# Signature-Based Generative Models for Time Series

# 1 Background: Path Signatures

Let  $X:[0,T]\to\mathbb{R}^d$  be a continuous path of finite variation. The (truncated) signature of X over [0,T] to level m, denoted  $S^{(m)}(X)_{0,T}\in\bigoplus_{k=0}^m(\mathbb{R}^d)^{\otimes k}$ , collects the iterated integrals

$$S^{(k)}(X)_{0,T}^{i_1,\dots,i_k} = \int_{0 < t_1 < \dots < t_k < T} dX_{t_k}^{i_k} \cdots dX_{t_1}^{i_1}, \qquad k = 1, 2, \dots, m.$$

In practice, for a one-dimensional series  $S_t$  we embed time and value to form a two-dimensional path  $Z_t = (t, S_t)$  before computing the signature. Key properties used here: (i) Chen's identity for concatenation, (ii) faithfulness/uniqueness (up to tree-like equivalence), and (iii) expected signatures characterize laws, which motivates the linear signature MMD used for evaluation.

**Notation.** We use sliding windows of length L (lookback) and forward segment length F. For a window ending at index t, write  $W_t = Z_{[t-L,t]}$  and  $s_t = S^{(m)}(W_t) \in \mathbb{R}^{d(m)}$  for the truncated signature feature.

# 2 Model 1: Path-wise Signature Bootstrap

#### 2.1 Idea

Build an empirical library of cause/effect pairs

$$\mathcal{D} = \{(s_t, p_t)\}, \quad s_t = S^{(m)}(Z_{[t-L, t]}), \quad p_t = S_{t+1:t+F} - S_t,$$

i.e., store the signature of each lookback window and the corresponding future relative segment to ensure continuity when stitching. At generation time, compute the current lookback signature  $s_{\text{gen}}$ , find its k nearest neighbors in  $\mathcal{D}$ , and sample one of the stored future segments to append.

## 2.2 Pseudo-code

#### Algorithm 1 Path-wise Signature Bootstrap

```
1: Input: historical paths \mathcal{R}, lookback L, forward F, level m, k
 2: Library creation:
 3: \mathcal{D} \leftarrow \emptyset
 4: for R \in \mathcal{R} do
           for t = L, ..., |R| - F do
                s_t \leftarrow S^{(m)}((\tau, R_\tau)_{\tau=t-L}^t)
 6:
                p_t \leftarrow (R_{t+1}, \dots, R_{t+F}) - R_t
 7:
                \mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, p_t)\}
           end for
 9:
10: end for
11: Generation: given seed path R_{0\cdot L}^{\text{seed}}
12: R^{\text{gen}} \leftarrow R^{\text{seed}}
13: while length(R^{\text{gen}}) < target do
           s_{\text{gen}} \leftarrow S^{(m)} \text{ of last } L+1 \text{ points}
           N_k \leftarrow k-NN of s_{\text{gen}} in \mathcal{D}
15:
           Sample (s_i, p_i) \in N_k uniformly (or softmax by distance)
16:
           Append p_i shifted by current level: R^{\text{gen}} \leftarrow R^{\text{gen}} \cup (R^{\text{gen}}_{-1} + p_i)
17:
18: end while
```

**Remarks.** Using time-normalized windows (time reparameterized to [0, 1]) stabilizes the signature features; log-signatures may further de-correlate components. Soft neighbor sampling (e.g., softmax on distances) reduces jumps.

# 3 Model 2: Hybrid Drift + Signature Residual

#### 3.1 Idea

Decompose one-step dynamics into a simple parametric drift plus a nonparametric innovation sampled from a signature-conditioned library. With  $X_t = \log S_t$  and  $\Delta X_t = X_{t+1} - X_t$  (step  $\Delta t$ ), learn a mean-reverting drift  $\mu_{\theta}(x) = c x$  by least squares on residuals, then build a library of residuals conditioned on window signatures.

#### 3.2 Training

Given 
$$\{X_t\}$$
, solve  $\min_c \sum_t (\Delta X_t - \mu_c(X_t) \Delta t)^2 + \lambda c^2$ ,  $\mu_c(x) = c x$ .

Then, for each  $t \geq L$ , define the residual  $r_t := \Delta X_t - \mu_c(X_t) \Delta t$  and store pairs  $(s_t, r_t)$  with  $s_t = S^{(m)}(W_t)$  in a residual library  $\mathcal{R}$ .

