Automated Reasoning

- A Comprehensive Collection -

Ji, Yong-Hyeon

A document presented for the Automated Reasoning

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

April 11, 2024

Contents

1	Prel	iminari	ies	. 4
2	Con	flict Dri	riven Clause Learning (CDCL)	. 8
		2.0.1	SAT solving basics	. 9
	2.1	Princip	ples of CDCL	. 9
		2.1.1	The trail	. 9
		2.1.2	Conflict clauses and backjumping	. 9
		2.1.3	The implication graph	. 9
		2.1.4	The algorithm	. 9
	2.2	Implen	mentation	. 9
		2.2.1	Clauses	. 9
		2.2.2	Literals	. 9
	2.3	Result	ts	. 9

CONTENTS 3

Introduction

Welcome to the seminar on Automated Reasoning. This document is a compilation of various seminar materials designed to provide a comprehensive overview of the field. Here, we explore the fundamental concepts, methodologies, and applications of automated reasoning in computer science and logic.

This is an example of referencing Section

Chapter 1

Preliminaries

Truth Function

Definition 1.1. Let $\mathbb{B} = \{\mathsf{T}, \mathsf{F}\}$ be the *boolean domain*. Let $k \in \mathbb{N}$. A mapping

$$f: \mathbb{B}^k \to \mathbb{B}$$

is called a truth function.

Remark 1.1 (Truth Functions of Connectives). The logical connectives are assumed to be **truth-functional**. Hence, they are represented by certain **truth functions**.

Logical Negation The *logical not connective* defines the truth function $f \neg$ as follows:

$$f^{\neg}(\mathsf{F}) = \mathsf{T}$$

 $f^{\neg}(\mathsf{T}) = \mathsf{F}$

Logical Conjunction The *conjunction connective* defines the truth function f^{\wedge} as follows:

$$f^{\wedge}(T,T) = T$$

 $f^{\wedge}(T,F) = F$
 $f^{\wedge}(F,T) = F$
 $f^{\wedge}(F,F) = F$

Logical Disjunction The *disjunction connective* defines the truth function f^{\vee} as follows:

$$f^{\vee}(T,T) = T$$

 $f^{\vee}(T,F) = T$
 $f^{\vee}(F,T) = T$
 $f^{\vee}(F,F) = F$

Count of Truth Functions

Proposition 1.1. There are $2^{(2^k)}$ distinct truth functions on k variables.

Proof. Let $f : \mathbb{B}^k \to \mathbb{B}$ be a truth function for $k \in \mathbb{N}$. Then

(Cardinality of Cartesian Product of Finite Sets)

$$\#(\mathbb{B}^k) = \#(\mathbb{B} \times \cdots \times \mathbb{B}) = \#\mathbb{B} \#\mathbb{B} \cdots \#\mathbb{B} = \underbrace{2 \cdot 2 \cdots 2}_{k \text{ times}} = 2^k.$$

(Cardinality of Set of All Mappings.)

$$\#(T^S) := \{ f \subseteq S \times T : f \text{ is a mapping} \} = (\#T)^{(\#S)} \implies \#(\mathbb{B}^{(\mathbb{B}^k)}) = 2^{(2^k)} \}$$

Unary Truth Functions

Corollary 1.1.1. *There are 4 distinct unary truth functions:*

- *The constant function* f(p) = F
- The constant function f(p) = T
- The identity function f(p) = p
- The logical not function $f(p) = \neg p$

Proof. From Count of Truth Functions there are $2^{(2^1)} = 4$ distinct truth functions on 1 variable. These can be depicted in a truth table as follows:

p	0	02	03	\circ_4
T	_ T	Т	F	F
F	: F	Т	F	F

 \circ_1 : Whether p = T or p = F, $\circ_1(p) = T$. Thus \circ_1 is the constant function $\circ_1(p) = T$.

∘₂: We have

(1)
$$p = T \implies \circ_2(p) = T$$

(2)
$$p = F \implies \circ_2(p) = F$$

Thus \circ_2 is the *identity function* $\circ_2(p) = p$.

∘₃: We have

(1)
$$p = T \implies \circ_3(p) = F$$

(2)
$$p = F \implies \circ_3(p) = T$$

Thus \circ_3 is the logical not function $\circ_3(p) = \neg p$.

 \circ_4 : Whether p = T or p = F, $\circ_4(p) = F$. Thus \circ_1 is the constant function $\circ_4(p) = F$.

Binary Truth Functions

Corollary 1.1.2. *There are* 16 *distinct unary truth functions:*

- *Two constant operations:*
 - $-f_{\mathsf{T}}(p,q)=\mathsf{T}$
 - $-f_{\mathsf{F}}(p,q)=\mathsf{F}$
- Two projections:
 - $Proj_1(p,q) = p$
 - $\operatorname{Proj}_2(p, q) = q$
- *Two negated projections:*
 - $\overline{\mathsf{Proj}_1}(p,q) = \neg p$
 - $\overline{\mathsf{Proj}_2}(p,q) = \neg q$
- The conjunction: $p \wedge q$
- The disjunction: $p \lor q$
- Two conditionals:
 - $-p \implies q$
 - $-q \implies p$
- The biconditional (iff): $p \iff q$
- The exclusive or (xor): $\neg (p \iff q)$
- Two negated conditionals:
 - $-\neg(p\implies q)$
 - $-\neg(q \implies p)$
- *The NAND p* ↑ *q*
- The NOR $p \downarrow q$

