

Рис. 1: ВАХ диода полностью

Рис. 2: Прямая ветвь ВАХ

Рис. 3: Проверка теоретической зависимости $\ln I(U)$

U, V	I, mA	
0.0000 ± 0.0005	0.000 ± 0.005	
0.3260 ± 0.0005	0.000 ± 0.005	
0.6120 ± 0.0005	0.260 ± 0.005	
0.6290 ± 0.0005	0.420 ± 0.005	
0.6400 ± 0.0005	0.600 ± 0.005	
0.6490 ± 0.0005	0.800 ± 0.005	
0.6550 ± 0.0005	0.980 ± 0.005	
0.6760 ± 0.0005	2.060 ± 0.005	
0.6880 ± 0.0005	3.070 ± 0.005	
0.6970 ± 0.0005	4.070 ± 0.005	
0.7040 ± 0.0005	5.050 ± 0.005	
0.7100 ± 0.0005	6.120 ± 0.005	

U, V	I, mA
-1.050 ± 0.005	0.000 ± 0.005
-2.050 ± 0.005	0.000 ± 0.005
-3.080 ± 0.005	0.000 ± 0.005
-4.090 ± 0.005	0.000 ± 0.005
-5.000 ± 0.005	0.000 ± 0.005
-6.090 ± 0.005	0.000 ± 0.005
-7.550 ± 0.005	0.000 ± 0.005
-7.930 ± 0.005	-2.080 ± 0.005
-7.940 ± 0.005	-4.150 ± 0.005
-7.960 ± 0.005	-6.650 ± 0.005
-7.970 ± 0.005	-9.110 ± 0.005
-7.980 ± 0.005	-12.650 ± 0.005

Таблица 1: Вольтамперная характеристика диода (прямая ветвь)

Таблица 2: Вольтамперная характеристика диода (обратная ветвь)

$$\ln I(U) = A U + B \Longrightarrow \begin{cases} A = 32.5 \pm 0.3 V^{-1} \\ B = -21.2 \pm 0.2 \\ r \approx 0.9996 \end{cases}$$

U, V	C, nF
-0.030 ± 0.005	0.280 ± 0.005
-0.510 ± 0.005	0.160 ± 0.005
-1.040 ± 0.005	0.100 ± 0.005
-1.510 ± 0.005	0.060 ± 0.005
0.100 ± 0.005	0.380 ± 0.005
0.150 ± 0.005	0.440 ± 0.005

Таблица 3: Зависимость барьерной ёмкости диода от напряжения

Рис. 4: Зависимость барьерной ёмкости диода от напряжения

$t, ^{\circ}C$	U, V
23.0 ± 0.5	0.7040 ± 0.0005
40.0 ± 0.5	0.6700 ± 0.0005
60.0 ± 0.5	0.6400 ± 0.0005
80.0 ± 0.5	0.6000 ± 0.0005

Таблица 4: Зависимость напряжения на диоде от температуры

Рис. 5: Зависимость напряжения на диоде от температуры

$$U = A T + B \Longrightarrow \begin{cases} A = -0.00179 \pm 0.00007 V \cdot K^{-1} \\ B = 1.23 \pm 0.02 V \\ r \approx -0.9984 \end{cases}$$

Рис. 6: Осциллограммы напряжения на выходе однополупериодного выпрямителя со сглаживающими емкостями а) $C=0;\ {\rm b})C_1;\ {\rm c})C_2>C_1;$ d) $C_3>C_2.$

Рис. 7: Осциллограммы напряжения на выходе двухполупериодный мостикового выпрямителя со сглаживающими емкостями а)C=0; b) C_1 ; c) $C_2>C_1$; d) $C_3>C_2$.