

BHAND COME TO SERVED S

Learning Objective

- Greedy Techniques
- Prim's Algorithm & Kruskal's Algorithm
- Dijkstra's and Bellman Ford Algorithm
- · Huffman trees.
- Knapsack Problem
- Dynamic Programming paradigm ,
- · Warshall 's and Floyd's Algorithm
- Optimal Binary Search trees & Matrix multiplication Problem,
- 0/1 Knapsack Problem
- maximum network flow problem
- naive string matching algorithm , string matching with finite automata Knuth morris Pratt algorithm , The Rabin-Karp Algorithm.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Greedy Strategy

Greedy Algorithms Cont...

- Greedy Algorithm is a class of Algorithm which based on the strategy:-
- "GET THE BEST WHICH YOU CAN AT THAT VERY MOMENT IGNORING THE LONG TERM STRETAGIES."

|--|

Activity-Selection Problem

Activity-selection problem

We are given a set of proposed activities S = {A1, A2, ..., An} that wish to use a resource, which can be used by only one activity at a time. Each activity is defined by a pair consisting of a start time si and a finish time fi,

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63. by Shivendra Goel.

Activity-Selection Problem Cont...

 with 0 <= si < fi < infinity. If selected, activity Ai takes place during the time interval [si,fi]. Two activities Ai and Aj are compatible if si>= fj or sj>= fi. The activityselection problem is to select the maximum number of mutually compatible activities.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

BAARI C EMPERA
A PORES

Activity-Selection Problem Cont...

1 1 2 3 4 5 6 7 8 9 10 11 si 1 3 0 5 3 5 6 8 8 2 12

i | 4 5 6 7 8 9 10 11 12 13 14

BAARI EN ENVERNA

Dynamic Programming

Dynamic Programming is a technique used for algorithm Design this technique is useful for designing algorithm for optimization Problems.

Dynamic Programming can be divided into four steps

- 1)Characterization of suboptimal problems.
- 2)Recursively define the solution to the sub optimal problems.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Dynamic Programming Cont...

- 3)To compute an optimal solution for one of the sub optimal problems.
- 4)To combine the solutions for the suboptimal problems to reach the solution of the given problem.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Dynamic Programming Cont...

Elements of Dynamic Programming

- Optimal Substructure: Under this approach identify a optimal substructure on which entire problem is based.
- Overlapping substructure:-The problem is solved by same sub problem over and over rather than always generating new sub problems.
- Memoization:- It maintains an entry in a table for the solution of each sub problem.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63. by Shivendra Goel.

Matrix-Chain Multiplication

- An example problem to be solved with DP:
- Matrix-chain multiplication:
- $\langle A_1, A_2, A_3, ..., A_n \rangle$, n matrices to be multiplied together. **A** x **B** = **C** (p x q) * (q x r)= (p x r)
- Grouping matters: We define the order of performing our multiplications by grouping using parenthesis.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Matrix-Chain Multiplication Cont...

- $\bullet <\!\! A_1,\, A_2,\, A_3,\!\! A_4\!\! >$
- 1. $(A_1(A_2(A_3A_4)))$
- 2. $(A_1 ((A_2 A_3)A_4))$
- 3. $((A_1 A_2) (A_3 A_4))$
- 4. $((A_1 (A_2 A_3)) A_4)$
- 5. $(((A_1 A_2) A_3) A_4)$
- Five possible parenthesizations of four matrices.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

LIS. 12

1000	
вилент 💝 🗢 🤄	HENDERH
A PRINCE	

Matrix-Chain Multiplication Cont...

- How much can different parenthesizations cost?
- <A₁, A₂, A₃>
- A₁: 10 x 100
- A₂: 100 x 5
- A_3 : 5 x 50

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Matrix-Chain Multiplication Cont...

- $((A_1 A_2) A_3)$
- $(A_1 A_2) : 10 \times 100 \times 5 = 5000$
- $((A_1 A_2) A_3) : 10 \times 5 \times 50 = 2500$

7500 multiplications

- $(A_1(A_2A_3))$
- $(A_2 A_3) : 100 \times 5 \times 50 = 25000$
- ($A_1 (A_2 A_3)$) : 10 x 100 x 50 = 50000 75000 multiplications

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Matrix-Chain Multiplication Cont...

• Matrix-Chain multiplication problem can be stated as follows: Given a chain of $< A_1, A_2, A_3, ..., A_n >$ of n matrices ,where i=1,2,3,...,n .matrix Ai has dimension $P_{i-1} * P_i$, fully parenthesize the product $A_1 A_2 A_3 ... A_n$ in a way that minimizes the number of multiplications. Our main goal is only to determine an order for multiplying matrices that has the lowest cost.

