# 사랑회요

6조

20160700 안세혁

20170902 이주언

20190541 방준식

20191250 현소담

# 목차

| 1 | . 프로젝트 개요           | 3     |
|---|---------------------|-------|
|   | 1.1 개발 동기           |       |
|   | 1.2 개발 목표           |       |
| 2 | . 요구사항 분석           | 4     |
|   | 2.1 유스케이스           |       |
|   | 2.2 아키텍처 다이어그램      | ••••• |
| 3 | . 설계내용              | 5     |
|   | 3.1 모듈 설계           |       |
|   | 3.2 주요 알고리즘 설계      |       |
|   | 3.3 DB 설계           |       |
|   | 3.4 UI 구체화          | ••••• |
| 4 | . 개발 과정 및 구현 방법     | 8     |
|   | 4.1 개발 환경           |       |
|   | 4.2 사용 라이브러리 및 오픈소스 |       |
|   | 4.3 개발 일지           | ••••• |
| 5 | . 구현 내용 및 최종 결과물    | 13    |
|   | 5.1 최종 결과물          |       |
|   | 5.2 시연              |       |
|   | 5.3 소스 소개           |       |
|   | 5.4 테스트 과정 및 결과     |       |
|   | 5.5 사용 매뉴얼          |       |
|   | 5.6 목표 달성 여부        | ••••• |
| 6 | . 기타                | 24    |
|   | 6.1 한계 및 고찰         |       |
|   | 6.2 발전 방향 및 향후 계획   | ••••• |
|   | 6.3 참고문헌            |       |

## 1. 프로젝트 개요

## 1.1 개발 동기

## 사랑회요 ~



회를 사랑하는, 회를 즐기지만 잘 알지 못하는 사용자들에게 회의 정보, 맛있게 즐기는 법 등을 알려주는 어플리케이션

객체 감지 모델인 YOLO v5를 어플리케이션에 접목, 사용자는 회 사진 촬영을 통해 회에 대한 몰랐던 정보를 얻을 수 있다.



- 평소 회를 좋아하나 모둠회를 시키고 자신이 어떤 회를 먹고 있는 지도 모르는 채 회를 먹는 사람들이 있다. 이러한 사람들에게 회 이름과 더불어 제철 정보, 맛있게 먹는 방법 등을 함께 제공하여 단지 회를 좋아하기만 하는 사람이 아닌, 회잘알(회를 잘 아는 사람)에 가까워지도록 돕고자 하였다.

#### 1.2 개발 목표

#### 1. 학습 데이터 수집

- 학습을 위한 회 이미지 데이터 수집

#### 2. 모델 학습

- 회를 인식 및 분류할 모델 학습

#### 3. db 구축

- 회 종류별 사용자에게 제공할 데이터 구축

#### 4. 어플 제작

- 일반인들이 사용하기 쉽도록 해당 서비스를 어플 로 제작

## 2. 요구사항 분석

## 2.1 유스케이스



## 2.2 아키텍처 다이어그램



- DB는 개발 과정에서 Firebase로 변경되었음

## 3. 설계 내용

## 3.1 모듈 설계 (클래스 다이어그램)



## 3.2 주요 알고리즘 설계 (시퀀스 다이어그램)

#### 1) 회 이름 기반 검색



#### 2) 회 이미지 기반 검색



#### 3.3 DB 설계



## 3.4 UI 구체화



# 4. 개발 과정 및 구현 방법

## 4.1 개발 환경

- 어플 제작: Android Studio 사용
- 딥러닝 모델 서버 환경: Ubuntu 18.04.6 LTS, Jupyter Notebook, 1080

## 4.2 사용 라이브러리 및 오픈소스

| 1. 학습 데이터 수집           | 2. 모델 학습                 |
|------------------------|--------------------------|
| - 셀레니움 (파이썬 크롤링 라이브러리) | - Yolo v5 (객체 탐지 딥러닝 모델) |
| 3. db 구축               | 4. 어플 제작                 |
| - Firebase             | - 안드로이드 스튜디오 사용          |

