Predicting Gold Glove Award Winners with Adaptive Boosting Machine Learning

Lucas Kelly

Problem Statement

Errors: 0 Put outs: 271 Fielding %: 100

Errors: 5 Put outs: 299 Fielding %: 98.4

Errors: 7 Put outs: 355 Fielding %: 98.1

The Value of Machine Learning

Utilize advanced metrics

• Take into consideration adjusted metrics

• Improving over time

Methodology

Data (web scraping, combined advanced/traditional statistics)

 Model selection (hyperparameter tuning, PCA, Gridsearch, multicollinearity removal, feature selection)

Unsupervised Learning: Adaptive Boosting Ensemble Method

Findings

Adaptive Boosting:

Model Accuracy - 89%

Precision - 58%

Recall - 29%

F1 Score - 39%

Findings

GG Winner!

GG Winner!

GG WInner!

Finalist

Future Work

Investigate weight by position

Finer tuning

Experiment with XGBoost Algorithms

Test model on upcoming 2019 awards

Thank you!

www.lucaskellydataportfolio.weebly.com

www.github.com/lucaskelly49

https://www.linkedin.com/in/lucaskelly49/

EDA: GG Awards vs. Non-awards

EDA: GG Awards vs. Non-awards

EDA: Stat correlations

EDA: Influence of position

KNN evaluation metrics

Classific	cation	Report K-Ne	arest Nei	ghbors:	
		precision	recall	f1-score	support
	0.0	0.90	0.99	0.94	486
	1.0	0.59	0.15	0.24	65
micro	avg	0.89	0.89	0.89	551
macro	avg	0.74	0.57	0.59	551
weighted	avg	0.86	0.89	0.86	551

KNN

Training Accuracy: 89.76% Test Accuracy: 88.75%

Decision Tree evaluation metrics

Classific	cation	Report Vanilla Decision Tree:			
		precision	recall	fl-score	support
	0.0	0.91	0.91	0.91	486
	1.0	0.34	0.35	0.35	65
micro	avg	0.84	0.84	0.84	551
macro	avg	0.63	0.63	0.63	551
weighted	avg	0.85	0.84	0.84	551

Vanilla Decision Tree

Training Accuracy: 100.0% Test Accuracy: 84.39%

Random Forest evaluation metrics

Classific	cation	Report Random Forest:				
		precision	recall	f1-score	support	
	0.0	0.89	0.98	0.93	486	
	1.0	0.37	0.11	0.17	65	
micro	avg	0.87	0.87	0.87	551	
macro	avg	0.63	0.54	0.55	551	
weighted	avg	0.83	0.87	0.84	551	

Random Forest

Training Accuracy: 99.03% Test Accuracy: 87.3%

Tuned Random Forest w/ Grid Search evaluation metrics

Classific	cation	The state of the s				100 BR 100 B
		precisi	ion	recall	fl-score	support
	0.0	0.8	39	1.00	0.94	486
	1.0	1.0	00	0.05	0.09	65
micro	avg	0.8	39	0.89	0.89	551
macro	avg	0.9	94	0.52	0.51	551
weighted	avg	0.9	90	0.89	0.84	551

Tuned Random Forest

Training Accuracy: 89.22% Test Accuracy: 88.75%

Adaboost evaluation metrics

		precision	recall f1-score		support
	0.0	0.91	0.97	0.94	486
	1.0	0.58	0.29	0.39	65
micro	avg	0.89	0.89	0.89	551
macro	avg	0.74	0.63	0.66	551
weighted	avg	0.87	0.89	0.88	551

Adaboost

Training Accuracy: 89.76% Test Accuracy: 89.11%

Gradient Boost evaluation metrics

Classific	cation	Report Grad	ient Boos	t:	
		precision	recall	fl-score	support
	0.0	0.91	0.99	0.94	486
	1.0	0.71	0.23	0.35	65
micro	avg	0.90	0.90	0.90	551
macro	avg	0.81	0.61	0.65	551
weighted	avg	0.88	0.90	0.87	551

Tuned Random Forest

Training Accuracy: 94.37% Test Accuracy: 89.84%

Model Comparisons

```
Model
                          Training ACC
                                        Testing ACC Testing Precision \
0
                     KNN
                              0.899455
                                           0.892922
                                                              0.666667
  Vanilla Decision Tree
                              1.000000
                                           0.836661
                                                              0.307692
           Random Forest
                              0.978195
                                         0.889292
                                                              0.642857
  Vanilla Decision Tree
                              1.000000
                                          0.836661
                                                              0.307692
                              0.981829
           Random Forest
                                           0.874773
                                                              0.300000
    Tuned Random Forest
                              0.890975
                                           0.882033
                                                              0.000000
                                           0.891107
                Adaboost
                              0.897638
                                                              0.575758
         Gradient Boost
                              0.942459
                                           0.894737
                                                              0.705882
   Testing F1
     0.289157
    0.307692
    0.227848
    0.307692
    0.080000
    0.000000
    0.387755
     0.292683
```