

Conjugate sets

Conjugate set

Let $S \subseteq \mathbb{R}^n$ be an arbitrary non-empty set. Then its conjugate set is defined as:

$$S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S \}$$

A set S^{**} is called double conjugate to a set S if:

$$S^{**} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S^* \}$$

• The sets S_1 and S_2 are called **inter-conjugate** if $S_1^* = S_2, S_2^* = S_1$.

Figure 1: Convex sets may be described in a dual way through the elements of the set and through the set of hyperplanes supporting it

Conjugate set

Let $S\subseteq\mathbb{R}^n$ be an arbitrary non-empty set. Then its conjugate set is defined as:

$$S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S \}$$

A set S^{**} is called double conjugate to a set S if:

$$S^{**} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S^* \}$$

- The sets S_1 and S_2 are called **inter-conjugate** if $S_1^* = S_2, S_2^* = S_1$.
- A set S is called **self-conjugate** if $S^* = S$.

Figure 1: Convex sets may be described in a dual way through the elements of the set and through the set of hyperplanes supporting it

എറ മ

• A conjugate set is always closed, convex, and contains zero.

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

• If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.

େ ଚ

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- If S is closed, convex, and includes 0, then $S^{**} = S$.

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- If S is closed, convex, and includes 0, then $S^{**} = S$.
- $S^* = (\overline{S})^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

• $S \subset \overline{S} \to (\overline{S})^* \subset S^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

- $S \subset \overline{S} \to (\overline{S})^* \subset S^*$.
- Let $p \in S^*$ and $x_0 \in \overline{S}, x_0 = \lim_{k \to \infty} x_k$. Then by virtue of the continuity of the function $f(x) = p^T x$, we have:

$$p^T x_k \geq -1 \rightarrow p^T x_0 \geq -1$$
. So $p \in (\overline{S})^*$, hence $S^* \subset (\overline{S})^*$.

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

• $S \subset \mathbf{conv}(S) \to (\mathbf{conv}(S))^* \subset S^*$.

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

- $S \subset \mathbf{conv}(S) \to (\mathbf{conv}(S))^* \subset S^*$.
- Let $p \in S^*$, $x_0 \in \mathbf{conv}(S)$, i.e., $x_0 = \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1, \theta_i \geq 0$.

So
$$p^T x_0 = \sum_{i=1}^k \theta_i p^T x_i \ge \sum_{i=1}^k \theta_i (-1) = 1 \cdot (-1) = -1$$
. So $p \in (\mathbf{conv}(S))^*$, hence $S^* \subset (\mathbf{conv}(S))^*$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

• Let B(0,r)=X, B(0,1/r)=Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x \ge -1$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

- Let B(0,r)=X, B(0,1/r)=Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x \ge -1$.
- From all points of the ball X, take such a point $x \in X$ that its scalar product of $p: p^T x$ is minimal, then this is the point $x = -\frac{p}{\|p\|}r$.

$$p^{T}x = p^{T} \left(-\frac{p}{\|p\|}r\right) = -\|p\|r \ge -1$$

$$\|p\| \le \frac{1}{r} \in Y$$

So $X^* \subset Y$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

- Let B(0,r) = X, B(0,1/r) = Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x > -1$.
- From all points of the ball X, take such a point $x \in X$ that its scalar product of p: p^Tx is minimal, then this is the point $x = -\frac{p}{\|x\|}r$.

$$p^{T}x = p^{T} \left(-\frac{p}{\|p\|} r \right) = -\|p\|r \ge -1$$
$$\|p\| \le \frac{1}{r} \in Y$$

So $X^* \subset Y$.

• Now let $p \in Y$. We need to show that $p \in X^*$, i.e., $\langle p, x \rangle \geq -1$. It's enough to apply the Cauchy-Bunyakovsky inequality:

$$\|\langle p, x \rangle\| \le \|p\| \|x\| \le \frac{1}{r} \cdot r = 1$$

The latter comes from the fact that $p\in B(0,1/r)$ and $x\in B(0,r).$ So $Y\subset X^*.$

Dual cone

A conjugate cone to a cone K is a set K^* such that:

$$K^* = \{ y \mid \langle x, y \rangle \ge 0 \quad \forall x \in K \}$$

To show that this definition follows directly from the definitions above, recall what a conjugate set is and what a cone $\forall \lambda > 0$ is.

$$\{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S\} \rightarrow \{\lambda y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -\frac{1}{\lambda} \ \forall x \in S\}$$

• Let K be a closed convex cone. Then $K^{**} = K$.

