Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Math for Machine Learning

Linear algebra - Week 4

Bases

Span

Orthogonal and orthonormal bases

Orthogonal and orthonormal matrices

Determinants and Eigenvectors

Machine learning motivation

PCA

8 dimensions

Determinants and Eigenvectors

Singularity and rank of linear transformations

Non-singular transformation

Singular and non-singular transformations

Singular and non-singular transformations

Singular and non-singular transformations

Singular and non-singular transformations

Determinants and Eigenvectors

$$Det = 3 \cdot 2 - 1 \cdot 1$$

$$Det = 5$$

$$Det = 3 \cdot 2 - 1 \cdot 1$$

$$Det = 5$$

$$Det = 1 \cdot 2 - 1 \cdot 2$$
$$Det = 0$$

Negative determinants?

Negative determinants?

	1
3	1
1	2

$$Det = 3 \cdot 2 - 1 \cdot 1$$
$$Det = 5$$

Negative determinants?

$$Det = 3 \cdot 2 - 1 \cdot 1$$
$$Det = 5$$

$$Det = 1 \cdot 1 - 3 \cdot 2$$

$$Det = -5$$

Determinant as an area

Determinant as an area

Determinants and Eigenvectors

312

5212

16 8 7 6

3	1
1	2

3	1	5	2	_
1	2	1	2	_

$$det = 5$$

$$3 \cdot 2 - 1 \cdot 1$$

3	1
1	2

$$det = 5$$
 $det = 8$

$$det = 8$$

$$3 \cdot 2 - 1 \cdot 1$$

$$3 \cdot 2 - 1 \cdot 1$$
 $5 \cdot 2 - 2 \cdot 1$

3	1
1	2

$$det = 5$$

$$det = 8$$

$$det = 5$$
 $det = 8$ $det = 40$

$$3 \cdot 2 - 1 \cdot 1$$

$$3 \cdot 2 - 1 \cdot 1$$
 $5 \cdot 2 - 2 \cdot 1$ $16 \cdot 6 - 8 \cdot 7$

$$16 \cdot 6 - 8 \cdot 7$$

$$det(AB) = det(A) det(B)$$

Quiz

- The product of a singular and a non-singular matrix (in any order) is:
 - Singular
 - Non-singular
 - Could be either one

Solution

If A is non-singular and B is singular, then det(AB) = det(A) x det(B) =
 0, since det(B) = 0. Therefore det(AB) = 0, so AB is singular.

5

5 · 0

$$5 \cdot 0 = 0$$

When one factor is singular...

Non-singular		r	Sing	jular	Singular			
	3	1		1	2	_	4	8
	1	2		1	2	=	3	6
Det = 5			Det = 0			Det = 0		

$$Det = 5$$

$$Det = 0$$

$$Det = 0$$

1	2
1	2

Det = 0

4 8 3 6

Determinants and Eigenvectors

Determinant of inverse

Quiz

• Find the determinants of the following matrices

0.4	-0.2
-0.2	0.6

0.25 -0.25 -0.125 0.625

Solution

det = 5

$$det = 5$$
 $det = 0.2$

$$det = 5$$

$$det = 5$$
 $det = 0.2$

$$5^{-1} = 0.2$$

$$det = 5$$

$$det = 0.2$$

$$5^{-1} = 0.2$$

det = 5

det = 0.2

det = 8

$$det = 8$$

$$5^{-1} = 0.2$$

det = 5

$$det = 0.2$$

$$det = 8$$

$$det = 0.125$$

$$5^{-1} = 0.2$$

0

det = 5

det = 0.2

det = 8

det = 0.125

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$\begin{array}{c|cccc}
 1 & 2 \\
 1 & 2 & = & ? & ? \\
 \hline
 ? & ? & ?
 \end{array}$$

$$det = 5$$
 $det = 0.2$

$$det = 8$$
 $det =$

$$det = 0.125$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

det = 0.2

$$det = 5$$

$$det = 8$$

$$det = 0.125$$

$$det = 0$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

 1
 2

 1
 2

 =
 ?

