SENSYLINK Microelectronics

(CT1711)

S-Wire Digital Temperature Sensor

CT1711 is a Low Cost Digital Temperature Sensor with \pm 0.1°C accuracy over 30°C to 45°C with S-Wire Interface.

It is ideally used in Human Body Temperature Measurement.

Table of Contents

DESCRIPTION	4
FEATURES	4
APPLICATIONS	4
PIN CONFIGURATIONS (TOP VIEW)	4
TYPICAL APPLICATION	4
PIN DESCRIPTION	5
FUNCTION BLOCK	F
	6
ABSOLUTE MAXIMUM RATINGS (NOTE 3)	
RECOMMENDED OPERATING CONDITIONS	
ELECTRICAL CHARACTERISTICS (NOTE 4)	
ELECTRICAL CHARACTERISTICS (NOTE 4)	
	9
1.1 DIGITAL TEMPERATURE DATA	11
1.2 INITIALIZATION [400US]	12
1.3 TEMPERATURE CONVERSION [120MS AT LEAST]	12
1.4 READ OUT TEMPERATURE DATA [19 BITS, 50US/BIT, 19 * 50US = 950US]	
2 S-WIRE COMMUNICATION PROTOCOL	14
3 SOFTWARE REFERENCE CODE	16
PACKAGE OUTLINE DIMENSIONS (MCLGA3X3-4)	18
RECOMMENDED PCB LAYOUT PATTERN (MCLGA3X3-4)	19

Feb. 2019 Rev. 1.1

\pm 0.1 $^{ m o}$ C Accuracy Digital Temperature Sensor with S-Wire Interface

Figures and Tables

Figure 1. Typical Application of CT1711Figure 2. CT1711 function block	
Figure 3. Repeat Reading Temperature Error	
Figure 5. Temperature Error vs. Temperature	
Figure 4. Temperature vs. Supply Voltage	g
Figure 6. Temperature Transient Response	9
Figure 7. CT1711 S-Wire Communication Protocol	
Diagram	. 10
Figure 8. Complete Reading Temperature Data	
Diagram	. 10
Figure 9 Initialization Timing Diagram	
Figure 10 bit gap during Read Timing Slot	. 13
Figure 11 Read Timing Slot Diagram	1.5

Table 1. 19-bit Temperature Data (including CCO,	
CC1)	11
Table 2. Temperature Data in Register	
	A.

Description

CT1711 is a low cost digital temperature sensor with $\pm 0.1^{\circ}$ C(Max.) accuracy over 30°C to 45°C Temperature data can be read out directly via S-Wire interface by MCU.

It includes a high precision band-gap circuit, a 17-bit analog to digital converter that can offer 0.00390625°C resolution, a calibration unit with non-volatile memory and a digital interface block.

The chip is calibrated with $\pm 0.1\,^{\circ}\text{C}(\text{Max.})$ accuracy over 30°C to 45°C range in factory before shipment to customers.

Metal Can package is specially designed to improve heat conduction performance from skin to sensor in human body measurement application.

Available Package: MCLGA3x3-4 package

Features

- Operation Voltage: 1.8V to 5.5V
- Operating Current: 36uA(Typ.) during Temperature Conversion:
- Average Current Consumption: 4.5uA(Typ.) with reading once temperature per second
- Standby Current: 10nA(Typ.), 30nA(Max. <50 °C)
- Temperature Conversion time: 120ms(Typ.)
- Temperature Accuracy: ±0.1°C(Max.) from 30°C to 45°C
- 17 bit ADC with 0.00390625°C resolution
- S-Wire Digital Interface (single-wire lite version)
- Compatible with ISO10993.5/10 (testing)
- Temperature Range: -50°C to 150°C

Applications

- General Temperature Monitor
- Human Body Temperature Monitor

PIN Configurations (Top View)

MCLGA3x3-4(package code MC)

Typical Application

Figure 1. Typical Application of CT1711

Pin Description

PIN No.	PIN Name	Description
1	VCC	Power supply input pin, it should connect a 100nF to 1.0uF ceramic cap to ground.
2	GND	Ground pin.
3	DIO	Digital interface data input and output pin, Generally it needs a pull-up resistor (4.7k) to VCC in most applications.
4	GNDM	Metal CAN ground pin, short to GND pin in application.

