§ 6.1 简谐振动

- 一、简谐振动: 物体振动时,若决定其位置的坐标按余弦(或正弦)函数规律随时间变化,这样的振动称为简谐振动。谐振子:作简谐运动的物体。
 - (1) 受力特点: 线性恢复力F = -kx
 - (2) 动力学微分方程

简谐运动的微分方程:
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega^2 x = 0$$
, 其中 $\omega^2 = \frac{k}{m}$ 。

简谐运动的运动方程: $x = A\cos(\omega t + \varphi)$

速度:
$$v = \frac{dx}{dt} = -A\omega\sin(\omega t + \varphi)$$

加速度:
$$a = \frac{d^2x}{dt^2} = -A\omega^2\cos(\omega t + \varphi)$$

- 二、简谐运动的振幅、周期、频率和相位
- 1.振幅: $A = |x_{\text{max}}|$, 由初始条件决定。
- 2.周期、频率

周期:
$$T = \frac{2\pi}{\omega}$$
; 频率: $v = \frac{1}{T} = \frac{\omega}{2\pi}$; 角频率: $\omega = 2\pi v = \frac{2\pi}{T}$

周期和频率取决于振动系统本身的性质。

3. 相位 ωt + φ

物理意义:描述质点 t 时刻的运动状态。

初相位: 描述质点初始时刻的运动状态。

- 4.相位差:两个振动之间的相位之差。
 - (1) 对同一简谐运动,相位差可以给出两运动状态间变化所需的时间。

$$\Delta t = \frac{\Delta \varphi}{\omega} = \frac{\Delta \varphi}{2\pi} T$$

(2) 对于两个同频率的简谐运动,相位差表示它们间步调上的差异。

如果 $\varphi_2 - \varphi_1 > 0$,则称第2个振动相位超前于第1个振动。

四、谐振动的能量

动能:
$$E_{\rm k} = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$
; 势能: $E_{\rm p} = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$

机械能:
$$E = E_k + E_p = \frac{1}{2}kA^2$$

弹性回复力是保守力,作简谐振动的系统机械能守恒。

平均动能:
$$\overline{E}_{\mathbf{k}} = \frac{1}{T} \int_0^T E_{\mathbf{k}} dt = \frac{1}{4} k A^2$$
; 平均势能: $\overline{E}_p = \frac{1}{T} \int_0^T E_{\mathbf{p}} dt = \frac{1}{4} k A^2$

谐振动在一个周期内的平均势能和平均动能相等。

五、谐振动的旋转矢量表示法

旋转的矢量: 长度为 A,以 O 为原点作角速度为 ω 的逆时针旋转。**旋转矢量的** 端点在 x 轴上的投影点的运动为简谐振动 $x = A\cos(\omega t + \varphi)$,速度和加速度在 x 轴上的投影为简谐振动的速度 $v = A\omega\cos(\omega t + \varphi + \frac{\pi}{2})$ 和加速度 $a = A\omega^2\cos(\omega t + \varphi + \pi)$ 。

§6.2 谐振动的合成

一、同方向同频率谐振动的合成: $x_1 = A_1 \cos(\omega t + \varphi_1)$; $x_2 = A_2 \cos(\omega t + \varphi_2)$

振幅: $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$; 相位: $\tan \varphi = \frac{A_1\sin\varphi_1 + A_2\sin\varphi_2}{A_1\cos\varphi_1 + A_2\cos\varphi_2}$ 讨论:

- (1) 相位差 $\varphi_2 \varphi_1 = 2k\pi$ $(k = 0, \pm 1, \cdots)$, $A = A_1 + A_2$, 相互加强;
- (2) 相位差 $\varphi_2 \varphi_1 = (2k+1)\pi$ $(k=0,\pm 1,\cdots)$, $A = \left|A_1 A_2\right|$, 相互削弱;
- (3) 一般情况: $A_1 + A_2 > A > |A_1 A_2|$ 。
- 二、同方向不同频率谐振动的合成、拍合振动 $x = x_1 + x_2$;

合振幅 $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\omega_2 - \omega_1)t}$,在 $A_1 + A_2$ 和 $|A_1 - A_2|$ 之间周期性变化。 合振动不再是简谐振动,可看作是振幅缓变的近似简谐振动。

拍的现象
$$x = 2A\cos(\frac{\omega_2 - \omega_1}{2})t \cdot \cos(\frac{\omega_2 + \omega_1}{2})t$$

拍频:单位时间内振幅大小变化的次数,即 $v = |(\omega_2 - \omega_1)/2\pi| = |v_2 - v_1|$

振动角频率: $\omega = (\omega_2 + \omega_1)/2$