TW 219906 英文 ABSTRACT

英文發明摘要(發明之名稱: LASER MACHINING APPARATUS AND METHOD

A method and apparatus for detecting the machining status of a laser beam machining device, having a multimirror resonator for generating a machining beam, which utilizes the secondary light generated by the machining operation and returned from the workpiece surface into the resonator for control of the machining operation. The oscillator and accompanying components, such as beam dividing mirrors and splitters, are operative to separate the secondary light from the laser beam within the resonator and direct the two beams separately to detectors located outside of the resonator. Alternatively, the secondary light and laser beam may be directed to the outside together where they are separated by an integrating sphere for detection.

219906

中结	日期	82.8.11
索	號	82106416
類	别	Bz 3H 7/33

A4 C4

	工在机田	本局填註)		7
		發明 專利説明書		
一、發明 一、創作名稱	中文	雷射加工機及雷射加工方法		
	英 文	LASER WACHINING APPARATUS AND METHOD		
二、發明人	姓名	(1) 黑澤滿樹 (2) 小川周治 (3) 管原雅之 (4) 船井 (5) 湯村 敬 (6) 山本 哲	潔	
	籍 賞(図籍)	日本國		
	住、居所	(1)(2)(3)日本國名古屋市東區矢田南五丁目1番14號 三菱電機株式會社名古屋製作所内 (4)(5)(6)日本國尼崎市塚口本町八丁目1番1號 三菱電機株式會社産業システム(糸統)研究	. 所内	
	姓 名 (名稱)	日商・三菱電機股份有限公司		
	籍 賞 (図語)	日本國		
	住、居所 (事務所)	日本國東京都千代田區丸之內二丁目2番3號		
	代表人	北岡隆	FP03-	0051
	姓 名		ים '	7.5.

經濟部中央標準局員工消費合作社印製

英文發明摘要(發明之名稱: LASER MACHINING APPARATUS AND METHOD

A method and apparatus for detecting the machining status of a laser beam machining device, having a multimirror resonator for generating a machining beam, which utilizes the secondary light generated by the machining operation and returned from the workpiece surface into the resonator for control of the machining operation. The oscillator and accompanying components, such as beam dividing mirrors and splitters, are operative to separate the secondary light from the laser beam within the resonator and direct the two beams separately to detectors located outside of the resonator. Alternatively, the secondary light and laser beam may be directed to the outside together where they are separated by an integrating sphere for detection.

附注:本案已向 國(地區)中請專利、申請日期: 案號:

日本 1993.2.15 5-25277

步供值測之用。

五、發明説明(3)

發明之背景

本發明之範圍

本發明係論及一種留射加工機,詳言之,其係論及一種可用來對焦、和進行切削故障之偵測等的光感測器。 <u>先存技藝之詳細說明</u>

就以電射光束來切削工件的雷射加工機而言,工件之切削狀態,務必要能不斷地受到監控,以便能夠減少在切削起始點所進行之穿孔時間、能夠防止穿孔期間可能之破裂、以及能夠防止某種之切削故障,譬如,半圓槽孔、燒燬、或浮渣黏等。就此一目的而言,在切削期間,有必數以某種裝置,來偵測並監控在工件切削表面上所產生之光束。

第29圖係顯示所舉日本專利公報第HEI491880號,或日本專利公報第HEI4105780號中,所揭示之一種傳統式雷射加工機中所使用之可見光偵測裝置。在此簡圖中,數字1係表示使用某種光電裝置或攝影裝置的光感測器、數字2條表示切削透鏡、數字3條表示切削刀頭、數字4條表示噴嘴、數字5條表示可將來自切削表面之光東反射至至數光感測器所在之方向上的面鏡、數字6條表示該切削刀頁2上面所設之窗口、數字7條表示可依據該光感測器之光波,來判斷穿孔完成和切削故障等的偵測區段、數字8條表示面射光束、數字9條表示來自工件之光波、數字10條表示NC裝置、數字11條表示轉向面鏡、數字12條表示質射緩盪器、而數字¥則條表示工件。

五、發明説明(4)

在依上述方式所構成之傳統式留射加工機中,當工件W受留射光束8之照射時,其切削表面由於照射點之熔融等所致之部份光波,會被面鏡5反射而為上述之光感測器1所接受。此光波在強度上之變化,會受到光感測器1之偵測,其穿孔完成之時間、或切削故障之發生,會為上述之值側區段7所偵測,而此一資訊則會傳送至上述之NC裝置10,以便控制上述之留射加工機。

在上述之傳統式雷射加工機中,上述裝配在該切削刀 頭上面而靠近該工件之面鏡和光感測器, 可能會干擾到上 述智射加工機之運作,以及在切削期間, 可能會受到工件 所生之煙氣及(或)焊濺物的污染, 或者會受到上述雷射光 束之散射光波的傷害。此等影響使得該雷射加工機, 長 時 間 穩 定 運 作 。 而 且 , 由 於 上 述 之 面 鏡 必 須 放 置 在 不 會 被該雷射光東照射到的地方, 其通常是在頂部, 切削區域 使無法由此方向之透視角度觀察到。 就其他之觀察位置而 上述光波之強度可能不夠, 其結果將會使得偵測鹽敏 度降低、切削點之實際影像獲取困難、以及運作數據之量 如果上述切削刀頭係包含該光感測器, 此外, 則上述切削運作中所可能使用之所有切削刀頭,都必須要 配備有某種光感測器機構, 因而會造成其成本過高之結果

因此,為克服傳統設計之上述諸缺點,本發明之目的旨在提供一種低成本之解射加工機,它能夠允許長時間執行穩定運轉、獲取切削點之實際影像、以及偵測靈敏度之

五、發明說明(5)

提高、而上述之裝置則僅需要一個光感測器機構。 <u>本發明之概要</u>

本發明一些雷射加工機之實施例,允許部份出自該工件切削表面上所產生之光波而沿上述光束導引路徑折返的光波,能與上述之雷射光束分開,而能自該雷射振盪器之共振器取得並加以偵測。

就本發明之其他特徵而言,上述分開測得之光波,可得到幾項有用的結果。

本發明之雷射加工機裝置,能夠偵測到其光學係統之焦點位置。

本發明之雷射加工機裝置,至少能夠偵測到穿孔之完成或穿孔期間之故障。

本發明之雷射加工機裝置,能夠偵測到上述工件之加工點的加工狀態。

本發明之雷射加工機裝置,允許其加工條件,能夠依無點之位置、穿孔之完成或穿孔期間之故障,以及工件之加工點的加工狀態而定。

本發明之雷射加工機裝置,允許沿其加工路徑之回授控制,在運用上能夠依上述測得之資訊而定。

本發明之雷射加工機裝置,可使相對於上述雷射光束之切削刀頭噴嘴孔,以及其聚光器系統之欠對準,能夠得到補償。

本發明之雷射加工機裝置,允許其共振器面鏡和光波導引路徑面鏡之任何傾斜角度,能夠加以改變,以便能夠

五、發明説明(6)

捕 償 光 束 軸 線 之 任 何 偏 差 值 。

本發明之雷射加工機裝置,允許上述之聚光器,能夠沿上述光束軸線移動,以便能夠改變該聚光器之焦距。

本發明之雷射加工機裝置,能夠偵測到切削透鏡至工件表面間之距離。

本發明之雷射加工機裝置,可使得任何用以調整該等共振器面鏡之活動支撑機構,能夠受到控制,以便能夠補償光束模態中的任何誤差。

本發明之雷射加工機方法,能夠在該雷射振盪器之振盪狀況、切削氣體之狀態、焦點之位置、以該焦點位置為基礎之饋送速率和噴嘴狀態、穿孔之完成,穿孔之故障、或工件加工點之切削狀態中間,至少就其中之一加以自動控制。

本發明之雷射加工機方法,能夠依據自該加工點所測得之資訊,沿上述切削路徑運用某種自動回授之控制。

本發明之雷射加工機方法,可使上述之噴嘴孔和聚光器系統相對於該雷射光束之欠對準,能夠自動地受到補償

本發明之雷射加工機方法,允許其共振器面鏡和光波導引路徑面鏡之傾斜角度,能夠加以改變,以便能夠自動補償光束軸線之偏差值。

圖式之簡單說明

第 1 圖 係 例 示 一 依 本 發 明 之 第 一 較 佳 實 施 例 所 製 之 雷射 加 工 機;

