Funciones automatizadas para visualizar las barras de abundancia, diversidades alfa y beta; a diferentes niveles taxonomicos

Camila Silva

2023-05-31

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"
fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1/metadata.csv",head
fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment', 'Samples')
samples_to_remove <- c("MP2079", "MP2080", "MP2088", "MP2109", "MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)</pre>
```

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

glomToGraph

Crea los subconjuntos de datos necesarios para más adelante

input phy <- es el objeto phyloseq base tax <- rango taxonomico al que queremos recortar output glom <- objeto phyloseq ya recortado percentages <- objeto phyloseq de porcentages sobre el glom percentages_df <- data frame de porcentages sobre el glom

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias (stackbar)

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.2, "cm"),
          legend.key.width = unit(0.25, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=8, face = "bold"),
          legend.text=element_text(size=6),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
  percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "Others"
  percentages_df$tax <- as.factor(percentages_df$tax)</pre>
  plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax', col
    scale_colour_manual(values=c('white','black')) +
```

```
geom_bar(aes(), stat="identity", position="stack") +
labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
theme(legend.key.size = unit(0.3, "cm"),
    legend.key.width = unit(0.5,"cm"),
    legend.position = "bottom",
    legend.direction = "horizontal",
    legend.title=element_text(size=10, face = "bold"),
    legend.text=element_text(size=8),
    text = element_text(size=12),
    axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
return(list(plot_barras,plot_percentages))
}
```

Graficar diversidad beta

```
Beta_diversity <- function(phy,tax,attribute,distance){
  Data <- glomToGraph(phy,tax)
  glom <- Data[[1]]
  #CREAR UN GLOM AL 10%
  percentages <- Data[[2]]
  percentages_df <- Data[[3]]
  ## Beta diversidad
  meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
  plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
      geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
    return(plot_beta)
}</pre>
```

Graficar diversidad alfa

```
Alpha_diversity <- function(phy,tax,attribute){
    ## llamamos la funcion que crea los dataset
    Data <- glomToGraph(phy,tax)
    glom <- Data[[1]]

percentages <- Data[[2]]
    percentages_df <- Data[[3]]
    ## Alfa diversidad
    plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = arreturn(plot_alpha)
}</pre>
```

