# A hybrid VND method for the split delivery vehicle routing problem

## Yury Kochetov

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia

jointly with Alexey Khmelev

### **Overview**

- SDVRP formulation
- Main idea of algorithm
- Coding solutions
- Variable neighborhood descent
- Tabu Search procedure
- Algorithm overview
- Computational results

## **SDVRP Formulation**

- Vehicles with capacity
- customers with demand
- Objective:
- minimize the total distance traveled
- Constraints:
- serve all customers
- do not exceed the vehicle capacity
- customers can be serviced by more than one vehicle



# **Bounded Formulation (Frizzell & Giffin 1992)**

```
d_{ij} cost of traveling between customer i and customer j
```

 $w_i$  demand of customer i

Q capacity of vehicle

#### Variables:

```
x_{ijk} 1 if the vehicle k travels directly from customer i to customer j, 0 otherwise
```

 $f_{ik}$  the fraction of demand of customer i delivered by vehicle k  $y_{ik}$  surplus variables for subtour elimination

$$\min \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=1}^{v} d_{ij} x_{ijk}$$

$$\sum_{k=1}^{n} \sum_{i=0}^{n} x_{ijk} \ge 1;$$

$$\sum_{i=0}^{n} x_{ijk} = \sum_{j=0}^{n} x_{ijk};$$

$$\sum_{k=1}^{v} f_{ik} = 1; \quad \sum_{i=1}^{n} w_{i} f_{ik} \le Q; \quad f_{ik} \le \sum_{j=0}^{n} x_{jik};$$

$$y_{ik} - y_{jk} + (n+1) x_{ijk} \le n.$$

#### Main idea

Let  $\pi$ :  $\{1,\ldots,n\} \to \{1,\ldots,n\}$  is a permutation of customers.  $R^\pi$  is the set of all possible routes, obtained from the permutation  $\pi$ . For each  $r \in R^\pi$  vehicle can travel from customer i to customer j only if  $y_i < y_j$ 

#### Theorem 1

Let the distance matrix  $(d_{ij})$  satisfies the triangle inequality and let  $R^*=(r^1,\dots,r^F)$  is the set of routes in optimal solution. Then there is a permutation  $\pi$  such that  $r\in R^\pi$  for each  $r\in R^*$ 

#### Theorem 2

If  $(d_{ij})$  satisfies the triangle inequality, there always exists an optimal SDVRP solution such that  $y_{ik_1} = y_{ik_2}$  for all  $i, k_1, k_2$ .

#### Theorem 3

SDVRP is NP-hard for given permutation  $\pi$ .

## Algorithmic idea

- 1. Apply local search for permutations
- 2. For each permutation we apply heuristics to obtain set of routes

## **Encoding solutions**

#### **Permutation U without split demands**

List of customer visits: 5 3 6 2 1 4

Amounts delivered: 9 5 7 4 8 6

#### **Permutation V with 3 split demands**

List of customer visits: 5 3 3 6 6 2 1 1 4

Amounts delivered: 914614536

#### **Permutation E with dummy customers**

List of customer visits: 5 3 3 6 -- 6 2 1 -- 1 4

Amounts delivered: 91465145736

# Decoding procedures: Exact (Prins 2004)



Permutation S = (a, b, c, d, e) and optimal splitting for VRP, cost 205



Auxiliary graph of possible trips for Q=10 and shortest path in boldface

(Bellman's algorithm for directed acyclic graphs)

## **Decoding procedures: Greedy**



#### Local search moves

Shift



Swap



2-Opt



# **Split moves (Boudia 2007)**





# **Ejection chains**





VNS'14 14

## Variable neighborhood descent

- 1. Choose initial solution
- 2. Apply a local search method to find local optimum for current neighborhood
- 3. Switch neighborhood
- 4. Repeat steps 2 and 3 until it is local optimum for each neighborhood

We use exact decoder.

