

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

mehran.safayani

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Neural Networks

•
$$a^{[1]} = \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \\ a_4^{[1]} \end{bmatrix} = \sigma(z^{[1]}) = \begin{bmatrix} \sigma(z_1^{[1]}) \\ \sigma(z_2^{[1]}) \\ \sigma(z_3^{[1]}) \\ \sigma(z_4^{[1]}) \end{bmatrix}$$

•
$$z^{[1]}_{4 \times 1} = w^{[1]}_{4 \times 3} \stackrel{?}{x}_{3 \times 1} + b^{[1]}_{4 \times 1}$$

• $a^{[1]}_{4 \times 1} = \sigma(z^{[1]}_{4 \times 1})$
• $z^{[2]}_{1 \times 1} = w^{[2]}_{1 \times 4} a^{[1]}_{4 \times 1} + b^{[2]}_{1 \times 1}$
• $a^{[2]}_{1 \times 1} = \sigma(z^{[2]}_{1 \times 1})$
• For i=1 to m

$$z^{[1](i)} = w^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = w^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

•
$$X = \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ & & & \\ & & & \end{bmatrix}_{(nx, m)}$$

•
$$Z^{[1]}_{4 \times m} = W^{[1]}_{4 \times 3} X_{3 \times m} + \underbrace{b^{[1]}_{broadcasting}}_{4 \times 1}$$

•
$$A^{[1]}_{4 \times m} = \sigma(Z^{[1]}_{4 \times m})$$

•
$$Z^{[2]}_{1 \times m} = W^{[2]}_{1 \times 4} A^{[1]}_{4 \times m} + b^{[2]}_{1 \times 1}$$

$$\bullet \ A^{[2]}_{1 \times m} = \sigma(Z^{[2]}_{1 \times m})$$

$$Z^{[1]} = \begin{bmatrix} z^{1}z^{[1](2)} \dots z^{[1](m)} \\ \vdots \end{bmatrix}$$

$$A^{[1]} = \begin{bmatrix} a^{1}a^{[1](2)} \dots a^{[1](m)} \end{bmatrix}$$

Activation function

- $sigmoid(z) = \frac{1}{1 + e^{-z}}$ don't be used except for output
- $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$ don't be used except for output

Activation function

• Leaky Relu(z) =
$$\max(0, z) =$$
$$\begin{cases} z & z \ge 0 \\ 0.01z & z < 0 \end{cases}$$

• Linear(z) = z

Threshold Logic Unit(TLU)

•
$$z = w^T x + b$$

• $\hat{y} = \begin{cases} 1 & w^T x + b \ge 0 \\ 0 & w^T x + b < 0 \end{cases}$
• $x_1 \quad x_2 \quad x_3 \quad y$
• $0 \quad 0 \quad 0 \quad 1 \quad \bar{x}_1 \, \bar{x}_2 \bar{x}_3$
• $0 \quad 0 \quad 1 \quad 0 \quad x_3$
• $0 \quad 1 \quad 0 \quad 0 \quad x_3$
• $0 \quad 1 \quad 0 \quad 0 \quad x_3$
• $0 \quad 1 \quad 1 \quad 1 \quad 1 \quad \bar{x}_1 x_2 x_3$

Threshold Logic Unit(TLU)

x1	x2	and	or	xor
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

$$x_1 + x_2 - 1.1 = 0$$

$$x_1 = x_2 + 1.1$$

$$x_1 = x_2 + 0.1$$

x1	x2	A1 =x1'x2	A2 =x1x2'	xor
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

-x1+x2-0.1=0 x1-x2-0.1=0 x1=x2-0.1 x1=x2+0.1

15