Graficas

Graficamos las barras de abundancia, las barras de abundancia aglomerando el 10% menos abundantes, alfa y beta diversidad para los siguientes niveles taxonomicos.

```
##——Eukarya by Phylum
```

```
Barras_Phylum <- Abundance_barras(merge_Eukaryota,'Phylum', 'Treatment', 10.0)</pre>
```

```
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with 'aes()'.
## i See also 'vignette("ggplot2-in-packages")' for more information.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```

Barras_Phylum[1] # normal

[[1]]

Abundance

Barras_Phylum[2]

Abundance

Beta_diversity(merge_Eukaryota , 'Phylum' , 'Treatment', 'bray')

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01148681
## Run 1 stress 0.0001012286
## ... New best solution
## ... Procrustes: rmse 0.03438264 max resid 0.09018208
## Run 2 stress 8.080954e-05
## ... New best solution
## ... Procrustes: rmse 0.0002593369 max resid 0.0006111869
## ... Similar to previous best
## Run 3 stress 9.943482e-05
## ... Procrustes: rmse 0.0001287111 max resid 0.0003746192
## ... Similar to previous best
## Run 4 stress 5.946927e-05
## ... New best solution
## ... Procrustes: rmse 9.047211e-05 max resid 0.0002198202
## ... Similar to previous best
## Run 5 stress 9.885507e-05
## ... Procrustes: rmse 0.0001702104 max resid 0.0004297977
## ... Similar to previous best
## Run 6 stress 9.544256e-05
## ... Procrustes: rmse 0.000104487 max resid 0.0002663839
## ... Similar to previous best
```

```
## Run 7 stress 9.956639e-05
## ... Procrustes: rmse 8.390127e-05 max resid 0.0002437379
## ... Similar to previous best
## Run 8 stress 9.896738e-05
## ... Procrustes: rmse 0.0002583407 max resid 0.0006581007
## ... Similar to previous best
## Run 9 stress 7.056306e-05
## ... Procrustes: rmse 5.259222e-05 max resid 0.0001351559
## ... Similar to previous best
## Run 10 stress 9.479563e-05
## ... Procrustes: rmse 6.431556e-05 max resid 0.000134783
## ... Similar to previous best
## Run 11 stress 9.797854e-05
## ... Procrustes: rmse 0.0001674142 max resid 0.0004164753
## ... Similar to previous best
## Run 12 stress 0.0009492233
## Run 13 stress 0.0004211999
## ... Procrustes: rmse 0.0007288265 max resid 0.001932309
## ... Similar to previous best
## Run 14 stress 0.0001019576
## ... Procrustes: rmse 0.0002993734 max resid 0.000761613
## ... Similar to previous best
## Run 15 stress 9.067076e-05
## ... Procrustes: rmse 9.471571e-05 max resid 0.0002264973
## ... Similar to previous best
## Run 16 stress 9.6781e-05
## ... Procrustes: rmse 0.0001265178 max resid 0.0003112381
## ... Similar to previous best
## Run 17 stress 8.654003e-05
## ... Procrustes: rmse 0.0001074085 max resid 0.0002850164
## ... Similar to previous best
## Run 18 stress 6.269106e-05
## ... Procrustes: rmse 2.68101e-05 max resid 5.602508e-05
## ... Similar to previous best
## Run 19 stress 9.655239e-05
## ... Procrustes: rmse 0.0001244309 max resid 0.0003037819
## ... Similar to previous best
## Run 20 stress 0.0003162956
## ... Procrustes: rmse 0.0009368401 max resid 0.002436478
## ... Similar to previous best
## *** Best solution repeated 16 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly)
## zero: you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


##——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1089081
## Run 1 stress 0.1088881
## ... New best solution
## ... Procrustes: rmse 0.00169424 max resid 0.009378103
## ... Similar to previous best
## Run 2 stress 0.1088884
  ... Procrustes: rmse 0.001265836 max resid 0.007170168
## ... Similar to previous best
## Run 3 stress 0.1089292
## ... Procrustes: rmse 0.008427579 max resid 0.05473371
## Run 4 stress 0.1089076
## ... Procrustes: rmse 0.001717778 max resid 0.009428019
## ... Similar to previous best
## Run 5 stress 0.1088922
## ... Procrustes: rmse 0.0007890617 max resid 0.004563198
## ... Similar to previous best
## Run 6 stress 0.1091132
## ... Procrustes: rmse 0.009868536 max resid 0.05417681
## Run 7 stress 0.1089292
## ... Procrustes: rmse 0.008430896 max resid 0.05472563
## Run 8 stress 0.1091137
## ... Procrustes: rmse 0.01001222 max resid 0.05396838
```

```
## Run 9 stress 0.1089299
## ... Procrustes: rmse 0.008416469 max resid 0.054788
## Run 10 stress 0.1089293
## ... Procrustes: rmse 0.008426162 max resid 0.05474377
## Run 11 stress 0.1089218
## ... Procrustes: rmse 0.000974449 max resid 0.005158194
## ... Similar to previous best
## Run 12 stress 0.1088884
## ... Procrustes: rmse 0.001341409 max resid 0.007533249
## ... Similar to previous best
## Run 13 stress 0.1089242
## ... Procrustes: rmse 0.002627083 max resid 0.0150801
## Run 14 stress 0.1088881
## ... Procrustes: rmse 5.634936e-06 max resid 2.393439e-05
## ... Similar to previous best
## Run 15 stress 0.1089298
## ... Procrustes: rmse 0.008417301 max resid 0.05478119
## Run 16 stress 0.1089185
## ... Procrustes: rmse 0.002321269 max resid 0.009035555
## ... Similar to previous best
## Run 17 stress 0.1088968
## ... Procrustes: rmse 0.002055205 max resid 0.009041251
## ... Similar to previous best
## Run 18 stress 0.1091401
## ... Procrustes: rmse 0.009638276 max resid 0.05345771
## Run 19 stress 0.108949
## ... Procrustes: rmse 0.00826652 max resid 0.05401651
## Run 20 stress 0.1089489
```

