Глава II. Основы математического программирования (выпуклого программирования) Будут рассмотрены условия существования локальных экстремумов дифференцируемых функций на допустимых множествах весьма общего вида, а так же условия существования глобальных экстремумов (минимумов) в задачах выпуклого программирования.

§ 2.1. Основная задача математического программирования.

Рассмотрим множество $X = \{x: f_i(x) \ge 0, i = \overline{1,m}\}$ ① где $\mathfrak{D}f_i(\mathbf{x}), i = \overline{1,m}$

— заданные скалярные функции. Пусть скалярная функция $\phi(x)$ определена на множестве X. Определение 1: Основная задача математического программирования определяется как задача минимизации функции $\phi(x)$ на множестве X.

$$\varphi(x) \rightarrow min$$
, $x \in X$ или $\{\varphi(x): x \in X\}$ или

$$\min_{x \in X} \varphi(x)$$

, то есть ставится ② задача:

1. либо найти оптимальную точку $x^* \in X$: ③

$$\varphi(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbf{X}} \varphi(\mathbf{x});$$

 $\varphi(x) = \lim_{\substack{x \in X \\ x \in X}} \varphi(x)$ 2. либо если не существует такая x^* , то найти $\bigoplus_{\substack{x \in X \\ x \in X}} \varphi(x)$;

$$\varphi^* = \inf_{\mathbf{x} \in \mathbf{X}} \varphi(\mathbf{x})$$

- 3. либо убедиться, что $\phi(x)$ неограничен снизу на множестве X;
- 4. либо убедиться в том, что $X=\emptyset$.

Определение 2: Задача 🕮 называется задачей выпуклого программирования, если множество X выпукло и выпукла функция $\phi(x)$.

Замечание: Из 1-го свойства (теоремы 1 § 1.3.1.) и определения 5 (§ 1.1.) о выпуклости множества вытекает, что для выпуклости множества Х согласно ① достаточно, чтобы функции $f_i(x)$ были вогнутыми $(i = \overline{1,m})$

Определение 3: Задача выпуклого программирования ② называется «основной задачей программирования», все функции fi(x) вогнуты, а $\phi(x)$ выпукла.

Замечание (определение): В задаче © множество X называется «допустимым», точки этого множества — «допустимыми», а неравенства fi(x) — «ограничениями», точку

$$x^* = Argmin\{\varphi(x): x \in X\}$$

называют «решением» или «оптимальной точкой» (иногда «точкой глобального минимума»), точка х, удовлетворяя необходимым условиям локального минимума φ(х) на X называют «стационарной».

<u>Определение 4:</u> Направление -s≠0 в том числе x ∈ X называется <u>возможным</u>, если существует такое число $\bar{\beta} > 0$, что для любого $\beta \in [0, \bar{\beta}]$ $(x - \beta s) \in X$ Примеры:

- а) $X=\{x: x\ge 0\}$, то в точке ч=0 для любого вектора -s≥0, s≠0 задает «возможное» направление;
- b) ели x внутренняя точка множества X, то для любого направления (-s) в этой точке является «возможным».

Определение 5: Ограничение $fi(x) \ge 0$ называется «активным» в фиксированной точке $x \in X$ если $f_i(x)=0$. Совокупность индексов активных ограничений в точке $x \in X: I(x)=\{i: f_i(x)=0\}$ Теорема 1: Если s, где $||s|| \neq 0$, удовлетворяет ⑤ $(f_i(x), s) + \sigma \leq 0$ и i∈I(x) при некотором σ >0, то направление (-s) является возможным в точке x∈X. Доказательство:

- 1. Если предположить $I(x) = \emptyset$, тогда x внутренняя точка и для любого направление (s) является возможным. Поэтому, естественно предположить, что $I(x) \neq \emptyset$.
- 2 Если $i \notin I(x)$, то fi(x) > 0 и малое приращение из очки x, то для любого направления, в части по направлению (-s), не нарушающий ③
- 3. Пусть $i \in I(x)$. Предположим, что направление (-s) не является «возможным», например: $f_i(x - \beta s) < 0$

для любого сколь угодно малого $\beta>0$. Так как fi(x)=0, то для любого $\beta>0$

$$\frac{1}{\beta}[f_i(\mathbf{x}) - f_i(\mathbf{x} - \beta \mathbf{s})] > 0$$

, а значит согласно теореме 3 (свойство 3 **§ 1.3.1.**):

$$\lim_{\beta \to 0} \frac{f_i(\mathbf{x}) - f_i(\mathbf{x} - \beta \mathbf{s})}{\beta} = (f_i'(\mathbf{x}), \mathbf{s}) \ge 0$$

что противоречит условию \circ при $\sigma > 0$.

