Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Лабораторная работа №4

«Задачи целочисленного линейного программирования»

ДИСЦИПЛИНА: «Моделирование»

	(Сафронов Н.С.
(подпись)		(Ф.И.О.)
	(Никитенко У.В.
(подпись)		(Ф.И.О.)
оценка:		
	(подпись)	(подпись)

Калуга, 2023

Цель работы: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений при решении задач целочисленного линейного программирования на основе сравнения результатов.

Постановка задачи

Найдите оптимальный план задачи целочисленного линейного программирования (N — порядковый номер студента в списке группы), используя

- первый алгоритм Гомори;
- второй алгоритм Гомори (x_1 произвольное, x_2 целое);
- метод ветвей и границ (решение проиллюстрируйте схемой).

Вариант 14

$$z = 3x_1 + 4x_2 o min$$
 $2x_1 + 5x_2 \ge 19$ $5x_1 + 2x_2 \ge 21$ $x_1, x_2 \ge 0$ $x_1, x_2 -$ целые

Ход выполнения работы

Первый алгоритм Гомори

Представим задачу в канонической форме:

$$z = 3x_1 + 4x_2 \rightarrow min$$

$$2x_1 + 5x_2 - x_3 = 19$$

$$5x_1 + 2x_2 - x_4 = 21$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Решим задачу программно в произвольных числах, воспользовавшись двойственным симплекс-методом:

Рисунок 1 – Решение задачи в произвольных числах

Выпишем полученную симплекс-таблицу:

Базис	x_1	x_2	x_3	x_4	План
x_1	1	0	$\frac{2}{21}$	$-\frac{5}{21}$	$\frac{67}{21}$
x_2	0	1	$-\frac{5}{21}$	$\frac{21}{21}$	$\frac{53}{21}$
Z	0	0	$-\frac{14}{21}$	$-\frac{7}{21}$	$\frac{413}{21}$

Получаем следующее решение в произвольных числах:

$$x_1 = \frac{67}{21} = 3.19$$

$$x_2 = \frac{53}{21} = 2.52$$

$$z = \frac{413}{21} = 19.67$$

Найдём целые части оптимального решения:

$$[x_1] = 3$$

$$[x_2] = 2$$

Найдём дробные части оптимального решения:

$$\{x_1\} = \frac{67}{21} - \frac{63}{21} = \frac{4}{21}$$

$$\{x_2\} = \frac{53}{21} - \frac{42}{21} = \frac{11}{21}$$

Выбираем переменную с наибольшей дробной частью, т.е. x_2 .

Вводим дополнительное ограничение целочисленности:

$$q_{2} - q_{21}x_{1} - q_{22}x_{2} - q_{23}x_{3} - q_{24}x_{4} \le 0$$

$$q_{21} = 0 - 0 = 0$$

$$q_{22} = 1 - 1 = 0$$

$$q_{23} = -\frac{5}{21} + 1 = \frac{16}{21}$$

$$q_{24} = \frac{2}{21} - 0 = \frac{2}{21}$$

$$\frac{11}{21} - \frac{16}{21}x_{3} - \frac{2}{21}x_{4} \le 0$$

$$-\frac{16}{21}x_{3} - \frac{2}{21}x_{4} + x_{5} = \frac{11}{21}$$

Добавляем новую строку и получаем следующую симплекс таблицу:

Базис	x_1	x_2	x_3	x_4	x_5	План
x_1	1	0	$\frac{2}{21}$	$-\frac{5}{21}$	0	$\frac{67}{21}$
x_2	0	1	$-\frac{5}{21}$	$\frac{2}{21}$	0	$\frac{53}{21}$
<i>x</i> ₅	0	0	$-\frac{16}{21}$	$-\frac{2}{21}$	1	$\frac{11}{21}$
Z	0	0	$-\frac{14}{21}$	$-\frac{7}{21}$	0	$\frac{413}{21}$

Преобразуем симплекс-таблицу и получим:

Базис	x_1	x_2	x_3	x_4	x_5	План
v .	1	0	0	1	1	25
x_1	1	O	U	$-\frac{1}{4}$	8	8
24	0	1	0	1	5	43
x_2	U	1	U	8	$-\frac{1}{16}$	16
24	0	0	1	1	21	11
x_3	U	U	1	8	$-\frac{1}{16}$	16

_	0	0	0	1	7	175
Z	U	U	U	$-\frac{1}{4}$	$-\frac{8}{8}$	8

Найдём дробные части оптимального решения:

$$\{x_1\} = \frac{25}{8} - \frac{24}{8} = \frac{1}{8}$$
$$\{x_2\} = \frac{43}{16} - \frac{32}{16} = \frac{11}{16}$$
$$\{x_3\} = \frac{11}{16}$$

Выбираем переменную с наибольшей дробной частью, т.е. x_2 .