#### 3.3 Generation (Euler step with resampled residual)

$$X_{t+1} = X_t + \mu_c(X_t) \Delta t + \widetilde{r}_t, \qquad \widetilde{r}_t \sim \text{Empirical}(\{r_j : (s_j, r_j) \in N_k(s_t)\}).$$

Pseudocode mirrors Model 1, except the future segment is a scalar residual added per step, not a multi-step block. Soft k-NN sampling is recommended.

#### Model 2 Pseudocode

# Algorithm 2 Hybrid Drift + Signature Residual: Training

```
1: Input: detrended log-paths \{\{X_t^{(n)}\}_t\}_{n=1}^N, lookback L, step \Delta t, signature level m, ridge \lambda
2: Build one-step dataset
3: \mathcal{T} \leftarrow \emptyset
4: for n=1 to N do
5: for t=L to T_n-1 do
6: W_t \leftarrow (X_{t-L}^{(n)}, \dots, X_t^{(n)})
7: s_t \leftarrow S^{(m)}((\tau, W_t(\tau))_{\tau \in [0,1]}) \triangleright time normalized to [0,1]
8: y_t \leftarrow X_t^{(n)}, \quad \Delta X_t \leftarrow X_{t+1}^{(n)} - X_t^{(n)}
9: \mathcal{T} \leftarrow \mathcal{T} \cup \{(s_t, y_t, \Delta X_t)\}
10: end for
11: end for
```

12: Fit linear mean-reversion drift  $\mu_c(x) = cx$ :

$$c^* \in \arg\min_{c} \sum_{(s_t, y_t, \Delta X_t) \in \mathcal{T}} (\Delta X_t - c y_t \Delta t)^2 + \lambda c^2$$

13: Build residual library  $\mathcal{R}$ :

$$r_t \leftarrow \Delta X_t - c^* y_t \Delta t, \qquad \mathcal{R} \leftarrow \mathcal{R} \cup \{(s_t, r_t)\}$$

14: **Output:** drift coefficient  $c^*$ , residual library  $\mathcal{R} = \{(s_t, r_t)\}$ 

# Algorithm 3 Hybrid Drift + Signature Residual: Generation

```
    Input: seed log-path (X<sub>0</sub>,..., X<sub>L</sub>), horizon T, step Δt, level m, k-NN, temperature τ > 0, drift c*, residual library R
    for t = L to T − 1 do
    W<sub>t</sub> ← (X<sub>t-L</sub>,..., X<sub>t</sub>)
    s<sub>t</sub> ← S<sup>(m)</sup>((τ, W<sub>t</sub>(τ))<sub>τ∈[0,1]</sub>)
    Find k nearest neighbors N<sub>k</sub>(s<sub>t</sub>) ⊂ R by Euclidean distance in signature space
    Compute weights w<sub>j</sub> ∝ exp( − dist(s<sub>t</sub>, s<sub>j</sub>)/τ) for (s<sub>j</sub>, r<sub>j</sub>) ∈ N<sub>k</sub>(s<sub>t</sub>)
    Sample residual r̃<sub>t</sub> from N<sub>k</sub>(s<sub>t</sub>) with probabilities {w<sub>j</sub>}
    X<sub>t+1</sub> ← X<sub>t</sub> + c*X<sub>t</sub>Δt + r̃<sub>t</sub>
    end for
    Output: generated path (X<sub>0</sub>,..., X<sub>T</sub>) (convert to levels if needed: S<sub>t</sub> = e<sup>X<sub>t</sub></sup>)
```

# 4 Model 3: Kernel Ridge Regression (KRR) in Signature Space

# 4.1 Feature construction and targets

Work on  $X_t = \log S_t$ . For each window  $W_t$  (length L) compute  $s_t = S^{(m)}(W_t) \in \mathbb{R}^{d(m)}$  and define two targets:

$$y_t^{(\mu)} = \frac{X_{t+1} - X_t}{\Delta t}, \qquad y_t^{(\log \sigma)} = \log \left(\frac{\operatorname{std}(\{\Delta X \text{ in } W_t\})}{\sqrt{\Delta t}} + \varepsilon\right).$$

Stacking rows gives the signature design matrix  $S \in \mathbb{R}^{N \times d(m)}$ .