Function Block

Figure 2. CT1711 function block

Ordering Information

Order PN	Accuracy	Green ¹	Package	Marking ID ²	Packing	MPQ	Operation Temperature
CT1711MCR	±0.1°C	Halogen free	MCLGA3x3-4	1711 YWWAXX	Tape&Reel	3,000	-50°C~+150°C

Notes

- 1. Based on ROHS Y2012 spec, Halogen free covers lead free. So most package to free, instead of lead free.
- 2. Marking ID includes 2 rows of characters. In general, the 1st row of characters are part number, and the 2nd row of characters are date code plus production information.
 - Generally, date code is represented by 3 numbers. The number stands for year and work week information. e.g. 501stands for the first work week of year 2015;621 stands for the 21st work week of year 2016. Right after the date code information, the next 2-3 numbers or letters are specified to stands for supplier or
 - production location information.
 - For very small outline package, there's 4 digits to stands for product information and date code, first 2 digits represent product code, and the other 2 digits stands for work week

Absolute Maximum Ratings (Note 3)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC} to GND	-0.3 to 5.5	V
I/O pin Voltage	V _{IO} to GND	-0.3 to 5.5	V
Operation junction temperature	TJ	-50 to 150	oC.
Storage temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{LEAD}	260	°C
ESD MM	ESD_MM	500	V
ESD HBM	ESD _{HBM}	6000	V
ESD CDM	ESD _{CDM}	1000	V

Note 3

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at the "Absolute Maximum Ratings" conditions or any other conditions beyond those indicated under "Recommended Operating Conditions" is not recommended. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 2. Using 2oz dual layer (Top, Bottom) FR4 PCB with 4x4 mm² cooper as thermal PAD

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Supply Voltage	V _{cc}	1.8 ~ 5.5	V
Ambient Operation Temperature Range	T _A	-50 ~ +150	°C

Electrical Characteristics (Note 4)

Test Conditions: $V_{CC} = 3.3V$, $T_A = -50$ to $150^{\circ}C$ unless otherwise specified. All limits are 100% tested at $T_A = 25^{\circ}C$.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		1.8		5.5	V
Taman a rational A accompany	_	$T_A = 30^{\circ}C$ to $45^{\circ}C$, $V_{CC} = 2.0V$ to $5.0V$	-0.1		0.1	°C
Temperature Accuracy	T _{AC}	$T_A = 30^{\circ}\text{C}$ to 45°C , $V_{CC} = 2.0\text{V}$ to 5.0V $T_A = -50^{\circ}\text{C}$ to 150°C , $V_{CC} = 1.8\text{V}$ to 5.5V	-0.8		0.8	°C
Temperature Resolution		17-bit ADC		0.00390625) °C
Operating Current	loc	during Temperature conversion		36		uA
Shutdown Current	I _{SHUTDOWN}	Idle, not temperature conversion		10	30(1)	nA
Average Operating Current	I _{AOC}	1 time reading temperature per second	. 1	4.5		uA
Temperature Conversion time	t _{CON}	17-bit ADC		120		ms
Digital Interface						
Logic Input Capacitance	C _{IL}	I/O pin	V / '	20		pF
Logic Input High Voltage	V _{IH}	I/O pin	0.7*VCC		VCC	V
Logic Input Low Voltage	V _{IL}	I/O pin	0		0.2*VCC	V
Logic Input Current	I _{INL}	I/O pin	-1.0	9)	1.0	uA
Communication Timing		40				
S-Wire Communication Clock	T _{CLK}		18	20	22	us
Recovery time	t _{REC}		1.0			us
Time slot for "0" or "1"	t _{SLOT}		2*T _{CLK} + t _{REC}			us
Initialization Low Time	t _{INIT}		16*T _{CLK}			us
Host Read bit '0' Low Time	t _{RL}			2*T _{CLK}		us
Host Read bit '0' sampling Time	t _{HSR0}	0	2.5	1*T _{CLK}	2*T _{CLK}	us
Host Read bit '1' High Time	t _{RH}			2*T _{CLK}		us
Host Read bit '1' sampling Time	t _{HSR1}		3.0	2*T _{CLK}		us

⁽¹⁾ The max shutdown current is tested at the temperature <50°C.

