

MAR 0 3 2004

SEQUENCE LISTING

- <110> LADNER, ROBERT C.
 COHEN, EDWARD H.
 NASTRI, HORACIO G.
 ROOKEY, KRISTIN L.
 HOET, RENE
 HOOGENBOOM, HENDRICUS R. J. M.
- <120> NOVEL METHODS OF CONSTRUCTING LIBRARIES COMPRISING DISPLAYED AND/OR EXPRESSED MEMBERS OF A DIVERSE FAMILY OF PEPTIDES, POLYPEPTIDES OR PROTEINS AND THE NOVEL LIBRARIES
- <130> DYAX/002 CIP2
- <140> 10/045,674
- <141> 2001-10-25
- <150> 06/198,069
- <151> 2000-04-17
- <150> 09/837,306
- <151> 2001-04-17
- <160> 635
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 17
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic
 oligonucleotide
- <400> 1
- catgtgtatt actgtgc

17

- <210> 2
- <211> 44
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic
 oligonucleotide
- <400> 2
- cacatecgtg cttettgeac ggatgtggea cagtaataca catg

44

- <210> 3
- <211> 18

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 3
gtgtattaga ctgctgcc
                                                                    18
<210> 4
<211> 43
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 4
ggcagcagtc taatacacca catccgtgtt cttcacggat gtg
                                                                    43
<210> . 5
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
cacatecgtg tttgttacae ggatgtggtg tettacagte cattetg
                                                                    47
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 6
cagaatggac tgtaagacac
                                                                    20
<210> 7
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<400> 7
atcgagtctc actgagccac atccgtggtt ttccacggat gtg
                                                                    43
<210> 8
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 8
gctcagtgag actcgat
                                                                    17
<210> 9
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220> ·
<221> modified base
<222> (10)..(24)
<223> A, T, C, G, other or unknown
<400> 9
cacgaggagn nnnnnnnnn nnnn
                                                                    24
<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 10
atgaccgaat tgctacaag
                                                                    19
<210> 11 ·
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<400> 11
gactecteag ettettgetg aggagteett gtageaatte ggteat
                                                                   46
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: 6 His tag
<400> 12
His His His His His
<210> 13
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 13
gtctcnnnnn
                                                                   10
<210> 14
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 14
nnnnnngaga c
                                                                   11
<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
\langle 222 \rangle (11) \dots (2\overline{4})
<223> A, T, C, G, other or unknown
<400> 15
cacggatgtg nnnnnnnnn nnnn
                                                                      24
<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(14)
<223> A, T, C, G, other or unknown
<400> 16
nnnnnnnnn nnnncacatc cgtg
                                                                      24
<210> 17
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 17
gtgtattact gtgc
                                                                      14
<210> 18
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 18
cacatecgtg cacggatgtg gcacagtaat acac
                                                                      34
```

	6	
<210>	19	
<211>	14	
<212>		
	Artificial Sequence	
<220>		·
<223>	Description of Artificial Sequence: Synthetic	•
	oligonucleotide	•
<400>	19	
gtgta	ttaga ctgc	14
<210>	20	
<211>	34	
<212>	DNA	·
	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	oligonucleotide	
<400>	20	
gcagt	ctaat acaccacatc cgtgcacgga tgtg	. 34
	· ·	•
<210>	21	
<211>	34	•
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	21	•
cacat	ccgtg cacggatgtg gtgtcttaca gtcc	34
	·	
<210>	•	
<211>	14	•
<212>		•
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
3-	oligonucleotide	
<400>	22	
	gtaag acac	14
<210>	23	•
<211>		
<212>		
	Artificial Seguence	

<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	•	
<400>	23				
	cact gagecacate egtgeaegga	tgtg			34
<210>	24				
<211>					
<212>	DNA Artificial Sequence				٠.
\213 /	Artificial sequence				•
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	24				•
gctcac	stgag actc				14
<210>	25				
<211>					
<212>					
\213/	Artificial Sequence		•		
<220>					
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	* .	
<400>	25		•		
gtgtat	tact gtgc				14
	•				
<210>	26		•		
<211>					. •
<212> <213>	Artificial Sequence			•	
<220>	Description of Artificial		Comphatia	•	
\2237	oligonucleotide	sequence:	Synthetic		
<400>					14
gtatat	tact gtgc				14
	**				
<210> <211>					
<212>					-
<213>	Artificial Sequence				
<220>					
	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide				
<400>	27 ·				
•	tact gtaa				14

	•				
<210> <211>					
<212> <213>	DNA Artificial Sequence				
<220>					
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>			•		
gtgtai	tact gtac				14
<210>	20				
				•	
<211>					
<212>	DNA ·				
<213>	Artificial Sequence		•		
<220>					
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	·				
ttgtai	tact gtgc				14
	•				
<210>	30				
<211>	14				
<212>	DNA .				
	Artificial Sequence				
<220>					
	Docarintion of Artificial	Comiones	Combbatia		
\223 /	Description of Artificial oligonucleotide	sequence:	Synthetic	•	
<400>	30				
ttgtat	cact gtgc	•			14
<210>	31	•			
<211>					
<212>					
	•		•	•	
<213>	Artificial Sequence	•			
<220>		•			
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	31				
	tact gtgc				14
	· · · · · · · · · · · · · · · · · · ·				14
<210>	32			•	
<211>	the contract of the contract o				
<212>					
<213>	Artificial Sequence	*			

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 32
acgtattact gtgc
                                                                    14
<210> 33
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 33
atgtattact gtgc
                                                                    14
<210> 34
<211> 101
<212> DNA
<213> Homo sapiens
<400> 34
agggtcacca tgaccaggga cacgtccatc agcacagcct acatgabcga gctgagcagg 60
ctgagatctg acgacacggc cgtgtattac tgtgcgagag a
                                                                    101
<210> 35
<21:1> 98
<212> DNA
<213> Homo sapiens
<400> 35
agagtcacca ttaccaggga cacatccgcg agcacagcct acatggagct gagcagcctg 60
agatctgaag acacggctgt gtattactgt gcgagaga
<210> 36
<211> 98
<212> DNA
<213> Homo sapiens
<400> 36
agagtcacca tgaccaggaa cacctccata agcacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcgagagg
<210> 37
<211> 98
<212> DNA
<213> Homo sapiens
```

```
<400> 37
agagtcacca tgaccacaga cacatccacg agcacagcct acatggagct gaggagcctg 60
agatctgacg acacggccgt gtattactgt gcgagaga
<210> 38
<211> 98
<212> DNA
<213> Homo sapiens
<400> 38
agagtcacca tgaccgagga cacatctaca gacacagect acatggaget gagcagectg 60
agatctgagg acacggccgt gtattactgt gcaacaga
<210> 39
<211> 98
<212> DNA
<213> Homo sapiens
<400> 39
agagtcacca ttaccaggga caggtctatg agcacagcct acatggagct gagcagcctg 60
agatctgagg acacagccat gtattactgt gcaagata
<210> 40
<211> 98
<212> DNA
<213> Homo sapiens
<400> 40
agagtcacca tgaccaggga cacgtccacg agcacagtct acatggagct gagcagcctg 60
agatetgagg acaeggeegt gtattactgt gegagaga
<210> 41
<211> 98
<212> DNA
<213> Homo sapiens
<400> 41
agagtcacca ttaccaggga catgtccaca agcacagcct acatggagct gagcagcctg 60
agatccgagg acacggccgt gtattactgt gcggcaga
<210> 42
<211> 98
<212> DNA
<213> Homo sapiens
<400> 42
agagtcacga ttaccgcgga cgaatccacg agcacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcgagaga
<210> 43
<211> 98
```

```
<212> DNA
<213> Homo sapiens
<400> 43
agagtcacga ttaccgcgga caaatccacg agcacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcgagaga
<210> 44
<211> 98
<212> DNA
<213> Homo sapiens
<400> 44
agagtcacca taaccgcgga cacgtctaca gacacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcaacaga
<210> 45
<211> 100
<212> DNA
<213> Homo sapiens
<400> 45
aggeteacea teaceaagga caceteeaaa aaceaggtgg teettacaat gaceaacatg 60
gaccetgtgg acacagceac atattactgt gcacacagac
<210> 46
<211> 100
<212> DNA
<213> Homo sapiens
<400> 46
aggeteacea tetecaagga cacetecaaa ageeaggtgg teettaceat gaceaacatg 60
gaccctgtgg acacagccac atattactgt gcacggatac
                                                                   100
<210> 47
<211> 100 ·
<212> DNA
<213> Homo sapiens
<400> 47
aggeteacea tetecaagga cacetecaaa aaccaggtgg teettacaat gaccaacatg 60
gaccctgtgg acacagccac gtattactgt gcacggatac
<210> 48
<211> 98
<212> DNA
<213> Homo sapiens
<400> 48
cgattcacca tctccagaga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
agagccgagg acacggctgt gtattactgt gcgagaga
```

```
<210> 49
<211> 100
<212> DNA
<213> Homo sapiens
<400> 49
cgattcacca tctccagaga caacgccaag aactccctgt atctgcaaat gaacagtctg 60
agagetgagg acaeggeett gtattaetgt geaaaagata
<210> 50
<211> 98
<212> DNA
<213> Homo sapiens
<400> 50
cgattcacca tctccaggga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
agagccgagg acacggccgt gtattactgt gcgagaga
                                                                    98
<210> 51
<211> 98
<212> DNA
<213> Homo sapiens
<400> 51
cgattcacca tctccagaga aaatgccaag aactccttgt atcttcaaat gaacagcctg 60
agagccgggg acacggctgt gtattactgt gcaagaga
<210> 52
<211> 98
<212> DNA
<213> Homo sapiens
<400> 52
agattcacca tctcaagaga tgattcaaaa aacacgctgt atctgcaaat gaacagcctg 60
aaaaccgagg acacagccgt gtattactgt accacaga
<210> 53.
<211> 98
<212> DNA
<213> Homo sapiens
<400> 53
cgattcacca tctccagaga caacgccaag aactccctgt atctgcaaat gaacagtctg 60
agagccgagg acacggcctt gtatcactgt gcgagaga
                                                                    98
<210> 54
<211> 98
<212> DNA
<213> Homo sapiens
<400> 54
cgattcacca tctccagaga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
agagccgagg acacggctgt gtattactgt gcgagaga
```

```
<210> 55
<211> 98
<212> DNA
<213> Homo sapiens
<400> 55
cggttcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagccgagg acacggccgt atattactgt gcgaaaga
<210> 56
<211> 98
<212> DNA
<213> Homo sapiens
<400> 56
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgaaaga
<210> 57
<211> 98
<212> DNA
<213> Homo sapiens
<400> 57
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgagaga
<210> 58
<211> 98
<212> DNA
<213> Homo sapiens
<400> 58
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgaaaga
<210> 59
<211> 98
<212> DNA
<213> Homo sapiens
<400> 59
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagccgagg acacggctgt gtattactgt gcgagaga
<210> 60
<211> 100
<212> DNA
<213> Homo sapiens
```

```
<400> 60
cgattcacca tctccaqaqa caacagcaaa aactccctgt atctgcaaat qaacagtctg 60
agaactgagg acaccgcctt gtattactgt gcaaaagata
                                                                    100
<210> 61
<211> 98
<212> DNA
<213> Homo sapiens
<400> 61
cgattcacca tctccagaga caatgccaag aactcactgt atctgcaaat gaacagcctg 60
agagacgagg acacggctgt gtattactgt gcgagaga
<210> 62
<211> 98
<212> DNA
<213> Homo sapiens
<400> 62
agattcacca tctcaagaga tggttccaaa agcatcgcct atctgcaaat gaacagcctg 60
aaaaccgagg acacagccgt gtattactgt actagaga
<210> 63
<211> 98
<212> DNA
<213> Homo sapiens
<400> 63
cgattcacca tctccagaga caattccaag aacacgctgt atcttcaaat gaacagcctg 60
agagccgagg acacggccgt gtattactgt gcgagaga
<210> 64
<211> 98
<212> DNA
<213> Homo sapiens
<400> 64
agattcacca tctccagaga caattccaag aacacgctgt atcttcaaat gggcagcctg 60
agagctgagg acatggctgt gtattactgt gcgagaga
<210> 65
<211> 98
<212> DNA
<213> Homo sapiens
<400> 65
agattcacca tctccagaga caattccaag aacacgctgt atcttcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgagaga
                                                                    98
<210> 66
<211> 98
```

```
<212> DNA
<213> Homo sapiens
<400> 66
agattcacca tctcaagaga tgattcaaag aactcactgt atctgcaaat gaacagcctg 60
aaaaccgagg acacggccgt gtattactgt gctagaga
<210> 67
<211> 98
<212> DNA
<213> Homo sapiens
<400> 67
aggttcacca tctccagaga tgattcaaag aacacggcgt atctgcaaat gaacagcctg 60
aaaaccgagg acacggccgt gtattactgt actagaca
<210> 68
<211> 98
<212> DNA
<213> Homo sapiens
<400> 68
cgattcacca tctccagaga caacgccaag aacacgctgt atctgcaaat gaacagtctg 60
agagccgagg acacggctgt gtattactgt gcaagaga
<210> 69
<211> 98
<212> DNA
<213> Homo sapiens
<400> 69
agattcacca totocagaga caattccaag aacacgotgo atottcaaat gaacagootg 60
agagctgagg acacggctgt gtattactgt aagaaaga
<210> 70
<211> 98
<212> DNA
<213> Homo sapiens
<400> 70
cgagtcacca tatcagtaga caagtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcgg acacggccgt gtattactgt gcgagaga
<210> 71
<211> · 98
<212> DNA
<213> Homo sapiens
<400> 71
cgagtcacca tgtcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgtgg acacggccgt gtattactgt gcgagaaa
                                                                    98
```

```
<210> 72
<211>.98
<212> DNA
<213> Homo sapiens
<400> 72
cgagttacca tatcagtaga cacgtctaag aaccagttct ccctgaagct gagctctgtg 60
actgccgcgg acacggccgt gtattactgt gcgagaga
                                                                    98
 <210> 73
 <211> 98
 <212> DNA
 <213> Homo sapiens
 <400> 73
 cgagtcacca tatcagtaga caggtccaag aaccagttct ccctgaagct gagctctgtg 60
 accgccgcgg acacggccgt gtattactgt gccagaga
 <210> 74
 <211> 98
 <212> DNA
 <213> Homo sapiens
. <400> 74
 cgagttacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
 actgccgcag acacggccgt gtattactgt gccagaga
 <210> 75
 <211> 98
 <212> DNA
 <213> Homo sapiens
 <400> 75
 cgagttacca tatcagtaga cacgtctaag aaccagttct ccctgaagct gagctctgtg 60
 actgccgcgg acacggccgt gtattactgt gcgagaga
 <210> 76
 <211> 98
 <212> DNA
 <213> Homo sapiens
 <400> 76
 cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
 accgccgcgg acacggctgt gtattactgt gcgagaga
                                                                     98
 <210> 77
 <211> 98
 <212> DNA
 <213> Homo sapiens
 <400>, 77
 cgagtcacca tatccgtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
 accgccgcag acacggctgt gtattactgt gcgagaca
```

```
<210> 78
<211> 98
<212> DNA
<213> Homo sapiens
<400> 78
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgctgcgg acacggccgt gtattactgt gcgagaga
<210> 79
<211> 98
<212> DNA
<213> Homo sapiens
<400> 79
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgctgcgg acacggccgt gtattactgt gcgagaga
<210> 80
<211> 98
<212> DNA
<213> Homo sapiens
<400> 80
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcag acacggccgt gtattactgt gcgagaga
                                                                    98
<210> 81
<21:1> 98
<212> DNA
<213> Homo sapiens
<400> 81
caggicacca totcagooga caagiccato agcacogoot acctgoagig gagcagootg 60
aaggcctcgg acaccgccat gtattactgt gcgagaca
<210> 82
<211> 96
<212> DNA
<213> Homo sapiens
<400> 82
cacgtcacca teteagetga caagteeate ageaetgeet acetgeagtg gageageetg 60
aaggcctcgg acaccgccat gtattactgt gcgaga
<210> 83
<211> 98
<212> DNA
<213> Homo sapiens
```

```
<400> 83
cgaataacca tcaacccaga cacatccaag aaccagttct ccctgcagct gaactctgtg 60
actcccgagg acacggctgt gtattactgt gcaagaga
<210> 84
<211> 98
<212> DNA
<213> Homo sapiens
<400> 84
cggtttgtct tctccttgga cacctctgtc agcacggcat atctgcagat ctgcagccta 60
aaggctgagg acactgccgt gtattactgt gcgagaga
<210> 85
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (3)..(9)
<223> A, T, C, G, other or unknown
<400> 85
gennnnnnng c'
                                                                    11
<210> 86
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 86
caynnnnrtg
                                                                    10
<210> 87
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide

```
<220>
<221> modified_base
<222> (6)..(11)
<223> A, T, C, G, other or unknown
<400> 87
gagtcnnnnn n
                                                                   11
<210> 88
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 88
nnnnnngaga c
                                                                   11
<210> 89
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 89
gaannnnttc
                                                                   10
<210> 90
<211> 90
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic 3-23
     FR3 nucleotide sequence
```

```
<220>
<221> CDS
<222> (1)..(90)
<220>
<221> modified_base
<222> (3)
<223> A, T, C or G
<220>
<221> modified base
<222> (9)
<223> A, T, C or G
<220>
<221> modified base
<222> (12)
<223> A, T, C or G
<220>
<221> modified_base
<222> (21)
<223> A, T, C or G
<220>.
<221> modified_base
<222> (30)
<223> A, T, C or G
<220>
<221> modified_base
<222> (36)
<223> A, T, C or G
<220>
<221> modified base
<222> (51)
<223> A, T, C or G
<220>
<221> modified base
<222> (57)
<223> A, T, C or G
<220>
<221> modified_base
<222> (60)
<223> A, T, C or G
<220>
<221> modified_base
<222> (69)
<223> A, T, C or G
<220>
<221> modified_base
<222> (72)
<223> A, .T, C or G .
```

<220>

```
<221> modified_base
<222> (75)
<223> A, T, C or G
<220>
<221> modified_base
<222> (78)
<223> A, T, C or G
<220>
<221> modified_base
<222> (87)
<223> A, T, C or G
<400> 90
acn ath wsn mgn gay aay wsn aar aay acn ytn tay ttn car atg aay
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn
                                                                   90
wsn ttr mgn gcn gar gay acn gcn gtn tay tay tgy gcn aar
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys
<210> 91
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic 3-23
     FR3 protein sequence
<400> 91
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys
             20
<210> 92
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
   probe
<400> 92
                                                                    22
agttctccct gcagctgaac tc
```

<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequence: Synthetic probe	.c	ı
<400>	93		
cactgt	tatct gcaaatgaac ag		22
<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequence: Syntheteprobe	ic	
<400> ccctgt	94 tatct gcaaatgaac ag		22
<210> <211> <212> <213>	22	4	
<220> <223>	Description of Artificial Sequence: Synthet probe	ic	
<400>	•		
ccgcci	tacct gcagtggagc ag		22
<210> <211>	·		
<212>	DNA		
	Artificial Sequence		
<220> <223>	Description of Artificial Sequence: Synthet probe	ic	
<400> cgctg	96 tatct gcaaatgaac ag	. "	22
<210><211><211><212><213>	22		
<220>			

7

<223>	Description of Artificial probe	Sequence:	Synthetic		
<400>	97			•	
	atct gcagatctgc ag				22
- 5 5	, , ,			٠.	
<210>	98				
<211>	22				
<212>					
	Artificial Sequence		·		
<220>		_			
<223>	Description of Artificial probe	Sequence:	Synthetic		
<400>	98				
	atct gcaaatgaac ag				22
<210>					
<211>			*		
<212>					
<213>	Artificial Sequence				
· <220>					
	Description of Artificial	Sequence:	Synthetic		
	probe	•			
<400>					
ctgcct	acct gcagtggagc ag				22
<210>	100				
<211>					
<212>					
<213>	Artificial Sequence				
2	•			•	
<220>	December of Butificial		O		
<223>	Description of Artificial probe	sequence:	Synthetic		
<400>	100				
tcgcct	atct gcaaatgaac ag				22
<210>	101				
<211>					
<212>				•	
<213>	Artificial Sequence	•			
<220>					
	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide	ocquence.	oyneneere	·	
<400>	1.01				
	acta agtotagaga caactotaa	aatactcto	ct acttocagat	gaacagetta	60
agg	<u> </u>				63

```
<210> 102
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 102
caagtagaga gtattcttag agttgtctct agacttagtg aagcg
                                                                   45
<210> 103
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide.
<400> 103
cgcttcacta agtctagaga caactctaag aatactctct acttgcagct gaac
                                                                   54
<210> 104
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 104
cgcttcacta agtctagaga caactctaag aatactctct acttgcaaat gaac
<210> 105
<211> 54
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 105
cgcttcacta agtctagaga caactctaag aatactctct acttgcagtg gagc
                                                                   54
<210> 106
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>		_				
<223>	Description of Artificial	Sequence:	Primer			
<400>	106					
cgcttc	acta agtctagaga c		•			21
<210>	107					
<211>						
<212>					•	
	Artificial Sequence					
	•	•				
<220>		•				
<223>	Description of Artificial	Sequence:	Synthetic			
	probe					
<400>		. 9				
acatg	gaget gageageetg ag					22
<21.0×	100					
<210><211>						
<211>			•		•	
	Artificial Sequence	•				
12107						•
<220>						
<223>	Description of Artificial	Sequence:	Synthetic			
	probe					
•						
<400>					·	
acatg	gaget gageaggetg ag					22
	·					
<210>	109	•				
<211>				•		
<212>	_					
	Artificial Sequence					
	-					
<220>						
<223>	Description of Artificial	Sequence:	Synthetic			
	probe					
<400>						
acatg	gaget gaggageetg ag					22
/210 \	110					
<210><211>						
<212>						•
	Artificial Sequence					•
<220>						
<223>	Description of Artificial	Sequence:	Synthetic			
	probe	•				
٠						
<400>					•	
acctg	cagtg gagcagcctg aa					22

```
<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 111
atctgcaaat gaacagcctg aa
                                                                   22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 112
atctgcaaat gaacagcctg ag
                                                                   22
<210> 113
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 113
atctgcaaat gaacagtctg ag
                                                                   22
<210> 114
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     probe
<400> 114
atctgcagat ctgcagccta aa
                                                                   22
<210> 115
<211> 22
<212> DNA
<213> Artificial Sequence
```

<220>		•			
<223>	Description of Artificial probe	Sequence:	Synthetic		
<400>	115	•			
	caaat gaacagcctg ag				. 22
				•	
<210>				,	
<211> <212>					•
	Artificial Sequence	•			
\213/	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
	probe		_		
	,				
<400>					
atctto	caaat gggcagcctg ag				22
					•
<210>	117	•	•		
<211>					
<212>	DNA				
<213>	Artificial Sequence				•
					•
<220>		_			
<223>	Description of Artificial	Sequence:	Synthetic		
	probe	•			
<400>	117				•
	agct gagctctgtg ac	•			22
			•		
<210>					
<211> <212>					
	Artificial Sequence				
\210/	Artificial bequence		•		
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
	probe	•			
	110		•		
<400>		•			2.2
ccctgc	caget gaactetgtg ac				22
<210>	119				
<211>					
<212>					
<213>	Artificial Sequence				
4000s		•			
<220>	Description of Artificial	Commence	Combbati		
\ 223>	Description of Artificial probe	sequence:	synthetic		
	Prone				

<400>	> 119 tacaat gaccaacatg ga	. 22
CCCCC	cacaac gaccaacacy ga	. 22
<210>	> 120	
<211>		
<212>	> DNA	
	> Artificial Sequence	
1220		
<220>	S	
	> Description of Artificial Sequence: Synthetic	
12237	probe	
	probe	
<400>	. 120	
tcctta	taccat gaccaacatg ga	22
-0105		
<210>		
<211>		
<212>		
<213>	> Artificial Sequence	
	•	
<220>	>	
<223>	> Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	> 121	
acato	ggagct gagcagcctg ag	22
J.	55-5 5-555 -5	
	· ·	
<210>	> 122	
<211>		
<212>		
	> Artificial Sequence	
12.20	· · · · · · · · · · · · · · · · · · ·	
<220>	,	
	> Description of Artificial Sequence: Synthetic	
\225/	oligonucleotide	
·	origonacieotide	
<400>	. 122	
	• •	
ccctga	gaagct gagctctgtg ac	. 22
		•
.010	. 100	•
<210>		
<211>		
<212>		•
<213>	> Artificial Sequence	
<220>		
<223>	> Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	·	
<400>	> 123	
	tcacta agtctagaga caactctaag aatactctct acttgcagat gaa	c 54
	Jaran Jaran and Jaran San San San San San San San San San S	_ 54
<210>	> 124	
<211>		
	·	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 124
cgcttcactc agtctagaga taacagtaaa aatactttgt acttgcagct gagcagcctg 60
<210> 125
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 125
cgcttcactc agtctagaga taacagtaaa aatactttgt acttgcagct gagctctgtg 60
<210> 126
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 126
tcagctgcaa gtacaaagta tttttactgt tatctctaga ctgagtgaag cg
                                                                  52
<210> 127
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 127
cgcttcactc agtctagaga taac
                                                                   24
<210> 128
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