# 4.2 Training (linear kernel in signature space)

Form the Gram matrix  $K = SS^{\top} \in \mathbb{R}^{N \times N}$  and solve two ridge systems:

$$\boldsymbol{\alpha}_{\mu} = (K + \lambda I_N)^{-1} \boldsymbol{y}_{\mu}, \qquad \boldsymbol{\alpha}_{\log \sigma} = (K + \lambda I_N)^{-1} \boldsymbol{y}_{\log \sigma}.$$

For a new window with signature  $s_{\text{new}}$ , predict via the kernel trick

$$\widehat{\mu} = (Ss_{\text{new}})^{\top} \boldsymbol{\alpha}_{\mu}, \qquad \widehat{\log \sigma} = (Ss_{\text{new}})^{\top} \boldsymbol{\alpha}_{\log \sigma}, \quad \widehat{\sigma} = e^{\widehat{\log \sigma}}.$$

# 4.3 Generation (Euler-Maruyama)

$$X_{t+1} = X_t + \widehat{\mu} \Delta t + \widehat{\sigma} \Delta W_t, \quad \Delta W_t \sim \mathcal{N}(0, \Delta t).$$

Repeat with a rolling window to refresh  $s_{\text{new}}$  at each step.

## Model 3 Pseudocode

# Algorithm 4 KRR in Signature Space: Training (drift and log-vol)

```
1: Input: training log-paths \{\{X_t^{(n)}\}_t\}_{n=1}^N, lookback L, step \Delta t, level m, ridge \lambda, floor \varepsilon>0
 2: Build windowed signature dataset
 3: S \leftarrow []
                                                                                                                                          4: \boldsymbol{y}_{\mu} \leftarrow [], \, \boldsymbol{y}_{\log \sigma} \leftarrow []
 5: for n = 1 to N do
            for t = L to T_n - 1 do
W_t \leftarrow (X_{t-L}^{(n)}, \dots, X_t^{(n)})
s_t \leftarrow S^{(m)}((\tau, W_t(\tau))_{\tau \in [0,1]})
\Delta X_t \leftarrow X_{t+1}^{(n)} - X_t^{(n)}
 7:
 9:
                   y_t^{(\mu)} \leftarrow \Delta X_t / \Delta t
10:
                   \sigma_t \leftarrow \max(\operatorname{std}(\{\Delta X \text{ inside } W_t\})/\sqrt{\Delta t}, \ \varepsilon)
                   y_t^{(\log \sigma)} \leftarrow \log \sigma_t
12:
                   Append row s_t to S; append y_t^{(\mu)} to \boldsymbol{y}_{\mu}; append y_t^{(\log \sigma)} to \boldsymbol{y}_{\log \sigma}
13:
14:
            end for
15: end for
16: (Optional) feature scaling: center/scale columns of S to get Z
17: Kernel (linear in signature space): K \leftarrow ZZ^{\top}
18: Solve
                                           \boldsymbol{\alpha}_{\mu} = (K + \lambda I)^{-1} \boldsymbol{y}_{\mu}, \qquad \boldsymbol{\alpha}_{\log \sigma} = (K + \lambda I)^{-1} \boldsymbol{y}_{\log \sigma}.
```

19: Output:  $(\alpha_{\mu}, \alpha_{\log \sigma}, Z)$  and scaling stats for signatures

## Algorithm 5 KRR in Signature Space: Generation (Euler-Maruyama)

- 1: **Input:** seed log-path  $(X_0, \ldots, X_L)$ , horizon T, step  $\Delta t$ , level m, training data  $(\alpha_{\mu}, \alpha_{\log \sigma}, Z)$ , signature scaling stats
- 2: **for** t = L to T 1 **do**
- 3:  $W_t \leftarrow (X_{t-L}, \dots, X_t)$
- 4:  $s_t \leftarrow S^{(m)}((\tau, W_t(\tau))_{\tau \in [0,1]})$
- 5: Standardize  $s_t$  with saved stats to get  $z_t$ ;  $k_t \leftarrow Zz_t$   $\triangleright k_t$  is kernel vector
- 6:  $\widehat{\mu}_t \leftarrow k_t^{\top} \boldsymbol{\alpha}_{\mu}$
- 7:  $\widehat{\log \sigma}_t \leftarrow k_t^{\top} \alpha_{\log \sigma}; \quad \widehat{\sigma}_t \leftarrow \exp(\widehat{\log \sigma}_t)$
- 8: Sample  $\Delta W_t \sim \mathcal{N}(0, \Delta t)$
- 9:  $X_{t+1} \leftarrow X_t + \widehat{\mu}_t \Delta t + \widehat{\sigma}_t \Delta W_t$
- 10: end for
- 11: Output: generated path  $(X_0, \ldots, X_T)$  (levels via  $S_t = e^{X_t}$  if desired)

# 5 Model 4: Hybrid KRR-KNN Signature Generator

## 5.1 Idea

We model the log-return process  $\{X_t\}_{t\geq 0}$  as

$$X_t = \mu(\mathcal{S}(X)) dt + \sigma_t dW_t,$$

where  $\mu(S(X))$  denotes a drift term predicted from the signature of the recent history of returns, and  $\sigma_t dW_t$  represents the unpredictable residual. The drift is estimated parametrically by kernel ridge regression (KRR) in the signature feature space, while the residual innovation is drawn nonparametrically from a signature-conditioned k-nearest-neighbor (KNN) library. This combines the smooth, mean behavior learned from KRR with the distributional realism of the nonparametric residuals.

