Преподаватель: Курашова Светлана Александровна

Рабочий протокол и отчёт по лабораторной работе №3.00

Изучение электрических сигналов с помощью лабораторного осциллографа

1. Ход работы

Задание 1. Исследование сигналов различной формы

Таблица 1.

Канал 1	Автоматические	Измерения с по-	ГС АКИП-3409
	измерения	мощью курсора	
Частота сигнала,	1 КГц	0.99 КГц	1 КГц
Гц/кГц/МГц			
Амплитуда сигна-	975 мВ	1.02 B	1 B
ла, В/мВ			
Период мс/с	1 c	1.02 c	1 c

Относительное отклониние измеренных величин

$$\begin{split} &\Delta_\% \nu_{\text{abt}} = 0\% \\ &\Delta_\% \nu_{\text{kyp}} = \frac{-0.01}{1} \cdot 100\% = -1\% \\ &\Delta_\% U_{\text{abt}} = \frac{-0.025}{1} \cdot 100\% = 2.5\% \\ &\Delta_\% U_{\text{kyp}} = \frac{1.02 - 0.975}{1.02} \cdot 100\% = 4.41\% \\ &\Delta_\% T_{\text{abt}} = 0 \\ &\Delta_\% T_{\text{kyp}} = \frac{1.02 - 1}{1} \cdot 100\% = 2\% \end{split}$$

Задание 2. Исследование предельных характеристик прибора

Верхняя предельная частота $\nu_{\rm верх}=120~{\rm к}$ Гц. При низких частотах (от 3 до 1 Гц) фигура имеет искажения, коротые усиливаются при уменешьнии частоты. Нижняя предельная частота $\nu_{\rm нижн}=3~{\rm \Gamma}$ Гц.

Задание 3. Изучение сложения взаимно перпендикулярных колебаних разных частот. фигуры Лиссажу

Параметры сигналов: Частота — 10~ к Γ ц; Амплитуда — 3~В; Смещение — 0~мс; Φ аза — 0° .

Фигура со смещением фаз $\Delta \varphi = 45^\circ$

Установили смещение фаз $\Delta \varphi = 45^{\circ} \pm 0.05^{\circ}$ Получили на экране осцилографа фигуру (См. Рис. 1).

Рис. 1. Фигура Лиссажу при $\Delta \varphi = 45^\circ$

Параметры фигры: $U_{Y \mathrm{max}} = 1.5 \,\, \mathrm{B}, \, U_{Y1} = 1.00 \,\, \mathrm{B}, \, U_{Y2} = 1.02 \,\, \mathrm{B}$.

Сдвиг фаз:

$$\begin{split} \alpha &= \arcsin\left(\frac{U_{Y1}}{U_{Y\max}}\right) = \arcsin\left(\frac{U_{Y1}}{U_2}\right) \\ \alpha &= \arcsin\left(\frac{1.0}{1.50}\right) = 41.81^\circ \\ \Delta\alpha &= \alpha - \alpha_{\text{\tiny reh}} = -3.19^\circ \\ \Delta_{\%}\alpha &= \frac{-3.19}{45} \cdot 100\% = -7.09\% \end{split}$$

Фигура со смещением фаз $\Delta \varphi = 90^\circ$

Фигура имеет форму окружности.

Рис. 2. Симуляция фигуры Лиссажу с $\Delta\varphi=90^\circ$

Параметры фигуры: $U_{Y \mathrm{max}} = 1.47 \; \mathrm{B}, U_{Y1} = 1.47 \; \mathrm{B}, U_{Y2} = 1.50 \; \mathrm{B}$.

Сдвиг фаз:

$$\alpha = \arcsin\left(\frac{1.47}{1.47}\right) = 90^{\circ}$$

Фигура со смещением фаз $\Delta \varphi = 180^\circ$

Рис. 3. Фигура Лиссажу с $\Delta\varphi=180^{\circ}$

Фигура с соотношением амплитуд 1:2 и смещением фаз $\Delta \varphi = 45^\circ$

Рис. 4. Фигура Лиссажу с соотношением амплитуд 1:2 и $\Delta \varphi = 45^\circ$

Фигура с отличающимися частотами

Установили частоты на генераторе с разностью 0.1 кГц. Характер изменения фигуры во времени соответствовал теоретическим формулам:

$$\begin{split} U_x &= U_1 \cdot \cos(\omega t) \\ U_y &= U_2 \cdot \cos[\omega t + (\Delta \omega t + \alpha)] \end{split}$$

Задание 4. Изучение сложения однонаправленных колебаний мало отличающихся по частоте (биения)

Подали на каналы осцилографа сигналы одинаковой амплитуды a=1 В и фазы. С Частотами, отличающимися на 7%: $\nu_1=1$ кГц $\nu_2=1.02$ кГц.

Измерели амплитуду сигнала в максимуме и период биений:

$$a_{\text{сум}} = 1.8 \text{ B}$$

 $T = 14.2 \text{ MC}$

Задание 5. Изучение сложения однонаправленных колебаний одинаковой частоты

Подали на каналы осцилографа сигналы одинаковой частоты $\nu=1$ кГц с разными фазами и амплитудами.

	_
Параметры	a B
сигналов	$a_{\rm pes}, B$
$a_1 = 1 \; B$	
$a_2 = 1.2 \; \mathrm{B}$	2.04
$\Delta \varphi = 45^{\circ}$	
$a_1 = 1.6 \text{ B}$	
$a_2 = 2 \text{ B}$	3.52
$\Delta \varphi = 30^{\circ}$	
$a_1 = 3 \text{ B}$	
$a_2 = 2.5 \; \mathrm{B}$	5.2
$\Delta \varphi = 40^{\circ}$	

2. Результаты

Задание 1.

$$\begin{split} &\Delta_{\%}\nu_{\text{abt}} = 0\% \\ &\Delta_{\%}\nu_{\text{kyp}} = -1\% \\ &\Delta_{\%}U_{\text{abt}} = 2.5\% \\ &\Delta_{\%}U_{\text{kyp}} = 4.41\% \\ &\Delta_{\%}T_{\text{abt}} = 0\% \\ &\Delta_{\%}T_{\text{kyp}} = 2\% \end{split}$$

Задание 2.

$$\begin{split} \nu_{\text{верх}} &= 120 \text{ кГц} \\ \nu_{\text{нижн}} &= 3 \text{ Гц} \end{split}$$

Задание 3.

$$\Delta_{\%}\alpha = -7.09\%$$

Задание 4.

$$a_{\rm сум} = 1.8 \; {\rm B}$$

$$T = 14.2 \; {\rm mc}$$

Задание 5.

$$a_{\mathrm{pes_1}} = 2.04~\mathrm{B}$$

$$a_{\mathrm{pes_2}} = 3.52~\mathrm{B}$$

$$a_{{
m pe}_{3}} = 5.2 \; {
m B}$$

3. Вывод

Работа продемонстрировала возможности осциллографа в исследовании сигналов различных форм и параметров. Были подтверждены теоретические положения о сложении гармонических сигналов, биениях и формах Лиссажу.