 ?
 ?

$$det = 5$$

$$det = 0.2$$

$$det = 8$$
 $det = 0.125$

$$det = 0$$

$$det = ???$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$det = 5$$

$$det = 0.2 \qquad det = 8$$

$$det = 0.125$$

$$det = 0$$
 $det = ???$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A)\det(A^{-1})$$

 $\det(AB) = \det(A)\det(B)$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$det(AB) = det(A) det(B)$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\det(A^{-1})$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AB) = \det(A)\det(B)$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\downarrow_{1}$$

$$\frac{1}{\det(A)}$$

Determinant of the identity matrix

$$\det \begin{bmatrix} \frac{1}{0} & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1$$

Determinant of the identity matrix

$$\det \begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \\ \end{array} = 1 \cdot 1 - 0 \cdot 0 = 1$$

$$det(I) = 1$$

Determinants and Eigenvectors

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

3	1
1	2

Determinants and Eigenvectors

Is this a basis?

Is this a basis?

Is this a basis?

Is this a basis for something?

Bases

Is this a basis for something?

Bases

Is this a basis for something?

asis Not a basis

2 elements in the basis Dimension = 2

Determinants and Eigenvectors

Determinants and Eigenvectors

Eigenvalues and eigenvectors

2103

If λ is an eigenvalue:

2	1
0	3

If λ is an eigenvalue:

2	1
0	3

λ	0
0	λ

If λ is an eigenvalue:

2	1	Χ		λ	0	X
0	3	У	=	0	λ	у

If λ is an eigenvalue:

2	1	Χ		λ	0	X
0	3	У	=	0	λ	У

For infinitely many (x,y)

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 & \\
\hline
0 & \\
\end{array}$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
0 & 3 - \lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0
\end{array}$$

Has infinitely many solutions

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2 - \lambda & 1 & x \\
\hline
0 & 3 - \lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0
\end{array}$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} =
\begin{array}{c|cccc}
0 \\
0
\end{array}$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \lambda = 3$$

$$\lambda = 3$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$2x + y = 2x$$

$$0x + 3y = 2y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x x = 1$$

$$0x + 3y = 2y \qquad \qquad y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$
$$0x + 3y = 2y$$

$$x = 1$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

$$2x + y = 3x$$

$$0x + 3y = 3y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

2x + y = 3x

$$x = 1$$

$$y = 0$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$0x + 3y = 2y$$

$$y = 0$$

x = 1

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

943

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

det
$$\frac{9-\lambda}{4} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

- Which factors as $\lambda^2 12\lambda + 11 = (\lambda 11)(\lambda 1)$
- The solutions are $\lambda = 11$ $\lambda = 1$

Determinants and Eigenvectors

Conclusion

2103

2	1
0	3

λ	0
0	λ

2	1	Х		λ	0	X
0	3	У	=	0	λ	У

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y & = & 0 \\ \hline \end{array}$$

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y \end{array} = \begin{array}{c|cccc} 0 \\ \hline 0 \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
0
\end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0
\end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial $(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0
\end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial
$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$
 $\lambda = 2$ $\lambda = 3$

If λ is an eigenvalue:

$$\begin{array}{c|cccc} 2-\lambda & 1 & x \\ \hline 0 & 3-\lambda & y & = & 0 \\ \hline \end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\lambda = 2$$

$$\lambda = 3$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
0
\end{array}$$

