Высокопроизводительные вычисления на кластерах с использованием графических ускорителей NVIDIA

17 июня 2012 г.

Руководитель трека: Андрей Комиссаров, akomissarov@nvidia.com, +79166853455

Максимальное количество участников: 15

Краткая аннотация. Вашему вниманию предлагается углубленный практический курс по технологии NVIDIA CUDA для разработчиков и исследователей, применяющих параллельные вычисления. В первой части последовательно излагаются основы программной модели CUDA применительно к языкам С и Fortran, сведения о типах памяти GPU и методы эффективного использования разделяемой памяти на примере некоторых алгоритмов. Затем даётся обзор основных прикладных библиотек и языковых средств со встроенной поддержкой вычислений на GPU. Отдельные лекции посвящены элементам профессиональной разработки — средствам анализа, отладки и диагностики. Рассмотрены методы управления несколькими GPU на рабочих станциях и распределенных кластерных системах. Курс проводится специалистами учебного центра Applied Parallel Computing совместно с компанией NVIDIA.

Количество лекций: 12

Количество практических занятий: 17

Количество часов самостоятельной работы: на каждый день предусмотрено задание для самостоятельной работы на 1 час (в программе трека помечены *курсивом*).

Таблица 1: Расписание трека

N	Название	Преподаватели		
1 июля. Вводная часть.				
Л1	Системы с графическими ускорителями в Российских учебно-научных центрах.	NVIDIA		
Л2	Принципы работы графических ускорителей, программная модель CUDA.	Евгений Перепёлкин (APC)		
П1	Вычислительный комплекс с GPU: получение информации о системе, средства мониторинга и диагностики, среды разработки и исполнения приложений.	Дмитрий Нгуен, Дмитрий Телегин (APC)		
П2	Создание простейших программ для GPU: sum_kernel, sine_calc.	Андрей Сафронов (APC)		
ЛЗ	Устройство CUDA-компилятора: стадии обработки кода, промежуточные представления, загрузка ядер, JIT-компиляция. Задание для самостоятельной работы: видимость глобальных данных в CUDA.	Андрей Сафронов (APC)		
2 июля. Эффективные алгоритмы и быстрая разработка.				
Л4	Иерархия памяти CUDA, эффективное использование разделяемой памяти. Общее виртуальное адресное пространство (UVA).	Евгений Перепёлкин (APC)		
Л5	Разработка CUDA-приложений на языке Fortran. ISO_C_BINDING, замечания о способе передачи аргументов.	Дмитрий Нгуен (APC)		
ПЗ	Эффективная реализация редукции или перемножения плотных матриц с использованием разделяемой памяти и UVA.	Дмитрий Телегин (APC)		
Л6	Быстрая разработка CUDA-приложений на C++ с помощью Thrust. Библиотека алгоритмов линейной алгебры с разреженными матрицами CUSP. Использование в С и Fortran.	Дмитрий Телегин, Александр Шевченко (АРС)		
П4	Реализации алгоритмов saxpy и сортировки пар (ключ, значение) с помощью Thrust. Задание для самостоятельной работы: решение 5-диагональной линейной системы с помощью CUSP.	Дмитрий Телегин, Александр Шевченко (АРС)		

