Homological Mirror Symmetry for the Quartic Surface

[after P. SEIDEL]

S. STARK

Plan

§ 1. Mirror Symmetry

§ 2. Homological Mirror Symmetry

§ 3. Seidel's HMS for the Quartic Surface

CALABI-YAU MANIFOLDS

* In String theory spacetime is described by a product $\mathbf{R}^{1,3} \times X$ of Minkowski space $\mathbf{R}^{1,3}$ with a Calabi-Yau 3-fold X (Candelas, Horowitz, Strominger, Witten; 1985).

CALABI-YAU MANIFOLDS

- * In String theory spacetime is described by a product $\mathbf{R}^{1,3} \times X$ of Minkowski space $\mathbf{R}^{1,3}$ with a Calabi-Yau 3-fold X (Candelas, Horowitz, Strominger, Witten; 1985).
- * A Calabi-Yau manifold is a connected compact Kähler manifold X with trivial canonical bundle and $h^{p,0} = 0$ (0). Calabi-Yau curves are the same as*elliptic curves*, Calabi-Yau surfaces are called <math>K3 surfaces.

CALABI-YAU MANIFOLDS

- * In String theory spacetime is described by a product $\mathbf{R}^{1,3} \times X$ of Minkowski space $\mathbf{R}^{1,3}$ with a Calabi-Yau 3-fold X (Candelas, Horowitz, Strominger, Witten; 1985).
- * A Calabi-Yau manifold is a connected compact Kähler manifold X with trivial canonical bundle and $h^{p,0} = 0$ (0). Calabi-Yau curves are the same as*elliptic curves*, Calabi-Yau surfaces are called <math>K3 surfaces.
- * Example: Hypersurfaces $X \subset \mathbf{P}^{d+1}$ of degree d+2 (d=2): quartic surface, d=3: quintic 3-fold).

MIRROR SYMMETRY

* To every Calabi-Yau 3-fold X there should be an associated physical theory, which has two 'models': an A-model A(X), and a B-model B(X).

MIRROR SYMMETRY

- * To every Calabi-Yau 3-fold X there should be an associated physical theory, which has two 'models': an A-model A(X), and a B-model B(X).
- * A(X) is described by the symplectic geometry of X, while B(X) is described by the complex geometry of X.

MIRROR SYMMETRY

- * To every Calabi-Yau 3-fold X there should be an associated physical theory, which has two 'models': an A-model A(X), and a B-model B(X).
- * A(X) is described by the symplectic geometry of X, while B(X) is described by the complex geometry of X.
- * There exist pairs (X, \check{X}) of Calabi-Yau 3-folds yielding the same physical theory, but with A and B-models exchanged:

$$A(X) \simeq B(\check{X})$$
 and $B(X) \simeq A(\check{X})$ (mirror symmetry).

Mirror symmetry holds in families.

IMPLICATIONS OF MIRROR SYMMETRY

* Mirror pairs in particular satisfy

$$h^{1,1}(X) = h^{2,1}(\check{X}), \quad h^{2,1}(X) = h^{1,1}(\check{X}),$$

$$\chi(X) = -\chi(\check{X}),$$

but there is much more to Mirror symmetry.

IMPLICATIONS OF MIRROR SYMMETRY

* Mirror pairs in particular satisfy

$$h^{1,1}(X) = h^{2,1}(\check{X}), \quad h^{2,1}(X) = h^{1,1}(\check{X}),$$

$$\chi(X) = -\chi(\check{X}),$$

but there is much more to Mirror symmetry.

* Greene and Plesser (1991) obtained the mirror family \check{X}_{ψ} to a quintic 3-fold X by an orbifolding construction.

IMPLICATIONS OF MIRROR SYMMETRY

* Mirror pairs in particular satisfy

$$h^{1,1}(X) = h^{2,1}(\check{X}), \quad h^{2,1}(X) = h^{1,1}(\check{X}),$$

$$\chi(X) = -\chi(\check{X}),$$

but there is much more to Mirror symmetry.

- * Greene and Plesser (1991) obtained the mirror family \dot{X}_{ψ} to a quintic 3-fold X by an orbifolding construction.
- * Miracle (Candelas, de la Ossa, Green, Parkes; 1991). For a general quintic 3-fold X mirror symmetry $A(X) \simeq B(\check{X}_{\psi})$ predicts the equality

$$5 + n_1 q + (2^3 n_2 + n_1) q^2 + (3^3 n_3 + n_1) q^3 + \dots$$

= 5 + 2875 q + 4876875 q^2 + 8564575000 q^3 + \dots,

where n_d is the (virtual) number of curves of degree d on X.

