Delegation in Veto Bargaining

Navin Kartik Andreas Kleiner Richard Van Weelden

October 2019

Motivation

In many contexts

- Proposer needs approval for a project
 - e.g. from boss, other branch of government, majority of a committee
- Proposer is uncertain what veto player will accept

Large literature emanating from Romer & Rosenthal 1978

This paper

- Screening via a menu is typically valuable
- Conceptual and methodological connection to optimal delegation

Applications

- In U.S., prosecutor decides whether to include lesser charges
 - e.g., "Murder" or "Murder or Manslaughter"
 - Acquit is always an option
- Congress makes proposal to President
 - Bill can give much or little discretion of how to implement
 - President can always veto

Applications

- In U.S., prosecutor decides whether to include lesser charges
 - e.g., "Murder" or "Murder or Manslaughter"
 - · Acquit is always an option
- Congress makes proposal to President
 - Bill can give much or little discretion of how to implement
 - President can always veto
- Salesperson (e.g., real estate agent) decides which products to show
 - Not buying is always an option
- Committee chooses pool of candidates to put forward
 - · Leadership must select one, or none

Preview of Results

We study a one-dimensional model with single-peaked prefs

- Typically not optimal to offer a singleton
 - Because not 'dividing a dollar'
 - Menus Pareto improve over singleton proposals
- But Veto player 'often' gets large information rents
 - Even her first best
- Identify conditions for optimal menu to be 'nice', e.g., interval

Preview of Results

We study a one-dimensional model with single-peaked prefs

- Typically not optimal to offer a singleton
 - Because not 'dividing a dollar'
 - Menus Pareto improve over singleton proposals
- But Veto player 'often' gets large information rents
 - Even her first best
- Identify conditions for optimal menu to be 'nice', e.g., interval
- Comp stats: e.g., more discretion when more (ex ante) *mis*alignment
 - Contrasts with expertise-based delegation à la Holmstrom
- Methodology

Related Literature

Proposal power and agenda setting
 Romer & Rosenthal, 1978; Matthews, 1989; Cameron & McCarty, 2004

Optimal expertise-based delegation
 Holmstrom, 1984; Melumad & Shibano, 1991; Alonso & Matouschek, 2008;
 Amador & Bagwell, 2013; Kovac & Mylovanov, 2009

- Optimal delegation with outside options
 Amador & Bagwell, 2014; Kolotilin & Zapechelnyuk, 2019
- Monotone Bayesian persuasion
 Dworczak & Martini, 2019; Kolotilin, 2018

■ Proposer (P) and Veto player (V) determine action $a \in \mathbb{R}$

- Proposer (P) and Veto player (V) determine action $a \in \mathbb{R}$
- P's utility u(a) concave, maximized at a=1
 - Twice continuously differentiable at all $a \neq 1$
 - Leading examples: u(a) = -|1-a| and $u(a) = -(1-a)^2$

- Proposer (P) and Veto player (V) determine action $a \in \mathbb{R}$
- P's utility u(a) concave, maximized at a=1
 - Twice continuously differentiable at all $a \neq 1$
 - Leading examples: u(a) = -|1-a| and $u(a) = -(1-a)^2$
- \blacksquare V's utility $u_V(a, v) = -(v a)^2$
 - Type v is private info
 - Distribution F with differentiable density f; f(v) > 0 on (0,1)
 - Leading examples: f log-concave
 - For many results, only ordinal prefs matter, so any symmetric loss function around v could be used

- Proposer (P) and Veto player (V) determine action $a \in \mathbb{R}$
- P's utility u(a) concave, maximized at a=1
 - Twice continuously differentiable at all $a \neq 1$
 - Leading examples: u(a) = -|1-a| and $u(a) = -(1-a)^2$
- \blacksquare V's utility $u_V(a, v) = -(v a)^2$
 - Type v is private info
 - Distribution F with differentiable density f; f(v) > 0 on (0,1)
 - Leading examples: f log-concave
 - For many results, only ordinal prefs matter, so any symmetric loss function around v could be used

Timing

- 1 P proposes a menu $A \subseteq \mathbb{R}$. A must be a closed set.
- 2 V's learns type v and chooses $a \in A \cup \{0\}$. So 0 is the status quo.

Nb: equivalent to any (deterministic) direct mechanism. No transfers.

