4/4

RECEIVED

SEP 0 4 2002

PATENT ABSTRACTS OF JAPAN

Technology Center 2600

(11)Publication number: 07059108

(43)Date of publication of application: 03.03.1995

(51)Int.CI.

HO4N 9/77 G11B 27/024

(21)Application number: 05216895

(71)Applicant:

KOKUSAI DENSHIN DENWA CO LTD <KDD>

NAKAJIMA YASUYUKI

(22)Date of filing: 10.08.1993 (72)Inventor:

(54) CUT PATTERN DETECTION METHOD FOR MOTION PICTURE

(57)Abstract:

PURPOSE: To detect a cut pattern at a high speed with high accuracy by using a change in a luminance component and a color difference component through the use of a reduced motion picture in a hierarchical way.

CONSTITUTION: An input pattern and a reference pattern inputted to reduced picture processing sections 3, 4 are converted into reduced patterns each comprising means values of blocks of the patterns. An inter-frame difference section 5 obtains an inter-frame difference Dn between a reference picture and an input picture and its timewise change Δ Dn from the reduced patterns. A 1st decision section 6 classifies the patterns into three kinds of patterns being a non-cut pattern, a cut pattern and a cut candidate pattern. When a pattern is decided to be a cut pattern, an output section 7 provides the output of the cut pattern and the processing is transited to the processing of a succeeding input pattern. A color difference histogram correlation section 8 calculates a correlation value ρ of color distribution of a histogram of the color difference from the cut object pattern by using the reduced pattern of the color difference signal. A 2nd decision section 9 judges the detection of a cut pattern through overall judgement of the inter-frame difference Dn, the timewise change Δ Dn and the correlation value ρ .

LEGAL STATUS

[Date of request for examination]

25.04.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2978039

, and the state of the state o

[Date of registration]

10.09.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

rejection;

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU

SEARCH

INDEX

DETAIL

BACK

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-59108

(43)公開日 平成7年(1995)3月3日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

H04N 9/77 G11B 27/024 庁内整理番号 8626-5C

8224-5D

G11B 27/02

C

審査請求 未請求 請求項の数6 FD (全 9 頁)

(21)出願番号

特願平5-216895

(71)出願人 000001214

国際電信電話株式会社

東京都新宿区西新宿2丁目3番2号

(22)出願日 平成5年(1993)8月10日

(72) 発明者 中島 康之

東京都新宿区西新宿2丁目3番2号 国際

電信電話株式会社内

(74)代理人 弁理士 田中 香樹 (外2名)

(54) 【発明の名称】 動画像のカット画面検出方法

(57)【要約】

【目的】 動画像の縮小画像を用いた輝度成分の変化お よび色差成分の相関を階層的に用いることにより、高速 かつ高精度にカット画面を検出すること。

【構成】 縮小画像処理部3、4に入力された入力画面 および参照画面は、該当画面の各ブロックの平均値によ り構成される縮小画面に変換される。これらの縮小画面 はフレーム間差分部5で参照画像と入力画像のフレーム 間差分Dn およびその時間的変化△Dn が求められる。 第1の判定部6ではこれらの値を基に非カット画面、カ ット画面、カット候補画面の3種類に分類する。カット 画面と判定された場合には、出力部17にてカット画面 の出力を行い、次の入力画面の処理に移る。カット候補 画面については、色差ヒストグラム相関部8で、色差信 号の縮小画面を用いて色差のヒストグラムの色分布の相 関値ρを計算する。第2の判定部9ではフレーム間差分 Dn 、時間的変化△Dn 、および相関値 ρ を総合的に判 断して、カット検出の判定を行う。

とに、前記入力画面を、非カット画面、カット画面およびカット候補画面の3種類に分類する第1判定部である。7は、カット画面であると判定された入力画面、あるいはそれを示すデータ(画面番号など)などを出力する出力部である。

【0017】次に、8は前記第1判定部6にてカット候補画面と判定された画面に対して色差ヒストグラムの相関を求める色差ヒストグラム相関部である。該色差ヒストグラム相関部8は、縮小画面処理部3で求められた色差信号の縮小画面を用いて、色差のヒストグラムの色分 10 布を求め、色分布の相関値 ρを計算する。