HODGE PLOT

The 'Hodge plot' of Candelas-Constantin-Skarke, which displays $\chi = 2(h^{1,1} - h^{2,1})$ on the horizontal axis and $h^{1,1} + h^{2,1}$ on the vertical axis.

KONTSEVICH'S CATEGORIFICATION OF MIRROR SYMMETRY

* How can mirror symmetry be formulated and explained mathematically? Kontsevich proposed an answer (ICM 1994). 'Our conjecture, if it is true, will unveil the mystery of Mirror Symmetry': A(X) and B(X) are described by (triangulated) categories, and mirror symmetry is an equivalence between these categories (homological mirror symmetry, HMS).

KONTSEVICH'S CATEGORIFICATION OF MIRROR SYMMETRY

- * How can mirror symmetry be formulated and explained mathematically? Kontsevich proposed an answer (ICM 1994). 'Our conjecture, if it is true, will unveil the mystery of Mirror Symmetry': A(X) and B(X) are described by (triangulated) categories, and mirror symmetry is an equivalence between these categories (homological mirror symmetry, HMS).
- * The category corresponding to A(X) is $D^{\pi}\mathcal{F}(X)$, the split-closed derived category of the Fukaya category $\mathcal{F}(X)$), while $D^b\mathrm{Coh}(X)$ (bounded derived category of the category $\mathrm{Coh}(X)$ coherent sheaves) corresponds to B(X).

KONTSEVICH'S CATEGORIFICATION OF MIRROR SYMMETRY

- * How can mirror symmetry be formulated and explained mathematically? Kontsevich proposed an answer (ICM 1994). 'Our conjecture, if it is true, will unveil the mystery of Mirror Symmetry': A(X) and B(X) are described by (triangulated) categories, and mirror symmetry is an equivalence between these categories (homological mirror symmetry, HMS).
- * The category corresponding to A(X) is $D^{\pi}\mathcal{F}(X)$, the split-closed derived category of the Fukaya category $\mathcal{F}(X)$), while $D^b\mathrm{Coh}(X)$ (bounded derived category of the category $\mathrm{Coh}(X)$ coherent sheaves) corresponds to B(X).
- * Kontsevich's arguments in favour of HMS: one should be able to recover numerical predictions by taking Hochschild cohomology; Witten's intuition; both categories satisfy the duality $\operatorname{Hom}(C,D) \simeq \operatorname{Hom}(D,C[\dim X])^{\vee}$.

'DEFINITION' OF D^b Coh(X)

* The category Coh(X) of coherent sheaves on X includes not only vector bundles, but also structure sheaves of subschemes of X. It is an *abelian category*, and hence has a bounded derived category $D^bCoh(X)$.

'DEFINITION' OF D^b Coh(X)

- * The category Coh(X) of coherent sheaves on X includes not only vector bundles, but also structure sheaves of subschemes of X. It is an *abelian category*, and hence has a bounded derived category $D^bCoh(X)$.
- * The category $D^b\mathrm{Coh}(X)$ is obtained from the category $\mathrm{Kom}^b\mathrm{Coh}(X)$ of bounded complexes of coherent sheaves by inverting quasi-isomorphisms. These categories have the same objects, but different Hom sets; for coherent sheaves \mathscr{F} , \mathscr{G} on X we have $\mathrm{Hom}(\mathscr{F}[0],\mathscr{G}[n]) \simeq \mathrm{Ext}_X^n(\mathscr{F},\mathscr{G})$, and composition is given by the Yoneda product.

'DEFINITION' OF D^b Coh(X)

- * The category Coh(X) of coherent sheaves on X includes not only vector bundles, but also structure sheaves of subschemes of X. It is an *abelian category*, and hence has a bounded derived category $D^bCoh(X)$.
- * The category $D^b\mathrm{Coh}(X)$ is obtained from the category $\mathrm{Kom}^b\mathrm{Coh}(X)$ of bounded complexes of coherent sheaves by inverting quasi-isomorphisms. These categories have the same objects, but different Hom sets; for coherent sheaves \mathscr{F} , \mathscr{G} on X we have $\mathrm{Hom}(\mathscr{F}[0],\mathscr{G}[n]) \simeq \mathrm{Ext}_X^n(\mathscr{F},\mathscr{G})$, and composition is given by the Yoneda product.
- * It is a *triangulated category*: it has a shift functor [1] and comes with a class of distinguished triangles $K' \to K \to K'' \to K'[1]$, satisfying some axioms.

