-46-

CLAIMS

What is claimed is:

5	1.	Novel peptides of the formula I		
		R^1R^2	2 N-CHX-CO-A-B-D-E-(G) $_{s}$ -K	
		where		
		\mathbb{R}^1	is hydrogen, methyl; or ethyl;	
		R^2	is methyl; or ethyl; or	
10		R^1 -N- R^2	together are a pyrrolidine ring;	
		A	is a valyl, isoleucyl, allo-isoleucyl, 2-tert-butylglycyl, 2-	
			ethylglycyl, norleucyl or norvalyl residue;	
		В	is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-leucyl, N-	
			methyl-isoleucyl, N-methyl-2-tert-butylglycyl, N-methyl-2-	
15			ethylglycyl, or N-methyl-norleucyl residue;	
		D	is a prolyl, homoprolyl, hydroxyprolyl, or thiazolidine-4-carbonyl	
			residue;	
		E	is a prolyl, homoprolyl, hydroxyprolyl, thiazolidine-4-carbonyl,	
			trans-4-fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-chloro-L-	
20			prolyl or cis-4-chloro-L-prolyl residue;	
		X	is ethyl, propyl, butyl, isopropyl, sec. butyl, tertbutyl,	
			cyclopropyl, or cyclopentyl;	
		G	is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-	
			isoleucyl, D-leucyl, D-norvalyl, 1-aminopentyl-1-carbonyl, or 2,2-	
25			dimethylglycyl residue;	
		S	is 0 or 1;	
		K	is -NH- C_{1-8} -alkyl, -NH- C_{3-8} -alkenyl, -NH- C_{3-8} -alkinyl, -NH- C_{6-8} -	
			cycloalkyl, -NH- C_{1-4} -alkene- C_{3-8} -cycloalkyl, C_{1-4} -alkyl- N - C_{1-6} -	
			alkyl, in which residues one CH ₂ group may be replaced by O or	

S, one H by phenyl or cyano, or 1, 2 or 3 H by F, except the N-methoxy-N-methylamino, N-benzylamino, or N-methyl-N-benzylamino residue, or K is

and the salts thereof with physiologically tolerated acids.

2. Novel peptides of the formula I

	2.	Novel peptides of the formula I		
		R^1R^2N	-CHX-CO-A-B-D-E-(G) _s -K	
		where		
		\mathbb{R}^1	is hydrogen, methyl; or ethyl;	
5		\mathbb{R}^2	is methyl; or ethyl; or	
		R^1 -N- R^2	together are a pyrrolidine ring;	
		A	is a valyl, isoleucyl, allo-isoleucyl, 2-tert-butylglycyl, 2-	
			ethylglycyl, norleucyl or norvalyl residue;	
		В	is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-leucyl, N-	
10			methyl-isoleucyl, N-methyl-2-tert-butylglycyl, N-methyl-2-	
			ethylglycyl, or N-methyl-norleucyl residue;	
		D	is a prolyl, homoprolyl, hydroxyprolyl, or thiazolidine-4-carbonyl	
			residue;	
		E	is a prolyl, homoprolyl, hydroxyprolyl, thiazolidine-4-carbonyl,	
15			trans-4-fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-chloro-L-	
			prolyl or cis-4-chloro-L-prolyl residue;	
		X	is ethyl, propyl, butyl, isopropyl, sec. butyl, tert.butyl, cyclopropyl,	
			or cyclopentyl;	
		G	is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-	
20			isoleucyl, D-leucyl, D-norvalyl, 1-aminopentyl-1-carbonyl, or 2,2-	
			dimethylglycyl residue;	
		S	is 0 or 1;	
		K	-NHCH ₃ , -NHCH ₂ CH ₃ , -NH(CH ₂) ₂ CH ₃ , -NH(CH ₂) ₃ CH ₃ ,	
			$-\mathrm{NH}(\mathrm{CH}_2)_4\mathrm{CH}_3, -\mathrm{NH}(\mathrm{CH}_2)_5\mathrm{CH}_3, -\mathrm{NH}(\mathrm{CH}_2)_6\mathrm{CH}_3,$	
25			-NHCH(CH ₂) ₇ CH ₃ , -NHCH(CH ₃) ₂ , -NHCH(CH ₃)CH ₂ CH ₃ ,	
			-NHCH(CH ₂ CH ₃) ₂ , -NHCH(CH ₂ CH ₂ CH ₃) ₂ , -NHC(CH ₃) ₃ ,	
			-NHCH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ , -NHCH(CH ₃)CH(CH ₃) ₂ ,	
			-NHCH(CH ₂ CH ₃)CH(CH ₃) ₂ , -NHCH(CH ₃)C(CH ₃) ₃ ,	
			-NH-cyclohexyl, -NH-cycloheptyl, -NH-cyclooctyl,	

