Ф-03-Лекция 13. Функциональные последовательности и ряды.

П.1 Функциональные последовательности.

ОПР. Областью определения D_{∞} функциональной последовательности $\{f_n(x)\}$ называется множество значений $x \in R$, для которых определены все функции $f_n(x)$, n=1,2,...

ОПР. Областью сходимости D_{cx} функциональной последовательности $\{f_n(x)\}$ называется множество значений $x \in D_{cx}$, для которых существует $\lim_{n \to \infty} f_n(x) = f(x)$ (поточечная сходимость), т.е.

$$\forall \varepsilon > 0, \, \forall x \in D_{cx} \, \exists N = N(x, \varepsilon) : \forall n > N \Rightarrow |f_n(x) - f(x)| < \varepsilon$$
 (1)

ОПР. Функциональная последовательность $\{f_n(x)\}$ сходится к функции f(x) на $D \subset D_{cx}$ равномерно, обозначение $f_n(x) \stackrel{D}{\Rightarrow} f(x)$, если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n > N, \forall x \in D \Rightarrow \left| f_n(x) - f(x) \right| < \varepsilon \tag{2}$$

Отличие сходимости от равномерной сходимости проявляется в том, что в первом случае число N зависит от точки x и может неограниченно расти при изменении x, а во втором - N выбирается единым для всех $x \in D$.

Необходимый и достаточный признак равномерной сходимости последовательности

$$f_n(x) \stackrel{D}{\Longrightarrow} f(x) \leftrightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n > N \Longrightarrow \sup_{x \in D} |f_n(x) - f(x)| < \varepsilon$$
 (3)

Пример 1. Последовательность $f_n(x) = \frac{1}{nx}$ сходится к $f(x) \equiv 0$ на множестве $D_{cx} = R/\{0\}$. Действительно,

$$\forall \varepsilon > 0, \forall x \in D_{cx} \exists N = \left[\frac{1}{\varepsilon |x|} \right] > \frac{1}{\varepsilon |x|} - 1 : \forall n > N \to n > \frac{1}{\varepsilon |x|} \to |f_n(x) - f(x)| = \frac{1}{n|x|} < \varepsilon$$

Эта сходимость равномерная на любом множестве вида $D = (-\infty; -a] \cup [a; +\infty)$, a > 0 Действительно,

$$\forall \varepsilon > 0 \,\exists N = \left[\frac{1}{a\varepsilon}\right] : \forall x \in D, \forall n > N \to n > \frac{1}{a\varepsilon} \to \left|\frac{1}{nx} - f(x)\right| = \frac{1}{n|x|} \le \frac{1}{na} < \varepsilon$$

Пример 2. Последовательность $f_n(x) = x^n$ на множестве $D = \left(-1;1\right]$ сходится к функции $f(x) = \begin{cases} 0, & x \in \left(-1;1\right) \\ 1, & x = 1 \end{cases}$ неравномерно, поскольку $\sup_{x \in D} \left| f_n(x) - f(x) \right| \ge \sup_{x \in \left(-1;1\right)} \left| x^n - f(x) \right| = 1$ для любого n .

Пример 3. Последовательность
$$f_n(x) = \begin{cases} n \cdot \sin(nx), & x \in \left[0; \frac{\pi}{n}\right] \\ 0, & x \in \left(\frac{\pi}{n}; \pi\right] \end{cases}$$
 сходится к $f(x) \equiv 0$ на

множестве $D=\left[0;\pi\right]$, но неравномерно, поскольку $\lim_{n\to\infty} \left|f_n(x)-f(x)\right|_{x=1/n^2}=1$ и $\sup_{x\in D} \left|f_n(x)-f(x)\right|\geq 1$.

Пример 4. Последовательность $f_n(x) = \frac{x}{1 + n^2 x^2}$ на отрезке [0;1] сходится к функции $f(x) \equiv 0$ не только поточечно, но и равномерно.

