

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 January 2001 (04.01.2001)

PCT

(10) International Publication Number
WO 01/01218 A2(51) International Patent Classification⁷:**G06F**

Andreas, K. [DE/US]; 91 Center Road, Woodbridge, CT 06524 (US). XU, Chuanbo [CN/US]; 524 Openint Hill Road, Madison, CT 06443 (US).

(21) International Application Number:

PCT/US00/17540

(22) International Filing Date:

26 June 2000 (26.06.2000)

(74) Agents: MOROZ, Eugene et al.; Morgan & Finnegan, L.L.P., 345 Park Avenue, New York, NY 10154 (US).

(25) Filing Language:

English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language:

English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:

60/141,521

25 June 1999 (25.06.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/141,521 (CIP)

Filed on

25 June 1999 (25.06.1999)

(71) Applicant (*for all designated States except US*): GENAIS-SANCE PHARMACEUTICALS, INC. [US/US]; Five Science Park, New Haven, CT 06511 (US).**Published:**— *Without international search report and to be republished upon receipt of that report.**For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.***WO 01/01218 A2**

(54) Title: METHODS FOR OBTAINING AND USING HAPLOTYPe DATA

(57) Abstract: Methods, computer program(s) and database(s) to analyze and make use of gene haplotype information. These include methods, program, and database to find and measure the frequency of haplotypes in the general population; methods, program, and database to find correlation's between an individual's haplotypes or genotypes and a clinical outcome; methods, program, and database to predict an individual's haplotypes from the individual's genotype for a gene; and methods, program, and database to predict an individual's clinical response to a treatment based on the individual's genotype or haplotype.

BEST AVAILABLE COPY

◦

I. TITLE OF THE INVENTION

METHODS FOR OBTAINING AND USING HAPLOTYPE DATA

5 **II. RELATED APPLICATIONS**

This application is a continuation-in-part of U.S. Application Serial No. 60/141,521 filed June 25, 1999, which is incorporated by reference herein.

10 **III. FIELD OF THE INVENTION**

The invention relates to the field of genomics, and genetics, including genome analysis and the study of DNA variation. In particular, the invention relates to the fields of pharmacogenetics and pharmacogenomics and the use of genetic haplotype information to predict an individual's susceptibility to disease and/or their response to a particular drug or drugs, so that drugs tailored to genetic differences of population groups may be developed and/or administered to the appropriate population.

15 The invention also relates to tools to analyze DNA, catalog variations in DNA, study gene function and link variations in DNA to an individual's susceptibility to a particular disease and/or response to a particular drug or drugs.

20 The invention may also be used to link variations in DNA to personal identity and racial or ethnic background.

25 The invention also relates to the use of haplotype information in the veterinary and agricultural fields.

30 **IV. BACKGROUND OF THE INVENTION**

35 The accumulation of genomic information and technology is opening doors for the discovery of new diagnostics, preventive strategies, and drug therapies for a whole host of diseases, including diabetes, hypertension, heart disease, cancer, and mental illness. This is due to the fact that many human diseases

- 2 -

have genetic components, which may be evidenced by clustering in certain families, and/or in certain racial, ethnic or ethnogeographic (world population) groups. For example, prostate cancer clusters in some families. Furthermore, while prostate cancer is common among all U.S. males, it is especially common among African American men. They are 35 percent more likely than Americans of European descent to develop the disease and more than twice as likely to die from it. A variation on chromosome 1 (HPC1) and a variation on the X chromosome (HPCX) appear to predispose men to prostate cancer and a study is currently underway to test this hypothesis.

Likewise, it is clear that an individual's genes can have considerable influence over how that individual responds to a particular drug or drugs.

Individuals inherit specific versions of enzymes that affect how they metabolize, absorb and excrete drugs. So far, researchers have identified several dozen enzymes that vary in their activity throughout the population and that probably dictate people's response to drugs - which may be good, bad or sometimes deadly. For example, the cytochrome P450 family of enzymes (of which CYP 2D6 is a member) is involved in the metabolism of at least 20 percent of all commonly prescribed drugs, including the antidepressant Prozac™, the painkiller codeine, and high-blood-pressure medications such as captopril. Ethnic variation is also seen in this instance. Due to genetic differences in cytochrome P450, for example, 6 to 10 percent of Whites, 5 percent of Blacks, and less than 1 percent of Asians are poor drug metabolizers.

One very troubling observation is that adverse reactions often occur in patients receiving a standard dose of a particular drug. As an example, doctors in the 1950s would administer a drug called succinylcholine to induce muscle relaxation in patients before surgery. A number of patients, however, never woke up from anesthesia - the compound paralyzed their breathing muscles and they suffocated. It was later discovered that the patients who died had inherited a mutant form of the enzyme that clears succinylcholine from their system. As another example, as early as the 1940s doctors noticed that certain tuberculosis patients treated with the antibacterial drug isoniazid would feel pain, tingling and weakness

- 3 -

in their limbs. These patients were unusually slow to clear the drug from their bodies - isoniazid must be rapidly converted to a nontoxic form by an enzyme called N-acetyltransferase. This difference in drug response was later discovered to be due to differences in the gene encoding the enzyme. The number of people who would experience adverse responses using this drug is not small. Forty to sixty per cent of Caucasians have the less active form of the enzyme (i.e., "slow acetylators").

Another gene encodes a liver enzyme that causes side effects in some patients who used SeldaneTM, an allergy drug which was removed from the market. The drug SeldaneTM is dangerous to people with liver disease, on antibiotics, or who are using the antifungal drug Nizoral. The major problem with SeldaneTM is that it can cause serious, potentially fatal, heart rhythm disturbances when more than the recommended dose is taken. The real danger is that it can interact with certain other drugs to cause this problem at usual doses. It was discovered that people with a particular version of a CYP450 suffered serious side effects when they took SeldaneTM with the antibiotic erythromycin.

Sometimes one ethnic group is affected more than others. During the Second World War, for example, African-American soldiers given the antimalarial drug primaquine developed a severe form of anaemia. The soldiers who became ill had a deficiency in an enzyme called glucose-6-phosphate dehydrogenase (G6PD) due to a genetic variation that occurs in about 10 per cent of Africans, but very rarely in Caucasians. G6PD deficiency probably became more common in Africans because it confers some protection against malaria.

Variations in certain genes can also determine whether a drug treats a disease effectively. For example, a cholesterol-lowering drug called pravastatin won't help people with high blood cholesterol if they have a common gene variant for an enzyme called cholesteryl ester transfer protein (CETP). As another example, several studies suggest that the version of the "ApoE" gene that is associated with a high risk of developing Alzheimer's disease in old age (i.e., APOE4) correlates with a poor response to an Alzheimer's drug called tacrine. As yet another example, the drug HerceptinTM, a treatment for metastatic breast cancer, only works for patients whose tumors overproduce a certain protein, called HER2.

- 4 -

- A screening test is given to all potential patients to weed out those on whom the drug won't be effective.

In summary, it is well known that not all individuals respond identically to drugs for a given condition. Some people respond well to drug A but poorly to drug B, some people respond better to drug B, while some have adverse reactions to both drugs. In many cases it is currently difficult to tell how an individual person will respond to a given drug, except by having them try using it.

It appears that a major reason people respond differently to a drug is that they have different forms of one or more of the proteins that interact with the drug or that lie in the cascade initiated by taking the drug.

A common method for determining the genetic differences between individuals is to find Single Nucleotide Polymorphisms (SNPs), which may be either in or near a gene on the chromosome, that differ between at least some individuals in the population. A number of instances are known (Sickle Cell Anemia is a prototypical example) for which the nucleotide at a SNP is correlated with an individual's propensity to develop a disease. Often these SNPs are linked to the causative gene, but are not themselves causative. These are often called surrogate markers for the disease. The SNP/surrogate marker approach suffers from at least three problems:

(1) Comprehensiveness: There are often several polymorphisms in any given gene. (See Ref. 10 for an example in which there are 88 polymorphic sites). Most SNP projects look at a large number of SNPs, but spread over an enormous region of the chromosome. Therefore the probability of finding all (or any) SNPs in the coding region of a gene is small. The likelihood of finding the causative SNP(s) (the subset of polymorphisms responsible for causing a particular condition or change in response to a treatment) is even lower.

(2) Lack of Linkage: If the causative SNP is in so-called linkage disequilibrium (Ref 1, Chapter 2) with the measured SNP, then the nucleotide at the measured SNP will be correlated with the nucleotide at the causative SNP. However it is impossible to predict *a priori* whether such linkage disequilibrium will exist for a particular pair of measured and causative SNPs.

35

- 5 -

o (3) Phasing: When there are multiple, interacting causative SNPs in a gene one needs to know what are the sequences of the two forms of the gene present in an individual. For instance, assume there is a gene that has 3 causative SNPs and that the remaining part of the gene is identical among all individuals. We
5 can then identify the two copies of the gene that any individual has with only the nucleotides at those sites. Now assume that 4 forms exist in the population, labeled TAA, ATA, TTA and AAA. SNP methods effectively measure SNPs one at a time, and leave the "phasing" between nucleotides at different positions ambiguous. An individual with one copy of TAA and one of ATA would have a genotype
10 (collection of SNPs) of [T/A, T/A, A/A]. This genotype is consistent with the haplotypes TTA/AAA or TAA/ATA. An individual with one copy of TTA and one of AAA would have exactly the same genotype as an individual with one copy of TAA and one copy of ATA. By using unphased genotypes, we cannot distinguish
15 these two individuals.

A relatively low density SNP based map of the genome will have little likelihood of specifically identifying drug target variations that will allow for distinguishing responders from poor responders, non-responders, or those likely to suffer side-effects (or toxicity) to drugs. A relatively low density SNP based map of the genome also will have little likelihood of providing information for new genetically based drug design. In contrast, using the data and analytical tools of the present invention, knowing all the polymorphisms in the haplotypes will provide a firm basis for pursuing pharmacogenetics of a drug or class of drugs.
25

With the present invention, by knowing which forms of the proteins an individual possesses, in particular, by knowing that individual's haplotypes (which are the most detailed description of their genetic makeup for the genes of interest) for rationally chosen drug target genes, or genes intimately involved with the pathway of interest, and by knowing the typical response for people with those haplotypes, one can with confidence predict how that individual will respond to a drug. Doing this has the practical benefit that the best available drug and/or dose for a patient can be prescribed immediately rather than relying on a trial and error approach to find the optimal drug. The end result is a reduction in cost to the health care system. Repeat visits to the physician's office are reduced, the
30
35

- 6 -

- prescription of needless drugs is avoided, and the number of adverse reactions is decreased.

The Clinical Trials Solution (CTSTM) method described herein provides a process for finding correlation's between haplotypes and response to treatment and for developing protocols to test patients and predict their response to a particular treatment.

The CTS™ method is partially embodied in the DecoGen™ Platform, which is a computer program coupled to a database used to display and analyze genetic and clinical information. It includes novel graphical and computational methods for treating haplotypes, genotypes, and clinical data in a consistent and easy-to-interpret manner.

V. SUMMARY OF THE INVENTION

The basis of the present invention is the fact that the specific form of a protein and the expression pattern of that protein in a particular individual are directly and unambiguously coded for by the individual's isogenes, which can be used to determine haplotypes. These haplotypes are more informative than the typically measured genotype, which retains a level of ambiguity about which form of the proteins will be expressed in an individual. By having unambiguous information about the forms of the protein causing the response to a treatment, one has the ability to accurately predict individuals' responses to that treatment. Such information can be used to predict drug efficacy and toxic side effects, lower the cost and risk of clinical trials, redefine and/or expand the markets for approved compounds (i.e., existing drugs), revive abandoned drugs, and help design more effective medications by identifying haplotypes relevant to optimal therapeutic responses. Such information can also be used, e.g., to determine the correct drug dose to give a patient.

At the molecular level, there will be a direct correlation between the form and expression level of a protein and its mode or degree of action. By combining this unambiguous molecular level information (i.e., the haplotypes) with clinical outcomes (e.g. the response to a particular drug), one can find correlations between haplotypes and outcomes. These correlations can then be used

- 7 -

- in a forward-looking mode to predict individuals' response to a drug.

The invention also relates to methods of making informative linkages between gene inheritance, disease susceptibility and how organisms react to drugs.

5 The invention relates to methods and tools to individually design diagnostic tests, and therapeutic strategies for maintaining health, preventing disease, and improving treatment outcomes, in situations where subtle genetic differences may contribute to disease risk and response to particular therapies.

10 The method and tools of the invention provide the ability to determine the frequency of each isogene, in particular, its haplotype, in the major ethno-geographic groups, as well as disease populations.

15 Similarly, in agricultural biotechnology, the method and tools of the invention can be used to determine the frequency of isogenes responsible for specific desirable traits, e.g., drought tolerance and/or improved crop yields, and reduce the time and effort needed to transfer desirable traits.

20 The invention includes methods, computer program(s) and database(s) to analyze and make use of gene haplotype information. These include methods, program, and database to find and measure the frequency of haplotypes in the general population; methods, program, and database to find correlation's between an individuals' haplotypes or genotypes and a clinical outcome; methods, program, and database to predict an individual's haplotypes from the individual's genotype for a gene; and methods, program, and database to predict an individual's clinical response to a treatment based on the individual's genotype or haplotype.

25 The invention also relates to methods of constructing a haplotype database for a population, comprising:

- (a) identifying individuals to include in the population;
- 30 (b) determining haplotype data for each individual in the population from isogene information;
- (c) organizing the haplotype data for the individuals in the population into fields; and
- 35 (d) storing the haplotype data for individuals in the population according to the fields.

- 8 -

o
The invention also relates to methods of predicting the presence of a haplotype pair in an individual comprising, in order:

- 5
10
15
20
25
30
5
10
15
20
25
30
35
- (a) identifying a genotype for the individual;
 - (b) enumerating all possible haplotype pairs which are consistent with the genotype;
 - (c) accessing a database containing reference haplotype pair frequency data to determine a probability, for each of the possible haplotype pairs, that the individual has a possible haplotype pair; and
 - (d) analyzing the determined probabilities to predict haplotype pairs for the individual.

The invention also relates to methods for identifying a correlation between a haplotype pair and a clinical response to a treatment comprising:

- (a) accessing a database containing data on clinical responses to treatments exhibited by a clinical population;
- (b) selecting a candidate locus hypothesized to be associated with the clinical response, the locus comprising at least two polymorphic sites;
- (c) generating haplotype data for each member of the clinical population, the haplotype data comprising information on a plurality of polymorphic sites present in the candidate locus;
- (d) storing the haplotype data; and
- (e) identifying the correlation by analyzing the haplotype and clinical response data

The invention also relates to methods for identifying a correlation between a haplotype pair and susceptibility to a disease comprising the steps of:

- 9 -

- o
 - (a) selecting a candidate locus hypothesized to be associated with the condition or disease, the locus comprising at least two polymorphic sites;
 - (b) generating haplotype data for the candidate locus for each member of a disease population;
 - (c) organizing the haplotype data in a database;
 - (d) accessing a database containing reference haplotypes for the candidate locus;
 - (e) identifying the correlation by analyzing the disease haplotype data and the reference haplotype data wherein when a haplotype pair has a higher frequency in the disease population than in the reference population, a correlation of the haplotype pair to a susceptibility to the disease is identified.

The invention also relates to methods of predicting response to a treatment comprising:

- 20
 - (a) selecting at least one candidate gene which exhibits a correlation between haplotype content and at least two different responses to the treatment;
 - (b) determining a haplotype pair of an individual for the candidate gene;
 - (c) comparing the individual's haplotype pair with stored information on the correlation; and
 - (d) predicting the individual's response as a result of the comparing.

25 The invention also provides computer systems which are programmed with program code which causes the computer to carry out many of the methods of the invention. A range of computer types may be employed; suitable computer systems include but are not limited to computers dedicated to the methods of the invention, and general-purpose programmable computers. The invention further provides computer-readable media having computer-readable program code stored thereon, for causing a computer to carry out many of the methods of the

- 10 -

- invention. Computer-usable media includes, but is not limited to, solid-state memory chips, magnetic tapes, or magnetic or optical disks. The invention also provides database structures which are adapted for use with the computers, program code, and methods of the invention.

5

VI. BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1. System Architecture Schematic.

10

FIGURE 2. Pathway/Gene Collection View. This screen shows a schematic of candidate genes from which a candidate gene may be selected to obtain further information. A menu on the left of the screen indicates some of the information about the candidate genes which may be accessed from a database.

15

TNFR1	-	Tissue Necrosis Factor 1
ADBR2	-	Beta-2 Adrenergic Receptor
IGERA	-	immunoglobulin E receptor alpha chain
IGERB	-	immunoglobulin E receptor beta chain
OCIF	-	osteoclastogenesis inhibitory factor
ERA	-	Estrogen alpha receptor
IL-4R	-	interleukin 4 receptor
5HT1A	-	5 hydroxytryptamine receptor 1A
DRD2	-	dopamine receptor D2
TNFA	-	tumor necrosis factor alpha
IL-1B	-	interleukin 1B
PTGS2	-	prostaglandin synthase 2 (COX-2)
IL-4	-	interleukin 4
IL-13	-	interleukin 13
CYP2D6	-	cytochrome P450 2D6
HSERT	-	serotonin transporter
UCP3	-	uncoupling protein 3

25

30

35

FIGURE 3. Gene Description View. This screen provides some of the basic information about the currently selected gene.

- 11 -

FIGURE 4A. Gene Structure View. This screen shows the location of features in the gene (such as promoter, introns, exons, etc.), the location of polymorphic sites in the gene for each haplotype and the number of times each haplotype was seen in various world population groups.

5

FIGURE 4B. Gene Structure View (Cont.). This screen shows a screen which results after a gene feature is selected in the screen of FIGURE 4A. An expanded view of the selected gene feature is shown at the bottom of the screen.

10

FIGURE 5. Sequence Alignment View. This screen shows an alignment of the full DNA sequences for all the haplotypes (i.e., the isogenes) which appears in a separate window when one of the features in FIGURE 4A or 4B is selected. The polymorphic positions are highlighted.

15

FIGURE 6. mRNA Structure View. This screen shows the secondary structure of the RNA transcript for each isogene of the selected gene.

20

FIGURE 7. Protein Structure View. This screen shows important motifs in the protein. The location of polymorphic sites in the protein is indicated by triangles. Selecting a triangle brings up information about the selected polymorphism at the top of the screen.

FIGURE 8. Population View. This screen shows information about each of the members of the population being analyzed. PID is a unique identifier.

25

FIGURE 9. SNP Distribution View. This screen shows the genotype to haplotype resolution of each of the individuals in the population being examined.

FIGURE 10. Haplotype Frequencies (Summary View). This screen shows a summary of ethnic distribution as a function of haplotypes.

30

FIGURE 11. Haplotype Frequencies (Detailed View). This screen shows details of ethnic distribution as a function of haplotype. Numerical data is provided.

FIGURE 12. Polymorphic Position Linkage View. This screen shows linkage between polymorphic sites in the population.

35

FIGURE 13. Genotype Analysis View (Summary View).

- 12 -

- This screen shows haplotyping identification reliability using genotyping at selected positions.

FIGURE 14. Genotype Analysis View (Detailed View). This screen gives a number value for the graphical data presented in FIGURE 13.

- 5 FIGURE 15. Genotype Analysis View (Optimization View). This screen gives the results of a simple optimization approach to finding the simplest genotyping approach for predicting an individual's haplotypes.

10 FIGURES 16 and 17. Haplotype Phylogenetic Views. These screens show minimal spanning networks for the haplotypes seen in the population.

15 FIGURE 18. Clinical Measurements vs. Haplotype View (Summary). This screen shows a matrix summarizing the correlation between clinical measurements and haplotypes.

20 FIGURE 19. Clinical Measurements vs. Haplotype View (Distribution View). This screen shows the distribution of the patients in each cell of the matrix of FIGURE 18.

25 FIGURE 20. Expanded view of one haplotype-pair distribution. This screen results when a user selects a cell in the matrix in FIGURE 19. The screen shows the number of patients in the various response bins indicated on the horizontal axis.

30 FIGURE 21. Linear Regression Analysis View. This screen shows the results of a dose-response linear regression calculation on each of the individual polymorphisms

25 FIGURE 22. Clinical Measurements vs. Haplotype View (Details). This screen gives the mean and standard deviation for each of the cells in FIGURE 18.

35 FIGURE 23. Clinical Measurement ANOVA calculation.

30 This screen shows the statistical significance between haplotype pair groups and clinical response.

35 FIGURE 24. Interface to the DecoGen CTS Modeler. As described in the text, a genetic algorithm (GA) is used to find an optimal set of weights to fit a function of the subject haplotype data to the clinical response. The controls at the right of the page are used to set the number of GA generations, the

- 13 -

size of the population of "agents" that coevolve during the GA simulation, and the GA mutation and crossover rates. The GA population, and population parameters with those of the real human subjects, should not be confused. These are simply terms used in the computational algorithm which is the GA. The GA is an error-minimizing approach, where the error is a weighted sum of differences between the predicted clinical response and that which is measured. The graph in the top-middle shows the residual error as a function of computational time, measured in generations. The bar graph at the bottom center shows the weights from Equation 6 for the best solution found so far in the GA simulation.

10

FIGURE 25A. Gene Repository data submodel.

15

FIGURE 25B. Population Repository data submodel.

20

FIGURE 25C. Polymorphism Repository data submodel.

25

FIGURE 25D. Sequence Repository data submodel.

30

FIGURE 25E. Assay Repository data submodel.

35

FIGURE 25F. Legend of symbols in FIGURES 25A-E.

35

FIGURE 26. Pathway View. This screen shows a schematic of candidate genes relevant to asthma from which a candidate gene may be selected to obtain further information. This view is an alternative way of showing information similar to that described in the Pathway/Gene Collection View shown in FIGURE 2, with access to additional views, projects and other information, as well as additional tools. A menu on the left of the screen in FIGURE 26 indicates some of the information about the candidate genes which may be accessed from a database. The candidates genes shown are

ADBR2	-	Beta-2 Adrenergic Receptor
IL-9	-	Interleukin 9
PDE6B	-	Phosphodiesterase 6B
CALM1	-	Calmodulin 1
JAK3	-	Janus Tyrosine Kinase 3

The following is a description about what happens (or could be made to happen) when each of the items on top of the screens (e.g., "File", "Edit", "Subsets", "Action", "Tools", "Help") are selected:

- 14 -

- File:
 - New
 - Open
 - Save
 - Save As
 - Exit

5

“File” lets the viewer select the ability to open or save a project file, which contains a list of genes to be viewed.

10

- Edit:
 - Cut
 - Copy
 - Paste

15

- Subsets:

20

“Subsets” allows the user to create and select for analysis subsets of the total patient set. Once a subset has been defined and named, the name of the subset goes into the pulldown under this menu. Functions are available to select a subset of patients based on clinical value (“Select everyone with a cholesterol level > 200”), or ethnicity, or genetic makeup (“Select all patients with haplotype CAGGCTGG for gene DAXX”), etc.

25

- Action:

Redo

“Redo” will cause displays to be regenerated when, for instance, the active set of SNPs has been changed.

30

- Tools:

“Tools” will bring up various utilities, such as a statistics calculator for calculating χ^2 , etc.

- Help:

“Help” will bring up on-line help for various functions.

35

The following is a description of the Standard Buttons that

- 15 -

o occur on all screens:

- New (blank sheet) – standard windows button for creating new file – this creates a new project

5

- Open (open folder) - standard windows button for opening existing file – open an existing project

10

- Save (picture of floppy disk) – save the current project to a file
- Save 2nd version – save the currently selected set of individuals or genes to a collection that can be separately analyzed.

15

- Cut (scissors) - delete the selected items (could be a gene or genes, a person, a SNP, etc., depending on the context)

20

- Copy – copy the selected item (as above) to the clipboard

- Paste – paste the contents of the clipboard to the current view

- X – currently not used

25

- New 2 (next blank page icon) – create a subset (genes, people, etc) from the selected items in the view

- Recalculate (icon of calculator) - redo computation of statistics, etc., depending on the context.

30

- Help (question mark) - bring up on-line help for the current view.

The following is a description of Buttons that show up on several views:

35

- 16 -

- Expand (magnifying glass with + sign) – zoom in on the graphical display – increase in size
- 5 • Shrink (magnifying glass with - sign) – zoom out on the graphical display – decrease in size

10 FIGURE 27. GeneInfo View. This screen provides some of

the basic information about the currently selected ADRB2 gene. This screen is an alternative way of showing information similar to that described in the Gene Description View in FIGURE 3.

15 FIGURE 28A. GeneStructure View. This screen shows the

location of features in the gene (such as promoter, introns, exons, etc.), the location of polymorphic sites in the gene for each haplotype and the number of times each haplotype was seen in various world population groups for the ADRB2 gene. This screen is an alternative way of showing information similar to that described in the Gene Structure View in FIGURE 4A.

20 FIGURE 28B. GeneStructure View (Cont.). This screen shows a screen which results after a gene feature is selected in the screen of FIGURE 28A. This screen is an alternative way of showing information similar to that described in the Gene Structure View in FIGURE 4B. An expanded view of the nucleotide sequence flanking the selected polymorphic site is shown at the top of the screen. This portion of the screen provides access to some of the same information as shown in FIGURE 5 (Sequence Alignment View).

25 FIGURE 29A. Patient Table View/Patient Cohort View. This

screen shows genotype and haplotype information about each of the members of the patient population being analyzed. Family relationships are also shown, when such information is present. Families 1333 and 1047 shown in FIGURE 29A are the families that were analyzed for this gene. In this particular screen, if other families had been analyzed, they would appear with those shown, but below, where one would scroll down. "Subject" is a unique identifier. The patients' genotypes are shown in the top right panel. At the far left of this panel (not seen until one scrolls over) are the indices for the two haplotypes that a patient has. These indices refer to

- 17 -

- the haplotype table at the bottom right. The left hand panel shows the haplotype IDs for families that have been analyzed as part of a cohort. The haplotypes must follow Mendelian inheritance pattern, i.e., one copy from his mother and one from his father. For instance if an individual's mother had haplotypes 1 and 2 and his father had haplotypes 3 and 4, then that individual must have one of the following pairs:
- 5 (1,3), (1,4), (2,3) or (2,4). This panel is used to check the accuracy of the haplotype determination method used.

10 FIGURE 29B. Clinical Trial Data View. This screen shows gives the values of all of the clinical measurements for each individual in FIGURE

29A.

15 FIGURE 30. HAPSNP View. This screen shows the genotype to haplotype resolution of the ADRB2 gene for each of the individuals in the population being examined. This view provides similar information as that shown in the SNP Distribution View of FIGURE 9.

20 FIGURE 31. HAPPair View. This screen shows a summary of ethnic distribution of haplotypes of the ADRB2 gene. This view is an alternative way of showing information similar to that shown in the Haplotype Frequencies

(Summary View) of FIGURE 10. The "V/D" (i.e., View Details) button in this view allows the user to toggle between the views shown in FIGURES 31 and 32.

25 FIGURE 32. HAP Pair View (HAP Pair Frequency View). This screen shows details of ethnic distribution as a function of haplotypes of the ADRB2 gene. Numerical data is provided. This view is an alternative way of

showing information similar to that shown in the Haplotype Frequencies (Detailed View) of FIGURE 11 for the CPY2D6 gene. The V/D button has the same function as in FIGURE 31.

30 FIGURE 33. Linkage View. This screen shows linkage between polymorphic sites in the population for the ADRB2 gene. This view is an alternative way of showing information similar to that shown in FIGURE 12 for the

CPY2D6 gene.

35 FIGURE 34. HAPTyping View. This screen shows the reliability of haplotyping identification using genotyping at selected positions for

the ADRB2 gene. This view is an alternative way of showing information similar to

- 18 -

that shown in the Genotype Analysis Views of FIGURES 13, 14 and 15 for the CPY2D6 gene. This view is the interface to the automated method for determining the minimal number of SNPs that must be examined in order to determine the haplotypes for a population. See "Step 6", Section D(1) and Example 2, herein, for details of this method. The view shows all pairs of haplotypes and their corresponding genotypes and finally the frequency of the genotype. The inset (which one sees by scrolling to the right) shows the best scoring set of SNPs to score, along with a quality score (scores<1) are acceptable. The pairs of numbers in brackets are the genotypes that are still indistinguishable given this SNP set.

"Population" in the box in the top of the figure is equivalent to the "Subset" selection menu described above. Populations and subsets are the same. One subset is the total analyzed population.

FIGURE 35. Phylogenetic View. These screens show minimal spanning networks for the haplotypes seen in the population for the ADRB2 gene. This view is an alternative way of showing information similar to that shown in FIGURES 16 and 17 for the CPY2D6 gene. This view also provides a window containing haplotype and ethnic distribution information. The numbers next to the balls represent the haplotype number and the numbers inside the parentheses represent the number of people in the analyzed population that have that haplotype. The function of the calculator button (or a red/green flag button, not shown in this view) is the same as recalculate in FIGURES 16 and 17. In this case it arranges nodes according to evolutionary distance.

FIGURE 36. Clinical Haplotype Correlations View (Summary). This screen shows a matrix summarizing the correlation between clinical measurements and haplotypes for the ADRB2 gene. This view is an alternative way of showing information similar to that shown in FIGURE 18 for the CPY2D6 gene.

Buttons are as described for FIGURES 26 and as follows:

- Graph (icon of graph) - does a statistics calculation and brings up a statistics results window, such as FIGURE 39A.

- 19 -

o

- Normal (icon of bell curve) – does a HAPpair ANOVA

calculation – a specialized statistical calculation.

5

- 3 finger down icon - displays a graph showing a histogram of clinical data for individuals with specific genetic markers.

10

- Thermometer - shows a list of clinical variables for the user to select from for display and analysis.

Some of the viewing modes obtainable by selecting the following drop-down menus on this view (and the other views on which they appear) are:

15

- Scaling:
Linear
Log
Log 10

20

- Clinical Mode:
Summary
Distribution
Details
Quantile

25

- Statistic:
Regression
ANOVA
Case Control
ANCOVA
Response Model

30

FIGURE 37. Clinical Measurements vs. Haplotype View

35

(Distribution View). This screen shows the distribution of the patients in each cell of the matrix of FIGURE 36. This view is an alternative way of showing information similar to that shown in FIGURE 19 for the CPY2D6 gene. Drop-down menus and buttons are as described for FIGURE 36.

- 20 -

•
5 FIGURE 38. Expanded Clinical Distribution View. This screen shows an expanded view of one haplotype-pair distribution. This screen results when a user selects a cell in the matrix in FIGURE 37. The screen shows the number of patients in the various response bins indicated on the horizontal axis.
10 This view is an alternative way of showing information similar to that shown in FIGURE 20 for the CPY2D6 gene, and also displays additional information.

15 FIGURE 39A. DecoGen Single Gene Statistics Calculator (Linear Regression Analysis View). This screen shows the results of a dose-response linear regression calculation on each of the shown individual polymorphisms or subhaplotypes with respect to the clinical measure "Delta % FEV1 pred." The SNPs and subhaplotypes shown are those selected as significant in the build-up procedure described below. This view is an alternative way of showing information similar to that shown in FIGURE 21 for the CPY2D6 gene and the "test" measurement, with additional information. The numbers in the boxes next to "Confidence" and "Fixed Site" in FIGURE 39A are default values for these parameters, but can be changed by the user. After they are changed, the user must click the "Redo" or "Recalculate" button (the little calculator icon) the regenerate the statistic with the new parameters. The first two boxes hold the tight and loose 20 cutoffs for the snp-to-hap buildup procedure we have already discussed. The "Fixed site" value says how far the buildup can proceed. a value of "4" says produce subhaplotypes with no more than 4 non-* sites. The minus sign says to also do the full-haplotype build down procedure. Detecting the Show/Hide button allows the user 25 to toggle between modes where all examined correlations are displayed and where only those passing the tight statistical criteria are displayed.

25 FIGURE 39B. Regression for Delta %FEV1 Pred. View. This view shows the regression line response as a function of number of copies of haplotype **A*****A*G**.

30 FIGURE 40. Clinical Measurements vs. Haplotype View (Details). This screen gives the mean and standard deviation for each of the cells in FIGURE 36. This view is an alternative way of showing some of the information similar to that shown in FIGURE 22 for the CPY2D6 gene and the "test" measurement.

- 21 -

• FIGURE 41. Clinical Measurement ANOVA calculation.

This screen shows the statistical significance between haplotype pair groups and clinical response for the Hap pairs for the ADRB2 gene. This view is an alternative way of showing some of the information similar to that shown in FIGURE 23 for the CPY2D6 gene and the “test” measurement.

5 FIGURE 42. Clinical Variables View. This figure simply shows histogram distributions for each of the clinical variables. This is the same as Figure 38, but not selected by haplotype pair. A clinical measurement is chosen by selecting one of the lines in the top list.

10 FIGURE 43. Clinical Correlations View. This view allows one to see the correlation between any pair of clinical measurements. The user selects one measurement from the list on the left, which becomes the x-axis, and one from the list on the right, which becomes the y-axis. Each point on the bottom graph represents one individual in the clinical cohort.

15 FIGURE 44A. Genomic Repository data submodel. This is a preferred alternative model to the submodels shown in FIGURES 25A and 25D.

20 FIGURE 44B. Clinical Repository data submodel. This is a preferred alternative submodel to that shown in FIGURE 25B.

25 FIGURE 44C. Variation Repository data submodel. This is an alternative submodel to that shown in FIGURE 25C.

FIGURE 44D. Literature Repository data submodel. This incorporates some of the tables from the gene repository submodel shown in FIGURE 25A.

30 FIGURE 44E. Drug Repository data submodel. This is an alternative submodel to that shown in FIGURE 25E.

35 FIGURE 44F. Legend of symbols in FIGURES 44A-E.

FIGURE 45. Flow Chart. This is a flow chart for a multi-SNP analysis method of associating phenotypes (such as clinical outcomes) with haplotypes (also called a “build-up” procedure).

FIGURE 46. Flow Chart. This is a flow chart for a reverse-SNP analysis method of associating phenotypes (such as clinical outcomes) with haplotypes (also called a “pare-down” procedure).

- 22 -

o FIGURE 47. Diagram of a process for assembling a genomic sequence by a human or a computer.

FIGURE 48. Diagram of a process for generating and displaying a gene structure.

5 FIGURE 49. Diagram of a process of generating and displaying a protein structure.

VII. DETAILED DESCRIPTION OF THE INVENTION

10 A. DEFINITIONS

The following definitions are used herein:

Allele – A particular form of a genetic locus, distinguished from other forms by its particular nucleotide sequence.

15 **Ambiguous polymorphic site** – A heterozygous polymorphic site or a polymorphic site for which nucleotide sequence information is lacking.

20 **Candidate Gene** – A gene which is hypothesized or known to be responsible for a disease, condition, or the response to a treatment, or to be correlated with one of these.

Full Polymorphic Set – The polymorphic set whose members are a sequence of all the known polymorphisms.

25 **Full-genotype** – The unphased 5' to 3' sequence of nucleotide pairs found at all known polymorphic sites in a locus on a pair of homologous chromosomes in a single individual.

30 **Gene** – A segment of DNA that contains all the information for the regulated biosynthesis of an RNA product, including promoters, exons, introns, and other untranslated regions that control expression.

Gene Feature – A portion of the gene such as, e.g., a single exon, a single intron, a particular region of the 5' or 3'-untranslated regions. The gene feature is always associated with a continuous DNA sequence.

35 **Genotype** – An unphased 5' to 3' sequence of nucleotide pair(s) found at one or more polymorphic sites in a locus on a pair of homologous

- 23 -

chromosomes in an individual. As used herein, genotype includes a full-genotype and/or a sub-genotype as described below.

Genotyping – A process for determining a genotype of an individual.

5 **Haplotype** – A member of a polymorphic set, e.g., a sequence of nucleotides found at one or more of the polymorphic sites in a locus in a single chromosome of an individual. (See, e.g., HAP 1 in FIGURE 4A full haplotype is a member of a full polymorphic set). A sub-haplotype is a member of a polymorphic subset.

10 **Haplotype data** – Information concerning one or more of the following for a specific gene: a listing of the haplotype pairs in each individual in a population; a listing of the different haplotypes in a population; frequency of each haplotype in that or other populations, and any known associations between one or 15 more haplotypes and a trait.

Haplotype pair – The two haplotypes found for a locus in a single individual.

20 **Haplotyping** – A process for determining one or more haplotypes in an individual and includes use of family pedigrees, molecular techniques and/or statistical inference.

25 **Isoform** – A particular form of a gene, mRNA, cDNA or the protein encoded thereby, distinguished from other forms by its particular sequence and/or structure.

Isogene – One of the two copies (or isoforms) of a gene possessed by an individual or one of all the copies (or isoforms) of the gene found in a population. An isogene contains all of the polymorphisms present in the particular copy (or isoforms) of the gene.

30 **Isolated** – As applied to a biological molecule such as RNA, DNA, oligonucleotide, or protein, isolated means the molecule is substantially free of other biological molecules such as nucleic acids, proteins, lipids, carbohydrates, or other material such as cellular debris and growth media. Generally, the term "isolated" is not intended to refer to a complete absence of such material or to absence of water, buffers, or salts, unless they are present in amounts that

- 24 -

- substantially interfere with the methods of the present invention.

Locus – A location on a chromosome or DNA molecule corresponding to a gene or a physical or phenotypic feature.

5 **Nucleotide pair** – The nucleotides found at a polymorphic site on the two copies of a chromosome from an individual.

10 **Phased** – As applied to a sequence of nucleotide pairs for two or more polymorphic sites in a locus, phased means the combination of nucleotides present at those polymorphic sites on a single copy of the locus is known.

15 **Polymorphic Set** – A set whose members are a sequence of one or more polymorphisms found in a locus on a single chromosome of an individual. See, e.g., the set having members HAP 1 through HAP 10 in FIGURE 4A.

20 **Polymorphic site** – A nucleotide position within a locus at which the nucleotide sequence varies from a reference sequence in at least one individual in a population. Sequence variations can be substitutions, insertions or deletions of one or more bases.

25 **Polymorphic Subset** – The polymorphic set whose members are fewer than all the known polymorphisms.

30 **Polymorphism** – The sequence variation observed in an individual at a polymorphic site. Polymorphisms include nucleotide substitutions, insertions, deletions and microsatellites and may, but need not, result in detectable differences in gene expression or protein function.

35 **Polymorphism data** – Information concerning one or more of the following for a specific gene: location of polymorphic sites; sequence variation at those sites; frequency of polymorphisms in one or more populations; the different genotypes and/or haplotypes determined for the gene; frequency of one or more of these genotypes and/or haplotypes in one or more populations; any known association(s) between a trait and a genotype or a haplotype for the gene.

40 **Polymorphism Database** – A collection of polymorphism data arranged in a systematic or methodical way and capable of being individually accessed by electronic or other means.

45 **Polynucleotide** – A nucleic acid molecule comprised of

- 25 -

- single-stranded RNA or DNA or comprised of complementary, double-stranded DNA.

5 **Reference Population** – A group of subjects or individuals who are representative of a general population and who contain most of the genetic variation predicted to be seen in a more specialized population. Typically, as used in the present invention, the reference population represents the genetic variation in the population at a certainty level of at least 85%, preferably at least 90%, more preferably at least 95% and even more preferably at least 99%.

10 **Reference Repository** – A collection of cells, tissue or DNA samples from the individuals in the reference population.

15 **Single Nucleotide Polymorphism (SNP)** – A polymorphism in which a single nucleotide observed in a reference individual is replaced by a different single nucleotide in another individual.

20 **Sub-genotype** – The unphased 5' to 3' sequence of nucleotides seen at a subset of the known polymorphic sites in a locus on a pair of homologous chromosomes in a single individual.

25 **Subject** – An individual (person, animal, plant or other eukaryote) whose genotype(s) or haplotype(s) or response to treatment or disease state are to be determined.

30 **Treatment** – A stimulus administered internally or externally to an individual.

35 **Unphased** – As applied to a sequence of nucleotide pairs for two or more polymorphic sites in a locus, unphased means the combination of nucleotides present at those polymorphic sites on a single copy of the locus (*i.e.*, located on a single DNA strand) is not known.

40 **World Population Group** – Individuals who share a common ethnic or geographic origin.

B. METHODS OF IMPLEMENTING THE INVENTION

45 The present invention may be implemented with a computer, an example of which is shown in FIGURE 1A. The computer includes a central processing unit (CPU) connected by a system bus or other connecting means to a

- 26 -

communication interface, system memory (RAM), non-volatile memory (ROM), and one or more other storage devices such as a hard disk drive, a diskette drive, and a CD ROM drive. The computer may also include an internal or external modem (not shown). The computer also includes a display device, such as a CRT monitor or an LCD display, and an input device, such as a keyboard, mouse, pen, touch-screen, or voice activation system. The computer stores and executes various programs such as an operating system and application programs. The computer may be embodied, for example, as a personal computer, work station, laptop, mainframe, or a personal digital assistant. The computer may also be embodied as a distributed multi-processor system or as a networked system such as a LAN having a server and client terminals.

The present invention uses a program, referred to as the "DecoGen™ application", that generates views (or screens) displayed on a display device and which the user can interact with to accomplish a variety of tasks and analyses. For example, the DecoGen™ application may allow users to view and analyze large amounts of information such as gene-related data (e.g., gene loci, gene structure, gene family), population data (e.g., ethnic, geographical, and haplotype data for various populations), polymorphism data, genetic sequence data, and assay data. The DecoGen™ application is preferably written in the Java programming language. However, the application may be written using any conventional visual programming language such as C, C++, Visual Basic or Visual Pascal. The DecoGen™ application may be stored and executed on the computer. It may also be stored and executed in a distributed manner.

The data processed by the DecoGen™ application is preferably stored as part of a relational database (e.g., an instance of an Oracle database or a set of ASCII flat files). This data can be stored on, for example, a CD ROM or on one or more storage devices accessible by the computer. The data may be stored on one or more databases in communication with the computer via a network.

In one scenario, the data will be delivered to the user on any standard media (e.g., CD, floppy disk, tape) or can be downloaded over the internet. The DecoGen™ application and data may also be installed on a local machine. The

- 27 -

- o DecoGen™ application and data will then be on the machine that the user directly accesses. Data can be transmitted in the form of signals.

5 FIGURE 1B shows an implementation where a network interconnects one or more host computers with one or more user terminals. The communication network may, for example, include one or more local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), or a collection of interconnected networks such as the Internet. The network may be wired, wireless, or some combination thereof. The host computer may, for example, be a world wide web server ("web server"). The user terminal may, for example, be 10 a client device such as a computer as shown in FIGURE 1A.

A web server stores information documents called pages. A 15 server process listens for incoming connections from clients (e.g., browsers running on a client device). When a connection is established, the client sends a request and the server sends a reply. The request typically identifies a page by its Uniform Resource Locator (URL) and the reply includes the requested page. This client-server protocol is typically performed using the hypertext transfer protocol ("http"). Pages are viewed using a browser program. They are written in a language called 20 hypertext markup language ("html"). A typical page includes text and formatting comments called tags. Pages may also include links (pointers) to other pages. Strings of text or images that are links to other pages are called hyperlinks. 25 Hyperlinks are highlighted (e.g., by shading, color, underlining) and may be invoked by placing the cursor on the highlighted area and selecting it (e.g., by clicking the mouse button). A page may also contain a URL reference to a portion of multimedia data such as an image, video segment, or audio file. Pages may also point to a Java program called an applet. When the browser connects to where the applet is stored, the applet is downloaded to the client device and executed there in a 30 secure manner. Pages may also contain forms that prompt a user to enter information or that have active maps. Data entered by a user may be handled by common gateway interface (CGI) programs. Such programs may, for example, provide web users with access to one or more databases.

35 As shown in FIGURE 1B the host computer may include a CPU connected by a system bus or other connecting means to a communication

- 28 -

o interface, system memory (RAM), nonvolatile (ROM), and a mass storage device. The mass storage device may, for example, be a collection of magnetic disk drives in a RAID system. The mass storage device may, for example, store the aforementioned web pages, applets, and the like. The host computer may also include an input device, such as a keyboard, and a display device to allow for control and management by an administrator. Additionally, the host computer may be connected to additional devices such as printers, auxiliary monitors or other input/output devices. The input device and display device may also be provided on another computer coupled to the host computer. The host computer may be embodied, for example, as one or more mainframes, workstations, personal computers, or other specialized hardware platforms. The functionality of the host computer may be centralized or may be implemented as a distributed system. As also shown in FIGURE 1B, the host computer may communicate with one or more databases stored on any of a variety of hardware platforms.

In an Internet scenario, for example involving the system of FIGURE 1B, the DecoGen™ application will be web-based and will be delivered as an applet that runs in a web browser. In this case, the data will reside on a server machine and will be delivered to the DecoGen application using a standard protocol (e.g., HTTP with cgi-bin). To provide extra security, the network connection could use a dedicated line. Furthermore, the network connection could use a secure protocol such as Secure Socket Layer (SSL) which only provides access to the server from a specified set of IP addresses.

