Aula 28 Teoria da Complexidade Problema Soma-Subc é NP-completo

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Aulas Passadas

PROBLEMA SOMA-SUBC

SOMA-SUBC \acute{e} NP-completo SOMA-SUBC \in NP 3SAT \leq_{D} SOMA-SUBC

Aulas Passadas

SOMA-SUBC SOMA-SUBC é NP-completo SOMA-SUBC € NP Problemas "Fáceis" e "Razoáveis"

Prof. Eurinardo

Aulas Passadas

Aulas Passadas

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC é
NP-completo
SOMA-SUBC ∈ NP
3SAT ≤ SOMA-SUBC

Aulas Passadas

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC
- Redução Polinomial

AA - Aula 20

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC é
NP-completo
SOMA-SUBC ∈ NP

- ► Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC \acute{e} NP-completo
SOMA-SUBC \in NP
3SAT $<_{p}$ SOMA-SUBC

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Prof. Eurinardo

Aulas Passadas

PROBLEMA SOMA-SUBC SOMA-SUBC \acute{e} NP-completo SOMA-SUBC \acute{e} NP $_3$ SAT \leq_{ρ} SOMA-SUBC

- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

$$\blacktriangleright \begin{cases}
B \in NPC \\
B \leq_{p} C \\
C \in NP
\end{cases} \Rightarrow C \in NPC$$

Prof. Eurinardo Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC é
NP-completo
SOMA-SUBC ∈ NP
3SAT <₀ SOMA-SUBC

- Classe P, NP e NPC
- ► Redução Polinomial

$$A \leq_p B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

$$\blacktriangleright \left\{
\begin{cases}
B \in NPC \\
B \leq_p C \\
C \in NP
\end{cases}
\Rightarrow C \in NPC$$

 $\blacktriangleright \ \, (\mathsf{Cook}\text{-}\mathsf{Levin}) \; \mathsf{SAT} \in \mathsf{NPC}$

Prof. Eurinardo Aulas Passadas

PROBLEMA SOMA-SUBC SOMA-SUBC \acute{e} NP-completo SOMA-SUBC \acute{e} NP 3SAT \leq_{ρ} SOMA-SUBC

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

$$\blacktriangleright \left\{
\begin{cases}
B \in NPC \\
B \leq_{p} C \\
C \in NP
\end{cases}
\right\} \Rightarrow C \in NPC$$

- ► (Cook-Levin) SAT ∈ NPC
- ▶ 3SAT ∈ NPC

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

▶ Teorema

$$\blacktriangleright \left\{
\begin{cases}
B \in NPC \\
B \leq_{p} C \\
C \in NP
\end{cases}
\Rightarrow C \in NPC$$

- ► (Cook-Levin) SAT ∈ NPC
- ▶ 3SAT ∈ NPC
- ► CLIQUE ∈ NPC

- Problemas "Fáceis" e "Razoáveis"
- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

$$\blacktriangleright \left\{
\begin{cases}
B \in NPC \\
B \leq_p C \\
C \in NP
\end{cases}
\Rightarrow C \in NPC$$

- ► (Cook-Levin) SAT ∈ NPC
- ▶ 3SAT ∈ NPC
- ► CLIQUE ∈ NPC
- COBVERT ∈ NPC

Teoria da Complexidade

PAA - Aula 28

Prof. Eurinardo

Aulas Passadas

PROBLEMA SOMA-SUBC

NP-completo

SOMA-SUBC € NP

3SAT ≤_p SOMA-SUBC

Instância:

Instância: um conjunto $S = \{s_1, \cdots, s_k\}$ de inteiros e um inteiro t

Instância: um conjunto $S = \{s_1, \cdots, s_k\}$ de inteiros

e um inteiro t

Pergunta:

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja *t*?

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja *t*?

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja *t*?

Exemplo

 $\textit{S} = \{1, 2, 4, 8, 16, 32\}$

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja *t*?

$$S = \{1, 2, 4, 8, 16, 32\}$$

 $t = 50$

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja t?

$$\left. \begin{array}{l} S = \{1, 2, 4, 8, 16, 32\} \\ t = 50 \end{array} \right\} \rightarrow$$

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja t?

$$S = \{1, 2, 4, 8, 16, 32\}$$
 $\rightarrow sim$

Instância: um conjunto $S = \{s_1, \dots, s_k\}$ de inteiros e um inteiro t

Pergunta: existe um subconjunto de *S* cuja a soma de elementos seja t?