Conjugate sets

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

େ ଚ

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n , then:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n , then:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n . Let also their intersection have an interior point, then:

$$\left(\bigcap_{i=1}^{m} K_i\right)^* = \sum_{i=1}^{m} K_i^*$$

i Example

Find the conjugate cone for a monotone nonnegative cone:

$$K = \{x \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \ldots \ge x_n \ge 0\}$$

i Example

Find the conjugate cone for a monotone nonnegative cone:

$$K = \{x \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \ldots \ge x_n \ge 0\}$$

Note that:

$$\sum_{i=1} x_i y_i = y_1(x_1 - x_2) + (y_1 + y_2)(x_2 - x_3) + \ldots + (y_1 + y_2 + \ldots + y_{n-1})(x_{n-1} - x_n) + (y_1 + \ldots + y_n)x_n$$

Since in the presented sum in each summand, the second multiplier in each summand is non-negative, then:

$$y_1 > 0$$
, $y_1 + y_2 > 0$, ..., $y_1 + \ldots + y_n > 0$

So
$$K^* = \left\{ y \mid \sum_{i=1}^k y_i \ge 0, k = \overline{1, n} \right\}.$$

 $f \to \min_{x,y,z}$ Conjugate sets

Polyhedra

The set of solutions to a system of linear inequalities and equalities is a polyhedron:

$$Ax \leq b, \quad Cx = d$$

Here $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n},$ and the inequality is a piecewise inequality.

i Theorem

Let $x_1, \ldots, x_m \in \mathbb{R}^n$. Conjugate to a polyhedral set:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

is a polyhedron (polyhedron):

$$S^* = \left\{ p \in \mathbb{R}^n \mid \langle p, x_i \rangle \ge -1, i = \overline{1, k}; \langle p, x_i \rangle \ge 0, i = \overline{k+1, m} \right\}$$

Figure 3: Polyhedra

Proof

• Let $S=X,S^*=Y$. Take some $p\in X^*$, then $\langle p,x_i\rangle\geq -1,i=\overline{1,k}$. At the same time, for any $\theta > 0, i = \overline{k+1, m}$:

$$\langle p, x_i \rangle \ge -1 \to \langle p, \theta x_i \rangle \ge -1$$

$$\langle p, x_i \rangle \ge -\frac{1}{\theta} \to \langle p, x_i \rangle \ge 0.$$

So $p \in Y \to X^* \subset Y$.

Proof

• Let $S=X,S^*=Y$. Take some $p\in X^*$, then $\langle p,x_i\rangle\geq -1, i=\overline{1,k}$. At the same time, for any $\theta>0, i=\overline{k+1,m}$:

$$\langle p, x_i \rangle \ge -1 \to \langle p, \theta x_i \rangle \ge -1$$

$$\langle p, x_i \rangle \ge -\frac{1}{2} \to \langle p, x_i \rangle \ge 0.$$

So
$$p \in Y \to X^* \subset Y$$
.

• Suppose, on the other hand, that $p \in Y$. For any point $x \in X$:

Suppose, on the other hand, that
$$p \in T$$
 . For any point $x \in X$

$$x = \sum_{i=1}^{m} \theta_i x_i \qquad \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0$$

So:

$$\langle p, x \rangle = \sum_{i=1}^{m} \theta_i \langle p, x_i \rangle = \sum_{i=1}^{k} \theta_i \langle p, x_i \rangle + \sum_{i=k+1}^{m} \theta_i \langle p, x_i \rangle \ge \sum_{i=1}^{k} \theta_i (-1) + \sum_{i=1}^{k} \theta_i \cdot 0 = -1.$$

Conjugate sets

Conjugate functions

Conjugate functions

Recall that given $f:\mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

Geometrical intution

Geometrical intution

Slopes of f and f^*

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu \Leftrightarrow \nabla f^*$ is Lipschitz with parameter $1/\mu$.

