For office use only	Team Control Number	For office use only
T1	2012050	F1
T2	Problem Chosen	F2
T3	1 foblem Chosen	F3
T4	$oldsymbol{A}$	F4
	* *	

2020 MCM/ICM Summary Sheet

An MCM Paper Made by Team 2012050

Here is the abstract of your paper. Firstly, that is ...
Secondly, that is ...
Thirdly, that is ...
Finally, that is ...

Contents

1 Introduction				
	1.1	Problem Background	1	
	1.2	Literature Review	1	
	1.3	Our work	2	
2	Prep	paration of the Models	2	
	2.1	Assumptions	2	
	2.2	Notations	2	
3	The	Models	2	
	3.1	Model 1	2	
		3.1.1 Detail 1 about Model 1	2	
4	Stre	ngths and Weaknesses	4	
	4.1	Strengths	4	
	4.2	Weaknesses	4	
Aı	Appendix			

Team # 2012050 Page 1 of 5

1 Introduction

1.1 Problem Background

Here is the problem background [1] ...

Two major problems are discussed in this paper, which are:

- Doing the first thing.
- Doing the second thing.

1.2 Literature Review

A literatrue say something about this problem ...

Figure 1: ElegantLaTeX Logo

Figure 1 is the logo of the Tex.

Figure 2: logo

Team # 2012050 Page 2 of 5

1.3 Our work

We do such things [2] ...

- **1.** We do ...
- **2.** We do ...
- **3.** We do ...

2 Preparation of the Models

2.1 Assumptions

2.2 Notations

The primary notations used in this paper are listed in **Table 1**.

