Fashion MNIST 데이터셋 CNN 적용

실습 파일

14W-Fashion-MNIST-with-CNN.ipynb

데이터 로드와 정규화

```
import tensorflow as tf
fashion_mnist = tf.keras.datasets.fashion_mnist
  (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data()

train_X = train_X / 255.0

test_X = test_X / 255.0
```

Conv2D 레이어를 위한 모양 변형

- Conv2D 레이어로 컨볼루션 연산을 수행
 - 이미지는 보통 채널을 가짐
 - 컬러 이미지는 RGB의 3채널, 흑백 이미지는 1채널
 - Conv2D 레이어는 채널을 가진 형태의 데이터를 받도록 기본적으로 설정
 - 채널을 갖도록 데이터의 Shape를 변형
 - Fashion MNIST 데이터를 구성하는 흑백 이미지는 1개의 채널을 갖음
 - reshape() 함수를 사용해 데이터의 가장 뒤쪽에 채널 차원을 추가

```
# reshape 0 전
print(train_X.shape, test_X.shape)

train_X = train_X.reshape(-1, 28, 28, 1)

test_X = test_X.reshape(-1, 28, 28, 1)

# reshape 0 후
print(train_X.shape, test_X.shape)
```


데이터 확인 시각화

plt.show()

```
import matplotlib.pyplot as plt

# 전체 그래프의 크기를 width = 10, height = 10으로 지정합니다.
plt.figure(figsize=(10, 10))
for c in range(16):
  # 4행 4열로 지정한 그리드에서 c+1번째의 칸에 그래프를 그립니다. 1~16번째 칸을 채우게 됩니다.
plt.subplot(4,4,c+1)
plt.imshow(train_X[c].reshape(28,28), cmap='gray')
```

훈련 데이터이 $1\sim16$ 번째 까지의 라벨 프린트합니다. print(train Y[:16])

라벨	범주
0	티셔츠/상의
1	바지
2	스웨터
3	드레스
4	코트
5	샌들
6	셔츠
7	운동화
8	가방
9	부츠

컨볼루션 신경망 모델에서의 패러미터 수

- Conv2D의 인수
 - kernel size
 - 필터 행렬의 크기, 수용 영역(receptive filed) (높이, 너비)
 - filters
 - 필터의 개수
- 패러미터 수 계산 방법

컨볼루션 패러미터 수 = 커널사이즈² * 커널수 * 채널(색상) + 커널수(bias) 일반 완전 연결층 패라미터 수 = (입력수 + 1) * 출력수

Model: "sequential"	(None, 28, 28, 1)		
Layer (type)	Output Shape	Pa ram #	_
conv2d (Conv2D)	(None, 26, 26, 16)	160	커널 수(K) * 커널 사이즈(F) ² * (채널:색상 수(D)) + 커널 수(K) 16 * 3*3 * 1 + 16 = 160
conv2d_1 (Conv2D)	(None, 24, 24, 32)	4640	커널 수(K) * 커널 사이즈(F) ² * (<mark>채널:색상 수(D))</mark> + 커널 수(K) 32 * 3*3 * 16 + 32 = 4,640
conv2d_2 (Conv2D)	(None, 22, 22, 64)	18496	
flatten (Flatten)	(None, 30976)	0	<u>04 </u>
dense (Dense)	(None, 128)	3965056	 (이전 출력 노드 수 + 1) * 노드 수 (30976 + 1) * 128
dense_1 (Dense)	(None, 10)	1290	(128 + 1) * 10
T-1-1 0 000 040			

Total params: 3,989,642 Trainable params: 3,989,642 Non-trainable params: 0

ython

컨볼루션 신경망 모델 정의

- 컨볼루션 신경망 모델
 - 풀링 레이어 또는 드롭아웃 없이 정의된 모델

GPU 사용 설정

- 구글 코랩에서는 무료로 GPU를 사용
 - [메뉴]-[런타임]-[런타임 유형 변경]-[하드웨어 가속기]-[GPU]로 지정
- GPU 확인
 - 구글 코랩에서 지원하는 GPU의 성능
 - Tesla K80나 Tesla T4를 사용

