Семинар 4 + 5

Алексеев Василий

23 + 30 сентября 2024

Содержание

1	Фун	кции	1	
2 Пре		едел функции		
3	Непрерывность функции			
	3.1	C1, §9, Nº20(2)	1	
	3.2	C1, §9, N°25(5)	1	
	3.3	C1, §9, Nº30(2)	1	
	3.4	C1, §9, N°36(2)	2	
	3.5	C1, §9, №61	3	
	3.6	C1, §9, Nº36(8)	4	
	3.7	C1, §10, №5(9)	5	
	3.8	C1, §10, №22	6	
	3.9	C1, §10, №42	8	
	3.10	C1, §10, №97(2)	9	
	7 11	TA	10	

1. Функции

2. Предел функции

3. Непрерывность функции

3.1. C1, §9, $N^{\circ}20(2)$

Найти предел функции:

$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1}$$

Решение. Имеем неопределённость (вида 0/0), поэтому пока "просто подставить" значение в формулу не получится. Но видно, что можно разложить на множители знаменатель (и числитель) — возможно, "проблемность" сократится:

$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 5)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x + 5}{x + 1} = \frac{6}{2} = 3$$

То, на что сокращали — это не ноль! потому что x *стремится* к 1, то есть подходит всё ближе и ближе к единице, никогда в неё не попадая, и потому выражение x-1 *стремится* к нулю, но никогда нулю не равно. А в конце, когда "проблема" ушла, уже можно было просто "подставить" в формулу значение x=1.

3.2. C1, $\S9$, $N^{\circ}25(5)$

Найти предел функции:

$$\lim_{x \to 5} \frac{\sqrt{6 - x} - 1}{3 - \sqrt{4 + x}}$$

Решение. Снова неопределённость (0/0). В данном случае же, очевидно, на множители ничего не раскладывается. Однако можно воспользоваться другим приёмом — "домножить и поделить":

$$\lim_{x \to 5} \frac{\sqrt{6-x} - 1}{3 - \sqrt{4+x}} = \lim_{x \to 5} \frac{\left(\sqrt{6-x} - 1\right)\left(\sqrt{6-x} + 1\right)\left(3 + \sqrt{4+x}\right)}{\left(3 - \sqrt{4+x}\right)\left(3 + \sqrt{4+x}\right)\left(\sqrt{6-x} + 1\right)}$$

$$= \lim_{x \to 5} \frac{(5-x)\left(3 + \sqrt{4+x}\right)}{(5-x)\left(\sqrt{6-x} + 1\right)} = \lim_{x \to 5} \frac{3 + \sqrt{4+x}}{\sqrt{6-x} + 1} = \frac{3 + \sqrt{4+x}}{\sqrt{6-x} + 1}\Big|_{x=5} = 3$$

В итоге снова почти-равный-но-до-конца-не-равный нулю множитель сократился, и неопределённости после этого уже не было. \Box

3.3. C1, §9, №30(2)

Найти предел функции:

$$\lim_{x \to \pi} \frac{\sin x}{\pi^2 - x^2}$$

1

Решение. Видно, что предел "похож" на первый замечательный. (И кроме как сведения к первому замечательному не понятно, как его вообще находить.) Поэтому попробуем "выделить" в явном виде этот табличный предел, немного повертев выражение, задающее функцию:

$$\lim_{x \to \pi} \frac{\sin x}{\pi^2 - x^2} = \lim_{x \to \pi} \frac{\sin x}{(\pi - x)(\pi + x)}$$

$$= \lim_{x \to \pi} \frac{\sin (\pi - x)}{(\pi - x)(\pi + x)} = \lim_{x \to \pi} \frac{\sin (\pi - x)}{(\pi - x)(\pi + x)} = \blacktriangle$$

Теперь первый замечательный предел виден. Это в самом деле он, так как при $x \to \pi$ имеем $(\pi - x) \to 0$. Можно сделать замену, чтоб совсем было один-в-один по виду, как в замечательном:

$$\pi - x \equiv t$$
, $x = \pi + t$, $x \to \pi \Leftrightarrow t \to 0$

Тогда, возвращаясь к пределу:

$$\blacktriangle = \lim_{t \to 0} \frac{\sin t}{t} \frac{1}{2\pi + t} = \frac{1}{2\pi}$$

