NOTEBOOK TP0

March 17, 2025

```
[18]: # -*- coding: utf-8 -*-
      Created on Sun Mar 16 19:38:18 2025
      Qauthor: Arian
      import sys
      sys.path.append('C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería_
       ⊶ UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de⊔
       →Inteligencia Artificial\\TPO\\SIA TPO')
      import json
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from src.catching import attempt_catch
      from src.pokemon import PokemonFactory, StatusEffect
      # carga de pókemon
      pokemon_file = "C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería -_
       →UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de Inteligencia⊔
       →Artificial\\TP0\\SIA TP0\\pokemon.json"
      with open(pokemon_file, "r") as f:
          datos_pokemon = json.load(f)
      # Pokebolas y pokemones
      pokemon = ["jolteon", "caterpie", "snorlax", "onix", "mewtwo"]
      pokebolas = ["pokeball", "ultraball", "fastball", "heavyball"]
      # Generacion
      gen_pokemon = PokemonFactory(pokemon_file)
```

```
# La idea es generar una función que utilice attemp catch pero para varios_{\sqcup}
 ⇔pokemones
def atrapar(pokemon,pokebola,intentos):
    resultados = []
    resultados por tirada = []
    NIVEL = 100
    HP = 1
    for bolas in pokebolas:
        exitos = 0
        probabilidad_exito = []
        for _ in range(intentos):
            pokes = gen_pokemon.create(pokemon, NIVEL, StatusEffect.NONE, HP)
            exitos_tasa, capture = attempt_catch(pokes, bolas)
            if exitos_tasa:
                exitos += 1
            probabilidad exito.append(capture)
            # resultados.append([pokemon,bolas,exitos/intentos,np.
 →mean(probabilidad_exito)])
        resultados.append([pokemon,bolas,exitos/intentos,np.
 →mean(probabilidad_exito)])
    return resultados
# Usamos esta función para cada uno de los pokemones
INTENTOS = 100;
resultados = []
for pkmn in pokemon:
    resultados.extend((atrapar(pkmn, pokebolas,INTENTOS)))
# Ahora lo que quiero es reunir las estadisticas de cada bola por pojemon
# Crear un DataFrame con los resultados
df_results = pd.DataFrame(resultados, columns=["Pokemon", "Pokebola", "Tasau
⇔exito", "Media de captura"])
print(df_results)
```

	Pokemon	Pokebola	Tasa exito	Media de captura
0	jolteon	pokeball	0.04	0.0586
1	jolteon	ultraball	0.07	0.1172
2	jolteon	fastball	0.25	0.2344
3	jolteon	heavyball	0.02	0.0326
4	caterpie	pokeball	0.40	0.3320
5	caterpie	ultraball	0.65	0.6641
6	caterpie	fastball	0.29	0.3320
7	caterpie	heavyball	0.32	0.3060
8	snorlax	pokeball	0.05	0.0326
9	snorlax	ultraball	0.09	0.0651
10	snorlax	fastball	0.01	0.0326
11	snorlax	heavyball	0.07	0.0846
12	onix	pokeball	0.03	0.0586
13	onix	ultraball	0.11	0.1172
14	onix	fastball	0.04	0.0586
15	onix	heavyball	0.08	0.0846
16	${\tt mewtwo}$	pokeball	0.01	0.0039
17	${\tt mewtwo}$	ultraball	0.00	0.0078
18	mewtwo	fastball	0.01	0.0156
19	mewtwo	heavyball	0.00	0.0013


```
import sys
sys.path.append('C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería⊔
G- UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de⊔
GInteligencia Artificial\\TPO\\SIA TPO')

import json
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from src.catching import attempt_catch
from src.pokemon import PokemonFactory, StatusEffect

# carga de pókemon
```

```
pokemon file = "C:\\USers\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería -__
 →UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de Inteligencia
 →Artificial\\TP0\\SIA TP0\\pokemon.json"
with open(pokemon_file,"r") as f:
    datos pokemon = json.load(f)
# Pokebolas y pokemones
pokemon = ["jolteon", "caterpie", "snorlax", "onix", "mewtwo"]
pokebolas = ["pokeball", "ultraball", "fastball", "heavyball"]
estado_pokemon = ["NONE", "SLEEP", "FREEZE", "POISON", "BURN", "PARALYSIS"]
# Generacion
gen_pokemon = PokemonFactory(pokemon_file)
# La idea es generar una función que utilice attemp catch pero para varios_{\sqcup}
→pokemones
def atrapar(pokemon,pokebola,estado_pokemon,intentos):
    resultados = []
    resultados_promediados = []
    NIVEL = 100
    HP = 1
    for estado in estado_pokemon:
        for bolas in pokebolas:
            exitos = 0
            probabilidad_exito = []
            for _ in range(intentos):
                pokes = gen_pokemon.create(pokemon, NIVEL,__
 ⇔StatusEffect[estado], HP)
                exitos_tasa, capture = attempt_catch(pokes, bolas)
                if exitos_tasa:
                    exitos += 1
                probabilidad_exito.append(capture)
            resultados.append([pokemon,bolas,estado,exitos/intentos,np.
 →mean(probabilidad_exito)])
    return resultados
INTENTOS = 100;
resultados = []
for pkmn in pokemon:
```

