Лабораторная работа №3

Настройка начальной конфигурации маршрутизатора

Залачи

- Использование интерфейса командной строки для выполнения базовых настроек маршрутизатора.
 - Настройка интерфейса Ethernet локальной сети.
 - Настройка последовательного интерфейса глобальной сети.
 - Настройка маршрута по умолчанию для маршрутизатора.
 - Проверка конфигураций и подключения.

Исходные данные

Небольшая компания расширила свой офис за счет дополнительного помещения в другом здании. Вы должны настроить маршрутизаторы таким образом, чтобы обеспечить трафик между двумя сетями.

В этой работе вы выполните настройку следующих параметров маршрутизаторов Cisco:

- настройка имени узла маршрутизатора;
- настройка паролей;
- настройка начальных сообщений;
- настройка интерфейса Ethernet и последовательного интерфейса;
- настройка маршрута по умолчанию;
- проверка настройки маршрутизатора.

Настройку всех устройств необходимо проводить из командной строки.

Варианты для выполнения заданий:

Вариант	Адрес сети	Маска сети	Количество	Названия устройств	Пароль
•			подсетей		
1	192.168.1.0	255.255.255.0	2	1RouterX, 1PCX	cisco1
2	192.168.2.0	255.255.255.0	3	2RouterX, 2PCX	cisco2
3	192.168.3.0	255.255.255.0	4	3RouterX, 3PCX	cisco3
4	192.168.4.0	255.255.255.0	5	4RouterX, 4PCX	cisco4
5	192.168.5.0	255.255.255.0	6	5RouterX, 5PCX	cisco5
6	192.168.6.0	255.255.255.0	7	6RouterX, 6PCX	cisco6
7	192.168.7.0	255.255.255.0	8	7RouterX, 7PCX	cisco7
8	192.168.8.0	255.255.255.0	9	8RouterX, 8PCX	cisco8
9	192.168.9.0	255.255.255.0	10	9RouterX, 9PCX	cisco9
10	192.168.10.0	255.255.255.0	11	10RouterX, 10PCX	cisco10
11	192.168.11.0	255.255.255.0	12	11RouterX, 11PCX	cisco11
12	192.168.12.0	255.255.255.0	13	12RouterX, 12PCX	cisco12
13	192.168.13.0	255.255.255.0	14	13RouterX, 13PCX	cisco13

14	192.168.14.0	255.255.255.0	15	14RouterX, 14PCX	cisco14
15	192.168.15.0	255.255.255.0	2	15RouterX, 15PCX	cisco15
16	192.168.16.0	255.255.255.0	3	16RouterX, 16PCX	cisco16
17	192.168.17.0	255.255.255.0	4	17RouterX, 17PCX	cisco17
18	192.168.18.0	255.255.255.0	5	18RouterX, 18PCX	cisco18
19	192.168.19.0	255.255.255.0	6	19RouterX, 19PCX	cisco19
20	192.168.20.0	255.255.255.0	7	20RouterX, 20PCX	cisco20
21	192.168.21.0	255.255.255.0	8	21RouterX, 21PCX	cisco21
22	192.168.22.0	255.255.255.0	9	22RouterX, 22PCX	cisco22
23	192.168.23.0	255.255.255.0	10	23RouterX, 23PCX	cisco23
24	192.168.24.0	255.255.255.0	11	24RouterX, 24PCX	cisco24
25	192.168.25.0	255.255.255.0	12	25RouterX, 25PCX	cisco25
26	192.168.26.0	255.255.255.0	13	26RouterX, 26PCX	cisco26
27	192.168.27.0	255.255.255.0	14	27RouterX, 27PCX	cisco27
28	192.168.28.0	255.255.255.0	15	28RouterX, 28PCX	cisco28
29	192.168.29.0	255.255.255.0	2	29RouterX, 29PCX	cisco29
30	192.168.30.0	255.255.255.0	3	30RouterX, 30PCX	cisco30

Подсеть 0 (первая по счету) будет использоваться для предоставления диапазона IPадресов пользователям, которые подключаются к левому маршрутизатору через первый (левый) коммутатор.

