Definition 1.1 – Mean of n Measured Responses.

The mean of a sample *n* measured responses.

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Definition 1.2 – Variance of Sample Measurements

The variance of a sample of measurements.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

Definition 1.3 – Standard Deviation of Sample Measurements

Standard deviation of a sample measurements.

$$s = \sqrt{s^2}$$

Definition 2.7 - Permutations

Ordered arrangement of r distinct objects called a permutation.

$$P_r^n = \frac{n!}{(n-r)!}$$

Definition 2.8 - Combinations

The number of *combinations* of n objects taken r at a time

$$C_r^n = \frac{P_r^n}{r!} = \frac{n!}{r! (n-r)!}$$

Theorem 2.3 – n Objects into K Groups

The number of ways partitioning n distinct objects into k distinct groups containing n objects, respectively where each object appears in exactly one group and $\sum_{i=1}^{k} n_i = n$, is $N = \binom{n}{n_1 \, n_2 \, ... \, n_k} = \frac{n!}{n_1! \, n_2 \, !... \, n_k!}$

$$N = {n \choose n_1 \ n_2 \dots n_k} = \frac{n!}{n_1! \ n_2 ! \dots n_k!}$$

Definition 2.9 – A Given B

The conditional probability of an event A, given that an event B has occurred, is equal to

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definition 2.10 – Determining Independence

Two events A and B are said to be *independent* if any one of the following holds:

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Otherwise, the events are said to be dependent.

Theorem 2.5 - The Multiplicative Law of Probability

The probability of the intersection of two events A and B is

$$P(A \cap B) = P(A)P(B|A)$$

$$= P(B)P(A|B)$$

If A and B are independent, then

$$P(A \cap B) = P(A)P(B)$$

Theorem 2.6 - The Additive Law of Probability

The probability of the union of two events A and B is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If A and B are mutually exclusive events, $P(A \cap B) = 0$ and

$$P(A \cup B) = P(A) + P(B)$$

Theorem 2.7 – Determine A from \overline{A}

If A is an event, then

$$P(A) = 1 - P(\overline{A})$$

Definition 2.11 – Partition of S

For some positive integer k, let the sets $B_1B_2B_3..., B_k$ be such that

1.
$$S = B_1 \cup B_2 \cup ... \cup B_k$$

2.
$$B_i \cap B_j = \emptyset$$
, for $i \neq j$

Then the collection of sets $\{B_1B_2, ..., B_k\}$ is said to be a partition of S

Theorem 2.8

Assume that $\{B_1B_2, ..., B_k\}$ is a partition of S (see definition 2.11) such that $P(B_i) > 0$, for i = 1, 2, ..., k. Then for any event A

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

Theorem 2.9 - Bayes' Rule

Assume that $\{B_1B_2, ..., B_k\}$ is a partition of S (see definition 2.11) such that $P(B_i) > 0$, for i = 1, 2, ..., k. Then

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^k P(A|B_i)P(B_i)}$$

Bayes' Theorem

Bayes Theorem: For two events A and B in sample space S, with P(A) > 0 and P(B) > 0,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

If 0 < P(B) < 1, we may write by the *Theorem of Total Probability*.

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})}$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probability Mass Function

$$p(y) = P(Y = y)$$

Expected Value

Let Y be a discrete random variable with the probability function p(y). Then the *expected value* of Y, E(Y), is defined to be,

of Y,
$$E(Y)$$
, is defined to be,

$$E(Y) = \sum_{y \in Y} yp(y)$$

Theorem 3.2 – Binomial Distribution

Let Y be a discrete random variable with probability function p(y) and g(y) be a real-valued function of Y. Then the expected value of g(Y) Is given by,

$$\mathrm{E}[g(Y)] = \sum\nolimits_{all\ y} g(y) p(y)$$

Definition 3.5 – Expected Variance of a Random Variable

If Y is a random variable with mean $E(Y) = \mu$, the variance of a random varible Y is defined to be the expected value of $(Y - \mu)^2$. That is,

$$V(Y) = E[(Y - \mu)^2]$$

The Standard Deviation of Y

$$\sqrt{V[Y]}$$

Binomial Distribution

$$p(y) = P(Y = y) = \binom{n}{y} p^{y} q^{n-y}$$
 $y \in \{0, 1, 2, ..., n\}$

Theorem 3.7 – Binomial Distribution Expected Value and Variance

Let Y be a binomial random variable based on *n* trials and success probability *p*. Then, $\mu = E(Y) = np$ (Mean/Expected) $\sigma^2 = V(Y) = npq$ (Standard Deviation)

Geometric Distribution

$$p(y) = P(Y = y) = q^{y-1}p$$

Extra Geometric Distribution Formulas

A success occurs on or before the nth trial.

$$P(X \le n) = 1 - (1 - p)^n$$

A success occurs before the nth trial.