'DEFINITION' OF $\mathcal{F}(X)$

* The objects of the Fukaya category $\mathcal{F}(X)$ are (rational) Lagrangian submanifolds L of X carrying additional data (grading, spin structure,...). Denote by $\Lambda = \Lambda_{\mathbf{Q}}$ (Novikov field) the algebraic closure of the fraction field $\mathbf{C}((q))$ of $\mathbf{C}[[q]]$; elements of Λ are of the form $\sum_{n \in \mathbf{Z}} a_n q^{n/d}$ (Puiseux series) for some $d \geqslant 1$, where $a_n \in \mathbf{C}$ is 0 for $n \ll 0$.

'DEFINITION' OF $\mathcal{F}(X)$

- * The objects of the Fukaya category $\mathcal{F}(X)$ are (rational) Lagrangian submanifolds L of X carrying additional data (grading, spin structure,...). Denote by $\Lambda = \Lambda_{\mathbf{Q}}$ (Novikov field) the algebraic closure of the fraction field $\mathbf{C}((q))$ of $\mathbf{C}[[q]]$; elements of Λ are of the form $\sum_{n \in \mathbf{Z}} a_n q^{n/d}$ (Puiseux series) for some $d \geqslant 1$, where $a_n \in \mathbf{C}$ is 0 for $n \ll 0$.
- * At least for L_0 , L_1 transverse $\operatorname{Hom}(L_0, L_1)$ is the free Λ -module generated by the $x \in L_0 \cap L_1$, **Z**-graded by Maslov index. (If L_0, L_1 are not transverse one 'perturbs'.) It carries a Λ -linear map μ^1 defined by counts of pseudoholomorphic 2-gons u in X with boundary in $L_0, L_1, [u] = \beta \in \pi_2(X, L_0 \cup L_1)$:

$$\mu^{1}(x) = \sum_{y,\beta} \# \mathcal{M}(x, y, \beta) y q^{\omega(\beta)}.$$

We pretend that $\omega(\beta) = \int u^* \omega \in \frac{1}{d} \mathbb{Z}$ for some $d = d(L_0, L_1)$.

'DEFINITION' OF $\mathcal{F}(X)$

* More generally, for any $d \ge 1$ we have Λ -linear maps

$$\mu^d$$
: $\operatorname{Hom}(L_{d-1}, L_d) \otimes \cdots \otimes \operatorname{Hom}(L_0, L_1) \to \operatorname{Hom}(L_0, L_d)$

of degree 2-d defined by weighted counts of pseudoholomorphic (d+1)-gons in X with boundary in L_0, \ldots, L_d .

'DEFINITION' OF $\mathcal{F}(X)$

* The maps μ^d satisfy the ' A_{∞} -associativity equations': $(\mu^1)^2 = 0$, μ^2 is a chain map, μ^3 is the obstruction to μ^2 (which we view as the 'composition' of $\mathcal{F}(X)$) being associative, etc. The cohomology of $\operatorname{Hom}(L_0, L_1)$ is the Floer cohomology $\operatorname{HF}(L_0, L_1)$, and the map induced by μ^2 on cohomology is the Donaldson product.

'DEFINITION' OF $\mathcal{F}(X)$

- * The maps μ^d satisfy the ' A_{∞} -associativity equations': $(\mu^1)^2 = 0$, μ^2 is a chain map, μ^3 is the obstruction to μ^2 (which we view as the 'composition' of $\mathcal{F}(X)$) being associative, etc. The cohomology of $\operatorname{Hom}(L_0, L_1)$ is the Floer cohomology $\operatorname{HF}(L_0, L_1)$, and the map induced by μ^2 on cohomology is the Donaldson product.
- * So $\mathcal{A} = \mathcal{F}(X)$ is an A_{∞} -category. It need not be a category in the ordinary sense. However, its cohomology category $H^*(\mathcal{A})$ (same objects as \mathcal{A} , morphisms given by cohomology groups) is one, and so is $H^0(\mathcal{A})$ (morphisms: H^0). A *quasi-equivalence* between A_{∞} -categories is an A_{∞} -functor such that the induced functor between cohomology categories is an equivalence.

