

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES Centro de Formación Continua

FORMATO DE PLANEACIÓN Estrategia didáctica

DATOS GENERALES

Nombre del participante	Denise Cruz Miranda
Asignatura	Matemáticas I-IV
Año o semestre en que imparte	2023
Horas clase a la semana	5 horas
Unidad	Matemáticas II: Unidad 1. Ecuaciones cuadráticas.
Aprendizajes	Aprendizaje: Identifica la naturaleza de las raíces de una ecuación cuadrática, a partir de sus coeficientes.
Problemática que se abordará a través del problema.	Realizar un programa que ayude a resolver ecuaciones de segundo grado, con el que identificaremos las raíces de la ecuación y la parábola que forma, utilizando la interfaz gráfica de Python.
Justificación. (porque considera que el programa en python o Julia puede apoyar al alumno a entender o lograr el aprendizaje)	Que los estudiantes conozcan el método de Fórmula General para resolver ecuaciones de segundo grado, viendo paso a paso la solución, la gráfica de la ecuación, que distinga cuando la ecuación tenga raíces Reales y Complejas, y que observe las intersecciones con los ejes X y Y.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES

·	grad
(Después de haber	0
explicado, haber realizado	
alguna actividad guiada y/o	
deiar una actividad	

extraclase, ¿Qué evidencia tiene que entregar para ser

Un programa que ayude a la resolución de ecuaciones de segundo grado dando las raíces, la parábola y la solución paso a paso.

Recursos materiales /Herramientas TIC

evaluada?

Producto esperado

- Computadora o laptop,
- Software: simuladores, IDE (Entorno de desarrollo integrado) www.replit.com.
- Conexión a internet.
- Plataforma educativa: Moodle, Teams, Classroom, etc.
- Videoproyector.
- Pizarrón
- Lista de cotejo para evaluar el desarrollo del proyecto, a manera de cronograma, para apoyar en el seguimiento del mismo.

Tiempos de realización.

2 clases de 4 horas y una clase de 1 hora.

Secuencia didáctica

Presentación del problema a resolver

Se requiere un programa que ayude a los alumnos a obtener las raíces y la parábola de una ecuación de segundo grado

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO **COLEGIO DE CIENCIAS Y HUMANIDADES** Centro de

Secuencia didáctica

Figura 1. Interfaz gráfica

Inicio de la Sesión

Solicita a los alumnos que observen e identifiquen cuales son los elementos gráficos que encuentran en la ventana "Ecuación gráfica". Comenta a los alumnos del grupo qué para el desarrollo del programa, el profesor explica el comportamiento de los elementos a utilizar:

- **Button**
- root = Tk()
- etiqueta1 = Label
- entrada1 = Entry(root)
- pasos_text = Text

Secuencia didáctica

resultado = Label

Importar los paquetes que permitirán utilizar la ventana y el widget para el programa

- from tkinter import *
- from tkinter import ttk
- from io import StringIO

Desarrollo de la sesión

El profesor realiza una explicación acerca de las ecuaciones de segundo grado, propone algunos ejercicios para que los alumnos las resuelvan en equipos de 4 personas, una vez entendido un poco el tema se prenden las computadoras, se abre el entorno gráfico Replit y de forma guiada van metiendo cada uno de los datos para crear el programa y a su vez se va explicando cada paso para que lo alumnos entiendan más acerca de la programación.

Conforme van entendiendo, se deja que los alumnos vayan a completando el programa para crear botones, funciones, ventanas, etc.

Cierre de la sesión

Un ejercicio recapitulativo donde muestren su comprensión acerca de la programación y las ecuaciones de segundo grado, que cada equipo muestre su programa y se le pide que haga pruebas con diferentes ecuaciones.

Reflexionan en grupo acerca de lo que fue más fácil, más difícil y que hagan aportaciones individuales del trabajo hecho.

Evaluación

ACTIVIDAD A EVALUAR	PUNTAJE
Resolución de los ejercicios principales	2
Trabajo en equipo	2

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES Centro de Formación

Secuencia didáctica

El código elaborado realiza la solución de ecuaciones de segundo grado	3
Entregaron en tiempo y forma	
Asistencia	1

Evaluación

Puede usar rúbrica, lista de cotejo, kahot, crusigrama, etc.