Characteristics

Figure 3. Repeat Reading Temperature Error

Figure 4. Temperature Error vs. Temperature

Figure 5. Temperature vs. Supply Voltage

Figure 6. Temperature Transient Response

Part 1	Part 2 Temperature Conversion	Part 3 Read out Temperature Data		
Initialize the slave device by pulling-low DIO pin with 16*t _{CLK} , for example, 400us duration time.	Waiting for A-D Conversion for Temperature Measurement with t _{CON} time (120ms Typ.) at least, for example 150ms.	Then the chip will output 19 bits data, 1). 2 bits for conversion check; 2). 17 bits for temperature data.		

Figure 7. CT1711 S-Wire Communication Protocol Diagram

Figure 8. Complete Reading Temperature Data Diagram

*Noto:

- 1. During initialization, MCU has to pull-low DIO pin with 16*tCLK at least, for example 400us.
- 2. Temperature conversion, it will spend tCON (120ms Typ.) time for 17 bits temperature data, MCU has to wait, for example 150ms.
- 3. Temperature data is valid only if both two conversion check bits (bit18 and bit17) are 0.
- 4. 'S' means signature bit, to indicate if the temperature is positive or negative: for positive numbers S=0 and for negative numbers S=1
- 5. In above figure, temperature data is 37.5000oC.

1 Function Descriptions

The chip can sense temperature and convert it into digital data by a 17-bit ADC. The temperature resolution is 2⁻⁸ (0.00390625°C). The expressed temperature range is from -255°C to +255°C. S-Wire interface is the lite version of Single-Wire Bus digital interface. And its protocol is shown in Figure-7. Generally, one complete communication with host or reading temperature by host, like MCU, includes Part1, Part2 and Part3. And the time diagram is shown as Figure-8. In general, user can obtain the temperature by following below example operation procedure.

Function	Data transmission direction (host)	Data on line (LSB first)	Comments			
Step 1, Initialization & temperature conversion						
Initialization	Тх	Low pulse with 400us duration.	The host generate valid initialization low pulse			
	Idle	Release DIO pin and waiting for 120ms at least, for Example 150ms.	The device is busy for Temperature conversion			
Temperature conversion	Rx(option)	Checking CC0, CC1 bit	Host read the conversion check bit is '0', only if both CC0 and CC1 are '0', the temperature conversion is complete. or the temperature conversion has not been completed, still need to waiting till to required time of the temperature conversion (120ms in Typ.). It is ok to uncheck the conversion bits, just waiting for >120ms.			
		Step 2, read tempera	ture data from S-Wire			
Read temperature data	Rx	17 bits temperature data besides CC0 and CC1 bit	The chip sends 2 bits of conversion check (CC0, CC1) plus 17 bits of temperature data, with MSB first, then LSB.			
		The	ends			

1.1 Digital Temperature Data

The major function of the chip is to measure temperature. The A-to-D converter resolution of the sensor is 17 bit, corresponding to 0.00390625° C resolution. The CT1711 powers up in a low-power idle state. To initiate a temperature measurement and A-to-D conversion, the host has to issue an initialization and waiting for 120ms at least. After the conversion, the temperature data can be read out directly from DIO pin, total 19 bits (2 conversion check bits + 17 temperature data bits), and then the chip returns to idle state. The temperature data is stored in the temperature register as a 17-bit sign-extended two's complement format in degrees Celsius. The sign bits(S) indicate if the temperature is positive or negative: for positive numbers S = 0 and for negative numbers S = 1. Table 1 and Table 2 show examples of digital output data and the corresponding temperature ($^{\circ}$ C).

