الجُمهورَية التونسنية وزارة التعليم العالي والبحث العلمي

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

الإدارة العامة للدراسات التكنولوجية المعد العالي للدراسات التكنولوجية بالمهدية

Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Mahdia

Travaux Dirigés Signaux et Systèmes Linéaires

Gargouri Mohamed & Ben Ayed Ahmed

2015-2016

TD1 SIGNAUX ET SYSTEMES

Exercice 1

Calculer la fonction de transfert H(p) du circuit ci-dessous

Exercice 2

Calculer la transformée de Laplace du signal suivant :

Exercice 3

Calculer les fonctions de transfert des systèmes ci-dessous :

Déterminer les valeurs suivantes pour les fonctions de transfert données :

$$Y(p) = \frac{1+3p}{(p+1)^2(p+2)}; \ y(0+); \frac{\partial y}{\partial t}(0+); \ y(\infty)$$

$$Y(p) = \frac{1 + 5p + 3p^{2}}{(p^{2} + 1)(3p + 1)}; y(0+); \frac{\partial y}{\partial t}(0+); y(\infty)$$

Exercice 5

Trouver l'original des fonctions de transfert suivantes :

$$Y(p) = \frac{1-p}{p(1+p)}$$
; $Y(p) = e^{-3p} \frac{1+3p}{(1+p)^2}$; $Y(p) = \frac{5-p}{(1+p)(4+p)}$

Exercice 6

On considère un système d'entrée x(t) et de sortie y(t) décrit par les équations suivantes:

$$\frac{d^2y(t)}{dt^2} + 10.\frac{dy(t)}{dt} + 5.y(t) = 15.w(t)$$

$$\frac{dw(t)}{dt} + 100.w(t) = 5.x(t)$$

Donner la fonction de transfert du système (les conditions initiales sont nulles).

Exercice 7

Résoudre les équations différentielles suivantes en utilisant la transformée de Laplace :

a)
$$\frac{dy(t)}{dt} + 2y(t) = 8$$
 avec y(0)=0

b)
$$\frac{dy^2(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = 6$$
 avec $y(0) = \frac{dy}{dt}(0) = 0$

c)
$$\frac{dy^2(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 1$$
 avec $y(0) = -1$ et $\frac{dy}{dt}(0) = 2$

CORRECTION TD1

Exercice 1

$$Z_{RC}(p) = \frac{Z_R(p)Z_C(p)}{Z_R(p) + Z_C(p)} = \frac{R_1 \cdot \frac{1}{cp}}{R_1 + \frac{1}{cp}} = \frac{R_1}{1 + R_1 cp}$$

$$\begin{split} H(p) &= \frac{Z_R(p)}{Z_R(p) + Z_{RC}(p)} = \frac{R_2}{R_2 + \frac{R_1}{1 + R_1 cp}} = \frac{R_2(1 + R_1 cp)}{R_2(1 + R_1 cp) + R_1} \\ &= \frac{R_2(1 + R_1 cp)}{R_1 + R_2 + R_1 R_2 cp} \end{split}$$

Exercice 2

On remarque que le signal s(t) est la différence de deux signaux : $s(t) = s_1(t) - s_2(t)$ tel que :

 $s_1(t)$: rampe de pente A/T débutant à l'instant 0

Et $s_2(t)$: rampe de pente A/T débutant à l'instant T

avec :
$$S_1(p) = \frac{A}{T} \cdot \frac{1}{p^2}$$

et :
$$S_2(p) = \frac{A}{T} \cdot \frac{1}{p^2} \cdot e^{-pT}$$
 (théorème du retard)

d'où:
$$S(p) = \frac{A}{T} \cdot \frac{1}{p^2} - \frac{A}{T} \cdot \frac{1}{p^2} \cdot e^{-pT} = \frac{A}{T \cdot p^2} (1 - e^{-pT})$$

$$H_1(p) = \frac{S_1(p)}{E_1(p)} = \frac{\left[G_1(p) + G_2(p)\right] \frac{G_4(p)}{1 + G_4(p)}}{1 + \left[G_1(p) + G_2(p)\right] \frac{G_4(p)}{1 + G_4(p)} G_3(p)}$$

$$H_1(p) = \frac{[G_1(p) + G_2(p)]G_4(p)}{1 + G_4(p) + [G_1(p) + G_2(p)]G_3(p)G_4(p)}$$

*

$$E(p) = \left(1 + \frac{1}{G_1(p)}\right)E_2(p) = = = > \frac{S_2(p)}{E(p)} = \frac{G_1(p)F(p)}{1 + G_1(p)F(p)H_1(p)}$$

$$S_2(p) = \frac{G_1(p)F(p)}{1 + G_1(p)F(p)H_1(p)} \left(1 + \frac{1}{G_1(p)}\right) E_2(p)$$

$$H_2(p) = \frac{S_2(p)}{E_2(p)} = \frac{G_1(p)F(p)}{1 + G_1(p)F(p)H_1(p)} \left(1 + \frac{1}{G_1(p)}\right) = \frac{\left[1 + G_1(p)\right]F(p)}{1 + G_1(p)F(p)H_1(p)}$$

$$H_2(p) = \frac{\left[1 + G_1(p)\right] \frac{G_2(p)}{1 + G_2(p)H_2(p)}}{1 + G_1(p)H_1(p) \frac{G_2(p)}{1 + G_2(p)H_2(p)}} \quad \boxed{H_2(p) = \frac{\left[1 + G_1(p)\right]G_2(p)}{1 + G_2(p)H_2(p) + G_1(p)H_1(p)G_2(p)}}$$

*
$$Y(p) = \frac{1+3p}{(p+1)^2(p+2)}$$
; $y(0+)$; $\frac{\partial y}{\partial t}(0+)$; $y(\infty)$

$$y(0+) = \lim_{t \to 0} y(t) = \lim_{p \to \infty} pY(p) = \lim_{p \to \infty} p \cdot \frac{1+3p}{(p+1)^2(p+2)} = 0$$

$$\frac{\partial y}{\partial t}(0+) = \lim_{t \to 0} \frac{\partial y(t)}{\partial t} = \lim_{p \to \infty} p(pY(p)) = \lim_{p \to \infty} p^2 \cdot \frac{1+3p}{(p+1)^2(p+2)} = 3$$

