Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Физика с элементами компьютерного моделирования»

ОТЧЕТ ПО ПРОЕКТНОЙ РАБОТЕ №1

«Электростатика. Постоянный ток»

Выполнили:
Барышев Артём Антонович, студент группы N3246
(подпись)
Машин Егор Олегович, студент группы N3246
(подпись)
Суханкулиев Мухаммет, студент группы N3246
(подпись)
Шегай Станислав Дмитриевич, студент группы N3246
(подпись)
Проверила:
Рудель Алена Евгеньевна, инженер
(отметка о выполнении)
(подпись)

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

Введе	ние		4	
1	модел	пирование силовых линий и сечений эквипотенциальных	поверхностей	
электр	оическо	попополеждения попоможного поможного попоможного попоможн	5	
1.1	Tec	ретические основы	5	
1.2	Ma	6		
	1.2.1	Определение системы	6	
	1.2.2	Вектор напряженности электрического поля	6	
	1.2.3	Потенциал электрического поля	7	
	1.2.4	Дифференциальные уравнения для силовых линий	7	
	1.2.5	Уравнение эквипотенциальных поверхностей	7	
	1.2.6	Параметры системы	7	
1.3	Ma	8		
	1.3.1	Введение характерных масштабов	8	
	1.3.2	Безразмерное представление напряженности поля	8	
	1.3.3	Безразмерное представление потенциала	8	
	1.3.4	Безразмерное уравнение для силовых линий	9	
1.4	Алі	горитм решения	9	
	1.4.1	Алгоритм для эквипотенциальных поверхностей	9	
	1.4.2	Алгоритм для силовых линий	10	
1.5	Про	10		
	1.5.1	Алгоритм программы	10	
	1.5.2	Код программы (Python)	11	
1.6	Экс	сперимент	13	
Заключение			14	
Список использованных источников				
Рисунок А.1 – Выполнение вычислительного эксперимента				
Рисунок А.2 – Эксперимент для пяти зарядов				

ВВЕДЕНИЕ

Цель работы — моделирование силовых линий и сечений эквипотенциальных поверхностей электрического поля для нескольких (четырех и более) точечных зарядов, одинаковых по модулю, находящихся друг от друга на одинаковых расстояниях.

При реализации проекта необходимо:

- 1. Построить математическую модель в виде дифференциального уравнения.
- 2. Провести масштабирование переменных и привести дифференциальные уравнения к безразмерному виду.
- 3. Написать алгоритм решения дифференциального уравнения. Построить разностную схему и разностные уравнения.
- 4. Составить программу согласно алгоритму. Выходные данные представить в графической форме.
 - 5. Провести вычислительный эксперимент:

Построить силовые линии и сечения эквипотенциальных поверхностей электрического поля для трех разных сочетаний знаков зарядов.

1 МОДЕЛИРОВАНИЕ СИЛОВЫХ ЛИНИЙ И СЕЧЕНИЙ ЭКВИПОТЕНЦИАЛЬНЫХ ПОВЕРХНОСТЕЙ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

1.1 Теоретические основы

Электрическое поле — это область пространства, в которой на помещенные в неё электрические заряды действует сила. Характеристики электрического поля определяются:

Напряжённостью электрического поля:

$$\vec{E} = \frac{\vec{F}}{q}$$

Потенциалом электрического поля, который показывает работу, необходимую для перемещений единичного заряда из данной точки поля в бесконечность:

$$\phi = \frac{W}{q}$$

Точечный заряд — это электрический заряд, сосредоточенный в одной точке. Основное свойство электрического поля, создаваемого точечным зарядом, заключается в его радиальной симметрии. Напряженность поля от точечного заряда q на расстоянии r определяется законом Кулона:

$$\vec{E} = k \frac{q}{r^2} \vec{e_r}$$

где:

k — коэффициент пропорциональности

$$\left(k = \frac{1}{4\pi\varepsilon_0}$$
, где $\varepsilon_0 = \frac{1}{4\pi c^2} \approx 8.85 \cdot 10^{-12} \; \Phi \cdot \text{м}^{-1}\right)$,

- r расстояние от заряда до точки наблюдения,
- $\overrightarrow{e_r}$ единичный вектор направления от заряда.