... Procrustes: rmse 0.008264563 max resid 0.05402098

*** Best solution repeated 9 times

Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


##——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.110709
## Run 1 stress 0.1107087
## ... New best solution
## ... Procrustes: rmse 0.0007840091 max resid 0.004488343
## ... Similar to previous best
## Run 2 stress 0.1223849
## Run 3 stress 0.4035873
## Run 4 stress 0.1223838
## Run 5 stress 0.1107094
## ... Procrustes: rmse 0.0003365426 max resid 0.00192326
## ... Similar to previous best
## Run 6 stress 0.1107089
## ... Procrustes: rmse 0.000132357 max resid 0.0007613431
## ... Similar to previous best
## Run 7 stress 0.1223844
## Run 8 stress 0.1107097
## ... Procrustes: rmse 0.0004018827 max resid 0.002457857
## ... Similar to previous best
## Run 9 stress 0.1107095
## ... Procrustes: rmse 0.000934129 max resid 0.005321928
## ... Similar to previous best
## Run 10 stress 0.110709
```

```
## ... Procrustes: rmse 0.0007549733 max resid 0.004577962
## ... Similar to previous best
## Run 11 stress 0.1222476
## Run 12 stress 0.1119788
## Run 13 stress 0.1107095
## ... Procrustes: rmse 0.00092422 max resid 0.00527512
## ... Similar to previous best
## Run 14 stress 0.1239323
## Run 15 stress 0.1235015
## Run 16 stress 0.1321013
## Run 17 stress 0.1107098
## ... Procrustes: rmse 0.000447972 max resid 0.002563714
## ... Similar to previous best
## Run 18 stress 0.1315666
## Run 19 stress 0.1107096
## ... Procrustes: rmse 0.0003398341 max resid 0.001937171
## ... Similar to previous best
## Run 20 stress 0.1308436
## *** Best solution repeated 9 times
```


Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided of
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
```

trimmed low-abundance taxa from the data.

##

We recommended that you find the un-trimmed data and retry.

##——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment',10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1226512
## Run 1 stress 0.1227531
## ... Procrustes: rmse 0.02315755 max resid 0.1274509
## Run 2 stress 0.1590668
## Run 3 stress 0.1272832
## Run 4 stress 0.1226511
## ... New best solution
## ... Procrustes: rmse 3.546733e-05 max resid 0.0001841906
## ... Similar to previous best
## Run 5 stress 0.1350911
## Run 6 stress 0.1226516
## ... Procrustes: rmse 0.0001415113 max resid 0.0007263343
## ... Similar to previous best
## Run 7 stress 0.1546168
## Run 8 stress 0.1345886
## Run 9 stress 0.135126
## Run 10 stress 0.1520428
## Run 11 stress 0.122651
## ... New best solution
## ... Procrustes: rmse 3.145075e-05 max resid 0.0001960645
## ... Similar to previous best
## Run 12 stress 0.1218544
```

```
## ... New best solution
## ... Procrustes: rmse 0.02016822 max resid 0.1286274
## Run 13 stress 0.1564026
## Run 14 stress 0.1226509
## Run 15 stress 0.1218542
## ... New best solution
## ... Procrustes: rmse 0.0001547836 max resid 0.0009934689
## ... Similar to previous best
## Run 16 stress 0.1226508
## Run 17 stress 0.1272834
## Run 18 stress 0.1550508
## Run 19 stress 0.1226508
## Run 20 stress 0.1541132
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

##——Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1520004
## Run 1 stress 0.1541159
## Run 2 stress 0.1719744
## Run 3 stress 0.1665614
## Run 4 stress 0.1676962
## Run 5 stress 0.1591786
## Run 6 stress 0.151391
## ... New best solution
## ... Procrustes: rmse 0.008729679 max resid 0.0517727
## Run 7 stress 0.1707262
## Run 8 stress 0.1602944
## Run 9 stress 0.1580849
## Run 10 stress 0.1711338
## Run 11 stress 0.152401
## Run 12 stress 0.1614016
## Run 13 stress 0.1601939
## Run 14 stress 0.1554219
## Run 15 stress 0.1648666
## Run 16 stress 0.1554203
## Run 17 stress 0.1696002
## Run 18 stress 0.1624861
```

Beta_diversity(merge_Bacteria , 'Phylum' , 'Treatment', 'bray')

```
## Run 19 stress 0.1554219
## Run 20 stress 0.1641734
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 20: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


