richardwu.ca

STAT 330 COURSE NOTES

MATHEMATICAL STATISTICS

Yingli Qin • Fall 2018 • University of Waterloo

Last Revision: September 28, 2018

Table of Contents

1	September 7, 2018 1.1 Random variables
2	September 10, 2018
	2.1 Cumulative distribution function (cdf)
	2.2 Location parameters
	2.3 Scale parameters
	2.4 Pivotal quantities
3	September 12, 2018
	3.1 Pdf of a function
4	September 14, 2018
	4.1 Expectations
	4.2 Markov's inequality
	4.3 Moment generating function (mgf)
5	September 17, 2018 and September 19, 2018
	5.1 Derivatives of mgf
	5.2 Joint cdf and pdf
6	September 21, 2018
	6.1 Independence
	6.2 Factorization independence theorem
7	September 24, 2018
	7.1 Conditional pmf/pdf
	7.2 Product rule
	7.3 Independence and condition pmf/pdfs
8	September 26, 2018
	8.1 Joint expectation
	8.2 Conditional expectation
	8.3 Expectation of a conditional expectation
	8.4 Variance as sum of conditional expectations

9.1	Joint moment generating function (mgf)
9.2	Independence and joint mgfs
9.3	Summary of methods for verifying independence

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. These notes are my interpretation and transcription of the content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any discrepancies, misunderstandings, typos, etc. as these notes relate to course's content is not the responsibility of the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 September 7, 2018

1.1 Random variables

We have two types (not include mixture r.v.s) random variables (r.v.s):

Discrete Probability (mass) function of X

$$f(x) = P(X = x)$$

Support set of X

$$A = \{x \mid f(x) > 0\}$$

The following two conditions must hold

•

$$f(x) \ge 0$$

•

$$\sum_{x \in A} f(x) = 1 \quad \text{or} \quad \sum_{x \in \mathbb{R}} f(x) = 1$$

Continuous Probability density function (pdf) of X

$$f(x) = \frac{d}{dx}F(x) = F'(x)$$

if F is differentiable at x, otherwise f(x) = 0.

Support set of X

$$A = \{x \mid f(x) > 0\}$$

The following two conditions must hold

•

$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

•

$$\int_{x \in A} f(x) dx = 1 \quad \text{or} \quad \int_{-\infty}^{\infty} f(x) dx = 1$$

Some examples of **discrete** r.v.s

Bernoulli $X \sim Bernoulli(p)$ for 0 where

$$P[X = 1] = p$$
 or $P[X = 0] = 1 - p$

therefore

$$f(x) = P[X = x] = p^{x}(1-p)^{1-x}$$
 $x = 0, 1$

and $A = \{0, 1\}.$

Binomial $X \sim BIN(n, p)$ for n = 1, 2, ... and 0 . <math>X represents the number of successes of n iid BERN(p) trials or X (or X is sum of n iid BERN(p) r.v.s):

$$X = \sum_{i=1}^{n} Y_i \quad Y_i \sim BERN(p)$$

therefore

$$f(x) = P[X = x] = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1, \dots, n$

and $A = \{1, 2, \dots, n\}.$

Geometric $X \sim GEO(p)$ for 0 . X represents the number of failures before the 1st success in a sequence of iid <math>BERN(p) trials, therefore

$$f(x) = P[X = x] = (1 - p)^x p$$
 $x = 0, 1, ...$

and $A = \{0, 1, \ldots\}.$

Negative Binomial $X \sim NB(k, p)$ where X represents the number of successes in k BERN(p) trials. We skip this for now.

Some examples of **continuous** r.v.s

Normal/Gaussian $X \sim N(\mu, \sigma^2)$ for $\mu \in \mathbb{R}$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad x \in \mathbb{R}$$

Gamma $X \sim GAM(\alpha, \beta)$ for $\alpha, \beta > 0$. The pdf may be left or right skewed.

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} \exp\left(-\frac{x}{\beta}\right) \quad x \in \mathbb{R}^+$$

Note that the Gamma function Γ is defined as

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1) \quad \alpha > 1$$

$$\Gamma(n) = (n - 1)!$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Exponential $X \sim EXP(\theta)$ for $\theta > 0$.

$$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \quad x \ge 0$$

Note that $EXP(\theta)$ is simply $GAM(1, \theta)$.

2 September 10, 2018

2.1 Cumulative distribution function (cdf)

We denote the *cumulative distribution function* (cdf) as $F(x) = P[X \le x]$ with properties:

1. non-decreasing i.e. $F(a) \leq F(b)$ if $a \leq b$

2.

$$\lim_{x \to -\infty} F(x) = 0$$

3.

$$\lim_{x \to \infty} F(x) = 1$$

4. right-continuous, i.e. $\lim_{x\downarrow x_0} = F(x_0)$ (where $x\downarrow x_0$ denotes x approaches x_0 from x_0 's right-hand side or in this case from above).

Remark 2.1. If X is a continuous .r.v then F(x) is also left-continuous i.e. F(x) is continuous.

2.2 Location parameters

Example 2.1. If $X \sim N(\mu, 1), \mu \in \mathbb{R}$, then μ is a location parameter for X where

$$f(x;\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} \quad x \in \mathbb{R}$$

 $f(x,\mu)$ is NOT completely specified as $f(\cdot,\mu)$ cannot be calculated at x as μ is unknown (we would need to perform statistical inference to estimate μ).

On the other hand, f(x;0) is completely specified. Notice that

$$f(x; \mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu-0)^2}{2}}$$
$$= f(x-\mu; 0)$$

That is: the uncompletely specified $f(x; \mu)$ can be rewritten as a completely specified $f(\cdot; 0)$ evaluated at $x - \mu$. μ is a location parameter for $X \sim N(\mu, 1)$.

Definition 2.1. A quantity η is a location parameter for X with a pdf $f(x;\eta)$ if

$$f(x;\eta) = f(x-\eta;0)$$

Increasing the value of the location parameter of the pdf shifts it to the right (e.g. for $N(\mu, 1)$).

For a continuous r.v. X with a location parameter η

$$F(x; \eta) = P[X \le x; \eta]$$

$$= \int_{-\infty}^{x} f(t; \eta) dt$$

$$= \int_{-\infty}^{x} f(t - \eta; 0) dt$$

since η is a location parameter for our pdf f. Let $s = t - \eta$, then

$$= \int_{-\infty}^{x-\eta} f(s;0) ds$$
$$= F(x-\eta;0)$$

Therefore η is a location parameter iff $F(x; \eta) = F(x - \eta; 0)$.

2.3 Scale parameters

Example 2.2. Let $X \sim EXP(\theta)$, $\theta > 0$ (as we will see, θ is a scale parameter for X). Recall

$$f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}} \quad \theta > 0$$

is NOT completely specified as θ is unknown.

