

Δημήτρης Ψούνης

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Περιεχόμενα Μαθήματος

Α. Θεωρία

- 1. Στοίβα
 - 1. Ορισμός Στοίβας
 - 2. Βασικές Πράξεις
 - 3. Υλοποίηση σε C: Δηλώσεις
 - 4. Υλοποίηση σε C: Αρχικοποίηση
 - 5. Υλοποίηση σε C: Έλεγχοι Κενή Στοίβα και Γεμάτη Στοίβα
 - 6. Υλοποίηση σε C: Ώθηση Στοιχείου
 - 7. Υλοποίηση σε C: Εξαγωγή Στοιχείου
 - 8. Υλοποίηση σε C: Παράδειγμα
- 2. Εφαρμογές Στοίβας
 - 1. Μετατροπή Δεκαδικού σε Δυαδικό
 - 2. Υπολογισμός Μεταθεματικής Παράστασης

Β. Ασκήσεις

Σημείωση: Το μάθημα αυτό <u>απαιτεί</u> να έχουν μελετηθεί τα μαθήματα 1..14 της γλώσσας προγραμματισμού C.

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

www.psounis.gr

Α. Θεωρία

1. Στοίβα

1. Ορισμός Στοίβας

Η «Στοίβα» είναι μια δομή δεδομένων με γραμμική διάταξη στην οποία:

• Η ώθηση (push) και η εξαγωγή (pop) ενός στοιχείου, γίνεται στην κεφαλή (top) της στοίβας.

Παράδειγμα:

Η στοίβα των πιάτων στον νεροχύτη!

Σημαντική Ιδιότητα:

 Το τελευταίο στοιχείο που προστέθηκε στη στοίβα είναι το πρώτο που θα εξαχθεί (Last In – First Out: LIFO) Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Α. Θεωρία

1. Στοίβα

2. Βασικές Πράξεις

Οι βασικές πράξεις σε μία στοίβα είναι:

- **Αρχικοποίηση** της στοίβας (init)
- **Ωθηση** ενός στοιχείου στην στοίβα (push)
- **Εξαγωγή** ενός στοιχείου από τη στοίβα (**pop**)
- Έλεγχος αν η στοίβα είναι κενή (empty)
- Έλεγχος αν η στοίβα είναι γεμάτη (full)

Υπάρχουν δύο υλοποιήσεις:

- Με στατικό πίνακα (σημερινό μάθημα)
- Με απλά συνδεδεμένη λίστα (επόμενο μάθημα)

Θα υλοποιήσουμε στην C τη στοίβα με έναν πίνακα N θέσεων. Πρόσθετα θα κρατάμε μία μεταβλητή (top) που κρατάει την κεφαλή της στοίβας.

Α. Θεωρία

1. Στοίβα

3. Υλοποίηση σε C: Δηλώσεις

```
Οι δηλώσεις σε C είναι οι ακόλουθες:
```

- Η στοίβα είναι μία δομή (struct) με τα εξής στοιχεία:
 - Ένας **πίνακας** με **STACK_SIZE** στοιχεία
 - Μία ακέραια μεταβλητή (top) που δείχνει τη θέση που βρίσκεται η κεφαλή της στοίβας με τιμή:
 - Από 0...STACK SIZE-1 αν η στοίβα έχει τουλάχιστον ένα στοιχείο
 - -1 αν η στοίβα είναι άδεια.

```
#define STACK_SIZE 10  /* Megethos pinaka stoivas */
typedef int elem;  /* typos dedomenwn stoivas */
struct stack{
  elem array[STACK_SIZE]; /* pinakas stoixeiwn  */
  int top;  /*koryfi tis stoivas  */
};
typedef struct stack STACK; /* Sinwnimo tis stoivas  */
```

Αναπαράσταση:

Α. Θεωρία

1. Στοίβα

4. Υλοποίηση σε C: Αρχικοποίηση Στοίβας

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

<u>ΠΡΙΝ:</u>

Προσοχή:

 Πάντα προτού ξεκινάμε την χρήση της στοίβας θα πρέπει να καλούμε μία φορά αυτήν τη συνάρτηση!