$$P(X < n) = 1 - (1 - p)^{n-1}$$

A success occurs on or after the nth trial.

$$P(X \ge n) = (1-p)^{n-1}$$

A success occurs after the nth trial.

$$P(X > n) = (1 - p)^n$$

Theorem 3.8 – Geometric Distribution Expected Value and Variance

If Y is a random variable with geometric distribution,

$$\mu = E(Y) = \frac{1}{p} \text{ and } \sigma^2 = V(Y) = \frac{1-p}{p^2}$$

Hypergeometric Distribution

$$p(y) = P(Y = y) = P(A) = \frac{n_A}{n_S} = \frac{\binom{r}{y} x \binom{N-r}{n-y}}{\binom{N}{n}}$$

Theorem 3.10 – Hypergeometric Distribution Expected Value and Variance

If Y is a random variable with hypergeometric distribution,

$$\mu = E(Y) = \frac{nr}{N}$$
 and $\sigma^2 = V(Y) = n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$

Negative Binomial Distribution

$$p(y) = {y-1 \choose r-1} p^r q^{y-r}$$

Theorem 3.9 – Negative Binomial Distribution Expected Value and Variance.

If Y is a random variable with negative binomial distribution,

$$\mu = E(Y) = \frac{r}{p} \text{ and } \sigma^2 = V(Y) = \left(\frac{r(1-p)}{p^2}\right)$$

Definition 3.11 – Poisson Distribution

A random variable Y is said to have Poisson probability distribution if and only if,

$$p(y) = \frac{\lambda^y}{y!} e^{-\lambda}, \quad y = 0, 1, 2, ..., \lambda > 0.$$

Theorem 3.11 – Poisson Distribution Expected Value and Variance

If Y is a random variable possessing a Poisson Distribution with parameter λ , then $\mu = E(Y) = \lambda$ and $\sigma^2 = V(Y) = \lambda$

Theorem 3.4 – Chebyshev's Theorem

Let Y be a random variable with mean μ and finite variance σ^2 . Then, for any constant k > 0,

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2} \text{ or } P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Definition 4.1 – Distribution Function of Y

Let Y denote any random variable. The distribution function of Y, denoted by F(y), is such that $F(y) = P(Y \le y) for - \infty < y < \infty$

Theorem 4.1. – Properties of a distribution function

If F(y) is a distribution function, then

- 1. $F(-\infty) = \lim_{y \to \infty} F(y) = 0$. 2. $F(\infty) = \lim_{y \to \infty} F(y) = 1$.
- 3. F(y) is a nondecreasing function of y. [If y_1 and y_2 are any values such that $y_1 < y_2$, then $F(y_1) < F(y_2)$.

Definition 4.2 – Random Variable with Distribution Function Continuity

A random variable Y with distribution function F(y) is said to be *continuous* if F(y) is continuous, for $-\infty < y < \infty$.

Definition 4.3 – Probability Density Function

Let F(y) be the distribution function for a continuous random Variable Y. Then f(y), given by

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

Wherever the derivative exists is called the *probability density function* for the random variable Y.

Theorem 4.2 – Properties of a Density Function

If f(y) is a density function for a continuous random variable, then

- 1. $f(y) \ge 0$ for all $y, -\infty < y < \infty$.
- $2. \int_{-\infty}^{\infty} f(y) dy = 1.$

Definition 4.4

Let Y denote a random variable. If $0 , the pth quantile of Y, is denoted by <math>\phi_p$, is the smallest value such that $P(Y \le \phi_p) = F(\phi_p) \ge p$. If Y the continuous, ϕ_p is the smallest value such that $F(\phi_p) = P(Y \le \phi_p) = p$. Some prefer to call ϕ_p the 100 pth percentile of Y.

Theorem 4.3

If the random variable Y had the density function f(y) and a < b, then the probability tat Y falls in the interval [a, b] is

P(a \le Y \le b) =
$$\int_{a}^{b} f(y)dy$$

Definition 4.5 – Expected Value of a Continuous Random Variable Y

The expected value of a continuous random variable Y is

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy,$$

provided that the integral exists.

Theorem 4.4 – Expected Value of g(Y) (Function)

Let g(Y) be a function of Y; then the expected value of g(Y) is given by

$$E[g(Y)] = \int_{-\infty}^{\infty} g(y)f(y)dy,$$

Provided that the integral exists.

