P8160 - Bayesian Modeling of Hurricane Trajectories

Paulina Han, Waveley Qiu, Yida Wang, Lin Yang, Jibei Zheng, Haolin Zhong

2022-05-09

Hurricane Ida

CAPITAL WEATHER GANG

Ida's impact from the Gulf Coast to Northeast — by the numbers

The storm caused more than 40 deaths in the Northeast, brought tornadoes in six states and unleashed 172 mph winds in Louisiana

From: Livingston, I., The Washington Post, 2021

Saffir-Simpson Wind Scale

protective action, including evacuating from areas vulnerable to storm surge.

From: NHC NOAA

Proposed Hierarchical Bayesian Model

The following hierarchical Bayesian model was proposed to predict the wind speed of the i^{th} hurricane at time t + 6:

$$Y_{i}(t+6) = \beta_{0,i} + \beta_{1,i} Y_{i}(t) + \beta_{2,i} \Delta_{i,1}(t) + \beta_{3,i} \Delta_{i,2}(t) + \beta_{4,i} \Delta_{i,3}(t) + \varepsilon_{i}(t),$$

where $Y_i(t)$ is the wind speed at time t, $\Delta_{i,1}(t)$, $\Delta_{i,2}(t)$, $\Delta_{i,3}(t)$ are the changes in latitude, longitude, and wind speed between times t and t-6, $\varepsilon_i(t)$ is the random error associated with each $Y_i(t+6)$

We want to estimate the random coefficients, $\beta_i = (\beta_{1,i}, \beta_{2,i}, \beta_{3,i}.\beta_{4,i})$, for each hurricane.

Assumed Prior Distributions

The prior distributions for each of these parameters are assumed to be as follows:

$$\epsilon_i(t) \sim \mathcal{N}(0,\sigma^2)$$
, which are independent across t
$$P\left(\sigma^2\right) \propto \frac{1}{\sigma^2}$$

$$P(\mu) \propto 1$$

$$P\left(\Sigma^{-1}\right) \propto |\Sigma|^{-(d+1)} \exp\left(-\frac{1}{2}\Sigma^{-1}\right), \text{ where } d \text{ is the dimension of } \beta_i$$

$$\beta_i \sim \mathcal{N}(\mu, \Sigma)$$

Goals

- 1. Construct an MCMC algorithm from which we can sample from a posterior distribution to estimate $\Theta = (\mathbf{B}, \mu, \sigma^2, °)$.
- 2. Conduct analysis using estimated parameters to understand their properties.
 - a. Seasonal changes in any of the coefficients
 - b. Predictive influence of these coefficients on forecasting hurricane impact.