<u>Теорема 2:</u> Если направление (-s) в точке $x \in X$ является возможным, то существует такое σ ≥0, что пара s, σ удовлетворяет условию ⑤.

Доказательство:

Предположим, что существует хотя бы один номер $i \in I(x)$, для которого $(f_i'(x), s) > 0$ Так как

При достаточно малых $\beta>0$, то есть $(x-\beta s)\in X$, что противоречит предположению о том, что (-s) — возможное направление, для которого $(f_i'(x),s)>0$. Так как $-f_i(x-\beta s)=$

$$= f_i(\mathbf{x}) - f_i(\mathbf{x} - \beta \mathbf{s}) = \beta(f_i'(\mathbf{x}), \mathbf{s}) + \sigma(\beta), \text{то } f_i(\mathbf{x} - \beta \mathbf{s}) < 0$$

Теорема 3: Если множество X задается системой линейных неравенств

$$X = \{x: f_i(x) = (A_i, x) - B_i \ge 0, i = \overline{1, m}\},\$$

то условия $(A_i, s) \le 0$ и $i \in I(x)$, являются необходимыми и достаточными для того, чтобы направление (-s) было возможным в точке $x \in X$.

Доказательство:

Нужно выяснить: при каких условиях точка $y=x-\beta s\in X$ хотя бы достигает малых $\beta>0$: $(A_i,y)-B_i=(A_i,x)-B_i-\beta(A_i,s)$?

1. если і∉I(x), то $(A_i, x) - B_i > 0$

и при достижении малых $\beta > 0$ будет $(A_i, y) - B_i \ge 0$

2. если $i \in I(\mathbf{x})$, то $(A_i,y)-B_i=-\beta(A_i,s)$ и для выполнения неравенства $(A_i,y)-B_i \geq 0$ при $\beta>0$ необходимо с достаточно, чтобы было $(A_i,s)\leq 0$

§ 2.2. Экстремальные свойства.

<u>Замечание:</u> остаются предположения о непрерывной дифференцируемости функций $\varphi(x)$ и $f_i(x)$, $i = \overline{1,m}$

$$\begin{cases} (f_i'(\mathbf{x}), s) + \sigma \le 0 \\ -(\varphi'(\mathbf{x}), s) + \sigma \le 0 \\ i \in I(\mathbf{x}) \end{cases}$$

Далее будет часто использоваться система ①

<u>Теорема 1:</u> Для того, чтобы точка $x \in X$ являлась точкой локального минимума функции $\phi(x)$ на множестве X, необходимо, чтобы в каждой паре s и σ , удовлетворяющей системе \mathfrak{O} , было $\sigma \leq 0$.

Доказательство:

Пусть х — точка локального минимума. Предположим, что существует пара s, σ удовлетворяющая системе \oplus , σ >0. Согласно <u>Teopeme 1</u> **§2.1.** направление (-s) является возможным в точке x в виду непрерывности $\phi'(x)$ и предположения, что $(\phi'(x), s) \ge \sigma > 0$, для достаточно малых β >0 будет

$$(\varphi'(x - \beta s), s) > 0$$
 и $(x - \beta s) \in X$

Но по теореме «о среднем»

$$\varphi(x) - \varphi(x - \beta s) = \beta(\varphi'(x - \theta \beta s), s) > 0$$
 и $0 \le \theta \le 1$

Таким образом, в локальной окрестности точки локального минимума x нашлась точка $y=x-\beta$ s такая, что $\phi(y)<\phi(x)$ — противоречие. Значит $\sigma\leq 0$! x — стационарная точка основной задачи математического программирования.

<u>Следствие:</u> Если $x \in X$ — точка локального минимума $\phi(x)$ на X является внутренней точки допустимого множества X, то $\phi'(x)=0$.