10

15

The state of the s

-N(CH₃)OCH₂CH₃, -N(CH₃)OCH₂CH₂CH₃, -N(CH₃)OCH(CH₃)₂,

-N(CH₃)O(CH₂)₃CH₃, -N(CH₃)OCH₂C₆H₅, -NH(CH₂)₂C₆H₅,

-NH(CH₂)₃C₆H₅, -NHCH(CH₃)C₆H₅, -NHC(CH₃)₂C₆H₅,

-NHC(CH₃)₂CH₂CH₃, -NHC(CH₃)(CH₂CH₃)₂, -NHCH[CH(CH₃)₂]₂,

-NHC(CH₃)₂CN, -NHCH(CH₃)CH(OH)C₆H₅, -NHCH₂-cyclohexyl,

-NHCH₂C(CH₃)₃, -NHCH₂CH(CH₃)₂, -NHCH₂CF₃, -NHCH(CH₂F)₂,

-NHCH₂CH₂F, -NHCH₂CH₂OCH₃, -NHCH₂CH₂SCH₃,

 $-NHCH_2CHCH_2$, $-NH-C(CH_3)_2CH=CH_2$, $-NHC(CH_3)_2C=CH$,

-NHC(CH_2CH_3)₂C = CH, -NHC(CH_3)₂ CH_2CH_2OH ,

 $\hbox{-NH}(CH_2CH_2O)_2CH_2CH_3, \hbox{-NHC}(CH_3)_2CH(CH_3)_2,$

-NHC(CH₃)₂CH₂CH₂CH₃, -NHC(CH₃)₂CH₂C₆H₅,

-N(OCH₃)CH(CH₃)₂, -N(OCH₃)CH₂CH₃, -N(OCH₃)CH₂CH₂CH₃,

 $-N(OCH_{3})CH_{2}C_{6}H_{5}, -N(OCH_{3})C_{6}H_{5}, -N(CH_{3})OC_{6}H_{5}, \\$

-NHCH[CH(CH₃)₂]₂, -N(OCH₃)CH₂CH₂CH₂CH₃,

or K is

$$-N \longrightarrow -N \longrightarrow -N \longrightarrow -NH \longrightarrow -NH \longrightarrow 0$$

$$-NH$$

$$-NH$$

$$-NH$$

$$-NH$$

$$-NH$$
 $-NH$ $-NH$ $-NH$ $-NH$ $-NH$ $-NH$

CH₃

-NH -NH

10

5

And the salts thereof with physiologically tolerated acids.

3. Novel peptides of the formula I

R¹R²N-CHX-CO-A-B-D-E-(G)_s-K Ι where 15 R^1 is hydrogen, methyl; or ethyl; \mathbb{R}^2 is methyl; or ethyl; is a valyl, isoleucyl, 2-tert-butylglycyl, 2-ethylglycyl, norleucyl or Α norvalyl residue; 20 В is a N-methyl-valyl, N-methyl-norvalyl, N-methyl-isoleucyl, Nmethyl-2-tert-butylglycyl, N-methyl-2-ethylglycyl, or N-methylnorleucyl residue; D is a prolyl, or thiazolidine-4-carbonyl residue; Ε is a prolyl, homoprolyl, thiazolidine-4-carbonyl, trans-4-fluoro-L-25 prolyl, cis-4-fluoro-L-prolyl, trans-4-chloro-L-prolyl or cis-4chloro-L-prolyl residue; X is ethyl, propyl, isopropyl, sec. butyl, tert.-butyl, or cyclopropyl; G is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-isoleucyl, D-leucyl, or 2,2-dimethylglycyl residue;

s is 0 or 1;

