Chapter 3

Kinetic factors

1- influence of the initial concentration of reactant(s):

• The rate of disappearance of reactants and that of the formation of a product increases when the initial concentration of reactant(s).

- There are a few molecules.
- There are a few collisions.
- The reaction is slow.

- There are many molecules.
- There are more collisions.
- The reaction is fast

2- influence of temperature

• The rate of disappearance of reactants and that of the products increase when the temperature increase

- At low temperature, the particles move more slowly.
- Collision frequency is low.

- At a higher temperature, the particles move faster.
- Collision frequency is higher

3- effect of a catalyst

• Definition: a catalyst is a chemical substance that accelerate the reaction and remains unaltered at the end of the reaction.

Characteristics:

- Selectivity:

Starting from the same reactants the products of reaction may be different according to the used catalyst

- Activity:

The lesser the quantity of the catalyst, which is capable to cause a noticeable incrase in the rate of the reaction, the more active is the catalyst

4- influence of the surface area of contact

• The rate of disappearance of the reactants and that of the formation of the products increases when the contact surface between the reactants increases.

Application 1:

Identify the faster reaction:

Application 2:

Match each term with the necessary curve. Justify

With catalyst

Without catalyst

Application 3:

Match the temperature with the curve needed. justify

Half-life time of the reaction:

1- limiting reactant:

Half-life time of the reaction is the time needed for the half of the initial quantity of the limiting reactant to be consumed

 $t_{1/2}$ corresponds to: $[A]_0 / 2$ or n initial / 2 graphically $t_{1/2}$ = time

2- product:

Half-life time of the reaction is the time needed for the maximum quantity of product to be formed

 $t_{1/2}$ corresponds [p] ∞ /2 ou n(P) ∞ /2 Graphically t $t_{1/2}$ = time