**Data representation.** For each asset, let the log-price process be  $Y_t = \log S_t$  and the discrete log-return at step  $\Delta t$  be

$$X_t = Y_t - Y_{t-\Delta t}.$$

Define a sliding window of the past L returns as

$$W_t = (X_{t-L+1}, X_{t-L+2}, \dots, X_t),$$

and embed it together with normalized time into a two-dimensional path

$$Z_t(\tau) = (\tau, W_t(\tau)), \qquad \tau \in [0, 1].$$

The truncated signature of this window to level m,  $s_t = S^{(m)}(Z_t) \in \mathbb{R}^{d(m)}$ , serves as the feature vector representing the local dynamics around time t.

#### 5.2 Drift Estimation via Kernel Ridge Regression

Given training sequences of log-returns  $\{X_t^{(n)}\}\$ , we construct the dataset

$$\mathcal{D}_{\mu} = \left\{ \left( s_t, y_t^{(\mu)} \right) : y_t^{(\mu)} = \frac{X_{t+1}}{\Delta t} \right\}.$$

Stacking features row-wise yields a design matrix  $S \in \mathbb{R}^{N \times d(m)}$  and response vector  $\boldsymbol{y}_{\mu}$ . With a linear kernel  $K = SS^{\top}$ , the KRR estimator solves

$$(K + \lambda I_N)\boldsymbol{\alpha}_{\mu} = \boldsymbol{y}_{\mu},$$

where  $\lambda > 0$  is a ridge regularization parameter. For a new window with signature  $s_{\text{new}}$ , the predicted drift is

$$\widehat{\mu} = (Ss_{\text{new}})^{\top} \boldsymbol{\alpha}_{\mu}.$$

# 5.3 Residual Library Construction

For each training window  $(s_t, X_{t+1})$ , define the empirical residual as

$$r_t = X_{t+1} - \widehat{\mu}(s_t) \, \Delta t,$$

and store the pairs  $(s_t, r_t)$  into a residual library  $\mathcal{R} = \{(s_t, r_t)\}_{t=1}^N$ . The residuals capture the high-frequency innovations that are not explained by the parametric drift term.

#### 5.4 Path Generation

Starting from a seed sequence of L past returns  $(X_0, \ldots, X_{L-1})$ , we iteratively generate new steps.

At each step t:

- 1. Form the latest window  $W_t$  of length L and compute its signature  $s_t = S^{(m)}(Z_t)$ .
- 2. Predict the drift  $\hat{\mu}_t$  via the trained KRR:  $\hat{\mu}_t = (Ss_t)^{\top} \boldsymbol{\alpha}_{\mu}$ .
- 3. Find k nearest neighbors of  $s_t$  in  $\mathcal{R}$  under Euclidean distance in signature space, denoted  $N_k(s_t)$ .
- 4. Sample a residual  $\tilde{r}_t$  from  $\{r_j: (s_j, r_j) \in N_k(s_t)\}$  with probability proportional to  $\exp(-\operatorname{dist}(s_t, s_j)/\tau)$ , where  $\tau$  is a temperature parameter.
- 5. Update the next log-return by

$$X_{t+1} = \widehat{\mu}_t \, \Delta t + \widetilde{r}_t.$$

Aggregating  $\{X_t\}$  yields a generated log-return path, and the synthetic price path is obtained by exponential accumulation:

$$S_t = S_0 \, \exp\Bigl(\sum_{u=1}^t X_u\Bigr).$$

## Algorithm 6 Hybrid KRR-KNN Signature Generator: Training

```
1: Input: training log–returns \{\{X_t^{(n)}\}_t\}_{n=1}^N, lookback L, step \Delta t, signature level m, ridge \lambda
 2: Initialize empty feature matrix S and target vector \boldsymbol{y}_{u}
 3: for n = 1 to N do
            for t = L to T_n - 1 do
W_t \leftarrow (X_{t-L}^{(n)}, \dots, X_t^{(n)})
Z_t(\tau) \leftarrow (\tau, W_t(\tau))_{\tau \in [0,1]}
 6:
                  s_t \leftarrow S^{(m)}(Z_t)y_t^{(\mu)} \leftarrow X_{t+1}^{(n)}/\Delta t
 7:
 8:
                  Append row s_t to S, append y_t^{(\mu)} to \boldsymbol{y}_{\mu}
 9:
10:
            end for
11: end for
12: Train KRR drift: \alpha_{\mu} = (SS^{\top} + \lambda I)^{-1} y_{\mu}
13: Compute residual library:
                                         r_t \leftarrow X_{t+1}^{(n)} - ((Ss_t)^\top \boldsymbol{\alpha}_u) \Delta t, \qquad \mathcal{R} \leftarrow \mathcal{R} \cup \{(s_t, r_t)\}
```

14: Output:  $\alpha_{\mu}$ , feature matrix S, residual library  $\mathcal{R}$ 

# Algorithm 7 Hybrid KRR-KNN Signature Generator: Generation

```
1: Input: seed log-return path (X_0, \ldots, X_{L-1}), horizon T, step \Delta t, level m, drift model
     (\boldsymbol{\alpha}_{\mu}, S), residual library \mathcal{R}, KNN size k, temperature \tau
    for t = L to T - 1 do
          W_t \leftarrow (X_{t-L}, \dots, X_t)
          Z_t(\tau) \leftarrow (\tau, W_t(\tau))_{\tau \in [0,1]}
          s_t \leftarrow S^{(m)}(Z_t)
 5:
          \widehat{\mu}_t \leftarrow (Ss_t)^{\top} \boldsymbol{\alpha}_{\mu}
 6:
 7:
          Find N_k(s_t) \subset \mathcal{R}, the k nearest neighbors of s_t
          Compute weights w_i \propto \exp(-\operatorname{dist}(s_t, s_i)/\tau)
          Sample residual \tilde{r}_t from N_k(s_t) with probabilities \{w_i\}
 9:
          X_{t+1} \leftarrow \widehat{\mu}_t \, \Delta t + \widetilde{r}_t
10:
11: end for
                     generated log-return path \{X_t\}_{t=0}^T and reconstructed price path S_t
12: Output:
     S_0 \exp(\sum_{u \le t} X_u)
```

# 6 Evaluation method

We benchmark generative quality along four complementary axes: (1) geometry via signature MMD, (2) marginal distributions (KS/Wasserstein and moments), (3) temporal dependence (ACF and volatility clustering), and (4) downstream ML utility.

Throughout, let  $\mathcal{P}_{\text{real}}$  be the set of real paths and  $\mathcal{P}_{\text{gen}}$  the set of generated paths. For a path  $S = (S_0, \dots, S_T)$  define log-returns  $R_t = \log S_t - \log S_{t-1}$ .

# 6.1 Signature MMD (linear kernel)

Fix a window length L and signature level m. For each path, slide a window of length L and form a two-channel path  $Z(\tau) = (\tau, S(\tau))$  with the time channel normalized to  $\tau \in [0, 1]$ . Let

 $s \in \mathbb{R}^{d(m)}$  denote the truncated signature (or log-signature) of the window.

Let  $\{s_i^{\text{(real)}}\}_{i=1}^{n_r}$  be the collection of window-signatures from  $\mathcal{P}_{\text{real}}$  and  $\{s_j^{\text{(gen)}}\}_{j=1}^{n_g}$  from  $\mathcal{P}_{\text{gen}}$ . With the linear kernel  $k(u, v) = u^{\top} v$ , the MMD reduces to the distance between mean signatures:

$$MMD_{sig}^{2} = \| \bar{s}_{real} - \bar{s}_{gen} \|_{2}^{2}, \quad \bar{s}_{real} = \frac{1}{n_{r}} \sum_{i=1}^{n_{r}} s_{i}^{(real)}, \quad \bar{s}_{gen} = \frac{1}{n_{g}} \sum_{i=1}^{n_{g}} s_{j}^{(gen)}.$$

**Variants.** (i) log-signature features in place of signatures; (ii) multi-scale aggregation over window lengths  $\mathcal{L}$  and levels  $\mathcal{M}$ :

$$\mathrm{MMD}_{\mathrm{multi}}^{2} \ = \ \sum_{L \in \mathcal{L}} \ \sum_{m \in \mathcal{M}} w_{L,m} \left\| \bar{s}_{\mathrm{real}}^{(L,m)} - \bar{s}_{\mathrm{gen}}^{(L,m)} \right\|_{2}^{2}, \quad w_{L,m} \ge 0, \ \sum w_{L,m} = 1.$$

Notes. Match the number of windows (or reweight) to mitigate small-sample bias.

