POWERED BY Dialog

BEST AVAILABLE COPY

Basic Patent (Number, Kind, Date): CA 2234934 AA 19970522

PATENT FAMILY:

Australia (AU)

Patent (Number, Kind, Date): AU 9676788 A1 19970605

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER

MATERIAL (English)

Patent Assignee: DU PONT

Author (Inventor): BLANCHET-FINCHER GRACIELA BEAT; HOLSTEIN WILLIAM LEO;

SUBRAMONEY SHEKHAR; HERRON NORMAN

Priority (Number, Kind, Date): US 6747 P 19951115; WO 96US18145 W 19961113

Applic (Number, Kind, Date): AU 9676788 A 19961113

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500

Language of Document: English

Canada (CA)

Patent (Number, Kind, Date): CA 2234934 AA 19970522

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER MATERIAL PROCEDE DE FABRICATION D'UNE CATHODE D'EMISSION DE CHAMP AU MOYEN

D'UN MATERIAU EMETTEUR DE CHAMP PARTICULAIRE (English; French)

Patent Assignee: DU PONT (US)

Author (Inventor): HERRON NORMAN (US); BLANCHET-FINCHER GRACIELA BEAT (US);

HOLSTEIN WILLIAM LEO (US); SUBRAMONEY SHEKHAR (US)

Priority (Number, Kind, Date): US 6747 P 19951115; WO 96US18145 W 19961113

Applic (Number, Kind, Date): CA 2234934 A 19961113

IPC: * H01J-009/02

Language of Document: English

Canada (CA) - Legal Status

Number Type Date Code Text

CA 2234934 P 19980415 CA REFW CORRESPONDS TO PCT APPLICATION

(ENTSPRICHT PCT ANMELDUNG)

WO 9718577 P

CA 2234934 P 20030403 CA AFNE NATIONAL PHASE ENTRY

DATE: 19980415

CA 2234934 P 20030403 CA FZDE DEAD

DATE: 20000719

China (CN)

Patent (Number, Kind, Date): CN 1202271 A 19981216

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING PARTICULATE FIELD EMITTER

MATERIAL (English)

Patent Assignee: E I DU PONT DE NUMOURS AND CO (US)

Author (Inventor): BLANCHET-FINCHER G B (US); HOLSTEIN W L (US); SUBRAMONEY S (US)

Priority (Number, Kind, Date): US 6747 P 19951115 Applic (Number, Kind, Date): CN 96198312 A 19961113

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500 Language of Document: Chinese

Germany (DE)

Patent (Number, Kind, Date): DE 69604931 C0 19991202

VERFAHREN ZUR HERSTELLUNG EINER FELDEMISSIONSKATHODE MITTELS EINES

TEILCHENFOERMIGEN FELDEMISSIONSMATERIAL (German)

Patent Assignee: DU PONT (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA (US); HOLSTEIN WILLIAM (US);

SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): US 6747 P 19951115; WO 96US18145 W 19961113

Applic (Number, Kind, Date): DE 69604931 A 19961113

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500

Language of Document: German

Patent (Number, Kind, Date): DE 69604931 T2 20000518

VERFAHREN ZUR HERSTELLUNG EINER FELDEMISSIONSKATHODE MITTELS EINES

TEILCHENFOERMIGEN FELDEMISSIONSMATERIAL (German)

Patent Assignee: DU PONT (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA (US); HOLSTEIN WILLIAM (US);

SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): US 6747 P 19951115; WO 96US18145 W 19961113

Applic (Number, Kind, Date): DE 69604931 A 19961113

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500 Language of Document: German

Germany (DE) - Legal Status

Number	Type	Date	Code	Text
DE 69604931	P	19991202	DE REF	CORRESPONDS TO (ENTSPRICHT) EP 861499 P 19991202
DE 69604931	P	20000518		TRANSLATION OF PATENT DOCUMENT OF EUROPEAN PATENT WAS RECEIVED AND HAS BEEN PUBLISHED (UEBERSETZUNG DER PATENTSCHRIFT DES EUROPAEISCHEN PATENTES IST EINGEGANGEN UND VEROEFFENTLICHT WORDEN)
DE 69604931	P	20020808	DE 8364	NO OPPOSITION DURING TERM OF OPPOSITION (EINSPRUCHSFRIST ABGELAUFEN OHNE DASS EINSPRUCH

ERHOBEN WURDE)

European Patent Office (EP)

Patent (Number, Kind, Date): EP 861499 A1 19980902

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER

MATERIAL (English; French; German)
Patent Assignee: DU PONT (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA BEAT (US); HOLSTEIN WILLIAM LEO (US);

SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): WO 96US18145 W 19961113; US 6747 P 19951115

Applic (Number, Kind, Date): EP 96939680 A 19961113

Designated States: (National) DE; ES; FR; GB; IT

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500

Language of Document: English

Patent (Number, Kind, Date): EP 861499 B1 19991027

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER

MATERIAL (English; French; German)
Patent Assignee: DU PONT (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA BEAT (US); HOLSTEIN WILLIAM LEO (US);

SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): WO 96US18145 W 19961113; US 6747 P 19951115

Applic (Number, Kind, Date): EP 96939680 A 19961113

Designated States: (National) DE; ES; FR; GB; IT

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500 Language of Document: English

European Patent Office (EP) - Legal Status

•	8
Number Type Date Code	Text
EP 861499 P 19951115 EP A	A PRIORITY (PRIORITAET) US 6747 P 19951115
EP 861499 P 19961113 EP A	A PCT-APPLICATION (PCT-ANMELDUNG) WO 96US18145 W 19961113
EP 861499 P 19961113 EP A	E EP-APPLICATION (EUROPAEISCHE ANMELDUNG) EP 96939680 A 19961113
EP 861499 P 19980902 EP A	K DESIGNATED CONTRACTING STATES IN AN APPLICATION WITH SEARCH REPORT: (IN EINER ANMELDUNG BENANNTE VERTRAGSSTAATEN) DE ES FR GB IT
EP 861499 P 19980902 EP A	PUBLICATION OF APPLICATION WITH SEARCH REPORT (VEROEFFENTLICHUNG DER ANMELDUNG MIT RECHERCHENBERICHT)

EP 861499 P	19980902 EP 17P	REQUEST FOR EXAMINATION FILED (PRUEFUNGSANTRAG GESTELLT) 980429
EP 861499 P	19990506 EP 17Q	FIRST EXAMINATION REPORT (ERSTER PRUEFUNGSBESCHEID) 19990324
EP 861499 P	19991027 EP AK	DESIGNATED CONTRACTING STATES MENTIONED IN A PATENT SPECIFICATION: (IN EINER PATENTSCHRIFT ANGEFUEHRTE BENANNTE VERTRAGSSTAATEN) DE ES FR GB IT
EP 861499 P	19991027 EP B1	PATENT SPECIFICATION (PATENTSCHRIFT)
EP 861499 P	19991202 EP REF	CORRESPONDS TO: (ENTSPRICHT) DE 69604931 P 19991202
EP 861499 P	20000128 EP ET	FR: TRANSLATION FILED (FR: TRADUCTION A ETE REMISE)
EP 861499 P	20001011 EP 26N	NO OPPOSITION FILED (KEIN EINSPRUCH EINGELEGT)
EP 861499 P	20020101 GB IF02/REG	EUROPEAN PATENT IN FORCE AS OF 2002-01-01
EP 861499 P	20020703 EP 25	LAPSED IN A CONTRACTING STATE (ERLOSCHEN IN EINEM VERTRAGSSTAAT) ES 19991027

Japan (JP)

