TD 3 2018

Exercice 1. On observe la réalisation d'un échantillon $X_1,...,X_n$ de taille n de loi P_{θ} de densité

$$f(x,\theta) = \frac{1}{\theta} (1-x)^{\frac{1}{\theta}-1} \mathbf{1}_{]0,1[}(x), \ \theta \in \mathbb{R}_+^*.$$

- 1. Donner une statistique exhaustive.
- 2. Déterminer l'estimateur du maximum de vraisemblance T_n de θ .
- 3. Montrer que $-\ln(1-X_i)$ suit une loi exponentielle dont on précisera le paramètre.
- 4. Calculer le biais et le risque quadratique de T_n . Cet estimateur est-il convergent ?

Exercice 2. 1. Soit $(X_1,...,X_n)$ un échantillon de n variables i.i.d. de loi de Poisson de paramètre λ :

$$P(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \; ; k \in \mathbb{N}^*$$

Calculer la vraisemblance de l'échantillon, déterminer si le modèle est exponentiel et exhiber une statistique exhaustive.

2. Mêmes questions avec une loi de Pareto de paramètres α et θ avec $\alpha > 1$, $\theta > 0$ de densité

$$f(x) = \frac{\alpha - 1}{\theta} (\frac{\theta}{x})^{\alpha} \mathbf{1}_{[\theta, \infty[}(x).$$

3. Mêmes questions avec une loi de Weibull de paramètres α et θ avec $\alpha > 1$, $\theta > 0$ de densité

$$f(x) = \alpha \theta x^{\alpha-1} e^{-\theta x^{\alpha}} 1_{[0,\infty[}(x).$$

On distinguera le cas α inconnu du cas α connu.

4. Mêmes questions avec une loi uniforme sur $[0,\theta]$ avec $\theta>0$ inconnu.

Exercice 3. Calculer l'information de Fisher dans les modèles statistiques suivants :

1. Une loi de Poisson de paramètre λ :

$$P(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \; ; k \in \mathbb{N}^*$$

2. Une loi de Pareto de paramètres α et θ avec $\alpha>1,$ $\theta>0$ de densité

$$f(x) = \frac{\alpha - 1}{\theta} \left(\frac{\theta}{x}\right)^{\alpha} \mathbf{1}_{[\theta, \infty[}(x).$$

3. Une loi de Weibull de paramètres α et θ avec $\alpha>1, \theta>0$ de densité

$$f(x) = \alpha \theta x^{\alpha - 1} e^{-\theta x^{\alpha}} 1_{[0, \infty[}(x).$$

4. Une loi uniforme sur $[0; \theta]$ avec $\theta > 0$ inconnu.