Table 1: Notations

Symbol	Definition	Unit
A	the first one	cm
b	the second one	cm
α	the last one	cm

3 The Models

3.1 Model 1

3.1.1 Detail 1 about Model 1

$$e^{i\theta} = \cos\theta + i\sin\theta. \tag{1}$$

$$\iiint_D \mathrm{d}f = \max_D g \tag{2}$$

Team # 2012050 Page 3 of 5

```
Algorithm 1: GF(4) 3D reconstruction
     Input: \mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times l_3}, K_c, K_p, R, T
      Output: Coord_{i,i}
 1 Initialize all G\tilde{F}^{(i,j)}s
 2 for each X_{i_j}^k(N_0 \le i \le N_1, M_0 \le j \le M_1, k \in (r, g, b)) do 3 d = \max(|\sum_{i=-\epsilon}^{\epsilon} I(x^k + i, y^k) - \sum_{j=-\epsilon}^{\epsilon} I(x^k, y^k + j)|);
             if d > t then
  4
                 C_{ij} = -1
  5
             else
  6
                  Candidate_{ij} = -3
 s for each Candidate_{i,i}^k(N_0 \leq i \leq N_1, M_0 \leq j \leq M_1) do
             \begin{array}{c} \overline{\textbf{if } Candidate_{ij} == -1 \textbf{ then}} \\ \rho_C = \frac{n \sum_{i=1}^n M_{Ci} M_{Ci'} - \sum_{i=1}^n M_{Ci} \sum_{i=1}^n M_{Ci'}}{\sqrt{n \sum_{i=1}^n M_{Ci}^2 - (\sum_{i=1}^n M_{Ci})^2} \sqrt{n \sum_{i=1}^n M_{Ci'}^2 - (\sum_{i=1}^n M_{Ci'})^2}}; \end{array} 
10
                    if \rho_C > t then
11
                      \boxed{GridPoint_{ij} = -1}
12
13 for each GridPoint_{i,i}^k(N_0 \leq i \leq N_1, M_0 \leq j \leq M_1) do
             FeaturePoint_{i,j} = BFS(GridPoint_{i,j}, FLAG);
14
            \begin{array}{l} \textbf{if} \ \underline{FeaturePoint_{i,j} == -1} \ \textbf{then} \\ | \ \underline{\textbf{if}} \ \underline{\sum_{i=-\epsilon}^{\epsilon} I(x^k+i,y^k) - \sum_{j=-\epsilon}^{\epsilon} I(x^k,y^k+j) > 0} \ \textbf{then} \\ | \ \underline{FeaturePoint_{i,j} = -1} \end{array}
15
16
17
                    else
18
                       FeaturePoint_{i,j} = -2
19
20 for each FeaturePoint_{i}^{k}(N_{0} \leq i \leq N_{1}, M_{0} \leq j \leq M_{1}) do
             if FeaturePoint_{i,j} \neq -1 and FeaturePoint_{i,j} \neq -2 then
                    s = \sqrt{1 - \frac{rg + gb + rb}{r^2 + g^2 + b^2}};
h_r = \frac{2r - g - b}{2\sqrt{(r - g)^2 + (r - b)(g - b)}};
h_g = \frac{2g - r - b}{2\sqrt{(g - r)^2 + (g - b)(r - b)}};
h_b = \frac{2b - g - r}{2\sqrt{(b - g)^2 + (b - r)(g - r)}};
22
23
24
25
                    k = s - \sqrt{1 - \max(h_r, h_g, h_b)} if k < 0.2 then
                      FeaturePoint_{i,j} = 0
27
                    else
28
                          FeaturePoint_{i,j} = \max(r, g, b)
     for each FeaturePoint_{i_i}^k(N_0 \le i \le N_1, M_0 \le j \le M_1) do
             if FeaturePoint_{i,j} == -1 or FeaturePoint_{i,j} == -2 then
31
                    (u_1 m_{31}^1 - m_{11}^1) X_W + (u_1 m_{32}^1 - m_{12}^1) Y_W + (u_1 m_{33}^1 - m_{13}^1) Z_W = m_{14}^1 - u_1 m_{34}^1;
32
                     (v_1 m_{31}^1 - m_{21}^1) X_W + (v_1 m_{32}^1 - m_{22}^1) Y_W + (v_1 m_{33}^1 - m_{23}^1) Z_W = m_{24}^1 - v_1 m_{34}^1; 
 (u_1 m_{31}^2 - m_{11}^2) X_W + (u_1 m_{32}^2 - m_{12}^2) Y_W + (u_1 m_{33}^2 - m_{13}^2) Z_W = m_{14}^2 - u_1 m_{34}^2; 
33
34
```

 $Coord_{i,j} = (X_W, Y_W, Z_W)$

35

Team # 2012050 Page 4 of 5

4 Strengths and Weaknesses

4.1 Strengths

- First one...
- Second one ...

4.2 Weaknesses

• Only one ...

References

- [1] Zhan Song and Chi Kit Ronald Chung. Determining both surface position and orientation in structured-light-based sensing. <u>IEEE Transactions on Pattern Analysis</u> & Machine Intelligence, 32(10):1770–1780, 2010.
- [2] Haibo Lin, Lei Nie, and Zhan Song. A single-shot structured light means by encoding both color and geometrical features. Pattern Recognition, 54:178–189.

Team # 2012050 Page 5 of 5

Apendix: The source codes

This MATLAB program is used to calculate the value of variable a.

Program 1: temp.m

```
1  a = 0;
2  for i = 1:5
3     a = a + 1;
4  end
```

This LINGO program is used to search the optimize solution of 0-1 problem.

Program 2: temp.lg4

```
1 model:
2 sets:
3 WP/1..12/: M, W, X;
4 endsets
5 data:
6 M = 2 5 18 3 2 5 10 4 11 7 14 6;
7 W = 5 10 13 4 3 11 13 10 8 16 7 4;
8 enddata
9 max = @sum(WP:W*X);
10 @sum(WP: M * X) <= 46;
11 @for(WP: @bin(X));
12 end</pre>
```

Program 3: temp.py

```
1 employees = []
2 for id in employee_ids:
3    employee = fetch_employee(id)
4 if employee:
5    employees.append(employee)
```