Vector Space Models

- Outline
 - Vector space models
 - Advantages
 - Applications
- Why learn vector space models?

What is your age?

How old are you?

Same Meaning

Vector space models applications

- You eat cereal from a bowl
- You <u>buy</u> something and someone else <u>sells</u> it

Information Extraction

Machine Translation

Chatbots

- With vectors based models, you will be able to capture this and many other types of relationships among different sets of words.
- Vector space models are used in information extraction to answer questions, in the style of who, what, where, how and etcetera

Fundamental concept

"You shall know a word by the company it keeps" Firth, 1957

(Firth, J. R. 1957:11)

- Represent words and documents as vectors
- Representation that captures relative meaning

Word by Word and Word by Doc.

- Co-occurrence ———— Vector representation
- Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

I like s<u>imple data</u>
I prefer s<u>imple</u> raw<u>data</u>

n

Number of times a word occurs within a certain category

	Entertainment	Economy	Machine Learning
data	500	6620	9320
film	7000	4000	1000

② deeplearning.ai

Measures of "similarity:"
Angle
Distance

- W/W and W/D, counts of occurrence
- Vector Spaces ———— Similarity between words/documents

Euclidean distance

Euclidean distance

Corpus A: (500,7000)

Corpus **B**: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(-8820)^2 + (6000)^2}$$

O deeplearning.ai

Euclidean distance for n-dimensional vectors

		$ec{w}$	$ec{v}$	
	data	boba	ice-cream	
AI	6	0	1	$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$
drinks	0	4	6	$\sqrt{1+4+4}$ $\sqrt{0}$ 2
food	0	6	8	$= \sqrt{1+4+4} = \sqrt{9} = 3$

$$d\left(\vec{v}, \vec{w}\right) = \sqrt{\sum_{i=1}^{n} \left(v_i - w_i\right)^2}$$
 Norm of $\left(\vec{v} - \vec{w}\right)$

Euclidean distance in Python


```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])

# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

(S) deeplearning.ai

Euclidean distance: $d_2 < d_1$

Angles comparison: $\beta >$

The cosine of the angle between the vectors

O deeplearning.ai

Cosine Similarity

- How to get the cosine of the angle between two vectors
- Relation of this metric to similarity
- Previous definitions

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Dot product

$$\vec{v}.\vec{w} = \sum_{i=1}^{n} v_i.w_i$$

$$\hat{v} \cdot \hat{w} = \|\hat{v}\| \|\hat{w}\| \cos(\beta)$$

$$\cos(\beta) = \frac{\hat{v} \cdot \hat{w}}{\|\hat{v}\| \|\hat{w}\|}$$

$$= \frac{(20 \times 30) + (40 \times 20)}{\sqrt{20^2 + 40^2} \times \sqrt{30^2 + 20^2}}$$

(©) deeplearning.a

Manipulating Words in Vector Spaces

Manipulating word vectors

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

Visualization and PCA

Visualization of word vectors

		d > 2	
oil	0.20		0.10
gas	2.10	•••	3.40
city	9.30	•••	52.1
town	6.20		34.3

oil & gas

town & city

How can you visualize if your representation captures these relationships?

Visualization of word vectors

PCA Algorithm

PCA algorithm

- Eigenvector: Uncorrelated features for your data
- Eigenvalue: the amount of information retained by each feature

PCA algorithm

- Eigenvectors give the direction of uncorrelated features
- Eigenvalues are the variance of the new features
- Dot product gives the projection on uncorrelated features