<400> ccgtg1	> 128 gtatta ctgtgcgaga ga		22
<210> <211> <212> <213>	> 22		
<220> <223>	> > Description of Artificial Sequence: Synthetic oligonucleotide	•	
<400> ctgtgt	> 129 gtatta ctgtgcgaga ga		22
<210><211><211><212><213>	> 22	·	
<220>			
<400> ccgtgi	> 130 gtatta ctgtgcgaga gg		22
<210> <211> <212> <213>	> 22		
<220> <223>	> > Description of Artificial Sequence: Synthetic oligonucleotide		
<400> ccgtgi	> 131 gtatta ctgtgcaaca ga		22
<210> <211> <212> <213>	> 22		
<220> <223>	> > Description of Artificial Sequence: Synthetic oligonucleotide		
<400> ccatgt	> 132 gtatta ctgtgcaaga ta		22

<210><211><212>	22 DNA				
<213>	Artificial Sequence			•	
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>					22
ccgrgi	atta ctgtgcggca ga		. •		22
<210>	134				
<211>					
<212>					
<213>	Artificial Sequence				
<220>					
	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	134				
	tatta ctgtgcacac ag			•	22
ccaca	carra cryrycaeae ag				. 22
			•		
<210>					
<211>	22				
<212>	DNA .				
<213>	Artificial Sequence				
<220>		<u>-</u>			
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide	-	-		
<400>	135				
ccacat	atta ctgtgcacgg at				22
	•				
<210>	136				
<211>			•		
<212>					
	Artificial Sequence	•			
\213/	Artificial Sequence				
<220>			•	•	
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	136				
ccacgt	atta ctgtgcacgg at				22
-					
<210>	137				
<211>					
<212>					
	Artificial Sequence				

<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400> ccttg	137 tatta ctgtgcaaaa ga				22
<210> <211> <212>	22			*	
	Artificial Sequence				
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400> ctgtg	138 tatta ctgtgcaaga ga				22
<210> <211>	22	٠.			
<212> <213>	Artificial Sequence				
<220>					
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	139		•		
ccgtg	tatta ctgtaccaca ga				22
<210>	140				
<211> <212>					
	Artificial Sequence		•		
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	. *	
<400>	140		•		
	tatca ctgtgcgaga ga			•	22.
<210>	1.41		•		
<211>					
<212> <213>	DNA Artificial Sequence	• .			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	141				
ccgta	tatta ctgtgcgaaa ga				22

142				
22		-		
DNA		•		
Artificial Sequence				
Description of Artificial	Sequence:	Synthetic		
oligonucleotide				
142				
				22
sacta Ctytycyaaa ya				22
		4.		
143		•		
22				
DNA				
Artificial Sequence				
		•		
•	·			
	0			
	sequence:	Synthetic		
oligonucleotide				
•				
.143				
tatta ctgtactaga ga		•		22
,				
1 4 4				
•				
Artificial Sequence		,		
•				
Description of Artificial	Sequence:	Synthetic		
		-3		
origonacicotiae				
1 4 4				
		•		
tatta ototootaoa oa				
tatta ctgtgctaga ga				22
tatta Cigigotaya ya				22
carta digigotaga ga				22
145				22
145				22
145 22			·	22
145 22 DNA				22
145 22				22
145 22 DNA Artificial Sequence			·	
145 22 DNA Artificial Sequence			·	22
145 22 DNA Artificial Sequence Description of Artificial	Sequence:	Synthetic	·	22
145 22 DNA Artificial Sequence	Sequence:	Synthetic		22
145 22 DNA Artificial Sequence Description of Artificial	Sequence:	Synthetic		22
145 22 DNA Artificial Sequence Description of Artificial	Sequence:	Synthetic		22
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145	Sequence:	Synthetic		
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide	Sequence:	Synthetic		22
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145	Sequence:	Synthetic		
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145 tatta ctgtactaga ca	Sequence:	Synthetic		
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145 tatta ctgtactaga ca	Sequence:	Synthetic		
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145 tatta ctgtactaga ca	Sequence:	Synthetic		
145 22 DNA Artificial Sequence Description of Artificial oligonucleotide 145 tatta ctgtactaga ca	Sequence:	Synthetic		
	oligonucleotide 142 tatta ctgtgcgaaa ga 143 22 DNA Artificial Sequence Description of Artificial oligonucleotide 143 tatta ctgtactaga ga 144 22 DNA Artificial Sequence	Description of Artificial Sequence: oligonucleotide 142 tatta ctgtgcgaaa ga 143 22 DNA Artificial Sequence Description of Artificial Sequence: oligonucleotide 143 tatta ctgtactaga ga 144 22 DNA Artificial Sequence Description of Artificial Sequence: oligonucleotide Description of Artificial Sequence: oligonucleotide	Description of Artificial Sequence: Synthetic oligonucleotide 142 tatta ctgtgcgaaa ga 143 22 DNA Artificial Sequence Description of Artificial Sequence: Synthetic oligonucleotide 143 tatta ctgtactaga ga 144 22 DNA Artificial Sequence Description of Artificial Sequence: Synthetic oligonucleotide 1coligonucleotide Description of Artificial Sequence: Synthetic oligonucleotide	Description of Artificial Sequence: Synthetic oligonucleotide 142 tatta ctgtgcgaaa ga 143 22 DNA Artificial Sequence Description of Artificial Sequence: Synthetic oligonucleotide 143 tatta ctgtactaga ga 144 22 DNA Artificial Sequence Description of Artificial Sequence: Synthetic oligonucleotide 143 tatta ctgtactaga ga

<220>						
<223>	Description of Artificial	Sequence:	Synthetic			
	oligonucleotide					
	•					
<400>						
ctgtgt	atta ctgtaagaaa ga					22
	•					
i0 1 0 5	1745					
<210>		•				
<211>						
<212>					•	
\213/	Artificial Sequence					
<220>						
	Description of Artificial	Seguence:	Synthetic			
12202	oligonucleotide	bequence.	Synchecic			
	oxigonaoreoerae					
<400>	147					
ccgtgt	atta ctgtgcgaga aa				:	22
	3 3 3 3	•			•	
<210>						
<211>	22					
<212>			•			
<213>	Artificial Sequence		•			
40005				٠		
<220>	December of Birth 1					
\ZZ3 >	Description of Artificial oligonucleotide	Sequence:	Synthetic			
	origonacreotide					
<400>	148					
ccqtqt	atta ctgtgccaga ga					22
			,			
<210>						
<211>						
<212>						
<213>	Artificial Sequence			•		
-2222	•					•
<220>	December of Bulletin					
\2237	Description of Artificial oligonucleotide	Sequence:	Synthetic			
	origonacieotide.					
<400>	149					
	atta ctgtgcgaga ca					22
			•			
					•	
<210>						
<211>	22	``.				
<212>						
<213>	Artificial Sequence		•			
<220>						
<223>	Description of Artificial	Sequence:	Synthetic			
	oligonucleotide					

<400>	150		•		
	tatta ctgtgcgaga ca				22
*					
		*	•		
<210>					
<211>					
<212>					
<213>	Artificial Sequence	•			
<220>	•				
	Description of Artificial	C	0		
\2237	Description of Artificial	sequence:	Synthetic		
	oligonucleotide		•		
<400>	151				
	tatta ctgtgcgaga	•			20
oou cg	catta otgegogaga				20
<210>	152				
<211>	21				
<212>	DNA			*	
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide	·			
			<i>i</i>		
<400>		•			
ccgtgt	atta ctgtgcgaga g				21
<010×	150				
<210> <211>				•	
<211>	•				
	Artificial Sequence				
12137	Artificial Sequence				
<220>				•	
	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide	ooquomoc.	o y memo e re		
	3 3				
<400>	153		•		
ctgtgt	atta ctgtgcgaga g		*		. 21
<210>					
<211>		•	•	•	
<212>					
<213>	Artificial Sequence		•		
4000:			-		
<220>	.				
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide				
<400>	154				
	atta ctgtgcgaga g				
ccycyt	acca orgegogaya y				21
<210>	155				
<211>					

<212>	DNA				
<213>	Artificial Sequence	•			
	•				
<220>		•			
	Description of Artificial	Seguence:	Synthetic	•	
12207	oligonucleotide	sequence.	ynencere		
	Oligonacieotide				
- 4005	155		•		•
<400>		•			
ccgtat	tatta ctgtgcgaaa g	•			21
<210>	156				•
<211>	21				
<212>	DNA		•		
<213>	Artificial Sequence				
	•				
<220>					
	Description of Artificial	Sequence	Synthetic		
12237	oligonucleotide	bequence.	Dynametra		
	Oligonacieotide				
- 400>	156				
<400>					
ctgtgt	atta ctgtgcgaaa g				21
	•				
<210>	157				
<211>	21		•		•
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<220>	Description of Artificial	Seguence:	Synthetic		
	Description of Artificial	Sequence:	Synthetic		
	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<223>	oligonucleotide	Sequence:	Synthetic		
<223> <400>	oligonucleotide	Sequence:	Synthetic		0.1
<223> <400>	oligonucleotide	Sequence:	Synthetic		21
<223> <400>	oligonucleotide	Sequence:	Synthetic		21
<223> <400> ctgtgt	oligonucleotide 157 catta ctgtgcgaga c	Sequence:	Synthetic		21
<223> <400> ctgtgt	oligonucleotide 157 catta ctgtgcgaga c 158	Sequence:	Synthetic		21
<223> <400> ctgtgt <210> <211>	oligonucleotide 157 catta ctgtgcgaga c 158 21	Sequence:	Synthetic		21
<223> <400> ctgtgt	oligonucleotide 157 catta ctgtgcgaga c 158 21	Sequence:	Synthetic		21
<223> <400> ctgtgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA	Sequence:	Synthetic		21
<223> <400> ctgtgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21	Sequence:	Synthetic		21
<223> <400> ctgtgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA	Sequence:	Synthetic		21
<223> <400> ctgtgt <210> <211> <212> <213> <220>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence				21
<223> <400> ctgtgt <210> <211> <212> <213> <220>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial				21
<223> <400> ctgtgt <210> <211> <212> <213> <220>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence				21
<223> <400> ctgtgt <210> <211> <212> <213> <223>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide				21
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide				21
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt <210> <211>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20 DNA				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt <210> <211> <212>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20 DNA				
<223> <400> ctgtgt <210> <211> <212> <213> <223> <400> ccatgt <210> <221> <213> <220> <221> <210> <211> <212> <213>	oligonucleotide 157 catta ctgtgcgaga c 158 21 DNA Artificial Sequence Description of Artificial oligonucleotide 158 catta ctgtgcgaga c 159 20 DNA	Sequence:	Synthetic		

<400> 159 ccatgtatta ctgtgcgaga	20
<210> 160 <211> 94 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 160 ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag ggctgaggac actgcagtct actattgtgc gaga	60 94
<210> 161 <211> 94 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 161 ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag ggctgaggac actgcagtct actattgtgc gaaa	60 94
<210> 162 <211> 85 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 162 atagtagact gcagtgtcct cagcccttaa gctgttcatc tgcaagtaga gagtattctt agagttgtct ctagatcact acacc	60 85
<210> 163 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 163	22

```
<210> 164
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 164
ggtgtagtga aacagcttta gggctgagga cactgcagtc tactattgtg cgaga
                                                                    55
<210> 165
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 165
ggtgtagtga aacagcttta gggctgagga cactgcagtc tactattgtg cgaaa
                                                                    55
<210> 166
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 166
atagtagact gcagtgtcct cagcccttaa gctgtttcac tacacc
<210> 167
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 167
ggtgtagtga aacagcttaa gggctgagga cactgcagtc tactat
                                                                    46
<210> 168
<211> 26
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400>	168			
ggtgta	agtga aacagcttaa gggctg		2	26
<210>				
<211> <212>				
	Artificial Sequence		•	
<220>		• •	·	
<223>	Description of Artificial probe	Sequence:	Synthetic	
<400>				
agttct	ccct gcagctgaac tc			22
<210>	170			
<211>	22			
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial probe	Sequence:	Synthetic	
<400>	170			
cactgt	atct gcaaatgaac ag	,	2	22
<210>	171			
<211>				
<212>				
<213>	Artificial Sequence			
<220>			•	
<223>	Description of Artificial probe	Sequence:	Synthetic	•
<400>	171			
ccctgt	atct gcaaatgaac ag		2	22
<210>	172			
<211>			•	
<212>				
<213>	Artificial Sequence			
<220>	•			
<223>	Description of Artificial probe	Sequence:	Synthetic	

<400>	172	
		. 22
cegee	tacct gcagtggagc ag	22
		•
<210>		
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
1220	metricial bequese	
20005	•	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	probe	
		•
<400>	173	
	• •	2.2
egetgi	tatct gcaaatgaac ag	22
<210>	174	
<211>	22	
<212>	·	
(213)	Artificial Sequence	
<220>	·	
<223>	Description of Artificial Sequence: Synthetic	
	probe	
	P-050	
- 400>	174	
<400>		
cggcat	tatot gcagatotgo ag	22
	•	
<210>	175	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	probe	
	probe	
<400>	175	
cggcgt	tatct gcaaatgaac ag	22
,	· · · · · · · · · · · · · · · · · · ·	
<210>	176	
	·	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Amtificial Commerce Conthetic	
\ 223>	Description of Artificial Sequence: Synthetic	
	probe	
	Эн	
<400>	176	
	tacct gcagtggagc ag	22
401 Oc	122	
<210>		
<211>	22	

<212> <213>	DNA Artificial Sequence			
<220> <223>	Description of Artificial probe	Sequence:	Synthetic	
<400> tcgcct	177 Latet geaaatgaae ag			22
<210> <211> <212> <213>	22 .			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> acatg	178 gaget gageageetg ag			22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> acatgo	179 gaget gageaggetg ag			22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> acatgo	180 gaget gaggageetg ag			22
<210><211><211><212><213>	22			
<220> <223>.	Description of Artificial	Sequence:	Synthetic	

<400> 181 acctgcagtg gagcagcctg aa	22
<210> 182 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 182 atctgcaaat gaacagcctg aa	22
<210> 183 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 183 atctgcaaat gaacagcctg ag	22
<210> 184 <211> 22 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 184 atctgcaaat gaacagtctg ag	22
<210> 185 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 185 atctgcagat ctgcagccta aa	22

<210><211><211><212><213>	22					
<220>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> atcttd	186 caaat gaacagcctg ag					22
<210> <211> <212> <213>	22			·		
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			•
<400> atctto	187 caaat gggcagcctg ag				• •	22
<210> <211> <212> <213>	22			·		
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> ccctga	188 aagct gagctctgtg ac					22
<210> <211> <212> <213>	22					
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> ccctgd	189 caget gaactetgtg ac					22
<210><211><211><212><213>	22					

		44			*	
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> tcctt	190 acaat gaccaacatg ga					22
<210><211><211><212><213>	22					
<220>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> tcctt	191 accat gaccaacatg ga					22
<210><211><211><212>	22 DNA		·			-1-
<220>	Artificial Sequence Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> ccgtg	192 tatta ctgtgcgaga ga					22
<210><211><211><212><213>	22					•
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	·		
<400> ctgtgt	193 catta ctgtgcgaga ga					22
<210><211><211><212><213>	22					
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400> ccgtgt	194 atta ctgtgcgaga gg					22

<210> <211> <212>	22					
	Artificial Sequence					
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400>					0	
ccgcgi	tatta ctgtgcaaca ga	•			. •	22
		٠				
<210>						
<211>				•		
<212>						
<213>	Artificial Sequence		•			
<220>						
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic			
<400>						
ccatgt	atta ctgtgcaaga ta		•			22
<210>	197	•				
<211>						
<212>	DNA					
<213>	Artificial Sequence	•			•	
<220>			•			
	Description of Artificial	Sequence:	Synthetic			
	oligonucleotide		-,			
•	-		•			
<400>						
ccgtgt	atta ctgtgcggca ga	••		•		22
	·		•			
<210>	198					
<211>	22					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
	Description of Artificial	Sequence:	Synthetic			
	oligonucleotide		7			
<400>	100					
	tatta ctgtgcacac ag					2.
ccacai	acta ctytycacac ay					22
1010:	100					
<210>						
<211> <212>						
	Artificial Sequence					

<220>		•			
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	199				
	atta ctgtgcacgg at		,		22
<210>	200				
<211>					
<212>					
	Artificial Sequence				•
	·				
<220>				•	
<223>	Description of Artificial	Sequence:	Synthetic		
•	oligonucleotide				
<400>	200				
	atta ctgtgcacgg at				22
,					
<210>					
<211>					
<212>	-				
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
-,	oligonucleotide	•	-		
				•	
<400>	:				
ccttgt	atta ctgtgcaaaa ga				22
	•				
<210>	202			•	
<211>					
<212>					
	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide				
<400>	202		•		
	zatta ctgtgcaaga ga				22
ctgtgt	,				
	·				
<210>					
<211>	22				
<212>					
<213>	Artificial Sequence				
<220>					
	Description of Artificial	Sequence:	Synthetic		
-2207	oligonucleotide		-,		
	=				

ccgtgtatta ctgtaccaca ga	22
<210> 204 <211> 22 <212> DNA <213> Artificial Sequence	·
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	(i)
<400> 204 ccttgtatca ctgtgcgaga ga	22
<210> 205 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	-
<400> 205 ccgtatatta ctgtgcgaaa ga	22
<210> 206 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 206 ctgtgtatta ctgtgcgaaa ga	22
<210> 207 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 207 ccgtgtatta ctgtactaga ga	22
<210> 208	

<212> <213>	DNA Artificial Sequence		
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic	•
<400> ccgtgt	208 tatta ctgtgctaga ga		22
<210> <211> <212> <213>	22	,	
<220> <223>	 Description of Artificial Sequence: Synthe oligonucleotide 	etic	
<400> ccgtg	209 gtatta ctgtactaga ca	;	22
<210><211><211><212><213>	> 22		· .
<220> <223>	> > Description of Artificial Sequence: Synth oligonucleotide	etic	
<400> ctgtg	> 210 gtatta ctgtaagaaa ga		22
<211> <212>	> 211 > 22 > DNA > Artificial Sequence		
<220> <223>	> > Description of Artificial Sequence: Synthologonic Synt	etic	,
	> 211 gtatta ctgtgcgaga aa		22
<211><212>	> 212 > 22 > DNA > Artificial Sequence		
<220 <223	<pre>> > D scription of Artificial Sequence: Synth oligonucleotide</pre>	netic	

<400>		2.2
ccgtgt	atta ctgtgccaga ga	22
	·	
<210>	213	
<211>	22	
<212>		
<213>	Artificial Sequence	
	·	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	0119001200	
<400>	213	
		22
ergrai	catta ctgtgcgaga ca	
<210>		
<211>	·	
<212>	DNA	
<213>	Artificial Sequence	
<220>	·	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
•		
<400>	214	
	tatta ctgtgcgaga ca	22
<210>	215	
<211>		
<212>		
<213>	Artificial Sequence	
40005	·	
<220>	n	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	·	22
ccatg	tatta ctgtgcgaga aa	22
<210>	216	
<211>	90	
<212>	DNA	
	Homo sapiens	
<400>	216	
cadat	gcagc tggtgcagtc tggggctgag gtgaagaagc ctgggggcctc agtgaaggtc	60
teete	caagg cttctggata caccttcacc	90
Lucing	caagg ceeelggaea caeeeeaaa	
-010-	217	
<210>		
<211>		
<212>		
<213>	Homo sapiens	

```
<400> 217
caggtccagc ttgtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtt 60
tcctgcaagg cttctggata caccttcact
<210> 218
<211> 90
<212> DNA
<213> Homo sapiens
<400> 218
caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60
tcctgcaagg cttctggata caccttcacc
<210> 219
<211> 90
<212> DNA
<213> Homo sapiens
<400> 219
caggttcagc tggtgcagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc 60
tcctgcaagg cttctggtta cacctttacc
<210> 220
<211> 90
<212> DNA
<213> Homo sapiens
<400> 220
caggtccagc tggtacagtc tggggctgag gtgaagaagc ctgggggcctc agtgaaggtc 60
tcctgcaagg tttccggata caccctcact
<210> 221
<211> 90
<212> DNA
<213> Homo sapiens
<400> 221
cagatgcagc tggtgcagtc tggggctgag gtgaagaaga ctgggtcctc agtgaaggtt 60
tcctgcaagg cttccggata caccttcacc
<210> 222
<211> 90
<212> DNA
<213> Homo sapiens
<400> 222
caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtt 60
tcctgcaagg catctggata caccttcacc
<210> 223
<211> 90
```

```
<212> DNA
<213> Homo sapiens
<400> 223
caaatgcagc tggtgcagtc tgggcctgag gtgaagaagc ctgggacctc agtgaaggtc 60
tcctgcaagg cttctggatt cacctttact
<210> 224
<211> 90
<212> DNA
<213> Homo sapiens
<400> 224
caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc 60
tcctgcaagg cttctggagg caccttcagc
<210> 225
<211> 90
<212> DNA
<213> Homo sapiens
<400> 225
caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc 60
tcctgcaagg cttctggagg caccttcagc
<210> 226
<211> 90
<212> DNA
<213> Homo sapiens
<400> 226
gaggtccagc tggtacagtc tggggctgag gtgaagaagc ctggggctac agtgaaaatc 60
tcctgcaagg tttctggata caccttcacc
<210> 227
<211> 90
<212> DNA
<213> Homo sapiens
<400> 227
cagatcacct tgaaggagtc tggtcctacg ctggtgaaac ccacacagac cctcacgctg 60
acctgcacct tctctgggtt ctcactcagc
<210> 228
 <211> 90
 <212> DNA
 <213> Homo sapiens
 <400> 228
 caggicacci tgaaggagic tggiccigig ciggigaaac ccacagagac ccicacgcig 60
 acctgcaccg tctctgggtt ctcactcagc
```

```
<210> 229
<211> 90
<212> DNA
<213> Homo sapiens
<400> 229
caggicacci tgaaggagic tggiccigcg ciggigaaac ccacacagac ccicacactg 60
acctgcacct tctctgggtt ctcactcagc
<210> 230
<211> 90
<212> DNA
<213> Homo sapiens
<400> 230
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttagt
<210> 231
<211> 90
<212> DNA
<213> Homo sapiens
<400> 231
gaagtgcagc tggtggagtc tggggggggc ttggtacagc ctggcaggtc cctgagactc 60
                                                                    90
tcctgtgcag cctctggatt cacctttgat
<210> 232
<211> 90
<212> DNA
<213> Homo sapiens
<400> 232
caggtgcagc tggtggagtc tgggggaggc ttggtcaagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 233
<211> 90
<212> DNA
<213> Homo sapiens
<400> 233
gaggtgcagc tggtggagtc tgggggggc ttggtacagc ctggggggtc cctgagactc 60
                                                                    90
 tcctgtgcag cctctggatt caccttcagt
 <210> 234
 <211> 90
 <212> DNA
 <213> Homo sapiens
 <400> 234
 gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc 60
 tcctqtqcag cctctggatt cactttcagt
```

```
<210> 235
<211> 90
<212> DNA
<213> Homo sapiens
<400> 235
gaggtgcagc tggtggagtc tgggggaggt gtggtacggc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttgat
<210> 236
<211> 90
<212> DNA
<213> Homo sapiens
<400> 236
gaggtgcagc tggtggagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 237
<211> 90
<212> DNA
<213> Homo sapiens
<400> 237
gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttagc
<210> 238
<211> 90
<212> DNA
<213> Homo sapiens
<400> 238
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 239
<211> 90
<212> DNA
<213> Homo sapiens
<400> 239
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
                                                                    90
tcctgtgcag cctctggatt caccttcagt
<210> 240
<211> 90
<212> DNA
<213> Homo sapiens
```

```
<400> 240
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tectgtgcag cetetggatt cacettcagt
<210> 241
<211> 90
<212> DNA
<213> Homo sapiens
<400> 241
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt
<210> 242
<211> 90
<212> DNA
<213> Homo sapiens
<400> 242
gaagtgcagc tggtggagtc tgggggagtc gtggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttgat
<210> 243
<211> 90
<212> DNA
<213> Homo sapiens
<400> 243
gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 244
<211> 90
<212> DNA
<213> Homo sapiens
<400> 244
gaggtgcagc tggtggagtc tgggggaggc ttggtacagc cagggcggtc cctgagactc 60
tcctgtacag cttctggatt cacctttggt
<210> 245
<211> 90
<212> DNA
<213> Homo sapiens
<400> 245
gaggtgcagc tggtggagac tggaggaggc ttgatccagc ctggggggtc cctgagactc 60
tcctgtgcag cctctgggtt caccgtcagt
<210> 246
<211> 90
<212> DNA
```

```
<213> Homo sapiens
<400> 246
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 247
<211> 90
<212> DNA
<213> Homo sapiens
<400> 247
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccgtcagt
<210> 248
<211> 90
<212> DNA
<213> Homo sapiens.
<400> 248
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 249
<211> 90
<212> DNA
<213> Homo sapiens
<400> 249
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgaaactc 60
tcctgtgcag cctctgggtt caccttcagt
<210> 250
<211> 90
<212> DNA
<213> Homo sapiens
<400> 250
gaggtgcagc tggtggagtc cgggggaggc ttagttcagc ctggggggtc cctgagactc 60
 tcctgtgcag cctctggatt caccttcagt
 <210> 251
 <211> 90
 <212> DNA
 <213> Homo sapiens
 <400> 251
 gaggtgcagc tggtggagtc tcggggagtc ttggtacagc ctggggggtc cctgagactc 60
 tcctgtgcag cctctggatt caccgtcagt
```

