Question: You are given the following training examples. Each example has only one attribute, and the classification into positive / negative

Index	Х	Label
1	1.0	Positive
2	2.0	Negative
3	4.0	Positive
4	5.0	Positive
5	6.0	Negative
6	7.0	Negative

Your main task is to evaluate the following algorithm that use a set *S* of training examples to classify the example with attribute value of *x*.

Algorithm:

Let S_p, S_n be the sets of positive and negative examples in S.

If S_p is empty classify x as negative. If S_n is empty classify x as positive.

Otherwise, compute u_p , the mean of the x values in S_p , and u_n , the mean of the x values in S_n .

If x value is closer to u_p than it is to u_n then classify x as positive. Otherwise classify x as negative.

Example: Using all the training examples above we have: $u_p = 3.33$, $u_n = 5$. Therefore, an example with x = 2.5 is classified as positive.

- (a) Use leave-one-out cross validation to estimate the errors of Algorithm above [3 Points]
- (b) Use 3 Fold CV to estimate the errors of Algorithm above. [3 Points]

Solution (a) Error = 0.5;

Example a: test, 1.0 + ve; $Sp=\{4,5\}$, $Sn=\{2,6,7\}$, thus mean(p) = 4.5; mean(n) = 5, Thus 1 is near to mean(p). Correct

Example b: test, 2.0 -ve; $Sp=\{1,4,5\}$, $Sn=\{6,7\}$, thus mean(p)=3.33; mean(n)=6.5, Thus 2 is near to mean(p). Incorrect

Example c: test, 4.0 + ve; $Sp=\{1, 5\}$, $Sn=\{2, 6, 7\}$, thus mean(p) = 3; mean(n) = 5, Thus 4 is near to both. Tie. Incorrect

Example d: test, 5.0 + ve; $Sp=\{1, 4\}$, $Sn=\{2, 6, 7\}$, thus mean(p) = 2.5; mean(n) = 5, Thus 5 is near to mean(n). Incorrect

Example e: test, 6.0 -ve; $Sp=\{1, 4, 5\}$, $Sn=\{2, 7\}$, thus mean(p) = 3.33; mean(n) = 4.5, Thus 6 is near to mean(n). Correct

Example f: test, 7.0 -ve; $Sp=\{1, 4, 5\}$, $Sn=\{2, 6\}$, thus mean(p) = 3.33; mean(n) = 4, Thus 7 is near to mean(n). Correct

Index	Х	Label	Predicted	Mean
Α	1.0	Positive	Positive	4.5,5
В	2.0	Negative	Positive	3.33, 6.5
С	4.0	Positive	Negative / Positive	3,5
D	5.0	Positive	Negative	2.5,5
Ε	6.0	Negative	Negative	3.33,4.5
F	7.0	Negative	Negative	3.33,4

Solution (b)

Index	Х	Label
Α	1.0	Positive
В	2.0	Negative
С	4.0	Positive
D	5.0	Positive
Ε	6.0	Negative
F	7.0	Negative

b. Use 3 Fold CV to estimate the errors of Algorithm above.) [3 Points]

Ist Fold; train.index = $\{A,B,C,D\}$; test.index = $\{E,F\}$ => train.sample = $\{1,2,4,5\}$; test.sample = $\{6,7\}$ SP = $\{1,4,5\}$, Sn = $\{2\}$, mean(p) = 3.33; mean(n) = 2. Both $\{6,7\}$ i.e. E, F near to positives thus both examples incorrect

2st Fold; train.index = $\{A, B, E, F\}$; test.index = $\{C,D\}$ => train.sample = $\{1,2,6,7\}$; test.sample = $\{4,5\}$ SP = $\{1\}$, Sn = $\{2,6,7\}$, mean(p) = 1; mean(n) = 3. 4 and 5 near to 3 thus both incorrect

3rd Fold; train.index = $\{C, D, E, F\}$; test.index = $\{A,B\}$ => train.sample = $\{4, 5, 6, 7\}$; test.sample = $\{1,2\}$ SP = $\{4,5\}$, Sn = $\{6,7\}$ = mean(p) = 4.5, mean(n) = 6.5. One correct and one incorrect

Total Error = 5/6

Index	Χ	Label	Predicted	Mean
Α	1.0	Positive	Positive	4.5, 6.5
В	2.0	Negative	Positive	4.5, 6.5
С	4.0	Positive	Negative	1.0,3.0
D	5.0	Positive	Negative	1.0, 3.0
E	6.0	Negative	Positive	3.33, 2
F	7.0	Negative	Positive	3.33,2