【0018】9は第2判定部である。該第2判定部9では、フレーム間差分Dn、時間的変化△Dn、および相関値ρを総合的に判断して、カット検出の判定を行う。そして、カット画面であると判定された時には、出力部7から、カット画面であると判定された入力画面、あるいはそれを示すデータなどを出力する。なお、前記第1、第2判定部6、9において、カット画面と判定されて前記入力画面等が出力部7から出力された後、あるいは非カット画面と判定された時には、次の入力画面の処20理に移る。

【0019】次に、前記実施例の動作を詳細に説明する。まず、前記縮小画像処理部3、4の動作を図2を参照して説明する。

【0020】いま、同図(a) および(d) に示されているような入力画面と参照画面とがあったとすると、前記縮小画像処理部3、4はこれらを例えば8画素×8画素のブロックに分割し、各ブロックに対して、輝度Yおよび色差U、Vの平均値を求める。この平均値の求め方の一例としては、各ブロック内の輝度および色差データの総 30和を求め、これをデータ数で割る方法を取ることができる。前記縮小画像処理部3、4は、次いで、これらの平均値をもとに、輝度および色差の縮小画面を作成する。すなわち、縮小画面処理部3は同図(b)、(c) に示されているような、それぞれ元の入力画面の1/64のデータからなる輝度および色差信号の縮小画面を作成する。同様に、縮小画面処理部4は同図(e)、(f) に示されているような、それぞれ元の参照画面の1/64のデータからなる輝度および色差信号の縮小画面を作成する。

【0021】次に、フレーム間差分部5の動作を説明す 40 る。フレーム間差分部5では、参照画像と入力画像の輝度Yの縮小画像を用いてフレーム間差分Dnが求められる。フレーム間差分Dnは例えば次式を用いて求めることができる。

[0022]

【数2】

$$D_{n} = \sum_{i=1}^{T} |DY_{i,n} - DY_{i,n-1}| \qquad (1)$$

ただし、DYは輝度のブロック平均値を示す。また、T 50 n は、それぞれn-l番目のDn-1 および△Dn-1 に比

は総ブロック数、i はブロック番号、n,n-1 はフレーム番号で、ここではそれぞれ、n は入力画面、n-1は参照画面を示す。以下の説明では、前記DYは8ビット(256段階)で表わされているものとして説明するが、本発明はこれに限定されるものではない。

【0023】また、フレーム間差分の時間変化△Dnは、Dnの時間変化として以下の式で求めることが可能である。

 $\triangle Dn = Dn - Dn - 1 \qquad (2)$

) CCで、Dn-1 はフレームn-1 とフレームn-2 の間のフ レーム間差分である。

【0024】次に、前記第1判定部6では、前記輝度Yのフレーム間差分Dn およびフレーム間差分の時間変化 △Dn などを用いて、入力画面を非カット画面、カット画面、カット候補画面の3つの種類に分類する。この処理の詳細を、図3のフローチャートを参照して説明する。

【0025】まず、ステップS1にて、フレーム間差分 Dn が次の条件式(3)を満足するか否かを判定し、満足する場合には非カット画面とし、それ以外の場合にはカット画面候補としてステップS2の処理をする。

Dn < TH1 (3)

ここで、TH1は第1のしきい値である。一般に、シーンの切り替りがなく静止画が連続している場合には、前記フレーム間差分Dn は非常に小さいため、(3)式が成立することとなる。

【0026】次に、ステップS2にて、ステップS1でカット候補となった画面について、フレーム間差分Dn-1が次の条件式(4)を満足するか否かを判定し、満足する場合にはカット画面とし、それ以外の場合にはカット画面候補としてステップS3の処理をする。

 $D_{n-1} < TH2$ (4)

ここで、TH2は第2のしきい値である。(4)式が満足された場合にカット画面と判定する理由は、静止画が連続した後にカット画面となる場合は、n番目のフレーム間差分Dn は大きいものの、その前のフレーム間差分Dn−1 は小さいためである。

