Seminar zur Numerik WiSe 19/20

Ruhr-Universität Bochum, 16.01.2020

11. Konvergenzsätze für Markov-Ketten; MCMC-Methoden

Handout von Timo Schorlepp

Erinnerung an wichtige Definitionen und Sätze:

 (Ω, \mathcal{F}, P) sei W-Raum, Z bezeichne eine endliche Menge mit der Potenzmenge als σ -Algebra, $(X_t)_{t \in \mathbb{N}_0}$ sei zeitdiskreter stochastischer Prozess mit $X_t : \Omega \to Z$ messbar $\forall t$, und $(\mathcal{F}_t)_{t \in \mathbb{N}_0}$ sei die zugehörige Filtration auf Ω ,
d.h. $\mathcal{F}_t = \sigma(X_0, \ldots, X_t) \subset \mathcal{F}$. Eine Abbildung $T : \Omega \to \mathbb{N}_0 \cup \{+\infty\} =: \mathbb{N}_\infty$ heißt Stoppzeit bzgl. (X_t) , falls $\{T = t\} \in \mathcal{F}_t \forall t \in \mathbb{N}_\infty \text{ (mit } \mathcal{F}_\infty = \sigma(X_0, X_1, \ldots)).$

Ein Wahrscheinlichkeitsvektor $\mu \in \mathbb{R}^Z$ (d.h. $\mu_z \geq 0 \forall z \in Z$ und $\sum_{z \in Z} \mu_z = 1$) heißt stationäre Verteilung von Q, falls $\mu = \mu \cdot Q$. Ist Q irreduzibel mit einer stationären Verteilung μ , so ist $\tilde{Q} := (I+Q)/2$ (lazy version von Q) irreduzibel und aperiodisch mit stationärer Verteilung μ . Da μ stationäre Verteilung von Q ist genau dann wenn $\mu_z = \sum_{z' \in Z} \mu_{z'} Q_{z',z}$, folgt sofort, dass, falls μ die detailed-balance-Gleichung $\mu_z Q_{z,z'} = \mu_{z'} Q_{z',z} \ \forall z,z' \in Z$ erfüllt, μ auch stationäre Verteilung von Q ist. Abschließend wurde gezeigt, dass für irreduzible und aperiodische Q immer eine positive stationäre Verteilung existiert.

Das hard core model:

Wir betrachten einen ungerichteten Graphen (E,K) mit $|E| < \infty$, $K \neq \emptyset$ und $Z \subset \tilde{Z} = \{0,1\}^E$, sodass für $z \in Z$ gilt, dass $z(e) = z(e') = 1 \Rightarrow \{e,e'\} \notin K$. Die gesuchte stationäre Verteilung sei die Gleichverteilung auf Z, und eine natürliche Frage ist zum Beispiel: Wie groß ist die mittlere Besetzungszahl, d.h. was ist $E_{\mu}(f)$ für $f: Z \to \mathbb{R}, z \mapsto 1/|E| \sum_{e \in E} z(e)$? Das Problem mit einer direkten Simulation basierend auf der Verwerfungsmethode ist, dass die Akzeptanzwahrscheinlichkeit im Allgemeinen exponentiell klein in |E| ist.

Das Ising-Modell:

Es sei wieder (E,K) ein ungerichteter Graph mit $|E| < \infty$, $K \neq \emptyset$ und $Z = \{-1,1\}^E$. Das Ziel ist es, Erwartungswerte bezüglich einer Boltzmann-Verteilung μ^{β} auf Z mit $\beta > 0$ zu berechnen, d.h. $\mu_z^{\beta} = 1/C_{\beta} \exp(-\beta H(z))$ für $z \in Z$ mit der Zustandssumme C_{β} als Normierungsfaktor und der Hamilton-Funktion $H: Z \to \mathbb{R}$ von der allgemeinen Form $H(z) = \sum_{e \in E} h_e(z(e)) + \sum_{\{e,e'\} \in K} h_{\{e,e'\}}(z(e),z(e'))$, wobei die Funktionen $h_e: \{-1,1\} \to \mathbb{R}$ bspw. ein äußeres, ortsabhängiges Magnetfeld modellieren, und die Funktionen $h_{\{e,e'\}}: \{-1,1\}^2 \to \mathbb{R}$ Wechselwirkungen benachbarter Spins modellieren. Ein interessante Frage ist beispielsweise, wie der Erwartungswert der absoluten Magnetisierung $f: Z \to \mathbb{R}, z \mapsto 1/|E| |\sum_{e \in E} z(e)|$ im Ising-Modell ohne äußeres Magnetfeld von der (inversen) Temperatur β abhängt. Das Problem mit naiven Monte-Carlo-Simulationen wie

$$\frac{\sum_{i=1}^{n} f(X_i) e^{-\beta H(X_i)}}{\sum_{i=1}^{n} e^{-\beta H(X_i)}}$$

für gleichverteilte Z-wertige uiv. ZV X_i ist die große Varianz für große β , wenn die Boltzmann-Verteilung von wenigen Zuständen nahe an den Minima von H dominiert ist.

