[1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import joblib import requests import time import json import time from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.sym import SVC from sklearn.sym import SVC from sklearn.model selection import roc_curve, roc_auc_score from sklearn.model selection import RandomizedSearchCV, RepeatedStratifiedKFold</pre>
[2]:	<pre>from sklearn.model_selection import RandomizedSearchCV, RepeatedStratifiedKFold from imblearn.over_sampling import SMOTE from xgboost import XGBClassifier import os Data Loading #Load Maintenance Dataset into df df = pd.read_csv("Data/predictive_maintenance.csv") Data Preprocessing Before building any models for predictions, the data needs to be cleaned and prepared for prediction.</pre>
[3]:	First thing is to normalize all features (metrics). This means to scale them down between 0 and 1, for this step I use Sklearn MinMaxScale #Iterate over all columns in dataframe for column in df: #Check if column contains "metric" inside of it if "metric" in column: #Start MinMaxScaler scaler = MinMaxScaler() #Fit Scaler on column scaler.fit(df[column].values.reshape(-1,1)) #Replace column data with transformed data df[column] = scaler.transform(df[column].values.reshape(-1,1))
[4]: 63]:	#Filter features to those with 'metric' in the column name features = df[[i for i in df.columns if "metric" in i]] #Exctract failure column as target target = df["failure"] features.head(10) metric1 metric2 metric3 metric4 metric5 metric6 metric8 metric9 0 0.198522 0.997045
[6]:	2 0.558815 0.997168
	<pre>#Set figure Size ax.set_xticks(np.arange(features.shape[1])) ax.set_yticks(np.arange(features.shape[1])) #label With Features ax.set_xticklabels(features.columns) ax.set_yticklabels(features.columns) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right",</pre>
	Feature Correlations metric1 1.0 -0.0 0.0 0.0 -0.0 -0.0 0.0 0.0 0.0 metric2 -0.0 1.0 -0.0 0.15 -0.01 -0.03 0.14 0.14 -0.0 metric3 -0.0 -0.0 1.0 0.1 -0.01 0.01 -0.0 -0.0 0.53
	metric5 - 4.0 4.01 4.01 4.01 10 4.02 4.01 4.01 0.01 metric6 - 4.0 4.03 0.01 0.02 4.02 10 4.01 4.01 0.02 metric7 - 4.00 0.14 4.00 0.05 4.01 4.01 10 10 0.01 metric8 - 4.00 0.14 4.00 0.05 4.01 4.01 1.0 10 0.01 metric9 - 4.00 4.00 0.05 4.01 0.02 0.01 0.01 1.0
[7]: [8]:	What we see is that metric7 and metric8 have perfect correlation, meaning they provide essentially the same information when it comes prediction, therefore one will be removed from the feature set. We also see that metric3 and metric9 have 0.5 correlation, which is substantially higher than the rest. The remaining features are all uncorrelated with each other, which is good as they could be useful features to predict with. #Drop metric7 due to perfect correlation with metric8 features = features.drop("metric7", axis = 1) Next I will split the data using sklearn's train_test_split which will provide us with a test and a train dataset for both the targets and features. #Split data x_train, x_test, y_train, y_test = train_test_split(features, target, random_state=42) Dealing with imbalanced data
	y_train.value_counts() 0 93281 1 89 Name: failure, dtype: int64 From what we see, the dataset has severely imbalanced data among the failure and non-failure classes, with a 1:1000 ratio between the classes respectively. Due to this, I combine oversampling and undersampling to balance the data. This is done by randomly duplicating failure data points and removing non-failure datapoints. To do this, I set a datapoint expected size of that of the optimum sample size, after testing for the optimum size of each class type below and I will undersample the negative data and oversample the positive data until I arrive at that optimum sample size. First I need to figure out what the optimal number of datapoints is: #Set number of expected datapoints is: #SPECTED_DATAPOINT_LIST = [100000, 75000, 50000, 25000, 20000, 15000, 12500, 10000, 8500, 7500, 5000, 2500 acc_values = [] for expected datapoints in EXPECTED_DATAPOINT_LIST: #Spolit data x_train, x_test, y_train, y_test = train_test_split(features, target) #Start = time.time() #Undersample Non-Failure Data non_failure_indicies = np.where(y_train == 0)[0] #Sample non failure indicies non_failure indicies = np.where(y_train == 1)[0] #Filter data to limited non failure and all failure data x_train = x_train.iloc(np.append(non_failure_indicies, failure_indicies)) y_train = y_train.iloc(np.append(non_failure_indicies, failure_indicies)) #Oversample = SMOTE() x_train, y_train = oversample.fit_resample(x_train, y_train)
