Package 'gfpop'

February 28, 2019

Type Package

Title Graph-constrained Functional Pruning Optimal Partitioning
Version 0.1.2
Author Vincent Runge
Maintainer Vincent Runge <vincent.runge@univ-evry.fr></vincent.runge@univ-evry.fr>
Description Penalized parametric changepoint detection by functional pruning dynamic programming algorithm. The successive means can be constrained using a graph structure with edge of type null, up, down, std, absInf or absSup. To each edge we can use an additional nonnegative parameter allowing us to force a minimal gap between two successive means. The user can also constraint the infered means to lie between some minimal and maximal values. Data is modelized by a quadratic cost with possible use of a robust loss, biweight and Huber. In a next version of this package, other parametric losses will be available (L1, Poisson, binomial).
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.18)
LinkingTo Rcpp
RoxygenNote 6.1.0
Suggests knitr, rmarkdown VignetteBuilder knitr
R topics documented:
dataGenerator

2 edge

Index 8

dataGenerator	Gaussian data Generator	
---------------	-------------------------	--

Description

Generating data with given model = changepoint relative position + means + standard deviation

Usage

```
dataGenerator(n, changepoints, means, sigma = 1, gamma = 1)
```

Arguments

n	number of data to generate
changepoints	vector of position of the changepoint in (0,1] (last element is always 1).
means	vector of means for the consecutive segments (same length as changepoints)
sigma	a positive number = the standard deviation of the data
gamma	a number between 0 and 1: the coefficient of the exponential decay (by default = 1 for piecewise constant signals)

Value

a vector of size n generated by the chosen model

Examples

```
dataGenerator(100, c(0.3, 0.6, 1), c(1, 2, 3))
```

edge	Edge generation	
------	-----------------	--

Description

Edge creation for graph

Usage

```
edge(state1, state2, type = "null", penalty = 0, decay = 1,
   gap = 0)
```

gfpop 3

Arguments

state1	a nonnegative integer defining the starting state of the edge
state2	a nonnegative integer defining the ending state of the edge
type	a string equal to "null", "std", "up", "down", "absInf" or "absSup"
penalty	a nonnegative number. The penality associated to this state transition
decay	a nonnegative number to give the strength of the exponential decay into the segment
gap	a nonnegative number to constraint the size of the gap in the change of state

Value

a dataframe with five components equal to the five parameters

Examples

```
edge(0, 1, "up", 10, gap = 1)
```

gfpop

Graph-constrained functional pruning optimal partitioning

Description

Graph-contstrained functional pruning optimal partitionning

Usage

```
gfpop(vectData = c(0), vectWeight = c(0), mygraph, type = "gauss", K = Inf, a = 0, min = -Inf, max = Inf)
```

Arguments

vectData	vector of data to segment
vectWeight	vector of weights (positive numbers) same size as vectData
mygraph	dataframe of class graph to constraint the changepoint dynamic programming algorithm
type	a string defining the type of cost to use. "gauss", "poisson" or "binomial"
K	a positive number. Threshold for the Biweight robust loss
а	a positive number. Slope for the Huber robust loss
min	minimal bound for the infered means
max	maximal bound for the infered means

4 graph

Value

a gfpop object = (changepoints, states, forced, means). 'changepoints' is the vector of changepoints (we give the last element of each segment). 'states' is the vector giving the state of each segment 'forced' is the vector specifying whether the constraints of the graph are active (=1) or not (=0) 'means' is the vector of successive means of each segment 'cost' is a number equal to the global cost of the graph-constrained segmentation

graph

Graph generation

Description

Graph creation

Usage

```
graph(..., penalty = 0, type = "empty")
```

Arguments

... This is a list of edges definied by functions edge and StartEnd

penalty a nonnegative number equals to the common penalty to use for all edges

type a string equal to "std", "isotonic", "updown", "infsup". to build a predefined

classic graph

Value

a dataframe with edges in rows (columns are named "state1", "state2", "type", "penalty", "parameter") with additional "graph" class.

Examples

```
\label{localize} $$ UpDownGraph <- graph(penalty = 10, type = "updown") $$ MyGraph <- graph(edge(0,0), edge(1,1), edge(0,1,"up",10,gap=0.5), edge(1,0,"down"), StartEnd(0,0)) $$ $$ MyGraph <- graph(edge(0,0), edge(1,1), edge(0,1,"up",10,gap=0.5), edge(1,0,"down"), StartEnd(0,0)) $$ $$ MyGraph <- graph(edge(0,0), edge(1,1), edge(0,1,"up",10,gap=0.5), edge(1,0,"down"), StartEnd(0,0)) $$ $$ MyGraph <- graph(edge(0,0), edge(1,1), edge(0,1,"up",10,gap=0.5), edge(1,0,"down"), StartEnd(0,0)) $$ $$ MyGraph <- graph(edge(0,0), edge(1,1), edge(0,1,"up",10,gap=0.5), edge(1,0,"down"), StartEnd(0,0), edge(1,0,"down"), StartEnd(0,0,"down"), St
```

itergfpop 5

: 4	
itergfpop	Graph-constrained functional pruning optimal partitioning iterated

Description

Graph-contstrained functional pruning optimal partitionning iterated with a Birgé Massart like penalty

Usage

```
itergfpop(vectData = c(0), vectWeight = c(0), mygraph,
  type = "gauss", K = Inf, a = 0, min = -Inf, max = Inf,
  iter.max = 100, D.init = 1)
```

Arguments

vectData	vector of data to segment
vectWeight	vector of weights (positive numbers) same size as vectData
mygraph	dataframe of class graph to constraint the changepoint dynamic programming algorithm
type	a string defining the type of cost to use. "gauss", "poisson" or "binomial"
K	a positive number. Threshold for the Biweight robust loss
а	a positive number. Slope for the Huber robust loss
min	minimal bound for the infered means
max	maximal bound for the infered means
iter.max	maximal number of iteration of the gfpop function
D.init	initialisation of the number of segments

Value

a gfpop object = (changepoints, states, forced, means). 'changepoints' is the vector of changepoints (we give the last element of each segment). 'states' is the vector giving the state of each segment 'forced' is the vector specifying whether the constraints of the graph are active (=1) or not (=0) 'means' is the vector of successive means of each segment 'cost' is a number equal to the global cost of the graph-constrained segmentation 'Dvect' is a vector of integers. The successive tested D in the Birgé Massart penalty until convergence

6 StartEnd

sdDiff

Description

Estimation of the standard deviation

sdDiff

Usage

```
sdDiff(x, method = "HALL")
```

Arguments

x vector of datapoint

method Three available methods: "HALL", "MAD" and "SD"

Value

a value equal to the estimated standard deviation

Examples

```
data <- dataGenerator(100, c(0.3, 0.6, 1), c(1, 2, 3), 2) sdDiff(data)
```

StartEnd

Constraint the starting and ending states of a graph

Description

Adding constraints on the starting and ending states of a graph

Usage

```
StartEnd(start = NULL, end = NULL)
```

Arguments

start a vector of nonnegative integers. The starting vertices in the changepoint infer-

ence

end a vector of nonnegative integers. The ending vertices in the changepoint infer-

ence

StartEnd 7

Value

a dataframe with five components (as for edge) with only 'state1" and 'type' = start or end defined.

Examples

```
StartEnd(start = 0, end = c(1,2))
```

Index

```
dataGenerator, 2
edge, 2
gfpop, 3
graph, 4
itergfpop, 5
sdDiff, 6
StartEnd, 6
```