

FAST PARALLEL SORTING ALGORITHMS ON GPUS

Introduction

Odd-Even Sort

Odd-Even Sort

- The odd-even sort is a parallel sorting algorithm and is based on bubble-sort technique.
- Adjacent pairs of items in an array are exchanged if they are found to be out of order.
- Total running time fort this technique is O(log 2N).

Odd-Even Sort Algorithm

Algorithm 1 Odd Even Sort

```
for k=1 \rightarrow N/2 do
   do parallel
   if i > i + 1 \ \forall \ i\%2 != 0 then
        swap i, i + 1
    end if
    end parallel
   do parallel
   if i > i + 1 \ \forall \ i\%2 == 0 then
        swap i, i+1
    end if
   end parallel
end for
```

Odd-Even Sort Algorithm

Bitonic Sort

3

- A bitonic sorting network sorts *n* elements in Θ(log²*n*) time.
- A bitonic sequence has two tones increasing and decreasing, or vice versa. Any cyclic rotation of such networks is also considered bitonic.
- \bigcirc $\langle 1,2,4,7,6,0 \rangle$ is a bitonic sequence, because it first increases and then decreases. $\langle 8,9,2,1,0,4 \rangle$ is another bitonic sequence.
- The kernel of the network is the rearrangement of a bitonic sequence into a sorted sequence.

- **○** Let $s = \langle a_0, a_1, ..., a_{n-1} \rangle$ be a bitonic sequence such that $a_0 \leq a_1 \leq \cdots \leq a_{n/2-1}$ and $a_{n/2} \geq a_{n/2+1} \geq \cdots \geq a_{n-1}$.
- Consider the following subsequences of s:

$$s_{1} = \langle \min\{a_{0}, a_{n/2}\}, \min\{a_{1}, a_{n/2+1}\}, \dots, \min\{a_{n/2-1}, a_{n-1}\} \rangle$$

$$s_{2} = \langle \max\{a_{0}, a_{n/2}\}, \max\{a_{1}, a_{n/2+1}\}, \dots, \max\{a_{n/2-1}, a_{n-1}\} \rangle$$

$$(1)$$

Note that s_1 and s_2 are both bitonic and each element of s_1 is less than every element in s_2 .

• We can apply the procedure recursively on s_1 and s_2 to get the sorted sequence.

Original																
sequence	3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
1st Split	3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
2nd Split	3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3rd Split	3	0	8	5	10	9	14	12	18	20	35	23	60	40	95	90
4th Split	0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Original

Merging a 16-element bitonic sequence through a series of log 16 bitonic splits.

- We can easily build a sorting network to implement this bitonic merge algorithm.
- Such a network is called a bitonic merging network.
- The network contains $\log n$ columns. Each column contains n/2 comparators and performs one step of the bitonic merge.
- lacktriangle We denote a bitonic merging network with n inputs by $\oplus BM[n]$.
- Replacing the ⊕ comparators by Θ comparators results in a decreasing output sequence; such a network is denoted by ΘBM[n].

A bitonic merging network for n=16. The entire figure represents a $\oplus BM[16]$ bitonic merging network. The network takes a bitonic sequence and outputs it in sorted order.

How do we sort an unsorted sequence using a bitonic merge?

We must first build a single bitonic sequence from the given sequence.

- A sequence of length 2 is a bitonic sequence.
- A bitonic sequence of length 4 can be built by sorting the first two elements using ⊕BM[2] and next two, using ⊕BM[2].
- This process can be repeated to generate larger bitonic sequences.

A schematic representation of a network that converts an input sequence into a bitonic sequence. In this example, $\bigoplus BM[k]$ and $\bigoplus BM[k]$ denote bitonic merging networks of input size k that use \bigoplus and \bigoplus comparators, respectively. The last merging network ($\bigoplus BM[16]$) sorts the input. In this example, n=16.

Bitonic Sequence

Step #1

Bitonic Sequence

Bitonic Sequence

Bitonic Sort

- The sequence of comparisons is data-independent makes it one of the fastest and suitable parallel sorting algorithms.
- In the first step it makes the arbitrary sequence in to bitonic sequence.
- In the second step the bitonic sequence is sorted.

Conclusion

- Sorting is one of the most fundamental problems in computer science, as it is used in most software applications.
- This presentation shows different parallel sorting algorithms on GPUs.
- The performance is affected mainly by: nature of algorithm and hardware platforms.