# **GPU Programming** in Computer Vision

**Introduction to Parallel Computing** 

## **Computer Vision Group**



Prof. Dr. Daniel Cremers



Sabine Wagner



Dr. Claudia Nieuwenhuis



Dr. Juergen Sturm



Mathieu Aubry



Jakob Engel



Youngwook Kee



Maria Klodt



Quirin Lohr



Martin Oswald



Mohamed Souiai





Frank Steinbrücker Evgeny Strekalovskiy





Eno Töppe

#### Research





Estimation





Shape Analysis



(Kinect)







3D Reconstruction from a Single Image





Marker-less Motion Capture



Scene Flow Estimation



Thomas Windheuser

#### Our Research is about

- Optimization
- Math in general

non-convey



- everything needs to broken down into functions, basic operations and numbers
- Numerics
  - continuous math on discrete hardware
- Programming (serial/parallel)
  - C/C++, CUDA, Matlab, ...
- Engineering

#### **This Course covers**

- Parallel Programming (with CUDA)
- Computer Vision Basics
  - Image Filtering (Convolution, Diffusion)
  - Regularization (dealing with noise, unique solutions)
- Optimization + Numerics
- Example Problems
  - Optical Flow Estimation
  - Superresolution

## **Example: 3D Reconstruction**





## **Example: 3D Reconstruction**



Kolev, Cremers, ECCV '08, PAMI 2010

#### **Course Goals**



- Learn how to program massively parallel processors and achieve
  - High performance
  - Functionality and maintainability
  - Scalability across future generations
- Acquire technical knowledge required to achieve above goals
  - Principles and patterns of parallel programming
  - Processor architecture features and constraints
  - Programming API, tools and techniques
- Apply this knowledge to implement computer vision algorithms efficiently

## Moore's Law (paraphrased)



"The number of transistors on an integrated circuit doubles every two years."

- Gordon E. Moore

## Moore's Law (Visualized)





## Why Massively Parallel Processing?



- A quiet revolution and potential build-up
  - Computation: TFLOPs vs. 100 GFLOPs



GPU in every PC – massive volume & potential impact

## Why Massively Parallel Processing?



- A quiet revolution and potential build-up
  - Bandwidth: ~5x



GPU in every PC – massive volume & potential impact

## Serial Performance Scaling is Over



- Cannot continue to scale processor frequencies
  - no 10 GHz chips

- Cannot continue to increase power consumption
  - can't melt chip

- Can continue to increase transistor density
  - as per Moore's Law

#### **How to Use Transistors?**



- Instruction-level parallelism
  - out-of-order execution, speculation, ...
  - vanishing opportunities in power-constrained world
- Data-level parallelism
  - vector units, SIMD execution, ...
  - increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU
- Thread-level parallelism
  - increasing ... multithreading, multicore, manycore
  - Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, ...

#### The "New" Moore's Law



- Computers no longer get faster, just wider
- You must re-think your algorithms to be parallel!
- Data-parallel computing is most scalable solution
  - Otherwise: refactor code for 2 cores 4 cores 8 cores 16 cores...
  - You will always have more data than cores build the computation around the data

## **Generic Multicore Chip**





- Handful of processors each supporting ~1 hardware thread
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

## **Generic Manycore Chip**





- Many processors each supporting many hardware threads
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

## **Enter the GPU**



Massive economies of scale

Massively parallel



## **Lessons from Graphics Pipeline**



- Throughput is paramount
  - must paint every pixel within frame time
  - scalability
- Create, run, & retire lots of threads very rapidly
  - measured 14.8 Gthread/s on increment() kernel

- Use multithreading to hide latency
  - 1 stalled thread is OK if 100 are ready to run

### Why is this different from a CPU?



- Different goals produce different designs
  - GPU assumes work load is highly parallel
  - CPU must be good at everything, parallel or not
- CPU: minimize latency experienced by 1 thread
  - big on-chip caches
  - sophisticated control logic
- GPU: maximize throughput of all threads
  - # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
  - multithreading can hide latency => skip the big caches
  - share control logic across many threads

