

Inspire...Educate...Transform.

Decision Trees

Lt. Suryaprakash Kompalli Senior Mentor, INSOFE 23rd Aug 2015

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
DΙ	Sunny	Hot	High	Weak	Nο
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild ′	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D]4	Rain	Mild	High	Strong	No

Decision tree

- Extracts rules from data
- Example: Play happens when It is:
 (Rainy AND NOT Humid) OR (Overcast) OR (Sunny AND NOT Windy)

Example Use Cases

- Detection of breast cancer relapse:
 - Local: Other parts of breast
 - Regional: Chest, underarms, collarbone
 - Distant: Liver, lungs
- Data (36 features):
 - Concentration of various proteins
 - Clinical demographics: Age, location of tumor, type
- What if you had 50 patients? What for 5K patients?

Example Use Cases

- Classifying noise vs star in hubble telescope images
 - 20 numerical attributes 2.2K images
- Estimating software development costs
- Predicting user actions, component failure, maintenance schedules
- Grouping related articles / books together
 - Legal documents, receipts, tax articles

See more here: http://booksite.elsevier.com/9780124438804/leondes_expert_vol1_ch3.pdf

CONSTRUCTING A DECISION TREE

Induction of Decision Trees

- Data Set (Learning Set)
 - Each example = Attributes + Class
- TDIDT
 - Top Down Induction of Decision Trees or ID3
- Easy to grasp:
 - If data S has only one class, create leaf node
 - Else:
 - Split data S into two sets S1 and S2 using "most informative attribute" A
 - Create sub trees using S1 and S2

Data

			Ì		Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Constructing a Decision Tree

Nodes (root node): Test points

Leaves: Decision points

Branch: Collection of nodes and

the leaf

- 1		Personal
Family	CCAvg	Loan
4	Low	0
3	Low	0
1	Low	0
1	Low	0
4	Low	0
4	Low	0
1	High	1
4	Medium	1
2	High	1
1	Medium	1
3	Medium	1
4	Low	1
4	Low	1

8

Constructing a Decision Tree

Which DT is better? Using Family as attribute (DT on left) or CCAvg as attribute (DT on right)

)			Personal	
ID Age		Income	Family	CCAvg	Loan	
	1	Young	Low	4	Low	0
	2	Old	Low	3	Low	0
	3	Middle	Low	1	Low	0
	4 Middle		Medium	1	Low	0
	5	Middle	Low	4	Low	0
	6	Middle	Low	4	Low	0
10 Middle		Middle	High	1	High	1
	17	Middle	Medium	4	Medium	1
	19	Old	High	2	High	1
	30	Middle	Medium	1	Medium	1
	39	Old	Medium	3	Medium	1
	43	Young	Medium	4	Low	1
	48	Middle	High	4	Low	1

Two aspects

Which attribute to choose?

Where to stop?

Entropy

$$\bullet \mathsf{H} = -\sum_i p_i \log_2 p_i$$

Probabilit	ty of toss	
Heads	Tails	Entropy
0	1	NAN
0.0001	0.9999	0.0014
0.05	0.95	0.29
0.25	0.75	0.81
0.5	0.5	1
0.75	0.25	0.81
0.95	0.05	0.29
0.9999	0.0001	0.0014
1	0	NAN

- Compute Entropy for coin:
 - Let us say I have five biased coins, what is the uncertainty of tossing each coin?
 - Prob of heads: 0,0.05,0.25,0.5,0.75,0.95,1

Entropy: A measure of randomness

$$H = -\sum_{i} p_{i} \log_{2} p_{i}$$

More confusion

Entropy: $-1 * \left(\frac{11}{20} \log \frac{11}{20} + \frac{9}{20} \log \frac{9}{20}\right)$ = 0.47 + .52 = 0.99

Less confusion

Entropy: $-1 * \left(\frac{11}{14} \log \frac{11}{14} + \frac{3}{14} \log \frac{3}{14}\right)$ = 0.27 + .48 = 0.75

No confusion

Entropy:
$$-1 * \left(\frac{11}{11} \log \frac{11}{11}\right)$$

= 0

Entropy: A measure of randomness

EntropycalculationsManual.R

$$H = -\sum_{i} p_{i} \log_{2} p_{i}$$

$$H = -\sum_{i=1 \text{ to } 3} 1/3 \log_{2} 1/3$$

Prob of each class

This is for a 2-class problem. What could the max value be for 3-class? For 10 class?

