THUẬT TOÁN GRADIENT DESCENT

THỰC HÀNH PHƯƠNG PHÁP SỐ CHO KHOA HỌC DỮ LIỆU

Buổi 4

Ngày 15 tháng 4 năm 2024

Liên hệ

GOOGLE CLASSROOM: saioδuy

TRỢ GIẢNG:

- Nguyễn Thị Kiều Trang: ntktrang@hcmus.edu.vn
- Lý Như Bình: Inbinh@hcmus.edu.vn

LƯU Ý:

- Email đăng nhập google classroom thể hiện đầy đủ họ và tên, tránh sử dung email có biệt danh.
- Tiêu để mail (bắt buộc):
 [2024-HK2-THPPSKHDL] [Tiêu đề thư]
 VD: [2024-HK2-THPPSKHDL] HỔI BÀI
 Vui lòng giới thiệu họ tên, MSSV và tên ca học khi gửi email.

Một vài điều về lớp

Điểm thực hành: Chiếm 30% tổng điểm:

- Diểm danh: 0.5 điểm (Mỗi buổi)
- Bài tập: 2.5 điểm (Nộp bài tập thực hành mỗi tuần)

Cách thức nộp bài:

- Nôp trên google classroom
- Nôp file .txt
- Tên file: Y_MSSV_Hoten_baix.txt,
 - Y = C204 nếu bạn học phòng C204.
 - Y = C203 nếu bạn học phòng C203.
 - $x \in \{1, 2, 3, 4, ...\}$

Gradient Descent cho hàm một biến

- 1. Xét hàm số $f(x) = x^2 + 5\sin(x)$. Hãy viết chương trình thực hiện thuật toán Gradient Descent cho hàm một biến để tìm cực tiểu của hàm f bằng Python.
- 2. a. Thực thi thuật toán Gradient Descent bằng Python để tìm cực tiểu của hàm số

$$f(x) = x^2, \ \forall x \in \mathbb{R}.$$

b. Thay đổi learning rate, lập bảng và vẽ hình để khảo sát.

STT	Learning rate	f'(x)	Số bước lặp
1			
2			
3			
4			
5			

c. Thay đổi điểm bắt đầu, lập bảng và vẽ hình để kháo sát.

STT	Điểm bắt đầu	f'(x)	Số bước lặp
1			
2			
3			
4			
5			

- Dầu vào: Hàm f, learning rate η , giá trị ban đầu x_0 , bước lặp lớn nhất N, sai số ϵ
 - Dầu ra: Giá tri cực tiểu của hàm f.

Các bước làm bài:

- Tính đạo hàm riêng f'(x).
- ightharpoonup Dăt i=0.
- while $i \leq N$:

 - Nếu $|f'(x_{t+1})| < \epsilon$ thì

Xuất ra màn hình giá trị x_{t+1}

- Dùng lại $x_t = x_{t+1}, i = i+1$
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.

Làm tương tự như thế với câu a của bài 2. Với câu b bài 2, hãy thay đổi learning rate và thực hiện lại các bước trên để vẽ bảng. Sau đó, lần lượt thay đổi điểm bắt đầu x_0 và làm tương tự như vậy với câu c bài $2_{\tiny{\tiny \odot}}$

Gradient Descent cho hàm nhiều biến

- 3. Xét hàm số $g(x) = (x^2 + y 7)^2 + (x y + 1)^2$. Hãy viết chương trình thực hiện thuật toán **Gradient Descent** cho hàm nhiều biến để tìm cực tiểu của hàm g bằng Python.
- 4. a. Thực thi thuật toán Gradient Descent bằng Python để tìm cực tiểu của hàm số $f(x, y) = x^2 + y^4$.
 - b. Thay đổi learning rate, lập bảng và vẽ hình để khảo sát.

STT	Learning rate	$\ \nabla f(x)\ _2$	Số bước lặp
1			
2			
3			
4			
5			

c. Thay đổi điểm bắt đầu, lập bảng và vẽ hình để kháo sát.

