三个经典积分命题及其推广

杨锟1

(1. 南开大学数学科学学院 300071)

Abstract

留数定理巧妙地通过柯西积分定理将洛朗级数和积分计算巧妙结合在一起,为我们计算复杂的广义积分乃至瑕积分提供了一种崭新的思路,极大降低了单纯地通过数学分析手段求解复杂积分的难度。本文将结合自己这一个学期关于留数定理的学习以及阅读相关文献所积累下来的一些关于留数定理的命题,从留数定理的视角去研究三个经典积分:欧拉积分、高斯积分、狄利克雷积分及其推广形式.

1 回顾

我们先来回顾一下留数定理[1]。

Definition 1.1 留数

设 z_0 是 $f(z_0)$ 的孤立奇点,于是 f(z) 在 $V(z_0,R) - \{z_0\}$ 中有 Laurent 展开

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z - z_0)^k, \quad z \in V(z_0, R) - \{z_0\}$$

此时

$$c_{-1} = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz$$

称为 f 在 z_0 处的**留数**,记为 $Res(f,z_0)$.

Theorem 1.1 留数定理

设 Γ 为一条正向简单闭路径,内部为 D, $\{z_k\}_{1\leq k\leq n}$ 是 D 中有限个点,今若 f 在 $\bar{D}-\{z_k\}_{1\leq k\leq n}$ 上解析,则

$$\frac{1}{2\pi i} \int_{\Gamma} f(z)dz = \sum_{k=1}^{n} Res(f, z_k)$$
 (1)

Proof 此时有 $\epsilon > 0$,使对每一 k, $1 \le k \le n$, $\bar{V}(z_k, \epsilon) \subset D$ 并且 $\{\bar{V}(z_k, \epsilon)\}_{1 \le k \le n}$ 两两不相交,于是由**多连通域的柯西定理**:

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{|z-z_{k}|=\epsilon} f(z) dz = \sum_{k=1}^{n} Res(f, z_{k})$$

2 欧拉积分 2

Remark 这里用到了一个结论:

$$\frac{1}{2\pi i} \int_{|z-a|=r} (z-a)^n dz = \begin{cases} 0, & n \neq -1 \\ 1, & n = -1 \end{cases}$$
 n为整数

Theorem 1.2 极点处留数的计算方法

设 a 是 f 的 n 阶极点, $n \ge 1$. 并设在 a 附近我们有 $f(z) = \frac{g(z)}{(z-a)^n}$,其中 g(z) 在 a 解析且 $g(a) \ne 0$. 则

$$Res(f,a) = \frac{g^{(n-1)}(a)}{(n-1)!}$$
 (2)

有了留数定理这样强大的工具,我们便可以以此来解即使能通过含参变量积分求解出来但步骤 异常麻烦的积分问题。

2 欧拉积分

欧拉积分这个例子来自南开数分教材第 19 章 B 组第 11 题. [2]

Proposition 2.1 欧拉积分

对于 $\forall \lambda > 0, x > 0, \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\begin{cases} \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \cos(\lambda t \sin \alpha) dt = \frac{\Gamma(x)}{\lambda^x} \cos \alpha x \\ \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \sin(\lambda t \sin \alpha) dt = \frac{\Gamma(x)}{\lambda^x} \sin \alpha x \end{cases}$$
 (3)

Proof

我们令

$$\begin{cases} A = \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \cos(\lambda t \sin \alpha) dt \\ B = \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \sin(\lambda t \sin \alpha) dt \end{cases}$$

则

$$A - iB = \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \left(\cos(-\lambda t \sin \alpha) + i \sin(-\lambda t \sin \alpha) \right) dt$$
$$= \int_0^{+\infty} t^{x-1} e^{-\lambda t (\cos \alpha + i \sin \alpha)} = \int_0^{+\infty} t^{x-1} e^{-\lambda t e^{-i\alpha} dt}$$

2 欧拉积分 3

 $z = \lambda e^{i\alpha}t$,则

$$A - iB = \int_{\Gamma} \left(\frac{z}{\lambda e^{i\alpha}} \right)^{x-1} e^{-z} d\left(\frac{z}{\lambda e^{i\alpha}} \right) = \frac{e^{-i\alpha x}}{\lambda^x} \int_{\Gamma} z^{x-1} e^{-z} dz$$

其中

$$\Gamma:\left\{z|z=Re^{i\alpha},\ 0\leq R\leq +\infty\right\}$$

$$f(z) = z^{x-1}e^{-z}$$

其中由于 0 可能为 f(z) 的极点, 我们可以考虑以下回路:

其中

$$\bar{\Gamma} = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$$

$$\begin{cases} \Gamma_1 : \{z | r \le z \le R\} \\ \Gamma_2 : \{z | z = Re^{i\theta}, 0 \le \theta \le \alpha\} \\ \Gamma_3 : \{z | z = le^{i\alpha}, R \ge \ge r\} \\ \Gamma_4 : \{z | z = re^{i\theta}, \alpha \ge \theta \ge 0\} \end{cases}$$

显然回路中不包含 f(z) 的极点,故由**柯西积分定理**可知:

$$\int_{\Gamma_1} + \int_{\Gamma_2} + \int_{\Gamma_3} + \int_{\Gamma_4} f(z)dz = 0(\spadesuit)$$

下面我们对这四条路径上的积分逐一进行计算.

