Network compression

Relevance

Apps, self-driving cars, VR etc.

Problems:

- Delay
- Memory
- Energy

Pruning

AGE

Рождение	50 трлн
1 год	1000 трлн
10 лет	500 трлн

Эксперименты с Pruning

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12×
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12×
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9>*
VGG16 Ref	31.50%	11.32%	138M	
VGG16 Pruned	31.34%	10.88%	10.3M	13×

Table 1: Network pruning can save $9\times$ to $13\times$ parameters with no drop in predictive performance

Retrain to recover accuracy

Examples, showing pruning effectiveness

Quantization

$$r = \frac{nb}{nlog_2(k) + kb}$$

Compression rate

Эксперименты с Quantization

Bits per weight

10	11 11	ng	'	
Qu	an	tiz	atior	1

Druning +

#CONV bits / #FC bits	Top-1 Error	Top-5 Error	Top-1 Error Increase	Top-5 Error Increase
32bits / 32bits	42.78%	19.73%	-	7=0
8 bits / 5 bits	42.78%	19.70%	0.00%	-0.03%
8 bits / 4 bits	42.79%	19.73%	0.01%	0.00%
4 bits / 2 bits	44.77%	22.33%	1.99%	2.60%

Matrix factorization

Full matrix: $O(nm) \longrightarrow O((n + m)d)$, d - dimension.

Список литературы

• Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Song Han, Huizi Mao, William J. Dally

PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz NVIDIA

NEURAL NETWORK MATRIX FACTORIZATION

Gintare Karolina Dziugaite, Daniel M. Roy