Patent (Number, Kind, Date): JP 2000500905 T2 20000125

Priority (Number, Kind, Date): WO 96US18145 W 19961113; US 6747 P 19951115

Applic (Number, Kind, Date): JP 96519011 A 19961113

IPC: * H01J-009/02; C01B-031/02; H01J-001/30; H01J-001/304

Derwent WPI Acc No: * C 97-289500 Language of Document: Japanese

United States of America (US)

Patent (Number, Kind, Date): US 5948465 A 19990907

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER MATERIAL (English)

Patent Assignee: DU PONT (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA BEAT (US); HOLSTEIN WILLIAM LEO (US); SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): US 68484 A 19980512; WO 96US18145 W 19961113; US 6747 P 19951115

Applic (Number, Kind, Date): US 68484 A 19980512

National Class: * 427077000; 427226000; 427435000; 427436000; 427125000; 445050000; 445051000

IPC: * B05D-005/12; H01J-009/02

Derwent WPI Acc No: * C 97-289500

Language of Document: English

United States of America (US) - Legal Status

Number	Type	Date	Code	Text
US 5948465	P	19951115	US A A	PRIORITY US 6747 P 19951115
US 5948465	P	19961113		PCT-APPLICATION (PCT-APPL.)
US 5948465	P	19980512	US AE	WO 96US18145 W 19961113 APPLICATION DATA (PATENT) (APPL. DATA (PATENT))
				ÙS 68484 A 19980512
US 5948465	P	19980512		ASSIGNMENT OF ASSIGNOR'S INTEREST E.I. DU PONT DE NEMOURS AND COMPANY LEGAL - PATENTS 1007 MARKET STREET WILMINGTO; BLANCHET-FINCHER, GRACIELA BEATRIZ: 19961217; HOLSTEIN, WILLIAM LEO: 19961211; SUBRAMONEY, SHEKHAR: 19961212;
US 5948465	P	19990907	US A	PATENT

World Intellectual Property Organization, PCT (WO)

Patent (Number, Kind, Date): WO 9718577 A1 19970522

PROCESS FOR MAKING A FIELD EMITTER CATHODE USING A PARTICULATE FIELD EMITTER MATERIAL (English)

Patent Assignee: DU PONT (US); BLANCHET FINCHER GRACIELA BEAT (US); HOLSTEIN

WILLIAM LEO (US); SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Author (Inventor): BLANCHET-FINCHER GRACIELA BEAT (US); HOLSTEIN WILLIAM LEO (US); SUBRAMONEY SHEKHAR (US); HERRON NORMAN (US)

Priority (Number, Kind, Date): US 6747 P 19951115

Applic (Number, Kind, Date): WO 96US18145 A 19961113

Designated States: (National) AU; CA; CN; JP; KR; SG; US (Regional) AT; BE; CH; DE; DK; ES; FI; FR;

GB; GR; IE; IT; LU; MC; NL; PT; SE

Filing Details: WO 100000 With international search report

IPC: * H01J-009/02

Derwent WPI Acc No: * C 97-289500; C 97-289500

Language of Document: English

World Intellectual Property Organization, PCT (WO) - Legal Status

Number	Type	Date	Code	Text
WO 9718577	P	19951115	WO	PRIORITY CLAIMED
			AA	US 6747 P 19951115
WO 9718577	P	19961113	WO AE	APPLICATION DATA
				(APPL. DATA)
				WO 96US18145 A 19961113
WO 9718577	P	19970522	WO AK	DESIGNATED STATES CITED IN A PUBLISHED APPLICATION WITH SEARCH REPORT

		(DESIGNATED STATES CITED IN A PUBLISHED APPL. WITH SEARCH REPORT) AU CA CN JP KR SG US
WO 9718577 P	19970522 WO AL	DESIGNATED COUNTRIES FOR REGIONAL PATENTS CITED IN A PUBLISHED APPLICATION WITH SEARCH REPORT (DESIGNATED COUNTRIES FOR REGIONAL PATENTS CITED IN A PUBLISHED APPL. WITH SEARCH REPORT) AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE
WO 9718577 P	19970522 WO A1	PUBLICATION OF THE INTERNATIONAL APPLICATION WITH THE INTERNATIONAL SEARCH REPORT (PUB. OF THE INTERNATIONAL APPL. WITH THE INTERNATIONAL SEARCH REPORT)
WO 9718577 P	19970703 WO DFPE	REQUEST FOR PRELIMINARY EXAMINATION FILED PRIOR TO EXPIRATION OF 19TH MONTH FROM PRIORITY DATE
WO 9718577 P	19970903 WO 121	EP: PCT APP. ART. 158 (1) (EP: PCT ANM. ART. 158 (1))
WO 9718577 P	19980415 WO ENP	ENTRY INTO THE NATIONAL PHASE IN: CA 2234934 AA
WO 9718577 P	19980508 WO ENP	ENTRY INTO THE NATIONAL PHASE IN: JP 97519011 A

INPADOC/Family and Legal Status © 2004 European Patent Office. All rights reserved. Dialog® File Number 345 Accession Number 13655403 (19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2000-500905 (P2000-500905A)

(43)公表日 平成12年1月25日(2000.1.25)

(51) Int.Cl. ⁷	識別記号	FΙ			テーマコード(参考)
H01J 9/02		H01J	9/02	В	
C 0 1 B 31/02	1 0 1	C 0 1 B	31/02	101F	
				101Z	
H 0 1 J 1/30		H01J	1/30	. A	
1/304	•			F	
•	· · · · · · · · · · · · · · · · · · ·	審查請求	未請求	予備審查請求 有	(全 31 頁)
(21)出願番号	特願平9 -519011	(71)出願	(1	アイ・デユポン・ド	ウ・ヌムール・
(86) (22)出願日	平成8年11月13日(1996.11.13)		アンド	・カンパニー	
(85)翻訳文提出日	平成10年5月8日(1998.5.8)		アメリ	カ 合衆 国デラウエア	州19898ウイル
(86)国際出願番号	PCT/US96/18145		ミント	ン・マーケツトスト	リート1007
(87)国際公開番号	WO97/18577	(72)発明報	す プラン	シエトーフインシヤ	ー,グラシー
(87)国際公開日	平成9年5月22日(1997.5.22)		ラ・ビ	ートリズ	
(31)優先権主張番号	60/006, 747		アメリ	カ 合衆 国デラウエア	₩19810 <i>—</i> 3618
(32)優先日	平成7年11月15日(1995.11.15)		ウイル	ミントン・フエアウ	ツドレイン2005
(33)優先権主張国	米国 (US)	(72)発明報	ず ホルス	テイン, ウイリアム	・レオ
(81)指定国	EP(AT, BE, CH, DE,		アメリ	カ合衆国デラウエア	₩19808 <i>—</i> 19 2 3
DK, ES, FI, F	R, GB, GR, IE, IT, L		ウイル	ミントン・エルデロ	ンドライブ1122
U, MC, NL, PT	, SE), AU, CA, CN, J	(74)代理力	大 弁理士	小田島 平吉 (外1名)
P, KR, SG, US	·				
					最終頁に続く

(54) 【発明の名称】 粒子状の電界放射材料を用いた電界放射体陰極の製造方法

(57)【要約】

粒子状の電界放射体材料を基質に付着させることによる 電界放射体陰極製造方法。この粒子状の電界放射体材料 を金属化合物が溶媒に入っている溶液に分散させて上記 基質の表面に付着させる。この基質を該金属化合物が金 属に完全に還元されるに充分な時間加熱する。その結果 として得られる電界放射体陰極は、上記金属の薄層(こ の薄層の中に粒子状の電界電子放射体材料が埋め込まれ ていてそこから突き出している)で被覆された基質であ る。