Силовые линии — это линии, касательные к которым в любой точке совпадают с направлением вектора напряженности электрического поля. Характеристики силовых линий:

- Силовые линии начинаются на положительных зарядах и заканчиваются на отрицательных.
- Чем ближе линии расположены друг к другу, тем сильнее поле.

Эквипотенциальные поверхности — это геометрические места точек, где потенциал электрического поля одинаков. Характеристики:

– Эквипотенциальные поверхности всегда перпендикулярны силовым линиям.

 Работа по перемещению заряда внутри эквипотенциальной поверхности равна нулю.

Электрическое поле от нескольких зарядов рассчитывается по принципу суперпозиции:

$$\vec{E} = \sum_{i=1}^{n} \vec{E_i} = \sum_{i=1}^{n} k \frac{q_i}{r_i^2} \vec{e_{r_i}}$$

Реальное моделирование электрического поля для нескольких зарядов требует использования численных методов из-за сложности аналитического решения для систем с несколькими точками.

1.2 Математическая модель

1.2.1 Определение системы

Рассмотрим систему N точечных зарядов, расположенных в плоскости xOy, где:

- Заряды одинаковы по модулю (|q|) и находятся на одинаковом расстоянии (d) друг от друга.
- Расположение зарядов описывается их координатами (x_i, y_i) , где i = 1, 2, ..., N.
- Знаки зарядов могут варьироваться: положительные (q>0) и отрицательные (q<0).

1.2.2 Вектор напряженности электрического поля

Напряженность электрического поля в точке (x, y) создается суперпозицией полей от всех зарядов:

$$\vec{E}(x,y) = \sum_{i=1}^{N} \vec{E_i}(x,y)$$

где

$$\vec{E_i}(x,y) = k \frac{q_i}{r_i^2} \vec{e_{r_i}}, \qquad r_i = \sqrt{(x - x_i)^2 + (y - y_i)^2}$$

Компоненты напряженности \vec{E} в декартовой системе координат:

$$E_x = \sum_{i=1}^{N} k \frac{q_i(x - x_i)}{r_i^3}, \qquad E_y = \sum_{i=1}^{N} k \frac{q_i(y - y_i)}{r_i^3}$$

1.2.3 Потенциал электрического поля

Потенциал в точке (x, y), создаваемый всеми зарядами, определяется как:

$$\phi(x,y) = \sum_{i=1}^{N} \phi_i(x,y), \qquad \phi_i(x,y) = k \frac{q_i}{r_i}$$

1.2.4 Дифференциальные уравнения для силовых линий

Силовые линии электрического поля определяются траекторией, которая совпадает с направлением \vec{E} в каждой точке. Уравнения силовых линий имеют вид:

$$\frac{dx}{E_x} = \frac{dy}{E_y}$$

В развёрнутом виде:

$$\frac{dx}{\sum_{i=1}^{N} k \frac{q_i(x - x_i)}{r_i^3}} = \frac{dy}{\sum_{i=1}^{N} k \frac{q_i(y - y_i)}{r_i^3}}$$

1.2.5 Уравнение эквипотенциальных поверхностей

Эквипотенциальные поверхности описываются уравнением:

$$\phi(x, y) = const$$

что даёт нелинейное уравнение для x и y при заданных q_i , x_i , y_i .

1.2.6 Параметры системы

- 1. Число зарядов: $N \ge 4$
- 2. Модуль зарядов: |q| = const
- 3. Расположение: Заряды располагаются симметрично на окружности радиуса d или в виде правильного многоугольника. Например, для N=4 (квадрат):

$$(x_1, y_1) = (-d, -d), \quad (x_2, y_2) = (d, -d),$$

 $(x_3, y_3) = (d, d), \quad (x_4, y_4) = (-d, d).$

- 4. Сочетания знаков зарядов:
- Все заряды положительные $(q_i > 0)$
- Два положительных и два отрицательных (попарно)
- Один положительный, остальные отрицательные.

