10

30

Für den Export verzweigtkettiger Aminosäuren kodierende Nukleotidsequenzen, Verfahren zu deren Isolierung und ihre Verwendung

Gegenstand der Erfindung sind für den Export verzweigtkettiger Aminosäuren kodierende Nukleotidsequenzen, Verfahren zu deren Auffinden und Isolieren und Verfahren zur fermentativen Herstellung von verzweigtkettigen Aminosäuren unter Verwendung von coryneformen Bakterien, in denen Gene, die für den Export verzweigtkettiger Aminosäuren kodieren, verstärkt werden.

Stand der Technik

Die verzweigtkettigen Aminosäuren L-Isoleucin, L-Valin, und L-Leucin finden in der pharmazeutischen Industrie, der Humanmedizin, und in der Tierernährung Anwendung.

Es ist bekannt, daß verzweigtkettige Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum hergestellt werden können. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensbesserungen können fermentationstechnische Maßnahmen wie z.B. Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z.B. die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch z.B. Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. das Isoleucin-Analogon Isoleucinhydroxamat (Kisumi M, Ko-

matsubara S, Sugiura, M, Chibata I (1972) Journal of Bacteriology 110: 761-763), das Valin-Analogon 2-Thiazolealanine
(Tsuchida T, Yoshinanga F, Kubota K, Momose H (1975) Agricultural and Biological Chemistry, Japan 39: 1319-1322),

5 oder das Leucin-Analogon α-Aminobutyrate (Ambe-Ono Y, Sato
K, Totsuka K, Yoshihara Y, Nakamori S (1996) Bioscience
Biotechnology Biochemistry 60: 1386-1387) sind, oder die
auxotroph für regulatorisch bedeutsame Metabolite sind und
verzweigtkettige Aminosäuren produzieren (Tsuchida T, Yos10 hinaga F, Kubota K, Momose H, Okumura S (1975) Agricultural
and Biological Chemistry; Nakayama K, Kitada S, Kinoshita S
(1961) Journal of General and Applied Microbiology, Japan
7: 52-69; Nakayama K, Kitada S, Sato Z, Kinoshita (191)
Journal General and Applied Microbiology, Japan 7: 41-51).

15 Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung verzweigtkettige Aminosäuren produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne verzweigtkettige Aminosäuren-Biosynthesegene amplifiziert, und die Auswirkung auf die 20 verzweigtkettige Aminosäure-Produktion untersucht. Übersichtsartikel hierzu findet man unter anderem bei Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 25 (1991)), Eggeling (Amino Acids 6:261-272 (1994)), Jetten und Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)), Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)), und Eggeling et al., Journal of Biotechnology 56: 168-180 (1997)).

Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von verzweigtkettigen Aminosäuren bereitzustellen.

5 Beschreibung der Erfindung

Verzweigtkettige Aminosäuren finden in der pharmazeutischen Industrie, in der Humanmedizin, und in der Tierernährung Anwendung. Es besteht daher ein allgemeines Interesse daran neue verbesserte Verfahren zur Herstellung von verzweigtkettigen Aminosäuren bereitzustellen.

10

Wenn im folgenden verzweigtkettige Aminosäuren erwähnt werden sind damit insbesondere L-Isoleucin, L-Valin oder L-Leucin gemeint.

Gegenstand der Erfindung sind isolierte Polynukleotide, 15 enthaltend mindestens eine der Polynukleotidsequenzen, ausgewählt aus der Gruppe

- Polynukleotid, das zu mindestens 70 % identisch ist mit a) einem Polynukleotid, das für ein Polypeptid codiert, das mindesten eine Aminosäuresequenz SEQ ID No. 3 oder 5 enthält,
- Polynukleotid, das für ein Polypeptid codiert, das eine b) Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit einer Aminosäuresequenz von SEQ ID No. 3 oder 5,
- 25 Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenzenen von a), b) oder c).

Gegenstand der Erfindung ist ebenso eine in coryneformen

Mikroorganismen replizierbare, bevorzugt rekombinante DNA
mit der Herkunft Corynebacterium, die zumindest die Nukleotidsequenzen enthält, die für die Gene brnF und/oder brnE,
dargestellt in der SEQ ID No. 1 und in der
SEQ ID No. 6, kodieren.

- 10 Gegenstand ist ebenfalls eine replizierbare DNA gemäß Anspruch 1 enthaltend:
 - (i) die Nukleotidsequenzen, gezeigt in SEQ-ID-No. 1 oder SEQ-ID-No. 6, die für die Gene brnE und/oder brnF codieren, oder
- 15 (ii) mindestens eine Sequenz, die den Sequenzen (i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
 - (iii) mindestens eine Sequenz, die mit den zu den Sequenzen (i), oder(ii) komplementären Sequenz hybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).

Weitere Gegenstände sind

20

Polynukleotide gemäß Anspruch 2, enthalten mindestens eine der Nukleotidsequenzen, ausgewählt aus den SEQ ID No.

25 1, 2, 4 oder 6, dargestellten

Polypeptide gemäß Anspruch 2, die für Polypeptide codieren, die mindestens eine der Aminosäuresequenzen, wie in SEQ ID No. 3 oder 5 dargestellt, enthalten

25

30

ein Vektor, enthaltend das oder die Polynukleotide gemäß
Anspruch 1, oder die in SEQ ID No. 1 oder SEQ ID No. 6
dargestellte DNA-Sequenz.

und als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die die vollständigen Gene mit den Polynukleotidsequenzen entsprechend SEQ ID No. 1, 2, 4 oder 6 enthalten, mit einer Sonde, die die Sequenzen der genannten Polynukleotide gemäß SEQ ID No 1, 2, 4 oder 6 oder ein Fragment davon enthalten und Isolierung der genannten DNA-Sequenzen.

Polynukleotidsequenzen gemäß der Erfindung sind geeignet, als Hybridisierungs-Sonden für RNA, cDNA und DNA, um cDNA in voller Länge zu isolieren, die für Isoleucin-, Leucin- oder Valin-Exportproteine codieren und solche cDNA oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des brnF- und/oder brnE-Gens aufweisen.

Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für Isoleucin-, Leucin- oder Valin-Exportproteine codieren.

Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Basenpaaren.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen die Polypeptide gemäß SEQ ID No. 3 und/oder 5, insbesondere solche mit der biologischen Aktivität des Transports verzweigtkettigter Aminosäuren und auch solche ein, die zu wenigstens 70 % identisch sind mit den Polypeptiden gemäß SEQ ID No. 3 und/oder 5, bevorzugt zu wenigstens 80 % und besonders zu wenigstens 90 % bis 95 % Identität mit den Polypeptiden gemäß SEQ ID No. 3 und/oder 5 und die genannte Aktivität aufweisen.

Ebenso sind coryneforme Mikroorganismen, insbesondere der 20 Gattung Corynebacterium, transformiert durch die Einführung der genannten replizierbaren DNA Gegenstand der Erfindung.

Die Erfindung betrifft weiter ein Verfahren zur fermentativen Herstellung von verzweigtkettigen Aminosäuren unter Verwendung von coryneformen Bakterien, die insbesondere bereits die verzweigtkettigen Aminosäuren produzieren und in denen die Nukleotidsequenzen der für den Export verzweigtkettiger Aminosäuren kodierenden Gene brnE und/oder brnF verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang 30 die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch

20

die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym (Protein) mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können verzweigtkettige Aminosäuren aus Glucose, Saccharose, Lactose, Mannose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen.

10 Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind beispielsweise die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte verzweigtkettige Aminosäuren produzierende Mutanten bzw. Stämme,

wie beispielsweise die Isoleucin produzierenden Stämme
Corynebacterium glutamicum ATCC 14309
Corynebacterium glutamicum ATCC 14310
Corynebacterium glutamicum ATCC 14311
Corynebacterium glutamicum ATCC 15168
Corynebacterium ammoniagenes ATCC 6871,

wie beispielsweise die Leucin produzierenden Stämme Corynebacterium glutamicum ATCC 21885 Brevibacterium flavum ATCC 21889

oder wie beispielsweise die Valin produzierenden Stämme
Corynebacterium glutamicum DSM 12455
Corynebacterium glutamicum FERM-P 9325
Brevibacterium lactofermentum FERM-P 9324
Brevibacterium lactofermentum FERM-BP 1763.

Den Erfindern gelang es die neuen Gene brnE und brnF von

10 Corynebacterium glutamicum zu isolieren. Zur Isolierung der

Gene wird zunächst eine im brnF- oder brnE-Gen defekte

Mutante von C. glutamicum hergestellt. Hierzu wird ein ge
eigneter Ausgangsstamm wie z. B. ATCC14752 oder ATCC13032

einem Mutagenese-Verfahren unterworfen.

- 15 Klassische Mutagenese-Verfahren sind die Behandlung mit
 Chemikalien wie z. B. N-Methyl-N-Nitro-N-Nitrosoguanidin
 oder UV-Bestrahlung. Derartige Verfahren zur Mutationsauslösung sind allgemein bekannt und können unter anderem bei
 Miller (A Short Course in Bacterial Genetics, A Laboratory
 20 Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992)) oder im
 Handbuch "Manual of Methods for General Bacteriology" der
 American Society for Bacteriology (Washington D.C., USA,
 1981) nachgelesen werden.
- 25 Ein anderes Mutagenese-Verfahren ist die Methode der Transposonsmutagenese bei der die Eigenschaft eines Transposons ausgenutzt wird in DNA-Sequenzen zu "springen" und dadurch die Funktion des betreffenden Gens zu stören bzw. auszuschalten. Transposons coryneformer Bakterien sind in der 30 Fachwelt bekannt. So wurden aus Corynebacterium xerosis Stamm M82B das Erythromycinresistenz-Transposon Tn5432

10

15

20

30

(Tauch et al., Plasmid (1995) 33: 168-179) und das Chloramphenicolreistenz-Transposon Tn5546 isoliert. Tauch et al. (Plasmid (1995) 34: 119-131 und Plasmid (1998) 40: 126-139) zeigten, daß eine Mutagenese mit diesen Transposonen möglich ist.

Ein anderes Transposon ist das Transposon Tn5531 das bei Ankri et al. (Journal of Bacteriology (1996) 178: 4412-4419) beschrieben wird und beispielhaft im Laufe der vorliegenden Erfindung eingesetzt wurde. Das Transposon Tn5531 enthält das aph3 Kanamycinresistenzgen und kann in Form des Plasmidvektors pCGL0040 verabreicht werden, der in Figur 1 dargestellt ist. Die Nukleotidsequenz des Tansposons Tn5531 ist unter der Zugangsnummer (accession number) U53587 bei dem National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) frei verfügbar.

Nach erfolgter Mutagenese vorzugsweise TransposonMutagenese wird eine im brnF- oder brnE-Gen defekte Mutante
gesucht. Eine im brnF- oder brnE-Gen defekte Mutante wird
daran erkannt, daß sie auf Minimalagar gutes Wachstum aber
auf Minimalagar, der mit verzweigtkettigen Aminosäurehaltigen Oligopeptiden wie z. B. dem Dipeptid Isoleucylisoleucin supplementiert wurde, schlechtes Wachstum zeigt.

Ein Beispiel für eine derartige Mutante ist der Stamm ATCC14752brnE::Tn5531.

25 Ein auf die beschriebene Weise hergestellter Stamm kann dann für die Klonierung und Sequenzierung des brnF-und/oder brnE-Gens verwendet werden.

Hierzu kann eine Genbank des interessierenden Bakteriums angelegt werden. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben.

Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495 - 508 (1987)) in λ -Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank 10 von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E.coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde. Für die vorliegende Er-15 findung eignen sich solche Vektoren, die in coryneformen Bakterien vorzugsweise Corynebacterium glutamicum replizieren. Derartige Vektoren sind aus dem Stand der Technik bekannt; als Beispiel sei der Plasmidvektor pZ1 genannt, der bei Menkel et al. (Applied and Environmental Microbiology 20 (1989) 64: 549-554) beschrieben ist. Die auf die beschriebene Weise erhaltene Genbank wird anschließend mittels Transformation oder Elektroporation in den im brnF- oder brnE-Gen defekten Indikatorstamm überführt und solche Transformanten gesucht, die die Fähigkeit besitzen in Ge-25 genwart verzweigtkettiger Aminosäure-haltiger Oligopeptide auf Minimalagar zu wachsen. Das klonierte DNA-Fragment kann anschließend einer Sequenzanalyse unterzogen werden.