In another scenario, the DecoGen™ application can be installed on a user machine and the data can reside on a separate server machine. Communication between the two machines can be handled using standard client-server technology. An example would be to use TCP/IP protocol to communicate between the client and an oracle server.

It may be noted that in any of the prior scenarios, some or all of the data used by the DecoGen™ application could be directly imported into the DecoGen™ application by the user. This import could be carried out by reading files residing on the user's local machine, or by cutting and pasting from a user document into the interface of the DecoGen™ application.

- 29 -

In yet a further scenario, some or all of the data or the results of analyses of the data could be exported from the DecoGen™ application to the user's local computer. This export could be carried out by saving a file to the local disk or by cutting and pasting to a user document.

5 In the present invention various calculations are performed to generate items displayed on a screen or to control items displayed on a screen. As is well known, some basic calculations may be performed using database query language (SQL), while other computations are performed by the DecoGen™ application (i.e., the Java program which, as previously mentioned, may be an applet downloaded over the internet.)

10

C. CTS™ METHODS OF THE INVENTION

15 The CTS™ embodiment of present invention preferably includes the following steps:

1. A candidate gene or genes (or other loci) predicted to be involved in a particular disease/condition/drug response is determined or chosen.
2. A reference population of healthy individuals with a broad and representative genetic background is defined.
- 20 3. For each member of the reference population, DNA is obtained.
4. For each member of the reference population, the haplotypes for each of the candidate gene(s), (or other loci) are found.
- 25 5. Population averages and statistics for each of the gene(s) (loci)/haplotypes in the reference population are determined.
6. (Optional step) An optimal set of genotyping markers is determined. These markers allow an individual's haplotypes to be accurately predicted without using direct molecular haplotype analysis. The predictive haplotyping method relies on the haplotype distribution found for the reference population.
- 30 7. A trial population of individuals with the medical condition of interest is recruited.
- 35 8. Individuals in the trial population are treated using some

- 30 -

protocol and their response is measured. They are also haplotyped, for each of the candidate gene(s), either directly or using predictive haplotyping based on the genotype.

5 9. Correlations between individual response and haplotype content are created for the candidate gene(s) (or other loci). From these correlations, a mathematical model is constructed that predicts response as a function of haplotype content.

10 10. (Optional) Follow-up trials are designed to test and validate the haplotype-response mathematical model.

15 11. (Optional) A diagnostic method is designed (using haplotyping, genotyping, physical exam, serum test, etc.) to determine those individuals who will or will not respond to the treatment.

These steps are now described in further detail below:

15 1. A candidate gene or genes (or other loci) for the disease/condition is determined.

In the CTS embodiment of the invention, candidate gene(s) (or other loci) are a subset of all genes (or other loci) that have a high probability of being associated with the disease of interest, or are known or suspected of interacting with the drug being investigated. Interacting can mean binding to the drug during its normal route of action, binding to the drug or one of its metabolic products in a secondary pathway, or modifying the drug in a metabolic process. Candidate genes can also code for proteins that are never in direct contact with the drug, but whose environment is affected by the presence of the drug. In other embodiments of the invention, candidate gene(s) (or other loci) may be those associated with some other trait, e.g., a desirable phenotypic trait. Such gene(s) (or other loci) may be, e.g., obtained from a human, plant, animal or other eukaryote. Candidate genes are identified by references to the literature or to databases, or by performing direct experiments. Such experiments include (1) measuring expression differences that result from treating model organisms, tissue cultures, or people with the drug; or (2) performing protein-protein binding experiments (e.g., antibody binding assays, yeast 2 hybrid assays, phage display assays) using known candidate proteins to identify interacting proteins whose corresponding nucleotide (genomic

- 31 -

- or cDNA) sequence can be determined.

Once the candidate gene(s) (or other loci) are identified, information about them is stored in a database. This information includes, for example, the gene name, genomic DNA sequence, intron-exon boundaries, protein sequence and structure, expression profiles, interacting proteins, protein function, and known polymorphisms in the coding and non-coding regions, to the extent known or of interest. This information can come from public sources (e.g. GenBank, OMIM (Online Inheritance of Man – a database of polymorphisms linked to inherited diseases), etc.) For genes that are not fully characterized, this step would generally require that the characterization be done. However, this is possible using standard mapping, cloning and sequencing techniques. The minimum amount of information needed is the nucleotide sequence for important regions of the gene. Genomic DNA or cDNA sequences are preferably used.

In the present invention, a person may use a user terminal to view a screen which allows the user to see all of the candidate genes associated with the disease project and to bring up further information. This screen (as well as all the other screens described herein) may, for example, be presented as a web page, or a series of web pages, from a web server. This web based use may involve a dedicated phone line, if desired. Alternatively, this screen may be served over the network from a non-web based server or may simply be generated within the user terminal. An example of such a screen referred to herein as a “Pathways” or “Gene Collection” screen is illustrated in FIGURE 2.

25

1. Illustration Using The CYP2D6 Gene

FIGURE 2 is an example of a screen showing the set of candidate genes whose polymorphisms potentially contribute to the response to a drug or to some other phenotype. The screen shows genes for which data is currently available in a database useful in the invention in green; those queued for processing (and for which data will appear in a database) would appear in one shade or color, e.g., yellow, and related but unqueued genes (those for which there is currently no plan to deposit data in a database) would appear in another shade or color, e.g., white. Drugs (typically ones that interact with one or more of the genes

- 32 -

of interest) would be shown in a third shade or color, e.g., light blue. The user can select a gene to examine in detail by using the mouse (or other user-input device such as keyboard, roller ball, voice recognition, etc.) to select the corresponding icon. In the example depicted in FIGURE 2, CYP2D6, a cytochrome P 450 enzyme, is selected, as indicated by the extra black box around the CYP2D6 icon. At the left of each screen is a menu that allows the user to navigate through different screens of the data.

A preferred embodiment of the present invention relates to situations in which patients have differential responses to the drug because they possess different forms of one or more of the candidate genes (or other loci). (Here different forms of the candidate gene(s) mean that the patients have different genomic DNA sequences in the gene locus). The method does not rely on these differences being manifested in altered amino acids in any of the proteins expressed by any candidate gene(s) (e.g., it includes polymorphisms that may affect the efficiency of expression or splicing of the corresponding mRNA). All that is required is that there is a correlation between having a particular form(s) of one or more of the genes and a phenotypic trait (e.g. response to a drug). Examples of salient information about the candidate genes is given in FIGURES 3-8.

FIGURE 3 is an example of a screen showing basic information about the currently selected gene such as its name, definition, function, organism, and length. These pieces of information typically come from GenBank or other public data sources. The figure will typically also show the number of "gene features" (e.g. exons, introns, promoters, 3' untranslated regions, 5' untranslated regions, etc.) in the database, the size of the analyzed population (group of people whose DNA has been examined for this gene), the number of haplotypes found for this gene in this population, and some measures of polymorphism frequency. The information is stored in a database such as the one described herein, or calculated from information stored in such a database. Most of the information shown in later figures is specific to this analyzed population. Theta and Pi are standard measures of polymorphism frequency, described in Ref. 1., Chapter 2.

FIGURE 4A and 4B are examples of screens showing the genomic structure of the gene (generally showing the location of features of the

- 33 -

gene, such as promoters, exons, introns, 5' and 3' untranslated regions), as well as haplotype information. FIGURE 4A shows the location of the features in the gene, the location of the polymorphic sites along the gene, the nucleotides at the polymorphic sites for each of the haplotypes, and the number of times each 5 haplotype was seen in the representatives of each of 4 world population groups (CA= Caucasian, AA= African American, HL= Hispanic/Latino, AS= Asian) included in the population analyzed for this gene. All of this data resides in a database or is calculated from the data in a database. The top view shows the 10 nucleotides at the polymorphic sites, i.e., the haplotypes. The middle cartoon shows the features of the gene. In this example the promoter is indicated by a dark shaded (or red) rectangular box and a line with an arrow, exons are shown by a gray shaded (or blue) rectangular box and introns are shown in white (or in yellow). When the mouse is held over a feature, the feature turns red and the name of the feature 15 appears (e.g., in this case; Gene). The code in parenthesis (M22245) is the GenBank accession number for the selected feature. FIGURE 4B is the same screen as FIGURE 4A, after the user selects the gene feature. Under the cartoon of the 20 features are vertical bars indicating the positions of the polymorphic sites, with one row per unique haplotype. The letter "d" indicates that there is a deletion. The table at the left gives the number of haplotype copies seen in each of the standard 25 populations. For instance, this screen indicates that there are 10 copies of haplotype 10 in Caucasians, 2 copies in African Americans, and none in Hispanic/Latinos or Asians, for a total of 12 copies. Note that the total number of haplotypes is twice the number of individuals examined. At the very bottom is an expanded cartoon of 30 the feature. One may display data concerning a particular polymorphism by selecting the corresponding vertical bar on the expanded cartoon. The selected bar may be identified, e.g., by a shaded or colored circle. The data for the polymorphism appears at the lower left of the screen. This gives the number of 35 copies of each nucleotide (A,C,G or T) seen in each of the world population groups.

FIGURE 5 is an example of a screen showing the actual DNA sequence of the genomic locus for the different haplotypes seen in the population (i.e., the sequence of the isogenes). This view appears in a separate window when 35 one of the features in the Gene Structure Screen (FIGURE 4A or 4B) is selected

- 34 -

- o with the mouse or other input device. This shows an alignment between the full DNA sequences for all of the isogenes of the CYP2D6 gene in the database. The polymorphic positions are highlighted.

5 FIGURE 6 is an example of a screen showing the predicted secondary structure of the mRNA transcript for each CYP2D6 isogene in the database. The secondary structure is predicted using a detailed thermodynamic model as implemented in the program RNA structure (REF. 2). This is useful because many of the polymorphisms detected do not change the amino acid composition of the resulting protein but still lie in the coding region of the gene.
10 One result of such a silent mutation could be to alter the intermediate mRNA's structure in a way that could affect mRNA stability, or how (and if) the mRNA was spliced, transcribed or processed by the ribosome. Such a polymorphism could keep any of the protein from being expressed and from being available to carry out its
15 functions. In this screen, the user can see thumbnail views of the structures for all of the isogenes and can see a selected one of these structures expanded on the right hand side of the screen. Changes in this structure caused by the polymorphisms seen in the isogenes can affect the expression into protein of the gene. The
20 information presented in this screen can serve as an aid to the user to detect possible effects of these polymorphisms.

25 FIGURE 7 is an example of a screen showing a schematic of the structure of the protein expressed by the gene, including important domains and the sites of the coding polymorphisms. The user gets to this screen by selecting the "Protein Structure" link at the left hand side of the display. This screen shows various important motifs found in the protein, and places the polymorphic sites in the context of these motifs. The user can get information on each motif or polymorphism by selecting the appropriate icon for the polymorphic site. In this
30 example, the result of selecting the first polymorphic site (as indicated by the red shadow behind the icon) is shown. The text above at the top shows the reference codon and amino acid (CCT, Pro) and the resulting altered codon and amino acid (TCT, Ser). Also given are the codon frequencies in parentheses. These are calculated by looking at 10,000 codons in a variety of human genes and calculating
35 how often that particular codon shows up. (REF. 3).

- 35 -

2. A reference population of healthy individuals with a broad and representative genetic background is defined.

Analysis of the candidate gene(s) (or other loci) requires an approximate knowledge of what haplotypes exist for the candidate gene(s) (or other loci) and of their frequencies in the general population. To do this, a reference population is recruited, or cells from individuals of known ethnic origin are obtained from a public or private source. The population preferably covers the major ethnogeographic groups in the U.S., European, and Far Eastern pharmaceutical markets. An algorithm, such as that described below may be used to choose a minimum number of people in each population group. For example, if one wants to have a q% chance of not missing a haplotype that exists in the population at a p% frequency of occurring in the reference population, the number of individuals (n) who must be sampled is given by $2n = \log(1-q)/\log(1-p)$ where p and q are expressed as fractions. For instance, if p is 0.05 (i.e., if one wants to find at least one copy of all haplotypes found at greater than 5% frequency) and q is 0.99 (i.e., one wants to be sure to the 99% level of confidence of finding the >5% frequency haplotypes), then $n=0.5*\log(.01)/\log(.95)\sim45$. There is always a tradeoff between how rare a haplotype one wants to be guaranteed to see and the cost of experimentally determining haplotypes.

3. For each member of the population, DNA is obtained. In the preferred embodiment, for each member of the reference population (called a subject), blood samples are drawn, and, preferably, immortalized cell lines are produced. The use of immortalized cell lines is preferred because it is anticipated that individuals will be haplotyped repeatedly, i.e., for each candidate gene (or other loci) in each disease project. As needed, a cell sample for a member of the population could be taken from the repository and DNA extracted therefrom. Genomic DNA or cDNA can be extracted using any of the standard methods.

4. For each member of the population, the haplotypes for each of the candidate gene(s) (or other loci) are found.

The 2 haplotypes for each of the subject's candidate gene(s) (or other loci) are determined. The most preferred method for haplotyping the

- 36 -

reference population is that described in U.S. Application Serial No. 60/198,340 (inventors Stephens et al.), filed April 18, 2000, which is specifically incorporated by reference herein. Another, less preferred embodiment for haplotyping the reference population, uses the CLASPER System™ technology (Ref. U.S. Patent Number 5,866,404), which is a technique for direct haplotyping. Other examples of the techniques for direct haplotyping include single molecule dilution ("SMD") PCR (Ref. 9) and allele-specific PCR (Ref. 10). However, for the purpose of this invention, any technique for producing the haplotype information may be used.

The information that is stored in a database, such as a database associated with the DecoGen application exemplified herein includes (1) the positions of one or more, preferably two or more, most preferably all, of the sites in the gene locus (or other loci) that are variable (i.e. polymorphic) across members of the reference population and (2) the nucleotides found for each individuals' 2 haplotypes at each of the polymorphic sites. Preferably, it also includes individual identifiers and ethnicity or other phenotypic characteristics of each individual.

In the preferred embodiment of the invention, the haplotypes and their frequencies are stored and displayed, preferably in the manner shown, e.g., in FIGURES 4A and 4B. Haplotypes and other information about each of the members of the population being analyzed can be shown, for example, in the manner shown in FIGURE 8. The information shown in FIGURE 8 includes a unique identifier (PID), ethnicity, age, gender, the 2 haplotypes seen for the individual, and values of all clinical measurements available for the individual. Quantitative values of clinical measures would ordinarily be seen by scrolling to the right. However, for the subjects seen in this view, there is no clinical data. This is because this is the reference population of healthy individuals.

The haplotype data may also be presented in the context of the entire DNA sequence. Examples of the sequences of the isogenes, with the polymorphisms highlighted, are shown in FIGURE 5.

Because an individual has 2 copies of the gene (2 isogenes), and because these 2 copies are often different, some of the polymorphic sites will show 2 different nucleotides in a genotype, one from each of the isogenes. A genotype from an individual with haplotypes TAC and CAG would be

- 37 -

(T/C),A,(C/G). This is consistent with the haplotypes TAC/CAG or TAG/CAC. The fact that we do not know which haplotypes gave rise to this genotype leads us to call this an "unphased genotype". If we haplotype this individual we then determine the "phased genotype", which describes which particular nucleotides go together in the haplotypes. Phasing is the description of which nucleotide at one polymorphic site occurs with which nucleotides at other sites. This information is left ambiguous (i.e., unphased) in a genotyping measurement but is resolved (i.e., phased) in a haplotype measurement.

FIGURE 9 is an example of a screen showing the genotype to haplotype resolution for each of the individuals in the population being examined. At the left of the screen is a shaded (or color) matrix showing the genotype information at each of the polymorphic sites for each individual (sites across the top, individuals going down the page). The most and least common nucleotide at each site is defined by looking at both haplotypes of all individuals in the population at that particular site. The nucleotide that shows up most often is called the most common nucleotide. The one that shows up less often is termed the least common. In situations where more than 2 nucleotides are seen at a site (which is rare but not unknown in human genes) all nucleotides except the most common one are lumped together in the least common category. At the right is a shaded (or color) matrix showing the haplotype resolution. In the genotype view, a blue square indicates that the individual is homozygous for the most common nucleotide at that site. A yellow square indicates that the individual is homozygous for the least common base, and a red square indicates that the individual is heterozygous at the site. On the right hand side, a row for an individual is broken into a top and a bottom half, each representing one of the two haplotypes. The color scheme is the same as on the left except that all of the heterozygous sites have been resolved. The + and - buttons are for zooming in and out.

Unrelated individuals who are heterozygous at more than 1 site cannot be haplotyped without (1) using a direct molecular haplotyping method such as CLASPER System™ technology or (2) making use of knowledge of haplotype frequencies in the population, as described below or, preferably, as described in U.S. Application Serial No. 60/198,340 (inventors Stephens et al.).

- 38 -

o filed April 18, 2000.

5 5. Population averages and statistics for each of the
haplotypes in the reference population are determined.

Once the individual haplotypes of the reference population
have been determined the population statistics may be calculated and displayed in a
manner exemplified herein in FIGURE 10. FIGURE 10 is an example of one of
several screens showing information about the pair of haplotypes for the candidate
gene(s) (or other loci) found in an individual. In this screen, each cell of the matrix
displays some information about the group of people who were found to have the
10 haplotypes corresponding to the particular row and column. In all of these screens,
subjects can be grouped together by pairs of haplotypes or sub-haplotypes, where a
sub-haplotype is made up of a subset of the total group of polymorphic sites. For
example, at the top of the screen in the figure are checkboxes allowing the user to
15 select the subset of polymorphic sites to be examined (here sites 2 and 8 are
chosen). The + and – buttons are for zooming in and out, which increases and
decreases the viewing size of the matrix. The “Recalculate” button causes the
statistics for the groups to be recalculated after a new subset of polymorphic sites
has been selected. At the bottom is the matrix. The selected cell (outlined in green
20 in this figure) displays information about subjects who are homozygous for C and G
at sites 2 and 8. The text to the right gives summary numerical information about
the subjects in that box. In particular, this screen shows the distribution of subjects
in the different ethnogeographic groups with each of the haplotype pairs. In this
25 example, 23 subjects (18 Caucasians and 5 Asians) were found to be homozygous
for C and G at sites 2 and 8. In this example, the heights of the bars are normalized
individually for each cell so that it is not possible in this example to see relative
numbers of individuals cell to cell by looking at the heights. An alternative
normalization (in which there is a consistent normalization for all boxes), is also
30 possible. More detailed information is available by selecting the “View Details”
button at the top (see FIGURE 11).

35 FIGURE 11 is a more detailed view of the information that is
available from the summary view shown in FIGURE 10. At the bottom, one row is
shown for each haplotype pair found in the population being analyzed. Each row

- 39 -

- o shows the corresponding 2 sub-haplotypes, the total number of individuals found with that sub-haplotype and the fraction of the total population represented by this number. Next to these are 3 columns for each ethnogeographic group. The first gives the number of individuals in that ethnogeographic group with that haplotype pair. The second gives the fraction of individuals (found in a database of the present invention) in that world population group who have that haplotype pair. The third column gives the expected number based on Hardy-Weinberg equilibrium.

The observed haplotype pair frequencies in the population in particular, the reference population, are preferably corrected for finite-size samples. This is preferably done when the data is being used for predictive genotyping. If it is assumed that each of the major population groups will be in Hardy-Weinberg equilibrium, this allows one to estimate the underlying frequencies for haplotype pairs in the reference population that are not directly observed. It is necessary to have good estimates of the haplotype-pair frequencies in the reference population in order to predict subjects' haplotypes from indirect measurements that will be used in a diagnostic context (see item 6). Preferably the reference population has been chosen to be representative of the population as a whole so that any haplotypes seen in a clinical population have already been seen in the reference population. Furthermore, it would be possible to determine whether certain haplotypes are enriched in the patient population relative to the reference population. This would indicate that those haplotypes are causative of or correlated with the disease state.

Hardy-Weinberg equilibrium (Ref. 1, Chapter 3) postulates that the frequency of finding the haplotype pair H_1 / H_2 is equal to $p_{H-W}(H_1 / H_2) = 2p(H_1)p(H_2)$ if $H_1 \neq H_2$ and $p_{H-W}(H_1 / H_2) = p(H_1)p(H_2)$ if $H_1 = H_2$. Here, $p(H_i)$ (where $i=1$ or 2) is the probability of finding the haplotype H_i in the population, regardless of whatever other haplotype it occurs with. Hardy-Weinberg equilibrium usually holds in a distinct ethnogeographic group unless there is significant inbreeding or there is a strong selective pressure on a gene. Actual observed population frequencies $p_{Obs}(H_1 / H_2)$ and the corresponding Hardy-Weinberg predicted frequencies $p_{H-W}(H_1 / H_2)$ are shown in FIGURE 11,

35

- 40 -

- discussed above.

If large deviations from Hardy-Weinberg equilibrium are observed in the reference population, the number of individuals can be increased to see if this is a sampling bias. If it is not, then it may be assumed that the haplotype is either historically recent or is under selection pressure. A statistical test may be

5 used, e.g., $\sim X^2$ test is $|P_{obs} - P_{n-w}| > \sqrt{\frac{P_{obs}}{N}}$. If so, the variation is large.

10 6. (Optional – this step can be skipped if direct molecular haplotyping will be used on all clinical samples.) An optimal set of genotyping markers is determined. These markers often allow an individual's haplotypes to be accurately predicted without using full haplotype analysis. This genotyping method relies on the haplotype distribution found directly from the reference population.

15 One of several methods to test subjects for the existence of a given pair of haplotypes in an individual can be used. These methods can include finding surrogate physical exam measurements that are found to correlate with haplotype pair; serum measurements (e.g., protein tests, antibody tests, and small molecule tests) that correlate with haplotype pair; or DNA-based tests that correlate 20 with haplotype pair. An example that is used herein is to predict haplotype pair based on an (unphased) genotype at one or more of the polymorphic sites using an algorithm such as the one described further below.

25 For example, as discussed above, in the case where the two haplotypes are TAC and GAT, the genotyping information would only provide the information that the subject is heterozygous T/G at site 1, homozygous A at site 2 and heterozygous C/T at site 3. This genotype is consistent with the following 30 haplotype pairs: TAC/GAT (the correct one) and GAC/TAT (the incorrect one). Assuming that the underlying probability (as measured in the reference population) for TAC/GAT is p% and for GAC/TAT is q%, subjects may be randomly assigned to the first group with a probability p/(p+q) and to the second group with a probability q/(p+q). If p>>q, then subjects will almost always be correctly assigned 35 to the correct haplotype pair group if they are TAC/GAT, but the GAC/TAT individuals will always be mis-classified. However, the majority of individuals will

- 41 -

- o be assigned to the correct haplotype-pair group. In the case that $q=0$, the correct assignment will always be made. For cases where $p \sim q$, this classification gives very low accuracy predictions, so other methods to resolve the subjects' haplotypes must be resorted to. One can always directly find the correct haplotypes using CLASPER System™ technology or other direct molecular haplotyping method.

5 The ability to use genotypes to predict haplotypes is based on the concept of linkage. Two sites in a gene are linked if the nucleotide found at the first site tends to be correlated with the nucleotide found at the second site. Linkage calculations start with the linkage matrix, which gives the probabilities of finding the different combinations of nucleotides at the two sites. For instance, the 10 following matrix connects 2 sites, one of which can have nucleotide A or T and the other of which can have nucleotide G or C. The fraction of individuals in the population with A at site 1 and G at site 2 is 0.15.

15

	A	T
G	0.15	0.40
C	0.40	0.05

20

In general, the matrix is given by

	Site 1 - Allele 1	Site 1 - Allele 2	
Site 2 - Allele 1	p_{11}	p_{12}	p_{1+}
Site 2 - Allele 2	p_{21}	p_{22}	p_{2+}
	p_{+1}	p_{+2}	

30

25

35

The values p_{1+} and p_{2+} give the sum of the respective rows while the values p_{+1} and p_{+2} give the sum over the respective columns. By definition, $p_{1+} + p_{2+} = p_{+1} + p_{+2} = 1$. Three standard measures of linkage disequilibrium that are used are: (Ref. 1, Chapter 3)

- 42 -

$$D = p_{11} \times p_{22} - p_{12} \times p_{21} \quad (1)$$

$$\Delta = \frac{D}{(p_{11} \times p_{22} \times p_{12} \times p_{21})^{1/2}} \quad (2)$$

$$D' = \begin{cases} \frac{D}{\min(p_{1+} \times p_{+2}, p_{+1} \times p_{2+})} & D > 0 \\ \frac{D}{\min(p_{1+} \times p_{+1}, p_{+2} \times p_{2+})} & D < 0 \end{cases} \quad (3)$$

10

15

20

25

30

FIGURE 12 is an example of a screen showing a measure of the linkage between different polymorphic sites in the gene. Measures of linkage tell how well we can predict the nucleotide at one polymorphic site given the nucleotide at another site. A high value of the linkage measure indicates a high level of predictive ability. This screen shows D' . The color of the square in the display at the intersection of site α and β indicates the value of the linkage measure. Red indicates strong linkage and blue indicates weak to non-existent linkage. White squares in a row indicate that the corresponding polymorphic site has no variation in the population being examined. Such sites are included because there is information about the presence of polymorphisms other than that provided by our haplotype analysis. This would be the case if a polymorphism was reported in the literature which we were not able to detect in our population. The values to the right of the matrix give I_{HAP} for each of the sites. I_{HAP} is a measure of the information content of the single site and is given by

$$I_{HAP} = \sum_{i=1}^2 \frac{\sum_{j=1}^{N_{HAP}} P(j|i)^2}{\sum_{j=1}^{N_{HAP}} P(j)^2} \quad (4)$$

35

where N_{HAP} is the number of distinct haplotypes observed, $P(j)$ is the probability of finding haplotype j , and $P(j|i)$ is the conditional probability of finding haplotype j with nucleotide i . (The conditional probability

- 43 -

- $P(j|i)$ is the probability of finding haplotype j in the subset of all observations where nucleotide i is seen.) High values of I_{HAP} (~2.0) indicate that at least some pairs of observed haplotypes can be distinguished by looking at that single site. Small values (1.0) indicate that the particular site is not informative for 5 distinguishing any pair of haplotypes. This same method can be used for sub-haplotypes. These values are useful for choosing sites for genotyping, as described above. The + and - boxes are for zooming in and out.

10 FIGURE 13, 14, and 15 show views of a tool for performing an analysis of which polymorphic sites may be genotyped in order to determine an individual's haplotypes by the method of predictive haplotyping, rather than using more expensive direct haplotyping methods, such as the CLASPER-System™ 15 method of haplotyping. In these screens, one chooses a subset of polymorphic sites of interest (the entire haplotype or a sub-haplotype can be examined) and then a subset of sites at which the subject is to be genotyped. The colors in the haplotype-pair boxes then indicate the fraction of individuals in that box who are correctly 20 haplotyped based on the statistical model described in the previous paragraph. FIGURE 14 gives the predicted values and FIGURE 15 shows a tool for directly finding the optimal set of genotyping sites.

25 The purpose of the three screens in FIGURE 13, 14 and 15 is to provide an example of the tools to find the simplest genotyping experiment that could detect an individual's haplotypes. The basic layout of the screen in FIGURE 13 is the same as described in FIGURE 10. The top row of checkboxes is used to the haplotype or subhaplotype which is desired to be determined. There is one other 30 row of checkboxes beneath those for choosing the haplotype or sub-haplotype. This second row, labeled "Genotype Loci", allows the user to select a subset of positions at which to genotype. The color of the square in the matrix indicates the fraction of individuals who are actually in that category who would be correctly categorized using this sub-genotype. For example, this screen shows that individuals homozygous for TGG at positions 2, 3, and 8 would be correctly haplotyped by 35 genotyping at positions 2 and 8. Selection of optimal genotyping sites is aided by information from the Linkage View (FIGURE 12). Typically one will only need to

- 44 -

genotype one site of a pair of polymorphic sites that are in strong linkage.

The screen in FIGURE 14 gives a numerical view of the data show in FIGURE 13. One can see that if we genotype at sites 2 and 8, one could assign individuals to the TGG/TGG group with 100% confidence (based on the data obtained for the reference population). However, one would have low confidence in the ability to assign individuals to the CAG/CGG group.

FIGURE 15 is an example of a screen showing the results of a tool for directly finding the optimal genotyping sites. This screen gives the results of a simple optimization approach to finding the simplest genotyping approach for predicting an individual's haplotypes. For each haplotype pair, the predictive abilities of all single site genotyping experiments are calculated. If any of these has a predictive ability of greater than some cutoff (say 90%), then that single-site genotype test is shown. A single-site genotype test is one in which an individual's nucleotide(s) is found at that single site. This can be done using any of several standard methods including DNA sequencing, single-base extension, allele-specific PCR, or TOF-mass spec. (In the figure, a red box indicates that individuals should be genotyped at that site, and a white box indicates that the individual should not be genotyped there.) If no single-site test has a predictive ability of greater than the cutoff, then the calculated predictive ability of all 2-site genotyping tests are examined by the computer program. The first 2-site test whose predictive ability exceeds the cutoff is then displayed. If no 2-site test is successful, then the predictive ability of all 3-sites tests are examined by the computer program, and so on. The mask at the right hand side of this display shows the first test found that exceeded the cutoff value.

An improved method for finding optimal genotyping sites is described in section D, below.

FIGUREs 16 and 17 are examples of screens demonstrating another tool for analyzing linkage. This tool is a minimal spanning network which shows the relatedness of the haplotypes seen in the population (Ref. 8). Haplotypes are amenable to modes of analysis that are not available for isolated variants (e.g., SNPs). In particular, a sample of haplotypes reflects the actual phylogenetic history of the genetic locus. This history includes the divergence patterns among the

- 45 -

• haplotypes, the order of mutational and recombinational events, and a better understanding of the actual variation among the different populations comprising the sample. These considerations are important in the assessment of a locus's involvement in a particular phenotype (e.g., differential response to a drug or adverse side effects). The phylogenetic algorithms included in the DecoGen™ application are both exploratory and analytical tools, in that they allow consideration of partial haplotypes as well as those based on the full set of haplotypes in the context of clinical data. The checkboxes and recalculate button shown in FIGURES 16 and 17 serve the purpose of selecting sub-haplotypes as described under FIGURE 10. The results of the calculations are shown in real time, i.e., the sizes and positions of the balls, as well as the length of the lines, change as the calculation progresses. Here a circle represents a haplotype. The distance between haplotypes is a rough measure of the number of nucleotides that would have to be flipped to change one haplotype into the other. Pairs of haplotypes separated by one nucleotide flip are connected with black lines. Pairs connected by 2 flips are connected with light blue lines. The size of the haplotype ball increases with the frequency of that haplotype in the population. Each haplotype or sub-haplotype ball is labeled with the relevant nucleotide string. The user can toggle the labels off and on by selecting the haplotype ball, e.g., with a mouse. The + and - boxes are for zooming in and out. The "View Hap Pairs" box serve the purpose of showing the pairing information for haplotypes. The lines shown in this figure are replaced with lines connecting pairs of haplotypes seen in each individual. The colors in the balls, and the pie shaped pieces, represent the fraction of that haplotype found in the major ethnogeographic group. Red represents Caucasian, blue African-American, Light Blue Asian, Green Hispanic/Latino. The Minimum Size checkbox allows the user to select sub-haplotypes as in earlier Figures (see FIGURE 10).

This aspect of the invention relates to a graphical display of the haplotypes (including sub-haplotypes) of a gene grouped according to their evolutionary relatedness. As used herein, "evolutionary relatedness" of two haplotypes is measured by how many nucleotides have to be flipped in one of the haplotypes to produce the other haplotype.

In one embodiment, the display is a minimal spanning

- 46 -

- o network in which a haplotype is represented by a symbol such as a circle, square, triangle, star and the like. Symbols representing different haplotypes of a gene may be visually distinguished from each other by being labeled with the haplotype and/or may have different colors, different shading tones, cross-hatch patterns and the like.
 - 5 Any two haplotype symbols are separated from each other by a distance, referred to as the ideal distance, that is proportional to the evolutionary relatedness between their represented haplotypes. For example, if displaying a group of haplotypes related by one, two or three nucleotide flips, the proportional distances between the haplotype symbols could be one inch, two inches, and three inches, respectively.
 - 10 The haplotype symbols may be connected by lines, which may have different appearances, i.e., different colors, solid vs. dotted vs. dashed, and the like, to help visually distinguish between one nucleotide flip, two nucleotide flips, three nucleotide flips, etc.
 - 15 In a preferred embodiment, the method is implemented by a computer and the graphical display is produced by an algorithm that connects haplotype symbols by springs whose equilibrium distance is proportional to the ideal distance. Preferably, the size of a particular haplotype symbol is proportional to the frequency of that haplotype in the population. In addition, the haplotype symbol may be divided into regions representing different characteristics possessed by members of the population, such as ethnicity, sex, age, or differences in a phenotype such as height, weight, drug response, disease susceptibility and the like. The different regions in a haplotype symbol may be represented by different colors, shading tones, stippling, etc. In a particularly preferred embodiment, generation of the graphical display is shown in real time, i.e., the positions and sizes of haplotype symbols, as well as the lengths of their connecting springs, change as the algorithm-directed organization of the haplotypes of a particular gene proceeds.
 - 20
 - 25
 - 30
 - 35
- The resulting display provides a visual impression of the phylogenetic history of the locus, including the divergence patterns among the haplotypes for that locus, as well as providing a better understanding of the actual variation among the different populations comprising the sample. These considerations are important in the assessment of the encoded protein's involvement in a particular phenotype (e.g., differential response to a drug or adverse side

- 47 -

effects). In addition, a spanning network generated for haplotypes in a clinical population using the same algorithm may be superimposed on the spanning network for the reference population to analyze whether the haplotype content of the clinical population is representative of the reference population.

5 7. A trial population of individuals who suffer from the condition of interest is recruited.

10 The end result of the CTS method is the correlation of an underlying genetic makeup (in the form of haplotype or sub-haplotype pairs for one or more genes or other loci) and a treatment outcome. In order to deduce this correlation it is necessary to run a clinical trial or to analyze the results of a clinical trial that has already been run. Individuals who suffer from the condition of interest are recruited. Standard methods may be used to define the patient population and to enroll subjects.

15 Individuals in the trial population are optionally graded for the existence of the underlying cause (disease/condition) of interest. This step will be important in cases where the symptom being presented by the patients can arise from more than one underlying cause, and where treatment of the underlying causes are not the same. An example of this would be where patients experience breathing difficulties that are due to either asthma or respiratory infections. If both sets were included in a trial of an asthma medication, there would be a spurious group of apparent non-responders who did not actually have asthma. These people would degrade any correlation between haplotype and treatment outcome.

20 25 This grading of potential patients could employ a standard physical exam or one or more lab tests. It could also use haplotyping for situations where there was a strong correlation between haplotype pair and disease susceptibility or severity.

30 35 8. Individuals in the trial population are treated using some protocol and their response is measured. In addition, they are haplotyped, either directly or using predictive genotyping.

 This step is straightforward. If patients are to be haplotyped for the candidate genes, a direct molecular haplotyping method could be used. If they are to be indirectly haplotyped, a method such as the one described above in

- 48 -

- item 6 could be used. Clinical outcomes in response to the treatment are measured using standard protocols set up for the clinical trial.

5 9. Correlations between individual response and haplotype content are created for the candidate genes. From these correlations, a mathematical model is constructed that predicts response as a function of haplotype content.

10 Correlations may be produced in several ways. In one method averages and standard deviations for the haplotype-pair groups may be calculated. This can also be done for sub-haplotype-pair groups. These can be displayed in a color coded manner with low responding groups being colored one way and high responding groups colored another way (see, e.g., FIGURE 18). Distributions in the form of bar graphs can also be displayed (see, e.g., FIGURE 19), as can all group means and standard deviations (see, e.g., FIGURE 20).

15 The information in FIGURES 18-24 may be used to determine whether haplotype information for the gene being examined can be used to predict clinical response to the treatment. One question that can be answered is whether there is a significant difference in response between groups of individuals with different haplotype pairs. FIGURES 18-22 show screens of the data that connect haplotypes with clinical outcomes. The example shown in FIGURE 18 and the next several screens gives the results of a simulated clinical trial run to test the link between patients' haplotypes for CYP2D6 and a phenotypic response called "Test". The main layout of this page is the same as described in FIGURE 10. At the left side of this view is a list of the clinical measurements performed on the patients. This list is completely generic as far as the invention is concerned. Selecting the relevant radio button will bring up data for any of the clinical measurements. (Only one "Test" radio button shown here, but there may be many, corresponding to different tests, with appropriate labels.) In this view, the color in a cell of the matrix indicates the mean value of the measurement for the individuals in that haplotype-pair group. When one of the cells is selected, text appears at the right, giving the 2 haplotypes, the number of patients in the cell, the mean value and standard deviation for individuals in the cell. A slide bar is present below the color boxes near the top of the screen indicating 0% to 100% so that moving, e.g., one or both of the ends of

- 49 -

- the bar will change the color scale in the color boxes at the top of the screen as well as the colors in the matrix. (Note that a slide bar may be used with any screen with similar colored (or otherwise graded) boxes). FIGURE 19 is a screen showing the distribution of the patients in each cell of the clinical measurement matrix of
5 FIGURE 18. In this case, the histograms are collectively normalized so that the user can directly compare frequencies from one cell to the next. The screen in FIGURE 20 is brought up when the user selects any of the cells in the haplotype-pair matrix
10 in FIGURE 19. This shows the number of patients in the various response bins indicated on the horizontal axis. A response bin simply counts the number of individuals whose response is within a particular interval. For instance, there are 7 individuals in the response bin from 0.2 to 0.25 in FIGURE 20.

The result of regression calculation shown in FIGURE 21 (which calculation is described below) allows the user to see which polymorphic
15 sites give the most significant contribution to the differences in phenotype. This display comes up in a separate window when the user pushed the "Regression" button on the "Clinical Measurements vs. Haplotype View" (FIGUREs 18, 19, or 21). Shown are the results of a dose-response linear regression calculation on each
20 of the individual polymorphisms (REF 4, Chapter 9). In this case, sites 2 and 8 are most predictive, as indicated by their large values of the significance level. This fact would lead the user to examine the site 2/8 sub-haplotypes as in FIGURE 22.
25 This screen gives a detailed view of the mean and standard deviation values for each of the cells in FIGURE 18. Also shown are the Chi-squared value for the distributions. These values indicate how close the distributions in each haplotype-pair group are to normal. The function Q(chi-squared) gives a level of statistical significance. If $Q > 0.05$ the user could not reject the hypothesis that the distribution
30 is normal. FIGURE 22 shows that groups having different 2/8 sub-haplotypes can have very different mean values of the Test phenotype. To see if this group-to-group variation is significant, the user could ask the DecoGen™ application to perform an ANOVA (Analysis of Variation) calculation. The results of an ANOVA
35 calculation are shown in FIGURE 23. Selecting the ANOVA button on any of the earlier Clinical Measurements views brings up this display. This view uses standard calculation methods to see if the variation in clinical response between haplotype-

- 50 -

- o pair groups is statistically significant. The methods used are described in Ref. 4, Chapter 10. FIGURE 23 shows that the variation between different 2/8 sub-haplotype groups is statistically significant at the 99% confidence level.

5 The regression model used in FIGURE 21 starts with a model
of the form

$$r = r_0 + S \times d \quad (5)$$

10 where r is the response, r_0 is a constant called the
“intercept”, S is the slope and d is the dose. As discussed previously, the most-common nucleotide at the site and the least common nucleotide are defined. For each individual in the population, we calculate his “dose” as the number of least-common nucleotides he has at the site of interest. This value can be 0 (homozygous for the least-common nucleotide), 1 (heterozygous), or 2 (homozygous for the most common nucleotide). An individual’s “response” is the value of the clinical
15 measurement. Standard linear regression methods are then used to fit all of the individuals’ dose and response to a single model. The outputs of the regression calculation are the intercept r_0 , the slope S , and the variance (which measures how well the data fits this simple linear model). The Students t-test value and the level
20 of significance can then be calculated. This figure shows the relevant variables
(site, slope S, intercept r_0 , variance, Student’s t-test value and level of significance)
for each of the sites.

25 From the results shown in FIGURE 21, the user would see
that the nucleotides at site 2 and 8 have significant contributions to the Test
variable. This result would be interpreted as follows. Averaging over all variables
other than the nucleotides at site 2, the Test variable can be predicted by

30 Test = 0.231 + 0.154 x (number of T’s at site 2).

On average, an individual homozygous for C at site 2 will
have a response of 0.231. Heterozygous individuals have an average response of
0.385, and individuals homozygous for T have an average response of 0.539. This
35 trend is significant at the 99.9% confidence level. It is important to note that the
calculation of significance (the Student’s t-test) is based on the assumption that the

- 51 -

- o distribution of responses for individuals (such as seen in FIGURE 20) are normally distributed. The present invention can incorporate any of the standard methods for calculating statistical significance for non-normal distributions. Furthermore, the present invention can include more complex dose-response calculations that examine multiple sites simultaneously. See, e.g., Ref. 4.

5 A second method for finding correlations uses predictive models based on error-minimizing optimization algorithms. One of many possible optimization algorithms is a genetic algorithm. (Ref. 5). Simulated annealing (Ref. 10, Chapter 10), neural networks (Ref. 7, Chapter 18), standard gradient descent methods (Ref. 6, Chapter 10), or other global or local optimization approaches (See discussion in Ref. 5) could also be used. As an example (one that is currently implemented in the DecoGenTM application) a genetic algorithm approach is described herein. This method searches for optimal parameters or weights in linear 15 or non-linear models connecting haplotype loci and clinical outcome. One model is of the form

$$C = C_0 + \sum_{\alpha} \left(\sum_i w_{i,\alpha} R_{i,\alpha} + \sum_i w'_{i,\alpha} L_{i,\alpha} \right) \quad (6)$$

20 where C is the measured clinical outcome, i goes over all polymorphic sites, α over all candidate genes, C_0 , $w_{i,\alpha}$ and $w'_{i,\alpha}$ are variable weight values, $R_{i,\alpha}$ is equal to 1 if site i in gene α in the first haplotype takes on the most 25 common nucleotide and -1 if it takes on the less common nucleotide. $L_{i,\alpha}$ is the same as $R_{i,\alpha}$ except for the second haplotype. The constant term C_0 and the weights $w_{i,\alpha}$ and $w'_{i,\alpha}$ are varied by the genetic algorithm during a search process that minimizes the error between the measured value of C and the value calculated 30 from Equation 6. Models other than the one given in Equation 6 can be easily incorporated. The genetic algorithm is especially suited for searching not only over the space of weights in a particular model but also over the space of possible models. (Ref. 5)

35 Correlations can also be analyzed using ANOVA techniques

- 52 -

- to determine how much of the variation in the clinical data is explained by different subsets of the polymorphic sites in the candidate genes. The DecoGen™ application has an ANOVA function that uses standard methods to calculate significance (Ref. 4, Chapter 10). An example of an interface to this tool is shown in FIGURE 23.

ANOVA is used to test hypotheses about whether a response variable is caused by or correlated with one or more traits or variable that can be measured. These traits or variables are called the independent variables. To carry out ANOVA, the independent variable(s) are measured and people are placed into groups or bins based on their values of the variables. In this case, each group contains those individuals with a given haplotype (or sub-haplotype) pair. The variation in response within the groups and also the variation between groups is then measured. If the within-group variation is large (people in a group have a wide range of responses) and the variation between groups is small (the average responses for all groups are about the same) then it can be concluded that the independent variables used for the grouping are not causing or correlated with the response variable. For instance, if people are grouped by month of birth (which should have nothing to do with their response to a drug) the ANOVA calculation should show a low level of significance. Here, as shown in FIGURE 23, each haplotype-pair group is made up of the individuals in the population who have that haplotype pair. The table at the bottom shows the number of individuals in the group, the average response ("Test") of those individuals, and the standard deviation of that response. At the top is a table showing information comparing the "Between Group" calculation and the "Within Group" calculations. The details are given in the reference. [Ref. 4] If the variation (the "Mean Squares" column) is larger for the "Between Groups" than for the "Within Groups" set, we will have an F-ratio (= "Between Groups" divided by "Within Groups") greater than one. Large values of the F-ratio indicate that the independent variable is causing or correlated with the response. The calculated F-ratio is compared with the critical F-distribution value at whatever level of significance is of interest. If the F-ratio is greater than the Critical F-distribution value, then the user may be confident that the independent variable is predictive at that level. In this example, the user may would see that grouping by

- 53 -

- haplotype-pair for sites 2 and 8 for CYP2D6 gives significant probability at the 99% confidence level. The conclusion from this is that an individual's haplotypes at these positions in this gene is at least partially responsible for, or is at least strongly correlated with the value of Test.