[0027] ステップS3では、ステップS2でカット 候補となった画面について、フレーム間差分Dn および Dn-1、ならびにフレーム間差分の時間的変化△Dn および△Dn-1が次の条件式(5)を満足するか否かを判定し、満足する場合にはカット画面とし、それ以外の場合にはカット画面候補としてステップS4の処理をする。

 $\alpha \mid \Delta D n-1 \mid < \Delta D n$ かつ $\beta D n-1 < D n$ (5) C C C (α (β は定数である。(5) 式が満足された場合にカット画面と判定する理由は、パニングなどの緩やかな動きの後にカット画面となる場合には、n 番目のフレーム間差分D n およびフレーム間差分の時間変化 ΔD のは、D n には、D n になるかのD n になるが D n になるから、D n になる D n

べて大きいからである。

【0028】次に、やや激しい動きの後にカット画面と なる場合には、前記n-1番目のフレーム間差分Dn-1 は大きいもののn番目のフレーム間差分Dn はこれに比 べてさらに大きいため、ステップS4では、フレーム間 差分Dn およびDn-1 が次の条件式(6)を満足するか 否かを判定し、満足する場合にはカット画面とし、それ 以外の場合にはカット画面候補とする。

 γ D n-1 < D n (6)

ここで、ヶは定数である。

【0029】なお、前記(3)~(6)式中のTH1、 TH2、 α 、 β および γ として、次の値を用いることが できる。なお、Tは1フレーム画面の総ブロック数であ る。

[0030] TH1 = 4T, TH2 = 10T, $\alpha = 4$, $\beta = 2 および \gamma = 4$ 。

【0031】以上のように、本実施例によれば、前記縮 小画像処理部3および4にて1/64に縮小された輝度 信号の縮小画像を用いて、カット画面、非カット画面お よびカット画面候補と判定することができる。なお、前 20 記ステップS4の処理後のカット画面候補は、非カット 画面と判定するようにしても良い。

【0032】したがって、本実施例によれば、動画像の カット画面の検出処理時間の短縮化を、検出精度を下げ ることなく図ることができる効果がある。

【0033】次に、本発明の第2実施例の動作を説明す る。この第2実施例は、前記第1実施例においてカット 画面候補と判定された入力画面に対して、さらに色差信 号U、Vの縮小画面を用いて、カット画面と非カット画 面の判定をするようにしたものである。

【0034】前記縮小画面処理部3、4で求められた色 差信号U, Vの縮小画面の各要素データが例えば8ビッ トで構成されているとすると、色差ヒストグラム相関部 8では、第1実施例でカット画面候補となった画面に対 し、色差信号U, Vの縮小画面においてU, V=128 を中心に $\pm \theta$ 範囲を 8 分割し、ヒストグラム Hn,j,kを とる。 ここで、n はフレーム番号、j=1...8 、k=1...8 はそれぞれU、Vの領域番号である。すなわち、8ビッ トで構成される要素データの最大値は255であるの で、図4に示されているように、その最大値の半分の1 40 の入力画面の処理へ移る。 28を中心に $\pm \theta$ 範囲を8分割する。ここに、 θ は予め 定められた定数であり、例えば $\theta = 32$ とすることがで きる。次いで、該8分割されたU, Vの領域番号をそれ ぞれi およびk とする。そして、ヒストグラムHn,i,k を定義する。

【0035】例えばj=1,k=1 の場合、Hn,1,1 は、128 $-\theta \leq DU < 128 - 3\theta/4$ かつ128 $-\theta \leq DV <$ 128 - 3θ /4となる要素データの個数を示す。ただし、 DU、DVは色差の要素データの個数である。このよう に、8 x 8 の色差ヒストグラム行列になる。色差ヒスト グラム行列の相関ρは、下記の(7)式を用いて計算す

 $\rho = CCn / (ACn \times ACn-1)^{1/2}$ ただし

[0036]

<u>राष्ट्रपत्तिक स्तर्भ कर्</u> । प्रेर्ताच्या कृष्यक राष्ट्रया राष्ट्र क्रिक्स संस्थानास्त्रातिक <mark>स्त्रा तस्त्रा स्तरास्त्र क्रिक्स सम्स्र</mark>ीके

