAC	ACTGAAGGAC	HICIGUGUA
401	CTATCCATCC	CTTCCCCTGG	CAGCAGAAGG	TCAGGTTTGC	CAAAGGAATC
451	GCCTCCGGAA	TGGACAAGAC	TGTGGTGGTG	GCAGACTITG	GGCTGTCACG
501	CCTCATAGTG	GAAGAGAGGA	AAAGGCCCCC	CATGGAGAAG	GCCACCACCA
551	AGAAACGCAC	CTTGCGCAAG	AACGACCGCA	AGAAGCGCTA	CACGGTGGTG
601	GGAAACCCCT	ACTGGATGGC	CCCTGAGATG	CTGAACGGAA	AGAGCTATGA
651	TGAGACGGTG	GATATCTTCT	CCTTTGGGAT	CGTTCTCTGT	GAGATCATTG
701	GCAGGTGTA	TGCAGATCCT	GACTGCCTTC	CCCGAACACT	GGACTTTGGC
751	CTCAACGTGA	ACCITITICITY	GGAGAAGTTT	GTTCCCACAG	ATTGTCCCCC
201	CCCCTTCTTC	CCCCTCCCCG	CCATCTGCTG	CAGACTGGAG	CCTGAGAGCA
251	CACCACCATT	CTCGAAATTG	GAGGACTCCT	TTGAGGCCCT	CTCCCTGTAC
001	CTCCCCCATT	TEGGEATEE	GCTGCCTGCA	GAGCTGGAGG	AGTTGGACCA
051	CACTETEACE	ATCCACTACG	GCCTGACCCG	GGACTCACCT	CCCTAGCCCT
1001	CCCCCACCCC	CCTCCACCCC	GGTGTTCTAC	AGCCAGCATT	GCCCCTCTGT
1001	CCCCATTCC	TOTTETEACE	AGGCCGTCC	GGGCTTCCTG	TGGATTGGCG
1101	CAATCTTTAC	AACCACAACA	AACCATTCCT	ATTACCTCCC	CAGGAGGCAA
11E1	CTCCCCCCAC	CACCACCCAA	ATGTATCTCC	ACAGGTTCTG	GGCCTAGTT
1101	ACTOTOTOTA	AATCCAATAC	TTCCCTGAAA	GCTGTGAAGA	AGAAAAAAAC
1701	ACIGICIGIA	TOCOCORCO	CCAATCTCTT	ACTCGAATCC	ACCCAGGAAC
1521	TCCCTCCCAC	TOCATTOTOG	CACCCTCTTG	CTTACACTAA	TCAGCGTGAC
1301	CTCCACCTCC	TOCCOCACCAT	CCCAGGGTGA	ACCTGCCTGT	GAACTCTGAA
1351	CTCACTACTC	CACCTCCCTC	CACCACCACT	TCAAGTGTGT	GCACGAAGA
1401	GICACIAGIC	CAGCIGGIG	TCTCAAAAAC	TCAGTGATGC	TCCCCCTTTC
1451	AAGACIGAIG	COTOTOCTTO	CTCCACCAAG	GTTGAGGGAG	TAGGTTTTGA
1501	IACTULAGAT	AATATOTOOT	CIGGAGGAGG	AGGAGTTAGA	GAAAGGGCTG
1551	AGAGICCCII	AAIAIGIGGI	TOTOTTACE	CACCCCACCC	ACCACATCAA
1601	GCTTCTGTTT	ACCIGCICAL	TCATCITITC	CAGCCCAGGG	CTCCACACTC
1651	TGTGAGAGGA	AGCCTCCACC	ATCOTTTCTC	AAACTTAATA	ACACTCACAA
1701	GCTGAGAACT	TACGGACAAC	AILLITICIG	TCTGAAACAA	TCASASTT
1751	GCACAGGAAG	AGGC TGGGGG	ACTAGAAAGA	GGCCCTGCCC	TTACTCACAT
1801	TCAGATCTTG	GCTTCTGTTA	CICATACICG	CONTOCACO CONTOCACO	TTAGTCAGAT
1851	GCCTAAAACA	TTTTGCCTAA	AGCICGAIGG	GIICIGGAGG	ACAGTGTGGC
1901	TTGTCACAGG	CCTAGAGTCT	GAGGGAGGGG	AGIGGGAGIC	TCAGCAATCT
1951	CTTGGTCTTG	GCTTCATGGC	AACCACTGCT	CACCCITCAA	CATGCCTGGT
2001	TTAGGCAGCA	GCTTGGGCTG	GGAAGAGGTG	GIGGCAGAGI	CTCAAAGCTG
2051	AGATGCTGAG	AGAGATAGCT	CCCTGAGCTG	GGCCATCTGA	CTTCTACCTC
2101	CCATCITTCC	TOTOCCAACT	CATTAGCTCC	TGGGCAGCAT	CCICCIGAGC
2151	CACATGTGCA	GGTACTGGAA	AACCTCCATC	TTGGCTCCCA	GAGCTCTAGG
2201	ΔΔΥΤΥΤΤΥΔΤ	CACAACTAGA	TTTGCCTCTT	CTAAGIGICI	AIGAGUTIGU
2251	ACCATATTTA	ATAAATTGGG	AATGGGTTTG	GGGTATTAAA	$\pmb{AAAAAAAAA}$
2301	AAAAAAAAA	AAAAAAAAA	(SEQ ID N	0:1)	
					•

U.S. Patent

FEATURES: 5'UTR: Start Code Stop Code 3'UTR:		e to Tiple of the original of the contract of			
Homologous	s proteins: AST Hits		· .	Score	E
CRA 18000 CRA 88000 CRA 18000 CRA 18000 CRA 18000 CRA 18000	32328847 /altid=gi 805 005015874 /altid=gi 50 001156379 /altid=gi 74 005154371 /altid=gi 74 005126937 /altid=gi 74 005127186 /altid=gi 28 005127185 /altid=gi 28 005004416 /altid=gi 21	31869 /det=ret NP 00 34382 /def=pir JC58 34381 /def=pir JC58 28032 /def=pir JE02 54550 /def=ref NP 03 04562 /def=dbj BAA24 04553 /def=dbj BAA24	7952.1 LIM d 195560.1 LIM 1914 LIM motif 1913 LIM motif 1940 LIM kinas 194848.1 LIM 19491.1 (AB00 19489.1 (AB00	485 485 469 469 469	e-136 e-136 e-131 e-131 e-131 e-131 e-131 e-131
gi 101564 gi 542164	40 /dataset=dbest /tax 85 /dataset=dbest /tax 7 /dataset=dbest /tax 18 /dataset=dbest /tax	:on=96 on=9606 :on=96		1049 975 952 757	0.0
gi 130431 gi 519615	02 /dataset=dbest /taxor /dataset=dbest /taxor 69 /dataset=dbest /tax	= 9606 /		714 531 511	

FIG.1B

From tissue screening panels: Fetal whole brain

```
1 MVQDCQRNLA RLLLPVKVMR SLDHPNVLKF IGVLYKDKKL NLLTEYIEGG
51 TLKDFLRSMD PFPWQQKVRF AKGIASGMDK TVVVADFGLS RLIVEERKRA
101 PMEKATTKKR TLRKNDRKKR YTVVGNPYWM APEMLNGKSY DETVDIFSFG
151 IVLCEIIGQV YADPDCLPRT LDFGLNVKLF WEKFVPTDCP PAFFPLAAIC
201 CRLEPESRPA FSKLEDSFEA LSLYLGELGI PLPAELEELD HTVSMQYGLT
251 RDSPP (SEQ ID NO:2)
```

FEATURES:

Functional domains and key regions: [1] PDOC00004 PS00004 CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

- 1 108-111 KKRT
- 2 119-122 KRYT

[2] PDOC00005 PS00005 PKC_PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 4

- 1 51-53 TLK
- 2 106-108 TTK
- 3 107-109 TKK
- 4 111-113 TLR

[3] PDOC00006 PS00006 CK2_PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 4

- 1 51-54 TLKD
- 2 76-79 SGMD
- 3 139-142 SYDE
- 4 212-215 SKLE

[4] PDOC00008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

```
77-82 GMDKTV
      2
           150-155 GIVLCE
           158-163 GQVYAD
Membrane spanning structure and domains:
                       Score Certainty
  Helix Begin
                End
                       0.872 Putative
     1
         142
                 162
                       0.652 Putative
         184
                 204
BLAST Alignment to Top Hit:
>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM domain kinase 2 isoform 2b [Homo sapiens] /org=Homo
           sapiens /taxon=9606 /dataset=nraa /length=617
          Length = 617
 Score = 485 bits (1235), Expect = e-136
 Identities = 241/265 (90%). Positives = 241/265 (90%). Gaps = 22/265 (8%)
Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 72
           L VKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK
Sbjct: 353 LTEVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 412
Query: 73 GIASGM
                                        DKTVVVADFGLSRLIVEERKRAPMEKATTKKR
           GIASGM
Sbjct: 413 GIASGMAYLHSMCIIHRDLNSHNCLIKLDKTVVVADFGLSRLIVEERKRAPMEKATTKKR 472
Query: 111 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 170
            TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT
Sbjct: 473 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 532
Query: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 230
           LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI
Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 592
Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255
           PLPAELEELDHTVSMQYGLTRDSPP
Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617
```

Himmer se	arch results (PTam):	_		••
Mode1	Description	Score	E-value	<u>N</u>
PF00069	Eukaryotic protein kinase domain	100.1	1.1e-26	2
CE00031	CE00031 VEGFR	4.9	0.14	1
CE00001	CE00204 FIBROBLAST_GROWTH_RECEPTOR	4.7	1	1
CE00204	E00359 bone morphogenetic protein receptor	1.8	7.9	1
CE00003	CE00022 MAGUK subfamily_d	1.5	2.5	1
CE00022	CE00287 PTK Eph orphan receptor	-48.4	3.8e-05	1
CE00207	CE00292 PTK membrane_span	-61.8	2.1e-05	1
しとひひとりと	CEUUZAZ PIK ilicilibi alic_apair	V V		

FIG.2B

0.027 0.0021 6.5e-05 0.014

Jan. 22, 2002

CE00291 CE00286 CE00290 CE00288	E00286	PTK EGF PTK Tr	f_recepto _receptor k_family nsulin_re	`			-113.0 -125.1 -151.3 -210.4
Parsed f	or domai						F
Mode1	Domain	seq-f	seg·t	hmm-f	hmm-t	score	<u>E-value</u>
PF00069	1/2	16	79	41	105	52.1	2.3e-13
CE00022	1/1	124	153	187	216	1.5	2.5
	2/2	81	156		182		3.1e-12
PF00069					1141		0.14
CE00031	1/1	129	156	1114			
CE00204	1/1	129	156	705	732	4.7	_ 1
CE00359	1/1	· 79	157	287	356	1.8	7.9
CE00290	1/1	9	218	1	282 []	·151.3	6.5e-05
CE00237	1/1	ĺ	218 Γ.	1	260 []	-48.4	3.8e-05
		1	218 [.	ī	285 []	-113.0	0.027
CE00291	1/1	_		- 1		-61.8	2.1e-05
CE00292	1/1	. 1	218 [.	Ť	288 []		
CE00288	1/1	1	218 [.	1	269 []	-210.4	0.014
CE00286	1/1	6	218	1	263 []	-125.1	0.0021
CLUCTOO	. 47 4	•			, _ _		

FIG.2C

1 TCATCCTTGC GCAGGGGCCA TGCTAACCTT CTGTGTCTCA GTCCAATTTT 51 AATGTATGTG CTGCTGAAGC GAGAGTACCA GAGGTTTTTT TGATGGCAGT 101 GACTTGAACT TATTTAAAAG ATAAGGAGGA GCCAGTGAGG GAGAGGGGTG 151 CTGTAAAGAT AACTAAAAGT GCACTTCTTC TAAGAAGTAA GATGGAATGG 201 GATCCAGAAC AGGGGTGTCA TACCGAGTAG CCCAGCCTTT GTTCCGTGGA 251 CACTGGGGAG TCTAACCCAG AGCTGAGATA GCTTGCAGTG TGGATGAGCC 301 AGCTGAGTAC AGCAGATAGG GAAAAGAAGC CAAAAATCTG AAGTAGGGCT 351 GGGGTGAAGG ACAGGGAAGG GCTAGAGAGA CATTTGGAAA GTGAAACCAG 401 GTGGATATGA GAGGAGAGAG TAGAGGGTCT TGATTTCGGG TCTTTCATGC 451 TTAACCCAAA GCAGGTACTA AAGTATGTGT TGATTGAATG TCTTTGGGTT 501 TCTCAAGACT GGAGAAAGCA GGGCAAGCTC TGGAGGGTAT GGCAATAACA 551 AGTTATCTTG AATATCCTCA TGGTGGAAAG TCCTGATCCT GTTTGAATTT 601 TGGAAATAGA AATCATTCAG AGCCAAGAGA TTGAATTGTT GAGTAAGTGG 651 GTGGTCAGGT TACAGACTTA ATTTTGGGTT AAAAAGTAAA AACAAGAAAC 701 AAGGTGTGGC TCTAAAATAA TGAGATGTGC TGGGGGTGGG GCATGGCAGC 751 TCATAAACTG ACCCTGAAAG CTCTTACATG TAAGAGTTCC AAAAATATTT 801 CCAAAACTTG GAAGATTCAT TTGGATGTTT GTGTTCATTA AAATCTCTCA 851 CTAATTCATT GTCTTGTCCA CTGTCCGTAA CCCAACCTGG GATTGGTTTG 901 AGTGAGTCTC TCAGACTTTC TGCCTTGGAG TTTGTGAGAG AGATGGCATA
951 CTCTGTGACC ACTGTCACCC TAAAACCAAA AAGGCCCCTC TTGACAAGGA 1001 GTCTGAGGAT TITAGACCCA GGAAGAATGA GTGATGGGCA TATATATATC 1051 CTATTACTGA GGCATGAGAA GAGTGGAATG GGTGGGTTGA GGTGGTGTTT 1101 TAAGGCCTCT TGCCAGCTTG TITAACTCTT CTCTGGGGAA CGAGGGGGAC 1151 AACTGTGTAC ATTGGCTGCT CCAGAATGAT GTTGAGCAAT CTTGAAGTGC 1201 CAGGAGCTGT GCTTTGTCTA TTCATGGCCC CTGTGCCTGT GAAACAGGGT 1251 TCGGTGACTG TCACTGTGCC TGTGGCAGTC TGTAGTTACC CAGAGAGAAC 1301 AAAGCTGCAT ACACAGAGCG CACAAGGGAG TCTTGTAACA ACCTTGTCCT 1351 GCTTTCTAGG GCTGAGTCAG GTACCACAGC TTGATCTCAG CTGTCCTCTT 1401 TATTTCAAGA AGTTGACATC TGAGCCATAC CAGGAGTATT GTATTTTGTT 1451 TGAGGCCTCT CTTTTTGGAG GAACATGGAC CGACTCTGTG CTTTTGTCTA 1501 TGCTGGTCTC TGAGCTCACA CAACCCTTCA CCCTCCTTTC TCAGCCAGTG 1551 ATAGGTAAGT CTTCCCTATC TTGCAAGGCT CAGCTCAAGT GTCAGCTTCC 1601 TCTACAAAGA CTTTCCTGGT TCCCCTCATT GGAGTGAACA AGAGTTGACA 1651 TGGTAGAATG GAAAGAGCAG AAGCTTTAGA ATGAGCCAGA CCTGAGTATG 1701 AATGCTAGAT CCACCACTTA GCTAGTCAAC CCTGCCCCCT GCCTCAAGTT 1751 TTAATTTTCC TATCCATTAA GTGAATATAA TAATACCTGT GTCACAGGAT 1801 TATTTTGAGA ATTAAATGAG ATTAGGTCTA TGAAAGCACC TAGCAGAGTT 1851 CTTGGCATAT AGGAGGCATT CATTAAATAT TTGTTCTTCC CCTTTTATAC 1901 CCATTACTTT TCTTTTCTG AACTAAAATA ATACTTGGTT CTATCTCTGA 1951 AATAACATCC AAGTGAAAAA TCAACAACAT GAAAGAGCAG TTCTTTTCCA 2001 GTGGATTTGC TTCTTAAGGA GCAGAGATTA TGTAATCTAA CAGCCTCCAA 2051 CATACAAAGA GCTTTGTATC TAGAACAGGG GTCCCCAGCC CCTGGACCGC 2101 CAACTGGTAC GGGTCTGTAG CCTGTTAGGA ACCAGGCTGC ACAGCAGGAG 2151 GTGAGCGGCG GGCCAGTGAG CATTGCTGCC TGAGCTCTGC CTCCTGTCAG 2201 ATCAGTGGTG GCATTAGATT CTCATAGGAG TGTGAACCCT ATTGTGAACT 2251 GCACATGCAA GGGATCTGGG TTGCATGCTC CTTATGAGAA TCTCACTAAT 2301 GGCTGATGAT CTGAGTTGGA ACAGTTTGAT ACCAAAACCA TCCCCCCGCC 2351 CCCCAACCCC CAGCCTAGGG TCCGTGGAAA AATTGGCCCC TGGTGCCAAA 2401 AAGGTTGAGG ACTGCTGATC TAGAGGACCA ATTTATTCAA TGTTGGTTGA 2451 GTAAATGAGC TCTTGGATTA GGTGATGGAA AAATCTGAAA AAACAGGGCT

2501	TTTGAGGAAT	AGGAAAAGGC	AGTAACATGT	TTAACCCAGA	GAGAAGTTTC
OEE1	TOCOTOTTOG	CTCCCAATAG	TCATAGGAAG	GGCTGACACT	GAAAAGAAGG
2601	ACATTCTCTT	CETTTCTTCT	TCTCAGAGCT	ATAAGCAAAG	GCIGAVAGII
2001	CTAGAAAAAG	CCAACITITE	TTTCAGTAGA	AAAAAGGATA	ATCAGAACCA
2021	CIAGAMAMAG	ATCCAATCAC	ACTACTITIE	AGGCCATGAG	TTCCTTGTCC
2/01	CTGGAGAGAT	CACCACACGT	TEGACAAGTG	CTTACCAGAG	ATCTTGTGGA
2/51	GGCAGAAACT	CTCCATCTAC	CACACCATTG	GCCTAACCCT	TTCAAATGAG
2801	ATGCTGTTAA	CTCACTCTTA	TTCTACATCC	TACCAATOOT	GTCCCTTTGC
2851	AIGCIGITAA	CICAGICTIA	TCAACCTCTT	CCTTTTCTCT	GCAGGTGAAG
2901	CTCCTGCTAC	1116666616	TOTOCOCACC	ACATTCCTCC	AACCCACATA
2951	ATGTCTGGAG	GIGICCAGGC	1616GGGACC	CCCTCTTCCT	TCCCCTACCT
3001	TGGTACAGGA	CTGTCAACGA	AACCIGGCAC	TATCCCCCAA	CCACTATTTC
3051	GGGCCTATCC	TCCCATCTTT	ACCAGIGIAC	TOTOACTTCA	CAATTTCAAT
3101	ATGTTCTGAT	GGAAAACACA	GAAACAAGCI	ICIGAGIIGA	ACCAAACCTC
3151	CTTAGGGTGG	GGAAAGGAAT	GTACCAAGGA	AGAGUTUATG	ACCAMACCIC
2201	AACTCTCCCC	CCCCTGAACC	CAGGIIAAAI	HalaAAGAGCL	AIAAAIGGG
0051	CACCTCCACC	CACCCTCCCC	GGA HAAGAAA	AGLULITUU	AGGGIIGICC
2201	CATATCCCTC	ACTITATGGG	TUAAGGAAAUT	ひととしていると	AAGAGIGACI
2251	TTCCTCTCCC	TCCACTACAG	ATTATGCAGG	TACTICAAGA	GIIGIIIGIA
2401	TTCTTATITI	ΔΤΙΤΔΤΙΙΙ	ALLIALLI	ALLEMENT	AIIIIAIGAG
2451	ACCCATTCTT	CCTCTTCCCC	AGGC HaGAG	GUAG Habilat	AAILIUUULI
2501	CACTGCAATC	TOTECCTECT	GGGTTCAAGT	GALLILLIG	CCTTAGCTTC
2551	CTCACTACCT	CACATGACAG	GCACCTGCCA	CCATGUGUAG	CIAAIIIIG
2601	TATTTTACTC	_ C^G^C^CGGGGG	TITCAACATG	I I lata I CAtatat	IGGICIIGAA
2661	CTCCTCACCT	CAAATGATGC	ACCCACCICG	ACC ICCCAAA	GIGCIGGAAI
2701	TACACCCCTC	· A ACC ACTGTG	CCCAGCCAAG	AGLIGITIT	AGIGIGGIIG
2751	CCACACCCAC	CTCTTCCTTC	ACCACAGGA I	GCCTCCCTAG	GIICCIACII
2001	TITCTTACTA	CCTTTTATTA	TAGCIAIAII	ALIAHAHA	TIALIALIAL
20E1	TATTATTATT	ΑΤΤΑΤΤΓΑΓΑ	CAGAGTCICG	CICIGICALL	CAUGUIGGIG
2001	TACACTCCTC	CGATCCCGGG	CTCACTGCAA	CCICIGCOIC	CCGAGIICAA
20E1	CCACTTCTCC	TECCTCAGCC	CCCCGAGTAG	GIGGGACIAC	AGGCGCCIGC
4001	CACCACACCC	CCCTAATITI	TGTATILLA	GIAGAGACGG	GGITTUACCI
ANE1	TCTTCACCAC	CCTCCTCTGG	AGCTCCTGAC	CILAGGIAAG	IGCIAGAAIC
4101	ACACCCCTCA	_ ACCACTGCGC	CCAGCCAAGA	GIIGIIIIA	GIGIGGIIGG
4151	CAGAGCCAGC	TCTTCCTCAC	CACAGGTTGC	CTCCCTAGGT	TCCTACTITT
LOCK	TCTTACTACC	TITATTATAG	CTACATIALI	ALIALIALIG	HAHAHAI
ADET	TOACACACAGAG	TOTOGOTOTG	TCGCCCAGGC	TGG1G1ACAG	IGAIGIGAIC
4201	TTCCCTCACT	\cdot CC δ δ CC δ CC δ	CCCCCCGAGI	ICAAGCAATI	CICCIGCIIC
1251	*CCCCCCCCTA	. CTACCTGGGA	CICCAGGCAU	LIGULACUAU	GCCCAGC IAM
AAAA	TTTTCTATT	TTTAGTAGAG	GCGGGGT FIC	ACCITGITES	CUAGGCIGGI
4401	CTCAAACTCC	TEACETCAGE	TGATCCGCCT	GCCTCGGCCT	CCCAAAATGT
ACOL	TOCCATTACA	CCCATGAGCC	- ACCGCGCCCT	GCCTATAGCT	ACATIATIT
4701	TOTACCCACC	TCACTITCIT	ΑΤΑΤΤΑΔΑΔΑ	CAGACTTCAA	ATCAGATTTG
4551	TTCCTCCTCT	, ICAGITICIT CTCACCCTCA	GTTTCTTCAT	CTGGAAAATG	GATGGTAATA
4601	ATCTTCTTCA	ASTA ASTEAS	ΤΑΤΑΤΑΤΑΛ	GCAGTGTATO	CAGTACATTCTC
4651	TACACACCCA	CTCAATCCTT	ATTCCTTCCT	CCCATCGGAT	TGGAATTCTC
4/01	1 AGACACCCA	ACTICICI	ATATTCTTCA	CAACGTAAAA	TAGTTGAAAT
4/51	AAGGG I GGGAA	ALIIGILIII	**************************************		TGGGCATGCC
4801	. 1161166166		, AGICCACICC - CCTACCCCTC	TCCCTATATC	CTGAGAATGA
4851	IGGUCCCCA	COACCCACC	TOTOTOTO	ATTCCACCTC	CTGCACATAG
4901	GATAGACTAG	S AAAACATCCC	ATATTOCTOL	CCAACTAATT	GAGTTGACCT
4951	Cicilatia	AAAACATUU	, IGIGCIIAIA	i ocrativiti	3 ,0,,0,00

5001	TTAAACACTT	GCCTCTTCCC	TGGGAACCAT	ATAGGGGATT	GGCCTGGAGA
					TATCCTTTCC
					TCTTATTGCC
					TCTTTTCTGT
					AGGGACCTTA
					GACTAATAAG
					TTGGCATGTA
					AATATTTTCT
					GGAATTTCTG
5451					CACCCACTAT
					AAAAAGACTT
				TAGCACTGAA	
					CGTGCGTGTG
					AGATAACATA
				ACGTTAGCAT	
				GCCTGTAATC	
				TCAGGAATTC	
				AAATACAGAA	
				GCTACTTGGG	
				GTTGCAGTGA	
				GGGAAACTCC	
				AATGAGACTA	
6101	TOTEGOTTT	CCAATTTATT	AACTAGCCTT	AAGTGACTTC	CCTGAGCTTC
				TATTACTCAT	
6201	TGTTAGGGAG	GATTAAATGT	GATAACCTAT	ATAAAGTGGC	TAGCATAGCA
				GGACGTGGTG	
				GAAGGATCGC	
				ACATGGCAAA	
				TGATGGCACA	
				ATTACCTGAG	
				CTGTACTCCA	
				AACAAATGAA	
				ATGTTGTGAG	
				TACACATTCA	
				TTGAACTACC	
				AGAGTATCTA	
				ACTCTAATCC	
				CCCCTGGTAA	
				TAATTTGCCC	
				CCCCAGTTGG	
				CCCCAGAGAT	
/UU1	TEACCAACA	TOCCCCATCA	ACCTCAATCC	TCTTGTAAGA	TOTOTOCOAC
/051	AJAGGAACA	CACTOTATICA	ACC I GAA I GG	TACACTACCT	CACTACTCCA
/101	GCCAGCTTGC	CAGIGITICI	CIGAIGAAII	TAGAGTACCT	CAAATTCATT
/151	GGCCTGCTGG	GAGGAGGACI	CTCCCTCTCA	GCTACTCAGA	CTACACTTAC
/201	CTTCAAGGCC	CCCTTCCAGC	TOTOCOCTA	CCCAGCTGGG	CTACAGITAC
/251	AATAAAGGAA	AIGAUIIIIC	CATATTOLAT	CCCCCAGTAC	CTCCCCTCC
				GGAGAAATTG	
				CATTACCCCA	
				AGCCTTCCGA	
/451	GGTGCCCAGG	ACAACAGGAA	GUIAUIIAAA	GCTGGAACCT	CAGACTGTGC

7501 AATGGAGGCC AGTGACAAAA CTGAAAGTAG CTCTGTCAGT AATTGTGCTG
CONTRAC CONCRECE AGAIN III GUALLICUU UACAIAIUUC
TO A STANDARD TO A A C. TO A A ATTICLE (1201-11-14-00-0 Albina CAMO) AND I COMPAN
ATACTACTCA TCAATIACII GIAAALALIA IIIIIACIIQQ ACCAQUOONG
THE TAXABLE TO TAXABLE TO COMMITTEE TO THE CONTRACTOR OF THE CONTR
ATTENTIFICATION AND AND AND AND AND AND AND AND AND AN
TARTER ASSESSED TO TARTER OF THE TARTER OF T
TOTAL AND ALL
8701 TTTGAACTCA GGCATACTTA CTCCTTGCC GAGGCTCAGT TTCCTCTTAT 8751 TTGAATGCAA GCATATTTCT TAACCTCACT GAGGCTCACACA CTGGTAGTGT
8751 TTGAATGCAA GCATATTCT TAACCTCACC CTGCCACACA CTGGTAGTGT 8801 ATAATATGGG GTAAAGAGCC CTCACCCTGC CTGCCACACA CTGTATAATG
8801 ATAATATGGG GTAAAGAGCC CTCACCAAGGG GCTTCATGGA CTCTATAATG 8851 CAGATAACAT TGAAGGGTGT TAGTTTAAAG GCTTCATGGA CTCTATATG
8851 CAGATAACAT TGAAGGGTGT TAGTTTAAGG GCTCTCAGGCT CCTGATGTAG 8901 TCAACAAAAG TGCTGTTAAC TTTCTTCTGG GTCTCAGGCT CCTGATGTAG
8901 TCAACAAAAG IGUIGITAAC TITCTICAG GIOTAGCIGTIG ATGTTGCTGC 8951 AGTCAGTGGA GCAACCCTGC CATCTGCTGT TATGCTGTGT TCTCCAGAAG
8951 AGTCAGTGGA GCAACCCIGC CATCIGCTGT TATGGTGTGT TCTCCAGAAG
9001 CACACTTACT AACCTAAACC TITGATTCTG GCTGTGGCCT TCTCCAGAAG
9001 CACACTTACT AACCTAAACC TITATTCTT AGGAAACAGC CAGCCCGTAG 9051 GTGTTTACTC ATTTGTCCAG TTTATCTTTT AGGAAACAGC CAGCCCGTAG
9051 GTGTTTACTC ATTIGTCCAG TTTATCTTT AGGGCCTGC CTGACAGAGG
9101 ATCATTAAGG CTGGCTATTG GACAGGACT GCCCCTACAA GAGACTCCAG 9151 AAGGAAGGGC AGACATCTGG TTCTTCCTCT GCCCCCTACAA GAGACTCCAG
AAAA AAATOTOOTAO // // // // // // //
TO A CARLETTE CACACCELLE ALBERTALE ALBERTALE CACACCELLE ALBERTALE

9901 AGACTIGGAG ACAGAWATE TOATTIGGE STATEMENT OF THE STAT
JACK THIMITTEE

	·
10001 CTGTAAAATG	TCATAAAAGA AATCCATCTC ATGGAGTAGT TGTGATGATC
100E1 AACCACTCTC	AAAAAATTAG AATGGIIIAA IGIGAAGGAI IAGCAGCAGC
10101 ACATCCCAAC	ATTETECATE TIAIAIIAAC IAICCAAAIA IAICAAGCGI
A A 1 C A C A T T T C C T A T	ATATAAAAT CAICAAAIIA GGCACIGIGG GGGAIACGGA
AAAAA OTTOOCATAC	TACCCTCCCC TCTEAAIIAA IILAIIAAII AUVIIAIIIA
100E1 TITTCACAT	ACCICTRCI CIAIIGULLA GGUIGGAGIG CAGIGGONIG
4 AAAA4 ATCATACCTT	ACTATAGECE CAATELLUA GGULLAAACA ATOOLOGIGA
ABOUT OTACCTCCCA	CTACACCCAC ACACIACLAI GUULAGUIAA IIIIIIIIA
ANANA ATTITITOTA	CACACACCCT CITICATE TOLLCHAUGUS UNICTONNAC
AAAFA TOOTOOCOTO	CACATOCTO CACCIIIIII. ILALAAAGIG IIQQQAIIAC
10C01 ACCTATCACC	CACCCCACC GGCCCCCCCCCCCCCCCCCCCCCCCCCCC
A APPA ACCTOCABAT	ACACAATCTC AIGGAGLAII CLIAACCAIG GGCICCAGCC
AACA4 TOCCTTTCAT	TOTOTTTOTO CONGADALA ALAITULIII AGIAMIMILO
ARCES CONNTARCAC	CTTCATCACT CIGICIACUS ACCACICITO AUGOTIONIO
4 ATATATATATA	TOO AAACIG CACIAAGGI IGIAIIAAAA AAAAGIAAA
4 A 7 C 4 A A A C T T C C C A	CTCACCCICC IIIGAGIIIAA AIGULAGUII CACIIACCAG
4 AAA4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATCACTCACC TECHNALLA HULHIGULA UAGHITULI
10851 GTCTATGAAA	AGGGAAATGG CTCCCACCTC AAAAAGTTGT TAACATTAAA
4 AAAA TTCAATCATC	TATTOMAGE CONGRESS AND LIGHT AND TO THE
400E4 CTTAACACAT	CITACCATTT ALIALIAGIA ILIGICAGIO LIDAMAIDII
11001 CTCTTCCCTT	GGCTTTCATG ACATTCCACA CTCTCCTGGT TTTCTCTTAC
AAAEA ATATATAATA	. ATAPPTTT PELLANTILL CLINGLOCAL CLUBBAND
11151 CTCATGACTI	CCTTCCATTG TCCTCCACAC ACTGATGACC CTAAAATCAG
11201 TATCTCCAGO	CTAAACCTTT CCACTGAGTT CTAGACCCAT ATGTTGTACT
11251 ATCAACCTGG	CTTGTCCATT TGAATGTCTT CCAGGCACTT CAGACTCTCT
11301 TCTCTAGACT	TTGCTGGACT TTCACTCTTC CCCCTAAAAC TGGCTCCTCT
11351 TCCACTGAA	CATGTATGTC ATTGAGAGGC ACCACCATCC ACCCAGTGCC
11401 TAAGCCAGA	A ACCTAGGAAT CCTTGATACC TGTTCTCTCT CATCCTGCAT
11451 ATCCAAGCCT	ATCAGTITTA TCTCTAAATT ATATTTTGGT AGGTTTACTT
11501 CTTTCCTTT	CTCCCACCAC CACCCTGCTC CAAGCTACCA TCATCTCACC
11551 TGGATGTCT	CAATAGCCTC ATCTCCCACA GCCACTCTGC ACCCCCTAAT
11601 CTGTTCTCT/	TAGAGCAGTT GGAAGGAGTG ATTTTTGTTG TITGTTTTGT
11651 TITGTTTTA	ACAGAGTCTC ACTCTGTTCC CCAAGGCTGG AGTGCAGTGG
11701 CACAATTTC	GCTCACTGCA ACTTCTGCCT CCCGGGTTTA AGCAATTCTC
11751 CTGCCTCAG	CTCCCAAGTA GCTGGGATTA AGGCACCGGC CCCCATACCC
11801 AGCTAATTT	TATATTITTA GTAGAGATGG GGTTTTGCCA TGTTGGCCAA
11851 GCTAGTCTC	AACTCCTGAC CTCAAGTGAT CCACCTGCCT CGGCCTCCCA
11901 AAGTGCTGG	ATTACAGGTG TGAGCCACTG CACCTGGCTG GAAGGAGTGA
11951 TCTTAAAAA	A AAAAAAAAA AAAAAAAACT TGACTGTGTC ACTCTGTGTT
12001 GTCTCTCCT	A CCTTGTATAC TTCCACAACT TCCCAGTGTT CTTGGATAAA
12051 GACCAAAAT	C CTTAACTTGG CCAGGCGCGG TGGCTCACAC CTATCATCTC
12101 AGCACTTTG	G GAGGCCGAGG CAGGCAGATC ATGAAGTCAA GAGATTGAGA
12151 CCATCCTGG	C CAACATGGTG AAACCCCCATC TCTACTAAAA ATACAAAAAT
4 AAAA TAACTCCTC	C TOOTOCOOTO TOTTIGIAGI CULAGUIACI INDUNINGOIO
ACCES ACCCACCAC	A ATCACTTCAA CCIGGGGGGGGGAGGGGGGGGGGGGGGGGGGGGGGG
4 0001 ATCACCCCA	~ TCC&CTCC&C CC11441640 A 64614A0401 CCA1010777
	A AAAAAAAA TIMILAA I IGGILLAGA IAGAGCCCIC
A A A A A A A A A TOTO	~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
12451 CAGCCTCAC	C TCTCTTCTGG ACAGGCCCTC CTTCTGACAA GGGCTTTGTT

12501 CATTCTGCTC CCTCTGCCTA GAATGCCCCC TTACTCTGTT CACTTAACTC 12551 CTGCTTATCG TTTAGATCTT TACCTGGATG GCTCAGAGAA ATATAGAAGT 12601 AATTCCTCAC CCTGAAAAAT AGGTTAGGTC CCTGTTTTAT GTTTTCATAG 12651 ACCTITECTT TGAGGETTTT TITAAAAAAG TAGTTITAAT CTCACATITA 12701 TTCATGTGAT CATCTCCTTA ATGATATCTT AAGACCTCTA ATAGAACAAT 12751 TTGGTCATGG ACTGTGGGGT TTTTGCCCCT CATTGTGTCA GCACTGAGCA 12801 TATTGTTGGC ATAGGAGGGA TATTTGTTGA ATGAATTGCT AGAGGTGGCC 12851 AAGAGATATG ATGTAAGTCA GGCTTTTCCC TGCCCTTCCC CTTCCCCTTC 12901 CCCACATCCT TCCTATAGCA GCCACCGTGG CTGCAGTTAC TGTAAATGGC 12951 AAGACGGAAT CAGTTCCGGA CATTGGGTTG TTTTAGAAAA TTGCCTGCAA 13001 GTGTCAGGGT GATAAGTTAA AGCTTTGTCT TTTGCCCTCA GAGGAGCTAT 13051 CCCATAGTGA GTAGAAGCCA GAGAAGCTGA CCCCAGGAGT CCTTCTTTCC 13101 AGCAGCAGGT CTTGAGCTGC ACTTCTCTGT AGCTACAATC CAGGCAGGAA 13151 CAAGCCCTAG GTACCTCCGG AGAGGAGGC AAGAGAGGAA GAATGAGTTC 13201 AGCTACTCTA GCCACCAAAC TGATTATGAA TTGCCCTGAA ATCTGAAAAA 13251 TTTCAATTCC AATCGTAAGT TTGTTTTGTT TCATTTTGTT TTCTTAAATT 13301 GTATATTTGA AAGATGGCAT TAACTAAAGA TATATATTCA ATATAGAGTG 13351 GAAAAAATGG AATACTTGCA TAGTATCTTT TACTTATAGG TGATTTATGA 13401 TGGGGAGTGG GGTGGATAGG TTGGCAGTTC CCCCAAGAAG TTGGAAATGA 13451 AGTITGTCCT CTGTGAGTTG AACTAATTAG ATCCACAAGT AATGAAAGCA 13501 GTATTGTGTT GTAGTTAAGA GCACACTCTA GAACCAGATT GCTTAGTTTC 13551 AAATCCTGGT TCTGCCTTTT ATTATCTGTG TACTTTGGGC AAGTTACTTG 13601 CCCTTTGTGT GCTTCATTTT TCTCATCTAG AAAATGGAGA GGCCAGGCGT 13651 AGTGGCTCAT GCCTATAATC CCAGCACTTT GGGAGGCCGA GGCGGCAGA 13701 TCACCTGAGG TGAGAAGTTC AAGACCAGCC TGGCCAACAT GGTGAAACCC 13751 TGTCTCTACA AAAATACAAA AATTAGCCAG GCATGATGGC GGGTGCCTGT 13801 AATCCCAGCT ACCCAGGAGC CTGAGGCGGG AGAAACACTT GAACCTGGAA 13851 GGCAGAGGTT GTAGTGAGCC AGGATTGCAC CACTGCACTC CAGCCTGGGT 13901 GACAAGAGCT AGACTCAGTC TAAAAAAAAA AAAAAAAAAC AAACTGGAGA 13951 TACAGGCTGG GTGCAGGGCT TACACTTATA ATATCAGCAC TITGGGAGGC 14001 CTAGGCGGGA GGATTGCTTG AACTCAGGAG TTTCAAGATC AGTCTGGGTA 14051 ACAGAGCAAG ACCTCATCCC CACAAAAAAT CAAAAATTTA GCCAGGCATG 14101 GTGGCTCATG CCTGTGGTCC CAGCTACTCA GGAGGCTGAG GCGAGAGGAT 14151 TGCTTGAGCC CAGGAGGTTG AGGCTGCAGT GAACCATGAC TGCACCACTA 14201 CATGCCAGCC TGGATGACAG AGCAAGACCC TATCTCAAAA AAAAAAAAA 14251 AAAGAAACGA GCCAGGCGCG TTTGCTCACG CCAGTAATCC CAGCACTTTG 14301 GGAGGCCAAG GCAGGTGGAT CACTTGAGGT CAGGAGATCG AGACTAGCCT 14351 GGCCAACATG GTGAAACCCC ATCTCAACTG AAAATACAAA AATTAGCCAG 14401 GCATGGTGGC ATGCTCCTGT AGTCCCAGCT ACTCACTTGG AGGCTGAGGC 14451 ACGAGAATCG CTTGAACCCA GGAGGCGGAG GTTGCAGTGG GCCAACATCA 14501 TGTCACTGCA CTCCAGCCTG GGAGACAGAG CGAGACTCTG TCTCAATAAA 14601 TGGAGGCCAG CAGGCACGGT GGCTCACGCA TGTAATCCCA GCACTTTGGG 14651 AGGCCGAGGG GGGCGGATCA CAAGGTCAGG AGATCGAGAC CATCCTGGCT 14701 AACACAGTGA AACCGCGTCT CTACTAAAAA TACACAAAAT TAGCCAGGCA 14751 TGGTGGCAGG CACCTGTAGT CCCTGCTACT CAGGAGGCTG AGGCAGGAGA 14801 ATGGCGTGAA CCCGGGAGGC GGAGCTTGCA GTGAGCTGAG ATCGCGCCAC 14851 TGCAGTCCAG CCTGGGCGAC AGAGCAAGAC TCTGTCTCAA AAAAAAAAA 14901 AAAAATGGAG GTTGGGCGCG GTGGCTCGCG CCTGTAATCC CAGCACTTTG 14951 GGAGGTCGAG GCGGGCGGAT CACCTGAGGT CAGGAGTTCC AGACCAGCCT

15001	GGCCAACATG	GTGAAACCTT	GTCTCTACTA	AAATTACAAA	AATTAGCCAG
15051	CCACCATCCC	ACCCACCTGT	AATCCCAGUL	ALTIAGGAGA	CIAAGGCAGG
45401	ACAATACCTT	CAACCTGGGA	GA HATAKATAT	GUAGIGIGUI	GAGAICGCGC
45454	CACTOCOCTO	CACTAGAGTG	AGATICCUIC	TURRANAN	MANAMANA .
45001	OAAATOOACA	TACAAACTEA	CIACCIACCI	CCTIACAACC	INCCCICACA
10001	CTATTACTCT	CAATAAAAGI	GIGIGIAGUA	CIGGGAACAC	IN LICHCHON
45001	CCACTCATCA	ATCTTTCTTC	THGHALIA	GITACTAGAG	AGGCAMIGI
45051	CTCCCACCCC	TCAATAATAT	GIGIGAALIG	GIGALIGICG	CACAIAICIA
401	AACAACTACT	TATITIC	ΔΔΙΙΔΔΑΑΙ.Ι	TAGILIAAAA	ACCAMINIAM
	00000000000	ACTCCCTCAC	ACCULATION II.	LLANIMALLI	GGGAGGGCGA
45501		TOATHCACC	IC AGGACALTIC.	IJAGAL I AGUU	IGGCCAACAI
45553		TCTCTCTCTCT	ΑΑΑΑΑΑΑΑΑΑ	AAAAAGIACA	AAAAA I IAGGG
	* ~~~ * T^ * T^	CCACCTCCC	LIDAH LLAIS	LIALIUUUA	UUUUUUU
	COLORATION	TTCNACCCAG		IIGIAGIGAG	CCGMGIIIGI
		TTCACCCUICC	1-11-01 AI-AI-I	INAUAUAUIUI	CICROTOR
		************	ΑΙΔΙΔΔΙΔΑΑ	IAAGIGGCCA	CICHALI CICATA
45004			ΑΙ ΙΔΔΔΔΙ ΙΑ	BIALIGIALI	
			ALL DISTRICT	1717 1.1.1 1.10	GGCAACC I GG
45001		CTCACTCACC	Δ(HallAlataA	IDAWAIIICI	HUMAHAACI
	* *************	CTT A A	N/- 1 I I A I I I I	T.MI.MIJMIJUMA	COLICIANIC
4 6 0 0 1		CTTCCTCCCA	ΙΔΙΙΙΔΑΙΑΑ	I DDDAADGA.I	Ciddwydina
	~ * * * * * * * * * * * * * * * * * * *		CHAIN HAAL	IIIAAIAGIC	MALICALANG
	TATION 0100	· ^TTTTCATAAA	tiala i i distali.	. AITHALLH LA	CAGAAIGICI
			AAAA II AAAA	ALLIGHMAGA	
		' <i>APPPLICATIO</i>	ALL ADI-DAAAA	LARLAGUELL	undunuiici
	· ^~^^^	- <i>CACCACTCAA</i>		. AALALL I C	CIICCICAII
		CCXTTCACCI	[2] [A] [[]		IGUIUAUUIA
	* ************************************	. 		MUMUMUMUM	UALI IANI WW
	ATTACATIO	• ATCACACCCA	- 12A	IDDUNALIANI	
	~~~ <del>~~</del> ~~~~~	, <i></i>		.	Indhuniii
	<del></del>	* <i>CC</i> XXCCXIII	I II I I Ala I lat	. AUGULIUUMUM	Audalaioo
	TATA		1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1341.4116441	
	~~**********			I EJEJEJANIA	UCAAIICCAI
		\ <del>\ \ \</del> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1 EALLMIN, 1131	
16701	AGGCAGTAG/	GATGTGGCCC	CAGGACAAA	T CATATACACE	CTGTTAGTGA
	**************************************	י <i>היריו</i> אי <i>ויזים</i> י		1 I.MIMIMUMUL	
16801	L GACTTTAGG(	ATTTATACCO	ATTUAGAGAG	TTCTCTTAAA	AACTAAAGAT
16851	L CAGCATTCT(	TTTGGCATI	CAGUITIGU	TOTALIA	AATCACTGCT
1695	L CTAGCAGAC	TGGTCTTIAG	i IGCICIGCO	CONTROL OF	CCACCATTCT
		T PTABTILLI		- 1.1.MIXX.MUIX	
		n <i>c</i> cttrini	N 1.3 N 1 M 1 M 1 M	1 I II I I I I M I I W	. GIGAGIAGAI
1710	1 TTGCACATG	T TGTTCCTTC	A GGCCAGAAT	A TOTTOTOTO	CCTGGCAATC
	- ACCOTATTA	^ &CTCTCCCA		Δ 11.3 H.H3113R	3 AGGAGGGGG
		^ &^^^^	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D DILABANAL.	
1730	1 TATTTGTTT	A CACATCTAG	C ATCACICIT	C CCACACCTT	TTCTCCAAGT
4705	4 03001000	T ATC:1111		I. I.I.MIJAIJI. I /	1 UCAAAUIUCC
1745	1 TGAACGACT	CILIGGACAC	I IGAATAAAG		A TGCACCATTA

17501	CCATCTCTTC	<b>GCTCTACAAT</b>	ATTCTTTTAG	GCAAGAGCTT	ATCTTTTGAG
17551	GTGATAAGAT	AAGCTCAAAC	TTATGTAGAC	TAAGACCTCA	GTCTGTAAAT
17601	GTCATCCCTA	<b>AGTCTTAAAC</b>	CATCAAAACC	AGGGCCTCAA	GGAATGGCAT
17651	GCCTTCTGCA	<b>ACTGTAGCAA</b>	CCTGCTGTGC	TTATTTTGCC	GTGTTTTTCA
17701	TTTTTCCCCC	AAAAGCTAGA	GTCCCTTCTC	CCATGGGCAG	TGCTGGAAGT
17751	GTGCTAACAA	ATTCTTTCTC	CATACTGCTT	<b>ACGATTACAA</b>	AAAAAACCCT
17801	CAGCATCTCA	TGCCAGACTT	<b>GAGTTAAGGT</b>	TGTTTTCTTT	TGTGTGTCAG
17851	CTGTATTCTG	GTCATGACTT	CCTGATGATG	<b>CCCTATAGAG</b>	ATTTTGCTGA
17901	GATCAGAGGG	TGCTCCACTG	CCATCAGTAG	CACTGACTCT	TGCAGAAGCA
17951	CCGTTTCTGA	AGTTGGCTAA	TGTCATCCCT	CACGTTTGTT	TGTTTGAAAT
18001	TTGTTTTAGT	TCCAGAGATA	GCACTTTCAT	<b>GGAATGACGC</b>	TATCTTCTAG
18051	AATCACTTTT	111111111111111111111111111111111111111	TGAGTTGGAG	TCTCGCTGTG	TCGCCAGGCT
18101	GGAGTGCAGT	GGCACAATCT	CAGCTCACTG	CAATCTCCAC	CTTCCGGGTT
18151	CAAGTGATTC	CCCTGCCTCA	GCCTCCCGAG	<b>GAGCTGTTAC</b>	TACAGGCGCA
18201	CACCCCCACT	CCTGGCTAAT	TITATGTGTT	TTAGTAGAGA	CGGGGTTTCA
18251	CCGTGTTGGC	CAGGATGGTC	TCGATCTCCT	<b>GACTTTGTGA</b>	TCTGCCTGCT
18301	TCACCCTCCC	AAAGTGCTGG	GATTACAGGT	<b>GTGAGTCACC</b>	GCGCCTGGCC
18351	TAGAATCACC	TTTTTATACC	ATAACGTGAG	CACCACTGCC	GCGTCACCAA
10331	GGAAAGAGAG	AGGCAGCTAC	TGTGGGGTTA	CAAATGGGTA	AGAGTGGCAC
10401	CAGGAAGGTG	AAAGTCTCTA	CTTAGCCAAG	<b>GCTTAACAAA</b>	<b>ATGTCAATCA</b>
10731	CCAAACATTT	ATTTATTAAG	CTACGTTCAG	GATAAGAAGA	TGAACAAGCT
18551	ATCTGTACAT	TCATTTTCTC	GTTTGTAACA	AGGTAATGAT	AGTGATCTAT
18601	CCTCCCTCCC	TCTGAGGGTT	ATTGTGAGAA	TAAAATGAAA	TCAAGTGGAA
10001	AAGCACTTAG	GAAAAGAAA	AGCATTGGTT	TTCAATTGTT	AGTGTGGATC
19701	AGAAAÇACTG	GGGCTTGTTT	AAAATGCAGA	TTCTTAGCCC	CAGTCTCAGC
10701	GATTCTGATT	CTCTATATCT	GAAGTGGGAC	TCAGGAATCT	TGATTTTCAA
10001	CAAGCTGACC	ACACCCTCCA	ATCCTCCTAT	TCCTTTAGTT	ACACTTTCAG
10001	AAATATTACT	CTAAATCAAA	TECCAAGAAT	AAAATAGTTA	TTTGAGGCAG
10001	TTTTAGTATG	TTCCACCTCC	ACTCCAAAGA	CTTGGGTCAA	ACTCCAGCTT
10001	TGTCAGTTCC	TACACCTCTC	ACCTTABACA	GCAACCTTCT	CTGTGAACCT
10001	TAGTTCCCTC	ACCAACCCT	CTCCTCACCT	CCTGCTGTAC	TCCATTGATG
19001	ACTCACCACA	TAACCCTCCC	TECEACTOC	CCAAACCTTT	CCTCTCTTAA
19051	CTCCTTTTAC	ACCCTCCTAC	ATCTCCTGCA	GGTGCTGTCT	TCTCCTCCTT
19101	TTTCCAGGCC	CTCCTCTCAC	ACAGCATTCA	TTCTCCTCTG	GGAAGGGTTC
19191	CTTCAATGTG	TOTOCAACCA	CATCACACCC	AGGAAGGACC	CTGTGGCCAT
19201	ATCTGTCTAT	CACCACATCA	AACTACETEA	AGGCAGGCAC	TAGGTACTGT
19251	CAGTGCCCAG	CATACCCCTC	CCCCATACCA	CCTCTCCACA	CATCCCTACT
19301	LAGIGUCUAG	ATCATTCACC	ACCCCCATACCA	TCACCAACTA	TACCACTAGA
19351	AAAGAAACCT ACAGTGATAA	AIGALICAGG	TTATAATCCA	TOTTCACTT	ACACACIACA ACACACCCCT
19401	ACAGIGATAA	TOATOTACTT	TACTTCCTCC	TOTTOAGTIT	TCACCAATAT
19451	TTTGTACTCA	ICAICIAGII	ACCCCACACA	TCTTAAATAA	TTTATCCAAC
19501	AGCACAAGCA	GGACAAGGGA	ACCACTCAAA	TTARACARA	ACTITICICA
19551	TTTATGCTGC	IGGGAAGGGC	AGUALIGAAA	ACCTCTACCA	ACCTATTCAC
19601	GCTCAAATCC	CATGCCCTTT	CUICAAIGIG	ACCICIACION	ATCTTCACTT
19651	GAATCCTGCC	ICTACAGT IC	AGAGUUTUAA	MITOCIGO	AIGHIGAGII
19701	CTTGTATCTG	ATTITCIAG	ATTROCTOTO	CACATICTIA	TAACCTCTCA
19751	ATCAGGAAAG	AGTITATCAA	AIGUUIGIGG	MARICUARGA	ACTCACTACT
19801	TGATGAGTAA	CCCAGTGAAA	ACATGAAGIC	AAGICIAACI	AGICACIACI
19851	ATTTCACTAC	TGCTGACTCC	IGATGATCAG	CICCITICI	AAGIGUIIAC
19901	TGTCCACTTA	TTCCATCATC	IGCCTAGAAT	HAIGIGAAG	GAATLAAAGC
19951	AAAAGGATCA	TAAGGCTTCC	TTTTCCAGT	AIGHTTCC	ICCITITIGA
			1000		1.1

	•		OTOCATUTA	ATTTCATCAA	TACATCCCCA
20001	AAACTGGGCC	AGTTAGCIAI	CTCCATTTTT	ACACTTTCCA	CATATTCCAC
		TATACTACAT	ΛΙΙΞΙΆΔΑΓΑΙΙ	ALALIIIGGA	UMINITUCAC
		CTTTCTCCAA	DISTIBLIBAL.	AAIIGGIIUUM	ICACIGIACO
	TATTT		10101119178	AAIAAIICIC	CCACICICA
	* * TOTO * * C *	CATTTCATCL	(=0   1 (=(=   A	LUILAIAIGI	CITUUUUCIIC
	OAATTOTOCA	TTCCTAGILL	CAMSILLAID	MMC IUIIMAAA	
		CTAAACTTC!	A I C T A GA D Date.	LAAALIGILL	ICICIIICON
	マヘルアルヘヘである	CATACATIC	ΔΔΔΙΔΙΙΙσΙί.	IIIIACCIGG	Idiliaiwa
	ヘルアハルハルアハル	CATTACACCA	GIAGIAIAIA	LIAAALILIL	ACICIAIAAA
		ACTTCCATCA	TELL COLOUR	INARIA I MAGICI	וטווטהטהוה
	TATE OF A TT	TAATCCTCAI	VVI. 1. 11-11-11-11	AUTULINITA AUT	I GC I GGGACA
		TTAT	ΛΙ-ΔΙ Ι-(-ΔΙ-ΙΙ.	113131.11.11.11.11.11.11.11.11.11.11.11.	ACCIAGGIG
		CCATCATCII	THE HEALTH	AALLICUUCC	LCCCGGGIIC
		CTTCCCCTCAG	CCITC (at Ata)	AUGU LUUUUALI	ACUUUUCACA
	~ A C C A C C A C A	ፕሮሮ ለርሮፕ ለለ !	HILISTALLIL	IAUCAUAUAI	danalitut
	~ A TOTTOCCC	ACCTTCCICA	CI-DALAL I III	ALLICANGIG	AICIGOCIGO
	ATALOGOTOC	CANACTCUIC	THE DESCRIPTION	LAHMUUUMU	CATACCTACC
	AAAAAAAATT		CALCAL HALL	151.1AIAAIGI	AUAAAAIUA
	~~~~~~ A A C A C C		THAMPITA DI INDUNIT	AIDUIIAGIA	WAT UUUUUU U
		CCTTTUALIA		11.13(32(31))	
		• **	TO DIA LAALA	コムコスストコンハ	CACAAACAA
		• •	11,011,017,017	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LAMMANICITU
		TTCACTIACC	ALALI HELL	INMALAILLA	CITUUUUUCIU
			III II CAGAAA	ITICACAGACG	CILIUMNUNG
			Maladia II Ala I	INGIIUMUU	COULT GOOT IGG.
	**************************************	. ATCAAATGTG	. CHAGAGATTA	ALALLILILL	IUCCALLIA
		- AATTOOCKEL	ΓΛΛΔΙ-Ι-ΔΙΙΙ.	LUTURULIUU	CICIUUCAUC
		• ALATOTTOTO	CANAL REPORT	I I TANK TANK A . I M	UMAUAUCAUI
	~~~~~~~~~~~~~ <i>~~~~~~~~~~~~~~~~~~~~~~~~</i>	. ^^*	( 1 ΔΔInInIn I (nln	174170701107777	ININICOICO
	* ATATA * A T	- TTCATC 1171C	Δ1=1(=Δ)   latala (		
		<b></b>		17 MIT A MIT A	uc i in ionori
		• AATCCTTCAA		117881711.112A	ALLIUWW
		N TTCC ACC 163.	: fall-lalalalal III.		CAUCACATUC
		P	· Calalalata Minis		ddor i i w i w i
		A CTTATTUUU		LAMITICALITY	U I MUMUMUM
		• ^^*	' (/=/ //-/	1171 11.60.60	CCIAGACACA
		• ^^^^	Tal Haladal Ale	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		* <i>TOOTERLAND</i>	_	II.MITILLIA III	1414401140
		A .ATTTCCTAG:	Ι (1 ( Δ(ΞΔΙ. Ι ΙΑ		- CCCIICIIUC
		T TACACCCCAI	ι ΓΛΙΔΔΙΔΙ-ΔΙ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ואחתותעוועי
		T ^^^A	N THEFT HE REAL	- I.H.H.AULI	GGGGGAGGGG
		^ ^ <del>^</del> TATCT[A			. ICACCIOCIO
	- <del></del>	* <i>^</i> T <i>^</i> T <i>^</i> T <i>^</i> ( <i>'</i> ( <i>'</i> (	· 1/1221   Malala	1 11.1.117ALLIL	, clucionan
		~ 44^TTCXCX		1 HITHITHITHUL	.
	- ALTLOCOCT	~ AAAAATCTT	2 A H.	9 I.IAIIIACAC	
		A DADACKTI	A 1'1 H21 HAAAH	- I-I.I.AI.A I AIX	, Inducurona
		^ AATACTCTT	A AIIAI AI I AI	A EINING I MAGAI	
	A A A A A A A -	'A	C III DUSTES	. IIAUAIUUAU	IUCALIUIO
2240	1 HAAIGIGI	C CACACACTO	T GGCTCTGGG	CCAGGCTGAG	CTTTGGTATA
2245	I CALLCAAAC	C CAGACAGIC			•

US 6,340,583 B1

22501	<b>GCATGGTAGA</b>	<b>ACGTTGTCTA</b>	<b>TAATGTCTAG</b>	<b>TCTGGGTTCA</b>	AATCCTGGCT
22551	TCACTTCTCA	CATTTACAGC	TGAGTGACCT	CAGGCAAGTG	ATTTAACCTC -
22601	CCTGTACCTC	<b>AGTTGCTTTA</b>	TCTGTAAAGA	GAAAAATCAC	AGCACTGTGG
22651	AATAGTGGGG	<b>GTTAAAATTC</b>	<b>ATTCATACAA</b>	<b>GTAGTGCTGC</b>	AAGCAATGTT
22701	TAATACAGGG	TGAGCACCTG	TTCAGTGCTT	CCTTCTTCTG	GCTGCCTCTG
22751	GGGCTAGAGT	GTGGTGTCTT	<b>CGTGGTATAG</b>	<b>ATAGATAGAT</b>	ATGGCTGAGC
22801	TCTGCACAAA	CACCAAGAGC	TGTTCTTCAC	TATTAGAGGT	AGTAAACAGA
22851	GTGGTTGAGC	TCTGTGGTTC	TAGAACAGAG	GCCGGCAAGC	TATGGCCCAT
22901	TGCCTATTTT	AATACGGCCT	<b>GTGATTGATT</b>	GATTTTTTT	TTCTTTTGA
22951	GACAGAGTTT	CACTCTTGTT	GCCCAGGCTG	GAATGCAATG	GCACGAACTC
23001	AGCTCACCGC	AACCTCTGCC	TCCTGGGTTC	<b>AAGCGATTCT</b>	CCTGTCTCAG
23051	CCTCTCGAGT	AGCTGGGATT	ACAGGCATGT	GCCACCACGC	CTGGCTAATT
23101	TTTGTATTTT	TAGTAGAGAC	<b>AGGGTTTCTC</b>	CATGTTGGTC	AGGCTAGTCT
23151	CGAACTTCCA	ACCTCAGGTG	ATCTGCCCGC	CTCAGCCTTC	CAAAGTGCTG
23201	GGATTACAGG	CGTGAGCCAC	CATGACTGGC	CTGATTGACT	GATTITTTA
23251	GTAGAGATAG	GGTCTTGGTT	<b>TGTTACCCAG</b>	<b>GCTGGTCTCA</b>	AACTTCTGGC
23301	TTCAAGCAGT	CCTCCCTCCT	TGGCCTCTCG	AATGCTGGGA	TTATAGGCAT
23351	GAGCCACTAT	GCCTGGCCTA	TATGACCTGT	GATTTTTAAT	GGTTAGGGGA
23401	AAAAAAGCAA	AAGAATGCTT	TGTGACATGT	<b>GGAAATTACA</b>	TGAAACTCAA
23451	ATATCAGTGT	CCCAGCCTGG	GCAACAAAGT	GAGACCCTGT	CTCTACAAAA
23501	AATAAAAAAA	AATAAGCCAG	GGCCGGGCGC	AGTGGCTCAC	ACCTATAATC
23551	TCAGCACTTT	GGGAGGCCGA	GGCAAGTGGA	TCACCTGAGG	TCAGGAGTTC
23601	AAGACCAGCC	TGACCAATAT	GGTGAAACCC	TGTCTGTACT	AAAAACACAA
23651	AAATTAGCCG	AGCATGGTGG	CATGCGCCTG	TAGTCCCAGC	TACTTGGGAG
23701	GCTGAGACAA	GAGAATTGCT	TGAACCTGGG	AGGCGGAGGT	TGCAGTGAGC
23751	CAAGATCGCG	ACACTACACT	GCAGCCTGGG	CAACAGAGCG	AGACTCCGAC
23731	ACACGCACGC	ACCCACACAC	ACACACACAC	ACACACACAC	ACGCTGGGTA
23851	TGGTGGCCAG	CACGTGTGGT	CCCAGGATGC	ACTGGAGGCT	TAGGTAGGAG
23031	GATCACTTGA	GCTTAGGTGG	TTGAGACTAC	AATGAACCAT	GTTTATACCA
23301	CTGCACTITA	GCCAGGGCAA	CAGTGTGAGA	CTGAATCTCA	AAAGAAAAA
2/1001	AAAAAAAAAAA	ΔΔΔΔΔΔΤΟΤΤ	TCCATAAGTA	AATATCTGTT	GGAACATAGC
24001	CATGTCCCTT	AGTITATGTT	TTATATATGG	CTGCTTTTGC	CCTATAATGA
24101	CACAATTGAG	TEECCACEAC	AGTCTGTATG	GCCTGCAGAG	CCTAAGATAT
24101	TTGCTCTCTG	CCCTTTACA	GAAAAGTGC	CTTGACCTGT	GCTCTAGAGC
24201	CATATGTACC	ACCTTTEAAA	CTCAGCCTCA	CAGCTGGGTG	TGATGGCACG
24201	CATCTGTAGT	CCCACCTACT	CTGGAGGCTG	AGGTGAGAGG	ATCACTTGAG
24201	TCCAGAAGGT	CCAGCTAG	ATTGTAGTGA	GCCATGATGG	CATCACCGCA
24301	CTCCAGCCTG	ACTCACAGAG	ACACACCCTG	ACTCAAAAAA	ΑΔΑΔΑΔΑΓΑΑ
24331	AAAAAAAAA	CACCCTCACC	ACTTATCAGC	TATTIGTCTT	GAGAATAGTG
24401	ACATAACCCC	TCACAACCTA	TTTCTAATC	TGTTAAATGA	GGCTGATGAC
24401	GTTTCCTCCT	TITACTCCCA	ATTTANACAT	CATCCATAAT	AAATGCTAAG
24501	CACTTAACAC	ACCCCCTACA	ACATATTAAC	TCCTCAATAA	ATCCTACCTT
24551	CTTAACAGTA	AGGGCCIAGA	TOTOCTOTTA	TCACATCCAT	TETTETCCCT
24bU1	GTGTCCAGTT	CCTCCAATCC	CAAAACCCTC	CCTTCTAACC	CCATCTACCA
24651	TCTTTATCAG	ACTITOTO	CATCCTTCAC	ACTAACACAT	ACAMECTECA
24/01	COTTO	ACTITICATE A	CASTOCTAAS	CCCTCTCTCC	CTCCTA ACCC
24/51	CGGTGACTTC	TOLOTOGOGO	AAATCCACTA	CTCACATCTC	ACTETTETEE
24801	AGAGCTGATG	TUAL IGULLU	AAA I CLAUIA	CAATCCTCCA	CCCACCCACA
24851	TTTCCTCCAG	CAGCUITGCI	MITTULLITA	TOCTOATOCT	ADADDDAJDD
24901	CAAGGCTTT	CTACATGGTA	4770040474	CCTACCCTTA	DEDI JANJAJ
24951	GGCTGTTCAG	GIGGGCICCC	ATTUCAGATA	CCIAGGCTIA	ICAAICCCII
		_		^	

					CAOTITOAAA
25001	TTGGCACCCC	AGGCCTTTTT	CTCCCTCAIG	CCCCATITI	CAGIIIGAAA
25051	ACCATCCTTA	TCACAGGACA	AGTAGAAGAA	GUTCUALTET	LLAL I GAGGL
05101	CAATCCATCC	TCTTCTCCAT	GTGAACAETC	AGIGAATAGI	GAGIGAAIGA
25151	CACTAACCTC	CCCTCCATCC	TALLIGUAGA	はみなしままはなみ	AAAGAIIII
oroni	CTCCTTAAAC	ACCCAGAATG	AAGCCTGGTA	G I GGGAGAGA	ICCAGCICIA
25251	CACTCACATG	AGCCTACATT	TAAATICCAG	CCCTGCCACT	GACICCLIII
25201	TTCACCTTCA	GTGAGTTACC	TAATCICICI	GIACCICACI	HIGHGIG
25251	CTACACTCCC	ΔΔΤΑΑΤΤΟΟΤ	GTCTCAGAGA	AATAAAAGAG	IGCATATAGE
25/01	CTTTCCCACA	TGGAGACACA	TCAGGIGIAG	GITAATACIC	
25/51	TTCCTTATTT	GCAACACAGC	CCTGCCCTGG	AGIGGAAGIG	GCACC I CCCA
OFFA1	TTCCTCACCT	CTTGAGGCTG	TCCCCAGGAC	AUGUAUAGGG	AGGGAAIGAA
OCCE1	TOCCACCCCT	ACTCCC ACGA	CAGAACAGAI	GGCAGCTCAG	AGCIAGGAIG
00001	CCTCTCTCCA	CCTCTCTCTC	CTACCAGAGG	1000000	I GG I G I GGC I
05651	CTTCCTCCAC	CTCCCATCCT	CTGCHILL	HILLICCA	LL ILLANGUM
05701	CAATTACTCT		GCTCCTCTGC.	IIGAGGACAI	CIGGGGCCAG
05751	ATATCTTCAC	ACTCTATCC1	GCCT RECEUT	ILLLIGAGLI	CAGGATGGAC
00001	CCTCAATTCC	TCCCAGTTAL	TG U. HallAlala	けししけいししけい	AGCC I CGA I C
OFOE1	-CACCCCAGCT	CCACCCCTIG	CC UsCAAlsts L	LIGITICLIA	ACAGC IGC IC
25221	~******	CCTCCCTTCL	GCGGGAGLLL		
OFOE1	CCTCATTCAC	CCCTCCCACT	CAACIAACIAACI	GUTAAUT (GA	CAGCAGCGCI
0.0001	TOTTTOTTAC	CTACTCACCG	GCCCCIGUIU	AAGAATGUUA	GIGIGIGIGI
OCOE1	ACCCTCCACA	CACAGGTCGT	THICHCIGGAG	1 L L A L A L L L L L	CCGCCTGAGC
06101	TTCTCACAAC	TACCCACCAC	CCA ICCCAGC	LAIGAGLLLL	I G I G G G G G G G G G G G G G G G G G
0/151	TOCTOCCCC	$ \wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\wedge$	GGAGICCICA	ししし!しししはしみ	GC 1GC 1CCGG
26201	ACCCACACCT	. CACLTLAGGG	CAGCCTGCCT	GLAGCCAGAG	GIGCCGGGAG
26251	-cccccccccc $C$ T	· CTCATCCTGG	CCATCTACAG		GCAGTCACAG
	A A A A A A TITTO	TANAMANA	CTCTATCTGG	His Historia AAGA	AGA I GGGGAG
26301	ACGGATITGC	GTCCCGGCTT	ACTTCACCTC	CAGAGACCTG	TTTCGGTGAG
06401	TTOOTOTOO	· ACTTCCCCTC	Trrait itit.	1.1145666616	BILLIGAGAG
26401	CACCCTCCTC	TCCCTAAATC	TCCTTCTCAC	TTAGTCCTTT	ACCATCGGTT
20401	OTOCOCOCA	GAAGCCAGCG	CACCTTATAC	CCAAGGAGAA	TCGGCCTTGT
26501	10000000000000000000000000000000000000	CATTATGTCC	TGGAAGTGGT	GAGGGGAGGG	ATATACCCAG
26551	DAUGUAL DE	TTAGGGAGCT	CONCETTOOC	TTCTATCCCA	GACAAACCTG
26601	AAGGAACI II	CAAAAGATGC	CACTGACCTG	CCCATTGTAG	ATGTTACTGC
26651	AAGGAGCOO	AATAGCCCAA	ATACACTCCT	GTTTCCAGCT	CTCACATGTC
26701	110000000000000000000000000000000000000	GCCATGCTGC	CTCCCCAGGA	ATTTGTCCCA	ACAAGCAGGA
26/51	ITACCIGCGC	TTGCCAAACT	CTCCAAACTG	GCAAGTCCTG	GGTGTGGGTA
26801	GGGCAGGI	CAGTAGGCAC	CTTATAAACG	TITETICICI	TAATGGCAGG
2685]	GCCTGGTACA	TCTGGCCTTG	TOTTOGOAN	CACCTCCAG	GTGAATGTAG
26901	CACATTIGCO	A AAGACCTGGG	COACTCCTTC	TAACACTCCA	GCAATGGGCT
2695	TTGCTGGGG/	CCTGAGCTGC	TOCCCCACCC		CTCAGTCCCT
2700	LTTAGAGTGT	CCIGAGCIGU		CTCCCCCTTC	TCAGAGGGAG
2705	AGGCCTAAG	ACCTCCACGA	ACCTCCCTT	TANTODODID	TGCCCCACTC
2710	L ATGTGGAAA(	TCTACCTCTA	ACCIDECTION	111001001 TOTOOOOOTO	CCCTCCCTC
0745	. A&AAATAAA	T AMAAAMTTCCC	CVI Profession I I I	こりかんしししし	GGGICCCIIC
0700	. TO & &TOO & O/	LEGATORA T	1 🗘   -( -  -  -  -  -  -  -  -	תטוונוטונו מ	
0705	. ~~ & ~~ C T T T	T CTTCCAAAAA	. (44) (4.0.100	. LLLILALLAG	IGGICCIGGI
0700	L ACACTTITC	~ ~TT^TCCCTT	CILIDAGALIA	1 (-1-1 )   .   .   A(-1 )   (-1-1 )	CUMUMICITU
0705	. ATOCCCCA*	T ACTACTCACC	. 1/2/2 ( \\ \( \)		MAGCAGIGIA
0740	I AAATATAAT	T TTCTCCAATG	: ACCGGGALLL	JULIADA LUC	וטנטאייטטטן
2745	1 CTGGACAGG	G GGAAGGGGA	AGGGAACTG	1 ILLILAAIGU	IGACICIACC

U.S. Patent

27501	AAGCGCCCTG	CTAGACACTT	TATCCTTTAA	TCTCTCAACA	GCCTAAAGAG
27551	ATTATATATC	CCCATTITAC	<b>AGATGAGGCA</b>	ACCAGTTTCA	ACAGAGTTAA
	CATATGGAGC				
	TCCTTCAGGG				
	CTCAGGTTTG				
	CCTGACTTGT				
	AATTGATCTT				
27851	<b>AAGTGTTGAA</b>	<b>GTAGCCACAT</b>	TTCAGGTCCT	CATTAATTTC	TCTTAATCCT
27901	GGGAAGGCAG	CTTAGGAGAA	GGGTTGTTCC	TTTAGGAGCC	<b>AGGAACTATA</b>
27951	CCCCTTTTAC	CCTTGGAGAG	GCAGGGAAGC	CAGGGAGGAC	ACAACTTCTC
	AGGAAGAGGA				
	AGGGCCAGAC				
28101	TGTCCCAGGC	TTTCTGGAGA	ACCTGATCTT	CTTGCCCCTA	CCCCCAAGCT
28151	CCGTTTGCCC	AGCTAGAGTC	TGGGGGGTAC	TGACTGACTT	TCGTAGACAT
28201	TCTTCCCTTC	CCCAAATAAG	AGGCCACATT	CCTGAAGTCA	CTTCTGAAGA
28251	GATAGCTGCC	ACACAGGGCT	CTTTCCCCCC	AGGGAGGAC	CACCCAGACC
28301	CTCTGCTCTC	CCAGGTATCC	GTTACCACAT	CACTACCTGG	TCAGAAAGCT
28351	GTTTCTGCCA	TTAGCCCCTC	CCTCTTTTAT	TATAGGATAT	CCTCAAGGGC
28401	TCCTCTTTGG	GCCTCAGTTT	CATCCTTGGC	AGAAAGTAGA	AGCTAGACTT
28451	CTTGGGCTCC	TGAACAGGGT	CCTTGCTGGA	TTCTGTGAAA	CAAATTAAGT
28501	TCTTGACCCT	AGGCCTCTGG	GGGAGTACAA	AGTCTATGGG	AGTTCTGGGG
28551	CTGTGGTTGC	AAGGAAAGTG	ACGCAACCAG	ATTCCATGGG	GACATGATCA
28601	GGCGTGACAT	GTGAGGGAGG	AAGAGGGAGC	AAGGGAATGA	AGAATACAAC
28651	TTCTGTGTCC	CATACACCCC	TGCCTGACAG	GCCATACATA	CTCAGCAGAG
	AATGCACTGT				
28751	CACTGTGCTT	CCAAGTAAGA	AAATACCTCA	AATTGGAATT	TACAAAAGAG
28801	GTAAATTAGG	GAGTGGCTTT	TGTCGGACAT	CTTTAAAGCA	ппспп
28851	TATAGAATTT	CACTTAATGT	CCAATACTGA	TTTAATGAGC	TTGGGTTTAC
28901	ACATTATCTC	TTGAAGAAAA	CAAATGAACC	TTTGTGTTCC	AAAGCAATCC
28951	ATGTTTAAAG	GGAAAAAATT	ATGCATAACT	CTGCCCAGCT	TCACAGTAAC
29001	CTTTGGCAGG	TGCCTTAGGT	CCTCTGGGAC	TCTTTTCCTT	ATCTGAAAAA
29051	TGAAGGACTT	GGATCAGGTG	AATGGTTCCC	AGCTCTGCAA	CTTATGTGGC
29101	TCCTCAGAGG	CACACAAGCT	CTTTTCCATT	ATTTGCCAAA	TAATGGAGGC
29151	CCTGTCTTTA	ACTGCAGTAC	AACTACACAA	AATACTTGAA	ACTACAGTCT
29201	TCCTGGTTTT	TGGTTGGAAC	TGAATCAGTG	CACTCTAGCA	ACACTTATTT
29251	CTTGCTGTTC	GTAGGCTTCA	TTATGTGTTT	GGTTAATTTT	TTAAAACAAC
29301	AATAACATAT	TCCATAATAA	TTACAGCTTA	ATTGGCAGAC	TGTTTCAGTC
29351	TATAGGATCT	GCAGGAAGGA	GGAGTAATAA	AGGGATTTTT	GACTGAGCTC
29401	TTATGGAACA	GAGTCTCTCT	AGGCCCCTGT	CATATCTGCC	CTTCTGGGCC
29451	CTGGGGAAAA	GTTGGCATCC	CCAGTTGTGG	TGCTCTCCAG	GTGCCCTCAG
29501	GCTGTGGTGG	AGGGAGCTTC	CCATTCTCTC	CTTCAGCCCA	CTCAATTCAG
29551	AGGCTAGGGG	CTGAAAGAAG	CTTCTCTACA	ACTGGCTGTT	CACTGGGAGG
29601	TTAAGGGATG	ACCATCCAGC	CAGGCCTTCC	TCAGGACATG	GGAGGGCTTA
29651	TGCTTTAACA	TGTGTAAATC	CACTGCAATA	ATGACTGGTT	CTTTTACCCC
29701	ATAAGGTTGA	GAATTTACCT	GTAAACATTT	TTGTCTGAAG	AATTTGGATG
29751	TAAGTGAGGG	CTGGGCCTCT	ATCTTATCTC	ACTTGGCTTC	TCTCAGCACA
29801	GCACCTTGCC	TGCTTGTTCT	TACACATCCT	AGATGCACAG	TAACTATTTC
29851	CTAATTATTA	GAAATCTATT	AGAATCAATT	GATTTCAGCT	GGGCTTGGTG
29901	GCTCCTTCCT	GTAATCCCAG	CACTTTGGGA	GGCTAAGGCT	GGAGGATCAC
29951	CTGAGTCCAG	GAGTTTAAGA	CCAGCCTGGG	CAACATAGGG	AGACCCTGTC

30001	TCTACAAAAA	TTAAAAAATT	AGCCAGGCAT	GGTGGTGTGC	ACCTGTAGTC
30051	CCAGCTACTC	AGGAGGCTGA	GGCAGGAGGA	TCTCTTGAGC	CIGGGAGGIC
20101	AGACTACAGT	GAGCAATGAT	TGTGCCACTG	CACTCCAGCC	IGGG I GACAG
20151	ACTAACACTC	TGTCTCTTAA	AAAAAAAAA	AAAAAAGIIG	ALLICIALL
20201	CCATAGATAA	ATAATTCATT	TTAGGACCII	ICH HICAC	I I ACAGAAA I
20251	CTGTTTCATT	CTGGGCTGAG	AAGCAGGTCC	AIAIIGCIAG	ACATAGGAGA
20201	AAAACCCCTC	TCTCTCCATT	TGCCCCTTGGT	GGICICAAAI	I GGGGAGGGA
20251	ΛΛΩΛΛΑΤΩΔΔ	CACTTACTGG	CTACCITCIG	IGAGCCAGGC	AILAIGLAAG
20401	<b>ACATCTGTAC</b>	ΤΑΑΤΤΤΑΑΤ	TCTCATAACC	CCATAAGATA	HAHHAGCAA
30//51	TCTACAAGTG	AGGAAACTGA	GGCTCAGAGI	CATGAAGTAA	CIGGCCIIGG
30501	GTGACACAGA	TGGTAAATGG	CAGAGAAGGA	<b>ATATGGATCC</b>	AGGTCTTGAA
20551	ACACAAAATC	TCAACTGATT	ATCTTTTTA	AAAAACTCAT	AIGHTUICIG
20601	CTCACTCAAA	AGGTCTCTGT	GTGGATCTGG	GTTGACCCAC	IGAACIGACC .
20661	ATCACCCTTC	CATCCACTTT	GTATCTGCCC	AAGULUTUAG	AACCCC ICAG
20701	TAATGTTTTG	GAAGATGAGT	TTTGGAGGTT	<b>GTCCTTAGGC</b>	ATAGCCTCAG
30701	CGTATGTAGG	CCTCTAGGTG	ATCTCCCCTA	ACCTGAGGAT	TTCAGCTCAA
20001	TTCACTCTGG	CTCCTCAGGA	CAGTGGGATG	ACTGGTTCAG	ACCTCAGCTT
30001	TACCACCTCC	CACCTCCCTA	CTCTTCTACC	TACAGCCAGG	GCAGATTTTG
30001	ACTITCACTT	CAGCIGGIA	AAAATTGAAA	<b>GGTAGAAAA</b>	CAGCCTTGGC
20051	TTTGGGAAGA	ACCTATGATG	TCCATGGCCT	CTAAGCATCT	GAGGTGGGAC
30931	ATGTTCGAGT	ACCACCTTAC	AGTTCCAAAG	TGTGTTCTGG	GITCTITGTT
31001	TAAAAGAACA	CACACTECTE	GGGAATTGAA	CACTGTGAAG	TATATGAAGG
31051	AGGAGAATTG	TCCTATTTAA	CATTCAGTAC	TTGGGCTAAA	GGAGAAGCAT
31101	CACGAAGTGT	TAACACTCAA	AGGGTCTTGA	GCTGTCAGGG	CTCCAGCTTC
31121	CTTATTTTCA	CACCTCACAA	TCCTGAGGCT	CAGCTGTTGA	GATGTGCTGT
31501	CTCACTCCGG	TCACATACTA	CACTGGATGT	GCCTTTGCAG	CCAAGCACAC
31251	ATAGCTTCAC	ATTCCACCTC	CATCAATTAT	GTATTGGGCA	GCTTTGCAGA
31301	ATGATTTGAC	ATTLACTOR	CATCACTO	TTCTCTAAAA	CAGGGATAAT
31351	CCTGCTACCG	TACCOTTCTC	ACCATTAGAG	ΔΑΔΤΔΤΔΔΑ	TAAGGTACCT
31401	CATATAGGAC	CTCCATTATC	CCTCCCCATTC	ΔΑΤΔΔΔΤΔΩΤ	ACCTETTAAT
31451	TGATAGCTAA	CIGGALIATO	TCAACTCTAC	CATCCCAACT	TCTTAAGTGG
31501	IGATAGUTAA	GUIAGAACIU	CTCTCCCAAA	ACACAGCTTA	GGGATCCATA
31551	TCTGAGAACC	CAGILGIGII	TTCACCTTCC	ACTTCTTCAG	AGACATGTGT
31601	CCCAGCCCTC	CIGICAGCIG	ACCTCCCTCT	CCCCTTTAAA	CCCATTCCTT
31651	GGCAGTGACT	IGGUCALAT	AGCIGGUIGI	CTCCACCCAC	CTCTTCTTCC
31701	GACACAGATA	TGTGGACTGG	OTOCTOCATO	CTCTATTTC	TTTCTCTCCC
31751	CAGCAGGCTG	GCCTGGCTGT	CICCIGCATG	CTTCCACCAA	ACAAAAGCAG
31801	TGCTCCCTCT	CCTGGGCCTG	GULAGAGUTA	TOCTOCTOC	ATCCCCTCCC
31851	GATATTGGCA	ATGGAAAGGA	GGGIGIGIIL	000040000	CONTITOCCT
31901	GCGCACATAC	CATTGCAAGG	GCGTAACAGA	COLCOTO	ACCACCACCC
31951	GCAAATAAGT	CTGCACACAG	AAGAAAAGAA	GGACCIGGIG	ACCACTCCTA
22001	ATCCAACCCT	TCTCCTCCC	- TACCTGGGU I	ACIGGIICII	GULALILLIA
220E1	CCATTTTCAG	ϓϒϒϹϾΑΑΑΤΑ	TTTGTTAAGG	CHIGGIGH	CLAGGICCII
22101	TCCTTCCTCC	ͳϹΔϾͳϹͳΔϹϹ	AAGAGTAAGT	GGGAIGUIGI	1111010010
22151	ACCCACCTAA	CACTCTAGTG	AAGAAGAAAG	AIGGIIGCCC	AGGAACIICI
22201	AACTCAGAAG	: GCAGGAGGCA	AGAAGGAAGC	CCCIGCICCI	AL IGULAGUU
22251	CTCTCTTCCC	: CACCCCATAG	TTCTTCAGAA	CCACATITAA	ILLILALIGL
22201	MCCCCACCCA	TAGTGGCTCA	CACCTGTAAL	CGCAGCACT	んししむみいむししん
22251	MCCCCCCCAC	: ATCACTTGAG	GTCGGGAGII	CGAGACCAGC	LILALLAALA
22401	TOCCOMARCO	CCCTCTCTAC	TAAAAATAGA	AAAATTAGUU	6661616616
32451	GCATGCGCCA	GTAATCCCAG	CTACTCAGGA	GGCTGAGGTG	GGAAAATCAC
OF-127			4	^	

U.S. Patent

	2422724220 TOTT40400
32501 TTGAACTCGG GAAGCAGAGG TTGCAGTGAG CO	CGAGATIGI GCCACTGCAC
32551 TCCAGCCTGG GCGATAAGAG CAAAATTCCA TO	CICAAAAA AAAAAGAAAA
22601 AACAAAAAT CCTCACTGCT ACCTTGAAAG 1	AGGIGAIGA LAITGCCATT
226E1 TOACAAATGA GAAGTGAAGG GGCTAGCCCA A	GATCACTTA GGTGGTAAAT
22701 CCTCCTCCTA AGATTAGAAC CTCAGATCAL C	TAGGGAAAA ACACAGATAT
22751 CCACAGAGTT AAGGGGACCC AGGGIALIGI L	IGILLILII GIIILALAGG
32901 TEGGGAAACA ACCCAGAGAG GGAAAGGGGC I	IGICCAAGG CAATITAGCA
32851 CCCAAGAACT TGAACCCATA TCTCTCTCCC C	CICATTIAG AGUTUATUU
32901 ACATGTATCT TATATTGAGA GGAGTGTGAG C	CACATACCA AGAACAGTCT
32951 TCCCCTCTGC CTCCAACCTC ACTGTGCAGT T	TTGAGACAC TTCACAGCCA
33001 TACTCTTCAT GCCATACCCA GCCCTTAAGA C	CCTGAAGTT CCCCTTCCAT
33051 AAGACAAGTA GGAAAAGCTA TAGGGTAAAA A	TAGCCATCA GTGTTTGTTG
33101 AGCACCCAGG AGGAATTGGG CACTCCAGAA A	GATAAAGGG ATTCTCAGGG
33151 ACTTGCTTCT CTAGACTTCC CTAGCTCAGC T	CCTTCAACT CATTCCTGCC
33151 ACTIGUTUT CHARACTICC CHARACTERACE	TACTACAAC TCACTCTCC
33201 CCTCTTCTCT ACCTCCCGCA GTGCTCAGAA G	PACTITCICI TOCTOARCE
33251 CTCTCACCTT GCATTGTTGA GTTTTATTTA G	ACCITCATO TITATOTITE
33301 TTCATAAGCT CATGAAAGGT GAAGTAGGGT G	TOCACTTOCC TOCCAAAACC
33351 ATATCTGCAG TGCTTAGCAA GTTATAATAA T	GCACITGCC TGGCAAAAGG
22401 CTTTCTCTCA TACATTAGCT TATLICCICI I	CACALIGGE ICITIGIAGI
22/51 AATACCATCO TATTACTTAT TITCAATGAG A	AGAAAGCTAC TAAGAGAAGT
23501 TCTCCACCTA GTGACAGTAA GTGGCIGAIA A	VAGIGAGCIG CCATTACATT
22EE1 CTCATCATCT TTAATAGAAG TTAACACALA C	JGAGIIICI ACIAIAIIGG
22601 CTCTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTTT	AGACGGAAL UITGUTUGI
22651 TOTOCAGGOT GGAACGCAGT GGTGCAALLL L	IGGGICACLA LAALCIULGU
22701 TTCCCAGGTT CAAGCGATTC TCCTGCCTCA G	JADIDIJDAG TAGGTGGGAC
- 227E1 TACCACTCCA CCCCACCACG CCCGGCIAAL I	
22001 CACCCTTTCA CCATGTTGGC CAGGCTGGIU I	IIGAACICCI GACCIIGIGA
33851 TCTGCCCGCC TCAGCCTCCC AAAGTGCTGG G	SATTACAGGT GTGAGCCACC
33901 GCGCCCTGCC TATATTAGGA CTTTTATATA A	AGCTATCTCT AGCTAGCTAG
33951 CTAGCTAGCT ATAATGTTTT TTGAGACAGA G	STCTGACTCT GTCACCCAGG
34001 CTGGAGTGCA GTGGCGTGAT CTCGACTCAC T	TECAACCTCC ACCTCCTGGG
34001 CTGGAGTGCA GTGGCGTGCT CAGCCTCCCG A	AGTAGCTGGG ATTATAGGTG
34101 CATGCCACCA CGCCCAGCTA ATTITITGTA T	TITTAGTAG ACCAGGTTTC
34101 CATGCCACCA CGCCCAGCTA ATTACACTCC T	TGACTTCAAG TGATCCACCC
34201 GCCTCGGCCT CCCAAAGTGC TGGGATTATA A	ACCATAAGCC ACTGTGCCCA
34201 GCCTCGGCCT CCCAAAGTGC TGGGATTATA	TTCATTANT TTTCACACCA
34251 GCTGCTCTCT ATATTTTTAA TACATATTAT T	PACAACTAAA ATATCTTCCC
34301 GTTCATTITA TAGATGAGGA AACTAGGCCA G	TAACATTCAA ACCAACCAAC
34351 CAAGATGATG TAACTAGTAA GTGGCAGGAT C	CARGATICAM ACCAMGCAMI
34401 GTTCAAACCT CTTGGAAGCA AGAATGTGGC C	CACIDIDA ACACATCCA
34451 CTTGACAACA AGAATAGGGA AAAGAAGGAA C	LIAGAAGGAA AGAGAIGGCA
34501 TGGGCTCAGC AGGCCAGGGA GCTCTTAGCT	GIGIGIGIIG GGAAGCICAG
ALEE AACCCACCAA CACCTTCTCT GTGCAGGTAA (	GICCIGAGAA CACACCAGAC
24601 TITTCAGAGG TGGAGCTTCA TAGCCAGGIC A	AIJAGGGAG AAGGGAGCIA
24CE1 TACATITITI TITITITI TITITITI	IIIIIIIAG AGACGGGGIC
24701 TTACTATGTT GCCCAGGCTG GTCTIGAACT U	CCIGGGCICA AGIGAICCIC
247E1 CCACCTCACC CTCCCAAAGT GCTGGGALIA (	GAGGCATCAG CCACCCCGCC
24001 CACCCACCTA TCGATCTAAC ATGTACAICI	TACACAGIGC TAATAGAATG
240E1 TICCCTITCT TCCCCAATAT TITATIIIGA A	AAAAAAAIIL AAAIAIAIAG
24001 AAAACTTCAA AAATGTAGTT CAAAGAACAC U	CIACATACCI IICACATAGA
34951 TTCATGATTT GTTAATGTTA TGCCACTTTG	TATATATCTC TCTCCCTCCT
ביים ביים אווארותוו וווארותוו בעבור	A

35001	ATCTGTATAC	TITTATTIAT	TTATTTTTGC	TGAACTATTT	CAGAGTAACT
.2E0E1	TAAACCCATC	TTCATTITAC	CCTTGAACAG	TICAATAIGI	TICIGCIAAG
20101	AATTOTCCTA	TATAACTCAG	<b>ATATCATTAC</b>	ATCTAAGAAA	ATTCACGGCA
25151	ΛΤΤΤΤΛΓΔΔΤ	TATTATTAT	AGTUCAAATU	CATALLICCE	CAGILGITCC
25201	AAAAAATCTT	CATCCCTCTT	TCCTTTTTA	ALCIAAAIII	GAA ICCAAGI
25251	TTCACCCATT	GTATTTGGIL	GCTGTGTCTC	IAGGGIIII	AAAAICIGIG
25201	CCTTTTCTTC	TCCCCATGAC	TTTTTAGAAG	AGTCAAGACC	GGHALICH
35351	ΔΤΔΩΔΔΤΔΔΩ	CCACATTCTA	GATTIGCCIG	ALIAGILLLI	HAIACHAA
25401	CCTATITIC	CCAACAACAT	TACATTGGTA	ACGC 1G11GG	IGAIGGICA
25/51	CTTTTCAAGA	GTGGAGATGA	TTAAACTGCI	THIGHTCALL	GAAGIAILIG
25501	TCAACACCAG	AGATCCTTAA	CTGGTGCCAI	AAATAGGIII	CAGAGAATCC
25551	ΤΤΤΑΤΑΤΑΤΔ	CACCCTGTCC	CCCACCTAAA	ITATATACAC	AICHUHHA
35601	TATATTCATT	TTTCTAGGGG	AGGCTTCTTG	GUITTATCA	AATILILAGA
25651	CCCCCCCAAG	ACCCAAAGAG	GTTATGAAAC	ACTAGICIGI	CCAC I GAGGC
35701	AGGCAACACA	GAGCTGGTTT	CTGGGGCCTI	GITCAGICIG	AACCAGCTIC
25751	CCTTGGGGAG	ATAGCACAAG	GCTGTAACTI	IGCCCCAICT	IGGUIIIGGA
35801	TCAAAGAGGA	CTGTCCATTT	TGTTGTCATA	CCTAGGAACC	AGGGALAGC I
35951	TATGTGGCCT	GGTTCCAGGG	ATCCAGGAGA	ATTICAGILE	HGICHIGCC
35001	TTTCAGGTGT	TCAGAATGCC	AGGATTCCCT	CACCAACTGG	IACTA IGAGA
25051	ACCATGGGAA	GCTCTACTGC	CCCAAGGACT	ACTGGGGAA	GIIIGGGAG
26001	TTCTGTCATG	GGTGCTCCCT	GCTGATGACA	GGGCCTTTA	IGGIGAGIGA
26051	ATCCCTTCAT	ATCTGCCCCT	CTTGGTCTTC	AGAGICCATI	GACAGIGCII
26101	CCACTTCCCT	CTCCCCTGTT	AATCTILIAG	ICTITCCATC	AUCUAUUUUA
26151	TCTCCCTTTA	TTTATTCATT	CATTCAACTA	GLAGGIAICA	ATTGAGCACC
26201	TACTAAGTGA	AAGGTAAGAT	CCTTCCCTCA	AAGACTIAAT	AGIIGAACGI
26251	TEECACTEEC	AGGAGAGGCA	GGCAGAGAGG	AGALALAATA	TAGITGGATA
36301	ACCACCTCCA	AGGAGAGTGT	TACAGGCTGA	GAGGAGGATA	IACTIAGGII
36361	CTCTTTAGGG	AATCAGAAAA	GGAGACICIG	GAATAGGCTG	SPERSHOPS
26401	CCCCTACCTC	CTATACCTGC	TCTGGACAAA	CGACTITAAG	CATAGTGACA
2CAE1	CATTTCCCAA	CCCTGTATTG	GAAGAACTGA	TCTTTTTAG	I GGGGAIGAI
26501	TACTTCTGGG	GATTTCTTCT	CATAACIGAG	ACCAAAACAG	IIIIGIGCAG
26551	TCTCACAAAT	GACAGGAGGT	ACCAATCIGA	CACTICCTT	GGAAGCICIA
26601	CCCCACACAC	ΤςδδδςδςΤς	GATTITIGALG		HUUAAUUIUA
26661	TTCACCCACC		CTCCAGCAAC	AGIGATAACI	CACITOCITO
26701	CTCCCTTTCT	<b>ACACCCTTCT</b>	CCCCACCTGC	I CACAGG I GG	CIGGGGAGII
26751	$-c$ $\lambda$ $C$ $T$ $\lambda$ $C$ $C$ $\Lambda$ $C$	CCAGAGTGCT	TIGCCIGIAL	GAGU I GUAAG	GIGALCALIG
26901		TGCATATGCA	CTGGTGCAGC	AIGULALLLI	CIACIGGIAA
26051	CATACTCCTC	CTTTGTCTAT	CCTCTCCCAL	AIAAGAGIGG	ADDDDDDDDI
36001	GCCACACTGG	CAGGGTGAGT	TGGGCAGAAG	GAGIGIIAGG	GIAGICAGAG
26051	CATTGGATTC	TTACCACAGC	AGTGCTCTA	ACCAGCICII	TAACITUTAA
27001	CCACAATGAT	TTACACATGT	CTCTACCCTT	TTTCCTIACC	AACCIIGAAA
27051	ATCTCTTCAC	TOTECOCTEC	AATCCTCCCA	GTGGGAGGCA	CICIICAAGG
27101	ACCATCCC&C	AACATTAAAG	TCAAAGACCC	CITAGAGCIC	ACCCIGICCA
27151	ACCACCTTCC	ΤΤΓΛΤΛΛΛΛΓ	AAGTCAGCCT	GGGGCCCATG	GAATAGAATA
27201	CTACAACCCC	<b>AAGGTTCTCA</b>	TTGTGAGICA	AAGGTAGAGT	GAAGAGAALU
27251	CACACCATCT	- CACCCCAACC	CAGGCCAGTG	TITICCAAA	TATACCACT
27201	CCTCCACATC	ͳϪϾϹͳϹϪϾϹϪ	CCCCCAGICU	CAGCCCACCC	TGAGAACCCA
27251	CCCTCCTCAT	℧ℙℙ℄℄℄℄℄℄℄℄℄	CAGCTAGAAT	CATGACAAAG	AGGGTGGTAG
27/01	TOACACTATO	CCTACTGTTG	CTTAAAGCCA	CATGGTGCAG	1661166166
37451	GGGGCTTCTG	TGTGGGACTC	TAGCATCTTA	TTCCCCCCTG	TGCCCTCTCC
O1 401					

37501	CCAGTGGGAA	<b>GTGCCACAAT</b>	GAGGTGGTGC	TGGCACCCAT	GTTTGAGAGA
37551	CTCTCCACAG	<b>AGTCTGTTCA</b>	<b>GGAGCAGCTG</b>	CCCTACTCTG	TCACGCTCAT
		<b>GCCACCACTG</b>			
		CTCCAACTAC			
		CCTTCAGCAG			
		TAGACCTCCA			
		TTCTCCTGGA			
		TGTTCTCTCT			
37901	GCAAGAATCA	CTCACCTTTC	AGGTGTCAGG	TTTCAGGTCA	TGTTTGCTCT
37951	TTGAAATCAT	CTGGCTTGAT	TATGTGTATT	<b>AGTTGTTTAT</b>	CTTCTATCCC
		ATGTAAATTC			
		GGCTTGGAAG			
38101	TTATTATTT	GTCAGTCGAG	AGAATGAATG	GAGAAAATGT	GGTCCATGGC
38151	CCAAAAGAAG	TTAAGACCCT	ATCCTAGATT	CAGGCCAGAG	ACCAGATGGA
38201	GAAAGAGTCT	GTGTCTATCT	AATACCAGTA	ATGTCGTACC	TCTGGCCGCT
38251	TACCATGTAA	ATATTGATTG	TGTATCTACC	<b>ATGTGTTGGA</b>	CACTAGGCTA
38301	GTGCTTGCAC	AGCAGGTGAA	AGATACTAGA	<b>GTTTGGGAAG</b>	TCAGGAGGAG
38351	CTAAGGTCTG	TTCTACAACC	TTATTAGATG	AAGAGGAGAG	GGAATTGTGT
38401	TCAGGGCAGA	GGGAGAAGCA	TTTCTCCAAA	AGTAGGAGTC	TTAATCATGT
38451	CTGATGTAGG	TTGAGTGTGG	CCAGAAAAGG	GGCTGTTAAG	TATAGAGGGC
38501	CTGGATTATG	AAAATCCAGC	AGATCCATTG	AGAGTTTAAG	CAGCAAGGTG
38551	TTGTGACCAA	GTTAACATTT	TAGAAGGATC	ACTGGTATGG	AGGTTGGATT
38601	CCACACCCA	AAGCCTAAAG	GTATAGAGAC	TAGTTAGGAA	GCTATTGTAG
38651	GCTGGGCATG	GTGGTTCATG	CCTGTAATCT	CAGCACTITG	GGAGGCTGAG
38701	GTGGGAGGAT	TGCTTGAGGC	CAGGAGTTGA	AGACCAACCT	GGCCAACATA
38751	CLAACACCCC	GTCTCTGTTT	TTCTTAATTA	AAAGAAAAGT	CCAGACGTAG
38801	ACATAGTGGC	TCACGCCTGT	AATGCCAGCA	CTTTGGGAGG	CCAAGGTGGG
30001	CACATTCCTT	GAGGTCAAGA	CTTTGGGATT	AGGCCAGGCG	CAGTGGCTCA
39001	CCCCTCTAAT	CCCAGCACTT	TEGGAGGCCG	AGGTGGGCGG	ATCACAAGGT
		AGACCATCCT			
30001	AAAGTACAAA	AATTAGCCGG	GCATGGTGGC	GGACGCCTGT	AGTCCCAGCT
20051	ACTCCCCACC	CTGAGGCAGG	AGAATGGCGT	GAACCTAGGA	GGCGGAGCTT
20101	CCTCTCACCA	GAGATCACGC	CACTGCACTC	CAGCCTGAGC	GACAGAGCGA
		CAAAAAAAAA			
20201	CCAAAACCCC	ATCTCTACAA	AAAGTACAAA	AAAATTAGCT	GCCTATGCTG
		GTAATCCCAG			
		GAGGTGGAGG			
33301	TCCACCCTCC	ATGACAGAGT	AAGATGCCAT	CTCAAATAAA	ΛΑΔΑΔΑΤΤΑΔ
39331	AAACTTTAAA	AAAAAAAATAG	AACCTATTAC	CETEATCEAG	GTAAGAGATG
39401	TOAATAACTA	CAATGATGGA	AACAACCCAC	ACTTCTTACA	CATCCCACTA
39451	TGAATAACTA	GGGAACTCCA	CATTCCCAAC	ATCATCTTCA	ACTITCTCCC
39501	GGAGAGATGA	COTTOACTOC	CAATTCCCTT	CACTCACATC	CCCCATCCTC
39551	TAGGCCACA	GGGTGAGTGG	TOTOCOTATO	CTCCCCCCCT	TACCCCCCAC
39601	GAAAAGGIGI	TGCCTTTCTG	AACCTTCCCT		AATTOCTOAA
39651	IGGIGGCCIG	GGACCTGGTA	TACCOTOCCT	CAACTCTTCT	CTCCCCCACC
39/01	GCAGGIIII	AGGACATCTT	TOCCALCAL	CCAAACCCC	TOCACCOTOC
39751	GICAACCGGA	TGCACATCAG	TUCUAAUAA1	COTCOCCACA	CTTCCACTCC
39801	GGACCGCATC	CTGGAGATCA	ATGUGALLLL	CTCACCOTCO	CACATCCAAC
39851	AGGAGG FAGA	GTGTGTGTCT	AATUIGICII	TACCTTTCC	TACCCCCACC
39901	AGAICCTCTG	GGAAATCAGG	CIGIAGUUII	ACCAPTOST	ACCTATTEC
39951	CCATCTCTTT	GTCTTAGCAT	TGAGCCTGTG	ACCACIGGIG	ACCIAITICA
		_		$\hat{}$	

					0004040070
40001	GCGTAACAGG	TTCCCAGGGT	AGCAGGGATG	GTTGATGGAC	GGGAGAGU I G
400E1	ACACCATCCC	AGGCAGAGGG	CACTGTGAGG	CCAC I GGCAG	U I AAAGGUUUA
40101	CCATTAGACA	AGTTGAGCAC	TGGCCACACI	GIGCCIGAGI	CAICIGGGII
401E1	CCCCATCCCT	CCCCTCCCAT	GGGGCAGCCT	GIGGGAGUII	IAIACIGUIC
LACOAL	TTCCCCACAC	CTCCACGATG	CAATTAGCCA	(JACGAGGCCAG	ALALTILAGE
10251	TCTTCATTCA	ACATGACCCC	GTC.TCCCAAC	GCC I GGACCA	0010000010
40201	CACCCCCCCC	TCCCTCCTCA	CATGCAGAAT	GCCGGACACC	CCCACGCCCI
402E1	CACCACCCTC	CACACCAAGG	AGAATCTGGA	GUGUALALIU	AUUAUAUUII
TOROL	CCCTAACCTC	CCACCTCCA	CCCTGGCTCL	GHUIGICUI	Albicibici
AOAE1	CTCCCATCAA	CCTCACCTGG	CTTTCAGAAG	CCIGCAGAGI	ADDAAADDA
40E01	ACCAGCTGGC	CAGGGACAGA	CTATGAGGAL	IGIGUIGACU	CAGCIGCCC
AACE1	TOTOGGGATO	ACACTTTACA	GCCAGAGCCT	GIGCGGACCC	AGCIGICIGC
40601	CACCTTTCCT	TAGAAACCTG	AGAGTCAGTC	TCTGTCCACT	GAACTCCTAA
40651	CCTCCACAGG	AGGC AGTGAT	GCTAAACCCCT	GAAGGGCAAC	AIGGCCIAIG
40701	CACAAACCAT	CCACCTCAGA	GCCTGGAGTA	CGGGCACAGA	IAGGATIGAA
40701	TAAATTGTGT	AGAAAGACTT	TGAAAACAAT	AAAGCAAAAG	ATGAATGAAC
40001	CTITION	CACTTGAGGG	ACCAACAACC	CCCAAACCCC	AGAIICIGCC
ANDE1	ACCTCCATCC	CCAACCACAA	GTTGCCTTGA	GIGGAAGUUU	CAAGTAGGGA
40001	CACTTACAGA	AAAGAAGTCA	AGAGCACTGG	CTCCCAGGCA	GAAATACTGA
400E1	TACCCTACTC	CCCCTTCACC	CTGAGCTCCT	CCCTTCACAA	ATCACTTCAT
41001	CTCTCTCACC	CTGTTTCTGC	ATCTGTGACA	TAAGATGGTA	AGATAAAGGT
41001	CCCTCTCTCA	CCAATTATGT	AAGGATTAAA	TGTGGAAAAG	GACATAAAGT
41001	TOTATACTO	TCCCATACCC	ACAGTGTTCA	GTAAACGTGA	CACATTCTTA
41101	CTATCACTAA	CAATCAGGTT	CTTGGCCAGG	CACCGTGGCT	CATGCCTGTA
41151	GIATUALTAA	TOTOCOACCO	CTACCTCCCA	GGATGGCTTG	AACACAGGAG
41201	ATCCCAACAC	IC IGGGAGGC	CATACTCACA	CACTGTCTCT	ACAAAAAAAA
41251	TTTGAGACCA	ATAATTOTTT	TTAATTAGAT	GGGCAGGGCA	CTGTGGCTCA
41301	AAIAAIAAIA	AIAAIIGITI	TOCOLOCO	VCCCCCCVC	ATTGCTTGAG
41351	CACCTGTAAT	CCCAGCACT	CTCCCCCACA	AGGCCGGAGG TTCCTGTCTC	TACAAAGAAT
41401	GCCAGGAGTI	CAGGAGCAGC	CTCCCACATC	CCTCTAATCC	CAGCTACTCA
41451	AAAAAAGTTA	ACTGGGCATG	CCCTCACCCC	CCTGTAATCC	GACTGCAGTG
41501	AGAGGCTGAG	GAGGAGGATT	ACTACACCTT	AGGAGTTCAA	GTGAGACCTT
41551	AGCCTTGATC	ACACCACIGI	ACTACAGCTT	GGGCAACAGA	CTCACCAAAC
41601	GTCTCCAAAA	AAAAAAGIII	GITTITI	ATCCACTCTC	CANACACTEC
41651	AAACTGAGTA	AGTTAGAGCC	CICICAGCIG	GCATGTGTTG	CCCTTCCTCA
41701	CCTCTCATTA	AAGTGCTGCC	CICACICCLA	TTGCCTCTTG	CCAACACCTA
41751	GTATGATGAA	ATTAGTGGGA	GGCAGGGCAA	CAGAGGGCAG	ALCEVENTOTA
41801	GAAATCCATG	GCCTGGAAAA	GGGAAGATTT	GGGAGTGGCC	AGGIAICIGI
/10E1	A CACCCACCA	₸₢₵₳₢₳₢₢₳₢	GGGGGCAGUL	AGCCTIGIGI	GUIUIUU
41001	CCATCCTCAC	CACCACCCAG	ΔΓΓΑΑΑΑΙ:Ι:Α	CAAGGG I AAG	IAMACCIGIA
41001	CCTCCCCACA	_ ∧CCC∆∆C∆CC	CATCCAGCGL	CAGICUICIU	I GGG I AGCCC
42001	** A ACT A A ACC A	ϲϲϭϲϲϭϪϪ	CCAGAGAGAA	AGIICGCAGG	GUIGIIUAUU
400E1	TOCACTOCTO	TCCACTTCAA	CCHCHGH	CLITCITCAG	I PAROLI DEPARA
40101	TAACACTCAT	· TCACCATGAC	TATTATCGAC	CGCTTTGAA	AMIGIAMACA
401E1	TACTCACTIT	· ΑΤΤΩΛΤΩΤΔΔ	ΔΔΔΤΩΔΙΑΟΘ	IGITIAICAL	CHAAAAHIC
42201	ACCABACATO	: CACAGGTACA	. AAGATGTGCA	AAAIAILAIL	CAAAAAICCCA
40001	TTTCCTCCCC	· ACCCACCGTG	GCTCACGCCT	GIAATUUUAG	CACATIGGGA
40201		CCCAAATCAC	LHGAGG H.AG	i laAla III laAlaA	CCAGCC 1 GGC
422E1	$-c$ $\lambda$ $\lambda$ $C$ $\lambda$ $T$ $C$ $C$ $T$ $C$	2	III IALIAAAA	AIACAAIAAI	HUUULIUUUL
40401	-CCACTCCCTC	• ΑΓΩΓΓΤΔΤΔΔ	TCCCAGCACT	J J G G B B B B B B B B B B B B B B B B	טטטטו טטאט
42401 424E1	AATCACAACC	TCAGGAGTTT	GAGACTAGCC	TGGCCAATAT	GGTGAAACCC
42431	. An i chomad			-	

		•				
	42501	CATCTCTACT	AAAAATACAA	AAATTAGGGC	CGGGTGTGGT	GGCTCACGCC
						CGAGATCAGG
	42601	AGTTCGAGAC	CAACCTAGCC	AACAIGGIGA	AACCCCATCT	CTACTAAAAA
	42651	AATACAAAAA	TIATICGGII	GIGGIGGCAC	ACGCCTGTAA	ICCCAGC TAC
	42701	TTGGGAGGCT	GAGGCAGGAG	AATCICITGA	ACCTGGGAGG	CACACTCACA
	42/51	AGIGAGIGGA	GATCCCGCCG	AAAAAAAAA	GCCTGGGCGA	CAGAGIGAGA
	42801	CICCATCAAA	AAAAAAAAAA	TACTTCCCAC	AAATTAGCCG GCTGAGGCAG	CACAATCCCT
	42851	CGIGCACCIA	ACCCCCACCT	CCCACTCACC	CGAGATCGTG	CCATTCCACT
	42901	TCACCCTCCC	CCACACACCC	ACACTCTCTC	TCAAAAATAA	TAATAATAAC
	42951	1CAGCC 1GGG	CCCCCCTCCT	CCCACATECC	TETAETCCCA	GTTACTCAGG
	43001	ACCCCCACCC	ATCACACTCA	CCTCAACTAC	GGAGACAGAG	CTTCCACTCA
	43031	CCCAACATCA	CACCACTECA	CTCCAGCCTG	GTTGACAGAG	CCACACTCTC
	40101	TOTORAGAICA	AAAAAATCC	CATTTECTCA	TTTTTTGGAT	ACTAGTATAA
	43131	CTATCACTCT	AAACCAGTTA	CTACTTAAAT	CAAGCAGATA	TGGGAGATGG
	43201	TCAATTACCA	TCTACAGTGT	TGTCATATAT	GTCACATACT	GAGCATTATC
	43231	ACCTACTACA	ATCTACTTAA	TTGTTCTATG	TGTGATGTAT	GCAGAGTTCC
	43301	CATTTTCAAT	GTGTTTTTAC	TATGCTTAAA	TAAATGACTG	ATGTCAGCAA
	43331	CCCCAAAATG	ATACATCTGA	TGTAAGAGCC	CCTGTTCCCC	AATAATAACA
	43451	TCTAAACTAT	AGACATTGGA	ATGAACAGGT	GCCCCTAAGT	TTCCTCCCTC
	43501	CAGGGTTTCT	TGGCCGGTCT	CTGAGGACTA	CACATCCCTA	CTCCCGTCTT
	43551	TCCTCATCTT	CAGGCGCAGT	AACAGTATCT	CCAAGTCCCC	TGGCCCCAGC
	43601	TCCCCAAAGG	AGCCCCTGCT	<b>GTTCAGCCGT</b>	GACATCAGCC	GCTCAGAATC
	43651	CCTTCGTTGT	TCCAGCAGCT	<b>ATTCACAGCA</b>	GATCTTCCGG	CCCTGTGACC
	43701	TAATCCATGG	GGAGGTCCTG	GGGAAGGGCT	TCTTTGGGCA	GGCTATCAAG
	43751	GTGAGCGCAG.	<b>GCAACAATTG</b>	CTTTGCTCTT	CTGCCCCCAG	TCCCTCTGTC
	43801	ACTGTCTTTC	GGGGATTTCT	CATCACTTGG	CCCCACCCCA	CACCATGCAG
	43851	GATGCCAGGC	CTCCTTCCTG	GCTTTGGGTG	TTGGTGTGAG	AGGTATCCTT
	43901	CACCCCCACC	CAGGCCACCT	AAGGTCAATG	TTGCTGTTAC	AGTGAGCTTG
	43951	TGGACCTGGA	GATCCAGGTT	GGGTTGAGCT	GTGCCTGTGG	CCCTCCTGCC
	44001	TCCAGTCAGT	GGGTGTTTGT	TAGGTGCCTG	CAGACCTCAG	TACCGGGCAT
	44051	<b>GCTACAAGGA</b>	<b>GCACACAGGG</b>	GAATGGCTCC	TGCCTCCCTG	GTGAACAGTC
	44101	<b>TCAGGGACTA</b>	<b>ACCTCTCTCT</b>	TTCTCTCCTC	CTCCTCCTCT	TCTGCTGAGA
	44151	ACTGGGAGGG	GGGGTCAGGT	AAGACGTGTG	TCTCAGCTTG	GGGGCAGCAG
	44201	GGCTGGAGAG	CTCACCCCCG	ATCCACCCAG	CTCCCTGGTG	CATGTCTTTG
	44251	<b>GCACTGACCT</b>	TCCTGCCCCC	AGACTTCTGT	TCACTCAGGA	GACTCACTTC
	44301	TATGCCAAAT	GACCAGAGCC	CCTGCTTGGC	TTGGCAGCAT	CCCCTCCTGC
	44351	CTTCTTCCCC	ACTTCCCTTT	TCTGGGTTCT	TGCCTGTCCT	CTGTGCATGC
	44401	CCAGCTCTCC	AGGAAAGAGG	GTTTGCTTCC	GTGTGAGTCC	CATGITICTE
	44451	CACGCTGCAT	CTTCCACACA	TGAACTCTGT	CATTCTGACC	CGGCTCAGTG
•	44501	TGCCCTCCAA	GGGATGGGAT	GGCCAGCTGC	ATAGATTITC	ICAAACAGII
	44551	CTCCAGAACT	TCCTCTGGTC	TCAGCACCAT	TAACAGTCAC	CCICCCIGIA
	44601	GGTGACACAC	AAAGCCACGG	GCAAAGTGAT	GGTCATGAAA	GAGIIAATIC
	44651	GATGTGATGA	GGAGACCCAG	AAAACTTTTC	TGACTGAGGT	AAGAAGATGG
	44701	AGGGGGCCCG	GGAGGTTGGT	GTCACCATIG	GAAGAGAA	GACCITACAA
	44751	ATAATGGCTT	CAAGAGAAAA	IACAGTTIGG	AATTACTGTC	ITAAAGACIA
	44801	AGCAGAAAAG	AGCCCTAGAG	GAATATUUUA	CTCCCTCTAA	ATTACAGUGT
	44851	AATTATTTGT	TCAATGAACA	CITACTAAAA	GCAACACACAA	CACCTTATCA
•	44901	GGGATGCAGT	AACAAAAGAT	ACAGGGT ICA	CTACAACTCA	CAGGTTATGA
	44951	GGATGATGGA			GTACAACTCA	AIGHAIAAI
				100	$\circ$	•

				0010000100	TOCOTOACCA
45001	CCTCACCTGA	ACGCCCTGCT	AAGGGAGCCI	GGAGGGGAGC	CAACTTACTT
45051	CTCACACTCC	TTGGGCATTT	ACAGTTTICA	CTACCCCTA	CAAGITACTI
45101	CATCCACTAA	CTTAACTTCC	GGACACCTGT	HUUUUI HUUU I A	ITUULUILUA
45451	ACCCACTICC	CCACTCCCAC	CCCAGILLAG	CCAATGCAGT	ILLAAGGGIA
AEOO1	ACCCCTATGA	ACCCATCICC	AICIAIAIGG	IUUIUUIUI	CCCTCATCCT
45251	GATCTTAGTG	CCCTGTCAIA	TCACAAGATA	CAACACCTAA	CCAACACACT
4E201	CTAACACTTG	TCAAGCTGAT	TCCTTGGAGG	GAAGAGG IAA	GUAAGACAGI
45351	GAGAAGTTAA	CCACCAGCTT	TCCTTGGCTT	CCCCCACCCC	TOCTOTOCTO
AE AO1	TOATCCCCAC	CCTCCACCAC	CCCAATGIGG	TCAAGTTCAT	1661616616
ACACI	TACAACCATA		CCTGCTGALA	GAGTACATIG	AGGGGGGCAC
AEE 01	ACTOMACOAC	TTTCTGCGCA	GIATGG HaAla	LALALLALLL	CATAGICICC
ACCE1	ACCACCCTTC	CTCCCTTCTC	AGACACCIAI	GUTATUACTA	CCCIAGGAGC
AECO1	TTAAACCCCCA	CVCCCCCCCCC	GCTTTGCCTC	LAAAGGACCA	100 1000 100
AFCES	CACTCACCAT	A C A T A G G G A G	GCTTCACTGG	GAGACCACAT	I GACCCA I GG
45701	CCCCTCCACC	ACGAGTGGGA	CAGGGCTUAA	LAGCUILIGA	AMATOMITOC
AC761	CCATTCTCCA	CCATCCGTTC	CCCTGGCAGU	AGAAGGICAG	GITTGCCAAA
AFOD1	CCAATCCCCT	CCCCAATGGT	GAGICCCAUC	AACAAACUIG	CCAGCAGGGC
AEQE1	CACACTACCC	AGAGGTGTGA	GAATIGIGGG	CITCACTOGA	AGGIAGAGAC
AFOO1		CCAACTTGTG	1 (-(-(-(-) (-(-(-)	LAGUAGUIAI	1CA HUAGH
AFOE1	TOTOTOTOTO	ACTGAAACTG	ACCCCAGCUA	ACTGLICICA	GIILACAGCC
40001		ACAATTACAC	ATC: C.TAAAG	UDURARAGU	CACGGACAAG
ACAES	CCAAACTCCA	CACCCAAACT	GTAGCCTGAG	AlGGUUGGG	CITCUCATUA
45401		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	CATACLI ALSAL.	LAAL I ABABL	ACCIDACIDO
46161			AAAIGAGIIL	JUDADDUDAI	CIGAAGGAIC
40001	ACAATTCCAT		ADADAD TIL	しししんししんけいろ	HUMMUTUMC
ACOUS	ACCACCAAAC	ℳՐՐTՐՐՐՐ	AAAGAGAAA	AAATUATUTA	HILACCIAG
4/201		<b>ፕፐ</b> ሶሶልልርሶልፕ	ΔΙΔΑΑΙΑΑΙΑ	ALAGE I GALA	AGIACIGAGI
40001	CCCCTCTATA	TCCTACCCAC	TGGGCTGAGG	IJA I I AACA I G	CAIGIGCAIG
40401	TTTATTCCTC	ATCACAACT	TGGLLLCCAG	AIAAGUIGGA	CIGGAAAGGG
ACAE1	ACACACCTCC	∵C∧TCCTGGGC	TAATCAGICI	UNAJJUJU DE	CCIGAGACII
ACEO1	TACCCACTCC	CCTTCACATG	GGGGGTUUATU	AAAAIAGIAG	INGICIOGAA
ACEE1	CACTTTCCCC	CTACATCAAG	GICGUIGIGU	IIIAAGCIAI	GUAGICIGUA
ACC01	CTATACCACA	CAAATGTAAA	AGAGIIIII	GGIIGACIGG	CHILIGALI
ACCE1	TTTTCTTC	ттептеп	TGTTIGTTIG	1116111611	
46701	TOTOGGGGTT	. CVVILVOCCVV	GGAGGIIII	1161161161	IGITICACA
AC7E1	AACCATATTO	CTCTGTTGCC	: CAGACTGGAG	I GCAG I GGCA	CGAICAIGGC
40001	TOACTACACC	* TTCC&CCTCC	TIGGGUICAAG	CAATUUTUUT	GCCTIAGCCT
ACOET	CCCAACTACC	ϓϹϾϼϹϪϒ	GTGTGTACCA	CCACACCIAA	,
	<del></del>	. <del> </del>		「つい」はいないないと	GGIICICACI
40001	TTOTTOCCC	CCCCTCAATO	TOABACICCI	しょしょし ししみみじし	Alluciulia
47001	゛ァゥサククククク	CCAAACTCII	DALIAGE		CUMINICUM
47001	~******	TTTTAAGC	Ι ΔΙΞΑΑΑΙΞΙ.ΙΙΑ	AGAGCIGIGG	1111100000
47101	ATCACTCTCC	2 CCTCCCACAG	TGGCTCATGC	LIGIAAIUU	ACCACIIII
47151	T000A00000	NACCTCACTCC	2 ATCACIIGAG	i Gilladdadii	IGAGACCAGC
47001	CTCCCCAACT	_ CCTC&&&CC(	CTGTTTCTAC	IAAAGAAAAA	MAIGCAAAAA
47001	<b>・ エエル へへてへへへへ</b>	· CTCCTCCTC	· ACGCCIGIAG	ILLLAGLIAL	, ICAGGAGGCC
47201		L AATAGCTTG/	ACC HalalaAlala	LAGAAGIIGU	, AGIGAGCCAM
47001		\ CTCCATTCC/	1 GCC HalaG HaA	LAGAGIGAGA	I CIICAICICA
47401		\	1 (160101124)	IAGRACATIC	וטואאטטוטטטאוט
47451 47451	CGGAGGGTC	AGGGAATGG	A GCCCTGCATA	GGGGGCTAAT	GAAACATTTC
7/73.				. ~	

47501 AGATTTCTGA ATTAAGGTAG TGGCTGTGGG GACAGGAGCC TGGGAGGCAG 47551 GGTGGAGTCA GAATGGAGAG ACTGGTTGGC AATGAGGGAA CAGGAGGAGG 47601 AGGAGGAGGA GTTACGAGTG GCTTGAGGTG TCACTTACCA GACATTTGGG 47651 GGATGGGGGA TAGCCGTGAT TGTTGAGCAA CTGGTTTGGG AAGAGCTAGC 47701 ATTGATCCCT GCTGTTCTGT GCTAGCAGAA CCTATCAGCA TCTTCTGGGC 47751 AGGAAACTGG CTCCATGAGA CTGGCTTAGG GAGAGGCTGC TAGTCACCTA 47801 ATCTGCAGAG AAGGGGCAGC TGGAGCTGTG GGACAGAAGA GGCATCCATG 47851 TAGCTGGTGG GGGTGTCTCA GCTTGTGAAG AGGAGATGGC TTTGAGCAGG 47901 GCTGACACTG AAAAGGCTGG AAGAAAAAAA CAGACACACA AGAGTCTCAG 47951 GATCAGGTAG CATAGGAAAG TTGTGGACAG TCTTTGAGGA GCACTCCCTC 48001 AGGCAGGCAG GCAGGCAGGT CATGAGCTAT AGCGATTCAG GAAGAGCTCC 48051 CTGGGTGTGT GAGCAGCTCC AGGAGCCTAA GGGATGAAAG TAGTATTGCA 48101 GGGGGCTGGA GAGCAAGGAG TGGCTCCTTC TACATTTGCA AGGGAAGGAG 48151 AAAGGAAGTT GCTCCTGAGA GTGGTAAGAG TCAGTGGTGG AGGCCTGGAG 48201 AGGAGACATA ACAAACAAAT TTGTTGACAA ACATTTTGGT AGGAAGGGGG 48251 AGAGCTTAAA GTTTAGACAG TGGGGAAGGT GGAGTCTTAG AGGAGGTGAA 48301 TGTCTGAAAG ACAGAGCTAG CTGGAGCAAG AAGTCACTTC TCTGTTGCAG 48351 GCAGGAAGGA TCCAAAGTGG CTCAAGCCAG AGATTGGGAG AGTGGGGAGG 48401 AGGGAGCAGC CTGGATCTAA GTAAAATGGG TAGAGGTGGA GGGGGTGCTG 48451 CAACGGCCAG GGTTTTCTGA AGTTGGGGAC ATTAGGAGAG AGCTGTGAGG 48501 GCTTTGGCCA GCCACTGTGC TAGTGATTGG TGAACCAAAG GATGGGCAGG 48551 AGATGGCAGC AGGGAAGCAG AGGAAGTCCA GGCTTCCTGT TGGTATTGGG 48601 ACAAGGGAGA GGCCATAGGA GGCCCTGGCC CTGTTGTCCA GGTTGGGTTC 48651 TGAAGCTGGG TGGGCATGGC CTGGTAGGAG AGCATCTATG GCGCCCAATT 48701 CCAGATTCAG GGTCTAGTTG ATTTGCTGGC CCTGTAGCCT CAGCTCATGC 48751 TTCTGTTCCA GGCCTATTTG CACTCTATGT GCATCATCCA CCGGGATCTG 48801 AACTCGCACA ACTGCCTCAT CAAGTTGGTA TGTCCCACTG CTCTGGGCCT 48851 GGCCTCCAGG GTCCTATCCT TCCTGGCTTC CTTGTCACAA AGGAGGCTGA 48901 CTTGTCCCCT CTGGCTAGAG GGCAGAGGTG TTGCCTAGGA GCTCCTATCT 48951 TTCCCTTCCT GCTTCTTCCA ATGCCCTTCT CTGTCCTCTG GGAGCTCCGA 49001 GACACACACA GACATAATTT CACCTTCTCT CATTAGCAAC CTTTGAAATA 49051 ATTTGATTAG AAGGGACTTC AGAAGTTTGT TGACTATATG TAGAAAACCC 49101 TGTCATTTTA CCTGCTTTTG CCCCATAGTA GTCTTGTAAA ACAGTTCATT 49151 GCTGACCCCA TTTTACAGTG GTGGCACCTG AAGCCTCAGC CTGAGGCCAC 49201 CGAGCTAGTA AATTTACAGG GACCAGTTTG AGACCAGCAT TCCTCCCACT 49251 GCCCCTCAGC TGTGGTGGTT ACAATGTTGT TTGTCTTACT GACTTGCTAT 49301 CTGGCTTCCT GGGTGTCTAC CGGCTGGCCC TGGCTCTGCC CTCTAGACCC 49351 ACACCACGCA ATCTTCATTC CTTTCCCACA TGACTGCCCT GTAGCTATTC 49401 AAAGAGCTTG TCTCCCCCAA GTCTCCCCAT CTACTGCCTC CACCTTGCCT 49451 TTTTCTGTCT TATCCTGGTT CTAGCCACTG CCTGAAATCA TTTTAGGAAT . 49501 AAGACAGGAC AGGGAAAAAC AAAAGCAACC CCCTGTCCCA CCTCTGAGTT 49551 CCACTCTCCA AGTCCCTGAG CCTCACCTCC AGGGCTCCAG TGGCTCTGCC 49601 ATGAACCCAC TGTGGGCTGG GAGTCTGCTG TGCACAGATA CCAGACCCTC 49701 TTTTTAGATG GAGTCTCATT CTGTTTCCCA GGCTGGAGTG CAGTGGTGCA 49751 ATCTTGGCTT ACTGCAGCCT CTACCTCCCG GGTTCTAGTG ATTGTTCTGC 49801 TTCAGCCTCC CAGTAGCTAG GACTACAGGC GTGTGCCACC ACGCCCAGCT 49851 AATTITTITT TITTTTTTT TGTATTTTA GTAGAGACAG GGTTTTGCCA 49901 TGTTGGCCAG GCTGGTCTTG AACTCCTGAC CTCAGGTGAT TCACCCGCCT 49951 TGGCCTCCCA AAGTTCTGGG ATTACAGGTG GAAGCCACCG TGCCTGGCCT

