Dimension, rang og determinant, Afsnit 2.9, 3.1 og 3.2

13. marts 2025

Lineær Algebra

Forår 2025

Del I Repetition

Quiz

Gå til hjemmesiden

https://poll.math.aau.dk/wjahjgtr

Basis for underrum

Definition

En mængde $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ kaldes en basis for underrummet V, hvis

- ▶ B er lineært uafhængig (ihr for many vehtorer)

 ▶ V = Span(B) (ihr for for rehtorer)

Et underrum kan have flere forskellige baser Det kan dog vises, at alle baser har samme antal vektorer

Opgave 2.8 15

Afgør, om
$$\left\{ \begin{bmatrix} 5 \\ -2 \end{bmatrix}, \begin{bmatrix} 10 \\ -3 \end{bmatrix} \right\}$$
 er en basis for \mathbb{R}^2 .

Det vil sige, at vi skal tjekke, om vektorerne er lineært uafhængige, og om enhver vektor i \mathbb{R}^2 ligger i spændet af dem.

Ved at rækkereducere får vi

$$\begin{bmatrix} 5 & 10 & | v_1 \\ -2 & -3 & | v_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | \frac{1}{5}(-3v_1 - 10v_2) \\ 0 & 1 & | \frac{2}{5}v_1 + v_2 \end{bmatrix}$$

$$C_1 \begin{bmatrix} 5 \\ -2 \end{bmatrix} + C_2 \begin{bmatrix} 10 \\ -3 \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Baser giver en entydig linearkombination

Hvis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ er en basis for V, og $\mathbf{v} \in V$, så eksisterer vægte c_1, c_2, \dots, c_k , så

$$\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_k \mathbf{b}_k.$$

Hvis $\mathbf{v} = \tilde{c}_1 \mathbf{b}_1 + \tilde{c}_2 \mathbf{b}_2 + \dots + \tilde{c}_k \mathbf{b}_k$ er en anden linearkombination, får vi

$$0 = v - v = (c_1 - \widetilde{c_1})b_1 + (c_2 - \widetilde{c_2})b_2 + \cdots + (c_k - \widetilde{c_k})b_k$$

Da basisvektorerne er lineært uafhængige, giver dette...

$$C_i - \widetilde{C}_i = 0$$
 Drs. $C_i = \widetilde{C}_i$

Et plan i \mathbb{R}^3

De to vektorer $[1, 1, 3]^T$ og $[2, 0, 1]^T$ udspænder et plan P i \mathbb{R}^3

I en eller anden forstand har P mere til fælles med \mathbb{R}^2 end \mathbb{R}^3 Hvordan fanger vi denne sammenhæng præcist?

Hvad giver basen os?

En basis for
$$P$$
 er $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$

Enhver vektor \mathbf{v} i planet kan altså skrives som $\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2$

Hvis vi er enige om \mathcal{B} , kan vi altså bestemme \mathbf{v} udelukkende fra...

Koordinatvektorer

Når $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ er en basis for et underrum V, kan ethvert \mathbf{v} i V skrives på formen

$$\mathbf{v} = \mathbf{c_1} \mathbf{b_1} + \mathbf{c_2} \mathbf{b_2} + \cdots + \mathbf{c_k} \mathbf{b_k}$$
Vi indfører notationen $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} \mathbf{c_1} \\ \mathbf{c_2} \\ \vdots \\ \mathbf{c_k} \end{bmatrix}$

$$\mathbf{b}[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$$

 $[v]_{\mathcal{B}}$ kaldes koordinatvektoren for \mathbf{v} mht. basen \mathcal{B}

Koordinatvektorer

Eksempel

En basis er givet ved $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 4 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

Vi har
$$\mathbf{v} = \begin{bmatrix} 5 \\ 16 \\ 11 \\ 4 \end{bmatrix} = 3\mathbf{b}_1 - \mathbf{b}_2 + 4\mathbf{b}_3$$
, så $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$

Hvis
$$[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
, hvad er så \mathbf{u} ?

$$N = 0b_1 - 1b_2 + 2b_3$$

$$= \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 2 \end{bmatrix}$$

Planet fra før

Enhver vektor ${\bf v}$ i planet fra før har en koordinatvektor i ${\mathbb R}^2$

Altså: Selvom \mathbf{v} ligger i \mathbb{R}^3 kan den beskrives ved en vektor i \mathbb{R}^2

Dette giver en stringent forklaring af "P minder om \mathbb{R}^2 " (Med et fint ord er P isomorf med \mathbb{R}^2)

Dimension af underrum

Helt generelt gælder, at når en basis \mathcal{B} for et underrum V af \mathbb{R}^n består af k vektorer, så er V isomorf med \mathbb{R}^k

Det kan vises, at for et fastlagt V vil enhver basis for V indeholde det samme antal vektorer. Derfor defineres:

Definition

For et underrum V af \mathbb{R}^n defineres dimensionen af V til at være antallet af vektorer i en basis for V. Dimensionen noteres dim(V).