Действительно,
$$f_n'(x) = \frac{(1-n^2x^2)}{(1+n^2x^2)^2} = 0 \rightarrow x = \pm \frac{1}{n}$$
 В точке $x = \frac{1}{n} \in [0;1]$ функция

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$
 достигает максимальное значение на отрезке [0;1], равное $\frac{1}{2n}$.

Тогда
$$\sup_{x \in [0:1]} \left| f_n(x) - f(x) \right| = \max_{x \in [0:1]} \frac{x}{1 + n^2 x^2} = \frac{1}{2n} < \varepsilon$$
 для $n > N = \left[\frac{1}{2\varepsilon} \right], x \in [0:1]$.

КРИТЕРИЙ КОШИ равномерной сходимости.

Последовательность функций $\{f_n(x)\}$ сходится на множестве D равномерно в том и только в том случае, если

$$\forall \varepsilon > 0 \,\exists N = N_{\varepsilon} : \forall n \ge N \,\mathsf{H} \,\forall m > n \to \sup_{x \in D} \left| f_m(x) - f_n(x) \right| \le \varepsilon \quad (4)$$

Свойства равномерно сходящихся последовательностей.

1. О возможности предельного перехода по x .

Теорема 1. Пусть
$$f_n(x) \overset{D}{\Rightarrow} f(x)$$
 и $\exists \lim_{x \to a} f_n(x) = a_n$. Тогда $\exists \lim_{n \to \infty} a_n = A$, $\exists \lim_{x \to a} f(x) = A$

Док. Заметим, что $x \to a$ предполагает, что $x \in D$, поэтому a – предельная точка для D .

Пусть $\left\{x_k\right\}_{k=1}^{\infty}$, $x_k \in D$: $\lim_{k \to \infty} x_k = a$ - произвольная последовательность (предел по Гейне).

Из условия
$$\lim_{x\to a} f_n(x) = a_n \to \forall \varepsilon > 0 \exists N_1 : \forall k > N_1 \to \left| f_n(x_k) - a_n \right| < \varepsilon / 3 (*)$$

Тогда из (4)
$$\rightarrow \forall \varepsilon > 0 \ \exists \ N_2 = N_2(\varepsilon) : \forall m,n > N_2 \rightarrow \left| f_n(x_k) - f_m(x_k) \right| < \varepsilon \ / \ 3, \ \forall k \in \mathbb{N}$$

Переходя в последнем неравенстве к пределу по k , получим $|a_m-a_n|<\varepsilon$ / 3 . Последнее означает фундаментальность последовательности $\{a_n\}$ и существование у нее предела

 $A = \lim_{n \to \infty} a_n$ и неравенства $\left| A - a_n \right| < \varepsilon / 3$, $\forall n < N_3$ (**). Предельный переход в том же

неравенстве по m , приведет к неравенству $\left|f_n(x_k) - f(x_k)\right| < \varepsilon / 3$, $\forall k \ (***)$.

Объединяя неравенства (*), (**), (***) для $n,k > \max(N_1;N_2;N_3)$ получим

$$|f(x_k) - A| \le |f(x_k) - f_n(x_k)| + |f_n(x_k) - a_n| + |a_n - A| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Последнее означает, что $\lim_{x \to a} f(x) = A$.

2. Об ограниченности предельной функции.

Теорема 2. Если последовательность ограниченных на множестве D функций $\{f_n(x)\}$ равномерно сходится на D к функции f(x), то функция f(x) ограничена на D.

ДОК. Из ограниченности $f_n(x)$ следует, что существуют константы C_n , для которых $\left|f_n(x)\right| \leq C_n \ \forall x \in D$. Из условия равномерной сходимости $\left\{f_n(x)\right\}$ следует, что для $\varepsilon=1\ \exists\ N: \forall x \in D, \forall n \geq N \to \left|f_n(x) - f(x)\right| \leq 1$.

