Ulmer_Project

Monday, 16 December 2024

10:30

Ulmer_Project

Contents

	1	INTRODUCTION	- 1
	2	Fundamentals 2.1 Notation	9 10
	3	BOUNDARY ADAPTATION	13
	4	Numerical solver	17
	5	Numerical evaluation	19
arst lette	Υ 6	Numerical evaluation on a circle	23
capital for the	ν ₇ ξ	NUMERICAL EVALUATION NUMERICAL EVALUATION ON A CIRCLE ANGLE 7.1 circle	27 27 29
Bushs	8	SUMMARY AND OUTLOOK	37
	9	References	39
	В	IBLIOGRAPHY	41

for example, a square and a circle.

stract

condition

This project examines the effect of a simple Neumann boundary approach on a finite difference solver for the Cahn-Hilliard equation. It presents the results of the proposed method on different domains (a square and a circular example). There it is apparent, that the approach is able to effect the contact angle of the interface on the boundary. Additionally, this project gives a rudimentary technique to calculate this angle.

1 Introduction

ett)

Tacobi

Chapte 5

This project thesis builds upon the work in our bachelor thesis, by introducing a simple boundary condition approach to a rariation of the solver used therein. In Chapter 2 we introduce the Cahn-Hill ard equation in the formulation that we use for this project. This project used a ional second order version of this CH equation rather than the usual 45 4th order one, to simplify the numerical implementation. The solver itself builds upon a finite difference discretization of this equation. In Chapter 4, together with the discrete domains, on which we run our numerical solver, we introduce a Jacoby iteration to solve the linear system derived from the aforementioned discretization. The numerical solver in this thesis is GPU accelerated, and the discretization we chose to base our solver on is capable to calculate on all domains as long as a characteristic function is given. Therefore, we introduce two domains, on which we present our findings. The primary goal of this work is then the boundary condition approach in Chapter 3. Conceptionally the boundary condition we introduce simply consists of a constant value added in the linear system to all equations corresponding to grid-cells on the boundary. The actual implementation is capable of doing this for arbitrary domains. We present the results of this method on two Domains, a square one in 5 and a circular domain in 6 where we show the phase field for different boundary conditions which manifest in a variable contact angle of the interface on the boundary mimicking the behavior of hydrophobic/hydrophilic material. While we are unable to provide explicit formulae in relation to the constant, in Chapter 7 we provide numerical insight in this relationship, and a table with precomputed values.

contact angle

chapter 6

2 Fundamentals

This work concerns itself with boundary conditions on the Cahn-Hilliard equation. The Cahn-Hilliard (CH) equation is a fourth order partial differential equation (PDE) used to describe phase seperation in binary mixtures. It models how a mixture of two components (e.g., two liquids or alloys) evolves over time to separate into distinct regions with different concentrations of each component. To achive this it provides a phase-field ϕ which is used for an implicit representation of the interface between both phases. The Cahn-Hilliard equation, in the formulation we use here, is derived from the **Ginzburg-Landau** energy (2.1), an example on how this is done is given by [3].

$$E^{\rm bulk}[\phi] = \int_{\Omega} \frac{\varepsilon^2}{2} |\nabla \phi|^2 + W(\phi) \, dx, \tag{2.1}$$

There they introduce a chemical potential μ derived as derivative of the **Ginzburg-Landau** energy.

$$\mu = \frac{\delta E_{bulk}(\phi)}{\delta \phi} = -\varepsilon^2 \Delta \phi + W'(\phi), \eqno(2.2)$$

Where $W(\phi)$ in the energy, is a double well potential. In our case we orient us at the work of [1], where they use

$$W(\phi) = \frac{(1 - \phi^2)^2}{4}. \tag{2.3}$$

the Cahn-Hilliard equation in this thesis is then given as

$$\begin{split} \partial_t \phi(x,t) &= \Delta \mu \\ \mu &= -\varepsilon^2 \Delta \phi + W'(\phi). \end{split} \tag{2.4}$$

2 Fundamentals

One thing to note is, that this way of writing the CH equation presents a second order, two dimensional system, rather than the one dimensional fourth order system (2.5) often given.

$$\partial_t \phi(\vec{x}, t) = \Delta(-\varepsilon^2 \Delta \phi + W'(\phi))$$
 (2.5)

This choice is deliberate, and aligns with the numerical implementation.

