18° Quiz – 5 - λεπτά

ομογενές μαγνητικό πεδίο \vec{B} που έχει κατεύθυνση $\otimes_{ullet} \otimes \otimes \otimes \otimes \otimes \otimes$ προς το εσωτερικό της σελίδας. Τα πλαίσια κινούνται με την ίδια σταθερή ταχύτητα \vec{v} , όπως φαίνεται στο διπλανό σχήμα. Η ΗΕΔ από επαγωγή, \mathcal{E}_1 και \mathcal{E}_2 που αναπτύσσονται στα πλαίσια είναι:

A.
$$3\mathcal{E}_1 = 2\mathcal{E}_2$$
 B. $2\mathcal{E}_1 = 3\mathcal{E}_2$ Γ . $2\mathcal{E}_1 = 3\mathcal{E}_2$ Δ . $\mathcal{E}_1 = \mathcal{E}_2 = 0$ E . $\mathcal{E}_1 = \mathcal{E}_2$

Το τμήμα μήκους α της δεξιάς πλευράς των πλαισίων σαρώνει μια επιφάνεια καθώς κινείται στο εσωτερικό του μαγνητικού πεδίου.

Το εμβαδό της επιφάνειας αυτής είναι ίδιο και για τα δύο πλαίσια: $A = a * v * \Delta t$

Η ΗΕΔ επαγωγής σύμφωνα με τον νόμο του Faraday είναι: $\mathcal{E} = -\frac{d\Phi_m}{dt} = \frac{BA}{dt} = Bva$

Επομένως η ΗΕΔ θα είναι η ίδια και για τα δύο πλαίσια.