1)	
2)	

)rimaira	Drove	_	EO2	Λ	11	/04	/2011	
Primeira	Prova -	- F	502	A —	14/	/U4	/2011	

3) _____

4) _____

Nota: _____

Nome:_____ RA:____

Questão 1 (2,5 pts): O potencial elétrico de uma determinada configuração é dado pela expressão $V(\vec{r}) = A \frac{e^{-\lambda r}}{r}$, onde A e λ são constantes.

- a) Encontre o campo elétrico \vec{E} (\vec{r}) .
- b) Encontre a densidade de carga $\rho(\vec{r})$.
- c) Ache a carga total Q.

Questão 2 (2,5 pts): Considere uma esfera sólida uniformemente carregada de raio R e carga q.

- a) Encontre o campo elétrico dentro e fora da esfera.
- b) Encontre a energia armazenada nesse arranjo de carga.
- c) Considere agora que o elétron seja uma partícula esférica, uniformemente carregada. Supondo que sua energia de repouso, mc² (com m sendo sua massa de repouso e c a velocidade da luz no vácuo), seja de origem eletrostática, encontre uma expressão para o "raio clássico do elétron".
- d) Dados m = 9 x 10^{-31} kg, e = 1,6 x 10^{-19} C, ϵ_0 = 8,9 x 10^{-12} C²/N m², encontre o valor aproximado do raio clássico do elétron.

<u>Questão 3 (2,5 pts)</u>: Duas cavidades esféricas de raios a e b são escavadas no interior de uma esfera condutora neutra de raio R. No centro de cada cavidade é colocada uma carga pontual $(q_a e q_b)$.

- a) Encontre as densidades superficiais de carga $\sigma_{\text{a}},\,\sigma_{\text{b}}$ e $\sigma_{\text{R}}.$
- b) Qual é o campo fora do condutor?
- c) Qual é o campo dentro de cada cavidade?
- d) Qual é a força sobre q_a e sobre q_b?
- e) Se a esfera condutora fosse aterrada, que respostas acima seriam modificadas, e quais seriam essas novas respostas?

Obs.: Em cada passo argumente com clareza de forma a demonstrar de forma inequívoca o resultado apresentado.

<u>Questão 4 (2,5 pts)</u>: Encontre a capacitância por unidade de comprimento de dois tubos cilíndricos coaxiais metálicos, com raios a e b.