2.1 NOTATION

coupled

This project solves the CH equation on a regular rectangular grid with grid-size h. The computational domain, is therefore discretized as

$$\vec{x}_{ij} := \frac{i}{h} * e_1 + \underbrace{\hat{j}}_{h} e_2 \qquad \qquad (2.6)$$

where $i,j\in[0,\dots N]$ and N is chosen arbitrarily, such that the resulting rectangle $[0,Nh]\times[0,Nh]$ acts as bounding box of the domain Ω . For our implementation we use N=256 as it gives a good compromise between resolution and compute time. We denote a discrete version of the domain Ω_d where

$$\Omega_d := \{ x_{ij} | x_{ij} \in \Omega \} \tag{2.7}$$

On this discrete domain our solver calculates solutions for discrete fields

$$\phi_{ij}^n: \Omega_d \times \{0, \dots\} \to \mathbb{R}, \tag{2.8}$$

$$\phi_{ij} := \phi(\vec{x}_{ij}) \qquad \qquad \vec{x}_{ij} \in \Omega_d \qquad (2.9)$$

$$\mu_{ij}^n: \Omega_d \times \{0, \dots\} \to \mathbb{R}, \tag{2.10}$$

$$\mu_{ij} := \mu(\vec{x}_{ij}) \tag{2.11}$$

We use the following differential quotients for field f_{ij} :

$$D_x f_{i+\frac{1}{2}j} = \frac{f_{i+1j} - f_{ij}}{h} \qquad D_y f_{ij+\frac{1}{2}} = \frac{f_{ij+1} - f_{ij}}{h}$$
 (2.12)

And define a discrete gradient as.

$$\nabla_{d} f_{ij} = (D_{x} f_{i+1j}, \ D_{y} f_{ij+1}) \tag{2.13}$$

And

$$\Delta_d f_{ij} = \nabla_d \cdot \nabla_d f_{ij} \tag{2.14}$$

2.1 Notation

See [2] Our solver implements the ansatz proposed by the authors [1].

write author name abc et al.

$$\begin{split} \frac{\phi_{ij}^{n+1} - \phi_{ij}^{n}}{\Delta t} &= \nabla_{d} \cdot (G_{ij} \nabla_{d} \mu_{ij}^{n+\frac{1}{2}}) \\ \mu_{ij}^{n+\frac{1}{2}} &= 2\phi_{ij}^{n+1} - \varepsilon^{2} \nabla_{d} \cdot (G_{ij} \nabla_{d} \phi_{ij}^{n+1}) + W'(\phi_{ij}^{n}) - 2\phi_{ij}^{n} \end{split} \tag{2.15}$$

This approach provides a semi implicit time discretization $\frac{w_{0}}{v_{0}}$ linear terms are evaluated implicitly and the nonlinear double well potential is evaluated explicitly.

Boundary adaptation

The solver from [1], that we use as reference guaranties no flux boundary conditions at a discrete level by setting $\nabla \phi_{ij}=0$ for $\phi_{ij}\in\partial\Omega_d$ this is done by multiplying with the Characteristic function of Ω_d

$$G_{ij} = \begin{cases} 1, x_{ij} \in \Omega \\ 0, x_{ij} \notin \Omega \end{cases}$$

$$(3.1)$$

To accommodate different boundary conditions, we modify $\nabla_d \cdot (G_{ij} \nabla_d \phi_{ij})$ with a constant term C on grid points next to the boundary. To do this, we introduce a boundary field B_{ij} that we add to μ_{ij} . We determine the value of B_{ij} using a central

boundary field
$$B_{ij}$$
 that we add to μ_{ij} . We determine the value of B_{ij} using a central difference scheme on G
$$B_{ij} = \max\left(|G_{i+\frac{1}{2}j} - G_{i-\frac{1}{2}j}|, |G_{ij+\frac{1}{2}} - G_{ij-\frac{1}{2}}|\right) * C \tag{3.2}$$
 We present an example in case of a 32x32 domain with $C=1$ of the boundary fields B for a square domain 3.1 and an example on a circular domain in 3.2. In this Project we use the following adaptation of the discretization from [1].
$$\frac{\phi_{ij}^{n+1} - \phi_{ij}n}{\Delta t} = \nabla_d \cdot (G_{ij}\nabla_d\mu_{ij}^{n+\frac{1}{2}})$$

$$\mu_{ij}^{n+\frac{1}{2}} = 2\phi_{ij}^{n+1} - \varepsilon^2\nabla_d \cdot (G_{ij}\nabla_d\phi_{ij}^{n+1}) + B_{ij} + W'(\phi_{ij}^n) - 2\phi_{ij}^n$$

