נושאים במתמטיקה לתלמידי מח"ר-10444 סמסטר 2009ב

פתרון ממ"ן 11

שאלה 1

- $(A \setminus (B \cup C)) \cup ((B \cap C) \setminus A)$ (1 .x
 - $(A \cap B) \cup C$ (2
 - $(A\Delta B)\setminus C$ (3
 - $(A\Delta B)^c$ (4

د.

(4

A B

שאלה 2

א. S=0 או x+5=x או היא קבוצת כל הx-ים השלמים שמקיימים הייx-ים כל ה $A_{\rm l}$ א. $A_{\rm l}=\varnothing$ יים כאלה, ולכן x-ים כאלה, ולכן

(3

 $2x+5 \geq 7$ וגם 4-x>1 שמקיימים שמקיים הטבעיים כל ה-x-ל כל היא קבוצת היא A_2

$$x \ge 1$$
 או מקיימים $x < 3$

 $A_{2}=\left\{ 1,2
ight\}$ ו-2. לכן מ-3 הם 1 ו-2. לכן אווים 1 וכל המספרים הטבעיים שגדולים או שווים 1 וגם

.(
$$\pi=3.14...$$
 כי נזכור כי (נזכור כי $A_3=\left\{-4,-3,-2,-1,0,1,2,3\right\}$ - בדרך דומה ניתן לקבל ש

$$A_1 \cap A_2 = \emptyset \cap A_2 = \emptyset$$

, לכן הלימוד, בספר הלימוד, אכן לכן לפי הלימוד, $A_2 \subset A_3$ ש- של לראות קל (2

$$A_2 \cap A_3 = A_2 = \{1, 2\}$$

$$A_2 \cup A_3 = \{1, 2\} \cup \{-4, -3, ..., 2, 3\} = \{-4, -3, -2, -1, 0, 1, 2, 3\}$$
 (3)

ניתן לקבל תוצאה זו גם על סמך טענה הרשומה בשאלה 1.14 סעיף א.

- ב. 1) הטענה נכונה.
- . המספר 4 אינו נמצא ב-A, לכן הטענה אינה נכונה.
 - . הטענה אינה נכונה.

- . והטענה נכונה $\{3\} \in P(A)$ ולכן והטענה נכונה $\{3\} \subset A$ ולכן , $3 \in A$
- $A, 3 \in P(A)$ (-) שקול אחרות, שקול אם (או במילים אחרות, שקול ל-) (5) הטענה אינה נכונה אינה אינה P(A) יש רק קבוצות.
 - . והטענה נכונה, $\{\{3\}\} \subseteq A$ ולכן $\{3\} \in A$ ולכן (6
 - .הטענה אינה נכונה (7
- לכן הטענה , $4 \not\in A$ אך אם (8 אם ורק אם , $\{4\} \in P(A)$ אם ורק אם , $\{4\} \subseteq A$ אם אינה (8 אינה נכונה.
- פט לפי הנתון $A \subseteq \{2, \{3, 4\}\} \in P(A)$, לכן $\{2, \{3, 4\}\} \subseteq A$ אינה נכונה כי לפי הנתון $\{2, \{3, 4\}\} \subseteq P(A)$ אם ורק אם $\{2, \{3, 4\}\} \subseteq P(A)$ אם ורק אם $\{2, \{3, 4\}\} \subseteq P(A)$ ל-A.
 - $a \in \{a\}$.

$$\varnothing \subseteq \{a,\varnothing\}$$
 $\alpha \in \{a,\varnothing\}$

$$\{a\}\subseteq\{a,\varnothing\}$$

.
$$\big\{\big\{a\big\}\big\}\subseteq P(\big\{a\big\})$$
ולכן ומזה נובע ש- $\big\{a\big\}\in P(\big\{a\big\})$ ים ומזה ומזה ומזה ומזה $\big\{a\big\}\subseteq \big\{a\big\}$