50001	GAGTGTGTCT	ATTTGATAGA	GCTTTCTGCT	CTGATTCTCC	CTTGCTATAC
50051	ACCTITICTC	CCCTTCTCAG	TGGCTTCTCT	TGCCTATGCT	TCCTCCCCAG
50101	CCCCACCTTT	GAGAACATCC	CCATGAAGTC	CTGACCTGTC	TTTTATCCTA
50151	CCAGGACAAG	ACTGTGGTGG	TGGCAGACTT	TGGGCTGTCA	CGGCTCATAG
50201	TGGAAGAGAG	GAAAAGGGCC	CCCATGGAGA	AGGCCACCAC	CAAGAAACGC
50251	ACCTTGCGCA	AGAACGACCG	CAAGAAGCGC	IACACGG I GG	IGGGAAACCC
50301	<b>CTACTGGATG</b>	GCCCCTGAGA	TGCTGAACGG	TGAGTCCTGA	AGCCCTGGAG
50351	GGGACACCCG	CAGAGGGAGG	ACAGATGCTG	CCCTTGCATC	AGAGCCCTGG
50401	GAATTCCAGG	GGAGGCCTGT	GAAGCGTAGG	ACCGGATACC	CAGAGCTGAG
50451	GATATTTTTC	CCTTGCCAGG	TGGGGCCTCA	CGATTIAGCT	CCTGAGCTCA
50501	GGGGGCTGGG	AACTGATCAG	TGTCCCATCA	TGGGGGATAA	GGIGAGIICI
50551	GACTGTGGCA	TTTGTGCCTC	AGGGATCGCT	AAGAGCTCAG	GCIAIIGICC
50601	CAGCTTTAGC	CTTCTCTCTC	CATGGTGAGA	ACTGAAGTGT	GGIGCCCICI
50651	GGTGGATAAT	GCTCAAACCA	ACCAGAGATG	CTGGTTGGGA	TICTIGAAAT
50701	CAGGGTTGTG	AGGCCTCAGA	AATGGTCTGA	ATACAATCCA	IIIIGGAGIC
50751	TGAGGCCCAG	AGAAGTTCAG	TGAATTGCCT	AGGAGCATAC	AGCIGCCIAA
50801	TGGCAGAGGC	TAGATGAACC	CTAGTCIGGI	CONTINUE	1 1 I AACG 1 GC
50851	AGTTTCATCC	TAGGCAGTGT	TATGITATAA	GGGCTCTCCA	AGGLAGIICA
50901	CCTACGGCTG	AGGAAGGACT	ATTITICAGGI	GGIGICIGCG	CAGGACAGCC
50951	TGTGGGGTGT	CCCTACAGAA	CCIGIICIAG	CCCTAGITCT	CTAAACTTAA
51001	TTAGATTGAC	CCTAGACCCA	GTGCAGAGCA	GGTAAGGGAT	GIAAACIIAA
51051	CAGTGTGCTC	TCCTGTGTTC	CCCAAGGAAA	GAGCIAIGAI	TOCCACCAAC
51101	ATATCTTCTC	CTTTGGGATC	GHCICIGIG	AGGIGAGUIC	TOCCAACTOC
51151	GCCATGCCCG	AGGCAGCAGG	CCTAGCAGCI	CIGCUITCCC	CATCCCTCTA
51201	GGCATCTCCT	CCTAGGGATG	ACTAGCTIGA	CTAAAATCAA	CAIGGGIGIA
51251	GGGTTTTATG	GTTTATAACG	CATCIGCACA	TETTTOTAL	TACATCCACC
51301	CATTGGTCTT	AAGAGAAGGA	CIGGCAGGGI	COCACAATCT	CCCCTCACTC
51351	CTCACTTCGT	TGCCCAGGCT	GGAGTGCAGT	TOCTOCOTO	CCCTCCCAAC
51401	CAACCTCTGC	CTTCTGGGTT	CAAGIGATIC	CCCCCCTAAT	TTTTCTATTT
51451	TAGCTGGGAC	TACCGGCACA	CACCACCATG	CACCCTCCTC	TTCAACTCCC
51501	TTAGTAGAGA	CAGGGTTTCA	CCAIGIIGGC	TAAAACTCCT	CCAATTAATA
51551	GACCTCAGGT	GATCCGCCTG	CCTCAGCUTC	TAAAAGIGCI	TTTTTACTTC
51601	GGCGTGAGCT	ACCTCGCCCG	GCCAGGIIII	CTTCCACATC	CTCCATAACC
51651	AGGAAACTGA	GGCTTGGAAG	AGGGCAGTGG	CITICACATG	CTCTTCATCT
51701	GGCAGATGAG	ACTCAGAATT	CCAGAAGGAA	ACCCCTTCTC	ACTICCCITC
51751	GGCTGTCTAG	CTAGCTCTTG	GGCCAAATGT	AGCCCTCTCCC	ACCTACCACC
51801	AAGTAGAAGT	AGCCACTCTA	GGAAGIGICA	CTACCTTTAC	CACTTTACTC
51851	TGGACAGAGT	GAGGAATCTT	GGAAAGATIC	CIACCITIAG	CAAACCCTTC
51901	AGGTGACAGC	ATATCTCAGC	GACTCAAACA	CACACACATT	CACAACCCAT
51951	TGTAATTCCT	ACAAAGTTGT	GAGGGG I AGA	CUAUAUUAUA	TTTCACATCC
52001	GGTTAGGATA	ATGAAGGAAT	GITTIGHT	1G	TOTTOCCTCA
52051	AGTTTCACTC	TGTCACCCAG	GCTGGAGTGC	AGAGGIGCAA	TCACCCTCCC
52101	CTGCAGCCTC	CGCCTCCCAG	GTICAAGCAA	1001001GCC	A A TOTAL COLO
52151	AAGTAGCTGG	GACTACAGGT	GTGCGCCACC	ACGCCTGGCT	AAIIIIIGIA
E2201	TITTCACTAG	AGACAGGGTT	TCGCCATATT	GGCCAGGCTG	GICICAAAIG
52251	CCTGACCTCA	GGTGATACAC	CCGCTTCAGC	CICCCAAAGI	GUIGAGATTA
E2201	CACCCATGAG	CTACCGTGCC	TGGCCATGAA	GGAAGATIIG	IIIIAAAAAAA
E22E1	TICTITICT	ΤΛΛΤΤΛΤΤΛΛΤ	TGAACACCTC	TGTTCAGAGC	ACTGGGCTGG
E2//01	TECCAGAGGG	TTTCAGACAT	GAATCAGATC	CAGCACCTCA	IAGAGCCIIA
52451	ATCTGGCACA	CACACACAGC	CACAAGGAGA	CACAGACAAG	GCAGGGTAGG
		_	-100		

			<u>.</u> .		
52501	ATGAGTGGAA	<b>GCTAGGAGCA</b>	GATGCTGATT	TGGAACACTT	<b>GGCTTCTGCA</b>
52551	GTGAAGCCCC	TTCTTAGTCC	<b>TCTTCAGTAA</b>	CCCAGCTCTC	AGTGGATACA
52601	GGTCTGGATT	AGTAAGATTT	GGAGAGATGA	TTGGGGATTG	GGGAGAGCTC
52651	TCTAACCTAT	TITACCACCT	CCTCTTCTGC	CATTCTTCCT	GTCCACATCC
52701	CCAGCATCCC	TTTCCCTTGC	CAAGTATCTG	TGGCCTCTGT	AGTCCTTTGT
52751	AAACAGCTGT	CTTCTTACCC	TACAGATCAT	TGGGCAGGTG	TATGCAGATC
52801	CTGACTGCCT	TCCCCGAACA	CTGGACTTTG	<b>GCCTCAACGT</b>	GAAGCTTTTC
52851	TGGGAGAAGT	TTGTTCCCAC	<b>AGATTGTCCC</b>	CCGGCCTTCT	TCCCGCTGGC
52901	CGCCATCTGC	TGCAGACTGG	<b>AGCCTGAGAG</b>	CAGGTTGGTA	TCCTGCCTTT
	TTCTCCCAGC				
53001	CCTGAGCCCT	CTGCAAGCAC	AGGGGTGAGA	GAAGCCTTGA	<b>GGTCAAGAAT</b>
53051	GTGGCTGTCA	ACCCCTGAGC	CATCTGACAA	CACATATGTA	CAGGTTGGAG
53101	AAGAGAGAGA	TAAAGACATA	<b>GCAGCAAGTA</b>	<b>ATCTGGATAG</b>	GACACAGAAA
53151	CACAGCCATT	AAAAGAAAGT	TTAAAAGAAG	<b>GAAATTCACC</b>	CAAACCATTT
53201	GAATACAGTA	AGTGTATTCA	TCTTTCGATA	TTCCCCTGTC	CATATCTACA
53251	CATATACTTT	TTTTTATAGT	AAATAGTTCT	<b>GTATTTTGCC</b>	CTGCATTTCC
53301	CTTGTGTTTA	CTATCCAGTC	TTCCTGTTTA	TCATTTTTGT	CGACAACATG
53351	AAATTCTATT	GAGAGACTGT	<b>CTGAACATAT</b>	<b>TGTAATGTAG</b>	ATGTTCAGGT
53401	TTTTCCAGTT	TCTCTTTACA	ATAGGTATTT	<b>AACTACAGTG</b>	AGCAGTTTTA
53451	TGCATTTAGC	TAATTTCTCC	TTTGAGGAAG	TATTTTCAAA	ATTACCTTTA
53501	TTCTTCTCAG	GTAATAATTT	CATTATTACC	<b>AAAGTTACCC</b>	TAGGTCTTTT
53551	CAAGTGTGTG	GTTAAAAAAC	GAGAATCTGG	CTGGGCGCGA	TGGCTCACAC
53601	CTGTAATCCC	AGCACTITGG	GAGGCTGAGG	CTGGTGGATC	ACCTGAGGTC
53651	TGGAGTTCGA	GACCAGCCTG	GCCAACATGG	<b>TGAAACCCCA</b>	TCTCTACTAA
53701	AAATACAAAA	CTTAGCCAGG	CATGGTGGCA	<b>GGTGCCTGTA</b>	ACCCCAGCTA
53751	CTTGGGAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGGG	CGGAGGTTGC
53801	AGTGAGCCGA	TATCACGCCA	TTGCACTCCA	<b>GCCTCGGCAA</b>	CAAGAGTGAA
53851	ACTCTGTCTC	AAAAATGGGG	ПСППТССТ	<b>GCCATCAAAA</b>	ATCATGTTTC
53901	TTTTAAAAAC	AAGTTCAAAC	ATTACCAAAG	TTTATAGCAC	AGGAAATACG
53951	TCTTCTGTAA	TCTCCCTTAA	CCAATATATC	CCTCAACATT	CTCCTCACCC
54001	CCAACTCCAC	CCTCCCAGGA	TAACCAGTTG	<b>GGACATAATC</b>	TITATITAAA
54051	AATGGTTTCC	GGATAGAGAA	AGCGCTTCGG	CGGCGGCAGC	CCCGGCGGCG
54101	GCCGCAGGGG	ACAAAGGGCG	GGCGGATCGG	CGGGGAGGG	GCGGGGCGCG
54151	ACCAGGCCAG	GCCCGGGGGC	TCCGCATGCT	GCAGCTGCCT	CTCGGGCGCC
54201	CCCGCCGCCG	CCCTCGCCGC	GGAGCCGGCG	AGCTAACCTG	AGCCAGCCGG
54251	CGGGCGTCAC	GGAGGCGGCG	GCACAAGGAG	GGGCCCCACG	CGCGCACGTG
54201	GCCCCGGAGG	CCCCCGTGGC	GGACAGCGGC	ACCGCGGGGG	GCGCGGCGTT
54351	GGCGGCCCCG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCAGGCCAGG	CAGTGGCGGC	CAAGGACCAC
5///11	GCATCTACTT	TCAGAGCCCC	CCCCGGGGCC	GCAGGAGAGG	GCCCGGGCTG
54451	GGCGGATGAT	CACCCCCCAC	TGAGGCGCCA	AGGGAAGGTC	ACCATCAAGT
5/5/1	ATGACCCCAA	GGAGCTACGG	AAGCACCTCA	ACCTAGAGGA	GTGGATCCTG
E4561	GAGCAGCTCA	CCCCCCTCTA	CGACTGCCAG	GAAGAGGAGA	TCTCAGAACT
54551	AGAGATTGAC	CTCCATCACC	TCCTGGACAT	GGAGAGTGAC	GATGCCTGGG
54601 E46E1	CTTCCAGGGT	CAACCACCTC	CTECTTEACT	CTTACAAACC	CACAGAGGCC
54701	TTCATCTCTG	CAMBGAGCIG	CAACATCCCC	CCCATCCACA	ACCTGAGCAC
34/U1 E/7E1	ACCCCAGAAG	AACTCACCCT	CAMOUNTOCOO	CCCATOCACA	GGCTCCCATA
1C/4C	GGACAATCGC	TACCCCCCCA	CCTCCTACCA	ACAGCAATAC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
10001	TGCGGCCAGG	CCTCCTTCCA	TENERACION	TOTOCTOC	COUCCOC
10001	GGGTCTCTTC	CCCTCCCCC	TCACTTTTCC	ACTITICAT	TTTTTATTC
54901	TTATTAAACT	CATCCCACTT	TCTCTTTTTA	TATTCACTCT	GCGCCACGG
24321	HAHIAAACI	UA I UUUAL I I	Ididillin	TAT TUNCTUT	acuachcada

					TC4444444
55001	CCCTTTAATA	AAGCGAGGTA	GGGTACGCCT	I I GG I GCAGC	TTTTCTCCTC
55051	TAAAAAAAA	GATTTCCAGC	GGTCCACATT	AGAGTTGAAA	ACTOCTTOAC
55101	GGAGAATCTA	TACCTTGTTC	CTITATAGGC	CAAGGACCGC	AGICCIICAG
55151	TAACACCAGT	GTAAAAGCTT	GAGGAGAAAI	IGIGAAGCIA	LACAGIAIII
CCOM1	CTTTTCTAAT	ACCTCTTGTC.	ATTCHAAATA	JUHTAATTI	Aliawwa
<b>EE9E1</b>		AGTATIGAAL	GULTALIBIE	IGCIAGGIAC	AGIICIAAAC
CE201	ACTTCCCTTA	$\Delta \Delta C \cap \Delta C \cap \Delta \Delta$	CAAAATAAAG	GIGULIAUUU	ICATAGAACA
FFOFT	TACATTCTAC	CATCCTATCT	ACTGTATCAL	ACAGTAGATA	LAATAAGTAA
FF401	ACTATATTCA	ΑΤΛΤΤΛΩΔΔΤ	GTGGCAGAIG	CIAIGGAAAA	ADADICAADA
CC 4C1	CAACTAAACA	CCATTCTTCA	GGG LACCAGE	H5CAATIIIA	AAIAIGGICG
CCC01	TOACACCACC	CCTCACTGAG	GTGACA LGAC	AIIIAAGCAI	AVACA I GGAG
CCCC1	CACCACCACT	AACCCTGAGC	TGTCTTAGGC	1 I CCGGGGCA	GULAAGUUAT
FFC01	TTCCCTCCCA	CTACCACCCT	GGTGTTTCCG	ATTICCACCTT	IGATAACTGC
CCCC1	ATTTTCTCTA	ACATATGGGA	GGGAAGTILL	ILILLIALIG	IIIIIAAGIA
CE701	TTAACTCCAG	CTAGTCCAGC	CTTGLIATAG	IGITACCIAA	ICHTATAGC
CC7E1	AAATATATCA	CCTACCCCTA	ACATTA IGCC	CATTICICAL	AGAGGCACTA
55001	CTACCTCAAC	CACTTTCCCT	GACGITATAC	AALLAGGAAG	1 AGC 1 GAGCC
CCAC1	TACATCCCTT	- $        -$	CATGGCCCTG	LILAIGIILL	ALLIGUETU
55001	AATTTACCTC	тттссттст	AGACCAGCAT	ILILUAAAII	GGAGGACICC
EEOE1	- TTTC/CCCCC	TOTOCOTGTA	CCTGGGGGAG	CIGGGCAICC	
ECOO1	ACACCTCCAC	CACTTGGACC	ACACTGTGAG	CATGCAGTAC	GGCC I GACCC
ECOE1	CCCACTCACC	TCCCTACCCC	TGGCCCAGCC	CCCIGCAGGG	GGGIGIICIA
56101	CACCCACCAT	TGCCCCTCTG	TGCCCCALIC	CIGCIGIGAG	しれいいしいしい
CC1E1	CCCCCTTCCT	CTGGATTGGC	GGAATGTTIA	GAAGCAGAAC	AAGCCATICC
ECON1	TATTACCTCC	₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼	AGTGGGCGCA	GCACCAGGGA	MAIGIAICIC
ECOET	CACACCTTCT	CCCCCCTAGI	TAUGULIGI	- AAA IUUAA IA	CHUCCHUM
			- recentercen	1 ロット・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー	AGGAAICIGI
E 62 E 1	ΤΛΓΤΓΕΔΔΤΓ	CACCCAGGA	. (.   L.L.   L.G.CA	GIGGALIGIG	GUNGUCICII
CC401		_ ∧TC∆CCCTC∆	CCTGGACCIG	CHGGGCAGGA	ILLLCAGGGIG
ECAE1	A A C C T C C C T C	: TGAACTCTGA	AGICACIAGI	CCAGCIGGGI	GCAGGAGGAC
FCF01	TTCAACTCTC	TCCACCAAAG	: ΔΔΔGΔCIGAL	GGC LCAAAGG	GIGIGAAAAA
CCCC1	CTCACTGATG	CTCCCCCTTT	CTACTCCAGA	1661616611	CCIGGAGCAA
FCC01		CTACCTTTT	: AAGAGICCC.I	IAAIAIGIGG	JUDAHUHUUU
ECCE1	$-c$ $\lambda$ $C$ $\lambda$ $C$ $\lambda$ $C$ $\lambda$ $C$ $\lambda$ $C$	· AGAAAGGGCI	[44.1]	IACCIGCICA	CIUUCICIAU
F C 7 0 1	~~**********	2 CACCACATCA	ATTATIANADO	AAGCC ICCAC	CICAIGITTI
r/751	CAAACTTAAT	r ACTGGAGACT	GGCTGAGAAU	IIAUGGAUAA	CAICCITICI
FCOAT		\	ΑΑ-ΠΑΙΑΙΑΙΑΑ	しっというし しいいしん	GACTAGAAAAG
PCOE1	. ACCCCCTCCC	, LLLLAUCY V (* 1	CICAGAILTI	13011101111	ACIUMIACIO
F C O O 1		` ^TT&CT^&C <i>!</i>	TOTTLAAAAC	AIIIIGUUIA	AAGCICGAIG
FCOCI		N CACACTETES	CITICALAL	こしんしょうしんしょしん	DODDADDADI
	CACTOCOLO	r ሶፕሶለርሶለለፕ <i>(</i>	· TC   1446   16   1	talal III.A IUU	
F70F		\ ACATECCTE	:	. みいし けいいいしし	IDDAMONOUI
F7101	. CCTCCCACA(	ን ቸርቸርለለለርርገ	GAGA UGU UGA	JUA I ADADADAN	ICCCIONGCI
F71F	. ^^^^^ XTCT(	· ACTTCTACC	T CCCATGLILL	i I.II.II.UUAAU	ILATIAGETE
E700		\	2 CCACA HEHE	. Alstal At I GOM	MANUL I LUNI
E70F	. ATTOCCTCC/	, <i>გ</i> იგილიდეგ	2 120001101100	LILALAALIAG	AIIIGUUIU
E724'	* TOTARCTOT	~	: CALLATATT	AA IAAA I IUU	i ummidudiii
	. ACCOUNTATES.	8 TOO 8 STOTE		l HalaAlaCAUU	ואטוואאטטטו
F740	1 888008080	r cerrectel	Ι ΔΔΙΔΙΙΔΙί	IAICIAIIG	I GIGGINIGIG
574U	1 AAATATTCT	A CATAGACCT	ATGAGTTGTG	GGACCAGATG	TCATCTCTGG
5/45	T WWW IN 1011	. 0,1,1,10,1001			

```
57501 TCAGAGTTTA CTTGCTATAT AGACTGTACT TATGTGTGAA GTTTGCAAGC
 57551 TTGCTTTAGG GCTGAGCCCT GGACTCCCAG CAGCAGCACA GTTCAGCATT
57601 GTGTGGCTGG TTGTTTCCTG GCTGTCCCCA GCAAGTGTAG GAGTGGTGGG
57651 CCTGAACTGG GCCATTGATC AGACTAAATA AATTAAGCAG TTAACATAAC
57701 TGGCAATATG GAGAGTGAAA ACATGATTGG CTCAGGGACA TAAATGTAGA
57751 GGGTCTGCTA GCCACCTTCT GGCCTAGCCC ACACAAACTC CCCATAGCAG
57801 AGAGTTTTCA TGCACCCAAG TCTAAAACCC TCAAGCAGAC ACCCATCTGC
57851 TCTAGAGAAT ATGTACATCC CACCTGAGGC AGCCCCTTCC TTGCAGCAGG
57901 TGTGACTGAC TATGACCTTT TCCTGGCCTG GCTCTCACAT GCCAGCTGAG
57951 TCATTCCTTA GGAGCCCTAC CCTTTCATCC TCTCTATATG AATACTTCCA
58001 TAGCCTGGGT ATCCTGGCTT GCTTTCCTCA GTGCTGGGTG CCACCTTTGC
58051 AATGGGAAGA AATGAATGCA AGTCACCCCA CCCCTTGTGT TTCCTTACAA
58101 GTGCTTGAGA GGAGAAGACC AGTTTCTTCT TGCTTCTGCA TGTGGGGGAT
58151 GTCGTAGAAG AGTGACCATT GGGAAGGACA ATGCTATCTG GTTAGTGGGG
58201 CCTTGGGCAC AATATAAATC TGTAAACCCA AAGGTGTTTT CTCCCAGGCA
58251 CTCTCAAAGC TTGAAGAATC CAACTTAAGG ACAGAATATG GTTCCCGAAA
58301 AAAACTGATG ATCTGGAGTA CGCATTGCTG GCAGAACCAC AGAGCAATGG
58351 CTGGGCATGG GCAGAGGTCA TCTGGGTGTT CCTGAGGCTG ATAACCTGTG
58401 GCTGAAATCC CTTGCTAAAA GTCCAGGAGA CACTCCTGTT GGTATCTTTT
58451 CTTCTGGAGT CATAGTAGTC ACCTTGCAGG GAACTTCCTC AGCCCAGGGC
58501 TGCTGCAGGC AGCCCAGTGA CCCTTCCTCC TCTGCAGTTA TTCCCCCTTT
58551 GGCTGCTGCA GCACCACCCC CGTCACCCAC CACCCAACCC CTGCCGCACT
58601 CCAGCCTTTA ACAAGGGCTG TCTAGATATT CATTITAACT ACCTCCACCT
58651 TGGAAACAAT TGCTGAAGGG GAGAGGATTT GCAATGACCA ACCACCTTGT
58701 TGGGACGCCT GCACACCTGT CTTTCCTGCT TCAACCTGAA AGATTCCTGA
58751 TGATGATAAT CTGGACACAG AAGCCGGGCA CGGTGGCTCT AGCCTGTAAT
58801 CTCAGCACTT TGGGAGGCCT CAGCAGGTGG ATCACCTGAG ATCAAGAGTT
58851 TGAGAACAGC CTGACCAACA TGGTGAAACC CCGTCTCTAC TAAAAATACA
58901 AAAATTAGCC AGGTGTGGTG GCACATACCT GTAATCCCAG CTACTCTGGA
58951 GGCTGAGGCA GGAGAATCGC TTGAACCCAC AAGGCAGAGG TTGCAGTGAG
59001 GCGAGATCAT GCCATTGCAC TCCAGCCTGT GCAACAAGAG CCAAACTCCA
59051 TCTCAAAAAA AAAAA (SEQ ID NO:3)
```

## **FEATURES:**

Start: 3000

Exon: 3000-3044 Intron: 3045-45393 45394-45525 Exon: Intron: 45526-45761 Exon: 45762-45818 Intron: 45819-50154 50155-50329 Exon: Intron: 50330-51076 51077-51132 Exon: Intron: 51133-52775 52776-52933 Exon: Intron: 52934-55922

Stop: 56065

Exon: 55923-56064

CHROMOSOME MAP POSITION: Chromosome 22

ALI FI	TC	<b>VARIANTS</b>	(SNPs):
ALLLL	.10	ALMITIALIO	(0111 07 1

DNA	VI(IVIII) (2	III 37.	
Position_	Major	Minor	Domain
941	A	T	Beyond ORF(5')
2612	G	A	Beyond ORF(5')
5080	·Ğ	Ä	Intron
6599	. •	Ä C	Intron
6983	С	G	Intron
9885	Ă	-	Intron
12538	G		Intron
17707	Ť	ċ	Intron
18219	•	Ä	Intron
19670	, <b>C</b> =	Ť	Intron
21153	Ğ	Ť	Intron
24566	Č	•	Intron
26604	Ğ	A	Intron
27255	Č	G	Intron
27399	Ť	Č	Intron
28088	Ġ	Ă	Intron
28734	G	Ä	Intron
29246	•	Ť	Intron
29490 29490	G	À	Intron
29490 29934	T	Ĉ	Intron
34480	Å	G	Intron
38812	Ť	Č	Intron
40731	Ċ	G	Intron
	T	A	Intron
41303	1	Â	Intron
41305	Ċ	C	Intron
41457	G A	- T	Intron
43168	Ť	G	Intron
43357	•	C	Intron
45664	T	Č	Intron
47549	A	A	Intron
47908	C	A	Intron
52267	C	C.	Intron
54654	Ţ	. C .	Intron
54679	C	G	
54693	Ā	C	Intron
54706	Ī		Intron
54712	Ţ	C	Intron
54799	Ţ	C	Intron
54819	G	<u>A</u>	Intron
55499	<b>C</b> 500	T	Intron
56825	- 'C :	A	Beyond ORF(3')
58871	T	Α	Beyond ORF(3')

Context:

FIG.3-25

DNA Position 941

6599

GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTTGGGTTAAAAAGTAAAAACAAGAAAC
AAGGTGTGGCTCTAAAATAATGAGATGTGCTGGGGGTGGGGCATGGCAGCTCATAAACTG
ACCCTGAAAGCTCTTACATGTAAGAGTTCCAAAAATATTTCCAAAACTTGGAAGATTCAT
TTGGATGTTTGTGTTCATTAAAATCTCTCACTAATTCATTGTCTTGTCCACTGTCCGTAA
CCCAACCTGGGATTGGTTTGAGTGAGTCTCTCAGACTTTCTGCCTTGGAGTTTTGTGAGAG
[A,T]

TGAGTTGGAACAGTTTGATACCAAAACCATCCCCCGCCCCCCAACCCCCAGCCTAGGGT
CCGTGGAAAAATTGGCCCCTGGTGCCAAAAAGGTTGAGGACTGCTGATCTAGAGGACCAA
TTTATTCAATGTTGGTTGAGTAAATGAGCTCTTGGATTAGGTGATGAAAAATCTGAAAA
AACAGGGCTTTTGAGGAATAGGAAAAGGCAGTAACATGTTTAACCCAGAGAGAAGTTTCT
GGCTGTTGGCTGGGAATAGTCATAGGAAAGGCTGACACTGAAAAGAAGGAGAGTTTGTTC
[G, A]

TTTCTTCTCAGAGCTATAAGCAAAGGCTGAAAGTTCTAGAAAAAGGCAAGTTTTGTT
TCAGTAGAAAAAAGGATAATCAGAACCATTTTTAGAAAAATGGAATGAGACTACTTTTGAG
GCCATGAGTTCCTTGTCCCTGGAGAGATGAGCAGAGGTTGGACAAGTGCTTACCAGAGAT
CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCCTAACCCTTTCAAATGAGAT
GCTGTTAACTCAGTCTTATTCTACATGGTAGGAATCCTGTCCCTTTGCCTCCTGCTACTT

ACAACGTAAAATAGTTGAAATTTGTTGGTGGAAAGAAGACAGTCCACTCCAGAGGCTGG
ATGGGCATGCCTGGCCCCCAAGGTCTGAAGTGGTAGGGCTGTGCCTATATCCTGAGAATG
AGATAGACTAGGCAGGCACCTTGTGCTGTAGATTCCAGCTCCTGCACATAGCTCTTGTTG
TAAAACATCCCTGTGCTTATACCAAGTAATTGAGTTGACCTTTAAACACTTGCCTCTCC
CTGGGAACCATATAGGGGATTGGCCTGGAGACGTCTGGCCTCTGGAAGAGTTGGAAAGCA
[G,A]
CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGGA
TCTTATTGCCTTGGTTCTTGCCCCTTTTACTCCCAGGGAAGTTGATTCTGTCTTTTCTGT
TCCATTTAGTATGACAGGAGCAGAGAATGTCAGAGCTGTAAGGGACCTTATAGTTAAAGC
CTTTGGCTGGTCCTTTCATTTTATAGCTGGGACTAATAAGTAACGTCAAAACCCAATGAG

TTCACAGATTGGGTCTCGCCTTGGCATGTAACCCATATGTTCATATTCTTGCTGTTTTCC

CAGCTGTGCTGAAGGAGCACATCTCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACT

FIG.3-26

CACATTCATTGGTGATCTGATGTGGAGCCCCAGGGATTAAGGGCAACTTTGAACTACCCT 6983 GACACAATCAAGCCAAATATCATTCCCGTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC TAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC TCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACTGGATGTCACGGCGCCCTCAGATA GAGCCTGGTAATTTGCCCTGGGGAGAGTGACTGTCTTTTGGATCTAATTTGACTTTTGCC

[C.G]

CAGTTGGAGGAAAATCTTCAGGGCTAGGAAGGATTGTATTTGTCTGACCCCAGAGATAAC CTGGGTTTTGAGGAACATGGGCCATCAACCTGAATGGTCTTGTAAGATCTCTCCCACGCC AGCTTGCCAGTGTTTCTCTGATGAATTTAGAGTACCTGAGTAGTGCAGGCCTGCTGGGAG GAGGACTCTCCCTCTGTGCTACTCAGAGAAATTCATTCTTCAAGGCCCCCTTCCAGCCTT GCTCTTACCCAGCTGGGCTACAGTTACAATAAAGGAAATGACTTTTCTTCTCCCCTTCCC

9885

U.S. Patent

GGCGTGCCACCACCTTGCCATTTTTTTTTATTTTAAGTAGAAACAAGGTCTTATTAAT ACTATGTTGCCCAGGCTGGTCTTGAACTCCAGCGATCCTCCTGCCCCAGCCTCCCAAAGT GCTTGGGATTACGGAAGTAAGCCACTGTGCCTGGCCAGTGCAACCCCCATTTTATACTAA AACAGGAAGGCCCAGAAAGGTTTGGAGTAACTTGTCCAGGGTCACACAGATGATATTTGA ACTCAGGTCTCCCTGGCTCCCAAGAGAGTCTGCTTTCCACTAGGACTCCCAGGAGAAAAA

[A,-] AAAAAAAAAACAGTAGACTTGGAGACAGAAAATCTGATTTGAGTCTTAGTTGAGCTAGG CTAACTGTGTAACTGTGGGCAAGTTCCTTAGCCCCTGTGAGCCTCAGTTTCTTATCTGTA AAATGTCATAAAAGAAATCCATCTCATGGAGTAGTTGTGATGATCAAGGACTCTGAAAAC ATTAGAATGGTTTAATGTGAAGGATTAGCAGCAGCACATGGCAACATTGTGCATCTTATA TTAACTATCCAAATATATCAAGCGTCATTTGCTATATAAAAGTCATCAAATTAGGCAC

12538

ACTTGGGAGGCTGAGGCAGAGAATCACTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCC AAAAAAAAAAAATTCCTTAATTTGGCCTACAGTAGAGCCCTCCGTAATGTGGCCTCTCT CCACATCTCCACAACCTCCTGCTCCCTGCACTTCAGCCTCACCTCTCTTCTGGACAGGCC CTCCTTCTGACAAGGGCTTTGTTCATTCTGCTCCCTCTGCCTAGAATGCCCCCTTACTCT

TTCACTTAACTCCTGCTTATCGTTTAGATCTTTACCTGGATGGCTCAGAGAAATATAGAA GTAATTCCTCACCCTGAAAAATAGGTTAGGTCCCTGTTTTATGTTTTCATAGACCTTTCC TTTGAGGCTTTTTTTAAAAAAGTAGTTTTAATCTCACATTTATTCATGTGATCATCTCCT TAATGATATCTTAAGACCTCTAATAGAACAATTTGGTCATGGACTGTGGGGTTTTTGCCC 

17707

GTAGTGGGTGCTCAGAGTGTTTGCTGGGTGAATGATGTATTTGTTGAACGACTCTTTGGA CACTTGAATAAAGTCCATCCAGTATGCACCATTACCATCTCTTCGCTCTACAATATTCTT TTAGGCAAGAGCTTATCTTTTGAGGTGATAAGATAAGCTCAAACTTATGTAGACTAAGAC CTCAGTCTGTAAATGTCATCCCTAAGTCTTAAACCATCAAAACCAGGGCCTCAAGGAATG **GCATGCCTTCTGCAACTGTAGCAACCTGCTGTGCTTATTTTGCCGTGTTTTTCATTTTTC** [T.C]

CCCAAAAGCTAGAGTCCCTTCTCCCATGGGCAGTGCTGGAAGTGTGCTAACAAATTCTTT CTCCATACTGCTTACGATTACAAAAAAAACCCTCAGCATCTCATGCCAGACTTGAGTTAA GGTTGTTTTCTTTTGTGTGTCAGCTGTATTCTGGTCATGACTTCCTGATGATGCCCTATA GAGATTTTGCTGAGATCAGAGGGTGCTCCACTGCCATCAGTAGCACTGACTCTTGCAGAA 

FIG. 3-27

18219

19670

GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTTATAATGC
ATCTTCAGTTTACAGAGGGCTTTTGTACTCATCATCTAGTTTAGTTCCTGCAACAACCTC
TTGAGGAATATAGCACAAGCAGGACAAGGGAAGCCCAGAGATGTTAAATAATTTATCCAA
GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAGTTTTCTGAGCTCAAATC
CCATGCCCTTTCCTCAATGTGAGCTCTAGCAAGGTATTCAGGAATCCTGCCTCTACAGTT

AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTTGTATCTGATTTTTCTAGATTTCCTGCC CACATTCTTACTGTCTGGATATCAGGAAAGAGTTTATCAAATGCCTGTGGAAATCCAAGA TAAGGTCTCATGATGAGTAACCCAGTGAAAACATGAAGTCAAGTCTAACTAGTCACTACT ATTTCACTACTGCTGACTCCTGATGATCAGCTCCTTTTCTAAGTGCTTACTGTCCACTTA TTCCATCATCTGCCTAGAATTTATGTGAAGGAATCAAAGGCAAAAGGATCATAAGGCTTCC

21153

GGACCCTTGTTTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAGAGGGG AGGAGTGGGGCACGAAAGATGGTTAGTAGATGGGGGTGGTAATGCTTACCTTTCAGTATT TGGAGGCTTCGGAGTCCTCAAAAATTCTCTTCCTTGATTGGAGTCCTCCCAGCCAATAGA GGGCTTCACACAAACAGTTTCTTGGGTTTTGAATTGTTTGACCAGAGCTTTCTTCCGACA AAAGGTTGGGGTGATTCATTCACTTACCACACCCTTGCCTGAACATTCACTTGGGGCTGCC LG.TJ

GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGCTTTGAAGACCTGTGCCTCAGCT GGTTCTAAGGAGTCAGTTTGTTCAGCTCCGTGCCAGGTTTCCAACTTATGAAATGTGCTG GAGATTAACACCTCTCCTGCCATTTTATCCCTACTATAATTGCCAGTCAAAGGATTCCTG CAGTTGCCTCTGGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTCTGAGGACCTAGAA GAGCAGTTTTCTATCCAGGACCAGTTTCCAAGGGTGGGAGGGTGAAATATATCCTCCAGT

24566

TAGAAGATATTAACTGCTCAATAAATGGTAGCTTCTTAACAGTATTCAAACCCATGTGCT CTTATCACATGCATTGTTGTCCCTGTGTCCAGTTGGTGGAATGGGAAAAGGCTCCCTTGT AACCCCATCTACCATCTTTATCAGACTTTCCTGCCATGGTTCACAGTAAGAGATAGAAGC TGCACGGTGACTTCTGGCTCTTTACAATGGTGAGCGGTGTGTGCCTGGTAAGGGAGAGCT GATGTCACTGCCCCAAATCCAGTAGTGAGATCTGAGTGTTCTGGTTTCCTCCAGCAGCCT 26604

GATTTGCAGCTGAGCCTGTCTATCTGGTGTGGGAAGAAGATGGGGAGTTACTTGTCAGTC
CCGGCTTACTTCACCTCCAGAGACCTGTTTCGGTGAGTTGGTCTCCGAGTTCCCCTCTCC
ATCTCTCCTGGCCCCTGGTCCTGAGAGGAGGGTGGTCTCCCTAAATCTCCTTCTCACTTA
GTCCTTTACCATCGGTTCTGCCGGGCAGAAGCCAGCGGAGGTTATACCCAAGGAGAATCG
GCCTTGTGAGGTACCCCCATTATGTCCTGGAAGTGGTGAGGGGAGGATATACCCAGAAG
[G, A]

27255

CTGTTGTTCCAAAAAGGCTGCCTCCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCT GGCTTCTCTAAGCTAGGTCCAGTGCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCC AGGCCCTGGGCAGAAAAGCAGTGTACCATGTGGTTTTGTGGAATGACCGGACCCTGGTAG ATTGCTGGGAAGTGTCTGGACAGGGGAAGGGGAACTGGTCCTCAATGCTGACT CTACCAAGCGCCCTGCTAGACACTTTATCCTTTAATCTCTCAACAGCCCTAAAGAGATTAT

27399

AGATGTGGAAACTCTACCTCTAACCTGGCTTTCTTTGCTCATTGCCCCACTCCACCTCCC
ATAGAAACTCCCCAGGGGGTTTCTGGCCCTCTGGGTCCCTTCTGAATGGAGCCATTCCAG
GCTAGGGTGGGGTTTGTTTTCATTCTTTGGGAGCAGCCTGTTGTTCCAAAAAGGCTGCCT
CCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCTGGCTTCTCTAAGCTAGGTCCAGT
GCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCCAGGCCCTGGGCAGAAAAGCAGTG

28088

AAGAGCCAATGGAAATTGATCTTGAGTTTAGGAGAAAGCTTTTACATGTGGAATTAAGAT GCCAAGTGTTGAAGTAGCCACATTTCAGGTCCTCATTAATTTCTCTTAATCCTGGGAAGG CAGCTTAGGAGAAGGGTTGTTCCTTTAGGAGCCAGGAACTATACCCCTTTTACCCTTGGA GAGGCAGGGAAGCCAGGGAGGACACACTTCTCAGGAAGAGAGAAGCTAGAGCAGATAG TGAACTCTCAACCTGAACCTTTAAGGGCCAGACCACTAATGCCACCCAAGTCCACCTGCC

28734

AAGTAGAAGCTAGACTTCTTGGGCTCCTGAACAGGGTCCTTGCTGGATTCTGTGAAACAA
ATTAAGTTCTTGACCCTAGGCCTCTGGGGGAGTACAAAGTCTATGGGAGTTCTGGGGCTG
TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGGACATGATCAGGCGTGACATGTG
AGGGAGGAAGAAGGGAACAACCAACAAACTACCAAATTCCAAATTCCAAATTACAA

AGTGAGCTGCAATTACCACTGTGCTTCCAAGTAAGAAAATACCTCAAATTGGAATTTACA
AAAGAGGTAAATTAGGGAGTGGCTTTTGTCGGACATCTTTAAAGCATTTTCTTTTTATA
GAATTTCACTTAATGTCCAATACTGATTTAATGAGCTTGGGTTTACACATTATCTCTTGA
AGAAAACAAATGAACCTTTGTGTTCCAAAGCAATCCATGTTTAAAGGGAAAAAATTATGC
ATAACTCTGCCCAGCTTCACAGTAACCTTTGGCAGGTGCCTTAGGTCCTCTGGGACTCTT

29246

AATCCATGTTTAAAGGGAAAAAATTATGCATAACTCTGCCCAGCTTCACAGTAACCTTTG GCAGGTGCCTTAGGTCCTCTGGGACTCTTTTCCTTATCTGAAAAATGAAGGACTTGGATC AGGTGAATGGTTCCCAGCTCTGCAACTTATGTGGCTCCTCAGAGGCACACAAGCTCTTTT CCATTATTTGCCAAATAATGGAGGCCCTGTCTTTAACTGCAGTACAACTACACAAAATAC TTGAAACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACT

ATTTCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAAC
ATATTCCATAATAATTACAGCTTAATTGCAGACTGTTTCAGTCTATAGGATCTGCAGGA
AGGAGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCC
CTGTCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCT
CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCCTTCAGCCCACTCAAT

29490

AACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACTTATT
TCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAACAATAACATA
TTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGAAGG
AGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCCCTG
TCATATCTGCCCTTCTGGGCCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCTCCA

GTGCCCTCAGGCTGTGGAGGGAGCTTCCCATTCTCTCCTTCAGCCCACTCAATTCAG AGGCTAGGGGCTGAAAGAAGCTTCTCTACAACTGGCTGTTCACTGGGAGGTTAAGGGATG ACCATCCAGCCAGGCCTTCCTCAGGACATGGGAGGGCTTATGCTTTAACATGTGTAAATC CACTGCAATAATGACTGGTTCTTTTACCCCATAAGGTTGAGAATTTACCTGTAAACATTT TTGTCTGAAGAATTTGGATGTAAGTGAGGGCTGGGCCTCTATCTTATCTCACTTGGCTTC

29934

 Jan. 22, 2002

34480

CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTATAAGCATAAGC CACTGTGCCCAGCTGCTCTATATTTTTAATACATATTATTTCCATTAATTTTCACAGC AGTTCATTTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTCTTGGAAGC AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCTTGACAACAAGAATAGGGAAAAGAAGGA ΓA.G7

CTAGAAGGAAAGAGATGGCATGGGCTCAGCAGGCCAGGGAGCTCTTAGCTGTGTGTTG GGAAGCTCAGAAGGGAGGAAGAGGTTGTCTGTGCAGGTAAGTCCTGAGAACACACCAGAC TTTTGAGAGGTGGAGCTTCATAGCCAGGTCATTAGGGGAGAAGGGAGCTATAGATTTTTT TTTTTTTTTTTTTTTTTTAGAGACGGGGTCTTACTATGTTGCCCAGGCTG GTCTTGAACTCCTGGGCTCAAGTGATCCTCCCACCTCAGCCTCCCAAAGTGCTGGGATTA

38812

AAATCCAGCAGATCCATTGAGAGTTTAAGCAGCAAGGTGTTGTGACCAAGTTAACATTTT AGAAGGATCACTGGTATGGAGGTTGGATTGGAGAGGGGAAAGCCTAAAGGTATAGAGACT AGTTAGGAAGCTATTGTAGGCTGGGCATGGTGGTTCATGCCTGTAATCTCAGCACTTTGG GAGGCTGAGGTGGGAGGATTGCTTGAGGCCAGGAGTTGAAGACCAACCTGGCCAACATAG CAAGACCCCGTCTCTGTTTTTCTTAATTAAAAGAAAAGTCCAGACGTAGACATAGTGGCT

ACGCCTGTAATGCCAGCACTTTGGGAGGCCAAGGTGGGCAGATTGCTTGAGGTCAAGAGT TTGGGATTAGGCCAGGCGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAG GTGGGCGGATCACAAGGTCAGGAGATCAAGACCATCCTGGCTAACACAATGAAACCCCGT CTCTACTAAAAGTACAAAAATTAGCCGGGCATGGTGGCGGACGCCTGTAGTCCCAGCTAC TCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTAGGAGGCGGAGCTTGCTGTGAGCAGA

40731

TAGGAAAGGAACCAGCTGGCCAGGGACAGACTATGAGGATTGTGCTGACCCAGCTGCCCC TGTGGGGATCACAGTTTACAGCCAGAGCCTGTGCGGACCCAGCTGTCTGCCAGGTTTCCT TAGAAACCTGAGAGTCAGTCTCTGTCCACTGAACTCCTAAGCTGGACAGGAGGCAGTGAT GCTAAACCCTGAAGGGCAACATGGCCTATGGAGAAAGCATGGAGCTCAGAGCCTGGAGTA

GGGCACAGATAGGATTGAATAAATTGTGTAGAAAGACTTTGAAAAACAATAAAGCAAAAGA TGAATGAACGTTTTTTTTAGACTTGAGGGACCAACAACCCCCAAACCCCAGATTCTGCCA GGTCCATGGGGAAGGAGAAGTTGCCTTGAGTGGAAGCCCCAAGTAGGGAGACTTACAGAA AAGAAGTCAAGAGCACTGGCTCCCAGGCAGAAATACTGATACCCTACTGGGGCTTCAGGC TGAGCTCCTCCCTTCACAAATCACTTCATCTCTCTGAGCCTGTTTCTGCATCTGTGACAT

41303

CTCTGAGCCTGTTTCTGCATCTGTGACATAAGATGGTAAGATAAAGGTGGCTGTCTCACC AATTATGTAAGGATTAAATGTGGAAAAGGACATAAAGTTGTATAGTGCCGATAGGGAC AGTGTTCAGTAAACGTGACACATTCTTAGTATCACTAAGAATCAGGTTCTTGGCCAGGCA CCGTGGCTCATGCCTGTAATCCCAACACTCTGGGAGGCCTAGGTCGGAGGATGGCTTGAA 

AATAATAATAATTGTTTTTAATTAGATGGGCAGGGCACTGTGGCTCACACCTGTAATCCC AGCACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTG GGCCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCT GTAATCCCAGCTACTCAAGAGGCTGAGGAGGAGGAGTTGCCTGAGCCCAGGAGTTCAAGAC TGCAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTC

41305 CTGAGCCTGTTTCTGCATCTGTGACATAAGATGGTAAGATAAAGGTGGCTGTCTCACCAA
TTATGTAAGGATTAAATGTGGAAAAGGACATAAAGTTGTATAGTGCTGCCATAGGGACAG
TGTTCAGTAAACGTGACACACTTCTTAGTATCACTAAGAATCAGGTTCTTGGCCAGGCACC
GTGGCTCATGCCTGTAATCCCAACACTCTGGGAGGCCTAGGTCGGAGGATGGCTTGAACA

TAATAATTGTTTTTAATTAGATGGCAGGGCACTGTGGCTCACACCTGTAATCCCAG CACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTGGG CCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCTGT AATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGACTG CAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTCTC

CCCATTTGCTCATTTTTTGGATACTAGTATAACTATCACTCTAAACCAGTTAGTACTTAA
ATCAAGCAGATATGGGAGATGGTGAATTACCATCTACAGTGTTGTCATATATGTCACATA
CTGAGCATTATCAGCTAGTAGAATCTAGTTAATTGTTCTATGTGTGATGTATGCAGAGTT
CCCATTTTGAATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCAAAA
TGATACATCTGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTG

AATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCAAAATGATACATC
TGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTGGAATGAACA
GGTGCCCCTAAGTTTCCTCCCCCCAGGGTTTCTTGGCCGGTCTCTGAGGACTACACATCC
CTACTCCCGTCTTTCCTCATCTTCAGGCGCAGTAACAGTATCTCCAAGTCCCCTGGCCCC
AGCTCCCCAAAGGAGCCCCTGCTGTTCAGCCGTGACATCAGCCGCTCAGAATCCCTTCGT

52267

TTGTGAGGGGTAGAGGAGAGAGAGAGACAAGGGATGGTTAGGATAATGAAGGAATGTTTTG
TTTTTGTTTTTGTTTTTGAGATGGAGTTCACTCTGTCACCCAGGCTGGAGTGCAGAGGT
GCAATCTTGGCTCACTGCAGCCTCCGCCTCCCAGGTTCAAGCAATCCTCCTGCCTCAGCC
TCCCAAGTAGCTGGGACTACAGGTGTGCGCCACCACGCCTGGCTAATTTTTGTATTTTCA
GTAGAGACAGGGTTTCGCCATATTGGCCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
[C.A]
CACCCGCTTCAGCCTCCCAAAGTGCTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT
GAAGGAAGATTTGTTTTAAAAAATTGTTTTCTTTAATATTAATTGAACACCTCTGTTCAG
AGCACTGGGCTGGTGCCAGAGGGTTTCAGACATGAATCAGATCCAGCACCTCATAGAGCC
TTAATCTGGCACACACACACACACCCACAAGGAGACACAGACAAGGCAGGTAAGCCCCTTCTTAG
GAAGCTAGGAGCAGATGCTGATTTGGAACACTTGGCTTCTGCAGTGAAGCCCCTTCTTAG

Jan. 22, 2002

54654

GGCCCGGCCCCGGCCCCAGGCCAGGCAGTGGCGGCCAAGGACCACGCATCTACTTTCA GAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGA GGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAACC TAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCCAGGAAGAGGGAGATCT CAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGCCTGGGCTT [T,C]CAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCT GCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCC

GACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAACAG CAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTG GCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTATTGTTAT

54679

GGCAGTGGCGGCCAAGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGA GGGCCCGGGCTGGCCGATGATGAGGGCCCAGTGAGGCGCCAAGGGAAGGTCACCATCAA GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT CACGCGCCTCTACGACTGCCAGGAAGAGAGAGATCTCAGAACTAGAGATTGACGTGGATGA GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA

TGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAG AAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCAT AGGACAATCGCTACCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG GCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCC CTCAGTTTTCCACTTTTGGATTTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTT

54693

AGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGG CGGATGATGAGGGCCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGG AGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACG ACTGCCAGGAAGAGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGG AGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCA [A,C]

AGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACC CCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTAC CCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGA GCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACT TTTGGATTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTTATATTGACTCTGCG

54706

TACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGG CCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCA CCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCCCTCTACGACTGCCAGGAAGA GGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGC CTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCAT

IT.C1 TCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGA GGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCGACCTCGT AGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCG TGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTT ATTGTTATTAAACTGATGGGACTTTGTGTTTTTATATTGACTCTGCGGCACGGGCCCTTT

U.S. Patent

55499

CAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGGCCCAGT 54712 GAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAA CCTAGAGGAGTGGATCCTGGAGCAGCTCACGCCCTCTACGACTGCCAGGAAGAGGAGAT CTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGCCTGGGC TTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGG [T,C]CTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCC CCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAAC AGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCC TGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTTATTGTT ATTAAACTGATGGGACTTTGTGTTTTTATATTGACTCTGCGGCACGGGCCCTTTAATAAA

GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT 54799 CACGCGCCTCTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA CTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCA GAAGCTGAGCACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCA ÄGGACAATCGCTACCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG GCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCC CTCAGTTTTCCACTTTTGGATTTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTT ATATTGACTCTGCGGCACGGCCCTTTAATAAAGCGAGGTAGGGTACGCCTTTGGTGCAG CTCAAAAAAAAAAAAAAAAATGATTTCCAGCGGTCCACATTAGAGTTGAAATTTTCTGGT

GGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCCCCTCTACGACTGCC 54819 AGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTG ACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGG CCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGA AGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCC [G.A] ACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGG CTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGA TTTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTTATATTGACTCTGCGGCACGG TGATTTCCAGCGGTCCACATTAGAGTTGAAATTTTCTGGTGGGAGAATCTATACCTTGTT

> ACAGTATTGAATGCCTACTGTGTGCTAGGTACAGTTCTAAACACTTGGGTTACAGCAGCG AACAAAATAAAGGTGCTTACCCTCATAGAACATAGATTCTAGCATGGTATCTACTGTATC ATACAGTAGATACAATAAGTAAACTATATTGAATATTAGAATGTGGCAGATGCTATGGAA AAAGAGTCAAGACAAGTAAAGACGATTGTTCAGGGTACCAGTTGCAATTTTAAATATGGT GTCAGAGCAGGCCTCACTGAGGTGACATGACATTTAAGCATAAACATGGAGGAGGAGGAG TAAGCCTGAGCTGTCTTAGGCTTCCGGGGCAGCCAAGCCATTTCCGTGGCACTAGGAGCC TTCTCCTATTGTTTTTAAGTATTAACTCCAGCTAGTCCAGCCTTGTTATAGTGTTACCTA ATCTTTATAGCAAATATATGAGGTACCGGTAACATTATGCCCCATTTCTCACAGAGGCACT

56825

ACTGATGGCTCAAAGGGTGTGAAAAAGTCAGTGATGCTCCCCCTTTCTACTCCAGATCCT GTCCTTCCTGGAGCAAGGTTGAGGGAGTAGGTTTTGAAGAGTCCCTTAATATGTGGTGGA ACAGGCCAGGAGTTAGAGAAAGGGCTGGCTTCTGTTTACCTGCTCACTGGCTCTAGCCAG CCCAGGGACCACATCAATGTGAGAGGAAGCCTCCACCTCATGTTTTCAAACTTAATACTG [C.A]

AGGAAGAGGCTGGGGGACTAGAAAGAGGCCCTGCCCTCTAGAAAGCTCAGATCTTGGCTT CTGTTACTCATACTCGGGTGGGCTCCTTAGTCAGATGCCTAAAACATTTTGCCTAAAGCT GGAGTCTCAGCAATCTCTTGGTCTTGGCTTCATGGCAACCACTGCTCACCCTTCAACATG CCTGGTTTAGGCAGCAGCTTGGGCTGGGAAGAGGTGGTGGCAGAGTCTCAAAGCTGAGAT

58871

CGTCACCCACCCAACCCCTGCCGCACTCCAGCCTTTAACAAGGGCTGTCTAGATATT CATTITAACTACCTCCACCTTGGAAACAATTGCTGAAGGGGAGAGGATTTGCAATGACCA ACCACCTTGTTGGGACGCCTGCACACCTGTCTTTCCTGCTTCAACCTGAAAGATTCCTGA TGATGATAATCTGGACACAGAAGCCGGGCACGGTGGCTCTAGCCTGTAATCTCAGCACTT TGGGAGGCCTCAGCAGGTGGATCACCTGAGATCAAGAGTTTGAGAACAGCCTGACCAACA [A,T]

GGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCAGGTGTGGTGGCACATACCTG TAATCCCAGCTACTCTGGAGGCTGAGGCAGGAGAATCGCTTGAACCCACAAGGCAGAGGT TGCAGTGAGGCGAGATCATGCCATTGCACTCCAGCCTGTGCAACAAGAGCCAAACTCCAT CTCAAAAAAAAAA

#### ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING **HUMAN KINASE PROTEINS, AND USES** THEREOF

### FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

### BACKGROUND OF THE INVENTION

#### Protein Kinases

Kinases regulate many different cell proliferation, 20 differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for 25 controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular 30 protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analo- 35 gous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a 40 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phos- 45 phorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out 55 believed to regulate the activity of the alpha subunit. Subthe transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 60 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided 65 each manifests different substrate specificities and responds into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases prima-5 rily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormoneinduced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New

York, N.Y., pp. 416-431, 1887).

Calcium-calmodulin (CaM) dependent protein kinases are also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase cascade".

Another ligand-activated protein kinase is 5'-AMPactivated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 15:8675-81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and 50 hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are units of AMPK have a much wider distribution in nonlipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as 5 tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). PRK is related to the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue.

Protein tyrosine kinases, PTKs, specifically phosphory-late tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation 50 was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau H and Tonks NK (1992) Annu. Rev. 55 Cell. Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

#### LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoforn (Genbank gi8051618) in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., J. Biol. Chem. 270 (52), 31321–31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., Science 285: 895–898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., Biochem. Biophys. Res. Commun. 229: 582-589, 1996).

For a further review of LIMK proteins, see Nomoto et at, Gene 236 (2), 259-271 (1999).

Kinase proteins, particularly members of the serine/ threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of kinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/ threonine kinase subfamily.

#### SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

6

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

### DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, 25 such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

# DETAILED DESCRIPTION OF THE INVENTION

### General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or 40 sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/ threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript 45 and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA 50 sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the 55 present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present opeptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

#### Specific Embodiments

#### Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genornic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that comprise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/ cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence 35 when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterolo- 40 gous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or 50 fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are 55 fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian 65 host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and nonhomologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G.,

Q

eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and 10 a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. 20 Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present 25 invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. 30 Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When uti- 40 lizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/ regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region:

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081–1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899–904 (1992); de Vos et al. Science 255:306–312 (1992)).

The present invention further provides fragments of the kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide of derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, 65 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pro-

teolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins—Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

#### Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant

brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, 15 and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine 20 kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues 25 that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In 30 addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also usefull in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-diotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding part-

16

ners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is 10 designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of 15 complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that 20 allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S- 25 labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined 30 directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For 35 example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be 40 derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods 45 for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well 50 as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to 55 use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according 60 to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 65 or a multi-detection format such as an antibody chip array. and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Óncogene 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNAbinding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a kinase-dependent complex, the DNAbinding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinasebinding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic 10 mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide 15 digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a 20 single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 40 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. 45 Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do 55 not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, 65 polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

#### Antibodie

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

20

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, 5 β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine 10 fluorescein, dansyl chloride or phycocrythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 122 I, 133 I, 33 S or 3 H.

#### Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of 25 the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 30 brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various 55 tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment omodality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

### Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that 35 encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide 40 sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A 45 brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The, isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand)

The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify genemodulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a 15 fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6x sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2xSSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

#### Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA 50 and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs 55 were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. 60 However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule 65 and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to 5 integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all of part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be iden- 30 tified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candi-35 date compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in 40 the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is 45 identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that 50 express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, 55 PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in 65 teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme 5 digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers etal., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Salecba et al., Meth. Enzymol. 21 7:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and 40 selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the 45 molecules that are based on the sequence information prorelationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order 50 to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located 55 outside the ORF and in introns, may affect gene transcrip-

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the 60 production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein nRNA or DNA.

#### Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid vided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be

preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or 10 an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The 20 second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or 25 other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described 30 in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe 50 sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner 55 is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for largescale correlation studies on the sequences, expression 65 patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the kinase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the kinase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1 982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified kinase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

#### Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, 10 PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell 15 genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can 20 function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage  $\lambda$ , the lac, TRP, and TAC promoters from E. coli, the early 40 and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate 45 transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual.* 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRITS (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11 d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permnits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore 35 include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by 40 techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

#### Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for

studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphib-

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be 10 introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if 15 not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals 30 carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recom- 35 binant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacte- 40 riophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Ga phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1

<400> SEQUENCE: 1

cccagggcgc cgtaggcggt gcatcccgtt cgcgcctggg gctgtggtct tcccgcgcct gaggcggcgg cggcaggagc tgaggggagt tgtagggaac tgaggggagc tgctgtgtcc cocquetect cotcoccatt tecqcqctcc cqqqaccatq tecqcqctqq cqqqtqaaqa tgtctggagg tgtccaggct gtggggacca cattgctcca agccagatat ggtacaggac

<211> LENGTH: 2320 <212> TYPE: DNA

<213> ORGANISM: Human

tgtcaacgaa	acctggcacg	gctcttgctt	ccggtgaaag	tgatgcgcag	cctggaccac	300
cccaatgtgc	tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	360
gagtacattg	aggggggcac	actgaaggac	tttctgcgca	gtatggatcc	gttcccctgg	420
cagcagaagg	tcaggtttgc	caaaggaatc	gcctccggaa	tggacaagac	tgtggtggtg	480
gcagactttg	ggctgtcacg	gctcatagtg	gaagagagga	aaagggcccc	catggagaag	540
gccaccacca	agaaacgcac	cttgcgcaag	aacgaccgca	agaagcgcta	cacggtggtg	600
ggaaacccct	actggatggc	ccctgagatg	ctgaacggaa	agagctatga	tgagacggtg	660
gatatcttct	cctttgggat	cgttctctgt	gagatcattg	ggcaggtgta	tgcagatcct	720
gactgccttc	cccgaacact	ggactttggc	ctcaacgtga	agcttttctg	ggagaagttt	780
gttcccacag	attgtccccc	ggccttcttc	ccgctggccg	ccatctgctg	cagactggag	840
cctgagagca	gaccagcatt	ctcgaaattg	gaggactcct	ttgaggccct	ctccctgtac	900
ctgggggagc	tgggcatccc	gctgcctgca	gagctggagg	agttggacca	cactgtgagc	960
atgcagtacg	gcctgacccg	ggactcacct	ccctagccct	ggcccagccc	cctgcagggg	1020
ggtgttctac	agccagcatt	gcccctctgt	gccccattcc	tgctgtgagc	agggccgtcc	1080
gggcttcctg	tggattggcg	gaatgtttag	aagcagaaca	aaccattcct	attacctccc	1140
caggaggcaa	gtgggcgcag	caccagggaa	atgtatctcc	acaggttctg	gggcctagtt	1200
actgtctgta	aatccaatac	ttgcctgaaa	gctgtgaaga	agaaaaaaac	ccctggcctt	1260
tgggccagga	ggaatctgtt	actogaatco	acccaggaac	tecetggeag	tggattgtgg	1320
gaggctcttg	cttacactaa	tcagcgtgac	ctggacctgc	tgggcaggat	cccagggtga	1380
acctgcctgt	gaactctgaa	gtcactagtc	cagctgggtg	caggaggact	tcaagtgtgt	1440
ggacgaaaga	aagactgatg	gctcasaggg	tgtgaaaaag	tcagtgatgc	tecceettte	1500
tactccagat	cctgtccttc	ctggagcaag	gttgagggag	taggttttga	agagtccctt	1560
aatatgtggt	ggaacaggcc	aggagttaga	gaaagggctg	gcttctgttt	acctgctcac	1620
tggctctagc	cagcccaggg	accacatcaa	tgtgagagga	agcetecace	tcatgttttc	1680
	ctggagactg					1740
acagtcacaa	gcacaggaag	aggctggggg	actagaaaga	ggccctgccc	tctagaaagc	1800
	gcttctgtta					1860
ttttgcctaa	agctcgatgg	gttctggagg	acagtgtggc	ttgtcacagg	cctagagtct	1920
	agtgggagtc					1980
	catgcctggt					2040
	agatgctgag					
	tctcccaact					
	aacctccatc					
tttgcctctt	ctaagtgtct	atgagettge	accatattta	ataaattggg	aatgggtttg	
gggtattaaa	***********	000000000	44444444			2320

Met Val Gln Asp Cys Gln Arg Asn Leu Ala Arg Leu Leu Pro Val

<210> SEQ ID NO 2 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Human

<400> SEQUENCE: 2

											-	-con	tt1	uec	ı	
1				5					10					15		
Lys			Arg			Asp				Val	Leu	Lys	Phe 30		Gly	
Val	Leu	Tyr 35	Lye	Asp	Lye	Lys	Leu 40			Leu	Thr	G1u 45	Tyr	Ile	Glu	
Gly	Gly 50	Thr	Leu	Lys	Asp	Phe 55	Leu	Arg	Ser	Met	Asp 60	Pro	Phe	Pro	Trp	
Gln 65	Gln	Lys	Val	Arg	Phe	Ala	Lys	Gly	Ile	Ala 75	Ser	Gly	Met	Asp	Lys 80	
Thr	Val	Val	Val	Ala 85	Авр	Phe	Gly	Leu	Ser 90	Arg	Leu	Ile	Val	Glu 95	Glu	
Arg	Lys	Arg	Ala 100	₽ro	Met	Glu	Lys	Ala 105		Thr	Lys	Lув	Arg 110	Thr	Leu	
Arg	Lys	Asn 115	Asp	Arg	Lув	Lув	Arg 120	Tyr	Thr	Val	Val	Gly 125	Asn	Pro	Tyr	
Trp	Met 130		Pro	Glu	Met	Leu 135	Asn	Gly	Lys	Ser	Tyr 140	Asp	Glu	Thr	Val	
Asp 145	Ile	Phe	Ser	Phe	Gly 150	Ile	Val	Leu	Cys	Glu 155	Ile	Ile	Gly	Gln	Val 160	
Tyr	Ala	Asp	Pro	<b>А</b> вр 165	Cys	Leu	Pro	Arg	Thr 170	Leu	Asp	Phe	Gly	Leu 175	Asn	
Val	Lys	Leu	Phe 180	Trp	Glu	Lув	Phe	Val 185	Pro	Thr	qaA	Сув	Pro 190	Pro	Ala	
Phe		Pro 195		Ala	Ala	Ile	Сув 200	Сув	Arg		Glu	Pro 205	Glu	Ser	Arg	
Pro	Ala 210	Phe	Ser	Lys	Leu	Glu 215	Asp	Ser	Phe	Glu	Ala 220	Leu	Ser	Leu	Tyr	
Leu 225	Gly	Glu	Leu	Gly	Ile 230	Pro	Leu	Pro		Glu 235	Leu	Glu	Glu	Leu	Asp 240	
His	Thr	Val		Met 245	Gln	Tyr	Gly	Leu	Thr 250	Arg	Asp	Ser		Pro 255		
	> SE								٠.							
	> LE > TY			V 6 3												
<213	> OR	GANI	SM:	Huma	n											
<400	> SE	QUEN	CE :	3												
tcat	cctt	gc g	cagg	ggcc	a tg	ctaa	cctt	ctg	tgtc	tca	gtcc	aatt	tt a	atgt	atgtg	60
ctgc	tgaa	ge g	agag	tacc	a ga	ggtt	tttt	tga	tggc	agt	gact	tgaa	ct t	attt	aaaag	120
ataa	ggag	ga g	ccag	tgag	g gá	gagg	ggtg	ctg	taàa	gat	aact		gt∵g	cact	tette	180
taag	aagt	aa g	atgg	aatg	g ga	tcca	gaac	agg	ggtg	tca	tacc	gagt	ag c	ccag	ccttt	240
gttc	cgtg	ga c	actg	ggga	g tc	taac	ccag	agc	tgag	ata	gctt	gcag	tg t	ggat	gagcc	300
agct	gagt	ac a	gcag	atag	g ga	aaag	aagc	caa	aaat	ctg	aagt	aggg	ct g	gggt	gaagg	360
acag	ggaa	<b>9</b> 9 9	ctag	agag	a ca	tttg	gaaa	gtg	aaac	cag	gtgg	atat	ga g	agga	gagag	420

tagagggtet tgattteggg tettteatge ttaacceaaa geaggtaeta aagtatgtgt tgattgaatg tetttgggtt teteaagaet ggagaaagea gggeaagete tggagggtat ggeaataaca agttatettg aatateetea tggtggaaag teetgateet gtttgaattt

tggaaataga aatcattcag agccaagaga ttgaattgtt gagtaagtgg gtggtcaggt

tacagactta attttgggtt aaaaagtaaa aacaagaaac aaggtgtggc tctaaaataa

600 660

720

tgagatgtgc	tgggggtggg	gcatggcago	tcatasactg	accctgaaag	ctcttacatg	780
taagagttc	aaaaatattt	ccaaaacttg	gaagattcat	ttggatgttt	gtgttcatta	840
aaatctctca	ctaattcatt	gtcttgtcca	ctgtccgtaa	cccaacctgg	gattggtttg	900
agtgagtcto	tcagactttc	tgccttggag	tttgtgagag	agatggcata	ctctgtgacc	960
actgtcacco	taaaaccaaa	aaggcccctc	ttgacaagga	gtctgaggat	tttagaccca	1020
ggaagaatga	gtgatgggca	tatatatata	ctattactga	ggcatgagaa	gagtggaatg	1080
ggtgggttga	ggtggtgtt	taaggcctct	tgccagcttg	tttaactctt	ctctggggaa	1140
cgagggggac	aactgtgtac	attggctgct	ccagaatgat	gttgagcaat	cttgaagtgc	1200
caggagetgt	gctttgtcta	ttcatggccc	ctgtgcctgt	gaaacagggt	toggtgactg	1260
tcactgtgcc	tgtggcagtc	tgtagttacc	cagagagaac	aaagctgcat	acacagagcg	1320
cacaagggag	tcttgtaaca	accttgtcct	gctttctagg	gctgagtcag	gtaccacage	1380
ttgatctcag	ctgtcctctt	tatttcaaga	agttgacatc	tgagccatac	caggagtatt	1440
gtattttgtt	tgaggcctct	ctttttggag	gaacatggac	cgactctgtg	cttttgtcta	1500
tgctggtctc	tgagctcaca	caacccttca	ccctcctttc	tcagccagtg	ataggtaagt	1560
cttccctatc	ttgcaaggct	cagctcaagt	gtcagcttcc	tctacaaaga	ctttcctggt	1620
tcccctcatt	ggagtgaaca	agagttgaca	tggtagaatg	gaaagagcag	aagctttaga	1680
atgagecaga	cctgagtatg	aatgctagat	ccaccactta	gctagtcaac	cctgccccct	1740
gcctcaagtt	ttaattttcc	tatccattaa	gtgaatataa	taatacctgt	gtcacaggat	1800
tattttgaga	attaaatgag	attaggtcta	tgaaagcacc	tagcagagtt	cttggcatat	1860
aggaggcatt	cattaaatat	ttgttcttcc	ccttttatac	ccattacttt	tctttttctg	1920
aactaaaata	atacttggtt	ctatctctga	aataacatcc	aagtgaaaaa	tcaacaacat	1980
gaaagagcag	ttcttttcca	gtggatttgc	ttcttaagga	gcagagatta	tgtaatctaa	2040
cageetecaa	catacaaaga	gctttgtatc	tagaacaggg	gtccccagcc	cctggaccgc	2100
caactggtac	gggtctgtag	cctgttagga	accaggctgc	acagcaggag	gtgagcggcg	2160
ggccagtgag	cattgctgcc	tgagctctgc	ctcctgtcag	atcagtggtg	gcattagatt	2220
ctcataggag	tgtgaaccct	attgtgaact	gcacatgcaa	gggatctggg	ttgcatgctc	2280
cttatgagaa	tctcactaat	ggctgatgat	ctgagttgga	acagtttgat	accaaaacca	2340
tececegee	CCCCAACCCC	cagcctaggg	tccgtggaaa	aattggcccc	tggtgccaaa	2400
aaggttgagg	actgctgatc	tagaggacca	atttattcaa	tgttggttga	gtaaatgagc	2460
tcttggatta	ggtgatggaa	aaatctgaaa	aaacagggct	tttgaggaat	aggaaaaggc	2520
agtaacatgt	ttaacccaga	gagaagtttc	tggctgttgg	ctgggaatag	tcataggaag	2580
ggctgacact	gaaaagaagg	agattgtgtt	cgtttcttct	totcagaget	ataagcaaag	2640
gctgaaagtt	ctagaaaaag	gcaagttttg	tttcagtaga	aaaaaggata	atcagaacca	2700
ttttagaaa	atggaatgag	actacttttg	aggccatgag	ttccttgtcc	ctggagagat	2760
gagcagaggt	tggacaagtg	cttaccagag	atcttgtgga	ggcagaaact	gtgcatctag	2820
cagagcattg	gcctaaccct	ttcaaatgag	atgctgttaa	ctcagtctta	ttctacatgg	2880
taggaatect	gtccctttgc	ctcctgctac	tttgggcctc	tcaacctctt	ggttttgtgt	2940
gcaggtgaag	atgtctggag	gtgtccaggc	tgtggggacc	acattgctcc	aagccagata	3000
tggtacagga	ctgtcaacga	aacctggcac	ggctcttgct	tccggtaggt	gggcctatcc	3060
tcccatcttt	accagtgtac	tatgggccaa	gcactatttc	atgttctgat	ggaaaacaca	3120

gaaacaagct tctgagttga gaatttcaat cttagggtgg ggaaaggaat gtaccaagga	3180
agageteatg accasacete aagtgtggee eeeetgaace caggttaaat tggaagagee	3240
ataaatgggc cagctggagg cagggtgggg ggatgagagg agccctttcc agggttgtcc	3300
catatecete actitatggg tgaggaaact gaggeecagg aagagtgaet tteetgtgge	3360
tgcactacag attatgcagg tacttcaaga gttgtttgta ttcttatttt attttatttt	3420
attttatttt attttatttt attttatgag agggattctt gctgttgccc aggctggagt	3480
geagtggtge aatetegget caetgeaate tetgeetget gggtteaagt gattttetg	3540
cottagetto etgagtaget gagatgacag geacetgeea ceatgegeag etaatttttg	3600
tattttagtg gagacggggg tttcaacatg ttggtcaggc tggtcttgaa ctcctgacct	3660
canatgatgo accoaceteg aceteceana gtgctggant tacaggegtg anceactgtg	3720
cccagccaag agttgttttt agtgtggttg gcagagccag ctcttccttc accacaggat	3780
gootoootag gttootactt tttgttacta gottttatta tagotatatt attattatta	3840
ttattattat tattattatt attattgaga cagagtotog ototgtogoo caggotggtg	3900
tacagtggtg cgatcccggg ctcactgcaa cctctgcctc ccgagttcaa gcagttctcc	3960
tgcctcagcc ccccgagtag gtgggactac aggcgcctgc caccacaccc ggctaatttt	4020
tgtattttta gtagagacgg ggtttcacct tgttgaccag gctggtctgg agctcctgac	4080
ctcaggtaag tgctagaatc acaggcgtga accactgcgc ccagccaaga gttgttttta	4140
gtgtggttgg cagagccagc tettecteae cacaggttge etcectaggt tectaetttt	4200
tgttactago titattatag ctacattatt attattattg ttattattat tgagacagag	- 4260
totogototg togoccaggo tggtgtacag tgatgtgato ttggotoact gcaacototg	4320
ecceccgagt teaageaatt eteetgette ageceeeta gtaggtggga eteeaggeae	4380
etgccaccac gcccagctaa tttttgtatt tttagtagag gcggggtttc accttgttgg	4440
ccaggotggt otcamactco tgacotcagg tgatocgcot gcotcggcot occamaatgt	4500
tgggattaca ggcatgagcc accgcgccct gcctatagct acattattt tgtaggcagc	4560
tragtttett aaaaattata cagaetteaa ateagatttg tteetgetgt etgaggetea	4620
ytttcttcat ctggaaaatg gatggtaata atcttgttga gattgaatga aataatatat	4680
gragtgtato cagtacatgg tagacaccca gtgaatggtt attecttect eccateggat	4740
ggaattoto aagggtggga acttgtottt atattottoa caacgtaaaa tagttgaaat	4800
tgttggtgg aaagaagagc agtccactcc agaggctgga tgggcatgcc tggcccccaa	4860
gtctgaagt ggtagggctg tgcctatatc ctgagaatga gatagactag gcaggcacct	4920
gtgctgtag attocagete etgcacatag etettgttgt aaaacateee tgtgettata	4980
caagtaatt gagttgacct ttaaacactt gcotottoco tgggaaccat ataggggatt	5040
geetggaga egtetggeet etggaagagt tggaaageag ceateattat tateetttee	5100
ttcagctat aactcagage teteaagtet tttetgtgga tettattgee ttggttettg	5160
cccttttac tcccagggaa gttgattctg tcttttctgt tccatttagt atgacaggag	5220
agagaatgt cagagctgta agggacctta tagttaaagc ctttggctgg tcctttcatt	5280
tatagetgg gactaataag taacgtcaaa acccaatgag ttcacagatt gggtetegec	5340
tggcatgta acccatatgt tcatattett getgttttee tatgtgtatg aatatttet	5400
tocaaaata agcaggacag ggtagagcaa gttaatottt ggaatttotg gattototta	5460

gagetaaaaa acttcagaac tagaagaaac cacccactat atggtataac ccattcatat	5520
cacagatgag gcctgaaacc aaaaagactt gctcaggcca tggatgacaa gagctggccc	5580
tagcactgaa ctcttgggtc atttgtaggt ctagtcagat gctagcttgt tagctctgtg	5640
cgtgcgtgtg tgtgtgtgtg tgtgtgtgt tgtgtgagat agagacagaa agataacata	5700
tgtacacaaa tacataaaga ggaagtagac acgttagcat ggtagataag agtacaggca	5760
ggccaggcgt ggtggctcac gcctgtaatc ccagcacttt gggaggccaa ggcaggtgga	5820
teacetgagg teaggaatte gagaceagee tgaceaacat ggtgaaacee catetetact	5880
aaatacagaa aaaaattago ttggcatggt ggcacatgoo tgtaatcoca gctacttggg	5940
aagotgaago aggagaatog ottgaatoog ggaagcagaa gttgcagtga googagattg	6000
tgccattaca gtctagcctg ggcaacaaga gggaaactcc atcgcaaaaa aacaaccacc	6060
accaagagta caggotatgg aatgagacta tggttttaaa tootggottt gcaatttatt	6120
aactagcett aagtgactte eetgagette aggeaccaat etgtaaaatg aggataagaa	6180
tattactcat gccacatggt tgttagggag gattaaatgt gataacctat ataaagtggc	6240
tagcatagca totgacatat agaaaactot taatagggoo ggacgtggtg gottatgoot	6300
gtaatcctag cactctggga ggccgaggca gaaggatcgc ttgagcccat gagcccagga	6360
gtttgagacc agcctggcca acatggcaaa actccacctc tacaaaaaat acaaaaatat	6420
tagecaggeg tgatggeaca cacetgtagt eccagetact tgggaagetg aggagegatg	6480
attacctgag cccagggata tcaaggctgt agtgagctgt gatcatgcca ctgtactcca	6540
ccagctggg ggacagagtg aaacccctgt ctcaaaacaa aacaaatgaa aaaaaaaacc	6600
ettaataatc agtaactgtc actttatatt atgttgtgag tgtgtgtcta tatacaccta	6660
tatgtataca tttctcttat tacacattca ttggtgatct gatgtggagc cccagggatt	6720
agggcaact ttgaactacc ctgacacaat caagccaaat atcattcccg tggaggaagt	6780
ngagtatota ggttotgtot cotagttgca gotttacott gaggacagag actotaatoo	6840
gotgtgotg aaggagcaca totootgact totgagottt occotggtaa attoaaactg	6900
atgtcacgg cgccctcaga tagagcctgg taatttgccc tggggagagt gactgtcttt	6960
ggatctaat ttgacttttg ccccagttgg aggaaaatct tcagggctag gaaggattgt	7020
tttgtctga ccccagagat aacctgggtt ttgaggaaca tggggcatca acctgaatgg	7080
cttgtaaga tctctcccac gccagcttgc cagtgtttct ctgatgaatt tagagtacct	7140
agtagtgca ggcctgctgg gaggaggact ctccctctgt gctactcaga gaaattcatt	7200
ttcaaggcc cccttccagc cttgctctta cccagctggg ctacagttac aataaaggaa	7260
tgacttttc ttctcccctt cccccagtac ctttgttttc ctagtcacag ggtggggctg	7320
atattgaat ggagaaattg ctggggtcca tcctaaactc ctcccctcat ctctccctta	7380
attacccca ttettetgte tgcagecaea tecataatee tgcetetgtt ageetteega	7440
agaccetea ggtgeecagg acaacaggaa getaettaaa getggaacet cagactgtge	7500
atggaggcc agtgacaaaa ctgaaagtag ctctgtcagt aattgtgctg gtgcgattag	7560
cagetggee agaatetttt ggateteetg gacatatgge tgactagtee teccaageet	7620
cccaacagg cctcttttt ttccttttt tcttttcttt	7680
ctttttttt tttttttag gctagtgaag tgaaattgtg ggagtggaaa aggaacaaag	7740
matcggtaa ctggtagtga tcaattactt gtaaacacta ttgtacttgg accagcccag	7800
aggoctttt ttaaaactct gagttacctc totttoottt cottgagoag tgocattaat	7860

totgtatotg	gggcaatcct	ttctgatgtt	ctctggacct	ggctctctct	ccttaggaga	7920
ggccaggaga	gtagccagag	agcatgtcat	ttgtagctga	ggttaaagtg	tggagctatc	7980
aatggtgacc	tggcctcttg	gcatgttagc	aagccagagg	accttgacaa	cttttttgåt	8040
gattgtccgt	tcaccctgat	caaaggtgtt	tggcttagga	ggagggaaga	aaagctaccc	8100
ctattagtct	tgatggcccc	agcgtgggtc	tctattgctt	gacctggttc	ctagcagcat	8160
tatcagaagg	assatccacc	gctcttaagg	ctcctgggaa	ctttcaggac	ttcctttctc	8220
aggattgcaa	acataagact	atttgagctt	tcacttttga	aaagcggtta	ctaataccta	8280
tactctggga	aagggctaat	gcagatagaa	gactgtggtc	actgcatcag	gcaacagacc	8340
atttccgcta	aatttagtga	ctccaggaag	gccagtgaag	aaataacaca	cgtagcaacc	8400
agagactgtg	ttgtaatatg	ttggctgaca	gcagggtact	ttctgtgatg	ctgaaagcca	8460
cattcatttt	etetececte	atccccatct	aagcaagcct	ggtagaatca	taattacagt	8520
aataggtacc	acttattgag	tactctgtgc	cagacaccct	cctgagcata	cgacatgcat	8580
agcacattta	atccttacaa	tgacttaata	aaatgtagta	ctagtcttac	ctacttcgag	8640
aatagggaaa	tggaggttac	ttgtttaaag	tcacàgagct	aataggtagc	atagotgaga	8700
tttgaactca	ggcattctta	ctccttgcct	gcaagagtct	cttggcattc	ttgaatgcaa	8760
gcatatttct	taacctcact	gaggeteagt	ttcctcttat	ataatatggg	gtaaagagcc	8820
ctcaccctgc	ctgccacaca	ctggtagtgt	cagataacat	tgaagggtgt	tagtttaaag	8880
gcttcatgga	ctctataatg	tcaacaaaag	tgctgttaac	tttcttctgg	gtctcaggct	8940
cctgatgtag	agtcagtgga	gcaaccctgc	catctgctgt	tatgctgttg	atgttgctgc	9000
cacacttact	aacctaaacc	tttgattctg	gctgtggcct	tctccagaag	gtgtttactc	9060
atttgtccag	tttatctttt	aggaaacagc	cagcccgtag	atcattaagg	ctggctattg	9120
gacagggggc	tggggcctgc	ctgacagagg	aaggaagggc	agacatctgg	ttcttcctct	9180
gcccctacaa	gagactccag	cctgaccaca	gagtggtact	cctaggatgt	agcagcagca	9240
tatgagettg	aatgtgcctt	aatcctgctc	tttactttga	gaagagagaa	ctaaggaccc	9300
acagatgttt	cacagettet	ataggaggca	gaggtagaaa	aatggagaga	gatgaggcca	9360
gagatagata	actgatatta	attaaacgtt	gtattaagaa	cctcacttag	attatctgat	9420
tcaatcttca	taataaccct	gcaaccccca	ccttttttg	agaacagggt	cttgctctgt	9480
tgtccaggct	acagtgcact	ggtacaatca	tagttcactg	cagtgtcaac	ctcctgagct	9540
caagcaatcc	teccacetea	gccttgcaag	cagcttggac	tacaggcgtg	ccaccacacc	9600
ttgccatttt	tttttatttt	aagtagaaac	aaggtottat	taatactatg	ttgcccaggc	9660
tggtcttgaa	ctccagcgat	cctcctgccc	cagectecca	aagtgcttgg	gattacggaa	9720
gtaagccact	gtgcctggcc	agtgcaaccc	ccattttata	ctaaaacagg	aaggcccaga	9780
aaggtttgga	gtaacttgtc	cagggtcaca	cagatgatat	ttgaactcag	gtctccctgg	9840
ctcccaagag	agtotgottt	ccactaggac	tcccaggaga	aaaaaaaaa	aaaaaacagt	9900
agacttggag	acagaaaatc	tgatttgagt	cttagttgag	ctaggctaac	tgtgtaactg	9960
tgggcaagtt	ccttagcccc	tgtgagcctc	agtttcttat	ctgtaaaatg	tcataaaaga	10020
aatccatctc	atggagtagt	tgtgatgatc	aaggactctg	aaaacattag	aatggtttaa	10080
tgtgaaggat	tagcagcagc	acatggcaac	attgtgcatc	ttatattaac	tatccaaata	10140
					gggatacgga	10200

gttggcatac	tagcctggco	tottaattaa	ttcattaatt	agcttattta	tttttgagat	10260
aggtettget	ctattgccca	ggctggagtg	cagtggcatg	atgatagett	actatageet	10320
caatctccca	ggcttaaaca	atcctcctga	gtagctggga	ctacaggcac	acactaccat	10380
gcccagctas	ttttttt	atttttgta	gagacagggt	cttgctctgt	tgcccaggct	10440
ggtctcaaac	tcctgggctc	gagatoctco	cacctgggcc	tcacaaagtg	ttgggattac	10500
aggtatgago	cacggcacct	ggcctggtct	cttaactggt	tccctaagac	agctggaaat	10560
agagaatgto	: atggagcatt	cctaaccatg	ggctccagcc	tggctttcat	tctgtttctc	10620
ccctgaaaca	acattccttt	agtaatatto	cgaataacag	cttcatcagt	ctgtctaccg	10680
accactctto	: aggcttcatc	ttatatgaco	teccaaactg	cactaagggt	tgtattagag	10740
aaaagtggat	aaagttogga	gtcaggctgc	ttgagcttaa	atgccagctt	cacttaccag	10800
ccacctgacc	atgagtcagc	tgcttaacca	ttetttgcca	cagtttcctt	gtctatgaaa	10860
agggaaatgg	ctcccacctc	aaaaagttgt	taacattaaa	ttcaatcatg	tattcaaagt	10920
cctgagcaga	atgtctggcc	atgactggga	cttaacagat	gttagcattt	attattagta	10980
tctgtcagtc	ttgaaatgtt	ctcttccctt	ggctttcatg	acattccaca	ctctcctggt	11040
titotottac	ctctctggta	atacctgttt	gcttatcctt	ctttgtccag	ctctgggatg	11100
ttaccattcc	ttcaggcgtg	ctgttttctc	cttaggcagt	cttacacaca	ctcatgactt	11160
ccttccattg	tectecacae	actgatgacc	ctamaatcag	tatctccagc	ctasaccttt	11220
ccactgagtt	ctagacccat	atgttgtact	atcaacctgg	cttgtccatt	tgaatgtctt	11280
ccaggcactt	cagactctct	tctctagact	ttgctggact	ttcactcttc	ccctaaaac	11340
tggctcctct	tccactgasa	catgtatgtc	attgagaggc	accaccatcc	acccagtgcc	11400
taagccagaa	acctaggaat	ccttgatacc	tgttctctct	catcctgcat	atccaagcct	11460
atcagtttta	tctctaaatt	atattttggt	aggtttactt	ctttcctttt	ctcccaccac	11520
caccctgctc	caagctacca	tcatctcacc	tggatgtctg	caatagcctc	atctcccaca	11580
gccactctgc	acccctaat	ctgttctcta	tagagcagtt	ggaaggagtg	atttttgttg	11640
			actctgttcc			11700
			cccgggttta			11760
ctcccaagta	gctgggatta	aggcaccggc	ccccataccc	agctaatttt	tatattttta	11820
			gctagtctcg			11880
ccacctgcct	cggcctccca	aagtgctggg	attacaggtg	tgagccactg	cacctggctg	11940
	4 Total		aaaaaaaact			12000
		•	tcccagtgtt			
cttaacttgg	ccaggcgcgg	tggctcacac	ctatcatctc	agcactttgg	deddccdedd	12120
			ccatcctggc			12180
			tggtggcgtg			12240
tgggaggctg	aggcaggaga	atcacttgaa	cctgggaggc	agaggttgca	gtgagcccag	
			gagtaagact			12360
			tagagccctc			12420
catctccaca	acctcctgct	ccctgcactt	cagootcaco	tetettetgg	acaggccctc	12480
			cctctgccta			12540
cacttaactc	ctgcttatcg	tttagatott	tacctggatg	gctcagagaa	atatagaagt	12600

					•	
aattootoac	cctgaaaaat	aggttaggtc	cctgttttat	gttttcatag	acctttcctt	12660
tgaggctttt	tttaaaaaag	tagttttaat	ctcacattta	ttcatgtgat	catctcctta	12720
atgatatott	aagacctcta	atagaacaat	ttggtcatgg	actgtggggt	ttttgcccct	12780
cattgtgtca	gcactgagca	tattgttggc	ataggaggga	tatttgttga	atgaattgct	12840
agaggtggcc	aagagatatg	atgtaagtca	ggcttttccc	tgcccttccc	cttccccttc	12900
cccacatcct	tcctatagca	gccaccgtgg	ctgcagttac	tgtaaatggc	aagacggaat	12960
cagttccgga	cattgggttg	ttttagaaaa	ttgcctgcaa	gtgtcagggt	gataagttaa	13020
agctttgtct	tttgccctca	gaggagctat	cccatagtga	gtagaagcca	gagaagetga	13080
ccccaggagt	ccttctttcc	agcagcaggt	cttgagctgc	acttctctgt	agctacaatc	13140
caggcaggaa	caagccctag	gtacctccgg	agaggagggc	aagagaggaa	gaatgagttc	13200
agctactcta	gccaccaaac	tgattatgaa	ttgccctgaa	atctgaaaaa	tttcaattcc	13260
aatcgtaagt	ttgttttgtt	tcattttgtt	ttcttaaatt	gtatatttga	aagatggcat	13320
taactaaaga	tatatattca	atatagágtg	gaaaaaatgg	aatacttgca	tagtatcttt	13380
tacttatagg	tgatttatga	tggggagtgg	ggtggatagg	ttggcagttc	ccccaagaag	13440
ttggaaatga	agtttgtcct	ctgtgagttg	aactaattag	atccacaagt	aatgaaagca	13500
gtattgtgtt	gtagttaaga	gcacactcta	gaaccagatt	gcttagtttc	aaatcctggt	13560
totgootttt	attatctgtg	tactttgggc	aagttacttg	ccctttgtgt	gcttcatttt	13620
tctcatctag	accatggaga	ggccaggcgt	agtggctcat	gcctataatc	ccagcacttt	13680
gggaggccga	ggcgggcaga	tcacctgagg	tgagaagttc	aagaccagcc	tggccaacat	13740
ggtgaaaccc	tgtctctaca	aasatacaaa	aattagccag	gcatgatggc	gggtgcctgt	13800
aatcccagct	acccaggagc	ctgaggcggg	agaaacactt	gaacctggaa	ggcagaggtt	13860
gtagtgagcc	aggattgcac	cactgcactc	cagcctgggt	gacaagagct	agactcagtc	13920
taaaaaaaaa	aaaaaaaac	aaactggaga	tacaggctgg	gtgcagggct	tacacttata	13980
atatcagcac	tttgggaggc	ctaggcggga	ggattgcttg	aactcaggag	tttcaagatc	14040
agtotgggta	acagagcaag	acctcatccc	cacaaaaaat	caaaaattta	gccaggcatg	14100
gtggctcatg	cctgtggtcc	cagctactca	ggaggctgag	gcgagaggat	tgcttgagcc	14160
caggaggttg	aggctgcagt	gaaccatgac	tgcaccacta	catgccagcc	tggatgacag	14220
agcaagaccc	tatctcaaaa	***********	aaagaaacga	gccaggcgcg	tttgctcacg	14280
ccagtaatcc	cagcactttg	ggaggccaag	gcaggtggat	cacttgaggt	caggagatcg	14340
	ggccaacatg	gtgaaacccc	atctcaactg	aaaatacaaa	aattagccag	14400
gcatggtggc	atgetectgt	agteccaget	actcacttgg	aggetgagge	acgagaatcg	14460
						14520
					taaaataaaa	
					tgtaatccca	
					catectgget	
					tggtggcagg	
					cccgggaggc	
					agagcaagac	
totgtotoaa	*********	aaaaatggag	gttgggcgcg	gtggctcgcg	cctgtaatcc	14940

ggccaacatg gtgaaacctt gtctctacta aaattacaaa aattagccag gcacgatggc 15060 aggcacctgt aatcccagct acttaggaga ctaaggcagg agaatagctt gaacctggga 15120 gatggaggtt gcagtgggct gagatcgcc cactgccctc cagtagagtg agattccgtc 15180 tcaaaaaaaaa aaaaaaagaa gaaatggaga tacaaactta ctacctacct ccttacaacc 15240 taccctcaca gtattactgt gaataaaagt gtgtgtagca ctgggaacac tattcacaga 15300							
aggcacctgt aatoccaget acttaggaga ctaaggcagg agaatagctt gaacctggga 15120 gatggaggtt geagtgtgct gagategege caetgecete cagtagagtg agattecegte 15180 teaaaaaaaa aaaaaaagaa gaaatggaga tacaaaactta etacetacet cettacaacec 15240 taccetcaca gtattactgt gaataaaaagt gtgtgtagac etgggaacac tattecacaga 15300 gcactcatga atgtttgtte tttgttatta gttactagag aggcaaatgt etgcaggge 15360 tgaataaata gtgtggattg gtgattgteg cacatateta aagaagtagt tatttttte 15420 aaattaaaact tagtttaaaa accaatataa ggccgaggc agtggetcac acctgtaate 15480 ccagcacttt gggaggcega ggtgggcaga teatttgagg teaggagte gagaattge 15600 aggcatgatg gcaggtecet gtaateccag etactgggg ggccgaggc aggagaattge 15600 aggcatgatg gcaggtecet gtaateccag etacttggg ggccgaggc aggagaattge 15600 aggcatgatg gcaggtecet gtaateccag etacttggg ggccgaggc aggagaattge 15720 gtgacagagg gagacactgt etcaaaaaaa aaaaaaaaa accaaaacca atataataaa 15780 taagtggca gcaatgaaac agaaagtgaa aagttagtga agcaaaacta gtactgtatt 15840 cagaataaaga tgctgaatet agatttggte accagaatag ggtectttgt ggcaacctgg 15720 gtgacagagg gagacactgt etcaaaaaaa accaaaaaaa accaaaacca atataataaa 15780 taagtggca gcaatgaacc agaaagtgaa aagttagtga agcaaaacta gtactgtatt 15840 cagaatgatg ctgactcacc actgccagga tgaaatttet ttcagtgget actcatttee 15960 ctttatttta agtccatget cacagagga tgaaatttet ttcagtgget actcatttee 15960 ctttatttta agtccatget cacagaggag gttgataga gggatatga gtgttetgat 16020 tttaattaataa caggaagggt etggaagtag tacctgtata ggggatatga gtgttetgat 16020 caccagtcaa ccttcctttg gacattagg aaggtcaaaa acctgaaagg ccaaaaggta 16200 caccagtcaa ccttcctttg accacctc cttcctcgtt gettetttaa gcattgacet 16140 cagaatgtet acacctcttt gacattagg aaggtcaaaa acctgaaagg ccaaaaggta 16200 ggcatagtat agggtettt ttgccaccta actcctcttt ttacagagg agaagttg 16200 caccagtcaa ccttcctttg accaccaa actcacctc tttcctcgtt gcttctttaa gcattgacet 16300 ggcttagtta tggaatttt ttgccaccta gcctaggag aggatgtee tggaggatt 16300 caccagtcaa ccttcctttg accaccaa gaccaggag gcttttttee ttgaatgge cacacagtg 16620 attatggaatte cagagcatt ttcccagtga gagatggccc caggacaaag gcaaccagtg 16620 attatggcattt cagactggg cacactagg	cagcactttg	ggaggtcga	g gcgggcgga	t cacctgagg	t caggagttc	c agaccagcct	15000
gatggaggtt geagtgtget gagategege caetgecete cagtagagtg agattecegte teanananana anananana ganatggaga tacananetta etacetacet cettacaacec 15240 taccetcaca gtattacetgt gananangt gtgtgtagea etggganane tattecacaga 15300 geacteatga atgtttgtte tttgttatta gttactagag aggananetg etgecaggge 15360 tgantanata gtgtgaattg gtgattgteg cacatateta angangtagt tattttttte 15420 anattananet tagtttanana accanatataa ggeegagge agtggeteae accetganate 15480 coageacttt gggaggeega ggggggaga teatttgagg teaggagtte gagactagee 15540 tggecanacat ggtgananece tytecteget ananananan ananagtaca ananatagee 15540 tggacacaat ggtgananece tytecteget ananananan accanangtaca ananatage 15600 aggontgatg geaggtegagg ttgtagtgag cegagtttg geoactgeae tteagecetgg gtgacagagg gagacactgt etcanananan ananananan accananacea atananan 15780 ttaganeceag gaggtggagg ttgtagtgag cegagtttg geoactgeae tteagecetgg gtgacagagg gagacactgt etcanananan ananananan accananacea atananan 15780 ttangtggeen geantganac aganagtgan angttagtga ageananett gtactgtatt 15840 getagtttgg etgacteace actgeeagga tgananttet tteagtgget accatttee 15960 getagtttgg etgacteace actgeeagga tgananttet tteagtgget accatttee 15960 getagtttgg etgacteace actgeeagga tgananttet tteagtgget accatttee 15960 getagtttgg etgacteace actgeeagga tgananttet tteagtgggt agaacctgg 16200 tacttanataan angganagggg etgganagag gtttgatana agggatagga gtggttggta 16200 tacttanataa cagganaggg etgganagag gtttgatana accananacca 16200 ggeetagatt aggacatte accanaganan catcagectt ganagagtte engagagtte 16200 agactgata tgganatttt accanaganan catcagectt ganagagtte etgggggg gtaatgggt tgganatttg getecatang accanaccaga gatttettgt tanaccagggt 16360 ttgganatgete accatecttt tycaccata accatecte tttacagagg ananangtt 16380 agaccagaga gatttaatgg ettgectang atcacaccag agatttetg tanaccaggg 16380 agaccagaga gatttatag gecattcang atcacaccag agatttetg tanaccagg 16380 atcattcate etcanatya gacattcan tttecattg geagacagag geaacactgg 16400 atcattagga atttanacca aggacgaga gagatggece caggacaaag geaacactga 16400 atcattgaga accatagt geaattcaa tttecaatgg cataacaga geaacactga	ggccaacatg	gtgaaacct	t gtototact	a aaattacaa	a aattagcca	g gcacgatggc	15060
teasasanaa aasasasasa gasatggaga tacasactta etacetacet cettacaace 15240 taccetcaca gtattacetg gaatasasagt gtgtgtagac etgggaacac tattecacaga 15300 gcactcatga atgtttgtte tttgttatta gttactagag aggcaaatgt etgecaggge 15360 tgaatasata gtgtggaattg gtgattgteg cacatateta aagaagtagt tattttttte 15420 aattasaact tagtttaaaa accastataa ggccgagege agtggetcac acctgtaate 15480 ccagcacttt gggaggecga ggtgggcaga teatttgagg teaggagtte gagactagec 15540 tggccaacat ggtgaaacce tgtecteget aasaasaasaa aasaagtaca aasattagec 15600 aggcatgdg gcaggtecet gtaateccag etacttggga ggccgaggea ggagaattge 15600 aggcatgdg gcaggtegagg ttgtagtgga ccgagtttgt gecactgcac teagcectgg gtgacagagg gagacactgt etcasaasaaa aasaasaasaa accaasacca atataataaa 15780 taagtggcca gcaatgaaca agaaagtgaa aggtaagtg agcaaaacta gtactgtatt ttgaacccag gaggtggagg ttgtagtgte accagaatag ggtectttgt ggcaacctgg gtgacagagg gagacactgt ctcaasaasaa aasaasaasaa accaasaacca atataataaa 15780 taagtggcca gcaatgaaca agaaagtgaa aagttagtga agcaaaacta gtactgtatt taagtggcca gcaatgaaca agaattggt accagaatag ggtectttgt ggcaacctgg gctagtttgg ctgaatcacc actgccagga tgaaatttet ttcagtgggt accatttcc tttatttta agtccatgct cacagagcaa cettetgatg cetaattcag ettectggag ttacttaataa caggaagggg teggaagtag tacctgtata ggggatatga gtgttctgat 16000 tttaattataa caggaaggg ctggaagtag tacctgtata ggggatatga gtgttctgat 16200 tacttaattta aggtccatte accaagaaca cettectgat gettetttaa gaaccacacca 16140 aggccagatat agaatttat tgcacacacc ettectegtt gettetttaa gaaccacacca 16200 aggccagaga gatttaatgg cttgccataa gaccacacaca gactttctgt taaccacggg tactggtat tggaatttt tcccagaga gattaccacacac gattttctgt taaccacggg tactggatat ggaatttat gacattcaa tttccacatg gacattccat gacacacacac accagtcaa cettcctttg accacacacacacacacacacacacacacacacacaca	aggcacctgt	aatcccagc	t acttaggag	a ctaaggcag	g agaatagct	t gaacctggga	15120
taccetcaca gtattactyt gaataaaagt gtytytagca ctyggaacac tattcacaga 15300 gcactcatga atgtttytte tttyttatta gttactagag aggacaatgt ctyccaggge 15360 tyaataatat gtytgaattg gtyattyteg cacatacta aagaagtagt tatttttte 15420 aattaaaat gtytgaattg gtyattyteg cacatacta aagaagtagt tatttttte 15420 aattaaaat gygyagaccag gygygycaga teattyagg teagyagteg agaactagce 15540 tygcaacat gygyagacca gygygycaga teatttyagg teagyagtte gagactage 15600 aggacatgat gycagyagga gytgygycaga gagaattge 15600 aggacatgat gycagytega gytgyagaga cegagttyg geogacgag gyagaattge 15600 ttgaaccag gagygygagg tygaagtgag cegagttyg geoactgaac teagyaggg 15720 gygacagagg gagacactgt ctcaaaaaaa aaaaaaaaa accaaaacca atataataaa 15780 ttaagygyca gyagacactgt ctcaaaaaaa aagaaagtaga gycagagg gyagaactgg 15900 gyagacagagg gagacactgt ctcaaaaaaa aagaaagtga gyacattyg gyaacctgg 15900 gycagttyg ctgaaccag atgaagtgaa aagttagtg gyacattyg gyaacctgg 15900 gycagttyg ctgaaccac actgecagga tyaaatttet tteagtgyg agaacctgg 16020 tacttaataa caggaagggt ctgaagtag tacctgtata gyggatatga gtytetgat 16000 tttaatagt aattcataag tytacagagg gtttgataaa tgytaagag caaaaagcta 16140 cagaatgte aattcataag tytacagagg gtttgataaa aggtaagag caaaaagcta 16200 gycctagatt aggyteatte accactett gyacattagg aaggtcaaaa acctgaaagg caaaaagcta 16200 gycctagatt aggyteatte accactett gacattagg aaggtcaaaa acctgaagg agaattte ttggtagte 16200 caccagtcaa cetteetttg atcacacte cttectegt gettettaa geattgacet 16300 gycctagatt aggytectett accactett gacatcac cttectett gataatgge tygaatttet tyctcaccta acctectet ttaacagagg aagaagttga 16300 agaccagaga gytteccctg ccagacagag gyctttttee ttgaattge taacacaca 16500 ttgagatate cgaagacttt teccagtge agaccagag gyatteteet ataaggggt gyaatteet gycaaccag gyatteteet gyacatteet ataagagga gyatteteet taacacacte 16500 aattagga taacacagtg gyacatteet ataagaggat gyacacacaga gaatteete 16740 aattagga aacctagtag geaatteete 16740 aattagga aacctagtag gyacacacaga gyacacacaga gyacatteete 16740 aattagga aacctagtag gyacacacaga gyacacacaga gyacacacaga aacctagtag aacctagaa acctagaaca acctattaga gacacacaga cettaataga caccacatac	gatggaggtt	gcagtgtgc	t gagategeg	c cactgccct	c cagtagagt	g agattccgtc	15180
geneticatga atgittighte titighteatia gittactaga aggenaatgi etgecaggge 15400 tigaataatai gitgaattig sigaittige cacatateta aagaagiagi tattittitte 15420 aattaaaaci tagittaaaa accaataaa giccigagege agiggeteae accigtaate 15480 coagcactit gigaggega gigiggeaga teatitigagi teaggagite gagactagee 15540 tiggecaacai gigigaaacce tigtetetget aaaaaaaaaa aaaaagaca aaaattagee 15600 aggeatgat gicaggeeci gitaateceag etactigga giccigaggea gigagaatige 15600 titgaaccaag gaggiggagg tigaagaaga ecqaqitigi gecactigaa eticageetgi 15720 gigacagagg gagacactgi eticaaaaaaa aaaaaaaaaa accaaaaaca atataataaa 15780 taagiggeca gicaatgaaca agaaagigaa aagitagiga ageaaaaca gicaactgi 15900 gicagtigge digaactagaac agaaagigaa aagitagiga ageaaaaca gicaactgi 15900 gictagittig etigactacac actgecagga tigaaattiet ticagiggei actcattice 15960 cittaattata agicaatgi eacagagaa eccitergati gicaattaga gitteetiggi 16020 tacttaataa caggaagggi etigaaggaa tacctitata gigggatatga gitteetiga 16020 tacttaataa caggaagggi etigaaggaga agittigataaa tiggtaaggi agaaccatca 16140 cagaatgict acacctettt giacaattagg aagitcaaaa acctgaaagg caaaaagcta 16200 gigectagatt agigteatte accaagaaaa catcageet gaagagtiet etiggiggic 16200 caccagicaa cetteetitig atcacacce eticetegt gictettitaa giattigaeet 16300 gigeatagita tiggaattit tigeteaccia actcetteet titacagagg aagaagtiga 16380 aagiccagaga gatttaatgi etigectaaa atcaccice titeetigit gictettitaa giattigaeet 16300 agiattigta etigaagatti titeecagtig agicciggaga aggattiee tiggaggit 16300 attigagatate egaagcatti ticecagtig agicciggaga aggattiee tigaagaatti 16500 attigagatate etiaaggit gicaattecat titetaatta gitatcagga gicaacagag 16620 attigagatate etiaaggit gicaattecat gicttatgig etacagaaaa 16800 attigagatate cagaagcatti ticecagtig agicciggaga aggatigeee tigaacaaaa 16680 attigagatatee cagaagcaa agicagtaga giagtiggee caggaacaagi gicatactetig 16740 attigagaatti cagettiggi gicaacteaaa atticatagi gicaacaaga cactattie 16800 attigagaa acactagtig gicaacaaaa accaacaacaa cactaaaaga cactagtiga acctitatag etigacaataa acctitatag cetagaaat cactagaaga titactita	tcaaaaaaaa	aaaaaaaga	a gaaatggag	a tacaaactt	a ctacctacc	t ccttacaacc	15240
tgaataatat gtgtgaattg gtgattgtcg cacatatcta aagaagtagt tatttttt 15420 aattaaaact tagtttaaaa accaatataa ggccgagcg agtggctcac acctgtaatc 15480 ccagcacttt gggaggccga ggtgggcaga tcatttgagg tcaggagttc gagactagcc 15540 tggccaacat ggtgaaccc tgtctctgct aaaaaaaaaa	taccctcaca	gtattactg	t gaataaaag	t gtgtgtagc	ctgggaaca	c tattcacaga	15300
anttananct tagtttanan accantatan ggccgagcg agtggcton acctgtanto 15480 coagcacttt gggaggcga ggtgggcaga teattgagg teaggagtte gagactagec 15540 tggccaacat ggtgaaaccc tgtetetget ananananan ananagtaca ananttagec 15600 aggcatgatg geaggteect gtaateceag etactggga ggccgaggca ggagaattge 15720 gtgacagag gaggtggagg ttgtagtgag cegagttgt gecactgeac tteagectgg 15720 gtgacagagg gagacactgt eteananan ananananan accananaca atataatan 15780 taagtggca geaatganac agaangtgan angttagtga ageanacta gtactgtatt 15840 cagatananga tgetgaatet agatttggte accagaatag ggteetttgt ggcanectgg 15900 getagtttgg etgacteace actgecagga tganattet tteagtgget actattee 15960 ctttattta agtecatget eacagagean cettergatg cetaatteag etteetggga 16020 tacttaataa caggaagggt etggaagtag tacetgtata ggggatatga gtgteetgat 16020 tettattata agtecatget gacagagag gttgatana tggttaggte agaaccatca 16140 cagaatgtet acacctettt ggacattagg aggtecanan actganagg cananageta 16200 ggcctagatt agggteatte accananana catcancet gaagagttet etgggtggte 16260 caccagtean cetteetttg atcacaccte etteetegtt gettetttan gcattgacet 16320 ggatatggga tggaatttt tgetecatag accetectet tttacagagg anagaagttga 16380 agaccaggag gatttaatgg ettgecetaag atcacacga gatttetgt taaccaggg 1640 ggatttteag gtgtteete cagacagag getttttee ttgaattgee tagagattee 16500 ttgaattgta etcantgtta gacatteaat tttetaatta gtatecatgga gcaacagtg 16620 attgatttee etaaggggt geaatteeat gettatgge ttacagacca tatagacana 16680 tateagetgt taanatgaca aggcagtaga gattgggee cagacaaag gcaacatgta 1680 attgagatate cagttggg etcagcaaaat tteacatggg catatacaca gcaacatgta 1680 attgagtat taanatgaca aggcagtaga gattgggee cagaacaag gcaacatte 16740 atgttagga acctagtgg etcagcaaaat tteacatgge aactaaaaga cagcattee 1680 attgagatat cagettggg ttetgttanan antacatgge tagtettaaat cetetgatag 1680 attataget attatacce atteagaga ceanacatgge aactaaaaga cagcattee 1680 attgagatat cagettgg tectgttaaa aatcactget tgettaaaaa cectagatat 17100 attgtagcaat tgtteettea ggccagaat cetatacac cectatatgg ceatacaca 17040 aggettacag acctgteag cgttatatga geatacacaa cectatatgg catacacaca 17100 attg	gcactcatga	atgtttgtt	tttgttatt	a gttactagag	g aggcaaatg	t ctgccagggc	15360
coagcacttt gggaggccga ggtgggcaga tcatttgagg tcaggagttc gagactagcc  tggccaacat ggtgaaaccc tgtctctgct aaaaaaaaa aaaaagtaca aaaattagcc  tggccaacat ggtgaaaccc tgtctctgct aaaaaaaaaa	tgaataatat	gtgtgaattg	gtgattgtc	g cacatatct	aagaagtagi	tattttttc	15420
tggccaacat ggtgaaaccc tgtctctgct aaaaaaaaa aaaaagtaca aaaattagcc 15600 aggcatgatg gcaggtccct gtaatcccag ctacttggga ggccagggca ggagaattgc 15600 ttgaacccag gaggtggagg ttgtagtgag ccaggtttgt gccactgcac tccagcctgg 15720 gtgacagagg gagacactgt ctcaaaaaaa aaaaaaaaaa	aattaaaact	tagtttaaaa	accaatata	a ggccgagcg	agtggctcad	cacctgtaatc	15480
ttgaaccaq gaggtqqqq ttqtqtqqq ccqqqtttqt qccactqcac ttcaqcctqq 15720 gtqacqqqqq qqqaattqc tccaaaaaaa aaaaaaaaa accaaaacca atataataaa 15780 taaqtqqq qqqacqqq ttqtqqqq aqqaattqq qccaqqqqq qqqaactqq 15780 taaqtqqqq qqaactqq ctcaaaaaaa aaaaaaaaaa	ccagcacttt	gggaggccga	ggtgggcag	tcatttgag	tcaggagtto	gagactagcc	15540
ttgaacccag gaggtggagg ttgtagtgag ccgagtttgt gccactgcac ttcagcctgg gtgacagagg gagacactgt ctcaaaaaaa aaaaaaaaaa	tggccaacat	ggtgaaacco	tgtctctgc		aaaaagtac	aaaattagcc	15600
gigacagagg gagacactgi cicaaaaaaa aaaaaaaaaa accaaaacca atataataaa 15780 taagiggca gcaatgaaac agaaagigaa aagitagiga agcaaaacta gtactgiatt 15840 cagataaaga tgctgaatct agattiggic accagaatag ggtccttigi ggcaacctgg 15900 gctagittigg cigactcacc actgccagga tgaaattict ticagiggci accaatticc 15960 ctttatitta agiccatgci cacagagcaa ccitcigatg cctaaticag citcciggga 16020 tacttaataa caggaagggi ciggaagiag taccigiata ggggataiga gigitcigat 16080 tttaatagic aaticataag tgiacagagg gittigataaa tggttaggic agaaccatca 16140 cagaarigici acaccicctti ggacattagg aaggicaaaa accigaaagg ccaaaagcta 16200 ggcctagatt agggicatic accaagaaaa catcagccii gaagagitci cigggiggic 16260 caccagicaa ccitccitig atcacaccic citccicgii gcitcitiaa gcattgacci 16320 gtaatgggia tggaattit tgccaccta actccitcct titacagagg aagaagitga 16380 agcccagaga gatttaatgg citgcctaag atcacacgca gattitcigi taaccaggii 16440 gattiticag gigticccig ccagacgagg gcittiticc tigaattgcc tagagattic 16500 titgagatatc cgaagcatti ticccagiga agcctggaga aggatgccc tagagattic 16500 titgagatatc citaadgii gcaattcaat titctaatta giatcatgga gcaacagigg 16620 atcagcigt taaaatgaca aggcagtaga gatgiggcc caggacaaag gcaaccagig 1660 tatcagcigt taaaatgaca aggcagtaga gatgiggcc caggacaaag gcaaccagiga 16740 titgitagiga acactagii gccagcaaat ticacatggi catatacacg gccaaccigi 16800 titgitagiga acactagii gccagcaaat ticacatggi catatacacg gccaaccigi 16920 ticticacci ccigaagaa actcittagc ctagcagaat tggittitag tgcctigccc 16980 ticticacatgi tigitccitca gcciccitgi ctaattgci cccataatgi ccatgcacta 17000 tigcacatgi tyticcitca ggccagaatg cctgitactg cccigcaaatca acccatacct 17220 tictccacac atcagagact tctictcicti tigtitatic citcgitati citcitatac 17220 tictccacaca atcagagact tctictcicti tigtitatici citcitatat citcitatac	aggcatgatg	gcaggtccct	gtaatccca	g ctacttggga	ggccgaggc	ggagaattgc	15660
taagtggcca gcaatgaaac agaaagtgaa aagttagtga agcaaaacta gtactgtatt 15840 cagataaaga tgctgaatct agatttggtc accagaatag ggtcctttgt ggcaacctgg 15900 gctagtttgg ctgactcacc actgccagga tgaaatttct ttcagtggct actcattcc 15960 ctttatttta agtccatgct cacagagcaa ccttctgatg cctaattcag cttcctggga 16020 tacttaataa caggaagggt ctggaagtag tacctgtata ggggatatga gtgttctgat 16080 tttaatagtc aattcataag tgtacagagg gtttgataaa tggttaggtc agaaccatca 16140 cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa ccttcctttg atcacacctc cttcctcgtt gcttcttaa gcattgacct 16320 ggaatgggta tggaatttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 ggatttttcag gtgttccctg ccagacgagg gcttttttcc ttgaattgcc tagagatttc 16500 ttgagaatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atcattgtta ctcaatgtta gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tatcagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaag gcatactctg 16740 atgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 accttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattccc 16980 actttggcattt cagcttgcg tctgttaaa aatcactgct tgcttaaata cctctgatag 16920 accttcactg cctgtaggca actctttagc ctagcagact tggctttag tgcatcacta 17040 agacttacag acctgctcag cgttatatga gcataccata ctctttatgc cctagtgcat 17100 actgcacatgt tgttccttca ggccagaatg cctgttactg cctgcaaatcc acccatacct 17220 actcccacca atcagagact tcttctctct ttgttattct cttcgttat cctctctatac accacacaca atcacacaca tcttctctct ttgttattct cttcgttat cctctctatac accacacaca atcacacaca tcttctctct ttgttattct cttcgttatt cctctctatac accacacaca atcacacaca tcttctctct ttgttattct cttcgttatt cctctctatac accacacacacaca atcacacaca tcttctctct ttgttattct cttcgttatt cctctctatac accacacacacacacacacacacacaca	ttgaacccag	gaggtggagg	ttgtagtgag	, ccgagtttgt	gccactgcac	ttcagcctgg	15720
cagataaaga tgctgaatct agatttggtc accagaatag ggtcctttgt ggcaacctgg 15900 gctagtttgg ctgactcacc actgccagga tgaaatttct ttcagtggct actcatttcc 15960 ctttatttta agtccatgct cacagagcaa ccttctgatg cctaattcag cttcctggga 16020 tacttaataa caggaagggt ctggaagtag tacctgtata ggggatatga gtgttctgat 16080 tttaatagtc aattcataag tgtacagagg gtttgataaa tggttaggtc agaaccatca 16140 cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa ccttccttg atcaccacc cttcctcgtt gcttctttaa gcattgacct 16320 gtaatgggta tggaatttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 aggcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagattc 16500 acgcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcagga gaacagtgg 16620 actgatattc accaaggatt gcaattccat gcttatgtg ttacagccca tatagacaaa 16680 actgattatct ataaggggtt gcaattccat gcttatgtg ttacagccca tatagacaaa 16680 actgatagtga accatagtg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 actgatagtga accattagtg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 actttagca attataccc attcagagag ccaaactggc aactaaagat cagcattccc 16980 accattagca accttctg gcctcctgt ctaattgct tggtcttaaa ccctcgatag 16980 accatcact caccattct ggcctcctgt ctaattgct cccatagtg ccatacaca 17040 agacttacaa acctgctcag cgttatatag gcataccata ccctttagc cctagagcat 17100 acgcacatgt tgttccttca ggccagaaat ccttcttagc cctagagcat acccatacct 17280 accacactg tgttccctca accacacac accatacca accacacacac	gtgacagagg	gagacactgt	ctcaaaaaa		accaaaacca	atataataaa	15780
getagtttgg etgacteace actgecagga tgaaatttet tteagtgget acteattee 15960 ctttatttta agtecatget eacagageaa cettetgatg cetaatteag etteetggga 16020 tacttaataa caggaagggt etggaagtag tacetgtata ggggatatga gggttetgat 16080 tttaatagte aatteataag tgtacagagg gtttgataaa tggttaggte agaaceatea 16140 cagaatgtet acacetett ggacattagg aaggecaaaa acetgaaagg ceaaaaggeta 16200 gggectagatt agggteatte aceaagaaaa cateageett gaagagttet etgggtggte 16260 caceagteaa cetteetttg ateacacete etteetegtt gettettaa geattgacet 16320 gtaatgggta tggaattett tgeteaceta acteetteet tttacagagg aagaagttga 16380 ageecagaga gatttaatgg ettgeetaag ateacacegea gattteetgt taaceagggt 16440 gatttteag gtgtteectg eeagacgagg getttttee ttgaattgee tagagattee 16500 attgagatate etgaageatt tteecagtge ageetggaga aggatgeee tgteaacaca 16560 geatttgta etcaatgtta gacatteaat tttetaatta gtateatgga geaacagtgg 16620 attaggttateet ataaggggtt geaattecat gettatgtge ttacageeca tatagacaaa 16680 attaggetgt taaaatgaca aggeagtaga gatgtgeee caggacaaag geaacatgta 16800 attggtagta acactagttg gecageaaat tteacatggg catatacacg geeaactgta 16800 acettagge atttatacee atteagagag ceaaactgge aactaaagat eageatteee 16980 acettagge attatacee atteagagag ecaaactgge aactaaagat eageatteee 16980 acettagee etgagagaa actettage etagtagaa ecatagage etaatetee 16980 acettacee etgageaa actettage etagtagaa ecaatagte etgetetaaa acteettage ecaacagea 17040 ageettacag acetgecag egtatataga geataceata etettatage ecaageata 17040 ageettacag acetgecag egtatataga geataceata etettatage ecaageata 17100 acetgeacatg tgtteettea ggeeagaatg ectgttactg ectgeaaate ageetatag 17160 ageetgeeaa aceacaca ateeteete tgttactee etgecaaaca aceacacaca aceacacaca aceacacaca aceacacacac	taagtggcca	gcaatgaaac	agaaagtgaa	aagttagtga	agcaaaacta	gtactgtatt	15840
tecttattta agtecatget eacagageaa cettetgatg cetaatteag ettectggga 16020 tacttaataa caggaagggt etggaagtag tacetgtata ggggatatga gtgttetgat 16080 tttaatagte aattecataag tgtacagagg gtttgataaa tggttaggte agaaceatea 16140 caggaatgtet acacetettt ggacattagg aaggteaaaa acetgaaagg ceaaaageta 16200 ggeetagatt agggteatte accaagaaaa cateageett gaagagttet etgggtggte 16260 caccagteaa cetteetttg atcacacete etteetegtt gettetttaa geattgacet 16320 gtaatgggta tggaattett tgeteaceta acteetteet tttacagagg aagaagttga 16380 ageecagaga gatttaatgg ettgeetaag atcacacgea gattteetgt taaccagggt 16440 ggatttteag gtgtteeetg ecagacgagg getttttee ttgaattgee tagagattee 16500 attgagatate egaageattt tteecagtge ageetggaga aggatgteee tgteaacaca 16560 geatttgtta etcaatgtta gacatteaat tttetaatta gtateatgga geaacagtgg 16620 atgattateet ataaggggtt geaatteeat gettatgtge ttacageeca tatagacaaa 16680 attagetgt taaaatgaca aggeagtaga gatgtggee eaggacaaag geatactetg 16740 atgttagtga acactagttg gecageaaat tteacatgge catatacaeg gecaactgta 16800 actttagge atttatacee atteagagag ecaaactgge aactaaagat eagcattete 16800 actttageattt cagetttegg ttetgttaaa aatcactget tgettaaata cetetgatag 16920 actetteactg eetgtaggaa actetttage etaatgege ecaatagtg ceatgeacta 17040 agettacag acctgeteag egttatatga geataceata etettatge eteagtgeat 17100 atgeacatgt tgtteettea ggeeagaatg eetgttactg eetggaaate ageetattag 17160 atgeacatgt tgtteettea ggeeagaatg eetgttactg eetggeaate ageetattag 17160 atgeecacaca atcagagact tetteetete ttgttatete ettegttatt eetetteatae	cagataaaga	tgctgaatct	agatttggto	accagaatag	ggtcctttgt	ggcaacctgg	15900
ttacttaataa caggaagggt ctggaagtag tacctgtata ggggatatga gtgttctgat 16080 tttaatagtc aattcataag tgtacagagg gtttgataaa tggttaggtc agaaccatca 16140 cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa ccttcctttg atcacacctc cttcctcgtt gcttctttaa gcattgacct 16320 gtaatgggta tggaattttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagatttc 16500 ttgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tatcagctgt taaaatgaca aggcagtaga gatgtggcc caggacaaag gcatactctg 16740 ctgttagtga acactagttg gccagcaaat ttcacatggc catatacacg gccaactgta 16860 stattaggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 stcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgccttgccc 16980 stactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 stgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17100 stgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 stgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc acccatacct 17220 stccccacca atcagagact tcttctctct ttgttattct cttctctatt ctcttcatac	gctagtttgg	ctgactcacc	actgccagga	tgaaatttct	ttcagtggct	actcatttcc	15960
tttaatagtc aattcataag tgtacagagg gtttgataaa tggttaggtc agaaccatca 16140 cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa cettectttg atcacaccte etteetegtt gettetttaa geattgacet 16320 gtaatgggta tggaattttt tgeteaceta actcetteet tttacagagg aagaagttga 16380 agcccagaga gatttaatgg ettgeetaag atcacacgca gattteegt taaccagggt 16440 gattttteag gtgtteeetg ecagacgagg getttttee ttgaattgee tagagattee 16500 atgagatate egaagcattt tteecagtge agcetggaga aggatgteee tgteaacaca 16560 geatttgta etcaatgtta gacattcaat tttetaatta gtateatgga geaacagtgg 16620 atgattatet ataaggggtt geaatteeat gettatgte ttacagecca tatagacaaa 16680 atcagetgt taaaatgaca aggeagtaga gatgtgeee caggacaaag geatactetg 16740 etgttagtga acactagttg gecageaaat tteacatggg catatacacg gecaactgta 16800 agactttagge atttatacce atteagagag ccaaactgge aactaaagat cagcattee 16980 etetgeattt cagetttgeg ttetgttaaa aatcactget tgettaaata cetetgatag 16920 etetteactg eetgtaggea actettage etageagaet tggtetttag tgetetgeee 16980 etactetett ecaccattet ggeeteetgt etaattgetg eccatatgtg ecatgeacta 17040 agacttacag acctgetcag egttatatga geataccata etetttatge etcagtgeat 17100 atgeacatgt tgtteettea ggecagaatg eetgtactg eetggeaate agectattag 17160 atgeacatgt tgtteettea ggecagaatg eetgtactg eetggeaate agectattag 17220 atceccacca atcagagact tetteetetet ttgttattee ettegttatt etetteatac 17220	ctttatttta	agtccatgct	cacagagcaa	ccttctgatg	cctaattcag	cttcctggga	16020
cagaatgtct acacctcttt ggacattagg aaggtcaaaa acctgaaagg ccaaaagcta 16200 ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa ccttcctttg atcacacctc cttcctcgtt gcttctttaa gcattgacct 16320 gtaatgggta tggaattttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagattc 16500 atgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtc ttacagccca tatagacaaa 16680 atgattatct ataaggggtt gcaattccat gcttatgtc caggacaaag gcatactctg 16740 atgatagtag acactagtg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 atgattagca atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 attggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 atcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgcc 16980 atcatctctt ccaccattct ggcctcctgt ctaattgctg cccatagtg ccatgcacta 17040 agacttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 atgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaaatc agcctattag 17160 atccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac	tacttaataa	caggaagggt	ctggaagtag	tacctgtata	ggggatatga	gtgttctgat	16080
ggcctagatt agggtcattc accaagaaaa catcagcctt gaagagttct ctgggtggtc 16260 caccagtcaa ccttcctttg atcacacctc cttcctcgtt gcttctttaa gcattgacct 16320 gtaatgggta tggaattttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagatttc 16500 ktgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtcc tgtcaacaca 16560 gcatttgta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 ktgagatatc taaaatgaca aggcagtaga gatgtggcc caggacaaag gcatactctg 16740 atgatagtga acctagtg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 accttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 accttaggcattt cagctttggg ttctgttaaa aatcactggc aactaaagat cagcattctc 16860 accttagcatt cagcattgg cttagttaaa acctctgatag 16920 accttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgcc 16980 acctctctct ccaccattct ggcctcctgt ctaattgctg cccatactgt ccatgcacta 17040 agacttacag acctgccag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 acceacatgt tgttcctca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 acccaccac atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17220 accccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac	tttaatagtc	aattcataag	tgtacagagg	gtttgataaa	tggttaggtc	agaaccatca	16140
granting of the content of the conte	cagaatgtct	acacctcttt	ggacattagg	aaggtcaaaa	acctgaaagg	ccaaaagcta	16200
gtaatgggta tggaatttt tgctcaccta actccttcct tttacagagg aagaagttga 16380 agcccagaga gatttaatgg cttgcctaag atcacacgca gatttctgt taaccagggt 16440 gattttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagatttc 16500 atgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 atacagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaaag gcatactctg 16740 atgattagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 agactttaggc atttataccc attcagagag ccaaactggc aactaacaga cagcattcc 16860 attggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 atcctcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgcc 16980 atactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 agacttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 atgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 agacttaccac atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17220	ggcctagatt	agggtcattc	accaagaaaa	catcagcctt	gaagagttct	ctgggtggtc	16260
agcocagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440 gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagatttc 16500 ttgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tatcagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaag gcatactctg 16740 atgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 stattaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 atttggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 atcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980 atactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17000 atgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17100 atgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17220 atccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17220	caccagtcaa	ccttcctttg	atcacacctc	cttcctcgtt	gcttctttaa	gcattgacct	16320
gatttttcag gtgttccctg ccagacgagg gctttttcc ttgaattgcc tagagattcc 16500 ttgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tatcagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaaag gcatactctg 16740 ctgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 gactttaggc attataccc attcagagag ccaaactggc aactaacaga cagcattcc 16860 cttggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 ctcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgcc 16980 ctactctctt ccaccattct ggcctcctgt ctaattgctg cccatagtg ccatgcacta 17040 aggcttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 ctgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 agtctgccaa taccatccca tcttctgtgg aggagcccc cgccaaatcc acccatacct 17220 atccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17280	gtaatgggta	tggaatttt	tgctcaccta	actccttcct	tttacagagg	aagaagttga	16380
ttgagatatc cgaagcattt ttcccagtgc agcctggaga aggatgtccc tgtcaacaca 16560 gcatttgtta ctcaatgtta gacattcaat tttctaatta gtatcatgga gcaacagtgg 16620 atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 atacagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaag gcatactctg 16740 atgattagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 gactttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 attggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 atcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980 atactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 aggcttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 atgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 atgcacacaca accacacca tcttctgtgg aggagcccc cgccaaatcc acccatacct 17220 atccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17280	agcccagaga	gatttaatgg	cttgcctaag	atcacacgca	gattttctgt	taaccagggt	16440
grattighta cicaatgita gacaticaat titictaatia giatcatgga gcaacagtgg 16620 atgattatic ataaggggit gcaaticcat gittatgigi tiacagicca tatagacaaa 16680 tatcagitgi taaaatgaca aggicagtaga gatgiggicci caggacaaag gcatactictg 16740 atgitagtga acactagitg gccagcaaat ticacatggg catatacacg gccaactgia 16800 gactitaggic attitatacci atticagagag ccaaactggic aactaaagat cagcatictic 16860 attiggicatii cagcittigii tictigtiaaa aatcactgic tigiitaaata cictigatag 16920 atciticactig cictigaggica actititagii ctagiiagaact tigiictitag tigiictigiici 16980 atactictii ccaccattii ggicciccigi ctaattgii cccatagii ccatgicacta 17040 aggictiacag acctgiccag cigitatatga gcataccata cictitatgii cicaggicat 17100 atgicacatgii tigiiccitica ggiccagaatg cccigitactig cccagcaatic agicciatagi 17160 agtictigiccaa taccatecca tictictigii aggagiccicc cicicaaatici acccatacci 17220 atcicccacca atcagagact ticticictii tigiiattic citicgitatii cicticataci 17280	gatttttcag	gtgttccctg	ccagacgagg	gctttttcc	ttgaattgcc	tagagatttc	16500
atgattatct ataaggggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680 tatcagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaag gcatactctg 16740 stgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 gactttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 sttggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 stcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980 stactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 sagcttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 stgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 stgcacacaca taccaccca tcttctgtgg aggagcccc cgccaaatcc acccatacct 17220 stccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17280	ttgagatatc	cgaagcattt	ttcccagtgc	agcctggaga	aggatgtccc	tgtcaacaca	16560
tatcagctgt taaaatgaca aggcagtaga gatgtggccc caggacaaag gcatactctg 16740  ttgttagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800  gactttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860  tttggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920  tccttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980  ttactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040  lagcttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100  ltgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160  lgtctgccaa taccatccca tcttctgtgg aggagcccc cgccaaatcc acccatacct 17220	gcatttgtta	ctcaatgtta	gacattcast	tttctaatta	gtatcatgga	gcaacagtgg	16620
regettagtga acactagttg gccagcaaat ttcacatggg catatacacg gccaactgta 16800 gactttaggc atttataccc attcagagag ccaaactggc aactaaagat cagcattctc 16860 sttggcattt cagctttgcg ttctgttaaa aatcactgct tgcttaaata cctctgatag 16920 stcttcactg cctgtaggca actctttagc ctagcagact tggtctttag tgctctgccc 16980 stactctctt ccaccattct ggcctcctgt ctaattgctg cccatatgtg ccatgcacta 17040 gagcttacag acctgctcag cgttatatga gcataccata ctctttatgc ctcagtgcat 17100 stgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 ggctccaa taccatccca tcttctgtgg aggagcccc cgccaaatcc acccatacct 17220 stccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17280	atgattatct	ataaggggtt	gcaattccat	gcttatgtgc	ttacagccca	tatagacaaa	16680
gactttagge atttatacce atteagagag ceaaactgge aactaaagat cagcattete 16860 ettggeattt cagetttgeg ttetgttaaa aateactget tgettaaata cetetgatag 16920 etetteactg cetgtaggea actetttage etageagaet tggtetttag tgetetgeee 16980 etacteettt ceaecattet ggeeteetgt etaattgetg eecatatgtg ceatgeacta 17040 etageatacag acetgeteag egttatatga geataceata etetttatge eteagtgeat 17100 etgeacatgt tgtteettea ggeeagaatg eetgttactg eetggeaate ageetattag 17160 etgeacatgt tgtteettea tettetgtgg aggageeee egeeaaatee aceeatacet 17220 eteeceacea ateagagaet tetteetet ttgttattet ettegttatt etetteatae 17280	tatcagctgt	taaaatgaca	aggcagtaga	gatgtggccc	caggacaaag	gcatactctg	16740
tettggcattt cagcettgcg tectgetaaa aatcactgot tgcttaaata cetctgatag 16920 etettcactg cetgtaggca actetttage etagcagact tggtetttag tgetetgece 16980 etactetett ceaccattet ggceteetgt etaattgetg eccatatgtg ceatgcacta 17040 etagettacag acetgeteag egetatatga geataceata etetttatge eteagtgeat 17100 etgeacatgt tgtteettea ggeeagaatg eetgttactg eetggeaate ageetattag 17160 etgeacatgt tgtteettea tettetgtgg aggageeee egeeaaatee aceeatacet 17220 eteeceaca atcagagact tetteetet ttgttattet ettegttatt etetteatac 17280	tgttagtga	acactagttg	gccagcaaat	ttcacatggg	catatacacg	gccaactgta	16800
recttcacty cotytaggea actetttage ctaggaget tygtetttag tygtettgecc 16980 reactetett ccaccattet gycetcetyt ctaattgety cccatatyty ccatgeacta 17040 regettacag acctyctcag cyttatatya geataceata etetttatye eteagygeat 17100 regeacatyt tytteettea gyceagaaty cetyttacty cetygeaate ageetattag 17160 regettygeaa taccatecea tettetytyg aggageeee egeeaaatee acceatacet 17220 receccacca atcagagaet tetteetet ttyttattet etteyttatt etetteatae 17280	gactttaggc	atttataccc	attcagagag	ccaaactggc	aactaaagat	cagcattctc	16860
restacted the consense of the state of the s	ttggcattt	cagctttgcg	ttctgttaaa	aatcactgct	tgcttaaata	cctctgatag	16920
ragettacag acctgeteag egitatatga geataceata etetttatge eteagtgeat 17100 etgeacatgt tgtteettea ggeeagaatg eetgttactg eetggeaate ageetattag 17160 egitetgeeaa taccateeea tettetgigg aggageeee egeeaaatee acceatacet 17220 eteeceacea ateagagaet tettetetet tigitattet ettegitatt etetteatae 17280	tcttcactg	cctgtaggca	actctttagc	ctagcagact	tggtctttag	tgctctgccc	16980
tgcacatgt tgttccttca ggccagaatg cctgttactg cctggcaatc agcctattag 17160 gtctgccaa taccatccca tcttctgtgg aggagccccc cgccaaatcc acccatacct 17220 tccccacca atcagagact tcttctctct ttgttattct cttcgttatt ctcttcatac 17280	tactctctt (	ccaccattct	ggcctcctgt	ctaattgctg	cccatatgtg	ccatgcacta	17040
gtctgccaa taccatecca tettetgtgg aggageeee egecaaatee acceatacet 17220	agcttacag a	acctgctcag	cgttatatga	gcataccata	ctctttatgc	ctcagtgcat	17100
etccccacca atcagagact tettetetet ttgttattet ettegttatt etetteatac 17280	tgcacatgt	tgttccttca	ggccagaatg	cctgttactg	cctggcaatc	agcctattag	17160
	gtctgccaa 1	taccatecea	tettetgtgg	aggagccccc	cgccaaatcc	acccatacct	17220
tragttata treatttrag tatttgttta caratriage atractetta gagtgtgaaa 17340	tecceacca a	stcagagact	tettetetet	ttgttattct	cttcgttatt	ctcttcatac	17280
	tcagttata 1	ccatttcag	tatttgttta	cacatctago	atcactctta	gagtgtgaaa	17340