Bei Verwendung einer durch Tn5531-Mutagenese erzeugten Mutante eines coryneformen Bakteriums wie z.B. dem Stamm 30 ATCC14752brnE::Tn5531 kann das brnE::Tn5531-Allel direkt unter Ausnutzung des in ihm enthaltenen Kanamycinresistenzgens aph3 kloniert und isoliert werden. Hierzu verwendet

man bekannte Kloniervektoren wie z. B. pUC18 (Norrander et al., Gene (1983) 26: 101-106 und Yanisch-Perron et al., Gene (1985) 33: 103-119). Als Klonierwirte eignen sich besonders solche E. coli-Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5 α mcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die Selektion auf Transformanten erfolgt in Gegenwart von Kanamycin. Die Plasmid-DNA der erhaltenen Trans-10 formanten wird anschließend sequenziert. Hierzu kann die von Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America USA (1977) 74: 5463-5467) beschriebene Dideoxy-Kettenabbruchmethode verwendet werden. Hiernach erhält man die stromaufwärts und 15 stromabwärts des Tn5531-Insertionsortes enthaltenen Gene. Die erhaltenen Nukleotidsequenzen werden dann mit kommerziell erhältlichen Sequenzanalyse-Programmen wie z. B.dem Programmpaket Lasergene (Biocomputing Software for Windows, DNASTAR, Madison, USA) oder dem Programmpaket HUSAR (Relea-20 se 4.0, EMBL, Heidelberg, Deutschland) analysiert und zusammengefügt.

Auf diese Weise wurden die neuen für den Export verzweigtkettiger Aminosäuren kodierenden DNA-Sequenzen von C. glutamicum erhalten, die als SEQ ID NO 1, Bestandteil der vorliegenden Erfindung sind. In SEQ ID NO 2 und SEQ ID NO 4 sind die Kodierregionen des brnF- und brnE-Gens dargestellt. In SEQ ID NO 3 und SEQ ID NO 5 sind die Aminosäuresequenzen der sich aus SEQ ID NO 1, bzw. SEQ ID NO 2 und SEQ ID NO 4 ergebenden Genprodukte dargestellt.

30 Kodierende DNA-Sequenzen, die sich aus SEQ ID NO 1 durch die Degeneriertheit des genetischen Codes ergeben, sind

30

ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID NO 1, oder Teilen von SEQ ID NO 1 hybridisieren Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am 10 N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth 15 et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID NO 2 oder SEQ ID NO 4 ergeben sind ebenfalls Bestandteil der Er-20 findung.

Unter Ausnutzung der in SEQ-ID-No. 1 dargestellten Nukleotidsequenz können geeignete Primer synthetisiert und diese dann dazu verwendet werden mit Hilfe der Polymerase-Kettenreaktion (PCR) brnF-, und brnE-Gene verschiedener coryneformer Bakterien und Stämme zu amplifizieren. Anleitungen hierzu findet der Fachmann unter anderem beispielsweise im Handbuch von Gait: Oligonukleotide synthesis: a practical approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994). Alternativ kann die in SEQ-ID-No. 1 dargestellte Nukleotidsequenz oder Teile davon als Sonde zur Suche von brnF- und/oder brnE-Genen in Genbanken von

20

25

30

insbesondere coryneformen Bakterien verwendet werden. Anleitungen hierzu findet der Fachmann unter anderem beispielsweise im Handbuch "The DIG System Users Guide for
Filter Hybridization" der Firma Firma Roche Diagnostics
(Mannheim, Deutschland) und bei Liebl et al. (International
Journal of Systematic Bacteriology (1991) 41: 255-260). Die
auf diese Weise amplifzierten brnE-, und brnF-Gene enthaltenden DNA-Fragmente werden anschließend kloniert und sequenziert.

Auf diese Weise wurde die in SEQ-ID-No. 6 dargestellte DNA-Sequenz der Gene brnF und brnE des Stammes ATCC13032 erhalten, die ebenfalls Bestandteil der vorliegenden Erfindung ist.

Die Erfinder fanden heraus, daß coryneforme Bakterien nach Überexpression des brnF- und/oder brnE Export-Gens in verbesserter Weise verzweigtkettige Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich die Expression im Verlaufe der fermentativen Herstellung verzweigtkettiger Aminosäuren zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ

kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei 5 Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der EP-B 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 10 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-15 A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Beispielhaft wurden die erfindungsgemäßen Gene brnF und 20 brnE mit Hilfe von Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-25 98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 30 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

20

Zusätzlich kann es für die Produktion von verzweigtkettigen Aminosäuren vorteilhaft sein, neben den neuen brnF- und brnE-Genen ein oder mehrere für weitere Enzyme des bekannten Biosyntheseweges der verzweigtkettigen Aminosäuren oder Enzyme des anaplerotischen Stoffwechsels oder Enzyme des Zitronensäure-Zyklus kodierende Gene zu überexprimieren.

So kann beispielsweise zur Produktion von L-Isoleucin

- gleichzeitig das für die Homoserin-Dehydrogenase kodierende hom-Gen (Peoples et al., Molecular Microbiology 2, 63-72 (1988)) oder das für eine "feed back resistente" Homoserin-Dehydrogenase kodierende hom^{dr}-Allel (Archer et al., Gene 107, 53-59 (1991)) oder
- gleichzeitig das für die Threonin-Dehydratase kodierende ilvA-Gen (Möckel et al., Journal of Bacteriology (1992)
 8065-8072)) oder das für eine "feed back resistente"
 Threonin- Dehydratase kodierende ilvA(Fbr)-Allel (Möckel et al., (1994) Molecular Microbiology 13: 833-842), oder
 - gleichzeitig die für die Acetohydroxysäuresynthase kodierenden Gene ilvBN (Keilhauer et al., (1993) Journal of Bacteriology 175: 5595-5603), oder
 - gleichzeitig das für die Dihydroxysäuredehydratase kodierende ilvD-Gen (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979), oder
- gleichzeitig das für die Pyruvat-Carboxylase kodierende 25 pyc-Gen (DE-A-19 831 609), oder
 - gleichzeitig das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395 - 403 (1998))

10

überexprimiert werden.

