Optimization and equilibrium problems with discrete choice models

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

PhD Public Defense 18 March 2022

Jury members:

Prof. Dusan Licina (President)

Prof. Michel Bierlaire (Thesis director) Prof. Virginie Lurkin (Thesis co-director)

Prof. Francesco Corman (Internal jury member) Prof. Emma Frejinger (External jury member)

Prof. Maria Grazia Speranza (External jury member)

- Introduction
- A simulation-based heuristic to find approximate equilibria with disaggregate demand models
- Opening Price-based regulation of oligopolistic markets under discrete choice models of demand
- Benders decomposition for choice-based optimization problems
- Conclusion

Choices

 People have different socioeconomic characteristics and tastes that influence their choices.

Choices

- People have different socioeconomic characteristics and tastes that influence their choices.
- Disaggregate models of demand can capture this heterogeneity.

• Discrete choice models are used to predict and forecast choices of decision makers who select one out of a finite set of alternatives.

- Discrete choice models are used to predict and forecast choices of decision makers who select one out of a finite set of alternatives.
- They are probabilistic models, generally non-linear and non-convex.

- Discrete choice models are used to predict and forecast choices of decision makers who select one out of a finite set of alternatives.
- They are probabilistic models, generally non-linear and non-convex.
- Choice probabilities of advanced DCMs cannot be expressed with a closed form.

- Discrete choice models are used to predict and forecast choices of decision makers who select one out of a finite set of alternatives.
- They are probabilistic models, generally non-linear and non-convex.
- Choice probabilities of advanced DCMs cannot be expressed with a closed form.
- Difficult to integrate into supply optimization and market equilibrium models.

Choice-based optimization and choice-based equilibrium

• Dominant paradigm:

Sacrifice complexity at the demand level to obtain tractable optimization and equilibrium problems.

Choice-based optimization and choice-based equilibrium

- Dominant paradigm:
 - Sacrifice complexity at the demand level to obtain tractable optimization and equilibrium problems.
- Complementary view:

Models and algorithms that accommodate advanced discrete choice models.

Some reasons to take this alternative point of view:

Some reasons to take this alternative point of view:

9 Specification tests: quantifiable trade-off between different demand models.

Some reasons to take this alternative point of view:

- Specification tests: quantifiable trade-off between different demand models.

Some reasons to take this alternative point of view:

- Specification tests: quantifiable trade-off between different demand models.
- **②** Estimation from increasingly large data sets \rightarrow richer specifications
- ullet Disaggregate choice-based models o differentiated offers and policies to target specific groups of the population.

Positioning the doctoral thesis

Research directions

- Development of mathematical models and algorithms for choice-based equilibrium problems.
- Identification of problem reformulations and efficient algorithmic approaches for choice-based optimization problems.

Outline of the thesis

Chapter 2

Based on the article

Bortolomiol, S., Lurkin, V., Bierlaire, M. (2021). A simulation-based heuristic to find approximate equilibria with disaggregate demand models. *Transportation Science*, 55(5):1025–1045.

Chapter 3

Based on the article

Bortolomiol, S., Lurkin, V., Bierlaire, M. (2021). Price-based regulation of oligopolistic markets under discrete choice models of demand. *Transportation*.

Chapter 4

Part of the work is included in the conference paper

Bortolomiol, S., Lurkin, V., Bierlaire, M., Bongiovanni, C. (2021). **Benders decomposition for choice-based optimization problems with discrete upper-level variables**. In *Proceedings of the 21st Swiss Transport Research Conference, Ascona, Switzerland*.

