AutoClean/Sensors

1

Generated by Doxygen 1.8.17

1 Namespace Index	1													
1.1 Namespace List														
2 Class Index	3													
2.1 Class List														
3 File Index	5													
3.1 File List														
4 Namespace Documentation	7													
4.1 Sensors Namespace Reference	7													
4.2 Sensors.sensors Namespace Reference	7													
4.2.1 Detailed Description	8													
4.2.2 Function Documentation	8													
4.2.2.1 export_sensors_to_excel()	8													
4.2.3 Variable Documentation	8													
4.2.3.1 action	8													
4.2.3.2 args	8													
4.2.3.3 conn	8													
4.2.3.4 cursor	9													
4.2.3.5 help	9													
4.2.3.6 HISTORY_WRITE	9													
4.2.3.7 module_path	9													
4.2.3.8 p	9													
4.2.3.9 parser	9													
	10													
	10													
	10													
	10													
	10													
•	10													
	10													
4.3.2.1 Check_none()	10													
5 Class Documentation	11													
	11													
5.1.1 Detailed Description	12													
5.1.2 Constructor & Destructor Documentation	12													
5.1.2.1init()	12													
5.1.3 Member Data Documentation	12													
5.1.3.1 alt	12													
5.1.3.2 groundspeed	13													
5.1.3.3 heading	13													
5.1.3.4 last_heartbeat	13													
5.1.3.5 relative_alt	13													

Index

5.2 Sensors.telemetry.Telemetry Class Reference	14
5.2.1 Detailed Description	15
5.2.2 Constructor & Destructor Documentation	15
5.2.2.1init()	15
5.2.3 Member Function Documentation	15
5.2.3.1 close()	15
5.2.3.2 initialize()	17
5.2.3.3 is_arm()	18
5.2.3.4 read_channel8()	18
5.2.3.5 read_information()	18
5.2.4 Member Data Documentation	19
5.2.4.1 sitl	19
5.2.4.2 vehicle	19
5.2.4.3 vehicleConnected	19
6 File Documentation	21
6.1initpy File Reference	21
6.2 sensors.py File Reference	21
6.3 telemetry.py File Reference	22

23

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

Sensors	7
Sensors.sensors	
Sensors: reading data out of sensors of the vehicle to sql server using telemetry class	7
Sensors.telemetry	
Telemtry: class implementation for reading data out of sensors of the vehicle. optional to connect	
either to sitl simulation or the real vehicle with uart	10

2 Namespace Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Sensors.telemetry.SensorsInfo	
Class for sensors info which saves the needed telem info	1
Sensors.telemetry.Telemetry	
Class to hold dronekit API vehicle handler and connect to it	14

4 Class Index

File Index

3.1 File List

Here is a list of all files with brief descriptions:

initpy						 																2	21
sensors.py		 				 																2	21
telemetry.py		 				 																2	22

6 File Index

Namespace Documentation

4.1 Sensors Namespace Reference

Namespaces

· sensors

sensors: reading data out of sensors of the vehicle to sql server using telemetry class

telemetry

telemtry: class implementation for reading data out of sensors of the vehicle. optional to connect either to sitl simulation or the real vehicle with uart

4.2 Sensors.sensors Namespace Reference

sensors: reading data out of sensors of the vehicle to sql server using telemetry class

Functions

def export_sensors_to_excel ()

this function runs as a parallel process in sensors module.

Variables

- module_path = os.path.abspath(os.getcwd())
- parser = argparse.ArgumentParser(description="Drone detection project")

action chooses true or false hardcoded for the arguments of this module

- action
- help
- args = parser.parse_args()
- int HISTORY_WRITE = 10
- conn
- cursor
- bool vehicleConnected = True
- TX_Pixhawk_telem = telemetry.Telemetry(vehicleConnected)
- p = Process(target=export_sensors_to_excel)
- sensors_info = TX_Pixhawk_telem.read_information()

4.2.1 Detailed Description

sensors: reading data out of sensors of the vehicle to sql server using telemetry class

4.2.2 Function Documentation

4.2.2.1 export_sensors_to_excel()

```
def Sensors.sensors.export_sensors_to_excel ( )
```

this function runs as a parallel process in sensors module.