①Γ₁ 上的积分:

$$\int_{\Gamma_1} f(z) dz = \int_r^R z^{x-1} e^{-z} dz \xrightarrow{r \to 0, R \to +\infty} \int_0^{+\infty} z^{x-1} e^{-z} dz = \Gamma(x)$$

2 欧拉积分 4

 $(2)\Gamma_2$ 上的积分:

$$\int_{\Gamma_2} f(z)dz = \int_0^\alpha (Re^{i\theta})^{x-1} e^{-Re^{i\theta}} Rie^{i\theta} d\theta$$

而

$$\left| (Re^{i\theta})^{x-1} e^{-Re^{i\theta}} Rie^{i\theta} \right| = \left| R^x e^{-R\cos\theta - iR\sin\theta} \right| = \left| e^{-R\cos\theta} R^x \right|$$

由于 $0 \le \theta \le \alpha < \frac{\pi}{2}$, 故 $\cos \theta > 0$, 进而有

$$\left| e^{-R\cos\theta} R^x \right| \xrightarrow{R \to +\infty} 0 \Rightarrow \lim_{R \to +\infty} \int_{\Gamma_2} f(z) dz = 0$$

③ Γ_3 上的积分:

$$\int_{\Gamma_3} f(z)dz = -\int_{\Gamma} f(z)dz$$

 $(4)\Gamma_4$ 上的积分:

$$\int_{\Gamma_4} f(z) dz = -\int_0^\alpha (re^{i\theta})^{x-1} e^{-re^{i\theta}} rie^{i\theta} d\theta$$

而

$$\left| (re^{i\theta})^{x-1} e^{-re^{i\theta}} rie^{i\theta} \right| = \left| r^x e^{-r\cos\theta - ir\sin\theta} \right| = \left| e^{-r\cos\theta} r^x \right|$$

由于 $0 \le \theta \le \alpha < \frac{\pi}{2}$, 故 $\cos \theta > 0$, 且 x > 0, 进而有

$$\left| e^{-r\cos\theta} r^x \right| \xrightarrow{r \to 0} 0$$

结合 (\spadesuit) 式,令 $r \to 0, R \to +\infty$

$$\int_{\Gamma_3} f(z)dz + \int_{\Gamma_1} f(z)dz = 0 \Rightarrow \int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz = \Gamma(x)$$

$$\Rightarrow A - iB = \frac{e^{-i\alpha x}}{\lambda^x} \Gamma(x) = \frac{\Gamma(x)}{\lambda^x} (\cos \alpha x - i\sin \alpha x)$$

$$\Rightarrow \begin{cases} A = \frac{\Gamma(x)}{\lambda^x} \cos \alpha x \\ B = \frac{\Gamma(x)}{\lambda^x} \sin \alpha x \end{cases}$$

故

$$\begin{cases} \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \cos(\lambda t \sin \alpha) dt = \frac{\Gamma(x)}{\lambda^x} \cos \alpha x \\ \int_0^{+\infty} t^{x-1} e^{-\lambda t \cos \alpha} \sin(\lambda t \sin \alpha) dt = \frac{\Gamma(x)}{\lambda^x} \sin \alpha x \end{cases}$$

3 高斯积分

Proposition 3.1 高斯积分

高斯积分 (概率积分):

$$I = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \tag{4}$$

Proof

关于高斯积分的计算我们可以通过极坐标换元或者含参变量积分这样的数分方法来解决,这里 不再做类似方法的赘述。

接下来这种做法是考虑一种比较奇妙的围道选取方法用留数定理来解决高斯积分,尽管相较于一般围道的取法的计算过程来说更为复杂,但为我们构造函数和围道求解积分问题提供了一种新思路

我们考虑函数

$$f(z) = e^{i\pi z^2} tan\pi z$$

考虑以下积分围道

上述回路仅包含 f(z) 的一个极点 $(\frac{1}{2},0)$,即 $z=\frac{1}{2}$

由欧拉公式可知:

$$\tan \pi z = \frac{\sin \pi z}{\cos \pi z} = -i\frac{e^{2\pi iz} - 1}{e^{2\pi i}z + 1}$$

结合极点处留数的计算方法可知相应的留数:

$$2\pi i Res(f,\frac{1}{2}) = -2\pi \lim_{z \to \frac{1}{2}} e^{i\pi z} \frac{e^{2\pi i z} - 1}{2\pi i e^{2\pi i z}} = -2i e^{i\frac{\pi}{4}}$$