ttctccaagt	gtggagccgt	atctagtttg	totttgtato	ccagagetta	gcaaagtgcc	17400
tagaatgtag	tgggtgctca	gagtgtttgc	tgggtgaatg	atgtatttgt	tgaacgactc	17460
tttggacact	tgaataaagt	ccatccagta	tgcaccatta	ccatctcttc	gctctacaat	17520
attcttttag	gcaagagctt	atcttttgag	gtgataagat	aagctcaaac	ttatgtagac	17580
taagacctca	gtctgtaaat	gtcatcccta	agtcttaaac	catcaaaacc	agggcctcaa	17640
ggaatggcat	gccttctgca	actgtagcaa	cctgctgtgc	ttattttgcc	gtgttttca	17700
ttttccccc	aaaagctaga	gtcccttctc	ccatgggcag	tgctggaagt	gtgctaacaa	17760
attetttete	catactgctt	acgattacaa	aaaaaaccct	cagcatctca	tgccagactt	17820
gagttaaggt	tgttttcttt	tgtgtgtcag	ctgtattctg	gtcatgactt	cctgatgatg	17880
ccctatagag	attttgctga	gatcagaggg	tgctccactg	ccatcagtag	cactgactct	17940
tgcagaagca	ccgtttctga	agttggctaa	tgtcatccct	cacgtttgtt	tgtttgaaat	18000
ttgttttagt	tccagagata	gcactttcat	ggaatgacgc	tatcttctag	aatcactttt	18060
tttttttt	tgagttggag	tctcśctgtg	tegecagget	ggagtgcagt	ggcacaatct	18120
cageteactg	caatctccac	cttccgggtt	caagtgattc	ccctgcctca	gcctcccgag	18180
gagctgttac	tacaggcgca	cacccccact	cctggctaat	tttatgtgtt	ttagtagaga	18240
cggggtttca	ccgtgttggc	caggatggtc	tegatetect	gactttgtga	tetgeetget	18300
teagectece	assgtgctgg	gattacaggt	gtgagtcacc	gcgcctggcc	tagaatcacc	18360
ttttatacc	ataacgtgag	caccactgcc	gcgtcaccaa	ggaaagagag	aggcagctac	18420
tgtggggtta	caaatgggta	agagtggcac	caggaaggtg	aaagtctcta	cttagccaag	18480
gcttaacaaa	atgtcaatca	ccaaacattt	atttattaag	ctacgttcag	gataagaaga	18540
tgaacaagct	atctgtacat	tcattttctc	gtttgtaaca	aggtaatgat	agtgatctat	18600
cctgcctgcc	tctgagggtt	attgtgagaa	taaaatgaaa	tcaagtggaa	aagcacttag	18660
gaaaaagaaa	agcattggtt	ttcaattgtt	agtgtggatc	agaaacactg	gggcttgttt	18720
aaaatgcaga	ttcttagccc	cagteteage	gattctgatt	ctgtatatct	gaagtgggac	18780
tcaggaatct	tgattttcaa	caagetgace	agagggtcca	atgctgctat	tcctttagtt	18840
acactttcag	aaatattact	gtaaatcaaa	tggcaagaat	aaaatagtta	tttgaggcag	18900
ttttagtatg	ttggacctgg	agtccaaaga	cttgggtcaa	actccagctt	tgtcagttcc	18960
tagacctgtg	accttaaaca	gcaaccttct	ctgtgaacct	tagttccctc	aggaacggct	19020
ctggtcacct	cctgctgtac	tccattgatg	actcaccaca	taaggeteee	tgggagtccc	19080
•	:		agcctcctac		ggtgctgtct	19140
					ggaagggttc	
			aggaaggacc			19260
caccagatca	aactacgtga	aggcaggcac	taggtactgt	cagtgcccag		19320
gcccatacca	ggtgtccaca	gatgcctagt	aaagaaacct	atgattcagg	acccccatga	19380
			taactaatgt			19440
			•		tgaggaatat	
		•			tttatgctgc	
			agttttctga			19620
cctcaatgtg	agctctagca	aggtattcag	gaatectgee	totacagtto	agageeteaa	19680

attgctgggt	atgttgagtt	cttgtatctg	atttttctag	atttcctgcc	cacattctta	19740
ctgtctggat	atcaggaaag	agtttatcaa	atgcctgtgg	asatccaaga	taaggtotca	19,800
tgatgagtaa	cccagtgaaa	acatgaagtc	aagtotaact	agtcactact	atttcactac	19860
tgctgactcc	tgatgatcag	ctccttttct	aagtgcttac	tgtccactta	ttccatcatc	19920
tgcctagaat	ttatgtgaag	gaatcaaagc	aaaaggatca	taaggcttcc	tttttccagt	19980
atgttttcc	tcctttttga	aaactgggcc	agttagctat	ctccattttt	atttcatgaa	20040
tacatcccca	gcgcctggta	tatagtagat	atggaacatt	acactttgga	gatattgcac	20100
ccattctcca	gtttctccaa	agttactasc	aatggttcca	tcactgtgcc	aacatatttt	20160
ctttttcaa	tatattggga	aataattctc	ccagtctgaa	aatctgaaca	catttcatgt	20220
gacttggtat	cctcatatgt	cttgggcttc	caattctcca	ttcctagttt	caagttcatg	20280
aactgtaaaa	caaaggatta	gactasatct	ctasagttct	atccagatgc	caaattcttt	20340
tctctttcca	tgatacctaa	gatagatgcc	aaatattgtc	ttttacctgg	tgtttgtgaa	20400
catgacatca	cattacagga	gtagcagata	ctaaactctc	actctgtaaa	acactgactg	20460
agttccatga	gccagatact	gaagtgagct	tgttcacata	tgttctcatt	taatgctcat	20520
aaccctgtga	agctgggaat	tgctgggaca	ttttatttat	ttatttattg	agacggagtc	20580
tggctctgtc	acctaggctg	gtgtgcaatg	gcatgatctt	ggctcaccgc	aacctccgcc	20640
tcccgggttc	aagcgattct	cttgcctcag	cctccgcagt	agctgggatt	acggggcaca	20700
caccaccaca	tccagctaat	tttgtatttt	tagcagagat	ggagtttctc	catgttggcc	20760
aggttggtca	cgaacacttg	acctcaagtg	atctgcctgc	ctcagcctcc	caaagtgctg	20820
ggattacagg	catgagccac	catgcctgcc	cgggaccctt	gttttagaag	gatgactgct	20880
gctataatgt	agaaagtgat	ttggaagagg	ggaggagtgg	ggcacgaaag	atggttagta	20940
gatggggtg	gtaatgctta	cctttcagta	tttggaggct	teggagteet	caaaaattct	21000
cttccttgat	tggagtcctc	ccagccaata	gagggcttca	cacaaacagt	ttcttgggtt	21060
ttgaattgtt	tgaccagagc	tttcttccga	caaaaggttg	gggtgattca	ttcacttacc	21120
acaccttgcc	tgaacattca	cttggggctg	ccggttatga	aggctattgt	tctccagcct	21180
gtcacagacg	ctttgaagac	ctgtgcctca	gctggttcta	aggagtcagt	ttgttcagct	21240
ccgtgccagg	tttccaactt	atgaaatgtg	ctggagatta	acacctctcc	tgccatttta	21,300
tccctactat	aattgccagt	caaaggattc	ctgcagttgc	ctctggcagc	cataactgat	·21360
gaatgttctg	ccagctgctc	tgaggaccta	gaagagcagt	tttctatcca	ggaccagttt	21420
ccaagggtgg	gagggtgaaa	tatatectec	agtgtgacat	ttcatctccc	agtgatgggt	21480
ggettgggee	ctttgaagtt	ggctctgagg	aaccacacac	ttgggtctga	gcagccagca	21540
gcttatcaca	tctggtgatc	aatccttcaa	aggttcctcc	tgaagtotga	atttttggag	21600
gtcaaatgga	ttccacctgg	gaggggcttc	tgcttcaact	caggacatgg	ggagaaggct	21660
gttectette	cagggggagg	cagttttcat	ggcattgaga	tgtcctctca	cttattcccc	21720
acccacccac	caagtccttt	gtaagaggag	tagggggaga	ggagagcgcc	tgcagcctcc	21780
tgctcacatt	cctagacacc	gactcactga	gcccgtcgcc	gctggaacag	cagagetgtg	21840
tgaaatgtca	agaggagtta	tgctcatagg	ctccctggcc	tcagtctctt	tgtggcttgc	21900
atattcttcc	attagtactg	tgttcatcac	atggaaatca	gagggtacaa	ttaaaagata	21960
atttgctagt	cccagactta	atttggggcc	cccttcttgc	ctgattgaat,	tacaggggaa	22020
cataatagat	ttttggtgag	asstagttgt	ctgtgtggct	gggagaaaga	ttgctcccag	22080

ctctccagct	gggcagccct	ttcagtatcc	cgtatgttat	ttccccactt	ccagcccacc	22140
tcacctcctc	tgtggccctt	gtgtgtcccc	teggetagga	tectgacete	ctgctcaaga	22200
gtttaaactc	aacttgagac	ccaaggaaaa	tagagagccc	tctgcaacct	cataggggtg	22260
aaaaatgttg	atgctgggag	ctatttagag	acctaaccaa	ggcccagaca	gagagagtga	22320
cttgctaaag	gccacatagc	tageceacag	tagttgtaac	aatagtotta	atgatattaa	22380
tggctaacat	ttatcaacct	ttaatgtgtc	ccagactttg	tgccaagggc	ttacatgcag	22440
tgcattgtcg	cattcaaacc	cagacagtct	ggctctgggc	ccaggctgag	ctttggtata	22500
gcatggtaga	acgttgtcta	taatgtctag	totgggttca	aatcctggct	tcacttctca	22560
catttacagc	tgagtgacct	caggcaagtg	atttaacctc	cctgtacctc	agttgcttta	22620
tctgtaaaga	gaaaaatcac	agcactgtgg	aatagtgggg	gttaaaattc	attcatacaa	22680
gtagtgctgc	aagcaatgtt	taatacaggg	tgagcacctg	ttcagtgctt	ccttcttctg	22740
gctgcctctg	gggctagagt	gtggtgtctt	cgtggtatag	atagatagat	atggctgagc	22800
tctgcacaaa	caccaagagc	tgttcttcac	tattagaggt	agtaaacaga	gtggttgagc	22860
tetgtggtte	tagaacagag	gccggcaagc	tatggcccat	tgcctatttt	aatacggcct	22920
gtgattgatt	gattttttt	ttctttttga	gacagagttt	cactcttgtt	gcccaggctg	22980
gaatgcaatg	gcacgaactc	ageteacege	aacctctgcc	tectgggtte	aagcgattct	23040
cctgtctcag	cctctcgagt	agctgggatt	acaggcatgt	gccaccacgc	ctggctaatt	23100
tttgtatttt	tagtagagac	agggtttctc	catgttggtc	aggctagtct	cgaacttcca	23160
acctcaggtg	atctgcccgc	ctcagccttc	caaagtgctg	ggattacagg	cgtgagccac	23220
catgactggc	ctgattgact	gatttttta	gtagagatag	ggtcttggtt	tgttacccag	23280
gctggtctca	aacttctggc	ttcaagcagt	ceteectect	tggcctctcg	aatgctggga	23340
ttataggcat	gagccactat	gcctggccta	tatgacctgt	gatttttaat	ggttagggga	23400
aaaaaagcaa	aagaatgctt	tgtgacatgt	ggaaattaca	tgaaactcaa	atatcagtgt	23460
cccagcctgg	gcaacaaagt	gagaccctgt	ctctacaaaa	aataaaaaaa	aataagccag	23520
ggccgggcgc	agtggctcac	acctataatc	tcagcacttt	gggaggccga	ggcaagtgga	23580
tcacctgagg	tcaggagttc	aagaccagcc	tgaccaatat	ggtgaaaccc	tgtctgtact	23640
aaaaacacaa	aaattagccg	agcatggtgg	catgcgcctg	tagtcccagc	tacttgggag	23700
gctgagacaa	gagaattgct	tgaacctggg	aggcggaggt	tgcagtgagc	caagatcgcg	23760
acactacact	gcagcctggg	caacagagcg	agactccgac	acacgcacgc	acgcacacac	23820
			tggtggccag			23880
actggaggct	taggtaggag	gatcacttga	gcttaggtgg	ttgagactac	aatgaaccat	23940
gtttatacca	ctgcacttta	gccagggcaa	cagtgtgaga	ctgaatctca	aaagaaaaaa	24000
aaaaaaaga	aaaaaatctt	tccataagta	aatatctgtt	ggaacatagc	catgtccctt	24060
agtttatgtt	ttatatatgg	etgettttge	cctataatga	cacaattgag	tggccacgac	24120
			ttgctctctg			24180
			aggtttgaaa			24240
			ctggaggctg			24300
					ctccagcctg	
agtgacagag	agagaccctg	actcaaaaaa	aaaaaaacaa	********	cacceteace	24420

	acttatcago	tatttgtctt	gagaatagtg	acataacccc	tcagaaccta	tttcctaatc	24480
	tgttaaatga	ggctgatgac	gtttcctcct	tttactggca	atttaaacat	gatggataat	24540
	aaatgctaag	cacttaacac	agggcctaga	agatattaac	tgctcaataa	atggtagctt	24600
	cttaacagta	ttcaaaccca	tgtgctctta	tcacatgcat	tgttgtccct	gtgtccagtt	24660
	ggtggaatgg	gaaaaggcto	ccttgtaacc	ccatctacca	tctttatcag	actttcctgc	24720
	catggttcac	agtaagagat	agaagctgca	cggtgacttc	tggctcttta	caatggtgag	24780
	cggtgtgtgc	: ctggtaaggg	agagctgatg	tcactgcccc	aaatccagta	gtgagatctg	24840
	agtgttctgg	tttcctccag	cagcettget	ttttccttta	caateetgea	ggcagggaga	24900
	caagggcttt	ctacatggta	ggctctggtt	tggtcatcgt	cacaactggg	ggctgttcag	24960
	gtgggctccc	attccagata	cctaggctta	tcaatccctt	ttggcacccc	aggccttttt	25020
	ctccctcatg	ccccatttt	cagtttgaaa	agcatggtta	tcacaggaca	agtagaagaa	25080
	gctccactgt	ccactgaggc	caatggatgg	tgttctgcat	gtgaacactc	agtgaatagt	25140
	gagtgaatga	gagtaacctg	ggctccatcc	tatttgcaga	gagctttgga	aaagattttt	25200
	ctccttaaag	agccagaatg	aagcctggta	gtgggagagc	tccagctcta	gagtcacatg	25260
	agcctacatt	taaattccag	ccctgccact	gactcccttt	ttgaccttga	gtgagttacc	25320
	taatctctct	gtacctcact	tttcttgtct	gtagagtggg	astasttcct	gtctcagaga	25380
	aataaaagag	tgcatatagt	gtttgccaca	tggagacaca	tcaggtgtag	gttaatactc	25440
	tgggccttgt	ttccttattt	gcaacacagc	cctgccctgg	agtggaagtg	gcacctccca	25500
	ttggtcagct	cttgaggctg	tecceaggae	aggcagaggg	agggaatgaa	tgggagccct	25560
	agtgccagga	cagaacagat	ggcagctcag	agctaggatg	gctctctgga	cctgtctctc	25620
	ctaccagagg	tccccccgtc	tggtgtggct	cttcctggac	ctggcatcct	ctgctttttt	25680
	ttttttcca	cctccaagca	gaattactgt	cctgtaggca	getectetge	ttgaggacat	25740
	ctggggccag	atatgttcac	actctatcct	gccttgccct	tecetgaget	caggatggac	25800
	gctcaattgg	tcccagttat	tgtctgcagc	gcctgcctgc	agectegate	cagcccagct	25860
	ccaccccttg	cctgcaaggt	ctgtttccta	acagctgctc	caaccacaca	cctcggttct	25920
	gcgggagccc	ctcctcttcc	tecetecete	cctcattcag	gggtgggact	gaagaagaag	25980
	gctaacttga	cagcagcgct	tctttcttag	ctagtcaccg	gcccctgctc	aagaatgcca	26040
	gtgtstgtgt	agcctccaca	gagaggtcgt	tttctcggag	tccagagggg	ccgcctgagc	26100
	ttctgagaac	tagggaggag	ccatcccagc	catgageeee	tgtgggaatc	tgctgggggc	26160
- 1	caagtggcct	ggagtcctca	ggctcccgca	gctgctccgg	agggagaggt	gageteaggg	26220
.,	cagoctgoct	gcagccagag	gtgccgggag	cccgggcct	gtcatggtgg	ccatctacag	26280
	ccggcctgag	gcagtcacag	acggatttgc	agctgagcct	gtctatctgg	tgtgggaaga	26340
	agatggggag	ttacttgtca	gtcccggctt	acttcacctc	cagagacctg	tttcggtgag	26400
٠	ttggtctccg	agttcccctc	tccatctctc	ctggcccctg	gtcctgagag	gagggtggtc	26460
1	tccctaaatc	tccttctcac	ttagtccttt	accatcggtt	ctgccgggca	gaagecageg	26520
•	gaggttatac	ccaaggagaa	teggeettgt	gaggtacccc	cattatgtcc	tggaagtggt	26580
•	gaggggaggg	atatacccag	aaggaacttc	ttagggagct	ccagctcccc	ttctatccca	26640
•	gacasacctg	aaggagcctc	caaaagatgc	cactgacctg	cccattgtag	atgttactgc	26700
1	ttccgggggg	aatagcccaa	atagagtgct	gtttccagct	ctcacatgtc	ttacctgcgg	26760
•	gccatgctgc	ctgcccagga	atttgtccca	acaagcagga	tgggcaggtt	ttgccaaact	26820

				•		
gtggaaactg	gcaagtcctg	ggtgtgggta	gcctggtaca	cagtaggcac	cttataaacg	26880
tttgttctct	taatggcagg	cacatttgcc	tctggccttg	aagggcttct	gageteccag	26940
gtgaatgtag	ttgctgggga	aagacctggg	cgagtgcttc	taagactgga	gcaatgggct	27000
ttagagtgtt	cctgagctgc	tgggccagcc	cccacacctc	ctcagtccct	aggcctaagt	27060
acctccacga	gcctctctct	gtggggcttc	tcagagggag	atgtggaaac	tctacctcta	27120
acctggcttt	ctttgctcat	tgccccactc	cacctcccat	agaaactccc	cagggggttt	27180
ctggccctct	gggtcccttc	tgaatggagc	cattccaggo	tagggtgggg	tttgttttca	27240
ttctttggga	gcagcctgtt	gttccaaaaa	ggctgcctcc	ccctcaccag	tggtcctggt	27300
cgacttttcc	cttctggctt	ctctaagcta	ggtccagtgc	ccagatettq	ctgccgggat	27360
actagtcagg	tggccaggcc	ctgggcagaa	aagcagtgta	ccatgtggtt	ttgtggaatg	27420
accggaccct	ggtagattgc	tgggaagtgt	ctggacaggg	ggaagggga	agggaactgg	27480
tcctcaatgc	tgactctacc	aagcgccctg	ctagacactt	tatcctttaa	tctctcaaca	27540
gcctaaagag	attatatatc	cccattttac	agatgaggca	accagtttca	acagagttaa	27600
catatggagc	ctcactgggc	agctttttct	gtottcctga	ctttctctca	tecttcaggg	27660
ggctgcaggt	ttgttttctt	ctcctagtgg	agaggaaatt	ctcaggtttg	ttttcctctc	27720
ctagcagaga	gtaaaaaaag	ggatagtttg	cctgacttgt	tgaaggtgtg	gctgagattg	27780
ttttctaaag	agccaatgga	aattgatctt	gagtttagga	gaaagctttt	acatgtggaa	27840
ttaagatgcc	aagtgttgaa	gtagccacat	ttcaggtcct	cattaatttc	tottaatoot	27900
gggaaggcag	cttaggagaa	gggttgttcc	tttaggagcc	aggaactata	ccccttttac	27960
ccttggagag	gcagggaagc	cagggaggac	acaacttctc	aggaagagga	gaagctagag	28020
cagatagtga	actctcaacc	tgaaccttta	agggccagac	cactaatgcc	acccaagtcc	28080
acctgccgtt	tgtcttgttc	tgtcccaggc	tttctggaga	acctgatctt	cttgccccta	28140
cccccaagct	ccgtttgccc	agctagagtc	tggggggtac	tgactgactt	togtagacat	28200
tettecette	cccaaataag	aggccacatt	cctgaagtca	cttctgaaga	gatagctgcc	28260
acacagggct	ctttccccc	agggagggac	cacccagacc	ctctgctctc	ccaggtatcc	28320
gttaccacat	cactacctgg	tcagaaagct	gtttctgcca	ttagcccctc	cctcttttat	28380
tataggatat	cctcaagggc	tcctctttgg	gcctcagttt	catccttggc	agaaagtaga	28440
agctagactt	cttgggctcc	tgaacagggt	ccttgctgga	ttctgtgaaa	caaattaagt	28500
tcttgaccct	aggeetetgg	gggagtacaa	agtctatggg	agttctgggg	ctgtggttgc	28560
aaggaaagtg	acgcaaccag	attccatggg	gacatgatca	ggcgtgacat	gtgagggagg	28620
aagagggagc	aagggaatga	agaatacaac	ttctgtgtcc	catacacccc	tgcctgacag	28680
gccatacata	ctcagcagag	aatgcactgt	ctttcctacc	acactagcgt	gaggagtgag	28740
ctgcaattac	cactgtgctt	ccaagtaaga	aaatacctca	aattggaatt	tacaaaagag	28800
gtaaattagg	gagtggcttt	tgtcggacat	ctttaaagca	tttttcttt	tatagaattt	28860
cacttaatgt	ccaatactga	tttaatgagc	ttgggtttac	acattatctc	ttgaagaaaa	28920
caaatgaacc	tttgtgttcc	aaagcaatcc	atgtttaaag	ggaaaaaaatt	atgcataact	28980
ctgcccagct	tcacagtaac	ctttggcagg	tgccttaggt	cctctgggac	tetttteett	29040
atctgaaaaa	tgaaggactt	ggatcaggtg	aatggttccc	agctctgcaa	cttatgtggc	29100
tcctcagagg	cacacaagct	cttttccatt	atttgccaaa	taatggaggc	cctgtcttta	29160

actgcagtac aactacacaa aatacttgaa actacagtct tcctggtttt tggttggaac 29220 tgaatcagtg cactctagca acacttattt cttgctgttc gtaggcttca ttatgtgttt 29280 ggttaattit ttaaaacaac aataacatat tooataataa ttacagotta attggcagac 29340 tgtttcagtc tataggatct gcaggaagga ggagtaataa agggattttt gactgagctc 29400 ttatggaaca gagtetetet aggeeeetgt catatetgee ettetgggee etggggaaaa 29460 gttggcatcc ccagttgtgg tgctctccag gtgccctcag gctgtggtgg agggagcttc 29520 ccattetete etteageeea eteaatteag aggetagggg etgaaagaag ettetetaca 29580 actggctgtt cactgggagg ttaagggatg accatccagc caggccttcc tcaggacatg 29640 ggagggctta tgctttaaca tgtgtaaatc cactgcaata atgactggtt cttttacccc 29700 ataaggttga gaatttacct gtaaacattt ttgtctgaag aatttggatg taagtgaggg 29760 ctgggcctct atcttatctc acttggcttc tctcagcaca gcaccttgcc tgcttgttct 29820 tacacatcct agatgcacag taactatttc ctaattatta gaaatctatt agaatcaatt 29880 gatttcagct gggcttggtg gctccttcct gtaatcccag cactttggga ggctaaggct 29940 ggaggatcac ctgagtccag gagtttaaga ccagcctggg caacataggg agaccctgtc 30000 tctacaaaaa ataaaaaatt agccaggcat ggtggtgtgc acctgtagtc ccagctactc 30060 aggaggetga ggeaggagga tetettgage etgggaggte agactacagt gageaatgat 30120 aaaaaagttg atttctattt ggatagataa ataattcatt ttaggacctt tctttttcac 30240 ttacagaaat ctgtttcatt ctgggctgag aagcaggtcc atattgctag gcataggaga 30300 aaaaggggtc tgtctgcatt tgcccttggt ggtctcaaat tggggaggga aagaaatgaa cacttactgg ctaccttctg tgagccaggc atcatgcaag acatctgtac ataatttaat 30420 teteataace ceataagata ttattageaa tgtacaagtg aggaaactga ggeteagagt 30480 catgaagtaa ctggccttgg gtgacacaga tggtaaatgg cagagaagga atatggatcc aggictigaa agagaaaatc tcaactgatt atcittitta aaaaactcat atgitctctg ctgactcaaa aggtctctgt gtggatctgg gttgacccac tgaactgacc atcagggttc catgcacttt gtatctgccc aagccctcag aacccctcag taatgttttg gaagatgagt 30720 tttggaggtt gtccttaggc atagcctcag cgtatgtagg cctctaggtg atctccccta 30840 acctgaggat ttcagctcaa ttcactctgg ctcctcagga cagtgggatg actggttcag acctcagett taccacetee cagetgggta etettetace tacagecagg geagattttg 30900 30960 actiticacti gaaacticca aaaatigaaa ggiagaaaaa cagcciiggc tiigggaaga acqtatqatq tocatqqcct ctaaqcatct qaqqtqqqac atqttcqaqt aqcaccttac agttccaaag tgtgttctgg gttctttgtt taaaagaaca gagactgctg gggaattgaa cactgtgaag tatatgaagg aggagaattg tgctatttaa cattcagtac ttgggctaaa 31140 ggagaagcat cacgaagtgt taacactcaa agggtcttga gctgtcaggg ctccagcttc 31200 cttattttca caggtgagaa tcctgaggct cagctgttga gatgtgctgt ctcactccgg 31260 tgacatagta cagtggatgt ggctttgcag ccaagcacac atagcttcac attccagctc 31320 catcaattat gtattgggca gctttgcaga atgatttgac tttaactctg cttttcagtc 31380 ttctgtaaaa cagggataat cctgctaccg tagggttgtc aggattagag ataatataaa 31440 taaggtacct catataggac ctggattatg gctggcattc aataaatagt agctgttaat 31500 tgatagetaa getagaacte tgaaqtetae catggeaact tettaagtgg tetgagaace 31560

cagttgtgtt	ctgtggcaaa	acacagotta	gggatccata	cccagccctc	ctgtcagctg	31620
ttcaccttcc	agttcttcag	agacatgtgt	ggcagtgact	ttggccacat	agctggctgt	31680
gccctttaaa	ggcattcctt	gacacagata	tgtggactgg	tgacgttgct	ctccagccag	31740
gtgttcttcc	cagcaggctg	gcctggctgt	ctcctgcatg	cctgtacttg	tttgtctccc	31800
tgctccctct	cctgggcctg	gccagagcta	cttgcagcaa	acaaaagcag	gatattggca	31860
atggaaagga	gggtgtgttc	tggtgctccc	atgccctgcg	gegeacatac	cattgcaagg	31920
gcgtaacaga	gcccaggcct	gcatttgggt	gcaaataagt	ctgcacacag	aagaaaagaa	31980
ggacctggtg	accaggagcc	atggaaccct	tgtgctcccc	tacctgggct	actggttctt	32040
gccactccta	ccattttcag	tttggaaata	tttgttaagg	ctttgctctt	ccaggtcctt	32100
tgcttggtgc	tgagtctacc	aagagtaagt	gggatgctgt	ttttgtcctc	agggagctaa	32160
cagtctagtg	aagaagaaag	atggttgccc	aggaacttct	aagtcagaag	gcaggaggca	32220
agaaggaagc	ccctgctcct	actgccagcc	ctctgttggg	caccccatag	ttcttcagaa	32280
ccacatttaa	tcctcactgc	aggccaggca	tagtggctca	cacctgtaat	cgcagcactt	32340
cgggaggcca	aggcgggcag	atcacttgag	gtcgggagtt	cgagaccagc	ctcaccaaca	32400
tggggaaacc	ccgtctctac	taaaaataga	assattagcc	gggtgtggtg	gcatgcgcca	32460
gtaatcccag	ctactcagga	ggctgaggtg	ggaaaatcac	ttgaactcgg	gaagcagagg	32520
ttgcagtgag	ccgagattgt	gccactgcac	tccagcctgg	gcgataagag	casasttccs	32580
tctcaaaaaa	aaaaagaaaa	aagaaaaaat	cctcactgct	accttgaaag	taggtgatga	32640
cattgccatt	tcacaaatga	gaagtgaagg	ggctagccca	agatcactta	ggtggtaaat	32700
ggtggtgcta	agattagaac	ctcagatcat	ctagggaaaa	acacagatat	gcacagagtt	32760
aaggggaccc	agggtattgt	ttgtcctctt	gtttcacagg	tggggaaaca	acccagagag	32820
ggaaaggggc	ttgtccaagg	caatttagca	cccaagaact	tgaacccata	teteteteet	32880
cctcatttag	ageteatece	acatgtatct	tatattgaga	ggagtgtgag	ccacatacca	32940
agaacagtct	tcccctctgc	ctccaacctc	actgtgcagt	tttgagacac	ttcacagcca	33000
tactcttcat	gccataccca	gcccttaaga	ccctgaagtt	ccccttccat	aagacaagta	33060
ggaaaagcta	tagggtaaaa	atagccatca	gtgtttgttg	agcacccagg	aggaattggg	33120
cactccagaa	agataaaggg	attctcaggg	acttgcttct	ctagacttcc	ctagctcagc	33180
tgcttcaact	cattcctgcc	cctcttctct	acctcccgca	gtgctcagaa	gtagtagaac	33240
tcactgtggc	ctctcacctt	gcattgttga	gttttattta	gactttctct	tecteaacte	33300
ttcataagct	catgaaaggt	gaagtagggt	gccctgtgta	tttatctttt	atatctgcag	33360
tgcttagcaa	gttataataa	tgcacttgcc	tggcaaaagg	ctttctctca	tacattagct	33420
tatttcctct	tcacattggc	tctttgtagt	aataggatgc	tattagttat	tttcaatgag	33480
agaaagctac	taagagaagt	tgtccagcta	gtgacagtaa	gtggctgata	aagtgagctg	33540
ccattacatt	gtcatcatct	ttaatagaag	ttaacacata	ctgagtttct	actatattgg	33600
gtctttttt	tttttttt	tttttttta	gagacggaat	cttgctctgt	tgtccaggct	33660
ggaacgcagt	ggtgcaattt	tgggtcacca	caacctccgc	ttcccaggtt	caagcgattc	33720
toctgootca	gcctcctgag	tagctgggac	taccagtgca	cgccaccacg	cccggctaat	33780
ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggetggte	ttgaactcct	33840
gaccttgtga	totgoocgoo	tcagcctccc	aaagtgctgg	gattacaggt	gtgagccacc	33900

	•					
gegecetgee	tatattagga	cttttatata	agctatctct	agctagctag	ctagctagct	33960
ataatgtttt	ttgagacaga	gtctgactct	gtcacccagg	ctggagtgca	gtggcgtgat	34020
ctcgactcac	tgcaacctcc	acctcctggg	ttccagtgat	tetectgeet	cagcctcccg	34080
agtagctggg	attataggtg	catgccacca	cgcccagcta	attttttgta	tttttagtag	34140
accaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacttcaag	tgatccaccc	34200
gcctcggcct	cccaaagtgc	tgggattata	agcataagcc	actgtgccca	getgetetet	34260
atattttaa	tacatattat	ttccattaat	tttcacagca	gttcatttta	tagatgagga	34320
aactaggcca	gagaagtaaa	atatcttgcc	caagatgatg	taactagtaa	gtggcaggat	34380
caagattcaa	accaagcaat	gttcaaacct	cttggaagca	agaatgtggc	cactgtggaa	34440
ggtgcaaggc	cttgacaaca	agaataggga	aaagaaggaa	ctagaaggaa	agagatggca	34500
tgggctcagc	aggccaggga	gctcttagct	gtgtgtgttg	ggaagctcag	aagggaggaa	34560
gaggttgtct	gtgcaggtaa	gtcctgagaa	cacaccagac	ttttgagagg	tggagcttca	34620
tagccaggtc	attaggggag	aagggagcta	tagattttt	tttttttt	tttttttt	34680
tttttttag	agacggggtc	ttactatgtt	gcccaggctg	gtcttgaact	cctgggctca	34740
agtgatcctc	ccacctcagc	ctcccaaagt	gctgggatta	gaggcatcag	ccaccccgcc	34800
cagcgagcta	tggatctaac	atgtacatct	tacacagtgc	taatagaatg	ttgggtttct	34860
tecceaatat	tttattttga	aaaaaaattc	aaatatatag	aaaagttgaa	aaatgtagtt.	34920
çaaagaacac	ctacatacct	ttcacataga	ttcatgattt	gttaatgtta	tgccactttg	34980
tatatatctc	tctccctcct	atctgtatac	ttttatttat	ttatttttgc	tgaactattt	35040
cagagtaact	taaaggcatc	ttgattttac	ccttgaacag	ttcaatatgt	ttctgctaag	35100
aattctccta	tataagtcag	atatcattac	atctaagaaa	attcacggca	attttacaat	35160
ataatattat	agtccaaatc	catatttcct	cagttgttcc	aaaaaatgtt	catggctgtt	35220
tcctttttta	atctaaattt	gaatccaagt	ttgaggcatt	gtatttggtt	gctgtgtctc	35280
tagggttttt	aaaatctgtg	ccttttcttc	tccccatgac	tttttagaag	agtcaagacc	35340
ggttattctt	atagaataac	ccacattcta	gatttgcctg	attagttttt	ttatacttaa	35400
cgtatttttg	gcaagaacat	tacattggta	acgctgttgg	tgatgggtca	gttttgaaga	35460
gtggagatga	ttaaactgct	tttgttcatt	gaagtatctg	tcaagaccag	agatoottaa	35520
ctggtgccat	aaataggttt	cagagaatcc	tttatatata	caccetgtee	cccacctaaa	.35580
ttatatacac	atcttcttta	tatattcatt	tttctagggg	aggettettg	gcttttatca	35640
	gggccccaag		* * * *	. •	ccactgaggc	35700
aggcaacaca	gagctggttt	ctggggcctt	gttcagtctg	aaccagcttc	ccttggggag	35760
atagcacaag	gctgtaactt	tgccccatct	tggctttgga	tcaaagagga	ctgtccattt	35820
tgttgtcata	cctaggaacc	agggacagct	tatgtggcct	ggttccaggg	atccaggaga	35880
atttcagttc	ttgtcttgcc	tttcaggtgt	tcagaatgcc	aggattccct	caccaactgg	35940
tactatgaga	aggatgggaa	gctctactgc	cccaaggact	actgggggaa	gtttggggag	36000
ttctgtcatg	ggtgctccct	gctgatgaca	gggcctttta	tggtgagtga	atcccttcat	36060
atctgcccct	cttggtcttc	agagtccatt	gacagtgctt	ccagttccct	gtggcctgtt	36120
aatcttttag	tctttccatc	agccagggca	tetecettta	tttattcatt	cattcaacta	36180
gcaggtatca	attgagcacc	tactaagtga	aaggtaagat	ccttccctca	aagacttaat	36240
agttgaacgt	tgggagtggg	aggagaggca	ggcagagagg	agacacaata	tagttggata	36300

aggacetee	a aggagagtgt	: tacaggctga	gaggaggata	tacttaggtt	gtctttaggg	36360
aatcagaaa	a ggagactctg	gaataggctg	gcagagagag	gggctacctc	ctatacctgc	36420
tctggacaa	a cgactttaag	catagtgaca	gatttgccaa	ccctgtattg	gaagaactga	36480
tcttttttag	g tggggatgat	tacttctggg	gatttcttct	cataactgag	accaaaacag	36540
ttttgtgcag	g tctcagaaat	gacaggaggt	accaatctga	cacttccttt	ggaagctcta	36600
gggcagagag	g tgaaagagtg	gattttgacg	ggggccttgc	ttggaggtca	ttcacccacc	36660
cctgtcctc	ctccagcaac	agtgataact	cacttccttc	ctccctttgt	acacccttct	36720
.cccacctgo	tcacaggtgg	ctggggagtt	caagtaccac	ccagagtgct	ttgcctgtat	36780
gagetgeaag	gigatcattg	aggatgggga	tgcatatgca	ctggtgcagc	atgccaccct	36840
ctactggtas	a gatagtggtc	ctttgtctat	cctctcccat	ataagagtgg	ctggcgggga	36900
gggacagtgg	, cagggtgagt	tgggcagaag	gagtgttagg	gtagtcagag	cattggattc	36960
ttaccacago	agtgctctta	accagctctt	taacttgtaa	gcagaatgat	ttacacatgt	37020
ctctaccctt	tttccttacc	aaccttgaaa	atgtcttcac	tetgecetge	aatcctccca	37080
gtgggaggca	ctcttcaagg	acgateceag	aacattaaag	tcaaagaccc	cttagagctc	37140
accetgteea	accacettgg	ttgataaaag	aagtcagcct	ggggcccatg	gaatagaata	37200
gtacaagggc	: aaggttctca	ttgtgagtca	aaggtagagt	gaagagaacc	cagaccatct	37260
Caccccaacc	caggecagtg	tttttccaaa	tataccactt	gctgcagatc	tageteagea	37320
ccccagtcc	cageceacee	tgagaaccca	ggctcctcat	tetgageage	cagctagaat	37380
catgacaaag	agggtggtag	tgagactatg	ggtactgttg	cttaaagcca	catggtgcag	37440
tggttgctgg	ggggcttctg	tgtgggactc	tagcatctta	ttcccccctg	tgccctctcc	37500
ccagtgggaa	gtgccacaat	gaggtggtgc	tggcacccat	gtttgagaga	ctctccacag	37560
agtctgttca	ggagcagctg	ccctactctg	tcacgctcat	ctccatgccg	gccaccactg	37620
aaggcaggcg	gggcttctcc	gtgtccgtgg	agagtgcctg	ctccaactac	gccaccactg	37680
tgcaagtgaa	agagtaagta	ttttgagaac	ccttcagcag	gggttcttga	gcagagtctg	37740
taaatgggcc	tcagagggct	tagacctcca	aagtotcatg	cagaactccc	tttatictca	37800
tctcatatct	ttctcctgga	ccccactatg	ctgtaaccgt	acctgggcct	tggcacttac	37860
tgttctctct	gcccaggcta	cttcctaccc	gatacttaag	gcaagaatca	ctcacctttc	37920
aggtgtcagg	tttcaggtca	tgtttgctct	ttgaaatcat	ctggcttgat	tatgtgtatt	37980
agttgtttat	cttctatccc	ctccactaga	atgtaaattc	cagaagaaac	ttgctgtctt	38040
attcagtgct	gcatgcccag	ggcttggaag	agtacctggc	atatagtagg	agttgattga	38100
ttattattt	gtcagtcgag	agaatgaatg	gagaaaatgt	ggtccatggc	ccaaaagaag	38160
ttaagaccct	atcctagatt	caggccagag	accagatgga	gaaagagtct	gtgtctatct	38220
aataccagta	atgtcgtacc	tctggccgct	taccatgtaa	atattgattg	tgtatctacc	38280
atgtgttgga	cactaggcta	gtgcttgcac	agcaggtgaa	agatactaga	gtttgggaag	38340
tcaggaggag	ctaaggtctg	ttctacaacc	ttattagatg	aagaggagag	ggaattgtgt	38400
tcagggcaga	gggagaagca	tttctccaaa	agtaggagtc	ttaatcatgt	ctgatgtagg	38460
ttgagtgtgg	ccagaaaagg	ggctgttaag	tatagagggc	ctggattatg	aaaatccagc	38520
agatccattg	agagtttaag	cagcaaggtg	ttgtgaccaa	gttaacattt	tagaaģgatc	38580
actggtatgg	aggttggatt	ggagagggga	aagcctaaag	gtatagagac	tagttaggaa	38640

gctattgtag	gctgggcatg	gtggttcatg	cctgtaatct	cagcacttt	ggaggctgag	38700
gtgggaggat	tgcttgaggc	caggagttga	agaccaacct	ggccaacata	gcaagacccc	38760
gtctctgttt	. ttcttaatta	adagaaaagt	ccagacgtag	acatagtggc	tcacgcctgt	38820
aatgccagca	ctttgggagg	ccaaggtggg	cagattgctt	gaggtcaaga	gtttgggatt	38880
aggccaggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggcgg	38940
atcacaaggt	. caggagatca	agaccatcct	ggctaacaca	atgaaacccc	gtototacta	39000
aaagtacaaa	aattagccgg	gcatggtggc	ggacgcctgt	agtcccagct	actcgggagg	39060
ctgaggcagg	agaatggcgt	gaacctagga	ggcggagctt	gctgtgagca	gagatcacgc	39120
cactgcácto	cagcctgagc	gacagagcga	gactccatct	Caaaaaaaaa	aaagagtttg	39180
ggattagcct	ggccaacatg	gcaaaacccc	atctctacaa	aaagtacaaa	assattagct	39240
gggtatggtg	gtgcgcgcct	gtaatcccag	ttactcagga	ggctgaggca	tgagaattgc	39300
ttgagcctgg	gaggtggagg	ttgcagtgag	cccagatcat	gccactgcac	tccagcctgg	39360
atgacagagt	aagatgccat	ctcaaataaa	aattaaaaac	asagtttass	aaaaaaatag	39420
aagctattac	cgtgatccag	gtaagagatg	tgaataacta	caatgatgga	aagaaggcag	39480
agttcttaga	gatgggagta	ggagagatga	gggaactcca	gattgggaag	atgatgttca	39540
agtttctggc	ttaggccaca	gggtgagtgg	caattccctt	cactgagatg	gggcatcctg	39600
gaaaaggtgt	tgcctttctg	tgtgggtatc	ctgggcccct	taggggccac	tggtggcctg	39660
ggacctggta	aaccttccct	gcacaagcag	aattggtcaa	gcaggttttt	aggacatctt	39720
taccctgcct	caactcttgt	ctggcccagg	gtcaaccgga	tgcacatcag	tcccaacaat	39780
cgaaacgcca	tccaccctgg	ggaccgcatc	ctggagatca	atgggacccc	cgtccgcaca	39840
cttcgagtgg	aggaggtaga	gtgtgtgtct	aatctgtctt	gtgagggtgg	gacatggaac	39900
agatcctctg	ggaaatcagg	ctgtagcctt'	taccttttcc	tacccccagc	ccatctcttt	39960
gtcttagcat	tgagcctgtg	accactggtg	acctatttca	gcgtaacagg	ttcccagggt	40020
agcagggatg	gttgatggac	gggagagctg	acaggatgcc	aggcagaggg	cactgtgagg	40080
ccactggcag	ctamaggcca	ccattagaca	agttgagcac	tggccacact	gtgcctgagt	40140
catctgggtt	ggccatgggt	ggcctgggat	ggggcagcct	gtgggagctt	tatactgctc	40200
ttggccacag	gtggaggatg	caattagcca	gacgagccag	acacttcagc	tgttgattga	40260
acatgacccc	gtctcccaac	gcctggacca	gctgcggctg	gaggcccggc	tegetectea	40320
catgcagaat	gccggacacc	cccacgccct	cagcaccctg	gacaccaagg	agaatctgga	40380
ggggacactg	aggagacgtt	ccctaaggtg	ccacctccca	ccctggctct	gttctgtcct	40440
atgtctgtct	ctcggatgaa	gctgagctgg	ctttcagaag	cctgcagagt	taggaaagga	40500
accagetgge	cagggacaga	ctatgaggat	tgtgctgacc	cagctgcccc	tgtggggatc	40560
acagtttaca	gccagagcct	gtgcggaccc	agetgtetge	caggtttcct	tagaaacctg	40620
agagtcagtc	tctgtccact	gaactcctaa	gctggacagg	aggcagtgat	gctaaaccct	40680
gaagggcaac	atggcctatg	gagaaagcat	ggagctcaga	gcctggagta	cdàdcecéde	40740
taggattgaa	taaattgtgt	agaaagactt	tgaaaacaat	aaagcaaaag	atgestgesc	40800
gttttttta	gacttgaggg	accaacaacc	CCCABACCCC	agattctgcc	aggtccatgg	40860
ggaaggagaa	gttgccttga	gtggaagccc	caagtaggga	gacttacaga	aaagaagtca	40920
agagcactgg	ctcccaggca	gaaatactga	taccctactg	gggcttcagg	ctgagctcct	40980
cccttcacaa	atcacttcat	ctctctgagc	ctgtttctgc	atctgtgaca	taagatggta	41040

agataaag	gt ggctgtctc	a ccaattatgt	aaggattaaa	tgtggaaaag	gacataaagt	41100
tgtatagt	c tgccatagg	g acagtgttca	gtaaacgtga	cacattetta	gtatcactaa	41160
gaatcagg	t cttggccag	caccgtggct	catgcctgta	atcccaacac	tctgggaggc	41220
ctaggtcg	ga ggatggctte	g aacacaggag	titgagacca	gcctgagcaa	catagtgaga	41280
cactgtctc	t acaaaaaaa	a aataataata	ataattgttt	ttaattagat	gggcagggca	41340
ċtgtggct	a cacctgtaat	cccagcactt	tgggaggcca	aggccggagg	attgcttgag	41400
gccaggagt	t caggagcago	ctgggccaca	ttcctgtctc	tacaaagaat	aaaaaagtta	41460
actgggcat	g gtggcacatg	cctgtaatcc	cagctactca	agaggetgag	gaggaggatt	41520
gcctgagco	c aggagttcaa	gactgcagtg	agccttgatc	acaccactgt	actacagett	41580
gggcaacag	ja gtgagacctt	gtotocaaaa	aaaaaagttt	gttttttt	atccactctc	41640
ctcaccaa	c aaactgagta	agttagagcc	ctctcagctg	gcatgtgttg	gaaacagtgc	41700
cctctcatt	a aagtgctgcc	ctcactccca	ttgcctcttg	gccttggtca	gtatgatgaa	41760
attagtggg	a ggcagggcaa	cagagggcag	ggaagagcta	gaaatccatg	gcctggaaaa	41820
gggaagatt	t gggagtggco	aggtatctgt	agagecacea	tgcagaggag	gggggcagct	41880
agccttgtg	t gctctggtgg	gcatggtcag	caggaggcag	agcaaaagga	caagggtaag	41940
taaacctgt	a ggtcgggaca	agccaagagc	catccagcgt	cagtoctoto	tgggtagccc	42000
aagtaaago	a ggagcatacc	ccagagagaa	agttcgcagg	gctgttcacc	tgcagtgctg	42060
tggacttca	a ccttcttgtt	ccttcttcag	taagtgaaaa	taacagtcat	tgaccatgac	42120
tattatcga	c cgcttttgaa	aatgtaaaca	tagtgacttt	attgctgtaa	aaatcatacg	42180
tgtttatca	t cttaaaattc	aggaaacatg	gacaggtaca	aagatgtgca	aaatatcatc	42240
casastccc	a tttgctggcc	aggcacggtg	gctcacgcct	gtaatcccag	cacattggga	42300
ggccgaggc	g ggcaaatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	42360
aaaccctat	c tctactaaaa	atacaataat	taggctgggc	gcagtggctc	acgcctataa	42420
tcccagcac	t ttgggaggcd	gaggtgggcg	aatcacaagg	tcaggagttt	gagactagcc	42480
tggccaata	t ggtgaaaccc	catctctact	aaaaatacaa	aaattagggc	cgggtgtggt`	42540
ggctcacgc	c tgtaatccca	gcacttaggg	aggccgagac	agatggatcg	cgagatcagg	42600
agttcgaga	c caacctagcc	aacatggtga	aaccccatct	ctactaasaa	aatacaaaaa	42660
ttattcggt	t gtggtggcac	acgcctgtaa	teccagetae	ttgggaggct	gaggcaggag	42720
aatctcttg	a acctgggagg	cagaggttgc	agtgagtgga	gatecegeeg	ttgcactcca	42780
gcctgggcg	a cagagtgaga	ctccatcaaa	4444444	*******	asattagccg	42840
ggcgtggtg	g cgtgcaccta	tactcccagc	tacttgggag	gctgaggcag	gagaatcgct	42900
tgaacctgg	a aggcggaggt	cgcagtgagc	cgagatcgtg	ccattgcact	tcagcctggg	42960
cgacagage	g agactctgtc	tcaaaaataa	taataataac	aataactagc	egggeetggt	43020
ggcacatgc	c tgtagtccca	gttactcagg	aggcggaggc	atgagactca	ggtgaactag	43080
ggagacaga	g gttgcagtga	gccaagatca	caccactgca	ctccagcctg	gttgacāgag	43140
cgagactct	g teteaaaaaa	aaaaaaatcc	catttgctca	ttttttggat	actegtates	43200
ctatcactc	t aaaccagtta	gtacttaaat	caagcagata	tgggagatgg	tgaattacca	43260
tctacagtg	t tgtcatatat	gtcacatact	gagcattatc	agctagtaga	atctagttaa	43320
ttgttctate	g tgtgatgtat	gcagagttcc	cattitgaat	gtgtttttac	tatgottaaa	43380

tanatgactg atgtcagcaa coccaaaatg atacatotga tgtaagagco cotgttococ	43440
aataataaca totaaactat agacattgga atgaacaggt goocotaagt ttootocoto	43500
cagggtttet tggccggtct ctgaggacta cacateceta etcccgtett tecteatett	43560
caggogoagt aacagtatet ccaagtocce tggccccage tccccaaagg agcccctgct	43620
gttcagccgt gacatcagcc gctcagaatc ccttcgttgt tccagcagct attcacagca	43680
gatetteegg ecctgtgace taatecatgg ggaggteetg gggaaggget tetttgggea	43740
ggctatcaag gtgagcgcag gcaacaattg ctttgctctt ctgcccccag tccctctgtc	43800
actgtctttc ggggatttct catcacttgg ccccacccca	43860
ctccttcctg gctttgggtg ttggtgtgag aggtatcctt caccccacc caggccacct	43920
aaggtcaatg ttgctgttac agtgagcttg tggacctgga gatccaggtt gggttgagct	43980
gtgcctgtgg ccctcctgcc tccagtcagt gggtgtttgt taggtgcctg cagacctcag	44040
taccgggcat gctacaagga gcacacaggg gaatggctcc tgcctccctg gtgaacagtc	44100
tragggarta acceptetet terretere eterretet tergetgaga actgggaggg	44160
ggggtcaggt aagacgtgtg totcagettg ggggcagcag ggctggagag etcacccccg	44220
atecacccag etecetggtg catgtetttg geactgacet teetgeecce agacttetgt	44280
tractragga gartracttr tatgreaaat garragager cotgettggc ttggragrat	44340
eccetectge ettettecce aettecettt tetgggttet tgeetgteet etgtgeatge	44400
ccagetetee aggaaagagg gtttgettee gtgtgagtee catgttgete caegetgeat	44460
cttccacaca tgaactctgt cattctgacc eggetcagtg tgccctccaa gggatgggat	44520
ggccagctgc atagattttc tcaaacagtt ctccagaact tcctctggtc tcagcaccat	44580
taacagtcac cctccctgta ggtgacacac aaagccacgg gcaaagtgat ggtcatgana	44640
gagttaatto gatgtgatga ggagacccag aaaactttto tgactgaggt aagaagatgg	44700
agggggcccg ggaggttggt gtcaccattg gaagagagaa gaccttacaa ataatggctt	44760
caagagaaaa tacagtttgg aattactgtc ttaaagacta agcagaaaag agccctagag	44820
gaatatccca ctccctctaa attacagcgt aattatttgt tcaatgaaca cttactaaaa	44880
gcaacacaaa cagggtacaa gggatgcagt aacaaaagat acagggttca gaagagctct	44940
caggitatga ggatgatgga catgaaaaca ctccaattta gtacaactca atgitataat	45000
ectcacctga acgccctgct aagggagcct ggaggggagc tecetgagca etcacactce	45060
ttgggcattt acagttttca ctacccctcc caagttactt catggagtaa cttaagttgg	45120
ggacacctgt ggtctgggta ttgccctcca agccacttgg ccactcccac cccagttctc	45180
ccaatgcagt tccaagggta aggcctatga agccatctcc atctatatgg tggtggtctt	
contratort gatottagty contestata tracaagata ggaggtagga gataraggty	45300
gtaacacttg tcaagctgat teettggagg gaagaggtaa ggaagacagt gagaagttaa	
conceasett teettggett ecceeacee eaggtgaaag tgatgegeag eetggaceae	45420
cccaatgtgc tcaagttcat tggtgtgctg tacaaggata agaagctgaa cctgctgaca	45480
gagtacattg aggggggcac actgaaggac tttctgcgca gtatggtgag cacaccaccc	45540
catagictec aggageettg gigggitigie agacacetai getateacia ecctaggage	45600
taaagggca gaggggccct gctttgcctc caaaggacca tgctgggtgg gactgagcat	45660
catagggag gcttcactgg gagaccacat tgacccatgg ggcctggacc acgagtggga	45720
agggeteaa cageetetga aaateattee eeattetgea ggateegtte eeetggeage	45780

agaaggtcag	gtttgccaaa	ggaatcgcct	ccggaatggt	gagteccace	aacaaacctg	45840
ccagcagggc	gagagtaggg	agaggtgtga	gaattgtggg	cttcactgga	aggtagagac	45900
cccttcctat	gcaacttgtg	tgggctgggt	cagcagctat	tcattgagtt	tgtctgtgtc	45960
actgaaactg	accccagcca	actgttctca	gttcacagcc	ctgttttcaa	agaattacac	46020
atctctaaag	gcaaacaggg	cacggacaag	gcaaactgga	gaggcaaact	gtagcctgag	46080
atggcctggg	cttgccatca	caggtattca	ggtgctgagg	gcccttagac	caactagagc	46140
acctcactgo	ctaggaaatc	aatgaagggg	aaatgagttc	tagcggagcc	ctgaaggatc	46200
agaattggat	aaagttctta	ttggcagaga	ggcaccagga	ttgaagtgac	aggagcaaag	46260
acctgggagg	aaagaggaga	aaatcatcta	tttcacctgg	aaacaaatga	ttccaagcat	46320
agaaataata	acagctgaca	agtactgagt	gccctctata	tgctaggcac	tgggctgagg	46380
gattaacatg	catgtgcatg	tttattcctc	atgacaacct	tggtttccag	ataagctgga	46440
ctggaaaggg	acagagetgg	gatectggge	taatcagtct	ggtcgccaag	cctgagactt	46500
tagccactgc	ccttcacatg	ggggtccatg	aaaatagtag	tagtctggaa	cagtttgggg	46560
gtacatcaag	gtcgctgtgt	tttaagctat	ggagtctgga	ctataggaga	caaatgtaaa	46620
agagttttt	ggttgactgg	ctttttggtt	tttttgtttg	tttgtttgtt	tgtttgtttg	46680
tttgtttgtt	ttttcctgtt	tetggggett	gaatcaggaa	ggaggttttt	ttgttgttgt	46740
tgttttgaga	aaggatattg	ctctgttgcc	cagactggag	tgcagtggca	cgatcatggc	46800
tcactacago	ttcgacctcc	tgggctcaag	caatcctcct	gccttagcct	cccaagtagc	46860
tggactacag	gtgtgtacca	ccacacctaa	ttttttgaat	tttttttt	tttttttt	46920
tttttttt	ggtagagaca	ggttctcact	ttgttgccca	ggcctgaatc	tcaaactcct	46980
gggctcaagc	attcctcctg	cctcgccctc	ccaaagtgtt	gggattacag	ttgtgagcca	47040
ccatgcccgg	caggaaaaga	tttttaagca	agaaagctta	agagctgtgg	ttttccaaa	47100
atgagtctgg	gctggcacag	tggctcatgc	ctgtaatccc	agcacttttt	tgggaggccg	47160
aggtgagtgg	atcacttgag	gtcaggagtt	tgagaccagc	ctggccaact	ggtgaaaccc	47220
ctgtttctac	taaagaaaaa	aatgcaaaaa	ttagctgggc	gtggtggtgc	acgcctgtag	47280
teccagetae	tcaggaggcc	gaggcaggag	aatagcttga	acctgggagg	cagaagttgc	47340
agtgagccaa	gatcacacca	ctgcattcca	gcctgggtga	cagagtgaga	cttcatctca	47400
<b>aa</b> aaaaaaa	aaaagagaga	ctgatatggt	tagtacattg	gggtggaatg	cggagggtcc	47460
			gaaacatttc	•		47520
			ggtggagtca			47580
					tcacttacca	
					aagagctagc	
					aggaaactgg	
ctccatgaga	ctggcttagg	gagaggctgc	tagtcaccta	atctgcagag	aaggggcagc	47820
					gcttgtgaag	
					cagacacaca	
					gcactccctc	•
aggcaggcag	gcaggcaggt	catgagctat	agegatteag	gaagagetee	ctgggtgtgt	48060
gagcagctcc	aggagectaa	gggatgaaag	tagtattgca	gggggctgga	gagcaaggag	48120
					••	

tggctccttc tacatttgca agggaaggag aaaggaagtt gctcctgaga gtggtaagag 48180 tcagtggtgg aggcctggag aggagacata acaaacaaat ttgttgacaa acattttggt 48240 aggaaggggg agagcttaaa gtttagacag tggggaaggt ggagtcttag aggaggtgaa 48300 tgtctgaaag acagagctag ctggagcaag aagtcacttc tctgttgcag gcaggaagga 48360 tccaaagtgg ctcaagccag agattgggag agtggggagg agggagcagc ctggatctaa gtaaaatggg tagaggtgga gggggtgctg caacggccag ggttttctga agttggggac 48480 attaggagag agctgtgagg gctttggcca gccactgtgc tagtgattgg tgaaccaaag 48540 gatgggcagg agatggcagc agggaagcag aggaagtcca ggcttcctgt tggtattggg . 48600 acaagggaga ggccatagga ggccctggcc ctgttgtcca ggttgggttc tgaagctggg 48660 tgggcatggc ctggtaggag agcatctatg gcgcccaatt ccagattcag ggtctagttg 48720 atttgctggc cctgtagcct cagctcatgc ttctgttcca ggcctatttg cactctatgt 48780 gcatcatcca cogggatoty aactogcaca actgcctcat caagttggta tytoccacty 48840 ctctgggcct ggcctccagg gtcctatcct tcctggcttc cttgtcacaa aggaggctga 48900 cttgtcccct ctggctagag ggcagaggtg ttgcctagga gctcctatct ttcccttcct 48960 gettetteca atgeeettet etgteetetg ggageteega gacacacaca gacataattt 49020 caccttctct cattagcaac ctttgaaata atttgattag aagggacttc agaagtttgt 49080 tgactatatg tagaaaaccc tgtcatttta cctgcttttg ccccatagta gtcttgtaaa 49140 acagtteatt getgaceeca ttttacagtg gtggcacetg aageeteage etgaggeeae 49200 cgagctagta aatttacagg gaccagtttg agaccagcat tectoccact gecectcage 49260 tgtggtggtt acaatgttgt ttgtcttact gacttgctat ctggcttcct gggtgtctac 49320 cggctggccc tggctctgcc ctctagaccc acaccacgca atcttcattc ctttcccaca 49380 tgactgccct gtagctattc assgagettg tetececcas gtetececat etactgcete caccttgcct ttttctgtct tatcctggtt ctagccactg cctgaaatca ttttaggaat aagacaggac agggaaaaac aaaagcaacc ccctgtccca cctctgagtt ccactctcca 49560 agtocctgag octcacctcc agggetccag tggctctgcc atgaacccac tgtgggctgg 49620 gagtctgctg tgcacagata ccagaccctc agaaacacaa atgccaagtg tgtctgtttt 49680 tttgttttgt tttgttttgt tttttagatg gagtctcatt ctgtttccca ggctggagtg 49740 cagtggtgca atcttggctt actgcagcct ctacctcccg ggttctagtg attgttctgc 49800 ttcagcctcc cagtagctag gactacaggc gtgtgccacc acgcccagct aattttttt 49860 ttttttttt tgtatttta gtagagacag ggttttgcca tgttggccag gctggtcttg aacteetgae eteaggigat teaccegeet tggeeteeca aagttetggg attacaggig 49980 gaagecaccg tgcctggcct gagtgtgtct atttgataga gctttctgct ctgattctcc 50040 cttgctatac accttttctc cccttctcag tggcttctct tgcctatgct tcctccccag 50100 ggccaggttt gagaacatcc ccatgaagtc ctgacctgtc ttttatccta ccaggacaag 50160 actgtggtgg tggcagactt tgggctgtca cggctcatag tggaagagag gaaaagggcc 50220 cccatggaga aggccaccac caagaaacgc accttgcgca agaacgaccg caagaagcgc 50280 tacacggtgg tgggaaaccc ctactggatg gcccctgaga tgctgaacgg tgagtcctga 50340 agccctggag gggacacccg cagagggagg acagatgctg cccttgcatc agagccctgg 50400 gaattccagg ggaggcctgt gaagcgtagg accggatacc cagagctgag gatatttttc ccttgccagg tggggcctca cgatttagct cctgagctca gggggctggg aactgatcag 50520

tataccatas	tgggggataa	gatamattct	gactgtggca	tttgtgcctc	agggatcgct	50580
	gctattgtcc		*. *			50640
					4.2	50700
	ggtggataat					50760
	aggcctcaga					50820
	tgaattgcct					
	tcttttccac					50880
	aggcagttca					50940
	tgtggggtgt					51000
	cctagaccca					51060
tcctgtgttc	cccaaggaaa	gagctatgat	gagacggtgg	atatcttctc	ctttgggatc	51120
gttctctgtg	aggtgagctc	tggcaccaag	gccatgcccg	aggcagcagg	cctagcagct	51180
ctgccttccc	tcggaactgg	ggcatctcct	cctagggatg	actagcttga	ctaaaatcaa	51240
catgggtgta	gggttttatg	gtttataacg	catctgcaca	tctttgccac	gttcgtgttt	51300
cattggtctt	aagagaagga	ctggcagggt	ttttttgttt	tagatggagc	ctcacttcgt	51360
tgcccaggct	ggagtgcagt	ggcacaatct	gggctcactg	caacctctgc	cttctgggtt	51420
caagtgattc	tectgeetca	gcctcccaag	tagctgggac	taccggcaca	caccaccatg	51480
cccggctaat	ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	51540
ttgaactccg	gacctcaggt	gateegeetg	cctcagcctc	taaaagtgct	ggaattaata	51600
ggcgtgagct	acctcgcccg	gccaggtttt	tttttttt	tttttagttg	aggaaactga	51660
ggcttggaag	agggcagtgg	cttgcacatg	gtcgataagg	ggcagatgag	actcagaatt	51720
ccagaaggaa	gggcaagaga	ctgttcatgt	ggctgtctag	ctagctcttg	ggccaaatgt	51780
agcccttctc	agttcccttc	aagtagaagt	agccactcta	ggaagtgtca	gccctgtgcc	51840
aggtaccacg	tggacagagt	gaggaatett	ggaaagattc	ctacctttag	gagtttagtc	51900
aggtgacagc	atatotoago	gactcaaaca	cacacacatt	caaagccttc	tgtaattcct	51960
	gaggggtaga					52020
	tgtttttgtt					52080
	tcttggctca					52140
	aagtagctgg					52200
	agacagggtt					52260
	ccgcttcagc				2 1	52320
tagccatgaa	ggaagatttg	ttttaaaaaa	ttgttttctt	taatattaat	tgaacacctc	52380
	actgggctgg					52440
	atctggcaca					52500
	gctaggagca					52560
	tcttcagtaa					52620
	ttggggattg					52680
	gtccacatcc					52740
	aaacagctgt					52800
	teccegaaca					52860
ergactgeet	ceeeegaaca	ceggacereg	200000000000000000000000000000000000000	,,		

tigitoccac agaitigicoc coggoctici toccogotogo ogcoatotoo tocagactog 52920 agcctgagag caggttggta tcctgccttt ttctcccagc tcacagggtc ctgggacgtt 52980 tgcctctgtc taaggccacc cctgagccct ctgcaagcac aggggtgaga gaagccttga 53040 ggtcaagaat gtggctgtca acccctgagc catctgacaa cacatatgta caggttggag 53100 aagagagagg taaagacata gcagcaagta atctggatag gacacagaaa cacagccatt 53160 aaaagaaagt ttaaaagaag gaaattcacc caaaccattt gaatacagta agtgtattca 53220 totttogata ttoccotgto catatotaca catatacttt tttttatagt aaatagttot 53280 gtattttgcc ctgcatttcc cttgtgttta ctatccagtc ttcctgttta tcatttttgt 53340 cgacaacatg aaattctatt gagagactgt ctgaacatat tgtaatgtag atgttcaggt 53400 ttttccagtt tctctttaca ataggtattt aactacagtg agcagtttta tgcatttagc 53460 taatttctcc tttgaggaag tattttcaaa attaccttta ttcttctcag gtaataattt 53520 cattattacc aaagttaccc taggtctttt caagtgtgtg gttaaaaaac gagaatctgg 53580 ctgggcgcga tggctcacac ctgtaatccc agcactttgg gaggctgagg ctggtggatc 53640 acctgaggtc tggagttcga gaccagcctg gccaacatgg tgaaacccca tctctactaa 53700 aaatacaaaa cttagccagg catggtggca ggtgcctgta accccagcta cttgggaggc 53760 tgaggcagga gaattgcttg aacccagggg cggaggttgc agtgagccga tatcacgcca 53820 ttgcactcca gcctcggcaa caagagtgaa actctgtctc aaaaatgggg ttcttttcct 53880 gccatcaaaa atcatgtttc ttttaaaaac aagttcaaac attaccaaag tttatagcac 53940 aggaaatacg tottotgtaa totooottaa coaatatato cotoaacatt otootcacco 54000 ccaactccac cctcccagga taaccagttg ggacataatc tttatttaaa aatggtttcc 54060 ggatagagaa agcgcttcgg cggcggcagc cccggcggcg gccgcagggg acaaagggcg 54120 ggcggatcgg cggggagggg gcggggcgcg accaggccag gcccgggggc tccgcatgct 54180 gragetycet etegggegee ecegeogeog ecetegeoge ggageoggeg agetaacetg 54240 agccagccgg cgggcgtcac ggaggcggcg gcacaaggag gggccccacg cgcgcacgtg 54300 gccccggagg ccgccgtggc ggacagcggc accgcggggg gcgcggcgtt ggcggccccg 54360 gccccggccc ccaggccagg cagtggcggc caaggaccac gcatctactt tcagagcccc 54420 ecccggggcc gcaggagagg gcccgggctg ggcggatgat gagggcccag tgaggcgcca 54480 agggaaggtc accatcaagt atgaccccaa ggagctacgg aagcacctca acctagagga 54540 gtggatcctg gagcagctca cgcgcctcta cgactgccag gaagaggaga tctcagaact 54600 agagattgac gtggatgagc tcctggacat ggagagtgac gatgcctggg cttccagggt \$4660 caaggagetg etggttgaet gttacaaaec cacagaggee tteatetetg geetgetgga 54720 caagateegg gecatgeaga agetgageae acceeagaag aagtgagggt ceeegaceea 54780 ggcgaacggt ggctcccata ggacaatcgc taccccccga cctcgtagca acagcaatac 54840 cgggggaccc tgcggccagg cctggttcca tgagcagggc tcctcgtgcc cctggcccag 54900 999tctcttc ccctgccccc tcagttttcc acttttggat tttttattg ttattaaact 54960 gatgggactt tgtgttttta tattgactct gcggcacggg ccctttaata aagcgaggta 55020 gggtacgcct ttggtgcagc tcaaaaaaaa aaaaaaaaat gatttccagc ggtccacatt 55080 agagttgaaa ttttctggtg ggagaatcta taccttgttc ctttataggc caaggaccgc 55140 agteetteag taacaccagt gtaaaagett gaggagaaat tgtgaageta cacagtattt 55200 

	1					
			agttctaaac			55320
			tagattctag			55380
acagtagata	caataagtaa	actatattga	atattagaat	gtggcagatg	ctatggaaaa	. 55440
agagtcaaga	caagtaaaga	cgattgttca	gggtaccagt	tgcaatttta	aatatggtcg	55500
tcagagcagg	cctcactgag	gtgacatgac	atttaagcat	aaacatggag	gaggaggagt	55560
aagcctgagc	tgtcttaggc	ttccggggca	gccaagccat	ttccgtggca	ctaggagcct	55620
ggtgtttccg	attccacctt	tgataactgc	attttctcta	agatatggga	gggaagtttt	55680
tctcctattg	tttttaagta	ttaactccag	ctagtccagc	cttgttatag	tgttacctaa	55740
tctttatagc	aaatatatga	ggtaccggta	acattatgcc	catttctcac	agaggcacta	55800
ctaggtgaag	gagtttgcct	gacgttatac	aaccaggaag	tagctgagcc	tagatccctt	55860
CCACCCACCC	catggccctg	ctcatgttcc	acctgcctct	aatttacctc	ttttccttct	55920
agaccagcat	tctcgaaatt	ggaggactcc	tttgaggccc	tetecetgia	cctgggggag	55980
ctgggcatcc	cgctgcctgc	agagctggag	gagttggacc	acactgtgag	catgcagtac	56040
ggcctgaccc	gggactcacc	tecctagece	tggcccagcc	ccctgcaggg	gggtgttcta	56100
cagccagcat	tgcccctctg	tgccccattc	ctgctgtgag	cagggccgtc	egggetteet	56160
gtggattggc	ggaatgttta	gaagcagaac	aagccattcc	tattacctcc	ccaggaggca	56220
agtgggcgca	gcaccaggga	aatgtatctc	cacaggttct	ggggcctagt	tactgtctgt	56280
aaatccaata	cttgcctgaa	agctgtgaag	aagaaaaaaa	cccctggcct	ttgggccagg	56340
aggaatctgt	tactcgaatc	cacccaggaa	ctccctggca	gtggattgtg	ggaggctctt	56400
gcttacacta	atcagogtga	cctggacctg	ctgggcagga	teccagggtg	aacctgcctg	56460
tgaactctga	agtcactagt	ccagctgggt	gcaggaggac	ttcaagtgtg	tggacgaaag	56520
aaagactgat	ggctcaaagg	gtgtgaaaaa	gtcagtgatg	ctccccttt	ctactccaga	56580
			gtaggttttg	•		56640
tggaacaggc	caggagttag	agaaagggct	ggcttctgtt	tacctgctca	ctggctctag	56700
ccagcccagg	gaccacatca	atgtgagagg	aagcctccac	ctcatgttt	caaacttaat	56760
actggagact	ggctgagaac	ttacggacaa	catcctttct	gtctgaaaca	aacagtcaca	56820
agcacaggaa	gaggctgggg	gactagaaag	aggccctgcc	ctctagaaag	ctcagatctt	56880
ggcttctgtt	actcatactc	gggtgggctc	cttagtcaga	tgcctaaaac	attttgccta	56940
aagctcgatg	ggttctggag	gacagtgtgg	cttgtcacag	gcctagagtc	tgagggaggg	57000
			ggcttcatgg			57060
					totcasaget	
					cccatgtttg	
					aggtactgga	
					atttgcctct	
tctaagtgtc	tatgagettg	caccatattt	aataaattgg	gaatgggttt	ggggtattaa	57360
•			gggaattgat			57420
					atgagttgtg	
					tatgtgtgaa	
gtttgcaagc	ttgctttagg	gctgagccct	ggactcccag	cagcagcaca	gttcagcatt	57600

	gtgtggctg	g ttgtttcct	g gctgtcccc	a gcaagtgta	g gagtggtgg	cctgaactg	57660
	gccattgate	c agactaaat	a aattaagca	ttaacataa	c tggcaatat	gagagtgaaa	5,7720
	acatgattg	g ctcagggac	a taaatgtag	gggtetget	a gccaccttc	ggcctagccc	57780
	acacaaacto	cccatagca	g agagttttc	tgcacccaa	g tctaaaacc	tcaagcagac	57840
	acccatctgo	c totagagaa	t atgtacatco	cacctgagg	c agccccttcc	ttgcagcagg	57900
•	tgtgactgac	tatgacctt	tectggcctg	gctctcaca	t gccagctgag	tcattcctta	57960
	ggagccctac	cctttcatco	tetetatatg	aatacttcc	a tagcctgggt	atcctggctt	58020
	gctttcctca	gtgctgggt	g ccacctttgc	: aatgggaag	a aatgaatgca	agtcacccca	58080
	ccccttgtgt	ttccttacaa	gtgcttgaga	ggagaagac	agtttcttct	tgcttctgca	58140
	tgtgggggat	gtcgtagaag	agtgaccatt	gggaaggac	atgctatctg	gttagtgggg	58200
	ccttgggcac	aatataaato	: tgtaaaccca	aaggtgtttt	. ctcccaggca	ctctcaaagc	58260
٠	ttgaagaatc	caacttaagg	acagaatatg	gttcccgaaa	aaaactgatg	atctggagta	58320
٠	cgcattgctg	gcagaaccac	agagcaatgg	ctgggcatgg	gcagaggtca	tctgggtgtt	58380
•	cctgaggctg	ataacctgtg	gctgaaatcc	cttgctaaaa	gtccaggaga	cactcctgtt	58440
•	ggtatcttt	cttctggagt	catagtagtc	accttgcagg	gaacttcctc	ageceaggge	58500
1	tgctgcaggc	agcccagtga	cccttcctcc	tctgcagtta	ttcccccttt	ggctgctgca	58560
9	gcaccacccc	cgtcacccac	CACCCAACCC	ctgccgcact	ccagccttta	acaagggctg	58620
1	tctagatatt	cattttaact	acctccacct	tggaaacaat	tgctgaaggg	gagaggattt	58680
ç	jcaatgacca	accaccttgt	tgggacgcct	gcacacctgt	ctttcctgct	tcaacctgaa	58740
•	igattcctga	tgatgataat	ctggacacag	aagccgggca	cggtggctct	agcctgtaat	58800
c	tcagcactt	tgggaggcct	cagcaggtgg	atcacctgag	atcaagagtt	tgagaacagc	58860
c	tgaccaaca	tggtgaaacc	ccgtctctac	taaaaataca	aaaattagcc	aggtgtggtg	58920
9	cacatacct	gtaatcccag	ctactctgga	ggctgaggca	ggagaatege	ttgaacccac	58980
a	aggcagagg	ttgcagtgag	gcgagatcat	gccattgcac	tccagcctgt	gcaacaagag	59040
c	caaactcca	tctcasassa	aaaaa				59065

<210> SEO TO NO 4

<211> LENGTH: 269

<212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu 1 5 10 15

Lys Phe Ile Gly Val Leu Tyr Lys Asp Lys Leu Asn Leu Leu Thr 20 25 30

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp 35 40 45

Pro Phe Pro Trp Gln Gln Lys Val Arg Phe Ala Lys Gly Ile Ala Ser 50 55

Gly Met Ala Tyr Leu His Ser Met Cys Ile Ile His Arg Asp Leu Asn 65 70 70 80

Ser His Asn Cys Leu Ile Lys Leu Asp Lys Thr Val Val Val Ala Asp 85 90 95

Phe Gly Leu Ser Arg Leu Ile Val Glu Glu Arg Lye Arg Ala Pro Met 100  $$105\$ 

Glu	Lys	Ala 115	Thr	Thr	Lys	Lys	Arg 120	Thr	Leu	Arg	Lys	Asn 125	Asp	Arg	Lys							
Lув	Arg 130	Tyr	Thr	<b>Val</b>	Val	Gly 135	Asn	Pro	Tyr	Trp	Met 140	Ala	Pro	Glu	Met							
Leu 145	Asn	Gly	Lys	Ser	Tyr 150	Asp	Glu	Thr	Val	Asp 155	Ile	Phe	Ser	Phe	Gly 160	,						
Ile	Val	Leu	Сув	Glu 165	Ile	Ile	Gly	Gln	Val 170	Tyr	Ala	Asp	Pro	Авр 175	Сув		; ·					
Leu	Pro	Arg	Thr 180	Leu	Asp	Phe	Gly	Leu 185	Asn	Val	Lys	Leu	Phe 190	Trp	Glu							
Lув	Phe	Val 195	Pro	Thr	Авр	Сув	Pro 200	Pro	Ala	Phe	Phe	Pro 205	Leu	Ala	Ala							
Ile	Сув 210	Сув	Arg	Leu	Glu	Pro 215	Glu	Ser	Arg	Pro	Ala 220	Phe	Ser	Lys	Leu			-				
Glu 225	Asp	Ser	Phe	Glu	Ala 230	Leu	Ser	Leu	Tyr	Leu 235	Gly	Glu	Leu	Gly	11e 240						•	
Pro	Leu	Pro	Ala	Glu 245	Leu	Glu	Glu	Leu	Asp 250	His	Thr	Val	Ser	Met 255	Gln							
Tyr	Gly	Leu	Thr 260	Arg	Asp	Ser	Pro	Pro 265	• ,				٠		.·		. •		31.			

That which is claimed is:

- 1. An isolated nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of:
  - (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
  - (b) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:1;
  - (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
  - (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
- 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.
  - 3. A host cell containing the vector of claim 2.
- 4. A process for producing a polypeptide comprising culturing the host cell of claim 3 under conditions sufficient to for the production of said polypeptide, and recovering the peptide from the host cell culture.

- 5. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:1.
- 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
- A vector according to claim 2, wherein said vector is
   selected from the group consisting of a plasmid, virus, and bacteriophage.
  - 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
  - 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter sequence.

P

This Page Blank (uspto)



# (12) United States Patent Hu et al.

(10) Patent No.:

US 6,531,309 B1

(45) Date of Patent:

Mar. 11, 2003

#### **HUMAN TRANSPORTER PROTEINS AND** POLYNUCLEOTIDES ENCODING THE SAME

(75) Inventors: Yi Hu, The Woodlands, TX (US);

James Alvin Kieke, Houston, TX (US); Brian Zambrowicz, The Woodlands, TX (US); Jean-Pierre Revelli, Spring,

TX (US)

Assignee: Lexicon Genetics Incorporated, The

Woodlands, TX (US)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/795,927

Feb. 28, 2001 (22) Filed:

#### Related U.S. Application Data

Provisional application No. 60/185,956, filed on Feb. 29,

(51) Int. Cl.⁷ ...... C07H 21/04; C12N 15/63; C12N 1/21; C12N 1/15; C12N 15/85; C12N 15/86

435/254.11; 435/254.2; 435/325; 536/23.5

Field of Search ...... 536/23.5, 23.4, 536/23.2, 23.1; 530/350; 435/320.1, 325, 252.3, 254.11, 254.2

#### (56)References Cited

#### U.S. PATENT DOCUMENTS

	4,215,051	Α	7/1980	Schroeder et al.
	4,376,110	Α	3/1983	David et al.
	4,594,595	Α	6/1986	Struckman
	4,631,211	Α	12/1986	Houghten
	4,689,405	Α	8/1987	Frank et al.
	4,713,326	Α	12/1987	Dattagupta et al.
	4,946,778	Α	8/1990	Ladner et al.
	5,198,344	Α	3/1993	Croop et al.
	5,252,743	Α	10/1993	Barrett et al.
	5,424,186	Α	6/1995	Fodor et al.
	5,445,934	Α	8/1995	Fodor et al.
	5,459,127	$\mathbf{A}_{\perp}$	10/1995	Felgner et al.
	5,556,752	Α	9/1996	Lockhart et al.
٠	5,658,782	Α ΄	8/1997	Amara et al.
	5,700,637	Α	12/1997	Southern
	5,744,305	Α	4/1998	
	5,837,458	Α	11/1998	Minshull et al.
	5,866,699	Α	2/1999	Smyth
	5,869,336		2/1999	Meyer et al.
	5,877,397	Α	3/1999	Lonberg et al.
	5,948,767		9/1999	Scheule et al.
	6,075,181		6/2000	Kucherlapati et al.
	6,110,490		8/2000	Thierry
	6,150,584	Α	11/2000	Kucherlapati et al.

#### FOREIGN PATENT DOCUMENTS

JP	11-146790	6/1999
wo	WO 90/06047 A2	6/1990
wo	WO 98/44954 A1	10/1998
WΩ	WO 98/55858 A1	12/1998

#### OTHER PUBLICATIONS

Lohi et al, Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70:102-112, 2000.*

Peer Bork and Eugene V. Koonin, Predicting functions from protein sequences-where are the bottlenecks? Nature Genetics 18:313-318,1998.*

Ji et al, G-protein-coupled receptors, J. Biol. Chem, 273:17299-17302, 1998.*

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol.

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the lpp gene of Escherichia coli", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", PNAS 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

(List continued on next page.)

Primary Examiner-Elizabeth Kemmerer Assistant Examiner-Ruixiang Li

#### ABSTRACT

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

#### 4 Claims, No Drawings

#### OTHER PUBLICATIONS

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817–823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions", Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544–546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells", Cell 11:223-232.

Japanese Abstract, JP 11-146790, XP002177829.

Nagase et al., "Prediction of the Coding Sequences of Unidentified Human Genes, XIII. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro," DNA Research, Universal Academy Press, JP, vol. 6, 1999, pp. 63-70, XP000952912.

Database EMBL Sequence Database (online), Hinxton, UK, Apr. 9, 1999, O'Hara et al., "Homo sapiens mRNA for KIAA0956 Protein, Partial cds.," XP002177825; EMBL:AB023173; abstract.

Halleck et al., "Differential Expression of Putative Transbilayer Amphipath Transporters," Physiological Genomics, vol. 1, 1999, pp. 139-150, XP002177823.

Database EMBL Sequence Database (Online), Hinxton, UK; Nov. 24, 2999, Halleck et al., "Homo sapiens putative E1-E2 ATPase mRNA, partial cds," XP002177826, EMBL:AF15648; abstract.

Database EMBL Sequence Database (Online), Hinxton, UK; Nov. 17, 1999, Bloecker et al., "Homo sapiens mRNA; cDNA DKFZp434N1615 (from clone DKFZp434N1615); partial cds," XP002177827; EMBL:HSM801332, Accession No. AL133061; abstract.

Database EMBL Sequence Database (Online), Hinxton, UK; Mar. 12, 1999, Ottenwaelder et al., "Homo sapiens EST DKFZp434J238_r1 (from clone DKFZp434J238_r1) EST partial cds," XP002177828, EMBL:HSM011423, Accession No. AL046573; abstract.

McMahon et al., "Mammalian Zinc Transporters," Journal of Nutrition, vol. 128, No. 4, Apr. 1998, pp. 667-670, XP002177824; ISSN: 0022-3166.

International Search Report, International Application No. PCT/US01/06462, Sep. 26, 2001 (Attorney Docket No. LEX-0141-PCT).

* cited by examiner

# HUMAN TRANSPORTER PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application No. 60/185,956 which was filed on Feb. 29, 2000 and is herein incorporated by reference in its entirety.

#### INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with mammalian transporter proteins. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotides, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, and treatment of diseases and disorders.

The Sequence Listing

#### BACKGROUND OF THE INVENTION

Transporter proteins are integral membrane proteins that mediate or facilitate the passage of materials across the lipid bilayer. Given that the transport of materials across the membrane can play an important physiological role, transporter proteins are good drug targets. Additionally, one of the mechanisms of drug resistance involves diseased cells using cellular transporter systems to export chemotherapeutic agents from the cell. Such mechanisms are particularly relevant to cells manifesting resistance to a multiplicity of drugs.

#### SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPS) described for the first time herein share structural similarity with mammalian ion transporters, calcium transporters (particularly calcium transporting ATPases), sulfate transporters, and zinc transporters.

The novel human nucleic acid sequences described herein, encode alternative proteins/open reading frames (ORFS) of 1,177 and 374 amino acids in length (calcium-transporting ATPase, SEQ ID NOS: 2 and 4), 970 (sulfate transporter, SEQ ID NO:7), and 507 (zinc transporter, SEQ ID NO:10) amino acids in length.

the described polynucleotides, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated

The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme 60 molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a 65 NHP transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP. Knock-out mice can

2

be produced in several ways, one of which involves the use of mouse embryonic stem cells ("ES cells") lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-11 are "knocked-out" they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. Additionally, the unique NHP sequences described in SEQ ID NOS:1-11 are useful for the identification of coding sequence and the mapping a unique gene to a particular chromosome.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

# DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequences of the described NHP ORFs that encode the described NHP amino acid sequences. SEQ ID NOS 5, 8, and 11 describe nucleotides encoding NHP ORFs along with regions of flanking sequence.

# DETAILED DESCRIPTION OF THE INVENTION

The NHPs described for the first time herein are novel proteins that may be expressed in, inter alia, human cell lines, fetal brain, pituitary, cerebellum, thymus, spleen, lymph node, bone marrow, trachea, kidney, fetal liver, liver, prostate, testis, thyroid, adrenal gland, salivary gland, stomach, small intestine, colon, adipose, rectum, pericardium, bone marrow, placenta, and gene trapped human cells. More particularly, the NHP that is similar to sulfate transporters (and the down-regulated in adenoma, or DRA, gene) is predominantly found in bone marrow and testis, and the zinc transporter-like NHP can be found expressed in the placenta.

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described polynucleotides, including the specifically encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal (or hydrophobic transmembrane) sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of an NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/ self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence List- 5 ing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc.,  $_{15}$ New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of a DNA sequence that encodes and expresses an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encodes a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring 25 or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as mea- 35 sured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using standard default settings).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore 40 the complements of, the described NHP nucleotide sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally 45 about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in 50 conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing 55 gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the otide sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-11 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or poly- 65 crystalline substrates, etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of

oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-11, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Pat. Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-11 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-11.

For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-11 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEO ID NOS:1-11 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in described NHP sequences. An oligonucleotide or polynucle- 60 SEQ ID NOS:1-11 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-11 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-11 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should 5 be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in 10 conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-11. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide 15 sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, Mich., 20 etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relatve to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6×SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) 5-carboxymethylaminomethyl-2-thiouridine, 45 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 50 5-methylaminomethyluracil, 5-methoxyaminomethyl-2beta-D-mannosylqueosine, thiouracil, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 55 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide 65 will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a

phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an  $\alpha$ -anomeric oligonucleotide. An  $\alpha$ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual  $\beta$ -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625–6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131–6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327–330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of MRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be 5 performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for  15 example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse 20 transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA 25 sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascer- 30

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, 35 high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed 45 utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened 50 using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring 55 Harbor, N.Y.).

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an 60 expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be 65 purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating factors.

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of the NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP can then be labeled and used as a probe to identify the 40 nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for an NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

> Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP receptor. Nucleotide con

structs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological 10 disorders.

Various aspects of the invention are described in greater detail in the subsections below.

#### The NHP Sequences

The cDNA sequences and the corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing. The NHP nucleotides were obtained from clustered human gene trapped sequences, testis and mammary transcript RACE products, ESTs, and human brain, testis, trachea, pituitary, thymus, and mammary gland cDNA libraries (Edge Biosystems, Gaithersburg, Md.).

SEQ ID NOS:1-5 describe sequences that are similar to eucaryotic ATP-driven ion pumps such as calcium transporting ATPases, and which can be found expressed in a variety of human cells and tissues. The described sequences were assembled using gene trapped sequences and clones isolated from human kidney, lymph node, and thymus cDNA libraries (Edge Biosystems, Gaithersburg, Md.).

SEQ ID NOS:6-8 describe sequences that are similar to, inter alia, sulfate transporter and cotransporter proteins, and can be found expressed in human bone marrow and testis. Several polymorphisms were found in this NHP including, but not limited to, possible A-to-G transitions at nucleotide 35 positions corresponding to nucleotides 589, 692, 917, 1,164, and 2,390 of, for example SEQ ID NO:8 which be silent or can result in the met corresponding to amino acid position 73 of SEQ ID NO:7 converting to a val (e.g., met 73 converting to val 73), val 148 converting to ile, asn 230 converting to 40 lys, ile 562 converting to val. An additional C-to-T transition was identified that converts ala 777 to val. SEQ ID NOS:6-8 can be expressed in bone marrow and predominantly in testis cells. These NHPs were assembled from gene trapped sequences and clones from a human testis cDNA library 45 (Edge Biosystems, Gaithersburg, Md.).

SEQ ID NOS:9-11 describe sequences that are similar to zinc transporters and vesicular transporters, can be found expressed in, inter alia, placenta and adrenal gland, and these NHP sequences were assembled using gene trapped sequences and clones from human adrenal and placenta cDNA libraries (Edge Biosystems, Gaithersburg, Md.).

Transporters and transporter related multidrug resistance (MDR) sequences, as well as uses and applications that are germane to the described NHPs, are described in U.S. Pat. Nos. 5,198,344 and 5,866,699 which are herein incorporated by reference in their entirety.

### NHPS and NHP Polypeptides

NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include but are not limited to the generation of antibodies, as reagents in diagnostic assays, the identification of other 65 cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical

reagents useful in the therapeutic treatment of mental, biological, or medical disorders and diseases. Given the similarity information and expression data, the described NHPs can be targeted (by drugs, oligos, antibodies, etc.) in order to treat disease, or to therapeutically augment the efficacy of, for example, chemotherapeutic agents used in the treatment of breast or prostate cancer.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP polynucleotides. The NHPs typically display have initiator methionines in DNA sequence contexts consistent with a translation initiation site.

The NHP amino acid sequences of the invention include the amino acid sequence presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP peptide or polypeptide is thought to be membrane protein, the hydrophobic regions of the protein can be excised and the resulting soluble peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from

12

such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with 10 recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with 15 recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., 20 Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses 25 (e.g., the adenovirus late promoter; the vaccinia virus 7.5K

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a 30 large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, 35 but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic 40 Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such 45 fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product 50 can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A NHP coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46:584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus

is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase

14

(Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. 5 Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophe- 10 nolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 20 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells 25 hydroxide or aluminum phosphate, surface active substances infected with recombinant vaccinia virus are loaded onto Ni2+.nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

Also encompassed by the present invention are fusion 30 proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also 35 animals. transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in Liposomes: A Practical Approach, New, RRC ed., Oxford University Press, New York and in U.S. Pat. Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport 45 of the NHP to the target site or desired organ. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain (see generally U.S. application Ser. Nos. porated by reference, for examples of such transducing sequences) to facilitate passage across cellular membranes if needed and can optionally be engineered to include nuclear localization sequences when desired.

# Anithodies to NHP Products

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited 60 can be used. A chimeric antibody is a molecule in which to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may,

therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals 15 may be immunized by injection with a NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, 40 but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBVhybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be 60/111,701 and 60/056,713, both of which are herein incormAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. 55 Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized

monoclonal antibodies as described in U.S. Pat. No. 6,150, 584 and respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, 5 Science 242:423–426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879–5883; and Ward et al., 1989, Nature 334:544–546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of 10 the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275–1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

#### SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 11 <210> SEQ ID NO 1 <211> LENGTH: 3534 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 1 atgtggcgct ggatccggca gcagctgggt tttgacccac cacatcagag tgacacaaga accatctacg tagccaacag gtttcctcag aatggccttt acacacctca gaaatttata 120 gataacagga tcatttcatc taagtacact gtgtggaatt ttgttccaaa aaatttattt 240 gaacagttca gaagagtggc aaacttttat tttcttatta tatttttggt tcagcttatg attgatacac ctaccagtcc agttaccagt ggacttccat tattctttgt gataacagta 300 360 actgccataa agcagggata tgaagattgg ttacggcata actcagataa tgaagtaaat ggageteetg tttatgttgt tegaagtggt ggeettgtaa aaactagate aaaaaacatt 420 cgggtgggtg atattgttcg aatagccaaa gatgaaattt ttcctgcaga cttggtgctt 480 ctgtcctcag atcgactgga tggttcctgt cacgttacaa ctgctagttt ggacggagaa 540 actaacctga agacacatgt ggcagttcca gaaacagcat tattacaaac agttgccaat ttggacactc tagtagctgt aatagaatgc cagcaaccag aagcagactt atacagattc 660 720 atgggacgaa tgatcataac ccaacaaatg gaagaaattg taagacctct ggggccggag agtotoctgo ttogtggago cagattaaaa aacacaaaag aaatttttgg tgttgcggta 780 tacactggaa tggaaactaa gatggcatta aattacaaga gcaaatcaca gaaacgatct 840 900 gcagtagaaa agtcaatgaa tacatttttg ataatttatc tagtaattct tatatctgaa gctgtcatca gcactatctt gaagtataca tggcaagctg aagaaaaatg ggatgaacct tggtataacc aaaaaacaga acatcaaaga aatagcagta agattctgag atttatttca 1020 gactteettg ettttttggt tetetacaat tteateatte caattteatt atatgtgaca 1080

gtcgaaatgc agaaatttct tggatcattt tttattggct gggatcttga tctgtatcat

				-contin	ueu	
gaagaatcag	atcagaaagc	tcaagtcaat	acttccgatc	tgaatgaaga	gcttggacag	1200
gtagagtacg	tgtttacaga	taaaactggt	acactgacag	aaaatgagat	gcagtttcgg	1260
gaatgttcaa	ttaatggcat	gaaataccaa	gaaattaatg	gtagacttgt	acccgaagga	1320
ccaacaccag	actcttcaga	aggaaactta	tcttatctta	gtagtttatc	ccatcttaac	1380
aacttatccc	atcttacaac	cagttcctct	ttcagaacca	gtcctgaaaa	tgaaactgaa	1440
ctaattaaag	aacatgatct	cttctttaaa	gcagtcagtc	tctgtcacac	tgtacagatt	1500
agcaatgttc	aaactgactg	cactggtgat	ggtccctggc	aatccaacct	ggcaccatcg	1560
cagttggagt	actatgcatc	ttcaccagat	gaaaaggctc	tagtagaagc	tgctgcaagg	1620
attggtattg	tgtttattgg	caattctgaa	gaaactatgg	aggttaaaac	tcttggaaaa	1680
ctggaacggt	acaaactgct	tcatattctg	gaatttgatt	cagatcgtag	gagaatgagt	1740
gtaattgttc	aggcaccttc	aggtgagaag	ttattatttg	ctaaaggagc	tgagtcatca	1800
attctcccta	aatgtatagg	tggagaaata	gaaaaaacca	gaattcatgt	agatgaattt	1860
gctttgaaag	ggctaagaac	tctgtgtata	gcatatagaa	aatttacatc	aaaagagtat	1920
gaggaaatag	ataaacgcat	atttgaagcc	aggactgcct	tgcagcagcg	ggaagagaaa	1980
ttggcagctg	ttttccagtt	catagagaaa	gacctgatat	tacttggagc	cacagcagta	2040
gaagacagac	tacaagataa	agttcgagaa	actattgaag	cattgagaat	ggctggtatc	2100
aaagtatggg	tacttactgg	ggataaacat	gaaacagctg	ttagtgtgag	tttatcatgt	2160
ggccattttc	atagaaccat	gaacatcctt	gaacttataa	accagaaatc	agacagcgag	2220
tgtgctgaac	aattgaggca	gcttgccaga	agaattacag	aggatcatgt	gattcagcat	2280
gggctggtag	tggatgggac	cagcctatct	cttgcactca	gggagcatga	aaaactattt	2340
atggaagttt	gcagaaattg	ttcagctgta	ttatgctgtc	gtatggctcc	actgcagaaa	2400
gcaaaagtaa	taagactaat	aaaaatatca	cctgagaaac	ctataacatt	ggctgttggt	2460
gatggtgcta	atgacgtaag	catgatacaa	gaageceatg	ttggcatagg	aatcatgggt	2520
aaagaaggaa	gacaggctgc	aagaaacagt	gactatgcaa	tagccagatt	taagttcctc	2580
tccaaattgc	tttttgttca	tggtcatttt	tattatatta	gaatagctac	ccttgtacag	2640
tattttttt	ataagaatgt	gtgctttatc	acaccccagt	ttttatatca	gttctactgt	2700
ttgttttctc	agcaaacatt	gtatgacagc	gtgtacctga	ctttatacaa	tatttgtttt	2760
acttccctac	ctattctgat	atatagtctt	ttggaacagc	atgtagaccc	tcatgtgtta	2820
caaaataagc	ccacccttta	tcgagacatt	agtaaaaacc	gcctcttaag	tattaaaaca	2880
tttctttatt	ggaccatcct	gggcttcagt	catgccttta	ttttctttt	tggatcctat	2940
ttactaatag	ggaaagatac	atctctgctt	ggaaatggcc	agatgttygg	aaactggaca	3,000
tttggcactt	tggtcttcac	agtcatggtt	attacagtca	cagtaaagat	ggctctggaa	> 3060
actcatttt	ggacttggat	caaccatctc	gttacctggg	gatctattat	attttatttt	3120
gtattttcct	tgttttatgg	agggattctc	tggccatttt	tgggctccca	gaatatgtat	3180
tttgtgttta	ttcagctcct	gtcaagtggt	tctgcttggt	ttgccataat	cctcatggtt	3240
gttacatgtc	tatttcttga	tatcataaag	aaggtctttg	accgacacct	ccaccctaca	3300
agtactgaaa	aggcacagct	tactgaaaca	aatgcaggta	tcaagtgctt	ggactccatg	3360
tgctgtttcc	cggaaggaga	agcagcgtgt	gcatctgttg	gaagaatgct	ggaacgagtt	3420
ataggaagat	gtagtccaac	ccacatcage	agatcatgga	gtgcatcgga	tcctttctat	3480
accaacgaca	ggagcatctt	gactctctcc	acaatggact	catctacttg	ttaa	3534

<211 <212	> LE ?> TY	NGTH PE:		.77	sap	oiens	, ·								
<400	)> SE	QUEN	ice:	2											
Met 1	Trp	Arg	Trp	Ile 5	Arg	Gln	Gln	Leu	Gly 10	Phe	Asp	Pro	Pro	Нів 15	Gln
Ser	Asp	Thr	Arg 20	Thr	Ile	Tyr	Val	Ala 25	Asn	Arg	Phe	Pro	Gln 30	Asn	Gly
Leu	Tyr	Thr 35	Pro	Gln	Lys	Phe	Ile 40	Asp	Asn	Arg	Ile	Ile 45	Ser	Ser	Lys
Tyr	Thr 50	Val	Trp	Asn	Phe	Val 55	Pro	Lys	Asn	Leu	Phe 60	Glu	Gln	Phe	Arg
Arg 65	Val	Ala	Asn	Phe	Tyr 70	Phe	Leu	Ile	Ile	Phe 75	Leu	Val	Gln	Leu	Met 80
Ile	qaA	Thr	Pro	Thr 85	Ser	Pro	Val	Thr	Ser 90	Gly	Leu	Pro	Leu	Phe 95	Phe
Val	Ile	Thr	Val 100	Thr	Ala	Ile	Lys	Gln 105	Gly	Tyr	Glu	qaA	Trp 110	Leu	Arg
His	Asn	Ser 115	Авр	Asn	Glu	Val	Asn 120	Gly	Ala	Pro	Val	Tyr 125	Val	Val	Arg
Ser	Gly 130	Gly	Leu	Val	Lys	Thr 135	Arg	Ser	Lys	Asn	Ile 140	Arg	Val	Gly	Asp
Ile 145	Val	Arg	Ile	Ala	<b>Lys</b> 150	Авр	Ģlu	Ile	Phe	Pro 155	Ala	qaA	Leu	Val	Leu 160
Leu	Ser	Ser	Asp	Arg 165	Leu	Авр	Gly	Ser	Сув 170	His	Val	Thr	Thr	Ala 175	Ser
Leu	Asp	Gly	Glu 180	Thr	Asn	Leu	Lys	Thr 185	His	Val	Ala	Val	Pro 190	Glu	Thr
Ala	Leu	Leu 195	Gln	Thr	Val	Ala	Asn 200	Leu	Ąsp	Thr	Leu	Val 205	Ala	Val	Ile
Glu	Суs 210	Gln	Gln	Pro	Glu	Ala 215	Asp	Leu	Tyr	Arg	Phe 220	Met	Gly	Arg	Met
Ile 225	Ile	Thr	Gln	Gln	Met 230	Glu	Glu	Ile	Val	Arg 235	Pro	Leu	Gly	Pro	Glu 240
Ser	Leu	Leu	Leu	Arg 245	Gly	Ala	Arg	Leu	Lys 250	Asn	Thr	Lys	Glu	11e 255	Phe
Gly	Val	Ala	Val 260	Tyr	Thr	Gly	Met	Glu 265	Thr	Lys	Met	Ala	Leu 270	Asn	Tyr
Lув	Ser	Lys 275	Ser	Gln	Lув	Arg	Ser 280	Ala	Val	Glu	Lys	Ser 285	Met	Asn	Thr
Phe	Leu 290	Ile	Ile	Tyr	Leu	Val 295	Ile	Leu	Ile	Ser	Glu 300	Ala	Val	Ile	Ser
Thr 305	Ile	Leu	Lys	Tyr	Thr 310	Trp	Gln	Ala	Glu	Glu 315	Lys	Trp	Двр	Glu	Pro 320
Trp	Tyr	Asn	Gln	Lys 325	Thr	Glu	His	Gln	Arg 330	Asn	Ser	Ser	Lys	Ile 335	Leu
Arg	Phe	Ile	Ser 340	Asp	Phe	Leu	Ala	Phe 345	Leu	Val	Leu	Tyr	Asn 350	Phe	Ile
Ile	Pro	Ile 355	Ser	Leu	Tyr	Val	Thr 360	Val	Glu	Met	Gln	Lys 365	Phe	Leu	Gly
Ser	Phe	Phe	Ile	Gly	Trp	Авр	Leu	Asp	Leu	Tyr	His	Glu	Glu	Ser	Asp

	370	)				375	i				380				
Glr 385		Ala	a Glr	Val	. Asn 390		Ser	As p	Lev	395		Glu	Leu	Gly	Gln 400
Val	Glu	Ту	. Val	Phe 405		Asp	Lys	Thr	Gly 410		Leu	Thr	Glu	Авп 415	Glu
Met	Glr	Phe	420		Сув	Ser	Ile	425		Met	Lys	Tyr	Gln 430		Ile
Asn	Gly	435		Val	Pro	Glu	Gly 440		Thr	Pro	Авр	Ser 445		Glü	Gly
Asn	450		Tyr	Leu	Ser	Ser 455		Ser	His	Leu	Asn 460		Leu	Ser	His
Leu 465		Thr	Ser	Ser	Ser 470	Phe	Arg	Thr	Ser	Pro 475	Glu	Asn	Glu	Thr	Glu 480
Leu	Ile	Lys	Glu	His 485		Leu	Phe	Phe	<b>Lys</b> 490		Val	Ser	Leu	Сув 495	His
Thr	Val	Gln	Ile 500		Asn	Val	Gln	Thr 505		Сув	Thr	Gly	Asp 510	Gly	Pro
Trp	Gln	Ser 515	Asn	Leu	Ala	Pro	Ser 520		Leu	Glu	Tyr	Tyr 525	Ala	Ser	Ser
Pro	<b>А</b> вр 530		Lys	Ala	Leu	Val 535		Ala	Ala	Ala	Arg 540	Ile	Gly	Ile	Val
Phe 545	Ile	Gly	Asn	Ser	Glu 550	Glu	Thr	Met	Glu	Val 555	Lys	Thr	Leu	Gly	Lys 560
Leu	Glu	Arg	Tyr	Lys 565	Leu	Leu	His	Ile	Leu 570	Glu	Phe	Asp	Ser	<b>А</b> вр 575	Arg
Arg	Arg	Met	Ser 580	Val	Ile	Val	Gln	Ala 585	Pro	Ser	Gly	Glu	Lys 590	Leu	Leu
Phe	Ala	Lys 595	Gly	Ala	Glu	Ser	Ser 600	Ile	Leu	Pro	Lys	Сув 605	Ile	Gly	Gly
Glu	Ile 610	Glu	Lys	Thr	Arg	Ile 615	His	Val	Asp	Glu	Phe 620	Ala	Leu	Lys	Gly
Leu 625	Arg	Thr	Leu	Сув	11e 630	Ala	Tyr	Arg	Lys	Phe 635	Thr	Ser	Lys	Glu	Tyr 640
Glu	Glu	Ile	Asp	Lys 645	Arg	Ile	Phe	Glu	Ala 650	Arg	Thr	Ala	Leu	Gln 655	Gln
Arg	Glu	Glu	Lys 660	Leu	Ala	Ala	Val	Phe 665	Gln	Phe	Ile	Glu	Lys 670	Авр	Leu
Ile	Leu	Leu 675	Gly	Ala	Thr	Ala	Val 680	Glu	qaA	Arg	Leu	G1n 685	Asp	Lys	Val
	Glu 690	Thr	Ile	Glu	Ala	Leu 695	Arg	Met	Ala	Gly	11e 700	Lys	Val	Trp	Val
Leu 705	Thr	Gly	Asp	Lys	Нів 710	Glu	Thr	Ala	Val	Ser 715	Val	Ser	Leu	Ser	Сув 720
Gly	His	Phe	His	Arg 725	Thr	Met	Asn	Ile	Leu 730	Glu	Leu	Ile	Asn	Gln 735	Lys
Ser	qaA	Ser	Glu 740	Сув	Ala	Glu	Gln	Leu 745	Arg	Gln	Leu	Ala	Arg 750	Arg	Ile
Thr	Glu	<b>А</b> вр 755	His	Val	Ile	Gln	His 760	Gly	Leu	Val	Val	Авр 765	Gly	Thr	Ser
Leu	Ser 770	Leu	Ala	Leu	Arg	Glu 775	Нів	Glu	Lys		Phe 780	Met	Glu	Val	Сув
Arg 785	Asn	Сув	Ser	Ala	Val 790	Leu	Сув	Сув		Met 795	Ala	Pro	Leu	Gln	Lys 800

Ala Lys Val Ile Arg Leu Ile Lys Ile Ser Pro Glu Lys Pro Ile Thr 805 810 815 Leu Ala Val Gly Asp Gly Ala Asn Asp Val Ser Met Ile Gln Glu Ala 820 825 830 His Val Gly Ile Gly Ile Met Gly Lys Glu Gly Arg Gln Ala Ala Arg 835 840 845 Asn Ser Asp Tyr Ala Ile Ala Arg Phe Lys Phe Leu Ser Lys Leu Leu 850 855 860 Phe Val His Gly His Phe Tyr Tyr Ile Arg Ile Ala Thr Leu Val Gln 865 870 875 880 Tyr Phe Phe Tyr Lys Asn Val Cys Phe Ile Thr Pro Gln Phe Leu Tyr 885 890 895 Gln Phe Tyr Cys Leu Phe Ser Gln Gln Thr Leu Tyr Asp Ser Val Tyr 900 905 910 Leu Thr Leu Tyr Asn Ile Cys Phe Thr Ser Leu Pro Ile Leu Ile Tyr 915 920 925 Ser Leu Leu Glu Gln His Val Asp Pro His Val Leu Gln Asn Lys Pro 935 Thr Leu Tyr Arg Asp Ile Ser Lys Asn Arg Leu Leu Ser Ile Lys Thr 945 950 955 960 Phe Leu Tyr Trp Thr Ile Leu Gly Phe Ser His Ala Phe Ile Phe Phe 965 970 975 Phe Gly Ser Tyr Leu Leu Ile Gly Lys Asp Thr Ser Leu Leu Gly Asn 980 985 990 Gly Gln Met Phe Gly Asn Trp Thr Phe Gly Thr Leu Val Phe Thr Val 995 \$1000\$Met Val Ile Thr Val Thr Val Lys Met Ala Leu Glu Thr His Phe Trp Thr Trp Ile Asn His Leu Val Thr Trp Gly Ser Ile Ile Phe Tyr Phe 1025 1030 1035 1040 Val Phe Ser Leu Phe Tyr Gly Gly Ile Leu Trp Pro Phe Leu Gly Ser 1045 1050 1055 Gln Asn Met Tyr Phe Val Phe Ile Gln Leu Leu Ser Ser Gly Ser Ala 1065 Trp Phe Ala Ile Ile Leu Met Val Val Thr Cys Leu Phe Leu Asp Ile 1075 1080 1085 Ile Lys Lys Val Phe Asp Arg His Leu His Pro Thr Ser Thr Glu Lys 1090 1095 1100 Ala Gln Leu Thr Glu Thr Asn Ala Gly Ile Lys Cys Leu Asp Ser Met 1105 1110 1115 112 Cys Cys Phe Pro Glu Gly Glu Ala Ala Cys Ala Ser Val Gly Arg Met 1125 1130 1135 Leu Glu Arg Val Ile Gly Arg Cys Ser Pro Thr His Ile Ser Arg Ser 1140 1145 1150

Trp Ser Ala Ser Asp Pro Phe Tyr Thr Asn Asp Arg Ser Ile Leu Thr

Leu Ser Thr Met Asp Ser Ser Thr Cys 1170 1175

<210> SEQ ID NO 3

<211> LENGTH: 1125

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

60

atgtggcgct ggatccggca gcagctgggt tttgacccac cacatcagag tgacacaaga

<400> SEQUENCE: 3

#### -continued

accatctacg tagccaacag gtttcctcag aatggccttt acacacctca gaaattta	ta 120
gataacagga tcatttcatc taagtacact gtgtggaatt ttgttccaaa aaatttat	tt 180
gaacagttca gaagagtggc aaacttttat tttcttatta tatttttggt tcagctta	tg 240
attgatacac ctaccagtcc agttaccagt ggacttccat tattctttgt gataacag	ta 300
actgccataa agcagggata tgaagattgg ttacggcata actcagataa tgaagtaa	at 360
ggageteetg tttatgttgt tegaagtggt ggeettgtaa aaactagate aaaaaaca	tt 420
cgggtgggtg atattgttcg aatagccaaa gatgaaattt ttcctgcaga cttggtgc	tt 480
ctgtcctcag atcgactgga tggttcctgt cacgttacaa ctgctagttt ggacggag	aa 540
actaacctga agacacatgt ggcagttcca gaaacagcat tattacaaac agttgcca	at 600
ttggacactc tagtagctgt aatagaatgc cagcaaccag aagcagactt atacagat	tc 660
atgggacgaa tgatcataac ccaacaaatg gaagaaattg taagacctct ggggccgg	ag 720
agtotootgo ttogtggago cagattaaaa aacacaaaag aaatttttgg tgttgogg	ta 780
tacactggaa tggaaactaa gatggcatta aattacaaga gcaaatcaca gaaacgat	ct 840
gcagtagaaa agtcaatgaa tacatttttg ataatttatc tagtaattct tatatctg	aa 900
gctgtcatca gcactatctt gaagtataca tggcaagctg aagaaaaatg ggatgaac	ct 960
tggtataacc aaaaaacaga acatcaaaga aatagcaatt ctgagattta tttcagac	tt 1020
cottgetttt ttggttetet acaattteat catteeaatt teattatatg tgacagte	ga 1080
aatgcagaaa tttcttggat cattttttat tggctgggat cttga	1125
<210> SEQ ID NO 4 <211> LENGTH: 374 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 4	
Met Trp Arg Trp Ile Arg Gln Gln Leu Gly Phe Asp Pro Pro His Gln 1 15	
Ser Asp Thr Arg Thr Ile Tyr Val Ala Asn Arg Phe Pro Gln Asn Gly 20 25 30	
Leu Tyr Thr Pro Gln Lys Phe Ile Asp Asn Arg Ile Ile Ser Ser Lys 35 40 45	
Tyr Thr Val Trp Asn Phe Val Pro Lys Asn Leu Phe Glu Gln Phe Arg 50 55 60	
Arg Val Ala Asn Phe Tyr Phe Leu Ile Ile Phe Leu Val Gln Leu Met 65 70 75 80	
Ile Asp Thr Pro Thr Ser Pro Val Thr Ser Gly Leu Pro Leu Phe Phe 85 90 95	¥ 4,
Val Ile Thr Val Thr Ala Ile Lys Gln Gly Tyr Glu Asp Trp Leu Arg	
His Asn Ser Asp Asn Glu Val Asn Gly Ala Pro Val Tyr Val Val Arg	
Ser Gly Gly Leu Val Lys Thr Arg Ser Lys Asn Ile Arg Val Gly Asp 130 135 140	
Ile Val Arg Ile Ala Lys Asp Glu Ile Phe Pro Ala Asp Leu Val Leu 145 150 155 160	

Leu Ser Ser Asp Arg Leu Asp Gly Ser Cys His Val Thr Thr Ala Ser

				165					170					175	
Leu	Asp	Gly	Glu 180	Thr	Asn	Leu	Lys	Thr 185	His	Val	Ala	Val	Pro 190	Glu	Thr
Ala	Leu	Leu 195	Gln	Thr	Val	Ala	Asn 200	Leu	Авр	Thr	Leu	Val 205	Ala	Val	Ile
Glu	Сув 210	Gln	Gln	Pro	Glu	Ala 215	Asp	Leu	Tyr	Arg	Phe 220	Met	Gly	Arg	Met
Ile 225	Ile	Thr	Gln	Gln	Met 230	Glu	Glu	Ile	Val	Arg 235	Pro	Leu	Gly	Pro	Glu 240
Ser	Leu	Leu	Leu	Arg 245	Gly	Ala	Arg	Leu	Lys 250	Asn	Thr	Lys	Glu	11e 255	Phe
Gly	Val	Ala	Val 260	Tyr	Thr	Gly	Met	Glu 265	Thr	Lys	Met	Ala	Leu 270	Asn	Tyr
Lys	Ser	Lув 275	Ser	Gln	Lys	Arg	Ser 280	Ala	Val	Glu	Lys	Ser 285	Met	Asn	Thr
Phe	Leu 290	Ile	Ile	Tyr	Leu	Val 295	Ile	Leu	Ile	Ser	Glu 300	Ala	Val	Ile	Ser
Thr 305	Ile	Leu	Lys	Tyr	Thr 310	Trp	Gln	Ala	Glu	Glu 315	Lys	Trp	Asp	Glu	Pro 320
Trp	Tyr	Asn	Gln	Lys 325	Thr	Glu	His	Gln	Arg 330	Asn	Ser	Asn	Ser	Glu 335	Ile
Tyr	Phe	Arg	Leu 340	Pro	Сув	Phe	Phe	Gly 345	Ser	Leu	Gln	Phe	His 350	His	Ser
Asn	Phe	Ile 355	Ile	Сув	Asp	Ser	Arg 360	Asn	Ala	Glu	Ile	Ser 365		Ile	Ile
Phe	Tyr 370	Trp	Leu	Gly	Ser										

<210> SEQ ID NO 5

<211> LENGTH: 7277 <212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 5

60 gccgcgggat gggaacgcgg cgcggggagt gaggcagtgg cggcggcggc ggtaagcgga actteggeee gaggggeteg ecegeteeeg cetetgtett gteggeetee acetgeagee 120 ccgcggcccc cgcgccccgc gggacccgga cggcgacgac gggggaatgt ggcgctggat .180 240 coggoagcag ctgggttttg acccaccaca tcagagtgac acaagaacca tctacgtagc 300 caacaggttt cctcagaatg gcctttacac acctcagaaa tttatagata acaggatcat ttcatctaag tacactgtgt ggaattttgt tccaaaaaat ttatttgaac agttcagaag 360 420 agtggcaaac ttttattttc ttattatatt tttggttcag cttatgattg atacacctac cagtccagtt accagtggac ttccattatt ctttgtgata acagtaactg ccataaagca gggatatgaa gattggttac ggcataactc agataatgaa gtaaatggag ctcctgttta 540 600 tgttgttcga agtggtggcc ttgtaaaaac tagatcaaaa aacattcggg tgggtgatat tgttcgaata gccaaagatg aaatttttcc tgcagacttg gtgcttctgt cctcagatcg 660 actggatggt tcctgtcacg ttacaactgc tagtttggac ggagaaacta acctgaagac 720 780 acatgtggca gttccagaaa cagcattatt acaaacagtt gccaatttgg acactctagt 840 agctgtaata gaatgccagc aaccagaagc agacttatac agattcatgg gacgaatgat cataacccaa caaatggaag aaattgtaag acctctgggg ccggagagtc tcctgcttcg 900