五、發明說明(7)

第2圖係顯示一依本發明之第二較佳實施例所製之留射加工機;

第3圖係第2圖中所示感測器之光偵測靈敏度的一個特性曲線圖;

第 4 圖 係 顯 示 一 依 本 發 明 之 第 三 較 佳 實 施 例 所 製 之 雷射 加 工 機 的 特 徵 :

第 5 圖 係 一 依 本 發 明 之 第 四 較 佳 實 施 例 所 製 之 雷 射 加工 機 的 佈 置 圖;

第6圖條顯示一依本發明之第五較佳實施例所製之雷射加工機;

第7圖 係 一 依 本 發 明 之 第 六 較 佳 實 施 例 所 製 之 雷 射 加工 機 的 佈 置 圖:

第8圖條例示一依本發明之第七較佳實施例所製之另一雷射加工機;

第9圖 係 一 依 本 發 明 之 第 八 較 佳 實 施 例 所 製 之 雷 射 加工 機 的 佈 置 圖;

第 1 0 圖 係 一 依 本 發 明 之 第 九 較 佳 實 施 例 所 製 之 雷 射 加工 機 的 佈 置 圖:

第 11 圖 係 一 依 本 發 明 之 第 十 較 佳 實 施 例 所 製 之 雷 射 加工 機 的 佈 置 圖;

第 12 圖 係 一 依 本 發 明 之 第 十 一 較 佳 實 施 例 所 製 之 雷 射加 工 機 的 佈 置 圖;

第 1 3 圆 係 本 發 明 之 雷 射 加 工 機 在 第 十 二 實 施 例 所 用 之 較 佳 結 構 下 的 佈 置 圆;

五、發明說明(8)

第14圖條例示第13圖中所示之雷射加工機中,一切削透鏡之位置與一光感測器傾測信號之處理輸出間的關係;

第 15 圖 係 一 可 顯 示 第 13 圖 中 所 示 之 雷 射 加 工 機 中 , 在 穿 孔 期 間 一 切 削 點 之 偵 測 狀 態 的 示 意 圖 ;

第 1 6 圖條例示上述光感測器偵測信號之處理輸出,在上述穿孔之完成前後的變化;

第 17 圖 係 上 述 光 感 測 器 偵 測 信 號 之 處 理 輸 出 , 在 上 述 之 穿 孔 期 間 發 生 破 裂 之 時 刻 的 一 個 波 形 圖 ;

第18圖條一可顯示切削期間,一切削點之偵測狀態的示意圖;

第 1 9 圖 係 上 述 光 感 測 器 偵 測 信 號 之 處 理 輸 出 , 在 上 述 之 切 削 期 間 發 生 切 削 故 障 之 時 刻 的 一 個 波 形 圖 ;

第20圖條一切削故障自動改進處理之流程圖;

第21個係上述之雷射加工機,在其第十三實施例之較佳形式下的一個佈置圖;

第22圖係一可顯示上述第十三實施例之雷射加工機中,一切削表面在切削路徑劃界線偵測運作中之偵測狀態的示意圖;

第23圖條本發明第十四較佳實施例之雷射加工機的佈置圖:

第24圖條一可顯示本發明第十四實施例之雷射加工機中,一切削表面在欠對準補償偵測運作中之偵測狀態的示示意圖;

第 2 5 圆 係 本 發 明 第 十 五 較 佳 實 施 例 之 雷 射 加 工 機 的 佈

五、發明說明(9)

置 圖;

第 2 6 圖 係 本 發 明 第 十 六 較 佳 實 施 例 之 雷 射 加 工 機 的 佈置 圖;

第27圖條本發明第十七較佳實施例之雷射加工機的佈置圖;

第 2 8 圖 係 本 發 明 第 十 八 較 佳 實 施 例 之 雷 射 加 工 機 的 佈置 圖; 以 及

第 2 9 圖 係 例 示 一 習 見 於 傳 統 技 藝 中 之 雷 射 加 工 機 。 較 佳 實 施 例 之 詳 細 說 明

實 施 例 1

經濟部中央標準局員工消費合作社印製

五、發明説明(10)

)而言約為數十個百分比。因此,該切削表面上所産生而 沿上述之光波導引路徑折反進入該雷射振盪器内之部份光 波 9, 能 夠 被 取 出 至 該 共 振 器 之 外 部 。 數 字 1 8 係 表 示 波 長 選擇 譴 波 器 , 例 如 一 有 色 玻 璃 , 它 能 夠 裝 在 上 述 之 光 感 測 器 1內, 以便能自上述通過該背部面鏡 14的光波 9, 完全移 去 雷射光 束之成分, 藉以能夠防止該光感測器1受到破壞, 以及能夠選擇使位在高偵測靈敏度之波長區域內的光波通 過。數字9'係表示該工件 \2 切別表面上所産生而折返之 光波9, 葉已通過該波長選擇濾波器16後, 已除去其留射 光東之成分的光波。上述所採用之光感測器1, 係相對於 上述自該波長選擇濾波器16輸出之光波9'的波長區域,而 具 有 高 的 偵 測 鹽 敏 度 , 以 及 其 可 為 一 類 似 S i 發 光 二 極 體 之 單一光接收裝置,或為一類似其光接收裝置可整合形成一 陣 列 之 C C D 的 攝 影 裝 置 。 上 述 之 單 一 裝 置 , 能 夠 偵 測 到 上 述切削點之發射強度上的變化,而上述之攝影裝置。 能夠偵測到上述切削點之發射強度上的變化外,尚能夠自 該切削點之實際影像中,偵測出其發射強度之分佈或色彩 (波長)上的變化。

在上述之設計中,該光感測器1以及將光波導至該光感測器1之面鏡,在佈置上不須緊鄰上述之工件,譬如上述之切削刀頭內,因而,由於留射光東之散射光波所致之傷害,以及由於光波量不足所致之低鹽敏度等習見之缺點,均能夠得到解決,其整個裝置之製作輕便,以及其偵測機構之可靠度得以增進。

五、發明説明(11)

實 施 例 2

第2圖係可顯示依本發明之第二較佳實施例所製之雷 射加工機的佈置圖,其中,數字17a、17b、和18係表示用 以界定上述雷射振盪器内之共振光束軸線的面鏡。 面 鏡 18係 分 光 器 , 其 正 像 上 述 之 背 部 面 鏡 14 一 樣 對上述之雷射光束而言,約具有100%的反射係數, 及對其他光波(特別是可見光)而言,則具有數十個百分比 的 反 射 係 數 , 以 及 其 在 製 作 上 , 舉 例 而 言 , 係 以 Z n S e (硒 化 鋅)等 塗 敷 成 多 層 薄 膜 , 以 及 其 在 功 能 上 可 利 用 由 於 極 化所致反射条数之差異,使得上述輸出之雷射光束線性極 化。數字19係表示雷射光感測器,亦即一類似熱電堆之熱 或是類似HgCdTe之光電轉換裝置,其係用以 偵測一些通過該背部面鏡14之雷射光束8。上述已返回該 雷射振盪器之光波9, 係經由該波長選擇濾波器16, 完全 將 其 雷 射 光 束 之 成 分 除 去 , 並 且 係 受 到 上 述 類 似 S i 發 光 二 極體之光感測器1的偵測。第3圖係顯示上述光感測器1和 上述 雷射光感 測器 19之光 偵測 鹽 敏 度 , 以及上述波長選擇 滤波器 16之透射特性的一個範例, 其中, 如果該光感測器 1之 篮 敏 度 中 心 , 係 在 可 見 光 之 區 域 内 、 該 雷 射 光 感 測 器 19之 靈 敏 度 , 係 在 紅 外 線 光 波 之 區 域 内 、 以 及 該 波 長 選 擇 濾 波 器 1 6 , 係 屬 於 透 射 之 型 式 時 , 則 上 述 光 波 之 偵 測 , 便 不會受到感測器靈敏度之平擾。上述之光感測器1,可為 一類似Si發光二極體之單一光接收裝置, 或為一類似其光 接 收 裝 置 可 整 合 形 成 一 陣 列 之 C C D 的 攝 影 裝 置 。 上 述 之 單