Тогда
$$|f(x)| = |f_N(x)| + |f(x) - f_N(x)| \le C_N + 1$$
, для всех $x \in D$.

3. О непрерывности предельной функции.

Теорема 3. Если последовательность непрерывных на множестве D функций $\{f_n(x)\}$ равномерно сходится на D к функции f(x), то функция f(x) также непрерывна на D. ДОК. Пусть x_0 - произвольная точка множества D. Из равномерной сходимости следует,

что
$$\forall \varepsilon > 0 \; \exists N = N_{\varepsilon} : \forall n \geq N \; \text{ и } \forall x \in D \to \left| f(x) - f_n(x) \right| \leq \frac{\varepsilon}{3}, \; \text{в частности}, \left| f_N(x_0) - f(x_0) \right| \leq \frac{\varepsilon}{3}$$

Из непрерывности функции $f_N(x)$ в точке x_0 следует, что

$$\exists \delta = \delta_{\varepsilon} : \forall x \in D : \left| x - x_0 \right| < \delta \longrightarrow \left| f_N(x) - f_N(x_0) \right| \le \frac{\varepsilon}{3}. \text{ Тогда } \forall x \in D : \left| x - x_0 \right| < \delta \longrightarrow 0$$

$$\left| f(x) - f(x_0) \right| \le \left| f(x) - f_N(x) \right| + \left| f_N(x) - f_N(x_0) \right| + \left| f_N(x_0) - f(x_0) \right| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Упражнение. На каком множестве последовательность функций $f_n(x) = \frac{1}{1+x^n}$ сходится равномерно?

4. Интегрирование равномерно сходящихся последовательностей

Теорема 4. (О интегрировании функциональной последовательности)

Пусть $\{f_n(x)\}$ последовательность непрерывных на [a;b] функций равномерно сходится к функции f(x) . Тогда для любого $x_0 \in [a;b]$ функциональная последовательность

$$\varphi_n(x) = \int\limits_{x_0}^x f_n(t) dt \,$$
 равномерно сходится к функции $\varphi(x) = \int_{x_0}^x f(t) dt \,$.

ДОК. Из равномерной сходимости $\forall \varepsilon > 0 \; \exists N = N_\varepsilon : \forall n \geq N \;$ и

$$\forall x \in [a;b] \to \left| f_n(x) - f(x) \right| < \frac{\varepsilon}{b-a}$$
 . Тогда $\left| \varphi_n(x) - \varphi(x) \right| = \left| \int_{x_0}^x \left(f_n(t) - f(t) \right) dt \right| \le \varepsilon$

$$\leq \int_{x_0}^x \left| f_n(t) - f(t) \right| dt \leq \frac{\mathcal{E}}{b-a} \cdot \left| x - x_0 \right| \leq \mathcal{E}$$
 для всех $x \in [a;b]$.

4. возможность дифференцировать равномерно сходящиеся последовательности.

Теорема 5. (О дифференцировании последовательности функций)

Пусть $\{f_n(x)\}$ последовательность непрерывно дифференцируемых на [a;b] функций, причем последовательность из производных $\{f_n'(x)\}$ равномерно сходится

причем последовательность из производных $\{f_n(x)\}$ равномерно сходите на [a,b] к функции F(x) и существует $x_0 \in [a;b]$, для которого числовая последовательность $\{f_n(x_0)\}$ сходится, причем $\lim_{n \to \infty} f_n(x_0) = A$.

Тогда последовательность $\{f_n(x)\}$ равномерно сходится на [a,b] к функции

$$f(x) = A + \int_{x_0}^x F(t)dt$$
 и поэтому $f'(x) = F(x)$.

ДОК. Воспользуемся теоремой 4: последовательность $\int_{x_0}^x f_n'(t)dt = f_n(x) - f_n(x_0)$

равномерно сходится к функции $\int_{x_0}^x F(t)dt$. Тогда последовательность $\left\{f_n(x)\right\}$ равномерно сходится к $A+\int_{x_0}^x F(t)dt$.