So kann beispielsweise zur Produktion von L-Leucin,

- gleichzeitig das für die Isopropylmalatsynthase kodierende leuA-Gen (Pátek et al., Applied Environmental Microbiology 60 (1994) 133-140) oder ein für eine "feed back resistente" Isopropylmalatsynthase kodierendes Allel, oder
- gleichzeitig die für die Isopropylmalatdehydratase kodierenden leuC- und leuD-Gene (Pátek et al., Applied Environmental Microbiology 60 (1994) 133-140), oder
- gleichzeitig das für die Isopropylmalatdehydrogenase kodierenden leuB-Gen (Pátek et al., Applied Environmental Microbiology 60 (1994) 133-140), oder
- gleichzeitig die für die Acetohydroxysäuresynthase kodierenden Gene ilvBN (Keilhauer et al., (1993) Journal of Bacteriology 175: 5595-5603), oder
 - gleichzeitig das für die Dihydroxysäuredehydratase kodierende ilvD-Gen (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979), oder
- gleichzeitig das für die Malat:Chinon Oxidoreduktase kodierende mgo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395 - 403 (1998))

überexprimiert werden.

So kann beispielsweise zur Produktion von L-Valin

- gleichzeitig die für die Acetohydroxysäuresynthase kodierenden Gene ilvBN (Keilhauer et al., (1993) Journal of Bacteriology 175: 5595-5603), oder
- gleichzeitig das für die Dihydroxysäuredehydratase kodierende ilvD-Gen (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979), oder
 - gleichzeitig das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395 - 403 (1998))
- 10 überexprimiert werden.

Weiterhin kann es für die Produktion von verzweigtkettigen Aminosäuren vorteilhaft sein, neben der Überexpression des brnE- und/oder brnF-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion verzweigtkettiger Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) erhalten.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedenener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der 5 American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, 10 Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff haltige 15 Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können ein-20 zeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Ei-25 sensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur 30 in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle 5 der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten wer-10 den Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt bis sich ein Maximum an verzweigtkettigen Aminosäuren 15 gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die Analyse der verzweigtkettigen Aminosäuren kann durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben, oder sie kann durch reversed phase HPLC erfolgen so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Folgender Mikroorganismus wurden bei der Deutschen Sammlung 25 für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:

Escherichia coli Stamm GM2929pCGL0040
 als DSM 12839

Beispiele

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie

alle Techniken zur Restriktion, Klenow- und alkalische
Phosphatasebehandlung wurden nach Sambrook et al. (Molecular cloning. A laboratory manual (1989) Cold Spring Harbour
Laboratory Press) durchgeführt. Die Transformation von
Escherichia coli wurde, wenn nicht anders beschrieben, nach
Chung et al. (Proceedings of the National Academy of Sciences of the United States of America (1989) 86: 2172-2175)
durchgeführt.

Beispiel 1

15

Klonierung und Sequenzierung des brnF- und brnE-Gens von Corynebacterium glutamicum ATCC14752

1.Transposonmutagenese

Der Stamm Corynebacterium glutamicum ATCC14752 wurde einer Mutagenese mit dem Transposon Tn5531 unterworfen, dessen Sequenz unter der Accession-Nummer U53587 in der Nukleotid-20 Datenbank des National Center for Biotechnology Information (Bethesda, USA) hinterlegt ist. Aus dem Methylase-defekten E. coli-Stamm GM2929pCGL0040 (E. coli GM2929: Palmer et al., Gene (1994) 143: 1-12) wurde das Plasmid pCGL0040 isoliert, welches das zusammengesetzte Transposon Tn5531 enthält (Ankri et al., Journal of Bacteriology (1996) 178: 4412-4419). Der Stamm Corynebacterium glutamicum ATCC14752 wurde mittels Elektroporation (Haynes et al., FEMS Microbiology Letters (1989) 61: 329-334) mit dem Plasmid pCGL0040 transformiert. Klone, bei denen das Transposon

Tn5531 ins Genom integriert war, wurden anhand ihrer Kanamycinresistenz auf 15 µg/mL Kanamycin enthaltenden LBHIS-Agarplatten identifiziert (Liebl et al., FEMS Microbiology Letters (1989) 65: 299-304). Auf diese Weise wurden 2000

Klone erhalten, welche auf verzögertes Wachstum in Anwesenheit von Isoleucyl-isoleucin überprüft wurden. Dazu wurden alle Klone einzeln auf CGXII-Minimalmedium-Agarplatten mit und ohne 3 mM Isoleucyl-isoleucin übertragen. Das Medium war identisch mit dem bei Keilhauer et al. beschriebenen

Medium CGXII (Journal of Bacteriology (1993) 175: 5593-5603), enthielt aber zusätzlich 25 µg/mL Kanamycin und 15 g/L Agar. Die Zusammensetzung des von Keilhauer et al. beschriebenen Mediums ist in Tabelle 1 dargestellt.

Tabelle 1
Zusammensetzung des Mediums CGXII

Komponente	Konzentration
(NH ₄) ₂ SO ₄	20 g/L
Harnstoff	5 g/L
KH ₂ PO ₄	1 g/L
K₂HPO₄	1 g/L
$MgSO_4 \times 7 H_2O$	0,25 g/L
3-Morpholinopropansulfonsäure	42 g/L
CaCl ₂	10 mg/L
FeSO ₄ x 7 H ₂ O	10 mg/L
MnSO ₄ x H ₂ O	10 mg/L
ZnSO ₄ x 7H ₂ O	1 mg/L
CuSO ₄	0,2 mg/L
NiCl ₂ x 6 H ₂ O	0,02 mg/L
Biotin	0,2 mg/L
Glukose	40 g/L
Protokatechusäure	30 mg/L

15

Die Agarplatten wurden bei 30°C inkubiert und das Wachstum nach 12, 18 und 24 Stunden untersucht. Es wurde eine Transposonmutante erhalten, die ohne Isoleucyl-isoleucin vergleichbar mit dem Ausgangsstamm Corynebacterium glutamicum ATCC14752 wuchs, in Anwesenheit von 3 mM Isoleucyl-isoleucin aber verzögertes Wachstum zeigte. Diese wurde als ATCC14752brnF::Tn5531 bezeichnet.

