MATH455 - Analysis 4

Based on lectures from Winter 2025 by Prof. Jessica Lin. Notes by Louis Meunier

Contents

Abstract Metric and Topological Spaces	. 2
1.1 Review of Metric Spaces	. 2
1.2 Compactness, Separability	. 3
1.3 Arzelà-Ascoli	
1.4 Baire Category Theorem	. 7
1.4.1 Applications of Baire Category Theorem	. 7
1.5 Topological Spaces	. 7
1.6 Separation, Countability, Separability	. 9
1.7 Continuity and Compactness	
1.8 Connected Topological Spaces	11
1.9 Urysohn's Lemma and Urysohn's Metrization Theorem	12

$\S 1$ Abstract Metric and Topological Spaces

§1.1 Review of Metric Spaces

Throughout fix *X* a nonempty set.

 \hookrightarrow **Definition 1.1** (Metric): $\rho: X \times X \to \mathbb{R}$ is called a *metric*, and thus (X, ρ) a *metric space*, if for all $x, y, z \in X$,

- $\rho(x,y) \geq 0$,
- $\rho(x,y) = 0 \Leftrightarrow x = y$,
- $\rho(x, y) = \rho(y, x)$, and
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

 \hookrightarrow Definition 1.2 (Norm): Let *X* a linear space. A function $\|\cdot\|: X \to [0, \infty)$ is called a *norm* if for all *u*, *v* ∈ *X* and *α* ∈ \mathbb{R} ,

- $\bullet \|u\| = 0 \Leftrightarrow u = 0,$
- $||u+v|| \le ||u|| + ||v||$, and
- $\bullet \|\alpha u\| = |\alpha| \|u\|.$

Remark 1.1: A norm induces a metric by $\rho(x, y) := ||x - y||$.

 \hookrightarrow Definition 1.3: Given two metrics ρ , σ on X, we say they are *equivalent* if \exists C > 0 such that $\frac{1}{C}\sigma(x,y) \le \rho(x,y) \le C\sigma(x,y)$ for every $x,y \in X$. A similar definition follows for equivalence of norms.

Given a metric space (X, ρ) , then, we have the notion of

- open balls $B(x,r) = \{ y \in X : \rho(x,y) < r \}$,
- open sets (subsets of X with the property that for every $x \in X$, there is a constant r > 0 such that $B(x,r) \subseteq X$), closed sets, closures, and
- convergence.

 \hookrightarrow Definition 1.4 (Convergence): $\{x_n\}\subseteq X$ converges to $x\in X$ if $\lim_{n\to\infty}\rho(x_n,x)=0$.

We have several (equivalent) notions, then, of continuity; via sequences, $\varepsilon - \delta$ definition, and by pullbacks (inverse images of open sets are open).

1.1 Review of Metric Spaces

 \hookrightarrow **Definition 1.5** (Uniform Continuity): $f:(X,\rho)\to (Y,\sigma)$ uniformly continuous if f has a "modulus of continuity", i.e. there is a continuous function $\omega:[0,\infty)\to [0,\infty)$ such that $\sigma(f(x_1),f(x_2))\leq \omega(\rho(x_1,x_2))$

for every $x_1, x_2 \in X$.

Remark 1.2: For instance, we say f Lipschitz continuous if there is a constant C>0 such that $\omega(\cdot)=C(\cdot)$. Let $\alpha\in(0,1)$. We say f α -Holder continuous if $\omega(\cdot)=C(\cdot)^{\alpha}$ for some constant C.

 \hookrightarrow **Definition 1.6** (Completeness): We say (X, ρ) *complete* if every cauchy sequence in (X, ρ) converges to a point in X.

Remark 1.3: If (X, ρ) complete and $E \subseteq X$, then (E, ρ) is complete iff E closed in X.

§1.2 Compactness, Separability

 \hookrightarrow **Definition 1.7** (Open Cover, Compactness): $\{X_{\lambda}\}_{\lambda \in \Lambda} \subseteq 2^{X}$, where X_{λ} open in X and Λ an arbitrary index set, an *open cover* of X if for every $x \in X$, $\exists \lambda \in \Lambda$ such that $x \in X_{\lambda}$.

X is *compact* if every open cover of X admits a compact subcover. We say $E\subseteq X$ compact if (E,ρ) compact.

