AoPS Quarantine Geometry Olympiad 2020

Day 2

- **P4** Line ℓ intersects sides \overline{AB} , \overline{AC} of $\triangle ABC$ at D, E. P, Q are the midpoints of \overline{CD} and \overline{BE} respectively. The lines through P, Q perpendicular to ℓ meet the perpendicular bisectors of \overline{AC} and \overline{AB} at M, N respectively. Prove that $\overline{MN} \parallel \overline{PQ}$.
- P5 Let $\triangle ABC$ be a triangle and let the incircle meet $\overline{BC}, \overline{CA}, \overline{AB}$ at D, E, F respectively. Let \overline{DI} intersect $\odot(ABC)$ at points X, Y such that X, I, D, Y are in this order. Let $\odot(XFE)$ intersect $\odot(ABC)$ at T and $\odot(DXT)$ intersect the incircle at K. Let \overline{AX} intersect \overline{BC} at M and \overline{AY} intersect \overline{BC} at N and let $\odot(AMN)$ intersect $\odot(ABC)$ at R. Then prove that A, K, R are collinear.
- **P6** Let $\triangle ABC$ be a triangle with orthocenter H and \overline{BH} meet \overline{AC} at E and \overline{CH} meet \overline{AB} at F. Let \overline{EF} intersect the line through A parallel to \overline{BC} at X and the tangent to $\odot(ABC)$ at A intersect \overline{BC} at Y. Let \overline{XY} intersect \overline{AB} at P and let \overline{XY} meet \overline{AC} at Q. Let Q be the circumcenter of Q and \overline{AO} meet \overline{BC} at Q. Let Q be the projection of Q and Q meet \overline{BC} at Q. Let Q be the projection of Q and Q and Q meet \overline{BC} at Q and \overline{AC} and \overline{AC} are tangent to each other.

Time: 4 hours and 30 minutes. Each problem is worth 7 points.