

Departamento de Matemáticas LE Juan Román Jimanaz Casablanca

Nombre:			
Curso:	1º Bachillerato B	Examen 9	
Fecha:	16 de abril de 2018	Recuperación del 2º Trimestre	

1.- (1,5 puntos)

- **a)** Escribe la ecuación segmentaria de la recta, r, que pasa por el punto A (3,1) y es paralela a la recta s: y=3x+5
- **b)** Halla las ecuaciones paramétricas de la recta perpendicular a la recta t: y-3x+1=0 que pasa por el punto B (0,2)
- **c)** Obtén la ecuación de la circunferencia de centro C(3,1) que pasa por el punto P(5,-1)
- **2.-** (2 puntos) Sean los puntos A(1,-2) y B(0,2)
 - a) Obtén las coordenadas de los puntos O, P y Q que dividen al segmento \overline{AB} en cuatro partes iguales.
 - **b)** Ecuación de la circunferencia que tiene como diámetro \overline{AB} .
- **3.-** (1 punto) Las rectas r y s se cortan en el punto A (-1,3), y son perpendiculares. Si la recta r viene dada por la ecuación r: x + ay 5 = 0. Obtén el valor de a y la ecuación de la recta s.
- **4.-** (2 puntos) Sean A, B, C, D los puntos de corte de las rectas r: x-2y+2=0 y s: 2x-y-2=0 con los ejes de coordenadas. Comprueba que el cuadrilátero ABCD es un trapecio isósceles y halla su área.
- **5.-** (1,5 puntos) Determina la ecuación de una recta de pendiente –2 que forma con los ejes un triángulo de área igual a 81. ¿Cuántas soluciones hay?
- **6.-** (2 puntos) De un trapecio ABCD cuyas bases son AB y CD, se conocen los vértices A (-2,3), B (3,5) y C(-3,-2). Calcula las coordenadas de D sabiendo que $\overline{CD} = 2\sqrt{29}$

1.- a) Escribe la ecuación segmentaria de la recta, r, que pasa por el punto A (3,1) y es paralela a la recta s: y=3x+5.

Si es paralela entonces tiene la misma pendiente y la recta será: y = 3x + n

Como pasa por el punto A(3,1), basta sustituir para calcular n: $1 = 3 \cdot 3 + n \rightarrow n = -8$ y por tanto la ecuación explícita de la recta r será: y = 3x - 8

Operando un poco llegamos a:

$$y = 3x - 8$$
 \rightarrow $3x - y - 8 = 0$ \rightarrow $3x - y = 8$ \rightarrow $\frac{3x}{8} - \frac{y}{8} = 1$ \rightarrow $\frac{x}{\frac{8}{3}} + \frac{y}{-8} = 1$

Por tanto, la ecuación segmentaria será: $\frac{x}{\frac{8}{3}} + \frac{y}{-8} = 1$

b) Halla las ecuaciones paramétricas de la recta perpendicular a la recta t: y-3x+1=0 que pasa por el punto B(0,2).

Un haz de rectas perpendiculares a la recta t: y-3x+1=0 es: 3x+y+k=0

La recta del haz que pasa por el punto B (0,2) será: $3\cdot 0 + 2 + k = 0$ \rightarrow k = -2 y por tanto la ecuación general de la recta perpendicular a la recta t: y-3x+1=0 es: 3x+y-2=0

Ahora la transformamos en las ecuaciones paramétricas, y para ello necesitamos un punto y un vector:

El punto ya lo tenemos el B(0,2) y el vector lo sacamos de: $Ax + By - C = 0 \rightarrow \vec{r} = (-B,A)$ así que el vector director es: (-1,3)

Y por tanto las ecuaciones paramétricas de la recta r son: $r:\begin{cases} x=-t \\ y=2+3t \end{cases} \rightarrow r:\begin{cases} x=3\lambda \\ y=2-\lambda \end{cases}$

c) Obtén la ecuación de la circunferencia de centro C(3,1) que pasa por el punto P(5,-1).

Sabemos que la ecuación de una circunferencia viene dada por: $(x-c_x)^2+(y-c_y)^2=r^2$, donde (C_x,C_y) es el centro y r el radio.

Como nos dan el centro C (3,1) solo nos falta calcular el radio, y para ello calculamos el módulo del vector \overrightarrow{CP}

$$\overrightarrow{CP} = P - C = (5, -1) - (3, 1) = \left(2, -2\right) \text{ y su m\'odulo ser\'a: } \left\| \overrightarrow{CP} \right\| = \sqrt{2^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$$

Por tanto, la ecuación de la circunferencia será: $(x-3)^2 + (y-1)^2 = 8$

que, una vez desarrollada, sería de la forma: $x^2 + y^2 - 6x - 2y + 2 = 0$

2.- Sean los puntos A(1,-2) y B(0,2)

a) Obtén las coordenadas de los puntos O, P y Q que dividen al segmento AB en cuatro partes iguales.

