HW#5 Report

賴御安, 110550168

Abstract—本文針對如何透過硬體來使特定的運算加速。在本篇中是利用MLP neural network中inner product的部分進行實驗,比較對象為以C code撰寫的inner product和透過Floating Point IP連接Aquila來進行inner product。最後會對兩者的計算時間進行比較。(Abstract)

Keywords— DSA; neural network; IP Catalog; Aquila; MLP; floating point IP; Verilog; (key words)

I. Introduction

本次作業是針對MLP neural network中inner product的部分進行加速,由於做inner product會有許多的乘法運算,因此決定運算時間的主要便會是運算乘法的速度。在觀察透過C所寫的程式碼編譯出的objdump,可以發現運算inner product的方式是透過跳到 __mulsf3 和 __addsf3 兩處進行運算。細看這兩個函數,他們分別有205和284條指令,即使不計算stall cycle的數量也需要花費相當多的cycle數去進行計算。因此,若能透過某些方式進行加速,便能省下不少cycle數,同時再加上MLP中會有許多次的inner product計算,便能將MLP的運算速度提高。這部份便是這次作業的重點。

II. C CODE的觀察與修改

這次我們需要對neural network中計算兩個vector的inner product的for迴圈進行修改,將原先的inner_product計算方式傳到floating point IP進行計算。

A. 初步想法

在教授針對這次作業進行講解時有提到,我們可以將變數透過memcpy進行搬移,等data feeder接到值後再放進IP進行計算。事後與其他同學討論時,得出可以先給定變數的位置再進行搬移,這樣在硬體端就可以對特定的位置進行存取,讀出想要的值並放到對應的位置。因此我便著手進行修改。

我將p_neuron、p_weight透過memcpy搬移到指定的地址。這邊我透過觀察soc_top.v中Core2AXI_0的實作以及select和out的部分,發現註解上有DSA device的設定,我便將位置訂在0xC400_0000和0xC410_0000。另外我也想到我需要將inner_product當前的值從下來作為data C加法的部分,因此便將inner_product搬移到0xC420_0000。最後便將計算後的結果存在0xC430_0000,搬回inner_product存放的位置。

B. 遇到的問題

在使用memcpy時,我發現在編譯時會跳出memcpy會覆蓋volatile的警告。起初我並未重視這個警告,便開始對make出來的elf檔測試。這時我發現dev_addr會跑出0xC400_0000 - 0xC4FF_FFFF的範圍並且不會計算出結果。這時我在硬體端進行許多修改,但都未見成效。最後我詢問其他同學是否有相同問題時,才得以會得解答。我會在下一部份詳細敘述最後的處理方式。

C. 解決辦法

在向同學請教後我得知我並不是只能依靠memcpy來做資料的轉移,而可以直接利用*data1 = p_neuron (data1是指定的位置,float type的volatile pointer)的方式將p_neuron以及其他計算inner_product會用到的值放到我指定的位置。將memcpy替換成上述方式後,便是我最終對這個問題的解決方式。

D. 分析objdump

觀察修改過後的c code所產生的objdump可以發現原先會跳去執行的 __mulsf3 和 __addsf3變成從memory load & store,也就是將當前的p_neuron、p_weight、inner_product存到memory,等到計算出result並存入指定的位置後,inner_product再從那個位置讀出值。這樣的指令數量就驟降至4個,即使加上floating point IP計算結果的cycle數也會比透過 mulsf3 和 addsf3去計算還少。

III. 硬體的觀察與修改

這次在硬體端的修改則是根據教授上課給的提示,參考 CLINT的實作方式。在實作時,我也參考了其他的模組,並 最後實作出data_feeder以及其與floating point IP 的溝通,完 成最後一步。底下將分為對soc_top.v的修改以及data feeder 的實作。

E. soc top.v

在這個檔案中最重要的是Aquila和device之間溝通的方式。前面有提到我參考CLINT以及其他模組,可以發現在Aquila的I/O port中有一組I/O device ports,分別是以dev作為前綴。這邊的信號會拉到其他device並在內部進行其他運算。仔細trace code後發現其中Device address decoder的部分會決定我最後送回Aquila的值是多少。因此我便在仿造Uart device在這部分的定義,並配合原先寫在註解DSA device的位置進行設定,透過判斷dev_addr的範圍是否在0xC400 0000 - 0xC4FF FFFF間來分辨DSA device。

