Movimento harmônico simples

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

17 de março de 2023

Sumário

- Oscilador harmônico
- Casos específicos
- Funções horárias do MHS
- Energia do MHS
- Oscilações forçadas e ressonância
- Apêndice

Sistema massa-mola

00000

Robert Hooke.

Sistema massa-mola.

Força restauradora (\vec{F}_R)

Obriga o sistema retornar para a posição de equilíbrio.

Lei de Hooke

Oscilador harmônico

Aceleração a em função do deslocamento x.

k: constante elástica (depende das propriedades do material);

Se $x_0 = 0$, pela Lei de Hooke $\vec{F} = -k\vec{x}$.

$$\vec{F} = m\vec{a},$$
 $\vec{a} = -\frac{k}{m}\bar{x}$

Corollary

A aceleração do objeto e a força restauradora possuem sentidos contrários ao deslocamento.

Movimento harmônico simples (MHS)

Quatro etapas de um ciclo completo do MHS.

Amplitude (x_m) : Máximo deslocamento da mola:

Período (T): Tempo de cada ciclo;

Frequência (f): Núm. de ciclos por segundo.

Corollary

Na ausência de atrito, o objeto realiza por tempo infinito um Movimento Harmônico Simples (MHS) a uma frequência de f ciclos por unidade de tempo.

$$f=rac{1}{T}$$

Prof. Flaviano W. Fernandes IFPR-Irati

00000

Sistema massa-mola e movimento circular uniforme (MCU)

Representação das quatro etapas do MHS no MCU.

Se $\theta = \omega t$, onde ω é a velocidade angular, a projeção de x(t) no eixo x é dado por

$$x(t) = x_m cos(\theta),$$

 $x(t) = x_m cos(\omega t).$

Onde pelo MCU sabemos que

$$\omega = 2\pi f = \frac{2\pi}{T}.$$

Prof. Flaviano W. Fernandes IFPR-Irati

00000

Solução do MHS a partir da segunda lei de Newton

Aplicando a segunda lei de Newton para o sistema massa-mola onde $x_0 = 0$,

$$F = -kx,$$

$$m\frac{d^2x}{dt^2} = -kx,$$

Uma possível solução para a equação acima, usando a analogia com o MCU seria uma função do tipo $x(t) = x_m \cos(\omega t)$,

$$\frac{dx}{dt} = -\omega \sin(\omega t),$$

$$\frac{d^2x}{dt^2} = -\omega^2 x_m \cos(\omega t),$$

Substituindo teremos

$$-m\omega^2 x_m \cos(\omega t) = -x_m k \cos(\omega t).$$

Vemos que a equação acima é verdadeira somente se

$$\omega = \sqrt{\frac{k}{m}}$$
.

Pêndulo simples

Pêndulo simples.

Considere uma partícula presa ao teto por um fio de comprimento L, se $\theta \ll 1$ temos $sen(\theta) \approx \theta$. Pela figura identificamos $\sin \theta = \frac{x}{L}$, portanto

$$F=-mgsen(heta)$$
 $rac{d^2x}{dt^2}=-mrac{g}{L}x$

Resolvendo a equação de maneira análoga ao sistema massa-mola teremos

$$\omega = \sqrt{rac{g}{L}}$$

Objeto rígido de massa m girando em torno de um ponto fixo.

Considere um objeto cujo centro de massa está localizado a uma distância r do eixo de rotação, o torque atuando nele é dado por

$$\vec{\tau} = \vec{r} \times \vec{P},$$
 $\tau = -rP\sin\theta.$

Se $\theta \ll$ 1 podemos dizer que $\sin \theta \approx \theta$, ou seja,

$$au = -mgr\sin\theta,$$
 $au pprox -mgr\theta.$

Pêndulo físico (continuação)

Objeto rígido de massa m girando em torno de um ponto fixo.

Porém, sabemos também que o torque é dado por $\tau = I\alpha$, onde I é o momento de inércia do obieto. Temos assim

$$Ilpha = -mgr heta,$$
 $Irac{d^2 heta}{dt^2} = -mgr heta.$

Temos assim uma equação idêntica ao sistema massa-mola, na variável θ , onde teremos

$$\omega = \sqrt{rac{mgr}{I}}.$$

Pêndulo de torção

Pêndulo de torção.

Considere um disco circular de momento de inércia I, torcendo o disco por um ângulo θ o torque atuando no disco será dado por $\tau = I\alpha$. De maneira análoga ao sistema massa-mola, teremos

$$\tau = -\kappa \theta$$

onde κ é a constante de torção do disco. Similarmente ao sistema massa-mola, a frequência angular equivale a

$$\omega = \sqrt{\frac{\kappa}{I}}.$$

Função horária do MHS

Assim, seguindo a analogia com o movimento circular, podemos imaginar que a função horária da posição do MHS pode ser dado por $x(t) = x_m \cos \omega t$. Essa expressão é válida em situações onde, no caso do sistema massa-mola, o bloco se localiza na amplitude no instante inicial t=0, ou de maneira equivalente podemos dizer que o tempo foi contabilizado a partir de um instante inicial $t_0 \neq 0$, assim

$$x(t) = x_m \cos(\omega(t - t_0)),$$

$$x(t) = x_m \cos(\omega t - \omega t_0),$$

$$x(t) = x_m \cos(\omega t - \phi).$$

 ϕ é chamado de constante de fase.

