

planetmath.org

Math for the people, by the people.

uniform proximity is a proximity

Canonical name UniformProximityIsAProximity

Date of creation 2013-03-22 18:07:21 Last modified on 2013-03-22 18:07:21

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Derivation
Classification msc 54E17
Classification msc 54E05
Classification msc 54E15

In this entry, we want to show that a uniform proximity is, as expected, a proximity.

First, the following equivalent characterizations of a uniform proximity is useful:

Lemma 1. Let X be a uniform space with uniformity \mathcal{U} , and A, B are subsets of X. Denote U[A] the image of A under $U \in \mathcal{U}$:

$$\{b \in X \mid (a,b) \in U \text{ for some } a \in A\}.$$

The following are equivalent:

- 1. $(A \times B) \cap U \neq \emptyset$ for all $U \in \mathcal{U}$
- 2. $U[A] \cap U[B] \neq \emptyset$ for all $U \in \mathcal{U}$
- 3. $U[A] \cap B \neq \emptyset$ for all $U \in \mathcal{U}$

If we define $A\delta B$ iff the pair A, B satisfy any one of the above conditions for all $U \in \mathcal{U}$, we call δ the uniform proximity.

Proof. $(1 \Rightarrow 2)$ Suppose $(a, b) \in (A \times B) \cap U$. Then $b \in U[A]$. Since U is reflexive, $(b, b) \in U$, or $b \in U[B]$. This means $b \in U[A] \cap U[B]$.

 $(2\Rightarrow 3)$ For any $U\in \mathcal{U}$, we can find $V\in \mathcal{U}$ such that $V\circ V\subseteq U$. So $V=V\circ\Delta\subseteq V\circ V\subseteq W$, where Δ is the diagonal relation (since V is reflexive). Set $W=V\cap V^{-1}$. By assumption, there is $c\in W[A]\cap W[B]$ (and hence $c\in U[A]\cap U[B]$ as well). This means $(a,c),(b,c)\in W$ for some $a\in A$ and $b\in B$. Since W is symmetric, $(c,b)\in W\subseteq V$, so that $(a,b)=(a,c)\circ(c,b)\in V\subseteq U$. This means that $b\in U[A]$. As a result, $U[A]\cap B\neq\varnothing$.

 $(3 \Rightarrow 1)$ If $b \in U[A] \cap B$, then there is $a \in A$ such that $(a,b) \in U$, or $(A \times B) \cap U \neq \emptyset$.

We want to prove the following:

Proposition 1. The binary relation δ on P(X) defined by

$$A\delta B$$
 iff $(A \times B) \cap U \neq \emptyset$ for all $U \in \mathcal{U}$

is a proximity on X.

Proof. We verify each of the axioms of a proximity relation:

- 1. if $A \cap B \neq \emptyset$, then $A\delta B$: pick $c \in A \cap B$, then $(c,c) \in U$ since the diagonal relation $\Delta \subseteq U$ for all $U \in \mathcal{U}$.
- 2. if $A\delta B$, then $A \neq \emptyset$ and $B \neq \emptyset$: If $A\delta B$, then $(A \times B) \cap U \neq \emptyset$ for every $U \in \mathcal{U}$, since no U is empty, there is $(a,b) \in U$ such that $(a,b) \in A \times B$, or $A \neq \emptyset$ and $B \neq \emptyset$.
- 3. (symmetry) if $A\delta B$, then $B\delta A$: If $A\delta B$, then there is $(a_U, b_U) \in (A \times B) \cap U^{-1}$ for every $U \in \mathcal{U}$, so $(b_U, a_U) \in U$, which implies $(B \times A) \cap U \neq \emptyset$, or $B\delta A$.
- 4. $(A_1 \cup A_2)\delta B$ iff $A_1\delta B$ or $A_2\delta B$: Since $(A_1 \cup A_2) \times B = (A_1 \times B) \cup (A_2 \times B)$,

$$(a,b) \in ((A_1 \cup A_2) \times B) \cap U$$

iff $(a,b) \in ((A_1 \times B) \cup (A_2 \times B)) \cap U = ((A_1 \times B) \cap U) \cup ((A_2 \times B) \cap U)$
iff $(a,b) \in (A_1 \times B) \cap U$ or $(a,b) \in (A_2 \times B) \cap U$.

5. $A\delta'B$ implies the existence of $C \in P(X)$ with $A\delta'C$ and $(X - C)\delta'B$, where $A\delta'B$ means $(A, B) \notin \delta$.

First note that δ' is symmetric because δ is. By assumption, there is $U \in \mathcal{U}$ such that $U[A] \cap U[B] = \emptyset$ (second equivalent characterization of uniform proximity from lemma above). Set C = U[B]. Then $U[A] \cap C = \emptyset$. By the third equivalent condition of uniform proximity, $A\delta'C$. Likewise, $U[B] \cap (X - C) = U[B] \cap (X - U[B]) = \emptyset$, so $B\delta'(X - C)$, or $(X - C)\delta'B$.

This shows that δ is a proximity on X.