

DOMANDA DI RICERCA:

Come può uno stato migliorare l'aspettativa di vita dei cittadini?

Tra tutti i fattori che abbiamo selezionato, si vuole studiare quali di questi si relazionano effettivamente all'aspettativa di vita

PRESENTAZIONE DEL DATASET

Variabile risposta: Life expectancy Arco temporale: 15 anni Modello lineare: anno 2013

17 covariate I 19 osservazioni

Country	Year	Least developed	Life expectancy	Population	CO ₂ emission
Health expenditure	Electric power consumption	Forest area	GDP per capita	Smartphone access	Military expenditure
People using basic drinking water services	Obesity among adults	HIV/AIDS	Alcohol	Schooling	

Fonti: World Health Organization & Kaggle.com

RRPELN

VIF Smartphone

10,10052

MODELLO COMPLETO

```
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  5.038e+01 2.540e+00 19.836 < 2e-16 ***
                 -1.221e-09 1.916e-09 -0.637 0.525565
Population
CO2_Emission
                 -2.460e-01 9.675e-02 -2.542 0.012781 *
Health_Expenditure 4.285e-01 1.476e-01 2.904 0.004674 **
Energy_consumption
                 -9.370e-05 1.140e-04 -0.822 0.413521
Forest_Area 2.085e-02 1.326e-02 1.572 0.119501
GDP_Per_Capita 8.932e-05 2.486e-05 3.593 0.000541 ***
Smartphone
           6.857e-02 2.624e-02 2.613 0.010577 *
Military_expenditure 1.001e-01 7.741e-02 1.293 0.199593
water_services 1.336e-01 3.322e-02 4.021 0.000123 ***
Obesity
         3.144e-02 5.222e-02 0.602 0.548637
HIV_AIDS -2.267e+00 2.491e-01 -9.098 2.83e-14 ***
Alcohol
                 -1.052e-01 8.128e-02 -1.294 0.198963
Schooling
                 3.591e-01 1.739e-01 2.065 0.041902 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.322 on 87 degrees of freedom
Multiple R-squared: 0.9112, Adjusted R-squared: (0.8979)
F-statistic: 68.66 on 13 and 87 DF, p-value: < 2.2e-16
```

RICERCA DEL MODELLO OTTIMALE

Applicazione del comando leaps rispetto all' R^2_{adj} \rightarrow modello più semplice con R^2_{adj} solo poco diminuito

```
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 4.929e+01 2.030e+00 24.285 < 2e-16
Health_Expenditure 6.874e-01 1.212e-01 5.673 1.51e-07 ***
GDP_Per_Capita 6.624e-05 1.318e-05 5.025 2.36e-06 ***
water_services 1.438e-01 3.018e-02 4.767 6.73e-06 ***
         -2.393e+00 2.455e-01 -9.747 5.74e-16 ***
HIV_AIDS
Schooling
                 4.636e-01 1.583e-01 2.928 0.00426 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.451 on 95 degrees of freedom
Multiple R-squared: 0.8919, Adjusted R-squared: (0.8862)
F-statistic: 156.8 on 5 and 95 DF, p-value: < 2.2e-16
```


VERIFICA DELLE IPOTESI

CONTROLLO OMOSCHEDASTICITÀ

VERIFICA DELLE IPOTESI

CONTROLLO NORMALITÀ

Shapiro-Wilk normality test

data: g\$res

W = 0.98876, p-value = 0.5586

Il modello rispetta le ipotesi di omoschedasticità e normalità dei residui

Cross Validation / Previsione

Cross Validation

$mean(abs(\widehat{Y} - Y))$	1.490523
$max(abs(\widehat{Y}-Y))$	3.420973
$min(abs(\hat{Y} - Y))$	0.0434405

Modello fittato sull'80% delle osservazioni del dataset del 2013 e testato sul restante 20%

