ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

On an additional promoting role of hydrogen in the H_2 -assisted C_3H_6 -SCR of NO_x on Ag/Al_2O_3 : A lowering of the temperature of formation–decomposition of the organo- NO_x intermediates?

Cyril Thomas a,b,*

- a Sorbonne Universités, UPMC Univ Paris 06, UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Case 178, F-75005 Paris, France
- ^b CNRS, UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Case 178, F-75005 Paris, France

ARTICLE INFO

Article history:
Received 17 June 2014
Received in revised form 3 July 2014
Accepted 7 July 2014
Available online 15 July 2014

Keywords:
Catalyst
NO_x-TPD
HC-SCR
Propene
Temperature-programmed experiments

ABSTRACT

The addition of minute amounts of H_2 to the selective catalytic reduction of nitrogen oxides (NO_x) by hydrocarbons (HC-SCR) has been shown to promote the reduction of NO_x at remarkably lower reaction temperatures on Ag/Al₂O₃ catalysts. Despite extensive investigations, the origin of this remarkable hydrogen effect is still being debated in the literature. To provide further insights into this, the desorption-reactivity of nitrates preadsorbed on a Ag (1.6 wt%)/Al₂O₃ catalyst is reported for the first time under desorbing feeds of increasing complexity. The results of these transient experiments together with those of steady-state experiments under selected gas compositions confirm some of the numerous roles of H₂ suggested previously such as being responsible for (i) changes in the distribution of Ag species, (ii) promoted HC activation and (iii) lower nitrates coverage because of their lower stability in the presence of H₂. In particular, it was found that nitrates decompose at temperatures as low as 120 °C in the presence of H₂ in the desorbing feed, instead of around 300 °C in the absence of H₂. The transient experiments in which the reactivity of the nitrates was studied under desorbing feeds containing propene (C_3H_6) as a reductant, allowed for the monitoring of the formation-decomposition of organo-NO_x species (R-NO_x). From these experiments, it can therefore be identified that another potential role of H_2 is to promote the formation-decomposition-reaction of organo-NO_x species at lower temperatures coinciding with the temperature of the onset of detection of N2 under both transient and steady-state conditions, in line with the "chemical effect" of H₂ suggested earlier.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Public health and natural environmental concerns, partly due to the emissions of automotive exhausts and their associated pollutants such as hydrocarbons (HC), carbon oxides (CO and CO_2), nitrogen oxides (NO_x: NO and NO₂) and particulate matter (PM), have driven ever more stringent vehicle emission standards in Europe and in the USA [1,2]. These regulations require improvements of current after-treatment catalytic technologies. In particular, the removal of NO_x at lower temperatures has become extremely challenging for lean-burn and diesel powered vehicles [2], which typically operate in a large excess of oxygen. Although the ammonia selective catalytic reduction of NO_x (SCR)

E-mail address: cyril.thomas@upmc.fr

and lean- NO_X trap (LNT) after-treatment catalytic technologies have been selected to meet the vehicle emission standards [2], the development of catalytic materials for direct NO_X reduction with hydrocarbons, usually referred to as Hydrocarbon Selective Catalytic Reduction (HC-SCR), would also be of interest if their performances could be improved to meet emission regulations [3].

Studying silver-alumina catalysts with various hydrocarbons in the presence of water, Miyadera was first to bring to the attention of the community that these catalysts may be promising candidates in the HC-SCR reaction [4]. These catalysts, however, suffer from insufficient performance at temperatures lower than 350 °C [4–12], which has clearly prevented their practical development to date. The Ag/Al₂O₃ system is nevertheless still the subject of indepth investigations [3,13] as the fundamental understanding of the HC-SCR reaction at a molecular level could provide the key to designing improved Ag/Al₂O₃ catalysts. Improvement of the HC-SCR activity of the Ag/Al₂O₃ catalysts has been shown to depend strongly on (i) the Ag loading and in particular the Ag surface density of the catalysts [14], (ii) the nature of the reducing hydrocarbon,

^{*} Correspondence to: Sorbonne Universités, UPMC Univ Paris 06, UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Case 178, F-75005 Paris, France. Tel.: +33 1 44 27 36 30; fax: +33 1 44 27 60 33.

with oxygenated and higher hydrocarbons providing better HC-SCR performances at lower temperatures [4,5,7,9,15,16], and (iii) the preparation method, as it was reported recently that Ag/Al₂O₃ catalysts could also be prepared by ball milling [3,17–19]. The changes induced in the surface properties of the Al₂O₃ support by ball milling [3] were found to be beneficial for low-temperature C_8H_{18} -SCR in the presence of water [3,17]. The most spectacular low-temperature promoting effect on the HC-SCR reaction lies undoubtedly in the addition of a limited quantity of H₂, generally below 1%, to the reacting feeds, as was originally discovered by Satokawa et al. for light hydrocarbons [20,21]. The so-called "hydrogen effect" has been confirmed later for C_3H_8 -SCR [22–24] and for HC-SCR using higher hydrocarbons [3,13,25–29]. Recently, the lowest NO_x reduction temperature in the H₂-assisted C_8H_{18} -SCR was claimed for a Ag/Al₂O₃ catalyst prepared by ball milling [3].

The origin of the hydrogen effect on the HC-SCR reaction has been intensively debated in the literature and attributed mainly to (i) changes in the distribution of the Ag species [13,22,24,29], (ii) the promotion of hydrocarbon activation to surface oxygenated compounds [13,23,24,27], (iii) the formation of reactive oxygen species such as peroxides [13,24,30], (iv) changes in the surface concentration of NO_x ad-species [13,22,23,31,32], and/or (v) the modification of chemical reactions [5,25,26]. Among NO_x adspecies, nitrates have been claimed to be reactive intermediates in the H₂-assisted HC-SCR reaction [13,23,24], although this could not be confirmed by STOS-SSITKA (Short Time On Stream-Steady State Isotopic Kinetic Analysis) in H₂-C₈H₁₈-SCR [33]. In addition, it was suggested that the formation of organo-nitrogen species (organo-NO_x), resulting from the interaction of NO_x and activated hydrocarbon ad-species, was the rate determining step of the HC-SCR [7] and H₂-HC-SCR [3] reactions. We recently came to a similar conclusion in a H2-assisted C3H6-SCR kinetic investigation performed on a series of Ag/Al₂O₃ samples of various Ag loadings [34]. As it was illustrated in our earlier C_3H_6 - and $C_{10}H_{22}$ -SCR studies [35,36], the temperature at which NO_x and activated HC species interact may be estimated through transient temperatureprogrammed experiments in which the reactivity of NO_x ad-species is studied in the presence of hydrocarbons in the desorbing feeds. Yet the use of such an experimental approach in the HC-SCR field has been the subject of only a very limited number of investigations [10,35-42].