- Introduction
- A simulation-based heuristic to find approximate equilibria with disaggregate demand models
- Opening Price-based regulation of oligopolistic markets under discrete choice models of demand
- Benders decomposition for choice-based optimization problems
- Conclusion

Oligopolistic competition

Oligopolies in transportation

Random utility models:

$$U_{in} = V_{in} + \varepsilon_{in}$$
 $P_{in} = \Pr[U_{in} + \varepsilon_{in} = \max_{j \in I} (U_{jn} + \varepsilon_{jn})]$

Random utility models:

$$U_{in} = V_{in} + \varepsilon_{in}$$
 $P_{in} = \Pr[U_{in} + \varepsilon_{in} = \max_{j \in I} (U_{jn} + \varepsilon_{jn})]$

Simulation can be used to linearize the choice probabilities¹.

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

Random utility models:

$$U_{in} = V_{in} + \varepsilon_{in}$$
 $P_{in} = \Pr[U_{in} + \varepsilon_{in} = \max_{j \in I} (U_{jn} + \varepsilon_{jn})]$

- Simulation can be used to linearize the choice probabilities¹.
- In each simulation scenario, the alternative with the highest utility is chosen.

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

Random utility models:

$$U_{in} = V_{in} + \varepsilon_{in}$$
 $P_{in} = \Pr[U_{in} + \varepsilon_{in} = \max_{j \in I} (U_{jn} + \varepsilon_{jn})]$

- Simulation can be used to linearize the choice probabilities¹.
- In each simulation scenario, the alternative with the highest utility is chosen.
- Choice probabilities are obtained by sample average approximation.

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

The modeling framework: supply

• Firms aim at maximizing profits and/or other objectives.

The modeling framework: supply

- Firms aim at maximizing profits and/or other objectives.
- Firms make decisions accounting for the expected behavior of customers.

The modeling framework: supply

- Firms aim at maximizing profits and/or other objectives.
- Firms make decisions accounting for the expected behavior of customers.
- Decisions can be related to pricing, level of service, capacity, availability, etc.

• Oligopolistic market: firms interact strategically.

- Oligopolistic market: firms interact strategically.
- Nash equilibrium: no firm can improve its payoff by unilaterally changing strategy.

- Oligopolistic market: firms interact strategically.
- Nash equilibrium: no firm can improve its payoff by unilaterally changing strategy.
 - Continuous demand functions + convex objective functions → first-order conditions.
 - ullet Disaggregate demand o no theoretical guarantees of equilibrium existence.

- Oligopolistic market: firms interact strategically.
- Nash equilibrium: no firm can improve its payoff by unilaterally changing strategy.
 - \bullet Continuous demand functions + convex objective functions \to first-order conditions.
 - ullet Disaggregate demand o no theoretical guarantees of equilibrium existence.
- A simulation-based heuristic to find approximate equilibria.

Small example: logit with unique Nash equilibrium²

²Lin and Sibdari, "Dynamic price competition with discrete customer choices" (2009).

Small example: logit with unique Nash equilibrium²

Equilibrium		Prices		Profits		Market shares		
#	ε	1	2	1	2	1	2	3
Heuristic Analytical	0.9% 0	21.77 23.02	17.63 16.57	12.89 13.02	6.54 6.57	0.037 0.038	0.592 0.566	0.371 0.396

²Lin and Sibdari, "Dynamic price competition with discrete customer choices" (2009).

Numerical experiments: accounting for observed heterogeneity

Numerical experiments: accounting for observed heterogeneity

Equilibri	Equilibrium		Prices		Profits		Market shares		
#	ε	1	2	1	2	1	2	3	
Heuristic (Analytical)	0.8%	33.85 23.02	26.04 16.57	16.92 13.02	11.02 6.57	0.077 0.038	0.500 0.566	0.423 0.396	

Numerical experiments: accounting for unobserved heterogeneity

Numerical experiments: accounting for unobserved heterogeneity

Equilibrium		Prices		Profits		Market shares		
#	ε	1	2	1	2			
Heuristic (Analytical)	0.9% 0	33.69 23.02	25.68 16.57	17.55 13.02	9.86 6.57	0.095 0.038	0.521 0.566	0.384 0.396

• Heterogeneous demand

- Heterogeneous demand
- Multi-product offer by suppliers

- Heterogeneous demand
- Multi-product offer by suppliers
- Price differentiation

Summary

• Integration of discrete choice models into choice-based equilibrium problems.