# Tabu search procedure

- 1. Choose an initial solution, tabu list is empty
- 2. Move to the best available neighboring solution
- 3. Update tabu list
- 4. Repeat steps 2 and 3 until the stopping condition is met

- We use greedy decoder.
- We use randomized 2-opt neighborhood.
- Stopping condition is maximum number of iterations.
- Diversification: we return the best solution.

# **Algorithm overview**



VNS'14 17

|        | TSVBA MA MP |          | Hybrid |          |      |          |       |        |            |
|--------|-------------|----------|--------|----------|------|----------|-------|--------|------------|
| File   | Demand      | Cost     | Time   | Cost     | Time | Cost     | Time  | Saving | Best known |
| p1-50  | [0.01-0.1]  | 466,74   | 20     | 460,79   | 12   | 461,87   | 82    | -0,23  | 460,79     |
| p2-75  | [0.01-0.1]  | 614,09   | 136    | 600,06   | 19   | 600,32   | 170   | -0,68  | 596,25     |
| p3-100 | [0.01-0.1]  | 741,60   | 1 944  | 726,81   | 37   | 745,62   | 317   | -2,59  | 726,81     |
| p4-150 | [0.01-0.1]  | 891,10   | 2 641  | 875,61   | 100  | 885,93   | 951   | -2,26  | 866,31     |
| p5-199 | [0.01-0.1]  | 1 069,24 | 11 216 | 1 018,71 | 356  | 1 048,63 | 1 337 | -2,97  | 1 018,38   |
| p6-120 | [0.01-0.1]  | 990,59   | 2 736  | 976,57   | 73   | 1 003,75 | 450   | -2,78  | 976,57     |
| p7-100 | [0.01-0.1]  | 658,99   | 462    | 649,73   | 35   | 637,46   | 243   | -0,58  | 633,80     |
| p1-50  | [0.1-0.3]   | 753,98   | 23     | 751,41   | 10   | 766,94   | 36    | -3,49  | 741,06     |
| p2-75  | [0.1-0.3]   | 1 085,70 | 97     | 1 074,46 | 34   | 1 084,41 | 69    | -1,56  | 1 067,80   |
| p3-100 | [0.1-0.3]   | 1 416,35 | 161    | 1 392,85 | 78   | 1 403,99 | 100   | -1,94  | 1 377,28   |
| p4-150 | [0.1-0.3]   | 1 929,91 | 755    | 1 878,71 | 148  | 1 904,92 | 226   | -1,59  | 1 875,09   |
| p5-199 | [0.1-0.3]   | 2 408,16 | 1 544  | 2 340,14 | 347  | 2 366,39 | 399   | -1,59  | 2 329,37   |
| p6-120 | [0.1-0.3]   | 2 755,74 | 464    | 2 720,38 | 144  | 2 718,23 | 146   | 0,08   | 2 720,38   |
| p7-100 | [0.1-0.3]   | 1 441,48 | 98     | 1 417,28 | 43   | 1 426,20 | 94    | -0,74  | 1 415,78   |
| p1-50  | [0.1-0.5]   | 1 023,24 | 18     | 988,31   | 12   | 988,05   | 25    | 0,03   | 988,31     |
| p2-75  | [0.1-0.5]   | 1 458,59 | 68     | 1 413,80 | 37   | 1 436,98 | 63    | -2,75  | 1 398,53   |
| p3-100 | [0.1-0.5]   | 1 886,70 | 145    | 1 845,30 | 28   | 1 859,68 | 122   | -1,75  | 1 827,65   |
| p4-150 | [0.1-0.5]   | 2 647,17 | 470    | 2 561,65 | 225  | 2 581,26 | 259   | -1,63  | 2 539,75   |
| p5-199 | [0.1-0.5]   | 3 296,69 | 1 217  | 3 191,25 | 475  | 3 216,43 | 535   | -1,14  | 3 180,30   |
| p6-120 | [0.1-0.5]   | 4 010,80 | 341    | 3 934,39 | 163  | 3 925,04 | 147   | 0,24   | 3 934,39   |
| p7-100 | [0.1-0.5]   | 2 010,00 | 85     | 1 994,59 | 51   | 1 989,40 | 99    | 0,26   | 1 994,59   |