In diesem Vortrag: Theoretische Grundlagen für die Markov-Chain-Monte-Carlo-Methode (MCMC) + Anwendung auf obige Beispiele.

Satz 11.1. (Konvergenz gegen stationäre Verteilungen; Satz 6.28 in [1])

Sei $Q \in \mathbb{R}^{Z \times Z}$ eine irreduzible und aperiodische stochastische Matrix und $\mu \in \mathbb{R}^Z$ eine stationäre Verteilung von Q. Dann existieren (feste) Konstanten c > 0 und $\alpha \in (0,1)$ mit

$$\max_{z \in Z} \left| (\mu^{(0)} \cdot Q^n)_z - \mu_z \right| \le c \cdot \alpha^n \tag{11.1}$$

für alle Wahrscheinlichkeitsvektoren $\mu^{(0)} \in \mathbb{R}^Z$ und alle $n \in \mathbb{N}$.

Satz 11.2. (Ergodensatz für homogene Markov-Ketten; Satz 6.30 in [1])

 $Sei(X_n)_{n\in\mathbb{N}_0}$ eine homogene Markov-Kette mit endlichem Zustandsraum Z, irreduzibler und aperiodischer Übergangsmatrix Q und stationärer Verteilung $\mu\in\mathbb{R}^Z$. Dann gilt für jede Abbildung $f:Z\to\mathbb{R}$

$$\frac{1}{n} \sum_{i=1}^{n} f(X_i) \xrightarrow[n \to \infty]{f.s.} E_{\mu}(f). \tag{11.2}$$

Verbleibende Aufgabe: Wie konstruiert man nun im Allgemeinen eine irreduzible und aperiodische stochastische Matrix zu einer gegebenen Verteilung $\mu \in \mathbb{R}^Z$, sodass die zugehörige Markov-Kette mit möglichst wenig Aufwand zu simulieren ist? Starte dazu mit einer beliebigen irreduziblen und symmetrischen stochastischen Matrix $\tilde{Q} \in \mathbb{R}^{Z \times Z}$. Wähle dann für $z \neq z'$ sogenannte Akzeptanzwahrscheinlichkeiten $\alpha_{z,z'} \in (0,1]$, die bezüglich der stationären Verteilung μ die detailed-balance-artigen Gleichungen

$$\mu_z \cdot \alpha_{z,z'} = \mu_{z'} \cdot \alpha_{z',z} \tag{11.3}$$

erfüllen. Dann ist die Matrix Q, definiert durch $Q_{z,z'} = \tilde{Q}_{z,z'} \cdot \alpha_{z,z'}$ für $z \neq z'$ und $Q_{z,z} = 1 - \sum_{z' \neq z} Q_{z,z'}$, ebenfalls eine stochastische irreduzible Matrix mit stationärer Verteilung μ . Ist \tilde{Q} aperiodisch, so auch Q.

Zwei spezielle Wahlen von Akzeptanzwahrscheinlichkeiten, die für beliebige μ die detailed-balance-Gleichung erfüllen, sind der Metropolis-Algorithmus [5] mit

$$\alpha_{z,z'} = \min\left(1, \frac{\mu_{z'}}{\mu_z}\right) \tag{11.4}$$

und der Gibbs-Sampler

$$\alpha_{z,z'} = \frac{\mu_{z'}}{\mu_z + \mu_{z'}}. (11.5)$$

Literatur

- [1] T. MÜLLER-GRONBACH, E. NOVAK, K. RITTER, "Monte Carlo-Algorithmen" Springer-Verlag, 2012.
- [2] F. Schwabl, "Statistische Mechanik" Springer-Verlag, 2006.
- [3] M. E. J. NEWMAN, G. T. BARKEMA, "Monte Carlo Methods in Statistical Physics" Oxford University Press, 2002.
- [4] D. A. LEVIN, Y. PERES, "Markov Chains and Mixing Times" American Mathematical Soc., 2017.
- [5] N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, A. H. TELLER, E. TELLER, "Equation of State Calculations by Fast Computing Machines" J. Chem. Phys. 21, 1087, 1953.
- [6] L. ONSAGER, "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition" Phys. Rev. 65, 117, 1944.
- [7] Ausführlichere Notizen und der im Vortrag gezeigte Code für das hard core model und das Ising-Modell finden sich unter https://github.com/TimoSchorlepp/MiscCoursework/tree/master/MCSeminar