Шестое домашнее задание СПБ, Академический Университет, 7 октября 2014

Содержание

дачи		2
Задача А.	Квадратный корень [0.5 секунд, 256 mb]	2
Задача В.	Корень кубического уравнения [0.5 секунд, 256 mb]	3
Задача С.	Быстрый поиск в массиве [1 секунда, 256 mb]	4
Задача D.	Для любителей статистики [1 секунда, 256 mb]	5
Задача Е.	Веревочки [0.5 секунд, 256 mb]	6
Задача F.	Одномерный почтальон [2 секунды, 256 mb]	7
Задача G .	Одномерный финансист [1 секунда, 256 mb]	8
онус		9
Задача Н.	Поезда [0.5 секунд, 256 mb]	9
Задача I.	La cucaracha [0.5 секунд, 256 mb]	10
Задача J.	Коровы— в стойла! [0.5 секунд, 256 mb]	11
	Задача В. Задача С. Задача D. Задача Е. Задача F. Задача G. Энус Задача Н. Задача I.	Задача А. Квадратный корень [0.5 секунд, 256 mb] Задача В. Корень кубического уравнения [0.5 секунд, 256 mb] Задача С. Быстрый поиск в массиве [1 секунда, 256 mb] Задача D. Для любителей статистики [1 секунда, 256 mb] Задача Е. Веревочки [0.5 секунд, 256 mb] Задача F. Одномерный почтальон [2 секунды, 256 mb] Задача G. Одномерный финансист [1 секунда, 256 mb]

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом: http://acm.math.spbu.ru/~sk1/algo/input-output/

Задачи

1 Задача А. Квадратный корень [0.5 секунд, 256 mb]

Дано целое число n от 0 до $2^{64}-1$. Ваша задача— найти $\lfloor \sqrt{n} \rfloor$.

Формат входных данных

Мультитест. На каждой строке по числу n. Не более 1000 строк.

Формат выходных данных

Для каждого n на отдельной строке ответ на запрос.

sqrt.in	sqrt.out
0	0
1	1
2	1
3	1
4	2
5	2

2 Задача В. Корень кубического уравнения [0.5 секунд, 256 mb]

Дано кубическое уравнение $ax^3+bx^2+cx+d=0$ ($a\neq 0$). Известно, что у этого уравнения есть ровно один корень. Требуется его найти.

Формат входных данных

Во входном файле через пробел записаны четыре целых числа: $-1000 \leqslant a, b, c, d \leqslant 1000$.

Формат выходных данных

Выведите единственный корень уравнения с точностью не менее 6 знаков после десятичной точки.

cubroot.in	cubroot.out
1 -3 3 -1	1
-1 -6 -12 -7	-1.000000

3 Задача С. Быстрый поиск в массиве [1 секунда, 256 mb]

Дан массив из N целых чисел. Все числа от -10^9 до 10^9 .

Нужно уметь отвечать на запросы вида "Сколько чисел имеют значения от L до R?".

Формат входных данных

Число N ($1 \leqslant N \leqslant 10^5$). Далее N целых чисел.

Затем число запросов K ($1 \le K \le 10^5$).

Далее K пар чисел L, R ($-10^9 \le L \le R \le 10^9$) — собственно запросы.

Формат выходных данных

Выведите K чисел — ответы на запросы.

find3.in	find3.out
5	5 2 2 0
10 1 10 3 4	
4	
1 10	
2 9	
3 4	
2 2	

4 Задача D. Для любителей статистики [1 секунда, 256 mb]

Вы никогда не задумывались над тем, сколько человек за год перевозят трамваи города с десятимиллионным населением, в котором каждый третий житель пользуется трамваем по два раза в день?

Предположим, что на планете Земля n городов, в которых есть трамваи. Любители статистики подсчитали для каждого из этих городов, сколько человек перевезено трамваями этого города за последний год. Из этих данных была составлена таблица, в которой города были отсортированы по алфавиту. Позже выяснилось, что для статистики названия городов несущественны, и тогда их просто заменили числами от 1 до n. Поисковая система, работающая с этими данными, должна уметь быстро отвечать на вопрос, есть ли среди городов с номерами от l до r такой, что за год трамваи этого города перевезли ровно x человек. Вам предстоит реализовать этот модуль системы.

Формат входных данных

В первой строке дано целое число $n,\ 0 < n < 70\,000$. В следующей строке приведены статистические данные в виде списка целых чисел через пробел, i-е число в этом списке — количество человек, перевезенных за год трамваями i-го города. Все числа в списке положительны и не превосходят 10^9-1 . В третьей строке дано количество запросов $q,\ 0 < q < 70\,000$. В следующих q строках перечислены запросы. Каждый запрос — это тройка целых чисел $l,\ r$ и x, записанных через пробел $(1\leqslant l\leqslant r\leqslant n,\ 0< x<10^9)$.