Доказательство (от противного):

Пусть $\varphi'(x)=0$, но x — внутренняя точка, тогда $I(x)=\emptyset$ и следовательно в системе \oplus верно лишь второе неравенство $-(\varphi'(x),s)+\sigma\leq 0$

Пара $s=\phi'(x)$ и $\sigma=(s,s)>0$ удовлетворяет: $-(\phi'(x),s)+\sigma\leq 0$

но при этом нарушается условие $\sigma \le 0$ <u>теоремы 1</u>. То есть получили противоречие. Значит $\phi'(x)=0$.

<u>Теорема 2:</u> Если в точке x ∈ X локального минимума функции φ(x) на X, система векторов fi(x), i ∉ I(x), линейно независима, то найдутся такие числа $u_i ≥ 0$, i ∈ I(x), что

$$\varphi'(\mathbf{x}) = \sum_{i \in I(\mathbf{x})} u_i f_i'(\mathbf{x}) (3)$$

Доказательство:

Согласно <u>теореме 1</u> выпуклой системой ①, условие ②: $-(0;s)+1*\sigma \le 0$ ④ Применим к системе ①, ④ теорему Фаркаша: то есть найдутся такие $v_i \ge 0$, $i \in I(x)$, и $v_0 \ge 0$, что

$$0 = \sum_{i \in I(x)} v_i f_i'(x) - v_0 \varphi'(x) \, \widehat{\mathbb{S}}$$
$$1 = \sum_{i \in I(x)} v_i + v_0 \, (6)$$

- U_0 =0 не может быть, так как в этом случае из © следует минимальная зависимость векторов $f^i(x)$
- значит $U_0 > 0$ следовательно

$$u_i = \frac{v_i}{v_0}, i \in I(\mathbf{x})$$

и отсюда следует ③

$$\varphi'(\mathbf{x}) = \sum_{i \in I(\mathbf{x})} u_i f_i'(\mathbf{x})$$

Замечание: К условию 3 можно добавить условие

$$\sum_{i=1}^{m} u_i f_i(\mathbf{x}) = 0$$

Применив $U_0=0$ для $i \notin I(x)$, так как при $i \in I(x)$ fi(x)=0. Тогда \Im :

$$\varphi'(\mathbf{x}) = \sum_{i=1}^{m} u_i f_i'(\mathbf{x})$$

или

$$-\varphi'(x) = \sum_{i=1}^{m} u_i(-f_i'(x)), u_i \ge 0$$

антиградиент = линейной комбинации внешних к ограничениям в точке x (с положительными коэффициентами), то есть антиградиент принадлежит конусу, натянутому на внешние нормали к ограничениям в точке x.

§ 2.3. Экстремальные свойства на выпуклых множествах.

§ 2.3.1. Условия регулярности.

Условия регулярности: в случае выпуклости множества $X = \{x: f_i(x) \ge 0, i = \overline{1,m}\}$ условия линейной независимости векторов f'i(x), соответствующих активным ограничениям, в предыдущей <u>теореме 2</u> можно заменить условием регулярности в различных вариантах:

<u>Первое условие:</u> Если для каждого $1 \le i \le m$ существует такая точка $x_i \in X$, что $f_i(x_i) > 0; ⊕$ то говорят, что множество X удовлетворяет «условию регулярности» (УР). Второе условие, УР Слейтера: Существует такая точка $x \in X$, что для любой $i = \overline{1, m}$

Доказательство: эквивалентности ①⇔②

- а) Из ① очевидно следует ②.
- b) Пусть выполняется первое УР. Выбираем

$$x = \sum_{i=1}^m lpha_i x_i$$
 , $\sum lpha_i = 1$, $lpha_i \geq 0$

Тогда ② следует из неравенства Иенсена (теорема 2 § 1.3.1.) для вогнутых функций $f_i(x)$. <u>Теорема 1:</u> Если функции $f_i(x)$ вогнуты, множество $X = \{x: f_i(x) \ge 0, i = \overline{1, m}\}$ регулярно по Слейтеру, а точка $x \in X$ является точкой локального минимума (стационарной точкой) функции $\phi(x)$ на X, то найдутся такие числа $U_i \ge 0$, $i \in I(x)$, что

$$\varphi'(\mathbf{x}) = \sum_{i \in I(\mathbf{x})} u_i f_i'(\mathbf{x})$$

Доказательство:

будет fi(x) > 0. ②

Повторяя доказательство <u>теоремы 2</u> § 2.2., получим $v_i \ge 0, i \in I(\mathbf{x}), v_0 \ge 0$

$$0 = \sum_{i \in I(x)} v_i f_i'(x) - v_0 \varphi'(x)$$
(3)
$$1 = \sum_{i \in I(x)} v_i + v_0$$
(4)

Осталось доказать, что $U_0>0$, то есть от противного предположим, что $U_0=0$. Из \oplus следует, что хотя бы одно $U_e>0$, $e\in I(x)$. Из регулярности X следует существование такой точки $z\in X$, что fi(z)>0, i=1,m. Тогда направление -s=z-x будет возможным. Так как fe(x) — вогнутая функция, то из теоремы 6 § 1.3.1. – $(f_e'(x), s) \ge f_e(z) - f_e(x) > 0$ Умножив 3 скалярно на вектор (-s):

$$0 = \sum_{i \in I(\mathbf{x})} v_i(f_i'(\mathbf{x}), s) \ \ \mathbf{5}$$

Поскольку (-s) — возможное направление в точке x, то из <u>теоремы 1</u> § 2.1. следует, что $(f_i'(\mathbf{x}), s) \leq 0, i \in I(\mathbf{x})$.

В $\$ \$ все, кроме e-го, слагаемые \le 0, а e-ое будет $v_e(f_e'(\mathbf{x}),s)<0$, что противоречит равенству нулю всей суммы.

<u>Теорема 2:</u> Если функции fi(x) вогнуты, замкнутое множество $X = \{xf_in\} \ge 0, i = \overline{1,m}$ регулярно по Слейтеру, а точка $x \in X$ является точкой локального минимума функции $\phi(x)$ на множестве X, то $x=p[x-\phi'(x)]$, где p[v] означает проекцию точки v на множество X. Доказательсво:

Пусть у — любая точка X. Направление -s=y-х является возможным в точке x. Из теоремы 1 получаем, что

$$(|{\bf x} - \varphi'({\bf x})| - {\bf x}, {\bf y} - {\bf x}) = (\varphi'({\bf x}), s) = \sum_{i \in {\bf I}({\bf x})} u_i(f_i'({\bf x}), s) \le 0$$

По теореме 3 § 1.1. отсюда следует, что x является проекцией точки x- $\phi'(x)$ на множество X.

§ 2.3.2. Случай линейных ограничений.

(верна теорема 2 без требования регулярности Х)

<u>Теорема 3:</u> Если функции $f_i(x)$, $i = \overline{1,m}$, а точка $x \in X = \{x: f_i(x) = (A_i, x) - B_i \ge 0, i = \overline{1,m}\}$ является точкой локального минимума $\phi(x)$ на множестве X, то существует (найдутся) такие $U_i \ge 0$, $i \in I(x)$, что

$$\varphi'(\mathbf{x}) = \sum_{i \in \mathbf{I}(\mathbf{x})} u_i A_i \ (*)$$

Доказательство:

Пусть ε>0 — малое положительное число, что любых точек принадлежащих окрестности

$$U_{\varepsilon}(\mathbf{x}) = \{ Y \in X : ||y - \mathbf{x}|| \le \varepsilon \}$$

точки х, будет $\phi(y)$ ≥ $\phi(x)$. Рассмотрим любую точку z≠х множества X — выпуклую, тогда x — $\beta(x-z) \in U_{\varepsilon}(x)$ для любой $\beta \in \left(0, \bar{\beta}\right]$ при $\bar{\beta} = \min\{1, \frac{\varepsilon}{\|z-x\|}\}$

Поэтому

$$\lim_{\beta \to 0+} \frac{\varphi(\mathbf{x}) - \varphi(\mathbf{x} - \beta(\mathbf{x} - \mathbf{z}))}{\beta} = (\varphi'(\mathbf{x}), \mathbf{x} - \mathbf{z}) \le 0$$

Если положить s=x-z, то направления (-s) будет возможным в точке x и последнее неравенство будет следующим: $(\varphi'(x), s) \le 0$ 6

Поскольку(-s) — любое возможное направление в точке x, то из <u>теоремы 3</u> § 2.1. следует, что неравенство © должно выполняться для любых s , удовлетворяющих неравенствам

$$(A_i, s) \le 0, i \in I(x)$$
 7

Применяя к условиям ⑥, ⑦ теорему Фаркаша получим *.

