

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 19.1

Zur Klimatisierung eines Hörsaales werden $1000 \,\mathrm{m}^3/\mathrm{h}$ feuchte Luft aus der Umgebung mit $T_\mathrm{a} = 30\,^\circ\mathrm{C}$, einer relativen Feuchte von $80\,\%$ und einem Gesamtdruck von $1.013\,25\,\mathrm{bar}$ durch eine Rohrleitung angesaugt und mit Hilfe einer Kältemaschine isobar auf $14\,^\circ\mathrm{C}$ und einer relativen Feuchte von $100\,\%$ abgekühlt.

- a) Zu bestimmen sind der Massenstrom der angesaugten feuchten Luft und die der feuchten Luft zu entnehmende Wärme.
- b) Welche relative Luftfeuchte wird erreicht, wenn die Luft nach der Entfeuchtung wieder auf 20 °C aufgeheizt wird? Wieviel Wärme wird benötigt?

Der Verdichter der Kältemaschine saugt den Kältemittel-Dampf trockengesättigt an. Im Kondensator wird das Kältemittel isobar bis zur Siedelinie gekühlt.

- c) Bei welchen Temperaturen kann die Wärme von der Kältemaschine aufgenommen und abgegeben werden, wenn jeweils eine Temperaturdifferenz von mindestens 5 K erforderlich ist?
- d) Welche Siededrücke gehören zu diesen Temperaturen, wenn das Arbeitsmedium der Kältemaschine R134a ist?
- e) Welcher Massenstrom und Volumenstrom des Kältemittels muss vom Verdichter angesaugt werden?
- f) Welche Antriebsleistung ist erforderlich bei einem isentropen Wirkungsgrad des Verdichters von $\eta_{s,v} = 0.9$?
- g) Wie groß ist die Leistungszahl der Kältemaschine?

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Stoffdaten für R134a:

$T/^{\circ}\mathrm{C}$	$p_{\rm s}/{\rm bar}$	h'/(kJ/kg)	h''/(kJ/kg)	$\rho''/(\mathrm{kg/m^3})$	s'/(kJ/(kg K))	s''/(kJ/(kg K))
8	3.8761	210.84	403.20	18.94	1.0388	1.7230
9	4.0094	212.21	403.76	19.57	1.0437	1.7226
10	4.1461	213.58	404.32	20.23	1.0485	1.7221
11	4.2863	214.95	404.88	20.90	1.0533	1.7217
34	8.6263	247.54	416.72	42.18	1.1623	1.7131
35	8.8698	249.01	417.19	43.42	1.1670	1.7128
einphasig:			h/(kJ/kg)	$\rho/(\mathrm{kg/m^3})$		s/(kJ/(kg K))
36	8.8698		418.29	43.12		1.7163
38	8.8698		420.47	42.55		1.7234
40	8.8698		422.62	42.00		1.7303
42	8.8698		424.76	41.48		1.7371

Stoffdaten für feuchte Luft:

Luft und Wasserdampf sind als ideale Gase zu behandeln.

Universelle Gaskonstante	$R_{ m m}$	=	$8.3145\mathrm{J/(molK)}$
Molmasse Luft	$M_{ m L}$	=	$28.96\mathrm{g/mol}$
Molmasse Wasser	$M_{ m W}$	=	$18.02\mathrm{g/mol}$
Spez. Wärmekapazität Luft	$c_{p,\mathrm{L}}^o$	=	$1.007\mathrm{kJ/(kgK)}$
Spez. Wärmekapazität Wasserdampf	$c_{p,\mathrm{D}}^{o}$	=	$1.86\mathrm{kJ/(kgK)}$
Flüssiges Wasser	$c_{p,\mathrm{W}}^{o}$	=	$4.18\mathrm{kJ/(kgK)}$
Verdampfungsenthalpie (H2O) bei 0°C	$\Delta h_{v,o}$	=	$r_0 = 2500 \mathrm{kJ/kg}$
Schmelzenthalpie (H2O) bei 0°C	$\Delta h_{\mathrm{s},o}$	=	$333 \mathrm{kJ/kg}$

Die Enthalpie für trockene Luft und flüssiges Wasser bei 0°C ist 0kJ/kg.

Für die Dampfdruckkurve von Wasser gelte die Näherungsgleichung: $\ln(p/p_0)=14.233-\tfrac{5200.1\,\mathrm{K}}{T-4.114\,\mathrm{K}}\qquad(p_0=1\,\mathrm{bar},T\ \mathrm{in}\ \mathrm{K}).$