

Probeklausur Grundlagen der Technischen Informatik 2

Sommersemester 25

Die zur Teilnahme erforderliche Prüfungsvorleistung habe ich vollständig erbracht.	Unterschrift:			
Matrikelnummer:	Studienfach:			
Name:	Vorname:			

Hinweise zur Bearbeitung

- Zum Bestehen sind 50% der Punkte notwendig.
- Der Lösungsweg muss erkennbar sein, die Angabe von Endergebnissen genügt nicht!
- Lassen Sie die Aufgabenblätter zusammengeheftet und schreiben Sie auf <u>alle</u> Blätter ihre Matrikelnummer.
- Sie können Aufgaben auf der Rückseite oder einem Extrablatt fortführen. Kennzeichnen Sie dies eindeutig!
- Hilfsmittel sind nicht zulässig. Nicht-Muttersprachler Deutsch dürfen ein deutsches Wörterbuch benutzen.
- Mobiltelefone sowie "smarte" Geräte (z.B. Smartwatches) sind auszuschalten und vom Tisch zu entfernen!

Punkte werden vom Prüfer ausgefüllt.

Aufgabe	1	2	3	4
Max. Punktzahl	10	10	10	10
Punktzahl				
Gesamt	40			
Note				

1. Füllen Sie den folgenden Lückentext aus.

[5 Punkte]

2. Wandeln Sie die Dezimalzahl 18.18₁₀ in eine IEEE754 32-bit single-precision floatingpoint Zahl um. Geben Sie Ihren Rechenweg an und markieren Sie am Ende in der Zahl Vorzeichen, Mantisse und Exponent. [5 Punkte]

VZ: 1 Exp: 8 Mancisse: 23 Bias: 127
VZ EXP
0100000110010001010100001010000

```
18:1 = 1 \text{ fo}
18:1 = 1 \text{ fo}
9:1 = 4 \text{ go}
1:2 = 0 \text{ fo}
1:2 = 0 \text{ fo}
1:2 = 0 \text{ fo}
1:3 = 2 \text{ fo}
1:
```

1. Sei die folgende Wahrheitswertetabelle gegeben:

[5 Punkte]

x_3	x_2	x_1	x_0	φ	x_3	x_2	x_1	x_0	φ
0	0	0	0	0	1	0	0	0	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1	1	1
0	1	1	0	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0

(a) Befüllen Sie das folgende KV-Diagramm mittels der Wahrheitswertetabelle:

(b) Führen Sie eine 1-Minimierung mit dem KV-Diagramm durch und geben Sie φ_{min} an. Kennzeichnen Sie die Primimplikanten im KV-Diagramm.

2. Gegeben sei das nachfolgende OBDD. Reduzieren Sie das OBDD so weit wie möglich. Geben Sie bei jedem Schritt die angewandte Regel an. [5 Punkte]

Regel 1: Elimination von Knoten mit gleichen Nachfolgern Regel 2: Gemeinsame Nutzung redundanter Teilbäume

Gegeben sei der folgende Automat A.

Abbildung 1: Schematische Repräsentation des Automaten A

1. Nennen Sie die Art des Automaten.

[1 Punkt]

Moore

2. Erstellen Sie die Zustandsablauftabelle. Gehen Sie davon aus, die Zustands-Bits in T-Flipflops zu speichern. Achten Sie dabei auf 'don't-care' Zustände. [4 Punkte]

index	Zustände Eingabe		Nächs	Nächste Zustände		Toggle Signale		Ausgabe	
	q_0	q_1	X	q_1^+	q_0^+	t_1	t_0	o_1	o_0
0	0	0	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0	1	1
2	0	1	0	0	0	1	0	0	1
3	0	1	1	1	1	0	1	0	1
4	1	0	0	×	×	×	×	×	×
5	1	0	1	×	×	×	×	×	×
6	1	1	0	0	٥	1	1	1	0
7	1	1	1	7	0	O	1	1	0

3. Erstellen Sie die Logikformeln für die Toggle-Signal-Bits t_0 und t_1 , sowie für die Ausgabesignal-Bits o_0 und o_1 . [2 Punkte]

4. Zeichnen Sie das, von Automat A repräsentierte Schaltwerk. Verwenden Sie T-Flipflops zur Zustandsspeicherung. [3 Punkte]

[10 Punkte]

[7 Punkte]

1. Algorithmic Logic Unit

Gegeben sei das folgende Schaltnetz.

Abbildung 2: Schaltnetz einer simplifizierten 8-Bit-ALU. **A** und **B** sind 8-Bit Eingänge, m_0 , m_1 und m_2 sind Steuer-Bits.

(a) Welche Arithmetischen oder Logischen Funktionen berechnet diese ALU in Abhängigkeit der jeweiligen Steuer-Bits?

$\operatorname{St}\epsilon$	euer-E	$_{ m lits}$	Funktion
m_2	m_1	m_0	F
0	0	0	F=0
0	0	1	F=B
0	1	0	F= A+8
0	1	1	F= ANB
1	0	0	F= A
1	0	1	F= 7B_
1	1	0	F = A+B +1 = A-B
1	1	1	F=ANB=n(ANB)=AUB=A-B

(b) Berechnen Sie die Ausgabe F für explizite Eingaben A und B und Belegungen der Steuer-Bits m_0 und m_1 .

Steuer-Bits		Eingabe A	Eingabe B	Ausgabe	
m_1	m_0	A	В	F	
1	1	0	00001001		11111011
0	1	1	00110101	11001001	1111110
0	0	0	00001001	00001010	0000000

2. Füllen Sie die folgende Tabelle aus, indem Sie die Eigenschaften zu jeder Speicherart angeben. [3 Punkte]

Speicherart	Programmierbar	Reversibel	Schreibbar	Statisch	Flüchtig
NV-RAM	×	×	×	×	
ROM				×	
SRAM	*	\times	X	×	×
EPROM	*	×		×	
PROM	×			×	
DRAM	X	×	\times		×