Solving equations - Root finding

Introduction to Numerical Problem Solving, Spring 2017
CC BY-NC-SA, Sakari Lukkarinen
Helsinki Metropolia University of Applied Sciences

Review of numerical methods (1)

Next

Donel

Later

<u>Chapra</u> & <u>Canale</u>. (2010). p. 6.

Review of numerical methods (2)

Chapra & Canale. (2010). p. 6.

Review of numerical methods (3)

(f) Part 7: Ordinary differential equations Given

$$\frac{dy}{dt} \simeq \frac{\Delta y}{\Delta t} = f(t, y)$$

solve for y as a function of t.

$$y_{i+1} = y_i + f(t_i, y_i) \Delta t$$

(g) Part 8: Partial differential equations Given

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

solve for u as a function of x and y

<u>Chapra</u> & <u>Canale</u>. (2010). p. 6.

Field	Device	Organizing Principle	Mathematical Expression
Chemical engineering	Reactors	Conservation of mass	Mass balance: Input Output
			Over a unit of time period
Civil engineering	Structure	Conservation of momentum	Force balance: + F _V
	ulin. ulin.		$-F_{H} \stackrel{\bullet}{\longleftarrow} +F_{H}$ $-F_{V}$
			At each node Σ horizontal forces $(F_H) = 0$ Σ vertical forces $(F_V) = 0$
Mechanical engineering	Machine	Conservation of momentum	Force balance: Upward force $x = 0$
			Downward force
			$m \frac{d^2x}{dt^2}$ = downward force – upward force
Electrical engineering		Conservation of charge	Current balance:
			For each node Σ current $\langle j \rangle = 0$ $+ I_1 \longrightarrow -I_3 + I_2$
	Circuit	Conservation of energy	Voltage balance: $ I_2R_2 = \underbrace{ I_1R_1}_{I_2R_2} \xi $
			Around each loop
			Σ emf's – Σ voltage drops for resistors = 0

Four (five) major areas of engineering

- 1. Civil engineering
- 2. Mechanical engineering
- 3. Chemical engineering
- 4. Electrical engineering
- (5. IT engineering)

Chapra & Canale. (2010). p. 20.

Problem

Find the solutions of f(x) = 0, where the function f(x) is known.

Motivation – Why numerical solutions?

How often do you have an analytical solution for f(x) = 0?

$$f(x) = ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$f(x) = e^{-x} - x$$

Practical engineering problems

Parachuitist's velocity

$$v = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

What should be the drag constant c?

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

$$f(c) = 0$$
 How to find c?

Root finding methods

Bracketing methods

- Graphical
- Incremental search
- Bisection
- False position

Open methods

- Simple fixed point iteration
- Newton-Raphson
- Secant
- Modified secant

Hybrid

• Brent

Bracketing methods

Find f(x) = 0 when we know that

there is at least one root between the brackets [a, b]

Graphical method (progressive zooming)

Incremental search (determining initial guesses)

```
x = a
while x < b:
    x = x + dx
    if sign(f(x)) != sign(f(x + dx)):
        return x, x + dx</pre>
```


Bisection search

Figure 5-6. Graphical visualization of how the bisection method works

Bisection search algorithm

```
# Initial values
x0, x1 = a, b
f0, f1 = f(x0), f(x1)
# Loop until max iterations
while n < nmax:
   xm = (x0 + x1)/2
   fm = f(xm)
   # Change the brackets
   if sign(fm) == sign(f0):
       x0, f0 = xm, fm
   else:
       x1, f1 = xm, fm
   # Stop criteria
   ea = ...
   if ea < etol:
      return xm
```


The False position method

$$\frac{f(X_I)}{X_I - X_I} = \frac{f(X_U)}{X_I - X_U}$$

which can be solved for (see Box 5.1 for details).

$$X_{\Gamma} = X_{U} - \frac{f(X_{U})(X_{I} - X_{U})}{f(X_{I}) - f(X_{U})}$$

Stop criteria: $\epsilon_a < \epsilon_{tol}$

$$\varepsilon_a = \left| \frac{X_r^{\text{new}} - X_r^{\text{old}}}{X_r^{\text{new}}} \right| 100\%$$

Bisection vs. False position

$$f(c) = \frac{667.38}{c} \left(1 - e^{-0.146843c} \right) - 40$$

FIGURE 5.13

Comparison of the relative errors of the bisection and the false-position methods.

Pitfall of False position method

FIGURE 5.14 Plot of $f(x) = x^{10} - 1$, illustrating slow convergence of the false-position method.

Open methods

Find f(x) = 0 with initial guess x = x0

Simple Fixed-Point iteration

Rearrange the function f(x) = 0, so that the x is on the left-hand side

$$x_{i+1} = g(x_i)$$

Relative approximation error

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

Stop criteria

$$\epsilon_a < \epsilon_{-tol}$$

Examples – rearrangements of the equation

$$x^2 - 2x + 3 = 0$$

Can be manipulated to yield

$$x = \frac{x^2 + 3}{2}$$

$$\sin(x) = 0$$

Adding x on both sides

$$x = \sin(x) + x$$

When does the fixed-point iteration converge?

Example: $f(x) = e^{-x} - x$

Rearranged: $x = e^{-x}$

FIGURE 6.3

Graphical depiction of (a) and (b) convergence and (c) and (d) divergence of simple fixed-point iteration. Graphs (a) and (c) are called monotone patterns, whereas (b) and (d) are called oscillating or spiral patterns. Note that convergence occurs when |g'(x)| < 1.

$$|g'(x)| < 1$$

$$|g'(x)| \ge 1$$

Newton-Raphson method "follow the tangent line"

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

which can be rearranged to yield

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

which is called the Newton-Raphson formula.

Pitfalls of Newton-Raphson method

Secant Method

"draw a secant and follow it"

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

False position vs. Secant method

Modified secant method

Modified secant

$$f'(x_i) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

Secant

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Newton-Raphson $f'(x_i)$ is known

Common to all

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Comparison of Methods

True percent relative error for

- 1. Bisection,
- 2. False position,
- 3. Secant, and
- 4. Newton-Raphson method to determine the roots of

$$f(x) = e^{-x} - x$$

Hybrid methods

 Hybrid methods like Brent's method use a speedy open method wherever possible, but reverts to a reliable bracketing method when necessary.

Scipy.org

Docs

SciPy v0.18.1 Reference Guide

Optimization and root finding (scipy.optimize)

index

scipy.optimize.brentq

scipy.optimize.brentq(f, a, b, args=(), xtol=2e-12, rtol=8.8817841970012523e-16, maxiter=100, full_output=False, disp=True)

[source]

Find a root of a function in a bracketing interval using Brent's method.

Uses the classic Brent's method to find a zero of the function f on the sign changing interval [a , b]. Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that uses inverse quadratic extrapolation. Brent's method combines root bracketing, interval bisection, and inverse quadratic interpolation. It is sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973) claims convergence is guaranteed for functions computable within [a,b].

[Brent1973] provides the classic description of the algorithm. Another description can be found in a recent edition of Numerical Recipes, including [PressEtal1992]. Another description is at http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by reading our code. Our code diverges a bit from standard presentations: we choose a different formula for the extrapolation step.

Exercises

Reference books

Chapra & Canale. (2010). Numerical Methods for Engineers, 6th edition.

Part two: Roots of equations.

Kiusalaas. (2013). Numerical Methods in Engineering with Python 3. Third Edition.

Ch 4. Roots of Equations.

Johansson. (2015). Numerical Python: A Practical Techniques Approach for Industry.

Ch. 5. Equation Solving.