SDA – Seminar 2 – Complexități

- Folosim complexități pentru a compara diferiți algoritmi care efectuează aceeași operație.
- În general, vorbim de complexitate de timp, care depinde de numărul de operații efectuate de un algoritm. Numărul de operații de obicei depinde și de datele de intrare pentru algoritmul respectiv, de aceea în general este notat în funcție de mărimea datelor de intrare n, cu T(n).
 - De exemplu $T(n) = 4n^2 + n + \log_2 n + 7$
- În general nu ne interesează T(n), adică numărul exact de operații ci doar clasa din care face parte.
 - O mare este o limită superioară pentru T(n).
 - $T(n) \in O(n^2)$, $T(n) \in O(n^3)$, $T(n) \in O(2^n)$, etc.
 - Ω mare este o limită inferioară pentru T(n).
 - $T(n) \in \Omega(1), T(n) \in \Omega(n), T(n) \in \Omega(n^2)$
 - Θ mare o singură valoare
 - $T(n) \in \Theta(n^2)$
- Complexitatea poate să depindă și de valoarea exactă a parametrilor, nu doar de mărimea lor. În acest caz avem 3 valori pentru complexitate:
 - Caz favorabil
 - Caz defavorabil
 - o Caz mediu
- În general folosim notația θ (fiind valoarea exactă). Notația O este folosită în 2 cazuri:
 - o Avem caz favorabil, defavorabil, mediu.
 - \circ Nu putem calcula notatia θ exact. În acest caz folosim cea mai mică valoare O posibilă.
- 1. Adevărat sau fals?
 - a. $n^2 \in O(n^3)$ Da
 - b. $n^3 \in O(n^2) Nu$
 - c. $2^{n+1} \in \theta (2^n) Da$
 - d. $n^2 \in \Theta(n^3) Nu$
 - e. $2^n \in O(n!)$ Da
 - f. $\log_{10} n \in \Theta(\log_2 n)$ Da
 - g. $O(n) + \theta(n^2) = \theta(n^2) Da$
 - h. $\Theta(n) + O(n^2) = O(n^2) Da$
 - i. $O(n) + O(n^2) = O(n^2) Da$
 - j. $O(f) + O(g) = O(max \{f,g\}) Da$
 - k. $O(n) + \theta(n) = O(n) Nu este \theta(n)$

Algoritm	Complexitate timp				Complexitate
	CF	CD	CM	Total	spațiu
Căutare secvențială	Θ(1)	Θ(n)	Θ(n)	O(n)	Θ(1)
Căutare Binară	Θ(1)	Θ(log₂n)	Θ(log₂n)	O(log ₂ n)	Θ(1)
Sortare prin selecție	Θ(n²)	Θ(n²)	Θ(n²)	Θ(n²)	Θ(1) – in place
Sortare prin inserție	Θ(n)	Θ(n²)	Θ(n²)	O(n²)	Θ(1) – in place
Sortare prin metoda bulelor	Θ(n)	Θ(n²)	Θ(n²)	Θ (n^2)	Θ(1) – in place
Sortare rapidă	Θ(n log₂n)	Θ(n²)	Θ(n log₂n)	Θ(n²)	Θ(1) – in place
Sortare prin interclasare	Θ(n log₂n)	Θ(n log₂n)	Θ(n log₂n)	Θ(n log₂n)	Θ(n)- out of place

2. Construiți un algoritm cu timpul $\theta(n \log_2 n)$

3. Calculați complexitatea pentru cei 2 algoritmi:

CM: sunt n + 1 cazuri posibile (orice pozitie sau niciunul)

CT: O(n)

 $T(n) = \sum_{I \in D} P(I) * E(I) = \frac{1}{n+1} + \frac{2}{n+1} + \dots + \frac{n}{n+1} = \frac{n * (n+1)}{2 * (n+1)} = \frac{n}{2} \in \theta(n)$

4. X este un tablou de întregi nenegativi, fiecare element e <= n

$$k \leftarrow 0$$

Pentru i = 1, n execută
Pentru j = 1, x_i execută
 $k \leftarrow k + x_j$
 sf_pentru
 sf_pentru

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{xi} 1 = \sum_{i=1}^{n} x_i = s \text{ (suma elementelor)}$$

$$\mbox{Fie } x_i = \begin{cases} 1, dac\mbox{\'a} \ i \ este \ p\mbox{\'a}trat \ perfect \\ 0, alt fel \end{cases} \hspace{0.5cm} \mbox{s = Vn}$$

 $T(n) \in \Theta(\max\{n, s\})$

- Se consideră problema de a determina dacă un şir arbitrar de numere x₁...x_n conține cel puțin 2 termeni egali. Arătați că acest algoritm poate fi realizat în θ(n log₂ n).
 Soluție: MergeSort pe şir.
- 6. Calculați complexitatea:

```
Pentru i = 1,n execută
     @op elementară

sf_pentru
i ← 1
k ← adevarat
Câttimp i <= n - 1 și k execută
     j ← i
     k₁ ← adevărat
     Câttimp j <= n și k₁ execută
         @ op elementară (k₁ poate fi modificat)
         j ← j + 1
         sf_câttimp
     i ← i + 1
         @op elementara (k poate fi modificat)

sf_câttimp</pre>
```

CF: k, k_1 poate deveni fals după primul pas => θ (n)

CD: k, k₁ nu devin false niciodată

$$T(n) = \sum_{i=1}^{n-1} \sum_{j=i}^{n} 1 = \sum_{i=1}^{n-1} n - i + 1 = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} 1 =$$

$$n*(n-1) - \frac{n*(n-1)}{2} + n - 1 \in \theta (n^2)$$

CM: pentru un i fixat, k₁ poate deveni fals după 1,2, ..., n-i+1 execuții.

