Predict Podcast Listening Time

ICS 435 Final Project Christian Dela Cruz, Kyler Okuma, Sean Flynn

Background

Our Goal: Predict listening time of a podcast episode.

We were provided with a training dataset containing episode information and a target variable, Listening_Time_minutes.

Our objective was to build predictive models to estimate listening time as accurately as possible, measured by Root Mean Squared Error (RMSE) on a separate test set.

Evaluation Metric: Root Mean Squared Error (RMSE)

RMSE was used to measure model performance. RMSE is a standard metric for regression tasks that heavily penalizes larger errors.

RMSE =
$$\left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2\right)^{\frac{1}{2}}$$

Novelty

- New application area
 - Most ML applications focus on classification or traditional regression
 - Predicting user engagement in audio content has not been explored
- Comparison of ML models
 - Regression
 - o MLP
 - LightGBM
 - XGBoost
 - CatBoost
- Simulated real-world ML workflow
 - Feature extraction
 - Tuning
 - Evaluation
 - Validation

Models

- Regression
 - Light
 - Ridge
 - Lasso
- MLP
 - o w/ SGD
 - o w/ Adam
 - o w/ RMSprop
 - o w/ Adagrad
 - Ensemble of 5 MLPs
 - Final Optimized MLP (Optuna Parameters)
- Optimized LightGBM
- Stacked Ensemble (All Models Above)
- XGBoost
- CatBoost

Regression

Overview:

- Used Linear Regression, Ridge Regression, and Lasso Regression.
- Assumed a linear relationship between features and listening time.
- Prioritized interpretability over flexibility.

Training Approach:

- Trained separately on RAW and FE datasets.
- GridSearchCV used to tune regularization strength (alpha).
- Categorical features one-hot encoded; missing values imputed.

Results:

- Linear Regression (FE): RMSE = 13.296, MAE = 9.742, R² = 0.7598
- Ridge Regression (FE): RMSE = 13.295, MAE = 9.741, R² = 0.7598
- Lasso Regression (FE): RMSE = 13.295, MAE = 9.741, R² = 0.7598

Results - Linear Regression

Results - Linear Regression

MLP

Overview:

- Implemented Multi-Layer Perceptron (MLP) neural networks.
- Aimed to capture nonlinear feature interactions.
- Feedforward architecture capable of approximating complex patterns.

Training Approach:

Trained on FE dataset with standardized features.

Tested optimizers: SGD, Adam, RMSprop, Adagrad.

- Adagrad optimizer selected based on best validation results.
- Hyperparameters optimized using Optuna.
- Early stopping used to prevent overfitting.

Results:

- Best Single MLP: RMSE = 13.204, MAE = 9.628, R² = 0.7631
- Ensemble of 5 MLPs: RMSE = 13.271, MAE = 9.696, R² = 0.7606

Ensemble

Overview:

- Combined outputs of multiple strong models.
- Two ensemble strategies:
 - Tree-Based Ensemble: Averaged optimized LightGBM,
 XGBoost, and CatBoost models.
 - Full Stacked Ensemble: Stacked outputs from:
 - Linear Regression (FE)
 - Ridge Regression (FE)
 - Lasso Regression (FE)
 - Best Optuna-tuned MLP
 - Ensemble of 5 MLPs (Adagrad-trained)
 - Best Optuna-tuned LightGBM

Training Approach:

- Optimized each base model separately using GridSearchCV or Optuna.
- Averaged tree predictions for the Tree-Based Ensemble.
- Trained Ridge Regression as meta-learner for Full Stacked Ensemble.

Results:

• Tree-Based Ensemble: RMSE = 12.696, MAE = 9.248, R² = 0.7809

Full Stacked Ensemble: RMSE = 12.931, MAE = 9.382, R² = 0.7728

Categorical Boosting

Model Overview

- Common boosting method typically used to handle categorical features
- Known for quick speed and accuracy, as it does not require encoding of categorical features

Image Credit:

https://www.researchgate.net/figure/Categorical-boosting-CatBoost-algorithm_fig5_380847150

Categorical Boosting (Cont'd)

Training Steps

- 1) Train with default parameters
- Perform hyperparameter tuning with optuna
- 3) 30 trial optimization
- Train with "optimal" hyperparameters
- 5) Predict on new data

```
best catboost params = {
    'learning_rate': 0.053156533135846354,
    'depth': 11,
    'iterations': 735,
    'l2_leaf_reg': 0.5537806027515884,
    'bagging_temperature': 0.966594578770241,
    'colsample_bylevel': 0.7327316098447535,
    'border count': 136,
    'random state': 42,
    'verbose': False
```

Optimal hyperparameters trained on model

Categorical Boosting (Cont'd)

Results

- Low RMSE score indicates good performance
- Performed worse than other tree-based models
 - Model's full strength may not have been utilized, as not all of the features were categorical
 - Still followed the common trend throughout the project, with tree-based models performing the best

```
Final Optimized CatBoost Results: {'Model': 'Final Optimized CatBoost (Optuna Hyperparams)', 'RMSE': 12.997247254066897, 'MAE': 9.45490108687327 6, 'R2': 0.7704238101092351}
```

