Lógica Digital (1001351) Mapas de Karnaugh

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 14 de maio de 2023

$$f = (\overline{x}_1 + x_2)(\overline{x}_1 + x_3)$$

Figure 2.60 POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

Figure 2.60 POS minimization of $f(x_1, x_2, x_3) = \Pi M(4, 5, 6)$.

Figure 2.61 POS minimization of $f(x_1, ..., x_4) = \Pi M(0, 1, 4, 8, 9, 12, 15)$.

- Nos circuitos digitais, há certas situações onde algumas entradas para uma função nunca acontecem. Ex:
 - Um sensor para detectar se uma porta está aberta e outro para detectar se a mesma porta está fechada;
 - Um sensor para detectar se um objeto é muito pesado e outro se ele é muito leve; etc.
- Em funções deste tipo, as entradas que nunca ocorrem são chamadas de indiferenças (don't care conditions);
 - Tanto faz qual será a saída da função nesses casos, já que a entrada nunca ocorre;
 - Isso pode ser usada para otimizar a função, adotando 0 ou 1 na saída de acordo com a conveniência.

(a) SOP implementation

BCD	b_3	b_2	b_1	b_0	f	(,
0	0	0	0	0	0			x_1	x_0	
1	0	0	0	1	0		Ω	Λ1	11	10
2	0	0	1	0	0		00	01	11	10
3	0	0	1	1	1					
4	0	1	0	0	0	00	0	0	1	0
5	0	1	0	1	0					
6	0	1	1	0	1	01	0	0	0	1
7	0	1	1	1	0	x_3x_2				•
8	1	0	0	0	0			_		
9	1	0	0	1	1	11	D	D	D	D
A	1	0	1	0	-					
b	1	0	1	1	-	10	0	1	D	D
C	1	1	0	0	-					
d	1	1	0	1	-					
E	1	1	1	0	-					
F	1	1	1	1	_					

Implementar $f(b_3,b_2,b_1,b_0) = \Sigma m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

BCD	b_3	b_2	b_1	b_0	f		`				/
0	0	0	0	0	0				x_1	x_0	
1	0	0	0	1	0			00	01	11	10
2	0	0	1	0	0			UU	Οī	1.1	10
3	0	0	1	1	1	_	[_	_		_
4	0	1	0	0	0	(00	0	0	[1]	0
5	0	1	0	1	0						
6	0	1	1	0	1	$x_{3}x_{2}$	21	0	0	0	1
7	0	1	1	1	0		0 1			<u> </u>	
8	1	0	0	0	0		[7		_
9	1	0	0	1	1	7	11	D	D	D	D
A	1	0	1	0	-						
b	1	0	1	1	_	1	10	0	1	D	D
C	1	1	0	0	-						
d	1	1	0	1	-						
E	1	1	1	0	-						
F	1	1	1	1	_						

Implementar $f(b_3,b_2,b_1,b_0) = \Sigma m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

Implementar $f(b_3,b_2,b_1,b_0) = \sum m_{(3,6,9)} + D_{(10,11,12,13,14,15)}$

- Frequentemente é necessário implementar funções que são parte de um sistema maior;
- Pode ser possível compartilhar algumas das portas necessárias na implementação de funções individuais;
- Essa estratégia nem sempre funciona da melhor maneira, como veremos a seguir;
- Em vez de derivar as expressões individualmente, podemos procurar implicantes que possam ser compartilhados com vantagem na realização combinada das funções.

(a) Logic circuit and 7-segment display

	x_3	x_2	x_1	x_0	а	b	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
- 1	0	0	0	1	0	1	1	0	0	0	0
5	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
٦.	0	1	1	1	1	1	1	Λ	Ω	0	

(c) The Karnaugh maps for outputs a and e.

Figure 2.63 Using don't-care minterms when displaying BCD numbers.

(a) Optimal realization of f_3

(c) Optimal realization of f_3 and f_4 together

a
b
c

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351) Mapas de Karnaugh

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 14 de maio de 2023

