TOWARDS Q-LEARNING

Scott O'Hara Metrowest Developers Machine Learning Group 010/03/2018

REFERENCES

The material for this talk is primarily drawn from the slides, notes and lectures of these courses:

CS181 course at Harvard University:

- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Sarah Finney, Spring 2009
- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Prof. David C Brooks, Spring 2011
- CS181 Machine Learning, Prof. Ryan P. Adams, Spring 2014. https://github.com/wihl/cs181-spring2014
- CS181 Machine Learning, Prof. David Parkes, Spring 2017. https://harvard-ml-courses.github.io/cs181-web-2017/

University of California, Berkeley CS188:

 CS188 – Introduction to Artificial Intelligence, Profs. Dan Klein, Pieter Abbeel, et al. http://ai.berkeley.edu/home.html

Stanford course CS229:

CS229 – Machine Learning, Andrew Ng. https://see.stanford.edu/Course/CS229

UC BERKELEY CS188 IS A GREAT RESOURCE

- http://ai.berkeley.edu/home.html
- Covers:
 - Search
 - Constraint Satisfaction
 - Games
 - Reinforcement Learning
 - Bayesian Networks
 - Surveys Advanced Topics
 - And more...
- Contains: accessible, high quality YouTube videos, PowerPoint slides and homework.
- Series of projects based on the video game PacMan.
- Material is used in many courses around the country.

OVERVIEW

1. Where We Have Been: MDPs

- Types of Machine Learning
- Markov Decision Processes (MDPs)
- 4 MDP Algorithms

2. Where We Have Been: RL

- Reinforcement Learning
- Model-based RL

3. Q-Learning

- The Bellman Equations
- States and Q-States
- Exponential Smoothing

TYPES OF MACHINE LEARNING

There are (at least) 3 broad categories of machine learning problems:

Supervised Learning

$$Data = \{(x_1, y_1), ..., (x_n, y_n)\}$$

e.g., linear regression, decision trees, SVMs

Unsupervised Learning

$$Data = \{x_1, \dots, x_n\}$$

e.g., K-means, HAC, Gaussian mixture models

Reinforcement Learning

 $Data = \{s_1, a_1, r_1, s_2, a_2, r_2 ...\}$ an agent learns to act in an uncertain environment by training on data that are sequences of **state**, **action**, **reward**.

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES

- Markov Decision Processes provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.
- The initial analysis of MDPs assume complete knowledge of states, actions, rewards, transitions, and discounts.

MARKOV DECISION PROCESSES

- States: s_1, \dots, s_n
- Actions: a_1, \ldots, a_m
- Reward Function:

$$r(s, a, s') \in R$$

Transition model:

$$T(s,a,s') = P(s'|s,a)$$

• Discount factor: $\gamma \in [0, 1]$

WHAT IS MARKOV ABOUT MDPS?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

This is just like search, where the successor function only depends on the current state (not the history)

Andrey Markov (1856-1922)

MDP GOAL: FIND AN OPTIMAL POLICY π

- ▶ In search problems, we look for an optimal plan, or sequence of actions, from start to a goal
- ► For MDPs, we want an optimal policy $\pi^*: S \to A$
 - \blacktriangleright A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed

EXAMPLE: GRID WORLD

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

GRID WORLD ACTIONS

Deterministic Grid World

OPTIMAL POLICIES

$$R(s) = -0.4$$

$$R(s) = -0.03$$

R(s) = -2.0

MDP QUANTITIES AND THE BELLMAN EQUATIONS

MDP QUANTITIES

- ► Markov decision processes:
 - ► States S
 - ► Actions A
 - ► Transitions P(s'|s,a) (or T(s,a,s'))
 - \triangleright Rewards R(s,a,s') (and discount γ)
 - ► Start state s₀
- ▶ Quantities:
 - ▶ Policy = map of states to actions
 - ▶ **Utility** = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a qstate (chance node)

OPTIMAL QUANTITIES

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s)$ = optimal action from state s

THE BELLMAN EQUATIONS

- ▶ There is one equation $V^*(s)$ for each state s.
- ▶ There is one equation $Q^*(s, a)$ for each state s and action a.
- ▶ These are equations, not assignments. They define a relationship, which when satisfied guarantees that $V^*(s)$ and $Q^*(s,a)$ are optimal for each state and action.
- \blacktriangleright This in turn guarantees that the policy π^* is optimal.