$3\ Boundary\ adaptation$

Figure 3.1: Visualization of all grid-cells adjacent to the boundary $\partial\Omega_d$ of a square domain

Figure 3.2: Visualization of all grid-cells adjacent to the boundary $\partial\Omega_d$ of a circular domain

Numerical solver

.Jacobi

Contrary to the solver proposed in [2] we do not use a multi-grid Gauss-Seidel colver to solve the linear system, instead we use a Jacoby solver, as this will eventually assist in parallelizing the computation. Similar to [2] we linearize (3.3) to

$$\begin{array}{c} \frac{\phi_{ij}^{n+1}}{\Delta t} - \nabla_{d} \cdot (G_{ij} \nabla_{d} \mu_{ij}^{n+\frac{1}{2}}) = \frac{\phi_{ij}^{n}}{\Delta t} \\ \psi_{ij}^{n+\frac{1}{2}} - 2\phi_{ij}^{n+1} + \varepsilon^{2} \nabla_{d} \cdot (G_{ij} \nabla_{d} \phi_{ij}^{n+1}) + B_{ij} = 2\phi_{ij}^{n} - W'(\phi_{ij}^{n}) \end{array}$$

One may note, that after rearanging some terms leads to a linear system with a righthand side with is exclusively dependant on the previous time step. We use Jacobi's method to solve the resulting linear system given above, and the corresponding element wise representation of the same is given in the following.

Provided the mth Leeby iteration has been computed, the m+1th iteration is computed by solving Jacobi

 $\frac{\phi_{ij}^{n+1,m+1}}{\Delta t} - \nabla_d \cdot (G_{ij} \nabla_d \mu_{ij}^{n+\frac{1}{2},m+\frac{1}{2}}) = \frac{\phi_{ij}^n}{\Delta t}$ (4.2) $\mu_{ij}^{n+\frac{1}{2},m} - 2\phi_{ij}^{n+1,m} + \varepsilon^2 \nabla_d \cdot (G_{ij} \nabla_d \phi_{ij}^{n+1,m+\frac{1}{2}}) + B_{ij} = 2\phi_{ij}^n - W'(\phi_{ij}^n)$

 $+ \quad G_{ij+\frac{1}{2}}\phi_{ii+1}^{n+1,m} + G_{ii-\frac{1}{2}}\phi_{ii-1}^{n+1,m})$ (4.3) $-\left(G_{i+\frac{1}{2}j}+G_{i-\frac{1}{2}j}+G_{ij+\frac{1}{2}}+G_{ij-\frac{1}{2}}\right)\!\phi_{ij}^{n+1,m+1}$

Our implementation is done in julia to transmit the solution for each element in parallel on the GPU. In the following we described the complete implementation of the Jacobi's iteration.

provide some reference for julia

17

dependent

4 Numerical solver

```
@kernel function jacoby!(
   Φ,
   Μ,
   @Const(Ξ),
   @Const(Y),
   @Const(h),
   @Const(ε),
   @Const(Δt),
   @Const(iterations)
   I = @index(Global, Cartesian)
   Id = oneunit(I)
   Ids = CartesianIndices(M)
   Ix = CartesianIndex(1, 0)
   Iy = CartesianIndex(0, 1)
   if I in (Ids[begin]+Id:Ids[end]-Id)
       g = G(2 * I + Ix, Ids) + G(2 * I + Iy, Ids) + G(2 * I - Ix, Ids) + G(2 * I - Iy,
         Ids)
       a1 = 1/\Delta t
       a2 = -1* \epsilon^2/h^2 * g - 2
       b1 = 1/h^2 * g
        b2 = 1
       for _ = 1:iterations
            \Sigma \mu = G(2 * I + Ix, Ids) * M[I+Ix] + G(2 * I + Iy, Ids) * M[I+Iy] + G(2 * I - I)
             \rightarrow Ix, Ids) * M[I-Ix] + G(2 * I - Iy, Ids) * M[I-Iy]
            \Sigma \phi = G(2 * I + Ix, Ids) * \Phi[I+Ix] + G(2 * I + Iy, Ids) * \Phi[I+Iy] +G(2 * I - I)
            - Ix, Ids) * Φ[I-Ix] +G(2 * I - Iy, Ids) * Φ[I-Iy]
            c1 = E[I] + 1/h^2 * \Sigma \mu
           c2 = \Psi[I] - \epsilon^2/h^2 * \Sigma \phi
            # stupid matrix solve
            @inline \Phi[I] = (c1*b2 - c2*b1) / (a1*b2 - a2*b1)
            @inline M[I] = (a1*c2 - a2*c1) / (a1*b2 - a2*b1)
           @synchronize()
       end
   end
end
```

