

Modulateur PWM (PWM)

Laboratoire Digital Design

Contenu

1 Objectifs	1
2 Modulation par largeur d'impulsion	2
2.1 Principe	
2.2 Circuit	
2.3 Réalisation	2
3 Pont en H	3
3.1 Circuit	3
3.2 Réalisation	

1 | Objectifs

Ce laboratoire exerce la conception de circuits numériques en se basant sur des opérateurs. Il présente la modulation par largeur d'impulsions (Pulse Width Modulation (PWM)).

2 | Modulation par largeur d'impulsion

2.1 Principe

La modulation par largeur d'impulsion (Pulse Width Modulation (PWM)) transforme un signal codé en amplitude en un signal logique tout-ou-rien dont la valeur moyenne dans le temps correspond à celle du signal d'entrée.

Fig. 1. - Modulation pwm

2.2 Circuit

Le modulateur est réalisé à l'aide d'un compteur qui tourne en boucle et d'un comparateur.

2.3 Réalisation

Compléter le schéma du modulateur PWM mis à disposition pour générer le signal de la figure précédente sur la sortie pwm₁. Vérifier le bon fonctionnement du modulateur.

3 | Pont en H

3.1 Circuit

Pour transmettre tant un courant positif qu'un courant négatif dans une charge, on utilise le circuit suivant.

Fig. 2. - Pont en H

Lorsque les interrupteurs pwm_1 et \overline{pwm}_2 sont fermés, le courant circule à travers la charge dans une direction. Lorsque les interrupteurs pwm_2 et \overline{pwm}_1 sont fermés, le courant circule dans la direction opposée.

3.2 Réalisation

Créer une nouvelle architecture du modulateur PWM. Copier le circuit développé au point précédent. Modifier celui-ci de manière à générer une tension alternative aux bornes de la charge. Vérifier le bon fonctionnement du nouveau circuit.