Summary

- Integration of discrete choice models into choice-based equilibrium problems.
- Simulation-based heuristic to find approximate equilibrium solutions.

Summary

- Integration of discrete choice models into choice-based equilibrium problems.
- Simulation-based heuristic to find approximate equilibrium solutions.
- Application to transportation case studies.

Summary

- Integration of discrete choice models into choice-based equilibrium problems.
- Simulation-based heuristic to find approximate equilibrium solutions.
- Application to transportation case studies.

Directions for future work

Summary

- Integration of discrete choice models into choice-based equilibrium problems.
- Simulation-based heuristic to find approximate equilibrium solutions.
- Application to transportation case studies.

Directions for future work

Non-linear congestion effects

Summary

- Integration of discrete choice models into choice-based equilibrium problems.
- Simulation-based heuristic to find approximate equilibrium solutions.
- Application to transportation case studies.

Directions for future work

- Non-linear congestion effects
- Capacity constraints → simulation of arrival of customers

- Introduction
- A simulation-based heuristic to find approximate equilibria with disaggregate demand models
- Price-based regulation of oligopolistic markets under discrete choice models of demand
- 4 Benders decomposition for choice-based optimization problems
- Conclusion

Regulated competitive markets in transportation

- Imperfect competition, barriers to entry, externalities
- Government as welfare maximizer

Regulated competitive markets in transportation

- Imperfect competition, barriers to entry, externalities
- Government as welfare maximizer

• Regulation according to competition and antitrust laws

Regulated competitive markets in transportation

- Imperfect competition, barriers to entry, externalities
- Government as welfare maximizer

- Regulation according to competition and antitrust laws
- Economic instruments: subsidies and taxes

Price-based regulation

• Deregulated competition:

The price paid for product i by customer n is equal to the revenue received by the supplier selling product i to customer n.

$$p_{in} = r_{in}$$

Price-based regulation

Deregulated competition:

The price paid for product i by customer n is equal to the revenue received by the supplier selling product i to customer n.

$$p_{in} = r_{in}$$

Regulated competition:

$$p_{in} = r_{in} + t_{in}$$

where t_{in} is a tax (> 0) or subsidy (< 0) set by the regulator.

Optimization problem of the regulator

Objective function

Maximize a **social welfare function** that can include utilities of the customers, profits of the suppliers, environmental externalities and public budget.

Optimization problem of the regulator

Objective function

Maximize a **social welfare function** that can include utilities of the customers, profits of the suppliers, environmental externalities and public budget.

Constraints

Market equilibrium

Profit maximization

Utility maximization

Optimization problem of the regulator

Objective function

Maximize a **social welfare function** that can include utilities of the customers, profits of the suppliers, environmental externalities and public budget.

Constraints

Market equilibrium

Profit maximization

Utility maximization

Problem-specific constraints

- Budget
- Policy fairness
- Capacities
- •

Case study: disaggregate policies

Case study: disaggregate policies

Case study: disaggregate policies

- Monetary value of the damage caused by emitting one unit of CO2.
- Economic indicator used for climate policy and cost-benefit analyses.

- Monetary value of the damage caused by emitting one unit of CO2.
- Economic indicator used for climate policy and cost-benefit analyses.

		Air F	Air Prices		Prices	Regulation	
SCC	$t\mathrm{CO}_2$	r ₂	<i>r</i> ₃	r ₄	<i>r</i> ₅	t _{TRAIN}	t_{AIR}
100	150.05	128.82	124.27	93.80	80.95	-0.03	0.00
200	132.69	97.12	99.48	84.90	83.71	-22.34	14.35
300	124.17	79.02	80.25	85.75	79.55	-30.00	30.00

Table: Social welfare maximization problem with marginal cost of public funds.

