联盟链动态缩容方案

郭世清 2018.04

背景

- 世界状态快速膨胀
- 区块数据快速增长

问题

- 节点存储压力
- 网络冗余成本
- "笨""重"

目标

- 安全性、可用性不下降
- 运维友好
- 业务友好
- 更轻、更快

节点定义

- 存档节点
- 快照节点
- 热节点
- 轻节点

功能集\节点类型	存档节点	快照节点	热节点	轻节点
交易广播	Y	Υ	Υ	Υ
交易执行	Y	Υ	Υ	
参与共识	Y	Υ	Υ	
所有区块头	Y	Υ	Υ	Υ
最新区块体及状态数据存储	Y	Υ	Υ	
最新区块体及状态数据查询	Y	Υ	Υ	
历史区块体及状态数据存储	Y			
历史区块体及状态数据查询	Υ	Υ		

节点关系

- 存档节点(必选)
- 快照节点
- 热节点

方案一

• 方案: 世界状态导出新创世块, 建新链

• 优点:实现简单、最大限度裁剪、无历史包袱

• 缺点:

- 历史状态缺失
- 运维不友好
- 业务不友好
- 可用率低

方案二

• 方案: 热节点与存档节点

• 优点: 业务友好、运维友好、历史状态友好、效果显著

缺点:

- 协议复杂
- 热节点查询不安全
- 效果因业务不同(对纯增量业务无效)

方案三

• 方案: 快照节点与存档节点

• 优点: 业务友好、运维友好、历史状态友好、高安全性

缺点:

- 实现复杂
- 协议复杂
- 效果因业务不同(对纯增量业务无效)

方案对比

	方案二 热节点与存档节点	方案三 快照节点与存档节点
安全性	中	高
可用性	高	高
效率	高	中
缩容比例	高	中
实现复杂度	中	高

实现架构

RPC IPC 缓存池 块链模块 共识 P₂P 配置解析 快照处理 配置文件 块链帐本

动态快照

- 设变更空间C(i):块i的世界状态的变更合集{k,v}
- 则在快照点i时,执行:
- 1) C=C(i-99)+...+C(i)
- 2) 对C稳定排序
- 3) 将C中重复k对应的数据删除
- 4) 将B(i-99),B(i-99)...B(i-1) 数据清理

• 举例:

 $C(98)=\{\{k1,v0\},\{k3,v5\}\}$

 $C(99) = \{\{k1, v1\}, \{k2, v2\}\}\$

 $C(100)=\{\{k1,v3\},\{k3,v4\}\}$

假设100为快照点,则

- 1) $C=\{\{k1,v0\},\{k3,v5\},\{k1,v1\},\{k2,v2\},\{k1,v3\},\{k3,v4\}\}$
- 2) $C=\{\{k1,v0\},\{k1,v1\},\{k1,v3\},\{k2,v2\},\{k3,v5\},\{k3,v4\}\}\}$
- 3) 将{k1,v0},{k1,v1},{k3,v5}清理

关键流程-快照

关键流程-查询

同步协议

- 面向区块(简单,CPU换网络)
- 面向快照状态 (复杂, 网络换CPU)

节点配置

- 节点类型
- 节点快照周期
- 节点缓存池大小

谢谢

愿区块链世界里没有"胖子"

- Vitalik和中本聪