

DOCKET NO.: 274086US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Ralph LUNKWITZ, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP04/00706

INTERNATIONAL FILING DATE: January 28, 2004

FOR: METHOD FOR HYDROPHOBING LEATHER AND FURSKINS

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY	APPLICATION NO	DAY/MONTH/YEAR
Germany	103 06 748.5	17 February 2003
Germany	103 32 991.9	18 July 2003

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP04/00706. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon

Attorney of Record

Registration No. 24,618

Surinder Sachar

Registration No. 34,423

Corwin P. Umbach, Ph.D. Registration No. 40,211

Customer Number

22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03) BUND SREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 06 748.5

Anmeldetag:

17. Februar 2003

Anmelder/Inhaber:

BASF Aktiengesellschaft,

Ludwigshafen/DE

Bezeichnung:

Verfahren zur Hydrophobierung von Leder

und Pelzfellen

IPC:

C 14 C, C 08 L, C 09 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. Dezember 2003 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Ehert

Patentansprüche

5

10

20

- 1. Verfahren zur Hydrophobierung von Leder und Pelzfellen, dadurch gekennzeichnet, dass man Leder oder Pelzfelle vor, während oder nach der Nachgerbung mit einer oder mehreren Formulierungen behandelt, enthaltend 1 bis 30 Gew.-%, bezogen auf die Formulierung, eines Gemisches von Polysiloxanen, enthaltend
 - 10 bis 90 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-haltigen Polysiloxanen,
 - 90 bis 10 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-freien Polysiloxanen,
 - und 3 bis 25 Gew.-%, bezogen auf die Formulierung, mindestens eines Emulgators.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Carboxylgruppen-haltigen Polysiloxanen um solche Polysiloxane handelt, die Strukturelemente der Formeln I, II und optional III a und III b

COOH

$$A^1$$
 O
 Si
 O
 Si
 O
 R^1
 $R^$

- enthalten, in denen die Variablen wie folgt definiert sind:
- R¹ ist gleich oder verschieden und unabhängig voneinander Wasserstoff, Hydroxyl, C₁-C₄-Alkyl, C₆-C₁₄-Aryl, C₁-C₄-Alkoxy, Amino, Mono- C₁-C₄-Alkylamino, Di-C₁-C₄-Alkylamino, oder Z-A-COOH;
- A gleich oder verschieden und lineares oder verzweigtes C₅-C₂₅-Alkylen, Z eine direkte Bindung, Sauerstoff oder eine Amino- Carbonyl-, Amido- oder Estergruppe bedeutet.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Formulierung 10 bis 70 Gew.-%, bezogen auf die Formulierung, mindestens einer weiteren hydrophoben Verbindung enthält.

25

- 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei mindestens einem Emulgator um eine N-acylierte Aminosäure handelt.
- 5 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der weiteren hydrophoben Verbindung um eine Kombination von mindestens einem natürlichen, bei Zimmertemperatur festen oder flüssigen Triglycerid und einem Paraffingemisch handelt.
- 10 6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Behandlung bei pH-Werten im Bereich von 4 bis 9 durchführt.
 - 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Behandlung bei Temperaturen im Bereich von 20 bis 65°C durchführt.
 - 8. Leder, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 7.
- Verwendung von Leder nach Anspruch 8 zur Herstellung von Bekleidungs stücken, Möbeln oder Autoteilen.
 - 10. Pelzfelle, hergestellt nach einem der Ansprüche 1 bis 7.
 - Formulierungen, enthaltend

1 bis 20 Gew.-%, bezogen auf die Formulierung, eines Gemisches von Polysiloxanen, enthaltend

10 bis 90 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-haltigen Polysiloxanen, 90 bis 10 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-freien Polysiloxanen,

3 bis 25 Gew.-%, bezogen auf die Formulierung, mindestens eines Emulgators.

12. Formulierungen nach Anspruch 11, dadurch gekennzeichnet, dass es sich bei den Carboxylgruppen-haltigen Polysiloxanen um solche Polysiloxane handelt, welche die Strukturelemente der Formeln I, II und optional III a und III b enthalten.

35

- 13. Formulierungen nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass sie 10 bis 70 Gew.-%, bezogen auf die Formulierung, mindestens einer weiteren hydrophoben Verbindung enthalten.
- 5 14. Formulierungen nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass es sich bei weiteren hydrophoben Verbindungen um eine Kombination von mindestens einem natürlichen, bei Zimmertemperatur festen oder flüssigen Triglycerid und einem Paraffingemisch handelt.
- 10 15. Verfahren zur Herstellung von Formulierungen nach einem der Ansprüche 10 bis 13 durch Mischen der Komponenten Carboxylgruppen-freies Polysiloxan, Carboxylgruppen-haltiges Polysiloxan und einem oder mehrerer Emulgatoren.

Verfahren zur Hydrophobierung von Leder und Pelzfellen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Hydrophobierung von Leder und Pelzfellen, dadurch gekennzeichnet, dass man Leder oder Pelzfelle vor, während oder nach der Nachgerbung mit einer oder mehreren Formulierungen behandelt, enthaltend 1 bis 30 Gew.-%, bezogen auf die Formulierung, eines Gemisches von Polysiloxanen, enthaltend

10

10 bis 90 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-haltigen Polysiloxanen,

90 bis 10 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-freien Polysiloxanen,

und 3 bis 25 Gew.-%, bezogen auf die Formulierung, mindestens eines Emulgators.

