

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

<mark>Problema I</mark> Unde transversale

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Cele două unde care interferă sunt două unde identice cu amplitudinea $\frac{A}{2}$ care se propagă în sensuri opuse pe coardă. Sursele celor două unde trebuie să oscileze în fază.

Viteza oscilațiilor unui punct de pe coardă este

$$v = \frac{dy}{dt} = -\omega A \cos kx \sin \omega t$$

iar deformația relativă este

$$\varepsilon = \frac{dy}{dx} = -kA\sin kx \cos \omega t$$

Energia cinetică a unui element de masă al coardei și densitatea de energie vor fi

$$dE_c = \frac{dm}{2} v^2 = \frac{dm}{2} \omega^2 A^2 \cos^2 kx \sin^2 \omega t = \frac{\mu dl}{2} \omega^2 A^2 \cos^2 kx \sin^2 \omega t$$

$$\varepsilon_c = \frac{dE_c}{dl} = \frac{\mu\omega^2 A^2}{2} \cos^2 kx \sin^2 \omega t$$

Energia potențială de deformație a unui element de coardă este $dE_p = \frac{\kappa (dy)^2}{2}$, în

2.d. care $\varepsilon = \frac{dy}{dl}$ și $F = \kappa dl$, κ fiind constanta elastică. Mai departe se obține

$$dE_p = \frac{F}{dl} \cdot \frac{1}{2} \varepsilon^2 dl^2 \text{ si } \varepsilon_p = \frac{dE_p}{dl} = \frac{F \varepsilon^2}{2} = \frac{F}{2} k^2 A^2 \sin^2 kx \cos^2 \omega t$$

Pe de altă parte

$$\frac{k}{\omega} = \frac{\frac{2\pi}{\lambda}}{\frac{2\pi}{T}} = \frac{T}{\lambda} = \frac{1}{v}$$

$$\frac{k^2}{\omega^2} = \frac{1}{v^2} = \frac{\mu}{F}$$

De aici $\varepsilon_p = \frac{\mu \omega^2 A^2}{2} \sin^2 kx \cos^2 \omega t$

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Nr.	Sarcina de lucru nr. 3	Punctaj
3.a.	Conform figurii alăturate, aplicând pentru o jumătate de coardă ecuația de echilibru pentru momentele forțelor față de capătul O al corzii, rezultă $\mu \frac{L}{2} g \frac{L}{4} = Fd$ de unde $F = \frac{\mu L^2 g}{8d}$	
3.b.	Frecvenţa undelor sonore emise de coardă este $v = \frac{n}{2} \sqrt{\frac{F}{mL}}$, cu n = 1 pentru frecvenţa fundamentală. În cazul 1, $L_1 = L + p_1 L = L(1+p_1)$ În cazul 2, analog $L_2 = L(1+p_2)$ Forţele de tensiune elastică vor fi $F_1 = \kappa(p_1 L)$, respectiv $F_2 = \kappa(p_2 L)$. În aceste condiţii $\frac{v_1}{v_2} = \frac{\sqrt{\frac{\kappa p_1 L}{mL(1+p_1)}}}{\sqrt{\frac{\kappa p_2 L}{mL(1+p_2)}}} = \sqrt{\frac{p_1(1+p_2)}{p_2(1+p_1)}}$ De aici rezultă $\frac{v_1}{v_2} = 0,706 \approx \frac{\sqrt{2}}{2}$	
3.c.	Dacă $v_1 = 440Hz$, rezultă că $v_2 = \sqrt{2}v_1 = 440\sqrt{2} \approx 622,5Hz$ Calculând pe rând, rezultă Nota La# $v = 440 \cdot 2^{1/12} = 466,164Hz$ Nota Si $v = 440 \cdot 2^{2/12} = 493,883Hz$ Nota Do $v = 440 \cdot 2^{3/12} = 523,251Hz$ Nota Do# $v = 440 \cdot 2^{4/12} = 554,365Hz$ Nota Re $v = 440 \cdot 2^{5/12} = 587,33Hz$ Nota Re# $v = 440 \cdot 2^{6/12} = 440\sqrt{2} = 622,254Hz$ Deci nota emisă va fi Re diez din octava C5.	