	Pokemon	estado	Pokebola	Tasa exito	Media de captura
0	jolteon	pokeball	NONE	0.04	0.0586
1	jolteon	ultraball	NONE	0.12	0.1172
2	jolteon	fastball	NONE	0.21	0.2344
3	jolteon	heavyball	NONE	0.04	0.0326
4	jolteon	pokeball	SLEEP	0.14	0.1172
	•••	•••	•••	•••	•••
115	mewtwo	heavyball	BURN	0.00	0.0020
116	mewtwo	pokeball	PARALYSIS	0.00	0.0059
117	mewtwo	ultraball	PARALYSIS	0.01	0.0117
118	mewtwo	fastball	PARALYSIS	0.03	0.0234
119	mewtwo	heavyball	PARALYSIS	0.00	0.0020

[120 rows x 5 columns]


```
[26]: import sys
      sys.path.append('C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería_
       → UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de⊔

¬Inteligencia Artificial\\TPO\\SIA TPO')
      import json
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from src.catching import attempt_catch
      from src.pokemon import PokemonFactory, StatusEffect
      # carga de pókemon
      pokemon_file = "C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería -_
       {\tt \neg UNLP \backslash Doctorado \backslash Cursos\ de\ posgrado \backslash 2025\ Parte\ 1 \backslash Sistemas\ de\ Inteligencia} 
       →Artificial\\TP0\\SIA TP0\\pokemon.json"
      with open(pokemon_file, "r") as f:
```

```
datos_pokemon = json.load(f)
# Pokebolas y pokemones
pokemon = ["jolteon", "caterpie", "snorlax", "onix", "mewtwo"]
pokebolas = ["pokeball", "ultraball", "fastball", "heavyball"]
HP = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# Generacion
gen_pokemon = PokemonFactory(pokemon_file)
# La idea es generar una función que utilice attemp catch pero para varios_{\sqcup}
⇔pokemones
def atrapar(pokemon,pokebola,intentos,HP):
    resultados = []
    resultados_promediados = []
    NIVEL = 100
    for HPP in HP:
        for bolas in pokebolas:
            exitos = 0
            probabilidad_exito = []
            for _ in range(intentos):
                pokes = gen_pokemon.create(pokemon, NIVEL, StatusEffect.NONE,_
 →HPP/100)
                exitos_tasa, capture = attempt_catch(pokes, bolas)
                if exitos_tasa:
                    exitos += 1
                probabilidad_exito.append(capture)
            resultados.append([pokemon, HPP, bolas, exitos/intentos, np.
 →mean(probabilidad_exito)])
    return resultados
INTENTOS = 100;
pokemon_comparacion = ["caterpie", "snorlax", 'jolteon']
resultados = []
for pkmn in pokemon_comparacion:
    resultados.extend((atrapar(pkmn, pokebolas,INTENTOS,HP)))
```