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu \Leftrightarrow \nabla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu\Leftrightarrow
abla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Hence, defining $x_u = \nabla f^*(u)$ and $x_v = \nabla f^*(v)$,

$$f(x_v) - u^T x_v \ge f(x_u) - u^T x_u + \frac{\mu}{2} ||x_u - x_v||^2$$

$$f(x_u) - v^T x_u \ge f(x_v) - v^T x_v + \frac{\mu}{2} ||x_u - x_v||^2$$

$$f \to \min_{x,y}$$

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu\Leftrightarrow
abla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Hence, defining $x_u = \nabla f^*(u)$ and $x_v = \nabla f^*(v)$,

$$f(x_v) - u^T x_v \ge f(x_u) - u^T x_u + \frac{\mu}{2} ||x_u - x_v||^2$$

$$f(x_u) - v^T x_u \ge f(x_v) - v^T x_v + \frac{\mu}{2} ||x_u - x_v||^2$$

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

$$||x_u - x_v||^2 \le \frac{1}{u}||u - v||^2$$

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{u}$. As ∇g is Lipschitz with constant L, so is $q_x(z) = q(z) - \nabla q(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

 $f \to \min_{x,y,z}$ Conjugate functions

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{u}$. As ∇g is Lipschitz with constant L, so is $q_x(z) = q(z) - \nabla q(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $a_x(z) = a(z) - \nabla a(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

Exchanging roles of x, y, and adding together, gives

$$\frac{1}{L} \|\nabla g(x) - \nabla g(y)\|^2 \le (\nabla g(x) - \nabla g(y))^T (x - y)$$

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $a_x(z) = a(z) - \nabla a(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

Exchanging roles of x, y, and adding together, gives

$$\frac{1}{L} \|\nabla g(x) - \nabla g(y)\|^2 \le (\nabla g(x) - \nabla g(y))^T (x - y)$$

Let $u = \nabla f(x)$, $v = \nabla g(y)$; then $x \in \partial g^*(u)$, $y \in \partial g^*(v)$, and the above reads $(x-y)^T(u-v) \geq \frac{\|u-v\|^2}{L}$, implying the result.

 $f \to \min_{x,y,z}$ Conjugate functions

Conjugate function properties

Recall that given $f: \mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

Conjugate function properties

Recall that given $f: \mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

• Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

• If f is closed and convex, then $f^{**} = f$. Also,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} [f(z) - y^T z]$$

Conjugate function properties

Recall that given $f: \mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

• If f is closed and convex, then $f^{**} = f$. Also,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \left[f(z) - y^T z \right]$$

• If f is strictly convex, then

$$\nabla f^*(y) = \arg\min_{z} \left[f(z) - y^T z \right]$$

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^Tz - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\ \bigcup_{z \in \mathbb{Z}} \ \{z\})).$$

Thus $x \in \partial f^*(y)$.

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_{\mathrm{tr}}} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_{\mathrm{tr}}} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_y} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

Clearly $y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \{f(z) - y^T z\}$

Lastly, if f is strictly convex, then we know that $f(z) - y^T z$ has a unique minimizer over z, and this must be $\nabla f^*(y)$.

ℓ_1 -regularized linear least squares

ℓ_1 induces sparsity

@fminxyz

Norms are not smooth

$$\min_{x \in \mathbb{R}^n} f(x),$$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

Figure 5: Norm cones for different p - norms are non-smooth

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Figure 6: Taylor linear approximation serves as a global lower bound for a convex function

⊕ ი

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate • If f(x) is differentiable, then $g = \nabla f(x_0)$

Figure 6: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient and Subdifferential

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 6: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 6: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$ Not all continuous convex functions are
- differentiable.

We wouldn't want to lose such a nice property.

Figure 6: Taylor linear approximation serves as a global lower bound for a convex function

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

₩ €

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

₩

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

Figure 7: Subdifferential is a set of all possible subgradients

Find $\partial f(x)$, if f(x) = |x|

Find $\partial f(x)$, if f(x) = |x|

Subdifferential properties
• If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.