# 6.2 Distributional congruence (KS/Wasserstein and moments)

We compare (a) terminal levels  $S_T$ , (b) terminal log-returns  $G = \log(S_T/S_0)$ , and (c) pooled per-step log-returns  $\{R_t\}$ .

**Two-sample KS.** Let  $F_n$  and  $G_m$  be empirical CDFs of samples  $x_{1:n}$  and  $y_{1:m}$ . The KS statistic is

$$D_{n,m} = \sup_{x} |F_n(x) - G_m(x)|.$$

Lower  $D_{n,m}$  (higher p-value) indicates closer marginals.

**Wasserstein-1.** The one-dimensional  $W_1$  distance admits a quantile representation:

$$W_1(F,G) = \int_0^1 \left| F^{-1}(u) - G^{-1}(u) \right| du \approx \frac{1}{N} \sum_{i=1}^N \left| x_{(i)} - y_{(i)} \right|,$$

where  $x_{(i)}$  and  $y_{(i)}$  are order statistics (with interpolation if  $n \neq m$ ). Smaller  $W_1$  indicates closer distributions.

Moment diagnostics. Report (robust) moments for  $X \in \{S_T, G, R_t\}$ :

$$\mathrm{mean} = \mathbb{E}[X], \quad \mathrm{stdev} = \sqrt{\mathrm{Var}(X)}, \quad \mathrm{skew} = \frac{\mathbb{E}[(X-\mu)^3]}{\sigma^3}, \quad \mathrm{kurt} = \frac{\mathbb{E}[(X-\mu)^4]}{\sigma^4}.$$

Optionally include robust analogues (median, MAD, trimmed moments).

#### 6.3 Temporal dependence: ACF, squared-ACF, Ljung-Box

For a series  $x_1, \ldots, x_n$  with mean  $\bar{x}$ , the sample autocorrelation at lag k is

$$\hat{\rho}_k = \frac{\sum_{t=1}^{n-k} (x_t - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{n} (x_t - \bar{x})^2}, \qquad k = 1, 2, \dots$$

We compute mean ACF curves across paths for  $x_t = R_t$  (linear dependence) and for  $x_t = R_t^2$  (volatility clustering). Compare curves by an  $\ell_2$  gap:

$$ACFGap(h) = \left(\frac{1}{h} \sum_{k=1}^{h} \left(\hat{\rho}_k^{\text{real}} - \hat{\rho}_k^{\text{gen}}\right)^2\right)^{1/2},$$

and analogously for squared returns.

**Ljung–Box test (iid check).** For a chosen horizon h, define the Q-statistic on  $x_t$  as

$$Q(h) = n(n+2) \sum_{k=1}^{h} \frac{\hat{\rho}_k^2}{n-k},$$

which is asymptotically  $\chi_h^2$  under the iid null. We report (Q, p) on the concatenated returns and on squared returns to probe linear and second-order dependence, respectively. Higher p-values imply closer-to-iid behavior.

# 6.4 Downstream ML utility (task-based evaluation)

We quantify whether synthetic data help or harm learning under realistic splits.

**Tasks.** (1) One-step regression of log-return  $R_{t+1}$  (report MSE/RMSE, MAE), (2) classification of return sign  $\mathbb{F}\{R_{t+1} > 0\}$  (report AUC/accuracy), and (3) volatility forecasting (regress  $|R_{t+1}|$  or  $R_{t+1}^2$ ; report MSE).

**Regimes.** Let  $\mathcal{D}_{real}^{train}$  and  $\mathcal{D}_{real}^{test}$  be disjoint real splits, and  $\mathcal{D}_{gen}$  be generated samples matched in horizon and sampling. We compare:

 $\mathbf{R}: \quad \text{train on } \mathcal{D}^{\text{train}}_{\text{real}}, \text{ test on } \mathcal{D}^{\text{test}}_{\text{real}},$ 

 $\mathbf{G}: \quad \mathrm{train\ on\ } \mathcal{D}_{\mathrm{gen}}, \ \mathrm{test\ on\ } \mathcal{D}_{\mathrm{real}}^{\mathrm{test}},$ 

 $\mathbf{R} + \mathbf{G}$ : train on  $\mathcal{D}_{real}^{train} \cup \mathcal{D}_{gen}$ , test on  $\mathcal{D}_{real}^{test}$ 

For a loss functional  $\mathcal{L}$  (e.g., MSE or cross-entropy), define

$$\Delta_{\text{aug}} = \mathcal{L}(\mathbf{R} + \mathbf{G}) - \mathcal{L}(\mathbf{R}),$$

with  $\Delta_{\text{aug}} < 0$  indicating that synthetic data *improve* generalization. We also report  $\mathcal{L}(\mathbf{G})$  to gauge domain shift and realism.

