Approche Stratégique des Marchés Financiers Formalisation Quantitative et Portefeuille Antifragile

Olivier Croissant Emerging Pricing Technologies, Paris, France

September 16, 2025

Abstract

Cette note expose une approche stratégique des marchés financiers, fondée sur trente années d'expérience en analyse quantitative. L'idée centrale est de construire des stratégies antifragiles : "si le marché monte, je suis content ; si le marché baisse, je suis content". La méthode repose sur des fonctionnelles de décision dynamiques, des échelles d'achat et de vente, et une structuration du capital en trois portefeuilles complémentaires : croissance internationale (IA, or, défense), qualité française (industrie, luxe, aéronautique), et cryptoactifs (BTC/ETH + cash). Nous présentons un formalisme mathématique de la stratégie d'échelles (ladder strategy), ainsi que les métriques usuelles de backtest : P&L, Sharpe, Sortino, CAGR, Max Drawdown, Calmar.

1 Introduction

La gestion de portefeuille moderne doit conjuguer trois dimensions :

- a) capturer la croissance structurelle (technologie, intelligence artificielle),
- b) préserver le capital par des valeurs refuges et défensives,
- c) maintenir une poche spéculative pour exploiter les marchés émergents à forte convexité (crypto).

La stratégie proposée est le fruit d'une adaptation progressive : les fonctionnelles utilisées en actions/produits dérivés ne se sont pas révélées efficaces en crypto. Il a donc fallu **redéfinir les règles de gestion** en tenant compte de la microstructure propre de chaque marché.

2 Formalisme mathématique

2.1 Données et état du portefeuille

Soit P_t le prix de l'actif sous-jacent à la date $t \in [t_1, t_2]$. Le portefeuille est décrit par :

$$E_t = C_t + U_t P_t$$

où C_t est le cash disponible, U_t le nombre d'unités détenues, et E_t la valeur totale du portefeuille.

2.2 Référence dynamique

On définit un prix de référence R_t selon plusieurs modes :

• Trailing max (peak): $R_t = \max_{s \leq t} P_s$,

• Rolling mean : $R_t = \frac{1}{w} \sum_{k=0}^{w-1} P_{t-k}$,

• Anchored : $R_t = R_{t_0}$ fixé à une date d'ancrage.

2.3 Fonctionnelles d'achat et de vente

On fixe deux ensembles de niveaux :

$$\mathcal{B} = \{(l_i^b, \alpha_i^b)\}_{i=1}^m, \quad l_i^b > 0, \ \alpha_i^b \in (0, 1),$$

$$\mathcal{S} = \{(l_i^s, \alpha_i^s)\}_{j=1}^n, \quad l_j^s > 0, \ \alpha_j^s \in (0, 1),$$

où l_i^b est un seuil relatif (ex: 5% sous R_t), α_i^b la fraction du cash à investir, et l_j^s un seuil de hausse (ex: 10% au-dessus de R_t), α_j^s la fraction de position à vendre.

2.4 Règles de mise à jour

• Achat : si $P_t \leq (1 - l_i^b)R_t$, alors

$$\Delta U_t = \frac{\alpha_i^b C_t}{P_t}, \quad C_t \leftarrow C_t - \alpha_i^b C_t, \quad U_t \leftarrow U_t + \Delta U_t.$$

• Vente : si $P_t \ge (1 + l_j^s)R_t$, alors

$$\Delta U_t = \alpha_j^s U_t, \quad C_t \leftarrow C_t + \Delta U_t P_t, \quad U_t \leftarrow U_t - \Delta U_t.$$

2.5 Contraintes et adaptativité

Les quantités α_i^b, α_j^s ne sont pas fixes mais **dépendent du contexte** :

$$\alpha_i^b = f_b(C_t, E_t, \sigma_t, \text{macro}), \quad \alpha_j^s = f_s(U_t, E_t, \sigma_t, \text{flux}),$$

où σ_t est la volatilité implicite ou réalisée, et macro, flux représentent les conditions globales.

3 Portefeuilles complémentaires

3.1 Portefeuille international (croissance et refuge)

• Tech US : Microsoft, Nvidia,

• Tech Chine: ETF Amundi MSCI China Tech,

• Défense : Lockheed Martin,

• Or : réserve de valeur.

3.2 Portefeuille français (qualité industrielle et luxe)

• Hermès, Schneider, Safran, Legrand, Airbus, Dassault.

3.3 Portefeuille crypto (spéculation dynamique)

- BTC (35%), ETH (10%), cash (55%),
- gestion par échelles dynamiques,
- jamais all-in, jamais all-out,
- adaptation à la microstructure crypto (funding, liquidations, cycles de halving).

4 Métriques de performance

À l'issue d'un backtest sur $[t_1, t_2]$, on calcule :

$$CAGR = \left(\frac{E_{t_2}}{E_{t_1}}\right)^{1/(t_2-t_1)} - 1,$$

$$Sharpe = \frac{\mathbb{E}[r_t - r_f]}{\sigma(r_t)},$$

$$Sortino = \frac{\mathbb{E}[r_t - r_f]}{\sigma(r_t^-)},$$

$$MDD = \min_t \frac{E_t}{\max_{s \le t} E_s} - 1,$$

$$Calmar = \frac{CAGR}{|MDD|}.$$

5 Conclusion

Cette approche vise à conjuguer rigueur quantitative et adaptativité. Elle s'appuie sur des fonctionnelles spécifiques à chaque marché (actions, dérivés, crypto) et une allocation triptyque : croissance, stabilité, spéculation. L'objectif n'est pas de prédire le marché, mais de construire un dispositif antifragile qui tire parti de la volatilité.