Assignment -Week4 Exercise 4.2 - Descriptive Modeling Clustering Exercise

Course: DSC630 - Predictive Analytics

Instructor: Fadi Alsaleem

"'Karthikeyan Chellamuthu "'

"Date:06-26-2022"

Using R or Python - You will be using the dataset als_data.csv to apply clustering methods for this assignment. This data gives anonymized data on ALS patients. With this data, complete the following steps:

- Remove any data that is not relevant to the patient's ALS condition.
- Apply a standard scalar to the data.
- Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster.
- Use the plot created in (3) to choose an optimal number of clusters for K-means. Justify your choice.
- Fit a K-means model to the data with the optimal number of clusters chosen in part (4).
- Fit a PCA transformation with two features to the scaled data.
- Make a scatterplot of the PCA transformed data coloring each point by its cluster value.
- Summarize your results and make a conclusion.
- You can use R or Python to complete this assignment. Submit your code and output to the submission link. Make sure to add comments to all your code and to document your steps, process, and analysis.

```
In [1]: # Exercise 4.2 - Descriptive Modeling Clustering Exercise we can use either R or Pyt
```

```
In [32]:
          # Import the necessary library required
          import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          # Import from scikit learn for the necessary librarys
          from sklearn.preprocessing import StandardScaler
          from sklearn.cluster import KMeans
          from sklearn import metrics
          from scipy.spatial.distance import cdist
          # Import from scikit learn for the necessary librarys
          from sklearn.datasets import make_blobs
          from sklearn.cluster import KMeans
          from sklearn.metrics import silhouette samples, silhouette score
          import matplotlib.cm as cm
          import matplotlib.style as style
          #Import PCA Library
          from sklearn.decomposition import PCA
```

In [4]:

verify and set the attributes in pandas dataframe

```
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
```

In [5]: # create a dataframe to consume the als data provided
 df_patientals = pd.read_csv('als_data.csv')
 df_patientals.head(10)

Out[5]:		ID	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_range	ALSFRS_slope	AL!
	0	1	65	57.0	40.5	38.0	0.066202	-0.965608	
	1	2	48	45.0	41.0	39.0	0.010453	-0.921717	
	2	3	38	50.0	47.0	45.0	0.008929	-0.914787	
	3	4	63	47.0	44.0	41.0	0.012111	-0.598361	
	4	5	63	47.0	45.5	42.0	0.008292	-0.444039	
	5	6	36	51.0	47.0	46.0	0.009058	-0.118353	
	6	7	55	46.0	44.0	40.0	0.010850	-1.225580	
	7	8	55	45.0	42.0	38.0	0.018519	-0.760417	
	8	9	37	48.0	46.0	41.0	0.012681	-1.010148	
	9	11	72	44.0	42.0	38.0	0.010714	-0.107861	

summary to get the summary results of the given data set to perform the clustering # Recomed to create a summary and grouping to know more about your data frame of the df_patientals.describe()

ID Out[9]: Age_mean Albumin_max Albumin_median Albumin_min Albumin_range AL: 2223.000000 2223.000000 2223.000000 2223.000000 2223.000000 2223.000000 2 count mean 1214.874944 54.550157 47.011134 43.952542 40.766347 0.013779 696.678300 11.396546 3.233980 2.654804 3.193087 0.009567 std min 1.000000 18.000000 37.000000 34.500000 24.000000 0.000000 25% 614.500000 42.000000 39.000000 0.009042 47.000000 45.000000 50% 1213.000000 55.000000 47.000000 44.000000 41.000000 0.012111 75% 1815.500000 63.000000 49.000000 46.000000 43.000000 0.015873 2424.000000 81.000000 70.300000 51.100000 49.000000 0.243902

Verify the attributes to find type of data and anomalies or fileter the unwanted of df_patientals.dtypes