Table 1. 19-bit Temperature Data (including CC0, CC1)

Temperature (°C)	Digital Output (HEX)	Digital Output (BIN)
+150.99609375	0x0 96 FF	000, 1001, 0110, 1111, 1111
+127.96875	0x0 7F F8	000, 0111, 1111, 1111, 1000
+37.046875	0x0 25 0C	000, 0010, 0101, 0000, 1100
0.0000000	0x0 00 00	000, 0000, 0000, 0000, 0000
-10.234375	0x1 F5 C4	001, 1111, 0101, 1100, 0100
-15.6640625	0x1 F0 56	001, 1111, 0000, 0101, 0110

Table 2. Temperature Data in Register

BIT						Bit18	Bit17	Bit16
Define						CC0	CC1	S
Description						'0'	'0'	sign
BIT	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Define	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Temperature[°C]	128	64	32	16	8	4	2	1
BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Define	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸
Temperature[°C]	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	0.00390625

Here bit18, conversion check bit0 (CC0), bit17 is conversion check bit1 (CC1). Only if both conversion check bits (bit18 & bit17) are '0', temperature bits (bit16 to bit0) followed by are valid. bit16 means sign bit, '0' means positive temperature, '1' means negative temperature data.

1.2 Initialization [400us]

The host issues low pulse with $16*t_{CLK}$ (320us Typ.) at least, for example 400us duration, which will initialize the chip and make sure the chip is ready for temperature conversion. Once the host release the DIO pin (DIO pin will be pulled-high by external pull-up resistor), the chip will enter into temperature conversion status, which will spend $1*t_{CON}$ time (120ms Typ.). If initialization is not correct, for example the low pulse width is 100us, the chip will not enter into temperature conversion status, and be kept standby mode.

Figure 9 Initialization Timing Diagram

1.3 Temperature Conversion [120ms at least]

After the host issues a valid low pulse for initialization at DIO pin, the chip will enter into working mode for temperature conversion once the host release the DIO pin (DIO pin will be pulled-high by external pull-up resistor). Temperature conversion will last 1*t_{CON} time (120ms Typ.), for example 150ms. And it will not be interrupted until finishing temperature conversion and save the latest temperature data into register in 17-bit (Table-2). Also user can check the chip finish temperature conversion or not by verifying conversion check bits (CC0 and CC1). Only if both CC0 and CC1 bit are '0', it does mean the chip finish temperature conversion. If user wants to terminate temperature conversion, just sending an effective initialization signal at DIO pin again.

1.4 Read Out Temperature Data [19 bits, 50us/bit, 19 * 50us = 950us]

After finishing temperature conversion, the host can read out temperature data bit by bit. There is total 19 bits, start with 2 bits stand for conversion check (CC0, CC1), then followed by 17 bits stand for temperature

data. The detail timing diagram is shown as Figure-8 and Table-2. Each bit starts with falling edge pulled-low by the host, shown as Figure-11.

For bit '0', the chip will pull-low the DIO pin with 40us in typical duration time, then the chip will release DIO pin, DIO pin will be pulled-high by external resistor. For example, if one bit time cycle is 50us, which means $41us (2*T + t_{REC})$ of low time plus 9us of high time. If cycle is 60us, it includes $41us (2*T + t_{REC})$ of low time and 19us of high time.

For bit '1', the chip will NOT pull-low the DIO pin any more, DIO pin will be pulled-high by external resistor immediately after recovery time of falling edge, 1.0us in typical. For example, if one bit time cycle is 50us, which means 1us (t_{REC}) of low time plus 49us of high time. If cycle is 60us, it includes 1us (t_{REC}) of low time and 59us of high time.

Data transmission always starts from conversion check bits (CC0 in first, then CC1), then temperature data bits (from bit14 to bit0). Also it is allowed to get partial temperature data bits, if user does not need highest temperature resolution. For example, if user just needs 0.125°C resolution, bit4 to bit0 can be ignored. The host does NOT sending falling edge again at DIO pin after bit5 sampling.

