

NoSQL e o processamento de dados em larga escala (Parte 1)

Prof. Dr. Robson L. F. Cordeiro robson@icmc.usp.br

Dados: ciclo de vida

Dados: ciclo de vida

Dados: ciclo de vida

O que é NoSQL?

- Qualquer sistema gerenciador de dados em larga escala, relacional ou <u>não-relacional</u>, é dito um sistema **NoSQL**
- "Not only SQL" → NoSQL
- Não é anti-SQL ou anti-Relacional

Fonte: <u>www.improgrammer.net</u>

- Não são apenas tabelas
 - Sistemas NoSQL armazenam e recuperam dados em vários formatos, e.g., texto, csv, xml, graphml

- Não são apenas tabelas
 - Sistemas NoSQL armazenam e recuperam dados em vários formatos, e.g., texto, csv, xml, graphml
- Não são apenas junções
 - Sistemas NoSQL permitem que você extraia dados utilizando interfaces simples, ao invés de sempre precisar de junções

- Não são apenas tabelas
 - Sistemas NoSQL armazenam e recuperam dados em vários formatos, e.g., texto, csv, xml, graphml
- Não são apenas junções
 - Sistemas NoSQL permitem que você extraia dados utilizando interfaces simples, ao invés de sempre precisar de junções
- Não são apenas esquemas
 - Sistemas NoSQL permitem que você copie e cole dados para um diretório, sem ter que organizá-los e consultá-los com base em entidades, atributos, relacionamentos, etc.

- Não são apenas executados em um único processador
 - Sistemas NoSQL permitem que você armazene e processe em paralelo dados em clusters de diversas máquinas com alta performance

- Não são apenas executados em um único processador
 - Sistemas NoSQL permitem que você armazene e processe em paralelo dados em clusters de diversas máquinas com alta performance
- Não são apenas para super computadores
 - Sistemas NoSQL permitem que você utilize máquinas comuns de baixo custo com processadores, memória RAM e discos independentes

- Não são apenas executados em um único processador
 - Sistemas NoSQL permitem que você armazene e processe em paralelo dados em clusters de diversas máquinas com alta performance
- Não são apenas para super computadores
 - Sistemas NoSQL permitem que você utilize máquinas comuns de baixo custo com processadores, memória RAM e discos independentes
- Não são apenas <u>nada</u>, na realidade...
 - Sistemas NoSQL enfatizam a inovação e inclusão, contemplando estratégias diversas para o armazenamento, a busca e a manipulação de dados em geral, incluindo "soluções padrão" baseadas em SQL

NoSQL

Dados: ciclo de vida

NoSQL

Dados: ciclo de vida

NoSQL

Dados: ciclo de vida

Quem usa NoSQL?

Por que NoSQL?

Empresa

(biologia, medicina, astronomia, etc.)

Por que NoSQL?

Acumulando dados

Terabytes

Empresa

(biologia, medicina, astronomia, etc.)

Complexidade dos dados

Por que NoSQL?

Parte relevante desses dados é manipulada por Sistemas
 Gerenciadores de Bases de Dados Relacionais – SGBDR

- Parte relevante desses dados é manipulada por Sistemas
 Gerenciadores de Bases de Dados Relacionais SGBDR
 - E.F.Codd. A relational model of data for large shared data banks. Communications of the ACM; Volume 13 Issue 6, June 1970; Pages 377-387

- Parte relevante desses dados é manipulada por Sistemas
 Gerenciadores de Bases de Dados Relacionais SGBDR
 - E.F.Codd. A relational model of data for large shared data banks. Communications of the ACM; Volume 13 Issue 6, June 1970; Pages 377-387
 - Facilita a modelagem e o desenvolvimento de aplicações

- Parte relevante desses dados é manipulada por Sistemas
 Gerenciadores de Bases de Dados Relacionais SGBDR
 - E.F.Codd. A relational model of data for large shared data banks. Communications of the ACM; Volume 13 Issue 6, June 1970; Pages 377-387
 - Facilita a modelagem e o desenvolvimento de aplicações
 - Bem adequado à programação cliente/servidor

Por que NoSQL (cont.)?

- Parte relevante desses dados é manipulada por Sistemas
 Gerenciadores de Bases de Dados Relacionais SGBDR
 - E.F.Codd. A relational model of data for large shared data banks. Communications of the ACM; Volume 13 Issue 6, June 1970; Pages 377-387
 - Facilita a modelagem e o desenvolvimento de aplicações
 - Bem adequado à programação cliente/servidor
 - Tecnologia predominante para o armazenamento de dados estruturados, tanto em aplicações comerciais quanto em aplicações para a Web

Por que NoSQL (cont.)?

