Free Idempotent Generated Semigroups and their Maximal Subgroups

Robert Gray

Centro de Álgebra da Universidade de Lisboa

University of Lisbon, July 2011

Thinking about semigroups

- ► Semigroup ←→ Universe
- ightharpoonup Idempotents \longleftrightarrow Stars
- ► Solar system (one for each star) ←→ Maximal subgroups (one for each idempotent)

Outline

History and motivation

Idempotent generated semigroups
Biordered sets and free idempotent generated semigroups

Maximal subgroups of free idempotent generated semigroups Singular squares and presentations

Examples that occur in nature

Transformation monoids Linear semigroups

Idempotent generated semigroups

S - semigroup,
$$E = E(S)$$
 - idempotents $e = e^2$ of S

Definition. S is idempotent generated if $\langle E(S) \rangle = S$

Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

Definition. S is idempotent generated if $\langle E(S) \rangle = S$

- Many natural examples
 - ▶ Howie (1966) $T_n \setminus S_n$, the non-invertible transformations;
 - ► Erdös (1967) singular part of $M_n(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F} ;
 - ▶ Laffey (1983) singular part of $M_n(Q)$, Q an arbitrary division ring;
 - Putcha (2006) conditions for a reductive linear algebraic monoid to have the same property.

Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents $e = e^2$ of S

Definition. S is idempotent generated if $\langle E(S) \rangle = S$

- Many natural examples
 - ▶ Howie (1966) $T_n \setminus S_n$, the non-invertible transformations;
 - ► Erdös (1967) singular part of $M_n(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F} ;
 - ▶ Laffey (1983) singular part of $M_n(Q)$, Q an arbitrary division ring;
 - Putcha (2006) conditions for a reductive linear algebraic monoid to have the same property.
- Idempotent generated semigroups are "general"
 - ► Every semigroup *S* embeds into an idempotent generated semigroup.

The biordered set of a semigroup

Nambooripad (1979)

$$S$$
 - semigroup, $E = E(S)$ - idempotents of S

Definition. The biordered set of a semigroup S is the partial algebra consisting of the set E = E(S) with multiplication restricted to basic pairs.

$$(e,f) \in E \times E$$
 is called a basic if

$$ef = e$$
 or $ef = f$ or $fe = e$ or $fe = f$.

i.e. one of the idempotents stabilizes the other under left or right multiplication.

The biordered set of a semigroup

Nambooripad (1979)

$$S$$
 - semigroup, $E = E(S)$ - idempotents of S

Definition. The biordered set of a semigroup S is the partial algebra consisting of the set E = E(S) with multiplication restricted to basic pairs.

$$(e,f) \in E \times E$$
 is called a basic if

$$ef = e$$
 or $ef = f$ or $fe = e$ or $fe = f$.

i.e. one of the idempotents stabilizes the other under left or right multiplication.

If
$$(e,f)$$
 is basic then both $ef \in E$ and $fe \in E$.
(e.g. if $ef = f$ then $(fe)^2 = f(ef)e = ffe = fe$)

Free idempotent generated semigroups

$$S$$
 - semigroup, $E = E(S)$

Let IG(E) denote the semigroup defined by the following presentation.

$$IG(E) = \langle E \mid e \cdot f = ef \text{ if } (e, f) \text{ is a basic pair} \rangle.$$

IG(E) is called the free idempotent generated semigroup on E.

Free idempotent generated semigroups

$$S$$
 - semigroup, $E = E(S)$

Let IG(E) denote the semigroup defined by the following presentation.

$$IG(E) = \langle E \mid e \cdot f = ef \text{ if } (e, f) \text{ is a basic pair} \rangle.$$

IG(E) is called the free idempotent generated semigroup on E.

Theorem (Easdown (1985))

The biordered set of idempotents of IG(E) is E. If S is any idempotent generated semigroup with biordered set of idempotents isomorphic to E then the natural map $E \to S$ extends uniquely to a homomorphism $\phi: IG(E) \to S$.

Conclusion. It is important to understand IG(E) if one is interested in understanding an arbitrary idempotent generated semigroup with biordered set E.

Conclusion. It is important to understand IG(E) if one is interested in understanding an arbitrary idempotent generated semigroup with biordered set E.