5 FIGURE 24 shows a screen which is an example interface to the modeling tool (i.e., the CTS™ Modeler) described herein. At the right are controls to set the parameters for the genetic algorithm (Ref. 5). In the center is a graph showing the residual error of the model as a function of the number of genetic algorithm generations. At the bottom is a bar graph showing the current best 10 weights for Eq. 6. In this example, the linear model described in Eq. 4 is used to find optimal weights for the polymorphic sites. The final parameters arrived at are 15 $C_0 = 0.1$ and $w_{3,CYP2D6} = 0.15$ and $w'_{8,CYP2D6} = -0.1$. This says that the response variable "Test" can be predicted from the formula:

15 Test = $0.1 + [.15 \times (\text{Number of Cs in position z}) + 0.1 \times (\text{Number of As in position 8})] \times 2$ where "number" refers to the number in the two haplotypes for an individual.

10. Preferably, follow-up trials are designed to test and validate the haplotype-response mathematical model.

20 The outcome of Step 9 is a hypothesis that people with certain haplotype pairs or genotypes are more likely or less likely on average to respond to a treatment. This model is preferably tested directly by running one or more additional trials to see if this hypothesis holds.

25 11. A diagnostic method is designed (using one or more of haplotyping, genotyping, physical exam, serum test, etc.) to determine those individuals who will or will not respond to the treatment.

30 The final outcome of the CTS™ method is a diagnostic method to indicate whether a patient will or will not respond to a particular treatment. This diagnostic method can take one of several forms – e.g., a direct DNA test, a serological test, or a physical exam measurement. The only requirement is that there is a good correlation between the diagnostic test results and the underlying haplotypes or sub-haplotypes that are in turn correlated with clinical outcome. In the preferred embodiment, this uses the predictive genotyping method

35

- 54 -

- o described in item 6.

2. Illustration With ADRB2 Gene

Figure 26 is the opening screen for the Asthma project. This screen appears after the "Asthma" folder has been selected from among the projects shown at the left. Selecting a folder causes the genes associated with that project to become active. Genes known or suspected of being involved in asthma are shown in the screen in "Extracellular" and "Intracellular" compartments. The text "Active Gene: DAXX" is a default value; "DAXX" will be replaced with the name of whatever gene is selected from this window. Selecting ADRB2, and then "Geneinfo" from the menu at left, brings up Figure 27.

Figure 27 presents data and statistics related to the ADRB2 gene. Selecting "GeneStructure" from the menu at left brings up Fig. 28A.

Figure 28A is a screen showing the genomic structure of the ADRB2 gene (showing the location of features of the gene, such as promoters, exons, introns, 5' and 3' untranslated regions), polymorphism and haplotype information, and the number of times each haplotype was seen in the representatives of each of 4 world population groups. The column "Wild" contains the number of individuals homozygous for the more common nucleotide at each polymorphic site, "Mut" contains the number homozygous for the less common nucleotide, and "Het" is the number of heterozygous individuals. Overlaid on the two graphical gene representations at the upper part of the screen are vertical bars, indicating the positions of the polymorphic sites elaborated in the middle box. The user may scroll through the lower boxes to bring different portions of the polymorphism and haplotype data into view. Selecting row 6 in the middle window results in Figure 28B.

Figure 28B is a screen where a particular polymorphic site has been selected in the middle box. The upper graphical representation of the gene has been replaced by a textual representation, presented as a nucleotide sequence aligned with the lower graphical representation at the point of the selected polymorphic site (indicated by the black triangles). At the polymorphic site, the two observed nucleotides (T and C) are displayed. Selecting "Patient table" from the

- 55 -

- o menu at left brings up Fig. 29A.

Figure 29A presents genealogical information and diplotype and haplotype data for individuals within the database. Shaded rectangles within the table represent missing data. Within the rectangles and ovals are the ID numbers of the individuals; below each of these in the upper genealogical chart are the two haplotypes of the ADBR2 gene present in that individual, identified by number. The nucleotides comprising these haplotypes are displayed in the box at the lower right. Selecting "Clinical Trial Data" from the menu at left brings up Fig. 29B.

Figure 29B presents the clinical data sorted by individual patient. Severity scores, Skin Test results, and the clinically measured parameters described elsewhere are set out in columns. "NP" stands for "No data Point", and represents data missing for any reason. Selecting "HAPSNP" from the menu at left brings up Fig. 30.

Figure 30 presents, for each patient, a row of color-coded (or shaded) squares representing the heterozygosity of the patient at each polymorphic site. These are adjacent to a row of split squares, where the same information is presented in a two-color (or shaded) format. Selecting the HAPPair command from the menu at the left brings up Fig. 31.

Figure 31 presents the "HAP Pair Frequency View" in which the world population distribution of haplotype or sub-haplotype pairs can be investigated. In this window, polymorphic sites 3, 9, and 11 have been selected by checking the corresponding boxes above the haplotypes. Each cell in the matrix below corresponds to a haplotype pair identified by the HAP numbers on the x and y axes. The height of the color-coded (or shaded) bars within each cell corresponds to the number of individuals of each population group having that haplotype pair.

Clicking on the V/D button at the top of the screen toggles between Fig. 31 and 32.

Figure 32 shows the same data in tabular form. In this figure all SNPs have been selected, so the haplotypes being evaluated consist of thirteen polymorphic sites. Each row in the table corresponds to a haplotype pair (the two haplotypes which comprise the pair are identified in the first two columns), followed by the number of individuals in the database having that pair, and the

- 56 -

- percentage of the total population this number represents. Under each population group three columns presenting the number of individuals in the population group with that pair, the percentage of the population group that has that pair, and the percentage predicted by Hardy-Weinberg equilibrium. Selecting "Linkage" from the menu at left brings up Fig. 33.

Figure 33 displays separate matrices for the total population and for each population group. Each cell is color-coded (or shaded) to indicate the extent to which the two haplotypes occur together in individuals, i.e., the degree to which they are linked. Selecting "HAPTyping" from the menu at left brings up the screen in Fig. 34.

Figure 34 presents the ambiguity scores that result from masking one or more SNPs or polymorphisms in the genotype. The ambiguity scores are calculated by taking the sum of the geometric means of all pairs of genotypes rendered ambiguous by the mask, and multiplying by ten. All population groups have been chosen for inclusion in this figure by checking off the boxes at the upper left of the screen. The list of haplotype pairs has been sorted by the calculated Hardy-Weinberg frequency, and the pairs have been numbered consecutively, as shown in the first column.

A mask that causes SNP 8 to be ignored in all cases has been imposed by deselecting the appropriate box in the "Choose SNP" row above the haplotype list. Additional masking has been imposed by deselecting the appropriate boxes in the mask to the right of the Genotype table. (The mask is to the right of the table and may be accessed by scrolling horizontally; in the figure it has been re-located to bring it into view.) In the first mask, only SNP 8 is ignored, which results in haplotype pairs 4 and 73 both being consistent with the genotype observed. (In other words, the genotypes derived from haplotype pairs 4 and 73 differ only at SNP 8, and cannot be distinguished if it is not measured). An ambiguity score of 0.016 is associated with this first mask. The frequency of haplotype pair 4 is much greater than that of haplotype pair 73 (recall that the list is sorted by frequency), so one could resolve this ambiguity with some confidence simply by choosing haplotype pair 4. (In an alternative embodiment, the probability of each choice being the correct one could be displayed.) For the present application, in general, the mask

- 57 -

- o with the largest number of ignored SNPs that retains an ambiguity score of about 1.0 or less will be preferred. The ambiguity score cut-off that is chosen may vary depending on the intended use of the inferred haplotypes. For example, if haplotype pair information is to be used in prescribing a drug, and certain haplotype pairs are associated with severe side effects, the acceptable ambiguity score may be reduced.
5 In such a situation masks that do not render the haplotype pairs of interest ambiguous would be preferred as well. Selecting "Phylogenetic" from the menu at left brings up Fig. 35.

10 Figure 35 presents haplotype data in a phylogenetic minimal spanning network. Each disk corresponds to a haplotype, the haplotype number is to the immediate right of each disk. The size of each disk is proportional to the number of individuals having that haplotype; that number is displayed in parentheses to the right of each disk. Haplotypes that are closely related, that is they
15 differ at only one polymorphic site, are connected by solid lines. Haplotypes that differ at two sites are connected by light lines, and are spaced farther apart. The colored (or shaded) wedges represent the fraction of individuals having that haplotype that are from different population groups. Selecting "Clinical Haplotype
20 Correlation" brings up the screen in Fig. 36.

25 Figure 36 presents the association between a clinical outcome value (in this case, "delta %FEV1 pred" which is the change in FEV1 observed after administration of albuterol, corrected for size, age, and gender. The SNPs one wishes to test for association may be selected by checking off the appropriate box above the HAP list table. The value of delta %FEV1 is represented in grayscale or by a color scale. Each cell in the matrix corresponds to a given haplotype pair, defined by the haplotype numbers on the x and y axes. The number in each cell is the number of patients having that haplotype pair, and the color (or shading) of each cell reflects the response of those patients to albuterol. In this case, groups of people with haplotype pairs shown in the red (or darkly shaded) boxes have the highest average response, e.g. haplotype pairs 3,4 and 3,5. (See also Fig. 41, which presents numerical results showing that individuals with these haplotype pairs have a high average response to albuterol.) Under the "Clinical Mode" menu heading at
30 the top of the screen is a command that the user may use to toggle among Figs. 36,
35

- 58 -

37, 38, and 40.

Switching to Fig. 37 in this manner displays a collection of histograms, one in each cell of a haplotype pair matrix. Selecting the 1,1 cell enlarges it, bringing up Fig. 38.

Figure 38 is a histogram showing the number of individuals having the 1,1 haplotype pair who exhibited the response to albuterol shown on the x axis. The bars in the histogram are color-coded (or shaded) as well, as an additional indication of the degree of response.

In either Fig. 36 or Fig. 37, there is a button with an icon of a small scatter plot (just below the Help menu at the top of the screen.) Selecting this button brings up Fig. 39A. This figure displays the regression calculations employed in the multi-SNP analysis, or "Build-up" process. Given the confidence values shown, which are the default values for the "tight cutoff" and "loose cutoff", the program generates pairwise combinations of SNPs, tests their p-values for correlation with "delta %FEV1 pred" against the cutoff values, and, from those subhaplotypes that pass the cut-offs, re-calculates and tests new pairwise combinations, until the number of SNPs in the subhaplotypes reaches the limit shown in the "Fixed Site" box. In the example shown, no four-SNP subhaplotype passed the loose cutoff, thus there are only 1-, 2-, and 3-SNP sub-haplotypes shown in this screen. New values may be entered in the Confidence and Fixed site fields; clicking on the calculator button (under the File menu) re-executes the Build-up and Build-down processes with the entered values.

A reverse SNP analysis, or "Build down" process, may also be carried out; the presence of the minus sign in the "Fixed Site" box indicates that this process is being requested. (In the example given, only a single "Build-down" round was executed, so as to ensure that the full haplotype is present for comparison.)

For each "marker" (SNP, subhaplotype, or haplotype) in the left column, a regression analysis of the correlation of the number of copies of that marker with the value of "delta %FEV1 pred" is generated, and selected statistical information is presented in the columns to the right. (A negative correlation coefficient (R) indicates that response to albuterol decreases with increasing copy

- 59 -

number of the indicated marker.) The SNPs or subhaplotypes exhibiting the lowest p values are identified as the ones that should most preferably be measured in patients in order to predict response to albuterol. Selecting the box to the left of the ****A*****A*G**** sub-haplotype brings up Fig. 39B.

Figure 39B presents in a graphic form the calculation of the regression parameters displayed in Fig. 39A. The values of “delta %FEV1 pred” for patients with 0, 1, and 2 copies of the $^{**}A*****A^*G^{**}$ subhaplotype are plotted vertically at three ordinates. A line is drawn through the three means, and the slope of the line is taken as an indication of the degree of correlation. The intercept, slope, slope range, R and R^2 values, and the p value associated with this line, are all listed in Fig. 39A. The “slope range” is a pair of limits, reflecting the standard deviation in the values of “delta %FEV1 pred”. Mathematically, the p value listed in Fig. 39A is the probability that the slope is actually zero, *i.e.* it is the probability that there is in fact no correlation. A lower value of p thus indicates greater reliability.

Fig. 40 (reached through the “Clinical Mode” menu) displays the observed haplotype pairs, their distribution in the population, and the mean clinical response (delta %FEV1 pred.) of the patients having those haplotype pairs. Selecting the “normal” button (to the right of the scatter plot button) brings up Fig. 41.

Figure 41 shows a screen that displays the results of an ANOVA calculation in which patients were grouped according to haplotype pairs, and the average value of “delta %FEV1 pred.” was analyzed both within the groups and between the groups. This permits one to determine which pairs of haplotypes are associated with the observed clinical response. All SNPs in the ADRB2 gene have been selected in the row of boxes labeled “Choose SNPs”, thus the groups are the same as the cells in the matrix in Fig. 36. Groups containing one patient were ignored, leaving the seven groups listed at the bottom of the screen. This left six degrees of freedom (the parameter “DF”) for inter-group comparisons. The variation (“Mean Squares”) is larger between groups than within groups, and the ratio of the two (F-ratio) is greater than one. (A large F-ratio indicates that the independent variable – the haplotype pair group – is correlated with the response.)

- 60 -

- o There is a significant difference ($p = 0.027$) between the mean square value of the clinical response between groups compared to that within groups. It is found in this example that being homozygous for haplotype 3 results in a significantly lower response (average 8.5%), while individuals with haplotype pair 3,4 (i.e.,
5 GCACCTTACGCC and GCGCCTTGCACA) show a good response to albuterol (average delta %FEV1 pred = 19.25%). This information is displayed in a more visual presentation in Fig. 36.

10 Figure 42 is arrived at by selecting the "ClinicalVariables" command from the menu to the left of most of the previous screens. This is the same information displayed in Fig. 38, except that it is for the entire cohort rather than for a selected haplotype pair. The number of patients is plotted against the value of "delta %FEV1 pred". Note the outliers at 50% and 65% response.
15 Selecting "ClinicalCorrelations" from the menu to the left brings up Fig. 43.

15 Figure 43 is a plot of each patient's "FEV1% PRE" (the normalized value of FEV1 prior to administration of albuterol) against "delta %FEV1 pred". These variables are selected in the upper part of the screen. It is seen in this example that the response does not correlate with the initial value of
20 FEV1.

D. IMPROVED METHODS

1. Improved Method For Finding Optimal Genotyping Sites

25 This aspect of the invention provides a method for determining an individual person's haplotypes for any gene with reduced cost and effort. A haplotype is the specific form of the gene that the individual inherited from either mother or father. The 2 copies of the gene (one maternal and one
30 paternal) usually differ at a few positions in the DNA locus of the gene. These positions are called polymorphisms or Single Nucleotide Polymorphisms (SNPs). The minimal information required to specify the haplotype is the reference sequence, and the set of sites where differences occur among people in a population, and nucleotides at those sites for a given copy of the gene possessed by the
35

- 61 -

- o individual. For the rest of this discussion, we assume that the reference sequence is given, and we represent the haplotype as a string of letters specifying the nucleotides at the variable sites. In almost all cases, only two of the possible 4 nucleotides will occur at any position (e.g. A or T, C or G), so for generality we can represent the two values for alleles as 1 and 0. Therefore a haplotype can be represented as a string of 1s and 0s such as 001010100. In practicing this invention, one may make use of known methods for discovering a representative set of the haplotypes that exist in a population, as well as their frequencies. One begins by sequencing large sections of the gene locus in a representative set of members in the population. This provides (1) a determination of all of the sites of variation, and (2) the mixed (unphased) genotype for each individual at each site. For instance in a sample of 4 individuals for a gene with 3 variable sites, the mixed genotypes could be:

15

Individual	Genotype site 1	Genotype site 2	Genotype site 3	Haplotype of 1 st allele	Haplotype of 2 nd allele
1	1/1	1/0	1/0	3	4
2	0/0	0/0	0/0	1	1
3	1/0	1/0	0/0	1	2
4	1/1	0/0	1/0	3	5

20

This mixed set of genotypes could be derived from the following haplotypes:

25

Haplotype No.	Haplotype	Frequency in population
1	000	3
2	110	1
3	100	2
4	111	1
5	101	1

30

A method for deriving the haplotypes from the genotypes is described in a separate patent filing.

35

The haplotypes are a fundamental unit of human evolution and their relationships can be described in terms of phylogenetics. One consequence of this phylogenetic relationship is the property of linkage disequilibrium. Basically this means that if one measures a nucleotide at one site in a haplotype, one can often predict the nucleotide that will exist at another site

- 62 -

- o without having to measure it. This predictability is the basis of this aspect of the invention. Elimination of sites that do not need to be measured results in a reduced set of sites to be measured.

Information from a previously measured set of individuals
 5 (who were measured at all sites) may be used to determine the minimum number (or a reduced number) of sites that need to be measured in a new individual in order to predict the new individual's haplotypes with a desired level of confidence. Since the measurement at each site is expensive, the invention can lead to great cost reduction in the haplotyping process.
 10

Step 1: Measure the full genotypes of a representative cohort of individuals.

Step 2: Determine their haplotypes directly, or indirectly
)(e.g., using one of several algorithms.

15 Step 3: Tabulate the frequencies for each of these haplotypes.

Note that Steps 1-3 are optional. The remaining steps only require that a database of haplotypes with frequencies exists. There are several ways to achieve this, but the above set of steps is the preferred route.

20 Step 4: Construct the list of all full genotypes that could come from the observed haplotypes. Note that only a subset of these will actually be observed in a typical sample, for example 100-200 individuals.

25 Step 5: Predict the frequency of these genotypes from the Hardy-Weinberg equilibrium. If two haplotypes Hap1 and Hap2 have frequencies f₁ and f₂, the expected frequency of the mix is $2 \times f_1 \times f_2$, or f_1^2 if Hap1 and Hap2 are identical.

30 Step 6: Go through this list and find all sites that, if they were not measured, would still allow one to correctly determine each pair of haplotypes. For example, take the case where the three haplotypes A (1111), B (1110), and C (0000) exist in a population. The six genotypes that could be observed are derived from the six different pairs that are possible:

35	Pair	Hap Polymorphic Site			
		1	2	3	4
	1.	A,A	1/1	1/1	1/1
	2.	A,B	1/1	1/1	1/1
	3.	A,C	1/0	1/0	1/0

- 63 -

4.	B,B	1/1	1/1	1/1	0/0
5.	B,C	1/0	1/0	1/0	0/0
6.	C,C	0/0	0/0	0/0	0/0

Not measuring any one of the sites 1-3 would still permit one to correctly assign a haplotype pair to an individual. From this we can see that any 5 one of the first three positions, together with the fourth, carries all of the information required to determine which pair of haplotypes an individual has.

Step 7: Extend the analysis of Step 6 as follows. Create a set 10 of masks of the same length as the haplotype. A mask may be represented by a series of letters, e.g., Y for yes and N for no, to indicate whether the marked site is to be measured. For example, using the mask YNNY in the previous example, one would measure only sites 1 and 4, and one could use the information that only 15 haplotypes 1111, 1110, and 0000 exist to infer the haplotypes for the individuals. Masks NYNY and NNYY would give equivalent information. If there are n sites, all combinations of Y and N produce 2^n masks, of which $2^n - 1$ need to be examined (the all-N mask provides no information).

Step 8: For each mask, evaluate how much ambiguity exists 20 from this measurement of incomplete information. For example, one measure of ambiguity would be to take all pairs of genotypes that are identical when using the mask, and multiply their frequencies. The product may be converted to the geometric mean. Then, for each mask, add up all such products for all ambiguous 25 pairs to obtain an ambiguity score, which is used as a penalty factor in evaluating the value of the mask. The consequence of this would be to highly penalize masks that fail to resolve likely-to-be-seen genotypes into correct haplotypes, and masks that leave large numbers of genotypes ambiguous, such as the mask NNNY in the above example. This would give greater weight to masks that only confuse low 30 frequency, low probability genotypes. A variety of other scoring schemes could be devised for this purpose.

This approach is most preferably implemented by means of a 35 computer program that allows a user to view the ambiguity score for each mask, and calculate the tradeoff between reduced cost and reduced certainty in the determination of the haplotypes.

- 64 -

o

Step 8: Genotype new individuals using the optimal set of m sites (the optimal mask). In the example above, there are three equivalent optimal masks, YNNY, NYNY and NNYY, which require that only two of the four polymorphic sites be measured. (These masks have zero ambiguity.)

5

Step 9: Derive these individuals' full n-site haplotypes by matching their m-site genotypes to the appropriate m-site genotypes derived from the n-site haplotypes of the initial cohort. If there is an ambiguity in the choice, the more common haplotype may be chosen, but preferably a haplotype pair will be chosen based on a weighted probability method as follows:

10

If two haplotype pairs A and B exist that could explain a given genotype, the Hardy-Weinberg equilibrium will predict probabilities p_A and p_B , where $p_A + p_B = 1$. One chooses a random number between 0 and 1. If the number is less than or equal to p_A , the first haplotype pair A is assumed. If the number is greater than p_A , the second pair is assumed. There are more complex variants of this algorithm, but this simple, unbiased approach is preferred.

15

2. Improved Methods For Correlating Haplotypes With Clinical Outcome Variable(s)

20

The following methods are described for correlating haplotypes, or haplotype pairs, with a clinical outcome variable. However, these methods are applicable to correlating haplotypes, and/or haplotype pairs, to any phenotype of interest, and is not limited to a clinical population or to applications in a clinical setting.

25

a. Multi-SNP Analysis Method (Build-Up Process)

30

This process is outlined in the flow chart shown in Figure 45. The first step (S1) is the collection of haplotype information and clinical data from a cohort of subjects. Clinical data may be acquired before, during, or after collection of the haplotype information. The clinical data may be the diagnosis of a disease state, a response to an administered drug, a side-effect of an administered drug, or other manifestation of a phenotype of interest for which the practitioner desires to determine correlated haplotypes. The data is referred to as "clinical outcome

35

- 65 -

- o values." These values may be binary (*e.g.*, response/no response, survival at 5 months, toxicity/no toxicity, etc.) or may be continuous (*e.g.* liver enzyme levels, serum concentrations, drug half-life, etc.)

5 The collection of haplotype information is the determination (*e.g.*, by direct sequencing or by statistical inference) of a pattern of SNPs for each allele of a pre-selected gene or group of genes, for each individual in the cohort. The gene or group of genes selected may be chosen based on any criteria the practitioner desires to employ. For example, if the haplotype data is being collected in order to build a general-purpose haplotype database, a large number of clinically 10 and pharmacologically relevant genes are likely to be selected. Where a retrospective analysis of a cohort from an ongoing or completed clinical study is being carried out, a smaller number of genes judged to be relevant might be selected.

15 The next step (S2) is the finding of single SNP correlations. Each individual SNP is statistically analyzed for the degree to which it correlates with the phenotype of interest. The analysis may be any of several types, such as a regression analysis (correlating the number of occurrences of the SNP in the subject's genome, *i.e.* 0, 1, or 2, with the value of the clinical measurement), 20 ANOVA analysis (correlating a continuous clinical outcome value with the presence of the SNP, relative to the outcome value of individuals lacking the SNP), or case-control chi-square analysis (correlating a binary clinical outcome value with the presence of the SNP, relative to the outcome value of individuals lacking the SNP).

25 In one embodiment, a "tight cut-off" criterion is next applied to each SNP in turn. A first SNP is selected (S3) and its correlation with the clinical outcome is tested against a tight cut-off (S4). A typical value for the tight cut-off will be in the range $p = .01$ to $.05$, although other values may be chosen on empirical 30 or theoretical grounds. If the SNP correlation meets the tight cut-off it is displayed to the user of the system (S5) (or, alternatively, stored for later display), and stored for later combination (S6). If the SNP correlation does not meet the tight cut-off it is tested against a "loose cut-off" (S7), typically in the range $p = .05$ to 0.1 . Again, 35 other cut-off values may be chosen if desired for any reason. (User-selected tight and loose cut-off values are entered in the two boxes labeled "confidence" in Fig.

- 66 -

- o 39a.) A SNP whose correlation meets the loose cut-off is stored for later combination (S6). Any SNP whose correlation does not meet either cut-off is discarded (S8), *i.e.*, it is not considered further in the process. If there are SNPs remaining to be tested against the cut-offs (S9) they are selected (S10) and tested (S4) in turn.

5 In an alternative embodiment, a tight cut-off is not applied, and each SNP's correlation is tested directly against the loose cut-off, and the SNP is either saved or discarded. In this embodiment, correlations of pair-wise generated sub-haplotypes (see below) are also tested directly against the loose cut-off. If desired, SNPs and sub-haplotypes which are saved at the end of this alternative process may be measured against a tight cut-off, and those that pass may be displayed.

10 When all SNPs have had their correlations tested, the next step of the process consists of generating all possible pair-wise combinations (sub-haplotypes) of the saved SNPs. If novel (*i.e.* untested) sub-haplotypes are possible (S11), which will be the case on the first iteration, they are generated by pair-wise combination of all saved SNPs (S12). The correlations of the newly generated sub-haplotypes with the clinical outcome values are calculated (S13), as was done for the SNPs. A first sub-haplotype is selected (S15) and its correlation is tested against the tight and loose cut-offs (S4, S7) as described above for the SNP correlations. Each sub-haplotype is tested in turn, as described above, discarding any sub-haplotypes that do not pass the cut-off criteria and saving those that do pass.

15 20 25 When all sub-haplotypes have been examined, the process generates new pair-wise combinations among the originally saved SNPs and the newly saved sub-haplotypes, and among all saved sub-haplotypes as well. The process may be iterated until no new combinations are being generated; alternatively the practitioner may interrupt the process at any time. In a preferred embodiment, the practitioner may set a limit to the number of SNPs permitted in the generated sub-haplotypes. (See Fig. 39a, where "fixed.site = 4" is a 4-SNP limit). In this embodiment the system would then determine if new combinations within the limit are possible prior to each pairwise combination step.

30 35 In a preferred embodiment, complex redundant sub-

- 67 -

- haplotypes are removed from the pair-wise generated sub-haplotypes (S14). Complex redundant sub-haplotypes are those which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes have correlation values that are at least as significant as that of the complex sub-haplotype, *i.e.* they have correlation values that account for the correlation value of the complex redundant sub-haplotype. In such cases the complex haplotype provides no additional information beyond what the component sub-haplotypes provide, which makes it redundant. The non-redundant haplotypes and sub-haplotypes that remain are those that have the strongest association with the clinical outcome values. These are saved for future use (S16).

**b. Reverse SNP Analysis Method
(Pare-Down Process)**

This aspect of the invention provides a method for discovering which particular SNPs or sub-haplotypes correlate with a phenotype of interest, when one has in hand single gene haplotype correlation values. The process is outlined in the flow chart illustrated in Fig. 46.

The first step (S17) is the collection of haplotype information and clinical data from a cohort of subjects. Clinical data may be acquired before, during, or after collection of the haplotype information. The clinical data may be the diagnosis of a disease state, a response to an administered drug, a side-effect of an administered drug, or other manifestation of a phenotype of interest for which the practitioner desires to determine correlated haplotypes. The data is referred to as "clinical outcome values." These values may be binary (*e.g.*, response/no response, survival at 5 months, toxicity/no toxicity, etc.) or may be continuous (*e.g.* liver enzyme levels, serum concentrations, drug half-life, etc.)

The collection of haplotype information is the determination (*e.g.*, by direct sequencing or by statistical inference) of a pattern of SNPs for each allele of each of a pre-selected group of genes, for each individual in the cohort. The group of genes selected may be chosen based on any criteria the practitioner desires to employ. For example, if the haplotype data is being collected in order to build a general-purpose haplotype database, a large number of clinically and

- 68 -

- pharmacologically relevant genes are likely to be selected. Where a retrospective analysis of a cohort from an ongoing or completed clinical study is being carried out, a smaller number of genes judged to be relevant might be selected.

The next step (S18) is the finding of single-gene haplotype correlations. Each individual haplotype of each gene is statistically analyzed for the degree to which it correlates with the phenotype or clinical outcome value of interest. The analysis may be any of several types, such as a regression analysis (correlating the number of occurrences of the haplotype in the subject's genome, *i.e.* 0, 1, or 2, with the value of the clinical measurement), ANOVA analysis (correlating a continuous clinical outcome value with the presence of the haplotype, relative to the outcome value of individuals lacking the haplotype), or case-control chi-square analysis (correlating a binary clinical outcome value with the presence of the haplotype, relative to the outcome value of individuals lacking the haplotype).

In one embodiment, a "tight cut-off" criterion is next applied to each haplotype in turn. A first haplotype is selected (S19) and its correlation with the clinical outcome value is tested against a tight cut-off (S20). A typical value for the tight cut-off will be in the range $p = .01$ to $.05$, although other values may be chosen on empirical or theoretical grounds. If the haplotype correlation meets the tight cut-off it is displayed to the user of the system (S21) (or, alternatively, stored for later display), and stored for later combination (S22). If the haplotype correlation does not meet the tight cut-off it is tested against a "loose cut-off" (S23), typically in the range $p = .05$ to 0.1 . Again, other cut-off values may be chosen if desired for any reason. A haplotype meeting the loose cut-off is stored for later combination (S22). Any haplotype whose correlation does not meet either cut-off is discarded (S24), *i.e.*, it is not considered further in the process. If there are haplotypes remaining to be tested against the cut-offs (S25) they are selected (S26) and tested (S20) in turn.

In an alternative embodiment, a tight cut-off is not applied. The correlation of each haplotype is tested directly against the loose cut-off, and the haplotype is either saved or discarded. In this embodiment, correlations of sub-haplotypes generated by masking (see below) are also tested directly against the loose cut-off. If desired, sub-haplotypes which are saved at the end of this

- 69 -

- o alternative process may be measured against a tight cut-off, and those that pass may be displayed.

When all haplotypes have had their correlations tested, the next step of the process consists of generating all possible sub-haplotypes in which a single SNP is masked, *i.e.* its identity is disregarded. If novel (*i.e.* untested) sub-haplotypes are possible (S27), which will be the case on the first iteration, they are generated by systematically masking each SNP of all saved haplotypes (S28). The correlations of the newly generated sub-haplotypes with the clinical outcome value are calculated (S29), as was done for the haplotypes themselves. A first sub-haplotype is selected (S30) and its correlation is tested against the tight and loose cut-offs (S20, S23) as described above for the haplotype correlations. Each sub-haplotype is tested in turn, as described above, discarding any sub-haplotypes that do not pass the cut-off criteria and saving those that do pass.

Optionally, in a preferred embodiment, complex redundant haplotypes and sub-haplotypes are discarded after correlations are calculated for the sub-haplotypes and SNPs generated by the masking step (S31). Complex redundant haplotypes and sub-haplotypes are those which are constructed from smaller sub-haplotypes or SNPs, where the smaller sub-haplotypes or SNPs have correlation values that are at least as significant as that of the complex sub-haplotype, *i.e.* they have correlation values that account for the correlation value of the complex redundant sub-haplotype. In such cases the complex haplotype or sub-haplotype provides no additional information beyond what its component sub-haplotypes or SNPs provide, which makes it redundant.

When all sub-haplotypes have been examined, the process generates new sub-haplotypes by masking SNPs among the newly saved sub-haplotypes. The process is preferably iterated until no new sub-haplotypes are being generated; this may occur only when the sub-haplotypes have been reduced to individual SNPs. Alternatively the practitioner may interrupt the process at any time.

The non-redundant sub-haplotypes and SNPs that remain are those that have the strongest association with the clinical outcome values. These are saved for future use (S32).

- 70 -

E. **TOOLS OF THE INVENTION**

The methods of the invention preferably use a tool called the DecoGenTM Application.

The tool consists of:

a. One or more databases that contain (1) haplotypes for a gene (or other loci) for many individuals (i.e., people for the CTSTM method application, but it would include animals, plants, etc. for other applications) for one or more genes and (2) a list of phenotypic measurements or outcomes that can be but are not limited to: disease measurements, drug response measurements, plant yields, plant disease resistance, plant drought resistance, plant interaction with pest-management strategies, etc. The databases could include information generated either internally or externally (e.g. GenBank).

b. A set of computer programs that analyze and display the relationships between the haplotypes for an individual and its phenotypic characteristics (including drug responses).

Specific aspects of the tool which are novel include:

a. A method of displaying measurements (such as quantitative phenotypic responses) for groups of individuals with the same group of haplotypes or sub-haplotypes, and thereby easily showing how responses segregate by haplotype or sub-haplotype composition. In the example herein, the display shows a matrix where the rows are labeled by one haplotype and the columns by a second. Each cell of the matrix is labeled either by numbers, by colors representing numbers, by a graph representing a distribution of values for the group or by other graphical controls that allow for further data mining for that group.

b. A minimal spanning tree display (see, e.g., Ref. 8) showing the phylogenetic distance between haplotypes. Each node, which represents a haplotype, is labeled by a graphic that shows statistics about the haplotype (for example, fraction of the population, contribution to disease susceptibility).

c. Numerical modeling tools that produce a quantitative model linking the haplotype structure with any specific phenotypic outcome, which

- 71 -

is preferably quantitative or categorical. Examples of outcomes include years of survival after treatment with anticancer drugs and increase in lung capacity after taking an asthma medication. This model can use a genetic algorithm or other suitable optimization algorithm to find the most predictive models. This can be extended to multiple genes using the current method (see Equation 5). Techniques such as Factor Analysis (Ref. 4, Chapter 14) could be used to find the minimal set of predictive haplotypes.

d. A genotype-to-haplotype method that allows the user to find the smallest number of sites to genotype in order to infer an individual's haplotypes or sub-haplotypes for a given gene. An individual's haplotypes provide unambiguous knowledge of his genetic makeup and hence of the protein variations that person possesses. As described earlier, the individual's genotype does not distinguish his haplotypes so there is ambiguity about what protein variants the individual will express. However, using current technology, it is much more expensive to directly haplotype an individual than it is to genotype him. The method described above allows one to predict an individual's haplotypes, and therefore to make use of the predictive haplotype-to-response correlation derived from a clinical trial. The steps required for this to work are (a) determine the haplotype frequencies from the reference population directly; (b) correct the observed frequencies to conform to Hardy-Weinberg equilibrium (unless it is determined that the derivation is not due to sampling bias as discussed above); and (c) use the statistical approach described in the third paragraph of item 6 above to predict individuals' haplotypes or sub-haplotypes from their genotypes.

F. DATA/DATABASE MODEL

The present invention uses a relational database which provides a robust, scalable and reusable data storage and data management mechanism. The computing hardware and software platforms, with 7x24 teams of database administration and development support, provide the relational database with advantageous guaranteed data quality, data security, and data availability. The database models of the present invention provide tables and their relationships optimized for efficiently storing and searching genomic and clinical information,

- 72 -

- and otherwise utilizing a genomics-oriented database.

5 A data model (or database model) describes the data fields one wishes to store and the relationships between those data fields. The model is a blueprint for the actual way that data is stored, but is generic enough that it is not restricted to a particular database implementation (e.g., Sybase or Oracle). In the preferred embodiment of the present invention, the model stores the data required by the DecoGen application.

10 **1. Database Model Version 1**

15 **a. Submodels**

In one embodiment, the database comprises 5 submodels which contain logically related subsets of the data. These are described below.

20 **1. Gene Repository (Fig. 25A):** This submodel describes the gene loci and its related domains. It captures the information on gene, gene structure, species, gene map, gene family, therapeutic applications of genes, gene naming conventions and publication literature including the patent information on these objects.

25 **2. Population Repository (Fig. 25B):** This submodel encapsulates the patient and population information. It covers entities such as patient, ethnic and geographical background of patient and population, medical conditions of the patients, family and pedigree information of the patients, patient haplotype and polymorphism information and their clinical trial outcomes.

30 **3. Polymorphism Repository (Fig. 25C):** This submodel stores the haplotypes and the polymorphisms associated with genes and patient cohorts used in clinical trials. The polymorphisms may include SNPs, small insertions/deletions, large insertions/deletions, repeats, frame shifts and alternative splicing.

35 **4. Sequence Repository (Fig. 25D):** Genetic sequence information in the form of genomic DNA, cDNA, mRNA and protein is captured by this data submodel. What is more important in this model is the location

- 73 -

relationship between the gene structural features and the sequences. Patent information on sequences is also covered.

5 **5. Assay Repository (Fig. 25E):** This submodel captures client companies, contact information, compounds used in the different disease areas and assay results for such compounds in regards to polymorphisms and haplotypes in target genes.

A model or sub-model is a collection of database tables. A table is described by its columns, where there is one column for each data field. For instance the table COMPANY contains the following 3 columns: COMPANY_ID, COMPANY_NAME, and DESCR. COMPANY_ID is a unique number (1, 2, 3, etc.) assigned to the company. COMPANY_NAME holds the name (e.g., "Genaissance") and DESCR holds extra descriptive information about the company (e.g., "The HAP Company"). There will be one row in this table for each company for which data exists in the database. In this case COMPANY_ID is the "primary key" which requires that no two companies have the same value of COMPANY_ID, i.e., that it is unique in the table. Tables are connected together by "relationships". To understand this, refer to Figure 25E which shows the table COMPANYADDRESS. It has fields COMPANY_ID, STREET, CITY, etc. In this table the field COMPANY_ID refers back to the table COMPANY. If a company has several locations, there will be several rows in the table COMPANYADDRESS, each with the same value of COMPANY_ID. For each of these we can get the name and description of the company by referring back to the COMPANY TABLE.

25

b. Abbreviations

The following abbreviations are used in FIGURES 25A-E and the tables describing the database model depicted therein:

30

AA	:	amino acid
Clin	:	clinical
Descr	:	description
FK	:	foreign key
Geo	:	geographical

35

- 74 -

	Hap	:	Haplotype
	ID	:	identifier
	Loc	:	location
	Mol	:	molecule
5	NT	:	nucleotide
	PK	:	primary key
	Poly	:	polymorphism
	Pos	:	position
10	Pub	:	publication
	QC	:	quality control
	Seq	:	sequence
	SNP	:	single nucleotide polymorphism
	Therap	:	therapeutic
15			

c. **Tables**

- In this embodiment of the present invention, the database
20 contains 76 tables as follows:
- 25
- 1) Accession
 - 2) Assay
 - 3) AssayResult
 - 4) BioSequence
 - 5) ChromosomeMap
 - 6) ClasperClone
 - 7) ClinicalSite
 - 8) Company
 - 9) CompanyAddress
 - 30 10) Compound
 - 11) CompoundAssay
 - 12) Contact
 - 35 13) FamilyMember

- 75 -

- - 14) FamilyMemberEthnicity
 - 15) Feature
 - 16) FeatureAccession
 - 17) FeatureGeneLocation
 - 5 18) FeatureInfo
 - 19) FeatureKey
 - 20) FeatureList
 - 21) FeaturePub
 - 10 22) Gene
 - 23) GeneAccession
 - 24) GeneAlias
 - 25) GeneFamily
 - 26) GeneMapLocation
 - 15 27) GenePathway
 - 28) GenePriority
 - 29) GenePub
 - 30) GenotypeCode
 - 20 31) Ethnicity
 - 32) HapAssay
 - 33) HapCompoundAssay
 - 34) HapHistory
 - 35) Haplotype
 - 25 36) HapMethod
 - 37) HapPatent
 - 38) HapPub
 - 39) HapSNP
 - 30 40) HapSNPHistory
 - 41) LocationType
 - 42) MapType
 - 43) Method
 - 35 44) MoleculeType

- 76 -

- - 45) Nomenclature
 - 46) Patent
 - 47) PatentImage
 - 48) Pathway
 - 5 49) PathwayPub
 - 50) PolyMethod
 - 51) Polymorphism
 - 52) PolyNameAlias
 - 10 53) PolySeq3
 - 54) PolySeq5
 - 55) Publication
 - 56) SeqAccession
 - 57) SeqFeatureLocation
 - 15 58) SeqGeneLocation
 - 59) SeqSeqLocation
 - 60) SequenceText
 - 61) SNPAssay
 - 20 62) SNPPatent
 - 63) SNPPub
 - 64) Species
 - 65) Patient
 - 66) PatientCohort
 - 25 67) PatientEthnicity
 - 68) PatientHap
 - 69) PatientHapClinOutcome
 - 70) PatientHapHistory
 - 30 71) PatientMedicalHistory
 - 72) PatientSNP
 - 73) PatientSNPHistory
 - 74) TherapeuticArea
 - 35 75) TherapeuticGene

- 77 -

76) VariationType

Additional tables (not shown) may include Allele,
FeatureMapLocation, PubImage, TherapCompound

5

d. Fields

Figures 25A-E show the fields of each table in the database.
The following are descriptions of the fields found in the database as well as for
fields and tables that could be added to the database:

10

15

20

25

30

35

table Accession	Name	Null?	Type	Comments
	ACCESSION	NOT NULL	VARCHAR2(20)	a unique ID for a sequence in the commonly used public domain databases; becomes de facto standard for sequence data access in the academia and industry
	SOURCE		VARCHAR2(20)	who issued the ID
	DESCR		VARCHAR2(200)	other descriptions
	INSERTED_BY		VARCHAR2(30)	who inserted the record
	INSERT_TIME		DATE	when
	UPDATED_BY		VARCHAR2(30)	who updated the record
	UPDATE_TIME		DATE	when
table Allele	Name	Null?	Type	
	ALLELE_NAME	NOT NULL	NUMBER(4)	allele is the one member of a pair or series of genes that occupy a specific position on a specific chromosome
	POLY_ID	NOT NULL	NUMBER	Foreign key to the polymorphism record
	NT_SEQ_TEXT		VARCHAR2(4000)	Nucleotide sequence string
	AA_SEQ_TEXT		VARCHAR2(1000)	Amino acid sequence string
	DESCR		VARCHAR2(200)	
	INSERTED_BY		VARCHAR2(30)	
	INSERT_TIME		DATE	
	UPDATED_BY		VARCHAR2(30)	
	UPDATE_TIME		DATE	

SUBSTITUTE SHEET (RULE 26)

- 78 -

	table Assay	Name	Null?	Type	
5		ASSAY_ID	NOT NULL	NUMBER	Primary key for the assay table
		ASSAY_NAME		VARCHAR2(50)	
		ASSAY_PARAMETERS		VARCHAR2(200)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
10		UPDATE_TIME		DATE	measurement of the assay parameters time of operation who did it
		table AssayResult	Name	Null?	
		ASSAY_ID	NOT NULL	NUMBER	
		ASSAY_TYPE		VARCHAR2(100)	
		MEASURE		VARCHAR2(200)	
		TIMESTAMP		DATE	
		OPERATOR		VARCHAR2(50)	
15		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
		table BioSequence	Name	Null?	
		SEQ_ID	NOT NULL	NUMBER	
20		MOL_TYPE	NOT NULL	VARCHAR2(20)	sequence ID (PK) molecular type sequence length FK to the patent record
		SEQ_LENGTH		NUMBER	
		PATENT_ID		NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
25		UPDATE_TIME		DATE	
		table Chromosome Map	Name	Null?	
		MAP_ID	NOT NULL	NUMBER(4)	unique genetic map ID FK to MapType FK to species ID used by external sources which source
		MAP_TYPE_ID	NOT NULL	NUMBER(4)	
		SPECIES_ID	NOT NULL	NUMBER	
		CHROMOSOME		VARCHAR2(2)	
		MAP_NAME		VARCHAR2(50)	
30		EXTERNAL_KEY		VARCHAR2(50)	
		KEY_SOURCE		VARCHAR2(20)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
35					

SUBSTITUTE SHEET (RULE 26)

- 79 -

		INSERT_TIME	DATE
		UPDATED_BY	VARCHAR2(30)
		UPDATE_TIME	DATE
		-----	-----
		Name	Null? Type
		-----	-----
5	table ClasperClone	CLASPER_CLONE_ID	NOT NULL NUMBER
		PI	VARCHAR2(50)
		DESCR	VARCHAR2(200)
		INSERTED_BY	VARCHAR2(30)
		INSERT_TIME	DATE
		UPDATED_BY	VARCHAR2(30)
10		UPDATE_TIME	DATE
		-----	-----
		Name	Null? Type
		-----	-----
15	table ClinicalSite	CLINICAL_SITE_ID	NOT NULL NUMBER(4)
		SITE_NAME	VARCHAR2(50)
		COMPANY_ID	NUMBER
		DESCR	VARCHAR2(200)
		INSERTED_BY	VARCHAR2(30)
		INSERT_TIME	DATE
		UPDATED_BY	VARCHAR2(30)
		UPDATE_TIME	DATE
		-----	-----
20	table Company	Name	Null? Type
		-----	-----
		COMPANY_ID	NOT NULL NUMBER
		COMPANY_NAME	VARCHAR2(50)
		DESCR	VARCHAR2(200)
		INSERTED_BY	VARCHAR2(30)
		INSERT_TIME	DATE
		UPDATED_BY	VARCHAR2(30)
25		UPDATE_TIME	DATE
		-----	-----
	table Company Address	Name	Null? Type
		-----	-----
30		COMPANY_ID	NOT NULL NUMBER
		CONTACT_ID	NOT NULL NUMBER
		STREET	VARCHAR2(50)
		CITY	VARCHAR2(50)
		STATE	VARCHAR2(50)
		COUNTRY	VARCHAR2(100)
		ZIP	VARCHAR2(20)
		WEB_SITE	VARCHAR2(200)
		DESCR	VARCHAR2(200)
35		INSERTED_BY	VARCHAR2(30)
		INSERT_TIME	DATE