Exports the sensors sql table to xlsx format using sql_to_excel function in sql_config (possible to change to csv)

Definition at line 34 of file sensors.py.

4.2.3 Variable Documentation

4.2.3.1 action

```
Sensors.sensors.action
```

Definition at line 22 of file sensors.py.

4.2.3.2 args

```
Sensors.sensors.args = parser.parse_args()
```

Definition at line 28 of file sensors.py.

4.2.3.3 conn

```
Sensors.sensors.conn
```

Definition at line 43 of file sensors.py.

4.2.3.4 cursor

Sensors.sensors.cursor

Definition at line 43 of file sensors.py.

4.2.3.5 help

Sensors.sensors.help

Definition at line 23 of file sensors.py.

4.2.3.6 HISTORY_WRITE

```
int Sensors.ensors.HISTORY_WRITE = 10
```

Definition at line 30 of file sensors.py.

4.2.3.7 module_path

Sensors.sensors.module_path = os.path.abspath(os.getcwd())

Definition at line 13 of file sensors.py.

4.2.3.8 p

```
Sensors.sensors.p = Process(target=export_sensors_to_excel)
```

Definition at line 54 of file sensors.py.

4.2.3.9 parser

Sensors.sensors.parser = argparse.ArgumentParser(description="Drone detection project")

action chooses true or false hardcoded for the arguments of this module

Definition at line 21 of file sensors.py.

4.2.3.10 sensors_info

```
Sensors.sensors_info = TX_Pixhawk_telem.read_information()
```

Definition at line 59 of file sensors.py.

4.2.3.11 TX_Pixhawk_telem

```
Sensors.sensors.TX_Pixhawk_telem = telemetry.Telemetry(vehicleConnected)
```

Definition at line 51 of file sensors.py.

4.2.3.12 vehicleConnected

```
bool Sensors.sensors.vehicleConnected = True
```

Definition at line 48 of file sensors.py.

4.3 Sensors.telemetry Namespace Reference

telemtry: class implementation for reading data out of sensors of the vehicle. optional to connect either to sitl simulation or the real vehicle with uart

Classes

· class SensorsInfo

class for sensors info which saves the needed telem info.

· class Telemetry

class to hold dronekit API vehicle handler and connect to it.

Functions

• def check none (val)

4.3.1 Detailed Description

telemtry: class implementation for reading data out of sensors of the vehicle. optional to connect either to sitl simulation or the real vehicle with uart

4.3.2 Function Documentation

4.3.2.1 check_none()

```
\begin{tabular}{ll} def Sensors.telemetry.check\_none ( \\ val ) \end{tabular}
```

Definition at line 12 of file telemetry.py.

```
12 def check_none(val):
13 if val is None:
14 return -1
15 else:
16 return val
17
```

Class Documentation

5.1 Sensors.telemetry.SensorsInfo Class Reference

class for sensors info which saves the needed telem info.

Collaboration diagram for Sensors.telemetry.SensorsInfo:

```
Sensors.telemetry.SensorsInfo

+ alt_
+ heading_
+ relative_alt_
+ groundspeed_
+ last_heartbeat_

+ __init__()
```

Public Member Functions

• def __init__ (self, alt, heading, relative_alt, groundspeed, last_heartbeat)

Public Attributes

- alt_
 - altitue of vehicle in meters
- heading_

current heading in degrees - 0..360, where North = 0 (int).

- · relative_alt_
- groundspeed_

groundspeed of vehicle in meters/second

· last_heartbeat_

Time since last MAVLink heartbeat was received (in seconds).

12 **Class Documentation**

5.1.1 Detailed Description

class for sensors info which saves the needed telem info.

might alter information to suit to our needs

Definition at line 20 of file telemetry.py.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 __init__()
```

```
def Sensors.telemetry.SensorsInfo.__init__ (
              self,
              alt,
              heading,
              relative_alt,
              groundspeed,
              last_heartbeat )
```

```
Definition at line 21 of file telemetry.py.