Avendo in mano anche i valori effettivi delle life expectancies siamo in grado di valutare in prima approssimazione la capacità del nostro modello di adattarsi ai dati e prevedere

$$\hat{Y} = Z\hat{\beta}$$

Previsione sui dati del 2014

$mean(abs(\hat{Y} - Y))$	1.872448
$max(abs(\widehat{Y}-Y))$	6.309184
$min(abs(\hat{Y} - Y))$	0.04131859

Modello fittato sulla totalità delle osservazioni risalenti al 2013 e testato sui dati del 2014

I coefficienti delle covariate e il loro peso sulla risposta

Intercetta	Aspettativa di vita
49,28721	73,15915

	Coefficienti	Medie	Coefficienti pesati
HealthEx	0,6873942	6,443577	4,429277457
GDPpc	6,62366E-05	22951,08	1,520202194
Water	0,1438436	89,85045	12,92441219
HIV.AIDS	-2,393166	0,5425743	,
	·	,	·
Schooling	0,4635524	13,58317	6,296511053

Analisi dell'andamento dei beta al variare del tempo dal 2000 al 2015

Evoluzione dei coefficienti dei beta per la media nel corso del tempo

Coefficienti moltiplicati per la media

Coefficienti moltiplicati per la media normalizzati

Analisi dei punti influenti

Studentizzati

Ghana	Namibia	Zimbabwe
-2.118797	-2.877445	2.217303

	Criterio di flag	
Student	abs(stud) > 2	
Cook	Cdist > 0.04210526	
Leva	Lev > 0.1188119	

Distanza di Cook

Kenya	Mozambique	Namibia	Nigeria S	South Africa	Togo	Zimbabwe
0.04723034	0.05342161	0.10357089	0.06186693	0.09809504	0.05064688	0.36714855

Puntileva

```
[,1]
                     [,2]
                                         [,3]
                                                              [,4]
                                                                                 [,5]
                                                                                  "Luxembourg"
"Angola"
                     "Brunei Darussalam" "Eritrea"
                                                              "Gabon"
"0.138321857577194" "0.132920654718085" "0.164052473574697"
                                                                                  "0.168729451716427"
                                                              "0.12247187213929"
[,6]
                                         [,8]
                                                              [,9]
                                                                                  [,10]
                     [,7]
"Mozambique"
                                                                                   "Sudan"
                     "Niger"
                                         "Qatar"
                                                              "South Africa"
"0.180519350713991" "0.173139762975819" "0.378900291661617" "0.194692638990759" "0.140700811927311"
[,11]
                     [,12]
"Yemen"
                     "Zimbabwe"
"0.131885466642916" "0.309424229695229"
```


Analisi dei punti influenti

Strumenti utilizzati:

- 1) Distanza di cook
- 2) Residui studentizzati
- 3) Punti leva

Analisi dei punti influenti

Studentizzati 66.7%

Ghana <u>Namibia Zimbabwe</u> -2.118797 -2.877445 2.217303

Percentuale dei paesi classificati come 'Least Developed' = 22.8%

Distanza di Cook 85.7%

Kenya	Mozambique	Namibia	Nigeria	South Africa	Togo	Zimbabwe
0.04723034	0.05342161	0.10357089	0.06186693	0.09809504	0.05064688	0.36714855

Puntileva 66.7%

```
[,1]
                     [,2]
                                                                                  [,5]
                                          [,3]
                                                              [,4]
"Angola"
                                                                                  "Luxembourg"
                     "Brunei Darussalam" "Eritrea"
                                                               "Gabon"
"0.138321857577194" "0.132920654718085"
                                                                                  "0.168729451716427"
                                         "0.164052473574697"
                                                              "0.12247187213929"
[,6]
                                          [,8]
                                                              [,9]
                                                                                   [,10]
                     [,7]
"Mozambique"
                                                                                   "Sudan"
                     "Niger"
                                          "Qatar"
                                                               "South Africa"
"0.180519350713991" "0.173139762975819" "0.378900291661617" "0.194692638990759"
                                                                                   "0.140700811927311"
[,11]
                     [,12]
"Yemen"
                     "Zimbabwe"
"0.131885466642916" "0.309424229695229"
```

