Reinforcement Learning

 $\begin{array}{ll} \mbox{Michèle Sebag ; TP : Diviyan Kalainathan} \\ \mbox{TAO, CNRS} - \mbox{INRIA} - \mbox{Universit\'e Paris-Sud} \end{array}$

Dec. 11th, 2017

Where we are

MDP Main Building block

General settings

	Model-based	Model-free		
Finite	Dynamic Programming	Discrete RL		
Infinite	(optimal control)	Continuous RL		

More about the Exploration vs Exploitation Dilemma

This course: Multi-Armed Bandits; Monte-Carlo Tree Search

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatio

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one's gains while playing.

Lifelong learning

Exploration vs **Exploitation** Dilemma

- ▶ Play the best arm so far ?
- ▶ But there might exist better arms...

Exploitation Exploration

Formalization

- ▶ K options a.k.a. arms
- ► Arms are independent
- The *i*-th arm yields a reward r drawn iid along distribution ν_i In the following, $\nu_i = \text{Bernoulli}(\mu_i)$ (return 1 with proba μ_i , 0 otherwise).

Goals

Find the best arm:

$$i^* = \arg \max_i \mathbb{E}[\nu_i]$$

Find a policy $\pi:t \to i_t$, gets reward r_t s.t. the sum of rewards is maximal in expectation

$$\pi = \arg\max \mathbb{E}[r_0 + r_1 + \dots]$$

Applications

- ► Find the best cure/drug for a disease. r = 1 if patient is cured, 0 otherwise
- Find the best ad for a Web site/user
 r = 1 if user clicks on the ad, 0 otherwise
- ► Find the best action for a robot r = 1 if the robot grasps the banana, 0 otherwise (What is different here ?)

The multi-armed bandit (MAB) problem

Algorithmic setting

Unknown parameters: K unknown probability distributions on [0,1] Known parameters: the set of arms 1...K, the number of rounds T

For each round t = 1, 2, ..., T

- (1) the learner chooses $i_t \in 1...K$ according to its own strategy.
- (2) the learner incurs and observes the reward $r_t \sim \nu_{i_t}$ independently from the past given rewards.

T: time horizon

When T unknown, algorithm is anytime

The multi-armed bandit (MAB) problem

- ► K arms
- ▶ Each arm gives reward 1 with probability μ_i , 0 otherwise
- ▶ Let $\mu^* = argmax\{\mu_1, \dots \mu_K\}$, with $\Delta_i = \mu^* \mu_i$
- ▶ In each time t, one selects an arm i_t and gets a reward r_t

$$n_{i,t} = \sum_{u=1}^{t} \mathbbm{1}_{I_u^*=i}$$
 number of times i has been selected $\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{I_u^*=i}^{t_*} r_u$ average reward of arm i

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\textbf{Minimize Regret } (t) = \sum_{u=1}^t (\mu^* - r_u) = t \mu^* - \sum_{i=1}^K \textit{n}_{i,t} \, \hat{\mu}_{i,t} \approx \sum_{i=1}^K \textit{n}_{i,t} \Delta_i$$

Objective

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\textbf{Minimize Regret } (t) = \sum_{u=1}^t (r \sim \nu^* - r_u)$$

Regret: extra-loss incurred w.r.t. the oracle (who knows i^*).

Why using the regret?

"Kind of" normalization w.r.t. problem difficulty: the more difficult the problem, the lower the oracle's gain; what matters is how well one fares compared to the expert. (Additive normalization).

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectat

Conclusion and perspectives

Notations

- \triangleright $n_{i,t}$: number of times i has been selected up to t
- $ightharpoonup \hat{\mu}_{i,t}$ empirical reward of *i*-th arm as of t

$$\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{u=1}^{t} r_u. \mathbb{I}_{i_u=i}$$

with $\mathbb{I}_e = 1$ iff e holds true

- $\mu_i = \mathbb{E}[\nu_i]$
- \triangleright Δ_i : margin of *i*-th arm

$$\Delta_i = \mu^* - \mu_i$$

Scientific questions

- ▶ How does the regret increase with *T* (linear ? quadratic ? logarithmic ?)
- What are the factors of difficulty of the MAB problem ?