TWISTED COMPLEXES

* For HMS we need to form a triangulated category out of $\mathcal{F}(X)$ (or indeed any A_{∞} -category \mathcal{A}).

TWISTED COMPLEXES

- * For HMS we need to form a triangulated category out of $\mathcal{F}(X)$ (or indeed any A_{∞} -category \mathcal{A}).
- * We first form an auxiliary A_{∞} -category $\Sigma \mathcal{A}$, whose objects are finite formal sums $K = \bigoplus_{i \in I} K_i[\sigma_i]$, with morphisms 'matrices',

$$\operatorname{Hom}(K, L) = \bigoplus_{i \in I, j \in J} \operatorname{Hom}(K_i, L_j)[\tau_j - \sigma_i]$$

and composition by matrix multiplication. This has μ^d 's induced by the ones of \mathcal{A} . A twisted complex is then an object K of $\Sigma \mathcal{A}$ with $\delta \in \operatorname{Hom}^1(K,K)$ satisfying $\mu^1(\delta) + \mu^2(\delta,\delta) + \cdots = 0$. This gives an A_∞ category Tw \mathcal{A} (same Hom sets, but δ 's inserted into μ^d 's).

TWISTED COMPLEXES

- * For HMS we need to form a triangulated category out of $\mathcal{F}(X)$ (or indeed any A_{∞} -category \mathcal{A}).
- * We first form an auxiliary A_{∞} -category $\Sigma \mathcal{A}$, whose objects are finite formal sums $K = \bigoplus_{i \in I} K_i[\sigma_i]$, with morphisms 'matrices',

$$\operatorname{Hom}(K, L) = \bigoplus_{i \in I, j \in J} \operatorname{Hom}(K_i, L_j)[\tau_j - \sigma_i]$$

and composition by matrix multiplication. This has μ^d 's induced by the ones of $\mathcal A$. A twisted complex is then an object K of $\Sigma \mathcal A$ with $\delta \in \operatorname{Hom}^1(K,K)$ satisfying $\mu^1(\delta) + \mu^2(\delta,\delta) + \cdots = 0$. This gives an A_∞ category Tw $\mathcal A$ (same Hom sets, but δ 's inserted into μ^d 's).

* We then define $D^b(\mathcal{A}) = H^0(\text{Tw } \mathcal{A})$, which is a *triangulated* category (distinguished triangles via mapping cones, as usual).

SUMMARY OF CATEGORIFICATION

	A(X)	Type	B(X)	Туре
I	$\mathcal{F}(X)$	A_{∞}	Coh(X)	abelian
\downarrow			h	
II	Tw $\mathcal{F}(X)$ H ⁰	A_{∞}	$\operatorname{Kom}^b\operatorname{Coh}(X)$	abelian
VIII		4.00	localisation	4.01.0.0.0
III	$D^b\mathcal{F}(X)$	triang.	$D^b\mathrm{Coh}(X)$	triang.
	$D^{\pi}\mathcal{F}(X)$	triang.	$D^b\operatorname{Coh}(X)$	triang.

* As $D^b \text{Coh}(X)$ is idempotent complete (every idempotent splits), we use the idempotent completion $D^{\pi} \mathcal{F}(X)$ of $D^b \mathcal{F}(X)$ (*split-closed Fukaya category*).

SUMMARY OF CATEGORIFICATION

	A(X)	Туре	B(X)	Туре
I	$\mathcal{F}(X)$	A_{∞}	Coh(X)	abelian
↓ II	Tw $\mathcal{F}(X)$	A_{∞}	$\operatorname{Kom}^b\operatorname{Coh}(X)$	abelian
11 ↓	H^0	A_{∞}	localisation	aociiaii
III	$D^b\mathcal{F}(X)$	triang.	$D^b\mathrm{Coh}(X)$	triang.
	$D^{\pi}\mathcal{F}(X)$	triang.	$D^b\mathrm{Coh}(X)$	triang.

- * As $D^b \text{Coh}(X)$ is idempotent complete (every idempotent splits), we use the idempotent completion $D^{\pi} \mathcal{F}(X)$ of $D^b \mathcal{F}(X)$ (*split-closed Fukaya category*).
- * A set S of objects in an idempotent complete triangulated category & split generates & if any object in & is obtained from objects of S by shifts, cones of morphisms between S, and splitting off direct summands.

