MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.		
Egy tört nempozitív, ha vagy a számlálója és nevező-		Ez a pont akkor is jár, ha
je ellentétes előjelű, vagy a számlálója nulla, de a ne-	1 pont	ez a gondolat csak a meg-
vezője nem.		oldásból derül ki.
Első eset: $x - 3 > 0$ és $x + 4 \le 0$.		
Ebből: $x > 3$ és $x \le -4$.	1 pont	
Ebben az esetben nem kapunk megoldást.		
Második eset: $x - 3 < 0$ és $x + 4 \ge 0$.	1 nont	
Ebből: $x < 3$ és $x \ge -4$.	1 pont	
Ezért az A halmaz elemei: $\{-4, -3, -2, -1, 0, 1, 2\}$.	1 pont	
Ez az abszolútértékes egyenlőtlenség akkor teljesül,	2 pont	
ha -4 < x + 3 < 4,	2 point	
azaz -7 < x < 1.	1 pont	
Ezért a <i>B</i> halmaz elemei: {-6; -5; -4; -3; -2; -1; 0}.	1 pont	
$A \cap B = \{-4, -3; -2; -1; 0\}.$	1 pont	
$A \setminus B = \{1; 2\}.$	1 pont	
$A \cup B = \{-6; -5; -4; -3; -2; -1; 0; 1; 2\}.$	1 pont	
Összesen:	11 pont	. 1/ 11/ • 1.1.1

Megjegyzés: Ha a vizsgázó az egyenlőtlenségeknek egész helyett a valós megoldásaival dolgozik, akkor legfeljebb 8 pontot kaphat.

2.		
E_2 A O_2 E_3 O_2 O_3 O_4 O_4 O_5 O_5 O_6 O_8 O_8 O_8 O_8 O_8 O_9	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen modellezi és számolja ki a hajtószíj hosszát.
A keresett hajtószíjhossz az egymással egyenlő hosszú E_1E_2 és E_3E_4 érintőszakaszokból, valamint a (rövidebb) E_1E_3 körívből és a (hosszabb) E_2E_4 körívből áll.	1 pont	Ez a 2 pont akkor is jár, ha ezek a gondolatok csak a megoldásból de-
Az O_1 -en keresztül az E_1E_2 érintőszakasszal húzott párhuzamos metszéspontja O_2E_2 -vel legyen M .	1 pont	rülnek ki.
Az O_1MO_2 derékszögű háromszögből $E_1E_2 = O_1M = \sqrt{46^2 - 19^2} = \sqrt{1755} \approx 41,9 \text{ (cm)}.$	1 pont	
(Az O_1O_2M szöget α-val jelölve:) $\cos \alpha = \frac{19}{46} (\approx 0.4130),$	1 pont	

ahonnan $\alpha \approx 65,6^{\circ}$.	1 pont	
A hosszabb E_2E_4 körívhez tartozó középponti szög $360^\circ - 2\alpha \approx 228.8^\circ$.	1 pont	
A hosszabb E_2E_4 körív hossza így $\frac{228.8^{\circ}}{360^{\circ}} \cdot 2 \cdot 20\pi \approx$	1 pont	
\approx 79,9 (cm).	1 pont	
A rövidebb E_1E_3 körívhez tartozó középponti szög $2\alpha \approx 131,2^{\circ}$.	1 pont	
A rövidebb E_1E_3 körív hossza így $\frac{131,2^{\circ}}{360^{\circ}} \cdot 2 \cdot 1\pi \approx$	1 pont	
\approx 2,3 (cm).	1 pont	
Innen a feszes hajtószíj hossza megközelítőleg $2 \cdot 41.9 + 79.9 + 2.3 = 166$ cm.	1 pont	
Összesen:	13 pont	

3. a)			
Az állítás hamis.		1 pont	
Bármilyen jó ellenpélda (nem összefüggő, egyszerű gráf, amelyben minden pont fokszáma legalább 2), például:		1 pont	
	Összesen:	2 pont	

3. b)		
Az állítás megfordítása:		
Ha a gráf összefüggő, akkor minden pontjának fok-	2 pont	
száma legalább 2.		
Az állítás hamis.	1 pont	
Bármilyen jó ellenpélda (összefüggő,		
egyszerű gráf, amelynek van elsőfokú	1 pont	
pontja), például:		
Összesen:	4 pont	