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{p \to 0} pY(p) = \lim_{p \to 0} p \cdot \frac{1 + 3p}{(p+1)^2 (p+2)} = 0$$

*
$$Y(p) = \frac{1+5p+3p^2}{(p^2+1)(3p+1)}$$
; $y(0+)$; $\frac{\partial y}{\partial t}(0+)$; $y(\infty)$

$$y(0+) = \lim_{t \to 0} y(t) = \lim_{p \to \infty} pY(p) = \lim_{p \to \infty} p \cdot \frac{1+5p+3p^2}{(p^2+1)(3p+1)} = 1$$

$$\frac{\partial y}{\partial t}(0+) = \lim_{t \to 0} \frac{\partial y(t)}{\partial t} = \lim_{p \to \infty} p(pY(p)) = \lim_{p \to \infty} p^2 \cdot \frac{1+5p+3p^2}{(p^2+1)(3p+1)} = \infty$$

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{p \to 0} pY(p) = \lim_{p \to 0} p \cdot \frac{1 + 5p + 3p^2}{(p^2 + 1)(3p + 1)} = 0$$

*
$$Y(p) = \frac{1-p}{p(1+p)} = \frac{1}{p(1+p)} - \frac{1}{(1+p)}$$

D'après la table de Laplace

$$\frac{1}{p(1+p)} \xrightarrow{TL^{-1}} \left(1 - e^{-t}\right) u(t) \text{ et } \frac{1}{\left(1+p\right)} \xrightarrow{TL^{-1}} e^{-t} u(t)$$

d'où
$$y(t) = (1 - e^{-t} - e^{-t})u(t) = (1 - 2e^{-t})u(t)$$

*
$$Y(p) = e^{-3p} \frac{1+3p}{(1+p)^2}$$
 e^{-3p} représente un retard de 3s

$$\frac{1+3p}{(1+p)^2} = \frac{1}{(1+p)^2} + \frac{3p}{(1+p)^2}$$

D'après la table de Laplace

$$X(p) = \frac{1}{(1+p)^2} \xrightarrow{TL^{-1}} x(t) = te^{-t}u(t)$$

$$3pX(p) = \frac{3p}{(1+p)^2} \xrightarrow{TL^{-1}} 3\frac{\partial (te^{-t})}{\partial t} = 3(e^{-t} - te^{-t})u(t) = 3e^{-t}(1-t)u(t)$$

d'où
$$y(t) = [te^{-t} + 3e^{-t}(1-t)]u(t-3) = e^{-t}(3-2t)u(t-3)$$

*
$$Y(p) = \frac{5-p}{(1+p)(4+p)} = \frac{5}{(1+p)(4+p)} - \frac{p}{(1+p)(4+p)}$$

D'après la table de Laplace

$$X(p) = \frac{5}{(1+p)(4+p)} \xrightarrow{TL^{-1}} x(t) = \frac{5}{3} (e^{-t} - e^{-4t}) u(t)$$

$$\frac{1}{5}pX(p) = \frac{p}{(1+p)(4+p)} \xrightarrow{TL^{-1}} \frac{1}{5} \frac{\partial x(t)}{\partial t} = \frac{1}{3} \left(-e^{-t} + 4e^{-4t} \right) u(t)$$

d'où
$$y(t) = \frac{5}{3} (e^{-t} - e^{-4t}) u(t) - \frac{1}{3} (-e^{-t} + e^{-4t}) u(t) = \frac{1}{3} (6e^{-t} - 9e^{-4t}) u(t)$$

$$y(t) = (2e^{-t} - 3e^{-4t})u(t)$$

On applique la transformée de Laplace :

$$p^{2}Y(p) + 10pY(p) + 5Y(p) = 15W(p) \Rightarrow Y(p) = \frac{15}{p^{2} + 10p + 5}W(p)$$

$$pW(p) + 100W(p) = 5X(p) \Rightarrow W(p) = \frac{5}{p+100}X(p)$$

$$\Rightarrow Y(p) = \frac{15}{p^2 + 10p + 5} * \frac{5}{p+100}X(p)$$

$$\Rightarrow H(p) = \frac{Y(p)}{X(p)} = \frac{75}{(p^2 + 10p + 5)(p + 100)}$$

Exercice 7

$$pY(p) + 2Y(p) = \frac{8}{p} \Rightarrow Y(p) = \frac{8}{p(p+2)}$$

D'après la table de Laplace :

$$y(t) = 4(1 - e^{-2t})u(t)$$

$$p^{2}Y(p) + 4pY(p) + 3Y(p) = \frac{6}{p} \Rightarrow Y(p) = \frac{6}{p(p^{2} + 4p + 3)} = \frac{6}{p(p + 1)(p + 3)}$$

D'après la table de Laplace :

$$y(t) = 2\left(1 - \frac{3}{2}e^{-t} + \frac{1}{2}e^{-3t}\right)u(t)$$

$$\frac{dy^{2}(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = 1 \quad \text{avec } y(0) = -1 \quad \text{et } \frac{dy}{dt}(0) = 2$$

$$p^{2}Y(p) - py(0) - \frac{dy}{dt}(0) + 3[pY(p) - y(0)] + 2Y(p) = 1$$

$$p^{2}Y(p) + 3pY(p) + 2Y(p) = 1 - p + 2 - 3 = 2 + 3p + 2)Y(p) = -p$$

$$-p - p A B$$

$$Y(p) = \frac{-p}{p^2 + 3p + 2} = \frac{-p}{(p+1)(p+2)} = \frac{A}{p+1} + \frac{B}{p+2}$$

$$Y(p) = \frac{A(p+2) + B(p+1)}{(p+1)(p+2)} = \frac{(A+B)p + 2A + B}{(p+1)(p+2)} \implies \begin{cases} A+B=-1 \\ 2A+B=0 \end{cases} \Rightarrow \begin{cases} A=1 \\ B=-2 \end{cases}$$

$$Y(p) = \frac{1}{p+1} - \frac{2}{p+2} = = = > y(t) = Exp(-t) - 2Exp(-2t)$$

TD2 SIGNAUX ET SYSTEMES

Exercice 1

On considère la boucle suivante :

- 1- En boucle ouverte, pour G=1, calculer et tracer la réponse x(t) à l'échelon de position à l'entrée e(t) = 2. Qu'elle est la valeur de x(t) pour t=2s
- 2- En boucle fermée, calculer la fonction de transfert H(p) en fonction de G. en déduire le gain statique (K) et la constante de temps (τ) en fonction de G. Quelle est la valeur de G (noté G_1) permettant d'obtenir une constante de temps $\tau=16,510^{-3}$ s
- 3- Pour G= G_1 et e(t) = 2, tracer l'allure de s(t).

