PSYC2020L Assignment 4

[name]

2025-09-12

Goals for Review:

- · Probability Distributions Review
- Z-Scores in R
- Generating Data
- R Packages
- Reading Files

For each question, please make sure you include code output. If the question asks for comparison or further explanation, please make sure to include that as well.

Setting Up

- 1) Rename this assignment as "Lab 4 Assignment [Last, First].Rmd"
- 2) Check and set (if needed) your working directory. If you'd like to load packages with library(), please do so in this block.

```
here::here()

## [1] "C:/Users/jessi/OneDrive - Georgia Institute of Technology/Courses/GTA/PSYC 2020/PSY C 2020L Site"
```

3) Read in the tour_de_france.csv file and assign it to a variable (e.g., tdf_data). Display the first six rows of this dataset.

```
tdf <- rio::import(here::here("slides", "Lab 4 - Probability Distributions", "tour_de_franc
e.csv"))
head(tdf)</pre>
```

```
##
    year winner_avg_speed total_distance
                                                       winner winner_nationality
                   25.68
                                     2428
## 1 1903
                                                Maurice Garin
                                                                          France
## 2 1904
                     25.27
                                     2420
                                                 Henri Cornet
                                                                          France
## 3 1905
                   27.11
                                     2994 Louis Trousselier
                                                                          France
                                                 Rene Pottier
## 4 1906
                    24.46
                                     4545
                                                                          France
                    28.47
## 5 1907
                                   4488 Lucien Petit-Breton
                                                                          France
## 6 1908
                    28.74
                                    4488 Lucien Petit-Breton
                                                                          France
##
    starting_city
## 1
            Paris
## 2
            Paris
## 3
            Paris
## 4
            Paris
## 5
            Paris
## 6
            Paris
```

Measures of Variability

4) What is the variance and SD of winner_avg_speed?

```
var(tdf$winner_avg_speed)

## [1] 26.94034

sd(tdf$winner_avg_speed)

## [1] 5.190409
```

If they do some square or square root transformation to get one from the other, that works too.

5) What is the variance and SD of total_distance?

```
var(tdf$total_distance)

## [1] 485801.2

sd(tdf$total_distance)

## [1] 696.9944
```

If they do some square or square root transformation to get one from the other, that works too.

Z-Scores

6) Create a new variable within the Tour de France data that contains the winner_avg_speed variable standardized. No output needed for this question.

```
tdf$winner_avg_speed_z <- (tdf$winner_avg_speed - mean(tdf$winner_avg_speed)) / sd(tdf$winn
er_avg_speed)</pre>
```

7) Create a new variable within the Tour de France data that contains the total_distance variable standardized. No output needed for this question.

```
tdf$total_distance_z <- (tdf$total_distance - mean(tdf$total_distance)) / sd(tdf$total_dist
ance)</pre>
```

8) Calculate the variance and SD of the new z-scored version winner_avg_speed, and compare it to the original, non-z-scored version. What differences do you observe?

```
var(tdf$winner_avg_speed_z)

## [1] 1

sd(tdf$winner_avg_speed_z)

## [1] 1
```

The variance and SD for the z-scored version are both one. This is because the z-score transformation sets the variance

[or SD]

to one. This obviously much less than the original variance of 26.94 and SD of 5.19.

Generation from Normal Distribution

9) Generate three vectors and assign them to variables: one with 10 draws from a standard normal distribution, one with 50 draws from a standard normal distribution, and one with 100 draws from a standard normal distribution. Display just the vector with 10 draws.

```
norm10 <- rnorm(10, 0, 1)
norm50 <- rnorm(50, 0, 1)
norm100 <- rnorm(100, 0, 1)
norm10

## [1] 0.018773332 -0.759642623 -0.008700049 -0.068767451 0.707531276
## [6] 0.845746245 -0.401554479 -1.434600751 1.107168300 -1.004408729
```

10) Plot a histogram of the vector out of the three that will appear the most representative of the underlying standard normal distribution.

```
hist(norm100)
```


11) Create two more vectors and assign them to variables: one with 1000 draws from a normal distribution with mean of zero and SD of 2 and one with 1000 draws from a normal distribution with mean of 2 and variance of 4. No output is needed for this question.

```
norm02 <- rnorm(1000, 0, 2)
norm22 <- rnorm(1000, 2, sqrt(4))
```

12) Plot each of the two vectors from (11) in a histogram. Set the x-axis limits to be the same for both (hint: use the ? tool if you don't remember how to set axis limits!), and compare the two plots.

```
hist(norm02, xlim = c(-6, 6))
```

Histogram of norm02


```
hist(norm22, xlim = c(-6, 6))
```


The histograms have the same variance, but the one with mean of 2 is shifted to the right.

Matrices

13) Create a vector of sequential integers from 1 to 10 and assign it to a variable. No output is needed for this question.

```
myvec <- 1:10
```

14) Turn this vector in a 2 rows x 5 columns matrix that fills in the rows first. Assign this matrix to a variable and display the matrix as output.

```
mymat <- matrix(myvec, nrow = 2, ncol = 5, byrow = T)
mymat

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10</pre>
```

Indexing

15) From that matrix, please index:

15a) The second row.

```
mymat[2, ]

## [1] 6 7 8 9 10
```

15b) The third column of the first row.

```
mymat[1, 3]
## [1] 3
```

15c) The second through fourth columns of the first and second rows.

```
mymat[1:2, 2:4]

## [,1] [,2] [,3]
## [1,] 2 3 4
## [2,] 7 8 9
```

7 of 7