The Extended Functor Family

George Wilson

Ephox

george.wilson@ephox.com

May 9, 2017

All

Videos Mans

Images Shopping

More -

Search tools

About 564 results (0.47 seconds)

Fun with Functors | Good Math Bad Math

goodmath.scientopia.org/2011/10/25/**fun-with-functors/** ▼ Oct 25, 2011 - 50 fat, we've looked at the minimal basics of categories: what they are, and how to categories the kinds of arrows that exist in categories in categories.

Recitation 8: Functors

www.cs.cornell.edu/courses/cs312/2006fa/recitations/rec08.html ▼

More fun with functors. Suppose you have a structure that makes use of not one, but two or more other structures. This seems to call for a functor that can take in \dots

cbrad: Fun with functors

bradclow.blogspot.com/2009/02/fun-with-functors.html

Feb 15, 2009 - Fun with functors. I have been slowly working through some more Haskell with help from Tony. Ouickly worked through the previous stuff we did ...

Tiusic: Fun with Functors

tiusic.blogspot.com/2013/06/fun-with-functors.html >

Jun 4, 2013 - Fun with Functors, I just finished implementing the sound system for my game engine. It's a simple, fast, clean wrapper for OpenAL. There's a lot ...

GitHub - PawelPanasewicz/FunctorsAndFriends: Examples of using ...

https://github.com/PawelPanasewicz/FunctorsAndFriends ▼

src/test/scala - using scala check from scala test, 2 months ago .gitattributes - Fun with Functors, 3 months ago .gitignore - Fun with Functors, 3 months ago .travis.

Functor

class Functor f where fmap :: (a -> b) -> f a -> f b

class Functor f where fmap :: (a -> b) -> f a -> f b

Imap .. (a -> b) -> 1 a -> 1

Laws:

 $fmap\ id = id$

 $fmap \ f \ . \ fmap \ g = fmap \ (f \ . \ g)$

instance Functor [] where

fmap :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ fmap f [] = []

fmap f (x:xs) = f x : fmap f xs

instance Functor (x,) where

fmap :: $(a \rightarrow b) \rightarrow (x, a) \rightarrow (x, b)$

fmap f (x, a) = (x, f a)

```
instance Functor (x,) where
  fmap :: (a -> b) -> (x, a) -> (x, b)
```

fmap f (x, a) = (x, f a)

fmap f (Left e) = Left e

instance Functor (Either e) where

fmap f (Right x) = Right (f x)

fmap :: (a -> b) -> Either e a -> Either e b

Bifunctor

class Bifunctor p where

bimap :: $(a \rightarrow b) \rightarrow (x \rightarrow y) \rightarrow p \ a \ x \rightarrow p \ b \ y$

class Bifunctor p where

bimap :: (a -> b) -> (x -> y) -> p a x -> p b y

first :: $(a \rightarrow b) \rightarrow p \ a \ x \rightarrow p \ b \ x$ second :: $(x \rightarrow y) \rightarrow p \ a \ x \rightarrow p \ a \ y$

class Bifunctor p where bimap :: (a -> b) -> (x -> y) -> p a x -> p b y first :: (a -> b) -> p a x -> p b x second :: (x -> y) -> p a x -> p a y

bimap id id = id

Laws:

bimap f h . bimap q i = bimap (f . q) (h . i)

```
instance Bifunctor (,) where bimap :: (a \rightarrow b) \rightarrow (x \rightarrow y) \rightarrow (a,x) \rightarrow (b,y) bimap f g (a,x) = (f a, g x)
```

instance Bifunctor Either where

bimap :: $(a \rightarrow b) \rightarrow (x \rightarrow y) \rightarrow Either a x \rightarrow Either b y$

bimap f g (Left a) = Left (f a)

bimap f g (Right x) = Right (g x)

Contravariant Functors

newtype Predicate a = Predicate { runPredicate :: a -> Bool}

newtype Predicate a =
 Predicate { runPredicate :: a -> Bool}

Is Predicate a Functor?

newtype Predicate a =
 Predicate { runPredicate :: a -> Bool}

Is Predicate a Functor?

Can we write fmap :: (a -> b) -> Predicate a -> Predicate b

newtype Predicate a =
 Predicate { runPredicate :: a -> Bool}

Is Predicate a Functor?

Can we write fmap :: (a -> b) -> Predicate a -> Predicate b

No!

