Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

February 4, 2010

rientation An analogy DGLAP Gluon radiation Quantum effects

Topics of the lectures

1 Lecture 1: The Monte Carlo Principle

2 Lecture 2: Parton level event generation

1 Lecture 3: *Dressing the Partons*

Lecture 4: Modelling beyond Perturbation Theory

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.
- the other Sherpas: J.Archibald, T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, and J.Winter.

Menu of lecture 3

- Prelude: Orientation
- Why we need parton showers
- An analogy
- The parton shower as a theory instrument
- Improving the accuracy
- New showers

Orientation An analogy DGLAP Gluon radiation Quantum effects

Prelude: Orientation

Event generator paradigm

Divide event into stages, separated by different scales.

- Signal/background:
 - Exact matrix elements.
- QCD-Bremsstrahlung:
 Parton showers (also in initial state).
- Multiple interactions:
 - Beyond factorisation: Modelling.
- Hadronisation:

Non-perturbative QCD: Modelling.

Motivation: Why parton showers?

Common wisdom

- Well-known: Accelerated charges radiate
- QED: Electrons (charged) emit photons
 Photons split into electron-positron pairs
- QCD: Quarks (coloured) emit gluons Gluons split into quark pairs
- Difference: Gluons are coloured (photons are not charged)
 Hence: Gluons emit gluons!
- Cascade of emissions: Parton shower

Orientation An analogy DGLAP Gluon radiation Quantum effects

Some more refined reasons

- Experimental definition of jets based on hadrons.
- But: Hadronisation through phenomenological models
- Wanted: Universality of hadronisation parameters

(independence of hard process important).

(need to be tuned to data).

- Link to fragmentation needed: Model softer radiation
- Similar to PDFs (factorisation) just the other way around (fragmentation functions at low scale,

parton shower connects high with low scale).

An analogy: Radioactive decays

The form of the solution

- Consider the radioactive decay of an unstable isotope with half-life τ .
- "Survival" probability after time t is given by

$$\mathcal{S}(t) = \mathcal{P}_{ ext{nodec}}(t) = \exp[-t/ au].$$

(Note "unitarity relation": $\mathcal{P}_{ ext{dec}}(t) = 1 - \mathcal{P}_{ ext{nodec}}(t)$.)

- Probability for an isotope to decay at time t: $\frac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = -\frac{\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)}{\mathrm{d}t} = \frac{1}{\tau} \exp(-t/\tau).$
- Now: Connect half-life with width $\Gamma = 1/\tau$.
- Probability for the isotope to decay at any fixed time t is determined by Γ .

Adding a non-trivial time dependence

• Rewrite Γt in the exponential as $\int_{0}^{t} dt' \Gamma$.

(This allows to make life more interesting, see below.)

- Allows to have a time-dependent decay probability $\Gamma(t')$.
- Then decay-probability at a given time t is given by

$$rac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = \Gamma(t) \, \exp\left[-\int\limits_0^t \mathrm{d}t' \Gamma(t')
ight] = \Gamma(t) \, \mathcal{P}_{\mathrm{nodec}}(t).$$
(Unitarity strikes again: $\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)/\mathrm{d}t = -\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)/\mathrm{d}t.$)

- Interpretation of l.h.s.:
 - First term is for the actual decay to happen.

A detour: The Altarelli-Parisi equation

The form of the equation for one parton type q

 AP describes the scaling behaviour of the parton distribution function: (which depends on Bjorken-parameter and scale Q²)

$$\frac{\mathrm{d}q(x,Q^2)}{\mathrm{d}\ln Q^2} = \int\limits_{x}^{1} \frac{\mathrm{d}y}{y} \left[\alpha_s(Q^2) P_q(x/y)\right] q(y,Q^2)$$

- Here the term in square brackets determines the probability that the parton emits another parton at scale Q^2 and Bjorken-parameter y. (after the splitting, $x \to yx + (1 y)x$.)
- Driving term: Splitting function $P_q(x)$. Important property: Universal, process independent.

Splitting functions and large logarithms

$$e^+e^- o {\sf jets}$$

Differential cross section:

$$\frac{\mathrm{d}\sigma_{ee \to 3j}}{\mathrm{d}x_1\mathrm{d}x_2} = \sigma_{ee \to 2j} \frac{C_F \alpha_s}{\pi} \frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)}$$

Singular for $x_{1,2} \rightarrow 1$.

• Rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{\rm c.m.}$:

$$\frac{\mathrm{d}\sigma_{ee \to 3j}}{\mathrm{d}\cos\theta_{gg}\,\mathrm{d}x_3} = \sigma_{ee \to 2j}\frac{C_F\alpha_s}{\pi} \left[\frac{2}{\sin^2\theta_{gg}} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right]$$

Singular for $x_3 \to 0$ ("soft"), $\sin \theta_{qg} \to 0$ ("collinear").

Collinear singularities

Use

$$\frac{2\mathrm{d}\cos\theta_{qg}}{\sin^2\theta_{qg}} = \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{qg}}{1+\cos\theta_{qg}} = \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{\bar{q}g}}{1-\cos\theta_{\bar{q}g}} \approx \frac{\mathrm{d}\theta_{qg}^2}{\theta_{qg}^2} + \frac{\mathrm{d}\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2}$$

• Independent evolution of two jets $(q \text{ and } \bar{q})$:

$$d\sigma_{ee \to 3j} \approx \sigma_{ee \to 2j} \sum_{j \in \{q,\bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{d\theta_{jg}^2}{\theta_{jg}^2} P(z) ,$$

where $P(z) = \frac{1+(1-z)^2}{z}$ (DGLAP splitting function)

Expressing the collinear variable

- Same form for any $t \propto \theta^2$:
- Transverse momentum $k_{\perp}^2 \approx z^2 (1-z)^2 E^2 \theta^2$
- Invariant mass $q^2 \approx z(1-z)E^2\theta^2$

$$\frac{\mathrm{d}\theta^2}{\theta^2} pprox \frac{\mathrm{d}k_\perp^2}{k_\perp^2} pprox \frac{\mathrm{d}q^2}{q^2}$$

- Parametrisation-independent observation: (Logarithmically) divergent expression for $t \to 0$.
- Practical solution: Cut-off t_0 . \implies Divergence will manifest itself as log t_0 .
- Similar for P(z): Divergence for $z \to 0$ cured by cut-off.

Parton resolution

- What is a parton?Collinear pair/soft parton recombine!
- Introduce resolution criterion $k_{\perp} > Q_0$.

• Combine virtual contributions with unresolvable emissions: Cancels infrared divergences \Longrightarrow Finite at $\mathcal{O}(\alpha_s)$

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

• Unitarity: Probabilities add up to one $\mathcal{P}(\text{resolved}) + \mathcal{P}(\text{unresolved}) = 1$.

The Sudakov form factor

• Diff. probability for emission between q^2 and $q^2 + dq^2$:

$$\mathrm{d}\mathcal{P} = rac{lpha_s}{2\pi} rac{\mathrm{d}q^2}{q^2} \int\limits_{z_{\mathrm{min}}}^{z_{\mathrm{max}}} \mathrm{d}z P(z) =: \mathrm{d}q^2 \, \Gamma(q^2) \, .$$

• $\Gamma(q^2)$ often dubbed "integrated splitting" function.

(Terms like $1/q^2$ may be pulled out in literature.)

- No-emission prob. P_{nodec} given by Sudakov form factor Δ .
- ullet From radioactive example: Evolution equation for Δ

$$-rac{\mathrm{d}\Delta(Q^2,\,q^2)}{\mathrm{d}q^2}=\Delta(Q^2,\,q^2)rac{\mathrm{d}\mathcal{P}}{\mathrm{d}q^2}=\Delta(Q^2,\,q^2)\Gamma(q^2)$$

$$\implies \Delta(Q^2, q^2) = \exp\left[-\int\limits_{q^2}^{Q^2} \mathrm{d}k^2\Gamma(k^2)\right].$$

The Sudakov form factor (cont'd)

- Remember: Sudakov form factor describes probabilities for (no) branchings.
- It has been derived here by analysing the structure of gluon radiation off a $q\bar{q}$ pair in the (collinear) approximation of large logarithms.

(In the splitting function we only took terms $\propto 1/z$ into account.)

• It can be shown that this structure factorises to all orders:

(c.f. proof of the AP equation)

$$\mathrm{d}\sigma_{N+1} pprox \frac{\mathrm{d}k^2}{k^2} \frac{\mathrm{d}\phi}{2\pi} \mathrm{d}z \,\alpha_s P(z) \,\mathrm{d}\sigma_N$$

• This allows the resummation of all large logs.

Many emissions

• Iterate emissions (jets)

Maximal result for $t_1 > t_2 > \dots t_n$:

$$\mathrm{d}\sigma \propto \sigma_0 \int\limits_{Q_0^2}^{Q^2} \frac{\mathrm{d}t_1}{t_1} \int\limits_{Q_0^2}^{t_1} \frac{\mathrm{d}t_2}{t_2} \dots \int\limits_{Q_0^2}^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n} \propto \log^n \frac{Q^2}{Q_0^2}$$

• How about Q^2 ? Process-dependent!