Função horária do MHS.

Representação das quatro etapas do MHS no MCU.

Comparações entre MHS diferentes.

Funções horárias do MHS

Derivando x(t) teremos

$$x(t) = x_m \cos(\omega t - \phi),$$

 $\frac{dx}{dt} = v(t) = v_m \sin(\omega t - \phi),$
 $\frac{d^2x}{dt^2} = a(t) = a_m \cos(\omega t - \phi).$

Comparando as amplitudes das funções seno e cosseno com os valores obtidos das derivadas, podemos concluir que $v_m = \omega x_m$ e $a_m = \omega^2 x_m$.

Funções horárias no MHS.

Energia potencial no MHS

Sabendo que a forca é conservativa

$$U(x) - U(x_0) = -\int_{x_0}^{x} F(x) dx$$

$$U(x) - U(x_0) = k \int_{x_0}^{x} x dx$$

$$U(x) - U(x_0) = \frac{kx^2}{2} - \frac{kx_0^2}{2}$$

Se
$$x_0 = 0 \Rightarrow U(0) = 0$$
, portanto

$$U(x)=\frac{kx^2}{2}$$

Energia potencial elástica do MHS

$$U(t) = \frac{kx_m^2}{2}cos^2(\omega t)$$

Energia cinética no MHS

Substituindo a expressão da velocidade

$$v(t) = -x_m \omega sen(\omega t)$$

na energia cinética

$$K(t) = \frac{mv^2}{2}$$
 $K(t) = \frac{m(x_m \omega sen(\omega t))^2}{2}$

$$K(t) = rac{mx_m^2\omega^2sen^2\left(\omega t
ight)}{2}$$

mas
$$\omega^2 = \frac{k}{m}$$
,

$$K(t) = \frac{mx_m^2 \left(\frac{k}{m}\right) sen^2 \left(\omega t\right)}{2}$$

Energia cinética do MHS

$$K(t) = \frac{kx_m^2}{2}sen^2(\omega t)$$

Energia total no MHS

Sabendo que a energia total é

$$E = K + U$$
.

Substituindo K e U,

$$E = rac{kx_m^2}{2}sen^2\left(\omega t
ight) + rac{kx_m^2}{2}cos^2\left(\omega t
ight)$$

$$E = \frac{kx_{m}^{2}}{2} \left[\underbrace{sen^{2}(\omega t) + cos^{2}(\omega t)}_{1} \right]$$

Energia total no MHS

$$E=\frac{kx_m^2}{2}$$

Corollary

A energia total do MHS é invariante no tempo, dependendo apenas da constante elástica e da amplitude de oscilação.

Representação gráfica da energia no MHS

Energia em função do deslocamento.

Energia em função do tempo.

Bloco sob a ação de uma força externa de frequência ω_0

Considere um sistema massa-mola onde além da força restauradora \vec{F}_R atua sobre ele uma outra força F(t), cujo valor depende de uma frequência ω_0 , onde

$$F(t) = F_m \cos(\omega_0 t).$$

Assim, aplicando a segunda Lei de Newton teremos

$$m\frac{dv}{dt} = -kx + F_m \cos(\omega_0 t),$$

$$\frac{d^2x}{dt^2} + \omega^2 x = \frac{F_m}{m}\cos(\omega_0 t).$$

Sistema massa-mola sob ação da força externa $\vec{F}(t)$.

Solução da equação do oscilador harmônico forçado

Para resolver a equação anterior, onde temos explicitamente o termo $F_m \cos(\omega_0 t)$, supomos uma solução do tipo

$$x(t) = x_m \cos(\omega_0 t) + x'_m \sin(\omega_0 t).$$

Calculando a derivada de ordem 2 e substituindo na equação teremos

$$\frac{d^2x}{dt^2} = -x_m\omega_0^2\cos(\omega_0t) - x_m'\omega_0^2\sin(\omega_0t).$$

$$-x_m\omega_0^2\cos(\omega_0t) - x_m'\omega_0^2\sin(\omega_0t) +$$

$$+\omega^2(x_m\cos(\omega_0t) + x_m'\sin(\omega_0t)) =$$

$$= \frac{F_m}{m}\cos(\omega_0t).$$

Reorganizando os termos do lado esquerdo teremos

$$(\omega^2 - \omega_0^2) x_m \cos(\omega_0 t) + (\omega^2 - \omega_0^2) x_m' \sin(\omega_0 t)$$

= $\frac{F_m}{m} \cos(\omega_0 t)$.

Ressonância

Para satisfazer a equação anterior devemos impor a condição $x_m'=0$, para que fique apenas o termo dependente de $\cos(\omega_0 t)$, assim

$$(\omega^2 - \omega_0^2) x_m \cos(\omega_0 t) = \frac{F_m}{m} \cos(\omega_0 t).$$

Assim podemos afirmar que x(t) é uma solução para o problema se

$$(\omega^2 - \omega_0^2) x_m = \frac{F_m}{m},$$

ou seja,

$$x_m = \frac{F_m}{m(\omega^2 - \omega_0^2)}.$$

Portanto, podemos concluir que a amplitude x_m da oscilação aumenta à medida que a frequência ω_0 do oscilador se aproxima gradualmente da frequência ω de oscilação do MHS. Esse efeito é chamado de ressonância da oscilação. Caso não houver amortecimento temos que $x_m \to \infty$ se $\omega_0 \to \omega$.

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)