

CINEMATIQUE & DYNAMIQUE NEWTONIENNE

PHYSIQUE

F1

Cours E.BESSON

1 . Position du problème

La $m\'{e}canique du point$ est la science qui se propose de $mod\'{e}liser$ le mouvement d'un mobile lorsqu'il est réduit à son centre de $gravit\'{e}$ G. Une telle étude nécessite de définir précisemment :

- Le système étudié;
- Le référentiel dans lequel on se place pour décrire le mouvement du système ;
- Une base mathématique $(0, \vec{i}, \vec{j}, \vec{k})$ et une horloge pour se repérer dans l'espace et le temps.

La description du mouvement, nommée cinématique, repose sur le calcul au cours du temps t des coordonnées de $trois\ grandeurs\ vectorielles\ fondamentales$:

Le vecteur position

$$\overrightarrow{OG}(t) \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

Renseigne sur la trajectoire empreintée par le mobile

Le vecteur vitesse

$$\vec{v}(t) egin{pmatrix} v_x(t) \\ v_y(t) \\ v_z(t) \end{pmatrix}$$

Renseigne sur la vitesse avec laquelle le mobile se déplace le long de la trajectoire

Le vecteur accélération

$$\vec{a}(t) \begin{pmatrix} a_x(t) \\ a_y(t) \\ a_z(t) \end{pmatrix}$$

Renseigne sur la manière dont le vecteur vitesse évolue le long de la trajectoire, en direction et en valeur

2. Vitesses moyenne & instantanée

- La vitesse moyenne d'un point entre deux positions est la distance parcourue divisée par la durée du parcours.
- ullet La **vitesse instantanée** v(t) du point G est égale à sa vitesse moyenne entre deux positions infiniment proches dans le temps.

Dans le référentiel d'étude, le vecteur vitesse du point G à l'instant t se définit comme le **vecteur dérivé** du vecteur

position OG(t) par rapport au temps t :

Il est tangent à la trajectoire et orienté dans le sens du mouvement. Sa norme s'exprime en $m.\,s^{-1}$.

$$\overrightarrow{v_G}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{OG}}{\Delta t} = \frac{d\overrightarrow{OG}(t)}{dt}$$

Coordonnées du vecteur vitesse

$$\vec{v}(t) \left(\frac{d x(t)}{dt} ; \frac{d y(t)}{dt} ; \frac{d z(t)}{dt} \right)$$

ullet Sur un enregistrement, on trace le vecteur vitesse à la date t_i en utilisant la méthode géométrique suivante :

$$\overrightarrow{v_G}(t_i) \approx \overrightarrow{OG_{i+1}} - \overrightarrow{OG_{i-1}}$$
 $t_{i+1} - t_{i-1}$

$$\overrightarrow{v_G}(t_i) \approx \frac{\overrightarrow{G_{i-1}G_{i+1}}}{t_{i+1}-t_{i-1}}$$

3. Accélération

Dans le référentiel d'étude, le vecteur accélération du point G à l'instant t se définit comme le **vecteur dérivé** du vecteur vitesse $\overrightarrow{v_G}$ de G par rapport au temps t: L'accélération est une variation de vitesse par unité de temps. Elle s'exprime donc en m. s^{-2} .

$$\overrightarrow{a_G}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{v_G}}{\Delta t} = \frac{d\overrightarrow{v_G}}{dt}$$

Coordonnées du vecteur accélération

$$\vec{a}(t) \left(\frac{d v_x(t)}{dt} ; \frac{d v_y(t)}{dt} ; \frac{d v_z(t)}{dt} \right)$$

ullet Sur un enregistrement, on trace le vecteur accélération du mobile à la date t_i en utilisant la méthode géométrique suivante :

$$\overrightarrow{a_G}(t_i) \approx \frac{\overrightarrow{v_G(t_{i+1})} - \overrightarrow{v_G(t_{i-1})}}{t_{i+1} - t_{i-1}}$$

$$\overrightarrow{a_G}(t_i) \approx \frac{\Delta \overrightarrow{v_{i-1}}_{i+1}}{t_{i+1} - t_{i-1}}$$

4. Seconde loi de Newton

La seconde loi de Newton, appelée aussi loi fondamentale de la dynamique, relie *les causes du mouvement* (les forces) à *leurs conséquences* (le mouvement lui-même).

A chaque instant t, elle relie la résultante \vec{S} des forces qui s'applique sur le système, non pas à la vitesse $\overrightarrow{v_G}(t)$ du système mais à la variation au cours du temps de cette vitesse, c'est-à-dire à son accélération $\overrightarrow{a_G}(t)$.

Dans un référentiel Galiléen, la somme vectorielle des forces extérieures \overrightarrow{S} s'appliquant sur un système à un instant t est proportionnelle à l'accélération $\overrightarrow{a_G}(t)$ du centre d'inertie G de ce système à cet instant.

Le coefficient de proportionnalité est la masse ${\it m}$ du système :

$$\vec{S} = \sum \overrightarrow{F_{ext}} = m \times \overrightarrow{a_G}(t)$$

Isaac Newton (1643 – 1727)

La seconde loi de Newton permet ainsi de calculer les coordonnées du vecteur accélération du système pour toute date t:

$$\overrightarrow{a_G}(t)$$
 $\left(\frac{S_x}{m}; \frac{S_y}{m}; \frac{S_z}{m}\right)$