5. Достаточные условия равномерной сходимости последовательности Теорема 6 (Дини) (без доказательства)

Функциональная последовательность $\{f_n(x)\}, x \in [a;b]$ удовлетворяет условиям:

A)
$$f_n(x) \in C[a;b];$$

Б) $\forall x \in [a;b]$ числовая последовательность $\{f_n(x)\}$ монотонная;

В) предельная функция $f(x) = \lim_{n \to \infty} f_n(x) \in C[a;b]$.

Тогда
$$f_n(x) \stackrel{[a;b]}{\Longrightarrow} f(x)$$

П.2 Функциональные ряды.

ОПР. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ (1) сходится на множестве D , если на этом множестве сходится последовательность $S_k(x) = \sum_{n=1}^k a_n(x)$ его частичных сумм, т.е. существует функция S(x) , определенная на D , для которой $\lim_{k \to \infty} S_k(x) = S(x)$.

ОПР. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится на множестве D равномерно, если последовательность $\{S_k(x)\}$ сходится к S(x) равномерно на D.

Справедлив КРИТЕРИЙ КОШИ равномерной сходимости функционального ряда: Ряд (1) сходится на D равномерно в том и только в том случае, если

$$\forall \, \varepsilon > 0 \,\, \exists N = N_\varepsilon : \forall n,m \geq N, m > n \,\, \mathsf{H} \,\, \forall x \in D \Longrightarrow \left| a_{_n}(x) + a_{_{n+1}}(x) + \ldots + a_{_m}(x) \right| < \varepsilon \,\, .$$

Пример 5. Исследовать на равномерную сходимость ряд $\sum_{r=1}^{\infty} \frac{(-1)^{n-1}}{r^2 + n}$.

Ряд знакочередующийся, поэтому его остаток $\varphi_m(x) = \sum_{n=m+1}^{\infty} \frac{(-1)^{n-1}}{x^2 + n}$ оценивается

 $|\varphi_m(x)| \le \frac{1}{x^2 + m + 1} \le \frac{1}{m + 1}, \forall x \in (-\infty; +\infty)$ и, по определению, ряд сходится равномерно для всех x. Ряд сходится условно для всех x.

Пример 6. Найти область сходимости функционального ряда $\sum_{i=1}^{\infty} \left(x^2 + \frac{1}{n} \right)^n$

Для каждого
$$x$$
 члены ряда положительные, применим радикальный признак Коши: $\sqrt[n]{a_n(x)} = \left(x^2 + \frac{1}{n}\right) \xrightarrow{n \to \infty} x^2 < 1$ сходится, при $x^2 > 1$ расходится. При $x^2 = 1$ ряд расходится

по невыполнению необходимого признака, т.е. $D_{cx} = (-1;1)$. Сходимость равномерная на любом отрезке $[a;b] \subset (-1;1)$

Свойства равномерно сходящихся функциональных рядов

1. О возможности предельного перехода

Теорема 7. Если функциональный ряд $\sum_{n=1}^{\infty} a_n(x) \stackrel{D}{\Rightarrow} f(x)$ и $\forall n \exists \lim_{x \to a} a_n(x) = a_n$, то

1) числовой ряд $\sum_{i=1}^{\infty} a_n$ сходится и имеет сумму A;

$$2) \exists \lim_{x \to a} f(x) = A$$

Док. см. теорему 1 для равномерно сходящейся последовательности частичных сумм ряда. Таким образом, для равномерно сходящихся рядов знак предела и суммы могут быть переставлены:

$$\lim_{x \to a} \sum_{n=1}^{\infty} a_n(x) = \sum_{n=1}^{\infty} \lim_{x \to a} a_n(x)$$

2. существование мажорирующего ряда

Теорема 8. (Достаточный признак равномерной сходимости Вейерштрасса)

Если для функционального ряда $\sum_{n=1}^{\infty} f_n(x), x \in D$ найдется сходящийся числовой ряд

 $\sum_{n=1}^{\infty}a_n,\,a_n>0\,,$ для которого $\left|f_n(x)\right|\leq a_n,\,\forall x\in D,\,\forall n\geq n_0$ (мажорирующий ряд). Тогда ряд $\sum_{n=1}^{\infty}f_n(x)$ сходится равномерно на D .

