# SpyREST: Automated Example Based Documentation for RESTful Web APIs

S M Sohan

Department of Computer Science University of Calgary Calgary, Alberta T2N 1N4

Email: http://smsohan.com/home

Abstract—Documentation of RESTful APIs are expensive to produce and maintain. It is expensive because there is a lack of reusable tools and automated solutions for RESTful API documentation. Most RESTful APIs are documented manually and the API developers are responsible for keeping an updated documentation as the API evolves making the process both costly and error-prone. In this paper we introduce SpyREST, a reusable tool that can automatically generate RESTful API documentation. SpyREST uses a proxy to intercept example API calls and intelligently produces API documentation for RESTful Web APIs by processing the request and response data. Using SpyREST, RESTful API developers can significantly reduce the cost of producing and maintaining API documentation by replacing a large part of the manual process of documentation with an automated one.

Keywords—RESTful API, Web API, Documentation, Automation, Example based documentation

# I. INTRODUCTION

RESTful APIs are used as a primary interconnection mechanism among modern day Web based systems. For example, the website of a restaurant can use the RESTful API from Twitter to show the latest tweets mentioning the restaurant so that prospective customers can read the experience shared by others. To allow others to use their APIs, Twitter and other RESTful API developers publish documentation describing different features of their RESTful API. The documentation of such RESTful APIs are commonly produced and maintained using a manual process.

API documentation for library APIs, such as Java Standard Edition, commonly leverage reusable tools such as JavaDoc. The documentation produced by such tools include description of objects and methods, with custom texts primarily sourced via comments. On the other hand, RESTful APIs documentation includes additional information such as HTTP headers, request parameters, request and response data in serialized formats such as JSON, XML that cannot be easily derived from looking at the objects and methods in the source code. Using comments for these additional information also requires significant manual effort because there is a lack of reusable tools to automate the documentation process. This makes the task of RESTful API documentation a costly and errorprone one. In addition to producing the API documentation, API developers also need to publish and often maintain the documentation for multiple versions as the RESTful API evolves. This requires further manual effort because it becomes a continuous process.

To produce RESTful API documentation with information about HTTP headers, URL parameters, request and response data, the manual process is driven by example API calls. Example calls are made and recorded against an API endpoint to gather information for documentation. This process can be described as a six-step process as follows: 1) craft an example call to an API endpoint with required headers, URL parameters and request body, 2) make the call, 3) capture the response headers and data, 4) strip any unwanted data from the captured information, 5) add custom descriptions to the captured data and 6) publish the API documentation. This six-step process is essentially repeated for all API endpoints that are documented.

With SpyREST, we have implemented an innovative solution to largely automate the aforementioned manual process of RESTful API documentation so that all but steps 1 and 5 are automated. Steps 1 and 5 are left to a manual process to allow for a pragmatic solution that leverages computers to automate the repeated part of the process while leaving the rest to humans. Our solution relies on a lightweight HTTP proxy server to intercept example API calls so that all the information about HTTP headers, URL parameters, request and response data can be automatically gathered. The collected data is then processed to present the documentation for RESTful resources under a hierarchy defined by API versions, resources and actions. Sensitive data such as authentication tokens and passwords are automatically filtered and are not captured. Because SpyREST uses a HTTP proxy server, it can generate documentation for all RESTful APIs irrespective of the technology used to implement the API. The resultant is an automated yet customizable, version-aware, collaboration enabled and reusable API documentation software as a service platform that can be used to generate and maintain documentation for any RESTful API.

The implication of SpyREST is two-fold. It helps lower the cost of producing and maintaining RESTful API documentation through automation and provides a shared platform for publishing the documentation of different RESTful APIs.

The remainder of this paper is organized as follows: in the next section we discuss the related work on API documentation. The implementation details of SpyREST is provided next. Then, we present a case study to demonstrate SpyREST in action. Then, we discuss the implications and limitations of our work in the discussion section. We present our core contributions and future work in the conclusion.

### II. RELATED WORK

Several papers have been published on areas related to RESTful API documentation that are discussed under the following two categories: general API documentation and RESTful API documentation.

### A. General API Documentation

Several papers have studied the documentation of APIs to understand and recommend best practices that are also applicable to RESTful API documentation. Robillard et al. discussed the obstacles that make APIs hard to learn by surveying API developers and users [?] [?]. They found that developers faced severe obstacles learning new APIs due to inappropriate documentation and other learning resources. Robillard's recommendations for good API documentations include the following: include good examples, be complete, support many complex usage scenarios, be conveniently organized, and include relevant design elements. Kuhn et al. discussed the importance of good examples in API documentation as a key recommendation based on a survey of software developers using APIs [?]. In addition to examples, they identified trustworthiness, confidentiality, and limiting information overload as other key recommendations for API documentation. When API documentation is published for external use, Kuhn identified the need for the documentation tools to be able to protect proprietary and confidential information. Hoffman et al. recommended making the API example scenarios to be executable test cases so that a user can execute an API and understand the related business rules [?]. We recognize all these recommendations to be equally important for RESTful APIs. SpyREST automatically generates RESTful API documents from example API calls, with information about the publisher and allows the users to execute the examples following the aforementioned recommendations.

