The Metaphysics of Time

PARADOX AND INFINITY
Benjamin Brast-McKie
April 10, 2024

Paradox

- *Argument 1:* If time is real, then events have A-series properties.
 - **P1** If time is real, then events change.
 - **P2** If an event changes, then its A-series properties are what change.
 - **P3** If an event's A-series properties change, events have A-series properties.
 - **C1** Therefore, if time is real, then events have A-series properties.
- *Argument 2:* Events do not have A-series properties.
 - **P4** If an event has an A-series property, it has every A-series property.
 - **P5** The A-series properties are incompatible.
 - **C2** There are no events that have A-series properties.
- Argument 3: Putting these first two arguments together, McTaggard concludes:
 - C3 Time is not real.

Being in Time

Respones: No event has every A-series property at once.

- If *e* is present, then *e* was future and will be past.
- So Fe at a past time p, and Pe at a future time f.

Repost: "But every moment, like every event, is both past, present, and future."

- So $\neg Fe$ when p is present or future, and $\neg Pe$ when f is present or past.
- The response generates the same problem, yielding a vicious regress.

Vicious: Is the regress really vicious?

- Is the contradiction ever avoided, or ever preserved?
- Compare building a set *U* out of members which include *U*.

Events: It becomes extremely artificial to speak in terms of events.

- Is *Fe* an event?
- Also, most events seem to occur over a duration, not at a time.

Tense: Involves a mixture of tense operators and temporal properties.

- Properties cannot be iterated, so best to stick to operators.
- Let ' $\phi \varphi / \phi \varphi$ ' read 'It was/will be the case that φ '.

The Reality of Tense

Tense: Let φ be a sentence where e is the "event" of it being the case that φ :

• Replace *Pe* with $\Diamond \varphi$, replace *Fe* with $\Diamond \varphi$, and replace *Ne* with φ .

Inference Rules: In place of **P4** we may maintain $\varphi \vdash \Diamond \Diamond \varphi \land \Diamond \Diamond \varphi$.

- Also have $\Diamond \varphi \vdash \Diamond \Diamond \varphi \land \Diamond \Diamond \varphi$ and $\Diamond \varphi \vdash \Diamond \Diamond \varphi \land \Diamond \Diamond \varphi$.
- And $\Diamond \varphi \dashv \vdash \Diamond \Diamond \varphi$ and $\Diamond \varphi \dashv \vdash \Diamond \Diamond \varphi$.

Operators: To say $\Diamond \varphi$, $\Diamond \Diamond \varphi$, etc., is not to say that an event *e* has some property.

- Thus we need not say that *Fe* at a past time, nor *Pe* at a future time.
- No contradiction arises.

Semantics: Given a strict total ordering $\langle T, < \rangle$ of *times* where $x, y \in T$, consider:

- $x \models \Diamond \varphi \text{ iff } y \models \varphi \text{ for some } y < x.$
- $x \models \emptyset \varphi \text{ iff } y \models \varphi \text{ for some } y > x.$

Change: Let $' \odot \varphi'$ read 'There is a change as to whether it is the case that φ' .

- $\triangle \varphi := \emptyset \varphi \vee \varphi \vee \emptyset \varphi$ expresses that it is *sometimes* the case that φ .
- $\bigcirc \varphi := \triangle \varphi \land \triangle \neg \varphi$ expresses that things change (compare **P1**).

Does Time Flow?

Objection: The tense semantics does not capture the sense in which time flows.

- Suppose that $n \models \varphi \land \Diamond \Diamond \varphi \land \Diamond \Diamond \varphi$ where n is the present time.
- So $x \models \emptyset \varphi$ and $y \models \emptyset \varphi$ for some x < n < y.
- But these claims are permanent, i.e., they never change.

Impermenance: The metalinguistic claims about our language need not change.

- What changes are the claims made in the object language.
- Letting $\nabla \varphi := \neg \triangle \neg \varphi$, one might claim $\nabla \exists p (p \land \neg \lozenge p \land \neg \lozenge p)$.
- Or consider the more radical claim $\nabla \forall p(p \to \neg \lozenge p \land \neg \lozenge p)$.

Space: It would seem something similar may be said about space.

- Consider the poker where every point along it has a temperature.
- Let ' $L\varphi$ ' and ' $R\varphi$ ' read: 'To the left φ ' and 'To the right φ '.
- If $0 \models 20^{\circ}$, then $-5 \models R20^{\circ}$ and $5 \models L20^{\circ}$.
- Thus we have not captured the difference between time and space.

Present: Whereas space has no privileged center, time has a privileged present.

- The present is what obtains, or perhaps all that exists.
- Maybe the past also has a privileged status, and is always growing.