

Digital Design: An Embedded Systems Approach Using Verilog

Chapter 3 Numeric Basics

Numeric Basics

- Representing and processing numeric data is a common requirement
 - unsigned integers
 - signed integers
 - fixed-point real numbers
 - floating-point real numbers
 - complex numbers

Unsigned Integers

- Non-negative numbers (including 0)
 - Represent real-world data
 - e.g., temperature, position, time, ...
 - Also used in controlling operation of a digital system
 - e.g., counting iterations, table indices
- Coded using unsigned binary (base 2) representation
 - analogous to decimal representation

Binary Representation

- Decimal: base 10
 - $124_{10} = 1 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$
- Binary: base 2
 - 124_{10} = $1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$ = 1111100_{2}
- In general, a number x is represented using n bits as x_{n-1} , x_{n-2} , ..., x_0 , where

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + [] + x_0 2^0$$

Binary Representation

- Unsigned binary is a code for numbers
 - *n* bits: represent numbers from 0 to $2^n 1$
 - 0: 0000...00; 2ⁿ 1: 1111...11
 - To represent x: $0 \le x \le N-1$, need $\lceil \log_2 N \rceil$ bits
- Computers use
 - 8-bit bytes: 0, ..., 255
 - 32-bit words: 0, ..., ~4 billion
- Digital circuits can use what ever size is appropriate

Unsigned Integers in Verilog

- Use vectors as the representation
 - Can apply arithmetic operations

Octal and Hexadecimal

- Short-hand notations for vectors of bits
- Octal (base 8)
 - Each group of 3 bits represented by a digit
 - **0**: 000, 1:001, 2: 010, ..., 7: 111
 - $253_8 = 010\ 101\ 011_2$
 - $11001011_2 \Rightarrow 11\ 001\ 011_2 = 313_8$
- Hex (base 16)
 - Each group of 4 bits represented by a digit
 - 0: 0000, ..., 9: 1001, A: 1010, ..., F: 1111
 - \bullet 3CE₁₆ = 0011 1100 1110₂
 - $11001011_2 \Rightarrow 1100 \ 1011_2 = CB_{16}$

Extending Unsigned Numbers

- To extend an *n*-bit number to *m* bits
 - Add leading 0 bits
 - e.g., $72_{10} = 1001000 = 000001001000$


```
wire [3:0] x;
wire [7:0] y;
assign y = {4'b0000, x};
```

assign
$$y = \{4'b0, x\};$$

$$assign y = x;$$

- To truncate from m bits to n bits
 - Discard leftmost bits
 - Value is preserved if discarded bits are 0
 - Result is x mod 2ⁿ

assign x = y[3:0];

Unsigned Addition

Performed in the same way as decimal

carry bits

overflow

Addition Circuits

Half adder

for least-significant bits

$$s_0 = x_0 \oplus y_0$$
$$c_1 = x_0 \cdot y_0$$

Full adder

for remaining bits

$$s_i = (x_i \oplus y_i) \oplus c_i$$

$$c_{i+1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_i$$

x_{i}	\mathcal{Y}_{i}	$C_{\overline{i}}$	S_{i}	c_{i+1}
$\frac{1}{0}$	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple-Carry Adder

• Full adder for each bit, $c_0 = 0$

overflow

- Worst-case delay
 - from x_0 , y_0 to s_n
 - carry must ripple through intervening stages, affecting sum bits

Improving Adder Performance

Carry kill:

$$k_i = \overline{x_i} \cdot \overline{y_i}$$

• Carry propagate: $p_i = x_i \oplus y_i$

Carry generate:

$$g_i = x_i \cdot y_i$$

Adder equations

$$S_i = p_i \oplus c_i$$
 $C_{i+1} = g_i + p_i \cdot c_i$

0

0

0

Fast-Carry-Chain Adder

Also called Manchester adder

Carry Lookahead

$$\left|c_{i+1} = g_i + p_i \cdot c_i\right|$$

$$c_1 = g_0 + p_0 \cdot c_0$$

$$c_2 = g_1 + p_1 \cdot (g_0 + p_0 \cdot c_0) = g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0$$

$$c_3 = g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0$$

$$c_4 = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1$$
$$+ p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0$$