|        |           | TSVB      | A    | MA MP     |      | Hybrid    |       |        |            |
|--------|-----------|-----------|------|-----------|------|-----------|-------|--------|------------|
| File   | Demand    | Cost      | Time | Cost      | Time | Cost      | Time  | Saving | Best known |
| p1-50  | [0.1-0.9] | 1 530,81  | 19   | 1 467,06  | 21   | 1 461,64  | 54    | 0,37   | 1 467,06   |
| p2-75  | [0.1-0.9] | 2 164,74  | 62   | 2 102,58  | 46   | 2 112,65  | 123   | -1,22  | 2 087,22   |
| p3-100 | [0.1-0.9] | 2 874,86  | 125  | 2 780,95  | 84   | 2 789,66  | 132   | -0,31  | 2 780,95   |
| p4-150 | [0.1-0.9] | 4 151,90  | 452  | 4 045,87  | 245  | 4 050,19  | 534   | -0,34  | 4 036,44   |
| p5-199 | [0.1-0.9] | 5 066,24  | 109  | 4 941,22  | 726  | 4 890,86  | 608   | 1,02   | 4 941,22   |
| p6-120 | [0.1-0.9] | 6 308,76  | 419  | 6 318,37  | 196  | 6 227,87  | 173   | 1,43   | 6 318,37   |
| p7-100 | [0.1-0.9] | 3 157,48  | 98   | 3 113,72  | 52   | 3 105,25  | 143   | 0,27   | 3 113,72   |
| p1-50  | [0.3-0.7] | 1 505,38  | 19   | 1 477,01  | 25   | 1 498,21  | 52    | -1,44  | 1 477,01   |
| p2-75  | [0.3-0.7] | 2 182,33  | 55   | 2 132,16  | 52   | 2 149,66  | 138   | -0,82  | 2 132,16   |
| p3-100 | [0.3-0.7] | 2 929,29  | 135  | 2 858,87  | 100  | 2 866,12  | 191   | -0,25  | 2 858,87   |
| p4-150 | [0.3-0.7] | 4 151,90  | 449  | 4 045,87  | 245  | 4 037,89  | 395   | 0,20   | 4 045,87   |
| p5-199 | [0.3-0.7] | 5 281,50  | 119  | 5 155,36  | 750  | 5 134,90  | 745   | 0,40   | 5 155,36   |
| p6-120 | [0.3-0.7] | 6 511,08  | 437  | 6 424,71  | 271  | 6 349,54  | 253   | 0,78   | 6 399,42   |
| p7-100 | [0.3-0.7] | 3 200,62  | 65   | 3 155,69  | 91   | 3 142,46  | 153   | 0,42   | 3 155,69   |
| p1-50  | [0.7-0.9] | 2 219,32  | 24   | 2 154,35  | 23   | 2 176,75  | 122   | -1,04  | 2 154,35   |
| p2-75  | [0.7-0.9] | 3 278,33  | 85   | 3 200,35  | 27   | 3 244,74  | 343   | -1,39  | 3 200,35   |
| p3-100 | [0.7-0.9] | 4 435,56  | 186  | 4 312,95  | 56   | 4 339,39  | 675   | -0,61  | 4 312,95   |
| p4-150 | [0.7-0.9] | 6 416,12  | 679  | 6 267,48  | 402  | 6 305,73  | 767   | -0,61  | 6 267,48   |
| p5-199 | [0.7-0.9] | 8 333,61  | 153  | 8 081,58  | 572  | 8 075,79  | 1 101 | 0,07   | 8 081,58   |
| p6-120 | [0.7-0.9] | 10 186,06 | 30   | 10 063,47 | 298  | 10 031,42 | 523   | -0,14  | 10 017,47  |
| p7-190 | [0.7-0.9] | 4 996,88  | 153  | 4 919,48  | 180  | 4 934,64  | 296   | -0,31  | 4 919,48   |