- Monetary value of the damage caused by emitting one unit of CO2.
- Economic indicator used for climate policy and cost-benefit analyses.

		Air F	Air Prices		Prices	Regulation	
SCC	$t\mathrm{CO}_2$	<i>r</i> ₂	<i>r</i> ₃	r ₄	<i>r</i> ₅	t _{TRAIN}	t _{AIR}
100 200 300	150.05 132.69 124.17	128.82 97.12 79.02	124.27 99.48 80.25	93.80 84.90 85.75	80.95 83.71 79.55	-0.03 -22.34 -30.00	0.00 14.35 30.00

Table: Social welfare maximization problem with marginal cost of public funds.

- Monetary value of the damage caused by emitting one unit of CO2.
- Economic indicator used for climate policy and cost-benefit analyses.

		Air Prices		HSR	Prices	Regulation	
SCC	$t\mathrm{CO}_2$	r ₂	<i>r</i> ₃	r ₄	<i>r</i> ₅	t _{TRAIN}	t _{AIR}
100	150.05	128.82	124.27	93.80	80.95	-0.03	0.00
200	132.69	97.12	99.48	84.90	83.71	-22.34	14.35
300	124.17	79.02	80.25	85.75	79.55	-30.00	30.00

Table: Social welfare maximization problem with marginal cost of public funds.

		Air F	Air Prices		Air Prices HSR Prices		Regulation			
SCC	$t\mathrm{CO}_2$	r ₂	r ₃	r ₄	r ₅	t ^H TRAIN	t ^L TRAIN	t ^H AIR	t ^L _{AIR}	
100 200 300	151.37 141.63 120.05	113.83 95.88 84.72	116.45 103.98 107.15	81.16 87.11 88.24	81.16 84.47 82.70	30.00 28.42 3.33	-29.96 -30.00 -30.00	30.00 30.00 30.00	-8.93 -0.28 28.95	

Table: Social welfare maximization problem with disaggregate policy.

- Monetary value of the damage caused by emitting one unit of CO2.
- Economic indicator used for climate policy and cost-benefit analyses.

		Air Prices		HSR Prices		Regulation	
SCC	tCO_2	<i>r</i> ₂	<i>r</i> ₃	r ₄	<i>r</i> ₅	t _{TRAIN}	t _{AIR}
100	150.05	128.82	124.27	93.80	80.95	-0.03	0.00
200	132.69	97.12	99.48	84.90	83.71	-22.34	14.35
300	124.17	79.02	80.25	85.75	79.55	-30.00	30.00

Table: Social welfare maximization problem with marginal cost of public funds.

		Air Prices		HSR Prices		Regulation			
SCC	$t\mathrm{CO}_2$	r ₂	<i>r</i> ₃	r ₄	r ₅	t ^H TRAIN	t ^L TRAIN	t ^H AIR	t ^L _{AIR}
100	151.37	113.83	116.45	81.16	81.16	30.00	-29.96	30.00	-8.93
200	141.63	95.88	103.98	87.11	84.47	28.42	-30.00	30.00	-0.28
300	120.05	84.72	107.15	88.24	82.70	3.33	-30.00	30.00	28.95

Table: Social welfare maximization problem with disaggregate policy.

Summary

 Framework to find optimal price-based regulation of oligopolistic markets under discrete choice models of demand.

Summary

- Framework to find optimal price-based regulation of oligopolistic markets under discrete choice models of demand.
- Definition of a social welfare function which includes disaggregate indicators.

Summary

- Framework to find optimal price-based regulation of oligopolistic markets under discrete choice models of demand.
- Definition of a social welfare function which includes disaggregate indicators.
- Application to an intercity travel market showing the value of disaggregate demand models.

Summary

- Framework to find optimal price-based regulation of oligopolistic markets under discrete choice models of demand.
- Definition of a social welfare function which includes disaggregate indicators.
- Application to an intercity travel market showing the value of disaggregate demand models.