```
<210> 252
<211> 90
<212> DNA
<213> Homo sapiens
<400> 252
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggggac cctgtccctc 60
acctgcgctg tctctggtgg ctccatcagc
<210> 253
<211> 90
<212> DNA
<213> Homo sapiens
<400> 253
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggacac cctgtccctc 60
acctgcgctg tctctggtta ctccatcagc
<210> 254
<211> 90
<212> DNA
<213> Homo sapiens
<400> 254
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
                                                                    90
acctgcactg tctctggtgg ctccatcagc
<210> 255
<211> 90
<212> DNA
<213> Homo sapiens
<400> 255
cagctgcagc tgcaggagtc cggctcagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcgctg tctctggtgg ctccatcagc
<210> 256
<211> 90
<212> DNA
<213> Homo sapiens
<400> 256
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
<210> 257
<211> 90
<212> DNA
<213> Homo sapiens
<400> 257
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
```

```
<210> 258
<211> 90
<212> DNA
<213> Homo sapiens
<400> 258
caggtgcagc tacagcagtg gggcgcagga ctgttgaagc cttcggagac cctgtccctc 60
acctgcgctg tctatggtgg gtccttcagt
<210> 259
<211> 90
<212> DNA
<213> Homo sapiens
<400> 259
cagctgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
<210> 260
<211> 90
<212> DNA
<213> Homo sapiens
<400> 260
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagt
<210> 261
<211> 90
<212> DNA
<213> Homo sapiens
<400> 261
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccgtcagc
<210> 262
<211> 90
<212> DNA
<213> Homo sapiens
<400> 262
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcgctg tctctggtta ctccatcagc
<210> 263
<211> 90
<212> DNA
<213> Homo sapiens
```

```
<400> 263
gaggtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaagatc 60
tcctgtaagg gttctggata cagctttacc
<210> 264
<211> 90
<212> DNA
<213> Homo sapiens
<400> 264
gaagtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaggatc 60
tcctgtaagg gttctggata cagctttacc
<210> 265
<211> 90
<212> DNA
<213> Homo sapiens
<400> 265
caggtacage tgcagcagte aggtecaggá etggtgaage cetegcagae ceteteacte 60
acctgtgcca tctccgggga cagtgtctct
<210> 266
<211> 90
<212> DNA
<213> Homo sapiens
<400> 266
caggtgcagc tggtgcaatc tgggtctgag ttgaagaagc ctggggcctc agtgaaggtt 60
tcctgcaagg cttctggata caccttcact
<210> 267
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 267
                                                                    22
ccgtgtatta ctgtgcgaga ga
<210> 268
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

<400> ctgtgt	268 atta ctgtgcgaga ga		•		22
<210>					
<211>					
<212>					
<213>	Artificial Sequence	· ·			
<220>			Q		
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	•	
	oligonacieotiac				•
<400>	269	•			
ccgtgt	atta ctgtgcgaga gg				22
<210>					
<211>	22		•		
<212>					
<213>	Artificial Sequence				
<220>					•
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide				
<400>	270				
ccgtat	atta ctgtgcgaaa ga	•		•	22
	•				
<210>					
<211>			•		
<212>			•		
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
•	oligonucleotide				
<400>	271				
ctgtg	tatta ctgtgcgaaa ga			•	22
	•				
<210>	272				
<211>	22				
<212>	DNA	•			
<213>	Artificial Sequence		•		
<220>					
	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide	_			
<400>	272		•		
	tatta ctgtgcgaga ca				22
J 9	· ·				
<210>	273				
<211>					

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    oligonucleotide
<400> 273
ccatgtatta ctgtgcgaga ca
                                                                    22
<210> 274
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 274
                                                                    22
ccatgtatta ctgtgcgaga aa
<210> 275
<211> 69
<212> DNA
<213> Homo sapiens
<400> 275
gacatecaga tgacecagte tecatectee etgtetgeat etgtaggaga cagagteace 60
atcacttgc
<210> 276
<211> 69
<212> DNA
<213> Homo sapiens
<400> 276
gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 277
<211> 69
<212> DNA
<213> Homo sapiens
<400> 277
gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 278
<211> 69
<212> DNA
<213> Homo sapiens
```

gacatccaga atcacttgc	tgacccagtc	tecatectee	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 279 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 279 gacatccaga atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 280 <211> 69 <212> DNA <213> Homo	sapiens			·	·	
<400> 280 gacatccaga atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 281 <211> 69 <212> DNA <213> Homo	sanians					
<400> 281		tccatctgcc	atgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 282 <211> 69 <212> DNA						
<213> Homo	sapiens					
<400> 282 gacatccaga atcacttgt	tgacccagtc	tecatectea	ctgtctgcat	. ctgtaggaga	a cagagtcacc	60 69
<210> 283 <211> 69 <212> DNA <213> Homo	sapiens				·	
<400> 283		: tccatcctca	ctgtctgcat	ctgtaggaga	a cagagtcacc	60 69
<210> 284 <211> 69						

```
<212> DNA
<213> Homo sapiens
<400> 284
gccatccagt tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 285
<211> 69
<212> DNA
<213> Homo sapiens
<400> 285
gccatccagt tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 286
<211> 69
<212> DNA
<213> Homo sapiens
<400> 286
gacatccaga tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60
atcacttgt
<210> 287
<211> 69
<212> DNA
<213> Homo sapiens
<400> 287
gacatccaga tgacccagtc tccatcttct gtgtctgcat ctgtaggaga cagagtcacc 60
atcacttgt
<210> 288
<211> 69
<212> DNA
<213> Homo sapiens
<400> 288
gacatccagt tgacccagtc tccatccttc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 289
<211> 69
<212> DNA
<213> Homo sapiens
<400> 289
gccatccgga tgacccagtc tccattctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
```

```
<210> 290
<211> 69
<212> DNA
<213> Homo sapiens
<400> 290
gccatccgga tgacccagtc tccatcctca ttctctgcat ctacaggaga cagagtcacc 60
atcacttgt
<210> 291
<211> 69
<212> DNA
<213> Homo sapiens
<400> 291
gtcatctgga tgacccagtc tccatcctta ctctctgcat ctacaggaga cagagtcacc 60
                                                                    69
atcagttgt
<210> 292
<211> 69
<212> DNA
<213> Homo sapiens
<400> 292
gccatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 293
<211> 69
<212> DNA
<213> Homo sapiens
<400> 293
gacatccaga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60
atcacttgc
<210> 294
<211> 69
<212> DNA
<213> Homo sapiens
<400> 294
gatattgtga tgacccagac tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgc
<210> 295
<211> 69
<212> DNA
<213> Homo sapiens
<400> 295
gatattgtga tgacccagac tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgc
```

```
<210> 296
<211> 69
<212> DNA
<213> Homo sapiens
<400> 296
gatgttgtga tgactcagtc tccactctcc ctgcccgtca cccttggaca gccggcctcc 60
atctcctgc
<210> 297
<211> 69
<212> DNA
<213> Homo sapiens
<400> 297
gatgttgtga tgactcagtc tccactctcc ctgcccgtca cccttggaca gccggcctcc 60
atctcctgc
<210> 298
<211> 69
<212> DNA
<213> Homo sapiens
<400> 298
gatattgtga tgacccagac tccactctct ctgtccgtca cccctggaca gccggcctcc 60
atctcctgc
<210> 299
<211> 69
<212> DNA
<213> Homo sapiens
<400> 299
gatattgtga tgacccagac tccactctct ctgtccgtca cccctggaca gccggcctcc 60
atctcctgc
<210> 300
<211> 69
<212> DNA
<213> Homo sapiens
<400> 300
gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
                                                                    69
atctcctgc
<210> 301
<211> 69
<212> DNA
<213> Homo sapiens
```

```
<400> 301
gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgc
<210> 302
<211> 69
<212> DNA
<213> Homo sapiens
<400> 302
gatattgtga tgacccagac tccactctcc tcacctgtca cccttggaca gccggcctcc 60
atctcctgc
<210> 303
<211> 69
<212> DNA
<213> Homo sapiens
<400> 303
gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
<210> 304
<211> 69
<212> DNA
<213> Homo sapiens
<400> 304
gaaattgtgt tgacgcagtc tccagccacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgc
<210> 305
<211> 69
<212> DNA
<213> Homo sapiens
<400> 305
gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60
ctctcctgc
<210> 306
<211> 69
<212> DNA
<213> Homo sapiens
<400>, 306
gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60
ctctcctgc
<210> 307
<211> 69
```

```
<212> DNA
<213> Homo sapiens
<400> 307
gaaattgtgt tgacacagtc tccagccacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgc
<210> 308
<211> 69
<212> DNA
<213> Homo sapiens
<400> 308
gaaattgtgt tgacacagtc tccagccacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgc
<210> 309
<211> 69
<212> DNA
<213> Homo sapiens
<400> 309
gaaattgtaa tgacacagtc tccagccacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgc
<210> 310
<211> 69
<212> DNA
<213> Homo sapiens
<400> 310
gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctgggcga gagggccacc 60
atcaactgc
<210> 311
<211> 69
<212> DNA
<213> Homo sapiens
<400> 311
gaaacgacac tcacgcagtc tccagcattc atgtcagcga ctccaggaga caaagtcaac 60
atctcctgc
<210> 312
<211> 69
<212> DNA
<213> Homo sapiens
<400> 312
gaaattgtgc tgactcagtc tccagacttt cagtctgtga ctccaaagga gaaagtcacc 60
atcacctgc
```

```
<210> 313
<211> 69
<212> DNA
<213> Homo sapiens
<400> 313
gaaattgtgc tgactcagtc tccagacttt cagtctgtga ctccaaagga gaaagtcacc 60
atcacctgc
<210> 314
<211> 69
<212> DNA
<213> Homo sapiens
<400> 314
gatgttgtga tgacacagtc tccagctttc ctctctgtga ctccagggga gaaagtcacc 60
atcacctgc
                                                                    69
<210> 315
<211> 66
<212> DNA
<213> Homo sapiens
<400> 315
cagtetgtgc tgactcagec acceteggtg tetgaagece ecaggeagag ggtcaccate 60
tcctgt
<210> 316
<211> 66
<212> DNA
<213> Homo sapiens
<400> 316
cagtctgtgc tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60
tcctgc.
<210> 317
<211> 66
<212> DNA
<213> Homo sapiens
<400> 317
cagtetgtgc tgactcagcc accetcagcg tetgggaccc eegggeagag ggteaccate 60
tcttgt
<210> 318
<211> 66
<212> DNA
<213> Homo sapiens
<400> 318
cagtetgtge tgactcagee acceteageg tetgggacee cegggeagag ggteaceate 60
tcttgt
```

```
<210> 319
<211> 66
<212> DNA
<213> Homo sapiens
<400> 319
cagtctgtgt tgacgcagcc gccctcagtg tctgcggccc caggacagaa ggtcaccatc 60
tcctgc
<210> 320
<211> 66
<212> DNA
<213> Homo sapiens
<400> 320
cagtotgoco tgactoagoo tocotoogog toogggtoto otggacagto agtoaccato 60
tcctgc
<210> 321
<211> 66
<212> DNA
<213> Homo sapiens
<400> 321
cagtetgeec tgacteagec tegeteagtg teegggtete etggacagte agteaceate 60
tcctgc
<210> 322
<211> 66
<212> DNA
<213> Homo sapiens
<400> 322
cagtetgeec tgaeteagee tgeeteegtg tetgggtete etggaeagte gateaceate 60
tcctgc
<210> 323
<211> 66
<212> DNA
<213> Homo sapiens
<400> 323
cagtetgeec tgacteagec teecteegtg teegggtete etggacagte agteaceate 60
tcctgc
<210> 324
<211> 66
<212> DNA
<213> Homo sapiens
 <400> 324
```

tectge	tgactcagcc	tgcctccgtg	tetgggtete	ctggacagtc	gatcaccatc	66
<210> 325 <211> 66 <212> DNA <213> Homo	sapiens		•			
<400> 325 tcctatgagc acctgc	tgactcagcc	accctcagtg	tccgtgtccc	caggacagac	agccagcatc	60 66
<210> 326 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 326 tcctatgagc acctgt	tgactcagcc	actctcagtg	tcagtggccc	tgggacagac	ggccaggatt	60 66
<210> 327 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 327 tcctatgagc acctgc	tgacacagcc	accctcggtg	tcagtgtccc	caggacaaac	ggccaggatc	60 66
<210> 328 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 328 tcctatgagc acctgc	tgacacagcc	accctcggtg	tcagtgtccc	taggacagat	ggccaggatc ,	60 66
<210> 329 <211> 66 <212> DNA <213> Homo	sapiens	•				
<400> 329 tcttctgagc acatgc	tgactcagga	ccctgctgtg	tetgtggeet	tgggacagac	agtcaggatc	60 66
<210> 330 <211> 66 <212> DNA <213> Homo	sapiens				·	

<400> 330 tectatgtge acctgt	tgactcagcc	accctcagtg	tcagtggccc	caggaaagac	ggccaggatt	60 66
<210> 331 <211> 66 <212> DNA <213> Homo	sapiens		· .			
<400> 331 tcctatgagc acctgc	tgacacagct	accctcggtg	tcagtgtccc	caggacagac	agccaggatc	60 66
<210> 332 <211> 66 <212> DNA <213> Homo	sapiens				·	
<400> 332 tcctatgagc acctgc	tgatgcagcc	accctcggtg	tcagtgtccc	caggacagac	ggccaggatc	60 66
<210> 333 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 333 tcctatgagc acctgc	tgacacagcc	atcctcagtg	tcagtgtctç	cgggacagac	agccaggatc	60 66
<210> 334 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 334 ctgcctgtgc acctgc	: tgactcagcc	cccgtctgca	tctgccttgc	tgggagccto	c gatcaagctc	60 66
<210> 335 <211> 66 <212> DNA <213> Homo	o sapiens					
<400> 335 cagectgtgc acctgc	: tgactcaatc	atcctctgcc	tetgetteed	: tgggatccto	c ggtcaagcto	: 60 66
<210> 336 <211> 66					·	_

<212> DNA						,
<213> Homo	sapiens	•	•			
<400> 336 cagcttgtgc acctgc	tgactcaatc	gccctctgcc	tetgeetece	tgggagcctç	ggtcaagctc	60 66
<210> 337 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 337 cagcctgtgc acctgc	tgactcagcc	accttcctcc	tccgcatctc	ctggagaatc	cgccagactc	60 66
<210> 338 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 338 caggctgtgc acctgc	tgactcagcc	ggcttccctc	tctgcatctc	ctggagcatc	agccagtctc	60 66
<210> 339 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 339 cagcctgtgc acctgc	tgactcagcc	atcttcccat	tctgcatctt	ctggagcatc	agtcagactc	60 66
<210> 340 <211> 66 <212> DNA <213> Homo	sapiens	·			·	
<400> 340 aattttatgc tcctgc	tgactcagcc	ccactctgtg	tcggagtctc	cggggaagac	ggtaaccatc	60 66
<210> 341 <211> 66 <212> DNA <213> Homo	sapiens				*	
<400> 341 cagactgtgg acctgt	tgactcagga	gccctcactg	actgtgtccc	caggagggac	agtcactctc	60 66

```
<210> 342
<211> 66
<212> DNA
<213> Homo sapiens
<400> 342
caggetgtgg tgactcagga geeetcactg actgtgteec caggagggae agteactete 60
<210> 343
<211> 66
<212> DNA
<213> Homo sapiens
<400> 343
cagactgtgg tgacccagga gccatcgttc tcagtgtccc ctggagggac agtcacactc 60
<210> 344
<211> 66
<212> DNA
<213> Homo sapiens
<400> 344
cagectgtge tgacteagee acettetgea teagecteee tgggageete ggteaeacte 60
acctgc
<210> 345
<211> 66
<212> DNA
<213> Homo sapiens
<400> 345
caggcagggc tgactcagcc acceteggtg tccaagggct tgagacagac cgccacactc 60
acctgc
<210> 346
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 346
                                                                     11
nnnnnngact c
```

```
<210> 347
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(11)
<223> A, T, C, G, other or unknown
<400> 347
                                                                   11
gagtcnnnnn n
<210> 348
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (3)..(9)
<223> A, T, C, G, other or unknown
<400> 348
                                                                    11
gcnnnnnng c
<210> 349
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
 <400> 349
                                                                    11
acctgcnnnn n
 <210> 350
 <211> 25
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 350
                                                                   25
cacatccgtg ttgttcacgg atgtg
<210> 351
<211> 88
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 351
aatagtagac tgcagtgtcc tcagccctta agctgttcat ctgcaagtag agagtattct 60
tagagttgtc tctagactta gtgaagcg
<210> 352
<211> 88
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 352
cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta 60
agggctgagg acactgcagt ctactatt
<210> 353
<211> 95
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 353
cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta 60
agggctgagg acactgcagt ctactattgt gcgag
<210> 354
<211> 95
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 354
cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta 60
agggctgagg acactgcagt ctactattgt acgag
<210> 355
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 355
                                                                    24
cgcttcacta agtctagaga caac
<210> 356
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (8)..(15)
<223> A, T, C, G, other or unknown
<400> 356
cacctgcnnn nnnnn
                                                                    15
<210> 357
<211> 17.
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 357
                                                                    17
cagctcnnnn nnnnnnn
```

```
<210> 358
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 358
                                                                   17
gaagacnnnn nnnnnnn
<210> 359
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(17)
<223> A, T, C, G, other or unknown
<400> 359
                                                                    17
 gcagcnnnnn nnnnnnn
<210> 360
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
     oligonucleotide
 <220>
 <221> modified_base
 <222> (7)..(12)
 <223> A, T, C, G, other or unknown
 <400> 360
                                                                    12
 gaagacnnnn nn
 <210> 361
 <211> 22
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(22)
<223> A, T, C, G, other or unknown
<400> 361
                                                                    22
cttgagnnnn nnnnnnnnnn nn
<210> 362
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<4.00> 362
                                                                    19
acggcnnnnn nnnnnnnn
<210> 363
<211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (6) .. (18)
 <223> A, T, C, G, other or unknown
 <400> 363
                                                                     18
 acggcnnnnn nnnnnnnn
 <210> 364
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
```

```
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 364
                                                                    12
gtatccnnnn nn .
<210> 365
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 365
                                                                    11
actgggnnnn n
<210> 366
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 366
                                                                    10
ggatcnnnnn
<210> 367
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)...(11)
```

```
<223> A, T, C, G, other or unknown
<400> 367
                                                                    11
gcatcnnnnn n
<210> 368
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(16)
<223> A, T, C, G, other or unknown
<400> 368
gaggagnnnn nnnnnn
                                                                    16
<210> 369
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<400> 369
                                                                    19
gggacnnnnn nnnnnnnn
<210> 370
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(14)
<223> A, T, C, G, other or unknown
<400> 370
                                                                    14
acctgcnnnn nnnn
```

```
<210> 371
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 371
                                                                    17
ggcggannnn nnnnnnn
<210> 372
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(22)
<223> A, T, C, G, other or unknown
<400> 372
                                                                    22
ctgaagnnnn nnnnnnnnnn nn
<210> 373
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(11)
<223> A, T, C, G, other or unknown
<400> 373
cccgcnnnnn n
                                                                    11
<210> 374
<211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(18)
<223> A, T, C, G, other or unknown
<400> 374
ggatgnnnnn nnnnnnnn
<210> .375
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(22)
<223> A, T, C, G, other or unknown
<400> 375
                                                                    22
ctggagnnnn nnnnnnnnn nn
<210> 376
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(15)
<223> A, T, C, G, other or unknown
<400> 376
                                                                    15
gacgcnnnnn nnnnn
<210> 377
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6) .. (13)
<223> A, T, C, G, other or unknown
<400> 377
                                                                    13
ggtgannnnn nnn
<210> 378
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(13)
<223> A, T, C, G, other or unknown
<400> 378
                                                                    13
gaagannnnn nnn
<210> 379
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
 <400> 379
                                                                     10
 gagtcnnnnn
 <210> 380
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
    oligonucleotide
```

```
<220>
<221> modified_base
<222> (7)..(26)
<223> A, T, C, G, other or unknown
<400> 380
                                                                    26
tccracnnn nnnnnnnnn nnnnn
<210> 381
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5)..(11)
<223> A, T, C, G, other or unknown
<400> 381
cctcnnnnnn n
                                                                    11
<210> 382
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6) .. (10)
<223> A, T, C, G, other or unknown
<400> 382
                                                                   .10
gagtcnnnnn
<210> 383
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(18)
<223> A, T, C, G, other or unknown
```

cccacannn nnnnnnn		18
<210> 384 <211> 14 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide		
<220> <221> modified_base <222> (6)(14) <223> A, T, C, G, other or unknown		
<400> 384 gcatcnnnnn nnnn	•	14
<210> 385 <211> 13 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide		
<220> <221> modified_base <222> (6)(13) <223> A, T, C, G, other or unknown		
<400> 385 ggtgannnnn nnn		13
<210> 386 <211> 12 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide		
<220> <221> modified_base <222> (5)(12) <223> A, T, C, G, other or unknown		*
<400> 386		12

```
<210> 387
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<400> 387
                                                                    19
ggatgnnnnn nnnnnnnnn
<210> 388
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 388
gaccgannnn nnnnnnn
                                                                    17
<210> 389
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 389
                                                                    17
cacccannnn nnnnnnn
<210> 390
<211> 17
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 390
                                                                    17
caarcannnn nnnnnnn
<210> 391
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 391
                                                                    20
gctgtgtatt actgtgcgag
<210>. 392
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 392
gccgtgtatt actgtgcgag
                                                                    20
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 393
                                                                    20
gccgtatatt actgtgcgag
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
```

	Description of Artificial Sequence: Synthetic probe	
<400> gccgtg	394 statt actgtacgag	20
<210> <211> <212>	20	
	Artificial Sequence	
4000 >		
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400>	395	
gccato	gtatt actgtgcgag	20
<210>		
<211> <212>		
	Artificial Sequence	
1000		
<220> <223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	396	
	ccgtg ttgttcacgg atgtg	25
<210>	397	•
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	397	
aatag	tagac tgcagtgtcc tcagccctta agctgttcat ctgcaagtag agagtattct	60
tagag	ttgtc tctagactta gtgaagcg	88
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic oligonucleotide	

<400> 3 cgcttca agggctq	398 acta agtctagaga caactctaag aatactctct acttgcagat gagg acactgcagt ctactattgt gcgag	gaacagctta	60 95
<210> 3 <211> 3 <212> 1 <213> 2	24		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		•
<400> cgcttc	399 acta agtctagaga caac		24
<210> <211> <212> <213>	44		• .
	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> cacato	400 cgtg ttgttcacgg atgtgggagg atggagactg ggtc		44
<210> <211> <212> <213>	44		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> cacato	401 ccgtg ttgttcacgg atgtgggaga gtggagactg agtc		44
<210> <211> <212> <213>	44		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		
<400>	402 ecgtg ttgttcacgg atgtgggtgc ctggagactg cgtc		44
<210>	403		

```
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
                                                                    44
cacatccgtg ttgttcacgg atgtgggtgg ctggagactg cgtc
<210> 404
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 404
cctctactct tgtcacagtg cacaagacat ccag
                                                                    34
<210> 405
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 405
                                                                     20
cctctactct tgtcacagtg
<210> 406
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 406
ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg
                                                                     44
<210> 407
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide

·	
<400> 407	
ggagagtgga ctggatgtct tgtgcactgt gacaagagta gagg	44
ggagagtgga ceggaegee egegaacege gacargager gegg	
<210> 408	
<211> 44	
<212> DNA	
<213> Artificial Sequence	•
•	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
<400> 408	
ggtgcctgga ctggatgtct tgtgcactgt gacaagagta gagg	44
33-3	
·	
22105 400	
<210> 409	
<211> 44	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
<400> 409	
ggtggctgga ctggatgtct tgtgcactgt gacaagagta gagg	44
<210> 410	
<211> 44	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
Oligonacieocide	
<400> 410	
cacateegtg ttgtteaegg atgtggateg aetgteeagg agae	44
<210> 411	
<211> 44	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
Oligonaciectuc	
	-
<400> 411	
cacatccgtg ttgttcacgg atgtggactg tctgtcccaa ggcc	44
·	

```
<210> 412
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 412
cacatccgtg ttgttcacgg atgtggactg actgtccagg agac
                                                                   44
<210> 413
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 413
cacateegtg ttgtteaegg atgtggaeec tetgeeetgg ggee
<210> 414
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 414
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccgg 59
<210> 415
<211> 69
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 415
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccggg 60
                                                                    69
acagtcgat
<210> 416
<211> 69
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 416
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccggg 60
acagacagt
<210> 417
<211> 69
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 417
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccggg 60
                                                                    69
acagtcagt
<210> 418
<211> 70
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 418
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gtstccccgg 60
                                                                    70
ggcagagggt
<210> 419
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 419
                                                                    24
cctctgactg agtgcacaga gtgc
<210> 420
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<220>
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 420
                                                                    13
ggccnnnnng gcc
<210> 421
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 421
                                                                    15
ccannnnnn nntgg
<210> 422
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 422
                                                                   12
cgannnnnnt gc
<210> 423
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
```

```
<223> A, T, C, G, other or unknown
<400> 423
                                                                   11
gccnnnnngg c
<210> 424
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 424
                                                                    10
gatnnnnatc
<210> 425
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 425
                                                                    11
gacnnnnngt c
<210> 426
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
 <222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 426
                                                                     11
 gcannnnntg c
```

```
<210> 427
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide.
<220>
<221> modified base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 427
                                                                    12
gtatccnnnn nn
<210> 428
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 428
                                                                    12
gacnnnnnng tc
<210> 429
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 429
                                                                    11
ccannnnntg g.
<210> 430
<211> 12
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 430
                                                                    12
nnnnnngaga cg
<210> 431
 <211> 12
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
       oligonucleotide
<220>
 <221> modified_base
 <222> (4)..(9)
 <223> A, T, C, G, other or unknown
 <400> 431
                                                                    12
 ccannnnnnt gg
 <210> 432
 <211> 10
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4)..(7)
 <223> A, T, C, G, other or unknown
 <400> 432
                                                                     10
 gaannnnttc
 <210> 433
 <211> 11
 <212> DNA
 <213> Artificial Sequence
 <220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 433
                                                                    11
ggtctcnnnn n
<210> 434
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 434
                                                                    16
nnnnnnnn ctcctc
<210> 435
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 435
                                                                    15
nnnnnnnnt ccgcc
<210> 436
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
       oligonucleotide
<220>
```

```
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 436
                                                                    13
ggccnnnng gcc
<210> 437
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 437
                                                                    12
ccannnnnnt gg
<210> 438
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 438
                                                                     12
gacnnnnnng tc
<210> 439
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9) .
<223> A, T, C, G, other or unknown
```

```
<400> 439
                                                                    12
cgannnnnnt gc
<210> 440
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 440
                                                                    11
gcannnnntg c
<210> 441
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8')
<223> A, T, C, G, other or unknown
<400> 441
                                                                    11
ccannnnntg g
<210> 442
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 442
                                                                     10
gaannnnttc
```

```
<210> 443
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 443
                                                                    12
nnnnnngaga cg
<210> 444
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 444
                                                                    12
gtatccnnnn nn
<210> 445
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 445
                                                                    11
gacnnnnngt c
<210> 446
<211> 11
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 446
ggtctcnnnn n
                                                                    . 11
<210> 447
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 447
                                                                     11
gccnnnnngg c
<210> 448
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 448
                                                                      15
ccannnnnn nntgg
<210> 449
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

16

15

```
<220>
 <221> modified_base
 <222> (1)..(10)
 <223> A, T, C, G, other or unknown
 <400> 449
 nnnnnnnn ctcctc
 <210> 450
 <211> 15
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
  oligonucleotide
 <220>
 <221> modified_base
 <222> (1)..(9)
 <223> A, T, C, G, other or unknown
 <400> 450
nnnnnnnnt ccgcc
 <210> 451
 <211> 9532
 <212> DNA
 <213> Unknown Organism
 <220>
 <223> Description of Unknown Organism: MALIA3 nucleotide
       sequence
 <220>
 <221> CDS
 <222> (1579)..(1638)
 <220>
 <221> CDS
 <222> (2343)..(3443)
 <220>
 <221> CDS
 <222> (3945)..(4400)
 <220>
 <221> CDS
 <222> (4406)..(4450)
 <220>
 <221> CDS
 <222> (4746)..(5789)
 <400> 451
```

aatgctacta ctattagtag aattgatgcc accttttcag ctcgcgcccc aaatgaaaat 60 atagctaaac aggttattga ccatttgcga aatgtatcta atggtcaaac taaatctact 120 cgttcgcaga attgggaatc aactgttaca tggaatgaaa cttccagaca ccgtacttta 180 gttgcatatt taaaacatgt tgagctacag caccagattc agcaattaag ctctaagcca 240 tccgcaaaaa tgacctctta tcaaaaggag caattaaagg tactctctaa tcctgacctg 300 ttggagtttg cttccggtct ggttcgcttt gaagctcgaa ttaaaacgcg atatttgaag 360 tctttcgggc ttcctcttaa tctttttgat gcaatccgct ttgcttctga ctataatagt 420 cagggtaaag acctgatttt tgatttatgg tcattctcgt tttctgaact gtttaaagca 480 tttgaggggg attcaatgaa tatttatgac gattccgcag tattggacgc tatccagtct 540 aaacatttta ctattacccc ctctggcaaa acttcttttg caaaagcctc tcgctatttt 600 ggtttttatc gtcgtctggt aaacgagggt tatgatagtg ttgctcttac tatgcctcgt 660 aattcctttt ggcgttatgt atctgcatta gttgaatgtg gtattcctaa atctcaactg 720 atgaatcttt ctacctgtaa taatgttgtt ccgttagttc gttttattaa cgtagatttt 780 tcttcccaac gtcctgactg gtataatgag ccagttctta aaatcgcata aggtaattca 840 caatgattaa agttgaaatt aaaccatctc aagcccaatt tactactcgt tctggtgttt 900 ctcgtcaggg caagccttat tcactgaatg agcagctttg ttacgttgat ttgggtaatg 960 aatatccggt tcttgtcaag attactcttg atgaaggtca gccagcctat gcgcctggtc 1020 tgtacaccgt tcatctgtcc tctttcaaag ttggtcagtt cggttccctt atgattgacc 1080 gtctgcgcct cgttccggct aagtaacatg gagcaggtcg cggatttcga cacaatttat 1140 caggcgatga tacaaatctc cgttgtactt tgtttcgcgc ttggtataat cgctgggggt 1200 caaagatgag tgttttagtg tattctttcg cctctttcgt tttaggttgg tgccttcgta 1260 gtggcattac gtattttacc cgtttaatgg aaacttcctc atgaaaaagt ctttagtcct 1320 caaagcctct gtagccgttg ctaccctcgt tccgatgctg tctttcgctg ctgagggtga 1380 cgatcccgca aaagcggcct ttaactccct gcaagcctca gcgaccgaat atatcggtta 1440 tgcgtgggcg atggttgttg tcattgtcgg cgcaactatc ggtatcaagc tgtttaagaa 1500 attcacctcg aaagcaagct gataaaccga tacaattaaa ggctcctttt ggagcctttt 1560 tttttggaga ttttcaac gtg aaa aaa tta tta ttc gca att cct tta gtt Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val

gtt cct ttc tat tct cac agt gca cag tctgtcgtga cgcagccgcc Val Pro Phe Tyr Ser His Ser Ala Gln 1658

15 20

ctcagtgtct g	gggccccag g	gcagagggt	caccatct	cc tgcac	tggga g	cagctccaa	1718
catcggggca g	gttatgatg t	acactggta	ccagcagc	tt ccagg	aacag c	ccccaaact	1778
cctcatctat g	gtaacagca a	tcggccctc	aggggtcc	ct gacco	attct c	tggctccaa	1838
gtctggcacc t	cagcctccc t	ggccatcac	tgggctcc	ag gctga	iggatg a	ggctgatta	1898
ttactgccag t	cctatgaca g	cagcctgag	tggccttt	at gtctt	cggaa c	tgggaccaa	1958
ggtcaccgtc c	taggtcagc c	caaggccaa	ccccactg	tc actct	gttcc c	gccctcctc	2018
tgaggagctc c	aagccaaca a	ggccacact	agtgtgtc	tg atcac	gtgact t	ctacccggg	2078
agctgtgaca g	tggcctgga a	ggcagatag	cagccccg	gtc aaggo	cgggag t	ggagaccac	2138
cacaccctcc a	aacaaagca a	caacaagta	cgcggcca	igc agcta	atctga g	cctgacgcc	2198
tgagcagtgg a	agtcccaca c	aagctacag	ctgccag	gtc acgc	atgaag g	gagçaccgt	2258
ggagaagaca g	tggccccta c	agaatgttc	ataataaa	acc gcct	ccaccg g	ggcgcgccaa	2318
ttctatttca a	ggagacagt o	ata atg a Met L	aa tac ct ys Tyr Le	ta ttg co eu Leu P: 25	ct acg o	gca gcc Ala Ala	2369
gct gga ttg Ala Gly Leu 30	tta tta cto Leu Leu Leu 35	Ala Ala	cag ccg (Gln Pro 1	gcc atg Ala Met 40	gcc gaa Ala Glu	gtt caa Val Gln 45	2417
ttg tta gag Leu Leu Glu	tct ggt ggd Ser Gly Gly 50	ggt ctt Gly Leu	gtt cag (Val Gln :	cct ggt Pro Gly	ggt tct Gly Ser	tta cgt Leu Arg 60	2465
ctt tct tgc Leu Ser Cys	gct gct tcc Ala Ala Se: 65	gga ttc Gly Phe	act ttc Thr Phe 70	tct tcg Ser Ser	tac gct Tyr Ala 75	atg tct Met Ser	2513
tgg gtt cgc Trp Val Arg 80	caa gct cc Gln Ala Pro	ggt aaa Gly Lys 85	ggt ttg Gly Leu	gag tgg Glu Trp	gtt tct Val Ser 90	gct atc Ala Ile	2561
tct ggt tct Ser Gly Ser 95	ggt ggc ag Gly Gly Se	act tac Thr Tyr 100	tat gct Tyr Ala	gac tcc Asp Ser 105	gtt aaa Val Lys	ggt cgc Gly Arg	2609
ttc act atc Phe Thr Ile 110	tct aga ga Ser Arg As 11	Asn Ser	Lys Asn	act ctc Thr Leu 120	tac ttg Tyr Leu	cag atg Gln Met 125	2657
aac agc tta Asn Ser Leu	agg gct ga Arg Ala Gl 130	g gac act 1 Asp Thr	gca gtc Ala Val 135	tac tat Tyr Tyr	Cys Ala	aaa gac Lys Asp 140	2705
tat gaa ggt Tyr Glu Gly	act ggt ta Thr Gly Ty	t gct ttc r Ala Phe	gac ata Asp Ile	tgg ggt Trp Gly	caa ggt Gln Gly	act atg	2753

145 150 155

gtc Val	acc Thr	gtc Val 160	tct Ser	agt Ser	gcc Ala	tcc Ser	acc Thr 165	aag Lys	ggc Gly	cca Pro	tcg Ser	gtc Val 170	ttc Phe	ccc Pro	ctg Leu	2801
gca Ala	ccc Pro 175	tcc Ser	tcc Ser	aag Lys	agc Ser	acc Thr 180	tct Ser	ggg Gly	ggc Gly	aca Thr	gcg Ala 185	gcc Ala	ctg Leu	ggc Gly	tgc Cys	2849
ctg Leu 190	gtc Val	aag Lys	gac Asp	tac Tyr	ttc Phe 195	ccc Pro	gaa Glu	ccg Pro	gtg Val	acg Thr 200	gtg Val	tcg Ser	tgg Trp	aac Asn	tca Ser 205	2897
ggc Gly	gcc Ala	ctg Leu	acc Thr	agc Ser 210	ggc Gly	gtc Val	cac His	acc Thr	ttc Phe 215	ccg Pro	gct Ala	gtc Val	cta Leu	cag Gln 220	tct Ser	2945
							agc Ser									2993
							tgc Cys 245								aac Asn	3041
acc Thr	aag Lys 255	gtg Val	gac Asp	aag Lys	aaa Lys	gtt Val 260	gag Glu	ccc Pro	aaa Lys	tct Ser	tgt Cys 265	gcg Ala	gcc Ala	gct Ala	cat His	3089
cac His 270	cac His	cat	cat His	cac His	tct Ser 275	gct Ala	gaa Glu	caa Gln	aaa Lys	ctc Leu 280	atc Ile	tca Ser	gaa Glu	gag Glu	gat Asp 285	3137
					Asp		aac Asn									3185
gaa Glu	act Thr	gtt Val	gaa Glu 305	agt Ser	tgt Cys	tta Leu	gca Ala	aaa Lys 310	ccc	cat His	aca Thr	gaa Glu	aat Asn 315	tca Ser	ttt Phe	3233
			Trp				aaa Lys 325	Thr							tat Tyr	3281
gag Glu	ggt Gly 335	tgt Cys	ctg Leu	tgg Trp	aat Asņ	gct Ala 340	aca Thr	ggc Gly	gtt Val	gta Val	gtt Val 345	Cys	act Thr	ggt Gly	gac Asp	3329
gaa Glu 350	act Thr	cag Gln	tgt Cys	tac Tyr	ggt Gly 355	Thr	tgg Trp	gtt Val	cct Pro	att Ile 360	Gly	ctt Leu	gct Ala	atc	cct Pro 365	3377
					Gly										ggt	3425

tct gag ggt ggc ggt act aaacctcctg agtacggtga tacacctatt 34 Ser Glu Gly Gly Thr 385	473
ccgggctata cttatatcaa ccctctcgac ggcacttatc cgcctggtac tgagcaaaac 35	533
cccgctaatc ctaatccttc tcttgaggag tctcagcctc ttaatacttt catgtttcag 35	593
aataataggt toogaaatag goagggggoa ttaactgttt ataogggoac tgttactoaa 30	653
ggcactgacc ccgttaaaac ttattaccag tacactcctg tatcatcaaa agccatgtat 3	713
gacgcttact ggaacggtaa attcagagac tgcgctttcc attctggctt taatgaagat 3	773
ccattcgttt gtgaatatca aggccaatcg tctgacctgc ctcaacctcc tgtcaatgct 3	833
ggcggcggct ctggtggtgg ttctggtggc ggctctgagg gtggtggctc tgagggtggc 3	893
ggttctgagg gtggcggctc tgagggaggc ggttccggtg gtggctctgg t tcc ggt 3 Ser Gly	950
gat ttt gat tat gaa aag atg gca aac gct aat aag ggg gct atg acc 3 Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr 390 395 400 405	998
gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc aaa ctt 4 Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu 410 415 420	1046
gat tot gtc gct act gat tac ggt gct gct atc gat ggt ttc att ggt 4 Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly 425 430 435	1094
gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt gat ttt gct 4 Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala 440 445 450	1142
ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat aat tca cct 4 Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro 455 460 465	1190
tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct caa tcg gtt 4 Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val 470 485	4238
gaa tgt cgc cct ttt gtc ttt agc gct ggt aaa cca tat gaa ttt tct 4 Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser 490 495 500	4286
att gat tgt gac aaa ata aac tta ttc cgt ggt gtc ttt gcg ttt ctt 4 Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu 505 510 515	4334
tta tat gtt gcc acc ttt atg tat gta ttt tct acg ttt gct aac ata Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile 520 525 530	4382
ctg cgt aat aag gag tct taatc atg cca gtt ctt ttg ggt att ccg tta 4	4432

Leu Arg Asn 535	Lys Glu Ser	Met Pro Val 540	Leu Leu Gly Ile Pro I 545	eų
tta ttg cgt Leu Leu Arg 550	ttc ctc ggt ttcc Phe Leu Gly	ttctgg taacttt	gtt cggctatctg	4480
cttacttttc t	taaaaaggg cttcgg	taag atagctatt	g ctatttcatt gtttcttg	ct 4540
cttattattg g	gcttaactc aattct	tgtg ggttatctc	t ctgatattag cgctcaat	ta 4600
ccctctgact t	tgttcaggg tgttca	gtta attctcccg	t ctaatgcgct tccctgtt	tt 4660
tatgttattc t	ctctgtaaa ggctgc	tatt ttcatttt	g acgttaaaca aaaaatc	tt 4720
tcttatttgg a	attgggataa ataat	atg gct gtt ta Met Ala Val Ty 555	at ttt gta act ggc aaa or Phe Val Thr Gly Lys 560	a 4772
tta ggc tct Leu Gly Ser 565	gga aag acg ctc Gly Lys Thr Leu 570	gtt agc gtt gg Val Ser Val Gl	yt aag att cag gat aad Ly Lys Ile Gln Asp Ly: 575	a 4820 s
att gta gct Ile Val Ala 580	ggg tgc aaa ata Gly Cys Lys Ile 585	Ala Thr Asn Le	tt gat tta agg ctt ca eu Asp Leu Arg Leu Gl 90 59	n.
aac ctc ccg Asn Leu Pro	caa gtc ggg agg Gln Val Gly Arg. 600	ttc gct aaa ac Phe Ala Lys Th 605	eg oot oge gtt ott ag nr Pro Arg Val Leu Ar 610	a 4916 g
ata ccg gat Ile Pro Asp	aag cct tct ata Lys Pro Ser Ile 615	tct gat ttg cf Ser Asp Leu Le 620	tt gct att ggg cgc gg eu Ala Ile Gly Arg Gl 625	t 4964 Y
aat gat tcc Asn Asp Ser 630	tac gat gaa aat Tyr Asp Glu Asn	aaa aac ggc t Lys Asn Gly L 635	tg ctt gtt ctc gat ga eu Leu Val Leu Asp Gl 640	g 5012 u
tgc ggt act Cys Gly Thr 645	tgg ttt aat acc Trp Phe Asn Thr 650	cgt tct tgg a Arg Ser Trp A	at gat aag gaa aga ca sn Asp Lys Glu Arg Gl 655	g 5060 n
ccg att att Pro Ile Ile 660	gat tgg ttt cta Asp Trp Phe Leu 665	His Ala Arg L	aa tta gga tgg gat at ys Leu Gly Trp Asp Il 70 67	e
att ttt ctt Ile Phe Leu	gtt cag gac tta Val Gln Asp Leu 680	tct att gtt g Ser Ile Val A 685	at aaa cag gcg cgt to sp Lys Gln Ala Arg Se 690	t 5156
gca tta gct Ala Leu Ala	gaa cat gtt gtt Glu His Val Val 695	tat tgt cgt c Tyr Cys Arg A 700	gt ctg gac aga att ac rg Leu Asp Arg Ile Th 705	t 5204 ir
tta cct ttt Leu Pro Phe 710	gtc ggt act tta Val Gly Thr Leu	tat tct ctt a Tyr Ser Leu I 715	tt act ggc tcg aaa at le Thr Gly Ser Lys Me 720	g 5252 et

cct ctg cct Pro Leu Pro 725			al Val Lys			5300
tta agc cct Leu Ser Pro 740	act gtt gag Thr Val Glu 745	cgt tgg c Arg Trp L	tt tat act eu Tyr Thr 750	ggt aag aat Gly Lys Asn	ttg tat Leu Tyr 755	5348
aac gca tat Asn Ala Tyr	gat act aaa Asp Thr Lys 760	cag gct t Gln Ala Pi	tt tct agt he Ser Ser 765	aat tat gat Asn Tyr Asp	tcc ggt Ser Gly 770	5396
gtt tat tct Val Tyr Ser		Pro Tyr L				5444
cca tta aat Pro Leu Asn 790					-	5492
aag ttt tct Lys Phe Ser 805						5540
aca tat agt Thr Tyr Ser 820				_		5588
tct cag acc Ser Gln Thr						5636
ctt aat cta Leu Asn Leu	agc tat cgc Ser Tyr Arg 855	Tyr Val P	tc aag gat Phe Lys Asp 860	tct aag gga Ser Lys Gly 865	aaa tta Lys Leu	5684
att aat agc Ile Asn Ser 870				tca ctc aca Ser Leu Thr 880		5732
gat tta tgt Asp Leu Cys 885	act gtt tcc Thr Val Ser	att aaa a Ile Lys L 890	aaa ggt aat Lys Gly Asn	tca aat gaa Ser Asn Glu 895	att gtt Ile Val	5780
aaa tgt aat Lys Cys Asn 900		ttcttgatgt	ttgtttcato	e atcttcttt		5829
gctcaggtaa	ttgaaatgaa t	aattcgcct	ctgcgcgatt	ttgtaacttg	gtattcaaag	5889
caatcaggcg a	aatccgttat t	gtttctccc	gatgtaaaag	gtactgttac	tgtatattca	5949
tctgacgtta a	aacctgaaaa t	ctacgcaat	ttctttattt	ctgttttacg	tgctaataat	6009
tttgatatgg	ttggttcaat t	ccttccata	att <u>cagaag</u> t	ataatccaaa	caatcaggat	6069
tatattgatg a	aattgccatc a	tctgataat	caggaatatg	atgataattc	cgctccttct	6129

ggtggtttct ttgttccgca aaatgataat gttactcaaa cttttaaaat taataacgtt 6189 cgggcaaagg atttaatacg agttgtcgaa ttgtttgtaa agtctaatac ttctaaatcc 6249 tcaaatgtat tatctattga cggctctaat ctattagttg tttctgcacc taaagatatt 6309 ttagataacc ttcctcaatt cctttctact gttgatttgc caactgacca gatattgatt 6369 gagggtttga tatttgaggt tcagcaaggt gatgctttag atttttcatt tgctgctggc 6429 tctcagcgtg gcactgttgc aggcggtgtt aatactgacc gcctcacctc tgttttatct 6489 totgotggtg gttcgttcgg tatttttaat ggcgatgttt tagggctatc agttcgcgca 6549 ttaaagacta atagccattc aaaaatattg tctgtgccac gtattcttac gctttcaggt 6609 cagaagggtt ctatctctgt tggccagaat gtccctttta ttactggtcg tgtgactggt 6669 gaatctgcca atgtaaataa tccatttcag acgattgagc gtcaaaatgt aggtatttcc 6729 atgagcgttt ttcctgttgc aatggctggc ggtaatattg ttctggatat taccagcaag 6789 gccgatagtt tgagttcttc tactcaggca agtgatgtta ttactaatca aagaagtatt 6849 gctacaacgg ttaatttgcg tgatggacag actcttttac tcggtggcct cactgattat 6909 aaaaacactt ctcaagattc tggcgtaccg ttcctgtcta aaatcccttt aatcggcctc 6969 ctgtttagct cccgctctga ttccaacgag gaaagcacgt tatacgtgct cgtcaaagca 7029 accatagtac gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag 7089 cgtgaccgct acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt 7149 totogocacg ttogocggot ttoccogtoa agototaaat cggggggotoc otttagggtt 7209 ccgatttagt gctttacggc acctcgaccc caaaaaactt gatttgggtg atggttcacg 7269 tagtgggcca tcgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt 7329 taatagtgga ctcttgttcc aaactggaac aacactcaac cctatctcgg gctattcttt 7389 tgatttataa gggattttgc cgatttcgga accaccatca aacaggattt tcgcctgctg 7449 gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg gccaggcggt gaagggcaat 7509 cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc tggatccaag cttgcaggtg 7569 gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt atttttctaa atacattcaa 7629 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 7689 agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 7749 ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 7809 gcgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 7869

gccccgaaga acgttttcca atgatgagca cttttaaagt tctgctatgt catacactat 7929 tatcccgtat tgacgccggg caagagcaac tcggtcgccg ggcgcggtat tctcagaatg 7989 acttggttga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 8049 aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 8109 cgatcggagg accgaaggag ctaaccgctt ttttgcacaa catgggggat catgtaactc 8169 gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 8229 cgatgcctgt agcaatgcca acaacgttgc gcaaactatt aactggcgaa ctacttactc 8289 tagetteceg geaacaatta atagactgga tggaggegga taaagttgca ggaccaette 8349 tgcgctcggc ccttccggct ggctggttta ttgctgataa atctggagcc ggtgagcgtg 8409 ggtctcgcgg tatcattgca gcactggggc cagatggtaa gccctcccgt atcgtagtta 8469 tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 8529 gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 8589 ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc 8649 tcatgaccaa aatcccttaa cgtgagtttt cgttccactg tacgtaagac ccccaagctt 8709 gtcgactgaa tggcgaatgg cgctttgcct ggtttccggc accagaagcg gtgccggaaa 8769 gctggctgga gtgcgatctt cctgaggccg atactgtcgt cgtcccctca aactggcaga 8829 tgcacggtta cgatgcgccc atctacacca acgtaaccta tcccattacg gtcaatccgc 8889 cgtttgttcc cacggagaat ccgacgggtt gttactcgct cacatttaat gttgatgaaa 8949 gctggctaca ggaaggccag acgcgaatta tttttgatgg cgttcctatt ggttaaaaaa 9009 tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt ttacaattta 9069 aatatttgct tatacaatct tcctgttttt ggggcttttc tgattatcaa ccggggtaca 9129 tatgattgac atgctagttt tacgattacc gttcatcgat tctcttgttt gctccagact 9189 ctcaggcaat gacctgatag cctttgtaga tctctcaaaa atagctaccc tctccggcat 9249 gaatttatca gctagaacgg ttgaatatca tattgatggt gatttgactg tctccggcct 9309 ttctcaccct tttgaatctt tacctacaca ttactcaggc attgcattta aaatatatga 9369 gggttctaaa aatttttatc cttgcgttga aataaaggct tctcccgcaa aagtattaca 9429 gggtcataat gtttttggta caaccgattt agctttatgc tctgaggctt tattgcttaa 9489 ttttgctaat tctttgcctt gcctgtatga tttattggat gtt 9532

Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly

Phe Thr Phe Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly

Lys Gly Leu Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Ser Thr

Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp

Thr Ala Val Tyr Tyr Cys Ala Lys Asp Tyr Glu Gly Thr Gly Tyr Ala 120

Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser

Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr

Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro

150

160

105

55