Variance of Y

Once $E(Y^2)$ is determined you can find the variance by,

$$\sigma^2 = V(Y) = E(Y^2) - [E(Y)]^2$$

Definition 4.6 – Probability Density Function For Uniform Distribution

If $\theta_1 < \theta_2$, a random variable Y is said to have a continuous *uniform probability distribution* on the interval (θ_1, θ_2) if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \le y \le \theta_2, \\ 0, & elsewhere. \end{cases}$$

Theorem 4.6 – Expected Value and Variance of a Uniform Distribution

If $\theta_1 < \theta_2$ and Y is a random variable uniformly distributed on the interval (θ_1, θ_2) , then $\mu = E(Y) = \frac{\theta_1 + \theta_2}{2}$ and $\sigma^2 = V(Y) = \frac{(\theta_2 + \theta_1)}{12}$

Definition 5.1 – Bivariate Probability Function For Y_1 and Y_2

Let Y_1 and Y_2 be discrete random variables. The *joint* (or bivariate) probability function for Y_1 and Y_2 is given by

$$p(y_1, y_2) = P(p(Y_1 = y_1, Y_2 = y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty.$$

Theorem 5.1

If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$, then

- 1. $p(y_1, y_2) \ge 0$ for all y_1, y_2 .
- 2. $\sum_{y_1,y_2} p(y_1, y_2) = 1$, where the sum is over all values (y_1, y_2) that are assigned nonzero probabilities.

Definition 5.2

For any random variables Y_1 and Y_2 , the joint (bivariate) distribution function $F(y_1, y_2)$ is $F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$.

Definition 5.3

Let Y_1 and Y_2 be continuous random variables with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$, such that,

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1,$$

for all $-\infty < y_1 < \infty$, $-\infty < y_2 < \infty$, then Y_1 and Y_2 are said to be jointly continuous random variables. The function $f(y_1, y_2)$ is called the joint probability density function.

Theorem 5.2

If Y_1 and Y_2 are random variables with joint distribution function, $F(y_1, y_2)$, then, $F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0.$

$$2. F(\infty, \infty) = 1.$$

3. If
$$y_1^* \ge y_1$$
 and $y_2^* \ge y_2$ then

$$F(y_1^*, y_2^*) - F(y_1^*, y_2) - F(y_1, y_2^*) + F(y_1, y_2) \ge 0.$$

Theorem 5.2

If Y_1 and Y_2 are jointly continuous random variables with a joint density function given by $f(y_1, y_2)$, then

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$.

Definition 5.4

a. Let Y_1 and Y_2 be jointly discrete random variables with probability function $p(y_1, y_2)$. The marginal probability functions of Y_1 and Y_2 , respectively, are given by,

$$p_1(y_1) = \sum_{\text{all } y_2} p(y_1, y_2) \text{ and } p_2(y_2) = \sum_{\text{all } y_1} p(y_1, y_2).$$

b. Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$. Then the marginal density functions of Y_1 and Y_2 , respectively, are given by,

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
 and $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$.

Definition 5.5

If Y_1 and Y_2 are jointly discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively then the conditional discrete probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_2, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)},$$

Provided that $p_2(y_2) > 0$.

Definition 5.6

If Y_1 and Y_2 are jointly continuous random variables with joint density function $f(y_1, y_2)$, then the conditional distribution function Y_1 given $Y_2 = y_2$ is $F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2).$

Definition 5.7

Let Y_1 and Y_2 be jointly continuous random variables with joint density $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. For any y_2 such that $f_2(y_2) > 0$, the conditional density of Y_1 given $Y_2 = y_2$ is given by

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

And, for any y_1 such that $f_1(y_1) > 0$, the conditional density of Y_2 given $Y_1 = y_1$ is given by

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_2(y_2)}.$$

Definition 5.8

Let Y_1 have distribution function $F_1(y_1)$, Y_2 have distribution function $F_2(y_2)$, and Y_1 and Y_2 have joint distribution function $F(y_1, y_2)$. Then Y_1 and Y_2 are said to be *independent* if and only if

$$F(y_1, y_2) = F_1(y_1)F_2(y_2)$$

for every pair of real numbers (y_1, y_2) .

If Y_1 and Y_2 are not independent, they are said to be dependent.

Theorem 5.4

If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then Y_1 and Y_2 are independent if and only if

$$p(y_1, y_2) = p_1(y_1)p_2(y_2)$$

For all pairs of real numbers (y_1, y_2) .

If Y_1 and Y_2 are continuous random variables with joint density function $f(y_1, y_2)$ and marginal density functions $f_1(y_1)$ and $F_2(y_2)$, respectively, then Y_1 and Y_2 are independent if and only if

$$f(y_1, y_2) = f_1(y_1)f_2(y_2)$$

For all pairs of real numbers (y_1, y_2) .

Theorem 5.5

Let Y_1 and Y_2 have a joint density $f(y_1, y_2)$ that is positive If and only if $a \le y_1 \le b$ and $c \le y_2 \le d$, for constants a, b, c and d; and $f(y_1, y_2) = 0$ otherwise. Then Y_1 and Y_2 are independent random variables if and only if

$$f(y_1, y_2) = g(y_1)h(y_2)$$

Where $g(y_1)$ is a nonnegative function of y_1 alone and $h(y_2)$ is a nonnegative function of y_2 alone.