Directions for future work

Summary

- Framework to find optimal price-based regulation of oligopolistic markets under discrete choice models of demand.
- Definition of a social welfare function which includes disaggregate indicators.
- Application to an intercity travel market showing the value of disaggregate demand models.

Directions for future work

• Investigating the role of value judgements when optimizing social welfare: distributional preferences, policy acceptability, perceived fairness, etc.

- Introduction
- A simulation-based heuristic to find approximate equilibria with disaggregate demand models
- Price-based regulation of oligopolistic markets under discrete choice models of demand
- Benders decomposition for choice-based optimization problems
- Conclusion

Choice-based assortment and price optimization

 The use of simulation comes with open questions on scalability and flexibility of the framework.

Choice-based assortment and price optimization

- The use of simulation comes with open questions on scalability and flexibility of the framework.
- We investigate tradeoffs related to the decision variables and their domains.

Choice-based assortment and price optimization

- The use of simulation comes with open questions on scalability and flexibility of the framework.
- We investigate tradeoffs related to the decision variables and their domains.
- Assortment and pricing are two common supply problems.

Continuous (CPP) vs Discrete (DPP) Pricing Problem

Prices p are the only set of decision variables for supplier k. Binary variables x capture the choices of the customers.

Continuous (CPP) vs Discrete (DPP) Pricing Problem

Prices p are the only set of decision variables for supplier k. Binary variables x capture the choices of the customers.

Continuous formulation:

• The utilities of the customers are price-dependent variables.

$$U_{inr} = \beta_{p,inr} p_i + \hat{q}_{inr} + \xi_{inr} \qquad \forall i \in I_k, \forall n \in N, \forall r \in R.$$

• The linearization of the product $p_i \cdot x_{inr}$ (continuous and binary) can be done using big-M constraints.

Continuous (CPP) vs Discrete (DPP) Pricing Problem

Prices p are the only set of decision variables for supplier k. Binary variables x capture the choices of the customers.

Continuous formulation:

• The utilities of the customers are price-dependent variables.

$$U_{inr} = \beta_{p,inr} \frac{p_i}{p_i} + \hat{q}_{inr} + \xi_{inr} \qquad \forall i \in I_k, \forall n \in N, \forall r \in R.$$

• The linearization of the product $p_i \cdot x_{inr}$ (continuous and binary) can be done using big-M constraints.

Discrete formulation:

- Prices p_i of each alternative $i \in I_k$ are chosen from a finite set.
- Utilities are parameters of the optimization model: $\hat{U}_{inr} = \beta_{p,inr}\hat{p}_i + \hat{q}_{inr} + \xi_{inr}$.
- Binary variables y capture the choice of the price level by the supplier.

Numerical experiments

<i>R</i>	(CPP		DPP		
	Time	Opt	$ I_i^{exp} $	Time	Opt	Gap
100	101.64	66452.18	21 51 101	34.48 161.03 395.86	66118.40 66255.90 66341.32	0.50% 0.30% 0.17%
200	288.89	70788.17	21 51 101	139.17 415.90 1829.24	69859.60 70489.95 70571.67	1.31% 0.42% 0.31%

Table: High-speed rail pricing: solving CPP and DPP to optimality with CPLEX.

 We include the binary decision variables y about offering or not any product to customers.

- We include the binary decision variables y about offering or not any product to customers.
- The continuous formulation (ACPP) requires an additional set of big-M constraints.

- We include the binary decision variables *y* about offering or not any product to customers.
- The continuous formulation (ACPP) requires an additional set of big-M constraints.
- The discrete formulation (ADPP) remains pretty much unchanged.

- We include the binary decision variables *y* about offering or not any product to customers.
- The continuous formulation (ACPP) requires an additional set of big-M constraints.
- The discrete formulation (ADPP) remains pretty much unchanged.