3. c)			
		1-1 pont	
	Összesen:	4 pont	

3. d)	
Bármilyen jó 6 pontú fa, például:	2 pont
Az 5-ös sorszám elhelyezése a $(P \cap Q) \setminus R$ halmazba.	1 pont
Összesen:	3 pont

4. a) első megoldás		
A március 1-jén felvett hitel		
(365 - 31 - 28 =) 306 napig,	1 pont	
az október 1-jén felvett hitel pedig	1 pont	
(31 + 30 + 31 =) 92 napig kamatozik.		
A napi kamatláb $\frac{8}{365}$ %.	1 pont	
Az első hitel kamata		
$40000 \cdot \frac{8}{365 \cdot 100} \cdot 306 \ (\approx 2683) \ (\text{Ft}),$	1 pont	
a második hitel kamata pedig		
$40000 \cdot \frac{8}{365 \cdot 100} \cdot 92 \ (\approx 807) \ (\text{Ft}).$	1 pont	
Összesen (2683 + 807 =) 3490 Ft kamatot tőkésít	1 nont	
a bank december 31-én.	1 pont	
Összesen:	5 pont	

4. a) második megoldás		
Március 1-től szeptember 30-ig, azaz $(31+30+31+30+31+31+30=)$ 214 napig 40 000 Ft hitel után, október 1-től december 31-ig, azaz $(31+30+31=)$ 92 napig pedig 80 000 Ft hitel után számít fel a bank kamatot.	1 pont	
A napi kamatláb $\frac{8}{365}$ %.	1 pont	
Az első periódusban $40000 \cdot \frac{8}{365 \cdot 100} \cdot 214 \ (\approx 1876) \ (\text{Ft}),$	1 pont	
a második periódusban pedig $80000 \cdot \frac{8}{365 \cdot 100} \cdot 92 \ (\approx 1613) \ (Ft)$ kamatot számít fel a bank.	1 pont	
Összesen (1876 + 1613 =) 3489 Ft kamatot tőkésít a bank december 31-én.	1 pont	3490 Ft is elfogadható (az eltérés a kerekítések- ből adódik).
Összesen:	5 pont	. , , , , , , , , , , , , , , , , , , ,

Megjegyzés: Más, ésszerű és helyes kerekítésekkel – például ha a vizsgázó a napi kamatlábat 0,02%-nak vagy 0,022%-nak veszi – kapott eredmények is elfogadhatók. Rossz vagy ésszerűtlen kerekítés(ek) esetén a vizsgázó ezért összesen 1 pontot veszítsen.

4. b)		
(Ha x Ft volt az évi törlesztőrészlet, akkor) (((1 000 000 \cdot 1,08 – x) \cdot 1,08 – x) \cdot 1,08 – x = 0.	2 pont	
Rendezve: $1\ 000\ 000 \cdot 1,08^{10} - x \cdot (1,08^9 + 1,08^8 + + 1) = 0$.	2 pont	
A zárójelben egy mértani sorozat első 10 tagjának összege van $(a_1 = 1, q = 1,08)$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$S_{10} = \frac{1,08^{10} - 1}{1,08 - 1} \ (\approx 14,487)$	1 pont	
Az egyenletből: $x = \frac{1000000 \cdot 1,08^{10}}{S_{10}} \approx \left(\frac{2158925}{14,487} \approx \right)$	1 pont	
$\approx 149~025.$	1 pont	
Tehát (ezresekre kerekítve) 149 000 Ft az éves törlesztőrészlet.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít vagy rosszul kerekít.
Összesen:	9 pont	

Megjegyzés: Ha a vizsgázó a függvénytáblázatban található megfelelő képletbe jól helyettesít és így határozza meg az éves törlesztőrészletet, akkor maximális pontszámot kapjon.

II.