Image Credit: DataJobs.com

- Atômicas: todas as operações de uma transação devem ser efetivadas. Ou, na ocorrência de uma falha, nada deve ser efetivado.
 - "tudo ou nada"

- Atômicas: todas as operações de uma transação devem ser efetivadas. Ou, na ocorrência de uma falha, nada deve ser efetivado.
 - "tudo ou nada"
- Consistentes: transações preservam a consistência/integridade dos dados
 - Consistência: se há redundância, todas as cópias são iguais
 - Integridade: dados seguem regras do mundo real, e.g., (nota1+nota2)/2 = média final
 - Estado inicial consistente/íntegro → Estado final consistente/íntegro

- Atômicas: todas as operações de uma transação devem ser efetivadas. Ou, na ocorrência de uma falha, nada deve ser efetivado.
 - "tudo ou nada"
- Consistentes: transações preservam a consistência/integridade dos dados
 - Consistência: se há redundância, todas as cópias são iguais
 - Integridade: dados seguem regras do mundo real, e.g., (nota1+nota2)/2 = média final
 - Estado inicial consistente/íntegro → Estado final consistente/íntegro
- Isoladas: uma transação A não vê o efeito de uma transação B até que B termine

- Atômicas: todas as operações de uma transação devem ser efetivadas. Ou, na ocorrência de uma falha, nada deve ser efetivado.
 - "tudo ou nada"
- Consistentes: transações preservam a consistência/integridade dos dados
 - Consistência: se há redundância, todas as cópias são iguais
 - Integridade: dados seguem regras do mundo real, e.g., (nota1+nota2)/2 = média final
 - Estado inicial consistente/íntegro → Estado final consistente/íntegro
- Isoladas: uma transação A não vê o efeito de uma transação B até que B termine
- <u>Duráveis</u>: uma vez terminada a transação, as alterações realizadas permanecem no banco até que outras alterações sejam explicitamente realizadas

BDs operacionais em geral

- RH e folha de pagamento
- Vendas e clientes
- Suporte técnico
- Ordens de serviço
- Transações bancárias
- **-** ...

BDs operacionais em geral

- RH e folha de pagamento
- Vendas e clientes
- Suporte técnico
- Ordens de serviço
- Transações bancárias

• ...

Consistência e integridade são obrigatórias

Redes sociais:

Usuários: ID, nome, sobrenome, idade, sexo,...

Amizades: UID1, UID2

Tarefa: Encontre todos os amigos de amigos de

amigos de ... amigos de um dado usuário.

Quando preciso de NoSQL (exceto SGBDR)?

Redes sociais:

Usuários: ID, nome, sobrenome, idade, sexo, ...

Amizades: UID1, UID2

Tarefa: Encontre todos os amigos de amigos de

amigos de ... amigos de um dado usuário.

Recursividade

Redes sociais:

Usuários: ID, nome, sobrenome, idade, sexo,...

Amizades: UID1, UID2

Tarefa: Encontre todos os amigos de amigos de

amigos de ... amigos de um dado usuário.

Recursividade

Páginas da Wikipédia:

Grande coleção de documentos

Tarefa: Encontre todas as páginas referentes a atletas participantes das Olimpíadas até 1950.

Redes sociais:

Usuários: ID, nome, sobrenome, idade, sexo, ...

Amizades: UID1, UID2

Tarefa: Encontre todos os amigos de amigos de amigos de amigos de um dado usuário.

Recursividade

Páginas da Wikipédia:

Grande coleção de documentos

Combinação de dados estruturados e não estruturados

Tarefa: Encontre todas as páginas referentes a atletas participantes das Olimpíadas até 1950.

Redes sociais:

Usuários: ID, nome, sobrenome, idade, sexo,...

Amizades: UID1, UID2

Tarefa: Encontre todos os amigos de amigos de

amigos de ... amigos de um dado usuário.

Recursividade

Páginas da Wikipédia:

Grande coleção de documentos

Combinação de dados estruturados e não estruturados

Tarefa: Encontre todas as páginas referentes a atletas participantes das Olimpíadas até 1950.