29

tggagccaga	ttaaaaaaca	caaaagaaat	ttttggtgtt	gcggtataca	ctggaatgga	960
aactaagatg	gcattaaatt	acaagagcaa	atcacagaaa	cgatctgcag	tagaaaagtc	1020
aatgaataca	tttttgataa	tttatctagt	aattottata	tctgaagctg	tcatcagcac	1080
tatcttgaag	tatacatggc	aagctgaaga	aaaatgggat	gaaccttggt	ataaccaaaa	1140
aacagaacat	caaagaaata	gcagtaagat	tctgagattt	atttcagact	tccttgcttt	1200
tttggttctc	tacaatttca	tcattccaat	ttcattatat	gtgacagtcg	aaatgcagaa	1260
atttcttgga	tcatttttta	ttggctggga	tcttgatctg	tatcatgaag	aatcagatca	1320
gaaagctcaa	gtcaatactt	ccgatctgaa	tgaagagctt	ggacaggtag	agtacgtgtt	1380
tacagataaa	actggtacac	tgacagaaaa	tgagatgcag	tttcgggaat	gttcaattaa	1440
tggcatgaaa	taccaagaaa	ttaatggtag	acttgtaccc	gaaggaccaa	caccagactc	1500
ttcagaagga	aacttatctt	atcttagtag	tttatcccat	cttaacaact	tatcccatct	1560
tacaaccagt	tcctctttca	gaaccagtcc	tgaaaatgaa	actgaactaa	ttaaagaaca	1620
tgatctcttc	tttaaagcag	tcagtctctg	tcacactgta	cagattagca	atgttcaaac	1680
tgactgcact	ggtgatggtc	cctggcaatc	caacctggca	ccatcgcagt	tggagtacta	1740
tgcatcttca	ccagatgaaa	aggctctagt	agaagctgct	gcaaggattg	gtattgtgtt	1800
tattggcaat	tctgaagaaa	ctatggaggt	taaaactctt	ggaaaactgg	aacggtacaa	1860
actgcttcat	attctggaat	ttgattcaga	tcgtaggaga	atgagtgtaa	ttgttcaggc	1920
accttcaggt	gagaagttat	tatttgctaa	aggagctgag	tcatcaattc	tccctaaatg	1980
tataggtgga	gaaatagaaa	aaaccagaat	tcatgtagat	gaatttgctt	tgaaagggct	2040
aagaactctg	tgtatagcat	atagaaaatt	tacatcaaaa	gagtatgagg	aaatagataa	2100
acgcatattt	gaagccagga	ctgccttgca	gcagcgggaa	gagaaattgg	cagctgtttt	2160
ccagttcata	gagaaagacc	tgatattact	tggagccaca	gcagtagaag	acagactaca	2220
agataaagtt	cgagaaacta	ttgaagcatt	gagaatggct	ggtatcaaag	tatgggtact	2280
tactggggat	aaacatgaaa	cagctgttag	tgtgagttta	tcatgtggcc	attttcatag	2340
aaccatgaac	atccttgaac	ttataaacca	gaaatcagac	agcgagtgtg	ctgaacaatt	2400
gaggcagctt	gccagaagaa	ttacagagga	tcatgtgatt	cagcatgggc	tggtagtgga	2460
tgggaccagc	ctatctcttg	cactcaggga	gcatgaaaaa	ctatttatgg	aagtttgcag	2520
aaattgttca	gctgtattat	gctgtcgtat	ggctccactg	cagaaagcaa	aagtaataag	2580
actaataaaa	atatcacctg	agaaacctat	aacattggct	gttggtgatg	gtgctaatga	2640
cgtaagcatg	atacaagaag	cccatgttgg	cataggaatc	atgggtaaag	aaggaagaca	2700
ggctgcaaga	aacagtgact	atgcaatagc	cagatttaag	ttcctctcca	aattgctttt	2760
tgttcatggt	catttttatt	atattagaat	agctaccctt	gtacagtatt	tttttataa	2820
gaatgtgtgc	tttatcacac	cccagttttt	atatcagttc	tactgtttgt	tttctcagca	2880
aacattgtat	gacagcgtgt	acctgacttt	atacaatatt	tgttttactt	ccctacctat '	2940
tctgatatat	agtcttttgg	aacagcatgt	agaccctcat	gtgttacaaa	ataagcccac	3000
cctttatcga	gacattagta	aaaaccgcct	cttaagtatt	aaaacatttc	tttattggac	3060
catectgggc	ttcagtcatg	cctttatttt	cttttttgga	tcctatttac	taatagggaa	3120
agatacatct	ctgcttggaa	atggccagat	gttyggaaac	tggacatttg	gcactttggt	3180
cttcacagtc	atggttatta	cagtcacagt	aaagatggct	ctggaaactc	atttttggac	3240
ttggatcaac	catctcgtta	cctggggatc	tattatattt	tattttgtat	tttccttgtt	3300

ttatggaggg	attctctggc	catttttggg	ctcccagaat	atgtattttg	tgtttattca	3360
gctcctgtca	agtggttctg	cttggtttgc	cataatcctc	atggttgtta	catgtctatt	3420
tcttgatatc	ataaagaagg	tctttgaccg	acacetecae	cctacaagta	ctgaaaaggc	3480
acagcttact	gaaacaaatg	caggtatcaa	gtgcttggac	tccatgtgct	gtttcccgga	3540
aggagaagca	gcgtgtgcat	ctgttggaag	aatgctggaa	cgagttatag	gaagatgtag	3600
tccaacccac	atcagcagat	catggagtgc	atcggatcct	ttctatacca	acgacaggag	3660
catcttgact	ctctccacaa	tggactcatc	tacttgttaa	aggggcagta	gtactttgtg	3720
ggagccagtt	cacctccttt	cctaaaattc	agtgtgatca	ccctgttaat	ggccacacta	3780
gctctgaaat	taatttccaa	aatctttgta	gtagttcata	cccactcaga	gttataatgg	3840
caaacaaaca	gaaagcatta	gtacaagccc	ctcccaacac	ccttaatttg	aatctgaaca	3900
tgttaaaatt	tgagaataaa	gagacatttt	tcatctcttt	gtctggtttg	tcccttgtgc	3960
ttatgggact	cctaatggca	tttcagtctg	ttgctgaggc	cattatattt	taatataaat	4020
gtagaaaaaa	gagagaaatc	ttagtaaaga	gtattttta	gtattagctt	gattattgac	4080
tcttctattt	aaatctgctt	ctgtaaatta	tgctgaaagt	ttgccttgag	aactctattt	4140
ttttattaga	gttatattta	aagcttttca	tgggaaaagt	taatgtgaat	actgaggaat	4200
tttggtccct	cagtgacctg	tgttgttaat	tcattaatgc	attctgagtt	cacagagcaa	4260
attaggagaa	tcatttccaa	ccattattta	ctgcagtatg	gggagtaaat	ttataccaat	4320
toototaact	gtactgtaac	acagcctgta	aagttagcca	tataaatgca	agggtatatc	4380
atatatacaa	atcaggaatc	aggtccgttc	accgaacttc	aaattgatgt	ttactaatat	4440
ttttgtgaca	gagtataaag	accctatagt	gggtaaatta	gatactatta	gcatattatt	4500
aatttaatgt	ctttatcatt	ggatcttttg	catgctttaa	tctggttaac	atatttaaat	4560
ttgcttttt	tctctttacc	tgaaggetet	gtgtatagta	tttcatgaca	tcgttgtaca	4620
gtttaactat	atcaataaaa	agtttggaca	gtatttaaat	attgcaaata	tgtttaatta	4680
tacaaatcag	aatagtatgg	gtaattaaat	gaatacaaaa	agaagagcct	ctttctgcag	4740
ccgacttaga	catgctcttc	cctttctata	agctagattt	tagaataaag	ggtttcagtt	4800
aataatctta	ttttcaggtt	atgtcatcta	acttatagca	aactaccaca	atacagtgag	4860
ttctgccagt	gtcccagtac	aaggcatatt	tcaggtgtgg	ctgtggaatg	taaaaatgct	4920
caacttgtat	caggtaatgt	tagcaataaa	ttaaatgcta	agaatgatta	atcgggtaca	4980
tgttactgta	attaactcat	tgcacttcaa	aacctaactt	ccatcctgaa	tttatcaagt	5040
agttcagtat	tgtcatttgt	ttttgtttta	ttgaaaagta	atgttgtctt	aagatttaga	5100
agtgattatt	agcttgagaa	ctattaccca	gctctaagca	aataatgatt	gtatacatat	5160
taagataatg	gttaaatgcg	gttttaccaa	gttttccctt	gaaaatgtaa	ttcctttatg	5220
gagatttatt	gtgcagccct	aagcttcctt	cccatttcat	gaatataagg	cttctagaat	5280
tggactggca	ggggaaagaa	tggtagagac	agaaattaag	actttatcct	tgtttgcttg	5340
taaactatta	ttttcttgct	aatgtaacat	ttgtctgttc	cagtgatgta	aggatattaa	5400
gttattaagc	taaatattaa	ttttcaaaaa	tagtccttct	ttaacttaga	tatttcatag	5460
ctggatttag	gaagatctgt	tattctggaa	gtactaaaaa	gaataataca	acgtacaatg	5520
tctgcattca	ctaattcatg	ttccagaaga	ggaaataatg	aagatatact	cagtagagta	5580
ctaggtggga	ggatatggaa	atttgctcat	aaaatctctt	ataaaacgtg	catataacaa	5640

aatgacaccc	agtaggcctg	cattacattt	acatgaccgt	gtttatttgc	catcaaataa	5700
actgagtact	gacaccagac	aaagactcca	aagtcataaa	atagcctatg	accaactgca	5760
gcaagacagg	aggtcagctc	gcctataatg	gtgcttaaag	tgtgattgat	gtaattttct	5820
gtactcacca	tttgaagtta	gttaaggaga	actttatttt	tttaaaaaaa	gtaaatggca	5880
accactagtg	tgctcatcct	gaactgttac	tccaaatcca	ctccgttttt	aaagcaaaat	5940
tatcttgtga	ttttaagaaa	agagttttct	atttatttaa	gaaagtaaca	atgcagtctg	6000
caagctttca	gtagttttct	agtgctatat	tcatcctgta	aaactcttac	tacgtaacca	6060
gtaatcacaa	ggaaagtgtc	ccctttgcat	atttctttaa	aattctttct	ttggaaagta	6120
tgatgttgat	aattaactta	cccttatctg	ccaaaaccag	agcaaaatgc	taaatacgtt	6180
attgctaatc	agtggtctca	aatcgatttg	cctccctttg	cctcgtctga	gggctgtaag	6240
cctgaagata	gtggcaagca	ccaagtcagt	ttccaaaatt	gcccctcagc	tgctttaagt	6300
gactcagcac	cctgcctcag	cttcagcagg	cstaggctca	ccctgggcgg	agcaaagtat	6360
gggccaggga	gaactacagc	tacgaagacc	tgctgtcgag	ttgagaaaag	gggagaattt	6420
atggtctgaa	ttttctaact	gtcctctttc	ttgggtctaa	agctcataat	acacaaaggc	6480
ttccagacct	gagccacacc	caggccctat	cctgaacagg	agactaaaca	gaggcaaatc	6540
aaccctagga	aatacttgca	ttctgcccta	cggttagtac	caggactgag	gtcatttcta	6600
ctggaaaaga	ttgtgagatt	gaacttatct	gatcgcttga	gactcctaat	aggcaggagt	6660
caaggccact	agaaaattga	cagttaagag	ccaaaagttt	ttaaaatatg	ctactctgaa	6720
aaatctcgtg	aaggctgtag	gaaaagggag	aatcttccat	gttggtgttt	ttcctgtaaa	6780
gatcagtttg	gggtatgata	taagcaggta	ttaataaaaa	taacacacca	aagagttacg	6840
taaaacatgt	tttattaatt	ttggtcccca	cgtacagaca	tttatttct	attttgaaat	6900
gagttatcta	ttttcataaa	agtaaaacac	tattaaagtg	ctgttttatg	tgaaataact	6960
tgaatgttgt	tcctataaaa	aatagatcat	aactcatgat	atgtttgtaa	tcatggtaat	7020
ttagatttt	atgaggaatg	agtatctgga	aatattgtag	caatacttgg	tttaaaattt	7080
tggacctgag	acactgtggc	tgtctaatgt	aatcctttaa	aaattctctg	cattgtcagt	7140
aaatgtagta	tattattgta	cagctactca	taattttta	aagtttatga	agttatattt	7200
atcaaataaa	aactttccta	tataattaaa	aaaaaaaaa	**********	aaaaaacaaa	7260
aaaaaaaaa	0000000					7277

## <400> SEQUENCE: 6

atggcacaac	tagagaggag	cgccatctct	ggcttcagct	ctaagtccag	gcgaaactca	60
ttcgcatatg	atgttaagcg	tgaagtatac	aatgaggaga	cctttcaaca	ggaacacaaa	120
aggaaggcct	cctcttctgg	gaacatgaac	atcaacatca	ccaccttcag	acaccacgtc	180
cagtgccgct	gctcatggca	caggttccta	cgatgcrtgc	ttacaatctt	tcccttccta	240
gaatggatgt	gtatgtatcg	attaaaggat	tggcttctgg	gagacttact	tgctggtata	300
agtgttggcc	ttgtgcaagt	tccccaaggc	ctgacactta	gtttgctggc	aaggcaactg	360
attcctcctc	tcaacatcgc	ttatgcagct	ttctgttctt	cggtaatcta	tgtaatttt	420
ggatcgtgtc	atcaaatgtc	cgttggttcc	ttcttcctgg	tgagtgctct	gctgatcaac	480

<210> SEQ ID NO 6 <211> LENGTH: 2913 <212> TYPE: DNA <213> ORGANISM: homo sapiens

gattetgaaag tgageceatt caacaaeggt caactggtea tgggatettt egteaagaat gagttttegg coccetecta cettatggge tataataaat cettgagtgt ggtggcaace acaactttte tgactgggat tatteageta ataatgggeg tattggttt gggetteatt ggecacttace tteeggagte tgeaatgaat gettacetgg etgetgtgge actteatate atgetgteec agetgacttt catetttggg attatgatta gttteeatge eggteecate teettettet atgacataat taattactgt gtagetetee caaaagegaa tteeaceage	540 600 660 720 780 840 900 960 1020
acaacttttc tgactgggat tattcagcta ataatgggcg tattgggttt gggcttcatt gccacttacc ttccggagtc tgcaatgaat gcttacctgg ctgctgtggc acttcatatc atgctgtccc agctgacttt catctttggg attatgatta gtttccatgc cggtcccatc	720 780 840 900 960
gccacttacc ttccggagtc tgcaatgaat gcttacctgg ctgctgtggc acttcatatc	720 780 840 900 960
atgotytoco agotyacttt catotttggg attatgatta gtttocatgo oggtocoato	780 840 900 960
	840 900 960 1020
toottottot atgacataat taattactgt gtagototoo caaaagogaa ttocaccago	900 960 1020
	960 1020
attotagtat ttotaactgt tgttgttgct otgogaatca acaaatgtat cagaatttot	1020
ttcaatcagt atcccattga gtttcccatg gaattatttc tgattattgg cttcactgtg	
attgcaaaca agataagcat ggccacagaa accagccaga cgcttattga catgattcct	1000
tatagettte tgetteetgt aacaccagat tteageette tteecaagat aattttacaa	1000
geetteteet tatettiggt gageteettt etgeteatat tietgggeaa gaagattgee	1140
agtottcaca attacagtgt caattocaac caggatttaa tagocatogg cotttgcaat	1200
gtcgtcagtt cattittcag atcitigtgtg titaciggtg ciattgciag gaciattatc	1260
caggataaat ctggaggaag acaacagttt gcatctctgg taggcgcagg tgtgatgctg	1320
ctcctgatgg tgaagatggg acactttttc tacacactgc caaatgctgt gctggctggt	1380
attattotga gcaacgtoat tocotacott gaaaccattt otaacotaco cagootgtgg	1440
aggcaggacc aatatgactg tgctctttgg atgatgacat tctcatcttc aattttcctg	1500
ggactggaca ttggactaat tatctcagta gtttctgctt tcttcatcac cactgttcgt	1560
tcacacagag ctaagattct tctcctgggt caaatcccta acaccaacat ttatagaagc	1620
atcaatgatt atcgggagat catcaccatt cctggggtga aaatcttcca gtgctgcagc	1680
tcaattacat ttgtaaatgt ttactaccta aagcataagc tgttaaaaga ggttgatatg	1740
gtaaaggtgc ctcttaaaga agaagaaatt ttcagcttgt ttaattcaag tgacaccaat	1800
ctacaaggag gaaagatttg caggtgtttc tgcaactgtg atgatctgga gccgctgccc	1860
aggattettt acacagageg atttgaaaat aaactggate eegaageate etecattaac	1920
ctgattcact gctcacattt tgagagcatg aacacaagcc aaactgcatc cgaagaccaa	1980
gtgccataca cagtatcgtc cgtgtctcag aaaaatcaag ggcaacagta tgaggaggtg	2040
gaggaagttt ggcttcctaa taactcatca agaaacagct caccaggact gcctgatgtg	2100
gcggaaagcc aggggaggag atcactcatc cettactcag atgcgtetet actgcccagt	2160
gtccacacca tcatcctgga tttctccatg gtacactacg tggattcacg ggggttagtc	2220
gtattaagac agatatgcaa tgcctttcaa aacgccaaca ttttgatact cattgcaggg	2280
tgtcactctt ccatagtcag ggcatttgag aggaatgatt tctttgacgc tggcatcacc	2340
aagacccage tgttcctcag cgttcacgac gccgtgctgt ttgccttgtc aaggaaggtc	2400
ataggeteet etgagttaag categatgaa teegagacag tgataeggga aacetaetea	2460
gaaacagaca agaatgacaa ttcaagatat aaaatgagca gcagttttct aggaagccaa	2520
aaaaatgtaa gtccaggctt catcaagatc caacagcctg tagaagagga gtcggagttg	2580
gatttggage tggaatcaga acaagagget gggetgggte tggacetaga eetggategg	2640
gagetggage etgaaatgga geccaagget gagacegaga ccaagaceca gacegagatg	2700
gagecceage etgagactga geetgagatg gageccaace ccaaatetag geeaagaget	2760
cacactttte etcagcageg ttactggeet atgtateate egtetatgge ttecacceag	2820

38

tct	caga	ctc	agac	tcgg	ac a	tggt	cagt	g ga	gagg	agac	gcc	atco	tat	ggat	tcat	ac	288
tca	ccag	agg	gcaa	cago	aa t	gaag	atgt	c ta	g								291
<21 <21 <21 <22 <22 <22 <22	1> L 2> T 3> O 0> F 1> N 2> L	engt YPE: RGAN EATU AME/ OCAT	RE: KEY: ION:	70 hom VAR (1)	o sa IANT ( TION	- 970)		Any A	Amin	o Ac	id						
<40	0> S	EQUE	NCE :	7													
Met 1	Ala	Gln	Leu	Glu 5	Arg	Ser	Ala	Ile	Ser 10	Gly	Phe	Ser	Ser	Lys 15	Ser		
Arg	Arg	Asn	Ser 20	Phe	Ala	Tyr	Asp	Val 25	Lys	Arg	Glu	Val	Tyr 30	Asn	Glu		
Glu	Thr	Phe 35	Gln	Gln	Glu	His	Lys 40	Arg	Lys	Ala	Ser	Ser 45	Ser	Gly	Asn		
Met	Asn 50	Ile	Asn	Ile	Thr	Thr 55	Phe	Arg	His	His	Val 60	Gln	Сув	Arg	Сув		
Ser 65	Trp	His	Arg	Phe	Leu 70	Arg	Сув	Met	Leu	Thr 75	Ile	Phe	Pro	Phe	Leu 80		
	•		-	85	-	•		-	90	·				Asp 95			
			100					105					110				
		115					120					125		Ala			
	130					135					140			Cys			
145				_	150					155				Ile	160		
		-		165					170					Gly 175			
		•	180					185		-			190	Tyr			
		195					200					205		Ile			
	210					215	_		-		220			Tyr			
225				,	230	:	-			235			٠.	His	240		:
				245					250					255	His	•	٠.
			260					265			•		270	Val			
		275					280					285		Val			•
	290		-			295	-		-		300			Gln			
305					310					315		_		Thr	320		
118	nia	nen	тÀв	325	961	net	wig	THE	330	1112	aer	GIII	III	<b>Leu</b> 335	116		

Asp	Met	Ile	Pro 340	Tyr	Ser	Phe	Leu	Leu 345	Pro	Val	Thr	Pro	Asp 350	Phe	Ser
Leu	Leu	Pro 355	Lys	Ile	Ile	Leu	Gln 360	Ala	Phe	Ser	Leu	Ser 365	Leu	Val	Ser
Ser	Phe 370		Leu	Ile	Phe	Leu 375		Lys	Lys	Ile	Ala 380	Ser	Leu	His	Asn
Tyr 385	Ser	Val	Asn	Ser	naA 390	Gln	qaA	Leu	Ile	Ala 395	Ile	Gly	Leu	Сув	Asn 400
Val	Val	Ser	Ser	Phe 405	Phe	Arg	Ser	Сув	Val 410	Phe	Thr	Gly	Ala	Ile 415	Ala
Arg	Thr	Ile	Ile 420	Gln	Asp	Lys	Ser	Gly 425	Gly	Arg	Gln	Gln	Phe 430	Ala	Ser
Leu	Val	Gly 435	Ala	Gly	Val	Met	Leu 440	Leu	Leu	Met	Val	Lys 445	Met	Gly	Нів
Phe	Phe 450	Tyr	Thr	Leu	Pro	Asn 455	Ala	Val	Leu	Ala	Gly 460	Ile	Ile	Leu	Ser
Asn 465	Val	Ile	Pro	Tyr	Leu 470	Glu	Thr	Ile	Ser	Asn 475	Leu	Pro	Ser	Leu	Trp 480
Arg	Gln	qaA	Gln	Tyr 485	Asp	Сув	Ala	Leu	Trp 490	Met	Met	Thr	Phe	Ser 495	Ser
Ser	Ile	Phe	Leu 500	Gly	Leu	Asp	Ile	Gly 505	Leu	Ile	Ile	Ser	Val 510	Val	Ser
Ala	Phe	Phe 515	Ile	Thr	Thr	Val	Arg 520	Ser	His	Arg	Ala	Lys 525	Ile	Leu	Leu
Leu	Gly 530	Gln	Ile	Pro	Asn	Thr 535	Asn	Ile	Tyr	Arg	Ser 540	Ile	Asn	Asp	Tyr
Arg 545	Glu	Ile	Ile	Thr	11e 550	Pro	Gly	Val	Lys	Ile 555	Phe	Gln	Cys	Сув	Ser 560
Ser	Ile	Thr	Phe	Val 565	Asn	Val	Tyr	Tyr	Leu 570	Lys	His	Lys	Leu	Leu 575	Lys
Glu	Val	qaA	Met 580	Val	Lув	Val	Pro	Leu 585	Lys	Glu	Glu	Glu	Ile 590	Phe	Ser
Leu	Phe	Asn 595	Ser	Ser	Asp	Thr	naA 000	Leu	Gln	Gly	Gly	Lys 605	Ile	Сув	Arg
Сув	Phe 610	Сув	Asn	Сув	Asp	Asp 615	Leu	Glu	Pro	Leu	Pro 620	Arg	Ile	Leu	Tyr
Thr 625	Glu	Arg	Phe	Glu	Asn 630	Lys	Leu	Asp	Pro	Glu 635	Ala	Ser	Ser	Ile	Asn 640
Leu	Ile	His	Сув	Ser 645	His	Phe	Glu	Ser	Met 650	Asn	Thr	Ser	Gln	Thr 655	Ala
Ser	Glu	Asp	Gln 660	Val	Pro	Tyr	Thr	Val 665	Ser	Ser	Val	Ser	Gln 670	Lys	Asn
Gln	Gly	Gln 675		Tyr `	Glu	Glu	Val 680	Glu	Glu	Val	Trp	Leu 685	Pro	Asn	Asn
Ser	Ser 690	Arg	Asn	Ser	Ser	Pro 695	Gly	Leu	Pro	Авр	Val 700	Ala	Glu	Ser	Gln
Gly 705	Arg	Arg	Ser	Leu	Ile 710	Pro	Tyr	Ser	Asp	Ala 715	Ser	Leu	Leu	Pro	Ser 720
Val	His	Thr	Ile	Ile 725	Leu	Asp	Phe	Ser	Met 730	Val	His	Tyr	Val	Авр 735	Ser
Arg	Gly	Leu	Val 740	Val	Leu	Arg	Gln	11e 745	Сув	Asn	Ala	Phe	Gln 750	Asn	Ala
Asn	Ile	Leu 755	Ile	Leu	Ile	Ala	Gly 760	Сув	His	Ser	Ser	11e 765	Val	Arg	Ala

 Phe
 Glu
 Asg
 Asg
 Phe
 Phe
 Asg
 Ala
 Glu
 Thr
 Leu
 Fhe
 Clu
 Fhe
 Asg
 Ala
 Val
 Leu
 Phe
 Ala
 Leu
 Phe
 Ala
 Leu
 Ser
 Arg
 Lys
 Ranger

 Ile
 Gly
 Ser
 Ser
 Glu
 Leu
 Ser
 Ile
 Asg
 Glu
 Ser
 Glu
 Phe
 Arg
 Arg
 Arg
 Ranger
 Arg
 Ranger
 Arg
 Arg

<210> SEQ ID NO 8
<211> LENGTH: 3749
<212> TYPE: DNA
<213> ORGANISM: homo sapiens

<400> SEQUENCE: 8

ttttccaact ccccatctcc tccctcctca gattaaaaga agttatatgg actttgtgat 120 gttttctgcc gctttgtgaa gtaggcctta tttctcttgt cctttcgtac agggaggaat ttgaagtaga tagaaaccga cctggattac tccggtctga actcagatca cgtaggactt 180 240 taatcgttga acaaacgaac ctttaatagc ggctgcacca tcgggatgtc ctgatccaac 300 atcgaggtcg taaaccctat tgttgatatg gactctagaa taggattgcg ctgttatccc tagggtaact tgttccgttg gtcaagttat tggatcaatt gagtatagta gttcgctttg 360 actggtgaag tottggcatg tactgctcgg aggttgggtt ctgctccgag gtcgccccaa ccgaaatttt taatgcagga gcgcccgcac tcccgccccc gccaaggagc caggaatggc acaactagag aggagegeea tetetggett cagetetaag tecaggegaa acteattege 540 atatgatgtt aagcgtgaag tatacaatga ggagacettt caacaggaac acaaaaggaa 600 ggcctcctct tctgggaaca tgaacatcaa catcaccacc ttcagacacc acgtccagtg 660 cogctgotca tggcacaggt toctacgatg crtgottaca atotttocot toctagaatg 720 780 gatgtgtatg tatcgattaa aggattggct tctgggagac ttacttgctg gtataagtgt 840 tggccttgtg caagttcccc aaggcctgac acttagtttg ctggcaaggc aactgattcc tecteteaac ategettatg cagetttetg ttetteggta atetatgtaa tttttggate 900 960 gtgtcatcaa atgtccgttg gttccttctt cctggtgagt gctctgctga tcaacgttct

gaaagtgagc	ccattcaaca	acggtcaact	ggtcatggga	tctttcgtca	agaatgagtt	1020
ttcggccccc	tcctacctta	tgggctataa	taaatccttg	agtgtggtgg	caaccacaac	1080
ttttctgact	gggattattc	agctaataat	gggcgtattg	ggtttgggct	tcattgccac	1140
ttaccttccg	gagtctgcaa	tgaatgctta	cctggctgct	gtggcacttc	atatcatgct -	1200
gtcccagctg	actttcatct	ttgggattat	gattagtttc	catgccggtc	ccatctcctt	1260
cttctatgac	ataattaatt	actgtgtagc	tctcccaaaa	gcgaattcca	ccagcattct	1320
agtatttcta	actgttgttg	ttgctctgcg	aatcaacaaa	tgtatcagaa	tttctttcaa	1380
tcagtatccc	attgagtttc	ccatggaatt	atttctgatt	attggcttca	ctgtgattgc	1440
aaacaagata	agcatggcca	cagaaaccag	ccagacgctt	attgacatga	ttccttatag	1500
ctttctgctt	cctgtaacac	cagatttcag	ccttcttccc	aagataattt	tacaagcctt	1560
ctccttatct	ttggtgagct	cctttctgct	catatttctg	ggcaagaaga	ttgccagtct	1620
tcacaattac	agtgtcaatt	ccaaccagga	tttaatagcc	atcggccttt	gcaatgtcgt	1680
cagttcattt	ttcagatctt	gtgtgtttac	tggtgctatt	gctaggacta	ttatccagga	1740
taaatctgga	ggaagacaac	agtttgcatc	tctggtaggc	gcaggtgtga	tgctgctcct	1800
gatggtgaag	atgggacact	ttttctacac	actgccaaat	gctgtgctgg	ctggtattat	1860
tctgagcaac	gtcattccct	accttgaaac	catttctaac	ctacccagcc	tgtggaggca	1920
ggaccaatat	gactgtgctc	tttggatgat	gacattctca	tcttcaattt	tcctgggact	1980
ggacattgga	ctaattatct	cagtagtttc	tgctttcttc	atcaccactg	ttcgttcaca	2040
cagagctaag	attettetee	tgggtcaaat	ccctaacacc	aacatttata	gaagcatcaa	2100
tgattatcgg	gagatcatca	ccattcctgg	ggtgaaaatc	ttccagtgct	gcagctcaat	2160
tacatttgta	aatgtttact	acctaaagca	taagctgtta	aaagaggttg	atatggtaaa	2220
ggtgcctctt	aaagaagaag	aaattttcag	cttgtttaat	tcaagtgaca	ccaatctaca	2280
aggaggaaag	atttgcaggt	gtttctgcaa	ctgtgatgat	ctggagccgc	tgcccaggat	2340
tctttacaca	gagcgatttg	aaaataaact	ggatcccgaa	gcatcctcca	ttaacctgat	2400
tcactgctca	cattttgaga	gcatgaacac	aagccaaact	gcatccgaag	accaagtgcc	2460
atacacagta	tegteegtgt	ctcagaaaaa	tcaagggcaa	cagtatgagg	aggtggagga	2520
agtttggctt	cctaataact	catcaagaaa	cagctcacca	ggactgcctg	atgtggcgga	2580
aagccagggg	aggagatcac	tcatccctta	ctcagatgcg	tetetactge	ccagtgtcca	2640
caccatcatc	ctggatttct	ccatggtaca	ctacgtggat	tcacgggggt	tagtcgtatt	2700
aagacagata	tgcaatgcct	ttcaaaacgc	caacattttg	atactcattg	cagggtgtca	2760
		ttgagaggaa	4	•		2820
ccagctgttc	ctcagcgttc	acgacgccgt	gctgtttgcc	ttgtcaagga	aggtcatagg	2880
ctcctctgag	ttaagcatcg	atgaatccga	gacagtgata	cgggaaacct	actcagaaac	2940
agacaagaat	gacaattcaa	gatataaaat	gagcagcagt	tttctaggaa	gccaaaaaaa	3000
tgtaagtcca	ggcttcatca	agatccaaca	gcctgtagaa	gaggagtcgg	agttggattt	3060
		aggctgggct				3120
		aggctgagac				3180
		agatggagcc				3240
		ggcctatgta				3300
-,			-		-	

gactcagact	cggacatggt	cagtggagag	gagacgccat	cctatggatt	catactcacc	3360
agagggcaac	agcaatgaag	atgtctagga	gatgaactag	aaataagggg	tcagataatg	3420
ctggcaaatc	ctcctaccca	aaaaggggtc	aattgtccag	agacctagac	tggatacgaa	3480
ctagcagtac	ttccttcctg	actgtgactc	ctactacctg	ccagccttct	teettgetet	3540
gcgctgggat	catactccca	aatcacatta	ctaaatgcca	acaattatct	ctgaattccc	3600
tatccaggct	cccctcattt	caccttcagc	atatattcta	gtcatgaatt	tccttcttca	3660
cacaccccac	atctctgggc	tttgtgccag	accatctcta	acttaatcct	ctcatccctg	3720
ttcccctttc	tccaaagaga	tgaagctca				3749
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 1524	sapiens				
<400> SEQUE	ENCE: 9					
atggggtgtt	ggggtcggaa	ccddddccdd	ctgctgtgca	tgctggcgct	gaccttcatg	60
ttcatggtgc	tggaggtggt	ggtgagccgg	gtgacctcgt	cgctggcgat	gctctccgac	120
tecttecaca	tgctgtcgga	egtgetggeg	ctggtggtgg	cgctggtggc	cgagcgcttc	180
gcccggcgga	cccacgccac	ccagaagaac	acgttcggct	ggatccgagc	cgaggtaatg	240
ggggctctgg	tgaacgccat	cttcctgact	ggcctctgtt	togocatoot	gctggaggcc	300
atcgagcgct	tcatcgagcc	gcacgagatg	cagcagccgc	tggtggtcct	tggggtcggc	360
gtggccgggc	tgctggtcaa	cgtgctgggg	ctctgcctct	tecaccatea	cagcggcttc	420
agccaggact	ccggccacgg	ccactcgcac	gggggtcacg	gccacggcca	eggeeteese	480
aaggggcctc	gcgttaagag	cacccgcccc	gggagcagcg	acatcaacgt	ggccccgggc	540
gagcagggtc	ccgaccagga	ggagaccaac	accctggtgg	ccaataccag	caactccaac	600
gggctgaaat	tggaccccgc	agacccagaa	aaccccagaa	gtggtgatac	agtggaagta	660
caagtgaatg	gaaatcttgt	cagagaacct	gaccatatgg	aactggaaga	agatagggct	720
ggacaactta	acatgcgtgg	agtttttctg	catgtccttg	gagatgcctt	gggttcagtg	780
attgtagtag	taaatgcctt	agtcttttac	ttttcttgga	aaggttgttc	tgaaggggat	840
ttttgtgtga	atccatgttt	ccctgacccc	tgcaaagcat	ttgtagaaat	aattaatagt	900
actcatgcat	cactttatga	ggctggtcct	tgctgggtgc	tatatttaga	tccaactctt	960
tgtgttgtaa	tggtttgtat	acttctttac	acaacctatc	cattacttaa	ggaatctgct	1020
cttattcttc	tacaaactgt	tcctaaacaa	attgatatca	gaaatttgat	aaaagaactt	1080
cgaaatgttg	aaggagttga	ggaagttcat	gaattacatg	tttggcaact	tgctggaagc	1140
agaatcattg	ccactgctca	cataaaatgt	gaagatccaa	catcatacat	ggaggtggct	: 1200
aaaaccatta	aagacgtttt	tcataatcac	ggaattcacg	ctactaccat	tcagcctgaa	1260
tttgctagtg	taggctctaa	atcaagtgta	gttccgtgtg	aacttgcctg	cagaacccag	1320
			ccacaagccc			1380
			gaacttagta			1440
			gttgtgatag			1500
	aatcatcttt					1524

	2> T) 3> OF			homo	sa c	iens	3								
<40	0> SI	QUE	ICE:	10			100				•				
Met 1	Gly	Сув	Trp	Gly 5	Arg	Asn	Arg	Gly	Arg 10	Leu	Leu	Сув	Met	Leu 15	Ala
Leu	Thr	Phe	Met 20	Phe	Met	Val	Leu	Glu 25	Val	Val	Val	Ser	Arg 30	Val	Thr
Ser	Ser	Leu 35	Ala	Met	Leu	Ser	Asp 40	Ser	Phe	His	Met	Leu 45	Ser	Asp	Val
Leu	Ala 50	Leu	Val	Val	Ala	Leu 55	Val	Ala	Glu	Arg	Phe 60	Ala	Arg	Arg	Thr
Нів 65	Ala	Thr	Gln	Lys	Asn 70	Thr	Phe	Gly	Trp	Ile 75	Arg	Ala	Glu	Val	Met 80
Gly	Ala	Leu	Val	Asn 85	Ala	Ile	Phe	Leu	Thr 90	Gly	Leu	Сув	Phe	Ala 95	Ile
Leu	Leu	Glu	Ala 100	Ile	Glu	Arg	Phe	Ile 105	Glu	Pro	His	Glu	Met 110	Gln	Gln
Pro	Leu	Val 115	Val	Leu	Gly	Val	Gly 120	Val	Ala	Gly	Leu	Leu 125	Val	Asn	Val
Leu	Gly 130	Leu	Сув	Leu	Phe	His 135	His	His	Ser	Gly	Phe 140	Ser	Gln	Asp	Ser
Gly 145	His	Gly	His	Ser	Нів 150	Gly	Gly	His	Gly	Нів 155	Gly	His	Gly	Leu	Pro 160
Lys	Gly	Pro	Arg	Val 165	Lys	Ser	Thr	Arg	Pro 170	Gly	Ser	Ser	Asp	Ile 175	Asn
Val	Ala	Pro	Gly 180	Glu	Gln	Gly	Pro	Asp 185	Gln	Glu	Glu	Thr	Asn 190	Thr	Leu
Val	Ala	Asn 195	Thr	Ser	Asn	Ser	Asn 200	Gly	Leu	Lys	Leu	Asp 205	Pro	Ala	Asp
Pro	Glu 210	Asn	Pro	Arg	Ser	Gly 215	Asp	Thr	Val	Glu	Val 220	Gln	Val	Asn	Gly
Asn 225	Leu	Val	Arg	Glu	Pro 230	Asp	His	Met	Glu	Leu 235	Glu	Glu	Asp	Arg	Ala 240
Gly	Gln	Leu	Asn	Met 245	Arg	Gly	Val	Phe	Leu 250	His	Val	Leu	Gly	Asp 255	Ala
Leu	Gly	Ser	Val 260	Ile	Val	Val	Val	Asn 265	Ala	Leu	Val	Phe	Tyr 270	Phe	Ser
_	Lys	275					280					285			
	290		٠.			295					300				Ser
Leu 305	Tyr	Glu	Ala	Gly	Pro 310	Сув	Trp	Val	Leu	Tyr 315	Leu	Ąsp	Pro	Thr	Leu 320
Сув	Val	Val	Met	Val 325	Сув	Ile	Leu	Leu	Tyr 330	Thr	Thr	Tyr	Pro	Leu 335	Leu
_	Glu		340					345					350		
Ile	Arg	Asn 355	Leu	Ile	Lys	Glu	Leu 360	Arg	Asn	Val	Glu	Gly 365	Val	Glu	Glu
	Нів 370					375					380				
Thr 385	Ala	His	Ile	Lys	Сув 390	Glu	Asp	Pro	Thr	Ser 395	Tyr	Met	Glu	Val	Ala 400

<210> SEQ ID NO 11 <211> LENGTH: 2222 <212> TYPE: DNA

<213> ORGANISM: homo sapiens

#### <400> SEQUENCE: 11

60 cteeggetge ggetettggt accceggete egggageeea geteeeegee accgeegeeg cctgggtgtg ggggctgctg aggctgagcc gggcttcggc gccggctctg aggacggacg cetgaggage tgegeggege ggegeegeeg getggeggag aacgeecaca ggegegggge teggeggett gacceggget tgteecegtg eggeegeggg ggeeceteag eggttteeeg 240 300 aacggcccga ctcgggcgct cctccgtgtc gcggtcgccg accctccgcg tcccgccaac 360 geogeogoty caccagtote egggeoggge teggegggee eegcageege agecatgggg tgttggggtc ggaaccgggg ccggctgctg tgcatgctgg cgctgacctt catgttcatg 420 480 gtgctggagg tggtggtgag ccgggtgacc tcgtcgctgg cgatgctctc cgactccttc cacatgctgt cggacqtgct ggcgctggtg gtggcgctgg tggccgagcg cttcgcccgg 600 cggacccacg ccacccagaa gaacacgttc ggctggatcc gagccgaggt aatgggggct ctggtgaacg ccatcttcct gactggcctc tgtttcgcca tcctgctgga ggccatcgag 660 cgcttcatcg agccgcacga gatgcagcag ccgctggtgg tccttggggt cggcgtggcc 780 gggctgctgg tcaacgtgct ggggctctgc ctcttccacc atcacagcgg cttcagccag gacteeggee aeggeeacte geaegggggt caeggeeacg geeaeggeet eeceaagggg 840 cctegegtta agageacceg cccegggage agegacatea acgtggeece gggcgageag ggtcccgacc aggaggagac caacaccctg gtggccaata ccagcaactc caacgggctg :1020 aaattggacc ccgcagaccc agaaaacccc agaagtggtg atacagtgga agtacaagtg aatggaaatc ttgtcagaga acctgaccat atggaactgg aagaagatag ggctggacaa 1140 cttaacatgc qtqqaqtttt tctqcatgtc cttqqaqatg ccttqqqttc aqtqattqta gtagtamatg cottagtott ttacttttct tggamaggtt gttctgmagg ggmtttttgt 1200 1260 gtgaatccat gtttccctga cccctgcaaa gcatttgtag aaataattaa tagtactcat gcatcacttt atgaggctgg tccttgctgg gtgctatatt tagatccaac tctttgtgtt 1320 gtaatggttt gtatacttct ttacacaacc tatccattac ttaaggaatc tgctcttatt 1380 1440 cttctacaaa ctgttcctaa acaaattgat atcagaaatt tgataaaaga acttcgaaat gttgaaggag ttgaggaagt tcatgaatta catgtttggc aacttgctgg aagcagaatc

1560 attgccactg ctcacataaa atgtgaagat ccaacatcat acatggaggt ggctaaaacc attaaagacg tttttcataa tcacggaatt cacgctacta ccattcagcc tgaatttgct 1620 1680 agtgtaggct ctaaatcaag tgtagttccg tgtgaacttg cctgcagaac ccagtgtgct ttgaagcaat gttgtgggac actaccacaa gccccttatg gaaaggatgc agaaaagacc 1740 1800 ccagcagtta gcatttcttg tttagaactt agtaacaatc tagagaagaa gcccaggagg 1860 actaeagctg aeaecatccc tgctgttgtg atagagatta aeaecatgcc aeacaeacae 1920 cctgaatcat ctttgtgagt cttgaaaaag atgtgatatt tgacttttgc tttaaactgc 1980 aagaggaaaa agactccact gaaattctaa gtttgccaag tagtgtaatt gaagtccttg totggtcaca cagtttaatt ctattttgt aagaacataa tgggactgca taacagagtt ctatattaca atttgtgatt attagtacag agtacagcta tgctgtgact gttttggaaa 2100 2160 gccagtttta acactatgtt acatttttgt ttaaagtaag ttaaacctta tataacataa 2220 tgacatttga tttctggatt tttcccatgg ataaaaaatt aggggggata aaattaaaat 2222

What is claimed is:

- 1. An isolated nucleic acid molecule comprising a sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID ³⁰ NO: 7; and
  - (b) hybridizes under highly stringent conditions with wash conditions of 0.1xSSC/0.1%SDS at 68° C. to the nucleotide sequence of SEQ ID NO: 6 or the complement thereof.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the amino acid sequence shown in SEQ ID NO:7.
- 3. A recombinant expression vector comprising the isolated nucleic acid molecule of claim 2.
- 4. A host cell comprising the recombinant expression vector of claim 3.

* * * * *

0

This Page Blank (uspto)



## (12) United States Patent

Turner, Jr. et al.

(10) Patent No.:

US 6,511,840 B1

(45) Date of Patent:

Jan. 28, 2003

#### **HUMAN KINASE PROTEINS AND** POLYNUCLEOTIDES ENCODING THE SAME

Inventors: C. Alexander Turner, Jr., The

Woodlands, TX (US); Brian Mathur, The Woodlands, TX (US); Daniel Mathur, Wooster, OH (US); Carl Johan Friddle, The Woodlands, TX

(US)

Assignee: Lexicon Genetics Incorporated, The

Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/883,134

(22)Filed: Jun. 15, 2001

#### Related U.S. Application Data

Provisional application No. 60/211,572, filed on Jun. 15, 2000, and provisional application No. 60/216,382, filed on

(51) Int. Cl.⁷ ...... C12N 1/20; C12N 15/00; C12N 9/12; C07H 21/04; C07H 21/02

435/6; 435/194; 536/23.1; 536/23.2

Field of Search ..... ..... 536/23.2, 23.1; 435/6, 320.1, 252.3, 194

(56)References Cited

## U.S. PATENT DOCUMENTS

4,215,051 A	7/1980	Schroeder et al.
4,376,110 A	3/1983	David et al.
4,594,595 A	6/1986	Struckman
4,631,211 A	12/1986	Houghten
4,689,405 A	8/1987	Frank et al.
4,713,326 A	12/1987	Dattagupta et al.
4,873,191 A	10/1989	Wagner et al.
4,946,778 A	8/1990	
5,252,743 A	10/1993	Barrett et al.
5,424,186 A	6/1995	Fodor et al.
5,445,934 A	8/1995	Fodor et al.
5,459,127 A	10/1995	Felgner et al.
5,556,752 A	9/1996	Lockhart et al.
5,700,637 A	12/1997	Southern
5,744,305 A	4/1998	Fodor et al.
5,830,721 A	11/1998	Stemmer et al.
5,837,458 A	11/1998	Minshull et al.
5,869,336 A	2/1999	Meyer et al.
5,877,397 A	3/1999	Lonberg et al.
5,948,767 A	9/1999	Scheule et al.
6,001,593 A	12/1999	Bandman et al.
6,075,181 A	6/2000	Kucherlapati et al.
6,110,490 A	8/2000	Thierry
6,150,584 A	11/2000	Kucherlapati et al.
		-

#### OTHER PUBLICATIONS

EST Database, Avccession No. BE736116, Sep. 2000.* Hillier et al., EST Database, Accession No. AA088547, Jul. 1997.*

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol.

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates convalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Gordon, 1989, "Transgenic Animals", International Review of Cytology, 115:171-229.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Gu et al, 1994, "Deletion of a DNA Polymerase B Gene Segment in T Cells Using Cell Type-Specific Gene Targeting", Science 265:103-106.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotides splints and R Nase H", FEBS Letters 215(2):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the lpp gene of Escherichia coli", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", PNAS 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Lakso et al, 1992, "Targeted oncogene activation by site-specific recombination in transgenic mice", Proc. Natl. Acad. Sci. USA 89:6232-6236.

Lavitrano et al, 1989, "Sperm Cells ad Vectors for Introducing Froeign DNA into Eggs: Genetic Transformation of Mice", Cell 57:717-723.

Lo, 1983, "Transformation by Iontophoretic Microinjection of DNA: Multiple Integrations without Tandem Insertions", Mol. & Cell. Biology 3(10):1803-1814.

(List continued on next page.)

Primary Examiner-Rebecca E. Prouty Assistant Examiner-Maryam Monshipouri

(57)ABSTRACT

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

#### 5 Claims, No Drawings

#### OTHER PUBLICATIONS

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al., 1984, "Recombinant antibodies possessing novel effector functions," Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

nates", Proc. Natl. Acad. Sci. USA 85:7448-7451.
Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Thompson et al, 1989, "Germ Line Transmission and Expression of a Corrected HPRT Gene Produced by Gene Targeting in Embryonic Stem Cells", Cell 56:313-321.

Van Der Putten et al, 1985, "Efficient insertion of genes into the mouse germ line via retroviral vectors", Proc. Natl. Acad. Sci. USA 82:6148-6152.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544–546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells", Cell 11:223-232.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567-3570.

* cited by examiner

2

# HUMAN KINASE PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application Nos. 60/211,572 and 60/216,382 which were filed on Jun. 15, 2000 and Jul. 7, 2000, respectively. These U.S. Provisional Applications are herein incorporated by reference in their entirety.

## INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding a protein that shares sequence similarity with animal kinases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotides, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of physiological disorders or diseases, and cosmetic or nutriceutical applications.

#### BACKGROUND OF THE INVENTION

Kinases mediate phosphorylation of a wide variety of 30 proteins and compounds in the cell. Along with phosphatases, kinases are involved in a range of regulatory pathways. Given the physiological importance of kinases, they have been subject to intense scrutiny and are proven drug targets.

#### SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPS) described for the first time herein share structural similarity with animal kinases, including, but not limited to myosin kinases and unconventional myosin classes of proteins (SEQ ID NOS:1-5) as well as serine-threonine kinases, calcium/calmodulin-dependent kinases 10 and MAP kinases (SEQ ID NOS:6-11). As such, the novel polynucleotides encode a new kinase protein having homologues and orthologs across a range of phyla and species.

The novel human polynucleotides described herein, encode open reading frames (ORFs) encoding proteins of 238, 1,236, 974, 922 and 255 amino acids in length (see respectively SEQ ID NOS: 2, 4, 7, 9, 11).

The invention also encompasses agonists and antagonists of the described NHPS, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a 65 NHP transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP. Knock-out mice can

be produced in several ways, one of which involves the use of mouse embryonic stem cells ("ES cells") lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-11 are "knocked-out" they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. Additionally, the unique NHP sequences described in SEQ ID NOS:1-11 are useful for the identification of coding sequence, the identification of the actual biologically relevant exon splice junctions and the mapping of a unique gene to a particular chromosome.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

#### DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human kinase proteins. SEQ ID NO:5 describes a full length NHP ORF and flanking regions.

## DETAILED DESCRIPTION OF THE INVENTION

The NHP, described for the first time herein, are novel proteins that are widely expressed. NHP SEQ ID NO:1-5 are expressed in, inter alia, human cell lines, and human pituitary, lymph node, kidney, testis, thyroid, fetal kidney, and gene trapped cells. NHP SEQ ID NO:1-5 were compiled from gene trapped sequences in conjunction with sequences available in GENBANK, and cDNAs from a kidney mRNA (Edge Biosystems, Gaithersburg, Md.).

The NHPs, described for the first time in NHP SEQ ID NO:6-11 are novel proteins expressed in, inter alia, human cell lines, and human pituitary, lymph node, kidney, colon, and prostate cells. HP SEQ ID NO:6-11 were compiled from sequences available in GENBANK, and cDNAs generated from kidney, prostate, and colon mRNA (Edge Biosystems, Gaithersburg, Md.).

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such 50 nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described polynucleotides, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal (or hydrophobic transmembrane) sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of an NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/

self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the 5 Sequence Listing.

As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO $_4$ , 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 15 0.1xSSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of a DNA sequence that encodes and expresses an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encodes 25 a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. 30 No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by 35 polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using stan- 40 dard default settings).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP nucleotide sequences. Such hybridization conditions may be highly 45 stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or 50 combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the 60 described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-11 can be used 65 as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics,

polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-11, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Pat. Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-11 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-11.

For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap.

Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-11 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID screen libraries, isolate clones, and prepare cloning and 55 NOS:1-11 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-11 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences 5

first disclosed in SEQ ID NOS:1-11 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-11 5 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be 10 described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific 15 oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-11. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a given 20 sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, Mich., etc.), can optionally be used in conjunction with one or more 25 discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, 45 hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 50 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2beta-D-mannosylqueosine, 55 thiouracil, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid 60 methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

6

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an  $\alpha$ -anomeric oligonucleotide. An  $\alpha$ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual  $\beta$ -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625–6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131–6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327–330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be

labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment an be used to isolate genomic clones via the screening of a enomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

AcDNA encoding a mutant NHP gene can be isolated, for 20 example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascer-

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a CDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor, N.Y.).

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase 65 fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a

result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of he foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating fac-

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of the NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucle-50 otide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for an NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act

on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively 5 antagonize the endogenous NHP receptor. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors' in the body delivering a continuous supply of a NHP, a NHP 10 peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharma- 15 ceutical formulations and methods for treating biological

Various aspects of the invention are described in greater detail in the subsections below.

#### The NHP Sequences

The cDNA sequences and corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing.

Expression analysis has provided evidence that the NHPs ²⁵ described in SEQ ID NO: 1-5 can be expressed in a relatively narrow range of human tissues. In addition to myosin III kinases, the NHPs described in SEQ ID NO: 1-5 also share significant similarity to a range of additional kinase families, including kinases associated with signal ³⁰ transduction, from a variety of phyla and species.

A number of polymorphisms can occur in the NHPs described in SEQ ID NO: 1-5, such as a possible A-G transition that can occur in the sequence region corresponding to, for example, nucleotide position 889 of SEQ ID NO:3 that can result in a K or E being present in the corresponding amino acid sequence represented by, for example, position 297 of SEQ ID NO:4. Similar myosin-like proteins, as well as uses and applications that are also applicable to the NHPs described in SEQ ID NO: 1-5, are described in U.S. Pat. No. 6,001,593 herein incorporated by reference in its entirety.

Expression analysis has provided evidence that the NHPs described in SEQ ID NO: 6-11 can be expressed in a relatively narrow range of human tissues. In addition to serine-threonine kinases, the NHPs described in SEQ ID NO: 6-11 also share significant similarity to a range of additional kinase families, again including kinases associated with signal transduction from a variety of phyla and species. The NHPs described in SEQ ID NO: 6-11 are apparently encoded on human chromosome 16.

An additional application of the described novel human polynucleotide sequences is their use in the molecular mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Pat. Nos. 5,830,721 NHPS and N. and 5,837,458 which are herein incorporated by reference in the animal, in situ hybroscapies of NHP gene-expressive differences are dimmunocytochemically the NHP transgene product.

NHPS and N. NHPS, polypeptides, proceed or deleted forms of the animal, in situ hybroscapies.

NHP gene products can also be expressed in transgenic 60 animals. Animals of any species, including, but not limited to, worms, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, birds, goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate NHP transgenic animals.

Any technique known in the art may be used to introduce a NHP transgene into animals to produce the founder lines

of transgenic animals. Such techniques include, but are not limited to pronuclear microinjection (Hoppe, P. C. and Wagner, T. E., 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (Thompson et al., 1989, Cell 56:313-321); electroporation of embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723); etc. For a review of such techniques, see Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229, which is incorporated by reference herein in its entirety.

The present invention provides for transgenic animals that carry the NHP transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals or somatic cell transgenic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al., 1992, Proc. Natl. Acad. Sci. USA 89:6232-6236. The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

When it is desired that a NHP transgene be integrated into the chromosomal site of the endogenous NHP gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous NHP gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous NHP gene (i.e., "knockout" animals).

The transgene can also be selectively introduced into a particular cell type, thus inactivating the endogenous NHP gene in only that cell type, by following, for example, the teaching of Gu et al., 1994, Science, 265:103–106. The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant NHP gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of NHP gene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the NHP transgene product.

#### NHPS and NHP Polypeptides

NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPS, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include but are not limited to the generation of antibodies, as reagents in diagnostic assays, the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and diseases. Given the similarity information and expression data, the described

12

NHPs can be targeted (by drugs, oligos, antibodies, etc.) in order to treat disease, or to therapeutically augment the efficacy of, for example, chemotherapeutic agents used in the treatment of breast or prostate cancer.

The Sequence Listing discloses the amino acid sequences 5 encoded by the described NHP polynucleotides. The NHPs typically display have initiator methionines in DNA sequence contexts consistent with a translation initiation site.

The NHP amino acid sequences of the invention include 10 the amino acid sequence presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within 15 the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence 20 Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, 25 Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid 30

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability 35 to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, 40 additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of 45 similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral 50 amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP peptide or polypeptide is thought to be membrane protein, the hydrophobic regions of the protein can be excised and the resulting soluble peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host

cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A NHP coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46:584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence.

This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., 5 See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of 20 a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be impor- 30 tant for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of 35 the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, 40 VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described 45 above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, 50 etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells 55 to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening 60 humanized or chimeric antibodies, single chain antibodies, and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine 65 phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phospho-

ribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni2+.nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing

Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in "Liposomes: A Practical Approach", New, RRC ed., Oxford University Press, New York and in U.S. Pat. Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site or desired organ. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain (see generally U.S. applications Ser. Nos. 60/111,701 and 60/056,713, both of which are herein incorporated by reference, for examples of such transducing sequences) to facilitate passage across cellular membranes if needed and can optionally be engineered to include nuclear localization sequences when desired.

#### Antibodies to NHP Products

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), Fab fragments, F(ab'), fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction 5 gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with a NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more 15 domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host  20 species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such 25 as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diphtheria toxoid, ovalbumin, cholera toxin or fragments thereof. 30 Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBVhybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of

appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized monoclonal antibodies as described in U.S. Pat. No. 6,150, 584 and respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423–426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879–5883; and Ward et al., 1989, Nature 341:544–546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275–1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, amd patent applications are herein incorporated by reference in their entirety.

<210> SEQ ID NO 1

<211> LENGTH: 717

<212> TYPE: DNA

<213> ORGANISM: homo sapiens	
<400> SEQUENCE: 1	
atgatgcttg gacttgaatc acttccagat cccacagaca cctgggaaat tatagagacc 60	0
attggtaaag gcacctatgg caaagtctac aaggtaacta acaagagaga tgggagcctg 120	0
gctgcagtga aaattctgga tccagtcagt gatatggatg aagaaattga ggcagaatac 180	0
aacattttgc agttccttcc taatcatccc aatgttgtaa agttttatgg gatgttttac 240	0
aaagcggatc actgtgtagg gggacagctg tggctggtcc tggagctgtg taatgggggc 300	0
tragtracyg agettgtraa aggtetacte agatgtggee ageggttgga tgaagcaatg 360	0
atotoataca tottgtacgg ggocotottg ggoottcago atttgcacaa caaccgaatc 420	٥
atccaccgtg atgtgaaggg gaataacatt cttctgacaa cagaaggagg agttaagctc 480	0
gttgactttg gtgtttcagc tcaactcacc agtacacgtc tgcggagaaa cacatctgtt 540	0
ggcaccccat tctggatggc ccctgaggtc attgcctgtg agcagcagta tgactcttcc 600	0
tatgacgete getgtgacgt etggteettg gggateacag etattgaact gggggatgga 660	0
gaccetecce tetttgacat geateetgtg aaaacactet ttaagattee aaggtaa 713	7
<210> SEQ ID NO 2 <211> LENGTH: 238 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 2	
Met Met Leu Gly Leu Glu Ser Leu Pro Asp Pro Thr Asp Thr Trp Glu	
1 5 10 15	
Ile Ile Glu Thr Ile Gly Lys Gly Thr Tyr Gly Lys Val Tyr Lys Val 20 25 30	
Thr Asn Lys Arg Asp Gly Ser Leu Ala Ala Val Lys Ile Leu Asp Pro	
Val Ser Asp Met Asp Glu Glu Ile Glu Ala Glu Tyr Asn Ile Leu Gln 50 55 60	
Phe Leu Pro Asn His Pro Asn Val Val Lys Phe Tyr Gly Met Phe Tyr 65 70 80	
Lys Ala Asp His Cys Val Gly Gly Gln Leu Trp Leu Val Leu Glu Leu 85 90 95	
Cys Asn Gly Gly Ser Val Thr Glu Leu Val Lys Gly Leu Leu Arg Cys 100 105 110	
Gly Gln Arg Leu Asp Glu Ala Met Ile Ser Tyr Ile Leu Tyr Gly Ala 115 120 125	
Leu Leu Gly Leu Gln His Leu His Asn Asn Arg Ile Ile His Arg Asp 130 135 140	
Val Lys Gly Asn Asn Ile Leu Leu Thr Thr Glu Gly Gly Val Lys Leu 145 150 155 160	
Val Asp Phe Gly Val Ser Ala Gln Leu Thr Ser Thr Arg Leu Arg Arg 165 170 175	
Asn Thr Ser Val Gly Thr Pro Phe Trp Met Ala Pro Glu Val Ile Ala 180 185 190	
Cys Glu Gln Gln Tyr Asp Ser Ser Tyr Asp Ala Arg Cys Asp Val Trp 195 200 205	
Ser Leu Gly Ile Thr Ala Ile Glu Leu Gly Asp Gly Asp Pro Pro Leu 210 215 220	
Phe Asp Met His Pro Val Lys Thr Leu Phe Lys Ile Pro Arg	

1980

2040

2100

#### -continued

230 235 225 <210> SEQ ID NO 3 <211> LENGTH: 3711 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 3 60 atgatgcttg gacttgaatc acttccagat cccacagaca cctgggaaat tatagagacc 120 attggtaaag gcacctatgg caaagtctac aaggtaacta acaagagaga tgggagcctg qctqcaqtqa aaattctqqa tccaqtcaqt qatatqqatq aaqaaattqa qqcaqaatac 180 aacattttgc agttccttcc taatcatccc aatgttgtaa agttttatgg gatgttttac 240 aaagcggatc actgtgtagg gggacagctg tggctggtcc tggagctgtg taatgggggc 300 tragtracyg agettgtraa aggtrtactr agatgtggcr ageggttgga tgaagcaatg 360 atotoataca tottgtacgg ggccctottg ggccttcagc atttgcacaa caaccgaatc 420 atccaccgtg atgtgaaggg gaataacatt cttctgacaa cagaaggagg agttaagctc 480 gttgactttg gtgtttcagc tcaactcacc agtacacgtc tgcggagaaa cacatctgtt 540 600 ggcaccccat totggatggc cootgaggtc attgcotgtg agcagcagta tgactottcc tatgacgete getgtgacgt etggteettg gggateacag etattgaact gggggatgga 660 gaccetecce tetttgacat geateetgtg aaaacactet ttaagattee aagaaateet 720 ccacctactt tacttcatcc agaaaaatgg tgtgaagaat tcaaccactt tatttcacag 780 tgtcttatta aggattttga aaggcgacct tccgtcacac atctccttga ccacccattt 840 attaaaggag tacatggaaa agttctgttt ctgcaaaaac agctggccra ggttctccaa 900 gaccagaage atcaaaatce tgttgctaaa accaggcatg agaggatgca taccagaaga 960 1020 cottatcatg tggaagatgo tgaaaaatac tgcottgagg atgatttggt caacctagag gttctggatg aggatacaat tatccatcag ttgcagaaac gttatgcaga cttgctaatt 1080 tacacatatg ttggagacat cttaattgcc ttaaacccct tccagaatct aagcatatac 1140 1200 totocacagt tttccagact ttatcatggg gtgaaacgcg cotocaayco cocccacata 1260 tttgcatcag cagatgctgc ttaccagtgc atggttactc tcagcaaaga ccagtgcatt gtcatcageg gagagagtgg ctctgggaag acagaaageg cccacctgat tgttcarcat 1320 1380 ttgactttct tgggaaaggc caataatcag accttgagag agaaaattct acaagtcaac tecetggtgg aageetttgg gaacteatge actgecatea atgacaacte gageegtttt 1440 ggaaaatatc tggaaatgat gtttacacca actggagttg tgatgggggc aagaatctct 1500 1560 gaatatetee tggaaaaate cagagttata aaacaggcag cgagagagaa aaatttteat atattttact atatttatgc tggtcttcat caccaaaaga agctttctga tttcagactt cctgaggaaa aacctcctag gtacatagct gatgaaactg gaagggtgat gcacgacata 1680 acttccaagg agtcttacag aagacaattc gaagcaattc agcattgctt caggattata 1740 gggttcacgg acaaagaggt gcactcagtg tacagaattt tggctgggat tttgaatatt 1800 gggaacattg agttcgcagc tatttcctct caacatcaga ctgataaaag tgaggtgccc 1860 aatgctgaag ctttgcaaaa tgctgcctct gttctgtgca ttagccctga agagctccag 1920

gaggecetea ecteceacty tytygyteace eggggegaga ceateateeg tyceaacaet gtagacaggg etgeggaegt tegagaegee atyteeaaag ecetytatyg gaggetette

agetggattg tgaategeat taatacacte etgeageeag aegaaaacat atgtagtgea

ggaggtggaa	tgaatgtggg	gatcttggat	atctttggat	tcgagaattt	tcagagaaat	2160
tcatttgagc	agetetgeat	aaacatcgcc	aatgagcaaa	tccagtacta	tttcaatcag	2220
catgtttttg	ctcttgagca	gatggaatat	cagaatgaag	gcattgatgc	tatacccgtg	2280
gaatatgagg	acaaccgccc	gctcctggac	atgttcctcc	agaaacccct	gggactgctt	2340
gcacttttgg	atgaggaaag	teggtttece	caagcaactg	accagaccct	ggttgataaa	2400
tttgaagata	atctacgatg	caaatacttc	tggaggccca	aaggagtgga	actgtgcttt	2460
ggcattcagc	attatgctgg	aaaggtatta	tatgatgctt	ctggggttct	tgagaaaaat	2520
agagacactc	tecetgeega	tgtggttgtg	gtcctgagaa	cgtcagaaaa	caagcttctt	2580
cagcagctct	tctcaatccc	tctgaccaaa	acaggtaatt	tggcccagac	aagagctagg	2640
ataacagtgg	cctcaagttc	tttgcctcca	catttcagtg	ctgggaaagc	caaggtggac	2700
actctggagg	tgatacggca	tccggaagaa	accaccaaca	tgaagaggca	aactgtggct	2760
tcttacttcc	ggtattctct	gatggacctg	ctctccaaaa	tggtggttgg	acageceeae	2820
tttgtgcgct	gcattaaacc	caatgatgac	cgagaggccc	tgcagttctc	tcgagagagg	2880
gtgctggccc	ageteegete	cacagggatt	ctggagacag	tcagcatccg	ccgccagggc	2940
tattcccacc	gcatcctttt	tgaagaattt	gtgaaaaggt	attattactt	ggcattcaca	3000
gcacatcaaa	cacctcttgc	tagcaaagag	agctgtgtgg	ctatcttgga	aaagtccaga	3060
ttagatcact	gggtgctggg	aaaaacaaag	gtttttctca	aatattacca	tgttgagcaa	3120
ytaaatttgc	tgcttcgaga	agtcataggc	agagtggttg	tgctgcaggc	atataccaag	3180
gggtggcttg	gagccaggag	atacaaaaag	gtcagagaga	agagagagaa	gggagccatt	3240
gccatccagt	cagcctggag	aggatatgat	gctcggagga	aatttaagaa	aataagcaac	3300
agaaggaatg	agtctgctgc	tcataatcaa	gcaggggcca	cttcaaacca	aagcagtggg	3360
ccacattccc	ccgtcgcagc	aggtacgagg	ggaagtgccg	aggttcaaga	ctgcagcgag	3420
cctggtgacc	ataaagttct	caggggctct	gtacatcgta	ggagccattc	acaagcagaa	3480
tccaacaatg	gccgtacaca	gacttcaagc	aactctcctg	ctgtcacaga	gaaaaatggg	3540
cattcacaag	cccagagttc	tccaaaaggg	tgcgatatct	tegeaggaca	tgcaaacaag	3600
gtagctggat	atcttgattc	caaagtaaat	gtgtatcact	ccttcagact	catccaagtt	3660
cataggcatg	aagcttgtct	gcggctgcgt	ggttggacca	tccaaacttg	a	3711

<210> SEQ ID NO 4

<211> LENGTH: 1236

212> TYPE: PRT

<213> ORGANISM: homo sapiens

#### <400> SEQUENCE: 4

Met Met Leu Gly Leu Glu Ser Leu Pro Asp Pro Thr Asp Thr Trp Glu 1 5 10 15

Ile Ile Glu Thr Ile Gly Lys Gly Thr Tyr Gly Lys Val Tyr Lys Val  $20 \ \ 30$ 

Thr Asn Lys Arg Asp Gly Ser Leu Ala Ala Val Lys Ile Leu Asp Pro 35 . 40

Val Ser Asp Met Asp Glu Glu Ile Glu Ala Glu Tyr Asn Ile Leu Gln  $50 \hspace{1cm} 55$ 

Phe Leu Pro Asn His Pro Asn Val Val Lys Phe Tyr Gly Met Phe Tyr 65 70 80

Lys Ala Asp His Cys Val Gly Gly Gln Leu Trp Leu Val Leu Glu Leu

												_			
				85					90					95	
еұо	Asn	Gly	Gly 100	Ser	Val	Thr	Glu	Leu 105	Val	Lys	Gly	Leu	Leu 110	Arg	Сув
Gly	Gln	Arg 115	Leu	Авр	Glu	Ala	Met 120	Ile	Ser	Tyr	Ile	Leu 125	Tyr	Gly	Ala
Leu	Leu 130	Gly	Leu	Gln	His	Leu 135	His	Asn	Asn	Arg	Ile 140	Ile	His	Arg	Asp
Val 145	Lys	Gly	Asn	Asn	Ile 150	Leu	Leu	Thr	Thr	Glu 155	Gly	Gly	Val	Lys	Leu 160
Val	Авр	Phe	Gly	Val 165	Ser	Ala	Gln	Leu	Thr 170	Ser	Thr	Arg	Leu	Arg 175	Arg
Asn	Thr	Ser	Val 180	Gly	Thr	Pro	Phe	Trp 185	Met	Ala	Pro	Glu	Val 190	Ile	Ala
Сув	Glu	Gln 195	Gln	Tyr	Asp	Ser	Ser 200	Tyr	Asp	Ala	Arg	Сув 205	Asp	Val	Trp
Ser	Leu 210	Gly	Ile	Thr	Ala	11e 215	Glu	Leu	Gly	Asp	Gly 220	Авр	Pro	Pro	Leu
Phe 225	Asp	Met	His	Pro	Val 230	Lys	Thr	Leu	Phe	Lys 235	Ile	Pro	Arg	Asn	Pro 240
Pro	Pro	Thr	Leu	Leu 245	His	Pro	Glu	Lys	Trp 250	Сув	Glu	Glu	Phe	Asn 255	His
Phe	Ile	Ser	Gln 260	Сув	Leu	Ile	Lys	Asp 265	Phe	Glu	Arg	Arg	Pro 270	Ser	Val
Thr	His	Leu 275	Leu	Asp	His	Pro	Phe 280	Ile	Lys	Gly	Val	His 285	Gly	Lys	Val .
Leu	Phe 290	Leu	Gln	Lys	Gln	Leu 295	Ala	Lys	Val	Leu	Gln 300	Asp	Gln	Lys	His
Gln 305	Asn	Pro	Val	Ala	<b>Lуs</b> 310	Thr	Arg	His	Glu	Arg 315	Met	His	Thr	Arg	Arg 320
	_			325					330					<b>А</b> вр 335	
			340					345					350	Leu	
Lys	Arg	Tyr 355	Ala	Asp	Leu	Leu	Ile 360	Tyr	Thr	Tyr	Val	Gly 365	Asp	Ile	Leu
	370					375					380			Gln	
385					390					395				His	400
				405				•	410	:		•		Ser 415	
Asp	Gln	Сув	11e 420	Val	Ile	Ser	Gly	Glu 425	Ser	Gly	Ser	Gly	Lys 430	Thr	Glu
		435					440					445		Ala	
	450					455					460			Val	
465					470					475				Arg	480
Gly	Lys	Tyr	Leu	Glu 485	Met	Met	Phe	Thr	Pro 490	Thr	Gly	Val	Val	Met 495	Gly
Ala	Arg	Ile	Ser 500	Glu	Tyr	Leu	Leu	Glu 505	Lys	Ser	Arg	Val	Ile 510	Lув	Gln

Ala	Ala	Arg 515	Glu	Lys	Asn	Phe	His 520	Ile	Phe	Tyr	Tyr	11e 525	Tyr	Ala	Gly
Leu	Нів 530	His	Gln	Lys	Lys	Leu 535	Ser	Авр	Phe	Arg	Leu 540	Pro	Glu	Glu	Lув
Pro 545	Pro	Arg	Tyr	Ile	Ala 550	Asp	Glu	Thr	Gly	Arg 555	Val	Met	His	Asp	Ile 560
Thr	Ser	Lys	Glu	Ser 565	Tyr	Arg	Arg	Gln	Phe 570	Glu	Ala	Ile	Gln	His 575	Сув
Phe	Arg	Ile	Ile 580	Gly	Phe	Thr	Asp	Lys 585	Glu	Val	His	5er	Val 590	Tyr	Arg
Ile	Leu	Ala 595	Gly	Ile	Leu	Asn	Ile 600	Gly	Asn	Ile	Glu	Phe 605	Ala	Ala	Ile
	610					615	Lys				620				
Leu 625	Gln	Asn	Ala	Ala	Ser 630	Val	Leu	Сув	Ile	Ser 635	Pro	Glu	Glu	Leu	Gln 640
				645			Val		650					655	
Arg	Ala	Asn	Thr 660	Val	Asp	Arg	Ala	Ala 665	Авр	Val	Arg	Asp	Ala 670	Met	Ser
		675					Phe 680					685			
	.690					695	Asn				700		٠.		
705					710		Phe			715					720
				725			Asn		730					735	
			740				Ala	745					750		
		755					Val 760					765			
	770					775	Pro				780				
785					790		Ala			795					800
				805			Lys		810				•	812	
			820				His	825		•			830		
		835					840					845			Val
	850					855					860				Phe
865					870					875					Arg 880
				885			Leu		890					893	
			900				Val	905					910		
Asn	Met	Lув 915		Gln	Thr	Val	Ala 920		Tyr	Phe	Arg	Tyr 925	Ser	Leu	Met

## -continued

-continued	
Asp Leu Leu Ser Lys Met Val Val Gly Gln Pro His Phe Val Arg Cys 930 935 940	
Ile Lys Pro Asn Asp Asp Arg Glu Ala Leu Gln Phe Ser Arg Glu Arg 945 950 955 960	
Val Leu Ala Gln Leu Arg Ser Thr Gly Ile Leu Glu Thr Val Ser Ile 965 970 975	
Arg Arg Gln Gly Tyr Ser His Arg Ile Leu Phe Glu Glu Phe Val Lys 980 985 990	
Arg Tyr Tyr Leu Ala Phe Thr Ala His Gln Thr Pro Leu Ala Ser 995 1000 1005	
Lys Glu Ser Cys Val Ala Ile Leu Glu Lys Ser Arg Leu Asp His Trp 1010 1015 1020	
Val Leu Gly Lys Thr Lys Val Phe Leu Lys Tyr Tyr His Val Glu Gln 1025 1030 1035 1040	
Leu Asn Leu Leu Arg Glu Val Ile Gly Arg Val Val Val Leu Gln 1045 1050 1055	
Ala Tyr Thr Lys Gly Trp Leu Gly Ala Arg Arg Tyr Lys Lys Val Arg 1060 1065 1070	
Glu Lys Arg Glu Lys Gly Ala Ile Ala Ile Gln Ser Ala Trp Arg Gly 1075 1080 1085	
Tyr Asp Ala Arg Arg Lys Phe Lys Lys Ile Ser Asn Arg Arg Asn Glu 1090 1095 1100	
Ser Ala Ala His Asn Gln Ala Gly Ala Thr Ser Asn Gln Ser Ser Gly 1105 1110 1115 1120	
Pro His Ser Pro Val Ala Ala Gly Thr Arg Gly Ser Ala Glu Val Gln 1125 1130 1135	
Asp Cys Ser Glu Pro Gly Asp His Lys Val Leu Arg Gly Ser Val His 1140 1145 1150	
Arg Arg Ser His Ser Gln Ala Glu Ser Asn Asn Gly Arg Thr Gln Thr 1155 1160 1165	
Ser Ser Asn Ser Pro Ala Val Thr Glu Lys Asn Gly His Ser Gln Ala 1170 1175 1180	
Gln Ser Ser Pro Lys Gly Cys Asp Ile Phe Ala Gly His Ala Asn Lys 1185 1190 1195 1200	
Val Ala Gly Tyr Leu Asp Ser Lys Val Asn Val Tyr His Ser Phe Arg 1205 1210 1215	
Leu Ile Gln Val His Arg His Glu Ala Cys Leu Arg Leu Arg Gly Trp 1220 1225 1230	
Thr Ile Gln Thr 1235	
<210> SEQ ID NO 5 <211> LENGTH: 4034 <212> TYPE: DNA <213> ORGANISM: homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(4034) <223> OTHER INFORMATION: n = A,T,C or G <400> SEQUENCE: 5	***
ttttcaacaa gatggagtct tgctctgttt cccagcctgt agtgcagtga cacagtctt	
getcactgta acctetgeet cetgggttea agtgattete etgeeteage etectgagt	<b>a</b>

gctgggatta caggaaacat ctgtatggat tatttcacta taatcctatg atgcttggac ttgaatcact tccagatccc acagacacct gggaaattat agagaccatt ggtaaaggca

cctatggcaa	agtctacaag	gtaactaaca	agagagatgg	gagcctggct	gcagtgaaaa	300
ttctggatcc	agtcagtgat	atggatgaag	aaattgaggc	agaatacaac	attttgcagt	360
tccttcctaa	tcatcccaat	gttgtaaagt	tttatgggat	gttttacaaa	gcggatcact	420
gtgtaggggg	acagctgtgg	ctggtcctgg	agctgtgtaa	tgggggctca	gtcacygagc	480
ttgtcaaagg	tctactcaga	tgtggccagc	ggttggatga	agcaatgatc	tcatacatct	540
tgtacggggc	cctcttgggc	cttcagcatt	tgcacaacaa	ccgaatcatc	caccgtgatg	600
tgaaggggaa	taacattctt	ctgacaacag	aaggaggagt	taagctcgtt	gactttggtg	660
tttcagctca	actcaccagt	acacgtctgc	ggagaaacac	atctgttggc	accccattct	720
ggatggcccc	tgaggtcatt	gcctgtgagc	agcagtatga	ctcttcctat	gacgctcgct	780
gtgacgtctg	gtccttgggg	atcacagcta	ttgaactggg	ggatggagac	cctcccctct	840
ttgacatgca	tcctgtgaaa	acactcttta	agattccaag	aaatcctcca	cctactttac	900
ttcatccaga	aaaatggtgt	gaagaattca	accactttat	ttcacagtgt	cttattaagg	960
attttgaaag	gcgaccttcc	gtcacacatc	tccttgacca	cccatttatt	aaaggagtac	1020
atggaaaagt	tctgtttctg	caaaaacagc	tggccraggt	tctccaagac	cagaagcatc	1080
aaaatcctgt	tgctaaaacc	aggcatgaga	ggatgcatac	cagaagacct	tatcatgtgg	1140
aagatgctga	aaaatactgc	cttgaggatg	atttggtcaa	cctagaggtt	ctggatgagg	1200
atacaattat	ccatcagttg	cagaaacgtt	atgcagactt	gctaatttac	acatatgttg	1260
gagacatctt	aattgcctta	aaccccttcc	agaatctaag	catatactct	ccacagtttt	1320
ccagacttta	tcatggggtg	aaacgcgcct	ccaayccccc	ccacatattt	gcatcagcag	1380
atgctgctta	ccagtgcatg	gttactctca	gcaaagacca	gtgcattgtc	atcagcggag	1440
agagtggctc	tgggaagaca	gaaagcgccc	acctgattgt	tcarcatttg	actttcttgg	1500
gaaaggccaa	taatcagacc	ttgagagaga	aaattctaca	agtcaactcc	ctggtggaag	1560
cctttgggaa	ctcatgcact	gccatcaatg	acaactcgag	ccgttttgga	aaatatctgg	1620
aaatgatgtt	tacaccaact	ggagttgtga	tgggggcaag	aatctctgaa	tatctcctgg	1680
aaaaatccag	agttataaaa	caggcagcga	gagagaaäaa	ttttcatata	ttttactata	1740
tttatgctgg	tcttcatcac	caaaagaagc	tttctgattt	cagacttcct	gaggaaaaac	1800
ctcctaggta	catagctgat	gaaactggaa	gggtgatgca	cgacatasct	tccaaggagt	1860
cttacagaag	acaattcgaa	gcaattcagc	attgcttcag	gattataggg	ttcacggaca	1920
aagaggtgca	ctcagtgtac	agaattttgg	ctgggatttt	gaatattggg	aacattgagt	1980
tcgcagctat	ttcctctcaa	catcagactg	ataaaagtga	ggtgcccaat	gctgaagctt	2040
tgcaaaatgc	tgcctctgtt	ctgtgcatta	gccctgaaga	gctccaggag	gccctcacct	2100
cccactgtgt	ggtcacccgg	ggcgagacca	tcatccgtgc	caacactgta	gacagggctg	2160
cggacgttcg	agacgccatg	tccaaagccc	tgtatgggag	gctcttcagc	tggattgtga	2220
atcgcattaa	tacactcctg	cagccagacg	aaaacatatg	tagtgcagga	ggtggaatga	2280
atgtggggat	cttggatatc	tttggattcg	agaattttca	gagaaattca	tttgagcagc	2340
tctgcataaa	catcgccaat	gagcaaatcc	agtactattt	caatcagcat	gtttttgctc	2400
ttgagcagat	ggaatatcág	aatgaaggca	ttgatgctat	acccgtggaa	tatgaggaca	2460
accgcccgct	cctggacatg	ttcctccaga	aacccctggg	actgcttgca	cttttggatg	2520
aggaaagtcg	gtttccccaa	gcaactgacc	agaccctggt	tgataaattt	gaagataatc	2580

tacgatgcaa	atacttctgg	aggcccaaag	gagtggaact	gtgctttggc	attcagcatt	2640
atgctggaaa	ggtattatat	gatgcttctg	gggttcttga	gaaaaataga	gacactctcc	2700
ctgccgatgt	ggttgtggtc	ctgagaacgt	càgaaaacaa	gcttcttcag	cagctcttct	2760
caatccctct	gaccaaaaca	ggtaatttgg	cccagacaag	agctaggata	acagtggcct	2820
caagttcttt	gcctccacat	ttcagtgctg	ggaaagccaa	ggtggacact	ctggaggtga	2880
tacggcatcc	ggaagaaacc	accaacatga	agaggcaaac	tgtggcttct	tacttccggt	2940
attctctgat	ggacctgctc	tccaaaatgg	tggttggaca	gccccacttt	gtgcgctgca	3000
ttaaacccaa	tgatgaccga	gaggccctgc	agttctctcg	agagagggtg	ctggcccagc	3060
tccgctccac	agggattctg	gagacagtca	gcatccgccg	ccagggctat	teccacegea	3120
tcctttttga	agaatttgtg	aaaaggtatt	attacttggc	attcacagca	catcasacac	3180
ctcttgctag	caaagagagc	tgtgtggcta	tcttggaaaa	gtccagatta	gatcactggg	3240
tgctgggaaa	aacaaaggtt	tttctcaaat	attaccatgt	tgagcaayta	aatttgctgc	3300
ttcgagaagt	cataggcaga	gtggttgtgc	tgcaggcata	taccaagggg	tggcttggåg	3360
ccaggagata	caaaaaggtc	agagagaaga	gagagaaggg	agccattgcc	atccagtcag	3420
cctggagagg	atatgatgct	cggaggaaat	ttaagaaaat	aagcaacaga	aggaatgagt	3480
ctgctgctca	taatcaagca	ggggccactt	caaaccaaag	cagtgggcca	cattcccccg	3540
togcagcagg	tacgagggga	agtgccgagg	ttcaagactg	cagcgagcct	ggtgaccata	3600
aagttctcag	gggctctgta	catcgtagga	gccattcaca	agcagaatcc	aacaatggcc	3660
gtacacagac	ttcaagcaac	tatactgatg	tcacagagaa	aaatgggcat	tcacaagccc	3720
agagttctcc	aaaagggtgc	gatatcttcg	caggacatgc	aaacaaggta	gctggatatc	3780
ttgattccaa	agtaaatgtg	tatcactcct	tcagactcat	ccaagttcat	aggcatgaag	3840
cttgtctgcg	gctgcgtggt	tggaccatcc	aaacttgaaa	ctgttagtga	tattttgaag	3900
tctttgagac	aaaagcccag	cttgctgaag	aactttggtt	cagtagagag	acagggaggt	3960
acaggggaga	gagaatcaaa	agcctggaaa	tttgctgctg	agaataaatg	ttagctgctc	4020
cctggnngna	aaaa					4034

<210> SEQ ID NO 6 <211> LENGTH: 2925 <212> TYPE: DNA <213> ORGANISM: homo sapiens

#### <400> SEQUENCE: 6

atgagaaggg	cggggatcgg	cgaggactcc	aggctggggt	tgcaggccca	gccaggggcg	60
gagccttctc	cgggtcgggc	ggggacagag	egetecettg	gaggcaccca	gggacctggc	120
cagccgtgca	gctgcccagg	cgctatggcg	agtgcggtca	gggggtcgag	gccgtggccc	180
cggctggggc	tccagctcca	gttcgcggcg	ctgctgctcg	ggacgctgag	tccacaggtt	240
catactctca	ggccagagaa	cctcctgctg	gtgtccacct	tggatggaag	tctccacgca	300
ctaagcaagc	agacagggga	cctgaagtgg	actctgaggg	atgatcccgt	catcgaagga	360
ccaatgtacg	tcacagaaat	ggcctttctc	tctgacccag	cagatggcag	cctgtacatc	420
ttggggaccc	aaaaacaaca	gggattaatg	aaactgccat	tcaccatccc	tgagctggtt	480
catgcctctc	cctgccgcag	ctctgatggg	gtcttctaca	caggccggaa	gcaggatgcc	540
tggtttgtgg	tggaccctga	gtcaggggag	acccagatga	cactgaccac	agagggtccc	600
tccacccccc	gcctctacat	tggccgaaca	cagtatacgg	tcaccatgca	tgacccaaga	660

gccccagccc	tgcgctggaa	caccacctac	cgccgctac	t cagogoocco	catggatggc	720
tcacctggg	aatacatgag	ccacctggcg	tcctgcggg	tgggcctgct	gctcactgtg	780
gacccaggaa	gegggaeggt	gctgtggåc	a caggacctg	g gcgtgcctgt	gatgggcgtc	. 840
tacacctgg	accaggacgg	cctgcgccag	g ctgccgcate	c tcacgctggc	tcgagacact	900
ctgcatttc	tegeceteeg	ctggggccac	atccgactg	c ctgcctcagg	ccccgggac	960
acagccacco	tcttctctac	cttggacacc	cagctgcta	a tgacgctgta	tgtggggaag	1020
gatgaaactg	gcttctatgt	ctytaaagca	ctggtccac	a caggagtggc	cctggtgcct	1080
cgtggactga	ccctggcccc	cgcagatggc	cccaccaca	g atgaggtgac	actccaagtc	1140
tcaggagagc	gagagggctc	acccagcact	gctgttagat	acccctcagg	cagtgtggcc	1200
ctcccaagco	agtggctgct	cattggacac	cacgagetad	ccccagtcct	gcacaccacc	1260
atgctgaggg	tccatcccac	cctggggagt	ggaactgcag	g agacaagacc	tccagagaat	1320
acccaggeee	cagccttctt	cttggagcta	ttgagcctga	gccgagagaa	actttgggac	1380
tccgagctgc	atccagaaga	aaaaactcca	gactcttact	tggggctggg	accccaagac	1440
ctgctggcag	ctagcctcac	tgctgtcctc	ctgggagggt	ggattctctt	tgtgatgagg	1500
cagcaacagc	cgcaggtggt	ggagaagcag	caggagacco	ccctggcacc	tgcagacttt	1560
gctcacatct	cccaggatgc	ccagtccctg	cacteggggg	ccagccggag	gagccagaag	1620
aggetteaga	gtccctcaaa	gcaagcccag	ccactcgacg	accctgaagc	tgagcaactc	1680
accgtagtgg	ggaagatttc	cttcaatccc	aaggacgtgo	tgggccgcgg	ggcaggcggg	1740
actttcgttt	tccggggaca	gtttgaggga	cgggcagtgg	ctgtcaagcg	getecteege	1800
gagtgctttg	gcctggttcg	gcgggaagtt	caactgctgc	aggagtctga	caggcacccc	1860
aacgtgctcc	gctacttctg	caccgagegg	ggaccccagt	tccactacat	tgccctggag	1920
ctctgccggg	cctccttgca	ggagtacgta	gaaaacccgg	acctggatcg	cgggggtctg	1980
gagcccgagg	tegtgetgea	gcagctgatg	tctggcctgg	cccacctgca	ctctttacac	2040
atagtgcacc	gggacctgaa	gccaggaaat	attctcatca	ccgggcctga	cagccagggc	2100
ctgggcagag	tggtgctctc	agacttcggc	ctctgcaaga	agctgcctgc	tggccgctgt	2160
agcttcagcc	tccactccgg	catccccggc	acggaaggct	ggatggcgcc	cgagcttctg	2220
cagctcctgc	caccagacag	tcctaccagc	gctgtggaca	tcttctctgc	aggctgcgtg	2280
ttctactacg	tgctttctgg	tggcagccac	ccctttggag	acagtcttta	tcgccaggca	2340
aacatcctca	caggggctcc	ctgtctggct	cacctggagg	aagaggtcca	cgacaaggtg	2400
gttgcccggg	acctggttgg	agccatgttg	ageceactge	cgcagccacg	ccctctgcc	2460
ccccaggtgc	tggcccaccc	cttcttttgg	agcagagcca	agcaactcca	gttcttccag	2520
gacgtcagtg	actggctgga	gaaggagtcc	gagcaggagc	ccctggtgag	ggcactggag	2580
gcgggaggct	gcgcagtggt	ccgggacaac	tggcacgagc	acatctccat	gccgctgcag	2640
acagatctga	gaaagttccg	gtcctataag	gggacatcag	tgcgagacct	gctccgtgct	2700
gtgaggaaca	agaagcacca	ctacagggag	ctcccagttg	aggtgcgaca	ggcactcggc	2760
caagtccctg	atggcttcgt	ccagtacttc	acaaaccgct	tcccacggct	gctcctccac	2820
acgcaccgag	ccatgaggag	ctgcgcctct	gagageetet	tectgeceta	ctacccgcca	2880
gactcagagg	ccaggaggcc	atgccctggg	gccacaggga	ggtga		2925

_															
<21	2> 7	YPE:	H: 9	•											
	<pre>&lt;213&gt; ORGANISM: homo sapiens &lt;220&gt; FEATURE:</pre>														
					·										
					IANT			•				-		S	
					TTOX			Any	2-1-	- No	4.4				
122	J	Iner	LINE	ORTE	ITTON	ii Ad	.a =	Any	AMITH	O AC	iIu				
			NCE:												
Met 1	Arg	Arg	, Ala	Gly 5	/ Ile	e Gly	/ Glu	ı Asp	Ser 10	Arg	Leu	Gl	/ Leu	Glr 15	Ala
Gln	Pro	Gly	20	Glu	Pro	Ser	Pro	Gly 25	Arg	Ala	Gly	Thr	30	Arç	Ser
Leu	Gly	7 Gly 35	Thr	Glr	Gly	Pro	Gly 40	Gln	Pro	Суя	Ser	Cya 45	Pro	Gly	Ala
Met	Ala 50	Ser	Ala	Val	Arg	Gly 55	Ser	Arg	Pro	Trp	Pro 60	Arg	Leu	Gly	Leu
Gln 65	Leu	Gln	Phe	Ala	Ala 70	Leu	Leu	Leu	Gly	Thr 75	Leu	Ser	Pro	Gln	Val 80
His	Thr	Leu	Arg	Pro 85	Glu	Asn	Leu	Leu	Leu 90	Val	Ser	Thr	Leu	Авр 95	Gly
Ser	Leu	His	Ala 100		Ser	Lys	Gln	Thr 105	Gly	Asp	Leu	Lys	Trp		Leu
Arg	Asp	Asp 115		Val	Ile	Glu	Gly 120		Met	Tyr	Val	Thr 125		Met	Ala
Phe	Leu 130		Asp	Pro		Asp 135		Ser	Leu	Tyr	Ile 140	Leu	Gly	Thr	Gln
Lys 145	Gln	Ģln	Gly	Leu	Met 150		Leu	Pro	Phe	Thr 155		Pro	Glu	Leu	Val 160
His	Ala	Ser	Pro	Сув 165		Ser	Ser	Asp	Gly 170	Val	Phe	Tyr	Thr	Gly 175	Arg
Lys	Gln	Asp	Ala 180	Trp	Phe	Val	Val	Авр 185	Pro	Glu	Ser	Gly	Glu 190	Thr	Gln
Met	Thr	Leu 195	Thr	Thr	Glu	Gly	Pro 200	Ser	Thr	Pro	Arg	Leu 205	Tyr	Ile	Gly
Arg	Thr 210	Gln	Tyr	Thr	Val	Thr 215	Met	His	Asp	Pro	Arg 220	Ala	Pro	Ala	Leu
Arg 225	Trp	Asn	Thr	Thr	Tyr 230	Arg	Arg	Tyr	Ser	Ala 235	Pro	Pro	Met	Asp	Gly 240
Ser	Pro	Gly	Lys	Tyr 245	Met	Ser	His	Leu	Ala 250	Ser	Сув	Gly	Met	Gly 255	Leu
Leu	Leu	Thr	Val 260	Авр	Pro	Gly		Gly 265	Thr	Val	Leu	_	Thr 270	Gln	Авр
Leu	Gly	Val 275	Pro	Val-	Met	Gly	Val 280	Tyr	Thr	Trp	His	Gln 285	Asp	Gly	Leu
	Gln 290	Leu	Pro	His	Leu	Thr 295	Leu	Ala	Arg	Asp	Thr 300	Leu	His	Phe	Leu
Ala 305	Leu	Arg	Trp	Gly	His 310	Ile	Arg	Leu	Pro	Ala 315	Ser	Gly	Pro	Arg	Авр 320
Phr .	Ala	Thr	Leu	Phe 325	Ser	Thr	Leu	Asp	Thr 330	Gln	Leu	Leu	Met	Thr 335	Leu
'yr	Val	Gly	Lys 340	Asp	Glu	Thr	Gly	Phe 345	Tyr	Val	Xaa	Lув	Ala 350	Leu	Val
iis '	Thr	Gly 355	Val	Ala	Leu	Val	Pro 360	Arg	Gly	Leu	Thr	Leu 365	Ala	Pro	Ala

Asp	Gly 370		Thr	Thi	Asp	Glu 375		The	. Lev	ı Glr	Val 380		Gly	/ Glu	Arg	
Glu 385		Ser	Pro	Ser	Thr 390		Va]	Arg	Туг	Pro 395		Gly	Sez	. Val	Ala 400	
Leu	Pro	Ser	Gln	Trp		Leu	Ile	Gly	/ His		Glu	Leu	Pro	Pro 415		
Leu	His	Thr	Thr 420		Leu	Arg	Va]	Hie 425		Thr	Leu	Gly	Ser 430		Thr	
Ala	Glu	Thr 435		Pro	Pro	Glu	Asr 440		Glr	Ala	Pro	Ala 445		Phe	Leu	
Glu	Leu 450		Ser	Leu	Ser	Arg 455		Lys	Leu	Trp	Asp 460		Glu	Leu	His	
Pro 465	Glu	Glu	Lys	Thr	Pro 470		Ser	Tyr	Leu	Gly 475		Gly	Pro	Gln	Asp 480	
Leu	Leu	Ala	Ala	Ser 485		Thr	Ala	Val	Leu 490		Gly	Gly	Trp	11e 495		
Phe	Val	Met	Arg 500		Gln	Gln	Pro	Gln 505		Val	Glu	Lys	Gln 510		Glu	
Thr	Pro	Leu 515		Pro	Ala	Asp	Phe 520		His	Ile	Ser	Gln 525	Asp	Ala	Gln	
Ser	Leu 530	His	Ser	Gly	Ala	Ser 535	Arg	Arg	Ser	Gln	Lув 540		Leu	Gln	Ser	
Pro 545	Ser	Lys	Gln	Ala	Gln 550	Pro	Leu	Asp	Asp	Pro 555	Glu	Ala	Glu	Gln	Leu 560	
Thr	Val	Val	Gly	Lys 565	Ile	Ser	Phe	Asn	Pro 570	Lys	Asp	Val	Leu	Gly 575	Arg	
Gly	Ala	Gly	Gly 580	Thr	Phe	Val	Phe	Arg 585		Gln	Phe	Glu	Gly 590	Arg	Ala	
Val	Ala	Val 595	Lys	Arg	Leu	Leu	Arg 600	Glu	Cys	Phe	Gly	Leu 605	Val	Arg	Arg	
Glu	Val 610	Gln	Leu	Leu	Gln	Glu 615	Ser	Asp	Arg	His	Pro 620	Asn	Val	Leu	Arg	
Tyr 625	Phe	Сув	Thr	Glu	Arg 630	Gly	Pro	Gln	Phe	His 635	Tyr	Ile	Ala	Leu	Glu 640	
Leu	Cys	Arg	Ala	Ser 645	Leu	Gln	Glu	Tyr	Val 650	Glu	Asn	Pro	Asp	Leu 655	Asp	
Arg	Gly	Gly	Leu 660	Glu	Pro	Glu	Val	Val 665	Leu	Gln	Gln	Leu	Met 670	Ser	Gly	
Leu	Ala	Нів 675	Leu	His	Ser	Leu	His 680	Ile	Val	His	Arg	Asp 685	Leu	Lys	Pro	
Gly	Asn 690	Ile	Leu	Ile	Thr	Gly 695	Pro	Asp	Ser	Gln	Gly 700	Leu	Gly	Arg	Val	
Val 705	Leu	Ser	Asp	Phe	Gly 710	Leu	Сув	Lys	Lys	Leu 715	Pro	Ala	Gly	Arg	Сув 720	
Ser	Phe	Ser	Leu	His 725	Ser	Gly	Ile	Pro	Gly 730	Thr	Glu	Gly	Trp	Met 735	Ala	
Pro	Glu	Leu	Leu 740	Gln	Leu	Leu	Pro	Pro 745	Asp	Ser	Pro	Thr	Ser 750	Ala	Val	
Asp	Ile	Phe 755	Ser	Ala	Gly	Cys	Val 760	Phe	Tyr	Tyr	Val	Leu 765	Ser	Gly	Gly	
Ser	Нів 770	Pro	Phe	Gly	Авр	Ser 775	Leu	Tyr	Arg	Gln	Ala 780	Asn	Ile	Leu	Thr	
Gly	Ala	Pro	Сув	Leu	Ala	His	Leu	Glu	Glu	Glu	Val	His	Asp	Lys	Val	

785					790					795					800
Val	Ala	Arg	Asp	Leu 805	Val	Gly	Ala	Met	Leu 810	Ser	Pro	Leu	Pro	Gln 815	Pro
Arg	Pro	Ser	Ala 820	Pro	Gln	Val	Leu	Ala 825	His	Pro	Phe	Phe	Trp 830	Ser	Arg
Ala	Lys	Gln 835	Leu	Gln	Phe	Phe	Gln 840	Asp	Val	Ser	Авр	Trp 845	Leu	Glu	Lys
Glu	Ser 850	Glu	Gln	Glu	Pro	Leu 855	Val	Arg	Ala	Leu	Glu 860	Ala	Gly	Gly	Сув
Ala 865	Val	Val	Arg	Ąsp	Asn 870	Trp	His	Glu	His	Ile 875	Ser	Met	Pro	Leu	Gln 880
Thr	Asp	Leu	Arg	Lys 885	Phe	Arg	Ser	Tyr	Lys 890	Gly	Thr	Ser	Val	Arg 895	Asp
Leu	Leu	Arg	Ala 900	Val	Arg	Asn	Lys	Lув 905	His	His	Tyr	Arg	Glu 910	Leu	Pro
Val	Glu	Val 915	Arg	Gln	Ala	Leu	Gly 920	Gln	Val	Pro	Asp	Gly 925	Phe	Val	Gln
Tyr	Phe 930	Thr	Asn	Arg	Phe	Pro 935	Arg	Leu	Leu	Leu	His 940	Thr	His	Arg	Ala
Met 945	Arg	Ser	Сув	Ala	Ser 950	Glu	Ser	Leu	Phe	Leu 955	Pro	Tyr	Tyr	Pro	Pro 960
Asp	Ser	Glu	Ala	Arg 965	Arg	Pro	Сув	Pro	Gly 970	Ala	Thr	Gly	Arg		

<210> SEQ ID NO 8 <211> LENGTH: 2769 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 8

at	tgagaaggg	cggggatcgg	cgaggactcc	aggctggggt	tgcaggccca	gccaggggcg	60
g	agoottoto	cgggtcgggc	ggggacagag	cgctcccttg	gaggcaccca	gggacctggc	120
C	igccgtgca	gctgcccagg	cgctatggcg	agtgcggtca	gggggtcgag	gccgtggccc	180
c	gctggggc	tccagctcca	gttcgcggcg	ctgctgctcg	ggacgctgag	tccacaggtt	240
Cé	tactctca	ggccagagaa	cctcctgctg	gtgtccacct	tggatggaag	tctccacgca	300
ct	aagcaagc	agacagggga	cctgaagtgg	actctgaggg	atgatcccgt	catcgaagga	360
CC	aatgtacg	tcacagaaat	ggcctttctc	tctgacccag	cagatggcag	cctgtacatc	420
tt	ggggaccc	aaaaacaaca	gggattaatg	aaactgccat	tcaccatccc	tgagctggtt	480
Cē	tgcctctc	cctgccgcag	ctctgatggg	gtcttctaca	caggccggaa	gcaggatgcc	540
tg	gtttgtgg	tggaccctga	gtcaggggag	acccagatga	cactgaccac	agagggtccc	, 600
tc	cacccccc	gcctctacat	tggccgaaca	cagtatacgg	tcaccatgca	tgacccaaga	660
gc	cccagccc	tgcgctggaa	caccacctac	cgccgctact	cagcgccccc	catggatggc	720
tc	acctggga	aatacatgag	ccacctggcg	tcctgcggga	tgggcctgct	gctcactgtg	780
ga	cccaggaa	gcgggacggt	gctgtggạca	caggacctgg	gcgtgcctgt	gatgggcgtc	840
ta	cacctggc	accaggacgg	cctgcgccag	ctgccgcatc	tcacgctggc	tcgagacact	900
ct	gcatttcc	tegeceteeg	ctggggccac	atccgactgc	ctgcctcagg	ccccgggac	960
ac	agccaccc	tcttctctac	cttggacacc	cagctgctaa	tgacgctgta	tgtggggaag	1020
ga	tgaaactg	gcttctatgt	ctytaaagca	ctggtccaca	caggagtggc	cctggtgcct	1080

cgtggactga	ccctggcccc	cgcagatggc	cccaccacag	atgaggtgac	actccaagtc	1140
tcaggagagc	gagagggctc	acccagcact	gctgttagat	acccctcagg	cagtgtggcc	1200
ctcccaagcc	agtggctgct	cattggacac	cacgagetac	ccccagtcct	gcacaccacc	1260
atgctgaggg	tccatcccac	cctggggagt	ggaactgcag	agacaagacc	tccagagaat	1320
acccaggccc	cagccttctt	cttggagcaa	cagccgcagg	tggtggagaa	gcagcaggag	1380
acccccctgg	cacctgcaga	ctttgctcac	atctcccagg	atgcccagtc	cctgcactcg	1440
ggggccagcc	ggaggagcca	gaagaggctt	cagagtccct	caaagcaagc	ccagccactc	1500
gacgaccctg	aagctgagca	actcaccgta	gtggggaaga	tttccttcaa	teccaaggae	1560
gtgctgggcc	gcggggcagg	cgggactttc	gttttccggg	gacagtttga	gggacgggca	1620
gtggctgtca	agcggctcct	ccgcgagtgc	tttggcctgg	ttcggcggga	agttcaactg	1680
ctgcaggagt	ctgacaggca	ccccaacgtg	ctccgctact	tctgcaccga	gcggggaccc	1740
cagttccact	acattgccct	ggagctctgc	egggeeteet	tgcaggagta	cgtagaaaac	1800
ccggacctgg	atcgcggggg	tctggagccc	gaggtcgtgc	tgcagcagct	gatgtctggc	1860
ctggcccacc	tgcactcttt	acacatagtg	caccgggacc	tgaagccagg	aaatattctc	1920
atcaccgggc	ctgacagcca	gggcctgggc	agagtggtgc	tctcagactt	cggcctctgc	1980
aagaagctgc	ctgctggccg	ctgtagcttc	agcetecact	ccggcatccc	cggcacggaa	2040
ggctggatgg	cgcccgagct	tctgcagctc	ctgccaccag	acagtcctac	cagcgctgtg	2100
gacatcttct	ctgcaggctg	cgtgttctac	tacgtgcttt	ctggtggcag	ccaccccttt	2160
ggagacagtc	tttatcgcca	ggcaaacatc	ctcacagggg	ctccctgtct	ggctcacctg	2220
gaggaagagg	tccacgacaa	ggtggttgcc	cgggacctgg	ttggagccat	gttgagccca	2280
ctgccgcagc	cacgcccctc	tgcccccag	gtgctggccc	accccttctt	ttggagcaga	2340
gccaagcaac	tccagttctt	ccaggacgtc	agtgactggc	tggagaagga	gtccgagcag	2400
gageceetgg	tgagggcact	ggaggcggga	ggctgcgcag	tggtccggga	caactggcac	2460
gagcacatct	ccatgccgct	gcagacagat	ctgagaaagt	tccggtccta	taaggggaca	2520
tcagtgcgag	acctgctccg	tgctgtgagg	aacaagaagc	accactacag	ggagctccca	2580
gttgaggtgc	gacaggcact	cggccaagtc	cctgatggct	tcgtccagta	cttcacaaac	2640
cgcttcccac	ggctgctcct	ccacacgcac	cgagccatga	ggagctgcgc	ctctgagagc	2700
ctcttcctgc	cctactaccc	gccagactca	gaggccagga	ggccatgccc	tggggccaca	2760
gggaggtga						2769

<400> SEQUENCE: 9

Met Arg Arg Ala Gly Ile Gly Glu Asp Ser Arg Leu Gly Leu Gln Ala 1 5 10 15

Gln Pro Gly Ala Glu Pro Ser Pro Gly Arg Ala Gly Thr Glu Arg Ser  $20 \\ 25 \\ 30$ 

Leu Gly Gly Thr Gln Gly Pro Gly Gln Pro Cys Ser Cys Pro Gly Ala 35  $\phantom{\bigg|}40\phantom{\bigg|}$ 

<210> SEQ ID NO 9
<211> LENGTH: 922
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:

<221> NAME/KET: VARIANT
<222> LOCATION: (1)...(922)
<223> OTHER INFORMATION: Xaa = Any Amino Acid

	Met	50	a Se	r Al	a Va	l Arg	Gl ₃ 55	Ser	Arg	Pro	Trp	Pro 60	Ar	Le	ı Gly	/ Leu
	Glr 65	Le	ı Gl	n Ph	e Al	70	Leu	Let	ı Lev	Gly	7 Thr 75	Leu	. Sei	Pro	Glr	80
•	His	Th	. Le	u Ar	g Pro 85	Glu	Asn	Leu	Leu	Leu 90	val	. Ser	Thi	Let	1 Asp 95	Gly
	Ser	Leu	ı Hi	B Al		ı Ser	Lys	Gln	Thr 105		Asp	Leu	Lys	110		Leu
	Arg	Asp	11:		o Val	l Ile	Glu	Gly 120		Met	Tyr	Val	Thr 125		Met	Ala
	Phe	130		r Ası	p Pro	Ala	Asp 135		Ser	Leu	Tyr	11e		Gly	Thr	Gln
	Lys 145		Gli	n Gly	y Lev	Met 150	-	Leu	Pro	Phe	155		Pro	Glu	Leu	160
	His	Ala	Se	r Pro	2 Cys 165		Ser	Ser	Авр	Gly 170		Phe	Tyr	Thr	Gly 175	Arg
	Lys	Gln	Ası	180		Phe	Val	Val	Asp 185	Pro	Glu	Ser	Gly	Glu 190		Gln
			195	5		Glu	Ī	200				_	205	•		-
		210		_		Val	215			-		220				
	225					Tyr 230					235			٠.		240
		*	٠		245					250					255	Leu-
				260		Pro	_		265				•	270		-
			275			Met		280					285			
		290				Leu	295			·	_	300				
	305			_	_	His 310		_			315		Ī			320
					325	Ser			_	330					335	
				340		Glu			345					350		
			355			Leu		360		_			365		-	٠
		370				Asp	375				•	380		_		
	385	_				390			-	-	395		-			400
					405	Leu				410					415	
				420		Leu	Ī		425				Ī	430	Ī	
			435	·		Pro		440					445			
		450				Val	455					460				
ı	.10	wTg	чяр	Fue	ATG	His	116	ser	GIN .	Авр	WTØ	GIN	ser	Leu	HIB	ser

465					470					475					480
Gly	Ala	Ser	Arg	Arg 485		Gln	Lys	Arg	Leu 490		Ser	Pro	Ser	Lys 495	Gln
Ala	Gln	Pro	Leu 500		Asp	Pro	Glu	Ala 505		Gln	Leu	Thr	Val 510	Val	Gly
Lys	Ile	Ser 515		Asn	Pro	Lya	Авр 520		Leu	Gly	Arg	Gly 525		Gly	Gly
Thr	Phe 530		Phe	Arg	Gly	Gln 535	Phe	Glu	Gly	Arg	Ala 540		Ala	Val	Lys
Arg 545	Leu	Leu	Arg	Glu	Сув 550	Phe	Gly	Leu	Val	Arg 555	Arg	Glu	Val	Gln	Leu 560
Leu	Gln	Glu	Ser	Asp 565	Arg	His	Pro	Asn	Val 570	Leu	Arg	Tyr	Phe	Сув 575	Thr
Glu	Arg	Gly	Pro 580	Gln	Phe	His	Tyr	Ile 585		Leu	Glu	Leu	Cys 590	Arg	Ala
Ser	Leu	Gln 595	Glu	Tyr	Val	Glu	Asn 600	Pro	Авр	Leu	Asp	Arg 605	Gly	Gly	Leu
Glu	Pro 610	Glu	Val	Val	Leu	Gln 615	Gln	Leu	Met	Ser	Gly 620	Leu	Ala	His	Leu
Нів 625	Ser	Leu	His	Ile	Val 630	His	Arg	qaA	Leu	Lys 635	Pro	Gly	Asn	Ile	Leu 640
Ile	Thr	Gly	Pro	Авр 645	Ser	Gln	Gly	Leu	Gly 650	Arg	Val	Val	Leu	Ser 655	Asp
Phe	Gly	Leu	Cys 660	Lys	Lys	Leu	Pro	Ala 665	Gly	Arg	Сув	Ser	Phe 670	Ser	Leu
His	Ser	Gly 675	Ile	Pro	Gly	Thr	Glu 680	Gly	Trp	Met	Ala	Pro 685	Glu	Leu	Leu
Gln	Leu 690	Leu	Pro	Pro	qaA	Ser 695	Pr _. o	Thr	Ser	Ala	Val 700	Asp	Ile	Phe	Ser
Ala 705	Gly	Сув	Val	Phe	Tyr 710	Tyr	Val	Leu	Ser	Gly 715	Gly	Ser	His	Pro	Phe 720
Gly	Asp	Ser	Ļeu	<b>Tyr</b> 725	Arg	Gln	Ala	Asn	Ile 730	Leu	Thr	Gly	Ala	Pro 735	Cys
Leu	Ala	His	Leu 740	Glu	Glu	Glu	Val	His 745	Asp	Lys	Val	Val	Ala 750	Arg	Asp
Leu	Val	Gly 755	Ala	Met	Leu	Ser	Pro 760	Leu	Pro	Gln	Pro	Arg 765	Pro	Ser	Ala
Pro	Gln 770	Val	Leu	Ala	His	Pro 775	Phe	Phe	Trp	Ser	Arg 780	Ala	Lys	Gln	Leu
Gln 785	Phe	Phe	Gln	Asp	Val 790	Ser	Asp	Trp	Leu	Glu 795	Lys	Glu	Ser	Glu	Gln 800
Glu	Pro	Leu	Val	Arg 805	Ala	Leu	Glu	Ala	Gly 810	Gly	Сув	Ala	Val	Val 815	Arg
Двр	Asn	Trp	His 820	Glu	His	Ile	Ser	Met 825	Pro	Leu	Gln	Thr	Авр 830	Leu	Arg
Lys	Phe	Arg 835	Ser	Tyr	Lys	Gly	Thr 840	Ser	Val	Arg	Asp	Leu 845	Leu	Arg	Ala
Val	Arg 850	Asn	Lys	Lys	His	His 855	Tyr	Arg	Glu	Leu	Pro 860	Val	Glu	Val	Arg
Gln 865	Ala	Leu	Gly	Gln	Val 870	Pro	Asp	Gly	Phe	Val 875	Gln	Tyr	Phe	Thr	Asn 880
Arg	Phe	Pro	Arg	Leu 885	Leu	Leu	His	Thr	His 890	Arg	Ala	Met	Arg	Ser 895	Сув

Ala Ser Glu Ser Leu Phe Leu Pro Tyr Tyr Pro Pro Asp Ser Glu Ala 900 905 910

Arg Arg Pro Cys Pro Gly Ala Thr Gly Arg 915 920

<210> SEQ ID NO 10

<211> LENGTH: 768

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 10

atgagaaggg cggggatcgg cgaggactcc aggctggggt tgcaggccca gccaggggcg 60 gageettete egggteggge ggggacagag egeteeettg gaggeaceca gggacetgge cagoogtgoa gotgoocagg ogotatggog agtgoggtoa gggggtogag googtggooc 180 eggetgggge tecageteca gttegeggeg etgetgeteg ggaegetgag tecacaggtt 240 catactetea ggccagagaa cetectgetg gtgtccacet tggatggaag tetecaegea 300 ctaagcaagc agacagggga cctgaagtgg actctgaggg atgatcccgt catcgaagga 360 ccaatgtacg tcacagaaat ggcctttctc tctgacccag cagatggcag cctgtacatc 420 480 ttggggaccc aaaaacaaca gggattaatg aaactgccat tcaccatccc tgagctggtt 540 catgoctoto cotgoogoag ototgatggg gtottotaca caggooggaa goaggatgoo tggtttgtgg tggaccctga gtcaggggag acccagatga cactgaccac agagggtccc 600 tocaccocco goototacat tggoogaaca cagtatacgg toaccatgca tgacccaaga 660 gececagece tgegetggaa caccacetae egeegetaet cagegeeece catggatgge 720 tcacctggga aatataaccc tccatgtgat ctccacacac cagactga 768

<210> SEQ ID NO 11

<211> LENGTH: 255 <212> TYPE: PRT

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 11

Met Arg Arg Ala Gly Ile Gly Glu Asp Ser Arg Leu Gly Leu Gln Ala 1 5 10 15

Gln Pro Gly Ala Glu Pro Ser Pro Gly Arg Ala Gly Thr Glu Arg Ser  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Leu Gly Gly Thr Gln Gly Pro Gly Gln Pro Cys Ser Cys Pro Gly Ala 35 40 45

Met Ala Ser Ala Val Arg Gly Ser Arg Pro Trp Pro Arg Leu Gly Leu 50 55 60

GIn Leu Gln Phe Ala Ala Leu Leu Leu Gly Thr Leu Ser Pro Gln Val 65 70 75 80

His Thr Leu Arg Pro Glu Asn Leu Leu Leu Val Ser Thr Leu Asp Gly 85 90 95

Ser Leu His Ala Leu Ser Lys Gln Thr Gly Asp Leu Lys Trp Thr Leu 100 105 110

Arg Asp Asp Pro Val Ile Glu Gly Pro Met Tyr Val Thr Glu Met Ala 115 120 125

Phe Leu Ser Asp Pro Ala Asp Gly Ser Leu Tyr Ile Leu Gly Thr Gln 130 135 140

Lys Gln Gln Gly Leu Met Lys Leu Pro Phe Thr Ile Pro Glu Leu Val 145 150 150

His	Ala	Ser	Pro	Cys 165	-	Ser	Ser	Asp	Gly 170	Val	Phe	Tyr	Thr	Gly 175	Arg				
Lys	Gln	-		-	Phe			-		Glu	Ser	Gly	Glu 190	Thr	Gln	. * *		÷	
Met	Thr	Leu 195		Thr	Glu	Gly	Pro 200	Ser	Thr	Pro	Arg	Leu 205	Tyr	Ile	Gly				-
Arg	Thr 210	Gln	Tyr	Thr	Val	Thr 215	Met	His	Asp	Pro	Arg 220	Ala	Pro	Ala	Leu				
Arg 225	Trp	Asn	Thr	Thr	Tyr 230	Arg	Arg	Tyr	Ser	Ala 235	Pro	Pro	Met	Авр	Gly 240				
Ser	Pro	Gly	Lys	Tyr 245	naA	Pro	Pro	Сув	Asp 250	Leu	His	Thr	Pro	Asp 255					

What is claimed is:

- 1. An isolated nucleic acid molecule comprising the nucleotide sequence described in SEQ ID NO:6.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID 25 lated nucleic acid molecule of claim 3.

    NO: 7; and

    5. A host cell comprising the record
  - (b) hybridizes under stringent conditions with washing in 0.1×SSC/0.1% SDS at 68° C. to the nucleotide sequence of SEQ ID NO: 6 or the complement thereof.
- 3. An isolated nucleic acid molecule comprising the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 7.
- 4. A recombinant expression vector comprising the isolated nucleic acid molecule of claim 3.
- 5. A host cell comprising the recombinant expression vector of claim 4.

* * * * *

R

This Page Blank (uspto)



# (12) United States Patent

Turner, Jr. et al.

(10) Patent No.:

US 6,476,210 B2

(45) Date of Patent:

Nov. 5, 2002

## (54) HUMAN KINASES AND POLYNUCLEOTIDES ENCODING THE SAME

(75) Inventors: C. Alexander Turner, Jr., The

Woodland, TX (US); Brian Mathur,

The Woodland, TX (US)

(73) Assignee: Lexicon Genetics Incorporated, The

Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/975,326

(22) Filed: Oct. 11, 2001

(65) Prior Publication Data

US 2002/0128458 A1 Sep. 12, 2002

# Related U.S. Application Data

(60) Provisional application No. 60/239,821, filed on Oct. 12,

(51) Int. Cl.⁷ ...... C12N 15/54; C12N 9/12

(52) U.S. Cl. ...... 536/23.2; 435/194; 435/325; 435/252.3; 435/320.1

# (56) References Cited

#### U.S. PATENT DOCUMENTS

4,215,051	Α	7/1980	Schroeder et al.
4,376,110	Α	3/1983	David et al.
4,594,595	Α	6/1986	Struckman
4,631,211	Α	12/1986	Houghten
4,689,405	Α	8/1987	Frank et al.
4,873,191	Α	10/1989	Wagner et al.
4,946,778	Α	8/1990	Ladner et al.
5,252,743	Α	10/1993	Barrett et al.
5,272,057	Α	12/1993	Smulson et al.
5,424,186	Α	6/1995	Fodor et al.
5,445,934	Α	8/1995	Fodor et al.
5,459,127	Α	10/1995	Felgner et al.
5,556,752	Α	9/1996	Lockhart
5,700,637	Α	12/1997	Southern
5,723,326	Α	3/1998	Kauffman et al.
5,744,305	Α	4/1998	Fodor et al.
5,830,721	Α	11/1998	Stemmer et al.
5,837,458	Α	11/1998	Minshull et al.
5,869,336	Α	2/1999	Meyer et al.
5,877,397	Α	3/1999	Lonberg et al.
5,948,767	Α	9/1999	Scheule et al.
6,075,181	Α	6/2000	Kucherlapati et al.
6,110,490		8/2000	Thierry
6,117,679		9/2000	Stemmer
6,150,584	Α	11/2000	Kucherlapati et al.

## FOREIGN PATENT DOCUMENTS

WO WO00/73469 A2 * 12/2000

#### OTHER PUBLICATIONS

Alignment of AAB65619 with SEQ ID No: 2 and 4.* Burgess HA, Martinez S, Reiner O. KIAA0369, doublecortin-like kinase, is expressed during brain development. J Neurosci Res. Nov. 15, 1999;58(4):567-75.*

Alignment of Q9JLM8 with SEQ ID No: 2 and 4.*

Prosite analysis of SEQ ID No: 2 and 4.*

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast" Methods in Enzymology 153:516-544.

Colbere—Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol. 150:1-14.

Gautier et al, 1987 "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Gordon, 1989, "Transgenic Animals", International Review of Cytology, 115:117-229.

Greenspan et al, 1993, "Idiotypes: structure and immunogencity", FASEB Journal 7:437-444.

Gu et al, 1994 "Deletion of a DNA Polymerase β Gene Segment in T Cells USing Cell Type-Specific Gene Targeting", Science 265:103-106.

Huse et al, 1989, "Generation of a Large Combinational Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275–1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in *Escherichia coli*", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the Ipp gene of *Escherichia coli*", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", PNAS 88:8972–8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Lakso et al, 1992, "Targeted oncogene activation by site-specific recombination in transgenic mice", Proc. Natl. Acad. Sci. USA 89:6232-6236.

(List continued on next page.)

Primary Examiner—Rebecca E. Prouty Assistant Examiner—Sheridan Swope

# (57) ABSTRACT

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

# 4 Claims, No Drawings

App Serial # 09/854,844 Hu et al Exhibit R LEX-0176-USA

Novel Human Protease and Polynucleotides Encoding the Same

## OTHER PUBLICATIONS

Lavitrano et al, 1989, "Sperm Cells ad Vectors for Introducing Foreign DNA into Eggs: Genetic Transformation of Mice", Cell 57:717-723.

Lo, 1983, "Transformation by Iontophoretic Microinjection of DNA: Multiple Integrations without Tandem Insertions", Mol. & Cell. NBiology 3(10):1803-1814.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translations of mRNAs late after infjection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(2):2072-2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions" Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3): 1527–1531.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584–593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454. Thompson et al, 1989, "Germ Line Transmission and

Thompson et al, 1989, "Germ Line Transmission and Expression of a Corrected HPRT Gene Produced by Gene Targeting in Embryonic Stem Cells", Cell 56:313–321.

Van Der Putten et al, 1985, "Efficient insertion of genes into the mouse germ line via retroviral vectors", Proc. Natl. Acad. Sci. USA 82:6148-6152.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544–546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinae Gene to Cultured Mouse Cells", Cell 11:223-232.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6)3567-3570.

^{*} cited by examiner

# HUMAN KINASES AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application No. 60/239,821, which was filed on Oct. 12, 2000, and is herein incorporated by reference in its entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins sharing sequence similarity with animal kinases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of diseases and disorders, and cosmetic or nutriceutical applications.

## 2. BACKGROUND OF THE INVENTION

Kinases mediate the phosphorylation of a wide variety of proteins and compounds in the cell. Along with phosphatases, kinases are involved in a range of regulatory ³⁰ pathways. Given the physiological importance of kinases, they have been subject to intense scrutiny and are proven drug targets.

# 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal kinases, including, but not limited to, serine-threonine kinases, calcium/calmodulin-dependent protein kinases, and mitogen activated kinases. Accordingly, the described NHPs encode novel kinases having homologues and orthologs across a range of phyla and species.

The novel human polynucleotides described herein, encode open reading frames (ORFs) encoding proteins of 766 and 765 amino acids in length (see respectively SEQ ID NOS: 2 and 4).

The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of 55 the described NHPs (e.g., antisense and ribozyme molecules, and open reading frame or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described polynucleotide under the control of a strong 60 promoter system), and transgenic animals that express a NHP sequence, or "knock-outs" (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in several ways, one of which involves the use of mouse embryonic stem cells ("ES cells") lines that 65 contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP

2

sequences described in SEQ ID NOS:1-4 are "knocked-out" they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. In addition, animals in which the unique NHP sequences described in SEQ ID NOS:1-4 are "knocked-out" provide a unique source in which to elicit antibodies to homologous and orthologous proteins that would have been previously viewed by the immune system as "self" and therefore would have failed to elicit significant antibody responses. To these ends, gene trapped knockout ES cells have been generated in murine homologs of the described NHPs.

Additionally, the unique NHP sequences described in SEQ ID NOS:1–4 are useful for the identification of protein coding sequence and mapping a unique gene to a particular chromosome. These sequences identify biologically verified exon splice junctions as opposed to splice junctions that may have been bioinformatically predicted from genomic sequence alone. The sequences of the present invention are also useful as additional DNA markers for restriction fragment length polymorphism (RFLP) analysis, and in forensic biology.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

# 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human kinase proteins.

# 5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs described for the first time herein are novel proteins that are expressed in, inter alia, human cell lines and human fetal brain, brain, pituitary, spinal cord, testis, adipose, and esophagus cells. The described sequences were compiled from sequences available in GENBANK, and cDNAs generated from skeletal muscle, adipose, pituitary, cerebellum, and brain mRNA (Edge Biosystems, Gaithersburg, Md.).

The present invention encompasses the nucleotides pre-50 sented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described genes, including the specifically described NHPS, and the NHP products; (b) nucleotides that encode one or more portions of an NHP that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor/ligand binding domain, accessory protein/

self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing. As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel et al., 15 eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent expression product. Additionally, contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. Nos. 5,837,458 or 5,723,323, both 30 of which are herein incorporated by reference). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by 35 polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar to corresponding regions of SEQ ID NO:1 (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using default parameters).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP encoding polynucleotides. Such hybridization conditions can be highly stringent or less highly stringent, as described above. In instances 45 where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous 50 region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as 55 hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the 60 described NHP sequences. An oligonucleotide or polynucleotide sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-4 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, 65 polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.) . Of particular note are spatially

addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-4, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Pat. Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-4 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-4.

For example, a series of the described oligonucleotide yet still encode a functionally equivalent NHP product. 25 sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

> Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-4 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID NOS:1-4 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-4 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-4 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

6

Thus the sequences first disclosed in SEQ ID NOS:1-4 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in 10 conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-4. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide 15 sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, Mich., 20 etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6×SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences can be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety that is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil. 5-carboxymethylaminomethyl-2-thiouridine, 45 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 50 5-methylaminomethyluracil, 5-methoxyaminomethyl-2thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 55 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide 65 will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a

phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an  $\alpha$ -anomeric oligonucleotide. An  $\alpha$ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual  $\beta$ -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625–6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131–6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327–330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, supra.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

For example, the present sequences can be used in restriction fragment length polymorphism (RFLP) analysis to identify specific individuals. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification (as generally described in U.S. Pat. No. 5,272,057, incorporated herein by reference). In addition, the sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e., another DNA sequence that is unique to a particular individual). Actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing

PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from, 5 for example, human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be 10 used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening 15 of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a 20 NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP sequence can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to MRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal sequence. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascer-

Alternatively, a genomic library can be constructed using 50 DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, immune disorders, obesity, high blood pressure, etc.), or a cDNA library can be constructed using RNA from a tissue known, 55 or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP analysis according to methods well known to those skilled in

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant 65 NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by

the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expression product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to NHP are likely to cross-react with a corresponding mutant NHP expression product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

An additional application of the described novel human polynucleotide sequences is their use in the molecular mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Pat. Nos. 5,830,721, 5,837,458, 6,117,679, and 5,723,323, which are herein incorporated by reference in their entirety.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculovirus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP sequence under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating fac-

Where, as in the present instance, some of the described NHP peptides or polypeptides are thought to be cytoplasmic or nuclear proteins (although processed forms or fragments can be secreted or membrane associated), expression systems can be engineered that produce soluble derivatives of a NHP (corresponding to a NHP extracellular and/or intracellular domains, or truncated polypeptides lacking one or sequences can then be purified and subjected to sequence 60 more hydrophobic domains) and/or NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP domain to an IgFc), NHP antibodies, and antiidiotypic antibodies (including Fab fragments) that can be used in therapeutic applications. Preferably, the above expression systems are engineered to allow the desired peptide or polypeptide to be recovered from the culture

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP sequence (transcription factor inhibitors, antisense and ribozyme molecules, or open reading frame sequence or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/ 10 enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The 15 NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in 20 the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body. The use of engineered host cells and/or animals can offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous 25 receptor/ligand of a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, NHP fusion protein products 30 (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be 35 used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP or a protein interactive 40 therewith. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to 45 the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for 50 treating biological disorders.

Various aspects of the invention are described in greater detail in the subsections below.

#### 5.1 THE NHP SEQUENCES

The cDNA sequences and corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing.

Expression analysis has provided evidence that the described NHPs can be expressed in a relatively narrow 60 range of human tissues. In addition to serine-threonine kinases, the described NHPs also share significant similarity to a range of additional kinase families, including kinases associated with signal transduction, from a variety of phyla and species.

An additional application of the described novel human polynucleotide sequences is their use in the molecular

mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Pat. Nos. 5,830,721 and 5,837,458, which are herein incorporated by reference in their entirety.

NHP gene products can also be expressed in transgenic animals. Animals of any species, including, but not limited to, worms, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, birds, goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate NHP transgenic animals.

Any technique known in the art may be used to introduce a NHP transgene into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to pronuclear microinjection (Hoppe and Wagner, 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (Thompson et al., 1989, Cell 56:313-321); electroporation of embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723); etc. For a review of such techniques, see Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229, which is incorporated by reference herein in its entirety.

The present invention provides for transgenic animals that carry the NHP transgene in all their cells, as well as animals that carry the transgene in some, but not all their cells, i.e., mosaic animals or somatic cell transgenic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al., 1992, Proc. Natl. Acad. Sci. USA 89:6232–6236. The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

When it is desired that a NHP transgene be integrated into the chromosomal site of the endogenous NHP gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous NHP gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous NHP gene (i.e., "knockout" animals).

The transgene can also be selectively introduced into a particular cell type, thus inactivating the endogenous NHP gene in only that cell type, by following, for example, the teaching of Gu et al., 1994, Science, 265:103–106. The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant NHP gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques that include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of NHP gene-expressing tissue, may also be evaluated

**12** 

immunocytochemically using antibodies specific for the NHP transgene product.

## 5.2 NHPS AND NHP POLYPEPTIDES

NHPS, NHP polypeptides, NHP peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease. Given the similarity information and expression data, the described NHPs can be targeted (by drugs, oligos, antibodies, etc.) in order to treat disease, or to therapeutically augment the efficacy of therapeutic agents.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP-encoding polynucleotides. The NHPs display initiator methionines that are present in DNA sequence contexts consistent with eucaryotic translation initiation sites. The NHPs do not display consensus signal sequences, which indicates that they may be cytoplasmic or possibly nuclear proteins, although they may also be secreted or membrane associated.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encom- 30 passed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degen- 35 erate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, 40 the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al., eds., Scientific American Books, New York, NY, herein incorporated by reference) are generically rep- 45 resentative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently 50 described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and modify a NHP substrate, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion 55 flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but that result in a silent change, 60 thus producing a functionally equivalent expression product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids 65 include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral

amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where the NHP peptide or polypeptide can exist, or has been engineered to exist, as a soluble or secreted molecule, the soluble NHP peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target expression product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign polynucleotide sequences. The virus grows in Spodoptera frugiperda cells. A NHP coding sequence can be

cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non- 5 occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 10

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus 15 transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric sequence may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a 20 recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., see Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals 25 include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where 30 only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the 35 entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter 40 et al., 1987, Methods in Enzymol. 153:516-544)

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the expression product in the specific fashion cessing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and expression products. Appropriate cell lines or host systems 50 can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the expression product may be used. 55 Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell 60 lines that stably express the NHP sequences described above can be engineered. Rather than using expression vectors that contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, tran- 65 scription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign

DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines that express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes, which can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al., allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the sequence of interest is subcloned into a vaccinia recombination plasmid such that the sequence's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺.nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation desired. Such modifications (e.g., glycosylation) and pro- 45 of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in "Liposomes: A Practical Approach", New, ed., Oxford University Press, New York and in U.S. Pat. Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures, which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site or desired organ, where they cross the cell membrane and/or the nucleus where the NHP can exert its functional activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain (see generally U.S. applications Ser. No. 60/111,701 and 60/056,713, both of which are herein incorporated by reference, for examples of such transducing sequences) to facilitate passage across cellular membranes and can optionally be engineered to include nuclear localization.

# 5.3 ANTIBODIES TO NHP PRODUCTS

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention can be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP expression product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with the NHP, a NHP peptide (e.g., one corresponding to a functional domain of a NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, chitosan, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful 40 human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diphtheria toxoid, ovalbumin, cholera toxin or frag-45 ments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by 50 any technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor 55 et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBVhybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class 60 including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl.

Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 5,877,397 and their respective disclosures, which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized monoclonal antibodies as described in U.S. Pat. No. 6,150, 584 and respective disclosures, which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 341:544-546) can be adapted to produce single chain antibodies against NHP expression products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments that recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')2 fragments, which can be produced by pepsin digestion of the antibody molecule and the Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to to increase the immunological response, depending on the 35 allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

> Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies that bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor/ ligand can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind, activate, or neutralize a NHP, NHP receptor, or NHP ligand. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

> Additionally given the high degree of relatedness of mammalian NHPs, the presently described knock-out mice (having never seen NHP, and thus never been tolerized to NHP) have a unique utility, as they can be advantageously applied to the generation of antibodies against the disclosed mammalian NHP (i.e., NHP will be immunogenic in NHP knock-out animals).

