Introduction to Embedded System (IES)

Team Emertxe

Pass on the ball

- 1) Let us get the ball rolling ©
- 2) Introduce yourself
- 3) Expectations from this program

Course span-out

Let us ponder...

- What do you understand as Embedded System?
- · Name few examples of Embedded System from our daily usage
- How different they are from a general purpose system (GPS)?
- What difference can be there between multiple Embedded Systems?

"Any Hardware System which is intended to do a specific task can be called as an Embedded System"

ES - Examples

Examples - Automotive, Satellite communication, Consumer electronics, Medical, Imaging, Robotics etc..

ES - Classifications

- Embedded systems can be classified into four different categories:
 - Stand alone Embedded System Performs a single and specific functionality
 - Real time Embedded System Provides real time guarantee in terms of response and predictability
 - Network appliances High focus on packet processing
 - Mobile devices Hand held devices
- Embedded systems "Choice-points"
 - Embedded Systems type and expectations drastically vary
 - In order to meet customer needs specific "Choice-points" to be decided
 - These are popularly known as "Design parameters"

ES - Choice points

- Let us take an example of Mobile Vs. Automotive Embedded device
- Try to compare various choice points

Parameter	Automotive	Mobile	
Safety	1	*	
Cost sensitivity	*	1	
Performance	1	-	
Reliability	1		
Time to market	1	1	
Unit cost	•	-	

- · For each choice made corresponding compromise factor to be considered
- · Optimizing every other parameter is not a possible option

ES - Design metrics

- Time to Prototype
- Power
- Performance & Correctness
- Size
- NRE
- Maintainability & Flexibility
- Safety
- Unit Cost
- Time to Market

ES - Challenges

- Efficient Inputs/Outputs
- Embedding an OS
- Code optimization
- Testing and debugging

Embedded System Components

ES - Components

CPU - μC | μP

- · The "Brain" of the system
- Implementation can be:
 - Universal
 - Digital Signal Processors (DSP)
 - System On a Chip (SoC)
- "On-the board" v/s "On-the-chip"
- ASIC/SoC tape-out process provides lot of advantages than using Universal processors
- However it requires huge up-front investment (in terms of millions!)

Memory

- Various types of memory exist with specific characteristics
- Based on Volatility, Write-ability, Cost and Speed Parameters to compare
- Higher level group/category is provided as follows:

Memory - compare!

Туре	Volatile (Y/N)	Writable (Y/N)	Erase Size	Max Erase Cycle	Cost per byte	Speed
SDRAM	Y	Υ	Byte	Unlimited	Expensive	Fast
DRAM	Y	Υ	Byte	Unlimited	Moderate	Moderate
Masked ROM	No	No	N/A	N/A	Inexpensive	Fast
PROM	No	Once	N/A	N/A	Moderate	Fast
EPROM	No	Yes	Entire Chip	Limited	Moderate	Fast
EEPROM	No	Yes	Byte	Limited	Expensive	Fast (R) Slow (W/E)
Flash	No	Yes	Sector	Limited	Moderate	Fast (R) Slow (W/E)
NVRAM	No	Yes	Byte	Unlimited	Expensive	Fast

Memory - Space

Memory Space	Memory Area	Contents
Name	*	Name and stack diagram of words
Code	CODE	Executable machine code
Data	DATA	Application & system variables, stack, buffers
Constant Data Space	CONST	Application & system constants, Virtual machine code
Local name space	DATA	Local and other related data structure

Components...

ADC

- Analog to Digital Convertors
- Safety and Security
- Comfort and convenience
- Driver information
- Multimedia
- Engine controls

DAC

- Multimedia
- Motor controls

HID

- Displays
- Input devices

Actuators

- Binary (Relays)
- Continuous (Motors)

Sensors

- Light sensors
- Water sensors

FPGA and ASIC - Taping out custom chips for optimization purpose

HW - Processors and Controllers

Evolution of processors

Micro processor v/s Micro controller

- All separate components
- More flexible
- More design complexity

- All components in a single chip
- Less flexible
- Less design complexity

Choosing a Microprocessor:

Choice points:

- Application
- Performance
- Price
- Availability
- Availability of Tools
- Special Capabilities

Classifications:

- Bit-depth
- Architecture
- Use based:
 - GPP Proper & Micro controllers
 - ASP DSP & ASIC

Von Neumann & Harvard Architecture

Von Neuman Architecture

Shared signals and memory for code and data

Physically separate signals and storage for code and data

RISC v/s CISC

RISC:

Advantages:

- Moved complexity from HW to SW
- Provided a single-chip solution
- Better usage of chip area
- Better speed
- Feasibility of pipe-lining
 - Single cycle execution stages
 - Uniform Instruction format

Disadvantages:

Greater burden on SW

CISC:

Advantages:

- Moved complexity from SW to HW
- Compact code
- Ease of compiler design
- Easier to debug

Disadvantages:

- Increased design errors
- Longer design time
- Performance tuning unsuccessful
- High complexity
- Time to market increases

Interfacing

- Processor has to interface with memory and various I/O devices
- Bus protocols are used for communication
- Consisting of:
 - Address bus
 - Data bus
 - Control lines:
 - CS
 - RD
 - WR

Peripheral Interfacing

- Processor has to interface with memory and various I/O devices
- Bus protocols are used for communication
- Consisting of:
 - Address bus
 - Data bus
 - Control lines:
 - CS
 - RD
 - WR

HW Architecture

HW board with interfacing

SW - Development, Architecture, Environment

SW development

In Embedded Systems, SW and HW development happens in a combined manner. SW development details and life cycle are covered in SDLC topic in detail.

Architectures

- Super loop
- · Interrupt controlled
- Co-operative multi tasking
- · Pre-emptive multi-tasking
- Micro and Monolithic Kernel

Dev Environment

- Embedded development environment is quite different and relatively complex than application development
- The simple reason the embedded software developed in a 'host' machine and executed on a 'target' which makes the compilation and debugging process quite challenging
- Popularly known as Integrated Development Environment (IDE), this environment consist of the following key candidates:
 - Editor For scripting Embedded program
 - Configuration
 - Tool chain Cross compiler, linker and associated tools
 - Target download and debug environment Installation and test

IDE - Pictorially...

Interrupts

Interrupt - Basics

- An interrupt is a communication process set up in a microprocessor or microcontroller in which:
 - An internal or external device requests the MPU to stop the processing
 - The MPU acknowledges the request
 - Attends to the request
 - Goes back to processing where it was interrupted
- Interrupt sources
 - External
 - Timers
 - Peripherals
- Interrupt v/s Polling
 - Loss of Events
 - Response
 - Power Management

Interrupts - Classification

Interrupts - Handling

Interrupt Service Routine

- Similar to a subroutine
- Attends to the request of an interrupting source
 - Clears the interrupt flag
 - Should save register contents that may be affected by the code in the ISR
 - Must be terminated with the instruction RETFIE
- When an interrupt occurs, the MPU:
 - Completes the instruction being executed
 - Disables global interrupt enable
 - Places the address from the program counter on the stack
- Return from interrupt

Interrupt Latency

- Latency is determined by:
 - Instruction time (how long is the longest)
 - How much of the context must be saved
 - How much of the context must be restored
 - The effort to implement priority scheme
 - Time spend executing protected code

Thank You