STATEMENT OF SEIDEL'S THEOREM

* Let X_0 be any quartic surface in $\mathbf{P}_{\mathbf{C}}^3$, viewed as a symplectic manifold (any two such are symplectomorphic).

STATEMENT OF SEIDEL'S THEOREM

- * Let X_0 be any quartic surface in $\mathbf{P}_{\mathbf{C}}^3$, viewed as a symplectic manifold (any two such are symplectomorphic).
- * Consider the quartic surface Y_q^* in \mathbf{P}_{Λ}^3 cut out by the equation

$$y_0y_1y_2y_3 + q(y_0^4 + y_1^4 + y_2^4 + y_3^4) = 0,$$

with its natural action of the subgroup Γ_{16} of PSL_4 given by 4×4 diagonal matrices with determinant 4 and entries 4-th roots of unity. Let $Z_q^* \to Y_q^*/\Gamma_{16}$ be the crepant resolution.

STATEMENT OF SEIDEL'S THEOREM

- * Let X_0 be any quartic surface in $\mathbf{P}_{\mathbf{C}}^3$, viewed as a symplectic manifold (any two such are symplectomorphic).
- * Consider the quartic surface Y_q^* in \mathbf{P}_{Λ}^3 cut out by the equation

$$y_0y_1y_2y_3 + q(y_0^4 + y_1^4 + y_2^4 + y_3^4) = 0,$$

with its natural action of the subgroup Γ_{16} of PSL_4 given by 4×4 diagonal matrices with determinant 4 and entries 4-th roots of unity. Let $Z_a^* \to Y_a^*/\Gamma_{16}$ be the crepant resolution.

* **Theorem** (Seidel; 2003). There exist a local automorphism ψ of $\mathbb{C}[[q]]$ with $\psi(q)'(0) \neq 0$, and an equivalence of Λ -linear triangulated categories

$$D^{\pi} \mathcal{F}(X_0) \simeq \hat{\psi} D^b \operatorname{Coh}(Z_a^*).$$

PICTURE OF P. SEIDEL

REMARKS ON THE FORMULATION OF SEIDEL'S THEOREM

* **Theorem** (Seidel; 2003). There exist a local automorphism ψ of $\mathbb{C}[[q]]$ with $\psi(q)'(0) \neq 0$, and an equivalence of Λ -linear triangulated categories

$$D^{\pi} \mathcal{F}(X_0) \simeq \hat{\psi} D^b \operatorname{Coh}(Z_q^*).$$

REMARKS ON THE FORMULATION OF SEIDEL'S THEOREM

* **Theorem** (Seidel; 2003). There exist a local automorphism ψ of $\mathbb{C}[[q]]$ with $\psi(q)'(0) \neq 0$, and an equivalence of Λ -linear triangulated categories

$$D^{\pi} \mathcal{F}(X_0) \simeq \hat{\psi} D^b \operatorname{Coh}(Z_q^*).$$

* We have chosen a lift of $\psi : \mathbf{C}[[q]] \to \mathbf{C}[[q]]$ to an automorphism $\hat{\psi}$ of Λ , and $\hat{\psi} D^b \mathrm{Coh}(Z_q^*)$ denotes the category obtained from $D^b \mathrm{Coh}(Z_q^*)$ by restriction of scalars with respect to $\hat{\psi}$. The map ψ is not known explicitly, but it could be the 'mirror map'.

REMARKS ON THE FORMULATION OF SEIDEL'S THEOREM

* **Theorem** (Seidel; 2003). There exist a local automorphism ψ of $\mathbb{C}[[q]]$ with $\psi(q)'(0) \neq 0$, and an equivalence of Λ -linear triangulated categories

$$D^{\pi} \mathcal{F}(X_0) \simeq \hat{\psi} D^b \operatorname{Coh}(Z_q^*).$$

- * We have chosen a lift of $\psi : \mathbf{C}[[q]] \to \mathbf{C}[[q]]$ to an automorphism $\hat{\psi}$ of Λ , and $\hat{\psi} D^b \mathrm{Coh}(Z_q^*)$ denotes the category obtained from $D^b \mathrm{Coh}(Z_q^*)$ by restriction of scalars with respect to $\hat{\psi}$. The map ψ is not known explicitly, but it could be the 'mirror map'.
- * For elliptic curves HMS was proven by Polishchuk and Zaslow (1998), setting up a very explicit correspondence which relies on Atiyah's classification of vector bundles on elliptic curves.

