MAXIMUM LIKELIHOOD ESTIMATION

EXTENSIONS

Tools for Macroeconomists: The essentials

Petr Sedláček

EXTENSIONS

- Kalman smoother
- non-linear filter
- missing observations
- allowing for exogenous regressors
- · allowing for covariance between w_t and v_{t+1}

THE KALMAN SMOOTHER

KALMAN SMOOTHER

- · main idea: one can use more information for forecasting states
- · Kalman filter uses information up until the current period
- \cdot one can also use information beyond the period of the state
- · objective is to calculate $\widehat{\zeta}_{t|T} = \widehat{E}[\zeta_t|\mathcal{Y}^T]$
- where $y^{T} = (y_1, ..., y_{t-1}, y_t, ..., y_T)$
- again uses linear projections

SMOOTHING RECURSIONS

- · first run the Kalman filter and obtain $\widehat{\zeta}_{t|t}$, $P_{t|t-1}$ and $P_{t|t}$
- start from the end of the sample
- the smoothing recursions are:

$$\widehat{\zeta}_{t|T} = \widehat{\zeta}_{t|t} + J_t(\widehat{\zeta}_{t+1|T} - \widehat{\zeta}_{t+1|t})$$

$$P_{t|T} = P_{t|t} + J_t(P_{t+1|T} - P_{t+1|t})$$

$$J_t = P_{t|t} F' P_{t+1|t}^{-1}$$

NONLINEAR FILTER

A NONLINEAR STATE-SPACE

Up until now, we assumed a linear state-space

$$y_t = H'\zeta_t + w_t,$$
 $\mathbb{E}(w_t, w'_t) = R \quad \forall t$
 $\zeta_{t+1} = F\zeta_t + v_{t+1},$ $\mathbb{E}(v_t, v'_t) = Q \quad \forall t$

However, non-linear forms can easily arise:

- higher-order solutions to DSGE models
- also in reduced-form empirical work

$$y_t = h(\zeta_t) + w_t,$$
 $\mathbb{E}(w_t, w'_t) = R \quad \forall t$
 $\zeta_{t+1} = f(\zeta_t) + v_{t+1},$ $\mathbb{E}(v_t, v'_t) = Q \quad \forall t$

EXTENDED KALMAN FILTER

- \cdot the idea behind the Extended Kalman filter is simple
- use a 1st-order Taylor expansion at each point in time

EXTENDED KALMAN FILTER RECURSIONS

update:

$$\widehat{\zeta}_{t|t} = \widehat{\zeta}_{t|t-1} + P_{t|t-1}H_t(H_t'P_{t|t-1}H_t + R)^{-1}(y_t - h(\widehat{\zeta}_{t|t-1}))$$

$$P_{t|t} = P_{t|t-1} - P_{t|t-1}H_t(H_t'P_{t|t-1}H_t + R)^{-1}H_t'P_{t|t-1}'$$

forecast:

$$\widehat{\zeta}_{t+1|t} = f(\widehat{\zeta}_{t|t})$$

$$P_{t+1|t} = F_t P_{t|t} F'_t + Q$$

where F_t and H_t are Jacobian matrices:

$$F_{t} = \frac{\partial f}{\partial \widehat{\zeta}} |_{\widehat{\zeta}_{t|t}}$$

$$H_{t} = \frac{\partial h}{\partial \widehat{\zeta}} |_{\widehat{\zeta}_{t|t-1}}$$

MISSING OBSERVATIONS

MISSING OBSERVATIONS

- the Kalman filter also conveniently handles
 - missing observations
 - · mixed-frequency data
- the idea is that in periods of no observations
 - the Kalman gain $K_t = 0$
 - the "prediction error" $y_t \widehat{y}_{t|t-1} = 0$
- careful with mixed-frequency data
 - · average?
 - · sum?

ALLOWING FOR REGRESSORS

ALLOWING FOR REGRESSORS

- · up until now we assumed that observations and states depend
 - only on the states themselves
- however, they may depend on other observables

TIME-SERIES MODEL WITH EXOGENOUS REGRESSORS

$$y_t = H'\zeta_t + Ax_t + w_t,$$
 $\mathbb{E}(w_t, w'_t) = R \quad \forall t$
 $\zeta_{t+1} = F\zeta_t + Gx_t + v_{t+1},$ $\mathbb{E}(v_t, v'_t) = Q \quad \forall t$

• where x_t are observable (explanatory) variables

KALMAN RECURSIONS WITH EXPLANATORY VARIABLES

The combined Kalman filter recursions become:

$$\widehat{\zeta}_{t+1|t} = F\widehat{\zeta}_{t|t-1} + Gx_t + K_t(y_t - Ax_t - H'\widehat{\zeta}_{t|t-1})$$

$$K_t = FP_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}$$

$$P_{t+1|t} = FP_{t|t-1}F' + Q$$

$$- FP_{t|t-1}H(H'P_{t|t-1}H + R)^{-1}H'P_{t|t-1}F'$$

COVARIANCE BETWEEN INNOVATIONS

COVARIANCE BETWEEN INNOVATIONS

- up until now we assumed that $cov(w_t, v_{t+1}) = 0$
- · i.e. that innovations to the states ...
- are independent of observation equation innovations
- here we allow them to covary: $\mathbb{E}[w_t, v_{t+1}] = C$
- in other words $\mathbb{E}[(w_t, v_{t+1})(w_t, v_{t+1})'] = \begin{pmatrix} R & C \\ C' & Q \end{pmatrix}$

Kalman recursions with $C \neq 0$

The combined Kalman filter recursions become:

$$\widehat{\zeta}_{t+1|t} = F\widehat{\zeta}_{t|t-1} + K_t(y_t - H'\widehat{\zeta}_{t|t-1})$$

$$K_t = (FP_{t|t-1}H + C)(H'P_{t|t-1}H + R)^{-1}$$

$$P_{t+1|t} = FP_{t|t-1}F' + Q$$

$$- (FP_{t|t-1}H + C)(H'P_{t|t-1}H + R)^{-1}(FP_{t|t-1}H + C)'$$