Per konvention siger vi, at $dim\{\mathbf{0}\} = 0$

Dimension af underrum

Eksempel

$$\dim(\mathbb{R}^n) = \mathbf{N}$$

En bass & ? [] . [] . - , [] } = {e1,e2, --, eng

Eksempel

$$V = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}. \text{ Hvad er dim}(V)?$$

standardbaser et der

VI bemorter, at spilere et in nest. og derfor de også a boasis for V. Drs. din(v)=3

Matrixrang

Definition

For en matrix A defineres dens rang, rank(A), til at være dimensionen af Col(A).

Idet en basis for Col(A) udgøres af A's pivotsøjler...

vil rached voer artillet of probagler

Dimensionen af Nul(A)

Vi har tidligere set, at en basis for Nul(A) kan findes fra den parametriske løsning. Antallet af vektorer i denne form er...

antally of fre variose, son x antaller of the pirotopy

Rangsætningen

Sætning

din Col(K) Hvis A er en $m \times n$ -matrix, så gælder rank(A) + dim Nul(A) = n

Tilbage til invertibilitet

Ud fra rangsætningen kan vi få endnu et kriterium for invertibilitet:

En $n \times n$ -matrix A er inverterbar, hvis og kun hvis den har n pivotsøjler Men da er rank(A) = M

Rangsætningen n = rank(A) + dim Nul(A) giver så...

$$N=N+dinNul(A)$$

$$\Rightarrow din Nul(A)=0$$
alks $Nul(A)=856$

Flere kriterier for invertibilitet

Disse overvejelser gør det muligt at udvide sætningen fra sidst

Sætning

Lad A være en n × n-matrix. Følgende udsagn er ækvivalente.

- 1. A er inverterbar
- 2. Søjlerne i A er en basis for \mathbb{R}^n
- 3. $\dim \operatorname{Col}(A) = n$
- 4. rank(A) = n
- 5. $Nul(A) = \{ \mathbf{0} \}$
- 6. $\dim \text{Nul}(A) = 0$

Determinanter

Vi kender determinanten for 2×2 -matricer.

Hvad med 3×3 ? Eller $n \times n$?

For større matricer defineres determinanten rekursivt

Det vil sige, at vi finder det(A) ved at inddele A i mindre matricer (på en helt bestemt måde) og udregne determinanten af dem

Dette fortsætter vi med, indtil vi når determinanter af 2 \times 2-matricer – dem kender vi jo allerede

Eksempel

$$\det \left(\begin{bmatrix} a & b & c \\ d & e & f \\ a & h & i \end{bmatrix} \right) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

det([])=

(I ser senere, hvorfra dette kommer)

Undermatricer

per the indepens ais

 A_{ij} er den $(n-1) \times (n-1)$ -undermatrix af A, hvor vi sletter række i og søjle j

Eksempel

$$A = \begin{bmatrix} 2 & -3 & -1 & -7 \\ 5 & -4 & -6 & 1 \\ 7 & 6 & 8 & 0 \\ -5 & -2 & 4 & 3 \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} -4 & -6 & 1 \\ 6 & 8 & 0 \\ -2 & 4 & 3 \end{bmatrix}$$

$$A_{23} = \begin{bmatrix} 2 & -3 & -7 \\ 7 & 6 & 6 \\ -5 & -2 & 3 \end{bmatrix}$$

Definition

Determinanten af en $n \times n$ -matrix A er defineret som

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + \ldots + (-1)^{1+n} a_{1n} \det(A_{1n})$$

Det vil sige, at determinanten er en sum, hvor hvert led er en indgang i første række af *A* ganget med en underdeterminant. Fortegnet er skiftevist positivt og negativt

Eksempel
$$\det \left(\begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} \right) = 1 \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 0 \\ 3 & 2 \end{vmatrix}$$

$$= 1 \cdot (-4) - 2 \cdot (-4) = 3 \cdot 4$$

$$= 16$$

$$\det \left(\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 3 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = 1 \begin{vmatrix} 0 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 0 & 2 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 \\ 1 \end{vmatrix}$$

$$= 1(0.|1|-2|20)+0(5|)$$

$$-2(0|1|-2|30)+0(5|)$$

$$= 1\cdot(-4)-2\cdot(-6)$$

$$= 8$$

Udvikling af andre rækker/søjler

Determinanten er defineret fra første række, men det viser sig, at den kan udregnes fra en hvilken som helst række eller søjle