5 Numerical evaluation

We set constant values for B_{ij} on the boundary to begin with our evaluations. One may note that C=0 is equivalent to the no-flux condition of the original solver introduced in the Bachelor thesis. Now, as a preliminary verification step we set C=0 as our first choice. Consequently, for C=0, the interface lies orthogonal on the boundary (see Fig. 5.1), which we expect for a CH solver with no-flux boundary conditions. For $B_{ij} \in \{-1,1\}$ we observed behavior connected to hydrophobic / hydrophilic substances on the boundary, where $B_{ij}=1$ resulted in the one phase pearling off the boundary, while the other seemed attracted. These certainly leads to the apparent contact angles of 180° and 0° respectively. Using $B_{ij}=-1$ results in the opposite behavior.

Figure 5.1: phase-field ϕ after 100 time-steps with C=0 emmulating no-flux boundary.

We show, that our solver is stable for values $C \neq 0$. In 5.2 we employ a constant value of C = 1 and observe the phase corresponding to $\phi = 1$ puling away from the

5 Numerical evaluation

boundary. The contact angle between phase 1 and the boundary approaches 180° i.e. the interface runs parallel to the boundary.

Figure 5.2: phase-field ϕ after 100 time steps with C=1

Fig. S.3, and consequently the In (5.3) we try the reverse situation And we observe corresponding behavior

In 5.3 we try the reverse situation And we observe corresponding behavior. When using a value of C=-1 we observe opposite behavior relative to the case in Fig. 5.2. Where the contact angle on the boundary lies at 0° , the interface runs parallel to the boundary again.

The most interesting behavior are noted for values between (-1,1), where we observe the contact angle of the interface at the boundary changes from parallel 0° to parallel 180° .

20

Refer the corresponding Figurer in the text. Mention that we show the contact angle variation related to different c and h valuely.

21

arr = _init()

5 Numerical evaluation

```
d = domain(get_backend(arr) , 256 , size(arr))
d(arr)
h = 25e-5
solution = solve(arr , n , \theta=\theta)
h1 = heatmap(Array(solution) , aspect_ratio=:equal , clims=(-1,1),
lims=(0,size(solution,1)), widen=1.06 , title=L"h=%$h")
h = 20e-5
solution = solve(arr , n , \theta=\theta)
h2 = heatmap(Array(solution) , aspect_ratio=:equal , clims=(-1,1),
 lims=(0,size(solution,1)), widen=1.06 , title=L"h=%$h")
h = 15e-5
solution = solve(arr , n , \theta=\theta)
h3 = heatmap(Array(solution) , aspect_ratio=:equal , clims=(-1,1),
lims=(0,size(solution,1)), widen=1.06 , title=L"h=%$h")
h = 10e-5
solution = solve(arr , n , \theta=\theta)
h4 = heatmap(Array(solution) , aspect_ratio=:equal , clims=(-1,1),
lims=(0, size(solution, 1)), widen=1.06, title=L"h=%$h")
plot(h1,h2,h3,h4)
```


Numerical evaluation on a CIRCLE

The original solver presented in [1] was able to solve the CH equation on arbitrary domains. Since the addition of our boundary function depends solely on the charac-Jomains, by providing a different characteristic function. We present the results of which in this chapter. To show the behavior of the CH solver in 6.1 we first employ no-flux boundary conditions on a circular domain. We observe the interface perpendicular on the boundary, as we expect.

W' (generic function with 1 method)

Figure 6.1: ϕ after 100 time steps on a circular domain with no-flux boundary-conditions after 100 time steps on a circular domain with no-flux

6 Numerical evaluation on a circle

The results we observe in 6.2 are similar to the results on a square domain in 5.2. Fig 5.2 he contact angle is 180° i.e. the interface does not touch the boundary and arallel to it. The contact angle is 180° i.e. the interface does not touch the boundary and runs parallel to it.