Wook-4 Assignments 4.2	Descriptive i
Albumin_range	float64
ALSFRS_slope	float64
ALSFRS_Total_max	int64
ALSFRS_Total_median	float64
ALSFRS_Total_min	int64
ALSFRS_Total_range	float64
ALT.SGPTmax	float64
ALT.SGPTmedian	float64
ALT.SGPTmin	float64
ALT.SGPTrange	float64
AST.SGOT. max	int64
AST.SGOTmedian	float64
AST.SGOTmin	float64
AST.SGOTrange	float64
Bicarbonate max	float64
Bicarbonate_median	float64
Bicarbonate_min	float64
Bicarbonate_range	float64
Blood.Urea.NitrogenBUNmax	float64
Blood.Urea.NitrogenBUNmedian	float64
Blood.Urea.NitrogenBUNmin	float64
Blood.Urea.NitrogenBUNrange	float64
<pre>bp_diastolic_max</pre>	int64
bp_diastolic_median	float64
bp_diastolic_min	int64
bp_diastolic_range	float64
bp_systolic_max	int64
bp_systolic_median	float64
bp_systolic_min	int64
bp_systolic_range	float64
Calcium max	float64
Calcium_median	float64
Calcium_min	float64
Calcium_range	float64
Chloride_max	float64
Chloride_median	float64
Chloride_min	float64
Chloride_range	float64
Creatinine_max	float64
Creatinine_median	float64
Creatinine_min	float64
Creatinine_range	float64
Gender mean	int64
Glucose_max	float64
Glucose_median	float64
Glucose_min	float64
Glucose_range	float64
hands_max	int64
hands_median	float64
hands_min	int64
hands_range	float64
Hematocrit_max	float64
Hematocrit_median	float64
Hematocrit_min	float64
Hematocrit_range	float64
Hemoglobin_max	float64
Hemoglobin_median	float64
Hemoglobin_min	float64
Hemoglobin_range	float64
leg_max	int64
leg_median	float64
leg_min	int64
leg_range	float64
mouth_max	int64

```
mouth_median
                                      float64
mouth_min
                                        int64
                                      float64
mouth_range
onset_delta_mean
                                        int64
onset site mean
                                        int64
                                        int64
Platelets_max
Platelets_median
                                      float64
Platelets min
                                      float64
Potassium_max
                                      float64
Potassium_median
                                      float64
Potassium min
                                      float64
Potassium_range
                                      float64
                                        int64
pulse max
pulse median
                                      float64
pulse_min
                                        int64
pulse_range
                                      float64
respiratory max
                                        int64
respiratory_median
                                      float64
                                        int64
respiratory_min
respiratory_range
                                      float64
Sodium_max
                                      float64
                                      float64
Sodium median
Sodium min
                                      float64
Sodium_range
                                      float64
SubjectID
                                        int64
trunk max
                                        int64
trunk_median
                                      float64
trunk_min
                                        int64
trunk_range
                                      float64
Urine.Ph_max
                                      float64
Urine.Ph median
                                      float64
Urine.Ph min
                                      float64
dtype: object
```

Verify the shape before dropping the total number of attributes present in the df df_patientals.shape

Out[8]: (2223, 101)

In [10]: # 1. Data Clensing Remove any data that is not relevant to the patient's ALS condit
df_patientals.drop(["ID", "SubjectID"], axis=1, inplace=True)

Out[12]: (2223, 99)

Out[13]: Albumin_max Albumin_median Albumin_min Albumin_range ALSFRS_slope ALSFRS Age_mean 0 65 57.0 40.5 38.0 0.066202 -0.965608 1 48 45.0 41.0 39.0 0.010453 -0.921717 2 50.0 45.0 38 47.0 0.008929 -0.914787