五、發明說明(12)

一裝置,能夠偵測到上述切削點之發射強度上的變化,而上述之攝影裝置,除了能夠偵測到上述切削點之發射強度上的發射出力發射出之發射對上域切削點之實際影像中,偵測出土發射強度之分佈或色彩(波長)上的變化。以上之佈置於對土域之質射光束加以偵測,以便能監控該質射之輸出,同時尚且能夠偵測出上述切削點所生而返至該質射振盪器之其他光束,並加以導引。

若不使用此實施例中被界定為分光器之面鏡 18, 也可使用 17a或 17b做為上述之分光器,而將該波長選擇濾波器 16和該光感測器 1置於其後,以産生相同的效果。

實施例3

第4個係可顯示依本發明之第三較佳實施例所製之雷射加工機的佈置個,其中,數字20係表示分光器,其條佈置在該雷射加工機之雷射振盪器內的共振器面鏡之間。此分光器在製造上,條使用某種材料,譬如GaAs(砷化镓),以便使大約100%左右之雷射光東通過,而使大約100%左右之其他光波反射,以及其在佈置上可使上述雷射光東之入射角為布魯斯特角(Brewster angle),以便上述之雷射光東8能夠線性極化。

上述在該切削表面上所產生而折返進入該雷射振盪器內之光波 9,會被上述之分光器 20反射,並通過該波長選擇 減器 16,而為該光感測器 1所偵測。上述通過該分光器 20之雷射光束 8,會有些許通過該別部面鏡 14,而為該雷射光波感測器 19所偵測。此不但能夠對上述之雷射光束

五、發明說明(13)

加以偵測,以便能夠監控該雷射之輸出,同時能夠偵測上 述切削點所生而返至該雷射振盪器之其他光束。上述之光 感 測 器 1, 可 為 類 似 S i 發 光 二 極 體 之 單 一 光 接 收 裝 置 , 或 為類似其光接收裝置可整合形成陣列之 C C D 的攝影裝置。 上述之單一裝置, 能夠偵測到上述切削點之發射強度的變 化, 而上述之攝影裝置, 除了能夠偵測到上述切削點之發 射強度上的變化外,尚能夠自該切削點之實際影像中, 測 出 其 發 射 強 度 之 分 佈 或 色 彩 (波 長) 上 的 變 化 。 實施例4.

第 5 圖 係 可 顯 示 依 本 發 明 之 第 四 較 佳 實 施 例 所 製 雷 射 加工機之雷射振盪器的佈置圖,其中,數字21係表示一透 其條佈置在上述雷射振盪器之共振器面鏡中間, 以及其中央有一大至足以令上述之雷射光束8通過的孔。 上述在該切削表面上所產生而折返進入該雷射振盪器內之 光波 9, 會被上述之透光器 21反射, 通過該波長選擇濾波 而為該光感測器1所偵測。上述之波長選擇濾波器 16, 可以具有聚光器之功能,以便能將上述切削點之影像 ,形成於該光感測器1之光接收表面上。由於上述透光器 21之該孔係較該雷射光束8之直徑為大,上述之雷射光束 可以振盪於該部份透射面鏡13與該背部面鏡14之間, 而不致受到上述透光器21之阻礙, 以及其有一部份可通過 該 背 部 面 鏡 14, 而 為 該 雷 射 光 感 測 器 19所 偵 測 。 夠 對 上 述 之 雷 射 光 束 加 以 偵 測 , 以 便 能 監 控 該 雷 射 之 輸 出 同時尚且能夠偵測上述切削點所生而返至該質射振盪器

五、發明說明(14)

之其他光束。上述之光感測器 1, 可為一類似 Si發光二極體之單一光接收裝置,或為一類似其光接收裝置可整合形成一陣列之 CCD的攝影裝置。上述之單一裝置,能夠偵測到上述切削點之發射強度上的變化,而上述之攝影裝置,除了能夠偵測到上述切削點之發射強度上的變化外,尚能夠自該切削點之實際影像中,偵測出其發射強度之分佈或色彩(波長)上的變化。

實 施 例 5

第6圖條可顯示依本發明第五較佳實施例所製之雷射 加工機的佈置圖,其中,數字32條表示一分光器,其在製 作上,舉例而言,條以 Z n S e (硒化 舒)等 塗 敷 成 多 層 薄 膜, 它能夠將通過該背部面鏡14之雷射光束8,與上述在該切 削表面上産生而折返進入該雷射振盪器内之光波9分開。 數 字 1 9 係 表 示 可 用 以 偵 測 該 雷 射 光 束 8 之 雷 射 光 感 測 器 , 而數字1係表示光感測器,它可用以偵測上述自該光波9通 過 該 波 長 選 澤 濾 波 器 16而 已 完 全 除 去 雷 射 光 東 之 成 分 的 光 波 9 '。 以 上 之 設 計 , 不 但 能 夠 對 上 述 之 雷 射 光 東 加 以 偵 測 . 以 便 監 控 該 雷 射 之 輸 出 , 同 時 尚 且 能 夠 偵 測 上 述 切 削 點 所生而返至該雷射振盪器之其他光束。上述之光感測器1, 可為一類似Si發光二極體之單一光接收裝置,或為一類似 其 光 接 收 裝 置 可 整 合 形 成 一 陣 列 之 C C D 的 攝 影 裝 置 。 上 述 之單一裝置,能夠偵測到上述切削點之發射強度上的變化 而上述之攝影裝置,除了能夠偵測到上述切削點之發射 強度上的變化外,尚且能夠自該切削點之實際影像中,

经济部中央操华局员工消費合作社印象

五、發明説明(15)

測出其發射強度之分佈或色彩(波長)上的變化。

此實施例中所採用,可使該雷射光東 8反射以及可使其他光波 9通過的分光器,如果將該雷射光感測器 19與該光感測器 1之位置調換,就可以用某種材料,譬如 GaAs (碎化镓),所製之分光器代替,以使上述之雷射光束通過,以及使其他光波反射,而具有相同的效果。

實施例6

第7圖條例示依本發明第六較佳實施例所製之當射加 工機的佈置圖, 其中, 數字33係表示積分球體, 它可使自 該 背 部 面 鏡 14取 得 之 部 份 雷 射 光 束 8 均 匀 熄 滅 。 數 字 19 係 表 示 一 雷 射·光 感 測 器 , 它 能 夠 自 業 已 被 上 述 積 分 球 體 33減 積分、及(或)平均的光波中, 偵測出其雷射光束之成 以期能夠偵測出上述雷射光束振盪器之輸出值。此種 積分球體在市面上,可購自New London, New Hampshire 之 Labsphere Corporation。上述除該需射光束外,在該 切削點產生, 返至該雷射振盪器內,通過該背部面鏡14. 並且被導引至該積分球體33的光波9,可以透過該濾波器 16, 而為上述之光感測器1所偵測。該光感測器1在佈置上 , 係 使 其 偵 測 段 朝 向 該 積 分 球 體 33之 内 表 面 。 此 種 佈 置 方 式, 不但能夠利用該雷射光感測器19, 來偵測上述之雷射 光束,以便能夠監空上述雷射之輸出,同時也能夠利用該 光感測器 1, 來偵測上述出自該切削點之光波。此外, 此種佈置方式中, 上述取代分光器之積分球體,和各裝配 在此積分球體之感測器, 可以提供一種成本低而輕便的裝

(情先閱请背面之注意事項再填寫本頁)

五、發明說明 (16)

置。

置施例7

第8圆条例示依本發明第七較佳實施例所製之雷射加工機的佈置圖,其中之光感測器1. 条與該雷射光感測器19, 以及該波長選擇濾波器16一體成形。此種設計亦可産生與實施例6同樣的效果。

