The First Isomorphism Theorem

- Announcements:

- Math Dept Graduation Ceremony 5/24 fill out survey by Monday if graduating!
- · Q4 A for Math Dept Scholarships today 3-4pm
- Video: Let

be a homomorphism and let $K=\ker(\Psi)$. Then

$$G/K \cong im(\varphi)$$
.

- This is a super useful way to prove two groups are isomorphic without necessarily finding an isomorphism!
- Comprehension Question: If $\Psi: G \rightarrow H$ is a surjective homomorphism, then $G/\ker(\Psi) \cong H$.

Worksheet 33: The First Isomorphism Theorem

Math 335

Reporter:

Recorder:

Equity Manager:

1. Consider the homomorphism

$$\varphi: \mathbb{R}^* \to \mathbb{R}^*$$
$$\varphi(x) = |x|,$$

where \mathbb{R}^* is a group under multiplication and |x| stands for the absolute value of x.

(a) What is $ker(\varphi)$? What is $im(\varphi)$?

$$ker(4) = \{1, -1\}$$

$$im(\Psi) = \mathbb{R}^+$$

(b) What does the First Isomorphism Theorem say in this case? In other words, fill in the blanks with the appropriate groups in this example:

(c) Write down a few different elements of the left-hand side of part (b), and what they correspond to on the right-hand side.

(d) If you wanted to "list" all the elements of the quotient group $\mathbb{R}^*/\ker(\varphi)$, with each element listed only once, what would that list look like? Discuss with each other why that list would look the same as a list of the elements in $\operatorname{im}(\varphi)$.

Elements of \mathbb{R}^*/K are $aK = \{a, -a\}$, so there's one for each $a \in \mathbb{R}^*$.

2. Consider the homomorphism

$$\varphi: \mathbb{Z} \to \mathbb{Z}_5$$

 $\varphi(x) = x \text{ reduced modulo } 5,$

where \mathbb{Z} is a group under addition and \mathbb{Z}_5 is a group under addition modulo 5.

(a) What is $ker(\varphi)$? What is $im(\varphi)$?

$$ker(\varphi) = \{multiples of 5\} = 5\mathbb{Z}$$

 $im(\varphi) = \mathbb{Z}_5$

(b) What does the First Isomorphism Theorem say in this case?

$$\mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}_5$$

3. Vague discussion questions: What does the statement of the First Isomorphism Theorem become if $\varphi: G \to G$ is the function

$$\varphi(x) = x?$$

How about if $\varphi: G \to H$ is an isomorphism?

For
$$\Psi(x) = x$$
,
 $\ker(\Psi) = \{e\}$
 $\lim(\Psi) = G$,
So F.I.T. says
 $G/\{e\} \cong G$.
(Similarly for Ψ an isomorphism.)