> The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

# SEQUENCE LISTING

<160> NUMB	ER OF SEQ II	D NOS: 4		•	-	
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 2301	sāpiens				
<400> SEQU	ENCE: 1	_				
atggccagca	ccaggagtat	cgagctggag	cactttgagg	aacgggacaa	aaggccgcgg	6
ccggggtcgc	ggagaggggc	ccccagetee	tccgggggca	gcagcagctc	gggccccaag	120
gggaacgggc	tcatccccag	tccggcgcac	agtgcccact	gcagcttcta	ccgcacgcgg	18
accctgcagg	ccctcagctc	ggagaagaag	gccaagaagg	cgcgcttcta	ccggaacggg	24
gaccgctact	tcaagggcct	ggtgtttgcc	atctccagcg	accgcttccg	gtcyttcgat	30
gcgctcctca	tagagctcac	ccgctccctg	tcggacaacg	tgaacctgcc	ccagggtgtc	360
egcactatct	acaccatcga	cggcagccgg	aaggtcacca	gcctggacga	gctgctggaa	426
ggtgagagtt	acgtgtgtgc	atccaatgaa	ccatttcgta	aagtcgatta	caccaaaaat	486
attaatccaa	actggtctgt	gaacatcaag	ggtgggacat	cccgagcgct	ggctgctgcc	540
tcctctgtga	aaagtgaagt	aaaagaaagt	aaagatttca	tcaaacccaa	gttagtgact	600
gtgattcgaa	gtggagtgaa	gcctagaaaa	gccgtgcgga	tccttctgaa	taaaaagact	660
gctcattcct	ttgaacaagt	cttaacagat	atcaccgaag	ccattaaact	agactcagga	720
gtcgtcaaga	ggctctgcac	cctggatgga	aagcaggtta	cttgtctgca	agacttttt	786
ggtgatgacg	atgttttat	tgcatgtgga	ccagaaaaat	ttcgttatgc	ccaagatgac	840
ttgtcctgg	atcatagtga	atgtcgtgtc	ctgaagtcat	cttattctcg	atcctcagct	900
gttaagtatt	ctggatccaa	aagccctggg	ccctctcgac	gcagcaaatc	accagcttca	960
gttaatggaa	ctcccagcag	ccaactttct	actcctaaat	ctacgaaatc	ctccagttcc	1020
tctccaacta	gtccaggaag	tttcagagga	ttaaagcaga	tttctgctca	tggcagatct	1086
cttccaatg	taaacggtgg	acctgagctt	gaccgttgca	taagtcctga	aggtgtgaat	1140
gaaacagat	gctctgaatc	atcaactctt	cttgagaaat	acaaaattgg	aaaggtcatt	1200
ggtgatggca	attttgcagt	agtcaaagag	tgtatagaca	ggtccactgg	aaaggagttt	1260
gccctaaaga	ttatagacaa	agccaaatgt	tgtggaaagg	aacacctgat	tgagaatgaa	1320
gtgtcaatac	tgcgccgagt	gaaacatccc	aatatcatta	tgctggtcga	ggagatggaa	1380
acagcaactg	agctctttct	ggtgatggaa	ttggtcaaag	gtggagatct	ctttgatgca	1440
attacttcgt	cgaccaagta	cactgagaga	gatggcagtg	ccatggtgta	caacttagcc	1500
atgccctca	ggtatctcca	tggcctcagc	atcgtgcaca	gagacatcaa	accagagaat	1560
tcttggtgt	gtgaatatcc	tgatggaacc	aagtctttga	aactgggaga	ctttgggctt	1620
gcgactgtgg	tagaaggccc	tttatacaca	gtctgtggca	cacccactta	tgtggctcca	1680
gaaatcattg	ctgaaactgg	ctatggcctg	aaggtggaca	tttgggcagc	tggtgtgatc	1740
catacatac	ttctctgtgg	attcccacca	ttccgaagtg	agaacaatct	ccaggaagat	1800
tcttcgacc	agatettgge	tgggaagctg	gagtttccgg	ccccctactg	ggataacatc	1860
cggactctg	ccaaggaatt	aatcagtcaa	atgcttcagg	taaatgttga	agctcggtgt	1920
ccgcgggac	aaatcctgag	tcacccctgg	gtgtcagatg	atgcctccca	ggagaataac	1980

atgcaagctg aggtgacagg taaactaaaa cagcacttta ataatgcgct ccccaaacag 2040

aacagcacta ccaccggggt ctccgtcatc atgaacacgg ctctagataa ggaggggcag	2100
attttctgca gcaagcactg tcaagacagc ggcaggcctg ggatggagcc catctctcca	2160
gttcctccct cagtggagga gatccctgtg cctggggaag cagtcccggc ccccacccct	2220
ccggaatete ccaccccca etgtectece getgeecegg gtggtgageg ggeaggaace	2280
tggcgccgcc accgagactg a	2301
210. CEO TO NO 2	
<210> SEQ ID NO 2 <211> LENGTH: 766	
<212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 2	
Met Ala Ser Thr Arg Ser Ile Glu Leu Glu His Phe Glu Glu Arg Asp	
1 5 10 15	
Lys Arg Pro Arg Pro Gly Ser Arg Arg Gly Ala Pro Ser Ser Ser Gly 20 25 30	
Gly Ser Ser Ser Gly Pro Lys Gly Asn Gly Leu Ile Pro Ser Pro 35 40 45	
Ala His Ser Ala His Cys Ser Phe Tyr Arg Thr Arg Thr Leu Gln Ala 50 55 60	
Leu Ser Ser Glu Lys Lys Ala Lys Lys Ala Arg Phe Tyr Arg Asn Gly 65 70 75 80	
Asp Arg Tyr Phe Lys Gly Leu Val Phe Ala Ile Ser Ser Asp Arg Phe 85 90 95	
Arg Ser Phe Asp Ala Leu Leu Ile Glu Leu Thr Arg Ser Leu Ser Asp	
Asn Val Asn Leu Pro Gln Gly Val Arg Thr Ile Tyr Thr Ile Asp Gly 115 120 125	
Ser Arg Lys Val Thr Ser Leu Asp Glu Leu Leu Glu Gly Glu Ser Tyr 130 135 140	
Val Cys Ala Ser Asn Glu Pro Phe Arg Lys Val Asp Tyr Thr Lys Asn	
145 150 155 160	
Ile Asn Pro Asn Trp Ser Val Asn Ile Lys Gly Gly Thr Ser Arg Ala 165 170 175	
Leu Ala Ala Ser Ser Val Lys Ser Glu Val Lys Glu Ser Lys Asp 180 185 190	
Phe Ile Lys Pro Lys Leu Val Thr Val Ile Arg Ser Gly Val Lys Pro 195 200 205	
Arg Lys Ala Val Arg Ile Leu Leu Asn Lys Lys Thr Ala His Ser Phe 210 215 220	
Glu Gln Val Leu Thr Asp Ile Thr Glu Ala Ile Lys Leu Asp Ser Gly 225 230 235 240	
Val Val Lys Arg Leu Cys Thr Leu Asp Gly Lys Gln Val Thr Cys Leu 245 250 255	
Gln Asp Phe Phe Gly Asp Asp Asp Val Phe Ile Ala Cys Gly Pro Glu 260 265 270	
Lys Phe Arg Tyr Ala Gln Asp Asp Phe Val Leu Asp His Ser Glu Cys 275 280 285	
Arg Val Leu Lys Ser Ser Tyr Ser Arg Ser Ser Ala Val Lys Tyr Ser	
Gly Ser Lys Ser Pro Gly Pro Ser Arg Arg Ser Lys Ser Pro Ala Ser 305 310 315 320	

Val	Asn	Gly	Thr	Pro 325	Ser	Ser	Gln	Leu	Ser 330	Thr	Pro	Lys	Ser	Thr 335	Lys
Ser	Ser	Ser	Ser 340	Ser	Pro	Thr	Ser	Pro 345	Gly	Ser	Phe	Arg	Gly 350	Leu	Lув
Gln	Ile	Ser 355	Ala	His	Gly	Arg	Ser 360	Ser	Ser	Asn	Val	Asn 365	Gly	Gly	Pro
Glu	Leu 370	Asp	Arg	Сув	Ile	Ser 375	Pro	Glu	Gly	Val	Asn 380	Gly	Asn	Arg	Сув
Ser 385	Glu	Ser	Ser	Thr	Leu 390	Leu	Glu	Lys	Tyr	Lys 395	Ile	Gly	Lys	Val	Ile 400
Gly	Asp	Gly	Asn	Phe 405	Ala	Val	Val	Lys	Glu 410	Сув	Ile	Asp	Arg	Ser 415	Thr
Gly	Lys	Glu	Phe 420	Ala	Leu	Lys	Ile	Ile 425	Авр	Lув	Ala	Lys	Сув 430	Сув	Gly
Lys	Glu	Нів 435	Leu	Ile	Glu	Asn	Glu 440	Val	Ser	Ile	Leu	Arg 445	Arg	Val	Lys
His	Pro 450	Asn	Ile	Ile	Met	Leu 455	Val	Glu	Glu	Met	Glu 460	Thr	Ala	Thr	Glu
Leu 465	Phe	Leu	Val	Met	Glu 470	Leu	Val	Lys	Gly	Gly 475	Asp	Leu	Phe	Авр	Ala 480
Ile	Thr	Ser	Ser	Thr 485	Lys	Tyr	Thr	Glu	Arg 490	Asp	Gly	Ser	Ala	Met 495	Val
Tyr	Asn	Leu	Ala 500	Asn	Ala	Leu	Arg	Tyr 505	Leu	His	Gly	Leu	Ser 510	Ile	Val
aiH	Arg	Asp 515	Ile	Lys	Pro	Glu	Авп 520	Leu	Leu	Val	Сув	Glu 525	Tyr	Pro	Asp
Gly	Thr 530	Lys	Ser	Leu	Lув	Leu 535	Gly	Авр	Phe	Gly	Leu 540	Ala	Thr	Val	Val
Glu 545	Gly	Pro	Leu	Tyr	Thr 550	Val	Сув	Gly	Thr	Pro 555	Thr	Tyr	Val	Ala	Pro 560
Glu	Ile	Ile	Ala	Glu 565	Thr	Gly	Tyr	Gly	Leu 570	Lys	Val	Asp	Ile	Trp 575	Ala
Ala	Gly	Val	Ile 580	Thr	Tyr	Ile	Leu	Leu 585	Сув	Gly	Phe	Pro	Pro 590	Phe	Arg
Ser	Glu	Asn 595	Asn	Leu	Gln	Glu	Asp 600	Leu	Phe	Авр	Gln	Ile 605	Leu	Ala	Gly
Lys	Leu 610	Glu	Phe	Pro	Ala	Pro 615	Tyr	Trp	Asp	Asn	Ile 620	Thr	Asp	Ser	Ala
Lys 625	Glu	Leu	Ile	Ser	Gln 630	Met	Leu	Gln	Val	Asn 635	Val	Glu	Ala	Arg	Сув 640
Thr	Ala	Gly	Gln	Ile 645	Leu	Ser	His	Pro	Trp 650	Val	Ser	Asp	Asp	Ala 655	Ser
Gln	Glu	Asn	Asn 660	Met	Gln	Ala	Glu	Val 665	Thr	Gly	Lys	Leu	<b>Lув</b> 670	Gln	His
	Asn	675					680					685	_		
Val	Ile 690	Met	Asn	Thr	Ala	Leu 695	Авр	Lys	Glu	Gly	Gln 700	Ile	Phe	Сув	Ser
Lys 705	His	Сув	Gln	Авр	Ser 710	Gly	Arg	Pro	Gly	Met 715	Glu	Pro	Ile	Ser	Pro 720
Val	Pro	Pro	Ser	Val 725	Glu	Glu	Ile	Pro	Val 730	Pro	Gly	Glu	Ala	Val 735	Pro
Ala	Pro	Thr	Pro	Pro	Glu	Ser	Pro	Thr	Pro	His	Сув	Pro	Pro	Ala	Ala

Pro Gly Glu Arg Ala Gly Thr Trp Arg Arg His Arg Asp 755  $\phantom{-}760\phantom{0}$  765

745

<210> SEQ ID NO 3 <211> LENGTH: 2298 <212> TYPE: DNA <213> ORGANISM: homo sapiens

740

<400> SEQUENCE: 3

atggccagca	ccaggagtat	cgagctggag	cactttgagg	aacgggacaa	aaggccgcgg	60
ccggggtcgc	ggagaggggc	ccccagctcc	tccgggggca	gcagcagctc	gggccccaag	120
gggaacgggc	tcatccccag	tccggcgcac	agtgcccact	gcagcttcta	ccgcacgcgg	180
accctgcagg	ccctcagctc	ggagaagaag	gccaagaagg	cgcgcttcta	ccggaacggg	240
gaccgctact	tcaagggcct	ggtgtttgcc	atctccagcg	accgcttccg	gtcyttcgat	300
gcgctcctca	tagagctcac	ccgctccctg	tcggacaacg	tgaacctgcc	ccagggtgtc	360
cgcactatct	acaccatcga	cggcagccgg	aaggtcacca	gcctggacga	gctgctggaa	420
ggtgagagtt	acgtgtgtgc	atccaatgaa	ccatttcgta	aagtcgatta	caccaaaaat	480
attaatccaa	actggtctgt	gaacatcaag	ggtgggacat	cccgagcgct	ggctgctgcc	540
tcctctgtga	aaagtgaagt	aaaagaaagt	aaagatttca	tcaaacccaa	gttagtgact	600
gtgattcgaa	gtggagtgaa	gcctagaaaa	gccgtgcgga	tccttctgaa	taaaaagact	660
gctcattcct	ttgaacaagt	cttaacagat	atcaccgaag	ccattaaact	agactcagga	720
gtcgtcaaga	ggctctgcac	cctggatgga	aagcaggtta	cttgtctgca	agacttttt	780
ggtgatgacg	atgttttat	tgcatgtgga	ccagaaaaat	ttcgttatgc	ccaagatgac	840
tttgtcctgg	atcatagtga	atgtcgtgtc	ctgaagtcat	cttattctcg	atcctcagct	900
gttaagtatt	ctggatccaa	aagccctggg	ccctctcgac	gcagcaaatc	accagcttca	960
gttaatggaa	ctcccagcag	ccaactttct	actcctaaat	ctacgaaatc	ctccagttcc	1020
tctccaacta	gtccaggaag	tttcagagga	ttaaagattt	ctgctcatgg	cagatcttct	1080
tccaatgtaa	acggtggacc	tgagcttgac	cgttgcataa	gtcctgaagg	tgtgaatgga	1140
aacagatgct	ctgaatcatc	aactcttctt	gagaaataca	aaattggaaa	ggtcattggt	1200
gatggcaatt	ttgcagtagt	caaagagtgt	atagacaggt	ccactggaaa	ggagtttgcc	1260
ctaaagatta	tagacaaagc	caaatgttgt	ggaaaggaac	acctgattga	gaatgaagtg	1320
tcaatactgc	gccgagtgaa	acatcccaat	atcattatgc	tggtcgagga	gatggaaaca	1380
gcaactgagc	tctttctggt	gatggaattg	gtcaaaggtg	gagatctctt	tgatgcaatt	1440
acttcgtcga	ccaagtacac	tgagagagat	ggcagtgcca	tggtgtacaa	cttagccaat	1500
gccctcaggt	atctccatgg	cctcagcatc	gtgcacagag	acatcaaacc	agagaatctc	1560
ttggtgtgtg	aatatcctga	tggaaccaag	tctttgaaac	tgggagactt	tgggcttgcg	1620
actgtggtag	aaggcccttt	atacacagtc	tgtggcacac	ccacttatgt	ggctccagaa	1680
atcattgctg	aaactggcta	tggcctgaag	gtggacattt	gggcagctgg	tgtgatcaca	1740
tacatacttc	tctgtggatt	cccaccattc	cgaagtgaga	acaatctcca	ggaagatctc	1800
ttcgaccaga	tcttggctgg	gaagctggag	tttccggccc	cctactggga	taacatcacg	1860
gactctgcca	aggaattaat	cagtcaaatg	cttcaggtaa	atgttgaagc	tcggtgtacc	1920
gcgggacaaa	tcctgagtca	cccctgggtg	tcagatgatg	cctcccagga	gaataacatg	1980

caa	gctga	agg t	gace	ıggt	a ac	taad	acaç	cac	ttte	ata	atgo	gcto	ecc o	aaac	agaac	2040
agca	ctac	cca c	cgg	gtci	e e	gtcat	cate	, aac	acg	jctc	taga	taaq	ga ç	9999	agatt	2100
ttci	gcaç	gca a	gcad	etgto	a ag	gacaç	gegge	agg	jecto	gga	tgg	gcc	cat o	tcto	cagtt	2160
ccto	ccto	ag t	gga	ggaga	at co	cctgt	geet	gg	gaaq	gcag	tcc	ggc	cc c	cacco	ctccg	2220
gaat	ctc	ca c	ccc	ccact	g to	ctc	ecget	gc:	ccg	ggtg	gtga	ageg	ggc a	ıggaa	acctgg	2280
cgc	gcc	acc c	gagad	ctga												2298
<211 <212 <213	.> LE !> TY !> OF		: 76 PRT	homo	sa q	oiens	ı									
		QUEN			_			_			_,			_	_	
Met 1	Ala	Ser	Thr	Arg 5	Ser	Ile	Glu	Leu	Glu 10	His	Phe	Glu	Glu	Arg 15	Asp	
Lys	Arg	Pro	Arg 20	Pro	Gly	Ser	Arg	Arg 25	Gly	Ala	Pro	Ser	Ser 30	Ser	Gly	
Gly	Ser	Ser 35	Ser	Ser	Gly	Pro	Lув 40	Gly	naA	Gly	Leu	Ile 45	Pro	Ser	Pro	
Ala	His 50	Ser	Ala	His	Сув	Ser 55	Phe	Tyr	Arg	Thr	Arg 60	Thr	Leu	Gln	Ala	
Leu 65	Ser	Ser	Glu	Lys	<b>Lys</b> 70	Ala	Lys	Lув	Ala	Arg 75	Phe	Tyr	Arg	Asn	Gly 80	
qaA	Arg	Tyr	Phe	Lys 85	Gly	Leu	Val	Phe	Ala 90	Ile	Ser	Ser	Asp	Arg 95	Phe	
Arg	Ser	Phe	Asp 100	Ala	Leu	Leu	Ile	Glu 105	Leu	Thr	Arg	Ser	Leu 110	Ser	Asp	
Asn	Val	Asn 115	Leu	Pro	Gln	Gly	Val 120	Arg	Thr	Ile	Tyr	Thr 125	Ile	qaA	Gly	
Ser	Arg 130	Lys	Val	Thr	Ser	Leu 135	Asp	Glu	Leu	Leu	Glu 140	Gly	Glu	Ser	Tyr	
Val 145	Сув	Ala	Ser	Asn	Glu 150	Pro	Phe	Arg	Lys	Val 155	Asp	Tyr	Thr	Lys	Asn 160	
Ile	Asn	Pro	Asn	Trp 165	Ser	Val	Asn	Ile	<b>Lу</b> в 170	Gly	Gly	Thr	Ser	Arg 175	Ala	
Leu	Ala	Ala	Ala 180	Ser	Ser	Val	Lys	Ser 185	Glu	Val	Lys	Glu	Ser 190	Lys	Asp	
Phe	Ile	<b>Lув</b> 195	Pro	Lys	Leu	Val	Thr 200	Val	Ile	Arg	Ser	Gly 205	Val	Lys	Pro	
Arg	Lys 210	Ala	Val	Arg	Ile	Leu 215	Leu	Asn	Lys	Lys	Thr 220	Ala	His	Ser	Phe	
Glu 225	Gln	Val	Leu	Thr	Авр 230	Ile	Thr	Glu	Ala	Ile 235	Lys	Leu	Asp	Ser	Gly 240	
Val	Val	Lys	Arg	Leu 245	Сув	Thr	Leu	Авр	Gly 250	Lys	Gln	Val	Thr	Сув 255	Leu	
Gln	Asp	Phe	Phe 260	Gly	Asp	Asp	дад	Val 265	Phe	Ile	Ala	Сув	Gly 270	Pro	Glu	
Lys	Phe	Arg 275	Tyr	Ala	Gln	Авр	Авр 280	Phe	Val	Leu	Авр	His 285	Ser	Glu	Сув	
Arg	Val 290	Leu	Lys	Ser	Ser	Tyr 295	Ser	Arg	Ser	Ser	Ala 300	Val	Lys	Tyr	Ser	
Gly 305	Ser	Lys	Ser	Pro	Gly 310	Pro	Ser	Arg	Arg	Ser 315	Lys	Ser	Pro	Ala	Ser 320	

27

Val	Asn	Gly	Thr	Pro 325	Ser	Ser	Gln	Leu	Ser 330	Thr	Pro	Lys	Ser	Thr 335	Lys
Ser	Ser	Ser	Ser 340	Ser	Pro	Thr	Ser	Pro 345	Gly	Ser	Phe	Arg	Gly 350	Leu	Lys
Ile	Ser	Ala 355	His	Gly	Arg	Ser	Ser 360	Ser	Asn	Val	Asn	Gly 365	Gly	Pro	Glu
Leu	Авр 370	Arg	Сув	Ile	Ser	Pro 375	Glu	Gly	Val	Asn	Gly 380	Asn	Arg	Cys	Ser
Glu 385	Ser	Ser	Thr	Leu	Leu 390	Glu	Lys	Tyr	Lys	Ile 395	Gly	Lys	Val	Ile	Gly 400
Asp	Gly	Asn	Phe	Ala 405	Val	Val	Lys	Glu	Cys 410	Ile	Asp	Arg	Ser	Thr 415	Gly
Lys	Glu	Phe	Ala 420	Leu	Lys	Ile	Ile	Авр 425	Lys	Ala	Lys	Сув	Сув 430	Gly	Lув
Glu	His	Leu 435	Ile	Glu	Asn	Glu	Val 440	Ser	Ile	Leu	Arg	Arg 445	Val	Lys	His
Pro	Asn 450	Ile	Ile	Met	Leu	Val 455	Glu	Glu	Met	Glu	Thr 460	Ala	Thr	Glu	Leu
Phe 465	Leu	Val	Met	Glu	Leu 470	Val	Lys	Gly	Gly	Asp 475	Leu	Phe	Asp	Ala	Ile 480
Thr	Ser	Ser	Thr	Lув 485	Tyr	Thr	Glu	Arg	Asp 490	Gly	Ser	Ala	Met	Val 495	Tyr
Asn	Leu	Ala	Asn 500	Ala	Leu	Arg	Tyr	Leu 505	His	Gly	Leu	Ser	Ile 510	Val	His
Arg	Asp	Ile 515	Lys	Pro	Glu	Asn	Leu 520	Leu	Val	Сув	Glu	Tyr 525	Pro	qaA	Gly
Thr	<b>Lys</b> 530	Ser	Leu	Lys	Leu	Gly 535	Asp	Phe	Gly	Leu	Ala 540	Thr	Val	Val	Glu
Gly 545	Pro	Leu	Tyr	Thr	Val 550	Сув	Gly	Thr	Pro	Thr 555	Tyr	Val	Ala	Pro	Glu 560
Ile	Ile	Ala	Glu	Thr 565	Gly	Tyr	Gly	Leu	Lys 570	Val	Asp	Ile	Trp	Ala 575	Ala
Gly	Val	Ile	Thr 580	Tyr	Ile	Leu	Leu	Сув 585	Gly	Phe	Pro	Pro	Phe 590	Arg	Ser
Glu	Asn	Asn 595	Leu	Gln	Glu	Asp	Leu 600	Phe	Asp	Gln	Ile	Leu 605	Ala	Gly	Lys
Leu	Glu 610	Phe	Pro	Ala	Pro	Tyr 615	Trp	Авр	Asn	Ile	Thr 620	Asp	Ser	Ala	Lys
Glu 625	Leu	Ile	Ser	Gln	Met 630	Leu	Gln	Val	Asn	Val 635	Glu	Ala	Arg	Сув	Thr 640
Ala	Gly	Gln	Ile	Leu 645	Ser	His	Pro	Trp	Val 650	Ser	Asp	Asp	Ala	Ser 655	Gln
Glu	Asn	Asn	Met 660	Gln	Ala	Glu	Val	Thr 665	Gly	Lys	Leu	Lys	Gln 670	His	Phe
Asn	Asn	Ala 675	Leu	Pro	Lys	Gln	Asn 680	Ser	Thr	Thr	Thr	Gly 685	Val	Ser	Val
Ile	Met 690	Asn	Thr	Ala	Leu	Asp 695	Lys	Glu	Gly	Gln	Ile 700	Phe	Сув	Ser	Lys
His 705	Сув	Gln	Asp	Ser	Gly 710	Arg	Pro	Gly	Met	Glu 715	Pro	Ile	Ser	Pro	Val 720
Pro	Pro	Ser	Val	Glu 725	Glu	Ile	Pro	Val	Pro 730	Gly	Glu	Ala	Val	Pro 735	Ala

Pro Thr Pro Pro Glu Ser Pro Thr Pro His Cys Pro Pro Ala Ala Pro
740 745 750

Gly Gly Glu Arg Ala Gly Thr Trp Arg Arg His Arg Asp
755 760 765

What is claimed is:

- 1. An isolated nucleic acid molecule comprising a nucleotide sequence drawn from the group consisting of SEQ ID NO:1 and SEQ ID NO:3.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO:2; and
  - (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:1 or the complement thereof.
- 3. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:2.
- 4. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:4.

* * * *

9

This Page Blank (uspto)



# (12) United States Patent Walke et al.

(10) Patent No.:

US 6,465,632 B1

(45) Date of Patent:

Oct. 15, 2002

#### **HUMAN PHOSPHATASES AND** (54) POLYNUCLEOTIDES ENCODING THE

Inventors: D. Wade Walke, Spring; John Scoville, Houston; C. Alexander Turner, Jr.,

The Woodlands; Glenn Friedrich, Houston; Alejandro Abuin, The Woodlands; Brian Zambrowicz, The Woodlands; Arthur T. Sands, The Woodlands, all of TX (US)

Assignce: Lexicon Genetics Incorporated, The Woodlands, TX (US)

Subject to any disclaimer, the term of this Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/877,730

Jun. 8, 2001 (22) Filed:

# Related U.S. Application Data

Provisional application No. 60/210,607, filed on Jun. 9,

(51)	Int. Cl. ⁷	C07H 21/04; C12N 9/12
(52)	U.S. Cl	536/23.2; 536/23.1; 536/23.5;
` ′		435/183; 435/194
(58)	Field of Search	435/183, 194;
` ′		536/23 1 23.2: 530/350

#### (56)References Cited

# U.S. PATENT DOCUMENTS

4,376,110 A 3/198: 4,946,778 A 8/1990 5,723,323 A 3/1998	O Schroeder et al.       260/346.7         B David et al.       436/513         Ladner et al.       435/69.6         Kauffman et al.       435/172.3         S Stemmer et al.       435/172.1
5,869,336 A 2/1999 5,939,271 A 8/1999	3 Minshull et al

# OTHER PUBLICATIONS

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol.

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engeineering of antibody binding sites: Recovery of specific activity in an anti-diogoxin single-chain Fv analogue produced in Escherichia coil', Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the Ipp gene of Escherichia coil", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", PNAS 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855.

Mulligan & Berg, 1981, "Selection for animal cells that express the Escherichia coligene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions", Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10): 1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

(List continued on next page.)

Primary Examiner-Rebecca E. Prouty

**ABSTRACT** 

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

2 Claims, No Drawings

# OTHER PUBLICATIONS

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coil*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544-546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells", Cell 11:223-232.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567-3570.

25

# HUMAN PHOSPHATASES AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application No. 60/210,607 which was filed on Jun. 9, 2000 and is herein incorporated by reference in its entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with animal phosphatases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of physiological disorders, or otherwise contributing to the quality of life.

# 2. BACKGROUND OF THE INVENTION

Membrane proteins can act as, inter alia, ligand receptors, signal transducers, neuronal guidance proteins, cell adhesion proteins, cell surface markers, and can also possess enzymatic functions such as the phosphorylation of substrates (i.e., kinase activity). Phosphatases mediate dephosphorylation of a wide variety of proteins and compounds in the cell. Often working in conjunction with kinases, phosphatases are involved in a regulating a wide range of biochemical and physiological pathways. Given the physiological importance of phosphatases, they have been subject to significant scrutiny and are good drug targets.

# 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal immunoglobulin super family cell surface proteins, proteins that play a role in neuronal guidance (e.g., nope, punc, unc, and neogenin), phosphatases, netrin receptors, DCC (deleted in colon cancer) including, but not limited to tyrosine phosphatases, and cell adhesion molecules as homologues and orthologs across a range of phyla and species.

The novel human polynucleotides described herein, encode open reading frames (ORFs) encoding proteins of 55 1,069, 380, 904, 1150, 985, 991, 302, 826, 1072, 907, 712, 624, 547, 793, and 628 amino acids in length (see SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 respectively).

The invention also encompasses agonists and antagonists 60 of the described NHPs, including small molecules, large molecules, mutant NHPS, or portions thereof that compete with native NHPs, NHP peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme 65 molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described

2

NHP polynucleotides (e.g., expression constructs that place the described gene under the control of a strong promoter system). The present invention also includes both transgenic animals that express a NHP transgene, and NHP "knockouts" (which can be conditional) that do not express a functional NHP. Knockout murine ES cells have been produced in a murine ortholog of the described NHPs.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP product activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

# 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human phosphatase proteins. SEQ ID NO:31 describes a NHP ORF and flanking sequences.

# 5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, and human brain, pituitary, kidney, testis, thyroid, adrenal gland, stomach, heart, uterus, placenta, mammary gland, adipose, esophagus, cervix, rectum, pericardium, ovary, fetal kidney and gene trapped human cells. The described sequences were compiled from gene trapped sequences in conjunction with sequences available in GENBANK, and cDNAs isolated from human testis and thyroid cDNA libraries (Edge Biosystems, Gaithersburg, Md.).

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, 40 and: (a) nucleotides that encode mammalian homologs of the described genes, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of an NHP that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor/ligand binding domain, accessory protein/ self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing. As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g.,

hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, 5 Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encode a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in directed evolution as described in, for example, U.S. Pat. Nos. 5,723,323 and 5,837,458 both of which are herein incorporated by reference). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar to corresponding regions of a sequence presented in the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using default parameters).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore 30 the complements of, the described NHP encoding polynucleotides. Such hybridization conditions can be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to 35 about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the 40 polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or 45 high-throughput "chip" format), Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within 50 the stated range) nucleotides in length may partially overlap each other and/or the NHP sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described NHP polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide 55 sequences of at least about 18, and preferably about 25, nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences may begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a 60 sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as

NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences can be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) other species and mutant NHPs whether naturally occurring

5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-5-carboxymethylaminomethyl-2-thiouridine, galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2beta-D-mannosylqueosine, thiouracil. 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothicate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual \(\beta\)-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular

Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can 5 be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide 10 polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to 15 design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from  20 nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from, for example, human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, fol- 40 mutagenesis/evolution of proteins that are at least partially lowing standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of 50 the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

AcDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand 55 may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then syn- 60 thesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of 65 skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP

allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, immune disorders, obesity, high blood pressure, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, AP-NHP or NHP-AP fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

An additional application of the described novel human polynucleotide sequences is their use in the molecular encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Pat. Nos. 5,830,721 and 5,837,458 which are herein incorporated by reference in their entirety.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference), (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include but are not limited to inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus hCMV immediate early gene, regulatable, viral (particularly retroviral LTR promoters) the early or late promoters of SV40 adenovirus, the lac system, the trp

system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating fac- 5

Where, as in the present instance, some of the described NHP peptides or polypeptides are thought to be cytoplasmic proteins, expression systems can be engineered that produce soluble derivatives of a NHP (corresponding to a NHP extracellular and/or intracellular domains, or truncated polypeptides lacking one or more hydrophobic domains) and/or NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP domain to an IgFc), NHP antibodies, and anti-idiotypic antibodies (including 15 Fab fragments) that can be used in therapeutic applications. Preferably, the above expression systems are engineered to allow the desired peptide or polypeptide to be recovered from the culture media.

The present invention also encompasses antibodies and 20 anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement 25 constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP 30 nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, 35 antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body. 40 The use of engineered host cells and/or animals can offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor/ligand of a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and 50 anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a 55 NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP or a protein interactive therewith. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express 60 encoded by the described NHP-encoding polynucleotides. such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules 65 can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also

encompasses pharmaceutical formulations and methods for treating biological disorders.

Various aspects of the invention are described in greater detail in the subsections below.

#### 5.1 THE NHP SEQUENCES

The cDNA sequences and corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing. The NHP nucleotide sequences were obtained using the sequence information present in human gene trapped sequence tags and other cDNA sequences. Expression analysis has provided evidence that the described NHPs can be expressed in a wide variety of human tissues as well as gene trapped human cells. In addition to tyrosine phosphatases, the described NHPs also share significant similarity to a range of additional Ig super family proteins from a range of phyla and species. Given the physiological importance of protein phosphatases and other proteins that display structural relatedness to the described NHPs, such proteins have been subject to intense scrutiny as exemplified and discussed in U.S. Pat. Nos. 5,939,271 and 6,020,179 which describe a variety of uses and applications that can be applied to the described NHP sequences and which are herein incorporated by reference in their entirety.

Several polymorphisms were identified during sequencing such as an A-C transversion that can occur in the sequence region represented by, for example, nucleotide position 76 of SEQ ID NO:1 which can result in a L or M being present in the corresponding amino acid sequence at position, for example, 26 of SEQ ID NO:2, and an A-G transition that can occur in the sequence region represented. by, for example, nucleotide position 706 of SEQ ID NO:1 which can result in a T or A being present in the corresponding amino acid sequence at, for example, position 236 of SEQ ID NO:2. The present invention contemplates sequences incorporating any of the above polymorphisms as well as all combinations and permutations thereof.

The gene encoding the described NHPs is apparently present on human chromosome 15 or human chromosome 3 (see GENBANK accession nos. AC012378 and AC012674). Accordingly, the described sequences are useful for identifying and mapping the coding regions of the human genome as well as identifying biologically validating functional exon splice junctions.

#### 5.2 NHPS AND NHP POLYPEPTIDES

The described NHP products, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses, including but not limited to the generation of antibodies, as reagents in diagnostic assays (e.g., for cancer, neuronal abnormalities, Barbet-Biel Syndrome, etc.), the identification of other cellular gene products related to the NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.

The Sequence Listing discloses the amino acid sequence The NHPs have initiator methionines in DNA sequence contexts consistent with eucaryotic translation initiation site, and display an apparent signal sequence near the N-terminus which indicates that the NHPs can be membrane associated, secreted, or cytoplasmic.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing

as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and modify a NHP substrate, or the ability to effect 25 an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the 30 amino acid sequence encoded by a NHP nucleotide sequence described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, 35 and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, 40 asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and

A variety of host-expression vector systems can be used 45 to express the NHP nucleotide sequences of the invention. Where the NHP peptide or polypeptide can exist, or has been engineered to exist, as a soluble or secreted molecule, the soluble NHP peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass 50 engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of 60 the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed 65 with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with

recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A NHP encoding polynucleotide sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the

appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516–544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies 15 and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper pro- 25 cessing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be 35 transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days 40 in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell 45 lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phospho- 55 ribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. 60 USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. 65 Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972–8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

## 5.3 Antibodies to NHP Products

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention can be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with the NHP, a NHP peptide (e.g., one corresponding to a functional domain of a NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495–497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983,

Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. 5 The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of 10 "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 341:544-546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ frag-

ments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275–1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor/ligand can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind, activate, or neutralize a NHP, NHP receptor, or NHP ligand. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

## SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 31 <210> SEQ ID NO 1 <211> LENGTH: 3210 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 1 atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct gctccgcgcg ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag cgaactgtct 120 tttgtaaaag aaccacagga tgtaactgtc acaagaaagg acccagtcgt tttagattgc 180 caggeteacg gagaagttee tattaaggte acatggttga aaaatggage aaaaatgtet gaaaataaac ggatcgaggt totttotaac ggototttat acatcagtga ggtggaaggo 🤸 300 aggcgaggag agcagtccga tgaaggattt tatcagtgct tggcaatgaa caaatatgga 360 qccattctta qtcaaaaaqc tcatcttqcc ttatcaacta tttctqcatt tqaaqtccaq 420 ccaatttcca ctgaggtcca cgaaggtgga gttgctcgat ttgcatgcaa gatttcatcc 480 540 caccetecty cagteataac atgggagtte aateggacaa etetacetat gactatggac 600 aggataactg ccctaccaac aggagtattg cagatctatg atgtcagcca aagggattct 660 qqaaattatc qttqtattqc tqccactqta qcccaccqac qtaaaaqtat qqaqqcctcq ctaactqtqa ttccaqctaa qqaqtcaaaa tccttccaca caccarcaat tataqcaqqt ccacagaaca taacaacatc tcttcatcag actgtagttt tggaatgcat ggccacagga

aatcccaaa	caatcattt	c ttggagccgd	cttgatcac	a aatccattg	tgtctttaat	84
actogggta	c ttggaaatg	g taatctcato	g atatotgat	g tcaggctaca	acatgctgga	. 90
gtatatgtt	t gtcgggcca	c tacccctgg	acacgcaac	t ttacagttg	: tatggcaact	96
ttaactgta	t tageteetee	ttcatttgtt	gaatggcca	g aaagtttaac	aaggcctcga	102
gctggcact	g ctcgatttg	t gtgtcaggca	gaaggaatc	cctctcccaa	gatgtcatgg	108
ttgaaaaat	g gaaggaagat	t acattcgaat	ggtagaatt	a aaatgtacaa	cagtaaattg	1140
gtaattaaco	agattattco	tgaagatgat	gctatttato	agtgcatggc	tgagaatagc	1200
caaggatct	ttttatctag	g agccagactg	actgtagtga	tgtcagaaga	cagacccagt	1260
gctccctate	atgtacatgo	tgaaaccatg	tcaagctcag	ccattcttt	agcctgggag	1320
iggccactti	ataattcaga	caaagtcatt	gcctattctg	, tacactacat	gaaagcagaa	1380
gtttaaata	atgaagagta	tcaagtagtc	atcggaaatg	, acacaactca	ttatattatt	1440
gatgacttag	agcctgccag	caattatact	ttctacattq	, tagcatatat	gccaatggga	1500
ccagccaga	tgtctgacca	tgtgacacag	aatactctag	aggatgttcc	cctgagacct	1560
ctgaaatta	gtttgacaag	tcgaagtccc	actgatatto	tcatctcctg	gctgccaatc	1620
cagccaaat	atcggcgggg	ccaagtggtg	ctgtatcgct	tgtctttccg	cctaagtact	1680
agaattcaa	tccaagttct	ggagctcccg	gggaccacgo	atgagtacct	tttggaaggc	1740
tgaaacctg	acagtgtcta	cctggttcgg	attactgctg	ccaccagagt	ggggctggga	1800
agtcatcag	tatggacttc	acataggacg	cccaaagcta	caagcgtgaa	agcccctaag	1860
ctccagagt	tgcatttgga	gcctctgaac	tgtaccacca	tttctgtgag	gtggcagcaa	1920
atgtagagg	acacagetge	tattcagggc	tacaagctgt	actacaagga	agaagggcag	1980
aggagaatg	ggcccatttt	cttggatacc	aaggacctac	tctatactct	cagtggctta	2040
accccagaa	gaaaatatca	tgtgagactc	ctggcttaca	acaacataga	cgatggctat	2100
aggcagatc	agactgtcag	cactccagga	tgcgtgtctg	ttcgtgatcg	catggtccct	2160
ctccaccac	caccccacca	tctctatgcg	aaggctaaca	cctcatcttc	catcttcctg	2220
actggagga	ggcctgcatt	caccgctgca	caaatcatta	actacaccat	ccgctgtaat	2280
ctgttggcc	tgcagaatgc	ttctttggtt	ctgtaccttc	aaacatcaga	aactcacatg	2340
tggttcaag	gtctagaacc	aaacaccaaa	tacgaatttg	ccgttcgatt	acatgtggat	2400
agctttcca	gtccttggag	ccctgtagtc	taccattcta	ctcttccaga	agcaccagca	2460
gcccaccag	ttggagtaaa	agtgacatta	atagaggatg	acactgccct	ggtttcttgg	2520
aaccccctg	atggcccaga	aacagttgtg	acccgctata	ctatcttata	tgcatctagg	2580
aggcctgga	ttgcaggaga	gtggcaggtc	ttacaccgtg	aaggggcaat	aaccatggct	2640
tgctagaaa	acttggtagc	aggaaatgtg	tacattgtca	agatatctgc	atccaatgag	2700
tgggagaag	gacccttttc	aaattctgtg	gagctggcag	tacttccaaa	ggaaacctct	2760
aatcaaatc	agaggcccaa	gcgtttagat	tctgctgatg	ccaaagttta	ttcaggatat	2820
accatctgg	accaaaaatc	aatgactggc	attgctgtag	gtgttggcat	agccttgacc	2880
gcatcctca	tctgtgttct	catcttgata	taccgaagta	aagccaggaa	atcatctgct	2940
ccaagacgg	cacagaatgg	aactcaacag	ttacctcgta	ccagtgcctc	cttagctagt	3000
gaaatgagg	taggaaagaa	cctggaagga	gctgtaggaa	atgaagaatc	tttaatgcca	3060
gatcatgo	caaacagctt	cattgatgca	aaggtactga	gctgcgggat	ttgctgcata	3120

												COI	CIII	ueu				
agoogttott coattootoo tooctgtgtg tgtaaaatgt acttoococa aaattgtatg 31														3180				
														3210				
<210> SEQ ID NO 2 <211> LENGTH: 1069 <212> TYPE: PRT <213> ORGANISM: homo sapiens																		
<400> SEQUENCE: 2																		
						_	_	_ •			_	_	_					
1				5	-				10					Gly 15				
			20					25					30		Gly			
		35					40					45		Авр				
Thr	Val 50	Thr	Arg	Lys	Asp	Pro 55	Val	Val	Leu	Авр	Сув 60	Gln	Ala	His	Gly			
31u 55	Val	Pro	Ile	Lys	Val 70	Thr	Trp	Leu	Lys	Asn 75	Gly	Ala	Lys	Met	Ser 80			
3lu	Asn	Lys	Arg	Ile 85	Glu	Val	Leu	Ser	Asn 90	Gly	Ser	Leu	Tyr	Ile 95	Ser		-	
3lu	Val	Glu	Gly 100	Arg	Arg	Gly	Glu	Gln 105	Ser	Asp	Glu	Gly	Phe 110	'Tyr	Gln			
Cys	Leu	Ala 115	Met	Asn	Lys	Tyr	Gly 120	Ala	Ile	Leu	Ser	Gln 125	Lув	Ala	His			
Leu	Ala 130	Leu	Ser	Thr	Ile	Ser 135	Ala	Phe	Glu	Val	Gln 140	Pro	Ile	Ser	Thr		•	
31u 145	Val	His	Glu	Gly	Gly 150	Val	Ala	Arg	Phe	Ala 155	Сув	Lys	Ile	Ser	Ser 160			
lis	Pro	Pro	Ala	Val 165	Ile	Thr	Trp	Glu	Phe 170	Asn	Arg	Thr	Thr	Leu 175	Pro			
let	Thr	Met	Авр 180	Arg	Ile	Thr	Ala	Leu 185	Pro	Thr	Gly	Val	Leu 190	Gln	Ile			
lyr	Asp	Val 195	Ser	Gln	Arg	Asp	Ser 200	Gly	Asn	Tyr	Arg	Сув 205	Ile	Ala	Ala			
lhr	Val 210	Ala	His	Arg	Arg	Lys 215	Ser	Met	Glu	Ala	Ser 220	Leu	Thr	Val	Ile			
?ro 225	Ala	Lys	Glu	Ser	Lув 230	Ser	Phe	His	Thr	Pro 235	Thr	Ile	Ile	Ala	Gly 240			
Pro	Gln	Asn _.	Ile	Thr 245	Thr	Ser	Leu	His	Gln 250	Thr	Val	Val	Leu	Glu 255	Сув			
let	Ala	Thr	Gly 260	Asn	Pro	Lys	Pro	Ile 265	Ile	Ser	Trp	Ser	Arg 270	Leu	Asp		٠.	
lis	Lys	Ser 275	Ile	Авр	Val	Phe	Asn 280	Thr	Arg	Val	Leu	Gly 285	Asn	Gly	Asn			
Leu	Met 290	Ile	Ser	qaA	Val	Arg 295	Leu	Gln	His	Ala	Gly 300	Val	Tyr	Val	Сув			
arg 105	Ala	Thr	Thr	Pro	Gly 310	Thr	Arg	Asn	Phe	Thr 315	Val	Ala	Met	Ala	Thr 320			
eu	Thr	Val	Leu	Ala 325	Pro	Pro	Ser	Phe	Val 330	Glu	Trp	Pro	Glu	Ser 335	Leu			
hr	Arg	Pro	Arg 340	Ala	Gly	Thr	Ala	Arg 345	Phe	Val	Сув	Gln	Ala 350	Glu	Gly			
le	Pro	Ser	Pro	Lys	Met	Ser	Trp	Leu	Lys	Asn	Gly	Arg	Lys	Ile	His			

-	_		355	-				360					365	_		
5		Asn 370	Gly	Arg	Ile	Lys	Met 375	Tyr	Asn	Ser	Lys	Leu 380		Ile	Asn	Gln
	le 185	Ile	Pro	Glu	Авр	90 4	Ala	Ile	Tyr	Gln	Сув 395	Met	Ala	Glu	naA	Ser 400
G	ln	Gly	Ser	Ile	Leu 405	Ser	Arg	Ala	Arg	Leu 410	Thr	Val	Val	Met	Ser 415	Glu
A	qa	Arg	Pro	Ser 420	Ala	Pro	Tyr	Asn	Val 425	His	Ala	Glu	Thr	Met 430	Ser	Ser
S	er	Ala	Ile 435	Leu	Leu	Ala	Trp	Glu 440	Arg	Pro	Leu	Tyr	Asn 445	Ser	Asp	Lys
V	/al	Ile 450	Ala	Tyr	Ser	Val	Нів 455	Tyr	Met	Lys	Ala	Glu 460	Gly	Leu	Asn	Asn
	1u 65	Glu	Tyr	Gln	Val	Val 470	Ile	Gly	Asn	Asp	Thr 475	Thr	His	Tyr	Ile	Ile 480
A	qa	Авр	Leu	Glu	Pro 485	Ala	Ser	Asn	Tyr	Thr 490	Phe	Tyr	Ile	Val	Ala 495	Tyr
M	let	Pro	Met	Gly 500	Ala	Ser	Gln	Met	Ser 505	Asp	His	Val	Thr	Gln 510	Asn	Thr
L	eu	Glu	Asp 515	Val	Pro	Leu	Arg	Pro 520	Pro	Glu	Ile	Ser	Leu 525	Thr	Ser	Arg
s	er	Pro 530	Thr	Авр	Ile	Leu	Ile 535	Ser	Trp	Leu	Pro	Ile 540	Pro	Ala	Lys	Tyr
	rg. 45	Arg	Gly	Gln	Val	Vai 550	Leu	Tyr	Arg	Leu	Ser 555	Phe	Arg	Leu	Ser	Thr 560
G	lu	Aen	Ser	Ile	Gln 565	Val	Leu	Glu	Leu	Pro 570	Gly	Thr	Thr	His	Glu 575	Tyr
L	eu	Leu	Glu	Gly 580	Leu	Lys	Pro	Asp	Ser 585	Val	Tyr	Leu	Val	Arg 590	Ile	Thr
A	la	Ala	Thr 595	Arg	Val	Gly	Leu	Gly 600	Glu	Ser	Ser	Val	Trp 605	Thr	Ser	His
A	rg	Thr 610	Pro	Lys	Ala	Thr	Ser 615	Val	Lys	Ala	Pro	Lys 620	Ser	Pro	Glu	Leu
	is 25	Leu	Glu	Pro	Leu	Asn 630	Сув	Thr	Thr	Ile	Ser 635	Val	Arg	Trp	Gln	Gln 640
A	.sp	Val	Glu	Asp	Thr 645	Ala	Ala	Ile	Gln	Gly 650	Tyr	Lys	Leu	Tyr	Tyr 655	Lys
G	lu	Glu	Gly	Gln 660	Gln	Glu	Asn	Gly	Pro 665	Ile	Phe	Leu	Авр	Thr 670	Lys	Авр
L	eu		Tyr 675	Thr	Leu	Ser	Gly	Leu 680	Asp	Pro	Arg	Arg	Lys 685		His	Val
A	rg	Leu 690	Leu	Ala	Tyr	Asn	Asn 695	Ile	qaA	Asp	Gly	Tyr 700	Gln	Ala	Авр	Gln
	hr 05	Val	Ser	Thr	Pro	Gly 710	Сув	Val	Ser	Val	Arg 715	Asp	Arg	Met	Val	Pro 720
P	ro	Pro	Pro	Pro	Pro 725	His	His	Leu	Tyr	Ala 730	Lys	Ala	Asn	Thr	Ser 735	Ser
s	er	Ile	Phe	Leu 740	His	Trp	Arg	Arg	Pro 745	Ala	Phe	Thr	Ala	Ala 750	Gln	Ile
I	le	Asn	Tyr 755	Thr	Ile	Arg	Cys	Asn 760	Pro	Val	Gly	Leu	Gln 765	Asn	Ala	Ser
L	eu	Val 770	Leu	Tyr	Leu	Gln	Thr 775	Ser	Glu	Thr	His	Met 780	Leu	Val	Gln	Gly
							-									

Leu 785		Pro	Asn	Thr	Lys 790	Tyr	Glu	Phe	Ala	Val 795	Arg	Leu	His	Val	Asp 008
Gln	Leu	Ser	Ser	Pro 805	Trp	Ser	Pro	Val		Tyr	His	Ser	Thr	Leu 815	Pro
Glu	Ala	Pro	Ala 820	Gly	Pro	Pro	Val	Gly 825	Val	Lys	Val	Thr	Leu 830	Ile	Glu
Asp	Авр	Thr 835	Ala	Leu	Val	Ser	Trp 840	Lув	Pro	Pro	Asp	Gly 845	Pro	Glu	Thr
Val	Val 850	Thr	Arg	Tyr	Thr	Ile 855	Leu	Tyr	Ala	Ser	Arg 860	Lys	Ala	Trp	Ile
Ala 865	Gly	Glu	Trp	Gln	Val 870	Leu	His	Arg	Glu	Gly 875	Ala	Ile	Thr	Met	Ala 880
Leu	Leu	Glu	Asn	Leu 885	Val	Ala	Gly	Asn	Val 890	Tyr	Ile	Val	Lув	11e 895	Ser
Ala	Ser	Asn	Glu 900	Val	Gly	Glu	Gly	Pro 905	Phe	Ser	Asn	Ser	Val 910	Glu	Leu
Ala	Val	Leu 915	Pro	Lys	Glu	Thr	Ser 920	Glu	Ser	Asn	Gln	Arg 925	Pro	Lys	Arg
Leu	Asp 930	Ser	Ala	Asp	Ala	Lys 935	Val	Tyr	Ser	Gly	Tyr 940	Tyr	His	Leu	Asp
Gln 945	Lys	Ser	Met	Thr	Gly 950	Ile	Ala	Val	Gly	Val 955	Gly	Ile	Ala	Leu	Thr 960
Сув	Ile	Leu	Ile	Сув 965	Val	Leu	Ile	Leu	Ile 970	Tyr	Arg	Ser	Lys	Ala 975	Arg
Lys	Ser	Ser	Ala 980	Ser	Lys	Thr	Ala	Gln 985	Asn	Gly	Thr	Gln	Gln 990	Leu	Pro
Arg	Thr	Ser 995	Ala	Ser	Leu	Ala	Ser 1000	Gly )	Asn	Glu	Val	Gly 1005		Asn	Leu
Glu	Gly 1010		Val	Gly	Asn	Glu 1015		Ser	Leu	Met	Pro 1020		Ile	Met	Pro
Asn 1025		Phe	Ile	Asp	Ala 1030		Val	Leu	Ser	Cys 1035		Ile	Сув	Сув	Ile 1040
Ser	Arg	Ser	Ser	Ile 1045		Pro	Pro	Сув	Val 1050		Lys	Met	Tyr	Phe 1055	
Gln	Asn	Сув	Met 1060		Asn	Val	Leu	Tyr 1065		Tyr	Ser	Tyr			

<210> SEQ ID NO 3 <211> LENGTH: 1143

<212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 3

60 atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct gctccgcgcg 120 ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag cgaactgtct 180 tttgtaaaag aaccacagga tgtaactgtc acaagaaagg acccagtcgt tttagattgc 240 caggeteacg gagaagttee tattaaggte acatggttga aaaatggage aaaaatgtet 300 gaaaataaac ggatcgaggt tetttetaac ggetetttat acatcagtga ggtggaagge aggegaggag ageagteega tgaaggattt tateagtget tggcaatgaa caaatatgga 360 420 gccattctta gtcaaaaagc tcatcttgcc ttatcaacta tttctgcatt tgaagtccag ccaatttcca ctgaggtcca cgaaggtgga gttgctcgat ttgcatgcaa gatttcatcc

# -continued

		_	cagt	cata	ac a	atggg	agtt	c as	tcg	jacas	cto	tacc	tat	gact	atgga	С
agga	taa															
		ctg	ccct	acca	ac a	aggag	tatt	g ca	gato	tatg	ato	tcaq	jeca	aagg	gatto	t
ggaa	att	atc	gttg	tatt	gc t	gcca	ctgt	a go	ccac	cgác	gta	aaag	ftat	ggag	gcctc	g
ctaa	ctg	tga	ttcc	agct	aa g	gagt	caaa	a to	ctto	caca	cac	carc	aat	tata	gcagg	t
ccac	aga	aca	taac	aaca	tc t	ctto	atca	gac	tgta	gttt	tgg	aatg	cat	ggcc	acagg	a
aatc	cca	aac	caat	catt	tc t	tgga	gccg	c ct	tgat	caca	aat	ccat	tga	tgto	tttaa	t
acto	aaa.	tac	ttgg	aaat	gg t	aatc	tcat	g at	atct	gatg	tca	ggct	aca	acat	gctgg	a
gtat	atg	ttt	gtcg	ggcc	ac t	accc	ctgg	c ac	acgo	aact	tta	cagt	tgc	tatg	gcaac	t
ttaactgtat tagctcctcc ttcatttgtt gaatggccag aaagtttaac aaggcctcga																
gctggcactg ctcgatttgt gtgtcaggca gaaggaatcc cctctcccaa gatgtcatgg																
ttga	ttgaaaaatg gaaggaagat acattcgaat ggtagaatta aaatgtacaa caggtttaaa															
taa	taa															
<210> SEQ ID NO 4 <211> LENGTH: 380 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 4																
Met #	Ala	Pro	Pro	Leu 5	Arg	Pro	Leu	Ala	Arg 10	Leu	Arg	Pro	Pro	Gly 15	Met	
Leu I	Leu	Arg	Ala 20	Leu	Ļeu	Leu	Leu	Leu 25	Leu	Leu	Ser	Pro	Leu 30	Pro	Gly	
Val 1	rp	Сув 35	Phe	Ser	Glu	Leu	Ser 40	Phe	Val	Lys	Glu	Pro 45	Gln	Авр	Val	
Thr V	/al	Thr	Arg	Lys	Asp	Pro 55	Val	Val	Leu	Asp	Сув 60	Gln	Ala	His	Gly	
Glu V 65	/al	Pro	Ile	Lув	Val 70	Thr	Trp	Leu	Lys	Asn 75	Gly	Ala	Lys	Met	Ser 80	
Glu A	lsn	Lys	Arg	Ile 85	Glu	Val	Leu	Ser	Asn 90	Gly	Ser	Leu	Tyr	Ile 95	Ser	
Glu V	7al	Glu	Gly 100	Arg	Arg	Gly	Glu	Gln 105	Ser	Asp	Glu	Gly	Phe 110	Tyr	Gln	
Сув L	eu	Ala 115	Met	Asn	Lys	Tyr	Gly 120	Ala	Ile	Leu	Ser	Gln 125	Lys	Ala	His	
Leu A 1	11a 130	Leu	Ser	Thr	Ile	Ser 135	Ala	Phe	Glu :	Val	Gln 140	Pro	Ile	Ser	Thr	
Glu V 145	al	His	Glu	Gly	Gly 150	Val	Ala	Arg		Ala 155	Сув	Lys	Ile	Ser	Ser 160	٠.
His P	ro	Pro	Ala	Val 165	Ile	Thr	Trp	Glu	Phe 170	Asn	Arg	Thr	Thr	Leu 175	Pro	
Met T	hr	Met	Asp 180	Arg	Ile	Thr	Ala	Leu 185	Pro	Thr	Gly	Val	Leu 190	Gln	Ile	
Fyr A		Val 195	Ser	Gln	Arg	Asp	Ser 200	Gly	Asn	Tyr	Arg	Сув 205	Ile	Ala	Ala	
Thr V	al 10	Ala	His	Arg	Arg	Lys 215	Ser	Met	Glu	Ala	Ser 220	Leu	Thr	Val	Ile	
Pro A 225	la	Lys	Glu	Ser	Lув 230	Ser	Phe	His	Thr	Pro 235	Thr	Ile	Ile	Ala	Gly 240	

Pro Gln Asn Ile Thr Thr Ser Leu His Gln Thr Val Val Leu Glu Cys \$245\$

60

### -continued

His Lys Ser Ile Asp Val Phe Asn Thr Arg Val Leu Gly Asn Gly Asn Leu Met Ile Ser Asp Val Arg Leu Gln His Ala Gly Val Tyr Val Cys 290 295 300 Arg Ala Thr Thr Pro Gly Thr Arg Asn Phe Thr Val Ala Met Ala Thr 305  $\phantom{\bigg|}$  310  $\phantom{\bigg|}$  315  $\phantom{\bigg|}$  320 Leu Thr Val Leu Ala Pro Pro Ser Phe Val Glu Trp Pro Glu Ser Leu 325 330 335 Thr Arg Pro Arg Ala Gly Thr Ala Arg Phe Val Cys Gln Ala Glu Gly 340 \$345\$Ile Pro Ser Pro Lys Met Ser Trp Leu Lys Asn Gly Arg Lys Ile His 355 360 365Ser Asn Gly Arg Ile Lys Met Tyr Asn Arg Phe Lys 370 375 380

<210> SEQ ID NO 5

<211> LENGTH: 2715

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 5

atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct gctccgcgcg ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag cgaactgtct tttgtaaaag aaccacagga tgtaactgtc acaagaaagg acccagtcgt tttagattgc 180 caggeteacg gagaagttee tattaaggte acatggttga aaaatggage aaaaatgtet 240 300 gaaaataaac ggatcgaggt tctttctaac ggctctttat acatcagtga ggtggaaggc aggcgaggag agcagtccga tgaaggattt tatcagtgct tggcaatgaa caaatatgga 360 gccattctta gtcaaaaagc tcatcttgcc ttatcaacta tttctgcatt tgaagtccag 420 480 ccaatttcca ctgaggtcca cgaaggtgga gttgctcgat ttgcatgcaa gatttcatcc cacceteetg cagteataac atgggagtte aateggacaa etetacetat gaetatggae aggataactg ccctaccaac aggagtattg cagatctatg atgtcagcca aagggattct 600 660 ggaaattatc gttgtattgc tgccactgta gcccaccgac gtaaaagtat ggaggcctcg ctaactgtga ttccagctaa ggagtcaaaa tccttccaca caccarcaat tatagcaggt ccacagaaca taacaacatc tottoatcag actgtagttt tggaatgcat ggccacagga 780 840 aatoccaaac caatcattto ttggagoogo ottgatoaca aatocattga tgtotttaat actogggtac ttggaaatgg taatotoatg atatotgatg tcaggctaca acatgctgga gtatatgttt gtcgggccac tacccctggc acacgcaact ttacagttgc tatggcaact 960 ttaactgtat tagctcctcc ttcatttgtt gaatggccag aaagtttaac aaggcctcga 1020 1080 gctggcactg ctcgatttgt gtgtcaggca gaaggaatcc cctctcccaa gatgtcatgg ttgaaaaatg gaaggaagat acattcgaat ggtagaatta aaatgtacaa cagtaaattg 1140 gtaattaacc agattattcc tgaagatgat gctatttatc agtgcatggc tgagaatagc 1200 1260 caaggateta tittatetag agecagaetg aetgtagtga tgteagaaga cagaeeeagt getecetata atgtacatge tgaaaccatg teaageteag ceattettt ageetgggag aggecacttt ataatteaga caaagteatt geetattetg tacactacat gaaageagaa

ggtttaaate	atgaagagta	tcaagtagtc	atcggaaatg	acacaactca	ttatattatt	1440
gatgacttag	, agcctgccag	caattatact	ttctacattg	tagcatatat	gccaatggga	1500
gccagccaga	tgtctgacca	tgtgacacag	aatactctag	aggatgaccc	cagaagaaaa	1560
tatcatgtga	gactcctggc	ttacaacaac	atagacgatg	gctatcaggc	agatcagact	1620
gtcagcacto	: caggatgcgt	gtctgttcgt	gatcgcatgg	tecetectec	accaccaccc	1680
caccatctct	atgcgaaggc	taacacctca	tcttccatct	tcctgcactg	gaggaggcct	1740
gcattcaccg	ctgcacaaat	cattaactac	accatccgct	gtaatcctgt	tggcctgcag	1800
aatgcttctt	tggttctgta	ccttcaaaca	tcagaaactc	acatgttggt	tcaaggtcta	1860
gaaccaaaca	ccaaatacga	atttgccgtt	cgattacatg	tggatcagct	ttccagtcct	1920
tggagccctg	tagtctacca	ttctactctt	ccagaagcac	cagcaggccc	accagttgga	1980
gtaaaagtga	cattaataga	ggatgacact	gccctggttt	cttggaaacc	ccctgatggc	2040
ccagaaacag	ttgtgacccg	ctatactatc	ttatatgcat	ctaggaaggc	ctggattgca	2100
ggagagtggc	aggtcttaca	ccgtgaaggg	gcaataacca	tggctttgct	agaaaacttg	2160
gtagcaggaa	atgtgtacat	tgtcaagata	tctgcatcca	atgaggtggg	agaaggaccc	2220
ttttcaaatt	ctgtggagct	ggcagtactt	ccaaaggaaa	cctctgaatc	aaatcagagg	2280
cccaagcgtt	tagattctgc	tgatgccaaa	gtttattcag	gatattacca	tctggaccaa	2340
aaatcaatga	ctggcattgc	tgtaggtgtt	ggcatagcct	tgacctgcat	cctcatctgt	2400
gttctcatct	tgatataccg	aagtaaagcc	aggaaatcat	ctgcttccaa	gacggcacag	2460
aatggaactc	aacagttacc	tcgtaccagt	gcctccttag	ctagtggaaa	tgaggtagga	2520
aagaacctgg	aaggagctgt	aggaaatgaa	gaatctttaa	tgccaatgat	catgccaaac	2580
agcttcattg	atgcaaaggt	actgagetge	gggatttgct	gcataagccg	ttcttccatt	2640
cctcctccct	gtgtgtgtaa	aatgtacttc	ccccaaaatt	gtatgttgaa	tgtattatac	2700
caatactctt	attaa					2715

<210> SEQ ID NO 6

<211> LENGTH: 904

<212> TYPE: PRT <213> ORGANISM: homo sapiens

<400> SEQUENCE: 6

Met Ala Pro Pro Leu Arg Pro Leu Ala Arg Leu Arg Pro Pro Gly Met  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Leu Leu Arg Ala Leu Leu Leu Leu Leu Leu Leu Ser Pro Leu Pro Gly  $20 \ \ 25 \ \ 30$ 

Val Trp Cys Phe Ser Glu Leu Ser Phe Val Lys Glu Pro Gln Asp Val 35 40 45

Thr Val Thr Arg Lys Asp Pro Val Val Leu Asp Cys Gln Ala His Gly 50 60

Glu Val Pro Ile Lys Val Thr Trp Leu Lys Asn Gly Ala Lys Met Ser 65 70 70 80

Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr Ile Ser 85 90 95

Glu Val Glu Gly Arg Arg Gly Glu Gln Ser Asp Glu Gly Phe Tyr Gln  $100 \,\,$ 

Cys Leu Ala Met Asn Lys Tyr Gly Ala Ile Leu Ser Gln Lys Ala His 115 \$120\$

Leu Ala Leu Ser Thr Ile Ser Ala Phe Glu Val Gln Pro Ile Ser Thr

_															
	13	0				13	5				14	0			
G1:	u Va 5	1 H	is Gl	lu Gl	y Gl 15		1 A1	a Ar	g Ph	e Al		s Ly	s Il	e Se	r Ser 160
Hi	s Pr	o Pr	o Al	a Va 16	1 I1	e Thi	r Tr	p Gl	u Ph		n Ar	g Th	r Th	r Le 17	u Pro 5
Me	Th.	r Me	t As	p Ar	g Ile	e Thi	r Al	a Le		o Thi	r Gly	y Va	l Le 19		n Ile
Ty	aA :	p Va 19	l Se 5	r Gl	n Arq	g Asp	Se 20	r Gl	у Ав	п Туз	Ar	20:		e Ala	a Ala
Thi	21	1 A1 0	a Hi	s Ar	g Ar	215	Se i	r Me	t Gl	u Ala	220		u Th	r Vai	l Ile
Pro 225	Al	a Ly	s Gl	u Se	230		Ph	e Hi	3 Thi	235		Ile	e Ile	e Ala	240
				245	5				250	)	•			255	
			26	0				265	5				270	)	а Авр
His	Ly	5 Se 27	r Il	e Asp	Val	. Phe	280	n Thr	Arg	y Val	Leu	Gl _y 285		Gly	Asn Asn
	290	)				295					300		_		Cys
305				r Pro	310					315					320
				a Ala 325					330					335	
			340					345					350		
		355	5	Lys			360	1				365			
	370			, Ile		375	•				380				
385				qaA ı	390					395					400
				Leu 405					410					415	
			420					425					430		
		435		Leu			440					445	,		
	450			Ser		455		٠,			460				
65				Val	470					475					480
				Pro 485					490					495	-
			500	Ala				505					510		
		515		Pro			520					525			
	530			Asp		5 3 5					540				
ly (	Сув	Val	Ser	Val	Arg . 550	Авр 2	Arg	Met		Pro : 555	Pro	Pro	Pro		Pro 560

His His Leu Tyr Ala Lys Ala Asn Thr Ser Ser Ser Ile Phe Leu His Trp Arg Arg Pro Ala Phe Thr Ala Ala Gln Ile Ile Asn Tyr Thr Ile 580 585 590 Arg Cys Asn Pro Val Gly Leu Gln Asn Ala Ser Leu Val Leu Tyr Leu 595 600 605 Gln Thr Ser Glu Thr His Met Leu Val Gln Gly Leu Glu Pro Asn Thr 610 620Lys Tyr Glu Phe Ala Val Arg Leu His Val Asp Gln Leu Ser Ser Pro 625 630 635 Trp Ser Pro Val Val Tyr His Ser Thr Leu Pro Glu Ala Pro Ala Gly 645 650 655 Pro Pro Val Gly Val Lys Val Thr Leu Ile Glu Asp Asp Thr Ala Leu 660 665 670 Val Ser Trp Lys Pro Pro Asp Gly Pro Glu Thr Val Val Thr Arg Tyr 675 680 685 Thr Ile Leu Tyr Ala Ser Arg Lys Ala Trp Ile Ala Gly Glu Trp Gln 690 695 700 Val Leu His Arg Glu Gly Ala Ile Thr Met Ala Leu Leu Glu Asn Leu 705 710 715 720 Val Ala Gly Asn Val Tyr Ile Val Lys Ile Ser Ala Ser Asn Glu Val 725 730 735 Gly Glu Gly Pro Phe Ser Asn Ser Val Glu Leu Ala Val Leu Pro Lys 740 745 750 Glu Thr Ser Glu Ser Asn Gln Arg Pro Lys Arg Leu Asp Ser Ala Asp 755 760 765 Ala Lys Val Tyr Ser Gly Tyr Tyr His Leu Asp Gln Lys Ser Met Thr 770 780 Gly Ile Ala Val Gly Val Gly Ile Ala Leu Thr Cys Ile Leu Ile Cys 785 790 795 800 Val Leu Ile Leu Ile Tyr Arg Ser Lys Ala Arg Lys Ser Ser Ala Ser 805 810 815 Lys Thr Ala Gln Asn Gly Thr Gln Gln Leu Pro Arg Thr Ser Ala Ser 820 825 830 Leu Ala Ser Gly Asn Glu Val Gly Lys Asn Leu Glu Gly Ala Val Gly 835 840 845 Asn Glu Glu Ser Leu Met Pro Met Ile Met Pro Asn Ser Phe Ile Asp 850 855 860 Ala Lys Val Leu Ser Cys Gly Ile Cys Cys Ile Ser Arg Ser Ser Ile 865 870 875 Pro Pro Pro Cys Val Cys Lys Met Tyr Phe Pro Gln Asn Cys Met Leu 885 890 895 Asn Val Leu Tyr Gln Tyr Ser Tyr 900

<210> SEQ ID NO 7 <211> LENGTH: 3453

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 7

atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct gctccgcgcg ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag cgaactgtct

tttgtaaaag	aaccacagga	tgtaactgto	acaagaaag	g acccagtcg	t tttagattgc	180
caggctcacg	gagaagttcc	tattaaggto	acatggttg	a aaaatggag	c aaaaatgtct	240
gaaaataaac	ggatcgaggt	tctttctaac	ggctcttta	t acatcagtg	a ggtggaaggc	300
aggcgaggag	agcagtccga	tgaaggattt	tatcagtgc	t tggcaatga	a caaatatgga	360
gccattctta	gtcaaaaagc	tcatcttgcc	ttatcaact	a tttctgcat	t tgaagtccag	420
ccaatttcca	ctgaggtcca	cgaaggtgga	gttgctcga	t ttgcatgca	a gatttcatcc	480
caccctcctg	cagtcataac	atgggagttc	aatcggaca	a ctctaccta	t gactatggac	540
aggataactg	ccctaccaac	aggagtattg	cagatctat	g atgtcagcca	a aagggattct	600
ggaaattatc	gttgtattgc	tgccactgta	gcccaccga	gtaaaagta	ggaggcctcg	660
ctaactgtga	ttccagctaa	ggagtcaaaa	tccttccac	a caccaacaat	tatagcaggt	720
ccacagaaca 1	taacaacatc	tcttcatcag	actgtagtt	tggaatgcat	ggccacagga	780
aatcccaaac (	caatcatttc	ttggagccgc	cttgatcaca	aatccattga	tgtctttaat	840
actcgggtac 1	tggaaatgg	taatctcatg	atatotgato	; tcaggctaca	acatgctgga	900
gtatatgttt g	stegggeeac	tacccctggc	acacgcaact	ttacagttgc	tatggcaact	960
ttaactgtat t	agctcctcc	ttcatttgtt	gaatggccag	, aaagtttaac	aaggcctcga	1020
gctggcactg d	tcgatttgt	gtgtcaggca	gaaggaatco	cctctcccaa	gatgtcatgg	1080
ttgaaaaatg g	aaggaagat	acattcgaat	ggtagaatta	aaatgtacaa	cagtaaattg	1140
gtaattaacc a	gattattcc	tgaagatgat	gctatttato	agtgcatggc	tgagaatagc	1200
caaggatcta t	tttatctag	agccagactg	actgtagtga	tgtcagaaga	cagacccagt	1260
gctccctata a	tgtacatgc +	tgaaaccatg	tcaagctcag	ccattcttt	agcctgggag	1320
aggccacttt a	taattcaga (	caaagtcatt	gcctattctg	tacactacat	gaaagcagaa	1380
ggtttaaata a	tgaagagta 1	caagtagtc	atcggaaatg	acacaactca	ttatattatt	1440
gatgacttag a	gcctgccag d	caattatact	ttctacattg	tagcatatat	gccaatggga	1500
gccagccaga t	gtctgacca t	gtgacacag	aatactctag	aggatgttcc	cctgagacct	1560
cctgaaatta g	tttgacaag t	cgaagtccc	actgatattc	tcatctcctg	gctgccaatc	1620
ccagccaaat a	tcggcgggg c	caagtggtg (	ctgtatcgct	tgtctttccg	cctaagtact	1680
gagaattcaa t	ccaagttct g	gageteeeg (	ggaccacgc	atgagtacct	tttggaaggc	1740
ctgaaacctg a	cagtgtcta c	ctggttcgg (	ttactgctg	ccaccagagt	ggggctggga	1800
gagtcatcag to	atggacttc a	cataggacg c	ccaaagcta	caagcgtgaa	agcccctaag	1860
tctccagagt to	gcatttgga g	cctctgaac t	gtaccacca	tttctgtgag	gtggcagçaa	1920
gatgtagagg ac	acagetge t	attcagggc t	acaagctgt	actacaagga	agaagggcag	1980
caggagaatg gg	cccatttt c	ttggatacc a	aggacctac	tctatactct	cagtggctta	2040
gaccccagaa ga	maaatatca t	gtgagactc c	tggcttaca	acaacataga	cgatggctat	2100
caggcagatc ag	actgtcag c	actccagga t	gcgtgtctg	ttcgtgatcg	catggtccct	2160
cctccaccac ca	ccccacca t	ctctatgcg a	aggctaaca	cctcatcttc	catcttcctg	2220
cactggagga gg						2280
cctgttggcc tg						2340
ttggttcaag gt						2400
cagctttcca gt	ccttggag c	ctgtagtc t	accattcta	ctcttccaga a	agcaccagca	2460
ggcccaccag tt	ggagtaaa aq	gtgacatta a	tagaggatg .	acactgccct (	ggtttcttgg	2520

### -continued

_											_				
a	1400	ccct	g at	ggcc	caga	aac	agtt	gtg	accc	gcta	ta c	tato	ttat	a tg	catcta
				*											catgg
tt	gcta	agaa	a ac	ttgg	tagc	agg.	aaat	gtg 1	taca	ttgt	ca a	gata	tetg	c ato	caatg
gt	ggge	gaa	g ga	cccti	tttc	aaa	ttctç	gtg (	gaget	tggca	ag t	actt	ccaa	a gga	aaccto
ga	atca	aat	c age	aggco	caa	gcgt	tttag	jat 1	ctg	etgat	g c	caaa	gttt	1 tto	aggata
ta	ccat	ctg	gac	caaa	atc	aatq	gacto	igc é	attgo	etgta	ıg gi	gtt	gcat	ago	cttgac
tg	cato	ctc	a tot	gtgt	tct	cato	ettga	ita t	accg	jaagt	a a	gcca	agga	ato	atctgo
tc	caag	acg	gcac	agaa	tgg	aact	caac	ag t	tacc	tegt	a co	agto	geete	ctt	agctag
99	aaat	gagg	j tag	gaaa	gaa	ccts	gaag	ga g	ctgt	agga	a at	gaag	gaato	ttt	aatgcc
at	gatc	atgo	cas	acag	ctt	catt	gatg	ca a	aggg	agga	a ct	gaco	tgat	aat	taatag
ta	tggt	ccta	taa	ttaa	aaa	caac	tcta	ag a	aaaa	gtgg	t tt	tttt	tcca	aga	ctcaaa
aa	gata	caag	, ttg	agca	gcċ	tcaa	agaa	ga t	ttac	tcca	g cg	gtct	gctt	tta	ccagcc
gge	CACC	actg	tat	taat	cag	tgat	gaag	ac t	cccc	tagc	t cc	ccag	gtca	gac	aaccag
tto	ctca	agac	cct	ttgg	tgt	tgca	gctg	at a	caga	acat	t ca	gcaa	atag	tga.	aggcag
cat	tgag.	actg	999	atto	tgg	gcgg	tttt	ct c	atga	gtcc	a ac	gatg	agat	aca	tctgtc
tca	igtt	ataa	gta	ccac	acc	cccc	aacc	to t	ga						
<21 <21	1> I 2> T	ENG:	ID NO TH: : PR: NISM:	1150 C	10 88	pier	16								
<40	0> S	EQUI	ENCE :	8											
Met 1	Ala	Pro	o Pro	Leu 5	Arq	g Pro	Leu	Ala	Arg	J Leu	ı Arç	Pro	Pro	Gly 15	/ Met
Leu	Leu	Arç	20	. Leu	Leu	ı Let	. Leu	Leu 25	Let	ı Lev	Ser	Pro	Let 30	Pro	Gly
Val	Trp	Cy 6 35	Phe	s Ser	Glu	Leu	Ser 40	Phe	Val	Lys	Glu	Pro 45	Glr	Asp	Val
Thr	Val 50	Thr	Arg	Lys	Asp	Pro 55	Val	Val	Leu	Asp	Cys 60	Gln	Ala	His	Gly
Glu 65	Val	Pro	Ile	Lys	Val 70	Thr	Trp	Leu	Lys	Asn 75	Gly	Ala	Lys	Met	Ser 80
Glu	Asn	Lys	Arg	Ile 85	Glu	Val	Leu	Ser	Asn 90	Gly	Ser	Leu	Tyr	Ile 95	Ser
Glu	Val	Glu	Gly 100	Arg	Arg	Gly	Glu	Gln 105	Ser	Asp	Glu	Gly	Phe 110		Gln
Сув	Leu	Ala 115	Met	Asn	Lys	Tyr	Gly 120	Ala	Ile	Leu	Ser	Gln 125	Lув	Ala	нів
Leu	Ala 130	Leu	Ser	Thr	Ile	Ser 135	Ala	Phe	Glu	Val	Gln 140	Pro	Ile	Ser	Thr
Glu 145	Val	His	Glu	Gly	Gly 150	Val	Ala	Arg	Phe	Ala 155	Сув	Lys	Ile	Ser	Ser 160
His	Pro	Pro	Ala	Val 165	Ile	Thr	Trp	Glu	Phe 170	Asn	Arg	Thr	Thr	Leu 175	Pro
Met	Thr	Met	Asp 180	Arg	Ile	Thr	Ala	Leu 185	Pro	Thr	Gly	Val	Leu 190	Gln	Ile

Tyr Asp Val Ser Gln Arg Asp Ser Gly Asn Tyr Arg Cys Ile Ala Ala 195 200 205

-continued
Thr Val Ala His Arg Arg Lys Ser Met Glu Ala Ser Leu Thr Val II 210 215 220
Pro Ala Lys Glu Ser Lys Ser Phe His Thr Pro Thr Ile Ile Ala Gl 225 230 235 24
Pro Gln Asn Ile Thr Thr Ser Leu His Gln Thr Val Val Leu Glu Cy 245 250 255
Met Ala Thr Gly Asn Pro Lys Pro Ile Ile Ser Trp Ser Arg Leu As 260 265 270
His Lys Ser Ile Asp Val Phe Asn Thr Arg Val Leu Gly Asn Gly As 275 280 285
Leu Met Ile Ser Asp Val Arg Leu Gln His Ala Gly Val Tyr Val Cy 290 295 300
Arg Ala Thr Thr Pro Gly Thr Arg Asn Phe Thr Val Ala Met Ala Thr 305 310 315 320
Leu Thr Val Leu Ala Pro Pro Ser Phe Val Glu Trp Pro Glu Ser Leu 325 330 335
Thr Arg Pro Arg Ala Gly Thr Ala Arg Phe Val Cys Gln Ala Glu Gly 340 345 350
Ile Pro Ser Pro Lys Met Ser Trp Leu Lys Asn Gly Arg Lys Ile His 355 360 365
Ser Asn Gly Arg Ile Lys Met Tyr Asn Ser Lys Leu Val Ile Asn Gln 370 375 380
Ile Ile Pro Glu Asp Asp Ala Ile Tyr Gln Cys Met Ala Glu Asn Ser 385 390 395 400
Gln Gly Ser Ile Leu Ser Arg Ala Arg Leu Thr Val Val Met Ser Glu 405 410 415
Asp Arg Pro Ser Ala Pro Tyr Asn Val His Ala Glu Thr Met Ser Ser 420 425 430
Ser Ala Ile Leu Leu Ala Trp Glu Arg Pro Leu Tyr Asn Ser Asp Lys 435 440 445
Val Ile Ala Tyr Ser Val His Tyr Met Lys Ala Glu Gly Leu Asn Asn 450 455 460
Glu Glu Tyr Gln Val Val Ile Gly Asn Asp Thr Thr His Tyr Ile Ile 465 470 475 480
Asp Asp Leu Glu Pro Ala Ser Asn Tyr Thr Phe Tyr Ile Val Ala Tyr 485 490 495
Met Pro Met Gly Ala Ser Gln Met Ser Asp His Val Thr Gln Asn Thr 500 505 510
Leu Glu Asp Val Pro Leu Arg Pro Pro Glu Ile Ser Leu Thr Ser Arg 515 520 525
Ser Pro Thr Asp Ile Leu Ile Ser Trp Leu Pro Ile Pro Ala Lys Tyr 530 535 540
Arg Arg Gly Gln Val Val Leu Tyr Arg Leu Ser Phe Arg Leu Ser Thr 545 550 555 560
Glu Asn Ser Ile Gln Val Leu Glu Leu Pro Gly Thr Thr His Glu Tyr 565 575
Leu Leu Glu Gly Leu Lys Pro Asp Ser Val Tyr Leu Val Arg Ile Thr 580 585 590
Ala Ala Thr Arg Val Gly Leu Gly Glu Ser Ser Val Trp Thr Ser His 595 600 605
Arg Thr Pro Lys Ala Thr Ser Val Lys Ala Pro Lys Ser Pro Glu Leu 610 615 620

-	-	_	_	_	_		_	_													_
H 6	is 25	L	eu	Gl	ı P	ro 1	Leu	As:	n Cy O	T ay	hr	Thr	11		er Va	al A	rg	Trp	Gl		1n 40
A	sp	V	1	Glu	ı A	вр (	Thr 545	Ala	a Al	la I	le	Gln	G1; 656	y Ty	r Ly	/s L	eu	Tyr	Ty 65	r Ly 5	/8
G	lu	G]	lu	Gly	7 G.	ln (	3ln	Glı	ı Ae	n G	ly	Pro 665	Ile	e Ph	e Le	eu A		Thr 670	Ly	6 As	3p
L	eu	Le	ıu	Tyr 675	Tì	ır I	eu	Sei	G1	y L	eu 80	Asp	Pro	Ar	g Ar		ys ' 85	Tyr	Hi	s Va	11
A	rg	Le 69	u :	Leu	A]	a T	'yr	Asr	As	n I: 5	le	Asp	Asp	G1	у Ту 70	r G:	ln i	Ala	Asp	9 <b>G</b> l	n.
T)	nr 05	Va	1 :	Ser	Th	r P	ro	Gly 710	Су	s V	11	Ser	Val	Ar 71	g As 5	p Aı	rg I	Met	Va]	l Pr 72	
Pı	0	Pr	0 1	Pro	Pr	o P	ro 25	His	ні	s Le	eu '	Tyr	Ala 730	Ly	s Al	a As	n 1	thr	Sez 735		r
Se	r	11	e I	?he	Le 74	и Н 0	is	Trp	Ar	g Ar	g	Pro 745	Ala	Pho	e Th	r Al		11a 750	Gln	Il	e
11	е.	Ası	n 7	Cyr 755	Th	r I	le	Arg	Cy	8 As 76	n 1	Pro	Val	Gly	y Le	u G1 76		sn	Ala	Se	ŗ
Le	u '	Va:	l I	∙eu	ту	r L	eu	Gln	Th:	c Se	r	lu	Thr	Hie	780		u V	al	Gln	Gl	¥
Le 78	ս ( 5	31ı	1 P	'ro	Ası	n T	hr	Lув 790	Туг	Gl	u I	he	Ala	Val 795	Arg	j Le	u H	is	Val	Ası 008	
G1	n 1	Leu	ı S	er	Se	P:	50 '	Trp	Ser	Pr	o V	al	Val 810	Tyr	Hie	Se	r T		Leu 815	Pro	)
Gl	1 2	ll a	ı P	ro	Ala 820	G]	<b>.y</b> .1	Pro	Pro	Va.	1 6	ly 25	Val	Lys	.Val	Th:		eu :	Ile	Glu	ı
Asj	o 1	reb	8	hr 35	Ala	Le	u V	Val	Ser	Trj	e L	ув :	Pro	Pro	Asp	G1;	y P	ro (	Glu	Thr	•
Va:	L V	7al 150	T	hr.	Arg	Ту	r 1	hr	Ile 855	Let	1 T	yr i	Ala	Ser	Arg 860	Lys	a A	la 7	ſrp	Ile	ŧ
Ala 865	ı G	ly	G)	lu	Trp	G1	n V	7al 170	Leu	Hie	. A	rg (	Glu	Gly 875	Ala	Ile	T)	ır Þ	let	Ala 880	
Let	L	eu	G)	Lu i	naA	Le 88	u V 5	al.	Ala	Gly	A	n t	7al 890	Tyr	Ile	Val	L		le 95	Ser	
Ala	s	er	As	ın (	31u 900	Va	1 G	ly ·	Glu	Gly	P:	:0 E	he	Ser	Asn	Ser	Va 91		lu	Leu	
Ala	, <b>V</b>	al	Le 91	:u I .5	?ro	Ly	s G	lu '	Thr	Ser 920	G	lu S	er i	Asn	Gln	Arg 925		o L	ys .	Arg	
Leu	A:	вр 30	Se	r I	lla	Asp	A	la 1	Lys 935		<b>T</b> 3	r S	er (	Sly	Tyr 940	Tyr	Hi	s L	eu i	Asp	
3ln 945	L	/8	Se	r.M	let	Thi	G 9:	ly 1 50	le	Ala	۷a	1 G	ly v	/al	Gly	Ile	Αl	a _. L		Thr 960	
:ye	11	. ө	Le	u I	1e	Cya 965	V	al I	eu	Ile	Le	u I 9	le 7	yr	Arg	Ser	Ly		la <i>i</i> 75	Arg	
уs	Se	r	Se	r A	la 80	Ser	L	ув Т	hr	Ala	G1 98	n A	sn G	ly	Thr	Gln	G1:		eu I	?ro	
rg	Th	r	Se:	r A 5	la	Ser	Le	eu A	la	Ser 1000	G1	y A	sn G	lu '	Val -	Gly 1005		3 As	sn I	eu	
lu	G1 10	y 10	Ala	z V	al	Gly	As	n G	lu (	Glu	Se	r Le	eu M	et 1	Pro 1	Met	Ile	e Me	et P	ro	
вп 025	Se	r 1	Phe	3 I.	le .	Asp	A1 10	a L 30	ув (	Gly	Gl	y Tì	ır A	sp 1 035	Leu :	Ile	Ile	A.		er 040	
yr	G1	y i	Pro	I	le :	Ile	Ly	s A	8n 2	\sn	Sei	: Ly	's L	ys I	ys :	ľrp	Phe	Ph	e P	he	

Ile His Leu Ser Ser Val Ile Ser Thr Thr Pro Pro Asn Leu 1140 1145 1150

<210> SEQ ID NO 9 <211> LENGTH: 2958

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 9

atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct gctccgcgcg 60 ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag cgaactgtct tttgtaaaag aaccacagga tgtaactgtc acaagaaagg acccagtcgt tttagattgc 180 caggeteacg gagaagttee tattaaggte acatggttga aaaatggage aaaaatgtet 240 gaaaataaac ggatcgaggt tctttctaac ggctctttat acatcagtga ggtggaaggc 300 aggcgaggag agcagtccga tgaaggattt tatcagtgct tggcaatgaa caaatatgga 360 gccattctta gtcaaaaagc tcatcttgcc ttatcaacta tttctgcatt tgaagtccag 420 ccaatttcca ctqaqqtcca cqaaqqtqqa qttqctcqat ttqcatqcaa qatttcatcc 480 cacceteetg cagteataac atgggagtte aateggacaa etetacetat gaetatggae 540 aggataactg ccctaccaac aggagtattg cagatctatg atgtcagcca aagggattct 600 ggaaattatc gttgtattgc tgccactgta gcccaccgac gtaaaagtat ggaggcctcg 660 ctaactgtga ttccagctaa ggagtcaaaa tccttccaca caccarcaat tatagcaggt ccacagaaca taacaacatc tcttcatcag actgtagttt tggaatgcat ggccacagga 780 aatcccaaac caatcatttc ttqqaqccqc cttqatcaca aatccattqa tqtctttaat 840 actogggtac ttggaaatgg taatotoatg atatotgatg tcaggotaca acatgotgga gtatatgttt gtcgggccac tacccctggc acacgcaact ttacagttgc tatggcaact 960 ttaactgtat tagctcctcc ttcatttgtt gaatggccag aaagtttaac aaggcctcga 1020 1080 gctggcactg ctcgatttgt gtgtcaggca gaaggaatcc cctctcccaa gatgtcatgg ttgaaaaatg gaaggaagat acattcgaat ggtagaatta aaatgtacaa cagtaaattg 1140 gtaattaacc agattattcc tgaagatgat gctatttatc agtgcatggc tgagaatagc 1200 caaggatcta ttttatctag agccagactg actgtagtga tgtcagaaga cagacccagt 1260 gctccctata atgtacatgc tgaaaccatg tcaagctcag ccattcttt agcctgggag 1320 aggccacttt ataattcaga caaagtcatt gcctattctg tacactacat gaaagcagaa 1380 ggtttaaata atgaagagta tcaagtagtc atcggaaatg acacaactca ttatattatt 1440 gatgacttag agcctgccag caattatact ttctacattg tagcatatat gccaatggga gccagccaga tgtctgacca tgtgacacag aatactctag aggatgaccc cagaagaaaa 1560

tatcatgtg	a gactcctgg	c ttacaacaa	c atagacgate	g gctatcagg	c agatcagact	1620
gtcagcact	c caggatgcg	t gtctgttcg	t gatcgcatg	g tecetecte	c accaccaccc	1680
caccatctc	t atgcgaagge	taacacctc	tcttccatc	tcctgcact	g gaggaggcct	1740
gcattcacco	g ctgcacaaai	cattaacta	accatecget	gtaatcctg	t tggcctgcag	1800
aatgcttct	t tggttctgta	ccttcaaac	tcagaaacto	acatgttggt	tcaaggtcta	1860
gaaccaaaca	a ccaaatacga	atttgccgtt	cgattacatg	, tggatcagct	ttccagtcct	1920
tggagccct	g tagtctacca	ttctactctt	ccagaagcac	: cagcaggccc	accagttgga	1980
gtaaaagtga	cattaataga	ggatgacact	gccctggttt	cttggaaacc	ccctgatggc	2040
ccagaaacag	ttgtgacccg	ctatactato	ttatatgcat	ctaggaaggo	ctggattgca	2100
ggagagtggc	: aggtcttaca	ccgtgaaggg	gcaataacca	tggctttgct	agaaaacttg	2160
gtagcaggaa	atgtgtacat	tgtcaagata	tctgcatcca	atgaggtggg	agaaggaccc	2220
ttttcaaatt	ctgtggagct	ggcagtactt	ccaaaggaaa	cctctgaatc	aaatcagagg	2280
cccaagcgtt	tagattctgc	tgatgccaaa	gtttattcag	gatattacca	tctggaccaa	2340
aaatcaatga	ctggcattgc	tgtaggtgtt	ggcatagcct	tgacctgcat	cctcatctgt	2400
gttctcatct	tgatataccg	aagtaaagcc	aggaaatcat	ctgcttccaa	gacggcacag	2460
aatggaactc	aacagttacc	tcgtaccagt	gcctccttag	ctagtggaaa	tgaggtagga	2520
aagaacctgg	aaggagctgt	aggaaatgaa	gaatctttaa	tgccaatgat	catgccaaac	2580
agcttcattg	atgcaaaggg	aggaactgac	ctgataatta	atagctatgg	tcctataatt	2640
aaaaacaact	ctaagaaaaa	gtggttttt	ttccaagact	caaagaagat	acaagttgag	2700
cagcctcaaa	gaagatttac	tccagcggtc	tgcttttacc	agccaggcac	cactgtatta	2760
atcagtgatg	aagactcccc	tagctcccca	ggtcagacaa	ccagettete	aagacccttt	2820
ggtgttgcag	ctgatacaga	acattcagca	aatagtgaag	gcagccatga	gactggggat	2880
tctgggcggt	tttctcatga	gtccaacgat	gagatacatc	tgtcctcagt	tataagtacc	2940
acaccccca	acctctga					2958

<210> SEQ ID NO 10

<211> LENGTH: 985
<212> TYPE: PRT
<213> ORGANISM: homo sapiens

<400> SEQUENCE: 10

Met Ala Pro Pro Leu Arg Pro Leu Ala Arg Leu Arg Pro Pro Gly Met  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Leu Leu Arg Ala Leu Leu Leu Leu Leu Leu Leu Ser Pro Leu Pro Gly  $20 \ \ 25 \ \ 30$ 

Val Trp Cys Phe Ser Glu Leu Ser Phe Val Lys Glu Pro Gln Asp Val 35

Glu Val Pro Ile Lys Val Thr Trp Leu Lys Asn Gly Ala Lys Met Ser 65 70 80

Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr Ile Ser 85 90 90 95

Cys Leu Ala Met Asn Lys Tyr Gly Ala Ile Leu Ser Gln Lys Ala His

	_																				
				11	5					12	20					1	25	_			
	Le	u A 1	1a 30	Le	u S	er T	hr 1	[le	Ser 135	· Al	la I	?he	Gl	ı Ve		ln P	ro 	Ile	e Se	r	Thr
	Gl 14	u V 5	al	ні	в G	lu G	ly 0	1y 50	Val	L A.	la #	lrg	Phe	e Al 15		/6 L	уs	Ile	s Se		Ser 160
	Hi	s P	ro	Pr	o A	la V 1	al I 65	le	Thr	Tr	рС	lu	Phe 170		n A	g T	hr	Thr	Le 17		Pro
	Мe	t T	nr	Me	t A:	sp A 30	rg I	le	Thr	Al	a I	eu 85	Pro	Th	r G	.y V	al	Leu 190		n :	lle
	Ty	r As	вp	Va. 199	1 Se 5	er G	ln A	rg .	Asp	Se 20	r G	ly	Азп	Ту	r Ar		ys 05	Ile	al Al	a J	Ala
	Thi	r Va 21	10	Ala	a Hi	s A	rg A	rg :	Lув 215	Se	r M	et	Glu	Al	a Se 22		eu	Thr	Va	1 1	le
	Pro 225	Al S	a	Lys	s Gl	u Se	er L	ув : 30	Ser	Ph	ен	ĺś	Thr	Pr 23	o Th 5	r I	le	Ile	Al		1y 40
1	Pro	G1	n.	aa.	ı Il	e Th	r T	hr a	Ser	Le	u H		Gln 250	Th	r Va	l Va	1 :	Leu	G1: 25:		уs
1	Met	: Al	a	Thr	G1 26	y As 0	n P	ro I	Lys	Pr	o I.	le 65	Ile	Se	r Tr	p Se		Arg 270	Let	ı A	вp
1	lis	Ly	s	Ser 275	Il	e As	p V	al E	he	As:	n Tì	hr.	Arg	Va.	l Le	u G1 28		<b>l</b> en	Gl	, A	sn
1	Leu	Ме 29	t : 0	Ile	Se	r As	p Ve	al <i>P</i>	rg 95	Let	1 G	ln i	His	Ala	G1; 30		1 7	lyr	Val	. с	ув
3	rg 105	Al	a :	Thr	Th	r Pr	o G] 31	ly I	hr	Arc	j As	n l	Phe	Thr 315		L Al	a P	let	Ala		hr 20
L	eu	Th	r (	/al	Let	a Al 32	a Pr 5	0 P	ro	Ser	Ph		/al 330	Glu	Tr	Pr	0 0	lu	Ser 335		eu
T	hr	Ar	g E	Pro	Arg 340	g Al	a Gl	у Т	hr	Ala	Ar 34	g I 5	he	Val	Суя	Gl:		1a 50	Glu	G.	l <b>y</b>
I	le	Pro	3	er 155	Pro	Ly	в Ме	t S	er	Trp 360	Le	u I	ys	Asn	Gly	Ar.		уs	Ile	н	ĹB
s	er	Asr 370	ı G	ly	Arg	, Il	e Ly	s M 3	et 75	Tyr	As	n S	er	Lys	Leu 380	Va.	l I	le	Asn	G]	n
I 3	le 85	Ile	P	ro	Glu	As _l	39	р А 0	la :	Ile	ту	r G	ln	Сув 395	Met	Ala	ı G	lu	Asn	Se 40	
G.	ln	Gly	S	er	Ile	405	Se:	r A	rg i	Ala	Ar	g L 4	eu 10	Thr	Val	Va]	. M	et.	Ser 415	G1	u
A	вp	Arg	P	ro	Ser 420	Ala	Pro	о <b>Т</b> у	yr 1	Asn	Va 42	1 H 5	is.	Ala	Glu	Thr		et :	Ser	Se	r
S e	er	Ala	1. 4.	1e 35	Leu	Leu	Alș	а Та	ъ (	31u 140	Ar	g P	ro i	Leu		Asn 445		er i	Авр	Ly	в.
72	ıl	11e 450	A	la	Tyr	Ser	Val	l Hi 45	.e 1	yr	Met	: L	ув 1	Ala	Glu 460	Gly	Le	au 1	Asn	Ав	n
3 ] 1 6	u 5	Glu	T	yr	Gln	Val	Va]	111	e G	ly	Asr	ı A	вр ? 4	Thr 175	Thr	His	T	rr ,1	Ile	11 48	
۱e	p.	Asp	Le	eu	Glu	Pro 485	Ala	Se	r A	sn	Tyz	T)	ır I	he	Tyr	Ile	Va		11a 195	ту	r
le	t 1	Pro	Ме	et (	Gly 500	Ala	Ser	Gl	n M		Ser 505		sp E	lis	Val	Thr	G1 51		lsn	Th	r
e	u (	Glu	As 51	sp 1	Asp	Pro	Arg	Ar	g L 5	ув 20	Tyr	ні	.в V	al	Arg	Leu 525	Le	u A	la	Туі	•
6	n A	Asn 530	Il	.e 1	Asp	Asp	Gly	Ту 53	r G 5	ln	Ala	As	рG		Thr 540	Val	Se	r T	hr :	Pro	•

Gly 545	Су	вV	al :	Ser	Val	Arg 550	Ав	p Au	g M	et	Val	Pr	o Pi	ro P	ro	Pro	Pr	o Pro
		s L	eu :	Iyr	Ala			a Ae	n T	hr	Ser	55: Se:		er I	le	Phe	Le	560 u His
Trp	Arq	g A	rg I	ro .	565 Ala	Phe	Th	r Al	a A		570 Gln		• Il	e A	en '	Tyr	· 57	5 r Ile
			=	80					5	85						590		r Leu
		25	,5					60	0					6	05			
	610	,					615	5					62	0				Thr
<b>Lу</b> в 625	Tyr	· Gl	u P	he A	la	Val 630	Arg	Le	u H	is '	/al	Авр 635		n L	eu s	Ser	Ser	Pro 640
Trp	Ser	Pr	o V	al V	'al 45	Tyr	Hie	Se	r Tì		Leu 550	Pro	G1	u A	la I	ro	Ala 655	Gly
Pro	Pro	Va	1 G	ly V 60	al	Lys	Val	Th	Le 66	u ] 5	le	Glu	Asj	p As		hr 70	Ala	Leu
Val	Ser	Tr 67	р L ₎ 5	ys P	ro	Pro	Asp	G1 ₃ 680	, Pr	·o G	lu	Thr	Va)	l Va 68		hr	Arg	Tyr
Thr	Ile 690	Le	u Ty	yr A	la :	Ser	Arg 695	Lys	al Al	a I	rp	Ile	Ala 700	a G1	уG	lu	Trp	Gln
Val 705	Leu	Hi	Б Ал	g G	lu (	3ly 710	Ala	Ile	Th	r M	et .	Ala 715	Leu	ı Le	u G	lu	Asn	Leu 720
Val .	Ala	Gl	y As	n V. 7.	al 2 25	lyr	Ile	Val	Ly	в I 7	le : 30	Ser	Ala	. 5e	r A		Glu 735	Val
Gly	Glu	Gly	7 Pr 74	o Pl	ne S	er .	Asn	Ser	Va. 74:	1 G 5	lų 1	Leu	Ala	Va		eu :	Pro	Lys
Glu !	Thr	Ser 755	G1	u Se	er A	sn (	Gln	Arg 760	Pro	L	ys i	Arg	Leu	As ₁		er i	Ala	Asp
Ala I	Lys 770	Val	ту	r Se	r G	ly ?	Cyr 775	Tyr	His	3 Le	eu A		Gln 780			er I	let	Thr
Gly 1 785	le.	Ala	Va	1 G1	y V	al (	ily	Ile	Ala	ı Le	eu 1	hr		Ile	. Le	u I	île	
Val I	eu	Ile	Le	u Il	e T		ırg	Ser	Lys	A.		195 Leg :	Lys	Ser	: Se	r F	lla	800 Ser
Lys T				80	5					81	0					8	15	
			820	)					825						83	0		
Leu A	•	835					,	840						845				
Asn G	lu ( 50	3lu	Ser	Le	a Me	at P	ro 1 55	Met	Ile	Me	t P		Aвп 360	Ser	Ph	e I	le .	Asp 
Alá Ly 865	ys C	3ly	Gly	Th	87	p L	eu 1	lle	Ile	As	n S	er 1	yr	Gly	Pr	o I		11e 880
Lys A	sn A	Len	Ser	Ly:	L)	B L	ys I	rp	Phe	Ph-	a P1	he G	ln	Дар	Se		ув 1 95	Lys
Ile G	ln V	al	Glu 900	Glr	Pr	о G	ln A	rg .	Arg 905	Ph	e Tì	nr P	ro.	Ala	Va 1		ys I	Phe
Tyr G	n P	ro 15	Gly	Thr	Th	r V	al L 9	eu :	Ile	Sei	: As	sp G		Asp 925	Ser	Pı	ro S	Ser
Ser Pr	o G	ly	Gln	Thr	Th	r Se	er P	he s	Ser	Arç	Pr		he (	Gly	Val	. AJ	la A	la
Asp Th	r G	lu :	His	Ser	A1 95	а Ас 0	in S	er (	lu	Gly	Se 95	r H		Glu	Thr	G1		вр 60

Ser Gly Arg Phe Ser His Glu Ser Asn Asp Glu Ile His Leu Ser Ser 965 970 975

Val Ile Ser Thr Thr Pro Pro Asn Leu 980 985

<210> SEQ ID NO 11

<211> LENGTH: 2976

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 11

atgtctgaaa ataaacggat cgaggttctt tctaacggct ctttatacat cagtgaggtg 60 gaaggcaggc gaggagagca gtccgatgaa ggattttatc agtgcttggc aatgaacaaa 120 tatggagcca ttcttagtca aaaagctcat cttgccttat caactatttc tgcatttgaa 180 gtccagccaa tttccactga ggtccacgaa ggtggagttg ctcgatttgc atgcaagatt 240 tcatcccacc ctcctgcagt cataacatgg gagttcaatc ggacaactct acctatgact 300 atggacagga taactgccct accaacagga gtattgcaga tctatgatgt cagccaaagg 360 gattctggaa attatcgttg tattgctgcc actgtagccc accgacgtaa aagtatggag 420 gcctcgctaa ctgtgattcc agctaaggag tcaaaatcct tccacacacc arcaattata 480 gcaggtccac agaacataac aacatctctt catcagactg tagttttgga atgcatggcc 540 acaggaaatc ccaaaccaat cattettgg ageogeettg atcacaaatc cattgatgte 600 tttaatactc gggtacttgg aaatggtaat ctcatgatat ctgatgtcag gctacaacat gctggagtat atgtttgtcg ggccactacc cctggcacac gcaactttac agttgctatg 720 gcaactttaa ctgtattagc tcctccttca tttgttgaat ggccagaaag tttaacaagg 780 cotogagotg goactgoteg atttgtgtgt caggoagaag gaatcocoto toccaagatg 840 tcatggttga aaaatggaag gaagatacat tcgaatggta gaattaaaat gtacaacagt 900 aaattggtaa ttaaccagat tattcctgaa gatgatgcta tttatcagtg catggctgag 960 aatagccaag gatctatttt atctagagcc agactgactg tagtgatgtc agaagacaga cccagtgctc cctataatgt acatgctgaa accatgtcaa gctcagccat tcttttagcc 1080 tgggagaggc cactttataa ttcagacaaa gtcattgcct attctgtaca ctacatgaaa 1140 gcagaaggtt taaataatga agagtatcaa gtagtcatcg gaaatgacac aactcattat attattgatg acttagagcc tgccagcaat tatactttct acattgtagc atatatgcca 1260 atgggagcca gccagatgtc tgaccatgtg acacagaata ctctagagga tgttcccctg 1320 agacctcctg aaattagttt gacaagtcga agtcccactg atattctcat ctcctggctg 1380 ccaatcccag ccaaatatcg gcggggccaa gtggtgctgt atcgcttgtc tttccgccta 1440 agtactgaga attcaatcca agttctggag ctcccgggga ccacgcatga gtaccttttg 1500 gaaggcctga aacctgacag tgtctacctg gttcggatta ctgctgccac cagagtgggg 1560 ctgggagagt catcagtatg gacttcacat aggacgccca aagctacaag cgtgaaagcc 1620 cctaagtctc cagagttgca tttggagcct ctgaactgta ccaccatttc tgtgaggtgg 1680 cagcaagatg tagaggacac agctgctatt cagggctaca agctgtacta caaggaagaa 1740 gggcagcagg agaatgggcc cattttcttg gataccaagg acctactcta tactctcagt ggcttagacc ccagaagaaa atatcatgtg agactcctgg cttacaacaa catagacgat 1860 ggctatcagg cagatcagac tgtcagcact ccaggatgcg tgtctgttcg tgatcgcatg 1920 gtccctcctc caccaccacc ccaccatete tatgcgaagg ctaacacete atettecate

ttcctgcact	ggaggaggco	tgcattcacc	gctgcacaa	tcattaacta	caccatecge	204
tgtaatcctg	ttggcctgca	gaatgcttct	ttggttctgt	accttcaaac	atcagaaact	210
cacatgttgg	ttcaaggtct	agaaccaaac	accaaatac	aatttgccgt	tcgattacat	216
gtggatcagc	tttccagtcc	ttggagccct	gtagtctacc	attotactot	tccagaagca	222
ccagcaggcc	caccagttgg	agtaaaagtg	acattaatag	aggatgacac	tgccctggtt	228
tcttggaaac	cccctgatgg	cccagaaaca	gttgtgaccc	gctatactat	cttatatgca	2340
tctaggaagg	cctggattgc	aggagagtgg	caggtcttac	accgtgaagg	ggcaataacc	2400
atggctttgc	tagaaaactt	ggtagcagga	aatgtgtaca	ttgtcaagat	atctgcatcc	2460
aatgaggtgg	gagaaggacc	cttttcaaat	tctgtggagc	tggcagtact	tccaaaggaa	2520
acctctgaat	caaatcagag	gcccaagcgt	ttagattctg	ctgatgccaa	agtttattca	2580
ggatattacc	atctggacca	aaaatcaatg	actggcattg	ctgtaggtgt	tggcatagcc	2640
ttgacctgca	tcctcatctg	tgttctcatc	ttgatatacc	gaagtaaagc	caggaaatca	2700
tctgcttcca	agacggcaca	gaatggaact	caacagttac	ctcgtaccag	tgcctcctta	2760
gctagtggaa	atgaggtagg	aaagaacctg	gaaggagctg	taggaaatga	agaatcttta	2820
atgccaatga	tcatgccasa	cagcttcatt	gatgcaaagg	tactgagctg	cgggatttgc	2880
tgcataagcc	gttcttccat	tectectece	tgtgtgtgta	aaatgtactt	cccccaaaat	2940
tgtatgttga	atgtattata	ccaatactct	tattaa			2976
210> SEQ II 211> LENGTI 212> TYPE: 213> ORGAN	H: 991	ipiens			:	
:400> SEQUE	NCE: 12					

Met Ser Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ile Ser Glu Val Glu Gly Arg Arg Gly Glu Gln Ser Asp Glu Gly Phe  $20 \\ \hspace*{1.5cm} 25 \\ \hspace*{1.5cm} 30 \\ \hspace*{1.5cm}$ 

Tyr Gln Cys Leu Ala Met Asn Lys Tyr Gly Ala Ile Leu Ser Gln Lys  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ala His Leu Ala Leu Ser Thr Ile Ser Ala Phe Glu Val Gln Pro Ile  $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$ 

Ser Thr Glu Val His Glu Gly Gly Val Ala Arg Phe Ala Cys Lys Ile 65 70 75 80

Ser Ser His Pro Pro Ala Val Ile Thr Trp Glu Phe Asn Arg Thr Thr 85  $90\,$  95

Leu Pro Met Thr Met Asp Arg Ile Thr Ala Leu Pro Thr Gly Val Leu 100 105

Gln Ile Tyr Asp Val Ser Gln Arg Asp Ser Gly Asn Tyr Arg Cys Ile 115 120 125

Ala Ala Thr Val Ala His Arg Arg Lys Ser Met Glu Ala Ser Leu Thr 130 140

Val Ile Pro Ala Lys Glu Ser Lys Ser Phe His Thr Pro Thr Ile Ile 145 150 160

Ala Gly Pro Gln Asn Ile Thr Thr Ser Leu His Gln Thr Val Val Leu 165 170 175

Glu Cys Met Ala Thr Gly Asn Pro Lys Pro Ile Ile Ser Trp Ser Arg 180 185 190

			-												
Leu	Asp	H18	Lys	Ser	Ile	Asp	Val 200	Phe	Asn	Thr	Arg	Val 205	Leu	Gly	Asn
Gly	Asn 210	Leu	Met	Ile	Ser	Asp 215	Val	Arg	Leu	Gln	His 220	Ala	Gly	Val	Tyr
Val 225	Сув	Arg	Ala	Thr	Thr 230	Pro	Gly	Thr	Arg	Asn 235	Phe	Thr	Val	Ala	Met 240
Ala	Thr	Leu	Thr	Val 245	Leu	Ala	Pro	Pro	Ser 250	Phe	Val -	Glu	Trp	Pro 255	Glu
Ser	Leu	Thr	Arg 260	Pro	Arg	Ala	Gly	Thr 265	Ala	Arg :	Phe '	Val	Cys 270		Ala
Glu	Gly	Ile 275	Pro	Ser	Pro	Lув	Met 280	Ser	Trp	Leu 1	Lys i	Asn 285		Arg	Lys
Ile :	His 290	Ser	Asn (	Gly .	Arg	Ile 295	Lys	Met	Tyr	Asn s			Leu	Val	Ile
Asn (	Sln :	Ile	Ile 1	Pro (	Glu /		qaA	Ala	Ile	Tyr (		ys i	Met .	Ala	
Asn S	Ser (	Gln (	Gly s	Ser :	310 [le ]	Leu :	Ser .	Arg i		315 Arg I	eu 1	hr '	Val '	Val	320 Met
Ser G			-	325					330					335	
Ser S		•	340					345				:	350		
	3	,,,				3	360				3	65			
Asp L 3	ys V 70	al I	le A	la T	yr S	er V	al F	is 1	yr N	let L 3	ув А 80	la G	lu G	ly i	Leu
Asn A 385	sn G	lu G	lu T	yr G 3	ln V 90	al V	al 1	ile G	ly A	lsn A	sp T	hr T	hr H		Tyr 100
Ile I	le A	ap A	sp L	eu G 05	lu P	ro A	la s	er A	sn T	yr Tl	hr Pl	ne T		le V 15	/al
Ala T	yr M	et P	ro M	et G	ly A	la S	er G 4	ln M 25	et S	er A	sp Hi		al T 30	hr G	ln
Asn Th	1r L	eu G. 35	lu Aı	sp V	al P	ro La	eu A 40	rg P	ro P	ro Gl	lu II 44	le S		eu T	'h <i>r</i>
Ser Ar 45	g Se	er Pi	ro Tì	r A	sp I.	le Le	eu I	le S	er T	rp Le	u Pr		le P	ro A	la
<b>Lу</b> в Ту 465	r Ar	g Aı	rg Gl	y G1	n Va	al Va	al Le	eu Ty	/r A:	rg Le		r Ph	ie Ai		
Ser Th	r Gl	u As	sn Se 48	r Il		n Ve	ıl Le	eu Gl	lu Le		o Gl	y Th		r H	80 is
Glu Ty	r Le	u Le 50	u Gl	_	y Le	u Ly	's Pr	49 0 As		er Va	1 Ty	r Le	49 u Va		rg
Ile Th	r Al 51	a Al		r Ar	g Va	1 G1	50 y Le		y Gl	u Se	r Se	51 r Va		p Tì	ır
Ser Hi	s Ar		r Pr	o Ly	s Al	52 a Th		r Va	l Ly	B Ale	52: Pro	5 o Ly	s Se	r Pr	.0
530 Glu Let	,				53	5				540	0				
343				350	,				55	5				56	0
Gln Glr	ı Ası	p Va	1 Glu 565	a Asp	Th	r Ala	a Al	a Il 576	e Gla	n Gly	Tyr	Ly	57:		r
Tyr Lys	Gli	Gl: 580	ı Gly	Glr	Glr	Glu	а <b>А</b> ві 58:	n Gly 5	y Pro	o Ile	Phe	Le:		<b>T</b> h	r
Lys Asp	Leu 595	ı Let	ı Tyr	Thr	Leu	Ser 600	Gly	y Let	ı Asp	Pro	Arg 605		J Lys	з Ту	r
His Val	Arg	Leu	Leu	Ala	Tyr	Asn	A A Br	ı Ile	e Asp	Asp	Gly	Tyr	Glr	a Al	<b>a</b>

		-continued
610	615	620
Asp Gln Thr Val Ser 625	Thr Pro Gly Cys Va	l Ser Val Arg Asp Arg Met 635 640
Val Pro Pro Pro Pro 645	Pro Pro His His Let 650	Tyr Ala Lys Ala Asn Thr
Ser Ser Ser Ile Phe 660	Leu His Trp Arg Arg 665	Pro Ala Phe Thr Ala Ala 670
Gln Ile Ile Asn Tyr 675	Thr Ile Arg Cys Asn 680	Pro Val Gly Leu Gln Asn
Ala Ser Leu Val Leu 690	Tyr Leu Gln Thr Ser 695	Glu Thr His Met Leu Val
Gln Gly Leu Glu Pro 705	Asn Thr Lys Tyr Glu 710	Phe Ala Val Arg Leu His 715 720
Val Asp Gln Leu Ser 725	Ser Pro Trp Ser Pro	Val Val Tyr His Ser Thr 735
Leu Pro Glu Ala Pro 740	Ala Gly Pro Pro Val 745	Gly Val Lys Val Thr Leu 750
Ile Glu Asp Asp Thr . 755	Ala Leu Val Ser Trp 760	Lys Pro Pro Asp Gly Pro 765
Glu Thr Val Val Thr 2	Arg Tyr Thr Ile Leu 775	Tyr Ala Ser Arg Lys Ala 780
Trp Ile Ala Gly Glu 785	Trp Gln Val Leu His 790	Arg Glu Gly Ala Ile Thr 795 800
Met Ala Leu Leu Glu <i>I</i> 805	Asn Leu Val Ala Gly 810	Asn Val Tyr Ile Val Lys 815
Ile Ser Ala Ser Asn G 820	Glu Val Gly Glu Gly : 825	Pro Phe Ser Asn Ser Val
Glu Leu Ala Val Leu P 835	ro Lys Glu Thr Ser (	Glu Ser Asn Gln Arg Pro 845
Lys Arg Leu Asp Ser A 850	la Asp Ala Lys Val 3 855	Tyr Ser Gly Tyr Tyr His 860
Leu Asp Gln Lys Ser M 865 8	et Thr Gly Ile Ala V 70	Val Gly Val Gly Ile Ala 175 880
Leu Thr Cys Ile Leu I. 885	le Cys Val Leu Ile I 890	eu Ile Tyr Arg Ser Lys 895
Ala Arg Lys Ser Ser Al 900	la Ser Lys Thr Ala G 905	In Asn Gly Thr Gln Gln 910
Leu Pro Arg Thr Ser Al 915	la Ser Leu Ala Ser G 920	ly Asn Glu Val Gly Lys 925
Asn Leu Glu Gly Ala Va 930	al Gly Asn Glu Glu S 935	er Leu Met Pro Met Ile 940
Met Pro Asn Ser Phe II 945 95	e Asp Ala Lys Val Lo	eu Ser Cys Gly Ile Cys 55 960
Cys Ile Ser Arg Ser Se 965	r Ile Pro Pro Pro Cy 970	ys Val Cys Lys Met Tyr 975
Phe Pro Gln Asn Cys Me 980	t Leu Asn Val Leu Ty 985	or Gln Tyr Ser Tyr 990
<210> SEO TO NO 12		

<210> SEQ ID NO 13 <211> LENGTH: 909 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 13

				-conti	nuea	
atgtctgaad	a ataaacggat	cgaggttctt	tctaacggct	ctttatacat	cagtgaggtg	60
gaaggcagg	c gaggagagca	gtccgatgaa	ggattttatc	agtgcttggc	aatgaacaaa	120
tatggagcc	a ttcttagtca	aaaagctcat	cttgccttat	caactatttc	tgcatttgaa	180
gtccagccas	tttccactga	ggtccacgaa	ggtggagttg	ctcgatttgc	atgcaagatt	240
tcatcccacc	ctcctgcagt	cataacatgg	gagttcaatc	ggacaactct	acctatgact	300
atggacagga	a taactgccct	accaacagga	gtattgcaga	tctatgatgt	cagccaaagg	360
gattctggaa	attatcgttg	tattgctgcc	actgtagece	accgacgtaa	aagtatggag	420
gcctcgctaa	ctgtgattcc	agctaaggag	tcaaaatcct	tccacacacc	arcaattata	480
gcaggtccac	agaacataac	aacatctctt	catcagactg	tagttttgga	atgcatggcc	540
acaggaaatc	ccaaaccaat	catttcttgg	agccgccttg	atcacaaatc	cattgatgtc	600
tttaatactc	gggtacttgg	aaatggtaat	ctcatgatat	ctgatgtcag	gctacaacat	660
gctggagtat	atgtttgtcg	ggccactacc	cctggcacac	gcaactttac	agttgctatg	720
gcaactttaa	ctgtattagc	tcctccttca	tttgttgaat	ggccagaaag	tttaacaagg	780
cctcgagctg	gcactgctcg	atttgtgtgt	caggcagaag	gaatcccctc	tcccaagatg	840
tcatggttga	aaaatggaag	gaagatacat	tcgaatggta	gaattaaaat	gtacaacagg	900
tttaaataa						909
<210> SEQ I						

1> LENGTH: 302

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 14

Met Ser Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr 1 5 10 15

Ile Ser Glu Val Glu Gly Arg Arg Gly Glu Gln Ser Asp Glu Gly Phe 20 25 30

Tyr Gln Cys Leu Ala Met Asn Lys Tyr Gly Ala Ile Leu Ser Gln Lys 35 . 40 45

Ala His Leu Ala Leu Ser Thr Ile Ser Ala Phe Glu Val Gln Pro Ile  $50 \hspace{1cm} 55 \hspace{1cm} 60$ 

Ser Thr Glu Val His Glu Gly Gly Val Ala Arg Phe Ala Cys Lys Ile 65 70 75 80

Ser Ser His Pro Pro Ala Val Ile Thr Trp Glu Phe Asn Arg Thr Thr 85 90 90 95

Leu Pro Met Thr Met Asp Arg Ile Thr Ala Leu Pro Thr Gly Val Leu 100 100 110

Gln Ile Tyr Asp Val Ser Gln Arg Asp Ser Gly Asn Tyr Arg Cys Ile 115 120 125

Ala Ala Thr Val Ala His Arg Arg Lys Ser Met Glu Ala Ser Leu Thr 130 140

Val Ile Pro Ala Lys Glu Ser Lys Ser Phe His Thr Pro Thr Ile Ile 145 150 150 160

Ala Gly Pro Gln Asn Ile Thr Thr Ser Leu His Gln Thr Val Val Leu 165 170 175

Glu Cys Met Ala Thr Gly Asn Pro Lys Pro Ile Ile Ser Trp Ser Arg 180 185 190

Leu Asp His Lys Ser Ile Asp Val Phe Asn Thr Arg Val Leu Gly Asn 195  $^{\circ}$  200 205

Gly	210	Leu	Met	Ile	Ser	Asp 215	Val	Arg	Leu	Gln	His 220	Ala	Gly	Val	Tyr
Val 225	Cys	Arg	Ala	Thr	Thr 230	Pro	Gly	Thr	Arg	Asn 235	Phe	Thr	Val	Ala	Met 240
Ala	Thr	Leu	Thr	Val 245	Leu	Ala	Pro	Pro	Ser 250	Phe	Val	Glu	Trp	Pro 255	Glu
Ser	Leu	Thr	Arg 260	Pro	Arg	Ala	Gly	Thr 265	Ala	Arg	Phe	Val	Cys 270	Gln	Ala
Glu	Gly	Ile 275	Pro	Ser	Pro	Lys	Met 280	Ser	Trp	Leu	Lys	Asn 285	Gly	Arg	Lys
Ile	His 290	Ser	Asn	Gly	Arg	Ile 295	Lys	Met	Tyr		Arg 300	Phe	Lys		

<210> SEQ ID NO 15 <211> LENGTH: 2481

<211> LENGTH: 2481 <212> TYPE: DNA

<400> SEQUENCE: 15

<213> ORGANISM: homo sapiens

and oup.

atgtctgaaa ataaacggat cgaggttctt tctaacggct ctttatacat cagtgaggtg gaaggcaggc gaggagagca gtccgatgaa ggattttatc agtgcttggc aatgaacaaa 120 tatggagcca ttcttagtca aaaagctcat cttgccttat caactatttc tgcatttgaa 180 gtccagccaa tttccactga ggtccacgaa ggtggagttg ctcgatttgc atgcaagatt 240 tratrocace etectgragt cataacatgg gagttraate ggaraactet acctatgact 300 atggacagga taactgccct accaacagga gtattgcaga tctatgatgt cagccaaagg 360 gattctggaa attatcgttg tattgctgcc actgtagccc accgacgtaa aagtatggag 420 gestegetaa etgtgattee agetaaggag teaaaateet tecacacace arcaattata 480 gcaggtccac agaacataac aacatctctt catcagactg tagttttgga atgcatggcc 540 acaggaaatc ccaaaccaat catttettgg agecgeettg atcacaaatc cattgatgte 600 tttaatactc gggtacttgg aaatggtaat ctcatgatat ctgatgtcag gctacaacat 660 gctggagtat atgtttgtcg ggccactacc cctggcacac gcaactttac agttgctatg 720 gcaactttaa ctgtattagc tcctccttca tttgttgaat ggccagaaag tttaacaagg 780 cctcgagctg gcactgctcg atttgtgtgt caggcagaag gaatcccctc tcccaagatg tcatggttga aaaatggaag gaagatacat tcgaatggta gaattaaaat gtacaacagt 900 aaattggtaa ttaaccagat tattcctgaa gatgatgcta tttatcagtg catggctgag 960 aatagccaag gatctatttt atctagagcc agactgactg tagtgatgtc agaagacaga 1020 eccagtgete ectataatgt acatgetgaa accatgteaa geteageeat tettttagee 1080 tgggagaggc cactttataa ttcagacaaa gtcattgcct attctgtaca ctacatgaaa 1140 gcagaaggtt taaataatga agagtatcaa gtagtcatcg gaaatgacac aactcattat 1200 attattgatg acttagagcc tgccagcaat tatactttct acattgtagc atatatgcca 1260 atgggagcca gccagatgtc tgaccatgtg acacagaata ctctagagga tgaccccaga 1320 agaaaatatc atgtgagact cctggcttac aacaacatag acgatggcta tcaggcagat 1380 cagactgtca gcactccagg atgcgtgtct gttcgtgatc gcatggtccc tcctccacca . 1440 ccaccccacc atctctatgc gaaggctaac acctcatctt ccatcttcct gcactggagg 1500 aggorigeat tracegoige acasairatt aartararea tregetgiaa treigige 1560 ctgcagaatg cttctttggt tctgtacctt caaacatcag aaactcacat gttggttcaa

# -continued

ggtctagaac caaacaccaa atacgaattt gccgttcgat tacatgtgga tcagctttcc
agteettgga geeetgtagt etaceattet aetetteeag aageaceage aggeeeacea
gttggagtaa aagtgacatt aatagaggat gacactgccc tggtttcttg gaaaccccct
gatggcccag aaacagttgt gacccgctat actatcttat atgcatctag gaaggcctgg
attgcaggag agtggcaggt cttacaccgt gaaggggcaa taaccatggc tttgctagaa
aacttggtag caggaaatgt gtacattgtc aagatatctg catccaatga ggtgggagaa
ggaccetttt caaattetgt ggagetggea gtaetteeaa aggaaacete tgaatcaaat
cagaggeeea agegtttaga ttetgetgat geeaaagttt atteaggata ttaccatetg
gaccaaaaat caatgactgg cattgctgta ggtgttggca tagccttgac ctgcatcctc
atctgtgttc tcatcttgat ataccgaagt aaagccagga aatcatctgc ttccaagacg
gcacagaatg gaactcaaca gttacctcgt accagtgcct ccttagctag tggaaatgag
gtaggaaaga acctggaagg agctgtagga aatgaagaat ctttaatgcc aatgatcatg
ccaaacaget teattgatge aaaggtactg agetgeggga tttgetgeat aageegttet
tocattooto otocotytyt ytytäääääty taottoooco aaaattytat yttyäätytä
ttataccaat actcttatta a
<210> SEQ ID NO 16 <211> LENGTH: 826 <212> TYPE: PRT <213> ORGANISM: homo sapiens
<400> SEQUENCE: 16
Met Ser Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr 1 5 10 15
Ile Ser Glu Val Glu Gly Arg Arg Gly Glu Gln Ser Asp Glu Gly Phe 20 25 30
Tyr Gln Cys Leu Ala Met Asn Lys Tyr Gly Ala Ile Leu Ser Gln Lys 35 40 45
Ala His Leu Ala Leu Ser Thr Ile Ser Ala Phe Glu Val Gln Pro Ile 50 55 60
Ser Thr Glu Val His Glu Gly Gly Val Ala Arg Phe Ala Cys Lys Ile 65 70 75 80
Ser Ser His Pro Pro Ala Val Ile Thr Trp Glu Phe Asn Arg Thr Thr 85 90 95
Leu Pro Met Thr Met Asp Arg Ile Thr Ala Leu Pro Thr Gly Val Leu 100 105 110
Gln Ile Tyr Asp Val Ser Gln Arg Asp Ser Gly Asn Tyr Arg Cys Ile 115 120 125
Ala Ala Thr Val Ala His Arg Arg Lys Ser Met Glu Ala Ser Leu Thr 130 135 140
Val Ile Pro Ala Lys Glu Ser Lys Ser Phe His Thr Pro Thr Ile Ile 145 150 155 160
Ala Gly Pro Gln Asn Ile Thr Thr Ser Leu His Gln Thr Val Val Leu 165 170 175
Glu Cys Met Ala Thr Gly Asn Pro Lys Pro Ile Ile Ser Trp Ser Arg 180 185 190
Leu Asp His Lys Ser Ile Asp Val Phe Asn Thr Arg Val Leu Gly Asn 195 200 205

Gly Asn Leu Met Ile Ser Asp Val Arg Leu Gln His Ala Gly Val Tyr

# -continued Val Cys Arg Ala Thr Thr Pro Gly Thr Arg Asn Phe Thr Val Ala Met 225 230 235 240 Ala Thr Leu Thr Val Leu Ala Pro Pro Ser Phe Val Glu Trp Pro Glu 245 250 255 Ser Leu Thr Arg Pro Arg Ala Gly Thr Ala Arg Phe Val Cys Gln Ala 260 265 270 Glu Gly Ile Pro Ser Pro Lys Met Ser Trp Leu Lys Asn Gly Arg Lys 275 280 285 Ile His Ser Asn Gly Arg Ile Lys Met Tyr Asn Ser Lys Leu Val Ile 290 295 300 Asn Gln Ile Ile Pro Glu Asp Asp Ala Ile Tyr Gln Cys Met Ala Glu 305 310 315 320 Asn Ser Gln Gly Ser Ile Leu Ser Arg Ala Arg Leu Thr Val Val Met 325 330 335 Ser Glu Asp Arg Pro Ser Ala Pro Tyr Asn Val His Ala Glu Thr Met 340 345 350 Ser Ser Ser Ala Ile Leu Leu Ala Trp Glu Arg Pro Leu Tyr Asn Ser 355 360 365 Asp Lys Val Ile Ala Tyr Ser Val His Tyr Met Lys Ala Glu Gly Leu 370 380 Asn Asn Glu Glu Tyr Gln Val Val Ile Gly Asn Asp Thr Thr His Tyr 385 390 395 400 Ile Ile Asp Asp Leu Glu Pro Ala Ser Asn Tyr Thr Phe Tyr Ile Val 405 410 415Asn Thr Leu Glu Asp Asp Pro Arg Arg Lys Tyr His Val Arg Leu Leu 435 440 445 Ala Tyr Asn Asn Ile Asp Asp Gly Tyr Gln Ala Asp Gln Thr Val Ser 450 455 460 Thr Pro Gly Cys Val Ser Val Arg Asp Arg Met Val Pro Pro Pro Pro 480 Pro Pro His His Leu Tyr Ala Lys Ala Asn Thr Ser Ser Ser Ile Phe 485 490 495 Leu His Trp Arg Arg Pro Ala Phe Thr Ala Ala Gln Ile Ile Asn Tyr 500 510 Thr Ile Arg Cys Asn Pro Val Gly Leu Gln Asn Ala Ser Leu Val Leu 515 520 525 Tyr Leu Gln Thr Ser Glu Thr His Met Leu Val Gln Gly Leu Glu Pro 530 540 Asn Thr Lys Tyr Glu Phe Ala Val Arg Leu His Val Asp Gln Leu Ser 545 550 560 Ser Pro Trp Ser Pro Val Val Tyr His Ser Thr Leu Pro Glu Ala Pro 565 570 575 Ala Gly Pro Pro Val Gly Val Lys Val Thr Leu Ile Glu Asp Asp Thr 580 590