Док. $\forall \varepsilon > 0 \exists N_{\varepsilon} : \forall m, n > N \rightarrow \left| f_{m+1}(x) + f_{m+2}(x) + ... + f_{n}(x) \right| \leq \sum_{k=m+1}^{n} \left| f_{k}(x) \right| \leq \sum_{k=m+1}^{n} a_{k} < \varepsilon, \forall x \in D$ т.е. ряд сходится равномерно на множестве D по признаку Коши.

В качестве мажорирующего ряда иногда удается взять ряд с общим членом $\alpha_n = \sup_{x \in D} |a_n(x)|$, если числовой ряд $\sum_{n=0}^{\infty} \alpha_n$ сходится.

Пример 7. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} x^{n!}$ на отрезке $\left[-\frac{1}{2}; \frac{1}{2}\right]$.

Для любого $x \in \left[-\frac{1}{2}; \frac{1}{2}\right] \, \left|a_n(x)\right| = \left|x\right|^{n!} \le \frac{1}{2^{n!}} \,$ и мажорирующий ряд $\sum_{n=1}^{\infty} \frac{1}{2^{n!}} \,$ сходится по признаку Даламбера.

Пример. Сколько слагаемых ряда $\sum_{n=1}^{\infty} \frac{1}{3^n \sqrt{1+(2n-1)x}}$ следует взять, чтобы вычислить его сумму с точностью 0,01 для всех $x \in [0,\infty)$?

Для любых $x \in [0, \infty)$ ряд мажорируется числовым рядом $\sum_{n=1}^{\infty} \frac{1}{3^n}$. Тогда остаток ряда

$$\sum_{n=m+1}^{\infty} \frac{1}{3^n \sqrt{1 + (2n-1)x}} \le \sum_{n=m+1}^{\infty} \frac{1}{3^n} = \frac{1}{3^{m+1} (1 - 1/3)} = \frac{1}{2 \cdot 3^m} \le 0, 01 \to 3^m \ge 50 \to m \ge 4$$

Таким образом, указанную точность обеспечивают 4 слагаемые ряда.

3. непрерывность суммы ряда

Теорема 9. Если члены $a_n(x)$ функционального ряда (1) непрерывные функции на D, ряд (1) равномерно сходится на D и имеет сумму S(x), то S(x) - непрерывная на D функция. ДОК. Следует из теоремы 3 для функциональных последовательностей, поскольку частичные суммы ряда $S_k(x)$ непрерывны и равномерно сходятся к S(x), которая в силу этого непрерывна.

Пример 8. Исследовать на непрерывность функцию $f(x) = \sum_{n=1}^{\infty} \frac{x}{\left(1+x^2\right)^n}$ на области

сходимости ряда.

Для
$$x \neq 0$$
 $f(x) = x \sum_{n=1}^{\infty} \frac{1}{(1+x^2)^n} = x \frac{1/(1+x^2)}{1-\frac{1}{1+x^2}} = \frac{1}{x}$. При $x = 0 \rightarrow f(0) = 0$

4.Интегрирование равномерно сходящихся рядов.