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

www.psounis.gr

Α. Θεωρία

1. Στοίβα

5. Υλοποίηση σε C: Έλεγχοι – Κενή Στοίβα και Γεμάτη Στοίβα

Ο **έλεγχος** αν η στοίβα είναι **κενή** (αντίστοιχα **γεμάτη**), γίνεται βλέποντας αν η μεταβλητή top είναι ίση μ ε -1 (αντίστοιχα N-1)

Α. Θεωρία

1. Στοίβα

6. Υλοποίηση σε C: Ώθηση Στοιχείου

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Η **ώθηση** στη στοίβα γίνεται προωθώντας το στοιχείο στη θέση top+1 (εφόσον χωράει στην στοίβα)

ΠΡΙΝ:

ΜΕΤΑ (π.χ. ώθηση του «5»):

Α. Θεωρία

1. Στοίβα

6. Υλοποίηση σε C: Εξαγωγή Στοιχείου

Η εξαγωγή γίνεται βγάζοντας το στοιχείο της θέσης top (εφόσον η στοίβα δεν είναι άδεια)

```
/* ST pop(): Kanei eksagwgi poy einai stin korifi tis listas
         epistrefei TRUE: se periptwsi epitixias
                          FALSE: se periptwsi apotixias */
int ST pop(STACK *s,elem *x)
  if (ST empty(*s))
      return FALSE;
      *x=s->array[s->top];
     s->top--;
      return TRUE:
```

ΠΡΙΝ: 2 6 4

Α. Θεωρία

1. Στοίβα

7. Υλοποίηση σε C: Παράδειγμα

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

- Μεταγλωττίστε και εκτελέστε το project stack.dev στο οποίο:
 - > To stack.h έχει τα πρωτότυπα των συναρτήσεων και την δήλωση της δομής
 - Το stack.c έχει τα σώματα των συναρτήσεων
 - Το stack_main.c έχει ένα πρόγραμμα που επιδεικνύει την χρήση μίας στοίβας ακεραίων.
- » «Παίξτε» με το πρόγραμμα ώστε να γίνει πλήρως κατανοητή η λειτουργία της στοίβας.

Υπενθύμιση:

Το σπάσιμο ενός προγράμματος σε επιμέρους αρχεία μελετήθηκε στο «Γλώσσα C – Μάθημα 14: Εμβέλεια Μεταβλητών»

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Α. Θεωρία

2. Εφαρμογές Στοίβας

1. Μετατροπή Δεκαδικού σε Δυαδικό

Υπενθύμιση:

- Για την μετατροπή από δεκαδικό σε δυαδικό κάνουμε διαδοχικές διαιρέσεις με το 2
 - Εισάγουμε τα διαδοχικά υπόλοιπα σε μία στοίβα
- Εξάγοντας από την στοίβα έχουμε τον δυαδικό αριθμό!

ΠΑΡΑΔΕΙΓΜΑ:

ΥΠΟΛΟΓΙΣΜΟΙ

Λοιθμός /2	Πηλίκο	Υπόλοιπο	
Αριθμός /2	ППЛКО	ΤΠΟΛΟΠΙΟ	
135/2	67	1	(1) Σειρά
67/2	33	1	των push
33/2	16	1	
16/2	8	0	
8/2	4	0	
4/2	2	0	
2/2	1	0	
1/2	0	1	,

ΔΥΑΔΙΚΟΣ ΑΡΙΘΜΟΣ

(2) Σειρά тων рор 10000111

 $\Delta \rho \alpha (135)_{10} = (10000111)_2$

Α. Θεωρία

2. Εφαρμογές Στοίβας

2. Υπολογισμός Μεταθεματικής Παράστασης

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

- Οι μαθηματικές παραστάσεις που ξέρουμε γράφονται σε ενδοθεματική μορφή (ο τελεστής είναι εσωτερικά των αριθμών):
 - π.χ.: **A+B**
- Υπάρχει και η **προθεματική μορφή** (πρώτα ο τελεστής και μετά οι αριθμοί):
 - Είναι: + A B
- Αλλά και η **μεταθεματική μορφή** (πρώτα οι αριθμοί και μετά ο τελεστής):
 - Είναι: A B +

Σημείωση:

- Η μεταθεματική μορφή είναι χρήσιμη στον υπολογισμό παραστάσεων στους επεξεργαστές με χρήση καταχωρητών και είναι ιδιαιτέρως χρήσιμη διότι δεν απαιτεί την χρήση παρενθέσεων.
- Ο υπολογισμός μπορεί να γίνει εύκολα με χρήση του «αριστερότερου» τελεστή. Αυτός θα εφαρμόζεται στους δύο αμέσως αριστερούς του αριθμούς.
 - Π.χ. η παράσταση: (5+3)*4-2
 - σε μεταθεματική μορφή γράφεται διαδοχικά (με βάση την προτεραιότητα):
 - (5 + 3) * 4 2
 - (53+) * 4 2
 - (53 +) 4* 2
 - 53+4*2-