<u>Замечание:</u> Поскольку при выводе © использовали лишь свойство выпуклости X, то для стационарности точки x в задаче выпуклого программирования можно сформулировать условие:

Для того, чтобы точка х выпуклого множества X являлась точкой локального минимума функции $\phi(x)$ на X, необходимо, чтобы в этой точке производные по всем возможным направлениям были положительными: $\frac{\partial \phi(x)}{\partial (-s)} \leq 0$

§ 2.4. Достаточные условия оптимальности.

Теорема 1: Для того, чтобы точка $x \in X$ была точкой глобального минимума основной задачи выпуклого программирования $\phi(x) \to min$, $x \in X$ и fi(x) — вогнуты $X = \{x : f_i(x) \ge 0, i = \overline{1, m}\}$, достаточно существование таких чисел $U_i \ge 0$, $i \in I(x)$, что Доказательство:

$$\varphi'(\mathbf{x}) = \sum_{i \in I(\mathbf{x})} u_i f_i'(\mathbf{x}).$$

Так как X — выпукло, то -s=y-х является возможным направлением в точке x про любой $x \in X$. Из теоремы 2 § 2.1. следует, что $(f'_i(x), s) \le 0$, $i \in I(x)$

и поскольку $\phi(x)$ — выпукла, то пользуясь условием * <u>теоремы 6</u> § 1.3.1. :

$$(\varphi'(x), y - x) \le (\varphi(y) - \varphi(x)),$$

получаем неравенство

$$\varphi(\mathbf{x}) - \varphi(\mathbf{y}) \le (\varphi'(\mathbf{x}), \mathbf{x} - \mathbf{y}) = (\varphi'(\mathbf{x}), s) = (\sum_{i \in \mathbf{I}(\mathbf{x})} u_i f_i'(\mathbf{x}), s) = \sum_{i \in \mathbf{I}(\mathbf{x})} u_i (f_i'(\mathbf{x}), s) \le 0,$$
 справедливое для любого $\mathbf{y} \in \mathbf{X}$

Теорема 2 Кунна-Таккера (дифференцируемый случай): критерий оптимальности (объединение теоремы 1**§ 2.3.1.** и теоремы 1 **§ 2.4.**):

Если функции fi(x) вогнуты, функция $\phi(x)$ выпукла, множество $X = \{x: f_i(x) \ge 0, i = \overline{1,m}\}$ регулярно по Слейтеру, то для оптимальности точки $x \in X$ необходимо и достаточно существование таких чисел $u_i \ge 0, i = \overline{1,m}$, что

$$\varphi'(\mathbf{x}) = \sum_{i=1}^{m} u_i f_i'(\mathbf{x}), \sum_{i=1}^{m} u_i f_i(\mathbf{x}) = 0$$

Доказательство:

Достаточно использовать теорему 7 **§ 1.3.1.**, точка локального минимума выпуклой функции

являются «оптимальной».

<u>Случай линейных ограничений</u> (теорема 3 **§ 2.3.2.** и теорема 1 **§ 2.4.** объединяются в критерий оптимальности)

<u>Теорема 3</u>: Для того, чтобы точка х была точкой глобального минимума выпуклой функции $\phi(x)$ на $X = \{x: (A_i, x) - b_i \ge 0, i = \overline{1, m}\}$

необходимо и достаточно существование таких чисел что

$$\varphi'(\mathbf{x}) = \sum_{i=1}^{m} u_i A_i, \sum_{i=1}^{m} u_i ((A_i, \mathbf{x}) - b_i) = 0$$

<u>Теорема 4:</u> Для того, чтобы точка $x \in X$ была точкой глобального минимума основной задачи выпуклого программирования достаточно, чтобы для всех s, удовлетворяющих системе $(f_i'(x), s) \le 0, i \in I(x), \quad (*)$

выполнялись условия $(\varphi'(x), s) \le 0$ (**)

Доказательство:

Применяя к условиям * и** теорему Фаркаша, приходим к условиям теоремы 1 § 2.4.

§ 2.5. Функция Лагранжа. Условия оптимальности.

§ 2.5.1. Седловая точка.

Рассмотрим п-мерный вектор $x \in \Gamma$ — выпуклое множество, и m-мерный неотрицательный вектор $y \ge 0$. Пусть функция L(x,y) — выпукла по вектору x на множестве Γ и вогнута по y на неотрицательном ортанте.

