Hydrolysis of Salts and Reactions of Acids and Bases

Example 1

Determining the Acidic or Basic Nature of Salts

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral:

- (a) KBr
- (b) NaHCO₃
- (c) NH₄Cl
- (d) Na₂HPO₄
- (e) NH₄F

Solution

Consider each of the ions separately in terms of its effect on the pH of the solution, as shown here:

- (a) The K⁺ cation and the Br⁻ anion are both spectators, since they are the cation of a strong base (KOH) and the anion of a strong acid (HBr), respectively. The solution is neutral.
- (b) The Na $^{+}$ cation is a spectator, and will not affect the pH of the solution; while the $^{\rm HCO_3}{}^-$ anion is amphiprotic, it could either behave as an acid or a base. The $K_{\rm a}$ of $^{\rm HCO_3}{}^-$ is 4.7×10^{-11} , so the $K_{\rm b}$ of its conjugate base is $\frac{1.0\times 10^{-14}}{4.3\times 10^{-7}}=2.3\times 10^{-8}$.

Since $K_b >> K_a$, the solution is basic.

- (c) The ${\rm NH_4}^+$ ion is acidic and the Cl $^-$ ion is a spectator. The solution will be acidic.
- (d) The Na $^{+}$ ion is a spectator, while the ${\rm HPO_4}^{2-}$ ion is amphiprotic, with a $K_{\rm a}$ of 4.2×10^{-13} so that the $K_{\rm b}$ of its conjugate base is $\frac{1.0\times 10^{-14}}{6.2\times 10^{-8}}=1.6\times 10^{-7}$. Because $K_{\rm b} >> K_{\rm a}$, the solution is basic.
- (e) The $^{
 m NH_4}^+$ ion is listed as being acidic, and the F $^-$ ion is listed as a base, so we must directly compare the $K_{\rm a}$ and the $K_{\rm b}$ of the two ions. $K_{\rm a}$ of $^{
 m NH_4}^+$ is 5.6 × 10 $^{-10}$, which seems very small, yet the $K_{\rm b}$ of F $^-$ is 1.4 × 10 $^{-11}$, so the solution is acidic, since $K_{\rm a} > K_{\rm b}$.

Try yourself

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral:

- (a) K_2CO_3
- (b) CaCl₂
- (c) KH₂PO₄
- (d) $(NH_4)_2CO_3$
- (e) AlBr₃

Salts of strong acids and strong bases:

Formula	Strong Acid	Strong Base
NaCl	HCI	NaOH
KCI	HCI	КОН
NaNO ₃	HNO ₃	NaOH
KNO ₃	HNO ₃	КОН
Na ₂ SO ₄	H ₂ SO ₄	NaOH
K ₂ SO ₄	H ₂ SO ₄	КОН

Salts of strong acids and weak bases:

Formula	Strong Acid	Weak Base
NH ₄ Cl	HCI	NH₄OH
FeCl ₃	HCI	Fe(OH) ₃
PbNO ₃	HNO ₃	PbOH
CuSO ₄	H ₂ SO ₄	Cu(OH) ₂

Salts of weak acids and weak bases:

Formula	Weak Acid	Weak Base
CH₃COONH₄	CH₃COOH	NH ₄ OH
HCOONH ₄	НСООН	NH ₄ OH
(NH ₄) ₂ CO ₃	H₂CO₃	NH ₄ OH

Describe each as an acid, base, neutral salt, acidic salt, or basic salt. For each salt write a parent acid-base formation equation, dissociation equation, and hydrolysis equation (only for acidic and basic salts). For acids and bases write an equation to show how each reacts with water.

1.	NH_3	
2.	KCl	
3.	HNO_3	
4.	NaHCO ₃	
_	-1 0	
5.	RbOH	
6.	AlCl ₃	
_		

8.	NaC ₆ H ₅ O		
9.	Co(NO ₃) ₃		
10.	Na ₂ CO ₃		
10.	1402003		
Hvdro	llysis of Salts a	nd Reactions of Acids and Bases	
		id, base, neutral salt, acidic salt, or basic salt. For each salt v	vrite a
		and hydrolysis equation (only for acidic and basic salts). For	
bases v	write an equatio	n to show how each reacts with water.	
1.	NH_3		
2.	NaCl		
3.	HCl		
4.	NaCN		

5.	NaOH	
6.	$FeCl_3$	
υ.	reci3	
7.	HF	
8.	LiHCO ₃	
9.	Fe(NO ₃) ₃	
10.	$MgCO_3$	
11.	H_2S	
12.	HF	
13.	CaI_2	

14.	Mg(OH) ₂	
15.	Ba(OH) ₂	
16.	Describe why	Tums (CaCO ₃) neutralizes stomach acid.
17.	Describe why	Mg(OH)₂ is used in Milk of Magnesia as an antacid instead of NaOH.

