Day 5 , Tuesday Feb 4th

- · Exam 1 next Tuesday
- · Written HWI posted and due Tuesday

· Tacos & Tutoring L135 Wed Feb 5th

Day 5 Notes **Tuesday February 4th** *Review 1.4 Factoring* Quadratics and 2.2 Circles

1. Review Quadratics

In this section we will review how to factor quadratics.

Definition. Let a, b, and c be real numbers with $a \neq 0$. A quadratic equation in the variable x is an equation of the form

$$ax^2+bx+c=0$$

To solve a quadratic means to that the x value (s) that satisfy the equation. (x-1)(x-1) = 0

Examples:

, 4x2-10x+12=0 trinomial =) 3 terms

•
$$7x^2 + 3x = 0$$

Sinomial $\Rightarrow 2$ terms

Solving using the zero property and factoring

(1)
$$x^2 + 3x = 0$$

 $x = 0$
 $x = 0$
 $x = 0$

$$9=3^2$$
 perfect
 $5=?$ Squires
 $16=4^2$

ex:
$$(X+1)(X+1)=0$$

$$(X+1)^{2}=0$$
Sinomial

Squared

$$X+2X+1=(X+1)$$
Sinom
Source

Example 1. Solve the following quadratic equations.

$$(2) 2x(2x-7) = 0$$

$$3. x^2 - 5x + 6 = 0$$

4.
$$x^2 + 4x - 5 = 0$$

$$5. x^2 + 10x + 24 = 0$$

2x-7=0 =
$$(x=7/2)$$

2x-7=0 = $(x=7/2)$
2(0)(2-0-7) = $(x=7/2)$
2· $(x=7/2)$
2· $(x=7/2)$
2· $(x=7/2)$
2b) $(x+2)(x-1)=0$
 $(x+2)(x-1)=0$
 $(x+2)(x-1)=0$
 $(x+2)(x-1)=0$
 $(x+2)(x-1)=0$

(3)
$$2^{2} - 5x + 6 = 0$$

 $(x + 1)(x + 1) = 0$
 $(x - 3)(x - 2) = 0$?
 $(x^{2} - 2x - 3x + 6 = 0$
 $(x - 1)(x - 6) = 0$?

Solving quadratics using the Square Root Property

When we can bring the equation in the form $x^2 = k$, we can solve by square rooting both sides.

Example 2. Solve using the square root property.

5)
$$x^{2} + 10x + 24 = 0$$

 $(x + 4)(x + 6) = 0$
 $x = -4$
 $x = -4$

Solving quadratics by completing the square

We can manipulate the quadratic equation $ax^2 + bx + c = 0$ with $a \neq 0$ to write as the square of a binomial equal to a constant.

rewrite
$$ax^2 + bx + c = 0$$
 as
$$(x + something)^2 = constant$$
or
$$(x - something)^2 = constant$$

as ax2+5x =-C

2) Take half of coefficient

of x, square it,

and add to both sides

(b/2) adde of h sides

3) Factor the left hand side

Example 3. Solve by completing the square. 1) Rewrite ax2+bx+c=0

$$(1)x^2 - 3 = -10x$$

$$2. x^2 - 8x - 2 = 0$$

$$(3) -2x^2 - 3x - 5 = 0$$

(1)
$$x^{2} + 10x = 3$$

 $x^{2} + 10x + (\frac{10}{2})^{2} = 3 + (\frac{10}{2})^{2}$

$$(x+5)(x+5) = 28$$

(x+5)(x+5) = 28Solving quadratics by using the quadratic formula (x+5)(x+5) = 28 $(x+5)^2 = 28$ Solving quadratic formula

$$0 \times 2 + 6 \times + 6 = 0$$
, $0 \times 4 = 0$

$$X = \frac{-b \pm \sqrt{5^2 - 4 \text{ a.c.}}}{2a}$$

Example 4. Use quadratic formula to solve
$$x^2 - 6x = 3$$

$$x^2 - 6x - 3 = 0$$

$$x = -(-6) \pm \sqrt{(-6)^2 - 4(1)(-5)} = 6 \pm \sqrt{36 + 12} = 6 + \sqrt{43}$$

$$2 - 6 + \sqrt{43} = 6$$

(3)
$$-2x^{2} - 3x - 5 = 0$$
 | $-1/2$) solve by completing the square $x^{2} + \frac{3}{2}x + \frac{5}{2} = 0$ Step 0 make the coefficiant $\frac{3}{2}$ step 1: $x^{2} + \frac{3}{2}x = -\frac{3}{2}$ givioling by -2 step 2: $(\frac{5}{2})^{2} = (\frac{3}{2})^{2}$ = $(\frac{3}{2})^{2}$ = $(\frac{3}{2$

2)
$$x^{2} - 8x - 2 = 0$$
 Solve by completing the square

1) $x^{2} - 8x = 2$

2) $x^{2} - 8x + (-\frac{9}{2})^{2} = 2 + (-\frac{3}{2})^{2}$
 $x^{2} - 8x + 16 = 2 + 16$
 $(x - 4)(x - 4) = 18$
 $(x - 4)^{2} = 18$ / Square root both sides

 $x - 4 = \pm \sqrt{18}$
 $x - 4 = \pm \sqrt{2}$
 $x - 4 = \pm 3\sqrt{2}$
 $x - 4 = \pm 3\sqrt{2}$