Exercice 2

 Soit le système d'entrée u(t) et de sortie θ₁(t) :

Afin d'identifier la fonction de transfert $A(p) = \frac{\theta_1(p)}{U(p)} = \frac{K}{1+\tau p}$ (système 1^{er} ordre) on

procède à des relevés temporels. On a enregistré la réponse indicielle (Fig.1) de la température $\theta_1(t)$ lorsque u(t) = 100 V (échelon de position). Déterminer le gain statique (K) et la constante du temps (τ) , en déduire A(p)

2. On considère le régulateur $R(p) = \frac{U(p)}{E(p)}$ suivant (Fig2) :

Calculer
$$R(p) = \frac{U(p)}{E(p)}$$
 (avec R = $10^6 \Omega$, C = 10^{-4} F)

3. On se propose maintenant d'analyser le fonctionnement d'une boucle de régulation de traitement de minerai dont le schéma bloc simplifié est le suivant (Fig.3) :

- a) Calculer la fonction de transfert du système en boucle fermée H(p) (Fig.3).
- b) Calculer et représenter la réponse indicielle unitaire $(\theta_2(t))$, quelle est la valeur du temps de réponse (tr) à 5%.

Soit le système d'entrée e(t) et de sortie s(t) définie par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{2p^2 + 3p + 1}$$

- a) Ecrire l'équation différentielle du système.
- b) Calculer le coefficient d'amortissement (m) et la pulsation propre (ω_0)
- c) Déterminer la réponse indicielle unitaire du système et tracer son allure en fonction du temps

Exercice 4

On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{a}{(p+10)(p+1)}$$

On place ce système dans une boucle à retour unitaire. Déterminer la valeur de a qui assure au système en boucle fermée un dépassement de 10%

Exercice 5

On considère le système représenté par le schéma fonctionnel suivant :

- 1. Déterminer la fonction de transfert en boucle ouverte G(p) en fonction de A.
- 2. Déterminer la fonction de transfert en boucle fermée H(p) en fonction de A, la mettre sous la forme canonique d'un système du second ordre.
- 3. On applique à l'entrée un échelon unitaire. On exige que le dépassement D% soit égal à 5%, calculer le coefficient d'amortissement (m), la pulsation propre ω_0 et la valeur de A.
- 4. Quelle est la nature du régime établi (hyper amorti, oscillatoire amorti ou oscillatoire pur).

On donne $D\% = 100e^{\frac{-\pi m}{\sqrt{1-m^2}}}$

CORRECTION TD2

Exercice 1

1- Soit T(p) la fonction de transfert en boucle ouverte :

$$T(p) = \frac{X(p)}{E(p)} = \frac{40G}{1+2p} = \frac{40}{1+2p} = \frac{40}{1+2p} = X(p) = \frac{40}{1+2p}E(p)$$

$$E(p) = \frac{2}{p} \implies X(p) = \frac{80}{p(1+2p)} = \frac{40}{p(p+1/2)} = \frac{A}{p} + \frac{B}{p+1/2} = \frac{(A+B)p+1/2A}{p(p+1/2)}$$

$$===>\begin{cases} A+B=0 \\ 1/2A=40 \end{cases} \Rightarrow \begin{cases} B=-80 \\ A=80 \end{cases} ====> X(p) = \frac{80}{p} - \frac{80}{p+1/2}$$

$$x(t) = (80 - 80e^{-t/2})u(t) = 80(1 - e^{-t/2})u(t)$$

* à t = 0 ====> x(0) = 0;

* à t
$$\to \infty ===> x(t) \to 80$$
 ; $x'(t) = 40e^{-t/2} > 0$

Pour t = 2s ====>
$$x(t) = 80(1 - e^{-1}) = 50.6$$

2- Soit H(p) la fonction de transfert en boucle fermée :

$$H(p) = \frac{S(p)}{E(p)} = \frac{\frac{20G}{1+2p}}{1+\frac{40G}{1+2p}} = \frac{20G}{1+2p+40G} = \frac{20G}{2p+1+40G} = \frac{\frac{20G}{1+40G}}{1+\frac{2}{1+40G}p}$$

$$= = - > \begin{cases} K = \frac{20G}{1+40G} \\ \tau = \frac{2}{1+40G} \end{cases}$$

* pour $\tau = 16,5 \text{ms}$

$$===> \tau = \frac{2}{1+40G} \Rightarrow 2 = \tau(1+40G) \Rightarrow 2-\tau = 40G\tau \Rightarrow G = \frac{2-\tau}{40\tau} = \frac{2-16,510^{-3}}{40*16,510^{-3}}$$

$$===> G = G_1 = 3$$

3-
$$G = G_1 = 3$$
; $e(t) = 2$

$$H(p) = \frac{S(p)}{E(p)} = \frac{20G}{1+2p+40G} = \frac{60}{1+2p+120} = \frac{60}{2p+121} = \frac{30}{p+60,5}$$

$$= = = > S(p) = \frac{30}{p+60,5} * \frac{2}{p} = \frac{60}{p(p+60,5)} = \frac{A}{p} + \frac{B}{p+60,5} = \frac{(A+B)p+60,5A}{p(p+60,5)}$$

$$= = = > \begin{cases} A+B=0 \\ 60,5A=60 \end{cases} \Rightarrow \begin{cases} B \approx -1 \\ A \approx 1 \end{cases}$$

