House price prediction

組員:許軒瑋、胡凱欣、陳胤銓、楊捷安

Group: 9

Data

- Data downloaded from **Kaggle**: *House Prices: Advanced Regression Techniques*
 - 1460 training data, 1459 testing data
 - → 79 attributes
- View of Sale Price statistics in training data

Skewness: 1.88288 Kurtosis: 6.53268

Analysis:

- Deviate from the normal distribution.
- Have appreciable positive skewness

Data - Sale Price

Johnson's SU has been used successfully to model asset returns for portfolio management

SalePrice v.s YearBuilt

SalePrice v.s OverallQual

OverallQual: Rates the overall condition of the house

Very Excellent

9 Excellent

8 Very Good

7 Good

6 Above Average

Average

Below Average

Fair

2 Poor

Very Poor

Correlation matrix (heatmap style)

Data- Attributes

Correlation between Sale Price and Attributes

Data- Attributes

- Pick Top 10 highest correlation
- Look into correlation between attributes

Data- Detect Outliers

Normalization - Fixing Skew Data

log(1+x) transform

train["SalePrice"] = np.log1p(train["SalePrice"])

Missing Data (pandas.isnull)

	Count	Percent(%)
PoolQC	2907	99.691358
MiscFeature	2811	96.399177
Alley	2718	93.209877
Fence	2345	80.418381
FireplaceQu	1420	48.696845
LotFrontage	485	16.632373
GarageCond	159	5.452675
GarageQual	159	5.452675
GarageYrBlt	159	5.452675
GarageFinish	159	5.452675
GarageType	157	5.384088
BsmtCond	82	2.812071
BsmtExposure	82	2.812071
BsmtQual	81	2.777778
BsmtFinType2	80	2.743484
BsmtFinType1	79	2.709191
MasVnrType	24	0.823045
MasVnrArea	23	0.788752
MSZoning	4	0.137174
BsmtHalfBath	2	0.068587

Filling Missing Values

- Type1: NA -> "None"
 - Ex. PoolQC: no pool, Fence: no fence, GarageQual: no garage
 - ► (PoolQC: Pool quality(泳池品質)、Fence: Fence quality、GarageQual: Garage quality)
- ► Type2 : NA -> 0
 - Ex. TotalBsmtSF: no basement so basement area = 0
 - (TotalBsmSF: Total square feet of basement area 地下室面積)

- Type3: typical ex.('Typ') values
 - Ex. KitchenQual: Kitchen quality(廚房品質)
 - Ex Excellent
 - Gd Good
 - TA Typical/Average
 - ► Fa Fair
 - Po Poor
- Type4: Using other features to help fill missing values
 - Ex. LotFrontage: Neighborhood
 - LotFrontage: Linear feet of street connected to property(房子鄰近的街道距離)
 - Neighborhood: Physical locations within Ames city limits(在Ames City的實際位置)

Fixing skewed features

(Normalize skewed features)

Create interesting features & Feature transformations

```
 all\_features['haspool'] = all\_features['PoolArea'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['has2ndfloor'] = all\_features['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasgarage'] = all\_features['GarageArea'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasbsmt'] = all\_features['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplace'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplaces'] = all\_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) \\ all\_features['hasfireplaces'] = all\_features['hasfireplaces'].ap
```

Training a Model

```
# Setup cross validation folds
kf = KFold(n_splits=12, random_state=42, shuffle=True)
# XGBoost Regressor
xgboost = XGBRegressor(learning rate=0.01,
                        n estimators=6000,
                        max depth=4,
                        min_child_weight=0,
                        gamma=0.6,
                        subsample=0.7,
                        colsample bytree=0.7,
                        objective='reg:squarederror',
                        nthread=-1.
                        scale_pos_weight=1,
                        seed=27,
                        reg_alpha=0.00006,
                        random_state=42)
# Random Forest
rf = RandomForestRegressor(n_estimators=1200,
                           max depth=15,
                           min samples split=5,
                           min_samples_leaf=5,
                           max features=None,
                           oob score=True,
                           random state=42)
# Support Vector regression
svr = make pipeline(RobustScaler(), SVR(C= 20, epsilon= 0.008, gamma=0.0003))
```

RMSE:
$$\sqrt{\frac{\sum_{i=1}^{N}(y_i - \widehat{y_i})^2}{N}}$$

Ensemble Methods: Weight Average

18

Result:

House Prices: A... Ongoing Top 30%

1,635th of 5532

Future works

- Revised data attributes and create more interesting attributes with human intuition.
 - Swimming pool size, built year, Quality etc.
- Apply PCA to reduce high correlation attributes.