實施 例 8

第 9 圖 係 可 顯 示 依 本 發 明 第 八 較 佳 實 施 例 所 製 之 雷 射 加工機的佈置圖,其中,數字34係表示面鏡(分光器),其 在 製 造 上 係 使 用 某 種 材 料 , 譬 如 GaAs (砷 化 镓), 以 便 能 夠 使上述之雷射光束8通過,以及使其他光波9反射,藉以使 該雷射光束8和該其他光波9分開,以及該面鏡條佈置在該 積分球體 33内。上述通過該積分球體 33之 雷射光東成分, 可受到該積分球體33之處理, 而為該雷射光感測器19所值 測 。 上 述 在 該 切 削 點 産 生 , 返回該雷射振盪器內, 該 背 部 面 鏡 14出 來 , 除 雷 射 光 束 外 的 光 波 9 , 會 被 面 鏡 34 反射, 而通過上述之波長選擇濾波器16和聚光器35, 並被 導引至該光感測器1內, 而為其所偵測。此一光感測器1, 可為一類似Si發光二極體之單一光接收裝置, 其光接收裝置可整合形成一陣列之CCD的攝影裝置。 之單一裝置,能夠偵測到上述切削點之發射強度上的變化 而上述之攝影裝置, 除了能夠偵測到上述切削點之發射 強 度 上 的 變 化 外 , 尚 能 夠 自 該 切 削 點 之 實 際 影 像 中 , 出 其 發 射 強 度 之 分 佈 或 色 彩 (波 長)上 的 孌 化 。 此種佈置方

经济部中共操华局员工消费合作社印象

五、發明説明(17)

式, 不但能夠利用該留射光感測器, 來值測上述之留射光 束, 以便能夠監控上述留射之輸出, 同時也能夠利用該光 感測器, 來值測出自上述切削點之光波。

實施例9

第 1 8 圖 係 可 顯 示 依 本 發 明 第 九 較 佳 實 施 例 所 製 之 雷 射 加工機的佈置圖,其中,數字36係表示濾波器,其係以某 種類似 ZnSe(硒化 鋅)之材料製成的, 它可使大約 100%之 雷射光束反射, 並使其他光波通過, 藉以使該雷射光束8 和 該 其 他 光 波 9 分 開 , 而 其 面 朝 該 積 分 球 體 3 3 内 部 的 區 域 , 係與該積分球體33之內表面形成同樣的變度。 自該背部而 鏡 14出 來 的 雷 射 光 束 8和 其 他 光 波 9, 均 被 導 引 至 上 述 之 積 分球體 33內。上述之雷射光束8在該積分球體 33內,會被 反射並擴散, 其他光波9則會通過該積分球體33, 並且可 經 由 該 波 長 選 擇 濾 波 器 16和 該 聚 光 器 35. 而 被 導 引 至 上 述 之 光 感 測 器 1 内 。 上 述 之 光 感 測 器 1, 可 為 一 類 似 S i 發 光 二 極體之單一光接收裝置,或類似其光接收裝置可整合形成 一 陣 列 之 C C D 的 攝 影 裝 置 。 上 述 之 單 一 裝 置 , 能 夠 偵 測 到 上述切削點之發射強度的變化,而上述之攝影裝置, 能夠偵測到上述切削點之發射強度上的變化外,尚能夠自 該切削點之實際影像中,偵測出其發射強度之分佈或色彩 (波長)上的變化。而且,佈置在該積分球體33上面的光感 测器 1, 不但能夠利用該雷射光感測器 19,來偵測上述之 雷射光束,以便能夠監控上述雷射之輸出,同時也能夠利 用該光感測器1,來偵測上述出自該切削點之光波。

五、發明説明(₁₈)

實 施 例 10

第 11 圖 係 可 顯 示 依 本 發 明 第 十 較 佳 實 施 例 所 製 之 雷 射 加工機的佈置圖. 其中. 數字 37條 表示 雙凸透鏡或一平凸 其 在 製 造 上 係 使 用 某 種 材 料 , 譬 如 GaAs (砷 化 錄), 以 期 能 夠 使 上 述 之 留 射 光 束 8 反 射 , 以 及 使 其 他 光 波 通 過 , 亦即, 實施例9中所示之36, 係被修改成一透鏡之形狀, 以便能夠提供影像資訊之功能。由於其面朝該積分球體 33之内部的區域, 係具有外凸之球形表面,上述在該切削 點產生,進而返至該需射振盪器內, 以及通過該背部面鏡 並且被導引至該積分球體33之光波中的雷射光束成分 , 會被反射並擴散, 而其他光束則會收斂, 並且通過上述 之 波 長 選 擇 濾 波 器 16, 而 被 導 引 至 上 述 之 光 感 測 器 1內。 此一設計能夠提供上述切削點之實際影像,而不必使用第 10 圖中所採用之聚光器35,以及該雷射光感測器19, 置上能夠使得上述雷射之輸出,在偵測上具有與實施例9 中同樣的效果。上述之光感測器1, 可為一類似Si發光二 極體之單一光接收裝置,或為一類似其光接收裝置可整合 形成一陣列之CCD的攝影裝置。上述之單一裝置,能夠偵 測 到 上 述 切 削 點 之 發 射 強 度 上 的 嬖 化 , 而 上 述 之 攝 影 裝 置 除了能夠偵測到上述切削點之發射強度上的變化外, 能夠自該切削點之實際影像中,值測出其發射強度之分佈 或色彩(波長)的變化。

實施例11

第 1 2 圖 係 例 示 依 本 發 明 第 十 一 較 佳 實 施 例 所 製 之 雷 射

經濟部中央標準局員工消費合作社印製

五、發明說明(19)

加工機,其中,實施例10中所示之透鏡37,條佈置在該積分球體33內之某一選擇位置。此在佈置上如所示之透鏡37,可以從該切削點所產生,進而返至該雷射振盪器內,以及通過該背部面鏡14,並且在該積分球體33內擴散並平均化的光波中,將除雷射光束外的其他光波集中,藉以使更多的光波,能夠被導引至上述之光感測器1內。而且,上述所設之雷射光感測器19,不但能夠偵測上述之雷射光束,以便能夠監控上述雷射之輸出,同時也能夠利用上述之光感測器1、對上述出自該切削點之光波進行偵測。

五、發明說明(20)

轉換成振盪之雷射输出。以執行上述 測器 19之 偵測信號, 之 回 授 控 制 , 而 使 該 雷 射 輸 出 , 能 夠 與 一 來 自 該 N C 裝 置 10之 雷 射 輸 出 命 令 值 相 匹 配 。 數 字 25 係 表 示 光 感 測 器 偵 測 號處理電路,它可依據實施例1至11中述之任一方法, 由某一信號找出在上述切削點所生而為該光感測器1所偵 測之輸出在切削點發射強度上的變化。就此點而言,如果 光感 測器 1 條單一裝置, 則上述之變化, 可經由該光波 引路徑和該需射振盪器12而加以決定。反之, 感 測 器 1 係 一 攝 影 裝 置 , 則 可 經 由 其 影 像 處 理 , 決 定 該 切 削點發射強度在分佈上或色彩(波長)上的變化。上述之處 理電路25, 也可用以執行波峰之偵測或比較等運作, 以便 能夠產生一信號給上述之NC裝置10。數字28係表示一遠端 顯示裝置, 它可在有裝置之故障等事件發生時,對遠離該 雷射加工機之操作員提出警告。

今將詳細說明其運作方式,正當該工件 W受該驅動台23之驅動而在一水平方向上移動之際,該工件 W會受到大約100V而使用某種類似氮氣等無作用切削氣體之弱雷射光束的照射。當該切削透鏡3上下移動時,該發射火焰將發生於上述之照射點處。當該切削透鏡之無點恰巧在該工件之表面上時,則會有亮度特別高的藍色發射(藍色火焰)産生。

第 1 4 圆 係 以 一 範 例 來 顯 示 , 當 該 照 引 點 之 發 射 火 焰 為 該 光 感 測 器 1 所 偵 測 , 而 業 已 經 過 該 光 感 測 器 偵 測 信 號 處 理 電 路 2 5 處 理 過 後 , 所 提 供 之 光 感 測 器 偵 測 信 號 處 理 之 輸

經濟部中央標準局員工消費合作社印製

五、發明說明(21)

該 照 射 點 之 發 射 強 度 , 會 相 對 於 该 切 削 透 鏡 在 該 光 束軸線(垂直)方向上之運動而改變。常該光感測器1為單 一裝置時,所偵測的是整個照射點之幾寸強度的變化, 因 而 所 提 供 的 是 翰 出 A 。 當 該 光 感 測 器 1 為 - 攝影裝置時, 值 測 的 是 其 發 射 強 度 之 分 佈 。 因 而 , 就 上 述 強 度 分 佈 中 之 高 亮 度 點 而 言 , 所 提 供 的 是 輸 出 B , 以 7 就 上 述 有 藍 色 火 焰時所産生之光束波長(色彩)的亮度變 」 而 盲 , 所 提 供 的 則是輸出C。在A、B、和C任一之輸出中 在該切削透鏡之 垂直運動期間,其最大輸出之位置,係对應於上述切削透 鏡之焦點與該工件表面相重合的狀態。 引此,就A、B、和 C任一之光感測器偵測信號處理輸出值产言,當該光感測 器 偵 測 信 號 理 電 路 25之 輸 出 值 為 最 大 時 會 有 焦 點 偵 測 信號自其送至該 N C 裝置,並且將該主動、承輸 22內之位置編 碼器當時之值儲存起來, 如此, 當該工 : 表 面 與 該 切 削 透 鏡之焦點照合時,該切削透鏡之位置, 子被確認而自動執 行上述之對焦工作。當上述之聚光器系二係屬反射之型式 譬如 拋 物 面 鏡 時 , 也 可 以 進 行 同 傑 之

第15a圖和第15b圖條以一範例來例表,正在雷射切削起始點進行穿孔之切削動作,為上述攝多裝置之光感測器1所值測,而經過上述光感測器值測信息處理電路25完成影像處理的狀態。自一喷嘴孔29看去之。測點,在完成穿孔前,將如(a)中所示,整個切削點均無發射光波,但在完成其穿孔後,則將會如(b)中所示,僅有已穿孔之外綠會發射光波。

五、發明說明(22)

第 16 图 係 以 一 範 例 來 顯 示 , 該 切 剂 ; 在 穿 孔 期 間 所 生 之光波、為該光感測器1 所偵測,並經計上述之光感測器 偵測信號處理電路25處理過之時, 所提 住之光感測器偵測 信號處理輸出值。不論該光感測器1 係几一裝置或係攝影 上述之輸出值是一樣的。由於完!穿孔後,該光波 之強度會減弱,上述之輸出位準會降低 該 穿 孔 之 完 成 在 值 測 上 , 可 由 上 述 之 翰 出 準 位 是 否 卷 已 仁 於 某 一 預 先 指 定 之位準 A 來 決 定 , 而 上 述 之 位 準 A 係 淫 過 寶 驗 認 定 其 能 夠 指 示出上述學孔之完成。因此,如果上述對應於該切削點之 光波強度 引光感測器 偵測信號處理 輸出 三, 藉 著上 述之光 感 測 器 價 川 倍 號 處 理 電 路 2 5 内 所 設 之 比 引 電 路 , 與 上 述 之 特定位谱点比較時,一旦上述之輸出值附至低於該特定位 ,該 6 感 測 器 偵 測 倍 號 處 理 電 路 25. 便 會 送 出 穿 孔 完 成信號給 : 述之NC裝置。此外, 如 % 該 ! D裝置 10於收到該 信號而問治次一運作時, 該工件便可以注序切削,而不須 預先設定浮工件由其初始溫度所致 洋孔 日間之變化,故能 縮短其切削時間。而且,由於上述《射點外線之溫度,在 一破 裂 發 生 前 , 會 立 即 昇 高 , 山 於 熱 輻 射 所 致 , 穿孔期間 上述之發 ;區域將會擴張,以及該 引削 ;所發出而為該光 感測器1所質測之光波強度也會增加。

第 1 7 图 係 顯示上述狀態之一個 3 例。由於該光感測器值測信點 2 理輸出值,會變應上證 18 波頭度之增加而昇高,一特 定 2 準 8 被預定為破裂發生之 2 5 界值。如果將上述之光波號 1 的光感測器值測信號 6 環 6 環 6 1 1 6 1 1 1 1 1 1 1 2 1 5 1

五、發明説明(23)

定位準 B進行比較,當該輸出值業已超過該特定位準 B時,該 光感 測器 偵測 信號 處理 電路 25,便會送出一破裂防止 信號 給上述之 NC裝置 10,該 NC裝置 10於接收到上述之信號 特別 量 型即開始控制該 雷射振盪器之振盪條件,譬如,該 翰出值、頻率和工作週期、或切削氣體之壓力等。因而能夠 防止上述穿孔由於破裂所可能導致之故障。而且,如果能 對應於 發生破裂時之光感測器 偵測 信號處理輸出值,而設定一特定位準 C 時,則由於在上述方法中無法避免不穿孔故障所致而發生之破裂,便能夠被偵測到,而如果 移到 故障所致而發生之破裂,便能夠被偵測到,而如果 移其 故障所致而發生之破裂,便能夠 被偵測到,而如果 移其資 談 透 資 鍋 原 荣 置 28,提出警告而 移此一故障告知操作員。

誠如以上所述,當上述之切削點能夠由其頂部而被觀察到時,則該切削點之發射強度將會十分清楚,以及其 S / N 比值也會得到改進,因而,比起上述傳統式之裝置,整色火焰之發生、穿孔之完成、和破裂發生之號誌,均能夠精確地被偵測到,以及焦點偵測之信號處理、穿孔完成之偵測、和破裂之防止,也均能夠輕易地被執行。

第 18 圖條以簡圖來例示一範例,以說明該雷射切削期間切削點之狀態,其條由上述攝影裝置之光感測器1 所值測,以及其值測之輸出值,條業已被上述之光感測器值測信號處理電路25處理過。除該雷射照射點之發射外,切削所產生之溝槽,可以由雷射光東前進方向之對側觀察到,以及向下流入上述溝槽內之熔融金屬之熱輻射所致之發射

五、發明説明(24)

,也能夠被觀察到。在切削期間,當上述之切削狀態有變化時,上述切削點之發射狀態也會改變。

第19圖條以範例來顯示,當有類似半圓槽孔、切削表 或浮渣黏等等切削故障發生時,上述所提 供之光感測器偵測信號處理輸出值。不論上述之光感測器 彼等之輸出值係相同的。 係單一裝置或係攝影裝置. 有此類切削故障發生時,上述切削點之發射強度, 將 會 不 規 則 地 變 化 , 而 光 感 測 器 偵 測 信 號 處 理 正常狀態, 輸出值,也會對應地改變。因此,如果該光感測器偵測信 號處理輸出值,與預先確定之特定位準D和E進行比較,則 如 果 有 此 等 特 定 位 準 D和 E間 之 範 圏 以 外 的 任 何 變 化 被 偵 測 便可認定有切削故障發生。 如果該資訊被送至上述 操作員便能透過該遠端顯示裝置28,接收到 之 NC裝置 10, 該故障發生的警告。而且,一般而言,如果在切削期間有 適度調整振盪之條件, 光束模 醫 如 . 上述之故障發生時, 態、輸出值、頻率和工作週期、 切削氣體之壓力、流速、 型式、焦點位置、回授速率、 噴嘴高度、 和噴嘴形狀等等 便能夠使上述之切削運作恢復至正常狀態, 故能改進上 述切削之故障。所以,如果依據此等故障發生之狀況, 輸出值、 上述振盪之條件, 醫 如 , 光束模態、 週期、切削氣體之壓力、流速、 型式、 焦點位置、 噴嘴高度、和噴嘴形狀等的調整項目,事先儲存在上 述 之 N C 裝 置 1 O 内 , 便 能 夠 在 上 述 切 削 點 狀 態 之 偵 測 的 同 時 在上述 NC裝置 10之命令下, 調整上述之調整項目,故能 五、發明說明(25)

自動改進上述切削之故障。

第20個係切削故障自動改進處理之流程圖。當該光感測器1係攝影裝置,以及其輸出值係經過上述之光感測器負測信號處理電路25做過影像處理時,則切削點之發射強度分佈的變化,更能夠被確認。因此,上述切削條件在監控上會較僅負測光波強度之變化更為詳盡。而且,由於該切削點之溫度等能夠被確認,上述切削外的其他處理運作,譬如,硬化和熔接,均能在同樣的方式下加以自動化。

當該切削點所生而返回該雷射振盪器之光束,被該光感測器1偵測到時(步驟101),所得之偵測輸出復經過信號處理(步驟102)。如果其光波係落於某一上下特定位準(分別為D和E)之範圍內時,所進行的便係正常之切削;而如果逾越上述之位準範圍,則可確定有切削故障發生(步驟103)。由上述之範例可見,如果上述雷射加工機在控制上,係依據上述處理之結果時,則對焦、穿孔完成之偵測、破裂之偵測、切削故障之值測、和切削故障之改進,切削工作之自動化,以及無人化運作之執行等均得以完成(步驟104)。

實施例13

第21 圖條依本發明之第十三較佳實施例所製上述之雷射加工機的佈置圖,其中,數字40條表示發光裝置,其所生之光波可因透鏡42而成平行狀,以及可被分光器42導引至上述之雷射振盪器12內,進而可通過該雷射振盪器12、上述之波導引路徑、該切削透鏡3、和該噴嘴孔29,並且

五、發明說明(28)

照射到上述工件 V 之切削表面。受到上述發光裝置 40之光波照射之切削表面,係在實施例1至5和實施例8至10中之任一方法下,經由上述之喷嘴孔29,而受到上述使用一攝影裝置之光感測器的偵測,而其輸出值則係經由上述之光感測器偵測信號處理電路 25做影像處理,以便能夠偵測一切削路徑之劃界線 43,是否等於該工件 V 之表面上一條預先設定的切削路徑。

在上述工件 V 受到該雷射光束 8 之照射與切削的同時,可以執行上述切削路徑 劃界線 4 3 之值測和其拷貝之運作,或者可以僅以該拷貝運作先進行教導運作,繼而再依據此所生之教導數據,進行工件之切削。

此外,當所用之驅動台23、係具有除水平行程外之一旋轉軸的三維切削台時,則在一三維實體上預先設定之切削路徑劃界線43的拷貝運作,便能夠加以執行,以及上述用手完成之數導工作,便能夠自動地進行,其工作時間因而可大幅降低。可以瞭解到的是,上述光波導引路徑中的轉向面鏡11,可以用做一分光器,以使上述之雷射光束反

經濟部中央標準局員工消費合作社印製

五、發明説明(27)

射,而使其他之光束通過,並將上述之發光裝置 40,佈置在可以照射到該工件 W之位置,藉以産生相同的效果。而且,在實施例 12中,加入上述之發光裝置,可於切削期間,照亮上述之切削點,而有利於其之偵測。

實施例14

第23圖條可顯示依本發明另一較佳實施例所製之雷射加工機的佈置圖,其中,該切削表面係由一類似實施例13中之工件 V 發光機構所照射,以及可在實施例1-10中之任一值測方法下,為上述攝影裝置之光感測器1 所值測,而其輸出值則係經過上述之光感測器偵測信號處理電路25做影像處理,以便能確認該噴嘴孔29與該雷射光東所照射切削點45之位置間的關係。

第24圖係顯示上述之一範例。由上述之影像中,可以看到上述相對於該噴嘴孔29之噴嘴中心44,可偵測到上述切削點45相對於此噴嘴中心44之偏差值,有一用以修正此偏差值之補價值,將會輸入至一欠對準補價器46內,以及上述之噴嘴4或切削透鏡3會移動,以便使該噴嘴中心44與該切削點45能夠重合,藉以補價該噴嘴和該切削透鏡相對於該雷射光東之欠對準,其在以往係以手操縱,如今則可在很短的時間內自動執行。而且,由於整個噴嘴孔能夠被觀察到,該噴嘴孔之變形和阻塞,均能夠被偵測到。

實施例15

第 2 5 圖 係 可 顯 示 依 本 發 明 第 十 五 較 佳 實 施 例 所 製 之 雷射 加 工 機 的 佈 置 圖 , 其 中 , 數 字 4 7 係 表 示 可 産 生 某 種 可 見

五、發明說明(28)

光雷射光束,譬如HeNE(氣氛)雷射,的雷射振盪器。此振 盪 而 成 之 HeNE 雷 射 光 束 , 會 被 上 述 之 分 光 器 42 反 射 , 而 導 入上述與該雷射輸出光東同軸之雷射振盪器12内,並且進 一步經由上述之光束導引路徑,加於該工件》上面。所加 之 HeNE 雷射光東、會在該工件V之表面上反射,再次通過 該光波導引路徑, 而反至該雷射振盪器12内, 並且進一步 通過該雷射振盪器內之背部面鏡14和該分光器42. 該光感測器1内,此折返之光波,可以在實施例1-10中之 任一偵測方法下加以偵測,而其輸出值,則條經過上述之 光感測器負測信號處理電路25做影像處理,以便能夠提供 上述光波導引路徑中之轉向面鏡11和共振器面鏡17a, 17b 等之 傾 斜 角 所 致 光 束 軸 線 偏 差 值 的 資 訊 。 依 據 此 等 資 訊 , 對 上 述 光 波 導 引 路 徑 中 之 轉 向 面 鏡 11和 共 振 器 面 鏡 17a, 17b等之傾斜角加以修正, 便能夠修正上述光束軸線的偏 差值。 上述以該光感測器偵測信號處理電路25所輸出之光 東軸線偏差值做為基礎的資訊,將輸入至一面鏡傾斜角修 正電路48,並且有一修正值命令。自此面鏡傾斜角修正電 路 48, 送 至 一 傾 斜 角 修 正 器 49, 其 可 以 電 力 修 正 上 述 光 波 導 引 路 徑 中 之 轉 向 面 鏡 11和 共 振 器 面 鏡 17a、 17b等 所 提 供 之面鏡的傾斜角,以便能夠自動補償由於面鏡之傾斜角所 致光束軸線的偏差值。

實 旋 例 16

第 2 6 圆 係 可 顯 示 依 本 發 明 之 另 一 較 佳 實 施 例 所 製 之 雷射 加 工 機 的 佈 置 圆 , 其 中 , 數 字 5 1 係 表 示 聚 光 器 , 其 係 在

五、發明説明(29)

實施例1 至5和實施例8至10中之任一方法下, 緊接佈置在 光感測器1 之前,並且能夠藉一透鏡驅動齒輸50,在上述 光束軸線之方向上移動,以便能夠改變其焦距。藉著所置 之一類似實施例13中的發光機構,上述由照射物體反射而 自該雷射振盪器內部之背部面鏡14出來的光束, 會通過上 並被導入上述攝影裝置之光感測器1內。 述 之 分 光 器 51, 利用該透鏡驅動齒輪50來移動該分光器51,上述之焦點位 置得以改變。而使該工件 W至發切削透鏡3間、該轉向面鏡 11與該雷射振盪器內之共振器面鏡13、17a、17b間的距離 適當,因而可利用上述之光感測器1, 觀到上述表面之狀 利用上述之光感測器偵測信號處理電路25, 將其輸出 值做影像處理,則類似切削透鏡、 和共振器面 轉向面鏡、 鏡等之光學零件的污染與損壞,均能夠被偵測到, 上述之雷射加工機實具有自我診斷之功能。

實施例17

第 27 圖 係 可 顯 示 依 本 發 明 第 十 七 較 佳 實 施 例 所 製 之 雷射 加 工 機 的 佈 置 圖 , 其 中 , 數 字 5 2 係 表 示 距 離 感 測 器 , 其 条 由 一 感 測 器 负 雷射、超 弩 波、或 紅 外 線 等 之 産 生 器 登 合 而 成 , 它 能 夠 測 量 出 自 該 背 部 面 鏡 1 4 , 經 由 該 雷 射 短 器 器 初 韵 透 鏡 至 該 工 件 表 面 間 的 距 離 。 此 容 许 该 切 削 透 鏡 至 該 工 件 表 面 間 的 距 離 。 此 符 確 值 測 , 而 在 切 削 期 間 , 便 得 該 切 削 透 鏡 之 焦 點 位 置 , 能 确 循 地 跟 廢 該 工 件 表 面 因 其 不 平 之 表 面 和 厚 度 上 之 變 化 所 致 之 雙 化 而 改 變 , 因 而 能 夠 確 保 有 精 確 而 穩 定 的 切 削 運 作

五、發明說明(30)

實 施 例 18

同時,所述爾射加工機之上述實施例,並非有限制之意,其可應用於任何可以雷射光束撞擊準備照射之物體而產生同樣效果的裝置中。

由於本發明在結構上係如上所述,其所產生之效果如下:

該工件上之切削點所生,而折返至該雷射振盪器,除雷射光束之波長外之其他波長的光束,係得自於上述供留

五、發明說明(31)

而且,上述使留射光束通過而使其他光束反射的分光器,係佈置在上述多數可供留射共振使用之任一共振器的镜中間,上述返至該留射振盪器,除雷射光束之波長外之其他波長的光束,係得自於該共振器之外部,以及上述之光束係由該光感測器加以負測,因而,該感測器裝置,可以佈置在該雷射振盪器之內部,以便縮小整個裝置之尺寸

而且,上述具有大至足以令該雷射光東通過之中心孔的透光面鏡,條佈置在上述多數可供雷射共振使用之任一共振器面鏡中間,上述返至該雷射振腦器之外部,之改度外之其他波長的光東,係得自於該共振器之外部,以及上述之光東係由該光感測器偵測,因而,上述返回之光東,在偵測上不會使上述雷射光東之強度與模態,受到不良

經濟部中央標準局員工消費合作社印製

五、發明説明(32)

的影響,以及該感測器裝置,可以佈置在該雷射振盪器之內部,以便縮小整個裝置之尺寸。

而且,除以上之設計外,當該雷射振盪器內所生之部份雷射光東,係得自於上述可供雷射共振使用之背部面鏡,以及設有上述可偵測所得雷射光東之雷射光感測器時,上述雷射之輸出值,也能夠受到監控。

而且,上述返至該雷射振盪器,除雷射光束之波長外之其他波長的光束,和該雷射振盪器內所生之部份雷射光束,係在該共振器之外部。得自於上述可供雷射共振版散用之路。如此。如此,以及該積分球體可使上述之光束均。如此,以及該積分球體可使上述之光束均。當射光束的。以,與自該切削器,,因為此,以,與自該切削點。返回之光,的領人,,以與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。以,與自該切削點。

而且,設置有可以自傳送至上述積分球體之光束中,將當射光束之成分與其他光束分開的分光器,並且設置有上述之留射光感測器,以便能對上述被該分光器分開,雖而在該積分球體內臟粉並忽擊的人類別上域被該分光器分開,以便能夠負測上域被該分光器分開,除當射光束外的其他光束,因而,除當射光束外的其他光束,可以有效地導引至上述之光感測器內,而不致于便到該積分球體內之當射光束的均匀性,並且能夠觀察到上述切削點處之實際影像。

五、發明説明(33)

而且,在設計上可以其內表面,使出自上述傳送至該積分球體內之光東的留射光東成分反射並擴散,以及使其他光東通過的分光器,係設置在該積分球體之內表面上,並且設置有上述之光感測器,以便能夠值測通過該分光器之光束,以及設置有上述之留射光感測器,以便能夠值測在該積分球體內擴散並受到處理的雷射光東,因而,能夠產生與前述設計相同的效果。

而且,當該光感測器在設計上,係用來偵測該切削點處可用以偵測其焦點之光束強度、強度分佈、或波長之變化時,則該分光器系統相對於該工件的對焦,便能夠精確而輕易地被執行。

而且,當該光感測器在設計上,係用來偵測該切削點處可用以偵測上述切削起始點穿孔完作與故障之光束的強度、強度分佈、或波長之變化時,則其切削時間可大幅降低。

而且,當該光感測器在設計上,係用來偵測該切削點處可用以偵測雷射切削類似切削、熔接、和硬化等切削狀態之光束的強度、強度分佈、或波長之變化時,則可以防止上述切削故障之發生。

而且,依據上述利用該光感測器偵測之光束的強度、強度分佈、或波長之變化,來偵測上述無點位置的電路,以同一依據來偵測上述穿孔之完成與故障的電路,以及以同一依據來偵測上述之切削條件的電路中,至少選擇設置有其中之一,並且在該電路之信號的控制下,在該電射振

遴 器 之 振 盪 條 件 、 切 削 氣 體 之 狀 態 、 焦 點 之 位 置 、 回 授 速 率、和噴嘴狀態中,至少有其中之一係到控制,因而,其 切 削 之 運 作 能 夠 自 動 化 , 以 及 其 在 運 作 上 能 夠 完 成 無 人 化

該切削表面, 係自該雷射振盪器之背部面鏡, 經 由 該 光 波 導 引 路 徑 , 而 加 以 照 射 . 其 反 射 光 波 係 在 該 雷 射振盪器後面,由該光感測器加以偵測,以及其影像係經 過處理.因而,不須事先輸入切削形狀之程式,便能夠讀 取上述預先設定在該工件上之切削路徑的資訊,沿著該路 徑執行上述拷貝之運作,以及完成上述形狀之切削。

設置有可依據該光感測器所測之光東,與該切 而且, 削刀頭前端之噴嘴孔間位置的關係,來偵測該雷射光束之 光束轴缐偏差值的電路,以及可在此電路之信號的控制下 使該噴嘴與該聚光器系統相對於該雷射光束之欠對準, 能夠受到補償的補償裝置,因而能夠使得該雷射光東之軸 相對於該切削刀頭內之噴嘴孔的位置, 自動受到調整

而且,上述之可見光雷射光束,係自該雷射振盪器之 係受到偵測,因而,由於上述光波導引路徑之面鏡 與該等共振器面鏡的傾斜角所致光束軸線之偏差值, 因而能使上述光波導引路徑之面鏡與該等共振 到 偵 測 , 器面鏡的傾斜角、 自動受到調整。

上述具有可變焦點之聚光器、該光感測器、

該 波 長 選 擇 濾 波 器 , 係 設 置 在 該 雷 射 振 盪 器 内 之 背 部 面 鏡 的 背 面 , 因 而 , 類 似 切 削 刀 頭 、 上 述 光 波 導 引 路 徑 中 之 轉 向 面 鏡 、 和 該 等 共 振 器 面 鏡 等 光 學 零 件 的 污 染 與 損 壞 , 均能 夠 加 以 偵 測 , 以 及 其 裝 置 能 夠 做 自 我 診 斷 。

而且,該當射振盪器之背部面鏡的背面,設有上述非接觸型距離感測器,以及遠至上述切削表面之距離,均能受到測量,因而,該切削透鏡與該工件表面間之距離,能夠受到調整,以致能夠保持提供最佳之切削性能,而增進其切削性能。

此外,上述加至該切削表面之雷射光束的亮度分佈,係受到上述佈置在該雷射振盪器內之背部面鏡背後之光感測器的偵測,因而,該雷射光束之模態能夠受到偵測,以致能夠控制並維持高的光束品質。

C7 D7

六、申請專利範圍

1. 一種雷射加工機, 具有可將雷射振盪器所生用以照射 一工件之雷射光束加以整形的光學系統,以及可以該 雷射光束在其加工點對該工件加工, 上述之加工可在 該加工點產生第二光波,以及上述之雷射振盪器,具 有 由 多 數 面 鏡 構 成 的 共 振 器 , 上 述 之 雷 射 加 工 機 包 括 有:

可將上述之第二光波導至該共振器內,以便應用 至少該等面鏡中之一面鏡的第一裝置;

可將上述之第二光波、自該共振器之内部的某一 位置, 導至該共振器外之某一位置的第二光波導引裝 置;

以及

可偵測該第二導引裝置所導引之第二光波的第二 光感測器。

2. 如申請專利範圍第1項所申請之雷射加工機,其中尚 包括有:

可將至少一部份該當射振盪器內所生之雷射光東, 自該共振器內部之某一位置,導引至該共振器外部之 某一位置的雷射光束導引裝置;以及

可偵測該雷射光束導引裝置所導引之雷射光束的 雷射光感測器。

3. 如申請專利範圍第1 項之雷射加工機, 其中之第二光 波導引裝置,包括至少該等多數面鏡中之一面鏡,此 面鏡至少具有(1)能夠使該雷射光束通過, 而使該第二

先閱讀背面之注意事項再填寫本頁

六、申請專利範圍

光波反射,以及(I)能夠使第二光波通過.而使該雷 射光束反射,中之一種運作方式。

A7 B7 C7

D7

- 4. 如申請專利範圍第2項雷射加工機,其中之第二光波 導 引 裝 置 , 包 括 一 分 光 器 , 此 分 光 器 至 少 具 (I) 有 能 夠 使 該 需 射 光 束 通 過 , 而 使 該 第 二 光 波 反 射 , 以 及 (I) 能夠使該第二光波通過,而使該雷射光東反射,中之 一種運作方式。
- 如申請專利範圍第1項之雷射加工機,其中之第二光 波導引裝置,包括一具有一小孔的透光面鏡,此透光 面 鏡 至 少 具 (I) 有 能 夠 使 該 雷 射 光 束 通 過 , 而 使 該 第 二 光 波 反 射 , 以 及 (II)能 夠 使 該 第 二 光 波 通 過 , 而 使 該 雷射光束反射,中之一種運作方式。
- 申請專利範圍第2項之雷射加工機,其中,該第二光 波導引裝置,和該雷射光束導引裝置,係由至少之共 用面鏡構成的,以及上述之裝置尚包括有:

一積分球體,它具有可將至少上述行至該振盪器 外 部 之 部 份 寓 射 光 東 和 第 二 光 波 中 的 一 項 加 以 均 匀 擴 散 並 處 理 的 内 表 面 ; 以 及

至少一雷射光感測器和第二光波感測器,彼等在 運作上,分別能夠對該等經過該積分球體處理過之雷 射光束和第二光波中的一個加以偵測。

7. 如申請專利範圍第6項之雷射加工機,其中在該積分 球 體 内 , 尚 包 括 有 可 使 該 雷 射 光 束 與 該 第 二 光 波 分 開 的分光器。

经济部中央标准局员工消费合作社印型

D7

六、申請專利範圍

- 8. 如申請專利範圍第6項之雷射加工機,其中尚包括有由該積分球體之某一部分所構成的分光器,它可以其內表面,使至少部份傳送至該積分球體內部之雷射光束反射並擴散,以及使上述之第二光波通過該球體。
- 9. 如申請專利範圍第1項之留射加工機,其中尚包括有可以該第二光波感測器所測光波之強度、強度分佈、或波長的變化中至少之一為基礎,來決定上述光學系統之焦點位置的裝置。
- 10.如申請專利範圍第1項之雷射加工機,其中尚包括有一可以該第二光波感測器所測光波之強度、強度分佈、或波長的變化中至少之一為基礎,來決定上述穿孔之完成與故障中至少之一的裝置。
- 11.如申請專利範圍第1項之雷射加工機,其中尚包括有可以該第二光波感測器所測光波之強度、強度分佈、或波長的變化中至少之一為基礎,來決定一切削狀態的偵測裝置。
- 12.如申請專利範圍第1項之雷射加工機,其中之第二光波導引裝置,係由該共振器之背部面鏡所構成。
- 13.如申請專利範圍第1項之雷射加工機,其中尚包括有: 可產生一與該雷射光東同軸之光波的發光裝置; 可使該發光裝置所生而自該工件之加工表面反射 之雷射光東的反射光波,與該第二光波分開的分光器; 可響應該第二光波感測器而偵測該加工表面的偵 測裝置;以及

A7 B7 C7 D7

六、申請專利範圍

可響應該偵測裝置而實行沿該加工路徑之拷貝控制的控制裝置。

14.如申請專利範圍第1項之雷射加工機,其中之裝置包括具有喷嘴孔與前端的切削刀頭以及其尚包括有:

可依據該第二光波感測器所測之光束,與該切削刀頭之噴嘴孔和前端間的位置關係,來偵測上述雷射光束之光束軸線偏差值的偵測裝置;以及

可攀應該偵測裝置,而使該噴嘴孔與該光學系統相對於該雷射光束之欠對準得到補償的補償器裝置。

15.如申請專利範圍第12項之雷射加工機,其中尚包括有:可自該背部面鏡背後,産生與該雷射光束同軸之

可見光雷射光束的可見光雷射振盪器;

可使被該工件之加工表面反射,並返回該雷射振盪器內之可見光雷射光束,與該第二光波分開的分光器;

可鬱應該雷射光波感測器所接收之可見光雷射光束,而偵測該光東軸線偏差值、該共振器面鏡或一用以將該雷射光束導引至該工件之光波導引路徑面鏡的傾斜角中至少之一的偵測裝置;以及

可變應該偵測裝置,而改變該等面鏡之傾斜角,以便補償該光束軸線之偏差值的補償裝置。

16.如申請專利範圍第1項之雷射加工機,其中尚包括有:

可將該第二光波整形,以利該第二光波感測器之值測的聚光器;以及

经清部中央標準局員工消费合作社印製

B7 C7 D7

六、申请專利範圍

可沿某一光束軸線移動該聚光器,而提供可變之焦點的驅動裝置。

17.如申請專利範圍第12項之雷射加工機,其中尚包括有:

佈置在共振器之背部面鏡背後,而可偵測遠至一

加工表面之距離的距離感測器; 以及

可依據該距離感測器所測之距離,來驅動一聚光器元件,以便使該雷射光束集中的驅動齒輸。

18.如申請專利範圍第1項之雷射加工機,其中前包括有:

可依據該第二光波感測器之偵測信號,來偵測該雷射光束之光束模態的偵測裝置;

可調整該等共振器面鏡之角度的活動式支撑機構;以及

可依據該偵測裝置之偵測結果,來控制該等活動式支撑機構,以便對該光束模態提供補償的控制裝置

19.一種可用於上述留射加工機之雷射加工方法, 其包括之步 蹋有:

在該雷射振盪器內,産生一雷射光束,並且將此光束導引至一工件之表面上,而供其加工之用,上述加工則會産生第二光波;

在該雷射振鹽器内,接收上述之第二光波;

將 該 第 二 光 波 , 自 該 振 盪 器 内 部 , 導 引 至 該 當 射 振 盪 器 外 部 之 某 一 位 置 ; 以 及

使用該第二光波,來控制上述之加工。

经济部中央標準局員工消费合作社印象

C7

D7

六、申請專利範圍

- 20.如申請專利範圍第19項之當射加工方法,其中所用之步驟,至少包括下列之一:
 - (a) 偵測 雷射光學系統之焦點位置;
 - (b) 偵測上述穿孔之完成;
 - (c) 偵測穿孔之故障; 以及
 - (d) 偵測加工之狀態。
- 21.如申請專利範圍第19項之雷射加工方法,其中所用之步驟,至少包括下列之一:
 - (a)控制上述雷射振盪器之振盪條件;
 - (b)控制上述常射光束之焦點位置;
 - (c)控制回授之速率;以及
 - (d)控制喷嘴之狀態。
- 22.如申請專利範圍第19項雷射加工方法,其中所用之步驟包括:

控制沿該工件之一加工路徑的移動。

- 23.如申請專利範圍第19項之雷射加工方法,其中所用之步驟包括:
 - (1)使用光感测器之輸出信號,來偵測切削刀頭噴嘴與光學系統中至少之一,相對於該雷射光束之光東軸線的偏差值;以及
 - (2)對上述切削刀頭噴嘴與光學系統中至少之一,相對於該雷射光束之光束軸線的偏差值,加以補償。
- 24.如申請專利範圍第19項之雷射加工方法,其中所用之步驟包括:

B7 C7 D7

六、申請專利範圍

- (1)使用光感測器之輸出信號,來偵測共振器面鏡與光波導引路徑面鏡中至少之一的傾斜角;以及
- (2)改變上述共振器面鏡與光波導引路徑面鏡中至少之一的傾斜角,以便能夠對上述光東軸線之偏差值加以補償。
- 25.如申請專利範圍第19項之雷射加工方法,其中所用之步驟包括:
 - (1)使用光感測器之輸出信號,來偵測上述雷射光東之光束模態;以及
 - (2)控制至少一個活動式支撑機構,以便能夠對上述之光束模態加以補償。

经济部中央標準局員工消費合作社印製

219906

第|圖

第2圖

第三圖

第4圖

第5圖

第6圖

第7圖

第8圖

第10圖

第二圖

第/2圖

第/4圖

第15圖

第16圖

第17圖

施加雷射所致之簽射區域

第18圖 -

第19圖

第20圖

第2 圖

第22圖

第23圖

第25圖

第>7圖

第>8圖

第29圖