However $f(x;1) = \exp(-x)$ for x > 0 is the pdf of EXP(1) which is completely satisfied. Note that

$$f(x;\theta) = \frac{1}{\theta} \exp(-\frac{x}{\theta}) = \frac{1}{\theta} f(\frac{x}{\theta};1)$$

 θ is a scale parameter for $X \sim EXP(\theta), \ \theta > 0$.

Definition 2.2. A quantity θ is a scale parameter if its pdf satisfies

$$f(x;\theta) = \frac{1}{\theta}f(\frac{x}{\theta};1) \quad \theta > 0$$

That is: the uncompletely specified pdf can be re-written as the product of $\frac{1}{\theta}$ and a completely specified pdf $f(\cdot; 1)$ evaluated at $\frac{x}{\theta}$.

How about the corresponding cdf (for a continuous r.v awith scale parameter θ)?

$$F(x;\theta) = \int_{-\infty}^{x} f(t;\theta) dt$$
$$= \int_{-\infty}^{x} f(\frac{t}{\theta};1) \frac{1}{\theta} dt$$

since θ is a scale parameter. Let $s = \frac{t}{\theta}$ (so $ds = \frac{dt}{\theta}$), thus

$$= \int_{-\infty}^{\frac{x}{\theta}} f(s; 1) \, \mathrm{d}s$$
$$= F(\frac{x}{\theta}; 1)$$

Therefore θ is a scale parameter iff $F(x;\theta) = F(\frac{x}{\theta};1)$.

2.4 Pivotal quantities

Remark 2.2. If η is a location parameter, then $\hat{\eta} - \eta$ is a pivotal quantity for constructing a confidence interval for η (where $\hat{\eta}$ is the Maximum Likelihood Estimate (MLE) of η).

If θ is a scale parameter, then $\frac{\hat{\theta}}{\theta}$ is a pivotal quantity for construct a confidence interval for θ .

3 September 12, 2018

3.1 Pdf of a function

We want to find the pdf of a function of one r.v.

Method 1 Let Y = h(x). If $h(\cdot)$ is a **1-1 function** then $h(\cdot)$ is either strictly increasing or strictly decreasing.

1. When $h(\cdot)$ is strictly increasing $(h^{-1}(\cdot))$ exists and is also strictly increasing): let G(y) be the cdf of Y and g(y) be the pdf of Y.

Given that X is a continuous r.v. with pdf f(x) and cdf F(x), then

$$G(y) = P[Y \le y] = P[h(X) \le y] = P[X \le h^{-1}(y)] = F(h^{-1}(y))$$

For the pdf g(y), we have

$$g(y) = \frac{dG(y)}{dy} = \frac{dF(h^{-1}(y))}{dy}$$
$$= f(h^{-1}(y)) \cdot \frac{\partial h^{-1}(y)}{\partial y}$$
$$= f(h^{-1}(y)) \cdot \left| \frac{\partial h^{-1}(y)}{\partial y} \right|$$

since $h^{-1}(\cdot)$ is strictly increasing, we have $\frac{\partial h^{-1}(y)}{\partial y} > 0$ (so we can add an absolute sign).

2. When $h(\cdot)$ and thus $h^{-1}(\cdot)$ is strictly decreasing we have

$$\begin{split} G(y) &= P[h(X) \leq y] = P[h^{-1}(h(X)) \geq h^{-1}(y)] \\ &= P[X \geq h^{-1}(y)] \\ &= 1 - P[X < h^{-1}(y)] \\ &= 1 - P[X \leq h^{-1}(y)] \qquad \qquad P[X = h^{-1}(y)] = 0 \text{ since X is continuous} \\ &= 1 - F(h^{-1}(y)) \end{split}$$

For the pdf g(y)

$$g(y) = \frac{dG(y)}{dy} = \frac{d1 - F(h^{-1}(y))}{dy}$$
$$= -f(h^{-1}(y)) \cdot \frac{\partial h^{-1}(y)}{\partial y}$$
$$= f(h^{-1}(y)) \cdot \left| \frac{\partial h^{-1}(y)}{\partial y} \right|$$

since $h^{-1}(\cdot)$ is strictly decreasing thus $\frac{\partial h^{-1}(y)}{\partial y} < 0$, hence the absolute sign.

So if $h(\cdot)$ is a **1-1 function**, we have for Y = h(X) the pdf

$$g(y) = f(h^{-1}(y)) \cdot \left| \frac{\partial h^{-1}(y)}{\partial y} \right|$$

How do we find the support set for Y? Let A be the support set of X and B be the support set for Y. Let $h: A \to B^*$ where B^* is the image of A under $h(\cdot)$.

Thus we have $B = \{y \mid y \in B^* \text{ and } g(y) > 0\}.$

Example 3.1. Let X have a pdf $f(x) = \frac{\theta}{x^{\theta+1}}$ where $x \ge 1$ and $\theta > 0$.

Find the pdf of $Y = \log X$ (natural log).

We have $h(X) = \log X$ thus $X = e^Y = h^{-1}(Y)$. Since h(x) is 1-1 we can use our previous result:

$$f(h^{-1}(y) = f(e^y) = \frac{\theta}{(e^y)^{\theta+1}}$$

Also

$$\frac{\partial h^{-1}(y)}{\partial y} = \frac{\partial e^y}{\partial y} = e^y$$

Thus we have

$$g(y) = \frac{\theta}{e^{y\theta}e^y} \cdot |e^y|$$
$$= \frac{\theta}{e^{y\theta}e^y} \cdot e^y$$
$$= \frac{\theta}{e^{y\theta}}$$

To find the support, note that $h(x) = \log X$ has support $A = \{x \mid x \ge 1\}$ thus $h: A \to B^* = \{y \mid y \ge 0\}$. Note that $g(y) = \frac{\theta}{e^{y\theta}} > 0$ for all $y \in \mathbb{R}$, thus the support for Y is $B = B^* = \{y \mid y \ge 0\}$.

Method 2 For functions $h(\cdot)$ that are not 1-1, we use the cdf technique.

Example 3.2. Let $X \sim N(0,1)$ and $Y = X^2$: find the pdf G(Y) of Y.

$$G(y) = P[Y \le y] = P[X^2 \le y]$$

Note that $P[X^2 \le 0] = P[X^2 = 0] = 0$ since $x^2 \ge 0$ for all $x \in \mathbb{R}$, so if y = 0 then G(y) = 0.

For y > 0, we have

$$\begin{split} G(y) &= P[X^2 \leq y] \\ &= P[-\sqrt{y} \leq X \leq \sqrt{y}] \\ &= 2P[0 \leq X \leq \sqrt{y}] \\ &= 2\int_0^{\sqrt{y}} f(x) \,\mathrm{d}x \\ &= 2\int_0^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \,\mathrm{d}x \end{split}$$

We require $g(y) = \frac{dG(y)}{dy}$.