【特許請求の範囲】

- 1. 電界放射体陰極を製造する方法であって、
- (a) 後で加熱した時に完全に金属に還元され得る金属化合物が溶媒 に入っている溶液と電子放射性粉末を基質の表面に付着させ、そして
- (b) 該溶液と該電子放射性粉末を含んでいてそれらが上に付着している該基質を該金属化合物が完全に金属に還元されるに充分な温度で充分な時間加熱する、

段階を含む方法。

- 2. 該基質が平面体である請求の範囲第1項記載の方法。
- 3. 該基質が繊維である請求の範囲第1項記載の方法。
- 4. 該基質が金属ワイヤーである請求の範囲第1項記載の方法。
- 5. 該金属ワイヤーをニッケル、タングステンおよび銅から成る群から選択する請求の範囲第4項記載の方法。
- 6. 該金属化合物を硝酸銀、塩化銀、臭化銀、ヨウ化銀および塩化金から成る群から選択する請求の範囲第1項記載の方法。
 - 7. 該溶媒が水である請求の範囲第1項記載の方法。
 - 8. 該電子放射性粉末が炭素粉末である請求の範囲第1項記載の方法。
- 9. 該炭素粉末をグラファイト粉末、微粉砕コークス粉末、炭粉末、多結晶性ダイヤモンド粉末、ナノチューブ炭素粉末および焼きなまし炭素すす粉末から成る群から選択する請求の範囲第8項記載の方法。
- 10. 該溶液の粘度を高くする目的で有機結合剤材料を該溶液に添加することを更に含む請求の範囲第1項記載の方法。
- 11. 該有機結合剤をポリエチレンオキサイド、ポリビニルアルコールおよびニトロセルロースから成る群から選択する請求の範囲第10項記載の方法。
- 12. 加熱を約120から約220℃の範囲で行う請求の範囲第1項記載の 方法。
- 13. 電界放射体陰極を製造する方法であって、電子輸送材料を用いて電子 放射性粒子材料を基質に付着させることを含む方法。

14. 該電子輸送材料が薄い金属層を構成する請求の範囲第13項記載の方 法。

【発明の詳細な説明】

粒子状の電界放射材料を用いた電界放射体陰極の製造方法

発明の分野

本発明は一般に粒子状の電子電界放射材料(electron field emitter particulate material)を基質に付着させる方法に関する。本発明は、詳細には、粒子状の電子電界放射材料を基質に付着させる薄い金属層を生じさせる方法に関し、それによって、電界放射体陰極(field emitter cathode)を製造する。

発明の背景

しばしば電界放射材料(field emission material)または電界放射体(field emitters)と呼ばれる電界放射電子源(field emission electron sources)は、いろいろな電子用途、例えば真空電子装置、フラットパネル(flat panel)のコンピューターおよびテレビディスプレイ(display)、放射ゲート増幅器(emission gate amplifiers)、クライストロン真空管および照明具などで使用可能である。

ディスプレイスクリーンは幅広く多様な用途、例えば家庭用および商業用テレビ、ラップトップ(laptop)およびデスクトップコンピューター、屋内および屋外広告および情報表示などで用いられている。大部分のテレビおよびデスクトップコンピューターで見られる深いブラウン管モニターとは対照的に、フラットパネルディスプレイの厚みは典型的にほんの数インチである。ラップトップコンピューターではフラット

パネルディスプレイが必須であるばかりでなくまた他の多くの用途でも重量およびサイズの点で有利である。ラップトップコンピューターのフラットパネルディスプレイでは現在のところ液晶が用いられており、これの切り換えは、小さい電気シグナルをかけて透明な状態を不透明な状態に変えることで実施可能である。このようなディスプレイをラップトップコンピューターで用いるに適切なサイズより大きいサイズに信頼できる様式で製造するのは困難である。

液晶ディスプレイの代替としてプラズマディスプレイが提案された。プラズマディスプレイでは帯電ガスの小さなピクセルセル(pixel cell)が画像形成で用いられており、それを作動させるには比較的大きな電力が必要である

電界放射電子源(即ち電界放射材料または電界放射体)を利用した陰極と蛍光体(これは、上記電界放射体が放射する電子が衝突した時に光を発し得る)が備わっているフラットパネルディスプレイが提案された。そのようなディスプレイは、通常のブラウン管が有するビジュアルディスプレイの利点と他のフラットパネルディスプレイが有する深さ、重量および電力消費の利点を与える可能性を有する。米国特許第4,857,799号および5,015,912号には、タングステン、モリブデンまたはケイ素で作られたマイクロチップ陰極を利用したマトリックスアドレスド(matrix—addressed)フラットパネルディスプレイが開示されている。WO94—15352、WO94—15350およびWO94—28571には、陰極に比較的平らな放射表面を持たせたフラットパネルディスプレイが開示されている。

電子電界放射を示す特定の材料を粉末(即ち粒子状材料)として製造

するのは容易である。そのような電子放射性(electron emitting)粉末材料を電子電界放射体陰極で用いようとする場合、その粒子状の放射性材料を基質にこの粒子状材料の放射特性が有意に低くなることなく固着するようにそれが上記基質につなぎ止められるように付着させる必要がある。

明らかに必要とされている方法は、粒子状の電界放射材料を利用して電界放射 体陰極を製造する方法である。本明細書の以下に示す添付図および本発明の詳細 な説明を参照することで本発明の他の目的および利点が本分野の技術者に明らか になるであろう。

発明の要約

本発明は電子放射性粒子状材料(即ち粉末)を利用して電界放射体陰極を製造する方法を提供するものであり、ここでは、電子輸送材料(electron transporting material)を用いて上記粒子状材料を基質

に付着させる。この電子輸送材料に好適には薄い金属層を含める。

本発明の別の面において、本発明は、電子放射性粒子状材料(即ち粉末)を利用した電界放射体陰極を製造する方法を提供する。この方法は、

- a. 金属化合物 (この金属化合物は容易に金属に還元されることからこれを選択する) が溶媒に入っている溶液と電子放射性粉末を基質の表面に付着させ、そして
- b. 上記溶液と上記電子放射性粉末が上に付着している基質を加熱することで上 記金属化合物を金属に還元させる(上記金属化合物の完全な還元がもたらされる ように加熱温度と時間を選択する)、

段階を含む。

その結果として生じる生成物は上記金属の薄層(この中に電子放射性粉末が埋め込まれていてそこから突き出ている)で覆われた基質である。この電子放射性粉末は上記基質に固着しており、その結果として生じる生成物は電界放射体陰極として用いるに適切である。

電子放射性炭素粉末を用いるのが好適である。特に好適には、電子放射性粉末であるグラファイト、微粉砕したコークス、炭、多結晶性ダイヤモンド、ナノチューブ(nanotube)炭素構造物、例えばバッキーチューブ(buckytube)および焼きなまし(annealed)炭素すすなどを用いる。

本発明の電界放射体陰極は真空電子装置、フラットパネルコンピューターおよびテレビディスプレイ、放射ゲート増幅器、クライストロン真空管および照明具などで用いるに有用である。パネルディスプレイは平らであるか或は湾曲していてもよい。