Ala Leu Val Ser Trp Lys Pro Pro Asp Gly Pro Glu Thr Val Val Thr 595 600 605

Arg Tyr Thr Ile Leu Tyr Ala Ser Arg Lys Ala Trp Ile Ala Gly Glu 610 620

Trp Gln Val Leu His Arg Glu Gly Ala Ile Thr Met Ala Leu Leu Glu 625 630 635 640

Asn Leu Val Ala Gly Asn Val Tyr Ile Val Lys Ile Ser Ala Ser Asn 655

Glu Val Gly Glu Gly Pro Phe Ser Asn Ser Val Glu Leu Ala Val Leu 660

Pro Lys Glu Thr Ser Glu Ser Asn Gln Arg Pro Lys Arg Leu Asp Ser 685

Ala Asp Ala Lys Val Tyr Ser Gly Tyr Tyr His Leu Asp Gln Lys Ser 690

Met Thr Gly Ile Ala Val Gly Val Gly Ile Ala Leu Thr Cys Ile Leu 710

Ile Cys Val Leu Ile Leu Ile Tyr Arg Ser Lys Ala Arg Lys Ser Ser 730

Ala Ser Lys Thr Ala Gln Asn Gly Thr Gln Gln Leu Pro Arg Thr Ser 740

Ala Ser Leu Ala Ser Gly Asn Glu Val Gly Lys Asn Leu Glu Gly Ala 755

Val Gly Asn Glu Glu Ser Leu Met Pro Met Ile Met Pro Asn Ser Phe 770

Ile Asp Ala Lys Val Leu Ser Cys Gly Ile Cys Cys Ile Ser Arg Ser 785

Ser Ile Pro Pro Cys Val Cys Lys Met Tyr Phe Pro Gln Asn Cys 815

Met Leu Asn Val Leu Tyr Gln Tyr Ser Tyr 825

<210> SEQ ID NO 17 <211> LENGTH: 3219

<211> LENGTH: 3219 <212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 17

atgtctgaaa ataaacggat cgaggttctt tctaacggct ctttatacat cagtgaggtg 60 gaaggcaggc gaggagagca gtccgatgaa ggattttatc agtgcttggc aatgaacaaa tatggagcca ttottagtca aaaagctcat cttgccttat caactatttc tgcatttgaa 180 gtccagccaa tttccactga ggtccacgaa ggtggagttg ctcgatttgc atgcaagatt 240 teateceace etectgoagt cataacatgg gagtteaate ggacaactet acctatgact 300 atggacagga taactgccct accaacagga gtattgcaga tctatgatgt cagccaaagg 360 gattetggaa attategttg tattgetgee actgtageee accgaegtaa aagtatggag 420 geotegetaa etgtgattee agetaaggag teaaaateet teeacacace arcaattata 480 gcaggtccac agaacataac aacatctctt catcagactg tagttttgga atgcatggcc 540 acaggaaatc ccaaaccaat cattlettgg ageogeettg atcacaaatc cattgatgte 600 tttaatactc gggtacttgg aaatggtaat ctcatgatat ctgatgtcag gctacaacat 660 gctggagtat atgtttgtcg ggccactacc cctggcacac gcaactttac agttgctatg 720 gcaactttaa ctgtattagc tcctccttca tttgttgaat ggccagaaag tttaacaagg 780 cetegagetg geactgeteg atttgtgtgt caggeagaag gaateceete teccaagatg 840 tcatggttga aaaatggaag gaagatacat tcgaatggta gaattaaaat gtacaacagt 900 aaattggtaa ttaaccagat tatteetgaa gatgatgeta tttateagtg catggetgag 960 aatagccaag gatctatttt atctagagcc agactgactg tagtgatgtc agaagacaga

	cccagtgctc	cctataatgt	acatgctgaa	accatgtcaa	gctcagccat	tcttttagcc	1080
	tgggagaggc	cactttataa	ttcagacaaa	gtcattgcct	attctgtaca	ctacatgasa	1140
	gcagaaggtt	taaataatga	agagtatcaa	gtagtcatcg	gaaatgacac	aactcattat	1200
	attattgatg	acttagagcc	tgccagcaat	tatactttct	acattgtagć	atatatgcca	1260
	atgggagcca	gccagatgtc	tgaccatgtg	acacagaata	ctctagagga	tgttcccctg	1320
	agacctcctg	aaattagttt	gacaagtcga	agtcccactg	atattctcat	ctcctggctg	1380
	ccaatcccag	ccaaatatcg	gcggggccaa	gtggtgctgt	atcgcttgtc	tttccgccta	1440
	agtactgaga	attcaatcca	agttctggag	ctcccgggga	ccacgcatga	gtaccttttg	1500
	gaaggcctga	aacctgacag	tgtctacctg	gttcggatta	ctgctgccac	cagagtgggg	1560
	ctgggagagt	catcagtatg	gacttcacat	aggacgccca	aagctacaag	cgtgaaagcc	1620
	cctaagtctc	cagagttgca	tttggagcct	ctgaactgta	ccaccatttc	tgtgaggtgg	1680
	cagcaagatg	tagaggacac	agctgctatt	cagggctaca	agctgtacta	caaggaagaa	1740
	gggcagcagg	agaatgggcc	cattttcttg	gataccaagg	acctactcta	tactctcagt	1800
	ggcttagacc	ccagaagaaa	atatcatgtg	agactcctgg	cttacaacaa	catagacgat	1860
	ggctatcagg	cagatcagac	tgtcagcact	ccaggatgcg	tgtctgttcg	tgatcgcatg	1920
	gteecteete	caccaccacc	ccaccatctc	tatgcgaagg	ctaacacctc	atcttccatc	1980
٠	ttcctgcact	ggaggaggcc	tgcattcacc	gctgcacaaa	tcattaacta	caccateege	2040
	tgtaatcctg	ttggcctgca	gaatgcttct	ttggttctgt	accttcaaac	atcagaaact	2100
,	cacatgttgg	ttcaaggtct	agaaccaaac	accaaatacg	aatttgccgt	tcgattacat	2160
	gtggatcagc	tttccagtcc	ttggagccct	gtagtctacc	attctactct	tccagaagca	2220
1	ccagcaggcc	caccagttgg	agtaaaagtg	acattaatag	aggatgacac	tgccctggtt	2280
•	tcttggaaac	cccctgatgg	cccagaaaca	gttgtgaccc	gctatactat	cttatatgca	2340
٠	tctaggaagg	cctggattgc	aggagagtgg	caggtcttac	accgtgaagg	ggcaataacc	2400
•	atggctttgc	tagaaaactt	ggtagcagga	aatgtgtaca	ttgtcaagat	atctgcatcc	2460
	aatgaggtgg	gagaaggacc	cttttcaaat	tctgtggagc	tggcagtact	tccaaaggaa	2520
•	acctctgaat	caaatcagag	gcccaagcgt	ttagattctg	ctgatgccaa	agtttattca	2580
•	ggatattacc	atctggacca	aaaatcaatg	actggcattg	ctgtaggtgt	tggcatagcc	2640
1	ttgacctgca	tcctcatctg	tgttctcatc	ttgatatacc	gaagtaaagc	caggaaatca	2700
1	tctgcttcca	agacggcaca	gaatggaact	caacagttac	ctcgtaccag	tgcctcctta	2760
•	gctagtggaa	atgaggtagg	aaagaacctg	gaaggagctg	taggaaatga	agaatcttta	2820
•	atgccaatga	tcatgccaaa	cagcttcatt	gatgcaaagg	gaggaactga	cctgataatt	2880
ŧ	aatagctatg	gtcctataat	taaaaacaac	tctaagaaaa	agtggttttt	tttccaagac	∵2940
1	tcaaagaaga	tacaagttga	gcagcctcaa	agaagattta	ctccagcggt	ctgcttttac	3000
(	cagccaggca	ccactgtatt	aatcagtgat	gaagactccc	ctagctcccc	aggtcagaca	3060
ŧ	accagettet	caagaccctt	tggtgttgca	gctgatacag	aacattcagc	aaatagtgaa	3120
9	gcagccatg	agactgggga	ttctgggcgg	ttttctcatg	agtccaacga	tgagatacat	3180
•	etgtcctcag	ttataagtac	CACACCCCCC	aacctctga			3219

<210> SEQ ID NO 18 <211> LENGTH: 1072 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<40	0> S	EQUE	NCE:	18											
Met 1	Ser	Glu	Asn	Lys 5	Arg	Ile	Glu	Val	Leu 10	Ser	Asn	Gly	Ser		Tyr
Île	Ser	Glu	Val 20	Glu	Gly	Arg	Arg	Gly 25	Glu	Gln	Ser	Авр	Glu 30	Gly	Phe
Tyr	Gln	Сув 35	Leu	Ala	Met	Asn	Lys 40	Tyr	Gly	Ala	Ile	Leu 45	Ser	·Gln	Lys
Ala	His 50	Leu	Ala	Leu	Ser	Thr 55	Ile	Ser	Ala	Phe	Glu 60	Val	Gln	Pro	Ile
Ser 65	Thr	Glu	Val	His	Glu 70	Gly	Gly	Val	Ala	Arg 75	Phe	Ala	Сув	Lys	Ile 80
Ser	Ser	His	Pro	Pro 85	Ala	Val	Ile	Thr	Trp 90	Glu	Phe	Asn	Arg	Thr 95	Thr
Leu	Pro	Met	Thr 100	Met	Asp	Arg	Ile	Thr 105	Ala	Leu	Pro	Thr	Gly 110	Val	Leu
Gln	Ile	Tyr 115	Asp	Val	Ser	Gln	Arg 120	Авр	Ser	Gly	Asn	Туг 125	Arg	Сув	Ile
Ala	Ala 130	Thr	Val	Ala	His	Arg 135	Arg	Lys	Ser	Met	Glu 140	Ala	Ser	Leu	Thr
Val 145	Ile	Pro	Ala	Lys	Glu 150	Ser	Lys	Ser	Phe	Нів 155	Thr	Pro	Thr	Ile	Ile 160
Ala	Gly	Pro	Gln	Asn 165	Ile	Thr	Thr	Ser	Leu 170	His	Gln	Thr	Val	Val 175	Leu
Glu	Cys	Met	Ala 180	Thr	Gly	Asn	Pro	Lys 185	Pro	Ile	Ile	Ser	Trp 190	Ser	Arg
Leu	Asp	Нів 195	Lys	Ser	Ile	qaA	Val 200	Phe	Asn	Thr	Arg	Val 205	Leu	Gly	Asn
Gly	Asn 210	Leu	Met	Ile	Ser	Asp 215	Val	Arg	Leu	Gln	His 220	Ala	Gly	Val	Tyr
Val 225	Сув	Arg	Ala	Thr	Thr 230	Pro	Gly	Thr	Arg	Asn 235	Phe	Thr	Val	Ala	Met 240
Ala	Thr	Leu	Thr	Val 245	Leu	Ala	Pro	Pro	Ser 250	Phe	Val	Glu	Trp	Pro 255	Glu
Ser	Leu	Thr	Arg 260	Pro	Arg	Ala	Gly	Thr 265	Ala	Arg	Phe	Val	Сув 270	Gln	Ala
Glu	Gly	Ile 275	Pro	Ser	Pro	Lув	Met 280	Ser	Trp	Leu	Lys	Asn 285	Gly	Arg	Lys
Ile	His 290	Ser	Asn	Gly	Arg	Ile 295	Lys	Met	Tyr	Asn	Ser 300	Lys	Leu	Val	Ile
Asn 305	Gln	Ile	Ile	Pro	Glu 310	Asp	Авр	Ala	Ile	Tyr 315	Gln	Сув	Met	Ala	Glu 320 .
Asn	Ser	Gln	Gly	Ser 325	Ile	Leu	Ser	Arg	Ala 330	Arg	Leu	Thr	Val	Val 335	Met
Ser	Glu	Asp	Arg 340	Pro	Ser	Ala	Pro	Tyr 345	Asn	Val	His	Ala	Glu 350	Thr	Met
Ser	Ser	Ser 355	Ala	Ile	Leu	Leu	Ala 360	Trp	Glu	Arg	Pro	Leu 365	Tyr	Asn	Ser
Asp	Lys 370	Val	Ile	Ala	Tyr	Ser 375	Val	His	Tyr	Met	180 380	Ala	Glu	Gly	Leu
Asn 385	Asn	Glu	Glu	Tyr	Gln 390	Val	Val	Ile	Gly	Авп 395	Asp	Thr	Thr	His	Tyr 400
Ile	Ile	Asp	Asp	Leu	Glu	Pro	Ala	Ser	Asn	Tyr	Thr	Phe	Tyr	Ile	Val

											_	-001		ueu	•
-				405	i			.,	410	1				415	
Ala	Tyr	: Met	Pro 420		Gly	Ala	Ser	Gln 425		Ser	Asp	His	Val 430		Gln
Asn	Thr	Leu 435		Asp	Val	Pro	Leu 440		Pro	Pro	Glu	Ile 445		Leu	Thr
Ser	Arg 450		Pro	Thr	Asp	11e 455	Leu	Ile	Ser	Trp	Leu 460		Ile	Pro	Ala
Lув 465		Arg	Arg	Gly	Gln 470	Val	Val	Leu	Tyr	Arg 475		Ser	Phe	Arg	Leu 480
Ser	Thr	Glu	Asn	Ser 485		Gln	Val	Leu	Glu 490		Pro	Gly	Thr	Thr 495	
Glu	Tyr	Leu	Leu 500	Glu	Gly	Leu	Lув	Pro 505	Ąsp	Ser	Val	Tyr	Leu 510	Val	Arg
Ile	Thr	Ala 515	Ala	Thr	Arg	Val	Gly 520		Gly	Glu	Ser	5er 525	Val	Trp	Thr
Ser	Нів 530	Arg	Thr	Pro	Lys	Ala 535	Thr	Ser	Val	Lys	Ala 540	Pro	Lys	Ser	Pro
Glu 545	Leu	His	Leu	Glu	Pro 550	Leu	Asn	Сув	Thr	Thr 555	Ile	Ser	Val	Arg	Trp 560
Gln	Gln	Asp	Val	Glu 565	Asp	Thr	Ala	Ala	Ile 570	Gln	Gly	Tyr	Lys	Leu 575	Tyr
Tyr	Lув	Glu	Glu 580	Gly	Gln	Gln	Glu	Asn 585	Gly	Pro	Ile	Phe	Leu 590	Asp	Thr
Lys	Asp	Leu 595	Leu	Tyr	Thr	Leu	Ser 60,0	Gly	Leu	Авр	Pro	Arg 605	Arg	Lys	Tyr
His	Val 610	Arg	Leu	Leu	Ala	Tyr 615	naA	Asn	Ile	Asp	Asp 620	Gly	Tyr	Gln	Ala
Авр 625	Gln	Thr	Val	Ser	Thr 630	Pro	Gly	Сув	Val	Ser 635	Val	Arg	Asp	Arg	Met 640
Val	Pro	Pro	Pro	Pro 645	Pro	Pro	His	His	Leu 650	Tyr	Ala	Lys	Ala	Asn 655	Thr
Ser	Ser	Ser	Ile 660	Phe	Leu	His	Trp	Arg 665	Arg	Pro	Ala	Phe	Thr 670	Ala	Ala
Gln	Ile	Ile 675	Asn	Tyr	Thr	Ile	Arg 680	Сув	Asn	Pro	Val	Gly 685	Leu	Gln	Asn
Ala	Ser 690	Leu	Val	Leu	Tyr	Leu 695	Gln	Thr	Ser	Glu	Thr 700	His	Met	Leu	Val
31n 705	Gly	Leu	Glu	Pro	Asn 710	Thr	Lys	Tyr	Glu	Phe 715	Ala	Val	Arg	Leu	Нів 720
/al	Asp	Gln	Leu	Ser 725	Ser	Pro	Trp	Ser		Val		Tyr	His	Ser 735	Thr
Leu	Pro	Glu	Ala 740	Pro	Ala	Gly	Pro	Pro 745	Val	Gly	Val	Lys	Val 750	Thr	Leu
		<b>А</b> вр 755	_				760		_	_		765	•		
	770	Val				775					780				
85		Ala	Ī		790					795		-			800
		Leu		805					810			-		815	
le	Ser	Ala	Ser 820	Asn	Glu	Val		Glu 825	Gly	Pro	Phe		Asn 830	Ser	Val

														_	
Glu	Leu	Ala 835		Leu	Pro	Lys	Glu 840		Ser	Glu	Ser	Asn 845		Arg	Pro
	Arg 850		Asp	Ser	Ala	Авр 855		ГÄв	Val	Tyr	Ser 860		Tyr	Tyr	His
Leu 865		Gln	Lys	Ser	Met 870	Thr	Gly	Ile	Ala	Val 875		Val	Gly	Ile	Ala 880
Leu	Thr	Сув	Ile	Leu 885	Ile	Сув	Val	Leu	Ile 890	Leu	Ile	Tyr	Arg	Ser 895	Lys
Ala	Arg	Lys	Ser 900	Ser	Ala	Ser	Lys	Thr 905	Ala	Gln	Asn	Gly	Thr 910	Gln	Gln
Leu	Pro	Arg 915	Thr	Ser	Ala	Ser	Leu 920	Ala	Ser	Gly	Asn	Glu 925	Val	Gly	Lys
Asn	Leu 930	Glu	Gly	Ala	Val	Gly 935	Asn	Glu	Glu	Ser	Leu 940	Met	Pro	Met	Ile
Met 945	Pro	Asn	Ser	Phe	Ile 950	Asp	Ala	Lys	Gly	Gly 955	Thr	Asp	Leu	Ile	Ile 960
Asn	Ser	Tyr	Gly	Pro 965	Ile	Ile	Lys	Asn	Asn 970	Ser	Lув	Lys	Lys	Trp 975	Phe
Phe	Phe	Gln	Asp 980	Ser	Lys	Lys	Ile	Gln 985	Val	Glu	Gln	Pro	Gln 990	Arg	Arg
Phe	Thr	Pro 995	Ala	Val	Cys	Phe	Tyr 1000		Pro	Gly	Thr	Thr 1005	Val	Leu	Ile
Ser	Asp 1010		Авр	Ser	Pro	Ser 1015		Pro	Gly	Gln	Thr 1020		Ser	Phe	Ser
Arg 1025		Phe	Gly	Val	Ala 1030		qaA	Thr	Glu	His 1035		Ala	Asn	Ser	Glu 1040
Gly	Ser	His	Glu	Thr 1045		Asp	Ser		<b>A</b> rg 1050		Ser	His	Glu	Ser 1055	
Asp	Glu	Ile	Нів 1060		Ser	Ser	Val	Ile 1065		Thr	Thr	Pro	Pro 1070		Leu
		Q ID							•						

<210> SEQ 1D NO 15 <211> LENGTH: 2724 <212> TYPE: DNA <213> ORGANISM: homo sapiens

### <400> SEQUENCE: 19

atgtctgaaa	ataaacggat	cgaggttctt	tctaacggct	ctttatacat	cagtgaggtg	60
gaaggcaggc	gaggagagca	gtccgatgaa	ggattttatc	agtgcttggc	aatgaacaaa	120
tatggagcca	ttcttagtca	assagetest	cttgccttat	caactatttc	tgcatttgaa	180
gtccagccaa	tttccactga	ggtccacgaa	ggtggagttg	ctcgatttgc	atgcaagatt	240
tcatcccacc	ctcctgcagt	cataacatgg	gagttcaatc	ggacaactct	acctatgact	`: _300
atggacagga	taactgccct	accaacagga	gtattgcaga	tctatgatgt	cagccaaagg	360
gattctggaa	attatcgttg	tattgctgcc	actgtagccc	accgacgtaa	aagtatggag	420
gcctcgctaa	ctgtgattcc	agctaaggag	tcaaaatcct	tccacacacc	arcaattata	480
gcaggtccac	agaacataac	aacatctctt	catcagactg	tagttttgga	atgcatggcc	540
acaggaaatc	ccaaaccaat	catttcttgg	agccgccttg	atcacaaatc	cattgatgtc	600
tttaatactc	gggtacttgg	aaatggtaat	ctcatgatat	ctgatgtcag	gctacaacat	660
gctggagtat	atgtttgtcg	ggccactacc	cctggcacac	gcaactttac	agttgctatg	720
gcaactttaa	ctgtattagc	tcctccttca	tttgttgaat	ggccagaaag	tttaacaagg	780

cctcgagctg	gcactgctcg	atttgtgtgt	caggcagaag	gaatcccctc	tcccaagatg	840
tcatggttga	aaaatggaag	gaagatacat	tcgaatggta	gäattaaaat	gtacaacagt	900
aaattggtaa	ttaaccagat	tattcctgaa	gatgatgcta	tttatcagtg	catggctgag	960
aatagccaag	gatctatttt	atctagagcc	agactgactg	tagtgatgtc	agaagacaga	1020
cccagtgctc	cctataatgt	acatgctgaa	accatgtcaa	gctcagccat	tcttttagcc	1080
tgggagaggc	cactttataa	ttcagacaaa	gtcattgcct	attctgtaca	ctacatgasa	1140
gcagaaggtt	taaataatga	agagtatcaa	gtagtcatcg	gaaatgacac	aactcattat	1200
attattgatg	acttagagcc	tgccagcaat	tatactttct	acattgtagc	atatatgcca	1260
atgggagcca	gccagatgtc	tgaccatgtg	acacagaata	ctctagagga	tgaccccaga	1320
agaaaatatc	atgtgagact	cctggcttac	aacaacatag	acgatggcta	tcaggcagat	1380
cagactgtca	gcactccagg	atgcgtgtct	gttcgtgatc	gcatggtccc	tcctccacca	1440
ccaccccacc	atctctatgc	gaaggctaac	acctcatctt	ccatcttcct	gcactggagg	1500
aggcctgcat	tcaccgctgc	acaaatcatt	aactacacca	tccgctgtaa	tcctgttggc	1560
ctgcagaatg	cttctttggt	tctgtacctt	caaacatcag	aaactcacat	gttggttcaa	1620
ggtctagaac	Caaacaccaa	atacgaattt	gccgttcgat	tacatgtgga	tcagctttcc	1680
agtccttgga	gccctgtagt	ctaccattct	actcttccag	aagcaccagc	aggcccacca	1740
gttggagtaa	aagtgacatt	aatagaggat	gacactgccc	tggtttcttg	gaaaccccct	1800
gatggcccag	aaacagttgt	gacccgctat	actatcttat	atgcatctag	gaaggcctgg	1860
attgcaggag	agtggcaggt	cttacaccgt	gaaggggcaa	taaccatggc	tttgctagaa	1920
aacttggtag	caggaaatgt	gtacattgtc	aagatatctg	catccaatga	ggtgggagaa	1980
ggaccctttt	caaattctgt	ggagctggca	gtacttccaa	aggaaacctc	tgaatcaaat	2040
cagaggccca	agcgtttaga	ttctgctgat	gccaaagttt	attcaggata	ttaccatctg	2100
gaccaaaaat	caatgactgg	cattgctgta	ggtgttggca	tagccttgac	ctgcatcctc	2160
atctgtgttc	tcatcttgat	ataccgaagt	aaagccagga	aatcatctgc	ttccaagacg	2220
gcacagaatg	gaactcaaca	gttacctcgt	accagtgcct	ccttagctag	tggaaatgag	2280
gtaggaaaga	acctggaagg	agctgtagga	aatgaagaat	ctttaatgcc	aatgatcatg	2340
ccaaacagct	tcattgatgc	aaagggagga	actgacctga	taattaatag	ctatggtcct	2400
ataattaaaa	acaactctaa	gaaaaagtgg	tttttttcc	aagactcaaa	gaagatacaa	2460
gttgagcagc	ctcaaagaag	atttactcca	gcggtctgct	tttaccagcc	aggcaccact	2520
gtattaatca	gtgatgaaga	ctcccctagc	tccccaggtc	agacaaccag	cttctcaaga	2580
cctttggtg	ttgcagctga	tacagaacat	tcagcaaata	gtgaaggcag.	ccatgagact	2640
gggattctg	ggcggttttc	tcatgagtcc	aacgatgaga	tacatctgtc	ctcagttata	2700
agtaccacac	ccccaacct	ctga				2724

<210> SEQ ID NO 20 <211> LENGTH: 907 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<400> SEQUENCE: 20

Met Ser Glu Asn Lys Arg Ile Glu Val Leu Ser Asn Gly Ser Leu Tyr 1 5 10 15

Ile Ser Glu Val Glu Gly Arg Arg Gly Glu Gln Ser Asp Glu Gly Phe

_															
			20	)				25					30		
Ту	r Gl	n Cy 35		eu Al	a Me	t Asr	Ly 40	в Ту	r Gl	y Al	a Il	e Le 45	u Se	r Gl	n Lys
Al	а Ні 50		u Al	a Le	u Se	r Thr	11	e Se	r Al	a Ph	e Gl 60	u. Va	1 [.] G1	n Pr	o Ile
8e. 65	r Th	r Gl	u Va	l Hi	8 Gl	u Gly	Gl:	y Va	l Al	a Ar	g Ph	e Al	а Су	s Ly	s Ile 80
Se	r Se	r Hi	s Pr	o Pr 85	o Ala	a Val	Ile	e Th	r Trj 90	p <b>Gl</b> ı	ı Ph	e As	n Ar	g Th 95	r Thr
Le	ı Pr	o Me	t Th		t Ası	p Arg	Ile	● The 10:		a Let	ı Pr	o Th	r Gl		l Leu
Gli	ıIl	е Ту 11	r As 5	p Va	l Sei	r Gln	Arg 120		Sea	c Gly	Ası	125		Cy:	s Ile
Ala	130	a Th	r Va	l Ala	a Hie	135	Arg	Lys	S Ser	Met	140		a Se	Le	1 Thr
Va)	l Ile	e Pr	o Al	a Ly	3 Glu 150	ser	Lys	Ser	Phe	Hie 155		Pro	Th	: Ile	160
Ala	Gly	y Pr	o Gl	n Ası 165		Thr	Thr	Ser	Leu 170		Glr	Thr	Val	175	Leu 5
Glu	Сув	s Me	t Al. 18	a Thi	Gly	Asn	Pro	Lys 185		Ile	: Ile	e Ser	190		Arg
Leu	Asp	19:	s Ly:	s Ser	Ile	Авр	Val 200		Asn	Thr	Arg	Val 205		Gly	Asn
Gly	210	Lei	ı Met	t Ile	Ser	Asp 215	Val	Arg	Leu	Gln	His 220		Gly	Val	Tyr
Val 225	Сув	Arq	Ala	Thr	Thr 230	Pro	Gly	Thr	Arg	Asn 235	Phe	Thr	Val	Ala	Met 240
Ala	Thr	Let	Thi	245		Ala	Pro	Pro	Ser 250		Val	Glu	Trp	Pro 255	
Ser	Leu	Thi	260	Pro	Arg	Ala	Gly	Thr 265	Ala	Arg	Phe	Val	Сув 270	Gln	Ala
Glu	Gly	11e 275	Pro	Ser	Pro	Lys	Met 280	Ser	Trp	Leu	Lys	Asn 285	Gly	Arg	Lys
Ile	Нів 290	Ser	Asn	Gly	Arg	Ile 295	Lys	Met	Tyr	Asn	Ser 300	Lув	Leu	Val	Ile
Asn 305	Gln	Ile	Ile	Pro	Glu 310	Asp	Авр	Ala	Ile	Tyr 315	Gln	Сув	Met	Ala	Glu 320
Asn	Ser	Gln	Gly	Ser 325	Ile	Leu	Ser	Arg	Ala 330	Arg	Leu '	Thr	Val	Val 335	Met
Ser	Glu	Авр	Arg 340		Ser	Ala	Pro	Tyr 345	Asn	Val	His		Glu 350	Thr	Met
Ser	Ser	Ser 355	Ala	Ile	Leu	Leu	Ala 360	Trp	Glu	Arg	Pro	Leu 365	Tyr	Asn	Ser
Asp	Lys 370	Val	Ile	Ala	Tyr	Ser 375	Val	His	Tyr	Met	<b>Lys</b> 380	Ala	Glu	Gly	Leu
Asn 385	Asn	Glu	Glu	Tyr	Gln 390	Val	Val	Ile	Gly	Asn 395	Asp	Thr	Thr	His	Tyr 400
le	Ile	Asp	Asp	Leu 405	Glu	Pro i	Ala	Ser	Asn 410	Tyr	Thr	Phe	Tyr	Ile 415	Val
la	Tyr	Met	Pro 420	Met	Gly	Ala :		Gln 425	Met	Ser	Asp	His	Val 430	Thr	Gln
sn	Thr	Leu 435	Glu	Авр	Asp	Pro i	Arg 440	Arg	Lys	Tyr	His	Val 445	Arg	Leu	Leu

Al	а Ту 45	r As	n As	n Il	e Ası	Asj 455		у Ту	r Gli	n Ala	Ası 460		n Th	r Va	l Ser
Th:	r Pr	o G1	у су	s Va	1 Sei 470		l Ar	g Ası	p Ar	475		l Pr	o Pr	o Pr	Pro 480
Pro	Pr	o Hi	в Hi	s Le:	u Tyr 5	: Ala	Ly:	s Ala	490	n Thi	Ser	Se	r Se	r Ile 49	e Phe
Leu	ı Hi	8 Tr	p Ar 50	g Ar	g Pro	Ala	Phe	505	Ala	a Ala	Glr	ılı	e Il 51		ı Tyr
The	: Ile	e Ar 51		s Ası	n Pro	Val	Gl ₃ 520		Glr	Asr	Ala	5e:		u Val	l Leu
Tyr	530	ı Gl	n Th	r Sei	r Glu	Thr 535		Met	. Leu	val	Gln 540		y Le	a Glu	Pro
Авл 545	Thi	. Ly	в Ту	r Glu	1 Phe 550		Val	Arg	Leu	Hie 555		Ası	Gli	Leu	Ser 560
Ser	Pro	Tr	Se	565	Val	Val	Tyr	His	5 Ser		Leu	Pro	Glu	1 Ala 575	
Ala	Gly	Pro	580		Gly	Val	Lys	Val 585		Leu	Ile	Glu	1 <b>As</b> p		Thr
Ala	Leu	Va. 595		Trp	Lys	Pro	Pro 600		Gly	Pro	Glu	Thr 605		Val	Thr
Arg	Tyr 610	Thi	: Ile	e Leu	Tyr	Ala 615	Ser	Arg	Lys	Ala	Trp 620	Ile	Ala	Gly	Glu
Trp 625	Gln	Val	Leu	His	Arg 630	Glu	Gly	Ala	Ile	Thr 635	Met	Ala	Leu	Leu	Glu 640
Asn	Leu	Val	. Ala	Gly 645	Asn	Val	Tyr	Ile	Val 650	Lys	Ile	Ser	Ala	Ser 655	
Glu	Val	Gly	Glu 660		Pro	Phe	Ser	Asn 665	Ser	Val	Glu	Leu	Ala 670		Leu
Pro	Lys	Glu 675		Ser	Glu	Ser	Asn 680	Gln	Arg	Pro	Lys	Arg 685	Leu	Asp	Ser
Ala	Asp 690	Ala	Lys	Val	Tyr	Ser 695	Gly	Tyr	Tyr	His	Leu 700	Asp	Gln	Lys	Ser
705					Val 710					715					720
[le	Сув	Val	Leu	Ile 725	Leu	Ile	Tyr	Arg	Ser 730	Lys	Ala	Arg	Lys	Ser 735	Ser
			740		Gln			745					750		
		755			Gly		760		•			765			
	770				Ser	775					780				
85					Gly 790					795					800
le	Ile	Lys	Asn	Asn 805	Ser	Lys	Lys		Trp 810	Phe	Phe	Phe	Gln	<b>А</b> вр 815	Ser
ys	Lys	Ile	Gln 820	Val	Glu	Gln	Pro	Gln 825	Arg	Arg	Phe	Thr	Pro 830	Ala	Val
уs	Phe	Tyr 835	Gln	Pro	Gly		Thr 840	Val	Leu	Ile		Asp 845	<b>Glu</b>	Авр	Ser
	Ser 850	Ser	Pro	Gly	Gln '	Thr '	Thr	Ser	Phe		Arg :	Pro	Phe	Gly	Val

Ala Ala Asp Thr Glu His Ser Ala Asn Ser Glu Gly Ser His Glu Thr 865 870 875 880 Gly Asp Ser Gly Arg Phe Ser His Glu Ser Asn Asp Glu Ile His Leu 885 890 895

Ser Ser Val Ile Ser Thr Thr Pro Pro Asn Leu 900 905

<210> SEQ ID NO 21 <211> LENGTH: 2139 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 21

atgtcatgg	t tgaaaaatgg	aaggaagat	a cattegaate	gtagaattaa	aatgtacaac	60
agtaaattg	g taattaacca	gattattcc	gaagatgatg	ctatttatca	gtgcatggct	120
gagaatagc	c aaggatctat	tttatctage	gccagactga	ctgtagtgat	gtcagaagac	180
agacccagt	g ctccctataa	tgtacatgct	gaaaccatgt	caageteage	cattcttta	240
gcctgggaga	a ggccacttta	taattcagad	: aaagtcattg	cctattctgt	acactacatg	300
aagcagaa	g gtttaaataa	tgaagagtat	: caagtagtca	tcggaaatga	cacaactcat	360
atattatt	g atgacttaga	gcctgccago	aattatactt	tctacattgt	agcatatatg	420
caatgggag	g ccagccagat	gtctgaccat	gtgacacaga	atactctaga	ggatgttccc	480
tgagaccto	ctgaaattag	tttgacaagt	cgaagtccca	ctgatattct	catctcctgg	540
tgccaatco	cagccaaata	teggegggg	caagtggtgc	tgtatcgctt	gtctttccgc	600
taagtacto	, agaattcaat	ccaagttctg	gageteeegg	ggaccacgca	tgagtacctt	660
tggaaggco	tgaaacctga	cagtgtctac	ctggttcgga	ttactgctgc	caccagagtg	720
ggctgggag	agtcatcagt	atggacttca	cataggacgc	ccaaagctac	aagcgtgaaa	780
cccctaagt	ctccagagtt	gcatttggag	cctctgaact	gtaccaccat	ttctgtgagg	840
ggcagcaag	atgtagagga	cacagetget	attcagggct	acaagctgta	ctacaaggaa	900
aagggcagc	aggagaatgg	gcccattttc	ttggatacca	aggacctact	ctatactctc	960
gtggcttag	accccagaag	aaaatatcat	gtgagactcc	tggcttacaa	caacatagac	1020
atggctatc	aggcagatca	gactgtcagc	actccaggat	gcgtgtctgt	tcgtgatcgc	1080
tggtccctc	ctccaccacc	accccaccat	ctctatgcga	aggctaacac	ctcatcttcc	1140
tcttcctgc	actggaggag	gcctgcattc	accgctgcac	aaatcattaa	ctacaccatc	1200
gctgtaatc	ctgttggcct	gcagaatgct	tctttggttc	tgtaccttca	aacatcagaa	1260
ctcacatgt	tggttcaagg	tctagaacca	aacaccaaat	acgaatttgc	cgttcgatta	1320
atgtggatc	agctttccag	tccttggagc	cctgtagtct	accattctac	tcttccagaa	1380
caccagcag	gcccaccagt	tggagtaaaa	gtgacattaa	tagaggatga	cactgccctg	1440
tttcttgga	aaccccctga	tggcccagaa	acagttgtga	cccgctatac	tatcttatat	1500
catctagga	aggcctggat	tgcaggagag	tggcaggtct	tacaccgtga	aggggcaata	1560
ccatggctt	tgctagaaaa	cttggtagca	ggaaatgtgt	acattgtcaa	gatatctgca	1620
ccaatgagg	tgggagaagg	accctttca	aattctgtgg	agctggcagt	acttccaaag	1680
aaacctctg	aatcaaatca	gaggcccaag	cgtttagatt	ctgctgatgc	caaagtttat	1740
aggatatt	accatctgga	ccaaaaatca	atgactggca	ttgctgtagg	tgttggcata	1800
cttgacct	gcatcctcat	ctgtgttctc	atcttgatat	accgaagtaa	agccaggaaa	1860

_																		
tc	atct	gctt	cca	agac	ggc	acag	aatg	ga a	ctca	acag	t ta	cctc	gtac	cag	tgcctc	c	192	0
tt	agct	agtg	gaa	atga	ggt	agga	aaga	ac c	tgga	agga	g ct	gtag	gaaa	tga	agaatc	ŧ.	1980	D
tt	aatg	ccaa	tga	tcat	gcc	aaac	agct	tc a	ttga	tgca	a ag	gtac	tgag	ctg	cgggat	t	2040	)
tg	ctgc	ataa	gcc	gttc	ttc	catt	cctc	ct c	cctg	tgtgl	gt	aaaa	tgta	ctt	cccca	a	2100	)
aa	ttgt	atgt	tga	atgt	att	atac	caat	ac t	ctta	ttaa							2139	,
<2 <2	<210> SEQ ID NO 22 <211> LENGTH: 712 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 22																	
<40	00> 8	EQUI	ENCE	22	•													
Met 1	: Se	Tr	p Le	u Ly	в Абі	n Gly	Arq	Ly	3 Ile 10	Hie	Sei	г Аві	n Gly	/ Arc	, Ile			
Lys	Met	ту	r As: 20	n Sei	r Ly	Let	val	l Ile 25	a Asr	ı Glm	Ile	e Ile	Pro 30	Gli	а Авр			
Asp	Ala	35	е Ту	r Glı	з Суя	s Met	Ala 40	a Glu	ı Asn	s Ser	Glr	Gly 45	/ Ser	: Ile	e Leu			
Ser	Arg 50	Ala	a Ar	j Let	Th:	7 Val	. Val	Met	Ser	Glu	Asp 60	Arg	Pro	Ser	Ala			
Pro 65	Туг	Ası	ı Val	l Hie	70	Glu	Thr	Met	Ser	Ser 75	Ser	Ala	Ile	Leu	Leu 80			
Ala	Trp	Glu	a Arg	Pro 85	Leu	Tyr	Asn	Ser	Asp 90	Lys	Val	Ile	Ala	Туг 95	Ser			
Val	His	Tyr	Met 100		Ala	Glu		Leu 105	Asn	Asn	Glu	Glu	Tyr 110		Val			•
Val	Ile	Gly 115	/ Asn	Asp	Thr	Thr	His 120		Ile	Ile	Asp	Asp 125		Glu	Pro			
Ala	Ser 130		Туг	Thr	Phe	Tyr 135		Val	Ala	Tyr	Met 140		Met	Gly	Ala			
Ser 145	Gln	Met	Ser	Asp	His 150	Val	Thr	Gln	Asn	Thr 155	Leu	Glu	Авр	Val	Pro 160			
Leu	Arg	Pro	Pro	Glu 165		Ser	Leu	Thr	Ser 170	.Arg	Ser	Pro	Thr	Авр 175	Ile			
Leu	Ile	Ser	Trp 180		Pro	Ile	Pro	Ala 185	Lys	Tyr	Arg	Arg	Gly 190	Gln	Val			
Val	Leu	Tyr 195		Leu	Ser	Phe	Arg 200	Leu	Ser	Thr	Glu	Asn 205	Ser	Ile	Gln			
Val	Leu 210	Glu	Leu	Pro	Gly	Thr 215	Thr	His	Glu	Tyr	Leu 220	Leu	Glu	Gly	Leu			
Lys 225	Pro	Asp	Ser	Val	Tyr 230	Leu	Val	Arg	Ile	Thr 235	Ala	Ala	Thr	Arg	Val 240			٠
Gly	Leu	Gly	Glu	Ser 245	Ser	Val	Trp	Thr	Ser 250	His	Arg	Thr	Pro	Lув 255	Ala	• •	•	
Thr	Ser	Val	<b>Lув</b> 260	Ala	Pro	Lys	Ser	Pro 265	Glu	Leu	His	Leu	Glu 270	Pro	Leu			
Asn	Cys	Thr 275	Thr	Ile	Ser	Val	Arg 280	Trp	Gln	Gln	Asp	Val 285	Glu	Авр	Thr			
Ala	Ala 290	Ile	Gln	Gly	Tyr	Lys 295	Leu	Tyr	Tyr	Lув	Glu 300	Glu	Gly	Gln	Gln			
31u 305	Asn	Gly	Pro	Ile	Phe 310	Leu	Авр	Thr	Lys	Asp 315	Leu	Leu	Tyr	Thr	Leu 320			
er	Gly	Leu	Asp	Pro	Arg	Arg	Lys	Tyr	His	Val	Arg	Leu	Leu	Ala	Tyr			

													-001	1011	lucu	
					325	5				330	)				335	5
	Asr	Asr	ılle	340		Gly	Tyr	Glr	Ala 345		Glr	Thr	· Val	Ser 350		Pro
	Gly	Cya	355		. Val	Arg	Yet	Arg 360		Val	Pro	Pro	Pro 365		Pro	Pro
	His	His 370		туг	Ala	Lys	Ala 375		Thr	Ser	Ser	Ser 380		Phe	Leu	His
	Trp 385		, Ar	g Pro	Ala	Phe 390		Ala	Ala	Gln	11e 395		a Asn	Tyr	Thr	11e 400
	Arg	Cys	Asr	Pro	Val 405		Leu	Gln	Asn	Ala 410		Leu	Val	. Leu	Tyr 415	Leu
	Gln	Thr	Ser	Glu 420		His	Met	Leu	Val 425		Gly	Leu	Glu	Pro		Thr
	Lys	Tyr	Glu 435		Ala	Val	Arg	Leu 440		Val	Авр	Gln	Leu 445		Ser	Pro
	Trp	Ser 450		Val	Val	Tyr	His 455	Ser	Thr	Leu	Pro	Glu 460		Pro	Ala	Gly
	Pro 465		Val	Gly	Val	Lys 470		Thr	Leu	Ile	Glu 475		Asp	Thr	Ala	Leu 480
,	Val	Ser	Trp	Lys	Pro 485	Pro	Asp	Gly	Pro	Glu 490		Val	Val	Thr	Arg 495	Tyr
. '	Thr	Ile	Leu	Tyr 500	Ala	Ser	Arg	Lys	Ala 505	Trp	Ile	Ala	Gly	Glu 510	Trp	Gln
,	Val	Leu	His 515		Glu	Gly	Ala	Ile 520		Met	Ala	Leu	Leu 525	Glu	Asn	Leu
1	Val	Ala 530	Gly	Asn	Val	Tyr	Ile 535	Val	Lув	Ile	Ser	Ala 540	Ser	Asn	Glu	Val
	Gly 545	Glu	Gly	Pro	Phe	Ser 550	Asn	Ser	Val	Glu	Leu 555	Ala	Val	Leu	Pro	Lys 560
(	Glu	Thr	Ser	Glu	Ser 565	Asn	Gln	Arg	Pro	Lys 570	Arg	Leu	Asp	Ser	Ala 575	Asp
1	Ala	Lys	Val	Tyr 580	Ser	Gly	Tyr	Tyr	His 585	Leu	Asp	Gln	Lys	Ser 590	Met	Thr
(	3ly	Ile	Ala 595	Val	Gly	Val	Gly	Ile 600	Ala	Leu	Thr	Cys	Ile 605	Leu	Ile	Сув
7	/al	Leu 610	Ile	Leu	Ile	Tyr	Arg 615	Ser	Lys	Ala	Arg	Lys 620	Ser	Ser	Ala	Ser
	.ув 525	Thr	Ala	Gln	Asn	Gly 630	Thr	Gln	Gln	Leu	Pro 635	Arg	Thr	Ser	Ala	Ser 640
I	-eu	Ala	Ser	Gly	Asn 645	Glu	Val	Gly	Lys	Asn 650	Leu	Glu	Gly	Ala	Val 655	Gly
F	Asn	Glu	Glu	Ser 660	Leu	Met	Pro	Met	Ile 665	Met	Pro	Asn	Ser	Phe 670	Ile	Asp
P	la	Lys	Val 675	Leu	Ser	вұЭ	Gly	Ile 680	Сув	Сув	Ile	Ser	Arg 685	Ser	Ser	Ile
F	ro	Pro 690	Pro	Сув	Val	Сув	Lув 695	Met	Tyr	Phe	Pro	Gln 700	Asn	Сув	Met	Leu
	6n '05	Val	Leu	Tyr	Gln	Tyr 710	Ser	Tyr								
<	210	> SE	o ID	NO	23											

<210> SEQ ID NO 23 <211> LENGTH: 1875 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 23

<400> SEQ	UENCE: 23					
atggaagga	a gatacattc	g aatggtagaa	ttaaaatgt	a caacaggttt	aaataatgaa	60
gagtatcaa	g tagtcatcg	g aaatgacaca	actcattate	ttattgatga	cttagagcct	120
gccagcaat	t atactttcta	a cattgtagca	tatatgcca	tgggagccag	ccagatgtct	180
gaccatgtg	a cacagaata	tctagaggat	gttcccctg	a gacctcctga	aattagtttg	240
acaagtcga	a gtcccactga	tattctcatc	teetggetge	caatcccago	caaatatcgg	300
cggggccaa	g tggtgctgta	tegettgtet	ttccgcctaa	gtactgagaa	ttcaatccaa	360
gttctggag	c teceggggae	: cacgcatgag	taccttttgg	, aaggootgaa	acctgacagt	420
gtctacctg	g ttcggattac	tgctgccacc	agagtgggg	tgggagagtc	atcagtatgg	480
acttcacate	a ggacgcccaa	agctacaagc	gtgaaagccc	ctaagtotoo	agagttgcat	540
ttggagcctd	tgaactgtac	daccatttct	gtgaggtggc	agcaagatgt	agaggacaca	600
gctgctatto	agggctacaa	gctgtactac	aaggaagaag	ggcagcagga	gaatgggccc	660
attttctţg	g ataccaagga	cctactctat	actctcagtg	gcttagaccc	cagaagaaaa	720
tatcatgtga	gactcctggc	ttacaacaac	atagacgatg	gctatcaggc	agatcagact	780
gtcagcacto	: caggatgcgt	gtctgttcgt	gatcgcatgg	teceteetee	accaccaccc	840
caccatctct	atgcgaaggc	taacacctca	tcttccatct	tectgeactg	gaggaggcct	900
gcattcaccg	r ctgcacaaat	cattaactac	accatccgct	gtaatcctgt	tggcctgcag	960
aatgcttctt	tggttctgta	ccttcaaaca	tcagaaactc	acatgttggt	tcaaggtcta	1020
gaaccaaaca	ccaaatacga	atttgccgtt	cgattacatg	tggatcagct	ttccagtcct	1080
tggagccctg	tagtctacca	ttctactctt	ccagaagcac	cagcaggccc	accagttgga	1140
gtaaaagtga	cattaataga	ggatgacact	gccctggttt	cttggaaacc	ccctgatggc	1200
ccagaaacag	ttgtgacccg	ctatactatc	ttatatgcat	ctaggaaggc	ctggattgca	1260
ggagagtggc	aggtcttaca	ccgtgaaggg	gcaataacca	tggctttgct	agaaaacttg	1320
gtagcaggaa	atgtgtacat	tgtcaagata	tctgcatcca	atgaggtggg	agaaggaccc	1380
ttttcaaatt	ctgtggagct	ggcagtactt	ccaaaggaaa	cctctgaatc	aaatcagagg	1440
cccaagcgtt	tagattctgc	tgatgccaaa	gtttattcag	gatattacca	tctggaccaa	1500
aaatcaatga	ctggcattgc	tgtaggtgtt	ggcatagcct	tgacctgcat	cctcatctgt	1560
gttctcatct	tgatataccg	aagtaaagcc	aggaaatcat	ctgcttccaa	gacggcacag	1620
aatggaactc	aacagttacc	tcgtaccagt	gcctccttag	ctagtggaaa	tgaggtagga	1680
aagaacctgg	aaggagctgt	aggaaatgaa	gaatotttaa	tgccaatgat	catgccaaac	1740
agcttcattg	atgcaaaggt	actgagctgc	gggatttgct	gcataagccg	ttcttccatt	1800
cctcctccct	gtgtgtgtaa	aatgtacttc	ccccaaaatt	gtatgttgaa	tgtättatac	1860
caatactctt	attaa					1875

<210> SEQ ID NO 24 <211> LENGTH: 624 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<400> SEQUENCE: 24

Met Glu Gly Arg Tyr Ile Arg Met Val Glu Leu Lys Cys Thr Thr Gly 1 5 10 15

Leu Asn Asn Glu Glu Tyr Gln Val Val Ile Gly Asn Asp Thr Thr His

			20					25	i				30		
Туг	11	e Il 35		p As	p Le	u Gl	u Pr 40		a Se	er As	n Ty	r Th.	r Phe	туг	Ile
Va]	. Ala	а Ту	r Me	t Pr	o Me	t G1 55	y Al	a Se	r G1	n Me	t Se 60	r As	p Hie	Va]	Thr
Gln 65	Ası	n Th	r Le	u Gl	u Asj 70	y Va	l Pr	o Le	u Ar	g Pr 75	o Pr	o Gl	ı Ile	Ser	Leu 80
Thr	Sea	r Ar	g Se	r Pr 85		r Asj	p Ìl	e Le	u Il 90		r Tr	p Le	ı Pro	Ile 95	Pro
Ala	Lys	з Ту.	r Ar 10	g Ar O	g Gly	/ Gli	n Val	l Va 10	1 Le 5	и Ту	r Ar	J Le	Ser 110		Arg
Leu	Ser	Th:		u As	n Ser	Ile	9 Glr 120		l Le	u Gl	ı Let	1 Pro	Gly	Thr	Thr
His	Glu 130	Ty	Le	ı Le	u Glu	Gly 135	y Let	ı Ly	s Pr	o As	Ser 140		Tyr	Leu	Val
Arg 145	Ile	Thi	Ala	a Ale	Thr 150	Arq	y Val	Gl	y Le	u Gly 155		Ser	Ser	Val	Trp 160
Thr	Ser	Hie	a Ar	Th:		Lye	Ala	Th	r Se:		Lys	Ala	Pro	Lys 175	Ser
Pro	Glu	Lev	Hi:	s Let	ı Glu	Pro	Leu	185		s Thr	Thr	Ile	Ser 190	Val	Arg
Trp	Gln	Gln 195	Авд	Val	l Glu	Asp	Thr 200		a Ala	a Ile	Gln	Gly 205	Tyr	Lys	Leu
Tyr	Tyr 210	Lys	.Glu	Glu	Gly	Gln 215		Glu	Asr	ı Gly	Pro 220		Phe	Leu	Asp
Thr 225	Lys	Asp	Leu	Leu	230	Thr	Leu	Ser	Glj	/ Leu 235		Pro	Arg	Arg	Lys 240
Tyr	His	Val	Arg	Leu 245	Leu	Ala	Tyr	Asn	250		Asp	Asp	Gly	Tyr 255	Gln
Ala	Авр	Gln	Thr 260		Ser	Thr	Pro	Gly 265		Val	Ser	Val	Arg 270	Авр	Arg
Met	Val	Pro 275	Pro	Pro	Pro	Pro	Pro 280	His	His	Leu	Tyr	Ala 285	Lув	Ala	Asn
Thr	Ser 290	Ser	Ser	Ile	Phe	Leu 295	His	Trp	Arg	Arg	Pro 300	Ala	Phe	Thr	Ala
Ala 305	Gln	Ile	Ile	Asn	<b>Tyr</b> 310	Thr	Ile	Arg	Cys	Asn 315	Pro	Val	Gly	Leu	Gln 320
Asn	Ala	Ser	Leu	Val 325	Leu	Tyr	Leu	Gln	Thr 330		Glu	Thr	His	335	Leu
Val	Gln	Gly	Leu 340	Glu :	Pro	Asn	Thr	Lув 345	Tyr	Glu	Phe	Ala	Val .	Arg	Leu
His	Val	Asp 355	Gĺn	Leu	Ser	Ser	Pro 360	Trp	Ser	Pro	Val	Val 365	Tyr 1	Нiв	Ser
Thr :	Leu 370	Pro	Glu	Ala	Pro	Ala 375	Gly	Pro	Pro	Val	Gly 380	Val	Lys '	Val '	Thr
Leu : 385	Ile	Glu	Asp	Авр	Thr 390	Ala	Leu	Val	Ser	Trp 395	Lys	Pro	Pro i		31y 400
Pro (	Glu	Thr	Val	Val 405	Thr	Arg	Tyr	Thr	Ile 410	Leu	Tyr	Ala		Arg 1	Lys
Ala :	rp	Ile	Ala 420	Gly	Glu	Trp		Val 425	Leu	His	Arg		Gly 2 430	Ala:	[le
Thr 1	let .	Ala 435	Leu	Leu	Glu .	Asn	Leu 440	Val	Ala	Gly		Val 445	Tyr 1	lle v	/al

 Lys
 Ile
 Ser
 Ala
 Ser
 Asn
 Glu
 Val
 Glu
 Glu
 Glu
 Pro
 Asn
 Ser
 Asn
 Asn</th

<210> SEQ ID NO. 25

<211> LENGTH: 1644

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 25

atgtcatggt tgaaaaatgg aaggaagata cattcgaatg gtagaattaa aatgtacaac agtaaattgg taattaacca gattattcct gaagatgatg ctatttatca gtgcatggct 120 gagaatagcc aaggatctat tttatctaga gccagactga ctgtagtgat gtcagaagac 180 agacccagtg ctccctataa tgtacatgct gaaaccatgt caagctcagc cattctttta gcctgggaga ggccacttta taattcagac aaagtcattg cctattctgt acactacatg 300 aaagcagaag gtttaaataa tgaagagtat caagtagtca tcggaaatga cacaactcat 360 tatattattg atgacttaga gcctgccagc aattatactt tctacattgt agcatatatg 420 ccaatgggag ccagccagat gtctgaccat gtgacacaga atactctaga ggatgacccc 480 agaagaaaat atcatgtgag actootggot tacaacaaca tagacgatgg ctatcaggca 540 gatcagacty teageactee aggatgegty tetyttegty ategeatygt ecetecteea ccaccacccc accateteta tgcgaagget aacaceteat ettecatett cetgeactgg 660 aggaggcctg cattcaccgc tgcacaaatc attaactaca ccatccgctg taatcctgtt 720 ggcctgcaga atgcttcttt ggttctgtac cttcaaacat cagaaactca catgttggtt 780 caaggtctag aaccaaacac caaatacgaa tttgccgttc gattacatgt ggatcagctt 840 tccagtcctt ggagccctgt agtctaccat tctactcttc cagaagcacc agcaggccca 900 ccagttggag taaaagtgac attaatagag gatgacactg ccctggtttc ttggaaaccc 960 cctgatggcc cagaaacagt tgtgacccgc tatactatct tatatgcatc taggaaggcc 1020 tggattgcag gagagtggca ggtcttacac cgtgaagggg caataaccat ggctttgcta 1080 gaaaacttgg tagcaggaaa tgtgtacatt gtcaagatat ctgcatccaa tgaggtggga 1140

	gaa	agga	ccct	ttt	caaa	ttc	tgtg	gagc	tg g	cagt	actt	c ca	aagg	aaac	ctc	tgaato	a	1200
	aat	cag	aggc	cca	agcg	ttt	agat	tctg	ct g	atgo	caaa	g tt	tatt	cagg	ata	ttacca	t	1260
	ct	ggac	caaa	aat	caat	gac	tggc	attg	ct g	tagg	tgtt	ggc	atag	cctt	gac	ctgcat	c	1320
	cto	atc	tgtg	ttc	tcat	ctt	gata	tacc	ga a	gtaa	agcc	a gg	aaat	catc	tgc	ttccaa	g	1380
	acq	gca	caga	atg	gaac	tca d	acag	ttac	ct c	gtac	cagt	g cc	tccti	tagc	tag	tggaaa	t	1440
	gag	gtag	ggaa	aga	acct	gga d	agga	gctg	ta g	gaaa	tgaag	g aat	tctt	taat	gcc	aatgat	С	1500
	ato	jcca (	aca	gct	tcat	tga 1	tgca	aagg	ta ci	tgago	ctgc	ggg	attt	gctg	cat	aagccg	t	1560
	tct	tcc	ttc	ctc	ctcc	etg 1	tgtg	tgta	aa at	tgtad	cttcc	ccc	caaa	attg	tate	gttgaa	t	1620
	gta	ttat	acc	aat	acte	tta 1	ttaa											1644
	<210> SEQ ID NO 26 <211> LENGTH: 547 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 26  Met Ser Trp Leu Lys Asn Gly Arg Lys Ile His Ser Asn Gly Arg Ile																	
			_			Asr	ı Glv	/ Arc	ı Lve	ille	. His	Ser	Asn	Glv	Arc	ı Ile		
	1		•		5				, -1-	10					15	,		
	Lys	Met	Туг	20	ı Ser	Lys	Leu	ı Val	. Ile 25	Asn	Gln	Ile	lle	30	Glu	а Авр		
	Asp	Ala	11e 35	туг	Gln	Сув	Met	Ala 40	Glu	Asn	Ser	Gln	Gly 45	Ser	Ile	Leu		
	Ser	Arg 50	Ala	Arg	Leu	Thr	Val 55	Val	. Met	Ser	Glu	Asp 60	Arg	Pro	Ser	Ala		•
	Pro 65	Tyr	Asn	Val	Hia	Ala 70	Glu	Thr	Met	Ser	Ser 75	Ser	Ala	Ile	Leu	Leu 80		
	Ala	Trp	Glu	Arg	Pro 85	Leu	Tyr	Asn	Ser	<b>A</b> sp	Lys	Val	Ile	Ala	Tyr 95	Ser		
	Val	His	Tyr	Met 100		Ala	Glu	Gly	Leu 105		Asn	Glu	Glu	Tyr 110		Val		
	Val	Ile	Gly 115		Asp	Thr	Thr	His 120	_	Ile	Ile	Авр	Авр 125	Leu	Glu	Pro		
	Ala	Ser 130	Asn	Tyr	Thr	Phe	Tyr 135	Ile	Val	Ala	Tyr	Met 140	Pro	Met	Gly	Ala		
	Ser 145	Gln	Met	Ser	Ąsp	His 150	Val	Thr	Gln	Asn	Thr 155	Leu	Glu	Asp	Asp	Pro 160		
	Arg	Arg	Lys	Tyr	His 165	Val	Arg	Leu	Leu	Ala 170		naA	Asn	Ile	<b>А</b> вр 175			
	Gly	Tyr	Gln	Ala 180	Asp	Gln	Thr	Val	Ser 185	Thr	Pro	Gly	Сув	Val 190	Ser	Val		
	Arg	Asp	Arg 195	Met	Val	Pro	Pro	Pro 200	Pro	Pro	Pro	His	His 205	Leu	Tyr	Ala		`* •.
	Lys	Ala 210	Asn	Thr	Ser	Ser	Ser 215	Ile	Phe	Leu	His	Trp 220	Arg	Arg	Pro	Ala		
	Phe 225	Thr	Ala	Ala	Gln	Ile 230	Ile	Asn	Tyr	Thr	11e 235	Arg	Сув	Asn	Pro	Val 240		
	Gly	Leu	Gln	Asn	Ala 245	Ser	Leu	Val	Leu	Tyr 250	Leu	Gln	Thr	Ser	Glu 255	Thr		
1	His	Met	Leu	Val 260	Gln	Gly	Leu	Glu	Pro 265	Asn	Thr	Lys	Tyr	Glu 270	Phe	Ala		
		_																

Val Arg Leu His Val Asp Gln Leu Ser Ser Pro Trp Ser Pro Val Val

		275					280					285				
Ту	Hie 290		Thr	Leu		Glu 295		Pro	Ala	Gly	Pro 300		Val	Gly	Val	
Ly:		Thr	Leu	Ile	Glu 310	Asp	Авр	Thr	Ala	Leu 315		Ser	Trp	Lys	Pro 320	
Pro	Авр	Gly	Pro	Glu 325		Val	Val	Thr	Arg 330	Tyr	Thr	Ile	Leu	Tyr 335	Ala	
Ser	Arg	Lys	Ala 340	Trp	Ile	Ala	Gly	Glu 345	Trp	Gln	Val	Leu	His 350		Glu	
Gly	Ala	Ile 355	Thr	Met	Ala	Leu	Leu 360	Glu	Asn	Leu	Val	Ala 365	Gly	naA	Val	
Туг	11e 370	Val	Lys	Ile	Ser	Ala 375	Ser	Asn	Glu	Val	Gly 380	Glu	Gly	Pro	Phe	
Ser 385		Ser	Val	Glu	Leu 390	Ala	Val	Leu	Pro	Lув 395	Glu	Thr	Ser	Glu	Ser 400	
Asn	Gln	Arg	Pro	Lув 405	Arg	Leu	Asp	Ser	Ala 410	Asp	Ala	Lys	Val	Tyr 415	Ser	
Gly	Tyr	Tyr	His 420	Leu	Авр	Gln	Lys	Ser 425	Met	Thr	Gly	Ile	Ala 430	Val	Gly	
Val		Ile 435	Ala	Leu	Thr	Сув	Ile 440	Leu	Ile	Сув	Val	Leu 445	Ile	Leu	Ile	
Tyr	Arg 450	Ser	Lув	Ala	Arg	Lys 455	Ser	Ser	Ala	Ser	Lув 460	Thr	Ala	Gln	Asn	
Gly 465		Gln	Gln		Pro 470	Arg	Thr	Ser		Ser 475	Leu	Ala	Ser	Gly	Asn 480	
Glu	Val	Gly	Lys	Asn 485	Leu	Glu	Gly	Ala	Val 490	Gly	Asn	Glu	Glu	Ser 495	Leu	
Met	Pro	Met	Ile 500	Met	Pro	Asn	Ser	Phe 505	Ile	Asp	Ala	Lys	Val 510	Leu	Ser	
Сув	Gly	Ile 515	Сув	Сув	Ile	Ser	Arg 520	Ser	Ser	Ile	Pro	Pro 525	Pro	Сув	Val	
Сув	Lys 530	Met	Tyr	Phe	Pro	Gln 535	Asn	Сув	Met	Leu	Asn 540	Val	Leu	Tyr	Gln	
Tyr 545	Ser	Tyr														
<212	l> LE ?> TY	Q ID NGTH PE:	: 23 DNA	82	вар	iens										
<400	)> SE	QUEN	CE:	27			. •		٠.			,	٠.			
atg	catg	ıgt t	gaaa	aatg	g aa	ggaa	gata	cat	toga	atg	gtag	aatt	aa a	atgt	acaa	= 60
agta	aatt	gg t	aatt	aacc	a ga	ttat	tcct	gaa	gatg	atg	ctat	ttat	ca g	tgca	tggct	120
gage	atag	cc a	agga	tcta	t tt	tatc	taga	gcc	agac	tga	ctgt	agtg	at g	tcag	aagac	: 186
agad	ccag	ıtg c	tece	tata	a tg	taca	tgct	gaa	acca	tgt	caag	ctca	gc c	atto	tttte	· 240

gcctgggaga ggccacttta taattcagac aaagtcattg cctattctgt acactacatg

aaagcagaag gtttaaataa tgaagagtat caagtagtca tcggaaatga cacaactcat

tatattattg atgacttaga gcctgccagc aattatactt tctacattgt agcatatatg

ccaatgggag ccagccagat gtctgaccat gtgacacaga atactctaga ggatgttccc

ctgagacctc ctgaaattag tttgacaagt cgaagtccca ctgatattct catctcctgg

300

360

420

480

540

ctgccaatc	c cagccaaat	a tcggcgggg	c caagtggtg	c tgtatcgct	t gtctttccgc	600
ctaagtact	g agaattcaa	t ccaagttct	g gageteeeg	g ggaccacgc	a tgagtacctt	660
ttggaaggc	c tgaaacctg	a cagtgtcta	c ctggttcgg	a ttactgctg	c caccagagtg	720
gggctggga	g agtcatcag	t atggacttc	a cataggacg	c ccaaagcta	c aagcgtgaaa	780
gcccctaag	t ctccagagt	t gcatttggag	g cctctgaac	t gtaccacca	t ttctgtgagg	840
tggcagcaa	g atgtagagg	a cacagetge	t attcagggc	t acaagctgt	a ctacaaggaa	900
gaagggcag	c aggagaatg	g gcccattttc	ttggatacc	a aggacctact	t ctatactctc	960
					caacatagac	1020
gatggctate	aggcagatca	gactgtcago	actccagga	t gegtgtetgt	tegtgatege	1080
					ctcatcttcc	1140
					ctacaccatc	1200
					aacatcagaa	1260
	tggttcaagg					1320
	: agctttccag					1380
	gcccaccagt					1440
	aaccccctga					
						1500
	aggcctggat					1560
	tgctagaaaa					1620
	tgggagaagg					1680
	aatcaaatca					1740
	accatctgga					1800
gccttgacct	gcatcctcat	ctgtgttctc	atcttgatat	accgaagtaa	agccaggaaa	1860
tcatctgctt	ccaagacggc	acagaatgga	actcaacagt	tacctcgtac	cagtgcctcc	1920
ttagctagtg	gaaatgaggt	aggaaagaac	ctggaaggag	ctgtaggaaa	tgaagaatct	1980
ttaatgccaa	tgatcatgcc	aaacagcttc	attgatgcaa	agggaggaac	tgacctgata	2040
attaatagct	atggtcctat	aattaaaaac	aactctaaga	aaaagtggtt	tttttccaa	2100
gactcaaaga	agatacaagt	tgagcagcct	caaagaagat	ttactccagc	ggtctgcttt	2160
accagccag	gcaccactgt	attaatcagt	gatgaagact	cccctagete	cccaggtcag	2220
	tctcaagacc					2280
	atgagactgg					2340
	cagttataag	*		•		2382

<210> SEQ ID NO 28 <211> LENGTH: 793 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<400> SEQUENCE: 28

Met Ser Trp Leu Lys Asn Gly Arg Lys Ile His Ser Asn Gly Arg Ile 1 5 10 15

Lys Met Tyr Asn Ser Lys Leu Val Ile Asn Gln Ile Ile Pro Glu Asp 20 25 30

Asp Ala Ile Tyr Gln Cys Met Ala Glu Asn Ser Gln Gly Ser Ile Leu  $35 \ \ \, 40 \ \ \, 45$ 

Sea	- Ar	Al	a Ar	g Le	u Th	Va.	l Va	l Me	t Se	r Glu	Asj 60	Ar	Pr	o Sei	Ala
Pro	Ту	As:	n Va	l Hi	s Ala 70	ı Glı	Th.	r Me	t Se	r Sei	Sei	. Ala	ıIl	e Leu	Leu 80
Ala	Tr	Gl:	u Ar	g Pro	Leu	Tyi	As:	n Sei	r Asj 90	Lys	va]	Ile	al.	а Ту: 95	Ser
Val	. His	ту	r Met		s Ala	Glu	Gl ₂	y Let		а Авп	Glu	ı Glu	1 Ty:		val
Val	Ile	Gl ₂		n Asp	The	The	Hi:		: Ile	: Ile	Asp	Авр 125		ı Glu	Pro
Ala	Ser 130		ту	Thr	Phe	Tyr 135		e Val	Ala	Tyr	Met		Met	Gly	Ala
Ser 145		Met	: Se	Asp	His 150		Thi	Glr	Asr	Thr 155		Glu	Asp	Val	Pro 160
Leu	Arg	Pro	Pro	Glu 165		Ser	Lev	Thr	Ser 170		Ser	Pro	Thr	Asp 175	Ile
Leu	Ile	Ser	Trp 180		Pro	Ile	Pro	Ala 185		Tyr	Arg	Arg	Gly 190	Gln	Val
Val	Leu	Туг 195		Leu	Ser	Phe	Arg 200		Ser	Thr	Glu	Asn 205		Ile	Gln
Val	Leu 210		Leu	Pro	Gly	Thr 215		His	Glu	Tyr	Leu 220		Glu	Gly	Leu
<b>Lув</b> 225		ĄaĄ	Ser	Val	Tyr 230	Leu	Val	Arg	Ile	Thr 235	Ala	Ala	Thr	Arg	Val 240
Gly	Leu	Gly	Glu	Ser 245		Val	Trp	Thr	Ser 250		Arg	Thr	Pro	Lys 255	
Thr	Ser	Val	Lys 260	Ala	Pro	Lys	Ser	Pro 265	Glu	Leu	His	Leu	Glu 270	Pro	Leu
Asn	Сув	Thr 275		Ile	Ser	Val	Arg 280		Gln	Gln	Asp	Val 285	Glu	Asp	Thr
Ala	Ala 290	Ile	Gln	Gly	Tyr	Lys 295	Leu	Tyr	Tyr	Lys	Glu 300	Glu	Gly	Gln	Gln
Glu 305	Asn	Gly	Pro	Ile	Phe 310	Leu	Asp	Thr	Lув	Авр 315	Leu	Leu	Tyr	Thr	Leu 320
Ser	Gly	Leu	Asp	Pro 325	Arg	Arg	Lys	Tyr	His 330	Val	Arg	Leu	Leu	Ala 335	Tyr
Asn	Asn	Ile	Авр 340	Asp	Gly	Tyr	Gln	Ala 345	Asp	Gln	Thr	Val	Ser 350	Thr	Pro
Gly	Сув	Val 355	Ser	Val	Arg	Asp	Arg 360	Met	Val	Pro		Pro 365	Pro	Pro	Pro
His	Нів 370	Leu	Tyr	Ala	Lys	Ala 375	Asn	Thr	Ser	Ser	Ser 380	Ile	Phe	Leu	His
Trp 385	Arg	Arg	Pro	Ala	Phe 390	Thr	Ala	Ala	Gln	Ile 395	Ile	Asn	Tyr	Thr	Ile 400
Arg	Сув	Asn	Pro	Val 405	Gly	Leu	Gln	Asn	Ala 410	Ser	Leu	Val	Leu	Tyr 415	Leu
Gln	Thr	Ser	Glu 420	Thr	His	Met	Leu	Val 425	Gln	Gly	Leu	Glu	Pro 430	Asn	Thr
		435					440					445		Ser	
	Ser 450	Pro	Val	Val		Нів 455	Ser	Thr	Leu	Pro	Glu 460	Ala	Pro	Ala	Gly
Pro	Pro	Val	Gly	Val	Lys	Val	Thr	Leu	Ile	Glu	Asp	Asp	Thr	Ala	Leu

40.	,				470	'				4 /:	•				480	
Va]	l Ser		Lys	485		Asp	Gly	, Pro	Glu 490		r Val	. Val	Thi	Are 49	Tyr	:
Thr			Tyr 500	Ala	s Ser	Arg	Lye	505	Trp	Ile	Ala	Gly	Glu 510		Gln	•
Val	. Leu	His 515	Arg	Glu	Gly	Ala	Ile 520		Met	Als	Leu	Leu 525		Ası	1 Leu	
Val	Ala 530	Gly	Asn	Val	Tyr	Ile 535		Lys	Ile	Ser	Ala 540		Asn	Glu	val	
Gly 545	Glu	Gly	Pro	Phe	Ser 550	Asn	Ser	Val	Glu	Leu 555	Ala	Val	Leu	Pro	Lys 560	
Glu	Thr	Ser	Glu	Ser 565	Asn	Gln	Arg	Pro	Lys 570		Leu	Asp	Ser	Ala 575		
Ala	Lys	Val	Tyr 580	Ser	Gly	Tyr	Tyr	His 585	Leu	Asp	Gln	Lys	Ser 590		Thr	
Gly	Ile	Ala 595	Val	Gly	Val	Gly	Ile 600	Ala	Leu	Thr	Сув	11e 605		Ile	Сув	
Val	Leu 610	Ile	Leu	Ile	Tyr	Arg 615	Ser	Lys	Ala	Arg	Lys 620	Ser	Ser	Ala	Ser	
Lys 625	Thr	Ala	Gln	Asn	Gly 630	Thr	Gln	Gln	Leu	Pro 635	Arg	Thr	Ser	Ala	Ser 640	
Leu	Ala	Ser	Gly	Авп 645	Glu	Val	Gly	Lув	Asn 650	Leu	Glu	Gly	Ala	Val 655	Gly	•
Asn	Glu	Glu	Ser 660	Leu	Met	Pro	Met	Ile 665	Met	Pro	Asn	Ser	Phe 670	Ile	Asp	
Ala	Lys	Gly 675	Gly	Thr	Asp	Leu	Ile 680	Ile	Asn	Ser	Tyr	Gly 685	Pro	Ile	Ile	
Lys	<b>A</b> sn 690	Asn	Ser	Lys	Lув	Lys 695	Trp	Phe	Phe	Phe	Gln 700	Asp	Ser	Lys	Lys	
11e 705	Gln	Val	Glu	Gln	Pro 710	Gln	Arg	Arg	Phe	Thr 715	Pro	Ala	Val	Сув	Phe 720	
Tyr	Gln	Pro	Gly	Thr 725	Thr	Val	Leu	Ile	Ser 730	Asp	Glu	Asp	Ser	Pro 735	Ser	
Ser	Pro	Gly	Gln 740	Thr	Thr	Ser		Ser 745	Arg	Pro	Phe		Val 750	Ala	Ala	
Asp	Thr	Glu 755	His	Ser	Ala	Asn	Ser 760	Glu	Gly	Ser	His	Glu 765	Thr	Gly	Asp	
Ser	Gly 770	Arg	Phe :	Ser		Glu : 775	Ser	Asn .	Asp		Ile : 780	His	Leu	Ser	Ser	
Val 785	Ile	Ser '	Thr	Thr	Pro : 790	Pro i	Asn	Leu				٠				
																'8 x
<210:																
<212																
<213:	> OR	GANIS	SM: h	ото	sapi	lens										
<400:		-								- 4.		_,.				
												•			acaac	60
agta	aatt	gg ta	atta	acc	a gat	tatt	cct	gaag	gatga	atg (	ctatt	tate	ca g	tgca	tggct	120
															aagac	180
															tttta	240
gcct	ggag	ja gg	ccac	ttt	a taa	ttca	gac	aaag	gtcat	tg d	ctat	tctg	gt ac	cact	acatg	300

aaagcagaag	gtttaaataa	tgaagagtat	caagtagtca	tcggaaatga	cacaactcat	360
tatattattg	atgacttaga	gcctgccagc	aattatactt	tctacattgt	agcatatatg	420
ccaatgggag	ccagccagat	gtctgaccat	gtgacacaga	atactctaga	ggatgacccc	. 480
agaagaaaat	atcatgtgag	actcctggct	tacaacaaca	tagacgatgg	ctatcaggca	540
gatcagactg	tcagcactcc	aggatgcgtg	totgttogtg	atcgcatggt	ccctcctcca	600
ccaccacccc	accatctcta	tgcgaaggct	aacacctcat	cttccatctt	cctgcactgg	660
aggaggcctg	cattcaccgc	tgcacaaatc	attaactaca	ccatccgctg	teatcctgtt	720
ggcctgcaga	atgcttcttt	ggttctgtac	cttcaaacat	cagaaactca	catgttggtt	780
caaggtctag	aaccaaacac	caaatacgaa	tttgccgttc	gattacatgt	ggatcagctt	840
tccagtcctt	ggagccctgt	agtctaccat	tctactcttc	cagaagcacc	agcaggccca	900
ccagttggag	taaaagtgac	attaatagag	gatgacactg	ccctggtttc	ttggaaaccc	960
cctgatggcc	cagaaacagt	tgtgacccgc	tatactatct	tatatgcatc	taggaaggcc	1020
tggattgcag	gagagtggca	ggtcttacac	cgtgaagggg	caataaccat	ggctttgcta	1080
gaaaacttgg	tagcaggaaa	tgtgtacatt	gtcaagatat	ctgcatccaa	tgaggtggga	1140
gaaggaccct	tttcaaattc	tgtggagctg	gcagtacttc	caaaggaaac	ctctgaatca	1200
aatcagaggc	ccaagcgttt	agattctgct	gatgccaaag	tttattcagg	atattaccat	1260
ctggaccaaa	aatcaatgac	tggcattgct	gtaggtgttg	gcatagcctt	gacctgcatc	1320
ctcatctgtg	ttctcatctt	gatataccga	agtaaagcca	ggaaatcatc	tgcttccaag	1380
acggcacaga	atggaactca	acagttacct	cgtaccagtg	cctccttagc	tagtggaaat	1440
gaggtaggaa	agaacctgga	aggagctgta	ggaaatgaag	aatctttaat	gccaatgatc	1500
atgccaaaca	gcttcattga	tgcaaaggga	ggaactgacc	tgataattaa	tagctatggt	1560
cctataatta	aaaacaactc	taagaaaaag	tggtttttt	tccaagactc	aaagaagata	1620
caagttgagc	agcctcaaag	aagatttact	ccagcggtct	gcttttacca	gccaggcacc	1680
actgtattaa	tcagtgatga	agactcccct	agctccccag	gtcagacaac	cagcttctca	1740
agaccctttg	gtgttgcagc	tgatacagaa	cattcagcaa	atagtgaagg	cagccatgag	1800
actggggatt	ctgggcggtt	ttctcatgag	tccaacgatg	agatacatct	gtcctcagtt	1860
ataagtacca	cacccccaa	cctctga				1887

<210> SEQ ID NO 30

<400> SEQUENCE: 30

Met Ser Trp Leu Lys Asn Gly Arg Lys Ile His Ser Asn Gly Arg Ile 1 10 15

Lys Met Tyr Asn Ser Lys Leu Val Ile Asn Gln Ile Ile Pro Glu Asp  $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ 

Asp Ala Ile Tyr Gln Cys Met Ala Glu Asn Ser Gln Gly Ser Ile Leu  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Ser Arg Ala Arg Leu Thr Val Val Met Ser Glu Asp Arg Pro Ser Ala 50  $\phantom{000}$  60

Pro Tyr Asn Val His Ala Glu Thr Met Ser Ser Ser Ala Ile Leu Leu 65 70 75 80

Ala Trp Glu Arg Pro Leu Tyr Asn Ser Asp Lys Val Ile Ala Tyr Ser

<211> LENGTH: 628

<212> TYPE: PRT

<213> ORGANISM: homo sapiens

_			_	_												
					85					90					95	
Va	1 ні	.s ?	fyr	Met 100	Ly	s Al	a Gl	u Gl	y Le 10	u As 5	п Ав	n Gl	u Gl	и Ту 11		n Val
Va	1 11	e (	31y 115	Asn	Asj	P Th	r Th	r Hi		r Il	e Il	e As	р Авр 12		u Gl	u Pro
Al	a Se 13	r 7	len	Tyr	Thi	r Ph	e Ty:	r Ile	e Va	l Al	а Ту	r Me		o Me	t Gl	y Ala
Se 14	r G1	n M	let	Ser	Ası	Hi:	s Val	l Thi	r Gli	n As	n Th 15		u Glu	ı As	aA q	P Pro 160
Ar	g Ar	g L	yв	Tyr	Hie 165	Va:	l Arg	Leu	ı Let	1 Al	а Ту: 0	r Ası	n Asr	ıIl	e As ₁	p Asp
Gl	, Ту	r G	ln	Ala 180	Asp	Gli	1 Thr	Val	l Se:		r Pr	o Gly	y Cys	Va:		r Val
Arq	j As	р A 1	rg .95	Met	Val	Pro	Pro	200		Pr	o Pro	Hi:	Hie 205		ı Tyı	r Ala
Lye	8 Al 21	a A 0	sn	Thr	Ser	Sez	Ser 215		Phe	Let	ı Hie	220		Arg	J Pro	Ala
Phe 225	Th	r A	la	Ala	Gln	11e	Ile	Asn	Туг	Thi	11e 235		Сув	Asr	Pro	Val 240
Gly	Le	ı G	ln.	Asn	Ala 245	Ser	Leu	Val	. Leu	Ty:		Gln	Thr	Ser	Glu 255	Thr
His	Me	t L	eu '	Val 260	Gln	Gly	Leu	Glu	Pro 265		Thr	. Lys	Tyr	Glu 270		Ala
Val	Arg	7 L	eu : 75	His	Val	Asp	Gln	Leu 280	Ser	Ser	Pro	Trp	Ser 285		Val	Val
Tyr	Hi:	s Se	er '	Thr	Leu	Pro	Glu 295	Ala	Pro	Ala	Gly	Pro 300		Val	Gly	Val
Lys 305	Val	. Tì	hr 1	Leu	Ile	Glu 310	Asp	<b>A</b> ap	Thr	Ala	Leu 315	Val	Ser	Trp	Lys	Pro 320
Pro	Asp	, G	Ly 1	Pro	Glu 325	Thr	Val	Val	Thr	Arg 330		Thr	Ile	Leu	Tyr 335	
Ser	Arg	L	78 J	Ala 340	Trp	Ile	Ala	Gly	Glu 345	Trp	Gln	Val	Leu	His 350	Arg	Glu
Gly	Ala	11 35	le 1	Thr	Met	Ala	Leu	Leu 360	Glu	Asn	Leu	Val	Ala 365	Gly	Asn	Val
Tyr	11e 370	Va	1 I	ув	Ile	Ser	Ala 375	Ser	Asn	Glu	Val	Gly 380	Glu	Gly	Pro	Phe
Ser 385	Asn	Se	r V	al (	Glu	Leu 390	Ala	Val	Leu	Pro	Lys 395	Glu	Thr	Ser	Glu	Ser 400
Asn	Gln	Ar	g P		Lys 405	Arg	Leu	Asp	Ser ·.	Ala 410	Авр	Ala	Lys	Val	Туг 415	Ser
Gly	Tyr	ту	r H 4	is 1	Leu	Авр	Gln	Lys	Ser 425	Met	Thr	Gly	Ile	Ala 430	Val	Gly
/al	Gly	I1 43	е A 5	la 1	Leu	Thr	Сув	Ile 440	Leu	Ile	Сув	Val	Leu 445	Ile	Leu	Ile
ľyr	Arg 450	Se	r L	ув 2	Ala	Arg	Lys 455	Ser	Ser	Ala	Ser	Lys 460	Thr	Ala	Gln	Asn
31y 165	Thr	Gl	n G	ln I		Pro 470	Arg	Thr	Ser	Aļa	Ser 475	Leu	Ala	Ser	Gly	Asn 480
lu	Val	Gl:	y L	ys <i>I</i>	Asn 185	Leu	Glu	Gly	Ala	Val 490	Gly	Asn	Glu	Glu	Ser 495	Leu
let	Pro	Me		le M Oo	let :	Pro	Asn		Phe 505	Ile	Авр	Ala		Gly 510	Gly	Thr

Asp Leu Ile Ile Asn Ser Tyr Gly Pro Ile Ile Lys Asn Asn Ser Lys 525

Lys Lys Trp Phe Phe Phe Gln Asp Ser Lys Lys Ile Gln Val Glu Gln 530

Pro Gln Arg Arg Phe Thr Pro Ala Val Cys Phe Tyr Gln Pro Gly Thr 550

Thr Val Leu Ile Ser Asp Glu Asp Ser Pro Ser Ser Pro Gly Gln Thr 575

Thr Ser Phe Ser Arg Pro Phe Gly Val Ala Ala Asp Thr Glu His Ser 580

Ala Asn Ser Glu Gly Ser His Glu Thr Gly Asp Ser Gly Arg Phe Ser Ser 595

His Glu Ser Asn Asp Glu Ile His Leu Ser Ser Val Ile Ser Thr Thr 610

Pro Pro Asn Leu 625

<210> SEQ ID NO 31
<211> LENGTH: 3874

<212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 31

tgcttctcgc gagcggccgt ccgagcacca gcctcgccgc cgcagagacg ctcgccacgc 60 cggtgccgga gccggagcgg ggagccaggc tgcgtgcgac cagccgcaga gcagagagcg. 120 cccqqqqcqq qqqccqcaqa cqqacaqqqq ctctqqqcqq ccqqqqqaqca tqcccqcqcq 180 gctacgctga atggcgcctc ctctgcgacc cctcgcccgg ctgcgaccgc cggggatgct 240 gctccgcgcg ctcctgctcc tgctgmtgct cagtcctttg ccaggagtgt ggtgctttag 300 cgaactgtct tttgtaaaag aaccacagga tgtaactgtc acaagaaagg acccagtcgt 360 tttagattgc caggetcacg gagaagttcc tattaaggtc acatggttga aaaatggagc 420 aaaaatgtot gaaaataaac ggatcgaggt totttotaac ggototttat acatcagtga 480 ggtggaaggc aggcgaggag agcagtccga tgaaggattt tatcagtgct tggcaatgaa 540 caaatatgga gccattctta gtcaaaaagc tcatcttgcc ttatcaacta tttctgcatt tgaagtccag ccaatttcca ctgaggtcca cgaaggtgga gttgctcgat ttgcatgcaa 660 gatttcatcc caccetectg cagteataac atgggagtte aateggacaa etetacetat 720 gactatggac aggataactg ccctaccaac aggagtattg cagatctatg atgtcagcca 780 aagggattet ggaaattate gttgtattge tgecactgta geccacegae gtaaaagtat 840 ggaggcctcg ctaactgtga ttccagctaa ggagtcaaaa tccttccaca caccarcaat 900 tatagcaggt ccacagaaca taacaacatc tcttcatcag actgtagttt tggaatgcat 960 ggccacagga aatcccaaac caatcatttc ttggagccgc cttgatcaca aatccattga 1020 tgtctttaat actcgggtac ttggaaatgg taatctcatg atatctgatg tcaggctaca 1080 acatgctgga gtatatgttt gtcgggccac tacccctggc acacgcaact ttacagttgc 1140 tatggcaact ttaactgtat tagctcctcc ttcatttgtt gaatggccag aaagtttaac 1200 aaggcctcga gctggcactg ctcgatttgt gtgtcaggca gaaggaatcc cctctcccaa 1260 gatgtcatgg ttgaaaaatg gaaggaagat acattcgaat ggtagaatta aaatgtacaa 1320 cagtasattg gtaattaacc agattattcc tgaagatgat gctatttatc agtgcatggc 1380

cyayaacayo caayyaccta tittatitag agecagacty actytagtga tytcagaaga	1440
cagacccagt getecetata atgtacatge tgaaaccatg teaageteag ceattettt	1500
agcctgggag aggccacttt ataattcaga caaagtcatt gcctattctg tacactacat	1560
gaaagcagaa ggtttaaata atgaagagta tcaagtagtc atcggaaatg acacaactca	1620
ttatattatt gatgacttag agcctgccag caattatact ttctacattg tagcatatat	1680
gccaatggga gccagccaga tgtctgacca tgtgacacag aatactctag aggatgttcc	1740
cotgagacot cotgaaatta gtttgacaag togaagtooc actgatatto toatotootg	1800
getgecaate ceagecaaat ateggegggg ceaagtggtg etgtateget tgtettteeg	1860
cctaagtact gagaattcaa tocaagttot ggagotocog gggaccacgo atgagtacot	1920
ttggaagge ctgaaacctg acagtgteta cetggttegg attactgetg ccaccagagt	1980
ggggctggga gagtcatcag tatggacttc acataggacg cccaaagcta caagcgtgaa	2040
speccetaag tetecagagt tgeatttgga geetetgaae tgtaccacca tttetgtgag	2100
tggcagcaa gatgtagagg acacagctgc tattcagggc tacaagctgt actacaagga	2160
gaagggcag caggagaatg ggcccatttt cttggatacc aaggacctac tctatactct	2220
agtggetta gaccecagaa gaaaatatea tgtgagaete etggettaca acaacataga	2280
gatggctat caggcagatc agactgtcag cactccagga tgcgtgtctg ttcgtgatcg	2340
atggteest cetecaceae caccecacea tetetatgeg aaggetaaca ceteatette	2400
atottoctg cactggagga ggcctgcatt caccgctgca caaatcatta actacaccat	2460
cgctgtaat cctgttggcc tgcagaatgc ttctttggtt ctgtaccttc aaacatcaga	2520
actcacatg ttggttcaag gtctagaacc aaacaccaaa tacgaatttg ccgttcgatt	2580
catgtggat cagctttcca gtccttggag ccctgtagtc taccattcta ctcttccaga	2640
gcaccagca ggcccaccag ttggagtaaa agtgacatta atagaggatg acactgccct	2700
gtttettgg aaaccccctg atggcccaga aacagttgtg acccgctata ctatettata	2760
gcatctagg aaggcctgga ttgcaggaga gtggcaggtc ttacaccgtg aaggggcaat	2820
accatgget ttgetagaaa acttggtage aggaaatgtg tacattgtea agatatetge	2880
tccaatgag gtgggagaag gaccetttte aaattetgtg gagetggeag taettecaaa	2940
gaaacctct gaatcaaatc agaggcccaa gcgtttagat tctgctgatg ccaaagttta	3000
traggatat taccatotgg accaaaaatc aatgactggc attgctgtag gtgttggcat	3060
geettgace tgcatectea tetgtgttet catettgata tacegaagta aageeaggaa	3120
treatriget tecamagacyg caragaming martemacag timeretegia compigere	3180
ttagctagt ggaaatgagg taggaaagaa cctggaagga gctgtaggaa atgaagaatc	3240
taatgcca atgatcatgc caaacagctt cattgatgca aagggaggaa ctgacctgat	3300
attaatago tatggtoota taattaaaaa caactotaag aaaaagtggt tttttttooa	3360
actcaaag aagatacaag ttgagcagcc tcaaagaaga tttactccag cggtctgctt	3420
accageca ggcaccactg tattaateag tgatgaagae teceetaget eeccaggtea	3480
caaccage tteteaagae cetttggtgt tgeagetgat acagaacatt cagcaaatag	3540
mangcage catgagactg gggattetgg geggttttet catgagteca acgatgagat	3600
atctgtcc tcagttataa gtaccacacc ccccaacctc tgattctttc actggcagtg	3660
tcaggtgg agattccgca ttgaggaagt gtgaagaccc tgctgtgtca tctgttagtg	3720
cagactto ctccttagtt ctgcagcogo catctgccat gctatgcttt gataaaaatg	3780

attttccaat ctagacggcc atgctcaggt attctcacca ttaaatctgt tcgaaggaca 3840
atgaacaggg aaccaaaaaa aaaaaaaaaa aaaa 3874

What is claimed is:

- 1. An isolated nucleic acid molecule comprising a nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO:8; and
- (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:7 or the complement thereof.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:8.

* * * * :

This Page Blank (uspto)



# (12) United States Patent

Donoho et al.

# (10) Patent No.:

US 6,462,186 B1

## (45) Date of Patent:

Oct. 8, 2002

### (54) HUMAN ATPASE PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

(75) Inventors: Gregory Donoho; C. Alexander

Turner, Jr., both of The Woodlands; Erin Hilbun, Spring, all of TX (US); Michael C. Nehls, Stockdorf (DE); Glenn Friedrich, Houston, TX (US); Brian Zambrowicz; Arthur T. Sands, both of The Woodlands, TX (US)

Assignce: Lexicon Genetics Incorporated, The Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/710,092

(56)

(22)Filed: Nov. 10, 2000

### Related U.S. Application Data

(60)Provisional application No. 60/164,624, filed on Nov. 10, 1999

(51)	Int. Cl. ⁷	. C07H 21/04; C12N 9/26
(52)	U.S. Cl	536/23.2; 435/201
(58)	Field of Search	536/23 2- 435/183

435/201

# References Cited

## U.S. PATENT DOCUMENTS

4,215,051 A 4,376,110 A 4,946,778 A 5,759,795 A	3/1983 8/1990 6/1998	Schroeder et al.       435/212         David et al.       424/1         Ladner et al.       435/69         Jubin       435/210         Mischall et al.       435/210
4,946,778 A	8/1990	Ladner et al 435/69
5,837,458 A	11/1998	Minshull et al 435/6
5,869,336 A 5,877,397 A	3/1999	Meyer et al
5,932,444 A 6,010,852 A	1/2000	Hillman et al
6,075,181 A	0/2000	Kucherlapati et al 800/25

### FOREIGN PATENT DOCUMENTS

wo WO 00 58473 A 10/2000

### OTHER PUBLICATIONS

Hillier et al. GenBank database—Accession # R60661 (May, 1995).*

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol.

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Huse et al, 1989 "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the Ipp gene of Escherichia coli", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccina virus", PNAS USA 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions", Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

(List continued on next page.)

Primary Examiner-Tekchand Saidha Assistant Examiner-Yong Pak

### **ABSTRACT**

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

## 3 Claims, No Drawings

App Serial # 09/854,844 Hu et al.

Exhibit T LEX-0176-USA

Novel Human Protease and Polynucleotides Encoding the Same

### OTHER PUBLICATIONS

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544-546.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567-3570.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cell", Cell 11:223-232.

EMBL Database, Heidelberg, FRG accesion No. AW024552, Sep. 14, 1999, NCI-CGAP: "wu77c05.x1 NCI_CGAP_Kid 3 Homo sapiens cDNA clone IMAGE: 252056 3' similar to WP: W09D10.2 CE16563 ATPASE, mRNA sequence" XP002165685.

Halleck, M.S. et al., 1998, "Multiple Members of a Third Subfamily of P-Type ATPases Identified by Genomic Sequences and ESTs", Genome Research 8(4): 354-361. XP002132690, Accession No.:AF011337.

Nagase, T. et al, 2000, "Pedicition of the Coding Sequences of Unidentified Human Genes. XVII. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro", DNA Research 7(2):143–150. XP000983090, clone XP000983090.

^{*} cited by examiner

1

### HUMAN ATPASE PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application No. 60/164,624 which was filed on Nov. 10, 1999 and is herein incorporated by reference in its entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with animal ATPase proteins. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes that can be used for diagnosis, drug screening, clinical trial monitoring and the treatment of diseases and disorders.

### 2. BACKGROUND OF THE INVENTION

ATPases are proteins that mediate, facilitate, or "power" a wide variety of chemical processes within the cell. For example, ATPases have been associated with enzymatic, catabolic, and metabolic processes as well as transport mechanisms, blood coagulation, phagocytosis, etc.

### 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPS) described for the first time herein share structural similarity with animal ATPases.

The novel human nucleic acid sequences described 40 herein, encode alternative proteins/open reading frames (ORFs) of 972, 124, 1,056, 208, 1,270, 422, 1,426, and 578 amino acids in length (see SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, and 16 respectively).

The invention also encompasses agonists and antagonists of the described NHPS, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP genes (e.g., expression constructs that place the described gene under the control of a strong promoter system), and transgenic animals that express a NHP 55 transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP. A knockout ES cell line has been produced that contains a gene trap mutation in the murine ortholog of the described locus.

Further, the present invention also relates to processes for 60 identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of 65 a wide variety of symptoms associated with biological disorders or imbalances.

2.

# 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequences of the described NHP ORFs that encode the described NHP amino acid sequences. SEQ ID NO:17 describes a NHP ORF as well as flanking 5' and 3' sequences.

# 5. DETAILED DESCRIPTION OF THE INVENTION

The NHPS, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, predominantly in human kidney and placenta, as well as human fetal brain, brain, pituitary, cerebellum, spinal cord, thymus, spleen, lymph node, bone marrow, trachea, fetal liver, prostate, testis, thyroid, adrenal gland, salivary gland, stomach, small intestine, colon, uterus, mammary gland, adipose, esophagus, bladder, cervix, rectum, ovary, fetal kidney, fetal lung and gene trapped human cells.

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described genes, including the specifically described 25 NHPs, and the NHP products; (b) nucleotides that encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated 30 nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and 35 peptides in which all or a portion of the signal sequence in deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of an NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of a DNA sequence that encodes and expresses an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encodes a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling,

directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding 5 NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for 10 example, the GCG sequence analysis package using standard default settings).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP gene nucleotide sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the NHP sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described NHP polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 18, and preferably about 25, nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences may begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6×SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-indouracil, hypoxanthine, xantine, 4-acetylcytosine, 65 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine,

5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2,2-dimethylguanine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an  $\alpha$ -anomeric oligonucleotide. An  $\alpha$ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual  $\beta$ -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625–6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131–6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327–330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the

intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for 10 the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene. The PCR product can be subcloned and sequenced to ensure that the amplified 15 sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or 25 tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA 30 hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

AcDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucle- 40 otide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifi- 45 cally to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the 50 mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascer-

Alternatively, a genomic library can be constructed using 55 DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from 60 a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified 65 and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences the amplified fragment can be isolated. For a review of 35 in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the human cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast a-mating fac-

> The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of the NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

> The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies,

8

antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals may offer and advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for an NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding the NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and 15 anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a 20 NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP receptor. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; 25 these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in 30 "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

Various aspects of the invention are described in greater ³⁵ detail in the subsections below.

## 5.1 The NHP Sequences

The cDNA sequences and the corresponding deduced amino acid sequences of the described NHPs are presented 40 in the Sequence Listing. The NHP nucleotides were obtained from clustered human gene trapped sequences, ESTs and a human placenta cDNA library (Edge Biosystems, Gaithersburg, Md.). The described sequences share structural similarity with calcium transporting ATPases and aminophospholipid transporters.

### 5.2 NHPS and NHP Polypeptides

NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease. Given the similarity information and expression data, the described NHPs can be targeted (by drugs, oligos, antibodies, etc.) in order to treat disease, or to therapeutically augment the efficacy of therapeutic agents.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP genes. The NHPs typically display initiator methionines in DNA sequence contexts consistent with a translation initiation site.

The NHP amino acid sequences of the invention include the amino acid sequence presented in the Sequence Listing

as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, transport, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP peptide or polypeptide is thought to be membrane protein, the hydrophobic regions of the protein can be excised and the resulting soluble peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP

nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended 15 for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that 20 are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein 25 is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins 30 with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa 35 protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A 40 NHP gene coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed (e.g., see Smith et al., 1983, J. 50 Virol. 46:584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus 55 transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a 60 recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals 65 include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own

initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., 1987, Methods in Enzymol. 153:516–544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

12

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 5 1991, Proc. Natl. Acad. Sci. USA 88:8972–8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells 10 infected with recombinant vaccinia virus are loaded onto Ni²⁺.nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

### 5.3 Antibodies to NHP Products

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals 40 may be immunized by injection with the NHP, an NHP peptide (e.g., one corresponding the a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals 45 may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum 50 hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor

et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026–2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77–96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mabs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851–6855; Neuberger et al., 1984, Nature, 312:604–608; Takeda et al., 1985, Nature, 314:452–454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423–426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879–5883; and Ward et al., 1989, Nature 334:544–546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275–1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

## SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 17

<210> SEQ ID NO 1 <211> LENGTH: 2919 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 1

atgactgagg	ctctccaatg	ggccagatat	cactggcgac	ggctgatcag	aggtgcaacc	60
agggatgatg	attcagggcc	atacaactat	tcctcgttgc	tcgcctgtgg	gcgcaagtcc	120
tctcagatcc	ctaaactgtc	aggaaggcac	cggattgttg	ttccccacat	ccagcccttc	180
aaggatgagt	atgagaagtt	ctccggagcc	tatgtgaaca	atcgaatacg	aacaacaaag	240
tacacacttc	tgaattttgt	gccaagaaat	ttatttgaac	aatttcacag	agctgccaat	300
ttatatttcc	tgttcctagt	tgtcctgaac	tgggtacctt	tggtagaagc	cttccaaaag	360
gaaatcacca	tgttgcctct	ggtggtggtc	cttacaatta	tcgcaattaa	agatggcctg	420
gaagattatc	ggaaatacaa	aattgacaaa	cagatcaata	atttaataac	taaagtttat	480
agtaggaaag	agaaaaaata	cattgaccga	tgctggaaag	acgttactgt	tggggacttt	540
attcgcctct	cctgcaacga	ggtcatccct	gcagacatgg	tactactctt	ttccactgat	600
ccagatggaa	tctgtcacat	tgagacttct	ggtcttgatg	gagagagcaa	tttaaaacag	660
aggcaggtgg	ttcggggata	tgcagaacag	gactctgaag	ttgatcctga	gaagttttcc	720
agtaggatag	aatgtgaaag	cccaaacaat	gacctcagca	gattccgagg	cttcctagaa	780
cattccaaca	aagaacgcgt	gggtctcagt	aaagaaaatt	tgttgcttag	aggatgcacc	840
attagaaaca	cagaggctgt	tgtgggcatt	gtggtttatg	caggccatga	aaccaaagca	900
atgctgaaca	acagtgggcc	acggtataag	cgcagcaaat	tagaaagaag	agcaaacaca	960
gatgtcctct	ggtgtgtcat	gcttctggtc	ataatgtgct	taactggcgc	agtaggtcat	1020
ggaatctggc	tgagcaggta	tgaaaagatg	catttttca	atgttcccga	gcctgatgga	1080
catatcatat	caccactgtt	ggcaggattt	tatatgtttt	ggaccatgat	cattttgtta	1140
caggtcttga	ttcctatttc	tctctatgtt	tccatcgaaa	ttgtgaagct	tggacaaata	1200
tatttcattc	aaagtgatgt	ggatttctac	aatgaaaaaa	tggattctat	tgttcagtgc	1260
cgagccctga	acatcgccga	ggatctggga	cagattcagt	acctctttc	cgataagaca	1320
ggaaccctca	ctgagaataa	gatggtttt	cgaagatgta	gtgtggcagg	atttgattac	1380
tgccatgaag	aaaatgccag	gaggttggag	tcctatcagg	aagctgtctc	tgaagatgaa	1440
gattttatag	acacagtcag	tggttccctc	agcaatatgg	caaaaccgag	agcccccagc	1500
tgcaggacag	ttcataatgg	gcctttggga	aataagccct	caaatcatct	tgctgggagc	1560
tcttttactc	taggaagtgg	agaaggagcc	agtgaagtgc	ctcattccag	acaggctgct	1620
ttcagtagcc	ccattgaaac	agacgtggta	ccagacacca	ggcttttaga	caaatttagt	1680
cagattacac	ctcggctctt	tatgccacta	gatgagacca	tccaaaatcc	accaatggaa	1740
actttgtaca	ttatcgactt	tttcattgca	ttggcaattt	gcaacacagt	agtggtttct	1800
gctcctaacc	aaccccgaca	aaagatcaga	caccettcae	tgggggggtt	gcccattaag	1860
tctttggaag	agattaaaag	tcttttccag	agatggtctg	tccgaagatc	aagttctcca	1920
tcgcttaaca	gtgggaaaga	gccatcttct	ggagttccaa	acgcctttgt	gagcagactc	1980
cctctctta	gtcgaatgaa	accagettea	cctgtggagg	aagaggtctc	ccaggtgtgt	2040

gagagecece agtgetecag tageteaget tgetgeacag aaacagagaa acaacaeggt	2100
gatgcaggcc tcctgaatgg caaggcagag tccctccctg gacagccatt ggcctgcaac	2160
ctgtgttatg aggccgagag cccagacgaa gcggccttag tgtatgccgc cagggcttac	2220
caatgcactt tacggtctcg gacaccagag caggtcatgg tggactttgc tgctttggga	2280
ccattaacat ttcaactcct acacatcctg ccctttgact cagtaagaaa aagaatgtct	2340
gttgtggtcc gacaccctct ttccaatcaa gttgtggtgt atacgaaagg cgctgattct	2400
gtgatcatgg agttactgtc ggtggcttcc ccagatggag caagtctgga gaaacaacag	2460
atgatagtaa gggagaaaac ccagaagcac ttggatgact atgccaaaca aggccttcgt	2520
actttatgta tagcaaagaa ggtcatgagt gacactgaat atgcagagtg gctgaggaat	2580
cattttttag ctgaaaccag cattgacaac agggaagaat tactacttga atctgccatg	2640
aggttggaga acaaacttac attacttggt gctactggca ttgaagaccg tctgcaggag	2700
ggagtccctg aatctataga agctcttcac aaagcgggca tcaagatctg gatgctgaca	2760
ggggacaagc aggagacagc tgtcaacata gcttatgcat gcaaactact ggagccagat	2820
gacaagettt ttateeteaa taeeeaaagt aaagtgegta tattgagatt aaatetgtte	2880
ttctgtattt tcaaaggcat tggaacattt gagatttga	2919
<210> SEQ ID NO 2 <211> LENGTH: 972 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 2	
Met Thr Glu Ala Leu Gln Trp Ala Arg Tyr His Trp Arg Arg Leu Ile 1 5 10 15	
Arg Gly Ala Thr Arg Asp Asp Asp Ser Gly Pro Tyr Asn Tyr Ser Ser 20 25 30	
Leu Leu Ala Cys Gly Arg Lys Ser Ser Gln Ile Pro Lys Leu Ser Gly 35 40 45	
Arg His Arg Ile Val Val Pro His Ile Gln Pro Phe Lys Asp Glu Tyr 50 55 60	
Glu Lys Phe Ser Gly Ala Tyr Val Asn Asn Arg Ile Arg Thr Thr Lys 65 70 75 80	
Tyr Thr Leu Leu Asn Phe Val Pro Arg Asn Leu Phe Glu Gln Phe His 85 90 95	
Arg Ala Ala Asn Leu Tyr Phe Leu Phe Leu Val Val Leu Asn Trp Val	
Pro Leu Val Glu Ala Phe Gln Lys Glu Ile Thr Met Leu Pro Leu Val	
Val Val Leu Thr Ile Ile Ala Ile Lys Asp Gly Leu Glu Asp Tyr Arg 130 135 140	
Lys Tyr Lys Ile Asp Lys Gln Ile Asn Asn Leu Ile Thr Lys Val Tyr 145 150 155 160	
Ser Arg Lys Glu Lys Lys Tyr Ile Asp Arg Cys Trp Lys Asp Val Thr 165 170 175	
Val Gly Asp Phe Ile Arg Leu Ser Cys Asn Glu Val Ile Pro Ala Asp	
Met Val Leu Phe Ser Thr Asp Pro Asp Gly Ile Cys His Ile Glu	
195 200 205	

Thr Ser Gly Leu Asp Gly Glu Ser Asn Leu Lys Gln Arg Gln Val Val

	210					215					220				
Arg 225	Gly	Tyr	Ala	Glu	Gln 230	Авр	Ser	Glu	Val	Авр 235	Pro	Glu	Lув	Phe	Ser 240
Ser	Arg	Ile	Glu	Сув 245	Glu	Ser	Pro	Asn	Asn 250	Авр	Leu	Ser	Arg	Phe 255	Arg
Gly	Phe	Leu	Glu 260	His	Ser	Asn	Lys	Glu 265	Arg	Val	Gly	Leu	Ser 270	Lys	Glu
Asn	Leu	Leu 275	Leu	Arg	Gly	Сув	Thr 280	Ile	Arg	Asn	Thr	Glu 285	Ala	Val	Val
Gly	Ile 290	Val	Val	Tyr	Ala	Gly 295	His	Glu	Thr	Lys	Ala 300	Met	Leu	Asn	Asn
Ser 305	Gly	Pro	Arg	Tyr	Lys 310	Arg	Ser	Lys	Leu	Glu 315	Arg	Arg	Ala	Asn	Thr 320
Asp	Val	Leu	Trp	Сув 325	Val	Met	Leu	Leu	Val 330	Ile	Met	Сув	Leu	Thr 335	Gly
Ala	Val	Gly	His 340	Gly	Ile	Trp	Leu	Ser 345	Arg	Tyr	Glu	ГАв	Met 350	His	Phe
Phe	Asn	Val 355	Pro	Glu	Pro	Asp	Gly 360	His	Ile	Ile	Ser	Pro 365	Leu	Leu	Ala
Gly	Phe 370	Tyr	Met	Phe	Trp	Thr 375	Met	Ile	Ile	Leu	Leu 380	Gln	Val	Leu	Ile
Pro 385	Ile	Ser	Leu	Tyr	Val 390	Ser	Ile	Glu	Ile	Val 395	Lys	Leu	Gly	Gln	11e 400
Tyr	Phe	Ile	Gln	Ser 405	Asp	Val	qaA	Phe	Tyr 410	Asn	Glu	Lys	Met	Авр 415	Ser
Ile	Val	Gln	Сув 420	Arg	Ala	Leu	Asn	11e 425	Ala	Glu	Asp	Leu	Gly 430	Gln	Ile
Gln	Tyr	Leu 435	Phe	Ser	Авр	Lув	Thr 440	Gly	Thr	Leu	Thr	Glu 445	Asn	Lys	Met
Val	Phe 450	Arg	Arg	Сув	Ser	Val 455	Ala	Gly	Phe	Asp	Tyr 460	Сув	His	Glu	Glu
Asn 465	Ala	Arg	Arg	Leu	Glu 470	Ser	Tyr	Gln	Glu	Ala 475	Val	Ser	Glu	Asp	Glu 480
Asp	Phe	Ile	qaA	Thr 485	Val	Ser	Gly	Ser	Leu 490	Ser	Asn	Met	Ala	Lys 495	Pro
Arg	Ala	Pro	Ser 500	Сув	Arg	Thr	Val	Нів 505	Asn	Gly	Pro	Leu	Gly 510	Asn	Lys
Pro	Ser	Asn 515	His	Leu	Ala	Gly	Ser 520	Ser	Phe	Thr	Leu	Gly 525	Ser	Gly	Glu
Gly	Ala 530	Ser	Glu	Val	Pro	Нів 535	Ser	Arg	Gln	Ala	Ala 540	Phe	Ser	Ser	Pro
Ile 545	Glu	Thr	Asp	Val	<b>Val</b> 550	Pro	Авр	Thr	Arg	Leu 555	Leu	Ąap	Lує	Phe	Ser 560
Gln	Ile	Thr	Pro	Arg 565	Leu	Phe	Met	Pro	Leu 570	Авр	Glu	Thr	Ile	Gln 575	Asn
Pro	Pro	Met	Glu 580	Thr	Leu	Tyr	Ile	Ile 585	Авр	Phe	Phe	Ile	Ala 590	Leu	Ala
Ile	Сув	Asn 595	Thr	Val	Val	Val	Ser 600	Ala	Pro	Asn	Gln	Pro 605	Arg	Gln	Lys
Ile	Arg 610	His	Pro	Ser	Leu	Gly 615	Gly	Leu	Pro	Ile	Lув 620	Ser	Leu	Glu	Glu
Ile 625	Lys	Ser	Leu	Phe	Gln 630	Arg	Trp	Ser	Val	Arg 635	Arg	Ser	Ser	Ser	Pro 640

Ser	Leu	Asn	Ser	Gly 645	Lys	Glu	Pro	Ser	Ser 650	Gly	Val	Pro	Asn	Ala 655	Phe
Val	Ser	Arg	Leu 660	Pro	Leu	Phe	Ser	Arg 665	Met	Lys	Pro	Ala	Ser 670	Pro	Val
Glu	Glu	Glu 675	Val	Ser	Gln	Val	С <b>у</b> в 680	Glu	Ser	Pro	Gln	Cys 685	Ser	Ser	Ser
Ser	Ala 690	Сув	Сув	Thr	Glu	Thr 695	Glu	Lув	Gln	His	Gly 700	Asp	Ala	Gly	Leu
Leu 705	Asn	Gly	Lys	Ala	Glu 710	Ser	Leu	Pro	Gly	Gln 715	Pro	Leu	Ala	Сув	Asn 720
Leu	Cys	Tyr	Glu	Ala 725	Glu	Ser	Pro	Asp	Glu 730	Ala	Ala	Leu	Val	Tyr 735	Ala
Ala	Arg	Ala	Tyr 740	Gln	Сув	Thr	Leu	Arg 745	Ser	Arg	Thr	Pro	Glu 750	Gln	Val
Met	Val	<b>А</b> вр 755	Phe	Ala	Ala	Leu	Gly 760	Pro	Leu	Thr	Phe	Gln 765	Leu	Leu	His
Ile	Leu 770	Pro	Phe	Asp	Ser	Val 775	Arg	Lys	Arg	Met	Ser 780	Val	Val	Val	Arg
His 785	Pro	Leu	Ser	Asn	Gln 790	Val	Val	Val	Tyr	Thr 795	Lув	Gly	Ala	Asp	Ser 800
Val	Ile	Met	Glu	Leu 805	Leu	Ser	Val	Ala	Ser 810	Pro	Авр	Gly	Ala	Ser 815	Leu
Glu	Lys	Gln	Gln 820	Met	Ile	Val	Arg	Glu 825	Lys	Thr	Gln	Lys	His 830	Leu	Asp
Asp	Tyr	Ala 835	Lys	Gln	Gly	Leu	Arg 840	Thr	Leu	Сув	Ile	Ala 845	Lув	Lys	Val
Met	Ser 850	qaA	Thr	Glu	Tyr	Ala 855	Glu	Trp	Leu	Arg	Asn 860	His	Phe	Leu	Ala
Glu 865	Thr	Ser	Ile	Asp	Asn 870	Arg	Glu	Glu	Leu	Leu 875	Leu	Glu	Ser	Ala	Met 880
Arg	Leu	Glu	Asn	Lys 885	Leu	Thr	Leu	Leu	Gly 890	Ala	Thr	Gly	Ile	Glu 895	Asp
Arg	Leu	Gln	Glu 900	Gly	Val	Pro	Glu	Ser 905	Ile	Glu	Ala	Leu	His 910	Lys	Ala
Gly	Ile	<b>Lys</b> 915	Ile	Trp	Met	Leu	Thr 920	Gly	Asp	Lys	Gln	Glu 925	Thr	Ala	Val
Asn	Ile 930	Ala	Tyr	Ala	Сув	Lув 935	Leu	Leu	Glu	Pro	Asp 940	Двр	Lys	Leu	Phe
Ile 945	Leu	Asn	Thr	Gln	Ser 950	Lys	Val	Arg	Ile	Leu 955	Arg	Leu	Asn	Leu	Phe 960
Phe	Сув	Ile	Phe	Lys 965	Gly	Ile	Gly	Thr	Phe 970	Glu	Ile				

<210> SEQ ID NO 3 <211> LENGTH: 375 <212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 3

atgagtgaca ctgaatatgc agagtggctg aggaatcatt ttttagctga aaccagcatt 60 gacaacaggg aagaattact acttgaatct gccatgaggt tggagaacaa acttacatta 120 cttggtgcta ctggcattga agaccgtctg caggagggag tccctgaatc tatagaagct 180 cttcacaaag cgggcatcaa gatctggatg ctgacagggg acaagcagga gacagctgtc 240

22

aacatagott atgoatgoaa actactggag coagatgaca agotttttat cotcaataco	300
caaagtaaag tgcgtatatt gagattaaat ctgttcttct gtattttcaa aggcattgga	360
acatttgaga tttga	375
<210> SEQ ID NO 4 <211> LENGTH: 124 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 4	
Met Ser Asp Thr Glu Tyr Ala Glu Trp Leu Arg Asn His Phe Leu Ala 1 5 10 15	
Glu Thr Ser Ile Asp Asn Arg Glu Glu Leu Leu Glu Ser Ala Met 20 25 30	
Arg Leu Glu Asn Lys Leu Thr Leu Leu Gly Ala Thr Gly Ile Glu Asp 35 40 45	
Arg Leu Gln Glu Gly Val Pro Glu Ser Ile Glu Ala Leu His Lys Ala 50 55 60	
Gly Ile Lys Ile Trp Met Leu Thr Gly Asp Lys Gln Glu Thr Ala Val 65 70 75 80	
Asn Ile Ala Tyr Ala Cys Lys Leu Leu Glu Pro Asp Asp Lys Leu Phe 85 90 95	
Ile Leu Asn Thr Gln Ser Lys Val Arg Ile Leu Arg Leu Asn Leu Phe 100 105 110	
Phe Cys Ile Phe Lys Gly Ile Gly Thr Phe Glu Ile 115 120	
<210> SEQ ID NO 5 <211> LENGTH: 3171 <212> TYPE: DNA <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 5	٠
atgactgagg ctctccaatg ggccagatat cactggcgac ggctgatcag aggtgcaacc	60
agggatgatg attcagggcc atacaactat tectogttge tegeotgtgg gegeaagtee	120
totcagatoc ctaaactgtc aggaaggcac cggattgttg ttccccacat ccagcccttc	180
aaggatgagt atgagaagtt ctccggagcc tatgtgaaca atcgaatacg aacaacaaag	240
tacacacttc tgaattttgt gccaagaaat ttatttgaac aatttcacag agctgccaat	300
ttatatttcc tgttcctagt tgtcctgaac tgggtacctt tggtagaagc cttccaaaag	360
gaaatcacca tgttgcctct ggtggtggtc cttacaatta tcgcaattaa agatggcctg	420
gaagattatc ggaaatacaa aattgacaaa cagatcaata atttaataac taaagtttat	480
agtaggaaag agaaaaaata cattgaccga tgctggaaag acgttactgt tggggacttt	540
attogoctot cotgoaacga ggtcatcoot gcagacatgg tactactott ttocactgat	600
ccagatggaa tctgtcacat tgagacttct ggtcttgatg gagagagcaa tttaaaacag	660
aggcaggtgg ttcggggata tgcagaacag gactctgaag ttgatcctga gaagttttcc	720
agtaggatag aatgtgaaag cccaaacaat gacctcagca gattccgagg cttcctagaa	780
cattccaaca aagaacgcgt gggtctcagt aaagaaaatt tgttgcttag aggatgcacc	840
attagaaaca cagaggctgt tgtgggcatt gtggtttatg caggccatga aaccaaagca	900
atgctgaaca acagtgggcc acggtataag cgcagcaaat tagaaagaag agcaaacaca	960

gatgtcctct	ggtgtgtcat	gcttctggtc	ataatgtgct	taactggcgc	agtaggtcat	1020
ggaatctggc	tgagcaggta	tgaaaagatg	catttttca	atgttcccga	gcctgatgga	1080
catatcatat	caccactgtt	ggcaggattt	tatatgtttt	ggaccatgat	cattttgtta	1140
caggtcttga	ttcctatttc	tctctatgtt	tccatcgaaa	ttgtgaagct	tggacaaata	1200
tatttcattc	aaagtgatgt	ggatttctac	aatgaaaaaa	tggattctat	tgttcagtgc	1260
cgagccctga	acatogooga	ggatctggga	cagattcagt	acctcttttc	cgataagaca	1320
ggaaccctca	ctgagaataa	gatggtttt	cgaagatgta	gtgtggcagg	atttgattac	1380
tgccatgaag	aaaatgccag	gaggttggag	tcctatcagg	aagctgtctc	tgaagatgaa	1440
gattttatag	acacagtcag	tggttccctc	agcaatatgg	caaaaccgag	agcccccagc	1500
tgcaggacag	ttcataatgg	gcctttggga	aataagccct	caaatcatct	tgctgggagc	1560
tcttttactc	taggaagtgg	agaaggagcc	agtgaagtgc	ctcattccag	acaggctgct	1620
ttcagtagcc	ccattgaaac	agacgtggta	ccagacacca	ggcttttaga	caaatttagt	1680
cagattacac	ctcggctctt	tatgccacta	gatgagacca	tccaaaatcc	accaatggaa	1740
actttgtaca	ttatcgactt	tttcattgca	ttggcaattt	gcaacacagt	agtggtttct	1800
gctcctaacc	aaccccgaca	aaagatcaga	caccettcae	tgggggggtt	gcccattaag	1860
tctttggaag	agattaaaag	tcttttccag	agatggtctg	tccgaagatc	aagttctcca	1920
tcgcttaaca	gtgggaaaga	gccatcttct	ggagttccaa	acgcctttgt	gagcagactc	1980
cctctctta	gtcgaatgaa	accagcttca	cctgtggagg	aagaggtctc	ccaggtgtgt	2040
gagagccccc	agtgctccag	tagctcagct	tgctgcacag	aaacagagaa	acaacacggt	2100
gatgcaggcc	tcctgaatgg	caaggcagag	tecetecetg	gacagccatt	ggcctgcaac	2160
ctgtgttatg	aggccgagag	cccagacgaa	gcggccttag	tgtatgccgc	cagggcttac	2220
caatgcactt	tacggtctcg	gacaccagag	caggtcatgg	tggactttgc	tgctttggga	2280
ccattaacat	ttcaactcct	acacatcctg	ccctttgact	cagtaagaaa	aagaatgtct	2340
gttgtggtcc	gacaccctct	ttccaatcaa	gttgtggtgt	atacgaaagg	cgctgattct	2400
gtgatcatgg	agttactgtc	ggtggcttcc	ccagatggag	caagtctgga	gaaacaacag	2460
atgatagtaa	gggagaaaac	ccagaagcac	ttggatgact	atgccaaaca	aggccttcgt	2520
actttatgta	tagcaaagaa	ggtcatgagt	gacactgaat	atgcagagtg	gctgaggaat	2580
cattttttag	ctgaaaccag	cattgacaac	agggaagaat	tactacttga	atctgccatg	2640
aggttggaga	acaaacttac	attacttggt	gctactggca	ttgaagaccg	tctgcaggag	2700
ggagtccctg	aatctataga	agctcttcac	aaagcgggca	tcaagatctg	gatgctgaca	2760
ggggacaagc	aggagacagc	tgtcaacata	gcttatgcat	gcaaactact	ggagccagat	2820
gacaagcttt	ttatcctcaa	tacccaaagt	aaagatgcct	gtgggatgct	gatgagcaca	2880
attttgaaag	aacttcagaa	gaaaactcaa	gccctgccag	agcaagtgtc	attaagtgaa	2940
gatttacttc	agcctcctgt	ccccgggac	tcagggttac	gagctggact	cattatcact	3000
gggaagaccc	tggagtttgc	cctgcaagaa	agtctgcaaa	agcagttcct	ggaactgaca	3060
tcttggtgtc	aagctgtggt	ctgctgccga	gccacaccgc	tgcagaaaag	tgaagtggtg	3120
aaattggtcc	gcagccatct	ccaggtgatg	accettgeta	ttggtgagtg	a	3171

<210> SEQ ID NO 6 <211> LENGTH: 1056 <212> TYPE: PRT <213> ORGANISM: homo sapiens

25

<400	)> SE	QUE	ICE:	6											
Met 1	Thr	Glu	Ala	Leu 5	Gln	Trp	Ala	Arg	Tyr 10	His	Trp	Arg	Arg	Leu 15	Ile
Arg	Gly	Ala	Thr 20	Arg	Asp	Авр	Asp	Ser 25	Gly	Pro	Tyr	Asn	Tyr 30	Ser	Ser
Leu	Leu	Ala 35	Сув	Gly	Arg		Ser 40	Ser	Gln	Ile	Pro	<b>Lув</b> 45	Leu	Ser	Gly
Arg	His 50	Arg	Ile	Val	Val	Pro 55	His	Ile	Gln	Pro	Phe 60	Lys	Asp	Glu	Tyr
Glu 65	Lys	Phe	Ser	Gly	Ala 70	Tyr	Val	Asn	naA	Arg 75	Ile	Arg	Thr	Thr	<b>Lу</b> в 80
Tyr	Thr	Leu	Leu	Asn 85	Phe	Val	Pro	Arg	Asn 90	Leu	Phe	Glu	Gln	Phe 95	His
Arg	Ala	Ala	Asn 100	Leu	Tyr	Phe	Leu	Phe 105	Leu	Val	Val	Leu	Asn 110	Trp	Val
Pro	Leu	Val 115	Glu	Ala	Phe	Gln	Lys 120	Glu	Ile	Thr	Met	Leu 125	Pro	Leu	Val
Val	Val 130	Leu	Thr	Ile	Ile	Ala 135	Ile	Lув	Asp	Gly	Leu 140	Glu	qaA	Tyr	Arg
Lys 145	Tyr	Lys	Ile	Asp	<b>Lys</b> 150	Gln	Ile	Asn	Asn	Leu 155	Ile	Thr	Lув	Val	Tyr 160
Ser	Arg	Lys	Glu	Lys 165	Lys	Tyr	Ile	Авр	Arg 170	Сув	Trp	Lys	Asp	Val 175	Thr
Val	Gly	Asp	Phe 180	Ile	Arg	Leu	Ser	Сув 185	naA	Glu	Val	Ile	Pro 190	Ala	Asp
Met	Val	Leu 195	Leu	Phe	Ser	Thr	Авр 200	Pro	Asp	Gly	Ile	С <b>у</b> в 205	His	Ile	Glu
Thr	Ser 210	Gly	Leu	Ąap	Gly	Glu 215	Ser	Asn	Leu	Lys	Gln 220	Arg	Gln	Val	Val
Arg 225	Gly	Tyr	Ala	Glu	Gln 230	Asp	Ser	Glu	Val	Авр 235	Pro	Glu	Lys	Phe	Ser 240
Ser	Arg	Ile	Glu	Сув 245	Glu	Ser	Pro	Asn	Asn 250	Авр	Leu	Ser	Arg	Phe 255	Arg
Gly	Phe	Leu	Glu 260	His	Ser	Asn	Lys	Glu 265	Arg	Val	Gly	Leu	Ser 270	Lys	Glu
Asn	Leu	Leu 275	Leu	Arg	Gly	Сув	Thr 280	Ile	Arg	Asn	Thr	Glu 285	Ala	Val	Val
Gly	Ile 290	Val	Val	Tyr	Ala	Gly 295	His	Glu	Thr	Lys	Ala 300	Met	Leu	Asn	Asn
Ser 305	Gly	Pro	Arg	Tyr	<b>Lys</b> 310	Arg	Ser	Lys	Leu	Glu 315	Arg	Arg	Ala	Asn	Thr 320
Asp	Val	Leu	Trp	Cys 325	Val	Met	Leu	Leu	Val 330	Ile	Met	Сув	Leu	Thr 335	Gly
Ala	Val	Gly	Нів 340	Gly	Ile	Trp	Leu	Ser 345	Arg	Tyr	Glu	Lys	Met 350	His	Phe
Phe	Asn	Val 355	Pro	Glu	Pro		Gly 360	His	Ile	Ile	Ser	Pro 365	Leu	Leu	Ala
Gly	Phe 370	Tyr	Met	Phe	Trp	Thr 375	Met	Ile	Ile	Leu	Leu 380	Gln	Val	Leu	Ile
Pro 385	Ile	Ser	Leu	Tyr	Val 390	Ser	Ile	Glu	Ile	Val 395	Lys	Leu	Gly	Gln	11e 400
Tyr	Phe	Ile	Gln	Ser	Asp	Val	qaA	Phe	Tyr	Asn	Glu	Lys	Met	qaA	Ser

											-	0012		ucu	
				405					410					415	
Ile	Val	Gln	Сув 420		Ala	Leu	Asn	11e 425	Ala	Glu	Asp	Leu	Gly 430	Gln	Ile
Gln	Tyr	Leu 435	Phe	Ser	Asp	Lys	Thr 440	Gly	Thr	Leu	Thr	Glu 445	Asn	Lys	Met
Val	Phe 450	Arg	Arg	Сув	Ser	Val 455	Ala	Gly	Phe	Asp	Tyr 460	Сув	His	Glu	Glu
Asn 465	Ala	Arg	Arg	Leu	Glu 470	Ser	Tyr	Gln	Glu	Ala 475	Val	Ser	Glu	Asp	Glu 480
Asp	Phe	Ile	Asp	Thr 485	Val	Ser	Gly	Śer	Leu 490	Ser	Asn	Met	Ala	Lув 495	Pro
Arg	Ala	Pro	Ser 500	Сув	Arg	Thr	Val	His 505	Asn	Gly	Pro	Leu	Gly 510	Asn	Lys
Pro	Ser	Asn 515	His	Leu	Ala	Gly	Ser 520	Ser	Phe	Thr	Leu	Gly 525	Ser	Gly	Glu
Gly	Ala 530	Ser	Glu	Val	Pro	His 535	Ser	Arg	Gln	Ala	Ala 540	Phe	Ser	Ser	Pro
Ile 545	Glu	Thr	Asp	Val	Val 550	Pro	Asp	Thr	Arg	Leu 555	Leu	Asp	Lys	Phe	Ser 560
Gln	Ile	Thr	Pro	Arg 565	Leu	Phe	Met	Pro	Leu 570	Asp	Glu	Thr	Ile	Gln 575	Asn
Pro	Pro	Met	Glu 580	Thr	Leu	Tyr	Ile	Ile 585	Asp	Phe	Phe	Ile	Ala 590	Leu	Ala
Ile	Сув	Asn 595	Thr	Val	Val	Val	Ser 600	Ala	Pro	Asn	Gln	Pro 605	Arg	Gln	Lys
Ile	Arg 610	His	Pro	Ser	Leu	Gly 615	Gly	Leu	Pro	Ile	Lys 620	Ser	Leu	Glu	Glu
Ile 625	Lys	Ser	Leu	Phe	Gln 630	Arg	Trp	Ser	Val	Arg 635	Arg	Ser	Ser	Ser	Pro 640
Ser	Leu	naA	Ser	Gly 645	Lys	Glu	Pro	Ser	Ser 650	Gly	Val	Pro	Asn	Ala 655	Phe
Val	Ser	Arg	Leu 660	Pro	Leu	Phe	Ser	Arg 665	Met	Lys	Pro	Ala	Ser 670	Pro	Val
Glu	Glu	Glu 675	Val	Ser	Gln	Val	С <b>у</b> в 680	Glu	Ser	Pro	Gln	С <b>у</b> в 685	Ser	Ser	Ser
Ser	Ala 690	Cys	Сув	Thr	Glu	Thr 695	Glu	Lys	Gln	His	Gly 700	Авр	Ala	Gly	Leu
Leu 705	Asn	Gly	Lys	Ala	Glu 710	Ser	Leu	Pro	Gly	Gln 715	Pro	Leu	Ala	Сув	Asn 720
Leu	Сув	Tyr	Glu	Ala 725	Glu	Ser	Pro	Asp	Glu 730	Ala	Ala	Leu	Val	Tyr 735	Ala
Ala	Arg	Ala	Tyr 740	Gln	Сув	Thr	Leu	Arg 745	Ser	Arg	Thr	Pro	Glu 750	Gln	Val
		755			Ala		760					765			
	770				Ser	775					780				_
785					Gln 790					795	-	_			800
				805	Leu				810		_	_		815	
Glu	Lys	Gln	Gln 820	Met	Ile	Val	Arg	Glu 825	Lys	Thr	Gln	Lys	His 830	Leu	qaA

