Autômatos Finitos Não-Determinísticos

Douglas O. Cardoso douglas.cardoso@cefet-rj.br

Roteiro

1 Conceitos Básicos

- **2** Equivalência entre AFDs, AFNs e AFN λ s
- 3 Propriedades de Fechamento

Roteiro

1 Conceitos Básicos

2 Equivalência entre AFDs, AFNs e AFN λ s

3 Propriedades de Fechamento

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, $(E, \Sigma, \delta, I, F)$, em que:

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

■ *E* é um conjunto de estados;

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

- *E* é um conjunto de estados;
- lacksquare Σ é um alfabeto;

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

- *E* é um conjunto de estados;
- lacksquare Σ é um alfabeto;
- $\delta: E \times \Sigma \to \mathcal{P}(E)$ é a função de transição;

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

- *E* é um conjunto de estados;
- Σ é um alfabeto;
- $\delta: E \times \Sigma \to \mathcal{P}(E)$ é a função de transição;
- $I, I \subset E, I \neq \emptyset$, é o conjunto de estados iniciais;

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

- *E* é um conjunto de estados;
- Σ é um alfabeto;
- $\delta: E \times \Sigma \to \mathcal{P}(E)$ é a função de transição;
- $I, I \subset E, I \neq \emptyset$, é o conjunto de estados iniciais;
- $F, F \subset E$, é o conjunto de estados finais.

AFDs, AFNs e Não-Determinismo

É importante notar duas diferenças de AFNs para AFDs, que representam o caráter não-determinístico dos primeiros:

AFDs, AFNs e Não-Determinismo

É importante notar duas diferenças de AFNs para AFDs, que representam o caráter não-determinístico dos primeiros:

 Um AFN pode ter um ou mais estados iniciais, enquanto um AFD tem apenas 1 estado inicial;

AFDs, AFNs e Não-Determinismo

É importante notar duas diferenças de AFNs para AFDs, que representam o caráter não-determinístico dos primeiros:

- Um AFN pode ter um ou mais estados iniciais, enquanto um AFD tem apenas 1 estado inicial;
- Os elementos do contradomínio da função de transição de um AFN são conjuntos de estados, enquanto de um AFD são estados apenas.

$$E = \{1, 2\}$$

- $E = \{1, 2\}$
- $\quad \blacksquare \ \Sigma = \{0,1\}$

$$E = \{1, 2\}$$

$$\quad \blacksquare \ \Sigma = \{0,1\}$$

$$I = \{1\}$$

- $E = \{1, 2\}$
- $\Sigma = \{0, 1\}$
- $I = \{1\}$
- $F = \{2\}$

$$E = \{1, 2\}$$

$$\Sigma = \{0, 1\}$$

$$I = \{1\}$$

$$F = \{2\}$$

$$\begin{array}{c|ccc} \delta & 0 & 1 \\ \hline 1 & \{1,2\} & \{1\} \\ 2 & \varnothing & \varnothing \end{array}$$

$$\delta(e,a) = \varnothing$$
?

No contexto de AFNs, $\delta(e,a)$ é o conjunto de estados alcançados por transição de e sob a.

$$\delta(e,a) = \varnothing$$
?

- No contexto de AFNs, $\delta(e,a)$ é o conjunto de estados alcançados por transição de e sob a.
- Logo, $\delta(e,a)=\varnothing$ se e somente se não há transições sob o símbolo a partindo de e.

$$\delta(e, a) = \varnothing$$
?

- No contexto de AFNs, $\delta(e,a)$ é o conjunto de estados alcançados por transição de e sob a.
- \blacksquare Logo, $\delta(e,a)=\varnothing$ se e somente se não há transições sob o símbolo a partindo de e.
- AFNs dispensam o uso de sumidouros, já que a função de transição permite indicar a ausência de transições de um estado sob um símbolo.

$$\delta(e,a) = \varnothing$$
?

- No contexto de AFNs, $\delta(e,a)$ é o conjunto de estados alcançados por transição de e sob a.
- Logo, $\delta(e,a)=\varnothing$ se e somente se não há transições sob o símbolo a partindo de e.
- AFNs dispensam o uso de sumidouros, já que a função de transição permite indicar a ausência de transições de um estado sob um símbolo.
- Se $\forall (e, a) \in E \times \Sigma, |\delta(e, a)| \leq 1$, o referido AFN poderia ser representado como um AFD. (Por que?)

■ Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:

00000000

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:
 - $\hat{\delta}(\varnothing, w) = \varnothing$, para todo $w \in \Sigma^*$;

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda)=A$, para todo $A\subseteq E$;

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda)=A$, para todo $A\subseteq E$;
 - $\bullet \hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in A} \delta(e, a), w).$

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda)=A$, para todo $A\subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in A} \delta(e, a), w).$
- Usando a definição de $\hat{\delta}$, a linguagem aceita por um AFN $M=(E,\Sigma,\delta,I,F)$ é o conjunto

$$L(M) = \{ w \in \Sigma^* : \hat{\delta}(I, w) \cap F \neq \emptyset \} .$$

■ AFDs e AFNs são equivalentes: para todo AFN, há um AFD correspondente; e todo AFD é um "AFN determinístico".

- AFDs e AFNs são equivalentes: para todo AFN, há um AFD correspondente; e todo AFD é um "AFN determinístico".
- Ainda assim, AFNs ainda se mostram úteis ante a AFDs por permitirem descrições mais simples e claras de algumas ideias.

- AFDs e AFNs são equivalentes: para todo AFN, há um AFD correspondente; e todo AFD é um "AFN determinístico".
- Ainda assim, AFNs ainda se mostram úteis ante a AFDs por permitirem descrições mais simples e claras de algumas ideias.
- Devido a isso, determinar um AFN para chegar ao seu AFD correspondente é eventualmente mais interessante que determinar o AFD diretamente.

- AFDs e AFNs são equivalentes: para todo AFN, há um AFD correspondente; e todo AFD é um "AFN determinístico".
- Ainda assim, AFNs ainda se mostram úteis ante a AFDs por permitirem descrições mais simples e claras de algumas ideias.
- Devido a isso, determinar um AFN para chegar ao seu AFD correspondente é eventualmente mais interessante que determinar o AFD diretamente.
- Por exemplo, como seriam um AFD e um AFN que aceitem a linguagem $\{0,1\}^*\{1010\}$?

$\{0,1\}^*\{1010\}$: AFD e AFN

$\{0,1\}^*\{1010\}$: AFD e AFN

Exercício

Considere a linguagem

$$L_i = \{w \in \{0,1\}^* : |w| \ge i \land w_{|w|-i+1} = 1\}, i > 0.$$

Exercício

Considere a linguagem

$$L_i = \{w \in \{0,1\}^* : |w| \ge i \land w_{|w|-i+1} = 1\}, i > 0.$$

■ Determine um AFD D_i e um AFN N_i tal que $L(D_i) = L(N_i) = L_i$, para i=1,2,3.

Exercício

Considere a linguagem

$$L_i = \{w \in \{0,1\}^* : |w| \ge i \land w_{|w|-i+1} = 1\}, i > 0.$$

- Determine um AFD D_i e um AFN N_i tal que $L(D_i) = L(N_i) = L_i$, para i=1,2,3.
- Indique o número de estados de D_i e N_i em função de i.

Considere a linguagem

$$L_i = \{w \in \{0,1\}^* : |w| \ge i \land w_{|w|-i+1} = 1\}, i > 0.$$

- \blacksquare Determine um AFD D_i e um AFN N_i tal que $L(D_i)=L(N_i)=L_i$, para i=1,2,3 .
- Indique o número de estados de D_i e N_i em função de i.
- A comparação desses números diz algo sobre a importância de AFNs, apesar da sua equivalência com AFDs?

Roteiro

1 Conceitos Básicos

- **2** Equivalência entre AFDs, AFNs e AFN λ s
- 3 Propriedades de Fechamento

■ Um AFN $N=(E',\Sigma',\delta',I,F')$ equivalente a um AFD $D=(E,\Sigma,\delta,i,F)$ qualquer pode ser determinado baseando-se na ideia de que um AFD é como um "AFN determinístico" :

• Um AFN $N=(E',\Sigma',\delta',I,F')$ equivalente a um AFD $D=(E,\Sigma,\delta,i,F)$ qualquer pode ser determinado baseando-se na ideia de que um AFD é como um "AFN determinístico" :

•
$$E' = E, \Sigma' = \Sigma, \delta'(e, a) = \{\delta(e, a)\}, I = \{i\}, F' = F.$$

■ Um AFN $N=(E',\Sigma',\delta',I,F')$ equivalente a um AFD $D=(E,\Sigma,\delta,i,F)$ qualquer pode ser determinado baseando-se na ideia de que um AFD é como um "AFN determinístico" :

•
$$E' = E, \Sigma' = \Sigma, \delta'(e, a) = {\delta(e, a)}, I = {i}, F' = F.$$

Isso pode ser provado! :)

- Um AFN $N=(E',\Sigma',\delta',I,F')$ equivalente a um AFD $D=(E,\Sigma,\delta,i,F)$ qualquer pode ser determinado baseando-se na ideia de que um AFD é como um "AFN determinístico" :
 - $E' = E, \Sigma' = \Sigma, \delta'(e, a) = \{\delta(e, a)\}, I = \{i\}, F' = F.$
 - Isso pode ser provado! :)
 - \blacksquare Provar a equivalência de D e N, L(D)=L(N), é provar que $\forall w,w\in L(D)\leftrightarrow w\in L(N).$

■ Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.

- Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).

- Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).
- lacksquare O estado inicial de D seria o próprio conjunto de estados iniciais de N.

- Um AFD $D = (E', \Sigma', \delta', i, F')$ equivalente a um AFN $N = (E, \Sigma, \delta, I, F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).
- $lue{}$ O estado inicial de D seria o próprio conjunto de estados iniciais de N.
- $lue{}$ Os conjuntos de estados de N com pelo menos 1 estado final seriam os estados finais de D.

- Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).
- $lue{}$ O estado inicial de D seria o próprio conjunto de estados iniciais de N.
- $lue{}$ Os conjuntos de estados de N com pelo menos 1 estado final seriam os estados finais de D.
- Assim sendo: $E' \subseteq \mathcal{P}(E), \Sigma' = \Sigma, i = I, F' = \{X \subseteq E : X \cap F \neq \emptyset\}.$

- Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).
- $lue{}$ O estado inicial de D seria o próprio conjunto de estados iniciais de N.
- $lue{}$ Os conjuntos de estados de N com pelo menos 1 estado final seriam os estados finais de D.
- Assim sendo: $E' \subseteq \mathcal{P}(E), \Sigma' = \Sigma, i = I, F' = \{X \subseteq E : X \cap F \neq \emptyset\}.$
- Por fim, $\delta'(X,a) = \bigcup_{e \in X} \delta(e,a)$, para $X \subseteq E$.

1 Considere um AFN $N = (\{1, 2, 3, 4, 5\}, \{0, 1\}, \delta, \{1, 2\}, \{5\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1
1	{2}	Ø
2	{3}	Ø
3	Ø	{4 }
4	Ø	$\{3, 5\}$
5	Ø	Ø

I Considere um AFN $N=(\{1,2,3,4,5\},\{0,1\},\delta,\{1,2\},\{5\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1
1	{2}	Ø
2	{3}	Ø
3	Ø	{4 }
4	Ø	$\{3, 5\}$
5	Ø	Ø

Desenhe o diagrama referente a este AFN.

I Considere um AFN $N=(\{1,2,3,4,5\},\{0,1\},\delta,\{1,2\},\{5\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1
1	{2}	Ø
2	{3}	Ø
3	Ø	{4 }
4	Ø	$\{3, 5\}$
5	Ø	Ø

- Desenhe o diagrama referente a este AFN.
- 3 Determine o AFD equivalente a este AFN.

AFNλs: Definição

• Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.
- Ou seja, num AFN λ é possível a realização de transições sem que qualquer símbolo da seja consumido.

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.
- Ou seja, num AFN λ é possível a realização de transições sem que qualquer símbolo da seja consumido.
- Mesmo com essa capacidade extra, AFN λ s são equivalentes a AFNs.

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.
- Ou seja, num AFN λ é possível a realização de transições sem que qualquer símbolo da seja consumido.
- lacktriangle Mesmo com essa capacidade extra, AFN λ s são equivalentes a AFNs.
- Assim sendo, a utilidade de AFN λ s é baseada apenas na possibilidade de obter modelos mais claros e objetivos do que usando AFNs.

■ Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho λ , $f\lambda : \mathcal{P}(E) \to \mathcal{P}(E)$.

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho λ , $f\lambda : \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X \subseteq E$:

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho $\lambda, f\lambda: \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X\subseteq E$:
 - $X \subseteq f\lambda(X);$

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho $\lambda, f\lambda : \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X \subseteq E$:
 - $X \subseteq f\lambda(X);$
 - Se $e \in f\lambda(X)$, então $\delta(e,\lambda) \in f\lambda(X)$.

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho $\lambda, f\lambda: \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X \subseteq E$:
 - $X \subseteq f\lambda(X);$
 - Se $e \in f\lambda(X)$, então $\delta(e,\lambda) \in f\lambda(X)$.
- Numa descrição em alto nível, $f\lambda(X)$ é o conjunto de todos os estados alcançáveis a partir dos estados em X usando apenas transições sob λ , sem que símbolos sejam consumidos.

■ Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda) = f\lambda(A)$, para todo $A \subseteq E$;

$\mathsf{AFN}\lambda$ s e Linguagens

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda)=f\lambda(A)$, para todo $A\subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in f\lambda(A)} \delta(e, a), w).$

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda) = f\lambda(A)$, para todo $A \subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in f\lambda(A)} \delta(e, a), w).$
- \blacksquare De forma semelhante a AFNs, a linguagem aceita por um AFN λ $M=(E,\Sigma,\delta,I,F)$ é o conjunto

$$L(M) = \{ w \in \Sigma^* : \hat{\delta}(I, w) \cap F \neq \emptyset \} .$$

Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.

- Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.
- Sendo assim, a equivalência entre AFN λ s e AFNs pode ser comprovada apenas obtendo AFNs correspondentes a todos AFN λ s.

- Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.
- Sendo assim, a equivalência entre AFN λ s e AFNs pode ser comprovada apenas obtendo AFNs correspondentes a todos AFN λ s.
- Considere então um AFN $\lambda M=(E,\Sigma,\delta,I,F)$. Um AFN equivalente seria $N=(E,\Sigma,\delta',I',F)$, tal que $I'=f\lambda(I)$ e $\delta'(e,a)=f\lambda(\delta(e,a))$.

- Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.
- Sendo assim, a equivalência entre AFN λ s e AFNs pode ser comprovada apenas obtendo AFNs correspondentes a todos AFN λ s.
- Considere então um AFN $\lambda M=(E,\Sigma,\delta,I,F)$. Um AFN equivalente seria $N=(E,\Sigma,\delta',I',F)$, tal que $I'=f\lambda(I)$ e $\delta'(e,a)=f\lambda(\delta(e,a))$.
- Para provar que L(M) = L(N), mostrar-se que $\hat{\delta}'(I', w) = \hat{\delta}(I, w)$.

I Considere um AFN λ $M=(\{1,2,2',3,3'\},\{0,1\},\delta,\{1\},\{2,3\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	λ
1	Ø	{3}	{2}
2	{2'}	Ø	Ø
2'	{2}	Ø	Ø
3	Ø	{3'}	Ø
3'	Ø	{3}	Ø

I Considere um AFN λ $M=(\{1,2,2',3,3'\},\{0,1\},\delta,\{1\},\{2,3\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	λ
1	Ø	{3}	{2}
2	{2'}	Ø	Ø
2'	{2}	Ø	Ø
3	Ø	{3'}	Ø
3'	Ø	{3}	Ø

2 Desenhe o diagrama referente a este AFN λ .

Exercício

I Considere um AFN λ $M=(\{1,2,2',3,3'\},\{0,1\},\delta,\{1\},\{2,3\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	λ
1	Ø	{3}	{2}
2	{2'}	Ø	Ø
2'	{2}	Ø	Ø
3	Ø	{3'}	Ø
3'	Ø	{3}	Ø

- **2** Desenhe o diagrama referente a este AFN λ .
- **3** Determine o AFN equivalente a este AFN λ .

Roteiro

1 Conceitos Básicos

- **2** Equivalência entre AFDs, AFNs e AFN λ s
- 3 Propriedades de Fechamento

■ Seja *L* um conjunto qualquer.

- lacksquare Seja $\mathcal L$ um conjunto qualquer.
 - (por exemplo, o conjunto de todas as linguagens aceitas por AFs)

- Seja *L* um conjunto qualquer.
 - (por exemplo, o conjunto de todas as linguagens aceitas por AFs)
- Seja O uma operação qualquer (por exemplo, união).

- Seja *L* um conjunto qualquer.
 - (por exemplo, o conjunto de todas as linguagens aceitas por AFs)
- Seja O uma operação qualquer (por exemplo, união).
- Diz-se que \mathcal{L} é fechada sob O se a aplicação de O a elementos de \mathcal{L} sempre resulta em elementos de \mathcal{L} .

- Seja £ um conjunto qualquer.
 - (por exemplo, o conjunto de todas as linguagens aceitas por AFs)
- Seja O uma operação qualquer (por exemplo, união).
- Diz-se que \mathcal{L} é fechada sob O se a aplicação de O a elementos de \mathcal{L} sempre resulta em elementos de \mathcal{L} .
- O conjunto de linguagens regulares é fechado sob algumas operações, conforme mostrado a seguir.

Complementação

lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).

Complementação

lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).

■ Como definir um AF M' tal que $L(M') = \overline{L(M)}$?

