WHAT IS CLAIMED IS:

1	1. A method, comprising:		
2	receiving an I/O request to an object in storage;		
3	defragmenting the object in storage so that blocks in storage including the object		
4	are contiguous in response to receiving the I/O request; and		
5	executing the I/O request with respect to the object in storage.		
1	2. The method of claim 1, wherein the I/O request is executed with respect to		
2	the object after defragmenting the object.		
1	3. The method of claim 1, further comprising:		
2	determining whether an amount of fragmentation of the object in the storage		
3	exceeds a fragmentation threshold in response to receiving the I/O request, wherein the		
4	object is defragmented if the amount of fragmentation exceeds the fragmentation		
5	threshold.		
1	4. The method of claim 1, further comprising:		
2	determining whether a user settable flag indicates to perform defragmentation in		
3	response to receiving the I/O request, wherein the object is defragmented if the flag		
4	indicates to perform defragmentation.		
1	5. The method of claim 4, further comprising:		
2	executing the I/O request without performing defragmentation if the flag does not		
3	indicate to perform defragmentation.		
1	6. The method of claim 1, further comprising:		
2	determining at least one logical partition including the object, wherein the object		
3	is defragmented if the object is within one logical partition.		

1	7.	The method of claim 1, further comprising:	
2	deter	mining whether the object is read-only, wherein the object is defragmented if	
3	the object is	not read-only.	
1	8.	The method of claim 1, wherein the operation of defragmenting the object	
2	in storage is	performed by a storage controller managing I/O requests to the storage.	
1	9.	The method of claim 1, wherein the operation of defragmenting the object	
2	in storage is performed by a device driver for the storage providing an interface to the		
3	storage.		
1	10.	A system in communication with storage, comprising:	
2	circu	itry enabled to:	
3		(i) receive an I/O request to an object in the storage;	
4		(ii) defragment the object in storage so that blocks in storage including the	
5	object are contiguous in response to receiving the I/O request; and		
6		(iii) execute the I/O request with respect to the object in storage.	
1	11.	The system of claim 10, wherein the I/O request is executed with respect	
2	after defragmenting the object.		
1	12.	The system of claim 10, wherein the circuitry is further enabled to:	
2	deten	mine whether an amount of fragmentation of the object in the storage	
3	exceeds a fra	gmentation threshold in response to receiving the I/O request, wherein the	
4	object is defragmented if the amount of fragmentation exceeds the fragmentation		
5	threshold.		
1	13.	The system of claim 10, wherein the circuitry is further enabled to:	
2	deter	mine whether a user settable flag indicates to perform defragmentation in	
3	response to re	eceiving the I/O request, wherein the object is defragmented if the flag	
4	indicates to perform defragmentation.		

1	14. The system of claim 13, wherein the circuitry is further enabled to:			
2	execute the I/O request without performing defragmentation if the flag does not			
3	indicate to perform defragmentation.			
1	15. The system of claim 10, wherein the circuitry is further enabled to:			
2	determine at least one logical partition including the object, wherein the object is			
3	defragmented if the object is within one logical partition.			
1	16. The system of claim 10, wherein the circuitry is further enabled to:			
2	determine whether the object is read-only, wherein the object is defragmented in			
3	the object is not read-only.			
1	17. The system of claim 10, wherein the circuitry is implemented in a storage			
2	controller managing I/O requests to the storage, wherein operation of defragmenting the			
3	object in storage is performed by the storage controller.			
1	18. The system of claim 10, wherein the circuitry is implemented in a device			
2	driver interfacing between an operating system and the storage, and wherein the			
3	operation of defragmenting the object in storage is performed by the device driver.			
1	19. A system, comprising:			
2	storage;			
3	a storage controller coupled to the storage, wherein the storage controller is			
4.	enabled to:			
5	(i) receive an I/O request to an object in the storage;			
6	(ii) defragment the object in storage so that blocks in storage including the			
7	object are contiguous in response to receiving the I/O request; and			
8	(iii) execute the I/O request with respect to the object in storage.			
1	20. The system of claim 19, wherein the storage controller is further enabled			
2	to:			

3	determine whether an amount of fragmentation of the object in the storage		
4	exceeds a fragmentation threshold in response to receiving the I/O request, wherein the		
5	object is defragmented if the amount of fragmentation exceeds the fragmentation		
6	threshold		
1	21. The system of claim 19, wherein the storage controller and storage device		
2	are included in a same housing.		
1	22. The system of claim 19, further comprising:		
2	a processor; and		
3	a memory enabled to store the I/O request before the I/O request is received by		
4	the storage controller.		
1	23. An article of manufacture in communication with storage, wherein the		
2	article of manufacture is enabled to:		
3	receive an I/O request to an object in storage;		
4	defragment the object in storage so that blocks in storage including the object are		
5	contiguous in response to receiving the I/O request; and		
6	execute the I/O request with respect to the object in storage.		
1	24. The article of manufacture of claim 23, wherein the I/O request is		
2	executed with respect to the object after defragmenting the object.		
1	25. The article of manufacture of claim 23 further enabled to:		
2	determine whether an amount of fragmentation of the object in the storage		
3	exceeds a fragmentation threshold in response to receiving the I/O request, wherein the		
4	object is defragmented if the amount of fragmentation exceeds the fragmentation		
5	threshold.		

1	26. The article of manufacture of claim 23 further enabled to:			
2	determine whether a user settable flag indicates to perform defragmentation in			
3	response to receiving the I/O request, wherein the object is defragmented if the flag			
4	indicates to perform defragmentation.			
1	27 The article of manufacture of claim 26 further enabled to:			
2	execute the I/O request without performing defragmentation if the flag does no			
3	indicate to perform defragmentation.			
1	28. The article of manufacture of claim 23 further enabled to:			
2	determine at least one logical partition including the object, wherein the object i			
3	defragmented if the object is within one logical partition.			
1	29. The article of manufacture of claim 23 further enabled to:			
2	determine whether the object is read-only, wherein the object is defragmented if			
3	the object is not read-only.			
1	30. The article of manufacture of claim 23 wherein the operation of			
2	defragmenting the object in storage is performed by a storage controller managing I/O			
3	requests to the storage.			
1	31. The article of manufacture of claim 23, wherein the operation of			
2	defragmenting the object in storage is performed by a device driver for the storage			
3	providing an interface to the storage.			