अनंत श्रेणी (Infinite Series)

A.1.1 भूमिका (Introduction)

जैसा कि अनुक्रम और श्रेणी के अध्याय 9 में चर्चा हो चुकी है, एक अनंत पदों वाले अनुक्रम $a_1, a_2, ..., a_n, ...$ को अनंत अनुक्रम कहा जाता है और इसका निर्दिष्ट किया गया योग अर्थात् $a_1 + a_2 + a_3 + ... + a_n + ...$, जो अनंत अनुक्रम के सहचारी हो, एक अनंत श्रेणी कहलाता है। सिगमा संकेतन पद्धति का प्रयोग करते हुए, इस श्रेणी को छोटे रूप में, भी दर्शाया जा सकता है, अर्थात्

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{k=1}^{\infty} a_k$$

इस अध्याय में, हम कुछ विशेष प्रकार की श्रेणी का अध्ययन करेंगे जिनकी विभिन्न कठिन प्रश्न की स्थितियों में आवश्यकता हो सकती है।

A.1.2 किसी घातांक के लिए द्विपद प्रमेय (Binomial Theorem for any Index)

अध्याय 8 में, हमने द्विपद प्रमेय का अधययन किया जिसमें घातांक एक धन पूर्णांक था। इस अनुभाग में हम एक अपेक्षाकृत सामान्य रूप की प्रमेय बताएँगे, जिसमें घातांक आवश्यक रूप से एक संपूर्ण संख्या नहीं है। यह हमें एक विशेष प्रकार की अनंत श्रेणी देता है, जिसे द्विपद श्रेणी कहते हैं। हम कुछ अनुप्रयोग, उदाहरणों के द्वारा दर्शांते हैं।

हम यह सूत्र जानते हैं:

$$(1+x)^n = {}^nC_0 + {}^nC_1 x + \dots + {}^nC_n x^n$$

यहाँ n ऋणेतर पूर्णांक है। प्रेक्षित करें, कि यदि, हम ऋणात्मक पूर्णांक अथवा एक भिन्न को घातांक n के बदले में रखते हैं, तब संयोजनों n C का कोई अर्थ नहीं रह जाता।

अब हम, द्विपद प्रमेय उपपत्ति सहित को एक अनंत श्रेणी द्वारा बताते हैं, जिसमें घातांक, एक पूर्ण संख्या न होकर, एक ऋण अथवा एक भिन्न है।

प्रमेय

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{1.2}x^2 + \frac{m(m-1)(m-2)}{1.2.3}x^3 + \dots$$

वैध हैं जब भी |x| < 1.

436 गणित

टिप्पणी सावधानीपूर्वक ध्यान दीजिए कि |x| < 1 अर्थात् -1 < x < 1 का प्रतिबंध आवश्यक है यदि m एक ऋण पूर्णांक अर्थात् भिन्न है।

$$(1-2)^{-2} = 1 + (-2)(-2) + \frac{(-2)(-3)}{1.2}(-2)^2 + \dots$$

अर्थात् 1=1+4+12+...

यह संभव नहीं है।

2. ध्यान दीजिए कि, $(1+x)^m$, जहाँ m एक ऋणात्मक पूर्णांक अथवा एक भिन्न है, के विस्तार में पदों की अनंत संख्या होती है।

विचार करें
$$(a+b)^m = \left[a \left(1 + \frac{b}{a} \right) \right]^m = a^m \left(1 + \frac{b}{a} \right)^m$$

$$= a^m \left[1 + m \frac{b}{a} + \frac{m(m-1)}{1.2} \left(\frac{b}{a} \right)^2 + \dots \right]$$

$$= a^m + ma^{m-1}b + \frac{m(m-1)}{1.2} a^{m-2}b^2 + \dots$$

यह विस्तार वैध है जब $\left| \frac{b}{a} \right| < 1$ अथवा इसके तुल्यांक जब |b| < |a|

$$\frac{m(m-1)(m-2)...(m-r+1)a^{m-r}b^r}{1.2.3...r}$$
, $(a+b)^m$ के विस्तार में व्यापक पद है।

द्विपद प्रमेय के कुछ विशेष प्रकरण निम्नलिखित हैं, जहाँ हम कल्पना करते हैं कि |x| < 1, इन्हें विद्यार्थियों के अभ्यास के लिए छोड़ दिया गया है:

1.
$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots$$

2.
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$$

3.
$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots$$

4.
$$(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots$$

उदाहरण 1 $\left(1-\frac{x}{2}\right)^{-\frac{1}{2}}$, का विस्तार कीजिए, जब |x| < 2

हल हम प्राप्त करते हैं

$$\left(1 - \frac{x}{2}\right)^{-\frac{1}{2}} = 1 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{x}{2}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{x}{2}\right)^{2} + \dots}{1 \cdot 2}$$
$$= 1 + \frac{x}{4} + \frac{3x^{2}}{32} + \dots$$

A.1.3 अनंत गुणोत्तर श्रेणी (Infinite Geometric Series)

अध्याय 9 के, भाग 9.3 से, एक अनुक्रम a_1 , a_2 , a_3 , ... a_n गुणोत्तर कहलाता है, यदि $\frac{a_{k+1}}{a_k}=r$ (स्थिर) जब $k=1,\,2,\,3,\,\ldots,\,n-1$. विशेषकर, यदि हम $a_1=a$, मानें, तब परिणामत: अनुक्रम $a,ar,ar^2,\ldots,ar^{n-1}$ को गुणोत्तर श्रेढ़ी का मानक रूप कहा जाता है। पहले, हमने परिमित श्रेणी $a+ar+ar^2+\ldots+,ar^{n-1}$ का योग प्राप्त करने के सूत्र की चर्चा की थी, जो कि निम्नलिखित सूत्र द्वारा दिया जाता है

$$S_n = \frac{a(1-r^n)}{1-r}.$$

इस भाग में, हम अनंत गुणोत्तर श्रेणी $a + ar + ar^2 + \ldots + ar^{n-1} + \ldots$ को योग प्राप्त करने का सूत्र बताएँगे और इसी को उदाहरणों के साथ समझेंगे।

मान लीजिए कि $1, \frac{2}{3}, \frac{4}{9},...$ दी हुई गुणोत्तर श्रेढ़ी है।

यहाँ $a=1, r=\frac{2}{3}$, हमें प्राप्त है

$$S_n = \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = 3\left[1 - \left(\frac{2}{3}\right)^n\right] \qquad \dots (1)$$

आइए, जैसे - जैसे n का मान बढ़ता जाता है, $\left(\frac{2}{3}\right)^n$ के व्यवहार का अध्ययन करें।

438 गणित

n	1	5	10	20
$\left(\frac{2}{3}\right)^n$	0.6667	0.1316872428	0.01734152992	0.00030072866

हम ध्यान देते हैं कि जैसे-जैसे n का मान बढ़ता जाता है वैसे-वैसे $\left(\frac{2}{3}\right)^n$ शून्य के निकट

होता जाता है। गणितीय भाषा में, हम कहते हैं कि जैसे n का मान अत्यंत बड़ा होता जाता है, $\left(\frac{2}{3}\right)^n$ का

मान अत्यंत छोटा होता जाता है। दूसरे शब्दों में जैसे $n \to \infty$, $\left(\frac{2}{3}\right)^n \to 0$ परिणामस्वरूप हम देखते हैं कि असीम पदों का योग S=3 प्राप्त होता है अर्थात् अनंत गुणोत्तर श्रेढ़ी $a, ar, ar^2, ...$, के लिए, यदि सार्व अनुपात r का संख्यात्मक मान 1 से कम है, तब

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}$$

इस स्थिति में, $r^n \to 0$ जैसे $n \to \infty$ क्योंकि |r| < 1 और तब $\frac{ar^n}{1-r} \to 0$

इसलिए
$$S_n \to \frac{a}{1-r}$$
 as $n \to \infty$.

प्रतीकात्मक तौर पर, अनंत गुणोत्तर श्रेणी में अनंत तक योग, S द्वारा निर्दिष्ट किया जाता है। इस प्रकार, हमें प्राप्त होता है $S = \frac{a}{1-r}$ उदाहरण के लिए

(i)
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{1 - \frac{1}{2}} = 2$$

(ii)
$$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots = \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

... (3)

उदाहरण 2 निम्नलिखित गुणोत्तर श्रेढ़ी के अनंत पदों तक योग, ज्ञात कीजिए:

$$\frac{-5}{4}$$
, $\frac{5}{16}$, $\frac{-5}{64}$,....