From Fundamental Theorem of Calculus, if f(x) is cont. on [a,b] and $g(x) = \int_a^x f(t) dt \ \forall x \in [a,b]$ is cont. on [a,b] then

$$\frac{dg(x)}{dx} = f(x) \quad \forall x \in [a, b]$$

Thus for all y > 0 we have

$$\frac{dG(y)}{dy} = \frac{2}{\sqrt{2\pi}} \frac{d\int_0^{\sqrt{y}} e^{-\frac{x^2}{2}} dx}{dy}$$
$$= \frac{2}{\sqrt{2\pi}} e^{-\frac{(\sqrt{y})^2}{2}} \cdot \frac{d\sqrt{y}}{dy}$$
$$= -\frac{1}{\sqrt{\pi y}} e^{-\frac{y}{2}}$$

So $g(y) = \frac{1}{\sqrt{\pi y}} e^{-\frac{y}{2}}$ is the pdf of $Y \sim X^2(1)$

Note that $h: A \to B^*$ where $A = \mathbb{R}$, thus $B^* = \{y \mid y > 0\}$.

The support set of Y is B where $B = \{y \mid y \in B^* \text{ and } g(y) > 0\}.$

Notice that G(y) = 0 if y = 0 and G(y) is not differentiable at y = 0, thus g(0) = 0 so $B = \{y \mid y > 0\}$.

4 September 14, 2018

4.1 Expectations

The expection E(X) of a r.v. X exists if $E(|X|) < \infty$. It is defined as

Discrete r.v. X

$$E(X) = \sum_{x \in A} x \cdot f(x)$$

By the Law of the Unconscious Statistician (LOTUS)

$$E(h(X)) = \sum_{x \in A} h(x) \cdot f(x)$$

Continuous r.v. X

$$E(X) = \int_{A} x f(x) dx$$
$$= \int_{-\infty}^{\infty} x f(x) dx$$

LOTUS holds for continuous r.v.'s as well

$$E(h(X)) = \int_A h(x) \cdot f(x) \, \mathrm{d}x$$

4.2 Markov's inequality

Theorem 4.1 (Markov's inequality). Markov's inequality states that

$$P[|X| \ge c] \le \frac{E[|X|^k]}{c^k}$$

for all c, k > 0.

Proof. Note that $P[|X| \ge c] = P[X \le -c] + P[X \ge c]$ or the tail probabilities beyond -c and c. Thus Markov's inequality gives an *upper bound* for the tail probabilities. In the countinuous case we have for the RHS

$$P[|X| \ge c] = \int_{\{x||x| > c\}} f(x) \, \mathrm{d}x$$

For the LHS we have

$$\begin{split} \frac{E[|X|^k]}{c^k} &= E[|\frac{X}{c}|^k] = \int_{-\infty}^{\infty} |\frac{x}{c}|^k f(x) \, \mathrm{d}x \\ &= \int_{x||x| \geq c} |\frac{x}{c}|^k f(x) \, \mathrm{d}x + \int_{x||x| < c} |\frac{x}{c}|^k f(x) \, \mathrm{d}x \\ &\geq \int_{x||x| \geq c} |\frac{x}{c}|^k f(x) \, \mathrm{d}x \qquad \qquad \text{right term is integral over non-negative function} \\ &\geq \int_{x||x| > c} f(x) \, \mathrm{d}x \qquad \qquad |x| \geq c \Rightarrow |\frac{x}{c}|^k \geq 1 \end{split}$$

and the result follows.

Example 4.1. Given $X \sim N(0, \sigma^2)$, what is a bound on $P[|X| \ge 3\sigma]$? From Markov's inequality, let k = 2 (where $E[X^2] = \sigma^2$)

$$P[|X| \ge 3\sigma] \le \frac{E[|X|^k]}{(3\sigma)^k}$$

$$= \frac{E[X^2]}{9\sigma^2}$$

$$= \frac{\sigma^2}{9\sigma^2}$$

$$= \frac{1}{9}$$

Since $P[|X| \ge 3\sigma] \le \frac{1}{9}$ then $P[|X| \le 3\sigma] \ge 1 - \frac{1}{9} = \frac{8}{9}$. Thus X stays 3σ distance from 0 with a high probability of at least $\frac{8}{9}$.

4.3 Moment generating function (mgf)

Definition 4.1 (Moment generating function). For a r.v. X the expectation

$$M_X(t) = E[e^{tX}]$$

is called the moment generating function (if the expectation exists). One must state the values of t such that $M_X(t)$ exists ("domain of convergence").

Example 4.2. Let $X \sim GAM(\alpha, \beta), \ \alpha, \beta > 0$. Find $M_X(t)$.

$$M_X(t) = E[e^{tX}]$$

$$= \int_0^\infty e^{tx} \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}} dx$$

$$= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^{\alpha - 1} e^{-x(\frac{1}{\beta} - t)} dx$$

Note that for any pdf f(x) we have $\int_A f(x) dx = 1$, thus $\int_0^\infty \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} = 1$ thus $\int_0^\infty x^{\alpha-1} e^{-\frac{x}{\beta}} dx = \beta^\alpha \Gamma(\alpha)$. Thus we have from before

$$\frac{1}{\beta^{\alpha}\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-x(\frac{1}{\beta}-t)} dx = \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \left(\frac{1}{\frac{1}{\beta}-t}\right)^{\alpha} \Gamma(\alpha)$$
$$= \frac{1}{(1-\beta t)^{\alpha}}$$

when $(\frac{1}{\beta}-t)^{-1}>0$ i.e. $t<\frac{1}{\beta}$. What if $t\geq\frac{1}{\beta}$? When $t=\frac{1}{\beta}$ our integral becomes $\int_{-\infty}^{\infty}x^{\alpha-1}\,\mathrm{d}x$ which goes to infinity for $\alpha>0$. Similarly it goes to infinity when $t>\frac{1}{\beta}$.