Matrix-Chain Multiplication Cont...

$$A_{1...n} = A_i A_{i+1} \dots A_n$$

To parenthesize we first pick k: A $_{1...k}$ A $_{k+1...n}$ Cost of this parenthesization is

- a. A $_{1...k}$
- b. A $_{k+1 \dots n}$
- c. multiplying the two parts together.

Matrix-Chain Multiplication Cont...

• Let us assume that the optimal parenthesization splits the product $A_i A_{i+1} A_{i+2} A_i$ between A_k and A_{k+1} where i £ k < j. Then m[i,j]is equal to minimum cost for computing the sub products A $_{1...k}$ and A $_{k+1...j}$ Plus cost of multiplying these two matrices together. Each matrix A i is $p_{i-1}p_{i}$ So to compute the matrix product $A_{1,k}$ and of A $_{k+1\ldots j} \ takes \ p_{i\text{--}1} \, p_k \, p_j$

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Matrix-Chain Multiplication Cont...

m[i,j] = 0 if i = j, and:

$$m[i,j] = Min \{m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \} i < j$$
$$i <= k < j$$

So we can construct the optimal solution we also define: s[i,j] = k that produces the minimum.

Matrix-Chain Multiplication Cont	
A1=10X5	
A2=5X3	
A3=30X20	
A4=20X15	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
Outined Dinamy County Tree	
Optimal Binary Search Tree	
• In representation of DCT there are various variation	
• In representation of BST there are various variation in representing a BST with that much number of	-
nodes, Optimal BST is the one which has lowest	
search cost.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. UX.20	
Optimal Binary Search Tree Cont	
Optimal Billary Search Tree Cont	
?pi+?qi=1	
search cost ki=(dept+1)*pi	
search cost di=(dept+1)*qi	
total search cost= search cost? ki + search cost? di	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel. US 21	

SHAME STATE STATE OF	Opt	imal	Bina	ry Se	arch	Tree C	ont	
i	. 0	1	2	3	4	5		
pi qi	0.05	0.15 0.10	0.10	0.05		0.20 0.10		
© Bharati Vidyapeeth	's Institute of Co	omputer Applic	cations and M	anagement, Ne	ew Delhi -63,	by Shivendra Goel.		US. 25

SHAND COMEDU	Huffman Codes	
	Huffman Codes	
© Bharati Vidyapeetl	i's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	US. 26

Huffman Codes Cont.	•••
Binary Character Code)
• Fixed length code here each character is encoded with a fi	xed length
of binary string • Variable Length code	
here each character is encoded with length of binary string. Which depends frequency of use.	
Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra	a Goel. US. 27

Huffman Codes Cont...

Example

- Suppose we have a 100 character data file that we wish to store compactly. We observe that the character in the file occur with the frequencies as F-5, E-9, C-12, B-13, D-16, A-45
- Now Using Fix Length encoding we have to take 3 bits for storing a single character so these 100 characters require 300 bits of storage

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

Huffman Codes Cont...

 But if we use a variable length code such as a requires 1 bit storage, c, b, d requires 3 bits and f, e requires 4 bit each then total storage space required is

1*45 + 12*3 + 13*3 + 16*3 + 5*4 + 9*4 = 224

© Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

SHARIT CONTENTS

Huffman Codes Cont...

Letter →	A	В	C	D	Е	F
Frequency	45	13	12	16	9	5
FLC	000	001	010	011	100	101
VLC	0	101	100	111	1101	1100

SHAND COMEDIA

String Matching Cont...

Naïve String Matching

The Naïve String Matcher does not give any consideration to the string being matched against the subpart of the substring and it always gives an increment of 1 in case of the search fails because of any character being mismatched.

String Matching Cont...

Rabin-Karp algorithm

• The **Rabin-Karp algorithm** is a string searching algorithm created by Michael O. Rabin and Richard M. Karp that seeks a pattern, i.e. a substring, within a text by using hashing.

® Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43. by Shivendra Goel

String Matching Cont...

• We compute the search by using this Algorithm in the following manner:

T[]-String

P-Sub String to Search

q-Modulo

m-is the size of sub string.

T1-is the initial characters of the string equal to the size of the sub string.

6 Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

String Matching Cont...

 $Ts+1=10(Ts-10^{m-1}T[s])+T[s+m]$

r=P or T1 or Ts+1 mod q

• In this Algorithm we compare the values 'r' calculated from the Sub String ,T1,Ts+1 for searching sub string in T[].