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$$

$$\lambda = 2$$

$$\lambda = 3$$

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
\hline
0 & 3-\lambda & y
\end{array} = \begin{array}{c|cccc}
0 \\
\hline
0$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \lambda = 3$$

$$\lambda = 3$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$
$$0x + 3y = 2y$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$0x + 3y = 2y \qquad \qquad y = 0$$

x = 1

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

0x + 3y = 2y

$$x = 1$$

$$y = 0$$

Λ

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$\begin{array}{c|ccccc}
2 & 1 & x \\
0 & 3 & y
\end{array} = 2 \begin{array}{c} x \\
y \\
\end{array}$$

$$2x + y = 2x$$

2x + y = 3x

0x + 3y = 3y

0x + 3y = 2y

$$x = 1$$

$$y = 0$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

0x + 3y = 2y

$$y = 0$$

x = 1

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Eigenvalues:
$$\lambda = 2$$

 $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$x = 1$$

$$0x + 3y = 2y$$

$$y = 0$$

$$2x + y = 3x$$

$$x = 1$$

$$0x + 3y = 3y$$

$$y = 1$$

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

943

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

det
$$\frac{9-\lambda}{4} \frac{4}{3-\lambda} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

- Which factors as $\lambda^2 12\lambda + 11 = (\lambda 11)(\lambda 1)$
- The solutions are $\lambda = 11$ $\lambda = 1$

Row span of a matrix

3 2

1 2

Rows

3 2

1 2

Row span of a matrix

3 2

1 2

Rows

3 2

1 2

Span of the rows

Basis vectors

Linear transformation

Math for Machine Learning

Linear algebra - Week 4

Vectors

Matrices

Dot product

Matrix multiplication

Linear transformations

Č	1
1	1
1	2

Ď	
1	1
1	2

Ď	
1	1
1	2

1	1
2	2

Č	<u></u>
1	1
1	2

Č	
1	1
2	2

Č	
0	0
0	0

System 1

1	1
2	2

	1
0	0
0	0

System 1

System 2

System 3

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

0

System 1

ď	
1	1
1	2

System 2

2	2

System 3

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

The only two numbers a, b, such that

- a+b=0
- and
- a+2b = 0

are:

a=0 and b=0

System 1

System 2

1	1
^	_

System 3

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

The only two numbers a, b, such that

- a+b = 0 and
- a+2b = 0

are:

a=0 and b=0

Any pair (x, -x) satisfies that

- a+b = 0 and
- a+2b = 0

For example:

(1,-1), (2,-2), (-8,8), etc.

System 1

System 2

System 3

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

The only two numbers a, b, such that

- a+b=0and
- a+2b=0are:

a=0 and b=0

Any pair (x, -x) satisfies that

- a+b=0and
- a+2b=0For example:

(1,-1), (2,-2), (-8,8), etc.

Any pair of numbers satisfies that

- 0a+0b = 0and
- 0a+0b=0

For example:

(1,2), (3,-9), (-90,8.34), etc.

System 1

•
$$a + 2b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a + 2b = 0$$

•
$$a = 0$$

•
$$b = 0$$

System 2

•
$$a + b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

• a = 0

•
$$a + 2b = 0$$
 • $b = 0$

System 2

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

•
$$2a + 2b = 0$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

System 2

•
$$2a + 2b = 0$$

Solutions

$$\bullet \ b = -a$$

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

System 1

Solution • a = 0

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

Solutions

- any *a*
- $\bullet \ b = -a$

- 0a + 0b = 0
- 0a + 0b = 0

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$a + b = 0$$

Solutions

$$\bullet \ b = -a$$

System 3

•
$$0a + 0b = 0$$

•
$$0a + 0b = 0$$

(0,0)

(0,0)

System 1

Solution

•
$$a = 0$$

•
$$a + 2b = 0$$

•
$$b = 0$$

System 2

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

(-4,4)

Solutions

• any *a*

(3,-3)