- 2. Klonierung und Sequenzierung des Insertionsortes von Tn5531 in ATCC14752brnF::Tn5531
- 10 Um den stromabwärts des Transposons Tn5531 gelegenen Insertionsort in der in Beispiel 1.1 beschriebenen Mutante zu klonieren, wurde zunächst die chromosomale DNA dieses Mutantenstammes wie bei Schwarzer et al. (Bio/Technology (1990) 9: 84-87) beschrieben isoliert und 400 ng davon mit 15 der Restriktionsendonuklease EcoRI geschnitten. Der vollständige Restriktionsansatz wurde in den ebenfalls mit Eco-RI linearisierten Vektor pUC18 (Norander et al., Gene (1983) 26: 101-106) der Firma Roche Diagnostics (Mannheim, Deutschland) ligiert. Mit dem gesamten Ligationsansatz wur-20 de der E. coli Stamm DH5cmcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America (1990) 87: 4645-4649) mittels Elektroporation transformiert (Dower et al., Nucleic Acid Research (1988) 16: 6127-6145). Transformanten, bei denen auf dem Vektor 25 pUC18 die Insertionsorte des Transposons Tn5531 kloniert vorlagen, wurden anhand ihrer Carbenicillin- und Kanamycinresistenz auf 50 μg/mL Carbenicillin und 25 μg/mL Kanamycin enthaltenden LB-Agarplatten identifiziert. Aus drei der Transformanten wurden die Plasmide präpariert und durch Re-30 striktionsanalyse die Größen der klonierten Inserts bestimmt. Die Nukleotidsequenz des Insertionsortes auf einem der Plasmide mit einem ca. 7,2 kb großen Insert wurde nach

10

der Dideoxy-Kettenabbruchmethode von Sanger et al. bestimmt (Proceedings of the National Academy of Sciences of the United States of America (1977) 74: 5463-5467). Hierzu wurden 1,3 kb des Inserts ausgehend von folgendem Oligonukleotid-Primer sequenziert: 5'-CGG GTC TAC ACC GCT AGC CCA GG-3'.

Zur Identifizierung des stromaufwärts des Transposons gelegenen Insertionsortes wurde die chromosomale DNA der Mutante mit der Restriktionsendonuklease PstI geschnitten und in den mit PstI linearisierten Vektor pUC18 ligiert. Die weitere Klonierung wurde wie oben beschrieben durchgeführt. Die Nukleotidsequenz des Insertionsortes auf einem der Plasmide mit einem ca. 4,8 kb großen Insert wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. bestimmt 15 (Proceedings of the National Academy of Sciences of the United States of America (1977) 74: 5463-5467). Hierzu wurden 1,6 kb des Inserts ausgehend von folgendem Oligonukleotid-Primer sequenziert: 5'-CGG TGC CTT ATC CAT TCA GG-3'.

Die erhaltenen Nukleotidsequenzen wurde mit dem Programmpa-20 ket Lasergene (Biocomputing Software for Windows, DNASTAR, Madison, USA) analysiert und zusammengefügt. Diese Nukleotidsequenz ist als SEQ ID NO 1 wiedergegeben. Die Analyse ergab die Identifizierung von zwei offenen Leserastern von 753 bp, und 324 bp Länge, die als SEQ ID NO 2 und SEQ ID NO 25 4 dargestellt sind. Die entsprechenden Gene wurden als brnF- und brnE-Gen bezeichnet. Die dazugehörigen Genprodukte umfassen 251 und 108 Aminosäuren und sind als SEQ ID NO 3 und SEQ ID NO 5 wiedergegeben.

Beispiel 2

Klonierung und Sequenzierung der brnF-, und brnE-Gene aus Corynebacterium glutamicum ATCC13032

Die Gene brnE und brnF des Stammes ATCC13032 wurden in den 5 E. coli Klonierungsvektor pUC18 (Norrander et al., Gene (1983) 26: 101-106, Roche Diagnostics, Mannheim, Deutschland) kloniert. Die Klonierung wurde in zwei Schritten durchgeführt. Zunächst wurden durch eine Polymerasekettenreaktion (PCR) die Gene aus Corynebacterium glutamicum ATCC13032 mittels folgender aus SEQ ID NO 1 abgeleiteter Oligonukleotid-Primer amplifiziert.

brnE, brnF, -forward:
5'-[AGC GCT GTC TGC TTA AGC CTT TTC]-3`

brnE, brnF, -reverse:

15 5'-[GCG CGA TCA ATG GAA TCT AGC TTC]-3'

Die PCR-Reaktion wurde in 30 Zyklen in Gegenwart von 200 µM Deoxynukleotid-triphosphaten (dATP, dCTP, dGTP, dTTP), je 1 µM des entsprechenden Oligonukleotids, 100 ng chromosomaler DNA von Corynebacterium glutamicum ATCC13032, 1/10 Volumen 10-fach Reaktionspuffer und 2,6 Einheiten einer hitzestabilen Taq-/Pwo-DNA-Polymerase-Mischung (Expand High Fidelity PCR System der Firma Roche Diagnostics, Mannheim, Deutschland) in einem Thermocycler (PTC-100, MJ Research, Inc., Watertown, USA) unter folgenden Bedingungen durchgeführt: 94°C für 30 Sekunden, 58°C für 30 Sekunden und 72°C für 2 Minuten.

