Internet Protocols EBU5403

Michael Chai (michael.chai@qmul.ac.uk)
Richard Clegg (r.clegg@qmul.ac.uk)
Adnan Kiani (adnankhal@googlemail.com)

	Week I	Week 2	Week 3	Week 4
Telecom	Adnan Kiani		Michael Chai	
E-Commerce	Richard Clegg			

Week I: IP networks introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- protocol layers, service models
- history

Week I: Transport Layer (part I)

our goals:

- understand principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connection-oriented reliable transport
 - TCP congestion control

ISO/OSI (left) vs TCP/IP (right)

Do the quiz on your mobile phone?

Add URL and QR code here

About this quiz

- This quiz is not assessed. You do not need to do well.
- This quiz is to let us (teachers) know how well you understand the material.
- It is very easy to cheat on this quiz.
- If you do that we do not know which questions are easy and which are hard.
- Please answer honestly so we can improve the course.
- Please press submit at the end of the quiz.

Question I

- A coaxial cable is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- An IP (Internet protocol) address (such as 127.0.0.1) is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- An MAC (Media Access Control) address (such as 54-8c-a0-df-90-81) is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- A router is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- A switch is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- A web browser is most associated with which layer of the ISO/OSI model:
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- Which layer of the ISO/OSI model is responsible for ensuring that data is reliably delivered to an end host without loss?
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- Which layer of the ISO/OSI model is responsible for ensuring that packets are delivered between two computers that are "directly" connected.
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- Which level of the ISO/OSI model ensures that data is sent to the correct host wherever it might be in the world?
 - Physical (layer I)
 - Data Link (layer 2)
 - Network (layer 3)
 - Transport (layer 4)
 - Application (layer 7)

- Which of these statements about UDP (User Datagram Protocol) is FALSE?
 - Packets transmitted by UDP are not "reliable" (they may be lost and not resent).
 - Packets transmitted by UDP may be "out of order" (the third packet may arrive before the first).
 - Packets transmitted by UDP have no check for "corruption" (bits being transmitted incorrectly).
 - UDP transmissions are "connectionless" (they don't need a connection to be set up before data is sent).

- A packet is 1500B. It is being send down an Ethernet link with a bandwidth of IMb/s. How long does it take to transmit?
 - 1.5 seconds
 - 1.5 milliseconds
 - 12 seconds
 - 12 milliseconds

Answer

- \blacksquare 1500B = 1500x8 bits = 12000bits
- (Remember I byte = 8 bits).
- \blacksquare IMb/s = 1000000b/s
- 12000bits/1000000b/s=0.012s = 12ms
- Answer is I2 milliseconds

- If R (the backbone link) is 5Mb/s how much bandwidth does each connection get over the backbone:
 - 50Kb/s
 - 2.5 Mb/s
 - 25 Kb/s
 - 500Kb/s

10 connections (fairly) share backbone bottleneck link *R* bits/sec

Answer

- The link is shared fairly so the bandwidth is 5Mb/s divided by 10.
- = 0.5 Mb/s
- = 500 Kb/s
- (IMb/s = I000Kb/s = I000000b/s)

If
 R = 5Mb/s
 Rs = 1Mb/s
 Rc = 250Kb/s
 what is the mean throughput for a connection?

- 5Mb/s
- 500Kb/s
- IMb/s
- 250Kb/s

10 connections (fairly) share backbone bottleneck link *R* bits/sec

Answer

- The link is shared fairly so the bandwidth is 5Mb/s divided by 10.
- = 0.5 Mb/s
- = 500Kb/s (as before)
- But the throughput is limited to the minimum of all links
- So it is the smallest from 5Mb/s, 500Kb/s and 250Kb/s
- Answer is 250Kb/s

- Combining several connections into a single connection is called:
 - Packetisation
 - Demultiplexing (demux)
 - Multiplexing (mux)
 - Transport

- When the layer 2 header has been removed from a packet sent over UDP then the remaining part of the data contains:
 - Physical layer header and data
 - Layer 3 header and data
 - Layer 4 header and data
 - Layer 3 header, layer 4 header and data

UDP Encapsulation/decapsulation

- In rdt 2.0 we send an ACK to say we received data and a NAK to say we did not. If we receive two packets correctly then one with an error we send:
 - ACK NAK
 - NAK NAK ACK
 - ACK ACK ACK
 - ACK ACK NAK

- A UDP header contains
 - A checksum
 - A source port
 - A destination port
 - All three of the above

UDP: segment header

UDP segment format

length, in bytes of UDP segment, including header

why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control:
 UDP can blast away as fast as desired

- A UDP application receives a packet and wants to send data in reply. Which fields from the packet would it use as the destination for its data?
 - Destination IP and destination port
 - Destination IP and source port
 - Source IP and source port
 - Source IP and destination port

Connectionless demux: example