Nasehi et al. performed a case study based on Stack-Overflow discussions to find out what makes good code examples [?]. They recommended API developers to include a comprehensive set of code examples in the API documentation and the use of wiki-like collaborative tools with online API documentation so that users can ask questions and get answers on officially published API documentation. Parnin et al. found that social media holds a key place in software documentation as it provides additional knowledge about APIs and gives readers a chance to engage with authors of the APIs [?]. They found active collaboration about API related questions resulting into 81% of posts receiving at least one comment with a median of 8 comments per question. Chen et al. recommended integrating crowdsourced frequently asked questions (FAQs) into API documents so that users can easily find relevant discussions when questions arise as they are browsing API documentation [?]. They presented a tool that can embed FAQs into API documents based on a user's browsing behavior. Subramanian et al. presented an automated approach to link API documentation of different Java and JavaScript libraries with code examples that are shared on StackOverflow by the API users so that the collaborative crowd documentation of APIs can be linked with official documentations [?]. To link API documentation with valuable crowdsourced content, the collaborative features of SpyREST allows users to discuss API related questions and answers on the same web pages where the auto generated RESTful API documentations are shown.

Stepalina discussed the advantages of SaaS based solutions for API documentation systems where a web platform can be used to publish many different API documentations [?]. They identified several benefits of such a reusable platform, such as, cost effective yet powerful, platform agnostic and high accessibility, improved document quality, content reuse, automated tools and organization of robust and scalable documentation process. SpyREST is a SaaS based tool that can be used to leverage these benefits as it allows the generation and publishing of RESTful API documentations for many different APIs under a single platform. They also identified security and reliability of such a shared platform as potentially open issues. To overcome these issues, SpyREST allows a self hosted alternative to SaaS model where API developers can get full isolation for their RESTful API documentation.

Several tools exist that help automatic generation of API documentation for local APIs such as JavaDoc <sup>1</sup>, RDoc <sup>2</sup> etc. that convert formatted comments from source code into corresponding HTML documentation for the classes and methods. Jadeite is a tool that adds placeholder API objects for library APIs to improve the search and discovery of desired API objects [?]. While these tools have been proven to work for local library APIs, they have a limited applicability for documenting RESTful APIs because HTTP specific information such as request and response headers, url, request and response payloads are not natively supported by these tools. Hence, there exists a gap for tool support to automatically generate RESTful API documentation. SpyREST fills this gap as it automatically generates RESTful API documentation by recording and synthesizing example API calls.

# B. RESTful API Documentation

To address the need for a standard format to describe RESTful APIs several related works proposed candidate specifications. For example, Danielsen et al. presented at vocabulary for documenting RESTful Web APIs called Web Interface Language (WIfL) [?]. The vocabulary comprises of these following objects: Resource, Request, Response, Representation and Parameters that can describe the structure and example usage of RESTful Web APIs. Generation of WIfL specific objects for RESTful APIs requires manual effort or bespoke implementation since a reusable automated approach is not presented. With SpyREST, we focus on automation so that reusable tools can be used to produce RESTful API documentation.

Verborgh et at. presented RESTdesc, a Resource oriented and Hyper-link based specification for describing RESTful APIs [?]. RESTdesc relies on pre and postconditions to describe the outcome of an API call so that a general purpose API client can parse RESTdesc formatted documentation to invoke API calls to specific RESTful APIs. Mangler et al. presented RDDL, a XML based specification for describing RESTful APIs [?]. RDDL descriptions are composed of resources, operations, parameters and headers. Similar to WIfl, manual

<sup>&</sup>lt;sup>1</sup>http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

<sup>&</sup>lt;sup>2</sup>http://rdoc.sourceforge.net/

Kopecky et al. presented hRESTS, a machine readable micro-format to describe RESTful APIs that uses an alternate representation compared to WIfL [?]. hRESTS specification comprises of Service, Operation, Address, Method, Input, Output and Label objects to describe RESTful APIs. Automated XML transformation is used to convert a formatted HTML documentation of a RESTful API into hRESTS so that the machine readable format can be used by RESTful API clients for automated invocation. SpyREST aims to minimize the cost of a manual or custom process to generate and maintain formatted HTML documentation by leveraging an automated approach.