 \hookrightarrow Definition 1.8 (Totally Bounded, ε-nets): (X, ρ) totally bounded if $\forall \varepsilon > 0$, there is a finite cover of X of balls of radius ε . If $E \subseteq X$, an ε-net of E is a collection $\{B(x_i, \varepsilon)\}_{i=1}^N$ such that $E \subseteq \bigcup_{i=1}^N B(x_i, \varepsilon)$ and $x_i \in X$ (note that x_i need not be in E).

 \hookrightarrow **Definition 1.9** (Sequentially Compact): (X, ρ) *sequentially compact* if every sequence in X has a convergence subsequence whose limit is in X.

 \hookrightarrow **Definition 1.10** (Relatively / Pre-Compact): $E \subseteq X$ relatively compact if \overline{E} compact.

\hookrightarrow **Theorem 1.1**: TFAE:

- *X* complete and totally bounded;
- *X* compact;
- *X* sequentially compact.

Remark 1.4: $E \subseteq X$ relatively compact if every sequence in E has a convergent subsequence.

Let $f:(X,\rho)\to (Y,\sigma)$ continuous with (X,ρ) compact. Then,

- f(X) compact in Y;
- if $Y = \mathbb{R}$, the max and min of f over X are achieved;
- *f* is uniformly continuous.

Let $C(X) := \{f : X \to \mathbb{R} \mid f \text{ continuous}\}$ and $||f||_{\infty} := \max_{x \in X} |f(x)|$ the sup (max, in this case) norm. Then,

 \hookrightarrow Theorem 1.2: Let (X, ρ) compact. Then, $(C(X), \|\cdot\|_{\infty})$ is complete.

PROOF. Let $\{f_n\}\subseteq C(X)$ Cauchy with respect to $\|\cdot\|_\infty$. Then, there exists a subsequence $\{f_{n_k}\}$ such that for each $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty\leq 2^{-k}$ (to construct this subsequence, let $n_1\geq 1$ be such that $\|f_n-f_{n_1}\|_\infty<\frac{1}{2}$ for all $n\geq n_1$, which exists since $\{f_n\}$ Cauchy. Then, for each $k\geq 1$, define inductively n_{k+1} such that $n_{k+1}>n_k$ and $\|f_n-f_{n_{k+1}}\|_\infty<\frac{1}{2^{k+1}}$ for each $n\geq n_{k+1}$. Then, for any $k\geq 1$, $\|f_{n_{k+1}}-f_{n_k}\|_\infty<2^{-k}$, since $n_{k+1}>n_k$.).

Let $j \in \mathbb{N}$. Then, for any $k \geq 1$,

$$\|f_{n_{k+j}} - f_{n_k}\|_{\infty} \leq \sum_{\ell=k}^{k+j-1} \|f_{n_{\ell+1}} - f_{n_{\ell}}\|_{\infty} \leq \sum_{\ell} 2^{-\ell}$$

and hence for each $x \in X$, with $c_k \coloneqq f_{n_k}(x)$,

$$|c_{k+j}-c_k| \leq \sum_{\ell=k}^{\infty} 2^{-\ell}.$$

The RHS is the tail of a converging series, and thus $|c_{k+j}-c_k|\to 0$ as $k\to\infty$ i.e. $\{c_k\}$ a Cauchy sequence, in \mathbb{R} . $(\mathbb{R},|\cdot|)$ complete, so $\lim_{k\to\infty}c_k=:f(x)$ exists for each $x\in X$. So, for each $x\in X$, we find

$$|f_{n_k}(x)-f(x)|\leq \sum_{\ell=k}^\infty 2^{-\ell},$$

and since the RHS is independent of x, we may pass to the sup norm, and find

$$\|f_{n_k}-f\|_{\infty}\leq \sum_{\ell=k}^{\infty}2^{-\ell},$$

with the RHS $\to 0$ as $k \to \infty$. Hence, $f_{n_k} \to f$ in C(X) as $k \to \infty$. In other words, we have uniform convergence of $\left\{f_{n_k}\right\}$. Each $\left\{f_{n_k}\right\}$ continuous, and thus f also continuous, and thus $f \in C(X)$.

