Optimal transport

V Functionals on Wasserstein space

Seongho, Joo

Seoul National University

Problem

 \bullet Let Ω be a compact domain, and will be interested in minimization problem involving the sum of three of four terms, namely

$$\min_{\mu \in \mathcal{P}(\Omega)} \mathcal{E}_V(\nu) + \mathcal{E}_W(\mu) + \mathcal{E}_F(\mu), \tag{0.1}$$

$$\min_{\mu \in \mathcal{P}(\Omega)} W_2^2(\mu, \nu) + \mathcal{E}_V(\mu) + \mathcal{E}_W(\mu) + \mathcal{E}_F(\mu), \tag{0.2}$$

where in the second case the probability measure ν is given. The functionals $\mathcal{E}_V, \mathcal{E}_W$ and \mathcal{E}_f are called potentials, interaction and internal energy and are defined as follows:

■ The potential energy \mathcal{E}_v is associated to potential $V:\Omega \to \mathbb{R} \cup \{+\infty\}$ and defined as

$$\mathcal{E}_V(\mu) := \int_{\Omega} V \, \mathrm{d}\mu$$

It tends to attract the mass of μ toward areas where V is minimal.

■ The interaction energy \mathcal{E}_W is a sort of potential energy associated with pairs of particles, associated to a potential $W:\Omega\to\mathbb{R}\cup\{+\infty\}$ and defined as

$$\mathcal{E}_W(\mu) := \int_{\Omega} \int_{\Omega} W(x - y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y).$$

The term can both be attractive $(W(z) = ||z||^2)$ or repulsive $(W(z) = -\log(||z||))$.

Cont.

■ The internal energy is a generalization of the mathematical entropy $\rho \in \mathcal{P}^{ac} \to \int_{\Omega} \rho \log \rho \text{, and is repulsive as it favors mass distributions that are evenly spread in the domain. To define it, one needs a function <math display="block">F: \mathsf{r}^+ \to \mathsf{r} \cup \{+\infty\},$

$$\mathcal{E}_F(\mu) = \begin{cases} \int_{\Omega} F(\rho(x)) \, \mathrm{d}x & \text{if } \mu << \lambda \text{ and } \rho := \frac{\mathrm{d}\mu}{\mathrm{d}\lambda} \\ +\infty & \text{if not} \end{cases} \tag{0.3}$$

Minimization problems of type 0.1 and 0.2 occur very frequently in mathematical physics, economics, and biology.

Since Ω is bounded, probability measures in $\mathcal P$ automatically bounded second moment. Therefore W_2 metrizes the topology induced by $C_b(\Omega)=C^0(\Omega)$, and $(\mathcal P(\Omega),W_2)$ is compact.

Proposition 1

If V and W are lower semi-continuous, then the energies \mathcal{E}_V (resp. \mathcal{E}_W) are lower semi-continuous on $\mathcal{P}(\Omega)$ with respect to narrow convergence. Moreover, \mathcal{E}_V is convex.

Proof.

Since Ω is bounded, probability measures in $\mathcal P$ automatically bounded second moment. Therefore W_2 metrizes the topology induced by $C_b(\Omega)=C^0(\Omega)$, and $(\mathcal P(\Omega),W_2)$ is compact.

Proposition 1

If V and W are lower semi-continuous, then the energies \mathcal{E}_V (resp. \mathcal{E}_W) are lower semi-continuous on $\mathcal{P}(\Omega)$ with respect to narrow convergence. Moreover, \mathcal{E}_V is convex.

Proof. For \mathcal{E}_V , the proof is the same as for the lower semi-continuity of the optimal transport problem (i.e. write $V=\sup_k V_k$ where V_k is k-Lipschitz and bounded and pointwise increasing in k). The same strategy works for \mathcal{E}_W , but in addition one has to prove that if (μ_k) converges narrowly to μ , then $(\mu_k \otimes \nu_k)$ converges narrowly to $\mu \otimes \mu$.

Lemma 1

Let $\{\mu_k\}_{k=1}^\infty$ and $\{\nu_k\}_{k=1}^\infty$ be sequences in $\mathcal{P}(\Omega)$ converging narrowly to μ,ν . Then, $\mu_k\otimes\nu_k$ converges narrowly to $\mu\otimes\nu$.

Cont.

Lemma 2

Let $\{\mu_k\}_{k=1}^\infty$ and $\{\nu_k\}_{k=1}^\infty$ be sequences in $\mathcal{P}(\Omega)$ converging narrowly to μ, ν . Then, $\mu_k \otimes \nu_k$ converges narrowly to $\mu \otimes \nu$.

