

Probabilidade e estatística

Medidas Estatísticas

Tendência central, posição ou separatrizes

UESC - CiC - 2016.2

Graduandos: Eberty Alves e Felipe Oliveira

Professor: José Cláudio Faria

Tendência Central

- Medidas que orientam quanto aos valores centrais.
- Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar os dados.
- Também chamados de centro da distribuição.

- 1. Média
- 2. Moda
- 3. Mediana

Média Aritmética

- Dados Não Agrupados
 - Seja Y = $(y_1, y_2, ..., y_n)$ e (N,n) = Quantidade de variáveis em Y, temos que:

Parâmetro:
$$\overline{Y}$$
 ou $\mu = \frac{\sum y}{N}$

Estimativa:
$$\overline{y}$$
 ou $m = \frac{\sum y}{n}$

■ **Exemplo:** considerando {3, 7, 8, 10, 11} como uma amostra

$$\bar{y} = \frac{3+7+8+10+11}{5} = 7.8$$

Média Aritmética

- Dados Agrupados
 - Quando os dados estão agrupados em uma distribuição de frequência temos:
- $Y=(y_1, y_2, ..., y_n)$ ponderados pelas respectivas frequências absolutas $F=(F_1, F_2, ..., F_n)$.

$$\overline{y}$$
 ou $m = \frac{\sum y \cdot F}{\sum F}$

Média Aritmética

- Dados Agrupados
 - Exemplo:

Υ	F _i	Y*F _i	
1	1	1	
2	3	6	
3	5	15	
4	1	4	
Σ	10	26	

$$\overline{y}$$
 ou $m = \frac{\sum y \cdot F}{\sum F} = \frac{26}{10} = 2,6$

Média Aritmética

- Dados Agrupados
 - Exemplo:

Idade	F _i	Y	Y*F _i
02 ⊦ 04	5	3	15
04 ⊦ 06	10	5	50
06 ⊦ 08	14	7	98
08 + 10	8	9	72
10 ⊦ 12	3	11	33
Σ	40		268

$$\overline{y}$$
 ou $m = \frac{\sum y \cdot F}{\sum F} = \frac{268}{40} = 6,7$

Média Geral

- Sejam y₁, y₂, ..., y_k as estimativas das médias aritméticas de K séries.
- Sejam n₁, n₂, ..., n_k os números de termos destas séries, respectivamente.
- A média aritmética da série formada pelos termos da K séries é dada pela fórmula:

$$\overline{y}$$
 ou $m = \frac{n_1 \overline{y}_1 + n_2 \overline{y}_2 + \dots + n_k \overline{y}_k}{n_1 + n_2 + \dots + n_k}$

Média Geral

Exemplo

Dadas as Séries:

$$\{4, 5, 6, 7, 8\}$$
 $n_1 = 5$ $\bar{Y}_1 = 6$ $\{1, 2, 3\}$ $n_2 = 3$ $\bar{Y}_2 = 2$ $\{9, 10, 11, 12, 13\}$ $n_3 = 5$ $\bar{Y}_3 = 11$

$$\overline{Y} = \frac{n_1 \overline{y}_1 + n_2 \overline{y}_2 + \dots + n_k \overline{y}_k}{n_1 + n_2 + \dots + n_k} = \frac{5.6 + 3.2 + 5.11}{5 + 3 + 5} = 7$$

Média Geométrica

- Usada para médias proporcionais de crescimento quando uma medida subsequente depende de medidas prévias.
- Sejam y₁, y₂, ..., y_n, valores de Y associados às respectivas frequências absolutas F₁, F₂, ..., F_n. A média geométrica de Y é definida por:

$$MG \ ou \ mg = \sqrt[n]{y_1^{f_1} \cdot y_2^{f_2} \cdot \dots \cdot y_n^{f_n}}$$

Média Geométrica

Exemplo:

Amostra: {3, 6, 12, 24, 48}

$$mg = \sqrt[5]{3.6.12.24.48} = \sqrt[5]{248.832} = 12$$

Média Harmônica

- Usada para médias de crescimento e proporções de velocidade.
 - Sejam y₁, y₂, ..., y_n, valores de Y
 - Sejam F₁, F₂, ..., F_n, frequências absolutas.
- A média harmônica de Y é definida por:

MH ou **mh** =
$$\frac{n}{\frac{F_1}{y_1} + \frac{F_2}{y_2} + \dots + \frac{F_n}{y_n}} = \frac{n}{\sum_{i=1}^n \frac{F_i}{y_i}}$$

Média Harmônica

Exemplo:

Amostra: {2, 5, 8}

$$mh = \frac{n}{\frac{F_1}{y_1} + \frac{F_2}{y_2} + \frac{F_3}{y_3}} = \frac{3}{\frac{1}{2} + \frac{1}{5} + \frac{1}{8}} = \frac{3}{\frac{20 + 8 + 5}{40}} = \frac{3}{\frac{33}{40}} = \frac{3}{1} \cdot \frac{40}{33} = 3,63$$

Vantagens

- Fácil de compreender e calcular
- Utiliza todos os valores da série
- É um valor único
- É fácil de ser incluída em expressões matemáticas
- Pode ser determinada nas escalas: intervalar e proporcional.