Full Delegation,
No Compromise,
& Interval Delegation

Full Delegation

- P could offer full delegation menu A = [0, 1]
 - offering any $a \notin [0, 1]$ is dominated
 - although V may find some $a \notin [0,1]$ preferable
- V then chooses ideal point v if $v \in [0,1]$; 0 if v < 0; and 1 if v > 1
- Pareto efficiency obtains
- V gets his "first best", despite P having substantial bargaining power and commitment
 - first best for all $v \in [0,1]$
 - support of v could be [0,1] (or a subset), then really first best

Full Delegation

$$\kappa:=\inf_{a\in[0,1)}-u''(a)\geq 0.$$

Proposition

Full delegation is optimal if

$$\kappa F(v) - u'(v)f(v)$$
 is \uparrow on $[0,1]$.

Nb: ↑ means non-decreasing

■ Full delegation optimal if f(v) does not \uparrow too fast

Full Delegation

$$\kappa:=\inf_{a\in[0,1)}-u''(a)\geq 0.$$

Proposition

Full delegation is optimal if

$$\kappa F(v) - u'(v)f(v)$$
 is \uparrow on $[0,1]$.

Nb: ↑ means non-decreasing

■ Full delegation optimal if f(v) does not \uparrow too fast

Corollary

Full delegation is optimal if f(v) is \downarrow on [0,1].

- So for a unimodal (in particular, log-concave) f, full delegation optimal when ex-ante disagreement is large: v's mode ≤ 0
- Reverses logic of expertise-based delegation

■ $F \ge_{SOSD} G$ if f is \downarrow ; hence Proposer prefers F to G

- $F \ge_{SOSD} G$ if f is \downarrow ; hence Proposer prefers F to G
- If f is \uparrow on (a, b), removing that interval increases expected action, but adds variance; desirable if f'/f large relative to -u''/u'
- With linear utility, $f \downarrow necessary$ for optimality of full delegation

- $F \ge_{SOSD} G$ if f is \downarrow ; hence Proposer prefers F to G
- If f is \uparrow on (a, b), removing that interval increases expected action, but adds variance; desirable if f'/f large relative to -u''/u'
- With linear utility, $f \downarrow necessary$ for optimality of full delegation
- \blacksquare For any f, full delegation optimal if P is sufficiently risk averse

No Compromise

- The degenerate menu $\{0,1\}$ is no compromise
 - can be viewed as a singleton proposal 1
- If u is differentiable at 1, then no compromise **not** optimal
 - Because then u'(1) = 0

No Compromise

- The degenerate menu $\{0,1\}$ is no compromise
 - can be viewed as a singleton proposal 1
- If *u* is differentiable at 1, then no compromise **not** optimal
 - Because then u'(1) = 0
- If u is linear and $f \uparrow$, then no compromise **is** optimal
 - Removing any interval $(a, b) \subseteq 1$ raises average action
- But these conditions much stronger than needed

Proposition

No compromise is optimal if for all $s \in [0, 1/2)$ and $t \in (1/2, 1]$

$$u'(0)\frac{F(1/2)-F(s)}{1/2-s}\leq u'(1_-)\frac{F(t)-F(1/2)}{t-1/2}.$$

■ For linear u, this says that $f(\frac{1}{2})$ is subgradient of F at $\frac{1}{2}$

Interval Delegation

Interval delegation: $A = \{0\} \cup [c, 1]$ for $c \in [0, 1]$

subsumes full delegation and no compromise

Interval Delegation

Interval delegation: $A = \{0\} \cup [c, 1]$ for $c \in [0, 1]$

subsumes full delegation and no compromise

Two Questions:

- Under what conditions is interval delegation optimal?
- What is the best interval?

Interval Delegation

Proposition

Suppose f is log-concave and for some $\gamma \in [0, 1]$,

$$u(a) = -(1 - \gamma)|1 - a| - \gamma(1 - a)^{2}$$
.

Then there is $c \in [0,1]$ such that $A = \{0\} \cup [c,1]$ is optimal.

Comparative Statics

Let W(c) denote P's expected utility from offering [c, 1], and $C^* := \arg \max W(c)$.

Proposition

1 Let p^* denote optimal singleton proposal. sup $C^* \le p^*$, strictly when sup $C^* < 1$.

Among interval menus:

1) Allowing for menus induces a Pareto improvement

Comparative Statics

Let W(c) denote P's expected utility from offering [c,1], and $C^* := \arg \max W(c)$.

Proposition

- **1** Let p^* denote optimal singleton proposal. sup $C^* \le p^*$, strictly when sup $C^* < 1$.
- 2 If f str. \uparrow in LR on [0,1], then $C^* \uparrow$ in SSO.

Among interval menus:

- 1) Allowing for menus induces a Pareto improvement
- 2) Contrast to expert-based delegation, where greater alignment implies more discretion

Comparative Statics

Let W(c) denote P's expected utility from offering [c,1], and $C^* := \arg \max W(c)$.

