Lunar Transmissions Tower Material Selection

Daniel Sobien 8/7/2020

Slides for Design Problem #3

License:

Paul Lagace. 16.20 Structural Mechanics. Fall 2002. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

The Problem

- -Transmission tower on moon subject to temperature range of -75 °C to +100 °C.
- -Need design that keeps dish within 10 mm (0.01 m) of its original position.
- -Thermal strain coefficient of most materials too large to meet this requirement.

Advantages of Piezoelectric Materials

- -Piezoelectric properties meet displacement requirement at extreme temperatures.
 - -Lower thermal strain
 - -Contracts under electric field
- -Combine with base to improve a its material's thermal performance.

Approach/Concept

- -Piezoelectric sandwiched between base material.
- -Equal strain for both.
- -Stresses balance based on thickness ratio.
- -Apply voltage to reduce higher temp displacement.

Approach/Concept

-Thicknesses sized for T_{min} with no electric field

- -Electric field only needed at T_{max}, in full sunlight.
- -Balance stress between materials and meet requirement.

-Then calculate stresses at T_{max} and electric field needed to meet displacement requirement

Design Tradeoffs

- -Cheaper materials have higher thermal strain.
- -Higher thermal strain has drawbacks:
 - -More piezoelectric to counteract greater displacement.
 - -More electricity to counteract greater displacement.
 - -Results in greater internal stress of material.

Governing Equations

-Base material strain

$$\varepsilon_{\rm b} = \alpha_{bl} \Delta T + \sigma_{b1} / E_b$$

-Piezoelectric material strain

$$\varepsilon_{p} = E_{k}d_{113} + \alpha_{p}\Delta T + \sigma_{p1}/E_{p}$$

-Relationship of self-equilibrating stresses

$$2\sigma_{b1}t_b+\sigma_{p1}t_p=0$$

Results

Mat'l Combo	t _b /t _p	E _k (V/m)	Max base stress (MPa)	Max piezo stress (MPa)
Al – PZT 4	0.00240	9.394e-07	138	0.66
Al – PZT 5H	0.00180	4.217e-07	138	0.50
Al – PZT 5A	0.00199	6.757e-07	138	0.55
Ti – PZT 4	0.00664	9.552e-07	59.4	0.79
Ti – PZT 5H	0.00498	4.288e-07	59.4	0.59
Ti – PZT 5A	0.00550	6.871e-07	59.4	0.65
AS4 – PZT 4	0.01319	9.653e-07	32.9	0.87
AS4 – PZT 5H	0.00989	4.333e-07	32.9	0.65
AS4 – PZT 5A	0.01093	6.943e-07	32.9	0.72
P70 – PZT 4	0.79912	2.0e-06	5.64	9.01
P70 – PZT 5H	0.48528	8.0e-07	5.64	5.47
P70 – PZT 5A	0.63076	1.4e-06	5.64	7.11

Other Considerations

-Internal stresses

-Strains induce stress with potential to cause failure.

-Structural stability

-Design will need to meet stability requirements; usually met by increasing cross-section area (i.e., more material).

-Fatigue and cracking

-Cyclic loading of contraction and expansion can create or propagate cracks. Less stress increases the life of the design.

Recommendations

- -High Modulus Graphite/Epoxy Layup B (P70/3501-6) base with PZT 4 piezoelectric.
- -This layup is flexible to meet displacement and other design requirements.
 - -Lower thermal strain than piezo. This is only combination where electric field and thickness ratio can be traded off.
 - -Other materials constrained by T_{min} displacement for sizing.
 - -Can design for electricity, stability, and/or lifting requirements.