【数3】

 $CCn = \sum_{i} \sum_{k} (Hn.j.k \times Hn-1.j.k)$

 $ACn = \sum_{i} \sum_{k} H^{2} n, j, k$

 $AC_{n-1} = \sum_{i} \sum_{k} H^{2}_{n-1.j.k}$

第2 判定部 9 ではフレーム間差分 Dn ((1) 式参照)、 時間的変化△Dn ((2) 式参照)、および相関値ρ(上 記(7) 式)などを総合的に判断することにより、カット 画面検出の判定を行う。以下に、前記第2判定部9の動 作を、図6のフローチャートを参照して詳細に説明す

【0037】ステップS11はカメラアングルが異なる ようなカット画面の場合の判定を示す。すなわち、カメ ラアングルが異なるようなカット画面においては、類似 した色分布が多く、色差ヒストグラム行列の相関ρは比 較的大きな値をもち、かつフレーム間差分Dn 、時間的 変化△Dn も大きくなる。とのため、下記の条件式(1 0)を満足する場合、カット画面とし、それ以外をカッ ト候補として、ステップS12の処理を行う。

ζ≦ρ<δ かつ Dn > TH3かつ $\triangle Dn-1$ |>TH4 かつ △Dn >TH5 (10)

次に、色分布が大きく異なる場合には、前記ACnとA Cn-1 は大きく異なるため、ステップS12では、条件 式(11)を満足する場合カット画面とし、それ以外を カット候補として、ステップS13の処理を行う。

max (ACn, ACn-1) > ϵ min (ACn, ACn-1) (11)

次に、上記の条件に該当しないようなカット画面につい ては、色差ヒストグラム行列の相関値ρが大きい場合の みカット画面とし、すなわち式(12)を満足する場合 にカット画面とし、それ以外を非カット画面として、次

ρ>ζ (12)

以上の処理において、前記第2判定部9でカット画面と 決定された場合、前記出力部7にて、カット画面やその 画面のフレーム番号などを出力し、次の入力画面の処理 に進む。また、非カット画面と決定された場合には、そ のまま、次の入力画面の処理に進む。

【0038】なお、前記(7)~(12)式中のTH 3、TH4、TH5、 δ 、 ϵ 、 ξ および θ として、次の 値を用いることができる。

にして求められたHn,j,k は、図5に示されているよう 50 TH3=23T、TH4=4T、TH5=11T、δ=

0. 9、 $\varepsilon = 8$ 、 $\xi = 0$. 75および $\theta = 32$ 。

【0039】以上のように、前記第2実施例においては、第1実施例においてカット画面候補と判定された入力画面に対して、さらに色差信号U、Vの縮小画面を用いて、カット画面と非カット画面の判定をするようにしたので、動画像のカット画面の検出精度を向上させることができるという効果がある。

【0040】次に、本発明の第3実施例について説明する。この実施例は、図1における入力画面と参照画面が、DCT(離散コサイン変換)等で圧縮符号化された符号化情報の場合である。この場合には、画像入力部1と2に符号化された画像情報が入力される。縮小画像処理部3および4では、該当ブロックの平均値成分を符号化情報から抽出して平均値を求め、これらの平均値を用いて縮小画面を構成する。

【0041】縮小画像処理部3および4は、入力してきた符号化情報が、例えば8×8(画素)の2次元DCTである場合には、該2次元DCT変換後の(0,0)成分、すなわち直流成分を8で割り、この値を各ブロック20でとに集めて、縮小画面を構成する。前記フレーム間差分部5以降の処理については、前記第1あるいは第2実施例と同様であるので、説明を省略する。

【0042】この第3実施例においては、従来の方式のように、入力してきた符号化情報を一旦元の画像に復元する必要がなく、符号化データからの平均値成分の抽出のみで処理が可能であるため、非常に高速にカット画面の抽出を行うことができる。

【0043】本発明の実施にあたっては種々の変形が可能である。例えば縮小画面を求める際の平均値計算につ 30いては8画素×8ラインのブロックに限らずに16画素×16ラインや4画素×4ラインなど種々のサイズが適応可能である。