Barem de evaluare și de notare propus de: prof. Liviu Arici – Colegiul Naţional "N.Bălcescu" - Brăila

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

Problema a II-a Cordon elastic

Nr.	Sarcina de lucru nr. 1	Punctaj
	Volumul cordonului elastic este $V = \pi r^2 l = \pi \left(r_0 - \Delta r\right)^2 \left(l_0 + \Delta l\right) = \pi r_0^2 l_0 \left(1 - \frac{\Delta r}{r_0}\right)^2 \left(1 + \frac{\Delta l}{l_0}\right) = V_0 \left(1 - \frac{\Delta r}{r_0}\right)^2 \left(1 + \frac{\Delta l}{l_0}\right).$	0,50 p
1.a.	Deoarece $\dfrac{\Delta l}{l_0}=arepsilon$ și $\dfrac{\Delta r}{r_0}=\muarepsilon$, atunci	0,25 p
	$\frac{\Delta V}{V_0} = (1 - 2\mu)\varepsilon.$	0,25 p
	i. La echilibru, legea lui Hooke se scrie:	
1.b.	$rac{mg}{S}=Erac{\Delta l_0}{l_0}$,	0,25 p
	de unde	
	$mg = E \frac{\Delta l_0}{l_0} S = E S_0 \frac{\Delta l_0}{l_0} \left(1 - \frac{\Delta r_0}{r_0} \right)^2 = E S_0 \frac{\Delta l_0}{l_0} \left(1 - \mu \frac{\Delta l_0}{l_0} \right)^2 \cong E S_0 \frac{\Delta l_0}{l_0}.$	0,25 p
	După alungirea cordonului cu y față de starea de echilibru, ecuația de mișcare a sistemului este: $ma=mg-F \ ,$	0,50 p
	unde forța elastică este	
	$F = ES \frac{\Delta l_0 + y}{l_0} \cong ES_0 \left[\frac{\Delta l_0}{l_0} + \left(1 - 4\mu \frac{\Delta l_0}{l_0} \right) \frac{y}{l_0} \right].$	1,00 p
	În aceste circumstanțe, ecuația de mișcare de mai sus devine	
	$ma = -ES_0 \left(1 - 4\mu \frac{\Delta l_0}{l_0} \right) \frac{y}{l_0} = -ky,$	0,25 p

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

unde constanta elastică echivalentă a sistemului este	
$k = \frac{ES_0}{l_0} \left(1 - 4\mu \frac{\Delta l_0}{l_0} \right) = \frac{1}{l_0} (ES_0 - 4\mu mg),$	0,:
așa încât perioada proprie de oscilație este	
$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{ml_0}{ES_0 - 4\mu mg}} \cong 2\pi \sqrt{\frac{ml_0}{ES_0}} \left(1 + 2\mu \frac{mg}{ES_0}\right).$	0,
ii. Soluția ecuației de mișcare a corpului este	
$y(t) = A\cos(\omega t + \varphi_0),$	0,
condițiile inițiale fiind	
$y(0) = -\Delta l_0 \text{ si } v(0) = 0.$	0,
În acest caz	
$arphi_0=0$ și $A=-\Delta l_0=-rac{mgl_0}{ES_0}$,	0,
astfel încât	
$y(t) = -\frac{mgl_0}{ES_0}\cos\omega t.$	0,
Cum	
$\frac{\Delta V}{V_0} = (1 - 2\mu)\varepsilon \rightarrow V(t) = V_0 \left[1 + (1 - 2\mu)\varepsilon \right] = V_0 \left[1 + (1 - 2\mu)\frac{\Delta l_0 + y(t)}{l_0} \right],$	0,
atunci	
$V(t) = V_0 \left[1 + (1 - 2\mu) \frac{\Delta l_0}{l_0} (1 - \cos \omega t) \right].$	0,
Prin urmare, volumul cordonului este maxim atunci când $\cos \omega t = -1$ (adică la alungire maximă):	
$V_{\text{max}} = V_0 \left[1 + 2(1 - 2\mu) \frac{\Delta l_0}{l_0} \right] = V_0 \left[1 + 2(1 - 2\mu) \frac{mg}{ES_0} \right]$	0,