- ▶ It was conjectured that maximal subgroups of free idempotent generated semigroups must always be free groups.
- ► This conjecture was confirmed for several classes of biordered set:
 - ▶ Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee (2002).

- ▶ It was conjectured that maximal subgroups of free idempotent generated semigroups must always be free groups.
- ▶ This conjecture was confirmed for several classes of biordered set:
 - ► Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee (2002).
- Brittenham, Margolis & Meakin (2009) gave the first counterexamples to this conjecture.
 - ► Give a 72-element semigroup *S* and prove that IG(E(S)) has a maximal subgroup isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
 - ▶ They also reported that the multiplicative group \mathbb{F}^* of a field \mathbb{F} arises as a maximal subgroup of $IG(E(M_3(\mathbb{F})))$, where $M_3(\mathbb{F})$ is the semigroup of all 3×3 matrices over \mathbb{F} .

Maximal subgroup of free idempotent generated semigroups

Theorem (RG & Ruskuc (2011))

Every group is a maximal subgroup of some free idempotent generated semigroup.

Green's relations: equivalence relations reflecting ideal structure.

Green's relations: equivalence relations reflecting ideal structure.

For $u, v \in S$ we define

$$u\mathcal{R}v \Leftrightarrow uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \Leftrightarrow Su \cup \{u\} = Sv \cup \{v\},$$

Green's relations: equivalence relations reflecting ideal structure.

For $u, v \in S$ we define

$$u\mathcal{R}v \ \Leftrightarrow \ uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \ \Leftrightarrow \ Su \cup \{u\} = Sv \cup \{v\},$$

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$$
.

Green's relations: equivalence relations reflecting ideal structure.

For $u, v \in S$ we define

$$u\mathcal{R}v \ \Leftrightarrow \ uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \ \Leftrightarrow \ Su \cup \{u\} = Sv \cup \{v\},$$

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$$
.

{ Maximal subgroups of S } = { \mathcal{H} -classes that contain idempotents }

Green's relations: equivalence relations reflecting ideal structure.

For $u, v \in S$ we define

$$u\mathcal{R}v \ \Leftrightarrow \ uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \ \Leftrightarrow \ Su \cup \{u\} = Sv \cup \{v\},$$

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L}$$
.

{ Maximal subgroups of S } = { \mathcal{H} -classes that contain idempotents }

Example. Let
$$S = T_3$$
 and $\epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \in E(S)$. Then

$$H_{\epsilon} = \left\{ \left(\begin{smallmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{smallmatrix} \right) \right\} \cong S_2.$$

Thinking about semigroups

- ► Semigroup ←→ Universe
- ightharpoonup Idempotents \longleftrightarrow Stars
- ► Solar system (one for each star) ←→ Maximal subgroups (one for each idempotent)
- Galaxies (collection of star systems) ←→ Regular D-classes ('collection' of maximal subgroups)

Regular \mathcal{D} -classes

$$\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}.$$

ightharpoonup A \mathcal{D} -class is (von Neumann) regular if it contains an idempotent

Regular \mathcal{D} -classes

$$\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}.$$

- ▶ A *D*-class is (von Neumann) regular if it contains an idempotent
- ▶ A regular \mathcal{D} -class has ≥ 1 idempotent in every \mathcal{R} and every \mathcal{L} -class.

Regular \mathcal{D} -classes

$$\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}.$$

- ightharpoonup A \mathcal{D} -class is (von Neumann) regular if it contains an idempotent
- ▶ A regular \mathcal{D} -class has ≥ 1 idempotent in every \mathcal{R} and every \mathcal{L} -class.
- ▶ All maximal subgroups in a regular \mathcal{D} -class are isomorphic.

