Lecture 7 - QR Factorization

OBJECTIVE:

We introduce the algorithmic idea behind the QR factorization, which is possibly the most important idea in numerical linear algebra.

◇ REDUCED QR FACTORIZATION

For many applications, we are interested in successive column spaces of a matrix \mathbf{A} .

i.e., the spaces spanned by the columns a_1, a_2, \ldots of **A** in succession

$$\langle \mathbf{a}_1 \rangle \subseteq \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \subseteq \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle \subseteq \dots$$

e.g., $\langle \mathbf{a}_1 \rangle$ is the 1-D subspace spanned by \mathbf{a}_1 $\langle \mathbf{a}_1, \mathbf{a}_2 \rangle$ is the 2-D subspace spanned by $\mathbf{a}_1, \mathbf{a}_2$, etc.

The idea of the QR factorization is to successively construct orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \ldots$ that span these successive spaces.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ge n)$ have full rank n. We want to find the sequence $\mathbf{q}_1, \mathbf{q}_2, \ldots$ of orthonormal vectors such that

$$\langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_j \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_j \rangle$$

for
$$j = 1, 2, ..., n$$
.

From Lecture 1, we can see that this amounts to

where $r_{kk} \neq 0$ for k = 1, 2, ..., n so that the \mathbf{a}_k can be expressed as a linear combination of the \mathbf{q}_k and vice versa.

Written out

$$\mathbf{a}_{1} = r_{11}\mathbf{q}_{1}
\mathbf{a}_{2} = r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2}
\vdots
\mathbf{a}_{n} = r_{1n}\mathbf{q}_{1} + r_{2n}\mathbf{q}_{2} + \dots + r_{nn}\mathbf{q}_{n}$$

$$(*)$$

or as a matrix equation

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}},$$

where $\hat{\mathbf{Q}} \in \mathbb{R}^{m \times n}$ has orthonormal columns and $\hat{\mathbf{R}} \in \mathbb{R}^{n \times n}$ is upper triangular. This is called the *reduced QR factorization of* \mathbf{A} .

◇ FULL QR FACTORIZATION

Similar to a full SVD, a full QR factorization of $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \geq n)$ appends an additional (m-n) orthonormal columns to $\hat{\mathbf{Q}}$ to make it an $m \times m$ orthogonal matrix.

In the process, (m-n) rows of zeros are appended to $\hat{\mathbf{R}}$, making it an $m \times n$ matrix \mathbf{R}

Note 1. In the full QR, the "silent" columns \mathbf{q}_j , j > n are orthogonal to range(\mathbf{A}). If \mathbf{A} has full rank, they form an orthonormal basis

for range(${f A}$) $^{\perp}$ (the space orthogonal to range(${f A}$)) or equivalently, null(${f A}^T$).

♦ GRAM-SCHMIDT ORTHOGONALIZATION

The equations (*) suggest a method for computing reduced QR factorizations:

Given $\mathbf{a}_1, \mathbf{a}_2, \ldots$ we can construct $\mathbf{q}_1, \mathbf{q}_2, \ldots$ and entries r_{ij} by successive orthogonalization.

This is an old idea called *Gram-Schmidt* orthogonalization.

At step j, we want a unit vector $\mathbf{q}_j \in \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_j \rangle$ that is orthogonal to $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{j-1}$.

It turns out we know how to do this from Lecture 2: the vector

$$\mathbf{v}_j = \mathbf{a}_j - (\mathbf{q}_1^T \mathbf{a}_j) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_j) \mathbf{q}_2 - \ldots - (\mathbf{q}_{j-1}^T \mathbf{a}_j) \mathbf{q}_{j-1}$$

does the trick, except it does not have unit norm. So, if we divide \mathbf{v}_j by $\|\mathbf{v}_j\|_2$, we get a suitable \mathbf{q}_j .

This allows us to rewrite (*) as

$$\mathbf{q}_{1} = \frac{\mathbf{a}_{1}}{r_{11}}$$

$$\mathbf{q}_{2} = \frac{\mathbf{a}_{2} - r_{12}\mathbf{q}_{1}}{r_{22}}$$

$$\mathbf{q}_{3} = \frac{\mathbf{a}_{3} - r_{13}\mathbf{q}_{1} - r_{23}\mathbf{q}_{2}}{r_{33}}$$

$$\vdots$$

$$\mathbf{q}_{n} = \frac{\mathbf{a}_{n} - \sum_{i=1}^{n-1} r_{in}\mathbf{q}_{i}}{r_{nn}}$$

$$(**)$$

It is clear the appropriate coefficients r_{ij} in (**) are

$$r_{jj} = \mathbf{q}_i^T \mathbf{a}_j \qquad i \neq j$$

The coefficients r_{jj} are chosen for normalization:

$$r_{jj} = \|\mathbf{a}_j - \sum_{i=1}^{j-1} r_{ij} \mathbf{q}_i\|_2$$

Note that the sign of r_{jj} is not determined! By convention, we choose $r_{jj} > 0$. This leads to a factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ where $\hat{\mathbf{R}}$ has positive diagonal entries.

Formally, the algorithm just described is called the classical Gram-Schmidt iteration.

The reason for "classical" is because this was the way it was originally envisioned and implemented.

However, it turns out to be *UNSTABLE* numerically due to roundoff errors on the computer.

Next lecture, we will cover the *modified Gram-Schmidt iteration* which does the same job but is numerically stable.

ALGORITHM 7.1: CLASSICAL GRAM-SCHMIDT (UNSTABLE)

for
$$j=1$$
 to n do $\mathbf{v}_j=\mathbf{a}_j$ for $i=1$ to $j-1$ do $r_{ij}=\mathbf{q}_i^T\mathbf{a}_j$ $\mathbf{v}_j=\mathbf{v}_j-r_{ij}\mathbf{q}_i$ end for $r_{jj}=\|\mathbf{v}_j\|_2$ $\mathbf{q}_j=\frac{\mathbf{v}_j}{r_{jj}}$ end for

♦ EXISTENCE AND UNIQUENESS OF THE QR FACTORIZATION

Bottom line:

All matrices have QR factorizations.

And, if we impose the restriction $r_{jj} > 0$, then the QR factorization is unique.

Theorem 1. Every $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \geq n)$ has a full QR factorization (and hence also a reduced QR factorization).

Theorem 2. Every $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ with $r_{ij} > 0$.

 \diamondsuit SOLUTION OF $\mathbf{A}\mathbf{x} = \mathbf{b}$ BY QR FACTORIZATION

Suppose we wish to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ for \mathbf{x} , where $\mathbf{A} \in \mathbb{R}^{m \times m}$ is nonsingular.

If A = QR is a QR factorization, then

$$\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b}$$

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$$

The right-hand side is easy to compute once we know ${f Q}$.

Then the solution x can be easily solved by the method of back substitution because R is upper triangular (solve for x_m directly, then use it to find x_{m-1} , etc.).

In summary, to solve Ax = b

- 1. Compute a QR factorization $\mathbf{A} = \mathbf{Q}\mathbf{R}$
- 2. Compute $\mathbf{y} = \mathbf{Q}^T \mathbf{b}$
- 3. Solve $\mathbf{R}\mathbf{x} = \mathbf{y}$ for \mathbf{x} by back substitution

This is an excellent method for solving linear systems, but, it is not the standard:

Gaussian elimination (or LU factorization) is used in practice because it is twice as fast.

However, we will find a good use for QR soon!