It remains to show convergence along the whole sequence. Suppose otherwise. Then, there is some $\alpha>0$ and a subsequence $\left\{f_{n_j}\right\}\subseteq \{f_n\}$ such that $\|f_{n_j}-f\|_\infty>$

 $\alpha > 0$ for every $j \ge 1$. Then, let k be sufficiently large such that $||f - f_{n_k}||_{\infty} \le \frac{\alpha}{2}$. Then, for every $j \ge 1$ and k sufficiently large,

$$\begin{split} \|f_{n_j}-f_{n_k}\|_{\infty} &\geq \|f_{n_j}-f\|_{\infty} - \|f-f_{n_k}\|_{\infty} \\ &> \alpha - \frac{\alpha}{2} > 0, \end{split}$$

which contradicts the Cauchy-ness of $\{f_n\}$, completing the proof.

§1.3 Arzelà-Ascoli

The goal in this section is to find conditions for a sequence of functions $\{f_n\} \subseteq C(X)$ to be precompact, namely, to have a uniformly convergent subsequence.

Corollary 1.1: Any Cauchy sequence converges if it has a convergent subsequence.

PROOF. Let $\{x_n\}$ be a Cauchy sequence in a metric space (X,ρ) with convergent subsequence $\big\{x_{n_k}\big\}$ which converges to some $x\in X$. Fix $\varepsilon>0$. Let $N\geq 1$ be such that if $m,n\geq N$, $\rho(x_n,x_m)<\frac{\varepsilon}{2}$. Let $K\geq 1$ be such that if $k\geq K$, $\rho\big(x_{n_k},x\big)<\frac{\varepsilon}{2}$. Let $n,n_k\geq \max\{N,K\}$, then

$$\rho(x,x_n) \leq \rho\Big(x,x_{n_k}\Big) + \rho\Big(x_{n_k},x_n\Big) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition 1.11 (Equicontinuous): A family $\mathcal{F} \subseteq C(X)$ is called *equicontinuous* at $x \in X$ if $\forall \varepsilon > 0$ there exists a $\delta = \delta(x, \varepsilon) > 0$ such that if $\rho(x, x') < \delta$ then $|f(x) - f(x')| < \varepsilon$ for every $f \in \mathcal{F}$.

Remark 1.5: \mathcal{F} equicontinuous at x iff every $f \in \mathcal{F}$ share the same modulus of continuity.

⇒ Definition 1.12 (Pointwise/uniformly bounded): $\{f_n\}$ pointwise bounded if $\forall x \in X$, $\exists M(x) > 0$ such that $|f_n(x)| \leq M(x) \, \forall \, n$, and uniformly bounded if such an M exists independent of x.

→Lemma 1.1 (Arzelà-Ascoli Lemma): Let X separable and let $\{f_n\} \subseteq C(X)$ be pointwise bounded and equicontinuous. Then, there is a subsequence $\{f_{n_k}\}$ and a function f which converges pointwise to f on all of X.

PROOF. Let $D=\left\{x_j\right\}_{j=1}^\infty\subseteq X$ be a countable dense subset of X. Since $\{f_n\}$ p.w. bounded, $\{f_n(x_1)\}$ as a sequence of real numbers is bounded and so by the Bolzano-Weierstrass (BW) Theorem there is a convergent subsequence $\left\{f_{n(1,k)}(x_1)\right\}_k$ that converges to some $a_1\in\mathbb{R}$. Consider now $\left\{f_{n(1,k)}(x_2)\right\}_k$, which is again a bounded

1.3 Arzelà-Ascoli 5

sequence of $\mathbb R$ and so has a convergent subsequence, call it $\left\{f_{n(2,k)}(x_2)\right\}_k$ which converges to some $a_2 \in \mathbb R$. Note that $\left\{f_{n(2,k)}\right\} \subseteq \left\{f_{n(1,k)}\right\}$, so also $f_{n(2,k)}(x_1) \to a_1$ as $k \to \infty$. We can repeat this procedure, producing a sequence of real numbers $\{a_\ell\}$, and for each $j \in \mathbb N$ a subsequence $\left\{f_{n(j,k)}\right\}_k \subseteq \{f_n\}$ such that $f_{n(j,k)}(x_\ell) \to a_\ell$ for each $1 \le \ell \le j$. Define then

$$f: D \to \mathbb{R}, f(x_j) := a_j.$$

Consider now

$$f_{n_k} \coloneqq f_{n(k,k)}, k \ge 1,$$

the "diagonal sequence", and remark that $f_{n_k}\big(x_j\big) \to a_j = f\big(x_j\big)$ as $k \to \infty$ for every $j \geq 1$. Hence, $\big\{f_{n_k}\big\}_k$ converges to f on D, pointwise.