进而由柯西积分定理可知:

$$\int_{\Gamma} f(z)dz = \left(\int_{\Gamma_1} + \int_{\Gamma_2} + \int_{\Gamma_3} + \int_{\Gamma_4}\right) f(z)dz = 2\pi i Res(f,\frac{1}{2}) = -2ie^{\frac{\pi}{4}i} \quad (\clubsuit)$$

对于 $\Gamma_2 = \{z = t + (i+1)R | 0 \le t \le 1\}$,

$$|I_2| \le \int_0^1 \left| e^{i\pi z^2} \right| |\tan \pi z| \, dt = \int_0^1 e^{-2\pi R(t+R)} |\tan \pi (t + (1+i)R)| \, dt$$

其中

$$\lim_{R \to +\infty} \tan \pi \left(t + (1+i)R \right) = -i \frac{e^{2\pi i (t+R)} e^{-2\pi R} - 1}{e^{2\pi i (t+R)} e^{-2\pi R} + 1} b = i$$

故

$$\lim_{R \to +\infty} |I_2| \le \lim_{R \to +\infty} \int_0^1 e^{-2\pi R(t+R)} dt = \lim_{R \to +\infty} \frac{1}{2\pi R} e^{-2\pi R^2} (1 - e^{2\pi R}) = 0$$

即

$$\lim_{R \to +\infty} \int_{\Gamma_2} f(z) dz = \lim_{R \to +\infty} I_2 = 0$$

同理, 对于 $\Gamma_4 = \{z = t - (i+1)R | 0 \le t \le 1\}$,

$$\lim_{R \to +\infty} \int_{\Gamma_4} f(z) dz = \lim_{R \to +\infty} I_4 = 0$$

对于 $\Gamma_1 = \{z = 1 + (i+1)t | -R \le t \le R\}$,

$$I_1 = \int_{1-(1+i)R}^{1+(1+i)R} e^{i\pi z^2} \tan \pi z dz = \int_{-(1+i)R}^{(1+i)R} e^{i\pi(z+1)^2} \tan \pi z dz$$

对于 $\Gamma_3 = \{z = (i+1)t | -R \le t \le R\}$,

$$I_3 = \int_{(1+i)R}^{-(1+i)R} e^{i\pi z^2} \tan \pi z dz = -\int_{-(1+i)R}^{(1+i)R} e^{i\pi z^2} \tan \pi z dz$$

结合 (♣) 式,有

$$-2ie^{\frac{\pi}{4}i} = \int_{-(1+i)R}^{(1+i)R} (e^{i\pi(z+1)^2} - e^{i\pi z^2}) \tan \pi z dz$$

而

$$\tan \pi z = \frac{\sin \pi z}{\cos \pi z} = -i \frac{e^{2\pi i z} - 1}{e^{2\pi i} z + 1}$$

故

$$-2ie^{i\pi/4}=i\int_{-(1+i)R}^{(1+i)R}e^{i\pi z^2}(e^{i2\pi z}-1)dz=-i\int_{-(1+i)R}^{(1+i)R}e^{i\pi z^2}dz-i\int_{1-(1+i)R}^{1+(1+i)R}e^{i\pi z^2}dz$$

现取极限 $R \to +\infty$

$$-2ie^{i\pi/4} = -i\lim_{R\to\infty} \left(\int_{-(1+i)R}^{(1+i)R} + \int_{1-(1+i)R}^{1+(1+i)R} \right) e^{i\pi z^2} dz = -2i\int_{-(1+i)\infty}^{(1+i)\infty} e^{i\pi z^2} dz$$

即

$$\int_{-(1+i)\infty}^{(1+i)\infty} e^{i\pi z^2} dz = e^{i\frac{\pi}{4}}$$

令 $z = e^{i\frac{\pi}{4}t}$,则上面积分的上下限变为

$$\pm (1+i)e^{-i\frac{\pi}{4}} \cdot \infty = \pm \frac{\sqrt{2}}{2}(1+i)(1-i)\infty = \pm \sqrt{2}\infty = \pm \infty$$

进而有

$$\int_{-\infty}^{+\infty} e^{-\pi t^2} dt = 1$$

再令 $x = \sqrt{\pi t}$, 便得出了高斯积分值

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

Remark

这种做法别于我们利用**留数定理**选取函数的一般选取方法,通常来说我们下意识地会去考虑函数

$$\varphi(z)=e^{iz^2}$$

此时选取的回路应为半圆弧路径,但是这样的取法下

$$\left| \int_{\Gamma} e^{-z^2} dz \right| \le R \int_{0}^{\pi} \left| e^{-R^2} e^{i2\theta} \right| d\theta$$

而此时由积分中值定理, $\exists \phi \in [0,\pi]$

$$\left| \int_{\Gamma} e^{-z^2} dz \right| \le R \int_0^{\pi} \left| e^{-R^2} e^{i2\theta} \right| d\theta = \pi R e^{-R^2 \cos 2\phi}$$

此时但我们令 $R \to +\infty$ 时,

$$\lim_{R\to +\infty} Re^{-R^2\cos 2\phi} = \begin{cases} \infty & \frac{\pi}{4} < \phi < \frac{3\pi}{4} \\ & 0 & 其余情况 \end{cases}$$

而我们要求的是该积分不能是发散的,故通常取法是去考虑一个四分之一圆弧为围道.