Constructing a Decision Tree

Let us use Entropy to select attributes

Formula for entropy: $H = -\sum_{i} p_{i} \log_{2} p_{i}$

Entropy at a split from a particular attribute

$$H_{split} = \sum_{n=1}^{N} w_n * H_n$$
 N is the number of nodes at the split w_n Weight of each node at that split

			Ì	Ì	Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

How to use Entropy to Select Attributes

EntropycalculationsManual.R

• Initial entropy:
$$-\frac{6}{13}log_2(\frac{6}{13}) - \frac{7}{13}log_2(\frac{7}{13}) = 0.995$$

Entropy on split with family:

$$\frac{4}{13}\left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) + \frac{1}{13}\left(-\frac{1}{1}\log_2\left(\frac{1}{1}\right)\right) + \frac{2}{13}(...) + \frac{4}{13}(...)$$

$$\frac{4}{13}(1) + \frac{1}{13}(0) + \frac{2}{13}(1) + \frac{4}{13}(1) = 0.923$$

Entropy on split with CCAvg:

$$\frac{8}{13}(0.81) + \frac{3}{13}(0) + \frac{2}{13}(0) = 0.499$$

Information gain = Entropy of the system before split – Entropy of the system after split

Select attribute with largest information gain

http://www.insofe.edu.in

Day Outlook		Temperature	Humidity	Wind	PlayTennis	
DI	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcust	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Ok – so we build a DT by selecting best attribute at each split. How do we use the DT?

ID3 is very fast.

DT is easy to explain. One can justify classification result for a new sample. You can get insights like: "Customers with different family sizes are not very different"

Can you do regression?

Are we done?

Is information gain the best measure to select "A"?

- Data Set (Learning Set)
 - Each example = Attributes + Class
- TDIDT

Stop only when leaf has one class!!! Will this overfit?

- Top Down Induction of Decision Trees or ID3
- Easy to grasp:
 - If data S has only one class, create leaf node
 - Else:
 - Split data S into two sets S1, S2, S3... using "most informative attribute" A
 - Create sub trees using S1,S2,S3

What if "A" is numeric?

UNDERSTANDING DECISION TREES

Sometimes information gain fails

	,		Ì	Ì	Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Let us do information gain for split on ID

Other examples: Date of oil change

Bill amount

Entropy after split

Now, the system will have 13 splits one for each ID. Entropy = -1*LOG(1,2) = 0

Entropy of the total system after split is the weighted average of the individual parts= 0

Aha! Information gain is the highest (0.995) compared to all other attributes.

20

Is ID the root attribute?

 An attribute with many more states is likely to have less variation in each state.
 So, it will always give better entropy gain.

 So, we need to normalize it to get something like entropy gain per state.

Information content

• Split Information is defined as $= -f_i \log_2 f_i$. We only want to know fraction of the members in a state divided by the total members.

 Split Information of ID: It has 13 states. So, the information content = -1/13*LOG(1/13,2)

Normalized Information gain: $\frac{\text{Overall Information gain at the node}}{\sum_{i=0}^{N} \text{Split Information}_i}$

Other Measures

A: Attribute on which split happens v: Different values of attribute c, i, j: Class labels

Information Gain Using Residual Information

$$Gain(A) = I - I_{res} \quad I_{res} = -\sum_{v} p(v) \sum_{c} p(c|v) \log_2 p(c|v)$$

Information Gain Ratio

This term is biased toward attributes with many values

$$I(A) = -\sum_{v} p(v) \log_2(p(v))$$

$$GainRatio(A) = \frac{Gain(A)}{I(A)} = \frac{I - I_{res}(A)}{I(A)}$$

Gini Index

$$Gini(A) = \sum_{v} p(v) \sum_{i \neq j} p(i|v) p(j|v)$$

We can grow until we exhaust the data. But Is that the right time to stop?

HOW TO MINIMIZE THE OVERFIT?

Geometry of Decision Trees: Axis Parallel Search

What happens in case of class imbalance? Can a decision tree overfit?

Termination criteria

- All the records at the node belong to one class
- Changed to:
 - A significant majority fraction of records belong to a single class
 - The segment contains only one or very small number of records
 - The improvement is not substantial enough to warrant making the split.

Approaches to prune tree

- Three approaches
 - Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data (Use test or Eval data to stop)
 - Allow the tree to overfit the data, and then post-prune the tree layer by layer
 - Allow the tree to overfit the data, transform the tree to rules and then post-prune the rules.