```
<210> 452
<211> 20
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3 peptide
      sequence
<400> 452
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
His Ser Ala Gln
<210> 453
<211> 367
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3 protein
      sequence
<400> 453
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala
Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly
```

100

115

165 170 175

Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val 180 185 190

His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser 195 200 205

Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile 210 215 220

Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val 225 230 235 240

Glu Pro Lys Ser Cys Ala Ala Ala His His His His His Ser Ala 245 250 255

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala Asp Ile 260 265 270

Asn Asp Asp Arg Met Ala Gly Ala Ala Glu Thr Val Glu Ser Cys Leu 275 280 285

Ala Lys Pro His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys Asp Asp 290 295 300

Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala 305 310 315 320

Thr Gly Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr 325 330 335

Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly Ser 340 345 350

Glu Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Thr 355 360 365

<210> 454

<211> 152

<212> PRT

<213> Unknown Organism

<220×

<223> Description of Unknown Organism: MALIA3 protein
sequence

<400> 454

Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala 1 5 10 15

Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly 20 25 30

Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe 35 40 45

Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp 50 55 60

Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn 65 70 75 80

Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln. 85 90 95

Ser Val Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu 100 105 110

Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala 115 120 125

Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 130 135 140

Asn Ile Leu Arg Asn Lys Glu Ser 145 150

<210> 455

<211> 15

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: MALIA3 peptide sequence

<400> 455

Met Pro Val Leu Leu Gly Ile Pro Leu Leu Leu Arg Phe Leu Gly
1 10 15

<210> 456

<211> 348

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: MALIA3 protein
sequence

<400> 456

Met Ala Val Tyr Phe Val Thr Gly Lys Leu Gly Ser Gly Lys Thr Leu
1 5 10 15

Val Ser Val Gly Lys Ile Gln Asp Lys Ile Val Ala Gly Cys Lys Ile 20 25 30

Ala Thr Asn Leu Asp Leu Arg Leu Gln Asn Leu Pro Gln Val Gly Arg
35 40 45

Phe Ala Lys Thr Pro Arg Val Leu Arg Ile Pro Asp Lys Pro Ser Ile 50 55 60

Ser Asp Leu Leu Ala Ile Gly Arg Gly Asn Asp Ser Tyr Asp Glu Asn 65 70 75 80

Lys Asn Gly Leu Leu Val Leu Asp Glu Cys Gly Thr Trp Phe Asn Thr 85 90 95

Arg Ser Trp Asn Asp Lys Glu Arg Gln Pro Ile Ile Asp Trp Phe Leu 100 105 110

His Ala Arg Lys Leu Gly Trp Asp Ile Ile Phe Leu Val Gln Asp Leu 115 . 120 . 125

Ser Ile Val Asp Lys Gln Ala Arg Ser Ala Leu Ala Glu His Val Val 130 135 140

Tyr Cys Arg Arg Leu Asp Arg Ile Thr Leu Pro Phe Val Gly Thr Leu 145 150 155 160

Tyr Ser Leu Ile Thr Gly Ser Lys Met Pro Leu Pro Lys Leu His Val 165 170 175

Gly Val Val Lys Tyr Gly Asp Ser Gln Leu Ser Pro Thr Val Glu Arg 180 185 190

Trp Leu Tyr Thr Gly Lys Asn Leu Tyr Asn Ala Tyr Asp Thr Lys Gln 195 200 205

Ala Phe Ser Ser Asn Tyr Asp Ser Gly Val Tyr Ser Tyr Leu Thr Pro 210 215 220

Tyr Leu Ser His Gly Arg Tyr Phe Lys Pro Leu Asn Leu Gly Gln Lys 225 230 235 ... 240

Met Lys Leu Thr Lys Ile Tyr Leu Lys Lys Phe Ser Arg Val Leu Cys 245 250 255

Leu Ala Ile Gly Phe Ala Ser Ala Phe Thr Tyr Ser Tyr Ile Thr Gln 260 265 270

Pro Lys Pro Glu Val Lys Lys Val Val Ser Gln Thr Tyr Asp Phe Asp 275 280 285

Lys Phe Thr Ile Asp Ser Ser Gln Arg Leu Asn Leu Ser Tyr Arg Tyr 290 295 300

Val Phe Lys Asp Ser Lys Gly Lys Leu Ile Asn Ser Asp Asp Leu Gln 305 310 315 320

Lys Gln Gly Tyr Ser Leu Thr Tyr Ile Asp Leu Cys Thr Val Ser Ile 325 330 335

Lys Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn 340 345

<210> 457

<211> 24

<212> DNA

```
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 457
                                                                   24
tggaagaggc acgttctttt cttt
<210> 458
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 458
                                                                   24
ctttctttg ttgccgttgg ggtg
<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 459
                                                                    24
acactetece etgitgaage tett
<210> 460
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 460
accgcctcca ccgggcgcgc cttattaaca ctctcccctg ttgaagctct t
                                                                    51
<210> 461
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 461
                                                                    23
 tgaacattct gtaggggcca ctg
```

<210> 462

```
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 462
                                                                   23
agagcattct gcaggggcca ctg
<210> 463
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 463
                                                                   50
accgcctcca ccgggcgcgc cttattatga acattctgta ggggccactg
<210> 464
<211> ·50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 464
                                                                   50
accgcctcca ccgggcgcgc cttattaaga gcattctgca ggggccactg
<210> 465
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 465
                                                                    23
cgactggagc acgaggacac tga
<210> 466
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 466
                                                                    26
ggacactgac atggactgaa ggagta
```

<210><211><211><212><213>	20		*		
<220> <223>	Description of Artificial Sequence oligonucleotide	uence:	Synthetic		
<400>	467 gatgg agactgggtc				20
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 33			T)	
<210> <211> <212>	20				
	Artificial Sequence				
<220> <223>	Description of Artificial Seq oligonucleotide	uence:	Synthetic		
<400>	468				
gggaag	gatgg agactgggtc				20
			•		
<210> <211>	•		•		,
<212>					
<213>	Artificial Sequence				
<220>	•				
	Description of Artificial Secoligonucleotide	uence:	Synthetic	• •	
<400>	469	-			
	agtgg agactgagtc	. *			20
	·				
2010	470				
<210><211>					
<212>					
<213>	Artificial Sequence				
-000					
<220>	Description of Artificial Sec	mence:	Synthetic		
	oligonucleotide	1			
<400>		•			20
gggtg	cctgg agactgcgtc				-0
•					
<210>	471				
<211>				•	
<212>	DNA				

<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		0.0
gggtgg	ctgg agactgcgtc	20
<210> <211>	50	
<212>	DNA Artificial Sequence	
<220>	Description of Artificial Sequence: Synthetic	
1220	oligonucleotide	
<400> gggagg	472 gatgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50
<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	٠.
<400>	473 gatgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50
yyyaa	gatyg agactyggte atotygatyt ettytydaet gegaedgagg	50
<210>	474	
<211>	50	*
<212> <213>	DNA Artificial Sequence	
<220>	Description of Autificial Companyon Synthetic	•
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
gggaga	agtgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50.
<210>		
<211><212>		
	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
gggtg	cctgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50

```
<210> 476
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 476
                                                                    50
gggtggctgg agactgggtc atctggatgt cttgtgcact gtgacagagg
<210> 477
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 477
                                                                    50
gggagtctgg agactgggtc atctggatgt cttgtgcact gtgacagagg
<210> 478
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 478
cctctgtcac agtgcacaag acatccagat gacccagtct cc
                                                                    42
<210> 479
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 479
                                                                    22
cctctgtcac agtgcacaag ac
<210> 480
<211> 24
<212> DNA
```

<213> Artificial Sequence

<220 <223		scri	ptic	n of	Art	ific	ial	Sequ	ence	: Pr	imer					
)> 48 tctc		:tgtt	gaag	c to	tt:			•			•				24
<211 <212)> 48 .> 66 !> DN !> Ho	8	sapie	ens .												
	> CI	os L)((668)													
agt)> 48 gca Ala	caa	gac Asp	atc Ile 5	cag Gln	atg Met	acc Thr	cag Gln	tct Ser 10	cca Pro	gcc Ala	acc Thr	ctg Leu	tct Ser 15	gtg Val	48
tct Ser	cca Pro	G] À āāā	gaa Glu 20	agg Arg	gcc Ala	acc Thr	ctc Leu	tcc Ser 25	tgc Cys	agg Arg	gcc Ala	agt Ser	cag Gln 30	agt Ser	gtt Val	96
agt Ser	aac Asn	aac Asn 35	tta Leu	gcc Ala	tgg Trp	tac Tyr	cag Gln 40	cag Gln	aaa Lys	cct Pro	ggc Gly	cag Gln 45	gtt Val	ccc Pro	agg Arg	144
ctc Leu	ctc Leu 50	atc Ile	tat Tyr	ggt Gly	gca Ala	tcc Ser 55	acc Thr	agg Arg	gcc Ala	act Thr	gat Asp 60	atc Ile	cca Pro	gcc Ala	agg Arg	192
ttc Phe 65	agt Ser	ggc Gly	agt Ser	ggg Gly	tct Ser 70	ggg Gly	aca Thr	gac Asp	ttc Phe	act Thr 75	ctc Leu	acc Thr	atc Ile	agc Ser	aga Arg 80	240
ctg Leu	gag Glu	cct Pro	gaa Glu	gat Asp 85	ttt Phe	gca Ala	gtg Val	tat Tyr	tac Tyr 90.	tgt Cys	cag Gln	cgg Arg	tat Tyr	ggt Gly 95	agc Ser	288
tca Ser	ccg Pro	ggg Gly	tgg Trp 100	acg Thr	ttc Phe	ggc	caa Gln	ggg Gly 105	acc Thr	aag Lys	gtg Val	gaa Glu	atc Ile 110	aaa Lys	cga Arg	336
									ttc Phe							384
ttg Leu	aaa Lys 130	tct Ser	gga Gly	act Thr	gcc Ala	tct Ser 135	gtt Val	gtg Val	tgc Cys	ctg Leu	ctg Leu 140	aat Asn	aac Asn	ttc Phe	tat	432
ccc Pro 145	aga Arg	gag Glu	gcc Ala	aaa Lys	gta Val 150	cag Gln	tgg Trp	aag Lys	gtg Val	gat Asp 155	aac Asn	gcc Ala	ctc Leu	caa Gln	tcg Ser 160	480
ggt	aac	tcc	cag	gag	agt	gtc	aca	gag	cag	gac	agc	aag	gac	agc	acc	528

Gly Asn	Ser Gln	Glu 165	Ser	Val	Thr	Glu	Gln 170	Asp	Ser	Lys	Asp	Ser 175	Thr	
tac agc Tyr Ser	ctc ago Leu Ser 180	Ser	acc Thr	ctg Leu	acg Thr	ctg Leu 185	agc Ser	aaa Lys	gca Ala	gac Asp	tac Tyr 190	gag Glu	aaa Lys	576
cac aaa His Lys	gtc tac Val Tyr 195	gcc	tgc Cys	gaa Glu	gtc Val 200	acc Thr	cat His	cag Gln	ggc Gly	ctg Leu 205	agc Ser	tcg Ser	cct Pro	624
gtc aca Val Thr 210														668
<210> 48 <211> 22 <212> PF <213> Ho	23 RT	.ens												
<400> 48 Ser Ala 1		o Ile 5	Gln	Met	Thr	Gln	Ser 10	Pro	Ala	Thr	Leu	Ser 15	Val	
Ser Pro	Gly Glu	-	Ala	Thr	Leu	Ser 25	Cys	Arg	Ala	Ser	Gln 30	Ser	Val	
Ser Asn	Asn Let 35	ı Ala	Trp	Tyr	Gln 40	Gln	Lys	Pro	Gly	Gln 45	Val	Pro	Arg	
Leu Leu 50	Ile Ty	Gly	Ala	Ser 55	Thr	Arg	Ala	Thr	Asp 60		Pro	Ala	Arg	
Phe Ser 65	Gly Se	Gly	Ser 70	Gly	Thr	Asp	Phe	Thr 75	Leu	Thr	Ile	Ser	Arg 80	
Leu Glu	Pro Gli	Asp 85	Phe	Àla	Val	Tyr	Tyr 90	Cys	Gln	Arg	Ţyr	Gly 95		
Ser Pro	Gly Tr		Phe	Gly	Gln	Gly 105	Thr	Lys	Val	Glu	Ile 110		Arg	
Thr Val	Ala Ala 115	a Pro	Ser	Val	Phe 120		Phe	Pro	Pro	Ser 125		Glu	Gln	. • •
Leu Lys	Ser Gl	y Thr	Ala	Ser 135	Val	Val	Cys	Leu	Leu 140		Asn	Phe	Tyr	
Pro Arg 145	Glu Ala	a Lys	Val 150	Gln	Trp	Lys	Val	Asp 155		Ala	Leu	Gln	Ser 160	
Gly Asn	Ser Gl	n Glu 165		Val	Thr	Glu	Gln 170	_	Ser	Lys	Asp	Ser 175		
Tyr Ser	Leu Se		Thr	Leu	Thr	Leu 185		Lys	Ala	Asp	Туг 190		Lys	

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 195 Val Thr Lys Ser Phe Asn Lys Gly Glu Cys Lys Gly Glu Phe Ala. 215 <210> 483 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 483 13 agccaccctg tct <210> 484 <211> 700 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(699) <400> 484 48 agt gca caa gac atc cag atg acc cag tet cet gcc acc etg tet gtg Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Val tet eca ggt gaa aga gee ace etc tee tge agg gee agt eag gtg tet 96 Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Val Ser 20 25 cca ggg gaa aga gcc acc ctc tcc tgc aat ctt ctc agc aac tta gcc 144 Pro Gly Glu Arg Ala Thr Leu Ser Cys Asn Leu Leu Ser Asn Leu Ala 40 tgg tac cag cag aaa cct ggc cag gct ccc agg ctc ctc atc tat ggt 192 Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly gct tcc acc ggg gcc att ggt atc cca gcc agg ttc agt ggc agt ggg 240 Ala Ser Thr Gly Ala Ile Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly 288 tot ggg aca gag tto act oto acc atc agc agc otg cag tot gaa gat Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp 85 90 ttt gca gtg tat ttc tgt cag cag tat ggt acc tca ccg ccc act ttc 336 Phe Ala Val Tyr Phe Cys Gln Gln Tyr Gly Thr Ser Pro Pro Thr Phe

105

110

ggc Gly	gga Gly	ggg Gly 115	acc Thr	aag Lys	gtg Val	gag Glu	atc Ile 120	aaa Lys	cga Arg	act Thr	gtg Val	gct Ala 125	gca Ala	cca Pro	tct Ser	384
gtc Val	ttc Phe 130	atc Ile	ttc Phe	ccg Pro	cca Pro	tct Ser 135	gat Asp	gag Glu	cag. Gln	ttg Leu	aaa Lys 140	tct Ser	gga Gly	act Thr	gcc Ala	432
tct Ser 145	gtt Val	gtg Val	tgc Cys	ccg Pro	ctg Leu 150	aat Asn	aac Asn	ttc Phe	tat Tyr	ccc Pro 155	aga Arg	gag Glu	gcc Ala	aaa Lys	gta Val 160	480
cag Gln	tgg Trp	aag Lys	gtg Val	gat Asp 165	aac Asn	gcc Ala	ctc Leu	caa Gln	tcg Ser 170	ggt Gly	aac Asn	tcc Ser	cag Gln	gag Glu 175	agt Ser	528
gtc Val	aca Thr	gag Glu	cag Gln 180	gac Asp	aac Asn	aag Lys	gac Asp	agc Ser 185	acc Thr	tac Tyr	agc Ser	ctc Leu	agc Ser 190	agc Ser	acc Thr	576
ctg Leu	acg Thr	ctg Leu 195	agc Ser	aaa Lys	gta Val	gac Asp	tac Tyr 200	gag Glu	aaa Lys	cac His	gaa Glu	gtc Val 205	tac Tyr	gcc Ala	tgc Cys	624
gaa Glu	gtc Val 210	acc Thr	cat His	cag Gln	ggc Gly	ctt Leu 215	agc Ser	tcg Ser	ccc Pro	gtc Val	acg Thr 220	aag Lys	agc Ser	ttc Phe	aac Asn	672
	gga Gly		_	_			_		t							700
<21:	0> 40 1> 2: 2> P1 3> Ho	33 R T	sapi	ens												
	0> 4		Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ala	Thr	Leu	Ser	Val	
. 1			_	5					10					15		
Ser	Pro	Gly	Glu 20		Ala	Thr	Leu	Ser 25	Cys	Arg	Ala	Ser	Gln 30		Ser	4
Pro	Gly	Glu 35	Arg	Ala	Thr	Leu	Ser 40	Cys	Asn	Leu	Leu	Ser 45	Asn	Leu	Ala	
Trp	Tyr 50	Gln	Gln	Lys	Pro	Gly 55	Gln	Ala	Pro	Arg	Leu 60		Ile	Tyr	Gly	
Ala 65	Ser	Thr	Gly	Ala	Ile 70	Gly	Ile	Pro	Ala	Arg 75		Ser	Gly	Ser	Gly 80	
Ser	Gly	Thr	Glu	Phe 85		Leu	Thr	Ile	Ser 90	Ser	Leu	Gln	Ser	Glu 95	Asp	
Phe	Ala	Val	Tyr	Phe	Cys	Gln	Gln	Tyr	Gly	Thr	Ser	Pro	Pro	Thr	Phe	

			100					105					110			
Gly	Gly	Gly 115	Thr	Lys	Val	Glu	Ile 120	Lys	Arg	Thr	Val	Ala 125	Ala	Pro	Ser	
Val	Phe 130	Ile	Phe	Pro	Pro	Ser 135	Asp	Glu	Gln	Leu	Lys 140	Ser	Gly	Thr	Ala	
Ser 145	Val	Val	Cys	Pro	Leu 150	Asn	Asn	Phe	Tyr.	Pro 155	Arg	Glu	Ala	Lys	Val 160	
Gln	Trp	Lys	Val	Asp 165	Asn	Ala	Leu	Gln	Ser 170	Gly	Asn	Ser	Gln	Glu 175	Ser	
Val	Thr	Glu	Gln 180	Asp	Asn	Lys	Asp	Ser 185	Thr	Tyr	Ser	Leu	Ser 190	Ser	Thr	
Leu	Thr	Leu 195	Ser	Lys	Val	Asp	Tyr 200	Glu	Lys	His	Glu	Val 205	Tyr	Ala	Cys	
Glu	Val 210	Thr	His	Gln	Gly	Leu 215	Ser	Ser	Pro	Val	Thr 220	Lys	Ser	Phe	Asn	
Arg 225	-	Glu	Cys	Lys	Lys 230	Glu	Phe	Val								
<21 <21 <22 <22 <22 <22	<pre><210> 486 <211> 419 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 3-23 VH nucleotide sequence <220> <221> CDS <222> (12)(419)</pre>															
	0> 4: tctg		Al										u Le		ġ tct u Ser	50
		ggt Gly										Leu				98
		gga Gly									Ser					140
		ggt Gly			Leu										Gly	19

		•							•							
ggc Gly	agt Ser	act Thr	tac Tyr 65	tat Tyr	gct Ala	gac Asp	tcc Ser	gtt Val 70	aaa Lys	ggt Gly	cgc Arg	ttc Phe	act Thr 75	atc Ile	tct Ser	242
aga Arg	gac Asp	aac Asn 80	tct Ser	aag Lys	aat Asn	act Thr	ctc Leu 85	tac Tyr	ttg Leu	cag Gln	atg Met	aac Asn 90	agc Ser	tta Leu	agg Arg	290
gct Ala	gag Glu 95	gac Asp	act Thr	gca Ala	gtc Val	tac Tyr 100	tat Tyr	tgc Cys	gct Ala	aaa Lys	gac Asp 105	tat Tyr	gaa Glu	ggt Gly	act Thr	338
ggt Gly 110	tat Tyr	gct Ala	ttc Phe	gac Asp	ata Ile 115	tgg Trp	ggt Gly	caa Gln	ggt Gly	act Thr 120	atg Met	gtc Val	acc Thr	gtc Val	tct . Ser 125	386
	gcc Ala															419
<21: <21: <21: <22:	0> 48 1> 1; 2> PI 3> A: 0> 3> De	36 RT rtif:			•		cial	Seq	uenc	e: S	ynth	etic	3-2	3		
		H pr					•							•		
			Ala	Met 5		Glu	Val	Gln	Leu 10		Glu	Ser	Gly	Gly 15	Gly	
Leu	Val	Gln	Pro 20		Gly	Ser	Leu	Arg 25		Ser	Cys	Ala	Ala 30		Gly	
Phe	Thr	Phe 35		Ser	Tyr	Ala	Met 40		Trp	Val	Arg	Gln 45		Pro	Gly	
Lys	Gly 50		Glu	Trp	Val	Ser 55		Ile	Ser	Gly	Ser 60		Gly	Ser	Thr	
Tyr 65		Ala	Asp	Ser	Val 70	Lys	Gly	Arg	Phe	Thr 75	Ile	Ser	Arg	l Yst	Asn 80	
Ser	Lys	Asn	Thr	Leu 85		Leu	Gln	Met	Asn 90		Leu	Arç	Ala	Glu 95	Asp	
Thr	Ala	Val	Tyr 100		Cys	Ala	Lys	105		Glu	Gly	Thr	Gl ₃		Ala	
Phe	Asp	Ile 115		Gly	Gln	Gly	Thr 120		. Val	Thr	· Val	Ser 125		Ala	s Ser	
Thr	Lys 130		Pro	Ser	Val	Phe 135		•							:	

```
<210> 488
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 488
                                                                   20
ctgtctgaac ggcccagccg
<210> 489
<211> 83
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 489
ctgtctgaac ggcccagccg gccatggccg aagttcaatt gttagagtct ggtggcggtc 60
ttgttcagcc tggtggttct tta
<210> 490
<211> 54
<212> DNA
<213> Artificial Sequence
<220> ·
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 490
gaaagtgaat ccggaagcag cgcaagaaag acgtaaagaa ccaccaggct gaac
                                                                    54
<210> 491
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 491
                                                                    42
agaaacccac tccaaacctt taccaggagc ttggcgaacc ca
<210> 492
<211> 94
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 492
agtgtcctca gcccttaagc tgttcatctg caagtagaga gtattcttag agttgtctct 60
agagatagtg aagcgacctt taacggagtc agca
<210> 493
<211> 81
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 493
gcttaagggc tgaggacact gcagtctact attgcgctaa agactatgaa ggtactggtt 60
atgctttcga catatggggt c
<210> 494
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 494
ggggaagacc gatgggccct tggtggaggc actagagacg gtgaccatag taccttgacc 60
tatgtcgaaa gc
<210> 495
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 495
                                                                    23
ggggaagacc gatgggccct tgg
<210> 496
<211> 56
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<220>
<221> modified_base
<222> (22)..(24)
<223> A, T, C, G, other or unknown
<220>
<221> modified_base
<222> (28)..(30)
<223> A, T, C, G, other or unknown
<220>
<221> modified_base
<222> (34)..(36)
<223> A, T, C, G, other or unknown
<223> nnn codes for any amino acid but Cys
<400> 496
gcttccggat tcactttctc tnnntacnnn atgnnntggg ttcgccaagc tcctgg
                                                                     56
<210> 497
<211> 68
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
\langle 222 \rangle (19)...(21)
<223> A, T, C or G
<220>
<221> modified_base
<222> (25)..(30)
<223> A, T, C or G
<220>
<221> modified_base
<222> (40)..(42)
<223> A, T, C or G
<220>
<221> modified_base
<222> (46)..(48)
<223> A, T, C or G
<400> 497
ggtttggagt gggtttctnn natcnnnnnn tctggtggcn nnactnnnta tgctgactcc 60
gttaaagg
```

<210> 498

```
<211> 912
<212> DNA
<213> Escherichia coli
<400> 498
teeggagett cagatetgtt tgeetttttg tggggtggtg cagategegt taeggagate 60
gaccgactgc ttgagcaaaa gccacgctta actgctgatc aggcatggga tgttattcgc 120
caaaccagtc gtcaggatct taacctgagg ctttttttac ctactctgca agcagcgaca 180
tctggtttga cacagagcga tccgcgtcgt cagttggtag aaacattaac acgttgggat 240
ggcatcaatt tgcttaatga tgatggtaaa acctggcagc agccaggctc tgccatcctg 300
aacgtttggc tgaccagtat gttgaagcgt accgtagtgg ctgccgtacc tatgccattt 360
gataagtggt acagcgccag tggctacgaa acaacccagg acggcccaac tggttcgctg 420
aatataagtg ttggagcaaa aattttgtat gaggcggtgc agggagacaa atcaccaatc 480
ccacaggegg ttgatetgtt tgetgggaaa ccacageagg aggttgtgtt ggetgegetg 540
gaagatacct gggagactct ttccaaacgc tatggcaata atgtgagtaa ctggaaaaca 600
cctgcaatgg ccttaacgtt ccgggcaaat aatttctttg gtgtaccgca ggccgcagcg 660
gaagaaacgc gtcatcaggc ggagtatcaa aaccgtggaa cagaaaacga tatgattgtt 720
ttctcaccaa cgacaagcga tcgtcctgtg cttgcctggg atgtggtcgc acccggtcag 780
agtgggttta ttgctcccga tggaacagtt gataagcact atgaagatca gctgaaaatg 840
tacgaaaatt ttggccgtaa gtcgctctgg ttaacgaagc aggatgtgga ggcgcataag 900
                                                                   912
gagtcgtcta ga
<210> 499
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 499
gatnnnnatc
                                                                   10
<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(15)
<223> A, T, C, G, other or unknown
<400> 500
nnnnnnnn nnnngtccc
```