We claim now that $\left\{f_{n_k}\right\}$ converges on all of X to some function $f:X\to\mathbb{R}$, pointwise. Put $g_k:=f_{n_k}$ for notational convenience. Fix $x_0\in X$, $\varepsilon>0$, and let $\delta>0$ be such that if $x\in X$ such that $\rho(x,x_0)<\delta$, $|g_k(x)-g_k(x_0)|<\frac{\varepsilon}{3}$ for every $k\geq 1$, which exists by equicontinuity. Since D dense in X, there is some $x_j\in D$ such that $\rho(x_j,x_0)<\delta$. Then, since $g_k(x_j)\to f(x_j)$ (pointwise), $\left\{g_k(x_j)\right\}_k$ is Cauchy and so there is some $K\geq 1$ such that for every $k,\ell\geq K$, $|g_\ell(x_j)-g_k(x_j)|<\frac{\varepsilon}{3}$. And hence, for every $k,\ell\geq K$,

$$|g_k(x_0) - g_\ell(x_0)| \le |g_k(x_0) - g_k(x_i)| + |g_k(x_i) - g_\ell(x_i)| + |g_\ell(x_i) - g_\ell(x_0)| < \varepsilon,$$

so namely $\left\{g_k(x_0)\right\}_k$ Cauchy as a sequence in \mathbb{R} . Since \mathbb{R} complete, then $\left\{g_k(x_0)\right\}_k$ also converges, to, say, $f(x_0) \in \mathbb{R}$. Since x_0 was arbitrary, this means there is some function $f: X \to \mathbb{R}$ such that $g_k \to f$ pointwise on X as we aimed to show.

 \hookrightarrow Definition 1.13 (Uniformly Equicontinuous): $\mathcal{F} \subseteq C(X)$ is said to be uniformly equicontinuous if for every $\varepsilon < 0$, there exists a $\delta > 0$ such that $\forall \, x,y \in X$ with $\rho(x,y) < \delta$, $|f(x) - f(y)| < \varepsilon$ for every $f \in \mathcal{F}$. That is, every function in \mathcal{F} has the same modulus of continuity.

→Proposition 1.1 (Sufficient Conditions for Uniform Equicontinuity):

- 1. $\mathcal{F} \subseteq C(X)$ uniformly Lipschitz
- 2. $\mathcal{F} \subseteq C(X) \cap C^1(X)$ has a uniform L^{∞} bound on the first derivative
- 3. $\mathcal{F} \subseteq C(X)$ uniformly Holder continuous
- 4. (X, ρ) compact and \mathcal{F} equicontinuous

 \hookrightarrow Theorem 1.3 (Arzelà-Ascoli): Let (X, ρ) a compact metric space and $\{f_n\} \subseteq C(X)$ be a uniformly bounded and (uniformly) equicontinuous family of functions. Then, $\{f_n\}$ is precompact in C(X), i.e. there exists $\{f_{n_k}\} \subseteq \{f_n\}$ such that f_{n_k} is uniformly convergent on X.

1.3 Arzelà-Ascoli 6

Remark 1.6: If $K \subseteq X$ a compact set, then K bounded and closed.

→Theorem 1.4: Let (X, ρ) compact and $\mathcal{F} \subseteq C(X)$. Then, \mathcal{F} a compact subspace of C(X) iff \mathcal{F} closed, uniformly bounded, and (uniformly) equicontinuous.

§1.4 Baire Category Theorem

We'll say a set $E \subseteq X$ hollow if int $E = \emptyset$, or equivalently if E^c dense in X.

- \hookrightarrow Theorem 1.5 (Baire Category Theorem): Let X be a complete metric space.
 - (a) Let $\{F_n\}$ a collection of closed hollow sets. Then, $\bigcup_{n=1}^{\infty} F_n$ also hollow.
 - (b) Let $\{O_n\}$ a collection of open dense sets. Then, $\bigcap_{n=1}^{\infty} O_n$ also dense.

 \hookrightarrow Corollary 1.2: Let X complete and $\{F_n\}$ a sequence of closed sets in X. If $X = \bigcup_{n \geq 1} F_n$, there is some n_0 such that $\operatorname{int}(F_{n_0}) \neq \emptyset$.