## 4.3 개발 일지

#### 1) ~11/18





#### 2) ~11/25





#### 3) ~12/02





#### 4) ~12/20(최종)



- 디자인 최종 완성
- 최종 기능 구현 완료
- 최종 모델 구현 완료

## 5. 구현 내용 및 최종 결과물

#### 5.1 최종 결과물

- PyTorch로 만들어진 AI 모델을 Android Studio로 제작한 Application에 올려 제작하였고 Application의 전체적인 디자인은 최근 미니멀 디자인 보다는 프로젝트의 주제가 되는 회의 이미지를 돋보이게 하기 위하여 SNS 형태의 레이아웃을 선택하였다.

#### 5.2 시연

- 시연 정보는 최종 동영상과 사용 매뉴얼에 포함

#### 5.3 소스 소개

- 모든 소스코드는 github에 업로드 되어져 누구나 확인, 활용 가능하다.
- https://github.com/dami138/loveSashimi

#### 5.4 테스트 과정 및 결과

#### 1) 학습 객체 수



## 2) 학습 결과



- 사진에 다른 객체들이 나오는 것을 최소화하였을 때 회 인식률을 상당이 높다.
- 우측 상단 이미지(sal4.jpg)는 참치와 연어로 동시에 예측했지만 연어의 점수가 0.7로 더 높으므로 실제 출력 시 연어로 예측한다.



- 모둠회의 인식률은 단일 종류의 회보다 낮지만 양호한 인식률을 보인다. 위 사진들은 모바일에서 yolov5모델을 사용한 장면이다.

## 5.5 사용 매뉴얼

## 1) 아이콘 터치 및 어플 실행



- 좌: '사랑회요'의 Application 아이콘을 터치하여 실행한다.
- 우: 어플 실행 시 Application의 Splash 이미지와 함께 로딩되는 것을 확인 가능하다.

#### 2) 메인 페이지



- 중앙 상단의 뉴스 윈도우를 통하여 현재 계절에 맞는 제철 회를 확인할 수 있으며, 그 밑으로 검색 기능과 사용자 회 탐방 다이어리를 바로 확인 가능하다.
- 프로젝트의 메인 기능인 AI 모델을 통한 회 사진 검색 기능은 우측 상단의 카메라 아이콘을 터치하는 것으로 사용 가능하다.

## 3) 제철 회 정보 조회 화면





제철: 12월

먹는 방법: 김, 무순과 함께 드세요 요리: 방어회 덮밥, 방어조림 설명: 크면 클수록 맛 좋은 생선 방어! 일정 크기를 넘어서면 맛과 향이 떨어지는 다른 어종과는 달리 방어는 체형이 클수록 맛이 있다고 합니다. 효능: 골다공증 예방, 노화 방지

III O <

- 메인 화면에서 중앙 상단의 제철 회 윈도우를 누를 시 나타나는 화면이다.
- 사용자는 계절에 맞는 회 추천 정보를 확인할 수 있다.
- 지금은 12월이므로 제철이 12월인 방어의 정보를 확인할 수 있다.

## 4) 회 이름 검색 및 검색 결과 화면



- 좌: 메인 화면에서 참치를 검색하는 화면
- 우: 검색 결과인 참치의 정보를 확인하는 화면.

## 5) Cam 액티비티 화면



+ 새로운 사진 촬영

- AI 모델이 준비된 Cam 액티비티 화면이다.
- 사용자는 회색 화면을 터치하여 기존 갤러리의 사진을 불러오거나, 하단의 새로운 사진 촬영을 선택하여 새로운 회 사진을 촬영할 수 있다.

## 6) 갤러리 사진 불러오기 및 새 사진 촬영 화면



- 좌: 갤러리에서 기존 촬영된 사진을 불러온 모습.
- 우: 새로운 회 사진을 촬영하기 위해 카메라 모듈을 불러온 모습.
- 이 단계에서 잠시 대기하면 AI 모델이 분석 후 결과를 알려준다.