Greedy algorithm

Draw once each arm

$$\hat{\mu}_i = r \sim \nu_i$$

▶ At time u, select arm i_t s.t.

$$i_t = argmax\{\hat{\mu}_{i,t-1}, i = 1 \dots K\}$$

Example

- ▶ 2 arms:
 - arm 1, $\mu_1 = .8$;
 - arm 2, $\mu_2 = .2$.
- Assume the first two drawings yield:
 - ▶ arm 1, $r_1 = 0$;
 - ▶ arm 2, $r_2 = 1$.
- ▶ What happens ?

The ϵ -greedy algorithm

At each time t,

• With probability $1-\varepsilon$ select the arm with best empirical reward

$$i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t uniformly in $\{1...K\}$

What is the regret ?

The ϵ -greedy algorithm

At each time t,

• With probability $1-\varepsilon$ select the arm with best empirical reward

$$i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t uniformly in $\{1...K\}$

What is the regret ?

Regret
$$(t) > \varepsilon t \frac{1}{K} \sum_{i} \Delta_{i}$$

But: Optimal regret rate: log(t)

Lai Robbins 85

Upper Confidence Bound

Auer et al. 2002

Select
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{2 \frac{log(t)}{n_{i,t}}} \right\}$$

Decision: Optimism in front of unknown!

Upper Confidence bound, 2

Thm: UCB achieves the optimal regret rate log(t)

If
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Then

$$Regret(t) \leq 8 \sum_{i \neq i^*} \frac{1}{\Delta_i} log(t) + \left(1 + \frac{\pi^2}{3}\right) \sum_i \Delta_i$$

Proof

$$Regret(t) = \sum_{i \neq i^*} n_{i,t} \Delta_i$$

Upper Confidence bound, 3

The very useful Hoeffding inequality

Given $r_1, \ldots r_n$ iid in [0,1] drawn after p, with expectation μ , Define empirical mean $\hat{\mu}_n = 1/n \sum_{u=1}^n r_u$, then

$$\mathbb{P}(\hat{\mu}_n - \mu \ge \varepsilon) \le \exp(-2\varepsilon^2 n),$$

$$\mathbb{P}\left(\mu - \hat{\mu}_n \geq \varepsilon\right) \leq \exp\left(-2\,\varepsilon^2 n\right),$$

$$\mathbb{P}\left(|\hat{\mu}_n - \mu| \ge \varepsilon\right) \le 2 \exp\left(-2\,\varepsilon^2 n\right)$$

$$\mathsf{Regret}(\mathsf{t}) = \sum_{i \neq i^*} \Delta_i \times \mathit{n}_{i,t}$$

with $n_{i,t}=$ number of times i-th arm is played until step t. Let $\ell_i=\frac{8ln(t)}{\Delta_i^2}$. Then, for $n_{i,t}>\ell_i$,

$$\mu_i + 2\sqrt{\frac{2\mathit{ln}(t)}{n_{i,t}}} < \mu^*$$

For $n_{i,t} > \ell_i$, wrong choice (one selects the *i*-th arm instead of the optimal i^* one)

 $\Rightarrow \widehat{\mu^*}$ is underestimated and $\widehat{\mu_i^*}$ is overestimated:

(A)
$$\widehat{\mu^*} < \mu^* - \sqrt{\frac{2ln(t)}{n_{i^*,t}}}$$
(B)
$$\widehat{\mu_i^*} > \mu_i^* + \sqrt{\frac{2ln(t)}{n_{i^*,t}}}$$

Hoeffding \Rightarrow Events (A) and (B) occur with probability less than $exp\{-4 \ln(t)\} = t^{-4}$

Sketch of the proof, 2

Hence:

$$\mathbb{E}[n_{i,t}] \leq \ell_i + \sum_{t=1}^{\infty} \sum_{n_{i,t}=\ell_i}^{t-1} \left(P(A) + P(B)\right)$$

(first term: assume that it's always wrong in the first ℓ_i steps; second term, $n_{i,t} \geq \ell_i$; if it goes wrong, the two estimates are far from their expectations.

$$\mathbb{E}[n_{i,t}] \leq \frac{8ln(t)}{\Delta_i} + \sum_{t=\ell}^{\infty} 2t^{-4}$$

with

$$\sum_{t=1}^{\infty} t^{-4} = \frac{\pi^4}{90} \approx 1.09$$

Which concludes the proof (UCB regret is logarithmic):

$$Regret(t) \leq 8 \sum_{i \neq i^*} \frac{1}{\Delta_i} log(t) + \frac{\pi^4}{90} \sum_i \Delta_i$$

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectat

Conclusion and perspectives

Around MAB algorithms

▶ UCB is great, but not optimal. See KL-UCB

- Garivier et al. 2012
- ▶ In practice, play with *C*. control the exploration/exploitation trade-off
- ▶ Take into account the standard deviation of $\hat{\mu}_i$: Select $i_t = \operatorname{argmax}$

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}} + min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

▶ When there are **many** arms: tendency to over-explore...

Extensions

- ▶ When there is some side information: contextual bandits
- When arm distributions are not stationary: restless bandits

A particular algorithm: BESA

Best Empirical Sampled Average Intuition

Baransi Maillard 2014

- Case 1: you compare two arms with same number of reward samples. Easy: take the one with best average.
- Case 2: there is an arm A with many samples, and an arm B with few samples (say k).
 Easy: subsample k rewards for arm A and get back to Case 1.

Nota-bene

Same results with one hyper-parameter less == much better.

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example

Evaluations

Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP

Optimization in expectation

Conclusion and perspectives

MCTS: computer-Go as explanatory example

Not just a game: same approaches apply to optimal energy policy

MCTS for computer-Go and MineSweeper

Go: deterministic transitions

MineSweeper: probabilistic transitions

							1	•
		1	1	2	1	1	1	1
		2	-	3	<u>_</u>	3	2	1
		2	-	3	2	-	-	2
		1	1	2	2	3	3	•
				1	-	1	1	1
				1	1	1		
1	1	1				1	1	1
1	<u>_</u>	1				1	<u>_</u>	1

The game of Go in one slide

Rules

- ▶ Each player puts a stone on the goban, black first
- ▶ Each stone remains on the goban, except:

group w/o degree freedom is killed

a group with two eyes can't be killed

▶ The goal is to control the max. territory

Go as a sequential decision problem

Features

- ► Size of the state space 2.10¹⁷⁰
- ▶ Size of the action space 200
- ▶ No good evaluation function
- Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- ightharpoonup State space ${\cal S}$
- ightharpoonup Action space $\mathcal A$
- ▶ Known transition model: p(s, a, s')
- ▶ Reward on final states: win or lose

Baseline strategies do not apply:

- ► Cannot grow the full tree
- Cannot safely cut branches
- ► Cannot be greedy

Monte-Carlo Tree Search

- ► An any-time algorithm
- ▶ Iteratively and asymmetrically growing a search tree

most promising subtrees are more explored and developed

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example

Evaluations

Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP

Optimization in expectation

Conclusion and perspectives

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action
 - Add a node

Bandit phase

- Grow a leaf of the search tree
- Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

- Returned solution:
 - Path visited most often

Random phase - Roll-out policy

Monte-Carlo-based

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Brügman 93

Random phase — Roll-out policy

Monte-Carlo-based

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements?

Put stones randomly in the neighborhood of a previous stone

Brügman 93

Put stones matching patterns

prior knowledge

Put stones optimizing a value function

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (r - \mu_{\textit{s,a}}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (r - \mu_{\textit{s,a}}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \left\{ \begin{array}{ll} \min\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a white node} \end{array} \right.$$

Dilemma

- ightharpoonup smarter roll-out policy ightharpoonup more computationally expensive ightharpoonup less tree-walks on a budget
- ▶ frugal roll-out \rightarrow more tree-walks \rightarrow more confident evaluations

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection revisited

$$\mathsf{Select}\ a^* = \ \mathsf{argmax}\ \left\{\hat{\mu}_{s,a} + \sqrt{c_e \frac{log(n_s)}{n_{s,a}}}\right\}$$

- Asymptotically optimal
- ▶ But visits the tree infinitely often !

Being greedy is excluded

not consistent

Frugal and consistent

Select
$$a^* = \operatorname{argmax} \frac{\operatorname{Nb} \operatorname{win}(s, a) + 1}{\operatorname{Nb} \operatorname{loss}(s, a) + 2}$$

Further directions

▶ Optimizing the action selection rule

Controlling the branching factor

What if many arms?

degenerates into exploration

- Continuous heuristics
 Use a small exploration constant ce
- ► Discrete heuristics

Progressive Widening Coulom 06; Rolet et al. 09

Limit the number of considered actions to $\lfloor \sqrt[b]{n(s)} \rfloor$ (usually b = 2 or 4)

Introduce a new action when $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$ (which one ? See RAVE, below).