SUBSTITUTE SHEET (RULE 26)

- 80 -

		UPDATED_BY UPDATE_TIME	VARCHAR2(30) DATE
5	table Compound	Name Null? Type	
		-----	-----
		COMPOUND_ID NOT NULL NUMBER	
		COMPANY_ID NUMBER	
		THERAP_ID NUMBER	
		PATENT_ID NUMBER	
		REGISTRATION_NUM VARCHAR2(50)	
			Compound registration number is generally the unique ID for the compound in that company
10		COMPOUND_NAME VARCHAR2(200)	
		DESCR VARCHAR2(200)	
		INSERTED_BY VARCHAR2(30)	
		INSERT_TIME DATE	
		UPDATED_BY VARCHAR2(30)	
		UPDATE_TIME DATE	
15	table Compound Assay	Name Null? Type	
		-----	-----
		COMPOUND_ID NOT NULL NUMBER	
		ASSAY_ID NOT NULL NUMBER	
		DESCR VARCHAR2(200)	
		INSERTED_BY VARCHAR2(30)	
		INSERT_TIME DATE	
		UPDATED_BY VARCHAR2(30)	
		UPDATE_TIME DATE	
20	table Contact	Name Null? Type	
		-----	-----
		CONTACT_ID NOT NULL NUMBER	
		COMPANY_ID NOT NULL NUMBER	
		ADDRESS_ID NUMBER	
		LAST_NAME VARCHAR2(50)	
		MIDDLE_NAME VARCHAR2(20)	
		FIRST_NAME VARCHAR2(50)	
		OFFICE_PHONE VARCHAR2(20)	
		EMAIL VARCHAR2(100)	
		CELL_PHONE VARCHAR2(20)	
		PAGER_PHONE VARCHAR2(20)	
		FAX VARCHAR2(20)	
		WEB_SITE VARCHAR2(200)	
		DESCR VARCHAR2(200)	
25		INSERTED_BY VARCHAR2(30)	
		INSERT_TIME DATE	
		UPDATED_BY VARCHAR2(30)	
		UPDATE_TIME DATE	
30			
35			

SUBSTITUTE SHEET (RULE 26)

- 81 -

	table FamilyMember	Name	Null?	Type	
		PI	NOT NULL	VARCHAR2(50)	
		FAMILY_POSITION	NOT NULL	VARCHAR2(20)	
5		DESCR		VARCHAR2(200)	FK to Patient examples are sibblings, parents, grandparents, etc.
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
10	table FamilyMember Ethnicity	Name	Null?	Type	
		PI	NOT NULL	VARCHAR2(50)	
		FAMILY_POSITION	NOT NULL	VARCHAR2(20)	
		ETHNIC_CODE	NOT NULL	VARCHAR2(20)	FK pointing to the Ethnicity table
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
15		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20	table Feature	Name	Null?	Type	
		FEATURE_ID	NOT NULL	NUMBER	a feature is defined as either a genomic structure of a gene, or a fragment of DNA on a chromosome in the genome.
		GENE_ID		NUMBER	FK pointing to the Gene table in case of feature of a gene
25		FEATURE_NAME		VARCHAR2(50)	
		FEATURE_KEY_ID	NOT NULL	NUMBER(3)	FK pointing to the FeatureKey table to allow only validated feature types
30		MAP_ID		NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
35	table Feature Accession	Name	Null?	Type	
		ACCESSION	NOT NULL	VARCHAR2(20)	
		FEATURE_ID	NOT NULL	NUMBER	

SUBSTITUTE SHEET (RULE 26)

- 82 -

	START_POS	NUMBER	the start position of the feature in the sequence identified by that accession
	END_POS	NUMBER	the end position
	DESCR	VARCHAR2(200)	
5	INSERTED_BY	VARCHAR2(30)	
	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
	UPDATE_TIME	DATE	
	table Feature GeneLocation		
10	Name	Null?	Type
	-----	-----	-----
	GENE_ID	NOT NULL	NUMBER
	LOC_TYPE	NOT NULL	VARCHAR2(20)
			FK location type determines what type of structural relationship we are going to build in the particular case between the gene and the feature
15	FEATURE_ID	NOT NULL	NUMBER
	LOC_VALUE		NUMBER
	RANGE_FROM		NUMBER
	RANGE_TO		NUMBER
	DESCR		VARCHAR2(200)
20	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
	UPDATE_TIME		DATE
	table FeatureInfo		
25	Name	Null?	Type
	-----	-----	-----
	FEATURE_ID	NOT NULL	NUMBER
	QUALIFIER	NOT NULL	VARCHAR2(50)
	DETAIL_VALUE		VARCHAR2(2000)
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
30	UPDATED_BY		VARCHAR2(30)
	UPDATE_TIME		DATE
	table FeatureKey		
35	Name	Null?	Type
	-----	-----	-----
	FEATURE_KEY_ID	NOT NULL	NUMBER(3)
	FEATURE_KEY		VARCHAR2(20)
	SOURCE		VARCHAR2(20)
			feature key validates the feature types allowed who defined the key

SUBSTITUTE SHEET (RULE 26)

- 83 -

		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
5	table FeatureList	Name	Null?	Type
		-----	-----	-----
		FEATURE_ID	NOT NULL	NUMBER
		ITEM_ID	NOT NULL	NUMBER
				PK1 PK2. This structure is used to build the relationship between 2 features
10		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
15	table FeatureMap Location	Name	Null?	Type
		-----	-----	-----
		FEATURE_ID	NOT NULL	NUMBER
		MAP_ID	NOT NULL	NUMBER(4)
		MAP_LOCATION		NUMBER
		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
20		gene or genome map location of the feature		
25	table FeaurePub	Name	Null?	Type
		-----	-----	-----
		PUB_ID	NOT NULL	NUMBER
		FEATURE_ID	NOT NULL	NUMBER
				publication ID is the PK & FK so is the feature ID. This table builds the many-to- many relationship between the tables of Publication and Feature
30		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
35	table Gene	Name	Null?	Type
		-----	-----	-----
		GENE_ID	NOT NULL	NUMBER
				unique ID for a gene

SUBSTITUTE SHEET (RULE 26)

- 84 -

		GENE_SYMBOL NOT NULL	VARCHAR2(20)	standardized gene symbols used in the most simplistic manner to refer to a gene
		GENE_FAMILY_ID NUMBER		the family cluster a gene belongs to
		SPECIES_ID NOT NULL	NUMBER	the species which has this gene
5		PATENT_ID	NUMBER	the patent associated with this gene
		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
10	table GeneAccession	Name	Null?	Type
		-----	-----	-----
		GENE_ID	NOT NULL	NUMBER
		ACCESSION	NOT NULL	VARCHAR2(20)
		DESCR	VARCHAR2(200)	gene and the sequence association through the unique accession
15		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
20	table GeneAlias	Name	Null?	Type
		-----	-----	-----
		GENE_ID	NOT NULL	NUMBER
		ALIAS_NAME	NOT NULL	VARCHAR2(500)
		DESCR	VARCHAR2(200)	table to handle the various alias names for a gene
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
25		UPDATE_TIME	DATE	
30	table GeneFamily	Name	Null?	Type
		-----	-----	-----
		GENE_FAMILY_ID	NOT NULL	NUMBER(4)
		FAMILY_NAME		VARCHAR2(50)
		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	

35

SUBSTITUTE SHEET (RULE 26)

- 85 -

	table GeneMap Location	Name	Null?	Type	
		-----	-----	-----	
		GENE_ID	NOT NULL	NUMBER	
		MAP_ID	NOT NULL	NUMBER(4)	
		MAP_LOCATION		NUMBER	genome map location
5		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
10	table GenePathway	Name	Null?	Type	
		-----	-----	-----	
		PATHWAY_ID	NOT NULL	NUMBER(4)	the biological pathway in which the gene plays a role
		GENE_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
15		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20	table GenePriority	Name	Null?	Type	
		-----	-----	-----	
		GENE_ID	NOT NULL	NUMBER	
		TASK_FORCE_NUM		NUMBER(6)	internal info for gene project prioritization
		REX_PRIORITY		VARCHAR2(5)	
		NEW_PRIORITY	VARCHAR2(5)		
		REALM_PRIORITY		VARCHAR2(5)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
25		UPDATE_TIME		DATE	
30	table GenePub	Name	Null?	Type	
		-----	-----	-----	
		PUB_ID	NOT NULL	NUMBER	publications concerning a gene
		GENE_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	

- 86 -

	table GenotypeCode	Name	Null?	Type	
		GENOTYPE	NOT NULL	CHAR(1)	genotyping code for the polymorphism
		DESCR		VARCHAR2(200)	
5		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
	table Ethnicity	Name	Null?	Type	
10		ETHNIC_GROUP		VARCHAR2(20)	the major ethnic groups such as Caucasian, Asian, etc.
		ETHNIC_CODE	NOT NULL	VARCHAR2(20)	the Ethnic code that specifies the detailed geographical and ethnic background of the subject (patient, or genetic sample donor)
		ETHNIC_NAME		VARCHAR2(100)	the name description of the code
15		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20	table HapAssay	Name	Null?	Type	
		HAP_ID	NOT NULL	NUMBER	unique ID for the haplotype
		ASSAY_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
25		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
	table HapCompound Assay	Name	Null?	Type	
30		HAP_ID	NOT NULL	NUMBER	association table where the haplotype of a gene and a compound meet in a specific assay
		COMPOUND_ID	NOT NULL	NUMBER	
		ASSAY_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
35		UPDATED_BY		VARCHAR2(30)	

SUBSTITUTE SHEET (RULE 26)

- 87 -

		UPDATE_TIME	DATE		
	table	Name	Null?	Type	
5	table HapHistory	HAP_HISTORY_ID	NOT NULL	NUMBER	history table to keep track of the knowledge progress concerning a haplotype
10		HAP_ID		NUMBER	
		GENE_ID		NUMBER	
		CREATE_TIMESTAMP		DATE	when created
		HAP_NAME		VARCHAR2(50)	
		HISTORY_TIMESTAMP		DATE	when put into history
		ORIGINAL_DESCR		VARCHAR2(200)	
		HISTORY_DESCR		VARCHAR2(200)	
15	table Haplotype	INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20		HAP_ID	NOT NULL	NUMBER	
		GENE_ID		NUMBER	
		TIMESTAMP		DATE	
		HAP_NAME		VARCHAR2(50)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
25	table HapMethod	HAP_ID	NOT NULL	NUMBER	
		METHOD_ID	NOT NULL	NUMBER	method used in haplotyping
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
30	table HapPatent	HAP_ID	NOT NULL	NUMBER	
		PATENT_ID	NOT NULL	NUMBER	patent relates to a haplotype
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
35		INSERT_TIME		DATE	

SUBSTITUTE SHEET (RULE 26)

- 88 -

		table HapPub	NAME	Null?	Type	
			UPDATED_BY		VARCHAR2(30)	
			UPDATE_TIME		DATE	
5			PUB_ID	NOT NULL	NUMBER	
			HAP_ID	NOT NULL	NUMBER	publication relates to a haplotype
			DESCR		VARCHAR2(200)	
			INSERTED_BY		VARCHAR2(30)	
			INSERT_TIME		DATE	
			UPDATED_BY		VARCHAR2(30)	
			UPDATE_TIME		DATE	
10		table HapSNP	NAME	Null?	Type	
			HAP_ID	NOT NULL	NUMBER	
			POLY_ID	NOT NULL	NUMBER	haplotype consists of SNPs
			TIMESTAMP		DATE	
			DESCR		VARCHAR2(200)	
15			INSERTED_BY		VARCHAR2(30)	
			INSERT_TIME		DATE	
			UPDATED_BY		VARCHAR2(30)	
			UPDATE_TIME		DATE	
		table HapSNPHistory	NAME	Null?	Type	
20			HAP_SNP_HISTORY_ID	NOT NULL	NUMBER(4)	history about the progress of the SNPs that are used in a haplotype construction
			HAP_ID	NOT NULL	NUMBER	
			POLY_ID	NOT NULL	NUMBER	
			CREATE_TIMESTAMP		DATE	
			HISTORY_TIMESTAMP		DATE	
25			ORIGINAL_DESCR		VARCHAR2(200)	
			HISTORY_DESCR		VARCHAR2(200)	
			INSERTED_BY		VARCHAR2(30)	
			INSERT_TIME		DATE	
			UPDATED_BY		VARCHAR2(30)	
			UPDATE_TIME		DATE	
30		table LocationType	NAME	Null?	Type	
			LOC_TYPE	NOT NULL	VARCHAR2(20)	location type for the various genetic objects in the genome
			DESCR		VARCHAR2(200)	
			INSERTED_BY		VARCHAR2(30)	
			INSERT_TIME		DATE	
35			UPDATED_BY		VARCHAR2(30)	

SUBSTITUTE SHEET (RULE 26)

- 89 -

		UPDATE_TIME	DATE		
	table	Name	Null?	Type	
5	MapType	MAP_TYPE_ID	NOT NULL	NUMBER(4)	validation tool for the possible types of genome maps
		MAP_TYPE		VARCHAR2(20)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
10	Method	Name	Null?	Type	
		METHOD_ID	NOT NULL	NUMBER	
		METHOD	NOT NULL	VARCHAR2(50)	the lab experimental method
		PROTOCOL		VARCHAR2(2000)	the detailed protocol for a method
15		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20	MoleculeType	Name	Null?	Type	
		MOL_TYPE	NOT NULL	VARCHAR2(20)	molecular type for which a sequence is known
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
25	Nomenclature	Name	Null?	Type	
		GENE_SYMBOL	NOT NULL	VARCHAR2(20)	
		GENE_NAME		VARCHAR2(500)	used to standardize the naming of a gene.
30		SOURCE		VARCHAR2(20)	HUGO official name takes precedence in the naming scheme
		CYTO_LOCATION		VARCHAR2(50)	
35		GDB_ID		VARCHAR2(50)	cytogenetic location of a gene; this is the best way to map various gene names onto a single gene
					ID by other public data source

SUBSTITUTE SHEET (RULE 26)

- 90 -

		DESCR	VARCHAR2(200)	
		INSERTED_BY	VARCHAR2(30)	
		INSERT_TIME	DATE	
		UPDATED_BY	VARCHAR2(30)	
		UPDATE_TIME	DATE	
	5	table Patent	Name	Null?
				Type
		PATENT_ID	NOT NULL	NUMBER
		PATENT_TYPE		VARCHAR2(20)
	10	COMPANY_ID		NUMBER
		INVENTORS		VARCHAR2(200)
		ABSTRACT		VARCHAR2(1000)
		INSTITUTION		VARCHAR2(200)
		CLAIMS	VARCHAR2(4000)	the claims of the patent
		TITLE		VARCHAR2(200)
		DESCR		VARCHAR2(200)
	15	INSERTED_BY		VARCHAR2(30)
		INSERT_TIME		DATE
		UPDATED_BY		VARCHAR2(30)
		UPDATE_TIME		DATE
		table PatentImage	Name	Null?
				Type
		PATENT_ID	NOT NULL	NUMBER
	20	PDFFILE		BLOB
		DESCR		VARCHAR2(20)
		INSERTED_BY		VARCHAR2(30)
		INSERT_TIME		DATE
		UPDATED_BY		VARCHAR2(30)
		UPDATE_TIME		DATE
		table Pathway	Name	Null?
	25			Type
		PATHWAY_ID	NOT NULL	NUMBER(4)
		PATHWAY_NAME		VARCHAR2(50)
		DESCR		VARCHAR2(200)
		INSERTED_BY		VARCHAR2(30)
		INSERT_TIME		DATE
		UPDATED_BY		VARCHAR2(30)
	30	UPDATE_TIME		DATE
		table PathwayPub	Name	Null?
				Type
		PATHWAY_ID	NOT NULL	NUMBER(4)
		PUB_ID	NOT NULL	NUMBER
		DESCR		VARCHAR2(200)
		INSERTED_BY		VARCHAR2(30)
	35			publications concerning a pathway

SUBSTITUTE SHEET (RULE 26)

- 91 -

		INSERT_TIME UPDATED_BY UPDATE_TIME	DATE VARCHAR2(30) DATE	
	table PolyMethod	Name	Null?	Type
5		-----	-----	-----
		POLY_ID METHOD_ID DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME	NOT NULL NOT NULL VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30)	NUMBER NUMBER VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30)
10	table Polymorphism	Name	Null?	Type
		-----	-----	-----
		POLY_ID FEATURE_ID	NOT NULL NOT NULL	NUMBER NUMBER
15		VARIATION_TYPE POLY_CONSEQUENCE	NOT NULL	VARCHAR2(3) VARCHAR2(200)
		SYSTEM_NAME		VARCHAR2(50)
		START_POS		NUMBER
20		END_POS LENGTH		NUMBER NUMBER
		PRIMER_ID		VARCHAR2(50)
25		SAMPLE_SIZE		NUMBER
		QC		VARCHAR2(20)
		DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME		VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30)
30	table PolyNameAlias	Name	Null?	Type
		-----	-----	-----
35		POLY_ID	NOT NULL	NUMBER

SUBSTITUTE SHEET (RULE 26)

- 92 -

	NAME_ALIAS	VARCHAR2(50)	other names for the polymorphism
	EXTERNAL_KEY	VARCHAR2(50)	unique ID by other data sources
	KEY_SOURCE	VARCHAR2(20)	
	DESCR	VARCHAR2(200)	
5	INSERTED_BY	VARCHAR2(30)	
	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
	UPDATE_TIME	DATE	
	table PolySeq3		
	Name	Null?	Type
	-----	-----	-----
10	POLY_ID	NOT NULL	NUMBER
	SEQ_TEXT	NOT NULL	VARCHAR2(250)
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
	UPDATE_TIME		DATE
15	table PolySeq5		
	Name	Null?	Type
	-----	-----	-----
	POLY_ID	NOT NULL	NUMBER
	SEQ_TEXT	NOT NULL	VARCHAR2(250)
	DESCR		VARCHAR2(200)
20	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
	UPDATE_TIME		DATE
	table PubImage		
	Name	Null?	Type
	-----	-----	-----
25	PUB_ID	NOT NULL	NUMBER
	PDFFILE		BLOB
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
	UPDATE_TIME		DATE
30	table Publication		
	Name	Null?	Type
	-----	-----	-----
35	PUB_ID	NOT NULL	NUMBER
	AUTHORS		VARCHAR2(200)
	TITLE		VARCHAR2(500)
	INSTITUTION		VARCHAR2(200)
	SOURCE		VARCHAR2(200)

SUBSTITUTE SHEET (RULE 26)

- 93 -

	KEYWORDS	VARCHAR2(500)	
	ABSTRACT	VARCHAR2(4000)	
	EXTERNAL_KEY	VARCHAR2(50)	
	KEY_SOURCE	VARCHAR2(20)	
	DESCR	VARCHAR2(200)	
	INSERTED_BY	VARCHAR2(30)	
5	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
	UPDATE_TIME	DATE	
10	table SeqAccession	Name	Null?
		-----	-----
	SEQ_ID	NOT NULL	NUMBER
	ACCESSION	NOT NULL	VARCHAR2(20)
	VERSION		NUMBER
	GI		NUMBER
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
15		UPDATE_TIME	DATE
20	table SeqFeatureLocation	Name	Null?
		-----	-----
	LOC_TYPE	NOT NULL	VARCHAR2(20)
	SEQ_ID	NOT NULL	NUMBER
	FEATURE_ID	NOT NULL	NUMBER
	LOC_VALUE		NUMBER
	RANGE_FROM		NUMBER
	RANGE_TO		NUMBER
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
25		UPDATE_TIME	DATE
30	table SeqGeneLocation	Name	Null?
		-----	-----
	GENE_ID	NOT NULL	NUMBER
	LOC_TYPE	NOT NULL	VARCHAR2(20)
	SEQ_ID	NOT NULL	NUMBER
	LOC_VALUE		NUMBER
	RANGE_FROM		NUMBER
	RANGE_TO		NUMBER
	DESCR		VARCHAR2(200)
	INSERTED_BY		VARCHAR2(30)
	INSERT_TIME		DATE
	UPDATED_BY		VARCHAR2(30)
35		UPDATE_TIME	

SUBSTITUTE SHEET (RULE 26)

- 94 -

		UPDATE_TIME	DATE		
	table SeqSeq Location	Name	Null?	Type	sequence and sequence location relationship
5	table SeqSeq Location	LOC_TYPE	NOT NULL	VARCHAR2(20)	
		SEQ_ID	NOT NULL	NUMBER	
		ITEM_ID	NOT NULL	NUMBER	
		LOC_VALUE		NUMBER	
		RANGE_FROM		NUMBER	
		RANGE_TO		NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
10		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
15	table SequenceText	Name	Null?	Type	the actual sequence text in a string of characters
	table SequenceText	SEQ_ID	NOT NULL	NUMBER	
		SMALL_SEQ_TEXT		VARCHAR2(4000)	
		LARGE_SEQ_TEXT		LONG	
20					
25	table SNPAssay	DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
30	table SNPAssay	Name	Null?	Type	polymorphism in an assay
	table SNPAssay	POLY_ID	NOT NULL	NUMBER	
		ASSAY_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
	table SNPPatent	UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
35		Name	Null?	Type	polymorphism related patent
		POLY_ID	NOT NULL	NUMBER	

SUBSTITUTE SHEET (RULE 26)

- 95 -

		PATENT_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
5	table SNPPub	Name	Null?	Type	a polymorphism related publications
		-----	-----	-----	
		PUB_ID	NOT NULL	NUMBER	
		POLY_ID	NOT NULL	NUMBER	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
10		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
	table Species	Name	Null?	Type	a biological species
		-----	-----	-----	
		SPECIES_ID	NOT NULL	NUMBER	
15		SYSTEM_NAME		VARCHAR2(50)	its scientific systematic name
		COMMON_NAME		VARCHAR2(20)	its common name
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
20		UPDATE_TIME		DATE	
	table Patient	Name	Null?	Type	
		-----	-----	-----	
		CLINICAL_SITE_ID	NOT NULL	NUMBER(4)	
		PI	NOT NULL	VARCHAR2(50)	patient ID as the unique identifier for a person
		GENDER		CHAR(1)	
25		YOB		DATE	year of birth
		FAMILY_ID		VARCHAR2(20)	family ID if known
		FAMILY_POSITION		VARCHAR2(20)	the generation information in a family
		EXTERNAL_KEY		VARCHAR2(20)	based genetic study the ID used by other sources
		KEY_SOURCE		VARCHAR2(20)	
30		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
	table PatientCohort	Name	Null?	Type	the patient set used in a particular project
		-----	-----	-----	
35		PROJECT_ID	NOT NULL	NUMBER	

SUBSTITUTE SHEET (RULE 26)

- 96 -

		PI	NOT NULL	VARCHAR2(50)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
5	table PatientEthnicity	Name	Null?	Type	Ethnic background of a person
		-----	-----	-----	-----
		PI	NOT NULL	VARCHAR2(50)	
		ETHNIC_CODE	NOT NULL	VARCHAR2(20)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
10	table PatientHap	Name	Null?	Type	Haplotyping information of a person
		-----	-----	-----	-----
		PI	NOT NULL	VARCHAR2(50)	
		HAP_ID	NOT NULL	NUMBER	
		QC		VARCHAR2(20)	
		TIMESTAMP		DATE	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
15	table PatientHapClin Outcome	Name	Null?	Type	the clinical measurement against a particular haplotype in a person
		-----	-----	-----	-----
		SI	NOT NULL	VARCHAR2(50)	
		HAP_ID	NOT NULL	NUMBER	
		CLIN_TEST_NAME		VARCHAR2(50)	
		CLIN_TEST_RESULT		VARCHAR2(20)	
		DESCR		VARCHAR2(200)	
		INSERTED_BY		VARCHAR2(30)	
		INSERT_TIME		DATE	
		UPDATED_BY		VARCHAR2(30)	
		UPDATE_TIME		DATE	
20	table SubjectHap History	Name	Null?	Type	history record of the haplotype information for a subject
		-----	-----	-----	-----
		S_HAP_HISTORY_ID	NOT NULL	NUMBER	
		HAP_ID		NUMBER	
		QC		VARCHAR2(20)	
		SI		VARCHAR2(50)	
		CREATE_TIMESTAMP		DATE	
25					
30					
35					

SUBSTITUTE SHEET (RULE 26)

- 97 -

	HISTORY_TIMESTAMP	DATE	
	ORIGINAL_DESCR	VARCHAR2(200)	
	HISTORY_DESCR	VARCHAR2(200)	
	INSERTED_BY	VARCHAR2(30)	
	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
	UPDATE_TIME	DATE	
5	table SubjectMedical History	Name Null? Type	medical conditions of a subject when the genetic sample is collected
	SI	NOT NULL VARCHAR2(50)	
	THERAP_ID	NOT NULL NUMBER	FK pointing to a therapeutic area which maps to a disease
10		DESCR VARCHAR2(200)	
	INSERTED_BY	VARCHAR2(30)	
	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
	UPDATE_TIME	DATE	
15	table SubjectSNP	Name Null? Type	
	SI	NOT NULL VARCHAR2(50)	
	POLY_ID	NOT NULL NUMBER	
	GENOTYPE	NOT NULL CHAR(1)	the genotyping information of a person at a given polymorphic site
20		HAP_ID NUMBER	the polymorphism may be a part of a haplotype
	QC	VARCHAR2(20)	
	TIMESTAMP	DATE	
	DESCR	VARCHAR2(200)	
	INSERTED_BY	VARCHAR2(30)	
	INSERT_TIME	DATE	
	UPDATED_BY	VARCHAR2(30)	
25		UPDATE_TIME DATE	
	table SubjectSNP History	Name Null? Type	history record for a polymorphism in a person
	S_SNPHISTORY_ID	NOT NULL NUMBER	
	SI	VARCHAR2(50)	
	POLY_ID	NUMBER	
	HAP_ID	NUMBER	
	GENOTYPE	CHAR(1)	
	CREATE_TIMESTAMP	DATE	
	QC	VARCHAR2(20)	
	HISTORY_TIMESTAMP	DATE	
	ORIGINAL_DESCR	VARCHAR2(200)	
	HISTORY_DESCR	VARCHAR2(200)	
35		INSERTED_BY VARCHAR2(30)	

SUBSTITUTE SHEET (RULE 26)

- 98 -

		INSERT_TIME UPDATED_BY UPDATE_TIME	DATE VARCHAR2(30) DATE	
	table Therap Compound	Name	Null?	Type
5		COMPOUND_ID THERAP_ID DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME	NOT NULL NOT NULL VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE	NUMBER NUMBER VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE
10	table Therapeutic Area	Name	Null?	Type
15		THERAP_AREA THERAP_ID RELATED_AREA DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME	NOT NULL	VARCHAR2(50) NUMBER NUMBER(4) VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE
20	table Therapeutic Gene	Name	Null?	Type
25		GENE_ID THERAP_ID DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME	NOT NULL NOT NULL VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE	NUMBER NUMBER VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE
30	table VariationType	Name	Null?	Type
35		VARIATION_TYPE DESCR INSERTED_BY INSERT_TIME UPDATED_BY UPDATE_TIME	NOT NULL	VARCHAR2(3) VARCHAR2(200) VARCHAR2(30) DATE VARCHAR2(30) DATE

SUBSTITUTE SHEET (RULE 26)

- 99 -

With reference to Figures 25A-E, and as is apparent to one of skill in the art, rectangular boxes represent parent tables in the database, while rounded boxes represent children tables that depend on their parent tables. This dependency requires that a parent record be in existence before a child record can be created. Within the tables the primary keys are shown at the top and are partitioned off from the other fields by a line. Repeat instances of primary keys are indicated by "(FK)" meaning foreign key.

FIG. 25F describes the relational symbols used in FIGS. 25A-E. A relational symbol such as indicated by reference numeral 2 represents an identifying parent/child relationship. It depicts the not nullable 1-to-0-or-many relationship. Not nullable means that one cannot create a record in the child unless a corresponding record (indicated by the particular relating field) exists or is created in the parent. A relational symbol such as indicated by reference numeral 4 represents a non-identifying parent/child relationship. It represents the nullable 0-or-1-to-many relationship. A relational symbol such as indicated by reference numeral 6 represents an identifying parent/child relationship. It depicts the not nullable 1-to-1-or-many relationship. A relational symbol such as indicated by reference 8 represents a non-identifying parent/child relationship. It represents the not nullable 1-to-1-or-many relationship. A relational symbol such as indicated by reference numeral 10 represents an identifying parent/child relationship. It depicts the not nullable 1-to-exact-1 relationship. A relational symbol such as indicated by reference numeral 12 represents a non-identifying parent/child relationship. It represents the nullable 0-or-1-to-exact-1 relationship. A relational symbol such as indicated by reference numeral 14 represents a non-identifying parent/child relationship. It depicts the not nullable 0-or-1-to-many relationship.

30

2. Database Model Version 2

A preferred embodiment of the database model of the invention contains 5 sub-models and 83 tables. This model is organized at three levels of detail: sub-model, table and fields of tables.

35

SUBSTITUTE SHEET (RULE 26)

- 100 -

o a. **Submodels**

The five submodels of this preferred embodiment are depicted in FIGURES 44A-E and are described below.

5 **Genomic Repository (Fig. 44A):** This submodel organizes genomic information by spatial relationships. The central element of the genomic repository submodel is the *Genetic_Feature* object, which is an abstract template for any object having a nucleotide sequence that can be mapped to the nucleotide sequence of other objects by providing a start and stop position. Genetic objects (also referred to herein as genetic features) that are organized by the genomic repository submodel include, but are not limited to, chromosomes, genomic regions, genes, gene regions, gene transcripts and polymorphisms.

10

15 Some of these genetic objects contain nucleotide sequences identified in the public domain while others represent some derived final state of a calculation as described below for generating an assembly and gene structure. In object parlance, *Genetic_Feature* is the base class from which these other objects are extended from. In relational terms, the primary keys for each of these genetic objects are foreign keys to the primary key of the *Genetic_Feature* table. Each genetic feature is represented by a unique *Feature_ID* that is generated by the database management system's sequence generator. The principal properties of a genetic feature are start position, stop position and reference. The start and stop positions indicate the extent of that genetic feature relative to another given genetic feature, which is the reference and is represented by another unique *Feature_ID* generated by the database management system's sequence generator. The reference serves as the parent in this table by the self pointing foreign key of *Ref_ID*. The *Feature_Type* attribute gives the database model the possibility to determine what type of spatial relationship is legal among what types of genetic features at a given time in a given context. For example, the system will allow a gene to map on to a sequence assembly by defining the start and end position of the gene in the assembly. A gene region is mapped on to a gene through a similar mechanism. The mapping of the gene region onto the assembly will therefore be made possible through the transverse of links between the *Sq_Assembly* and *Gene* tables and

20

25

30

35

SUBSTITUTE SHEET (RULE 26)

- 101 -

- ° between the Gene and Gene_Region tables. Similarly, a polymorphism is mapped on to a sequence that will be a building block for the assembly, which in turn determines the reference sequence for the gene being analyzed for genetic variation.

5 This centralized organization of the positional relationships of various genetic features through one parent table is believed to be novel and offers significant advantages over known database designs by reducing the cost of maintaining the database and increasing the efficiency of querying the database. In addition, organization of genetic features by this novel relative positional referencing approach allows this information to readily be organized into genomic sequences, gene and gene transcript structures and also into diagrams mapping genetic features to the assembled genomic and gene sequences. The design and use 10 of the genomic repository submodel are described in more detail below.

15 The most important genetic features are defined below, with the names of the tables containing information specific to each genetic feature indicated in parentheses if different.

20 **Genome:** The ultimate root feature for all genetic features. Its reference link is always null, i.e. it is itself not mapped to anything. As long as there is not a complete genomic sequence, there is little reason to actually have a table for this.

25 **Chromosome:** The highest unit of contiguous genomic sequence. The reference for chromosomes would be the genome. Because there is no overlap between chromosomes, the genome is a disjoint assembly of all the chromosomes, in a particular order, with gaps between all neighboring chromosomes.

30 **Assembly (Seq_Assembly):** An assembly is defined as a set of one or more contigs, ordered in a certain way. In the absence of genome or chromosome features, the assembly will be the root of the genomic sequence mapping tree. Its reference is then null.

35 **Contig:** A contiguous assembly of overlapping sequences that are ordered 5' to 3'. A contig is preferably referenced to its assembly.

Unordered Contig: A collection of contiguous sequences that are not ordered and may or may not have gaps between them. An unordered

SUBSTITUTE SHEET (RULE 26)

- 102 -

- contig, which is represented by an external accession number, is broken down and used in building the sequence assembly as a normal contig.

Sequence (Genetic_Accession): A stretch of nucleotide sequence data. This data is represented by a unique accession number and a version number. Sequence data can include YACs, BACs, Gene sequences and ESTs. Typically, the source of sequence data will be GenBank and other sequence databases, but any piece of sequence is allowed. A sequence is normally referenced to its contig.

Gap: The gap is a zero length feature which indicates that there is an unknown amount of additional sequence to be inserted at this point. It is merely an indication of lack of knowledge and has no physical counterpart. Gaps are usually referenced to the Assembly in which they separate the contigs. They would also be used with the genome as reference to separate the chromosomes.

Gene: This defines the gene locus in terms of base pairs. The start and stop positions of the gene are not usually well defined. A gene starts somewhere between the end of the previous gene and the beginning of the first recognized promoter element. A gene ends somewhere between the end of the last exon and the beginning of the next gene. In practice, including at least four kilobase pairs of promoter region are desirable. A gene is preferably referenced to an assembly.

Gene Region: A particular region of the gene. Gene regions are classified according to their transcriptional or translational roles. For a gene sequence, there are promoters, introns and exons. In a transcribed sequence, different gene regions include 5' and 3' untranslated regions (UTRs) as well as protein-coding regions.

Polymorphism: A part of the genome that is polymorphic across different individuals in a population. The most common polymorphisms are SNPs, the length of which is one base pair. All polymorphisms are preferably referenced to the sequence with respect to which they were found.

Primer: A short region of about 20 base pairs corresponding to an oligonucleotide for priming PCR reactions and/or primer extension reactions in a variety of polymorphism detection assays. Primers are preferably referenced to

SUBSTITUTE SHEET (RULE 26)

- 103 -

- the sequence they were designed from.

Transcript: The result of a splice operation of the gene sequence. There can be several transcripts per gene, to indicate splice variants. The transcript is mapped to genetic features via the Splice table, but does not map to anything the conventional way, i.e., its reference is always null. The transcript starts another branch of positional mapping of genetic features related to protein sequences.

While the above definitions sets forth the preferred reference for certain kinds of genetic features (such as polymorphisms should be referenced to sequences), it is important to realize that the schema design allows the reference for any particular genetic feature to be flexible and the reference may be changed as circumstances warrant. Whenever the user asks for a start or stop position, he should ask “what is the position of X relative to Y”, rather than “what is the position of X”, which is an ambiguous question. The correct question can be answered with a simple tree traversal routine. The answer will not depend on which genetic feature serves as the direct reference for X.

20 All start and stop positions are preferably given in nucleotide
positions, even for protein features. This retains the uniformity of the mapping
scheme, and the translation to amino acid positions is trivial. The first position in a
sequence has the position 1. The stop position is one more than the position of the
last base, such that $\text{length} = \text{abs}(\text{stop} - \text{start})$. The stop position can be less than
the start position, in which case a reverse complement needs to be taken on the
reference sequence to get the feature sequence. However, in another embodiment, a
25 different physical map could be generated that would be expressed in something
else than base pair positions, e.g. centimorgans.

Another level of hierarchy could be added to the genomic repository submodel by implementing each gene region type as its own subclass extending the Gene_Region (i.e., creating separate tables for different gene region types with the primary key linked as foreign key to the Gene_Region table). Alternatively, the hierarchy could be flattened by eliminating the Gene_Region object and have individual gene region types directly subclassing Genetic_Feature.

SUBSTITUTE SHEET (RULE 26)

- 104 -

In addition, other genetic features may be added as the database develops. For example, it is contemplated that an additional useful genetic feature is a secondary structure region of a protein, e.g., alpha-helix, beta-sheet, turn and coil regions. For each new genetic feature, a new genetic feature type needs to be created, and a table to contain information specific to the new genetic feature type needs to be added. Some genetic features will not have additional information (Gap, for example), and thus no table is necessary in such cases. The primary key of the genetic feature type specific table always needs to double as a foreign key to the Genetic_Feature table. This design enables the database submodel to be flexible and extendable enough to accommodate the rapid evolution and increase in volume of genomic information.

Assembly of a genomic sequence typically starts with a gene name and comprises performance of the following steps by a human and/or computer operator:

- (a) Identify sequences related to this gene by searching GenBank and/or other sequence databases.
- (b) Generate contigs and alignments from the identified sequences using a commercial sequence alignment program such as Phrap.
- (c) Store the assembly, contigs, and sequences as selected by the operator in the database (see Table A).

The results of this process are one assembly made up out of one or more contigs, which in turn are made out of potentially many sequences. This is illustrated in the diagram shown in Figure 47 and Table A below.

Table A

Feature Id	Feature Name	Feature Type	Reference	Start	Stop
1	Assembly	Assembly	-	-	-
2	Contig 1	Contig	1	1	400
3	Gap 1	Gap	1	400	400
4	Contig 2	Contig	1	400	750
5	Gap 2	Gap	1	750	750
6	Contig 3	Contig	1	750	1000
7	A2345	Séquence	2	1	250
8	A3724	Sequence	2	30	180
9	M28384	Sequence	2	100	350
10	EST283729	Sequence	2	300	400

SUBSTITUTE SHEET (RULE 26)

- 105 -

Feature Id	Feature Name	Feature Type	Reference	Start	Stop
11	A2445	Sequence	4	1	250
12	M24783	Sequence	4	200	350
13	M9485	Sequence	6	1	250
14	EST374886	Sequence	6	80	220

- 5 If there is more than one contig, the assembly will be disjoint, indicating that an unknown amount of sequence is missing in one or more places. Each such place is marked by a gap feature, which is referenced to the assembly feature.

10 The assembly may be used in conjunction with additional information on the location of gene regions, i.e., promoters, exons and introns and the like, to generate a gene structure. Information on gene regions may be private or found in the public domain. Preferably, information on the gene regions is stored in the database and the gene structure is displayed to the user. An example of how such a display would typically appear is shown in Figure 48. The corresponding additions to Table A are shown in Table B below.

15

Table B

Feature Id	Feature Name	Feature Type	Reference	Start	Stop
15	EXAMPLE	Gene	1	120	800
16	Promoter	Gene Region	15	1	180
17	Exon 1	Gene Region	15	180	280
18	Intron 1	Gene Region	15	280	500
19	Exon 2	Gene Region	15	500	680

20 The genomic repository database submodel of the present invention also allows referencing of gene transcripts to other genetic features. The relationship between a transcript and a genomic sequence is not a simple start/stop mapping, but requires the concatenation of separate regions of the genomic sequence into one combined sequence, the gene transcript. In the present submodel, this is represented by a Splice table, which provides an ordered list of splice elements (usually exon regions) for each splice product (usually a transcript). Although the splice product is a feature, it is not mapped to anything else, i.e. it is the root of its own mapping tree. Components of this tree can be 5' and 3' UTRs, a protein, and features related to that protein such as secondary structure or signal sequences. The diagram in Figure 49 shows the full mapping example down to the

25

30

35

SUBSTITUTE SHEET (RULE 26)

- 106 -

- o protein regions. The Splice table for this example is set forth in Table C below, which incorporates the EXAMPLE information from Table B:

Table C

Splice Id	Order No	Region Id	Product Id
1	1	17	20
1	2	19	20

5

Also, Table A would have the following additions:

10

Feature Id	Feature Name	Feature Type	Reference	Start	Stop
20	EXAMPLE trans	Transcript	-	-	-
21	5' UTR	Region	20	1	40
22	CETP prot	Protein	20	40	240
23	3' UTR	Region	20	240	280

15

20

2. **Clinical Repository (FIGURE 44B):** This submodel encapsulates polymorphism and clinical information about subjects and reference individuals used in clinical trials. The Subject_Hap table associates a given haplotype (identified by the field of Hap_Id) with each patient subject having that haplotype (identified by the field of Sub_ID (Subject ID)). Associations between polymorphisms in a locus (including SNPs and haplotypes) and different clinical phenotypes (such as disease association and drug response) are captured by the Measure_ID and Measure_Result fields in the Subject_Measurement table.

25

30

35

3. **Variation Repository (FIGURE 44C):** This submodel covers the haplotypes and the polymorphisms associated with genes and patient cohorts used in clinical trial studies. Polymorphisms may include SNPs, small insertions/deletions, large insertions/deletions, repeats, frame shifts and alternative splicing. The Haplotype table has the basic fields of Hap_ID, Hap_Locus_ID and Hap_Name that identify a unique haplotype of a given gene or locus. A haplotype is further defined by the set of SNPs that it comprises, which are listed in the Hap_SNP table. This association table uses data fields named Hap_ID (haplotype ID) and Poly_ID (polymorphism ID) to allow the mapping of the many-to-many relationship between haplotype and the polymorphism(s) that constitute the specific haplotype. The haplotype and SNP information may be used in clinical trial and drug assay studies. Data from such studies are stored in the clinical repository

SUBSTITUTE SHEET (RULE 26)

- 107 -

- and drug repository submodels.

4. **Literature Repository (FIGURE 44D):** This
submodel enables annotation of the genetic features in the genomic repository and
the variation information in the variation repository with public domain information
relating to these objects. Annotation information useful in the invention may be
5 found in peer-reviewed scientific publications, patent documents, or by searching
on-line electronic databases. The relationship between the annotated objects and
their referencing information are linked through the various association tables.

5. **Drug Repository (FIGURE 44E):** This submodel
10 captures client companies, contact information, compounds used in different disease
areas and assay results for such compounds in regards to polymorphisms and
haplotypes of target genes. Associations between polymorphisms in a drug target
and activity of a candidate drug are captured by the following data fields: Hap_ID
15 (Hap_Locus table); Compound_ID (Compound table), and the Assay_ID (Assay,
Assay_Experiment, and Assay_Result tables).

b. **Abbreviations**

20 The following abbreviations are used extensively in the data model
described herein below, both in the table schema and in the diagram drawings
shown in FIGURES 44A-E.

