

1st Circuit Element: Resistor

Resistance: The ability of a material to resist the flow of current

Symbol: R

Units: Ohms (Ω)

An insulator has infinite resistance

A conductor has very low resistance

Resistors

Practical Perspective: Circuits with Realistic Resistors

Resistors are manufactured for a number of discrete values, and any resistor will vary from its stated value within some tolerance. Resistors with tighter tolerance, say 1%, are more expensive than resistors with greater tolerance, say 10%.

It is important to understand which resistor's value has the greatest impact on the expected performance of the circuit. In other words, we would like to predict the effect of varying each resistor's value on the output of the circuit.

If we know that a particular resistor must be very close to its stated value for the circuit to function correctly, we can decide to spend the extra money necessary to achieve a tighter tolerance on that particular resistor's value.

Exploring the effect of a circuit component's value on the circuit's output is known as **sensitivity analysis**. We'll come back to this at the end of this chapter.

TABLE 2.1 Standard resistor values for 5% and 10% tolerances (values available with a 10% tolerance shown in boldface)

1.0	10	100	1.ok	10k	100k	1.0M	10M
1.1	11	110	1.1k	11k	110k	1.1M	11M
1.2	12	120	1.2k	12k	120k	1.2M	12M
1.3	13	130	1.3k	13k	130k	1.3M	13M
1.5	15	150	1.5k	15k	150k	1.5M	15M
1.6	16	160	1.6k	16k	160k	1.6M	16M
1.8	18	180	1.8k	18k	180k	1.8M	18M
2.0	20	200	2.0k	20k	200k	2.0M	20M
2.2	22	220	2.2k	22k	220k	2.2M	22M
2.4	24	240	2.4k	24k	240k	2.4M	
2.7	27	270	2.7k	27k	270k	2.7M	
3.0	30	300	3.ok	30k	300k	3.oM	
3.3	33	330	3.3k	33k	330k	3.3M	
3.6	36	360	3.6k	36k	360k	3.6M	
3.9	39	390	3.9k	39k	390k	3.9M	
4.3	43	430	4.3k	43k	430k	4.3M	
4.7	47	470	4.7 k	47k	470k	4.7M	
5.1	51	510	5.1k	51k	510k	5.1M	
5.6	56	560	5.6k	56k	560k	5.6M	
6.2	62	620	6.2k	62k	620k	6.2M	
6.8	68	680	6.8k	68k	68ok	6.8M	
7.5	75	750	7. 5k	75k	750k	7.5M	
8.2	82	820	8.2k	82k	820k	8.2M	
9.1	91	910	9.1k	91k	910k	9.1M	

$$= \mathbf{v}(\mathbf{t}) / \mathbf{i}(\mathbf{t})$$

OHM's Law

$$\mathbf{R} = \mathbf{v}(\mathbf{t}) / \mathbf{i}(\mathbf{t})$$

Georg Simon Ohm was a German physicist born in Erlangen, Bavaria, on March 16, 1787. As a high school teacher, Ohm started his research with the recently invented electrochemical cell, invented by Italian Count Alessandro Volta. Using equipment of his own creation, Ohm determined that the current that flows through a wire is proportional to its cross sectional area and inversely proportional to its length, or Ohm's law.

Using the results of his experiments, Georg Simon Ohm was able to define the fundamental relationship between voltage, current, and resistance. These fundamental relationships are of such great importance, that they represent the true beginning of electrical circuit analysis.

Unfortunately, when Ohm published his finding in 1827, his ideas were dismissed by his colleagues. Ohm was forced to resign from his high-school teaching position and he lived in poverty and shame until he accepted a position at Nüremberg in 1833 and although this gave him the title of professor, it was still not the university post for which he had strived all his life.

Georg Simon Ohm (1787 – 1854)

Conductance

A measure of the ability of a material to conduct current.

Notation: G

G = 1/R

Unit: Siemans (S)

(Used to be Mhos $\mbox{ or } \Omega^{-1}$)

More Ohm's Law

Ohm's law:

$$V = IR$$

Power in resistors:
$$P = VI = RI^2 = \frac{V^2}{R}$$

Conductance (Siemens):

$$G = \frac{1}{R}$$

P =
$$V^2$$
 / R or
 V^2 = 3.6 mW x10 kΩ
= 36 x 10⁻⁰
V = 6 Volts
10 kΩ
 $P = I^2$ R or
 I^2 = 3.6 mW / 10 kΩ
= 0.36 x 10⁻⁶

Find V_S

Ohm's Law

$$V_S = I R = I / G$$

= 0.5 mA / 50 µS
= 0.01 x 10³
= 10 Volts

$$G=$$
 50 μS

 $P = I^2 R$

 $= (4mA)^2 R$