Soit la fonction f définie sur [0; 3] par $f(x) = x^3 - x$.

 $oldsymbol{0}$ f est un polynôme de degré 3 donc

Soit la fonction f définie sur [0; 3] par $f(x) = x^3 - x$.

lacktriangle f est un polynôme de degré 3 donc f est continue sur $[0\,;\,3]$.

- $\ \, \bullet \,\, f$ est un polynôme de degré 3 donc f est continue sur [0; 3].
- f est continue sur [0; 3].

- lacksquare f est un polynôme de degré 3 donc f est continue sur $[0\,;\,3].$
- f est continue sur [0; 3].
 - f(0) = 0 et

- $\ \, \bullet \,\, f$ est un polynôme de degré 3 donc f est continue sur [0; 3].
- f est continue sur [0; 3].
 - f(0) = 0 et $f(3) = 3^3 3 = 24$.

- $\ \, \bullet \,\, f$ est un polynôme de degré 3 donc f est continue sur [0; 3].
- f est continue sur [0; 3].
 - f(0) = 0 et $f(3) = 3^3 3 = 24$.
 - $5 \in [0; 24].$

- lacktriangle f est un polynôme de degré 3 donc f est continue sur $[0\,;\,3].$
- f est continue sur [0; 3].
 - f(0) = 0 et $f(3) = 3^3 3 = 24$.
 - $5 \in [0; 24]$. D'après le théorème des valeurs intermédiaires, l'équation f(x) = 5 admet

- lacktriangle f est un polynôme de degré 3 donc f est continue sur $[0\,;\,3].$
- f est continue sur [0; 3].
 - f(0) = 0 et $f(3) = 3^3 3 = 24$.
 - $5 \in [0; 24]$. D'après le théorème des valeurs intermédiaires, l'équation f(x) = 5 admet au moins une solution dans [0; 3].

• f est continue sur $]-\infty$; 1].

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty;1].$
 - ullet f est strictement décroissante

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty$; 1].
 - $\bullet \ f$ est strictement décroissante sur $]-\infty\,;\,1]$ à valeurs

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur] $-\infty$; 1] à valeurs dans $[-2\,;\,+\infty[.$

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty$; 1] à valeurs dans $[-2; +\infty[$.
 - Or $0 \in [-2; +\infty[, d'après]$

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	_2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty;1]$ à valeurs dans $[-2;+\infty[.$
 - Or $0 \in [-2; +\infty[$, d'après le corollaire du théorème des valeurs intermédiaires,

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	+∞	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty$; 1] à valeurs dans $[-2; +\infty[$.
 - Or $0 \in [-2; +\infty[$, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty$; 1] à valeurs dans $[-2; +\infty[$.
 - Or $0 \in [-2; +\infty[$, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une solution unique α dans l'intervalle $]-\infty; 1]$.

x	$-\infty$	1	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty$; 1] à valeurs dans $[-2; +\infty[$.
 - Or $0 \in [-2; +\infty[$, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une solution unique α dans l'intervalle $]-\infty; 1]$.

x	$-\infty$	1	+∞
Variation de f	+∞	-2	-1

- f est continue sur $]-\infty$; 1].
 - f est strictement décroissante sur $]-\infty;1]$ à valeurs dans $[-2;+\infty[.$
 - Or $0 \in [-2; +\infty[$, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une solution unique α dans l'intervalle $]-\infty; 1]$.
- ② Le maximum de f sur $[1; +\infty[$ est -1 donc l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $[1; +\infty[$.

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

 \bullet On encadre α à l'unité :

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

• On encadre α à l'unité : $-2 < \alpha < -1$.

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

- On encadre α à l'unité : $-2 < \alpha < -1$.
- On encadre α à 10^{-1} près :

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

- On encadre α à l'unité : $-2 < \alpha < -1$.
- On encadre α à 10^{-1} près : $-1, 7 < \alpha < -1, 6$.

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

- On encadre α à l'unité : $-2 < \alpha < -1$.
- On encadre α à 10^{-1} près : $-1, 7 < \alpha < -1, 6$. On en déduit par la méthode de balayage l'encadrement de α à 10^{-1} près :

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

- On encadre α à l'unité : $-2 < \alpha < -1$.
- On encadre α à 10^{-1} près : $-1, 7 < \alpha < -1, 6$. On en déduit par la méthode de balayage l'encadrement de α à 10^{-1} près :

$$-1,7 < \alpha < -1,6$$

• On encadre α à 10^{-2} près :

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

- On encadre α à l'unité : $-2 < \alpha < -1$.
- On encadre α à 10^{-1} près : $-1, 7 < \alpha < -1, 6$. On en déduit par la méthode de balayage l'encadrement de α à 10^{-1} près :

$$-1,7 < \alpha < -1,6$$

• On encadre α à 10^{-2} près : $-1,68 < \alpha < -1,67$ On en déduit que $\alpha \simeq -1,7$.