Maleshkova et al. presented OmniVoke, a RESTful API based invocation engine that provides an abstraction layer for RESTful API calls to multiple APIs that follow different conventions [?]. A general purpose RESTful API client can be used against OmniVoke since the different conventions are wrapped under a uniform RESTful API. Manual configuration is required for each existing API to wrap under OmniVoke.

Myers et al. performed a user study based on the documentation of Web APIs used in large scale enterprises to understand the desirable contents for Web API documentation [?]. They recommended providing a consistent look-and-feel with explanation for the starting points and an overall map comprising of both text and diagrams, providing a browsing experience with breadcrumb trail following a hierarchy, an effective search interface, providing example code and a way to exercise the examples online without writing code. SpyREST aims to achieve requirements for RESTful API documentation using an automated yet customizable approach that can be reused across different RESTful APIs.

In addition to the research community, there are several RESTful API specification formats that are observed in the industry. Swagger is a JSON based specification that allows users to describe RESTful APIs in terms of paths, parameters, request and response headers and bodies 3. RAML is a RESTful API documentation format that uses YAML files to describe RESTful API documentation using a similar hierarchy as Swagger 4. Blueprint is another RESTful API specification format that uses Markdown files with additional tags to describe RESTful API objects 5. In addition to producing RESTful API documentation, there are tools and software as a service (SaaS) providers that can be used to publish the documentation and auto generate API client code for RESTful APIs that are described using one of these formats. To use these tools to generate HTML based RESTful API documentation, API developers need to manually construct the intermediate documentation format that is required by these platforms since there is no automated tool to produce this. In contrast, SpyREST generates RESTful API documentation by synthesizing data collected from example API calls without relying on any intermediate representation.

# III. SPYREST

# A. SpyREST Requirements

The following list of requirements for SpyREST is derived from analyzing the aforementioned related work and current API documentation practices as observed in the industry:

Automated RESTful API documentation: RESTful APIs are either documented manually or using custom tools to partially automate the process. Both processes can be expensive to maintain since API documentation is a continuous process to support the evolution of APIs. The primary requirement for SpyREST is to find a pragmatic approach to automatically generate RESTful API documentation.

**Example based**: As discussed in the related work section, several authors have emphasized on including example scenarios with API documentation to help users understand how to use an API [?] [?] [?] [?]. SpyREST generated API documentation needs to include example scenarios.

**Executable documentation**: In addition to including examples, SpyREST also needs to allow users to execute the example scenarios so that they can try the API features without having to write code as recommended in related work [?] [?].

**Version awareness:** SpyREST needs to allow API developers to publish documentation for multiple versions of a Web API as it evolves. The following comment from a API user of Stripe shows the importance of a version-aware documentation tool <sup>6</sup>:

"Does the full API documentation only reflect the current version of the API? Is there a way to access the API docs for outdated versions? ...That would be very helpful. When you are trying to upgrade from one version to another it's impossible to know the implementation differences. We are currently about 4 API versions behind and are stuck behind a version that causes a significant amount of work on our end to support. I'd like to be able to upgrade incrementally through each version."

Customizable: Robillard identified the importance of customized overview information about how to use an API to reduce API learning obstacles [?]. Custom content is also required to explain business rules and overview information about APIs that may not be automatically derivable. SpyREST needs to allow users to add customized content to auto generated RESTful API documentation to enrich the quality of the documentation.

**Reusable**: SpyREST needs to work as a reusable platform so that multiple REST API documentations can be generated and published on a single platform to get the benefits as outlined by Stepalina [?].

**Collaborative:** SpyREST needs to allow people to collaborate on the API documentation so that questions and answers about APIs can coexist with the API documentation to overcome the obstacles with fragmented knowledge sources as identified by Chen et al. [?].

<sup>&</sup>lt;sup>3</sup>https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

<sup>4</sup>http://raml.org/spec.html

<sup>&</sup>lt;sup>5</sup>https://github.com/apiaryio/api-blueprint

<sup>&</sup>lt;sup>6</sup>https://groups.google.com/a/lists.stripe.com/forum/#!searchin/api-discuss/version/api-discuss/li4PyVcweiw/NT9SFTtF-vQJ

### B. SpyREST Components

SpyREST is composed of three main components as shown in Fig. 1.