Формат выходных данных

Выведите строку длины q, в которой i-й символ равен 1, если ответ на i-й запрос утвердителен, и 0 в противном случае.

queries.in	queries.out
5	10101
123 666 314 666 434	
5	
1 5 314	
1 5 578	
2 4 666	
4 4 713	
1 1 123	

5 Задача Е. Веревочки [0.5 секунд, 256 mb]

С утра шел дождь, и ничего не предвещало беды. Но к обеду выглянуло солнце, и в лагерь заглянула СЭС. Пройдя по всем домикам и корпусам, СЭС вынесла следующий вердикт: бельевые веревки в жилых домиках не удовлетворяют нормам СЭС. Как выяснилось, в каждом домике должно быть ровно по одной бельевой веревке, и все веревки должны иметь одинаковую длину. В лагере имеется N бельевых веревок и K домиков. Чтобы лагерь не закрыли, требуется так нарезать данные веревки, чтобы среди получившихся веревочек было K одинаковой длины. Размер штрафа обратно пропорционален длине бельевых веревок, которые будут развешены в домиках. Поэтому начальство лагеря стремиться максимизировать длину этих веревочек.

Формат входных данных

В первой строке заданы два числа — N ($1 \le N \le 10\,001$) и K ($1 \le K \le 10\,001$). Далее в каждой из последующих N строк записано по одному числу — длине очередной бельевой веревки. Длина веревки задана в сантиметрах. Все длины лежат в интервале от 1 сантиметра до 100 километров включительно.

Формат выходных данных

В выходной файл следует вывести одно целое число — максимальную длину веревочек, удовлетворяющую условию, в сантиметрах. В случае, если лагерь закроют, выведите 0.

ropes.in	ropes.out
4 11	200
802	
743	
457	
539	

6 Задача F. Одномерный почтальон [2 секунды, 256 mb]

В деревне Печалька живут n человек, их домики расположены ровно на оси абсцисс. Домик i-го человека находится в точке x_i . В деревню приехал и хочет там поселиться почтальон. Координату своего домика y он хочет выбрать так, чтобы суммарное расстояние от него до всех жителей деревни было минимально возможным. То есть

$$\sum_{i=1}^{n} |y - x_i| \to \min$$

Вам дан массив x из n случайных целых чисел. Найдите точку y.

Формат входных данных

На первой строке число n ($1 \le n \le 10^7$). На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
    unsigned int cur = 0; // беззнаковое 32-битное число
    unsigned int nextRand24() {
    cur = cur * a + b; // вычисляется с переполнениями
    return cur » 8; // число от 0 до 2<sup>24</sup> - 1.
    }
    unsigned int nextRand32() {
    unsigned int a = nextRand24(), b = nextRand24();
    return (a « 8) ^ b; // число от 0 до 2<sup>32</sup> - 1.
    }
    Элементы массива генерируются последовательно. x<sub>i</sub> = nextRand32();
```

Формат выходных данных

Выведите одно число — минимальное суммарное расстояние от точки у до всех домиков.

Примеры

postman.in	postman.out
6	8510257371
239 13	

Замечание

Сгенерированный массив: 12, 130926, 3941054950, 2013898548, 197852696, 2753287507.

7 Задача G. Одномерный финансист [1 секунда, 256 mb]

В деревне Печалька живут n человек, их домики расположены ровно на оси абсцисс. Домик i-го человека находится в точке x_i . В деревню недавно заселился почтальон. Почтальон построил себе домик в такой точке y, что суммарное расстояние от него до всех жителей деревни было минимально возможным. А теперь в деревню приехал финансовый аналитик, который привык не только оптимизировать результат, но и оценивать риски. Посмотрев на опыт почтальона, аналитик заметил, что несмотря на то, что сумма минимальна, есть домики очень далеко от дома почтальона. Финансист учел это и свой дом хочет построить в такой точке z, что

$$\sum_{i=1}^{n} (z - x_i)^2 \to \min$$

С почтальоном финансист не дружит, поэтому расстояние до y в сумме не учитывается. Вам дан массив x из n случайных целых чисел. Найдите точку z.

Формат входных данных

На первой строке число n ($1 \le n \le 10^7$). На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
    unsigned int cur = 0; // беззнаковое 32-битное число
    unsigned int nextRand24() {
    cur = cur * a + b; // вычисляется с переполнениями
    return cur » 8; // число от 0 до 2<sup>24</sup> - 1.
    }
    unsigned int nextRand32() {
    unsigned int a = nextRand24(), b = nextRand24();
    return (a « 8) ^ b; // число от 0 до 2<sup>32</sup> - 1.
    }
    Элементы массива генерируются последовательно. x<sub>i</sub> = nextRand32();
```

Формат выходных данных

Выведите координату домика финансиста в виде несократимой дроби с положительным знаменателем.