S - semigroup,
$$E = E(S)$$
, assume $\langle E(S) \rangle = S$

Free idempotent generated semigroup:

$$\mathit{IG}(E) = \langle E \mid e \cdot f = \mathit{ef} \ (e, f \in E, \ \{e, f\} \cap \{\mathit{ef}, \mathit{fe}\} \neq \emptyset) \ \rangle$$

$$\phi: IG(E) \rightarrow S$$
 - the natural homomorphism

• ϕ is bijective on idempotents (Easdown (1985))

$$S$$
 - semigroup, $E = E(S)$, assume $\langle E(S) \rangle = S$

Free idempotent generated semigroup:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

 $\phi: IG(E) \rightarrow S$ - the natural homomorphism

- $ightharpoonup \phi$ is bijective on idempotents (Easdown (1985))
- ▶ ϕ maps the \mathcal{R} -class of $e \in E$ onto the corresponding class of e in S; this induces a bijection between the set of all \mathcal{R} -classes in the \mathcal{D} -class of e in IG(E) and the corresponding set in S, dually for \mathcal{L} -classes (Fitz-Gerald (1972))

$$S$$
 - semigroup, $E = E(S)$, assume $\langle E(S) \rangle = S$

Free idempotent generated semigroup:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

 $\phi: IG(E) \to S$ - the natural homomorphism

- $ightharpoonup \phi$ is bijective on idempotents (Easdown (1985))
- ▶ ϕ maps the \mathcal{R} -class of $e \in E$ onto the corresponding class of e in S; this induces a bijection between the set of all \mathcal{R} -classes in the \mathcal{D} -class of e in IG(E) and the corresponding set in S, dually for \mathcal{L} -classes (Fitz-Gerald (1972))
- ▶ The restriction of ϕ to the maximal subgroup of IG(E) containing $e \in E$ is a homomorphism onto the maximal subgroup of S containing e.

S - semigroup,
$$E = E(S)$$
, assume $\langle E(S) \rangle = S$

Free idempotent generated semigroup:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

Let $e_{11} \in E$ - arbitrary.

Aim: Write down a presentation for the maximal subgroup H of IG(E) containing e_{11} .

Singular squares

- ▶ D \mathcal{D} -class in S of e_{11}
- ▶ R_i $(i \in I)$ \mathcal{R} -classes in D
- $ightharpoonup L_j\ (j\in J)$ \mathcal{L} -classes in D

- $ightharpoonup H_{ij} = R_i \cap L_j \text{ for } i \in I, j \in J$
- e_{ij} identity of H_{ij} when a group

Singular squares

Definition

A quadruple $(i, k; j, l) \in I \times I \times J \times J$ is a singular square if there exists an idempotent $e \in E$ such that one of the following dual conditions holds:

$$ee_{ij} = e_{ij}, \ ee_{kj} = e_{kj}, \ e_{ij}e = e_{il}, \ e_{kj}e = e_{kl}, \ or$$
 $e_{ij}e = e_{ij}, \ e_{il}e = e_{il}, \ ee_{ij} = e_{kj}, \ ee_{il} = e_{kl}.$

We will say that e singularises the square.

 Determining which squares are singular is something that is computed inside S.

Presentations for maximal subgroups of IG(E)

Roughly speaking...

Maximal subgroups of free idempotent generated semigroups are defined by the relations arising from singular squares.

Presentations for maximal subgroups of IG(E)

Roughly speaking...

Maximal subgroups of free idempotent generated semigroups are defined by the relations arising from singular squares.

The maximal subgroup H of IG(E) containing e_{11} is given by a presentation with:

Generators: $F = \{f_{ij} : H_{ij} \text{ is a group}\}$

An abstract set of generating symbols in bijective correspondence with the set of idempotents in the \mathcal{D} -class D of e_{11} .

Presentations for maximal subgroups of IG(E)

Roughly speaking...

Maximal subgroups of free idempotent generated semigroups are defined by the relations arising from singular squares.

The maximal subgroup H of IG(E) containing e_{11} is given by a presentation with:

Generators: $F = \{f_{ij} : H_{ij} \text{ is a group}\}$

An abstract set of generating symbols in bijective correspondence with the set of idempotents in the \mathcal{D} -class D of e_{11} .

Relations: $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$ for every singular square (i, k; j, l)

(together with two further families of relations, one which identifies certain pairs of generators, and another which sets certain generators equal to 1)

Presentation for maximal subgroup of IG(E)

Theorem (RG & Ruskuc (2011))

A presentation for the group $H = H(IG(E), e_{11})$ is given by

where Σ is the set of all singular squares.