	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_range	ALSFRS_slope	ALSFRS	
	3 63	47.0	44.0	41.0	0.012111	-0.598361		
	4 63	47.0	45.5	42.0	0.008292	-0.444039		
	5 36	51.0	47.0	46.0	0.009058	-0.118353		
	6 55	46.0	44.0	40.0	0.010850	-1.225580		
	7 55	45.0	42.0	38.0	0.018519	-0.760417		
	8 37	48.0	46.0	41.0	0.012681	-1.010148		
	9 72	44.0	42.0	38.0	0.010714	-0.107861		
T- [44].	4						•	
In [14]:	<pre># 2. Apply a standard scalar to the data. scaler = StandardScaler() A = scaler.fit_transform(df_patientals) print(A)</pre>							
	1.8685315	57]	2 -1.30078105 1 -1.11240084					
	-0.4191512	24] 94 0.92441474	4 1.14816173					
	-0.4191512 [-1.5403005 -0.4191512 [-0.5748786	[4] [67	4 0.01788044 7 0.01788044 0.39464087	0.8803755				
In [17]:	-0.41915124]] # compute the mean and verifiy if its closer to 0 after applying the standard scalar np.mean(A),np.std(A)							
Out[17]:	(-8.908541299845311e-17, 1.0)							
In []:	'''Mean val	ue should be	close to 0 afte	er applying S	tandardScalar	and Standard	deviat	
In [20]:	# verify t A.shape	he data frame	e after apply a	standard sca	lar to the dat	ta.		
Out[20]:	(2223, 99)							
In [21]:	'''Results	are expected	as we have remo	oved two colu	mns'''			
Out[21]:	'Results are	e expected as	we have removed	d two columns				
In [27]:	# Reference	https://scik	e cluster silhou Rit-learn.org/st B, 4, 5, 6, 7, 8 rs = []	table/auto_ex		-		

```
for n_clusters in range_n_clusters:
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set size inches(18, 7)
    ax1.set_xlim([-0.1, 1])
    ax1.set_ylim([0, len(A) + (n_clusters + 1) * 10])
    clusterer = KMeans(n clusters=n clusters, random state=42)
    cluster_labels = clusterer.fit_predict(A)
    silhouette_avg = silhouette_score(A, cluster_labels)
    print("For n_clusters =", n_clusters,
          "The average silhouette_score is :", silhouette_avg)
    silhouette avg n clusters.append(silhouette avg)
    sample_silhouette_values = silhouette_samples(A, cluster_labels)
    y_lower = 10
    for i in range(n_clusters):
        ith_cluster_silhouette_values = \
            sample_silhouette_values[cluster_labels == i]
        ith_cluster_silhouette_values.sort()
        size_cluster_i = ith_cluster_silhouette_values.shape[0]
       y_upper = y_lower + size_cluster_i
        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill_betweenx(np.arange(y_lower, y_upper),
                          0, ith_cluster_silhouette_values,
                          facecolor=color, edgecolor=color, alpha=0.7)
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
       y_lower = y_upper + 10
    ax1.set_title(" various clustering silhouette plots")
    ax1.set_xlabel("Coefficient values of silhouette")
    ax1.set ylabel("Cluster label")
    ax1.axvline(x=silhouette avg, color="red", linestyle="--")
    ax1.set_yticks([])
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
    colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
    ax2.scatter(A[:, 0], A[:, 1], marker='.', s=30, lw=0, alpha=0.7,
                c=colors, edgecolor='k')
    centers = clusterer.cluster centers
    ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                c="white", alpha=1, s=200, edgecolor='k')
    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                    s=50, edgecolor='k')
    ax2.set title(" Data visualization post clustering")
    ax2.set_xlabel("1st Feature space ")
    ax2.set_ylabel("2nd Feature space ")
```

For n_clusters = 2 The average silhouette_score is : 0.07878005888570402

For n_clusters = 3 The average silhouette_score is : 0.0687707291658565

For n_clusters = 4 The average silhouette_score is : 0.06973816142698218

For n_clusters = 5 The average silhouette_score is : 0.05697679932842005

For n_clusters = 6 The average silhouette_score is : 0.06477886829610223

For n_clusters = 7 The average silhouette_score is : 0.05187647631845004

For n_clusters = 8 The average silhouette_score is : 0.04954004349267961

For n_clusters = 9 The average silhouette_score is : 0.04393719582297171

For n_clusters = 10 The average silhouette_score is : 0.046121611845315456

KMeans clustering silhouette with n_clusters = 2

KMeans clustering silhouette with n_clusters = 3

KMeans clustering silhouette with n_clusters = 4

KMeans clustering silhouette with $n_{clusters} = 7$

KMeans clustering silhouette with n_clusters = 10


```
# 4. Use the plot created in (3) to choose an optimal number of clusters for K-means
""Justification: Out of all the silhouette scores nothing can be considered as its
```