#### 7) AI 분석 결과 화면



- 좌: AI 분석이 완료된 화면, 우럭이 잘 검출되었다.
- 우: Dimming(어둡게 입히는 필터)된 이미지는 사용자가 분석한 회 사진을 보여주며, 하단의 오버레이된 레이아웃에 AI 모델이 분석하여 얻어낸 회의 정보를 출력한다.
  모둠회를 찍은 경우와 같이 2개 이상의 회가 검출되었을 때에는 회 종류별로 오버레이를 띄우게 되며, 뒤로 가기를 누르면 오버레이가 하나씩 사라지게 된다.

#### 5.6 목표 달성 여부

#### 1) 학습 데이터 수집

- Selenium을 통해 학습에 필요한 회 데이터들을 적절히 수집하였다.

#### 2) 모델 학습

- YoloV5를 통해 회 인식 및 분류를 위해 정확도 높은 모델을 구현하였다.

#### 3) 데이터베이스 구축

- Firebase를 통해 사용자에게 제공할 회 정보 데이터베이스를 구축하였다.

#### 4) 어플리케이션 제작

- Android Studio 환경에서 안드로이드 어플리케이션을 제작하였다.
- 회 사진 기반 검색, 회 이름 기반 검색, 제철 회 조회 기능을 구현하였다.
- UI를 사용자 친화적으로 구성하였으며, 사용자의 편의성을 잘 고려하였다.

#### 5) 버전 관리 및 소통

- Github을 통해 팀 내 버전 관리를 진행하였다.
- 카카오톡과 알로를 통해 팀원과 항상 원활한 소통을 이루었다.

## 6. 기타

#### 6.1 한계 및 고찰

#### 1) 기능 관련

- 카메라 모듈을 통해 촬영을 할 시, 촬영된 사진이 내부 저장소(갤러리)에 저장되게 하지 못하여 다이어리 기능은 추후 계획으로 결정하였다.
- 캐시 영역에 저장되게는 할 수 있었는데, 이와 같은 경우 어플 재실행시 초기상태로 되돌아가 기 때문에 기능을 제대로 구현할 수 없었다.

#### 2) 학습 관련

- 단일 회 인식은 상당히 정확했으나, 모둠회는 면적이 좁은 경우 낮은 정확도를 보여주었다



- 서버에서 예측한 경우, 결과가 어느 정도 정확했으나 휴대폰에서 실행 시 성능 저하가 있었다.

좌(서버): 상대적으로 면적이 넓은 광어와 연어는 감지되었지만 밀치는 인식하지 못하였다. 우(휴대폰): 모바일 환경에서 실행해 보았으나 아무 객체도 인식하지 못하였다.

#### 6.2 발전 방향 및 향후 계획

- 휴대폰에서 GPU서버로 사진을 인풋하여 결과를 받아오는 방법을 사용하면 될 것이라 생각했다. 하지만 여러 유저가 접속하였을 경우 서버에서 처리할 코드를 작성하여야하고 고화질 이미지 업로드시 시간이 걸리는 등 문제가 있었다.

- 카메라 촬영 시 촬영한 사진이 내부 저장소에 저장될 수 있도록 수정할 계획이다. 내부 저장소에 저장 성공 시 다이어리 기능도 활성화 가능하다. (저장된 기록을 통해 사진과 날짜를 불러와 다이어리에 표시)

- 핸드폰에서도 컴퓨터와 같은 좋은 성능을 나타내도록 최적화할 계획이다.

- 향후 주변 횟집 추천, 배달 기능도 추가하여 서비스를 제공해볼 생각이다.

- 자신이 촬영한 사진과 정보를 SNS에 공유할 수 있는 기능을 추가해볼 계획이다.

- 더 많은 학습을 통해 이미지 인식률을 높이고 다른 회 정보도 추가하여 종류를 늘릴 계획이다.

#### 6.3 참고문헌

Firebase https://firebase.google.com/docs/firestore/query-data/get-data?utm\_source=studio

YoloV5 https://github.com/ultralytics/yolov5

tfLite https://www.tensorflow.org/lite/guide/android?hl=ko

Pytorch https://pytorch.org/mobile/android/