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- ▶ Generalizing across the tree ?

RAVE(s, a) = average $\{\hat{\mu}(s', a), s \text{ parent of } s'\}$

global RAVE

Rapid Action Value Estimate, 2

Using RAVE for action selection

In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s,a) + (1 - \beta) RAVE_{g}(s,a) \right)$$

$$\alpha = \frac{n_{s,a}}{n_{s,a} + c_{1}}$$

$$\beta = \frac{n_{parent(s)}}{n_{parent(s)} + c_{2}}$$

Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $|\sqrt[b]{n(s)+1}| > |\sqrt[b]{n(s)}|$
- Select promising actions: it takes time to recover from bad ones
- ▶ Select argmax $RAVE_{\ell}(parent(s))$.

A limit of RAVE

- ▶ Brings information from bottom to top of tree
- Sometimes harmful:

B2 is the only good move for white

B2 only makes sense as first move (not in subtrees)

⇒ RAVE rejects B2.

Improving the roll-out policy π

 π_0 Put stones uniformly in empty positions

 π_{random} Put stones uniformly in the neighborhood of a previous stone

 π_{MoGo} Put stones matching patterns prior knowledge

 π_{RLGO} Put stones optimizing a value function Silver et al. 07

Beware!

Gelly Silver 07

$$\pi$$
 better π' \Rightarrow $MCTS(\pi)$ better $MCTS(\pi')$

Improving the roll-out policy π , followed

Evaluation error on 200 test cases

Interpretation

What matters:

- ▶ Being **biased** is more harmful than being weak...
- ▶ Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape then you go there and you are in bad shape...

Using prior knowledge

Assume a value function $Q_{prior}(s, a)$

▶ Then when action a is first considered in state s, initialize

$$n_{s,a} = n_{prior}(s,a)$$
 equivalent experience / confidence of priors $\mu_{s,a} = Q_{prior}(s,a)$

The best of both worlds

- Speed-up discovery of good moves
- Does not prevent from identifying their weaknesses

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Parallelization. 1 Distributing the roll-outs

Distributing roll-outs on different computational nodes does not work.

Parallelization. 2 With shared memory

comp.

comp node k

- ► Launch tree-walks in parallel on the same MCTS
- (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory

- Launch one MCTS per computational node
- k times per second

$$k = 3$$

- ▶ Select nodes with sufficient number of simulations
 - $> .05 \times \#$ total simulations

Aggregate indicators

Good news

Parallelization with and without shared memory can be combined.

It works!

32 cores against	Winning rate on 9×9	Winning rate on 19×19
1	75.8 ± 2.5	95.1 ± 1.4
2	66.3 ± 2.8	82.4 ± 2.7
4	62.6± 2.9	73.5 ± 3.4
8	59.6± 2.9	63.1 ± 4.2
16	52± 3.	63 ± 5.6
32	48.9± 3.	48 ± 10

Then:

- ▶ Try with a bigger machine ! and win against top professional players !
- ▶ Not so simple... there are diminishing returns.

Increasing the number ${\it N}$ of tree-walks

N	2N against N		
	Winning rate on 9×9	Winning rate on $19 imes 19$	
1,000	71.1 ± 0.1	90.5 ± 0.3	
4,000	68.7 ± 0.2	84.5 ± 0.3	
16,000	66.5 ± 0.9	80.2 ± 0.4	
256,000	61± 0,2	58.5 ± 1.7	

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

 \ll

Improvement in terms of performance against computers

 \ll

Improvements in terms of self-play

More: https://hal.inria.fr/inria-00512854/document

Overview

Multi-Armed Bandit

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatio

Conclusion and perspectives

Why does it fail

- ► First simulation gives 50%
- ► Following simulations give 100% or 0%
- But MCTS tries other moves: doesn't see all moves on the black side are equivalent.

Implication 1

MCTS does not detect invariance \rightarrow too short-sighted and parallelization does not help.

Implication 2

MCTS does not build abstractions \rightarrow too short-sighted and parallelization does not help.

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

MCTS for one-player game

- ► The MineSweeper problem
- ► Combining CSP and MCTS

- ▶ All locations have same probability of death
- ► Are then all moves equivalent ?