5 September 17, 2018 and September 19, 2018

5.1 Derivatives of mgf

For the continuous case (similarly for discrete) we can take the derivative of the mgf $M_X(t)$

$$\frac{dM_X(t)}{dt} = \frac{d}{dt} \sum_{-\infty}^{\infty} e^{tX} f(x) dx$$

$$= \sum_{-\infty}^{\infty} \frac{d}{dt} [e^{tX} f(x)] dx$$
Leibniz rule
$$= \sum_{-\infty}^{\infty} x e^{tX} f(x) dx$$

We can claerly see when t=0 we have the expected value E[X]. Similarly

$$\frac{\mathrm{d}^2 M_X(t)}{\mathrm{d}t^2} = \frac{d}{dt} \left[\frac{d}{dt} M_X(t) \right]$$

$$= \frac{d}{dt} \left[\sum_{-\infty}^{\infty} x e^{tX} f(x) \, \mathrm{d}x \right]$$

$$= \sum_{-\infty}^{\infty} \frac{d}{dt} \left[x e^{tX} f(x) \right] \mathrm{d}x$$

$$= \sum_{-\infty}^{\infty} x^2 e^{tX} f(x) \, \mathrm{d}x$$

which we recognize when t = 0 as the second moment $E[X^2]$. In summary

$$\frac{\mathrm{d}^r}{\mathrm{d}t^r} M_X(t) = \int_{-\infty}^{\infty} x^r e^{tX} f(x) \, \mathrm{d}x \qquad r = 1, 2, \dots$$

where

$$\left(\frac{\mathrm{d}^r}{\mathrm{d}t^r} M_X(t)\right)\Big|_{t=0} = \left(\int_{-\infty}^{\infty} x^r e^{tX} f(x) \, \mathrm{d}x\right)\Big|_{t=0}$$
$$= \int_{-\infty}^{\infty} x^r f(x) \, \mathrm{d}x$$
$$= E[X^r]$$

Example 5.1. For $X \sim GAM(\alpha, \beta)$ we have $M_X(t) = \frac{1}{(1-\beta t)^{\alpha}}$, $t < \frac{1}{\beta}$. Find E[X] and Var(X). Note that $Var(X) = E[X^2] - E[X]^2$. Also

$$\frac{d}{dt}M_X(t) = \frac{d}{dt}[(1-\beta t)^{-\alpha}]$$
$$= (-\alpha)(-\beta)(1-\beta t)^{-\alpha-1}$$
$$= \alpha\beta(1-\beta t)^{-\alpha-1}$$

Thus $E[X] = \alpha \beta (1 - \beta 0)^{-\alpha - 1} = \alpha \beta$. Similarly $E[X^2] = \alpha (\alpha + 1) \beta^2$ thus $Var(X) = \alpha \beta^2$.

5.2 Joint cdf and pdf

The joint cdf F[x, y] is defined as $P[X \le x \text{ and } Y \le y]$ or simply $P[X \le x, Y \le y]$. Recall that for the cdf F(x) for X, we have

- 1. F(a) < F(b) if a < b
- 2. $\lim_{x\to-\infty} F(x)=0$
- 3. $\lim_{x\to\infty} F(x) = 1$
- 4. $\lim_{x\downarrow x_0} F(x) = F(x_0)$ (right continuous)

Similarly, the properties for the *joint cdf* of X and Y are

- 1. For every fixed y, F(x,y) is non-decreasing for x. Similarly for fixed x, F(x,y) is non-decreasing for y.
- 2. For every fixed y, $\lim_{x\to-\infty} F(x,y) = 0$ (similarly with fixed x and $y\to-\infty$).
- 3. $\lim_{x,y\to-\infty} F(x,y) = 1$
- 4.

$$F_1(x) = P[X \le x] = \lim_{y \to \infty} F(x, y)$$
$$F_2(y) = P[Y \le y] = \lim_{x \to \infty} F(x, y)$$

Comparing discrete and continuous joint r.v.s

Discrete r.v. For the pmf we have

$$f(x,y) = P(X = x, Y = y)$$

Our support set is $A = \{(x, y) \mid f(x, y) > 0\}.$

For the pmf, we have

- 1. $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R} \times \mathbb{R}$
- 2. $\sum \sum f(x,y) = 1$ where $(x,y) \in A$

To compute the marginal pmf for x we take

$$f_1(x) = \sum_{y \in \mathbb{R}} f(x, y)$$

(similarly for the marginal pmf for y).

Continuous r.v. For the pdf we have

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

Our support set is $A = \{(x, y) | f(x, y) > 0\}.$

For the pdf, we have

- 1. $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R} \times \mathbb{R}$
- 2. $\iint f(x,y) dx dy = 1$ where $(x,y) \in A$

To compute the marginal pdf for x we take

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y$$

(similarly for the marginal pmf for y).

Example 5.2. Suppose that X and Y are cont. r.v.s with joint pdf f(x,y) = x + y for 0 < x < 1 and 0 < y < 1. Find

- 1. $P[X \le \frac{1}{3}, Y \le \frac{1}{2}] = F(\frac{1}{3}, \frac{1}{2})$
- $2.\ P[X \leq Y]$
- 3. $P[X + Y \le \frac{1}{2}]$
- 4. $P[XY \le \frac{1}{2}]$
- 5. $f_1(x)$
- 6. F(x, y)
- 7. $F_1(x)$

Solution. Note that while we may be finding $P[X \le \frac{1}{3}]$ which is generally everything to the right of $x = \frac{1}{3}$, we only want the region intersected by our support set. This is represented as the shaded region in the diagrams below.

Figure 5.1: Diagram of area we are trying to integrate over for (1) and (2).

1. We sum over the shaded square area

$$\int_0^{\frac{1}{2}} \left(\int_0^{\frac{1}{3}} f(x, y) \, dx \right) dy = \int_0^{\frac{1}{2}} \left(\int_0^{\frac{1}{3}} x + y \, dx \right) dy$$

$$= \int_0^{\frac{1}{2}} \left(\frac{x^2}{2} + xy \Big|_{x=0}^{x=1/3} \right) dy$$

$$= \int_0^{\frac{1}{2}} \frac{1}{18} + \frac{y}{3} \, dy$$

$$= \frac{y}{18} + \frac{y^2}{6} \Big|_{y=0}^{y=1/2}$$

$$= \frac{5}{72}$$

2. If the region is not rectangular we pick one variable first, say y, and range from its smallest value to the largest value in its region.

We then find the range of the other variable (x in this case) for every given y.

$$P[X \le Y] = \int_0^1 \left(\int_0^y f(x, y) \, dx \right) dy \text{ OR}$$
$$= \int_0^1 \left(\int_x^1 f(x, y) \, dy \right) dx$$

We have

$$P[X \le Y] = \int_0^1 \left(\int_0^y f(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y$$
$$= \int_0^1 \left(\int_0^y x + y \, \mathrm{d}x \right) \, \mathrm{d}y$$
$$= \int_0^1 \frac{3y^2}{2} \, \mathrm{d}y$$
$$= \frac{1}{2}$$

3. The region is the triangle under the line $y = \frac{1}{2} - x$ in quadrant 1.

$$\begin{split} P[X+Y \leq \frac{1}{2}] &= P[Y \leq -x + \frac{1}{2}] \\ &= \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}-y} x + y \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_0^{\frac{1}{2}} \frac{x^2}{2} + xy \big|_{x=0}^{x=\frac{1}{2}-y} \, \mathrm{d}y \\ &\vdots \\ &= \frac{1}{24} \end{split}$$

4. We have 1 - $XY \ge \frac{1}{2}$ thus

$$P[XY \ge \frac{1}{2}] = \int_{\frac{1}{2}}^{1} \int_{\frac{1}{2y}}^{1} f(x, y) \, dx \, dy$$
$$= \frac{1}{4}$$

Thus $P[XY \le \frac{1}{2}] = \frac{3}{4}$.