Proposition

- **1** Let p^* denote optimal singleton proposal. sup $C^* \le p^*$, strictly when sup $C^* < 1$.
- 2 If f str. \uparrow in LR on [0,1], then $C^* \uparrow$ in SSO.
- **3** If u becomes str. more risk averse on [0,1], then $C^* \downarrow$ in SSO.

Among interval menus:

- 1) Allowing for menus induces a Pareto improvement
- 2) Contrast to expert-based delegation, where greater alignment implies more discretion
- 3) More risk-averse Proposer (à la Rothschild-Stiglitz) compromises more; eventually, full delegation

Delegation vs Cheap Talk

- Matthews (1989)
 - Cheap talk by V before P makes a singleton offer
 - Babbling equilibrium exists: $A = \{0, p^*\}$
 - Under mild conditions, also size-two equilibria:

 V makes a veto threat, against which P proposes
 - V makes a veto threat, against which P proposes $\hat{p} \in (0, p^*)$ or V doesn't, against which P proposes 1
 - Informative eqm equivalent to $A = \{0, \hat{p}, 1\}$
 - P prefers informative eqa to uninformative

Delegation vs Cheap Talk

- Matthews (1989)
 - Cheap talk by V before P makes a singleton offer
 - Babbling equilibrium exists: $A = \{0, p^*\}$
 - Under mild conditions, also size-two equilibria:

```
V makes a veto threat, against which P proposes \hat{p} \in (0, p^*) or V doesn't, against which P proposes 1
```

- Informative eqm equivalent to $A = \{0, \hat{p}, 1\}$
- P prefers informative eqa to uninformative
- How does P's lack of commitment affect him here?
 - P's welfare from $A = \{0, p, 1\} \downarrow$ in p at $p = \hat{p}$
 - P would like to commit to lower proposal to reduce vetos
 - But even optimal "singleton compromise" need not be global optimum: in particular, when interval delegation is

Methodology

Any A induces choice function $\alpha : \mathbb{R} \to A$. Wlog, consider $A \subseteq [0,1]$.

Let $\mathcal{A} := \{\alpha : [0,1] \rightarrow [0,1] \text{ s.t. } \alpha(0) = 0 \text{ and } \alpha \text{ is } \uparrow \}.$

Any A induces choice function $\alpha : \mathbb{R} \to A$. Wlog, consider $A \subseteq [0,1]$.

Let
$$\mathcal{A} := \{\alpha : [0,1] \to [0,1] \text{ s.t. } \alpha(0) = 0 \text{ and } \alpha \text{ is } \uparrow \}.$$

Optimization problem:

$$\max_{\alpha \in \mathcal{A}} \int u(\alpha(v)) dF(v) \tag{P}$$

s.t.
$$v\alpha(v) - \alpha(v)^2/2 = \int_0^v \alpha(t) dt$$
. (IC)

Any A induces choice function $\alpha : \mathbb{R} \to A$. Wlog, consider $A \subseteq [0,1]$.

Let $\mathcal{A} := \{\alpha : [0,1] \rightarrow [0,1] \text{ s.t. } \alpha(0) = 0 \text{ and } \alpha \text{ is } \uparrow \}.$

Optimization problem:

$$\max_{\alpha \in \mathcal{A}} \int u(\alpha(v)) dF(v) \tag{P}$$

s.t.
$$v\alpha(v) - \alpha(v)^2/2 = \int_0^v \alpha(t) dt$$
. (IC)

We tackle using inft-diml Langrangian methods (cf. Amador & Bagwell 2013)

Any A induces choice function $\alpha : \mathbb{R} \to A$. Wlog, consider $A \subseteq [0,1]$.

Let
$$\mathcal{A} := \{\alpha : [0,1] \rightarrow [0,1] \text{ s.t. } \alpha(0) = 0 \text{ and } \alpha \text{ is } \uparrow \}.$$

Optimization problem:

$$\max_{\alpha \in \mathcal{A}} \int u(\alpha(v)) \mathrm{d}F(v) \tag{P}$$

s.t.
$$v\alpha(v) - \alpha(v)^2/2 = \int_0^v \alpha(t) dt$$
. (IC)

We tackle using inft-diml Langrangian methods (cf. Amador & Bagwell 2013)

Stochastic Mechanisms

Stochastic allocation is a lottery over [0, 1], wlog

Let
$$\mathcal{S}:=\{\alpha:[0,1]\to\Delta[0,1] \text{ s.t. } \alpha(0)=\delta_0 \text{ and } \mathbb{E}[\alpha(\nu)] \text{ is } \uparrow\}.$$

$$\max_{\alpha \in \mathcal{S}} \int \mathbb{E}_{\alpha(v)}[u(a)] \mathrm{d}F(v) \tag{S}$$

s.t.
$$\mathbb{E}\left[v\alpha(v) - \alpha(v)^2/2 - \int_0^v \alpha(t)dt\right] = 0.$$
 (IC-S)

Delegation in Veto Bargaining

Stochastic mechanisms can be optimal

Stochastic mechanisms can be optimal

Stochastic mechanisms can be optimal

Relaxing the Proposer's Problem

Recall deterministic mechanisms problem:

$$\max_{\alpha \in \mathcal{A}} \mathbb{E}[u(\alpha(v))]$$
s.t. $v\alpha(v) - \frac{\alpha(v)^2}{2} = \int_0^v \alpha(t) dt$.