Aus EP 0 213 480 B ist ein Verfahren zur Hydrophobierung von Leder und Pelzfellen 20 bekannt, bei dem man eine wässrige Emulsion eines Silikonöls oder ein wasserfreies Gemisch aus einem Silikonöl und eines Alkanolaminsalzes einer Aminosäure vor, während oder nach der Nachgerbung auf Leder oder Pelze einwirken lässt. Als Polysiloxane sind beispielsweise genannt: Dimethylpolysiloxan, bei dem 3 % der Methylgruppen durch Mercaptopropyl ersetzt sind (Beispiele 1 bis 7), Dimethylpolysiloxan mit einer Viskosität von 80 bis 110 mPa·s, Phenylmethylpolysiloxane mit einer Viskosität von 85 bis 120 mPa·s, sowie Dimethylpolysiloxane mit durchschnittlich 2 bis 10 Carboxylgruppen pro Molekül. Die Gebrauchseigenschaften derartiger Hydrophobierzubereitungen lassen sich jedoch noch verbessern. Auch lassen sich die mit Hilfe der offenbarten Polysiloxane hergestellten Leder in einigen Fällen noch hinsichtlich ihrer Gebrauchseigenschaften verbessern.

35

25

Aus WO 95/22627 ist ein Verfahren zur Hydrophobierung von Leder und Pelzfellen unter Verwendung von carboxylgruppenhaltigen Polysiloxanen in wässriger Emulsion bekannt, bei denen kammartig verzweigte Polysiloxane eingesetzt werden, welche die Formel A haben können:

5 .

30

Dabei können die Struktureinheiten beispielsweise statistisch verteilt sein. Die Variablen sind wie folgt definiert:

R ist gleich oder verschieden und unabhängig voneinander Wasserstoff, Hydroxyl, C₁-C₄-Alkyl, Phenyl, C₁-C₄-Alkoxy, Amino, Mono- oder Di-C₁-C₄-Amino, Chlor oder Fluor, wobei an den Kettenenden jeweils auch ein Rest R für die Gruppierung Z-A-COOH stehen kann;

A eine lineare oder verzweigte C₅-C₂₅-Alkylengruppe bedeutet, Z eine direkte Bindung, ein Sauerstoffatom oder eine Amino- Carbonyl-, Amido- oder Estergruppe bedeutet.

Pro Molekül sind im Durchschnitt vorzugsweise 2,5 bis 15 Carboxylgruppen vorhanden 15 (Seite 4, Zeile 17).

Mit Hilfe derartiger kammartiger Polysiloxane behandelte Leder und Pelzfelle weisen im Allgemeinen eine sehr gute Hydrophobie auf.

Aus WO 98/04748 ist ein Verfahren zum Nachgerben von mit polymeren Gerbstoffen und gegebenenfalls Aldehydgerbstoffen hergestellten Ledern bekannt, die mit Polymergerbstoffen und mit kammartigen Polysiloxanen der oben bezeichneten Formel Abehandelt werden.

Aus EP-A 1 087 021 ist bekannt, dass Lederbehandlungsmittel, enthaltend eine Kombination aus einem mit Carbonsäure- oder Carbonsäureanhydrid-Gruppen an α,ω -Position substituierte Polysiloxane, wobei die Carboxylgruppen des Polysiloxans in neutralisierter Form vorliegen, mit bestimmten amphiphilen Polymeren, einem Emulgator und einem Öl oder Wachs, als Lederbehandlungsmittel geeignet sind. Mit Hilfe der offenbarten Kombinationsprodukte wurden volle und weiche Leder hergestellt, die gut waschbar waren.

Es wird jedoch beobachtet, dass nach den vorstehend zitierten Schriften erhaltene Leder und Pelzfelle in vielen Fällen eine unerwünscht unegale Färbung aufweisen. Außerdem ist der hohe Preis der kammartig verzweigten Polysiloxane als nachteilig zu betrachten.

BASF Aktieng Schaft

Es bestand also die Aufgabe, ein Verfahren zur Herstellung von Leder und Pelzfellen bereitzustellen, welches die oben aufgeführten Nachteile nicht aufweist. Weiterhin bestand die Aufgabe, Leder mit vorteilhaften Anwendungseigenschaften bereit zu stellen. Weiterhin bestand die Aufgabe, neue Formulierungen mit vorteilhaften Anwendungseigenschaften bereit zu stellen.

Demgemäß wurde eingangs definiertes Verfahren gefunden. Erfindungsgemäß behandelt man Leder vor, während oder nach der Nachgerbung mit einer Formulierung.

10

^{..}5

Mindestens eine im erfindungsgemäßen Verfahren eingesetzte Formulierung enthält 1 bis 30 Gew.-%, bevorzugt 5 bis 20, besonders bevorzugt 7 bis 12,5 Gew.-%, bezogen auf das Gewicht der Formulierung, eines Gemisches aus zwei oder mehr Polysiloxanen.

10 bis 90 Gew.-%, bezogen auf das Gemisch, der in mindestens einer Formulierung enthaltenen Polysiloxane sind Carboxylgruppen-haltige Polysiloxane.

In einer Ausführungsform handelt es sich bei Carboxylgruppen-haltigen Polysiloxanen 20 um solche, die Strukturelemente der Formeln I und II und optional Strukturelemente III a und/oder III b enthalten.

Die oben bezeichneten Strukturelemente sind jeweils so angeordnet, dass Si-O-Si-O-Ketten gebildet werden. Die Bildung von Si-Si-Gruppen ist theoretisch möglich, spielt aber in den meisten Fällen eine untergeordnete Rolle.

In den Formeln I, II, III a und III b sind die Variablen wie folgt definiert:

25

R¹ ist gleich oder verschieden und unabhängig voneinander Wasserstoff,

Hydroxyl,

C₁-C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl; insbesondere Methyl;

C₆-C₁₄-Aryl, beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2-Anthryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und 9-Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevorzugt Phenyl; C₁-C₄-Alkoxy, wie Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy, sec.-Butoxy, tert.-Butoxy;

Amino,

40 Mono-C₁-C₄-Alkylamino, beispielsweise -NHCH₃, -NHC₂H₅, -NH(CH₂)₂CH₃,

-NH(CH₂)₃CH₃, -NH-CH(CH₃)₂, NHC(CH₃)₃; Di-C₁-C₄-Alkylamino, -N(CH₃)₂, -N(C₂H₅)₂, -N(CH₃)(C₂H₅), -N[(CH₂)₂CH₃]₂, -N(CH₃)CH(CH₃)₂, oder Z-A-COOH.