3.4. C1, §9, №36(2)

Найти предел функции:

$$\lim_{x \to 0} \left(\sqrt{1+x} - x \right)^{1/x}$$

Решение. А этот предел чем-то напоминает второй замечательный. Поэтому снова попробуем немного "причесать" функцию под пределом. Так как

$$\sqrt{1+x} = (1+x)^{1/2}$$

то можно воспользоваться следующим равенством:

$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x), \quad x \to 0$$

Подставим это в предел:

$$\lim_{x \to 0} \left(\sqrt{1+x} - x \right)^{1/x} = \lim_{x \to 0} \left(1 + \frac{1}{2} x - x + o(x) \right)^{1/x} = \lim_{x \to 0} \left(1 - \frac{1}{2} x + o(x) \right)^{1/x} = \blacktriangle$$

o(x) — это какая-то функция, бесконечно малая по отношению к функции x при $x \to 0$. Так как в той же скобке присутствует ещё и сам x (с коэффициентом -1/2), то на o(x) можно смотреть как "практически" на ноль (это поправка, которая несравнимо меньше

¹Дающая в пределе ноль (а не "минус бесконечность").

члена -x/2 по величине). Другими словами, можно просто "забыть" про o(x):

$$\blacktriangle = \lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}} = \spadesuit$$

Второй замечательный предел почти проявился, правда, ещё не до конца... Но его можно получить, если теперь "домножить и поделить" в степени:

(По ходу пользовались тем, что $x/2 \to 0$ при $x \to 0$. Можно бы было сделать замену, чтоб получить второй замечательный предел прям в как в табличном виде. Но можно было и просто иметь это в виду (делая "мысленную замену").)

3.5. C1, §9, №61

Пусть известно, что

$$\lim_{y \to y_0} f(y) = a$$

$$\lim_{x \to x_0} g(x) = y_0$$

Следует ли отсюда, что

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y) = a$$

Решение. Очевидно, условие задачи представляет "практически" утверждение о непрерывности сложной функции. С тем отличием, что не требуется, чтобы $g(x) \neq y_0$ хотя бы в некоторой δ-окрестности x_0 . Таким образом, при взятии предела

$$\lim_{x \to x_0} f(g(x))$$

может получиться так, что при стремлении $x \to x_0$ функция g(x) пройдёт через y_0 . Но ведь при рассмотрении предела

$$\lim_{y \to y_0} f(y)$$

вообще не важно, что происходит с f(y) в самой точке y_0 (функция f(y) может быть даже не определена в ней). Отсюда и может возникнуть противоречие: с f(y) что-то "нехорошо" в самой y_0 , а g(x) в неё попадает при $x \to x_0$ (функция g(x) в любом случае *стремится* к y_0 при $x \to x_0$ — тут же важно, что она может именно пройти через y_0 , принять это значение — не в пределе).

Наверняка можно придумать не один (контр)пример, решающий задачу...

 $^{^2}$ "Забывать" можно не всегда, а только тогда, когда это в самом деле "бесконечно малая" поправка, по сравнению с другими членами. Например, в пределе $\lim_{x\to 0} \left(1+x^2\right)^{1/x^2}$ функция x^2 тоже будет o(x), но "отметание" её в сумме в скобке приведёт к приделу $\lim_{x\to 0} 1^{1/x^2}$. Который, очевидно, не равен исходному. Бывают также случаи, когда... не только не стоит "отметать" поправку, а когда, наоборот, необходимо её както уточнить, разложить до ещё большей точности. Например, пусть есть предел $\lim_{x\to 0} \left(\sqrt{1+x}-x/2\right)^{1/x^2}$. Раскладывая до o(x) корень, переходим к пределу $\lim_{x\to 0} (1+o(x))^{1/x^2}$, с которым уже и не понятно, что делать. Потому что выкинуть o(x) нельзя: она хоть и малая, но играет роль. Например, вместо o(x) могла бы быть, например, функция x^2 , или $-17.5x^2$, или x^{2024} — итоговый ответ в каждом из случаев был бы другим. Таким образом, в данном примере нужно бы было каким-то образом раскладывать корень не до o(x), а до какой-то более высокой точности (до ещё более малой поправки)...