STRATEGY OF THE PROOF I

* Find split generators for $D^{\pi}\mathcal{F}(X_0)$. Consider the pencil $(X_Z)_{Z\in\mathbf{P}^1}$ generated by the sections $\sigma_0=x_0^4+\cdots+x_3^4$ and $\sigma_\infty=x_0\cdots x_3$ of the line bundle $\mathbb{G}(4)$ on $\mathbf{P}_{\mathbb{C}}^3$. Picard-Lefschetz theory yields 64 Lagrangian spheres in $X_0-X_{0,\infty}$ (16 for each of the four singular fibre), where $X_{0,\infty}=X_0\cap X_\infty$. Considering the monodromy along a large circle at 0 and using the correspondence between Dehn twists and algebraic twists shows that the 64 spheres are split generators.

STRATEGY OF THE PROOF I

- * Find split generators for $D^{\pi}\mathcal{F}(X_0)$. Consider the pencil $(X_z)_{z\in \mathbf{P}^1}$ generated by the sections $\sigma_0=x_0^4+\cdots+x_3^4$ and $\sigma_\infty=x_0\cdots x_3$ of the line bundle $\mathbb{G}(4)$ on $\mathbf{P}_{\mathbb{C}}^3$. Picard-Lefschetz theory yields 64 Lagrangian spheres in $X_0-X_{0,\infty}$ (16 for each of the four singular fibre), where $X_{0,\infty}=X_0\cap X_\infty$. Considering the monodromy along a large circle at 0 and using the correspondence between Dehn twists and algebraic twists shows that the 64 spheres are split generators.
- * Find split generators for $D^b\mathrm{Coh}(Z_q^*)$. One uses $D^b\mathrm{Coh}(Z_q^*) \simeq D^b\mathrm{Coh}_{\Gamma_{16}}(Y_q^*)$, which has 64 split generators induced by Beilinson's four split generators $\Omega^1(1), \Omega^2(2), \Omega^3(3), \Omega^4(4)$ for $D^b\mathrm{Coh}(\mathbf{P}^3)$, there are 16 ways to twist each $\Omega^i(i)$ by a character of Γ_{16} .

ACCOMPANYING PICTURE

§ 3. Seidel's HMS for the Quartic Surface STRATEGY OF THE PROOF II

* Both sets of generators come in 1-parameter families.

STRATEGY OF THE PROOF II

- * Both sets of generators come in 1-parameter families.
- * There are variants of the Fukaya category: A_{∞} -categories $\mathcal{F}(X_0 X_{\infty})$ and $\mathcal{F}(X_0, X_{\infty})$. Both have objects exact Lagrangians in $X_0 X_{\infty}$, but they defined over different ground rings: \mathbf{C} resp. $\mathbf{C}[[q]]$. In fact, $\mathcal{F}(X_0 X_{\infty})$ is obtained from $\mathcal{F}(X_0, X_{\infty})$ by taking $\otimes_{\mathbf{C}[[q]]}\mathbf{C}$, while taking $\otimes_{\mathbf{C}[[q]]}\Lambda$ gives a full A_{∞} -subcategory of $\mathcal{F}(X)$. The 64 Lagrangian spheres induce an A_{∞} -subcategory $\mathcal{F}_{64,q}$ of $\mathcal{F}(X_0, X_{\infty})$.

STRATEGY OF THE PROOF II

- * Both sets of generators come in 1-parameter families.
- * There are variants of the Fukaya category: A_{∞} -categories $\mathcal{F}(X_0 X_{\infty})$ and $\mathcal{F}(X_0, X_{\infty})$. Both have objects exact Lagrangians in $X_0 X_{\infty}$, but they defined over different ground rings: \mathbf{C} resp. $\mathbf{C}[[q]]$. In fact, $\mathcal{F}(X_0 X_{\infty})$ is obtained from $\mathcal{F}(X_0, X_{\infty})$ by taking $\otimes_{\mathbf{C}[[q]]}\mathbf{C}$, while taking $\otimes_{\mathbf{C}[[q]]}\Lambda$ gives a full A_{∞} -subcategory of $\mathcal{F}(X)$. The 64 Lagrangian spheres induce an A_{∞} -subcategory $\mathcal{F}_{64,q}$ of $\mathcal{F}(X_0, X_{\infty})$.
- * On the *B*-side we need to introduce a dg enhancement (underlying A_{∞} -category $\mathcal{S}(Z_q^*)$ with $\mu^d=0$ for $d\geqslant 3$) of $D^b\mathrm{Coh}(Z_q^*)$. We then have an A_{∞} -category $\mathcal{S}_{64,q}$ induced by the 64 generators of $D^b\mathrm{Coh}(Z_q^*)$.