図の簡単な説明

図1に、実施例1および2の電子放射結果のファウラーノルドハイム(Fowler-Nordheim)プロットを示す。

図2に、実施例3、4および5の電子放射結果のファウラーノルドハイムプロットを示す。

図3に、実施例6、7、8、9および10の電子放射結果のファウラーノルド

ハイムプロットを示す。

好適な態様の詳細な説明

末は「ナノ粒子」であってもよく、これは、粒子状粉末の粒子サイズがナノメートルの範囲(即ち1μm未満)であることを意味する。

本明細書で用いる如き「ダイヤモンド様炭素」は、炭素が適度にショートレンジのオーダー(short range order)を有することを意味する、即ちsp²結合とsp³結合を適切に組み合わせることでも高い電流密度を伴う電界放射材料を得ることができることを意味する。「ショートレンジのオーダー」は、一般に、原子が如何なる次元にも約10ナノメートル(nm)以内に秩序正しく配列していることを意味する。

電子放射性粉末を導電性基質の表面に付着させることで電界放射体陰極を生じさせる。この基質は如何なる形状のものであってもよく、例えば平面体、繊維、金属ワイヤーなどであってもよい。この付着手段は、電界放射体陰極を組み入れる装置を製造する条件およびそれの使用を取り巻く条件、例えば典型的には真空条件そして約450℃に及ぶ温度条件に耐えてそれの一体性を保持する必要がある。その結果として、有機材料は上記粒子を基質に付着させようとする場合には一般に適用不能でありそして更に数多くの無機材料は炭素に対して劣った接着性を示すことから使用可能な材料の選択は制限される。この付着用材料は更にまた電荷(電子)を上記基質から上記粒子状放射材料に輸送する能力を有していなければならない。

本発明の1つの面では、金属、例えば金または銀などの薄金属層を基質上に作り出してその薄金属層の中に電子放射性粉末粒子を埋め込むことで電子放射性粉末を基質に付着させる方法を提供する。この薄金属層で上記電子放射性粉末粒子を上記基質につなぎ止める。電子放射性粉末

粒子が電子放射性陰極として効果を示すには、その粒子が有する少なくとも1つの表面を露出させる必要がある、即ち上記薄金属層から金属を取り除いてそれを突き出させる必要がある。上記陰極の表面を一連の電子放射性粉末粒子の表面で構成させてその粒子と粒子の間の隙間が金属で満たされるようにすべきである。そのような表面の形成が助長されるように電子放射性粉末粒子の量および金属層の厚みを選択すべきである。この導電性金属層は、上記電子放射性粉末粒子を上記基質に付着させる手段を与えることに加えて、また、上記電子放射性粉末粒子をに電圧を供給する手段も与える必要がある。

このような結果を達成する方法は、溶媒(例えば水)中の金属化合物溶液と電子放射性粉末粒子を基質の表面に付着させることを含む。他の適切な溶媒には、使用する金属化合物に応じて、メタノール、イソプロパノール、メチルエチルケトン、シクロヘキサノン、トルエン、ベンゼンおよび塩化メチレンが含まれ得る。上記溶液を最初に上記基質の表面に塗布した後に上記電子放射性粉末粒子を付着させてもよいか、或はこの電子放射性粉末粒子を上記溶液に分散させた後にそれを上記表面に塗布することも可能である。このような金属化合物は、容易に金属に還元される化合物、例えば硝酸銀、塩化銀、臭化銀、ヨウ化銀または塩化金などである。また、この金属自身を有機結合剤材料(これは分解し、従って加熱時に除去される)に分散させることも可能である。多くの場合、上記溶液が容易に上記基質上に存在したままになるように、上記溶液に有機結合剤材料を添加してその粘度を高くするのが望ましいであろう。このような粘度改良剤の例にはポリエチレンオキサイド、ポリビニルアルコールおよびニトロセルロースが含まれる。

この溶液と電子放射性粉末粒子を上記基質に付着させた後、これを加熱して上記金属化合物を金属に還元させる。有機結合剤を用いる場合、これはそのような加熱を行っている間に沸騰して出て行く(分解する)。上記金属化合物の完全な還元がもたらされるように加熱温度と時間を選択する。典型的には約120℃から約220℃の温度で還元を実施する。還元雰囲気または空気を用いることができる。典型的には、アルゴンが98%で水素が2%の混合物である還元雰囲気を

用い、気体の圧力を約5-10psi(3.5-7x10⁴Pa)にする。

この製作品は上記金属の薄層で被覆されている基質(上記薄層の中に電子放射性粉末が埋め込まれていて上記基質に固着している)である。このような製作品は電界放射体陰極として用いるに適切である。

上記基質は如何なる形状のものであってもよく、例えば平面体、繊維、金属ワイヤーなどであってもよい。適切な金属ワイヤーにはニッケル、タングステンおよび銅が含まれる。

加うるに、本方法では電子電界放射を示す粉末形態の如何なる材料も使用可能である。炭素粉末、特にグラファイト、微粉砕したコークス、炭、多結晶性ダイヤモンド、ナノチューブ炭素構造物、例えばバッキーチューブおよび焼きなまし炭素すすなどの粉末が好適である。

ショック(shock)合成で作られた多結晶性ダイヤモンド粉末が本発明で用いるに有用で好適な炭素粉末である。「ショック合成」は、合成に必要な圧力をショック波、即ち圧縮波または爆発波を用いて与える合成を意味する。爆発を用いて圧力を与えると、上記合成はその圧力を受けた材料内でか或は爆発性材料自身内で起こり得る。その例には、デュポン社(E. I. du Pont de Nemours and

Company、Wilmington、DE)から商業的に入手可能なMypolex(商標)ダイヤモンド粉末が含まれる。他の方法および追加的詳細を本出願と同時に提出した表題が"Diamond Powder Field Emitters and Field Emitter Cathodes Mede Therefrom"の暫定的出願番号60/006,748(これの内容は引用することによって本明細書に組み入れられる)に与える。

電界放射はまた2種類のナノチューブ炭素構造物にも観察され、このようなナ ノチューブの粉末も本発明の方法で使用可能である。

L. A. Chemozatonskii 他 Chem. Phys. Letters 233, 63 (1995) およびMat. Res. Soc. Symp. Proc. Vol359, 99 (1995) では、グラファイトの電子蒸発 (e

lectron evaporation)を10-5-10-6トールで行っているいろな基質上にナノチューブ炭素構造物のフィルムを生じさせている。このようなフィルムは互いに林立して配列している管様炭素分子から成る。2種類の管様分子が生じる、即ち直径が10-30nmのフィラメント束を形成する単層のグラファイト様細管(tubules)を含む構造を有するAチューブライト(A-tubelites)と、直径が10-30nmの大部分が多層のグラファイト様管を含んでいて円錐形またはドーム様キャップが付いているBチューブライトが生じる。その著者は、そのような構造物の表面からかなりの電界電子放射が起こるがそれはナノ寸法の先端の所に電界が高度に集中することによるものであると報告している。

B. H. Fishbine 他 Mat. Res. Soc. Symp.

Proc. Vol359, 93 (1995) には、バッキーチューブ (即ち炭素ナノチューブ) 冷電界放射体が配列している陰極を開発することに向けた実験および理論が考察されている。

本発明の方法では焼きなまし炭素すす粉末も使用可能である。このような炭素すすは、Kratschmer 他 Nature (London) 347, 354 (1990), W. A. de Heer & D. Ugarte, Chem. Phys. Letters 207, 480 (1993) およびD. Ugarte, Chem. Phys. Letters 207, 480 (1993) およびD. Ugarte, Chem. Phys. Letters 207, 480 (1993) およびD. Ugarte, Carbon32, 1245 (1994) に記述されているように、電気アークで生じさせた炭素蒸気を低圧の不活性雰囲気中で濃縮させると得られる。本発明の実施例で用いる炭素すすは、典型的に、炭素電極を2つ含む圧力管理反応チャンバ内で生じさせたものである。その陰極の直径は典型的に約9mmから約13mmでありそして陽極の直径は約6mmから約8mmである(常に陰極の直径の方が陽極の直径よりも大きい)。上記チャンバに不活性ガス、例えばヘリウムまたはアルゴンなどを通し、そして圧力を約100トールから約1000トールのレベルで一定に保持する。電極間の電流は上記電極の直径、電極間の溝の距離、および不活性ガスの圧力に依存する。電流は典型的に約50Aから125 Aの範囲である。コンピューター制御モーターを用いて溝の距離が約1mmにな