接下来,我们考虑推广高斯积分.

Proposition 3.2 高斯积分推广形式 1

对于 $\forall a, b \in \mathbb{C}$ 且 Re(a) > 0

$$I(a,b) = \int_{-\infty}^{+\infty} e^{-ax^2 + bx} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}}$$
 (5)

Proof

我们通过从a,b的取值情况入手进行分类讨论来证明这个推广命题.

Case1 $a > 0, b \in \mathbb{R}$ 时

$$I(a,b) = \int_{-\infty}^{+\infty} e^{-ax^2 + bx} dx = \int_{-\infty}^{+\infty} e^{-a(x - \frac{b}{2a})^2 + \frac{b^2}{4a}} dx$$

$$= e^{\frac{b^2}{4a}} \int_{-\infty}^{+\infty} e^{-a(x - \frac{b}{2a})^2} dx = \frac{1}{\sqrt{a}} e^{\frac{b^2}{4a}} \int_{-\infty}^{+\infty} e^{-(\sqrt{a}(x - \frac{b}{2a}))^2} d(\sqrt{a}x) = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}}$$

Case2 $b \in \mathbb{C}$ 时

$$\int_{-\infty}^{+\infty} e^{-at^2 \pm ibt} dt = \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}$$

Case3 $a \in \mathbb{C}$ 时

不妨设 $a = \sigma + it$, 我们有

$$\int_{-\infty}^{+\infty} e^{-\sigma x^2 + bx - itx^2} dx = \sqrt{\frac{\pi}{\sigma + it}} e^{\frac{b^2}{4(\sigma + it)}}$$

即命题依旧成立.

根据上述命题,特别地,当 a = it 为纯虚数时

$$\int_{-\infty}^{+\infty} e^{bx - itx^2} dx = \sqrt{\frac{\pi}{it}} e^{\frac{b^2}{i4t}} = (1 - i)\sqrt{\frac{\pi}{2t}} e^{-\frac{ib^2}{4t}}$$

其中虚数单位平方根的倒数为

$$\frac{1}{\sqrt{i}} = i^{-1/2} = e^{-i\pi/4} = \frac{\sqrt{2}}{2}(1-i)$$

令 b = 0, t = 1, 即有

$$\int_{-\infty}^{+\infty} e^{-ix^2} dx = (1-i)\sqrt{\frac{\pi}{2}}$$

我们按照实部和虚部一一对应,即可得到菲涅尔积分公式[2]:

Proposition 3.3 菲涅尔积分公式

$$\int_0^\infty \sin x^2 \, dx = \int_0^\infty \cos x^2 \, dx = \sqrt{\frac{\pi}{8}} \tag{6}$$

更进一步:将式 (5)对 b 求偏导可得

$$\int_{-\infty}^{+\infty} t e^{-at^2 \pm ibt} dt = \pm i \frac{b}{2a} \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}$$

对上式取虚部

$$\int_{-\infty}^{+\infty} t e^{-at^2} \sin bt \, dt = \frac{b}{2a} \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}$$

由于上式的被积函数为偶函数,令 $t = \sqrt{x}$ 后,便有

$$\int_0^\infty e^{-ax} \sin b\sqrt{x} \, dx = \frac{b}{2a} \sqrt{\frac{\pi}{a}} \, e^{-\frac{b^2}{4a}}$$

即为 $\sin b\sqrt{x}$ 的拉普拉斯变换

$$\mathcal{L}\left\{\sin b\sqrt{x}\right\}(a) = \int_0^\infty e^{-ax} \sin b\sqrt{x} \, dx = \frac{b}{2a} \sqrt{\frac{\pi}{a}} \, e^{-\frac{b^2}{4a}}$$

Definition 3.1 拉普拉斯变换与逆变换

令 f(t) 为 $[0,\infty)$ 上的函数, f(t) 的拉普拉斯变换定义为:

$$F(s) = \mathcal{L}\left\{f(s)\right\} = \int_0^\infty e^{st} f(t)dt \tag{7}$$

其中 s 为所有使上述积分收敛的值. 设 F(s) 是 f(t) 的拉普拉斯变换,即 $F(s) = \mathcal{L}\Big\{f(s)\Big\}$,那么我们定义 f(t) 为 F(s) 的拉普拉斯逆变换,即

$$F(s) = \mathcal{L}\Big\{f(s)\Big\} = \int_0^\infty e^{st} f(t) dt \iff f(t) = \mathcal{L}^{-1}\Big\{F(s)\Big\}$$

更进一步,我们有:

$$f(t) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} e^{st} f(t) ds, \quad c > 0$$
(8)

结合我们得到的 $\sin b\sqrt{x}$ 的拉普拉斯变换,我们可以求解 $e^{-a\sqrt{s}}$ 的拉普拉斯逆变换.