This work aims at investigating systematically the reactivity of nitrates adsorbed on the Al_2O_3 support of a Ag/Al_2O_3 catalyst with various NO-free H_2 –HC-SCR feeds of increasing complexity, which has not been performed to date. For this purpose, C_3H_6 was chosen as a model reductant, even though higher hydrocarbons are well-known to be more representative of lean-burn or diesel engine exhausts. The results obtained in a temperature transient mode are compared to those obtained at steady state to gain further insights into the role of H_2 in the C_3H_6 -SCR reaction.

2. Experimental

2.1. Catalyst synthesis and characterization

The γ -Al₂O₃ support (Procatalyse, $180\,\mathrm{m}^2/\mathrm{g}$) was ground and sieved, and the fraction between 0.125 and 0.200 mm was used to prepare the Ag-promoted sample. The deposition of Ag was performed by incipient wetness impregnation of the bare Al₂O₃ support (0.7 cm³/g porous volume) with an aqueous solution of AgNO₃ (Aldrich, >99%) to achieve a silver loading of 1.6 wt%, which was ascertained by inductively coupled plasma atomic emission spectroscopy (ICP-AES, CNRS, Solaize). After impregnation, the Agloaded sample was aged for 4h under ambient conditions and subsequently dried at $100\,^{\circ}\mathrm{C}$ overnight. Finally, the Ag-loaded

sample was calcined at $600\,^{\circ}\text{C}$ ($3\,^{\circ}\text{C/min}$) for 4h in a muffle furnace. The specific surface area of the calcined sample, measured with a Belsorp Max (Bell Japan) instrument, was found to be similar to that of the Al_2O_3 support, resulting in a Ag surface density of $0.5\,\text{Ag/nm}^2$ [14,34].

2.2. Catalytic runs

The catalytic experiments were carried out in a U-type quartz reactor (12 mm i.d.) using about 0.18 g of the Ag/Al₂O₃ sample and a total flow rate of $230 \,\mathrm{mL_{NTP}}\,\mathrm{min^{-1}}$ ($\sim 85,000 \,\mathrm{h^{-1}}$ gas hour space velocity \sim 78,000 mL_{NTP} g⁻¹ h⁻¹ space velocity). The Ag/Al₂O₃ catalyst was held on plugs of quartz wool. The temperature of the tubular furnace was set by a Eurotherm 2408 temperature controller using a K-type thermocouple. H₂ (2%/He), NO (4000 ppm/He), C_3H_6 (2000 ppm/He), O_2 (100%), and He (100%) were fed from independent cylinders (Air Liquide) without any further purification via mass flow controllers (Brooks 5850TR). For the NO_x-TPD carried out in H₂O-O₂-He, H₂O was delivered into the gas stream through a microflow liquid mass flow controller (L01-RAD-19-0, Bronkhorst) and vaporized in a CEM (Controlled Evaporation Mixer, W-101A-911-K, Bronkhorst) chamber, whose operating temperature was set to 80 °C. The reactor outflow was analyzed using a μ-GC (Agilent Technologies, CP4900) equipped with two channels and a combination of on-line detectors. The first channel of the μ -GC equipment, a 5A molecular sieve column (80 °C, 150 kPa He, 200 ms injection time, 30 s backflush time), was used to separate H₂, N₂, O₂, and CO. The second channel, equipped with a poraplot Q column (60 °C, 150 kPa He, 200 ms injection time), was used to separate CO₂, N₂O, C₃H₆ and H₂O. The concentrations in NO and NO₂, CO₂, N₂O, and C₃H₆ were also monitored by a NO_x chemiluminescence analyzer (Thermo Environmental Instruments 42C-HT), a CO₂ infrared detector (Maihak 710), a N₂O infrared detector (Ultramat 6 IR), and a FID detector (Thermo Environmental Instruments 51C-LT), respectively.

2.2.1. C_3H_6 -SCR steady-state performances

Prior to the C_3H_6 -SCR experiment, the sample was calcined in situ in O_2 (20%)–He at $500\,^{\circ}\text{C}$ (3 $^{\circ}\text{C/min}$) for 2 h with a flow rate of $100\,\text{mL}_{NTP}$ /min. After cooling down to $150\,^{\circ}\text{C}$ under O_2 –He, the sample was submitted to a C_3H_6 -SCR experiment from 150 to $500\,^{\circ}\text{C}$ [14]. The sample was subsequently exposed to the H_2 – C_3H_6 -SCR feed at $150\,^{\circ}\text{C}$ and the performances were measured from 150 to $500\,^{\circ}\text{C}$ [34]. Typically, the composition of the SCR feed was: 0 or $0.2\%\,H_2$, $385\,\text{ppm}\,\text{NO}$, $390\,\text{ppm}\,C_3H_6$, and $8\%\,O_2$ in He. In both SCR reactions, the temperature was increased stepwise from 150 to $500\,^{\circ}\text{C}$ with $25\,^{\circ}\text{C}$ increments and left for about 1 h at each temperature step. $NO_x\,(NO+NO_2)$ conversion to N_2 was calculated as follows:

$$X_{\text{NO}_x \text{ to } N_2}$$
 (%) = $(2 \times [N_2])/([NO_x]_{\text{inlet}}) \times 100$ (1)

where $[NO_x]_{inlet}$ and $[N_2]$ were the concentrations of NO_x measured at the inlet of the reactor and of N_2 measured at the outlet of the reactor, respectively. It must be noted that minute amounts of N_2O were also formed during the SCR reactions. C_3H_6 conversion was calculated on the basis of the CO_x ($CO + CO_2$) products formed:

$$X_{C_3H_6}$$
 (%) = ([CO] + [CO₂])/([C₃H₆]_{inlet} × 3) × 100 (2)

where [CO], [CO₂], and [C_3H_6]_{inlet} were the concentrations of CO and CO₂ measured at the outlet of the reactor and of C_3H_6 measured at the inlet of the reactor, respectively.

2.3. NO oxidation steady-state performances

The activity of the Ag/Al_2O_3 sample in the oxidation of NO by molecular O_2 (385 ppm NO-8% O_2 -He balance), either in the

absence or presence of 0.2% $\rm H_2$ in the reacting feed, was measured from 500 to 100 °C every 50 °C by dwelling for about 30 min at each temperature step.