Das amplifizierte etwa 1,3 kb große Fragment wurde dann im folgenden mit Hilfe des SureClone Ligation Kit (Amersham Pharmacia Biotech, Uppsala, Schweden) nach Angaben des Herstellers in die SmaI-Schnittstelle des Vektors pUC18 ligiert. Mit dem gesamten Ligationsansatz wurde der E. coli Stamm DH5cmcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America (1990) 87: 4645-4649) transformiert. Transformanten wurden anhand ihrer Carbenicillinresistenz auf 50 µg/mL Carbenicillin enthaltenden LB-Agarplatten identifiziert. Aus 8 der Transformanten wurden die Plasmide präpariert und durch Restriktionsanalyse auf das Vorhandensein des 1,3 kb PCR-Fragments als Insert überprüft. Das so entstandene rekombinante Plasmid wird im folgenden mit pUC18brnEF bezeichnet.

Die Nukleotidsequenz des 1,3 kb PCR-Fragments in Plasmid pUC18brnEF wurde nach der Dideoxy-Kettenabbruchmethode von Sanger et al. durchgeführt (Proceedings of the National Academy of Sciences of the United States of America (1977) 74: 5463-5467). Hierzu wurde das vollständige Insert von pUC18brnEF mit Hilfe folgender Primer der Firma Roche Diagnostics (Mannheim, Deutschland) sequenziert.

Universalprimer:

20 5'-GTA AAA CGA CGG CCA GT-3'

Reverseprimer:

25

5'-GGA AAC AGC TAT GAC CAT G-3'

Die erhaltene Nukleotidsequenz ist als SEQ ID NO 6 wiedergegeben. Die erhaltene Nukleotidsequenz wurde mit dem Programmpaket Lasergene (Biocomputing Software for Windows, DNASTAR, Madison, USA) analysiert.

Abbildungen:

- Figur 1: Karte des das Transposon Tn5531 enthaltenden Plasmids pCGL0040. Das Transposon ist als nicht schraffierter Pfeil gekennzeichnet.
- 5 Längenangaben sind als ca.-Angaben aufzufassen. Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung:
 - EcoRI: Restriktionsendonuklease aus Escherichia coli
 - XbaI: Restriktionsendonuklease aus Xanthomonas badrii
- ClaI: Restriktionsendonuklease aus Caryophanum latum
 - SalI: Restriktionsendonuklease aus Streptomyces albus
 - ScaI: Restriktionsendonuklease aus Streptomyces caespitosus
 - SmaI: Restriktionsendonuklease aus Serratia marcescens
- 15 Amp: Ampicillinresistenzgen
 - Kan: Kanamycinresistenzgen
 - oriBR322: Replikationsregion des Plasmides pBR322

SEQUENZPROTOKOLL

```
<110> Degussa-Hüls AG
           Forschungszentrum-Jülich GmbH
 5
     <120> Für den Export verzweigtkettiger Aminosäuren
           kodierende Nukleotidsequenzen, Verfahren
           zu deren Isolierung und ihre Verwendung
10
     <130> 990128 BT
     <140>
     <141>
15
     <160> 6
     <170> PatentIn Ver. 2.1
     <210> 1
20
     <211> 1271
     <212> DNA
     <213> Corynebacterium glutamicum ATCC14752
     <220>
25
     <221> gene
     <222> (101)..(853)
     <223> brnF
     <220>
30
     <221> gene
     <222> (853)..(1176)
     <223> brnE
35
     gcgcgatcaa tggaatctag cttcatatat tgcacaatag cctagttgag gtgcgcaaac 60
     tggcaacaaa actacccggc aattgtgtga tgattgtagt gtgcaaaaaa cgcaagagat 120
     tcattcaagc ctggaggtgt cgccatccaa ggcagccctg gaaccagatg ataaaggtta 180
     teggegetae gaaategege aaggtetaaa aaceteeett getgeaggtt tgggeatgta 240
     cccgattggt attgcgtttg gtctcttggt tattcaatac ggctacgaat ggtgggcagc 300
40
     cccactgttt tccggcctga ttttcgcggg ctccaccgaa atgctggtca tcgccctcgt 360
     tgtgggcgca gcgcccctgg gcgccatcgc gctcaccaca ttgctggtga acttccgcca 420
     cgtattctat gcgttttcat tcccgctgca tgtggtcaaa aaccccattg cccgtttcta 480
     ttcggttttc gcgcttatcg acgaagccta cgcagtcact gcggccaggc ccgcaggctg 540
     gtcggcgtgg cgacttatct caatgcaaat agcgtttcac tcctactggg tattcggcgg 600
45
     teteacegga gtggcgateg cagagttgat teettttgaa attaagggee tegagttege 660
     cctttgctct ctctttgtca cgctgacttt ggattcctgc cgaacgaaaa agcagatccc 720
     ttetetgetg etegeaggtt tgagetteae eattgetett gtggtaatte eaggteagge 780
     cetatttgcg gcgctgctga tettettggg tetgttgace atccggtact tettettggg 840
     aaaggetget aaatgacaac tgatttetee tgtattetee ttgttgtege agtatgtgea 900
50
     gtcattactt ttgcgctccg ggcggttccg ttcttaatcc ttaagcccct acgtgaatca 960
     caatttgtgg gcaaaatggc gatgtggatg ccagcaggaa tccttgccat tttgaccgca 1020
     tcaacgtttc gcagcaatgc gatagatctg aagactctaa cctttggtct cattgccgtt 1080
     gcgattacag tggtggcgca tcttcttggc ggtcgacgca ccttgttgag cgttggcgct 1140
     ggcaccatcg tttttgttgg actggtgaat cttttctaaa actgcataaa taacaaaaat 1200
55
     ccgcatgccc tcaatttgaa ggggatgcgg attttttaag gaacctagaa aaggcttaag 1260
     cagacagcgc t
                                                                         1271
```

<210> 2

	<211 <212 <213	> DN	Α	bact	eriu	m gl	utam	icum	ATC	C147	52					
5	<220 <221 <222 <223	> CD > (1) (753)												
10		caa				gag Glu										48
15	_	_	-	-	_	cca Pro	-	-					_			96
20						acc Thr										144
25						ggt Gly										192
30		-	-		_	ttt Phe 70			-						-	240
						ctc Leu										288
35					_	ctg Leu				_		-				336
40			_	_		gtg Val	_					_	-		_	384
45						gac Asp										432
50						tgg Trp 150										480
30						ggc Gly					Val					528
55					Ile	aag Lys				Phe				Leu		576