Вводим дополнительное ограничение целочисленности:

$$q_{2} - q_{21}x_{1} - q_{22}x_{2} - q_{23}x_{3} - q_{24}x_{4} - q_{25}x_{5} \le 0$$

$$q_{2} = \frac{43}{16} - 2 = \frac{11}{16}$$

$$q_{21} = 0 - 0 = 0$$

$$q_{22} = 1 - 1 = 0$$

$$q_{23} = 0 - 0 = 0$$

$$q_{24} = \frac{1}{8} - 0 = \frac{1}{8}$$

$$q_{25} = -\frac{5}{16} + 1 = \frac{11}{16}$$

$$\frac{11}{16} - \frac{1}{8}x_{4} - \frac{11}{16}x_{5} \le 0$$

$$-\frac{1}{8}x_{4} - \frac{11}{16}x_{5} + x_{6} = -\frac{11}{16}$$

Добавляем новую строку и получаем следующую симплекс таблицу:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	План
x_1	1	0	0	$-\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{25}{8}$
x_2	0	1	1	$\frac{1}{8}$	$-\frac{5}{16}$	0	$\frac{43}{16}$

x_3	0	0	0	$\frac{1}{8}$	$-\frac{21}{16}$	0	$\frac{11}{16}$
x_6	0	0	0	$-\frac{1}{8}$	$-\frac{11}{16}$	1	$-\frac{11}{16}$
Z	0	0	0	$-\frac{1}{4}$	$-\frac{7}{8}$	0	$-\frac{175}{8}$

Преобразуем симплекс-таблицу и получим:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	План
x_1	1	0	0	$-\frac{3}{11}$	0	$\frac{2}{11}$	3
x_2	0	1	0	$\frac{2}{11}$	0	$-\frac{5}{11}$	3
x_3	0	0	1	$\frac{4}{11}$	0	$-\frac{21}{11}$	2
x_5	0	0	0	$\frac{2}{11}$	1	$-\frac{16}{11}$	1
Z	0	0	0	$-\frac{1}{11}$	0	$-\frac{14}{11}$	-21

Решение получилось целочисленным. Оптимальный целочисленный план можно записать так:

$$x_1 = 3, x_2 = 3$$

 $\min z = f(3,3) = 3 * 3 + 4 * 3 = 21$

```
=== Решение в целых числах ===
objective: 21
status: OPTIMAL_SOLUTION(2)
x_1=3
x_2=3
```

Рисунок 2 – Решение задачи в целых числах

Второй алгоритм Гомори

Представим задачу в канонической форме:

$$z=3x_1+4x_2\to min$$

$$2x_1 + 5x_2 - x_3 = 19$$

$$5x_1 + 2x_2 - x_4 = 21$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Решим задачу программно в произвольных числах, воспользовавшись двойственным симплекс-методом и выпишем полученную таблицу:

Базис	x_1	x_2	x_3	x_4	План
x_1	1	0	$\frac{2}{24}$	<u>5</u>	$\frac{67}{24}$
			21	21	21
x_2	0	1	$-\frac{5}{21}$	$\frac{2}{21}$	$\frac{53}{21}$
7	0	0	14	7	413
Z	O	U	$-{21}$	$-{21}$	21

В полученном оптимальном плане переменная x_2 имеет дробную часть числа. Дополнительное ограничение составляем по строке, соответствующей переменной x_2 .

$$\frac{2}{21}x_4 + \frac{\frac{53}{21}}{\frac{53}{21} - 1} \left(-\frac{5}{21}\right)x_3 \le \frac{53}{21}$$
$$-\frac{11}{42}x_3 - \frac{2}{21}x_4 + x_5 = -\frac{11}{21}$$

Добавляем новую строку и получаем следующую симплекс таблицу:

Базис	x_1	x_2	x_3	x_4	x_5	План
x_1	1	0	$\frac{2}{21}$	$-\frac{5}{21}$	0	$\frac{67}{21}$
x_2	0	1	$-\frac{5}{21}$	$\frac{2}{21}$	0	$\frac{53}{21}$
x_5	0	0	$-\frac{11}{42}$	$-\frac{2}{21}$	1	$-\frac{11}{21}$
Z	0	0	$-\frac{14}{21}$	$-\frac{7}{21}$	0	$\frac{413}{21}$

Преобразуем симплекс-таблицу и получим:

Базис	x_1	x_2	x_3	<i>x</i> ₄	x_5	План
x_1	1	0	0	$-\frac{3}{11}$	$\frac{4}{11}$	3
x_2	0	1	0	$\frac{2}{11}$	$-\frac{10}{11}$	3
x_3	0	0	1	$\frac{4}{11}$	$-\frac{42}{11}$	2
Z	0	0	0	$-\frac{1}{11}$	$-\frac{28}{11}$	-21

Получаем оптимальный план, который можно записать так:

$$x_1 = 3, x_2 = 3$$

 $\min z = f(3,3) = 3 * 3 + 4 * 3 = 21$

```
=== Решение задачи, где x_1 - произвольное, а x_2 - целое ===
objective: 21.000
status: OPTIMAL_SOLUTION(2)
x_1=3.000
x_2=3
```

Рисунок 3 – Решение задачи при x_1 – произвольное, а x_2 - целое

Метод ветвей и границ

Построим графики, соответствующие системе:

$$2x_1 + 5x_2 \ge 19$$
$$5x_1 + 2x_2 \ge 21$$
$$x_1, x_2 \ge 0$$

Рисунок 4 – Графики, соответствующие системе

```
Пересечение графиков $2 x_1 + 5 x_2 >= 19$ и $5 x_1 + 2 x_2 >= 21$ \{x_1: 67/21, x_2: 53/21\} Пересечение графиков $2 x_1 + 5 x_2 >= 19$ и $x_2 >= 0$ \{x_1: 19/2, x_2: 0\} Пересечение графиков $5 x_1 + 2 x_2 >= 21$ и $x_1 >= 0$ \{x_1: 0, x_2: 21/2\}
```

Рисунок 5 – Точки пересечения графиков, входящие в исследуемую область

Минимальное значение целевой функции достигается при $x_1 = \frac{67}{21}$, $x_2 = \frac{53}{21}$. Будем использовать его для минимизации.

Разбиваем задачу 1 на две подзадачи 11 и 12. В первой из них к условиям задачи 11 добавляется условие $x_1 \ge 4$, а к задаче 12 — условие $x_1 \le 3$.

Решим задачу 11 как задачу ЛП.

$$\begin{cases} 2x_1 + 5x_2 \ge 19 \\ 5x_1 + 2x_2 \ge 21 \\ x_1 \ge 4 \\ x_2 \ge 0 \end{cases}$$

Решая задачу, получаем решение: $x_1 = 4$, $x_2 = 2.2$, z = 3*4+4*2.2 = 20.8.

Оптимальное значение переменной $x_2 = 2.2$ оказалось нецелочисленным.

Разбиваем задачу 11 на две подзадачи 111 и 112. В первой из них к условиям задачи 111 добавляется условие $x_2 \ge 3$, а к задаче 112 — условие $x_2 \le 2$.

Решим задачу 111 как задачу ЛП.

$$\begin{cases} 2x_1 + 5x_2 \ge 19 \\ 5x_1 + 2x_2 \ge 21 \\ x_1 \ge 4 \\ x_2 \ge 3 \end{cases}$$

Решая задачу, получаем решение: $x_1 = 4$, $x_2 = 3$, z = 3*4+4*3=24. Запоминаем значение текущего целочисленного рекорда.

Решим задачу 112 как задачу ЛП.

$$\begin{cases} 2x_1 + 5x_2 \ge 19 \\ 5x_1 + 2x_2 \ge 21 \\ x_1 \ge 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Решая задачу, получаем решение: $x_1 = 4.5, x_2 = 3, z = 3*4.5 + 4*2 = 21.5$. Оптимальное значение переменной $x_1 = 4.5$ оказалось нецелочисленным.

Решим задачу 12 как задачу ЛП.

$$\begin{cases} 2x_1 + 5x_2 \ge 19 \\ 5x_1 + 2x_2 \ge 21 \\ 0 \le x_1 \le 3 \\ x_2 \ge 0 \end{cases}$$

Решая задачу, получаем решение: $x_1=3, x_2=3, z=3*4+4*3=21.$ Запоминаем значение текущего целочисленного рекорда $21\leq 24\to 21.$

Оптимальный план можно записать так:

$$x_1 = 3, x_2 = 3, z = 21.$$

Рисунок 6 – Схема метода ветвей и границ

Вывод: в ходе выполнения лабораторной работы были сформированы практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений при решении задач целочисленного линейного программирования на основе сравнения результатов.

