Project 3

clustering, dimensionality reduction, and non-monotonous neurons

Lukas Drexler, Leif Van Holland, Reza Jahangiri, Mark Springer, Maximilian Thiessen January 25, 2018

Rheinische Friedrich-Wilhelms-Universität

Task 3.1

Fun with k-means clustering

Compare the results and runtimes of three different approaches for k-means clustering:

- Lloyd's algorithm
- MacQueen's algorithm
- Hartigan's algorithm

for k = 3 clusters.

Given data set

data points to be clustered

Lloyd's algorithm

MacQueen's algorithm

Hartigan's algorithm

Task 3.2

Spectral clustering

Given data, $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^2$, compute similarity matrix:

$$S_{ij}=e^{-\beta||x_i-x_j||^2}$$

and the Laplacian L = D - S, with diagonal matrix D:

$$D_{ij} = \begin{cases} \sum_{j} S_{ij} & \text{, if } i = j \\ 0 & \text{, otherwise} \end{cases}$$

Then compute the eigenvalue decomposition of L. Use the eigenvector of the second smallest eigenvalue to partition the data points, according to the sign of the corresponding entry in the eigenvector.

7

The result using kmeans++:

The result using $\beta = 1$ through 4: beta=1 2.0 1.5 1.0

The result using $\beta = 1$ through 4: beta=2 2.0 1.5 1.0 0.5 0.0 -0.5 ·

-1.0

-2

-1

The result using $\beta = 1$ through 4: beta=3 2.0 1.5 1.0 0.5 0.0 -0.5

-1.0

-2

-1

The result using $\beta = 1$ through 4: beta=4 2.0 1.5

Task 3.3

Dimensionality reduction

This task explores mappings $\mathbb{R}^{500} \to \mathbb{R}^2$, in particular Principal Component Analysis (PCA) and multi-class LDA.

Dimensionality reduction

Idea: Project n=150 zero-mean data $x_1,...,x_n$ onto eigenvectors u_1 and u_2 corresponding to largest eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$:

PCA: eigenvectors of sample covariance matrix

$$\Sigma = \frac{1}{n+1} \sum_{i=1}^{n} x_i \cdot x_i^T$$

LDA: eigenvectors of

$$S_W^{-1}S_B = \left(\sum_{j=1}^k \Sigma_j\right)^{-1} \sum_{j=1}^k \mu_j \cdot \mu_j^T$$

where μ_j are the mean vectors and Σ_j are the covariance matrices for the k=3 classes the data points are from

PCA and LDA in two dimensions

Observe: Data points with same label form clusters if projected.

PCA and LDA in three dimensions

Observe: Data points are (per class) located in a 1D-subspace of \mathbb{R}^{500} .

PCA vs LDA

Why do the results differ?

PCA: Yields axes of maximum variance in complete data set.

 \Rightarrow Preserves as much *variance* as possible.

LDA: Uses class labels to maximize distance between class means and minimize class variances.

⇒ Preserves as much *discriminatory* information as possible.

Task 3.4

Perceptrons

- Gradient descent for perceptron learning:
 - line search version
 - use best result of k runs, to prevent local minima
 - monotonous activation separates only linearly
 - · avoid this limitation with non-monotonous activation

Monotonous Perceptron (tanh)

Non-monotonous Perceptron (Gaussian)

SVM

- L2-SVM with polynomial kernel:
 - Train with Frank-Wolfe algorithm
 - d = 2 (i.e. quadratic kernel) is enough

Polynomial Kervel SVM

Task 3.5

Exploring numerical instabilities

Task: Fit a 10th order polynomial to this data using different approaches.

Resulting fits

Vandermonde and pinv, transformed data

Vandermonde and pinv

Vandermonde and Istsq

Regularized least squares

Using Tikhonov-regularization ($\lambda=0.5$) yields a result that is closer to the more erroneous results from last slide.

Thank you for your attention!