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

1.c.	Deoarece alungirea cordonului este maximă atunci când acesta trece prin poziția verticală, componenta radială a vitezei corpului este nulă. Prin urmare, viteza ν a corpului este orizontală atunci când cordonul este vertical. Rezultanta forțelor care acționează asupra corpului pe direcția cordonului, atunci când acesta este vertical, este de tip centripet	0,75 p
	$m\frac{v^2}{l_0+y}=ky-mg.$	
	Alegând, de exemplu, nivelul de referință pentru energia potențială gravitațională – nivelul dat de poziția inițială orizontală a cordonului, conservarea energiei sistemului se scrie:	
	$0 = m\frac{v^2}{2} + k\frac{y^2}{2} - mg(l_0 + y).$	0,75 p
	Eliminând viteza între cele două relații de mai sus se obține:	
	$y = \frac{l_0}{4} \left[3 \frac{mg}{kl_0} - 1 + \sqrt{1 + 9 \frac{mg}{kl_0} \left(2 + \frac{mg}{kl_0} \right)} \right] = \frac{l_0}{4} \left[3 \frac{\Delta l_0}{l_0} - 1 + \sqrt{1 + 9 \frac{\Delta l_0}{l_0} \left(2 + \frac{\Delta l_0}{l_0} \right)} \right].$	0,25 p
	Deoarece $\frac{\Delta l_0}{l_0}$ << 1 , atunci	
	$y \cong \frac{l_0}{4} \left[3 \frac{\Delta l_0}{l_0} - 1 + \left(1 + 18 \frac{\Delta l_0}{l_0} \right)^{1/2} \right] \cong \frac{l_0}{4} \left[3 \frac{\Delta l_0}{l_0} - 1 + \left(1 + 9 \frac{\Delta l_0}{l_0} \right) \right],$	
	sau	
	$\frac{y}{\Delta l_0} = 3.$	0,25 p
Nr. item	Sarcina de lucru nr. 2	Punctaj
	În acord cu enunțul	
2.a.	$F = \alpha \frac{y}{l_0 + y}.$	0,25 p
2.0.	La alungiri foarte mici trebuie regăsită legea lui Hooke:	0,25 p

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică Barem

	$F = \alpha \frac{y}{l_0} \left(1 + \frac{y}{l_0} \right)^{-1} \cong \alpha \frac{y}{l_0} \equiv ES_0 \frac{y}{l_0},$	
de	e unde,	0,25 p
iar	$lpha = ES_0$, r expresia forței devine	•
	$F = ES_0 \frac{y}{l_0 + y}.$	0,25 p
Oficiu		1,00p
TOTAL	Problema a II-a	10p

Barem de evaluare și de notare propus de:

Conf. univ. dr. Sebastian POPESCU — Facultatea de Fizică — Universitatea "Alexandru Ioan Cuza" din Iași

Olimpiada Națională de Fizică 31 martie - 5 aprilie 2013

Proba teoretică

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a III-a Pompa de bicicletă

Nr.	Sarcina de lucru nr. 1		Punctaj
item 1.a.	Pentru:		0,80p
	expresia numărului de moli de aer, aflat inițial în camera roții de bicicletă, la presiunea atmosferică p_0 și la temperatura T_0 $v_{\textit{initial}} = \frac{p_0 \cdot V_r}{R \cdot T_0}$	0,20p	
	expresia numărului de moli de aer introduși în camera roții de bicicletă, la o singură cursă a pistonului pompei de bicicletă $\begin{cases} v_0 = \frac{p_0 \cdot V_p}{R \cdot T_0} \\ v_0 = \frac{p_0 \cdot V_r}{R \cdot T_0 \cdot N} \end{cases}$	0,20p	
	expresia numărului de moli de aer din camera roții de bicicletă, după ce Andrei efectuează k pompări $v_k = v_{\it initial} + k \cdot v_0$	0,20p	
	$v_k = \frac{p_0 \cdot V_r}{R \cdot T_0} \cdot \left(1 + \frac{k}{N}\right)$	0,20p	
1.b.	Pentru:		0,40p
	expresia presiunii aerului din camera de bicicletă, după ce Andrei a efectuat k pompări $p_k \cdot V_r = v_k \cdot R \cdot T_0$	0,20p	
	$p_k = p_0 \cdot \frac{N+k}{N}$	0,20p	