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

4 MDP ALGORITHMS

4 MDP ALGORITHMS

- Expectimax (recursive, finite horizon)
- Value Iteration (dynamic programming, finite horizon)
- Value Iteration (dynamic programming, infinite horizon)
- Policy Iteration (dynamic programming, infinite horizon optimize policy)

EXPECTIMAX: TOP-DOWN, RECURSIVE

- Build out a look-ahead tree to the decision horizon; take the max over actions, expectations over next states.
- Solve from the leaves, backing-up the expectimax values.
- Finds best move for 1 state

EXPECTIMAX: A GAME AGAINST NATURE

- Expectimax is like a game-playing algorithm except the opponent is nature.
- Expectimax is strongly related to the minmax algorithm used in game theory, but the response is probabilistic.
- Nodes where you move are called **states**: $S(\triangle)$
- Nodes where nature moves are called Q-states: <S,A> ()

EXPECTIMAX: TOP-DOWN, RECURSIVE

Problems:

- (1) computation is exponential in the horizon
- (2) may expand the same subtree multiple times.

VALUE ITERATION USES DYNAMIC PROGRAMMING

VALUE ITERATION

- \triangleright Start with $V_0(s) = 0$ no time steps left means an expected reward sum of zero
- \triangleright Given vector of $V_k(s)$ values, do one ply from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V_k(s') \right] \right]$$

Repeat until convergence

- ► Complexity of each iteration: O(S²A)
 - ► For every state s, there are |A| actions
 - ▶ For every state s and action a, there are |S| possible states s'
- ▶ Theorem: will converge to unique optimal values
 - ► Basic idea: approximations get refined towards optimal values
 - ▶ Policy may converge long before values do

K = 11

K=12

Noise = 0.2 Discount = 0.9 Living reward = 0

K=100

Noise = 0.2 Discount = 0.9 Living reward = 0

POLICY ITERATION

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - ► Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - ▶ Repeat steps until policy converges

- ► This is **policy iteration**
 - ▶ It's still optimal!
 - ► Can converge (much) faster under some conditions

POLICY ITERATION

- ▶ Step 1: Policy Evaluation: For fixed current policy π , find values with policy evaluation:
 - ▶ Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- ▶ **Step 2: Improvement:** For fixed values, get a better policy using policy extraction:
 - ► One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

POLICY ITERATION EXAMPLE (0)

Example on a different grid world, initialized with $\pi(s)=\uparrow$ (all states). NOTE: don't stop in goal states in this grid world, thus MDP value can be <-100 when in -100 state.

Z. Kolter

Original reward function

POLICY ITERATION EXAMPLE (1)

Example on a different grid world, initialized with $\pi(s)=\uparrow$ (all states). NOTE: don't stop in goal states in this grid world, thus MDP value can be <-100 when in -100 state.

Z. Kolter

 V^{π} at one iteration

POLICY ITERATION EXAMPLE (2)

Example on a different grid world, initialized with $\pi(s)=\uparrow$ (all states). NOTE: don't stop in goal states in this grid world, thus MDP value can be <-100 when in -100 state.

Z. Kolter

 V^π at two iterations

POLICY ITERATION EXAMPLE (3)

Example on a different grid world, initialized with $\pi(s)=\uparrow$ (all states). NOTE: don't stop in goal states in this grid world, thus MDP value can be <-100 when in -100 state.

→ 5.470	6.313	→ 7.190	8.669
4.803		1 3.347	1 -96.67
1 4.161	3.654	3.222	1.526

Z. Kolter

 V^{π} at three iterations (converged!)

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING: THE BASIC IDEA

- Select an action
- If action leads to reward, reinforce that action
- If action leads to punishment, avoid that action
- Basically, a computational form of Behaviorism (Pavlov, B. F. Skinner)

OFFLINE VS. ONLINE

Offline Solution

THE LEARNING FRAMEWORK

- Learning is performed online, learn as we interact with the world
- In contrast with supervised learning, there are no training or test sets. The reward is accumulated over interactions with the environment.

- Data is not fixed, more information is acquired as you go.
- The training distribution can be influenced by a

 étion decisions.

REINFORCEMENT LEARNING

- Agent knows the current state s, takes action a, receives a reward r and observes the next state s'
- Agent has no access to reward model r(s,a) or transition model p(s' | s,a)
- Agent must learn to act so as to maximize expected rewards.
- All learning is based on observed samples of outcomes!
- Under these conditions, it is a very challenging problem to learn the policy π .

MODEL-BASED REINFORCEMENT LEARNING

MODEL-BASED LEARNING

- ► Model-Based Idea:
 - ► Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- ▶ Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - ightharpoonup Normalize to give an estimate of $\widehat{T}(s,a,s')$
 - \blacktriangleright Discover each $\widehat{R}(s,a,s')$ when we experience (s, a, s')
- ▶ Step 2: Solve the learned MDP
 - ► For example, use value iteration, as before

LEARN THE REWARD AND TRANSITION DISTRIBUTIONS

- Try every action in each state a number of times
- RTotal(s, a, s') =total reward for taking action a in state s and transitioning to state s'
- N(a,s) = number of times action a is taken in state s
- N(s, a, s') = number of times s transitions to s' on action a
- $\hat{R}(s, a, s') = RTotal(s, a, s') / N(s, a, s')$
- $\widehat{T}(s,a,s') = N(s,a,s')/N(a,s)$

