PROF. VALMIR MACARIO

AQUISIÇÃO DE IMAGENS

PARADIGMA DOS 4 UNIVERSOS

PARADIGMA DOS 4 UNIVERSOS

AMOSTRAGEM

- Discretização espacial
- Resolução (XxY pixels)

DIGITALIZAÇÃO DE IMAGENS

amostragem

315x260 - 256 cores

15	15	15	15	15	15	15
15	10	12	13	\$	15	15
15	15	10	09	11	15	15
15	15	13	12	10	15	15
15	15	08	06	12	15	15
15	15	15	15	15	15	15

64x53 – 256 cores quantização

64x53 - 16 cores

IMAGEM DIGITAL

Em termos de imagem, a amostragem cria a matriz referente à imagem (define as dimensões da matriz) e a quantização define a resolução de cor.

IMAGEM DIGITAL

- Uma imagem (2D) é formada por um conjunto de pixels. Cada pixel é definida pela posição (x,y) (domínio espacial) e pela intensidade f(x,y)
- Terminologia
 - Pixel: picture element (2D)
 - Voxel: volume element (3D)
 - Spel: space element (nD)
- Genericamente o domínio pode ser n-dimensional, ou seja a posição (x, y, z, ...)

A foto do rosto (direita) parece normal, mas quando o olho é aproximado (esquerda) os pixels aparecem. Cada pixel é um pequeno quadrado formado por uma única cor.

- Imagens que estudaremos: espaçamento regular em todas as dimensões, não necessariamente isotrópico. Tipo "scan" em contraposição ao vetorial
- Em termos de cor:
 - Binária: 2 cores (Preto e Branco)
 - Monotônicas: a visualização pode ser realizada com apenas uma cor, variando apenas a intensidade
 - Tom de Cinza: 256 tons
 - Coloridas (RGB, CMY, HSI,...): vetor de atributos por spel.
 Visualização considerando o conjunto de atributos
 - RGB: usa 3 bytes, um byte por cor (R,G,B).

Preto e Branco

Tons de Cinza (256 tons)

Itensidade da cor:

 Representada por um escalar ou um vetor (p. ex,RGB, f(x,y)=[r(x,y) g(x,y) b(x,y)])

IMAGEM DIGITAL

O número de bits utilizado para representar a cor do pixel é chamado resolução de cor da imagem

O *número de componentes* do pixel é a dimensão do espaço de cor utilizado

O gamute de uma imagem digital é o conjunto de todas as cores presentes em uma imagem

TOPOLOGIA DIGITAL E REPRESENTAÇÃO MATRICIAL

Uma topologia para o domínio da imagem é definida de acordo com 2 tipos de vizinhança discreta

- vizinhança 4-conectada
- vizinhança 8-conectada

GEOMETRIA DO PIXEL

Representação Matricial

Pixel Quadrado (forma mais comum)

Outras representações

- Pixel Hexagonal
 - Problema: dispositivos gráficos usam representação matricial

Geometria do Pixel

Um sensor típico de imagem tem uma representação matricial quadrada

O Super CCD da Fuji usa pixels octogonais organizados em uma padrão de colméia

A densidade de pixels é medida pelo número de pixels por área

dpi - dots per inch (pixels por polegada)

Número de cores codificadas possíveis para cada pixel

RESOLUÇÃO DA IMAGEM

Definida na Digitalização da Imagem

Scanner

Unidade: dpi

Não pode ser alterada após a digitalização

DISCRETIZAÇÃO: VARIAÇÃO DO NÚMERO DE AMOSTRAS

420 x 348 pixels 16 M cores 856 Kb

305 x 261 pixels 16M cores 452 Kb (apresentada em zoom)

210 x 174 pixels 16M cores 214 Kb (apresentada em zoom)

105 x 87 pixels 16M cores 53 Kb (apresentada em zoom)

57 x 44 pixels 16M cores 15 Kb (apresentada em zoom)

420 x 348 pixels 16 M cores 856 Kb

420 x 348 pixels 256 cores 285 Kb

420 x 348 pixels 16 cores 145 Kb

Discretização: Variação do Número de Tons de Cinza

420 x 348 pixels 256 níveis 285 Kb

Discretização: Variação do Número de Tons de Cinza

420 x 348 pixels 16 níveis 145 Kb

Discretização: Variação do Número de Tons de Cinza

420 x 348 pixels 2 níveis (P&B) 38 Kb

RESOLUÇÃO DA IMAGEM

Curiosidade: resolução de câmeras digitais

- Exemplo: câmera de 13.6 Megapixels
 - Isso indica a quantidade de pixels da matriz da imagem
 - Neste exemplo, a câmera tira uma fotografia de 4.224 x 3.168 pixels (dimensões da matriz)
 - 4.224 x 3.168 = 13.381.632
- Quanto mais melhor? Não!
 - A qualidade óptica das lentes também é fator

- Podem ser:
 - Com compressão
 - Com perda
 - Sem perda
 - Sem compressão

BMP

- Formato mais usado em aplicações Windows e DOS.
- Na codificação da <u>imagem</u> não há compressão e em geral são arquivos grandes.

- GIF (Graphics Interchange Format)
 - Formato de arquivo que se utiliza habitualmente para mostrar gráficos e imagens de cor indexada em documentos HTML na Internet e em outros serviços online
 - Formato comprimido com LZW <u>desenhado</u> para minimizar o tamanho do arquivo e o tempo de transferência eletrônica
 - Trabalha apenas com 256 cores
 - Suporta animações

- PNG (Portable Network Graphics)
 - Imagens para internet
 - Na codificação há compressão sem perda
 - Admite imagens com milhões de cores e produz transparência de fundo sem bordas irregulares

- JPEG (Joint Pictures Expert Group)
 - Se utiliza habitualmente para mostrar fotografias e outras imagens
 - Há compressão da imagem com perda
 - Oferece níveis razoáveis de qualidade de imagem
 - Gera arquivos de tamanho pequeno quando comparado a outros formatos

JPEG com baixa compressão

JPEG com alta compressão

TIF

- Formato flexível de imagens de mapa de bits que praticamente admitem todas os programas de pintura, edição de imagens e design de páginas
- Na codificação da <u>imagem</u> há compressão sem perdas.
- Não é um formato para Internet devido ao grande tamanho dos arquivos com este formato
- Formato utilizado quando precisa de uma qualidade maior das imagens
- Pode salvar imagens multi-páginas, como um PDF de imagens

RAW

- Presente em máquina fotográfica semi-profissional ou profissional
- Na codificação da <u>imagem</u> não há compressão.
- Não é um formato para Internet devido ao grande tamanho dos arquivos com este formato
- Melhor qualidade
- Programas do Windows não reconhecem esse formato
- Geralmente converte as imagens pra o formato TIF

JPG

(CAMERA)

RAW

IDEAL