Α. Θεωρία

2. Εφαρμογές Στοίβας

- 2. Υπολογισμός Μεταθεματικής Παράστασης
- Το σημαντικό είναι ότι μπορούμε να υπολογίσουμε τη μεταθεματική παράσταση με χρήση στοίβας ενόσω διαβάζουμε την παράσταση (χωρίς να πρέπει να την έχουμε αποθηκευμένη!)
- Διάβασμα 2 (αριθμός). Τοποθέτηση στη στοίβα

ΕΙΣΟΔΟΣ: 24 + 61*/

ΣΤΟΙΒΑ:

Διάβασμα 4 (αριθμός). Τοποθέτηση στη στοίβα

ΕΙΣΟΔΟΣ: 24 + 61*/

ΣΤΟΙΒΑ:

Α. Θεωρία

2. Εφαρμογές Στοίβας

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

- 2. Υπολογισμός Μεταθεματικής Παράστασης
- Διάβασμα + (τελεστής). Εξαγωγή δύο στοιχείων (4 και 2). Εκτέλεση πράξης (4+2). Εισαγωγή του αποτελέσματος στη στοίβα

EI Σ O Δ O Σ : 24 + 61 * /

ΣΤΟΙΒΑ:

Διάβασμα 6 (αριθμός). Τοποθέτηση στη στοίβα

EI Σ O Δ O Σ : 24 + 61 * /

ΣΤΟΙΒΑ:

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Α. Θεωρία

2. Εφαρμογές Στοίβας

- 2. Υπολογισμός Μεταθεματικής Παράστασης
- Διάβασμα 6 (αριθμός). Τοποθέτηση στη στοίβα

Διάβασμα * (τελεστής). Εξαγωγή δύο στοιχείων (1 και 6). Εκτέλεση πράξης (1*6). Εισαγωγή του αποτελέσματος (6) στη στοίβα

EI Σ O Δ O Σ : 24 + 61 * /

2. Εφαρμογές Στοίβας

2. Υπολογισμός Μεταθεματικής Μορφής

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Διάβασμα / (τελεστής). Εξαγωγή δύο στοιχείων (6 και 6). Εκτέλεση πράξης (6/6). Εισαγωγή του αποτελέσματος (1) στη στοίβα

ΕΙΣΟΔΟΣ: 24 + 61*/

ΣΤΟΙΒΑ:

- Ο υπολογισμός ολοκληρώθηκε και το αποτέλεσμα είναι ίσο με 1.
- Ισοδύναμα η παράσταση: 24 + 61 */
 - Αντιστοιχεί στην ενδοθεματική παράσταση: (2+4)/(6*1) που είναι όντως ίσο με 1.

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Β. Ασκήσεις

Εφαρμογή 1: Μία στοίβα χαρακτήρων

Μετατρέψτε την βιβλιοθήκη που δημιουργήσαμε στο μάθημα ώστε να υλοποιείται μία στοίβα χαρακτήρων.

Β. Ασκήσεις Εφαρμογή 2: Μία στοίβα φοιτητών

- Μετατρέψτε την βιβλιοθήκη που δημιουργήσαμε στο μάθημα ώστε να υλοποιείται μία στοίβα φοιτητών!
 - 🗲 Για κάθε φοιτητή θέλουμε να διατηρείται μία συμβολοσειρά με το ονοματεπώνυμό του και ένας ακέραιος αριθμός με το βαθμό του.

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Β. Ασκήσεις

Εφαρμογή 3: Μετατροπή σε Δυαδικό

- Γράψτε ένα πρόγραμμα σε C το οποίο
 - > Θα διαβάζει ένα θετικό ακέραιο αριθμό
 - ≽ Θα τον μετατρέπει σε δυαδικό με χρήση μίας στοίβας ακεραίων όπως περιγράψαμε στο μάθημα.

Δημήτρης Ψούνης, Δομές Δεδομένων σε C, Μάθημα 2: Στοίβα

Β. Ασκήσεις

Εφαρμογή 4: Υπολογισμός Μεταθεματικής Παράστασης

- Γράψτε ένα πρόγραμμα σε C το οποίο
 - > Θα διαβάζει μία παράσταση σε μεταθεματική μορφή από την είσοδο χωρίς να την αποθηκεύει (θα διαβάζεται χαρακτήρα-χαρακτήρα).
 - Χάριν απλότητος, θεωρείστε ότι ο χρήστης θα εισάγει μόνο τους τελεστές +,-,*,/ και τα
 - Θα υπολογίζει την παράσταση χρησιμοποιώντας μία στοίβα πραγματικών αριθμών όπως περιγράψαμε στο μάθημα.