Minimize variance

- Build the tree on train data
- Test it on test data
- Plot test and train errors at various pruning levels

Reference text, Tom Mitchell has an example on pages 67-68

Overfitting in DTs

							Sunny	Overcast 	Rain	
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	Hu	midity	Yes	Wind	
DΙ	Sunny	Hot	High	Weak	No	_ /			/ \	\
D2	Sunny	Hot	High	Strong	No	High	Normal		Strong V	Weak
D3	Overcast	Hot	High	Weak	Yes	/			_/)
D4	Rain	Mild	High	Weak	Yes	No	Wir	nd	No	$Y\epsilon$
D5	Rain	Cool	Normal	Weak	Yes					
D6	Rain	Cool	Normal	Strong	No					
D7	Overcast	Cool	Normal	Strong	Yes	St	rong	Weak		
D8	Sunny	Mild	High	Weak	No		/	VVOak		
D9	Sunny	Cool	Normal	Weak	Yes					
D10	Rain	Mild	Normal	Weak	Yes	lei	mp	Yes	S	
D11	Sunny	Mild	Normal	Strong	Yes					
D12	Overcast	Mild ′	High	Strong	Yes		11.			
D13	Overcast	Hot	Normal	Weak	Yes	Mild	Hot			
D14	Rain	Mild	High	Strong	No	Yes	No			

(Outlook = Sunny, Temperature = Hot, Humidity = Normal,

Wind = Strong, PlayTennis = No

Outlook

Reduced Error Pruning

- Start from leaf nodes
- If removal of node does not change validation accuracy
 - Combine leaf elements of this node into previous node
- Continue till root node

30

Cost complexity pruning - CART

R: 07regression.R

- $J(T_t) = ErrorRate(T_t) + \alpha * |T_t|$
 - T_t : Different trees, pruned from original tree
 - α Cost-complexity parameter
 - Error rate can be sum of squared error

http://web.cs.du.edu/3704DM/materials/Lecture10.pdf

Cost complexity pruning - CART

R: 07regression.R

- $J(T_t, S) = ErrorRate(T_t, S) + \alpha * |T_t|$
 - T_t : Different trees, pruned from original tree
 - S:Data set "S"
 - Uses GINI
- Increase α slowly, starting from 0
- \bullet Do a K-fold validation on all of them and find the best pruning α
- It is also possible set a threshold cost complexity

C4.5: Pessimistic Pruning

- A node is built using "N" samples.
 - Estimate true error if we had infinite samples
 - If true error after split is more, remove split

$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N}} - \frac{f^2}{N} + \frac{z^2}{4N^2}\right) / \left(1 + \frac{z^2}{N}\right)$$

$$= - \text{ Estimated true error } \\ N - \text{ Number of samples covered by leaf } \\ f - \text{ error on training data}$$

$$= - \text{ Estimated true error } \\ 1 - \text{ 68\%} \\ 1.64 - 90\% \\ 2 - \text{ Inverse of Standard Normal Cumulative}$$

$$= - \text{ Estimated true error } \\ 1 - \text{ 68\%} \\ 1.64 - 90\% \\ 1.96 - 95\% \\ 1.9$$

 Handling continuous variables (Discussed http://web.cs.du.edu/3704DM/materials/Lecture10.pdf later)

www.kdnuggets.com/data_mining_course/dm7-decision-tree-c45.ppt

C4.5 Pessimistic Pruning Example

- At highlighted node:
 - Majority class is "Bad"
 - Error is f=5/14, $e_{merge}=0.46$
 - Cumulative nodes:

-
$$e_{split} = \frac{6}{14} e_{none} + \frac{2}{14} e_{half} + \frac{6}{14} e_{full} = 0.524$$

• $e_{merge} < e_{split}$, so prune highlighted node

CART

dtCart=rpart(inc ~.,data=train, method="anova", cp=0.001)

plot(dtCart,main="Regression Tree for Income with CP=0.001",margin=0.15,uniform=TRUE)

C4.5

INCREASING APPLICABILITY OF TREES

Missing values

- Missing values
 - Given input "x" has missing value for attribute"A"

- If node n tests A, assign most common value of A among other examples routed to node n
- If node n tests A, assign most common value of A among other examples routed to node n that have the same class label as x

- When there are few samples for a class
 - Use K nearest elements of other class to form a bound
 - Create additional samples within bound

06FinalTrees.R

Cost

Is all information easy to get?

Age of car	Maximum speed	Tyre install date	Air pressure	Tyre failure
3	76	Nov-1976	33	Υ
7	56	Feb-1982	28	N

Quinman uses cost-normalized gain instead of information gain.

$$CostNormlizedGain(D,A) = \frac{Gain^{2}(D,A)}{Cost(D,A)}$$

An alternative measure:
$$\frac{2^{Gain(D,A)} - 1}{(Cost(D,A) + 1)^w}$$

40

HANDLING NUMERIC ATTRIBUTES

Bucketing numeric attributes we can convert them to categorical

How to bucket? Equal width buckets, Equal population buckets

For numeric attributes, perform binary split; use Information gain to identify one threshold for the numeric attribute among many possible thresholds.