Referencias

- Replit | EduTools. (s. f.).
 https://edutools.tec.mx/es/colecciones/tecnologias/replit
- ¿Qué es Python? Explicación del lenguaje Python AWS. (s. f.).

 Amazon Web Services, Inc. https://aws.amazon.com/es/what-is/python/#:~:text=Python%20es%20un%20lenguaje%20de,ejecutar%2

 Oen%20muchas%20plataformas%20diferentes.
- El tutorial de Python. (s. f.). Python documentation.
 https://docs.python.org/es/3/tutorial/index.html
- Aprende Python Python España. (s. f.). https://es.python.org/aprende-python/

Secuencia didáctica

Daniel Carreón. (2020, 1 marzo). ECUACIONES DE SEGUNDO
 GRADO POR FORMULA GENERAL super facil -Para principiantes

[Vídeo]. YouTube. https://www.youtube.com/watch?v=ZC67c5ar9mA

Anexo Códigos de resultados de ejercicios:

Propuesta 1:

```
In [1]: import math
           import matplotlib.pyplot as plt
           import numpy as np
In [2]: def ecuacion_segundo_grado(a, b, c):
    discrim = b**2 - 4*a*c
                if discrim > 0: #raices reales diferentes
                     x1 = (-b + math.sqrt(discrim)) / (2*a)
x2 = (-b - math.sqrt(discrim)) / (2*a)
                     return x1, x2
                elif discrim == 0: #raíz reales repetidas
  x = -b / (2*a)
                     return x, x
                else: #raíz compleja
                     parte_real = -b / (2*a)
parte_imag = math.sqrt(abs(discriminante)) / (2*a)
                     x1 = complex(parte_real, parte_imag)
                     x2 = complex(parte_real, -parte_imag)
                     return x1, x2
In [3]: def pasos_ecuacion(a, b, c):
    print("Resolviendo la ecuación ax^2 + bx + c = 0")
    print("Paso 1: Calculando el discriminante")
    discrim = b**2 - 4*a*c
                print("Discriminante = {discrim}")
                if discrim > 0:
                     print("Paso 2: El discriminante es mayor que 0, hay dos raíces reales y distintas")
                     x1 = (-b + math.sqrt(discrim)) / (2*a)
x2 = (-b - math.sqrt(discrim)) / (2*a)
                     print("Las raíces son x1 = \{x1\} y x2 = \{x2\}")
                elif discrim == 0:
                     print("Paso 2: El discriminante es igual a 0, hay una raíz real repetida")
                     x = -b / (2*a)
print("La raíz repetida es x = {x}")
```


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO S COLEGIO DE CIENCIAS Y HUMANIDADES


```
print("Las raices son x1 = {x1} y x2 = {x2}")
                 elif discrim == 0:
                     print("Paso 2: El discriminante es igual a 0, hay una raíz real repetida")
                      x = -b / (2*a)
                      print("La raíz repetida es x = {x}")
                 else:
                     print("Paso 2: El discriminante es menor que 0, hay dos raíces complejas (no reales)")
parte_real = -b / (2*a)
parte_imag = math.sqrt(abs(discrim)) / (2*a)
                      x1 = complex(parte_real, parte_imag)
                     x2 = complex(parte_real, -parte_imag)
print("Las raíces complejas son x1 = {x1} y x2 = {x2}")
 In [4]: # Introducir valores para a, b y c
           a = float(input("Ingrese el valor de a:"))
b = float(input("Ingrese el valor de b:"))
           c = float(input("Ingrese el valor de c:"))
            Ingrese el valor de a:1
            Ingrese el valor de b:-9
            Ingrese el valor de c:3
 In [5]: # Solución paso a paso
           pasos_ecuacion(a, b, c)
            Resolviendo la ecuación ax^2 + bx + c = 0
            Paso 1: Calculando el discriminante
            Discriminante = {discrim}
            Paso 2: El discriminante es mayor que 0, hay dos raíces reales y distintas
            Las raices son x1 = \{x1\} y x2 = \{x2\}
 In [6]: # Calcular las raíces
           x1, x2 = ecuacion_segundo_grado(a, b, c)
           print("Las raíces son:")
print("x1 =", x1)
print("x2 =", x2)
           print("x2 =", x2)
           Las raíces son:
           x1 = 8.653311931459037
           x2 = 0.34668806854096257
In [16]: # Graficar la parábola
           x = np.linspace(-10, 10, 100)
           y = a * x**2 + b * x + c
            \begin{array}{lll} & plt.plot(x, y, label=f"\{a\}x^2 + \{b\}x + \{c\} = 0") \\ & plt.axhline(y=0, color='red', linewidth=1) \\ & plt.axvline(x=0, color='red', linewidth=1) \end{array} 
           plt.legend()
           plt.xlabel("x")
           plt.ylabel("y")
           plt.title("Parábola")
           plt.grid(True)
           plt.show()
                                                         Parábola
```