Figure 6.2: phase-field ϕ after 100 time-steps with C=1 for C=-1 in 6.3 on the circular domain, are similar to the results The results for C = -1 in 6.3 on the square domain as well, where the interface touches the boundary and 73g. 6.4 runs parallel with a contact angle of 0°.

When evaluating intermediate contact angles in 6.4 the results are similar to the square domain again, however, especially for shallow angles, we observe some artifacts of one phase appearing in places where previously was none. We observe similar behavior on square domains only in the corners, i.e. points where the boundary has high curvature.

When using random initial phase-fields, the results look the comparable to the square domain, and exhibit the for the CH equation expected behavior, whereas time goes on, the many small parts coalesce into larger parts.

Figure 6.4: phase-field ϕ after 500 time-steps with $C\in\{-1+\frac{\sqrt{2}}{2},-0.5,0.5,1-\frac{\sqrt{2}}{2}\}$ on a circular domain.

ANGLE

In previous experiments we noted that the angle of the interface changes with different input parameters. While we do not have a mathematical derivation of this relation, we aim to provide numerical insight in this chapter. We calculate this angle using the gradient of the phase-field $\nabla\phi_{ij}$ and the normal of our domains' boundary.

$$\frac{\nabla_{d}\phi_{ij}\cdot\mathbf{n}_{ij}}{\|\nabla_{d}\phi_{ij}\|}=\cos(\theta)\qquad\text{where}\quad\phi_{ij}\in\partial\Omega_{d} \tag{7.1}$$

For a single point \vec{x}_{ij} on the interface and near the boundary. Since we need a finite difference to evaluate 7.1, be do not select a point directly on the boundary and since we need a point on the interface, where $\nabla \phi_{ij}$ is large, we calculate the angle at $P_{ij} = arg \max_{\vec{x}_{ij}} \nabla \phi_{ij} \qquad \phi_{ij} \in \partial \Omega \tag{7.2}$

$$P_{ij} = \arg\max_{\hat{x}_{ij}} \nabla \phi_{ij} \qquad \phi_{ij} \in \partial \Omega \tag{7.2}$$

angle (generic function with 1 method)

7.1 CIRCLE

The normal of the circular domain in our second example is

$$\mathbf{n}_{ij} := \mathbf{n}(\vec{x}_{ij}) = \frac{\vec{c} - \vec{x}_{ij}}{\|\vec{c} - \vec{x}_{ij}\|} \quad \text{Fig. 7.3}$$

Where \vec{c} is the center of the domain. In 7.1 we present the results of a calculated angle, together with the normals and the point it is calculated from.

7 Angle

126.60615513046109°

value

Table 7.1: value for θ and corresponding angle α after 200 time-steps

-0.1	173.49096591056502
-0.095	173.10715739345923
-0.09	172.18364087939332
-0.085	171.54740091859054
-0.08	171.3054040677464
-0.075	171.1455632002332
-0.07	171.02869693204397
-0.065	170.3901810227686
-0.06	170.0449796355949
-0.055	173.27274052589075
-0.05	170.3373892767722
-0.045	168.11953739721892
-0.04	167.41386769034298
-0.035	166.62088559081457
-0.03	164.9014365935728
-0.025	162.8061312020723
-0.02	159.92337650959868
-0.015	155.82320048245077
-0.01	147.4707481361878

7.2 square

129.77836444929315
91.28977210940522
47.27538237804684
26.60911004838421
6.306468865037136
11.495581754132852
8.059259459078769
2.997826637980469
2.442790881259583
2.314200756133827
1.883610279597664
1.3567468712125557
0.8024311153759808
0.5869880299417852
0.4356076759230446
0.32719257485287145
0.03099970458170946
0.37685133141547533
0.4151229191583983
0.7049376111739059
0.8671639875701463
1.0282690721714873

7.2 square

The

little

the normal vector on a square domain is a little bit more complicated than the circle normal. For the following we use the normal Muq case

for the circle

 $\mathbf{n}_{ij} = \mathbf{n}(\vec{x}_{ij}) = \max(\vec{c} - \vec{x}_{ij}) e_{\arg\max_{i,j}(\vec{c} - \vec{x}_{ij})}$ The results are presented in 7.2 (7.4)

