	Date:
Step I Find the Eigenvalues C?	L)
der (A-21) = 0	
Where I is the identity matrix	
A=>1=4-2 8 -1	
$A = \lambda 1 = \begin{bmatrix} 4 - \lambda & 8 & -1 \\ -2 & -9 - \lambda & -2 \end{bmatrix}$	
0 10 5-2	
det (A-21) = 4-2 8	-1
-2 -9-2	-2
0 10 5	5-2
be expand a long the first row; det (A-21) = (4-2) -9-2-2	
det(A-21) - (4-21/-9-2-2	-8 2-2 1
10 5-A	05-2
1-111-2 -9	-2 \
10 1	0

Date:	
Compute each minor determinant;	
Expanding	
I first minor:	
Tipiest, minor.	
[-9-λ -2] = (-9-λ) (5-λ)-(-2)(10)=	
$\begin{vmatrix} -9 - \lambda & -2 \\ -9 - \lambda & -2 \end{vmatrix} = (-9 - \lambda)(5 - \lambda) - (-2)(10) = (-9 - \lambda)(5 - \lambda) + 20.$	
$(-9-\lambda)(5-\lambda)+20$	- 20
Expanding:	
1	
$\frac{(-1-2)(5-1)}{(5-1)} = -45+91-51+11=11$	
-26.	
So: -9-2 -2 10 5-2 = x2 + 42 - 45 + 20 = x + 42 - 25.	
J8! 1 1 1 2 1 C 1 2 2 2	
10 3-71=1 +42-43 +20=1+42	
<u> </u>	
Second minor;	
221	
$\frac{-2}{0} \frac{-2}{52} = (-2)(5-2)-(-2)(0) = -10 + 22.$	THE STREET
05%	

Se Third Minor;		Date:	
$\begin{vmatrix} 1-2-9-2 \\ 0 \end{vmatrix} = (-2)$ Substitute back			
	100		

Scanned with

CS CamScanner

The state of th

Substitute, back into determinant. det (A-21)=(A-2)(X+42-25)-8(40+22) Simplify each term. 1, Expand (4-2) (x2+42-25) (4-x)(x2+4x-25)=42+162-100-23 +252 = -23+412 52. Simplify -8 (-10+2) $-8(-10+2\lambda)=80-1$ ambine all Ferms 1 (A-21)=x3+412-100+80-162+00 det (A-21) = - 2 + 252

Scanned with

CS CamScanner

5	Date:
D	factorize
9	$det(A-21) = -\lambda(2^{2}-25)$.
3	der (A-71) = (7-5) (7+5)
1	Eigenvalues;
3	$\lambda_{1}=0, \chi_{2}=5, \lambda_{3}=-5.$
3	
3	Steps find the Eigenvectors.
	For 2=5-, [-18 -11
3	$A-51 = \begin{bmatrix} -2 & -14 & -2 \end{bmatrix}$
3	LU 10 0 7

Second

(x) Eigen Yectors:
$$(A-\lambda I)V=0$$
, where $Y=\begin{bmatrix} x\\ y \end{bmatrix}$

$$V_1=V \begin{pmatrix} 4 & 8 & -1\\ -1 & -9 & -1\\ 0 & 10 & 5 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = 0$$

1. $4x + 8y - z = 0$ $2x - x \cdot S$

2. $-4x - 9y - zz = 0$ $3 = 1$

3. $10y + Sz = 0$ $2z = -2$

$$V_1 = \begin{pmatrix} -2.5\\ 1 \\ -2 \end{pmatrix}$$

After calculation, $V_2 = \begin{pmatrix} 0.75\\ -0.3\\ 0.6 \end{pmatrix}$
 $V_3 = \begin{pmatrix} -0.7\\ 0\\ 0.7 \end{pmatrix}$

CS Scanned with CamScanner

Importance of Eign Vectors in & form: Sigen Values' magnitudes => 12,1=101=0 122 = 151 = 5 []3 | = [-[] =] 8um=7 0+5+5=10 Importance of $\lambda_2 = \frac{|\lambda_2|}{\text{Total magnitude}} \times 100\%$ => 5x100 = 50 % for $\lambda_1 = \frac{|\lambda_1|}{|x_1|} \times 100\% = \frac{|x_1|}{|x_2|} = \frac{|x_1|}{|x_2|} \times \frac{|x_1|}{|x_2|} = \frac{|x_1|}{|x_2|} \times \frac{|x_2|}{|x_2|} = \frac{|x_1|}{|x_2|} \times \frac{|x_2|}{|x_2|} = \frac{|x_1|}{|x_2|} \times \frac{|x_2|}{|x_2|} = \frac{|x_2|}{|x_2|} = \frac{|x_2|}{|x_2|} \times \frac{|x_2|}{|x_$ For $\lambda_3 = \frac{1}{100} = \frac{5}{1000} = \frac{5}{1000} = \frac{500}{1000} = \frac$ Final Answers $\lambda_2 = 5$, $V_2 = \begin{pmatrix} 0.75 \\ -0.3 \\ 0.6 \end{pmatrix}$, importance: 50 % 73 = -5, $V_3 = \begin{pmatrix} -0.7 \\ 0.7 \end{pmatrix}$, importance: 50 $\frac{20}{20}$