##——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1412073
## Run 1 stress 0.1374745
## ... New best solution
## ... Procrustes: rmse 0.06404146 max resid 0.362518
## Run 2 stress 0.1405164
## Run 3 stress 0.1792916
## Run 4 stress 0.1401022
## Run 5 stress 0.1729145
## Run 6 stress 0.1370379
## ... New best solution
## ... Procrustes: rmse 0.01572709 max resid 0.05915357
## Run 7 stress 0.1391838
## Run 8 stress 0.1390465
## Run 9 stress 0.1721853
## Run 10 stress 0.1400264
## Run 11 stress 0.1412067
## Run 12 stress 0.1374452
## ... Procrustes: rmse 0.01063197 max resid 0.04902825
## Run 13 stress 0.1570078
## Run 14 stress 0.1401021
## Run 15 stress 0.14556
## Run 16 stress 0.137194
```

```
## ... Procrustes: rmse 0.01158332 max resid 0.05694715
## Run 17 stress 0.1704098
## Run 18 stress 0.1441743
## Run 19 stress 0.1371941
## ... Procrustes: rmse 0.01162238 max resid 0.0569763
## Run 20 stress 0.1517993
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 20: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

##——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

			_		
lex flavores	Desulfatibasillum	Labrenzia		Parenicipacier	Subtercola
flexum	Desulfatibacillum	Labrys		Paroceanicella	Succinivibrio
habitans	Desulfitobacterium	Laceyella		Parolsenella	Suicoccus
luna	Desulfobacca	Lachnoanaerobaculum		Parvibaculum	Sulfidibacter
marina	Desulfobacter	Lachnoclostridium		Parvimonas	Sulfitobacter
ncola	Desulfobacula	Lachnospira		Parvularcula	Sulfuricaulis
rhabdus	Desulfobulbus	Lacibacter		Pasteurella	Sulfuricella
rufa	Desulfocapsa	Lacimicrobium		Paucibacter	Sulfuricurvum
salimonas	Desulfococcus	Lacinutrix		Paucilactobacillus	Sulfuriferula
salinus	Desulfocurvibacter	Lacipirellula		Pauljensenia	Sulfuriflexus
sediminimonas	Desulfofarcimen	Lacrimispora		Pectinatus	Sulfurifustis
sphaera	Desulfoglaeba	Lacticaseibacillus		Pectobacterium	Sulfurihydrogenibium
talea	Desulfohalobium	Lactiplantibacillus		Pediococcus	Sulfurimicrobium
iibacter	Desulfoluna	Lactobacillus		Pedobacter	Sulfurimonas
hidicoccus	Desulfolutivibrio	Lactococcus		Pedococcus	Sulfuriroseicoccus
hnia	Desulfomarina	Lacunisphaera		Pelagerythrobacter	Sulfuritalea
nobacterium	Desulfomicrobium	Lancefieldella	_	Pelagibacterium	Sulfuritortus
angium	Desulfomonile	Lapidilactobacillus	_	Pelagovum	Sulfurivermis
bacter	Desulfonema	Laribacter		Pelistega	Sulfurospirillum
cibacterium	Desulforamulus	Larkinella		Pelobacter	Sulfurovum
ibacter	Desulforapulum	Latilactobacillus		Pelodictyon	Sutcliffiella
imonas	Desulfosarcina	Lautropia		Pelolinea	Sutterella
natoleum	Desulfoscipio	Lawsonella		Pelosinus	Suttonella
nicicoccus	Desulfosediminicola	Lawsonia		Pengzhenrongella	Swingsia
nophonus	Desulfosporosinus	Leadbetterella		Peptacetobacter	Symbiobacterium
obacter	Desulfosudis	Leclercia		Peptoclostridium	Sýmmachiella
a	Desulfotalea	Lederbergia		Peptoniphilus	Synechococcus
cacaulis	Desulfotomaculum	Leeuwenhoekiella		Peribacillus	Synechocystis
lassotoga	Desulfovibrio	Legionella		Periweissella	Syntrophobacter
ntibacter	Desulfurispirillum	Leifsonia		Permianibacter	Syntrophobotulus
obium	Desulfurivibrio	Leisingera		Persephonella	Syntrophomonas
acter	Desulfurobacterium	Lelliottia		Persicimonas	Syntrophotalea
ntiacibacter	Desulfuromonas	Leminorella		Peteryoungia	Syntrophothermus
	Devosia	Lentibacillus		Petrimonas	
ntimicrobium					Syntrophus
ntimonas	Devriesea	Lentilactobacillus		Petrocella	Tabrizicola
ticoccus	Dialister	Lentilitoribacter		Petrotoga	Tamlana Tamlana
imonas	Diaminobutyricimonas	Lentzea		Phaeobacter	<u>Tannerella</u>
liella	Diaphorobacter	Leptodesmis		Phascolarctobacterium	Tardibacter
idibacter	Dichelobacter	Leptolyngbya		Phenylobacterium	Tardiphaga
wickia	Dickeya	Leptospira		Phnomibacter	Tateyamaria
acterium	Dictyóglomus	Leptospirillum		Phocaeicola	Tatlóckia
ircus	■ Dietzia	 Leptothermofonsia 		Phoenicibacter	Tatumella
hizobium	Dinoroseobacter	Leptothrix		Photobacterium	Tautonia
pira	Dissulfurimicrobium	Leptotrichia		Photorhabdus	Taylorella
pirillum	Dissulfurispira	Leucobacter		Phototrophicus	Teĺmatocola
obacter	■ Dokdonella	Leuconostoc		Phreatobacter	Tenacibaculum
llus	Dokdonia	Levilactobacillus		Phycicoccus	Tenuifilum
erioplanes	Dolichospermum	Liberibacter		Phycisphaera	Tepidanaerobacter
eriovorax	Dolosigranulum	Lichenicola		Phyllobacterium	Tepidibacter
eroides	Dongshaea	Lichenihabitans		Phytobacter	Tepidibacter
duia	Dorea	Ligilactobacillus		Phytohabitans	Tepidimonas
esiella	Draconibacterium	Lignipirellula		Pigmentiphaga	Tepiditoga
onella	Duganella	Limihaloglobus		Pikeienuella	Terasakiella
ia	Duncaniella	Limnobacter		Pimelobacter	Teredinibacter
lea	Dyadobacter	Limnobaculum		Pirellula	Terribacillus
lovibrio	Dyella	Limnochorda		Pirellulimonas	<u>Terricaulis</u>
jiatoa	Dysgonomonas	Limnoglobus		Piscirickettsia	Terriglobus Terribabitans
írinckia	- Divenemohacter	 I imnohahitane 		Dietricoccue	- Iarrihahitane