Example 3.1

求 $e^{-a\sqrt{s}}$ 的拉普拉斯逆变换.

$$I(t) = \mathcal{L}^{-1} \left\{ e^{-a\sqrt{s}} \right\} (t) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} e^{st - a\sqrt{s}} ds \quad Re(a) > 0$$
 (9)

Solution

考虑以下积分围道

令

$$\int_C f(z)dz = \int_C e^{zt-a\sqrt{z}}dz$$

容易验证大小圆弧 C_R, C_δ 以及 $L_1 \cup L_2$ 路径的积分 (在取极限后) 的结果为零。因此根据柯西积分定理与留数定理可知

$$\int_C f(z)dz = \left(\int_{\lambda_1} + \int_{\lambda_2} + \int_L f(z)dz = 0\right)$$

注意到 L 路径的积分 (在取极限后) 便是待求积分, 所以

$$I(t) = -\frac{1}{2\pi i} \lim_{\delta \to 0} \left(\int_{\lambda_1} + \int_{\lambda_2} \right) f(z) dz$$

对于路径 λ_1 和 λ_2 我们分别取 $\arg(z)=i\pi$ 和 $\arg(z)=-i\pi$, 那么

$$I(t) = \frac{1}{2\pi i} \int_0^\infty e^{-xt} (e^{ia\sqrt{x}} - e^{-ia\sqrt{x}}) dx = \frac{1}{\pi} \int_0^\infty e^{-xt} \sin a\sqrt{x} \, dx$$

根据刚才得到的 $\sin b\sqrt{x}$ 的拉普拉斯变换可得

$$I(t) = \mathcal{L}^{-1}\left\{e^{-a\sqrt{s}}\right\}(t) = \frac{1}{\pi} \mathcal{L}\left\{\sin a\sqrt{x}\right\}(t) = \frac{a}{2t\sqrt{\pi t}}e^{-\frac{a^2}{4t}}$$

这样我们便得到了 $e^{-a\sqrt{s}}$ 的拉普拉斯逆变换,即

$$\frac{a}{2t\sqrt{\pi t}}e^{-\frac{a^2}{4t}} = \mathcal{L}^{-1}\left\{e^{-a\sqrt{s}}\right\}$$

利用 $e^{-a\sqrt{s}}$ 的拉普拉斯逆变换的结果可以运用于求解热传导方程,这里不再做过多介绍.

4 狄利克雷积分

狄利克雷积分这个例子来自南开复变教材第 4 章习题 33 - (v), (vi). [1,3]

Proposition 4.1 狄利克雷积分

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \pi \tag{10}$$

进一步

$$\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{+\infty} \sin^2 x d(-\frac{1}{x^2}) = 0 + \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx$$

对于 m=1,2 的狄利克雷积分的求法与 $\forall m\in\mathbb{N}^*$ 的求法相似,我们直接考虑求解推广形式的 狄利克雷积分.

下面我们考虑对狄利克雷积分进行推广:

Proposition 4.2 狄利克雷积分的推广形式

 $对 \forall m \in \mathbb{N}^*,$

$$\int_{-\infty}^{+\infty} \frac{\sin^m x}{x^m} dx = \begin{cases}
\int_{-\infty}^{\infty} \frac{\sin^{2n+1} x}{x^{2n+1}} dx = \frac{\pi}{(2n)!} \sum_{k=0}^{n} (-)^k \binom{2n+1}{k} \left(\frac{2n+1}{2} - k\right)^{2n} & m = 2n+1 \\
\int_{-\infty}^{\infty} \frac{\sin^{2n} x}{x^{2n}} dx = \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (n-k)^{2n-1} & m = 2n
\end{cases}$$
(11)

Proof

我们考虑将m分奇偶性进行讨论:

Case1: $m = 2n + 1, n \in \mathbb{N}^*$ 时

我们先证明一个引理

Lemma 4.1 $sin^{2n+1}x$ 展开

对 $\forall n \in \mathbb{N}^*$,

$$\sin^{2n+1} x = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^k \binom{2n+1}{k} \sin(2n+1-2k)x \tag{12}$$

