

Aula 02 - Operadores

Operadores aritméticos

Operador	Exemplo	Forma contraída	Descrição
+	a = (a + 4);	a+=4;	Realiza a soma par a par de ele- mentos que podem ser números constantes e/ou variáveis
-	b = b - 4;	b-=4;	Realiza a subtração par a par de elementos que podem ser números constantes e/ou variáveis
*	a = a*b*4;	b*=3;	Realiza a multiplicação par a par de elementos que podem ser nú- meros constantes e/ou variáveis
/	a = a/(b+4);	a/=10;	Realiza a divisão par a par de ele- mentos que podem ser números constantes e/ou variáveis
%	a = a%3;	a%=3;	Retorna o resto da divisão entre números inteiros. No caso do exemplo, supondo que o valor de a seja 10, o valor de a, ao final da operação, seria 1, pois 10/3 = 3 e resta 1.

Incremento e decremento (++ e --)

Tais operadores podem ser pré-fixados ou pós-fixados. Seu efeito é diferente dependendo do contexto.

Funções matemáticas

gcc codigo.c -o saida -lm

Função	Descrição
<pre>double ceil(double x); float ceilf(float x); long double ceill(long double x);</pre>	Arredonda um número sempre para o próximo inteiro maior.
<pre>double floor(double x); float floorf(float x); long double floorl(long double x);</pre>	Arredonda um número real para baixo, indepen- dente do valor da parte decimal
<pre>double round(double x); float roundf(float x); long double roundl(long double x)</pre>	Arredonda um número real de forma usual, ou seja se a parte decimal for maior que 0.5, o número será arredondado para cima.
<pre>double sin(double x); float sinf(float x); long double sinl(long double x);</pre>	Calcula o seno de X radianos
<pre>double cos(double x); float cosf(float x); long double cosl(long double x);</pre>	Calcula o cosseno de X radianos.
<pre>double tan(double x); float tanf(float x); long double tanl(long double x);</pre>	Calcula a tangente de X
<pre>double pow(double x, double y); float powf(float x, float y); long double powl(long double x, long double y);</pre>	Calcula x^y
<pre>double exp(double x); float expf(float x); long double expl(long double x);</pre>	Calcula e^x, sendo e a base natural dos logarítmos
<pre>double log(double x); float logf(float x);</pre>	Calcula log(x), logaritmo

<pre>long double logl(long double x);</pre>	
<pre>double log10(double x); float log10f(float x); long double log10l(long double x);</pre>	Calcula log(x) na base 10
<pre>double modf(double x, double *y); float modff(float x, float* y); long double modfl(long double x, long double *y)</pre>	Retorna o valor fracionário de um número e em y escrito a parte inteira.
<pre>double sqrt(double x); float sqrtf(float x); long double sqrtl(long double x);</pre>	Retorna a raiz quadrada do número x.

Operadores relacionais

Operador	Efeito
<	Menor
<=	Menor ou igual
>	Maior
>=	Maior ou igual
==	Igual
!=	Diferente

Entendimento para com o computador: "igual a 0" é falso e "diferente de 0" é verdadeiro.

Operadores lógicos

	-
Operador	Efeito

&&	"E" lógico	
II	"Ou" lógico	
!	"Não" ou inversor de valor booleano	

Apresentar as tabelas-verdade.

Operadores lógicos bit a bit

Representação dos dados. Binário, octal e hexadecimal.

Sistema posicional - Inicie da base decimal

Figura 1 - Representação de um byte como um inteiro de 8 bits.

Operador	Significado	Exemplo de uso
~	complemento bit a bit	~x
&	AND bit a bit	x & 64
1	OR bit a bit	y = x 32
۸	XOR bit a bit	$z = x^y$

Lógica de Programação

Rafael Lima de Carvalho

<<	deslocamento de bits à esquerda	x << 2
>>	deslocamento de bits à esquerda	x >> 3

Tabela 1 - operadores bit a bit da linguagem C.

OBS: Os operadores bit a bit só podem ser usados nos tipos **char**, **int** e **long** (BACKES, 2012).