2.4. NO_x -TPD and C_3H_6 -TPO experiments

Temperature-programmed desorptions of preadsorbed nitrates (NOx-TPD) were performed in various gas mixtures (O₂-He, H₂-O₂-He, H₂O-O₂-He, CO₂-O₂-He, C₃H₆-O₂-He, and $H_2-C_3H_6-O_2-He)$ which contained 8% O_2 , 0.2% H_2 , 0.2% H_2O , 390 ppm C₃H₆, and a He balance. Prior to these NO_x-TPD experiments, the Ag/Al₂O₃ catalyst surface was saturated with nitrates following the experimental procedure used to measure the NO oxidation steady-state performances in a H₂-NO-O₂-He reacting feed (Section 2.3). For comparison, temperature-programmed oxidations (C_3H_6 -TPO) of C_3H_6 (0 or 0.2% H_2 -390 ppm C_3H_6 -8% O_2 -He balance) were performed on Ag/γ - Al_2O_3 . Prior to the C₃H₆-TPO experiments, the sample was pretreated in situ in H₂ $(0.2\%)-O_2$ (8%)-He (230 mL_{NTP}/min) at 500 °C (3 °C/min) for 2 h. The catalyst temperature was then decreased to 100°C under the same feed before being flushed with O2 (8%)-He at 100 °C for about 15 min. The reactor was then by-passed. The reacting feed was set up and flown through the nitrates-saturated or H_2-O_2 -He pretreated sample, and the transient experiment was started. The NO_x-TPD and C₃H₆-TPO experiments were carried out from 100 to 500 °C, at a heating rate of 3 °C/min.

3. Results

3.1. Steady-state activity

3.1.1. C_3H_6 - and H_2 - C_3H_6 -SCR performances

Fig. 1 shows the influence of the addition of 0.2% H₂ on the C₃H₆-SCR catalytic performance of the Ag/Al₂O₃ catalyst. For temperatures lower than 450 °C, the addition of H₂ dramatically promoted the C₃H₆-SCR reaction in agreement with our earlier study [34] and that of Zhang et al. [43], and also with the HC-SCR studies in which various hydrocarbons were used [3,13,20-29]. The NO_x and C₃H₆ conversions in C₃H₆-SCR were found to be shifted by about 150 °C to lower temperatures with the addition of 0.2% H₂ to the reacting feed. A steep increase in the conversions of NO_x and C₃H₆ was observed in H₂-C₃H₆-SCR from 150 to 300 °C. For temperatures higher than 300 °C, the conversion of NO_x remained essentially constant at about 60-70%, whereas that of C₃H₆ increased slowly from 80% at 300 °C to 100% at 500 °C. H₂ was gradually oxidized up to 225 °C, then more steeply, reaching complete consumption at 300 °C. Traces of N₂ were detected at temperatures as low as 150 °C in the H₂-C₃H₆-SCR, whereas N₂ was only detected at temperatures higher than or equal to 325 °C in the absence of H₂ in the feed (C₃H₆-SCR). For temperatures higher than

Fig. 1. Influence of the addition of 0.2% H_2 on the C_3H_6 -SCR performances. Conversions of NO_x to N₂ in C₃H₆-SCR (□) and H₂-C₃H₆-SCR (■), and conversions of C₃H₆ to CO_x in C₃H₆-SCR (○) and H₂-C₃H₆-SCR (●) on about 0.18 g of Ag/Al₂O₃. Feed compositions: 0 or 0.2% H_2 , 385 ppm NO, 390 ppm C₃H₆, 8% O₂ and He balance with a 230 mL_{NTP}/min flow rate. The concentration of H₂ in the course of the H₂-C₃H₆-SCR reaction is also shown (♠).

Fig. 2. NO oxidation to NO₂ in the absence (\square) and in the presence (\bullet) of H₂ on about 0.18 g of Ag/Al₂O₃. The conversion of NO to NO₂ at equilibrium (-) and the concentrations of H₂ (\diamond) and H₂O (\bullet) are also shown. Feed compositions: 0 or 0.2% H₂, 385 ppm NO, 8% O₂ and He balance with a 230 mL_{NTP}/min flow rate.

425 °C, the conversions of NO_x and C_3H_6 were found to be similar in both the presence and absence of H_2 .

3.1.2. NO oxidation

Under the present experimental conditions, H_2 was oxidized to H_2O at temperatures higher than $100 \,^{\circ}C$ (Fig. 2). As was reported

Fig. 3. Influence of the addition of 0.2% H_2 on the (a) NO_x , (b) NO and (c) NO_2 desorption profiles obtained with a rate of 3 °C/min on about 0.18 g of Ag/Al_2O_3 contacted previously with H_2 –NO– O_2 –He (0.2%–385 ppm–8%–balance) from 500 to 100 °C for 30 min every 50 °C. Feed compositions: 0 or 0.2% H_2 , 8% O_2 and He balance with a 230 mL $_{NTP}$ /min flow rate. The concentrations of H_2 (\diamondsuit) and H_2O (\spadesuit) are also shown in the course of the NO_x –TPD in H_2 – O_2 –He (d).

Table 1 Amounts of NO_x ($NO + NO_2$) released, N_2O and N_2 formed, and H_2 and C_3H_6 light-off temperatures (T_{LO} : defined as the temperature of 50% conversion of the reactant considered) obtained in the NO_x -TPD experiments ($3^{\circ}C/min$) performed under various gas compositions (8% O_2 , 0.2% H_2 , 0.2% H_2 , 0.2% H_2 , 0.630 ppm CO_2 and/or 390 ppm C_3H_6 in He) on about 0.18 g of Ag/Al_2O_3 contacted with $NO-O_2-H_2$ -He (385 ppm-8%-0.2%-balance) from 500 to $100^{\circ}C$ for 30 min every $50^{\circ}C$. 230 mL $_{NTP}$ /min flow rate. For comparison, the light-off temperatures of H_2 and C_3H_6 obtained in the steady-state oxidation of NO (H_2-NO-O_2 -He), the C_3H_6 -TPO experiments and the steady-state SCR reactions are also listed in the second part of the table.

		Amounts of N _t O _y species (µmol/g)						T _{LO} (°C)	
	Gas compositions	NO	NO ₂	NO_x	N ₂ O	N ₂	N	H_2	C_3H_6
NO_x -TPDs	O ₂ -He	18.6	301.5	320.1	0	0	320.1	-	-
	H ₂ -O ₂ -He	59.6	259.7	319.3	0	0	319.3	210	_
	O_2 -He + H_2 - O_2 -He ^a	61.7	258.3	320.1	0	0	320.1	205	-
	H ₂ O-O ₂ -He	12.1	290.0	302.1	0	0	302.1	_	_
	CO ₂ -O ₂ -He	18.6	299.6	318.2	0	0	318.2	_	_
	C ₃ H ₆ -O ₂ -He	28.7	213.4	242.1	1.8	38.0	321.7	_	_
	C_3H_6 - H_2 - O_2 -He	13.7	127.6	141.3	8.2	79.9	317.5	260	-
	H ₂ -NO-O ₂ -He	_	-	-	_	_	-	210	_
	C ₃ H ₆ -O ₂ -He-TPO	_	_	_	_	_	_	_	470
	C ₃ H ₆ -H ₂ -O ₂ -He-TPO	_	_	-	-	_	-	245	420
	NO-C ₃ H ₆ -O ₂ -He-SCR	_	-	-	_	_	-	_	425
	NO-H ₂ -C ₃ H ₆ -O ₂ -He-So	CR -	-	_	_	_	-	270	270