Подсеть 1 (вторая по счету) будет использоваться для предоставления диапазона IPадресов пользователям, которые подключаются к правому маршрутизатору через второй (правый) коммутатор.

Подсеть 2 (третья по счету) будет использоваться для взаимодействия маршрутизаторов по последовательному каналу.

Задание 1. Создание схемы сети и подключение сетевых устройств.

Постройте схему в программе Packet Tracer согласно примеру и данных вашего варианта задания.

- 1. Добавьте к итоговой схеме второй лабораторной работы еще один маршрутизатор.
- 2. Подключите к обоим маршрутизаторам однопортовые модули для обеспечения их последовательного соединения.
 - 3. Соедините маршрутизаторы последовательным кабелем.
- 4. Подключите каждую подсеть через коммутатор к своему маршрутизатору необходимым кабелем.

Все устройства должны иметь имена следующего формата: "<номер варианта><название устройства><порядковый номер>".

Задание 2. Настройка маршрутизаторов.

- 1. Настройте имя устройства. Задайте имя узла маршрутизатора 1 согласно варианту "<номер варианта><название устройства><порядковый номер>".
- 2. Настройте интерфейс FastEthernet на маршрутизаторе 1. Укажите описание интерфейса "Connected to Switch1". Укажите IP-адрес и маску подсети интерфейса (используйте первый возможный IP-адрес из подсети). Убедитесь, что интерфейс включен. Проверьте настройки интерфейса.
- 3. Настройте последовательный интерфейс маршрутизатора 1. Укажите описание интерфейса "Connected to Router2". Укажите IP-адрес и маску подсети интерфейса (используйте первый возможный IP-адрес из третьей по счету подсети). Убедитесь, что интерфейс включен. Проверьте настройки интерфейса.
- 4. Настройте пароли привилегированного режима, консоли и виртуального терминала на маршрутизаторе 1. Введите в интерфейсе командной строки пароль и секретный пароль привилегированного режима, пароль консоли, и пароль канала vty для предоставления доступа telnet к маршрутизатору 1. Все пароли должны соответствовать "cisco<№варианта>".
- 5. Настройте шифрование всех паролей. Сделайте так чтоб при просмотре действующей конфигурации пароли линии и привилегированного режима представлялись закрытым текстом. Убедитесь, что после настройки пароли стали зашифрованы.
- 6. Настройте начальное сообщение. Для выдачи предупреждения при попытке входа на маршрутизатор настройте сообщение MOTD "Authorized Access Only!". Проверьте сообщение и пароли.
- 7. Определите, является ли маршрутизатор DCE устройством, и в положительном случае задайте на нем clock rate 64000 (см. дополнительную информацию).
 - 8. Настройте маршрут по умолчанию. Проверьте настройки маршрута по умолчанию.
- 9. Сохраните текущую конфигурацию в качестве начальной конфигурации маршрутизатора.

10. Повторите все вышеприведенные действия по настройке для маршрутизатора 2.

Задание 3. Проверка конфигурации устройств и сетевых соединений.

- Выведите текущую конфигурацию маршрутизатора 1. Найдите имя узла, пароли, IP-адреса интерфейсов, маршрут по умолчанию.
- Выведите текущую конфигурацию маршрутизатора 2. Найдите имя узла, пароли, IP-адреса интерфейсов, маршрут по умолчанию.
- Выполните эхо-тестирование РС2 из командной строки РС1.
- Проследите сетевой путь от PC1 к PC2 с помощью командной строки на PC1.
- Выполните эхо-тестирование РС1 из командной строки РС2.
- Проследите сетевой путь от РС2 к РС1 с помощью командной строки на РС2.