5. első megoldás		
(A szimmetriatengely egy normálvektora a (2; –1)		
vektor, így) a trapéz alapjának egy normálvektora	1 pont	
az (1; 2) vektor.	1	
A $P(-5; 1)$ ponton áthaladó AB alap egyenesének	1	
egyenlete $x + 2y = -3$.	1 pont	
Ennek a trapéz köré írt körrel való metszéspontjait,		
tehát a trapéz két csúcsának koordinátáit az		
$(x-3)^2 + (y-2)^2 = 100$	1 pont	
x+2y=-3	1	
egyenletrendszer megoldásai adják.		
Az $x = -2y - 3$ kifejezést behelyettesítve a kör egyen-		
letébe az $y^2 + 4y - 12 = 0$ másodfokú egyenletet kap-	1 pont	
juk.	1 point	
Ennek megoldásai $y = 2$ és $y = -6$, így a trapéz AB	4 .	
alapjának két végpontja $A(-7; 2)$ és $B(9; -6)$.	1 pont	
A <i>B</i> középpontú és $10\sqrt{2}$ sugarú kör egyenlete	1 pont	
$(x-9)^2 + (y+6)^2 = 200$.	1 pont	
Ennek és a trapéz köré írható körnek (az egyik) met-		
széspontját, tehát a C csúcs koordinátáit az		
$(x-3)^2 + (y-2)^2 = 100$	1 pont*	
$(x-9)^2 + (y+6)^2 = 200$	r ·	
egyenletrendszer (valamelyik) megoldása adja.		
A műveletek elvégzése és a két egyenlet kivonása		
után x-et kifejezve y-nal:	2 nont*	$y = \frac{3}{4}x - \frac{1}{4}$
$\frac{4}{x-4}, \frac{1}{x+4}$	2 pont.	$y = \frac{1}{4}x = \frac{1}{4}$
$x = \frac{4}{3}y + \frac{1}{3}$.		
Ezt visszahelyettesítve valamelyik kör egyenletébe,		
majd egyszerűsítve az $y^2 - 4y - 32 = 0$ másodfokú	1 pont*	$x^2 - 6x - 55 = 0$
egyenletet kapjuk.		
Ennek megoldásai $y = 8$ és $y = -4$, így a metszés-	1 pont*	x = 11 és x = -5
pontok koordinátái (11; 8) és (–5; –4).	1	
(A (-5; -4) pont a trapéz szimmetriatengelyének <i>B</i> -	1 ,	
vel ellentétes oldalán van, így nem lehet a BC szár	1 pont	
másik végpontja, tehát) $C(11; 8)$.		
A <i>CD</i> alap egyik normálvektora szintén az (1; 2) vektor, valamint áthalad a <i>C</i> (11; 8) csúcson, így egyenle-	1 nont	
to $x + 2y = 27$.	1 pont	
Ennek a trapéz köré írt körrel való metszéspontjait az		
$(x-3)^2 + (y-2)^2 = 100$		
	1 pont	
	-	
egyenletrendszer megoldásai adják.		

Az $x = 27 - 2y$ kifejezést behelyettesítve a kör egyenletébe az $y^2 - 20y + 96 = 0$ másodfokú egyenletet kapjuk.	1 pont	
Ennek megoldásai $y = 12$ és $y = 8$. A (11; 8) pontot már korábban megkaptuk, így a negyedik csúcs $D(3; 12)$.	1 pont	
Osszesen:	16 pont	_

5 másadik magaldás		
5. második megoldás	1	
(A szimmetriatengely egy normálvektora a (2; –1)		
vektor, így) a trapéz alapjának egy normálvektora	1 pont	
az (1; 2) vektor.		
A $P(-5; 1)$ ponton áthaladó AB alap egyenlete	1 ,	
x + 2y = -3.	1 pont	
Ennek a trapéz köré írt körrel való metszéspontjait,		
tehát a trapéz két csúcsának koordinátáit az		
$(x-3)^2 + (y-2)^2 = 100$	1 pont	
x + 2y = -3	1	
egyenletrendszer megoldásai adják.		
Az $x = -2y - 3$ kifejezést behelyettesítve a kör egyen-		
letébe az $y^2 + 4y - 12 = 0$ másodfokú egyenletet kap-	1 pont	
juk.	1	
Ennek megoldásai $y = 2$ és $y = -6$, így a trapéz AB	1 nont	
alapjának két végpontja $A(-7; 2)$ és $B(9; -6)$.	1 pont	
Jelölje a trapéz köré írt kör középpontját <i>K</i> .		
Mivel a kör sugara 10 egység, a trapéz szárai pedig		
$10\sqrt{2}$ egység hosszúak, (a Pitagorasz-tétel megfordí-	2 pont	
tása miatt) az AKD és a CKB háromszögek derékszö-	1	
gűek.		
<i>8</i>	l .	