Final results

Results - XGBoost Model

```
[0]
       validation 0-rmse:26.09995
[100]
       validation_0-rmse:13.09422
[200]
       validation 0-rmse:13.05328
[300]
       validation 0-rmse:13.02910
[400]
       validation 0-rmse:13.01441
[500]
       validation 0-rmse:13.00028
[600]
       validation_0-rmse:12.99016
[700]
       validation 0-rmse:12.98256
[800]
       validation_0-rmse:12.97533
[900]
       validation_0-rmse:12.96928
[1000]
       validation_0-rmse:12.96210
[1100]
       validation 0-rmse:12.95727
[1200]
       validation_0-rmse:12.95259
[1300]
       validation 0-rmse:12.94992
[1400]
       validation 0-rmse:12.94535
[1500]
       validation_0-rmse:12.94351
[1600]
       validation 0-rmse:12.94176
[1700]
       validation 0-rmse:12.93899
[1800]
       validation_0-rmse:12.93652
[1900]
       validation_0-rmse:12.93521
[1999]
       validation 0-rmse:12.93239
  XGBoost Validation RMSE: 12,93237
```

Results - LightGBM Model

```
[100]
      training's rmse: 13.001 valid_1's rmse: 13.0542
[200]
      training's rmse: 12.8623
                                    valid_1's rmse: 13.016
      training's rmse: 12.7532 valid_1's rmse: 12.9914
[300]
[400]
     training's rmse: 12.6462 valid_1's rmse: 12.9731
[500]
     training's rmse: 12.5645 valid 1's rmse: 12.9577
[600]
      training's rmse: 12.4733
                                    valid_1's rmse: 12.9443
[700]
     training's rmse: 12.3918
                                    valid 1's rmse: 12.9334
[808]
     training's rmse: 12.3185 valid_1's rmse: 12.9239
[900] training's rmse: 12.2356
                              valid_1's rmse: 12.9139
[1000] training's rmse: 12.1584
                                    valid_1's rmse: 12.9049
[1100] training's rmse: 12.0934
                                   valid_1's rmse: 12.899
[1200] training's rmse: 12.0259 valid_1's rmse: 12.895
[1300] training's rmse: 11.9525
                              valid_1's rmse: 12.886
[1400] training's rmse: 11.8835 valid 1's rmse: 12.8802
[1500] training's rmse: 11.8121
                              valid 1's rmse: 12.8766
[1600] training's rmse: 11.748 valid_1's rmse: 12.8733
[1700] training's rmse: 11.6848
                                    valid 1's rmse: 12.8668
[1800] training's rmse: 11.6277 valid_1's rmse: 12.8632
[1900] training's rmse: 11.5724 valid_1's rmse: 12.8582
[2000] training's rmse: 11.5165 valid_1's rmse: 12.8558
Did not meet early stopping. Best iteration is:
[2000] training's rmse: 11.5165 valid_1's rmse: 12.8558
LightGBM Tuned Validation RMSE: 12.85577
```

Results - Model Comparison

	Model	RMSE	MAE	R2	Туре
	Linear Regression (Raw)	13.319984	9.764266	0.758881	Linear
Results 1 2 3 4	Linear Regression (FE)	13.295618	9.741798	0.759762	Linear
	Ridge Regression (Raw)	13.320041	9.764298	0.758879	Linear
	Ridge Regression (FE)	13.295342	9.741233	0.759772	Linear
	Lasso Regression (Raw)	13.319966	9.764137	0.758882	Linear
	Lasso Regression (FE)	13.295254	9.741069	0.759775	Linear
6	MLP with SGD	NaN	NaN	NaN	Neural Net
7	MLP with Adam	14.812958	10.779123	0.701800	Neural Net
8	MLP with RMSprop	13.307721	9.686967	0.759325	Neural Net
9	MLP with Adagrad	13.210906	9.647330	0.762814	Neural Net
10	Ensemble of 5 MLPs (Adagrad)	13.271379	9.695907	0.760637	Ensemble
11	Final Optimized MLP (Optuna Hyperparams)	13.203998	9.628222	0.763062	Neural Net
12	Final Optimized LightGBM (Optuna Hyperparams)	12.931977	9.379242	0.772724	Tree-Based
13	Stacked Ensemble (All Models)	12.930729	9.381626	0.772768	Ensemble
14	Final Optimized CatBoost (Optuna Hyperparams)	12.997247	9.454901	0.770424	Tree-Based
15	LightGBM (Final - Kaggle Submission)	12.855765	9.337937	0.775395	Tree-Based
16	XGBoost	12.932367	9.371496	0.772710	Tree-Based
17	Tree-Based Models Ensemble (LGBM + XGB + CatBo	12.695807	9.247818	0.780949	Ensemble

Data Visualizations: Comparison Between Model Types

Bar Charts

Data Visualizations: Comparison Between Model Types (Cont'd)

Box Charts

Data Visualizations: Comparison Between Model Types (Cont'd) Violin Charts

Data Visualizations: Comparison Between Model Types (Cont'd)

Data Visualizations: Comparison Between Model Types (Cont'd)

- Overall, the tree based models and the ensembles performed the best
 - Lowest RMSE/MAE scores and highest R^2 score
- Ensemble methods had the highest distribution among the data, and linear models had the lowest distribution among the data
- Parallel coordinate chart reveals an inverse relationship between the mean squared error (RMSE/MAE) metrics and R^2 score
- Higher variance among the ensemble methods could imply sensitivity to outliers, possibly explaining why they performed slightly worse than the tree-based models

Conclusion

- LightGBM proved to be a strong model
 - Efficiency, support for categorical features, robustness to missing data great for the dataset
 - Feature engineering had significant positive impact on performance
- Future improvements:
 - Cross validation
 - Deeper hyperparameter optimization
 - Ensemble with other models such as XGBoost or CatBoost