GPU devotes more transistors to data processing





© 2008 NVIDIA Corporation CPU GPU

## **NVIDIA GPU Architecture**



#### Fermi GF100



## **SM Multiprocessor**



- 32 CUDA Cores per SM (512 total)
- 8x peak FP64 performance
  - 50% of peak FP32 performance
- Direct load/store to memory
  - Usual linear sequence of bytes
  - High bandwidth (Hundreds GB/sec)
- 64KB of fast, on-chip RAM
  - Software or hardware-managed
  - Shared amongst CUDA cores
  - Enables thread communication



## **Key Architectural Ideas**



- SIMT (Single Instruction Multiple Thread) execution
  - threads run in groups of 32 called warps
  - threads in a warp share instruction unit (IU)
  - HW automatically handles divergence
- Hardware multithreading
  - HW resource allocation & thread scheduling
  - HW relies on threads to hide latency
- Threads have all resources needed to run
  - any warp not waiting for something can run
  - context switching is (basically) free



## Enter CUDA ("Compute Unified Device Architecture")



- Scalable parallel programming model
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel computing

## **CUDA: Scalable parallel programming**



- Augment C/C++ with minimalist abstractions
  - let programmers focus on parallel algorithms
  - not mechanics of a parallel programming language
- Provide straightforward mapping onto hardware
  - good fit to GPU architecture
  - maps well to multi-core CPUs too
- Scale to 100s of cores & 10,000s of parallel threads
  - GPU threads are lightweight create / switch is free
  - GPU needs 1000s of threads for full utilization

## Key Parallel Abstractions in CUDA



• Hierarchy of concurrent threads

Lightweight synchronization primitives

Shared memory model for cooperating threads

## Hierarchy of concurrent threads



- Parallel kernels composed of many threads
  - all threads execute the same sequential program



- Threads are grouped into thread blocks
  - threads in the same block can cooperate



Threads/blocks have unique IDs

#### **CUDA Model of Parallelism**





Global Memory

- CUDA virtualizes the physical hardware
  - thread is a virtualized scalar processor

(registers, PC, state)

block is a virtualized multiprocessor

(threads, shared mem.)

- Scheduled onto physical hardware without pre-emption
  - threads/blocks launch & run to completion
  - blocks should be independent

## **NOT:** Flat Multiprocessor





- Global synchronization isn't cheap
- Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model

#### **NOT:** Distributed Processors





Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI

## Sequential vs. Parallel

Speedup

$$S = \frac{T_{\text{sequential}}}{T_{\text{parallel}}}$$

Amdahl's law

$$S_{max} = \frac{1}{(1-P) + P/N}$$





Example: parallel portion P=90%



maximum Speedup S<sub>max</sub>=10

#### **Outline of CUDA Basics**

- Basic Kernels and Execution on GPU
- Basic Memory Management
- Coordinating CPU and GPU Execution
- See the Programming Guide for the full API

## BASIC KERNELS AND EXECUTION ON GPU

## **CUDA Programming Model**

- Parallel code (kernel) is launched and executed on a device by many threads
- Launches are hierarchical
  - Threads are grouped into blocks
  - Blocks are grouped into grids
- Familiar serial code is written for a thread
  - Each thread is free to execute a unique code path
  - Built-in thread and block ID variables

## **High Level View**



## Blocks of threads run on an SM



## Whole grid runs on GPU

#### **Many blocks of threads**



**Global Memory** 

### **Thread Hierarchy**

- Threads launched for a parallel section are partitioned into thread blocks
  - Grid = all blocks for a given launch
- Thread block is a group of threads that can:
  - Synchronize their execution
  - Communicate via shared memory

### **Memory Model**



# **Memory Model**



#### **Example: Vector Addition Kernel**

```
Device Code
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
 global void vecAdd(float* A, float* B, float* C)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
int main()
    // Run grid of N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d A, d B, d C);
```

#### **Example: Vector Addition Kernel**

```
Compute vector sum C = A+B
// Each thread performs one pair-wise addition
 global void vecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
                                            Host Code
int main()
{
    // Run grid of N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d A, d B, d C);
```