5												aag Lys					624
												ctt Leu 220					672
10	ggt Gly 225	cag Gln	gcc Ala	cta Leu	ttt Phe	gcg Ala 230	gcg Ala	ctg Leu	ctg Leu	atc Ile	ttc Phe 235	ttg Leu	ggt Gly	ctg Leu	ttg Leu	acc Thr 240	720
15				ttc Phe													753
20	<210> 3 O <211> 251 <212> PRT <213> Corynebacterium glutamicum ATCC14752																
25		0> 3 Gln	Lys	Thr	Gln 5	Glu	Ile	His	Ser	Ser 10	Leu	Glu	Val	Ser	Pro 15	Ser	
30	Lys	Ala	Ala	Leu 20	Glu	Pro	Asp	Asp	Lys 25	Gly	Tyr	Arg	Arg	Tyr 30	Glu	Ile	
30	Ala	Gln	Gly 35	Leu	Lys	Thr	Ser	Leu 40	Ala	Ala	Gly	Leu	Gly 45	Met	Tyr	Pro	
35	Ile	Gly 50	Ile	Ala	Phe	Gly	Leu 55	Leu	Val	Ile	Gln	Tyr 60	Gly	Tyr	Glu	Trp	
	Trp 65	Ala	Ala	Pro	Leu	Phe 70	Ser	Gly	Leu	Ile	Phe 75	Ala	Gly	Ser	Thr	Glu 80	
40	Met	Leu	Val	Ile	Ala 85	Leu	Val	Val	Gly	Ala 90	Ala	Pro	Leu	Gly	Ala 95	Ile	
4.5	Ala	Leu	Thr	Thr 100	Leu	Leu	Val	Asn	Phe 105	Arg	His	Val	Phe	Tyr 110	Ala	Phe	
45	Ser	Phe	Pro 115	Leu	His	Val	Val	Lys 120	Asn	Pro	Ile	Ala	Arg 125	Phe	Tyr	Ser	
50	Val	Phe 130		Leu	Ile	Asp	Glu 135	Ala	Tyr	Ala	Val	Thr 140		Ala	Arg	Pro	
	Ala 145		Trp	Ser	Ala	Trp 150		Leu	Ile	Ser	Met 155		Ile	Ala	Phe	His 160	
55	Ser	Tyr	Trp	Val	Phe 165	Gly	Gly	Leu	Thr	Gly 170		Ala	Ile	Ala	Glu 175	Leu	
	Ile	Pro	Phe	Glu 180		Lys	Gly	Leu	Glu 185		Ala	Leu	Cys	Ser 190		Phe	

	Val	Thr	Leu 195	Thr	Leu	Asp	Ser	Cys 200	Arg	Thr	Lys	Lys	Gln 205	Ile	Pro	Ser	
5	Leu	Leu 210	Leu	Ala	Gly	Leu	Ser 215	Phe	Thr	Ile	Ala	Leu 220	Val	Val	Ile	Pro	
10	Gly 225	Gln	Ala	Leu	Phe	Ala 230	Ala	Leu	Leu	Ile	Phe 235	Leu	Gly	Leu	Leu	Thr 240	
10	Ile	Arg	Tyr	Phe	Phe 245	Leu	Gly	Lys	Ala	Ala 250	Lys						
15 20	<212	0> 4 1> 32 2> Di 3> Co	ΑV	ebact	eri	umg]	utar	micur	n ATC	CC14	752						
25	<22	0> 1> CI 2> (3 3> ba	1)	(324))												
30	atg	0> 4 aca Thr		-			_				-	_	-	_	_	-	48
															Lys	ccc Pro	96
35																gca Ala	144
40			Leu					Ala					Ser			ata Ile	192
45	Asp		Lys	Thr	Leu	Thr	Phe		Leu	Ile	Ala					gtg Val 80	240
50						Gly					Leu					gct Ala	288
		acc Thr			Phe					Asn							324
55	<21 <21	.0> 5 .1> 1 .2> F	08 RT	iebac	teri	um o	luta	amicu	IA mu	°CC14	1752						

```
<400> 5
     Met Thr Thr Asp Phe Ser Cys Ile Leu Leu Val Val Ala Val Cys Ala
 5
     Val Ile Thr Phe Ala Leu Arg Ala Val Pro Phe Leu Ile Leu Lys Pro
                                      25
     Leu Arg Glu Ser Gln Phe Val Gly Lys Met Ala Met Trp Met Pro Ala
10
     Gly Ile Leu Ala Ile Leu Thr Ala Ser Thr Phe Arg Ser Asn Ala Ile
15
     Asp Leu Lys Thr Leu Thr Phe Gly Leu Ile Ala Val Ala Ile Thr Val
                          70
     Val Ala His Leu Leu Gly Gly Arg Arg Thr Leu Leu Ser Val Gly Ala
                                          90
20
     Gly Thr Ile Val Phe Val Gly Leu Val Asn Leu Phe
                 100
                                      105
25
     <210> 6
     <211> 1271
     <212> DNA
     <213> Corynebacterium glutamicum ATCC13032
30
     <220>
     <221> gene
     <222> (101)..(853)
     <223> brnF
35
     <220>
     <221> gene
     <222> (853)..(1176)
     <223> brnE
40
     <400> 6
     gcgcgatcaa tggaatctag cttcatatat tgcacaatag cctagttgag gtgcgcaaac 60
     tggcaacaaa actacccggc aattgtgtga tgattgtagt gtgcaaaaaa cgcaagagat 120
     tcattcaagc ctggaggtgt cgccatccaa ggcagccctg gaaccagatg ataaaggtta 180
45
     teggegetae gaaategege aaggtetaaa aaceteeett getgeaggtt tgggeatgta 240
     cccgattggt attgcgtttg gtctcttggt tattcaatac ggctacgaat ggtgggcagc 300
     cccactgttt tccggcctga ttttcgcggg ctccaccgaa atgctggtca tcgccctcgt 360
     tgtgggcgca gcgcccctgg gcgccatcgc gctcaccaca ttgctggtga acttccgcca 420
     cgtattctat gcgttttcat tcccgctgca tgtggtcaaa aaccccattg cccgtttcta 480
50
     tteggtttte gegettateg acgaageeta egeagteact geggeeagge eegeaggetg 540
     gtcggcgtgg cgacttatct caatgcaaat agcgtttcac tcctactggg tattcggcgg 600
     teteacegga gtggegateg eagagttgat teettttgaa attaagggee tegagttege 660
     cettigetet etettigica egetgaetti ggatteetge egaacgaaaa ageagateee 720
     ttctctgctg ctcgcaggtt tgagcttcac cattgctctt gtggtaattc caggtcaggc 780
55
     cetatttgcg gcgctgctga tcttcttggg tctgttgacc atccggtact tcttcttggg 840
     aaaggetget aaatgacaac tgatttetee tgtattetee ttgttgtege agtatgtgea 900
      gtcattactt ttgcgctccg ggcggttccg ttcttaatcc ttaagcccct acgtgaatca 960
      caatttgtgg gcaaaatggc gatgtggatg ccagcaggaa tccttgccat tttgaccgca 1020
      tcaacgtttc gcagcaatgc gatagatctg aagactctaa cetttggtct cattgccgtt 1080
```

