ECE 201 – Spring 2014 Exam #3 April 17, 2014

Name (PRINT):	Solutions	ID#:				
I pledge on my honor that I have not given or received any unauthorized assistance on this examination.						
Signature:						
	Please identify vo	our section number:				

Prof. Peroulis: 003-006-007

Prof: Scott: 002

Instructions

1. DO NOT START UNTIL TOLD TO DO SO.

Prof. Peleato: 004

- 2. This is a multiple choice exam. If you mark six (6) or more questions with the same answer, e.g. all questions with answer (1), then you will receive a zero in this exam.
- 2. Write your name and ID# on the front page AND on your SCANTRON Sheet. IDENTIFY your section number.
- 3. This is a CLOSED BOOKS and CLOSED NOTES exam. No calculators are allowed.
- 4. Extra paper is available if needed.
- 5. Cheating will not be tolerated. Cheating in this exam will result in an F in this exam/course at the discretion of your instructor.
- 6. In the drawn circuits, the bottom node is the reference node unless otherwise specified.
- 7. To help you with time management we have calculated approximately how much time <u>on average</u> each question is likely to take you to solve. If you cannot solve a question, be sure to look at the other ones and come back to it if time permits.

Questions	Approximate time per question	Points per question
1 – 2 (ABET outcome iii)	2-3 minutes	11
3 – 5 (ABET outcome iii)	5-8 minutes	11
6 – 7 (ABET outcome i)	5-8 minutes	11
8-9 (ABET outcome iv)	8-12 minutes	11/12
TOTAL p.	60 minutes	100

For the current through the inductor $i_L(t)$, please find: the initial value $(i_L(0^+))$ the final value $(i_L(\infty))$, and the type of damping.

- 1) $i_L(0^+) = 0.5 \text{ A}$, $i_L(\infty) = 1 \text{A}$, underdamped
- 2) $i_L(0^+) = 0.5 \text{ A}$, $i_L(∞) = 1\text{A}$, overdamped
- $(3)_{i}(0^{+}) = 0.5 \text{ A}, i(\infty) = 2A, underdamped}$
- 4) $i_L(0^+) = 0.5 \text{ A}$, $i_L(\infty) = 2\text{A}$, overdamped
- 5) $i_L(0^+) = 1 \text{ A}$, $i_L(\infty) = 1 \text{ A}$, underdamped
- 6) $i_L(0^+) = 1 \text{ A}$, $i_L(\infty) = 1 \text{ A}$, overdamped
- 7) $i_L(0^+) = 1 \text{ A}$, $i_L(\infty) = 2 \text{A}$, underdamped
- 8) $i_L(0^+) = 1 A$, $i_L(\infty) = 2A$, overdamped
- 9) $i_L(0^+) = 1 \text{ A}$, $i_L(\infty) = 2 \text{ A}$, critically-damped
- 10) None of the above

Which of the following statements are true?

- a) An undamped oscillator can be built with an inductor and a capacitor
- b) An undamped oscillator can be built with just two inductors
- c) An overdamped RLC circuit can oscillate (voltages and currents alternate between increasing and decreasing periodically)
- d) An underdamped RLC circuit can oscillate (voltages and currents alternate between increasing and decreasing periodically)
- e) The response of an RLC circuit with step-function sources does NOT depend on the capacitances C or the inductances L once all transient phenomena have died out.
- 1) all of them are true
- 3) Only (a), (b), (d), and (e) are true
- **(G)** Only (a), (d), and (e) are true
- 7) Only (a) and (d) are true
- 9) Only (a) and (e) are true

- 2) Only (a), (b), (c), and (d) are true
- 4) Only (a), (c), and (e) are true
- 6) Only (b) and (e) are true
- 8) Only (d) and (e) are true
- 10) none of the above
- a) If there is no resistance in an LC circuit, roots are purely imaginary and the circuit will oscillak forever + [True]
- b) two inductors can be combined and still make a Arst-order elecuit. First order circuits do not oscillate False
- c) Overdomped RLC circuits have only real roots. Therefore, there can be no oscillation since it is the imaging nots that can a this + false
- d) Underdamped circuits by definition have imaginary roots which result in some oscillation [True]
- e) When transients have dred out (eg. Qt=20), capacitors have a fixed vollage and inductories have a fixed current regardless of their value (for example, they look like an open or short no matter their value). True

: [A, D, E are truy]

In the circuit given below the capacitor is pre-charged at a voltage $v_c(0^-) = v_0$ while the inductor is not charged. The switch that is initially open is closed at t=0. Also L=C in terms of numerical values. Please find R (positive value) so the circuit is critically damped.

