Balance: Une famille de contraintes

Emilie Picard-Cantin

Christian Bessiere, Emmanuel Hebrard, Zeynep Kiziltan, Claude-Guy Quimper, George Katsirelos, Toby Walsh

Université Laval

11 avril 2014

Table des matières

- Introduction
- Notions de base
- Famille Balance

- 4 Décompositions
- 6 Algorithme de filtrage
- 6 Résultats expérimentaux
- Conclusion

Qu'est-ce que Balance?

- Contrainte sur le nombre d'occurences des valeurs
- But : Distribution équilibrée des valeurs aux variables
- Application : Balancement des charges de travail (confection d'horaires)

Domaine et assignation

Assignation

Attribution à chaque variable d'une valeur de son domaine.

Nombre d'occurrences

Nombre de fois qu'une valeur v est assignée à une variable. On note occ(v).

Exemple

Variable $X_{e,j}$: tâche faite par l'employé e au jour j

Valeurs possibles:

Domaine : qualifications de l'employé

Contrainte (notée C)

Relation sur un ensemble de variables \mathcal{X} .

Satisfaction d'une contrainte C

Une assignation satisfait C si l'ensemble des valeurs attribuées respectent la relation définie par C.

Exemple

$$C = AllDifferent(X_{1,j}, X_{2,j}, X_{3,j})$$

$$\uparrow \uparrow$$

Pour jour j: occ(9) = 1, occ(9) = 1

Filtrage de domaine

Cohérence de domaine

Lorsque toutes les valeurs des domaines contribuent à une solution potentielle (solution qui respectent les contraintes).

Infaisabilité

Non existance de solutions potentielles

Propagation de contraintes

Procédure visant à éliminer dans les domaines les valeurs ne contribuant à aucune solution potentielle.

Algorithme de filtrage

Conclusion

Résultats expérimentaux

Balance

Définition

$$\mathsf{BALANCE}([X_1, \dots, X_n], B) \iff \\ \mathsf{max} \quad \mathsf{occ}(v) - \quad \mathsf{min} \quad \mathsf{occ}(v)$$

$$B = \max_{v \in \{X_1, ..., X_n\}} occ(v) - \min_{v \in \{X_1, ..., X_n\}} occ(v)$$

$$occ(9) = 0, occ(9) = 5, occ(9) = 2$$

$$B = \max - \min = 5 - 2 = 3 \implies B \in [3,3]$$

Introduction

Balance*

Définition

BALANCE*
$$(\mathcal{V}, [X_1, \dots, X_n], B) \iff$$

$$B = \max_{v \in \mathcal{V}} \operatorname{occ}(v) - \min_{v \in \mathcal{V}} \operatorname{occ}(v)$$

$$occ(5) = 0, occ(5) = 5, occ(5) = 2$$

$$B = \max - \min = 5 - 0 = 5 \quad \Rightarrow \quad B \in [5, 5]$$

AtMostBalance

Définition

ATMOSTBALANCE(
$$[X_1, \ldots, X_n], B$$
) \iff

$$B \geqslant \max_{\boldsymbol{v} \in \{X_1, \dots, X_n\}} \operatorname{occ}(\boldsymbol{v}) - \min_{\boldsymbol{v} \in \{X_1, \dots, X_n\}} \operatorname{occ}(\boldsymbol{v})$$

$$occ(3) = 0, occ(3) = 5, occ(3) = 2$$

$$B \geqslant \max - \min = 5 - 2 = 3 \implies B \in [3, 7]$$

AtMostBalance*

ATMOSTBALANCE*

ATMOSTBALANCE*
$$(\mathcal{V}, [X_1, \dots, X_n], B) \iff B \geqslant \max_{v \in \mathcal{V}} \operatorname{occ}(v) - \min_{v \in \mathcal{V}} \operatorname{occ}(v)$$

$$\operatorname{occ}(\clubsuit) = 0, \quad \operatorname{occ}(\clubsuit) = 5, \quad \operatorname{occ}(\clubsuit) = 2$$

$$B \geqslant \max - \min = 5 - 0 = 5 \implies B \in [5, 7]$$

Introduction

Notions de base

Définition

$$ATLEASTBALANCE([X_1, ..., X_n], B) \iff$$

$$B\leqslant \max_{\boldsymbol{\nu}\in\{X_1,\ldots,X_n\}}\operatorname{occ}(\boldsymbol{\nu})-\min_{\boldsymbol{\nu}\in\{X_1,\ldots,X_n\}}\operatorname{occ}(\boldsymbol{\nu})$$

