Algèbre

Rattrapage

 $\bullet\,$ Vous avez $\bf 90\,$ minutes pour compléter l'examen

Nom	
Prénom	
Nom étudiant Devant vous:	
Nom étudiant Derrière:	

Notes

Q1.	(*) Questions de cours	/5
Q2.	Applications	/7
Q3.	Polynômes	/4
Q4.	Applications linéaires	/4
	Total	/20

Q1. [5 pts] (*) Questions de cours

- 1. Soient A, B et C trois ensembles de E, développer les expressions suivantes:
 - (a) $A \cap (B \cup C)$
 - (b) $A \cup (B \cap C)$
 - (c) $(A \cap B)^C$
- 2. Soit $f:A\longrightarrow B$ une application de A et B. Donner l'expression des ensembles suivants:
 - \bullet f(A).
 - $f^{-1}(B)$.
- 3. Soient deux polynômes P et et Q dans $\mathbb{R}[X]$, donner la définition de:
 - $\operatorname{pgcd}(P,Q)$.
 - P est irréductible.
- 4. Soit E un K-espace vectoriel et F un sous ensemble de E. Donner une condition suffisante pour que F soit un sous espace vectoriel de E.

Q2. [7 pts] Applications

- 1. Soit $f:A\longrightarrow B$ une application. Pour toutes parties A de E et B de F, montrer que:
 - si f est injective alors $f^{-1}(f(A)) = A$.
 - si f est surjective alors $f(f^{-1}(B)) = B$.
 - Montrer que $f(f^{-1}(B)) = B \cap f(E)$.
- 2. Montrer que la fonction:

$$\mathbb{R} \setminus \{-2\} \longrightarrow \mathbb{R} \setminus \{-2\}$$

$$x \longrightarrow \frac{2x-1}{x+2}$$

Q3. [4 pts] Polynômes

On considère le polynôme:

$$P = X^4 - X^3 - 5X^2 - X - 6 (1)$$

- Vérifier que 3 est une racine de P.
- Si on vous donne le graphe de polynôme entre [-6, 6]: Extraire une autre racine de α de P.
- En déduire une décomposition en facteurs **irréductibles** de P dans $\mathbb{R}[X]$.

Q4. [4 pts] Applications linéaires

Soit $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ définie pour chaque $(x,y,z,t) \in \mathbb{R}^4$ par

$$f(x, y, z, t) = (x - 2y, x - 2y, 0, x - y - z - t)$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. A-t-on:

$$\ker(f) \oplus \operatorname{im}(f) = \mathbb{R}^4$$