Otherwise we would need to break it apart in two parts (when $y \leq \frac{1}{2}$ and when $y > \frac{1}{2}$):

$$P[XY \le \frac{1}{2}] = \int_{\frac{1}{2}}^{1} \int_{0}^{\frac{1}{2y}} f(x, y) \, dx \, dy + \int_{0}^{\frac{1}{2}} \int_{0}^{1} f(x, y) \, dx \, dy$$
$$= \frac{3}{4}$$

5. We have

$$f_1(x) = \int_{-\infty} \infty f(x, y) \, dy$$

$$= \int_0^1 f(x, y) \, dy$$

$$= \int_0^1 x + y \, dy$$

$$= x + \frac{1}{2} \qquad 0 < x < 1$$

Similarly $f_2(y) = \int_0^1 f(x, y) dx = y + \frac{1}{2}$ for 0 < y < 1.

6. If $x \le 0$ or $y \le 0$, then F(x,y) = 0. Similarly if $x \ge 1$ and $y \ge 1$, then F(x,y) = 1. If $0 < x \le 1$ and $0 < y \le 1$

$$F(x,y) = \int_0^y \int_0^x f(x,y) \, dx \, dy$$
$$= \frac{1}{2}x^2y + \frac{1}{2}xy^2$$

If $0 < x \le 1$ and y > 1

$$F(x,y) = P[X \le x, Y \le y]$$

$$= P[X \le x, Y \le 1]$$

$$= F(x,1)$$

$$= \frac{1}{2}(x^2 + x)$$

Similarly for x > 1 and $0 < y \le 1$, $F(x, y) = \frac{1}{2}(y^2 + y)$.

7. Note that $F_1(x) = \lim_{y \to \infty} F(x, y)$. From above we have

$$F_1(x) = \begin{cases} \lim_{y \to \infty} F(x, y) = \lim_{y \to \infty} 0 = 0 & x \le 0\\ \lim_{y \to \infty} F(x, y) = \lim_{y \to \infty} 1 = 1 & x \ge 1\\ \lim_{y \to \infty} F(x, y) = \lim_{y \to \infty} \frac{1}{2} (x^2 + x) & x0 < x < 1 \end{cases}$$

6 September 21, 2018

6.1 Independence

X and Y are independent if $P[X \in A, Y \in B] = P[X \in A]P[Y \in B]$ for any $A, B \subseteq \mathbb{R}$.

Corollary 6.1. If X and Y are independent, then h(X) and g(Y) are independent for any real-valued functions $h(\cdot)$ and $g(\cdot)$.

Proof. To show h(X), q(Y) are independent, we need to prove

$$P[h(X) \in A^*, g(Y) \in B^*] = P[h(X) \in A^*]P(g(Y) \in B^*]$$

for any $A^*, B^* \subseteq \mathbb{R}$.

Note that for functions $h: A \to A^*$ and $g: B \to B^*$, $x \in A \iff h(x) \in A^*$ and similarly $y \in B \iff g(x) \in B^*$. Thus $P[h(X) \in A^*, g(Y) \in B^*] = P[X \in A, Y \in B] = P[X \in A]P[Y \in B]$ as X, Y are independent. Again since we have an \iff correspondence we have $P[h(X) \in A^*]P[g(Y) \in B^*]$.

Theorem 6.1. X, Y are independent if and only if either

$$f(x,y) = f_1(x)f_2(y)$$
 $\forall (x,y) \in A_1 \times A_2$

where A_1, A_2 are the support sets for X and Y, respectively, OR

$$F(x,y) = F_1(x)F_2(y)\forall (x,y) \in \mathbb{R} \times \mathbb{R}$$

Example 6.1. For f(x,y) = x + y, 0 < x < 1, 0 < y < 1, are X,Y independent? Why? Note that from before we found that $f_1(x) = \frac{1}{2} + x$ for 0 < x < 1; $f_2(y) = \frac{1}{2} + y$ for 0 < y < 1.

Does $f(x,y) = f_1(x)f_2(y)$ for all $(x,y) \in A_1 \times A_2$, where $A_1 = \{x \mid 0 < x < 1\}, A_2 = \{y \mid 0 < y < 1\}$. No: since $(x+y) \neq (\frac{1}{2}+x)(\frac{1}{2}+y)$ for all $(x,y) \in (0,1) \times (0,1)$, thus X,Y are not independent.

6.2 Factorization independence theorem

Theorem 6.2 (Factorization independence). Suppose X, Y have joint pdf f(x, y) and support set $A = \{(x, y) \mid f(x, y) > 0\}$.

Then X, Y are independent **if and only if** $A = A_1 \times A_2$ and $f(x, y) = h(x) \cdot g(y)$ for some non-negative functions $h(\cdot)$ and $g(\cdot)$ for all $(x, y) \in A$.

Remark 6.1. We need to check that

- 1. $A = A_1 \times A_2$ i.e. A is rectangular (otherwise we would have undefined values for f(x, y) for some $x \in A_1$ or $y \in A_2$).
- 2. Check $f(x,y) = h(x) \cdot g(y)$

Example 6.2. Suppose X, Y have joint pdf

$$f(x,y) = \frac{\theta^{x+y}e^{-2\theta}}{x!y!}$$
 $x, y = 0, 1, 2, ...$

Are X, Y independent? Why?

- 1. Does $A = A_1 \times A_2$? Yes since we have $A_1 = \{x \mid x = 0, 1, 2, ...\}$ and $A_2 = \{y \mid y = 0, 1, 2, ...\}$.
- 2. We see that

$$f(x,y) = \left(\frac{\theta^x}{x!}\right) \left(\frac{\theta^y e^{-2\theta}}{y!}\right)$$

and there are many other functions where each function has complementary constant scaling factors.

Remark 6.2. Note that $h(\cdot)$ and $g(\cdot)$ may not be true pdfs (i.e. they may not sum up to 1 over the support set: see the remark below).

Thus X, Y are independent by the Factorization theorem.

Remark 6.3. When the Factorization theorem holds, h(x) is proportional to $f_1(x)$ and g(y) is proportional to $f_2(y)$.

Proof. We have

$$f_1(x) = \sum_{y=0}^{\infty} f(x, y)$$
$$= \sum_{y=0}^{\infty} h(x)g(y)$$
$$= h(x) \sum_{y=0}^{\infty} g(y)$$

From the example above, we had $g(y) = \frac{\theta^y}{y!}$, so

$$f_1(x) = h(x) \sum_{y=0}^{\infty} \frac{\theta^y}{y!} = e^{\theta} h(x) = \frac{\theta^x e^{-\theta}}{x!}$$

Thus $X \sim POI(\theta)$ and similarly $Y \sim POI(\theta)$.