122.14414753997113°

Value

Table 7.2: value for θ and corresponding angle α after 200 time-steps

-0.1 177.95311184304808 -0.099109.40440982717261 $-0.098 \quad 113.75621160591214$ $-0.097 \quad 105.41178782179448$ $-0.096 \quad 102.88914136385036$ -0.095100.11964229844625 $-0.094 \quad 103.81071062215845$ -0.09395.69795700045161 -0.09295.67336816077285 -0.09199.40375428329858 $-0.09 \quad 106.41888954576633$ 178.0077678154438 -0.089-0.088178.3025715727096 -0.087178.316114694492-0.086178.2255733054392-0.08595.46277809162602-0.084178.3549136743765 $-0.083 \quad 178.26719963602554$

 $-0.082 \quad 178.32251888851366$

$7.2\ square$

178.3565799403403
178.35467577409685
178.38020838014717
95.20563164308682
95.14172673016061
95.14296499007257
105.44742113736852
93.98032429805323
93.93639872551873
93.90397166303447
95.04923946745302
178.78211729473668
102.99168583129313
94.93247349592393
94.89895399516479
94.88468241056746
94.83389070992926
178.92443595960236
100.16055296439168
94.75596984934359
101.27470856133
179.0930181995219
105.64189890451894
94.61890118077682
105.2681437129132
94.55977561405972
94.53388712342255
93.34691119445903
179.33441528850165
93.2910844897572
93.24648058021675
93.23521452164574
179.16701750513553
179.2966784153456
94.23632639847965
179.29473359110352

7 Angle

```
-0.045 \quad 179.37255040579183
-0.044 101.54088044034116
-0.043
        94.1661313225638
-0.042 \quad 94.12197781117199
-0.041 \hspace{0.2in} 94.12000946956198
 -0.04
        94.0721925427342
-0.039 \quad 108.89374993386689
-0.038 \quad 179.63202655555918
-0.037 \quad 109.68666272268365
\hbox{-}0.036 \quad 108.51834091791333
-0.035 \quad 108.72075987854112
-0.034
        92.74812555828719
-0.033
         92.71114315877244
-0.032 109.35418670763997
-0.031 108.77670875273492
 -0.03
        92.61596109538934
\hbox{-}0.029 \quad 108.40044962449264
-0.028
        92.56516258112002
-0.027 \quad 109.79996459123538
\hbox{-}0.026 \quad 109.65918977762365
-0.025
         110.3044265042822
-0.024 83.62357084082397
-0.023 111.54991541493794
\textbf{-0.022} \quad 111.03194196511788
\textbf{-0.021} \quad 114.64047084976055
 -0.02 109.05304432663621
\hbox{-0.019} \quad 110.82994921660216
-0.018
        92.24653067846398
-0.017 111.37975919462826
-0.016 113.65543027908225
-0.015
        95.7731294576787
-0.014 110.03068049610467
-0.013
        83.48278675686815
-0.012 \quad 114.18712728091695
\hbox{-0.011} \quad 112.06506481164256
 -0.01
         88.97890310519033
```

$7.2\ square$

```
-0.009
         88.93437302618706
-0.008
         88.92621027458483
-0.007
         113.9196518388393
-0.006
          88.8748154828598
-0.005
        86.97101403557363
-0.004 111.88388458499975
-0.003 \quad 114.84915820262506
-0.002
       113.98233214194332\\
-0.001
        95.92713614334707
  0.0 \quad 113.32020946225946
0.001 \quad 114.32873475565437
0.002
        88.64471414125116
0.003
        86.73475050008524
0.004
        86.64299294912377
0.005
         88.36892220070804
0.006
         86.59429493690158\\
0.007
         98.65732746097177
0.008
          86.5904172845819
0.009
         86.46759774660268
 0.01
         86.47786889099278
0.011
         86.49649245589079
         86.40563784781438
0.012
0.013
         86.33651818354659
0.014
         86.27783343769556
0.015
         86.18667749563494
0.016
         86.39821801641867\\
0.017
         86.21768848775416
0.018
        86.20656128064493
0.019
         86.24422054042941
 0.02
        86.14661931403819
0.021
         86.24452599358314
0.022
         86.07925485738538
0.023
         86.04273807339838\\
0.024
         86.03922751662701\\
0.025
         85.99686516380959\\
0.026
        85.90542702435317
```