Определение 1: Пара х*,у* называется «седловой точкой» функции L(x,y) на множестве всех $x \in \Gamma$ и $y \ge 0$, если $x^* \in \Gamma$, $y^* \ge 0$ и $L(x^*, y) \le L(x^*, y^*)$ (*)

для любого х ∈ ℘ и у≥0. Соотношение * можно записать также следующим образом:

$$L(\mathbf{x}^*, \mathbf{y}^*) = \min_{\mathbf{x} \in \Gamma} \max_{\mathbf{y} \ge 0} L(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \ge 0} \min_{\mathbf{x} \in \Gamma} L(\mathbf{x}, \mathbf{y}) \qquad (**)$$

§ 2.5.1. Условия существования седловой точки.

Достаточно рассмотреть случаи:

- a) $\Gamma = \{x: x \ge 0\}$
- b) Γ=En

Пусть L(x,y) выпукло по x и вогнута по y для любого $y \ge 0$ и постоянно дифференцируема по x и y.

<u>Теорема:</u> Для того, чтобы пара x^* , y^* (x^* ≥0, y^* ≥0) была седловой точкой функции L(x,y) в области x≥0, y≥0, необходимо и достаточно выполнение условий

$$y\ge 0$$
, необходимо и достаточно выполн $\frac{\partial L^*}{\partial x}\ge 0$ ① , $\left(x^*,\frac{\partial L^*}{\partial x}\right)=0$ ② , $x^*\ge 0$ ③ $\frac{\partial L^*}{\partial y}\ge 0$ ④ , $\left(y^*,\frac{\partial L^*}{\partial y}\right)=0$ ⑤ , $y^*\ge 0$ ⑥

где

$$\frac{\partial L^*}{\partial x} \stackrel{\text{def}}{=} \frac{\partial (x, y)}{\partial x} \Big|_{y = y^*}^{x = x^*} \frac{\partial L^*}{\partial y} \stackrel{\text{def}}{=} \frac{\partial (x, y)}{\partial y} \Big|_{y = y^*}^{x = x^*}$$

Доказательство:

Необходимость. Пусть выполняется * ли ** при Γ ={x:x≥0}. Условия ① - ⑥ справедливы в координатной форме. Отметим, что условия ②, ⑤ эквивалентны в координатной форме $x_i^* \frac{\partial L^*}{\partial x_i} = 0$ и $y_j^* \frac{\partial L^*}{\partial y_j} = 0$, $j = \overline{1,m}$ в силу ①, ③ и ④, ⑥. Из условий * - ** следует, что $L(x_i, y_i^*) = 0$

 $L(\mathbf{x}_1^*, ..., \mathbf{x}_{i-1}^*, \mathbf{x}_i, \mathbf{x}_{i+1}^*, ..., \mathbf{x}_n^*, y^*) \ge L(\mathbf{x}^*, y_i^*)$ для любого $\mathbf{x} \ge 0$ то есть точка \mathbf{x}_i^* является точкой минимума выпуклой функции одной переменной $L(\mathbf{x}_i, \mathbf{y}^*)$ на полупрямой $\mathbf{x}_i \ge 0$. То есть условия $\mathbb{O}[\mathbb{G}]$ и являются необходимыми условиями минимума в частности нахождения минимума при $\mathbf{x}_i \ge 0$ для функции одной переменной. Тогда либо $\frac{\partial L^*}{\partial \mathbf{x}_i} =$

0 при х_i≥0, либо х_i*=0 и $\frac{\partial L^*}{\partial x_i}$ ≥ 0

Аналогично для вогнутости L(x,y).

Достаточность. Пусть выполняются условия 0 [⑥. Поскольку L(x,y) выпукла по x при $x \ge 0$, то, пользуясь неравенством теоремы 6 § 1.3.1. : $(\varphi'(x), y - x) \le (\varphi(y) - \varphi(x))$

выпуклая функция, а именно $L(\mathbf{x},y^*) \geq L(\mathbf{x}^*,y^*) + (\mathbf{x}-\mathbf{x}^*,\frac{\partial L^*}{\partial \mathbf{x}})$

Отсюда и из \mathbb{O} \mathbb{O} получаем $L(x^*, y^*) \le L(x, y^*), x \ge 0$. Аналогично доказывается левое неравенство в *.