STT	Điểm bắt đầu	$\ \nabla f(x)\ _2$	Số bước lặp
1			
2			
3			
4			
5			

- lacktriangle Đầu vào: Hàm f, learning rate η , giá trị ban đầu x_0 , bước lặp lớn nhất N, sai số ϵ
- Dầu ra: Giá tri cực tiểu của hàm f.

Các bước làm bài:

- ▶ Tính vector gradient $\nabla f(x)$.
- ightharpoonup Đặt i=0.
- ▶ while i < N:</p>

 - Nếu $\|\nabla f(x_{t+1})\|_2 < \epsilon$ thì

Xuất ra màn hình giá trị x_{t+1}

- Dừng lại
- $x_t = x_{t+1}, i = i+1$
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.

Làm tương tự như thế với câu a của bài 4. Với câu b bài 4, hãy thay đổi learning rate và thực hiện lại các bước trên để vẽ bảng. Sau đó, lần lượt thay đổi điểm bắt đầu x_0 và làm tương tự như vậy với câu c.

Accelerated Gradient Descent

- 5. Xét hàm số $g(x) = (x^2 + y 7)^2 + (x y + 1)^2$. Hãy viết chương trình thực hiện thuật toán **Accelerated Gradient Descent** để tìm cực tiểu của hàm g bằng Python. So sánh kết quả của Gradient Descent với Accelerated Gradient Descent.
- 6. Sử dụng thuật toán Accelerated Gradient Descent để giải câu a, b, c của bài tập 4.

- Dầu vào: Hàm f, learning rate η , giá trị ban đầu x_0 , bước lặp lớn nhất N, sai số ϵ
 - Đầu ra: Giá trị cực tiểu của hàm f.

Các bước làm bài:

- ▶ Tính vector gradient $\nabla f(x)$.
- ▶ Đặt i = 0 và $x_{i-1} = x_i$
- while i < N-1:
 - ► Tính

$$y_i = x_i + \frac{i-1}{i+2}(x_i - x_{i-1}) \tag{1}$$

$$x_{i+1} = y_i - \eta \nabla f(y_i) \tag{2}$$

Nếu
$$\|\nabla f(x_{t+1})\|_2 < \epsilon$$
 thì

Xuất ra màn hình giá trị x_{t+1}

Dừng lai

- ightharpoonup Câp nhật giá trị $x_{i-1} = x_i, x_i = x_{i+1}$ và i = i+1.
- ➤ Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.

Thuật toán (tiếp theo)

Làm tương tự như thế với câu a của bài 6. Với câu b bài 6, hãy thay đổi learning rate và thực hiện lại các bước trên để vẽ bảng. Sau đó, lần lượt thay đổi điểm bắt đầu x_0 và làm tương tự như vậy với câu c.

Stochastic gradient descent

7. Cho bảng số liệu sau:

STT	Tuổi	HATT
1	39	144
2	36	136
3	45	138
4	47	145
5	65	162
6	46	142
7	67	170
8	42	124
9	67	158
10	56	154

STT	Tuối	HATT
11	64	162
12	56	150
13	59	140
14	34	110
15	42	128
16	48	130
17	45	135
18	17	114
19	20	116
20	19	124

Hãy viết chương trình cho thuật toán Stochastic Gradient Descent để dự đoán huyết áp tâm thu của 1 người ở 1 độ tuổi bất kì.

- Dầu vào: Độ tuổi a, huyết áp tâm thu b, learning rate η , giá trị ban đầu x_t , bước lặp lớn nhất N, sai số ϵ .
- Dầu ra: Giá trị cực tiểu x_{t+1} của hàm f.

Các bước làm bài:

- ▶ Tính vector gradient $\nabla f_{i_t}(x)$
- \blacktriangleright Đặt i = 0, m = len(a)
- \triangleright while i < N:
 - ightharpoonup Chọn ngẫu nhiên $i_t \in 1, 2, \ldots, m$

 - Nếu $\|\nabla f(x_{t+1})\|_2 < \epsilon$ thì
 - Xuất ra màn hình giá trị x_{t+1} Dừng lại
 - $x_t = x_{t+1}, i = i+1$
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.