Ezért a \overrightarrow{KA} (-10; 0) vektor 90°-os elforgatottja a \overrightarrow{KD} vektor, a \overrightarrow{KB} (6; -8) vektor 90°-os elforgatottja pedig a \overrightarrow{KC} vektor.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
Ezért vagy $\overrightarrow{KD}(0; 10)$ vagy $\overrightarrow{KD}(0; -10)$,	2 pont	
azaz vagy $D(3; 12)$ vagy $D(3; -8)$.	1 pont	
(A (3; -8) pont a trapéz szimmetriatengelyének <i>A</i> -val ellentétes oldalán van, így nem lehet az <i>AD</i> szár másik végpontja, tehát) <i>D</i> (3; 12).	1 pont	
Hasonlóan vagy \overrightarrow{KC} (8; 6) vagy \overrightarrow{KC} (-8; -6),	2 pont	
azaz vagy $C(11; 8)$ vagy $C(-5; -4)$.	1 pont	
(A (–5; –4) pont a trapéz szimmetriatengelyének <i>B</i> -vel ellentétes oldalán van, így nem lehet a <i>BC</i> szár másik végpontja, tehát) <i>C</i> (11; 8).	1 pont	
Összesen:	16 pont	

Megjegyzés: Ha a vizsgázó a \overrightarrow{KA} és \overrightarrow{KB} vektorok két-két lehetséges 90°-os elforgatottja közül csak az egyik lehetőséggel foglalkozik, akkor ezért összesen 2 pontot veszítsen.

6. a)		
$ \begin{array}{c c} x & 1-x \\ \hline 5 \\ 7 \end{array} $	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
A belső négyzet oldala $\frac{5}{7}$ méter.	1 pont	
A belső négyzet a külső négyzet oldalait x és $1-x$ hosszú szakaszokra bontja.	1 pont	Ez a 2 pont akkor is jár, ha ezek a gondolatok
(A 90°-os forgásszimmetria miatt) ez a felosztás mind a négy oldalon megismétlődik.	1 pont	csak a megoldásból de- rülnek ki.
(A Pitagorasz-tételt alkalmazva) $x^2 + (1-x)^2 = \left(\frac{5}{7}\right)^2$,	1 pont	
ahonnan $2x^2 - 2x + \frac{24}{49} = 0$.	1 pont	
Ennek megoldásai $x_1 = \frac{4}{7}$ és $x_2 = \frac{3}{7}$,	2 pont	
ahonnan $1 - x_1 = \frac{3}{7}$ és $1 - x_2 = \frac{4}{7}$.	1 pont	
A belső négyzet a külső négyzet oldalait 3:4 (vagy 4:3) arányban osztja.	1 pont	
Összesen:	10 pont	

6. b) első megoldás		
$K_1 = 4$ (m), $K_2 = 4 \cdot \frac{5}{7}$ (m), és (hasonlósági megfontolások miatt) minden további négyzet kerülete $\frac{5}{7}$ -szerese a megelőzőnek.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
A négyzetek kerületének összege egy végtelen mértani sor összege, melynek hányadosa $q = \frac{5}{7}$.	1 pont	
Mivel $ q < 1$, ezért a sor konvergens.	1 pont	
A végtelen mértani sor összege: $S = K_1 + K_2 + = K_1 \cdot \frac{1}{1 - q} =$	1 pont	
$= \frac{4}{1 - \frac{5}{7}} = 14.$	1 pont	
Tehát a négyzetek kerületének összege 14 méter.	1 pont	
Osszesen:	6 pont	