**Reporting.** For each metric, provide mean  $\pm$  standard error over B bootstrap resamples of the test set. When comparing methods, include paired confidence intervals for deltas (e.g.,  $\Delta_{\text{aug}}$ ).

#### 6.5 Summary score (optional)

To summarize across views, combine standardized distances:

$$S = \alpha \widetilde{\text{MMD}}_{\text{multi}} + \beta \widetilde{W}_{1}(\text{returns}) + \gamma \operatorname{ACFGap}(h) + \eta \max\{0, \mathcal{L}(\mathbf{R} + \mathbf{G}) - \mathcal{L}(\mathbf{R})\},$$

where tildes denote z-scored metrics across models to make scales comparable, and  $(\alpha, \beta, \gamma, \eta)$  are user-chosen weights. Lower S is better.

**Practical defaults.** Use  $L \in \{10, 15, 20\}$  and  $m \in \{3, 4\}$  for signatures; compare terminal values, terminal log-returns, and pooled per-step log-returns; set  $h \in [10, 20]$  for ACF/Ljung–Box; in ML tasks, hold out the last 20% of each series for testing.

# 7 Practical Notes (matching the code)

- Path representation. If you store *levels* or *log-levels*, use relative segments  $p_t = S_{t+1:t+F} S_t$ ; if you store *returns*, do not re-center segments.
- **Time normalization.** Normalize the time channel within each window to [0, 1] for stable signatures.
- k-NN sampling. Prefer soft sampling (e.g., softmax on distances) to reduce discontinuities
- KRR solver. Use Cholesky with jitter on  $K + \lambda I$ ; center/scale signature features columnwise.

# 8 Experiment: Path-wise Signature Bootstrap on S&P 500 (2010–2024)

# 8.1 Data and Preprocessing

We source daily close prices via yfinance for S&P 500 (^GSPC), DJIA (^DJI), and Nasdaq (^IXIC) over 2010-01-01 to 2025-01-01. For this experiment we use only S&P 500 for generation/evaluation; the others are reserved for future multi-asset tests.

We consider two training datasets:

- 1. Yearly paths (multi): for each year  $y \in \{2010, \ldots, 2024\}$  we extract the first 250 trading days of `GSPC as one path  $S^{(y)}$ , normalize by  $S_0^{(y)}$  to obtain a price index  $I_t^{(y)} = S_t^{(y)}/S_0^{(y)}$ , then remove a linear trend on the fixed grid  $t = 0, \ldots, 249$  via least squares:  $I_t^{(y)} = \hat{a}^{(y)}t + \hat{b}^{(y)} + R_t^{(y)}$ , keep residuals  $R^{(y)}$ , and store the trend line  $\hat{T}_t^{(y)} = \hat{a}^{(y)}t + \hat{b}^{(y)}$  for re-adding after generation.
- 2. Whole path (one): we take the entire  $^{\circ}$ GSPC series up to 2024 end as one long path S, form the index  $I_t = S_t/S_0$ , detrend it linearly on its native grid to get residuals  $R_t$  and trend  $\hat{T}_t$ .

We compute per-window signatures on the 2D path  $(\tau, X_{\tau})$  where  $\tau$  is reparameterized to [0, 1] within each window and X is the detrended index level (residual). Generation is performed in residual space and the saved linear trend is added back to produce final levels for evaluation.

#### 8.2 Model and Training Setup

We use the path-wise signature bootstrap library: for each lookback window of length L=20 and forward window F=5, we record  $(s_t, p_t)$  where  $s_t$  is the truncated signature at level m=3 (and in a second variant, the truncated log-signature), and  $p_t=(X_{t+1},\ldots,X_{t+F})-X_t$  is the relative future segment. At generation time, we roll a size-L+1 window on the evolving path, compute its signature, find k=10 nearest neighbors in the library (Euclidean distance), sample one neighbor (uniform), and append the stored segment. For the multi dataset we generate 50 paths (seed = 1234); for the one dataset we generate 10 paths. MMD window = 15. All signatures are computed on time-normalized windows ( $\tau \in [0,1]$ ). Generation is performed in residual space; linear trends are re-added for evaluation.

