- a. If $T(n) \in \Theta(n^2)$, then $\Rightarrow T(n) \in O(n^2)$ and $T(n) \in \Omega(n^2)$. $T(n) = 6n^2 + 4n + 3$
 - i. [For O(n)] $T(n) \le C(g(n))$ for all $n \ge n_0$
 - 1. $6n^2+4n+3 \le Cn^2 \quad \forall \ n \ge n_0$ //Find C and n_0
 - 2. $T(1) = 6(1)^2 + 4(1) + 3 \le C(1)^2$ $\forall n \ge 1$
 - 3. $6+4+3 = 13 \implies 13 \le C \quad \forall \quad n \ge 1$
 - 4. C = 13 and $n_0 = 1$
 - ii. [For $\Omega(n)$] $T(n) \ge C(g(n))$ for all $n \ge n_0$
 - 1. $6n^2+4n+3 \ge Cn^2$ $\forall n \ge n_0$ //To find C and n_0 I will set n=1
 - 2. $6(1)^2 + 4(1) + 3 \ge C(1)^2$ $\forall n \ge 1$
 - 3. $13 \ge C$ \forall $n \ge 1$
 - 4. C = 13 and $n_0 = 1$
- b. $O(n^4)$ is NOT a tight upper bound for T(n). Since we know that $T(n) \in \Theta(n^2)$, then that implies that the tight upper bound is $O(n^2)$.
- c. $\Omega(n)$ is NOT a tight lower bound for T(n) because we can prove that $\Omega(n^2)$ is a lower bound for T(n). Since $T(n) \in \Theta(n^2)$, that means that the tight lower bound is $\Omega(n^2)$.