ANSWERS

WS # 1 Hydrolysis of Salts and Reactions of Acids and Bases

Describe each as an acid, base, neutral salt, acidic salt, or basic salt. For each salt write a parent acid-base formation equation, dissociation equation, and hydrolysis equation (only for

acidic and basic salts). For acids and bases write an equation to show how each reacts with water.

1. NH₃ weak base

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

2. KCl **neutral salt**

$$HCl + KOH \rightarrow KCl + H_2O$$

 $KCl \quad \rightarrow \qquad K^{\scriptscriptstyle +} \quad + \qquad Cl^{\scriptscriptstyle -}$

3. HNO₃ strong acid

$$HNO_3 \ + \qquad H_2O \quad \rightarrow \qquad H_3O^+ \ + \qquad NO_3^-$$

4. NaHCO₃ basic salt

$$H_2CO_3$$
 + NaOH \rightarrow NaHCO₃ + H_2O

$$NaHCO \rightarrow Na^{+} + HCO_{3}^{-}$$

$$HCO_3^-$$
 + H_2O \rightleftarrows H_2CO_3 + OH^-

5. RbOH **strong base**

RbOH
$$\rightarrow$$
 Rb⁺ + **OH**⁻

6. AlCl₃ acid salt

3HCl + Al(OH)₃
$$\rightarrow$$
 AlCl₃ + 3H₂O

$$AlCl_3 \qquad \rightarrow \qquad Al^{+3} \quad + \qquad 3Cl^{-}$$

$$Al(H_2O)_6^{3+} \rightleftharpoons Al(H_2O)_5(OH)^{2+} + H^+$$

7. $H_2C_2O_4$ weak acid

WS # 2 Hydrolysis of Salts and Reactions of Acids and Bases

Describe each as an acid, base, neutral salt, acidic salt, or basic salt. For each salt write a parent acid-base formation equation, dissociation equation, and hydrolysis equation (only for

acidic and basic salts). For acids and bases write an equation to show how each reacts with water.

1. NH₃ weak base

$$NH_3$$
 + H_2O \rightleftarrows NH_4 + OH

2. NaCl **neutral salt**

$$NaCl \rightarrow Na^{+} \quad + \quad Cl^{-}$$

3. HCl strong acid

4. NaCN **basic salt**

$$NaCN \quad \rightarrow \quad Na^+ \quad + \qquad \quad CN^-$$

$$CN^{-} + H_2O \rightleftarrows HCN + OH^{-}$$

5. NaOH **strong base**

$$NaOH \quad \rightarrow \quad Na^{^{+}} \quad + \qquad OH^{^{-}}$$

6. FeCl₃ acid salt

$$FeCl_3 \quad \rightarrow \quad Fe^{+3} \quad + \qquad \quad 3Cl^-$$

$$Fe(H_2O)_6^{3+} \rightleftharpoons Fe(H_2O)_5(OH)^{2+} + H^+$$

7. HF weak acid

$$HF + H_2O \rightleftarrows H_3O^+ + F^-$$

8. LiHCO₃ basic salt

$$LiHCO_3 \rightarrow Li^+ + HCO_3^-$$

$$HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$$

$$Fe(NO_3)_3 \qquad \rightarrow \qquad Fe^{+3} \quad + \qquad \qquad 3NO_3^-$$

$$Fe(H_2O)_6^{3+}$$
 \rightleftarrows $Fe(H_2O)_5(OH)^{2+}$ + H^+

$$MgCO_3 \rightarrow Mg^{+2} + CO_3^{-2}$$

$$CO_3^{-2} + H_2O$$
 \rightleftarrows $HCO_3^{-} + OH^{-}$

$$H_2S$$
 + H_2O \rightleftarrows H_3O^+ + HS^-

$$HF$$
 + H_2O \rightleftarrows H_3O^+ + F^-

$$CaI_2 \rightarrow Ca^{+2} \quad + \quad 2I^-$$

14. Mg(OH)₂ weak base

$$Mg(OH)_2$$
 \rightleftarrows Mg^{+2} + $2OH^{-1}$

15. Ba(OH)₂ strong base

$$Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^{-1}$$

16. Describe why Tums (CaCO₃) neutralizes stomach acid. **It is a weak base and will neutralize acid.**

basic salt
$$CaCO_3 \rightarrow Ca^{+2} + CO_3^{-2}$$
 $CO_3^{-2} + H_2O \rightleftarrows HCO_3^{-} + OH^{-}$

17. Describe why Mg(OH)₂ is used in Milk of Magnesia as an antacid instead of NaOH. Mg(OH)₂ is weak base and releases OH⁻ slowly, whereas NaOH is a strong base which releases OH⁻ in high concentrations which is corrosive.

 $Mg(OH)_2$ \rightleftarrows Mg^{+2} + $2OH^-$ NaOH \rightarrow Na^+ + OH^-