Если Γ =En, то аналогичными рассуждениями можно убедиться, что седловая точка определяется условием: $\frac{\partial L^*}{\partial x} = 0$ и соотношениями 4-6

§ 2.5.3. Функция Лагранжа.

Пусть F(x) — m-мерный вектор $F^T(x) = (f_1(x), ..., f_m(x))$

Рассмотрим следующую задачу выпуклого программирования:

$$\min\{\varphi(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}, X = \{\mathbf{x} \in \Gamma, F(\mathbf{x}) \ge 0\}, \quad \boxed{1}$$

здесь Γ — выпуклое и замкнутое множество, $\varphi(x)$ — выпуклая функция, а все $f_i(x)$ — вогнутые.

<u>Замечание:</u> При Γ =En задача ① является основной задачей выпуклого программирования. <u>Определение 1:</u> Функцию L(x,y)= ϕ (x)-(y,F(x)), определенную при любых x ∈En и y≥0, называют функцией Лагранжа для задачи выпуклого программирования. Замечание:

- а) В классическом анализе об условном экстремуме (задачи, в которых допустимое множество задается системой уравнений) важную роль играет метод «множителей Лагранжа»: решение ищется среди стационарных точек функции L(x,y) точек, удовлетворяющих системе уравнений $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial y} = 0$.
- b) В задачах выпуклого программирования (в частности, линейного программирования) функции Лагранжа также отводится важное место: при весьма общих предположениях задача выпуклого программирования сводится к отыскиванию седловых точек функции Лагранжа.

<u>Теорема «достаточные условия оптимальности»:</u> Если пара x^* , y^* является седловой точкой функции Лагранжа (Определение1) на множестве $x \in \Gamma$ и y ≥ 0, то x^* - оптимальная точка задачи выпуклого программирования.

Доказательство:

Из Определения 1 и Определения 1 «о седловой точки» § 2.5.1. получаем неравенства: $\varphi(x^*) - (y, F(x^*)) \le \varphi(x^*) - (y^*, F(x^*)) \le \varphi(x) - (y^*, F(x))$, справедливые для любого $x \in \Gamma$ и $y \ge 0$. Из левого неравенства следует:

$$(y, F(x^*)) \ge (y^*, F(x^*))$$
 3

а поскольку $y^* \ge 0$ и это неравенство верно для любого $y \ge 0$, тогда $F(x) \ge 0$. В частности, 3 имеет место и для y = 0, поэтому $(y^*, F(x^*) \le 0$, а следовательно (так как $y^* \ge 0$ и $F(x^*) \ge 0$), $(y^*, F(x^*)) = 0$

Если $x \in X$, то из ① следует, что $F(x) \ge 0$, и поэтому для для $x \in X$, будет $(y^*, F(x) \ge 0)$ Так как неравенство ② выполняется для любого $x \in \Gamma$ и, в частности для $x \in X$, то из правого неравенства ② из ④ , ⑤ получаем для любого $x \in X$ неравенства:

$$\varphi(\mathbf{x}^*) \le \varphi(\mathbf{x}) - (y^*, F(\mathbf{x})) \le \varphi(\mathbf{x})$$

Но $x^* \in X$ (так как $x^* \in \Gamma$ и $F(x^*) \ge 0$) и, следовательно, x^* - оптимальная точка. Замечание: При доказательстве теоремы не использовались ни свойства выпуклости функции $\phi(x)$ и множества Γ , ни вогнутость F(x), ни какие-либо свойства гладкости. Таким образом, наличие седловых точек x^* , y^* функции Лагранжа определяют оптимальность x^* для общей задачи математического программирования. Обратное условие верно лишь для задачи выпуклого программирования. Вдобавок при условии регулярности допустимого множества. Это и есть известная точка Кунна-Таккера. Ниже точка Кунна-Таккера будет доказана в предположении непрерывной дифференцируемости функций $\phi(x)$ и $f_i(x)$ как очевидное следствие теорем:

- 1. Кунна-Таккера (дифференцируемый случай) Теорема 2 § 2.4.
- 2. Теорема существования седловой точки (§ 2.5.2.)

Повторим постановку задачи выпуклого программирования. Пусть допустимое множество задачи выпуклого программирования имеет вид: $X = \{x: f_i(x) \ge 0, i = \overline{1,m}, x \ge 0\}$ и предполагаем, что выпуклая функция $\phi(x)$ и вогнутые функции fi(x) — непрерывно дифференцируемы.