1.3 Масштабирование переменных и приведение к безразмерному виду

1.3.1 Введение характерных масштабов

Для упрощения модели и анализа вводятся безразмерные переменные, которые выражают все величины через характерные масштабы:

Для задачи с симметрично расположенными точечными зарядами естественным выбором является расстояние d между зарядами. Пусть L=d, тогда вводим безразмерные координаты:

$$\tilde{x} = \frac{x}{L}, \qquad \tilde{y} = \frac{y}{L}$$

Характерный масштаб напряженности поля (E_0) :

Выбираем напряженность поля от одного заряда на расстоянии L:

$$E_0 = k \frac{|q|}{L_2}$$

Безразмерная напряженность:

$$\tilde{E}_{x} = \frac{E_{x}}{E_{0}}$$
, $\tilde{E}_{y} = \frac{E_{y}}{E_{0}}$

Характерный масштаб потенциала (ϕ_0):

$$\phi_0 = k \frac{|q|}{L}$$

Безразмерный потенциал:

$$\tilde{\phi} = \frac{\phi}{\phi_0}$$

1.3.2 Безразмерное представление напряженности поля

Заместив $x = L\tilde{x}$, y = Ly в уравнения для E_x и E_y получаем:

$$\tilde{E}_{x} = \sum_{i=1}^{N} \frac{q_{i}}{|q|} \frac{(\tilde{x} - \tilde{x}_{i})}{\tilde{r}_{i}^{3}}, \qquad \tilde{E}_{y} = \sum_{i=1}^{N} \frac{q_{i}}{|q|} \frac{(\tilde{y} - \tilde{y}_{i})}{\tilde{r}_{i}^{3}}$$

где
$$\tilde{r}_i = \sqrt{(\tilde{x} - \tilde{x}_i)^2 + (\tilde{y} - \tilde{y}_i)^2}$$
.

Теперь $\tilde{\vec{E}}$ выражено в универсальной форме, где все расстояния и напряженности нормированы.

1.3.3 Безразмерное представление потенциала

Аналогично замещая получаем:

$$\tilde{\phi} = \sum_{i=1}^{N} \frac{q_i}{|q|} \frac{1}{\tilde{r}_i}$$

1.3.4 Безразмерное уравнение для силовых линий

$$\frac{d\tilde{x}}{\tilde{E}_x} = \frac{d\tilde{y}}{\tilde{E}_y}$$

1.4 Алгоритм решения

Для моделирования силовых линий и эквипотенциальных поверхностей электрического поля, созданного системой точечных зарядов, применим численный метод итераций с использованием сетки и вычислений на основе уравнений для напряженности и потенциала.

1.4.1 Алгоритм для эквипотенциальных поверхностей

Уравнение для потенциала:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

где ρ — плотность заряда. Для точечных зарядов ρ выражается через дельта-функции:

$$\rho(x,y) = \sum_{i=1}^{N} q_i \delta(x - x_i, y - y_i)$$

В безразмерной форме:

$$\widetilde{\nabla}^2 \widetilde{\phi} = -\sum_{i=1}^N q_i \delta(\widetilde{x} - \widetilde{x}_i, \widetilde{y} - \widetilde{y}_i)$$

Для численного решения используем сеточное представление с шагом $\Delta \tilde{x}$ и $\Delta \tilde{y}$.

Разностная схема для уравнения Лапласа:

Дискретизация оператора Лапласа:

$$\nabla^{2} \phi \approx \frac{\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} - 4\phi_{i,j}}{(\Delta \tilde{x})^{2}}$$

Перепишем для $\phi_{i,j}$:

$$\phi_{i,j} = \frac{\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1}}{4}$$

1.4.2 Алгоритм для силовых линий

Для численного интегрирования силовых линий используем метод Эйлера. Пусть $(\tilde{x}_0, \tilde{y}_0)$ — начальная точка силовой линии. Направление определяется вектором напряженности $(\tilde{E}_x, \tilde{E}_y)$.