====>
$$S(p) = \frac{1}{p} - \frac{1}{p+60,5}$$
 ====> $s(t) = (1-e^{-60,5t})u(t)$

* à
$$t = 0$$
 ====> $s(0) = 0$;

* à t = 0 ====>
$$s(0) = 0$$
;
* à t $\to \infty$ ====> $s(t) \to 1$; $s'(t) = 60.5e^{-60.5t} > 0$

1-

$$A(p) = \frac{\theta_1}{U(p)} = \frac{K}{1 + \tau p}$$

$$\theta_1(\infty) = Ku_0 = 200V \Rightarrow K = 2$$

par projection de 0.63 * 200 = 126V on trouve $\tau = 100s$

$$A(p) = \frac{\theta_1}{U(p)} = \frac{2}{1 + 100p}$$

2-

$$Z_{RC}(p) = \frac{Z_{R}(p)Z_{C}(p)}{Z_{R}(p) + Z_{C}(p)} = \frac{R \cdot \frac{1}{cp}}{R + \frac{1}{cp}} = \frac{R}{1 + Rcp}$$

$$\begin{split} R(p) &= \frac{Z_R(p)}{Z_R(p) + Z_{RC}(p)} = \frac{R}{R + \frac{R}{1 + Rcp}} = \frac{R(1 + Rcp)}{R(1 + Rcp) + R} = \frac{1 + Rcp}{1 + 1 + Rcp} \\ &= \frac{1 + 100p}{2 + 100p} \end{split}$$

$$3 - a)$$

$$H(p) = \frac{R(p)A(p)\left[1 + \frac{1}{1+100p}\right]}{1 + R(p)A(p)\left[1 + \frac{1}{1+100p}\right]} = \frac{\frac{1+100p}{2+100p} * \frac{2}{1+100p} * \frac{2+100p}{1+100p}}{1 + \frac{1+100p}{2+100p} * \frac{2}{1+100p} * \frac{2+100p}{1+100p}}$$

$$= \frac{\frac{2}{1+100p}}{1 + \frac{2}{1+100p}} \Rightarrow H(p) = \frac{2}{3+100p}$$
a)

$$H(p) = \frac{\theta_2(p)}{\theta_c(p)} = \frac{2}{3 + 100p} = \frac{0.02}{p + 0.03}$$

$$\theta_2(p) = \frac{0.02}{0.03} * \frac{0.03}{p + 0.03} = \frac{2}{3} * \frac{0.03}{p + 0.03}$$

d'aprèsla table de Laplace $\theta_2(t) = \frac{2}{3}(1 - e^{-0.03t})u(t)$

$$\tau = \frac{100}{3} \Rightarrow t_r(5\%) = 3\tau = 100s$$

Exercice 3

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{2p^2 + 3p + 1}$$

a) Equation différentielle :

$$\frac{S(p)}{E(p)} = \frac{1}{2p^2 + 3p + 1} \Rightarrow S(p) [2p^2 + 3p + 1] = E(p)$$

====>
$$2p^2S(p) + 3pS(p) + S(p) = E(p)$$

====> $2\frac{d^2s(t)}{dt^2} + 3\frac{ds(t)}{dt} + s(t) = e(t)$

b)
$$H(p) = \frac{1}{2p^2 + 3p + 1} = \frac{1/2}{p^2 + 3/2p + 1/2} = \frac{K\omega_0^2}{p^2 + 2m\omega_0 p + \omega_0^2}$$

$$= = = \begin{cases} K\omega_0^2 = 1/2 \\ 2m\omega_0 = 3/2 \Rightarrow \begin{cases} K = 1 \\ \omega_0 = \sqrt{2}/2 \\ m = 3\sqrt{2}/2 \end{cases}$$

c)
$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{2p^2 + 3p + 1} = \frac{1}{2(p+1)(p+1/2)}$$

 $S(p) = \frac{E(p)}{2p^2 + 3p + 1} = \frac{1}{2(p+1)(p+1/2)}$

$$S(p) = \frac{E(p)}{2(p+1)(p+1/2)}$$
; $E(p) = \frac{1}{p}$

$$S(p) = \frac{1}{2(p+1)(p+1/2)} * \frac{1}{p} = \frac{1/2}{p(p+1)(p+1/2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{p+1/2}$$
$$= \frac{A(p+1)(p+1/2) + Bp(p+1/2) + Cp(p+1)}{p(p+1)(p+1/2)}$$
$$(A+B+C)p^2 + (3/2A+1/2B+C) + 1/2A$$

$$=\frac{(A+B+C)p^2+(3/2A+1/2B+C)+1/2A}{p(p+1)(p+1/2)}$$

$$\Rightarrow \begin{cases} A+B+C=0\\ 3/2A+1/2B+C=0 \Rightarrow \begin{cases} A=1\\ B=1\\ C=-2 \end{cases}$$

$$S(p) = \frac{1}{p} + \frac{1}{p+1} - \frac{2}{p+1/2} = = > [s(t) = [1 - Exp(-t) - Exp(-t/2)]]$$