Age	25	32	34	35	35	37	37	38
Loan	0	1	1	0	0	0	1	1

Sort attribute in increasing order. See where the class attribute changes value. Use mid-point as the threshold. In above dataset, three thresholds will be tried: 28.5, 34.5, 37

Can the same numeric attribute be split at different locations at different heights?

Yes !!! In above example, first split may be at 28.5 or 37 and next split may be at 34.5

www.kdnuggets.com/data_mining_course/dm7-decision-tree-**c45**.ppt

SPECIAL TREES

Oblique tree

$$x_i > K \text{ or } < K$$
 To
$$a_1 x_1 + a_2 x_2 + \dots + c > or < K$$

Possible only for numeric attributes

Associated Decision Boundaries

CART

Axis-Parallel Tree

Oblique

Associated Decision Boundaries

Oblique

The choices of oblique planes are infinite

Oblique Tree

- Data set "S":
 - If there are 4 classes, we have $2^{(4-1)-1} = 7$ ways in which classification can happen
 - For each classification perform:
 - Attribute selection using ID3 method and logistic regression
 - Retain the attribute or the logistic regression based on information gain or impurity measure (m)
 - We will be left with 7 choices; select best among these
 - You will have two datasets S1 and S2
- Tree-growth proceeds with S1 and S2

Oblique Tree

Class	Attribute/Logistic	Information gain
	A1	0.67
{1}{2,3,4}	A2	0.12
	Logistic Regression	0.85
	A1	0.35
{2}{1,3,4}	A2	0.6
	Logistic Regression	0.17
• • •		
	A1	0.74
{1,2}{3,4}	A2	0.34
	Logistic Regression	0.82

Let us say we had 2 attributes and 4 classes

At each step, we compute best split: axis parallel on these two attributes, logistic regression

We will have 7 * 3 = 21 ways in which to split data.

Select best method using a suitable metric

For example: We may pick {1}{2,3,4} and logistic regression

GOODNESS OF RULES

An if-then propositional rule

If (x) and (y) and (z) then A

- x, y, z: Antecedent
- A: Consequent

• Length of a rule: Number of antecedents

"If CCAvg is medium then loan = accept"

ID	Age	Income	Family	CCAvg	Personal Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

This rule covers 3 in 13 samples, or 23% of data

This is called support

"If CCAvg is medium then loan = accept"

ID	Age	Income	Family	CCAvg	Personal Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Of the three occasions left is present, right too is present.

This rule has 100% confidence

23% support

Lift

- Is confidence and support always good?
 - Example: Leak in oil gasket causes Engine rebuild
 - Prob of Engine rebuild will be very small, hence support for this rule is small
 - Confidence will be high

Age of car	Maximum speed	Tyre install date	Air pressure	Tyre failure
3	76	Nov-1976	33	Υ
7	56	Feb-1982	28	N

- Hence you use lift:
 - Confidence of rule / Overall prob of the event
 - i.e. Confidence of oil gasket rule / prob of engine rebuild

How do we define minimum support

 Rules with a certain minimum support alone are important. How do we know that?

- Domain expertise
- But, this is subjective

Montecarlo simulation

- Generate rules with all supports (do not prune any)
- Keep the independent part of the data as it is and randomly shuffle the class variable
- Measure the support of all the rules in the random data
- Iterate the process and compute mean support and SD of rules in the random data
- Only those rules whose support is more than 3 sds away are good rules

How do we know whether a rule is trivial?

Ask the business user

A short rule with high support and confidence

Actionability

 If (the mother has B positive) and (smoked during pregnancy) and (the kid is eating a lot of carbohydrates) then the he/she is likely to get Asthma

All three attributes have different actionabilities

Analysis of attributes in universal banks

- Non-actionable: Acts of God (weather),
 external factors (price of gold, rupee value etc.)
- Actionable: Age, experience, income, family, education
- Actionable and changeable: Mortgage, mortgage status, average credit card spending and other statistics, usage of other accounts (cc, cd, online & securities), infoReq

Actionability of a rule

• $norm(\frac{\sum Actionability \ of \ antecedents}{Total \ number \ of \ attributes \ in \ the \ antecedent})$

 If we take the numerator alone, a long rule and short rule with same actionability come out as equals

61

Understandability

More precedents, less understandable

International School of Engineering

2-56/2/19, Khanamet, Madhapur, Hyderabad - 500 081

For Individuals: +91-9177585755 or 040-65743991

For Corporates: +91-9618483483

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/intl.school.engineering

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-

school-of-engineering