Prob: $\frac{1}{n-i+1}$

$$\frac{1}{n-i+1} + \frac{2}{n-i+1} + \dots + \frac{n-i+1}{n-i+1} = \frac{(n-i+1)*(n-i+2)}{2(n-i+1)} = \frac{(n-i+2)}{2}$$

Pentru ciclul câttimp exterior, k poate deveni fals după 1, 2, ..., n-1 iterații.

$$T(n) = \frac{1}{n-1} * \frac{n-1+2}{2} + \frac{2}{n-1} * \frac{n-2+2}{2} + \dots + \frac{n-1}{n-1} * \frac{n-(n-1)+2}{2} = \frac{1}{2*(n-1)} * \sum_{i=1}^{n-1} i*(n-i+2) = \dots$$

$$= \frac{1}{2*(n-1)} * \left(\frac{n*(n-1)*n}{2} - \frac{(n-1)*n*(2n-1)}{6} + 2*\frac{(n-1)*n}{2}\right)$$

$$= \frac{1}{2} * \left(\frac{n^2}{2} - \frac{2*n^2 - n}{6} + n\right) = \frac{1}{2} * \left(\frac{3n^2 - 2n^2 + 5n}{6}\right) \in \theta(n^2)$$

Complexitatea totală: O(n²)

7. Calculați complexitatea:

Subalg
$$p(x,s,d)$$
 este:

Daca $s < d$ atunci

 $m \leftarrow [(s+d)/2]$

Pentru $i = s, d-1$, execută

@op. Elementare

 sf_pentru

Pentru $i = 1,2$ execută

 $p(x, s, m)$
 sf_pentru
 sf_daca
 sf_subalg

apel: $p(x, 1, n)$

$$T(n) = \begin{cases} 2 * T(\frac{n}{2}) + n, daca n > 1 \\ 0, alt fel \end{cases}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$n = 2^{k}$$

$$T(2^{k}) = 2 * T(2^{k-1}) + 2^{k}$$

$$2 * T(2^{k-1}) = 2^{2} * T(2^{k-2}) + 2^{k}$$

$$2^{2} * T(2^{k-2}) = 2^{3} * T(2^{k-3}) + 2^{k}$$
...
$$2^{k-1} * T(2) = 2^{k} * T(1) + 2^{k}$$

$$T(2^k) = 2^k * T(1) + k * 2^k = k * 2^k = n * log_2 n \rightarrow T(n) \in \theta(n log_2 n)$$

8. Calculați complexitatea:

$$s \leftarrow 0$$

Pentru $i = 1$, n^2 execută
 $j \leftarrow i$
Câttimp $j \neq 0$ execută
 $s \leftarrow s + j$
 $j \leftarrow j - 1$
 $sf_câttimp$
 sf_pentru

$$T(n) = \sum_{i=1}^{n^2} \sum_{j=1}^{i} 1 = \sum_{i=1}^{n^2} i = \frac{n^2 * (n^2 + 1)}{2} \in \theta(n^4)$$

9. Calculați complexitatea:

$$s \leftarrow 0$$

pentru $i = 1$, n^2 execută
 $j \leftarrow i$
Câttimp $j \neq 0$ execută
 $s \leftarrow s + j - 10 * [j/10]$
 $j \leftarrow [j/10]$
 sf_c âttimp
 sf_pentru

- Ciclul câttimp se execută de log₁₀ i ori.
- $T(n) \in \theta(n^2 \log_{10} n) \Longrightarrow T(n) \in \theta(n^2 \log_2 n)$

10. Calculați complexitatea:

Subalg operatie(n, i) este
$$\begin{array}{c} \text{Daca n} > 1 \text{ atunci} \\ \text{i} \leftarrow 2 * \text{i} \\ \text{m} \leftarrow [n/2] \\ \text{operatie (m, i-2)} \\ \text{operatie (m, i-1)} \\ \text{operatie (m, i+2)} \\ \text{operatie (m, i+1)} \\ \text{altfel} \\ \text{scrie i} \\ \text{sf_daca} \\ \text{sf_subalg} \\ \\ T(n) = \begin{cases} 4*T\left(\frac{n}{2}\right) + 2, n > 1 \\ 1, & altfel \end{cases} \\ T(n) = 4*T\left(\frac{n}{2}\right) + 2 \\ T\left(2^k\right) = 4*T\left(2^{k-1}\right) + 2 \\ 4*T\left(2^{k-1}\right) = 4^2*T\left(2^{k-2}\right) + 4*2 \\ 4^2*T\left(2^{k-2}\right) = 4^3*T\left(2^{k-3}\right) + 4^2*2 \\ \dots \\ 4^{k-1}*T(2) = 4^k*T(1) + 4^{k-1}*2 \\ T(n) = 4^k + 2*\left(4 + 4^2 + \dots + 4^{k-1}\right) = 4^k + 2*\frac{4^k - 2}{3} = n^2 + 2*\frac{n^2 - 2}{3} \in \theta(n^2) \\ \end{array}$$