Как вариант, предлагается завязаться снова на замечательный предел (первый). Рассмотрим ситуацию:

$$f(y) = \frac{\sin y}{y}, \quad g(x) = 0$$

то есть g(x) просто константный ноль; в качестве же y_0 , очевидно, берём $y_0=0$; точка же x_0 может быть любой, пусть, для определённости, тоже $x_0=0$. Тогда получаем

$$\begin{cases} \lim_{y \to y_0} f(y) = \lim_{y \to 0} \frac{\sin y}{y} = 1\\ \lim_{x \to x_0} g(x) = \lim_{x \to 0} 0 = 0 \end{cases}$$

Однако

$$\lim_{x \to x_0} f(g(x)) = \lim_{x \to 0} \frac{\sin 0}{0} \quad (\textcircled{2})$$

Получили в явном виде деление на ноль. Дальнейшие объяснения кажутся излишними. 3

3.6. C1, §9, №36(8)

Найти предел функции:

$$\lim_{x\to 0} \left(\ln(e+x)\right)^{\operatorname{ctg} x}$$

Решение. Попытаемся постепенно прийти ко второму замечательному пределу:

$$\lim_{x \to 0} \left(\ln(e+x) \right)^{\operatorname{ctg} x} = \lim_{x \to 0} \left(\ln\left\{ e\left(1 + \frac{x}{e}\right) \right\} \right)^{\operatorname{ctg} x} = \lim_{x \to 0} \left(1 + \ln\left\{1 + \frac{x}{e}\right\} \right)^{\operatorname{ctg} x} = \blacktriangle$$

Воспользуемся равенствами при $x \to 0$:

$$\begin{cases} \ln\left(1 + \frac{x}{e}\right) = \frac{x}{e} + o(x) \\ \cot x = \frac{1}{\tan x} = \frac{1}{x + o(x)} \sim \frac{1}{x} \end{cases}$$

Подставляя в формулу для предела:

$$\blacktriangle = \lim_{x \to 0} \left(1 + \frac{x}{e} + o(x) \right)^{\frac{1}{x}} = \diamondsuit$$

"Забывая" про o(x) и "подкручивая" (в рамках правил) степень, наконец получаем замечательный предел:

$$\diamondsuit = \lim_{x \to 0} \left(1 + \frac{x}{e} \right)^{\frac{e}{x} \cdot \frac{1}{e}} = e^{1/e}$$

 $\overline{}^3$ Всё-таки на всякий случай ещё одно небольшое замечание: в первом замечательном пределе $\lim_{x\to 0} \frac{\sin x}{x}$ нет деления на ноль! ноль никогда не возникает в знаменателе (при $x\to 0$ знаменатель становится всё ближе к нулю, бесконечно близко, но всё-таки не "чистый" ноль).

3.7. C1, §10, $N^{\circ}5(9)$

Доказать (по определению), что функция y(x) непрерывна в каждой точке своей области определения:

$$y(x) = \frac{1}{x^2}$$

Решение. Область определения: $\mathbb{R} \setminus \{0\}$. Пусть есть $x_0 \neq 0$. Покажем, что f(x) непрерывна в x_0 .

Непрерывна — то есть значение функции в точке совпадает с её пределом в точке. Поэтому, чтобы доказать непрерывность по определению, воспользуемся определением предела функции в точке, например, по Коши. Итого, надо показать, что:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in U_{\delta}(x_0) \to f(x) \in U_{\varepsilon}(f(x_0))$$

или, если через неравенства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : \ |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon$$

Посмотрим на разность между значениями функции:

$$|f(x) - f(x_0)| = \left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| = \left| \frac{x_0^2 - x^2}{x^2 x_0^2} \right| = \left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right|$$

Может ли эта разность быть меньше любого наперёд заданного ε для всех x, достаточно близких к x_0 ? (можно ли это обеспечить выбором δ ?) Посмотрим внимательно на дробь. Разность x_0-x можно сделать сколь угодно малой (x — точка такая, что $|x_0-x|<\delta$, а δ выбираем, какой хотим); x_0+x — при достаточно малом δ есть "нечто, сравнимое с x_0 ", это что-то около x_0 , "примерно" x_0 ; то же самое с x в знаменателе — если δ достаточно малая, x будет близко к x_0 , "практически" x_0 . Итого, о дроби под модулем при достаточно малом δ можно думать как

$$\left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right| \lesssim \frac{\delta \cdot x_0}{x_0^4}$$

А это, очевидно, можно выбором δ сделать таким малым, как захотим (меньше любого $\epsilon > 0$).