<i>R</i>	ACPP		ADPP			Gap
	Time	Opt	$ I_i^{exp} $	Time	Opt	
10	11706	907.8	16 31	132 800	864.0 876.0	4.82% 3.50%
20	129600*	877.0*	16 31	429 2778	842.0 862.5	3.99% 1.65%

Table: Parking assortment and pricing: solving ACPP and ADPP to optimality with CPLEX.

• The discrete upper-level variables **y** of the supplier represent a joint decision on assortment and discrete price.

- The discrete upper-level variables **y** of the supplier represent a joint decision on assortment and discrete price.
- If we fix these variables to y^* , the lower-level utility maximization problem for a single customer n and scenario r is as follows:

- The discrete upper-level variables y of the supplier represent a joint decision on assortment and discrete price.
- If we fix these variables to y^* , the lower-level utility maximization problem for a single customer n and scenario r is as follows:

$$\begin{aligned} \max_{\mathbf{x}} \quad & U = \sum_{i \in I} \hat{U}_i \mathbf{x}_i, \\ s.t. \quad & \sum_{i \in I} \mathbf{x}_i = 1, \\ & \quad & \quad & \forall i \in I, \\ & \quad & \quad & \forall i \in I. \end{aligned}$$

- The discrete upper-level variables y of the supplier represent a joint decision on assortment and discrete price.
- If we fix these variables to y^* , the lower-level utility maximization problem for a single customer n and scenario r is as follows:

$$\begin{aligned} \max_{\mathbf{x}} \quad & U = \sum_{i \in I} \hat{U}_i \mathbf{x}_i, \\ s.t. \quad & \sum_{i \in I} \mathbf{x}_i = 1, \\ & \quad & \mathbf{x}_i \leq y_i^* & \forall i \in I, \\ & \quad & \mathbf{x}_i > 0 & \forall i \in I. \end{aligned}$$

- Continuous knapsack problem:
 - knapsack's capacity = 1;
 - weight of each item i (alternative) = 1;
 - value of each item i (alternative) = \hat{U}_i .

- The discrete upper-level variables y of the supplier represent a joint decision on assortment and discrete price.
- If we fix these variables to y^* , the lower-level utility maximization problem for a single customer n and scenario r is as follows:

$$\begin{aligned} \max_{\mathbf{x}} \quad & U = \sum_{i \in I} \hat{U}_i \mathbf{x}_i, \\ s.t. \quad & \sum_{i \in I} \mathbf{x}_i = 1, \\ & \quad & \mathbf{x}_i \leq y_i^* & \forall i \in I, \\ & \quad & \mathbf{x}_i \geq 0 & \forall i \in I. \end{aligned}$$

- Continuous knapsack problem:
 - knapsack's capacity = 1;
 - weight of each item i (alternative) = 1;
 - value of each item i (alternative) = \hat{U}_i .
- Benders decomposition to exploit duality.

• Classical approach of solving the master problem at each iteration is inefficient.

- Classical approach of solving the *master problem* at each iteration is inefficient.
- Benders cuts can be inserted while processing the branch-and-bound tree of the master problem.³

³Fischetti, Ljubić, and Sinnl, "Redesigning Benders decomposition for large-scale facility location" (2017).

- Classical approach of solving the master problem at each iteration is inefficient.
- Benders cuts can be inserted while processing the branch-and-bound tree of the master problem.³
- Efficient cut generation is key to the success of this approach.

³Fischetti, Ljubić, and Sinnl, "Redesigning Benders decomposition for large-scale facility location" (2017).

- Classical approach of solving the master problem at each iteration is inefficient.
- Benders cuts can be inserted while processing the branch-and-bound tree of the master problem.³
- Efficient cut generation is key to the success of this approach.
- Some attempts:

Pareto-optimal cuts:⁴

- minimal infeasible subset cuts;
- partial Benders decomposition;⁵
- etc.

³Fischetti, Ljubić, and Sinnl, "Redesigning Benders decomposition for large-scale facility location" (2017).

⁴Magnanti and Wong, "Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria" (1981).

