

BATCH

LESSON

DATE

B 84 Data Science

Machine Learning

12.09.2022

SUBJECT: Supervised Learning

MACHINE LEARNING - 3

Makine Öğrenmesi – 3

Overall Table of Contents

General Content

- Supervised LearnigAlgorithm Classisfication
- Supervised Algorithm practices Python application
- Projects Solutions

SUPERVISED LEARNING -Classification

Sınıflandırma

CLASSIFICATION VS REGRESSION

Classification 'a Giriş (Sınıflandırma)

- Regresyonda neler gördük
- Supervised Learning in 2. tipi olarak Classification
- Regression vs Classification
- Target için Kategorik Sınıflandırma vardır

!! Regresyonda target hedef değişkenin sayısal değerlerini; sınıflandırmada ise target değişkenin ait olduğu sınıfları (ya da "etiketi") tahmin eden modelleri oluşturmaya çalışırız.

Classification 'a Giriş

- Classification un hayattaki kullanım alanları
- Binary Classification

Spam Mail Detection

Boy	Kilo	Cinsiyet
160	65	K
170	85	E
185	85	E
188	82	E
155	50	K
161	58	K
180	68	E
157	52	K
170	66	K

Classification 'a Giriş

- Binary Classification
- Kategori tahmini
- «Yakınlık» kavramı 'ara mesafe ölçümü'

Classification 'a Giriş

- «Yakınlık» kavramı «ara mesafe ölçümü»

Where are we?

K Nearest Neighbour-KNN Algoritması

K-EN YAKIN KOMŞU Algoritması

- Classification için en basit yol olarak KNN
- En yakın komşu sayısı

K Nearest Neighbour-KNN Algoritması

© Öklid mesafesi

K Nearest Neighbour-KNN

Algoritması

- **⊘** KNN avantajları
- KNN dezavantajları

kNN Algorithm

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

K Nearest Neighbour-KNN Algoritması

Decision boundary kavramı

Multi Label KNN (Çok sınıflı KNN)

learn

Evaluation Metrics for Classification Problems

(Performans Ölçütleri)

- Regresyon kriterleri nasıl olurdu burada?
- Confusion metrics kavramı

Regression

- o MSPE
- MSAE
- R Square
- Adjusted R Square

Classification

- o Precision-Recall
- o ROC-AUC
- Accuracy
- o Log-Loss

Evaluation Metrics for Classification Problems © Confusion metrics kavramı: TN-FN-FP-TP

2-SINIFLI (CLASS) SINIFLANDIRMA MODELİ İÇİN HATA MATRİSİ

2-SINIFLI (CLASS) SINIFLANDIRMA MODELİ İÇİN HATA MATRİSİ

		Tahmin Edilen Sınıflar			
ā		Negatif (0)	Pozitif (1)		
Sin	Negatif (0)	DN	YP		
ě	Pozitif (1)	YN	DP		
2					

Evaluation Metrics for Classification Problems Confusion metrics kavramı: TN-FN-FP-TP

Tahmin Edilen Sınıflar Negatif (0) Pozitif (1) Yanlış Pozitif Doğru Negatif (I. Tip Hata) Gerçek (Aktüel) Sınıflar değilsiniz. Hamilesiniz.

Predicted

Actual

	0	1
0	30	12
1	8	56

SINIFLANDIRMA MODELLERİ İÇİN PERFORMANS DEĞERLENDİRME ÖLÇÜTLERİ

Tahmin Edilen Sınıflar

Negatif (0) Pozitif (1) YΡ Negatif (0) DN YΝ Pozitif (1) DP

Doğruluk (Accuracy): Doğru tahmin edilen hedef değişkenlerin tüm hedef değişkenlerine oranıdır. Model hedef değişkenleri ne kadar doğrulukla

Kesinlik (Precision): Doğru pozitif olarak tahmin edilen gözlemlerin tüm pozitif gözlemlere oranıdır. Doğru bir şekilde pozitif tahmin edilen gözlemlerin gerçekte ne kadarı doğrudur?

tahmin ediyor?

Duyarlılık (Recall): Doğru bir şekilde pozitif olarak tahmin edilen gözlemlerin ne kadar başarılı tahmin edildiğini gösterir.

F1 Skoru: Kesinlik (precission) ve Duyarlılığın (Recall) harmonik ortalamasıdır.

$$Doğruluk(Accuracy) = \frac{DP + DN}{DP + DN + YP + YN}$$

$$Kesinlik (Precision) = \frac{DP}{DP + YP}$$

$$Duyarlılık (Recall) = \frac{DP}{DP + YN}$$

$$F1 = 2 * \frac{(Kesinlik * Duyarlılık)}{(Kesinlik * Duyarlılık)}$$

All correctly predicted values (7)

All predicted values (10)

x 100 Accuracy = 70 %

Why is Accuracy <u>not</u> a good metric?

Cancer Detection Example:

All correctly predicted values (60)

All predicted values (63)

Accuracy is very high, but missed 2 actual patient.

X 100

Evaluation Metrics for Classification Problems

Confusion metrics kavramı: TN-FN-FP-TP

Gerçek/Actual Veri Tahmin						
Boy	Kilo	Cinsiyet	Etiket	Tahmin Edilen Cinsiyet	Etiket	Hata Türü
170	75	E	0	E	0	DN
180	95	E	0	E	0	DN
160	50	K	1	K	1	DP
165	62	K	1	K	1	DP
167	88	K	1	Е	0	YN

Classification Error Metrics
Confusion Matrix 01
Classification Accuracy 02
Area Under ROC curve
Logarithmic Loss 04
F1 Score 05

Hata Matrisi		Tahmin Edilen Etiketler	
Negatif (0)		Pozitif (1)	
Gerçek/Aktüel Negatif (0)		DN=2	YP=0
Veri	Pozitif (1)	YN=1	DP=2

		precision	recall	f1-score	support
	E	0.67	1.00	0.80	2
	K	1.00	0.67	0.80	3
micro	avg	0.80	0.80	0.80	5
macro	avg	0.83	0.83	0.80	5
eighted	avg	0.87	0.80	0.80	5

Evaluation Metrics for Classification Problems

- **ROC Curve (Receiver Operating Characteristics)**
- AUC Area (Area Under the Curve)

AUC'un olabildiğinde yüksek olması (1'e yakın olmasını) istiyoruz AUC ne kadar yüksekse model o kadar negatif (0) durumları negatif; pozitif (1) durumları da pozitif öngörüyor demektir.

Evaluation Metrics for Classification Problems

Yellowbrick ile confusion matrics

Bu dersi anladım..

Everythig is clear?

Do you have any questions?

Send it to us! We hope you learned something new.