1)
$$R = 1 \Omega$$

3)
$$R = 3 \Omega$$

7)
$$R = 7 \Omega$$

9)
$$R = 0 \Omega$$

$$\Omega$$
R=2 Ω

4)
$$R = 4 \Omega$$

6)
$$R = 6 \Omega$$

8)
$$R = 8 \Omega$$

10) None of the above

$$V_{c}(0^{\dagger}) = V_{c}(0^{-}) = V_{0}$$
Series RLC \rightarrow $S^{Z} + bs + c = 0$

$$b = \frac{R}{L} \qquad -\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2} - \frac{H}{L^{2}}}$$

$$c = \frac{1}{L^{c}} = \frac{1}{L^{2}}$$

$$Critically -domped $\rightarrow b^{2} = 4c \Rightarrow \frac{R^{2}}{L^{2}} = \frac{4}{L^{2}}$

$$\therefore \boxed{R = 2}$$$$

Question 4

For the circuit show in Question 3, please find the initial values $i(0^+)$ and $i'(0^+)$:

	$i(0^+)$ [A]	$i'(0^+)$ [A/s]		$i(0^+)$ [A]	$i'(0^+)$ [A/s]		
1	0	0	2	v_0/R	0		
3	v_0/R	v_0/L	4	$-v_0/R$	0		
5	$-v_0/R$	v_0/L	(6)	0	v_0/L		
7	0	$-v_0/L$	8	None of the above			

Q t=0, switch is open
and
$$i_{L}(0^{\dagger})=0$$

and $i_{L}(0^{\dagger})=i_{L}(0^{\dagger})=0$
Con find $i_{L}(0^{\dagger})$ from $U_{L}(0^{\dagger})$
 $U_{L}(0^{\dagger})=L\frac{\partial i_{L}(0^{\dagger})}{\partial t}$

$$\star \left\{ \frac{\mathcal{V}_{L}(o^{\dagger})}{L} = i_{L}'(o^{\dagger}) = i(o^{\dagger}) \right\}$$

For the circuit show in Question 3, please find the capacitor voltage $v_c(t), t \ge 0$:

1)
$$v_c(t) = v_0 e^{-\frac{R}{2L}t}$$

2)
$$v_c(t) = v_0 \left[1 + \frac{R}{L} t \right] e^{-\frac{R}{L}t}$$

(3)
$$v_c(t) = v_0 \left[1 + \frac{R}{2L} t \right] e^{-\frac{R}{2L}t}$$

4)
$$v_c(t) = v_0 e^{-\frac{R}{L}t}$$

$$5v_c(t) = v_0 \left[1 - \frac{R}{t} t \right] e^{-\frac{R}{2L}t}$$

6)
$$v_c(t) = v_0 \left[1 - \frac{R}{2L} t \right] e^{-\frac{R}{L}t}$$

7)
$$v_c(t) = v_0 \left[1 - \frac{R}{2L} t \right] e^{-\frac{R}{2L} t}$$

8) None of the above

For this response, need:

$$v_{c}'(o^{t}) = \frac{i_{c}(o^{t})}{c} = O\left(from i_{c}(t) = C\frac{\partial v_{c}(t)}{\partial t}\right)$$

Vi(D) = 0 (no sources on, so resister will exertistly consume all

2) Circuit is titll critically - damped (from problem statement), 5= -b = -R

XF = 0, so K, = Uc(01) = Vo

$$V_c'(0') = 0 = V_0 \cdot S_1 + K_2$$

$$\Rightarrow K_2 = \frac{R}{2!} \cdot V_0$$

In the circuit below, please find i_0 . The opamp is ideal.

$$(1)i_0 = v_{in}\left(\frac{1}{r} + \frac{2}{RL}\right)$$

$$2) i_0 = v_{in} \left(\frac{1}{r} - \frac{2}{RL} \right)$$

3)
$$i_0 = v_{in}/r$$

4)
$$i_0 = \frac{v_{in}}{RL}$$

5)
$$i_0 = v_{in} \left(\frac{1}{r} + \frac{1}{RL} \right)$$

6)
$$i_0 = v_{in} \left(\frac{1}{r} - \frac{1}{RL} \right)$$

7)
$$i_0 = v_{in} \left(\frac{2}{r} + \frac{2}{RL} \right)$$

8)
$$i_0 = v_{in} \left(\frac{2}{r} - \frac{2}{RL} \right)$$

9) None of the above

$$i_{+}=i_{-}=0$$
, so no voltage drop across R
 $:: V_{+}=V_{in}$
also, $V_{-}=V_{+}$ (ideal ap-Amp)

$$= \frac{V_{10}}{C} + \frac{V_{00}t}{R_{1}}$$

$$= \frac{V_{10}}{C} + \frac{V_{00}t}{R_{1}}$$

$$= \frac{V_{10}}{R_{1}} + \frac{2V_{10}}{R_{1}}$$

$$= \frac{V_{10}}{R_{1}} + \frac{2}{2}$$

Find Vin/Veat and the input resistance for the following circuit. The opamp is ideal.