```
<210> 501
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 501
                                                                    11
gcannnnntg c
<210> 502
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 502
                                                                    10
gacnnnngtc
<210> 503
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1) .. (7)
<223> A, T, C, G, other or unknown
<400> 503
                                                                     12
nnnnnngcg gg
<210> 504
<211> 12
```

<212> DNA

```
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 504
                                                                   12
gtatccnnnn nn
<210> 505
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 505
                                                                    12
gcannnnnnt cg
<210> 506
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 506
                                                                    11
gccnnnnngg c
<210> 507
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide

```
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 507
                                                                    11
ggtctcnnnn n
<210> 508
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(11)
<223> A, T, C, G, other or unknown
<400> 508
                                                                    11
gacnnnnngt c
<210> 509
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<40.0> 509
gacnnnnngt c
                                                                     11
<210> 510
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
```

```
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 510
                                                                    12
gacnnnnnng tc
<210> 511
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 511
                                                                    11
ccannnnntg g
<210> 512
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 512
                                                                    15
nnnnnnnng caggt
<210> .513
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 513
```

```
11
acctgcnnnn n
<210> 514
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 514
                                                                    13
ggccnnnnng gcc
<210> 515
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 515
                                                                    15
ccannnnnn nntgg
<210> 516
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 516
                                                                     11
cgtctcnnnn n
<210> 517
```

```
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 517
                                                                    12
nnnnnngaga cg
<210> 518
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 518
                                                                    16
nnnnnnnn ctcctc
<210> 519
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(16)
<223> A, T, C, G, other or unknown
<400> 519
                                                                    16
gaggagnnnn nnnnnn
<210> 520
<211> 11
<212> DNA
<213> Artificial Sequence
```

11

```
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 520
cctnnnnnag g
<210> 521
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 521
ccannnnnnt gg
<210> 522
<211> 6680
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Vector pCES5
      nucleotide sequence
<220>
<221> CDS
<222> (201)..(1058)
<220>
<221> CDS
<222> (2269)..(2682)
<220>
<221> CDS
<222> (2723)..(2866)
<220>
<221> CDS
<222> (3767)..(3850)
 <220>
 <221> CDS
```

<222> (4198)..(5799)

<400> 522 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atg agt att caa cat ttc cgt gtc gcc ctt att 233 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile ccc ttt ttt gcg gca ttt tgc ctt cct gtt ttt gct cac cca gaa acg 281 Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr 15 329 ctg gtg aaa gta aaa gat gct gaa gat cag ttg ggt gcc cga gtg ggt Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly 35 tac atc gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg 45 ccc gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta tgt 425 Pro Glu Glu Arg Phe Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys 473 ggc gcg gta tta tcc cgt att gac gcc ggg caa gag caa ctc ggt cgc Gly Ala Val Leu Ser Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg 521 cgc ata cac tat tct cag aat gac ttg gtt gag tac tca cca gtc aca Arg Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr 100 gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta tgc agt gct 569 Glu Lys His Leu Thr Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala 115 gcc ata acc atg agt gat aac act gcg gcc aac tta ctt ctg aca acg 617 Ala Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu Leu Thr Thr 130 665 atc gga gga ccg aag gag cta acc gct ttt ttg cac aac atg ggg gat Ile Gly Gly Pro Lys Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp 145 713 cat qta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc ata His Val Thr Arg Leu Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile 160 165 cca aac gac gag cgt gac acc acg atg cct gta gca atg gca aca acg 761 Pro Asn Asp Glu Arg Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr 185 175 ttg cgc aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa 809

Leu	Arg	Lys 190	Leu	Leu	Thr	Gly	Glu 195	Leu	Leu	Thr	Leu	Ala 200	Ser	Arg	Gln	
caa Gln	tta Leu 205	ata Ile	gac Asp	tgg Trp	atg Met	gag Glu 210	gcg Ala	gat Asp	aaa Lys	gtt Val	gca Ala 215	gga Gly	cca Pro	ctt Leu	ctg Leu	857
cgc Arg 220	tcg Ser	gcc Ala	ctt Leu	ccg Pro	gct Ala 225	ggc Gly	tgg Trp	ttt Phe	att Ile	gct Ala 230	gat Asp	aaa Lys	tct Ser	gga Gly	gcc Ala 235	905
ggt Gly	gag Glu	cgt Arg	G] À ggà	tct Ser 240	cgc Arg	ggt Gly	atc Ile	att Ile	gca Ala 245	gca Ala	ctg Leu	Gly	cca Pro	gat Asp 250	ggt Gly	953
aag Lys	ccc	tcc Ser	cgt Arg 255	atc Ile	gta Val	gtt Val	atc Ile	tac Tyr 260	acg Thr	acg Thr	Gly	agt Ser	cag Gln 265	Ala	act Thr	1001
atg Met	gat Asp	gaa Glu 270	Arg	aat Asn	aga Arg	cag Gln	atc Ile 275	Ala	gag Glu	ata Ile	ggt Gly	gcc Ala 280	Ser	ctg Leu	att Ile	1049
	cat His 285	Trp		ctgt	cag	acca	agtt	ta c	tcat	atat	a ct	ttag	attg			1098
att	taaa	act	tcat	tttt	aa t	ttaa	aagg	a tc	tagg	tgaa	gat	cctt	ttt	gata	atctca	1158
tga	ccaa	aat	ccct	taac	gt g	agtt	ttcg	t to	cact	gago	gto	agac	ccc	gtag	aaaaga	1218
tca	aagg	atc	ttct	tgag	at c	cttt	tttt	c tg	cgcg	taat	ctg	ctgo	ttg	caaa	.caaaaa	1278
aac	cacc	gct	acca	gcgg	tg g	tttg	tttg	c cg	gato	aaga	gct	acca	act	cttt	ttccga	1338
agg	taac	tgg	cttc	agca	ga g	cgca	gata	ıc ca	aata	ctgt	cct	tcta	igtg	tago	cgtagt	1398
taç	gcca	.cca	cttc	aaga	ac t	ctgt	agca	c cg	rccta	cata	cct	cgct	ctg	ctaa	tcctgt	1458
tac	cagt	ggc	tgct	gcca	igt g	gcga	taag	jt c <u>o</u>	tgto	ttac	c cg	gtto	ggac	tcaa	gacgat	1518
agt	tacc	gga	taag	gcgc	ag c	ggto	gggc	et ga	acgo	19999	tto	gtgo	cata	cago	ccagct	1578
tgg	gagcg	aac	gacc	taca	icc g	raact	gaga	at ac	ctac	agco	g tga	agcat	tga	gaaa	agcgcca	1638
cgc	ttcc	cga į	aggg	agaa	ag g	cgga	cago	gt at	ccgg	gtaac	g cg	gcag	ggtc	ggaa	acaggag	1698
ago	gcac	gag	ggag	ctto	ca ç	gggg	jaaac	eg ed	tggt	atct	t tta	atag	tcct	gtc	gggttto	: 1758
gco	cacct	ctg	actt	gago	gt c	gatt	tttg	gt ga	tgct	cgto	c ago	gggg	gcgg	agco	ctatgga	1818
aaa	acgo	cag	caac	gcgg	jcc t	tttt	acgo	gt to	cctg	gcctt	t tt	gctg	gcct	ttt	gctcaca	1878
tgt	tctt	tcc	tgcg	rttat	cc c	ctga	ttct	tg to	ggata	acco	g ta	ttac	cgcc	ttt	gagtgag	1938
cto	gatac	cgc	tcgc	ecgca	igc o	gaad	gaco	cg aq	gegea	agcga	a gt	cagt	gagc	gag	gaagcg	g 1998
aaq	gagco	ccc	aata	cgca	aaa d	ccgcc	ctct	cc c	egege	egtt	g gc	cgat	tcat	taa	tgcagc	2058

ggcacgacag gtttcccga	c tggaaagcgg gca	agtgagcg caacgcaa	tt aatgtgagtt 21	118
ageteactea ttaggeace	c caggetttae act	ttatgct tccggctc	gt atgttgtgtg 21	Ļ78
gaattgtgag cggataaca	a tttcacacag ga	aacagcta tgaccatg	at tacgccaage 22	238
tttggageet ttttttgg	a gattttcaac gto Me	g aaa aaa tta tta t Lys Lys Leu Leu 290	ttc gca att 22 Phe Ala Ile	292
cct tta gtt gtt cct Pro Leu Val Val Pro 295	ttc tat tct cac Phe Tyr Ser His 300	agt gca cag gtc Ser Ala Gln Val 305	caa ctg cag 23 Gln Leu Gln 310	340
gtc gac ctc gag atc Val Asp Leu Glu Ile 315	aaa cgt gga act Lys Arg Gly Thr	gtg gct gca cca Val Ala Ala Pro 320	tct gtc ttc 23 Ser Val Phe 325	388
atc ttc ccg cca tct Ile Phe Pro Pro Ser 330	gat gag cag ttg Asp Glu Gln Leu 335	aaa tct gga act Lys Ser Gly Thr	gcc tct gtt 2 Ala Ser Val 340	436
gtg tgc ctg ctg aat Val Cys Leu Leu Asn 345	aac ttc tat ccc Asn Phe Tyr Pro 350	aga gag gcc aaa Arg Glu Ala Lys 355	gta cag tgg 2 Val Gln Trp	484
aag gtg gat aac gcc Lys Val Asp Asn Ala 360	ctc caa tcg ggt Leu Gln Ser Gly 365	aac tcc cag gag Asn Ser Gln Glu 370	agt gtc aca 2 Ser Val Thr	532
gag cag gac agc aag Glu Gln Asp Ser Lys 375	gac agc acc tac Asp Ser Thr Tyr 380	agc ctc agc agc Ser Leu Ser Ser 385	acc ctg acg 2 Thr Leu Thr 390	580
ctg agc aaa gca gac Leu Ser Lys Ala Asp 395	tac gag aaa cac Tyr Glu Lys His	aaa gtc tac gcc Lys Val Tyr Ala 400	tgc gaa gtc 2 Cys Glu Val 405	628
acc cat cag ggc ctg Thr His Gln Gly Leu 410	agt tca ccg gtg Ser Ser Pro Val 415	. Thr Lys Ser Phe		:676
gag tgt taataaggcg o Glu Cys	egecaattet attte	aagga gacagtcata	atg aaa tac 2 Met Lys Tyr 425	2731
cta ttg cct acg gca Leu Leu Pro Thr Ala 430	gcc gct gga tto Ala Ala Gly Lev 435	g tta tta ctc gcg 1 Leu Leu Leu Ala 440	gcc cag ccg 2 Ala Gln Pro	2779
gcc atg gcc gaa gtt Ala Met Ala Glu Val 445	caa ttg tta gad Gln Leu Leu Glu 450	g tot ggt ggc ggt 1 Ser Gly Gly Gly 455		2827
cct ggt ggt tct tta Pro Gly Gly Ser Leu 460	cgt ctt tct tgc Arg Leu Ser Cys 465	e get get tee gga s Ala Ala S r Gly 470	2	2876

tgtttgcctt tttgtggggt ggtgcagatc gcgttacgga gatcgaccga ctgcttgagc 2936	
aaaagccacg cttaactgct gatcaggcat gggatgttat tcgccaaacc agtcgtcagg 2996	
atcttaacct gaggettttt ttacctacte tgcaagcage gacatetggt ttgacacaga 3056	
gcgatccgcg tcgtcagttg gtagaaacat taacacgttg ggatggcatc aatttgctta 3116	
atgatgatgg taaaacctgg cagcagccag gctctgccat cctgaacgtt tggctgacca 3176	
gtatgttgaa gcgtaccgta gtggctgccg tacctatgcc atttgataag tggtacagcg 3236	
ccagtggcta cgaaacaacc caggacggcc caactggttc gctgaatata agtgttggag 3296	
caaaaatttt gtatgaggcg gtgcagggag acaaatcacc aatcccacag gcggttgatc 3356	
tgtttgctgg gaaaccacag caggaggttg tgttggctgc gctggaagat acctgggaga 3416	
ctctttccaa acgctatggc aataatgtga gtaactggaa aacacctgca atggccttaa 3476	
cgttccgggc aaataatttc tttggtgtac cgcaggccgc agcggaagaa acgcgtcatc 3536	
aggcggagta tcaaaaccgt ggaacagaaa acgatatgat tgttttctca ccaacgacaa 3596	
gcgatcgtcc tgtgcttgcc tgggatgtgg tcgcacccgg tcagagtggg tttattgctc 3656	
ccgatggaac agttgataag cactatgaag atcagctgaa aatgtacgaa aattttggcc 3716	
gtaagtcgct ctggttaacg aagcaggatg tggaggcgca taaggagtcg tct aga 3772 Ser Arg	
gac aac tct aag aat act ctc tac ttg cag atg aac agc tta agt ctg 3820 Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Ser Leu 475 480 485 490	
agc att cgg tcc ggg caa cat tct cca aac tgaccagacg acacaaacgg 3870 Ser Ile Arg Ser Gly Gln His Ser Pro Asn 495 500	
cttacgctaa atcccgcgca tgggatggta aagaggtggc gtctttgctg gcctggactc 3930	
atcagatgaa ggccaaaaat tggcaggagt ggacacagca ggcagcgaaa caagcactga 3990	
ccatcaactg gtactatgct gatgtaaacg gcaatattgg ttatgttcat actggtgctt 4050	
atccagatcg tcaatcaggc catgatccgc gattacccgt tcctggtacg ggaaaatggg 4110	
actggaaagg gctattgcct tttgaaatga accctaaggt gtataacccc cagaagctag 4170	
cctgcggctt cggtcaccgt ctcaage gcc tcc acc aag ggc cca tcg gtc ttc 4224 Ala Ser Thr Lys Gly Pro Ser Val Phe 505	
ccc ctg gca ccc tcc tcc aag agc acc tct ggg ggc aca gcg gcc ctg Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 510 525 525	

ggc Gly	tgc Cys	ctg Leu	gtc Val	aag Lys 530	gac Asp	tac Tyr	ttc Pḥe	ccc Pro	gaa Glu 535	ccg Pro	gtg Val	acg Thr	gtg Val	tcg Ser 540	tgg Trp	4320
aac Asn	tca Ser	ggc Gly	gcc Ala 545	ctg Leu	acc Thr	agc Ser	ggc Gly	gtc Val 550	cac His	acc Thr	ttc Phe	ccg Pro	gct Ala 555	gtc Val	cta Leu	4368
cag Gln	tcc Ser	tca Ser 560	gga Gly	ctc Leu	tac Tyr	tcc Ser	ctc Leu 565	agc Ser	agc Ser	gta Val	gtg Val	acc Thr 570	gtg Val	ccc Pro	tcc Ser	4416
agc Ser	agc Ser 575	ttg Leu	ggc Gly	acc Thr	cag Gln	acc Thr 580	tac Tyr	atc Ile	tgc Cys	aac Asn	gtg Val 585	aat Asn	cac His	aag Lys	ccc Pro	4464
agc Ser 590	aac Asn	acc Thr	aag Lys	gtg Val	gac Asp 595	Lys	aaa Lys	gtt Val	gag Glu	ccc Pro 600	aaa Lys	tct Ser	tgt Cys	gcg Ala	gcc Ala 605	4512
gca Ala	cat His	cat His	cat His	cac His 610	cat His	cac His	Gly	gcc Ala	gca Ala 615	gaa Glu	caa Gln	aaa Lys	ctc Leu	atc Ile 620	tca Ser	4560
gaa Glu	gag Glu	gat Asp	ctg Leu 625	aat Asn	Gly	gçc Ala	gca Ala	tag	act Thr 630	gtt Val	gaa Glu	agt Ser	tgt Cys	tta Leu 635	gca Ala	4608
aaa Lys	cct Pro	cat His	aca Thr 640	Glu	aat Asn	tca Ser	ttt Phe	act Thr 645	aac Asn	gtc Val	tgg Trp	aaa Lys	gac Asp 650	gac Asp	aaa Lys	4656
act Thr	tta Leu	gat Asp 655	Arg	tac Tyr	gct Ala	aac Asn	tat Tyr 660	Glu	ggc	tgt Cys	ctg Leu	tgg Trp 665	aat Asn	gct Ala	aca Thr	4704
ggc Gly	gtt Val 670	Val	gtt Val	tgt Cys	act Thr	ggt Gly 675	Asp	gaa Glu	act Thr	cag Gln	tgt Cys 680	Tyr	ggt Gly	aca Thr	tgg Trp	4752
gtt Val 685	Pro	att	ggg Gly	ctt Leu	gct Ala 690	Ile	cct	gaa Glu	aat Asn	gag Glu 695	Gly	ggt Gly	ggc	Ser	gag Glu 700	4800
ggt Gly	ggc	ggt	tct Ser	gag Glu 705	Gly	ggc Gly	ggt	tct Ser	gag Glu 710	Gly	ggc Gly	ggt Gly	act Thr	Lys 715	cct Pro	4848
cct Pro	gag Glu	tac Tyr	ggt Gly 720	Asp	aca Thr	cct Pro	att Ile	ccg Pro 725	Gly	tat Tyr	act Thr	tat Tyr	ato 11e 730	Asr	cct Pro	4896
ctc Leu	gac Asp	ggc Gly 735	Thr	tat Tyr	ccg Pro	cct Pro	ggt Gly 740	Thr	gag Glu	Glr	a aad n Asr	745	Ala	: aat i Asr	cct Pro	4944
aat Asn	cct Pro	tct Ser	ctt Lev	gaç Glu	g gag ı Glu	tct Ser	caç Glr	cct Pro	ctt Lev	aat Asr	act Thi	t tto r Phe	ato Met	ttt Phe	cag e Gln	4992

750 755 760

										•						
	aat Asn															5040
act Thr	gtt Val	act Thr	caa Gln	ggc Gly 785	act Thr	gac Asp	ccc Pro	gtt Val	aaa Lys 790	act Thr	tat Tyr	tac Tyr	cag Gln	tac Tyr 795	act Thr	5088
	gta Val														ttc Phe	5136
	gac Asp															5184
	tat Tyr 830															5232
	ggc Gly															5280
tct Ser	gag Glu	ggt Gly	ggc Gly	ggt Gly 865	tct Ser	gag Glu	ggt Gly	ggc Gly	ggc Gly 870	tct Ser	gag Glu	ggt Gly	ggc Gly	ggt Gly 875	tcc Ser	5328
	ggc Gly															5376
gct Ala	aat Asn	aag Lys 895	Gly	gct Ala	atg Met	acc Thr	gaa Glu 900	aat Asn	gcc Ala	gat Asp	gaa Glu	aac Asn 905	gcg Ala	cta Leu	cag Gln	5424
tct Ser	gac Asp 910	gct Ala	aaa Lys	ggc Gly	aaa Lys	ctt Leu 915	gat Asp	tct Ser	gtc Val	gct Ala	act Thr 920	gat Asp	tac Tyr	ggt Gly	gct Ala	5472
gct Ala 925	atc Ile	gat Asp	ggt Gly	ttc Phe	att Ile 930	ggt Gly	gac Asp	gtt Val	tcc Ser	ggc Gly 935	ctt Leu	gct Ala	aat Asn	ggt Gly	aat Asn 940	5520
ggt Gly	gct Ala	act Thr	ggt Gly	gat Asp 945	ttt Phe	gct Ala	ggc Gly	tct Ser	aat Asn 950	tcc Ser	caa Gln	atg Met	gct Ala	caa Gln 955	gtc Val	5568
ggt Gly	gac Asp	ggt Gly	gat Asp 960	aat Asn	tca Ser	cct Pro	tta Leu	atg Met 965	aat Asn	aat Asn	ttc	cgt Arg	caa Gln 970	tat Tyr	tta Leu	5616
cct Pro	tct Ser	ttg Leu 975	cct Pro	cag Gln	tcg Ser	gtt Val	gaa Glu 980	tgt Cys	cgc Arg	cct Pro	tat Tyr	gtc Val 985	ttt Phe	ggc Gly	gct Ala	5664

ggt aaa cca tat gaa ttt tct att gat tgt gac aaa ata aac tta ttc Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe 990 995 1000	5712
cgt ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val 1005 1010 1015 1020	5760
ttt tcg acg ttt gct aac ata ctg cgt aat aag gag tct taataagaat Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 1025 1030	5809
tcactggccg tcgttttaca acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat	5869
cgccttgcag cacatccccc tttcgccage tggcgtaata gcgaagagge ccgcaccgat	5929
cgcccttccc aacagttgcg cagcctgaat ggcgaatggc gcctgatgcg gtatttctc	5989
cttacgcatc tgtgcggtat ttcacaccgc atataaattg taaacgttaa tattttgtta	6049
aaattcgcgt taaatttttg ttaaatcagc tcatttttta accaataggc cgaaatcggc	6109
aaaatccctt ataaatcaaa agaatagccc gagatagggt tgagtgttgt tccagtttgg	6169
aacaagagtc cactattaaa gaacgtggac tccaacgtca aagggcgaaa aaccgtctat	6229
cagggcgatg gcccactacg tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc	6289
cgtaaagcac taaatcggaa ccctaaaggg agcccccgat ttagagcttg acggggaaag	6349
ccggcgaacg tggcgagaaa ggaagggaag aaagcgaaag gagcgggcgc tagggcgctg	6409
gcaagtgtag cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa tgcgccgcta	6469
cagggcgcgt actatggttg ctttgacggg tgcagtctca gtacaatctg ctctgatgcc	6529
gcatagttaa gccagccccg acacccgcca acacccgctg acgcgccctg acgggcttgt	6589
ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag	6649
aggttttcac cgtcatcacc gaaacgcgcg a	6680

<210> 523

<220>

<223> Description of Artificial Sequence: Vector pCES5
 protein sequence

<400> 523

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

<211> 286

<212> PRT

<213> Artificial Sequence

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175

Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220

Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240

Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255

Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270

Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 275 280 285

<210> 524

<211> 138

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5 protein sequence

<400> .524

Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser

1 5 10 15

His Ser Ala Gln Val Gln Leu Gln Val Asp Leu Glu Ile Lys Arg Gly 20 25 30

Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 35 40 45

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 50 55 60

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 65 70 75 80

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 85 90 95

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 100 105 110

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 115 120 125

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 130 135

<210> 525

<211> 48

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5
protein sequence

<400> 525

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly 20 25 30

Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly 35 40 45

<210> 526

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5

protein sequence

<400> 526
Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu
1 5 10 15

Ser Leu Ser Ile Arg Ser Gly Gln His Ser Pro Asn 20 25

<210> 527

<211> 533

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5 protein sequence

<400> 527

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys

1 5 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
65 70 75 80

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His His His His His His 100 105 110

Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala 115 120 125

Ala Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe 130 135 140

Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr 145 150 155 160

Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys Thr Gly Asp 165 170 175

Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro 180 185 190

Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly 195 200 205

- Ser Glu Gly Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp Thr Pro Ile 210 215 220
- Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr Pro Pro Gly 225 230 235 240
- Thr Glu Gln Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu Glu Ser Gln 245 250 255
- Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg Asn Arg Gln 260 265 270
- Gly Ala Leu Thr Val Tyr Thr Gly Thr Val Thr Gln Gly Thr Asp Pro 275 280 285
- Val Lys Thr Tyr Tyr Gln Tyr Thr Pro Val Ser Ser Lys Ala Met Tyr 290 295 300
- Asp Ala Tyr Trp Asn Gly Lys Phe Arg Asp Cys Ala Phe His Ser Gly 305 310 315 320
- Phe Asn Glu Asp Pro Phe Val Cys Glu Tyr Gln Gly Gln Ser Ser Asp 325 330 335
- Leu Pro Gln Pro Pro Val Asn Ala Gly Gly Gly Ser Gly Gly Gly Ser 340 345 350
- Gly Gly Gly Ser Glu Gly Gly Ser Glu Gly Gly Ser Glu Gly 355 360 365
- Gly Gly Ser Glu Gly Gly Gly Ser Gly Gly Ser Gly Asp 370 375 380
- Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu 385 390 395 400
- Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp 405 410 415
- Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp 420 425 430
- Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly 435 440 445
- Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu 450 455 460
- Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu 465 470 475 480
- Cys Arg Pro Tyr Val Phe Gly Ala Gly Lys Pro Tyr Glu Phe Ser Ile 485 490 495
- Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu 500 505 510

```
Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu
                            520
        515
Arg Asn Lys Glu Ser
    530
<210> 528
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 528
                                                                    30
acctcactgg cttccggatt cactttctct
<210> 529
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 529
agaaacccac tccaaacctt taccaggagc ttggcgaacc ca
                                                                    42
<210> 530
<211> 51
<212> DNA
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
                                                                    51
 ggaaggcagt gatctagaga tagtgaagcg acctttaacg gagtcagcat a
 <210> 531
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <400> 531
                                                                     23
 ggaaggcagt gatctagaga tag
```

