

Generative AI

GAN - Generative Adversarial Network

VAE - Variational Autoencoder

GPT - Generative Pre-trained Transformer

LSTM - Long Short-Term Memory

Al - Artificial Intelligence AR - Autoregressive Model

SVM -Support Vector Machine

Machine Learning

EDA -Exploratory Data Analysis

ML - Machine Learning RL - Reinforcement Learning

MSE - Mean Squared Error

DL - Deep Learning

NLP - Natural Language Processing PCA - Principal Component Analysis

Data Science

AUC - Area Under the Curve

ROC - Receiver Operating Characteristic

NER - Named Entity Recognition

RNN - Recurrent Neural Network

Natural Language Processing

CNN - Convolutional Neural Network

POS - Part of Speech

BERT - Bidirectional Encoder Representations from Transformers

loU - Intersection over Union

GAN - Generative Adversarial Network

Computer Vision

AR - Augmented Reality

Machine Learning

Neural Network

Predicts the next word in the sequence.

e.g. context of 4 words

predict next word

Transformer Model

Transformer Model

Neural Network vs Transformer Model

Generative Al

Generative AI is a type of artificial intelligence technology that can produce various types of content, including text, imagery, audio and synthetic data.

Evolution of Al Architecture:

Traditional ML to Generative Al

Traditional ML

Data Pre-Processing

Cleaning and preparing data for analysis

Feature Engineering

Extracting important features from data

Training & Tuning

Training models on data and adjusting parameters for optimal performance

Deployment & Monitoring

Implementing models in real-world applications and monitoring their performance

Tech Stack for Traditional ML

- ML Frameworks: Keras, Theano
- ML API's & SDK: IBM Watson
- Database: SQL Server, Oracle
- ML Ops: Docker, Jenkins

Generative Al

Data Pre-Processing

Cleaning and preparing data for analysis

Prompt Engineering/Fine Tuning

Designing effective prompts to guide Al in generating desired outputs

Foundational/Fine-Tuned LLM

Using foundation and Fine-tuned language models for sophisticated content generation

Deployment & Monitoring

Implementing models in real-world applications and monitoring their performance

Tech Stack for Generative AI

- Gen Al Orchestration: Langchain,
 Ilamaindex
- LLM Models: OpenAl, Anthropic
- Vector Database: Pinecone, Weaviate
- LLM Ops: Prompt Layer, Helicone

Large Language Models

Generative AI applications are built using LLMs

LLM Training

Custom LLM Training

Stage 1: Pretraining

- 1. Download ~10TB of text.
- 2. Get a cluster of ~6,000 GPUs.
- 3. Compress the text into a neural network, pay
- ~\$2M, wait ~12 days.
- 4. Obtain base model.

Can you write a short introduction about the resevence of the term "incringeony" in economics? Please use examples related to potential monopoonies in the labour market and otte relevant exeerch.

CASSISTANT>

"Monopsory" refers to a market structure where there is only one buyer for a particular good or service, in economics, this term is particularly resewart in the labor market, where a monopsory employer has significant power over the wages and working conditions of their employees. The presence of a monopsory can result in lower wages and reduced employment opportunities for workers, as the employer has little incentive to increase wages or provide before working conditions.

Stage 2: Finetuning

- 1. Write labeling instructions
- 2. Hire people (or use <u>scale.ai</u>!), collect 100K high quality ideal Q&A responses, and/or comparisons.
- 3. Finetune base model on this data, wait ~1 day.
- 4. Obtain assistant model.
- Run a lot of evaluations.
- 6. Deploy.
- 7. Monitor, collect misbehaviors, go to step 1.

LLM Hallucination

- Not tailored outputs
- Specialised vocabulary

- Fine tuning
- Prompt Engineering
- Retrieval Augmented Generation (RAG)

Model	Accuracy	Hallucination Rate	Answer Rate
GPT 4	97.0 %	3.0 %	100.0 %
GPT 3.5	96.5 %	3.5 %	99.6 %
Llama 2 70B	94.9 %	5.1 %	99.9 %
Llama 2 7B	94.4 %	5.6 %	99.6 %
Llama 2 13B	94.1 %	5.9 %	99.8 %
Cohere-Chat	92.5 %	7.5 %	98.0 %
Cohere	91.5 %	8.5 %	99.8 %
Anthropic Claude 2	91.5 %	8.5 %	99.3 %
Mistral 7B	90.6 %	9.4 %	98.7 %
Google Palm	87.9 %	12.1 %	92.4 %
Google Palm-Chat	72.8 %	27.2 %	88.8 %

LLM Use case

Input Data

Books and Literature of multiple Languages,

Online content - websites, news, blogs

Wikipedia

Social Media, Online chats and discussions

Adaptation

Large Language Model Bard/ChatGPT

Tasks

Answering Questions

Text **Summarization**

Language **Translation**

Sentiment **Analysis**

Interactive Conversation

Information Retrieval

Building RAG

RAG: Retrieval Augmented Generation

Project Architecture