Improvement: Inclusion of quantum effects

Running coupling

• Effect of summing up higher orders (loops): $\alpha_s \to \alpha_s(k_\perp^2)$

- Much faster parton proliferation, especially for small k_{\perp}^2 .
- Must avoid Landau pole: $k_{\perp}^2 > Q_0^2 \gg \Lambda_{\rm QCD}^2 \implies Q_0^2 = \text{physical parameter}.$

Soft logarithms: Angular ordering

- Soft limit for single emission also universal
- Problem: Soft gluons come from all over (not collinear!)
 Quantum interference? Still independent evolution?
- Answer: Not quite independent.
 - lacktriangle Assume photon into e^+e^- at $heta_{ee}$ and photon off electron at heta
 - $\bullet \ \ \mbox{Energy imbalance at vertex:} \ k_{\perp}^{\gamma} \sim zp\theta, \ \mbox{hence} \ \Delta E \sim k_{\perp}^{2}/zp \sim zp\theta^{2}.$
 - Time for photon emission: Δt ~ 1/ΔE.
 - ullet ee-separation: $\Delta b \sim heta_e e \Delta t > \Lambda/ heta \sim 1/(zp heta)$
 - Thus: $\theta_{ee}/(zp\theta^2) > 1/(zp\theta) \implies \theta_{ee} > \theta$

rientation An analogy DGLAP Gluon radiation **Quantum effects**

Soft logarithms: Angular ordering

Experimental manifestation:

 ΔR of 2nd & 3rd jet in multi-jet events in pp-collisions

rientation An analogy DGLAP Gluon radiation Quantum effects

Aside: Using the Sudakov form factor analytically

Resummed jet rates in $e^+e^- \rightarrow \text{hadrons}$

S.Catani et al. Phys. Lett. B269 (1991) 432

• Use Durham jet measure $(k_{\perp}$ -type):

$$k_{\perp,ij}^2 = 2 \mathrm{min}(E_i^2, E_j^2) (1 - \cos \theta_{ij}) > Q_{\mathrm{jet}}^2$$
 .

- Remember prob. interpretation of Sudakov form factor.
- Then:

$$\begin{array}{lll} \mathcal{R}_2(Q_{\rm jet}) & = & \left[\Delta_q(E_{\rm c.m.},Q_{\rm jet})\right]^2 \\ \mathcal{R}_3(Q_{\rm jet}) & = & 2\Delta_q(E_{\rm c.m.},Q_{\rm jet}) \\ & & \cdot \int \mathrm{d}q \left[\Gamma_q(q) \frac{\Delta_q(E_{\rm c.m.},Q_{\rm jet})}{\Delta_q(q,Q_{\rm jet})} \Delta_q(q,Q_{\rm jet}) \Delta_g(q,Q_{\rm jet})\right] \end{array}$$

990

Aside: Dipole shower(s)

First implemented in Ariadne (L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

Upshot

 Essentially the same as parton shower (benefit: particles always on-shell)

$$\mathrm{d}\sigma = \sigma_0 \frac{C_F \alpha_s(k_\perp^2)}{2\pi} \frac{\mathrm{d}k_\perp^2}{k_\perp^2} \mathrm{d}y.$$

• Always colour-connected partners (recoil of emission) \implies emission: 1 dipole \rightarrow 2 dipoles.

Features of dipole showers

- Quantum coherence on similar grounds for angular and k_T -ordering, typical ordering in dipole showers by k_\perp .
- Many new shower formulations in past few years, many (nearly all) based on dipoles in one way or the other.
- Seemingly closer link to NLO calculations: Use subtraction kernels like antennae or Catani-Seymour kernels.
- Typically: First emission fully accounted for.

An analogy DGLAP Gluon radiation Quantum effects

Survey of existing showering tools

Tools	evolution	AO/Coherence
Ariadne	k_{\perp} -ordered	by construction
Herwig	angular ordering	by construction
Herwig++	improved angular ordering	by construction
Pythia	old: virtuality ordered	by hand
	new: k_{\perp} -ordered	by construction
Sherpa	virtuality ordered	by hand
	(like old Pythia)	
	new: k_{\perp} -ordering	by construction
Vincia	k_{\perp} -ordered	by construction

Summary of lecture 3

- Parton showers as simulation tools.
- Discussed theoretical background: Universal approximation to full matrix elements in the collinear limit.
- Highlighted some systematic improvements.
- Hinted at close relation to resummation.