K is -NH-C₁₋₈-alkyl, -NH-C₆₋₈-cycloalkyl, -NH-CH₂-cyclohexyl, C₁₋₄-alkyl-N-C₁₋₆-alkyl, in which residues one CH₂ group may be replaced by O, one H by phenyl or 1 or 2 H by F, except the N-methoxy-N-methylamino, N-benzylamino or N-methyl-N-benzylamino residue, or K is

$$-NH \longrightarrow -NH \longrightarrow -NH$$

$$-NH \xrightarrow{CH_3} -NH \xrightarrow{CH_3} CONH_2 , -NO$$

$$-NH \longrightarrow CF -NH \longrightarrow CO - NH - CH_2 - CH_2 - CH_3 .$$

4. Novel peptides of the formula I

 R^1R^2N -CHX-CO-A-B-D-E-(G)_s-K

I

where

R¹ is methyl;

5 R² is methyl;

A is a valyl, isoleucyl, 2-tert-butylglycyl, or 2-ethylglycyl;

B is a N-methyl-valyl, N-methyl-isoleucyl, N-methyl-2-tert-

butylglycyl, N-methyl-2-ethylglycyl, or N-methyl-norleucyl residue;

D is a prolyl, or thiazolidine-4-carbonyl residue;

10 E is a prolyl, trans-4-fluoro-L-prolyl, cis-4-fluoro-L-prolyl, trans-4-

chloro-L-prolyl or cis-4-chloro-L-prolyl residue;

X is ethyl, isopropyl, sec. butyl, or tert.butyl;

G is a L-2-tert.butylglycyl, D-2-terr.butylglycyl, D-valyl, D-isoleucyl,

D-leucyl, or 2,2-dimethylglycyl residue;

15 s is 0 or 1;

K is -NH- C_{1-8} -alkyl, -NH- C_{6-8} -cycloalkyl, -NH- CH_2 -cyclohexyl, C_{1-4} -

alkyl-N-C₁₋₆-alkyl, in which residues one CH₂ group may be

replaced by O, one H by phenyl or 1 or 2 H by F, except the N-

methoxy-N-methylamino, N-benzylamino or N-methyl-N-

20 benzylamino residue, or K is

$$H_3C$$
 $-NH$
 $-NH$

$$-NH$$
 $-NH$ $-NH$

$$-NH$$
 $-NH$ $-NH$

$$-NH \longrightarrow -NH \longrightarrow CH_3 \quad CH_3 \quad OF$$

$$CH_3 \quad CH_3 \quad OF$$

$$-NH$$
 $-CH_3$ $-CH_2$ $-CH_3$

5. Novel peptides of the formula I

 R^1R^2N -CHX-CO-A-B-D-E-(G)_s-K

where

15 R¹ is methyl;

R² is methyl;

A is a valyl, isoleucyl, or 2-tert-butylglycyl residue;

B is a N-methyl-valyl, N-methyl-isoleucyl, or N-methyl-2-tert-

butylglycyl residue;

20 D is a prolyl, or thiazolidine-4-carbonyl residue;

E is a prolyl, cis-4-fluoro-L-prolyl or cis-4-chloro-L-prolyl residue;

X is isopropyl, sec. butyl, or tert.-butyl;

s is 0 or 1;

K is -NHC(CH₃)₃, -NHCH(CH₂CH₂)CH(CH₃)₂, -NHCH(CH₃)C(CH₃)₃,

-N(CH₃)OCH₂CH₃, -N(CH₃)OCH₂CH₂CH₃, -N(CH₃)OCH(CH₃)₂,

-N(CH₃)O(CH₂)₃CH₃, -N(CH₃)OCH₂C₆H₅, -NHC(CH₃)₂C₆H₅,

-NHC(CH₃)₂CH₂CH₃, -NHC(CH₃) (CH₂CH₃)₂

-NHCH[CH(CH₃)₂]₂, -NHC(CH₃)₂CN, -NHCH(CH₃)CH(OH)C₆H₅,

-NH-C(CH₃)₂CH=CH₂, -NHC(CH₃)₂C \equiv CH,

-NHC(CH_2CH_3)₂C = CH, -NHC(CH_3)₂ CH_2CH_2OH ,

-NHC(CH₃)₂CH(CH₃)₂, -NHC(CH₃)₂CH₂CH₂CH₃,

 $-NHC(CH_{3})_{2}CH_{2}C_{6}H_{5},\ -N(OCH_{3})CH(CH_{3})_{2},\ -N(OCH_{3})CH_{2}CH_{3},\\$

-N(OCH₃)CH₂CH₂CH₃, -N(OCH₃)CH₂C₆H₅, -N(OCH₃)C₆H₅,

-N(CH₃)OC₆H₅, -N(OCH₃)CH₂CH₂CH₂CH₃,

or K is

5

$$-NH$$
 $\stackrel{CH_3}{\longrightarrow}$, $-NH$ $\stackrel{CH_3}{\longrightarrow}$, $-NH$ $\stackrel{CH_3}{\longrightarrow}$,

15

$$-NH$$
 CH_3 CH_3 CH_3 CH_3 CH_3 $CO-NH-CH_2-CH_2-CH_3$ $CONH_2$

20

and the salts thereof with physiologically tolerated acids.