Example 6.3. Suppose X, Y have joint pdf

$$f(x,y) = \frac{2}{\pi}$$
 $0 \le x \le \sqrt{1-y^2}, -1 \le y \le 1$

Are X, Y independent? Why?

Note that $A \neq A_1 \times A_2$ since we have $A_1 = \{x \mid 0 \le x \le 1\}$ and $A_2 = \{y \mid -1 \le y \le 1\}$.

Since A does not have the support set that is the recetangular bounds of $A_1 \times A_2$ there is no way to factorize our joint pdf into the product of two marginal pdfs.

7 September 24, 2018

7.1 Conditional pmf/pdf

Definition 7.1. We define the **conditional pmf/pdf** of x on y to be

$$f_1(x \mid y) = \frac{f(x,y)}{f_2(y)}$$
 $(x,y) \in A \text{ and } f_2(y) \neq 0$

where A is the support set for (X,Y) (i.e. f(x,y))

Properties of $f_1(x \mid y)$ for discrete and continuous r.v's:

Discrete r.v.s 1. $f_1(x \mid y) \ge 0$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$

$$2. \sum_{x \in \mathbb{R}} f_1(x \mid y) = 1$$

Continuous r.v.s 1. $f_1(x \mid y) \ge 0$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$

2.
$$\int_{-\infty}^{\infty} f_1(x \mid y) \, \mathrm{d}x = 1$$

Similarly $f_2(y \mid x) = \frac{f(x,y)}{f_1(x)}$ and $f_1(x) \neq 0$.

7.2 Product rule

The product rules states that

$$f(x,y) = f_1(x \mid y)f_2(y)$$

$$= f_2(y \mid x)f_1(x)$$
OR

Application of product rule: if $f_1(x \mid y)$ and $f_2(y)$ are given, we can find $f_1(x)$ (Take $\int_{y \in A} f_1(x \mid y) f_2(y) dy$ in the continuous case).

Example 7.1. Let $Y \sim POI(\mu)$ and $X \mid Y = y \sim BIN(y, p)$. Find the marginal distribution of X. We will take the route $f_1(x \mid y)$ and $f_2(y) \rightarrow f(x, y) \rightarrow f_1(x)$.

Note that

$$f_2(y) = \frac{\mu^y e^{-\mu}}{y!}$$
 $y = 0, 1, 2, \dots$

Also

$$f_1(x \mid y) = {y \choose x} p^x (1-p)^{y-x}$$
 $x = 0, 1, \dots, y$

Thus we have

$$f(x,y) = f_1(x \mid y) f_2(y) = \frac{\mu^y e^{-\mu}}{y!} \cdot \frac{y!}{(y-x)! x!} p^x (1-p)^{y-x}$$
$$= \frac{\mu^y e^{-\mu}}{(y-x)! x!} p^x (1-p)^{y-x}$$

where x = 0, 1, ..., y and y = 0, 1, ... i.e. $0 \le x \le y$ (and $y \ge 0$). We need to be aware of these bounds when marginalizing over x, so

$$f_{1}(x) = \sum_{y=x}^{\infty} f(x,y)$$

$$= \frac{e^{-\mu}p^{x}(1-p)^{-x}}{x!} \sum_{y=x}^{\infty} \frac{\mu^{y}(1-p)^{y}}{(y-x)!}$$

$$= \frac{e^{-\mu}\left(\frac{p}{1-p}\right)^{x}}{x!} \sum_{y=x}^{\infty} \frac{(\mu(1-p))^{y}}{(y-x)!}$$

$$= \frac{e^{-\mu}\left(\frac{p}{1-p}\right)^{x}(\mu(1-p))^{x}}{x!} \sum_{y=x}^{\infty} \frac{(\mu(1-p))^{y-x}}{(y-x)!}$$

$$= \frac{e^{-\mu}(\mu p)^{x}}{x!} \sum_{n=0}^{\infty} \frac{(\mu(1-p))^{n}}{n!}$$

$$= \frac{e^{-\mu}(\mu p)^{x}}{x!} e^{\mu(1-p)}$$

$$= \frac{e^{-\mu}(\mu p)^{x}}{x!} x = 0, 1, \dots$$
Taylor series of $e^{\mu(1-p)}$

$$= \frac{e^{-\mu p}(\mu p)^{x}}{x!} x = 0, 1, \dots$$

that is $X \sim POI(\mu p)$.

Example 7.2. let $Y \sim GAM(\alpha, 1)$ (not $GAM(\alpha, \frac{1}{\theta})$ in the notes) and $X \mid Y = y \sim WEI(y^{-\frac{1}{p}}, p)$ (Weibull distribution). Find the marginal pdf of X.

We will be following $f_1(x \mid y)$ and $f_2(y) \to f(x,y) \to f_1(x)$. Note that

$$f_1(y) = \frac{1}{\Gamma(\alpha)} y^{\alpha - 1} e^{-y}$$

For a given $X \sim WEI(\theta, \beta)$ we have

$$f(x) = \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-(\frac{x}{\theta})^{\beta}}$$

where x > 0. Thus we have

$$f_1(x \mid y) = \frac{p}{(y^{-(\frac{1}{p})^p}} x^{p-1} e^{-(\frac{x}{y^{-\frac{1}{p}}})^p}$$

Note we have $A = \{(x, y) | x > 0, y > 0\}$ thus

$$f_1(x) = \int_0^\infty f(x, y) \, dy$$

$$= \frac{px^{p-1}}{\Gamma(\alpha)} \int_0^\infty y^{\alpha - 1} e^{-y} y e^{-x^p y} \, dy$$

$$= \frac{px^{p-1}}{\Gamma(\alpha)} \int_0^\infty y^{\alpha} e^{-y(1+x^p)} \, dy$$

Recall we have

$$\int_0^\infty \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} dx = 1$$
$$\Rightarrow \Gamma(\alpha)\beta^{\alpha} = \int_0^\infty x^{\alpha-1} e^{-\frac{x}{\beta}} dx$$

So we have

$$\int_0^\infty y^{\alpha} e^{-y(1+x^p)} \, \mathrm{d}y = \Gamma(\alpha+1)[(1+x^p)^{-1}]^{\alpha+1}$$

Thus

$$f_1(x) = \frac{px^{p-1}}{\Gamma(\alpha)} \Gamma(\alpha + 1) [(1 + x^p)^{-1}]^{\alpha + 1}$$
$$= p\alpha \cdot \frac{x^{p-1}}{(1 + x^p)^{\alpha + 1}}$$

Note that $X \sim Burr(p, \alpha)$ or the Burr distribution.

