Keuzedomein G – Algoritmiek, berekenbaarheid & logica

Jacco Gnodde

Jacqueline Nijenhuis-Voogt

Sjaak Smetsers

Tim Steenvoorden

Algorithms unplugged

- We zijn de workshop begonnen met een 'unplugged' algoritme aan de hand van het hoofdstuk: Bin Packing or "How do I get my stuff into the boxes?" uit het boek "Algorithms unplugged".
- Vanwege copyright zijn de tijdens de workshop getoonde dia's niet in deze openbaar toegangelijke – presentatie opgenomen.

• Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H., Wagner, D. (Eds.) (2011). *Algorithms Unplugged*. Berlin Heidelberg: Springer.

Keuzedomein G Algoritmiek, berekenbaarheid & logica

Jacco Gnodde
Jacqueline Nijenhuis-Voogt
Sjaak Smetsers *Tim Steenvoorden*

I&I Conferentie, november 2019, Utrecht

Algoritmen

Efficiëntie van Algoritmen

Efficiëntie van Algoritmen

Berekeningen karakteriseren en relateren

Moeilijke problemen *herkennen*

Efficiëntie van Algoritmen

Berekeningen *karakteriseren* en *relateren*

Logaritmisch Direct

Lineair

Kwadratisch

ACCEPTABEL

Exponentieel

ONACCEPTABEL

BEREKENBAAR

Moeilijke problemen *herkennen*

ONBEREKENBAAR

Kwalificeren van Algoritmen Problemen

Kwalificeren van Algoritmen Problemen

Zoeken Sorteren

Kortste pad

Goede aanbeveling

ACCEPTABEL

BEREKENBAAR

Beste rooster

Kortste ronde

ONACCEPTABEL

BEREKENBAAR

Looptijd

- in aantal stappen
- afhankelijk van invoergrootte
- in het slechtste geval

WIE WEET HIER EEN GOED VOORBEELD VAN?

???

ONBEREKENBAAR

Verschillende Algoritmen Problemen

Probleem	Context	Algoritme
Zoeken	Google, WhatsApp	Lineair, binair
Sorteren	Contacten	Selection, Insertion,
Kortste pad	Maps	Dijkstra
Kortste ronde	PostNL	benadering
Beste rooster	school zelf	benadering
Goede aanbeveling	Netflix, Facebook	k-NN
GOEDE CONTEXTE	N ZIJN WELKOM!	ALGORITMEN ZIJN EEN HULPMIDDEL

Efficiëntie van Datastructuren

	Rijen	Lijsten	Verzamelingen
Lezen			
Toevoegen			
Verwijderen			
	0		Lineair Kwadratisch ACCEPTABEL

Efficiëntie van Datastructuren

	Rijen	Lijsten	Verzamelingen
Lezen	Direct	Lineair	Logaritmisch
Toevoegen	Lineair	Direct	Logaritmisch
Verwijderen	Lineair	Direct	Logaritmisch
	0 1 2 3 4		

Voorkennis

Samenvatting

Algoritmiek

Berekenbaarheid

Logica

Algoritmiek

Berekenbaarheid

Logica

Domein G: Keuzethema Algoritmiek, berekenbaarheid en logica

Subdomein G1: Complexiteit van algoritmen

- 31. De kandidaat kan
 - (in het havo-programma:) van gegeven algoritmen de complexiteit vergelijken, en kan klassieke 'moeilijke' problemen herkennen en benoemen.
 - (in het vwo-programma:) het verschil tussen exponentiële en polynomiale complexiteit uitleggen, kan algoritmen op basis hiervan onderscheiden, en kan klassieke 'moeilijke' problemen herkennen en benoemen.

Subdomein G2: Berekenbaarheid

 De kandidaat kan berekeningen op verschillende abstractieniveaus karakteriseren en relateren, en kan klassieke onberekenbare problemen herkennen en benoemen.

Subdomein G3: Logica

33. De kandidaat kan eigenschappen van digitale artefacten uitdrukken in logische formules.

Logica

Kwaliteit van digitale oplossingen

1nf0rmat1ca

voortgezet onderwijs (havo/vwo)

Logica

Schakelingen
Expressies
Redenaties
Verzamelingenleer

Logica schakelingen

Logica schakelingen

Equivalent: SQL

Laat de naam zien van iedere leerling die onvoldoendes heeft voor 2 van de 3 kernvakken.

```
SELECT naam
FROM Leerling
WHERE ( ((ne<5.5) AND (wi<5.5)) OR
        ((ne<5.5) AND (en<5.5)) OR
        ((en<5.5) AND (wi<5.5)) )
      AND
      NOT ( (ne<5.5)
                     AND
            (wi<5.5) AND
            (en<5.5));
```


Logica implicatie (voorbeeld)

"iedereen die heeft geoefend met de oefentoets zal zeker een voldoende halen voor de echte toets."

- ☐ Heeft Aïcha een voldoende gehaald?
- ☐ Heeft Bert een voldoende gehaald?
- ☐ Heeft Chantal de oefentoets gemaakt?
- ☐ Heeft Dylan de oefentoets gemaakt?

Logica implicatie (voorbeeld)

"iedereen die heeft geoefend met de oefentoets zal zeker een voldoende halen voor de echte toets."

- ☑ Heeft Aïcha een voldoende gehaald?
- **■** Heeft Chantal de oefentoets gemaakt?
- ☑ Heeft Dylan de oefentoets gemaakt?

Als Rachida of Dylan of Elisa naar het feest gaat dan gaat Tony niet

Tony is wel gegaan.

Dylan is niet naar het feest gegaan

Modus Ponens

Modus Tollens

"Modus Nonsens"

of Elisa naar het feest gaat at Tony niet

wel gegaan.

Conclusie:

Dylan is niet naar het feest gegaan

Modus Ponens

of Elisa naar het feest gaat

at Tony niet

Modus Tollens

Voorbeeld:

Als je goed hebt geleerd dan haal je een voldoende Je hebt goed geleerd

 \rightarrow

Je haalt een voldoende

Dylan is niet naar het feest gegaan

of Elisa naar het feest gaat **Modus Ponens** at Tony niet **Modus Tollens** Voorbeeld: Als je goed hebt geleerd dan haal je een voldoende Je hebt geen voldoende gehaald Je hebt niet goed geleerd

Modus Ponens

Modus Tollens

"Modus Nonsens"

of Elisa naar het feest gaat at Tony niet

wel gegaan.

Voorbeeld:

Als je goed hebt geleerd dan haal je een voldoende Je hebt een voldoende gehaald

Je hebt goed geleerd

Logica Verzamelingenleer / syllogismen

Voorbeeld syllogisme:

Stelling 1: Sommige rare mensen zijn docenten.

Stelling 2: Alle informatici zijn rare mensen.

Welk van onderstaande conclusies is/zijn correct?

A. Alle rare mensen zijn docenten.

- B. ledere docent die informaticus is, is een raar mens.
- C. Er zijn mogelijk docenten die geen rare mensen zijn.

Logica Verzamelingenleer / syllogismen

Voorbeeld syllogisme:

Stelling 1: Sommige rare mensen zijn docenten.

Stelling 2: Alle informatici zijn rare mensen.

Welk van onderstaande conclusies is/zijn correct?

A. Alle rare mensen zijn docenten.

- B. ledere docent die informaticus is, is een raar mens.
- C. Er zijn mogelijk docenten die geen rare mensen zijn.

