Chemistry 129.01		
Name:	Key	

Show all your work!

1. (4 pts.) Based on the experiments performed by <u>Thomson, Millikan and Rutherford</u>, what does an atom look like?

2. (7 pts) Fill in the gaps in the following table.

Name	Formula	
sodium hydrogen carbonate	NaHCO3	
tin (II) Chloride	SnCl ₄	
nitric acid	HNC3	
dichlorine monoxide	Cl₂O	
nitrogen dioxide	NO2	
iron (III) nitrite	Fe(NO ₂) ₃	
ammonium acetate	NH4 C2H3O2	
hydrosulfuric acid	H₂S	
copper (II) chloride	Culla	
aluminum sulfate	Al ₂ (SO ₄) ₃	
lithium hydroxide		
potassium permanganate	KMnO ₄	

3. (4 pts.) Fill in the gaps in the following table. Each column may represent a neutral atom or an ion.

			F-0 11
Symbol	$^{197}_{79} Au^{3+}$	40 Ar	28 N34
Protons	79	18	28
Neutrons	118	22	30
Electrons	76	18	26
Atomic Number	79	18	28
Mass Number	197	40	58
Charge	+3	0	43

- 4. (10 pts) A hydrogen atom undergoes an electron transition from n=1 to n=3.
 - (a) Does this transition correspond to absorption or emission of energy?
 - (b) Determine the wavelength of light associated with this transition. Identify the region of the electromagnetic spectrum to which it belongs.
 - (c) Determine the energy in kJ/mol.

(a)
$$h=1 \rightarrow h=3$$
 Absorption

(b)
$$\Delta E = -2.18 \times 10^{-18} \text{ T} \left(\frac{1}{3^2} - \frac{1}{1^2} \right) = 1.94 \times 10^{-18} \text{ J}$$

$$\lambda = \frac{(6.636 \times 10^{-34} \text{ J.s})(3.00 \times 10^{10} \text{ in/s})}{1.94 \times 10^{-18} \text{ J}} = 1.03 \times 10^{-7} \text{ m}$$

$$= 103 \text{ nm}$$

(c)
$$1.94\times10^{-18}J\left(\frac{1 \, kJ}{1000 \, J}\right)\left(\frac{6.022\times10^{23}}{\text{mol}}\right) = 1,170 \, \frac{kJ}{\text{mol}}$$