#### Example: Host code for vecAdd

```
// allocate and initialize host (CPU) memory
float *h A = ..., *h B = ...; *h C = ...(empty)
// allocate device (GPU) memory
float *d A, *d B, *d C;
cudaMalloc( (void**) &d A, N * sizeof(float));
cudaMalloc( (void**) &d B, N * sizeof(float));
cudaMalloc( (void**) &d C, N * sizeof(float));
// copy host memory to device
cudaMemcpy( d A, h A, N * sizeof(float),
   cudaMemcpyHostToDevice) );
cudaMemcpy( d B, h B, N * sizeof(float),
   cudaMemcpyHostToDevice) );
// execute grid of N/256 blocks of 256 threads each
vecAdd << N/256, 256 >>> (d A, d B, d C);
```

#### Example: Host code for vecAdd (2)

```
// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);
// copy result back to host memory
cudaMemcpy( h C, d C, N * sizeof(float),
   cudaMemcpyDeviceToHost) );
// do something with the result...
// free device (GPU) memory
cudaFree(d A);
cudaFree(d B);
cudaFree(d C);
```

#### **Kernel Variations and Output**

```
_global___ void kernel( int *a )
int idx = blockldx.x*blockDim.x + threadldx.x;
a[idx] = 7;
                                                      Output: 7777777777777777
       __ void kernel( int *a )
global
int idx = blockldx.x*blockDim.x + threadldx.x;
                                                      Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
a[idx] = blockldx.x;
       __void kernel( int *a )
global
int idx = blockldx.x*blockDim.x + threadldx.x;
a[idx] = threadldx.x;
                                                      Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
```

#### Code executed on GPU

- C/C++ with some restrictions:
  - Can only access GPU memory
  - No variable number of arguments
  - No static variables
  - No recursion
  - No dynamic polymorphism
- Must be declared with a qualifier:
  - global\_\_ : launched by CPU,
    - cannot be called from GPU must return void
  - \_\_device\_\_ : called from other GPU functions,
    - cannot be called by the CPU
  - \_\_host\_\_ : can be called by CPU
  - \_\_host\_\_ and \_\_device\_\_ qualifiers can be combined
    - sample use: overloading operators

#### **Memory Spaces**

- CPU and GPU have separate memory spaces
  - Data is moved across PCIe bus
  - Use functions to allocate/set/copy memory on GPU
    - Very similar to corresponding C functions
- Pointers are just addresses
  - Can't tell from the pointer value whether the address is on CPU or GPU
  - Must exercise care when dereferencing:
    - Dereferencing CPU pointer on GPU will likely crash
    - Same for vice versa

#### **GPU Memory Allocation / Release**

- Host (CPU) manages device (GPU) memory:
  - cudaMalloc (void \*\* pointer, size\_t nbytes)
  - cudaMemset (void \* pointer, int value, size\_t count)
  - cudaFree (void\* pointer)

```
int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
```