Abundance

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1467945
## Run 1 stress 0.1432835
## ... New best solution
## ... Procrustes: rmse 0.08892711 max resid 0.3292679
## Run 2 stress 0.1624125
## Run 3 stress 0.1452004
## Run 4 stress 0.1476409
## Run 5 stress 0.1490739
## Run 6 stress 0.1438418
## Run 7 stress 0.1481202
## Run 8 stress 0.1437861
## Run 9 stress 0.1480106
## Run 10 stress 0.1490668
## Run 11 stress 0.1476747
## Run 12 stress 0.1511661
## Run 13 stress 0.1432842
## ... Procrustes: rmse 0.0008987919 max resid 0.003811659
## ... Similar to previous best
## Run 14 stress 0.1638381
## Run 15 stress 0.1519965
## Run 16 stress 0.1476188
## Run 17 stress 0.1469869
```

```
## Run 18 stress 0.1578524

## Run 19 stress 0.1547472

## Run 20 stress 0.1500188

## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

##——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1597841
## Run 1 stress 0.1603297
## Run 2 stress 0.1601333
## ... Procrustes: rmse 0.05751254 max resid 0.2742671
## Run 3 stress 0.1746425
## Run 4 stress 0.1682795
## Run 5 stress 0.1745846
## Run 6 stress 0.1595746
## ... New best solution
## ... Procrustes: rmse 0.06179215 max resid 0.2864908
## Run 7 stress 0.1667257
## Run 8 stress 0.1622331
## Run 9 stress 0.1853643
## Run 10 stress 0.1892493
## Run 11 stress 0.1632423
## Run 12 stress 0.1899387
## Run 13 stress 0.1618986
## Run 14 stress 0.1826662
## Run 15 stress 0.1604222
## Run 16 stress 0.1734581
## Run 17 stress 0.1590693
## ... New best solution
```

```
## ... Procrustes: rmse 0.03809861 max resid 0.1539445
## Run 18 stress 0.1680945
## Run 19 stress 0.1596331
## Run 20 stress 0.1586473
## ... New best solution
## ... Procrustes: rmse 0.04184967 max resid 0.1834734
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 3: no. of iterations >= maxit
## 17: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