- Subdifferential properties
 If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
 - The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set. which implies:
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function

convex, the first scenario is impossible.

Let
$$f: S \to \mathbb{R}$$
 be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or

 $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is

Proof

- 1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such
- that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

Subgradient and Subdifferential

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$
2. From this, $\langle s - \nabla f(x_0), v \rangle \ge 0$. Due to the arbitrariness of v , one can set

 $v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$

leading to $s = \nabla f(x_0)$.

Subdifferential properties

- If $x_0 \in \mathbf{ri}(S)$, then $\partial f(x_0)$ is a convex compact set. which implies:
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset$ $\forall x_0 \in S$, then f(x) is convex on S.
- i Subdifferential of a differentiable function
- Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f

is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or

 $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

using the definition of the gradient, we get:
$$\langle
abla f(x_0),v
angle = \lim_{t o 0:0 < t < \delta} rac{f(x_0+tv)-f(x_0)}{t} \geq \langle s,v
angle$$

2. From this, $\langle s - \nabla f(x_0), v \rangle > 0$. Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

- leading to $s = \nabla f(x_0)$.
- 3. Furthermore, if the function f is convex, then according to the differential condition of convexity $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ for all $x \in S$. But

by definition, this means $\nabla f(x_0) \in \partial f(x_0)$.

of the subgradient, we have

i Question

Is it correct, that if the function has a subdifferential at some point, the function is convex?

i Question

Is it correct, that if the function has a subdifferential at some point, the function is convex?

Find $\partial f(x)$, if $f(x) = \sin x, x \in [\pi/2; 2\pi]$

⊕ ი

i Question

Is it correct, that if the function is convex, it has a subgradient at any point?

i Question

Is it correct, that if the function is convex, it has a subgradient at any point?

Convexity follows from subdifferentiability at any point. A natural question to ask is whether the converse is true: is every convex function subdifferentiable? It turns out that, generally speaking, the answer to this question is negative.

Let $f:[0,\infty)\to\mathbb{R}$ be the function defined by $f(x):=-\sqrt{x}$. Then, $\partial f(0)=\emptyset$.

Assume, that $s\in\partial f(0)$ for some $s\in\mathbb{R}.$ Then, by definition, we must have $sx\leq -\sqrt{x}$ for all $x\geq 0.$ From this, we can deduce $s\leq -\sqrt{1}$ for all x>0. Taking the limit as x approaches 0 from the right, we get $s\leq -\infty$, which is impossible.

♥ ೧ Ø

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets $S_i, i =$

$$\overline{1,n}$$
. Then if $\bigcap_{i=1}^n \mathbf{ri}(S_i) \neq \emptyset$ then the function

$$f(x) = \sum\limits_{i=1}^n a_i f_i(x), \ a_i > 0$$
 has a subdifferential

$$\partial_S f(x)$$
 on the set $S = \bigcap_{i=1}^n S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets $S_i, i=\overline{1,n}.$ Then if $\bigcap_{i=1}^n \mathbf{ri}(S_i) \neq \emptyset$ then the function

$$f(x)=\sum\limits_{i=1}^n a_if_i(x),\ a_i>0$$
 has a subdifferential $\partial_S f(x)$ on the set $S=\bigcap\limits_{i=1}^n S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let $f_i(x)$ be convex functions on the open convex set $S\subseteq \mathbb{R}^n,\ x_0\in S$, and the pointwise maximum is defined as $f(x)=\max f_i(x)$. Then:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ \bigcup_{i \in I(x_0)} \partial_S f_i(x_0) \right\}, \quad I(x) = \{i \in [1], i \in [n]\}$$

•
$$\partial(\alpha f)(x) = \alpha \partial f(x)$$
, for $\alpha \ge 0$

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$ $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha > 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha > 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function
- $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$.