根据 Euler 公式,有

$$\sin^{2n+1} x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{2n+1}$$

$$= \left(\frac{1}{2i}\right)^{2n+1} \sum_{k=0}^{2n+1} {2n+1 \choose k} \left(e^{ix}\right)^{2n+1-k} \left(-e^{-ix}\right)^k$$

$$= \left(\frac{1}{2i}\right)^{2n+1} \sum_{k=0}^{2n+1} (-1)^k {2n+1 \choose k} e^{i(2n+1-2k)x}$$

$$= \left(\frac{1}{2i}\right)^{2n+1} \sum_{k=0}^{n} (-1)^k {2n+1 \choose k} \left[e^{i(2n+1-2k)x} - e^{-i(2n+1-2k)x}\right]$$

$$= \frac{(-1)^n}{2^{2n}} \sum_{k=0}^{n} (-1)^k {2n+1 \choose k} \sin(2n+1-2k)x$$

即引理得证.

考虑积分

$$\int_C \frac{1}{z^{2n+1}} f(z) \mathrm{d}z$$

积分路径 C 如下图

其中

$$f(z) = \sum_{k=0}^{n} (-1)^k {2n+1 \choose k} e^{i(2n+1-2k)z} - G_{2n-1}(z)$$

 $G_{2n-1}(z)$ 是不超过 2n-1 次的多项式,使 z=0 为被积函数 $\frac{f(z)}{z^{2n+1}}$ 的一阶极点,即 z=0 为 f(z) 的 2n 阶零点,

$$\sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} \left[i(2n+1-2k) \right]^l - G_{2n-1}^l(0) = 0, \quad l = 0, 1, \dots, 2n-1.$$

由于

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin^{2n+1}x\Big|_{x=0} = 0, \quad \dots \quad , \frac{\mathrm{d}^{2n-1}}{\mathrm{d}x^{2n-1}}\sin^{2n+1}x\Big|_{x=0} = 0$$

于是

$$G_{2n-1}(0) = \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k}$$

$$G'_{2n-1}(0) = i \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k) = 0$$

$$G''_{2n-1}(0) = -\sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k)^2$$

:

$$G_{2n-1}^{(2n-2)}(0) = (-1)^{n-1} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2n-2}$$

$$G_{2n-1}^{(2n-1)}(0) = (-1)^{n-1} i \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2n-1} = 0$$

由此可得

$$G_{2n-1}(z) = \sum_{l=0}^{n-1} \frac{(-1)^l}{(2l)!} \left[\sum_{k=0}^n (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2l} \right] z^{2l}$$

即 $G_{2n-1}(z)$ 是 2n-2 次的偶次多项式,系数为实数. 根据留数定理有

$$\int_{-R}^{-\delta} \frac{1}{x^{2n+1}} f(x) dx + \int_{C_{\delta}} \frac{1}{z^{2n+1}} f(z) dz + \int_{\delta}^{R} \frac{1}{x^{2n+1}} f(x) dx + \int_{C_{R}} \frac{1}{z^{2n+1}} f(z) dz = 0$$

由于

$$\lim_{z \to \infty} \frac{1}{z^{2n+1}} = 0$$

故

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n+1}} e^{\mathrm{i}(2n+1-2k)z} \mathrm{d}z = 0$$

又由于

$$\lim_{z \to \infty} z \cdot \frac{1}{z^{2n+1}} = 0$$

因此

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n+1}} G_{2n-1}(z) dz = 0$$

合并起来进而有

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n+1}} f(z) \mathrm{d}z = 0$$

另一方面

$$\begin{split} \lim_{z \to 0} z \cdot \frac{1}{z^{2n+1}} f(z) &= \lim_{z \to 0} \frac{1}{z^{2n}} f(z) \\ &= \lim_{z \to 0} \frac{1}{z^{2n}} \left\{ \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} \mathrm{e}^{\mathrm{i}(2n+1-2k)z} - G_{2n-1}(z) \right\} \\ &= \frac{1}{(2n)!} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} [\mathrm{i}(2n+1-2k)]^{2n} \\ &= \frac{(-1)^n}{(2n)!} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2n} \end{split}$$

所以

$$\lim_{\delta \to 0} \int_{C_{\delta}} \frac{1}{z^{2n+1}} f(z) dz = -\pi i \cdot \frac{(-)^n}{(2n)!} \sum_{k=0}^n (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2n}$$

取极限 $\delta \to 0, R \to \infty$, 即得

$$\int_{-\infty}^{\infty} \frac{1}{x^{2n+1}} f(x) dx = \pi i \frac{(-1)^n}{(2n)!} \sum_{k=0}^{n} (-)^k \binom{2n+1}{k} (2n+1-2k)^{2n}$$

比较虚部,由于 $G_{2n-1}(x)$ 的系数为实数,结合 Lemma 4.1

$$\sin^{2n+1} x = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^k \binom{2n+1}{k} \sin(2n+1-2k)x$$

