Nirma University

Institute of Technology
Semester End Examination (IR), December - 2016
B. Tech. in Information Technology, Semester-VII 2CE339 Analysis and Design of Algorithm

Roll / Exam]	No. Supervisor's Initial with Date	
Time:	3 Hours Max Marks: 100	
Instruct	tions: 1. Attempt all the questions. 2. Figures to right indicate full marks. 3. Draw neat sketches wherever necessary. Section I	
Q-1		[18]
a)	Illustrate the working of Insertion sort algorithm by applying it on the sequence of elements: <70, 30, 40, 10, 80, 20, 60, 50>. Comment on its complexity in worst case.	[6]
b)	Illustrate the working of Merge sort algorithm by applying it on the sequence of elements: - <50, 20, 40, 70, 10, 30, 20, 60>. Comment on its complexity in best case.	[6]
c)	Prove the correctness of "PARTITION" procedure in Quick sort.	[6]
Q-2	Do as directed	[16]
a)	Apply Recursion Tree method on the following recurrence relation:- $T(n) = 3T(n/4) + n^2$	[6]
	OR	
a)	Solve the following recurrence relation using Master method: T(n) = 2T(n/2) + 10n	[6]
b)	Solve the following recurrence relation using "Change of variable" method: $T(n) = 2T(\sqrt{n}) + \log n$	[6]
c)	What is the significance of asymptotic notations? Explain Big-Oh notation and Big-Omega notation through suitable examples.	[4]
Q-3	Do as directed	[16]
a)	Let G = (V,E) be a complete undirected graph of 4 vertices and 6 edges. Weights of the edges are 1, 2, 3, 4, 5 and 6. What can be the maximum weight of the Minimum Spanning Tree? OR	[6]
a)	Let $G = (V,E)$ be the weighted undirected graph of 4 vertices whose edge weights are as follows:- $w(1,2) = 2$, $w(1,3) = 8$, $w(1,4) = 5$, $w(2,1) = 2$, $w(2,3) = 5$, $w(2,4) = 8$, $w(3,1) = 8$, $w(3,2) = 5$, $w(3,4) = X$, $w(4,1) = 5$, $w(4,2) = 8$, $w(4,3) = X$. Calculate the largest possible integer value of X , for which at least one shortest path between some pair of vertices will contain the edge with weight X .	[6]

page 1 012

b)	An array consists of six elements:-15, 19, 10, 7, 17, 16. Sort it in ascending order using heap sort.	[6]
c)	Calculate the time complexity of the following function:- int fun (int n)	[4]
	$ \begin{cases} \text{if } (n == 2) \end{cases} $	
	return 1;	
	else return (fun(floor(sqrt(n))) +n);	
	}	
	NOTE:- n is a multiple of 2	
	Section II	
Q-4	Do as directed	[18]
a)	For a binary heap, the following operation is defined:	[6]
	Delete(i) -> To delete the item in the ith node. It is given that depth	
	of the binary heap is d and it is implemented in an array. Find the	
In l	time complexity to refix the heap after removal of an element.	[6]
b)	Explain the importance of "Disjoint Set Structures" through suitable examples.	[6]
c)	Differentiate between the following terms with proper example:-	[6]
()	i) Greedy Approach vs. Dynamic Programming	[o]
OF	ii) Djikstra's Algorithm vs. Floyd's AlgorithmDo as directed	F4.61
Q-5 a)	Consider four matrices A, B, C and D with their dimensions being	[16]
aj	(10,20), (20,50), (50,1) and (1,100) respectively. Compute the total number of scalar multiplications required to perform the following operations:- 1) A x (B x (C x D)) and 2) (A x (B x C)) x D	[6]
a)	OR Propose an optimal solution to the "Job Scheduling Problem with	[6]
•	deadlines" through a suitable example.	
b)	What is the advantage of "Hashing" technique? How do we organize all the elements/values (keys) to implement hashing? Explain any two collision-resolution techniques through suitable examples.	[6]
c)	Propose an optimal solution to the "Fractional Knapsack problem" with a suitable example.	[4]
Q-6	•	[16]
a)	Discuss the solution of "8-Queens problem" through backtracking. OR	[6]
a)	Given a set S of n activities with start time, Si, and finish time, Fi, of	[6]
	an ith activity. Design a greedy algorithm which computes the maximum size of mutually compatible activities.	
b)	Which important properties must be possessed by the problems that are solved using "Dynamic Programming"?	[6]
c)	Differentiate between :- Prim's algorithm and Kruskal's algorithm.	[4]