<u>Design and Fabrication of a Long Endurance DEP Aircraft using Battery Power</u> <u>Source / Fuel Cell Tech</u>

Group members: Richard Adjei, Yang LIU, Linuo JIANG, Zhiqing SHI, Xuming OU

Target: Long endurance: 3 - 4 hours of flight using batteries/ Fuel Cell Use: Smart agriculture, aerial surveillance

Process flow chart of the general drone aerostructural assessment

Conceptual Design Phase

This is the early stage where broad design choices are made.

A. Mission Requirements

- Define purpose: passenger transport, cargo, military, surveillance, etc.
- Payload, range, speed, altitude, field performance.
- Operational environment (e.g., civil airports, carrier operations, rough fields).

B. Initial Configuration

- Select configuration: wing placement, tail type, fuselage shape.
- Choose engine type: turbofan, turboprop, piston, electric, etc.
- Estimate weight and size.
- Use empirical formulas or software (e.g., NASA's OpenVSP) to get initial shapes.

C. Performance Estimation

- Use handbook methods or MATLAB/Python tools to estimate:
 - Lift-to-drag ratio (L/D)
 - Thrust-to-weight ratio (T/W)
 - o Wing loading (W/S)
- Constraint analysis: Draw matching graphs to determine design point.

D. Feasibility Studies

- Trade studies for design alternatives.
- Cost vs. performance vs. manufacturability.
- Initial compliance with aviation regulations (FAA/EASA).

% 2. Preliminary Design Phase

Detailed analysis of selected configuration.

A. Aerodynamic Design

- Airfoil selection for wings/tails.
- 3D wing design (span, sweep, dihedral, twist).
- High-lift devices: flaps, slats.
- Computational Fluid Dynamics (CFD) simulations.

B. Weight Estimation

- Detailed breakdown:
 - o Structure
 - Propulsion
 - o Avionics
 - o Payload
 - o Fuel
- Center of Gravity (CG) range analysis.

C. Propulsion Integration

- Engine performance modeling (e.g., thrust lapse rate).
- Inlet and nozzle design.
- Fuel system planning.

D. Structural Design

- Material selection (aluminum, composites, titanium).
- Load paths and stress analysis (e.g., using Finite Element Method FEM).
- Design of fuselage frames, stringers, wing spars, and ribs.

E. Stability and Control

- Static and dynamic stability.
- Control surface sizing.
- Longitudinal, lateral, and directional handling qualities.

F. Systems Layout

- Avionics placement.
- Electrical and hydraulic systems.
- Landing gear configuration and retraction mechanism.

3. Detailed Design Phase

Transition from concept to manufacturable parts.

A. CAD Modeling

- Full 3D solid modeling (e.g., CATIA, Siemens NX, SolidWorks).
- Detailed geometry for all parts and assemblies.

Interference and tolerance checks.

B. System Integration

- Wire harness routing.
- Integration of sensors, actuators, and software.
- Redundancy and fault tolerance analysis.

C. Manufacturing Planning

- Material procurement.
- Tooling and jig design.
- Assembly procedures.

D. Documentation

- Engineering drawings.
- Bill of Materials (BOM).
- Maintenance and operation manuals.

4. Testing and Validation

A. Ground Testing

- Structural tests: static, fatigue, crashworthiness.
- Systems checks: hydraulics, avionics, landing gear.
- Engine run-up tests.

B. Wind Tunnel Testing

- Low- and high-speed tests of scale models.
- Validation of CFD results.

C. Flight Testing

- Envelope expansion: handling at various speeds/altitudes.
- Performance and stability verification.
- Certification testing (FAA Part 23/25, MIL-SPECs, etc.).

5. Certification & Production

A. Certification

- Regulatory compliance (e.g., FARs, CS-25).
- Design data approval.
- Environmental certification (noise, emissions).

B. Production Readiness

- Supply chain alignment.
- Quality assurance setup.
- Final assembly line layout.

C. Support Planning

- Training materials for pilots and maintenance.
- Spare parts logistics.
- In-service support documentation.

6. Post-Production & Upgrades

- Operational feedback and incident analysis.
- Mid-life upgrades: avionics, engines, interiors.
- Variant design: stretched versions, cargo models, etc.

1. Conceptual Design Phase – Common Problems

Area	Problem	Explanation
Requirements	Unclear or changing requirements	Stakeholders (military, airline, etc.) may modify specs mid- process, impacting the entire design.
Configuration	Overly ambitious design	Choosing novel or unproven layouts (e.g., blended wing body) can increase complexity and risk.
Sizing	Incorrect weight or thrust estimates	Early estimations based on assumptions can lead to underpowered or overweight aircraft.
Trade Studies	Inadequate trade-off analysis	Failing to explore enough alternatives can lock the project into a suboptimal path.
Regulations	Neglecting early regulatory input	Not accounting for certification requirements (e.g., FAR 25) can lead to major redesigns later.

2. Preliminary Design Phase – Common Problems

Area	Problem	Explanation
Aerodynamics	CFD results that contradict wind tunnel data	CFD is sensitive to mesh and turbulence models, which can lead to misleading results.
Structural Design	Weight growth	Structural reinforcements add weight, which snowballs across the design (e.g., more lift \rightarrow larger wings \rightarrow more weight).
Propulsion	Engine-airframe integration issues	Engine placement can affect aerodynamics, noise, and maintenance access.
Stability & Control	Poor dynamic stability	Improper tail sizing or CG location can result in oscillatory or unstable flight characteristics.
Systems Layout	Space conflicts	Subsystems may compete for space or interfere with structural members, especially in tightly packed designs.

Area	Problem	Explanation
Human Factors	Neglecting cockpit ergonomics	Early designs sometimes miss pilot visibility, reachability, or workload issues.

∂ 3. Detailed Design Phase – Common Problems

Area	Problem	Explanation
CAD Models	Integration mismatches	Subsystems designed by different teams might not fit together due to tolerance or miscommunication.
Systems Integration	Wiring & plumbing clashes	Routing electrical, hydraulic, and fuel lines through confined spaces is prone to errors.
Manufacturing	Designs that are hard to build	Sharp corners, complex curves, or non-standard materials increase tooling complexity and cost.
Documentation	Incomplete or inconsistent drawings	Errors in BOMs or drawings lead to rework and delays on the shop floor.
Supply Chain	Unavailable or long- lead parts	Relying on rare materials or components not in production can cause critical path delays.

♦ 4. Testing and Validation – Common Problems

Area	Problem	Explanation
Ground Tests	Test article failures	Components may fail under static or fatigue loads due to overlooked stress concentrations.
Wind Tunnel	Scale model issues	Scaling laws (Reynolds number, Mach number) may not represent full-scale behavior well.
Flight Test	Unexpected behavior	Aircraft may display flutter, control reversal, or handling problems not predicted in simulations.
Certification	Noncompliance with regulations	Overlooking specific certification rules can require costly retrofits or testing redo.

Area	Problem	Explanation
Safety	Inadequate fail-safes	Failure to simulate critical failures (engine-out, fire) can reveal last-minute safety gaps.

5. Certification & Production – Common Problems

Area	Problem	Explanation
Certification	Lack of documentation or traceability	Authorities require detailed compliance documentation and testing traceability.
Quality Control	Manufacturing defects	Inconsistent workmanship or inadequate quality checks can lead to rejected parts or field failures.
Production Readiness	Inadequate tooling or automation	Production bottlenecks arise if manufacturing was not considered early in design.
Cost Overruns	Design creep	Added features, systems, or performance targets inflate costs late in the process.

6. Post-Production – Common Problems

Area	Problem	Explanation
In-Service Support	Poor maintainability	Difficult access to components, unclear maintenance manuals increase operating costs.
Upgrades	Integration of new tech	Adding newer avionics or engines might not be compatible with original design.
Feedback Loop	Slow response to field issues	Delayed or ineffective product support damages reputation and trust.