1 Protocolli

1.1

Si vuole aggiungere un nuovo protocollo nel livello applicazione: quali modifiche è necessario apportare agli altri livelli?

Risposta

Nessuna modifica (perché non ci sono layer superiori) ma l'applicazione deve interfacciarsi con il livello di trasporto

1.2

Quando si dice che il livello di trasporto effettua il multiplexing e il demultiplexing dei messaggi a livello applicazione, si intende che il protocollo di livello trasporto può combinare più messaggi del livello applicazione in un pacchetto? Spiegare

Risposta

No, significa che il livello di trasporto può incapsulare (uno alla volta) i pacchetti provenienti dal livello superiore includendo delle informazioni nell'intestazione che poi consentono di effettuare correttamente il demultiplexing

1.3

Spiegare il motivo per cui, nel contesto del paradigma client/server, il server debba essere permanentemente in esecuzione mentre il client possa essere eseguito solo quando necessario

Risposta

Il server deve essere sempre pronto a ricevere richieste dai client che possono arrivare in qualsiasi momento. Il client invece deve essere attivo solo mentre l'utente vuole usare l'applicazione

2 Calcolo tempi di trasferimento

2.1

Si consideri un router A che trasmette pacchetti, ognuno di lunghezza L bit, su un canale di trasmissione con Rate R Mbps verso un router B all'altro estremo del link. Si supponga L=4000 e R=10Mbps. Si supponga inoltre il ritardo di propagazione pari a 0,2 millisecondi.

1. Quanto impiega il router A a trasmettere un pacchetto?

Risposta: $L/R = 4000b/10Mbps = 4*10^-4 s = 0,4 ms$

2. Qual è il tempo di trasmissione di 1 bit?

Risposta: $1b/10Mbps = 10^{\circ}-7 s = 0,1 microsecondi (us)$

3. Qual è il massimo numero di pacchetti (L=4000) al secondo che possono essere trasmessi sul link?

Risposta: $[p = 4000 \text{ b}] \rightarrow [b = p/4000] \rightarrow [b/s] = [4000^-1 \text{ p/s}]$ Cioè $b = p/4000 \rightarrow 10x10^6 \text{ b/s} = 10x10^6 / 4000 \text{ p/s}$ $10x10^6/4000 = 2500 \text{ pacchetti}$

4. Supponendo che il router A invii i pacchetti uno dopo l'altro senza introdurre ritardi tra la trasmissione di un pacchetto e il successivo, quanto tempo impiega il router B a ricevere 4 pacchetti?

Risposta: trasmissione è 4x4000/10Mbps = 16000b/10Mbps = 1.6 ms

1.6 + 0.2 = 1.8ms (trasmissione + propagazione) (il ritardo di propagazione si conta una volta soltanto perché è il ritardo dell'ultimo bit trasmesso sul cavo!

5. Qual è il massimo numero di bit che possono essere presenti sul canale?

Risposta: prodotto rate x ritardo = 10Mbps x 0.2 ms = 2000b Si può anche pensare come la dimensione in bit del pacchetto per cui il tempo di propagazione è uguale al tempo di trasmissione, cosicché l'ultimo bit viene trasmesso quando il primo ha raggiunto la fine del canale. 0.2 = L/R -> L = 0.2 * R = 2000b

2.2

Si consideri un Host A che vuole inviare un file molto grande, 4 milioni di byte, a un Host B. Il percorso tra A e B ha 3 link, ognuno di lunghezza 300km, con rate R_1 =500kbps, R_2 =2Mbps, R_3 =1Mbps.

- A. Disegnare i nodi e i collegamenti con i rispettivi rate.
- B. Assumendo l'assenza di ulteriore traffico nella rete, qual è il throughput per il file transfer?
- C. Quanto tempo si impiega per trasferire il file all'host B?

Soluzione

A. La seguente figura:

- B. 500kbps perché il primo link è il collo di bottiglia
- C. I calcoli seguenti:

$$\begin{split} T_{tr}(A) &= (4*8*10^6 b)/(500*10^3 bps) = 32*10^3/500 = 64 \text{ s} \\ T_{tr}(R_1) &= (32*10^6 b)/(2*10^6 bps) = 16 \text{ s} \\ T_{tr}(R_2) &= (32*10^6 b)/(1*10^6 bps) = 32 \text{ s} \\ T_{pr} &= (300*10^3) \text{m/ } (3*10^8) \text{m/s} = (3*10^5) \text{m/ } (3*10^8) \text{m/s} = 1 \text{ms su ognilink} \end{split}$$

Ritardo totale> 64+16+32+0,003 = 112,003 s

NOTA: in questo esercizio la grandezza del pacchetto era uguale alla grandezza del file. Provate a pensare a come cambierebbe la risposta se il file fosse suddiviso in più pacchetti.

Si vuole inviare un file di 160 000 bit dall'host A all'host B su una rete a commutazione di circuito. I link hanno rate pari a 1536 kbps e usano il TDM con 48 slot/s. Il tempo per stabilire il circuito tra A e B è 500 ms.

- 1. Quanto impiega l'host A a trasmettere il file?
- 2. Dove si trova il file alla fine della trasmissione?

Risposta

- Rate del circuito (diverso dal rate del link!): 1536/48 = 32kbps Lunghezza del pacchetto 160000 bits = 160 kb Ritardo di trasmissione L/R = 160/32 = 5 s 500 ms = 0.5 s è il tempo per stabilire il circuito. Ritardo totale = 5 + 0.5 = 5.5 s
- 2. L'ultima parte del file è ancora all'inizio del cavo al secondo 5.5, con le frazioni di pacchetto intervallate da 3 10⁸ m. Ogni secondo verranno trasmessi solo 32kb. La frazione di pacchetto occuperà 3*10⁸/48 m.

2.4 Tempo in volo

Quanti pacchetti di dimensione L = 100 byte si trovano "in volo" durante la trasmissione su di un canale radio di capacità C = 80 Mb/s (velocità di propagazione pari alla velocità della luce nel vuoto) e lunghezza fisica 27 km? Tra i vari pacchetti c'è un tempo di pausa, ovvero un tempo che intercorre tra la trasmissione dell'ultimo bit di un pacchetto e la trasmissione del primo bit del pacchetto successivo, che è pari a 20 μs.

Quanti secondi dura la trasmissione del singolo pacchetto?

 $C=3x10^8 \text{ m/s}$

Soluzione

$$T_{\rm volo} = 27/300000s$$

$$T_p = (20 \mu s + \frac{L}{C} s) = (20 + 10) \mu s \label{eq:Tp} \text{(sarebbe tempo di trasmissione del production of the large of$$

pacchetto considerando anche la pausa)

$$\#\mathbf{p} = \frac{T_{\text{volo}}}{T_{\mathbf{p}}} = 3$$

(nel tempo che il primo bit copre tutto il cavo riesco a trasmettere in tutto 3 pacchetti)

Soluzione alternativa (moltiplicando il tempo di volo per la velocità per avere spazio di volo)

I metri di cavo occupati sono ritardo x velocità cioè [s] x [m/s] = [m] 1 pacchetto occupa 10e-6 x 3e8 + 20e-6 x 3e8 = 30e-6 x 3e8 = 9e3 metri di cavo Quindi ne entrano 3