#### **Data Copies**

- cudaMemcpy( void \*dst, void \*src, size\_t nbytes, enum cudaMemcpyKind direction);
  - returns after the copy is complete
  - blocks CPU thread until all bytes have been copied
  - doesn't start copying until previous CUDA calls complete
- enum cudaMemcpyKind
  - cudaMemcpyHostToDevice
  - cudaMemcpyDeviceToHost
  - cudaMemcpyDeviceToDevice
- Non-blocking copies are also available

```
// walkthrough1.cu
#include <stdio.h>

int main()
{
   int dimx = 16;
   int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers
```

```
// walkthrough1.cu
#include <stdio.h>
int main()
  int dimx = 16;
  int num_bytes = dimx*sizeof(int);
  int *d_a=0, *h_a=0; // device and host pointers
  h_a = (int*)malloc(num_bytes);
  cudaMalloc( (void**)&d_a, num_bytes );
  if( 0==h_a || 0==d_a )
     printf("couldn't allocate memory\n");
     return 1;
```

```
// walkthrough1.cu
#include <stdio.h>
int main()
  int dimx = 16;
  int num_bytes = dimx*sizeof(int);
  int *d_a=0, *h_a=0; // device and host pointers
  h_a = (int*)malloc(num_bytes);
  cudaMalloc( (void**)&d_a, num_bytes );
  if( 0==h_a || 0==d_a )
     printf("couldn't allocate memory\n");
     return 1;
  cudaMemset( d_a, 0, num_bytes );
  cudaMemcpy( h_a, d_a, num_bytes,
cudaMemcpyDeviceToHost );
```

```
// walkthrough1.cu
#include <stdio.h>
int main()
  int dimx = 16:
  int num_bytes = dimx*sizeof(int);
  int *d_a=0, *h_a=0; // device and host pointers
  h_a = (int*)malloc(num_bytes);
  cudaMalloc( (void**)&d_a, num_bytes );
  if( 0==h_a || 0==d_a )
     printf("couldn't allocate memory\n");
    return 1;
  cudaMemset( d_a, 0, num_bytes );
  cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost );
  for(int i=0; i<dimx; i++)
     printf("%d ", h_a[i] );
  printf("\n");
  free( h_a );
  cudaFree( d_a );
  return 0;
```

#### **Example: Shuffling Data**

```
// Reorder values based on keys
// Each thread moves one element
 global void shuffle(int* prev array, int*
  new array, int* indices)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   new array[i] = prev array[indices[i]];
                                            Host Code
int main()
    // Run grid of N/256 blocks of 256 threads each
    shuffle<<< N/256, 256>>>(d old, d new, d ind);
```

#### **IDs and Dimensions**

- Threads:
  - 3D IDs, unique within a block
- Blocks:
  - 2D IDs, unique within a grid
- Dimensions set at launch
  - Can be unique for each grid
- Built-in variables:
  - threadIdx, blockIdx
  - blockDim, gridDim



## **Kernel with 2D Indexing**

```
__global__ void kernel( int *a, int dimx, int dimy )
{
   int ix = blockldx.x*blockDim.x + threadldx.x;
   int iy = blockldx.y*blockDim.y + threadldx.y;
   int idx = iy*dimx + ix;

a[idx] = a[idx]+1;
}
```

```
__global__ void kernel( int *a, int dimx, int dimy )
{
  int ix = blockldx.x*blockDim.x + threadIdx.x;
  int iy = blockldx.y*blockDim.y + threadIdx.y;
  int idx = iy*dimx + ix;
  a[idx] = a[idx]+1;
}
```

```
int main()
  int dimx = 16:
  int dimy = 16;
  int num_bytes = dimx*dimy*sizeof(int);
  int *d_a=0, *h_a=0; // device and host pointers
  h_a = (int*)malloc(num_bytes);
  cudaMalloc( (void**)&d_a, num_bytes );
  if( 0==h_a || 0==d_a )
     printf("couldn't allocate memory\n");
    return 1;
  cudaMemset( d_a, 0, num_bytes );
  dim3 grid, block;
  block.x = 4;
  block.y = 4;
  grid.x = dimx / block.x;
  grid.y = dimy / block.y;
  kernel<<<grid, block>>>( d_a, dimx, dimy );
  cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost );
  for(int row=0; row<dimy; row++)
    for(int col=0; col<dimx; col++)
       printf("%d ", h_a[row*dimx+col] );
    printf("\n");
  free( h_a );
  cudaFree( d_a );
  return 0:
```

#### Blocks must be independent

- Any possible interleaving of blocks should be valid
  - presumed to run to completion without preemption
  - can run in any order
  - can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
  - shared queue pointer: OK
  - shared lock: BAD ... can easily deadlock
- Independence requirement gives scalability

#### **CUDA Short Summary**

#### **Thread Hierarchy**

thread - smallest executable unity

warp - group of 32 threads

block - 2-16 warps or 64 - 512 threads (with shared memory)

grid - consists of several blocks

#### **Keyword extensions for C**

\_\_global\_\_ - kernel- function called by CPU, executed on GPU

\_device\_\_\_ - function called by GPU and executed on GPU

host\_\_ - [optional] - function called and executed by CPU