Разберёмся теперь аккуратнее со всеми упомянутыми "практически", "примерно", "что-то около" и прочими. Пусть для определённости $x_0>0$. Тогда выбором δ можно добиться того, чтобы $x_0+\delta$ было меньше, чем, скажем, $100x_0$. С другой стороны, также можно выбрать и такой маленький δ , чтобы $x_0-\delta$ было, например, больше $0.01x_0$. Выбирая самый маленький из двух упомянутых δ (или ещё сколь угодно меньше), и получаем такую оценку:

$$\left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right| < \frac{\delta \cdot 100 x_0}{(0.01 x_0)^2 x_0^2} < \varepsilon$$

И из неё уже выходит такое условие на δ :

$$\delta < \varepsilon \cdot \left(\frac{x_0}{100}\right)^3$$

Показали непрерывность в x_0 , используя определение предела в x_0 по Коши.

Способ 2: по Гейне. Покажем теперь интереса ради непрерывность, если опираться на определение предела функции в точке по Гейне. Тогда фраза "предел в точке равен значению в точке" для $x_0 \neq 0$ будет переводиться так:

$$\forall \{x_n\} \subset U_{\delta}(x_0), \ \lim_{n \to \infty} x_n = x_0 \to \lim_{n \to \infty} f(x_n) = f(x_0) \leftrightarrow \lim_{n \to \infty} \left(f(x_n) - f(x_0) \right) = 0$$

(где последовательности Гейне берутся из элементов из некоторой δ -окрестности x_0 , где функция f(x) определена). В таком случае, рассмотрим предел:

$$\lim_{n \to \infty} \left(f(x_n) - f(x_0) \right) = \lim_{n \to \infty} \left(\frac{1}{x_n^2} - \frac{1}{x_0^2} \right) = \lim_{n \to \infty} \frac{(x_0 - x_n)(x_0 + x_n)}{x_n^2 x_0^2} = 0$$

он равен нулю, так как $x_n \xrightarrow{n \to \infty} x_0$.

3.8. C1, §10, №22

Доказать, что функция

$$f(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q} \\ 0, & \text{если } x \in \mathbb{I} \end{cases}$$

разрывна в каждой точке.

Решение. Докажем разрывность из противоречия с непрерывностью. То есть покажем, например, выполнение *отрицания непрерывности*, если смотреть на неё по Гейне:

$$\exists \{x_n\} : \lim_{n \to \infty} x_n = x_0, \ \neg \left(\lim_{n \to \infty} f(x_n) = f(x_0)\right)$$
 (1)

где x_0 — некоторая точка, а символом ¬ обозначено отрицание — в данном случае отрицание условия равенства предела последовательности $\{f(x_n)\}$ числу a (то есть предел последовательности либо не равен a, либо вообще не существует). Получается, для произвольного x_0 надо научиться предъявлять описанную последовательность Гейне в этой точке.

Пусть $x_0 \in \mathbb{I}$. Кажется естественным попытаться составить $\{x_n\}$ так, чтобы все элементы последовательности, наоборот, было бы рациональными. (Тогда сразу получится, что $\lim_{n\to\infty} f(x_n) = 1 \neq 0 = f(x_0)$.) Можно поступить так: пусть x_1 — произвольное рациональное число (пусть оно ещё и меньше x_0 для определённости). Определим $\delta_1 = x_0 - x_1$. Далее, положим $\delta_2 = \frac{\delta_1}{2}$, и выберем какой-нибудь любой рациональный $x_2 \in (x_0 - \delta_2, x_0)$. И "зацикливаем" процесс: следующий $\delta_3 = \frac{\delta_2}{2}$, выбираем произвольный рациональный $x_3 \in (x_0 - \delta_3, x_0)$, и так далее. Получаем последовательность $\{x_n\} \subset \mathbb{Q}$. Почему она сходится к x_0 ? Потому что она построена так, чтобы каждый очередной x_n был всё ближе к x_0 , причём в несколько раз ближе, чем предыдущий x_{n-1} :

$$0 < |x_n - x_0| < \delta_n = \frac{\delta_1}{2^n} \xrightarrow{n \to \infty} 0$$

Можно бы было предложить и ещё, например, вот такой способ нахождения $\{x_n\} \subset \mathbb{Q}$. Так как $x_0 \in \mathbb{I}$, то x_0 представимо в виде бесконечной непериодической десятичной дроби:

$$x_0 = a_0, a_1 a_2 a_3 \dots a_n \dots$$

где $a_0,\,a_1,\,a_2$ и так далее — цифры. Тогда предлагается такая последовательность $\{x_n\}$:

$$\begin{cases} x_1 = a_0, a_1 \\ x_2 = a_0, a_1 a_2 \\ x_3 = a_0, a_1 a_2 a_3 \\ \dots \\ x_n = a_0, a_1 a_2 a_3 \dots a_n \end{cases}$$

Очевидно, $x_n \xrightarrow{n \to \infty} x_0$. Также очевидно, что $x_n \in \mathbb{Q}$. А значит, это и есть подпоследовательность Гейне, "ломающая" непрерывность функции в точке x_0 по Гейне.