るように陰極に対して陽極の位置を調整する。このアーク放電過程中に陽極が連 続的に消費される。

炭素が陰極に付着しかつ反応容器の壁およびフィルター(炭素すすを捕捉して 集めるように配置した)に炭素のすすが多量に付着し、その後に上記すすを不活 性ガスでポンプに輸送する。このフィルターおよび壁

から炭素すすを集めた後、溶媒、例えばトルエンまたはベンゼンなどを用いて、その集めた炭素すすからフレレンス(fullerenes)、例えばCmおよびCmなどを抽出する。次に、この炭素すすに焼きなましを受けさせることで焼きなまし炭素すすを製造し、これは電子電界放射体として用いるに有用である。この炭素すすを高温の不活性雰囲気中で加熱することで構造および特性を所望通りに変化させる。W.A.de Heer & Ugarte, Chem.Phys.Letters 207,480 (1993) および D. Ugarte, Carbon32,1245 (1994) に焼きなましを2000℃から2400℃の温度で行うことが記述されている。この炭素すすを不活性雰囲気、例えばアルゴンまたはヘリウム中で少なくとも約2000℃、好適には少なくとも約2500℃、最も好適には少なくとも約2850℃の温度に加熱する。この温度を好適には少なくとも約5分間維持する。約3000℃以上に及ぶ温度も使用可能であるが、より高い温度は実用的でない可能性があり、従ってあまり好適でない(例えば蒸発で材料が失われる)。

この炭素すすをガラス状材料が生じる中間的な温度に加熱してその温度に保持した後、温度を最高温度にまで上昇させることも可能である。このようにして製造した焼きなまし炭素すすが示す放射特性は、主に、焼きなまし処理の最大温度およびその温度における時間で決定される。このような焼きなまし過程で炭素すすの微細構造が実質的に変化する。このような方法では大きさが約5 n m から約15 n m の非常に秩序正しく配列した多面体ナノ粒子が生じる。追加的詳細および説明を本出願と同時に提出した表題が"Annealed Carbon S

Field Emitters and Field Emitter Carbon Mede Therefrom"の暫定的出願番号60/006,776 (これの内容は引用することによって本明細書に組み入れられる)に与える。

上記基質が平らである場合、フラットプレートの放射測定装置(これには電極 が2つ入っていて、その1つは陽極または集電器として働きそしてもう1つは陰 極として働く)を用いて、本発明の方法に従って調製したサンプルの放射測定を 実施した。これを本実施例では測定装置 I と呼ぶものとする。この装置には1. 5インチx1.5インチ(3.8 c m x 3.8 c m) の正方形の銅板が2枚含ま れており、電気アークを最小限にする目的でその隅および縁は全部丸くなってい る。各銅板は個々別々の2. 5インチx2. 5インチ(4. 3 c m x 4. 3 c m)のポリテトラフルオロエチレン(PTFE)ブロックに埋め込まれていて、上 記PTFEブロックの前面側で1つの銅板表面[1.5インチx1.5インチ(3.8cmx3.8cm)]が露出している。金属ねじが上記PTFEブロック の背面を貫いて銅板の中に伸びていることで、上記銅板に電気接触していて上記 板に電圧を供給する手段を与えておりかつ上記銅板を適切な位置にしっかりと保 持する手段を与えている。上記2つのPTFEブロックを2つの露出している銅 板表面が互いに面するように整合させて位置させて、この板と板の間の距離を上 記PTFEブロックとブロックの間に位置させたガラス製スペーサーで固定する が、表面から電流が漏れることもアークが生じることもないように上記銅板から 距離を置いて位置させる。電極と電極の間の分離距離は調整可能であるが、サン プルの測定で設定を決めて一度選択したならばそれを固定する。

典型的には、約0.04cmから約0.2cmの分離距離を用いた。

サンプルの放射特性の測定では、陰極として作用する銅板上にサンプルを位置させる。この陰極に負の電圧をかけて、そのかけた電圧の関数として放射電流を測定した。上記板と板の間の分離距離 d と電圧 V は測定値であることから、電界 E を計算することができ(E=V/d)、そしてこの電界の関数として電流をプロットすることができた。

ワイヤーまたは繊維を基質として用いた時には別の放射測定装置(本実施例で

は測定装置11と呼ぶ)を用いた。粒子状材料を付着させたワイヤーから放射される電子を筒状の試験固定具で測定した。この固定具では、シリンダー(陽極)の中心に、試験すべき導電性ワイヤー(陰極)を位置させた。陽極である上記シリンダーは、典型的に、蛍光体が被覆されている微細メッシュの筒状金属スクリーンから成っていた。この陰極と陽極の両方をアルミニウム製ブロック(この中には半円柱形の穴が開いている)で適切な場所に保持した。

直径が1/16インチのステンレス鋼製管を2本用いて上記導電性ワイヤーを適切な場所に保持した(1つを各末端に)。上記管の各末端部を切断して開放状態にすることで、長さが1/2インチで直径が1/16インチの円柱形の半分の形状をした開放といの形状にし、その結果として生じた開放といの中に上記ワイヤーを入れて銀ペーストで適切な場所に保持した。この連結用管を締まりばめポリテトラフルオロエチレン(PTFE)製スペーサー(これは陽極と陰極を電気的に分離する働きをする)でアルミニウム製ブロック内に適切に保持した。露出しているワイヤーの長さ全体を一般に1.0cmに設定したが、保持具である管の位置を調節することで、より短いか或はより長いものも試験すること

ができた。上記半円柱形といの中に上記筒状スクリーンメッシュ陰極を入れて上 記アルミニウム製ブロック内に位置させ、それを銅テープで適切な場所に保持し た。この陰極を上記アルミニウム製ブロックに電気接触させた。

電気リード線を陽極と陰極の両方につなげた。陽極を地電位(0 V)に維持しそして0-10 k Vの電力供給を用いて陰極の電圧を調節した。陰極が発する電流を陽極で集めて電位計で測定した。上記電位計が電流スパイク(c u r r e n t s p i k e s)の損傷を受けないように、直列につないだ1 M Ω の抵抗器と並列につないだダイオード(これによって高い電流スパイクは上記電位計を迂回してアースに流れる)でそれを保護した。

長さが約2cmの測定用サンプルをより長い加工ワイヤーから切り取った。それを、上記蛍光体付き軟質ステンレス鋼製スクリーンを取り除いた状態で、2つのホルダーアーム(holder arms)の円柱形といの中に挿入した。それに銀ペーストを塗布してそれをペースト内に保持した。この銀ペーストを乾燥

させ、上記発光体スクリーンを再び取り付けて、2つの末端の所に導電性銅テープを付着させることでそれを適切な場所に保持した。この試験装置を真空系に挿入して、この系の真空排気を行うことで約 3×10^{-6} トール以下の基礎圧力にした。

かけた電圧の関数として放射電流を測定した。陰極から放射される電子が陽極上の蛍光体に当たると発光が起こる。この蛍光体/ワイヤーメッシュスクリーン上に作り出された光の模様を用いて、被覆ワイヤー上の電子放射部位の分布および強度を観察した。ワイヤー表面における平均電界Eを関係E=V/[a ln(b/a)][ここで、Vは陽極と陰

