Neural Network

1-hidden layer	2
2-hidden layer	4
Decision regions	5
Compare to hw2	5
Nouns explaination	6

1-hidden layer

[activation function] : sigmoid function

[gradient descent] : stochastic gradient descent

以 Traing: Validation = 9:1 的比例做資料切割。 (例如:第一次,將照 片編號尾數為 0 的作為 Validation data,其餘為 Training data ··· 之後以此類推)

一開始把 learning rate η 設定為 1,發現設太高,weight 修正太多,導致分類表現沒有很好,之後將 η 降為 0.01,並且多做幾次 error back-propagation 後,得到的分類結果還不錯。接著嘗試不同 nodes 數、不同 η 值、做 error back-propagation 的次數 (所謂"一次"表示:對所有 training data 都做一次 stochastic gradient descent,以下簡稱 #EBP,) 所訓練出來的模型,其 validation data 的錯誤率(error rate),並整理成下表

nodes	η	# EBP	Error rate
5	1	1	0.666
		2	0.866
		5	0.153
		10	0.236
	0.1	1	0.226
		2	0.333
		5	0.333
		10	0.083
	0.01	1	0.333
		2	0.043
		5	0.003

		10	0
20	0.01	1	0.173
		2	0.003
		5	0.006
		10	0.006
50	0.01	1	0
		2	0
		5	0.003
		10	0.003
100	0.01	1	0
		2	0
		5	0
		10	0

觀察上表,可以得到以下結論:

- (1). Nodes 數量越多, model 表現越好(太多可能會 overfitting?)。
- (2). η不能設太高,否則 weight 一次會調整太多;也不能設太小,不 然會算很久,更慘的是可能只能找到 Local min。在這邊發現設為 0.01 表現還不錯,大約五次以內就會收斂。

此外,以 nodes = 10, η = 0.01, #EBP = 10 的條件做 cross-validation 的 時候,發現有幾個 case 沒辦法收斂,但有收斂的話,error rate 幾乎都為 0,這部分將在 2-hidden layer 那邊討論。

2-hidden layer

[activation function] : rectified function $f(x) = max \{0, x\}$

[gradient descent] : stochastic gradient descent

與上題不同的地方,除了多了一層 layer 之外,還以 rectified function 取代 平滑的 sigmoid function,如此一來可以提高收斂速度。接著以 nodes 1= nodes $2=10,~\eta=0.01$ 的條件做 cross-validation

Cross validation 尾數	Error rate
0	0.003
1	0.333
2	0.226
3	0
4	0.003
5	0
6	0.333
7	0.243
8	0.033
9	0.006

由上表可以發現,並不是所有的 case 都會收斂,常常會有其中一類全部被分到另一類(例如:C2全部被分到C3),使得錯誤率為 0.333。猜想可能因為資料數不足,硬要用兩層 Neural network,所以導致效果不穩定;也可能是因為C2、C3本身就沒分得很開,所以透過提高 P C A 的維度,讓整體解釋變異量佔比提高,或許會有幫助。

Decision regions

左圖為 training data 在 PC1、PC2 上的分布情形。

以 uniform distribution 在 PC1、PC2 上隨機產生一萬個點,再乘上 training data 所得的 weight,得到右圖的 decision region。

Compare to hw2

相較於 HW2 的 model,這邊受 initial weight 影響很大,如果運氣不好,常常沒辦法收斂,但只要收斂的話,準確率比 HW2 的好狠多(幾乎達到 0 error)。

此外, η 的大小也影響很大,若太大的話,一次會調整太多,導致分類結果不好;但太小的話,weight 幾乎調不太動,除了要算很多次之外,還可能只能找到 local min。

Nouns explaination

◆ Batch gradient descent (以前作業用的方法)

一口氣把全部的 training data 丟進去跑,再調整 weight。優點是 省時間,因為只要調一次 weight,但相對缺點為計算複雜度會提高。

♦ Stochastic gradient descent (本次作業的方法)

一次只丟一筆 training data,並更新一次 weight,再做下一筆 data。優點為計算簡單,但由於有N筆 data 就要算N次,所以在樣本數多的情況下,效率可能不會很好,且收斂不太穩定。

♦ Mini-batch gradient descent

將 training data 分割成數個獨立子集合,然後一次丟一個子集合下去跑,跑完後取平均,再做一次調整:接著再丟第二個子集合...以此類推,所以假設原本有 10000 筆 data,若分成 100 個獨立的子集合,就只要調整 100 次 weight,提升效率。mini-batch 結合上述兩種方法的優缺點,實務上的表現還不錯。

♦ Online gradient descent

與SGD很像,也是一筆一筆資料下去跑,但差別在於,前面三種方法的 training data set 都是固定的,online 顧名思義就是即時更新,一有新的 data 送進來,我就即時更新一次 model。

(就好像股票一樣,你的 dataset 不是固定的,每分每秒都會有新的資料進來)