Теорема 10. (Об интегрировании функционального ряда)

Пусть ряд $\sum_{n=1}^{\infty} a_n(x)$ (1) из непрерывных на [a,b] функций $a_n(x)$ равномерно сходится на

отрезке [a,b]. Тогда для любого $x_0 \in [a;b]$ функциональный ряд $\sum_{n=1}^{\infty} \varphi_n(x)$, где

 $\varphi_n(x) = \int_{x_0}^x a_n(t) dt$, сходится равномерно на отрезке [a,b].

ДОК. Из равномерной сходимости ряда (1) следует, что

$$\forall \varepsilon > 0 \ \exists N = N_{\varepsilon} : \forall n \ge N, \forall m > n, \forall x \in [a;b] \Rightarrow |a_n(x) + a_{n+1}(x) + ... + a_m(x)| < \frac{\varepsilon}{b-a}.$$

Тогда $|\varphi_n(x) + \varphi_{n+1}(x) + ... + \varphi_m(x)| \le$

$$\leq \int_{x_0}^x \left| a_n(t) + a_{n+1}(t) + \ldots + a_m(t) \right| dt \leq \frac{\mathcal{E}}{b-a} \left| x - x_0 \right| \leq \mathcal{E} \quad \text{для всех } x \in [a;b].$$

Пример 9. Найти сумму ряда $\sum_{n=1}^{\infty} (n+1)(n+2)x^n$, $x \in (-1,1)$.

Ряд сходится абсолютно и равномерно на любом отрезке [-a,a], 0 < a < 1, поскольку имеется мажорирующий ряд для ряда, составленного из модулей:

 $(n+1)(n+2)\left|x\right|^{n} \le (n+1)(n+2)a^{n}$. Мажорирующий ряд сходится, например, по признаку

Даламбера:
$$\frac{a_{n+1}}{a_n} = \frac{(n+2)(n+3)a^{n+1}}{(n+1)(n+2)a^n} = \frac{(n+3)}{(n+1)}a \xrightarrow{n\to\infty} a < 1$$

Интегрируем почленно ряд на отрезке [0;x] дважды:

$$\int_{0}^{x} \sum_{n=1}^{\infty} (n+1)(n+2)t^{n} dt = \sum_{n=1}^{\infty} (n+2)x^{n+1}, \int_{0}^{x} \sum_{n=1}^{\infty} (n+2)t^{n+1} dt = \sum_{n=1}^{\infty} x^{n+2} = \frac{x^{3}}{1-x}, x \in (-1;1).$$

Для получения суммы исходного ряда достаточно дважды продифференцировать полученный результат:

$$\left(-x^2 + x - 1 - \frac{1}{x - 1}\right)'' = -2 - \frac{2}{(x - 1)^3}$$

5. дифференцирование равномерно сходящихся рядов Теорема 11.

Пусть для функционального ряда $\sum_{n=1}^{\infty} a_n(x)$ известно, что

- 1) функции $a_n(x)$ непрерывно дифференцируемы на отрезке [a,b];
- 2) ряд $\sum_{n=1}^{\infty} a_n'(x)$ из производных равномерно сходится на[a,b] и имеет сумму g(x);
- 3) существует точка $x_0 \in [a;b]$, для которой числовой ряд $\sum_{n=1}^{\infty} a_n(x_0)$ сходится и имеет сумму A.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ равномерно сходится на [a,b] и имеет непрерывно дифференцируемую сумму f(x), причем f'(x) = g(x) для $x \in [a;b]$.

ДОК. По условию 2) и теореме 6 последовательность частичных сумм

$$S_k'(x) = \sum_{n=1}^k \int_{x_0}^x a_n'(t) dt = \sum_{n=1}^k a_n(x) - \sum_{n=1}^k a_n(x_0)$$
 равномерно сходится к функции $\int_{x_0}^x g(t) dt$.

Из условия 3) следует, что ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на [a,b] и имеет сумму $f(x) = A + \int_{x_0}^x g(t)dt$. Тогда f'(x) = g(x) для $x \in [a;b]$.

6. Признаки равномерной сходимости знакопеременных функциональных рядов Теорема 12. Признак равномерной сходимости Дирихле.