極の間の電圧差であり、aはワイヤーの半径であり、そしてbは筒状ワイヤーメッシュスクリーンの半径である]で計算した。

本発明を更に説明し、記述しかつ可能にする目的で以下の非制限実施例を与える。以下に示す実施例では、この上に記述したフラットプレート放射測定装置または被覆ワイヤー放射測定装置を用いて該材料の放射特性を得た。

実施例1

この実施例では、焼きなまし炭素すす粒子を基質に付着させて電界放射体陰極を得る方法を記述し、ここでは、焼きなまし炭素すす粒子を、ガラススライド上にスパッタ(sputtered)した100nmの銀フィルムに付着させる。

焼きなまし炭素すすを調製して実施例1で用いた。陽極および陰極それぞれの直径が8mmおよび12mmのグラファイト製電極を用いて炭素すすの調製を行った。チャンバ内の雰囲気を圧力が約150トールのヘリウムにしそしてアーク放電実験中の電極間の電流を約125アンペアにした。コンピューター制御モーターを用いて陰極に対する陽極の位置を調整した。アーク放電過程中に陽極が消費されて陰極上で炭素の成長が起こり、電極間の電圧を20から30ボルトに維持しながら上記モーターで陽極と陰極の間の距離が約1mmになるように管理する。炭素のすすがチャンバ壁に付着することからそれをかき取り、そしてチャンバの圧力を管理するポンプに向かう途中に位置させたフィルターにも炭素のすすが付着し、このすすを集めた。上記チャンバの壁から集めたすすと上記フィルタ

一から集めたすすに焼きなましを受けさせることで放射性材料を製造した。

実施例1で用いる焼きなまし炭素すすの製造で用いた焼きなまし方法は下記の通りであった。炭素のすすをグラファイト製るつぼに入れてアルゴン流中で加熱した。温度を1分当たり25 $^{\circ}$ の加熱速度で2850 $^{\circ}$ にまで上昇させた。このすすを2850 $^{\circ}$ に15分間保持した後、炉内で室温になるまで冷却した。この使用した炉の場合には室温への冷却に通常約1時間要し、そして次に、その焼きなましを受けた炭素すすを炉から取り出した。

1インチx0.5インチ(2.5cmx1.3cm)のガラススライドに100nmの銀フィルムをスパッタした。Denton 600(Denton Company、Cherry Hill、NJ)スパッタリング(sputtering)装置を用いて、銀のスパッタリングをアルゴン雰囲気中0.4nm/砂の付着速度で行った。このスパッタした銀フィルムを含むガラススライドを電界放射性焼きなまし炭素すす粒子用の基質として用いた。

硝酸銀(AgNO3)が25重量%とポリビニルアルコール(PVA)が3重量%と水が71.9重量%入っている溶液の調製を、72gの沸騰H2OにM.

W. が86,000のPVA(Aldrich、Milwaukee、WI)を3g加えて約1時間撹拌してPVAを完全に溶解させることを通して行った。このPVA溶液に周囲温度でAgNO3(EM Science、Ontario、NY)を25g加えて、その溶液を撹拌してAgNO3を溶解させた。また、この溶液が銀フィルムを湿らせる度合を向上させる目的で、上記溶液に、フッ素置換されている界面活性剤であるZONYL(商標)FSN(デュポン社)を0.1重量%加えた。

#3ワイヤーロッド (Industry Technology、Oldsmar、FL) を用いて、上記PVA/AgNO3/ZONYL (商標) FSN溶液を上記銀フィルムに塗布した。この湿っているPVA/AgNO3/ZONYL (商標) FSN表面に上記焼きなまし炭素すす粉末を0.11ミル (30ミクロン) のシルクスクリーンに通して均一に振りかけた。この表面が焼きなまし炭

素すすで完全に覆われた時点で、この焼きなまし炭素すすで覆われた湿潤PVA / AgNO3/ZONYL (商標) FSNフィルムを含むガラススライド基質を 石英製ボートに入れた後、それを管炉の中心に位置させた。水素を2%とアルゴンを98%含有させた還元雰囲気中で加熱を実施した。温度を1分当たり14℃の加熱速度で140℃にまで上昇させて、この温度を1時間保持した。同じ還元雰囲気の上記炉内でサンプルを室温に冷却した後、炉から取り出した。還元で生じた銀金属が薄い銀フィルム層を与え、このフィルム層によって、上記焼きなまし炭素すす粒子は上記基質のスパッタした銀フィルムに付着して固定され、その 結果として、電界放射体陰極として用いるに適切な電子放射体が生じた。この電子放射体が示す電子放射の測定を、この上に測定装置 I として記述したフラットプレート放射測定装置を用いて行った。

図1に、上記サンプル(実施例1)を2. 49mmの電極間分離距離で測定した場合の放射結果のファウラーノルドハイムプロット(よく知られている)を示す。

実施例2

この実施例では、グラファイト粒子 (グラファイト粉末) を基質に付着させて 電界放射体陰極を得る方法を記述し、ここでは、グラファイト

粒子を、ガラススライド上にスパッタした100mmの銀フィルムに付着させる

1インチx3インチ(2.5cmx7.6cm)のガラススライドに100nmの銀フィルムをスパッタした。Denton 600 (Denton Co. Cherry Hill、NJ)スパッタリング装置を用いて、銀のスパッタリングをアルゴン雰囲気中0.4nm/秒の付着速度で行った。このスパッタした銀フィルムを含むガラススライドを電界放射性グラファイト粒子用の基質として用いた。

硝酸銀(AgNO3)が25重量%とポリビニルアルコール(PVA)が3重量%と水が72重量%入っている溶液の調製を、72gの沸騰H2OにM. W.が86,000のPVA(Aldrich、Milwaukee、WI)を3g

加えて約1時間撹拌してPVAを完全に溶解させることを通して行った。このPVA溶液に周囲温度でAgNO3 (EM Science、Ontario、NY)を25g加えて、その溶液を撹拌してAgNO3を溶解させた。

#3ワイヤーロッド(Industry Technology、Oldsmar、FL)を用いて、上記PVA/AgNO3溶液を上記銀フィルムに塗布した。この湿っているPVA/AgNO3表面にグラファイト粉末(Aesar、Ward Hill、MAから商業的に入手可能)を0.11ミル(30ミクロン)のシルクスクリーンに通して均一に振りかけた。この表面がグラファイト粉末で完全に覆われた時点で、このグラファイト粉末で覆われた湿潤PVA/AgNO3フィルムを含むガラススライド基質を石英製ボートに入れた後、それを管炉の中心に位置させた。水素を2%とアルゴンを98%含有させた還元雰囲気中で

加熱を実施した。温度を1分当たり14℃の加熱速度で140℃にまで上昇させて、この温度を1時間保持した。同じ還元雰囲気の上記炉内でサンプルを室温に冷却した後、炉から取り出した。還元で生じた銀金属が薄い銀フィルム層を与え、このフィルム層によって、上記グラファイト粉末は上記基質のスパッタした銀フィルムに付着して固定され、その結果として、電界放射体陰極として用いるに適切な電子放射体が生じた。この電子放射体が示す電子放射の測定を、この上に記述したフラットプレート放射測定装置(測定装置 I)を用いて行った。

図1に、上記サンプル(実施例2)を2. 49mmの電極間分離距離で測定した場合の放射結果のファウラーノルドハイムプロット(よく知られている)を示す。図1に示すように、焼きなまし炭素すす(実施例1)が示す放射性の方がグラファイト粉末(実施例2)のそれよりも若干高い。