21 def __init__(self, alt, heading, relative_alt, groundspeed, last_heartbeat):
              self.alt_ = alt
24
             self.heading_ = heading
25
             self.relative_alt_ = relative_alt
26
2.7
              self.groundspeed_ = groundspeed
# self.home_location_ = home_location
28
30
32
              self.last_heartbeat_ = last_heartbeat
33
34
```

5.1.3 Member Data Documentation

5.1.3.1 alt

Sensors.telemetry.SensorsInfo.alt_

altitue of vehicle in meters

Definition at line 23 of file telemetry.py.

5.1.3.2 groundspeed_

Sensors.telemetry.SensorsInfo.groundspeed_

groundspeed of vehicle in meters/second

Definition at line 28 of file telemetry.py.

5.1.3.3 heading_

```
Sensors.telemetry.SensorsInfo.heading_
```

current heading in degrees - 0..360, where North = 0 (int).

Definition at line 25 of file telemetry.py.

5.1.3.4 last_heartbeat_

```
Sensors.telemetry.SensorsInfo.last_heartbeat_
```

Time since last MAVLink heartbeat was received (in seconds).

The attribute can be used to monitor link activity and implement script-specific timeout handling.

Definition at line 32 of file telemetry.py.

5.1.3.5 relative_alt_

```
{\tt Sensors.telemetry.SensorsInfo.relative\_alt\_}
```

Definition at line 26 of file telemetry.py.

The documentation for this class was generated from the following file:

• telemetry.py

14 Class Documentation

5.2 Sensors.telemetry.Telemetry Class Reference

class to hold dronekit API vehicle handler and connect to it.

Collaboration diagram for Sensors.telemetry.Telemetry:

Sensors.telemetry.Telemetry + vehicleConnected + sitl + vehicle + __init__() + initialize() + read_information() + read_channel8() + is_arm() + close()

Public Member Functions

def __init__ (self, vehicle_connected)

• def initialize (self, indoor)

Download the vehicle waypoints (commands) to acquire take-off parameters.

· def read_information (self)

One time read information from the Pixhawk flight computer.

constructor of telemetry which connects to vehicle or simulation

def read_channel8 (self)

Reads CH8IN (the drone operator can signal the TX2 through this channel).

• def is_arm (self)

Reads armed status of the system (arm is ready to flight - motors are running) Disarm is while on ground.

• def close (self)

Closing interface & simulation (if there is)

Public Attributes

· vehicleConnected

holds True if we're running this on a TX2 connected to the Pixhawk by Uart (Telem2) and False otherwise

sitl

simulation handle if we don't use the pixhawk itself

vehicle

vehicle is a dronekitAPI class for the connection to the vehicle

5.2.1 Detailed Description

class to hold dronekit API vehicle handler and connect to it.

this class connect either to vehicle or simulation and implement methods to read info from pixhawk

Definition at line 38 of file telemetry.py.

5.2.2 Constructor & Destructor Documentation

```
5.2.2.1 __init__()
```

constructor of telemetry which connects to vehicle or simulation

Parameters

```
vehicle_connected True/False
```

```
Definition at line 42 of file telemetry.py.
```

```
def __init__(self, vehicle_connected):
43
44
                                          self.vehicleConnected = vehicle_connected
45
46
                                        if not self.vehicleConnected:
                                                         self.sitl = dronekit_sitl.start_default() # (sitl.start)
49
                                                         \texttt{connection\_string} = \texttt{self.sitl.connection\_string()} \quad \texttt{\# now we have the connection string (the property of the propert
                        ip and udp port)
50
                                        print("Connecting with the drone")
51
                                        if not self.vehicleConnected:
52
53
                                                         54
55
                         parameters have been read
56
                                        else:
                                                        print("Trying to connect")
self.vehicle = connect('/dev/ttyTHS2', wait_ready=True, # in j121 it was ttyTHS1
baud=57600) # this is the name of the Pixhawk/Telem2 as the TX2 sees
59
60
                                                         # the same baud rate as configured in the Pixhawk using Mission Planner
                                       print ("Connection success")
61
62
```

5.2.3 Member Function Documentation

5.2.3.1 close()

```
def Sensors.telemetry.Telemetry.close ( self )
```

16 Class Documentation

Closing interface & simulation (if there is)

Parameters

Returns

-

Definition at line 135 of file telemetry.py.