就得到

$$\int_{-\infty}^{\infty} \frac{1}{x^{2n+1}} \left\{ \sum_{k=0}^{n} (-)^k \binom{2n+1}{k} \sin(2n+1-2k)x \right\} dx$$

$$= (-1)^n 2^{2n} \int_{-\infty}^{\infty} \frac{\sin^{2n+1} x}{x^{2n+1}} dx$$

$$= \pi \frac{(-1)^n}{(2n)!} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{k} (2n+1-2k)^{2n}$$

最终有

$$\int_{-\infty}^{\infty} \frac{\sin^{2n+1} x}{x^{2n+1}} dx = \frac{\pi}{(2n)!} \sum_{k=0}^{n} (-)^k \binom{2n+1}{k} \left(\frac{2n+1}{2} - k\right)^{2n}$$

Case2: $m = 2n, n \in \mathbb{N}^*$ 时

我们先证明一个引理

Lemma 4.2 $sin^{2n}x$ 展开

 $\forall n \in \mathbb{N}^*,$

$$\sin^{2n} x = \frac{(-1)^n}{2^{2n}} \left\{ 2 \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \cos(2n-2k)x + (-1)^n \binom{2n}{n} \right\}$$
 (13)

根据 Euler 公式,有

$$\begin{split} \sin^{2n} x &= \left(\frac{\mathrm{e}^{\mathrm{i}x} - \mathrm{e}^{-\mathrm{i}x}}{2\mathrm{i}}\right)^{2n} \\ &= \frac{(-1)^n}{2^{2n}} \sum_{k=0}^{2n} \binom{2n}{k} \left(\mathrm{e}^x\right)^{2n-k} \left(-\mathrm{e}^{-\mathrm{i}x}\right)^k \\ &= \frac{(-1)^n}{2^{2n}} \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \mathrm{e}^{\mathrm{i}(2n-2k)x} \\ &= \frac{(-1)^n}{2^{2n}} \left\{ \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \mathrm{e}^{\mathrm{i}(2n-2k)x} + (-1)^n \binom{2n}{n} + \sum_{k=n+1}^{2n} (-1)^k \binom{2n}{k} \mathrm{e}^{\mathrm{i}(2n-2k)x} \right\} \\ &= \frac{(-1)^n}{2^{2n}} \left\{ \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \left[\mathrm{e}^{\mathrm{i}(2n-2k)x} + \mathrm{e}^{-\mathrm{i}(2n-2k)x} \right] + (-1)^n \binom{2n}{n} \right\} \\ &= \frac{(-1)^n}{2^{2n}} \left\{ 2 \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \cos(2n-2k)x + (-1)^n \binom{2n}{n} \right\} \end{split}$$

即引理得证.

考虑积分

$$\int_C \frac{1}{z^{2n}} f(z) \mathrm{d}z$$

积分路径 C 如下图,

其中

$$f(z) = \sum_{k=0}^{n-1} (-)^k {2n \choose k} e^{i(2n-2k)z} + \frac{(-)^n}{2} {2n \choose n} - G_{2n-2}(z)$$

 $G_{2n-2}(z)$ 是不超过 2n-2 次的多项式,使 z=0 为被积函数 $\frac{f(z)}{z^2n}$ 的一阶极点,即 z=0 为 f(z) 的 2n-1 阶零点,

$$\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} + \frac{(-1)^n}{2} \binom{2n}{n} - G_{2n-2}(0) = 0$$

$$\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \left[i(2n-2k) \right]^l - G_{2n-2}^l(0) = 0, \quad l = 1, 2, \dots, 2n-2$$

由于

$$\sin^{2n} \big|_{x=0} = 0, \quad \frac{\mathrm{d}^2}{\mathrm{d}x^2} \sin^{2n} \big|_{x=0} = 0, \quad \dots \quad \frac{\mathrm{d}^{2n-2}}{\mathrm{d}x^{2n-2}} \sin^{2n} \big|_{x=0} = 0$$

于是

$$G_{2n-2}(0) = \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} + \frac{(-1)^n}{2} \binom{2n}{n} = 0$$

$$G'_{2n-2}(0) = i \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)$$

$$G''_{2n-2}(0) = -\sum_{k=0}^{n-1} (-)^k \binom{2n}{k} (2n-2k)^2 = 0$$

:

$$G_{2n-2}^{(2n-3)}(0) = (-1)^n i \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-3}$$

$$G_{2n-2}^{(2n-2)}(0) = (-1)^{n+1} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-2} = 0$$

由此可得

$$G_{2n-2}(z) = i \sum_{l=0}^{n-2} \frac{(-1)^l}{(2l+1)!} \left[\sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2l+1} \right] z^{2l+1}$$