11]:	model = RandomForestClassifier().fit(x_train, y_train) probabilites = model.predict_proba(x_test)[:, 1] auc_values.append(round(roc_auc_score(y_test, probabilites), 2)) fig = plt.figure(figsize=(10,5)) plt.plot(EXPECTED_DATAPOINT_LIST, auc_values) plt.title('AUC of Random Forest accross different training dataset sizes') plt.xlabel('Datapoints') plt.ylabel('AUC') Text(0, 0.5, 'AUC') AUC of Random Forest accross different training dataset sizes 0.92 0.88 0.86 0.86 0.86 0.86
12]: 12]:	0.82 0.80 0.78 0 20000 40000 60000 80000 100000 pd.Series(auc_values, index = EXPECTED_DATAPOINT_LIST) 100000 0.88 75000 0.85 50000 0.78 25000 0.85 25000 0.86
13]:	15000
14]: 15]:	<pre>#Set number of expected datapoints EXPECTED_DATAFOINTS = 1000 #Undersample Non-Failure Data non_failure_indicies = np.where(y_train == 0)[0] #Sample non failure indicies non_failure_indicies = np.random.choice(non_failure_indicies, EXPECTED_DATAPOINTS) #Collect all failure data failure_indicies = np.where(y_train == 1)[0] #Filter data to limited non failure and all failure data x_train = x_train.iloc(np.append(non_failure_indicies, failure_indicies)] y_train = y_train.iloc(np.append(non_failure_indicies, failure_indicies)] #Oversample Failure Data using SMOTE oversample = SMOTE() x_train, y_train = oversample.fit_resample(x_train, y_train)</pre>
	 1000 1000 Name: failure, dtype: int64 Now that the dataset is balanced, we move next to model selection. Model Selection I will consider using the following classifiers for the classification task: Logistic Regression Random Forest Decision Tree XGBoost Weighted Decision Tree
	 Weighted Random Forest Linear SVM In order to evaluate the different classifiers, we need to choose a scoring metric from below: Accuracy This metric tells us how many of the correct classes our model predicts. The problem with this metric is that it is not representative of hogod our model is doing in this situation, due to the imbalanced nature of the data. For example, if the model predicts only 0's, it will are at a very high accuracy. In this case, we look towards relevance, a metric like precision and recall. Precision Precision is a metric with a formula of True Positive / (True Positive + False Positive). This is a score of when our model does predict a cla how accurate that prediction is. Meaning if we have numerous positive predictions, but a low precision score, it is predicting many negatives as positives, whereas if the precision is high and number of positive predictions is low, it accurately predicts what labels are
	Recall Recall is a metric with a formula of True Positive / (True Positive + False Negative). This means that a model with a high recall value is ver accurate when it predicts a positive (failure), and does not often incorrectly predict a positive to be a negative. F1-Score This is a harmonic balance between Precision and Recall, and is given by the following formula: F1-Score = 2 X (Precision x Recall)/(Precision + Recall) Area Under Curve AUC is a metric that combines both precision and recall. Since our business case asks for minimizing both false negatives as well as false positives, I will be testing both F1-score and AUC to use either one of them as the model evaluation metric. models = {"Logistic Regression": LogisticRegression, "Random Forest": RandomForestClassifier, "Weighted Random Forest": RandomForestClassifier, "Decsion Tree": DecisionTreeClassifier, "Weighted Decision Tree": DecisionTreeClassifier,
