

Mathématiques

Classe: BAC Mathématiques

Session Principale 2022

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(5) 36 min

3 pts

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Soit $\theta \in \left]0, \pi\right[$. On considère dans \mathbb{C} l'équation $(E): z^2 - 2e^{i\theta}z + \left(e^{2i\theta} - 4\right) = 0$.

- 1) Résoudre dans \mathbb{C} l'équation (E). On note z_1 et z_2 les solutions de (E). z_1 est tel que $\operatorname{Re}(z_1) < 0$.
- 2) On considère les points
 - a) Montrer que I est le milieu du segment $[M_1M_2]$.
 - b) Vérifier que : $\overrightarrow{IM_1} = \overrightarrow{AB}$.
 - c) Dans la figure 1 de l'annexe jointe, on a placé dans le repère $\left(O,\vec{u},\vec{v}\right)$, les points A,B et I. Construire les points : M_1 et M_1 .

3)

- a) Montrer que les droites (AM_2) et (BM_1) se coupent au point J d'affixe $(-e^{i\theta})$.
- b) Déterminer la valeur du réel θ telle que l'aire du triangle JM_1M_2 soit maximale.

Exercice 2:

5,5 pts

Le plan est orienté. Dans la figure 2 de l'annexe jointe.

- OAB est un triangle rectangle et isocèle en O tel que : $(\overrightarrow{BO}, \overrightarrow{BA}) = \frac{\pi}{4} [2\pi]$.
- CBA est un triangle isocèle en C tel que $(\overrightarrow{AC}, \overrightarrow{AB}) = \frac{\pi}{12} [2\pi]$.
- 1) Soit R la rotation de centre B et d'angle $\left(-\frac{\pi}{3}\right)$.
 - a) Vérifier que $(\overrightarrow{BC}, \overrightarrow{BO}) = \frac{\pi}{3} [2\pi]$.
 - b) On note D = R(C). Justifier que les points O, D et B sont alignés et construire le point D.
 - c) Montrer que le triangle ACD est rectangle et isocèle en C.
- 2) Soit f la similitude direct telle que f(B) = A et f(O) = C.
 - a) Montrer que f(A) = D.
 - b) Montrer qu'une mesure de l'angle de f est $\left(-\frac{5\pi}{6}\right)$.
 - c) Soit E = f(D). Vérifier que le point E est un point de la droite (AC).

- d) Montrer que $(\overrightarrow{DA}, \overrightarrow{DE}) = \frac{\pi}{6} [2\pi]$ puis construire le point E.
- e) Soit Ω le centre de f . Montrer que $(\overrightarrow{\Omega B}, \overrightarrow{\Omega E}) = -\frac{\pi}{2} [2\pi]$.
- 3) On suppose OA = OB = 1 et on rapporte le plan au repère orthonormé direct $(O, \overrightarrow{OA}, \overrightarrow{OB})$.
 - a) On note z_C l'affixe du point C. Montrer que $\arg(z_C) \equiv \frac{\pi}{4} [2\pi]$.
 - b) Soit z' = az + b l'expression complexe de f où a et b sont deux nombres complexes. Montrer que si : ai + b = 1 et que $z_C = b$.
 - c) On note z_{Ω} l'affixe de Ω . Vérifier que $z_{\Omega} \neq 0$ et montrer que $\frac{z_{\Omega} i}{z_{\Omega}} = \frac{1 i}{b}$. En déduire que $\left(\overrightarrow{\Omega O}, \overrightarrow{\Omega B}\right) \equiv -\frac{\pi}{2} \left[2\pi\right]$.
- 4) Montrer que le point Ω est le projeté orthogonal du point B sur la droite (OE) et le construire.

Exercice 3:

5,5 pts

Partie A:

Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E):19u+11v=1.