1.c.	Pentru:		0,40p
	legea transformării izoterme aplicată pentru aerul din pompa de bicicletă		
	$p_0 \cdot \frac{V_r}{N} = p_k \cdot S \cdot (\ell - x_{k+1})$	0,20p	
	,		
	$X_{k+1} = \ell \cdot \frac{k}{N+k}$	0,20p	
1.d.	Pentru:		0,60p
	$p_0 \cdot \frac{V_r}{N} = p(x) \cdot \frac{V_r}{N \cdot \ell} \cdot (\ell - x), \text{ pentru } 0 \le x \le \frac{k \cdot \ell}{N + k}$	0,20p	
	$p(x) \cdot \left[V_r + (\ell - x) \cdot \frac{V_r}{N \cdot \ell} \right] = p_{k+1} \cdot V_r$, pentru $\frac{k \cdot \ell}{N + k} < x \le \ell$	0,20p	
	$p(x) = \begin{cases} \frac{p_0}{\left(1 - \frac{x}{\ell}\right)}, & 0 \le x \le \frac{k \cdot \ell}{N + k} \\ \frac{p_0 \cdot (N + k + 1)}{(N + 1) - \frac{x}{\ell}}, & \frac{k \cdot \ell}{N + k} < x \le \ell \end{cases}$		
	$p(x) = \begin{cases} \begin{pmatrix} \ell \end{pmatrix} \end{cases}$	0,20p	
	$\left \frac{p_0 \cdot (N+k+1)}{X} \right , \frac{k \cdot \ell}{N+k} < X \le \ell$		
	$(N+1)-\frac{\lambda}{\ell}$		
Nr. item	Sarcina de lucru nr. 2		Punctaj
2.a.	Pentru:		1,20p
	expresia energiei interne a aerului aflat sub pistonul pompei		
	$\begin{cases} O(x) = v_1 \cdot O_v \cdot I_0 \\ R & 0 < x < x_0 \end{cases}$	0,20p	
	$\begin{cases} U(x) = v_1 \cdot C_v \cdot T_0 \\ U(x) = v_1 \cdot \frac{R}{\gamma - 1} \cdot T_0 \end{cases}, 0 \le x \le x_{k+1}$		
	$U(x) = \frac{p_0 \cdot V_r}{(\gamma - 1) \cdot N} = const, \qquad pentru 0 \le x \le \frac{k \cdot \ell}{N + k}$	0,20p	
	$U(x) = v(x) \cdot \frac{R}{R} \cdot T_0$, pentru $\frac{k \cdot \ell}{R} < x \le \ell$		
	$U(x) = v(x) \cdot \frac{R}{\gamma - 1} \cdot T_0$, pentru $\frac{k \cdot \ell}{N + k} < x \le \ell$	0,20p	
	$p_0 \cdot (N+k+1)$ $V_r = (\ell - \chi) = v(\chi) P_r T_r$ nontrivial.		
	$\frac{p_0 \cdot (N+k+1)}{N+\left(1-\frac{x}{\ell}\right)} \cdot \frac{V_r}{N \cdot \ell} \cdot (\ell-x) = \nu(x) \cdot R \cdot T_0 \text{pentru } \frac{k \cdot \ell}{N+k} < x \le \ell$	0,20p	
	ℓ		
	expresia variației energiei interne a aerului din cilindrul pompei în cursul celei de a		
	(k+1) pompări, în funcție de distanța x		
	$U_0 = \frac{\mu_0 \cdot v_r}{(\nu - 1) \cdot N}, \text{pentru } 0 \le x \le \frac{\kappa \cdot \ell}{N + k}$		
	(x)	0,40p	
	$U(X) = \left\{ \begin{array}{c} p_0 \cdot V_r & (N + K + 1) \end{array} \right. \left(\frac{1 - \frac{\pi}{\ell}}{\ell} \right) $		
	$U(x) = \begin{cases} U_0 = \frac{p_0 \cdot V_r}{(\gamma - 1) \cdot N}, & pentru \ 0 \le x \le \frac{k \cdot \ell}{N + k} \\ \frac{p_0 \cdot V_r}{(\gamma - 1) \cdot N} \cdot (N + k + 1) \frac{\left(1 - \frac{x}{\ell}\right)}{N + \left(1 - \frac{x}{\ell}\right)}, & pentru \ \frac{k \cdot \ell}{N + k} < x \le \ell \end{cases}$		
	(e)		

