

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF ANISOTROPIC STRENGTH (COMPOSITION OF MAGNET MATERIALS: N44Fe69Co5Nb3B19)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF COERCIVE FORCE (VARIOUS ANISOTROPIC EXCHANGE SPRING MAGNETS IN TABLE 1)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF ANISOTROPIC STRENGTH (COMPOSITION OF MAGNET MATERIALS: Nd4Fe68Co5Nb3B20)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF COERCIVE FORCE (COMPOSITION OF MAGNET MATERIALS: Nd4Fe68Co5Nb3B20)

RELATION BETWEEN AMORPHOUS CONTENT AND RELATIVE VALUE OF MAXIMUM ENERGY PRODUCT (COMPOSITION OF MAGNET MATERIALS: Nd4Fe₆₉Co₅Nb₃B₁₉)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF ANISOTROPIC STRENGTH (COMPOSITION OF MAGNET MATERIALS: Nd9Fe75CogV2B6)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF COERCIVE FORCE (COMPOSITION OF MAGNET MATERIALS: Nd9Fe75C08V2B6)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF ANISOTROPIC STRENGTH (COMPOSITION OF MAGNET MATERIALS: NdgFe76CogV2B6)

RELATION BETWEEN NUMBER OF CYCLES AND RELATIVE VALUE OF COERCIVE FORCE (COMPOSITION OF MAGNET MATERIALS: NdgFe76CogV2B6)

(COMPOSITION OF MAGNET MATERIALS: NdxFe84-xC08V2B6) RELATION BETWEEN CONTENT X AND MAXIMUM ENERGY PRODUCT

COMPARISON OF NUMBER OF CYCLES AND RELATIVE VALUE OF ANISOTROPIC STRENGTH WHEN CRYSTALLIZATION TREATMENTS ARE DIFFERENT (COMPOSITION OF MAGNET MATERIALS: Nd7Fe77C08V2B6)

FIG.13

STRUCTURE OF DRIVING MOTOR

106290' 26826860

PRES OF A	PRESENCE OR ABSENCE OF ANISOTROPY	MAIN PERMANENT MAGNET MATERIALS	MAIN SOFT MAGNETIC MATERIALS
PRE	PRESENT	Nd-Fe-B-BASED MATERIALS	Fe, Fe-B, Fe-C, Fe-Co
PRE	PRESENT	Sm-Fe-N-BASED MATERIALS	Fe, Fe-N, Fe-Co
PRI	PRESENT	Sm-Fe-N-B-BASED MATERIALS Fe, Fe-N, Fe-B, Fe-Co	Fe, Fe-N, Fe-B, Fe-Co
PRI	PRESENT	Nd-Fe-B-BASED MATERIALS TbCu ₇ type	Fe, Fe-B, Fe-Co
PRI	PRESENT	Sm-Fe-N-BASED MATERIALS TbCu ₇ type	Fe, Fe-N, Fe-Co
PR	PRESENT	Sm-Co-BASED MATERIALS	Fe, Fe-Co, Co
PRI	PRESENT	Sm-Co-B-BASED MATERIALS	Fe, Fe-B, Fe-Co, Co
PRI	PRESENT	Ba Fe ₁₂ O ₁₉ BASED MATERIALS Sr Fe ₁₂ O ₁₉ BASED MATERIALS	Mn-Zn-BASED FERRITE Ni-Zn-BASED FERRITE Fe304-BASED FERRITE