17]: 18]:	<pre>"Weighted Decision Tree": DecisionTreeClassifier, "Linear SVM":SVC, "XGBoost": XGBClassifier} colors = ["orange", "green", "brown", "purple", "pink", "red", "cyan"] metrics = {} #Prepare Figure fig = plt.figure(figsize=(15,10)) #Plot Base 0,1 line plt.plot([0,1], [0,1], linestyle='', color='blue', linewidth=3) for index, (model_name, model) in enumerate(models.items()):</pre>
	<pre>if model_name == "Linear SVM": loaded = model(probability=True).fit(x_train, y_train) elif model_name == "XGBoost": loaded = model(use_label_encoder=False).fit(x_train, y_train) #Check for weighted models elif model_name == "Weighted Decision Tree" or model_name == "Weighted Random Forest": #Split data x_tree_train, x_tree_test, y_tree_train, y_tree_test = train_test_split(features, target, random_s weights = {0: y_tree_train.value_counts()[0] / x_tree_train.shape[0], 1: y_tree_train.value_counts loaded = model(class_weight=weights).fit(x_tree_train, y_tree_train) else: loaded = model().fit(x_train, y_train) #Calculate Probabilities for failures probabilites = loaded.predict_proba(x_test)[:, 1]</pre>
18]:	<pre>roc_data = roc_curve(y_test, probabilites) #Calculate AUC auc = round(roc_auc_score(y_test, probabilites), 2) plt.plot(roc_data[0], roc_data[1], label=f"{model_name}, AUC: {auc}", linestyle='', color=colors[ir # x label plt.xlabel('False Positive Rate') # y label plt.ylabel('True Positive rate') plt.legend(loc='best') [15:55:19] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.4.0/src/learner.cc:1095: Start in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from or' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. <matplotlib.legend.legend 0x2060c96b9d0="" at=""></matplotlib.legend.legend></pre>
	10
	O.2 - 1. Logistic Regression, AUC: 0.77 — Random Forest, AUC: 0.83 — Weighted Random Forest, AUC: 0.84 1. Weighted Decision Tree, AUC: 0.74 — Weighted Decision Tree, AUC: 0.74 — Wighted Decision Tree, AUC: 0.74 — XGBoost, AUC: 0.74
	From what we can see, Random Forests performance is mostly the best, although sometimes ties with XGBoost. Therefore it is used as the model for prediction, an added benefit of using Random Forest is that we get a better understanding of the features used and their importance. Grid Search to find best hyperparameters To determine the best combination of hyper-parameters, we use the test configurations of the following forest parameters: • bootstrap • max_depth • max_features
19]:	 min_samples_leaf min_samples_split n_estimators The scoring for this gridsearch is set to the roc_auc. <pre>#Create random grid for CV to follow random_grid = {'bootstrap': [True, False],</pre>
20]:	<pre>param_distributions={'bootstrap': [True, False],</pre>
21]:	<pre>'n_estimators': [200, 800, 1200, 1400,</pre>
22]: 22]:	<pre>#Build forest with best parameters from grid search forest = RandomForestClassifier(bootstrap= False,</pre>
24]:	<pre>importances = forest.feature_importances_ #Store in pandas series importances = pd.Series(importances, index=features.columns) #Sort importances importances = importances.sort_values(ascending=False) fig = plt.figure(figsize=(10,5)) plt.bar(importances.index, importances) # x label plt.xlabel('Feature Importance') # y label plt.ylabel('Metrics')</pre>
	Text(0, 0.5, 'Metrics') 0.30 0.25 0.20 0.15 0.10 0.05 0.00 metric4 metric2 metric8 metric1 metric6 metric5 metric9 metric3
	Ensemble The next step is to build an ensemble of the Random Forests. This is due to the undersampling we have done before. In order for our models to use more non failure data, and to avoid overfitting with failure data via oversampling, I keep the same amount of datapoints I build an ensemble of 10 random forests, each with the optimal parameters found before. Once these trees are built, we use a hard-voting system to determine the class, meaning we run the same prediction across all of the models, and take the majority vote as to what the predicted class is. #function to train and return a trained model def train_model(x_train, y_train): forest = RandomForestClassifier(bootstrap= False,
