

Prof. Luis Diego Aguilar S.

Noveno Año

2016

Colegio Salesiano Don Bosco

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

$$x^2 - 2x + 1 = 0$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

$$x^2 - 2x + 1 = 0$$

$$27x^2 - 5x + 8 = 0$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

$$x^2 - 2x + 1 = 0$$

$$27x^2 - 5x + 8 = 0$$

$$315x^2 + 3x = 0$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

$$x^2 - 2x + 1 = 0$$

$$27x^2 - 5x + 8 = 0$$

$$15x^2 + 3x = 0$$

$$4x^2-20=0$$

Definición (I)

Una ecuación cuadrática o de segundo grado con coeficientes reales es una ecuación que, simplificada al máximo, se obtiene la forma canónica $ax^2+bx+c=0$ con $a\neq 0$, y $a,b,c\in {\rm I\!R}$. Además se define el número real Δ , llamado discriminante, tal que

$$\Delta = b^2 - 4ac$$

$$x^2 - 2x + 1 = 0$$

$$27x^2 - 5x + 8 = 0$$

$$3 15x^2 + 3x = 0$$

$$4x^2 - 20 = 0$$

$$x^2 + 16 = 0$$

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2 + c = 0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2 + bx = 0$ que carecen del término independiente c.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

$$\mathbf{1} \mathbf{x}^2 - 2x + 1 = 0$$
 Ecuación completa, trinomio mónico.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

- $\mathbf{1} x^2 2x + 1 = 0$ Ecuación completa, trinomio mónico.
- $27x^2 5x + 8 = 0$ Ecuación completa, trinomio no mónico.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

$$x^2 - 2x + 1 = 0$$
 Ecuación completa, trinomio mónico.

$$27x^2 - 5x + 8 = 0$$
 Ecuación completa, trinomio no mónico.

$$3 15x^2 + 3x = 0$$
 Ecuación incompleta tipo $c = 0$.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

En las ecuaciones del ejemplo anterior, se tiene:

$$x^2 - 2x + 1 = 0$$

Ecuación completa, trinomio mónico.

$$2 7x^2 - 5x + 8 = 0$$

Ecuación completa, trinomio no mónico.

$$15x^2 + 3x = 0$$

Ecuación incompleta tipo c=0.

$$4 x^2 - 20 = 0$$

Ecuación incompleta tipo b=0.

Definición (II)

Ecuaciones Cuadráticas Incompletas son ecuaciones de la forma $ax^2+c=0$ que carecen del término lineal, de coeficiente b, o de la forma $ax^2+bx=0$ que carecen del término independiente c.

En las ecuaciones del ejemplo anterior, se tiene:

$$x^2 - 2x + 1 = 0$$

Ecuación completa, trinomio mónico.

$$2 7x^2 - 5x + 8 = 0$$

Ecuación completa, trinomio no mónico.

$$15x^2 + 3x = 0$$

Ecuación incompleta tipo
$$c=0$$
.

$$4x^2 - 20 = 0$$

Ecuación incompleta tipo
$$b=0$$
.

$$x^2 + 16 = 0$$

Ecuación incompleta* tipo b = 0.

Raíz o solución de una ecuación cuadrática.

Definición (III)

Raíz o solución de una ecuación cuadrática. Un número real r es una raíz o una solución de la ecuación cuadrática $ax^2+bx+c=0$, sí y solo sí, al sustituir x por r, se cumple la igualdad. Es decir: $a\cdot r^2+b\cdot r+c=0$

Ecuaciones Cuadráticas Conjunto Solución.

Definición (IV)

El Conjunto Solución de una ecuación cuadrática, es el conjunto que contiene las raíces que satisfacen la ecuación. Se denota con S.

Ecuaciones Cuadráticas Conjunto Solución.

Definición (IV)

El Conjunto Solución de una ecuación cuadrática, es el conjunto que contiene las raíces que satisfacen la ecuación. Se denota con S.

I Cuando una ecuación cuadrática tiene soluciones reales x_1 y x_2 se escribe $S=\{x_1,x_2\}.$

Ecuaciones Cuadráticas Conjunto Solución.

Definición (IV)

El Conjunto Solución de una ecuación cuadrática, es el conjunto que contiene las raíces que satisfacen la ecuación. Se denota con S.

