数据预处理 3200104858

1数据清洗

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy as scp
import warnings
warnings.filterwarnings("ignore")
```

```
data = pd. read_csv('train.csv')
data. head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	COLUMNIS (COC	ai iz columns).	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object

3200104858

```
5
                714 non-null
                               float64
    Age
6
    SibSp
                891 non-null int64
7
                891 non-null int64
   Parch
8
   Ticket
               891 non-null
                              object
9
    Fare
                891 non-null
                              float64
10 Cabin
                204 non-null
                               object
11 Embarked 889 non-null
                               object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

1.2查看缺失值

```
data.isnull().sum()
assengerId
                 0
                 0
Survived
Pclass
                 0
Name
                 ()
Sex
                 0
               177
Age
SibSp
                 0
Parch
                 0
Ticket
Fare
                 0
               687
Cabin
Embarked
dtype: int64
```

1.3 缺失值处理

1.3.1固定值替换

```
test=data[data['Age']==None]=0
```

```
test=data[data['Age']==np. nan]=0
```

数值列读取数据后,空缺值的数据类型为float64所以用None一般索引不到,比较的时候最好用 np.nan

1.3.2 删除缺失行

```
test=data.dropna()
```

函数描述: DataFrame.dropna(*, axis=0, how=_NoDefault.no_default, thresh=_NoDefault.no_default, subset=None, inplace=False)

```
test=data.fillna(0)
```

函数描述: DataFrame.fillna(value=None, *, method=None, axis=None, inplace=False, limit=None, downcast=None)

1.3.3转换为新数据

检验Cabin缺失值部分数据的存活率与非缺失值之间是否存在显著差异,判断是否删除Cabin

```
Has_Cabin=data[data['Cabin']. isnull()==True]
No_Cabin=data[data['Cabin']. isnull()==False]
```

```
#Has_Cabin=Has_Cabin.copy()
#No_Cabin=No_Cabin.copy()
Has_Cabin['Cabin']=1
No_Cabin['Cabin']=0
data=pd.concat([Has_Cabin, No_Cabin])
data=data.reset_index()
#Has_Cabin['Cabin']
data.head()
```

	index	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
2	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
3	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583
4	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750

1.3.4 中值填充

```
data['Age']=data['Age'].fillna(data['Age'].median())
```

1.3.5 众数填充

```
data['Embarked']. describe()
data['Embarked']. unique()
```

```
array(['S', 'Q', 'C', nan], dtype=object)
```

```
data['Embarked'] = data['Embarked'].fillna('S')
```

2.1重复值处理

```
data[data. duplicated() == True]
```

index PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embar

可知没有重复样本

2022/11/3 14:53 3200104858

```
test=data. drop_duplicates()
test=data. reset_index()
```

记录一下处理方法

2.2 异常值处理

查看描述

data.describe()

	index	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000
mean	445.000000	446.000000	0.383838	2.308642	29.361582	0.523008	0.381594	32.204
std	257.353842	257.353842	0.486592	0.836071	13.019697	1.102743	0.806057	49.693
min	0.000000	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	222.500000	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910
50%	445.000000	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454
75%	667.500000	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000
max	890.000000	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

考虑到真实情况,不对这些年龄异常值做处理

3 数据变换

3.1 Sex处理

将Sex字段的文本数据转化为数字,其中female为0, male为1

```
data. loc[data['Sex']=='female','Sex']=0
data. loc[data['Sex']=='male','Sex']=1
```

3.2 Embarked处理

3.2.1 普通映射

将Embarked字段的文本数据转化为数字,其中S为0,C为1,Q为2

```
data. loc[data['Embarked']=='S', 'Embarked']=0
data. loc[data['Embarked']=='C', 'Embarked']=1
data. loc[data['Embarked']=='Q', 'Embarked']=2
```

3.2.2 独热编码

此处为了后续相关性矩阵的显示,仅做尝试,保存在test中

```
for feat in ["Age", "Embarked"]:
    x = pd. get_dummies (data[feat], prefix=feat)
    test = pd. concat([data, x], axis=1)

test['Embarked_0']. head()

0    1
1    1
2    1
3    0
4    1
Name: Embarked_0, dtype: uint8
```

3.3 姓名处理

对于姓名, 主要根据其前缀来进行数据变换,首先提取前缀并查看可能性及数量

```
import re
def get_title(name):
    title_search = re. search('([A-Za-z]+)\.', name)

if title_search:
    return title_search.group(1)
    return ""

titles = data["Name"].apply(get_title)
pd.value_counts(titles)
```

```
Mr
          517
Miss
          182
           125
Mrs
Master
           40
             7
Dr
             6
Rev
             2
M11e
Major
             2
Col
Jonkheer
             1
Mme
             1
Ms
             1
Lady
Sir
             1
Don
             1
Capt
Countess
             1
Name: Name, dtype: int64
```

```
然后进行再编码
```

```
title_map = {"Mr":1, "Miss":2, "Mrs":3, "Master":4, "Dr":5, "Rev":6, "Mlle":7, "Col":8
```

```
titles = titles.map(title_map)
data["Title"] = titles
```

5 特征工程

```
import seaborn
cor=data. drop(['index'], axis=1). corr()
seaborn. set(font='SimHei', font_scale=0.8)
fig=seaborn. heatmap(cor, annot=True, cmap='Greens')
Passengerld
                  -0. 005 -0. 035 0. 034 -0. 058-0. 0017 0. 013 -0. 02 0. 024
                                                                         -0.8
                        -0. 34 -0. 065 -0. 035 0. 082 0. 26 -0. 32 0. 29
  Survived
                                                                         -0.6
                              -0.34 0.083 0.018 -0.55 0.73 -0.21
    Polass
            -0. 035 -0. 34
            0.034 -0.065 -0.34
                                    -0. 23 -0. 17 0. 097 -0. 24-0. 00032
                                                                        - 0.4
       Ago
            -0. 058 -0. 035 0. 083 -0. 23
     SibSp
                                           0.41 0.16 0.04 0.15
                                                                        -0.2
           -0.00170.082 0.018 -0.17 0.41
                                                0.22 -0.037 0.18
                                                                        -0.0
            0.013 0.26 -0.55 0.097 0.16 0.22
                                                       -0.48 0.098
     Fare
                                                                        - □0. 2
            -0.02 -0.32
                        0.73 -0.24 0.04 -0.037 -0.48
                                                             -0.14
     Cabin
                                                                        — □0.4
     Title
                         -0. 21-0. 00032 0. 15 0. 18 0. 098
                          Polass
                                                  Fare
                                                        Sab.
```

本次使用的数据集特征较少,通过计算皮尔逊相关系数并绘制热力图可知,仅Cabin和Pclass特征存在较大冗余,其他特征不存在明显的相关性,后续可考虑通过特征选择或者PCA降维进行特征的最优选择,本次作业仅考虑复现书上案例,因此不在此呈现。

```
data. to_csv('test_clear.csv')
```