Problem 1

Let N(t) be a Poisson process of rate λ . For fixed $t, u \in [0, t]$, and n = 1, 2, ..., find the conditional distribution of N(u) given N(t) = n, i.e. find a formula for $\mathbb{P}(N(u) = k | N(t) = n)$ for k = 0, 1, 2, ..., n.

Problem 2

Let N(t) be a Poisson process of rate λ . Given that N(t) = 3, determine the conditional distributions of the first three arrival times S_1, S_2, S_3 .

Problem 3

Customers arrive at a theme park according to a Poisson process N(t) of rate λ . Each customer pays \$1 on arrival. At time t, the discounted value of the total sum collected so far is

$$D_t = \sum_{i=1}^{N(t)} e^{-\beta S_i},$$

where S_i is the *i*th arrival time, and $\beta > 0$ is the discount rate. Compute $\mathbb{E}D_t$.

Problem 4

Alpha particles are emitted by a radioactive source according to a Poisson process of rate λ . Each alpha particle independently survives for a random amount of time and then is annihilated. The lifetimes Y_1, Y_2, \ldots of the particles have common distribution function $G(y) = \mathbb{P}(Y_k \leq y)$. Let M(t) denote the number of alpha particles in existence at time t.

- a. Determine the distribution of M(t).
- b. Show that as $t \to \infty$, the distribution you found in part a converges to Poisson $(\lambda \mu)$, where $\mu = \mathbb{E}Y$ is the mean lifetime of an alpha particle.