Problema a III-a Barem de evaluare și de notare

Nr. item	Sarcina de lucru nr. 3		Punctaj
3.a.	Pentru:		1,20p
	$p_{k_0-1} < n \cdot p_0 \le p_{k_0}$	0,20p	
	$\boldsymbol{p}_{k_0} = \boldsymbol{p}_0 \cdot \frac{N + k_0}{N}$	0,20p	
	$k_0 \geq N \cdot (n-1),$ numărul k_0 de curse ale pistonului nu poate fi decât un număr natural	0,20p	
	$k_0 = N \cdot (n-1)$, dacă $N \cdot (n-1)$ este un număr natural sau $k_0 = [N \cdot (n-1)] + 1$, dacă $N \cdot (n-1)$ nu este un număr natural	0,60p	
3.b.	Pentru:		1,20p
	expresia lucrului mecanic efectuat de Andrei asupra celor v_1 moli de aer , care evoluează izoterm de la presiunea p_o la presiunea p_{k-1} $L_{K,I} = v_1 \cdot R \cdot T_0 \cdot \ln \frac{p_{k-1}}{p_0}$	0,20p	7,-34
	$L_{K,I} = \frac{p_0 \cdot V_r}{N} \cdot \ln \frac{N + K - 1}{N}$	0,20p	
	expresia lucrului mecanic efectuat de Andrei asupra celor v_k moli de aer, care evoluează izoterm de la presiunea p_{k-1} la presiunea p_k $L_{K,II} = v_k \cdot R \cdot T_0 \cdot \ln \frac{p_k}{p_{k-1}}$	0,20p	
	$L_{K, II} = \frac{p_0 \cdot V_r \cdot (N+k)}{N} \cdot \ln \frac{N+k}{N+k-1}$	0,20p	
	expresia lucrului mecanic total efectuat de Andrei, în cursul pompării cu numărul k $\begin{cases} L_{K, total} = L_{K, l} + L_{K, ll} \\ L_{K, total} = \frac{p_0 \cdot V_r}{N} \cdot \ln \frac{N+k-1}{N} + \frac{p_0 \cdot V_r \cdot (N+k)}{N} \cdot \ln \frac{N+k}{N+k-1} \\ L_{K, total} = \frac{p_0 \cdot V_r}{N} \cdot \left[\ln \frac{N+k-1}{N} + (N+k) \cdot \ln \frac{N+k}{N+k-1} \right] \end{cases}$	0,20p	
	expresia lucrului mecanic total efectuat de Andrei, din momentul începerii pompării până când presiunea din camera de bicicletă atinge valoarea $n \cdot p_0$ $L_{total} = \frac{p_0 \cdot V_r}{N} \cdot \sum_{k=1}^{N \cdot (n-1)} \left[ln \frac{N+k-1}{N} + \left(N+k\right) \cdot ln \frac{N+k}{N+k-1} \right]$	0,20p	