7.3 Independence and condition pmf/pdfs

Note that $f(x,y) = f_1(x)f_2(y) = f_1(x \mid y)f_2(y)$, therefore X and Y are independent **if and only if** $f_1(x \mid y) = f_1(x)$ (or similarly if $f_2(y \mid x) = f_2(y)$).

Example 7.3. Let $f(x,y) = \frac{2}{\pi}$ where $0 \le x \le \sqrt{1-y^2}$, $-1 \le y \le 1$. Note that

$$f_1(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x,y) \, dy = \frac{4\sqrt{1-x^2}}{\pi}$$

$$f_2(y) = \int_0^{\sqrt{1-y^2}} f(x,y) \, dx = \frac{2\sqrt{1-y^2}}{\pi}$$

$$f_1(x \mid y) = \frac{f(x,y)}{f_2(y)} = \frac{1}{\sqrt{1-y^2}}$$

$$0 < x < 1$$

$$-1 < y < 1$$

$$0 \le x \le \sqrt{1-y^2}, -1 < y < 1$$

Since $f_1(x, y) \neq f_1(x)$ then X and Y are not independent.

8 September 26, 2018

8.1 Joint expectation

We define the **joint expectation** for discrete and continuous r.v.s:

Discrete The joint expectation is

$$E[h(X,Y)] = \sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} h(x,y) \cdot f(x,y)$$

Continuous The joint expectation is

$$E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) \cdot f(x,y) dx dy$$

Theorem 8.1. If X, Y are independent, then

$$E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$$

for any real-valued functions $g(\cdot)$ and $h(\cdot)$.

Proof. Note that g(X) and h(Y) are functions of X and Y, thus by the joint expectation

$$\begin{split} E[g(X)h(Y)] &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} g(x)h(y)f(x,y) \, \mathrm{d}x \right] \mathrm{d}y \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} g(x)h(y)f_1(x)f_2(y) \, \mathrm{d}x \right] \mathrm{d}y \qquad \text{independence} \\ &= \left[\int_{-\infty}^{\infty} g(x)f_1(x) \, \mathrm{d}x \right] \left[\int_{-\infty}^{\infty} h(y)f_2(y) \, \mathrm{d}y \right] \\ &= E[g(X)] \cdot E[h(Y)] \end{split}$$

8.2 Conditional expectation

We define the **conditional expectation** for discrete and continuous r.v.s:

Discrete The conditional expectation is

$$E[Y \mid X = x] = \sum_{y \in \mathbb{R}} y f_2(y \mid x)$$

by LOTUS

$$E[h(Y) \mid X = x] = \sum_{y \in \mathbb{R}} h(y) f_2(y \mid x)$$

Continuous The conditional expectation is

$$E[Y \mid X = x] = \int_{-\infty}^{\infty} y f_2(y \mid x) \, \mathrm{d}y$$

by LOTUS

$$E[h(Y) \mid X = x] = \int_{-\infty}^{\infty} h(y) f_2(y \mid x) dy$$

Remark 8.1. 1. $E[Y \mid X = x]$ is a function of x only since we've summed over our support for Y.

2. If X, Y are independent, then $E[Y \mid X = x] = E[Y]$ since

$$\begin{split} E[Y\mid X=x] &= \int_{-\infty}^{\infty} y f_2(y\mid x) \,\mathrm{d}y \\ &= \int_{-\infty}^{\infty} y f_2(y) \,\mathrm{d}y \\ &= E[Y] \end{split}$$
 independence

similarly $E[h(Y) \mid X = x] = E[h(Y)].$

Example 8.1. Let $f(x,y) = \frac{2}{\pi}$ where $0 \le x \le \sqrt{1-y^2}$, $-1 \le y \le 1$.

Note that $A = \{(x,y) \mid 0 \le x \le \sqrt{1-y^2}, -1 \le y \le 1\}$ or $A = \{(x,y) \mid 0 \le x \le 1, -\sqrt{1-x^2} \le y \le \sqrt{1-x^2}\}$, where $A_1 = \{x \mid 0 \le x \le 1\}$ and $A_2 = \{y \mid -1 \le y \le 1\}$.

Thus the conditional pdfs are

$$f_2(y \mid x) = \frac{f(x,y)}{f_1(x)} = \frac{1}{2\sqrt{1-x^2}}$$

for $(x,y) \in A$ and $f_1(x) \neq 0$ thus $0 \leq x < 1$ and $-\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2}$.

Note that $Y \mid X = x$ is actually a uniform distribution symmetric around y = 0 $(UNIF(-\sqrt{1-x^2}, \sqrt{1-x^2}))$ for $0 \le x < 1$, thus we expect $E[Y \mid X = x] = 0$. We verify

$$E[Y \mid X = x] = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y f_2(y \mid x) \, dy$$

$$= \frac{1}{2\sqrt{1-x^2}} \left(\frac{1}{2} y^2 \mid_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\right)$$

$$= \frac{1}{2\sqrt{1-x^2}} \cdot 0$$

$$= 0$$

We can also find $E[Y^2 \mid X = x]$

$$E[Y^2 \mid X = x] = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y^2 f_2(y \mid x) \, dy$$
$$= \frac{1}{2\sqrt{1-x^2}} \left(\frac{1}{3}y^3 \mid_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\right)$$
$$= \frac{(1-x^2)}{3} \qquad 0 \le x < 1$$

For $Var(Y \mid X = x)$ we have

$$Var(Y \mid X = x) = E[Y^2 \mid X = x] - E[Y \mid X = x]^2$$

$$= \frac{(1 - x^2)}{3} - 0^2$$

$$= \frac{(1 - x^2)}{3} \qquad 0 \le x < 1$$

Remark 8.2. $E[Y \mid X = x]$ and $E[h(Y) \mid X = x]$ are functions of x, thus $E[Y \mid X]$ is a function of X (function of a random variable is a random variable).

8.3 Expectation of a conditional expectation

Theorem 8.2. We claim $E[E[h(Y) \mid X]] = E[h(Y)]$. Let $g(X) = E[h(Y) \mid X]$, thus we have a function of X which from LOTUS we know

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f_1(x) dx$$

$$= \int_{-\infty}^{\infty} E[h(Y) \mid X = x]f_1(x) dx \qquad g(x) = E[h(Y) \mid X = x]$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(y)f_2(y \mid x) dy \right] f_1(x) dx$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(y)f_2(y \mid x) f_1(x) dy \right] dx$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(y)f(x, y) dy \right] dx$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(y)f(x, y) dx \right] dy$$
Fubini's theorem
$$= \int_{-\infty}^{\infty} h(y) \left[\int_{-\infty}^{\infty} f(x, y) dx \right] dy$$

$$= \int_{-\infty}^{\infty} h(y)f_2(y) dy$$

$$= E[h(Y)]$$

8.4 Variance as sum of conditional expectations

Theorem 8.3. We claim $Var(Y) = E[Var(Y \mid X)] + Var(E[Y \mid X])$. We have $Var(Y) = E[Y^2] - E[Y]^2$ on the LHS. On the RHS we have

$$\begin{split} E[Var(Y\mid X)] + Var(E[Y\mid X]) &= E\big[E[Y^2\mid X] - E[Y\mid X]^2\big] + \big(E[E[Y\mid X]^2] - E[E[Y\mid X]]^2\big) \\ &= E[E[Y^2\mid X]] - E[E[Y\mid X]^2] + E[E[Y\mid X]^2] - E[E[Y\mid X]]^2 \\ &= E[E[Y^2\mid X]] - E[E[Y\mid X]]^2 \\ &= E[Y^2] - E[Y]^2 \end{split}$$

where the last equality follows from $E[E[h(Y) \mid X]] = E[h(Y)]$.