- 1) Vin/Vout = -2, Rin = 100Ω
- 3) Vin/Vout = -2, Rin = 200 Ω
- 5) Vin/Vout = -2.5, $Rin = 100 \Omega$
- **7)** Vin/Vout = -2.5, Rin = 200 Ω
- 9) Vin/Vout = -3, Rin = 100 Ω
- 2) Vin/Vout = 2, Rin = 100 Ω
- 4) Vin/Vout = 2, Rin = 200 Ω
- 6) Vin/Vout = 2.5, Rin = 100 Ω
- 8) Vin/Vout = 2.5, Rin = 200 Ω
- 10) none of the above

since 11+=1-=0, there is one by path for thecurrent

| Since $07_{+}=7_{-}=0$, There is on -y.

| KVL: $V_{ov}+=I(200+100+100+300)+V_{in}$ | Rin = Assume | ITEST | Is on input + solve for but $V_{+} = V_{-}$, so $200I + V_{IN} = 0$ | VIEST $\stackrel{\triangle}{=}$ Rin $\stackrel{\Rightarrow}{=} I = -V_{IN}$ $\stackrel{\Rightarrow}{=} I = V_{-}$ | $\stackrel{\Rightarrow}{=} Again$, since $V_{+} = V_{-}$,

$$\frac{V_{out} = -V_{in}}{200} \cdot 700 + V_{in}}{V_{test}} = \frac{100 \text{ Trest}}{100 \text{ Trest}} = 0$$

$$\frac{V_{out}}{V_{in}} = -3.5 + 1 = -2.5$$

$$\frac{V_{test}}{V_{in}} = 200 \Omega = R_{in}$$

In the circuit below, $Vs(t) = \cos(t)$ and $Is(t) = \sqrt{2}\cos(2t - 45^{\circ})$. Find the output voltage Vout(t) due to Is(t) ONLY. You might need the following identities: $cos(45^{\circ})=1/\sqrt{2}$, $sin(45^{\circ})=1/\sqrt{2}$

- 1) Vout(t) = 0.5cos(2t)
- 2) Vout(t) = 0.5cos(t)
- 3) $Vout(t) = 0.5cos(2t-45^{\circ})$
- 4) Vout(t) = sin(2t)
- 5) Vout(t) = cos(2t)
- 6) Vout(t) = $\sqrt{2}/2 \cos(2t)$
- 7) Vout(t) = $\sqrt{2}/2 \sin(2t-45^{\circ})$
- 8) Vout(t) = $\sqrt{2}/2$
- 9) It cannot be found with the given data
- 10) None of the above

From current division

$$I_{R} = \sqrt{2} \frac{1}{-45} \cdot \frac{1}{0.5} = \frac{1}{0.5} \frac{1$$

$$\frac{1-45. \frac{1}{0.5}}{\frac{1}{0.5}} = \frac{52.45. \frac{2}{2+j2}}{2+j2}$$

$$\frac{1}{0.5} \cdot \frac{1}{5} = \frac{52.45. \frac{2}{2+j2}}{252.45} = 1.10^{\circ} A$$

$$\frac{1}{10^{\circ}} \cdot \frac{1}{10^{\circ}} = 0.552. \frac{1}{10^{\circ}} = 0.510^{\circ}$$

What is the voltage across the left resistor (V_R(t)) in the circuit below? Hint: use nodal analysis

3)
$$\cos (2t + pi/4) V$$

5)
$$\cos (2t + pi/2) V$$

9)
$$\sqrt{2} \cos (2t + pi/2) V$$

$$I_3 = \frac{\widetilde{V}_e}{2}$$

$$i \int \sqrt[3]{k} - 2i + j + \frac{\sqrt[3]{k}}{2} - i \sqrt[3]{k} + \frac{\sqrt[3]{k}}{2} - 1 = 0$$

$$\widetilde{V}_{R}(j+\frac{1}{2}-j+\frac{1}{2})=2j-j+1$$

TABLE 9.2 General Solutions for Constant-Source Second-Order Networks

General solution of the driven differential equation

$$\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = F$$

having characteristic equation $s^2 + bs + c = (s - s_1)(s - s_2) = 0$, with roots

$$s_1, s_2 = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

Case 1. Real and distinct roots; $b^2 - 4c > 0$:

$$x(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t} + X_F$$

where $X_F = F/c$, and

$$x(0^+) = K_1 + K_2 + X_F$$

$$x'(0^+) = s_1 K_1 + s_2 K_2$$

Case 2. The roots $s_1 = -\sigma + j\omega_d$ and $s_2 = -\sigma - j\omega_d$ of the characteristic equation are distinct but complex; $b^2 - 4c < 0$:

$$x(t) = e^{-\sigma t} [A\cos(\omega_d t) + B\sin(\omega_d t)] + X_F$$

where again $X_F = F/c$, and

$$x(0^{+}) = A + X_{F}$$

$$x'(0^+) = -\sigma A + \omega_d B$$

Case 3. The roots are real and equal; $s_1 = s_2$ and $b^2 - 4c = 0$:

$$x(t) = (K_1 + K_2 t)e^{S_1 t} + X_F$$

where again $X_F = F/c$, and

$$x(0^+) = K_1 + X_F$$

$$x'(0^+) = s_1 K_1 + K_2$$

				,
				1
				,
	•			
				•
		·		