ATLEASTBALANCE*

$$\mathsf{ATLEASTBALANCE}^*(\mathcal{V},[X_1,\ldots,X_n],B) \iff$$

$$B \leqslant \max_{v \in \mathcal{V}} \mathrm{occ}(v) - \min_{v \in \mathcal{V}} \mathrm{occ}(v)$$

Résultats

	Original	Étoile
Balance	NP-difficile	polynomial
ATMOSTBALANCE	NP-difficile	polynomial
ATLEASTBALANCE	polynomial	polynomial

Définitions

Décomposition

Éclatement d'une contrainte en contraintes plus simples.

Motivation

- (+) Contraintes incluses dans les solveurs
- (+) Contraintes simples et optimisées
- (-) Manque de filtrage globale

Introduction

Global Cardinality Constraint

Formulation

$$GCC([x_1,\ldots,x_n],[O_1,\ldots,O_m])$$

Contrainte

 $GCC([x_1,\ldots,x_4],[O_1,\ldots,O_4])$ telle que

$$X_1 \in \{1,2\} \quad X_2 \in \{2,3\} \quad X_3 \in \{2,3\} \quad X_4 \in \{3,4\}$$

$$O_1 \in [0,2]$$
 $O_2 \in [1,1]$ $O_3 \in [0,1]$ $O_4 \in [1,2]$

Solution satisfaisant la contrainte

$$X_1 = 1$$
 $X_2 = 2$ $X_3 = 3$ $X_4 = 4$

Première décomposition (GCC)

Rappel

BALANCE
$$\iff$$
 $B = \max_{v \in \{X_1, \dots, X_n\}} \operatorname{occ}(v) - \min_{v \in \{X_1, \dots, X_n\}} \operatorname{occ}(v)$

$$\mathsf{BALANCE}^* \quad \Longleftrightarrow \quad B = \max_{v \in \mathcal{V}} \mathsf{occ}(v) - \min_{v \in \mathcal{V}} \mathsf{occ}(v)$$

Décomposition BALANCE

$$\text{GCC}([X_1,\ldots,X_n],[O_1,\ldots,O_m])$$

$$P = \max(\{O_1, \ldots, O_m\})$$

$$Q = \min(\{O_1, \ldots, O_m\} \setminus \{0\})$$

$$B = P - Q$$

Décomposition BALANCE*

$$GCC([X_1,\ldots,X_n],[O_1,\ldots,O_m])$$

$$P = \max(\{O_1, \ldots, O_m\})$$

$$Q = \min(\{O_1, \ldots, O_m\})$$

$$B = P - Q$$

Problèm	ne initial	Résultat
$X_1 \in \{1\}$	$B \in [1,1]$	
$X_2 \in \{1,2\}$	$\mathcal{O}_1 \in [0,6]$	
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	
$X_5 \in \{2,3\}$	$P \in [0, 6]$	
$X_6 \in \{2,3\}$	$Q \in [0,6]$	

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [0, 6]$
$X_6 \in \{2,3\}$	$Q \in [0,6]$	$X_6 \in \{2,3\}$	$Q \in [0,6]$

Domaines des X_1, \ldots, X_6

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,5]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$O_3 \in [0, 4]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [0, 6]$
$X_6 \in \{2,3\}$	$Q \in [0,6]$	$X_6 \in \{2,3\}$	Q ∈ [0, 6]

Domaines des X_1, \ldots, X_6

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\textit{O}_2 \in \left[0,5\right]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [0,6]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]

$$P = \max(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1,2\}$	$O_1 \in [0,6]$	<i>X</i> ₂ ∈ {1,2}	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,5]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	<i>P</i> ∈ [1, 5]
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]

$$P = \max(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in \left[0,5\right]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1,5]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]

$$\textit{Q} = min(\{\textit{O}_1, \textit{O}_2, \textit{O}_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	<i>X</i> ₂ ∈ {1,2}	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\textit{O}_2 \in \left[0,5\right]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1,5]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 2]

$$Q = min(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,5]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1,5]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	$Q \in [0,2]$

$$B = P - Q = 1$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1,2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,5]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	<i>P</i> ∈ [1,3]
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	$Q \in [0,2]$