Для функционального ряда $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$, $x \in D$ выполняются условия:

A) $\forall x \in D$ последовательность $\{a_n(x)\}$ монотонная;

$$\mathbf{E}) a_n(x) \stackrel{D}{\Longrightarrow} a(x) \equiv 0 ;$$

В) Частичные суммы ряда $\sum_{n=1}^{\infty} b_n(x)$ равномерно ограничены, т.е. существует константа

$$M>0$$
 , для которой $\forall x\in D,\, \forall k
ightarrow \left|\sum_{n=1}^k b_n(x)
ight| \leq M$.

Тогда функциональный ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ равномерно сходится на D .

Теорема 14. Признак равномерной сходимости Абеля

Для функционального ряда $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x), x \in D$ выполняются условия:

A) $\forall x \in D$ последовательность $a_n(x)$ монотонна;

Б) последовательность $a_n(x)$ равномерно ограничена в совокупности, т.е.

$$\exists\, M>0\, \colon \forall x\in D,\, \forall n\to \left|a_n(x)\right|\le M\ ;$$

В) ряд
$$\sum_{n=1}^{\infty} b_n(x)$$
 сходится равномерно на D .

Тогда функциональный ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ равномерно сходится на D .

Пример 10. Дзета-функция Римана

Сумма ряда $\sum_{x=1}^{\infty} \frac{1}{n^x} = \zeta(x), x \in (1; +\infty)(*)$ называется дзета-функцией Римана.

На любом отрезке $[x_1; x_2] \subset (1; +\infty)$ ряд сходится равномерно, поскольку ряд

$$\sum_{n=1}^{\infty}\frac{1}{n^x}=\zeta(x), x\in \left[x_1;x_2\right] \text{ мажорируется числовым сходящимся рядом } \sum_{n=1}^{\infty}\frac{1}{n^{x_1}}.$$

Отсюда, по теореме, функция $\zeta(x)$ непрерывна в каждой точке отрезка $[x_1; x_2]$, а в силу произвольности отрезка $[x_1; x_2]$ заключаем, что $\zeta(x)$ непрерывна в каждой точке полуоси $(1; \infty)$.

Формальное дифференцирование ряда (*) приводит к ряду $-\sum_{n=2}^{\infty}\frac{\ln n}{n^x}$, $x\in (1,+\infty)$ (**), который равномерно не сходится на $(0;+\infty)$, (его предел при $x\to 1+0$ приводит к расходящемуся ряду $\sum_{n=1}^{\infty}\frac{\ln n}{n}$), но на любом отрезке $[x_1;x_2]\subset (1;+\infty)$ сходимость (**)

равномерная и , по теореме, его сумма равна $\zeta'(x)$, $\forall x \in (1; +\infty)$. Аналогично, можно доказать, что функция $\zeta(x)$ имеет бесконечное число производных и

$$\zeta^{(k)}(x) = (-1)^k \sum_{n=2}^{\infty} \frac{\ln^k n}{n^x}, k = 1, 2, ..., x \in (1; +\infty)$$

ВОПРОСЫ К ЭКЗАМЕНУ.

- 1. Сходимость функциональной последовательности, равномерная сходимость на множестве, критерий Коши равномерной сходимости. Теорема о равномерной сходимости последовательности ограниченных функций.
- 2. Теоремы о пределе равномерно сходящихся последовательностей и рядов.
- 3. Теорема о равномерной сходимости последовательности непрерывных функций.
- 4. Теорема о дифференцировании и интегрирования равномерно сходящихся последовательностей
- 5. Функциональные ряды, сходимость. Равномерная сходимость, критерий Коши равномерной сходимости рядов. Достаточный признак Вейерштрасса равномерной сходимости функционального ряда.
- 6. Теоремы об интегрировании и дифференцируемости равномерно сходящегося ряда.