*
$$t = 0 = = > s(0) = 0$$

* t ---->
$$\infty$$
 ====> $s(t) = 1$

*
$$\frac{ds(t)}{dt} = -Exp(-t) + 2Exp(-t/2) = 0 \Rightarrow Exp(-t) = Exp(-t/2) \Rightarrow -t = -t/2 \Rightarrow t = 0$$

$$G(p) = \frac{a}{(p+10)(p+1)}$$

Soit H(p) la fonction de transfert du système en boucle fermée :

$$\begin{split} H_2(p) &= \frac{\frac{a}{(p+10)(p+1)}}{1+\frac{a}{(p+10)(p+1)}} = \frac{a}{(p+10)(p+1)+1} = \frac{a}{p^2+11p+10+a} = \frac{K\omega_0^2}{p^2+2m\omega_0p+\omega_0^2} \\ D\% &= 100 Exp(-\frac{m\pi}{\sqrt{1-m^2}}) = 10 \quad ====> \quad Exp(-\frac{m\pi}{\sqrt{1-m^2}}) = 0,1 \\ &===> -\frac{m\pi}{\sqrt{1-m^2}} = -2,3 \quad ===> \quad \frac{m\pi}{\sqrt{1-m^2}} = 2,3 \quad ===> \quad m\pi = 2,3\sqrt{1-m^2} \\ &===> 9,86m^2 = 5,3(1-m^2) \quad ===> 9,86m^2 + 5,3m^2 = 5,3 \quad ===> \quad \boxed{m\approx 0,6} \\ 2m\omega_0 &= 11 \quad ====> \quad \omega_0 = \frac{11}{2m} = \frac{11}{1,2} = 9,15rd/s \\ \omega_0^2 &= 10+a \quad ====> \quad a = \omega_0^2 - 10 = 74 \end{split}$$

Exercice 5

$$G(p) = \frac{0.1A}{p(1+10p)}$$
2-

$$H(p) = \frac{\frac{0,1A}{p(1+10p)}}{1 + \frac{0,1A}{p(1+10p)}} = \frac{0,1A}{p(1+10p) + 0,1A} = \frac{0,1A}{10p^2 + p + 0,1A}$$

$$H(p) = \frac{0,01A}{p^2 + 0,1p + 0,01A} = \frac{K\omega_0^2}{p^2 + 2m\omega_0 p + \omega_0^2}$$
3-
$$D\% = 5\% \Rightarrow 100e^{-\frac{m\pi}{\sqrt{1-m^2}}} = 5 \Rightarrow e^{-\frac{m\pi}{\sqrt{1-m^2}}} = 0,05 \Rightarrow -\frac{m\pi}{\sqrt{1-m^2}} = 1,3$$

$$\Rightarrow -m\pi = 1,3\sqrt{1-m^2} \Rightarrow m^2(\pi^2 + 1,3^2) = 1,3^2$$

$$m = \frac{1,3}{\sqrt{\pi^2 + 1,3^2}} = 0,4$$

$$\begin{cases} K\omega_0^2 = 0.1A \implies K = 1 \\ 2m\omega_0 = 0.1 \implies \omega_0 = \frac{0.1}{2m} = 0.125rd/s \\ \omega_0^2 = 0.1A \implies A = 10\omega_0^2 = 0.15625 \end{cases}$$

TD3 SIGNAUX ET SYSTEMES

Exercice 1

Soit le système de fonction de transfert $G(p) = \frac{1000}{(p+1)(p+100)}$

Tracer le diagramme de BODE asymptotique (gain et phase).

Exercice 2

On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{K}{(p+100)(p+1)}$$

Déterminer la valeur de K pour laquelle la pulsation de coupure à 0dB, définie par $G(\omega_{c0}) = 1$ ou encore par $G_{dB}(\omega_{c0}) = 0$ est égale à 5 rad/s

Exercice 3

On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{10^4}{p(p+10)(p+100)}$$

Tracer le diagramme de NYQUIST de ce système

On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{25}{p^2 + 1,2p + 5}$$

- 1- Calculer le gain statique K, le coefficient d'amortissement m et la pulsation propre ω_0 .
- 2- Tracer le diagramme asymptotique de BODE
- 3- Calculer les valeurs : $|G(\omega_0)|_{dB}$; $|G_{max}|_{dB}$ et ω_r en déduire l'allure de BODE

Exercice 5

On représente le diagramme de BODE de la fonction de transfert G(p) en boucle ouverte (fig suivante)

Déterminer la fonction de transfert G(p) et le facteur de résonance M

CORRECTION TD3

Exercice 1

$$G(p) = \frac{1000}{(p+1)(p+100)} = \frac{10}{(1+p)(1+0.01p)}$$

On pose
$$G_1 = 10$$
; $G_2 = 1 + p \ (\tau_1 = 1)$; $G_3 = \frac{1}{1 + 0.01p} \ (\tau_2 = 0.01)$

Exercice 2
$$G(p) = \frac{K}{(p+100)(p+1)} \; ; \; G(j\omega) = \frac{K}{(j\omega+100)(j\omega+1)} \; ; \; G(\omega) = \frac{K}{\sqrt{\omega^2+10^4} * \sqrt{\omega^2+1}}$$

$$G(\omega_{C0}) = 1 \implies \sqrt{\omega_{C0}^2 + 10^4} * \sqrt{\omega_{C0}^2 + 1} = K \implies (\omega^2 + 10^4)(\omega^2 + 1) = K^2$$

$$G(p) = \frac{10^4}{p(p+10)(p+100)}$$

$$G(j\omega) = \frac{10^4}{j\omega(j\omega+10)(j\omega+100)} = \frac{10^4j\omega(10-j\omega)(100-j\omega)}{-\omega^2(100+\omega^2)(10^4+\omega^2)}$$
$$= \frac{-10^4j\omega(1000-10j\omega-100j\omega-\omega^2)}{\omega^2(\omega^2+100)(\omega^2+10^4)} = \frac{-10^4j\omega(1000-110j\omega-\omega^2)}{\omega^2(\omega^2+100)(\omega^2+10^4)}$$

$$=-10^4 \frac{1000 j\omega - j\omega^3 + 110\omega^2)}{\omega^2(\omega^2 + 100)(\omega^2 + 10^4)} = \frac{-10^4 *110\omega^2}{\omega^2(\omega^2 + 100)(\omega^2 + 10^4)} - j\frac{10^4 (1000\omega - \omega^3)}{\omega^2(\omega^2 + 100)(\omega^2 + 10^4)}$$

$$=-10^4 \frac{110}{(\omega^2 + 100)(\omega^2 + 10^4)} - j10^4 \frac{1000 - \omega^2}{\omega(\omega^2 + 100)(\omega^2 + 10^4)}$$

$$\omega \to 0 \implies R_e(G) \to 1.1 \; ; \; I_m(G) \to \infty \implies R_e(G) = 1.1 \; est \; une \; asymptote$$

$$\omega \to \infty$$
 \Longrightarrow $R_e(G) \to 01$; $I_m(G) \to 0$

$$I_{m}(G) = 0 \implies = -10^{4} \frac{1000 - \omega^{2}}{\omega(\omega^{2} + 100)(\omega^{2} + 10^{4})} = 0 \implies \omega = 31.6$$

$$R_e(G)_{31.6} = -10^4 \frac{110}{(31.6^2 + 100)(31.6^2 + 10^4)} = -0.09$$

Exercice 4 1-

$$G(p) = \frac{25}{p^2 + 1,2p + 5} = \frac{K\omega_0^2}{p^2 + 2m\omega_0 p + \omega_0^2}$$

$$\begin{cases} K\omega_0^2 = 25 \implies K = 5 \\ 2m\omega_0 = 1,2 \implies m = \frac{1,2}{2\omega_0} = 0,268 \\ \omega_0^2 = 5 \implies \omega_0 = \sqrt{5} = 2,236 \, rd/s \\ 2 - |G(\omega_0)|_{dB} = 20Log \frac{K}{2m} = 20Log \frac{5}{2*0,268} = 19,4dB \\ |G_{Max}|_{dB} = 20Log \frac{K}{2m\sqrt{1-m^2}} = 20Log \frac{5}{2*0,268\sqrt{1-0.268^2}} = 19,7dB \end{cases}$$

$$\omega_r = \omega_0 \sqrt{1 - 2m^2} = 2,236\sqrt{1 - 2 * 0.268^2} = 2,07 \text{ rd/s}$$

D'après la représentation de Bode

$$\varphi^{\circ} = -90^{\circ} \Rightarrow \omega_0 = 4 \, rd/s$$

$$20LogK = 26,2dB \Rightarrow K = 20,4$$

$$|G(\omega_0)|_{dB} = 3.8dB \Rightarrow 20Log \frac{K}{2m} = 33.8dB \Rightarrow \frac{K}{2m} = 49 \Rightarrow m = 0.2$$

 $H(p) = \frac{326.4}{p^2 + 1.6p + 16}$

$$|G_{Max}|_{dB} = 34,3dB \Rightarrow M = 34,3 - 26,2 = 8,1dB$$

المعمد العالبي للدراسات التكنولوجية بالممدية

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE MAHDIA

Classe: GE21-GE22-GE23-GE24-GE25

Matière: Signaux et Systèmes Linéaires

Date: Avril 2014

Durée: 1h

Proposé par : Gargouri. M Dreif. M Aucun document n'est autorisé

DS SIGNAUX ET SYSTEMES LINEAIRES

Exercice 1 (6points)

Déterminer les transformées de Laplace des signaux suivant :

Exercice 2 (7points)

Calculer les fonctions de transfert des schémas blocs ci-après :

Exercice 3 (7points)

Soit un système de grandeur de sortie v(t) et de grandeur d'entrée n(t) décrit par les équations suivantes :

$$\frac{dv(t)}{dt} + v(t) = 5x(t)$$

$$e(t) + 2\frac{dx(t)}{dt} + 5x(t) = n(t)$$

$$e(t) = 9v(t)$$

On suppose que toutes les conditions initiales sont nulles

- 1) Faire le diagramme fonctionnel de ce système.
- 2) Donner la fonction de transfert H(p) = V(p)/N(p).

Notes de correction

Exercice1

$$S_1(p) = \frac{1}{p} (1 - e^{-p} - e^{-2p} + e^{-3p})$$

$$S_2(p) = \frac{1}{p^2} (1 - e^{-p} - e^{-2p} + e^{-3p})$$

Exercice2

$$T_1(p) = \frac{S_1(p)}{E_1(p)} = \frac{G_1(p)G_2(p)G_3(p)G_4(p)}{1 + G_2(p)G_5(p) + G_1(p)G_2(p)G_3(p)G_4(p)G_6(p)}$$

$$T_2(p) = \frac{S_2(p)}{E_2(p)} = \frac{H_1(p)H_2(p)H_3(p)H_4(p)}{1 + H_3(p)H_4(p)H_5(p) + H_1(p)H_2(p)H_3(p)H_6(p)}$$

Exercice3

$$H(p) = \frac{V(p)}{N(p)} = \frac{5}{2p^2 + 7p + 50}$$

المعمد العالبي للدراسات التكنولوجية بالممدية

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE MAHDIA

Classe: GE21-GE22-GE23-GE24-GE25
Matière: Signaux et Systèmes Linéaires
Proposé par: Gargouri. M Ben Ayed. A

Durée : 1h
Aucun document n'est autorisé

Date: Avril 2015

DS SIGNAUX ET SYSTEMES LINEAIRES

Exercice 1 (7 points)

Soit le montage électrique suivant :

1- Calculer la fonction de transfert $G(p) = \frac{V(p)}{E(p)}$ de ce circuit en fonction de R,

C₁ et C puis exprimer H(p) sous la forme :
$$G(p) = \frac{\tau_1 p}{1 + \tau_2 p}$$

2- On a R = $10K\Omega$, C = $4\mu F$ et C_1 = $1\mu F$. Calculer les constantes de temps τ_1 et τ_2 du système

Exercice 2 (7 points)

Simplifier le schéma blocs suivant, en déduire la fonction de transfert $H(p) = \frac{Y(p)}{X(p)}$

Exercice 3 (6 points)

Déterminer l'original des fonctions de transfert suivantes :

$$S_1(p) = \frac{1+3p}{p(1+2p)}$$

$$S_2(p) = \frac{2-p}{(p+2)(p+5)}$$

$$S_3(p) = e^{-4p} \frac{1-5p}{p(p+1)(p+3)}$$

Notes de correction

Exercice1

$$G(p) = \frac{V(p)}{E(p)} = \frac{RC_1p}{1 + R(C + C_1)p}$$

$$\tau_1 = 10^{-2} \ et \ \tau_2 = 5.10^{-2}$$

$$H(p) = \frac{Y(p)}{X(p)} = \frac{120(1+2p)(1+5p)}{p(p^2+240p+48)(1+2p)+120(1+5p)}$$

Exercice3

$$s_1(t) = \left(1 + \frac{1}{2}e^{\frac{-1}{2}t}\right)u(t)$$

$$s_2(t) = (2e^{-2t} - 4e^{-5t})u(t)$$

$$s_3(t) = \left(\frac{1}{3} - 3e^{-t} + \frac{8}{3}e^{-3t}\right)u(t-4)$$

المعمد العالبي للدراسات التكنولوجية بالممدية

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE MAHDIA

Classe : GE21-GE22-GE23-GE24-GE25

Matière : Signaux et Systèmes Linéaires

Date : Juin 2014

Durée : 1h30mn

Proposé par : Gargouri. M & Dhraief. M

Aucun document n'est autorisé

EXAMEN SIGNAUX ET SYSTEMES LINEAIRES

Exercice 1 (7 points : 0.5-1.5-0.5-1-1-1.5)

Soit un four de traitement thermique dont la température de fonctionnement est θ_{f_0} l'équation différentielle modélisant le comportement de ce four est la suivante :

$$\tau_f \cdot \frac{d\theta_f(t)}{dt} + \theta_f(t) = K_f \cdot i(t)$$

- 1- Déterminer la fonction de transfert $G(p)=\theta_f(p)/I(p)$
- 2- On a enregistré la réponse indicielle de la température $\theta_f(t)$ lorsque i(t) = 100 A.

- a- Déterminer le gain statique (K_f) et la constante du temps (τ_f) , en déduire G(p)
- b- Calculer le temps de réponse à 5% tr_f
- 3- On réalise maintenant un asservissement de température à l'aide du schéma fonctionnel ci-dessous :

- a- Calculer la fonction de transfert H(p) en boucle fermée
- b- Déterminer le gain statique K et la constante de temps τ en fonction de Ka
- c- Pour Ka=10, calculer K et τ en déduire le temps de réponse tr à 5%
- d- Calculer et tracer la réponse indicielle (θc=1000°)

Exercice 2 (13 points : 1.5-1-2-1-2-0.5-3)

I/ On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{25}{10p^2 + 4p + 2,5}$$

- 4- Calculer le gain statique K, le coefficient d'amortissement m et la pulsation propre ω_0 .
- 5- Tracer le diagramme asymptotique de BODE (document réponse)
- 6- Calculer les valeurs : $|G(\omega_0)|_{dB}$; $|G_{max}|_{dB}$ et ω_r en déduire l'allure de BODE (document réponse)

On donne
$$G \max = \frac{K}{2m\sqrt{1-m^2}}$$

II/ On asservit le système comme le montre la figure suivante :

- 1- Calculer la fonction de transfert H(p) du système en boucle fermée en fonction de A
- 2- Mettre H(p) sous la forme canonique d'un système de second ordre, en déduire les valeurs de K, m et w0 en fonction de A
- 3- Calculer m, A, w0 et K pour avoir un dépassement de 30%
- 4- Déterminer la nature du système (hyper-amortie ou oscillatoir-amortie), justifier
- 5- e(t) est un échelon de valeur 10, calculer et représenter la réponse indicielle s(t) en précisant les valeurs de s(0), $s(\infty)$ et $s(\max)$

Nom: Classe:

DOCUMENT REPONSE (à rendre avec la copie)

Notes de correction

Exercice1

$$1 - G(p) = \frac{\theta_f(p)}{I(p)} = \frac{K_f}{1 + \tau_f p}$$

2 a)
$$K_f = 10$$
 et $\tau_f = 900 \text{ s}$; $G(p) = \frac{10}{1 + 900p}$

$$b)\;t_{rf}=2700\;s$$

$$3 a) H(p) = \frac{10K_a}{(1 + 20K_a) + 900p}$$

3 a)
$$H(p) = \frac{10K_a}{(1+20K_a)+900p}$$

b) $K = \frac{10K_a}{1+20K_a}$ et $\tau = \frac{900}{1+20K_a}$

c)
$$K = 0.5$$
; $\tau = 4.48 s$ et $t_r = 13.44 s$

$$d) \theta_f(t) = 500(1 - e^{-0.22t})$$

Exercice2

$$I\ 1)\ K=10$$
 ; $\omega_0=0.5$ et $m=0.4$

3)
$$|G_{\omega 0}|_{dB}=$$
 22,7 dB ; $|G_{max}|_{dB}=$ 23,5 dB et $\omega_r=$ 0,4 rd/s

$$II 1) H(p) = \frac{25A}{10p^2 + 4p + 2.5 + 25A}$$

2)
$$K = \frac{2,5A}{0,25+2,5A}$$
; $\omega_0 = \sqrt{0,25+2,5A}$ et $m = \frac{0,4}{2\sqrt{0,25+2,5A}}$

3)
$$m = 0.36$$
; $\omega_0 = 0.55 \frac{rd}{s}$; $A = 0.02$ et $K = 0.167$

4) Système ocillatoire – amorti

5)
$$s(t) = \frac{5}{3} [1 - e^{-0.2t} (\cos 0.5t + 0.38 \sin 0.5t)]$$

$$s_{\infty} = \frac{5}{3}$$
; $s_{max} = 2,17$ et $s_0 = 0$

المعمد العالبي للدراسات التكنولوجية بالممدية

INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE MAHDIA

Classe: GE21-GE22-GE23-GE24-GE25

Matière: Signaux et Systèmes Linéaires

Proposé par: Gargouri. M - Ben Ayed. A

Aucun document n'est autorisé

EXAMEN SIGNAUX ET SYSTEMES LINEAIRES

Exercice 1 (10 points: 1+1+2+2+1+2+1)

Un système de régulation de niveau d'eau est caractérisé par le schéma suivant :

Le niveau d'eau N(p) en fonction du débit Q1(p) est donné par le schéma suivant :

- 1- Trouver la fonction de transfert $B(p) = \frac{N(p)}{Ql(p)}$ en fonction de a et b
- 2- Mettre B(p) sous la forme canonique d'un système de premier ordre, en déduire les valeurs du gain statique K et de la constante du temps τ en fonction de a et b
- 3- Pour calculer a et b, on procède à des relevés temporels, on a enregistré la réponse à un échelon de n(t) lorsque q1(t) = 20