Anova rispetto allo sviluppo dei paesi

Numerostià dei gruppi		
Least developed Developed		
23	78	

Anova rispetto allo sviluppo dei paesi

Shapiro test			
Least developed	Developed		
0.712593740	0.01383993		

Levene test				
F value		Pr(>F)		
	1.3815	0.2427		

```
Analysis of Variance Table

Response: Life_exp

Df Sum Sq Mean Sq F value Pr(>F)

Least_Developed 1 2866.6 2866.60 117.59 < 2.2e-16 ***

Residuals 99 2413.4 24.38
```

Regressione con covariata categorica

```
Call:
lm(formula = Life exp ~ HealthEx + GDPpp + water services + HIV.AIDS +
    Schooling + D + HealthEx * D + GDPpp * D + water_services *
    D + HIV.AIDS * D + Schooling * D, data = dataset)
Residuals:
   Min
            10 Median
                            30
                                   Max
-6.1075 -1.4267 0.0905 1.5099 4.3111
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  4.969e+01 5.627e+00 8.830 8.44e-14 ***
HealthEx
                  7.201e-01 1.468e-01 4.907 4.15e-06 ***
                                         4.325 3.97e-05 ***
GDPpp
                  6.300e-05 1.457e-05
water services
                  1.510e-01 6.595e-02
                                         2.289
                                                 0.0245 *
HIV.AIDS
                 -3.394e+00 5.738e-01 -5.915 6.06e-08 ***
Schooling
                  3.973e-01 2.027e-01
                                         1.960
                                                 0.0531 .
                                                 0.8927
D1
                  8.794e-01 6.503e+00
                                         0.135
HealthEx:D1
                 -7.124e-02 3.161e-01
                                        -0.225
                                                 0.8222
GDPpp:D1
                 -8.856e-05 1.816e-04
                                        -0.488
                                                 0.6270
water_services:D1 1.207e-02 8.037e-02
                                                 0.8810
                                         0.150
HIV.AIDS:D1
                  1.482e+00 6.572e-01
                                         2.255
                                                 0.0266 *
Schooling:D1
                 -2.361e-01 3.949e-01 -0.598
                                                 0.5515
```

```
Call:
lm(formula = Life_exp ~ HealthEx + GDPpp + water_services + HIV.AIDS +
    Schooling + D * HIV.AIDS, data = dataset)
Residuals:
            10 Median
                            30
    Min
                                   Max
-6.8263 -1.4442 -0.0269 1.5082 4.2746
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               5.137e+01 2.792e+00 18.395 < 2e-16 ***
HealthEx
               7.385e-01 1.209e-01 6.109 2.31e-08 ***
               6.536e-05 1.294e-05 5.050 2.20e-06 ***
GDPpp
water services 1.419e-01 3.260e-02 4.354 3.43e-05 ***
HIV.AIDS
              -3.453e+00 5.531e-01 -6.243 1.27e-08 ***
Schooling
               3.298e-01 1.681e-01
                                     1.962
                                             0.0528 .
              -1.693e+00 1.065e+00
                                             0.1153
D1
                                    -1.590
HIV.AIDS:D1
               1.417e+00 6.268e-01
                                    2.260
                                             0.0261 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.404 on 93 degrees of freedom
Multiple R-squared: 0.8982, Adjusted R-squared: 0.8905
```

F-statistic: 117.2 on 7 and 93 DF, p-value: < 2.2e-16

Conclusioni e interpretazioni

- → Di tutte le covariate quelle che più spiegano l'aspettativa di vita sono la spesa sanitaria e l'accesso l'acqua potabile. Inoltre si possono interpretare come le covariate più "causali"
- → Per quanto riguarda lo **schooling** e il **GDP** la correlazione è molto alta
- → I casi di HIV nel nostro modello potrebbero essere visti come indice delle malattie più in generale, infatti come abbiamo visto la diminuzione dei casi non ha comportato un effetto "pesato" inferiore sull'intercetta