Short diversion

A type in a type signature can be in positive position or in negative position

A type in a type signature can be in *positive* position or in *negative* position

▶ A type on its own is in positive position, like

```
▶ i :: Int
```

- ► result :: Maybe String
- ▶ snacks :: [Banana]

A type in a type signature can be in *positive* position or in *negative* position

▶ A type on its own is in positive position, like

```
 i :: Int
 result :: Maybe String
 snacks :: [Banana]
```

▶ Function return types are in positive position, but parameters are in negative position

```
▶ length :: [a] -> Int

▶ buildRome :: Romulus -> Remus -> Rome
```

For f to be an instance of Functor every a in f a must be in positive position

We say that f is covariant in a

For f to be an instance of Functor every a in f a must be in positive position

We say that f is covariant in a

data Maybe a = Nothing | Just a

For f to be an instance of Functor every a in f a must be in positive position

We say that f is covariant in a

```
data Maybe a = Nothing | Just a
```

```
instance Functor Maybe where
```

```
fmap :: (a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)
```

```
newtype Predicate a =
   Predicate { runPredicate :: a -> Bool }
```

Polarity

```
newtype Predicate a =
  Predicate { runPredicate :: a -> Bool }
```

In Predicate, we only see a in negative position.

We say Predicate is contravariant in a.

class Contravariant f where

contramap :: (b -> a) -> f a -> f b

class Contravariant f where contramap :: (b -> a) -> f a -> f b

Laws: contramap id = id $contramap f \cdot contramap g = contramap (g \cdot f)$

```
newtype Predicate a =
  Predicate { runPredicate :: a -> Bool }
```

```
newtype Predicate a =
  Predicate { runPredicate :: a -> Bool }
```

instance Contravariant Predicate where
 contramap :: (b -> a) -> Predicate a -> Predicate b

contramap f (Predicate p) = Predicate (p . f)

We think of a covariant Functor as being full of a's.

A Contravariant functor can be thought of as consuming a's.

newtype Comparison a =

Comparison { runComparison :: a -> a -> Ordering }

data Ordering = LT | EQ | GT

```
data Ordering = LT | EQ | GT
```

newtype Comparison a =

Comparison { runComparison :: a -> a -> Ordering }

instance Contravariant Comparison where

contramap :: (b -> a) -> Comparison a -> Comparison b

contramap f (Comparison c) = Comparison (\a b -> c (f a) (f b))

Corresponding to the more powerful forms of Functor, there are more powerful forms of Contravariant:

Discrimination (Linear-time sorting)

Now that we've talked about Bifunctor and Contravariant, we can finally talk about...

Profunctor

Now that we've talked about Bifunctor and Contravariant, we can finally talk about...

class Profunctor p where

dimap :: (a -> b) -> (c -> d) -> p b c -> p a d

class Profunctor p where

dimap :: (a -> b) -> (c -> d) -> p b c -> p a d

lmap :: (a -> b) -> p b c -> p a c
rmap :: (c -> d) -> p b c -> p b d

class Profunctor p where dimap :: (a -> b) -> (c -> d) -> p b c -> p a d

lmap :: (a -> b) -> p b c -> p a c

rmap :: (c -> d) -> p b c -> p b d

Laws: dimap id id = id

 $dimap \ f \ g \ . \ dimap \ h \ k = dimap \ (h \ . \ f) \ (g \ . \ k)$


```
instance Profunctor (->) where
  dimap :: (a -> b) -> (c -> d) -> (b -> c) -> (a -> d)
```

dimap ab cd bc = cd . bc . ab

 import	Control.Arrow	

newtype Kleisli m b c = Kleisli { runKleisli :: b -> m c }

-- import Control.Arrow

```
newtype Kleisli m b c = Kleisli { runKleisli :: b -> m c }
```

```
instance Monad m => Profunctor (Kleisli m) where
  dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d
  dimap ab cd (Kleisli bmc) =
```

Kleisli (liftM cd . bmc . ab)

Every Arrow is a Profunctor!

```
newtype WrappedArrow p b c = WrappedArrow { unwrap :: p b c }
```

instance Arrow p => Profunctor (WrappedArrow p) where
dimap ab cd (WrappedArrow pbc) =

WrappedArrow (arr ab . pbc . arr cd)

Lens

Why care about Profunctors?

Thanks for listening!

References

contravariant package

https://hackage.haskell.org/package/contravariant

profunctors package

https://hackage.haskell.org/package/profunctors

Discrimination is Wrong

```
https://yow.eventer.com/yow-lambda-jam-2015-1305/discrimination-is-wrong-improving-productivity-by-edward-kmett-1890
```

► Fun with Profunctors

https://www.youtube.com/watch?v=OJtGECfksds