Fig. 1. SpyREST Component Diagram

**The Spy:** SpyREST is driven by example API calls. The Spy component is a HTTP proxy server that needs to be used while running example API calls so that it can record HTTP request and response information in a database that are required to auto generate the API documentation. For example, when using Spy as a HTTP proxy to make the following HTTP request:

```
Method GET
URL https://api.github.com/repositories?since=100
Headers accept: application/vnd.github.v3+json
```

that produces the following response:

Spy automatically saves the raw request and response data with HTTP headers. Additionally, it synthesizes the data and saves the following meta data about this example API call:

```
version
                        repositories
              resource
                        GET /repositories
                action
                        since: 100
                query
strippedResponseBody
                         a subset of the response body
           description
                         blank
                digest
                         base64 hash value of the version, resource, url and description
         requiresAuth
                         blank, used when a SpyREST API token is provided
                        blank, used when a user is found for given apiToken
```

As shown in this example, the version "v3" is automatically detected by parsing the accept request header. The automatic version detection algorithm can extract version information from either the request URL or accept header for most commonly used formats. Next, the resource field is also auto detected as "repositories" by parsing the request URL. The action "GET /repositories" is automatically detected by combining the request HTTP method with request path. The strippedResponseBody field automatically saves a shorter version of the actual response where large arrays in the response body are recursively truncated to smaller arrays with two sample items to reduce noise from the generated documentation. These meta fields allow SpyREST to structure the example API calls for a given API host in a hierarchical model as follows: an API has many versions, each version has many resources, each resource has many actions, and each action has many examples.

Auto detection algorithms for version, resource and action fields may be overridden by providing SpyREST with additional headers when example API calls are executed. For example, a user can use the custom header "x-spy-rest-resource: repos" when making example API calls to override the automatic detection of resource from "repositories" to "repos". Using a similar approach, users can override the version, action, and description fields using the "x-spy-rest-version", "x-spy-rest-action" and "x-spy-rest-description" headers respectively.

The digest is automatically computed based on the version, resource, url and description fields. Using this digest, Spy allows the users to replay the the same example and update the recorded information without creating duplicate entries for each run of the same example API.

When saving request information, Spy automatically strips of values used in "authorization" request headers to avoid leaking secrets in the API documentation. If an authorization header is found, Spy also marks the example with "require-sAuth: true" so that in the generated API documentation it can be visually indicated.

SpyREST allows users to sign up and get an API key to be used for generating API documentation. The "apiToken" and "userId" fields are populated when a valid SpyREST API key is provided in the "x-spy-rest-api-key" request header. This provides credibility to the documentation generated by SpyREST since the official API developers can be identified by their SpyREST account.

To record data for an example call to an API that uses a SSL/TLS connection, the Spy needs to perform as an intentional man-in-the-middle style proxy since the data would be encrypted otherwise. We consider the security risks for this approach to be minimal when the example API calls are intended to be recorded for public viewing through the documentation. For APIs where this is not acceptable, the Spy can be installed with the required SSL certificates on their trusted infrastructure to overcome this issue.

The Spy component is built using nodejs<sup>7</sup> and open source libraries and SpyREST currently supports JSON based APIs only.

The Database: MongoDB<sup>8</sup>, a widely used document oriented database, is used as the database. MongoDB is chosen because of its scalability features that could be used by SpyREST to automatically generate documentation of large number of RESTful APIs in a shared platform.

**The Web App:** The web app component further processes and presents auto generated documentation that is captured by Spy in the database. It also allows the users to edit or add custom content to the auto generated documentation. Additionally, the web app includes administration features such as user registration and SpyREST API key management. The features of the web app are discussed later in this paper in greater detail. The web app is written using the Ruby on Rails<sup>9</sup> framework primarily because of the first author's past experience using this framework.

<sup>&</sup>lt;sup>7</sup>https://nodejs.org/

<sup>&</sup>lt;sup>8</sup>https://www.mongodb.org/

<sup>&</sup>lt;sup>9</sup>http://rubyonrails.org/

The source code for both the Spy and Web app components are released as open source projects. Even though nodejs, MongoDB and Ruby on Rails are used for SpyREST implementation, the ideas that SpyREST realized are not dependent on these specific technologies.

# C. SpyREST Features

Include screenshot for each

- 1) Automated RESTful API documentation: API includes user information language/platform agnostic ssl secrets duplicates
  - 2) Example based: examples written in any client test code
  - 3) Executable documentation: try as cURL
- 4) Version awareness: automatic version detection from headers, url, override
  - 5) Customizable: markdown editor
  - 6) Reusable: navigation by API host
  - 7) Collaborative: integrated commenting

### IV. SPYREST IN ACTION

### V. DISCUSSION

How is it different from the existing tools?

Swagger RESTdesc RAML API Blueprint

API call – manual/bespoke implementation – API Specification – API documentation

API call – automated record – synthesize – API documentation

# A. Limitations

Pending user evaluation

### VI. CONCLUSION

The conclusion goes here.

# ACKNOWLEDGMENT

The authors would like to thank...

### REFERENCES

 H. Kopka and P. W. Daly, A Guide to ETEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.