- AA: amino acid
- Clin: clinical
- Descr: description
- FK: foreign key
- Geo: geographical
- HAP: Haplotype
- ID: identifier
- Info: information
- Loc: location
- Med: medical
- Mol: molecule

SUBSTITUTE SHEET (RULE 26)

- 108 -

- NT: nucleotide
- PK: primary key
- Poly: polymorphism
- Pos: position
- 5 • ub: publication
- QC: quality control
- Seq: sequence
- SNP: single nucleotide polymorphism
- 10 • Sub: subject
- Therap: therapeutic

c. Tables

This preferred embodiment of a database of the present
15 invention contains 83 tables as follows:

- 1) Alignment_Component
- 2) Allele
- 3) Assay
- 20 4) Assay_Experiment
- 5) Assay_Result
- 6) Assembly_Component
- 7) Chromosome
- 25 8) Clasper_Clone
- 9) Class_System
- 10) Client_Genes
- 11) Clinical_Site
- 12) Clinical_Trial
- 30 13) Cohort
- 14) Company
- 15) Company_Address
- 16) Compound
- 35 17) Contact

SUBSTITUTE SHEET (RULE 26)

- 109 -

- 18) Contig
- 19) Discovery_Method
- 20) Disease_Susceptibility
- 21) Drug
- 5 22) Drug_Target
- 23) Electronic_Material
- 24) Family
- 25) Feature_Info
- 10 26) Feature_Literature
- 27) Gene
- 28) Gene_Alias
- 29) Gene_Class
- 30) Gene_Hap_Locus
- 15 31) Gene_Map_Location
- 32) Gene_Nomenclature
- 33) Gene_Pathway
- 34) Gene_Region
- 20 35) Gene_Transcript
- 36) Genetic_Accession
- 37) Genetic_Feature
- 38) Genome_Map
- 39) Genomic_Region
- 25 40) Geo_Ethnicity
- 41) Hap_Allele
- 42) Hap_Confirmation
- 43) Hap_Locus
- 30 44) Hap_Locus_Poly
- 45) Hap_Locus_Subject
- 46) Haplotype
- 47) Ind_Geo_Ethnicity
- 48) Ind_Medical_History
- 35 49) Individual

SUBSTITUTE SHEET (RULE 26)

- 110 -

- - 50) Literature
 - 51) Locus_Accession
 - 52) Med_Thesaurus
 - 53) Patent
 - 54) Patent_Full_Text
 - 55) Pathway
 - 56) Pathway_Literature
 - 57) Poly_Confirmation
 - 58) Poly_Patent
 - 59) Poly_Pub
 - 60) Polymorphism
 - 61) Project
 - 62) Project_Gene
 - 63) Protein
 - 64) Publication
 - 65) Seq_Accession
 - 66) Seq_Assembly
 - 67) Seq_Text
 - 68) Species
 - 69) Splice
 - 70) Subject
 - 71) Subject_Cohort
 - 72) Subject_Hap
 - 73) Subject_Measurement
 - 74) Subject_Poly
 - 75) Therap_Drug
 - 30 76) Therapeutic_Area
 - 77) Therapeutic_Gene
 - 78) Transcript_Region
 - 79) Trial_Cohort
 - 80) Trial_Drug
 - 35 81) Trial_Measurement

SUBSTITUTE SHEET (RULE 26)

- 111 -

82) Unordered_Contig

83) URL

d. Fields

5

Figures 44A-E show the fields of each of the tables in the currently used database. The following are descriptions of the fields in the database:

Table Name	Field Name	PK	FK	Comments	Relationship Explanation
Alignment	Descr	No	No	free note text about the record; occurs in all tables	
Component	Weight	No	No	weight for a component to take in alignment decision making	
	Alignment_End	No	No	end of the align of component in the contig	
	Alignment_Start	No	No	start of the align of component in the contig	
	Segment_List	No	No	the actual consensus alignment text with gaps	
	Component_ID	No	Yes	component used in the alignment	
	Order_Num	Yes	No	order of the component in the alignment	An Alignment_Component is associated with exactly one Contig.
10	Contig_ID	Yes	Yes	contig constructed by the alignment	An Alignment_Component is associated with exactly one Genetic_Feature.
15	Allele	Descr	No	No	
	AA_Seq_Text	No	No	amino acid sequence for the allele	
	Codon_Seq_Text	No	No	codon sequence	
	NT_Seq_Text	No	No	nucleotide sequence	
20	Allele_Name	No	No	descriptive name	
	Poly_ID	Yes	Yes	id of the polymorphism	A Hap_Allele is associated with one to many Allele.
	Allele_Code	Yes	No	name that reveals the allele, usually the same as NT_Seq_Text	A Subject_Poly is associated with exactly one Allele.
					An Allele is associated with exactly one Polymorphism.
25	Assay	Descr	No	No	
	Assay_Type	No	No		
	Assay_ID	Yes	No	id for an assay	An Assay_Experiment is associated with exactly one Assay.
	Assay_Name	No	No	descriptive name	
30	Assay_Experiment	Descr	No	No	
	Exp_Date	No	No	date of experiment	
	Operator	No	No		
	Exp_Parameters	No	No	parameters used in the experiment	
	Assay_ID	No	Yes	the assay where the experiment belongs	
	Exp_ID	Yes	No	id for an experiment	An Assay_Result is associated with exactly one Assay_Experiment.
35	Assay_Result	Descr	No	No	An Assay_Experiment is associated with exactly one Assay.

SUBSTITUTE SHEET (RULE 26)

- 112 -

	QC	No	No	quality control of the experiment	
	Assay_Result	No	No	free text of the assay result	
	Hap_ID	Yes	Yes	HAP in study	
	Protein_ID	Yes	Yes	protein in study+E70	
	Compound_ID	Yes	Yes	compound in study	
5	Exp_ID	Yes	Yes	the experiment	An Assay_Result is associated with exactly one Clasper_Clone.
	Clone_ID	Yes	Yes	clone involved	An Assay_Result is associated with exactly one Assay_Experiment.
	Assembly_Component_Component	No	Ycs	component used in the assembly	An Assay_Result is associated with exactly one Compound.
10	Descr	No	No		An Assay_Result is associated with exactly one Protein.
	Order_Num	Yes	No	order of the component in the assembly	
	Assembly_ID	Yes	Yes	id for the assembly	
	Chromo-some	Descr	No	No	
15		Chromosome_Name	No	No	an descriptive name
		Species_ID	No	Yes	the species of the genome
		Chromosome_ID	Yes	Yes	id for a chromosome
20			ID		A Gene_Map_Location is associated with exactly one Chromosome.
					A Gene_Nomenclature is associated with zero or one Chromosome.
					A Chromosome is associated with exactly one Genetic_Feature.
					A Chromosome is associated with zero or one Species.
	Clasper_Clone	Clone_ID	Yes	No	id for a clone
25		Hap_ID	Yes	Yes	HAP the clone represents
		Descr	No	No	
		Sub_ID	No	Yes	the individual from which the clone is obtained
					An Assay_Result is associated with exactly one Clasper_Clone.
					A Clasper_Clone is associated with zero or one Subjects.
					A Clasper_Clone is associated with exactly one Haplotype.
30	Class_System	Path_Name	No	No	the specific path a class is defined
		Descr	No	No	
		Class_Name	No	No	descriptive name
		Node_Level	No	No	level at which the class is located
		Super_ID	No	No	the parent of the current class
35		Class_ID	Yes	No	id for a class
					A Gene_Class is associated with exactly one Class_System.

SUBSTITUTE SHEET (RULE 26)

- 113 -

		Class_System	No	No	the system used to define the class	
		Client_Genes	Request_Details	No	No	details of the request
			Security_Code	No	No	security level of the request
			Descr	No	No	
			Request_Order	No	No	the physical order of the request
			Company_ID	Yes	Yes	id for company that makes the request
5			Gene_ID	Yes	Yes	id of the gene
		Clinical_Site	Descr	No	No	
			Company_ID	No	Yes	
			Site_Name	No	No	descriptive name
			Clinical_Site_ID	Yes	No	A Clinical_Site R/41 at least one Subject.
10						A Subject is associated with exactly one Clinical_Site.
		Clinical_Trial	Descr	No	No	A Clinical_Site is associated with exactly one Company.
			Therap_ID	No	Yes	id for the therapeutic area
			Start_Date	No	No	when the trial started
15			Trial_ID	Yes	No	id
			Trial_Code	No	No	code for identification purpose
			Trial_Name	No	No	descriptive name
20						A Clinical_Trial is associated with one to many Trial_Measurement.
		Cohort	Descr	No	No	A Trial_Drug is associated with exactly one to many Clinical_Trial.
			Cohort_Name	No	No	A Trial_Cohort is associated with exactly one Clinical_Trial.
25			Cohort_ID	Yes	No	A Clinical_Trial is associated with one Therapeutic_Area.
			Company_ID	No	Yes	A Cohort is associated with one to many Trial_Cohort.
		Company				A Cohort is associated with one to many Subject_Cohort.
						A Trial_Cohort is associated with exactly one Cohort.
30			Descr	No	No	A Subject_Cohort is associated with exactly one Cohort.
						A Cohort is associated with exactly one Company.
35						A Compound is associated with exactly one Company.
						A Company_Address is associated with exactly one Company.
						A Clinical_Site is associated with exactly one Company.
						A Client_Genes is associated with exactly one Company.
						A Cohort is associated with exactly one Company.

SUBSTITUTE SHEET (RULE 26)

- 114 -

o

Company_ No No descriptive name
 Name
 Company_ID Yes No id

A Patent is associated with one Company.

A Drug is associated with exactly one Company.

A Company is associated with one to many Compound.

A Company is associated with one to many Company_Address.

A Company is associated with one to many Clinical_Site.

A Company is associated with one to many Client_Gene.

A Company is associated with one to many Cohort.

A Company is associated with one to many Patent.

A Company is associated with one to many Drug.

5

10

Company_ Descr	No	No
Address		
Web_Site	No	No
Zip	No	No
Country	No	No
State	No	No
City	No	No
Street	No	No
Address_ID	Yes	No

A Company_Address is associated with one to many Contact.

A Contact is associated with zero or one Company_Address.

A Company_Address is associated with exactly one Company.

15

20

Company_ID Yes Yes

Compound	Compound_ Name	No	No	descriptive name
	Structure_Handler	No	No	a handler for accessing the structure info
	Descr	No	No	
	Company_ID	No	Yes	company who owns the compound
	Registration_Num	No	No	registration number of the compound
	Compound_ID	Yes	No	id

A Compound is associated with one to many Assay_Result.

A Compound is associated with one to many Drug.

An Assay_Result is associated with exactly one Compound.

A Drug is associated with zero or one Compound.

A Compound is associated with zero or one Patent.

A Compound is associated with exactly one Company.

30

Patent_ID No Yes patent on the compound

35

Contact	Office_Phone	No	No
	Email_Address	No	No
	Cell_Phone	No	No

SUBSTITUTE SHEET (RULE 26)

- 115 -

	FAX	No	No	
	Web_Site	No	No	
	Descr	No	No	
	Pager_Phone	No	No	
	Department	No	No	
	Contact_ID	Yes	No	A Contact is associated with zero or one Company_Address.
5	Company_ID	No	Yes	
	Address_ID	No	Yes	
	Last_Name	No	No	
	Middle_Name	No	No	
	First_Name	No	No	
	Contig	Descr	No	a contig is a continuous piece of DNA sequence
10	Contig_Name	No	No	descriptive name
	Contig_ID	Yes	Yes	id
	Discovery_Method	Descr	No	No
15	Method_Protocol	No	No	detailed protocol
	Method_Name	No	No	descriptive name
20	Method_ID	Yes	No	id
	Disease_Susceptibility	Poly_ID	No	Yes polymorphism in study
		Ethnic_Code	Yes	Yes ethnic group code
		Therap_ID	Yes	Yes therapeutic area in study
25	Descr	No	No	
	Hap_ID	No	Yes	HAP in study
	Susceptibility	No	No	measurement of susceptibility
30	Drug	Compound_ID	No	Yes being a compound with an ID
		Development_Stage	No	No stage
		Side_Effects	No	No
		Toxicity	No	No
		Administration_Route	No	No
35	Descr	No	No	A Drug is associated with one to many Trial_Drug.

SUBSTITUTE SHEET (RULE 26)

- 116 -

	Dosage	No No	A Drug is associated with one to many Drug_Target.
	Protein_ID	No Yes protein ID if drug is a protein	A Drug is associated with one to many Therap_Drug.
	Drug_ID	Yes No id	A Trial_Drug is associated with exactly one Drug.
	Common_Name	No No	A Drug_Target is associated with exactly one Drug.
5	Scientific_Name	No No	A Therap_Drug is associated with exactly one Drug.
	Generic_Name	No No	A Drug is associated with zero or one Protein.
	Drug_Class	No No classification of the drug	A Drug is associated with zero or one Compound.
	Company_ID	No Yes company who owns the drug	A Drug is associated with exactly one Company.
10	Drug_Target	Descr No No	
	Gene_ID	Yes Yes the gene that the drug works on	A Drug_Target is associated with exactly one Drug.
	Drug_ID	Yes Yes drug in study	A Drug_Target is associated with exactly one Gene.
15	Electronic_Material	No No captures the referencing material distributed electronically	
	Descr	No No	
	Title	No No	
	Contents	No No	
	Email_Address	No No	
	Info_Source	No No	
	Info_ID	Yes Yes	An Electronic_Material is associated with exactly one Literature.
20	Family	Data_Type No No Authors No No	
	Descr	No No	
	Generation_Up	No No number of generation into the ancestry	
	Mother	No Yes	
	Father	No Yes	A Family is associated with exactly one Individual.
	Family_ID	Yes No id	A Family is associated with exactly one Individual.
25	Feature_Info	Descr No No Detail_Value No No feature info value Feature_Qualifier Yes No feature info category. Feature_ID Yes Yes	A Feature_Info is associated with exactly one Genetic_Feature.
30	Feature_Literature	Descr No No feature to literature association Literature_ID Yes Yes Feature_ID Yes Yes	A Feature_Literature is associated with exactly one Genetic_Feature. A Feature_Literature is associated with exactly one Literature.
35	Gene		A Gene_Map_Location is associated with exactly one Gene.

SUBSTITUTE SHEET (RULE 26)

- 117 -

o

5

10

Gene_Symbol	No	Yes	standard symbol
Descr	No	No	
Species_ID	No	Yes	species in which the gene is located
Gene_ID	Yes	Yes	id

15

20

25

30

35

A Client_Genes is associated with exactly one Gene.
A Seq_Gene_Location is associated with exactly one Gene.
A Feature_Gene_Location is associated with exactly one Gene.
A Therapeutic_Gene is associated with exactly one Gene.
A Gene_Pathway is associated with exactly one Gene.
A Drug_Target is associated with exactly one Gene.
A Gene_Class is associated with exactly one Gene.
A Patent is associated with zero or one Gene.
A Project_Gene is associated with exactly one Gene.
A Gene_Hap_Locus is associated with exactly one Gene.
A Gene_Transcript is associated with zero or one Gene.
A Gene_Region is associated with exactly one Gene.
A Gene_Alias is associated with exactly one Gene.
A Protein is associated with exactly one Gene.
A Gene is associated with one to many Gene_Map_Location.
A Gene is associated with one to many Client_Gene.
A Gene is associated with one to many Seq_Gene_Location.
A Gene is associated with one to many Feature_Gene_Location.
A Gene is associated with one to many Therapeutic_Gene.
A Gene is associated with one to many Gene_Pathway.
A Gene is associated with one to many Drug_Target.
A Gene is associated with one to many Gene_Class.
A Gene is associated with one to many Patent.
A Gene is associated with one to many Project_Gene.
A Gene is associated with one to many Gene_Hap_Locus.
A Gene is associated with one to many

SUBSTITUTE SHEET (RULE 26)

- 118 -

5

Gene_Transcript.
A Gene is associated with one to many Gene_Region.
A Gene is associated with one to many Gene_Alias.
A Gene is associated with one to at least one Protein.
A Gene is associated with exactly one Species.
A Gene is associated with exactly one Genetic_Feature.
A Gene is associated with exactly one Species.
A Gene is associated with exactly one
Gene Nomenclature.

	Gene_Alias	Descr	No	No	
10		Gene_ID	No	Yes	
		Alias_Name	No	No	descriptive name
		Gene_Alias_ID	Yes	No	id
					A Gene_Alias is associated with exactly one Gene.
	Gene_Class	Descr	No	No	
15		Class_ID	Yes	Yes	gene classification
		Genc_ID	Yes	Yes	
					A Gene_Class is associated with exactly one Gene. A Gene_Class is associated with exactly one Class System.
	Gene_Hap_Locus	Descr	No	No	HAP association to the gene
20		Hap_Locus_ID	Yes	Yes	
		Gene_ID	Yes	Yes	
					A Gene_Hap_Locus is associated with exactly one Gene. A Gene_Hap_Locus is associated with exactly one Hap_Locus.
	Gene_Map_Location	Map_Location	No	No	location of the gene in the genome
25			Descr	No	No
			Chromosome_ID	No	Yes the chromosome
			Map_ID	Yes	id of the map
			Gene_ID	Yes	Yes
					A Gene_Map_Location is associated with exactly one Chromosome. A Gene_Map_Location is associated with exactly one Genome_Map.
30	Gene_Nomenclature	Chromosome_ID	No	Yes	the standard literature for the gene
		Descr	No	No	
		Cyto_Location	No	No	cytological location of gene
					A Gene_Nomenclature is associated with zero or one Gene_Nomenclature. A Gene_Nomenclature is associated with zero or one Chromosome.
35		Gene_Description	No	No	
		Gene_Name	No	No	descriptive name
					A Gene_Nomenclature exactly 1 Gene.

SUBSTITUTE SHEET (RULE 26)

- 119 -

	Gene_Symbol	Yes	No	standard symbol	
	Most_Current	No	No	version management of the record	A Gene is associated with exactly one Gene_Nomenclature.
	Locus_ID	No	No	id	
	Gene_Pathway	Descr	No	No	
5	Gene_ID		Yes	Yes	A Gene_Pathway is associated with exactly one Pathway.
	Pathway_ID		Yes	Yes	A Gene_Pathway is associated with exactly one Gene.
	Gene_Region	Region_Type	No	No	genomic region type
10		Region_Name	No	No	descriptive name
	Descr		No	No	
	Gene_ID		No	Yes	gene it belongs to
	Region_ID		Yes	Yes	id
15					
20	Gene_Transcript	Descr	No	No	
		Transcript_Name	No	No	descriptive name
25		Gene_ID	No	Yes	gene it belongs to
		Transcript_ID	Yes	Yes	id
30					
35	Genetic_Accession	Mol_Type	No	No	molecular type of the record
		URL_ID	No	Yes	the URL address on the web
		Source_Name	No	No	
		Descr	No	No	
		Accession_Code	No	No	the actual accession code
					A Genetic_Accession is associated with zero or one

SUBSTITUTE SHEET (RULE 26)

- 120 -

			URL.
		Seq_Version No No sequence version number	
		Accession_ID Yes Yes id	A Genetic_Accession is associated with exactly one Genetic_Feature.
		GI No No GI number used in GenBank	
5	Genetic_Feature		the high level abstraction of genetic objects
			A Genetic_Accession is associated with exactly one Genetic_Feature.
10			A Protein is associated with exactly one Genetic_Feature.
			A Chromosome is associated with exactly one Genetic_Feature.
15			A Feature_Literature is associated with exactly one Genetic_Feature.
			A Polymorphism is associated with exactly one Genetic_Feature.
20			A Gene_Region is associated with exactly one Genetic_Feature.
			A Gene is associated with exactly one Genetic_Feature.
		Feature_ID Yes No id	A Seq_Feature_Location is associated with exactly one Genetic_Feature.
25		Most_Current No No version management of the record	A Feature_Gene_Location is associated with exactly one Genetic_Feature.
		Feature_Type No No type of the feature	A Feature_Info is associated with exactly one Genetic_Feature.
		Ref_ID No No parent of a feature in term of positional map	A Gene_Transcript is associated with exactly one Genetic_Feature.
30		Start_Pos No No start position of the feature in its parent	A Seq_Assembly is associated with exactly one Genetic_Feature.
		End_Pos No No end	A Unordered_Contig is associated with zero or one Genetic_Feature.
		Complement No No whether on the reverse strand	A Unordered_Contig is associated with zero or one Genetic_Feature.
35		Descr No No	A Genetic_Feature is associated with zero or one Genetic_Feature.
			An Assembly_Component is associated with zero or one Genetic_Feature.
			An Alignment_Component is associated with exactly one Genetic_Feature.
			A Contig is associated with exactly one Genetic_Feature.
			A Splice is associated with exactly one Genetic_Feature.

SUBSTITUTE SHEET (RULE 26)

- 121 -

5

A Seq_Text is associated with exactly one Genetic_Feature.
A Genetic_Feature is associated with one to many Genetic_Accession.
A Genetic_Feature is associated with one to exactly 1 Protein.
A Genetic_Feature is associated with one to many Chromosome.

10

A Genetic_Feature is associated with one to many Feature_Literature.
A Genetic_Feature is associated with one to many Polymorphism.
A Genetic_Feature is associated with one to many Gene_Region.
A Genetic_Feature is associated with one to many Genes.

15

A Genetic_Feature is associated with one to at least one Seq_Feature_Location.
A Genetic_Feature is associated with exactly one to many Feature_Gene_Location.
A Genetic_Feature is associated with one to many Feature_Info.

20

A Genetic_Feature is associated with one to many Gene_Transcript.
A Genetic_Feature is associated with one to many Seq_Assembly.

25

A Genetic_Feature is associated with one to many Unordered_Contig.
A Genetic_Feature is associated with one to many Unordered_Contig.
A Genetic_Feature is associated with one to many Unordered_Contig.

30

A Genetic_Feature is associated with one to many Genetic_Feature.
A Genetic_Feature is associated with one to many Assembly_Component.

35

A Genetic_Feature is associated with one to many Alignment_Component.
A Genetic_Feature is associated with one to many Contig.

A Genetic_Feature is

SUBSTITUTE SHEET (RULE 26)

- 122 -

				associated with one to many Splice.
				A Genetic_Feature is associated with one to many Seq_Text
				A Genetic_Feature is associated with zero or one Genetic_Feature.
5	Genome_Map	External_Key	No No	legendary key
	Descr		No No	A Genome_Map is associated with exactly one Species.
	Map_Type		No No	A Genome_Map is associated with one to many Gene_Map_Location.
10	Map_ID		Yes No	A Genome_Map is associated with zero or one Genome_Map.
	Map_Name		No No	descriptive name
	Most_Current		No No	version management of the record
	Species_ID		No Yes	species of the map
15	Genomic_Region	Descr	No No	gene region in terms of DNA organization
	Region_ID		Yes Yes	id
	Geo_Ethnicity	Ethnic_Group	No No	the major ethnic group name
	Descr		No No	A Disease_Susceptibility is associated with exactly one Geo_Ethnicity.
20	Ethnic_Name		No No	A Ind_Geo_Ethnicity is associated with exactly one Geo_Ethnicity.
	Ethnic_Code		Yes No	A Poly_Confirmation is associated with zero or one Geo_Ethnicity.
				A Hap_Confirmation is associated with zero or one Geo_Ethnicity.
25				A Geo_Ethnicity is associated with one to many Disease_Susceptibility.
				A Geo_Ethnicity is associated with one to many Ind_Geo_Ethnicity.
				A Geo_Ethnicity is associated with one to many Poly_Confirmation.
				A Geo_Ethnicity is associated with one to many Hap_Confirmation.
30	Hap_Allele	Descr	No No	
	Poly_ID		Yes Yes	polymorphism that constituting the HAP
	Allele_Code		Yes Yes	the specific allele of that polymorphism
	Hap_ID		Yes Yes	HAP
35	Hap_Confirmation	Sample_Size	No No	sample size in the HAP study

SUBSTITUTE SHEET (RULE 26)

- 123 -

	External_Key	No	No	legendary key	
	QC	No	No	quality info	
	Descr	No	No		
	Name_Alias	No	No	other names	
	Source_Name	Yes	No	where reported	A Hap_Confirmation is associated with zero or one Geo_Ethnicity.
5	Hap_Locus_ID	Yes	Yes	id	A Hap_Confirmation is associated with exactly one Hap_Locus.
	Ethnic_Code	No	Yes	sub-group of population	A Hap_Confirmation is associated with zero or one Discovery_Method.
	Method_ID	No	Yes	method used in discovery	
10	Hap_Locus			the HAP built on a locus region	A Haplotype is associated with exactly one Hap_Locus.
	Descr	No	No		A Hap_Locus_Poly is associated with exactly one Hap_Locus.
15	Hap_Locus_Name	No	No	descriptive name	A Gene_Hap_Locus is associated with exactly one Hap_Locus.
	Most_Current	No	No	version management of the record	A Hap_Locus_Subject is associated with exactly one Hap_Locus.
	Hap_Locus_ID	Yes	No	id	A Hap_Locus is associated with zero or one Hap_Locus.
20					A Subject_Hap is associated with exactly one Hap_Locus.
					A Hap_Confirmation is associated with exactly one Hap_Locus.
25					A Hap_Locus is associated with zero or one Hap_Locus.
					A Hap_Locus is associated with one to many Haplotype.
					A Hap_Locus is associated with one to many Hap_Locus_Poly.
					A Hap_Locus is associated with one to many Gene_Hap_Locus.
					A Hap_Locus is associated with one to many Hap_Locus_Subject.
					A Hap_Locus is associated with one to many Hap_Locus.
					A Hap_Locus is associated with one to many Subject_Hap.
30					A Hap_Locus is associated with one to many Hap_Confirmation.
	Hap_Locus_Poly	Descr	No	No	HAP to SNP association
	Poly_ID	Yes	Yes		A Hap_Locus_Poly is associated with exactly one Hap_Locus.
35	Hap_Locus_ID	Yes	Yes		A Hap_Locus_Poly is associated with exactly one Polymorphism.

SUBSTITUTE SHEET (RULE 26)

- 124 -

	Hap_Locus _Subject	Hap_Locus_ID	Yes Yes	HAP to subject association	
	Descr		No No		A Hap_Locus_Subject is associated with exactly one Hap_Locus.
	Sub_ID		Yes Yes		A Hap_Locus_Subject is associated with exactly one Subject.
5	Haplotype	Descr	No No		A Subject_Hap is associated with exactly one Haplotype.
	Hap_Name		No No	descriptive name	A Hap_Allele is associated with exactly one Haplotype.
	Hap_Locus_ID	No	Yes	HAP locus to which this HAP belongs	A Disease_Susceptibility is associated with zero or one Haplotype.
	Hap_ID		Yes No	id	A Clasper_Clone is associated with exactly one Haplotype.
10					A Haplotype is associated with one to many Subject_Hap.
					A Haplotype is associated with one to many Hap_Allele.
					A Haplotype is associated with one to many Disease_Susceptibility.
15					A Haplotype is associated with one to many Clasper_Clone.
					A Haplotype is associated with exactly one Hap_Locus.
	Ind_Geo_Ethnicity	Ethnic_Code	Yes Yes	individual's ethnic background	
20		Ind_ID	Yes Yes		An Ind_Geo_Ethnicity is associated with exactly one Individual.
	Descr		No No		A Ind_Geo_Ethnicity is associated with exactly one Geo_Ethnicity.
		Genetic_Weight	No No	the weight of different ethnic heritage	
25	Ind_Medical_History	Descr	No No	Medical history for an individual	
		Ind_ID	Yes Yes		An Ind_Medical_History is associated with exactly one Therapeutic_Area.
		Therap_ID	Yes Yes		An Ind_Medical_History is associated with exactly one Individual.
30	Individual	Descr	No No	individual info	
	YOB		No No	year of birth	
	Gender		No No		An Ind_Geo_Ethnicity is associated with exactly one Individual.
	Mother		No No		A Family is associated with exactly one Individual.
	Father		No No		A Family is associated with exactly one Individual.
	Species_ID	No	Yes	possible for cross species study	An Ind_Medical_History is
35	Ind_Type		No No		
	Ind_Code		No No		

SUBSTITUTE SHEET (RULE 26)

- 125 -

	Ind_ID	Yes No	id	associated with exactly one Individual.
5				A Subject is associated with exactly one Individual.
10	Literature	Descr	No No	An Individual is associated with one to many Ind_Geo_Ethnicity.
	Image_File	No	No	An Individual is associated with one to zero or one Family.
				the large multimedia file for the record
	Source_Name	No	No	
	Literature_Type	No	No	
15	Literature_ID	Yes No	id	An Individual is associated with zero to many Ind_Medical_History.
	URL_ID	No	Yes	An Individual is associated with zero to one Subject.
				An Individual is associated with exactly one Species.
20				A Patent is associated with exactly one Literature.
				A Publication is associated with exactly one Literature.
				A Electronic_Material is associated with exactly one Literature.
				A Feature_Literature is associated with exactly one Literature.
				A Pathway_Literature is associated with exactly one Literature.
				A Literature is associated with zero or one URL.
				A Literature zero to many Patent.
				A Literature is associated with zero many Publication.
				A Literature is associated with zero many Electronic_Material.
				A Literature is associated with zero many Feature_Literature.
				A Literature is associated with zero many Pathway_Literature.
25	Locus_Accesion	Accession_Type	No No	the molecule type for the sequence
		Descr	No No	
		Locus_ID	Yes No	NCBI locus id
		Accession	No No	the actual accession code
30	Med_Thesaurus	Data_Source	No No	medical terminology
		External_Key	No No	
		Descr	No No	
		Term_ID	Yes No	
				A Med_Thesaurus is associated with zero or one URL.
35		Definition	No No	
		URL_ID	No Yes	

SUBSTITUTE SHEET (RULE 26)

- 126 -

	Medical_Term	No	No	
5	Patent_Institution	No	No	patent info
	Year	No	No	
	Title	No	No	
	Abstract	No	No	
	Granted_By	No	No	
	Descr	No	No	
	Patent_Claims	No	No	
	Inventors	No	No	
	Patent_ID	Yes	Ycs	
10	Gene_ID	No	Yes	
	Patent_Num	No	No	
	Company_ID	No	Yes	
	Patent_Type	No	No	could be pending, approved, etc.
	Patent_Full_Text	Descr	No	No
15	Full_Text	No	No	the full text document
	Patent_ID	Yes	Yes	
	Pathway_Pathway_Name	No	No	biological pathway info
	Pathway_ID	Yes	No	
20	Pathway_Descr	No	No	
	Pathway_Literature	Pathway_Literature	pathway literature association	
	Pathway_ID	Yes	Yes	
25	Literature_ID	Yes	Yes	
	Pathway_Literature	Descr		pathway literature association
	Pathway_ID	Yes	Yes	
	Literature_ID	Yes	Yes	
30	Poly_Confirmation_Method_ID	No	Yes	polymorphism confirmation info
	Source_Name	Yes	No	which data source
	Name_Alias	No	No	alias name
	Poly_ID	Yes	Yes	id
	Descr	No	No	
	QC	No	No	quality control info
	External_Key	No	No	legendary key
35				A Poly_Confirmation is associated with exactly one Polymorphism.

SUBSTITUTE SHEET (RULE 26)

- 127 -

	Sample_Size	No No	size of sample in discovery	A Poly_Confirmation is associated with zero or one Discovery_Method.
	Ethnic_Code	No Yes	ethnic group info	A Poly_Confirmation is associated with zero or one Geo_Ethnicity.
5	Poly_Patent	Descr	No No	polymorphism patent association
		Poly_ID	Yes Yes	A Poly_Patent is associated with exactly one Patent.
		Patent_ID	Yes Yes	A Poly_Patent is associated with exactly one Polymorphism.
10	Poly_Pub	Descr	No No	polymorphism publication association
		Pub_ID	Yes Yes	A Poly_Pub is associated with exactly one Publication.
15		Poly_ID	Yes Yes	A Poly_Pub is associated with exactly one Polymorphism.
	Poly_morph	Mol_Consequence	No No	molecular mechanism of the polymorphism
		Primer_Pair_ID	No No	primer used in the discovery
		3Flank_Seq_Text	No No	flanking sequence on 3' end
20		5Flank_Seq_Text	No No	flanking sequence on 5' end
		Descr	No No	A Polymorphism is associated with exactly one Poly_Pub.
		Region_ID	No Yes	the region where the polymorphism locates
25		Poly_Length	No No	A Polymorphism is associated with exactly one Genetic_Feature.
		Poly_ID	Yes Yes	A Disease_Susceptibility is associated with zero or one Polymorphism.
		Variation_Type	No No	A Poly_Patent is associated with exactly one Polymorphism.
30		System_Name	No No	A Hap_Locus_Poly is associated with exactly one Polymorphism.
				A Allele is associated with exactly one Polymorphism.
				A Poly_Confirmation is associated with exactly one Polymorphism.
35				A Polymorphism is associated with zero to many Disease_Susceptibility.
				A Polymorphism is associated with zero to many Poly_Patent.
				A Polymorphism R/361 many Hap_Locus_Poly.
				A Polymorphism is associated with at least one Allele.
				A Polymorphism is associated with at least one Poly_Confirmation.

SUBSTITUTE SHEET (RULE 26)

- 127/1 -

			A Polymorphism is associated with zero or one Gene Region.
5	Project	Descr	No No project info
	Submitter	No No	
	Project_Manager	No No	
	Project_Name	No No	A Project is associated with one to many Project_Gene.
	Project_ID	Yes No	A Project_Gene is associated with exactly one Project.
10	Project_Gene	Descr	No No project gene association
		Gene_ID	Yes Yes
		Project_ID	Yes Yes
15	Protein	Descr	No No
		Structure_Handler	No No protein structure info handler
		Gene_ID	No Yes gene it belongs to
		Protein_ID	Yes Yes id
			A Protein is associated with zero to many Drug. A Protein is associated with zero to many Assay_Result. A Drug is associated with zero or one Protein. An Assay_Result is associated with exactly one Protein. A Protein is associated with exactly one Gene. A Protein is associated with exactly one Genetic_Feature.
20	Publication	Keywords	No No
		Abstract	No No
		Descr	No No
		Title	No No
		Institution	No No
		Year	No No
		Pub_ID	Yes Yes
		Authors	No No
25		Journal	No No
	Seq_Assembly	Assembly_Name	No No the consensus sequence built from alignment
		Descr	No No
		Assembly_ID	Yes Yes id
			A Seq_Assembly is associated with one to many Assembly_Component. A Seq_Assembly is associated with exactly one Genetic_Feature. An Assembly_Component is associated with exactly one Seq_Assembly.
30	Seq_Text	Descr	No No
		Seq_Text	No No the actual sequence text
		Seq_ID	Yes Yes id
			A Seq_Text is associated with exactly one Genetic_Feature.
	Species	Alias_Name	No No other names

35

SUBSTITUTE SHEET (RULE 26)

- 127/2 -

	Species_ID	Yes	No	id	A Gene is associated with exactly one Species.
	Descr	No	No		A Genome_Map is associated with exactly one Species.
	System_Name	No	No	systematic name of the species	A Gene is associated with exactly one Species.
5	Common_Name	No	No	common name	A Chromosome is associated with zero or one Species.
					A Individual is associated with exactly one Species.
10					A Species is associated with one to many Gene.
					A Species is associated with zero to many Genome_Map.
					A Species is associated with one to many Gene.
					A Species is associated with one to many Chromosome.
					A Species is associated with one to many Individual.
	Splice	Component_ID	No	Yes	component involved in the splicing
	Descr	No	No		A Splice is associated with exactly one Gene_Transcript.
	Order_Num	Yes	No	order of the component in the splicing product	A Splice is associated with exactly one Genetic_Feature.
15	Transcript_ID	Yes	Yes	id for the transcript	A Clasper_Clone is associated with zero or one Subject.
	Subject			this is a subset of individual	A Subject_Poly is associated with exactly one Subject.
	Descr	No	No		A Subject_Hap is associated with exactly one Subject.
20	External_Key	No	No		A Subject_Cohort is associated with exactly one Subject.
	Clinical_Site_ID	No	Yes	collection site	A Subject_Measurement is associated with exactly one Subject.
	Sub_ID	Yes	Yes	id	A Hap_Locus_Subject is associated with exactly one Subject.
25					A Subject is associated with zero to many Clasper_Clone.
					A Subject is associated with zero to many Subject_Poly.
					A Subject is associated with zero to many Subject_Hap.
					A Subject is associated with zero to many Subject_Cohort.
					A Subject is associated with zero to many Subject_Measurement.
30					A Subject is associated with zero to many Hap_Locus_Subject.
					A Subject is associated with exactly one Clinical_Site.
35					

SUBSTITUTE SHEET (RULE 26)

- 127/3 -

			A Subject is associated with exactly one Individual.
	Subject_Cohort	Cohort_ID Descr	Yes Yes cohort subject association No No
		Sub_ID	Yes Yes
5			A Subject_Cohort is associated with exactly one Subject. A Subject_Cohort is associated with exactly one Cohort.
	Subject_Hap	Hap_Locus_ID Copy_Num QC Descr	Yes Yes subject HAP typing info Yes No identify the copy of the HAP No No quality control data No No
10		Hap_ID Sub_ID	No Yes id of HAP Yes Yes id of subject
	Subject_Measurement	Measure_Num	Yes No subject clinical measurement
		Measure_Result Measure_ID Descr Operator QC	No No result of the measurement Yes Yes id No No No No who did it No No quality control data
15		Measure_Date	No No when it's done
			A Subject_Measurement is associated with exactly one Subject. A Subject_Measurement is associated with exactly one Trial_Measurement.
20	Subject_Poly	Sub_ID Poly_ID Copy_Num Descr Allele_Code	Yes Yes subject being measured Yes Yes subject genotyping info Yes No identify the copy of the SNP No No No Yes the allele for the subject
25		QC Descr	No No quality control data No No
	Therap_Drug	Drug_ID Therap_ID	Yes Yes drug info for the therapeutical area Yes Yes
30			A Therap_Drug is associated with exactly one Therapeutic_Area. A Therap_Drug is associated with exactly one Drug. A Therap_Drug is associated with exactly one Therapeutic_Area.
	Therapeutic_Area	Descr Related_Area	No No the look up table for the therapeutic areas No No
			A Therapeutic_Gene is associated with exactly one Therapeutic_Area. A Ind_Medical_History is associated with exactly one Therapeutic_Area.

35

SUBSTITUTE SHEET (RULE 26)

- 127/4 -

	Therap_Area	No No	A Disease_Susceptibility is associated with exactly one Therapeutic_Area.
	Therap_ID	Yes No	A Clinical_Trial is associated with zero or one Therapeutic_Area.
5			A Therapeutic_Area is associated with zero to many Therap_Drug.
10			A Therapeutic_Area is associated with zero to many Therapeutic_Gene.
			A Therapeutic_Area is associated with zero to many Ind_Medical_History.
			A Therapeutic_Area is associated with zero to many Disease_Susceptibility.
			A Therapeutic_Area is associated with zero to many Clinical_Trial.
	Thera-peutic_Gene	Descr No No gene links to the therapeutic areas	
15		Therap_ID Yes Ycs	A Therapeutic_Gene is associated with exactly one Therapeutic_Area.
	Gene_ID	Yes Yes	A Therapeutic_Gene is associated with exactly one Gene.
	Transcript_Region	Descr No No	
		Transcript_ID No Yes link between gene region and the transcript	A Transcript_Region is associated with exactly one Gene_Region.
20		Region_ID Yes Yes	A Transcript_Region is associated with exactly one Gene_Transcript.
	Trial_Cohort	Descr No No	
		Cohort_ID Yes Yes cohort involved in the clinical trial	A Trial_Cohort is associated with exactly one Clinical_Trial.
25		Trial_ID Yes Yes	A Trial_Cohort is associated with exactly one Cohort.
	Trial_Drug	Descr No No	
		Trial_ID Yes Yes drug used in the clinical trial	A Trial_Drug is associated with exactly one Drug.
		Drug_ID Yes Yes	A Trial_Drug is associated with exactly one Clinical_Trial.
30	Trial_Measure-ment	Measure_Name No No Recording of the clinical measurement	
		Measure_Details No No measurement result	
		Descr No No	
		Measure_Type No No type	
		Measure_Abbrev No No abbreviation form of the measurement name	A Trial_Measurement is associated with one to many Subject_Measurement.
35			

SUBSTITUTE SHEET (RULE 26)

- 128 -

	Measure_ID	Yes	No	id	A Subject_Measurement is associated with exactly one Trial_Measurement.
	Trial_ID	No	Yes	trial in which the measurement is taken	A Trial_Measurement is associated with exactly one Clinical_Trial.
5	Unordered_Contig Descr	No	No	a table to handle the unordered sequence pieces	
	Uncontig_Seq_ID	No	Yes	the actual sequence corresponding ID	A Unordered_Contig is associated with exactly one Genetic_Feature.
	Uncontig_List_ID	No	Yes	the accession in which it's reported ID	A Unordered_Contig is associated with zero or one Genetic_Feature.
	Uncontig_ID	Yes	Yes	id	A Unordered_Contig is associated with zero or one Genetic_Feature.
10	URL URL	No	No	the URL address	A Genetic_Accession is associated with zero or one URL.
	Most_Current	No	No	version management for the record	A Med_Thesaurus is associated with zero or one URL.
	URL_ID	Yes	No	id	A URL is associated with zero or one URL.
15	Descr	No	No		A Literature is associated with zero or one URL.
20					A URL is associated with zero or one URL
					A URL is associated with zero to many Genetic_Accession.
					A URL is associated with zero to many Med_Thesaurus.
					A URL is associated with zero to one URL.
					A URL is associated with zero or one Literature.
25	G. <u>BUSINESS MODELS</u>				

1. Hap2000 Partnership

The haplotype and other data developed using the methods and/or tools described herein may be used in a partnership of two or more companies (referred to herein as the Partnership) to integrate knowledge of human population and evolutionary variation into the discovery, development and delivery of pharmaceuticals. The partners in the partnership may be classified as

35

SUBSTITUTE SHEET (RULE 26)

- 129 -

- pharmaceutical, biopharmaceutical, biotechnology, genomics, and/or combinatorial chemistry companies. One of the partners, referred to herein as the HAP™ Company, will provide the other partner(s) with the tools needed to address drug response problems that are attributable to human diversity.

The HAPTM Company will focus on identifying polymorphisms in genes and/or other loci found in a diverse set of individuals, information on which will be stored in a database (referred to herein as the IsogenomicsTM Database). Preferably, the database is designed to store polymorphism information for at least 2000 genes and/or other loci that are important to the pharmaceutical process. In a preferred embodiment, the polymorphisms identified are gene specific haplotypes and the genes chosen for analysis will be prioritized by the HAPTM Company by pharmaceutical relevance. Analyzed genes may include, while not being limited to, known drug targets, G-coupled protein receptors, converting enzymes, signal transduction proteins and metabolic enzymes. The database will be accessible through an informatics computer program for epidemiological correlation and evaluation, a preferred embodiment of which is the DecoGenTM application described above.

a. Partnership Benefits

Isogenomics™ Database

The partners will have non-exclusive access to the Isogenomics™ Database, which contains the frequencies, sequences and distribution of the polymorphisms, e.g., gene haplotypes, found in a diverse set of individuals, referred to herein as the index repository, which preferably represents all the ethnogeographic groups in the world. Haplotypes in the database preferably include polymorphisms found in the promoter, exons, exon/intron boundaries and the 5' and 3' untranslated regions. Preferably, the number of individuals examined in the index repository allows the detection of any haplotype whose frequency is 10% or higher with a 99% certainty.

35

- 130 -

o ii. Informatics Computer Program

The information within the IsogenomicsTM Database is part of the HAPTM Company's informatics computer program which is accessible through an intuitive and logical user interface. The informatics program contains algorithms for the reconstruction of relationships among gene haplotypes and is capable of abstracting biological and evolutionary information from the IsogenomicsTM Database. The informatics program is designed to analyze whether genes in the IsogenomicsTM Database are relevant to a clinical phenotype, e.g., whether they correlate with an effective, inadequate or toxic drug response. In a preferred embodiment, the program also contains algorithms designed for detecting clinical outcomes that are dependent upon cooperative interactions among gene products. In this embodiment, the computer system has the capability to simulate gene interactions that are likely to cause polygenic diseases and phenotypes such as drug response. The informatics computer program will be installed at a site selected by each partner(s). The information in the IsogenomicsTM database will be of immediate use to drug discovery teams for target validation and lead prioritization and optimization, to drug development specialists for design and interpretation of clinical trials, and to marketing groups to address problems encountered by an approved drug in the marketplace.

iii. Cohort Haplotyping

In one preferred embodiment, partner(s) can use the genotyping and/or haplotyping capabilities of the HAPTM Company to stratify their clinical cohorts, which will enable the partner(s) to separate cohorts by drug response. For a fixed fee per patient, the HAPTM Company will genotype and/or haplotype Phase II, Phase III, and Phase IV patient cohorts under good laboratory conditions (GLP) conditions that will allow submittal of the data to clinical regulatory authorities. Preferably, the clinical genotype and/or haplotype data is deposited within a component of the informatics computer program that is proprietary to the partner to allow the partner to correlate polymorphisms such as gene haplotypes with drug response.

35

- 131 -

o iv. Isogene Clones

5 Partner(s) will have access to the physical clones that correspond to each of the haplotypes for a given gene or other locus. These isogene clones can be used in primary or secondary screening assays and will provide useful information on such pharmacological properties as drug binding, promoter strength, and functionality.

v. Gene Selection by Partners

10 The partners can select genes (or other loci) of their choosing for haplotyping in the index repository. The genes selected can be in the public domain or proprietary to the partner(s). In a preferred embodiment, haplotyping results for a proprietary gene will only be accessible by the owner of that gene until sequence information for the gene enters the public domain.

15 vi. Patent Dossier

20 In a preferred embodiment, the Isogenomics™ Database also contains public patent information that is available for each gene in the database. This feature provides the partner(s) with an understanding of the potential proprietary status of any gene in the database.

vii. Committed Liaison

25 In a preferred embodiment, the HAP™ Company will assign a Ph.D. level scientist as a liaison to a partner to facilitate communication, technology transfer, and informatics support.

viii. Special Services: cDNAs and Genomic Intervals

30 In a preferred embodiment, the HAP™ Company will also provide, at an extra charge, special molecular, biological and genomics services to partner(s) who submit cDNAs or ESTs to be haplotyped. cDNAs or ESTs will be utilized to retrieve genomic loci and to create special haplotyping assays that will allow the gene locus at the chromosome level to be haplotyped in the index repository. Genomic intervals containing possible genes of high significance for

- 132 -

- phenotypic correlations stemming from positional cloning programs can also be submitted by partner(s) for haplotyping.

b. **Membership in the Partnership**

5 Each partner(s) will pay the HAP™ Company a fee for membership in the Partnership, preferably for a period of at least two or three years. Companies joining the Partnership may utilize the resources of the informatics computer program and Isogenomics™ Database on a company wide basis, including groups in drug discovery, medicinal chemistry, clinical development, regulatory 10 affairs, and marketing.

c. **Envisioned Outcomes From The Partnership**

15 It is contemplated that novel isogenes will be isolated and characterized by the HAP™ Company, as well as methods for the detection of novel SNP's or haplotypes encompassed by the isogenes.