5

In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind alle R¹ gleich und jeweils Methyl.

In einer anderen bevorzugten Ausführungsform sind die Strukturelemente I jeweils gleich, wobei in I jeweils ein R¹ gleich Methyl und das andere R¹ Phenyl ist.

In einer Ausführungsform der vorliegenden Erfindung sind die Strukturelemente der Formel III a ausgewählt aus den folgenden Gruppen: Si(CH₃)₃, Si(CH₃)₂C₆H₅, Si(CH₃)₂OH, Si(CH₃)C₆H₅OH.

A¹ gleich oder verschieden und lineares oder verzweigtes C_5 - C_{25} -Alkylen, unsubstituiert oder substituiert mit einem oder mehreren C_1 - C_4 -Alkyl oder Phenyl, beispielsweise -(CH_2)₅-, -(CH_2)₆-, -(CH_2)₇-, -(CH_2)₈-, -(CH_2)₉-, -(CH_2)₁₀-, -(CH_2)₁₁-, -(CH_2)₁₂-, -(CH_2)₁₃-, -(CH_2)₁₄-, - CH_2 - $CH_$

-CH(C₆H₅)-CH₂-CH₂-CH₂-CH(CH₃)-; vorzugsweise -(CH₂)₈-, -(CH₂)₉-, -(CH₂)₁₀-, -(CH₂)₁₁-, -(CH₂)₁₂-; wobei C₅-C₂₅-Alkylen durch 1 bis 8 nicht direkt miteinander verbundene O-Atome un' terbrochen sein kann.

Z¹ bedeutet
 eine direkte Bindung,
 Sauerstoff
 Aminogruppe der Formel -NR² Carbonylgruppe,
 Amidogruppe der Formel -NR²-CO- oder -CO-NR²- oder
 Estergruppe der Formel CO-O oder O-CO;

R² ist gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff,

35 C₁-C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl.

Polysiloxane, welche die Strukturelemente der allgemeinen Formeln I, II sowie optional III a und/oder III b enthalten, können linear aufgebaut sein oder cyclische oder verzweigte Struktur haben. Verzweigte Polysiloxane, welche die Strukturelemente I, II

25

30

5

sowie optional III a und/oder III b enthalten, enthalten im Allgemeinen zusätzlich Strukturelemente beispielsweise der Formel IV a oder IV b

IV a

IV b

in denen die Variablen wie oben stehend definiert sind. Cyclische unverzweigte Polysiloxane, welche die Strukturelemente der allgemeinen Formel I, II enthalten, enthalten üblicherweise keine Strukturelemente der Formeln III a und III b.

Die Strukturelemente I, II, optional IV a und IV b können alternierend, blockweise und bevorzugt statistisch in Carboxylgruppen-haltigen Polysiloxanmolekülen verteilt sein.

In einer Ausführungsform der vorliegenden Erfindung enthalten Carboxylgruppenhaltige Polysiloxane im Bereich von 1 bis 50, bevorzugt 2 bis 25, besonders bevorzugt im Mittel 2,5 bis 15 Carboxylgruppen pro Molekül.

Üblicherweise liegt das Molekulargewicht M_w der erfindungsgemäß eingesetzten Carboxylgruppen-haltigen Polysiloxane mit den Strukturelementen I, II, optional III a, III b, IV a und IV b im Bereich von 5000 g bis 150.000 g/mol, bevorzugt 10000 bis 100.000 g/mol.

Die Molekulargewichtsbestimmung kann durch dem Fachmann bekannte Methoden durchgeführt werden, beispielsweise durch Lichtstreuungsmethoden oder Viskositätsbestimmungen.

In einer Ausführungsform der vorliegenden Erfindung sind alle oder zumindest ein gewisser Anteil, beispielsweise ein Drittel oder die Hälfte, der Carboxylgruppen in den Carboxylgruppen-haltigen Polysiloxanen neutralisiert. Zur Neutralisation eignen sich beispielsweise basische Salze wie Hydroxide oder Carbonate der Alkalimetalle wie beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise Na oder K. Zur Neutralisation eignen sich weite beispielsweise nach der Alkalimetalle wie

beispielsweise Na oder K. Zur Neutralisation eignen sich weiterhin Ammoniak, Alkylamine wie beispielsweise Methylamin, Dimethylamin, Trimethylamin, Ethylamin,

Diethylamin, Triethylamin, Ethylendiamin, Alkanolamine wie beispielsweise Ethanolamin, Diethanolamin, Triethanolamin, N-Methyl-Ethanolamin, N-Methyldiethanolamin oder N-(n-Butyl)-diethanolamin.

Die erfindungsgemäß eingesetzten Gemische enthalten beispielsweise 10 bis .5 90 Gew.-% Carboxylgruppen-haltiges Polysiloxan, bevorzugt 40 bis 60 Gew.-% und besonders bevorzugt etwa 50 Gew.-% Carboxylgruppen-haltiges Polysiloxan.

Die erfindungsgemäß eingesetzten Gemische enthalten weiterhin Polysiloxane, die keine Carboxylgruppen enthalten. Derartige Polysiloxane enthalten im Allgemeinen 10 Strukturelemente der oben bezeichneten Formeln I, optional III a, III b und IV a, wobei die Variablen wie oben stehend definiert sind. Bevorzugt sind erfindungsgemäß eingesetzte Carboxylgruppen-freie Polysiloxane aus Strukturelementen der oben bezeichneten Formeln I, optional III a, III b und IV a aufgebaut.