1/3

- ▶ All locations have same probability of death
- Are then all moves equivalent ?

1/3

NO!

- ▶ All locations have same probability of death
- Are then all moves equivalent?
- ▶ Top, Bottom: Win with probability 2/3

1/3

NO!

- ▶ All locations have same probability of death
- ► Are then all moves equivalent ?
- ▶ Top, Bottom: Win with probability 2/3
- MYOPIC approaches LOSE.

1/3

NO!

MineSweeper, State of the art

Markov Decision Process

Very expensive; 4 × 4 is solved

Single Point Strategy (SPS)

local solver

CSP

- ▶ Each unknown location j, a variable x[j]
- ightharpoonup Each visible location, a constraint, e.g. loc(15)=4
 ightarrow

$$x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4$$

- Find all N solutions
- ▶ P(mine in j) = $\frac{\text{number of solutions with mine in } j}{N}$
- ▶ Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

- ▶ 80% success *beginner* (9x9, 10 mines)
- ▶ 45% success *intermediate* (16×16, 40 mines)
- ▶ 34% success *expert* (30×40, 99 mines)

PROS

► Very fast

CONS

- ▶ Not optimal
- Beware of first move (opening book)

Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

- Cannot compete with CSP in terms of speed
- ▶ But consistent (find the optimal solution if given enough time)

Lesson learned

- Initial move matters
- ▶ UCT improves on CSP

- ▶ 3x3, 7 mines
- ▶ Optimal winning rate: 25%
- Optimal winning rate if uniform initial move: 17/72
- ▶ UCT improves on CSP by 1/72

UCT for MineSweeper

Another example

- ▶ 5x5, 15 mines
- ► GnoMine rule (first move gets 0)
- ▶ if 1st move is center, optimal winning rate is 100 %
- ▶ UCT finds it; CSP does not.

The best of both worlds

CSP

- ► Fast
- Suboptimal (myopic)

UCT

- ▶ Needs a generative model
- ► Asymptotic optimal

Hybrid

▶ UCT with generative model based on CSP

UCT needs a generative model

Given

- A state, an action
- ► Simulate possible transitions

Initial state, play top left

probabilistic transitions

Simulating transitions

- Using rejection (draw mines and check if consistent)
- ▶ Using CSP

SLOW

FAST

The algorithm: Belief State Sampler UCT

- One node created per simulation/tree-walk
- ► Progressive widening
- Evaluation by Monte-Carlo simulation
- ► Action selection: UCB tuned (with variance)
- Monte-Carlo moves
 - ▶ If possible, Single Point Strategy (can propose riskless moves if any)
 - Otherwise, move with null probability of mines (CSP-based)
 - Otherwise, with probability .7, move with minimal probability of mines (CSP-based)
 - Otherwise, draw a hidden state compatible with current observation (CSP-based) and play a safe move.

The results

▶ BSSUCT: Belief State Sampler UCT

► CSP-PGMS: CSP + initial moves in the corners

Format	CSP-PGMS	BSSUCT
4 mines on 4x4	64.7 %	$70.0\%\pm0.6\%$
1 mine on 1x3	100 %	100% (2000 games)
3 mines on 2x5	22.6%	$25.4~\%~\pm~1.0\%$
10 mines on 5x5	8.20%	9% (p-value: 0.14)
5 mines on 1x10	12.93%	$18.9\%\pm0.2\%$
10 mines on 3x7	4.50%	$\mathbf{5.96\%}\pm\mathbf{0.16\%}$
15 mines on 5x5	0.63%	$0.9\%\pm0.1\%$

Partial conclusion

Given a myopic solver

- ▶ It can be combined with MCTS / UCT:
- Significant (costly) improvements

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Feature Selection

BioInformatics

- ▶ 30 000 genes
- ► Find genes relevant to (cancer, obesity, you name it)

Position of the problem

Goals

- Selection
- Ranking

Formalization

Given feature set $\mathcal{F} = \{f_1, ... f_d\}$. Define

$$\mathcal{G}: \mathcal{P}(\mathcal{F}) \mapsto \mathbb{R}$$

 $F \subset \mathcal{F} \mapsto Err(F) = \text{ min error of models using } F$

Find Argmin(G)