.
$$\{\varnothing\}\subseteq P(\{a\})$$
 -ש מכאן ש- $\varnothing\in P(\{a\})$ ולכן $\varnothing\subseteq\{a\}$

שאלה 3

$$P(A) = \{\emptyset, \{1\}, \{\emptyset\}, \{1,\emptyset\}\}$$

$$P(B) = \{\emptyset, \{1\}, \{\{\emptyset\}\}, \{1, \{\emptyset\}\}\}\}$$

$$P(A) \setminus P(B) = \left\{ \left\{ \emptyset \right\}, \left\{ 1, \emptyset \right\} \right\}$$

$$P(B) \setminus P(A) = \{\{\{\varnothing\}\}, \{1, \{\varnothing\}\}\}\}$$

$$P(A) \setminus A = \{\{1\}, \{\emptyset\}, \{1,\emptyset\}\}$$

$$P(A) \setminus \{A\} = \{\emptyset, \{1\}, \{\emptyset\}, A\} \setminus \{A\} = \{\emptyset, \{1\}, \{\emptyset\}\}\}$$

שאלה 4

א. 1) הטענה אינה נכונה. כדי להוכיח זאת נביא דוגמא נגדית:

$$.$$
 $C=\{2,3\}$; $B=\{1,3\}$; $A=\{1,2\}$
$$.$$
 $A\neq C$, and , $A\setminus B=C\setminus B=\{2\}$. Here

 $C = \{2\}$; $B = \{1,3\}$; $A = \{1,2\}$: דוגמא נגדית (2

 $C \cup B = \{1,2,3\} \neq A$ אך , $A \setminus B = \{2\} = C$: אז

 $A \subseteq B$: נתון (1 .ב. 1)

והוכח הדרוש.

 $P(A) \subseteq P(B)$: צריך להוכיח

 $C \in P(B)$ אז , $C \in P(A)$ שאם (בעזרת הנתון) שלכיח להוכיח להוכיח (בעזרת הנתון)

 $C\subseteq B \Leftarrow C\subseteq A$ לכן , $A\subseteq B$ נוכיח זאת: אם , $C\in P(A)$ אז א $C\in P(A)$ נוכיח זאת: אם . $C\in P(B)$ אז א $C\subseteq A$ ומכאן נקבל שאם , $C\in P(B)$ אז א $C\subseteq A$ ומכאן נקבל שאם . $C\in P(A)$

<u>הערה חשובה</u>: כדי להוכיח טענות מסוג כזה, שים לב לכך שאנו "יוצאים" מההכלה שעלינו להוכיח ונעזרים בנתון, ולא "מפתחים" את ההכלה הנתונה- כפי שעושים סטודנטים רבים בקורס!

- : הטענה הרשומה בסעיף נכונה. נוכיח זאת (2
- . (1) $P(A) \subseteq P(B)$ נתון כי

 $,A\subseteq B$ שפירושו $A\in P(B)$,(1), ולכן, לפי הנתון $A\in P(A)$ שפירושו כמו-כן כמי שרצינו להוכיח.

. $P(A) \cup P(B) \subseteq P(A \cup B)$ צ.ל. כי (3

. $C \in P(A \cup B)$ אזי $C \in P(A) \cup P(B)$ כלומר, צ.ל. שאם

 $C \in P(B)$ או $C \in P(A)$ או $C \in P(A) \cup P(B)$

 $C\in P(A\cup B)$ ולפיכך $C\subseteq A\cup B$ לכן אם $A\subseteq A\cup B$ והרי $C\subseteq A$ אזי והרי $C\in P(A)$ אם כנדרש.