^a The Ag/Al₂O₃ sample was first heated up to 190 °C under O₂–He before being submitted to H_2 –O₂–He from 190 to 500 °C (3 °C/min). For more details the reader should refer to the caption of Fig. 4.

earlier [13,25], the addition of H_2 to a NO–O₂–He feed led to a drastic increase in the NO oxidation performance of the Ag/Al₂O₃ catalyst from 150 to 500 °C (Fig. 2), as NO was poorly oxidized in the absence of H_2 over the same temperature range (Fig. 2). The formation of NO₂ increased from 150 to 300 °C and then decreased at higher temperatures, approaching the thermodynamics predicted by the $2NO+O_2=2NO_2$ equilibrium. The formation of NO_2 was thus found to be optimum at the temperature at which H_2 was fully oxidized, i.e. 300 °C (Fig. 2). In agreement with earlier studies [22,27,32], neither N_2 nor N_2O was formed in the course of the NO oxidation reaction performed in the presence of H_2 , indicating that the role of H_2 is not to reduce NO_X on Ag/Al_2O_3 and that the reason for its promoting effect on the HC-SCR reaction must be found elsewhere.

3.2. Temperature-programmed experiments

3.2.1. NO_x-TPD

The conditions used in the present study to saturate the Al_2O_3 surface of the Ag/Al_2O_3 sample by $ad-NO_x$ species differed substantially from those reported in our earlier works [14,34–36,38–40,44–46]. In these previous works, the samples were exposed to a NO_x-O_2 -He feed at RT, whereas in the present

work the initial state of the catalyst was obtained after performing a NO oxidation reaction in a H_2 –NO– O_2 –He feed, for which it was shown that NO_2 was produced in significant quantities (Section 3.1.2, Fig. 2). As a NO_2 –He mixture was not available, such a procedure was used to saturate the Al_2O_3 surface with nitrates, which have been suggested to be reaction intermediates in the H_2 -assisted HC-SCR reactions [13,23,24].

3.2.1.1. NO_x -TPD in O_2 -He. The NO_x -TPD profiles obtained in O_2 -He on the Ag/Al_2O_3 sample submitted previously to a NO oxidation reaction are shown in Fig. 3a-c (gray traces). The release of the NO_x ad-species started at about $280\,^{\circ}$ C and reached a maximum at $410\,^{\circ}$ C (Fig. 3a). The NO_x -TPD profiles shown in Fig. 3 also indicate that NO_x were mainly released as NO_2 (94%, Table 1). The fact that NO_x were mainly released as NO_2 and at high temperatures is coherent with the decomposition of surface nitrates chemisorbed on Al_2O_3 [37,41,47–49]. It can also be observed in Fig. 3a-c that a temperature of about $500\,^{\circ}$ C was not high enough to allow for the complete release of NO_x from the sample. An additional period of 15 min was needed at about $500\,^{\circ}$ C to fully decompose the most strongly bound nitrates and this peculiarity accounts for the steep decreases in NO and NO_2 concentrations seen in Fig. 3b and c at about $500\,^{\circ}$ C.

Fig. 4. NO_x-TPD profiles (NO_x: _____ , NO₂: ____ and NO: ____) obtained at 190 °C and from 190 to 500 °C on about 0.18 g of Ag/Al₂O₃ contacted previously with H₂–NO–O₂–He (0.2%–385 ppm–8%–balance) from 500 to 100 °C for 30 min every 50 °C followed by an increase in the catalyst temperature from 90 to 190 °C under O₂–He (8%–balance). At 190 °C, the reactor was by-passed and the feed composition changed to H₂–O₂–He (0.2%–8%–balance). At about 70 min, the H₂–O₂–He mix was introduced onto the catalyst. After 40 additional minutes under the H₂–O₂–He mix (time on stream ~110 min), the catalyst temperature was increased (3 °C/min) to 500 °C under the H₂–O₂–He feed. The concentrations of H₂ (\Diamond) and H₂O (\blacklozenge) in the course of the NO_x-TPD are also shown.

3.2.1.2. NO_x -TPD in H_2 - O_2 -He. Fig. 3 compares the NO_x -TPD profiles obtained in O2-He (gray traces) with those obtained in H₂-O₂-He (black traces). In agreement with a recent work of Tamm [50] in which the influence of H_2 in an O_2 -He desorbing feed was studied to provide further insights into the influence of H₂ in the NH₃-SCR field, the presence of H₂ clearly shifted the nitrates decomposition to much lower temperatures. The nitrates decomposition was indeed found to start at 120 °C and to be at a maximum at 185 °C in the presence of H₂, whereas their decomposition occurred from 280 to 500 °C with a maximum at 410 °C in the absence of H₂ (Fig. 3a-c). While the amount of NOx released in the presence of H2 was in excellent agreement with that obtained in the absence of H₂, about 320 μ mol NO_x/g in both cases (Table 1), that of NO was about three times higher in the presence of H₂ (59.6 µmol NO/g) compared to that found in the absence of H₂ (18.6 µmol NO/g) in the desorbing feed (Table 1). The fact that the amounts of NO_x released in both feeds were similar is consistent with earlier studies in which it was concluded that H2 did not act as a NOx reductant in HC-SCR [22,27,32]. It can also be noted that NO was released over a much wider range of temperatures in the presence of H₂ (120-500 °C) than in the absence of H₂ in the desorbing feed (Fig. 3b). Finally, Fig. 3d shows that the H₂ oxidation profile obtained in the NO_x-TPD transient experiment in H_2-O_2 -He agreed with that obtained in the steady-state NO oxidation reaction (Fig. 2), the H₂ light-off temperatures being 210 °C in both cases (Table 1).

In an additional experiment, after being saturated with nitrates following the above-described NO oxidation procedure, the Ag/Al₂O₃ sample was exposed to an O₂-He feed from about 100 to 190 °C (3 °C/min, Fig. 4). As expected from the NO_x-TPD experiment carried out in O₂-He (Fig. 3, gray traces), the formed nitrates were stable in this range of temperatures (90–190 °C) and remained stored on the catalyst as no NO_x signal was detected (Fig. 4). At 190 °C, the reactor was by-passed and 0.2% H_2 was added to the O_2 -He feed. Once the composition of the H_2 - O_2 -He feed remained essentially constant, this feed was flown through the sample at 190 °C and the decomposition of nitrates was observed concomitantly (Fig. 4, ~70 min on stream). After about 40 min under the H_2 – O_2 –He feed at 190 °C (Fig. 4, ~110 min on stream), the sample was heated up to 500 °C (3 °C/min) under the same feed. The amount of NO_x released in this experiment was found to be in agreement with that obtained in the NO_x -TPD in H_2 - O_2 -He (Table 1). The NO_x-TPD experiment, in which the stability of the nitrates was investigated sequentially using firstly an O2-He feed up to 190 °C followed by a H_2 – O_2 –He feed up to 500 °C (Fig. 4), underlines the prominent role of H₂ in helping to decompose nitrates at much