$$B = P - Q = 1$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	<i>B</i> ∈ [1, 1]
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1,2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\textit{O}_2 \in \left[0,5\right]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,4]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 2]

$$P = \max(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1,2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,3]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,3]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	$Q \in [0,2]$

$$P = \max(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	<i>X</i> ₂ ∈ {1,2}	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in \left[0,3\right]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,3]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	$Q \in [0,2]$

$$O_1 + O_2 + O_3 = 6$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$O_2 \in [1,3]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$O_3 \in [1,3]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 2]

$$O_1 + O_2 + O_3 = 6$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	$Q \in [0,2]$

$$Q = \min(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	$B \in [1,1]$
$X_2 \in \{1,2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$
$X_5 \in \{2,3\}$	$P \in [0, 6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	$Q \in [0,6]$	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]

$$Q = \min(\{O_1, O_2, O_3\})$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1, 2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	$P \in [1, 3]$
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1, 2]

$$B = P - Q = 1$$

Problème initial		Résultat	
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ {1}	$B \in [1, 1]$
$X_2 \in \{1,2\}$	$O_1 \in [0,6]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [0,6]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$
$X_4 \in \{2,3\}$	$O_3 \in [0,6]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$
$X_5 \in \{2,3\}$	$P \in [0,6]$	$X_5 \in \{2,3\}$	P ∈ [2,3]
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [0, 6]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1, 2]

$$B = P - Q = 1$$

Décompositions

Résultat après propagation (rappel)

$$X_1 \in \{1\}$$
 $X_4 \in \{2,3\}$ $B \in [1,1]$ $O_1 \in [1,2]$ $X_2 \in \{1,2\}$ $X_5 \in \{2,3\}$ $P \in [2,3]$ $O_2 \in [1,3]$ $X_3 \in \{2,3\}$ $X_6 \in \{2,3\}$ $Q \in [1,2]$ $O_3 \in [1,3]$

- Puisque $O_1 + O_2 + O_3 = 6$, $\{O_1, O_2, O_3\} = \{1, 2, 3\} \text{ ou } \{O_1, O_2, O_3\} = \{2, 2, 2\}$
- Puisque B = P Q = 1, aucune de ces possibilités n'est une solution!

Contraintes redondantes

Rappels

$$P = \max(\{O_1, \ldots, O_m\})$$

$$Q = \min(\{O_1, \ldots, O_m\})$$

Bornes sur P

$$\left\lceil \frac{n}{m} \right\rceil \leqslant P \leqslant \frac{n + (m-1)B}{m}$$

Bornes sur Q

$$\frac{n+(m-1)B}{m} \leqslant Q \leqslant \left\lfloor \frac{n}{m} \right\rfloor$$

Borne supérieure sur P

Démonstration

$$n = (m-1)Q^* + P^*$$

$$P^* = n - (m-1)Q^*$$

$$P \leqslant n - (m-1)Q^*$$

$$P \leq n - (m-1)Q$$

$$P \leq n - (m-1)(P-B)$$

$$P + (m-1)(P-B) \leqslant n$$

$$mP - (m-1)B \leqslant n$$

$$P \leqslant \frac{n + (m-1)B}{m}$$

$$(P^* = \max P, Q^* = \min Q)$$

$$(P \leqslant P^*)$$

$$(Q \geqslant Q^*)$$

$$(B = P - Q)$$

Exemple pour BALANCE* avec $P \leqslant \frac{n + (m-1)B}{m}$

Exemple précédent		Résultat
$X_1 \in \{1\}$	$B \in [1, 1]$	
$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$	
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	
$X_5 \in \{2,3\}$	$P \in [2,3]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1, 2]	

Exemple p	orécédent	Résultat				
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	<i>B</i> ∈ [1, 1]			
<i>X</i> ₂ ∈ {1, 2}	$O_1 \in [1,2]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$			
<i>X</i> ₃ ∈ {2,3}	$\mathcal{O}_2 \in [1,3]$	$X_3 \in \{2,3\}$	$O_2 \in [1,3]$			
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$	$X_4 \in \{2,3\}$	$O_3 \in [1,3]$			
$X_5 \in \{2,3\}$	$P \in [2,3]$	$X_5 \in \{2,3\}$	<i>P</i> ∈ [2,3]			
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]			
$P\leqslant \frac{n+(m-1)B}{m}\qquad P\leqslant \frac{6+2B}{3}$						
$\Rightarrow P \leqslant \frac{8}{3} \qquad \Rightarrow P \leqslant 2$						

