Mid-sem Exam MA 3140 - Statistical Inference

Time Allowed: 45 Minutes Maximum Marks: 20

- **Q 1.** Let X_1, \ldots, X_n $(n \geq 2)$ be a r.s. from $U(0, \theta)$, $\theta \in \Theta = (0, \infty)$ is an unknown parameter. Among the estimators of θ , which are based on the MLE and belong to the class $\mathcal{D} = \{\delta_{\alpha}(\mathbf{X}) : \delta_{c}(\mathbf{X}) = cX_{(n)}, c > 0\}$, find the estimator having the smallest MSE, at each parametric point.
- **Q 2.** Let X_1, \ldots, X_n $(n \ge 2)$ be a r.s. from a population with mean μ and variance σ^2 .
 - (i) Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ if $\sum_{i=1}^{n} a_i = 1$.
 - (ii) Among all the unbiased estimators of the form (called linear unbiased estimators), find the one with minimum variance, and calculate the variance. $\boxed{2+3=5~\text{MARKS}}$
- **Q** 3. Let X_1, \ldots, X_n $(n \ge 2)$ be a r.s. from $N(0, \sigma^2)$.
 - (i) Find the CRLB for the variance of an unbiased estimator of σ .
 - (ii) Define $T_1 = \alpha \sum_{i=1}^n |X_i|$ and $T_2 = \beta (\sum X_i^2)^{1/2}$. Find α and β such that T_1 and T_2 are unbiased estimators of σ . Also, check whether any of these estimators attain CRLB.
 - (iii) Of the two estimators T_1 and T_2 , defined in (ii) above, which one is a better estimator? 2+5+3=10 MARKS