【0044】また、検出精度を向上させるために、第1 判定部6や第2判定部9において、フレーム $_{\rm L}$ とフレーム $_{\rm L}$ この情報(D、 $_{\rm L}$ D、 $_{\rm L}$ のみならず、フレーム $_{\rm L}$ このでは、フレーム $_{\rm L}$ このでは、フレーム $_{\rm L}$ このでは、フレーム $_{\rm L}$ というらに時間的に過去の情報を用いることも可能である。

【0045】さらに、高速性が要求される場合には、上 40 記条件式(3)~(12)のうちのいくつかを選択して 用いて高速化を図ることが可能である。ただし、この場合、未検出や過剰検出などの誤検出が多くなることが予 想される。

【0046】また、種々のパラメータTHL \sim THS, $\alpha \sim \theta$ を変更することにより、未検出や過剰検出の割合を制御することが可能である。

[0047]

【発明の効果】以上に説明したように、請求項1 および 2の発明では、1または複数フレーム離れた参照画面と、50

入力画面のブロック平均値を用いた縮小画像を用いて、輝度成分のフレーム間差分およびその時間変化で動画像のカット検出を行った。したがって、この発明によれば、処理に必要なデータ数が削減され、動画像のカット画面の検出処理時間の短縮化を、検出精度を下げることなく図ることができるという効果がある。

10

【0048】また、請求項3および4の発明では、1または複数フレーム離れた参照画面と入力画面のブロック平均値を用いた縮小画像を用いて輝度成分のフレーム間差分およびその時間変化でカット画面の候補となる画像を選出し、該カット画面の候補となった画像に対して色差成分ヒストグラムの相関を求め、該相関と前記フレーム間差分およびその時間変化とを総合的に判断してカット検出を行っている。この場合、縮小画像を用いることにより、処理に必要なデータ数が削減されるため、原画像を用いた検索に比較して大幅に検出時間が縮小されるほか、画素単位の細かな雑音や局所的な変化に対しても影響を受けにくく、高精度化を図れるという効果がある。

【0049】また、輝度成分のフレーム間差分と色差ヒストグラム相関を階層的に用いることにより、処理の階層化を図ることが可能となり、検出時間の短縮化を図ることが可能となっている。

【0050】また、請求項5および6の発明においては、圧縮符号化された画像データからのカット画面の検索を、一旦元の画像に復元することなく行うことができる。すなわち、符号化データからの平均値成分を抽出するのみで縮小画面の作成が可能であるため、非常に高速なカット画面の検出が可能である。

【0051】ことで、請求項3および4の発明を用いて、実際の動画像からカット画面を検出した結果について報告する。いくつかのニュースが含まれるテスト動画像を用いて、ISOで標準化されたMPEG1方式で符号化されたビットストリームについて、参照フレームと入力フレームの間隔を15フレームとして、カット画面の検出を行った。この場合、正しく検出されたカット画面数に対する未検出カット画面の割合(未検出率)は2.5%、本来カット画面ではないのに誤って検出された画面の割合(過剰検出率)は、17.5%であり、総合的には従来の検出方法と同程度の検出率を得ることができた。

【0052】また、検出時間は、再生時間の1/5程度で処理を終了することができ、従来方式に比べて20倍以上高速化を図ることが可能となった。

【図面の簡単な説明】

【図1】 本発明の一実施例の概略の構成を示すブロック図である。

【図2】 図1の縮小画像処理部の動作の説明図である。

【図3】 本発明の一実施例における第1判定部の処理

11

の内容を説明するためのフローチャートである。

【図4】 第2実施例の色差信号U、Vの領域番号j、kの説明図である。

【図5】 色差ヒストグラム行列Hn,j,k の説明図である。

【図6】 本発明の第2実施例における第2判定部の処理の内容を説明するためのフローチャートである。

12

*【図7】 従来の動画像の高速カット検出方法における カラーヒストグラムの説明図である。

【符号の説明】

1、2…画像入力部、3、4…縮小画像処理部、5…フレーム間差分部、6…第1判定部、7…出力部、8…色差ヒストグラム相関部、9…第2判定部。

[図2]

【図4】

【図5】

(色差ヒストグラム行列)

【図6】

【図3】

【図7】