- Cuando una ecuación cuadrática tiene soluciones reales x_1 y x_2 se escribe $S = \{x_1, x_2\}$.
- **2** Cuando una ecuación cuadrática <u>no</u> tiene soluciones reales se escribe $S = \emptyset$, o bien $S = \{\}$.

Definición (V)

Resolver una ecuación cuadrática significa, hallar todas las raíces (soluciones o ceros) de la ecuación cuadrática. Se pueden presentar tres situaciones que dependen del valor del Δ :

Definición (V)

Resolver una ecuación cuadrática significa, hallar todas las raíces (soluciones o ceros) de la ecuación cuadrática. Se pueden presentar tres situaciones que dependen del valor del Δ :

 $\ \ \, \textbf{1} \ \, \Delta < 0 \Rightarrow \text{No tiene soluciones en } \mathbf{I\!R} \text{, es decir } S = \{\,\}.$

Definición (V)

Resolver una ecuación cuadrática significa, hallar todas las raíces (soluciones o ceros) de la ecuación cuadrática. Se pueden presentar tres situaciones que dependen del valor del Δ :

- $\triangle < 0 \Rightarrow \text{No tiene soluciones en } \mathbb{R}, \text{ es decir } S = \{\}.$
- $\Delta = 0 \Rightarrow$ Tiene una solución real.

Definición (V)

Resolver una ecuación cuadrática significa, hallar todas las raíces (soluciones o ceros) de la ecuación cuadrática. Se pueden presentar tres situaciones que dependen del valor del Δ :

- $\Delta < 0 \Rightarrow$ No tiene soluciones en \mathbb{R} , es decir $S = \{\}$.
- $\Delta = 0 \Rightarrow$ Tiene una solución real.
- $\Delta > 0 \Rightarrow$ Tiene dos soluciones reales.

Ecuaciones Cuadráticas Métodos de Resolución.

Existen varios métodos para resolver ecuaciones cuadráticas. A continuación se ejemplifican los más comunes.

Ecuaciones Cuadráticas Métodos de Resolución.

Existen varios métodos para resolver ecuaciones cuadráticas. A continuación se ejemplifican los más comunes.

a) Factorización. Se utiliza cuando una ecuación completa o incompleta se puede factorizar en dos binomios o un monomio y un binomio, de manera simple.

Ecuaciones Cuadráticas Métodos de Resolución.

Existen varios métodos para resolver ecuaciones cuadráticas. A continuación se ejemplifican los más comunes.

- a) Factorización. Se utiliza cuando una ecuación completa o incompleta se puede factorizar en dos binomios o un monomio y un binomio, de manera simple.
- b) Completando el cuadrado de un trinomio. Se utiliza el algoritmo de completar cuadrados para expresar un trinomio $x^2\pm px+q$ como $(x\pm h)^2\pm k$. Se puede aplicar tanto a trinomios mónicos como a no mónicos, así como a los casos donde c=0.

Ecuaciones Cuadráticas Métodos de Resolución.

Existen varios métodos para resolver ecuaciones cuadráticas. A continuación se ejemplifican los más comunes.

- a) Factorización. Se utiliza cuando una ecuación completa o incompleta se puede factorizar en dos binomios o un monomio y un binomio, de manera simple.
- b) Completando el cuadrado de un trinomio. Se utiliza el algoritmo de completar cuadrados para expresar un trinomio $x^2 \pm px + q$ como $(x \pm h)^2 \pm k$. Se puede aplicar tanto a trinomios mónicos como a no mónicos, así como a los casos donde c=0.
- c) Fórmula General. Se hace uso de la fórmula

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Factorización

Ejemplo 1

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

1. Factorización.

Ejemplo 1

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán siempre dos números reales diferentes.

1. Factorización.

Ejemplo 1

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán **siempre** dos números reales diferentes.

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán **siempre** dos números reales diferentes.

$$x^2 + 2x - 63 = 0$$

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán **siempre** dos números reales diferentes.

$$x^{2} + 2x - 63 = 0$$

$$\Rightarrow (x - 7)(x + 9) = 0$$

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán siempre dos números reales diferentes.

$$x^{2} + 2x - 63 = 0$$

$$\Rightarrow (x - 7)(x + 9) = 0$$

$$x - 7 = 0 \land x + 9 = 0$$

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán **siempre** dos números reales diferentes.

$$x^{2} + 2x - 63 = 0$$

$$\Rightarrow (x - 7)(x + 9) = 0$$

$$x - 7 = 0 \land x + 9 = 0$$

$$x_{1} = 7 \land x_{2} = -9$$

Encontrar el conjunto solución de la ecuación $x^2 + 2x - 63 = 0$.

