Computer Science Notes

Spring 2024

Zach Leach

Draft February 5, 2024

The University of Texas at Dallas

Contents

1	Computer Networks	3
1	Exam 1	5
II	Advanced Algorithms	7
1	Exam 1	9
2	Assignment 1	11
3		13 13 13
III	Software Engineering	15
1	Exam 1	17
IV	Operating Systems	19
1	Exam 1	21

Preface

These are my exam review notes taken throughout the Spring semester. $\,$

February 5, 2024 Zach Leach

Part I Computer Networks

Part II Advanced Algorithms

Assignment 1

Assignment 2

- 3.1 Are either $\lceil \lg n \rceil!$ or $\lceil \lg \lg n \rceil!$ polynomially bounded? What does "polynomially bounded" mean? How do you determine whether a function is "polynomially bounded".
- 3.2 Use induction to prove $F_i = \frac{\phi^i \hat{\phi}^i}{\sqrt{5}}$; where $F_i = F_{i-2} + F_{i-1}$, and ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$.
- 3.3 Show that $k \lg k = \Theta(n)$ implies $k = \Theta\left(\frac{n}{n \ln n}\right)$.
- 3.4 Are either 2^{n+1} or 2^{2n} big-O of 2^{n} ?
- 3.5 For each pair of functions (A,B), indicate whether A is O,o,Ω,ω , or Θ of B. Assume $k \geq 1$, $\epsilon > 0$, c > 1 are constants.
- 3.6 Order the following functions such that $f_1 = \Omega(f_2), f_2 = \Omega(f_3), ..., f_{29} = \Omega(f_{30})$, and partition them into equivalence classes such that each function is big- Θ of each other.

Part III Software Engineering

Part IV Operating Systems