Relaxed Problem

Let $\kappa := \inf_{a \in [0,1)} -u''(a) \ge 0$ and define relaxed problem

$$\max_{\alpha \in \mathcal{A}} \mathbb{E} \left[u(\alpha(v)) - \kappa \left[v\alpha(v) - \frac{\alpha(v)^2}{2} - \int_0^v \alpha(t) dt \right] \right] \tag{R}$$

s.t.
$$v\alpha(v) - \frac{\alpha(v)^2}{2} - \int_0^v \alpha(t) dt \ge 0.$$

Stochastic Mechanisms

Proposition

If $\alpha^* \in \mathcal{A}$ solves problem (R) and is incentive compatible, then α^* also solves problem (S).

Deterministic mechanisms are thus optimal (even among stochastic).

Stochastic Mechanisms

Proposition

If $\alpha^* \in \mathcal{A}$ solves problem (R) and is incentive compatible, then α^* also solves problem (S).

Deterministic mechanisms are thus optimal (even among stochastic).

Proof idea.

Suppose not and let α^{S} achieve strictly higher value in (S).

Define $\alpha(v) := \mathbb{E}[\alpha^{S}(v)].$

 α is feasible for (R) : V risk averse and **relaxed IC**, and achieves str. higher value than α^* in (R) : proposer risk averse.

Necessary Conditions

$$u(a) = -(1 - \gamma)|1 - a| - \gamma(1 - a)^2$$
 for some $\gamma \in [0, 1]$ (LQ)

Lemma

Assume (LQ). A deterministic mech that solves problem (S) also solves problem (R).

It is thus enough to show necessity in problem (R), which has a concave objective and a convex feasible set.

Necessary Conditions

$$u(a) = -(1 - \gamma)|1 - a| - \gamma(1 - a)^2$$
 for some $\gamma \in [0, 1]$ (LQ)

Lemma

Assume (LQ). A deterministic mech that solves problem (S) also solves problem (R).

It is thus enough to show necessity in problem (R), which has a concave objective and a convex feasible set.

Proof idea.

Suppose α achieves higher objective in (R). Use noise to simulate transfers and make α IC.

Necessary Conditions

$$u(a) = -(1 - \gamma)|1 - a| - \gamma(1 - a)^2$$
 for some $\gamma \in [0, 1]$ (LQ)

Lemma

Assume (LQ). A deterministic mech that solves problem (S) also solves problem (R).

It is thus enough to show necessity in problem (R), which has a concave objective and a convex feasible set.

Proposition

Assume (LQ). Our sufficient conditions are necessary for the given menu to be optimal among stochastic mechanisms.

Additional results

- Other kinds of optimal deleg sets (e.g., singleton compromise)
- Could allow for interdependent prefs: u(a, v)
 - Holmstrom-like delegation model with outside option cf. Kolotilin & Zapechelnyuk, 2019

Conclusion

Recap

Studied role for screening/delegation in veto bargaining

- At least two rationales for delegation
 - Literature: agent has expertise
 - Here: uncertainty about what is acceptable to Veto player
- Non-singleton menu typically optimal
- Veto player can have large info rents ("full delegation"), even though Proposer has substantial bargaining and commitment power
- Sufficient and necessary conditions for "nice" delegation sets
- Among interval menus, discretion ↓ when ex-ante more aligned
 - Highlights different economics from expertise-based delegation

Recap

Studied role for screening/delegation in veto bargaining

- At least two rationales for delegation
 - Literature: agent has expertise
 - Here: uncertainty about what is acceptable to Veto player
- Non-singleton menu typically optimal
- Veto player can have large info rents ("full delegation"), even though Proposer has substantial bargaining and commitment power
- Sufficient and necessary conditions for "nice" delegation sets
- Among interval menus, discretion ↓ when ex-ante more aligned
 - Highlights different economics from expertise-based delegation

Ongoing and Future Research

 $lue{}$ Endogenous default action (chosen by V ex ante)

cf. Coate & Milton, 2019

- Multiple proposers and competition
- No/limited commitment: cf. Coasian dynamics