There is no upper time limitation between any 2 bits (total 19 bits, including 2 conversion check bits, CC0 CC1 and 17 temperature data bits.), the bit gap time is flexible from zero to infinite. Which means it will take MCU interrupt with one bit cycle time (50us) continuously to read temperature data.

Figure 10 bit gap during Read Timing Slot

2 S-Wire Communication Protocol

S-Wire Protocol consists of a host and a salve device. In any case, CT1711 is used as slave device. The host could be a microcontroller or SoC. Discussion of S-Wire Protocol is divided into three parts: the hardware configuration, the operation sequence and S-Wire timing.

2.1 Hardware Configuration

S-Wire digital interface is the lite version of Single-wire, the major difference between them is that, there is only 1 host device and 1 slave device in S-Wire, multi salve devices are permitted in Single-Wire protocol. Both them have only one data line (DIO pin) physically. The slave device on the line needs to have opendrain or tri-state output, and CT1711's DIO pin uses an open-drain output.

CT1711 supports up to 22kbps communication rate. For other communication rate, please contact Sensylink sales. Pull-up resistor depends primarily on the distance between the host and CT1711. For example with the communication distance of less than 20cm, a single node and an independent power supply condition, CT1711 requires an external $4.7 k\Omega$ (typical) pull-up resistor. If the communication distance is greater than 30m, you need a 3.3k or smaller pull-up resistor. S-Wire line in idle state is high. It is ok to use another IO pin (GPIO-0) of host instead of VCC. Both GPIO pins can be set low once finished temperature conversion & reading, which can saved power consumption further.

	S-Wire	Single-Wire	
Host Device	1	1	
Slave Device	1 1 0	Multi	

2.2 Operation Sequence

To access CT1711 through S-Wire Line (DIO pin), the complete procedure is shown as previous Figure 7 and Figure 8, it includes:

- Part 1, Initialization.
- ◆ Part 2, Temperature Conversion.
- ◆ Part 3, Read out Temperature Data.

2.3 S-Wire Timing

It always begins with initialization for each reading temperature operation. After complete initialization successfully on S-Wire line, the next step is to waiting for temperature conversion. Once temperature conversion is finished, the host can read out temperature data bit by bit. The following section is to descript the bit transmission. The protocol defines read '0', and read '1' signal types. All these signals are synchronous signals issued by the host. During the Read Time Slot, the host reads the data from the slave device.

Read Time Slot

S-Wire device can only transmit data to the host after the host issues read time slots. After the host issues a read temperature command, a read time slot must be generated in order to read data from the S-Wire device. A complete read time slot is at least t_{SLOT} (2*T + t_{REC}), and requires at least 3us recovery time between two separate time slots. Each time slot is generated by the host to initiate falling edge and a low level period is required to be at least 1 μ s shown in Figure 11. Once the device detects an S-Wire line low, the device immediately sent bit "0" or "1" on the line. If S-Wire device sends "1", the line is pulled-up high

by a pull-up resistor after the short low period; if sent "0", then the line is keeping low for t_{DRV} (2*T in typical). After that the device releases the line from pull-up resistors and back to idle high. Therefore, the data issued by S-Wire device after read time slot at the beginning stay effective during time 2*T in typical. During the read time slots the host must release the line, and samples the line states at 1*T after the start of one bit, falling edge.