Solución

Como es un trinomio mónico, no Cuadrado Perfecto, se puede factorizar mediante <u>Inspección</u>. En este caso, las soluciones serán **siempre** dos números reales diferentes.

$$x^{2} + 2x - 63 = 0$$

$$\Rightarrow (x - 7)(x + 9) = 0$$

$$x - 7 = 0 \land x + 9 = 0$$

$$x_{1} = 7 \land x_{2} = -9$$

$$\therefore S = \{-9, 7\}$$

1. Factorización

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

1. Factorización.

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será siempre x=0.

1. Factorización.

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

1. Factorización.

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^2 = 5x$$

1. Factorización.

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^2 = 5x$$

$$x^2 - 5x = 0$$

1. Factorización.

Ejemplo 2

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^2 = 5x$$

$$x^2 - 5x = 0$$

$$x(x-5) = 0$$

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^{2} = 5x$$

$$x^{2} - 5x = 0$$

$$x(x - 5) = 0$$

$$x_{1} = 0 \land x - 5 = 0$$

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^{2} = 5x$$

$$x^{2} - 5x = 0$$

$$x(x - 5) = 0$$

$$x_{1} = 0 \land x - 5 = 0$$

$$\Rightarrow x_{2} = 5$$

Resolver la ecuación $x^2 = 5x$

Solución

Como c=0, en este caso se iguala a 0 para luego factorizar mediante <u>Factor Común</u>. Acá, una de las soluciones será **siempre** x=0.

$$x^{2} = 5x$$

$$x^{2} - 5x = 0$$

$$x(x - 5) = 0$$

$$x_{1} = 0 \land x - 5 = 0$$

$$\Rightarrow x_{2} = 5$$

$$\therefore S = \{0, 5\}$$

1. Factorización

Ejemplo 3

Resolver la ecuación $2x^2 - 242 = 0$.

1. Factorización.

Ejemplo 3

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

1. Factorización.

Ejemplo 3

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^2 - 242 = 0$$

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^2 - 242 = 0$$
$$2x^2 = 242$$

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^{2} - 242 = 0$$
$$2x^{2} = 242$$
$$x^{2} = \frac{242}{2}$$

Resolver la ecuación
$$2x^2 - 242 = 0$$
.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^{2} - 242 = 0$$
$$2x^{2} = 242$$
$$x^{2} = \frac{242}{2}$$
$$x^{2} = 121$$

Resolver la ecuación
$$2x^2 - 242 = 0$$
.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^{2} - 242 = 0$$

$$2x^{2} = 242$$

$$x^{2} = \frac{242}{2}$$

$$x^{2} = 121$$

$$x = \pm \sqrt{121}$$

Resolver la ecuación
$$2x^2 - 242 = 0$$
.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^{2} - 242 = 0$$

$$2x^{2} = 242$$

$$x^{2} = \frac{242}{2}$$

$$x^{2} = 121$$

$$x = \pm \sqrt{121}$$

$$x_{1} = -11 \land x_{2} = 11$$

Resolver la ecuación $2x^2 - 242 = 0$.

Solución

Note que en este caso b=0, entonces podemos despejar x o factorizar mediante la diferencia de cuadrados (resuélvalo como ejercicio). Acá, ambas soluciones serán **siempre** dos números reales opuestos entre sí.

$$2x^{2} - 242 = 0$$

$$2x^{2} = 242$$

$$x^{2} = \frac{242}{2}$$

$$x^{2} = 121$$

$$x = \pm\sqrt{121}$$

$$x_{1} = -11 \land x_{2} = 11$$

$$\therefore S = \{-11, 11\}$$

Ejemplo 4

Resolver la ecuación

$$x^2 + 8x - 10 = 0$$

Ejemplo 4

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

Ejemplo 4

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

Ejemplo 4

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^2 + 8x) - 10 = 0$$

Ejemplo 4

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^2 + 8x) - 10 = 0$$

 $(x^2 + 8x + 16) - 10 - 16 = 0$

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^{2} + 8x) - 10 = 0$$
$$(x^{2} + 8x + 16) - 10 - 16 = 0$$
$$(x + 4)^{2} - 26 = 0$$