Exemple p	orécédent	Résultat				
$X_1 \in \{1\}$	$B \in [1,1]$	<i>X</i> ₁ ∈ {1}	<i>B</i> ∈ [1, 1]			
$X_2 \in \{1,2\}$	$O_1 \in [1,2]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$			
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$	$X_3 \in \{2,3\}$	$O_2 \in [1,3]$			
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$	$X_4 \in \{2,3\}$	$O_3 \in [1,3]$			
$X_5 \in \{2,3\}$	$P \in [2,3]$	$X_5 \in \{2,3\}$	<i>P</i> ∈ [2, 2]			
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]			
$P\leqslant \frac{n+(m-1)B}{m}\qquad P\leqslant \frac{6+2B}{3}$						
$\Rightarrow P \leqslant \frac{8}{3} \qquad \Rightarrow P \leqslant 2$						

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$B \in [1, 1]$ $B \in [1, 1]$		<i>B</i> ∈ [1, 1]	
$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$	$X_2 \in \{1, 2\}$	$\mathcal{O}_1 \in [1,2]$	
$X_3 \in \{2,3\}$	$O_2 \in [1,3]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$	
$X_5 \in \{2,3\}$	$P \in [2, 3]$	$X_5 \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	

$$B = P - Q = 1$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$B \in \{1\}$ $B \in [1,1]$		<i>B</i> ∈ [1, 1]	
$X_2 \in \{1,2\}$	$O_1 \in [1,2]$	$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$	
$X_3 \in \{2,3\}$	$O_2 \in [1,3]$	$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	
$X_5 \in \{2,3\}$	$P \in [2, 3]$	$X_5 \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1, 1]	

$$B = P - Q = 1$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$B \in [1, 1]$ $B \in [1, 1]$		$B \in [1, 1]$	
$X_2 \in \{1,2\}$	$O_1 \in [1,2]$	$\textit{X}_2 \in \{1,2\}$	$O_1 \in [1,2]$	
$X_3 \in \{2,3\}$	$O_2 \in [1,3]$	$\textit{X}_3 \in \{2,3\}$	$O_2 \in [1,3]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$\textit{X}_4 \in \{2,3\}$	$O_3 \in [1,3]$	
$X_5 \in \{2,3\}$	$P \in [2,3]$	$\textit{X}_{5} \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$\textit{X}_{6} \in \{2,3\}$	<i>Q</i> ∈ [1, 1]	

$$P = \max(\{O_1, O_2, O_3\})$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$X_1 \in \{1\}$ $B \in [1,1]$		<i>B</i> ∈ [1, 1]	
$X_2 \in \{1,2\}$	$O_1 \in [1,2]$	$\textit{X}_2 \in \{1,2\}$	$O_1 \in [1,2]$	
<i>X</i> ₃ ∈ {2,3}	$O_2 \in [1,3]$	$\textit{X}_3 \in \{2,3\}$	$O_2 \in [1,2]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$\textit{X}_4 \in \{2,3\}$	$O_3 \in [1,2]$	
$X_5 \in \{2,3\}$	$P \in [2,3]$	$\textit{X}_{5} \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$\textit{X}_{6} \in \{2,3\}$	<i>Q</i> ∈ [1, 1]	

$$P = \max(\{O_1, O_2, O_3\})$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$B \in [1, 1]$ $B \in [1, 1]$		$B \in [1, 1]$	
$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$	$\textit{X}_2 \in \{1,2\}$	$O_1 \in [1,2]$	
$X_3 \in \{2,3\}$	$O_2 \in [1,3]$	$\textit{X}_3 \in \{2,3\}$	$\mathcal{O}_2 \in \left[1,2\right]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$\textit{X}_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,2]$	
$X_5 \in \{2,3\}$	$P \in [2,3]$	$\textit{X}_{5} \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$\textit{X}_{6} \in \{2,3\}$	<i>Q</i> ∈ [1, 1]	

