Chapitre

Fonctions Réciproques et croissance comparée

3. Fonctions trigonométriques

3.1. Réciproques de fonctions usuelles

Fonction	Réciproque	Domaine de Def
cos	arccos	$[-1,1] \rightarrow [0,\pi]$
sin	arcsin	$[-1,1] \rightarrow [-\tfrac{\pi}{2},\tfrac{\pi}{2}]$
tan	arctan	$\mathbb{R} o \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

3.1. Fonctions hyperboliques

Définition

On définit 3 nouvelles fonctions :

 $\widehat{\pi}$

Théorème 1.1 : Fonctions hyperboliques

•
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\cdot \sinh(x) = \frac{e^x - e^{-x}}{2}$$

•
$$tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

Propriétés

Fonction	Dérivée
$\cosh(x)$	sinh(x)
sinh(x)	$\cosh(x)$
tanh(x)	$\frac{1}{\cosh^2(x)}$

De plus, on a : $\cosh^2 - \sinh^2 = 1$.

3.1. Fonctions hyperboliques inverses

Fonction	Inverse	Domaine de Def
$\cosh(x)$	arcosh	$[-1, +\infty] \to \mathbb{R}$
sinh(x)	arsinh	$\mathbb{R} o \mathbb{R}$
tanh(x)	artanh	$]-1,1[ightarrow\mathbb{R}$

3. Croissance comparée

Théorème 2.1 : Limites à connaître

On pose a, n > 0

- $\cdot \lim_{+\infty} \frac{e^{ax}}{x^n} = +\infty$
- $\lim_{+\infty} \frac{x^a}{(\ln(x)^n} = +\infty$
- $\cdot \lim_{-\infty} |x|^n e^{ax} = 0$
- $| \lim_{x \to 0^+} |\ln(x)|^n x^a = 0$