20 It is also contemplated that associations between clinical outcome and haplotypes (hereinafter "haplotype association") for many of the genes in the Isogenomics™ Database will be discovered. Therefore, it is also contemplated that methods of using the haplotypes and/or isogenes for diagnostic or 25 clinical purposes relating to disease indications supported by the particular association will be discovered.

It is further contemplated there will be successful applications of the data and informatics tools for drug approval and marketing.

A number of different scenarios for using the database and/or analytical tools of the present invention may be envisioned. These include the following:

30 1. A Partner selects a candidate gene or genes from the HAP™ Company's database that is haplotyped. The Partner provides clinical cohorts for haplotype analysis and provides clinical response data for the cohorts. The HAP™ Company performs haplotype analysis for the candidate gene(s) in the clinical cohorts, finds new haplotypes, if any, and determines the association between one or 35 more haplotypes and clinical response using the informatics computer program.

- 133 -

- o
2. The Partner selects a candidate gene from the HAPTM Company's database that is haplotyped. The Partner provides clinical cohorts for haplotype analysis. The HAPTM Company does haplotype analysis, finds new haplotypes, if any, and sends the haplotype data to the Partner. The Partner determines the association between haplotype and clinical response using the informatics computer program provided by the HAPTM company.
- 5
3. Like 1 above, but the Partner performs the haplotype analysis and determines the association between haplotype and clinical response.
- 10
4. Like 2 above, but the Partner performs the haplotype analysis.
5. A Partner provides one or more genes to the HAPTM Company for haplotype analysis. The HAPTM Company clones and characterizes isogenes for the gene(s), discovers new polymorphisms in the gene, if any, and determines the haplotypes for the gene(s).
- 15
6. Based on polymorphisms observed in a gene or genes, a Partner sends the HAPTM Company clinical cohorts to haplotype and the Partner uses the haplotype data in conjunction with their own clinical response data to determine the association between haplotype and clinical response.
- 20
7. A Partner sends the HAPTM Company a cDNA or an expressed sequence tag (EST). The HAPTM Company isolates and characterizes the gene corresponding to the cDNA or EST. The HAPTM Company clones isogenes of the gene and determines the haplotypes embodied within the isogenes.
- 25
- A more detailed description of how the database and/or analytical tools of the present invention may be used in the context of clinical trials is set forth below.
- 30
- As a review, the standard routine procedure in premarketing development of a new drug to be used in humans is to conduct pre-clinical animal toxicology studies in two or more species of animals followed by three phases of clinical investigation as follows: Phase I-clinical pharmacology investigations with attention to pharmacokinetics, metabolism, and both single dose and dose-range safety; Phase II-limited size closely monitored investigations designed to assess efficacy and relative safety; Phase III-full scale clinical investigations designed to provide an assessment of safety, efficacy, optimum dose and more precise definition
- 35

- 134 -

of drug-related adverse effects in a given disease or condition. In other words,
Phase I and Phase II are the early stages of the drug's development, when the safety
and the dosing level are tested in a small number of patients. Once the safety and
some evidence that the drug is effective in treatment have been established, the
5 drug's developer then proceeds to Phase III. In Phase III, many more patients,
usually several hundred, are given the new drug to see whether the early findings
that demonstrated safety and effectiveness, will be borne out in a larger number of
patients. Phase III is pivotal to learning hard statistical facts about a new drug.
Larger numbers of patients reveal the percentage of patients in which the drug is
10 effective, as well as give doctors a clearer understanding about the side effects
which may occur.

In the research or discovery phase, a Partner's discovery
15 personnel may desire haplotype information for isogenes of a gene, and/or one or
more clones containing isogenes of the gene, regardless of whether or not clinical
trials (or field trials, in the case of plants) are planned, in progress, or completed.
For example, the Partner may be studying a gene (or its encoded protein) and be
interested in obtaining information concerning, e.g., protein structure or mRNA
20 structure, in particular information concerning the location of polymorphisms in the
mRNA structure and their possible effect on mRNA transcription, translation or
processing, as well as their possible effect on the structure and function of the
encoded protein. Such information may be useful in designing and/or interpreting
the results of laboratory test results, such as in vitro or animal test results. Such
25 information may be useful in correlating polymorphisms with a particular result or
phenotype which may indicate that the gene is likely to be responsible for certain
diseases, drug response or other trait. Such information could aid in drug design for
pharmaceutical use in humans and animals, or aid in selecting or augmenting plants
30 or animals for desired traits such as increased disease or pest resistance, or increased
fertility, for agricultural or veterinary use. The Partner may also be interested in
knowing the frequency of the haplotypes. Such information may be used by the
Partner to determine which haplotypes are present in the population below a certain
35 frequency, e.g., less than 5%, and the Partner may use this information to exclude
studying the isogenes, mRNAs and encoded proteins for these haplotypes and may

- 135 -

- o also use this information to weed out individuals containing these haplotypes from their proposed clinical trials.

When information such as that described above is desired by a Partner, then the HAPTM Company may give access to the Partner to all or part of the data and/or analytical tools exemplified herein by the DecoGenTM Informatics Platform. The Partner may also be given access to one or more clones containing isogenes, e.g., a genome anthology clone (see, e.g., US Patent Application Ser. No. 60/032,645, filed December 10, 1996 and US Patent Application Ser. No. 08/987,966, filed December 10, 1997).

During a Phase I clinical trial, which is being conducted to determine the safety of a drug (or drugs) in people, a Partner may desire haplotype information for haplotypes of a gene, and/or one or more clones containing isogenes of the gene, in particular when toxicity or adverse reactions to the drug are observed in at least some of the people taking the drug. In that case, the Partner may request that the HAPTM Company obtain, for each person experiencing toxicity or other adverse effect, the haplotypes for one or more genes which are suspected to be associated with the observed toxicity or adverse effect (e.g., a gene or genes associated with liver failure) and determine whether there is a correlation between haplotype and the observed toxicity or adverse effect. If there is a correlation, then the Partner may decide to keep all people having the haplotype correlated with toxicity or other adverse effect out of Phase II clinical trials, or to allow such people to enter Phase II clinical trials, but be monitored more closely and/or given conjunctive therapy to modify the toxicity or other adverse effect. The HAPTM Company may provide a diagnostic test, or have such a test prepared, which will detect the people which have, or lack, the haplotype correlated with toxicity or other adverse effect.

During a Phase II clinical trial, which is being conducted to determine the efficacy of a drug (or drugs) in people, a Partner may desire haplotype information for haplotypes of a gene, and/or one or more clones containing isogenes of the gene, in particular when the results of the trial are ambiguous. For example, the results of a Phase II clinical trial might indicate that 50% of the people given a drug were responders (e.g., they lost weight in a trial for an anti-obesity drug, albeit

- 136 -

to different degrees), 49.9% of people were non-responders (e.g., they did not lose any weight) and 0.1% had adverse effects. In such a case, the Partner may, for example, request that the HAPTM Company obtain, for each of person in the Phase II clinical trial, the haplotypes for one or more genes which are suspected to be associated with the drug response. (In general, such gene(s) will be different from the gene associated with the adverse effect, but not necessarily.) A correlation may then be obtained between various haplotypes and the observed level of response to the drug. If a correlation is found, this information may be used to determine those individuals in which the drug will or will not be effective and, therefore, identify who should or should not get the drug. In addition, the information may also be used to develop a model (or test) which will predict, as a function of haplotype, how much of the drug should be used in an individual patient to get the desired result. Again, the HAPTM Company may provide a diagnostic test, or have such a test prepared, which will detect the people which have, or lack, the haplotype correlated with the efficacy or non-efficacy of the drug.

During Phase III clinical trials, which are being conducted to verify the safety and efficacy of a drug (or drugs) in people, a Partner may desire haplotype information for isogenes of a gene, and/or one or more clones containing isogenes of the gene, in particular to use at the beginning of the trial to design cohorts of patients (i.e., a group of individuals which will be treated the same). For example, the drug or placebo can be given to a group of people who have the same haplotype which is expected to be correlated with a good drug response, and the drug or placebo can be given to a group of people who have the same haplotype which is expected to be correlated with no drug response. The results of the trial will confirm whether or not the expected correlation between haplotype and drug response is correct.

During "Phase IV," which involves monitoring of clinical results after FDA approval of a drug to obtain additional data concerning the safety and efficacy of a drug (or drugs) in people, a Partner may desire haplotype information for a gene, and/or one or more clones containing isogenes of the gene, in particular if additional adverse events (or hidden side effects) become apparent. In such a case, the methods described above can be used to identify people who are

- 137 -

- likely to experience such adverse events.

After clinical trials are successfully completed, a Partner may desire haplotype information for isogenes of a gene, and/or one or more isogene clones, in particular in the situation where the drug is what is known as a "me too" drug, i.e., there are already a number of drugs on the market used to treat the disease or other condition which the Partner's drug is designed to treat. This can be used, e.g., as a marketing or business development tool for the Partner and/or help health care providers, such as doctors and HMOs, to keep drug costs down. For example, the haplotype information and analytical tools of the invention may be used to identify the patients for which the Partner's drug will work and/or for whom the Partner's drug will be superior to (or cheaper than) the other drugs on the market. A test can be developed to identify the target patients. This test can be diagnostic for the condition (e.g., it could distinguish asthma from a respiratory infection) or it could be diagnostic for response to the drug. Preferably the doctor can perform the test in his office or other clinical setting and be able to prescribe the appropriate drug immediately, or after access to part or all of the database or analytical tools of the invention. This will also aid the doctor in that it may provide information about which drugs not to give, since they will not be effective in the patient. Again, this reduces costs for the patient and/or health care provider, and will likely accelerate the time in which the patient will receive effective treatment, since time may be saved by eliminating trial and error administrations of other drugs which would not be expected to work for the disease or condition manifested by the patient.

If clinical trials are unsuccessfully completed, a Partner may desire haplotype information for isogenes, and/or one or more isogene clones containing isogenes of the gene, to correlate drug response with haplotype and to use as an aid in designing an additional clinical trial (or trials), as discussed elsewhere herein.

The database and analytical tools of the invention are envisioned to be useful in a variety of settings, including various research settings, pharmaceutical companies, hospitals, independent or commercial establishments. It is expected users will include physicians (e.g., for diagnosing a particular disease or prescribing a particular drug) pharmaceutical companies, generics companies,

- 138 -

- diagnostics companies, contract research organizations and managed care groups, including HMOs, and even patients themselves.

5 However, as discussed above, it is obvious that various aspects of the invention may be useful in other settings, such as in the agricultural and veterinary venues.

10 The following examples illustrate certain embodiments of the present invention, but should not be construed as limiting its scope in any way. Certain modifications and variations will be apparent to those skilled in the art from the teachings of the foregoing disclosure and the following examples, and these are intended to be encompassed by the spirit and scope of the invention.

2. Mednistics Program

15 The Mednistics™ program is a program in which one company, i.e., the HAP™ Company, uses *HAP* Technology to analyze variation in response to drugs currently marketed by third parties, in the hope of conferring a competitive advantage on these companies. It is expected that this technology will provide pharmaceutical companies with information that could lead to the development of new indications for existing drugs, as well as second generation drugs designed to replace existing drugs nearing the end of their patent life. As a result, the Mednistics program will benefit pharmaceutical companies by allowing them to extend the patent life of existing drugs, revitalize drugs facing competition and expand their existing market. Entities such as HMOs and other third-party payers, as well as pharmacy benefit management organizations, may also benefit 20 from the Mednistics program.

25

The goals of the Mednistics™ program are to find *HAP* Markers that:

- 30 • identify individuals who are currently not undergoing therapy for a given disease yet are at risk and will respond well to a given drug. This application would be useful in markets that have high growth potential and involve conditions that are undertreated, such as many central nervous system disorders and cardiovascular disease; and
- 35 • identify individuals who will respond better to one drug within a competitive

- 139 -

o class than other drugs in the same class or to one competing class of drugs as compared to another class of drugs. This application would allow drugs that are not selling well to gain a greater market share and would be best applied to a drug that was not the first introduced into the market and is having difficulty gaining market share against the established competitors. Alternatively, if multiple drug classes are indicated for the same disease, they could be differentiated by *HAP* Markers, thus giving drugs within one class a competitive advantage over the other class.

An example of the Mednistics™ program involves the statin class of drugs, which are used to treat patients with high cholesterol and lipid levels and who are therefore at risk for cardiovascular disease. This is a highly competitive market with multiple approved products seeking to gain increased market share. For example, three of the most commonly prescribed statins are pravastatin (sold by Bristol-Myers Squibb Company as Pravacol), atorvastatin (sold by Parke-Davis as Lipitor), and cerivastatin (sold by Bayer AG as Baycol). The statin market is currently approximately \$11 billion worldwide and is forecasted to at least double in size by 2005. Identification of genetic markers that would allow the right drug to reach the right patient would allow a company to boost its market share and improve patient compliance, which are both particularly important factors when maximizing profit from drugs that are taken over the course of a lifetime.

H. EXAMPLE 1

25

SIMULATED CLINICAL TRIAL

For illustration, we will use a particular example that shows how the CTS™ method works, and how the DecoGen™ application is used. For this we have simulated a data set. Polymorphisms for the gene CYP2D6 were obtained from the literature. From those we constructed 10 haplotypes. A set of individual subjects were created and assigned a value of the variable "Test" in the range from 0.0-1.0. They were also assigned 2 of the haplotypes. This data set simulates what would come from a clinical trial in which patients were haplotyped and tested for some clinical variable. Most individuals have a relatively low value of

- 140 -

the Test measure, but a small number have a large value. This simulates the case where a small number of individuals taking a medication have an adverse reaction. Our goal is to find genetic markers (i.e. haplotypes) that are correlated with this adverse event.

5 Step 1. Identify candidate genes. CYP2D6 is the sample candidate gene.

Step 2. Define a Reference Population. A standard population is used. An example is the CEPH families and unrelated individuals whose cell lines are commercially available. (Source Coriell Cell Repositories, URL: <http://locus.umdnj.edu/nigms/ceph/ceph.html>) Coriell sells cell lines from the CEPH families (a standard set of families from the United States and France for which cell lines are available for multiple members from several generations from several families) and from individuals from other ethnogeographic groups. The CEPH families have been widely studied. The cell lines were originally collected by Foundation Jean DAUSET (<http://landru.cephb.fr/>).

Step 3. DNA from this reference population is obtained.

Step 4. Haplotype individuals in the reference population.

20 We use either direct or indirect haplotyping methods, or a combination of both, to obtain haplotypes for the CYP2D6 gene in the reference population. The polymorphic sites and nucleotide positions for these individuals are given in FIGUREs 4A and 4B.

Step 5. Get population averages and other statistics. The 25 haplotypes and population distributions are shown using the DecoGen™ application in FIGURES 4A, 4B, 10, and 11. They are determined by the methods and equations described in Item 5 above.

Step 6. Determine genotyping markers. By examining the 30 linkage data (FIGURE 15) we see that all of the sites are tightly linked except 2 and 8. This indicates that this set should be a minimal set for genotyping. From this it was decided to genotype patients in the clinical trial at only these sites.

Step 7. Recruit a trial population. In this case we use the 35 reference population as the clinical population, having only added the simulated values of Test.

- 141 -

◦ Step 8. Treat, test and haplotype patients. All patients are measured for the Test variable. All of the patients were then genotyped at sites 2 and 8 (i.e. unphased haplotypes were found at these sites). Next their haplotypes are found directly (for those individuals who were totally homozygous or heterozygous at any one site) or inferred using maximum likelihood methods based on the observed haplotype frequencies in the reference population.

5 Step 9. Find correlation's between haplotype pair and clinical outcome. We measure the value of Test.

10 First we examine the results of the single site regression model (FIGURE 21) to determine to sites showing the strongest correlation with Test. From this we see that sites 2 and 8 have a strong correlation, at the 99% confidence level.

15 The statistics for each of the sub-haplotype pair groups (using sites 2 and 8) is shown in FIGURES 18, 19, and 22. From this we see that individuals homozygous for TA at sites 2 and 8 have a high value of Test (average of 0.93). One conclusion we can make from this data is that patients homozygous for TA are likely to have an adverse reaction. A typical haplotype pair distribution is shown in detail in FIGURE 20.

20 25 30 We can use the ANOVA calculation to see whether grouping individuals by haplotype-pair (or sub-haplotype-pair) helps explain the observed variation in response in a statistically significant way. If ANOVA indicates that there is a significant group-to-group variation, then we can investigate this correlation further using the regression and clinical modeling tools. From FIGURE 23, we see that there is a significant level of group-to-group variation even at the 99% confidence level. This says that the haplotype-pair (or sub-haplotype-pair) that an individual has for this gene does have a significant impact on that individual's value of Test.

35 Step 10. Follow-up trials are run. Additional trials should be run to accomplish 2 goals. The first would attempt to prove the correlation between being homozygous for haplotype TA and the high value of Test. One way to do this would be to enroll a group of subjects and break them into 4 cohorts. The first and second would be homozygous for TC. The second and third would have no copies

- 142 -

of TC. The first and third group should take the medication causing the high value of Test and the second and fourth should take a placebo. The cohorts and their expected response are shown in the following matrix:

5 Cohort 1 TC/TC Medication Expectation: High value of Test	Cohort 2 TC/TC Placebo Expectation: Low value of Test
10 Cohort 3 Not-TC/not-TC Medication Expectation: Low value of Test	Cohort 3 Not-TC/not-TC Placebo Expectation: Low value of Test

If we see this pattern of response, then the link between TC homozygosity and high value of Test, the correlation is proven.

Step 11. Design a genotyping method to identify a relevant set of patients. Using the Genotype view tool in the DecoGen browser, we found that by genotyping individuals at sites 2 and 8 we could classify the group with high value of Test with 100% certainty. The results are shown in FIGURE 14.

I. EXAMPLE 2

1. Provision Of Clinical Data

DNA sequence information for a cohort of normal subjects was obtained and entered into the database as described previously. For this example, 134 patients, all of whom came to the clinic having an asthmatic attack, were recruited. Each patient had a standard spirometry workup upon entering the clinic, was given a standard dose of albuterol, and was given a followup spirometry workup 30 minutes later. Blood was drawn from each patient, and DNA was extracted from the blood sample for use in genotyping and haplotyping. Clinical data, in the form of the response of the asthmatic patients to a single dose of nebulized albuterol, was obtained from the asthmatic patients, as described previously (Yan, L., Galinsky, R.E., Bernstein, J.A., Liggett, S.B. & Weinshilboum,

- 143 -

R.M. *Pharmacogenetics*, 2000, 10:261-266) The clinical data was entered into the database, and displayed as in Fig. 29B.

2. **Determination Of ADBR2 Genotypes And Haplotypes**

Haplotypes for ADBR2 were determined using a molecular genotyping protocol, followed by the computational HAPBuilder procedure (See U.S. patent application serial No. 60/198,340 (inventors: Stephens, et al.), filed April 18, 2000). Comparison of the sequences resulted in the identification of thirteen polymorphic sites.

The ADBR2 gene was selected from the screen shown in Fig. 26. The polymorphism and haplotype data for the ADBR2 gene among normal subjects was as displayed in Fig. 28. Only twelve different haplotypes were observed and/or inferred. Diplotype and haplotype data for the ADBR2 gene among the asthmatic patients was as displayed in Fig. 29A.

The heterozygosity of individual patients at each polymorphic site was as displayed in Fig. 30. At each polymorphic site (SNP), each patient has zero, one, or two copies of a given nucleotide. The same is true of combinations of SNPs: for any collection of two or more SNPs (i.e., a haplotype or sub-haplotype), a patient will have zero, one, or two alleles having that particular combination of SNPs.

3. **Correlation Of ADBR2 Haplotypes
And Haplotype Pairs With Drug Response**

The measure of delta %FEV1 pred. was chosen as the clinical outcome value for which correlations with ADBR2 haplotypes were to be sought.

a. **Build-Up Procedure (To 4 SNP Limit)**

Each individual SNP was statistically analyzed for the degree to which it correlated with "delta %FEV1 pred." The analysis was a regression analysis, correlating the number of occurrences of the SNP in each subject's genome (i.e. 0, 1, or 2), with the value of "delta %FEV1 pred."

"Cut-off" criteria were applied to each SNP in turn, as

- 144 -

follows. In this example, a confidence limit of 0.05 was the default value for the tight cutoff, and a limit of 0.1 was the default value of the loose cutoff. The default values were automatically entered into the screen shown in Fig. 39A, in the two boxes labeled "Confidence". A SNP was then chosen from among the SNPs present in the population, and the p value calculated for correlation of this SNP with delta %FEV1 pred. was tested against the tight cutoff. If the value was .05 or less, the SNP and associated correlation data were stored for later calculations and for display in the screen shown in Fig. 39A. If the p value was between .05 and 0.1, the SNP and associated correlation data were stored without being displayed. Any SNP whose p value was greater than 0.1 was discarded, *i.e.*, it was not considered further in the process. All thirteen ADBR2 SNPs were selected and tested in turn. The individual SNPs at positions 3 and 9 passed the tight cut-off; these were saved for display in Fig. 39A. In addition, the SNP at position 11 passed the loose cut-off and was saved without display.

All possible pair-wise combinations (sub-haplotypes) of the saved SNPs were then generated. The correlations of the newly generated two-SNP sub-haplotypes with delta %FEV1 pred. were calculated by regression analysis, as was done for the individual SNPs. The correlation of each sub-haplotype was tested in turn, as described above, discarding any sub-haplotypes whose p-value did not pass the cut-off criteria and saving those that did pass, with those that passed the tight cut-off stored for display in the screen shown in Fig. 39A. The sub-haplotypes that passed the tight cut-off were *****A*G**, **A*****A****, and **A*****G**; these were saved for display in Fig. 39A. No sub-haplotypes passed only the loose cut-off.

When all the two-SNP sub-haplotypes had been examined, all pair-wise combinations between originally saved SNPs and saved two-SNP sub-haplotypes, and among the saved two-SNP sub-haplotypes, were generated. This produced a collection of three-SNP and four-SNP subhaplotypes. Again, correlations were calculated by regression. A single three-SNP sub-haplotype, **A*****A*G**, passed the tight cut-off and was saved for display, and no four-SNP sub-haplotype passed. No sub-haplotypes passed only the loose cut-off. Combinations between the saved three-SNP sub-haplotypes and the saved SNPs

- 145 -

generated four-SNP subhaplotypes, none of which passed the tight cut-off. No new combinations were possible within the default limit (four) to the number of SNPs permitted in the generated sub-haplotypes. (See Fig. 39A, where "fixed site = 4" indicates the 4-SNP limit).

The results of the build-up process are shown in Fig. 39A, where the SNPs and sub-haplotypes that passed the tight cut-off are displayed along with the results of the regression analyses. It was discovered that the three-SNP subhaplotype **A*****A*G** has a p-value nearly identical to that of the full haplotype. Figure 21b shows the regression line (response as a function of number of copies of haplotype **A*****A*G**), indicating that the more copies of this marker a patient has, the lower the response.

b. Pare-Down Procedure (To 10 SNP Limit)

Each of the twelve haplotypes observed for the ADBR2 gene is analyzed for the degree to which it correlates with the value of delta %FEV1 pred. by a regression analysis, correlating the number of occurrences of the haplotype in the subject's genome, *i.e.* 0, 1, or 2, with the value of the clinical measurement.

A "tight cut-off" criterion is then applied to each haplotype in turn. A first haplotype is selected, and its correlation with delta %FEV1 pred. is tested against the tight cut-off of 0.05. If the value is .05 or less, the haplotype and associated correlation data are stored for later calculations and for display in the screen shown in Fig. 39A. If the p value is between .05 and 0.1, the haplotype and associated correlation data are stored as well but are not displayed. Any haplotype whose p value is greater than 0.1 is discarded, *i.e.*, it is not considered further in the process. All twelve ADBR2 haplotypes are selected and tested in turn.

From the saved haplotypes, all possible sub-haplotypes in which a single SNP is masked are generated by systematically masking each SNP of all saved haplotypes. The correlations of the newly generated sub-haplotypes with the clinical outcome value are calculated by regression, as was done for the haplotypes themselves. Each newly generated sub-haplotype is tested against the tight and loose cut-offs as described above for the haplotype correlations, discarding

- 146 -

- o sub-haplotypes that do not pass the cut-off criteria and saving those that do pass.

When the first generation of sub-haplotypes, having a single SNP masked, has been tested, a second generation of sub-haplotypes having a two SNPs masked is generated from those of the first generation whose p-values passed the cut-offs. This is done, as before, by systematically masking each of the remaining SNPs. The p-values of the second generation of sub-haplotypes, having two SNPs masked, are tested, and from those that pass the cut-offs a third generation having three SNPs masked is generated.

10

c. Cost Reduction

15

The frequencies for each of the twelve haplotypes of the ADRB2 gene were calculated and were found to be as shown in Fig. 28A (eleven of the twelve haplotypes are visible). A list of all 78 genotypes that could be derived from the 12 observed haplotypes was generated. A portion of the list is shown in Fig. 32. The expected frequency of each of these genotypes from the Hardy-Weinberg equilibrium was calculated, and is shown in the third column under each population group. Linkage between the polymorphic sites was as shown in Fig. 33.

20

A set of masks of the same length as the haplotype, i.e., thirteen sites in length, was created. A portion of the set of masks is shown in Fig. 34, along with a portion of the list of possible genotypes (haplotype pairs) which has been sorted by Hardy-Weinberg frequency.

25

For each mask, an ambiguity score was calculated as follows: all pairs of genotypes [i,j] that were rendered identical by imposition of the mask were noted, and the geometric mean of their Hardy-Weinberg frequencies (f_i and f_j) was calculated. For each mask, all the geometric means of the frequencies of all the ambiguous pairs were added together, and the sum was multiplied by 10 to obtain the ambiguity score for that mask:

30

$$\text{ambiguity score} = 10 \sum \sqrt{f_i f_j}$$

35

Ambiguity scores calculated in this manner are shown in Fig. 34 to the right of each of the displayed masks, along with the genotype pairs rendered ambiguous by the mask. (The genotype numbers refer to the row numbers

- 147 -

- in the first column of the sorted genotype list.)

From the data visible in Fig. 34, it may be seen that one can mask sites 1, 6, 7, 8, and 10 (five of the thirteen polymorphic sites in the ADBR2 gene) with an ambiguity score of only 0.072. This mask (sixteenth mask from the top) renders four genotypes (sets of haplotype pairs) ambiguous, and three of the four ambiguities are between common and rare haplotype pairs. It is thus discovered that a savings of about 38% in the variable cost of haplotyping this gene can be achieved, simply by measuring eight rather than all thirteen known polymorphic sites, and that the complete haplotype can be inferred with high confidence from this smaller data set.

J. REFERENCES

- 1) D.L. Hartl and A.G. Clark, "Principles of Population Genetics", Sinauer Associates, (Sunderland Mass) 3rd Edition, 1997.
- 2) David H. Mathews, Jeffrey Sabina, Michael Zuker, and Douglas H. Turner; Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure; Journal of Mol. Biol. in Press.
- 3) Nakamura, Y., Gojobori, T. and Ikemura, T. (1998) Nucl. Acids Res. 26, 334. The most recent human data is found at the web site:
[http://www.dna.affrc.go.jp/nakamura-bin/showcodon.cgi?species=Homo+sapiens+\[gbpri\]](http://www.dna.affrc.go.jp/nakamura-bin/showcodon.cgi?species=Homo+sapiens+[gbpri])
- 4) L.D. Fisher and G. vanBelle, "Biostatistics: A Methodology for the Health Sciences", Wiley-Interscience (New York) 1993.
- 5) R. Judson, "Genetic Algorithms and Their Uses in Chemistry" in Reviews in Computational Chemistry, Vol. 10, pp. 1-73, K. B. Lipkowitz and D. B. Boyd, eds. (VCH Publishers, New York, 1997).
- 6) W.H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press (Cambridge) 1992.

- 148 -

- - 7) E. Rich and K. Knight, "Artificial Intelligence", 2nd Edition (McGraw-Hill, New York, 1991).
 - 8) A. Ecof and B. Smouse, Genetics Vol. 136, pp.343-359 (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within species: molecular variance parsimony.
 - 5 9) G. Ruano, K. Kidd, C. Stephens, Proc.Nat.Acad.Sci., Vol. 87, 6296-6300 (1990), Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules.
 - 10 10) A.G. Clark, et al., Am.J.Hum.Genet., Vol. 63, 595-612 (1998), Haplotype Structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase.

15 All references cited in this specification, including patents and patent applications, are hereby incorporated in their entirety by reference. The discussion of references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinency of the cited references.

20 Modifications of the above described modes for carrying out the invention that are obvious to those of skill in the fields of chemistry, medicine, computer science and related fields are intended to be within the scope of the following claims.

25

30

35

TABLE OF CONTENTS

I.	TITLE OF THE INVENTION	1
II.	RELATED APPLICATIONS	1
5	III. FIELD OF THE INVENTION	1
IV.	BACKGROUND OF THE INVENTION	1
V.	SUMMARY OF THE INVENTION.....	6
10	VI. BRIEF DESCRIPTION OF THE DRAWINGS	10
10	VII. DETAILED DESCRIPTION OF THE INVENTION.....	22
	A. DEFINITIONS	22
	B. METHODS OF IMPLEMENTING THE INVENTION.....	25
15	C. CTS™ METHODS OF THE INVENTION	29
	1. Illustration Using The CYP2D6 Gene.....	31
	2. Illustration With ADRB2 Gene	54
20	D. IMPROVED METHODS.....	60
	1. Improved Method For Finding Optimal Genotyping Sites ..	60
	2. Improved Methods For Correlating Haplotypes With Clinical Outcome Variable(s).....	64
25	a. Multi-SNP Analysis Method (Build-Up Process)	64
	b. Reverse SNP Analysis Method (Pare-Down Process)	67
	E. TOOLS OF THE INVENTION	70
30	F. DATA/DATABASE MODEL	71
	1. Database Model Version 1	72
	a. Submodels	72
	b. Abbreviations	73
35	c. Tables	74

o	d. Fields	77
5	2. Database Model Version 2	100
	a. Submodels	100
	b. Abbreviations	107
	c. Tables	108
	d. Fields	111
10	G. BUSINESS MODELS.....	128
	1. Hap2000 Partnership	128
	a. Partnership Benefits.....	129
	i. Isogenomics™ Database	129
	ii. Informatics Computer Program.....	130
15	iii. Cohort Haplotyping	130
	iv. Isogene Clones.....	131
	v. Gene Selection by Partners.....	131
	vi. Patent Dossier.....	131
20	vii. Committed Liaison	131
	viii. Special Services: cDNAs and Genomic Intervals	131
	b. Membership in the Partnership.....	132
	c. Envisioned Outcomes From The Partnership.....	132
25	2. Mednóstics Program.....	138
	H. EXAMPLE 1	139
	I. EXAMPLE 2	142
30	1. Provision Of Clinical Data	142
	2. Determination Of ADBR2 Genotypes And Haplotypes....	143
	3. Correlation Of ADBR2 Haplotypes And Haplotype Pairs With Drug Response.....	143
35	a. Build-Up Procedure (To 4 SNP Limit)	143

o	b.	Pare-Down Procedure (To 10 SNP Limit)	145
	c.	Cost Reduction	146
	J.	REFERENCES	147
5	II.	ABSTRACT OF THE INVENTION	212

10

15

20

25

30

35

CLAIMS

We claim:

1. A method of generating a haplotype database for a population, comprising
5 data elements representative of the haplotypes for at least one locus from the individuals in the population, the method comprising:
 - (a) for each individual in the population, generating polymorphism and haplotype data elements representative of the individual's polymorphisms and haplotypes for the locus; and
 - 10 (b) storing the polymorphism and haplotype data elements for the individuals in a computer-readable database, wherein the data elements are organized according to the spatial relationships between the polymorphisms and haplotypes and a reference nucleotide sequence for the locus.
2. The method of claim 1, wherein the locus is a gene or a gene feature and the haplotype data elements represent haplotypes and haplotype pairs for the gene or the gene feature.
20
3. The method of claim 2, wherein the deriving step comprises ascertaining the frequency of the haplotypes and haplotype pairs according to the Hardy-Weinberg equilibrium.
25
4. The method of claim 2, further comprising deriving the haplotype data elements by:
 - (a) determining a nucleotide sequence of the gene or the gene feature from a first chromosome and a second chromosome in each individual in the population to generate a plurality of nucleotide sequences for the population;
 - 30 (c) aligning the plurality of nucleotide sequences for the population;
 - (d) identifying haplotypes from the aligned sequences; and

- - (e) selecting two haplotypes for each individual as a haplotype pair for storage in a table in the database.
- 5 5. The method of claim 4, wherein the method further comprises validating the haplotype data.
- 10 6. The method of claim 5, wherein the validating comprises correcting an observed distribution of haplotypes or haplotype pairs for effects imposed by a limited number of individuals in the population.
- 15 7. The method of claim 6, wherein the validating also comprises analyzing compliance of the observed distribution with Mendelian inheritance principles.
- 20 8. The method of claim 1, wherein the population is selected from the group consisting of a reference population, a clinical population, a disease population, an ethnic population, a family population and a same-sex population.
- 25 9. A method of predicting the presence of a haplotype pair in an individual comprising:
 - (a) identifying a genotype for the individual;
 - (b) enumerating all possible haplotype pairs which are consistent with the genotype;
 - (c) accessing a database containing reference haplotype pair frequency data to determine a probability, for each of the possible haplotype pairs, that the individual has a possible haplotype pair; and
 - (d) analyzing the determined probabilities to predict haplotype pairs for the individual.
- 30 10. The method of claim 9, wherein the identifying step comprises determining the most predictive genotyping site or sites.
- 35 11. The method of claim 10, wherein the determining includes calculating phylogenetic and/or linkage information for the reference haplotype pairs.

◦ 12. The method of claim 10, wherein the enumerating step comprises listing the possible haplotype pairs in order of their frequency in the database.

13. A method for identifying a correlation between a haplotype pair and a clinical response to a treatment, or other phenotype, comprising:

5

(a) accessing a database containing data on clinical responses to treatments, or other phenotypes, exhibited by a clinical population;

10

(b) selecting a candidate locus hypothesized to be associated with the clinical response or other phenotype, the locus comprising at least two polymorphic sites;

15

(c) providing haplotype data for each member of the clinical population, the haplotype data comprising information on a plurality of polymorphic sites present in the candidate locus;

20

(d) storing the haplotype data; and

(e) calculating the degree of correlation between haplotype pairs and the clinical response to a treatment, or other phenotype, by statistically analyzing the haplotype and clinical response data.

14. The method of claim 13 wherein step (e) is performed last.

25

15. The method of claim 13 wherein step (a) is performed before any one of steps (b), (c) or (d).

16. The method of claim 13 wherein step (a) is performed after steps (b), (c) and (d).

30

17. The method of any one of claims 13-16, wherein the treatment comprises administration of a drug or drug candidate.

35

18. The method of claim 17, wherein the candidate locus is a gene or a gene feature.

19. The method of claim 18, further comprising displaying or outputting the correlation.

20. The method of claim 19, further comprising calculating the statistical significance of the correlation.

21. The method of claim 20, wherein the providing haplotype data step comprises

- 5 (a) providing a genotype for the individual;
- 10 (b) enumerating all possible haplotype pairs which are consistent with the genotype;
- 15 (c) determining a probability for each possible haplotype pair that the individual has that possible haplotype pair, by accessing a database containing frequency data for haplotype pairs in a reference population; and
- 20 (d) analyzing the determined probabilities to infer the individual's haplotype pair.

22. A method for identifying a correlation between a haplotype pair and susceptibility to a condition or disease of interest, or other phenotype of interest, comprising the steps of:

- 20 (a) selecting a candidate locus hypothesized to be associated with the phenotype, condition or disease of interest, the locus comprising at least two polymorphic sites;
- 25 (b) providing haplotype data for the candidate locus for each member of a population having the phenotype, condition or disease of interest ("disease haplotype data");
- 30 (c) organizing the disease haplotype data in a database;
- 35 (d) statistically analyzing the disease haplotype data to calculate haplotype pair frequencies;
- (e) accessing a database containing haplotype data for the candidate locus for each member of a healthy reference population ("reference haplotype data");

- - (f) statistically analyzing the reference haplotype data to calculate haplotype pair frequencies; and
 - (g) when a haplotype pair has a higher frequency in the population having the phenotype, condition or disease of interest than in the healthy reference population, identifying a correlation of the haplotype pair with susceptibility to the disease or condition of interest.
- 5 23. The method of claim 22 wherein step (f) is performed after step (d).
- 10 24. The method of claim 22 wherein step (e) is performed before any one of steps (b), (c), or (d).
- 15 25. The method of claim 22 wherein step (e) is performed after any one of steps (b), (c), or (d).
- 15 26. The method of any one of claims 22-25, wherein the candidate locus is a gene or a gene feature.
- 20 27. The method of claim 26, further comprising displaying or outputting the identified correlation.
- 20 28. The method of claim 27, further comprising calculating the statistical significance of the identified correlation.
- 25 29. The method of claim 28, wherein the providing haplotype data step comprises:
 - (a) providing a genotype for the individual;
 - (b) enumerating all possible haplotype pairs which are consistent with the genotype;
 - 30 (c) for each possible haplotype pair, determining the probability that the individual has that haplotype pair, by accessing a database containing frequency data for haplotype pairs in a reference population; and
- 35

- - (d) inferring the individual's haplotype pair based on the determined probabilities.

30. A method of predicting an individual's response to a medical or pharmaceutical treatment, comprising:

5

- (a) selecting at least one candidate gene for which a correlation between haplotype content and response to the treatment has been identified;
- (b) determining the haplotype pair of the individual for the candidate gene or genes; and
- (c) predicting that the individual's response will be the response associated haplotype pair with information on the correlation.

15 31. The method of claim 30, wherein the selecting step comprises outputting a list of candidate genes associated with different responses to the treatment.

32. The method of claim 31, further comprising storing the haplotype pair.

33. The method of claim 32, further including generating an error estimate.

20 34. A computer implemented method for generating a gene structure screen for display on a display device, comprising the steps of:

25

- (a) retrieving from a database and displaying in a first area data indicative of the frequencies of occurrence of a gene's haplotypes within predetermined member groupings of a reference population;
- (b) retrieving from a database and displaying in a second area data indicative of the frequencies of occurrence of particular nucleotides for the member groupings;
- (c) retrieving from a database data indicative of gene structure;
- (d) displaying in a third area a graphical representation of gene structure that identifies polymorphic sites on the gene;

30
35

- o (e) selecting one of the polymorphic sites to cause the appropriate nucleotide frequencies to be displayed in the second area.

35. A computer implemented method for generating a haplotype pair frequency screen for display on a display device, comprising the steps of:

- 5 (a) displaying in a first area a plurality of selectable items each corresponding to a polymorphic site for a predetermined gene;
- (b) selecting one or more of said selectable items;
- 10 (c) displaying in a second area the haplotype pairs occurring in a reference population for the selected polymorphic sites;
- (d) displaying in a third area data indicative of haplotype frequencies for a plurality of member groupings within the population.

15 36. A computer implemented method for generating a linkage screen for display on a display device, comprising the steps of:

- 20 (a) displaying in a first area a graphical scale showing a reference for determining progressive degrees of linkage between polymorphic sites in a population;
- (b) displaying in a second area a graphical matrix structure having a plurality of grids, where each axis of the structure represents polymorphic sites on a gene; and where each grid graphically displays an indication of degree of linkage between polymorphic sites corresponding to that grid, in accordance with the reference shown in the first area.

25 37. The method of claim 36, wherein color is used as the indication of degree of linkage.

30 38. A computer implemented method for generating a phylogenetic tree screen for display on a display device, comprising the steps of:

- - (a) displaying in a first area a plurality of selectable items each corresponding to a polymorphic site for a predetermined gene;
 - (b) selecting one or more of said selectable items;
 - (c) displaying in a second area a phylogenetic tree structure having nodes for each haplotype in a population, where the distance between nodes is indicative of the number of nucleotides that would have to be flipped to change one haplotype into another.

5

10

39. The method of claim 38, wherein the nodes are connected by links that indicate a single nucleotide difference between nodes.

40. The method of claim 39, wherein the nodes each display an indication of ethnogeographic frequency of occurrence of the haplotype represented by the node.

15

41. A computer implemented method for generating a genotype analysis screen for display on a display device, comprising the steps of:

20

25

30

35

- (a) displaying a first plurality of selectable items each corresponding to a polymorphic site, and a plurality of second selectable items each corresponding to a polymorphic site;
- (b) displaying a graphical scale showing a reference for determining progressive degrees of haplotype identification reliability using genotyping;
- (c) displaying a graphical matrix structure having a plurality of grids, where each axis represents a haplotype indicated by the first selectable items; and where each grid graphically displays an indication of degree of identification reliability for identifying the haplotype corresponding to that grid using genotyping specified by the second selectable items, in accordance with the reference.

42. The method of claim 41, wherein the indication of degree is color.

43. A method of displaying clinical response values of a subject population as a function of haplotype pairs of the individuals in the population, comprising:

- o
 - (a) receiving from a computer-readable storage device, data representing haplotype pairs and clinical response values for the subject population;
 - (b) graphically displaying a haplotype pair matrix each of whose cells contains a graphical representation of the clinical response values of individuals having the haplotype pair corresponding to that cell of the haplotype pair matrix.

5 44. A method of displaying clinical response values of a subject population as
10 a function of haplotype pairs of the individuals in the population, comprising:

- (a) displaying one or more first selectable items representing polymorphic sites for a predetermined gene, which when selected, will generate haplotype pairs;
- 15 (b) displaying a second selectable item representing a clinical response measurement; which, when selected in conjunction with the first selectable items will cause display of a haplotype pair matrix, each of whose cells contains a graphical representation of the clinical response values for the selected clinical measurement of individuals having the haplotype pair corresponding to that cell of the haplotype pair matrix.
- 20

25 45. The method of claim 43 or 44, wherein the graphical representation of clinical response values is a color scale or gray scale, the shade of each cell being proportional to the mean clinical response value of individuals having the haplotype pair corresponding to that cell of the haplotype pair matrix.

30 46. The method of claim 45, further comprising displaying a means for adjusting the range of mean clinical response values represented by the color scale or gray scale, wherein adjustment of the range causes the displayed shade of color or gray of the cells of the haplotype pair matrix to be adjusted accordingly.

35 47. The method of claim 43 or 44 wherein the graphical representation of data is a histogram indicating the distribution of individuals across the range of clinical response values.

◦ 48. The method of any one of claims 43, 44, or 45 wherein at least one cell includes a selectable area which, when selected, will cause the display of a histogram indicating the distribution of individuals across the range of clinical response values.

5 49. The method of any one of claims 43, 44 or 45 which further comprises displaying a selectable item which, when selected, causes the display of the statistical significance of the correlations between variation at individual polymorphic sites and the clinical response values.

10 50. The method of claim 43, 44 or 45 which further comprises displaying a selectable item which, when selected, displays the numerical mean and standard deviation of clinical response values among individuals having each haplotype pair in the matrix.

15 51. The method of claim 43, 44 or 45 which further comprises displaying a selectable item which, when selected, causes the display of the results of an analysis of variation calculation to permit determination of whether variation in the clinical response values between individuals having different haplotype pairs is statistically significant.

20 52. A computer-implemented method for carrying out a genetic algorithm for finding an optimal set of weights to fit a function of polymorphic site data to a clinical response measurement comprising:

- 25 (a) displaying a variable controller for setting the number of genetic algorithm generations parameter;
- (b) displaying a variable controller for setting the number of agents parameter;
- 30 (c) displaying a variable controller for setting the mutation rate parameter;
- (d) displaying a variable controller for setting the crossover rate parameter;

35

- - (e) displaying one or more selectable items each corresponding to a polymorphic site of a predetermined gene; and
 - (f) displaying a selectable item for initiation of the genetic algorithm calculation;
- 5 wherein selection of one or more selectable items corresponding to a polymorphic site, and selection of the item for initiation of the genetic algorithm calculation, results in the execution of the genetic algorithm calculation with the parameters set by the variable controllers, and the display of the residual error of the model as a function of the number of genetic algorithm generations and a display of the results of the genetic algorithm calculation showing the optimal weights for each of the polymorphic sites.
- 10
- 15 53. A computer-implemented method for displaying correlations between clinical outcome values for a selected population, comprising:
- 2) (a) displaying a first plurality of selectable items corresponding to the clinical outcome variables;
 - 3) (b) displaying a second plurality of selectable items corresponding to the clinical outcome variables; and
 - 4) (c) displaying a scatter plot of data points corresponding to the individuals in the selected population;
- 20
- 25 5) wherein selecting first item from the first plurality of selectable items causes each data point to be plotted on the x axis of the scatter plot according to the value of the corresponding clinical outcome value for the individual associated with the data point, and wherein selection of a second item from the second plurality of selectable items causes each data point to be plotted on the y axis of the scatter plot according to the value of the corresponding clinical outcome value for the individual associated with the data point.
- 30
- 35 54. A method for conducting a clinical trial of a treatment protocol for a medical condition of interest, comprising:

- o
 - (a) selecting one or more genes (or other loci) known or expected to be involved in a particular disease or drug response;
 - (b) defining a reference population of healthy individuals with a broad and representative genetic background;
 - 5 (c) sequencing DNA from each member of the reference population;
 - (d) determining the haplotypes for each of the selected genes (or other loci) for each member of the reference population;
 - 10 (e) determining the frequencies, population distributions and statistical measures, including confidence limits, for each of the determined haplotypes;
 - 15 (f) recruiting a trial population of individuals who have the medical condition of interest;
 - (g) treating individuals in the trial population according to the treatment protocol, and measuring their response to treatment;
 - 20 (h) determining the haplotypes for each of the selected genes (or other loci) for each member of the trial population;
 - (i) determining the correlations between individual responses to the treatment and individual haplotype content for each of the selected genes (or other loci); and
 - 25 (j) from these correlations, constructing a model that predicts the response of an individual to the treatment, given the individual's haplotype content.