Proof. From Count of Truth Functions there are $2^{(2^2)} = 16$ distinct truth functions on 2 variable. These can be depicted in a truth table as follows:

р	Т	Т	F	F
q	Т	F	Τ	F
$f_{F}(p,q)$	F	F	F	F
$p \downarrow q$	F	F	F	Τ
$\neg (p \iff q)$	F	F	Τ	F
$\overline{Proj_1}(p,q)$	F	F	Т	Т
$\neg (p \implies q)$	F	Τ	F	F
$\overline{Proj_2}(p,q)$	F	Τ	F	Т
$\neg (p \iff q)$	F	Τ	Τ	F
$p \uparrow q$	F	Τ	Τ	Τ
$p \wedge q$	Т	F	F	F
$p \iff q$	Т	F	F	Τ
$Proj_2(p,q)$	Т	F	Τ	F
$p \implies q$	Т	F	Τ	Τ
$Proj_1(p,q)$	Т	Τ	F	F
$p \leftarrow q$	Т	Τ	F	Τ
$p \vee q$	Т	Τ	Τ	F
$f_{T}(p,q)$	Т	Т	Т	Т

Formal Grammer

Definition 1.2. The formal grammar of the language of propositional logic (and hence its WFFs) can be defined in the following ways.

• **Backus-Naur Form** In Backus-Naur form, the formal grammar of the language of propositional logic takes the following form:

```
< formula > ::= p \mid \top \mid \bot where p \in \mathcal{P}_0 is a letter < formula > ::= \neg < formula > < formula > ::= (< formula >< op > < formula >) < op > ::= \land \mid \lor \mid \Longrightarrow \mid \Longleftrightarrow
```

Note that this is a top-down grammar: we start with a metasymbol <formula> progressively replace it with constructs containing other metasymbols and/or primitive symbols until finally we are left with a well-formed formula of L0 consisting of nothing but primitive symbols.

Chapter 2

Conflict Driven Clause Learning (CDCL)

Propositional Function (Formula)

Definition 2.1. A **propositional function** (or **formula**) is defined inductively as follows:

(Basic Step) Any propositional variable $x \in V$ is a formula.

(Inductive Step) If *F* and *G* are formulas, then the following are also formulas:

- $-\neg F$
- $-F \wedge G$
- $-F \vee G$
- $-F \rightarrow G$
- $F \leftarrow G$

Formally, the set of all Φ is the smallest set satisfying:

$$\Phi = V \cup \{\neg F : F \in \Phi\} \cup \{\circ(F, G) : F, G \in \Phi \text{ and } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}\}$$

Boolean Satisfiability Problem (SAT)

Definition 2.2. Let $X = \{x_1, x_2, \dots, x_n\}$ be a set of propositional variables. Let L be a set of one or more propositional formulas constructed using only:

- $x_i \in X$ for $i = 1, \ldots, n$;
- the $2^{(2^1)} = 4$ unary logical connectives;
- the $2^{(2^2)} = 16$ binary logical connectives;

The problem is to find truth values for all $x \in X$ such that all the formulas in L are true. Such a problem is a boolean satisfiability problem.

I present the CDCL algorithm and its implementation based on existing literature. This algorithm is used to solve SAT problems efficiently...

2.0.1 SAT solving basics

The CDCL algorithm is a mix of two older approaches to SAT solving: DPLL and Resolution...

Backtracking and unit propagation as in DPLL solvers

When we provide a SAT instance to a DPLL solver it builds up a search tree of assignments...

Resolution

If a formula *F* contains the clauses $\{\neg x\} \cup A$ and $\{x\} \cup A$...

2.1 Principles of CDCL

Now that we have seen how Backtracking and Resolution work we are ready to merge these approaches...

2.1.1 The trail

When applying CDCL rather than exploring a search tree of assignments...

2.1.2 Conflict clauses and backjumping

Consider our previous example again. When we want to continue building up our trail...

2.1.3 The implication graph

A nice way to illustrate the functionality of CDCL are implication graphs...

2.1.4 The algorithm

To get a clearer view Algorithm 4.1 shows the pseudocode for the CDCL algorithm...

2.2 Implementation

Let us now look at how the algorithm is implemented in real life...

2.2.1 Clauses

We use a monolithic array MEM to hold the original formula's clauses as well as the newly learned clauses...

2.2.2 Literals

Assume the variables are x_1, x_2, \ldots, x_n . We represent x_k by k...

2.3 Results

It is important to say that CDCL is a sound and complete algorithm for the propositional satisfiability problem...

Bibliography

- [1] Schlenga, Alexander T. (2020). "Conflict Driven Clause Learning". June 8, 2020.
- [2] ProofWiki. "Definition: Truth Function." Accessed on [April 3, 2024]. https://proofwiki.org/wiki/Definition:Truth_Function.
- [3] ProofWiki. "Unary Truth Functions" Accessed on [April 3, 2024]. https://proofwiki.org/wiki/Unary_Truth_Functions.
- [4] ProofWiki. "Binary Truth Functions" Accessed on [April 3, 2024]. https://proofwiki.org/wiki/Binary_Truth_Functions.