Convolution using FFT

Given two n-dimensional vectors $a=[a_0,\ldots,a_{n-1}]$ and $b=[b_0,b_1,\ldots,b_{n-1}]$ over complex numbers, use FFT and its inverse to output the convolution $c=a\otimes b$, where, $c_k=\sum_{j=0}^k a_jb_{k-j}$, for $k=0,1,\ldots,2n-2$.

Let F_n denote the n imes n DFT matrix. That is,

$$F_n = egin{bmatrix} 1 & 1 & 1 & \dots & 1 \ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \ 1 & \omega_n^2 & \omega_n^4 & \dots & \omega_n^{2(n-1)} \ dots & dots & dots \ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)^2} \end{bmatrix}$$

Recall by taking inner-product of any two columns that $F_n^*F_n=nI$. Hence, $F_n^{-1}=rac{1}{n}F_n^*$ and therefore,

$$(DFT)_n^{-1}(y) = (1/n)F_n^*(y)$$
.

We obtain two ways of computing DFT_n^{-1} . From definition of F_n^* , we have that F_n^* is the same as that of F_n^* with ω_n replaced by $\overline{\omega_n} = \omega_n^{-1} = e^{-2\pi i/n}$. So, in the computation of $F_n y$, if we replace the role of ω_n by ω_n^{-1} appropriately throughout, and divide by n, we should obtain $DFT^{-1}(y)$. The second method comes by observing the rows of F_n^* and relating them to rows of F_n . Note that $\overline{\omega_n}^k = \omega_n^{-k} = \omega_n^{n-k}$, for $0 \le k \le n-1$.

$$F_n^* = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \overline{\omega_n} & \overline{\omega_n^2} & \dots & \overline{\omega_n^{n-1}} \\ 1 & \overline{\omega_n^2} & \overline{\omega_n^4} & \dots & \overline{\omega_n^{2(n-1)}} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \overline{\omega_n^{n-1}} & \overline{\omega_n^{2(n-1)}} & \dots & \overline{\omega_n^{(n-1)^2}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)^2} \\ 1 & \omega_n^{n-2} & \omega_n^{2(n-2)} & \dots & \omega_n^{(n-2)(n-1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \end{bmatrix}$$

Thus row indexed 0 of F_n^* is the same as row indexed 0 of F_n . Row 1 of F_n^* is same as row n-1 of F_n , row 2 of F_n^* is same as row n-1 of F_n , row n-1 of F_n^* is same as row i of $i=1,2,\ldots,n-1$. This same relation therefore holds between $i=1,2,\ldots,n-1$. This same relation therefore holds between $i=1,2,\ldots,n-1$.

Since, a and b are both n dimensional, first pad a and b each with n zero new coefficients a_n, \ldots, a_{2n-1} and b_n, \ldots, b_{2n-1} that are all zeros to make them 2n dimensional vectors. Now compute $c = a \otimes b$ as follows. Let N be the closest power of 2 that is equal to or larger than 2n.

$$c = DFT_N^{-1}(FFT_N(a) \bullet FFT_N(b))$$

where, for any k-dimensional vectors u and v, $(u ullet v)_j = u_j \cdot v_j$, for $j = 0, \dots, k-1$.

Input Format

First line of each input is a positive integer t - number of test cases.

For each test case -

- 1. First line contains n number of coefficients of input polynomials
- 2. Following $1 \leq k \leq n$ lines contains the components of vector **a** as a pair pq for p+iq

3. Next $1 \leq k \leq n$ lines contains the components of vector **b** as a pair rs for r+is

Constraints

- $1 \le t \le 100$
- $1 \le n \le 1000$

Output Format

For each test case output the vector ${f c}$. Let ${f N}$ be the closest power of 2 that is equal to or larger than ${f 2n}$

For $1 \leq j \leq N$, j^{th} line will contain $c_{j-1} = (x+iy)$ as a tuple (x,y)

Sample Input 0

```
2
2
2 0
3 0
1 0
4 0
3
2 0
4 0
3 0
3 0
3 0
1 0
7 0
```

Sample Output 0

```
(2.000,0.000)
(11.000,0.000)
(12.000,0.000)
(0.000,0.000)
(6.000,0.000)
(14.000,0.000)
(27.000,0.000)
(31.000,0.000)
(21.000,0.000)
(0.000,0.000)
(0.000,0.000)
(0.000,0.000)
```