Teorico Estructuras Algebraicas

Javier Vera

October 13, 2024

4	\sim 1		4
		ase	1

10 Clase 10

12 Clase 12

Definición 12.1 (Accion de Grupo)

Sean G grupo y $X \neq \emptyset$ conjunto. Una accion de G en X es una funcion

$$G \times X \longrightarrow X$$

$$(g,x) \longmapsto g.x$$

Que cumple:

1.
$$gh.x = g.(h.x)$$

2.
$$e.x = x \quad \forall x \in X$$

En este caso se dice que G actua (opera) en X mediante $G \times X \longrightarrow X$

Ejemplo 12.1. 1. $G, X \neq \emptyset$ cualesquiera la accion trivial de G en X es aquella tal que $g.x = x \quad \forall x \in X \quad \forall g \in G$

2.
$$S(x)$$
 actua en X en la forma $S \times X \longrightarrow X$ $\sigma.x = \sigma(x)$ $\forall \sigma \in S(x)$ $\forall x \in X$. En particular S actua en $I_n = \{1, \dots n\}$

- 3. Sea G grupo actua en si mismo de distintas formas, en este caso mediante el producto $G \times G \longrightarrow G$ es decir g.x = gx esto se llama *accion regular*
- 4. $H \subseteq G$ entonces G actua por conjugacion $G \times H \longrightarrow H$ dada por $g \in G$ $x \in H$
- 5. $S(G) = \{\text{subgrupos de } G\}$. entonces G actua en S por conjugacion $g \in G$ $H \subseteq G$
- 6. $H \le G$ entonces G actua en las coclases G/H Ejercicio probar que satisfacen (A1) y (A2)

Proposición 1

Sea G grupo X $\neq \emptyset$ *conjunto. Son equivalentes:*

- 1. Una accion $G \times X \longrightarrow X$
- 2. *Un homomorfismo* $\alpha : G \to \mathbb{S}(x)$

Proof. pendiente

Ejemplo 12.2. 1. La accion trivial $G \times X \to X$ corresponde a

$$G \longrightarrow \mathbb{S}(X)$$
$$g \longmapsto Id_{x}$$

2. La accion regular $G \times G \longrightarrow G$ corresponde al homomorfismo de Cayley (DUDA)G

Definición 12.2

Sea $G \times X \longrightarrow X$ una accion de un grupo G en $X \neq \emptyset$. Dos elementos $x,y \in X$ se dicen G-conjugados mediante esta accion si $\exists g \in G$ tal que g.x = y (notacion $x \sim y$)

Esto define una relacion de equivalencia en X (Ejercici). Asi, tal relacion particiona a X en clases de equivalencia $Sea \ x \in X$ entonces $G.x o \mathcal{O}_G(x)$ es la clase de equivalencia de x que se llamara G-Orbita de x

$$X = \bigcup_{x \in X} G.x$$

Observación

 $Si \ G \times X \longrightarrow X$ es accion entonces cualquier subgrupo de G actua en X por restriccion. De este modo $G = \mathbb{S}_n$ actua naturalmente en I_n

$$<\sigma>.j=\mathcal{O}_{\sigma}=\{\sigma^k:k\geq 0\}\quad\forall\sigma\in\mathbb{S}_n$$

Definición 12.3

Una accion se dice transitiva si posee una unica orbita es decir si $\exists x \in X$ *tal que* X = G.x

Definición 12.4

Sea $G \times X \longrightarrow X$ accion. Dado $x \in X$ el G-estabilizador de x es

$$G_x = \{g \in G : g.x = x\}$$

 G_x es un subgrupo de G, $\forall x \in X \quad \forall g, h \in G_x$ (No necesariamente normal) $Si \alpha : G \longrightarrow S$ homomorfismo correspondiente a la accion dada entonces:

$$Ker(\alpha) = \bigcap_{x_i X} G_x$$

Ejemplo 12.3. 1. $G \times X \longrightarrow G$ accion trivial $g.x = \{x\}$ entonces $G_x = G$

2. $G \times G \longrightarrow G$ accion regular g.x = gx G.x = G pues $y = (yx^{-1})x = yx^{-1}.x$ (Entonces es transitiva) $G_x = \{e\}$ pues $gx = x \iff g = e$

3. $H \subseteq G$, $G \times H \longrightarrow H$ por conjugacion $g.x = gxg^{-1}$

$$G.x = \{gxg^{-1} : g \in G\} = Cl(X)$$
 (Clase de conjugacion de X)
 $G_x = \{g \in G : gxg^{-1} = x\} = C_G(x)$ (Centralizador de x en G)

(ejercicios calcular estabilizador y centralizador de traslaciones para alfguna coclase)

4. Sea $H \leq G$ con

$$G \times {}^{G}/_{H} \longrightarrow {}^{G}/_{H}$$

dada por $g.aH = ga.H \operatorname{con}^{G}/_{H} = \{aH : a \in G\}$

Es accion transitiva porque $G.^G/_H = ^G/_H$

$$G_H = \{g \in G : g.eH = ge.H = H\} = H \text{ (DUDA)}$$

Proposición 2

Sea $G \times X \longrightarrow X$ *una accion de* G *en* X, *se tienen:*

1.
$$\forall x \in X$$
, $G_{g,x} = gG_xg^{-1} \quad \forall g \in G$

2.
$$|G.x| = [G:G_x]$$

Proof. Pendiente

Teorema 12.1 (Ecuacion de Clase)

Sean G grupo y $G \times X \longrightarrow X$ una accion de G en $X \neq \emptyset \exists$ famlia $\{G_i\}_{i \in I}$ de sugrupos propios de G tales que:

$$|X| = |X^G| + \sum_{n=1}^{N}$$

donde $X^G = \{x \in X : g.x = x \mid \forall g \in G\}$ (BG-invariante)

Proof. pendiente

Teorema 12.2 (Teorema de Cauchy)

Sea G grupo de orden n y sea p > 0 primo tal que p n entonces G tiene un elemento de orden p

Proof. Pendiente

13 Clase 13

Definición 13.1 (Normalizador)

Sea $H \subseteq G$ el normalizador de H en G

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

14 Clase 14

Corolario 14.0.1

 $[G:S] = p \ entonces \ S \subseteq G$

Proof.

Proposición 3

 $|G| = p^n \ n \in \mathbb{N}_0$ entonces:

- 1. $\forall 0 \leq i \leq n$ G posee subrupos de orden p^i
- 2. $Si\ 0 \le i \le n-1 \ y\ S \le G\ con\ |S| = p^i\ entonces\ \exists\ subrupo\ T\ de\ orden\ p^{i+}\ tal\ que\ S \le T$

14.1 Teoremas de Sylow

Definición 14.1

Un p-subgrupo de Sylow de G es un subgrupo de H tal que $|H|=p^n$ donde $|G|=p^nk$ con (p,k)=1

14.2 Primer Teorema de Sylow

Teorema 14.1 (Primer Teorema de Sylow)

Supongamos que $|G| = p^n k$ con (p,k) = 1. Entonces $\forall 0 \le i \le n$ tenemos que G posee un subgrupo de orden p^i . En particular G posee un p-Sylow

Proof. pendiente