Complementação

■ Seja $M = (E, \Sigma, \delta, i, F)$ um AFD, cuja linguagem é L(M).

■ Como definir um AF M' tal que $L(M') = \overline{L(M)}$?

■ AFD $M' = (E, \Sigma, \delta, i, E \setminus F)$.

lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$
- Seja $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$ um AFD, cuja linguagem é $L(M_2)$.

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cap L(M_2)$?

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1) \cap L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F_1 \times F_2).$

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1).$
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1) \cap L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F_1 \times F_2).$
- $\delta'((e_1, e_2), a) = (\delta_1(e_1, a), \delta_2(e_2, a)).$

lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$

- Seja $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- Seja $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1) \cup L(M_2)$?

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cup L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F').$

- lacksquare Seja $M_1=(E_1,\Sigma,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cup L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F').$
- $\delta'((e_1, e_2), a) = (\delta_1(e_1, a), \delta_2(e_2, a)).$

- Seja $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- lacksquare Seja $M_2=(E_2,\Sigma,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1) \cup L(M_2)$?
- AFD $M' = (E_1 \times E_2, \Sigma, \delta', (i_1, i_2), F').$
- $\delta'((e_1, e_2), a) = (\delta_1(e_1, a), \delta_2(e_2, a)).$
- $F' = (F_1 \times E_2) \cup (E_1 \times F_2)$

■ Seja $M_1 = (E_1, \Sigma_1, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.

- lacksquare Seja $M_1=(E_1,\Sigma_1,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- \blacksquare Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$

- Seja $M_1 = (E_1, \Sigma_1, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- \blacksquare Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?

- Seja $M_1=(E_1,\Sigma_1,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?
- AFN λ $M' = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta', i_1, F_2).$

- Seja $M_1 = (E_1, \Sigma_1, \delta_1, i_1, F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- Seja $M_2 = (E_2, \Sigma_2, \delta_2, i_2, F_2)$ um AFD, cuja linguagem é $L(M_2)$.
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?
- AFN λ $M' = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta', i_1, F_2).$
- $\delta'(e, a) = \{\delta_1(e, a)\}, \forall e \in E_1, a \in \Sigma_1.$

- Seja $M_1=(E_1,\Sigma_1,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- \blacksquare Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?
- $\blacksquare \mathsf{AFN}\lambda \ M' = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta', i_1, F_2).$
- $\delta'(e,a) = \{\delta_1(e,a)\}, \forall e \in E_1, a \in \Sigma_1.$
- $\delta'(e,a) = \{\delta_2(e,a)\}, \forall e \in E_2, a \in \Sigma_2.$

- Seja $M_1=(E_1,\Sigma_1,\delta_1,i_1,F_1)$ um AFD, cuja linguagem é $L(M_1)$.
- \blacksquare Seja $M_2=(E_2,\Sigma_2,\delta_2,i_2,F_2)$ um AFD, cuja linguagem é $L(M_2).$
- Como definir um AF M' tal que $L(M') = L(M_1)L(M_2)$?
- $\blacksquare \mathsf{AFN}\lambda \ M' = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta', i_1, F_2).$
- $\delta'(e,a) = \{\delta_1(e,a)\}, \forall e \in E_1, a \in \Sigma_1.$
- $\delta'(e,a) = \{\delta_2(e,a)\}, \forall e \in E_2, a \in \Sigma_2.$
- $\delta'(e,\lambda) = \{i_2\}, \forall e \in F_1.$

lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).

- \blacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?

- lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?
- AFN λ $M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\}).$

- lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?
- AFN λ $M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\}).$
- $\delta'(e,a) = \{\delta(e,a)\}, \forall e \in E, a \in \Sigma.$

- lacksquare Seja $M=(E,\Sigma,\delta,i,F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?
- $\blacksquare \mathsf{AFN}\lambda \ M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\}).$
- $\delta'(e,a) = \{\delta(e,a)\}, \forall e \in E, a \in \Sigma.$
- $\delta'(i',\lambda) = \{i\}.$

- Seja $M = (E, \Sigma, \delta, i, F)$ um AFD, cuja linguagem é L(M).
- Como definir um AF M' tal que $L(M') = L(M)^*$?
- $\blacksquare \mathsf{AFN} \lambda \ M' = (E \cup \{i'\}, \Sigma, \delta', i', F \cup \{i'\}).$
- $\delta'(e,a) = \{\delta(e,a)\}, \forall e \in E, a \in \Sigma.$
- $\delta'(i',\lambda) = \{i\}.$
- $\delta'(e,\lambda) = \{i'\}, \forall e \in F.$