String Matching Cont	
Q. Find the String match in the following string \$T=14321542\$ Where \$q=5\$ and Substring to be match is \$154\$ Using Rabin-Karp methodology.	
String Matching Cont	
String Matching With Finite Automata	
© Bharati Vidyapeeti's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
String Matching Cont	
FINITE AUTOMATA	
© Bharati Vidyspeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	

String Matching Cont	
Let us take an Example	
 A simple 2-state finite automata State set Q = {0,1} Start state q0 = 0 Input alphabet ? = {a,b} 	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
String Matching Cont	
input G. T. VI Di	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

BAMAIN TOWNERS,	String Matching Cont	
Strir	ng - Matching Automata	
Sun	ig - Matching Automata	

|--|

Conclusion

- Graphs can be used to Courses in a university-list courses such that pre-requisites appear before the course itself
- Applications of Shortest Path
 - Finding shortest route from location X to location Y
 - Finding communication paths with least cost in a computer network
 - Finding transit paths with least cost in a railway network

SHAAII KEAMEINU	Review Questions
	algorithm is used to detect the presence of ve edge cycle in the given graph.
	and are the algorithms for Minimum cost Spanning Trees.
	and Algorithm for finding source shortest paths
4. Graph	is aData Structure
	algorithm is used for finding all pair st paths
© Bharati Vidyapeeth	's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, By S	3v Shivendra Goel.
--	--------------------

Review Questions Cont	
6.Consider a simple connected graph G with n vertices and n edges(n>2). Then which of the following statements are TRUE? a. G has atleast one cycle	
b. G has no cyclesc. The graph obtained by removing any edge from G is not connected.	
e. G has atleast one cycle and The graph obtained by removing any edge from G is not connected.	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
Review Questions Cont	
7.The number of distinct simple graphs with up to three nodes is	
a.9 b.7	
c.10 d.15	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
Review Questions Cont	
8.A graph in which all nodes are of equal degree is known as	

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, By Shivendra Goel.

a. Complete graphb. Multi graphc. Non regular graphd. Regular graph

	1
Review Questions Cont	
9.The minimum number of spanning trees in a connected graph with "n" nodes is a. n-1	
b. n/2 c. 2 d. 1	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-43, by Shivendra Goel. △ △ ∞	
Review Questions Cont	
10.The minimum number of edges in a connected cyclic graph on 'n' vertices is a.n-1 b.n	
c.n+1 d.none of these	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	
Review Questions Cont	
 Explain Strongly connected components? Discuss its application in military. Discuss the algorithm that is used to detect the 	
presence of negative edge cycle in the given graph. 3. Explain with the help of an example BFS Algorithm	
4. Discuss Prim's Algorithm? State its Complexity.5. Describe the Krushal's Algorithm to find a minimum spanning tree of a graph.	
Bharatl Vidyapeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.	

Review Questions Cont...

- 6. Differentiate between Dynamic programming and Greedy approach
- 7. Write the Procedure for Matching String Using Naïve Algorithm
- 8. Discus the Knapsack Problem
- Apply KMP algorithm on the following data (5)
 S=bacbabababacaca

P=ababaca

Here 'P' Substring to be search in 'S'.

10. Explain Bellman Fort Algorithm for finding Single source with example

© Rharati Vidvaneeth's Institute of Computer Applications and Management, New Delhi #3. hv Shivendra Goel.

Review Questions Cont...

- 1. Explain Prims's Algorithm for finding minimum cost spanning trees.
- Discuss with the help of an example Floyd-Warshall's algorithm to find the shortest path between all pair of vertices in the graph.
- 3. Write dijkstra's algorithm to solve single-source shortest path problem with the help of an example.
- 4. How Bellman-ford algorithm is use to detect the presence of negative edge cycle in the given graph
- Explain the two approaches for the representation of Graphs with the help of an example.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

03.59

Review Questions Cont...

- 6. Explain Kruskal Algorithm for finding minimum cost spanning trees
- Apply matrix chain multiplication on the following matrices:

A1=10X5

A2=5X30

A3=30X20

A4=20X15

8. Write dijkstra's algorithm to solve single-source shortest path problem with the help of an example.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi -63, by Shivendra Goel.

LIS. 60

© Bharati Vidyapeeth's Inst	itute of Computer Application	s and Management, New I	Delhi-63, By Shivendra Goel.

Review Questions Cont
9.Differentiate between Huffman code and fixed length code? Explain with example?
10.Explain Dynamic Programming?
© Bharati Vidyspeeth's Institute of Computer Applications and Management, New Delhi 43, by Shivendra Goel.
Suggested Reading/References
 T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein, "Introduction to Algorithms", 2nd Ed., PHI, 2004.
2. A. V. Aho, J. E. Hopcroft, J. D. Ullman, "The Design and Analysis of Computer Algorithms", Addition
Wesley, 1998. 3. Ellis Horowitz and Sartaz Sahani, "Computer
Algorithms", Galgotia Publications,1999. 4. D. E. Knuth, "The Art of Computer Programming", 2nd
Ed., Addison Wesley, 1998