- 1)
- a) Vérifier que (-4,7) est une solution de (E)
- b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2)
- a) Montrer que u = 7 est l'unique entier appartenant à $\{1, 2, 10\}$ tel que $19u \equiv 1 \pmod{11}$.
- b) Montrer de même que v = 7 est l'unique entier appartient à $\{1, 2,18\}$ tel que $11u \equiv 1 \pmod{19}$
 - On considère dans \mathbb{Z} l'équation (E_{209}) : $x^2 \equiv x \pmod{209}$.

Partie B:

- 1) Vérifier que les entiers 0 et 1 sont des solutions de (E_{209}) .
- 2) Décomposer 209 en produit de facteurs premiers.
- 3) Montrer que 133 et 77 sont des solutions de (E_{209}) .
- 4) Soit x une solution de (E_{209}) .
 - a) Montrer que 19 divise x(x-1) et 11 divise x(x-1).
 - b) Vérifier que x et (x-1) sont premiers entre eux.

- 5) Soit x une solution de (E_{209}) appartenant à $\{2,3,...,208\}$.
 - a) Montrer que 19 divise x ou 11 divise x.
 - b) On suppose que x=19k où k est un entier. Montrer que 11 divise (x-1) puis déduire que x=133 .
 - c) On suppose que 11 divise x montrer que x = 77.
- 6) Déterminer les solutions de (E_{209}) appartenant à $\{0,1,...,208\}$.

Partie C:

Soit y un entier et x son reste modulo 209.

- 1) Montrer que y est une solution de (E_{209}) si et seulement si x est une solution de (E_{209}) .
- 2) Donner alors les solutions dans \mathbb{Z} de l'équation (E_{209}) .

Exercice 4:

6,5 pts

Partie A:

Soit f la fonction définie sur]1,+ ∞ [par $f(x) = \frac{1}{\ln x}$.

On note (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to 1^+} f(x)$. Interpréter graphiquement.
- 2)
- a) Montrer que pour tout x > 1; $f'(x) = \frac{-1}{r \ln^2 x}$.
- b) Dresser le tableau de variation de f.
- c) Tracer (C).
- 3) Montrer que l'équation f(x) = x possède sur $]1, +\infty[$ une unique solution α et que $\alpha < e$.

Partie B:

- 1) Soit $n \in \mathbb{N}^*$, pour tout x > 1, on pose $F(x) = \int_{\alpha}^{x} (f(t))^n dt$ et $H(x) = \int_{\ln \alpha}^{\ln x} \frac{e^t}{t^n} dt$.
 - a) Montrer que H est dérivable sur $]1,+\infty[$ et calculer H'(x).
 - b) En déduire que pour tout x > 1, H(x) = F(x).
- 2) On pose pour tout entier $n \ge 1$, $U_n = \int_{\alpha}^{e} (f(t))^n dt$.
 - a) Vérifier que pour tout $n \ge 1$, $U_n = \int_{\ln \alpha}^1 \frac{e^t}{t^n} dt$.
 - b) En déduire que pour tout $n \ge 2$, $\frac{\alpha^n \alpha}{n-1} \le U_n \le \frac{e}{n-1} (\alpha^{n-1} 1)$.

- c) Montrer que $\lim_{n\to+\infty} \frac{\alpha^n}{n} = +\infty$ puis déterminer $\lim_{n\to+\infty} U_n$.
- d) Calculer $\lim_{n\to +\infty} \frac{U_n}{\alpha^n}$
- 3) Pour tout entier $n \ge 1$, on pose $S_n = \sum_{k=1}^{k=n} (k-2)U_k$.
 - a) En intégrant par partie, montrer que pour tout $n \ge 1$, $U_n = e \alpha^{n+1} + nU_{n+1}$.
 - b) Montrer par récurrence que pour tout $n \ge 1$, $S_n = \frac{\alpha^{n+1} \alpha^2}{\alpha 1} + (1 n)e U_n$.
 - c) Déterminer alors $\lim_{n\to+\infty} \frac{S_n}{\alpha^n}$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000