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^{2} + 8x) - 10 = 0$$

$$(x^{2} + 8x + 16) - 10 - 16 = 0$$

$$(x + 4)^{2} - 26 = 0$$

$$(x + 4)^{2} = 26$$

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^{2} + 8x) - 10 = 0$$

$$(x^{2} + 8x + 16) - 10 - 16 = 0$$

$$(x + 4)^{2} - 26 = 0$$

$$(x + 4)^{2} = 26$$

$$x + 4 = \pm \sqrt{26}$$

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^{2} + 8x) - 10 = 0$$

$$(x^{2} + 8x + 16) - 10 - 16 = 0$$

$$(x + 4)^{2} - 26 = 0$$

$$(x + 4)^{2} = 26$$

$$x + 4 = \pm\sqrt{26}$$

$$x = -4 \pm\sqrt{26}$$

Resolver la ecuación
$$x^2 + 8x - 10 = 0$$

Solución

Se toma el coeficiente p=8, se divide entre 2 y se eleva al cuadrado, para obtener el término que se suma y se resta en la expresión. En este caso

$$\left(\frac{8}{2}\right)^2 = 16$$

Procedimiento

$$(x^{2} + 8x) - 10 = 0$$

$$(x^{2} + 8x + 16) - 10 - 16 = 0$$

$$(x + 4)^{2} - 26 = 0$$

$$(x + 4)^{2} = 26$$

$$x + 4 = \pm\sqrt{26}$$

$$x = -4 \pm\sqrt{26}$$

$$\therefore S = \{-4 - \sqrt{26}, -4 + \sqrt{26}\}$$

Ecuaciones Cuadráticas 3. Fórmula General.

Se hace uso de la conocida fórmula

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Donde se encuentra implícito el **Discriminante** y es útil para resolver cualquier Ecuación Cuadrática completa o incompleta.

(Consulte la Demostración de la Fórmula General)

3. Fórmula General.

Ejemplo 5

Resolver la ecuación

$$x^2 - 10x - 24 = 0$$

3. Fórmula General.

Ejemplo 5

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

3. Fórmula General.

Ejemplo 5

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

3. Fórmula General.

Ejemplo 5

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

$$x = \frac{-(-10) \pm \sqrt{196}}{2 \cdot 1}$$

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

$$x = \frac{-(-10) \pm \sqrt{196}}{2 \cdot 1}$$
$$x = \frac{10 \pm 14}{2}$$

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

$$x = \frac{-(-10) \pm \sqrt{196}}{2 \cdot 1}$$
$$x = \frac{10 \pm 14}{2}$$
$$x_1 = \frac{10 + 14}{2} = \frac{24}{2} = 12$$

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

$$x = \frac{-(-10) \pm \sqrt{196}}{2 \cdot 1}$$

$$x = \frac{10 \pm 14}{2}$$

$$x_1 = \frac{10 + 14}{2} = \frac{24}{2} = 12$$

$$x_2 = \frac{10 - 14}{2} = \frac{-4}{2} = -2$$

Ejemplo 5

Resolver la ecuación
$$x^2 - 10x - 24 = 0$$

Solución

Se identifican los valores a=1,b=-10 y c=-24. Luego calcula el discriminante $\Delta=(-10)^2-4\cdot 1\cdot -24=100+96=196$, (que es un cuadrado perfecto). Luego se sustituyen los coeficientes y Δ en la fórmula general.

$$x = \frac{-(-10) \pm \sqrt{196}}{2 \cdot 1}$$

$$x = \frac{10 \pm 14}{2}$$

$$x_1 = \frac{10 + 14}{2} = \frac{24}{2} = 12$$

$$x_2 = \frac{10 - 14}{2} = \frac{-4}{2} = -2$$

$$\therefore S = \{-2, 12\}$$

3. Fórmula General.

Ejemplo 6

Resolver la ecuación

$$24x + 9 = -16x^2$$

3. Fórmula General.

Ejemplo 6

Resolver la ecuación $24x + 9 = -16x^2$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2+24x+9=0$. Se toman los valores a=16,b=24 y c=9. Luego el discriminante $\Delta=24^2-4\cdot16\cdot9$ = 576-576=0. Luego se sustituye en la fórmula general.

3. Fórmula General.

Ejemplo 6

Resolver la ecuación $24x + 9 = -16x^2$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2 + 24x + 9 = 0$. Se toman los valores a = 16, b = 24 y c = 9. Luego el discriminante $\Delta = 24^2 - 4 \cdot 16 \cdot 9$ = 576 - 576 = 0. Luego se sustituye en la fórmula general.