⁵Crainic et al., "Partial Benders decomposition: General methodology and application to stochastic network design" (2021).

Computational performance: facility location and pricing

R	$ I_i^{exp} $	Best	CPLEX (s)	BBC (s)	DualTime (%)
50	3	2625.00	4.92	33.78	0.84
50	6	2814.00	47.69	108.52	0.79
50	12	2892.00	684.46	383.59	0.52
100	3	2567.00	17.85	62.96	0.78
100	6	2857.00	258.60	237.33	0.61
100	12	2865.00	2047.72	1476.88	0.32
200	3	2588.50	39.53	131.01	0.75
200	6	2861.50	215.05	515.43	0.63
200	12	2861.50	4025.04	3268.00	0.25
500	3	2572.20	221.06	369.10	0.68
500	6	2824.30	1753.52	1784.22	0.38
500	12	2835.65	46166.88	20903.66	0.10
1000	3	2580.80	677.68	720.91	0.41
1000	6	2809.45	7913.22	6988.75	0.13
1000	12	2820.25	172000.00*	100862.04	0.03

Table: N818 instances: running time for the ADPP using CPLEX and the BBC algorithm with disaggregate Benders cuts.

Summary

 Using simulation, we can exploit decomposition techniques to solve choice-based optimization problems with discrete upper-level variables.

Summary

- Using simulation, we can exploit decomposition techniques to solve choice-based optimization problems with discrete upper-level variables.
- Branch-and-Benders-cut is competitive against a black-box MILP solver on instances of a facility location and pricing problem with disaggregate demand.

Directions for future work

Summary

- Using simulation, we can exploit decomposition techniques to solve choice-based optimization problems with discrete upper-level variables.
- Branch-and-Benders-cut is competitive against a black-box MILP solver on instances of a facility location and pricing problem with disaggregate demand.

Directions for future work

• Column generation to avoid large discretized strategy sets.

Summary

- Using simulation, we can exploit decomposition techniques to solve choice-based optimization problems with discrete upper-level variables.
- Branch-and-Benders-cut is competitive against a black-box MILP solver on instances of a facility location and pricing problem with disaggregate demand.

Directions for future work

- Column generation to avoid large discretized strategy sets.
- Clustering at scenario and at customer level to optimize the generation of cuts.

Summary

- Using simulation, we can exploit decomposition techniques to solve choice-based optimization problems with discrete upper-level variables.
- Branch-and-Benders-cut is competitive against a black-box MILP solver on instances of a facility location and pricing problem with disaggregate demand.

Directions for future work

- Column generation to avoid large discretized strategy sets.
- Clustering at scenario and at customer level to optimize the generation of cuts.
- Testing simulation and decomposition on problems with complex interactions at the alternative and at the customer level (e.g. network design, scheduling).

- Introduction
- A simulation-based heuristic to find approximate equilibria with disaggregate demand models
- Opening Price-based regulation of oligopolistic markets under discrete choice models of demand
- Benders decomposition for choice-based optimization problems
- Conclusion

 The increasing availability of demand data and precise behavioral models make choice-based models more appealing.

- The increasing availability of demand data and precise behavioral models make choice-based models more appealing.
- The trade-off between the realism of the demand model and the complexity of the resulting optimization problem must be evaluated case by case.

- The increasing availability of demand data and precise behavioral models make choice-based models more appealing.
- The trade-off between the realism of the demand model and the complexity of the resulting optimization problem must be evaluated case by case.
- The possibility to **personalize offers and differentiate policies** provides a strong case for disaggregate demand models.

- The increasing availability of demand data and precise behavioral models make choice-based models more appealing.
- The trade-off between the realism of the demand model and the complexity of the resulting optimization problem must be evaluated case by case.
- The possibility to personalize offers and differentiate policies provides a strong case for disaggregate demand models.
- This thesis contributes with exact and heuristic algorithms for realistic optimization and equilibrium problems with disaggregate demand.

Discussion

