1 Logistic regression function

1.1 Preprocessing and Hyperparameters

Feature Scaling

I normalized the features, and the results were really so awful that I can know the test score would be very bad without submitting it to Kaggle. Therefore, I didn't do feature scaling on my features.

• Delete Features

# of deleted features	Public test score	
16	0.91333	
5	0.93000	
1	0.93333	
0	0.93333	

Performance on different number of features

I have deleted the feature whose zeros are more than $\{80\%,90\%,95\%\}$ in datasets. The number of deleted features are $\{16,5,1\}$, however, none of them improve the public test score. So I also didn't delete any features on my datasets.

Hyperparameters

Learning rate	1e-1	
Epsilon*	1e-8	
Beta1*	0.9	
Beta2*	0.999	
iteration	20000	
W dim	(57, 1)	

Hyper parameters

1.2 Training

• Objective function and the Loss function code

def sigmoid(self, z):

^{*:} Hyperparameters in Adam optimizer

```
return 1/(1+np.exp(-z/100))

def cross_entropy(self):

z = np.dot(self.x, self.w) + self.b

loss = 0

for i in range(self.y.shape[0]):

if self.y[i][0] != self.sigmoid(z)[i][0]:

loss += (-(self.y[i][0]*np.log(self.sigmoid(z)[i][0]))

+ (1-self.y[i][0])*np.log(1-self.sigmoid(z)[i][0])))

return loss"
```

Optimizer

I use Adam as my optimizer, the following pseudo code is showed above

```
loss <- dot(y - dot(w, x) + b)^2 + \lambda w^2

grad_w <- -2*dot(y - dot(w, x)) * (-x) + 2\lambda w

grad_b <- -2*dot(y - dot(w, x))

#Init:

m_0 <- 0

v_0 <- 0

t <- 0

#update

t <- t + 1

Ir_t <- learning_rate * sqrt (1 - beta2^t) / (1-beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * grad_w

v_t <- beta2 * v_{t-1} + (1 - beta1) * grad_b

v_t <- beta2 * v_{t-1} + (1 - beta2) * grad_b * grad_b

w <- w - Ir t * m t / (sqrt(v t) + epsilon)'''
```

1.3 Public Test score and Discussion

Different lambda values

λ value	Public Test Score	
1	0.92000	
1e-3	0.93000	
1e-5	0.93333	

0	0.93333
---	---------

From the public test score, we can see if λ is bigger, the score is lower, which is out of my expectation. I think maybe the test datasets is similar to training set, so it didn't need regularization to avoid overfitting.

2 Support Vector Machine (linear SVM)

2.1 Preprocessing and Hyperparameters

Learning rate	1e-3	
Epsilon, Beta1, Beta2, W dim	Same as Logistic	
$C \left(=\frac{1}{\lambda}\right)$	1000	

Hyperparameters of Linear SVM

Because the output of linear SVM is -1 or 1, therefore, I change all the 0 labels in datasetes to -1.

2.2 Training

 Objective function and the Loss function code "def loss(self):

```
z = np.dot(self.x, self.w) + self.b
loss = 0
for i in range(self.y.shape[0]):
    loss += self.C*max(0, 1-self.y[i]*z[i])
loss += (1/2)*sum((self.w)**2)
return loss
def svm_func(self):
    z = np.dot(self.x, self.w) + self.b
    return z
""
```

Optimizer and output
 I use Adam as optimizer in Linear SVM. For the

output, if $z \ge 0$, then output 1, else output zero.

2.3 Public Test score and Discussion

Model	Public Score	Private Score
Logistic regression best	0.93677	0.92667
Linear SVM best	0.92677	0.92333

We can see that Logistic is a little bit better than linear SVN in this task. However, beacuse the dimension of features is small (less than 1000) and the size of training examples is intermediate (10-10000), Gaussian kernel SVM model will be a more appropriate model then logistic regression or linear SVM.