Procedimiento

Como $\Delta = 0$ entonces la ecuación tiene una única solución

3. Fórmula General.

Ejemplo 6

Resolver la ecuación
$$24x + 9 = -16x^2$$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2 + 24x + 9 = 0$. Se toman los valores a = 16, b = 24 y c = 9. Luego el discriminante $\Delta = 24^2 - 4 \cdot 16 \cdot 9$ = 576 - 576 = 0. Luego se sustituye en la fórmula general.

Procedimiento

Como $\Delta=0$ entonces la ecuación tiene una única solución

$$x = \frac{-24 \pm \sqrt{0}}{2 \cdot 16}$$

3. Fórmula General.

Ejemplo 6

Resolver la ecuación $24x + 9 = -16x^2$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2 + 24x + 9 = 0$. Se toman los valores a = 16, b = 24 y c = 9. Luego el discriminante $\Delta = 24^2 - 4 \cdot 16 \cdot 9$ = 576 - 576 = 0. Luego se sustituye en la fórmula general.

Procedimiento

Como $\Delta=0$ entonces la ecuación tiene una única solución

$$x = \frac{-24 \pm \sqrt{0}}{2 \cdot 16}$$
$$x_1 = x_2 = \frac{-24}{2 \cdot 16}$$

3. Fórmula General.

Ejemplo 6

Resolver la ecuación $24x + 9 = -16x^2$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2 + 24x + 9 = 0$. Se toman los valores a = 16, b = 24 y c = 9. Luego el discriminante $\Delta = 24^2 - 4 \cdot 16 \cdot 9$ = 576 - 576 = 0. Luego se sustituye en la fórmula general.

Procedimiento

Como $\Delta=0$ entonces la ecuación tiene una única solución

$$x = \frac{-24 \pm \sqrt{0}}{2 \cdot 16}$$

$$x_1 = x_2 = \frac{-24}{2 \cdot 16}$$

$$x_1 = x_2 = \frac{-24}{32} = -\frac{3}{4}$$

3. Fórmula General.

Ejemplo 6

Resolver la ecuación $24x + 9 = -16x^2$

Solución

Se busca la forma canónica trasponiendo el término $-16x^2$. $16x^2+24x+9=0$. Se toman los valores a=16,b=24 y c=9. Luego el discriminante $\Delta=24^2-4\cdot16\cdot9$ = 576-576=0. Luego se sustituye en la fórmula general.

Procedimiento

Como $\Delta = 0$ entonces la ecuación tiene una única solución

$$x = \frac{-24 \pm \sqrt{0}}{2 \cdot 16}$$

$$x_1 = x_2 = \frac{-24}{2 \cdot 16}$$

$$x_1 = x_2 = \frac{-24}{32} = -\frac{3}{4}$$

$$\therefore S = \left\{-\frac{3}{4}\right\}$$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación $x + 1 = \frac{1}{x}$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

3. Fórmula General.

Ejemplo 7

Resolver la ecuación $x + 1 = \frac{1}{x}$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

$$x = \frac{-1 \pm \sqrt{5}}{2 \cdot 1}$$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

$$x = \frac{-1 \pm \sqrt{5}}{2 \cdot 1}$$
$$x = \frac{-1 \pm \sqrt{5}}{2}$$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

$$x = \frac{-1 \pm \sqrt{5}}{2 \cdot 1}$$

$$x = \frac{-1 \pm \sqrt{5}}{2}$$

$$x_1 = \frac{-1 + \sqrt{5}}{2} \land x_2 = \frac{-1 - \sqrt{5}}{2}$$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

$$x = \frac{-1 \pm \sqrt{5}}{2 \cdot 1}$$

$$x = \frac{-1 \pm \sqrt{5}}{2}$$

$$x_1 = \frac{-1 + \sqrt{5}}{2} \land x_2 = \frac{-1 - \sqrt{5}}{2}$$

$$\therefore S = \left\{ \frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2} \right\}$$

3. Fórmula General.

Ejemplo 7

Resolver la ecuación
$$x + 1 = \frac{1}{x}$$

Solución

Se busca llegar a la forma canónica x(x+1)=1 $\Rightarrow x^2+x-1=0$. Se toman los valores a=1,b=1 y c=-1. Luego el discriminante $\Delta=1^2-4\cdot 1\cdot -1=1+4=5$. Luego se aplica la fórmula general.