Теорема Кунна-Таккера: Если в задачи выпуклого программирования

$$\min\{\varphi(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}, \ X = \{\mathbf{x}: f_i(\mathbf{x}) \ge 0, i = \overline{1, m}, \mathbf{x} \ge 0\}$$

множество X обладает свойством регулярности (первое условие) 4 из § 2.3.1. (а именно для любой i=1,m существует такая точка $xi\in X$, что fi(xi)>0), то необходимым и достаточным условием оптимальности точки $x^*\in X$ является существование такой $y^*\geq 0$, чтобы пара x^* , y^* являлась седловой точкой функции Лагранжа $L(x,y)=\varphi(x)-\left(y,F(x)\right)$ на множестве $x\geq 0$, $y\geq 0$.

Доказательство:

Достаточность: Следует из теоремы «достаточных условий» при Γ ={x:x \ge 0}.

Необходимость: Необходимо доказать эквивалентность условий

$$\varphi'(\mathbf{x}) = \sum_{i=1}^{m} y_i^* f_i'(\mathbf{x}^*) + \sum_{j=1}^{n} v_j^* e_j$$

$$\sum_{m=1}^{m} y_i^* f_i(\mathbf{x}^*) = 0$$

$$y_i^* \ge 0, \quad i = \overline{1, m}$$

$$\sum_{j=1}^{m} v_j^* x_j^* = 0$$

$$v_j^* \ge 0, \quad j = \overline{1, n}$$

$$5$$

которые эквивалентны условиям теоремы Кунна-Таккера (дифференцируемый случай), и условий теоремы «условия существования седловой точки» (§ 2.5.2.) для функции L(x,y):

$$\frac{\partial L^*}{\partial \mathbf{x}} \ge 0 \qquad (6) , \quad \left(\mathbf{x}^*, \frac{\partial L^*}{\partial \mathbf{x}}\right) = 0 \quad (7), \quad \mathbf{x}^* \ge 0 \quad (8)$$

$$\frac{\partial L^*}{\partial \mathbf{y}} \ge 0 \quad (9) , \quad \left(\mathbf{y}^*, \frac{\partial L^*}{\partial \mathbf{y}}\right) = 0 \quad (10), \quad \mathbf{y}^* \ge 0 \quad (11)$$

Заметим, что

$$\frac{\partial L^*}{\partial \mathbf{x}} = \varphi'(\mathbf{x}^*) - \sum_{i=1}^m y_i^* f_i'(\mathbf{x}^*) \stackrel{\text{def}}{=} V$$
$$\frac{\partial L^*}{\partial \mathbf{v}} = -\mathbf{F}(\mathbf{x}^*).$$

Тогда эквивалентность очевидна.

<u>Замечание:</u> Для основной задачи выпуклого программирования теорема Кунна-Таккера формулируется так: Если в основной задачи выпуклого программирования множество $X = \{x: f_i(x) \ge 0, i = \overline{1,m}\}$ обладает свойством регулярности 1, то необходимым и достаточным условием оптимальности точки $x^* \in X$ является существование такого $y^* \ge 0$, чтобы пара x^* , y^* являлась седловой точкой функции Лагранжа на множестве $x \in En$ и $y \ge 0$.

Это следует из теоремы 2 § 2.4. и б) § 2.5.2.

Случай линейных ограничений для теоремы Кунна-Таккера

Если функция $\phi(x)$ выпукла, а допустимое множество линейных ограничений $X=\{x:(A_i,x)-B_i\geq 0,\ i=\overline{1,m},\ x\geq 0\}$, то для оптимальность точки $x^*\in X$ необходимо и

достаточно существование такого $y*\ge 0$, чтобы пара x*, y* являлась седловой точкой функции Лагранжа на множестве $x\ge 0$, $y\ge 0$.

<u>Замечание:</u> Теорема Кунна-Таккера лежит в основе теории двойственности математического программирования, она используется в численных методах математического программирования, то есть она позволяет исходную задачу заменить задачей отыскания седловой точки функции Лагранжа, то есть задачей вида:

 $\min_{\mathbf{x}\in\Gamma}\max_{y\geq 0}L(\mathbf{x},\mathbf{y})$