6. b) második megoldás		
$K_1 = 4$ (m), $K_2 = 4 \cdot \frac{5}{7}$ (m), és (hasonlósági megfontolások miatt) minden további négyzet kerülete $\frac{5}{7}$ -szerese a megelőzőének.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
A négyzetek kerülete egy olyan mértani sorozatot al- kot, melynek első tagja $a_1 = 4$, hányadosa $q = \frac{5}{7}$.	1 pont	
A mértani sorozat első n tagjának összege: $S_n = 4 \cdot \frac{\left(\frac{5}{7}\right)^n - 1}{\frac{5}{7} - 1}.$	1 pont	
Mivel $\left(\frac{5}{7}\right)^n \to 0$, ha $n \to \infty$,	1 pont	
ezért $S = \lim_{n \to \infty} S_n = 4 \cdot \frac{0-1}{\frac{5}{7} - 1} = 14.$	1 pont	
Tehát a négyzetek kerületének összege 14 méter. Összesen:	1 pont 6 pont	

7. a)		
(Ha r a doboz alapkörének sugara, m pedig a doboz magassága cm-ben mérve, akkor) $V = r^2 \pi m$, ahonnan $m = \frac{V}{r^2 \pi} = \frac{1000}{r^2 \pi}$ (cm).	1 pont	Ez a 2 pont akkor is jár, ha a vizsgázó részletezés nélkül írja fel helyesen
Az alap- és a fedőlap együttes anyagköltsége r függ- vényében $0.2 \cdot 2r^2\pi$ (Ft).	1 pont	a teljes anyagköltséget.
A palást anyagköltsége r függvényében $0.1 \cdot 2r\pi \cdot \frac{V}{r^2\pi} = \frac{0.2V}{r} = \frac{200}{r}$ (Ft).	2 pont	
A teljes anyagköltség r függvényében $(r > 0)$ $f(r) = 0.4r^2\pi + \frac{200}{r} \text{ (Ft)}.$	1 pont	

Az f függvénynek a pozitív számok halmazán ott lehet minimuma, ahol a deriváltja 0.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
$f'(r) = 0.8r\pi - \frac{200}{r^2}$	2 pont*	
$f'(r) = 0$, ha $r \left(= \sqrt[3]{\frac{200}{0.8\pi}} \right) \approx 4.3$ cm.	1 pont*	
Mivel $f''(r) = 0.8\pi + \frac{400}{r^3} > 0$, ezért itt valóban minimális f értéke.	1 pont*	Ez a pont akkor is jár, ha a vizsgázó az első deri- vált előjelváltásával in- dokol helyesen.
A minimális anyagköltséghez tartozó magasság		dokoi neiyesen.
$m\left(=\frac{1000}{r^2\pi}\right) \approx 17.2 \text{ cm}.$	1 pont	
A minimális anyagköltség forintra kerekítve 70 Ft.	2 pont	
Összesen:	13 pont	

Megjegyzések:

- 1. Ha a vizsgázó válaszaiban nem kerekít vagy rosszul kerekít, akkor ezért a feladatban összesen 1 pontot veszítsen.
- 2. Ha a vizsgázó válaszaiban nem ad meg mértékegységet, akkor ezért a feladatban összesen 1 pontot veszítsen.

3. A *-gal jelölt 5 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

	0 1	9
A számtani és mértani közép közötti egyenlőtlenség		
alkalmazásával:		
$f(r) = 0.4r^{2}\pi + \frac{200}{r} = 0.4\pi \cdot r^{2} + \frac{100}{r} + \frac{100}{r} \ge$	3 pont	
$\geq 3 \cdot \sqrt[3]{0.4\pi \cdot r^2 \cdot \frac{100^2}{r^2}} = 3 \cdot \sqrt[3]{4000\pi} .$		
Az egyenlőség akkor és csak akkor teljesül, ha		
$0.4\pi \cdot r^2 = \frac{100}{r} ,$	1 pont	
ahonnan $r \left(= \sqrt[3]{\frac{100}{0.4\pi}} \right) \approx 4.3 \text{ cm.}$	1 pont	

7. b)		
Az adatok átlaga 0,7.	1 pont	
A minta átlagtól mért átlagos abszolút eltérése $\frac{6 \cdot 0.7 + 2 \cdot 0.3 + 1.3 + 2.3}{10} = 0.84.$	2 pont	
Összesen:	3 pont	