3.c.	Pentru:		1,60p
	$Q = \Delta U + L$	0,20p	
	expresia energiei interne inițiale a aerului din sistemul pompă – cameră de		
	bicicletă $U_{initial} = (v_{initial} + v_1) \cdot \frac{R \cdot T_0}{\gamma - 1}$	0,20p	
	$U_{initial} = \frac{p_0 \cdot V_r \cdot (N+1)}{(\gamma-1) \cdot N}$	0,20p	
	expresia energiei interne a aerului în starea finală $U_{final} = v_{k_0} \cdot \frac{R \cdot T_0}{\gamma - 1}$	0,20p	
	$U_{final} = \frac{n \cdot p_0 \cdot V_r}{(\gamma - 1)}$	0,20p	
	expresia variației energiei interne a aerului din sistemul pompă – cameră de bicicletă $\Delta U = U_{\textit{final}} - U_{\textit{initial}} = \frac{p_0 \cdot V_r}{\left(\gamma - 1\right)} \cdot \left[n - \frac{N+1}{N} \right]$	0,20p	
	expresia lucrului mecanic primit de aerul din sistemul pompă – cameră de bicicletă $L = -\frac{p_0 \cdot V_r}{N} \cdot \sum_{k=1}^{N \cdot (n-1)} \left[ln \frac{N+k-1}{N} + (N+k) \cdot ln \frac{N+k}{N+k-1} \right]$	0,20p	
	expresia cantității de căldură schimbată de aerul din sistemul pompă – cameră de bicicletă, cu aerul atmosferic din mediul exterior, din momentul începerii pompării până când presiunea aerului din camera roții de bicicletă atinge valoarea $n \cdot p_0$ $Q = \frac{p_0 \cdot V_r}{(\gamma - 1)} \cdot \left[n - \frac{N+1}{N} \right] - \frac{p_0 \cdot V_r}{N} \cdot \sum_{k=1}^{N \cdot (n-1)} \left[ln \frac{N+k-1}{N} + (N+k) \cdot ln \frac{N+k}{N+k-1} \right]$	0,20p	
Nr. item	Sarcina de lucru nr. 4		Punctaj
4.a.	Pentru:		0,20p
	numărul de moli de gaz din camera roții după $k=10$ pompări $v_{10}=0,\!43$ moli	0,20p	
4.b.	Pentru:		0,20p
	valoarea numerică a presiunii din camera roții de bicicletă după zece pompări $p_{10} = 1,52 \cdot 10^5 \frac{N}{m^2}$	0,20p	
4.c.	Pentru:		0,20p
	numărul de pompări pentru care presiunea din camera roții atinge valoarea $n \cdot p_0$ $\begin{cases} k_0 = \left[20 \cdot \left(2,51-1\right)\right] + 1 \\ k_0 = 31 \end{cases}$	0,20p	

4.d.	Pentru:		0,20p
	valoarea lucrului mecanic efectuat de Andrei în cursul celei de zecea pompări $ \begin{cases} L_{10, total} = \frac{\left(1,01\cdot10^5\frac{N}{m^2}\right)\cdot\left(7,00\cdot10^{-3}m^3\right)}{20} \cdot \left[\ln\frac{29}{20} + 30\cdot\ln\frac{30}{29}\right] \\ L_{10, total} \cong 49,1J \end{cases} $	0,20p	
4.e.	Pentru:		0,80p
	expresia variației de energie internă a aerului din sistemul pompa – cameră, în cursul celei de-a zecea pompări $\begin{cases} \Delta U_{10} = v_0 \cdot C_v \cdot T_0 \\ \Delta U_{10} = \frac{p_0 \cdot V_r}{N} \cdot \frac{1}{\gamma - 1} \cdot \end{cases}$	0,20p	
	$\Delta U_{10} = 88.4 J$	0,20p	
	expresia cantității de căldură schimbate de aerul din sistemul pompă – cameră de bicicletă, cu mediul exterior, în cursul celei de a zecea pompări $Q_{10} = \Delta U_{10} + L_{10}$	0,20p	
	$ \begin{cases} Q_{10} = 88,4 J - 49,1 J \\ Q_{10} = 39,3 J \end{cases} $	0,20p	
Oficiu			1,00p
TOTAL Problema a III-a			10p

© Barem de evaluare şi de notare propus de:

Conf. univ. dr. Adrian DAFINEI – Facultatea de Fizică – Universitatea București