Kofaktor:
$$C_{ij} = (-1)^{i+j} \det(A_{ij})$$

Sætning

For en $n \times n$ -matrix A og $1 \le i, j \le n$

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in} \quad (Udvikling efter i'te række)$$

$$\det(A) = a_{1i}C_{1i} + a_{2i}C_{2i} + \ldots + a_{ni}C_{ni} \quad (Udvikling efter i'te søjle)$$

Fortegnet i kofaktorer

Fortegnet $(-1)^{i+j}$ i C_{ij} er lettere at huske som et skakbræt:

$$\begin{bmatrix} + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Kofaktorudvikling

Eksemplet fra før kan udregnes let ved kofaktorudvikling

Eksempel
$$\det \begin{pmatrix} \begin{bmatrix} +1 & 2 & +0 & +0 \\ 0 & 0 & 2 & +0 \\ 3 & 2 & 1 & +0 \\ 1 & 0 & 0 & +1 \end{pmatrix} = -0 \begin{vmatrix} 1 & -0 & 1 & -0 & 1 \\ -0 & 1 & -0 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \end{vmatrix}$$

$$= 1 \cdot (-0 | 1 | + 0 | 1 | - 2 | 1 | 2 |$$

Kofaktorudvikling

Eksempel

Udregn det
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & 0 & 0 \\ -0 & 0 & 2 & 0 \\ 1 & 3 & 2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
 ved kofaktorudvikling fra sidste

række.

$$= -1 \begin{vmatrix} 2 & 6 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & 0 \end{vmatrix} + 0 |2| - 0 |2| - 1 |2 & 0 \\ 3 & 2 & 1 |$$

Triangulære matricer

Såkaldte triangulære matricer (ene nuller på den ene side af diagonalen) er lette at udregne determinanter for

Eksempel

$$\det \left(\begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & 4 & 2 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \end{bmatrix} \right) = 1 \begin{vmatrix} 4 & 2 & 6 \\ 0 & 2 & 8 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot 4 \begin{vmatrix} 2 & 8 \\ 0 & 3 \end{vmatrix} = 1 \cdot 4 \cdot 2 \cdot 3$$

Notog prod. at diag. elementerne

Matricer på trappeform

Observationen fra triangulære matricer kan udvides til matricer på trappeform:

Determinanter og rækkeoperationer

Vi kan opnå trappeform gennem rækkeoperationer – men hvad betyder det for determinanten?

Sætning (side 187)

Lad A være en kvadratisk matrix. Hvis B opnås ved...

- ... at lægge k gange en række i A til en anden række, har vi det(B) = det(A)
- ightharpoonup ... at ombytte to rækker i A, har vi det(B) = det(A)
- ightharpoonup ... at skalere en række i A med k, har vi $\det(B) = k \det(A)$

Determinanter og rækkeoperationer

Eksempel

$$\det\left(\begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}\right) = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \end{vmatrix} = 1 \cdot \begin{vmatrix} -4 & -4 \\ -4 & -8 \end{vmatrix}$$
$$= 1 \cdot (32 - 14)$$
$$= 16$$

Determinanter og rækkeoperationer

Eksempel

Bestem det
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$
 ved at finde den reducerede trappeform.

$$= \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -4 & 8 \end{vmatrix} = -4 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{vmatrix} = (-4) \cdot (-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= (-4)^{2} \cdot 1$$
$$= 16$$

Determinant og invertibilitet

Sætning

En kvadratisk matrix A er inverterbar, hvis og kun hvis $det(A) \neq 0$.

Hvorfor? A er inverterbar hvis og kun hvis $[A \mid I_n] \leadsto [I_n \mid B]$ Rækkeoperationerne skalerer og skifter fortegn; altså $\det(A)$ er en skalar gange $\det(I_n) = 1$

40

Egenskaber for determinant

Determinanten opfører sig pænt under matrixprodukt og transponering:

(a)
$$det(AB) = det(A) det(B)$$

(b)
$$det(A) = det(A^T)$$

Specielt betyder (b), at det er tilladt at lave *søjle*operationer, når vi udregner determinant

Bemærk, at det(A + B) ikke har en pæn formel