8. a) első megoldás		
Jó ábra: az érintkező hengerek egy alkalmas síkmetszetének ábrázolása.	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
A nagy kör középpontját a négy kis kör középpontjával összekötő négy szakasz által meghatározott szögek (az ábra forgásszimmetriája miatt) derékszögek.	1 pont	Ez a pont akkor is jár, ha a vizsgázó a derékszöget az ábráján tüntette fel.
(A Pitagorasz-tételt alkalmazva pl. az OAB háromszögben:) $(3 + R)^2 + (3 + R)^2 = 12^2 (= 144)$.	1 pont	
(Mivel $3 + R > 0$, ezért) $3 + R = \sqrt{72} \left(= 6\sqrt{2} \right)$,	1 pont	$2R^2 + 12R - 126 = 0$ $R_1 \approx 5,485$; R_2 negativ.
ebből (a kért pontossággal) $d = 2R = (12\sqrt{2} - 6 \approx) 10,97 \text{ mm.}$	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít vagy rosszul kerekít.
Összesen:	5 pont	

8. a) második megoldás		
Jó ábra: az érintkező hengerek egy alkalmas síkmetszetének ábrázolása.	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
A négy kis kör középpontja egy 12 mm oldalú négyzetet alkot.	1 pont	
Ennek a négyzetnek az átlója $12\sqrt{2}$ (mm).	1 pont	
Mivel ez éppen $2R + 6$,	1 pont	
ebből (a kért pontossággal) $d = 2R = (12\sqrt{2} - 6 \approx) 10,97 \text{ mm.}$	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít vagy rosszul kerekít.
Összesen:	5 pont	

8. b) első megoldás		
A piros elemek száma 5, 6, 7 vagy 8 lehet.	1 pont	
Ha a piros elemek száma <i>k</i> , akkor (mivel a piros elemek helye a toronyban már egyértelműen meghatá-	1 pont	Ez a 2 pont akkor is jár, ha ezek a gondolatok csak a megoldásból de-
rozza a tornyot) az építhető tornyok száma $\binom{8}{k}$.	- P	rülnek ki.

Így az ilyen tornyok száma összesen $\binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8} = (56 + 28 + 8 + 1 =)$	1 pont	
= 93.	1 pont	
Összesen:	4 pont	

8. b) második megoldás		
Szimmetria okokból azon tornyok száma, amelyek több piros elemet tartalmaznak, megegyezik azon	1 mont	
tornyok számával, amelyek több kéket.	1 pont	
Ugyanannyi (4-4) piros és kék elemet tartalmaz $\binom{8}{4}$ (= 70) torony.	1 pont	
(Mivel a torony minden eleme kétféle lehet,) az öszszes lehetséges különböző tornyok száma 2 ⁸ (= 256).	1 pont	
A megfelelő tornyok száma tehát $\frac{256-70}{2}$ = 93.	1 pont	
Összesen:	4 pont	

Megjegyzés: A megfelelő pontok járnak, ha a vizsgázó kombináció helyett ismétléses permutációra hivatkozik.

8. c)		
Annak a valószínűsége, hogy egy kiválasztott kocka nem selejtes, $\frac{1000000-20}{1000000} = 0,99998$.	1 pont	
Annak a valószínűsége, hogy egy <i>n</i> kockát tartalmazó dobozban egyik kocka sem selejtes, 0,99998 ⁿ .	1 pont	
Ha annak a valószínűsége, hogy a dobozban van selejtes, kisebb 0,01-nál, akkor annak a valószínűsége, hogy a dobozban nincs selejtes, legalább 0,99.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
Megoldandó a $0,99998^n \ge 0,99$ egyenlőtlenség $(n \in \mathbb{N})$.	1 pont	
(Az lg x függvény szigorúan monoton növekedése miatt) $n \cdot \lg 0.99998 \ge \lg 0.99$.	1 pont	
Ebből (lg 0,99998 < 0 miatt) $n \le \frac{\lg 0,99}{\lg 0,99998} \approx 502,5.$	1 pont	
tehát András legfeljebb 502 darabos készletet vehet.	1 pont	
Osszesen:	7 pont	

Megjegyzés: Ha a vizsgázó egyenlőtlenség helyett egyenletet old meg, de nem indokolja, hogy az egyenlet megoldásából hogyan következik az egyenlőtlenség megoldása, akkor legfeljebb 5 pontot kaphat (egyenlet felírása 3 pont, jó megoldása 1 pont, jó válasz 1 pont).