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES

Propuesta 2:

```
In [1]: from tkinter import
            from tkinter import ttk
In [2]: import math
            import matplotlib.pyplot as plt
import numpy as np
from io import StringIO
In [3]: root = Tk()
root.title("Ecuación Cuadrática")
            root.geometry("330x460")
variable = StringVar()
variable2 = StringVar()
In [4]: def ecuacion segundo grado():
                 a = float(entrada1.get())
b = float(entrada2.get())
                  c = float(entrada3.get())
                 discrim = (b*b)-4*a*c
if discrim < 0:
    etiqueta = Label(root, text="No existen soluciones Reales", background="white")
    etiqueta.place(x=60, y=180, width=200, heigh=30)
    etiqueta.config(font=("Ink Free", 12))</pre>
                       e:

x1 = (-b + math.sqrt(discrim)) / (2 * a)

x2 = (-b - math.sqrt(discrim)) / (2 * a)
                       a = "{:.6f}".format(x1)
b = "{:.6f}".format(x2)
                       r = a," - ",b
                       print("X1 : ", "{:.6f}".format(x1))
print("X2 : ", "{:.6f}".format(x2))
                       return variable.set(r)
In [5]: def f(a, b, c, x):
return a * (x ** 2) + b * x + c
In [6]: # Abre una ventana donde introducirá a, b y c
            def parabola():
  In [6]: # Abre una ventana donde introducirá a, b y c
              def parabola():
                     a = float(entrada1.get())
b = float(entrada2.get())
c = float(entrada3.get())
                        = range(-100, 100)
                     plt.plot(x, [f(a, b, c, i) for i in x])
                    plt.axhline(0, color="red")
plt.axvline(0, color="red")
                     plt.xlim(-60, 60)
plt.ylim(-60, 60)
                     plt.draw()
                     plt.xlabel("x")
                     plt.ylabel("y"
                     plt.grid(True)
                     plt.title("Parábola de la ecuación de segundo grado")
                     plt.show()
 In [7]: # Limpia las entradas y los resultados
def borrar_ventana():
                     entrada1.delete(0, END)
                     entrada2.delete(0, END)
                     entrada3.delete(0, END)
                     variable.set("")
variable2.set("")
pasos_text.delete("1.0", "end")
                     root.update_idletasks()
  In [8]: # Resuelve paso a paso la ecuación por el método de la Fórmula General.
def pasos_ecuacion():
                           a = float(entrada1.get())
                           b = float(entrada2.get())
                           c = float(entrada3.get())
                           pasos_text.delete("1.0", END) pasos_text.insert(END, "Resolviendo la ecuación ax^2 + bx + c = 0\n") pasos_text.insert(END, "Calculando el discriminante.\n")
```