```
135 def close(self):
136 self.vehicle.close()
137 if not self.vehicleConnected:
138 self.sitl.stop()
139
140 print("Telemetry is closed")
141
142
```

5.2.3.2 initialize()

```
def Sensors.telemetry.Telemetry.initialize ( self, \\ indoor \ )
```

Download the vehicle waypoints (commands) to acquire take-off parameters.

Parameters

```
indoor True/False
```

Returns

.

Definition at line 68 of file telemetry.py.

```
def initialize(self, indoor):
69
           print("Initialization...")
70
            if indoor:
71
                cmds = self.vehicle.commands
                cmds.download()
72
73
                cmds.wait_ready()
                print("Indoor initialization completed")
75
           else: # if there won't be a GPS signal, we will stuck here (self.vehicle.home_location will be
76
                num\_satellites = 0
                GPSInfo(None, None, None, satellites_visible=num_satellites)
while not self.vehicle.home_location:
    cmds = self.vehicle.commands
77
78
80
                     cmds.download()
                    cmds.wait_ready()
82
                    if not self.vehicle.home_location: # will be 'None' until first set by autopilot and
       download completes
                         print("Waiting for home location...")
83
84
                         time.sleep(1)
                print("\n Home location: {}".format(self.vehicle.home_location))
                print("GPS info: {}".format(self.vehicle.gps_0))
86
87
                print("Visible satellites: {}".format(num_satellites))
                print("Outdoor initialization completed")
88
89
```

18 Class Documentation

5.2.3.3 is_arm()

```
def Sensors.telemetry.Telemetry.is_arm ( self )
```

Reads armed status of the system (arm is ready to flight - motors are running) Disarm is while on ground.

Parameters

Returns

vehicle.armed True/False

Definition at line 114 of file telemetry.py.

```
114 def is_arm(self):
115 self.vehicle.wait_ready(True)
116 return self.vehicle.armed
117
```

5.2.3.4 read_channel8()

```
def Sensors.telemetry.Telemetry.read_channel8 ( self )
```

Reads CH8IN (the drone operator can signal the TX2 through this channel).

Used for reset the system

Definition at line 106 of file telemetry.py.

5.2.3.5 read_information()

```
def Sensors.telemetry.Telemetry.read_information (
```

One time read information from the Pixhawk flight computer.

Returns

sensors_info class

Definition at line 93 of file telemetry.py.