F. data feeder

透過仿造CLINT的方式, 我決定了我的data feeder的I/O ports, 在拉線上不一樣的就是en_i是看是否是DSA device的 address範圍, 而輸出的訊號則是兩個新定義的wire, 會回到 Device address decoder來判斷送回Aquila的值。

接著便開始敘述對於data feeder內部的實作。首先,資料進來後,會先根據en_i和we_i的值來判斷,當都為1時才需要將輸入的值存進buffer中。接著則是依照進來的address決定要放到data A、B或C的buffer中,這邊的A、B、C則是對應floating point IP中的A、B、C的data。當data C讀入後便啟動floating point IP。輸出的結果則會不斷給到data_o中,透過判斷result valid,也就是floating point IP中的result valid來決定

是否是需要output結果。底下的Fig.1便是Aquila跟data feeder 和floating point IP的流程圖。

G. Floating point IP

對於添加這個IP的方式便是依照講義教學,透過IP catalog加入floating point, 選擇Fused-Multiply-Add和Both operation。另外我到options選擇non-blocking, 這樣我便能在資料傳進來後就啟動floating point IP的計算。對於Latency我則沒有特別設定,使用的是Max Latency,也就是16 cycles。在底下的流程圖中,我並未畫上VALID的PORT,其中,對於data A、data B、data C的valid設定則是等到data C進到buffer時會同時將三個valid啟動。可以這麼做的原因則是由於資料進入而存進buffer會依照順序,因此當data C進入後便能啟動計算。

Fig. 1. 流程圖。dataA, dataB, dataC, result_data是register in data feeder。 箭頭 方向是資料傳輸方向。

H. 特別處理

在分析ILA抓下的電路時,我發現在第一筆的result計算完成時的address並非是他應該存放的位置,也就是0xC430_0000,因此我在data feeder中有特別寫一小部分的電路去處理。實作方式為當result_valid變成1時,我會將一個自訂的flag設為1,且在接下來的cycle中data feeder只會去檢查address是否為0xC430_0000,當符合時才會將data_ready_o設為1,確保在正確的request到來前不會將計算好的result輸出。

IV. 數據分析與討論

首先我先在我的本地端試跑未修改前的程式碼, 再跑修改後的程式碼, 確定兩者的比較是在同一個平台上。

- (1) Reading the test images, labels, and neural weights. It took 5617 msec to read files from the SD card.
- (2) Perform the hand-uritten digits recognition test. Here, ue use a 3-layer 784-48-10 HLP neural network model. Begin computing ... tested 100 images. The accuracy is 85.00%

It took 22137 msec to perform the test.

Fig. 2. 未修改程式碼所需要花費的時間

- (1) Reading the test inages, labels, and neural weights. It took 5826 msec to read files from the SD card.
- (2) Perform the hand-uritten digits recognition test. Here, ue use a 3-layer 784-48-10 MLP neural netuork model. Begin computing ... tested 100 images. The accuracy is 85.00%
- It took 4601 msec to perform the test.

Fig. 3. 修改程式碼後所需要花費的時間

	feed time	calculating time
cycle	15244813	60979200
time (s)	0.3658755091	1.463500788

Fig. 4. 在16cycle的latency下的feed time和calculating time, 其中feed time cycle是由input feeding cycle 11433600 加上output feeding cycle 3811213而來

上方的圖便是我在latency是16個cycle的情況下算出的數值,將input feeding cycle平分給3個data的input後,得到的是3811200,也就是運算次數。將運算次數乘上latency後得到的cycle數確實符合最後獲得的cycle數。

接著我嘗試調整latency,看看是否能找到在Aquila的平台下使用floating point ip的最小latency。我根據Product Guide中的說明將latency調整為類似他舉例的情況並逐步減少,最後得到latency的最小值為2。在Product Guide中有關latency的敘述中,我也發現理論上的最小值就是2。實際驗證過後也是正確的。底下便是我所得出最好的優化時間以及feed time & calculating time。

- (1) Reading the test images, labels, and neural weights. It took 5826 msec to read files from the SD card.
- (2) Perform the hand-uritten digits recognition test. Here, we use a 3-layer 784-48-10 MLP neural network model. Begin computing ... tested 100 images. The accuracy is 85.00%

It took 334D msec to perform the test.

	feed time	calculating time
cycle	15244827	7622400
time (s)	0.3658758451	0.1829375985