. $C \in P(B)$ באופן דומה מוכיחים עבור

. ננדרש. $C \in P(A \cup B)$ שלכן מתקיימת ההכלה, כנדרש. $C \in P(A \cup B)$

4) ההכלה ההפוכה אינה נכונה. נוכיח זאת בעזרת דוגמה נגדית:

$$B = \{2\}$$
 , $A = \{1\}$: נבחר

(1)
$$\{1,2\} \in P(A \cup B)$$
 ולכן $A \cup B = \{1,2\}$

 $\{1,2\} \notin P(B)$ וכן $\{1,2\} \nsubseteq B$ וכן $\{1,2\} \notin P(A)$ ולכן $\{1,2\} \nsubseteq A$ מצד שני, $\{1,2\} \nsubseteq A$

(2)
$$\{1,2\} \notin P(A) \cup P(B)$$

 $P(A \cup B) \nsubseteq P(A) \cup P(B)$ מ-(1) ו- (2) נובע ש-

(כי $\{1,2\}$ הוא איבר של הקבוצה באגף שמאל ואינו איבר של הקבוצה באגף ימין).

שאלה 5

$$A \cap B \setminus (A \cap B) = \emptyset$$
 - א. לפי ההגדרה $A \cap B = (A \cup B) \setminus (A \cap B)$ לכן מהנתון נובע ש- $A \cap B$ ו- $A \cap B$ ו- $A \cap B$ ו- $A \cap B$ ו- $A \cap B$ מתקיים: $A \cap B \cap A \cap B$

(2)
$$A\cap B\subseteq A\subseteq A\cup B \quad \text{, Ideal} \ , A\cap B\subseteq A\subseteq A\cup B$$
 מהרי,
$$A\cup B=A\cap B \quad \text{ and prive}$$
 מה- (1) ו- (2) נקבל שמתקיים

ב. בהוכחת טענה זו נעזר באלגברה של קבוצות.

$$A \setminus (B \cap C) = A \cap (B \cap C)^c = A \cap (B^c \cup C^c) = (A \cap B^c) \cup (A \cap C^c) = (A \setminus B) \cup (A \setminus C)$$

$$\uparrow \qquad \qquad \uparrow$$
חוקי הפילוג

 $x\in A\cap C$ נניח, בשלילה, שלא מתקיים . $A\cap C=\varnothing$ נניח, שלא מתקיים . $x\in C$ נמצא בחיתוך, ולכן $x\in A$ וגם $x\in C$

 $x \notin B$ ובשני $x \in B$ ובשני מקרים, באחד

 $x \in B$ אם *

וגם בנתון אם תבונן בנתון $x \in C$, $x \in A$ הרי שאז אז $x \in C$

 $x\in A\setminus ig(B\setminus Cig)$ -ומכאן ש $x\in A$ ו ומכאן ש $A\setminus ig(B\setminus Cig)\subseteq ig(A\setminus Big)\setminus C$

 $x \in (A \setminus B) \setminus C$ לכן, לפי ההכלה הנתונה מתקיים גם ש-

מצד שני, $x \not\in \left(A \setminus B\right) \setminus C$ -ש ומכאן הכן , $x \not\in A \setminus B$ הכן , $x \in B$ -ו וזה א שני, $x \in A$

ישלה 1.20 לפי או מתקיים, לפי שתי הרי לכל שתי הרי לכל ב- . ${\it C}$ הרי למצא או או לא נמצא ב- x

.) וקיבלנו סתירה. אז $D \setminus E \subseteq D$ אם חלכן ולכן ולכן ולכן $D \setminus E \subseteq D$

$x \notin B$ to *

 $x
otin B\setminus C$ (מאותם שיקולים כמו קודם) . x
otin B ו- x
otin C הרי שאז x
otin C ולכן, לפי ההכלה הנתונה מתקיים גם ש- x
otin C ולכן, לפי ההכלה הנתונה x
otin C ולכן x
otin C וגם במקרה זה קיבלנו סתירה. x
otin C מצד שני, x
otin C וגם x
otin C וגם במקרה זה קיבלנו סתירה.

 $A \cap C = \emptyset$ מכיוון שקיבלנו סתירה, לכן הנחת השלילה אינה נכונה ומתקיים