Markov Decision Processes

Chen-Yu Wei

To win the game, the learner has to take a sequence of actions $a_1 \to a_2 \to \cdots \to a_H$. The effect of a particular action may not be revealed instantaneously.

- Some effect may be revealed instantaneously
- Some may be revealed later

(a summary of the current status in a multi-stage game)

- The number of possible combinations of actions grows exponentially with the length of the sequence.
- We would like to decompose the problem so that every single decision in the sequence is easy to make.
- State: a summary of the status of the world and the progress of the learner, so that all future decisions can only depend on the state and not on everything else.
 - Games (Go, Chess): To decide future moves, the player only need the current board configuration.
 - Robot navigation to a goal: only need the <u>current position</u> and not the exact path reaching the current position.
 - Inventory management: only need the <u>current inventory level</u>, and not the sequence of past sales.

Like a sequential contextual bandit problem – except that future contexts depends on the learner's past decisions.

Interaction Protocol (Episodic Setting)

For **episode** t = 1, 2, ..., T:

 $h \leftarrow 1$

 \checkmark Environment generates initial state $s_{t,1}$

While episode *t* has not ended:

Learner chooses an action $a_{t,h}$

Learner observes instantaneous reward $r_{t,h}$ with $\mathbb{E}[r_{t,h}] = R(\underline{s_{t,h}}, \underline{a_{t,h}})$ Environment generates next state $s_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$

Markov assumption:

 $r_{t,h}$ and $s_{t,h+1}$ are conditionally independent

of $(s_{t,1}, a_{t,1}, ..., s_{t,h-1}, a_{t,h-1})$ given $s_{t,h}$

$$h \leftarrow h + 1$$

Goal: maximize $\sum_{t=0}^{T} R(s_{t,h}, a_{t,h})$

$$\sum_{t=0}^{T} \frac{1}{R(s_{t,h}, a_{t,h})} R(s_{t,h}, a_{t,h})$$

From Observations to States

Regret (Episodic Setting)

Policy: mapping from state to actual (action distribute)

Regret =
$$\max_{\pi^*} \mathbb{E}^{\pi^*} \left[\sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(\tilde{s}_{t,h}, \pi^*(\tilde{s}_{t,h})) \right] - \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(s_{t,h}, a_{t,h}) \right]$$
Benchmark

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Going faster gets double reward

Example: Racing

S	а	s'	P(s' s,a)	R(s,a)
	Slow		1.0	+1
	Fast		0.5	+2
	Fast		0.5	+2
	Slow		0.5	+1
	Slow		0.5	+1
	Fast		1.0	-10
	(end)		1.0	0

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon
- Performance Metric
 - Total Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/2): Fixed-Horizon

Horizon length is a fixed number *H*

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While h \leq H:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
```

Examples: games with a fixed number of time

Interaction Protocols (2/2): Variable-Horizon

The learner interacts with the environment until reaching terminal states $\mathcal{T} \subset \mathcal{S}$

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: video games, robotics tasks, personalized recommendations, etc.

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon
- Performance Metric
 - Total Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Horizon = Length of an episode

Performance Metric

 τ : the step where the episode ends

Total Reward:

Discounted Total Reward:

$$|\gamma_{h}| \in (-1,1)$$

$$|\gamma_{h}| = |\gamma_{h}| + |\gamma_{h$$

Due to discounting, the future reward starting from any state is always upper bounded by $\frac{\text{range of }r}{1-\gamma}$, even if the episode length is very very long.

Without discounting, the range of future reward could be unbounded → making it hard to optimize

There is a potential mismatch between our ultimate goal and what we really optimized.

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon
- Performance Metric
 - Total Reward
 - Discounted Reward
- Policy
 - Markov policy
 - Stationary policy

Policy for MDPs

$$a_h \sim Z(\cdot \mid S_1, a_1, S_2, a_2, \dots, S_h)$$
 history-deposent

Markov Policy

$$a_h \sim \pi_h(\cdot \mid s_h)$$

$$a_h = \pi_h(s_h) \quad \longleftarrow$$

For **fixed-horizon** setting, there exists an optimal policy in this class

Stationary Policy

$$a_h \sim \pi(\cdot \mid s_h)$$
 $a_h = \pi(s_h)$

For variable-horizon settings, there exists an optimal policy in this class

6/av: 4/ fast: 2

Markov Policy = Stationary Policy where the state is augmented with **the timestep**.

A stationary policy specifies $\pi(\operatorname{Slow} | \operatorname{Cool})$ $\pi(\operatorname{Fast} | \operatorname{Cool})$ $\pi(\operatorname{Slow} | \operatorname{Warm})$ $\pi(\operatorname{Fast} | \operatorname{Warm})$

```
A Markov policy specifies \pi_h(\operatorname{Slow} | \operatorname{Cool}) \pi_h(\operatorname{Fast} | \operatorname{Cool}) \pi_h(\operatorname{Slow} | \operatorname{Warm}) \pi_h(\operatorname{Fast} | \operatorname{Warm}) \forall h
```


Value Iteration

(Fixed-Horizon + Total-Reward)

Two Tasks

Policy Evaluation: Calculate the expected total reward of a given policy

What is the expected total reward for the policy $\pi(\text{cool}) = \text{fast}$, $\pi(\text{warm}) = \text{slow}$?

Policy Optimization: Find the best policy

What is the policy that achieves the highest expected total reward?

Value Iteration for Policy Evaluation

states

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$h = 1 \qquad h = 2 \qquad h = 3 \qquad h = H$$

State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_h^{\pi}(s,a) = \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (s, a) \right]$$

$$V_h^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

Backward induction:

$$V_{H+1}^{\pi}(s) = 0 \qquad \forall s$$

For
$$h = H, \dots 1$$
: for all s, a

$$Q_{h}^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

Expected total reward of π from step h+1

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

Bellman Equation

 Q_h^{π} is called "the state-action value functions of policy π " V_h^{π} is called "the state value function of policy π " Both can be just called "**value functions**"

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) = \sum_a \pi_h(a|s) Q_h^{\pi}(s,a)$$

or

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s',a'} P(s'|s,a) \, \pi_{h+1}(a'|s') Q_{h+1}^{\pi}(s',a')$$

or

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right)$$

The Meaning of Bellman Equations

Definitions P, Y, \(\frac{1}{2}\)

$$Q_h^{\pi}(s,a) \triangleq \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (s,a) \right]$$

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

$$V_h^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \mid s_h = s \right]$$

Relations (Bellman Equations)

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

Calculation (VI)

Calculate $Q_h^{\pi}(s,a), V_h^{\pi}(s) \forall s, a$ from h = H to h = 1

Based on Dynamic Programming

Value Iteration for Policy Optimization

$$h = 1$$
 $h = 2$

$$h = 3$$

$$h = H$$

State transition: P(s'|s,a)

Reward: R(s,a)

$$\underline{Q_h^{\star}(s,a)} = \max_{\pi \in \text{Markov Policy}} \mathbb{E}^{\pi} \left[\sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (\underline{s, a}) \right]$$

Backward induction:

$$V_{H+1}^{\star}(s) = 0 \quad \forall s$$

For
$$h = H, \dots 1$$
: for all s, a

$$Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$

Expected optimal total reward from step h + 1

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s, a)$$

$$\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} Q_h^{\star}(s, a)$$

Exercise

١	/
1	_/
١	_

	S	а	s'	P(s' s,a)	R(s,a)
		Slow		1.0	+1
		Fast		0.5	+2
		Fast		0.5	+2
,		Slow		0.5	+1
		Slow		0.5	+1
		Fast		1.0	-10
		(end)		1.0	0

Assume H = 3

 $Q_3^{\star}(s,a)$ $Q_3^*(\text{cool}, \text{slow}) = 1$ $Q_3^*(\text{cool}, \text{fast}) = 2$ Q_3^* (warm, slow)= Q_3^* (warm, fast) = -/o $V_3^{\star}(s)$ $V_3^*(\text{cool}) = 2$ $\pi_3^*(\text{cool}) = \text{fast}$ $V_3^*(\text{warm}) = 1$ $Z_3^*(\text{warm}) = 5/5$ $Q_2^*(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_3(s')$ $Q_2^*(\text{cool}, \text{slow}) = (1 + V_3^*(\text{cool}) = 1+2 = 3)$ $Q_2^*(\text{cool}, \text{fast}) = 2 + \frac{1}{2} V_3^*(\text{cool}) + \frac{1}{2} V_3^*(\text{warm}) = 3.5$ $Q_2^*(\text{warm, slow}) = 1 + \frac{1}{2} \sqrt{3}(con) + \frac{1}{2} \sqrt{3}(\text{warm}) = 2.5$ V_2^* (warm, fast) = -/0 + V_3^* (ova herp) = -/0 $V_2^{\star}(s)$

$$V_2^*(\text{cool}) = 3.5$$
 $\mathcal{T}_2^*(\text{cool}) = \text{fast}$ $V_2^*(\text{warm}) = 2.5$ $\mathcal{T}_2^*(\text{warm}) = \text{slow}$

Bellman Optimality Equation

 Q_h^{\star} : optimal state-action value functions

 V_h^{\star} : optimal state value functions

or "optimal value functions"

$$Q_h^*(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^*(s')$$

$$V_h^*(s) = \max_{a} Q_h^*(s, a)$$

or

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) \left(\max_{a'} Q_{h+1}^{\star}(s',a') \right)$$

٥r

$$V_h^{\star}(s) = \max_{a} \left(R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s') \right)$$

$$\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} \ Q_h^{\star}(s, a)$$

Value Iteration

(Variable-Horizon + Discounted Reward)

 $Q_{i}^{\pi}(s,a) = \frac{1}{K}(s,a) + 8R(s,a_{2}) + 8^{2}R(s,a_{3})$

Value Iteration for Policy Evaluation

;- 1 5-1eps

$$h = 1$$
 $h = 2$ $h = 3$

$$1 \gamma \gamma^2$$

State transition: P(s'|s,a)

weight

Reward: R(s, a)

$$Q_i^{\pi}(s,a) = \mathbb{E}^{\pi} \left[\sum_{h=1}^i \gamma^{h-1} R(s_h, a_h) \, \middle| \, (s_1, a_1) = (s, a) \right]$$

$$V_{i}^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{1} = s \right] \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle$$

$$V_0^{\pi}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

$$Q_i^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{i-1}^{\pi}(s')$$

$$V_i^{\pi}(s) = \sum_{a} \pi(a|s) Q_i^{\pi}(s,a)$$

If $|Q_i^{\pi}(s,a) - Q_{i-1}^{\pi}(s,a)| \le \epsilon$ for all s,a: **terminate**

Bellman Equation

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi}(s')$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

or

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \, \pi(a'|s') Q^{\pi}(s',a')$$

or
$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

The Meaning of Bellman Equations

Definitions

$$Q^{\pi}(s,a) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_h, a_h) \middle| (s_1, a_1) = (s, a) \right]$$

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} R(s_h, a_h) \middle| s_1 = s \right]$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$
Calculate
$$Q_i^{\pi}(s, a), V_i^{\pi}(s) \forall s, a \text{ for } i = 1, 2, \dots \text{ until terminated}$$

Relations (Bellman Equations)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

Calculation (VI)

The Quality of $Q_i^{\pi}(s, a)$ when VI Terminates

Unanswered questions:

- 1. Will VI (for policy evaluation) always terminate?
- 2. At termination, we know $\max_{s,a} \left| Q_i^{\pi}(s,a) Q_{i-1}^{\pi}(s,a) \right| \leq \epsilon$, but our goal is to approximate $Q^{\pi}(s,a)$.
 - What can we say about $\max_{s,a} |Q_i^{\pi}(s,a) Q^{\pi}(s,a)|$?

The Quality of $Q_i^{\pi}(s,a)$ when VI Terminates

Let $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be any function. Define

BellmanError
$$(f) = \max_{s,a} \left| f(s,a) - \left(R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s') f(s',a') \right) \right|$$

$$ValueError(f) = \max_{s,a} |f(s,a) - Q^{\pi}(s,a)|$$

Theorem

$$ValueError(f) \le \frac{BellmanError(f)}{1 - \gamma}$$

With this theorem, we can argue the quality of $Q_i^{\pi}(s, a)$ when VI terminates through the following:

- 1. Prove that when VI terminates, BellmanError(Q_i^{π}) $\leq \epsilon$
- 2. Using the theorem, we get ValueError $(Q_i^{\pi}) \leq \frac{\epsilon}{1-\gamma}$

Value Iteration for Policy Optimization

State transition: P(s'|s,a)

Reward: R(s, a)

weight

$$Q_i^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_h, a_h) \middle| (s_0, a_0) = (s, a) \right]$$

$$V_i^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{h=1}^{i} \gamma^{h-1} R(s_h, a_h) \middle| s_0 = s \right]$$

$$Q^{\star}(s,a) = Q_{\infty}^{\star}(s,a) \qquad V^{\star}(s) = V_{\infty}^{\star}(s)$$

$$V_0^{\star}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

$$Q_i^{\star}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{i-1}^{\star}(s')$$

$$V_i^{\star}(s) = \max_{a} Q_i^{\star}(s, a)$$

If
$$|Q_i^*(s,a) - Q_{i-1}^*(s,a)| \le \epsilon$$
 for all s,a : **terminate**

Bellman Optimality Equation $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$

$$Q^{*}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

or
$$V^{\star}(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\star}(s') \right)$$

The Solution Quality when VI Terminates

Unanswered questions:

- 1. Will VI (for policy optimization) always terminate?
- 2. At termination, we know $\max_{s,a} \left| Q_i^{\star}(s,a) Q_{i-1}^{\star}(s,a) \right| \leq \epsilon$, What can we say about $\max_{s,a} \left| Q_i^{\star}(s,a) Q^{\star}(s,a) \right|$?
- 3. And what can we say about the **performance of the greedy policy** $\widehat{\pi}$

defined as
$$\hat{\pi}(a|s) = \mathbb{I}\left[a = \underset{a'}{\operatorname{argmax}} Q_i^{\star}(s, a')\right]$$
? or simply $\hat{\pi}(s) = \underset{a'}{\operatorname{argmax}} Q_i^{\star}(s, a')$

The Solution Quality when VI Terminates (1/2)

Let $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be **any** function. Define

BellmanError
$$(f) = \max_{s,a} \left| f(s,a) - \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} f(s',a') \right) \right|$$

$$ValueError(f) = \max_{s,a} |f(s,a) - Q^*(s,a)|$$

Theorem

$$ValueError(f) \leq \frac{BellmanError(f)}{1 - \nu}$$

The Solution Quality when VI Terminates (2/2)

Let $f: S \times A \to \mathbb{R}$ be **any** function. Define $\pi_f(s) = \operatorname*{argmax}_a f(s,a)$

$$\pi_f(s) = \operatorname*{argmax}_a f(s, a)$$

$$V^*(\rho) - V^{\pi_f}(\rho) \le \frac{2}{1 - \gamma} \text{ ValueError}(f)$$

Combining the two theorems, we know that when VI (for policy optimization) terminates,

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \le \frac{2}{1 - \gamma} \text{ValueError}(Q_i^{\star}) \le \frac{2}{(1 - \gamma)^2} \text{BellmanError}(Q_i^{\star}) \le \frac{2\epsilon}{(1 - \gamma)^2}$$

where $\widehat{\pi}(s) = \operatorname{argmax}_{a} Q_i^{\star}(s, a)$

Policy Iteration

Policy Iteration

Policy Iteration

For
$$i = 1, 2, ...$$

$$\forall s, \qquad \pi_i(s) \leftarrow \operatorname*{argmax}_a Q^{\pi_{i-1}}(s, a)$$

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_i}(s, a) \ge Q^{\pi_{i-1}}(s, a)$$

When converged (i.e., $\pi_i = \pi_{i-1}$), we have $\pi_i = \pi^*$.

(We will prove this later.)

Generalized Policy Iteration

 $N = \infty \Rightarrow$ Policy Iteration

 $N = 1 \Rightarrow$ Value Iteration for policy optimization

For
$$i=1,2,...$$

$$\pi_i(s) = \max_a Q_i(s,a) \qquad \qquad \text{Policy update}$$

$$Q \leftarrow Q_i$$
 Repeat for N times:
$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \, \pi_i(a'|s') \, Q(s',a') \qquad \qquad \text{Value update}$$

$$Q_{i+1} \leftarrow Q$$

Notice: in value iteration for PO, there may not exist a policy π such that $Q_i = Q^{\pi}$ In contrast, in policy iteration we have $Q_i = Q^{\pi_{i-1}}$

VI for PO can be viewed as PI with incomplete policy evaluation

Summary

- Value Iteration for Policy Optimization (VI for PO)
 - Is essentially a **dynamic programming** algorithm
 - Finds the value functions of the optimal policy
- Value Iteration for Policy Evaluation (VI for PE)
 - Also a dynamic programming algorithm
 - Finds the value functions of the given policy
- Policy Iteration (PI)
 - An iterative policy improvement algorithm
 - Each iteration involves a policy evaluation subtask
- VI for PO and PI can be viewed as special cases of Generalized PI

Performance Difference Lemma

Recall: Regret

Regret =
$$\max_{\pi^*} \mathbb{E}^{\pi^*} \left[\sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(\tilde{s}_{t,h}, \pi^*(\tilde{s}_{t,h})) \right] - \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(s_{t,h}, a_{t,h}) \right]$$

$$\mathbb{E}[\text{Regret}] = \mathbb{E}\left[\sum_{t=1}^{T} \left(V_1^{\star}(s_{t,1}) - V_1^{\pi_t}(s_{t,1})\right)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \left(V_1^{\star}(\rho) - V_1^{\pi_t}(\rho)\right)\right]$$

$$V_1^{\pi}(\rho) \triangleq \mathbb{E}_{s \sim \rho}[V_1^{\pi}(s)]$$

Unanswered Questions

• For an estimation $\hat{Q}(s, a) \approx Q^*(s, a)$ with error, how can we bound

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho)$$
 where $\widehat{\pi}(s) = \underset{a}{\operatorname{argmax}} \widehat{Q}(s, a)$?

- How to show that Policy Iteration leads to monotonic policy improvement?
- Also, how are these methods related to the third challenge of online RL: credit assignment?

Performance Difference Lemma

For any two stationary policies π' and π in the discounted setting,

$$\mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

$$= \sum_{s, a} d_{\rho}^{\pi'}(s, a) \left(Q^{\pi}(s, a) - V^{\pi}(s) \right)$$

$$d_{\rho}^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{s_{h} = s\} \mid s_{1} \sim \rho \right]$$
 Discounted occupancy measure on state s

$$d_{\rho}^{\pi}(s,a) \triangleq \mathbb{E}^{\pi} \left[\sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{(s_h,a_h) = (s,a)\} \middle| s_1 \sim \rho \right]$$

Performance Difference Lemma

We can also swap the roles of π' and π and apply the same lemma

$$\mathbb{E}_{s \sim \rho}[V^{\pi}(s)] - \mathbb{E}_{s \sim \rho}[V^{\pi'}(s)] = \sum_{s,a} d^{\pi}_{\rho}(s) \left(\pi(a|s) - \pi'(a|s)\right) Q^{\pi'}(s,a)$$

$$\stackrel{\times (-1)}{\Rightarrow} \mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right] = \sum_{s,a} d^{\pi}_{\rho}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi'}(s,a)$$

Original version:

$$\mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

П

Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies π' and π in the fixed-horizon setting,

$$\mathbb{E}_{s_1 \sim \rho} \left[V_1^{\pi'}(s_1) \right] - \mathbb{E}_{s_1 \sim \rho} \left[V_1^{\pi}(s_1) \right] = \sum_{h=1}^{H} \sum_{s,a} d_{\rho,h}^{\pi'}(s) \left(\pi'_h(a|s) - \pi_h(a|s) \right) Q_h^{\pi}(s,a)$$

$$= \sum_{h=1}^{H} \sum_{s,a} d_{\rho,h}^{\pi'}(s,a) \left(Q_h^{\pi}(s,a) - V_h^{\pi}(s) \right)$$

$$d_{\rho,h}^{\pi}(s) \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{s_{h} = s\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}(s_{h} = s \mid s_{1} \sim \rho)$$

$$d_{\rho,h}^{\pi}(s,a) \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{(s_{h},a_{h}) = (s,a)\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}((s_{h},a_{h}) = (s,a) \mid s_{1} \sim \rho)$$

The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step

The sub-optimality of a policy π :

$$\mathbb{E}_{s\sim\rho}[V^{\star}(s)] - \mathbb{E}_{s\sim\rho}[V^{\pi}(s)]$$

If π is highly sub-optimal, then we can always find

- 1) An (s, a)-pair on the path of π such that $V^*(s) Q^*(s, a)$ is positive and large
- 2) An (s, a)-pair on the path of π^* such that $Q^{\pi}(s, a) V^{\pi}(s)$ is positive and large

$$= \sum_{s,a} d_{\rho}^{\pi}(s) \left(\pi^{*}(a|s) - \pi(a|s)\right) Q^{\pi^{*}}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi}(s,a) \left(V^{*}(s) - Q^{*}(s,a)\right)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s) \left(\pi^{*}(a|s) - \pi(a|s)\right) Q^{\pi}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s)\right)$$

Proof (Sketch) of Performance Difference Lemma

Unanswered Question 1

Suboptimality $\leq (1 - \gamma)^{-1}$ Value Error

Let $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be any function

lf

$$|f(s,a) - Q^*(s,a)| \le \epsilon \quad \forall s, a$$

then

$$V^*(s) - V^{\pi_f}(s) \le \frac{2\epsilon}{1 - \gamma} \quad \forall s$$

where $\pi_f(s) = \underset{a}{\operatorname{argmax}} f(s, a)$

Unanswered Question 2

Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_i}(s, a) \ge Q^{\pi_{i-1}}(s, a)$$

When converged (i.e., $\pi_i = \pi_{i-1}$), we have $\pi_i = \pi^*$.

$$\pi_{i} = \pi_{i-1}$$

$$\Rightarrow \pi_i(s) = \operatorname*{argmax}_{a} Q^{\pi_i}(s, a)$$

$$\Rightarrow Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \pi_i(a'|s') Q^{\pi_i}(s', a') = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^{\pi_i}(s', a')$$

- $\Rightarrow Q^{\pi_i}$ satisfies the Bellman optimality equation
- \Rightarrow BellmanError $(Q^{\pi_i}) = 0$

$$\Rightarrow Q^{\pi_i}(s,a) = Q^{\star}(s,a)$$
 by the "ValueError $\leq \frac{1}{1-\gamma}$ BellmanError" lemma on Page 38

$$\Rightarrow \pi_i(s) = \operatorname*{argmax}_a Q^*(s, a) = \pi^*(s).$$

Recap: MDP

- Definitions of $Q^{\pi}(s,a), V^{\pi}(s), Q^{\star}(s,a), V^{\star}(s)$
- Bellman equations (related to dynamic programming)
- Value Iteration to approximate $Q^{\pi}(s,a)/V^{\pi}(s)$ or $Q^{\star}(s,a)/V^{\star}(s)$
- Policy Iteration to find π^* --- involving $Q^{\pi}(s,a)/V^{\pi}(s)$ approximation
- Unified by Generalized Policy Iteration
- Performance difference lemma to decompose $\mathbb{E}_{s \sim \rho} \left[V^{\pi'}(s) \right] \mathbb{E}_{s \sim \rho} \left[V^{\pi}(s) \right]$
 - Credit assignment
 - = $\sum_{s,a} d_{\rho}^{\pi}(s,a) \left(V^{\pi'}(s) Q^{\pi'}(s,a) \right)$ (helpful in analyzing VI by letting $\pi' = \pi^*$)
 - = $\sum_{s,a} d_{\rho}^{\pi'}(s,a) \left(Q^{\pi}(s,a) V^{\pi}(s)\right)$ (helpful in analyzing PI by letting $\pi' = \pi_{i+1}$)

Next

- Our discussion indicates there are two potential ways to find optimal policy
 - Value-Iteration-based: approximate $\hat{Q}(s, a) \approx Q^*(s, a)$ and let $\hat{\pi}(s) = \underset{a}{\operatorname{argmax}} \hat{Q}(s, a)$
 - Policy-Iteration-based: approximate $\hat{Q}(s,a) \approx Q^{\pi}(s,a)$ and let $\hat{\pi}(s) = \operatorname*{argmax}_{a} \hat{Q}(s,a)$
 - ... or something in between (based on generalized policy iteration)
- RL algorithms we will discuss:
 - Performing approximate VI or PI using samples