CONTENT

1. Problem

Text Spotting Pipeline

Detection

Crop

Recognition

Detection

Crop

Recognition

End-to-End Text Spotting: Global optimization/ Reduce error accumulation/ maintenance cost

Text Spotting Pipeline

End-to-End Text Spotting: Global optimization/ Reduce error accumulation/ maintenance cost

弯曲文本检测+差值采样

Problem: Recognition relies on detection —— accurate boundaries required

Detection Annotations

Problem: Recognition relies on detection —— accurate boundaries required

Trade of expansion

"WOODFORD"
"RESERVE"
"DISTILLERY"

. . .

2. Method

If there is only one text ...

Industrial OCR scene (Industrial Printing Recognition / Meter Dial Recognition/ Plate License Recognition ···)

Text Spotting ≈ **Text Recognition**!

If there is only one text ...

Industrial OCR scene (Industrial Printing Recognition / Meter Dial Recognition/ Plate License Recognition ···)

The workflow of single-text-based text spotting

Q: How to define the output order (one-to-one matching)?

If more than one text occupies a grid. (1) increase grid numbers (2) define the priority

Occupy Ratio
$$o_{i,j} = \max \left(\frac{Inter(A(g_j), A(t_i))}{A(g_j)}, \frac{Inter(A(g_j), A(t_i))}{A(t_i)} \right)$$

Q: How to define the output order (one-to-one matching)?

If more than one text occupies a grid. (1) increase grid numbers (2) define the priority

Occupy Ratio

$$o_{i,j} = \max \left(\frac{Inter(A(g_j), A(t_i))}{A(g_j)}, \frac{Inter(A(g_j), A(t_i))}{A(t_i)} \right)$$

Inference Stage

$$instance_i^{(k)} = \arg\max\left(\sum_{j \in (S \times S)} (o_{i,j} \cdot x_{recog}[j][k])\right)$$

Mask(Segmentation) Supervision ≈ Attention Guided

C feature map Channels

H feature map height

W feature map width

word max length

S² grid numbers

The workflow of MANGO

Mask(Segmentation) Supervision ≈ Attention Guided

Training network in two phases:

Pre-training: $\mathcal{L} = \lambda_1 \mathcal{L}_{cls} + \lambda_2 \mathcal{L}_I + \lambda_3 \mathcal{L}_C + \mathcal{L}_{recog}$

Fine-tuning: $\mathcal{L} = \lambda \mathcal{L}_{cls} + \mathcal{L}_{recog}$

Decouple detection and recognition

- **Recognition**: rely on rough position (attention)
- > **Detection**: provide accurate position —— used in inference

Model only need to be pre-trained once

3. Experiment

Implement Details:

- Backbone: ResNet-50 + FPN
- L=25, S=40 (IC13, Total-Text, SCUT-CTW1500) 60 (IC15)
- Pytorch, 8 32GB-Tesla-V100 GPUs
- Data augmentations: mutl-scale training, rotate, jitters, brightness...
- Single scale testing
- End-to-End metric: IoU > 0.1 (detected by centerline segmentation)
- Sample K valid grids from SxS to save computing cost.

Visualization Results:

(10,34)BE 11,34)BELIEVE (12,34)BELIEVE (13,34)BELIEVE (14,34)BELIEVE (15,34)BELIEVE (16,34)BELIEVE (20,34)NOURISH. (21,34)NOURISH. (22,34)NOURISH. (23,34)NOURISH. (24,34)NOURISH. (25,34)NOURISH. (26,34)NOURISH (27,34)NOURISH (28,34)NOURISH (32,34)MOVE. (33,34)MOVE. (34,34) MOVE. (35,34)MOVE (36,34)MOVE. (37,34)MOVE

(22,26)EE (23,11)TOURIST (23,25) VEHICLE (24,12)TOURIST (24,25)VEHICLE (25,12)TOURIST (25,24) VEHICL (26,13)TOURIST (08,21)PERMIE (26,14)TOURIST (08,22)PERMIT (26,23) **VEHICLE** (27,14) TOURIST (09,22)PERMIT (27,15)TOURIST (09,23)PERMIT (27,21) VEHICLE (27,22) VEHICLE (10,23)PERMIT (10,24)PERMIT (27,23) VEHICLE (28,15)TOURIST (11,24)PERMIT (28,16)TOURITT (28,17) TOURIST (12,25)PERMIT (28,19)TOURIST (28,20) VEHICL (28,21)VEHICL

Visualization Results:

(17.14) LUCKY

(17.15) LUCKY

(18,09) LUCKY

(18.16) LUCKY

(18,11)LUCKY

(18,12)LUCKY

(18,13)LUCKY

(18,14)LUCKY

(18,17)LUCKY (19,09)LUCKY

(18,16)LUCKY

(19,10)LUCKY (19,11)LUCKY (19,11)LUCKY (19,12)LUCKY

(18,15)LUCKY

(19,13)LUCKY

19,31)MOOSE (25,18)BAR

(20,21)LUCKC (26,13)BAR

(25,19)BAR

(25,20)BAF

(25,21) & (25,22) & (25,23) &

(25,24) &

(25,25)GRILL

(25,26) GRILL

(25,27) GRILL

(25,28) GRILL

(25,29) GRILL

(26,12)BAR

(26,14)BAR

(20.09)LUCKY

20,10)LUCKY

(20.12)LUCKY

(20,13)LUCKY

(20,14)LUCKY

(20,15)LUCKY

(20,16)LUCKY

(20,17)LUCKY

(20,18)LUCKY (20,19)KY

(20 20)LUCK

(20,22)LUCK

(20,23)LUCKE

(20.11) LUCKY

(27.15)BAR

(27,16)BAR

Performance Evaluation:

Method	End-to	FPS	
Wethod	None	Full	113
Mask TextSpotter (Liao et al. 2019)	65.3	77.4	2.0
CharNet R-50 (Xing et al. 2019)	66.2	-	1.2
TextDragon (Feng et al. 2019)	48.8	74.8	-
Unconstrained (Qin et al. 2019)	67.8	-	-
Boundary (Wang et al. 2020a)	65.0	76.1	-
Text Perceptron (Qiao et al. 2020)	69.7	78.3	-
ABCNet (Liu et al. 2020)	64.2	75.7	17.9
MANGO (1280)	71.7	82.6	8.9
MANGO (1600)	72.9	83.6	4.3

Table 2: Results on Total-Text. 'Full' indicates lexicons of all images are combined. 'None' means lexicon-free. The number in brackets is the resized longer side of input image.

Method	End-to	FPS	
Wethod	None	Full	113
Text Perceptron (Qiao et al. 2020)	57.0	-	-
ABCNet (Liu et al. 2020)	45.2	74.1	-
MANGO (1080)	58.9	78.7	8.4

Table 3: Results on CTW1500. "Full" indicates lexicons of all images are combined. "None" means lexicon-free. The number in brackets is the resized longer side of input image.

Effect of Grid Numbers:

S	IC13						15	Total-Text			
	S	W	G		S				None	l	
20	83.2	82.5	78.7	6.58	33.8	33.0	29.1	5.12	46.9	58.5	4.49
30	88.8	88.3	85.9	6.32	69.4	67.1	57.8	4.57	69.8	80.6	4.37
40	90.5	90.0	86.9	6.25	80.4	77.3	66.8	4.43	72.9	83.6	4.28
50	90.3	89.8	86.7	6.12	81.6	78.8	67.8	4.38	73.1	83.0	4.23
60	89.9	89.3	85.7	6.07	81.8	78.9	67.3	4.27	72.2	82.9	4.21

Table 4: Evaluation results under different grid numbers.

Effect of Different Detection Supervisions:

Supervision Type		IC15	Total-Text			
Supervision Type	S	W	G	None	Full	
Strong	81.8	78.9	67.3	72.9	83.6	
Weak	81.8	78.3	64.0	69.7	80.6	

Table 5: Results under different detection supervision types. 'Strong' means the original annotations, and 'Weak' means rectangular bounding box annotations.

Experiment on CCPD with no detection annotation:

Method	Base(100k)	DB	FN	Rotate	Tilt	Weather	Challenge	AP
SSD300 + HC	98.3	96.6	95.9	88.4	91.5	87.3	83.8	95.2
RPnet(Xu et al. 2018)	98.5	96.9	94.3	90.8	92.5	87.9	85.1	95.5
MANGO	99.0	97.1	95.5	95.0	96.5	95.9	83.1	96.9

Table 1: End-to-End recognition precision results on CCPD.

Contact Email:

<u>qiaoliang6@hikvision.com</u> chengzhanzhan@hikvision.com

More works from Davar-Lab:

https://davar-lab.github.io/

Reference

- [1] Qiao, L.; Tang, S.; Cheng, Z.; Xu, Y.; Niu, Y.; Pu, S.; and Wu, F. 2020. Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting. In AAAI, 11899–11907.
- [2] Wang, H.; Lu, P.; Zhang, H.; Yang, M.; Bai, X.; Xu, Y.; He, M.; Wang, Y.; and Liu, W. 2020a. All You Need Is Boundary: Toward Arbitrary-Shaped Text Spotting. In AAAI, 12160–12167.
- [3] Qin, S.; Bissacco, A.; Raptis, M.; Fujii, Y.; and Xiao, Y. 2019. Towards unconstrained end-to-end text spotting. In ICCV, 4704–4714.
- [4] Feng, W.; He, W.; Yin, F.; Zhang, X.; and Liu, C. 2019. TextDragon: An End-to-End Framework for Arbitrary Shaped Text Spotting. In ICCV, 9075–9084.
- [5] Liu, Y.; Chen, H.; Shen, C.; He, T.; Jin, L.; and Wang, L. 2020. ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. In CVPR, 9809–9818.
- [6] Wang, T.; Zhu, Y.; Jin, L.; Luo, C.; Chen, X.; Wu, Y.; Wang, Q.; and Cai, M. 2020b. Decoupled Attention Network for Text Recognition. In AAAI, 12216–12224.
- [7] Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; and Li, L. 2019b. SOLO: Segmenting objects by locations. arXiv preprint arXiv:1912.04488.
- [8] Wang, X.; Zhang, R.; Kong, T.; Li, L.; and Shen, C. 2020c. SOLOv2: Dynamic, Faster and Stronger. arXiv preprint arXiv: 2003.10152.

THANKS!

MANGO: A Mask Attention Guided One-Stage Scene Text Spotter

Image to a batch of recognition results without Rol

C feature map Channels

H feature map height

W feature map width

L word max length

S² grid numbers