컨볼루션 신경망 모델 학습

```
history = model.fit(train X, train Y, epochs=25, validation split=0.25)
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(1,2,1)
plt.plot(history.history['loss'], 'b-', label='loss')
plt.plot(history.history['val loss'], 'r--', label='val loss')
plt.xlabel('Epoch')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['accuracy'], 'g-', label='accuracy')
plt.plot(history.history['val accuracy'], 'r--', label='val accuracy')
plt.xlabel('Epoch')
plt.ylim(0.7, 1)
                                                                                    1.00
plt.legend()
                                                      loss
                                                    --- val loss
                                                1.2
                                                                                    0.95
plt.show()
                                                1.0
                                                                                    0.90
                                                0.8
model.evaluate(test X, test Y, verbose=0)
                                                                                    0.85
                                                0.6
                                                                                    0.80
                                                0.4
                                                0.2
                                                                                        accuracy
                                                                                          val accuracy
                                                               10
                                                                    15
                                                                          20
                                                                                                   10
                                                                                                         15
                                                                                                               20
                                                                                                                    25
                                                                Epoch
                                                                                                     Epoch
                                               [1.3350350856781006, 0.855400025844574]
```

풀링 레이어, 드롭아웃 레이어 추가

- 과적합을 줄이는 데 기여
 - MaxPool2D(strides=(2,2)), Dropout(rate=0.3)
 - strides: 필터가 계산 과정에서 한 스텝마다 이동하는 크기
 - 기본값은 (1,1)이고, (2,2) 등으로 설정할 경우 한 칸씩 건너뛰면서 계산
 - rate: 제외할 뉴런의 비율

```
model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(input_shape=(28,28,1), kernel_size=(3,3), filters=32),
    tf.keras.layers.MaxPool2D(strides=(2,2)),
    tf.keras.layers.Conv2D(kernel_size=(3,3), filters=64),
    tf.keras.layers.MaxPool2D(strides=(2,2)),
    tf.keras.layers.Conv2D(kernel_size=(3,3), filters=128),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=128, activation='relu'),
    tf.keras.layers.Dropout(rate=0.3),
    tf.keras.layers.Dense(units=10, activation='softmax')
])
```

풀링 레이어 추가로 패러미터 수 감소

- Params의 개수
 - 기존 3,989,642에서 241,546으로 대폭 감소
 - Flatten에 들어오는 Params의 개수가 기존 (None, 30976)에 비해 (None, 1152)

```
model = tf.keras.Sequential([
  tf.keras.layers.Conv2D(input shape=(28,28,1), kernel size=(3,3), filters=32),
  tf.keras.layers.MaxPool2D(strides=(2,2)),
  tf.keras.layers.Conv2D(kernel size=(3,3), filters=64),
  tf.keras.layers.MaxPool2D(strides=(2,2)),
  tf.keras.layers.Conv2D(kernel size=(3,3), filters=128),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(units=128, activation='relu'),
  tf.keras.layers.Dropout(rate=0.3),
  tf.keras.layers.Dense(units=10, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.summary()
```

Model: "sequential 3"

Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_4 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_10 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_5 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_11 (Conv2D)	(None,	3, 3, 128)	73856
flatten_3 (Flatten)	(None,	1152)	0
dense_6 (Dense)	(None,	128)	147584
dropout_2 (Dropout)	(None,	128)	0
dense_7 (Dense)	(None,	10)	1290