Besonders bevorzugt eingesetzte Carboxylgruppen-freie Polysiloxane sind Poly(dimethyl)siloxane und Poly(phenylmethyl)siloxane.

Carboxylgruppen-freie Polysiloxane, welche die Strukturelemente der allgemeinen Formeln I sowie optional III a, III b und IV a enthalten, können linear aufgebaut sein oder cyclische oder verzweigte Struktur haben. Verzweigte Carboxylgruppen-freie Polysiloxane, welche die Strukturelemente I sowie optional III a und/oder III b enthalten, enthalten im Allgemeinen zusätzlich Strukturelemente beispielsweise der Formel IV a. Cyclische unverzweigte Carboxylgruppen-freie Polysiloxane, welche die Strukturelemente der allgemeinen Formel I enthalten, enthalten üblicherweise keine Strukturelemente der Formeln III a und III b.

20

In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind alle R¹ in Carboxylgruppen-freien Polysiloxanen gleich und jeweils Methyl.

In einer anderen bevorzugten Ausführungsform sind die Strukturelemente I in Carboxylgruppen-freien Polysiloxanen jeweils gleich, wobei in I jeweils ein R¹ gleich Methyl und das andere R1 Phenyl ist.

In einer Ausführungsform der vorliegenden Erfindung sind die Strukturelemente der Formel III a in Carboxylgruppen-freien Polysiloxanen ausgewählt aus den folgenden Gruppen: Si(CH₃)₃, Si(CH₃)₂C₆H₅, Si(CH₃)₂OH, Si(CH₃)C₆H₅OH.

Üblicherweise liegt das Molekulargewicht M_w der erfindungsgemäß eingesetzten Carboxylgruppen-freien Polysiloxane mit den Strukturelementen I, II, optional III a, III b und IV a im Bereich von 500 g bis 150.000 g/mol, bevorzugt bis 10.000 g/mol.

- In einer bevorzugten Ausführungsform der vorliegenden Erfindung wählt man Carboxylgruppen-haltiges und Carboxylgruppen-freies Polysiloxan so aus, dass das Molekulargewicht des Carboxylgruppen-haltigen Polysiloxans höher ist als das Molekulargewicht des Carboxylgruppen-freien Polysiloxans.
- Die erfindungsgemäß eingesetzten Gemische enthalten beispielsweise 10 bis 90 Gew.-% Carboxylgruppen-freies Polysiloxan, bevorzugt 40 bis 60 Gew.-% und besonders bevorzugt etwa 50 Gew.-% Carboxylgruppen-freies Polysiloxan.

Als Emulgatoren können im Prinzip alle in wässrigen Systemen oberflächenaktiven
Verbindungen eingesetzt werden, die nichtionischer, anionischer, kationischer oder auch zwitterionischer Natur sein können.

Besonders gut geeignete Emulgatoren sind N-acylierte Aminosäurederivate beispielsweise der Formel V

in denen die Variablen wie folgt definiert sind:

zugt Phenyl;

25

R³ Wasserstoff,
 C₁-C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, insbesondere Methyl;
 C₆-C₁₄-Aryl, beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2-Anthryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und
 9-Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevor-

35

8

R⁴ C₁-C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl; insbesondere Methyl;

Die Gruppe CO-R⁵ ist üblicherweise von gesättigten oder ungesättigten Fettsäuren abgeleitet. Unter gesättigten Fettsäuren sind Carbonsäuren mit C₉-C₂₀-Alkyl-gruppen zu verstehen, die linear linear oder verzweigt sein können, substituiert oder unsubstituiert. R⁵ kann beispielsweise sein: n-Nonyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Pentadecyl, n-Octadecyl, n-Eicosyl.

10 CO-R⁵ kann von einer ungesättigten Fettsäure mit 9 bis 20 C-Atomen und einer bis 5 C-C-Doppelbindungen abgeleitet sein, wobei die C-C-Doppelbindungen beispielsweise isoliert oder allylisch sein können, beispielsweise der Acylrest der Linolsäure, der Linolensäure, und ganz besonders bevorzugt der Ölsäure.

In einer Ausführungsform der vorliegenden Erfindung sind alle oder zumindest ein gewisser Anteil, beispielsweise ein Drittel oder die Hälfte, der Carboxylgruppen in als Emulgatoren eingesetzten N-acylierten Aminosäurederivaten neutralisiert. Zur Neutralisation eignen sich beispielsweise basische Salze wie Hydroxide oder Carbonate der Alkalimetalle wie beispielsweise Na oder K. Zur Neutralisation eignen sich weiterhin Ammoniak, Alkylamine wie beispielsweise Methylamin, Dimethylamin, Trimethylamin, Ethylamin, Diethylamin, Triethylamin, Ethylendiamin, und ganz besonders Alkanolamine wie beispielsweise Ethanolamin, Diethanolamin, Triethanolamin, N-Methylethanolamin, N-Methyldiethanolamin oder N-(n-Butyl)-diethanolamin.

Als beispielhafte Vertreter für Verbindungen der Formel V seien N-Oleylsarcosin, N-Stearylsarcosin, N-Lauroylsarcosin und N-Isononanoylarcosin sowie die jeweiligen Ethanolammoniumsalze, Diethanolammoniumsalze sowie N-Methyldiethanolammoniumsalze genannt.

Vorzugsweise ist die bzw. sind die erfindungsgemäß eingesetzten Formulierungen wässrig.