$$O_1 + O_2 + O_3 = 6$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	<i>B</i> ∈ [1, 1]	$X_1 \in \{1\}$	$B \in [1, 1]$	
$X_2 \in \{1,2\}$	$O_1 \in [1,2]$	$\textit{X}_2 \in \{1,2\}$	$O_1 \in [2,2]$	
$X_3 \in \{2,3\}$	$O_2 \in [1,3]$	$\textit{X}_3 \in \{2,3\}$	$\mathcal{O}_2 \in [2,2]$	
$X_4 \in \{2,3\}$	$O_3 \in [1,3]$	$\textit{X}_4 \in \{2,3\}$	$O_3 \in [2,2]$	
$X_5 \in \{2,3\}$	$P \in [2, 3]$	$\textit{X}_{5} \in \{2,3\}$	$P \in [2,2]$	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1,2]	$X_6\in\{2,3\}$	<i>Q</i> ∈ [1, 1]	

$$O_1 + O_2 + O_3 = 6$$

Exemple p	orécédent	Résultat		
$X_1 \in \{1\}$	$B \in [1, 1]$	<i>X</i> ₁ ∈ { }	<i>B</i> ∈ [1, 1]	
$X_2 \in \{1, 2\}$	$O_1 \in [1,2]$	<i>X</i> ₂ ∈ { }	<i>O</i> ₁ ∈ []	
$X_3 \in \{2,3\}$	$\mathcal{O}_2 \in [1,3]$	<i>X</i> ₃ ∈ { }	$O_2 \in [\]$	
$X_4 \in \{2,3\}$	$\mathcal{O}_3 \in [1,3]$	$X_4 \in \{\}$	<i>O</i> ₃ ∈ []	
$X_5 \in \{2,3\}$	$P \in [2, 3]$	<i>X</i> ₅ ∈ { }	P ∈ []	
$X_6 \in \{2,3\}$	<i>Q</i> ∈ [1, 2]	<i>X</i> ₆ ∈ { }	Q ∈ []	

$$O_1 + O_2 + O_3 = 6$$
 Impossible!

Nécessité d'un algorithme de filtrage

Motivation

- Insuffisance des décompositions
- Un algorithme dédié permet d'assurer le filtrage.

Points négatifs

- Nécessite la gestion de tous les cas spéciaux.
- Souvent gourmant en temps d'exécution
- Complexe à intégrer dans un solveur

Ensemble de Hall

Exemple précédent

 $GCC([x_1,\ldots,x_4],[O_1,\ldots,O_4])$ telle que

$$X_1 \in \{1,2\} \quad X_2 \in \{2,3\} \quad X_3 \in \{2,3\} \quad X_4 \in \{3,4\}$$

$$O_1 \in [0,2]$$
 $O_2 \in [1,1]$ $O_3 \in [0,1]$ $O_4 \in [1,2]$

Ensemble de Hall

Soit $H = \{2,3\} \subset \mathcal{V}$. Alors,

- $dom(X_2), dom(X_3) \subseteq \{2, 3\}$
- max(occ(2)) + max(occ(3)) = 2
- H est saturé

Ensemble de Hall - Suite

Notation

- [H]: nombre maximal de variables qui peuvent être assignées aux valeurs contenues dans H
- C(H): Nombre de variables dont le domaine est inclus dans H.

Définition formelle

Un ensemble de Hall est un ensemble $H \subseteq D$ tel qu'il y a [H] variables dont le domaine est inclus dans H, i.e. H est un ensemble de Hall SSI

$$C(H) = [H].$$

Ensemble «instable»

Exemple précédent

 $GCC([x_1,...,x_4],[O_1,...,O_4])$ telle que

$$X_1 \in \{1,2\} \quad X_2 \in \{2,3\} \quad X_3 \in \{2,3\} \quad X_4 \in \{3,4\}$$

$$O_1 \in [0,2]$$
 $O_2 \in [1,1]$ $O_3 \in [0,1]$ $O_4 \in [1,2]$

Ensemble «instable»

Soit $U = \{4\} \subset \mathcal{V}$. Alors,

- $dom(X_4) \cap \{4\} \neq \emptyset$
- \bullet min(occ(4)) = 1
- U est sous-saturé

Notation

- [U]: nombre minimal de variables qui doivent être assignées à une valeur de U
- I(U): Nombre de variables dont le domaine intersecte les valeurs de U