STRATEGY OF THE PROOF III

* Both $\mathcal{F}_{64,q}$ and $\mathcal{S}_{64,q}$ are 1-parameter A_{∞} -deformations of some A_{∞} -algebra \mathbb{Q}_{64} , i.e. the structural maps of each family are of the form $\mu_q^d = \mu^d + q \mu_{q,1}^d + q^2 \mu_{q,2}^d + \cdots$, where μ^d is the structural map of \mathbb{Q}_{64} and each $\mu_{q,n}^d$ is a linear map $\mathbb{Q}_{64}^{\otimes d} \to \mathbb{Q}_{64}$.

STRATEGY OF THE PROOF III

- * Both $\mathcal{F}_{64,q}$ and $\mathcal{S}_{64,q}$ are 1-parameter A_{∞} -deformations of some A_{∞} -algebra \mathbb{Q}_{64} , i.e. the structural maps of each family are of the form $\mu_q^d = \mu^d + q \mu_{q,1}^d + q^2 \mu_{q,2}^d + \cdots$, where μ^d is the structural map of \mathbb{Q}_{64} and each $\mu_{q,n}^d$ is a linear map $\mathbb{Q}_{64}^{\otimes d} \to \mathbb{Q}_{64}$.
- * The algebra \mathbb{Q}_{64} has $\mu^1=0$, and every 1-parameter deformation with $\mu_q^1=0$ defines a class in the (truncated) second Hochschild cohomology of \mathbb{Q}_{64} .

STRATEGY OF THE PROOF III

- * Both $\mathcal{F}_{64,q}$ and $\mathcal{S}_{64,q}$ are 1-parameter A_{∞} -deformations of some A_{∞} -algebra \mathbb{Q}_{64} , i.e. the structural maps of each family are of the form $\mu_q^d = \mu^d + q \mu_{q,1}^d + q^2 \mu_{q,2}^d + \cdots$, where μ^d is the structural map of \mathbb{Q}_{64} and each $\mu_{q,n}^d$ is a linear map $\mathbb{Q}_{64}^{\otimes d} \to \mathbb{Q}_{64}$.
- * The algebra \mathbb{Q}_{64} has $\mu^1=0$, and every 1-parameter deformation with $\mu_q^1=0$ defines a class in the (truncated) second Hochschild cohomology of \mathbb{Q}_{64} .
- * At least the invariant part of the second Hochschild cohomology of \mathbb{Q}_{64} is 1-dimensional, which implies that any two (equivariant) 1-parameter deformation with $\mu_q^1=0$ and nontrivial class are equivalent after reparametrisation by some $\psi: \mathbb{C}[[q]] \to \mathbb{C}[[q]]$. Seidel proves that $\mathcal{F}_{64,q}$ and $\mathcal{S}_{64,q}$ have nontrivial class, hence

$$D^{\pi} \mathcal{F}(X_0) \simeq D^{\pi} (\mathcal{F}_{64,q} \otimes_{\mathbb{C}[[q]]} \Lambda) \simeq D^{\pi} (\psi \otimes_{64,q} \otimes_{\mathbb{C}[[q]]} \Lambda).$$
$$\simeq \hat{\psi} D^{\pi} (\otimes_{64,q} \otimes_{\mathbb{C}[[q]]} \Lambda) \simeq \hat{\psi} D^b \text{Coh}(Z_q^*).$$

PICTORIAL DESCRIPTION OF THE PROOF

References

- * Auroux, Introductions to everything.
- * Fukaya, Morse Homotopy, A_{∞} -Categories, and Floer Homologies.
- * Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry.
- * Kontsevich, Homological Algebra of Mirror Symmetry.
- * Seidel, Fukaya Categories and Picard-Lefschetz Theory.
- * Seidel, Fukaya Categories and Deformations.
- * Seidel, Homological Mirror Symmetry for the Quartic Surface.
- * Sheridan, Lectures on Homological Mirror Symmetry.
- * Rouquier, Catégories dérivées et géométrie birationnelle.