6. Novel peptides of the formula I

$$R^1R^2N$$
-CHX-CO-A-B-D-E-(G)_s-K

where

R¹ is methyl;

R² is methyl;

A is a valyl residue;

B is a N-methyl-valyl residue;

D is a prolyl residue; E is a prolyl residue; X is isopropyl; is 0 or 1; s 5 K is $-NHC(CH_3)_3$, $-NHCH(CH_2CH_2)CH(CH_3)_2$, $-NHCH(CH_3)C(CH_3)_3$, -N(CH₃)OCH₂CH₃, -N(CH₃)OCH₂CH₂CH₃, -N(CH₃)OCH(CH₃)₂, -N(CH₃)O(CH₂)₃CH₃, -N(CH₃)OCH₂C₆H₅, -NHC(CH₃)₂C₆H₅, -NHC(CH₃)₂CH₂CH₃, -NHC(CH₃) (CH₂CH₃)₂ -NHCH[CH(CH₃)₂]₂, -NHC(CH₃)₂CN, -NHCH(CH₃)CH(OH)C₆H₅, 10 $-NH-C(CH_3)_2CH=CH_2$, $-NHC(CH_3)_2C=CH$, -NHC(CH₂CH₃)₂C \equiv CH, -NHC(CH₃)₂CH₂CH₂OH, -NHC(CH₃)₂CH(CH₃)₂, -NHC(CH₃)₂CH₂CH₂CH₃, $-NHC(CH_3)_2CH_2C_6H_5$, $-N(OCH_3)CH(CH_3)_2$, $-N(OCH_3)CH_2CH_3$, -N(OCH₃)CH₂CH₂CH₃, -N(OCH₃)CH₂C₆H₅, -N(OCH₃)C₆H₅, 15 -N(CH₃)OC₆H₅, -N(OCH₃)CH₂CH₂CH₂CH₃

or K is

$$-NH$$
 $-NH$ $-NH$ $-NH$ $-NH$ $-NH$ $-NH$ $-NH$

CH₃ CH₃ CH₃ CH₃ CH₃
$$CH_3$$
 CH₃ CH_3 CH_3

and the salts thereof with physiologically tolerated acids.

7. Novel peptides of the formula I

 R^1R^2N -CHX-CO-A-B-D-E-(G) $_s$ -K I where is methyl; R^1 \mathbb{R}^2 is methyl; 5 is a valyl, isoleucyl, or 2-tert-butylglycyl residue; Α is a N-methyl-valyl, N-methyl-isoleucyl, or N-methyl-2-tert-В butylglycyl residue; is a prolyl, or thiazolidine-4-carbonyl residue; D is a prolyl residue; 10 Ε is isopropyl, sec. butyl, or tert.-butyl; X is a D-2-tert.butylglycyl, D-isoleucyl, 2,2-dimethylglycyl residue, G D-valyl or L-2-tert.butylglycyl; is 1; S is -NHCH₃, -NHCH₂CH₃, -NH(CH₂)₂CH₃, -NH(CH₂)₃CH₃, K 15 -NH(CH₂)₄CH₃, -NH(CH₂)₅CH₃, -NHCH(CH₃)₂, $\hbox{-NHCH}(CH_3)CH_2CH_3, \hbox{-NHCH}(CH_2CH_3)_2, \hbox{-NHC}(CH_3)_3, \hbox{-NH-}$

cyclohexyl, -NHC(CH_3)₂CN, -NCH(CH_3)₂ $C \equiv CH$ or

20 or K is

-NHC(CH_3)₂ $CONH_2$;

25

and the salts thereof with physiologically tolerated acids.

- 8. Compounds of formula I or salts thereof for use in treating diseases.
- 9. The method or preparing compounds of formula I according to claim 1 characterized in that they are prepared according to known methods of peptide chemistry.