|            | TSV       | BA     | EMIP +    | VRTP     | Hybrid    |          |        |            |
|------------|-----------|--------|-----------|----------|-----------|----------|--------|------------|
| Instance   | Cost      | Time   | Cost      | Time     | Cost      | Time     | Saving | Best known |
| c-SD01-008 | 228,28    | 0,00   | 228,28    | 0,70     | 228,28    | 0,37     | 0,00   | 228,28     |
| c-SD02-016 | 708,28    | 0,02   | 714,40    | 54,40    | 714,40    | 2,58     | -0,86  | 708,28     |
| c-SD03-016 | 430,58    | 0,03   | 430,61    | 67,30    | 430,58    | 2,07     | 0,00   | 430,58     |
| c-SD04-024 | 631,05    | 0,08   | 631,06    | 400,00   | 631,05    | 6,78     | 0,00   | 631,05     |
| c-SD05-032 | 1 390,57  | 0,13   | 1 408,12  | 402,70   | 1 403,99  | 17,74    | -0,97  | 1 390,57   |
| c-SD06-032 | 831,24    | 0,14   | 831,21    | 408,30   | 831,24    | 17,58    | 0,00   | 831,21     |
| c-SD07-040 | 3 640,00  | 0,09   | 3 714,40  | 403,20   | 3 640,00  | 30,76    | 0,00   | 3 640,00   |
| c-SD08-048 | 5 068,28  | 0,14   | 5 200,00  | 404,10   | 5 108,28  | 54,87    | -0,79  | 5 068,28   |
| c-SD09-048 | 2 071,03  | 0,36   | 2 059,84  | 404,30   | 2 048,67  | 62,11    | 0,54   | 2 059,84   |
| c-SD10-064 | 2 747,83  | 0,89   | 2 749,11  | 400,00   | 2 716,96  | 85,03    | 1,12   | 2 747,83   |
| c-SD11-080 | 13 280,00 | 0,41   | 13 612,12 | 400,10   | 13 280,00 | 148,30   | 0,00   | 13 280,00  |
| c-SD12-080 | 7 213,62  | 0,84   | 7 399,06  | 408,30   | 7 236,66  | 109,80   | -0,32  | 7 213,62   |
| c-SD13-096 | 10 110,58 | 1,20   | 10 367,06 | 404,50   | 10 110,58 | 191,14   | 0,00   | 10 110,58  |
| c-SD14-120 | 10 802,87 | 2,31   | 11 023,00 | 5 021,70 | 10 776,82 | 237,35   | 0,24   | 10 802,87  |
| c-SD15-144 | 15 153,45 | 3,20   | 15 271,77 | 5 042,30 | 15 121,94 | 289,28   | 0,21   | 15 153,45  |
| c-SD16-144 | 3 446,43  | 7,59   | 3 449,05  | 5 014,70 | 3 381,31  | 258,50   | 1,89   | 3 446,43   |
| c-SD17-160 | 26 493,56 | 7,27   | 26 665,76 | 5 023,60 | 26 584,90 | 421,31   | -0,34  | 26 493,56  |
| c-SD18-160 | 14 323,04 | 27,95  | 14 546,58 | 5 028,60 | 14 288,57 | 416,28   | 0,24   | 14 323,04  |
| c-SD19-192 | 20 157,10 | 11,95  | 20 559,21 | 5 034,20 | 20 109,05 | 530,70   | 0,24   | 20 157,10  |
| c-SD20-240 | 39 722,86 | 11,02  | 40 408,22 | 5 053,00 | 39 697,18 | 1 056,28 | 0,06   | 39 722,86  |
| c-SD21-288 | 11 458,76 | 111,56 | 11 491,67 | 5 051,00 | 11 292,96 | 1 241,37 | 1,45   | 11 458,76  |

VNS'14 20

## **Conclusion**

- We found some new properties of the problem
- We developed new hybrid heuristic based on idea of different decoders
- It improves 21 best-known solutions in the 70 test instances with number of customers up to 280

