Plastic Medium-Power Complementary Silicon Transistors

. . . designed for general-purpose amplifier and low-speed switching applications.

High DC Current Gain —

 $h_{FE} = 2500 \text{ (Typ)} @ I_{C} = 4.0 \text{ Adc}$

• Collector-Emitter Sustaining Voltage — @ 100 mAdc

VCEO(sus) = 60 Vdc (Min) — TIP120, TIP125

= 80 Vdc (Min) — TIP121, TIP126

= 100 Vdc (Min) — TIP122, TIP127

• Low Collector-Emitter Saturation Voltage -

VCE(sat) = 2.0 Vdc (Max) @ IC = 3.0 Adc

= 4.0 Vdc (Max) @ IC = 5.0 Adc

- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- TO-220AB Compact Package

*MAXIMUM RATINGS

Rating	Symbol	TIP120, TIP125	TIP121, TIP126	TIP122, TIP127	Unit
Collector–Emitter Voltage	VCEO	60	80	100	Vdc
Collector-Base Voltage	Vсв	60	80	100	Vdc
Emitter-Base Voltage	VEB	5.0		Vdc	
Collector Current — Continuous Peak	IC	5.0 8.0		Adc	
Base Current	ΙΒ	120			mAdc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	65 0.52		Watts W/°C	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2.0 0.016		Watts W/°C	
Unclamped Inductive Load Energy (1)	E	50		mJ	
Operating and Storage Junction, Temperature Range	T _J , T _{stg}	-65 to +150		°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.92	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	62.5	°C/W

(1) $I_C = 1 \text{ A}$, L = 100 mH, P.R.F. = 10 Hz, $V_{CC} = 20 \text{ V}$, $R_{BF} = 100 \Omega$.

Figure 1. Power Derating

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 2

TIP120*
TIP121*
TIP122*
PNP
TIP125*
TIP126*
TIP127*

*Motorola Preferred Device

DARLINGTON
5 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80-100 VOLTS
65 WATTS

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					•
Collector–Emitter Sustaining Voltage (1) (I _C = 100 mAdc, I _B = 0)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	VCEO(sus)	60 80 100	_ _ _	Vdc
Collector Cutoff Current (VCE = 30 Vdc, IB = 0) (VCE = 40 Vdc, IB = 0) (VCE = 50 Vdc, IB = 0)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	ICEO	_ _ _	0.5 0.5 0.5	mAdc
Collector Cutoff Current ($V_{CB} = 60 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 80 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 100 \text{ Vdc}$, $I_{E} = 0$)	TIP120, TIP125 TIP121, TIP126 TIP122, TIP127	I _{CBO}		0.2 0.2 0.2	mAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)		I _{EBO}	_	2.0	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 0.5 Adc, V _{CE} = 3.0 Vdc) (I _C = 3.0 Adc, V _{CE} = 3.0 Vdc)		hFE	1000 1000	_ _	_
Collector–Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 12 mAdc) (I _C = 5.0 Adc, I _B = 20 mAdc)		VCE(sat)	_ _	2.0 4.0	Vdc
Base–Emitter On Voltage (I _C = 3.0 Adc, V _{CE} = 3.0 Vdc)		V _{BE} (on)	_	2.5	Vdc
DYNAMIC CHARACTERISTICS					•
Small–Signal Current Gain (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc, f = 1.0 MHz)		h _{fe}	4.0	_	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz	TIP125, TIP126, TIP127 TIP120, TIP121, TIP122	C _{ob}	_ 	300 200	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Figure 3. Switching Times

Figure 4. Thermal Response

Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}} - V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown

Figure 6. Small-Signal Current Gain

Figure 7. Capacitance

Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

Figure 10. "On" Voltages

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
ם	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Η	0.110	0.155	2.80	3.93
7	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
ø	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
J	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

- STYLE 1:
 PIN 1. BASE
 2. COLLECTOR
 3. EMITTER
 4. COLLECTOR

CASE 221A-06 TO-220AB **ISSUE Y**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com