Примеры

finansist.in	finansist.out
6	3368129374/3
230 10	

Замечание

Сгенерированный массив: 12, 130926, 3941054950, 2013898548, 197852696, 2753287507.

Бонус

8 Задача Н. Поезда [0.5 секунд, 256 mb]

В связи с участившимся числом аварий на железнодорожной ветке Москва-Саратов, руководство железной дороги решило изменить график движения поездов. Тщательный анализ состояния железнодорожного полотна показал, что оптимальным является следующий график движения поездов с учетом остановок на станциях: сначала поезд идет на протяжении T_1 минут со скоростью V_1 метров в минуту, затем T_2 минут со скоростью V_2 метров в минуту, ..., наконец, T_N минут со скоростью V_N метров в минуту. В течение некоторых интервалов поезд может стоять (скорость равна 0).

По действующей инструкции обеспечения безопасности движения поездов расстояние между локомотивами двух следующих друг за другом поездов должно быть не менее L метров. Определите минимально допустимый интервал в минутах между отправлениями поездов, позволяющий им двигаться по этому графику без опасного сближения.

Формат входных данных

В первых двух строках входного файла содержится два натуральных числа, задающие минимально допустимое расстояние L и количество участков пути N (100 $\leqslant L \leqslant$ 10000, $1 \leqslant N \leqslant$ 1000). Далее следует N пар целых чисел T_i и V_i , задающих график движения поездов ($1 \leqslant T_i \leqslant$ 1000, $0 \leqslant V_i \leqslant$ 1000).

Формат выходных данных

В выходной файл необходимо вывести искомый интервал между отправлениями поездов в минутах, не менее чем с тремя верными знаками после десятичной точки.

trains.in	trains.out
1000	27.500
4	
10 0	
30 80	
15 0	
20 100	

9 Задача I. La cucaracha [0.5 секунд, 256 mb]

Каждую полночь в квартире ученого Васи начинается ужас. Сотни ..., о нет! ТЫСЯЧИ тараканов вылазят из каждой дырки к его обеденному столу, уничтожая все крошки и объедки! Вася ненавидит тараканов. Он очень долго думал и сделал Супер-ловушку, которая привлекает всех тараканов в большой зоне после активации. Он планирует активировать ловушку сегодня ночью. Но есть проблема. Эта очень эффективная ловушка с её очень большой зоной работы поглощает огромное количество энергии. Так что, Вася планирует минимизировать время работы этой ловушки. Он собрал информацию о всех местах, в которых живут тараканы. Также он заметил, что все тараканы двигаются только по линиям его скатерти с постоянной скоростью (мы можем предположить, что эта скорость равна 1, так что таракан расположенный в одной из секций, может за 1 единицу времени переместится на любую соседнюю секцию (по вертикали или горизонтали)). Вася решил активировать его ловушку в одной из секций. Когда ловушка активирована, все тараканы будут двигаться к секции, содержащей ловушку, так быстро, как только смогут. Поэтому в любой момент времени после активации тараканы двигаются к секции, в которой находится ловушка, максимально уменьшая расстояние до неё. Если есть два пути с одинаковым расстоянием, то таракан выберет любой. Напишите программу для Васи, которая выбирает секцию, минимизирующую время, необходимое для уничтожения всех тараканов. Конечно, ваша программа будет считать, что скатерть будет плоскостью с декартовой системой координат и секции — точки с целыми координатами.

Формат входных данных

В первой строке входного файла содержится число мест, в которых живут тараканы N ($1 \le N \le 10000$). Следующие N строк содержат x и y — координаты мест, в которых живут тараканы (целые числа не больше 10^9 по абсолютному значению).

Формат выходных данных

Вам необходимо вывести только два целых числа x и y, не превосходящие по модулю 10^9 , — координаты секции, которая минимизирует время работы. Если есть более одное решение — выведите любое из них.

cucarach.in	cucarach.out
2	2 2
1 1	
3 3	

10 Задача J. Коровы – в стойла! [0.5 секунд, 256 mb]

На прямой расположены стойла, в которые необходимо расставить коров так, чтобы минимальное растояние между коровами было как можно больше.

Формат входных данных

В первой строке вводятся числа N (2 $< N < 10\,001$) — количество стойл и K (1 < K < N) — количество коров. Во второй строке задаются N натуральных чисел в порядке возрастания — координаты стойл (координаты не превосходят 10^9).

Формат выходных данных

Выведите одно число — наибольшее возможное допустимое расстояние.

cows.in	cows.out
5 3	99
1 2 3 100 1000	