 ${\tt Out[29]:}$ 'Justification: Out of all the silhouette scores nothing can be considered as its be low average of the score'

In [30]: #5. Fit a K-means model to the data with the optimal number of clusters chosen in pa
 kmeans = KMeans(init="random",n_clusters=2, n_init=10, max_iter=300, random_state=42
 kmeans.fit(A)

Out[30]: KMeans(init='random', n_clusters=2, random_state=42)

In [35]: # 6. Fit a PCA transformation with two features to the scaled data
pca_patientals = PCA(n_components=2)
pca_patientals.fit(A)

Out[35]: PCA(n_components=2)

In [37]: pca_patientals.transform(A)

Out[37]. array([[-1.42673269, -2.31916782],

```
Week-4 Assignments 4.2 Descriptive Modeling Karthikeyan Chellamuthu new
                 [-1.44023999, -4.87204741],
                 [ 1.61786833, -0.42797708],
                 [-0.4329176 , 4.24406748],
                 [-0.33078897, 3.31700946],
                 [ 1.46800628, 0.58321707]])
In [39]:
          # add an additional variable to transform A
          score_patientals = pca_patientals.transform(A)
In [56]:
          # compute Eigen values
          print('Variance Ratio: {}'.format(pca_patientals.explained_variance_ratio_))
          print('Eigenvalues: {}'.format(pca_patientals.explained_variance ))
         Variance Ratio: [0.11330548 0.06446611]
         Eigenvalues: [11.22229079 6.38501759]
In [52]:
          # scored assigned clusters are being assinged to a dataframe
          df_patientals_kscore = pd.concat([df_patientals.reset_index(drop=True), pd.DataFrame
          df_patientals_kscore.columns.values[-2: ] = ['Value_PCA_A', 'Value_PCA_B']
          df_patientals_kscore['K-means PCA clusterin'] = kmeans.labels_
          df_patientals_kscore['Segment'] = df_patientals_kscore['K-means PCA clusterin'].map(
In [46]:
          # Display few records from the newly created dataframe
          df_patientals_kscore.head(10)
```

Out[46]:

Age mean Albumin max Albumin median Albumin min Albumin range ALSFRS slope ALSFRS

0	65	57.0	40.5	38.0	0.066202	-0.965608	
1	48	45.0	41.0	39.0	0.010453	-0.921717	
2	38	50.0	47.0	45.0	0.008929	-0.914787	
3	63	47.0	44.0	41.0	0.012111	-0.598361	
4	63	47.0	45.5	42.0	0.008292	-0.444039	
5	36	51.0	47.0	46.0	0.009058	-0.118353	
6	55	46.0	44.0	40.0	0.010850	-1.225580	
7	55	45.0	42.0	38.0	0.018519	-0.760417	
8	37	48.0	46.0	41.0	0.012681	-1.010148	
9	72	44.0	42.0	38.0	0.010714	-0.107861	

```
In [58]:
          # 7. Make a scatterplot of the PCA transformed data coloring each point by its clust
          x axis = df patientals kscore['Value PCA B']
          y_axis = df_patientals_kscore['Value_PCA_A']
          plt.figure(figsize =(10,8))
          sns.scatterplot(x_axis,y_axis, hue=df_patientals_kscore['Segment'], palette = ['b',
          plt.title('Clusters by PCA Components')
          plt.show()
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin g: Pass the following variables as keyword args: x, y. From version 0.12, the only v alid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [61]:

8. Summarize your results and make a conclusion

Here with i am concluding with my results and again is proven that using the using K Also abouve Justification concludes that out of all the silhouette scores nothing ca

Out[61]:

'\nHere with i am concluding with my results and again is proven that using the usin g K-means we can visually separate almost the entire data set, overall the clusterin g was good. However, there are few very minor overlaps between blue and yellow segme nt.\nAlso abouve Justification concludes that out of all the silhouette scores nothing can be considered as its below average of the score, Eigen values are computed and it was found 11.4% and 6.5% respectively.\n\n'

In []: