Chapter 2

Organizing Data

Section 2.1 Variables and Data

Variables

Variable: A characteristic that varies from one person or thing to another.

Qualitative variable: A nonumerically valued variable.

Quantitative variable: A numerically valued variable.

Discrete variable: A quantitative variable whose possible values can be listed. In particular, a quantitative variable with only a finite number of possible values is a discrete variable.

Continuous variable: A quantitative variable whose possible values form some interval of numbers.

Figure 2.1

Types of variables

Data

Data: Values of a variable.

Qualitative data: Values of a qualitative variable.

Quantitative data: Values of a quantitative variable.

Discrete data: Values of a discrete variable.

Continuous data: Values of a continuous variable.

Section 2.2 Organizing Qualitative Data

Frequency Distribution of Qualitative Data

A frequency distribution of qualitative data is a listing of the distinct values and their frequencies.

Procedure 2.1

To Construct a Frequency Distribution of Qualitative Data

Step 1 List the distinct values of the observations in the data set in the first column of a table.

Step 2 For each observation, place a tally mark in the second column of the table in the row of the appropriate distinct value.

Count the tallies for each distinct value and record the totals in the third column of the table.

Political party affiliations of the students in introductory statistics

Other	Democratic	Other	Democratic
Republican	Other	Other	Republican
Republican	Republican	Democratic	Republican
Democratic	Democratic	Other	Republican
Democratic	Republican	Democratic	Democratic
Republican	Other	Other	Democratic
Democratic	Republican	Other	Other
Republican	Republican	Democratic	Republican
	Republican Republican Democratic Democratic Republican Democratic	Republican Other Republican Republican Democratic Democratic Democratic Republican Republican Other Democratic Republican	Republican Other Other Republican Republican Democratic Democratic Democratic Other Democratic Republican Democratic Republican Other Other Democratic Republican Other

Table for constructing a frequency distribution for the political party affiliation data in Table 2.1

Party	Tally	Frequency
Democratic Republican Other	ИЛ ИЛ III ИЛ ИЛ ИЛ III ИЛ IIII	13 18 9
		40

Relative-Frequency Distribution of Qualitative Data

A **relative-frequency distribution** of qualitative data is a listing of the distinct values and their relative frequencies.

Procedure 2.2

To Construct a Relative-Frequency Distribution of Qualitative Data

Obtain a frequency distribution of the data. Step 1

Divide each frequency by the total number of observations. Step 2

Relative-frequency distribution for the political party affiliation data in Table 2.1

Party	Relative frequency	
Democratic	0.325	← 13/40
Republican	0.450	← 18/40
Other	0.225	← 9/40
	1.000	

Pie Chart

A **pie chart** is a disk divided into wedge-shaped pieces proportional to the relative frequencies of the qualitative data.

Procedure 2.3

To Construct a Pie Chart

Step 1 Obtain a relative-frequency distribution of the data by applying Procedure 2.2.

Step 2 Divide a disk into wedge-shaped pieces proportional to the relative frequencies.

Step 3 Label the slices with the distinct values and their relative frequencies.

Figure 2.2

Pie chart of the political party affiliation data in Table 2.1

Bar Chart

A bar chart displays the distinct values of the qualitative data on a horizontal axis and the relative frequencies (or frequencies or percents) of those values on a vertical axis. The relative frequency of each distinct value is represented by a vertical bar whose height is equal to the relative frequency of that value. The bars should be positioned so that they do not touch each other.

Procedure 2.4

To Construct a Bar Chart

- **Step 1** Obtain a relative-frequency distribution of the data by applying Procedure 2.2.
- **Step 2** Draw a horizontal axis on which to place the bars and a vertical axis on which to display the relative frequencies.
- **Step 3** For each distinct value, construct a vertical bar whose height equals the relative frequency of that value.
- **Step 4** Label the bars with the distinct values, the horizontal axis with the name of the variable, and the vertical axis with "Relative frequency."

Figure 2.3

Bar chart of the political party affiliation data in Table 2.1

Section 2.3 Organizing Quantitative Data

Number of TV sets in each of 50 randomly selected households.

```
1 1 1 2 6 3 3 4 2 4
3 2 1 5 2 1 3 6 2 2
3 1 1 4 3 2 2 2 2 3
```

Frequency and relative-frequency distributions, using singlevalue grouping, for the number-of-TVs data in Table 2.4

Number of TVs	Frequency	Relative frequency
0	1	0.02
1	16	0.32
2	14	0.28
3	12	0.24
4	3	0.06
5	2	0.04
6	2	0.04
	50	1.00

Days to maturity for 40 short-term investments

```
70 64 99 55 64 89 87 65
62 38 67 70 60 69 78 39
75 56 71 51 99 68 95 86
57 53 47 50 55 81 80 98
51 36 63 66 85 79 83 70
```

Frequency and relative-frequency distributions, using limit grouping, for the days-to-maturity data in Table 2.6

Days to maturity	Tally	Frequency	Relative frequency
30-39		3	0.075
40-49		1	0.025
50-59		8	0.200
60-69	un un	10	0.250
70–79	W1 II	7	0.175
80-89	W1 II	7	0.175
90-99		4	0.100
		40	1.000

Terms Used in Limit Grouping

Lower class limit: The smallest value that could go in a class.

Upper class limit: The largest value that could go in a class.

Class width: The difference between the lower limit of a class and the lower limit of the next-higher class.

Class midpoint: The average of the two class limits of a class.

Histogram

A histogram displays the classes of the quantitative data on a horizontal axis and the frequencies (relative frequencies, percents) of those classes on a vertical axis. The frequency (relative frequency, percent) of each class is represented by a vertical bar whose height is equal to the frequency (relative frequency, percent) of that class. The bars should be positioned so that they touch each other.

- For single-value grouping, we use the distinct values of the observations to label the bars, with each such value centered under its bar.
- For limit grouping or cutpoint grouping, we use the lower class limits (or, equivalently, lower class cutpoints) to label the bars. Note: Some statisticians and technologies use class marks or class midpoints centered under the bars.

Procedure 2.5

To Construct a Histogram

- Obtain a frequency (relative-frequency, percent) distribution of the data.
- Draw a horizontal axis on which to place the bars and a vertical axis on which to display the frequencies (relative frequencies, percents).
- For each class, construct a vertical bar whose height equals the frequency (relative frequency, percent) of that class.
- **Step 4** Label the bars with the classes, as explained in Definition 2.9, the horizontal axis with the name of the variable, and the vertical axis with "Frequency" ("Relative frequency," "Percent").

Figure 2.4

Single-value grouping. Number of TVs per household: (a) frequency histogram; (b) relative-frequency histogram

Television Sets per Household

Television Sets per Household

Figure 2.5

Limit grouping. Days to maturity: (a) frequency histogram; (b) relative-frequency histogram

Dotplot

A **dotplot** is a graph in which each observation is plotted as a dot at an appropriate place above a horizontal axis. Observations having equal values are stacked vertically.

Procedure 2.6

To Construct a Dotplot

Step 1 Draw a horizontal axis that displays the possible values of the quantitative data.

Step 2 Record each observation by placing a dot over the appropriate value on the horizontal axis.

Step 3 Label the horizontal axis with the name of the variable.

Table 2.11 & Figure 2.7

Prices, in dollars, of 16 DVD players

210	219	214	197
224	219	199	199
208	209	215	199
212	212	219	210

Prices of DVD Players

Stem-and-Leaf Diagrams

In a **stem-and-leaf diagram** (or **stemplot**), each observation Is separated into two parts, namely, a **stem**—consisting of all but the rightmost digit—and a **leaf**, the rightmost digit.

Procedure 2.7

To Construct a Stem-and-Leaf Diagram

- **Step 1** Think of each observation as a stem—consisting of all but the rightmost digit—and a leaf, the rightmost digit.
- **Step 2** Write the stems from smallest to largest in a vertical column to the left of a vertical rule.
- **Step 3** Write each leaf to the right of the vertical rule in the row that contains the appropriate stem.
- Step 4 Arrange the leaves in each row in ascending order.

Table 2.12 & Figure 2.8

Days to maturity for 40 short-term investments

62 75	38 56	99 67 71	70 51	60 99	69 68	78 95	39 86
57	53	47	50	55	81	80	98
51	36	63	66	85	79	83	70

Constructing a stem-and-leaf diagram for the days-to-maturity data

		Stems	Leaves
3	869	3	689
4	7	4	7
5	71635105	5	01135567
6	2473640985	6	0234456789
7	0510980	7	0001589
8	5917036	8	0135679
9	9958	9	5899
	(a)		(b)

Table 2.13 & Figure 2.9

Cholesterol levels for 20 high-level patients

210 209 212 208 217 207 210 203 208 210 210 199 215 221 213 218 202 218 200 214

Stem-and-leaf diagram for cholesterol levels: (a) one line per stem; (b) two lines per stem

Section 2.4 Distribution Shapes

Definition 2.12

Distribution of a Data Set

The distribution of a data set is a table, graph, or formula that provides the values of the observations and how often they occur.

Relative-frequency histogram and approximating smooth curve for the distribution of heights

Examples of (a) unimodal, (b) bimodal, and (c) multimodal distributions

Shapes of Distributions - Symmetric

Symmetric Distribution

• A vertical line can be drawn through the middle of a graph of the distribution and the resulting halves are approximately mirror images.

Uniform Distribution (rectangular)

- All entries or classes in the distribution have equal or approximately equal frequencies.
- Symmetric

Examples of symmetric distributions: (a) bell shaped, (b) triangular, and (c) uniform

Shapes of Distributions - Skewed

Skewed Left Distribution (negatively skewed)

The "tail" of the graph elongates more to the left.

Skewed Right Distribution (positively skewed)

The "tail" of the graph elongates more to the right.

Generic skewed distributions: (a) right skewed (b) left skewed

Reverse-J-shaped distribution

Relative-frequency histogram for household size

Definition 2.13

Population and Sample Data

Population data: The values of a variable for the entire population.

Sample data: The values of a variable for a sample of the population.

Definition 2.14

Population and Sample Distributions; Distribution of a Variable

The distribution of population data is called the **population** distribution, or the distribution of the variable.

The distribution of sample data is called a **sample distribution**.

Population distribution and six sample distributions for household size

Key Fact 2.1

Population and Sample Distributions

For a simple random sample, the sample distribution approximates the population distribution (i.e., the distribution of the variable under consideration). The larger the sample size, the better the approximation tends to be.