Exercice 1

Soit θ un nombre réel donné. On se propose d'étudier les polynômes P_n définis par :

$$P_n = X^{2n} - (2\cos n\theta)X^n + 1$$

où n est un entier strictement positif.

- 1. (a) Factoriser dans $\mathbb{C}[X]$, puis dans IR[X], le polynôme P_n .
 - (b) Montrer que si $z_k = e^{\frac{2k\pi i}{n}}$ avec $k \in \{0, 1, ..., n-1\}$ alors:

$$\prod_{k=0}^{n-1} \left(z_k^2 - 2z_k \cos \theta + 1 \right) = 2(1 - \cos n\theta).$$

- 2. Etablir les propriétés suivantes :
 - (a) Tout polynôme P_n est divisible par $X^2 (2\cos\theta)X + 1$ et, si n èst pair, par $X^2 + (2\cos\theta)X + 1$
 - (b) Si m et n sont deux entiers naturels non nuls tels que m divise n alors P_m divise P_n .
- 3. En utilisant la factorisation de P_n dans le cas particulier où $\theta=0$, démontrer le théorème qui suit : Soit un polygone régulier convexe $A_1A_2...A_n$ ayant n côtés. On désigne par O et R le centre et le rayon du cercle (C) circonscrit au polygone. Alors, pour tout point M situé sur une demi-droite OA_k d'origine O et passant par l'un des sommets A_k du polygone, on a

$$|(OM)^n - R^n| = MA_1 \times MA_2 \times ... \times MA_n$$

Exercice 2

Soit n un entier naturel et P_n le polynôme à coefficients réels défini par :

$$P_n = \sum_{k=0}^n \frac{X^k}{k!} = 1 + X + \frac{X^2}{2!} + \dots + \frac{X^n}{n!}$$

- 1. Déterminer le P.G.C.D. de P_n et P_{n+1} .
- 2. Démontrer que P_n n'a pas dans $\mathbb C$ de racine multiple.
- 3. Déterminer suivant la valeur de $n(n \in \mathbb{N}^*)$ le nombre de racines réelles de P_n .

(On pourra faire intervenir la fonction polynomiale:

$$f: \mathbb{R} \to \mathbb{R} \times \longmapsto \sum_{k=0}^{n} \frac{x^k}{k!}$$

Exercice 3.

On désigne par \mathbb{R}_n [X] l'ensemble des polynômes à coefficients réels dont le degré est inférieur ou égal à n (y compris le polynôme nul dont le degré - ∞ est par convention inférieur à n).

Soit p et q deux entiers naturels distincts, et Φ l'application qui à tout polynôme P de $\mathbb{R}_n[x]$ associe le polynôme $\Phi(P)$ défini par :

$$\Phi(P) = X^2 P'' - (p+q-1)XP' + pqP$$

- 1. Montrer que Φ est linéaire, i.e $\forall (P,Q) \in (\mathbb{R}_n[X])^2, \forall (a,b) \in \mathbb{R}_n[X], \Phi(aP+bQ) = a\Phi(P)+b\Phi(Q)$, puis que Φ est à valeurs dans $\mathbb{R}_n[X]$.
- 2. Calculer $\Phi(X^k)$ pour tout entier k de [0, n].
- 3. Déterminer le noyau ($\Phi^{-1}(\{0\})$) et l'image $\Phi(\mathbb{R}_n[X])$ de l'application linéaire Φ .
- 4. Déterminer tous les polynômes P de $\mathbb{R}_3[x]$ tels que $X^2P''-2XP'+2P=X^3+\lambda X+1$. où λ est un réel donné. (On discutera suivant la valeur de λ).

Exercice 4.

L'étude est faite dans l'ensemble $\mathbb{R}[X]$ des polynômes à coefficient réels, et les divisions envisagées sont des divisions euclidiennes.

- 1. Soit B un polynôme non nul, et deux éléments quelconques P_1 et P_2 de $\mathbb{R}[X]$.
 - (a) Montrer que les restes des divisions de P_1 et P_2 par B sont égaux si et seulement si le polynôme $P_1 P_2$ est un multiple de B.
 - (b) On suppose que les restes des divisions de P_1 et P_2 par B sont respectivement les polynômes R_1 et R_2 . Comparer les restes des divisions par B de $P_1 + P_2$ d'une part, et de $R_1 + R_2$ d'autre part. Même question pour les divisions par B de P_1P_2 et de R_1R_2 .
- 2. Montrer que, si le reste de la division de l'entier naturel n par 3 est r, alors le reste de la division de X^n par le polynôme X^3-1 est égal à X^T . En déduire le reste de la division par X^3-1 du polynôme $X^{19}+X^6-X^2+5$.
- 3. L'hypothèse étant la même qu'à la question précedente, montrer que les divisions par $X^2 + X + 1$ de $X^{2n} + X^n + 1$ d'une part, et de $X^{2r} + X^r + 1$ d'autre part, ont même reste. Comment faut-il choisir l'entier naturel n pour que $X^{2n} + X^n + 1$ soit un multiple du polynôme $x^2 + x + 1$?

Exercice 5.

1. Démontrer que, pour tout polynôme à coefficients réels de degré $n(n \in \mathbb{N}^*)$, on a :

$$P(X-1) - P(X) = \sum_{k=1}^{n} \frac{(-1)^k}{k!} P^{(k)}(X)$$

2. Déterminer tous les polynômes P de $\mathbb{R}[X]$ satisfaisant à la condition :

$$P(X) - P(X - 1) = X^4$$

3. Donner, en fonction de *n*, l'expression de la somme

$$S = \sum_{k=1}^{n} k^4$$

Exercice 6.

Décomposer en éléments simples dans $\mathbb{R}(X)$ les deux fractions :

1.

$$F = \frac{X}{(X^2 - 1)(X^2 + X + 1)}$$

2.

$$G = \frac{X^4 + X^2 + 2}{X^3 + 5X^2 + 8X + 4}$$