Final de Lógica y Computabilidad

16 diciembre 2020

Ejercicio 1. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.

- 1. Si A es infinito y c.e., entonces existe una función computable y creciente tal que $f(\mathbb{N}) = A$.
- 2. Si f es una función computable entonces $\bigcup_i W_{f(i)}$ es c.e.

Ejercicio 2. Sea A un conjunto c.e. tal que Φ_e es total para todo $e \in A$. Probar que existe e tal que Φ_e es total y $e \notin A$.

A partir de ahora, supongamos dada una artimetización de las fórmulas de primer orden sobre un dado lenguaje finito \mathcal{L} fijo, del mismo modo que aritmetizamos los programas en la materia. Módulo esta codificación, podemos hablar de conjuntos computables o computablemente enumerables de fórmulas.

Ejercicio 3. Sea Γ un conjunto computable de fórmulas de primer orden (sobre el lenguaje \mathcal{L} dado) que es completo respecto a la negación (es decir, para toda sentencia φ , $\Gamma \models \varphi$ o $\Gamma \models \neg \varphi$). Probar que $\{\varphi \mid \varphi \text{ es una sentencia y } \Gamma \models \varphi\}$ es computable.

- **Ejercicio 4.** 1. Demostrar que el conjunto de las fórmulas de primer orden (sobre el lenguaje \mathcal{L} dado) que son satisfacibles en un modelo finito es c.e.
 - 2. Demostrar que el conjunto de las sentencias de primer orden (sobre el lenguaje \mathcal{L} dado) que son verdaderas en todo modelo finito es co-c.e.