Шаг метода:

$$\tilde{x}_{n+1} = \tilde{x}_n + \Delta s \cdot \frac{\tilde{E}_x}{\left| \tilde{\vec{E}} \right|}$$

$$\tilde{y}_{n+1} = \tilde{y}_n + \Delta s \cdot \frac{\tilde{E}_y}{\left| \tilde{\vec{E}} \right|}$$

где Δs — шаг интегрирования, а $\left| \tilde{\vec{E}} \right| = \sqrt{\tilde{E}_x^2 + \tilde{E}_y^2}.$

1.5 Программа и реализация

1.5.1 Алгоритм программы

Инициализация:

- Задаем координаты зарядов и параметры сетки.
- Создаем сетку для расчета поля и потенциала.

Расчет потенциала:

- Для каждого заряда на сетке рассчитываем потенциал, создаваемый этим зарядом.
- Суммируем потенциалы всех зарядов, чтобы получить общий потенциал в каждой точке сетки.

Метод итераций для нахождения эквипотенциальных поверхностей:

- Применяем метод конечных разностей для обновления значений потенциала на сетке, исключая значения в точках, где расположены заряды.
 - Повторяем итерации до достижения заданной точности (epsilon).

Расчет напряженности электрического поля:

• Напряженность поля рассчитывается как градиент потенциала (с использованием метода конечных разностей).

Построение силовых линий:

- Для построения силовых линий используем **метод интегрирования уравнений**, описывающих траектории (дифференциальные уравнения для силовых линий).
- На основе полученных значений напряженности строим силовые линии с помощью функции streamplot из библиотеки matplotlib.

Визуализация:

• Выводим эквипотенциальные поверхности и силовые линии на графике с помощью contour и streamplot.

1.5.2 Код программы (Python)

```
import numpy as np
import matplotlib.pyplot as plt
# Константы и параметры
k = 1 # Условная константа кулоновской силы
charge magnitude = 1 # Модуль заряда (в безразмерной форме)
grid size = 100
grid range = 2.0
epsilon = 1e-2 # Точность для завершения итераций
max steps = 5 # Максимальное количество шагов
# Координаты и значения зарядов
charges = [
    {"x": -0.5, "y": -0.5, "q": charge magnitude},
    {"x": 0.5, "y": -0.5, "q": -charge_magnitude},
    {"x": -0.5, "y": 0.5, "q": charge magnitude},
    {"x": 0.5, "y": 0.5, "q": -charge magnitude},
1
x = np.linspace(-grid range, grid range, grid size)
y = np.linspace(-grid range, grid range, grid size)
X, Y = np.meshgrid(x, y)
# Вычисление потенциала (эквипотенциальные поверхности)
phi = np.zeros(X.shape)
for charge in charges:
    dx = X - charge["x"]
    dy = Y - charge["y"]
    r = np.sqrt(dx**2 + dy**2)
    r[r < 0.1] = 0.1
    phi += k * charge["q"] / r
for step in range (max steps):
    phi old = phi.copy()
    # Обновление значений потенциала
    for i in range(1, grid size - 1):
        for j in range(1, grid size - 1):
                                             j], Y[i, j]], [charge["x"],
            if
               not any(np.isclose([X[i,
charge["y"]], atol=0.1).all() for charge in charges):
                phi[i, j] = 0.25 * (phi[i+1, j] + phi[i-1, j] + phi[i, j+1] +
phi[i, j-1])
    diff = np.max(np.abs(phi - phi old))
    print(f"Шаг {step + 1}, изменение потенциала: {diff:.4e}")
    if diff < epsilon:
        print(f"Сходимость достигнута на шаге {step + 1}")
       break
else:
    print ("Максимальное количество шагов достигнуто.")
# Вычисление напряженности поля
Ex = np.zeros(X.shape)
```

```
Ey = np.zeros(Y.shape)
for charge in charges:
    dx = X - charge["x"]
    dy = Y - charge["y"]
    r = np.sqrt(dx**2 + dy**2)
    r[r < 0.1] = 0.1 # Предотвращение деления на 0
    Ex += k * charge["q"] * dx / r**3
    Ey += k * charge["q"] * dy / r**3
E magnitude = np.sqrt(Ex**2 + Ey**2)
Ex normalized = Ex / E magnitude
Ey_normalized = Ey / E_magnitude
plt.figure(figsize=(8, 6))
plt.contour(X, Y, phi, levels=50, cmap="coolwarm", alpha=0.75)
plt.streamplot(X,
                   Υ,
                         Ex normalized, Ey normalized, color=E magnitude,
cmap="viridis", density=1)
for charge in charges:
    color = 'red' if charge["q"] > 0 else 'blue'
    plt.plot(charge["x"], charge["y"], 'o', color=color, markersize=10)
plt.title("Силовые линии и эквипотенциальные поверхности")
plt.xlabel("x (безразмерные координаты)")
plt.ylabel("у (безразмерные координаты)")
plt.colorbar(label="Потенциал / Напряженность")
plt.axis("equal")
plt.grid(True)
plt.show()
```