Connection to convex geometry

Convex set $S \subseteq \mathbb{R}^n$, consider indicator function $I_S : \mathbb{R}^n \to \mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

For $x \in S$, $\partial I_S(x) = \mathcal{N}_S(x)$, the **normal cone** of S at x is, recall

$$\mathcal{N}_S(x) = \{ g \in \mathbb{R}^n : g^T x \ge g^T y \text{ for any } y \in S \}$$

Why? By definition of subgradient g,

$$I_S(y) \ge I_S(x) + g^T(y - x)$$
 for all y

• For $y \notin S$, $I_S(y) = \infty$

Subgradient and Subdifferential

Connection to convex geometry

Convex set $S\subseteq\mathbb{R}^n$, consider indicator function $I_S:\mathbb{R}^n\to\mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

For $x \in S$, $\partial I_S(x) = \mathcal{N}_S(x)$, the **normal cone** of S at x is, recall

$$\mathcal{N}_S(x) = \{ g \in \mathbb{R}^n : g^T x \ge g^T y \text{ for any } y \in S \}$$

Why? By definition of subgradient g,

$$I_S(y) \ge I_S(x) + g^T(y - x)$$
 for all y

- For $y \notin S$, $I_S(y) = \infty$
- For $y \in S$, this means $0 \ge g^T(y-x)$

Optimality Condition

For any f (convex or not),

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

That is, x^* is a minimizer if and only if 0 is a subgradient of f at x^* . This is called the subgradient optimality condition.

Why? Easy: g = 0 being a subgradient means that for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note the implication for a convex and differentiable function f, with

$$\partial f(x) = \{\nabla f(x)\}\$$

Derivation of first-order optimality

Example of the power of subgradients: we can use what we have learned so far to derive the **first-order optimality condition**. Recall

$$\min_x f(x) \text{ subject to } x \in S$$

is solved at $\boldsymbol{x},$ for \boldsymbol{f} convex and differentiable, if and only if

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in S$$

Intuitively: this says that the gradient increases as we move away from x. How to prove it? First, recast the problem as

$$\min_{x} f(x) + I_S(x)$$

Now apply subgradient optimality:

$$0 \in \partial (f(x) + I_S(x))$$

Derivation of first-order optimality

Observe

$$0 \in \partial(f(x) + I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x) \in \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x)^T x \ge -\nabla f(x)^T y \text{ for all } y \in S$$

$$\Leftrightarrow \nabla f(x)^T (y - x) \ge 0 \text{ for all } y \in S$$

as desired.

Note: the condition $0 \in \partial f(x) + \mathcal{N}_S(x)$ is a **fully general condition** for optimality in convex problems. But it's not always easy to work with (KKT conditions, later, are easier).

i Example

Find $\partial f(x)$, if f(x) = |x-1| + |x+1|

Subgradient and Subdifferential

i Example

Find $\partial f(x)$, if f(x) = |x - 1| + |x + 1|

$$\partial f_1(x) = \begin{cases} -1, & x < 1 \\ [-1;1], & x = 1 \\ 1, & x > 1 \end{cases} \qquad \partial f_2(x) = \begin{cases} -1, & x < -1 \\ [-1;1], & x = -1 \\ 1, & x > -1 \end{cases}$$

So

$$\partial f(x) = \begin{cases} -2, & x < -1 \\ [-2;0], & x = -1 \\ 0, & -1 < x < 1 \\ [0;2], & x = 1 \\ 2, & x > 1 \end{cases}$$

Find $\partial f(x)$ if $f(x) = [\max(0, f_0(x))]^q$. Here, $f_0(x)$ is a convex function on an open convex set S, and $q \ge 1$.

Find $\partial f(x)$ if $f(x) = [\max(0, f_0(x))]^q$. Here, $f_0(x)$ is a convex function on an open convex set S, and $q \ge 1$.