即 $G_{2n-2}(z)$ 是 2n-3 次的奇次多项式,系数为纯虚数. 根据留数定理有

$$\int_{-R}^{-\delta} \frac{1}{x^{2n}} f(x) dx + \int_{C_{\delta}} \frac{1}{z^{2n}} f(z) dz + \int_{\delta}^{R} \frac{1}{x^{2n}} f(x) dx + \int_{C_{R}} \frac{1}{z^{2n}} f(z) dz = 0$$

由于

$$\lim_{z \to \infty} \frac{1}{z^{2n}} = 0$$

17

故

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n}} e^{i(2n-2k)z} dz = 0$$

又由于

$$\lim_{z \to \infty} z \cdot \frac{1}{z^{2n}} = 0$$

因此

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n}} \mathrm{d}z = 0$$

再由于

$$\lim_{z \to \infty} z \cdot \frac{1}{z^{2n}} G_{2n-2}(z) = 0$$

所以

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n}} G_{2n-2}(z) \mathrm{d}z = 0$$

合并起来进而有

$$\lim_{R \to \infty} \int_{C_R} \frac{1}{z^{2n}} f(z) \mathrm{d}z = 0$$

另一方面

$$\lim_{z \to 0} z \cdot \frac{1}{z^{2n}} f(z) = \lim_{z \to 0} \frac{1}{z^{2n-1}} f(z)$$

$$= \lim_{z \to 0} \frac{1}{z^{2n-1}} \left\{ \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} e^{i(2n-2k)z} + \frac{(-1)^n}{2} \binom{2n}{n} - G_{2n-2}(z) \right\}$$

$$= \frac{1}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} [i(2n-2k)]^{2n-1}$$

所以

$$\lim_{\delta \to 0} \int_{C_{\delta}} \frac{1}{z^{2n}} f(z) dz = -\pi i \cdot \frac{i^{2n-1}}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-1}$$
$$= (-1)^{n+1} \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-1}$$

取极限 $\delta \to 0, R \to \infty$, 即得

$$\int_{-\infty}^{\infty} \frac{1}{x^{2n}} f(x) dx = (-1)^n \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-1}$$

比较实部,由于 $G_{2n-2}(x)$ 的系数为纯虚数,结合 Lemma 4.2

$$\sin^{2n} x = \frac{(-1)^n}{2^{2n}} \left\{ 2 \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \cos(2n-2k)x + (-1)^n \binom{2n}{n} \right\}$$

5 总结 18

就得到

$$\int_{-\infty}^{\infty} \frac{1}{x^{2n}} \left\{ \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \cos(2n-2k)x + \frac{(-1)^n}{2} \binom{2n}{n} \right\} dx$$

$$= (-1)^n 2^{2n-1} \int_{-\infty}^{\infty} \frac{\sin^{2n} x}{x^{2n}} dx$$

$$= (-1)^n \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (2n-2k)^{2n-1}$$

最终有

$$\int_{-\infty}^{\infty} \frac{\sin^{2n} x}{x^{2n}} dx = \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (n-k)^{2n-1}$$

故综上, 我们有

$$\int_{-\infty}^{+\infty} \frac{\sin^m x}{x^m} dx = \begin{cases} \int_{-\infty}^{\infty} \frac{\sin^{2n+1} x}{x^{2n+1}} dx = \frac{\pi}{(2n)!} \sum_{k=0}^{n} (-)^k \binom{2n+1}{k} \left(\frac{2n+1}{2} - k\right)^{2n} & m = 2n+1 \\ \int_{-\infty}^{\infty} \frac{\sin^{2n} x}{x^{2n}} dx = \frac{\pi}{(2n-1)!} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} (n-k)^{2n-1} & m = 2n \end{cases}$$

5 总结

留数定理堪称复变函数领域的一座巍峨丰碑。它犹如一条精妙的纽带,将复变函数在孤立奇点处看似微观局部的留数特性,与宏观层面的闭曲线积分紧密相连,展现出一种高屋建瓴的理论架构。在理论深度上,它是柯西积分定理等经典理论的卓越升华,极大地拓展了复变函数积分理论的边界,为深入探究函数在奇点附近的行为以及复杂区域上的积分开辟了崭新通途。其影响力更是跨越复变函数的范畴,在调和分析、数论等数学分支中若隐若现地编织起联系的网络,促进了数学学科内部的深度交融。

正如高斯所言:"数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。"留数定理便是这样一个美丽且深刻的定理,它建立了函数在孤立奇点处的留数与闭曲线积分之间的联系,这种联系看似简洁明了,但背后的证明和理论基础却蕴含着深刻的数学思想。

REFERENCES 19

References

- [1] 周性伟,张震球,王险峰.复变函数.科学出版社,2022.
- [2] 李军, 刘春根等. 数学分析, 下册. 高等教育出版社, 2014.

[3] Jaysny. 数学的艺术——复变函数积分和留数定理, 2021.