Proof. Let $\varphi, \psi \in C^0(\Omega)$. Then, by the assumption,

$$\int \varphi \otimes \psi \,\mathrm{d}\mu_k \otimes \nu_k = \left(\int \varphi_k \,\mathrm{d}\mu_k\right) \left(\int \psi \,\mathrm{d}\nu_k\right) \overset{k \to +\infty}{\longrightarrow} \int \varphi \otimes \psi \,\mathrm{d}\mu \otimes \nu,$$

so that $\mathcal A$ is the algebra generated by the set $\big\{\varphi\otimes\psi\,|\,\varphi\in C^0(\Omega\big\},$ then

$$\forall f \in \mathcal{A}, \quad \int f \, \mathrm{d}\mu_k \otimes \nu_k \stackrel{k \to +\infty}{\longrightarrow} \int f \, \mathrm{d}\mu \otimes \nu$$

By Stone-Weierstrass, this algebra is dense in $C^0(\Omega \times \Omega)$, showing that $\mu_k \otimes \mu_k$ converges narrowly to $\mu \otimes \nu$.

Proposition 2

Let $\Omega\subseteq\mathbb{R}^d$ compact and let $F:\mathbb{R}^+\to\mathbb{R}\cup\{+\infty\}$ be convex, lower semicontinuous, and superlinear (i.e. $\lim_{r\to\infty}F(r)/r=+\infty$), then \mathcal{E}_F is lower semi-continuous on $\mathcal{P}(\Omega)$ and convex along curves of the form $t\mapsto (1-t)\rho_0+t\rho_1$.

Proof.

Proposition 3 (Convexity of the functional)

Given any $\sigma\in\mathcal{P}(\Omega)$, the function $\rho\in\mathcal{P}(\Omega)\to W_2^2(\sigma,\rho)$ is convex along the curves of the form $\rho_t=(1-t)\rho_0+t\rho_1$, and it is even strictly convex if $\sigma\in\mathcal{P}^{ac}$.

Proof.

Proposition 3 (Convexity of the functional)

Given any $\sigma \in \mathcal{P}(\Omega)$, the function $\rho \in \mathcal{P}(\Omega) \to W_2^2(\sigma, \rho)$ is convex along the curves of the form $\rho_t = (1-t)\rho_0 + t\rho_1$, and it is even strictly convex if $\sigma \in \mathcal{P}^{ac}$.

Proof. Let $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$ and $\gamma_i \in \Gamma(\sigma, \rho_i), \ i \in \{0, 1\}$ be optimal transport plans. Then $\gamma_t = (1-t)\gamma_0 + t\gamma_1$ is a transport plan between σ and $\rho_t = (1-t)\rho_0 + t\rho_1$ so that

$$W_2^2(\sigma, \rho_t) \le \int \|x - y\|^2 d\gamma_t(x, y) \le (1 - t)W_2^2(\sigma, \rho_0) + tW_2^2(\sigma, \rho_1).$$

If σ is absolutely continuous, $\gamma_i=(\mathrm{id},T_i)_\#\rho_i$ where T_i is an optimal transport map between σ and ρ_i . Assume that

$$W_2^2(\sigma, \rho_t) = (1 - t)W_2^2(\sigma, \rho_0) + tW_2^2(\sigma, \rho_1) = \int ||x - y||^2 d\gamma_t(x, y)$$

Thus, γ_t is the unique optimal transport plan between σ and ρ_t , i.e. $\gamma_t=(\mathrm{id},T_t)_\#\sigma$ where T_t is the optimal transport map between σ and ρ_t . Thus,

$$(id, T_t)_{\#}\sigma = (1 - t)(id, T_0)_{\#}\sigma + t(id, T_1)_{\#}\sigma.$$

If 0 < t < 1, this implies that $T_0 = T_1 = T_t \ \sigma$ -almost everywhere.

Optimality conditions

• Here we will deal in more detail with the following example, where $\sigma \in \mathcal{P}(\Omega)$:

$$\mathcal{J}(\rho) = \frac{1}{2\tau} W_2^2(\sigma, \rho) + \int V \,\mathrm{d}\rho + \int \rho \log \rho \tag{0.4}$$

where we assume that V is a Lipschitz vector field.

Proposition 4

 $\mathcal J$ admits a unique minimizer on Ω , denoted ρ . Moreover:

- $\rho > 0$ a.e.
- $\log(\rho) \in L^1(\Omega)$
- if $(\varphi,\psi)\in Lip(\Omega)^2$ are Kantorovich potentials associated to the optimal transport problem between ρ and σ , then

$$rac{arphi}{2 au} + V + \log
ho = C$$
 a.e.

lacksquare $\log
ho \in Lip(\Omega)$, and if $T=\mathrm{id}-rac{
abla arphi}{2}$ is the optimal transport map between ho and σ ,

$$rac{\operatorname{id} - T}{2 au} +
abla V +
abla \log
ho = 0$$
 a.e.