26]:	#Train model on data forest.fit(x_train, y_train) return forest #function to create an ensemble def build_ensemble(x_train, y_train): #Create list to store models ENSEMBLE_MODELS = 10 ensemble = [] #Iterate over number of models in ensemble for _ in range(ENSEMBLE_MODELS): #Use same code for preparing data#Set number of expected datapoints
	<pre>#Undersample Non-Failure Data non_failure_indicies = np.where(y_train == 0)[0] #Sample non failure indicies non_failure_indicies = np.random.choice(non_failure_indicies, EXPECTED_DATAPOINTS) #Collect all failure data failure_indicies = np.where(y_train == 1)[0] #Filter data to limited non failure and all failure data x_train_ensemble = x_train.iloc[np.append(non_failure_indicies, failure_indicies)] y_train_ensemble = y_train.iloc[np.append(non_failure_indicies, failure_indicies)] #Oversample Failure Data using SMOTE oversample = SMOTE() x_train_ensemble, y_train_ensemble = oversample.fit_resample(x_train_ensemble, y_train_ensemble) #train model using previous data forest = train_model(x_train_ensemble, y_train_ensemble) #Store model in ensemble ensemble.append(forest) return ensemble</pre>
27]: 28]:	
29]: 29]: 30]:	
31]:	Predicted value and failure probability: print("Predicted Class: "+ str(prediction)) print("Probability of failure: " + str(Prediction_probability)) Predicted Class: 0 Probability of failure: 0.3 Ensemble Metrics Below we see the results of the ensemble Validation For validation, we use RepeatedStratifiedKFold validation using AUC as our metric
33]:	<pre>ENSEMBLE_MODELS = 10 #Split data x_train, x_test, y_train, y_test = train_test_split(features, target, random_state=42) validation_scores = [] validation_roc_curves = [] #Prepare Repeated StratifiedKFold with 10 splits each with 10 repeats rskf = RepeatedStratifiedKFold(n_splits=10,n_repeats=10,) #Prepare False Postitive Rate as a linespace between 0 and 1 val_false_positive_rates = np.linspace(0, 1, 100) for train_index, validation_index in rskf.split(x_train, y_train):</pre>
	<pre>#Predict validation values ensemble_probabilites = [] for model_index, model in enumerate(ensemble): #Get Prediction probabilites = model.predict_proba(x_val_fold)[:, 1] ensemble_probabilites.append(probabilites) #Conver probabilities to array ensemble_probabilites = np.array(ensemble_probabilites) #Calculate AUC score for validation spplit val_roc_score = roc_auc_score(y_val_fold, ensemble_probabilites.mean(axis=0)) #Get ROC curve for validation split</pre>
34]:	<pre>roc_data = roc_curve(y_val_fold, ensemble_probabilites.mean(axis=0)) #Save into respective lists validation_roc_curves.append(np.interp(val_false_positive_rates, roc_data[0], roc_data[1])) validation_scores.append(val_roc_score) #Convert to true positive rates val_true_positive_rates = np.array(validation_roc_curves).mean(axis=0)</pre> Test #Split data x_train, x_test, y_train, y_test = train_test_split(features, target, random_state=42) #Build Ensemble
35]: 36]:	<pre>ensemble = build_ensemble(x_train, y_train) #Predict Test values ensemble_predictions = [] for model_index, model in enumerate(ensemble): #Get Prediction predictions = model.predict_proba(x_test)[:, 1] ensemble_predictions.append(predictions) ensemble_predictions = np.array(ensemble_predictions) test_roc_score = roc_auc_score(y_test, ensemble_predictions.mean(axis=0))</pre>
37]:	fig = plt.figure(figsize=(15,10)) plt.plot(val false positive rates, val_true_positive_rates, label=f"Mean Validation AUC: {np.mean(validation std std = np.std(np.array(validation_roc_curves), axis=0) tprs_upper = np.minimum(val_true_positive_rates + std, 1) tprs_lower = np.maximum(val_true_positive_rates - std, 0) plt.fill_between(val_false_positive_rates, tprs_lower, tprs_upper, color='grey', alpha=.2,
	0.6 - 0.6 - 0.4 - 0.2 - 0.4 - 0.2 - 0.4 - 0.2 - 0.4 - 0.2 - 0.5 -
38]:	fig = plt.figure(figsize=(5,5)) plt.bar(["Validation AUC", "Test AUC"], [np.mean(validation_scores), test_roc_score]) plt.title('Ensemble Metrics') # x label plt.xlabel('Data Split')
	# x label
38]:	plt.ylabel('AUC') plt.ylim(0,1) (0.0, 1.0) Ensemble Metrics 0.6 0.6 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9
	(0.0, 1.0) Ensemble Metrics 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9

