MACM 101

$\overset{ ext{Midterm Test}}{ ext{This is a sample!}}$

Some Day, 2014

Last	Name	First Name and Initials	
Stude	ent No		
_	AIDS allowed. s for scratch w	Answer ALL questions on the test paper. Use backs of work.	
		Total Marks: 100	
1.	State DeMorg	gan's law	[8]
2.	Show that \neg ($(p \to q) \to \neg q$ is a tautology.	[12]
3.	Show that $(p$	$\rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not logically equivalent.	[16]
4.	is valid	ons for each step needed to show that the following argument $p \to q, s \lor r, r \to \neg q$ s.	[16]
	Steps 1. p 2. $p \rightarrow q$ 3. q 4. $r \rightarrow \neg q$ 5. $q \rightarrow \neg r$ 6. $\neg r$ 7. $s \lor r$ 8. s	Reasons	
5.	6. How to prove that a universally quantified statement is false?		[12]
6.	Show that $\exists x \ (P(x) \land Q(x))$ is not logically equivalent to $(\exists x \ P(x)) \land (\exists x \ Q(x)).$		[16]
7.	What is the difference between the difference of two sets and their symmetric difference?		
8.	What is the p	power set, and how many elements does it contain?	[12]