Fig. 5. Influence of the addition of 0.2% H_2O on the (a) NO_x , (b) NO and (c) NO_2 desorption profiles obtained with a rate of 3 °C/min on about $0.18\,g$ of Ag/Al_2O_3 contacted previously with H_2-NO-O_2-He ($0.2\%-385\,ppm-8\%-balance$) from 500 to 100 °C for 30 min every 50 °C. Feed compositions: 0 or 0.2% H_2O , 8% O_2 and He balance with a $230\,mL_{NTP}/min$ flow rate.

lower temperatures. Note that this effect was not observed on the Al_2O_3 support (not shown) in agreement with the earlier work of Tamm [50], which puts particular emphasis on the involvement of Ag species in this H_2 -assisted nitrates decomposition process.

3.2.1.3. NO_x -TPD in H_2O-O_2 -He. Fig. 5 shows that the NO_x -TPD profiles obtained in H₂O-O₂-He differed only to a slight extent with those obtained in O_2 -He. The temperature at maximum NO_x desorption is indeed observed at about 410 °C in both cases. This indicates that the water formed in the course of the NO_x-TPD in H_2-O_2 -He cannot be considered as responsible for the release of the NO_x species observed at temperatures below 300 °C in the presence of H₂ (Fig. 3, black curves). For temperatures higher than 300 °C, Fig. 5 shows that the presence of 0.2% H₂O in the desorbing feed shifted the desorption of NO_x to lower temperatures, this effect being more pronounced for the NO_x species that were released at temperatures higher than 400 °C corresponding to the decomposition of the most strongly bound nitrates. This shows that H₂O helped to partially decompose the most strongly bound nitrates. The amount of NO_x released in the NO_x -TPD in H_2O-O_2 -He was found to be close to that found in the NO_X-TPDs in O₂-He and in H_2-O_2 -He (Table 1).

3.2.1.4. NO_X -TPD in CO_2 - O_2 -He. The influence of CO_2 in the desorbing feed on the NO_X -TPD profiles was also investigated, as NO_X -TPD experiments were also carried out in the presence of C_3H_6 that was mainly oxidized to CO_2 under the selected experimental conditions (Sections 3.2.1.5 and 3.2.1.6). It was found that the addition of 630 ppm of CO_2 to the desorbing feed did not affect the NO_X -TPD profiles (not shown) obtained in O_2 -He (Fig. 3). Likewise,

Fig. 6. Influence of the addition of 390 ppm C_3H_6 on (a) the NO_x and NO (squares) desorption profiles, (b) the H_2O traces, and (c) the carbon balances and N_2 and N_2O traces obtained with a rate of 3 °C/min on about 0.18 g of Ag/Al₂O₃ contacted previously with H_2 –NO–O₂–He (0.2%–385 ppm–8%–balance) from 500 to 100 °C for 30 min every 50 °C. Feed compositions: 0 or 390 ppm C_3H_6 , 8% O₂ and He balance with a 230 mL_{NTP}/min flow rate. For comparison, the traces of: H_2O (\blacksquare) in (b), carbon balance (\bigcirc) in (\bigcirc), C_3H_6 (\blacksquare), CO_2 (\bigcirc) and CO(\blacksquare) in (d) are also added for the C_3H_6 -TPO experiment (3 °C/min) performed in C_3H_6 -O₂–He (390 ppm–8%–balance) on about 0.18 g of Ag/Al₂O₃ pretreated at 500 °C for 2 h in H_2 -O₂–He (0.2%–8%–balance).

the amount of NO_x released in the NO_x -TPD in CO_2 - O_2 -He was the same as that found in the NO_x -TPD in O_2 -He (Table 1). In contrast to H_2O (Fig. 5), CO_2 therefore did not help decompose nitrates.

3.2.1.5. NO_x -TPD in C_3H_6 - O_2 -He. The presence of C_3H_6 in the desorbing feed had a marked influence on the NO_x-TPD profiles. Firstly, NO_x and NO releases (Fig. 6a) occurred at lower temperatures in the NO_x -TPD experiment carried out in C_3H_6 - O_2 -He compared to that carried out in O₂-He, the temperatures of maximum release of NO_x being 350 and 410 °C, respectively. Secondly, the NO_x desorption peak was narrower in the presence of C_3H_6 and the amount of NO_x released was lower (242.1 μ mol NO_x/g, Table 1) than that released in the absence of C_3H_6 (NO_x-TPD in O₂-He, 320.1 μ mol NO_x/g, Table 1). The latter observation indicates that the NO_x species were partially converted to N2 and N2O (Fig. 6c) in the course of the NO_x -TPD in C_3H_6 - O_2 -He. Table 1 shows that the NO_x species were mainly converted to N_2 (38.0 μ mol N_2/g compared to 1.8 μ mol N_2O/g) and that the amount of N species (NO+NO₂+2N₂O+2N₂) released in the NO_x-TPD in $C_3H_6-O_2$ -He (321.7 μ mol N/g, Table 1) was similar to the amount of NO_x released in the NO_x -TPD in O_2 -He (320.1 μmol N/g, Table 1). N₂ started to be produced at 320 °C in the NO_x -TPD in C_3H_6 - O_2 -He (Fig. 6c), in agreement with the temperature of the onset of detection of N₂ in the steady-state C₃H₆-SCR (Fig. 1), and peaked at 380 $^{\circ}$ C. Excess consumption of C₃H₆ (Fig. 6d), and excess productions of H_2O (Fig. 6b) and CO_x (Fig. 6d) were observed in the NO_x -TPD in C_3H_6 - O_2 -He compared with the C_3H_6 -TPO experiment (Fig. 6d) for which C₃H₆ oxidation was studied in the absence of preadsorbed nitrates. Moreover, the carbon balance in the NO_x -TPD in C_3H_6 - O_2 -He experiment (Fig. 6c) was found to be slightly more deficient than that found in C₃H₆-TPO (Fig. 6c) from 290 to 400 °C, thus indicating some additional HC storage on the catalyst in the presence of preadsorbed nitrates. These observations indicate that C₃H₆ and/or its derivatives such as partially oxidized species interacted with the preadsorbed nitrates at temperatures as low as 250 °C (Fig. 6a, black curve) with the resulting formation of organo-NO_x species. This explanation is consistent with the earlier work of Yu et al. [41] in which these authors concluded that organo-NO_x species were formed at temperatures as low as 233 °C with the interaction of NO_x and C_3H_6 on a $Ag(5 wt\%)/Al_2O_3$ catalyst. For temperatures between 250 °C and 320 °C, the latter temperature corresponding to the temperature of the onset of detection of N_2 (Fig. 6c), the formed organo- NO_x species decomposed mainly to NO₂ and traces of NO (Fig. 6a).

