Calculus, Volume 1, 2nd Edition - Tom M. Apostal

Iain Wong

November 25th, 2021

Contents

1	Introduction			
	1.1	Some Basic Concepts of the Theory of Sets		
		1.1.1	Excercises	3

Chapter 1

Introduction

1.1 Some Basic Concepts of the Theory of Sets

1.1.1 Excercises

1. Use the roster notation to designate the following sets of real numbers.

Proposition 1. $A = \{x|x^2 - 1 = 0\}$ can be designated as $\{-1,1\}$ in roster notation.

Proof.

$$A = \{x | x^2 - 1 = 0\}$$

$$= \{x | (x - 1)(x + 1) = 0\}$$

$$\therefore \{-1, 1\}$$
(1.1)

QED

Proposition 2. $B = \{x | (x-1)^2 = 0\}$ can be designated as $\{1\}$ in roster notation.

Proof.

$$B = \{x | (x - 1)^2 = 0\}$$

$$= \{x | x - 1 = \sqrt{0}\}$$

$$= \{x | x = 1\}$$

$$\therefore \{1\}$$
(1.2)

QED

Proposition 3. $C = \{x | x + 8 = 9\}$ can be designated as $\{1\}$ in roster notation.

Proof.

$$C = \{x | x + 8 = 9\}$$

$$= \{x | x = 9 - 8\}$$

$$= \{x | x = 1\}$$

$$\therefore \{1\}$$
(1.3)

QED

Proposition 4. $D = \{x|x^3 - 2x^2 + x = 2\}$ can be designated as $\{2\}$ in roster notation.

Proof.

$$D = \{x|x^3 - 2x^2 + x = 2\}$$

$$= \{x|x^3 - 2x^2 + x - 2 = 0\}$$

$$= \{x|x^2(x-2) + (x-2) = 0\}$$

$$= \{x|(x^2+1)(x-2) = 0\}$$

$$\therefore \{2\}$$
(1.4)

QED

Proposition 5. $E = \{x | (x+8)^2 = 9^2\}$ can be designated as $\{-17, 1\}$ in roster notation.

Proof.

$$E = \{x | (x + 8)^2 = 9^2\}$$

$$= \{x | x + 8 = \pm 9\}$$

$$= \{x | x = \pm 9 - 8\}$$

$$\therefore \{-17, 1\}$$
(1.5)

QED

Proposition 6. $F = \{x | (x^2 + 16x)^2 = 17^2\}$ can be designated as $\{-17, 1, -8 - \sqrt{47}, -8 + \sqrt{47}\}$ in roster notation.

Proof.

$$F = \{x | (x^2 + 16x)^2 = 17^2 \}$$

$$= \{x | x^2 + 16x = \pm 17 \}$$

$$= \{x | x^2 + 16x \pm 17 = 0 \}$$

$$= \{x | x^2 + 16x \pm 17 = 0 \}$$
(1.6)

Using the quadratic formula:

Definition 1.1.1. Quadratic Equation, analytical method for calculating the roots of a quadratic polynomial.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where $ax^2 + bx + c = 0$ (1.7)

Solving when the last term is +17:

$$x = \frac{-16 \pm \sqrt{16^2 - 4(1)17}}{2(1)}$$

$$= -8 \pm \frac{\sqrt{188}}{2}$$

$$= -8 \pm \frac{\sqrt{188}}{\sqrt{2^2}}$$

$$= -8 \pm \sqrt{188/4}$$

$$= -8 \pm \sqrt{47}$$

$$\therefore \{-8 - \sqrt{47}, -8 + \sqrt{47}\}$$
(1.8)

Solving when the last term is -17:

$$0 = x^{2} + 16x - 17$$

$$= (x + 17)(x - 1)$$

$$\therefore \{-17, 1\}$$
(1.9)

QED

2. For the sets in Exercise 1, note that $B\subseteq A$. List all the inclusion relations \subseteq that hold among the sets $A,\,B,\,C,\,D,\,E,\,F$.

(a)