In einer Ausführungsform der vorliegenden Erfindung enthält mindestens eine erfindungsgemäß eingesetzte Formulierung mindestens eine weitere hydrophobe Verbindung. Bei mindestens einer weiteren hydrophoben Verbindung handelt es sich dabei um eine Verbindung auf Kohlenstoffbasis, beispielsweise natürliches oder synthetisches Wachs, natives oder synthetisches Öl oder natives oder synthetisches Fett.

Als Beispiele für natürliche Wachse seien Bienenwachs, Korkwachs, Montanwachse oder Carnaúbawachs genannt.

25

35

40

C

Als Beispiele für synthetische Wachse seien Polyethylenwachse oder Ethylencopolymerwachse genannt, wie sie beispielsweise durch radikalische Polymerisation von Ethylen oder radikalische Copolymerisation von Ethylen mit beispielsweise (Meth)acrylsäure oder durch Ziegler-Natta-Katalyse erhältlich sind. Weiterhin seien Polyisobutylenwachse genannt. Weiterhin seien Paraffingemische genannt; darunter sind Gemische von Kohlenwasserstoffen zu verstehen, die 12 oder mehr Kohlenstoffatome aufweisen und üblicherweise einen Schmelzpunkt im Bereich von 25 bis 45 °C aufweisen. Derartige Paraffingemische können beispielsweise in Raffinerien oder Crackern anfallen und sind dem Fachmann als Paraffingatsch und Sasolwachse bekannt. Ein weiteres Beispiel für synthetische Wachse sind Montanesterwachse.

Als Beispiele für natürliche Öle seien bei Zimmertemperatur flüssige Triglyceride genannt, beispielsweise Fischöl, Rinderklauenöl, Olivenöl, Baumwollsamenöl, Rizinusöl, Sonnenblumenöl und Erdnussöl genannt.

Als Beispiele für synthetische Öle seien Weißöl, Paraffinöl, funktionalisierte Paraffine wie beispielsweise chlorierte oder sulfochlorierte Paraffine oder auch Polyalkylenglykole wie beispielsweise Polyethylenglykol genannt.

Als Beispiele für natürliche Fette seien bei Zimmertemperatur feste native Triglyceride genannt wie beispielsweise Lanolin, Schellackwachs sowie deren Gemische.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei der weiteren hydrophoben Verbindung um mindestens ein natives Triglycerid.

In einer weiteren bevorzugten Ausführungsform setzt man eine Kombination aus mindestens einem bei Zimmertemperatur festen oder flüssigen nativen Triglycerid sowie einem Paraffingemisch mit einem Schmelzpunkt im Bereich von 25 bis 40°C ein. Das Mengenverhältnis ist an sich unkritisch, geeignet sind Gewichtsverhältnisse natives Triglycerid: Paraffingemisch im Bereich von 10:1 bis 1:10.

Erfindungsgemäß kann man etwa 10 bis 70, bevorzugt 20 bis 40 Gew.-% einer oder mehrerer weiterer hydrophober Verbindungen, bezogen auf die Formulierung, einsetzen.

Zur Durchführung des erfindungsgemäßen Verfahrens behandelt man Leder oder Pelzfelle in einer Flotte vor, während oder nach der Nachgerbung mit den erfindungsgemäß eingesetzten Formulierungen. Die erfindungsgemäße Behandlung kann einmal oder wiederholt durchgeführt werden. Die zu behandelnden Leder können nach beliebigen Methoden hergestellt worden sein, beispielsweise durch Mineralgerbung, insbesondere

10

Chromgerbung, oder durch Polymergerbung, Gerbung mit Syntanen, Harzgerbung, Gerbung mit vegetabilen Gerbstoffen oder auch Gerbung mit Kombinationen aus den vorgenannten Gerbstoffen.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird mindestens eine erfindungsgemäße Formulierung in einer oder mehreren Portionen zu dem zu behandelnden Leder oder den zu behandelnden Pelzen gegeben. Diese Zugabe kann in einer wässrigen Flotte geschehen. Vorzugsweise kann die Flottenlänge 50 bis 2000 Gew.-%, bevorzugt 100 bis 400 Gew.-% betragen, bezogen auf das Falzgewicht der Leder bzw. das Nassgewicht der Pelzfelle.

In einer Ausführungsform des erfindungsgemäßen Verfahrens gibt man die Komponenten Carboxylgruppen-haltiges Polysiloxan, Carboxylgruppen-freies Polysiloxan und Emulgator getrennt zu Leder und/oder Leder und Flotte und stellt die erfindungsgemäße Formulierung in situ her.

Das erfindungsgemäße Verfahren führt man im Allgemeinen so durch, dass man das zu behandelnde Leder bzw. die zu behandelnden Pelzfelle in geeigneten Gefäßen, beispielsweise in Fässern, insbesondere in drehbaren Fässern mit Einbauten, walkt. Auch andere dem Fachmann bekannte Methoden zur Durchmischung sind möglich.

Als Temperatur für das erfindungsgemäße Verfahren kann man Temperaturen im Bereich von 20 bis 65°C, bevorzugt 30 bis 60°C wählen.

Die Druckbedingungen des erfindungsgemäßen Verfahrens sind im Allgemeinen unkritisch. Bevorzugt arbeitet man bei Normaldruck (1 atm), man kann aber auch bei verringertem Druck wie beispielsweise 0,5 bis 0,99 atm oder bei erhöhtem Druck wie beispielsweise 1,01 bis 2 atm arbeiten.

Als pH-Wert kann man zu Beginn der erfindungsgemäßen Behandlung pH-Werte im Bereich von 4 bis 8, bevorzugt 4,5 bis 8 einstellen. Am Ende der erfindungsgemäßen Behandlung kann man den pH-Wert durch Zugabe einer Säure, beispielsweise Ameisensäure, auf einen pH-Wert von 3 bis 5 absenken.