 $\bullet \ b = -a$

System 3

- 0a + 0b = 0
- any *a*

• any *b*

Solutions

• 0a + 0b = 0

1	1	Null space
2	2	• any a • $b = -a$

Č		
0	0	Null space
0	0	any aany b

Dimension = 0

Dimension = 1

Dimension = 2

Dimension = 0

Dimension = 1

Dimension = 2

Non-singular

Dimension = 0

Non-singular

Dimension = 1

Singular

Dimension = 2

Dimension = 0

Non-singular

Singular

Dimension = 1

Dimension = 2

Singular

Singular

Dimension = 2

Singular

More conceptual explanation of the null space

Elaborate here

Quiz: Null space of a matrix

Problem: Determine the dimension of the null space of the following two matrices

Matrix 1

5	1
-1	3

Matrix 2

2 -1 -6 3

Solutions: Null space of a matrix

Matrix 1: Notice that this is a non-singular matrix, since the determinant is 16. Therefore, the null space is only the point (0,0). The dimension is 0.

Matrix 2: The corresponding system of equation has the equations 2ab=0 and -6a+3b=0. Some inspection shows that the first equation has the points (1,2), (2,4), (3,6), etc. as solutions. All of them are also solutions to the second equation, -6a+3b=0. Therefore the null space is all the points of the form (x, 2x). The dimension of this null space is 1, and the matrix is singular.

Systems of linear equations

Systems of linear equations

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

1	1	1
1	1	2
1	1	3

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

1	1	1
1	2	1
1	1	2

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

1	1	1
1	1	2
1	1	3

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

1	1	1
2	2	2
3	3	3

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

1	1	1
2	2	2
3	3	3

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

0	0	0
0	0	0
0	0	0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

Dimension = 2

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

Dimension = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

Dimension = 2

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

Dimension = 3

Null space for matrices

Matrix 1

1	1	1
1	2	1
1	1	2

Null space

Dimension = 0

Matrix 2

1	1	1
1	1	2
1	1	3

Null space

Dimension = 1

Matrix 3

1	1	1
2	2	2
3	3	3

Null space

Dimension = 2

Matrix 4

0	0	0
0	0	0
0	0	0

Null space

Dimension = 3

Quiz: Null space

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$c = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$b = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form

$$(x, -x, 0)$$

Dimension = 1

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$c = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form (x, -x, 0)

Dimension = 1

The point (0,0,0)

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$C = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

All points of the form
$$(x, -x, 0)$$

$$Dimension = 1$$

The point
$$(0,0,0)$$

$$Dimension = 0$$

Null space **2** a+2b а b 3a+b

Null space **2** a+2b 3a+b

Null space

Non-singular

Rank = 2

Dimension = 0

Singular

Rank = 1

Dimension = 1

Singular

Rank = 0

Dimension = 2

Dot product as an area

Row space 0a+0b $(0,0) \rightarrow (0,0)$ 0a+0b $(1,0) \rightarrow (0,0)$ **(0,1)** → **(0,0)** $(1,1) \rightarrow (0,0)$

Row space

Orthogonal matrix

Orthogonal matrix

Orthogonal matrices have orthogonal columns

6 -1 2 3

$$\begin{array}{c|c} 6 & -1 \\ \hline 2 & 3 \end{array} = 0$$

Orthogonal matrix

$$a + b + c = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

$$3(0) + 5(0) + 2(0) = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

- a = 0
- b = 0
- c = 0

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

- a = 0
- b = 0
- c = 0

The point (0,0,0)

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

• a + b + c = 0

- a + b + 2c = 0
- a + b + 3c = 0

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 3c = 0$$

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = **0**

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

- c = 0
- b = -a

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

- c = 0
- b = -a

All points of the form

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

• c = 0

•
$$b = -a$$

All points of the form

(x, -x, 0)

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System 3

• a + b + c = 0

- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System 3

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

Solution space

 $\bullet \ a + b + c = 0$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space All points of the form (x, y, -x - y)

$$(x, y, -x - y)$$

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

•
$$a + b + c = 0$$

All points of the form

•
$$a + b + c = 0$$
 $(x, y, -x - y)$

