Курс "Анализ изображений"

Лекция#1.
Выделение краев. Спецэффекты.
Бинаризация. Математическая морфология. Текстура.

Большинство слайдов взято из лекций Конушина А.

ФИВТ МФТИ 2017

Выделение краёв

Выделение краев

- Задача: Выделить резкие изменения (разрывы) изображения
- Интуитивно понятно, что основная информация в картинке содержится как раз в краях (границах)
 - Компактное представление
 - Соответствует устройству мозга
- Идеал: рисунок художника (но артист уже пользуются своими знаниями об объектах)

Откуда берутся края

Резкое изменение = «разрыв»

Существует множество причин формирования краев на изображении

Source: Steve Seitz

Описание «края»

Край – это точка резкого изменения значений функции интенсивности изображения

Градиент изображения

• Градиент изображения:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

Градиент направлен в сторону наибольшего изменения интенсивности

Направления градиента задается как: $\theta= an^{-1}\left(rac{\partial f}{\partial y}/rac{\partial f}{\partial x}
ight)$

- Как направление градиента соответствует направлению края?
- Сила края задается величиной (нормой) градиента:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Дифференцирование и свёртка

Для функции 2х переменных, f(x,y):

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right) \qquad \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

Разностная производнаяя:

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

- Разностная производная линейная и инвариантная к переносу
- Можно записать как свёртку

Влияние шума

Рассмотрим строку или столбец изображения

• Интенсивность от положения можно рассматривать как сигнал

Край исчез

Влияние шума

- Разностные производные очень чувствительны к шуму
 - Зашумленные пиксели отличаются от соседей
 - Чем сильнее шум, тем выше отклик
- Сглаживание
 - Сглаживание делает все пиксели (зашумленные?) чуть более похожими на соседей

Source: D. Forsyth

Предобработка (сглаживание)

• Для поиска краев ищем пики в: $\frac{d}{dx}(f*g)$

Source: S. Seitz

Свойства свертки

- Операции свертки и дифференцирования ассоциативны: $d_{(f,y,z)} = c$
- Это экономит 1 операцию:

Source: S. Seitz

Производная фильтра Гаусса

Известные фильтры

Несколько фильтров, по разному оценивающие производные по направлению:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 Робертса Превитт Собеля

Превитт и Собель чуть-чуть сглаживают шум

Карта силы краев

Примеры:

Робертса

Превитт

Собеля

Сглаживание и локализация

Применим сглаженные производные разного размера:

Сглаженные производные подавляют шум, но размывают края. Плюс края находится на разных «масштабах»

Выделение краев

 Вычисление градиента – не идеальный метод для поиска краёв.

Исходное изображение

Карта силы краев

- Чего не хватает?
 - Точности края «толстые» и размытые
 - Информации о связности

Детектор Canny

- 1. Свертка изображения с ядром производной от фильтра гаусса
- 2. Поиск силы и направления градиента
- 3. Выделение локальных максимумов (Non-maximum suppression)
 - Утоньшение полос в несколько пикселей до одного пикселя
- 4. Связывание краев и обрезание по порогу (гистерезис)
 - Определяем два порога: нижний и верхний
 - Верхний порог используем для инициализации кривых
 - Нижний порог используем для продолжения кривых

MATLAB: edge(image, 'canny')

Пример

• Исходное изображение (Lena)

Пример

Норма градиента

Пример

Отсечение по порогу

Поиск локальных максимумов

Максимум достигается в q, если значение больше р и r. Значения в р и r интерполируем.

Source: D. Forsyth

Связывание точек

Пусть отмеченная точка – край. Строим касательную к границе (нормаль к направлению градиента) и используем ее для предсказания новой точки (это либо s либо r).

Source: D. Forsyth

Утоньшение

(non-maximum suppression)

Отсечение по порогу

- Проверяем точку, чтобы значение градиента было выше порога
 - Используем гистерезис
 - Большой порог для начала построения кривой и низкий порог для продолжения края (связывания)

Эффект гистерезиса

Исходное изображение

Высокий порог (сильные края)

Низкий порог (слабые края)

Порог по гистерезису

Source: L. Fei-Fei

Влияние о (Размер ядра размытия)

Выбор σ зависит от задачи

- большое σ поиск крупных границ
- маленькое σ выделение мелких деталей

Source: S. Seitz

Ограничения детектора Canny

Source: Martin et al. 2003

Поиск краев – это только начало...