Die erfindungsgemäße Behandlung ist im Allgemeinen nach einer Zeit von 20 Minuten bis 24 Stunden, bevorzugt 30 Minuten bis 12 Stunden, beendet. Wenn man die Behandlung wiederhol durchführt, so spricht man im Rahmen der vorliegenden Erfindung von erfindungsgemäßen Behandlungsschritten.

40

11

Die Menge der erfindungsgemäß verwendeten Formulierung kann 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 15 Gew.-% betragen, bezogen auf das Falzgewicht der zu behandelnden Leder bzw. das Nassgewicht der zu behandelnden Pelze.

Während der erfindungsgemäßen Behandlung kann man der Flotte übliche Lederfarbstoffe zusetzen. Beispielhaft seien saure, substantive oder basische Anilinfarbstoffe in Betracht, die in gerbereiüblichen Mengen eingesetzt werden können.

Wünscht man die erfindungsgemäße Behandlung während der Nachgerbung durchzuführen, so kann man mit beliebigen in der Gerberei üblichen Gerbstoffen, beispielsweise Mineralgerbstoffen, insbesondere Chromgerbstoffen, oder Polymergerbstoffen, Syntanen, Harzgerbstoffen, vegetabilen Gerbstoffen oder Kombinationen aus den vorgenannten Gerbstoffen

Während der erfindungsgemäßen Behandlung kann man organische Lösemittel wie beispielsweise Alkohole zusetzen. Vorzugsweise arbeitet man jedoch ohne Zusatz von organischen Lösemitteln.

Die erfindungsgemäße Behandlung kann durch eine Nachbehandlung mit in der Gerberei üblichen Gerbstoffen, beispielsweise Mineralgerbstoffen, insbesondere Chromgerbstoffen, oder mit Polymergerbstoffen, Syntanen, Harzgerbstoffen, vegetabilen Gerbstoffen oder Kombinationen aus den vorgenannten Gerbstoffen ergänzt werden.

Im Anschluss an die erfindungsgemäße Behandlung kann man die erfindungsgemäß erhaltenen Leder bzw. Pelzfelle wie gerbereitechnisch üblich aufarbeiten.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Leder, hergestellt nach dem erfindungsgemäßen Verfahren. Nach dem erfindungsgemäßen Verfahren hergestellte Leder zeichnen sich durch sehr gute Gebrauchseigenschaften aus, beispielsweise durch sehr gute Hydrophobie, sehr guten Griff und hervorragend egale Färbung.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Leder zur Herstellung von Bekleidungsstücken, beispielsweise Jacken, Mänteln, Schuhen und insbesondere Stiefeln. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Leder zur Herstellung von Möbeln und Möbelteilen, beispielsweise Ledersofas, Ledersesseln, Armlehnen für Stühle, Sessel oder Sofas oder Bänke. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Leder zur Herstellung von Autoteilen, beispielsweise Autositzen, Teilen von Armaturenbrettern und Innenverkleidungsteilen, beispielsweise in Autotüren.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Pelzfelle, behandelt nach dem erfindungsgemäßen Verfahren.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Formulierungen, enthaltend

5

10

1 bis 20 Gew.-%, bezogen auf die Formulierung, eines Gemisches von Polysiloxanen, enthaltend

10 bis 90 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxyl-gruppen-haltigen Polysiloxanen,

90 bis 10 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxyl-gruppen-freien Polysiloxanen,

.20

sowie 3 bis 25 Gew.-%, bevorzugt 5 bis 20 und besonders bevorzugt 8 bis 18 Gew.-%, bezogen auf die Formulierung, mindestens eines Emulgators.

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei den erfindungsgemäßen Formulierungen um solche Formulierungen, die dadurch gekennzeichnet sind, dass es sich bei den Carboxylgruppen-haltigen Polysiloxanen um solche Polysiloxane handelt, welche die Strukturelemente der Formeln I, II und optional III a und III b enthalten.

Die Strukturelemente der Formeln I, II, III a und III b sind wie oben stehend definiert.

Die in erfindungsgemäßen Formulierungen enthaltenen Carboxylgruppen-haltigen Po-İysiloxane können weiterhin Strukturelemente der allgemeinen Formeln IV a und IV b enthalten.

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei den in den erfindungsgemäßen Formulierungen enthaltenen Carboxylgruppen-freien Polysiloxanen um solche Polysiloxane, die im Allgemeinen Strukturelemente der oben bezeichneten Formeln I enthalten sowie optional III a, III b und IV a, wobei die Variablen wie oben stehend definiert sind. Bevorzugte in den erfindungsgemäßen Formulierungen enthaltene Carboxylgruppen-freien Polysiloxane sind aus Strukturelementen der oben bezeichneten Formeln I enthalten sowie optional III a, III b und/oder IV a aufgebaut.

Als Emulgatoren in den erfindungsgemäßen Formulierungen können im Prinzip alle in wässrigen Systemen oberflächenaktiven Verbindungen genannt werden, die nichtionischer, anionischer, kationischer oder auch zwitterionischer Natur sein können.

25

35

13

Besonders gut geeignete Emulgatoren sind N-acylierte Aminosäurederivate beispielsweise der Formel V, in denen die Variablen wie oben stehend definiert sind.

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei den erfindungsgemäßen Formulierungen um solche Formulierungen, die dadurch gekennzeichnet sind, dass sie 10 bis 70 Gew.-%, bezogen auf die Formulierung, mindestens einer weiteren hydrophoben Verbindung enthalten.

Bei weiteren hydrophoben Verbindungen handelt es sich in einer Ausführungsform der vorliegenden Erfindung um eine Kombination von mindestens einem natürlichen, bei Zimmertemperatur festen oder flüssigen Triglycerid und einem Paraffingemisch.

