Traffic Sign Classification Project

Data Augmentation:

• Augment the existing data by adding some additional samples

Preprocessing:

- Convert to Gray Scale
- Flip left/right
- Change brightness &contrast
- TODO: Try other techniques like
 - o Crop image
 - o Shear
 - o Rotation

Model Architecture:

I used LeNet architecture with 2 layers of convolution, Leaky RELU activations, Max Pooling and Dropout followed by 3 'Fully Connected' layers.

Layer 1:

- Convolution
 - o Filter Size: 5x5x32
 - o Strides: 2x2
 - o Padding: VALID
- Leaky RELU
 - \circ Alpha = 0.5
- Max Pooling
 - o ksize: [1, 2, 2, 1]
 - o strides: [1, 2, 2, 1]
- Dropout
 - \circ Probability = 0.5

Layer 2:

- Convolution
 - o Filter Size: 5x5x64
 - o Strides: 2x2
 - o Padding: VALID
- Leaky RELU
 - \circ Alpha = 0.5
- Max Pooling
 - o ksize: [1, 2, 2, 1]
 - o strides: [1, 2, 2, 1]
- Dropout
 - o Probability = 0.5

Fully Connected Layer 1:

- Added flattened outputs from layers 1 & 2
- Matrix Multiplication
- Leaky RELU
 - \circ Alpha = 0.5
- Dropout
 - o Probability = 0.5

Fully Connected Layer 2:

- Matrix Multiplication
- Leaky RELU
 - \circ Alpha = 0.5

Fully Connected Layer 3:

• Matrix Multiplication

Model Training:

learning_rate = 0.0005 epochs = 100 batch_size = 128 L2 lambda = 0.0001

- Used softmax as well as L2 regularization to determine the loss
- Used AdamOptimizer for minimizing the loss