Schreier system of representatives: r_j $(j \in J)$ - words from $(E \cap D_e)^*$ such that $H_{11}r_j = H_{1j}$, for all $j \in J$, and every prefix of an r_j is some r_l .

Presentation for maximal subgroup of IG(E)

Theorem (RG & Ruskuc (2011))

A presentation for the group $H = H(IG(E), e_{11})$ is given by

where Σ is the set of all singular squares.

Schreier system of representatives: r_j $(j \in J)$ - words from $(E \cap D_e)^*$ such that $H_{11}r_j = H_{1j}$, for all $j \in J$, and every prefix of an r_j is some r_l .

Pivot function: For each $i \in I$, fix $\pi(i) \in J$ such that $H_{i,\pi(i)}$ is a group.

Presentation for maximal subgroup of IG(E)

Theorem (RG & Ruskuc (2011))

A presentation for the group $H = H(IG(E), e_{11})$ is given by

$$\begin{array}{ll} \langle F & | & f_{ij} = f_{il} & (r_j e_{il} \text{ is a Schreier word \& both H_{ij}, H_{il} groups),} \\ & f_{i,\pi(i)} = 1 & (i \in I), \\ & f_{ij}^{-1} f_{il} = f_{kj}^{-1} f_{kl} & ((i,k;j,l) \in \Sigma) \rangle \end{array}$$

where Σ is the set of all singular squares.

- ► Generalises the corresponding result for (von Neumann) regular semigroups proved by Nambooripad (1979).
- Proof makes use of general Redemeister–Schreier theory for subgroups of semigroups developed in Ruskuc (1999).
- ▶ If there are no singular squares then we obtain a free group.
- ▶ The presentation has "many generators" and relations that are all short.

Input: G - arbitrary group

Task: Find a pair S and $e \in E(S)$ such that $G \cong H(IG(E), e)$.

Input: G - arbitrary group

Task: Find a pair S and $e \in E(S)$ such that $G \cong H(IG(E), e)$.

We work inside a certain semigroup $B_{I,J}$. Elements are pairs of mappings.

Input: *G* - arbitrary group

Task: Find a pair *S* and $e \in E(S)$ such that $G \cong H(IG(E), e)$.

We work inside a certain semigroup $B_{I,J}$. Elements are pairs of mappings.

 $B_{I,J}$ has a minimal ideal $R_{I,J}$, which is a \mathcal{D} -class of $B_{I,J}$, \mathcal{R} -classes indexed by I and \mathcal{L} -classes indexed by J.

Every element of $R_{I,J}$ is idempotent (it is a rectangular band). Fix $\rho_{11} \in R_{I,J}$.

Input: *G* - arbitrary group

Task: Find a pair *S* and $e \in E(S)$ such that $G \cong H(IG(E), e)$.

We work inside a certain semigroup $B_{I,J}$. Elements are pairs of mappings.

 $B_{I,J}$ has a minimal ideal $R_{I,J}$, which is a \mathcal{D} -class of $B_{I,J}$, \mathcal{R} -classes indexed by I and \mathcal{L} -classes indexed by J.

Every element of $R_{I,J}$ is idempotent (it is a rectangular band). Fix $\rho_{11} \in R_{I,J}$.

We consider semigroups in the range

$$R_{I,J} \leq S \leq B_{I,J}$$
.

Fundamental idea: Careful choice of I, J, and S allow us to create a collection of singular squares in $R_{I,J}$ that encode the full multiplication table of G inside the presentation.

Preserving finiteness properties

Our construction proves:

Theorem (RG & Ruskuc (2011))

Every group is a maximal subgroup of some free idempotent generated semigroup.

▶ One drawback of the above construction is that if *G* is infinite, then the semigroup *S* constructed will necessarily be infinite.

Preserving finiteness properties

Our construction proves:

Theorem (RG & Ruskuc (2011))

Every group is a maximal subgroup of some free idempotent generated semigroup.

- ▶ One drawback of the above construction is that if *G* is infinite, then the semigroup *S* constructed will necessarily be infinite.
- ▶ If *G* is finitely presented then we can do better than this:

Theorem (RG & Ruskuc (2011))

Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup.