Пусть теперь $x_0 \in \mathbb{Q}$. Опять, хочется составить последовательность Гейне $\{x_n\}$ из, наоборот, иррациональных чисел (вообще не обязательно прям только из иррациональных — по-хорошему, достаточно лишь, чтобы иррациональные просто время от времени встречались среди элементов последовательности). Пусть x_1 — это, например, $\frac{x_0}{\sqrt{3}}$. Очевидно, $x_1 \in \mathbb{I}$. Далее, положим, например

$$x_n = x_1 + (x_0 - x_1) \cdot \frac{n}{n+1}$$

Очевидно, что $x_n \in \mathbb{L}^4$ Также понятно, что

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(x_1 + (x_0 - x_1) \cdot \frac{n}{n+1} \right) = x_0$$

Итого, это нужная последовательность Гейне в иррациональном x_0 .

Способ 2: по Коши

Решим задачу, смотря на предел функции в точке как Коши. Отрицание, которое надо доказать (чтоб показать разрывность в произвольной x_0):

$$\exists \epsilon > 0 : \, \forall \delta > 0 \, \exists x \in U_\delta(x_0) : \, f(x) \not\in U_\epsilon \left(f(x_0) \right)$$

Но какой бы ни был x_0 ($\mathbb Q$ или $\mathbb I$) — это будет верно! Потому что в любой δ -окрестности рационального (иррационального) числа x_0 на числовой прямой есть иррациональное (рациональное) число x (и тогда $|f(x)-f(x_0)|=1$ — так что в качестве ε можно взять, например, $\varepsilon=1/2$.)

Способ 3: Гейне + Коши (другой Коши)

Вернёмся к взгляду на предел в точке по Гейне. Как ещё можно показать (1)? Предъявив такую последовательность Гейне $\{x_n\}$ в x_0 , чтоб предела $\lim_{n\to\infty} f(x_n)$ просто не существовало! Из критерия Коши сходимости последовательности, предела не будет, если

$$\exists \varepsilon > 0: \, \forall N \in \mathbb{N}, \exists n, m \geq N: \, |f(x_n) - f(x_m)| \geq \varepsilon$$

Тогда можно построить $\{x_n\}$, чередуя попеременно рациональные и иррациональные элементы, которые становятся всё ближе к x_0 (можно опять ввести окрестность δ_n , из которой произвольно выбирается очередной $\mathbb Q$ или $\mathbb I$ элемент x_n — чтобы окрестности δ_n стягивались к нулю).

Способ 3: Коши - Гейне

 $^{^4}$ Или не так очевидно... В общем, получается, что x_n есть сумма иррационального и рационального.

На самом деле *критерий Коши существования предела в функции* — не привязан к последовательностям (к определению предела в точке по Гейне). Его можно сформулировать в более общем виде так: функция f(x) непрерывна в точке x_0 тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \forall x_1, x_2 \in U_\delta(x_0) \to |f(x_1) - f(x_2)| < \varepsilon$$

И его отрицание:

$$\exists \varepsilon > 0$$
: $\forall \delta > 0 \ \exists x_1, x_2 \in U_{\delta}(x_0)$: $|f(x_1) - f(x_2)| \ge \varepsilon$

Но тогда можно и не искать никакую последовательность Гейне в точке x_0 ! Просто достаточно сказать, что в любой δ -окрестности любого числа x_0 есть как рациональные, так и иррациональные числа (а потому подойдёт $\varepsilon = 1/2$).

3.9. C1, §10, №42

Пусть функция f(x) непрерывна на интервале (a, b), и пусть

$$m_0 \equiv \inf_{(a,b)} f, \quad M_0 \equiv \sup_{(a,b)} f$$

Доказать, что для любого $y_0 \in (m, M)$ найдётся $x_0 \in (a, b)$, такой что $f(x_0) = y_0$.

Решение. Отметим, что непрерывная на интервале функция может и не достигать на этом интервале своих инфимума и/или супремума. Например, функция $f(x) = \frac{1}{x}$ на интервале (0,1) (не достигает инфимума). Или $f(x) = \lg x$ на интервале $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (не достигает "ничего").