Figure 11 Read Timing Slot Diagram

3 Software Reference Code

Below is C++ reference code based on 51 MCU.

```
1. #include <stdio.h>
2. sbit DIOPORT = P0 ^ 0;
4. void CT1711_Init(void)
5. {
                              //pull-low DIO pin
6.
       DIOPORT = ∅;
7.
       delay500us();
                              //setup delay >400us
8.
       DIOPORT = 1;
                             //pull-high line
9. }
10.
11.bit CT1711_Read_Bit(void)
12.{
13.
       bit bi_data;
14.
           DIOPORT = ∅;
                             //pull-low DIO pin with 1us
15.
            _nop_();
16.
           DIOPORT = 1;
                             //then release DIO pin
                             //delay 20us
17.
           delay20us();
18.
           bi_data = DIOPORT;
                                   //Read 1-bit Data from DIO pin
19.
            _nop_();
20.
            DIOPORT = 1;
                              //then release DIO pin
21.
            delay30us();
                              //delay 30us
22.
       return bi_data;
23.}
24.
25.U8 CT1711_Read_Byte(void)
26.{
27.
       U8 byte = 0;
28.
       int i;
29.
       for(i = 8; i > 0; i--)
30.
31.
           byte <<= 1;
32.
           byte |= CT1711_Read_Bit();
33.
       return byte;
34.
35.}
36.
37. float CT1711_Read_Temp_Degree(void)
38.{
39.
       float temp = 0.00;
40.
       unsigned char bit_cc0, bit_cc1, bit_sign;
```



```
41.
       char temp byte0, temp byte1, temp byte2;
42.
       int temp val;
43.
       CT1711_Init();
                                      //Initialization
44.
       delay150ms();
                                      //delay 150ms
45.
       bit_cc0 = CT1711_Read_Bit(); //get CC0 bit;
46.
                                      //delay 10us
       delay10us();
       bit_cc1 = CT1711_Read_Bit(); //get CC1 bit;
47.
                                      //delay 10us
48.
       delay10us();
49.
       bit_cc0 = bit_cc0 & 0x01;
50.
       bit_cc1 = bit_cc1 & 0x01;
51.
       if((bit cc0 == 0 \times 00) && (bit cc1 == 0 \times 00))
52.
53.
          bit sign = CT1711 Read bit(); //get signature
54.
          delay10us();
                                         //delay 10us
          temp byte0 = CT1711_Read_Byte(); //Read 1st byte of Temperature, exclude
55.
   cc0,cc1 and S bit, MSB is 128oC, LSB is 1.0oC of this byte.
56.
          delay10us();
                            //delay 10us
57.
          temp byte1 = CT1711 Read Byte();
                                              //Then read 2nd Byte of Temperature, MSB is
   0.5oC, LSB bit stands for 0.00390625oC(1/256)
58.
          delay10us();
                            //delay 10us
          temp val = (temp byte0 << 8) + temp byte1;</pre>
59.
60.
          if(bit_sign == 0 \times 01)
61.
          {
62.
             temp_val =~ temp_val;
             temp val &= ØxFFFF;
63.
64.
             temp val++;
65.
                                temp val / 1000.00;
             temp = -3.90625
66.
           }
67.
           else
                                temp_val / 1000.00; }
68.
           \{ \text{temp} = 3.9062 \}
69.
          return temp;
70.
71.}
72. void main()
73. {
74.
       float CT1711_temp = 0.00;
75.
        Init io port();
76.
       while(1)
77.
78.
          CT1711_temp = CT1711_Read_Temp_Degree();
79.
          printf("Temperature is: %.8f\n", temp);
80.
       }
81. }
```


Package Outline Dimensions (MCLGA3x3-4)

MCLGA3x3-4 Unit (mm)

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min.	Max.	Min.	Max.
А	0.900	1.100	0.035	0.043
A1	0.200	0.300	0.008	0.012
A2	0.700	0.800	0.028	0.031
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
φS	2.700	2.900	0.106	0.114
φS1	0.550	0.650	0.022	0.026
φS2	0.150	0.250	0.006	0.010
b1	0.550	0.650	0.022	0.026
b2	0.550	0.650	0.022	0.026
e1	1.800YP.		0.072TYP	
e2	1.800YP.		0.072TYP	
L1	0.250	0.350	0.010	0.014
L2	0.250	0.350	0.010	0.014

Recommended PCB Layout Pattern (MCLGA3x3-4)

MCLGA3x3-4 Unit (mm)

Notes: All dimensions are in millimeters

SENSYLINK Microelectronics Co., Ltd

www.sensylink.com

IMPORTANT NOTICE

SENSYLINK Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. SENSYLINK Microelectronics does not assume any responsibility for use of any product, nor does SENSYLINK Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. SENSYLINK Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using SENSYLINK Microelectronics components. SENSYLINK Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

SENSYLINK Microelectronics Co., Ltd © 2019.