Рисунок 1 – Результат выполнения программы

1.6 Эксперимент

Для различных конфигураций:

Пример конфигурации зарядов для всех положительных

```
charges_two_positive_two_negative = [
    {"x": -0.5, "y": -0.5, "q": charge_magnitude},
    {"x": 0.5, "y": -0.5, "q": charge_magnitude}, 
{"x": -0.5, "y": 0.5, "q": charge_magnitude}, 
{"x": 0.5, "y": 0.5, "q": charge_magnitude},
# Пример конфигурации зарядов для одного положительного и трех отрицательных
charges_one_positive_three_negative = [
     {"x": -0.5, "y": -0.5, "q": charge_magnitude},
     {"x": 0.5, "y": -0.5, "q": -charge_magnitude},
    {"x": -0.5, "y": 0.5, "q": -charge_magnitude},
    {"x": 0.5, "y": 0.5, "q": -charge magnitude},
]
       (см. Приложение А)
       Так же для пяти точечных зарядов:
configurations = [
    [
         {"x": -0.5, "y": -0.5, "q": charge_magnitude},
         {"x": 0.5, "y": -0.5, "q": -charge_magnitude},
         {"x": -0.5, "y": 0.5, "q": charge_magnitude},
         {"x": 0.5, "y": 0.5, "q": -charge magnitude},
         {"x": 0, "y": 0, "q": charge magnitude},
    ],
         {"x": -0.5, "y": -0.5, "q": charge_magnitude},
         {"x": 0.5, "y": -0.5, "q": charge_magnitude},
         {"x": -0.5, "y": 0.5, "q": charge_magnitude},
         {"x": 0.5, "y": 0.5, "q": charge_magnitude},
         {"x": 0, "y": 0, "q": charge magnitude},
    ],
          {"x": -0.5, "y": -0.5, "q": charge magnitude},
         {"x": 0.5, "y": -0.5, "q": -charge_magnitude}, 
{"x": -0.5, "y": 0.5, "q": -charge_magnitude}, 
{"x": 0.5, "y": 0.5, "q": -charge_magnitude},
          {"x": 0, "y": 0, "q": -charge magnitude},
    ],
1
```

ЗАКЛЮЧЕНИЕ

По итогу проектной работы можно сказать, что модель адекватно отражает основные физические процессы электрического поля, создаваемого системой точечных зарядов. Мы успешно построили математическую модель, применили численные методы для решения дифференциальных уравнений, а также реализовали алгоритм и программу для моделирования силовых линий и эквипотенциальных поверхностей.