According to the composition theorem (the function $\varphi(x)=x^q$ is differentiable) and $g(x)=\max(0,f_0(x))$, we have:

$$\partial f(x) = q(g(x))^{q-1} \partial g(x)$$

By the theorem on the pointwise maximum:

$$\partial g(x) = \begin{cases} \partial f_0(x), & f_0(x) > 0, \\ \{0\}, & f_0(x) < 0, \\ \{a \mid a = \lambda a', \ 0 \le \lambda \le 1, \ a' \in \partial f_0(x)\}, & f_0(x) = 0 \end{cases}$$

Let V be a finite-dimensional Euclidean space, and $x_0 \in V$. Let $\|\cdot\|$ be an arbitrary norm in V (not necessarily induced by the scalar product), and let $\|\cdot\|_*$ be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V: \|s\|_* \leq 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V: \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise}. \end{cases}$$

Where $B_{\|\cdot\|_*}(0,1)$ is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector $s \in V$ with $||s||_* = 1$ is a subgradient of the norm $||\cdot||$ at point $x_0 \neq 0$ if and only if the Hölder's inequality $\langle s, x_0 \rangle < ||x_0||$ becomes an equality.

Let V be a finite-dimensional Euclidean space, and $x_0 \in V$. Let $\|\cdot\|$ be an arbitrary norm in V (not necessarily induced by the scalar product), and let $\|\cdot\|_*$ be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V : \|s\|_* \le 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V : \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise.} \end{cases}$$

Where $B_{\|\cdot\|_*}(0,1)$ is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector $s \in V$ with $\|s\|_* = 1$ is a subgradient of the norm $\|\cdot\|$ at point $x_0 \neq 0$ if and only if the Hölder's inequality $\langle s, x_0 \rangle \leq \|x_0\|$ becomes an equality.

$$\langle s, x \rangle - \|x\| \le \langle s, x_0 \rangle - \|x_0\|, \text{ for all } x \in V,$$

Let $s \in V$. By definition, $s \in \partial \|\cdot\|(x_0)$ if and only if

 $\sup\{\langle s, x \rangle - ||x||\} \le \langle s, x_0 \rangle - ||x_0||.$

or equivalently,

By the definition of the supremum, the latter is equivalent to

Let V be a finite-dimensional Euclidean space, and $x_0 \in V$. Let $\|\cdot\|$ be an arbitrary norm in V (not necessarily induced by the scalar product), and let $\|\cdot\|_*$ be the corresponding conjugate norm. Then,

$$\partial \|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{if } x_0 = 0, \\ \{s \in V : \|s\|_* \le 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V : \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{otherwise}. \end{cases}$$

Where $B_{\|\cdot\|_*}(0,1)$ is the closed unit ball centered at zero with respect to the conjugate norm. In other words, a vector $s \in V$ with $||s||_* = 1$ is a subgradient of the norm $||\cdot||$ at point $x_0 \neq 0$ if and only if the Hölder's inequality

$$\langle s,x_0\rangle \leq \|x_0\| \text{ becomes an equality.}$$
 Let $s\in V.$ By definition, $s\in \partial\|\cdot\|(x_0)$

Let $s \in V$. By definition, $s \in \partial \|\cdot\|(x_0)$ if and only if It is important to note that the expression on the left side is the supremum from the definition of the Fenchel $\langle s, x \rangle - ||x|| < \langle s, x_0 \rangle - ||x_0||$, for all $x \in V$. conjugate function for the norm, which is known to be

or equivalently,

to

$$\sup\{\langle s, x \rangle - ||x||\} \le \langle s, x_0 \rangle - ||x_0||.$$

By the definition of the supremum, the latter is equivalent

 $\sup_{x \in V} \{ \langle s, x \rangle - ||x|| \} = \begin{cases} 0, & \text{if } ||s||_* \le 1, \\ +\infty, & \text{otherwise.} \end{cases}$ Thus, equation is equivalent to $||s||_* \leq 1$ and

 $\langle s, x_0 \rangle = ||x_0||.$

Consequently, it remains to note that for $x_0 \neq 0$, the inequality $\|s\|_* \leq 1$ must become an equality since, when $\|s\|_* < 1$, Hölder's inequality implies $\langle s, x_0 \rangle \leq \|s\|_* \|x_0\| < \|x_0\|$.

The conjugate norm in Example above does not appear by chance. It turns out that, in a completely similar manner for an arbitrary function f (not just for the norm), its subdifferential can be described in terms of the dual object — the Fenchel conjugate function.

୍ ଚ