Desvantagens

- Muito afetada por valores extremos
- Necessário conhecer todos os valores da série.

Medida de tendência muito usada quando o interesse é a determinação do valor que separa a série de dados em duas partes iguais, 50% situados acima e 50% situados abaixo da medida.

 Notação adotada: (Y ou MD) para o parâmetro e (y ou md) para a estimativa.

Cálculo da mediana para variável discreta

Se n for impar:

 A mediana é o elemento central.

$$\frac{n+1}{2}$$

Se n for par:

 A mediana é a média dos dois elementos centrais.

Média
$$\left[\frac{n}{2},\frac{n}{2}+1\right]$$

Cálculo da mediana para variável discreta

Exemplo

Yi	F _i	Fac	
1	1	1	
2	3	4	
3	5	9	
4	2	11	
Σ	11		

$$n = 11$$

$$\frac{11+1}{2}$$

$$\frac{11+1}{2} = 6^{\circ}$$

$$\widetilde{y} = 3$$

Cálculo da mediana para variável discreta

Exemplo

Yi	Fi	Fac
82	5	5
85	10	15
87	15	30
89	8	38
90	4	42
Σ	42	

$$n = 42$$

Média $\left[\frac{n}{2}, \frac{n}{2} + 1\right]$
 $\frac{42}{2}, \frac{42}{2} + 1$

(elementos 21º e 22º)

 $21^{\circ}=87$ 22°=87

 $\tilde{y} = 87$

Cálculo da mediana para variável contínua

- 1. Calcular $\frac{n}{2}$
- 2. Usar a *Fac* para identificar a classe que contém a mediana *(classe md)*

3.
$$\tilde{y} = l_{md} + \frac{\left(\frac{n}{2} - \sum f\right) \cdot h}{F_{md}}$$

- l_{md} = Limite inferior da classe md
- n = Tamanho da série
- $\sum f$ = Soma das frequências anteriores à classe md
- h = Amplitude da classe md
- F_{md} = Frequência da classe md

Cálculo da mediana para variável contínua

Exemplo

Classe	Fi Fac	
35 ⊦ 45	5	5
45 ⊦ 55	12	17
55 ⊦ 65	18	35
65 ⊦ 75	14	49
75 ⊦ 85	6	55
85 ⊦ 95	3	58
Σ	58	268

1.
$$\frac{58}{2} = 29^{\circ}$$
2. Classe $md = 3^{\circ}$

$$l_{md} = 55$$

$$n = 58$$

$$\sum f = 17$$

$$h = 10$$

$$F_{md} = 18$$
3. $\tilde{y} = 55 + \frac{\left(\frac{58}{2} - 17\right) \cdot 10}{18} = 61,67$

Vantagens

- Fácil de compreender e aplicar
- Não é afetada por valores extremos
- É um valor único
- Pode ser determinada nas escalas: ordinal, intervalar e proporcional.

Desvantagens

- É difícil de ser incluída em expressões matemáticas
- Não usa todos os valores da série.

- Medida de tendência central muito usada quando o interesse é o valor mais frequente da série.
- Notação adotada: (MO) para o parâmetro e (mo) para a estimativa.
 - Série sem moda: Série amodal
 - Mais de uma moda: Série multimodal

Exemplo

Distribuição sem agrupamento de classes:

y_i	253	245	248	251	307
F_i	7	17	23	20	8

mo: 248

Exemplo

- Distribuição com agrupamento de classes
- Identifica-se a classe modal
- 2. Aplique a fórmula de Czuber

$$\mathbf{mo} = \mathbf{l} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \cdot \mathbf{h}$$

- *l* = *Limite inferior da classe mo*
- Δ_1 = Diferença entre a frequência da classe modal e a imediatamente anterior
- Δ_2 = Diferença entre a frequência da classe modal e a imediatamente posterior
- h = Amplitude da classe

Exemplo

Distribuição com agrupamento de classes:

Classes
 0 + 1
 1 + 2
 2 + 3
 3 + 4
 4 + 5
 Σ

$$F_i$$
 3
 10
 17
 8
 5
 43

1. Classe modal =
$$3^a$$
 (2 + 3)

$$mo = 2 + \frac{7}{7+9} \cdot 1 = 2,44$$

Vantagens

- Fácil de compreender e calcular
- Não é afetada por valores extremos
- Pode ser aplicada em todas as escalas: nominal, ordinal, intervalar e proporcional.