Example 8.2. Suppose $Y \mid P = p \sim BIN(n, p)$ and $P \sim UNIF(0, 1)$. Find E[Y] and Var(Y).

Note that

$$E[Y] = E[E[Y \mid P]] = E[nP] = n \cdot E[P] = \frac{n}{2}$$

Similarly

$$\begin{split} Var(Y) &= E[Var(Y \mid P)] + Var(E[Y \mid P]) = E[nP(1-P)] + Var(nP) \\ &= nE[P] - nE[P^2] + n^2 Var(P) \\ &= n\frac{1}{2} - n(Var(P) + E[P]^2) + n^2 Var(P) \\ &= \frac{n}{2} - n(\frac{1}{12} + \frac{1}{2^2}) + n^2 \frac{1}{12} \\ &= \frac{5n}{6} + \frac{n^2}{12} \end{split}$$

9 September 28, 2018

9.1 Joint moment generating function (mgf)

Recall the moment generating function (mgf) of X is defined as $M_X(t) = E[e^{tX}]$. For a given MGF:

- 1. State the values of t such that $M_X(t)$ exists, i.e. $E[e^{tX}] < \infty$.
- 2. Uniqueness: if X and Y have the same mgf, then X and Y are identically distributed (i.e. X, Y have the same pmf/pdf, cdf, etc.).

Definition 9.1 (Joint mgf). The **joint mgf** of X and Y is defined as

$$M(t_1, t_2) = E[e^{(t_1, t_2) \cdot (X, Y)^T}] = E[e^{t_1 X + t_2 Y}] = E[e^{t_1 X} e^{t_2 Y}]$$

where one needs to state the values of t_1, t_2 such that $M(t_1, t_2)$ exists.

Note that given the joint mgf, it is straightforward to derive the marginal mgf

$$M_X(t_1) = M(t_1, 0) = E[e^{t_1X}]$$

 $M_Y(t_2) = M(0, t_2) = E[e^{t_2Y}]$

Example 9.1. Suppose $f(x, y) = e^{-y}$, 0 < x < y. Find $M(t_1, t_2)$ and $M_X(t)$.

$$M(t_1, t_2) = E[e^{t_1 X + t_2 Y}] = \int_0^\infty \left(\int_0^y e^{t_1 x} e^{t_2 y} f(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y$$

$$= \int_0^\infty e^{(t_2 - 1)y} \left(\int_0^y e^{t_1 x} \, \mathrm{d}x \right) \, \mathrm{d}y$$

$$= \frac{1}{t_1} \int_0^\infty e^{(t_2 - 1)y} e^{t_1 y} - 1 \, \mathrm{d}y$$

$$= \frac{1}{t_1} \int_0^\infty e^{(t_2 - 1)y} \cdot (e^{t_1 y} - 1) \, \mathrm{d}y$$

$$= \frac{1}{t_1} \left(\int_0^\infty e^{(t_1 + t_2 - 1)y} \, \mathrm{d}y - \int_0^\infty e^{(t_2 - 1)y} \, \mathrm{d}y \right)$$

Note that

$$\int_0^\infty e^{(t_1+t_2-1)y} \, \mathrm{d}y = \frac{1}{t_1+t_2-1} e^{(t_1+t_2-1)y} \mid_0^\infty$$

Taking the limit

$$\lim_{y \to \infty} e^{(t_1 + t_2 - 1)y} < \infty = 0$$

iff $t_1 + t_2 - 1 < 0$. Similarly $t_2 - 1 < 0$ must hold from our other integral. So we have

$$M(t_1, t_2) = \frac{1}{t_1} \left(\frac{1}{t_1 + t_2 - 1} (0 - 1) + \frac{1}{t_2 - 1} (0 - 1) \right)$$
$$= \frac{1}{(t_2 - 1)(t_1 + t_2 - 1)}$$

For $M_X(t)$ we have

$$M_X(t) = M(t,0) = \frac{1}{1-t}$$

where t < 1 (from our two constraints on t_1, t_2).

For $M_Y(t)$ we have

$$M_Y(t) = M(0,t) = \frac{1}{(1-t)^2}$$

where $t_2 < 1$ (from our two constraints on t_1, t_2).

Recall $X \sim GAM(\alpha, \beta)$ has $M_X(t) = \frac{1}{(1-\beta t)^{\alpha}}$, $t < \frac{1}{\beta}$.

Due to the uniqueness of mgf, $X \sim GAM(1,1)$ and $Y \sim GAM(2,1)$.

9.2 Independence and joint mgfs

X and Y are independent if and only if

$$M(t_1, t_2) = M_X(t_1)M_Y(t_2) \quad \forall t_1 \in B_1, \forall t_2 \in B_2$$

where $M_X(t_1)$ exists in B_1 and $M_Y(t_2)$ exists in B_2 (i.e. the bounds on t_1, t_2 such that $M(t_1, t_2)$ is well-defined).

Example 9.2. From our previous example where

$$M(t_1, t_2) = \frac{1}{(t_2 - 1)(t_1 + t_2 - 1)}$$

and $M_X(t) = \frac{1}{1-t}$ and $M_Y(t) = \frac{1}{(1-t)^2}$, clearly $M(t_1, t_2) \neq M_X(t_1) M_Y(t_2)$ so X, Y are not independent.

9.3 Summary of methods for verifying independence

The following are equivalent (TFAE) for showing independence of two r.v.s X, Y:

joint pmf/pdf Show $f(x,y) = f_1(x)f_2(y)$

joint cdf Show $F(x,y) = F_1(x)F_2(y)$

Factorization Theorem Show f(x,y) = h(x)g(y) and support set is the rectangular Cartesian product of the individual support sets.

conditional pdf Show $f_1(x \mid y) = f_1(x)$.

joint mgf Show $M(t_1, t_2) = M_X(t_1) M_Y(t_2)$ (for all $(t_1, t_2) \in B$).