изображение

норма градиента

• Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

$$x(k; I) = k + (rand(1, 1) - 0.5) * 10;$$

 $y(k; I) = I + (rand(1, 1) - 0.5) * 10;$

- Рассмотрим
 - Тиснение
 - Негатив
 - «Светящиеся» края
 - Геометрические эффекты
 - Перенос/поворот
 - Искажение
 - «Эффект стекла»

Тиснение

$$\begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{vmatrix}$$

Фильтр + сдвиг яркости, нормировка...

R' = 255 - R; G' = 255 - G; B' = 255 - B;

Светящиеся края

Медианный фильтр + выделение краев + фильтр «максимума»

«Волны»

Волны 1:

$$x(k; I) = k + 20sin(2\pi I / 128); y(k; I) = I;$$

Волны 2:

$$x(k; I) = k + 20sin(2\pi k / 30); y(k; I) = I;$$

$$x(k; I) = k + (rand(1, 1) - 0.5) * 10;$$

 $y(k; I) = I + (rand(1, 1) - 0.5) * 10;$

Из чего состоит изображение?

Из «кусков» - отдельных объектов

Сегментация

- Сегментация это способ разделения сцены на «куски», с которыми проще работать
- (Тесселяция) Разбиение изображения на неперекрывающиеся области, покрывающие все изображение и однородные по некоторым признакам
- Можно и по другому сегментировать изображение
 - Пересекающиеся области
 - Иерархическое представление

Результат сегментации

- Как мы будем записывать результат сегментации?
- Сделаем карту разметки изображение, в каждом пикселе которого номер сегмента, которому принадлежит этот пиксель
- Визуализировать удобно каждый сегмент своим цветом

Простейшая сегментация

Чем отличаются объекты на этом изображении?

- Все объекты яркие, фон тёмный
- Для сегментации такого изображения нам достаточно:
 - пороговая бинаризация
 - обработки шума
 - выделения связанных компонент

Пороговая бинаризация

- Пороговая фильтрация (thresholding)
 - Пиксели, которых выше/ниже некоторого порога, заданного «извне», помечаются 1
 - Ниже порога помечаются 0
- Бинарное изображение пиксели которого могут принимать только значения 0 и 1
- Бинаризация построение бинарного изображения по полутоновому / цветному

Пороговая фильтрация

Более интересный способ – определение порога автоматически, по характеристикам изображения

Анализ гистограммы

Анализ гистограммы

- Анализ симметричного пика гистограммы
- Применяется когда фон изображения дает отчетливый и доминирующий пик гистограммы, симметричный относительно своего центра.

- 1. Сгладить гистограмму;
- 2. Найти ячейку гистограммы h_{max} с максимальным значением;
- 3. На стороне гистограммы не относящейся к объекту (на примере справа от пика фона) найти яркость h_p, количество пикселей с яркостью >= h_p равняется p% (например 5%) от пикселей яркости которых >= h_{max}.
- 4. Пересчитать порог T = h_{max} $(h_p h_{max})$;

Research

Шум в бинарных изображениях

Пример бинарного изображению с сильным шумом

Часто возникает из-за невозможности полностью подавить шум в изображениях, недостаточной контрастности объектов и т.д.

Шум в бинарных изображениях

- По одному пикселю невозможно определить шум или объект?
- Нужно рассматривать окрестность пикселя!

Подавление и устранение шума

Широко известный способ - устранение шума с помощью операций математической морфологии:

- Сужение (erosion)
- Расширение (dilation)
- Закрытие (closing)
- Pacкрытие (opening)

Математическая морфология

- Множество А обычно является объектом обработки
- Множество В (называемое структурным элементом) инструмент обработки

Расширение в дискретном случае

Операция «расширение» - аналог логического «или»

Расширение

Расширение (dilation)

A (+) B =
$$\{t \in R^2: t = a + b, a \in A, b \in B\}$$

Сужение (erosion)

$$A (-) B = (A^C (+) B)^C$$
, где $A^C -$ дополнение A

Результат операции сужения

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & [1] & 1 \\ 0 & 1 & 0 \end{bmatrix}$

\[\begin{bmatrix} 1 & 1 & 1 \\ 1 & [1] & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	[1]	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1 1 1 [1] 1 1	1	0	0