हल यहाँ $a = \frac{-5}{4}$ और $r = -\frac{1}{4}$ इसके साथ |r| < 1.

इसलिए, अनंत तक योग =
$$\frac{\frac{-5}{4}}{1+\frac{1}{4}} = \frac{\frac{-5}{4}}{\frac{5}{4}} = -1$$

A.1.4 चरघातांकी श्रेणी (Exponential Series)

महान स्विस गणितज्ञ, Leonhard Euler 1707 - 1783 ने, 1748 में अपनी कलन पाठ्य पुस्तक में संख्या e को प्रस्तावित किया। जिस प्रकार π वृत्त के अध्ययन में उपयोगी है उसी प्रकार e कलन के अध्ययन में उपयोगी है।

संख्याओं की निम्नलिखित अनंत श्रेढ़ी को लीजिए:

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$
 ... (1)

(1) में दी गई श्रेणी का योग, संख्या e द्वारा निर्दिष्ट किया जाता है। आइए हम संख्या e के मान का आकलन करें।

क्योंकि श्रेणी (1) का प्रत्येक पद धनात्मक हैं। इसलिए इसका योग भी धनात्मक है। निम्नलिखित दो योगों को लीजिए :

$$\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots$$
 ... (2)

$$3 + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots$$

ध्यान दीजिए, कि

$$\frac{1}{3!} = \frac{1}{6}$$
 और $\frac{1}{2^2} = \frac{1}{4}$, इससे हमें प्राप्त होता है, $\frac{1}{3!} < \frac{1}{2^2}$

$$\frac{1}{4!} = \frac{1}{24}$$
 और $\frac{1}{2^3} = \frac{1}{8}$, इससे हमें प्राप्त होता है, $\frac{1}{4!} < \frac{1}{2^3}$

440 गणित

$$\frac{1}{5!} = \frac{1}{120}$$
 और $\frac{1}{2^4} = \frac{1}{16}$, इससे हमें प्राप्त होता है $\frac{1}{5!} < \frac{1}{2^4}$.

इसलिए, समवृत्तिता द्वारा, हम कह सकते हैं कि

$$\frac{1}{n!} < \frac{1}{2^{n-1}}, \, \text{vol} \, n > 2$$

हम प्रेक्षित करते हैं कि (2) का प्रत्येक पद, (3) का प्रत्येक संगत पद से कम है

इसलिए,
$$\left(\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!}\right) < \left(\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right)$$
 ... (4)

(4) के दोनों पक्षों में $\left(1 + \frac{1}{1!} + \frac{1}{2!}\right)$ जोड़ने पर, हमें प्राप्त होता है

$$\left(1 + \frac{1}{1!} + \frac{1}{2!}\right) + \left(\frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots\right)$$

$$< \left\{ \left(1 + \frac{1}{1!} + \frac{1}{2!}\right) + \left(\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right) \right\} \qquad \dots (5)$$

$$= \left\{ 1 + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{n-1}} + \dots\right) \right\}$$

$$= 1 + \frac{1}{1 - \frac{1}{1}} = 1 + 2 = 3$$

(5) का वाम पक्ष, श्रेणी (1) को दर्शाता है, इसलिए e < 3 और साथ ही e > 2 अतः 2 < e < 3 टिप्पणी x चर के पदों में चरघातांकी श्रेणी को निम्नलिखित रूप में प्रर्दिशत किया जा सकता है:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

उदाहरण 3 x की घात वाली श्रेणी के रूप में, e^{2x+3} का विस्तार करने पर x^2 का गुणांक ज्ञात कीजिए। हल चरघातांकी श्रेणी में

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

x के स्थान पर 2x + 3 रखते हुए, हमें प्राप्त होता है

$$e^{2x+3} = 1 + \frac{(2x+3)}{1!} + \frac{(2x+3)^2}{2!} + \dots$$

यहाँ
$$\frac{\left(2x+3\right)^n}{n!} = \frac{\left(3+2x\right)^n}{n!}$$
 व्यापक पद है।

द्विपद प्रमेय द्वारा इसका विस्तार इस प्रकार किया जा सकता है

$$\frac{1}{n!} \left[3^n + {^nC_1} 3^{n-1} (2x) + {^nC_2} 3^{n-2} (2x)^2 + ... + (2x)^n \right].$$