Carry-Lookahead Adder

Avoids chained carry circuit

Use multilevel lookahead for wider numbers

Other Optimized Adders

- Other adders are based on other reformulations of adder equations
- Choice of adder depends on constraints
 - e.g., ripple-carry has low area, so is ok for low performance circuits
 - e.g., Manchester adder ok in FPGAs that include carry-chain circuits

Adders in Verilog

Use arithmetic "+" operator

```
wire [7:0] a, b, s;
...
assign s = a + b;
```

```
wire [8:0] tmp_result;
wire c;
...

assign tmp_result = {1'b0, a} + {1'b0, b};
assign c = tmp_result[8];
assign s = tmp_result[7:0];
```

```
assign \{c, s\} = \{1'b0, a\} + \{1'b0, b\};
```

assign
$$\{c, s\} = a + b$$
;

Unsigned Subtraction

As in decimal

```
b: 0 1 0 1 1 0 0 0 0 x: 1 0 1 0 0 1 1 0 y: -0 1 0 0 1 0 1 0 0 d: d: 0 1 0 1 1 1 0 0
```


Subtraction Circuits

For least-significant bits

$$d_0 = x_0 \oplus y_0$$
$$b_1 = \overline{x_0} \cdot y_0$$

For remaining bits

$$d_i = (x_i \oplus y_i) \oplus b_i$$

$$b_{i+1} = \overline{x_i} \cdot y_i + \overline{(x_i \oplus y_i)} \cdot b_i$$

x_{i}	\mathcal{Y}_{i}	$b_{_i}$	$S_{\vec{i}}$	b_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Adder/Subtracter Circuits

- Many systems add and subtract
 - Trick: use complemented borrows

Addition

$$S_{i} = (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$c_{i+1} = x_{i} \cdot y_{i} + (x_{i} \oplus y_{i}) \cdot c_{i}$$

Subtraction

$$d_{i} = (x_{i} \oplus \overline{y_{i}}) \oplus \overline{b_{i}}$$

$$\overline{b_{i+1}} = x_{i} \cdot \overline{y_{i}} + (x_{i} \oplus \overline{y_{i}}) \cdot \overline{b_{i}}$$

- Same hardware can perform both
 - For subtraction: complement y, set $\overline{b_0} = 1$

Adder/Subtracter Circuits

- Adder can be any of those we have seen
 - depends on constraints

Subtraction in Verilog

Increment and Decrement

• Adding 1: set y = 0 and $c_0 = 1$

$$S_i = X_i \oplus C_i$$
 $C_{i+1} = X_i \cdot C_i$

These are equations for a half adder

Similarly for decrementing: subtracting 1

Increment/Decrement in Verilog

Just add or subtract 1

```
wire [15:0] x, s;

...

assign s = x + 1; // increment x

assign s = x - 1; // decrement x
```

- Note: 1 (integer), not 1'b1 (bit)
 - Automatically resized

Equality Comparison

- XNOR gate: equality of two bits
 - Apply bitwise to two unsigned numbers

- In Verilog, x == y gives a bit result
 - 1'b0 for false, 1'b1 for true

$$assign eq = x == y;$$

Inequality Comparison

Magnitude comparator for x > y

Comparison Example in Verilog

- Thermostat with target termperature
 - Heater or cooler on when actual temperature is more than 5° from target

Scaling by Power of 2

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + [] + x_0 2^0$$

$$2^{k} x = x_{n-1} 2^{k+n-1} + x_{n-2} 2^{k+n-2} + [1 + x_0 2^{k} + (0) 2^{k-1} + [1 + (0) 2^{0}]$$

- This is x shifted left k places, with k bits of 0 added on the right
 - logical shift left by k places
 - e.g., $00010110_2 \times 2^3 = 00010110000_2$
- Truncate if result must fit in n bits
 - overflow if any truncated bit is not 0

Scaling by Power of 2

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + [] + x_0 2^0$$

$$x/2^{k} = x_{n-1}2^{n-1-k} + x_{n-2}2^{n-2-k} + [] + x_{k}2^{0} + x_{k-1}2^{-1} + [] + x_{0}2^{-k}$$