The word problem

Since there exist finitely presented groups that have unsolvable word problem, combining such a group with the above theorem gives:

Corollary

There exists a free idempotent generated semigroup S arising from a finite semigroup such that the word problem for S is unsolvable.

What next?			

Investigate IG(E) for biordered sets of idempotents E of semigroups that occur "in nature".

The \mathcal{D} -classes of T_n are

$$D_r = \{\alpha \in T_n : |\operatorname{im}(\alpha)| = r\} \ (1 \le r \le n).$$

- ▶ The maximal subgroups of T_n in D_r are isomorphic to S_r .
- Fix $e \in E(T_n)$ with $|\operatorname{im}(e)| = r$.
- ▶ Can we identify the group $H = H(IG(E(T_n), e))$?

The \mathcal{D} -classes of T_n are

$$D_r = \{\alpha \in T_n : |\operatorname{im}(\alpha)| = r\} \ (1 \le r \le n).$$

- ▶ The maximal subgroups of T_n in D_r are isomorphic to S_r .
- Fix $e \in E(T_n)$ with $|\operatorname{im}(e)| = r$.
- ▶ Can we identify the group $H = H(IG(E(T_n), e))$?
- We know that H is a homomorphic preimage of S_r .

Let $e \in E(T_n)$ with $|\operatorname{im}(e)| \le n-2$ and consider $H = H(IG(E(T_n), e))$.

Using the general theory above, and then applying carefully a set of Tietze transformations we obtain:

$$\langle g_1, \dots, g_{r-1} | g_i^2 = 1$$
 $(i \in [1, r-1]),$
 $g_i g_j = g_j g_i$ $(i, j \in [1, r-1], |i-j| > 1),$
 $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$ $(i \in [1, r-1]) \rangle,$

Using the general theory above, and then applying carefully a set of Tietze transformations we obtain:

$$\langle g_1, \dots, g_{r-1} | g_i^2 = 1$$
 $(i \in [1, r-1]),$
 $g_i g_j = g_j g_i$ $(i, j \in [1, r-1], |i-j| > 1),$
 $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$ $(i \in [1, r-1]) \rangle,$

the standard Coxeter presentation defining the group S_r .

Using the general theory above, and then applying carefully a set of Tietze transformations we obtain:

$$\langle g_1, \dots, g_{r-1} | g_i^2 = 1$$
 $(i \in [1, r-1]),$
 $g_i g_j = g_j g_i$ $(i, j \in [1, r-1], |i-j| > 1),$
 $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$ $(i \in [1, r-1]) \rangle,$

the standard Coxeter presentation defining the group S_r .

Theorem (RG & Ruškuc (2011))

Let T_n be the full transformation semigroup, let E be its set of idempotents, and let $e \in E$ be an arbitrary idempotent with image size r ($1 \le r \le n-2$). Then the maximal subgroup H_e of the free idempotent generated semigroup IG(E) containing e is isomorphic to the symmetric group S_r .

Conclusion: The structure of the idempotents of T_n naturally "encode" the standard Coxeter presentations for the symmetric groups.

Semigroups of matrices

Theorem (Brittenham, Margolis & Meakin (2010))

Let E be the biordered set of idempotents of $M_n(Q)$, for Q a division ring, and let e be an idempotent matrix of rank 1 in $M_n(Q)$. For $n \geq 3$, the maximal subgroup of IG(E) containing e is isomorphic to Q^* , the multiplicative group of units of Q.

Semigroups of matrices

Theorem (Brittenham, Margolis & Meakin (2010))

Let E be the biordered set of idempotents of $M_n(Q)$, for Q a division ring, and let e be an idempotent matrix of rank 1 in $M_n(Q)$. For $n \geq 3$, the maximal subgroup of IG(E) containing e is isomorphic to Q^* , the multiplicative group of units of Q.

Theorem (Dolinka & RG (2011))

Let E be the biordered set of idempotents of $M_n(Q)$, for Q a division ring, and let e be an idempotent matrix of $M_n(Q)$ with rank r < n/3. For $n \ge 3$, the maximal subgroup of IG(E) with identity e is isomorphic to the general linear group $GL_r(Q)$.