ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

ИССЛЕДОВАНИЕ ЭФФЕКТА ОТ ИЗМЕНЕНИЯ ИНТЕРФЕЙСА САЙТА "КО ВТОРОЙ"

Исполнители – студенты группы БПИ52: Захаров С., Кулагин А., Козлова Е.

СРАВНИВАЕМЫЕ ВАРИАНТЫ

В качестве объекта эксперимента был выбран курсовой проект текущего года одного из участников группы (Козловой Е.А.). Курсовой проект представляет собой сайт, веб-клиент сервиса РУЗ. С помощью сайта пользователь может посмотреть своё расписание и найти свободные аудитории в корпусах НИУ ВШЭ. Ссылка на сайт: http://kovtoroy.ru

Для просмотра расписания от пользователя требуется ввести корпоративную почту, которая впоследствии передается в качестве параметра в запросе к серверу РУЗ. Таким образом, систематическое пользование сайтом напрямую связано с тем, захочет ли пользователь ввести адрес своей почты. Следовательно, хотелось бы повысить вероятность того, что зайдя на сайт, пользователю захочется её ввести.

Рис. 1. Исходный вариант интерфейса

Мы сделали предположение, что в исходном варианте интерфейса пользователю может показаться неочевидным, куда следует вводить адрес почты, поэтому можно попробовать привлечь его внимание, подтолкнуть к действию. Для этого мы решили разместить в "шапке" сайта контрастный зазывающий баннер с полем для ввода почты.

Рис. 2. Интерфейс с баннером

ГИПОТЕЗА ЭКСПЕРИМЕНТА

Нулевая гипотеза:

 $\mathbf{H_0}$: $\mathbf{M}(\mathbf{x}) = \mathbf{M}(\mathbf{y})$, где x и y - количество пользователей, совершивших ввод почты в каждой из групп.

То же самое, но словами: добавление баннера не повлияло на количество достижений цели, т.е. на желание пользователя ввести корпоративную почту.

Альтернативная гипотеза:

 H_A : $M(x) \neq M(y)$

То же самое, но словами: изменения в интерфейсе повлекли за собой изменение количества достижений цели, т.е. пользователи, увидевшие баннер, (скорее всего) охотнее вводят свою корпоративную почту.

ПЕРЕМЕННЫЕ ЭКСПЕРИМЕНТА

Независимые: факт показа баннера пользователю, бинарный признак.

Зависимые: факт ввода пользователем почты, бинарный признак.

ПЛАН ЭКСПЕРИМЕНТА

- 1. Выбираем как можно большее количество испытуемых из числа студентов НИУ ВШЭ. Для этого мы распространили предложение воспользоваться сервисом по студенческим пабликам и беседам VK. Кроме того, наше объявление согласилась разместить организация The Vyshka в своем Telegram-канале.
- 2. Проводим опыт слепым методом, то есть не сообщаем пользователям, что они участвуют в эксперименте. Каждому испытуемому равновероятно случайным образом показываем или не показываем баннер. Вариант отображения интерфейса фиксируется в local storage браузера, поэтому при повторном заходе на сайт с того же устройства через тот же браузер вариант отображения интерфейса останется неизменным.
- 3. Связываем Яндекс.Метрику и информацию о том, показан или скрыт баннер при помощи "параметров визитов" Метрики.
- 4. Фиксируем действия пользователя с помощью Яндекс.Метрики. Для этого зададим целевое действие "Ввод почты" и будем рассматривать его достижение новыми пользователями (определяется Метрикой).
- 5. Формируем отчет Яндекс.Метрики в зависимости от "параметров визитов" с указанием сегмента "новые пользователи". В этом отчете отображены данные о том, сколько новых пользователей посетило сайт для каждого варианта интерфейса и соответствующее количество пользователей, достигших целевого действия.
- 6. Анализируем полученные данные с помощью двухвыборочного t-критерия Стьюдента а также с помощью критерия χ^2 Пирсона. Подробнее анализ (обозначения, формулы, вычисления) представлен ниже.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Используем следующие обозначения:

n – количество уникальных посетителей

k -количество посетителей, достигших цели

 \overline{X} — выборочное среднее

 $\overline{\sigma}^2$ — выборочная несмещённая дисперсия

t — критерий Стьюдента

В ходе эксперимента получены следующие данные из Яндекс.Метрики с 13 по 24 мая 2018 года:

Группа пользователей X, которым баннер показывался:

$$n_X = 113$$

$$k_{x} = 75$$

Группа пользователей Ү, которым баннер не показывался:

$$n_Y = 109$$

$$k_{v} = 43$$

вычисления

Рассматриваемая случайная величина — факт достижения пользователем цели. Достижение примем за 1, а недостижение за 0. Тогда случайная величина распределена биномиально.

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n_X}$$

$$\bar{\sigma}_X^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X}_i)^2}{n_X - 1}$$

Нулевая гипотеза состоит в том, что введение изменения в интерфейсе не повлияло на количество достижений цели, т.е. математические ожидания в двух группах одинаковы.

Дисперсии неизвестны (но предполагается, что одинаковы), поэтому для проверки равенства мат. ожиданий используем следующую формулу для критерия Стьюдента:

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{(n_X - 1)\bar{\sigma}_X^2 + (n_Y - 1)\bar{\sigma}_Y^2}} \cdot \sqrt{\frac{n_X \cdot n_Y (n_X + n_Y - 2)}{n_X + n_Y}} \sim t(n_X + n_Y - 2)$$

Вычисленное значение критерия по формуле, приведённой выше с использованием данных, полученных из Яндекс Статистики:

$$t = 4.1545$$

Количество степеней свободы = 220.

По таблице критических значений критерия Стьюдента находим подходящее значение на уровне значимости 0.001:

$$t_{0.999} = 3.3398$$

Вычисленное значение критерия больше критического, поэтому гипотезу об отсутствии влияния изменения интерфейса на достижение цели не принимаем.

Теперь проанализируем полученные данные с помощью критерия χ^2 Пирсона. Для этого заполним таблицу сопряженности.

	Почта введена	Почта не введена	Всего
Баннер показывается	75	38	113
Баннер не показывается	43	66	109
Всего	118	104	222

Теперь рассчитаем таблицу ожидаемых значений:

	Почта введена	Почта не введена	Всего
Баннер показывается	60.06	52.94	113
Баннер не показывается	57.94	51.06	109
Всего	118	104	222

Критерий рассчитываем по следующей формуле:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

где i – номер строки (от 1 до r), j – номер столбца (от 1 до c), O_{ij} – фактическое количество наблюдений в ячейке ij, E_{ij} – ожидаемое число наблюдений в ячейке ij.

$$\chi^2 = 16.15$$

Определяем число степеней свободы по формуле: $f = (r-1) \times (c-1)$. У нас число степеней свободы равно 1.

Сравниваем полученное значение критерия χ^2 с критическими: 16.15 > 3.841 (при $\alpha = 0.05$), 16.15 > 6.635 (при $\alpha = 0.01$), следовательно зависимость ввода корпоративной почты от наличия баннера в шапке сайта статистически значима, нулевая гипотеза не принимается.

ЗАКЛЮЧЕНИЕ

Итак, эксперимент подтвердил предположение, что наличие контрастного баннера в самом верху страницы повышает вероятность того, что пользователю захочется ввести почту. Предположение подтвердилось результатами расчета как t-критерия Стьюдента, так и критерия χ^2 Пирсона.

Полученный результат подтверждает, что контрастный зазывающий баннер побуждает пользователя сделать некоторое действие. К тому же, с баннером быстрее становится понятно, куда и как нужно вводить свою почту (для ввода в баннер нужен один клик, при отсутствии баннера нужно сделать 2 клика), наличие баннера увеличивает интуитивность интерфейса.

Таким образом, при помощи слепого рандомизированного A/B тестирования мы доказали факт того, что размещение предложенного баннера улучшает эргономичность сайта "Ко второй".