実施例3-5

これらの実施例では、薄い銀層を用いて焼きなまし炭素すす粒子を金属ワイヤーに付着させることで電界放射体陰極を得る方法を記述する。実施例1に記述したのと同様にして焼きなまし炭素すすを調製して、これを実施例3-5では以下に示す如く用いた。

上記焼きなまし炭素すすを支持させる目的でこれらの実施例で用いる金属ワイヤーを全部、それらを5%のHNO3溶液に1分間浸漬した後に濯ぎを多量の水を用いて行い次に濯ぎをアセトンそしてメタノールを用いて行うことで奇麗にした。

実施例3では、硝酸銀(AgNO3)が25重量%とポリビニルアルコール(PVA)が3重量%と水が72重量%入っている溶液の調製を、

72gの沸騰H2OにM. W. が86,000のPVA (Aldrich、Milwaukee、WI)を3g加えて約1時間撹拌してPVAを完全に溶解させることを通して行った。このPVA溶液に周囲温度でAgNO3 (EM Science、Ontario、NY)を25g加えて、その溶液を撹拌してAgNO3を溶解させた。

4 ミル(1 0 0 μ m)の銅ワイヤーを上記 P V A / A g N O3 溶液に浸漬した後、上記焼きなまし炭素すすの中に入れた。この銅ワイヤーの表面が焼きなまし炭素すすで完全に覆われた時点で、このワイヤーを石英製ボートに入れた後、それを管炉の中心に位置させた。

実施例4および5では、硝酸銀(AgNO3)が25重量%とポリビニルアルコール(PVA)が3重量%とフッ素置換界面活性剤であるZONYL(商標)FSNが0.5重量%と水が71.5重量%入っている溶液の調製を、71.5gの沸騰H2OにM.W.が86,000のPVA(Aldrich、Milwaukee、WI)を3g加えて約1時間撹拌してPVAを完全に溶解させることを通して行った。このPVA溶液に周囲温度でAgNO3(EM Science、Ontario、NY)を25g加えて、その溶液を撹拌してAgNO3を溶解させた。この溶液が上記ワイヤーを湿らせる度合を向上させる目的でZONYL(商標)FSNを0.5g加えた。

実施例4では、4 ミル(1 0 0 μ m)の銅ワイヤーを上記PVA/AgNO3 / ZONYL(商標)FSN溶液に浸漬した後、上記焼きなまし炭素すすの中に入れた。このワイヤーの表面が焼きなまし炭素すすで完全に覆われた時点で、このワイヤーを石英製ボートに入れた後、それを管炉の中心に位置させた。

実施例 5 では、 $4 \le \nu$ (100μ m) の銅ワイヤーを上記PVA/AgNO3 / ZONYL (商標) FSN溶液に浸漬した後、上記焼きなまし炭素すすの中に入れた。このワイヤーの表面が焼きなまし炭素すすで完全に覆われた時点で、直径がミクロンの液滴で構成される微細な繋を発生させるネブライザーヘッド (nebulizer head) (Model 121-Sono-Tek Corporation、Poughkeepsie、NY) を用いて、実施例 1で使用したPVA/AgNO3/ZONYL (商標) FSN溶液の薄い液状被膜で上記焼きなまし炭素すす粒子を被覆した。シリンジポンプを用いて上記溶液を上記ネブライザーヘッドに 18μ L/秒の輸送速度で約 30 秒間ポンプ輸送した。この付着時間中、上記ワイヤーを移動かつ回転させることで上記溶液による被覆を均一に行った。次に、このワイヤーを石英製ボートに入れた後、それを管炉の中心に位置させた。

この3実施例全部の焼成を水素を2%とアルゴンを98%含有させた還元雰囲気中で実施した。温度を1分当たり14℃の加熱速度で140℃にまで上昇させて、この温度を1時間保持した。同じ還元雰囲気の上記炉内で各サンプルを室温に冷却した後、炉から取り出した。各実施例において、還元で生じた銀金属が薄い銀フィルム層を与え、このフィルム層によって上記ワイヤーが被覆されて上記焼きなまし炭素すすが上記ワイヤーに付着し、その結果として、電界放射体陰極として用いるに適切な電子放射体が生じた。電子放射の測定を、この上に測定装置11として記述した筒状の放射測定装置を用いて行った。

図2に、上記サンプル(実施例3-5)に関する放射結果のファウラーノルド ハイムプロット(よく知られている)を示す。このデータは実

施例4がより高い放射性を示すことを表しており、これは恐らく、AgNO3が 銅ワイヤーを湿らす度合がより高いことでワイヤー表面に粘着する粒子の量が多 くなることが原因でワイヤー上の粒子密度が高くなることによるものであろう。 実施例5では上部を被覆したことから粒子がワイヤーに固定される効果は向上し たが粒子の放射性は低下したことが分かる。

<u>実施例6-10</u>

これらの実施例では、薄い金層を用いて焼きなまし炭素すす粒子および微粉砕 したグラファイト粒子を金属ワイヤーに付着させることで電界放射体陰極を得る 方法を記述する。実施例1と実質的に同様にして焼きなまし炭素すすを調製した

これらの実施例で用いるワイヤーを全部、それらを3%のHNO3溶液に1分間浸漬した後に濯ぎを多量の水を用いて行い次に濯ぎをアセトンそしてメタノールを用いて行うことで奇麗にした。

実施例6では、金を有機基材(Aesar 12943、Ward Hill、MA)に分散させて、その製造業者の提案に従って5ミル(125μm)のタングステンワイヤーにはけ塗りした。この金分散液で被覆したワイヤーに、100ミクロンのふるいに通した焼きなまし炭素すすを付着させた。このワイヤーの表面が焼きなまし炭素すすで完全に覆われた時点で、このワイヤーを石英製ボートに入れた後、それを炉に入れた。

加熱を空気雰囲気中で実施した。温度を1分当たり25℃の加熱速度で540 ℃にまで上昇させて、この温度を30分間保持することで、有機材料を全部焼失 させた。上記炉内でサンプルを室温に冷却した後、炉

から取り出した。上記金金属が薄い金フィルム層を与え、このフィルム層によって上記ワイヤーが被覆されて上記焼きなまし炭素すす粒子が上記ワイヤーに付着し、その結果として、電界放射体陰極として用いるに適切な電子放射体が生じた

実施例7では、サンプルを炉から取り出した後にその構造物を更に密封する目的で50nmのダイヤモンド様炭素層をグラファイト標的のレーザーアブレーション(lazer ablation)でその表面に付着させる以外は本質的に実施例6に記述したのと同様にしてサンプルの調製を行った。レーザーアブレーションを用いたダイヤモンド様炭素による繊維またはワイヤーの被覆に関する追加的説明を、Davanloo他、J. Mater. Res.、5巻、No. 11、1990年11月、そして1995年2月13日付けで提出した表題が「Diamond Fiber Field Emitters」である係属中の米

国出願連続番号08/387,539 (Blanchet-Fincher他) (これの内容は全体が引用することによって本明細書に組み入れられる) に見ることができる。アブレーションチャンバの中心部に位置させたグラファイト標的に対する入射角が45度になるように、波長が264nmのレーザービームを用いた。10ナノ秒のレーザーパルスを2Hzの反復率で用いた。4J/cm²のエネルギー密度を1分間維持しそして一対のモーター付きミクロメーターを用いてレーザービームを上記標的にラスタさせた(rastered)。上記アブレーションチャンバを2x10⁻⁷トール(2.67x10⁻⁵パスカル)に保持した。この用いたワイヤーを、上記標的に垂直な方向に沿って上記標的から5cm離して位置させた。