Desvantagens

- Pode estar afastada do centro dos valores
- É difícil de ser incluída em expressões matemáticas
- Não usa todos os valores da série
- A variável pode ter mais de uma moda (bimodal ou multimodal)
- Algumas variáveis não possuem moda.

Medidas de Posição ou Separatrizes

- Genericamente denominadas quantis.
- Orientam quanto à posição na distribuição.
- Permitem determinar valores que particionam a série de n observações em partes iguais.

- 1. Quartis
- 2. Decis
- 3. Percentis

Quartis

Dividem uma série em 4 partes iguais

Notação adotada: (Q) para o parâmetro e (q) para a estimativa.

Quartis

$$q_i = l_{q_i} + \frac{\left(\frac{i.n}{4} - \sum f\right).h}{F_{q_i}}$$

• l_{q_i} = limite inferior da classe q_i (i = 1, ..., 3) • i = 1 para q_1 , ..., 3 para q_3 • n = tamanho da série • Σ f = soma das frequências anteriores à classe q_i • h = amplitude da classe q_i • F_{q_i} = frequência da classe q_i

Quartis

Quartis para dados agrupados em classes - Exemplo

Fi	Fac
4	4
9	13
11	24
8	32
5	37
3	40
40	
	4 9 11 8 5 3

$$q_{i} = l_{q_{i}} + \frac{\left(\frac{i.\,n}{4} - \sum f\right).\,h}{F_{q_{i}}}$$
Para q1 temos 1*40/4 = 10
$$q1 = 54 + \left[(10 - 4) \times 4 \right] / 9 = 54 + 2,66 = 56,66$$
Para q2 temos 2*40/4 = 20
$$q2 = 58 + \left[(20 - 13) \times 4 \right] / 11 = 58 + 28/11 = 60,54$$

Decis

Dividem uma série em 10 partes iguais

Notação adotada: (D) para o parâmetro e (d) para a estimativa.

Decis

$$d_i = l_{d_i} + \frac{\left(\frac{i.n}{10} - \sum f\right).h}{F_{d_i}}$$

- l_{d_i} = limite inferior da classe d_i (i = 1, ..., 9) • i = 1 para d_1 , ..., 9 para d_9 • n = tamanho da série • Σ f = soma das frequências anteriores à classe d_i • h = amplitude da classe d_i
- F_{d_i} = frequência da classe d_i

Decis

Exemplo

Classe	Fi	Fac
50 ⊦ 54	4	4
54 ⊦ 58	9	13
58 ⊦ 62	11	24
62 ⊦ 66	8	32
66 ⊦ 70	5	37
70 ⊦ 74	3	40
Σ	40	

$$d_{i} = l_{d_{i}} + \frac{\left(\frac{i.n}{10} - \sum f\right).h}{F_{d_{i}}}$$
Calcular o 3º decil:
$$3*40/10 = 12 \text{ que corresponde a 2ª Classe}$$

$$d3 = 54 + \left[(12 - 4) \times 4 \right] / 9 = 54 + 3,55 =$$

$$57,55$$

Percentis

Dividem uma série em 100 partes iguais

Notação adotada: (P) para o parâmetro e (p) para a estimativa.

Percentis

$$p_i = l_{p_i} + \frac{\left(\frac{i.n}{100} - \sum f\right).h}{F_{p_i}}$$

• l_{p_i} = limite inferior da classe p_i (i = 1, ..., 99) • i = 1 para p_1 , ..., 99 para p_{99} • n = tamanho da série • Σ f = soma das frequências anteriores à classe pd_i • h = amplitude da classe p_i • F_{p_i} = frequência da classe p_i

34

Percentis

Exemplo

Classe	Fi	Fac
50 ⊦ 54	4	4
54 ⊦ 58	9	13
58 ⊦ 62	11	24
62 ⊦ 66	8	32
66 ⊦ 70	5	37
70 ⊦ 74	3	40
Σ	40	

$$p_{i} = l_{p_{i}} + \frac{\left(\frac{i.n}{100} - \sum f\right).h}{F_{p_{i}}}$$
Calcular o 8° centil:
$$8*40/100 = 3,2 \text{ que corresponde a 1°a Classe}$$

$$p8 = 50 + \left[(3,2-0) \times 4 \right] / 4 = 50 + 3,2 =$$

$$53,2$$

Medidas de posição ou separatrizes

- Situações de uso mais comum dessas medidas
 - Diagrama de caixa ("box plot")

Diagrama de caixa do total de fêmeas do parasitóide nascidas

Probabilidade e estatística

Medidas Estatísticas

Tendência central, Posição ou separatrizes

UESC - CiC - 2016.2

Graduandos: Eberty Alves e Felipe Oliveira

Professor: José Cláudio Faria