приложения

Листинг программы

Задание 1

```
from docplex.mp.model import Model
m = Model()
x_1 = m.integer_var(name='x_1', lb=0)
x = m.integer var(name='x 2', lb=0)
m.add constraint(2 * x 1 + 5 * x 2 >= 19)
m.add\_constraint(5 * x_1 + 2 * x_2 >= 21)
m.minimize(3 * x_1 + 4 * x 2)
c = m.get cplex()
c.parameters.simplex.limits.iterations.set(100)
c.parameters.lpmethod.set(c.parameters.lpmethod.values.primal)
while c.solution.get status() != c.solution.status.optimal:
    c.solve()
    print ("=== Симплекс-таблица ===")
    for tableau row in c.solution.advanced.binvarow():
        print(tableau row)
m.solve()
print("\n=== Решение задачи ===")
m.print solution()
     Задание 2
from docplex.mp.model import Model
m = Model()
x_1 = m.continuous_var(name='x_1', lb=0)
x = m.integer var(name='x 2', lb=0)
m.add\_constraint(2 * x_1 + 5 * x_2 >= 19)
m.add constraint(5 * x 1 + 2 * x 2 \geq 21)
m.minimize(3 * x 1 + 4 * x 2)
m.solve()
print("\n=== Решение задачи, где x_1 - произвольное, а x_2 - целое
m.print solution()
     Задание 3
import itertools
from functools import reduce
```

```
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import sympy
from matplotlib.ticker import MultipleLocator
if name == ' main ':
    conditions = [
        lambda x 1, x 2: 2 * x 1 + 5 * x 2 >= 19,
        lambda x 1, x 2: 5 * x 1 + 2 * x 2 >= 21,
        lambda x_1, x_2: x_1 >= 0,
        lambda x_1, x_2: x_2 >= 0
    ]
    equalities = [
        lambda x_1, x_2: 2 * x_1 + 5 * x_2 - 19,
        lambda x_1, x_2: 5 * x_1 + 2 * x_2 - 21,
        lambda x 1, x 2: x 1,
        lambda x 1, x 2: x 2
    ]
    labels = [
        $^{$2} \times 1 + 5 \times 2 > = 19$^{$},
        $^{\$}5 \times 1 + 2 \times 2 > = 21$^{\$},
       '$x 1 >= 0$',
        '$x 2 >= 0$'
    1
    colors = ['r', 'g', 'b', 'k']
    x 1 bounds = (-1, 10)
    x \ 2 \ bounds = (-1, 12)
    x 1 range = np.linspace(x 1 bounds[0], x 1 bounds[1], 250)
    x 2 range = np.linspace(x 2 bounds[0], x 2 bounds[1], 250)
    x 1s, x 2s = np.meshgrid(x 1 range, x 2 range)
    axis: plt.Axes
    figure, axis = plt.subplots()
    axis.set xlim(*x 1 bounds)
    axis.set ylim(*x 2 bounds)
    handles = []
    for equality in equalities:
        axis.contour(
            x_1s, x_2s, equality(x_1s, x_2s), [0],
            colors=colors[equalities.index(equality)]
        handles.append(
            matplotlib.lines.Line2D(
                 [], [], color=colors[equalities.index(equality)],
```

```
marker="s", ls="",
                label=labels[equalities.index(equality)]
            )
        )
    regions = [condition(x 1s, x 2s) for condition in conditions]
    intersection = np.array(reduce(lambda x, y: x & y, regions))
    extent = (x 1s.min(), x 1s.max(), x 2s.min(), x 2s.max())
   plt.imshow(
        intersection.astype(int),
        extent=extent,
        origin="lower",
        cmap="Greens",
        alpha=0.25
    )
   plt.xlabel("$x 1$")
   plt.ylabel("$x 2$")
    axis.xaxis.set major locator(MultipleLocator(1))
    axis.yaxis.set major locator(MultipleLocator(1))
    axis.grid(color='w', linestyle='-')
   plt.legend(handles=handles)
   plt.show()
    sym \times 1 = sympy.Symbol('x 1')
    sym_x 2 = sympy.Symbol('x 2')
    for equality 1, equality 2 in
list(itertools.combinations(equalities, 2)):
        solution = sympy.solve(
                equality 1(sym x 1, sym x 2), equality 2(sym x 1,
sym \times 2)
            [sym x 1, sym x 2], particular=True
        )
        x 1 = solution[sym x 1]
        x 2 = solution[sym x 2]
        if all(ineq(x 1, x 2) for ineq in conditions):
            print('Пересечение графиков ', end='')
            print(labels[equalities.index(equality 1)], end='и')
            print(labels[equalities.index(equality 2)])
            print(solution)
```