2025-2026-1 学期强化学习课程 - 第一次作业

1120231863 左逸龙

October, 15 2025

1 马尔可夫决策过程

该 MDP 由五元组 $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$ 组成, 其中:

- 状态集 S: 本题的核心状态是**当前时刻所拥有的钱的数量**,因此状态集 $S = \{0, 10, 20, 30, 40\}$ 。
- 动作集 *A*: 本题当中,在游戏未结束前,我们有两种动作,即**玩老虎机 A** 和**玩老虎机 B**。不过需要注意的是,在不同状态之下,可以采取的动作有所不同,具体而言动作集如下:

$$\mathcal{A}(s) = \begin{cases} \emptyset \text{ if } s = 0 \lor s = 40\\ \{A\} \text{ if } s = 10\\ \{A, B\} \text{ if } s = 20 \lor s = 30 \end{cases}$$

・ 状态转移概率 \mathcal{P} : 可以由一 $5 \times 5 \times 2$ 的矩阵表示,其中第一维表示起始状态 s_t ,第二维表示转移状态 s_{t+1} ,第三维表示动作 a_t 。

依据题意, 玩老虎机 A, 即采取动作 A, 有 0.05 的概率净赚 10 元, 有 0.95 的概率输掉 10 元, 因此:

$$P(s_t, s_{t+1}, a_t = A) = \begin{cases} 0.05 \text{ if } s_t \in \{10, 20, 30\} \land s_{t+1} = s_t + 10 \\ 0.95 \text{ if } s_t \in \{10, 20, 30\} \land s_{t+1} = s_t - 10 \\ 0 \text{ otherwise} \end{cases}$$

同理, 玩老虎机 B, 即采取动作 B, 有:

$$P\big(s_t, s_{t+1}, a_t = B\big) = \begin{cases} 0.01 \text{ if } s_t \in \{20, 30\} \land s_{t+1} = s_t + 10 \\ 0.99 \text{ if } s_t \in \{20, 30\} \land s_{t+1} = s_t - 20 \\ 0 \text{ otherwise} \end{cases}$$

• 奖励函数 \Re : 可以由一个 5×2 的矩阵表示,其中第一维表示起始状态 s_t ,第二维表示动作 a_t 。根据期望公式可得:

$$R(s_t, a_t) = \begin{cases} -10 + 20 \times 0.05 = -9 \text{ if } a_t = A \\ -20 + 30 \times 0.01 = -19.7 \text{ if } a_t = B \end{cases}$$

• 折扣因子 γ : 依据题意,本题折扣因子 $\gamma = 1$ 。

2 Gridworld 小游戏

(a) 最短路径策略

 $r_s = -1$,以下阐述原因:

首先,累计回报 $G_t=\sum_{k=0}^\infty \gamma^k R_{t+k+1}$,其中 γ 为折扣因子,本题中 $\gamma=1$, R_{t+k+1} 为状态 s_{t+k+1} 的奖励,有:

$$R(s) = \begin{cases} r_g \text{ if } s = 3\\ r_r \text{ if } s = 14\\ r_s \text{ otherwise} \end{cases}$$

假设智能体 Agent 在时刻 T 到达终点 3,则有:

$$G_t = r_g + r_s \times (T - t)$$

Agent 的优化目标是最大化累计回报 G_t ,当 $r_s=-1$ 时,Agent 必须最小化 T-t,即最小化路径长度,使得最优策略可以返回到格子 3 的最短路径;当 $r_s=0$ 时,Agent 可以不考虑路径长度,因此最优策略可以为任意路径;当 $r_s=1$ 时,Agent 将尽可能最大化路径长度,与最短路径背道而驰。综上, $r_s=-1$ 。

在此条件下,每个格子的最优价值如下表所示:

1	2	3	-4
0	1	2	-3
-1	0	1	-2
-2	-3	0	-1

该表可通过求解贝尔曼方程得到, 即:

$$V(s) = \max_{a \in \mathcal{A}(s)} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s')$$

(b) 奖励变化的影响

在新网格世界当中新的价值函数如下表所示:

8	7	6	13
9	8	7	12
10	9	8	11
11	-6	9	10

(c) 奖励变化的一般表达式

- 1. $V_{\text{new}}^{\pi} = c \times V_{\text{old}}^{\pi}$ 。这是因为在无限长的马尔可夫链中, $V^{\pi} = (I \gamma P^{\pi})^{-1} R^{\pi}$,当奖励变为 $R'^{\pi} = c R^{\pi}$ 时,价值函数也等比例变化。
- 2. 当 c < 0 时, 会使得最优策略发生变化, 理由如下:

首先让我们考虑原始的 MDP,令其最优策略为 π_* ,由此引发的最优价值函数为 $V_{\rm old}^{\pi_*}$ 。最优策略 π_* 优于任意其他策略 π ,因此满足如下关系:

$$V_{\text{old}}^{\pi_*}(s) \ge V_{\text{old}}^{\pi}(s), \ \forall s \in \mathcal{S}$$

现在让我们考虑新的 MDP,由于 $V_{\text{new}}^{\pi} = c \times V_{\text{old}}^{\pi}$,因此:

- 当 $c \geq 0$ 时, $c \times V_{\mathrm{old}}^{\pi_*}(s) \geq c \times V_{\mathrm{old}}^{\pi}(s) \Longrightarrow V_{\mathrm{new}}^{\pi_*}(s) \geq V_{\mathrm{new}}^{\pi}(s)$,因此 $\pi_* \geq \pi$,即原策略仍然是新的 MDP 的最优策略。
- 而当 c<0 时, $c\times V_{\mathrm{old}}^{\pi_*}(s)\leq c\times V_{\mathrm{old}}^{\pi}(s)\Longrightarrow V_{\mathrm{new}}^{\pi_*}(s)\leq V_{\mathrm{new}}^{\pi}(s)\Longrightarrow V_{\mathrm{new}}^{\pi_*}(s)\geq V_{\mathrm{new}}^{\pi}(s)$ 不恒成立,因此 $\pi_*\geq\pi$ 不恒成立,即原策略不一定是新的 MDP 的最优策略,此时最优策略大概率会发生变化,除非所有策略的价值都相同,而这是不太可能的。

综上、当c < 0时、最优策略会发生变化。

(d) 正奖励的影响

类似于 (a) 小节当中针对 $r_s=1$ 的分析,此时的最优策略是尽可能不踏入终点,即绿色的 3 与红色的 14,从而最大化路径长度。考虑到格子图当中从非阴影格子出发时,总能够找到一条路径返回起点,因此 Agent 通过进入这一循环路径,可以使得格子的价值无限次累加正奖励 $r_s=2$,进而把所有非阴影格子的价值变为正无穷。