Teoria da Complexidade

PAA - Aula 28

Prof. Eurinardo

Aulas Passadas

PROBLEMA SOMA-SUBC

SOMA-SUBC É NP-completo SOMA-SUBC € NP

PROBLEMA SOMA-SUBC é NP-completo.

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

PROBLEMA SOMA-SUBC *é NP-completo*.

Demonstração.

Usaremos o teorema

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC é
NP-completo
SOMA-SUBC ∈ NP

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC 6
NP-completo
SOMA-SUBC E NP
3SAT SOMA-SUBC

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_{p} C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = SOMA-SUBC

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC 6
NP-complete

completo

MA-SUBC \in NP

SAT \leq_p Soma-SUBC

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_{p} C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = SOMA-SUBC. Deste modo,

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC 6
NP-completo
SOMA-SUBC ∈ NP
3SAT ≤ n SOMA-SUBC

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B=3SAT e C=SOMA-SUBC. Deste modo, basta mostrar que $3SAT \leq_{p} SOMA-SUBC$

Prof. Eurinardo

Aulas Passadas

PROBLEMA
SOMA-SUBC
SOMA-SUBC é
NP-completo
SOMA-SUBC \in NP
3SAT \leq_{p} SOMA-SUBC

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = SOMA-SUBC. Deste modo, basta mostrar que 3SAT $\leq_p SOMA-SUBC$ e que $SOMA-SUBC \in NP$.

Prof Furinardo

Aulas Passadas

PROBLEMA SOMA-SUBC SOMA-SUBC é NP-completo SOMA-SUBC \in NP 3SAT \leq_{p} SOMA-SUBC

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

 $\mathsf{Soma}\text{-}\mathsf{Subc} \in \mathsf{NP}$

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

 $\mathsf{SOMA}\text{-}\mathsf{SUBC} \in \mathsf{NP}$

Certificado:

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

 $\mathsf{SOMA}\text{-}\mathsf{SUBC} \in \mathsf{NP}$

Certificado: conjunto S' de inteiros

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

 $\mathsf{SOMA}\text{-}\mathsf{SUBC} \in \mathsf{NP}$

Certificado: conjunto S' de inteiros

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

$\mathsf{SOMA}\text{-}\mathsf{SUBC} \in \mathsf{NP}$

Certificado: conjunto S' de inteiros

Verificação:

S' ⊆ S?

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

Soma-Subc $\in NP$

Certificado: conjunto S' de inteiros

Verificação:

 $ightharpoonup S' \subseteq S? O(n^2)$

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

SOMA-SUBC $\in NP$

Certificado: conjunto S' de inteiros

Verificação:

► $S' \subseteq S$? $O(n^2)$, basta verficar se para cada $x' \in S'$ temos que $x' \in S$.

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

SOMA-SUBC $\in NP$

Certificado: conjunto S' de inteiros

- ► $S' \subseteq S$? $O(n^2)$, basta verficar se para cada $x' \in S'$ temos que $x' \in S$.
- ▶ a soma dos elementos de S' é igual a t?

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

SOMA-SUBC $\in NP$

Certificado: conjunto S' de inteiros

- ► $S' \subseteq S$? $O(n^2)$, basta verficar se para cada $x' \in S'$ temos que $x' \in S$.
- ightharpoonup a soma dos elementos de S' é igual a t? O(n)

PROBLEMA SOMA-SUBC é NP-completo.

Demonstração.

SOMA-SUBC $\in NP$

Certificado: conjunto S' de inteiros

- ▶ $S' \subseteq S$? $O(n^2)$, basta verficar se para cada $x' \in S'$ temos que $x' \in S$.
- ▶ a soma dos elementos de S' é igual a t? O(n), basta percorrer os elementos de S' computando a soma.

PROBLEMA
SOMA-SUBC
SOMA-SUBC 6
NP-completo
SOMA-SUBC \in NP
3SAT \leq_p SOMA-SUBC

SIPSER, M. Introdução a teoria da computação. 2 ed. Thompson Learning, ano 2007.

Prof. Eurinardo

Aulas Passadas

PHOBLEMA

SOMA-SUBC

SOMA-SUBC é
NP-completo

SOMA-SUBC ∈ NP

3SAT < SOMA-SUBC

Obrigado!