<210> <211> <212>	20 DNA			
<213>	Artificial Sequence			
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic		
<400> gtgcto	532 gacte agecacecte			20
<210><211><211><212><213>	20			
<220> <223>	Description of Artificial Sequence: Syntheoligonucleotide	etic		
<400> gccctq	533 gactc agcctgcctc			20
<210> <211> <212> <213>	20			
<220> <223>	Description of Artificial Sequence: Synth oligonucleotide	etic		· ·
<400> gagct	> 534 cgactc aggaccetge		•	20
<210><211><211><212><213>	→ 20			
<220> <223>	Description of Artificial Sequence: Synth oligonucleotide	etic		
<400> gaġct	> 535 Egacto agocaccoto			20

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 536 cctcgacagc gaagtgcaca gagcgtcttg actcagcc	38
<210> 537 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 537 cctcgacagc gaagtgcaca gagcgtcttg	30
<210> 538 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 538 cctcgacagc gaagtgcaca gagcgctttg actcagcc	38
<210> 539 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 539 cctcgacagc gaagtgcaca gagcgctttg	30
<210> 540 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	ώ· •
<400> 540 cctcgacage taagtgcaca gagegetttg acteagee	38

```
<210> 541
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    · oligonucleotide
<400> 541
                                                                    30
cctcgacagc gaagtgcaca gagcgctttg
<210> 542
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 542
                                                                    38
cctcgacagc gaagtgcaca gagcgaattg actcagcc
<210> 543
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 543
                                                                    30
cctcgacagc gaagtgcaca gagcgaattg
<210> 544
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
                                                                    38
cctcgacagc gaagtgcaca gtacgaattg actcagcc
<210> 545
<211> 30
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
	cage gaagtgcaca gtacgaattg	30
.010	5.46	
<210> <211>	21	
<212> <213>	DNA Artificial Sequence	
<220>		
<22 <u>3</u> >	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		21
cctcga	acage gaagtgeaca g	21
<210>		1
<211> <212>		
<213>	Artificial Sequence	
<220>	Description of Artificial Sequence: Synthetic	
<223>	oligonucleotide	
<400>	•	
ccgtg	tatta ctgtgcgaga g	21
<210>	548	
<211> <212>		
	Artificial Sequence	
<220>	Santa Complete	
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	548	
ctgtg	tatta ctgtgcgaga g	21
<210>	549	
<211>	21	
<212> <213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	549	

ccgtatatta ctgtgcgaaa g	21
<210> 550 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 550 ctgtgtatta ctgtgcgaaa g	21
<210> 551 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 551 ctgtgtatta ctgtgcgaga c	21
<210> 552 <211> 21 <212> DNA <213> Artificial Sequence	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	2
<400> 552 ccatgtatta ctgtgcgaga c	21
<210> 553 <211> 94 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetioligonucleotide	c
<400> 553 ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcag ggctgaggac actgcagtct actattgtgc gaga	atga acagctttag 60 94
<210> 554 <211> 94	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 554
ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag 60
ggctgaggac actgcagtct actattgtgc gaaa
<210> 555
<211> 85
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 555
atagtagact gcagtgtcct cagcccttaa gctgttcatc tgcaagtaga gagtattctt 60
agagttgtct ctagatcact acacc
<210> 556
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 556
                                                                    20
gactgggtgt agtgatctag
<210> 557
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 557
                                                                    24
cttttctttg ttgccgttgg ggtg
<210> 558
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
```

```
<220>
<221> modified_base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 558
                                                                   15
nnnnnnnng caggt
<210> 559
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 559
                                                                   11
acctgcnnnn n
<210> 560
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
 <400> 560
                                                                    10
gatnnnnatc
<210> 561
<211> 16
 <212> DNA
 <213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
 <221> modified base
<222> (7)..(16)
```

```
<223> A, T, C, G, other or unknown
<400> 561
                                                                    16
gaggagnnnn nnnnnn
<210> 562
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 562
                                                                    16
nnnnnnnnn ctcctc
<210> 563
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(10)
<223> A, T, C, G, other or unknown
<400> 563
                                                                     10
ctcttcnnnn
<210> 564
<211> . 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(5)
<223> A, T, C, G, other or unknown
<400> 564
                                                                     11
nnnnngaaga g
```

```
<210> 565
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(15)
<223> A, T, C, G, other or unknown
<400> 565
                                                                    20
nnnnnnnnn nnnngtccc
<210> 566
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 566
                                                                     12
 gacnnnnnng tc
 <210> 567
 <211> 11
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (7)..(11)
 <223> A, T, C, G, other or unknown
 <400> 567
                                                                     11
 cgtctcnnnn n
 <210> 568
```

<211> 12

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 568
                                                                   12
gtatccnnnn nn
<210> 569
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
 <400> 569
                                                                    12
 gcannnnnnt cg
 <210> 570
 <211> 11
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified base
 <222> (4)..(8)
 <223> A, T, C, G, other or unknown
 <400> 570
                                                                     11
 gccnnnnngg c
 <210> 571
 <211> 11
 <212> DNA
 <213> Artificial Sequence
 <220>
```

```
<223> Description of Artificial Sequence: Synthetic
   oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 571
                                                                   11
ggtctcnnnn n
<210> 572
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 572
                                                                    11
gacnnnnngt c
<210> 573
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 573
                                                                    11
gacnnnnngt c
<210> 574
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
```

```
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 574
                                                                   11
ccannnnntg g
<210> 575
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 575
                                                                    15
ccannnnnn nntgg
<210> 576
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 576
                                                                    13
ggccnnnnng gcc
<210> 577
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4)..(9)
 <223> A, T, C, G, other or unknown
```

```
<400> 577
                                                                    12
ccannnnnnt gg
<210> 578
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 578
                                                                    11
cctnnnnnag g
<210> 579
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4) .. (7)
<223> A, T, C, G, other or unknown
<400> 579
                                                                     10
gacnnnngtc
<210> 580
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 580
                                                                     15
ccannnnnn nntgg
```

```
<210> 581
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 581
                                                                    11
gcannnnntg c
<210> 582
<211> 10251
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CJRA05
      nucleotide sequence
<220>
<221> CDS
<222> (1578)..(1916)
<220>
<221> CDS
<222> (2388)..(2843)
<220>
<221> CDS
<222> (2849)..(2893)
<220>
<221> CDS
<222> (3189)..(4232)
<220>
<221> CDS
<222> (7418)..(8119)
<220>
<221> CDS
<222> (8160)..(9452)
<400> 582
aatgctacta ctattagtag aattgatgcc accttttcag ctcgcgcccc aaatgaaaat 60
atagctaaac aggttattga ccatttgcga aatgtatcta atggtcaaac taaatctact 120
cgttcgcaga attgggaatc aactgttata tggaatgaaa cttccagaca ccgtacttta 180
```

gttgcatatt taaaacatgt tgagctacag cattatattc agcaattaag ctctaagcca 240 tecgcaaaaa tgacetetta teaaaaggag caattaaagg taetetetaa teetgaeetg 300 ttggagtttg cttccggtct ggttcgcttt gaagctcgaa ttaaaacgcg atatttgaag 360 tettteggge tteetettaa tetttttgat geaateeget ttgettetga etataatagt 420 cagggtaaag acctgatttt tgatttatgg tcattctcgt tttctgaact gtttaaagca 480 tttgaggggg attcaatgaa tatttatgac gattccgcag tattggacgc tatccagtct 540 aaacatttta ctattacccc ctctggcaaa acttcttttg caaaagcctc tcgctatttt 600 ggtttttatc gtcgtctggt aaacgagggt tatgatagtg ttgctcttac tatgcctcgt 660 aattcctttt ggcgttatgt atctgcatta gttgaatgtg gtattcctaa atctcaactg 720 atgaatcttt ctacctgtaa taatgttgtt ccgttagttc gttttattaa cgtagatttt 780 tottoccaac gtoctgactg gtataatgag coagttotta aaatcgcata aggtaattca 840 caatgattaa agttgaaatt aaaccatctc aagcccaatt tactactcgt tctggtgttt 900 ctcgtcaggg caagccttat tcactgaatg agcagctttg ttacgttgat ttgggtaatg 960 aatatccggt tcttgtcaag attactcttg atgaaggtca gccagcctat gcgcctggtc 1020 tgtacaccgt tcatctgtcc tctttcaaag ttggtcagtt cggttccctt atgattgacc 1080 gtctgcgcct cgttccggct aagtaacatg gagcaggtcg cggatttcga cacaatttat 1140 caggogatga tacaaatoto ogttgtactt tgtttcgcgc ttggtataat cgctgggggt 1200 caaagatgag tgttttagtg tattcttttg cctctttcgt tttaggttgg tgccttcgta 1260 gtggcattac gtattttacc cgtttaatgg aaacttcctc atgaaaaagt ctttagtcct 1320 caaagcctct gtagccgttg ctaccctcgt tccgatgctg tctttcgctg ctgagggtga 1380 cgatcccgca aaagcggcct ttaactccct gcaagcctca gcgaccgaat atatcggtta 1440 tgcgtgggcg atggttgttg tcattgtcgg cgcaactatc ggtatcaagc tgtttaagaa 1500 attcacctcg aaagcaagct gataaaccga tacaattaaa ggctcctttt ggagcctttt 1560 ttttggagat tttcaac gtg aaa aaa tta tta ttc gca att cct tta gtt 1610 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val 1658 gtt cct ttc tat tct ggc gcg gcc gaa tca cat cta gac ggc gcc gct Val Pro Phe Tyr Ser Gly Ala Ala Glu Ser His Leu Asp Gly Ala Ala gaa act gtt gaa agt tgt tta gca aaa tcc cat aca gaa aat tca ttt 1706 Glu Thr Val Glu Ser Cys Leu Ala Lys Ser His Thr Glu Asn Ser Phe 35

30

act aac gtc tgg aaa gac gac aaa act tta gat cgt tac gct aac tat Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr 45 50 55	1754
gag ggc tgt ctg tgg aat gct aca ggc gtt gta gtt tgt act ggt gac Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys Thr Gly Asp 60 65 70 75	1802
gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt gct atc cct Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro 80 85 90	1850
gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct gag ggt ggc ggt Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly 95 100 105	1898
tct gag ggt ggc ggt act aaacctcctg agtacggtga tacacctatt Ser Glu Gly Gly Thr 110	1946
ccgggctata cttatatcaa ccctctcgac ggcacttatc cgcctggtac tgagcaaaaa	2006
cccgctaatc ctaatccttc tcttgaggag tctcagcctc ttaatacttt catgtttca	2066
aataataggt toogaaatag goagggggoa ttaactgttt ataogggoac tgttactoa	2126
ggcactgacc ccgttaaaac ttattaccag tacactcctg tatcatcaaa agccatgta	2186
gacgcttact ggaacggtaa attcagagac tgcgctttcc attctggctt taatgagga	2246
ttatttgttt gtgaatatca aggccaatcg tctgacctgc ctcaacctcc tgtcaatgc	2306
ggcggcggct ctggtggtgg ttctggtggc ggctctgagg gtggtggctc tgagggagg	2366
ggttccggtg gtggctctgg t tcc ggt gat ttt gat tat gaa aag atg gca Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala 115 120	2417
aac gct aat aag ggg gct atg acc gaa aat gcc gat gaa aac gcg cta Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala Leu 125 130 135	2465
cag tct gac gct aaa ggc aaa ctt gat tct gtc gct act gat tac ggt Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly 140 145 150 155	2513
gct gct atc gat ggt ttc att ggt gac gtt tcc ggc ctt gct aat ggt Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly Leu Ala Asn Gly 160 165 170	2561
aat ggt gct act ggt gat ttt gct ggc tct aat tcc caa atg gct caa Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln Met Ala Gln 175 180 185	2609
gtc ggt gac ggt gat aat tca cct tta atg aat aat ttc cgt caa tat Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr 190 195 200	2657

tta cct tcc Leu Pro Ser 205	ctc cct caa Leu Pro Glr	tcg gtt gaa Ser Val Glu 210	tgt cgc cct Cys Arg Pro 215	ttt gtc ttt Phe Val Phe	ggc 2705 Gly
gct ggt aaa Ala Gly Lys 220	cca tat gas Pro Tyr Glu 225	Phe Ser Ile	gat tgt gac Asp Cys Asp 230	aaa ata aac Lys Ile Asn	tta 2753 Leu 235
ttc cgt ggt Phe Arg Gly	gtc ttt gcg Val Phe Ala 240	ttt ctt tta Phe Leu Leu	tat gtt gcc Tyr Val Ala 245	acc ttt atg Thr Phe Met 250	tat 2801 Tyr
gta ttt tct Val Phe Ser	acg ttt gct Thr Phe Ala 255	aac ata ctg Asn Ile Leu 260	Arg Asn Lys	gag tct taat Glu Ser 265	c atg 2851 Met
cca gtt ctt Pro Val Leu	ttg ggt att Leu Gly Ile 270	ccg tta tta Pro Leu Leu 275	Leu Arg Phe	ctc ggt Leu Gly 280	2893
ttccttctgg	taactttgtt (ggctatctg ct	tacttttc tta	aaaaggg cttcg	gtaag 2953
atagctattg	ctatttcatt	gtttcttgct ct	tattattg ggc	ttaactc aatto	ttgtg 3013
ggttatctct	ctgatattag (gctcaatta co	ctctgact ttg	ttcaggg tgttc	agtta 3073
attctcccgt	ctaatgcgct	ccctgtttt ta	tgttattc tct	ctgtaaa ggctg	ctatt 3133
ttcatttttg	acgttaaaca	aaaaatcgtt to	ttatttgg att	gggataa ataat	atg 3191 Met
gct gtt tat Ala Val Tyr	ttt gta ac Phe Val Th 285	t ggc aaa tta r Gly Lys Leu 290	Gly Ser Gly	aag acg ctc Lys Thr Leu 295	gtt 3239 Val
agc gtt ggt Ser Val Gly 300	Lys Ile Gl	g gat aaa att n Asp Lys Ile 305	gta gct ggg Val Ala Gly	tgc aaa ata Cys Lys Ile 310	gca 3287 Ala
act aat ctt Thr Asn Leu 315	gat tta ag Asp Leu Ar	g ctt caa aad g Leu Gln Asr 320	c ctc ccg cas n Leu Pro Glr 325	a gtc ggg agg n Val Gly Arg	ttc 3335 Phe
		l Leu Arg Ile		cct tct ata Pro Ser Ile	
gat ttg ctt Asp Leu Leu	gct att gg Ala Ile Gl 350	g cgc ggt aat y Arg Gly Ası	gat tcc tac n Asp Ser Tyr 355	c gat gaa aat c Asp Glu Asn 360	aaa 3431 Lys
aac ggc ttg Asn Gly Leu	ctt gtt ct Leu Val Le 365	c gat gag tgo u Asp Glu Cy 370	s Gly Thr Tr	y ttt aat acc Phe Asn Thr 375	cgt 3479 Arg

gct Ala	cgt Arg 395	aaa Lys	tta Leu	gga Gly	tgg Trp	gat Asp 400	att Ile	att Ile	ttt Phe	ctt Leu	gtt Val 405	cag Gln	gac Asp	tta Leu	tct Ser	3575
att Ile 410	gtt Val	gat Asp	aaa Lys	cag Gln	gcg Ala 415	cgt Arg	tct Ser	gca Ala	tta Leu	gct Ala 420	gaa Glu	cat His	gtt Val	Val	tat Tyr 425	3623
tgt Cys	cgt Arg	cgt Arg	ctg Leu	gac Asp 430	aga Arg	att Ile	act Thr	tta Leu	cct Pro 435	ttt Phe	gtc Val	ggt Gly	act Thr	tta Leu 440	tat Tyr	3671
tct Ser	ctt Leu	att Ile	act Thr 445	ggc Gly	tcg Ser	aaa Lys	atg Met	cct Pro 450	ctg Leu _.	cct Pro	aaa Lys	tta Leu	cat His 455	gtt Val	ggc Gly	3719
gtt Val	gtt Val	aaa Lys 460	tat Tyr	ggc Gly	gat Asp	tct Ser	caa Gln 465	tta Leu	agc Ser	cct Pro	act Thr	gtt Val 470	gag Glu	cgt Arg	tgg Trp	3767
ctt Leu	tat Tyr 475	act	ggt Gly	aag Lys	aat Asn	ttg Leu 480	tat Tyr	aac Asn	gca Ala	tat Tyr	gat Asp 485	act Thr	aaa Lys	cag Gln	gct Ala	3815
ttt Phe 490	tct Ser	agt Ser	aat Asn	tat Tyr	gat Asp 495	tcc Ser	ggt Gly	gtt Val	tat Tyr	tct Ser 500	tat Tyr	tta Leu	acg Thr	cct Pro	tat Tyr 505	3863
tta Leu	tca Ser	cac	ggt Gly	cgg Arg 510	tat Tyr	ttc Phe	aaa Lys	cca Pro	tta Leu 515	Asn	tta Leu	ggt Gly	cag Gln	aag Lys 520	atg Met	3911
aaa Lys	tta Leu	act Thr	aaa Lys 525	Ile	tat Tyr	ttg Leu	aaa Lys	aag Lys 530	ttt Phe	tct Ser	cgc Arg	gtt Val	ctt Leu 535	Cys	ctt Leu	3959
gcg Ala	att Ile	gga Gly 540	Phe	gca Ala	tca Ser	gca Ala	ttt Phe 545	Thr	tat Tyr	agt	tat Tyr	ata Ile 550	Thr	caa Gln	cct Pro	4007
aag Lys	ccg Pro 555	Glu	gtt Val	aaa Lys	aag Lys	gta Val 560	Val	tct Ser	cag Gln	acc	tat Tyr 565	Asp	ttt Phe	gat Asp	aaa Lys	4055
tto Phe 570	Thr	att Ile	gac Asp	tct Ser	tct Ser 575	Gln	cgt Arg	ctt Leu	aat Asn	cta Leu 580	ı Ser	tat Tyr	cgc Arg	tat Tyr	gtt Val 585	4103
ttc Phe	aag Lys	gat Asp	tct Ser	aag Lys 590	Gly	aaa Lys	tta Lev	att Ile	aat Asn 595	Ser	gac Asp	gat Asp	tta Lev	caç Glr 600	aag Lys	4151
caa Gln	ggt Gly	tat Tyr	tca Ser 605	Lev	aca Thr	tat Tyr	att : Ile	gat Asp 610	Leu	tgt Cys	act Thr	gtt Val	tco Ser 615	: Ile	aaa E Lys	4199
aaa	ggt	aat	tca	aat	gaa	att	gtt	aaa	tgt	aat	taa	attt	gtt	ttct	ttgatgt	4252

Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn 620 625

ttgtttcatc atcttctttt gctcaggtaa ttgaaatgaa taattcgcct ctgcgcgatt 4312 ttgtaacttg gtattcaaag caatcaggcg aatccgttat tgtttctccc gatgtaaaag 4372 gtactgttac tgtatattca tctgacgtta aacctgaaaa tctacgcaat ttctttattt 4432 ctgttttacg tgcaaataat tttgatatgg taggttctaa cccttccatt attcagaagt 4492 ataatccaaa caatcaggat tatattgatg aattgccatc atctgataat caggaatatg 4552 atgataatto ogotoottot ggtggtttot ttgttoogoa aaatgataat gttactcaaa 4612 cttttaaaat taataacgtt cgggcaaagg atttaatacg agttgtcgaa ttgtttgtaa 4672 agtotaatac ttotaaatoc toaaatgtat tatotattga oggototaat ctattagttg 4732 ttagtgctcc taaagatatt ttagataacc ttcctcaatt cctttcaact gttgatttgc 4792 caactgacca gatattgatt gagggtttga tatttgaggt tcagcaaggt gatgctttag 4852 atttttcatt tgctgctggc tctcagcgtg gcactgttgc aggcggtgtt aatactgacc 4912 gcctcacctc tgttttatct tctgctggtg gttcgttcgg tatttttaat ggcgatgttt 4972 tagggctatc agttcgcgca ttaaagacta atagccattc aaaaatattg tctgtgccac 5032 gtattcttac gctttcaggt cagaagggtt ctatctctgt tggccagaat gtccctttta 5092 ttactggtcg tgtgactggt gaatctgcca atgtaaataa tccatttcag acgattgagc 5152 gtcaaaatgt aggtatttcc atgagcgttt ttcctgttgc aatggctggc ggtaatattg 5212 ttctggatat taccagcaag gccgatagtt tgagttcttc tactcaggca agtgatgtta 5272 ttactaatca aagaagtatt gctacaacgg ttaatttgcg tgatggacag actcttttac 5332 teggtggeet caetgattat aaaaacaett eteaggatte tggegtaeeg tteetgteta 5392 aaatcccttt aatcggcctc ctgtttagct cccgctctga ttctaacgag gaaagcacgt 5452 tatacgtgct cgtcaaagca accatagtac gcgccctgta gcggcgcatt aagcgcggcg 5512 ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc gcccgctcct 5572 ttegetttet teeetteett tetegeeaeg ttegeegget tteeeegtea agetetaaat 5632 cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc caaaaaactt 5692 gatttgggtg atggttcacg tagtgggcca tcgccctgat agacggtttt tcgccctttg 5752 acgttggagt ccacgttctt taatagtgga ctcttgttcc aaactggaac aacactcaac 5812 cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga accaccatca 5872 aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg 5932 gccaggcggt gaagggcaat cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc 5992 tggatccaag cttgcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt 6052 atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct 6112 tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg cccttattcc 6172 cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa 6232 agatgctgaa gatcagttgg gcgcactagt gggttacatc gaactggatc tcaacagcgg 6292 taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca cttttaaagt 6352 tctgctatgt ggcgcggtat tatcccgtat tgacgccggg caagagcaac tcggtcgccg 6412 catacactat teteagaatg aettggttga gtaeteacea gteacagaaa ageatettae 6472 ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg ataacactgc 6532 ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt ttttgcacaa 6592 catgggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg aagccatacc 6652 aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc gcaaactatt 6712 aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga tggaggcgga 6772 taaagttgca ggaccacttc tgcgctcggc ccttccggct ggctggttta ttgctgataa 6832 atctggagcc ggtgagcgtg ggtctcgcgg tatcattgca gcactggggc cagatggtaa 6892 qccctcccqt atcqtaqtta tctacacqac qqqqaqtcag gcaactatgg atgaacgaaa 6952 tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt cagaccaagt 7012 ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa ggatctaggt 7072 gaagateett titgataate teatgaceaa aateeettaa egtgagtitt egtteeactg 7132 tacgtaagac ccccaagctt gtcgactgaa tggcgaatgg cgctttgcct ggtttccggc 7192 accagaagcg gtgccggaaa gctggctgga gtgcgatctt cctgacgctc gagcgcaacg 7252 caattaatgt gagttagctc actcattagg caccccaggc tttacacttt atgcttccgg 7312 ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc 7372 atgattacgc caagctttgg agcctttttt ttggagattt tcaac gtg aaa aaa tta 7429 Met Lys Lys Leu 630 tta ttc gca att cct tta gtt gtt cct ttc tat tct cac agt gca caa 7477 Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser His Ser Ala Gln 635 640 645

gac atc cag atg acc cag tet eca gee acc etg tet ttg tet eca ggg

7525

Asp	11e 650	Gln	Met	Thr	Gln	Ser 655	Pro	Ala	Thr	Leu	Ser 660	Leu	Ser	Pro	Gly	
gaa Glu 665	aga Arg	gcc Ala	acc Thr	ctc Leu	tcc Ser 670	tgc Cys	agg Arg	gcc Ala	Ser	cag Gln 675	ggt Gly	gtt Val	agc Ser	agc Ser	tac Tyr 680	7573
tta Leu	gcc Ala	tgg Trp	tac Tyr	cag Gln 685	cag Gln	aaa Lys	cct Pro	ggc Gly	cag Gln 690	gct Ala	ccc Pro	agg Arg	ctc Leu	ctc Leu 695	atc Ile	7621
tat Tyr	gat Asp	gca Ala	tcc Ser 700	aac Asn	agg Arg	gcc Ala	act Thr	ggc Gly 705	atc Ile	cca Pro	gcc Ala	agg Arg	ttc Phe 710	agt Ser	Gly ggc	. 7669
agt Ser	ggg Gly	cct Pro 715	ggg Gly	aca Thr	gac Asp	ttc Phe	act Thr 720	ctc Leu	acc Thr	atc Ile	agc Ser	agc Ser 725	cta Leu	gag Glu	cct Pro	7717
gaa Glu	gat Asp 730	ttt Phe	gca Ala	gtt Val	tat Tyr	tac Tyr 735	tgt Cys	cag Gln	cag Gln	cgt Arg	aac Asn 740	tgg Trp	cat His	ccg Pro	tgg Trp	7765
acg Thr 745	ttc Phe	Gly	caa Gln	Gly	acc Thr 750	aag Lys	gtg Val	gaa Glu	atc Ile	aaa Lys 755	Arg	act Thr	gtg Val	gct Ala	gca Ala 760	7813
cca Pro	tct Ser	gtc Val	ttc Phe	atc Ile 765	Phe	ccg Pro	cca Pro	tct Ser	gat Asp 770	gag Glu	cag Gln	ttg Leu	aaa Lys	Ser	gga Gly	7861
act Thr	gcc Ala	tct Ser	gtt Val 780	Val	tgc Cys	ctg Leu	ctg Leu	aat Asn 785	Asn	ttc Phe	tat Tyr	Pro	aga Arg 790	GIU	gcc Ala	7909
aaa Lys	gta Val	cag Gln 795	Trp	aag Lys	gtg Val	gat Asp	aac Asn 800	Ala	ctc Leu	caa Glr	tc <u>c</u> Ser	ggt Gl ₃ 805	Asr	tco Ser	cag Gln	7957
gag Glu	agt Ser 810	. Val	aca Thr	gaç Glu	g cgg n Arg	gac Asp 815	Ser	aag Lys	gac Asp	ago Sei	acc Thi 820	Ty:	ago Sei	c cto	agc Ser	8005
ago Ser 825	Thr	cto Lev	g acg l Thr	cto Lev	g ago Ser 830	Lys	gca Ala	a gac a Asp	tac Tyr	gaç Glu 839	ı Lys	a cad	c aaa s Lys	a gto s Val	tac 1 Tyr 840	8053
gcc Ala	tgo Cys	gaa Glu	a gto ı Val	acc Thi	His	caç Glr	Gly	cto Leu	g ago Ser 850	: Se	g cco	c gte o Vai	c aca	a aaq r Lys 85	g agc s Ser 5	8101
				/ Gli	g tġt 1 Cys		taaq	ggcg	cgc	caat	tct a	attt	caag	ga		8149
gad	agto	cata	atg Met	aaa Lys	tac Tyr 865	cta Leu	ttg Leu	cct Pro	acg Thr	gca Ala 870	gcc Ala	gct Ala	gga Gly	ttg Leu	tta Leu 875	8198

tta	ctc	gcg	gcc	cag	ccg	gcc	atg	gcc	gaa	gtt	caa	ttg	tta	gag	tct	8246
				Gln 880					885.					890		
ggt Gly	ggc Gly	ggt Gly	ctt Leu 895	gtt Val	cag Gln	cct Pro	ggt Gly	ggt Gly 900	tct Ser	tta Leu	cgt Arg	ctt Leu	tct Ser 905	tgc Cys	gct Ala	8294
gct Ala	tcc Ser	gga Gly 910	ttc Phe	act Thr	ttc Phe	tct Ser	act Thr 915	tac Tyr	gag Glu	atg Met	cgt Arg	tgg Trp 920	gtt Val	cgc Arg	caa Gln	8342
gct Ala	cct Pro 925	ggt Gly	aaa Lys	ggt Gly	ttg Leu	gag Glu 930	tgg Trp	gtt Val	tct Ser	tat Tyr	atc Ile 935	gct Ala	cct Pro	tct Ser	ggt Gly	8390
ggc Gly 940	gat Asp	act Thr	gct Ala	tat Tyr	gct Ala 945	gac Asp	tcc Ser	gtt Val	aaa Lys	ggt Gly 950	cgc Arg	ttc Phe	act Thr	atc Ile	tct Ser 955	8438
aga Arg	gac Asp	aac Asn	tct Ser	aag Lys 960	aat Asn	act Thr	ctc Leu	tac Tyr	ttg Leu 965	cag Gln	atg Met	aac Asn	agc Ser	tta Leu 970	agg Arg	8486
gct Ala	gag Glu	gac Asp	act Thr 975	gca Ala	gtc Val	tac Tyr	tat Tyr	tgt Cys 980	gcg Ala	agg Arg	agg Arg	ctc Leu	gat Asp 985	ggc Gly	tat Tyr	8534
att Ile	tcc Ser	tac Tyr 990	Tyr	tac Tyr	ggt Gly	atg Met	gac Asp 995	Val	tgg Trp	ggc	Gln	ggg Gly 1000	Thr	acg Thr	gtc Val	8582
Thr	gtc Val 1005	tca Ser	agc Ser	gcc Ala	Ser	acc Thr 1010	Lys	Gly	cca Pro	Ser	gtc Val 1015	ttc Phe	ccc Pro	ctg Leu	gca Ala	8630
ccc Pro 102	Ser	tcc Ser	aag Lys	Ser	acc Thr 1025	Ser	Gly	ggc Gly	Thr	gcg Ala 1030	Ala	ctg Leu	Gly	tgo Cys	ctg Leu 1035	8678
gtc Val	aag Lys	gac Asp	tac Tyr	ttc Phe 1040	Pro	gaa Glu	ccg Pro	gtg Val	acg Thr 1045	Val	tcg Ser	tgg Trp	aac Asr	tca Ser 1050	ggc Gly	8726
gcc Ala	ctg Leu	Thr	agc Ser 1055	Gly	gtc Val	cac	Thr	ttc Phe	Pro	gct Ala	gtc Val	cta Leu	caç Glr 1065	Sei	c tca Ser	8774
gga Gly	Leu	tac Tyr 1070	Ser	ctc Leu	agc Ser	ago	gta Val	. Val	acc Thr	gtg Val	Pro	tco Ser 1080	: Se	ago Sei	ttg Leu	8822
Gly	acc Thr 1085	Gln	acc	tac Tyr	ato	tgc Cys 1090	Asr	gtç Val	aat Asn	cac His	aag Lys 1095	Pro	ago Sei	c aad	c acc n Thr	8870
aag	gtg	gac	aag	aaa	gtt	gag	ccc	aaa	tct	. tgt	gcg	gco	gca	a ca	t cat	8918

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His 1100 1105 1110 1115	
cat cac cat cac ggg gcc gca gaa caa aaa ctc atc tca gaa gag gat His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp 1120 1125 1130	8966
ctg aat ggg gcc gca tag gct agc tct gct wsy ggy gay tty gay tay Leu Asn Gly Ala Ala Gln Ala Ser Ser Ala Ser Gly Asp Phe Asp Tyr 1135 1140 1145	9014
gar aar atg gct aaw gcy aay aar ggs gcy atg acy gar aay gcy gay Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp 1150 1155 1160	9062
gar aay gck ytr car wsy gay gcy aar ggy aar ytw gay wsy gtc gck Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala 1165 1170 1175	9110
acy gay tay ggy gcy gcc atc gay ggy tty aty ggy gay gtc wsy ggy Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly 1180 1185 1190 1195	9158
ytk gcy aay ggy aay ggy gcy acy ggw gay tty gcw ggy tck aat tcy Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser 1200 1205 1210	9206
car atg gcy car gty ggw gay ggk gay aay wsw cck ytw atg aay aay Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn 1215 1220 1225	9254
tty mgw car tay ytw cck tcy cty cck car wsk gty gar tgy cgy ccw Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro 1230 1235 1240	9302
tty gty tty wsy gcy ggy aar ccw tay gar tty wsy aty gay tgy gay Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp 1245 1250 1255	9350
aar atm aay ytw tty cgy ggy gty tty gck tty ytk yta tay gty gcy Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala 1260 1265 1270 1275	9398
acy tty atg tay gtw tty wsy ack tty gcy aay atw ytr cgy aay aar Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys 1280 1285 1290	9446
gar wsy tagtgatete etaggaagee egeetaatga gegggetttt tttttetggt Glu Ser	9502
atgcatectg aggeogatae tgtegtegte eceteaaaet ggeagatgea eggttaegat	9562
gegeceatet acaccaaegt gacetatece attaeggtea ateegeegtt tgtteecaeg	9622
gagaatccga cgggttgtta ctcgctcaca tttaatgttg atgaaagctg gctacaggaa	
ggccagacgc gaattatttt tgatggcgtt cctattggtt aaaaaatgag ctgatttaac	9742

aaaaatttaa tgcgaattt aacaaaatat taacgtttac aatttaaata tttgcttata 9802
caatctteet gttttgggg ettttetgat tateaacegg ggtacatatg attgacatge 9862
tagttttacg attacegtte ategatteet ttgtttgete cagactetea ggcaatgace 9922
tgatageett tgtagatete teaaaaatag etaecetete eggcattaat ttateageta 9982
gaacggttga atateatatt gatggtgatt tgaetgtete eggcetttet eaecettttg 10042
aatetttace tacacattae teaggeattg eatttaaaat atatgagggt tetaaaaatt 10102
tttateettg egttgaaata aaggettete eegcaaaagt attacagggt eataatgtt 10162
ttggtacaae egatttaget ttatgetetg aggetttatt gettaatttt getaattett 10222
tgeettgeet gtatgattta ttggatgtt

<210> 583

<211> 113

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05
 protein sequence

<400> 583

Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser

1 5 10 15

Gly Ala Ala Glu Ser His Leu Asp Gly Ala Ala Glu Thr Val Glu Ser 20 25 30

Cys Leu Ala Lys Ser His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys 35 40 45

Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp 50 60

Asn Ala Thr Gly Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr
65 70 75 80

Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly 85 90 95

Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly 100 105 110

Thr

<210> 584

<211> 152

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05 protein sequence

<400> 584

Ser Gly Asp Phe Asp Týr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala 1 5 10 15

Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly 20 25 30

Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe 35 40 45

Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp 50 55 60

Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn 65 70 75 80

Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln 85 90 95

Ser Val Glu Cys Arg Pro Phe Val Phe Gly Ala Gly Lys Pro Tyr Glu 100 105 110

Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala 115 120 125

Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 130 135 140

Asn Ile Leu Arg Asn Lys Glu Ser 145 150

<210> 585

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05
 peptide sequence

<400> 585

Met Pro Val Leu Leu Gly Ile Pro Leu Leu Leu Arg Phe Leu Gly
1 5 10 15

<210> 586

<211> 348

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05

protein sequence

)> 58 Ala		Tyr	Phe 5	Val	Thr	Gly	Lys	Leu 10	Gly	Ser	Gly	Lys	Thr 15	Leu
Val	Ser	Val	Gly 20	Lys	Ile	Gln	Asp	Lys 25	.Ile	Val	Ala	Gly	Cys 30	Lys	Ile
Ala	Thr	Asn 35	Leu	Asp	Leu	Arg	Leu 40	Gln	Asn	Leu	Pro	Gln 45	Val	Gly	Arg
Phe	Ala 50	Lys	Thr	Pro	Arg	Val 55	Leu	Arg	Ile	Pro	Asp 60	Lys	Pro	Ser	Ile
Ser 65	Asp	Leu	Leu	Ala	Ile 70	Gly	Arg	Gly	Asn	Asp 75	Ser	Tyr	Asp	Glu	Asn 80
Lys	Asn	Gly	Leu	Leu 85	Val	Leu	Asp	Glu	Суs 90	Gly	Thr	Trp	Phe	Asn 95	Thr
Arg	Ser	Trp	Asn 100	Asp	Lys	Glu	Arg	Gln 105	Pro	Ile	Ile	Asp	Trp 110	Phe	Leu
His	Ala	Arg 115	Lys	Leu	Gly	Trp	Asp 120	Ile	Ile	Phe	Leu	Val 125	Gln	Asp	Leu
Ser	Ile 130	Val	Asp	Lys	Gln	Ala 135	Arg	Ser	Ala	Leu	Ala 140	Glu	His	Val	Val
Tyr 145	Cys	Arg	Arg	Leu	Asp 150	Arg	Ile	Thr	Leu	Pro 155	Phe	Val	Gly	Thr	Leu 160
Tyr	Ser	Leu	Ile	Thr 165	Gly	Ser	Lys	Met	Pro 170		Pro	Lys	Leu	His 175	
Gly	Val	Val	Lys 180	Tyr	Gly	Asp	Ser	Gln 185		Ser	Pro	Thr	Val 190	Glu	Arg
Trp	Leu	Tyr 195	Thr	Gly	Lys	Asn	Leu 200		Asn	Ala	Tyr	Asp 205		Lys	Gln
Ala	Phe 210		Ser	Asn	Tyr	Asp 215		Gly	Val	Tyr	Ser 220		Leu	Thr	Pro
Tyr 225		Ser	His	Gly	Arg 230		Phe	Lys	Pro	Leu 235		Leu	Gly	Gln	Lys 240
Met	Lys	Ļeu	Thr	Lys 245		Tyr	Leu	Lys	Lys 250		Ser	Arg	Val	Leu 255	Cys
Leu	Ala	Ile	Gly 260		Ala	Ser	Ala	Phe 265		Tyr	Ser	Tyr	11e 270		Gln
Pro	Lys	Pro 275		Val	Lys	Lys	Val 280		Ser	Gln	Thr	Tyr 285		Phe	Asp
Lys	Phe	Thr	Ile	Asp	Ser	Ser	Glr	Arg	Leu	Asn	Leu	Ser	туг	Arg	Tyr

290 295 300

Val Phe Lys Asp Ser Lys Gly Lys Leu Ile Asn Ser Asp Asp Leu Gln 305 310 315 320

Lys Gln Gly Tyr Ser Leu Thr Tyr Ile Asp Leu Cys Thr Val Ser Ile 325 330 335

Lys Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn 340 345

<210> 587

<211> 234

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05 protein sequence

<400> 587

Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 1 5 10 15

His Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser 20 25 30

Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Gly
35 40 45

Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro 50 55 60

Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala 65 70 75 80

Arg Phe Ser Gly Ser Gly Pro Gly Thr Asp Phe Thr Leu Thr Ile Ser 85 90 95

Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Asn 100 105 110

Trp His Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 115 120 125

Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175

Gly Asn Ser Gln Glu Ser Val Thr Glu Arg Asp Ser Lys Asp Ser Thr 180 185 190 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230

<210> 588

<211> 431

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05 protein sequence

<400> 588

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala

1 5 10 15

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly 20 25 30

Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
35 40 45

Phe Thr Phe Ser Thr Tyr Glu Met Arg Trp Val Arg Gln Ala Pro Gly 50 55 60

Lys Gly Leu Glu Trp Val Ser Tyr Ile Ala Pro Ser Gly Gly Asp Thr 65 70 75 80

Ala Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn 85 90 95

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 100 105 110

Thr Ala Val Tyr Tyr Cys Ala Arg Arg Leu Asp Gly Tyr Ile Ser Tyr 115 120 125

Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 130 135 140

Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser 145 150 155 160

Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 165 170 175

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 180 185 190

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 195 200 205 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 210 215 220

Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 225 230 235 240

Lys Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His His His His 245 250 255

His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly 260 265 270

Ala Ala Gln Ala Ser Ser Ala Ser Gly Asp Phe Asp Tyr Glu Lys Met 275 280 285

Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala 290 295 300

Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr Asp Tyr 305 310 315 320

Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly Leu Ala Asn 325 330 335

Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln Met Ala 340 345 350

Gln, Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln 355 360 365

Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro Phe Val Phe 370 375 380

Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile Asn 385 390 395 400

Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met 405 410 415

Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 420 425 430

<210> 589

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Illustrative
 peptide

<400> 589 Glu Gly Gly Gly Ser 1 5

