House Price Analysis

Insights and Predictions

Agenda

- 1. Introduction
- 2. Data Overview
- 4. Causal Analysis
- 5. Data Challenges

- 6. Predictive Model
- 7. Results & Conclusion

Introduction

Project Overview

Purpose: build a predictive model for home sale prices

Dataset: 1,460 homes sold in Ames, lowa (2006–2010)

Key Goals

- Analyze data structure
- Pre-process dataset
- Explore causal effect
- Select important predictors
- Train and evaluate models

Data Overview

Exploratory Data Analysis

Correlation to SalesPrice

Figure 3. GrLivArea vs SalePrice

Figure 4. Street vs SalePrice

Causal Analysis

What is the estimated causal effect of each additional **bedroom** on **price**?

Univariate Regression

Dependent Variable: Sale Price

Independent Variable: Number of

Bedrooms

Result: β = \$16,381.02

Limitations

- Adding a bedroom increases
 Sales Price by \$16,381.02 on average? Incorrect
- Cannot infer causality due to omitted variable bias
- Estimation is biased

Causal Analysis

Confounding Variables

- Univariate regressions with both price and bedrooms
- Statistically significant predictors (p < 0.05) for both

Multivariate Regression

Dependent Variable: Sale Price

Independent Variables: Bedrooms + Controls

Result: β = -\$7,430.70

Takeaways

- Less biased but still not definitive
- Potential for unmeasured confounding variables

	SalePrice I	SalePrice II
Intercept	133966.0205***	31060.9272***
	(7492.2548)	(10659.0919)
BedroomAbvGr	16381.0170***	-7430.6989***
	(2514.0228)	(1757.2625)
OverallQual		18128.6260***
		(1175.2134)
GrLivArea		48.2381***
		(3.8373)
KitchenAbvGr		-35424.0553***
		(5370.1247)
GarageArea		50.3414***
		(5.7950)
TotFullBath		14516.8363***
		(1711.8463)
TotRmsAbvGrd		3420.6855**
		(1295.8893)
BsmtQual[T.Fa]		-69357.6864***
		(7885.9219)
BsmtQual[T.Gd]		-51927.5413***
		(4069.3174)
BsmtQual[T.TA]		-57026.8335***
		(4884.9256)
R-squared	0.0283	0.7891
R-squared Adj.	0.0276	0.7876

Standard errors in parentheses

Data Challenges

Transformation on Sale Price

TotalSF Outliers

Key Issues Solution Missing data - unusually high Replacing with '0' for numerical data, 'None' for categorical data amount of null values Price distribution - skewed right Log transformation Categorical variables - ill-Recoding data with dummy equipped for regression columns and numerical scales analysis **Outliers** - anomalies that are Identifying and removing data points using scatterplots potentially influential Redundant variables - several Aggregating features columns pertaining to one metric

Predictive Model Process

DATA PRE-PROCESSING

Cleaning dataset

SELECTION ALGORITHMS

Forward and backward selection

MODELING

Comparing a multivariate model to univariate benchmark

P-VALUE FILTERING

Filtering significant predictors

FEATURE SELECTION

30 most important features

Figure 8

BI-DIRECTIONAL ELIMINATION

Figure 9

Criteria to finalize features

- Commonality across methods
- Non-redundancy
- Data structure relevance

Results

PREDICTIVE MODEL

30 Predictors / 79 Possible Features

zoning, land configurations

Continuous - area, year
Discrete - bathrooms, fireplaces
Ordinal - quality and condition related
variables
Nominal - structural attributes,

R^2 Adj. 0.93 > 0.75

BENCHMARK

Our Takeaways

Understanding Causal Relationships

Data Challenges and Effective Solutions

Importance of Feature Selection

THANK YOU For Your Attention

Any Questions?