TRANSITION/REWARD PARAMETER TABLE

For every state s:

State s'

Action a

	$\widehat{T}(s, a0, s1)$ $\widehat{R}(s, a0, s1)$	
$\widehat{T}(s, a1, s0)$ $\widehat{R}(s, a1, s0)$		
$\widehat{T}(s, a2, s0)$ $\widehat{R}(s, a2, s0)$		

MODEL-BASED RL

```
Let \pi^0 be arbitrary
k \leftarrow 0
Experience \leftarrow \emptyset
Repeat
  k \leftarrow k + 1
   Begin in state i
   For a while:
      Choose action a based on \pi^{k-1}
      Receive reward r and transition to j
      Experience \leftarrow Experience \cup < i, a, r, j >
      i \leftarrow j
   Learn MDP M from Experience
   Solve M to obtain \pi^k
```

MODEL-BASED RL: PROS AND CONS

o Pros:

- Makes maximal use of experience
- Solves model optimally, given enough experience

o Cons:

- Assumes model is small enough to solve
- Requires expensive solution procedure

MODEL-FREE REINFORCEMENT LEARNING: Q-LEARNING

Q-LEARNING

- o Don't learn a model, learn the Q function directly
- Appropriate when model is too large to store, solve or learn
 - \circ size of transition of model: $O(|S^2|)$
 - o value iteration cost: $O(|A||S^2|)$
 - o size of Q function O(|A||S|)

RECALL THE BELLMAN EQUATIONS

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

FROM VALUE ITERATION TO Q-VALUE ITERATION

- ► Value iteration: find successive (depth-limited) values
 - ► Start with $V_0(s) = 0$, which we know is right
 - ▶ Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- ▶ But Q-values are more useful, so compute them instead
 - ► Start with $Q_0(s,a) = 0$, which we know is right
 - ▶ Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-LEARNING

▶ Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- ► Learn Q(s,a) values as you go
 - ▶ Receive a sample transition (s,a,r,s')
 - ightharpoonup Consider your old estimate: Q(s,a)
 - ▶ Consider your new sample estimate:

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

▶ Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a')\right]$$

Q-LEARNING UPDATE RULE

▶ On transitioning from state s to state s' on action a, and receiving reward r, update:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

- $\blacktriangleright \alpha$ is the **learning rate**
- \blacktriangleright a large α results in quicker learning, but may not converge.
- $\triangleright \alpha$ is often decreased as learning goes on.

RELATION TO EXPONENTIAL SMOOTHING

- ►The Q-Learning update rule is similar to a times series technique called exponential smoothing.
- ▶ the simplest form of exponential smoothing is given by the formulas:

$$egin{aligned} s_0 &= x_0 \ s_t &= lpha x_t + (1-lpha) s_{t-1}, \ t > 0 \end{aligned}$$

where α is the **decay rate**.

EXPONENTIAL SMOOTHING (2)

As time progresses, the affect on s_t of more remote terms decay exponentially as they recede into the past.

$$egin{aligned} s_0 &= x_0 \ s_t &= lpha x_t + (1-lpha) s_{t-1}, \ t > 0 \end{aligned}$$

The above equations can be expanded thus:

$$egin{aligned} s_t &= lpha x_t + (1-lpha) s_{t-1} \ &= lpha x_t + lpha (1-lpha) x_{t-1} + (1-lpha)^2 s_{t-2} \ &= lpha \left[x_t + (1-lpha) x_{t-1} + (1-lpha)^2 x_{t-2} + (1-lpha)^3 x_{t-3} + \dots + (1-lpha)^{t-1} x_1
ight] + (1-lpha)^t x_0. \end{aligned}$$

EXPONENTIAL SMOOTHING EXAMPLE

Notice how Curves become more "wiggly" as α increases.

Q-LEARNING ALGORITHM

For each state s and action a:

$$Q(s,a) \leftarrow 0$$

Begin in state s:

Repeat:

For all actions associated with state s, choose action a based on the Q values for state s

Receive reward r and transition to s'

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

$$\varsigma \leftarrow \varsigma'$$

CHOOSING THE ACTION

- Learned Q function determines the policy
 - o in state s, choose action with largest Q(s,a)
- o Still have to worry about exploration vs. exploitation.
 - o use techniques we discussed last week.

EXPLORATION RISK

- o Assume we're using decreasing ϵ -exploration or simulated annealing.
- What if the optimal policy involves walking along the edge of a cliff?
- What happens during the early stages of learning?

EXPLORATION RISK

Update rule:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

- Q-value is updated based on the best action.
- But if we're exploring a lot, we won't always do the best action.
- o We will fall off the cliff a lot!
- O We would like to take advantage of our experience on the cliff to prevent this from happening more than necessary!

NEXT TIME: MORE MODEL-FREE RL

- more Q-Learning
- SARSA-Learning addresses problem of falling off the cliff too often.
- \circ TD(λ)
- Generalization
- o Deep Q-Learning?