- This is x shifted right k places, with k bits truncated on the right
 - logical shift right by k places
 - e.g., $01110110_2 / 2^3 = 01110_2$
- Fill on the left with k bits of 0 if result must fit in n bits

Scaling in Verilog

- Shift-left (<<) and shift-right (>>) operations
 - result is same size as operand

$$s = 00010011_2 = 19_{10}$$

assign
$$y = s \ll 2$$
;

$$y = 01001100_2 = 76_{10}$$

$$s = 00010011_2 = 19_{10}$$

assign
$$y = s \gg 2$$
;

$$y = 000100_2 = 4_{10}$$

Unsigned Multiplication

$$xy = x(y_{n-1}2^{n-1} + y_{n-2}2^{n-2} + \Box + y_02^0)$$
$$= y_{n-1}x2^{n-1} + y_{n-2}x2^{n-2} + \Box + y_0x2^0$$

- $y_i x 2^i$ is called a partial product
 - if $y_i = 0$, then $y_i x 2^i = 0$
 - if $y_i = 1$, then $y_i \times 2^i$ is x shifted left by i
- Combinational array multiplier
 - AND gates form partial products
 - adders form full product

Unsigned Multiplication

- Adders can be any of those we have seen
- Optimized multipliers combine parts of adjacent adders

Product Size

• Greatest result for *n*-bit operands:

$$(2^{n}-1)(2^{n}-1) = 2^{2n}-2^{n}-2^{n}+1 = 2^{2n}-\left(2^{n+1}-1\right)$$

- Requires 2²ⁿ bits to avoid overflow
- Adding n-bit and m-bit operands
 - requires n + m bits

```
wire [ 7:0] x; wire [13:0] y; wire [21:0] p; ...

assign p = {14'b0, x} * {8'b0, y};
```

assign p = x * y; // implicit resizing

Other Unsigned Operations

- Division, remainder
 - More complicated than multiplication
 - Large circuit area, power
- Complicated operations are often performed sequentially
 - in a sequence of steps, one per clock cycle
 - cost/performance/power trade-off

Gray Codes

- Important for position encoders
 - Only one bit changes at a time

Segment	Code	Segment	Code
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

See book for n-bit Gray code

Signed Integers

- Positive and negative numbers (and 0)
- n-bit signed magnitude code
 - 1 bit for sign: $0 \Rightarrow +$, $1 \Rightarrow -$
 - n-1 bits for magnitude
- Signed-magnitude rarely used for integers now
 - circuits are too complex
- Use 2s-complement binary code

2s-Complement Representation

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + [1 + x_0 2^{n-2}]$$

- Most-negative number
 - $-1000...0 = -2^{n-1}$
- Most-positive number

$$0111...1 = +2^{n-1}-1$$

• $x_{n-1} = 1 \Rightarrow \text{negative},$ $x_{n-1} = 0 \Rightarrow \text{non-negative}$

• Since
$$2^{n-2} + \prod + 2^0 = 2^{n-1} - 1$$

2s-Complement Examples

• 00110101

$$= 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0 = 53$$

10110101

$$= -1 \times 2^7 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0$$

$$= -128 + 53 = -75$$

- 00000000 = 0
- \bullet 11111111 = -1
- 10000000 = -128
- 011111111 = +127

Signed Integers in Verilog

Use signed vectors

```
wire signed [ 7:0] a;
reg_signed [13:0] b;
```

 Can convert between signed and unsigned interpretations

Octal and Hex Signed Integers

- Don't think of signed octal or hex
 - Just treat octal or hex as shorthand for a vector of bits
- E.g., 844₁₀ is 001101001100
 - In hex: 0011 0100 1100 \Rightarrow 34C
- E.g., –42₁₀ is 1111010110
 - In octal: 1 111 010 110 \Rightarrow 1726 (10 bits)

Resizing Signed Integers

- To extend a non-negative number
 - Add leading 0 bits
 - e.g., $53_{10} = 00110101 = 000000110101$
- To truncate a non-negative number
 - Discard leftmost bits, provided
 - discarded bits are all 0
 - sign bit of result is 0
 - E.g., 41₁₀ is 00101001
 - Truncating to 6 bits: 101001 error!

Resizing Signed Integers

- To extend a negative number
 - Add leading 1 bits
 - See textbook for proof
 - e.g., $-75_{10} = 10110101 = 111110110101$
- To truncate a negative number
 - Discard leftmost bits, provided
 - discarded bits are all 1
 - sign bit of result is 1

Resizing Signed Integers

- In general, for 2s-complement integers
 - Extend by replicating sign bit
 - sign extension
 - Truncate by discarding leading bits
 - Discarded bits must all be the same, and the same as the sign bit of the result


```
wire signed [ 7:0] x;
wire signed [15:0] y;
...
assign y = {{8{x[7]}}, x};
assign y = x;
...
assign x = y;
```


- Complement and add 1
 - Note that $\overline{x_i} = 1 x_i$

$$\overline{x} + 1 = -(1 - x_{n-1})2^{n-1} + (1 - x_{n-2})2^{n-2} + \boxed{ + (1 - x_0)2^0 + 1}
= -2^{n-1} + x_{n-1}2^{n-1} + 2^{n-2} - x_{n-2}2^{n-2} + \boxed{ + 2^0 - x_0}2^0 + 1
= -(-x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \boxed{ + x_0}2^0)
-2^{n-1} + (2^{n-2} + \boxed{ + 2^0}) + 1
= -x - 2^{n-1} + 2^{n-1} = -x$$

• E.g., 43 is 00101011 so -43 is 11010100 + 1 = 11010101

Signed Negation

- What about negating -2^{n-1} ?
 - $1000...00 \Rightarrow 0111...11 + 1 = 1000...00$
 - Result is -2^{n-1} !
- Recall range of *n*-bit numbers is not symmetric
 - Either check for overflow, extend by one bit, or ensure this case can't arise
- In Verilog: use operator
 - E.g., assign y = -x;

$$x = -x_{n-1} 2^{n-1} + x_{n-2 \square \ 0} \qquad \qquad y = -y_{n-1} 2^{n-1} + y_{n-2 \square \ 0}$$

$$x + y = -(x_{n-1} + y_{n-1}) 2^{n-1} + x_{n-2 \square \ 0} + y_{n-2 \square \ 0}$$

$$yields \ c_{n-1}$$

- Perform addition as for unsigned
 - Overflow if c_{n-1} differs from c_n
 - See textbook for case analysis
- Can use the same circuit for signed and unsigned addition

Signed Addition Examples

no overflow

positive overflow

no overflow

negative overflow

no overflow

no overflow

Signed Addition in Verilog

Result of + is same size as operands

```
wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...
assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension
```

To check overflow, compare signs

```
wire signed [7:0] x, y, z;

wire ovf;

...

assign z = x + y;

assign ovf = \sim x[7] & \sim y[7] & z[7] | x[7] & y[7] & \sim z[7];
```


Signed Subtraction

$$x - y = x + (-y) = x + y + 1$$

- Use a 2s-complement adder
 - Complement y and set $c_0 = 1$

Other Signed Operations

- Increment, decrement
 - same as unsigned
- Comparison
 - =, same as unsigned
 - >, compare sign bits using $\overline{\chi}_{n-1} \cdot \chi_{n-1}$
- Multiplication
 - Complicated by the need to sign extend partial products
 - Refer to Further Reading

Scaling Signed Integers

- Multiplying by 2^k
 - logical left shift (as for unsigned)
 - truncate result using 2s-complement rules
- Dividing by 2^k
 - arithmetic right shift
 - discard k bits from the right, and replicate sign bit k times on the left
 - e.g., s = "11110011" -- -13 shift_right(s, 2) = "111111100" -- $-13 / 2^2$

Fixed-Point Numbers

- Many applications use non-integers
 - especially signal-processing apps
- Fixed-point numbers
 - allow for fractional parts
 - represented as integers that are implicitly scaled by a power of 2
 - can be unsigned or signed

Positional Notation

In decimal

$$10.24_{10} = 1 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 4 \times 10^{-2}$$

In binary

$$101.01_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 5.25_{10}$$

- Represent as a bit vector: 10101
 - binary point is implicit ————

Unsigned Fixed-Point

- *n*-bit unsigned fixed-point
 - m bits before and f bits after binary point

$$x = x_{m-1} 2^{m-1} + [1 + x_0 2^0 + x_{-1} 2^{-1} + [1 + x_{-f} 2^{-f}]$$

- Range: 0 to $2^m 2^{-f}$
- Precision: 2^{-f}
- m may be ≤ 0 , giving fractions only
 - e.g., m = -2: 0.0001001101

Signed Fixed-Point

- n-bit signed 2s-complement fixed-point
 - m bits before and f bits after binary point

$$x = -x_{m-1}2^{m-1} + [1 + x_02^0 + x_{-1}2^{-1} + [1 + x_{-f}2^{-f}]$$

- Range: -2^{m-1} to $2^{m-1} 2^{-f}$
- Precision: 2^{-f}
- E.g., 111101, signed fixed-point, m = 2
 - $11.1101_2 = -2 + 1 + 0.5 + 0.25 + 0.0625$ $= -0.1875_{10}$

Choosing Range and Precision

- Choice depends on application
- Need to understand the numerical behavior of computations performed
 - some operations can magnify quantization errors
- In DSP
 - fixed-point range affects dynamic range
 - precision affects signal-to-noise ratio
- Perform simulations to evaluate effects

Fixed-Point in Verilog

- Use vectors with implied scaling
 - Index range matches powers of weights
 - Assume binary point between indices 0 and -1

Fixed-Point Operations

- Just use integer hardware
 - e.g., addition:

$$x + y = (x \times 2^f + y \times 2^f)/2^f$$

Ensure binary points are aligned

Floating-Point Numbers

- Similar to scientific notation for decimal
 - e.g., 6.02214199×10²³, 1.60217653×10⁻¹⁹
- Allow for larger range, with same relative precision throughout the range

 $6.02214199 \times 10^{23}$

exponent

IEEE Floating-Point Format

	e bits	m bits
S	exponent	mantissa

$$x = M \times 2^{E} = (-1 \times s) \times 1.mantissa \times 2^{exponent-2^{e-1}+1}$$

- s: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize: $1.0 \le |M| < 2.0$
 - M always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Exponent: excess representation: $E + 2^{e-1}-1$

Floating-Point Range

- Exponents 000...0 and 111...1 reserved
- Smallest value
 - exponent: $000...01 \Rightarrow E = -2^{e-1} + 2$
 - mantissa: $0000...00 \Rightarrow M = 1.0$
- Largest value
 - exponent: $111...10 \Rightarrow E = 2^{e-1} 1$
 - mantissa: $111...11 \Rightarrow M \approx 2.0$
- Range: $2^{-2^{e-1}+2} \le |x| < 2^{2^{e-1}}$

Floating-Point Precision

- Relative precision approximately 2^{-m}
 - all mantissa bits are significant
- m bits of precision
 - $m \times \log_{10} 2 \approx m \times 0.3$ decimal digits

Example Formats

- IEEE single precision, 32 bits
 - e = 8, m = 23
 - range $\approx \pm 1.2 \times 10^{-38}$ to $\pm 1.7 \times 10^{38}$
 - precision ≈ 7 decimal digits
- Application-specific, 22 bits
 - e = 5, m = 16
 - range $\approx \pm 6.1 \times 10^{-5}$ to $\pm 6.6 \times 10^{4}$
 - precision ≈ 5 decimal digits

Denormal Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = M \times 2^E = (-1 \times s) \times 0.mantissa \times 2^{-2^{e-1}+1}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Mantissa = 000...0

$$x = M \times 2^{E} = (-1 \times s) \times 0.0 \times 2^{-2^{e-1}+1} = \pm 0.0$$

Infinities and NaNs

- Exponent = 111...1, mantissa = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, mantissa $\neq 000...0$
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Operations

- Considerably more complicated than integer operations
 - E.g., addition
 - unpack, align binary points, adjust exponents
 - add mantissas, check for exceptions
 - round and normalize result, adjust exponent
- Combinational circuits not feasible
 - Pipelined sequential circuits

Summary

- Unsigned: $x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + [1 + x_0 2^0]$
- Signed: $x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + [1 + x_02^0]$
- Octal and Hex short-hand
- Operations: resize, arithmetic, compare
- Arithmetic circuits trade off speed/area/power
- Fixed- and floating-point non-integers
- Gray codes for position encoding