 \hookrightarrow Corollary 1.3: Let X complete and $\{F_n\}$ a sequence of closed sets in X. Then, $\bigcup_{n=1}^{\infty} \partial F_n$ hollow.

1.4.1 Applications of Baire Category Theorem

→Theorem 1.6: Let $\mathcal{F} \subset C(X)$ where X complete. Suppose \mathcal{F} pointwise bounded. Then, there exists a nonempty, open set $\mathcal{O} \subseteq X$ such that \mathcal{F} uniformly bounded on \mathcal{O} .

Theorem 1.7: Let X complete, and $\{f_n\}$ ⊆ C(X) such that $f_n \to f$ pointwise on X. Then, there exists a dense subset $D \subseteq X$ such that $\{f_n\}$ equicontinuous on D and f continuous on D.

§1.5 Topological Spaces

Throughout, assume $X \neq \emptyset$.

- \hookrightarrow **Definition 1.14** (Topology): Let $X \neq \emptyset$. A *topology* \mathcal{T} on X is a collection of subsets of X, called *open sets*, such that
- $X, \emptyset \in \mathcal{T}$;
- If $\{E_n\} \subseteq \mathcal{T}$, $\bigcap_{n=1}^N E_n \in \mathcal{T}$ (closed under *finite* intersections);
- If $\{E_n\}\subseteq\mathcal{T}$, $\bigcup_n E_n\in\mathcal{T}$ (closed under arbitrary unions).

If $x \in X$, a set $E \in \mathcal{T}$ containing x is called a neighborhood of x.

1.5 Topological Spaces 7

 \hookrightarrow **Proposition 1.2**: $E \subseteq X$ open \Leftrightarrow for every $x \in X$, there is a neighborhood of x contained E.

- **Example 1.1**: Every metric space induces a natural topology given by open sets under the metric. The *discrete topology* is given by $\mathcal{T} = 2^X$ (and is actually induced by the discrete metric), and is the largest topology. The *trivial topology* $\{\emptyset, X\}$ is the smallest. The *relative topology* defined on a subset $Y \subseteq X$ is given by $\mathcal{T}_Y := \{E \cap Y : E \in \mathcal{T}\}$.
- \hookrightarrow **Definition 1.15** (Base): Given a topological space (X,\mathcal{T}) , let $x\in X$. A collection \mathcal{B}_x of neighborhoods of x is called a *base* of \mathcal{T} at x if for every neighborhood \mathcal{U} of x, there is a set $B\in\mathcal{B}_x$ such that $B\subseteq\mathcal{U}$.

We say a collection \mathcal{B} a base for all of \mathcal{T} if for every $x \in X$, there is a base for $x, \mathcal{B}_x \subseteq \mathcal{B}$.

 \hookrightarrow **Proposition 1.3**: If (X, \mathcal{T}) a topological space, then $\mathcal{B} \subseteq \mathcal{T}$ a base for $\mathcal{T} \Leftrightarrow$ every nonempty open set $\mathcal{U} \in \mathcal{T}$ can be written as a union of elements of \mathcal{B} .

 \hookrightarrow **Proposition 1.4**: $\mathcal{B} \subseteq \mathcal{T}$ a base \Leftrightarrow

- $X = \bigcup_{B \in \mathcal{B}} B$
- If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is a $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.
- \hookrightarrow **Definition 1.16**: If $\mathcal{T}_1 \subsetneq \mathcal{T}_2$, we say \mathcal{T}_1 weaker/coarser and \mathcal{T}_2 stronger/finer.

Given a subset $S \subseteq 2^X$, define

 $\mathcal{T}(S) = \bigcap$ all topologies containing S = unique weakest topology containing S to be the topology *generated* by S.

 \hookrightarrow **Proposition 1.5**: If $S \subseteq 2^X$,

 $\mathcal{T}(S) = \bigcup \{ \text{finite intersection of elts of } S \}.$

⇒ Definition 1.17 (Point of closure/accumulation point): If $E \subseteq X, x \in X$, x is called a *point* of closure if $\forall \mathcal{U}_x, \mathcal{U}_x \cap E \neq \emptyset$. The collection of all such sets is called the closure of E, denote \overline{E} . We say E closed if $E = \overline{E}$.

1.5 Topological Spaces

 \hookrightarrow **Proposition 1.6**: Let $E \subseteq X$, then

- \overline{E} closed,
- \overline{E} is the smallest closed set containing E,
- E open $\Leftrightarrow E^c$ closed.