gcgattacag	tggtggcgca	tcttcttggc	ggtcgacgca	ccttgttgag	cgttggcgct	1140
ggcaccatcg	tttttgttgg	actggtgaat	cttttctaaa	actgcataaa	taacaaaaat	1200
ccgcatgccc	tcaatttgaa	ggggatgcgg	attttttaag	gaacctagaa	aaggcttaag	1260
cagacagcgc	t					1271

10

Patentansprüche

- 1. Isolierte Polynukleotide, enthaltend mindestens eine der Polynukleotidsequenzen, ausgewählt aus der Gruppe
- a) Polynukleotid, das zu mindestens 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das mindestens eine Aminosäuresequenz von SEQ ID No. 3 oder 5 enthält,
 - b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit mindestens einer Aminosäuresequenz von SEQ ID No. 3 oder 5,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a), b) oder c), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Basen der
 Polynukleotidsequenzen von a), b), oder c).
 - Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
- 20 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 4. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) eine der Nukleotidsequenzen, gezeigt in SEQ ID No. 1 oder SEQ ID No. 6, oder
- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder

- (iii) mindestens eine Sequenz, die mit der zur
 Sequenz (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
- (iv) funktionsneutrale Sinnmutationen in (i).
- 5 5. Aminosäuresequenz des Proteins, abgeleitet aus den Nukleotidsequenzen gemäß den Ansprüchen 1 oder 2, dargestellt in der SEQ-ID-No. 2 und der SEQ-ID-No. 4.
 - 6. Coryneforme Mikroorganismen, insbesondere der Gattung Corynebacterium, transformiert durch die Einführung einer oder mehrerer der replizierbaren DNA gemäß einem der Ansprüche 2 oder 5.
 - 7. Verfahren zur Herstellung von verzweigtkettigen L-Aminosäuren durch Fermentation coryneformer Bakterien,
- dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man das brnEund/oder brnF-Gen oder dafür codierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert.
- 8. Verfahren gemäß Anspruch 7,
 20 dadurch gekennzeichnet,
 daß man Bakterien einsetzt, in denen man zusätzlich
 weitere Gene des Biosyntheseweges der gewünschten LAminosäure verstärkt.
- Verfahren gemäß Anspruch 7,
 dadurch gekennzeichnet,
 daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
- 10. Verfahren gemäß den Ansprüchen 8 bis 10,
 30 dadurch gekennzeichnet,
 daß man einen mit einem oder mehreren Plasmidvektoren
 transformierten Stamm einsetzt, und der die Plasmidvek-

20

tor(en) die für das brnE- und/oder brnF-Gen codierende Nukleotidsequenz trägt (tragen).

- 11. Verfahren gemäß einem oder mehreren der Ansprüche 8 bis 10,
- dadurch gekennzeichnet, daß man coryneforme Bakterien verwendet, die L-Isoleucin, L-Valin oder L-Leucin herstellen.

.

- 12. Verfahren zur Herstellung von verzweigtkettigen L-Aminosäuren,
- 10 dadurch gekennzeichnet, daß man folgende Schritte durchführt:
 - a) Fermentation von Mikroorganismen gemäß einem oder mehreren der vorhergehenden Ansprüche, in denen zumindest das brnE- und/oder brnF-Gen verstärkt, insbesondere überexprimiert wird, ggf. in Kombination mit weiteren Genen,
 - b) Anreicherung der gewünschten L-Aminosäure im Medium
 - oder in den Zellen der Mikroorganismen, und
 - c) Isolieren der L-Aminosäure.
 - 13. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet,
- daß man Mikroorganismen der Gattung Corynebacterium einsetzt.
- 14. Verfahren zur Isolierung des brnE- bzw. brnF-Gen,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man als Indikatorstämme in diesem/diesen Gen(en)

 defekte Mutanten, vorzugsweise coryneformer Bakterien
 gewinnt, die auf einem ein Isoleucin und/oder Leucin
 und/oder Valin haltiges Oligopeptid enthaltenden Nährmedium nicht oder nur gering wachsen und

- a) das brnE- bzw. brnF-Gen nach dem Anlegen einer Genbank identifiziert und isoliert, oder
- b) im Fall der Transposon-Mutagenese auf das bevorzugt eine Antibiotikaresistenz enthaltende Transposon selektiert und so die gewünschten Gene erhält.

Zusammenfassung

Die Erfindung betrifft isolierte Polynukleotide, enthaltend mindestens eine der Polynukleotidsequenzen, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das zu mindestens 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das mindestens eine Aminosäuresequenz von SEQ ID No. 3 oder 5 enthält,
- b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit mindestens einer Aminosäuresequenz von SEQ ID No. 3 oder 5,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a), b) oder c), und
- 15 d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenzen von a), b) oder c),

wobei die Polypeptide die biologische Aktivität der Enzyme aufweisen, für das das brnE bzw. bernF-Gen codiert, und

Verfahren zur fermentativen Herstellung von verzweigtkettigen L-Aminosäuren unter Verstärkung der genannten Gene.

Figur 1:

