

GABARITO FÍSICA

Questão 1

Um cilindro de raio R encontra-se no interior de outro de raio 2R em contato no ponto (-2R, 0), do sistema de eixos coordenados de origem no centro do cilindro maior. Em t = 0 o cilindro interno passa a girar com velocidade constante no sentido apresentado na figura sem deslizar em relação ao externo.

Responda, para t > 0:

- a. Qual a equação horária da posição do ponto A, do cilindro menor, que se encontra inicialmente na posição (-R,R)?
- b. Determine a trajetória do ponto A.
- c. Em uma volta completa, todos os pontos do cilindro interno percorrem a mesma distância? Apresente os cálculos para justificar.

Questão 2

A força de atrito entre um bloco de massa de 5 kg e uma rampa, cujos coeficientes de atrito tanto estático quanto cinético valem $\sqrt{3}/3$, depende do ângulo de inclinação do plano. Esboce o gráfico que relaciona a força de atrito com o ângulo do plano inclinado $(F_{\rm at} \times \theta)$.

Adote a aceleração da gravidade como $g = 10 \,\mathrm{m\,s^{-2}}$.

Questão 3

Uma partícula A, de 4 g de massa e 7 mm de raio é carregada com uma carga de 8 μ C. A 100 mm desta, encontra-se inicialmente outra partícula B, de 6 g de massa, raio de 3 mm e carregada com $-12\,\mu$ C. Em seguida, ambas as partículas são soltas com velocidade inicial nula e passam a se atrair devido à força elétrica.

Determine a distância percorrida pela partícula A até o instante do choque.

Questão 4

Uma pessoa, de altura 1,80 m e cujos olhos estão a uma altura de 1,70 m do chão, está de frente a um espelho plano vertical.

Determine:

- a. o tamanho mínimo do espelho, de modo que a pessoa veja toda a sua imagem refletida no espelho;
- b. a distância do chão à borda inferior do espelho, para ver a imagem de seus próprios pés refletida no espelho.

Questão 5

Um calorímetro possui massa de $200\,\mathrm{g}$ e calor específico igual a $0.2\,\mathrm{cal}\,\mathrm{g}^{-1}\,^{\circ}\mathrm{C}^{-1}$. No interior do calorímetro existe uma certa quantidade de gelo e água em equilíbrio térmico. Seja $500\,\mathrm{g}$ a massa total da mistura de gelo e água, ou seja,

$$massa de gelo + massa de água = 500 g$$

O calorímetro é mantido isolado. Adicionando-se à mistura $50\,\mathrm{g}$ de vapor d'água a $100\,\mathrm{^{\circ}C}$ sob pressão de $1\,\mathrm{atm}$, verifica-se que a temperatura final de equilíbrio é igual a $50\,\mathrm{^{\circ}C}$.

Calcule a massa de gelo que existia antes de se adicionar o vapor.

Dados

- calor específico da água = $0.2 \operatorname{cal} \operatorname{g}^{-1} \circ \operatorname{C}^{-1}$;
- calor latente de fusão da água = $80 \operatorname{cal} \operatorname{g}^{-1}$;
- calor de vaporização da água = $540 \,\mathrm{cal}\,\mathrm{g}^{-1}$.