Consistência
e
integridade
são =
desejáveis,
mas não
obrigatórias

- SGBDR
 - Dados estruturados e organizados

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- NoSQL (exceto SGBDR)
 - Dados semi-/não estruturados e imprevisíveis

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- NoSQL (exceto SGBDR)
 - Dados semi-/não estruturados e imprevisíveis
 - Consistência eventual: transações BASE, não ACID

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- NoSQL (exceto SGBDR)
 - Dados semi-/não estruturados e imprevisíveis
 - Consistência eventual: transações BASE, não ACID
 - Não possui linguagem de consulta declarativa, e nem esquema de dados prédefinido

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- NoSQL (exceto SGBDR)
 - Dados semi-/não estruturados e imprevisíveis
 - Consistência eventual: transações BASE, não ACID
 - Não possui linguagem de consulta declarativa, e nem esquema de dados prédefinido
 - Quatro categorias principais, com propósitos distintos

- Dados estruturados e organizados
- Linguagem estruturada de consulta SQL, com DDL e DML
- Dados e relacionamentos comumente armazenados em arquivos distintos
- Controle rígido de consistência e integridade de dados

- NoSQL (exceto SGBDR)
 - Dados semi-/não estruturados e imprevisíveis
 - Consistência eventual: transações BASE, não ACID
 - Não possui linguagem de consulta declarativa, e nem esquema de dados prédefinido
 - Quatro categorias principais, com propósitos distintos
 - Prioriza alta performance, escalabilidade e disponibilidade

- Três requisitos básicos:
 - Consistency dados consistentes/íntegros após a execução de cada operação.
 Por exemplo, após uma atualização de dados, todos os usuários "verão" os mesmos dados

- Três requisitos básicos:
 - Consistency dados consistentes/íntegros após a execução de cada operação.
 Por exemplo, após uma atualização de dados, todos os usuários "verão" os mesmos dados
 - Availability todos os dados estão sempre disponíveis, 24x7

- Três requisitos básicos:
 - Consistency dados consistentes/íntegros após a execução de cada operação.
 Por exemplo, após uma atualização de dados, todos os usuários "verão" os mesmos dados
 - Availability todos os dados estão sempre disponíveis, 24x7
 - Partition tolerance sistema funcional mesmo quando a comunicação entre os servidores é deficiente, i.e., mesmo com servidores particionados em múltiplos grupos isolados entre si

- Três requisitos básicos:
 - Consistency dados consistentes/íntegros após a execução de cada operação.
 Por exemplo, após uma atualização de dados, todos os usuários "verão" os mesmos dados
 - Availability todos os dados estão sempre disponíveis, 24x7
 - Partition tolerance sistema funcional mesmo quando a comunicação entre os servidores é deficiente, i.e., mesmo com servidores particionados em múltiplos grupos isolados entre si
 - É <u>impossível</u> obter os três requisitos ao mesmo tempo. Têm-se então:
 - CA servidor único
 - CP parte dos dados poder estar inacessível temporariamente, porém os demais dados são consistentes/ntegros
 - AP todos os dados são acessíveis, mesmo com particionamento, porém podem existir dados inconsistentes/não íntegros (consistência eventual)

NoSQL: vantagens e desvantagens

NoSQL: vantagens e desvantagens

Vantagens

- Alta escalabilidade
- Processamento distribuído
- Baixo custo
- Flexibilidade de esquema; dados semi-estruturados ou não estruturados

NoSQL: vantagens e desvantagens

Vantagens

- Alta escalabilidade
- Processamento distribuído
- Baixo custo
- Flexibilidade de esquema; dados semi-estruturados ou não estruturados

Desvantagens

- Consistência eventual
- Falta de padronização
- Capacidade limitada de consulta
- É pouco intuitivo programar quando se tem consistência eventual

NoSQL AP → Propriedades BASE

- Transações em sistemas NoSQL que adotam consistência eventual seguem propriedades BASE, não ACID.
 - <u>Basically Available</u>: todos os dados acessíveis a qualquer momento
 - <u>Soft state</u>: o sistema/dados podem mudar ao longo do tempo, mesmo sem nenhuma requisição de usuário
 - **Eventual consistency:** o sistema se tornará consistente em algum momento, desde que não ocorram novas requisições de usuários

NoSQLAP → Propriedades BASE

- Transações em sistemas NoSQL que adotam consistência eventual seguem propriedades BASE, não ACID.
 - <u>B</u>asically <u>A</u>vailable: todos os dados acessíveis a qualquer momento
 - <u>S</u>oft state: o sistema/dados podem mudar ao longo do tempo, mesmo sem nenhuma requisição de usuário
 - <u>Eventual consistency</u>: o sistema se tornará consistente em algum momento, desde que não ocorram novas requisições de usuários