Procedimiento

$$x = \frac{-1 \pm \sqrt{5}}{2 \cdot 1}$$

$$x = \frac{-1 \pm \sqrt{5}}{2}$$

$$x_1 = \frac{-1 + \sqrt{5}}{2} \land x_2 = \frac{-1 - \sqrt{5}}{2}$$

$$\therefore S = \left\{ \frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2} \right\}$$

Los cuales son llamados números de oro.

Notas Importantes

Notas Importantes

Al resolver una ecuación cuadrática completa o incompleta, se puede escoger el método que más convenga según sea el caso. Además:

I Es recomendable reducir la ecuación a su forma canónica $ax^2 + bx + c = 0$ y escoger luego el método de resolución.

Notas Importantes

- **I** Es recomendable reducir la ecuación a su forma canónica $ax^2 + bx + c = 0$ y escoger luego el método de resolución.
- 2 Calcule primero el discriminante, para cerciorarse que la ecuación tenga solución.

Notas Importantes

- **I** Es recomendable reducir la ecuación a su forma canónica $ax^2 + bx + c = 0$ y escoger luego el método de resolución.
- 2 Calcule primero el discriminante, para cerciorarse que la ecuación tenga solución.
- 3 Las ecuaciones incompletas con b=0 o c=0 son fácilmente resolubles mediante factorización.

Notas Importantes

- **I** Es recomendable reducir la ecuación a su forma canónica $ax^2 + bx + c = 0$ y escoger luego el método de resolución.
- 2 Calcule primero el discriminante, para cerciorarse que la ecuación tenga solución.
- Las ecuaciones incompletas con b=0 o c=0 son fácilmente resolubles mediante factorización.
- 4 Es conveniente dejar el término principal positivo.

Práctica

Ecuaciones Cuadráticas.

Encuentre el Conjunto Solución de las siguientes ecuaciones:

$$1 x^2 = 169$$

$$4x^2 - 9 = 0$$

$$x^2 - x - 6 = 0$$

$$5x^2 + 12x - 9 = 0$$

$$5 \ 2x^2 = -7x$$

$$6 \ 49x^2 + 81 = 0$$

$$x^2 - 6 = 0$$

$$-x^2 = 72 - x$$

$$x(x+11) = -24$$

$$10 \ 4x^2 + 4x - 3 = 0$$

$$R/S = \{-13, 13\}$$

$$R/S = \{-\frac{3}{2}, \frac{3}{2}\}$$

$$R/S = \{-2, 3\}$$

$$R/S = \{-3, \frac{3}{5}\}$$

$$R/S = \{-\frac{7}{2}, 0\}$$

$$\mathbf{R}/S = \emptyset$$

$$\mathbf{R}/S = \{-\sqrt{6}, \sqrt{6}\}$$

$$R/S = \{-8, 9\}$$

$$R/S = \{-8, -3\}$$

$$R/S = \{-\frac{3}{2}, \frac{1}{2}\}$$

Práctica

Ecuaciones Cuadráticas.

Encuentre el Conjunto Solución de las siguientes ecuaciones:

$$4x(x-6) = 9$$

$$x(x+3) = 5x+3$$

$$3x^2 = 12 - 5x$$

$$14 \ 2(x^2+2) = -x$$

15
$$x(x-1) - 5(x-2) = 2$$

16
$$(5x-2)^2 - (3x+1)^2 = x^2 + 60$$

$$(x-1)(x+3) = (4x-1)(2x+3)$$

18
$$3(x+2)(x-2) = (x-4)^2 + 8x$$

$$19 (2x-1)^2 = \frac{25}{9}$$

$$20 \ 2x^2 = 4 - \frac{x(x+3)}{2}$$

$$R/S = \left\{ \frac{6-3\sqrt{5}}{2}, \frac{6+3\sqrt{5}}{2} \right\}$$

 $R/S = \{-1, 3\}$

$$R/S = \{-3, \frac{4}{3}\}$$

$$R/S = \emptyset$$
$$R/S = \{2, 4\}$$

$$R/S = \{-\frac{19}{15}, 3\}$$

$$R/S = \{-\frac{8}{7}, 0\}$$

$$R/S = \{-\sqrt{14}, \sqrt{14}\}\$$

 $R/S = \{-\frac{1}{3}, \frac{4}{3}\}\$

$$R/S = \{-\frac{8}{5}, 1\}$$