Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1-3. (CANCELED)

4. (CURRENTLY AMENDED) A method for performing a diagnostic or therapeutic procedure comprising

administering to an individual an effective amount of the compound of formula

$$R^{31}$$
 R^{30}
 R^{30}
 R^{31}
 R^{31}
 R^{32}
 R^{33}
 R^{33}
 R^{33}
 R^{34}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}

wherein W³ and X³ are independently selected from the group consisting of -CR¹R², -O-, -NR³, -S-, and -Se; Y³ is selected from the group consisting of -(CH₂)a-CONH-Bm, -CH₂-(CH₂OCH₂)b-CH₂-CONH-Bm, -(CH₂)a-NHCO-Bm, -CH₂-(CH₂OCH₂)b-CH₂-NHCO-Bm, -(CH₂)a-N(R³)-(CH₂)a-N(R³)-(CH₂)a-N(R³)-(CH₂)a-N(R³)-(CH₂)b-CH₂-NHCO-Bm, -(CH₂)a-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)b-CH₂-N(R³)-(CH₂)a-NHCO-Bm, -CH₂-(CH₂OCH₂)b-CH₂-N(R³)-(CH₂)a-NHCO-Bm, -CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂OCH₂)b-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-N(R³)-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂-N(R³)-CH₂-N(R³)-CH₂-N(R³)-CH₂-(CH₂-N(R³)-CH₂

 $CONH-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm, -(CH_2)_a-NHCO-Dm, -CH_2-(CH_2OCH_2)_b-CH_2 CH_2\text{-}NHCO\text{-}Dm, \ -\{CH_2\}_{\mathfrak{d}}\text{-}N(R^3)\text{-}\{CH_2\}_{\mathfrak{d}}\text{-}CONH\text{-}Dm, \ (CH_2)_{\mathfrak{d}}\text{-}N(R^3)\text{-}\{CH_2\}_{\mathfrak{d}}\text{-}NHCO\text{-}Dm, \ (CH_2)_{\mathfrak{d}}\text{-}NHCO\text{-}Dm, \ (CH_2)_{\mathfrak{d}}\text$ -(CH₂)₈-N(R³)-CH₂-(CH₂OCH₂)₆-CH₂-CONH-Dm, -(CH₂)₈-N(R³)-CH₂-(CH₂OCH₂)₆-CH₂- $NHCO-Dm, \ -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-Dm, \ -CH_2-(CH_2OCH_2)_b-CH_2$ $N(R^3)$ - $(CH_2)_a$ -NHCO-Dm, - CH_2 - $(CH_2OCH_2)_b$ - CH_2 - $N(R^3)$ - CH_2 - $(CH_2OCH_2)_d$ -CONH-Dm, -CH2-(CH2OCH2)b-CH2-N(R3)-CH2-(CH2OCH2)d-NHCO-Dm, -(CH2)a-NR3R4, and -CH2(CH2OCH2)b-CH2NR3R4; A1 is a single or a double bond; B1, C1, and D1 are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR1R2, -CR1, alkyl, NR³, and -C=O; A₁, B₁, C₁, and D₁ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; as and bs are independently from 0 to 5; R1 to R4, and R29 to R37 are independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C20 aryl, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, C1-C10 aminoalkyl, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_B-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently from 1 to 100, and a pharmaceutically acceptable carrier or

excipient to form a composition,

activating the compound using light, and performing the diagnostic or therapeutic procedure.

5. (ORIGINAL) The method of claim 4 comprising administering to an individual an effective amount of the compound wherein W3 and X3 are independently selected from the group consisting of -C(CH₃)₂, -C((CH₂)₉OH)CH₃, $-C((CH_2)_aOH)_2\;,\;\;-C((CH_2)_aCO_2H)CH_3\;,\;-C((CH_2)_aCO_2H)_2\;,\;-C((CH_2)_aNH_2)CH_3,$ $C((CH_2)_aNH_2)_2$, $C((CH_2)_aNR^3R^4)_2$, -NR³, and -S-; Y³ is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO -Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b -CH₂NR³R⁴; Z³ is selected from the group consisting of -(CH₂)₃-CONH-Dm, -CH₂ -(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm; -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH2)_a -CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together form a 6- to 10membered carbocyclic ring or a 6- to 10-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; as and bs independently vary from 0 to 3; R1 to R4, and R29 to R37 are independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C12 aryl, C1-C10 alkoxyl, C1-C10 polyhydroxyalkyl, C5-C12 polyhydroxyaryl, C1-C10 aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH2(CH2OCH2)b-CH2-OH,

-(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO
-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30.

- 6. (ORIGINAL) The method of claim 5 comprising administering to an individual an effective amount of the compound wherein each of W³ and X³ is C((CH₂)OH)₂; Y³ is (CH₂)₂-CONH-Bm; Z³ is -(CH₂)₂-CONH-Dm; A₁ is a single bond; A₁, B₁, C₁, and D₁ together form a 6-membered carbocyclic ring; each a₃ and b₃ is 1; R²9 is galactose; each R³0 to R³7 is hydrogen; Bm is Octreotate; and Dm is bombesin (7-14).
- 7. (ORIGINAL) The method of claim 4 wherein said procedure uses light of wavelength in the region of 350-1300 nm.
- 8. (ORIGINAL) The method of claim 4 wherein the diagnostic procedure is optical tomography.
- 9. (ORIGINAL) The method of claim 4 wherein the diagnostic procedure is fluorescence endoscopy.

- 10. (ORIGINAL) The method of claim 4 further comprising monitoring a blood clearance profile of said compound by a method selected from the group consisting of fluorescence, absorbance, and light scattering, wherein light of wavelength in the region of 350-1300 nm is used.
- 11. (ORIGINAL) The method of claim 4 wherein said procedure further comprises imaging and therapy, wherein said imaging and therapy is selected from the group consisting of absorption, light scattering, photoacoustic and sonofluoresence technique.
- 12. (ORIGINAL) The method of claim 4 wherein said procedure is capable of diagnosing atherosclerotic plaques and blood clots.

13-15. (CANCELED)

- 16. (CURRENTLY AMENDED) The method of claim 4 further comprising adding a biocompatible organic solvent to the <u>compound</u> at a concentration of one to fifty percent to the <u>composition</u> to [[prevent]] <u>inhibit</u> in vivo or in vitro fluorescence quenching.
- 17. (ORIGINAL) The method of claim 16 wherein said compound is dissolved in a medium comprising one to fifty percent dimethyl sulfoxide.

18-20. (CANCELED)