Л7	Прикладные библиотеки со встроенной поддерж-	Александр		
	кой GPU, часть I: CUBLAS, MAGMA, CUSPARSE,	Шевченко (АРС)		
	CUFFT, CURAND.	, ,		
П5	Реализация степенного метода поиска наибольше-	Александр		
	го собственного значения плотной или разреженной	Шевченко (АРС)		
	матрицы.	, ,		
П6	Реализация метода покоординатного расщепления с	Александр		
	помощью CUFFT и прогонки для задачи Дирихле с	Шевченко (АРС)		
	границами различных типов. Самостоятельная до-			
	работка.			
Л8	Прикладные библиотеки со встроенной поддержкой	Олег Рябков,		
	GPU, часть II: PetSc, Trilinos.	Дмитрий Голицын,		
		Дмитрий Буров		
		$(M\Gamma Y)$		
Π7	Решение уравнения Пуассона с помощью PetSc и	Олег Рябков,		
	Trilinos.	Дмитрий Голицын,		
		Дмитрий Буров,		
		Олег Рябков (МГУ)		
4 июля. MultiGPU.				
Л9	Асинхронное исполнение, CUDA Streams. Измере-	Дмитрий Телегин		
	ние времени, CUDA Events. Управление несколькими	(APC)		
	GPU: взаимодействие CUDA с другими программны-			
	ми моделями параллельных вычислений.			
П8	Реализация конкуретного исполнения нескольких	Дмитрий Телегин		
	ядер на GPU с промежуточными синхронизациями.	(APC)		
	Асинхронные и блокирующие операции.			
П9	Параллельное использование нескольких GPU в по-	Александр		
	следовательном приложении: serial cuda. Несколько	Шевченко (АРС)		
	GPU в многопоточном приложении на основе интер-	` ′		
	фейса POSIX: pthreads cuda p2p. Задание для са-			
	мостоятельной работы: использование нескольких			
	GPU в многопоточном приложении, управляемом			
	GPU в многопоточном приложении, управляемом директивами OpenMP.			
П10	директивами OpenMP.	Александр		
П10		Александр Шевченко (APC)		

П11	Реализация взаимодействия между несколькими	Дмитрий Телегин			
	CUDA-приложениями с помощью интерфейса IPC.	(APC)			
5 ию	5 июля. Анализ, диагностика, отладка.				
Л10	Средства анализа, диагностики и отладки CUDA- приложений. Профилировка с помощью CUDA Profiler, диагностика ошибок памяти (cuda- memcheck), интерактивная отладка GPU-ядер (cuda-gdb).	Дмитрий Телегин (APC)			
П12	Анализ эффективности приложения с помощью CUDA Profiler. Основные аппаратные счётчики.	Дмитрий Телегин (APC)			
П13	Демонстрация работы отладчика: основные возможности, стандартные сценарии использования. Типичные ошибки в приложениях.	Дмитрий Телегин (APC)			
Π14	Программируемая профилировка с помощью CUPTI.	Дмитрий Телегин (APC)			
6 июля. Оптимизация программ, архитектура и внутренее устройство GPU.					
Л11	Архитектура GPU, методы анализа и оптимизации приложений.	Кто к нам придёт сюда из девтеков NVIDIA?			
П16	Управление кэшем GPU, эффект на производительность при различных шаблонах доступа к памяти. Задание для самостоятельной работы: кеширование данных в текстурной памяти.	Николай Лихогруд (APC)			
Л12	Язык промежуточного представления программы PTX и Fermi ISA. Формат исполняемого образа ядра CUBIN, начальная загрузка. Ассемблер и дизассемблер.	Николай Лихогруд (APC)			
П17	Анализ эффективности компилятора на низком уровне: распределение регистров, локальная память, векторизация. Отладка GPU-программы без исходного кода.	Николай Лихогруд (APC)			
+	Заключение: вопросы и пожелания, обсуждение перспективных совместных проектов. Собеседование по результатам выполнения практических заданий.				

Требования к знаниям и умениям потенциальных участников

- Способности к интенсивному обучению и самообучению: увлечённость задачей, умение разделять проблему на отдельные вопросы и умение быстро и самостоятельно находить ответы на большую их часть.
- Владение языками программирования C, C++ или Fortran.
- Навыки эффективной работы в консольной среде UNIX (текстовые редакторы, поиск, компиляторы и системы сборки приложений).
- Технический английский для самостоятельного изучения документации и научных статей.

Количество преподавателей: около 5, для всех необходимы пропуска

Возможность полной/частичной публикации материалов: возможна полная публикация