Difficulties

- Combinatorial optimization problem (2^d)
- \bullet ${\cal F}$ unknown; noisy

Some approaches

- ▶ Filter approaches [1]
- Wrapper approaches
 - ► Tackling combinatorial optimization [2,3,4]
- Embedded approaches
 - ▶ Using the learned hypothesis [5,6]
 - Using a regularization term [7,8]
 - ▶ Restricted to linear models [7] or linear combinations of kernels [8]
- [1] K. Kira, and L. A. Rendell ML'92
- D. Margaritis NIPS'09
- 3] T. Zhang NIPS'08
- [4] M. Boullé J. Mach. Learn. Res. 07
- [5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Mach. Learn. 2002
- [6] J. Rogers, and S. R. Gunn SLSFS'05
- 7] R. Tibshirani Journal of the Royal Statistical Society 94
- 8] F. Bach NIPS'08

FS as A Markov Decision Process

```
Set of features \mathcal{F}
Set of states \mathcal{S}=2^{\mathcal{F}}
Initial state \emptyset
Set of actions A=\{\mathrm{add}\ f,\ f\in\mathcal{F}\}
Final state any state
Reward function V:\mathcal{S}\mapsto [0,1]
```

Goal: Find argmin $\operatorname{Err} (\mathcal{A}(F, D))$

Optimal Policy

Policy
$$\pi: \mathcal{S} \to A$$

Final state following a policy F_{π}

Optimal policy $\pi^* = \underset{\pi}{\operatorname{argmin}} \operatorname{Err} (\mathcal{A}(F_{\pi}, \mathcal{E}))$

Bellman's optimality principle

$$\pi^{\star}(F) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \ V^{\star}(F \cup \{f\})$$

$$V^{\star}(F) = \begin{cases} \operatorname{Err}(\mathcal{A}(F)) & \text{if } \operatorname{final}(F) \\ \min_{f \in \mathcal{F}} V^{\star}(F \cup \{f\}) & \text{otherwise} \end{cases}$$

In practice

- π^* intractable \Rightarrow approximation using UCT
- Computing Err(F) using a fast estimate

FS as a game

Exploration vs Exploitation tradeoff

- Virtually explore the whole lattice
- Gradually focus the search on most promising Fs
- ▶ Use a frugal, unbiased assessment of F

How?

Monte-Carlo Tree Search

FUSE: bandit-based phase The many arms problem

- Bottleneck
 - A many-armed problem (hundreds of features)
 - ⇒ need to guide UCT
- ▶ How to control the number of arms?
 - ► Continuous heuristics [1]
 - ▶ Use a small exploration constant c_e
 - ▶ Discrete heuristics [2,3]: Progressive Widening
 - ▶ Consider only $\lfloor T^b \rfloor$ actions (b < 1)

- [1] S. Gelly, and D. Silver ICML'07
- R. Coulom Computer and Games 2006
- [3] P. Rolet, M. Sebag, and O. Teytaud ECML'09

FUSE: bandit-based phase Sharing information among nodes

- ▶ How to share information among nodes?
 - ▶ Rapid Action Value Estimation (RAVE) [1]

$$\mathsf{RAVE}(f) = \mathsf{average} \ \mathsf{reward} \ \mathsf{when} \ f \in F$$

[1] S. Gelly, and D. Silver ICML'07

FUSE: random phase Dealing with an unknown horizon

- Bottleneck
 - Finite unknown horizon
- ► Random phase policy

```
| \vec{r} | With probability 1-q^{|F|} stop | Else • add a uniformly selected feature | • |F|=|F|+1 | Iterate
```


- Requisite
 - ► fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - ► k-NN like
 - ► + AUC criterion *
- ▶ Complexity: $\tilde{O}(mnd)$
 - d Number of selected features
 - n Size of the training set
 - m Size of sub-sample $(m \ll n)$

- Requisite
 - ► fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - ► k-NN like
 - ► + AUC criterion *
- ► Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - m Size of sub-sample $(m \ll n)$

- Requisite
 - ► fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - ► k-NN like
 - ► + AUC criterion *
- ► Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - m Size of sub-sample $(m \ll n)$

- Requisite
 - ► fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - ► k-NN like
 - ► + AUC criterion *
- ► Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - m Size of sub-sample $(m \ll n)$