Asp	Tyr	Ala 835	Lys	Gln	Gly	Leu	Arg 840	Thr	Leu	Сув	Ile	Ala 845	Lys	Lув	Val	
Met	Ser 850	Asp	Thr	Glu	Tyr	Ala 855	Glu	Trp	Leu	Arg	Asn 860	Нів	Phe	Leu	Ala	
Glu 865	Thr	Ser	Ile	Asp	Asn 870	Arg	Glu	Glu	Leu	Leu 875	Leu	Glu	Ser	Ala	Met 880	
Arg	Leu	Glu	Asn	Lys 885	Leu	Thr	Leu	Leu	Gly 890	Ala	Thr	Gly	Ile	Glu 895	Asp	
Arg	Leu	Gln	Glu 900	Gly	Val	Pro	Glu	Ser 905	Ile	Glu	Ala	Leu	His 910	Lys	Ala	
Gly	Ile	Lys 915	Ile	Trp	Met	Leu	Thr 920	Gly	<b>A</b> ap	Lys	Gln	Glu 925	Thr	Ala	Val	
Asn	Ile 930	Ala	Tyr	Ala	Сув	Lys 935	Leu	Leu	Glu	Pro	Asp 940	qaA	Lys	Leu	Phe	
Ile 945	Leu	Asn	Thr	Gln	Ser 950	Lys	Asp	Ala	Сув	Gly 955	Met	Leu	Met	Ser	Thr 960	
Ile	Leu	Lys	Glu	Leu 965	Gln	Lув	Lув	Thr	Gln 970	Ala	Leu	Pro	Glu	Gln 975	Val	
Ser	Leu	Ser	Glu 980	Asp	Leu	Leu	Gln	Pro 985	Pro	Val	Pro	Arg	<b>Asp</b> 990	Ser	Gly	
Leu	Arg	Ala 995	Gly	Leu	Ile	Ile	Thr 1000		Lув	Thr	Leu	Glu 1005		Ala	Leu	
Gln	Glu 1010		Leu	Gln	Lys	Gln 1015		Leu	Glu	Leu	Thr 1020		Trp	Сув	Gln	
Ala 1025		Val	Cys	Сув	Arg 1030		Thr	Pro	Leu	Gln 1035		Ser	Glu	Val	Val 1040	
Lys	Leu	Val	Arg	Ser 1045		Leu	Gln	Val	Met 1050		Leu	Ala	Ile	Gly 1055		
<211 <212 <213		NGTH PE: GANI	: 62 DNA SM:	7 homo	sap	iens										
	> SE Igtga				c ag	jagtg	ıgctg	agg	aato	att	tttt	agct	ga a	acca	igcatt	60
gaca	acag	igg a	agaa	ttac	t ac	ttga	atct	gcc	atga	ggt	tgga	gaac	aa e	ctta	catta	120
cttg	gtgo	ta c	tggo	attg	a ag	accg	tctg	cag	gagg	gag	tccc	tgaa	ıtc t	atag	aagct	180
cttc	acaa	ag c	gggc	atca	a ga	tctg	gatg	ctg	acag	ggg	acaa	gcag	ıga g	acag	ctgtc	240
aaca	tago	tt a	tgca	tgca	a ac	tact	ggag	cca	gatg	aca	agct	tttt	at c	ctca	atacc	300
caaa	gtaa	ag a	tgcc	tgtg	g ga	tgct	gatg	ago	acaa	ttt	tgaa	agaa	ct t	caga	agaaa	360
acto	aago	cc t	gcca	gago	a ag	tgto	atta	agt	gaag	att	tact	tcag	icc t	cctg	tecce	420
cggg	acto	ag g	gtta	cgag	c tg	gact	catt	ato	actg	gga	agac	cctg	ga g	tttg	ccctg	480
caag	aaag	tc t	gcaa	aago	a gt	tcct	ggaa	ctg	acat	ctt	ggtg	tcas	ıgc t	gtgg	tctgc	540
tgcc	gago	ca c	accg	ctgo	a ga	aaag	tgaa	gtg	gtga	aat	tggt	ccgc	ag c	cato	tccag	600
gtga	tgac	cc t	tgct	attg	g tg	agtg	a									627

<210> SEQ ID NO 8 <211> LENGTH: 208 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<400	)> SE	QUE	ICE:	8											
Met 1	Ser	Asp	Thr	Glu 5	Туг	Ala	Glu	Trp	Leu 10	Arg	Asn	His	Phe	Leu 15	Ala
Glu	Thr	Ser	Ile 20	Asp	Asn	Arg	Glu	Glu 25	Leu	Leu	Leu	Glu	Ser 30	Ala	Met
Arg	Leu	Glu 35	Asn	Lys	Leu	Thr	Leu 40	Leu	Gly	Ala	Thr	Gly 45	Ile	Glu	Авр
Arg	Leu 50	Gln	Glu	Gly	Val	Pro 55	Glu	Ser	Ile	Glu	Ala 60	Leu	His	Lys	Ala
Gly 65	Ile	Lys	Ile	Trp	Met 70	Leu	Thr	Gly	Asp	Lys 75	Gln	Glu	Thr	Ala	Val 80
Asn	Ile	Ala	Tyr	Ala 85	Сув	Lув	Leu	Leu	Glu 90	Pro	Asp	Авр	Lув	Leu 95	Phe
Ile	Leu	Asn	Thr 100	Gln	Ser	Lys	Asp	Ala 105	Сув	Gly	Met	Leu	Met 110	Ser	Thr
Ile	Leu	Lys 115	Glu	Leu	Gln	Lys	Lys 120	Thr	Gln	Ala	Leu	Pro 125	Glu	Gln	Val
Ser	Leu 130	Ser	Glu	Asp	Leu	Leu 135	Gln	Pro	Pro	Val	Pro 140	Arg	Asp	Ser	Gly
Leu 145	Arg	Ala	Gly	Leu	Ile 150	Ile	Thr	Gly	Lys	Thr 155	Leu	Glu	Phe	Ala	Leu 160
Gln	Glu	Ser	Leu	Gln 165	Lys	Gln	Phe	Leu	Glu 170	Leu	Thr	Ser	Trp	Cys 175	Gln
Ala	Val	Val	Cys 180	Сув	Arg	Ala	Thr	Pro 185	Leu	Gln	Lys	Ser	Glu 190	Val	Val
Lys	Leu	Val 195	Arg	Ser	His	Leu	Gln 200	Val	Met	Thr	Leu	Ala 205	Ile	Gly	Glu
-210	\	O T	. 110	0											

<210> SEQ ID NO 9 <211> LENGTH: 3813 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 9

atgactgagg	ctctccaatg	ggccagatat	cactggcgac	ggctgatcag	aggtgcaacc	60
agggatgatg	attcagggcc	atacaactat	tcctcgttgc	tegeetgtgg	gcgcaagtcc	120
tctcagatcc	ctasactgtc	aggaaggcac	cggattgttg	ttccccacat	ccagcccttc	180
aaggatgagt	atgagaagtt	ctccggagcc	tatgtgaaca	atcgaatacg	aacaacaaag	240
tacacacttc	tgaattttgt	gccaagaaat	ttatttgaac	aatttcacag	agctgccaat	300
ttatatttcc	tgttcctagt	tgtcctgaac	tgggtacctt	tggtagaagc	cttccaaaag	360
gaaatcacca	tgttgcctct	ggtggtggtc	cttacaatta	togcaattaa	agatggcctg	420
gaagattatc	ggaaatacaa	aattgacaaa	cagatcaata	atttaataac	taaagtttat	480
agtaggaaag	agaaaaaata	cattgaccga	tgctggaaag	acgttactgt	tggggacttt	540
attogootot	cctgcaacga	ggtcatccct	gcagacatgg	tactactctt	ttccactgat	600
ccagatggaa	tctgtcacat	tgagacttct	ggtcttgatg	gagagagcaa	tttaaaacag	660
aggcaggtgg	ttcggggata	tgcagaacag	gactctgaag	ttgatcctga	gaagttttcc	720
agtaggatag	aatgtgaaag	cccaaacaat	gacctcagca	gattccgagg	cttcctagaa .	780
cattccaaca	aagaacgcgt	gggtctcagt	aaagaaaatt	tgttgcttag	aggatgcacc	840
attagaaaca	cagaggctgt	tgtgggcatt	gtggtttatg	caggccatga	aaccaaagca	900

atgctgaaca	acagtgggcc	acggtataag	cgcagcaaat	tagaaagaag	agcaaacaca	960
gatgtcctct	ggtgtgtcat	gcttctggtc	ataatgtgct	taactggcgc	agtaggtcat	1020
ggaatctggc	tgagcaggta	tgaaaagatg	catttttca	atgttcccga	gcctgatgga	1080
catatcatat	caccactgtt	ggcaggattt	tatatgtttt	ggaccatgat	cattttgtta	1140
caggtcttga	ttcctatttc	tctctatgtt	tccatcgaaa	ttgtgaagct	tggacaaata	1200
tatttcattc	aaagtgatgt	ggatttctac	aatgaaaaaa	tggattctat	tgttcagtgc	1260
cgagccctga	acatcgccga	ggatctggga	cagattcagt	acctcttttc	cgataagaca	1320
ggaaccctca	ctgagaataa	gatggtttt	cgaagatgta	gtgtggcagg	atttgattac	1380
tgccatgaag	aaaatgccag	gaggttggag	tcctatcagg	aagctgtctc	tgaagatgaa	1440
gattttatag	acacagtcag	tggttccctc	agcaatatgg	caaaaccgag	agcccccagc	1500
tgcaggacag	ttcataatgg	gcctttggga	aataagccct	caaatcatct	tgctgggagc	1560
tcttttactc	taggaagtgg	agaaggagcc	agtgaagtgc	ctcattccag	acaggctgct	1620
ttcagtagcc	ccattgaaac	agacgtggta	ccagacacca	ggcttttaga	caaatttagt	1680
cagattacac	ctcggctctt	tatgccacta	gatgagacca	tccaaaatcc	accaatggaa	1740
actttgtaca	ttatcgactt	tttcattgca	ttggcaattt	gcaacacagt	agtggtttct	1800
gctcctaacc	aaccccgaca	aaagatcaga	caccetteac	tgggggggtt	gcccattaag	1860
tctttggaag	agattaaaag	tcttttccag	agatggtctg	tccgaagatc	aagttctcca	1920
tcgcttaaca	gtgggaaaga	gccatcttct	ggagttccaa	acgcctttgt	gagcagactc	1980
cctctctta	gtcgaatgaa	accagcttca	cctgtggagg	aagaggtctc	ccaggtgtgt	2040
gagagccccc	agtgctccag	tagctcagct	tgctgcacag	aaacagagaa	acaacacggt	2100
gatgcaggcc	tcctgaatgg	caaggcagag	tccctccctg	gacagccatt	ggcctgcaac	2160
ctgtgttatg	aggccgagag	cccagacgaa	gcggccttag	tgtatgccgc	cagggcttac	2220
caatgcactt	tacggtctcg	gacaccagag	caggtcatgg	tggactttgc	tgctttggga	2280
ccattaacat	ttcaactcct	acacatcctg	ccctttgact	cagtaagaaa	aagaatgtct	2340
gttgtggtcc	gacaccctct	ttccaatcaa	gttgtggtgt	atacgaaagg	cgctgattct	2400
gtgatcatgg	agttactgtc	ggtggcttcc	ccagatggag	caagtctgga	gaaacaacag	2460
atgatagtaa	gggagaaaac	ccagaagcac	ttggatgact	atgccaaaca	aggccttcgt	2520
actttatgta	tagcaaagaa	ggtcatgagt	gacactgaat	atgcagagtg	gctgaggaat	2580
cattttttag	ctgaaaccag	cattgacaac	agggaagaat	tactacttga	atctgccatg	2640
aggttggaga	acaaacttac	attacttggt	gctactggca	ttgaagaccg	tctgcaggag	2700
ggagtccctg	aatctataga	agctcttcac	aaagcgggca	tcaagatctg	gatgctgaca	2760
ggggacaagc	aggagacagc	tgtcaacata	gcttatgcat	gcaaactact	ggagccagat	2820
gacaagcttt	ttatcctcaa	tacccaaagt	aaagatgcct	gtgggatgct	gatgagcaca	. 2880
attttgaaag	aacttcagaa	gaaaactcaa	gccctgccag	agcaagtgtc	attaagtgaa	2940
gatttacttc	agcctcctgt	ccccgggac	tcagggttac	gagctggact	cattatcact	3000
gggaagaccc	tggagtttgc	cctgcaagaa	agtctgcaaa	agcagttcct	ggaactgaca	3060
tcttggtgtc	aagctgtggt	ctgctgccga	gccacaccgc	tgcagaaaag	tgaagtggtg	3120
aaattggtcc	gcagccatct	ccaggtgatg	accettgeta	ttggtgatgg	tgccaatgat	3180
gttagcatga	tacaagtggc	agacattggg	ataggggtct	caggtcaaga	aggcatgcag	3240
gctgtgatgg	ccagtgactt	tgccgtttct	cagttcaaac	atctcagcaa	gctccttctt	3300

gtccatggac actggtgtta tacacggctt tccaacatga ttctctattt tttctataag	3360
aatgtggcct atgtgaacct cettttetgg taccagttet tttgtggatt ttcaggaaca	3420
tocatgactg attactgggt tttgatcttc ttcaacctcc tcttcacatc tgcccctcct	3480
gtcatttatg gtgttttgga gaaagatgtg tctgcagaga ccctcatgca actgcctgaa	3540
ctttacagaa gtggtcagaa atcagaggca tacttacccc ataccttctg gatcacctta	3600
ttggatgctt tttatcaaag cctggtctgc ttctttgtgc cttattttac ctaccagggc	3660
tragatarty aratetttyr atttygaaar recetyaara ragerartet yttrateytt	3720
ctcctccatc tggtcattga aagcaagagt ttgaccaggt gcagtgactc acacctgcaa	3780
ttccagaget ttgggagget gtggatcaca tga	3813
<210> SEQ ID NO 10 <211> LENGTH: 1270 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 10	
Met Thr Glu Ala Leu Gln Trp Ala Arg Tyr His Trp Arg Arg Leu Ile 1 5 10 15	
Arg Gly Ala Thr Arg Asp Asp Asp Ser Gly Pro Tyr Asn Tyr Ser Ser 20 25 30	
Leu Leu Ala Cys Gly Arg Lys Ser Ser Gln Ile Pro Lys Leu Ser Gly 35 40 45	,
Arg His Arg Ile Val Val Pro His Ile Gln Pro Phe Lys Asp Glu Tyr 50 55 60	
Glu Lys Phe Ser Gly Ala Tyr Val Asn Asn Arg Ile Arg Thr Thr Lys 65 70 75 80	
Tyr Thr Leu Leu Asn Phe Val Pro Arg Asn Leu Phe Glu Gln Phe His 85 90 95	
Arg Ala Ala Asn Leu Tyr Phe Leu Phe Leu Val Val Leu Asn Trp Val	
Pro Leu Val Glu Ala Phe Gln Lys Glu Ile Thr Met Leu Pro Leu Val 115 120 125	
Val Val Leu Thr Ile Ile Ala Ile Lys Asp Gly Leu Glu Asp Tyr Arg 130 135 140	
Lys Tyr Lys Ile Asp Lys Gln Ile Asn Asn Leu Ile Thr Lys Val Tyr 145 150 155 160	
Ser Arg Lys Glu Lys Lys Tyr Ile Asp Arg Cys Trp Lys Asp Val Thr 165 170 175	
Val Gly Asp Phe Ile Arg Leu Ser Cys Asn Glu Val Ile Pro Ala Asp 180 185 190	
Met Val Leu Leu Phe Ser Thr Asp Pro Asp Gly Ile Cys His Ile Glu 195 200 205	
Thr Ser Gly Leu Asp Gly Glu Ser Asn Leu Lys Gln Arg Gln Val Val 210 215 220	
Arg Gly Tyr Ala Glu Gln Asp Ser Glu Val Asp Pro Glu Lys Phe Ser 225 230 235 240	
Ser Arg Ile Glu Cys Glu Ser Pro Asn Asn Asp Leu Ser Arg Phe Arg 245 250 255	
Gly Phe Leu Glu His Ser Asn Lys Glu Arg Val Gly Leu Ser Lys Glu 260 265 270	
Asn Leu Leu Arg Gly Cys Thr Ile Arg Asn Thr Glu Ala Val Val	

												COII	CTII	uea	
		275					280					285			
Gly	Ile 290	Val	Val	Tyr	Ala	Gly 295	His	Glu	Thr	Lys	Ala 300	Met	Leu	Asn	Asn
Ser 305	Gly	Pro	Arg	Tyr	Lys 310	Arg	Ser	Lув	Leu	Glu 315	Arg	Arg	Ala	Asn	Thr 320
Авр	Val	Leu	Trp	Cys 325	Val	Met	Leu	Leu	Val 330	Ile	Met	Сув	Leu	Thr 335	Gly
Ala	Val	Gly	His 340	Gly	Ile	Trp	Leu	Ser 345	Arg	Tyr	Glu	Lys	Met 350	His	Phe
Phe	Asn	Val 355	Pro	Glu	Pro	Asp	Gly 360	His	Ile	Ile	Ser	Pro 365	Leu	Leu	Ala
Gly	Phe 370	Tyr	Met	Phe	Trp	Thr 375	Met	Ile	Ile	Leu	Leu 380	Gln	Val	Leu	Ile
Pro 385	Ile	Ser	Leu	Tyr	Val 390	Ser	Ile	Glu	Ile	Val 395	Lys	Leu	Gly	Gln	Ile 400
Tyr	Phe	Ile	Gln	Ser 405	Asp	Val	Авр	Phe	Tyr 410	Asn	Glu	Lys	Met	Asp 415	Ser
Ile	Val	Gln	Сув 420	Arg	Ala	Leu	Asn	11e 425	Ala	Glu	Asp	Leu	Gly 430	Gln	Ile
Gln	Tyr	Leu 435	Phe	Ser	Asp	Lys	Thr 440	Gly	Thr	Leu	Thr	Glu 445	Asn	Lys	Met
Val	Phe 450	Arg	Arg	Сув	Ser	Val 455	Ala	Gly	Phe	Авр	Tyr 460	Сув	His	Glu	Glu
Asn 465	Ala	Arg	Arg	Leu	Glu 470	Ser	Tyr	Gln	Glu	Ala 475	Val	Ser	Glu	Авр	Glu 480
Asp	Phe	Ile	Asp	Thr 485	Val	Ser	Gl <b>y</b>	Ser	Leu 490	Ser	Asn	Met	Ala	<b>Lув</b> 495	Pro
Arg	Ala	Pro	Ser 500	Сув	Arg	Thr	Val	His 505	Asn	Gly	Pro	Leu	Gly 510	Asn	Lys
Pro	Ser	Asn 515	His	Leu	Ala	Gly	Ser 520	Ser	Phe	Thr	Leu	Gly 525	Ser	Gly	Glu
Gly	Ala 530	Ser	Glu	Val	Pro	His 535	Ser	Arg	Gln	Ala	Ala 540	Phe	Ser	Ser	Pro
Ile 545	Glu	Thr	Asp	Val	Val 550	Pro	Asp	Thr	Arg	Leu 555	Leu	Asp	Lys	Phe	Ser 560
Gln	Ile	Thr	Pro	Arg 565	Leu	Phe	Met	Pro	Leu 570	Авр	Glu	Thr	Ile	Gln 575	Asn
			580				Ile	585					590		
Ile	Сув	Asn 595	Thr	Val	Val	Val	Ser 600	Ala	Pro	Asn	Gln	Pro 605	Arg	Gln	Lys
	610					615	Gly				620				
11e 625	Lys	Ser	Leu	Phe	Gln 630	Arg	Trp	Ser	Val	Arg 635	Arg	Ser	Ser	Ser	Pro 640
				645			Pro		650	_				655	
			660				Ser	665		_			670		
		675					Сув 680					685			
5er	Ala 690	Сув	Сув	Thr	Glu	Thr 695	Glu	Lys	Gln	His	Gly 700	Авр	Ala	Gly	Leu

Leu 705	Asn	Gly	Lys	Ala	Glu 710	Ser	Leu	Pro	Gly	Gln 715	Pro	Leu	Ala	Сув	Asn 720
Leu	Сув	Tyr	Glu	Ala 725	Glu	Ser	Pro	Asp	Glu 730	Ala	Ala	Leu	Val	<b>Tyr</b> 735	Ala
Ala	Arg	Ala	Tyr 740	Gln	Сув	Thr	Leu	Arg 745	Ser	Arg	Thr	Pro	Glu 750	Gln	Val
Met	Val	<b>А</b> вр 755	Phe	Ala	Ala	Leu	Gly 760	Pro	Leu	Thr	Phe	Gln 765	Leu	Leu	His
Ile	Leu 770	Pro	Phe	Asp	Ser	Val 775	Arg	Lув	Arg	Met	Ser 780	Val	Val	Val	Arg
His 785	Pro	Leu	Ser	Asn	Gln 790	Val	Val	Val	Tyr	Thr 795	Lys	Gly	Ala		Ser 800
Val	Ile	Met	Glu	Leu 805	Leu	Ser	Val	Ala	Ser 810	Pro	Авр	Gly	Ala	Ser 815	Leu
Glu	Lys	Gln	Gln 820	Met	Ile	Val	Arg	Glu 825	Lув	Thr	Gln	Lys	His 830	Leu	Авр
Asp	Tyr	Ala 835	Lys	Gln	Gly	Leu	Arg 840	Thr	Leu	Сув	Ile	Ala 845	Lys	Lys	Val
Met	Ser 850	<b>A</b> ap	Thr	Glu	Tyr	Ala 855	Glu	Trp	Leu	Arg	Asn 860	His	Phe	Leu	Ala
Glu 865	Thr	Ser	Ile	Asp	Asn 870	Arg	Glu	Glu	Leu	Leu 875	Leu	Glu	Ser	Ala	Met 880
Arg	Leu	Glu	Asn	Lys 885	Leu	Thr	Leu	Leu	Gly 890	Ala	Thr	Gly	Ile	Glu 895	Asp
Arg	Leu	Gln	Glu 900	Gly	Val	Pro	Glu	Ser 905	Ile	Glu	Ala	Leu	Нів 910	Lув	Ala
Gly	Ile	<b>Lув</b> 915	Ile	Trp	Met	Leu	Thr 920	Gly	Авр	Lys	Gln	Glu 925	Thr	Ala	Val
Asn	Ile 930	Ala	Tyr	Ala	Сув	Lys 935	Leu	Leu	Glu	Pro	Asp 940	Asp	Lys	Leu	Phe
Ile 945	Leu	Asn	Thr	Gln	Ser 950	Lys	Asp	Ala	Сув	Gly 955	Met	Leu	Met	Ser	Thr 960
Ile	Leu	Lys	Glu	Leu 965	Gln	Lys	Lys	Thr	Gln 970	Ala	Leu	Pro	Glu	Gln 975	Val
Ser	Leu	Ser	Glu 980	Авр	Leu	Leu	Gln	Pro 985	Pro	Val	Pro	Arg	Авр 990	Ser	Gly
		995					1000	_	Lув			1005	i		
Gln	Glu 1010	Ser	Leu		Lys				Glu		Thr 1020		Trp	аұЭ	Gln
Ala 1025		Val	Сув	Сув	Arg 1030		Thr	Pro	Leu	Gln 1035		Ser	Glu	Val	Val 1040
				1045	i				Met 1050	1				1055	
			1060					1065					1070	1	-
		1075					1080		Val			1085			
	1090	1				1095	i		Leu		1100	)		•	
Trp 1105		Tyr	Thr	Arg	Leu 1110		Asn	Met	Ile	Leu 1115		Phe	Phe	Tyr	Lys 1120

42

60

											-	con	tin	ued	
Asn	Val	Ala	Tyr	Val 112		Leu	Leu	Phe	Trp		Gln	Phe	Phe	Сув 1135	
Phe	Ser	Gly	Thr 1140		Met	Thr	Asp	Tyr 1145		Val	Leu	Ile	Phe 115	Phe 0	Asn
Leu	Leu	Phe 1155		Ser	Ala	Pro	Pro 1160		Ile	Tyr	Gly	Val 116		Glu	Lys
qaA	Val 1170		Ala	Glu	Thr	Leu 1175		Gln	Leu	Pro	Glu 1180		Tyr	Arg	Ser
Gly 1185		Lys	Ser	Glu	Ala 1190		Leu	Pro	His	Thr 1199		Trp	Ile	Thr	Leu 1200
Leu	qaA	Ala	Phe	Tyr 120		Ser	Leu	Val	Сув 1210		Phe	Val	Pro	Tyr 1215	
Thr	Tyr	Gln	Gly 1220		Asp	Thr	Asp	Ile 1225		Ala	Phe	Gly	Asn 123	Pro	Leu
Asn	Thr	Ala 1235		Leu	Phe	Ile	Val 1240		Leu	His	Leu	Val 1245		Glu	Ser
Lys	Ser 1250		Thr	Arg	Сув	Ser 1255		Ser	His	Leu	Gln 1260		Gln	Ser	Phe
Gl <b>y</b> 1265	Arg	Leu	Trp	Ile	Thr 1270	)									
<211 <212	)> SE .> LE !> TY !> OR	NGTH	: 12 DNA	69	san	oiens									
	)> SE														
atga	gtga	ica d	tgaa	atato	jc aç	gagtg	gcto	agg	aato	att	ttti	agct	tga a	aacca	gcatt
gaca	acaç	jgg é	agaa	attad	ct ac	ttga	atct	gcc	atga	iggt	tgga	agaad	caa e	actte	catta
c++c	ra+ ac	.+	+ 000	+-			·+ c+c				+000	+ ~ = :	+ -		

120 cttggtgcta ctggcattga agaccgtctg caggagggag tccctgaatc tatagaagct cttcacaaag cgggcatcaa gatctggatg ctgacagggg acaagcagga gacagctgtc 240 300 aacatagctt atgcatgcaa actactggag ccagatgaca agctttttat cctcaatacc caaagtaaag atgcctgtgg gatgctgatg agcacaattt tgaaagaact tcagaagaaa 360 actcaagccc tgccagagca agtgtcatta agtgaagatt tacttcagcc tcctgtcccc 420 cgggactcag ggttacgagc tggactcatt atcactggga agaccctgga gtttgccctg 480 caagaaagtc tgcaaaagca gttcctggaa ctgacatctt ggtgtcaagc tgtggtctgc 540 tgccgagcca caccgctgca gaaaagtgaa gtggtgaaat tggtccgcag ccatctccag 600 gtgatgaccc ttgctattgg tgatggtgcc aatgatgtta gcatgataca agtggcagac 660 attgggatag gggtctcagg tcaagaaggc atgcaggctg tgatggccag tgactttgcc 720 gtttctcagt tcaaacatct cagcaagctc cttcttgtcc atggacactg gtgttataca 780 cggctttcca acatgattct ctatttttc tataagaatg tggcctatgt gaacctcctt 840 ttctggtacc agttcttttg tggattttca ggaacatcca tgactgatta ctgggttttg 900 atcttcttca acctcctctt cacatctgcc cctcctgtca tttatggtgt tttggagaaa gatgtgtctg cagagaccct catgcaactg cctgaacttt acagaagtgg tcagaaatca 1020 gaggcatact taccccatac cttctggatc accttattgg atgcttttta tcaaagcctg 1080 gtctgcttct ttgtgcctta ttttacctac cagggctcag atactgacat ctttgcattt ggaaaccccc tgaacacagc cactetgttc atcgttctcc tecatetggt cattgaaagc 1200 aagagtttga ccaggtgcag tgactcacac ctgcaattcc agagctttgg gaggctgtgg

1269

atcacatga														
<210> SEQ ID NO 12 <211> LENGTH: 422 <212> TYPE: PRT														
<213> ORGANISM: homo sapiens <400> SEQUENCE: 12														
Met Se	qaA :	Thr	Glu 5	Tyr	Ala	Glu	Trp	Leu 10	Arg	Asn	His	Phe	Leu 15	Ala
Glu Thi	Ser	Ile 20	Asp	Asn	Arg	Glu	Glu 25	Leu	Leu	Leu	Glu	Ser 30	Ala	Met
Arg Le	Glu 35	Asn	Lys	Leu	Thr	Leu 40	Leu	Gly	Ala	Thr	Gly 45	Ile	Glu	qaA
Arg Let 50	Gln	Glu	Gly	Val	Pro 55	Glu	Ser	Ile	Glu	Ala 60	Leu	His	Lys	Ala
Gly Ile	. Lys	Ile	Trp	Met 70	Leu	Thr	Gly	Asp	<b>Lу</b> в 75	Gln	Glu	Thr	Ala	Val 80
Asn Ile	Ala	Tyr	Ala 85	Сув	Lys	Leu	Leu	Glu 90	Pro	Asp	Asp	Lys	Leu 95	Phe
Ile Le	Asn	Thr 100	Gln	Ser	Lys	Asp	Ala 105	Сув	Gly	Met	Leu	Met 110	Ser	Thr
Ile Le	Lув 115	Glu	Leu	Gln	Lys	Lys 120	Thr	Gln	Ala	Leu	Pro 125	Glu	Gln	Val
Ser Let		Glu	Asp	Leu	Leu 135	Gln	Pro	Pro	Val	Pro 140	Arg	Asp	Ser	Gly
Leu Aro	Ala	Gly	Leu	Ile 150	Ile	Thr	Gly	Lys	Thr 155	Leu	Glu	Phe	Ala	Leu 160
Gln Glu	Ser	Leu	Gln 165	Lys	Gln	Phe	Leu	Glu 170	Leu	Thr	Ser	Trp	Сув 175	Gln
Ala Val	. Val	Сув 180	Сув	Arg	Ala	Thr	Pro 185	Leu	Gln	Lys	Ser	Glu 190	Val	Val
Lys Let	Val 195	Arg	Ser	His	Leu	Gln 200	Val	Met	Thr	Leu	Ala 205	Ile	Gly	Asp
Gly Ala 210		Asp	Val	Ser	Met 215	Ile	Gln	Val	Ala	Авр 220	Ile	Gly	Ile	Gly
Val Ser 225	Gly	Gln	Glu	Gly 230	Met	Gln	Ala	Val	Met 235	Ala	Ser	Asp	Phe	Ala 240
Val Ser	Gln	Phe	Lys 245	His	Leu	Ser	Lys	Leu 250	Leu	Leu	Val	His	Gly 255	His
Trp Cys	Tyr	Thr 260	Arg	Leu	Ser	Asn	Met 265	Ile	Leu	Tyr	Phe	Phe 270	Tyr	Lys
Asn Val	Ala 275	Tyr	Val	Asn	Leu	Leu 280	Phe	Trp	Tyr	Gln	Phe 285	Phe	Сув	Gly
Phe Ser		Thr	Ser	Met	Thr 295	Asp	Tyr	Trp	Val	Leu 300	Ile	Phe	Phe	Asn
Leu Leu 305	Phe	Thr	Ser	Ala 310	Pro	Pro	Val	Ile	Туг 315	Gly	Val	Leu	Glu	Lys 320
Asp Val	Ser	Ala	Glu 325	Thr	Leu	Met	Gln	Leu 330	Pro	Glu	Leu	Tyr	Arg 335	Ser
Gly Glr	Lys	Ser 340	Glu	Ala	Tyr	Leu	Pro 345	His	Thr	Phe	Trp	Ile 350	Thr	Leu
Leu Asp	Ala 355	Phe	Tyr	Gln	Ser	Leu 360	Val	Сув	Phe	Phe	Val 365	Pro	Tyr	Phe

Thr Tyr Gln Gly Ser Asp Thr Asp Ile Phe Ala Phe Gly Asn Pro Leu 370 375 380

Asn Thr Ala Thr Leu Phe Ile Val Leu His Leu Val Ile Glu Ser 385 390 395

Lys Ser Leu Thr Arg Cys Ser Asp Ser His Leu Gln Phe Gln Ser Phe 405 410 415

Gly Arg Leu Trp Ile Thr

<210> SEQ ID NO 13

<211> LENGTH: 4281

<212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 13

atgactgagg ctctccaatg ggccagatat cactggcgac ggctgatcag aggtgcaacc 60 agggatgatg attcagggcc atacaactat tcctcgttgc tcgcctgtgg gcgcaagtcc 120 tctcagatcc ctaaactgtc aggaaggcac cggattgttg ttccccacat ccagcccttc 180 aaggatgagt atgagaagtt ctccggagcc tatgtgaaca atcgaatacg aacaacaaag 240 tacacacttc tgaattttgt gccaagaaat ttatttgaac aatttcacag agctgccaat 300 ttatatttcc tgttcctagt tgtcctgaac tgggtacctt tggtagaagc cttccaaaag 360 gaaatcacca tgttgcctct ggtggtggtc cttacaatta tcgcaattaa agatggcctg 420 gaagattatc ggaaatacaa aattgacaaa cagatcaata atttaataac taaagtttat 480 agtaggaaag agaaaaaata cattgaccga tgctggaaag acgttactgt tggggacttt 540 attogcotot cotgoaacga ggtcatccot gcagacatgg tactactott ttocactgat 600 ccagatggaa tetgtcacat tgagacttet ggtettgatg gagagageaa tttaaaacag 660 aggcaggtgg ttcggggata tgcagaacag gactctgaag ttgatcctga gaagttttcc 720 agtaggatag aatgtgaaag cccaaacaat gacctcagca gattccgagg cttcctagaa 780 cattccaaca aagaacgcgt gggtctcagt aaagaaaatt tgttgcttag aggatgcacc 840 attagaaaca cagaggctgt tgtgggcatt gtggtttatg caggccatga aaccaaagca 900 atgctgaaca acagtgggcc acggtataag cgcagcaaat tagaaagaag agcaaacaca 960 gatgtcctct ggtgtgtcat gcttctggtc ataatgtgct taactggcgc agtaggtcat 1020 ggaatctggc tgagcaggta tgaaaagatg catttttca atgttcccga gcctgatgga 1080 catatcatat caccactgtt ggcaggattt tatatgtttt ggaccatgat cattttgtta 1140 caggictiga ticciattic tetetatgit tecategasa tigigasaget iggacasata 1200 tatttcattc aaagtgatgt ggatttctac aatgaaaaaa tggattctat tgttcagtgc cgagccctga acatcgccga ggatctggga cagattcagt acctcttttc cgataagaca 1320 ggaaccctca ctgagaataa gatggttttt cgaagatgta gtgtggcagg atttgattac 1380 tgccatgaag aaaatgccag gaggttggag tcctatcagg aagctgtctc tgaagatgaa 1440 gattttatag acacagtcag tggttccctc agcaatatgg caaaaccgag agcccccagc 1500 tgcaggacag ttcataatgg gcctttggga aataagccct caaatcatct tgctgggagc 1560 tottttacto taggaagtgg agaaggagco agtgaagtgo otcattocag acaggotgot ttcagtagcc ccattgaaac agacgtggta ccagacacca ggcttttaga caaatttagt cagattacac ctcggctctt tatgccacta gatgagacca tccaaaatcc accaatggaa

actttgtaca	ttatcgactt	tttcattgca	ttggcaattt	gcaacacagt	agtggtttct	1800
gctcctaacc	aaccccgaca	aaagatcaga	cacccttcac	tgggggggtt	gcccattaag	1860
tctttggaag	agattaaaag	tcttttccag	agatggtctg	tccgaagatc	aagttctcca	1920
tcgcttaaca	gtgggaaaga	gccatcttct	ggagttccaa	acgcctttgt	gagcagactc	1980
cctctctta	gtcgaatgaa	accagcttca	cctgtggagg	aagaggtctc	ccaggtgtgt	2040
gagagccccc	agtgctccag	tagctcagct	tgctgcacag	aaacagagaa	acaacacggt	2100
gatgcaggcc	tcctgaatgg	caaggcagag	tccctccctg	gacagccatt	ggcctgcaac	2160
ctgtgttatg	aggccgagag	cccagacgaa	gcggccttag	tgtatgccgc	cagggcttac	2220
caatgcactt	tacggtctcg	gacaccagag	caggtcatgg	tggactttgc	tgctttggga	2280
ccattaacat	ttcaactcct	acacatectg	ccctttgact	cagtaagaaa	aagaatgtct	2340
gttgtggtcc	gacaccctct	ttccaatcaa	gttgtggtgt	atacgaaagg	cgctgattct	2400
gtgatcatgg	agttactgtc	ggtggcttcc	ccagatggag	caagtctgga	gaaacaacag	2460
atgatagtaa	gggagaaaac	ccagaagcac	ttggatgact	atgccaaaca	aggccttcgt	2520
actttatgta	tagcaaagaa	ggtcatgagt	gacactgaat	atgcagagtg	gctgaggaat	2580
cattttttag	ctgaaaccag	cattgacaac	agggaagaat	tactacttga	atctgccatg	2640
aggttggaga	acaaacttac	attacttggt	gctactggca	ttgaagaccg	tctgcaggag	2700
ggagtccctg	aatctataga	agctcttcac	aaagcgggca	tcaagatctg	gatgctgaca	2760
ggggacaagc	aggagacagc	tgtcaacata	gcttatgcat	gcaaactact	ggagccagat	2820
gacaagcttt	ttatcctcaa	tacccaaagt	aaagatgcct	gtgggatgct	gatgagcaca	2880
attttgaaag	aacttcagaa	gaaaactcaa	gccctgccag	agcaagtgtc	attaagtgaa	2940
gatttacttc	agcctcctgt	ccccgggac	tcagggttac	gagctggact	cattatcact	3000
gggaagaccc	tggagtttgc	cctgcaagaa	agtctgcaaa	agcagttcct	ggaactgaca	3060
tcttggtgtc	aagctgtggt	ctgctgccga	gccacaccgc	tgcagaaaag	tgaagtggtg	3120
aaattggtcc	gcagccatct	ccaggtgatg	accettgeta	ttggtgatgg	tgccaatgat	3180
gttagcatga	tacaagtggc	agacattggg	ataggggtct	caggtcaaga	aggcatgcag	3240
gctgtgatgg	ccagtgactt	tgccgtttct	cagttcaaac	atctcagcaa	gctccttctt	3300
gtccatggac	actggtgtta	tacacggctt	tccaacatga	ttctctattt	tttctataag	3360
aatgtggcct	atgtgaacct	ccttttctgg	taccagttct	tttgtggatt	ttcaggaaca	3420
tccatgactg	attactgggt	tttgatcttc	ttcaacctcc	tcttcacatc	tgcccctcct	3480
gtcatttatg	gtgttttgga	gaaagatgtg	tctgcagaga	ccctcatgca	actgcctgaa	3540
ctttacagaa	gtggtcagaa	atcagaggca	tacttacccc	ataccttctg	gatcacctta	3600
ttggatgctt	tttatcaaag	cctggtctgc	ttctttgtgc	cttattttac	ctaccagggc	3660
tcagatactg	acatctttgc	atttggaaac	cccctgaaca	cagccactct	gttcatcgtt	3720
ctcctccatc	tggtcattga	aagcaagagt	ttgacttgga	ttcacttgct	ggtcatcatt	3780
ggtagcatct	tgtcttattt	tttatttgcc	atagttttg	gagccatgtg	tgtaacttgc	3840
acccaccat	ccaaccctta	ctggattatg	caggagcaca	tgctggatcc	agtattctac	3900
tagtttgta	tcctcacgac	gtccattgct	cttctgccca	ggtttgtata	cagagttctt	3960
cagggatece	tgtttccatc	tccaattctg	agagctaagc	actttgacag	actaactcca	4020
gaggagagga	ctaaagctct	caagaagtgg	agaggggctg	gaaagatgaa	tcaagtgaca	4080
caaagtatg	ctaaccaatc	agctggcaag	tcaggaagaa	gacccatgcc	tggcccttct	4140

gotgtatttg caatgaagto agcaacttoo tgtgctattg agcaaggaaa ot	tatctctg 4200							
tgtgaaactg ctttagatca aggctactct gaaactaagg cctttgagat ggctggaccc 420								
tccaaaggta aagaaagcta g	4281							
<210> SEQ ID NO 14 <211> LENGTH: 1426 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 14								
Met Thr Glu Ala Leu Gln Trp Ala Arg Tyr His Trp Arg Arg Le	en Ile							
1 5 10 1!								
Arg Gly Ala Thr Arg Asp Asp Asp Ser Gly Pro Tyr Asn Tyr Se 20 25 30	er Ser							
Leu Leu Ala Cys Gly Arg Lys Ser Ser Gln Ile Pro Lys Leu So 35 40 45	er Gly							
Arg His Arg Ile Val Val Pro His Ile Gln Pro Phe Lys Asp G. 50 55 60	lu Tyr							
Glu Lys Phe Ser Gly Ala Tyr Val Asn Asn Arg Ile Arg Thr Th	nr Lys 80							
Tyr Thr Leu Leu Asn Phe Val Pro Arg Asn Leu Phe Glu Gln Ph 85 90 99								
Arg Ala Ala Asn Leu Tyr Phe Leu Phe Leu Val Val Leu Asn Tr 100 105 110	rp Val							
Pro Leu Val Glu Ala Phe Gln Lys Glu Ile Thr Met Leu Pro Le 115 120 125	eu Val							
Val Val Leu Thr Ile Ile Ala Ile Lys Asp Gly Leu Glu Asp Ty 130 135 140	yr Arg							
Lys Tyr Lys Ile Asp Lys Gln Ile Asn Asn Leu Ile Thr Lys Vo 145 150 155	al Tyr 160							
Ser Arg Lys Glu Lys Lys Tyr Ile Asp Arg Cys Trp Lys Asp Vo	al Thr 75							
Val Gly Asp Phe Ile Arg Leu Ser Cys Asn Glu Val Ile Pro Al 180 185 190	la Asp							
Met Val Leu Leu Phe Ser Thr Asp Pro Asp Gly Ile Cys His Il 195 200 205	le Glu							
Thr Ser Gly Leu Asp Gly Glu Ser Asn Leu Lys Gln Arg Gln Ver 210 215 220	al Val							
Arg Gly Tyr Ala Glu Gln Asp Ser Glu Val Asp Pro Glu Lys Pr 225 230 235	ne Ser 240							
Ser Arg Ile Glu Cys Glu Ser Pro Asn Asn Asp Leu Ser Arg Ph 245 250 25								
Gly Phe Leu Glu His Ser Asn Lys Glu Arg Val Gly Leu Ser Ly 260 265 270	gs Glu							
Asn Leu Leu Arg Gly Cys Thr Ile Arg Asn Thr Glu Ala Va 275 280 285	al Val							
Gly Ile Val Val Tyr Ala Gly His Glu Thr Lys Ala Met Leu As 290 295 300	an Asn							
Ser Gly Pro Arg Tyr Lys Arg Ser Lys Leu Glu Arg Arg Ala As 305 310 315	on Thr 320							
Asp Val Leu Trp Cys Val Met Leu Leu Val Ile Met Cys Leu Th 325 330 33								
Ala Val Gly His Gly Ile Trp Leu Ser Arg Tyr Glu Lys Met Hi	s Phe							

	_												C T 1.1	ueu	
			340					345					350		
Phe	Asn	Val 355	Pro	Glu	Pro	Asp	Gly 360	His	Ile	Ile	Ser	Pro 365	Leu	Leu	Ala
Gly	Phe 370	Tyr	Met	Phe	Trp	Thr 375	Met	Ile	Ile	Leu	Leu 380	Gln	Val	Leu	Ile
Pro 385	Ile	Ser	Leu	Tyr	Val 390	Ser	Ile	Glu	Ile	Val 395	Lув	Leu	Gly	Gln	Ile 400
Tyr	Phe	Ile	Gln	Ser 405	Asp	Val	Asp	Phe	Tyr 410	Asn	Glu	Lys	Met	Asp 415	Ser
Ile	Val	Gln	Сув 420	Arg	Ala	Leu	Asn	Ile 425	Ala	Glu	Asp	Leu	Gly 430	Gln	Ile
Gln	Tyr	Leu 435	Phe	Ser	Asp	Lys	Thr 440	Gly	Thr	Leu	Thr	Glu 445	Asn	Lys	Met
Val	Phe 450	Arg	Arg	Сув	Ser	Val 455	Ala	Gly	Phe	Авр	Tyr 460	Сув	His	Glu	Glu
Asn 465	Ala	Arg	Arg	Leu	Glu 470	Ser	Tyr	Gln	Glu	Ala 475	Val	Ser	Glu	Asp	Glu 480
qaA	Phe	Ile	Asp	Thr 485	Val	Ser	Gly	Ser	Leu 490	Ser	naA	Met	Ala	Lys 495	Pro
Arg	Ala	Pro	Ser 500	Сув	Arg	Thr	Val	Нів 505	Asn	Gly	Pro	Leu	Gly 510	Asn	Lys
Pro	Ser	Asn 515	His	Leu	Ala	Gly	Ser 520	Ser	Phe	Thr	Leu	Gly 525	Ser	Gly	Glu
Gly	Ala 530	Ser	Glu	Val	Pro	Нів 535	Ser	Arg	Gln	Ala	Ala 540	Phe	Ser	Ser	Pro
Ile 545	Glu	Thr	Asp	Val	Val 550	Pro	Авр	Thr	Arg	Leu 555	Leu	Asp	Lys	Phe	Ser 560
Gln	Ile	Thr	Pro	Arg 565	Leu	Phe	Met	Pro	Leu 570	Asp	Glu	Thr	Ile	Gln 575	Asn
Pro	Pro	Met	Glu 580	Thr	Leu	Tyr	Ile	Ile 585	Asp	Phe	Phe	Ile	Ala 590	Leu	Ala
		595					Ser 600					605	-		-
	610					615	Gly				620				
625					630		Trp			635					640
				645			Pro		650	_				655	
			660				Ser	665					670		
		675					Сув 680					685			
Ser	Ala 690	Сув	Сув	Thr	Glu	Thr 695	Glu	Lys	Gln	His	Gly 700	Авр	Ala	Gly	Leu
705					710		Leu			715					720
				725			Pro		730					735	
			740				Leu	745					750		
Met	Val	<b>А</b> вр 755	Phe	Ala	Ala	Leu	Gly 760	Pro	Leu	Thr	Phe	Gln 765	Leu	Leu	His

							_								
Ile	Leu 770	Pro	Phe	Asp	Ser	Val 775	Arg	Lув	Arg	Met	Ser 780	Val	Val	Val	Arg
Нів 785	Pro	Leu	Ser	Asn	Gln 790	Val	Val	Val	Tyr	Thr 795	Lys	Gly	Ala	Авр	Ser 800
Val	Ile	Met	Glu	Leu 805	Leu	Ser	Val	Ala	Ser 810	Pro	Asp	Gly	Ala	Ser 815	Leu
Glu	Lys	Gln	Gln 820	Met	Ile	Val	Arg	Glu 825	Lys	Thr	Gln	Lys	His 830	Leu	Asp
Авр	Tyr	Ala 835	Lys	Gln	Gly	Leu	Arg 840	Thr	Leu	Сув	Ile	Ala 845	Lys	Lys	Val
Met	Ser 850	Asp	Thr	Glu	Tyr	Ala 855	Glu	Trp	Leu	Arg	Asn 860	His	Phe	Leu	Ala
Glu 865	Thr	Ser	Ile	qaA	Авп 870	Arg	Glu	Glu	Leu	Leu 875	Leu	Glu	Ser	Ala	Met 880
Arg	Leu	Glu	Asn	Lys 885	Leu	Thr	Leu	Leu	Gly 890	Ala	Thr	Gly	Ile	Glu 895	Asp
Arg	Leu	Gln	Glu 900	Gly	Val	Pro	Glu	Ser 905	Ile	Glu	Ala	Leu	His 910	Lys	Ala
Gly	Ile	Lys 915	Ile	Trp	Met	Leu	Thr 920	Gly	Asp	Lys	Gln	Glu 925	Thr	Ala	Val
Asn	Ile 930	Ala	Tyr	Ala	Сув	Lув 935	Leu	Leu	Glu	Pro	Asp 940	Asp	Lys	Leu	Phe
11e 945	Leu	Asn	Thr	Gln	Ser 950	Lув	Авр	Ala	Сув	Gly 955	Met	Leu	Met	Ser	Thr 960
Ile	Leu	Lys	Glu	Leu 965	Gln	Lys	Lys	Thr	Gln 970	Ala	Leu	Pro	Glu	Gln 975	Val
Ser	Leu	Ser	Glu 980	Asp	Leu	Leu	Gln	Pro 985	Pro	Val	Pro	Arg	<b>Asp</b> 090	Ser	Gly
Leu	Arg	Ala 995	Gly	Leu	Ile	Ile	Thr 1000		Lys	Thr	Leu	Glu 1005		Ala	Leu
Gln	Glu 1010		Leu	Gln	Lys	Gln 1015	Phe	Leu	Glu	Leu	Thr 1020		Trp	Сув	Gln
Ala 1025		Val	аұЭ	аұЭ	Arg 1030		Thr	Pro	Leu	Gln 1035		Ser	Glu	Val	Val 1040
Lys	Leu	Val	Arg	Ser 1045		Leu	Gln	Val	Met 1050		Leu	Ala	Ile	Gly 1055	
			1060	)			Ile	1065	<b>i</b>		-		1070	)	-
		1075	i				Gln 1080	)				1085	5		
Val	Ser 1090		Phe	Lys	His	Leu 1095	Ser	Lys	Leu	Leu	Leu 1100		His	Gly	His
Trp 1105		Tyr	Thr	Arg	Leu 1110		naA	Met	Ile	Leu 1115		Phe	Phe	Tyr	Lув 1120
Asn	Val	Ala	Tyr	Val 1125		Leu	Leu	Phe	Trp 1130		Gln	Phe	Phe	Сув 1135	
		-	1140	)			Авр	1145	•				1150	)	
		1155	i				Pro 1160	)				1165	i		
qaA	Val 1170		Ala	Glu	Thr	Leu 1175	Met	Gln	Leu	Pro	Glu 1180		Tyr	Arg	Ser

-continued	
Gly Gln Lys Ser Glu Ala Tyr Leu Pro His Thr Phe Trp Ile Thr Leu 1185 1190 1195 1200	
Leu Asp Ala Phe Tyr Gln Ser Leu Val Cys Phe Phe Val Pro Tyr Phe 1205 1210 1215	
Thr Tyr Gln Gly Ser Asp Thr Asp Ile Phe Ala Phe Gly Asn Pro Leu 1220 1225 1230	
Asn Thr Ala Thr Leu Phe Ile Val Leu Leu His Leu Val Ile Glu Ser 1235 1240 1245	
Lys Ser Leu Thr Trp Ile His Leu Leu Val Ile Ile Gly Ser Ile Leu 1250 1255 1260	
Ser Tyr Phe Leu Phe Ala Ile Val Phe Gly Ala Met Cys Val Thr Cys 1265 1270 1275 1280	
Asn Pro Pro Ser Asn Pro Tyr Trp Ile Met Gln Glu His Met Leu Asp 1285 1290 1295	
Pro Val Phe Tyr Leu Val Cys Ile Leu Thr Thr Ser Ile Ala Leu Leu 1300 1305 1310	
Pro Arg Phe Val Tyr Arg Val Leu Gln Gly Ser Leu Phe Pro Ser Pro 1315 1320 1325	
Ile Leu Arg Ala Lys His Phe Asp Arg Leu Thr Pro Glu Glu Arg Thr 1330 1335 1340	
Lys Ala Leu Lys Lys Trp Arg Gly Ala Gly Lys Met Asn Gln Val Thr 1345 1350 1355 1360	
Ser Lys Tyr Ala Asn Gln Ser Ala Gly Lys Ser Gly Arg Arg Pro Met 1365 1370 1375	
Pro Gly Pro Ser Ala Val Phe Ala Met Lys Ser Ala Thr Ser Cys Ala 1380 1385 1390	
Ile Glu Gln Gly Asn Leu Ser Leu Cys Glu Thr Ala Leu Asp Gln Gly 1395 1400 1405	
Tyr Ser Glu Thr Lys Ala Phe Glu Met Ala Gly Pro Ser Lys Gly Lys 1410 1415 1420	
Glu Ser 1425	
<210> SEQ ID NO 15 <211> LENGTH: 1737 <212> TYPE: DNA <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 15	
atgagtgaca ctgaatatgc agagtggctg aggaatcatt ttttagctga aaccagcatt	60
gacaacaggg aagaattact acttgaatct gccatgaggt tggagaacaa acttacatta	120
cttggtgcta ctggcattga agaccgtctg caggagggag tccctgaatc tatagaagct	180
cttcacaaag cgggcatcaa gatctggatg ctgacágggg acaagcagga gacagctgtc	240
aacatagctt atgcatgcaa actactggag ccagatgaca agctttttat cctcaatacc	300
caaagtaaag atgcctgtgg gatgctgatg agcacaattt tgaaagaact tcagaagaaa	360
actcaagece tgccagagea agtgteatta agtgaagatt tactteagee teetgteece	420
cgggactcag ggttacgagc tggactcatt atcactggga agaccctgga gtttgccctg	480
caagaaagtc tgcaaaagca gttcctggaa ctgacatctt ggtgtcaagc tgtggtctgc	540
tgccgagcca caccgctgca gaaaagtgaa gtggtgaaat tggtccgcag ccatctccag	600
gtgatgaccc ttgctattgg tgatggtgcc aatgatgtta gcatgataca agtggcagac	660
attgggatag gggtctcagg tcaagaaggc atgcaggctg tgatggccag tgactttgcc	720

gtt	tctc	agt ·	tcaa	acat	ct c	agca	agcto	c ct	tctt	gtcc	atg	gacac	etg	gtgt	tataca	780
cgg	cttt	cca	acat	gatt	ct c	tatt	tttt	ta	taag	aatg	tgg	cctat	tgt	gaac	ctcctt	840
ttc	tggta	acc .	agtt	ettt	tg t	ggat	tttc	agg	aaca	tcca	tga	ctgat	ta	ctgg	gttttg	900
atc	ttcti	tca a	acct	ctc	tt c	acat	ctgc	e cc	tcct	gtca	ttt	atggt	tgt	tttg	gagaaa	960
gate	gtgt	ctg	caga	gacc	ct c	atgc	aact	g cc	tgaa	cttt	aca	gaagt	gg	tcag	aaatca	1020
gag	gcate	act	tacco	cat	ac c	ttct	ggato	acı	ctta	ttgg	atg	ctttt	ta	tcaa	agcctg	1080
gtc	tgcti	tct ·	ttgt	gcct	ta t	ttta	ccta	ca	gggc	tcag	ata	ctgac	at	cttt	gcattt	1140
gga	aacc	ccc ·	tgaad	caca	gc c	actc	tgtto	ate	cgtt	ctcc	tcc	atct	ggt	catt	gaaagc	1200
aag	agtti	tga (	cttg	gatt	ca c	ttgc	tggto	at	catt	ggta	gca	tatta	jtc ·	ttat	ttttta	1260
ttt	gccat	tag	tttt	tgga	gc c	atgt	gtgta	a ac	ttgc	aacc	cac	catco	caa	ccct	tactgg	1320
att	atgc	agg (	agcad	catg	ct g	gatc	cagta	a tt	ctac	ttag	ttt	gtato	ct	cacg	acgtcc	1380
att	getei	tte ·	tgcc	cagg.	tt t	gtata	acaga	gt	tctt	cagg	gat	ccct	gtt ·	tcca	tctcca	1440
atte	ctga	gag (	ctaaq	gcac	tt t	gaca	gacte	ac	tcca	gagg	aga	ggact	caa .	agct	ctcaag	1500
aag	tgga	gag	gggci	tgga	aa g	atga	atca	gt	gacat	tcaa	agt	atgct	caa	ccaa	tcagct	1560
ggc	aagto	ag (	gaaga	aga	cc c	atgc	ctgg	cc	ttct	gctg	tati	ttgca	at	gaag	tcagca	1620
act	tect	gtg (	ctati	tgag	ca a	ggaa	actta	a to	tctg	tgtg	aaa	ctgct	tt	agat	caaggc	1680
tact	tctg	aaa o	ctaaq	ggcc.	tt t	gagat	tggct	gg	accci	tcca	aag	gtaaa	ıga .	aagc	tag	1737
<212 <212 <213		NGTI PE:	H: 57 PRT [SM:	nomo	gaa c	piens	3									
	)> SE					21-	<b>61</b>	<b></b>	•	•			<b>5</b> 1.	•		
net 1	ser	Авр	Thr	5	туг	Ala	GIU	Trp	Leu 10	Arg	Asn	His	Pne	Leu 15	Ala	
Glu	Thr	Ser	Ile 20	Авр	Asn	Arg	Glu	Glu 25	Leu	Leu	Leu	Glu	Ser 30	Ala	Met	
Arg	Leu	Glu 35	Asn	Lys	Leu	Thr	Leu 40	Leu	Gly	Ala	Thr	Gly 45	Ile	Glu	Asp	
Arg	Leu 50	Gln	Glu	Gly	Val	Pro 55	Glu	Ser	Ile	Glu	Ala 60	Leu	His	Lys	Ala	
Gly 65	Ile	Lys	Ile	Trp	Met 70	Leu	Thr	Gly	Asp	<b>Lу</b> в 75	Gln	Glu	Thr	Ala	Val 80	
Asn	Ile	Ala	Tyr	Ala 85	Сув	Lys	Leu	Leu	Glu 90	Pro	Asp	Asp	Lys	Leu 95	Phe	
Ile	Leu	Asn	Thr 100	Gln	Ser	Lys	Asp	Ala 105	Сув	Gly	Met	Leu	Met 110	Ser	Thr	
Ile	Leu	Lys 115	Glu	Leu	Gln	Lys	<b>Lув</b> 120	Thr	Gln	Ala	Leu	Pro 125	Glu	Gln	Val	
Ser	Leu 130	Ser	Glu	Asp	Leu	Leu 135	Gln	Pro	Pro	Val	Pro	Arg	qaA	Ser	Gly	

Leu Arg Ala Gly Leu Ile Ile Thr Gly Lys Thr Leu Glu Phe Ala Leu 145  $\phantom{\bigg|}$  150  $\phantom{\bigg|}$  155  $\phantom{\bigg|}$  160

Gln Glu Ser Leu Gln Lys Gln Phe Leu Glu Leu Thr Ser Trp Cys Gln 165 170 175

Ala Val Val Cys Cys Arg Ala Thr Pro Leu Gln Lys Ser Glu Val Val 180  $$180\,$ 

Lys	Leu	Val 195	Arg	Ser	His	Leu	Gln 200	Val	Met	Thr	Leu	Ala 205	Ile	Gly	Asp
Gly	Ala 210	Asn	Asp	Val	Ser	Met 215	Ile	Gln	Val	Ala	Asp 220	Ile	Gly	Ile	Gly
Val 225	Ser	Gly	Gln	Glu	Gly 230	Met	Gln	Ala	Val	Met 235	Ala	Ser	Asp	Phe	Ala 240
Val	Ser	Gln	Phe	Lys 245	His	Leu	Ser	Lys	Leu 250	Leu	Leu	Val	His	Gly 255	His
Trp	Сув	Tyr	Thr 260	Arg	Leu	Ser	Asn	Met 265	Ile	Leu	Tyr	Phe	Phe 270	Tyr	Lys
Asn	Val	Ala 275	Tyr	Val	Asn	Leu	Leu 280	Phe	Trp	Tyr	Gln	Phe 285	Phe	Сув	Gly
Phe	Ser 290	Gly	Thr	Ser	Met	Thr 295	qaA	Tyr	Trp	Val	Leu 300	Ile	Phe	Phe	Asn
Leu 305	Leu	Phe	Thr	Ser	Ala 310	Pro	Pro	Val	Ile	Tyr 315	Gly	Val	Leu	Glu	Lys 320
Asp	Val	Ser	Ala	Glu 325	Thr	Leu	Met	Gln	Leu 330	Pro	Glu	Leu	Tyr	Arg 335	Ser
Gly	Gln	Lys	Ser 340	Glu	Ala	Tyr	Leu	Pro 345	His	Thr	Phe	Trp	Ile 350	Thr	Leu
Leu	Asp	Ala 355	Phe	Tyr	Gln	Ser	Leu 360	Val	Сув	Phe	Phe	Val 365	Pro	Tyr	Phe
Thr	<b>Tyr</b> 370	Gln	Gly	Ser	Asp	Thr 375	Asp	Ile	Phe	Ala	Phe 380	Gly	Asn	Pro	Leu
Asn 385	Thr	Ala	Thr	Leu	Phe 390	Ile	Val	Leu	Leu	His 395	Leu	Val	Ile	Glu	Ser 400
Lys	Ser	Leu	Thr	Trp 405	Ile	His	Leu	Leu	Val 410	Ile	Ile	Gly	Ser	Ile 415	Leu
Ser	Tyr	Phe	Leu 420	Phe	Ala	Ile	Val	Phe 425	Gly	Ala	Met	Сув	Val 430	Thr	Сув
Asn	Pro	Pro 435	Ser	Asn	Pro	Tyr	Trp 440	Ile	Met	Gln	Glu	His 445	Met	Leu	Asp
Pro	Val 450	Phe	Tyr	Leu	Val	Сув 455	Ile	Leu	Thr	Thr	Ser 460	Ile	Ala	Leu	Leu
Pro 465	Arg	Phe	Val	Tyr	Arg 470	Val	Leu	Gln	Gly	Ser 475	Leu	Phe	Pro	Ser	Pro 480
Ile	Leu	Arg	Ala	Lys 485	His	Phe	Asp	Arg	Leu 490	Thr	Pro	Glu	Glu	Arg 495	Thr
Lув	Ala	Leu	<b>Lу</b> в 500	Lys	Trp	Arg	Gly	<b>Ala</b> 505	Gly	Lys	Met	Asn	Gln 510	Val	Thr
Ser	Lys	<b>Tyr</b> 515	Ala	Asn	Gln	Ser	Ala 520	Gly	Lys	Ser	Gly	Arg 525	Arg	Pro	Met
Pro	Gly 530	Pro	Ser	Ala	Val	Phe 535	Ala	Met	Lys	Ser	Ala 540	Thr	Ser	Сув	Ala
Ile 545	Glu	Gln	Gly	Asn	Leu 550	Ser	Leu	Сув	Glu	Thr 555	Ala	Leu	Asp	Gln	<b>Gly</b> 560
Tyr	Ser	Glu	Thr	<b>Lу</b> в 565	Ala	Phe	Glu	Met	Ala 570	Gly	Pro	Ser	Lув	Gly 575	Lys

Glu Ser

<210> SEQ ID NO 17 <211> LENGTH: 5958 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400>	SEQUE	ENCE: 1	7					
gtcagc	taca	caacct	ggat	cttaccacag	tttggatatg	actgaggctc	tccaatgggc	60
cagata	tcac	tggcga	cggc	tgatcagagg	tgcaaccagg	gatgatgatt	cagggccata	120
caacta	ttcc	tcgttg	ctcg	cctgtgggcg	caagtcctct	cagatcccta	aactgtcagg	180
aaggca	ccgg	attgtt	gttc	cccacatcca	gcccttcaag	gatgagtatg	agaagttctc	240
cggagc	ctat	gtgaac	aatc	gaatacgaac	aacaaagtac	acacttctga	attttgtgcc	300
aagaaa	ttta	tttgaa	caat	ttcacagagc	tgccaattta	tatttcctgt	tcctagttgt	360
cctgaa	ctgg	gtacct	ttgg	tagaagcctt	ccaaaaggaa	atcaccatgt	tgcctctggt	420
ggtggt	cctt	acaatt	atcg	caattaaaga	tggcctggaa	gattatcgga	aatacaaaat	480
tgacaa	acag	atcaat	aatt	taataactaa	agtttatagt	aggaaagaga	aaaaatacat	540
tgaccg	atgc	tggaaa	gacg	ttactgttgg	ggactttatt	cgcctctcct	gcaacgaggt	600
catccc	tgca	gacatg	gtac	tactctttc	cactgatcca	gatggaatct	gtcacattga	660
gacttc	tggt	cttgat	ggag	agagcaattt	aaaacagagg	caggtggttc	ggggatatgc	720
agaaca	ggac	tctgaa	gttg	atcctgagaa	gttttccagt	aggatagaat	gtgaaagccc	780
aaacaa	tgac	ctcagc	agat	tccgaggctt	cctagaacat	tccaacaaag	aacgcgtggg	840
tctcag	taaa	gaaaat	ttgt	tgcttagagg	atgcaccatt	agaaacacag	aggctgttgt	900
gggcat	tgtg	gtttat	gcag	gccatgaaac	caaagcaatg	ctgaacaaca	gtgggccacg	960
gtataa	gege	agcaaa	ttag	aaagaagagc	aaacacagat	gtcctctggt	gtgtcatgct	1020
tctggt	cata	atgtgc	ttaa	ctggcgcagt	aggtcatgga	atctggctga	gcaggtatga	1080
aaagat	gcat	tttttc	aatg	ttcccgagcc	tgatggacat	atcatatcac	cactgttggc	1140
aggatt	ttat	atgttt	tgga	ccatgatcat	tttgttacag	gtcttgattc	ctatttctct	1200
ctatgt	ttcc	atcgaa	attg	tgaagcttgg	acaaatatat	ttcattcaaa	gtgatgtgga	1260
tttcta	caat	gaaaaa	atgg	attctattgt	tcagtgccga	gccctgaaca	tcgccgagga	1320
tctggg	acag	attcag	tacc	tcttttccga	taagacagga	accctcactg	agaataagat	1380
ggtttt	tcga	agatgt	agtg	tggcaggatt	tgattactgc	catgaagaaa	atgccaggag	1440
gttgga	gtcc	tatcag	gaag	ctgtctctga	agatgaagat	tttatagaca	cagtcagtgg	1500
ttccct	cagc	aatatg	gcaa	aaccgagagc	ccccagctgc	aggacagttc	ataatgggcc	1560
tttggg	aaat	aagccc	tcaa	atcatcttgc	tgggagctct	tttactctag	gaagtggaga	1620
aggagc	cagt	gaagtg	cctc	attccagaca	ggctgctttc	agtagcccca	ttgaaacaga	1680
cgtggt	acca	gacacc	aggc	ttttagacaa	atttagtcag	attacacctc	ggctctttat	1740
gccact	agat	gagacc	atcc	aaaatccacc	aatggaaact	ttgtacatta	tcgactttt	1800
cattgc	attg	gcaatt	tgca	acacagtagt	ggtttctgct	cctaaccaac	cccgacaaaa	1860
gatcag	acac	ccttca	ctgg	gggggttgcc	cattaagtct	ttggaagaga	ttaaaagtct	1920
tttcca	gaga	tggtct	gtcc	gaagatcaag	ttctccatcg	cttaacagtg	ggaaagagcc	1980
atcttc	tgga	gttcca	aacg	cctttgtgag	cagactccct	ctctttagtc	gaatgaaacc	2040
agcttc	acct	gtggag	gaag	aggtctccca	ggtgtgtgag	agcccccagt	gctccagtag	2100
ctcagc	ttgc	tgcaca	gaaa	cagagaaaca	acacggtgat	gcaggcctcc	tgaatggcaa	2160
ggcaga	gtcc	ctccct	ggac	agccattggc	ctgcaacctg	tgttatgagg	ccgagagccc	2220
agacga	agcg	gcctta	gtgt	atgccgccag	ggcttaccaa	tgcactttac	ggtctcggac	2280

accagagcag	gtcatggtgg	actttgctgc	tttgggacca	ttaacatttc	aactcctaca	2340
catcctgccc	tttgactcag	taagaaaaag	aatgtctgtt	gtggtccgac	accctctttc	2400
caatcaagtt	gtggtgtata	cgaaaggcgc	tgattctgtg	atcatggagt	tactgtcggt	2460
ggcttcccca	gatggagcaa	gtctggagaa	acaacagatg	atagtaaggg	agaaaaccca	2520
gaagcacttt	tttcttccat	ttcaggtgtc	gtgaaaagct	tgaattcggc	gcgccagata	2580
tcacgcgtgc	caagggactg	gctcaggatg	actatgccaa	acaaggcctt	cgtactttat	2640
gtatagcaaa	gaaggtcatg	agtgacactg	aatatgcaga	gtggctgagg	aatcattttt	2700
tagctgaaac	cagcattgac	aacagggaag	aattactact	tgaatctgcc	atgaggttgg	2760
agaacaaact	tacattactt	ggtgctactg	gcattgaaga	ccgtctgcag	gagggagtcc	2820
ctgaatctat	agaagctctt	cacaaagcgg	gcatcaagat	ctggatgctg	acaggggaca	2880
agcaggagac	agctgtcaac	atagcttatg	catgcaaact	actggagcca	gatgacaagc	2940
ttttatcct	caatacccaa	agtaaagtgc	gtatattgag	attaaatctg	ttcttctgta	3000
ttttcaaagg	cattggaaca	tttgagattt	gatgtatgca	aggattaaaa	aaatgcctgt	3060
gggatgctga	tgagcacaat	tttgaaagaa	cttcagaaga	aaactcaagc	cctgccagag	3120
caagtgtcat	taagtgaaga	tttacttcag	cctcctgtcc	cccgggactc	agggttacga	3180
gctggactca	ttatcactgg	gaagaccctg	gagtttgccc	tgcaagaaag	tctgcaaaag	3240
cagttcctgg	aactgacatc	ttggtgtcaa	gctgtggtct	gctgccgagc	cacaccgctg	3300
cagaaaagtg	aagtggtgaa	attggtccgc	agccatctcc	aggtgatgac	ccttgctatt	3360
ggtgagtgag	gatgaatctg	agtcctgctc	ttctcccttt	cacaccacac	cagacaccga	3420
tccttctgtc	tctttcttct	cccactgttc	cttccatttt	cctcctccct	ttttctctac	3480
cacattcatg	ccttcccatc	acctatttga	gcaccttcct	ccatcaccta	tttgagcacc	3540
ttctgtgaac	caggtaatag	ggatgtgaca	tggtaaacaa	tacagtagtc	cagacttctt	3600
agttcagtgt	cagaccccca	aatcaacaag	cttaaatcaa	gtaataaact	gaatcacaga	3660
actgaaaaat	ccatgtgttc	taccttcagg	aaagctaaat	tcaaggacat	gagaattcat	3720
ttctttatcc	attccacaag	tatttatcaa	gtgccttttt	tgtaccaggc	atttttctag	3780
atggagatac	aagagtatat	aaaattggca	aactaccttt	ttacaaggaa	cttacatcta	3840
gtaggaaggc	atgcagttaa	acaaagcata	atctgtcagg	ttcaggtagt	gataagtact	3900
attggaaaaa	taagtggatg	aggacacgta	tagcactgga	gatgggctgg	ggctgctctt	3960
taaatcgatt	tcaagagcta	ctgtaagttg	actgggagca	gagatgtgaa	ggaaatcata	4020
aggggccatg	gagacatggt	ggtgccaatg	atgttagcat	gatacaagtg	gcagacattg	4080
ggataggggt	ctcaggtcaa	gaaggcatgc	aggctgtgat	ggccagtgac	tttgccgttt	4140
ctcagttcaa	acatctcagc	aagctccttc	ttgtccatgg	acactggtgt	tatacacggc	4200
tttccaacat	gattctctat	tttttctata	agaatgtggc	ctatgtgaac	ctccttttct	4260
ggtaccagtt	cttttgtgga	ttttcaggaa	catccatgac	tgattactgg	gttttgatct	4320
tcttcaacct	cctcttcaca	tctgcccctc	ctgtcattta	tggtgttttg	gagaaagatg	4380
tgtctgcaga	gaccctcatg	caactgcctg	aactttacag	aagtggtcag	aaatcagagg	4440
catacttacc	ccataccttc	tggatcacct	tattggatgc	tttttatcaa	agcctggtct	4500
gcttctttgt	gccttatttt	acctaccagg	gctcagatac	tgacatcttt	gcatttggaa	4560
accccctgaa	cacagccact	ctgttcatcg	ttctcctcca	tctggtcatt	gaaagcaaga	4620
gtttgaccag	gtgcagtgac	tcacacctgc	aattccagag	ctttgggagg	ctgtggatca	4680

catgaagcta agagttcaag accagcctgg gcaacataac ttggattcac ttgctggtca	4740
tcattggtag catcttgtct tattttttat ttgccatagt ttttggagcc atgtgtgtaa	4800
cttgcaaccc accatccaac ccttactgga ttatgcagga gcacatgctg gatccagtat	4860
totacttagt ttgtatcctc acgacgtcca ttgctcttct gcccaggttt gtatacagag	4920
ttcttcaggg atccctgttt ccatctccaa ttctgagagc taagcacttt gacagactaa	4980
ctccagagga gaggactaaa gctctcaaga agtggagagg ggctggaaag atgaatcaag	5040
tgacatcaaa gtatgctaac caatcagetg gcaagtcagg aagaagacec atgeetggee	5100
cttctgctgt atttgcaatg aagtcagcaa cttcctgtgc tattgagcaa ggaaacttat	5160
ctctgtgtga aactgettta gatcaagget actctgaaac taaggeettt gagatggetg	5220
gaccotocaa aggtaaagaa agctagatac cotoottgga gttgcaagta ttotttcaag	5280
gttggaagag ggattttgaa gaggtatctc tccaagcaag aatgacttgt ttttccataa	5340
gggacatgag cattttacta ggcttggaag agctgacatg atgagcatta ttgtatgttt	5400
gtatatacat ttgtgataga gggctagagt ttgacctaga gagagtttaa ggaagtgaaa	5460
tatttaattc agaaccaaat gcttttgtaa aactttttgg attttgtaaa agcattttca	5520
ttctcttaga aattcaagta ttttcaaggg gagtcatttg agatatattt attttactag	5580
gagatettat attetaggga aatgetttaa atggteagge teeaategga attttttaa	5640
gaaaaaagta gtttttaata cattggttag gactcagagg aaatacggaa aaaacattgt	5700
agatggtaat ttacagataa aatcccaaga gcctttaaac aacaaggtac ctaaataggg	5760
tataattata ctgcttaaaa tacaggtagt gcctattaat agctttttat ttcctatggg	5820
gagatgcttt ggtcttctgg ctgagatgta ggcatacctc tcactcattt caatgctttc	5880
ctgaggtgga gccttcattg gaaaggggaa agagggttct aggttcatca gggaccagga	5940
atgettteet etggeagg	5958

40

What is claimed is:

- 1. An isolated nucleic acid molecule comprising the novel human ATPase nucleotide sequence described in SEQ ID NO: 13.
- 2. An isolated nucleic acid molecule comprising a novel  45  human ATPase nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO:14; and
  - (b) hybridizes under highly stringent conditions to the nucleotide sequence of SEQ ID NO:13, wherein the

highly stringent conditions are: hybridization in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), and 1 mM EDTA at 65° C. and washing in 0.1×SSC/0.1% SDS at 68° C.

3. An isolated nucleic acid molecule comprising a human ATPase nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 14.

* * * * *

This Page Blank (uspto)



# (12) United States Patent Friddle et al.

(10) Patent No.:

US 6,448,388 B1

(45) Date of Patent:

Sep. 10, 2002

# (54) HUMAN PROTEASES AND POLYNUCLEOTIDES ENCODING THE SAME

(75) Inventors: Carl Johan Friddle, The Woodlands;

Erin Hilbun, Houston, both of TX

Assignce: Lexicon Genetics Incorporated, The

Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/930,872

(22)Filed: Aug. 15, 2001

#### Related U.S. Application Data

(60)Provisional application No. 60/225,852, filed on Aug. 16, 2000.

(51) Int. Cl. ⁷ C	C12N 9/64;	C12N	15/57
------------------------------	------------	------	-------

U.S. Cl. ...... 536/23.2; 435/226; 435/219

Field of Search ...... 435/219, 226; 536/23.2

#### References Cited (56)

#### U.S. PATENT DOCUMENTS

4,215,051	Α	7/1980	Schroeder et al 260/346
4,376,110	Α	3/1983	David et al 436/513
4,594,595	Α	6/1986	Struckman 343/770
4,631,211	Α	12/1986	Houghten 428/35
4,689,405	Α	8/1987	Frank et al 536/27
4,713,326	Α	12/1987	Dattagupta et al 435/6
4,873,191	Α	10/1989	Wagner et al 435/172.3
4,946,778	Α	8/1990	Ladner et al 435/69.6
5,252,743	Α	10/1993	Barrett et al 548/303.7
5,424,186	Α	6/1995	Fodor et al 435/6
5,445,934	Α	8/1995	Fodor et al 435/6
5,459,127	Α	10/1995	Felgner et al 514/7
5,556,752	Α	9/1996	Lockhart et al 435/6
5,700,637	Α	12/1997	Southern 435/6
5,744,305	Α	4/1998	Fodor et al 435/6
5,830,721	Α	11/1998	Stemmer et al 435/172.1
5,837,458	A.	11/1998	Minshull et al 435/6
5,869,336		2/1999	Meyer et al 435/348
5,877,397	Α	3/1999	Lonberg et al 800/2
5,948,767		9/1999	Scheule et al 514/44
6,075,181		6/2000	Kucherlapati et al 800/25
6,110,490		8/2000	Thierry 424/450
6,150,584	Α	11/2000	Kucherlapati et al 800/18

# OTHER PUBLICATIONS

Hurskainen TL, Hirohata S, Seldin MF, Apte SS. (1999) ADAM-TS5, and ADAM T-S6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem.;274(36):25555-63.*

Sequence alignment SEQ ID No.: 4 with AF140675, ADAM-TS7.3

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol. 150:1-14.

Gautier et al, 1987 "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Gordon, 1989, "Transgenic Animals", International Review of Cytology, 115:171-229.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-434.

Gu et al, 1994, "Deletion of DNA Polymerase β Gene Segment in T Cells Using Type-Specific Gene Targeting", Science 265:103-106.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(5):327-330.

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promter mutations in lpp gene coli", Nucleic Acids Escherichia Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant Avaccinoa virus", PNAS 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of prdefined specificity", Nature 256:495-497.

Lasko et al, 1992, "Targeted oncogene activation by site-specific reombination in transgenic mice", Proc. Natl. Acad. Sci. USA 89:6232-6236.

Lavitrano et al, 1989, "Sperm Cells ad Vectors for Introducing Froeign DNA into Eggs: Genetic Transformation of Mice", Cell 57:717-723.

Lo, 1983, "Transformation by Iontophoretic Miroinjection of DNA: Multiple Integrations without Tandem Insertions", Mol. & Cell Bioilopy 3(10):1803-1814.

Logan et al, 1984, "Adenovirus tripartite leader sequence enchances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

(List continued on next page.)

Primary Examiner-Rebecca E. Prouty Assistant Examiner-Sheridan L Swope

#### **ABSTRACT**

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

#### 5 Claims, No Drawings

# OTHER PUBLICATIONS

Lowy et al, 1980, "Isolation of Transforming DNA: clonig the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al, 1984, "Recommbinant antibodies processing novel effector functions", Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligoeoxynucleotides", Nucleic Acid Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of Chimaeri processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Thompson et al, 1989, "Germ Line Transmission and Expression of a Corrected HPRT Gene Produced by Gene Targeting in Embryonic Stem Cells", Cell 56:313-321.

Van Der Putten et al, 1985, "Efficient insertion of genes into the mouse germ line via retroviral vetors", PRoc. Natl. Acad. Sci. USA 82:6148–6152.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted form *Escherichia coli*", Nature 341:544–546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase to Cultured Mouse Cells", 11:223–232. Wigler et al, 1980, "Transformation mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567–3570.

^{*} cited by examiner

10

1

# HUMAN PROTEASES AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application Number 60/225,852 which was filed on Aug. 16, 2000 and is herein incorporated by reference in its entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins sharing sequence similarity with mammalian proteases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, or the treatment of physiological disorders or diseases.

# 2. BACKGROUND OF THE INVENTION

Proteases cleave protein substrates as part of degradation, maturation, and secretory pathways within the body. Proteases have been associated with, inter alia, regulating 30 development, diabetes, obesity, infertility, modulating cellular processes, and infectious disease.

# 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal proteases and particularly zinc metalloproteases.

The novel human nucleic acid (cDNA) sequences described herein, encode proteins/open reading frames (ORFs) of 491 and 1224 amino acids in length (see SEQ ID NOS: 2 and 4 respectively).

The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHPs, NHP peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described NHPs (e.g., expression constructs that place the described gene under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or "knockouts" (which can be conditional) that do not express a functional NHP.

Further, the present invention also relates to processes for 60 identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP products, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment 65 of any of a wide variety of symptoms associated with biological disorders or imbalances.

2

# 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequences of several NHP ORFs encoding the described NHP amino acid sequences. SEQ ID NO:5 describes a NHP ORF and flanking sequences.

# 5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs described for the first time herein are novel proteins that are expressed in, inter alia, human cell lines, and human fetal brain, brain, pituitary, cerebellum, spinal cord, thymus, lymph node, trachea, kidney, fetal liver, prostate, testis, thyroid, adrenal gland, pancreas, small intestine, colon, skeletal muscle, heart, uterus, mammary gland, adipose, esophagus, bladder, cervix, pericardium, ovary, fetal kidney, and fetal lung cells.

The described sequences were compiled from cDNA clones, genomic sequence, and cDNAs derived from human kidney, mammary gland, and cerebellum mRNAs (Edge Biosystems, Gaithersburg, Md., and Clontech, Palo Alto, Calif.). The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such 25 nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described genes, including the specifically described NHPs, and NHP products; (b) nucleotides that encode one or more portions of a NHP that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/selfassociation domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF), or a contiguous exon splice junction first described in the Sequence Listing, that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encode

a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding a NHP ORF, or its functional equivalent, encoded by a polynucleotide sequence that is about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using standard default settings).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP gene nucleotide sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length may partially overlap each other and/or a NHP sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described NHP polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 18, and preferably about 25, nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences may begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a 50 sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides 65 can additionally comprise at least one modified base moiety which is selected from the group including but not limited to

5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil. 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 10 5-methylaminomethyluracil, 5-methoxyaminomethyl2beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof. In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific doublestranded hybrids with complementary RNA in which, contrary to the usual \(\beta\)-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be reprepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide

6

polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP homolog can be isolated from nucleic acid 10 from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by 15 reverse transcription of mRNA prepared from human or nonhuman cell lines or tissue known or suspected to express an allele of a NHP gene. The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR 20 fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via 25 the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene, such as, for example, testis tissue). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to 45 be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two 50 primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascer-

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to 60 carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP 65 allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the

corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, AP-NHP or NHP-AP fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation) or genetically engineered transcription factor. As used herein, regulatory elements include but are not limited to inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus hCMV immediate early gene, regulatable, viral (particularly retroviral LTR promoters) the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast a-mating factors.

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The

NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in 5 the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous 10 receptor for a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHP, NHP fusion protein products 15 (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be 20 used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics a NHP could activate or effectively antagonize the endogenous NHP receptor. Nucleotide constructs 25 encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP constructs encoding functional NHP, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological 35

Various aspects of the invention are described in greater detail in the subsections below.

# 5.1 THE NHP SEQUENCES

The cDNA sequences and corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing. SEQ ID NO:5 describes a NHP ORF as well as flanking regions. The NHP nucleotides were obtained from human cDNA libraries using probes and/or primers generated from human genomic sequence. Expression analysis has provided evidence that the described NHP can be expressed a variety of human cells.

# 5.2 NHPS AND NHP POLYPEPTIDES

The NHPs, NHP polypeptides, NHP peptide fragments, mutated, truncated, or deleted forms of NHP, and/or NHP fusion proteins can be prepared for a variety of uses, including but not limited to the generation of antibodies, as 55 reagents in diagnostic assays, the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease. The 60 described NHPs share similarity with a variety of proteases, including proteases having thrombospondin repeats, disintegrins, aggrecanases, and metalloproteinases (especially zinc metalloproteases of the ADAMTS family).

The Sequence Listing discloses the amino acid sequences 65 encoded by the described NHP polynucleotides. The NHPs display an initiator methionines in DNA sequence contexts

consistent with a translation initiation site, and several of the ORFs display a signal-like sequence which can indicate that the described NHP ORFs are secreted proteins or can be membrane associated.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHPs encoded by a NHP nucleotide sequence described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biolog", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a peptide, or a NHP fusion protein to the body. Nucleotide 30 number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene prod-40 uct. Amino acid substitutions can be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic 50 acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, a NHP peptide or NHP polypeptide is thought to be a soluble or secreted molecule, the peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of a NHP, but to assess biological activity, e.g., in drug screening assavs.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms

such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP encoding nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, 10 TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of 15 mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5 K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended 20 for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of and/or containing a NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein 25 products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that 30 a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides 35 as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathioneagarose beads followed by elution in the presence of free thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign 45 genes. The virus grows in Spodoptera frugiperda cells. A NHP gene coding sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion 50 of NHP gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the 55 inserted gene is expressed (e.g., see Smith et al., 1983, J. Virol. 46:584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide 60 sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region 65 of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a

NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell glutathione. The PGEX vectors are designed to include 40 lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express a NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of a NHP product.

> A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthineguanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci.

USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. 5 Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972–8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading 15 frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²+nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing 20 buffers.

## 5.3 ANTIBODIES TO NHP PRODUCTS

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab)₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of a NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic stechnique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, 45 such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with a NHP, an NHP peptide (e.g., one corresponding to a functional domain of a NHP), 50 truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of a NHP or mutated variants of a NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to 55 increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet 60 hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495–497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026–2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77–96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc.

Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423–426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879–5883; and Ward et al., 1989, Nature 341:544–546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:127–1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J. 7(5):437–444; and Nissinoff, 1991, J. Immunol. 147(8):2429–2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" a NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP signaling pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

## SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 5 <210> SEQ ID NO 1 <211> LENGTH: 1476 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 1 atgaagcccc gcgcgcgcgg atggcggggc ttggcgcgc tgtggatgct gttggcgcag 60 gtggccgagc aggcacctgc gtgcgccatg ggacccgcag cggcagcgcc tgggagcccg 120 agegtecege gteeteetee accegeggag eggeeggget ggatggaaaa gggegaatat 180 gacctggtct ctgcctacga ggttgaccac aggggcgatt acgtgtccca tgaaatcatg 240 caccatcage ggeggagaag ageagtggee gtgteegagg ttgagtetet teacettegg 300 ctgaaaggct ccaggcacga cttccacgtg gatctgagga cttccagcag cctagtggct 360 cctggcttta ttgtgcagac gttgggaaag acaggcacta agtctgtgca gactttaccg 420 ccagaggact tetgttteta teaaggetet ttgegateae acagaaacte eteagtggee 480 ctiticaacct gccaaggett gtcaggcatg atacgaacag aagaggcaga ttacttecta 540 aggecacttc cttcacacct ctcatggaaa ctcggcagag ctgcccaagg cagctcgcca 600 teccaegtae tgtacaagag atecaeagag ecceatgete etggggeeag tgaggteetg 660 gtgacctcaa ggacatggga gctggcacat caacccctgc acagcagcga ccttcgcctg 720 ggactgccac aaaagcagca tttctgtgga agacgcaaga aatacatgcc ccagcctccc 780 aaggaagacc tetteatett gecagatgag tataagtett gettaeggea taagegetet 840 cttctgaggt cccatagaaa tgaagaactg aacgtggaga ccttggtggt ggtcgacaaa 900 aagatgatgc aaaaccatgg ccatgaaaat atcaccacct acgtgctcac gatactcaac atggtatctg ctttattcaa agatggaaca ataggaggaa acatcaacat tgcaattgta 1020 ggtctgattc ttctagaaga tgaacagcca ggactggtga taagtcacca cqcaqaccac 1080 accttaagta gcttctgcca gtggcagtct ggattgatgg ggaaagatgg gactcgtcat gaccacgcca tottactgac tggtctggat atatgttcct ggaagaatga gccctgtgac 1200 actttgggat ttgcacccat aagtggaatg tgtagtaaat atcgcagctg cacgattaat 1260 gaagatacag gtcttggact ggccttcacc attgcccatg agtctggaca caactttggc atgattcatg atggagaagg gaacatgtgt aaaaagtccg agggcaacat catgtcccct 1380 acattggcag gacgcaatgg agtcttctcc tggtcaccct gcagccgcca gtatctacac 1440 aaatttctaa gatcagtgaa aatgccagct ctctga 1476 <210> SEQ ID NO 2 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 2 Met Lys Pro Arg Ala Arg Gly Trp Arg Gly Leu Ala Ala Leu Trp Met  ${\bf 1}$  5

Ala Ala Ala Pro Gly Ser Pro Ser Val Pro Arg Pro Pro Pro Pro 35

Leu Leu Ala Gln Val Ala Glu Gln Ala Pro Ala Cys Ala Met Gly Pro  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Ala	Glu 50	Arg	Pro	Gly	Trp	Met 55	Glu	Lys	Gly	Glu	Tyr 60	Asp	Leu	Val	Ser
Ala 65	Tyr	Glu	Val	Авр	His 70	Arg	Gly	Авр	Tyr	Val 75	Ser	His	Glu	Ile	Met 80
His	His	Gln	Arg	Arg 85	Arg	Arg	Ala	Val	Ala 90	Val	Ser	Glu	Val	Glu 95	Ser
Leu	нів	Leu	Arg 100	Leu	Lys	Gly	Ser	Arg 105	His	Asp	Phe	His	Val 110	Авр	Leu
Arg	Thr	Ser 115	Ser	Ser	Leu	Val	Ala 120	Pro	Gly	Phe	Ile	Val 125	Gln	Thr	Leu
Gly	Lys 130	Thr	Gly	Thr	Lys	Ser 135	Val	Gln	Thr	Leu	Pro 140	Pro	Glu	Asp	Phe
Сув 145	Phe	Tyr	Gln	Gly	Ser 150	Leu	Arg	Ser	His	Arg 155	Asn	Ser	Ser	Val	Ala 160
Leu	Ser	Thr	аұЭ	Gln 165	Gly	Leu	Ser	Gly	Met 170	Ile	Arg	Thr	Glu	Glu 175	Ala
Авр	Tyr	Phe	Leu 180	Arg	Pro	Leu	Pro	Ser 185	His	Leu	Ser	Trp	Lys 190	Leu	Gly
Arg	Ala	Ala 195	Gln	Gly	Ser	Ser	Pro 200	Ser	His	Val	Leu	Tyr 205	Lys	Arg	Ser
Thr	Glu 210	Pro	His	Ala	Pro	Gly 215	Ala	Ser	Glu	Val	Leu 220	Val	Thr	Ser	Arg
Thr 225	Trp	Glu	Leu	Ala	His 230	Gln	Pro	Leu	His	Ser 235	Ser	Asp	Leu	Arg	Leu 240
Gly	Leu	Pro	Gln	Lys 245	Gln	His	Phe	Сув	Gly 250	Arg	Arg	Lys	Lys	Tyr 255	Met
Pro	Gln	Pro	Pro 260	Lys	Glu	Авр	Leu	Phe 265	Ile	Leu	Pro	Asp	Glu 270	Tyr	Lys
Ser	Сув	Leu 275	Arg	His	Lys	Arg	Ser 280	Leu	Leu	Arg	Ser	His 285	Arg	Asn	Glu
Glu	Leu 290	Asn	Val	Glu	Thr	Leu 295	Val	Val	Val	Авр	<b>Lys</b> 300	Lys	Met	Met	Gln
Aen 305	His	Gly	His	Glu	Asn 310	Ile	Thr	Thr	Tyr	Val 315	Leu	Thr	Ile	Leu	Asn 320
Met	Val	Ser	Ala	Leu 325	Phe	Lys	Двр	Gly	Thr 330	Ile	Gly	Gly	Asn	11e 335	Asn
Ile	Ala	Ile	Val 340	Gly	Leu	Ile	Leu	Leu 345	Glu	Авр	Glu	Gln	Pro 350	Gly	Leu
Val	Ile	Ser 355	His	His	Ala	Asp	His 360	Thr	Leu	Ser	Ser	Phe 365	Сув	Gln	Trp
Gln	Ser 370	Gly	Leu	Met	Gly	Lys 375	Авр	Gly	Thr	Arg	His 380	Asp	His	Ala	Ile
Leu 385	Leu	Thr	Gly	Leu	да <b>Л</b> 008	Ile	Сув	Ser	Trp	Lys 395	Asn	Glu	Pro	Сув	Авр 400
Thr	Leu	Gly	Phe	Ala 405	Pro	Ile	Ser	Gly	Met 410	Сув	Ser	Lys	Tyr	Arg 415	Ser
			420					Leu 425					430		
His	Glu	Ser 435	Gly	His	Asn	Phe	Gly 440	Met	Ile	His	Asp	Gly 445	Glu	Gly	Asn
Met	Сув 450	Lys	Lys	Ser	Glu	Gly 455	Asn	Ile	Met	Ser	Pro 460	Thr	Leu	Ala	Gly
Arg	Asn	Gly	Val	Phe	Ser	Trp	Ser	Pro	Сув	Ser	Arg	Gln	Tyr	Leu	His

465	4	70	475		480	
Lys Phe Le	eu Arg Ser V 485	al Lys Met	Pro Ala Leu 490			
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 3675	sapiens				
<400> SEQU	ENCE: 3					
atgaagcccc	gegegegegg	atggcggggc	ttggcggcgc	tgtggatgct	gctggcgcag	60
gtggccgagc	aggcacctgc	gtgcgccatg	ggacccgcag	cggcagcgcc	tgggagcccg	120
agcgtcccgc	gteeteetee	accegeggag	cggccgggct	ggatggaaaa	gggcgaatat	180
gacctggtct	ctgcctacga	ggttgaccac	aggggcgatt	acgtgtccca	tgaaatcatg	240
caccatcage	ggcggagaag	agcagtggcc	gtgtccgagg	ttgagtctct	tcaccttcgg	300
ctgaaaggct	ccaggcacga	cttccacgtg	gatctgagga	cttccagcag	cctagtggct	360
cctggcttta	ttgtgcagac	gttgggaaag	acaggcacta	agtctgtgca	gactttaccg	420
ccagaggact	tctgtttcta	tcaaggctct	ttgcgatcac	acagaaactc	ctcagtggcc	480
ctttcaacct	gccaaggctt	gtcaggcatg	atacgaacag	aagaggcaga	ttacttccta	540
aggccacttc	cttcacacct	ctcatggaaa	ctcggcagag	ctgcccaagg	cagetegeca	600
tcccacgtac	tgtacaagag	atccacagag	ccccatgctc	ctggggccag	tgaggtcctg	660
gtgacctcaa	ggacatggga	gctggcacat	caacccctgc	acagcagcga	ccttcgcctg	720
ggactgccac	aaaagcagca	tttctgtgga	agacgcaaga	aatacatgcc	ccagcctccc	780
aaggaagacc	tcttcatctt	gccagatgag	tataagtctt	gcttacggca	taagcgctct	840
cttctgaggt	cccatagaaa	tgaagaactg	aacgtggaga	ccttggtggt	ggtcgacaaa	900
aagatgatgc	aaaaccatgg	ccatgaaaat	atcaccacct	acgtgctcac	gatactcaac	960
atggtatctg	ctttattcaa	agatggaaca	ataggaggaa	acatcaacat	tgcaattgta	1020
ggtctgattc	ttctagaaga	tgaacagcca	ggactggtga	taagtcacca	cgcagaccac	1080
accttaagta	gcttctgcca	gtggcagtct	ggattgatgg	ggaaagatgg	gactcgtcat	1140
gaccacgcca	tcttactgac	tggtctggat	atatgttcct	ggaagaatga	gccctgtgac	1200
actttgggat	ttgcacccat	aagtggaatg	tgtagtaaat	atcgcagctg	cacgattaat	1260
gaagatacag	gtcttggact	ggccttcacc	attgcccatg	agtctggaca	caactttggc	1320
atgattcatg	atggagaagg	gaacatgtgt	aaaaagtccg	agggcaacat	catgtcccct	1380
acattggcag	gacgcaatgg	agtcttctcc	tggtcaccct	gcagccgcca	gtatctacac	1440
aaatttctaa	gcaccgctca	agctatctgc	cttgctgatc	agccaaagcc	tgtgaaggaa	1500
tacaagtatc	ctgagaaatt	gccaggagaa	ttatatgatg	caaacacaca	gtgcaagtgg	1560
cagttcggag	agaaagccaa	gctctgcatg	ctggacttta	aaaaggacat	ctgtaaagcc	1620
ctgtggtgcc	atcgtattgg	aaggaaatgt	gagactaaat	ttatgccagc	agcagaaggc	1680
acaatttgtg	ggcatgacat	gtggtgccgg	ggaggacagt	gtgtgaaata	tggtgatgaa	1740
ggccccaagc	ccacccatgg	ccactggtcg	gactggtctt	cttggtcccc	atgctccagg	1800
acctgcggag	ggggagtatc	tcataggagt	cgcctctgca	ccaaccccaa	gccatcgcat	1860

ggagggaagt tetgtgaggg etecaetege actetgaage tetgeaacag teagaaatgt 1920 eeeegggaca gtgttgaett eegtgetget eagtgtgeeg ageacaacag cagacgatte 1980

agagggcggc	actacaagtg	gaagccttac	actcaagtag	aagatcagga	cttatgcaaa	2040
ctctactgta	tcgcagaagg	atttgatttc	ttcttttctt	tgtcaaataa	agtcaaagat	2100
gggactccat	gctcggagga	tagccgtaat	gtttgtatag	atgggatatg	tgagagagtt	2160
ggatgtgaca	atgtccttgg	atctgatgct	gttgaagacg	tctgtggggt	gtgtaacggg	2220
aataactcag	cctgcacgat	tcacaggggt	ctctacacca	agcaccacca	caccaaccag	2280
tattatcaca	tggtcaccat	tccttctgga	gcccggagta	tccgcatcta	tgaaatgaac	2340
gtctctacct	cctacatttc	tgtgcgcaat	gccctcagaa	ggtactacct	gaatgggcac	2400
tggaccgtgg	actggcccgg	ccggtacaaa	ttttcgggca	ctactttcga	ctacagacgg	2460
tcctataatg	agcccgagaa	cttaatcgct	actggaccaa	ccaacgagac	actgattgtg	2520
gagctgctgt	ttcagggaag	gaacccgggt	gttgcctggg	aatactccat	gcctcgcttg	2580
gggaccgaga	agcagecece	tgcccagccc	agctacactt	gggccatcgt	gcgctctgag	2640
tgctccgtgt	cctgcggagg	gggacagatg	accgtgagag	agggctgcta	cagagacctg	2700
aagtttcaag	taaatatgtc	cttctgcaat	cccaagacac	gacctgtcac	ggggctggtg	2760
ccttgcaaag	tatctgcctg	tecteccage	tggtccgtgg	ggaactggag	tgcctgcagt	2820
cggacgtgtg	gcgggggtgc	ccagagccgc	cccgtgcagt	gcacacggcg	ggtgcactat	2880
gactcggagc	cagtcccggc	cagcctgtgc	cctcagcctg	ctccctccag	caggcaggcc	2940
tgcaactctc	agagctgccc	acctgcatgg	agcgccgggc	cctgggcaga	gtgctcacac	3000
acctgtggga	aggggtggag	gaagcgggca	gtggcctgta	agagcaccaa	cccctcggcc	3060
agagcgcagc	tgctgcccga	cgctgtctgc	acctccgagc	ccaagcccag	gatgcatgaa	3120
gcctgtctgc	ttcagcgctg	ccacaagccc	aagaagctgc	agtggctggt	gtccgcctgg	3180
tcccagtgct	ctgtgacatg	tgaaagagga	acacagaaaa	gattottaaa	atgtgctgaa	3240
aagtatgttt	ctggaaagta	tcgagagctg	gcctcaaaga	agtgctcaca	tttgccgaag	3300
cccagcctgg	agctggaacg	tgcctgcgcc	ccgcttccat	gccccaggca	cccccattt	3360
gctgctgcgg	gaccctcgag	gggcagctgg	tttgcctcac	cctggtctca	gtgcacggcc	3420
agctgtgggg	gaggcgttca	gacgaggtcc	gtgcagtgcc	tggctggggg	ccggccggcc	3480
tcaggctgcc	tcctgcacca	gaagccttcg	gcctccctgg	cctgcaacac	tcacttctgc	3540
cccattgcag	agaagaaaga	tgccttctgc	aaagactact	tccactggtg	ctacctggta	3600
ccccagcacg	ggatgtgcag	ccacaagttc	tacggcaagc	agtgctgcaa	gacttgctct	3660
aagtccaact	tgtga					3675

<210> SEQ ID NO 4 <211> LENGTH: 1224 <212> TYPE: PRT <213> ORGANISM: homo sapiens

<400> SEQUENCE: 4

Met Lys Pro Arg Ala Arg Gly Trp Arg Gly Leu Ala Ala Leu Trp Met  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Leu Leu Ala Gln Val Ala Glu Gln Ala Pro Ala Cys Ala Met Gly Pro 20 25 30

Ala Ala Ala Pro Gly Ser Pro Ser Val Pro Arg Pro Pro Pro Pro 35  $$40\$ 

Ala Glu Arg Pro Gly Trp Met Glu Lys Gly Glu Tyr Asp Leu Val Ser 50 60

Ala Tyr Glu Val Asp His Arg Gly Asp Tyr Val Ser His Glu Ile Met

												COL	CIII	ueu	
65					70					75					80
His	His	Gln	Arg	Arg 85	Arg	Arg	Ala	Val	Ala 90	Val	Ser	Glu	Val	Glu 95	Ser
Leu	His	Leu	Arg 100	Leu	Lys	Gly	Ser	Arg 105	His	Asp	Phe	His	Val 110	Asp	Leu
Arg	Thr	Ser 115	Ser	Ser	Leu	Val	Ala 120	Pro	Gly	Phe	Ile	Val 125	Gln	Thr	Leu
Gly	<b>Lys</b> 130	Thr	Gly	Thr	Lys	Ser 135	Val	Gln	Thr	Leu	Pro 140	Pro	Glu	Asp	Phe
Сув 145	Phe	Tyr	Gln	Gly	Ser 150	Leu	Arg	Ser	His	Arg 155	Asn	Ser	Ser	Val	Ala 160
Leu	Ser	Thr	Cys	Gln 165	Gly	Leu	Ser	Gly	Met 170	Ile	Arg	Thr	Glu	Glu 175	Ala
Asp	Tyr	Phe	Leu 180	Arg	Pro	Leu	Pro	Ser 185	His	Leu	Ser	Trp	Lys 190	Leu	Gly
Arg	Ala	Ala 195	Gln	Gly	Ser	Ser	Pro 200	Ser	His	Val	Leu	Tyr 205	Lys	Arg	Ser
Thr	Glu 210	Pro	His	Ala	Pro	Gly 215	Ala	Ser	Glu	Val	Leu 220	Val	Thr	Ser	Arg
Thr 225	Trp	Glu	Leu	Ala	His 230	Gln	Pro	Leu	His	Ser 235	Ser	qaA	Leu	Arg	Leu 240
Gly	Leu	Pro	Gln	Lув 245	Gln	His	Phe	Сув	Gly 250	Arg	Arg	Lув	Lys	Tyr 255	Met
Pro	Gln	Pro	Pro 260	Lув	Glu	Asp	Leu	Phe 265	Ile	Leu	Pro	Asp	Glu 270	Tyr	Lys
Ser	Сув	Leu 275	Arg	His	Ľув	Arg	Ser 280	Leu	Leu	Arg	Ser	His 285	Arg	Asn	G1u
Glu	Leu 290	Asn	Val	Glu	Thr	Leu 295	Val	Val	Val	Asp	Lув 300	Lys	Met	Met	Gln
Asn 305	His	Gly	His	Glu	Asn 310	Ile	Thr	Thr	Tyr	Val 315	Leu	Thr	Ile	Leu	Asn 320
Met	Val	Ser	Ala	Leu 325	Phe	Lys	qaA	Gly	Thr 330	Ile	Gly	Gly	Asn	11e 335	Asn
Ile	Ala	Ile	Val 340	Gly	Leu	Ile	Leu	Leu 345	Glu	Asp	Glu	Gln	Pro 350	Gly	Leu
Val	Ile	Ser 355	His	His	Ala	Asp	His 360	Thr	Leu	Ser	Ser	Phe 365	Сув	Gln	Trp
Gln	Ser 370	Gly	Leu	Met	Gly	<b>Lу</b> в 375	qaA	Gly	Thr	Arg	His 380	Asp	His	Ala	Ile
Leu 385	Leu	Thr	Gly	Leu	Asp 390	Ile	Сув	Ser	Trp	Lys 395	Asn	Glu	Pro	Сув	Авр 400
Thr	Leu	Gly	Phe	Ala 405	Pro	Ile	Ser	Gly	Met 410	Сув	Ser	ГÀе	Tyr	Arg 415	Ser
Сув	Thr	Ile	Asn 420	Glu	Asp	Thr	Gly	Leu 425	Gly	Leu	Ala	Phe	Thr 430	Ile	Ala
His	Glu	Ser 435	Gly	His	Asn	Phe	Gly 440	Met	Ile	His	Авр	Gly 445	Glu	Gly	Asn
Met	Cys 450	Lys	Lys	Ser	Glu	Gly 455	Asn	Ile	Met	Ser	Pro 460	Thr	Leu	Ala	Gly
Arg 465	Asn	Gly	Val	Phe	Ser 470	Trp	Ser	Pro	Сув	Ser 475	Arg	Gln	Tyr	Leu	His 480
Lys	Phe	Leu	Ser	Thr 485	Ala	Gln	Ala	Ile	Сув 490	Leu	Ala	Asp	Gln	Pro 495	Lys

Pro	Val	Lys	Glu 500	Tyr	Lys	Tyr	Pro	Glu 505	Lys	Leu	Pro	Gly	Glu 510	Leu	Tyr
qaA	Ala	Asn 515	Thr	Gln	Сув	Lys	Trp 520	Gln	Phe	Gly	Glu	Lys 525	Ala	Lys	Leu
Сув	Met 530	Leu	Asp	Phe	Lув	Lys 535	Asp	Ile	Сув	Lys	Ala 540	Leu	Trp	Сув	His
Arg 545	Ile	Gly	Arg	Lys	Сув 550	Glu	Thr	Lys	Phe	Met 555	Pro	Ala	Ala	Glu	Gly 560
Thr	Ile	Сув	Gly	His 565	Asp	Met	Trp	Сув	Arg 570	Gly	Gly	Gln	Сув	Val 575	Lys
Tyr	Gly	Asp	Glu 580	Gly	Pro	Lys	Pro	Thr 585	His	Gly	His	Trp	Ser 590	Asp	Trp
Ser	Ser	Trp 595	Ser	Pro	Сув	Ser	Arg 600	Thr	Сув	Gly	Gly	Gl <b>y</b> 605	Val	Ser	нів
Arg	Ser 610	Arg	Leu	Сув	Thr	Asn 615	Pro	Lys	Pro	Ser	His 620	Gly	Gly	Lув	Phe
C <b>ys</b> 625	Glu	Gly	Ser	Thr	Arg 630	Thr	Leu	Гув	Leu	Сув 635	Asn	Ser	Gln	Lys	Сув 640
Pro	Arg	Asp	Ser	Val 645	qaA	Phe	Arg	Ala	Ala 650	Gln	Сув	Ala	Glu	His 655	Asn
Ser	Arg	Arg	Phe 660	Arg	Gly	Arg	His	Tyr 665	Lys	Trp	Lув	Pro	Tyr 670	Thr	Gln
Val	Glu	Asp 675	Gln	Asp	Leu	Сув	Lys 680	Leu	Tyr	Сув	Ile	Ala 685	Glu	Gly	Phe
Asp	Phe 690	Phe	Phe	Ser	Leu	Ser 695	Asn	Lys	Val	Lys	Авр 700	Gly	Thr	Pro	Сув
Ser 705	Glu	Asp	Ser	Arg	Asn 710	Val	Сув	Ile	Asp	Gly 715	Ile	Сув	Glu	Arg	Val 720
Gly	Сув	Asp	Asn	Val 725	Leu	Gly	Ser	Asp	Ala 730	Val	Glu	Asp	Val	Cys 735	Gly
Val	Сув	Asn	Gly 740	Asn	Asn	Ser	Ala	Сув 745	Thr	Ile	His	Arg	Gly 750	Leu	Tyr
Thr	Lys	His 755	His	His	Thr	Asn	Gln 760	Tyr	Tyr	His	Met	Val 765	Thr	Ile	Pro
Ser	Gly 770	Ala	Arg	Ser	Ile	Arg 775	Ile	Tyr	Glu	Met	<b>As</b> n 780	Val	Ser	Thr	Ser
<b>Tyr</b> 785	Ile	Ser	Val	Arg	Asn 790	Ala	Leu	Arg	Arg	Tyr 795	Tyr	Leu	Asn	Gly	Нів 800
Trp	Thr	Val	Asp	Trp 805	Pro	Gly	Arg	Tyr	Lys 810	Phe	Ser	Gly	Thr	Thr 815	Phe
Asp	Tyr	Arg	Arg 820	Ser	Tyr	Asn	Glu	Pro 825	Glu	Asn	Leu	Ile	Ala 830	Thr	Gly
Pro	Thr	Asn 835	Glu	Thr	Leu	Ile	Val 840	Glu	Leu	Leu	Phe	Gln 845	Gly	Arg	Asn
Pro	Gly 850	Val	Ala	Trp	Glu	Tyr 855	Ser	Met	Pro	Arg	Leu 860	Gly	Thr	Glu	Lys
Gln 865	Pro	Pro	Ala	Gln	Pro 870	Ser	Tyr	Thr	Trp	Ala 875	Ile	Val	Arg	Ser	Glu 880
Cys	Ser	Val	Ser	Сув 885	Gly	Gly	Gly	Gln	Met 890	Thr	Val	Arg	Glu	Gly 895	Сув
Tyr	Arg	Asp	Leu 900	Lys	Phe	Gln	Val	Asn 905	Met	Ser	Phe	Сув	Asn 910	Pro	Lys

300

# -continued

Thr Arg	Pro Val 915	Thr Gly	Leu Va		Сув	Lys	Val	Ser 925	Ala	Сув	Pro	
Pro Ser 930	Trp Ser	Val Gly	Asn Ti 935	p Ser	Ala	Сув	Ser 940	Arg	Thr	Сув	Gly	
Gly Gly 2 945	Ala Gln	Ser Arg 950		ıl Gln	Сув	Thr 955	Arg	Arg	Val	His	<b>Tyr</b> 960	
Asp Ser	Glu Pro	Val Pro 965	Ala Se	er Leu	С <b>у</b> в 970	Pro	Gln	Pro	Ala	Pro 975	Ser	
Ser Arg	Gln Ala 980	Cys Asn	Ser G	n Ser 985		Pro	Pro	Ala	Trp 990	Ser	Ala	
Gly Pro	Trp Ala 995	Glu Cys		s Thr	Сув	Gly	Lув	Gly 1005		Arg	Lys	
Arg Ala 1	Val Ala	Cys Lys	Ser Th	r Asn	Pro	Ser	Ala 1020		Ala	Gln	Leu	
Leu Pro 1 1025	Asp Ala	Val Cys 103		r Glu	Pro	<b>Lys</b> 1035		Arg	Met	His	Glu 1040	
Ala Cys I	Leu Leu	Gln Arg 1045	Сув Ні	s Lys	Pro 1050		Lys	Leu	Gln	Trp 105		
Val Ser A	Ala Trp 106	Ser Gln	Сув Se	r Val		Сув	Glu	Arg	Gly 1070		Gln	
Lys Arg I	Phe Leu 1075	Lys Cys		u Lys 80	Tyr	Val	Ser	Gly 1085		Tyr	Arg	
Glu Leu <i>I</i> 1090	Ala Ser	Lys Lys	Сув Se 1095	r His	Leu	Pro	Lys 1100		Ser	Leu	Glu	
Leu Glu <i>I</i> 1105	Arg Ala	Cys Ala 111		u Pro		Pro 1115		His	Pro	Pro	Phe 1120	
Ala Ala A	Ala Gly	Pro Ser 1125	Arg Gl	y Ser	Trp 1130		Ala	Ser	Pro	Trp 1135		
Gln Cys 7	Thr Ala 1140		Gly Gl	y Gly 114		Gln	Thr	Arg	Ser 1150		Gln	
Cys Leu A	Ala Gly 1155	Gly Arg	Pro Al 11	a Ser 60	Gly	Сув	Leu	Leu 1165		Gln	Lys	
Pro Ser # 1170	Ala Ser	Leu Ala	Cys As 1175	n Thr	His	Phe	Cys 1180		Ile	Ala	Glu	
Lys Lys # 1185	Asp Ala	Phe Cys 119		p Tyr		His 1195		Сув	Tyr	Leu	Val 1200	
Pro Gln H	His Gly	Met Cys 1205	Ser Hi	s Lys	Phe 1210		Gly	Lys	Gln	Сув 1215		
Lys Thr C	Cys Ser 1220		Asn Le	u								
<210> SEQ <211> LEN <212> TYP <213> ORG	GTH: 40 PE: DNA	42	piens									
<400> SEQ	QUENCE :	5										
ccttcccg	g ctct	jcttgg g	tcgggtc	ct cc	tgcc	cgc	tcgc	acgo	tg o	cggc	cgggg	60
acceteegg												120
ggcggggct												180
gcgccatgg	g accco	cageg g	cagcgcc	tg gga	gccc	gag	cgtc	ccgc	gt c	ctcc	tccac	240

ccgcggagcg gccgggctgg atggaaaagg gcgaatatga cctggtctct gcctacgagg

ttgaccacag gggcgattac gtgtcccatg aaatcatgca ccatcagcgg cggagaagag

cagtggccgt	gtccgaggtt	gagtctcttc	accttcggct	gaaaggctcc	aggcacgact	420
tccacgtgga	tctgaggact	tccagcagcc	tagtggctcc	tggctttatt	gtgcagacgt	480
tgggaaagac	aggcactaag	tctgtgcaga	ctttaccgcc	agaggacttc	tgtttctatc	540
aaggctcttt	gcgatcacac	agaaactcct	cagtggccct	ttcaacctgc	caaggcttgt	600
caggcatgat	acgaacagaa	gaggcagatt	acttcctaag	gccacttcct	tcacacctct	660
catggaaact	cggcagagct	gcccaaggca	gctcgccatc	ccacgtactg	tacaagagat	720
ccacagagee	ccatgctcct	ggggccagtg	aggtcctggt	gacctcaagg	acatgggagc	780
tggcacatca	acccctgcac	agcagcgacc	ttcgcctggg	actgccacaa	aagcagcatt	840
tctgtggaag	acgcaagaaa	tacatgcccc	agcctcccaa	ggaagacctc	ttcatcttgc	900
cagatgagta	taagtcttgc	ttacggcata	agcgctctct	tctgaggtcc	catagaaatg	960
aagaactgaa	cgtggagacc	ttggtggtgg	tcgacaaaaa	gatgatgcaa	aaccatggcc	1020
atgaaaatat	caccacctac	gtgctcacga	tactcaacat	ggtatctgct	ttattcaaag	1080
atggaacaat	aggaggaaac	atcaacattg	caattgtagg	tctgattctt	ctagaagatg	1140
aacagccagg	actggtgata	agtcaccacg	cagaccacac	cttaagtagc	ttctgccagt	1200
ggcagtctgg	attgatgggg	aaagatggga	ctcgtcatga	ccacgccatc	ttactgactg	1260
gtctggatat	atgttcctgg	aagaatgagc	cctgtgacac	tttgggattt	gcacccataa	1320
gtggaatgtg	tagtaaatat	cgcagctgca	cgattaatga	agatacaggt	cttggactgg	1380
ccttcaccat	tgcccatgag	tctggacaca	actttggcat	gattcatgat	ggagaaggga	1440
acatgtgtaa	aaagtccgag	ggcaacatca	tgtcccctac	attggcagga	cgcaatggag	1500
tcttctcctg	gtcaccctgc	agccgccagt	atctacacaa	atttctaagc	accgctcaag	1560
ctatctgcct	tgctgatcag	ccaaagcctg	tgaaggaata	caagtatcct	gagaaattgc	1620
caggagaatt	atatgatgca	aacacacagt	gcaagtggca	gttcggagag	aaagccaagc	1680
tctgcatgct	ggactttaaa	aaggacatct	gtaaagccct	gtggtgccat	cgtattggaa	1740
ggaaatgtga	gactaaattt	atgccagcag	cagaaggcac	aatttgtggg	catgacatgt	1800
ggtgccgggg	aggacagtgt	gtgaaatatg	gtgatgaagg	ccccaagccc	acccatggcc	1860
actggtcgga	ctggtcttct	tggtccccat	gctccaggac	ctgcggaggg	ggagtatctc	1920
ataggagtcg	cctctgcacc	aaccccaagc	catcgcatgg	agggaagttc	tgtgagggct	1980
ccactcgcac	tctgaagctc	tgcaacagtc	agaaatgtcc	ccgggacagt	gttgacttcc	2040
gtgctgctca	gtgtgccgag	cacaacagca	gacgattcag	agggcggcac	tacaagtgga	2100
agccttacac	tcaagtagaa	gatcaggact	tatgcaaact	ctactgtatc	gcagaaggat	2160
ttgatttctt	cttttctttg	tcaaataaag	tcaaagatgg	gactccatgc	tcggaggata	2220
gccgtaatgt	ttgtatagat	gggatatgtg	agagagttgg	atgtgacaat	gtccttggat	2280
ctgatgctgt	tgaagacgtc	tgtggggtgt	gtaacgggaa	taactcagcc	tgcacgattc	2340
acaggggtct	ctacaccaag	caccaccaca	ccaaccagta	ttatcacatg	gtcaccattc	2400
cttctggagc	ccggagtatc	cgcatctatg	aaatgaacgt	ctctacctcc	tacatttctg	2460
tgcgcaatgc	cctcagaagg	tactacctga	atgggcactg	gaccgtggac	tggcccggcc	2520
ggtacaaatt	ttcgggcact	actttcgact	acagacggtc	ctataatgag	cccgagaact	2580
taatcgctac	tggaccaacc	aacgagacac	tgattgtgga	gctgctgttt	cagggaagga	2640
acccgggtgt	tgcctgggaa	tactccatgc	ctcgcttggg	gaccgagaag	cagccccctg	2700

cccagcccag	ctacacttgg	gccatcgtgc	gctctgagtg	ctccgtgtcc	tgcggagggg	2760
gacagatgac	cgtgagagag	ggctgctaca	gagacctgaa	gtttcaagta	aatatgtcct	2820
tctgcaatcc	caagacacga	cctgtcacgg	ggctggtgcc	ttgcaaagta	totgootgto	2880
ctcccagctg	gtccgtgggg	aactggagtg	cctgcagtcg	gacgtgtggc	gggggtgccc	2940
agagccgccc	cgtgcagtgc	acacggcggg	tgcactatga	ctcggagcca	gtcccggcca	3000
gcctgtgccc	tcagcctgct	ccctccagca	ggcaggcctg	caactctcag	agctgcccac	3060
ctgcatggag	cgccgggccc	tgggcagagt	gctcacacac	ctgtgggaag	gggtggagga	3120
agcgggcagt	ggcctgtaag	agcaccaacc	cctcggccag	agcgcagctg	ctgcccgaċg	3180
ctgtctgcac	ctccgagccc	aagcccagga	tgcatgaagc	ctgtctgctt	cagcgctgcc	3240
acaagcccaa	gaagctgcag	tggctggtgt	ccgcctggtc	ccagtgctct	gtgacatgtg	3300
aaagaggaac	acagaaaaga	ttcttaaaat	gtgctgaaaa	gtatgtttct	ggaaagtatc	3360
gagagctggc	ctcaaagaag	tgctcacatt	tgccgaagcc	cagcctggag	ctggaacgtg	3420
cctgcgcccc	gcttccatgc	cccaggcacc	ccccatttgc	tgctgcggga	ccctcgaggg	3480
gcagctggtt	tgcctcaccc	tggtctcagt	gcacggccag	ctgtggggga	ggcgttcaga	3540
cgaggtccgt	gcagtgcctg	gctgggggcc	ggccggcctc	aggetgeete	ctgcaccaga	3600
agccttcggc	ctccctggcc	tgcaacactc	acttctgccc	cattgcagag	aagaaagatg	3660
ccttctgcaa	agactacttc	cactggtgct	acctggtacc	ccagcacggg	atgtgcagcc	3720
acaagttcta	cggcaagcag	tgctgcaaga	cttgctctaa	gtccaacttg	tgagttggga	3780
ccgctctccg	tagcagagaa	agtgcctgcg	tggcacagaa	atttcccaca	aatgagctgt	3840
gcaatctacg	tcggaataca	tccaaggaag	agcaaagcca	aaagaagaaa	accgtgttag	3900
gctctttgac	caggagtgta	tgtatgtgtt	tcactgtgag	cctgggtgca	gacctgtgtc	3960
cccatgcaca	cagtgtctcc	tgtcaggctg	aaatgtggca	ccctggcaga	cagagctgtg	4020
gctcqtqaqq	cagaaggcag	qc				4042

What is claimed is:

- 1. An isolated nucleic acid molecule comprising a nucleotide sequence encoding an amino acid sequence drawn from the group consisting of SEQ ID NOS: 2 and 4.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO: 4; and
  - (b) hybridizes under stringent conditions of hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% SDS, 1mM EDT at 65° C. and washing in 0.1×SSC/1% SDS at 68°
- C. to the nucleotide sequence of SEQ ID NO: 3 or the complement thereof.
- 3. An isolated nucleic acid molecule according to claim 1 wherein said nucleotide sequence is present in cDNA.
- 4. An isolated nucleic acid molecule encoding the amino acid sequence presented in SEQ ID NO:4.
- 5. An isolated nucleic acid molecule encoding the amino acid sequence presented in SEQ ID NO:2.

* * * * *



This Page Blank (uspto)



# (12) United States Patent

Walke et al.

# (10) Patent No.:

US 6,444,456 B1

(45) Date of Patent:

Sep. 3, 2002

# (54) HUMAN G-COUPLED PROTEIN RECEPTOR KINASES AND POLYNUCLEOTIDES ENCODING THE SAME

# (75) Inventors: D. Wade Walke, Spring; Nathaniel L. Wilganowski, Houston; C. Alexander Turner, Jr., The Woodlands, all of TX (US)

(73) Assignee: Lexicon Genetics Incorporated, The Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/802,117

(22) Filed: Mar. 8, 2001

# Related U.S. Application Data

(60) Provisional application No. 60/188,449, filed on Mar. 10, 2000.

# (56) References Cited

# U.S. PATENT DOCUMENTS

4,215,051	Α	7/1980	Schroeder et al.
4,376,110	Α	3/1983	David et al.
4,594,595	Α	6/1986	Struckman
4,631,211	Α	12/1986	Houghten
4,689,405	Α	8/1987	Frank et al.
4,713,326	Α	12/1987	Dattagupta et al.
4,946,778	Α	8/1990	Ladner et al.
5,252,743	Α	10/1993	Barrett et al.
5,424,186	Α	6/1995	Fodor et al.
5,445,934	Α	8/1995	Fodor et al.
5,459,127	Α	10/1995	Felgner et al.
5,532,151	Α	7/1996	Chantry et al.
5,556,752	Α	9/1996	Lockhart et al.
5,591,618	Α	1/1997	Chantry et al.
5,700,637	Α	12/1997	Southern
5,744,305	Α	4/1998	Fodor et al.
5,830,721	Α	11/1998	Stemmer et al.
5,837,458	Α	11/1998	Minshull et al.
5,869,336	Α	2/1999	Meyer et al.
5,877,397	Α	3/1999	Lonberg et al.
5,948,767	Α	9/1999	Scheule et al.
6,075,181	Α	6/2000	Kucherlapati et al.
6,110,490	Α	8/2000	Thierry
6,150,584	Α	11/2000	Kucherlapati et al.
6,331,423	B1	• 12/2001	Guegler et al 435/194

# FOREIGN PATENT DOCUMENTS

WO WO 01/38503 A2 5/2001

#### OTHER PUBLICATIONS

Broun et al., Science 282:1315-1317, 1998.*

Van de Loo et al., Proc. Natl. Acad. Sci. 92:6743-6747, 1995.*

Weiss et al., GenEMBL accession No. AF063016, Dec. 1998.*

Weiss et al., SPTREMBL accession No. Q9Z2G7, May 1999.*

Database EMBL (Online) May 7, 2000, Birren, B. et al. "Homo sapiens chromosome 17, clone RP11-144C9", Database accession No. AC068693, XP002181811.

Weiss, Ellen R. et al., "The cloning of GRK7, a candidate cone opsin kinase, from cone and rod-dominant mammalian retinas," Molecular Vison, vol. 4, Dec. 8, 1998, p. 27, XP002181808.

Premont, Richard T. et al., "The GRK4 subfamily o9f G protein-coupled receptor kinases: Alternative splicing, gene organization, and sequence conservation," Journal of Biological Chemistry, vol. 274, No. 41, Oct. 8, 1999, pp. 29381–29389, XP002181809.

Benovic, Jeffrey L. et al., "Molecular cloning and expression of GRK6: A new member of the G protein-coupled receptor kinase family," Journal of Biological Chemistry, vol. 268, No. 26, 1993, pp. 19521-19527, XP002181810.

International Search Report, International Application No. PCT/US01/07500, Nov. 8, 2001.

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Colbere—Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol. 150:1-14

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275–1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in *escherichia coli*", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

(List continued on next page.)

Primary Examiner—Ponnathapu Achutamurthy Assistant Examiner—Delia Ramirez

#### (57) ABSTRACT

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

#### 4 Claims, No Drawings

## OTHER PUBLICATIONS

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the lpp gene of *Escherichia coli*", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", PNAS 88:8972-8976.

Kohler & Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817-823.

Morrison et al, 1984, "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains", Proc. Natl. Acad. Sci. USA 81:6851-6855. Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072-2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions", Nature 312:604–608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026-2034.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Van Heeke et al, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chemistry 264(10):5503-5509.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544-546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells", Cell 11:223-232.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567-3570.

* cited by examiner

# 2

# HUMAN G-COUPLED PROTEIN RECEPTOR KINASES AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S. Provisional Application No. 60/188,449 which was filed on Mar. 10, 2000 and is herein incorporated by reference in its entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with animal kinases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotides, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring and the treatment of diseases and physiological disorders.

## 2. BACKGROUND OF THE INVENTION

Kinases mediate phosphorylation of a wide variety of proteins and compounds in the cell. In conjunction with phosphatases, kinases are involved in a range of regulatory 30 and signaling pathways. Given the physiological importance of kinases, they have been subject to intense scrutiny and are proven drug targets.

# 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal kinases, including, but not limited to G-protein coupled receptor kinases (GRKs). As such, the novel polynucleotides encode novel GRKs having homologues and orthologs across a range of phyla and species.