Die erfindungsgemäßen Formulierungen können einen pH-Wert von 7 oder mehr aufweisen. Vorzugsweise weisen sie einen pH-Wert im Bereich von 7 bis maximal 10 auf.

Bei den erfindungsgemäßen Formulierungen kann es sich vorzugsweise um wässrige Formulierungen mit einem Feststoffgehalt von bis zu 50 Gew.-% handeln, bezogen auf die gesamte Formulierung.

Die erfindungsgemäßen Formulierungen weisen eine sehr gute Lagerstabilität auf. Außerdem lassen sich die erfindungsgemäßen Formulierungen ausgezeichnet im erfindungsgemäßen Verfahren einsetzen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Formulierungen, im Folgenden auch erfindungsgemäßes Herstellungsverfahren lässt sich im Allgemeinen so durchführen, dass man die Komponenten Carboxylgruppen-freies Polysiloxan, Carboxylgruppen-haltiges Polysiloxan und einen oder mehrerer Emulgatoren sowie gegebenenfalls hydrophobe Verbindung oder hydrophobe Verbindungen miteinander mischt. Die Reihenfolge der Zugabe der einzelnen Komponenten ist nicht kritisch. Das kann beispielsweise durch einfaches Verrühren der Komponenten geschehen, beispielsweise mit einem Mixer oder einem Ultra-Thurax-Rührer. In einigen Fällen erfolgt eine weitere Homogenisierung, z.B. mit einem Spalthomogenisator. Besonders lagerstabile erfindungsgemäße Formulierungen erhält man, wenn man eine weitere Homogenisierung durchführt.

1.4

Die Erfindung wird durch Beispiele erläutert.

 Herstellung erfindungsgemäßer Formulierungen 1.1 bis 1.4 aus Carboxylgruppen-haltigem Polysiloxan, Carboxylgruppen-freiem Polysiloxan, Emulgator und hydrophoben Stoffen

In einem Becherglas wurden bei Zimmertemperatur die unten aufgeführten Komponenten gemäß Tabelle 1 verrührt.

Carboxylgruppen-haltiges Polysiloxan "PS 1": alle R¹ sind CH₃, A: -(CH₂)₁₀-, Z: Einfachbindung, kinematische Viskosität v im Bereich 500 – 850 mm²/s, bestimmt bei Zimmertemperatur, Molekulargewicht M_n: 10.000 g/mol, im statistischen Mittel 127 Strukturelemente I und 2 bis 3 Strukturelemente II pro Molekül, Strukturelemente II sind statistisch verteilt.

Carboxylgruppen-freies Polysiloxan "PS 2": alle R¹ sind CH_3 , kinematische Viskosität ν von 350 mm²/s, bestimmt bei Zimmertemperatur, Molekulargewicht M_n : 7.500 g/mol.

20 Emulgator: N-Oleylsarcosin als Natriumsalz, kommerziell erhältlich bei BASF Aktiengesellschaft.

Natives Triglycerid: Lipodermöl, ein Rinderklauenöl.

25 Synthetisches Öl: Paraffingatsch 36/38, kommerziell erhältlich bei Shell und bei TotalFina.

Es wurden die erfindungsgemäßen Formulierungen 1.1. bis 1.4 sowie für Vergleichsexperimente die Formulierungen V 1.5 und V 1.6 hergestellt. Die Zusammensetzung der Formulierungen geht aus Tabelle 1 hervor.

Zur Qualitätskontrolle von den so erhaltenen Emulsionen 10 ml entnommen und mit Wasser auf 100 ml aufgefüllt. Es entstanden über Nacht lagerstabile Emulsionen.

Tabelle 1

Komponente	1.1	1.2	1.3	1.4	V 1.5	11/4 0
					V 1.5	V 1.6
PS 1 [g]	5,0	5,0	5,0	5,0	10,0	-
PS 2 [g]	10,0	5,0	5,0	5,0	-	10,0
N-Oleylsarcosin [g] .	12,9	10,0	10,0	17,0	12,9	10,0
Triglycerid [g]	15,3	15,0	10,0	13,0	12,5	17,0
NaOH [g]	1,5	1,3	1,2	2,0	1,5	1,5
Paraffingatsch [g]	15,3	15,0	18,8	8,0	15,3	13,0
Wasser [ml]	45,0	51,3	50,0	50,0	50,0	50,0
pH-Wert	8,5	8,5	8,0	9,0	8,5	8,5

Beispiele 2: Behandlung von Leder

Beispiel 2.1 Behandlung von Leder mit den erfindungsgemäßen Formulierungen 1.1

Es wurde nach der folgenden allgemeinen Rezeptur vorgegangen.

Die Angaben in Gew.-% beziehen sich jeweils auf das Falzgewicht, wenn nicht anders angegeben. Bei allen Operationen wurde das Fass etwa 10 mal pro Minute gedreht, wenn nicht anders angegeben.

In einem drehbaren 50-I-Fass mit Einbauten wurden 2,5 kg Chrom-gegerbtes Rindsleder (wet blue) mit einer Falzstärke von 2,5 mm mit 100 Gew.-% Wasser, 3 Gew.-% Natriumformiat und 1 Gew.-% MgO versetzt. Nach 15 Minuten wurden 0,6 Gew.-% NaHCO₃ zugegeben und bei 35°C über eine Zeitdauer von 150 Minuten entsäuert, so dass sich ein pH-Wert von 4,8 einstellte.

Anschließend wurde das Leder mit 3 Gew.-% mit den folgenden charakteristischen Daten versetzt:

30 Gew.-%ige wässrige, mit NaOH teilneutralisierte Polymerlösung; Homopolymer der Methacrylsäure, Mn ca. 10.000; K-Wert nach Fikentscher: 12, Viskosität der 30 Gew.-% Lösung: 65 mPa·s (DIN EN ISO 3219, 23°C), pH-Wert 5,1. Es wurde 30 Minuten nachgegerbt.