3.2.1.6. NO_X -TPD in C_3H_6 - H_2 - O_2 -He. Fig. 7 compares the profiles observed in the NO_x-TPD in C₃H₆-H₂-O₂-He to those observed in the NO_x -TPD in H_2 - O_2 -He (Section 3.2.1.2) and in the C_3H_6 - H_2 - O_2 -TPO experiments. It can be seen that the addition of C₃H₆ to the desorbing feed in the NO_x-TPD performed in the presence of H₂ did not shift the NO_x desorption profile to lower temperatures (Fig. 7a), as was observed in the absence of H_2 (Fig. 6a). The NO_x -TPD profiles were indeed found to be similar up to about 160°C in both the presence and absence of C₃H₆ (Fig. 7a). At higher temperatures, however, the amount of NO_x released in the NO_x-TPD in $C_3H_6-H_2-O_2$ -He (141.3 μ mol NO_x/g , Table 1) was found to be much lower than that found in the NO_x-TPD in H₂-O₂-He (319.3 μ mol NO_x/g, Table 1). This is attributed to the reduction of NO_x to N₂ and N₂O in the presence of C₃H₆ in the desorbing feed (Fig. 7c and Table 1). It is also of interest to note that the temperature at which N₂ started to be detected in the NO_x-TPD in $C_3H_6-H_2-O_2-He$ (~ 150 °C, Fig. 7c) closely matches that at which N_2 was detected in the H_2 – C_3H_6 -SCR reaction (Fig. 1). Regarding H_2 oxidation, Table 1 shows that the light-off temperature of H2 was about 210 °C in the NO_x-TPDs in H₂-O₂-He and in NO oxidation in H_2 -NO-O₂-He, whereas the presence of C_3H_6 in the feed in the C₃H₆-H₂-O₂-TPO experiment delayed the light-off temperature of H₂ to 245 °C (Fig. 7c and Table 1). This suggests that C₃H₆ competes for the sites responsible for H₂ oxidation. As was also observed in the absence of H₂ in the desorbing feed (Fig. 6c and d), the maximum in the consumption of C₃H₆ and in the productions of CO_x (Fig. 7d) was observed concomitantly with the maximum production of N_2 at 260 °C (Fig. 7c) in the NO_x -TPD in C_3H_6 - H_2 - O_2 -He. The C₃H₆ light-off temperature was found to decrease to a significant extent in the presence of H₂ both in the TPO and the SCR experiments (Table 1). Finally, regarding the C balance, it was found that the presence of H2 favored the storage of hydrocarbons at temperatures lower than 250 °C (Fig. 7c) compared to the experiments performed in the absence of H₂ (Fig. 6c). Hydrocarbon storage was also found to be more pronounced in the NO_x-TPD in $C_3H_6-H_2-O_2-He$ than in the $C_3H_6-H_2-TPO$ for temperatures lower than 240 °C (Fig. 7c). Between 250 and 280 °C, the C balance became positive in the NO_x -TPD in C_3H_6 - H_2 - O_2 -He, which was not observed in the C₃H₆-H₂-TPO, and this temperature domain coincided with that for which maximum production of N₂ was observed (Fig. 7c).

Fig. 7. Influence of the addition of 390 ppm C_3H_6 on (a) the NO $_x$ desorption profile, (b) the H_2 (\triangle) and H_2O (\blacktriangle) traces, and (c) the carbon balance (\blacktriangle) and N_2 (\triangle) and N_2O (\longleftarrow) traces obtained with a rate of 3 °C/min on about 0.18 g of Ag/Al $_2O_3$ contacted previously with H_2 –NO– O_2 –He (0.2%–385 ppm–8%–balance) from 500 to 100 °C for 30 min every 50 °C. Feed compositions: 0 or 390 ppm C_3H_6 , 0.2% H_2 , 8% O_2 and He balance with a 230 mL $_{NTP}$ /min flow rate. For comparison, the traces of (i) H_2 (\bigcirc 0) and H_2O (\bigcirc 0) in (b), carbon balance (\bigcirc 1 in (c), C_3H_6 (\bigcirc 1, C_2 0) and C_3H_6 (\bigcirc 2) in (d) are also added for the C_3H_6 -TPO experiment (3 °C/min) performed in C_3H_6 - H_2 - O_2 -He (390 ppm–0.2%–8%–balance) on about 0.18 g of Ag/Al $_2O_3$ pretreated at 500 °C for 2 h in H_2 - O_2 -He (0.2%–8%–balance) and (ii) H_2 (\bigcirc 0) and H_2 O (\bigcirc 0) in the NO $_x$ -TPD in H_2 - O_2 -He (0.2%–8%–balance) extracted from Fig. 3d.

4. Discussion

In agreement with earlier studies in the field of HC-SCR with various hydrocarbons [3,5,13,21-23,25-29,32,34,43], the reduction of NO_x by C₃H₆ in an excess of O₂ was found to be drastically promoted by the addition of 0.2% H_2 to the reacting feed (Fig. 1). The much higher NO oxidation performance of the Ag/Al₂O₃ catalyst in the presence of H₂ (Fig. 2) provides an indirect indication of the occurrence of changes in the distribution of the different types of Ag species in the catalyst. It is indeed generally acknowledged that oxidation reactions, such as NO oxidation, occur preferentially on Ag metal clusters, whereas the reduction of NO_x to N₂ occurs on oxidized Ag species [12,51]. Such changes in the distribution of the Ag species in Ag/Al₂O₃ catalysts have been reported in many different HC-SCR studies [12,13,24,26,27,29,32]. Yet the fact that these changes only account for the promoting effect of H₂ in the HC-SCR reactions is still being debated [13,26,27,32]. The production of NO₂ over these reduced Ag clusters has been ruled out as the origin of

the promoting effect of H_2 , as it has been shown that the H_2 -HC-SCR performance of Ag/Al_2O_3 catalysts was lower when NO_2 was fed as a reactant instead of NO [13,22].