Angle

0.027	85.85309029518746
0.028	86.0330891413772
0.029	85.83084772186491
0.03	85.80380070559619
0.031	85.75495062019647
0.032	85.73494449356643
0.033	85.78267050897831
0.034	159.66794160038253
0.035	85.66466805791654
0.036	85.71079741144949
0.037	85.57577052103707
0.038	161.10166145787883
0.039	85.60187813586091
0.04	85.55578961267256
0.041	91.54706243587353
0.042	82.4478259247905
0.043	85.98986247300422
0.044	90.33035601585524
0.045	86.019092020242
0.046	86.09513749097509
0.047	85.92736023132964
0.048	82.61718340337106
0.049	161.86923826388156
0.05	177.4220744567218
0.051	177.40353870713483
0.052	177.36633804831473
0.053	177.31175619981855
0.054	177.27918695960085
0.055	177.20060770371583
0.056	91.09774195008896
0.057	177.18972050909164
0.058	177.24316583597977
0.059	177.12485385461935
0.06	176.10107235482425
0.061	177.05223887985608
0.062	176.07334642303667

$7.2\ square$

0.063	175.99698804768886
0.064	176.9999733404206
0.065	176.94751164680537
0.066	175.95039284274893
0.067	175.9082495880407
0.068	175.8897212411926
0.069	99.731362526186
0.07	105.85378264391653
0.071	175.7949947173414
0.072	175.72222177353814
0.073	175.728407033159
0.074	175.69574900078072
0.075	175.64171193057405
0.076	175.57012583572595
0.077	175.65746918915175
0.078	105.57897708616683
0.079	102.28726139379764
0.08	175.46866309344034
0.081	102.96816792863312
0.082	102.63511936406039
0.083	101.19114810827676
0.084	175.38535145158926
0.085	103.4655632099724
0.086	103.62341228170168
0.087	103.9030792249824
0.088	103.67976184810772
0.089	175.20984823407616
0.09	102.9927434094263
0.091	83.71112467848221
0.092	83.74812231513913
0.093	83.69429256748194
0.094	102.11018607717594
0.095	103.75109938930927
0.096	104.5608960512815
0.097	83.5030462660855
0.098	83.54222287954207

7 Angle		
	0.099	106.86440916136596
	0.1	83.45791163638641
36		

8 Summary and outlook

In this project we examined a numerical model of the CH equation, with simple Neumann boundary conditions. We introduced a simplified version of the solver used in [2] and derived from [1]. Which due to GPU acceleration is significantly faster on our available hardware. We have shown a simple Neumann boundary approach that runs stable on both tested domains. The approach introduced by us is able to freely affect the angle of the phase interface on the boundary, The results of which we have shown on a circular and square domain. We introduced a rudimentary method to calculate the contact angle programmatically however we acknowledge that the results are unreliable. Further research would require a more consistent approach. One such method may be a filter that averages the angle calculation over more than one point, another should be a consistent selection of the point of interest, as the current approach cannot guaranty that the same (or a similar) point is selected if the input parameters change slightly.

Further research may concern itself, with the following topics. First and foremost, we observed inconsistent behavior when changing the hyperparameters ε and grid-size h. However, the methods we used for evaluation were inconsistent at best. Due to the aforementioned unpredictability in the angle calculation the resulting data series was erratic and no trends where apparent. Further research would require investigation of those effects on the boundary. Additionally, in our bachelor thesis, which served as preliminary work to this project, we investigated an analytical relaxation. The solver used therein for the relaxed problem is compatible with the boundary approach introduced herin. Initial tests with the solver for the relaxed system where promissin, and further research may investigate those results.

preliminary

promising

9 References

Since we have Bibliography this is not required I guest. Simply remove this chapter.

Bibliography

- [1] Jaemin Shin, Darae Jeong, and Junseok Kim. "A conservative numerical method for the Cahn-Hilliard equation in complex domains". In: *Journal of Computational Physics* 230.19 (2011), pp. 7441-7455. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2011.06.009. URL: https://www.sciencedirect.com/ science/article/pii/S0021999111003585.
- [3] Hao Wu. "A review on the Cahn-Hilliard equation: classical results and recent advances in dynamic boundary conditions". In: Electronic Research Archive 30.8 (2022), pp. 2788–2832. DOI: 10.3934/era.2022143. URL: https://doi.org/10. 3934%2Fera.2022143.