	Pokemon	HP	Pokebola	Tasa exito	Media de captura
0	caterpie	10	pokeball	0.94	0.9297
1	caterpie	10	ultraball	1.00	1.0000
2	caterpie	10	fastball	0.92	0.9297
3	caterpie	10	heavyball	0.90	0.8568
4	caterpie	20	pokeball	0.89	0.8633
			•••	•••	•••
115	jolteon	90	heavyball	0.02	0.0396
116	jolteon	100	pokeball	0.12	0.0586
117	jolteon	100	ultraball	0.08	0.1172
118	jolteon	100	fastball	0.27	0.2344
119	jolteon	100	heavyball	0.04	0.0326

[120 rows x 5 columns]


```
[28]: import sys
      sys.path.append('C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería_
       → UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de⊔

¬Inteligencia Artificial\\TPO\\SIA TPO')
      import json
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from src.catching import attempt_catch
      from src.pokemon import PokemonFactory, StatusEffect
      # carga de pókemon
      pokemon_file = "C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería -_
       →UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de Inteligencia⊔
       →Artificial\\TP0\\SIA TP0\\pokemon.json"
      with open(pokemon_file,"r") as f:
```

```
datos_pokemon = json.load(f)
# Pokebolas y pokemones
pokemon = ["jolteon", "caterpie", "snorlax", "onix", "mewtwo"]
pokebolas = ["pokeball", "ultraball", "fastball", "heavyball"]
NIVEL = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# Generacion
gen_pokemon = PokemonFactory(pokemon_file)
# La idea es generar una función que utilice attemp catch pero para varios_{\sqcup}
⇔pokemones
def atrapar(pokemon,pokebola,intentos,NIVEL):
    resultados = []
    resultados_promediados = []
    HP = 1
    for NV in NIVEL:
        for bolas in pokebolas:
            exitos = 0
            probabilidad_exito = []
            for _ in range(intentos):
                pokes = gen_pokemon.create(pokemon, NV, StatusEffect.NONE, HP)
                exitos_tasa, capture = attempt_catch(pokes, bolas)
                if exitos_tasa:
                    exitos += 1
                probabilidad_exito.append(capture)
            resultados.append([pokemon, NV, bolas, exitos/intentos, np.
 →mean(probabilidad_exito)])
    return resultados
INTENTOS = 100;
resultados = []
for pkmn in pokemon:
    resultados.extend((atrapar(pkmn, pokebolas,INTENTOS,NIVEL)))
df_results = pd.DataFrame(resultados, columns=["Pokemon","NIVEL", "Pokebola", u

¬"Tasa exito", "Media de captura"])
```

```
# df_results = df_results[df_results["Pokebola"] == "pokeball"]
print(df_results)

plt.figure(figsize=(10, 6))
sns.lineplot(data=df_results, x="NIVEL", y="Tasa exito", hue="Pokemon", use marker="o", ci="sd")
plt.show()
```

	Pokemon	NIVEL	Pokebola	Tasa exito	Media de captura
0	jolteon	10	pokeball	0.04	0.0587
1	jolteon	10	ultraball	0.10	0.1172
2	jolteon	10	fastball	0.23	0.2344
3	jolteon	10	heavyball	0.05	0.0326
4	jolteon	20	pokeball	0.08	0.0586
	•••	•••	•••	•••	•••
 195	 mewtwo	 90	 heavyball	 0.01	 0.0013
195	mewtwo	90	heavyball	0.01	0.0013
195 196	mewtwo mewtwo	90 100	heavyball pokeball	0.01 0.00	0.0013 0.0039

[200 rows x 5 columns]

 $\begin{tabular}{ll} $C:\Users\USUARIO\AppData\Local\Temp\ipykernel_2132\1460390331.py:64: Future\Warning: \end{tabular}$

The `ci` parameter is deprecated. Use `errorbar='sd'` for the same effect.