Вопросы для самопроверки

- Какие команды интерфейса командной строки Cisco IOS использовались наиболее часто?
- Как можно повысить безопасность паролей маршрутизатора?
- Какая команда позволяет отключить поиск в DNS из командной строки маршрутизатора?
- Что и почему происходит при отправке эхо-запроса на IP-адрес локальной сети маршрутизатора 2?
- Какой режим интерфейса командной строки Cisco ISO необходим для настройки описания интерфейса?
- С помощью какой команды можно проверить настройки интерфейсов маршрутизатора?
- Вы применили к интерфейсу Fast Ethernet 0/0 команду **no shutdown** и убедились в правильности настройки. Однако при загрузке маршрутизатора интерфейс был отключен. Вы вновь настроили интерфейс Fast Ethernet 0/0 и убедились, что настройка работает. Укажите наиболее вероятную причину этого.
- Какие команды используются для входа в режим конфигурации интерфейса FastEthernet 0/1, если вы начинаете работу в пользовательском режиме EXEC?
- Для настройки каких интерфейсов необходимо использовать команду "clock rate" (DCE или DTE)?

Дополнительная информация

Настройка clock rate на DCE устройстве

Serial (последовательные) интерфейсы используются при подключении роутера к глобальной сети WAN (Wide Area Network). При этом подключение обычно

осуществляется через какое-нибудь устройство провайдера — чаще всего это модем или CSU/DSU (Channel Service Unit/Data Service Unit).

В этой схеме модем или CSU/DSU является **DCE** (**Data Communication Equipment**) устройством — то есть оборудованием провайдера, которое определяет скорость канала, преобразует и передает данные от оборудования клиента. А со стороны клиента передает эти данные **DTE** (**Data Terminal Equipment**) устройство, которое обычно является маршрутизатором или компьютером.

Однако в лаборатории мы можем собрать схему, где маршрутизатор может выступать не только в роли DTE, но и в роли DCE.

В этом случае нам нужно определить какую роль будет иметь каждый из маршрутизаторов. Это будет зависеть от serial кабеля, которым мы будем подключать маршрутизаторы — один конец используется для подключения к DCE, а другой к DTE. Обычно на кабелях не написано, какую роль имеет каждый из концов, и поэтому тут нам нужно будет воспользоваться командой **show controllers [интерфейс]**.

Router1>en

Router1#show controllers serial 2/0

Interface Serial2/0

Hardware is PowerQUICC MPC860

DCE V.35, no clock

idb at 0x81081AC4, driver data structure at 0x81084AC0

Здесь в третьей строчке вывода видно, что к роутеру подключен кабель DCE концом. Это значит, что он исполняет роль DCE, а другой роутер – роль DTE.

Теперь, когда мы узнали, кто, есть кто, нам нужно вручную задать скорость работы канала на DCE, поскольку в роли DCE у нас маршрутизатор, а не модем или CSU/DSU, как в реальных сетях.

Для этого на интерфейсе мы используем команду clock rate [скорость в битах/с]

Router1#conf t

Router1(config)#int se 2/0

Router1(config-if)#clock rate?

Speed (bits per second)

1200

2400

4800
9600
19200
38400
56000
64000
72000
125000
128000
148000
250000
500000
800000
1000000
1300000
2000000
4000000
<300-4000000> Choose clockrate from list above

Router(config-if)#clock rate 64000

После этого можно продолжать конфигурацию. Стоит заметить, что команда clock rate не применится на DTE интерфейсе.

Router2(config)#int se2/0

Router2(config-if)#clock rate 64000

This command applies only to DCE interfaces

Настройка статических маршрутов и маршрутов по умолчанию

Синтаксис маршрута по умолчанию:

ip route 0.0.0.0 0.0.0.0 *ip-адрес следующего перехода*.

Создается запись в таблице маршрутизации, которая означает, что для всех IP-адресов (0.0.0.0) с любой маской (0.0.0.0) пересылать пакеты на IP-адрес следующего (соседнего) маршрутизатора.