ACID	BASE
Atomicidade	Basically Available
Consistência	Soft state
Isolamento	Eventual consistency
Durabilidade	

- Transações em sistemas NoSQL que adotam consistência eventual seguem propriedades BASE, não ACID.
 - <u>B</u>asically <u>A</u>vailable: todos os dados acessíveis a qualquer momento
 - <u>S</u>oft state: o sistema/dados podem mudar ao longo do tempo, mesmo sem nenhuma requisição de usuário
 - <u>Eventual consistency</u>: o sistema se tornará consistente em algum momento, desde que não ocorram novas requisições de usuários

ACID	BASE
Atomicidade	Basically Available
Consistência	Soft state
Isolamento	Eventual consistency
Durabilidade	

Exemplos: BigTable, Cassandra e SimpleDB

- Existem quatro categorias principais de SGBDs NoSQL:
 - Pares de chave-valor
 - Orientado a colunas
 - Grafos
 - Orientado a documentos

- Existem quatro categorias principais de SGBDs NoSQL:
 - Pares de chave-valor
 - Orientado a colunas
 - Grafos
 - Orientado a documentos

Características e limitações específicas

Key-Value

Graph

Column-Family

Document

- Existem quatro categorias principais de SGBDs NoSQL:
 - Pares de chave-valor
 - Orientado a colunas
 - Grafos
 - Orientado a documentos

- Características e limitações específicas
- Melhor opção? Depende do problema em mãos

key → value key → value key → value

Column-Family

Document

Fonte: http://www.slideshare.net/KrishnakumarSukumaran/

WIBA IA BIG PATA

Conclusões

Conclusões

BDs Relacionais

- Esquema pré-definido e fixo
- Interface padrão aplicação/usuário ↔ BD
 - SQL
- Rígida consistência e integridade
- Semântica de dados bem definida

Conclusões

BDs Relacionais

- Esquema pré-definido e fixo
- Interface padrão aplicação/usuário ↔ BD
 - SQL
- Rígida consistência e integridade
- Semântica de dados bem definida

BDs NoSQL

- Esquema parcialmente definido ou até inexistente
- Definições e interfaces aplicação/usuário → BD distintas por produto
- Obter <u>respostas rápidas</u> é mais importante do que obter <u>a</u> <u>resposta correta</u>

Conclusões

- BDs Relacionais (NewSQL???)
 - Esquema pré-definido e fixo
 - Interface padrão aplicação/usuário ↔ BD
 - SQL
 - Rígida consistência e integridade
 - Semântica de dados bem definida

BDs NoSQL

- Esquema parcialmente definido ou até inexistente
- Definições e interfaces aplicação/usuário → BD distintas por produto
- Obter <u>respostas rápidas</u> é mais importante do que obter <u>a</u> <u>resposta correta</u>

MBA JA SAFA

Conclusões (cont.)

Conclusões (cont.)

- BDs NoSQL evitam
 - Overhead de transações ACID
 - Limitações de consultas SQL
 - Expressões declarativas de consulta
 - Trabalho com modelagem e normalização
 - Uso de tecnologias "antigas"????

- BDs NoSQL evitam
 - Overhead de transações ACID
 - Limitações de consultas SQL
 - Expressões declarativas de consulta
 - Trabalho com modelagem e normalização
 - Uso de tecnologias "antigas"???
- Responsabilidade do programador
 - Escrever códigos procedurais (passo-a-passo)
 - Navegar por caminhos/endereços

Referências

- Material de aulas do Prof. Dr. Rob Gleasure,
 University College Cork, Ireland. http://corvus2vm.ucc.ie/phd/rgleasure/rgleasure/index.html
- NoSQL, w3resource. http://www.w3resource.com/mongodb/nosql.php
- Material de aulas do Prof. Dr. Xuanhua Shi, Huazhong University of Science and Technology, China. <u>grid.hust.edu.cn/xhshi/</u>

Referências (cont.)

- Material de aulas do Prof. Dr. Ray R. Larson, UC Berkeley School of Information, USA. http://courses.ischool.berkeley.edu/i257/f15/
- Jeffrey Dean and Sanjay Ghemawat. "MapReduce: Simplified Data Processing on Large Clusters", OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, 2004.
- Apache Hadoop. http://lucene.apache.org/hadoop/
- http://code.google.com/edu/parallel/mapreduce-tutorial.html

NoSQL e o processamento de dados em larga escala (Parte 1)

Prof. Dr. Robson L. F. Cordeiro robson@icmc.usp.br