Exercises 2

张逸松

October 7, 2019

2.9

a)

 $x \in \overline{A \cap B \cap C} \equiv x \notin A \cup B \cup C \equiv x \notin A \vee x \notin B \vee x \notin C \equiv x \in \overline{A} \vee x \in \overline{B} \vee x \in \overline{C} \equiv x \in \overline{A} \cup \overline{B} \cup \overline{C}$

b)

A B C	$A \cap B \cap C$	$\overline{A \cap B \cap C}$	$\overline{A} \ \overline{B} \ \overline{C}$	$\overline{A} \cup \overline{B} \cup \overline{C}$
0 0 0	0	1	1 1 1	1
0 0 1	0	1	111	1
0 1 0	0	1	111	1
0 1 1	0	1	111	1
1 0 0	0	1	111	1
1 0 1	0	1	111	1
1 1 0	0	1	111	1
1 1 1	1	0	111	0

2.12

 $x \in A \cup (B \cap C) \equiv x \in A \lor x \in (B \cap C) \equiv x \in A \lor (x \in B \land x \in C) \equiv (x \in A \lor x \in B) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C) \land (x \in A \lor x \in C) = (x \in A \lor x \in C) \land (x \in A \lor x \in C)$ $(C) \equiv x \in (A \cup B) \cap (A \cup C)$

2.13

- a) $A \cap B \cap C = \{4, 6\}$
- **b)** $A \cap B \cap C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- **c)** $A \cap B \cap C = \{4, 5, 6, 8, 10\}$
- **d)** $A \cap B \cap C = \{0, 2, 4, 5, 6, 7, 8, 9, 10\}$

3.1

- a) f(0) is not defined.
- **b)** f(x) is not defined when x < 0.
- c) f(x) has two value assigned to x. a) $\begin{bmatrix} \frac{3}{4} \end{bmatrix} = 1$ b) $\lfloor \frac{7}{8} \rfloor = 0$ c) $\lceil -\frac{3}{4} \rceil = 0$ d) $\lfloor -\frac{7}{8} \rfloor = -1$ e) $\lceil 3 \rceil = 3$ f) $\lfloor -1 \rfloor = -1$ g) $\lfloor \frac{1}{2} + \lceil \frac{3}{2} \rceil \rfloor = 2$ h) $\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor = 1$

3.7

- **a)** f(n) = n 1 is a onto.
- **b)** $f(n) = n^2 + 1$ is not a onto.
- c) $f(n) = n^3$ is a onto.
- **d)** $f(n) = \lfloor n/2 \rfloor$ is a onto.

3.12

- a) f(x) = 2x + 1 is a bijection.
- **b)** $f(x) = x^2 + 1$ is not a bijection.
- c) $f(x) = x^3$ is a bijection.
- d) $f(x) = (x^2 + 1)/(x^2 + 2)$ is a bijection.

3.16

- a) $f(S) = \{0, 1, 3\}.$
- **b)** $f(S) = \{0, 1, 3, 5, 8\}.$
- c) $f(S) = \{0, 8, 16, 40\}.$
- **d)** $f(S) = \{1, 12, 33, 65\}.$