実施例 8 では、4 ミル(1 O O μ m)の銅ワイヤーをタングステンワイヤーの 代わりに用いる以外は本質的に実施例 6 に記述したのと同様にしてサンプルの調製を行った。

実施例9では、焼成/微粉砕コークス(Conoco、Inc.、Houston、TXからConoco 901190として入手可能)を焼きなまし炭素すすの代わりに用いそしてフッ素置換されている溶媒である<math>ZONYL(商標) FSN(デュポン社、Wilmington、DE)で被覆した3<math><ミル(75μ m)の銅ワイヤーをタングステンワイヤーの代わりに用いる以外は本質的に実施例6に記述したのと同様にしてサンプルの調製を行った。このワイヤーを金分散液で被覆した後、これを焼成/微粉砕コークスに入れることで上記ワイヤーをそれで完全に被覆した。

実施例10では、ワイヤーの表面を焼成/微粉砕コークスで完全に被覆しそして直径がミクロンの液滴で構成される微細な霧を発生させるネブライザーヘッド (Model 121-Sono-Tek Corporation、Poughkeepsie、NY)を用いて金が2重量%とシクロヘキサンが98重量%入っている溶液の薄い液状被膜を付着させた後に加熱を行う以外は本質的に実施例9に記述したのと同様にしてサンプルの調製を行った。シリンジポンプを用いて上記容液を上記ネブライザーヘッドに18μL/秒の輸送速度で約30秒間ポ

ンプ輸送した。この付着時間中、上記ワイヤーを移動かつ回転させることで上記 溶液による被覆を均一に行った。次に、このワイヤーを石英製ボートに入れた後 、それを管炉の中心に位置させた。

上記サンプル全部の電子放射の測定を、この上に測定装置IIとして

記述した筒状の放射測定装置を用いて行った。

このデータを図3に示し、そこに、トップコートで被覆した場合と被覆しなかった場合のいろいろなワイヤーで起こる放射を示す。

この上に行った説明で本発明の特別な態様を記述して来たが、本発明は本発明の精神からも必須属性からも逸脱することなく数多くの修飾、置換および再配置を受け得ることを本分野の技術者は理解するであろう。本発明の範囲を示すことに関しては、この上に示した明細ではなくむしろ添付請求の範囲を参照すべきである。

【手続補正書】特許法第184条の8第1項

【提出日】1997年9月9日(1997.9.9)

【補正内容】

請求の範囲

- 1. 電界放射体陰極を製造する方法であって、
- (a) 後で加熱した時に完全に金属に還元され得る金属化合物が溶媒 ・ に入っている溶液と電子放射性粉末を基質の表面に付着させ、そして
- (b) 該溶液と該電子放射性粉末を含んでいてそれらが上に付着している該基質を該金属化合物が完全に金属に還元されるに充分な温度で充分な時間加熱する、

段階を含む方法。

- 2. 該基質が平面体である請求の範囲第1項記載の方法。
- 3. 該基質が繊維である請求の範囲第1項記載の方法。
- 4. 該基質が金属ワイヤーである請求の範囲第1項記載の方法。
- 5. 該金属ワイヤーをニッケル、タングステンおよび銅から成る群から選択する請求の範囲第4項記載の方法。
- 6. 該金属化合物を硝酸銀、塩化銀、臭化銀、ョウ化銀および塩化金から成・ る群から選択する請求の範囲第1項記載の方法。
 - 7. 該溶媒が水である請求の範囲第1項記載の方法。
 - 8. 該電子放射性粉末が炭素粉末である請求の範囲第1項記載の方法。
- 9. 該炭素粉末をグラファイト粉末、微粉砕コークス粉末、炭粉末、多結晶性ダイヤモンド粉末、ナノチューブ炭素粉末および焼きなまし炭素すす粉末から成る群から選択する請求の範囲第8項記載の方法。
- 10. 該溶液の粘度を高くする目的で有機結合剤材料を該溶液に添加することを更に含む請求の範囲第1項記載の方法。
- 11. 該有機結合剤をポリエチレンオキサイド、ポリビニルアルコールおよびニトロセルロースから成る群から選択する請求の範囲第10項記載の方法。
 - 12. 加熱を約120から約220℃の範囲で行う請求の範囲第1項記載の

方法。

【国際調查報告】

INTERNATIONAL SEARCH REPORT inter nal Application No PC1/US 96/18145 A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 H01J9/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 H01J Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ' EP 0 712 146 A (COMMISSARIAT ENERGIE P,X 13,14 ATOMIQUE) 15 May 1996 see claims 5-10 P.X WO 96 00974 A (SILICON VIDEO CORP 13,14 ;MASSACHUSETTS INST TECHNOLOGY (US); ADVANCED T) 11 January 1996 see claims 19-46 WO 91 05361 A (MOTOROLA INC) 18 April 1991 13,14 Х see claims 1-10 see claim 1 A US 5 129 850 A (KANE ROBERT C ET AL) 14 July 1992 see claim 1 -/--X Patent family members are tisted in annex. X Further documents are listed in the continuation of box C. Special categories of cated documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular retevance; the claimed invention cannot be considered to involve an inventive stop when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the tame patent family Date of the actual completion of the international search Date of mailing of the international search report 1 2. 02. 97 7 February 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2230 HV Rijswijk Tcl. (- 31-70) 340-2000 Tz. 31 651 epo ni, Fax (- 31-70) 340-3016 Van den Bulcke, E

Form PCT. ISA 210 (record sheet) [July 1992)

INTERNATIONAL SEARCH REPORT

Inter 'nal Application No PCI/US 96/18145

Continu	BOD) DUCUMENTS CONSIDERED TO BE RELEVANT	
patory .	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	US 5 199 918 A (KUMAR NALIN) 6 April 1993 see claim 1	1
	<u>.</u>	
	·	

INTERNATIONAL SEARCH REPORT

aformation on patent family members

Inter mad Application No PCI/US 96/18145

Publication date 15-05-96	Patent f membe FR-A- JP-A-		Publication date 10-05-96 17-09-96
	JP-A-		
11-01-96			-
	AU-A-	7675094	25-01-96
18-04-91	US-A- AT-T- AU-A- DE-D- DE-T- EP-A- ES-T- JP-T-	5919093 122599 6432990 69919368 69919368 9500553 2973037 5500585	28-05-91 15-05-95 28-04-91 14-06-95 04-01-96 02-09-92 01-08-95 04-02-93
14-07-92	AT-T- CA-A- DE-D- DE-T- EP-A- ES-T- JP-A- US-A-	128267 2071064 69204940 69204940 0528322 2076631 5205616 5258685	15-10-95 21-02-93 26-10-95 15-05-96 24-02-93 01-11-95 13-08-93 02-11-93
06-04-93	US-A- US-A-	5536193 5341063	16-07-96 23-08-94
	14-07-92	AT-T- AU-A- DE-D- DE-T- EP-A- ES-T- JP-T- 14-07-92 AT-T- CA-A- DE-D- DE-T- EP-A- ES-T- JP-A- US-A-	AT-T- 122500 AU-A- 6432990 DE-D- 69019368 DE-T- 69019368 EP-A- 0500553 ES-T- 2073037 JP-T- 5500585 14-07-92 AT-T- 128267 CA-A- 2071064 DE-D- 69204940 DE-T- 69204940 EP-A- 0528322 ES-T- 2076631 JP-A- 5205616 US-A- 5258685

フロントページの続き

(72)発明者 スプラモネイ、シエクハーアメリカ合衆国デラウエア州19707-1922ホツケシン・ステラドライブ425

(72)発明者 ヘロン, ノーマンアメリカ合衆国デラウエア州19711-5118ニユーアーク・アツプルロード408

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.