यहाँ x^2 की घात $\frac{{}^n\mathbf{C}_2 3^{n-2} 2^2}{n!}$ है।

इसलिए संपूर्ण श्रेणी में x^2 की घात है : is

$$\sum_{n=2}^{\infty} \frac{{}^{n}C_{2}3^{n-2}2^{2}}{n!} = 2\sum_{n=2}^{\infty} \frac{n(n-1)3^{n-2}}{n!}$$

$$=2\sum_{n=2}^{\infty}\frac{3^{n-2}}{(n-2)!}\quad [n!=n\;(n-1)\;(n\;-\;2)! का प्रयोग करते हुए]$$

$$= 2 \left[1 + \frac{3}{1!} + \frac{3^2}{2!} + \frac{3^3}{3!} + \dots \right] = 2e^3.$$

इसलिए e^{2x+3} के विस्तार में, x^2 की घात $2e^3$ है

विकल्पत $e^{2x+3} = e^3 \cdot e^{2x}$

$$= e^{3} \left[1 + \frac{2x}{1!} + \frac{(2x)^{2}}{2!} + \frac{(2x)^{3}}{3!} + \dots \right]$$

इस प्रकार e^{2x+3} के विस्तार में x^2 की घात $e^3 \cdot \frac{2^2}{2!} = 2e^3$ है

उदाहरण $4 e^2$ का मान, एक दशमलव स्थान तक पूर्णांकित करके ज्ञात कीजिए। $\mathbf{E} = \mathbf{E} \times \mathbf{E}$ के पदों में, चरघातांकी श्रेणी का सूत्र प्रयोग करने पर, हमें प्राप्त होता है :

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

x = 2, रखने पर, हमें प्राप्त होता है,

$$e^{2} = 1 + \frac{2}{1!} + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!} + \frac{2^{5}}{5!} + \frac{2^{6}}{6!} + \dots$$

$$= 1 + 2 + 2 + \frac{4}{3} + \frac{2}{3} + \frac{4}{15} + \frac{4}{45} + \dots$$

> पहले सात पदों का योग > 7.355

अन्यथा, हम प्राप्त करते हैं.

$$e^{2} < \left(1 + \frac{2}{1!} + \frac{2^{2}}{2!} + \frac{2^{3}}{3!} + \frac{2^{4}}{4!}\right) + \frac{2^{5}}{5!} \left(1 + \frac{2}{6} + \frac{2^{2}}{6^{2}} + \frac{2^{3}}{6^{3}} + \dots\right)$$

$$= 7 + \frac{4}{15} \left(1 + \frac{1}{3} + \left(\frac{1}{3} \right)^2 + \dots \right) = 7 + \frac{4}{15} \left(\frac{1}{1 - \frac{1}{3}} \right) = 7 + \frac{2}{5} = 7.4.$$

इस प्रकार e^2 का मान 7.355 और 7.4 के बीच होता है। इसलिए, e^2 का मान, एक दशमलव स्थान तक पूर्णांकित करके 7.4 प्राप्त होता है।

A.1.5 लघुगणकीय श्रेणी (Logarithmic Series)

एक अन्य महत्त्वपूर्ण श्रेणी लघुगणकीय श्रेणी है जोकि अनंत श्रेणी के रूप में है। हम निम्नलिखित परिणाम बिना उपपत्ति के देते हैं और इसका अनुप्रयोग एक उदाहरण द्वारा समझाएँगे:

प्रमेय यदि |x| < 1, तब

$$\log_e (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

इस प्रमेय की दाईं पक्ष की श्रेणी, लघुगणकीय श्रेणी कहलाती है।

टिप्पणी $\log_e{(1+x)}$ का विस्तार, x=1 के लिए बैध है। $\log_e{(1+x)}$ के विस्तार में x=1 रखने पर, हमें प्राप्त होता है,

$$\log_e 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

उदाहरण 5 यदि α , β समीकरण $x^2 - px + q = 0$ के मूल हैं, तो सिद्ध कीजिए कि:

$$\log_e (1 + px + qx^2) = (\alpha - \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - \dots$$

यहाँ, हमने $\alpha+\beta=p$ और $\alpha\beta=q$ का प्रयोग किया है जो, हम द्विघातीय समीकरण के दिए मूलों द्वारा जानते हैं। हमने यह मान लिया है कि $|\alpha x|<1$ और $|\beta x|<1$ है।