Another interesting influence of H₂ in the desorbing feed concerns the stability of the preadsorbed nitrates. Fig. 3 clearly shows that the preadsorbed nitrates are released at much lower temperatures in the presence of H₂ on the Ag/Al₂O₃ sample. This result is consistent with those reported recently by Tamm [50]. In the present work, it was possible to define precisely the temperature at which the adsorbed nitrates started to be released in the presence of H_2 (120 °C, Fig. 3). According to the NO_x -TPD experiment in which the stability of the preadsorbed nitrates was studied in the presence of H₂O (Fig. 5), the much lower stability of the preadsorbed nitrates in the presence of H₂ (Fig. 3) cannot be attributed to the production of H_2O via H_2 oxidation in the NO_x -TPD in H_2 - O_2 -He. It is also of importance to note that H₂ did not affect the stability of the preadsorbed nitrates on the bare Al₂O₃ support (results not shown), as was also reported by Tamm [50]. The lower stability of the nitrates formed on Ag/Al₂O₃ is thus dependent on the concomitant presence of H₂ and Ag, and can be attributed to a redox process $(2NO_3^- + H_2 = 2NO_2 + 2OH^-)$ involving Ag species. This lower stability was also illustrated in the NO_x-TPD experiment in which the temperature of the Ag/Al₂O₃ sample was raised up to 190 °C under an O₂-He feed before H₂ introduction (Fig. 4). As expected from the results of Fig. 3, no NO_x was released in the absence of H_2 up to $190\,^{\circ}\text{C}$ and the adsorbed nitrates were stable under this particular atmosphere (Fig. 3). As soon as H₂ was introduced at 190 °C, however, part of the nitrates was rapidly decomposed (Fig. 4). Such a fast transient reactivity of nitrates is consistent with the results reported by Tamm [50] using a cycling methodology at 250 °C. These experiments (Figs. 3 and 4) clearly indicate that the nitrates stability strongly decreased in the presence of H2. Such a conclusion is consistent with the FTIR study of Kannisto et al. [31] which showed an increase in the intensity of the absorption bands attributed to surface nitrites and nitrates upon the removal of H₂ from the NO_x feeds at 350 °C on Ag/Al₂O₃. From the present study and that of Tamm [50] however, it cannot be formally concluded whether this particular phenomenon results (i) from the migration of the nitrates adsorbed on Al₂O₃ toward the Ag species and their reduction by the H species (Fig. 8, pathway a) or (ii) from the reduction of the nitrates located on Al₂O₃ from the migration of the H species located on the Ag species (Fig. 8, pathway b). The scheme reported in Fig. 8 is also consistent with one of the potential roles of H₂ reported in earlier literature, which has been proposed to result in a lower coverage of the catalyst surface by the nitrates [5,9,12,23,25,28].

The steady-state HC-SCR, the C_3H_6 -TPO and the NO_x -TPD experiments performed in the present work (Figs. 1, 6 and 7), also confirmed the promoting effect of H_2 on HC activation in agreement with earlier works [13,23-25,27,28,43]. The C₃H₆ light-off temperature was indeed found to decrease to a significant extent with the addition of H_2 in the C_3H_6 -TPO experiments (from 470 to 420 $^{\circ}$ C, Table 1) and the steady-state HC-SCR (from 425 to 270 °C, Table 1). Moreover, it was found that HC storage occurred at much lower temperatures in the presence of H₂ in the C₃H₆-TPO experiment (Fig. 7c, carbon balance in the 150–300 °C range) than in the absence of H₂ (Fig. 6c, carbon balance in the 300-425 °C range). Former FTIR studies also concluded that the storage of HC, in the presence of H_2 , as partially oxidized species $(C_xH_vO_z)$ such as acetates and enolic species was enhanced [9,12,13,43]. In the experiment in which the Ag/Al₂O₃ sample was saturated with nitrates and their desorption-reaction was studied in the presence of both H₂ and C_3H_6 in the desorbing feed (NO_x-TPD in H_2 - C_3H_6 - O_2 -He, Fig. 7), it was found that the presence of preadsorbed nitrates enhanced HC storage at lower temperatures compared to the C₃H₆-H₂-TPO (Fig. 7c, carbon balances in the 120–250 °C range). This indicates

Fig. 8. Schematic representation of the H2-assisted decomposition of nitrates of Ag/Al2O3. AgxOy represents Ag species of undefined composition.

that C_3H_6 not only was activated as $C_xH_vO_z$ species but also reacted with the stored nitrates to form organo- NO_x (R- NO_x) species at temperatures as low as 120 °C. Such R-NO_x species were found to decompose at temperatures higher than 250 °C in the absence of H₂ in the desorbing feed (NO_x -TPD in C_3H_6 - O_2 -He, Fig. 6) and to be responsible for the observed release of NO_2 at temperatures lower than those found in the NO_x -TPD in O_2 -He (Fig. 6a). In the presence of H₂ in the desorbing feed, N₂ was formed at temperatures as low as 150 °C (Fig. 7a), in good agreement with the onset of detection of N_2 in the steady-state H_2 – C_3H_6 -SCR experiment (Fig. 1). This indicates that the further transformation of the R-NO_x species eventually leads to the formation of N₂ under these conditions. The optimum conditions of the decomposition-reaction of the R-NO_x species were found to occur at a temperature of 260 °C, the temperature at which N₂ production (Fig. 7c) peaked and an excess carbon balance (Fig. 7c) was observed in the NO_x -TPD experiment in H_2 – C_3H_6 – O_2 –He. It is remarkable that this temperature matches rather well with that at which maximum production of N₂ (275 °C) was observed in the steady-state $H_2-C_3H_6$ -SCR experiment (Fig. 1). It can therefore be identified from the present study that another potential role of H₂ is to promote the formation-decompositionreaction of organo-NO_x species at lower temperatures, as this step has been suggested to be rate determining in the HC-SCR process [7,34]. This potential role of H_2 would be perfectly in line with the "chemical effect" of H₂ suggested originally by Burch and coworkers [3,5,25,26].

5. Conclusion

The desorption-reactivity of nitrates preadsorbed on a Ag $(1.6 \text{ wt\%})/Al_2O_3$ catalyst is reported for the first time under desorbing feeds of increasing complexity. The results of these transient experiments together with those of steady-state experiments under selected gas compositions confirm some of the numerous roles of H_2 suggested previously such as (i) changes in the distribution of the Ag species, (ii) promoted HC activation and (iii) lower nitrate coverage because of their lower stability in the presence of H_2 . In particular, it was found that nitrates decompose at temperatures as low as $120\,^{\circ}\text{C}$ in the presence of H_2 in the desorbing feed, instead of around $300\,^{\circ}\text{C}$ in the absence of H_2 . The transient experiments in which the reactivity of the nitrates was studied

under desorbing feeds containing propene (C_3H_6) as a reductant, allowed for the monitoring of the formation–decomposition of organo- NO_x species (R- NO_x). From these experiments, it can therefore be identified that another potential role of H_2 is to promote the formation–decomposition-reaction of organo- NO_x species at lower temperatures coinciding with the temperature of the onset of detection of N_2 under both transient and steady-state conditions, in line with the "chemical effect" of H_2 suggested earlier [3,5,25,26].

Acknowledgments

CT acknowledges UPMC and CNRS for supporting this work and Drs. L. Delannoy, C. Louis and R.P. Doherty for critical reading of the manuscript and fruitful discussions.