Déterminer graphiquement les valeurs de K et τ, en déduire a et b

4- Tracer les diagrammes asymptotiques de Bode (gain et déphasage) de la fonction B(p), en déduire l'allure réelle (document réponse)

5- On donne
$$A(p) = \frac{1}{1+p}$$
, $R(p) = g$ et $T(p) = 1$, $B(p) = \frac{1}{2+8p}$

- a- Calculer la fonction de transfert du système $H(p) = \frac{N(p)}{C(p)}$ en fonction de g
- b- Mettre H(p) sous la forme canonique d'un système de second ordre, en déduire les valeurs de K, ω_0 et m en fonction de g
- c- Calculer K, ω_0 et g pour avoir m=0,5

Exercice 2 (10 points : 0,5+2+1+2+2+0,5+2)

Un asservissement est représenté par le schéma fonctionnel suivant :

6- On vous donne la représentation du diagramme de bode de la fonction de transfert G(p)

- a. Qu'elle est l'ordre de la fonction G(p)
- b. Calculer G(p)
- 7- On prend $G(p) = \frac{25}{10p^2 + 12p + 2.5}$ Calculer la fonction de transfert H(p) du système en boucle fermée
- 8- Mettre H(p) sous la forme canonique d'un système de second ordre, en déduire les valeurs de K, m et $\omega 0$ en fonction de K
- 9- Calculer m, A, $\omega 0$ et K pour avoir un dépassement de 10%
- 10- Déterminer la nature du système (hyper-amortie ou oscillatoire-amortie), justifier
- 11- e(t) est un échelon de valeur 3, représenter l'allure de s(t) en précisant les valeurs de s(0), $s(\infty)$ et s(max)

BON TRAVAIL

Notes de correction

Exercice1

$$1 - B(p) = \frac{N(p)}{Q_1(p)} = \frac{1}{a + bp}$$

2)
$$K = \frac{1}{a} \text{ et } \tau = \frac{b}{a}$$

3)
$$K = 0.5$$
; $\tau = 4s$; $a = 2$ et $b = 8$

5 a)
$$H(p) = \frac{N(p)}{C(p)} = \frac{g}{(1+p)(2+8p)+g}$$

b)
$$K = \frac{g}{2+g}$$
; $m = \frac{5}{8\sqrt{\frac{2+g}{8}}}$ et $\omega_0 = \sqrt{\frac{2+g}{8}}$

c)
$$m = 0.5$$
; $\omega_0 = \frac{5}{4} \frac{rd}{s}$; $g = 10.5$ et $K = 0.84$

Exercice2

1 a) ordre 2

b)
$$K = 10$$
; $\omega_0 = 0.5$; $m = 1.2$ et $G(p) = \frac{2.5}{p^2 + 1.2p + 0.25}$

2)
$$H(p) = \frac{2,5A}{p^2 + 1,2p + 0,25 + 2,5A}$$

3)
$$K = \frac{2,5A}{0,25+2,5A}$$
; $\omega_0 = \sqrt{0,25+2,5A}$ et $m = \frac{0,6}{2\sqrt{0,25+2,5A}}$

4)
$$m = 0.6$$
; $\omega_0 = 1 \, rd/s$; $A = 0.3 \, et \, K = 0.75$

5) Système ocillatoire – amorti

6)
$$y_{\infty} = 2.25$$
; $y_{max} = 2.475$ et $y_0 = 0$

TABLE DE LAPLACE

Transformées de Laplace	Fonctions temporelles	
$U(p) = \frac{1}{p}$	u(t) = 1	
$V(p) = \frac{k}{p^2}$ $S(p) = \frac{1}{p+a}$	v(t) = kt	
$S(p) = \frac{1}{p+a}$	$s(t) = e^{-at}$	
$S(p) = \frac{1}{(p+a)^2}$	$s(t) = t.e^{-at}$	
$S(p) = \frac{a}{p(p+a)}$	$s(t) = 1 - e^{-at}$	
$S(p) = \frac{a}{p^{2}(p+a)}$ $S(p) = \frac{b-a}{(p+a)(p+b)}$	$s(t) = t - \frac{1}{a} + \frac{e^{-at}}{a}$	
$S(p) = \frac{b - a}{(p+a)(p+b)}$	$s(t) = e^{-at} - e^{-bt}$	
$S(p) = \frac{a.b}{p(p+a)(p+b)}$	$s(t) = 1 + \frac{b}{a-b} e^{-at} - \frac{a}{a-b} e^{-bt}$	
$S(p) = \frac{a^2}{p(p+a)^2}$	$s(t) = 1 - e^{-at} - ate^{-at}$	
$S(p) = \frac{p}{p^2 + \omega^2}$	s(t)=cosωt	
$S(p) = \frac{\omega}{p^2 + \omega^2}$	s(t)=sinωt	
$S(p) = \frac{p+a}{(p+a)^2 + \omega^2}$	$s(t) = e^{-at} \cos \omega t$	
$S(p) = \frac{\omega}{(p+a)^2 + \omega^2}$	$s(t) = e^{-at} \sin \omega t$	
$S(p) = \frac{\omega^2}{p^2 + 2m\omega_0 p + \omega_0^2}$ m<1	$s(t) = \frac{\omega_0 \sqrt{1 - m^2}}{1 - m^2} e^{-m\omega_0 t} \sin\left(\omega_0 \sqrt{1 - m^2} t\right)$	
$S(p) = \frac{\omega^2}{p(p^2 + 2m\omega_0 p + \omega_0^2)}$ m<1	$s(t) = 1 - e^{-\omega_0 mt} \left(Cos \omega_0 \sqrt{1 - m^2} t + \frac{m}{\sqrt{1 - m^2}} Sin \omega_0 \sqrt{1 - m^2} t \right)$	

Nom :	.Prénom :	Classe:

DOCUMENT REPONSE (à rendre avec la copie)