The novel human polynucleotides described herein, encode open reading frames (ORFs) encoding proteins of 553 and 353 amino acids in length (see SEQ ID NOS:2 and 4 respectively).

The invention also encompasses agonists and antagonists 50 of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme 55 molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a 60 NHP transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in several ways, one of which involves the use of mouse embryonic stem cells ("ES cells") lines that contain gene trap mutations in a murine homolog of at least 65 one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-5 are "knocked-out"

they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. Additionally, the unique NHP sequences described in SEQ ID NOS:1-5 are useful for the identification of coding sequence and the mapping a unique gene to a particular chromosome.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances

# 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human kinase proteins. SEQ ID NO:5 describes a full length ORF and flanking regions.

# 5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, and human fetal brain, adult brain, pituitary, cerebellum, spinal cord, thymus, kidney, fetal liver, prostate, testis, adrenal gland, small intestine, skeletal muscle, uterus, placenta, mammary gland, and pericardium cells. The described sequences were compiled from gene trapped sequences in conjunction with sequences available in GENBANK, and cDNAs from adrenal gland, skeletal muscle, thymus, and testis libraries (Edge Biosystems, Gaithersburg, Md.).

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described polynucleotides, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of an NHP that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor/ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing. As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly

stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1× SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, 5 Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2× SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encode a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar to corresponding regions of SEQ ID NO:1 (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using default parameters).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP encoding polynucleotides. Such hybridization conditions can be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate 40 clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the 45 described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-5 can be used as 50 a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of 55 oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 60 1-5, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Pat. Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 65 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1–5 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1–5.

For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1–5 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID NOS:1-5 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-5 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-5 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-5 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID

6

NOS: 1-5. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, Mich., etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relatve to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6× SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences can be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation, or as NHP regulating aptamers.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone 55 selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an  $\alpha$ -anomeric oligonucleotide. An  $\alpha$ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual  $\beta$ -units, the strands run parallel to each other (Gautier et al., 1987, 65 Nucl. Acids Res. 15:6625–6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids

Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from, for example, human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase

H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant 10 NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally 15 cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration 20 of function of the mutant NHP gene product can be ascer-

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, immune disorders, obesity, high blood pressure, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor, N.Y.)

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, 50 alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

An additional application of the described novel human 60 polynucleotide sequences is their use in the molecular mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Pat. Nos. 5,830,721 65 and 5,837,458 which are herein incorporated by reference in their entirety.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α-mating fac-

Where, as in the present instance, some of the described NHP peptides or polypeptides are thought to be cytoplasmic proteins, expression systems can be engineered that produce soluble derivatives of a NHP (corresponding to a NHP extracellular and/or intracellular domains, or truncated polypeptides lacking one or more hydrophobic domains) and/or NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP domain to an IgFe), NHP antibodies, and anti-idiotypic antibodies (including Fab fragments) that can be used in therapeutic applications. Preferably, the above expression systems are engineered to allow the desired peptide or polypeptide to be recovered from the culture media.

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body. The use of engineered host cells and/or animals can offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor/ligand of a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a 10 NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP or a protein interactive therewith. Nucleotide constructs encoding such NHP prodsuch products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules 20 can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

Various aspects of the invention are described in greater 25 detail in the subsections below.

# 5.1 The NHP Sequences

The cDNA sequences and corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence Listing.

Expression analysis has provided evidence that the described NHPs can be expressed in human tissues as well as gene trapped human cells. In addition to GRKs, the described NHPs share significant similarity to a range of kinase families from a variety of phyla and species. Similar polynucleotides encoding GRK proteins, as well as uses and applications that are germane to the described NHPs are described in U.S. Pat. Nos. 5,591,618 and 5,532,151 which are herein incorporated by reference in their entirety.

# 5.2 NHPS and NHP Polypeptides

NHP products, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion 45 proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, the identification of other cellular gene products related to the NHP, as reagents in assays for screening for compounds that can be used as 50 pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP-encoding polynucleotides. The NHPs display initiator methionines in a DNA sequence 55 context consistent with eucaryotic translation initiation site, and a weak signal sequence characteristic of membrane associated proteins.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing 60 as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide 65 sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degen-

erate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are funcucts can be used to genetically engineer host cells to express 15 tionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and modify a NHP substrate, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by a NHP nucleotide sequence described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino 35 acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

> A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where the NHP peptide or polypeptide can exist, or has been engineered to exist, as a soluble or secreted molecule, the soluble NHP peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

> The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3)

harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing 10 NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP 15 coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors  $_{20}$ may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The 25 PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa califormica nuclear polyhidrosis virus (AcNPV) is used as a vector to express 30 foreign polynucleotides. The virus grows in Spodoptera frugiperda cells. A NHP encoding polynucleotide sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin 35 promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect 40 Spodoptera frugiperda cells in which the inserted polynucleotide is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expresis used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by in vitro or in 50 vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific 55 initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the 60 appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, 65 the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the

entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems can be used, including but sion systems may be utilized. In cases where an adenovirus 45 not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

> Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the polynucleotide of interest is subcloned into a

vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged 5 proteins are selectively eluted with imidazole-containing buffers.

Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation 10 of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence 15 might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in Liposomes: A Practical Approach, New, RRC ed., Oxford University Press, New York and in U.S. Pat. Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective ²⁰ disclosures which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site or desired organ, where they cross the cell membrane and/or the nucleus where the NHP 25 can exert its functional activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain (see generally U.S. application Ser. No. 60/111,701 and 60/056,713, both of which are herein incorporated by 30 reference, for examples of such transducing sequences) to facilitate passage across cellular membranes and can optionally be engineered to include nuclear localization sequences.

#### 5.3 Antibodies to NHP Products

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention can be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with the NHP, a NHP peptide (e.g., one corresponding to a functional domain of a NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of 65 the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats,

and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBVhybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mabs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. 35 Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 45 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized monoclonal antibodies as described in U.S. Pat. No. 6,150, 584 and respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423–426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879–5883; and Ward et al., 1989, Nature 341:544–546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275–1281) to

16

allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using 5 techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate 10 receptor/ligand can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind, activate, or neutralize a NHP, NHP receptor, or NHP ligand. Such anti-idiotypic

antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

#### SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 5 <210> SEO ID NO 1 <211> LENGTH: 1662 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 1 atggtggaca tgggggccct ggayaacctg atcgccaaca ccgcctacct gcaggcccgg 60 aagccctcgg actgcgacag caaagagctg cagcggcggc ggcgtagcct ggccctgccc 120 gggctgcagg gctgcgcgga gctccgccag aagctgtccc tgaacttcca cagcctgtgt 180 gagcagcage ceateggteg ecgectette egtgacttee tagecacagt geccaegtte 240 cgcaaggcgg caaccttcct agaggacgtg cagaactggg agctggccga ggagggaccc 300 accaaagaca gegegetgea ggggetggtg gecaettgtg egagtgeeee tgeeeegggg 360 aaccegcaac cetteeteag ceaggeegtg gecaceaagt gecaageage caceactgag 420 gaagagcgag tggctgcagt gacgctggcc aaggctgagg ccatggcttt cttgcaagag 480 cagocottta aggatttogt gaccagogoo ttotacgaca agtttotgca gtggaaacto 540 ttcgagatgc aaccagtgtc agacaagtac ttcactgagt tcagagtgct ggggaaaggt 600 660 ggttttgggg aggtatgtgc cgtccaggtg aaaaacactg ggaaqatgta tgcctgtaaq aaactggaca agaagcggct gaagaagaaa ggtggcgaga agatggctct cttggaaaag gaaatcttgg agaaggtcag cagccctttc attgtctctc tggcctatgc ctttgagagc 780 aagacccatc totgoottqt catqaqcctq atqaatqqqq qaqacctcaa qttccacatc 840 tacaacgtgg gcacgcgtgg cctggacatg agccgggtga tcttttactc ggcccagata gcctgtggga tgctgcacct ccatgaactc ggcatcgtct atcgggacat gaagcctgag 960 aatgtgcttc tggatgacct cggcaactgc aggttatctg acctggggct ggccgtggag 1020 atgaagggtg gcaagcccat cacccagagg gctggaacca atggttacat ggctcctgag atcctaatgg aaaaggtaag ttattcctat cctgtggact ggtttgccat gggatgcagc atttatgaaa tggttgctgg acgaacacca ttcaaagatt acaaggaaaa ggtcagtaaa gaggatotga agcamagamo totgomagamo gaggtomamat tocagomiga tamottomom gaggaagcaa aagatatttg caggctcttc ttggctaaga aaccagagca acgcttagga 1320 agcagagaaa agtotgatga toocaggaaa catcatttot ttaaaaacgat caactttoot cgcctggaag ctggcctaat tgaaccccca tttgtgccag acccttcagt ggtttatgcc

aaagacatcg ctgaaattga tgatttctct gaggttcggg gggtggaatt tgatgacaaa

#### -continued

gat	aagc	agt	tctt	caaa	aa c	tttg	cgac	a gg	tgct	gttc	cta	tagc	atg	gcag	gaagaa	a 1560
att	atag	aaa	cggg	actg	tt t	gagg	aact	g aa	tgac	ccca	aca	gacc	tac	gggt.	tgtgag	1620
gag	ggta	att	catc	caag	tc t	ggcg	tgtg	t tt	gtta	ttgt	aa					1662
<21 <21 <21	<210> SEQ ID NO 2 <211> LENGTH: 553 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 2  Met Val Asp Met Gly Ala Leu Asp Asn Leu Ile Ala Asn Thr Ala Tyr															
Met 1	Val	Asp	Met	Gly 5	Ala	Leu	Авр	Asn	Leu 10	Ile	Ala	Asn	Thr	Ala 15	Tyr	
Leu	Gln	Ala	Arg 20	Lys	Pro	Ser	Asp	Сув 25	Авр	Ser	Lys	Glu	Leu 30	Gln	Arg	
Arg	Arg	Arg 35	Ser	Leu	Ala	Leu	Pro 40	Gly	Leu	Gln	Gly	Cys 45	Ala	Glu	Leu	
Arg	Gln 50	Lys	Leu	Ser	Leu	Asn 55	Phe	His	Ser	Leu	Сув 60	Glu	Gln	Gln	Pro	
Ile 65	Gly	Arg	Arg	Leu	Phe 70	Arg	Авр	Phe	Leu	Ala 75	Thr	Val	Pro	Thr	Phe 80	
Arg	Lув	Ala	Ala	Thr 85	Phe	Leu	Glu	qaA	Val 90	Gln	Asn	Trp	Glu	Leu 95	Ala	
Glu	Glu	Gly	Pro 100	Thr	Lys	Asp	Ser	Ala 105	Leu	Gln	Gly	Leu	Val 110	Ala	Thr	
Сув	Ala	Ser 115	Ala	Pro	Ala	Pro	Gly 120	Asn	Pro	Gln	Pro	Phe 125	Leu	Ser	Gln	
Ala	Val 130	Ala	Thr	Lys	Сув	Gln 135	Ala	Ala	Thr	Thr	Glu 140	Glu	Glu	Arg	Val	
Ala 145	Ala	Val	Thr	Leu	Ala 150	Lув	Ala	Glu	Ala	Met 155	Ala	Phe	Leu	Gln	Glu 160	
Gln	Pro	Phe	Lys	Авр 165	Phe	Val	Thr	Ser	Ala 170	Phe	Tyr	Авр	Lув	Phe 175	Leu	
Gln	Trp	Lув	Leu 180	Phe	Glu	Met	Gln	Pro 185	Val	Ser	qaA	Lys	Tyr 190	Phe	Thr	
Glu	Phe	Arg 195	Val	Leu	Gly	Lув	Gly 200	Gly	Phe	Gly	Glu	Val 205	Сув	Ala	Val	
Gln	Val 210	Lys	Asn	Thr	Gly	Lув 215	Met	Tyr	Ala	Сув	Lys 220	Lys	Leu	Asp	Lys	
225	Arg				230					235					240	
Glu	Ile	Leu	Glu	Lув 245	Val	Ser	Ser	Pro	Phe 250	Ile	Val	Ser	Leu	Ala 255	Tyr	
Ala	Phe	Glu	Ser 260	Lys	Thr	His	Leu	Сув 265	Leu	Val	Met	Ser	Leu 270	Met	Asn	
Sly	Gly	Asp 275	Leu	Lys	Phe	His	Ile 280	Tyr	Asn	Val	Gly	Thr 285	Arg	Gly	Leu	
ДаР	Met 290	Ser	Arg	Val	Ile [°]	Phe 295	Tyr	Ser	Ala	Gln	Ile 300	Ala	Сув	Gly	Met	
305	His				310	_			-	315	-		•		320	
Asn	Val	Leu	Leu	Asp 325	Авр	Leu	Gly	Asn	Сув 330	Arg	Leu	Ser	Авр	Leu 335	Gly	
eu	Ala	Val	Glu	Met	Lvs	Glv	Glv	Lvs	Pro	Ile	Thr	Gln	Ara	Ala	Glv	

60

#### -continued

			340					345					350		
Thr	Asn	Gly 355	Tyr	Met	Ala	Pro	Glu 360	Ile	Leu	Met	Glu	Lys 365	Val	Ser	Tyr
Ser	<b>Tyr</b> 370	Pro	Val	Авр	Trp	Phe 375	Ala	Met	Gly	Сув	Ser 380	Ile	Tyr	Glu	Met
Val 385	Ala	Gly	Arg	Thr	Pro 390	Phe	Lys	Asp	Tyr	<b>Lу</b> в 395	Glu	Lys	Val	Ser	Lys 400
Glu	Asp	Leu	Lys	Gln 405	Arg	Thr	Leu	Gln	Asp 410	Glu	Val	Lys	Phe	Gln 415	His
Asp	Asn	Phe	Thr 420	Glu	Glu	Ala	Lys	Asp 425	Ile	Сув	Arg	Leu	Phe 430	Leu	Ala
Lys	Lys	Pro 435	Glu	Gln	Arg	Leu	Gly 440	Ser	Arg	Glu	Lув	Ser 445	Asp	Asp	Pro
Arg	<b>L</b> ув 450	His	His	Phe	Phe	Lys 455	Thr	Ile	Asn	Phe	Pro 460	Arg	Leu	Glu	Ala
Gly 465	Leu	Ile	Glu	Pro	Pro 470	Phe	Val	Pro	qaA	Pro 475	Ser	Val	Val	Tyr	Ala 480
Lys	qaA	Ile	Ala	Glu 485	Ile	Asp	Asp	Phe	Ser 490	Glu	Val	Arg	Gly	Val 495	Glu
Phe	Asp	Asp	<b>Lys</b> 500	Asp	Lys	Gln	Phe	Phe 505	Lys	Asn	Phe	Ala	Thr 510	Gly	Ala
Val	Pro	Ile 515	Ala	Trp	Gln	Glu	Glu 520	Ile	Ile	Glu	Thr	Gly 525	Leu	Phe	Glu
Glu	Leu 530	Asn	Asp	Pro	Asn	Arg 535	Pro	Thr	Gly	Сув	Glu 540	Glu	Gly	naA	Ser
Ser 545	Lys	Ser	Gly	Val	С <b>у</b> в 550	Leu	Leu	Leu							
<211		NGTH	NO 1: 10												

<212> TYPE: DNA

<213> ORGANISM: homo sapiens

<400> SEQUENCE: 3

atggtggaca tgggggccct ggacaacctg atcgccaaca ccgcctacct gcaggcccgg aagccctcgg actgcgacag caaagagctg cagcggcggc ggcgtagcct ggccctgccc 120 gggctgcagg gctgcgcgga gctccgccag aagctgtccc tgaacttcca cagcctgtgt 180 gagcagcagc ccateggtcg ccgcctcttc cgtgacttcc tagccacagt gcccacgttc 240 cgcaaggcgg caaccttcct agaggacgtg cagaactggg agctggccga ggagggaccc 300 accaaagaca gegegetgea ggggetggtg gecaettgtg egagtgeece tgeecegggg aacccgcaac cetteeteag ccaggeegtg gecaccaagt gecaageage caccactgag 420 gaagagcgag tggctgcagt gacgctggcc aaggctgagg ccatggcttt cttgcaagag 480 cagocottta aggatttogt gaccagogoo ttotacgaca agtttotgoa gtggaaacto ttcgagatgc aaccagtgtc agacaagtac ttcactgagt tcagagtgct ggggaaaggt 600 ggttttgggg aggtatgtgc cgtccaggtg aaaaacactg ggaagatgta tgcctgtaag 660 aaactggaca agaagcggct gaagaagaaa ggtggcgaga agatggctct cttggaaaag 720 gaaatcttgg agaaggtcag cagccctttc attgtctctc tggcctatgc ctttgagagc 780 aagacccatc totgoottgt catgagootg atgaatgggg gagacotcaa gttocacatc 840 tacaacgtgg gcacgcgtgg cctggacatg agccgggtga tcttttactc ggcccagata 900

#### -continued

gcctgtggga tgctgcacct ccatgaactc ggcatcgtct atcgggacat gaagcctgag															
aatgtgette tggatgaeet eggeaaetge aggttatetg acctgggget ggeegtggag															
atgaagggtg gcaagcccat cacccagagg agaaaagtct ga															
<211 <212	<210> SEQ ID NO 4 <211> LENGTH: 353 <212> TYPE: PRT <213> ORGANISM: homo sapiens														
<400	)> SE	QUEN	CE:	4											
Met 1	Val	<b>Asp</b>	Met	Gly 5	Ala	Leu	qaA	Asn	Leu 10	Ile	Ala	Asn	Thr	Ala 15	Tyr
Leu	Gln	Ala	Arg 20	Lys	Pro	Ser	Asp	Сув 25	Asp	Ser	Lys	Glu	Leu 30	Gln	Arg
Arg	Arg	Arg 35	Ser	Leu	Ala	Leu	Pro 40	Gly	Leu	Gln	Gly	Сув 45	Ala	Glu	Leu
Arg	Gln 50	Lys	Leu	Ser	Leu	Asn 55	Phe	His	Ser	Leu	Сув 60	Glu	Gln	Gln	Pro
Ile 65	Gly	Arg	Arg	Leu	Phe 70	Arg	Asp	Phe	Leu	Ala 75	Thr	Val	Pro	Thr	Phe 80
Arg	Lys	Ala	Ala	Thr 85	Phe	Leu	Glu	Asp	Val 90	Gln	Asn	Trp	Glu	Leu 95	Ala
Glu	Glu	Gly	Pro 100	Thr	Lys	Asp	Ser	Ala 105	Leu	Gln	Gly	Leu	Val 110	Ala	Thr
Сув	Ala	Ser 115	Ala	Pro	Ala	Pro	Gly 120	Asn	Pro	Gln	Pro	Phe 125	Leu	Ser	Gln
Ala	Val 130	Ala	Thr	Lys	Сув	Gln 135	Ala	Ala	Thr	Thr	Glu 140	Glu	Glu	Arg	Val
Ala 145	Ala	Val	Thr	Leu	Ala 150	Lys	Ala	Glu	Ala	Met 155	Ala	Phe	Leu	Gln	Glu 160
Gln	Pro	Phe	Lys	Asp 165	Phe	Val	Thr	Ser	Ala 170	Phe	Tyr	Asp	Lys	Phe 175	Leu
Gln	Trp	Lys	Leu 180	Phe	Glu	Met	Gln	Pro 185	Val	Ser	qaA	Lys	Tyr 190	Phe	Thr
Glu	Phe	Arg 195	Val	Leu	Gly	Lys	Gly 200	Gly	Phe	Gly	Glu	Val 205	Сув	Ala	Val
Gln	Val 210	Lys	Asn	Thr	Gly	Lys 215	Met	Tyr	Ala	Сув	Lys 220	Lys	Leu	Asp	Lys
<b>Lу</b> в 225	Arg	Leu	Lys	Lys	<b>Lув</b> 230	Gly	Gly	Glu	Lys	Met 235	Ala	Leu	Leu	Glu	Lув 240
Glu	Ile	Leu	Glu	Lys 245	Val	Ser	Ser	Pro	Phe 250	Ile	Val	Ser	Leu	Ala 255	Tyr
Ala	Phe	Glu	Ser 260	Lys	Thr	His	Leu	Сув 265	Leu	Val	Met	Ser	Leu 270	Met	Asn
Gly	Gly	<b>А</b> вр 275	Leu	Lув	Phe	His	Ile 280	Tyr	Asn	Val	Gly	Thr 285	Arg	Gly	Leu
Asp	Met 290	Ser	Arg	Val	Ile	Phe 295	Tyr	Ser	Ala	Gln	Ile 300	Ala	Сув	Gly	Met
Leu 305	His	Leu	His	Glu	Leu 310	Gly	Ile	Val	Tyr	Arg 315	Asp	Met	Lys	Pro	Glu 320
Asn	Val	Leu	Leu	Авр 325	Asp	Leu	Gly	Asn	Сув 330	Arg	Leu	Ser	Asp	Leu 335	Gly
Leu	Ala	Val	Glu 340	Met	Lys	Gly	Gly	Lув 345	Pro	Ile	Thr	Gln	Arg 350	Arg	Lys

#### -continued

Val

<210> SEQ ID NO 5 <211> LENGTH: 2249 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 5

60	gcagagaggc	aggaaacact	gaagcccagg	atgctttgag	tgaggccatc	aaaactgctc
120	gctgaatgca	cgatccccca	agccacccac	agctgagctc	cagctctccc	tcaaccaccc
180	taagaaccac	accacattcc	ctaggctgcc	ttctaccctg	tgagtccagg	accataagag
240	gtattgtcag	atttttcact	tctcagactg	ccgaagaaat	atttgctcct	gggaaaaggc
300	aaagcagcca	ccgggaaggg	gttgtctcac	tecettggae	tcactgtaaa	gccacaggac
360	gccatggtgg	cccgtgctca	gggagtgcgc	tgctttccct	agccctcttg	gcagccctcc
420	cggaagccct	cctgcaggcc	acaccgccta	ctgatcgcca	cctggacaac	acatgggggc
480	cccgggctgc	cctggccctg	ggcggcgtag	ctgcagcggc	cagcaaagag	cggactgcga
540	tgtgagcagc	ccacagcctg	ccctgaactt	cagaagctgt	ggagctccgc	agggctgcgc
600	ttccgcaagg	agtgcccacg	tcctagccac	ttccgtgact	tegeegeete	agcccatcgg
660	cccaccaaag	cgaggaggga	gggagctggc	gtgcagaact	cctagaggac	cggcaacctt
720	gggaacccgc	ccctgccccg	gtgcgagtgc	gtggccactt	gcaggggctg	acagcgcgct
780	gaggaagagc	agccaccact	agtgccaagc	gtggccacca	cagccaggcc	aacccttcct
840	gagcagccct	tttcttgcaa	aggccatggc	gccaaggctg	agtgacgctg	gagtggctgc
900	ctcttcgaga	gcagtggaaa	acaagtttct	gccttctacg	cgtgaccagc	ttaaggattt
960	ggtggttttg	gctggggaaa	agttcagagt	tacttcactg	gtcagacaag	tgcaaccagt
1020	aagaaactgg	gtatgcctgt	ctgggaagat	gtgaaaaaca	tgccgtccag	gggaggtatg
1080	aaggaaatct	tctcttggaa	agaagatggc	aaaggtggcg	gctgaagaag	acaagaagcg
1140	agcaagaccc	tgcctttgag	ctctggccta	ttcattgtct	cagcagccct	tggagaaggt
1200	atctacaacg	caagttccac	ggggagacct	ctgatgaatg	tgtcatgagc	atctctgcct
1260	atagcctgtg	ctcggcccag	tgatctttta	atgagccggg	tggcctggac	tgggcacgcg
1320	gagaatgtgc	catgaagcct	tctatcggga	ctcggcatcg	cctccatgaa	ggatgctgca
1380	gagatgaagg	gctggccgtg	ctgacctggg	tgcaggttat	cctcggcaac	ttctggatga
1440	gagatcctaa	catggctcct	ccaatggtta	agggctggaa	catcacccag	gtggcaagcc
1500	agcatttatg	catgggatgc	actggtttgc	tatectgtgg	aagttattcc	tggaaaaggt
1560	aaagaggatc	aaaggtcagt	attacaagga	ccattcaaag	tggacgaaca	aaatggttgc
1620	acagaggaag	tgataacttc	aattccagca	gacgaggtca	aactctgcaa	tgaagcaaag
1680	ggaagcagag	gcaacgctta	agaaaccaga	ttcttggcta	ttgcaggctc	caaaagatat
1740	cctcgcctgg	gatcaacttt	tctttaaaac	aaacatcatt	tgatcccagg	aaaagtctga
1800	gccaaagaca	agtggtttat	cagacccttc	ccatttgtgc	aattgaaccc	aagctggcct
1860	aaagataagc	atttgatgac	ggggggtgga	tctgaggttc	tgatgatttc	tcgctgaaat
1920	gaaattatag	atggcaggaa	ttcctatagc	acaggtgctg	aaactttgcg	agttcttcaa
1980	gaggagggta	tacgggttgt	ccaacagacc	ctgaatgacc	gtttgaggaa	aaacgggact
2040	agacaggcag	tctctttacc	tgtaaattgc	tgtttgttat	gtctggcgtg	attcatccaa

#### -continued

caggagtete ggetgacata	atcctcgaat gttccacacg tggaaatctg tggaatgagg	2100
gctaatcagt taggagggac	atcacaacca caaaacaatt caaaagacag gcaagctcac	2160
tactagaaca cattttattt	tctttttctt tcttcataaa gatgagtaaa gtctcagttt	2220
tcactgaggg cagggaaaag	gaacactca	2249

What is claimed is:

- 1. An isolated nucleic acid molecule comprising the nucleotide sequence disclosed in SEQ ID NO: 1.
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO: 2; and
  - (b) hybridizes under highly stringent conditions to the polynucleotide sequence of SEQ ID NO: 1 or the 20 complete complement thereof.
- 3. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:2.
- 4. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:4.

* * * * *

This Page Blank (uspto)



## (12) United States Patent Shah et al.

(10) Patent No.:

US 6,444,153 B1

(45) Date of Patent:

Sep. 3, 2002

#### (54) IN-LINE COMPOUNDING/EXTRUSION DEPOSITION AND MOLDING APPARATUS AND METHOD OF USING THE SAME

(75) Inventors: Suresh Deepchand Shah, Troy; Jason Alan Waite, Lake Orion, both of MI

Assignee: Delphi Technologies, Inc., Troy, MI

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/473,279

Filed: Dec. 28, 1999 (22)

Int. Cl.⁷ ...... B29C 47/38 (51)

(52)

Field of Search ...... 264/211.21, 211.22, 264/171.11, 210.2, 322; 425/114, 113, 121,

#### (56)

### References Cited

#### U.S. PATENT DOCUMENTS

4,925,381 A * 5/1990 Aoki et al. 5,000,397 A 3/1991 Darrieux 5,185,117 A * 2/1993 Hawley 5,358,680 A * 10/1994 Boissonnat et al. 5,401,154 A * 3/1995 Sargent

6,126,433 A * 10/2000 Svoboda 6,186,769 B1 * 2/2001 Hawley

6,190,586 B1 * 2/2001 Abrams et al.

* cited by examiner

Primary Examiner-Mark Eashoo

(74) Attorney, Agent, or Firm-Kathryn A. Marra

**ABSTRACT** 

According to the present invention an in-line compounding/ extrusion deposition and molding apparatus and method of using the same are provided. The apparatus comprises a single step compounding and extrusion apparatus which includes an extruder screw. The apparatus includes a first zone, a second zone, and a third zone. The first zone is used to melt an inlet material before the screw advances the melted inlet material into the second zone which comprises a preparation and cutting zone. Simultaneously, as the inlet material is melted in the first zone, the screw rotation feeds a reinforcing fiber bundle into the second zone where the reinforcing fiber bundle is prepared for melt impregnation and is sheared to a desired length. While in the second zone, mixing begins between the melted inlet material and the sheared reinforcing fiber bundle. Next the mixture is advanced into the third zone for uniform distributive mixing and impregnation of the sheared reinforcing fiber bundle with the melted inlet material to form a fiber bundle filled melt. The apparatus includes at least one winding/unwinding reel which continuously ensures that the reinforcing fiber bundle is under constant tension (no sagging or breaking thereof) during the X, Y, Z movement of the apparatus during melt deposition as well as during forward movement of the screw within the barrel.

#### 16 Claims, 5 Drawing Sheets





Sep. 3, 2002



Sep. 3, 2002





Sep. 3, 2002



#### IN-LINE COMPOUNDING/EXTRUSION **DEPOSITION AND MOLDING APPARATUS** AND METHOD OF USING THE SAME

#### **TECHNICAL FIELD**

The present invention relates generally to an apparatus and method of manufacturing a resin structure reinforced with long fibers and, more particularly, to an apparatus and method of manufacturing for a single-step in-line compounding of a reinforcing fiber with extrusion compression 10 molding.

#### BACKGROUND OF THE INVENTION

Elongated resin structures reinforced with fibers in which thermoplastic resins are reinforced with continuous fibers 15 have mechanical properties superior to those structures reinforced with short fibers. Such structures are beneficial because they can be cut and formed into pellets or similar materials. Elongated thermoplastic resin structures reinforced with fibers are generally manufactured by the so-called pultrusion method by impregnating a thermoplastic resin into a continuous reinforcement fiber bundle while the bundle is passed through a cross-head extrusion die, after which the resin-impregnated fiber bundle is drawn out through a die. After undergoing the pultrusion method, the structures are cut to a desired size.

Other processes are used to produce elongated thermoplastic resin structures reinforced with fiber, for example, where first the plastic is melted in a long single screw extruder which is fed to another single screw extruder. Next chopped strands are fed into the melt, and the reinforcing fiber melt is pumped into an accumulator after which the required log size is cut and fed into a vertical molding press.

single-step process that utilizes a single screw extruder as a reinforcing fiber compounder and melt deposition unit. Likewise, there is no method currently available where reinforcing fibers are fed into a barrel of the apparatus such that the fibers are constantly maintained in a stretched 40 condition regardless of the movement of the apparatus, thereby eliminating the possibility of fiber entanglement.

#### SUMMARY OF THE INVENTION

It is, therefore desirable to provide an apparatus and 45 process for in-line compounding of reinforcing fiber and molding in a single-step process. A reinforcing product is compounded by use of a reciprocating single screw extruder having a reinforcing fiber compounder and a melt depositing unit, where the reinforcing fibers are severed at a maximum 50 desirable length and kept in a stretched tensioned condition regardless of the apparatus positioning such that there are no loose or sagging fibers during the process.

Advantageously, the in-line compounding/extrusion apparatus of the present invention allows for the in-line 55 compounding of reinforcing fibers with extrusion compression molding in a single step by utilizing a reciprocating single screw injection unit. Typically, the in-line compounding of reinforcing fibers with extrusion compression molding would involve high cost, bulky equipment consisting of 60 combinations of single screw, twin screw and plunger deposition assemblies. By using a single-step process for the in-line compounding of reinforcing fibers and extrusion compression molding, the present invention offers a more cost effective method of producing a higher quality part.

In accordance with the preferred embodiment of the present invention, there is provided a method to incorporate

the continuous reinforcing fiber into the reciprocating single screw injection unit and to sever and uniformly impregnate the fine filaments with resin keeping maximum fiber length

In accordance with another aspect of the preferred embodiment of the present invention the apparatus includes winding/unwinding reels and guides which prevent the reinforcing fibers from sagging and breaking during a melt deposition step or during forward and rear movement of the reciprocating single screw injection unit.

The above and other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are numbered alike in the several Figures:

FIG. 1 is a cross-sectional side elevational view of one embodiment of an apparatus of the present invention in a first position;

FIG. 2 is a cross-sectional side view of the apparatus of FIG. 1 in a second position;

FIG. 3 is a cross-sectional side elevational view of the apparatus of FIG. 1 in a third position;

FIG. 4 is a cross-sectional side elevational view of the apparatus of FIG. 1 in a fourth position; and

FIG. 5 is a cross-sectional side elevational view of the apparatus of FIG. 1 in a fifth position.

#### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A typical embodiment of an in-line compounding/ Currently, there is no apparatus available employing a 35 extrusion apparatus 10 embodying the present invention is shown in FIGS. 1-5. The apparatus 10 has a barrel 12 which in a preferred embodiment is cylindrical in shape. It will be appreciated that barrel 12 may have other shapes. Barrel 12 includes an internal cavity 14 formed therein and extending along a longitudinal axis thereof. The barrel 12 has a first end 16, an opposite second end 18 and an outer surface 20. The internal cavity 14 extends from the first end 16 to the second end 18 of the barrel 12. Located at the second end 18 of the barrel 12 is-a die 22 including a blade 23 that opens and closes during operation of the apparatus 10 wherein the blade 23 is initially closed. The internal cavity 14 is preferably cylindrical in shape and has a diameter great enough to permit a screw 24 to be disposed therein. In the preferred embodiment, the screw 24 is sized to fit tightly in the internal cavity 14. In other words, the widest diameter of the screw 24 is slightly less than the inner diameter of the internal cavity 14. The barrel 12 preferably includes a beveled portion 19 which comprises an annular beveled surface which has a complementary shape as the head 30 so that the beveled portion 19 acts as a stop for the screw 24 as the screw 24 is driven in a direction towards the second end 18. Beveled portion 19 includes and defines a central opening

> The screw 24 includes a first end 26 and an opposing second end 28. A head 30 is provided at the second end 28 of the screw 24. When the screw 24 is inserted into the internal cavity 14 of the barrel 12, the head 30 is inserted into the internal cavity 14 at the first end 16 of the barrel 12 and is advanced therein towards the opposing second end 18. The apparatus 10 further has a die 22 that is in selective fluid communication with the internal cavity 14 at the second end 18 of the barrel 12. The blade 23 is designed to provide the

selective fluid communication between the internal cavity 14 and the die 22 so that in the closed position shown in FIGS. 1 and 2, the screw 24 is prevented from advancing material into the die 22. As a result, material disposed within the internal cavity 14 of the barrel 12 is prevented from freely entering or communicating with the die 22. As is known in the extruding art, the screw 24 has a plurality of flights 25 which are designed to advance the material through the internal cavity 14 as the screw 24 rotates and the material is

Apparatus 10 also includes a first inlet 32 which is in communication with the barrel 12 and more specifically with the internal cavity 14. The exemplary first inlet 32 comprises a bore extending from the outer surface 20 of the barrel 12 15 and is generally perpendicular to the longitudinal axis of the barrel 12. The first inlet 32 opens into the internal cavity 14 so that an inlet material 34 may be introduced thereto from outside of the apparatus 10. In the exemplary illustrated embodiment, the first inlet 32 is preferably cylindrical in 20 shape. It being understood that the first inlet 32 may have other cross-sectional shapes. The diameter of the first inlet 32 is of a sufficient dimension to permit the inlet material 34 to be introduced therethrough into the internal cavity 14. As the inlet material 34 enters the internal cavity 14, the screw 25 24 is designed to have the greatest flight depth so as to assure easy entry of the inlet material 34 and its conveyance forward under a high positive pressure. As the inlet material 34 is introduced into the internal cavity 14, it contacts the screw 24 and is disposed therearound and between the 30 plurality of flights 25 which serves to advance the inlet material 34 once the screw 24 is rotated.

The apparatus 10 further includes a second inlet 36. Similar to the first inlet 32, the second inlet 36 comprises a bore extending from the outer surface 20 of the barrel 12. 35 The second inlet 36 is generally perpendicular to the longitudinal axis of the barrel 12. The second inlet 36 opens into the internal cavity 14 so that material may be introduced thereto from outside of the apparatus 10. In the exemplary illustrated embodiment, the second inlet 36 is preferably 40 cylindrical in shape. The second inlet 36 is positioned intermediate the first inlet 34 and the second end 18 of the barrel 12 and each respective axis of the first and second inlets 34, 36 are substantially parallel to one another. In the preferred embodiment, the second inlet 36 is cylindrical in 45 shape; however, as can be appreciated, other shapes can be utilized. The first inlet 32 is thus closer to the first end 16 of the barrel 12 than the second inlet 36.

The first inlet 32 is designed to fit a hopper 35. The hopper 35 comprises a funnel-like holder capable of holding the 50 inlet material 34. The inlet material 34 being fed into the internal cavity 14 through the first inlet 32 includes but is not limited to suitable thermoplastics and thermoset compounds. In one exemplary embodiment, the inlet material 34 comprises a quantity of plastic pellets which are fed through the 55 hopper 35 and first inlet 32 into the internal cavity 14. The inlet material 34 is melted prior to further processing, wherein the melting is accomplished by maintaining a predetermined compression ratio of the screw 24 as the inlet material 34, e.g., plastic pellets, is advanced forward within 60 the internal cavity 14 by the plurality of flights 25. As is known in the art, another method of describing the screw 24 is in terms of compression ratio. The compression ratio is generally defined as a comparison of the channel depth in the first flight of the first zone (feeding zone) and the channel depth of the last flight in the first zone (feeding zone). The channel depth (flight depth) is the distance from the outer

edge of a flight 25 to the outer surface of the screw 24. The screw 24 is designed so that as the inlet material 34 enters the internal cavity 14 through the first inlet 32, the depth of the plurality of flights 25 of the screw 24 is decreased. By decreasing the depth of the plurality of flights 25, the compression ratio is increased. Between the first and second inlets 32, 36 the depth of flights 25 transition quickly form a deep flight depth to a shallow flight depth. The flight depth should be deep enough to create a compression ratio greater picked-up and advanced forward by the plurality of flights 10 than about 3.5:1 in the first zone. In an exemplary embodiment, the compression ratio is preferably about 8:1 to aid in the rapid melting of the incoming inlet material 34 before it reaches the next second inlet 36.

> The second inlet 36 preferably includes a reinforcing fiber guide 42. The guide 42 comprises any number of guides which are designed to separate individual reinforcing fiber bundles 44 from one another so that the individual reinforcing fiber bundles 44 do not become entangled with one another as they are fed into the internal cavity 14. It being understood that the reinforcing fibers are commonly provided in reinforcing fiber bundles 44 which are then fed into the apparatus 10. An individual reinforcing fiber bundle 44 is also commonly referred to as a roving which comprises of a number of fibers with defined diameters and special sizing. For example, the second inlet 36 may be formed so that the guide 42 comprises at least one bore formed in and extending through the second inlet 36, wherein one reinforcing fiber bundle 44 is received within one bore. Each reinforcing fiber bundle 44 is formed of any suitable number of reinforcing fibers including but not limited to glass fibers, natural fibers, polyaramid fibers (e.g., Kevlar fibers commercially available from DuPont), carbon fibers or the like. Each reinforcing fiber bundle 44 is fed into the guide 42 from at least one winding/unwinding reel 46. The preferred embodiment is shown with three (3) winding/unwinding reels 46 for three (3) reinforcing fiber bundles 44; however as few as one (1) and as many as desired can be utilized in the present invention. The guide 42 is useful in directing the reinforcing fiber bundles 44 into the proper location in the internal cavity 14 and works in conjunction with the winding/unwinding reels 46 to keep the reinforcing fiber bundle 44 in a constant taut state. In the exemplary embodiment shown, the guide 42 comprises a rotatable member having a plurality of grooves formed therein for separating individual reinforcing fiber bundles 44 from one another so that the individual fiber bundles 44 do not become entangled during the feeding process.

> The winding/unwinding reels 46 are preferably located above the guide 42 and are fed from an equal number of spools 48 containing the reinforcing fiber bundles 44. While the exemplary embodiment shows the spools 48 as having a round shape, it is understood that the other shapes may be used. There is one spool 48 feeding each winding/unwinding reel 46. The movement of the apparatus 10 and the screw 24 sets in motion the winding/unwinding of the reinforcing fiber bundles 44 on the reels 46. When the reinforcing fiber bundles 44 are unwound from the reels 46, the rotation of the screw 24 results in the feeding of the reinforcing fiber bundles 44 into the guide 42 and thus into the internal cavity 14 of the barrel 12 as well as the simultaneous plastication of the inlet material 34 which is introduced through the first inlet 32. The unwinding of the reinforcing fiber bundles 44 from the winding/unwinding reels 46 results in the accompanying unwinding from the associated spools 48. When the process is reversed, the reels 46 are wound as are the connected spools 48 so as not to allow for any slack in the reinforcing fiber bundles 44. Thus, the reinforcing fiber

bundles 44 are consistently under tension regardless of the positioning of the apparatus 10.

The internal cavity 14 of the barrel 12 is precisely sized to fit the screw 24 and allow a very narrow gap 50 to exist between the outer diameter of the screw 24 and the diameter of the internal cavity 14 of the barrel 12. The screw 24 has a preselected diameter (D) and length (L) such that L/D is large up to 35:1. Preferably the L/D ratio could be in the range of 20:1 to 35:1. It is generally known that the higher the L/D ratio, the higher will be the surface available for shearing, mixing, and plasticating the inlet material 34. Throughout operation the screw 24 will be free to rotate through the internal cavity 14, additionally the screw 24 is preset with back pressure allowing for the retraction (or movement away from the second end 18 of the barrel 12) of the screw 24 once an accumulation of material forms in front 15 of the screw 24. The front of the screw 24 is defined as that area between the head 30 of the screw 24 and the blade 23 when it is in a closed position. This is known as "shot size".

The length of the barrel 12 is generally divided into at least three (3) zones, namely a first zone 52, a second zone 20 56, and a third zone 62. Each of the zones 52, 56, 62 performs an operation useful in the compounding/extrusion process as will be described in greater detail hereinafter. The first zone or a melting zone 52 is created as the inlet material 34 is fed into the first inlet 32 under compression to form a 25 melted plastic. The screw 24 design in this area has a deep flight depth to create a high compression ratio so that the inlet material 34 rapidly melts as the inlet material 34 is introduced and advanced through the first zone 52. However, the flight depth in the first zone 52 reduces sharply from the beginning to the end of the zone. As the melted inlet material 34 leaves the first zone 52, it enters a second zone or a preparation and cutting zone 56. Thus, the first zone 52 serves to melt the inlet material 34 for further processing in the apparatus 10. It being understood that the relative size of each of the zones 52, 56, and 62 has been illustrated for purpose of illustration and clarity only and it is within the scope of the present invention that the lengths of these zones 52, 56, and 62 differ depending upon the application as is known in the art.

The second zone 56 is established to prepare the reinforcing fiber bundles 44 for shearing and impregnation as they are introduced into the apparatus 10 and more specifically the internal cavity 14. The screw 24 design in this second zone 56 has a deep flight depth however the flight depth throughout the second zone 56 remains constant so 45 that there is zero compression in the second zone 56. In other words, the compression ratio is zero because there is no change in the depth of the flights 25 in the second zone 54. The actual screw flight depth depends on the number of reinforcing fiber bundles 44 fed into the second zone 56 and 50 the type of the inlet material 34 used. A deep flight depth is necessary in the second zone 56 so as to accommodate a larger volume of reinforcing fiber bundles 44. The flight depth should be as high as possible based on the structural integrity of the screw 24 which is dependant on the screw 55 diameter. As the reinforcing fiber bundles 44 pass from the guide 42 into the internal cavity 14, the filaments of each of the reinforcing fiber bundles 44 are opened for proper melt impregnation. That is the filaments of the reinforcing fiber bundles 44 are opened for better wetting so that each 60 mentary beveled portion 19 of the barrel 12. The beveled filament can be coated with the melted inlet material 34. It is also understood that the may pre-heat the reinforcing fiber bundles 44 after the reinforcing fiber bundles 44 pass the winding/unwinding reels 46 but prior to entrance into the second inlet 36. This results in increased wettability of the 65 individual reinforcing fiber bundles 44 with the melted inlet material 34.

In the second zone 56, the reinforcing fiber bundles 44 are sheared or broken to a desirable longer length. The shearing is accomplished as the tensile load on the reinforcing fiber bundles 44 is increased so that each of the reinforcing fiber bundles 44 shears in approximately the same length. As the reinforcing fiber bundles 44 move through the second zone 56, the resistance on the reinforcing fiber bundles 44 increases so that when the resistance becomes too great, the reinforcing fiber bundles 44 are sheared or broken forming individual sheared reinforcing fibers 60.

Upon exiting the second zone 56, the sheared reinforcing fibers 60 exit along with the melted inlet material 34 and the further mixing begins. The third zone 62 comprises a mixing and impregnation zone for further mixing of the melted inlet material 34 and the sheared reinforcing fibers 60. The continued mixing and impregnation result in a fiber filled melt being produced. The fiber filled melt is generally indicated at 64 in the Figures.

The apparatus 10 further includes an outlet 66 formed in the die 22 which serves as an exit for the fiber filled melt 64 from the die 22 after the fiber filled melt 64 travels from the barrel 12 to the die 22. The outlet 66 preferably extends from the die 22 in a direction perpendicular to the longitudinal axis of the die 22 and continues through the die 22 before reaching an outer surface of the die 22. In the preferred embodiment, the outlet 66 is cylindrical in shape however other shapes can be utilized, e.g., such as ribbons or sheet shapes. The outlet 66 is located near the second end 18 of the barrel 12 and at least a portion thereof is preferably generally parallel to the first and second inlets 32, 36, however the outlet 66 extends in a direction opposite the first and second inlets 32, 36.

As shown in FIGS. 1-5, a method of using the in-line compounding/extrusion deposition compression molding 35 apparatus 10 will now be described in greater detail. The present invention provides a process for preparing the moldable fiber filled melt 64. The fiber filled melt 64 is produced from the mixing of the melted inlet material 34 and the sheared reinforcing fibers 60. Molded structures that are reinforced with long reinforcing fibers have mechanical properties superior to those structures reinforced with short fibers. To enjoy the benefits of superior mechanical properties, the process of this invention allows for a long reinforcing fiber to be maintained without breakage and therefore cut at a longer length than was previously possible in a single step process. In the process, the apparatus 10 of the present invention mixes the longer cut reinforcing fiber bundles 44 with the melted inlet material 34 before deposition in a tool 70. As shown in FIG. 1, the apparatus 10 and more specifically the barrel 12 and the die 22 are in a first position relative to the winding/unwinding reels 46 and the tool 70. In the first position, the die 22 is not axially aligned with the tool 70 but rather the barrel 12 and the die 22 are off set therefrom.

In the exemplary and illustrated embodiment in the first position, the second inlet 36 is generally axially aligned with a centermost winding/unwinding reel 46. In the first position, the screw 24 generally is disposed within the barrel 12 so that the head 30 is adjacent to or abuts the compleportion 19 comprises an annular beveled surface which has a complementary shape as the head 30 so that the beveled portion 19 acts as a stop for the screw 24. It being understood that the illustrated embodiment shown in the Figures is merely exemplary in nature and the present invention is not limited to the illustrated embodiment. In the first position, the apparatus 10 is stationary and the reinforcing

fiber bundles 44 are disposed within the winding/unwinding reel 46 and extend through the second inlet 36 into the internal cavity 14 so that the reinforcing fiber bundles 44 contact the screw 24 before operation of the apparatus 10.

As shown in FIG. 2, the process begins by rotating the 5 screw 24 located inside the internal cavity 14 of the barrel 12. Preferably, a beginning rotation speed would be dependant on the type of inlet material 34 and the amount of the cut reinforcing fibers 60 in the final compound. Not shown is the means by which the rotation of screw 24 is accomplished. Any conventional means for rotation can be utilized. Simultaneously, the inlet material 34 is fed under compression into the internal cavity 14 of the barrel 12. The melting of the inlet material 34 is achieved in the first zone 52 of the apparatus 10. The first zone 52 is where the first operation of the apparatus is preformed. Preferably the inlet material 34 is fed under a high compression ratio, up to about 8:1 for the rapid melting of the inlet material 34. The flight depth in the first zone 52 rapidly transitions from a deep flight depth to a shallow flight depth within the first zone 52.

As the inlet material 34 is melted, the screw 24 rotation 20 continuously feeds the reinforcing fiber bundles 44 into the second zone 56. The reinforcing fiber bundles 44 are fed into the second zone 56 through the guide 42 from the series of winding/unwinding reels 46 which work in connection with the movement of the apparatus 10 to keep the reinforcing 25 fiber bundles 44 in a constant taut state. The screw 24 preferably has a free flowing check valve to prevent unintentional reinforcing fiber bundles 44 breakage. The reinforcing fiber bundles 44 are thus introduced into the apparatus 10 after the inlet material 34 has been melted in the first 30 zone 52 due to the rotation of the screw 24. Thus, the plastication process begins prior to the introduction of the reinforcing fiber bundles 44 into the internal cavity 14 so that melted inlet material 34 is advanced into the second 44. Rotation of the winding/unwinding reels 46 is controlled based on the apparatus 10 location during operation. The movement of the winding/unwinding reels 46 can be generated by a servo-driven motor with closed loop control or by pretension created by spring loading the reel 46 or any 40 other known mechanical means. When closed loop control is chosen as the mechanism, the servo-driven motor either unwinds or winds the reinforcing fiber bundles 44 depending upon the relative position of the apparatus 10. Prior to bundles 44 can be preheated to a temperature at or above the plastic melt temperature of the inlet material 34 to improve melt mixing and homogenization that takes place in the third zone 62. A higher melt temperature allows for better wetting of the reinforcing fiber bundles 44 by the melted inlet 50 material 34.

The rotation of the screw 24 continuously feeds the reinforcing fiber bundles 44 into the internal cavity 14 at the second zone 56 and as the reinforcing fiber bundles 44 enter the second zone 56, the reinforcing fiber bundles 44 are 55 unwound from the winding/unwinding reels 46 keeping the reinforcing fiber bundles 44 stretched. Once in the second zone 56, the filaments of the reinforcing fiber bundles 44 are opened for improved wetting and the stretched reinforcing fiber bundles 44 are sheared or broken to a desirable longer 60 length. Shearing is achieved, for example, by increasing the tensile load on the reinforcing fiber bundles 44 and when the resistance becomes too great, the reinforcing fiber bundles 44 shear forming the sheared reinforcing fibers 60. As the inlet material 34 is melted and the reinforcing fiber bundles 44 sheared, the apparatus 10 is stationary, as best shown in FIG. 2.

As the reinforcing fiber bundles 44 are sheared in the second zone 56, the melted inlet material 34 begins to mix with the cut reinforcing fibers 60 to create a fiber filled melt 64. Continued mixing occurs as the fiber filled melt 64 is advanced into the third zone 62 by the rotation of the plurality of flights 25. The third zone 62 accomplishes the uniform distributive mixing and impregnation of the sheared reinforcing fibers 60 with the melted inlet material 34 to form the fiber filled melt 64. As the fiber filled melt 64 accumulates, it is advanced into an accumulation zone, generally indicated at 68 because the plurality of flights 25 continues to advance the fiber filled melt 64. The accumulation zone 68 is that area between the head 30 of the screw 24 and the blade 23. As can be appreciated the accumulation zone 68 increases as the screw 24 retracts in a direction away from the blade 23. The screw 24 retracts based on its back pressure setting and the retraction occurs as more and more fiber filled melt 64 builds up in the accumulation zone 68. Accumulation of the fiber filled melt 64 occurs until enough is gathered to create a shot size having a predetermined size. Because the blade 23 is in a closed position, the fiber filled melt 64 continues to build between the head 30 and the blade 23 and this build-up causes the back pressure which drives the screw 24 in a direction away from the blade 23. As shown in FIG. 2, the screw 24 assumes a second retracted position in which the screw 24 has been driven in a direction away from the blade 23 to accommodate the fiber filled melt 64 between the head 30 and the blade 23.

As shown in FIG. 3, once the proper shot size is detected, the apparatus 10 moves in a direction towards the tool 70. An exemplary tool 70 comprises a press 73 with a mold 74. As mentioned above the apparatus 10 is moved by known means. Because the winding/unwinding reels 46 and spools 48 are preferably stationary relative to the barrel 12 and die zone 56 for combination with the reinforcing fiber bundles 35 22, the movement of the barrel 12 and die 22 in the direction towards the tool 70 causes the winding/unwinding reels 46 to unwind to release an appropriate length of each of the reinforcing fiber bundles 44 to accommodate the movement of the barrel 12 and the die 22. This results because even in the stage shown in FIG. 3, the reinforcing fiber bundles 44 are fed into the second inlet 36 and communicate with the internal cavity 14 and the screw 24 disposed therein so that ends of the reinforcing fiber bundles 44 are not free but rather are secured within the internal cavity 14 so that it is moving into the second zone 56, the reinforcing fiber 45 taut (under tension). Thus, the movement of the barrel 12 and the die 22 towards the tool 70 results in the reinforcing fiber bundles 44 being angled relative to the barrel 12 so that the reinforcing fiber bundles 44 feed through the guide 42 and into the second inlet 36 as shown in FIG. 3.

Once the apparatus 10 reaches an edge 71 of the tool 70, the blade 23 in the die 22 opens and the screw 24 moves forward forcing the fiber filled melt 64 out through the outlet 66 and deposits the fiber filled melt 64 as the apparatus 10 moves as programmed to distribute the fiber filled melt 64 over the mold 74. Because the apparatus 10 is capable of moving in three dimensions X, Y, and Z, the apparatus 10 is capable of distributing the fiber filled melt 64 by moving in the programmed X, Y, and Z directions to evenly distribute the fiber filled melt 64 in the mold 74. Because movement of the barrel 12 or screw 24 effects the existing tension of the reinforcing fiber bundles 44, the winding/unwinding reels 46 are designed to either wind or unwind the reinforcing fiber bundles 44 so that sagging and breakage of the reinforcing fiber bundles 44 are prevented. As shown in FIG. 3, the winding/unwinding reels 46 unwind the reinforcing fiber bundles 44 with constant tension to permit movement of the barrel 12 and die 22 towards the tool 70. In this deposition stage, the screw 24 is driven towards the beveled surface 19 to once again assume the first position and cause the fiber filled melt 64 to be displaced through the central opening 31 and into the outlet 66 of the die 22 where the fiber filled melt 64 is then directed into the mold 74.

Referring now to FIGS. 4 and 5. FIG. 4 illustrates the apparatus 10 as the fiber filled melt 64 is deposited onto the mold 74. Once the apparatus 10 is properly positioned, the blade 23 is opened so that the fiber filled melt 64 may be deposited onto the mold 74. After the fiber filled melt 64 is 10 deposited onto the mold 74, the press 73 is driven so as to close the tool 70 and compress, thereby forming the desired part by a compression molding technique. As shown in FIG. 5, after the fiber filled melt 64 is deposited and prior to the press 73 being driven towards the mold 74, the barrel 12 and 15 the die 22 move back to the first position illustrated generally in FIG. 1. At this time, the blade 23 is repositioned to the closed position so that the process may be repeated. When the barrel 12 and the die 22 move back the first position, the reinforcing fiber bundles 44 are wound up by 20 the winding/unwinding reels 46 so as to take up the potential slack which would be created by returning the barrel 12 and die 22 to the original first position. Because the winding/ unwinding reels 46 are preferably spring loaded, the reinforcing fiber bundles 44 are not permitted to sag but rather 25 remain under constant tension as the barrel 12 and the die 22 move either in the direction towards the tool 70 or in the direction away from the tool 70. This movement of the barrel 12 and the die 22 also likewise permits the press 73 to be driven towards and contact the mold 74 to produce the 30 compressed formed part. Once the formed part cools, the tool 70 is opened and the molded fiber filled part is removed.

The present invention advantageously provides apparatus 10 and process for in-line compounding of reinforcing fiber bundles 44 and molding 34 in a single step process. The 35 exemplary apparatus 10 compounds a reinforcing product by use of the reciprocating single screw 24 having a reinforcing fiber compounder and melt depositing unit. According to the present invention, the reinforcing fiber bundles 44 are severed at a maximum desirable length and are maintained in a 40 stretched tensioned condition regardless of the positioning of apparatus 10 such that the reinforcing fiber bundles 44 are not loose and does not sag during the process. By using a single-step process for the in-line compounding of reinforcing fibers and extrusion compression molding, the present 45 invention offers a more cost effective method of producing a higher quality part because a single apparatus is used instead of the multiple part assemblies used conventionally. Additionally, the present invention incorporates the reinforcing fiber bundles 44 into the reciprocating single screw 50 injection unit and severs and uniformly impregnates the fine filaments with resin keeping maximum fiber length in the manufactured product. Due to the longer reinforcing fiber retention in the manufactured product, a higher strength product can be produced.

It will be understood that a person skilled in the art may make modifications to the preferred embodiment shown herein within the scope and intent of the claims. While the present invention has been described as carried out in a thereby but is intended to cover the invention broadly within the scope and spirit of the claims.

What is claimed is:

1. A process for in-line compounding of a reinforcing fiber bundle with extrusion compression molding using an in-line 65 compounding/extrusion deposition and molding apparatus, the process comprising:

providing a first material to a first inlet formed in the apparatus, the first inlet being in fluid communication with ail internal cavity of the apparatus, the internal cavity having a single rotatable extruder screw, the first material being fed into a first zone of the internal

providing at least one reinforcing fiber bundle to a second inlet formed in the apparatus, the at least one reinforcing fiber bundle being fed into a second zone of the internal cavity under a predetermined constant tension to prevent slack in the at least one reinforcing fiber bundle:

rotating the single rotatable extruder screw so as to melt the first material in the first zone prior to advancing the melted first material to the second zone, the rotation of the single rotatable extruder screw causing the at least one reinforcing fiber bundle to be fed into the second zone under the predetermined constant tension;

shearing the at least one reinforcing fiber bundle in the second zone:

mixing the sheared at least one reinforcing fiber bundle and the melted first material in a third zone to produce a fiber bundle filled melt;

retracting the single rotatable extruder screw to permit expansion of a fourth zone, wherein the fiber filled melt accumulates in the fourth zone thereby forming a shot;

directing the fiber bundle filled melt through an outlet formed in the apparatus by movement of the single rotatable extruder screw in a direction toward the

- 2. The process according to claim 1, wherein the first material comprises a material selected from the group consisting of thermoplastic materials and thermoset materials.
- 3. The process according to claim 1, wherein providing at least one reinforcing fiber bundle to the second inlet com-

unwinding the at least one reinforcing fiber bundle from a spool;

and maintaining the predetermined tension by passing the at least one reinforcing fiber bundle over a winding/ unwinding reel so that the at least one reinforcing fiber bundle is under constant tension as the at least one reinforcing fiber bundle is fed into the second zone.

- 4. The process according to claim 3, wherein the winding/ unwinding reel is spring loaded so that slack in the at least one reinforcing fiber bundle is prevented during operation of the apparatus and the tensile load on the at least one reinforcing fiber bundle is maintained below the predetermined value.
- 5. The process according to claim 1, wherein shearing the at least one reinforcing fiber bundle comprises placing a 55 tensile load on the at least reinforcing fiber bundle so that the tensile load exceeds a predetermined value and causes the at least one reinforcing fiber bundle to shear.
- 6. The process according to claim 1, wherein the single rotatable extruder screw has a first compression ratio in the specific embodiment thereof, it is not intended to be limited 60 first zone to cause the inlet material to rapidly melt in the first zone prior to the melted first material being advanced into the second zone.
  - 7. The process according to claim 6, wherein the first compression ratio is from about 3.5:1 to about 8:1.
  - 8. The process according to claim 1, wherein the second zone includes a second compression ratio, wherein the second compression ratio is constant in the second zone.

12

- 9. The process according to claim 1, further including: moving the apparatus to a predetermined mold position prior to directing the fiber bundle filled melt from the outlet.
- 10. The process according to claim 9, wherein moving the apparatus comprises moving the apparatus in at least one direction of a three dimensional area.
- 11. A process for in-line manufacturing of a fiber reinforced molded structure, the process comprising:
  - feeding a first material into a first inlet of an apparatus, said first inlet being in fluid communication with an internal cavity of said apparatus;
  - advancing said first material from said first inlet to a second inlet of said apparatus by rotating a single extruder screw within said internal cavity such that said first material is melted, said second inlet being in fluid communication with said internal cavity;
  - feeding reinforcing fiber under a predetermined tension into said second inlet by rotating said single extruder screw within said internal cavity such that a fiber filled melt is formed from said first material and said reinforcing fiber;
  - advancing said fiber filled melt from said second inlet to an outlet of said internal cavity by rotating said single 25 extruder screw within said internal cavity;
  - accumulating a shot of said fiber filled melt at said outlet by moving said single extruder screw from a first position to a second position;
  - distributing s aid shot on a mold by opening s aid outlet, moving said single extruder screw from said second

- position to said first position, and moving said outlet with respect to said mold; and
- closing said mold to form the fiber reinforced molded structure from said shot.
- 12. The process as in claim 11, wherein said inlet material comprises material selected from the group consisting of thermoplastic materials and thermoset materials.
- 13. The process as in claim 12, wherein said reinforcing is selected from the group consisting of glass fibers, natural fibers, polyaramid fibers, and carbon fibers.
- 14. The process as in claim 11, wherein moving said outlet with respect to said mold further comprises:
- moving said apparatus in at least one direction of a three dimensional area.
- 15. The process as in claim 11, wherein feeding said reinforcing fiber under said predetermined tension comprises:
  - unwinding said reinforcing fiber from a spool; and
  - maintaining said predetermined tension by passing said reinforcing fiber over a winding/unwinding reel so that said reinforcing fiber is under said predetermined tension as said reinforcing fiber is fed into said second inlet
- 16. The process as in claim 15, wherein said predetermined tension prevents sagging and premature shearing of said reinforcing fiber.

* * * * *



This Page Blank (uspto)



## (12) United States Patent

Turner, Jr. et al.

(10) Patent No.:

US 6,403,784 B1

(45) Date of Patent:

Jun. 11, 2002

#### (54) HUMAN UNCOUPLING PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

#### (75) Inventors: C. Alexander Turner, Jr.; Brian Mathur; Brian Zambrowicz; Arthur T. Sands, all of The Woodlands, TX (US)

Assignce: Lexicon Genetics Incorporated, The Woodlands, TX (US)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/501,558

(22) Filed: Feb. 9, 2000

#### Related U.S. Application Data

- Provisional application No. 60/158,458, filed on Oct. 8, 1999, and provisional application No. 60/119,228, filed on Feb. 9, 1999.
- Int. Cl.⁷ ...... C07H 21/04; C07H 21/02; C07K 14/00; C07K 1/00
- U.S. Cl. ..... 536/23.5; 536/23.1; 530/350; 530/300
- Field of Search ...... 536/23.1, 23.5; 530/300, 350, 388.1; 435/6; 514/12

#### (56)References Cited

#### U.S. PATENT DOCUMENTS

4,190,496	Α	2/1980	Rubenstein et al.
4,215,051	Α	7/1980	Schroeder et al.
4,376,110	Α	3/1983	David et al.
4,683,202	Α	7/1987	Mullis
4,873,191	Α	10/1989	Wagner et al.
4,946,778	Α	8/1990	Ladner et al.
5,075,217	Α	12/1991	Weber
5,364,759	Α	11/1994	Caskey et al.
5,399,346	Α	3/1995	Anderson et al.
5,625,048	Α	4/1997	Tsien et al.
5,702,902	Α	12/1997	Tartaglia
5,741,666	Α	4/1998	Tartaglia
5,780,280	Α	7/1998	Lebkowski et al.
5,824,544	Α	10/1998	Armentano et al.
5,827,703	Α	10/1998	Debs et al.
5,830,727	Α	11/1998	Wang et al.
5,837,458	Α	11/1998	Minshull et al.
5,840,710	Α	11/1998	Lee et al.
5,843,742	Α	12/1998	Natsoulis et al.
5,846,528	Α	12/1998	Podsakoff et al.
5,853,975	Α	12/1998	Tartaglia
5,858,740	Α	1/1999	Finer et al.

#### FOREIGN PATENT DOCUMENTS

wo	WO98/03243	1/1998
wo	WO 9831396	7/1998
wo	WO 9845313	10/1998
wo	WO 9845438	10/1998
wo	WO98/50542	11/1998

#### OTHER PUBLICATIONS

Sanchis et al., GenBank Accession No: 095258, SwissProt-39 Database, Dec. 18, 1998.*

Sanchis et al., GenBank Accession No: AF076981, Gen-Embl Database, Jan. 10, 1999.*

Sanchis et al., J. of Biological Chemistry, vol. 273, No. 51, pp34611-34615, Dec. 18, 1998.*

Sanchis et al., GenBank Accession No: 095258, SwissProt-39 Database, May 30, 2000.*

NCI-CGAP., GenBank Acession No: Al128486, EST Dabatase, Oct. 27, 1998.*

Bird et al, 1988, "Single-Chain Antigen-Binding Proteins", Science 242:423-426.

Bitter et al, 1987, "Expression and Secretion Vectors for Yeast", Methods in Enzymology 153:516-544.

Butler, J.E., 1981, "The Amplified ELISA: Principles of and Applications for the Comparative Quantitation of Class and Subclass Antibodies and the Distribution of Antibodies and Antigens in Biochemical Separates", Meth. Enzymol. 73:482-523.

Colbere-Garapin et al, 1981, "A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells", J. Mol. Biol. 150:1-14.

Cote et al, 1983, "Generation of human monoclonal antibodies reactive with cellular antigens", Proc. Natl. Acad. Sci. USA 80:2026-2030.

Gautier et al, 1987, "α-DNA IV:α-anomeric and β-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding", Nucleic Acids Research 15(16):6625-6641.

Gordon, 1989, "Transgenic Animals", Intl. Rev. Cytol. 115:171-229.

Greenspan et al, 1993, "Idiotypes: structure and immunogenicity", FASEB Journal 7:437-444.

Gu et al, 1994, "Deletion of a DNA Polymerase  $\beta$  Gene Segment in T Cells Using Cell Type-Specific Gene Targeting", Science 265:103-106.

Huse et al, 1989, "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda", Science 246:1275-1281.

Huston et al, 1988, "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli", Proc. Natl. Acad. Sci. USA 85:5879-5883.

Inoue et al, 1987, "Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H", FEBS Letters 215(2):327-330.

(List continued on next page.)

Primary Examiner—Karen Cochrane Carlson Assistant Examiner-Rita Mitra

#### ABSTRACT

The present invention relates to methods and compositions for the treatment of biological disorders regulatable by the controlled expression or inhibition of the described NUCPs.

#### 5 Claims, No Drawings

App Serial # 09/854.844

Exhibit X LEX-0176-USA

Novel Human Protease and Polynucleotides Encoding the Same

#### OTHER PUBLICATIONS

Inoue et al, 1987, "Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides", Nucleic Acids Research 15(15):6131-6149.

Inouye & Inouye, 1985, "Up-promoter mutations in the lpp gene of *Escherichia coli*", Nucleic Acids Research 13(9):3101-3110.

Janknecht et al, 1991, "Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus", Proc. Natl. Acad. Sci. USA 88:8972-8976. Kohler and Milstein, 1975, "Continuous cultures of fused cells secreting antibody of predefined specificity", Nature 256:495-497.

Lakso et al, 1992, "Targeted oncogene activation by site-specific recombination in transgenic mice", Proc. Natl. Acad. Sci. USA 89:6232-6236.

Lavitrano et al, 1989, "Sperm Cells as Vectors for Introducing Foreign DNA into Eggs: Genetic Transformation of Mice", Cell 57:717-723.

Lo, 1983, "Transformation by Iontophoretic Microinjection of DNA: Multiple Integrations without Tandem Insertions", Mol. & Cell. Biology 3(10):1803–1814.

Logan et al, 1984, "Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection", Proc. Natl. Acad. Sci. USA 81:3655-3659.

Lowy et al, 1980, "Isolation of Transforming DNA: Cloning the Hamster aprt Gene", Cell 22:817–823.

Miyajima et al, 1986, "Expression of murine and human granulocyte-macrophase colony-stimulating factors in *S. cerevisiae*: mutagenesis of the potential glycosylation sites", EMBO J. 5:6, 1193-1197.

Mulligan & Berg, 1981, "Selection for animal cells that express the *Escherichia coli* gene coding for xanthine-guanine phosphoribosyltransferase", Proc. Natl. Acad. Sci. USA 78(4):2072–2076.

Neuberger et al, 1984, "Recombinant antibodies possessing novel effector functions", Nature 312:604-608.

Nisonoff, 1991, "Idiotypes: Concepts and Applications", J. of Immunology 147:2429-2438.

O'Hare et al, 1981, "Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase", Proc. Natl. Acad. Sci. USA 78(3):1527-1531.

Platt, et al., 1994, "Independent Regulation of Adipose Tissue-specificity and Obesity Response of the Adipsin Promoter in Transgenic Mice", J. Biol. Chem. 269:28558-28562.

Ruther et al, 1983, "Easy identification of cDNA clones", EMBO Journal 2(10):1791-1794.

Santerre et al, 1984, "Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells", Gene 30:147-156.

Sarin et al, 1988, "Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates", Proc. Natl. Acad. Sci. USA 85:7448-7451.

Smith et al, 1983, "Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene", J. Virol. 46(2):584-593.

Stein et al, 1988, "Physiochemical properties of phosphorothioate oligodeoxynucleotides", Nucleic Acids Research 16(8):3209-3221.

Szybalska & Szybalski, 1962, "Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait", Proc. Natl. Acad. Sci. USA 48:2026.

Takeda et al, 1985, "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences", Nature 314:452–454.

Thompson et al, 1989, "Germ Line Transmission and Expression of a Corrected HPRT Gene Produced by Gene Targeting in Embryonic Stem Cells", Cell 56:313–321.

Van Der Putten et al, 1985, "Efficient insertion of genes into the mouse germ line via retroviral vectors", Proc. Natl. Acad. Sci. USA 82:6148-6152.

Van Heeke & Schuster, 1989, "Expression of Human Asparagine Synthetase in *Escherichia coli*", J. Biol. Chem. 264:5503-5509.

Voller, A. et al, 1978, "Enzyme immunoassays with special reference to ELISA techniques", J. Clin. Pathol. 31:507–520.

Ward et al, 1989, "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*", Nature 341:544–546.

Wigler et al, 1977, "Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells", Cell 11:223.

Wigler et al, 1980, "Transformation of mammalian cells with an amplifiable dominant-acting gene", Proc. Natl. Acad. Sci. USA 77(6):3567-3570.

Database EMBL Nucleotide And Protein Sequences, 1998, XP002141168 Hinxton, GB, Soares_pregnant_uterus_Nb-HPU Homo sapiens cDNA clone, NCI-CGAP; National Cancer Institute, Cancer Genome Anatomy Project, Tumor Gene Index http://www.ncbi.nlm.nih.gov/ncicgap.

Database EMBL Nucleotide And Protein Sequences, 1998, XP002141171, Hinxton, GB, Soares 2NbMT Mus musculus cDNA clone Image:1265034, Mitochondrial Uncoupling Protein 2; mRNA sequence, Washington University School of Medicine.

Database EMBL Nucleotide And Protein Sequences, 2000, XP002141172, Hinxton, GB, NCI_CGAP_Sub4 Homo sapiens cDNA clone, National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gene Index http://www.ncbi.nlm.nih.gov/ncicgap.

Database EMBL Nucleotide And Protein Sequences, 2000, XP002141173, Hinxton, GB, Soares_NFL_T_GBC-S1 Homo sapiens cDNA clone, National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gene Index http://www.ncbi.nlm.nih.gov/ncicgap.

Mao et al, 1998, "UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells", FEBS Letters 443(3):326-330.

Sanchis et al, 1998, "BMCP1, a Novel Mitochondrial Carrier with High Expression in the Central Nervous System of Humans and Rodents, and Respiration Uncoupling Activity in Recombinant Yeast", Journal of Biological Chemistry, 273(51):34611-34615.

* cited by examiner

## HUMAN UNCOUPLING PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims priority to U.S. Application Ser. No. 60/119,228, filed Feb. 9, 1999, and U.S. Application Ser. No. 60/158,458, filed Oct. 8, 1999, which are herein incorporated by reference in their entirety.

#### 1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human polynucleotide sequences and the novel polypeptides encoded thereby. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins or polypeptides, and fusion proteins and peptides derived therefrom, antibodies to the encoded proteins or peptides, and genetically engineered animals that lack functional forms of the genes encoding the disclosed sequences, over express the disclosed sequences, as well as antagonists and agonists of the proteins, along with other compounds that modulate the expression or activity of the proteins encoded by the disclosed sequences that can be used for diagnosis, drug screening, clinical trial monitoring, the 25 treatment of physiological or behavioral disorders, or otherwise improving the quality of life.

#### 2. BACKGROUND OF THE INVENTION

Uncoupling proteins (UCPs) are found in the 30 mitochondria, but are encoded within the nucleus. In the mitochondria, UCPs uncouple, or regulate, the gradient that drives energy production in the cell/body. As such, UCPs effectively modulate the efficiency of energy production in the body, and hence body metabolism. Given the role of 35 UCPs in the body, they are thought to be important targets for the study of thermogenesis, obesity, cachexia, and other metabolically related physiological functions, diseases, and disorders.

#### 3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human UCPs, and the corresponding amino acid sequences encoded by the disclosed sequences. The novel human uncoupling proteins (NUCPs) described for the first time herein share structural relatedness with other mammalian uncoupling proteins and brain mitochondrial carrier proteins. The novel human nucleic acid sequences described herein encode proteins of 291 and 293 amino acids in length (see SEQ ID NOS:2 and 4).

A murine homologue of the described NUCPs has been identified and a "knockout" ES cell line has been produced using the methods described in U.S. application Ser. No. 08/942,806, herein incorporated by reference. Alternatively, such knockout cells and animals can be produced using conventional methods for generating genetically engineered animals and cells(see, for example, PCT Applic. No. PCT/US98/03243, filed Feb. 20, 1998, herein incorporated by reference). Accordingly, an additional aspect of the present invention includes knockout cells and animals having genetically engineered mutations in gene encoding the presently described NUCPs.

The invention encompasses the nucleotides presented in 65 the Sequence Listing, host cells expressing such nucleotides, and the expression products of such nucleotides, and: (a)

2

nucleotides that encode mammalian homologs of the described genes, including the specifically described NUCPs, and the NUCP products; (b) nucleotides that encode one or more portions of the NUCPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NUCPs in which all or 10 a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence in deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of NUCP, or one of its domains (e.g., a transmembrane domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide.

The invention also encompasses agonists and antagonists of NUCPs, including small molecules, large molecules, mutant NUCPs, or portions thereof that compete with or bind to native NUCPs, antibodies, and nucleotide sequences that can be used to inhibit the expression of the described NUCPs (e.g., antisense, ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NUCPs (e.g., expression constructs that place the described genes under the control of a strong promoter system), as well as transgenic animals that express a NUCP transgene, or "knockouts" (which can be conditional) that do not express functional NUCP.

Further, the present invention also relates to methods for using of the described NUCP products for the identification of compounds that modulate, i.e., act as agonists or antagonists, of NUCP expression and/or NUCP product activity. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptomatic representations of biological disorders or imbalances.

An additional embodiment of the present invention includes therapy and treatments mediated by NUCP gene delivery. Gene delivery can be to somatic or stem cells, and may be effected using viral (i.e., retrovirus, adeno-associated virus, etc.) or non-viral (i.e., cationic lipids, formulations using "naked" DNA, etc.) methods.

#### 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequences of the NUCP polynucleotides, and the amino acid sequences encoded thereby.

## 5. DETAILED DESCRIPTION OF THE INVENTION

The NUCPs described for the first time herein are novel proteins that are expressed, inter alia, in gene trapped human cells, human lymph node or kidney cells, and/or ES cells. The NUCPs exert biological effect by regulating the efficiency of energy generation in the body with the result being that excess resources are converted to heat or are otherwise stored as fat, etc. Regulating the function of a NUCP product will effect NUCP-mediated processes with resulting effects on fat production and usage, superoxide generation and regulation, and all biological properties and functions that are tied to fatty acid metabolism. Because of these important roles, UCPs have been the focus of intense scientific scrutiny (see PCT Application No. PCT/EP98/02645, U.S. Pat. Nos. 5,853,975, 5,741,666 and 5,702,902 all of which are herein incorporated by reference in their entirety).

The present invention encompasses the use of the described NUCP nucleotides, NUCPs and NUCP peptides therefrom, as well as antibodies, preferably humanized monoclonal antibodies, or binding fragments, domains, or fusion proteins thereof, or antiidiotypic variants derived therefrom, that bind NUCP (which can, for example, also act as NUCP agonists or antagonists), other antagonists that inhibit binding activity or expression, or agonists that activate NUCP receptor activity or increase NUCP expression, in the diagnosis and/or treatment of disease.

In particular, the invention described in the subsections below encompasses NUCP polypeptides or peptides corresponding to functional domains of NUCPs, mutated, truncated or deleted NUCPs (e.g., NUCPs missing one or more functional domains or portions thereof), NUCP fusion proteins (e.g., where NUCP or a functional domain of NUCP is fused to an unrelated protein or peptide such as an immunoglobulin constant region, i.e., IgFc), nucleotide sequences encoding such products, and host cell expression systems that can produce such NUCP products.

The invention also encompasses antibodies and anti- 20 detail in the subsections below. idiotypic antibodies (including Fab fragments), antagonists and agonists of the NUCP, as well as compounds or nucleotide constructs that inhibit expression of a NUCP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement 25 constructs), or promote expression of a NUCP (e.g., expression constructs in which a NUCP coding sequence is operatively associated with expression control elements such as promoters, promoter/enhancers, etc.). The invention also relates to host cells and animals genetically engineered to 30 express a NUCP (or mutant variants thereof) or to inhibit or "knockout" expression of an animal homolog of a NUCP

The NUCPs, NUCP peptides, and NUCP fusion proteins derived therefrom, NUCP nucleotide sequences, antibodies, 35 antagonists and agonists can be useful for the detection of mutant NUCPs or inappropriately expressed NUCPs for the diagnosis of biological disorders (high blood pressure, obesity, etc.) and disease. The NUCP products or peptides, NUCP fusion proteins, NUCP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can also be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NUCP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to an endogenous NUCP, but can also identify compounds that facilitate or inhibit NUCP-mediated uncoupling.

Of particular interest are genetically engineered nucleotide constructs, or expression vectors, that encode NUCP products and derivatives (NUCP peptides, fusions, etc). Nucleotide constructs encoding such NUCP products and 55 derivatives can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NUCP product, NUCP peptide, or NUCP fusion protein to the body. Nucleotide constructs 60 encoding functional NUCPs, mutant NUCPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NUCP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders. 65

Therapeutic gene delivery of the described NUCP nucleotides can be effected by a variety of methods. For example,

methods of retroviral human gene therapy are described in, inter alia, U.S. Pat. Nos. 5,399,346 and 5,858,740; adenoviral vectors for gene therapy/delivery are described in U.S. Pat. No. 5,824,544; adeno-associated viral vectors are described in U.S. Pat. Nos. 5,843,742, 5,780,280, and 5,846, 528; herpes virus vectors are described in U.S. Pat. No. 5,830,727, and other vectors and methods of nonvirally (e.g., polynucleotides that are not encapsulated by viral capsid protein, "naked" DNA, or DNA formulated in lipid or 10 chemical complexes) introducing foreign genetic material of recombinant origin into a host mammalian, and preferably human, cell are described in U.S. Pat. Nos. 5,827,703 and 5,840,710 all of which are herein incorporated by reference in their entirety. When the above methods are applied to selectively express or inhibit the expression of a NUCP in tumor/diseased cells, the described methods and compositions can be used as chemotherapeutic agents for the treatment of cancer and other diseases and disorders.

Various aspects of the invention are described in greater

#### 5.1. The NUCP Polynucleotides

The cDNA sequences (SEQ ID NOS:1 and 3) and deduced amino acid sequences (SEQ ID NOS:2 and 4) of the described NUCPs are presented in the Sequence Listing. The NUCP cDNA sequences were obtained from human lymph node, kidney, and fetal brain cDNA libraries (Edge Biosystems, Gaithersburg, Md.) using probes and/or primers generated from gene trapped sequence tags and a human homolog of the described NUCPs. RT-PCR analysis indicated that expression of the described NUCPs can be detected in, inter alia, human cerebellum, spinal cord, thymus, spleen, lymph node, bone marrow, trachea, lung, kidney, fetal liver, prostate, testis, thyroid, salivary gland, stomach, heart, uterus, and mammary gland, with particularly strong expression in kidney, adrenal gland, and skeletal muscle. The above expression studies were largely verified by Northern analysis that also detected particularly strong expression in human skeletal muscle, heart, adrenal gland, and kidney.

The NUCPs of the present invention include: (a) the human DNA sequences presented in the Sequence Listing and additionally contemplates any nucleotide sequence encoding a contiguous and functional NUCP open reading frame (ORF) that hybridizes to a complement of the DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2×SSC/0.1% SDS at 42° C. (Ausubel et al., 1989, supra), yet still encode a functionally equivalent NUCP product. Functional equivalents of a NUCP include naturally occurring NUCPs present in other species, and mutant NUCPs whether naturally occurring or engineered. The invention also includes degenerate variants of the disclosed sequences.

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NUCP nucleotide

6

sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances wherein the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are particularly about 16 to about 100 bases long, about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the present Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc. Alternatively, the NUCP oligonucleotides can be used as hybridization probes for screening libraries or assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Chip applications can involve a series of the described NUCP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NUCP sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length may partially overlap 20 each other and/or the NUCP sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described NUCP polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 18, and preferably about 25, nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences may begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NUCP gene antisense molecules, useful, for example, in NUCP gene regulation (for and/or as antisense primers in amplification reactions of NUCP gene nucleic acid sequences). With respect to NUCP gene regulation, such techniques can be used to regulate biological functions. 40 Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NUCP gene regulation.

Additionally, the antisense oligonucleotides may comprise at least one modified base moiety which is selected 45 from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3) w, and 2,6-diaminopurine.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group includ- 65 ing but not limited to arabinose, 2-fluoroarabinose, xylulose, and a hexose.

In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 10 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NUCP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms, determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NUCP gene homolog can be isolated from nucleic acid of the organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NUCP product disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from, for example, human or non-human cell lines or tissue, such as choroid plexus, known or suspected to express a NUCP gene allele.

The PCR product may be subcloned and sequenced to 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid 60 ensure that the amplified sequences represent the sequence of the desired NUCP gene. The PCR fragment may then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment may be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment may be used to isolate genomic clones via the screening of a genomic library.

PCR technology may also be utilized to isolate full length cDNA sequences. For example, RNA may be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NUCP gene, such as, for example, brain tissue). A reverse transcription (RT) reaction may be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment may easily be isolated. For a review of cloning strategies which may be used, see e.g., Sambrook et al., 1989, supra.

A cDNA of a mutant NUCP gene may be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NUCP allele, and by extending the new strand with reverse 20 transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA 25 sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NUCP allele to that of the normal NUCP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NUCP gene product can be ascertained.

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry the mutant NUCP allele (e.g., a person manifesting a NUCP-associated phenotype such as, for example, obesity, high blood pressure, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NUCP allele. The normal NUCP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NUCP allele in such libraries. Clones containing the mutant NUCP gene sequences may then be purified and subjected to sequence analysis according to methods well known to those of skill in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NUCP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against the normal NUCP product as described below (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

Additionally, screening can be accomplished by screening with labeled NUCP fusion proteins, such as, for example, AP-NUCP or NUCP-AP fusion proteins. In cases where a NUCP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), a polyclonal set of antibodies to NUCP are likely to cross-react with the mutant NUCP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses nucleotide sequences that encode mutant NUCPs, peptide fragments of NUCPs,

truncated NUCPs, and NUCP fusion proteins. These include, but are not limited to nucleotide sequences encoding the mutant NUCPs described below; polypeptides or peptides corresponding to one or more domains of NUCP or portions of these domains; truncated NUCPs in which one or more of the domains is deleted, or a truncated nonfunctional NUCPs. Nucleotides encoding fusion proteins may include, but are not limited to, full length NUCP sequences, truncated NUCPs, or nucleotides encoding peptide fragments of a NUCP fused to an unrelated protein or peptide, such as for example, a NUCP domain fused to an Ig Fc domain which increases the stability and half life of the resulting fusion protein (e.g., NUCP-Ig) in the bloodstream; or an enzyme such as a fluorescent protein or a luminescent protein which can be used as a marker.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NUCP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NUCP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences; (c) genetically engineered host cells that contain any of the foregoing NUCP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NUCP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus hCMV immediate early gene, regulatable, viral (particularly retroviral LTR promoters) the early or late promoters of SV40 adenovirus, the lac system, the trp system, the tet system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast a-mating factors.

5.2. THE NUCPS and NUCP Polypeptides and Peptides Derived Therefrom

The NUCPs, NUCP polypeptides, NUCP peptide fragments, mutated, truncated, or deleted forms of a NUCP, and/or NUCP fusion proteins can be prepared for a variety of uses, including but not limited to the generation of antibodies, as reagents in diagnostic assays, the identification of other cellular gene products related to a NUCP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.

The Sequence Listing discloses the amino acid sequences encoded by the described NUCP polynucleotides. The NUCP sequences both display initiator methionines that are present in a DNA sequence context consistent with a translation initiation site (Kozak sequence).

The NUCP sequences of the invention include the nucleotide and amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NUCP homologues from other species are encompassed by the invention. In fact, any NUCP protein encoded by the NUCP nucleotide sequences described above are within the scope of the invention as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence

Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are functionally equivalent to the NUCP encoded by the presently 15 described nucleotide sequences, as judged by any of a number of criteria, including, but not limited to, the ability to partition into the mitochondria, or other cellular membrane structure, and effect uncoupling activity, change in cellular metabolism (e.g., ion flux, tyrosine phosphorylation, 20 etc.), or change in phenotype when the NUCP equivalent is expressed at similar levels, or mutated, in an appropriate cell type (such as the amelioration, prevention or delay of a biochemical, biophysical, or overt phenotype). Functional equivalents of a NUCP include naturally occurring NUCPs 25 present in other species and mutant NUCPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also of the disclosed NUCP polynucleotide sequence.

Additionally contemplated are polynucleotides encoding NUCP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of 35 but are not limited to, Ig Fc fusions which stabilize a NUCP the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using standard default settings).

Functionally equivalent NUCP proteins include, but are 40 provide a marker function. not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NUCP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be 45 made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and 50 methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. 55

While random mutations can be made to NUCP encoding DNA (using random mutagenesis techniques well known to those skilled in the art) and the resulting mutant NUCPs tested for activity, site-directed mutations of the NUCP coding sequence can be engineered (using site-directed 60 mutagenesis techniques well known to those skilled in the art) to generate mutant NUCPs with increased function, e.g., higher receptor binding affinity, decreased function, and/or increased physiological half-life, and increased signal transduction triggering. One starting point for such analysis is by aligning the disclosed human sequences with corresponding gene/protein sequences from, for example, other mammals

in order to identify amino acid sequence motifs that are conserved between different species. Non-conservative changes can be engineered at variable positions to alter function, signal transduction capability, or both. Alternatively, where alteration of function is desired, deletion or non-conservative alterations of the conserved regions (i.e., identical amino acids) can be engineered. For example, deletion or non-conservative alterations (substitutions or insertions) of the various conserved transmembrane domains.

Other mutations to a NUCP coding sequence can be made to generate NUCPs that are better suited for expression. scale up, etc. in the host cells chosen. For example, cysteine residues can be deleted or substituted with another amino acid in order to eliminate disulfide bridges; N-linked glycosylation sites can be altered or eliminated to achieve, for example, expression of a homogeneous product that is more easily recovered and purified from yeast hosts which are known to hyperglycosylate N-linked sites. To this end, a variety of amino acid substitutions at one or both of the first or third amino acid positions of any one or more of the glycosylation recognition sequences which occur in an ECD (N-X-S or N-X-T), and/or an amino acid deletion at the second position of any one or more such recognition sequences in an ECD will prevent glycosylation of the NUCP at the modified tripeptide sequence. (See, e.g., Miyajima et al., 1986, EMBO J. 5(6):1193-1197).

Peptides corresponding to one or more domains of a NUCP, truncated or deleted NUCPs, as well as fusion includes degenerate nucleic acid variants and splice variant 30 proteins in which a full length NUCP, a NUCP peptide, or a truncated NUCP is fused to an unrelated protein, are also within the scope of the invention and can be designed on the basis of the presently disclosed NUCP gene nucleotide and NUCP amino acid sequences. Such fusion proteins include, protein, or NUCP peptides, and prolong half-life in vivo; or fusions to any amino acid sequence that allows the fusion protein to be anchored to the cell membrane; or fusions to an enzyme, fluorescent protein, or luminescent protein which

> While the NUCPs and NUCP peptides can be chemically synthesized (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W. H. Freeman & Co., N.Y.), large polypeptides derived from a full length NUCP can be advantageously produced by recombinant DNA technology using techniques well known in the art for expressing nucleic acids containing NUCP gene sequences and/or coding sequences. Such methods can be used to construct expression vectors containing the described NUCP nucleotide sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA corresponding to all or a portion of a transcript encoded by a NUCP gene sequence can be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M. J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.

> A variety of host-expression vector systems can be utilized to express the NUCP-encoding nucleotide sequences of the invention. Where a NUCP peptide or polypeptide is a soluble derivative (e.g., NUCP peptides corresponding to an ECD; truncated or deleted NUCP in which a TM and/or CD are deleted, etc.) the peptide can be recovered from the host

cell in cases where the NUCP peptide or polypeptide is not secreted, and from the culture media in cases where the NUCP peptide or polypeptide is secreted by the cells. However, such expression systems also encompass engineered host cells that express a NUCP, or a functional equivalent thereof, in situ, i.e., anchored in the cell membrane. Purification or enrichment of a NUCP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of a NUCP, but to assess biological activity, e.g., in drug screening assays.

the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NUCP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NUCP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NUCP sequences; plant cell systems cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NUCP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression con- 30 structs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may 35 be advantageously selected depending upon the use intended for the NUCP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NUCP, or for raising antibodies to a NUCP, vectors that 40 direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NUCP coding sequence may be ligated individually into the 45 vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as 50 fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathioneagarose beads followed by elution in the presence of free thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign 60 genes. The virus grows in Spodoptera frugiperda cells. The NUCP gene coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion 65 of the NUCP gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded

recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NUCP gene nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a The expression systems that can be used for purposes of 15 recombinant virus that is viable and capable of expressing NUCP in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of NUCP transcripts. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NUCP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed (for example an independent ribosome entry site, infected with recombinant virus expression vectors (e.g., 25 or IRES, site). However, in cases where only a portion of a NUCP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can have a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., 1987, Methods in Enzymol. 153:516-544).

> In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant glutathione. The PGEX vectors are designed to include 55 proteins, stable expression is preferred. For example, cell lines that stably express the presently described NUCPs can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines that express a NUCP. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NUCP 5 product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, 10 Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resis- 15 tance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the ami- 20 noglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein may be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972–8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺-nitriloacetic acid-agarose columns and histidinetagged proteins are selectively eluted with imidazole-containing buffers.

NUCP products can also be expressed in transgenic animals. Animals of any species, including, but not limited to, worms, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, birds, goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate NUCP transgenic animals.

Any technique known in the art may be used to introduce a NUCP transgene into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to pronuclear microinjection (Hoppe, P. C. and Wagner, T. E., 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148–6152); gene targeting in embryonic stem cells (Thompson et al., 1989, Cell 56:313–321); electroporation of embryos (Lo, 1983, Mol Cell. Biol. 3:1803–1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717–723); etc. For a review of such techniques, see Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171–229, which is incorporated by reference herein in its entirety.

The present invention provides for transgenic animals that carry a NUCP transgene in all their cells, as well as animals 60 which carry the transgene in some, but not all their cells, i.e., mosaic animals or somatic cell transgenic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into 65 and activated in a particular cell type by following, for example, the teaching of Lasko et al., 1992, Proc. Natl.

Acad. Sci. USA 89:6232-6236. The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

When it is desired that the NUCP transgene be integrated into the chromosomal site of the endogenous NUCP gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous NUCP gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous NUCP gene (i.e., "knockout" animals).

The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous NUCP gene in only that cell type, by following, for example, the teaching of Gu et al., 1994, Science, 265:103–106. The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant NUCP gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of NUCP gene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the NUCP transgene product.

#### 5.3. Antibodies to NUCPS

Antibodies that specifically recognize one or more epitopes of a NUCP, or epitopes of conserved variants of a NUCP, or peptide fragments of a NUCP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the

The antibodies of the invention can be used, for example, in the detection of a NUCP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of a NUCP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes, as described below, for the evaluation of the effect of test compounds on expression and/or activity of a NUCP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NUCP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for inhibiting abnormally high NUCP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with a NUCP, a NUCP peptide (e.g., one corresponding the a functional domain of a NUCP), truncated NUCP polypeptides (a NUCP in which one or more domains have been deleted), functional equivalents of the NUCP or mutants of the NUCP. Such host animals may include but are not limited to rabbits, mice,

goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, 5 pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Polyclonal antibodies are heterogeneous populations of antibody molecules derived 10 from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. 15 These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 20 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. 30 Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce single chain antibodies against NUCP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments that recognize specific epitopes can 50 be generated using known techniques. For example, such fragments include, but are not limited to: the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NUCP can, in turn, be utilized to generate 60 anti-idiotype antibodies that "mimic" a given NUCP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies that bind to a NUCP domain and competitively inhibit the binding of a NUCP to its cognate ligand, chaperonin, or accessory molecule(s) can be used to

generate anti-idiotypes that "mimic" the NUCP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such antiidiotypes can be used in therapeutic regimens involving a NUCP-mediated process or pathway.

#### 5.4. Diagnosis of Abnormalities Related to a NUCP

A variety of methods can be employed for the diagnostic and prognostic evaluation of disorders related to NUCP function, and for the identification of subjects having a predisposition to such disorders.

Such methods may, for example, utilize reagents such as the NUCP nucleotide sequences described above and the NUCP antibodies described above. Specifically, such reagents may be used, for example, for: (1) the detection of the presence of NUCP gene mutations, or the detection of either over- or under-expression of NUCP mRNA relative to a given phenotype; (2) the detection of either an over- or an under-abundance of NUCP gene product relative to a given phenotype; and (3) the detection of perturbations or abnormalities in any metabolic, physiologic, or catabolic pathway mediated by NUCP.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprisand any subclass thereof. The hybridoma producing the 25 ing at least one specific NUCP nucleotide sequence or NUCP antibody reagent described herein, which may be conveniently used, e.g., in clinical settings, to diagnose patients exhibiting, for example, body weight disorder abnormalities.

> For the detection of NUCP mutations, any nucleated cell can be used as a starting source for genomic nucleic acid. For the detection of NUCP gene expression or NUCP gene products, any cell type or tissue in which the NUCP gene is expressed, such as, for example, kidney cells, may be 35 utilized.

Nucleic acid-based detection techniques are described, below, in Section 5.4.1. Peptide detection techniques are described, below, in Section 5.4.2.

#### 5.4.1. Detention of NUCP Sequences

Mutations within a NUCP nucleotide sequence can be detected by utilizing a number of techniques. Nucleic acid from any nucleated cell can be used as the starting point for such assay techniques, and can be isolated according to standard nucleic acid preparation procedures which are well known to those of skill in the art.

DNA may be used in hybridization or amplification assays of biological samples to detect abnormalities involving NUCP gene structure, including point mutations, insertions, deletions and chromosomal rearrangements. Such assays may include, but are not limited to, Southern analyses, single stranded conformational polymorphism analyses (SSCP), and PCR analyses.

Such diagnostic methods for the detection of NUCP generated by reducing the disulfide bridges of the F(ab')2 55 gene-specific mutations can involve for example, contacting and incubating nucleic acids including recombinant DNA molecules, cloned genes or degenerate variants thereof, obtained from a sample, e.g., derived from a patient sample or other appropriate cellular source, with one or more labeled nucleic acid reagents including recombinant DNA molecules, cloned genes or degenerate variants thereof, as described above, under conditions favorable for the specific annealing of these reagents to their complementary sequences within a NUCP gene. Preferably, the lengths of these nucleic acid reagents are at least about 15 to about 30 nucleotides. After incubation, all non-annealed nucleic acids are removed from the nucleic acid:NUCP molecule hybrid.

The presence of nucleic acids which have hybridized, if any such molecules exist, is then detected. Using such a detection scheme, the nucleic acid from the cell type or tissue of interest can be immobilized, for example, to a solid support such as a membrane, or a plastic surface such as that on a 5 microtiter plate or polystyrene beads. In this case, after incubation, non-annealed, labeled nucleic acid reagents of the type described above are easily removed. Detection of the remaining annealed, labeled NUCP nucleic acid reagents is accomplished using standard techniques well known to 10 those in the art. The NUCP encoding nucleotide sequences to which the nucleic acid reagents have annealed can be compared to the annealing pattern expected from a normal NUCP gene sequence in order to determine whether a NUCP gene mutation is present.

Alternative diagnostic methods for the detection of NUCP gene specific nucleic acid molecules, in patient samples or other appropriate cell sources, may involve their amplification, e.g., by PCR (the experimental embodiment set forth in Mullis, K. B., 1987, U.S. Pat. No. 4,683,202), ²⁰ followed by the detection of the amplified molecules using techniques well known to those of skill in the art. The resulting amplified sequences can be compared to those which would be expected if the nucleic acid being amplified contained only normal copies of a NUCP gene in order to ²⁵ determine whether a NUCP gene mutation exists.

Additionally, well-known genotyping techniques can be performed to identify individuals carrying NUCP gene mutations. Such techniques include, for example, the use of restriction fragment length polymorphisms (RFLPs), which involve sequence variations in one of the recognition sites for the specific restriction enzyme used.

Additionally, improved methods for analyzing DNA polymorphisms which can be utilized for the identification of NUCP gene mutations have been described which capitalize on the presence of variable numbers of short, tandemly repeated DNA sequences between the restriction enzyme sites. For example, Weber (U.S. Pat. No. 5,075,217, which is incorporated herein by reference in its entirety) describes a DNA marker based on length polymorphisms in blocks of (dC-dA)n-(dG-dT)n short tandem repeats. The average separation of (dC-dA)n-(dG-dT)n blocks is estimated to be 30,000–60,000 bp. Markers which are so closely spaced exhibit a high frequency co-inheritance, and are extremely useful in the identification of genetic mutations, such as, for example, mutations within the NUCP gene, and the diagnosis of diseases and disorders related to NUCP mutations.

Also, Caskey et al. (U.S. Pat. No. 5,364,759, which is incorporated herein by reference in its entirety) describe a 50 DNA profiling assay for detecting short tri and tetra nucleotide repeat sequences. The process includes extracting the DNA of interest, such as the NUCP gene, amplifying the extracted DNA, and labeling the repeat sequences to form a genotypic map of the individual's DNA.

The level of NUCP gene expression can also be assayed by detecting and measuring NUCP transcription. For example, RNA from a cell type or tissue known, or suspected to express the NUCP gene, such as kidney, may be isolated and tested utilizing hybridization or PCR techniques such as those described above. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells to be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of 65 compounds on the expression of the NUCP gene. Such analyses may reveal both quantitative and qualitative aspects

of the expression pattern of the NUCP gene, including activation or inactivation of NUCP gene expression.

In one embodiment of such a detection scheme, cDNAs are synthesized from the RNAs of interest (e.g., by reverse transcription of the RNA molecule into cDNA). A sequence within the cDNA is then used as the template for a nucleic acid amplification reaction, such as a PCR amplification reaction, or the like. The nucleic acid reagents used as synthesis initiation reagents (e.g., primers) in the reverse transcription and nucleic acid amplification steps of this method are chosen from among the NUCP nucleic acid reagents described above. The preferred lengths of such nucleic acid reagents are at least 9-30 nucleotides. For detection of the amplified product, the nucleic acid ampli-15 fication may be performed using radioactively or nonradioactively labeled nucleotides. Alternatively, enough amplified product may be made such that the product may be visualized by standard ethidium bromide staining, by utilizing any other suitable nucleic acid staining method, or by 20 sequencing.

Additionally, it is possible to perform such NUCP gene expression assays "in situ", i.e., directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents such as those described in Section 5.1 may be used as probes and/or primers for such in situ procedures (See, for example, Nuovo, G. J., 1992, "PCR In Situ Hybridization: Protocols And Applications", Raven Press, N.Y.).

Alternatively, if a sufficient quantity of the appropriate cells can be obtained, standard Northern analysis can be performed to determine the level of mRNA expression of the NUCP gene.

#### 5.4.2. Detention of NUCP Products

Antibodies directed against wild type or mutant NUCPs, or conserved variants or peptide fragments thereof, as discussed above, can also be used as diagnostics and prognostics, as described herein. Such diagnostic methods, may be used to detect abnormalities in the level of NUCP gene expression, or abnormalities in the structure and/or temporal, tissue, cellular, or subcellular location of the NUCP (besides mitochondria), and may be performed in vivo or in vitro, such as, for example, on biopsy tissue.

For example, antibodies directed to one or more epitopes of NUCP can be used in vivo to detect the pattern and level of expression of NUCP in the body. Such antibodies can be labeled, e.g., with a radio-opaque or other appropriate compound and injected into a subject in order to visualize binding to the NUCP expressed in the body using methods such as X-rays, CAT-scans, or MRI. Labeled antibody fragments, e.g., the Fab or single chain antibody comprising the smallest portion of the antigen binding region, are preferred for this purpose to promote crossing the bloodbrain barrier and permit labeling of NUCP expressed in the brain.

Additionally, any NUCP fusion protein or NUCP conjugated protein whose presence can be detected, can be administered. For example, NUCP fusion or conjugated proteins labeled with a radio-opaque or other appropriate compound can be administered and visualized in vivo, as discussed, above for labeled antibodies. Further such NUCP fusion proteins (such as AP-NUCP or NUCP-AP) can be utilized for in vitro diagnostic procedures.

Alternatively, immunoassays or fusion protein detection assays, as described above, can be utilized on biopsy and autopsy samples in vitro to permit assessment of the expression pattern of the NUCP. Such assays are not confined to the use of antibodies that define a NUCP domain, but can include the use of antibodies directed to epitopes of any domain of a NUCP. The use of each or all of these labeled antibodies will yield useful information regarding translation and intracellular transport of the NUCP to the cell surface and can identify defects in processing.

The tissue or cell type to be analyzed will generally include those which are known, or suspected, to express the NUCP gene, such as, for example, epithelial cells, kidney cells, adipose tissue, brain cells, etc. The protein isolation methods employed herein may, for example, be such as those described in Harlow and Lane (Harlow, E. and Lane, D., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which is incorporated herein by reference in its entirety. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells that could be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the NUCP gene.

For example, antibodies, or fragments of antibodies, such as those described above useful in the present invention may be used to quantitatively or qualitatively detect the presence of a NUCP, or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody (see below, this Section) coupled with light microscopic, flow cytometric, or fluorimetric detection. Such techniques are especially preferred if such NUCP products can be found, at least transiently, on the cell surface.

The antibodies (or fragments thereof) or NUCP fusion or conjugated proteins useful in the present invention may additionally be employed histologically, as in immunofluorescence, immunoelectron microscopy or non-immuno assays, for in situ detection of NUCP gene products or conserved variants or peptide fragments thereof, or to assay NUCP binding (in the case of labeled NUCP-fusion protein).

In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody or fusion protein of the present invention.

The antibody (or fragment) or fusion protein is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the NUCP product, or conserved variants or peptide fragments, or NUCP binding, but also its distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.

Immunoassays and non-immunoassays for a NUCP, or conserved variants or peptide fragments thereof, will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells which have been incubated in cell culture, in the 60 presence of a detectably labeled antibody capable of identifying NUCP products or conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art. Alternatively, the labeled antibody can be directed against an 65 antigenic tag that has been directly or indirectly attached to a NUCP.

The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled NUCP antibody or NUCP ligand/accessory molecule fusion protein. The solid phase support may then be washed with the buffer a second time to remove unbound antibody or fusion protein. The amount of bound label on solid support may then be detected by conventional means.

By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

The binding activity of a given lot of NUCP antibody or NUCP ligand fusion protein may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

With respect to antibodies, one of the ways in which the NUCP antibody can be detectably labeled is by linking the same to an enzyme and use in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller, A. et al., 1978, J. Clin. Pathol. 31:507-520; Butler, J. E., 1981, Meth. Enzymol. 73:482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.; Ishikawa, E. et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The enzyme that is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by calorimetric methods which employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect NUCP through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles

of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autorad-5 iography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

5.5. Screening Assays for Compounds that Modulate NUCP Expression or Activity

The following assays are designed to identify compounds that interact with (e.g., bind to) a NUCP, compounds that interfere with the interaction of a NUCP with any ligand or accessory molecules, compounds that modulate NUCP gene expression (i.e., modulate the level of NUCP activity by regulating gene expression) or otherwise modulate the levels of a NUCP in the body. Assays may additionally be utilized which identify compounds that bind to NUCP gene regulatory sequences (e.g., promoter sequences) and, consequently, may modulate NUCP gene expression. See e.g., Platt, K. A., 1994, J. Biol. Chem. 269:28558–28562, which is incorporated herein by reference in its entirety.

The compounds which can be screened in accordance with the invention include but are not limited to peptides, antibodies and fragments thereof, and other organic compounds (e.g., peptidomimetics) that bind to NUCP and either 55 mimic the activity of the natural product (i.e., agonists) or inhibit the activity of the natural ligand/accessory molecule (i.e., antagonists); as well as peptides, antibodies or fragments thereof, and other organic compounds that mimic the NUCP (or a portion thereof) and bind to and "inactivate" or 60 "neutralize" the NUCP ligand/accessory protein.

Such compounds may include, but are not limited to, peptides such as, for example, soluble peptides, including but not limited to members of random peptide libraries; (see, e.g., Lam, K. S. et al., 1991, Nature 354:82–84; Houghten, 65 R. et al., 1991, Nature 354:84–86), and combinatorial chemistry-derived molecular library made of D- and/or L-

configuration amino acids, phosphopeptides (including, but not limited to members of random or partially degenerate, directed phosphopeptide libraries; see, e.g., Songyang, Z. et al., 1993, Cell 72:767–778), antibodies (including, but not limited to, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab)₂ and FAb expression library fragments, and epitopebinding fragments thereof), and small organic or inorganic molecules.

Other compounds that can be screened in accordance with the invention include but are not limited to small organic molecules that are able to cross the blood-brain barrier, gain entry into an appropriate cell (e.g., in the choroid plexus, pituitary, the hypothalamus, etc.) and affect the expression of a NUCP gene or some other gene involved in a NUCP mediated pathway (e.g., by interacting with the regulatory region or transcription factors involved in gene expression); or such compounds that affect or substitute for the activity of the NUCP or the activity of some other intracellular factor involved in a NUCP-mediated catabolic, or metabolic pathway.

Computer modeling and searching technologies permit identification of compounds, or the improvement of already identified compounds, that can modulate NUCP expression or activity. Having identified such a compound or composition, the active sites or regions are identified. Such active sites might typically be ligand binding sites. The active site can be identified using methods known in the art including, for example, from the amino acid sequences of peptides, from the nucleotide sequences of nucleic acids, or from study of complexes of the relevant compound or composition with its natural ligand. In the latter case, chemical or X-ray crystallographic methods can be used to find the active site by finding where on the factor the complexed ligand is found.

Next, the three dimensional geometric structure of the active site is determined. This can be done by known methods, including X-ray crystallography, which can determine a complete molecular structure. On the other hand, solid or liquid phase NMR can be used to determine certain intra-molecular distances. Any other experimental method of structure determination can be used to obtain partial or complete geometric structures. The geometric structures may be measured with a complexed ligand, natural or artificial, which may increase the accuracy of the active site structure determined.

If an incomplete or insufficiently accurate structure is determined, the methods of computer based numerical modeling can be used to complete the structure or improve its accuracy. Any recognized modeling method may be used, including parameterized models specific to particular biopolymers such as proteins or nucleic acids, molecular dynamics models based on computing molecular motions, statistical mechanics models based on thermal ensembles, or combined models. For most types of models, standard molecular force fields, representing the forces between constituent atoms and groups, are necessary, and can be selected from force fields known in physical chemistry. The incomplete or less accurate experimental structures can serve as constraints on the complete and more accurate structures computed by these modeling methods.

Finally, having determined the structure of the active site (or binding site), either experimentally, by modeling, or by a combination, candidate modulating compounds can be identified by searching databases containing compounds along with information on their molecular structure. Such a

search seeks compounds having structures that match the determined active site structure and that interact with the groups defining the active site. Such a search can be manual, but is preferably computer assisted. These compounds found from this search are potential NUCP modulating compounds.

Alternatively, these methods can be used to identify improved modulating compounds from an already known modulating compound or ligand. The composition of the known compound can be modified and the structural effects of modification can be determined using the experimental and computer modeling methods described above applied to the new composition. The altered structure is then compared to the active site structure of the compound to determine if an improved fit or interaction results. In this manner systematic variations in composition, such as by varying side groups, can be quickly evaluated to obtain modified modulating compounds or ligands of improved specificity or activity.

Further experimental and computer modeling methods useful to identify modulating compounds based upon identification of the active sites (or binding sites) of NUCP, and related transduction and transcription factors will be apparent to those of skill in the art.

Examples of molecular modeling systems are the CHARMm and QUANTA programs (Polygen Corporation, Waltham, Mass.). CHARMm performs the energy minimization and molecular dynamics functions. QUANTA performs the construction, graphic modeling and analysis of molecular structure. QUANTA allows interactive construction, modification, visualization, and analysis of the behavior of molecules with each other.

A number of articles review computer modeling of drugs interactive with specific proteins, such as Rotivinen, et al., 35 1988, Acta Pharmaceutical Fennica 97:159-166; Ripka, New Scientist 54-57 (Jun. 16, 1988); McKinaly and Rossmann, 1989, Annu. Rev. Pharmacol. Toxiciol. 29:111-122; Perry and Davies, OSAR: Quantitative Structure-Activity Relationships in Drug Design pp. 189-193 (Alan R. Liss, Inc. 1989); Lewis and Dean, 1989 Proc. R. Soc. Lond. 236:125-140 and 141-162; and, with respect to a model receptor for nucleic acid components, Askew, et al., 1989, J. Am. Chem. Soc. 111:1082-1090. Other computer programs that screen and graphically depict 45 chemicals are available from companies such as BioDesign, Inc. (Pasadena, Calif.), Allelix, Inc. (Mississauga, Ontario, Canada), and Hypercube, Inc. (Cambridge, Ontario). Although these are primarily designed for application to drugs specific to particular proteins, they can be adapted to 50 design of drugs specific to regions of DNA or RNA, once that region is identified.

Although described above with reference to design and generation of compounds which could alter binding, one could also screen libraries of known compounds, including 55 natural products or synthetic chemicals, and biologically active materials, including proteins, for compounds which are inhibitors or activators.

Cell-based systems can also be used to identify compounds that bind (or mimic) NUCP as well as assess the 60 altered activity associated with such binding in living cells. One tool of particular interest for such assays is green fluorescent protein which is described, inter alia, in U.S. Pat. No. 5,625,048, herein incorporated by reference. Cells that may be used in such cellular assays include, but are not 65 limited to, leukocytes, or cell lines derived from leukocytes, lymphocytes, stem cells, including embryonic stem cells,

and the like. In addition, expression host cells (e.g., B95 cells, COS cells, CHO cells, OMK cells, fibroblasts, Sf9 cells) genetically engineered to express a functional NUCP of interest and to respond to activation by the test, or natural, ligand, as measured by a chemical or phenotypic change, or induction of another host cell gene, can be used as an end point in the assay.

Compounds identified via assays such as those described herein may be useful, for example, in elucidating the biological function of NUCP. Such compounds can be administered to a patient at therapeutically effective doses to treat any of a variety of physiological or mental disorders. A therapeutically effective dose refers to that amount of the compound sufficient to result in any amelioration, impediment, prevention, or alteration of any biological symptom.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD $_{50}$  (the dose lethal to 50% of the population) and the ED $_{50}$  (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD $_{50}$ /ED $_{50}$ . Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral, intracranial, intrathecal, or rectal administration.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, tale or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions,

syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-phydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration the compositions may take the ¹⁵ form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogenfree water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

5.5.1. In Vitro Screening Assays for Compounds that Bind to at NUCP

In vitro systems may be designed to identify compounds capable of interacting with (e.g., binding to) or mimicking a 65 NUCP. The compounds identified can be useful, for example, in modulating the activity of wild type and/or

mutant NUCP; can be useful in elaborating the biological function of NUCP; can be utilized in screens for identifying compounds that disrupt normal NUCP interactions; or may themselves disrupt or activate such interactions.

The principle of the assays used to identify compounds that bind to a NUCP, or NUCP ligands/accessory molecules, involves preparing a reaction mixture of NUCP and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex which can be removed and/or detected in the reaction mixture. The NUCP species used can vary depending upon the goal of the screening assay. For example, where agonists of a natural NUCP accessory molecule or ligand are desired, a full length NUCP, or a soluble truncated NUCP, a NUCP peptide, or NUCP fusion protein containing one or more NUCP domains fused to a protein or polypeptide that affords advantages in the assay system (e.g., labeling, isolation of the resulting complex, etc.) can be utilized. Where compounds that directly interact with a NUCP are sought, peptides corresponding to NUCP and fusion proteins containing a NUCP, or a portion thereof, can be used.

The screening assays can be conducted in a variety of ways. For example, one method to conduct such an assay would involve anchoring a NUCP, NUCP polypeptide, NUCP peptide, or fusion protein thereof, or the test substance onto a solid phase and detecting NUCP/test compound complexes anchored on the solid phase at the end of the reaction. In one embodiment of such a method, the NUCP reactant may be anchored onto a solid surface, and the test compound, which is not anchored, may be labeled, either directly or indirectly.

In practice, microtiter plates may conveniently be utilized as the solid phase. The anchored component may be immobilized by non-covalent or covalent attachments. Noncovalent attachment may be accomplished by simply coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein to be immobilized may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the nonimmobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unre-45 acted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the previously nonimmobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously nonimmobilized component is not prelabeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the previously nonimmobilized component (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).

Alternatively, a reaction can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for a NUCP, NUCP polypeptide, peptide or fusion protein, or the test compound to anchor any complexes formed in solution, and a labeled antibody specific for the other component of the possible complex to detect anchored complexes.

Alternatively, cell-based assays can be used to identify compounds that interact with a NUCP. To this end, cell lines that express a NUCP, or cell lines (e.g., COS cells, CHO cells, fibroblasts, etc.) that have been genetically engineered to express a NUCP or a NUCP ligand/accessory molecule (e.g., by transfection or transduction of NUCP DNA, etc.) can be used. Interaction of the test compound with, for 5 example, NUCP ligand expressed by the host cell can be determined by comparison or competition with native NUCP.

5.5.2. Assays for Compounds that Interfere with NUCP Receptor/Intracellular or NUCP/Transmembrane Macromolecule Interaction

Macromolecules that interact with a NUCP are referred to, for purposes of this discussion, as "binding partners" These binding partners are likely to be involved in NUCP mediated biological pathways. Therefore, it is desirable to identify compounds that interfere with or disrupt the interaction of such binding partners which may be useful in regulating or augmenting NUCP activity in the body and/or controlling disorders associated with NUCP activity (or a deficiency thereof).

The basic principle of the assay systems used to identify 20 compounds that interfere with the interaction between NUCP, or NUCP polypeptides, peptides or fusion proteins as described above (collectively, the NUCP moiety), and its binding partner or partners involves preparing a reaction mixture containing the NUCP moiety and the binding part- 25 ner under conditions and for a time sufficient to allow the two to interact and bind, thus forming a complex. In order to test a compound for inhibitory activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound may be initially included in 30 the reaction mixture, or may be added at a time subsequent to the addition of the NUCP moiety and its binding partner. Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the NUCP moiety and the binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the NUCP moiety and the interactive binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal NUCP may also be compared to complex formation within reaction mixtures containing the test compound and a mutant NUCP. This comparison may be important in those cases wherein it is desirable to identify compounds that specifically disrupt interactions of mutant, or mutated, NUCPs but not normal 45 NUCPs.

The assay for compounds that interfere with the interaction of the NUCP moiety and its binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring either the NUCP 50 moiety or the binding partner onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of mation about the compounds being tested. For example, test compounds that interfere with the interaction by competition can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to, or simultaneously with, the NUCP moiety and interactive binding partner. Alternatively, test compounds that disrupt preformed complexes, e.g. compounds with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes 65 have been formed. The various formats are described briefly below.

In a heterogeneous assay system, either the NUCP moiety or an interactive binding partner, is anchored onto a solid surface, while the non-anchored species is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Noncovalent attachment may be accomplished simply by coating the solid surface with a solution of the NUCP moiety or binding partner and drying. Alternatively, an immobilized antibody specific for the species to be anchored may be used to anchor the species to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.

Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.

In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed complex of the NUCP moiety and an interactive binding partner is prepared in which either the NUCP moiety or its binding partners is labeled, but the signal generated by the label is quenched due to formation of the complex (see, e.g., U.S. Pat. No. 4,190,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt NUCP/intracellular binding partner interaction can be identified.

In a particular embodiment, a NUCP fusion can be addition of reactants can be varied to obtain different infor- 55 prepared for immobilization. For example, NUCP or a peptide fragment can be fused to a glutathione-S-transferase (GST) gene using a fusion vector, such as pGEX-5X-1, in such a manner that its binding activity is maintained in the resulting fusion protein. The interactive binding partner can be purified and used to raise a monoclonal antibody, using methods routinely practiced in the art and/or described above. This antibody can be labeled with the radioactive isotope 125I, for example, by methods routinely practiced in the art. In a heterogeneous assay, e.g., the GST-NUCP fusion protein can be anchored to glutathione-agarose beads. The interactive binding partner can then be added in the presence or absence of the test compound in a manner that allows interaction and binding to occur. At the end of the reaction period, unbound material can be washed away, and the labeled monoclonal antibody can be added to the system and allowed to bind to the complexed components. The interaction between the NUCP moiety and the interactive binding partner can be detected by measuring the amount of radioactivity that remains associated with the glutathione-agarose beads. A successful inhibition of the interaction by the test compound will result in a decrease in measured radioactivity.

Alternatively, the GST-NUCP moiety fusion protein and the interactive binding partner can be mixed together in liquid in the absence of the solid glutathione-agarose beads. The test compound can be added either during or after the species are allowed to interact. This mixture can then be added to the glutathione-agarose beads and unbound material is washed away. Again the extent of inhibition of the NUCP moiety/binding partner interaction can be detected by adding the labeled antibody and measuring the radioactivity associated with the beads.

In another embodiment of the invention, these same techniques can be employed using peptide fragments that correspond to the binding domain(s) of the NUCP moiety and/or the interactive or binding partner (in cases where the binding partner is a protein), in place of one or both of the full length proteins. Any number of methods routinely practiced in the art can be used to identify and isolate the binding sites. These methods include, but are not limited to, mutagenesis of the gene encoding one of the proteins and screening for disruption of binding in a co-immunoprecipitation assay. Compensatory mutations in the gene encoding the second species in the complex can then be selected. Sequence analysis of the genes encoding the respective proteins will reveal the mutations that correspond to the region of the protein involved in interactive binding. Alternatively, one protein can be anchored to a solid surface using methods described above, and allowed to interact with and bind to its labeled binding partner, which has been treated with a proteolytic enzyme, such as trypsin. After washing, a relatively short, labeled peptide comprising the binding domain may remain associated with the solid material, which can be isolated and identified by amino acid sequencing. Also, once the gene coding for the intracellular binding partner is obtained, short gene segments can be engineered to express peptide fragments of the protein, which can then be tested for binding activity and purified or synthesized.

For example, and not by way of limitation, the NUCP moiety can be anchored to a solid material as described, above, by making a GST-NUCP moiety fusion protein and allowing it to bind to glutathione agarose beads. The interactive binding partner can be labeled with a radioactive isotope, such as ³⁵S, and cleaved with a proteolytic enzyme such as trypsin. Cleavage products can then be added to the anchored GST-NUCP moiety fusion protein and allowed to bind. After washing away unbound peptides, labeled bound material, representing the intracellular binding partner binding domain, can be eluted, purified, and analyzed for amino acid sequence by well-known methods. Peptides so identified can be produced synthetically or fused to appropriate facilitative proteins using recombinant DNA technology.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims. All patents, patent applications, and publications cited herein are hereby incorporated by reference.

#### SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 4
<210> SEQ ID NO 1
<211> LENGTH: 876
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
atgtcagccc tcaactggaa gccgtttgtg tacggggggc tggcctccat c actgctgag
                                                                        60
tgcggtacat ttccaattga tttaaccaag acacggctcc agattcaagg c cagacgaat
gatgcaaaat ttaaggaaat tagataccga ggaatgttgc acgcattagt g aggataggc
                                                                       180
agagaaqaag qgctgaaagc actctactcq qqqattqccc ccqcqatqtt a cqccaqqca
                                                                       240
toctatggca ccatcaagat aggcacttac cagagettga agegactatt c attgaacge
ccagaagatg aaactctacc gataaatgtg atatgtggaa ttctgtctgg a gtcatatct
                                                                       360
tcaaccattg ctaatccaac tgatgttttg aaaattcgga tgcaagcgca a agcaacacc
                                                                       420
attcaaggag gaatgatagg caacttcatg aacatttacc agcaagaggg g acaagagga
                                                                       480
ctgtggaagg gtgtgtccct tactgcgcag agggctgcta ttgttgttgg t gtggagctg
                                                                       540
ccggtctatg acatcaccaa gaagcatctt attctctcag gcctgatggg a gacactgtg
```

780

840

876

#### -continued

tatacccact teeteteaag etteacetgt ggtetggeag gggeeetgge e teaaaceet gttgatgttg tgaggacacg tatgatgaat cagagagtgc ttcgagatgg c agatgttct ggctacacag gaaccctgga ttgcttgtta cagacatgga agaatgaagg g ttttttgct ctctataaag gcttttggcc aaattggttg agacttggtc cttggaatat c attttcttt gtgacatacg agcagttgaa gaaattggat ttgtga <210> SEQ ID NO 2 <211> LENGTH: 291 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 2 Met Ser Ala Leu Asn Trp Lys Pro Phe Val T yr Gly Gly Leu Ala Ser 1 5 10 15 Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 35 40 45 Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Gly 50 55 60Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65 70 75 80 Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85 90 95 Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 100 105 110 Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp 115 120 125 Val Leu Lys Ile Arg Met Gln Ala Gln Ser A sn Thr Ile Gln Gly Gly 130 135 140 Met Ile Gly Asn Phe Met Asn Ile Tyr Gln G ln Glu Gly Thr Arg Gly 145 150 155 Leu Trp Lys Gly Val Ser Leu Thr Ala Gln A rg Ala Ala Ile Val Val 165 170 175Gly Val Glu Leu Pro Val Tyr Asp Ile Thr L ys Lys His Leu Ile Leu 180 \$185\$Ser Gly Leu Met Gly Asp Thr Val Tyr Thr H is Phe Leu Ser Ser Phe 195 200 205 Thr Cys Gly Leu Ala Gly Ala Leu Ala Ser A sn Pro Val Asp Val Val 210 220 Arg Thr Arg Met Met Asn Gln Arg Val Leu A rg Asp Gly Arg Cys Ser 225 230 235 240 Gly Tyr Thr Gly Thr Leu Asp Cys Leu Leu G ln Thr Trp Lys Asn Glu 245 250 255 Gly Phe Phe Ala Leu Tyr Lys Gly Phe Trp P ro Asn Trp Leu Arg Leu 260 265 270 Gly Pro Trp Asn Ile Ile Phe Phe Val Thr T yr Glu Gln Leu Lys Lys 275 280 285 Leu Asp Leu 290

<210> SEQ ID NO 3
<211> LENGTH: 882

#### -continued

<400> SEQUENCE: 3	
atgtcagccc tcaactggaa gccgtttgtg tacggggggc tggcctccat c actgctgag	60
tgcggtacat ttccaattga tttaaccaag acacggctcc agattcaagg c cagacgaat	120
gatgcaaaat ttaaggaaat tagataccga ggaatgttgc acgcattagt g aggataggc	180
agagaagaag ggctgaaagc actctactcg gggattgccc ccgcgatgtt a cgccaggca	240
tcctatggca ccatcaagat aggcacttac cagagettga agegactatt c attgaacge	300
ccagaagatg aaactctacc gataaatgtg atatgtggaa ttctgtctgg a gtcatatct	360
tcaaccattg ctaatccaac tgatgttttg aaaattcgga tgcaagcgca a agcaacacc	420
attcaaggag gaatgatagg caacttcatg aacatttacc agcaagaggg g acaagagga	480
ctgtggaagg gtgtgtccct tactgcgcag agggctgcta ttgttgttgg t gtggagctg	540
ccggtctatg acatcaccaa gaagcatctt attctctcag gcctgatggg a gacactgtg	600
tatacceact teeteteaag etteacetgt ggtetggeag gggeeetgge e teaaaeeet	660
gttgatgttg tgaggacacg tatgatgaat cagagagtgc ttcgagatgg c agatgttct	720
ggctacacag gaaccetgga ttgcttgtta cagettacag tgctggaaag t ttttccacc	780
acagcaaagc cacaaaagct tatcagcgta gatgccatct cagaagaggc t gataccagg	840
ggatttacat atctcagctg tgatctttct gctccaagct ga	882
<210> SEQ ID NO 4 <211> LENGTH: 293 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 4	
Met Ser Ala Leu Asn Trp Lys Pro Phe Val T yr Gly Gly Leu Ala Ser 1 5 10 15	
Ile Thr Ala Glu Cys Gly Thr Phe Pro Ile A sp Leu Thr Lys Thr Arg	
Ile Thr Ala Glu Cys Gly Thr Phe Pro Ile A sp Leu Thr Lys Thr Arg 20 25 30	
20 25 30 Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 35 40 45  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Gly	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 100  Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G In Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 110  Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp 115	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 100  Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg 40  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly 50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 110  Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp 115  Val Leu Lys Ile Arg Met Gln Ala Gln Ser A sn Thr Ile Gln Gly Gly	
Leu Gln Ile Gln Gly Gln Thr Asn Asp Ala L ys Phe Lys Glu Ile Arg  Tyr Arg Gly Met Leu His Ala Leu Val Arg I le Gly Arg Glu Glu Gly  50  Leu Lys Ala Leu Tyr Ser Gly Ile Ala Pro A la Met Leu Arg Gln Ala 65  Ser Tyr Gly Thr Ile Lys Ile Gly Thr Tyr G ln Ser Leu Lys Arg Leu 85  Phe Ile Glu Arg Pro Glu Asp Glu Thr Leu P ro Ile Asn Val Ile Cys 110  Gly Ile Leu Ser Gly Val Ile Ser Ser Thr I le Ala Asn Pro Thr Asp 115  Val Leu Lys Ile Arg Met Gln Ala Gln Ser A sn Thr Ile Gln Gly Gly 130  Met Ile Gly Asn Phe Met Asn Ile Tyr Gln G ln Glu Gly Thr Arg Gly	



#### -continued

Ser	Gly	Leu 195	Met	Gly	Asp	Thr	Val 200	-	Thr	Н	is		Leu 205	Ser	Ser	Phe
Thr	Сув 210	Gly	Leu	Ala	Gly	Ala 215	Leu	Ala	Ser	A		Pro 220	Val	Авр	Val	Val
Arg 225	Thr	Arg	Met	Met	Asn 230	Gln	Arg	Val	Leu	A 2:	_	<b>A</b> ap	Gly	Arg	_	Ser 240
Gly	Tyr	Thr	Gly	Thr 245	Leu	Asp	Сув	Leu	Leu 250	G	1n	Leu	Thr		Leu 255	Glu
Ser	Phe	Ser	Thr 260	Thr	Ala	Lys	Pro	Gln 265	Lys	L	eu	Ile		Val 270	Asp	Ala
Ile	Ser	Glu 275	Glu	Ala	Asp	Thr	Arg 280	Gly	Phe	T	hr	-	Leu 285	Ser	Сув	Asp
Leu	Ser 290	Ala	Pro	Ser												

What is claimed is:

- 1. An isolated nucleic acid molecule comprising at least 24 contiguous bases of a human nucleotide sequence from the uncoupling protein polynucleotide sequence described in 25 SEQ ID NO: 1.
- 2. An isolated nucleic acid molecule comprising a human nucleotide sequence that:
  - (a) encodes the amino acid sequence shown in SEQ ID NO: 2; and
  - (b) hybridizes under highly stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or the complement thereof.
- 3. An isolated nucleic acid molecule comprising a human nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2.
- 4. An isolated nucleic acid molecule comprising the human nucleotide sequence of the uncoupling protein polynucleotide sequence described in SEQ ID NO: 3.
- An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 4.

* * * * *

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE	POOR QUALITY
OTHER:	

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.