§1.6 Separation, Countability, Separability

 \hookrightarrow **Definition 1.18**: A neighborhood of a set $K \subseteq X$ is any open set containing K.

 \hookrightarrow **Definition 1.19** (Notions of Separation): We say (X, \mathcal{T}) :

- *Tychonoff Separable* if $\forall x, y \in X, \exists \mathcal{U}_x, \mathcal{U}_y$ such that $y \notin \mathcal{U}_x, x \notin \mathcal{U}_y$
- Hausdorff Separable if $\forall x,y \in X$ can be separated by two disjoint open sets i.e. $\exists \mathcal{U}_x \cap \mathcal{U}_y = \emptyset$
- Normal if Tychonoff and in addition any 2 disjoint closed sets can be separated by disjoint neighborhoods.

Remark 1.7: Metric space \subseteq normal space \subseteq Hausdorff space \subseteq Tychonoff space.

 \hookrightarrow **Proposition 1.7**: Tychonoff $\Leftrightarrow \forall x \in X, \{x\}$ closed.

→ Proposition 1.8: Every metric space normal.

 \hookrightarrow **Proposition 1.9**: Let X Tychonoff. Then X normal $\Leftrightarrow \forall F \subseteq X$ closed and neighborhood \mathcal{U} of F, there exists an open set \mathcal{O} such that

$$F\subseteq\mathcal{O}\subseteq\overline{\mathcal{O}}\subseteq\mathcal{U}.$$

This is called the "nested neighborhood property" of normal spaces.

 \hookrightarrow **Definition 1.20** (Separable): A space *X* is called *separable* if it contains a countable dense subset.

 \hookrightarrow **Definition 1.21** (1st, 2nd Countable): A topological space (X, \mathcal{T}) is called

- 1st countable if there is a countable base at each point
- 2nd countable if there is a countable base for all of \mathcal{T} .

Example 1.2: Every metric space is first countable.

⇒ Definition 1.22 (Convergence): Let $\{x_n\} \subseteq X$. Then, we say $x_n \to x$ in \mathcal{T} if for every neighborhood \mathcal{U}_x , there exists an N such that $\forall n \geq N, x_n \in \mathcal{U}_x$.

Remark 1.8: In general spaces, such a limit may not be unique. For instance, under the trivial topology, the only nonempty neighborhood is the whole space, so every sequence converges to every point in the space.

 \hookrightarrow **Proposition 1.10**: Let (X, \mathcal{T}) be Hausdorff. Then, all limits are unique.

 \hookrightarrow **Proposition 1.11**: Let X be 1st countable and $E \subseteq X$. Then, $x \in \overline{E} \Leftrightarrow$ there exists $\{x_j\} \subseteq E$ such that $x_j \to x$.

§1.7 Continuity and Compactness

 \hookrightarrow **Definition 1.23**: Let $(X,\mathcal{T}), (Y,\mathcal{S})$ be two topological spaces. Then, a function $f: X \to Y$ is said to be continuous at x_0 if for every neighborhood \mathcal{O} of $f(x_0)$ there exists a neighborhood $\mathcal{U}(x_0)$ such that $f(\mathcal{U}) \subseteq \mathcal{O}$. We say f continuous on X if it is continuous at every point in X.

→Proposition 1.12: f continuous $\Leftrightarrow \forall \mathcal{O}$ open in Y, $f^{-1}(\mathcal{O})$ open in X.

 \hookrightarrow **Definition 1.24** (Weak Topology): Consider $\mathcal{F} \coloneqq \{f_{\lambda}: X \to X_{\lambda}\}_{\lambda \in \Lambda}$ where X, X_{λ} topological spaces. Then, let

$$S\coloneqq \left\{f_\lambda^{-1}(\mathcal{O}_\lambda)\mid f_\lambda\in\mathcal{F}, \mathcal{O}_\lambda\in X_\lambda\right\}\subseteq X.$$

We say that the topology $\mathcal{T}(S)$ generated by S is the *weak topology* for X induced by the family \mathcal{F} .

 \hookrightarrow **Proposition 1.13**: The weak topology is the weakest topology in which each f_{λ} continuous on X.