References

- [1] http://ec.europa.eu/environment/air/transport/road.htm
- [2] B. Epling, C. Peden, I. Nova, Catal. Today 231 (2014) 1.
- [3] K. Ralphs, C. D'Agostino, R. Burch, S. Chansai, L.F. Gladden, C. Hardacre, S.L. James, J. Mitchell, S.F.R. Taylor, Catal. Sci. Technol. 4 (2014) 531.
- [4] T. Miyadera, Appl. Catal. B: Environ. 2 (1993) 199.
- [5] R. Burch, Catal. Rev. Sci. Eng. 46 (2004) 271.
- [6] K.A. Bethke, H.H. Kung, J. Catal. 172 (1997) 93.
- [7] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B: Environ. 39 (2002) 283.
- [8] L.-E. Lindfors, K. Eränen, F. Klingstedt, D. Yu Murzin, Top. Catal. 28 (2004) 185.
- [9] K.-I. Shimizu, A. Satsuma, Phys. Chem. Chem. Phys. 8 (2006) 2677.
- [10] X. She, M. Flytzani-Stephanopoulos, J. Catal. 237 (2006) 79.
- [11] K.-I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B: Environ. 25 (2000) 239.
- [12] K.-I. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal. B: Environ. 30 (2001) 151.
- [13] P.S. Kim, M.K. Kim, B.K. Cho, I.-S. Nam, S.H. Oh, J. Catal. 301 (2013) 65.
- [14] T. Chaieb, L. Delannoy, C. Louis, C. Thomas, Appl. Catal. B: Environ. 142–143 (2013) 780.
- [15] S. Kameoka, T. Chafik, Y. Ukisu, T. Miyadera, Catal. Lett. 51 (1998) 11.
- [16] K.-I. Shimizu, J. Shibata, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 3 (2001) 880.
- [17] U. Kamolphop, S.F.R. Taylor, J.P. Breen, R. Burch, J.J. Delgado, S. Chansai, C. Hardacre, S. Hengrasmee, S.L. James, ACS Catal. 1 (2011) 1257.
- [18] S. Rousseau, G. Blanchard, C. Petitto, G. Delahay, PCT Int. Appl. (2012), WO 2012072908 A2 20120607.
- [19] C. Petitto, G. Delahay, Catal. Lett. 142 (2012) 433.
- [20] S. Satokawa, Chem. Lett. 29 (2000) 294.
- [21] S. Satokawa, J. Shibata, K.-I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B: Environ. 42 (2003) 179.
- [22] M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.-M. Polh, R. Fricke, Appl. Catal. B: Environ. 51 (2004) 261.
- [23] K.-I. Shimizu, J. Shibata, A. Satsuma, J. Catal. 239 (2006) 402.

- [24] K.-I. Shimizu, M. Tsuzuki, K. Kato, S. Yokota, K. Okumara, A. Satsuma, J. Phys. Chem. C 111 (2007) 950.
- [25] R. Burch, J.P. Breen, C.J. Hill, B. Krutzch, B. Konrad, E. Jobson, L. Cider, K. Eränen, F. Klingstedt, L.-E. Lindfors, Top. Catal. 30/31 (2004) 19.
- [26] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, J. Phys. Chem. B 109 (2005) 4805.
- [27] P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve, B. Wichterlová, J. Catal. 232 (2005) 302.
- [28] K. Arve, H. Backman, F. Klingstedt, K. Eränen, D.Yu. Murzin, Appl. Catal. A: Gen. 303 (2006) 96.
- [29] N.A. Sadokhina, A.F. Prokhorova, R.I. Kvon, I.S. Mashkovskii, G.O. Bragina, G.N. Baeva, V.I. Bukhtyarov, A. Yu Stakheev, Kinet. Catal. 53 (2012) 107.
- [30] P. Sazama, B. Wichterlova, Chem. Commun. (2005) 4810.
- [31] H. Kannisto, H.H. Ingelsten, M. Skoglundh, Top. Catal. 52 (2009) 1817.
- [32] S.T. Korhonen, A.M. Beale, M.A. Newton, B.M. Weckhuysen, J. Phys. Chem. C 115 (2011) 885.
- [33] S. Chansai, R. Burch, C. Hardacre, J. Breen, F. Meunier, J. Catal. 281 (2011) 98.
- [34] T. Chaieb, L. Delannoy, G. Costentin, C. Louis, S. Casale, R.L. Chantry, Z.Y. Li, C. Thomas, Appl. Catal. B: Environ. 156–157 (2014) 192.
- [35] N. El Kolli, C. Potvin, C. Thomas, J. Catal. 259 (2008) 240.
- [36] K. Malinger, J. Blanchard, R.P. Doherty, C. Thomas, Catal. Commun. 46 (2014) 81.
- [37] R. Burch, E. Halpin, J.A. Sullivan, Appl. Catal. B: Environ. 17 (1998) 115.

- [38] O. Gorce, F. Baudin, C. Thomas, P. Da Costa, G. Djéga-Mariadassou, Appl. Catal. B: Environ. 54 (2004) 69.
- [39] C. Thomas, O. Gorce, C. Fontaine, J.-M. Krafft, F. Villain, G. Djéga-Mariadassou, Appl. Catal. B: Environ. 63 (2006) 201.
- [40] C. Thomas, O. Gorce, F. Villain, G. Djéga-Mariadassou, J. Mol. Catal. A: Chem. 249 (2006) 71.
- [41] Y. Yu, X. Zhang, H. He, Appl. Catal. B: Environ. 75 (2007) 298.
- [42] Y. Guo, M. Sakurai, H. Kameyama, Appl. Catal. B: Environ. 79 (2008) 382.
- [43] X. Zhang, Y. Yu, H. He, Appl. Catal. B: Environ. 76 (2007) 241.
- [44] H.-Y. Law, J. Blanchard, X. Carrier, C. Thomas, J. Phys. Chem. C 114 (2010) 9731.
- [45] C. Thomas, J. Phys. Chem. C 115 (2011) 2253.
- [46] J. Blanchard, R.P. Doherty, H.-Y. Law, C. Méthivier, C. Thomas, Top. Catal. 56 (2013) 134.
- [47] T. Venkov, K. Hadjiivano, D. Klissurski, Phys. Chem. Chem. Phys. 4 (2002) 2443.
- [48] C. Pazé, G. Gubitosa, S. Orso Giacone, G. Spoto, F.X. Llabrés i Xamana, A. Zecchina, Top. Catal. 30/31 (2004) 169.
- [49] J. Szani, J.H. Kwak, R.J. Chimentao, C.H.F. Peden, J. Phys. Chem. C 111 (2007) 2661.
- [50] S. Tamm, Catal. Lett. 143 (2013) 957.
- [51] N. Bogdanchikova, F.C. Meunier, M. Avalos-Borja, J.P. Breen, A. Pestryakov, Appl. Catal. B: Environ. 36 (2002) 287.