```
def read_information(self):
94
           self.vehicle.wait_ready(True) # waits for specified attributes to be populated from the vehicle
       (values are initially None)
95
           {\tt takeoff\_alt\_barom}^- = {\tt self.vehicle.location.global\_frame.alt}
           sensors_info = SensorsInfo(check_none(self.vehicle.location.global_relative_frame.lat),
96
                        check_none(self.vehicle.heading),
98
                        check_none(self.vehicle.location.global_frame.alt - takeoff_alt_barom),
99
                        check_none(self.vehicle.groundspeed),
100
                         # check_none(self.vehicle.home_location),
101
                         check_none(self.vehicle.last_heartbeat)
102
103
            return sensors_info
104
```

5.2.4 Member Data Documentation

5.2.4.1 sitl

Sensors.telemetry.Telemetry.sitl

simulation handle if we don't use the pixhawk itself

Definition at line 48 of file telemetry.py.

5.2.4.2 vehicle

Sensors.telemetry.Telemetry.vehicle

vehicle is a dronekitAPI class for the connection to the vehicle

Definition at line 54 of file telemetry.py.

5.2.4.3 vehicleConnected

 ${\tt Sensors.telemetry.Telemetry.vehicleConnected}$

holds True if we're running this on a TX2 connected to the Pixhawk by Uart (Telem2) and False otherwise

Definition at line 44 of file telemetry.py.

The documentation for this class was generated from the following file:

• telemetry.py

20 Class Documentation

File Documentation

6.1 __init__.py File Reference

Namespaces

• Sensors

6.2 sensors.py File Reference

Namespaces

· Sensors.sensors

sensors: reading data out of sensors of the vehicle to sql server using telemetry class

Functions

• def Sensors.sensors.export_sensors_to_excel ()

this function runs as a parallel process in sensors module.

Variables

- Sensors.sensors.module_path = os.path.abspath(os.getcwd())
- Sensors.sensors.parser = argparse.ArgumentParser(description="Drone detection project")

 action chooses true or false hardcoded for the arguments of this module
- Sensors.sensors.action
- · Sensors.sensors.help
- Sensors.sensors.args = parser.parse_args()
- int Sensors.sensors.HISTORY_WRITE = 10
- · Sensors.sensors.conn
- Sensors.sensors.cursor
- bool Sensors.sensors.vehicleConnected = True
- Sensors.sensors.TX_Pixhawk_telem = telemetry.Telemetry(vehicleConnected)
- Sensors.sensors.p = Process(target=export_sensors_to_excel)
- Sensors.sensors_info = TX_Pixhawk_telem.read_information()

22 File Documentation

6.3 telemetry.py File Reference

Classes

class Sensors.telemetry.SensorsInfo
 class for sensors info which saves the needed telem info.

· class Sensors.telemetry.Telemetry

class to hold dronekit API vehicle handler and connect to it.

Namespaces

· Sensors.telemetry

telemtry: class implementation for reading data out of sensors of the vehicle. optional to connect either to sitl simulation or the real vehicle with uart

Functions

• def Sensors.telemetry.check_none (val)

Index

init	Sensors.telemetry, 18
Sensors.telemetry.SensorsInfo, 12	read_information
Sensors.telemetry.Telemetry, 15	Sensors.telemetry.Telemetry, 18
initpy, 21	relative_alt_
	Sensors.telemetry.SensorsInfo, 13
action	
Sensors.sensors, 8	Sensors, 7
alt_	sensors.py, 21
Sensors.telemetry.SensorsInfo, 12	Sensors.sensors, 7
args	action, 8
Sensors.sensors, 8	args, 8
abade nana	conn, 8
check_none	cursor, 8
Sensors.telemetry, 10	export_sensors_to_excel, 8
Close	help, 9
Sensors.telemetry.Telemetry, 15	HISTORY_WRITE, 9
Conn	module_path, 9
Sensors.sensors, 8	p, 9
Cursor	parser, 9
Sensors.sensors, 8	sensors_info, 9
export_sensors_to_excel	TX_Pixhawk_telem, 10
Sensors.sensors, 8	vehicleConnected, 10
Gensors.sensors, o	Sensors.telemetry, 10
groundspeed_	check none, 10
Sensors.telemetry.SensorsInfo, 12	Sensors.telemetry.SensorsInfo, 11
Concordional y. Concording, 12	init, 12
heading	alt_, 12
Sensors.telemetry.SensorsInfo, 13	groundspeed_, 12
help	heading_, 13
Sensors.sensors, 9	last_heartbeat_, 13
HISTORY_WRITE	relative_alt_, 13
Sensors.sensors, 9	Sensors.telemetry.Telemetry, 14
,	init, 15
initialize	close, 15
Sensors.telemetry.Telemetry, 17	initialize, 17
is_arm	is_arm, 17
Sensors.telemetry.Telemetry, 17	read_channel8, 18
	read_information, 18
last_heartbeat_	sitl, 19
Sensors.telemetry.SensorsInfo, 13	vehicle, 19
	vehicleConnected, 19
module_path	sensors info
Sensors.sensors, 9	Sensors.sensors, 9
	sitl
p	
Sensors.sensors, 9	Sensors.telemetry.Telemetry, 19
parser	talamatrumu 00
Sensors.sensors, 9	telemetry.py, 22
vand abancal0	TX_Pixhawk_telem
read_channel8	Sensors.sensors, 10

24 INDEX

vehicle

Sensors.telemetry.Telemetry, 19

vehicleConnected

Sensors.sensors, 10

Sensors.telemetry.Telemetry, 19