El punto P es el punto medio del segmento AB, por tanto:

$$P = \frac{A+B}{2} = \left(\frac{A_x + B_x}{2}, \frac{A_y + B_y}{2}\right) = \left(\frac{1+0}{2}, \frac{-2+2}{2}\right) = \left(\frac{1}{2}, 0\right)$$

Los puntos O y Q son los puntos medios de los segmentos AP y PB respectivamente:

$$O = \frac{A+P}{2} = \left(\frac{A_x + P_x}{2}, \frac{A_y + P_y}{2}\right) = \left(\frac{1+\frac{1}{2}}{2}, \frac{-2+0}{2}\right) = \left(\frac{3}{4}, -1\right)$$

$$Q = \frac{P+B}{2} = \left(\frac{P_x + B_x}{2}, \frac{P_y + B_y}{2}\right) = \left(\frac{\frac{1}{2} + 0}{2}, \frac{0+2}{2}\right) = \left(\frac{\frac{1}{4} + 0}{4}, \frac{1}{2}\right)$$

Que si los representamos vemos que están perfectamente alineados.

b) Ecuación de la circunferencia que tiene como diámetro el segmento AB.

Departamento de Matemáticas

Si su diámetro es el segmento AB, su centro estará en el punto medio $P\left(\frac{1}{2},0\right)$ y su radio será el segmento AP.

$$d(A,P) = \sqrt{\left(\frac{1}{2}\right)^2 + 2^2} = \sqrt{\frac{17}{4}} = \frac{\sqrt{17}}{2}$$

Por tanto, la ecuación de la circunferencia será: $\left(x - \frac{1}{2}\right)^2 + y^2 = \frac{17}{4}$; y desarrollada será: $x^2 + y^2 - x - 4 = 0$

3.- Las rectas r y s se cortan en el punto A (-1,3), y son perpendiculares. Si la recta r viene dada por la ecuación r: x + ay - 5 = 0. Obtén el valor de a y la ecuación de la recta s.

Si se cortan en el punto A, entonces A pertenece a la recta r, y podemos calcular el valor de a:

$$x + ay - 5 = 0$$
 \rightarrow $-1 + 3a - 5 = 0$ \rightarrow $3a = 6$ \rightarrow $a = 2$

Por tanto, la ecuación de la recta queda así: r: x + 2y - 5 = 0

Un haz de rectas perpendiculares será: 2x - y + k = 0, y k lo calcularemos sabiendo que el punto A también pertenece a esta recta por ser el punto de intersección.

$$2x - y + k = 0$$
 \rightarrow $2(-1) - 3 + k = 0$ \rightarrow $-5 + k = 0$ \rightarrow $k = 5$

Y por tanto la rectas *r* y *s* serían:

$$r: x + 2y - 5 = 0$$
 $s: 2x - y + 5 = 0$

4.- Sean A, B, C, D los puntos de corte de las rectas r: x-2y+2=0 y s: 2x-y-2=0 con los ejes de coordenadas. Comprueba que el cuadrilátero ABCD es un trapecio isósceles y halla su área.

Lo primero es calcular los puntos A,B,C y D:

A es el punto de intersección de r con el eje OX:

$$A: \begin{cases} x - 2y + 2 = 0 \\ y = 0 \end{cases} \rightarrow x = -2 \Rightarrow A(-2,0)$$

B es el punto de intersección de r con el eje OY:

$$B:\begin{cases} x-2y+2=0\\ x=0 \end{cases} \rightarrow y=1 \Rightarrow B(0,1)$$

C es el punto de intersección de s con el eje OX:

$$C: \begin{cases} 2x - y - 2 = 0 \\ y = 0 \end{cases} \rightarrow x = 1 \Rightarrow C(1,0)$$

Y por último, D es el punto de intersección de s con el eje OY:

$$D:\begin{cases} 2x - y - 2 = 0 \\ x = 0 \end{cases} \rightarrow y = -2 \Rightarrow D(0, -2)$$