	Our Project structure will look like this: -> project dir/ ->analytics.py ->utils.py ->server.py ->uwsgi.ini -> Saved Models/ -> forest_model_1.sav
	-> forest_model_2.sav -> forest_model_3.sav -> forest_model_4.sav -> forest_model_5.sav -> forest_model_6.sav -> forest_model_7.sav -> forest_model_7.sav -> forest_model_9.sav
In [40]:	<pre>utils.py utils.py utils.py holds functionality that is not analysis or server related, therefore it has miscellaneous data/model loading functions: #Loading Models def load_ensemble (model_dir): ensemble = [] for model_file in os.listdir(model_dir): model = joblib.load(f"{model_dir}{model_file}") ensemble.append(model)</pre>
In [41]:	return ensemble load_models takes the ensemble saved files as input and loads the models, storing them into a list
In [42]:	<pre>#Loading Data def load_data(data_dir): data_extension = data_dir.split(".")[-1] #Check extension type if data_extension == "csv": df = pd.read_csv(data_dir) elif data_extension == "tsv": df = pd.read_csv(data_dir, sep="\t") else: df = pd.read_excel(data_dir)</pre>
In [43]:	<pre>return df load_data loads the excel/csv/tsv file and returns a pandas dataframe #Normalizing data def normalize_data(df): for column in df: # Start MinMaxScaler scaler = MinMaxScaler()</pre>
In [44]:	<pre># Fit Scaler on column scaler.fit(df[column].values.reshape(-1, 1)) # Replace column data with transformed data df[column] = scaler.transform(df[column].values.reshape(-1, 1)) return df normalize_data applies a min max scaler to each of the feature columns in the provided dataframe #Preprocessing data</pre>
	<pre>def preprocess_data(df, target_col, feature_col_filter): #Get Target column target = df[target_col] #Get feature columns features = df[[i for i in df.columns if feature_col_filter in i]] #Normalize Features features = normalize_data(features) #Imbalanced data # Undersample Non-Failure Data</pre>
	<pre>non_failure_indicies = np.where(target == 0)[0] # Sample non failure indicies non_failure_indicies = np.random.choice(non_failure_indicies, EXPECTED_DATAPOINTS) # Collect all failure data failure_indicies = np.where(target == 1)[0] # Filter data to limited non failure and all failure data features = features.iloc[np.append(non_failure_indicies, failure_indicies)] target = target.iloc[np.append(non_failure_indicies, failure_indicies)]</pre>
	<pre># Oversample Failure Data using SMOTE oversample = SMOTE() features, target = oversample.fit_resample(features, target) return features, target preproccess_data applies all balancing techniques used before. analytics.py analytics.py holds all analysis related functionality, this encompasses model predicting, data exploration and basic analysis.</pre>
In [45]:	<pre>def ensebmle_predict(ensemble, features): predictions = [] # Go over all models in our ensemble for model in ensemble: # Get Prediction prediction = model.predict([features])[0]</pre> # Store prediction
In [46]:	<pre>predictions.append(prediction) # Get Max Prediction prediction = np.argmax(np.bincount(predictions)) return prediction ensemble_predict takes in the stored models in the ensemble and makes a prediction. #Function to train new model on provided data def train_model(features, target): forest = RandomForestClassifier(bootstrap=False,</pre>
	<pre>max_depth=20,</pre>
In [47]:	<pre>#Loads data, def train_ensemble(data_file, model_dir, number_of_models=10): #Iterating over number of models in ensemble for index in range(number_of_models): #laod data into df df = load_data(data_file) #prerpocess data features, target = preproccess_data(df, TARGET_COLUMN, FEATURE_FILTER)</pre>
	<pre>model = train_model(features, target) save_model(model, model_dir, f"forest_model_{index+1}.sav") train_ensemble is the root function that builds and trains all models in the ensemble, it calls the following functions • load_data() • preprocess_data() • train_model() • save_model()</pre>
In [76]:	<pre>• save_model() server.py Imports and app startup: from flask import Flask, request, jsonify from utils import load_ensemble from analytics import ensebmle_predict, TARGET_COLUMN, FEATURE_FILTER import json app = Flask(name)</pre>