sns.lineplot(data=df_results, x="NIVEL", y="Tasa exito", hue="Pokemon",
marker="o",ci="sd")


```
[32]: import sys
      sys.path.append('C:\\Users\\USUARIO\\OneDrive - Alumnos Facultad de Ingeniería_
       →- UNLP\\Doctorado\\Cursos de posgrado\\2025 Parte 1\\Sistemas de L

¬Inteligencia Artificial\\TPO\\SIA TPO')
      import json
      import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      from src.catching import attempt_catch
      from src.pokemon import PokemonFactory, StatusEffect
      # carga de pókemon
      {\tt pokemon\_file = "C:\USUARIO\OneDrive - Alumnos Facultad de Ingeniería -} \\ - \\ \bot
       \neg UNLP \setminus Doctorado \setminus Cursos de posgrado \\2025 Parte 1\\Sistemas de Inteligencia \\\
       →Artificial\\TP0\\SIA TP0\\pokemon.json"
      with open(pokemon_file, "r") as f:
          datos_pokemon = json.load(f)
      # Pokebolas y pokemones
```

```
pokemon = ["jolteon", "caterpie", "snorlax", "onix", "mewtwo"]
pokebolas = ["pokeball", "ultraball", "fastball", "heavyball"]
NIVEL = 10
HP = 0.1
# Generacion
gen_pokemon = PokemonFactory(pokemon_file)
# La idea es generar una función que utilice attemp catch pero para varios,
 →pokemones
def atrapar(pokemon,pokebola,intentos,NIVEL,HP,estado):
   resultados = []
   resultados_promediados = []
   for bolas in pokebolas:
       exitos = 0
       probabilidad_exito = []
       for _ in range(intentos):
            pokes = gen_pokemon.create(pokemon, NIVEL, StatusEffect[estado], HP)
            exitos_tasa, capture = attempt_catch(pokes, bolas)
            if exitos_tasa:
                exitos += 1
            probabilidad_exito.append(capture)
        resultados.append([pokemon,bolas,exitos/intentos,np.
 →mean(probabilidad_exito)])
   return resultados
INTENTOS = 100;
resultados = []
for pkmn in pokemon:
   resultados.extend((atrapar(pkmn, pokebolas,INTENTOS,NIVEL,HP,"SLEEP")))
pokemon_seleccionado = "caterpie"
df_results = pd.DataFrame(resultados, columns=["Pokemon", "Pokebola", "Tasa_
⇔exito", "Media de captura"])
print(df results)
plt.figure(figsize=(10, 6))
sns.barplot(data=df_results, x="Pokemon", y="Tasa exito", hue="Pokebola")
```

```
plt.xlabel("Estado del Pokémon")
plt.ylabel("Tasa de Éxito")
plt.title(f"Tasa de Captura según Estado y Pokébola ({pokemon_seleccionado})")
plt.legend(title="Pokébola")
plt.show()
```

	Pokemon	Pokebola	Tasa exito	Media de captura
0	jolteon	pokeball	0.36	0.3293
1	jolteon	ultraball	0.68	0.6585
2	jolteon	fastball	1.00	1.0000
3	jolteon	heavyball	0.18	0.1830
4	caterpie	pokeball	1.00	1.0000
5	caterpie	ultraball	1.00	1.0000
6	caterpie	fastball	1.00	1.0000
7	caterpie	heavyball	1.00	1.0000
8	snorlax	pokeball	0.16	0.1840
9	snorlax	ultraball	0.39	0.3680
10	snorlax	fastball	0.18	0.1840
11	snorlax	heavyball	0.49	0.4784
12	onix	pokeball	0.36	0.3282
13	onix	ultraball	0.60	0.6563
14	onix	fastball	0.35	0.3282
15	onix	heavyball	0.42	0.4740
16	mewtwo	pokeball	0.02	0.0221
17	mewtwo	ultraball	0.01	0.0441
18	mewtwo	fastball	0.07	0.0881
19	mewtwo	heavyball	0.00	0.0074

[]:[