Calculamos ahora los vectores directores de ambos lados:

$$|\overrightarrow{AB}| = (2,1)$$

$$|\overrightarrow{BC}| = (1,-1)$$

$$|\overrightarrow{CD}| = (-1,-2)$$

$$|\overrightarrow{DA}| = (-2,2)$$

$$|\overrightarrow{AB}| = \sqrt{5} = ||\overrightarrow{CD}||$$

$$||\overrightarrow{AB}|| = \sqrt{5} = ||\overrightarrow{CD}||$$

Luego, efectivamente, ABCD es un trapecio isósceles de bases BC y DA

Para calcular el área, necesitamos tener primero la altura, Para ello calcularemos la ecuación de la recta que pasa por AD:

Como
$$AD = (2,-2)$$

 $D(0,-2)$ \rightarrow $y = -x-2$ \rightarrow $AD: x+y+2=0$

Y después calculamos la distancia el punto B a la recta AD:

$$h = d(B, AD) = \frac{|aBx + bBy + c|}{\|dr\|} = \frac{|0 + 1 + 2|}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$

Y ahora ya estamos en condiciones de calcular la altura:

$$\acute{A}rea = \frac{\left\| \overrightarrow{BC} \right\| + \left\| \overrightarrow{DA} \right\|}{2} \cdot h = \frac{\sqrt{2} + 2\sqrt{2}}{2} \cdot \frac{3\sqrt{2}}{2} = \frac{9 \cdot 2}{4} = \frac{9}{2} \ u.a.$$

Queda demostrado que se trata de un trapecio isósceles de área 4,5 u.a.

5.-Determina la ecuación de una recta de pendiente –2 que forma con los ejes un triángulo de área igual a 81. ¿Cuántas soluciones hay?

Las rectas de pendiente -2 tienen por ecuación: y = -2x + k

Los puntos de corte con los ejes, A y B, son:

Si
$$x = 0 \rightarrow y = k \rightarrow A(0, k)$$

Si
$$y = 0 \rightarrow x = 0 \rightarrow B = \left(\frac{k}{2}, 0\right)$$

Así, el área viene dada por: $\acute{A}rea = \frac{\frac{k}{2} \cdot k}{2} = 81 \rightarrow k^2 = 324 \rightarrow \begin{cases} k_1 = 18 \\ k_2 = -18 \end{cases}$

Por tanto, efectivamente existen dos soluciones:

$$r_1: 2x + y - 18 = 0$$
 $r_2: 2x + y + 18 = 0$

$$r_2: 2x + y + 18 = 0$$

6.- De un trapecio ABCD cuyas bases son AB y CD, se conocen los vértices A (-2,3),B (3, 5) y C(-3,-2). Calcula las coordenadas de D sabiendo que $CD = 2\sqrt{29}$

Si representamos los puntos, el trapecio queda de la forma que vemos en la figura de la izquierda. Como las bases son paralelas, calculamos la ecuación de la recta AB:

$$\overrightarrow{AB} = B - A = (3,5) - (-2,3) = (5,2)$$

 $B(3,5)$ $2x - 5y + k = 0$

Sustituyendo el punto B:

$$2.3 - 5.5 + k = 0 \rightarrow k = 19$$

Así que la recta AB es: 2x - 5y + 19 = 0

Y la otra base será la recta paralela a ésta que pasa por C(-3,-2)

$$2x - 5y + k = 0$$
 \rightarrow $2 \cdot (-3) - 5 \cdot (-2) + k = 0$ \rightarrow $-6 + 10 + k = 0$ \rightarrow $k = -4$

La recta DC es la recta: 2x - 5y - 4 = 0, y un punto cualquiera de ella, como por ejemplo el punto D, tendrá por coordenadas las coordenadas genéricas: $D\left(x, \frac{2x-4}{5}\right)$

Como tenemos la distancia DC, con ella calcularemos D:

$$\overrightarrow{CD} = D - C = \left(x, \frac{2x - 4}{5}\right) - \left(-3, -2\right) = \left(x + 3, \frac{2x + 6}{5}\right) \quad \to \quad \left\|\overrightarrow{CD}\right\| = \sqrt{\left(x + 3\right)^2 + \left(\frac{2x + 6}{5}\right)^2} = 2\sqrt{29}$$

$$\sqrt{\left(x+3\right)^2 + \left(\frac{2x+6}{5}\right)^2} = 2\sqrt{29} \quad \rightarrow \quad \left(x+3\right)^2 + \left(\frac{2x+6}{5}\right)^2 = 4\cdot29 = 116 \quad \rightarrow \quad 29x^2 + 174x - 2639 = 0$$

Cuyas soluciones son:
$$\begin{cases} x_1 = 7 & \to & D = (7,2) \\ x_2 = -13 & \to & D' = (-13,-6) \end{cases}$$

Por tanto el punto D es el punto D(7,2)