9. a)		
Az összes kihúzási lehetőségek száma $\binom{17}{3}$ (= 680).	1 pont	
Három sárga golyót $\binom{8}{3}$ (= 56) -féleképpen, három zöld golyót $\binom{9}{3}$ (= 84) -féleképpen húzhatunk ki,	1 pont	
a kedvező esetek száma így $\binom{8}{3} + \binom{9}{3} (= 140)$.	1 pont	
A keresett valószínűség $p = \frac{\binom{8}{3} + \binom{9}{3}}{\binom{17}{3}} = \frac{7}{34} \approx 0,206.$	1 pont	
Összesen:	4 pont	

9. b) első megoldás		
Sárga golyó húzásának valószínűsége $\frac{8}{17}$,	1 pont	Ez a 2 pont akkor is jár, ha ezek a gondolatok csak a megoldásból de-
zöld golyó húzásának valószínűsége $\frac{9}{17}$.		csaк a megoiaasboi ae- rülnek ki.
A kérdéses valószínűség binomiális eloszlást követ,	1 pont	
ezért $p = {5 \choose 3} \cdot \left(\frac{8}{17}\right)^3 \cdot \left(\frac{9}{17}\right)^2 \approx$	1 pont	
≈ 0,292.	1 pont	
Összesen:	4 pont	

9. b) második megoldás		
(Mivel minden egyes húzás alkalmával mind a 17 golyót húzhatjuk, ezért) az összes esetek száma 17 ⁵ .	1 pont	
Mivel három sárga golyó húzására 8^3 , két zöld golyó húzására 9^2 lehetőségünk van, a golyók kihúzásának színsorrendje pedig $\binom{5}{3}$ -féle lehet,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
ezért a kedvező esetek száma $\binom{5}{3} \cdot 8^3 \cdot 9^2$.	1 pont	
A keresett valószínűség $p = \frac{\binom{5}{3} \cdot 8^3 \cdot 9^2}{17^5} \approx 0,292.$	1 pont	
Összesen:	4 pont	

9. c)		
A kihúzott három szám összege pontosan akkor osztható 3-mal, ha vagy mindhárom ugyanazt a maradékot adja 3-mal osztva,	1 pont	Ez a 2 pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
vagy 3-as maradékaik páronként különbözők.	1 pont	
0 maradékot a 3, 6, 9, 12, 15 számok adnak, közülük három szám húzása $\binom{5}{3}$ (= 10) -féleképpen lehetséges.	1 pont	
1 maradékot az 1, 4, 7, 10, 13, 16 számok adnak, közülük három szám húzása $\binom{6}{3}$ (= 20) -féleképpen lehetséges.	1 pont	
2 maradékot a 2, 5, 8, 11, 14, 17 számok adnak, közülük három szám húzása $\binom{6}{3}$ (= 20) -féleképpen lehetséges.	1 pont	
A páronként különböző maradékot adó húzások száma $5 \cdot 6^2 (= 180)$.	1 pont	
A kedvező esetek száma: $\binom{5}{3} + 2 \cdot \binom{6}{3} + 5 \cdot 6^2 (= 230)$.	1 pont	
Mivel az összes esetek száma $\binom{17}{3}$ (= 680), ezért a keresett valószínűség $p = \frac{230}{680} \approx 0,338$.	1 pont	
Összesen:	8 pont	

Megjegyzések:

írásbeli vizsga 1313 16 / 16 2013. május 7.

^{1.} Ha a vizsgázó valamelyik válaszában nem kerekít vagy rosszul kerekít, akkor ezért a teljes feladatban összesen 1 pontot veszítsen.

^{2.} Százalékban megadott helyes válaszok is elfogadhatók.

^{3.} Ha a vizsgázó megoldásában rossz modellt használ (a visszatevéses és a visszatevés nélküli mintavételt felcseréli), akkor az a) és b) feladatokban 0 pontot, a c) feladatban legfeljebb 4 pontot kaphat.