

Network-guided genome-wide association studies

Études d'association génome entier guidées par des réseaux

Soutenue par

Héctor Climente González

Le 4 Février 2020

Fin de confidentialité

Le 4 Février 2021

École doctorale nº621

Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique

Spécialité

Bio-informatique

Composition du jury:

Nadine ANDRIEU

Mme., Institut Curie

Présidente

Kristel VAN STEEN

Mme., Université de Liège

Rapporteuse

Antonio RAUSELL

M., Imagine Institute

Rapporteur

Laura FURLONG

Mme., Pompeu Fabra University

Examinatrice

Véronique STOVEN

Mme., MINES ParisTech

Directrice de thèse

Chloé-Agathe AZENCOTT

Mme., MINES ParisTech

Co-encadrante

Contents

A	Acknowledgements			xi
1	Cor	$_{ m text}$		1
	1.1	The c	ommon disease/common variant framework	2
	1.2		me-wide association studies	4
		1.2.1	Challenges	5
			1.2.1.1 Low statistical power	5
			1.2.1.2 Choice of encoding	6
			1.2.1.3 Estimating individual risk	6
			1.2.1.4 Population structure	7
			1.2.1.5 Interpretability	7
	1.3	Epista	asis	8
	1.4	Genor	me-wide association interaction studies	8
	1.5	Diseas	ses studied in this thesis	9
		1.5.1	Breast cancer	10
			1.5.1.1 The GENESIS dataset	11
		1.5.2	Inflammatory bowel disease	12
			1.5.2.1 The IIBDGC dataset	12
	1.6	Netwo	ork view of complex diseases	12
		1.6.1	Networks in disease	14
		1.6.2	Network-guided approaches to disease study	15
			1.6.2.1 High-score subnetwork search	15
			1.6.2.2 Module detection	15
			1.6.2.3 Aggregation of networks	17
	1.7	Contr	ibutions	17
2	Cor		a naturally avided CWAS to discover assessatibility moch	
2			g network-guided GWAS to discover susceptibility mech- r breast cancer	21
	2.1		luction	22
	$\frac{2.1}{2.2}$		ods	23
	2.2	2.2.1	Data preprocessing and quality control	$\frac{23}{23}$
		2.2.1 $2.2.2$	High-score subnetwork search algorithms	$\frac{25}{25}$
		2.2.2	2.2.2.1 SNP and gene association	$\frac{25}{25}$
			2.2.2.2 Mathematical notation	$\frac{25}{25}$
			2.2.2.3 Methods used	26
			2.2.2.4 Gene-gene network	29
			2.2.2.5 SNP networks	30
			2.2.2.6 Consensus network	30
		2.2.3	Evaluation of methods	30
		2.2.0	2.2.3.1 Classification accuracy of selected biomarkers	30
			2.2.3.2 Biological relevance of the genes	31
		2.2.4	Code availability	32

ii Contents

	2.3	Result	ts	32
		2.3.1	A conventional GWAS shows that FGFR2 is strongly associ-	
			ated with familial breast cancer	32
		2.3.2	Network methods successfully identify genes associated with	
			breast cancer	32
		2.3.3	heinz retrieves a small, highly informative set of biomarkers	
			in a fast and stable fashion	37
		2.3.4	No solution is perfect	42
		2.3.5	Aggregating solutions provides insights into the biology of	
			cancer	45
	2.4	Discus	ssion	47
3	The	mart	ini R package	5 3
	3.1		luction	54
	3.2		vements over SConES	54
	9.=	3.2.1	Covariates and additional measures of association	54
		3.2.2	Hyperparameter optimization	54
		3.2.3	Network-based simulations	56
		3.2.4	Interface, documentation and quality assurance	58
	3.3		cones.nf pipeline	58
	3.4		usions	59
4 Boosting interpretability and statistical power in epistas				
		•	sing prior biological knowledge	61
	4.1		luction	63
	4.2		ials and methods	63
		4.2.1	Dataset and initial quality control	63
		4.2.2	Gene interaction detection procedure	63
			4.2.2.1 Functional SNP pre-filtering	64
			4.2.2.2 Post-filtering quality control	65
			4.2.2.3 SNP-level epistasis detection and multiple test cor-	
			rection	65
			4.2.2.4 From SNP-level to gene-level epistasis	66
	4.3		ts	67
		4.3.1	Type I error	67
		4.3.2	Chromatin contacts map more SNPs per gene than other map-	
			pings	67
		4.3.3	The <i>Physical</i> protocol does not recover any SNP interaction .	67
		4.3.4	Gene-level network	69
		4.3.5	Chromatin and Standard mappings partially replicate previ-	
	4.4	D.	ous studies on IBD	72
	4.4	Discus	ssion	72
5	Hig	h-orde	er epistasis detection through fusion of epistasis networks	77
-	5.1		luction	78
	5.2		ials and methods	

Contents

	5.3	5.3.1 5.3.2 5.3.3	Data, quality control and preprocessing Epistasis detection methods 5.2.2.1 Linear regression 5.2.2.2 MB-MDR 5.2.2.3 EpiHSIC High-order epistasis detection Code availability Epistasis detection methods produce relatively similar results High-order epistasis interactions in IBD Mapping SNP to genes involves the complement system sion	78 79 79 79 80 80 80 80 81 83
6	Conclusions 85			
Fu	ndin	g ackn	owledgments	89
Re	efere	nces		91
A	Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data			
В	The	Funct	ional Impact of Alternative Splicing in Cancer	115
\mathbf{C}	Syst	ematic	c Analysis of Splice-Site-Creating Mutations in Cancer	129
D	D.1 D.2 D.3 D.4	Homol Replica Transc Misma	ogous recombination repair	147 147 148

iv Contents