#### 8.3 Evaluation Metric

We report the linear signature MMD (window size 15, level m=3), i.e., the squared  $\ell_2$  distance between mean (log-)signatures of sliding windows from real vs generated sets:

$$\mathrm{MMD}_{\mathrm{sig}}^2 = \| \bar{s}_{\mathrm{real}} - \bar{s}_{\mathrm{gen}} \|_2^2.$$

Lower is better.

#### 8.4 Results

### 8.4.1 Model 1: Pathwise bootstrap

Configuration constants. Lookback L = 20, forward F = 5, level m = 3, neighbors k = 10, window for MMD = 15. Number of generated paths: multi = 50, one = 10.

Table 1: Linear Signature MMD<sup>2</sup> across datasets and feature types (lower is better).

| Dataset & Feature                         | $\mathbf{Sig\text{-}MMD}^2$ | Notes                                   |
|-------------------------------------------|-----------------------------|-----------------------------------------|
| Yearly paths (multi) + Signature          | <0.018412>                  | $N_{\rm gen} = 50,  {\rm seed} = 1234$  |
| Whole path $(one)$ + Signature            | <0.008518>                  | $N_{\rm gen} = 10$ , seed unset         |
| Yearly paths $(multi)$ + Log-signature    | <0.028589>                  | $N_{\rm gen} = 50,  \text{seed} = 1234$ |
| Whole path $(one) + \text{Log-signature}$ | <0.116951>                  | $N_{\rm gen} = 10$ , seed unset         |

Qualitative samples. Figure 2 shows representative generated samples for each setting (residual paths with trend re-added to produce index levels).

#### 8.4.2 Model 2: Hybrid bootstrap

Table 2: Linear Signature MMD<sup>2</sup> across datasets and feature types.

| Dataset & Feature                         | $\mathbf{Sig}\text{-}\mathbf{MMD}^2$ | Notes                                   |
|-------------------------------------------|--------------------------------------|-----------------------------------------|
| Yearly paths (multi) + Signature          | <0.000867>                           | $N_{\rm gen} = 50$ , seed = 1234        |
| Whole path $(one)$ + Signature            | <0.034129>                           | $N_{\rm gen} = 10$ , seed unset         |
| Yearly paths $(multi)$ + Log-signature    | <0.004026>                           | $N_{\rm gen} = 50,  \text{seed} = 1234$ |
| Whole path $(one) + \text{Log-signature}$ | <0.046949>                           | $N_{\rm gen} = 10$ , seed unset         |

Qualitative samples. Figure 2 shows representative generated samples for each setting (residual paths with trend re-added to produce index levels).

# 8.4.3 Model 3: Kernel Ridge Regression

Configuration constants. Lookback L = 10, signature level m = 4, linear kernel in signature space, ridge  $\lambda = 2.0$ , Euler-Maruyama with  $\Delta W_t \sim \mathcal{N}(0, \Delta t)$ , MMD window = 15. Number of generated paths: multi = 50, one = 15. (For the "one" + logsig run,  $\log \sigma$  is clipped to the [1,99]th percentiles as in code.)

**Qualitative samples.** Figure 3 shows representative generated log-price paths under the four settings.



Figure 1: Path-wise bootstrap samples under four settings (trend added back).



Figure 2: Hybrid bootstrap samples under four settings (trend added back).

Table 3: Model 3 (KRR) — Linear Signature  $\mathrm{MMD^2}$  across datasets and feature types (lower is better).

| Dataset & Feature                         | ${f Sig-MMD^2}$          | Notes                                                |
|-------------------------------------------|--------------------------|------------------------------------------------------|
| Yearly paths (multi) + Signature          | <2.0218544503313323e-09> | $N_{\rm gen} = 50$ , seed if set                     |
| Whole path $(one)$ + Signature            | <6.119611899692986e-07>  | $N_{\rm gen} = 15$ , seed unset                      |
| Yearly paths $(multi)$ + Log-signature    | <1.3504824216178214e-07> | $N_{\rm gen} = 50$ , seed if set                     |
| Whole path $(one) + \text{Log-signature}$ | <4.066745963097663e-07>  | $N_{\rm gen} = 15$ , $\widehat{\log \sigma}$ clipped |



Figure 3: Kernel Ridge Regression (signature–SDE) samples under four settings.