In [88]:	In order to call our service, we need to use the python requests library, and embed our features in a dictionary, then jsonify that dictionary for the request to understand it. Now that our server is prepared, and we can pass data through it. We use the ensemble_predict function from analytics.py and return the
	output as a json response. To ensure our server can run at any time, we create a wsgi configuration. This is done in a file called uswgi.ini. this routes our application configuration in the correct way. The following is the configuration that is set up: Docker Building For best practice, our service is then dockerized, this means that the tool is put into a package that contains all project files and dependencies so it can be easily run anywhere. It builds the project with all dependencies and requirements, making it run the same on any device or system. It builds this tool in a virtual environment.
	In order to do this, two files are created, first our requirements.txt . This tells the environment exactly what library dependencies are being used: • numpy == 1.19.5 • flask == 1.1.2 • joblib == 1.0.0 • scikit-learn == 0.24.1 • pandas == 1.2.0 • imbalanced-learn == 0.8.0
	in requirements.txt The second is the Dockerfile , this outlines the steps docker should follow when building our project. FROM python:3.8 lets docker know which version of python it should install in this environment COPY ./requirements.txt . creates a copy of our requirements.txt in the docker environment, allowing it to read the file
	RUN pip installupgrade pip RUN pip install -r requirements.txt These two lines install pip (Pip Installs Packages) and all the requirements listed in requirements.txt in the virtual environment EXPOSE 80 COPY CMP python3 server.py Finally we copy all files found in the directory to be able read from, and we run the command line command "python3 server.py" which will host our tool.
	host our tool. In order to run the docker container, we need to first build then run it. To build it, we follow the following command format: docker build -t [project name] [directory] which when translated becomes: docker build -t application_name. Then to run the application, run the following command:
	docker run -p 5000:5000 application_name (expose app to 5000, the flask run port) Server Connection The server is set up on an AWS EC2 t2.micro instance. The public ip address for the instance is 18.221.149.92. So in order to connect to it we use the same request setup used for local.
<pre>In [79]: Out[79]: In [80]: Out[80]:</pre>	<pre>response <response [200]=""> json.loads(response.content) {'prediction': '0'}</response></pre>
In [64]:	<pre>Below is a demonstration of the tool: # This is a tool to test prediction import pandas as pd import requests import json from sklearn.preprocessing import MinMaxScaler #Load Dataframe df = pd.read_csv("Data/predictive_maintenance.csv")</pre>
	<pre>df = pd.read_csv("Data/predictive_maintenance.csv") # Iterate over all columns in dataframe for column in df: # Check if column contains "metric" inside of it if "metric" in column: # Start MinMaxScaler scaler = MinMaxScaler() # Fit Scaler on column scaler.fit(df[column].values.reshape(-1, 1)) # Replace column data with transformed data</pre>
	<pre>df[column] = scaler.transform(df[column].values.reshape(-1, 1)) #Filter features to those with metric in the name of column features = df[[i for i in df.columns if "metric" in i]] #Exctract failure column as target target = df["failure"] #Drop metric7 due to perfect correlation with metric8 features = features.drop("metric7", axis = 1) data_sample = features.iloc[0]</pre>
	<pre>data_sample = reatures.floc[0] data_sample = {"features":list(data_sample)} #Code used to call api response = requests.post("http://18.221.149.92:5000/", data=json.dumps(data_sample)) print(f"Tool prediction is: {json.loads(response.content)['prediction']}, actual value is {target.iloc[0]}") Tool prediction is: 1, actual value is 1</pre>