В процессе работы было выполнено масштабирование переменных, численное решение для эквипотенциальных поверхностей и интегрирование уравнений для силовых линий. Это позволило не только получить визуализацию, но и закрепить навыки работы с численными методами и программированием.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Кузнецов С. И. Электростатика. Постоянный ток. Учебное пособие. Томск: Изд-во ТПУ, $2006.-119~\mathrm{c}.$
- 2. Савельев, И. В. Курс общей физики. В 5 т. Том 2. Электричество и магнетизм : учебное пособие для вузов / И. В. Савельев. 6-е изд., стер. Санкт-Петербург : Лань, 2022. 344 с. ISBN 978-5-8114-9248-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/189298
- 3. Маликов Р.Ф. Практикум по компьютерному моделированию физических явлений и объектов: Учеб. пособие. Уфа: Изд-во БашГПУ, 2005. 291с

приложение а

Рисунок А.1 – Выполнение вычислительного эксперимента

Рисунок А.2 – Эксперимент для пяти зарядов

ПРИЛОЖЕНИЕ Б

Реализация программы на MATLAB:

```
% Параметры зарядов
charges = [1, -1, 1, -1]; % Заряды (Кл)
charges_x = [-1, 1, 1, -1]; % Координаты зарядов по x (м) charges_y = [-1, -1, 1, 1]; % Координаты зарядов по y (м)
% Сетка расчета (уменьшена для ускорения)
x = linspace(-5, 5, 100);
y = linspace(-5, 5, 100);
[X, Y] = meshgrid(x, y);
% Константы
k = 9e9; % Электростатическая постоянная (<math>H \cdot M^2 / K \pi^2)
num frames = 200; % Количество кадров анимации
dt = 0.05; % Шаг времени для движения зарядов
speed = 20; % Скорость движения зарядов (м/с) — увеличена для более быстрого
движения
figure;
for frame = 1:num frames
    % Обновление координат зарядов (хаотичное движение)
    charges x = \text{charges } x + (\text{rand}(1, \text{length}(\text{charges})) - 0.5) * \text{speed * dt};
    charges y = \text{charges } y + (\text{rand}(1, \text{length}(\text{charges})) - 0.5) * \text{speed * dt};
    charges x = max(min(charges x, max(x)), min(x));
    charges y = max(min(charges y, max(y)), min(y));
    % Расчёт потенциала
    phi = zeros(size(X)); % Матрица для потенциала
    for i = 1:length(charges)
        r = sqrt((X - charges x(i)).^2 + (Y - charges y(i)).^2);
        phi = phi + k * charges(i) ./ r;
    end
    phi(isinf(phi)) = NaN;
    % Масштабирование потенциала для визуализации
    phi scaled = log(abs(phi));
    % Расчёт напряжённости электрического поля (градиент потенциала)
    [Ex, Ey] = gradient(-phi, x(2) - x(1), y(2) - y(1));
    % Построение эквипотенциальных поверхностей
    subplot(1, 2, 1);
    contour(X, Y, phi scaled, 50, 'LineWidth', 1.5);
    hold on;
    scatter(charges x(charges > 0), charges y(charges > 0), 100, 'filled',
    scatter(charges x(charges < 0), charges y(charges < 0), 100, 'filled',</pre>
'b');
    hold off;
    axis equal;
    title('Эквипотенциальные поверхности');
    xlabel('x, m');
    ylabel('y, m');
    colormap('parula');
    colorbar;
    % Построение силовых линий
    subplot(1, 2, 2);
    quiver(X, Y, Ex, Ey, 'k');
    hold on;
    streamslice(X, Y, Ex, Ev)
    scatter(charges x(charges > 0), charges y(charges > 0), 100, 'filled',
'r');
    scatter(charges x(charges < 0), charges y(charges < 0), 100, 'filled',</pre>
'b');
    hold off;
```

```
axis equal;
title('Силовые линии');
xlabel('x, м');
ylabel('y, м');
pause(1 / 60);
drawnow;
end
disp('Анимация завершена.');
```

Данный код моделирует движение четырех точечных зарядов и отображает их силовые линии и сечения эквипотенциальных поверхностей электрических полей.