30 55. The method of claim 54, further comprising the step of deriving from the haplotype distribution found for the reference population a reduced set of genotyping markers, which allow an individual's haplotypes to be accurately predicted without conducting a complete molecular haplotype analysis, and using the reduced set of genotype markers to determine haplotypes in step (h).

35

◦ 56. A method of inferring genotypes of individual subjects for a selected gene having at least m polymorphic sites, comprising

5

- (a) providing a database of m -site haplotypes of the selected gene from a representative cohort of individuals;
- (b) tabulating the frequency of occurrence for each of the haplotypes;
- (c) constructing a list of all genotypes that could result from all possible pairs of observed haplotypes;
- 10 (d) calculating the expected frequency of these genotypes assuming the Hardy-Weinberg equilibrium;
- (e) generating a complete set of all possible masks of the same length m as the haplotypes, wherein each mask blocks the identity of the nucleotides at $m-n$ polymorphic sites and admits the identity of nucleotides at the other n sites;
- 15 (f) for each mask, calculating how much ambiguity results from genotyping with only the n polymorphic sites whose identity is admitted by the mask;
- (g) from among those masks having an acceptable level of ambiguity, selecting a mask which has the lowest value of n ;
- 20 (h) genotyping the subjects by measuring only the n polymorphic sites that are admitted by the selected mask; and
- (i) 25 assigning to each subject having a particular n -site haplotype, the full m -site haplotype of a member of the initial cohort having the same n -site haplotype.

30

57. The method of claim 56, wherein the calculation of ambiguity for a mask comprises

35

- (a) identifying all pairs of genotypes that are rendered identical by application of the mask;

- - (b) calculating the geometric mean of the calculated Hardy-Weinberg frequencies of each pair of genotypes identified in step (a);
 - (c) summing all such geometric means for all ambiguous pairs to obtain an ambiguity score for the mask.

5 58. The method of either of claims 56 or 57, wherein, if application of the selected screen causes an ambiguity in that two haplotype pairs A and B exist that could explain a given genotype, and the Hardy-Weinberg equilibrium predicts 10 probabilities p_A and p_B , where $p_A + p_B = 1$, the assignment of a haplotype pair is carried out by a process comprising

- (a) selecting a random number between 0 and 1;
- (b) if the random number is less than or equal to p_A , assigning the 15 haplotype pair A; and
- (c) if the number is greater than p_A , assigning the haplotype pair B.

20 59. A method of determining polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, comprising:
25 (a) providing haplotype information, and clinical response or outcome data (clinical outcome values) from a cohort of subjects;

- 30 (b) statistically analyzing each individual SNP in the haplotype for the degree to which it correlates with the clinical outcome values, and generating a numerical measure of the degree of correlation;
- 35 (c) saving for further processing those individual SNPs whose numerical measure of the degree of correlation with the clinical outcome values exceeds a first cut-off value;
- (d) generating all possible pair-wise combinations of the saved SNPs so as to provide a set of n -site sub-haplotypes where $n = 2$;

- - (e) statistically analyzing each newly generated n -site sub-haplotype for the degree to which it correlates with the clinical outcome values and calculating a numerical measure of the degree of correlation;
 - 5 (f) saving for further processing those n -site sub-haplotypes whose numerical measure of the degree of correlation with the clinical outcome values exceeds the first cut-off value;
 - 10 (g) generating all possible pair-wise combinations among and between the saved SNPs and saved sub-haplotypes, to produce new subhaplotypes with increased values of n ;
 - 15 (h) repeating steps (e) through (g) until either (i) no new sub-haplotypes can be generated, or (ii) no further sub-haplotypes having n less than a pre-selected limit can be generated.
- 60. The method of claim 59, further comprising the step of displaying those saved SNPs and sub-haplotypes whose numerical measure of the degree of correlation with the clinical outcome value exceeds a second cut-off value, wherein the second cut-off value is greater than the first cut-off value.
- 20 61. The method of claim 59, wherein the numerical measure of degree of correlation is replaced by the p-value for the correlation, and SNPs and sub-haplotypes are saved if the p-value is less than a first cut-off value.
- 25 62. The method of claim 61, further comprising the step of displaying those saved SNPs and sub-haplotypes whose p-value for the correlation with the clinical outcome value is less than a second cut-off value, wherein the second cut-off value is less than the first selected value.
- 30 63. The method of any one of claims 59-62, further comprising the step of excluding from further processing complex subhaplotypes which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes each have correlation values that are at least as significant as that of the complex sub-haplotype.
- 35

64. A method of determining polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, comprising:

- (a) providing single gene haplotype information for one or more genes, and clinical response or outcome data, from a cohort of subjects;
- (b) statistically analyzing each single gene haplotype for the degree to which it correlates with the clinical response or outcome of interest, and calculating a numerical measure of the degree of correlation;
- (c) saving for further processing those haplotypes whose numerical measure of the degree of correlation with the clinical response or outcome of interest exceeds a first selected value;
- (d) for each haplotype composed of m polymorphic sites, generating all possible sub-haplotypes having a single site masked, so as to provide a set of sub-haplotypes having $(m-n)$ sites, where $n = 1$;
- (e) statistically analyzing each newly generated sub-haplotype for the degree to which it correlates with the clinical response or outcome of interest, and calculating a numerical measure of the degree of correlation;
- (f) saving for further processing those sub-haplotypes whose numerical measure of the degree of correlation with the clinical response or outcome of interest exceeds the first selected value;
- (g) from the saved sub-haplotypes, generating all possible sub-haplotypes having one additional site masked;
- (h) repeating steps (e) through (g) until either (i) no new sub-haplotypes have a degree of correlation which exceeds the first selected value, or (ii) no further sub-haplotypes having more unmasked sites than a pre-selected limit can be generated.

- 65. The method of claim 64, further comprising the step of displaying those saved sub-haplotypes whose numerical measure of the degree of correlation with the clinical response or outcome of interest exceeds a second selected value, wherein the second selected value is greater than the first selected value.
- 5 66. The method of claim 64, wherein the numerical measure of degree of correlation is replaced by the p-value for the correlation, and sub-haplotypes are saved if the p-value is less than a first selected value.
- 10 67. The method of claim 66, further comprising the step of displaying those saved sub-haplotypes whose p-value for the correlation with the clinical response or outcome of interest is less than a second selected value, wherein the second selected value is less than the first selected value.
- 15 68. The method of any one of claims 64-67, further comprising the step of excluding from further processing complex subhaplotypes which are constructed from smaller sub-haplotypes, where each of the smaller sub-haplotypes has correlation values that are at least as significant as that of the complex sub-haplotype.
- 20 69. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to adjust observed haplotype pair frequencies within a population group, said haplotype pair frequencies being stored in a computer-readable database of haplotype information for a gene or gene feature of interest, the computer-readable program code comprising:
- 25 (a) computer-readable program code for causing a computer to access said database and generate all possible haplotype pairs consistent with the stored genotypes;
- 30 (b) computer-readable program code for causing a computer to calculate the expected frequency of the generated haplotypes and haplotype pairs according to the Hardy-Weinberg equilibrium, based upon the observed distribution of haplotypes or haplotype pairs in the population; and
- 35 (c) computer-readable program code for causing a computer to

select the most probable haplotype pair for the individual based on the observed.

70. The computer-readable medium of claim 69, further comprising computer-readable program code stored thereon for causing a computer to correct the stored distribution of haplotypes or haplotype pairs for effects imposed by the presence of a limited number of individuals in the population.

5 71. The computer-readable medium of claim 69, further comprising computer-readable program code stored thereon for causing a computer to validate haplotype pair assignments by analyzing for compliance of the assigned haplotype pair with Mendelian inheritance principles.

10 72. The computer-readable medium of claim 69, wherein the population is selected from the group consisting of a reference population, a clinical population, a disease population, an ethnic population, a family population and a same-sex population.

15 73. A computer-readable medium having computer-readable program code stored thereon, for causing haplotype pair assignments to be made to an individual member of a population whose genotype information for a gene or gene feature of interest is stored in a computer-readable form, the computer-readable program code comprising:

- 20 (a) computer-readable program code for causing a computer to generate all possible haplotype pairs consistent with the stored genotype;
- 25 (b) computer-readable program code for causing a computer to access a database containing reference haplotype pair frequency data and to determine from the frequency data the probability, for each of the possible haplotype pairs, that the individual has the possible haplotype pair; and
- 30 (c) computer-readable program code for causing a computer to select the most probable haplotype pair for the individual.

- 5 74. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to identify a correlation between a clinical response to a treatment or other phenotype and a haplotype or haplotype pair present at a candidate locus hypothesized to be associated with the clinical response other phenotype, the computer-readable program code comprising:

10 (a) computer-readable program code for causing a computer to access a database containing data on clinical responses to treatments, or other phenotypes, exhibited by individuals in a clinical population;

15 (b) computer-readable program code for causing a computer to access a database containing haplotype data for each individual of the clinical population, the haplotype data comprising information on a plurality of polymorphic sites present at the candidate locus; and

20 (c) computer-readable program code for causing a computer to calculate the degree of correlation between haplotype pairs and the clinical response to the treatment or other phenotype, by statistical analysis of the haplotype and clinical response data.

25 75. The computer-readable medium of claim 74, wherein the treatment comprises administration of a drug or drug candidate.

30 76. The computer-readable medium of claim 74, wherein the candidate locus is a gene or a gene feature.

35 77. The computer-readable medium of claim 74, further comprising computer-readable program code stored thereon for causing a computer to store, display, or output the degree of correlation.

40 78. The computer-readable medium of claim 74, further comprising computer-readable program code stored thereon for causing a computer to calculate the statistical significance of the correlation.

- 79. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to identify a correlation between an individual's susceptibility to a condition or disease of interest, or other phenotype, and a haplotype or haplotype pair present at a candidate locus hypothesized to be associated with susceptibility to the condition or disease of interest, or with a phenotype of interest, the computer-readable program code comprising:
- (a) computer-readable program code for causing a computer to access haplotype data for the candidate locus for each member of a population having the phenotype or condition or disease of interest ("disease haplotype data");
- (b) computer-readable program code for causing a computer to statistically analyze the disease haplotype data to calculate haplotype or haplotype pair frequencies;
- (c) computer-readable program code for causing a computer to access a database containing haplotype data for the candidate locus for each member of a healthy reference population ("reference haplotype data");
- (d) computer-readable program code for causing a computer to statistically analyze the reference haplotype data to calculate haplotype or haplotype pair frequencies; and
- (e) computer-readable program code for causing a computer to identify a correlation of a haplotype or haplotype pair with susceptibility to the disease or condition of interest, or with the phenotype of interest, when the haplotype or haplotype pair has a higher frequency in the population having the phenotype, condition or disease of interest than in the reference population.

80. The computer-readable medium of claim 79, wherein the candidate locus is a gene or a gene feature.

81. The computer-readable medium of claim 79, further comprising computer-readable program code stored thereon for causing a computer to store, display, or output the identified correlation.

5 82. The computer-readable medium of claim 79, further comprising computer-readable program code stored thereon for causing a computer to calculate the statistical significance of the correlation.

10 83. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to predict an individual's response to a medical or pharmaceutical treatment based on one or more selected haplotypes or haplotype pairs of the individual, the computer-readable program code comprising:

- 15 (a) computer-readable program code for causing a computer to access a database of correlations between haplotypes or haplotype pairs and responses to the medical or pharmaceutical treatment in a reference population;
- 20 (b) computer-readable program code for causing a computer to locate haplotypes or haplotype pairs in the database that match the selected haplotype pairs of the individual, and
- 25 (c) computer-readable program code for causing a computer to predict that the individual's response will be the response or responses associated in the database with the selected haplotype or haplotype pair.

84. The computer-readable medium of claim 83, further comprising computer-readable program code stored thereon for causing a computer to generate an error estimate for the prediction.

30 85. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to display a gene's structure and gene features on a display device, the computer-readable program code comprising:

- 35 (a) computer-readable program code for causing a computer to retrieve from a database, and display in a first area of the

display device, data indicative of the frequencies of occurrence of a gene's haplotypes within predetermined member groupings of a reference population;

- (b) computer-readable program code for causing a computer to retrieve from a database data indicative of the gene's structure and gene features;
- (c) computer-readable program code for causing a computer to display in a second area of the display device a graphical representation of the gene's structure, user-selectable items indicating the location of gene features, and graphical indicators of the location of polymorphic sites on the gene;
- (d) computer-readable program code for causing a computer to display in a third area of the display device, in response to a user's selection of an item indicating a gene feature, a graphical representation of the structure of the gene feature having user-selectable items indicating the position of polymorphic sites; and
- (e) computer-readable program code for causing a computer to retrieve from a database, and display in a third area of the display device, in response to a user's selection of an item indicating the position of a polymorphic site, data indicative of the frequencies within the member groupings of the occurrence of particular nucleotides at the polymorphic site.

86. A computer-usuable medium having computer-readable program code stored thereon, for causing a computer to display on a display device haplotype pair frequency data within a population of individuals, for a selected gene or gene feature, the computer-readable program code comprising:

- (a) computer-readable program code for causing a computer to display on the display device a plurality of selectable items,

- each item corresponding to a polymorphic site in the gene or gene feature;

(c) computer-readable program code for causing a computer to retrieve from a database and display on the display device, in response to a user's selection of one or more items indicating polymorphic sites, individual haplotype pairs in the database that differ at one or more of the selected polymorphic sites; and

(d) computer-readable program code for causing a computer to display on the display device data indicative of the frequencies of the displayed haplotype pairs within one or more member groupings within the population.

15 87. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to display on a display device polymorphic site linkage data for a gene or gene structure of interest, the computer-readable program code comprising:

35 88. The computer-usable medium of claim 87, wherein color is used as the graphical indication of degree of linkage, and wherein the medium further comprises computer-readable program code stored thereon for causing a computer to display a reference color scale relating color to degree of linkage.

- 89. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to display on a display device a phylogenetic tree, the computer-readable program code comprising:
- 5 (a) computer-readable program code for causing a computer to display a plurality of selectable items, each corresponding to a polymorphic site in the gene or gene feature of interest; and
- 10 (b) computer-readable program code for causing a computer to display a phylogenetic tree structure having a node for each haplotype in a population, where the distance between nodes is proportional to the minimum number of nucleotides that would have to be changed to interconvert the corresponding haplotypes.
- 15 90. The computer-readable medium of claim 89, further comprising computer-readable program code stored thereon for causing a computer to display connections between the nodes that indicate a single nucleotide difference between the haplotypes represented by the nodes.
- 20 91. The computer-readable medium of claim 89, further comprising computer-readable program code stored thereon for causing a computer to display at each node an indication of the relative frequency of occurrence of the haplotype represented by the node among different population groups.
- 25 92. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to display a genotype analysis screen on a display device, the computer-readable program code comprising:
- 30 (a) computer-readable program code for causing a computer to display a first plurality of selectable items, each corresponding to a polymorphic site, and a second plurality of selectable items, each corresponding to a polymorphic site;
- 35 (b) computer-readable program code for causing a computer to display on the display device a matrix structure, wherein the axes of the matrix structure represent haplotypes in the gene or

gene feature of interest that vary at the polymorphic sites selected from the first plurality of selectable items; and

- (c) computer-readable program code for causing a computer to display on the display device, in each cell of the matrix structure, a graphical indication of the reliability of the assignment to an individual of the haplotype pair corresponding to the coordinates of the cell in the matrix, when the individual is genotyped only at the polymorphic sites selected from the second plurality of selectable items.

10 93. The computer-usuable medium of claim 92, wherein color is used as the graphical indication of reliability of haplotype pair assignment, and wherein the medium further comprises computer-readable program code stored thereon for causing a computer to display a reference color scale relating color to reliability of haplotype pair assignment.

15 94. A computer-usuable medium having computer-readable program code stored thereon, for causing a computer to display clinical response values, or other phenotype data, of a subject population as a function of haplotype pairs of the individuals in the population, the computer-readable program code comprising:

- 20 (a) computer-readable program code for causing a computer to retrieve from a computer-readable storage device, data representing haplotype pairs and clinical response values, or other phenotype data, for the subject population; and
- 25 (b) computer-readable program code for causing a computer to graphically display a haplotype pair matrix structure, each of whose cells contains a graphical representation of the clinical response values or other phenotype data of individuals having the haplotype pair corresponding to the coordinates of that cell in the haplotype pair matrix.

30 95. A computer-usuable medium having computer-readable program code stored thereon, for causing a computer to display on a display device clinical

- response values, or other phnotypic data, of a subject population as a function of the haplotype pairs of the individuals in the population for a gene or gene feature of interest, the computer-readable program code comprising:

 - (a) computer-readable program code for causing a computer to display one or more first selectable items representing polymorphic sites of the gene or gene feature;
 - (b) computer-readable program code for causing a computer to display one or more second selectable items representing clinical measurements or phenotypes; and
 - (c) computer-readable program code for causing a computer to display on the display device, in response to the selection by the user of at least one first and second selectable items, a haplotype pair matrix structure, wherein the axes of the matrix structure represent haplotypes in the gene or gene feature of interest that vary at the polymorphic sites corresponding to the first selected item or items, and wherein each of the cells of the matrix contains a graphical representation of the mean clinical response value, or other phenotype data, for the clinical measurement represented by the selected second item, of individuals having the haplotype pair corresponding to the coordinates of the cell in the haplotype pair matrix.

5 96. The computer-usuable medium of claim 94 or 95, wherein color is used as the graphical indication of mean clinical response value, or other phenotype data, and wherein the medium further comprises computer-readable program code stored thereon for causing a computer to display a reference color scale relating color to mean clinical response value.

0 97. The computer-usuable medium of claim 96, wherein the medium further comprises:

 - (a) computer-readable program code stored thereon for causing a computer to display a means for adjusting the range of mean

◦ clinical response values or other phenotype data represented by the reference color scale; and

- 5 (b) computer-readable program code stored thereon for causing a computer, in response to the adjustment of the range of clinical response values or other phenotype data represented by the reference color scale, to adjust the color of the cells of the haplotype pair matrix.

98. The computer-readable medium of claim 94 or 95, wherein the graphical representation of data is a histogram indicating the distribution of individuals across the range of clinical response values or other phenotype data.

10 99. The computer-readable medium of any one of claims 94, 95, or 96, wherein at least one cell in the displayed matrix includes a selectable area, and wherein the 15 medium further comprises computer-readable program code stored thereon for causing a computer to display, for individuals having the haplotype pair represented by the coordinates of the cell in the matrix, a histogram indicating the distribution of the individuals across the range of clinical response values.

20 100. The computer-readable medium of any one of claims 94, 95, or 96, which further comprises computer-readable program code stored thereon for causing a computer to display a third selectable item, and computer-readable program code stored thereon for causing a computer to display, in response to selection of the third selectable item by the user, the statistical significance of the 25 correlations between variation at individual polymorphic sites and the clinical response values.

30 101. The computer-readable medium of any one of claims 94, 95, or 96, which further comprises computer-readable program code stored thereon for causing a computer to display a fourth selectable item, and computer-readable program code stored thereon for causing a computer to display, in response to selection of the fourth selectable item by the user, the numerical mean and standard 35 deviation of clinical response values among individuals having each haplotype pair in the matrix.

102. The computer-readable medium of any one of claims 94, 95, or 96, which further comprises computer-readable program code stored thereon for causing a computer to display a fifth selectable item, and computer-readable program code stored thereon for causing a computer to display, in response to selection of the fifth selectable item by the user, the results of an analysis of variation calculation to permit determination of whether variation in the clinical response values between individuals having different haplotype pairs is statistically significant.
103. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to carry out a genetic algorithm for finding an optimal set of weights to fit a function of polymorphic site data for a gene or gene feature of interest to a clinical response measurement, the computer-readable program code comprising:
- (a) computer-readable program code for causing a computer to display a variable controller for setting the number of genetic algorithm generations parameter;
 - (b) computer-readable program code for causing a computer to display a variable controller for setting the number of agents parameter;
 - (c) computer-readable program code for causing a computer to display a variable controller for setting the mutation rate parameter;
 - (d) computer-readable program code for causing a computer to display a variable controller for setting the crossover rate parameter;
 - (e) computer-readable program code for causing a computer to display one or more selectable items each corresponding to a polymorphic site of the gene or gene feature of interest; and

- - (f) computer-readable program code for causing a computer to displaying a selectable item for initiation of the genetic algorithm calculation; and
 - (g) computer-readable program code for causing a computer, in response to the selection by the user of one or more selectable items corresponding to a polymorphic site, and selection by the user of the item for initiation of the genetic algorithm calculation, to execute the genetic algorithm calculation with the parameters set by the variable controllers, and to display on a display device (i) the residual error of the model as a function of the number of genetic algorithm generations, and (ii) the results of the genetic algorithm calculation showing the optimal weights for each of the polymorphic sites.

15 104. A computer-usuable medium having computer-readable program code stored thereon, for causing a computer to display on a display device correlations between clinical outcome values obtained from selected clinical outcome measures for a selected population, the computer-readable program code comprising:

- 20 6) (a) computer-readable program code for causing a computer to display a first plurality of selectable items corresponding to clinical outcome measurements;
- 25 7) (b) computer-readable program code for causing a computer to display a second plurality of selectable items corresponding to clinical outcome measurements; and
- 30 8) (c) computer-readable program code for causing a computer to display a scatter plot of data points, each data point corresponding to an individual in the selected population;
- 35 9) (d) computer-readable program code for causing a computer, in response to selection by the user of an item from among the first plurality of selectable items, to locate each data point along the x axis of the scatter plot according to the

- clinical outcome value for the associated individual from the clinical measurement represented by the selected item; and
- 5 10) (e) computer-readable program code for causing the computer, in response to selection by the user of an item from among the second plurality of selectable items, to locate each data point along the y axis of the scatter plot according to the clinical outcome value for the associated individual from the clinical measurement represented by the selected item.
- 10 105. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to provide information of use in conducting a clinical trial of a treatment protocol for a medical condition of interest, the computer-readable program code comprising:
- 15 (a) computer-readable program code for causing a computer to access a database of DNA sequence data for selected genes or other loci in a reference population of individuals, and to access a database of (or accept as input) DNA sequence data for selected genes or other loci in a clinical trial population of individuals;
- 20 (b) computer-readable program code for causing a computer to assign to each member of the reference population haplotypes for each of the selected genes or other loci;
- 25 (c) computer-readable program code for causing a computer to calculate the frequencies, population distributions and statistical measures, including confidence limits, for each of the assigned haplotypes in the reference population;
- 30 (d) computer-readable program code for causing a computer to assign to each member of a trial population haplotypes for each of the selected genes or other loci, based upon the frequencies, population distributions and statistical measures calculated in the reference population;
- 35

- - (e) computer-readable program code for causing a computer to determine the correlations between individual responses to the treatment and individual haplotypes, for each of the selected genes or other loci;
 - 5 (f) computer-readable program code for causing a computer to accept as input an individual's DNA sequence data or haplotypes for one or more of the selected genes or other loci; and
 - 10 (g) computer-readable program code for causing a computer to display or output the expected response of the individual to the treatment, based on the determined correlations between individual responses to the treatment and individual haplotypes.
- 15 106. The computer-readable medium of claim 105, which further comprises:
 - (a) computer-readable program code stored thereon for causing a computer to derive from the haplotype distribution found for the reference population a reduced set of genotyping markers, which allow an individual's haplotypes to be accurately predicted without conducting a complete molecular haplotype analysis; and
 - 20 (b) computer-readable program code stored thereon for causing a computer to use the reduced set of genotype markers to assign haplotypes.
- 25 107. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to infer genotypes of individual subjects for a selected gene having at least m polymorphic sites, the computer-readable program code comprising:
 - (a) computer-readable program code for causing a computer to access a database of m -site haplotypes of the selected gene from a representative cohort of individuals;
- 30
- 35

-
- (b) computer-readable program code for causing a computer to tabulate the frequency of occurrence for each of the haplotypes;
- 5 (c) computer-readable program code for causing a computer to construct a list of all genotypes that could result from all possible pairs of observed haplotypes;
- 10 (d) computer-readable program code for causing a computer to calculate the expected frequency of these genotypes assuming the Hardy-Weinberg equilibrium;
- 15 (e) computer-readable program code for causing a computer to generate a complete set of all possible masks of the same length m as the haplotypes, wherein each mask blocks the identity of the nucleotides at $m-n$ polymorphic sites and admits the identity of nucleotides at the other n sites;
- 20 (f) computer-readable program code for causing a computer to calculate, for each mask, how much ambiguity results from genotyping with only the n polymorphic sites whose identity is admitted by the mask;
- (g) computer-readable program code for causing a computer to output or display on a display device the calculated ambiguity for one or more masks.
- 25 108. The computer-readable medium of claim 107, which further comprises computer-readable program code stored thereon for causing a computer to calculate the level of ambiguity for a mask, the computer-readable program code comprising:
- 30 (a) computer-readable program code for causing a computer to identify all pairs of genotypes that are rendered identical by application of the mask;
- (b) computer-readable program code for causing a computer to calculate the geometric mean of the calculated Hardy-Weinberg frequencies of each pair of genotypes rendered identical by

- - application of the mask;
- (c) computer-readable program code for causing a computer to sum all such geometric means for all ambiguous pairs to obtain an ambiguity score for the mask.

5

109. The computer-readable medium of claims 107 or 108, which further comprises computer-readable program code stored thereon for causing a computer to assign a haplotype pair to an individual having an ambiguous genotype, the computer-readable program code comprising:

10

(a) computer-readable program code for causing a computer to calculate, for two haplotype pairs A and B that could explain a given genotype, the Hardy-Weinberg equilibrium probabilities p_A and p_B , where $p_A + p_B = 1$;

15

(b) computer-readable program code for causing a computer to assign a haplotype pair by a process comprising

(i) selecting a random number between 0 and 1;

20

(ii) if the random number is less than or equal to p_A , assigning the haplotype pair A; and

(iii) if the number is greater than p_A , assigning the haplotype pair B.

25

110. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype, the computer-readable program code comprising:

30

(a) computer-readable program code for causing a computer to access a database containing haplotype information, and clinical response or outcome data (clinical outcome values) or other phenotype data, from a cohort of subjects;

35

(b) computer-readable program code for causing a computer to statistically analyze each individual SNP in the haplotype for the

- o degree to which it correlates with the clinical outcome values or other phenotype data, and generating a numerical measure of the degree of correlation;

5 (c) computer-readable program code for causing a computer to store for further processing those individual SNPs whose numerical measure of the degree of correlation with the clinical outcome values or other phenotype data exceeds a first cut-off value;

10 (d) computer-readable program code for causing a computer to generate all possible pair-wise combinations of the saved SNPs so as to provide a set of n -site sub-haplotypes where $n = 2$;

15 (e) computer-readable program code for causing a computer to statistically analyze each newly generated n -site sub-haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate a numerical measure of the degree of correlation;

20 (f) computer-readable program code for causing a computer to store for further processing those n -site sub-haplotypes whose numerical measure of the degree of correlation exceeds the first cut-off value;

25 (g) computer-readable program code for causing a computer to generate all possible pair-wise combinations among and between the saved SNPs and saved sub-haplotypes, to produce new subhaplotypes with increased values of n ;

30 (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes can be generated, or (ii) no further sub-haplotypes having n less than a

35 111. The computer-readable medium of claim 110, which further comprises
computer-readable program code stored thereon for causing a computer to display
those saved SNPs and sub-haplotypes whose numerical measure of the degree of

- correlation with the clinical outcome value or other phenotype exceeds a second cut-off value, wherein the second cut-off value is greater than the first cut-off value.

112. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype, the computer-readable program code comprising:

10

(a) computer-readable program code for causing a computer to access a database containing haplotype information, and clinical response or outcome data (clinical outcome values) or other phenotype data, from a cohort of subjects;

15

(b) computer-readable program code for causing a computer to statistically analyze each individual SNP in the haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate the p-value for the degree of correlation;

20

(c) computer-readable program code for causing a computer to store for further processing those individual SNPs whose p-value for the degree of correlation does not exceed a first cut-off value;

25

(d) computer-readable program code for causing a computer to generate all possible pair-wise combinations of the saved SNPs so as to provide a set of n -site sub-haplotypes where $n = 2$;

30

(e) computer-readable program code for causing a computer to statistically analyze each newly generated n -site sub-haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate the p-value for the degree of correlation;

35

(f) computer-readable program code for causing a computer to store for further processing those n -site sub-haplotypes whose p-value for the degree of correlation does not exceed the first cut-off value;

◦ (g) computer-readable program code for causing a computer to generate all possible pair-wise combinations among and between the saved SNPs and saved sub-haplotypes, to produce new subhaplotypes with increased values of n ;

5 (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes can be generated, or (ii) no further sub-haplotypes having n less than a pre-selected or user-selected limit can be generated.

10 113. The computer-readable medium of claim 110, which further comprises computer-readable program code stored thereon for causing a computer to display those saved SNPs and sub-haplotypes whose p-value for the degree of correlation with the clinical outcome value or other phenotype does not exceed a second cut-off value, wherein the second cut-off value is less than the first cut-off value.

15 114. The computer-readable medium of claims 110-113, which further comprises computer-readable program code stored thereon for causing a computer to exclude from further processing complex subhaplotypes which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes each have correlation values that are at least as significant as that of the complex subhaplotype.

20 115. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to determine polymorphic sites or subhaplotypes that correlate with a clinical response or outcome of interest, or other phenotype of interest, the computer-readable program code comprising:

25 (a) computer-readable program code for causing a computer to access a database containing single gene haplotype information for one or more genes, and clinical response, outcome data, or other phenotype data from a cohort of subjects;

30 (b) computer-readable program code for causing a computer to statistically analyze each single gene haplotype for the degree to which it correlates with the clinical response, outcome, or

- phenotype of interest, and to generate a numerical measure of the degree of correlation;
- 5 (c) computer-readable program code for causing a computer to store for further processing those haplotypes whose numerical measure of the degree of correlation exceeds a first cut-off value;
- 10 (d) computer-readable program code for causing a computer to generate, for each haplotype composed of m polymorphic sites, all possible sub-haplotypes having a single site masked, so as to provide a set of $m-n$ site sub-haplotypes where $n = 1$;
- 15 (e) computer-readable program code for causing a computer to statistically analyze each newly generated sub-haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and calculating a numerical measure of the degree of correlation;
- 20 (f) computer-readable program code for causing a computer to save for further processing those sub-haplotypes whose numerical measure of the degree of correlation exceeds the first cut-off value;
- 25 (g) computer-readable program code for causing a computer to generate, from the saved sub-haplotypes, all possible sub-haplotypes having one additional site masked;
- 30 (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes have a degree of correlation which exceeds the first cut-off value, or (ii) no further sub-haplotypes having more unmasked sites than a pre-selected limit can be generated.

35 116. The computer-readable medium of claim 115, which further comprises computer-readable program code stored thereon for causing a computer to display those saved sub-haplotypes whose numerical measure of the degree of correlation with the clinical response data, outcome value, or other phenotype data exceeds a

- second cut-off value, wherein the second cut-off value is greater than the first cut-off value.

117. A computer-readable medium having computer-readable program code stored thereon, for causing a computer to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype of interest, the computer-readable program code comprising:

10

(a) computer-readable program code for causing a computer to access a database containing single gene haplotype information for one or more genes, and clinical response, outcome data, or other phenotype data from a cohort of subjects;

15

(b) computer-readable program code for causing a computer to statistically analyze each single gene haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and to calculate the p-value for the degree of correlation;

20

(c) computer-readable program code for causing a computer to store for further processing those haplotypes whose p-value for the degree of correlation does not exceed a first cut-off value;

25

(d) computer-readable program code for causing a computer to generate, for each haplotype composed of m polymorphic sites, all possible sub-haplotypes having a single site masked, so as to provide a set of $m-n$ site sub-haplotypes where $n = 1$;

30

(e) computer-readable program code for causing a computer to statistically analyze each newly generated sub-haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and calculating the p-value for the degree of correlation;

35

(f) computer-readable program code for causing a computer to save for further processing those sub-haplotypes whose p-value for the degree of correlation does not exceed the first cut-off value;

- - (g) computer-readable program code for causing a computer to generate, from the saved sub-haplotypes, all possible sub-haplotypes having one additional site masked;
 - (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes have a p-value which does not exceed the first cut-off value, or (ii) no further sub-haplotypes having more unmasked sites than a pre-selected limit can be generated.

10 118. The computer-usuable medium of claim 117, which further comprises computer-readable program code stored thereon for causing a computer to display those saved sub-haplotypes whose p-value for the degree of correlation with the clinical response, outcome, or phenotype of interest does not exceed a second cut-off value, wherein the second cut-off value is less than the first cut-off value.

15 119. The computer-usuable medium of claims 115-118, which further comprises computer-readable program code stored thereon for causing a computer to exclude from further processing complex sub-haplotypes which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes each have correlation values that are at least as significant as that of the complex sub-haplotype.

20 120. A computer programmed to cause haplotype pair assignments to be made to an individual member of a population whose genotype information for a gene or gene feature of interest is stored in a computer-readable form, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

25 computer-readable program code for causing a computer to generate all possible haplotype pairs consistent with the stored genotype;
30 computer-readable program code for causing a computer to calculate the frequency of the haplotypes and haplotype pairs according to the Hardy-Weinberg equilibrium, based upon the observed distribution

o of haplotypes or haplotype pairs in the population; and computer-readable program code for causing a computer to select the most probable haplotype pair for the individual.

5 121. The computer of claim 120, wherein the program code further includes computer-readable program code for causing a computer to correct the stored distribution of haplotypes or haplotype pairs for effects imposed by the presence of a limited number of individuals in the population.

10 122. The computer of claim 120, wherein the program code further includes computer-readable program code for causing a computer to validate haplotype pair assignments by analyzing for compliance of the assigned haplotype pair with Mendelian inheritance principles.

15 123. The computer of claim 120, wherein the population is selected from the group consisting of a reference population, a clinical population, a disease population, an ethnic population, a family population and a same-sex population.

20 124. A computer programmed to cause haplotype pair assignments to be made to an individual member of a population whose genotype information for a gene or gene feature of interest is stored in a computer-readable form, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

25 computer-readable program code for causing a computer to generate all possible haplotype pairs consistent with the stored genotype;

30 computer-readable program code for causing a computer to access a database containing reference haplotype pair frequency data and to determine from the frequency data the probability, for each of the possible haplotype pairs, that the individual has the possible haplotype pair; and

35 computer-readable program code for causing a computer to select the most probable haplotype pair for the individual.

°

125. A computer programmed to identify a correlation between a clinical response to a treatment or other phenotype and a haplotype or haplotype pair present at a candidate locus hypothesized to be associated with the clinical response other phenotype, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 5
- 10
- 15
- 20
- 25
- (a) computer-readable program code for causing a computer to access a database containing data on clinical responses to treatments, or other phenotypes, exhibited by individuals in a clinical population;
- (b) computer-readable program code for causing a computer to access a database containing haplotype data for each individual of the clinical population, the haplotype data comprising information on a plurality of polymorphic sites present at the candidate locus; and
- (c) computer-readable program code for causing a computer to calculate the degree of correlation between haplotypes or haplotype pairs and the clinical response to the treatment or other phenotype, by statistical analysis of the haplotype and clinical response data.

126. The computer of claim 125, wherein the treatment comprises administration of a drug or drug candidate.

127. The computer of claim 125, wherein the candidate locus is a gene or a gene feature.

30

128. The computer of claim 125, wherein the program code further includes computer-readable program code for causing a computer to store, display, or output the degree of correlation.

35

129. The computer of claim 125, wherein the program code further includes computer-readable program code for causing a computer to calculate the statistical significance of the correlation.

- 130. A computer programmed to identify a correlation between an individual's susceptibility to a condition or disease of interest, or other phenotype, and a haplotype or haplotype pair present at a candidate locus hypothesized to be associated with susceptibility to the condition or disease of interest, or with a phenotype of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:
- (a) computer-readable program code for causing a computer to access haplotype data for the candidate locus for each member of a population having the phenotype or condition or disease of interest ("disease haplotype data");
- (b) computer-readable program code for causing a computer to statistically analyze the disease haplotype data to calculate haplotype or haplotype pair frequencies;
- (c) computer-readable program code for causing a computer to access a database containing haplotype data for the candidate locus for each member of a healthy reference population ("reference haplotype data");
- (d) computer-readable program code for causing a computer to statistically analyze the reference haplotype data to calculate haplotype or haplotype pair frequencies; and
- (e) computer-readable program code for causing a computer to identify a correlation of a haplotype or haplotype pair with susceptibility to the disease or condition of interest, or with the phenotype of interest, when the haplotype or haplotype pair has a higher frequency in the population having the phenotype, condition or disease of interest than in the reference population.
131. The computer of claim 130, wherein the candidate locus is a gene or a gene feature.

o

132. The computer of claim 130, wherein the program code further includes computer-readable program code for causing a computer to store, display, or output the identified correlation.

5

133. The computer of claim 130, wherein the program code further includes computer-readable program code for causing a computer to calculate the statistical significance of the correlation.

10

134. A computer programmed to predict an individual's response to a medical or pharmaceutical treatment based on one or more selected haplotypes or haplotype pairs of the individual, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

15

(a) computer-readable program code for causing a computer to access a database of correlations between haplotypes or haplotype pairs and responses to the medical or pharmaceutical treatment in a reference population;

20

(b) computer-readable program code for causing a computer to locate haplotypes or haplotype pairs in the database that match the selected haplotypes or haplotype pairs of the individual, and

25

(c) computer-readable program code for causing a computer to predict that the individual's response will be the response or responses associated in the database with the selected haplotype or haplotype pair.

30

135. The computer of claim 134, wherein the program code further includes computer-readable program code for causing a computer to generate an error estimate for the prediction.

35

136. A computer programmed to display a gene's structure and gene features on a display device, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- - (a) computer-readable program code for causing a computer to retrieve from a database, and display in a first area of the display device, data indicative of the frequencies of occurrence of a gene's haplotypes within predetermined member groupings of a reference population;
 - (b) computer-readable program code for causing a computer to retrieve from a database data indicative of the gene's structure and gene features;
 - (c) computer-readable program code for causing a computer to display in a second area of the display device a graphical representation of the gene's structure, user-selectable items indicating the location of gene features, and graphical indicators of the location of polymorphic sites on the gene;
 - (d) computer-readable program code for causing a computer to display in a third area of the display device, in response to a user's selection of an item indicating a gene feature, a graphical representation of the structure of the gene feature having user-selectable items indicating the position of polymorphic sites; and
 - (e) computer-readable program code for causing a computer to retrieve from a database, and display in a third area of the display device, in response to a user's selection of an item indicating the position of a polymorphic site, data indicative of the frequencies within the member groupings of the occurrence of particular nucleotides at the polymorphic site.
137. A computer programmed to display on a display device haplotype pair frequency data within a population of individuals, for a selected gene or gene feature, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- - (a) computer-readable program code for causing a computer to display on the display device a plurality of selectable items, each item corresponding to a polymorphic site in the gene or gene feature;
 - 5 (c) computer-readable program code for causing a computer to retrieve from a database and display on the display device, in response to a user's selection of one or more items indicating polymorphic sites, individual haplotype pairs in the database that differ at one or more of the selected polymorphic sites; and
 - 10 (d) computer-readable program code for causing a computer to display on the display device data indicative of the frequencies of the displayed haplotype pairs within one or more member groupings within the population.
- 15

138. A computer programmed to display on a display device polymorphic site linkage data for a gene or gene structure of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 20
 - (a) computer-readable program code for causing a computer to display on the display device one or more matrix structures, wherein the axes of each matrix structure represent the polymorphic sites in the gene or gene feature of interest, and wherein each matrix structure corresponds to a different population or population group; and
 - 25 (b) computer-readable program code for causing a computer to display on the display device, in each cell of a matrix structure, a graphical indication of degree of linkage between the two polymorphic sites corresponding to the coordinates of the cell in the matrix.
- 30

35

o 139. The computer of claim 138, wherein color is used as the graphical indication of degree of linkage, and wherein the medium further comprises computer-readable program code for causing a computer to display a reference color scale relating color to degree of linkage.

5 140. A computer programmed to display on a display device a phylogenetic tree, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

10 (a) computer-readable program code for causing a computer to display a plurality of selectable items, each corresponding to a polymorphic site in the gene or gene feature of interest; and

15 (b) computer-readable program code for causing a computer to display a phylogenetic tree structure having a node for each haplotype in a population, where the distance between nodes is proportional to the minimum number of nucleotides that would have to be changed to interconvert the corresponding haplotypes.

20 141. The computer of claim 140, wherein the program code further includes computer-readable program code for causing a computer to display connections between the nodes that indicate a single nucleotide difference between the haplotypes represented by the nodes.

25 142. The computer of claim 140, wherein the program code further includes computer-readable program code for causing a computer to display at each node an indication of the relative frequency of occurrence of the haplotype represented by the node among different population groups.

30 143. A computer programmed to display a genotype analysis screen on a display device, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

35

- - (a) computer-readable program code for causing a computer to display a first plurality of selectable items, each corresponding to a polymorphic site, and a second plurality of selectable items, each corresponding to a polymorphic site;
 - 5 (b) computer-readable program code for causing a computer to display on the display device a matrix structure, wherein the axes of the matrix structure represent haplotypes in the gene or gene feature of interest that vary at the polymorphic sites selected from the first plurality of selectable items; and
 - 10 (c) computer-readable program code for causing a computer to display on the display device, in each cell of the matrix structure, a graphical indication of the reliability of the assignment to an individual of the haplotype pair corresponding to the coordinates of the cell in the matrix, when the individual is genotyped only at the polymorphic sites selected from the second plurality of selectable items.

144. The computer of claim 143, wherein color is used as the graphical
20 indication of reliability of haplotype pair assignment, and wherein the program code further includes computer-readable program code for causing a computer to display a reference color scale relating color to reliability of haplotype pair assignment.

25 145. A computer programmed to display clinical response values, or other phenotype data, of a subject population as a function of haplotype pairs of the individuals in the population, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 30 (a) computer-readable program code for causing a computer to retrieve from a computer-readable storage device, data representing haplotype pairs and clinical response values, or other phenotype data, for the subject population; and

- o
- 5
- (b) computer-readable program code for causing a computer to graphically display a haplotype pair matrix structure, each of whose cells contains a graphical representation of the clinical response values or other phenotype data of individuals having the haplotype pair corresponding to the coordinates of that cell in the haplotype pair matrix.

146. A computer programmed to display on a display device clinical response values, or other phnotypic data, of a subject population as a function of the 10 haplotype pairs of the individuals in the population for a gene or gene feature of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 15 (a) computer-readable program code for causing a computer to display one or more first selectable items representing polymorphic sites of the gene or gene feature;
- 20 (b) computer-readable program code for causing a computer to display one or more second selectable items representing clinical measurements or phenotypes; and
- 25 (c) computer-readable program code for causing a computer to display on the display device, in response to the selection by the user of at least one first and second selectable items, a haplotype pair matrix structure, wherein the axes of the matrix structure represent haplotypes in the gene or gene feature of interest that vary at the polymorphic sites corresponding to the first selected item or items, and wherein each of the cells of the matrix contains a graphical representation of the mean clinical response value, or other phenotype data, for the clinical measurement represented by the selected second item, of individuals having the haplotype pair corresponding to the coordinates of the cell in the haplotype pair matrix.
- 30
- 35

147. The computer of claim 145 or 146, wherein color is used as the graphical indication of mean clinical response value, or other phenotype data, and wherein the program code further includes computer-readable program code for causing a computer to display a reference color scale relating color to mean clinical response value.