Définition formelle

Un ensemble «instable» est un ensemble $U \subseteq D$ tel qu'il y a le même nombre de variables dont le domaine intersecte U que la capacité minimale de U, i.e. U est «instable» SSI

$$I(U) = [U].$$

Algorithme - $O(n^2m)$

- Trouver une solution potentielle pour ATMOSTBALANCE* telle que la balance est minimale
- § Filtrer GCC([D(X_1),...,D(X_n)],[O_1 ,..., O_m]) où $O_i \in [q, q + \max(B)] \quad \forall i$
- Si aucune valeur n'est filtrée, toutes les valeurs contribuent à une solution potentielle pour ATMOSTBALANCE*.
- Si une valeur est filtrée, alors on reprend l'étape 3 avec
 - $O_i \in [q+1, q+\max(B)+1] \quad \forall i \text{ si } \exists \text{ un ensemble de Hall}$
 - $O_i \in [q-1, q+\max(B)-1] \quad \forall i \text{ si } \exists \text{ un ensemble}$ «instable»

Mise en situation

Contexte

- Problème d'attribution de tâches (horaire)
- m tâches par jour
- m employés, un employé par tâche
- Sur n jours

Modèle

- Variable X_{e,j}: la tâche de l'employé e et jour j
- Valeurs : les m tâches

Mise en situation - Suite

Contraintes

- All-Different sur les variables $[X_{1,j}, \ldots, X_{m,j}] \quad \forall j$
- Nous minimisons la balance B pour chaque employé e avec ATMOSTBALANCE* sur [X_{i,1},..., X_{i,n}].

Variables

- 5 à 8 employés, tâches (m)
- 16 à 20 jours (n)

Indisponibilités

Ratio d'indisponibilité $\alpha \in [0.1, 0.58]$ par bond de 0.02 ($\lceil \alpha n^2 m \rceil$ valeurs aléatoires)

Résultats

m	n		Dec.				Dec. + ICs			
m	"	#	В	Time	Bkt	#	В	Time	Bkt	
6	16	8	1.84	6379	84037	25	1.8	36	454	
6	17	11	2.07	58305	1032467	25	2.07	75	1080	
6	18	16	3.07	8528	159756	25	1.76	123	1830	
6	19	8	3.11	101926	1300577	25	2.53	584	6715	
6	20	7	2.92	2214	26769	25	2.69	875	9642	
7	16	6	1.38	31289	458507	25	1.38	2271	28623	
7	17	9	1.96	153645	1482708	25	1.88	8093	87193	
7	18	3	2.26	130366	1384302	22	1.69	18685	227569	
7	19	4	1.96	77535	773561	22	1.8	21136	221469	
7	20	2	2.61	24788	279260	23	1.5	44488	577341	
- 8	16	8	2.03	123672	2028112	22	0.88	16750	222687	
8	17	3	1.76	148253	1222789	21	1.61	53071	689295	
8	18	1	1.69	3878	34588	15	1.5	54601	521468	
8	19	2	2.03	169320	1611324	24	1.34	61610	639616	
8	20	2	5.61	233559	2001984	11	2.65	49078	450619	

Résultats

m	n		D	ec. + ICs			DC	Algorithm	
111	"	#	В	Time	Bkt	#	В	Time	Bkt
6	16	25	1.8	36	454	25	1.8	32	250
6	17	25	2.07	75	1080	25	2.07	35	240
6	18	25	1.76	123	1830	25	1.76	35	269
6	19	25	2.53	584	6715	25	2.53	59	393
6	20	25	2.69	875	9642	25	2.69	163	1044
7	16	25	1.38	2271	28623	25	1.38	1758	11907
7	17	25	1.88	8093	87193	25	1.88	1516	9018
7	18	22	1.69	18685	227569	24	1.61	13385	87178
7	19	22	1.8	21136	221469	23	1.69	6133	35406
7	20	23	1.5	44488	577341	23	1.61	18050	111929
- 8	16	22	0.88	16750	222687	25	0.42	3651	14423
8	17	21	1.61	53071	689295	25	1.23	12404	65442
8	18	15	1.5	54601	521468	16	1.5	5062	15035
8	19	24	1.34	61610	639616	24	1.34	29897	194079
8	20	11	2.65	49078	450619	15	2.23	12168	50713

Conclusion

- Étude de contraintes visant à balancer des solutions
- Preuve qu'obtenir la cohérance de domaine sur la contrainte BALANCE est NP-difficile
- Introduction de nouvelles contraintes (BALANCE*, ATMOSTBALANCE, ATMOSTBALANCE*, ATLEASTBALANCE, ATLEASTBALANCE*)
- Construction d'un algorithme de filtrage
- Présentation d'une décomposition efficace
- Démonstration de l'avenir prometteur de ces méthodes de filtrage

Merci!