DATA COMMUNICATION AND NETWORKING

Computer Network Components

Components of a computer network:

- Computer with NIC (PCs, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- Links" Transmission media" (wired, wireless)
- protocols (IP,TCP,CSMA/CD,CSMA/CA)
- applications (network services)i.e. Network Operating System (NOS)
- humans and service agents

Computer Network

PROTOCOL LAYERS

- Protocol is required when two entities need to communicate.
- When communication is not simple, we may divide the complex task of communication into several layers.
- The sending computer must:
 - Recognize the data.
 - Divide the data into manageable chunks.
 - Add information to each chunk of data to determine the location of the data and to identify the receiver.
 - Add timing and error-checking information.
 - Put the data on the network and send it on its way.
- In this case, we may need several protocols, one for each layer.

Example 1

- Assume Maria and Ann are neighbors with a lot of common ideas. However, Maria speaks only Spanish, and Ann speaks only English.
- Since both have learned the sign language in their childhood, they enjoy meeting in a cafe a couple of days per week and exchange their ideas using signs.
- Occasionally, they also use a bilingual dictionary. Communication is face to face and Happens in one layer as shown in Figure.

Example2

- Now assume that Ann has to move to another town because of her job. Before she moves, the two meet for the last time in the same cafe.
- Although both are sad, Maria surprises Ann when she opens a packet that contains two small machines.
 - The first machine can scan and transform a letter in English to a secret code or vice versa.
 - The other machine can scan and translate a letter in Spanish to the same secret code or vice versa.
- Ann takes the first machine; Maria keeps the second one.
- The two friends can still communicate using the secret code, as shown in Figure

THE OSI MODEL

- Established in 1947, the *International Standards Organization* (ISO) is a multinational body dedicated to worldwide agreement on international standards.
- Almost three-fourths of countries in the world are represented in the ISO.
- An ISO standard that covers all aspects of network communications is the *Open Systems Interconnection (OSI)* model.
- It was first introduced in the late 1970s.

OSI Model and Nora

Application	7 th floor	Nora gets secret message from Number One
Presentation	6 th floor	Message is translated, encrypted and miniaturized
Session	5 th floor	Security checks message, adds checkpoints to ensure the embassy receives whole message
Transport	4 th floor	Message is analysed, combined if necessary and broken into smaller pieces
Network	3 rd floor	Personnel check the message, determine the address, indicate fastest route to Embassy
Data Link	2 nd floor	Message placed in special packet contains message, sender and destination ID
Physical	1 st floor	Prepared for a trip to the KSA Embassy

An exchange using the OSI model (Encapsulation)

LAYERS IN THE OSI MODEL

In this section we briefly describe the functions of each layer in the OSI model.

Note

The physical layer is responsible for moving individual bits from one (node) to the next.

Physical layer

- defines the procedures and functions that physical devices and interfaces have to perform for transmission occur.
- The physical layer is concerned with the following:
 - Physical characteristics of interfaces and media:
 - Representation of the bits
 - Data rate, the number of bits sent each second.
 - Line configuration, Point to point or multipoint configuration.
 - Physical topology
 - Transmission Mode : Simplex, half duplex or full duplex

Communication at the physical layer

Note

The unit of communication at the physical layer is a bit.

Data Link Layer

- The data link layer transforms the physical layer, a raw transmission facility, to a reliable link and is responsible for node-to-node delivery.
- The Data Link layer is concerned with the following:
 - Framing.
 - Physical addressing, each node has its unique address.
 - Flow Control.
 - Access Control.
 - Error control, normally achieved through a trailer to the end of the frame.

Note

The unit of communication at the data link layer is a frame.

Network Layer

 Is responsible for the source-to-destination delivery of a packet possible across multiple networks.

■ Functions:

- Logical addressing.
- Routing, It determines which path the data should take based on network conditions, priority of service, and other factors.

Note

The unit of communication at the network layer is a datagram (Packet).

Example 2: logical addresses

Transport Layer

- The transport layer is responsible for process-to-process delivery of the entire message.
- Makes sure that the data arrives without errors, in the proper sequence and in a reliable condition.

■ Functions:

- Port addressing, The network layer gets each packet to the correct computer; the transport layer gets the entire message to the correct process on that computer.
- Segmentation and reassembly: a message is divided into transmittable segments, each having a sequence number
- Connection control: The transport layer can be either connectionless or connection-oriented.
- Flow control
- Error control

Note

The unit of communication at the transport layer is a segment, user datagram, or a packet, depending on the specific protocol used in this layer.

Session Layer

- the session layer, allows two applications on different computers to open, use, and close a connection called a session.
 - (A session is a highly structured dialog between two workstations.)

Functions:

- Dialog control
 - It also makes sure the session is orderly, establishing which node transmits first, how long it can transmit, and what to do in case of an error.
 - It performs name-recognition and other functions, such as security, that are needed to allow two applications to communicate over the network.

- Synchronization

- The session layer synchronizes user tasks by placing **checkpoints** in the data stream.
- The checkpoints break the data into smaller groups for error detection. It allows information of different streams, perhaps originating from different sources, to be properly combined or synchronized.
 - An example application is web conferencing, in which the streams of audio and video must be synchronous to avoid so-called <u>lip synch</u> problems. It ensures that the person displayed on screen is the current speaker.

Presentation layer

- The presentation layer is responsible for
- Translation,
- Compression, and
- Encryption.
- Deals with the actual formatting of the data.
 - For example, data might be converted from EBCDIC to ASCII formatting so that the receiving node can understand it.

Application Layer

- This layer relates to the services that directly provide user interfaces support user applications or services, such as software for file transfers, database access, and e-mail.
- In other words, it serves as a window through which application processes can access network services.
- The application layer enables the user to access the network.
- This would be the layer that a programmer uses to allow his application to access a network service, such as linking into a database.

Application	To allow access to network resources	7
Presentation	To translate, encrypt, and compress data	6
Session	To establish, manage, and terminate sessions	5
Transport	To provide reliable process-to-process message delivery and error recovery	4
Network	To move packets from source to destination; to provide internetworking	3
Data link	To organize bits into frames; to provide hop-to-hop delivery	2
Physical	To transmit bits over a medium; to provide mechanical and electrical specifications	1