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES

Centro de Formación Continua

```
pasos_text.uerece( 1.0 , END)
pasos_text.insert(END, "Resolviendo la ecuación ax^2 + bx + c = 0\n")
pasos_text.insert(END, "Calculando el discriminante.\n")
                  if discrim < 0:
pasos text.insert(END, "El discriminante es menor que 0, hay dos raíces complejas, es decir, no tocan al eje X.\n")
                         parte_real = -b / (2*a)
parte_imag = math.sqrt(abs(discrim)) / (2*a)
                        rat = complex(parte real, parte_imag)
x2 = complex(parte real, -parte_imag)
pasos_text.insert(END, "Raiz 1: x1 = {x1:.6f}\n")
pasos_text.insert(END, "Raiz 2: x2 = {x2:.6f}\n")
                  else:
                        e:
pasos_text.insert(END, "Calculando las raíces reales.\n")
x1 = (-b + math.sqrt(discrim)) / (2 * a)
x2 = (-b - math.sqrt(discrim)) / (2 * a)
pasos_text.insert(END, "Raíz 1: x1 = {x1:.6f}\n")
pasos_text.insert(END, "Raíz 2: x2 = {x2:.6f}\n")
                  if discrim == 0:
    pasos_text.insert(END, "El discriminante es igual a 0, hay raíces reales repetidas, es decir, tocan el mismo punto.\\\
    pasos_text.insert(END, "Raíces repetidas: x1y2 = {x1:.6f}")
             except ValueError:
                  pasos_text.delete("1.0", END)
pasos_text.insert(END, "Por favor, ingrese valores numéricos válidos para a, b y c.")
In [9]: #Entradas
            entrada1 = Entry(root)
            entrada1.place(x = 30, y = 30, width = 40, heigh = 30)
entrada1.config(font = ("Ink Free",12))
            entrada2 = Entry(root)
            entrada2 = Entry(root)
entrada2.place(x = 130, y = 30, width = 40, heigh = 30)
entrada2.config(font = ("Ink Free",12))
            entrada3 = Entry(root)
            entrada3.place(x = 230, y = 30, width = 40, heigh = 30)
entrada3.config(font = ("Ink Free",12))
 In [10]: # Etiquetas
                 etiqueta1 = Label(root, text = "X^2 +", background="white")
etiqueta1.place(x = 75, y = 30, width = 50, heigh = 30)
etiqueta1.config(font = ("Ink Free",12))
                 etiqueta2 = Label(root, text = "X +", background="white")
etiqueta2.place(x = 175, y = 30, width = 50, heigh = 30)
etiqueta2.config(font = ("Ink Free",12))
                 etiqueta3 = Label(root, text = " = 0", background="white")
etiqueta3.place(x = 270, y = 30, width = 50, heigh = 30)
etiqueta3.config(font = ("Ink Free",12))
In [11]: # Botones
                 boton1 = Button(root, text = "Graficar", command = parabola)
                 boton1.place(x = 50, y = 80, width = 100, heigh = 30)
                 boton2 = Button(root, text = "Calcular", command = ecuacion_segundo_grado)
                 boton2.place(x = 180, y = 80, width = 100, heigh = 30)
                 boton3 = Button(root, text="Limpiar", command= borrar_ventana) boton3.place(x=115, y=180, width=100, heigh=30)
                 boton4 = Button(root, text="Resolver paso a paso", command = pasos_ecuacion)
                 boton4.place(x=85, y=230, width=160, height=30)
In [12]: # Widget para mostrar los pasos
                 pasos_text = Text(root, wrap=WORD, width=35, height=8)
                 pasos_text.place(x=20, y=280)
In [13]: # Resultado
                 resultado = Label(root, text = "X1 =", background = "white")
resultado.place(x = 50, y = 120, width = 30, heigh = 20)
resultado.config(font = ("Ink Free",12))
                 resultado = Label(root, text = "X2 =", background = "white")
                 resultado.place(x = 180, y = 120, width = 30, heigh = 20) resultado.config(font = ("Ink Free",12))
                 resultado1 = Label(root, textvariable = variable, background = "white")
resultado1.place(x = 50, y = 140, width = 230, heigh = 30)
resultado1.config(font = ("Ink Free",12))
```


UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES

In [14]: # Configuración de la ventana root.resizable(0,0)
root.config(bg = "white", cursor = "target")

2.000000 5.000000

X1 : 1.000000 X2 : 1.000000