Важное замечание

Результат морфологических операций во многом определяется применяемым структурным элементом. Выбирая различный структурный элемент можно решать разные задачи обработки изображений:

- Шумоподавление
- Выделение границ объекта
- Выделение скелета объекта
- Выделение сломанных зубьев на изображении шестерни

Операции раскрытия и закрытия

Морфологическое раскрытие (opening)

open(A, B) = (A (-) B) (+) B

Морфологическое закрытие (closing)

close(A, B) = (A (+) B) (-) B

Попробуйте догадаться, что эти операции делают?

Применим операцию открытия к изображению с сильным шумом:

 $\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	0 1 1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1 1 1	1	1	0	0

Сужение vs Открытие

Сужение

Открытие

Дефекты бинаризации

Пример бинарного изображению с дефектами распознаваемых объектов

Применение закрытия

Применим операцию закрытия к изображению с дефекиами объектов:

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0 1 1 1 1 1 0	0

Не лучший пример для морфологии

Не во всех случаях математическая морфология так легко убирает дефекты, как хотелось бы...

Применения операции открытия

	() 1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	0 0 1
1	1	. 1	1	1	1	1
1	1	1	1	1	1	1
0) 1	1	1	1	1	0
0	() 1	1	1	0	1 0 0

Часто помогает медианная фильтрация!

Медианный фильтр

Фильтр с окрестностью 3х3

Теперь можем с помощью морфологии убрать оставшиеся точки, тонкие линии и т.д.

Что дальше?

Получили бинарное изображение

Нужна карта разметки

Выделение связных областей

- Определение связной области:
 - Множество пикселей, у каждого пикселя которого есть хотя бы один сосед, принадлежащий данному множеству.

Соседи пикселей:

	1	
2	*	3
	4	

4-связность

1	2	3
4	*	5
6	7	8

8-связность

Разметка связных областей

					1	1		
	2	2	2		1	1		
	2	2						
	2							
				3		4	4	
5					4	4		
						4		
	6	6						
	6	6	6					
					7			

Бинарное изображение

Размеченное изображение

Какие признаки мы можем использовать для сравнения пикселей и регионов?

- Яркость
- Цвет
- ?

Пример

Видите отдельные области?

«Текстура»

«Текстура»

«Текстура»

Типичный пример текстурного шаблона для исследований психофизиологоического восприятия изображений

Текстура

- Это типичные примеры текстурных шаблонов для исследований психофизиологоического восприятия изображений
- Человек явно использует не только яркость и цвет, но и ориентацию краёв (градиентов изображения), их распределение, для анализа изображений

«Простые клетки» V1

- В первичной визуальной коре головного мозга есть клетки, чувствительные к краям определенной ориентации
- Для каждой области есть набор таких клеток, чувствительные к краям разной ориентации

Анализ текстуры

- Выберем фильтр, чувствительный к краю определенной ориентации
- Результат фильтрации сгладим
- Будут «подсвечены» области, содержащие текстуру с краями заданной ориентации

Pietro Perona and Jitendra Malik «Detecting and Localizing edges composed of steps, peaks and roofs», ICCV 1990

Банки фильтров

- Возьмём теперь несколько фильтров разного масштаба и ориентации
- Такой набор называют «банк фильтров»
- Каждый пиксель изображения после обработки банком фильтров даёт вектор признаков
- Этот вектор признаков эффективно описывает локальную текстуру окрестности пикселя
- Активно используется в сегментации, распознавании изображений и т.д.

Модель «back pocket»

- Такие модели текстуры называют «back pocket»
- Модель «биологически возможна»
- По подобным моделям опубликовано много работ.

Ввод

После 1 этапа

После 2 этапа

Выход

Пример, Bergen & Adelson (1988)

Психологическое свойство текстуры

Image source: Todd et al. 2005

Research

Форма из текстуры

- Человек интуитивно считает текстуру **изотропной**, т.е. с постоянными свойствами на поверхности объекта
- Shape from texture: Исходя из предположения об изотропности шаблона текстуры, можно определить наклон поверности

Figure 8.7. Surface orientation is often characterized in terms of slant and tilt.

Image source: VPfaCGP Fig 8.7