Поэтому сперва осторожно определим, в каких "границах" лежит y_0 . Границах — в смысле между какими значениями, которые функция f(x) точно принимает. Но это сразу получаем из определения точных граней: если $y_0 > m_0$, то обязательно найдётся $m_1 = f(l_1), l_1 \in (a,b)$, такое что $y_0 > m_1 > m_0$. Аналогично и с точной верхней гранью. Итого, имеем:

$$\inf_{(a,b)} f = m_0 < f(l_1) < y < f(r_1) < M_0 = \sup_{(a,b)} f$$

(для определённости также будем считать $l_1 < r_1$, хотя это ни на что не влияет, кроме смысла за именами.)

Теперь предлагается следующая процедура поиска точки x_0 , где $f(x_0) = y_0$. Будем приближаться к ней, всё ближе и ближе. Точнее даже, будем *стягиваться* к ней — по оси X. Но так как функция непрерывна — то параллельно мы будем приближаться и к интересуемому значению y_0 по оси Y! Таким образом, 2D "область поиска" точки (x_0, y_0) тоже стягивается — и в итоге получается одна точка графика, где функция принимает искомое значение (график не видим, но нужную точку на нём найти сможем).

Определим процесс более формально (1). Первый отрезок — это $[l_1,r_1]$. Точка x_0 должна быть на нём. Далее, начинаем делить пополам: $c_1 = \frac{l_1+r_1}{2}$. Если вдруг $f(c_1) = y_0$, то процесс завершён, точку нашли. Иначе, либо $f(c_1) < y_0$, либо $f(c_1) > y_0$. В любом случае, можно будет от "большого" отрезка $[l_1,r_1]$ перейти к отрезку в два раза меньше — такому, чтоб y_0 было между значениями на его концах ($[c_1,r_1]$ или $[l_1,c_1]$ соответственно). Это будет отрезок $[l_2,r_2]$. Далее всё повторяется: смотрим середину, сравниваем, переходим в нужный подотрезок. И так далее. Получается последовательность точек $\{x_n\}$ и стягивающаяся последовательность вложенных отрезков $\{[l_n,r_n]\}$. Раз стягивающаяся, то, по

теореме Кантора, имеет общую точку x_0 (назовём её так же, как искомую, где $f(x_0) = y_0$, потому что это в самом деле она и есть, что далее покажем). При этом

$$0 < |x_n - x_0| < \frac{r_1 - l_1}{2^{n-1}} \xrightarrow{n \to \infty} 0$$

то есть $x_n \xrightarrow{n \to \infty} x_0$. Осуществили "стяжку" в x_0 . Посмотрим, что при этом происходит по другой оси. Строили отрезки так, чтобы

$$f(l_n) < y_0 < f(r_n)$$

при стяжке же $l_n, r_n \xrightarrow{n \to \infty} x_0$, а в силу *непрерывности* функции f(x) при этом выходит также $f(l_n), f(r_n) \xrightarrow{n \to \infty} f(x_0)$. По теореме о двух милиционерах: $y_0 = f(x_0)$. Значит, нашли "ту самую" x_0 .

Получается, при поиске как бы двигались от граничных точек в нужную сторону "шаж-ками". При этом шаги уменьшались от очень больших ко всё более и более маленьким — уменьшались по мере приближения к искомой точке.

Рис. 1: Функция f(x), определённая на интервале (a,b), непрерывна... И это — всё, что про неё вообще по условию известно. Графика нет — только чистый лист. И пара граничных точек m_1 и M_1 — границы, между которыми заключено интересуемое значение y_0 (произвольное между инфимумом $\inf_{(a,b)} f$ и супремумом $\sup_{(a,b)} f$ функции на интервале). Как тогда показать, что функция обязательно проходит через y_0 ? ("Обязательно" — в данном контексте это скорее как "математический троп", подчёркивающий, что предстоит доказать "стрелку вправо" \Rightarrow , что из условий *следует* желаемое. Хотя, пожалуй, "обязательно" можно бы было и опустить...)

3.10. C1, §10, №97(2)

Построить взаимно однозначное отображение отрезка на интервал.

Решение. ТВА □

3.11. T4

Приведите пример разрывной функции $f: \mathbb{R} \to \mathbb{R}$, которая отображает любой отрезок в отрезок.

Решение. ТВА □