Режимы и основные команды Cisco IOS

В сетевых коммутаторах и маршрутизаторах компании Cisco используется программное обеспечение Cisco IOS (*Internetwork Operating System*). Это многозадачная операционная система, выполняющая функции сетевой организации, маршрутизации, коммутации и передачи данных.

Интерфейс командной строки Cisco IOS включает в себя множество функций, помогающих вызывать команды и получать информацию об использовании и свойствах этих команд. Команды в Cisco IOS имеют иерархическую структуру. Существует несколько режимов настройки сетевого устройства. Рассмотрим основные из них.

Приглашение:	Аббревиатура	Описание
Switch>	U	Пользовательский режим
Switch#	P	Привилегированный режим
Switch(config)#	G	Режим конфигурации
Switch(config-if)#	Ι	Режим конфигурации интерфейса
Switch (config-vlan)#	V	Режим конфигурации VLAN

Для перехода из одного режима в другой используются следующие команды:

Команда	Режим	Описание
enable	U	Пользовательский -> Привилегированный
logout	U	Выход из пользовательского режима
configure <terminal></terminal>	P	Привилегированный -> Режим
		конфигурации
Interface <interface description=""></interface>	G	Режим конфигурации -> Режим
		конфигурации интерфейса
vlan vlan-id	G	Режим конфигурации -> Режим
		конфигурации VLAN
exit	G, R, L, V	Возврат в предыдущий режим

Знание различий между различными режимами (и способов перехода между ними) поможет вам легче настраивать, контролировать или устранять неполадки сетевых устройств. В таблице, приведенной в приложении указаны все основные команды устройств с Cisco IOS (коммутаторов и маршрутизаторов).

Команда	Режим	Описание	
show version	U, P	Отображение информации о IOS и роутере.	
show interfaces	U, P	Отображение физических атрибутов	
		интерфейсов маршрутизатора.	
show ip route	U, P	Отображение текущего состояния таблицы	
		маршрутизации.	
show access-lists	P	Отображение текущих настроенных ACL и	
		их содержимого.	
show ip interface brief	P	Отображает сводку состояния для каждого	
		интерфейса.	
show running-config	P	Показать текущую конфигурацию.	
show startup-config	P	Отображение конфигурации при запуске.	
enable	U	Доступ к привилегированному режиму	
config terminal	P	Доступ к режиму конфигурации.	
interface <int></int>	G	Введите конфигурацию интерфейса.	
ip address <ip address=""> <mask></mask></ip>	I	Назначьте IP-адрес указанному интерфейсу.	
shutdown	I	Выключите или включите интерфейс.	
no shutdown		Используйте оба для сброса.	
description <name-string></name-string>	I	Установите описание интерфейса.	
show ip interface <type number=""></type>	U, P	Отображение статуса протоколов для	
		интерфейсов.	
show running-config interface	P	Отображает текущую конфигурацию для	
interface <slot number=""></slot>		интерфейса	

hostname <name></name>	G	Установка имени хоста для устройства	
		Cisco.	
enable secret <password> G</password>		Установка пароля	
copy running-config startup-	P	Сохраняет текущую (работающую)	
config		конфигурацию в начальной конфигурации в	
		NVRAM. Команда сохраняет конфигурацию,	
		поэтому при перезагрузке устройства	
		загружается последний файл конфигурации.	
copy startup-config running-	P	Он сохраняет (перезаписывает) начальную	
config		конфигурацию в текущую конфигурацию.	
copy from-location to-location P		Он копирует файл (или набор файлов) из	
		одного места в другое.	
erase nvram	G	Удаление текущих файлов конфигурации	
		запуска. Команда возвращает устройство к	
		заводским настройкам по умолчанию.	
reload	G	Перезагрузка устройства. NVRAM примет	
		последнюю конфигурацию.	
erase startup-config	G	Очистка файловой системы NVRAM.	
		Команда достигает того же результата, что и	
		«erase nvram».	