Total params: 241,546 Trainable params: 241,546 Non-trainable params: 0

훈련과 시각화

```
history = model.fit(train X, train Y, epochs=25, validation split=0.25)
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(1,2,1)
plt.plot(history.history['loss'], 'b-', label='loss')
plt.plot(history.history['val loss'], 'r--', label='val loss')
plt.xlabel('Epoch')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['accuracy'], 'g-', label='accuracy')
plt.plot(history.history['val accuracy'], 'r--', label='val accuracy')
plt.xlabel('Epoch')
plt.ylim(0.7, 1)
plt.legend()
                                                                                      1.00
                                                                                             accuracy
                                                0.50
                                                                                             val_accuracy
                                                                                      0.95
plt.show()
                                                0.45
                                                0.40
                                                                                      0.90
model.evaluate(test X, test Y, verbose=0)
                                                0.35
                                                                                      0.85
                                                0.30
                                                0.25
                                                                                      0.80
                                                0.20
                                                                                      0.75
                                                       val loss
                                                                                                       10
                                                                                                             15
                                                                                                                   20
                                                                 Epoch
                                                                                                        Epoch
                                               [0.5307855606079102, 0.8906999826431274]
```

CNN(합성곱) 다양한 구조

다양한 CNN 구조

Deep CNN 모델 적용

```
model = tf.keras.Sequential([
 tf.keras.layers.Conv2D(input shape=(28,28,1), kernel size=(3,3), filters=32, padding='same',
 activation='relu'),
 tf.keras.layers.Conv2D(kernel size=(3,3), filters=64, padding='same', activation='relu'),
 tf.keras.layers.MaxPool2D(pool size=(2,2)),
 tf.keras.layers.Dropout(rate=0.5),
 tf.keras.layers.Conv2D(kernel size=(3,3), filters=128, padding='same', activation='relu'),
 tf.keras.layers.Conv2D(kernel size=(3,3), filters=256, padding='valid', activation='relu'),
 tf.keras.layers.MaxPool2D(pool size=(2,2)),
 tf.keras.layers.Dropout(rate=0.5),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(units=512, activation='relu'),
 tf.keras.layers.Dropout(rate=0.5),
 tf.keras.layers.Dense(units=256, activation='relu'),
 tf.keras.layers.Dropout(rate=0.5),
 tf.keras.layers.Dense(units=10, activation='softmax')
1)
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.summary()
```

패러미터 수

• 5백2십만개 이상

Model: "sequential_4"			
Layer (type)	Output :	Shape	Param #
conv2d_12 (Conv2D)	(None, a	28, 28, 32)	320
conv2d_13 (Conv2D)	(None, 2	28, 28, 64)	18496
max_pooling2d_4 (MaxPooling2	(None,	14, 14, 64)	0
dropout_2 (Dropout)	(None,	14, 14, 64)	0
conv2d_14 (Conv2D)	(None,	14, 14, 128)	73856
conv2d_15 (Conv2D)	(None,	12, 12, 256)	295168
max_pooling2d_5 (MaxPooling2	(None, 6	6, 6, 256)	0
dropout_3 (Dropout)	(None, 6	6, 6, 256)	0
flatten_4 (Flatten)	(None, S	9216)	0
dense_8 (Dense)	(None, 9	512)	4719104
dropout_4 (Dropout)	(None, 5	512)	0
dense_9 (Dense)	(None, 2	256)	131328
dropout_5 (Dropout)	(None, 2	256)	0
dense_10 (Dense)	(None,	10)	2570

Total params: 5,240,842 Trainable params: 5,240,842 Non-trainable params: 0

정확도 92%

```
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
plt.subplot(1,2,1)
plt.plot(history.history['loss'], 'b-', label='loss')
plt.plot(history.history['val_loss'], 'r--', label='val_loss')
plt.xlabel('Epoch')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['accuracy'], 'g-', label='accuracy')
plt.plot(history.history['val_accuracy'], 'r--', label='val_accuracy')
plt.xlabel('Epoch')
plt.ylim(0.7, 1)
plt.legend()
plt.show()
model.evaluate(test_X, test_Y, verbose=0)
```


[0.21626901626586914, 0.9236999750137329]

Python