25

30

Im ersten Behandlungsschritt wurde 2 Gew.-% Formulierung 1.1 zugegeben und weitere 30 Minuten gewalkt. Anschließend wurden innerhalb von 10 Minuten 3 Gew.-% des Vegetabilgerbstoffs Mimosaextrakt und 2 Gew.-% des Lederfarbstoffs Luganil® Black NT, kommerziell erhältlich bei BASF Aktiengesellschaft. Außerdem wurden 2 Gew.-% des Harzgerbstoffes Relugan® D, kommerziell erhältlich bei BASF Aktiengesellschaft, 3 Gew.-% des Vegetabilgerbstoffs Chestnut® und 3 Gew.-% des Syntans Basyntan

SL® zugegeben, kommerziell erhältlich bei BASF Aktiengesellschaft. Die Behandlung wurde über einen Zeitraum von einer Stunde fortgesetzt.

Im zweiten Behandlungsschritt wurden weiter 7,5 Gew.-% Formulierung 1.1 zugesetzt und bei einem pH-Wert von 4,7 über 12 Stunden weiter gewalkt.

Anschließend wurden 100 Gew.-% Wasser mit einer Temperatur von etwa 70°C zugegeben, so dass sich eine Temperatur von 50°C einstellte, und mit Ameisensäure portionsweise über einen Zeitraum von 80 Minuten ein pH-Wert von 3,6 eingestellt.

Die Flotte wurde abgelassen, das Leder zweimal mit je 200 Gew.-% Wasser mit einer Temperatur von 40°C gewaschen. Anschließend wurde der Top mit 100 Gew.-% Wasser versetzt und bei einer Temperatur von 40°C mit einer Mischung aus 0,2 Gew.-% Leather Black VM und 0,3 Gew.-% des Lederfarbstoffs Luganil® Black AS, kommerziell erhältlich bei BASF Aktiengesellschaft, sowie 0,2 Gew.-% Ameisensäure bei einem pH-Wert von 3,6 die Topfärbung durchgeführt. Anschließend wurde die Flotte abgelassen, mit 100 Gew.-% Wasser versetzt und mit 3 Gew.-% Cr(III)-Sulfat bei einem pH-Wert von 3,5 behandelt.

20 Schließlich wurde zweimal mit Wasser gewaschen, getrocknet und gerbereiüblich aufgearbeitet. Man erhielt das erfindungsgemäße Leder 3.1.

Die Eigenschaften der erhaltenen Leder gehen aus Tabelle 2 hervor.

25 Beispiel 2.2

10

Beispiel 1 wurde wiederholt, jedoch wurde im ersten und im zweiten Behandlungsschritt jeweils Formulierung 1.2 statt 1.1 eingesetzt. Man erhielt das erfindungsgemäße Leder 3.2.

Beispiel 2.3

Beispiel 1 wurde wiederholt, jedoch wurde im ersten und im zweiten Behandlungsschritt jeweils Formulierung 1.3 statt 1.1 eingesetzt. Man erhielt das erfindungsgemäße Leder 3.3. Beispiel 2.4

Beispiel 1 wurde wiederholt, jedoch wurde im ersten und im zweiten Behandlungsschritt jeweils Formulierung 1.4 statt 1.1 eingesetzt. Man erhielt das erfindungsgemäße Leder 3.4.

Vergleichsbeispiel V 2.5

Beispiel 1 wurde wiederholt, jedoch wurde im ersten und im zweiten Behandlungsschritt jeweils Formulierung 1.5 statt 1.1 eingesetzt. Man erhielt die Vergleichs-Lederprobe V 3.5.

Vergleichsbeispiel V 2.6

25

Beispiel 1 wurde wiederholt, jedoch wurde im ersten und im zweiten Behandlungsschritt jeweils Formulierung 1.6 statt 1.1 eingesetzt. Man erhielt die Vergleichs-Lederprobe V 3.6.

Tabelle 2 Eigenschaften der erfindungsgemäßen Leder und der in den Vergleichsver-20 suchen erhaltenen Leder

Leder bzw. Ver- gleichs- Lederprobe	3.1	3.2	3.3	3.4	V 3.5	V 3.6
Maesertest	18.000 26.000	15.000 12.000	15.000 · 17.000	15.000 18.000	7600 8700	400
Statische Was- seraufnahme nach 2 Stunden	18	20	19	22	21	27
Färbung	3	3,5	3,5	5,5	4 (Schat- ten)	4 (Schat- ten)

Die Maesermessungen wurden mit einem Maesertester nach ASTM D 2099 jeweils als Doppelbestimmungen durchgeführt. Die statische Wasseraufnahme wurde bei 15% Stauchung durchgeführt und in Gew.-% angegeben, bezogen auf das fertige Leder. Die Färbung wurde durch optische Inspektion durch ein Probandenteam beurteilt. Die Bewertungen erfolgte mit Noten wie in der Schule: 1 (sehr gut) bis 6 (ungenügend)

Verfahren zur Hydrophobierung von Leder und Pelzfellen

- Verfahren zur Hydrophobierung von Leder und Pelzfellen, dadurch gekennzeichnet, dass man Leder oder Pelzfelle vor, während oder nach der Nachgerbung mit einer oder mehreren Formulierungen behandelt, enthaltend 1 bis 30 Gew.-%, bezogen auf die Formulierung, eines Gemisches von Polysiloxanen, enthaltend
- 10 10 bis 90 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-haltigen Polysiloxanen,

90 bis 10 Gew.-%, bezogen auf das Gemisch, an einem oder mehreren Carboxylgruppen-freien Polysiloxanen,

und 3 bis 25 Gew.-%, bezogen auf die Formulierung, mindestens eines Emulgators.