Example 1.3: The key example of the weak topology is given by the product topology. Consider $\{X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of topological spaces. We can defined a "natural" topology on the product $X := \prod_{\lambda \in \Lambda} X_{\lambda}$ by consider the weak topology induced by the family of projection maps, namely, if $\pi_{\lambda} : X \to X_{\lambda}$ a coordinate-wise projection and $\mathcal{F} = \{\pi_{\lambda} : \lambda \in \Lambda\}$, then we say the weak topology induced by \mathcal{F} is the *product topology* on X. In particular, a base for this topology is given, by previous discussions,

$$\mathcal{B} = \left\{ \bigcap_{j=1}^n \pi_{\lambda_j}^{-1} \left(\mathcal{O}_j \right) \right\} = \left\{ \prod_{\lambda \in \Lambda} \mathcal{U}_{\lambda} : \mathcal{U}_{\lambda} \text{ open and all by finitely many } U_{\lambda'} s = X_{\lambda} \right\}.$$

 \hookrightarrow **Definition 1.25** (Compactness): A space *X* is said to be *compact* if every open cover of *X* admits a finite subcover.

\hookrightarrow Proposition 1.14:

- Closed subsets of compact spaces are compact
- X compact \Leftrightarrow if $\{F_k\} \subseteq X$ -nested and closed, $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.
- Continuous images of compact sets are compact
- Continuous real-valued functions on a compact topological space achieve their min, max.
- \hookrightarrow **Proposition 1.15**: Let *K* be contained in a Hausdorff space *X*. Then, *K* closed in *X*.
- \hookrightarrow **Definition 1.26** (Sequential Compactness): We say (X, \mathcal{T}) sequentially compact if every sequence in X has a converging subsequence with limit contained in X.
- \hookrightarrow Proposition 1.16: Let (X, \mathcal{T}) second countable. Then, X compact \Leftrightarrow sequentially compact.
- \hookrightarrow **Theorem 1.8**: If *X* compact and Hausdorff, *X* normal.

§1.8 Connected Topological Spaces

- \hookrightarrow **Definition 1.27** (Separate): 2 non-empty sets $\mathcal{O}_1, \mathcal{O}_2$ separate X if $\mathcal{O}_1, \mathcal{O}_2$ disjoint and $X = \mathcal{O}_1 \cup \mathcal{O}_2$.
- \rightarrow **Definition 1.28** (Connected): We say *X* connected if it cannot be separated.

Remark 1.9: Note that if X can be separated, then $\mathcal{O}_1, \mathcal{O}_2$ are closed as well as open, being complements of each other.

 \hookrightarrow Proposition 1.17: Let $f: X \to Y$ continuous. Then, if X connected, so is f(X).

Remark 1.10: On \mathbb{R} , $C \subseteq \mathbb{R}$ connected \Leftrightarrow an interval \Leftrightarrow convex.

 \hookrightarrow **Definition 1.29** (Intermediate Value Property): We say X has the intermediate value property (IVP) if $\forall f \in C(X)$, f(X) an interval.

 \hookrightarrow **Proposition 1.18**: *X* has IVP \Leftrightarrow *X* connected.

Definition 1.30 (Arcwise/Path Connected): *X arc connected/path connected* if $\forall x, y \in X$, there exists a continuous function $f : [0,1] \rightarrow X$ such that f(0) = x, f(1) = y.

 \hookrightarrow **Proposition 1.19**: Arc connected \Rightarrow connected.

§1.9 Urysohn's Lemma and Urysohn's Metrization Theorem

→Lemma 1.2 (Urysohn's): Let $A, B \subseteq X$ closed and disjoint subsets of a normal space X. Then, $\forall [a,b] \subseteq \mathbb{R}$, there exists a continuous functions $f:[a,b] \to \mathbb{R}$ such that $f(X) \subseteq [a,b]$, $f|_A = a$ and $f|_B = b$.

Remark 1.11: We have a partial converse of this statement as well:

 \hookrightarrow Proposition 1.20: Let X Tychonoff and suppose X satisfies the properties of Urysohn's Lemma. Then, X normal.

 \hookrightarrow **Definition 1.31** (Normally Ascending): Let (X,\mathcal{T}) a topological space and $\Lambda \subseteq \mathbb{R}$. A collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is said to be *normally ascending* if $\forall \lambda_1, \lambda_2 \in \Lambda$,

$$\overline{\mathcal{O}_{\lambda_1}} \subseteq \mathcal{O}_{\lambda_2} \text{ if } \lambda_1 < \lambda_2.$$