148. The computer of claim 147, wherein the program code further includes:

- (a) computer-readable program code for causing a computer to display a means for adjusting the range of mean clinical response values or other phenotype data represented by the reference color scale; and
- (b) computer-readable program code for causing a computer, in response to the adjustment of the range of clinical response values or other phenotype data represented by the reference color scale, to adjust the color of the cells of the haplotype pair matrix.

149. The computer of claim 145 or 146, wherein the graphical representation of data is a histogram indicating the distribution of individuals across the range of clinical response values or other phenotype data.

150. The computer of any one of claims 145, 146, or 147, wherein at least one cell in the displayed matrix includes a selectable area, and wherein the program code further includes computer-readable program code for causing a computer to display, for individuals having the haplotype pair represented by the coordinates of the cell in the matrix, a histogram indicating the distribution of the individuals across the range of clinical response values.

151. The computer of any one of claims 145, 146, or 147 wherein the program code further includes computer-readable program code for causing a computer to display a third selectable item, and computer-readable program code for causing a computer to display, in response to selection of the third selectable item by the user, the statistical significance of the correlations between variation at individual polymorphic sites and the clinical response values.

152. The computer of any one of claims 145, 146, or 147, wherein the program code further includes computer-readable program code for causing a computer to display a fourth selectable item, and computer-readable program code for causing a computer to display, in response to selection of the fourth selectable item by the user, the numerical mean and standard deviation of clinical response values among individuals having each haplotype pair in the matrix.

153. The computer of any one of claims 145, 146, or 147, wherein the program code further includes computer-readable program code for causing a computer to display a fifth selectable item, and computer-readable program code for causing a computer to display, in response to selection of the fifth selectable item by the user, the results of an analysis of variation calculation to permit determination of whether variation in the clinical response values between individuals having different haplotype pairs is statistically significant.

154. A computer programmed to carry out a genetic algorithm for finding an optimal set of weights to fit a function of polymorphic site data for a gene or gene feature of interest to a clinical response measurement, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- (a) computer-readable program code for causing a computer to display a variable controller for setting the number of genetic algorithm generations parameter;
- (b) computer-readable program code for causing a computer to display a variable controller for setting the number of agents parameter;
- (c) computer-readable program code for causing a computer to display a variable controller for setting the mutation rate parameter;

- o
 - (d) computer-readable program code for causing a computer to display a variable controller for setting the crossover rate parameter;
 - (e) computer-readable program code for causing a computer to display one or more selectable items each corresponding to a polymorphic site of the gene or gene feature of interest; and
 - (f) computer-readable program code for causing a computer to displaying a selectable item for initiation of the genetic algorithm calculation; and
 - (g) computer-readable program code for causing a computer, in response to the selection by the user of one or more selectable items corresponding to a polymorphic site, and selection by the user of the item for initiation of the genetic algorithm caclulation, to execute the genetic algorithm calculation with the parameters set by the variable controllers, and to display on a display device (i) the residual error of the model as a function of the number of genetic algorithm generations, and (ii) the results of the genetic algorithm calculation showing the optimal weights for each of the polymorphic sites.

155. A computer programmed to display on a display device correlations between clinical outcome values obtained from selected clinical outcome measures for a selected population, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 30 11) (a) computer-readable program code for causing a computer to display a first plurality of selectable items corresponding to clinical outcome measurements;
- 12) (b) computer-readable program code for causing a computer to display a second plurality of selectable items corresponding to clinical outcome measurements; and

-
- 13) (c) computer-readable program code for causing a computer to display a scatter plot of data points, each data point corresponding to an individual in the selected population;
- 5 14) (d) computer-readable program code for causing a computer, in response to selection by the user of an item from among the first plurality of selectable items, to locate each data point along the x axis of the scatter plot according to the clinical outcome value for the associated individual from the clinical measurement represented by the selected item; and
- 10 15) (e) computer-readable program code for causing the computer, in response to selection by the user of an item from among the second plurality of selectable items, to locate each data point along the y axis of the scatter plot according to the clinical outcome value for the associated individual from the clinical measurement represented by the selected item.

156. A computer programmed to provide information of use in conducting a clinical trial of a treatment protocol for a medical condition of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 20 25 (a) computer-readable program code for causing a computer to access a database of DNA sequence data for selected genes or other loci in a reference population of individuals, and to access a database of (or accept as input) DNA sequence data for selected genes or other loci in a clinical trial population of individuals;
- 30 (b) computer-readable program code for causing a computer to assign to each member of the reference population haplotypes for each of the selected genes or other loci;
- 35 (c) computer-readable program code for causing a computer to

- calculate the frequencies, population distributions and statistical measures, including confidence limits, for each of the assigned haplotypes in the reference population;
 - (d) computer-readable program code for causing a computer to assign to each member of a trial population haplotypes for each of the selected genes or other loci, based upon the frequencies, population distributions and statistical measures calculated in the reference population;
 - 5 (e) computer-readable program code for causing a computer to determinine the correlations between individual responses to the treatment and individual haplotypes, for each of the selected genes or other loci;
 - 10 (f) computer-readable program code for causing a computer to accept as input an individual's DNA sequence data or haplotypes for one or more of the selected genes or other loci; and
 - 15 (g) computer-readable program code for causing a computer to display or output the expected response of the individual to the treatment, based on the determined correlations between individual responses to the treatment and individual haplotypes.
- 20 157. The computer of claim 156, wherein the program code further includes:
- (a) computer-readable program code for causing a computer to derive from the haplotype distribution found for the reference population a reduced set of genotyping markers, which allow an individual's haplotypes to be accurately predicted without conducting a complete molecular haplotype analysis; and
 - 25 (b) computer-readable program code for causing a computer to use the reduced set of genotype markers to assign haplotypes.
- 30
- 35

158. A computer programmed to infer genotypes of individual subjects for a selected gene having at least m polymorphic sites, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:
- (a) computer-readable program code for causing a computer to access a database of m -site haplotypes of the selected gene from a representative cohort of individuals;
 - (b) computer-readable program code for causing a computer to tabulate the frequency of occurrence for each of the haplotypes;
 - (c) computer-readable program code for causing a computer to construct a list of all genotypes that could result from all possible pairs of observed haplotypes;
 - (d) computer-readable program code for causing a computer to calculate the expected frequency of these genotypes assuming the Hardy-Weinberg equilibrium;
 - (e) computer-readable program code for causing a computer to generate a complete set of all possible masks of the same length m as the haplotypes, wherein each mask blocks the identity of the nucleotides at $m-n$ polymorphic sites and admits the identity of nucleotides at the other n sites;
 - (f) computer-readable program code for causing a computer to calculate, for each mask, how much ambiguity results from genotyping with only the n polymorphic sites whose identity is admitted by the mask;
 - (g) computer-readable program code for causing a computer to output or display on a display device the calculated ambiguity for one or more masks.

° 159. The computer of claim 158, wherein the program code further includes computer-readable program code for causing a computer to calculate the level of ambiguity for a mask, the computer-readable program code comprising:

- 5 (a) computer-readable program code for causing a computer to identify all pairs of genotypes that are rendered identical by application of the mask;
- 10 (b) computer-readable program code for causing a computer to calculate the geometric mean of the calculated Hardy-Weinberg frequencies of each pair of genotypes rendered identical by application of the mask;
- 15 (c) computer-readable program code for causing a computer to sum all such geometric means for all ambiguous pairs to obtain an ambiguity score for the mask.

160. The computer of any one of claims 158 or 159, wherein the program code further includes computer-readable program code for causing a computer to assign a haplotype pair to an individual having an ambiguous genotype, the computer-readable program code comprising:

- 20 (a) computer-readable program code for causing a computer to calculate, for two haplotype pairs A and B that could explain a given genotype, the Hardy-Weinberg equilibrium probabilities p_A and p_B , where $p_A + p_B = 1$;
- 25 (b) computer-readable program code for causing a computer to assign a haplotype pair by a process comprising
- 30 (i) selecting a random number between 0 and 1;
- (ii) if the random number is less than or equal to p_A , assigning the haplotype pair A; and
- (iii) if the number is greater than p_A , assigning the haplotype pair B.

- 161. A computer programmed to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:
- 5 (a) computer-readable program code for causing a computer to access a database containing haplotype information, and clinical response or outcome data (clinical outcome values) or other phenotype data, from a cohort of subjects;
- 10 (b) computer-readable program code for causing a computer to statistically analyze each individual SNP in the haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and generating a numerical measure of the degree of correlation;
- 15 (c) computer-readable program code for causing a computer to store for further processing those individual SNPs whose numerical measure of the degree of correlation with the clinical outcome values or other phenotype data exceeds a first cut-off value;
- 20 (d) computer-readable program code for causing a computer to generate all possible pair-wise combinations of the saved SNPs so as to provide a set of n -site sub-haplotypes where $n = 2$;
- 25 (e) computer-readable program code for causing a computer to statistically analyze each newly generated n -site sub-haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate a numerical measure of the degree of correlation;
- 30 (f) computer-readable program code for causing a computer to store for further processing those n -site sub-haplotypes whose numerical measure of the degree of correlation exceeds the first cut-off value;
- 35

- - (g) computer-readable program code for causing a computer to generate all possible pair-wise combinations among and between the saved SNPs and saved sub-haplotypes, to produce new subhaplotypes with increased values of n ;
 - 5 (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes can be generated, or (ii) no further sub-haplotypes having n less than a pre-selected or user-selected limit can be generated.

10 162. The computer of claim 161, wherein the program code further includes computer-readable program code for causing a computer to display those saved SNPs and sub-haplotypes whose numerical measure of the degree of correlation with the clinical outcome value or other phenotype exceeds a second cut-off value, wherein the second cut-off value is greater than the first cut-off value.

15 163. A computer programmed to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- 20 (a) computer-readable program code for causing a computer to access a database containing haplotype information, and clinical response or outcome data (clinical outcome values) or other phenotype data, from a cohort of subjects;
- (b) computer-readable program code for causing a computer to statistically analyze each individual SNP in the haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate the p-value for the degree of correlation;
- 25 (c) computer-readable program code for causing a computer to store for further processing those individual SNPs whose p-value for the degree of correlation does not exceed a first cut-off value;

- (d) computer-readable program code for causing a computer to generate all possible pair-wise combinations of the saved SNPs so as to provide a set of n -site sub-haplotypes where $n = 2$;

(e) computer-readable program code for causing a computer to statistically analyze each newly generated n -site sub-haplotype for the degree to which it correlates with the clinical outcome values or other phenotype data, and calculate the p-value for the degree of correlation;

(f) computer-readable program code for causing a computer to store for further processing those n -site sub-haplotypes whose p-value for the degree of correlation does not exceed the first cut-off value;

(g) computer-readable program code for causing a computer to generate all possible pair-wise combinations among and between the saved SNPs and saved sub-haplotypes, to produce new subhaplotypes with increased values of n ;

(h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes can be generated, or (ii) no further sub-haplotypes having n less than a pre-selected or user-selected limit can be generated.

164. The computer of claim 161, wherein the program code further includes computer-readable program code for causing a computer to display those saved SNPs and sub-haplotypes whose p-value for the degree of correlation with the clinical outcome value or other phenotype does not exceed a second cut-off value, wherein the second cut-off value is less than the first cut-off value.

165. The computer of any one of claims 161-164, wherein the program code further includes computer-readable program code for causing a computer to exclude from further processing complex subhaplotypes which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes each have correlation values that are at least as significant as that of the complex sub-haplotype.

- 166. A computer programmed to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:
- 5 (a) computer-readable program code for causing a computer to access a database containing single gene haplotype information for one or more genes, and clinical response, outcome data, or other phenotype data from a cohort of subjects;
- 10 (b) computer-readable program code for causing a computer to statistically analyze each single gene haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and to generate a numerical measure of the degree of correlation;
- 15 (c) computer-readable program code for causing a computer to store for further processing those haplotypes whose numerical measure of the degree of correlation exceeds a first cut-off value;
- 20 (d) computer-readable program code for causing a computer to generate, for each haplotype composed of m polymorphic sites, all possible sub-haplotypes having a single site masked, so as to provide a set of $m-n$ site sub-haplotypes where $n = 1$;
- 25 (e) computer-readable program code for causing a computer to statistically analyze each newly generated sub-haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and calculating a numerical measure of the degree of correlation;
- 30 (f) computer-readable program code for causing a computer to save for further processing those sub-haplotypes whose numerical measure of the degree of correlation exceeds the first cut-off value;
- 35

- - (g) computer-readable program code for causing a computer to generate, from the saved sub-haplotypes, all possible sub-haplotypes having one additional site masked;
 - (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes have a degree of correlation which exceeds the first cut-off value, or (ii) no further sub-haplotypes having more unmasked sites than a pre-selected limit can be generated.

10 167. The computer of claim 166, wherein the program code further includes computer-readable program code for causing a computer to display those saved sub-haplotypes whose numerical measure of the degree of correlation with the clinical response data, outcome value, or other phenotype data exceeds a second cut-off value, wherein the second cut-off value is greater than the first cut-off value.

15 168. A computer programmed to determine polymorphic sites or sub-haplotypes that correlate with a clinical response or outcome of interest, or other phenotype of interest, the computer comprising a memory having at least one region for storing computer executable program code and a processor for executing the program code stored in memory, wherein the program code includes:

- (a) computer-readable program code for causing a computer to access a database containing single gene haplotype information for one or more genes, and clinical response, outcome data, or other phenotype data from a cohort of subjects;
- (b) computer-readable program code for causing a computer to statistically analyze each single gene haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and to calculate the p-value for the degree of correlation;
- (c) computer-readable program code for causing a computer to store for further processing those haplotypes whose p-value for the degree of correlation does not exceed a first cut-off value;

- (d) computer-readable program code for causing a computer to generate, for each haplotype composed of m polymorphic sites, all possible sub-haplotypes having a single site masked, so as to provide a set of $m-n$ site sub-haplotypes where $n = 1$;
 - 5 (e) computer-readable program code for causing a computer to statistically analyze each newly generated sub-haplotype for the degree to which it correlates with the clinical response, outcome, or phenotype of interest, and calculating the p-value for the degree of correlation;
 - 10 (f) computer-readable program code for causing a computer to save for further processing those sub-haplotypes whose p-value for the degree of correlation does not exceed the first cut-off value;
 - 15 (g) computer-readable program code for causing a computer to generate, from the saved sub-haplotypes, all possible sub-haplotypes having one additional site masked;
 - 20 (h) computer-readable program code for causing a computer to repeat steps (e) through (g) until either (i) no new sub-haplotypes have a p-value which does not exceed the first cut-off value, or (ii) no further sub-haplotypes having more unmasked sites than a pre-selected limit can be generated.
- 25 169. The computer of claim 168, wherein the program code further includes computer-readable program code for causing a computer to display those saved sub-haplotypes whose p-value for the degree of correlation with the clinical response, outcome, or phenotype of interest does not exceed a second cut-off value, wherein the second cut-off value is less than the first cut-off value.
- 30 170. The computer of any one of claims 166-169, wherein the program code further includes computer-readable program code for causing a computer to exclude from further processing complex sub-haplotypes which are constructed from smaller sub-haplotypes, where the smaller sub-haplotypes each have
- 35

- correlation values that are at least as significant as that of the complex subhaplotype.

171. A data structure for storing and organizing biological information, stored on a computer-readable medium and accessible by a processor, which
5 comprises a single parent table which is adapted for storing, organizing, and retrieving a plurality of genetic features by the relative positional relationships between the genetic features.

172. The data structure of claim 171, wherein said parent table is part of each
10 of three submodels comprising the data structure, wherein said submodels are a genomic repository submodel, a variation repository submodel and a literature repository submodel.

173. The data structure of claim 172, wherein the genetic features are
15 selected from the group consisting of chromosomes, genomic regions, genes, gene regions, gene transcripts, transcript regions, and polymorphisms.

174. The data structure of claim 173, further comprising a clinical repository submodel.

20 175. The data structure of claim 174, further comprising a drug repository submodel.

176. A method for storing and organizing biological information, which
comprises

25 (a) providing a data structure comprising a single parent table which is adapted for storing, organizing, and retrieving a plurality of genetic features by the relative positional relationships between the genetic features; and

30 (b) positioning a first genetic feature onto a second genetic feature.

177. The method of claim 175, wherein said first genetic feature is an assembly and said second genetic feature is a gene.

35 178. The method of claim 177, further comprising positioning a third genetic feature onto said gene.

o 179. The method of claim 178, wherein said third genetic feature is a gene region and the method further comprises positioning onto said gene region a polymorphism.

5 180. The method of claim 179, further comprising providing a relationship between the polymorphism and at least one phenotype which is associated with the polymorphism.

10 181. The method of claim 177, further comprising positioning onto said gene a haplotype which comprises a plurality of polymorphisms.

15 182. The method of claim 178, further comprising providing a relationship between the haplotype and at least one phenotype which is associated with the haplotype.

20 183. A data structure for storing and organizing biological information, stored on a computer-readable medium and accessible by a processor, which comprises at least two different fields, one of which includes a plurality of genetic features, and the other of which includes relative positional relationships between the genetic features.

25

30

35

FIG. IA

SUBSTITUTE SHEET (RULE 26)

2/62

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

3/62

FIG. 2

SUBSTITUTE SHEET (RULE 26)

4 / 62

FIG. 3

DecoGen Browser: CYP2D6

File Edit Help

GENASSIANCE PHARMACEUTICAL

	Gene Description	Description	View
Pathways			
Gene Description	CYP2D6		
Gene Structure		Human cytochrome P450 2D6 (CYP2D6) gene	
mRNA Structure		Metabolic enzyme	
Protein Structure		Homo Sapiens	
HAP Frequencies		9432	
Population	No Features	13	
Linkage	Population Size	46	
SNP Distribution	No. Haplotypes	10	
Phylogenetic Tree	Nucleotide Polymorphism (theta)	$5.6E-4 +/- 3.1E-4$	
Genotype Analysis	Nucleotide Diversity (pi)	$2.8E-4 +/- 1.8E-4$	
Clinical Distribution			
Edit Pathway			
MultiGene			
Clinical Trial Cohorts			
Expression			
Assay Data			
References			

SUBSTITUTE SHEET (RULE 26)

5/62

FIG. 4a

SUBSTITUTE SHEET (RULE 26)

6/62

FIG. 4b

SUBSTITUTE SHEET (RULE 26)

7/62

5
FIG.

SUBSTITUTE SHEET (RULE 26)

8/62

FIG. 6

DecoGen Browser: CYP2D6

File Edit Help

GENAISANCE PHARMACEUTICAL

	mRNA Structure View								
Pathways									
Gene Description									
Gene Structure									
mRNA Structure									
Protein Structure									
HAP Frequencies									
Population									
Linkage									
SNP Distribution									
Phylogenetic Tree									
Genotype Analysis									
Clinical Distribution									
Edit Pathway									
MultiGene									
Clinical Trial Cohorts									
Expression									
Assay Data									
References									

SUBSTITUTE SHEET (RULE 26)

9/62

FIG. 7

SUBSTITUTE SHEET (RULE 26)

10/62

FIG. 8

Population View							
	PID	Ethnicity	Age	Gender	HAP 1	HAP 2	Test
Pathways	UP070	CA	99	F	CCCCCTGGCC	GGGCTGGGC	0.1
Gene Description	UP072	CA	99	F	CCGGCTGGCC	GGACTGGCC	0.2
Gene Structure	UP074	CA	99	F	CCCCTGGCC	GGACTGGCC	0.2
mRNA Structure	UP132	CA	99	M	CTGCCCTGGGT	GTGCCCTGGCT	0.3
Protein Structure	UP133	CA	99	M	GGCCCTGGCC	GTGCCCTGGCT	0.2
HAP Frequencies	UP134	CA	99	F	GGCCCTGGCC	GGCCCTGGCC	0.1
Population	UP137	CA	99	M	GTGCCCTGGGT	GTGCCCTGGCT	0.1
Linkage	UP009	CA	99	F	GGACTGGCC	GGACTGGCC	0.1
SNP Distribution	UP014	CA	99	F	GGCCCTGGCC	GGCCCTGGAC	0.3
Phylogenetic Tree	UP020	CA	99	F	GGCCCTGGGT	GTGCCCTGGCT	0.2
Genotype Analysis	UP021	CA	99	M	GGCGTGGCC	GGCCCTGGCC	0.4
Clinical Distribution	UP022	CA	99	M	GGCCCTGGAC	GGCCCTGGAC	0.3
Edit Pathway	OR001	AS	99	M	GGCCCTGGCC	GGCCTGTGC	0.2
MultiGene	OR002	AS	99	M	GGCCCTGGCC	GGCCCTGGCC	0.3
Clinical Trial Cohorts	OR004	AS	99	F	GGACTGGCC	GGACTGGCC	0.2
Expression	OR006	AS	99	F	GGCCCTGGCC	GGCCCTGGAC	0.1
Assay Data	WT003	CA	99	F	GGCCCTGGCC	GGCCCTGTCC	0.2
References	WT005	CA	99	M	GGCCCTGGCC	GGCCCTGGCC	0.2
	WT007	CA	99	M	GGCCCTGTCC	GGCCCTGTCC	0.4
	UP012	CA	99	F	GGCCCTAGCC	GGCCCTGGAC	0.1
	UP035	CA	99	M	GGACTGGCC	GGCCCTGGAC	0.2

SUBSTITUTE SHEET (RULE 26)

11 / 62

FIG. 9

SUBSTITUTE SHEET (RULE 26)

12 / 62

FIG. 10

SUBSTITUTE SHEET (RULE 26)

13 / 62

FIG. II

SUBSTITUTE SHEET (RULE 26)

14 / 62

FIG. 12

SUBSTITUTE SHEET (RULE 26)

15 / 62

FIG. 13

SUBSTITUTE SHEET (RULE 26)

16 / 62

FIG. 14

SUBSTITUTE SHEET (RULE 26)

17 / 62

FIG. 15

SUBSTITUTE SHEET (RULE 26)

18 / 62

FIG. 16

SUBSTITUTE SHEET (RULE 26)

FIG. 17

SUBSTITUTE SHEET (RULE 26)

20 / 62

FIG. 18

SUBSTITUTE SHEET (RULE 26)

21 / 62

FIG. 19

SUBSTITUTE SHEET (RULE 26)

22 / 62

FIG. 20

SUBSTITUTE SHEET (RULE 26)

WO 01/01218

23 / 62

Site	Slope	Intercept	Variance	T(slope)	Significance Level
1	-0.083	0.316	0.05	-0.59	0.7223
2	0.154	0.231	0.04	4.22	0.9999
3	-0.08	0.326	0.05	-1.16	0.8735
4	-0.0080	0.313	0.06	-0.14	0.5572
5	0.145	0.305	0.05	0.86	0.804
6	-0.08	0.332	0.05	-1.24	0.8902
7	0.0070	0.31	0.06	0.08	0.5303
8	0.158	0.222	0.04	4.34	1.0
9	-0.043	0.322	0.05	-0.76	0.7752

FIG. 21

SUBSTITUTE SHEET (RULE 26)

24 / 62

FIG. 22

SUBSTITUTE SHEET (RULE 26)

25/62

FIG. 23

FIG. 24

SUBSTITUTE SHEET (RULE 26)

FIG. 25A

SUBSTITUTE SHEET (RULE 26)

FIG. 26B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

29 / 62

FIG. 25D

SUBSTITUTE SHEET (RULE 26)

FIG. 25E

SUBSTITUTE SHEET (RULE 26)

Legend of Figures:

Rectangle Boxes: Tables in the database.

Rounded Boxes: Children tables that depend on their parent tables. This dependency requires that a parent record to be in existence before a child record can be created.

- 2: ——* Identifying parent / child relationship. It depicts the not nullable 1-to-0-or-many relationship.
- 4: ——⊕ Non-identifying parent / child relationship. It represents the nullable 0-or-1-to-many relationship.
- 6: ——* Identifying parent / child relationship. It depicts the not nullable 1-to-1-or-many relationship.
- 8: ——+ Non-identifying parent / child relationship. It represents the not nullable 1-to-1-or-many relationship.
- 10: |—— Identifying parent / child relationship. It depicts the not nullable 1-to-exact-1 relationship.
- 12: ⊖—— Non-identifying parent / child relationship. It represents the nullable 0-or-1-to-exact-1 relationship.
- 14: +—* Non-identifying parent / child relationship. It represents the not nullable 0-or-1-to-many relationship.

FIG. 25F

SUBSTITUTE SHEET (RULE 26)

32 / 62

FIG. 26

SUBSTITUTE SHEET (RULE 26)

33 / 62

FIG. 27

Gene Description View

Name	ADRB2
Definition	adrenergic, beta-2-, receptor, surface
Function	Function
Organism	Human
Length	3451
No. Features	5
Population Size	261
No. Haplotypes	12
No. SNPs	13
Nucleotide Polymorphism (theta)	7.9E-4 +/- 3.9E-4
Nucleotide Diversity (pi)	4.6E-4 +/- 2.8E-4

Views

- Pathway
- Gene table
- GeneInfo
- Patient table
- HAPTyping
- HAPPair
- HAPSNP
- Linkage
- Phylogenetic
- Clinical Trial Data
- ClinicalVariables
- ClinicalCorrelations
- Haplodemiology
- HaplotypePhenotype
- Clinical Haplotype Correl
- Projects
- URIC
- Asthma
- Diabetes
- Heart Disease
- Patients
- Repository

Project: Asthma

View: GeneInfo

Active Gene: ADRB2

SUBSTITUTE SHEET (RULE 26)

34 / 62

FIG. 28A

DecoGen

Views: Pathway, Gene, table, GeneStructure, Polent table, HAPTyping, HAPPair, HAPSNP, Linkage, Phylogenetic, Clinical Trial Data, ClinicalVariants, ClinicalCorrelations, HopEpidemiology, HopPhylogeny, Clinical, HopHaplotype Correl, Projects, Lupus, Asthma, Diabetes, Heart Disease, Patients, Repository.

Gene structure: ADRB2
adrenergic, beta-2, receptor, surface

13 Polymorphisms

Row	Gene	Region	Pos	Accession	Pos	Change	Wild	Het	Mut	Err	Af	As	CA	PT
1	ADRB2	promoter	564	M15169.1	565	G/A	52	118	49	42	0.42	0.364	0.493	0
2	ADRB2	promoter	878	M15169.1	879	C/A	156	33	33	39	0.3	0.553	0.103	0
3	ADRB2	promoter	934	M15169.1	934	G/A	101	107	46	7	0.355	0.45	0.381	0
4	ADRB2	promoter	1,119	M15169.1	1,120	C/G	86	102	65	8	0.359	0.579	0.443	0
5	ADRB2	promoter	1,181	M15169.1	1,182	C/T	137	33	53	38	0.547	0.921	0.075	0
6	ADRB2	promoter	1,220	M15169.1	1,221	T/C	118	96	39	8	0.062	0.028	0.447	0
7	ADRB2	promoter	1,540	M15169.1	1,541	T/C	95	117	44	5	0.197	0.225	0.467	0
8	ADRB2	promoter	1,567	M15169.1	1,568	C/T	93	99	62	7	0.409	0.05	0.53	0
9	ADRB2	exon 1	264	M15169.1	1,633	G/A	103	113	40	5	0.47	0.3	0.358	0
10	ADRB2	exon 1	297	M15169.1	1,666	C/G	156	65	35	5	0.061	0	0.38	0
11	ADRB2	exon 1	470	M15169.1	1,839	G/A	163	75	16	7	0.312	0.3	0.159	0
12	ADRB2	exon 1	709	M15169.1	2,078	C/T	209	49	1	2	0.125	0.36	0.039	0

12 Haplotypes

Row	Id	1	2	3	4	5	6	7	8	9	10	11	12	13	Score	Count	Af	AS	CA
1	20	A	C	G	C	C	T	T	A	C	G	C	C	C	0	26	16	5	2
2	21	A	C	C	C	C	C	C	C	C	C	C	C	C	0	175	4	4	157
3	22	C	A	C	C	T	T	T	A	C	G	C	C	C	0	2	0	0	2
4	23	C	C	A	C	C	T	T	A	C	G	C	C	C	0	145	18	18	94
5	24	C	C	A	C	C	T	T	C	C	C	C	C	C	0	4	0	0	4
6	25	C	C	C	C	C	T	T	G	C	A	C	A	A	0	78	17	12	43
7	26	C	C	C	C	C	T	T	G	C	A	T	A	A	0	5	1	0	3
8	27	C	C	A	C	C	T	T	A	C	C	A	A	A	0	2	0	0	2
9	28	A	C	G	C	C	T	T	C	C	G	C	C	C	0	3	3	0	0
10	29	C	C	G	C	C	T	T	G	C	A	C	C	C	0	4	0	0	2
11	30	C	C	G	C	C	T	T	G	C	C	C	C	C	0	2	0	1	1

View: Gene Structure Active Gene: ADRB2

Project: Asthma

SUBSTITUTE SHEET (RULE 26)

35 / 62

FIG. 28B

SUBSTITUTE SHEET (RULE 26)

36 / 62

FIG. 29A

SUBSTITUTE SHEET (RULE 26)

37 / 62

FIG. 29B

Clinical Trial Data											
82 Patient Measurement Objects											
Row	Patient	Severity	Skin Test	FVC LP	FVC %P...	FVC L...	FEV1 %...	FEV1/FV...	FEF PRE	FEF %P...	FVC
1	SL-AA131	2.0	1.0	1.88	58.0	1.28	52.0	68.0	0.83	49.0	1.81
2	SL-AA134	2.0	1.0	2.01	54.0	0.96	34.0	48.0	0.45	12.0	2.2
3	SL-AA136	0.0	0.0	2.56	89.0	2.22	93.0	87.0	3.2	91.0	2.5
4	SL-AA150	2.0	1.0	1.4	50.0	0.6	27.0	43.0	0.22	7.0	1.5
5	SL-AA155	2.0	1.0	1.77	40.0	0.98	27.0	55.0	0.61	16.0	2.2
6	SL-AA159	2.0	1.0	2.89	66.0	1.71	51.0	59.0	0.9	20.0	4.4
7	SL-AA195	1.0	1.0	4.28	96.0	2.7	79.0	63.0	1.48	33.0	5.2
8	SL-AA211	1.0	1.0	3.44	91.0	1.97	66.0	57.0	1.39	32.0	5.5
9	SL-AA227	2.0	0.0	1.93	54.0	0.96	37.0	49.0	0.35	11.0	2.5
10	SL-AA253	1.0	1.0	3.0	96.0	2.01	70.0	57.0	0.99	25.0	3.8
11	SL-AA270	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
12	SL-AA275	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
13	SL-CA101	1.0	1.0	2.17	85.0	1.92	64.0	71.0	1.33	38.0	3.2
14	SL-CA103	2.0	1.0	3.56	59.0	2.16	46.0	61.0	1.13	18.0	4.1
15	SL-CA104	2.0	0.0	2.76	57.0	1.46	39.0	53.0	0.59	16.0	3.4
16	SL-CA105	2.0	0.0	1.99	62.0	1.11	46.0	57.0	0.55	24.0	2.3
17	SL-CA106	0.0	1.0	3.46	82.0	2.69	83.0	57.0	2.28	51.0	4.4
18	SL-CA107	0.0	1.0	3.82	113.0	2.59	83.0	78.0	1.7	46.0	3.9
19	SL-CA108	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
20	SL-CA109	1.0	1.0	2.63	93.0	1.7	7.0	64.5	0.89	25.0	2.8
21	SL-CA110	0.0	1.0	4.56	114.0	3.18	101.0	70.0	2.24	51.0	4.5
22	SL-CA111	2.0	1.0	3.08	69.0	2.01	58.0	65.0	1.12	32.0	3.3
23	SL-CA114	1.0	0.0	2.83	84.0	2.18	77.0	77.0	1.77	43.0	3.0
24	SL-CA116	1.0	1.0	2.44	83.0	1.91	79.0	78.0	1.8	49.0	2.4
25	SL-CA117	1.0	1.0	3.81	90.0	2.25	67.0	59.0	1.04	22.0	4.1
26	SL-CA118	1.0	1.0	1.53	76.0	1.27	71.0	83.0	1.27	49.0	1.6
27	SL-CA119	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
28	SL-CA120	0.0	1.0	4.24	106.0	2.71	83.0	64.0	1.61	33.0	4.4
29	SL-CA121	1.0	0.0	3.05	88.0	1.9	70.0	62.0	0.95	26.0	3.6
30	SL-CA122	0.0	1.0	5.76	105.0	4.35	103.0	75.5	3.52	62.0	6.0
31	SL-CA123	2.0	1.0	1.82	66.0	0.92	40.0	50.0	0.41	12.0	2.5
32	SL-CA124	2.0	0.0	2.45	59.0	1.3	43.0	53.0	0.41	11.0	2.5
33	SL-CA125	2.0	1.0	1.19	42.0	0.81	37.0	68.0	0.47	22.0	1.3
34	SL-CA126	2.0	0.0	1.74	64.0	1.17	52.0	67.0	0.55	18.0	1.8
35	SL-CA127	1.0	1.0	1.97	68.7	1.63	73.0	83.0	1.49	66.6	2.6

View: Clinical Trial Data Active Gene: ADRB2

Project: Asthma

SUBSTITUTE SHEET (RULE 26)

FIG. 30

SUBSTITUTE SHEET (RULE 26)

39 / 62

3
FIG.

SUBSTITUTE SHEET (RULE 26)

40 / 62

FIG. 32

SUBSTITUTE SHEET (RULE 26)

41/62

FIG. 33

SUBSTITUTE SHEET (RULE 26)

42/62

FIG. 34

SUBSTITUTE SHEET (RULE 26)

43 / 62

FIG. 35

SUBSTITUTE SHEET (RULE 26)

44162

FIG. 36

SUBSTITUTE SHEET (RULE 26)

45 / 62

FIG. 37

SUBSTITUTE SHEET (RULE 26)

46 / 62

FIG. 38

SUBSTITUTE SHEET (RULE 26)

47 / 62

FIG. 39A

SUBSTITUTE SHEET (RULE 26)

48 / 62

FIG. 39B

SUBSTITUTE SHEET (RULE 26)

49 / 62

FIG. 40

SUBSTITUTE SHEET (RULE 26)

50 / 62

FIG. 4I

SUBSTITUTE SHEET (RULE 26)

51 / 62

FIG. 42

SUBSTITUTE SHEET (RULE 26)

52 / 62

FIG. 43

SUBSTITUTE SHEET (RULE 26)

53 / 62

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

54 / 62

FIG. 44B

SUBSTITUTE SHEET (RULE 26)

55 / 62

FIG. 44C

SUBSTITUTE SHEET (RULE 26)

FIG. 44D

SUBSTITUTE SHEET (RULE 26)

57 / 62

SUBSTITUTE SHEET (RULE 26)

FIG. 44E

Legend of Figures:

Rectangle Boxes: Tables in the database.

Rounded Boxes: Children tables that depend on their parent tables.
This dependency requires that a parent record to be in existence before a child record can be created.

- 2: Identifying parent / child relationship. It depicts the not nullable 1-to-0-or-many relationship.
- 4: Non-identifying parent / child relationship. It represents the nullable 0-or-1-to-many relationship.
- 6: Identifying parent / child relationship. It depicts the not nullable 1-to-1-or-many relationship.
- 8: Non-identifying parent / child relationship. It represents the not nullable 1-to-1-or-many relationship.
- 10: Identifying parent / child relationship. It depicts the not nullable 1-to-exact-1 relationship.
- 12: Non-identifying parent / child relationship. It represents the nullable 0-or-1-to-exact-1 relationship.
- 14: Non-identifying parent / child relationship. It represents the not nullable 0-or-1-to-many relationship.

FIG. 44F

SUBSTITUTE SHEET (RULE 26)

59 / 62

FIG. 45
SUBSTITUTE SHEET (RULE 26)

60 / 62

FIG. 46
SUBSTITUTE SHEET (RULE 26)

61 / 62

FIG. 47

FIG. 48

SUBSTITUTE SHEET (RULE 26)

62 / 62

FIG. 49

SUBSTITUTE SHEET (RULE 26)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

PCT

(10) International Publication Number
WO 01/01218 A3

(51) International Patent Classification⁷: G06F 7/00.
17/00, G01N 33/48, 33/50, G06T 1/00

Andreas, K. [DE/US]; 91 Center Road, Woodbridge, CT
06524 (US). XU, Chuanbo [CN/US]; 524 Openint Hill
Road, Madison, CT 06443 (US).

(21) International Application Number: PCT/US00/17540

(74) Agents: MOROZ, Eugene et al.; Morgan & Finnegan.
L.L.P., 345 Park Avenue, New York, NY 10154 (US).

(22) International Filing Date: 26 June 2000 (26.06.2000)

(25) Filing Language: English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data:
60/141.521 25 June 1999 (25.06.1999) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:

US 60/141.521 (CIP)
Filed on 25 June 1999 (25.06.1999)

Published:

— With international search report.

(88) Date of publication of the international search report:
7 June 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/01218 A3

(54) Title: METHODS FOR OBTAINING AND USING HAPLOTYPe DATA

(57) Abstract: Methods, computer program(s) and database(s) to analyze and make use of gene haplotype information. These include methods, program, and database to find and measure the frequency of haplotypes in the general population; methods, program, and database to find correlation's between an individual's haplotypes or genotypes and a clinical outcome; methods, program, and database to predict an individual's haplotypes from the individual's genotype for a gene; and methods, program, and database to predict an individual's clinical response to a treatment based on the individual's genotype or haplotype.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17540

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :G06F 7/00, 17/00; G01N 33/48, 33/50; G06T 1/00
US CL :345/418, 961; 702/19, 20; 707/100, 102, 104

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 345/418, 961; 702/19, 20; 707/100, 102, 104

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,874,256 A (BERTINA ET AL) 23 February 1999 (23-02-99), see in particular abstract and claims.	1-21,30-33, 35,43- 51,53-58,69- 78,83-84,86,94- 102,104-109,120- 129,134- 135,137,145- 153,155-160,171- 183

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"B" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"g"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
14 NOVEMBER 2000

Date of mailing of the international search report

23 FEB 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

Marianne P. Allen
MARIANNE P. ALLEN

Faxsimile No. (703) 305-3230

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17540

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,773,220 A (DEKOSKY ET AL) 30 June 1998 (30-06-98), see in particular abstract and claims.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y,P	US 5,972,614 A (RUANO ET AL) 26 October 1999 (26-10-99), see in particular abstract; claims; column 6, lines 33-55; column 12, lines 10-25.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160, 171-183
Y, P	US 6,022,683 A (POIRIER) 08 February 2000 (08-02-00), see in particular abstract and claims.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160, 171-183
Y, P	US 6,043,040 A (ACTON) 28 March 2000 (28-03-00), see in particular abstract, claims, and columns 49-59.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135, 137,145-153,155-160,171-183
Y	US 5,648,482 A (MEYER) 15 July 1997 (15-07-97), see in particular abstract, claims, and columns 23-26.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y, P	US 6,090,778 A (ACTON ET AL) 29 February 2000 (29-02-00), see in particular abstract, claims, and columns 25-30.	1-21,30-33, 35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17540

C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	KLEYN et al. Genetic Variation as a Guide to Drug Development Science. 18 September 1998, Vol. 281, pages 1820-1821, see entire document.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	MORI et al. HLA Gene and Haplotype Frequencies in the North American Population. Transplantation. 15 October 1997, Vol. 64, No. 7, pages 1017-1027, see entire document.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	MORI et al. Computer program to predict likelihood of finding an HLA-matched donor. Methodology, validation, and application. Biology of Blood and Marrow Transplantation. October 1996, Vol. 2, pages 134-144, see entire document.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	MATISE, T. C. Genome Scanning for Complex Disease Genes Using the Transmission/Disequilibrium Test and Haplotype-based Haplotype Relative Risk. Genetic Epidemiology. 1995, Vol. 12, No. 6, pages 641-645, see entire document.	121,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	COOPER et al. Network Analysis of Human Y Microsatellite Haplotypes. Human Molecular Genetics. 1996, Vol. 5, No. 11, pages 1759-1766, see entire document.	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	GENE et al. Haplotype frequencies of eight Y-chromosome STR loci in Barcelona (North-East Spain). International Journal of Legal Medicine. 1999, Vol. 112, pages 403-405, see entire document.	1-21,30-33,3543,-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/17540

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CLARK et al. Haplotype Structure and Population Genetic Inferences from Nucleotide-Sequence Variation in Human Lipoprotein Lipase. American Journal of Human Genetics. 1998, Vol. 63, pages 595-912, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	CASHMAN et al. The Irish cystic fibrosis database. Journal of Medical Genetics. 1995, Vol. 32, No. 12, pages 972-975, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y, P	TISHKOFF et al. The Accuracy of Statistical Methods for Estimation of Haplotype Frequencies: An Example from the CD4 Locus. American Journal of Human Genetics. August 2000, Vol. 67, No. 2, pages 518-522, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	PERLIN et al. Toward Fully Automated Genotyping: Allele Assignment, Pedigree Construction, Phase Determination, and Recombination Detection in Duchenne Muscular Dystrophy. American Journal of Human Genetics. 1994, Vol. 55, No. 4, pages 777-787, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
Y	HOANG et al. PAH Mutation Analysis Consortium Database: A Database for Disease-producing and Other Allelic Variation at the Human PAH Locus. Nucleic Acids Research. 1996, Vol. 24, No. 1, pages 127-131, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160, 171-183
Y, P	STEPHENSON et al. Single-nucleotide Polymorphisms, Haplotypes, and Their Relevance to Pharmacogenetics. Molecular Diagnosis. December 1999, Vol. 4, No. 4, pages 309-317, see entire document	1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160, 171-183

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/17540

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
1-21,30-33,35,43-51,53-58,69-78,83-84,86,94-102,104-109,120-129,134-135,137,145-153,155-160,171-183
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/17540

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

DIALOG (files 5, 155) and EAST (files U.S. Patents, European abstracts, Japanese abstracts, and Derwent) search terms: pharmacogenomic, pharmacogenetic, haplotype, genotype, database, computer, clinical trial, population genetics, polymorphism, SNP, Hardy-Weinberg, Mendelian, linkage, phylogenetic, pedigree, locus, gene, phased, unphased

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-8, 69-72, and 120-124, drawn to a method of generating a haplotype database, computer-readable medium, and computer programmed therefore.

Group II, claim(s) 9-12 and 78, drawn to a method of predicting the presence of a haplotype and computer-readable medium therefore.

Group III, claim(s) 13-21, 74-78, and 125-129, drawn to a method of identifying correlation between haplotype pair and clinical response, computer-readable medium, and computer programmed therefore.

Group IV, claim(s) 22-29, 79-82, 130-135, drawn to a method for determining susceptibility to a condition/disease, computer-readable medium, and computer programmed therefore.

Group V, claim(s) 30-33, 83-84, and 134-135, drawn to a method for predicting response to treatment, computer-readable medium, and computer programmed therefore.

Group VI, claim(s) 34, 85, and 136, drawn to a method for generating a tree structure, computer-readable medium, and computer programmed therefore.

Group VII, claim(s) 35, 86, and 137, drawn to a method for displaying haplotype pair frequency, computer-readable medium, and computer programmed therefore.

Group VIII, claim(s) 36-37, 87-88, and 138-139, drawn to a method for displaying a linkage screen, computer-readable medium, and computer programmed therefore.

Group IX, claim(s) 38-40, 89-91, and 140-142, drawn to a method for displaying a phylogenetic tree screen, computer-readable medium, and computer programmed therefore.

Group X, claim(s) 41-42, 92-93, and 143-144, drawn to a method for displaying genotypic analysis, computer-readable medium, and computer programmed therefore.

Group XI, claim(s) 43-51, 94-102, and 145-155, drawn to a method to displaying clinical response values, computer-readable medium, and computer programmed therefore.

Group XII, claim(s) 52, 103, and 154, drawn to a method for carrying out a genetic algorithm, computer-readable medium, and computer programmed therefore.

Group XIII, claim(s) 53, 104, and 155, drawn to a method for displaying correlations, computer-readable medium, and computer programmed therefore.

Group XIV, claim(s) 54-55, 105-106, and 156-157, drawn to a method for conducting a clinical trial, computer-readable medium, and computer programmed therefore.

Group XV, claim(s) 56-58, 107-109, and 158-160, drawn to a method for inferring genotype, computer-readable medium, and computer programmed therefore.

Group XVI, claim(s) 59-68, 110-119, and 161-170, drawn to a method of determining polymorphic sites or subhaplotypes, computer-readable medium, and computer programmed therefore.

Group XVII, claim(s) 171-175 and 185, drawn to a data structure.

Group XVIII, claim(s) 176-182, drawn to a method for storing and organizing biological information.

The inventions listed as Groups I-XVIII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of each method is the starting materials, method steps, and goal of each method. The corresponding computer-readable medium and computer programmed therefore form part of the inventive concept with each method. Note that PCT Rule 13 does not provide for multiple methods or products.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADING TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.