DS1: Aussagenbeweise - Aufgaben

Sonntag, 19. Februar 2023 05:02

Aufgabe 4) Tautologie und Erfüllbarkeit

Beweisen Sie folgende Aussagen oder geben Sie ein Gegenbeispiel an. Erklären Sie den Begriff $\underline{\text{Modell}}$ und definieren Sie die unterstrichenen Wörter.

- a) $(F \vee G)$ ist <u>erfüllbar</u> gdw. F erfüllbar oder G erfüllbar ist.
- b) $(F \wedge G)$ ist erfüllbar gdw. F erfüllbar und G erfüllbar ist.
- c) $(F \vee G)$ ist <u>Tautologie</u> gdw. F
 Tautologie G Tautologie ist
- d) $(F \wedge G)$ ist Tautologie gdw. F Tautologie und G Tautologie ist.

Def. Modell: Sei Feine aussagenlogis. Formul ($F \in \mathcal{L}_A$) β ist Modell von $F \mapsto d \beta$ ist eine zu F passende Belegung mit $I_{\beta}(F) = 1$

Def. Tautologie: eine Ausoage, deren Wahrheidswert immer Wahr ist ($I_B = 1$)

Def. Kontradiktion: eine Aussage hat immer den Bwert falsch

Bsp: Es regnet odur eo regnet vicht V Es regnet und eo regnet vicht {

Tautologie A ¬A A ¬A W

A JA ANJA f W

Kontradiktion

Dy. Erfüllbarkeit: eine Ausoage ist erfüllbor, wenn es eine Belegung der Variable gibt, für die der Wahrheibwert des gesamten Ausdrucks wahr ist

4)a) (FvG) € SAT ⇔ F € SAT v G € SAT

→
$$(F \lor G) \iff (O \lor O)$$
 $\iff O$
 \Rightarrow Nontradiktion

">": indirekter Beweis zeigh, dass entweder G oder F erfüllbar sein muss
 $\Rightarrow (F \lor G) \in SAT \implies F \in SAT \lor G \in SAT$
 $\Rightarrow (F \lor G) \in SAT \iff F \in SAT \lor G \in SAT$

7 Implikation in beide Richtungen 7 wahre Aussage

"←": – Erklärung an Bsp: · A ist erfüllbar · ¬A ist erfüllbar $\sqrt{(A \wedge 7A)}$ ist night erfullbar $(1 \wedge 0) \notin SAT$

→ ist night erfullbor, wenn beide erfullbor 1 falsche Aussage

c) (Fv G) € TAUT \$\lorer \text{F} \in \text{TAUT} \text{V} \text{G} \in \text{TAUT}

I falsche Aussage

2 wahre Aussage

4 Aufgabe

Beweisen oder Gegenbeispiel angeben: wahr oder falodn?

- 1. $F \to G$ ist Tautologie und F ist Tautologie \Rightarrow G ist Tautologie
- 2. $F \to G$ ist erfüllbar und F ist erfüllbar \Rightarrow G ist erfüllbar
- 3. $F \to G$ ist Tautologie und F ist erfüllbar \Rightarrow G ist erfüllbar

Des weiteren sollte Modell erläutert werden, Tautologie und erfüllbar definiert werden.

4) 1. zu zeigen: für alle B ist IB(6)=1

a reagen: für alle
$$\beta$$
 ist $I_{\beta}(6) = 1$

$$a_{\beta}(5) = 1 \iff I_{\beta}(6) = 1$$

$$= 1 \qquad 2 \text{ ota } (F \rightarrow 6) \in \text{Tank}, \text{ muss } I_{\beta}(6) = 1$$

$$\Rightarrow \text{ bei Tankelonie alle Alexanere white}$$

→ bei Tautologie sind alle Aussagen wahr

→
$$I_{\beta}(6) = 1$$
 2 6 ist also auch Tautologie

Es sei F eine al Formel ·) Fist enfullbar -y es gibt eine zu Fpassende Belegung, du Modult ist ·)Fist Tautologie ↔oy jede zu F passenda Belegung ist Modul von F ·) Fist unerfallbar -y keine zu Fpaosende Belegung ist Modell von F

```
2. Zu zeigen: I_{\beta}(G)=1 es gibb uin en gibb ein \rightarrow wir haben geg: I_{\beta}(F\rightarrow G)=1 und I_{\beta}(F)=1
                       Foll gill, bei dem alle Aussagen 1 sind
     \rightarrow \ I_{\beta}(F \rightarrow G) = \Lambda \iff I_{\beta}(F) \leq I_{\beta}(G) \ \rightarrow I_{\beta}(F) = \text{ kann 1 oder 0 sein} 
                                                → Ip(6) = kann 1 oder 0 sein
                                           egal was I_g(6) ist, du gamze Aussage ist waln
                                           →d.h. IB(6) kann auch unerfill sein und ganze Aussage ist trz wahr
                                           - somit wahre gegebene Hypothese nicht wahr
                                           - missen also mil Kontradiktion beweisen
    → Kontradiktion: zu zeigen (F→6) \epsilon Sat und F \epsilon Sat \rightarrow G \epsilon Sat
    Bsp: F = A (exhillbour für \beta(A) = 1)
         6 = A 1 7 A (unerfull)
        (F \rightarrow 6) \equiv A \rightarrow (A \land \neg A)
                                        (erfullbar, wenn \beta(A)=0)
                    0 - ... (ist immer Richtig)
         I die geg. Aussage ist nicht wahr (> Beweis durch Gegenbap)
3. zu zeigen: es gill ein I_{\beta}(6)=1 (kann auch 0 sein)
     → Ip (F → G) = 1 ( muss 1 sein wegen Taul.)
     → es gill ein Ig(F) = 1
     → I_{\beta}(F \to G) = \Lambda \iff I_{\beta}(F) \leq I_{\beta}(G) → noch Annahme muss es richling sein
                            \Rightarrow 1 \in I_{\rho}(6) , d.h. I_{\rho}(6) muss 1 sein, damil (F \rightarrow G) \in Sal
                                                         so gild auch einen Fall, bei dem I_p(6)=1
                                                     ⇒d.h. 6 muss erfullbar sein
                                                     → somil ist greebens Aussage wahr
```