User Manual For Real-Time Sensor Data Streaming

Harmit Khimani & Nishank Kansara

B.Tech. Mini Project - Under Prof. Tapas Kumar Maiti

Contents

T	Prerequisites	2
2	Hardware Setup & Wiring	2
3	ESP32 MQTT Publisher Code	3
	3.1 Install Libraries	3
	3.2 Embed MQTT Credentials	3
	3.3 Obtain HiveMQ Cloud Details	
4	Kafka Setup	4
	4.1 Disable Firewall	4
	4.2 Download Kafka 3.9.0	
	4.3 Configure Kafka Listeners	
	4.4 Start ZooKeeper	
	4.5 Start Kafka Server	
	4.6 Create Verify Topic	
5	Data Storage, Visualization & Smart Feedback	6
	5.1 PostgreSQL (PGAdmin)	6
	5.2 Web Visualization	7
	5.3 Real-Time Smart Feedback	8
6	Additional Resources	9
7	Troubleshooting	9

1 Prerequisites

Ensure you have the following installed and configured:

- Java 11+
- Apache Kafka 3.9.0 (Scala 2.13)
- ESP32 toolchain (Arduino IDE or PlatformIO)
- Network connectivity: ESP32, Kafka server, and Spring Boot host on the same LAN or Wi-Fi.

2 Hardware Setup & Wiring

Connect sensors directly to the ESP32 via USB power.

Sensor	ESP32 Pin	Notes
DHT11	GPIO 4	Data line (10 K Ω pull-up)
SCD40	$SDA \rightarrow GPIO 22$, $SCL \rightarrow GPIO 23$	I^2C bus lines
VCC	3V3	3.3 V from ESP32
GND	GND	Common ground

Table 1: Sensor to ESP32 Wiring

3 ESP32 MQTT Publisher Code

3.1 Install Libraries

Add these libraries to your Arduino IDE:

- PubSubClient for MQTT
- DHT sensor library
- SCD4x library for CO₂ sensing
- Wire for I²C communication

3.2 Embed MQTT Credentials

```
// W i Fi
const char* ssid = "<YOUR_SSID>";
const char* password = "<YOUR_WIFI_PASSWORD>";

// HiveMQ Cloud
const char* mqtt_server = "<YOUR_MQTT_SERVER_URL>";
const int mqtt_port = 8883;
const char* mqtt_username = "<USERNAME>";
const char* mqtt_password = "<PASSWORD>";
const char* topic = "<TOPIC>";
```

3.3 Obtain HiveMQ Cloud Details

- 1. Sign in at https://console.hivemq.cloud.
- 2. Create a free cluster.
- 3. Copy the Cluster Endpoint and paste it into the mqtt_server configuration field.
- 4. Retrieve or generate your **Credentials** for a secure connection.

4 Kafka Setup

4.1 Disable Firewall

Open port 9092:

Windows: netsh advfirewall firewall add rule name="KafkaPort" dir=in action=allow protocol=TCP localport=9092

macOS (Terminal): sudo /usr/libexec/ApplicationFirewall/socketfilterfw --setglobalstate

4.2 Download Kafka 3.9.0

- 1. Visit https://kafka.apache.org/downloads.
- 2. Select Scala 2.13 + Kafka 3.9.0.
- 3. Extract the archive.

4.3 Configure Kafka Listeners

In config/server.properties:

```
listeners=PLAINTEXT://0.0.0:9092
advertised.listeners=PLAINTEXT://<YOUR_HOST_IP>:9092
```

4.4 Start ZooKeeper

```
cd kafka_2.13-3.9.0 bin/zookeeper-server-start.sh config/zookeeper.properties
```

4.5 Start Kafka Server

```
cd kafka_2.13-3.9.0 bin/kafka-server-start.sh config/server.properties
```

4.6 Create Verify Topic

```
# Create topic
bin/kafka-topics.sh --create \
    --topic esp32-mqtt-topic \
    --bootstrap-server <BROKER_IP>:9092 \
    --partitions 1 --replication-factor 3

# List topics
echo "Available topics:" && \
bin/kafka-topics.sh --list --bootstrap-server localhost:9092

# Test consumption
bin/kafka-console-consumer.sh \
    --bootstrap-server <BROKER_IP>:9092 \
    --topic esp32-mqtt-topic \
    --from-beginning
```


5 Data Storage, Visualization & Smart Feedback

5.1 PostgreSQL (PGAdmin)

Store historical sensor data:

- 1. Run the SaveData application to store the data via API
- 2. Launch PGAdmin, connect to localhost:5432.
- 3. Create a database named sensor_db.
- 4. run the SQL Query

```
SELECT * from sensor_data
```

5. to delete the data from the database

```
DELETE from sensor_data
```

Spring Data Service This service receives sensor data via Kafka and stores it in PostgreSQL. Run the Spring Boot service on port 8082 to enable database storage.

5.2 Web Visualization

- CO₂, Temperature, and Humidity Line Charts: localhost:8081/basic-chart.html
 - Line charts for DHT11 Humidity & Temperature, SCD40 Humidity & Temperature.
 - A real-time gauge for CO₂ concentration levels.

- Advanced Comparative & Distribution Visualization: localhost:8081/advanced-chart.html
 - A scatter chart comparing Temperature vs. Humidity.
 - CO₂ and Humidity gauges.
 - A scatter chart comparing temperature between the SCD40 & DHT11 sensors.
 - A heatmap of the distribution of CO₂, Humidity, and Temp values over time.

5.3 Real-Time Smart Feedback

Threshold-based suggestions:

Parameter	Threshold	Action
$\overline{\mathrm{CO}_2 \; \mathrm{Level}}$	> 1200 ppm	Open windows or turn on exhaust fan
Temp	> 28 °C	Turn on fan or AC
Temp	> 20 °C	Use heater
Humidity	> 35%	Use humidifier
Humidity	>65%	Use ventilation or dehumidifier

Table 2: Smart Feedback Rules

6 Additional Resources

- Kafka Downloads: https://kafka.apache.org/downloads
- Kafka Tutorial: https://www.youtube.com/watch?v=tU_37niRh4U

7 Troubleshooting

Symptom	Fix
No MQTT connection	Check ESP32 Wi-Fi
	HiveMQ credentials
No Kafka data	Ensure topic exists
	correct broker URL
Dashboard not loading	Verify Spring Boot service on port 8081
Firewall issues	Confirm port 9092 is open

Startup Sequence:

- 1. ESP32 publishes MQTT \rightarrow Kafka
- 2. Start ZooKeeper
- 3. Start Kafka server
- 4. Run Kafka consumer console (test)
- 5. Launch Spring Boot apps (DB Dashboard)