- Requisite
 - ► fast (to be computed 10⁴ times)
 - unbiased
- Proposed reward
 - ► k-NN like
 - ► + AUC criterion *
- ► Complexity: Õ(mnd)
 - d Number of selected features
 - n Size of the training set
 - m Size of sub-sample $(m \ll n)$

FUSE: update

- ► Explore a graph
 - ⇒ Several paths to the same node
- ▶ Update only current path

The FUSE algorithm

lacktriangle On the feature subset, use end learner ${\cal A}$

FUSE

- Any Machine Learning algorithm
- Support Vector Machine with Gaussian kernel in experiments

 $FUSE^R$

Experimental setting

- Questions
 - ► FUSE vs FUSE^R
 - ► Continuous vs discrete exploration heuristics
 - FS performance w.r.t. complexity of the target concept
 - Convergence speed
- Experiments on

Data set	Samples	Features	Properties
Madelon [1]	2,600	500	XOR-like
Arcene [1]	200	10,000	Redundant features
Colon	62	2,000	"Easy"

[1] NIPS'03

Experimental setting

- Baselines
 - ► CFS (Constraint-based Feature Selection) [1]
 - ▶ Random Forest [2]
 - ▶ Lasso [3]
 - ▶ RAND^R: RAVE obtained by selecting 20 random features at each iteration
- ▶ Results averaged on 50 splits (10 × 5 fold cross-validation)
- End learner
 - Hyper-parameters optimized by 5 fold cross-validation
- [1] M. A. Hall ICML'00
 - J. Rogers, and S. R. Gunn SLSFS'05
- 3] R. Tibshirani Journal of the Royal Statistical Society 94

Results on Madelon after 200,000 iterations

- $ightharpoonup Remark: FUSE^R = best of both worlds$
 - ► Removes redundancy (like CFS)
 - ► Keeps conditionally relevant features (like Random Forest)

Results on Arcene after 200,000 iterations

- ightharpoonup Remark: FUSE^R = best of both worlds
 - ► Removes redundancy (like CFS)
 - ► Keeps conditionally relevant features (like Random Forest)

Results on Colon after 200,000 iterations

Remark

All equivalent

NIPS 2003 Feature Selection challenge

- ▶ Test error on the NIPS 2003 Feature Selection challenge
 - On an disjoint test set

DATABASE	ALGORITHM	CHALLENGE	SUBMITTED	IRRELEVANT
		ERROR	FEATURES	FEATURES
Madelon	FSPP2 [1]	$6.22\% \ (1^{st})$	12	0
	$D\text{-FUSE}^R$	$6.50\% \ (24^{th})$	18	0
	Bayes-nn-red [2]	$7.20\% (1^{st})$	100	0
Arcene	$D\text{-FUSE}^R$ (on all)	8.42% (3 rd)	500	34
	$D\text{-FUSE}^R$	9.42% 500 (8 th)	500	0

Remarks

- ► Selected features: accurate
- Promising results
- [1] K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Mach. Learn. 2008
- [2] R. M. Neal, and J. Zhang Feature extraction, foundations and applications, Springer 2006

Conclusion and Perspectives

- Contributions
 - ▶ Formalization of Feature Selection as a Markov Decision Process
 - Efficient approximation of the optimal policy (based on UCT)
 - ⇒ Any-time algorithm
 - Experimental results
 - State of the art
 - High computational cost (45 minutes on Madelon)
- Perspectives
 - Other end learners
 - Extend to Feature construction
 - ► Inspired by [1]

[1] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel ICML'09

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example
Evaluations
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP
Optimization in expectation

Conclusion and perspectives

Conclusion

Take-home message: MCTS/UCT

- enables any-time smart look-ahead for better sequential decisions in front of uncertainty.
- is an integrated system involving two main ingredients:
 - Exploration vs Exploitation rule

UCB, UCBtuned, others

- Roll-out policy
- can take advantage of prior knowledge

Caveat

- ▶ The UCB rule was not an essential ingredient of MoGo
- Refining the roll-out policy

 refining the system Many tree-walks might be better than smarter (biased) ones.

On-going

Extensions

- lacktriangle Continuous bandits: action ranges in a ${\rm I\!R}$
- ightharpoonup Contextual bandits: state ranges in \mathbb{R}^d
- ▶ Multi-objective sequential optimization
- Duelling bandits

Controlling the size of the search space

- ► Building abstractions
- Considering nested MCTS (partially observable settings, e.g. poker)