```
<210> 590
<211> 1275
<212> DNA
<213> Unknown Organism
<220>
<221> CDS
<222> (1)..(1272)
<220>
<223> Description of Unknown Organism: M13 nucleotide
      sequence
<400> 590
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat tct
                                                                   48
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
cac tcc qct qaa act qtt qaa aqt tgt tta gca aaa ccc cat aca gaa
                                                                   96
His Ser Ala Glu Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu
aat tca ttt act aac gtc tgg aaa gac gac aaa act tta gat cgt tac
                                                                   144
Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr
                             40
gct aac tat gag ggt tgt ctg tgg aat gct aca ggc gtt gta gtt tgt
                                                                   192
Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys
     50
                                                                   240
act ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt
Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu
 65
                     70
gct atc cct gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct gag
                                                                   288
Ala Ile Pro Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu
                                      90
                                                          95
ggt ggc ggt tct gag ggt ggc ggt act aaa cct cct gag tac ggt gat
                                                                    336
Gly Gly Ser Glu Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp
            100
                                 105
aca cct att ccg ggc tat act tat atc aac cct ctc gac ggc act tat
                                                                    384
Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr
                             120
        115
ccg cct ggt act gag caa aac ccc gct aat cct aat cct tct ctt gag
                                                                    432
Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu
                         135
                                                                    480
gag tot cag cot out aat act too atg tot cag aat aat agg too cga
Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg
                                         155
                  . 150
aat agg cag ggg gca tta act gtt tat acg ggc act gtt act caa ggc
                                                                    528
Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr Val Thr Gln Gly
                                     170
                165
```

act Thr	gac Asp	ccc Pro	gtt Val 18Q	aaa Lys	act Thr	tat Tyr	tac Tyr	cag Gln 185	tac Tyr	act Thr	cct Pro	gta Val	tca Ser 190	tca Ser	aaa Lys	576
gcc Ala	atg Met	tat Tyr 195	gac Asp	gct Ala	tac Tyr	tgg Trp	aac Asn 200	ggt Gly	aaa Lys	ttc Phe	aga Arg	gac Asp 205	tgc Cys	gct Ala	ttc Phe	624
cat His	tct Ser 210	Gly ggc	ttt Phe	aat Asn	gag Glu	gat Asp 215	cca Pro	ttc Phe	gtt Val	Cys	gaa Glu 220	tat Tyr	caa Gln	ggc Gly	caa Gln	672
tcg Ser 225	tct Ser	gac Asp	ctg Leu	cct Pro	caa Gln 230	cct Pro	cct Pro	gtc Val	aat Asn	gct Ala 235	ggc Gly	ggc Gly	ggc Gly	tct Ser	ggt Gly 240	720
				ggc Gly 245												768
				ggc Gly												816
				gat Asp												8.64
atg Met	acc Thr 290	gaa Glu	aat Asn	gcc Ala	gat Asp	gaa Glu 295	aac Asn	gcg Ala	cta Leu	cag Gln	tct Ser 300	gac Asp	gct Ala	aaa Lys	ggc	912
aaa Lys 305	ctt Leu	gat Asp	tct Ser	gtc Val	gct Ala 310	act Thr	gat Asp	tac Tyr	ggt Gly	gct Ala 315	gct Ala	atc Ile	gat Asp	ggt Gly	ttc Phe 320	960
att Ile	ggt Gly	gac Asp	gtt Val	tcc Ser 325	ggc Gly	ctt Leu	gct Ala	aat Asn	ggt Gly 330	aat Asn	ggt Gly	gct Ala	act Thr	ggt Gly 335	gat Asp	1008
				aat Asn												1056
tca Ser	cct Pro	tta Leu 355	Met	aat Asn	aat Asn	ttc Phe	cgt Arg 360	Gln	tat Tyr	tta Leu	cct Pro	tcc Ser 365	Leu	cct Pro	caa Gln	1104
				cgc Arg								Lys				1152
	Ser			tgt Cys		Lys					Arg				gcg Ala 400	1200
				gtt Val	_			_		_			_		gct Ala	1248

1275

415. 405

aac ata ctg cgt aat aag gag tct taa Asn Ile Leu Arg Asn Lys Glu Ser 420

<210> 591

<211> 424

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: M13 protein . sequence

<400> 591

Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser

His Ser Ala Glu Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu

Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr

Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys

Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu 75

Ala Ile Pro Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Ser Glu

Gly Gly Gly Ser Glu Gly Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp

Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr

Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu 135

Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg 155

Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr Val Thr Gln Gly 170

Thr Asp Pro Val Lys Thr Tyr Tyr Gln Tyr Thr Pro Val Ser Ser Lys 180 185

Ala Met Tyr Asp Ala Tyr Trp Asn Gly Lys Phe Arg Asp Cys Ala Phe 195 200

His Ser Gly Phe Asn Glu Asp Pro Phe Val Cys Glu Tyr Gln Gly Gln 210 215

Ser Ser Asp Leu Pro Gln Pro Pro Val Asn Ala Gly Gly Gly Ser Gly 225 230 235 240

Gly Gly Ser Gly Gly Gly Ser Glu Gly Gly Ser Glu Gly Gly Gly Gly 245 250 255

Ser Glu Gly Gly Ser Glu Gly Gly Gly Ser Gly Gly Ser Gly 260 265 270

Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala 275 280 285

Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly 290 295 300

Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe 305 310 315 320

Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp 325 330 335

Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asn Asn 340 345 350

Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln 355 360 365

Ser Val Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu 370 375 380

Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala 385 390 395 400

Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 405 410 415

Asn Ile Leu Arg Asn Lys Glu Ser 420

<210> 592

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 592

caacgatgat cgtatggcgc atgctgccga gacag

<210> 593

<211> 1355

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: M13-III nucleotide sequence <220> <221> CDS <222> (1)..(1305) <400> 593 gcg gcc gca cat cat cat cac cat cac ggg gcc gca gaa caa aaa ctc Ala Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu 10 atc tca gaa gag gat ctg aat ggg gcc gca tag gct agc gat atc aac Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala Ala Ser Asp Ile Asn gat gat cgt atg gct tct act gcy gar acw gty gaa wsy tgy ytr gcm Asp Asp Arg Met Ala Ser Thr Ala Glu Thr Val Glu Ser Cys Leu Ala 40 aar ccy cay acw gar aat wsw tty acw aay gts tgg aar gay gay aar Lys Pro His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys 55 240 acy ytw gat cgw tay gcy aay tay gar ggy tgy ytr tgg aat gcy acm Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr 65 ggc gty gtw gty tgy ack ggy gay gar acw car tgy tay ggy acr tgg 288 Gly Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp 80 85 gtk cck atw ggs ytw gcy atm cck gar aay gar ggy ggy wsy gar 336 Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly Ser Glu 105 100 ggy ggy ggy wsy gar ggy ggy ggw tcy gar ggw ggy ggw acy aar cck 384 Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Thr Lys Pro 125 120 cck gar tay ggy gay acw cck atw cck ggy tay acy tay aty aay cck 432 Pro Glu Tyr Gly Asp Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro 135 130 480 ytm gay ggm acy tay cck cck ggy acy gar car aay ccy gcy aay cck Leu Asp Gly Thr Tyr Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro 150 aay ccw wsy ytw gar gar wsy car cck ytw aay acy tty atg tty car 528 Asn Pro Ser Leu Glu Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln 165 160 aay aay mgk tty mgr aay mgk car ggk gcw ytw acy gtk tay ack ggm 576 Asn Asn Arg Phe Arg Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly 185

acy Thr	gty Val	acy Thr	car Gln 195	ggy Gly	acy Thr	gay Asp	ccy Pro	gty Val 200	aar Lys	acy Thr	tay Tyr	tay Tyr	car Gln 205	tay Tyr	acy Thr	624
cck Pro	gtm Val	tcr Ser 210	wsw Ser	aar Lys	gcy Ala	atg Met	tay Tyr 215	gay Asp	gcy Ala	tay Tyr	tgg Trp	aay Asn 220	gly ggy	aar Lys	tty Phe	672
mgw Arg	gay Asp 225	tgy Cys	gcy Ala	tty Phe	cay His	wsy Ser 230	Gly ggy	tty Phe	aay Asn	gar Glu	gay Asp 235	ccw Pro	tty Phe	gty Val	tgy Cys	720
gar Glu 240	tay Tyr	car Gln	GJÀ ādÀ	car Gln	wsk Ser 245	wsy Ser	gay Asp	ytr Leu	cck Pro	car Gln 250	ccw Pro	cck Pro	gty Val	aay Asn	gck Ala 255	768
ggy Gly	Gly ggy	GJ À GG À	wsy Ser	дду Glу 260	ggw Gly	ggy Gly	wsy Ser	Gly	ggy Gly 265	GJÀ GGÀ	wsy Ser	gar Glu	ggy Gly	ggw Gly 270	G1À ààà	816
wsy Ser	gar Glu	ggw Gly	ggy Gly 275	GJ À GG À	wsy Ser	ggr Gly	Gly ggy	ggy Gly 280	wsy Ser	GJÀ ââÀ	wsy Ser	Gly ggy	gay Asp 285	tty Phe	gay Asp	864
tay Tyr	gar Glu	aar Lys 290	atg Met	gcw Ala	aay Asn	gcy Ala	aay Asn 295	aar Lys	ggs Gly	gcy Aľa	atg Met	acy Thr 300	gar Glu	aay Asn	gcy Ala	912
gay Asp	gar Glu 305	aay Asn	gcr Ala	ctr Leu	car Gln	wst Ser 310	gay Asp	gcy Ala	aar Lys	Gly	aar Lys 315	ytw Leu	gay Asp	wsy Ser	gtc Val	960
gcy Ala 320	acw Thr	gay Asp	tay Tyr	ggt Gly	gct Ala 325	gcy Ala	atc Ile	gay Asp	GJ À GG À	tty Phe 330	Ile	ggy Gly	gay Asp	gty Val	wsy Ser 335	1008
GJ À àà À	ctk Leu	gct Ala	aay Asn	ggу Glу 340	Asn	ggw Gly	gcy Ala	acy Thr	ggw Gly 345	Asp	tty Phe	gcw Ala	Gly	Ser 350	aat Asn	1056
Ser	Gln	Met	Ala 355	Gln	Val	Gly	Asp	Gly 360	Asp	Asn	Ser	Pro	365	Met	aay Asn	1104
aay Asn	tty Phe	mgw Arg 370	Gln	tay Tyr	ytw Leu	cck Pro	tcy Ser 375	Leu	cck Pro	car Gln	wsk Ser	gty Val 380	Glu	tgy Cys	cgy Arg	1152
ccw Pro	tty Phe 385	gty Val	tty Phe	wsy Ser	gcy Ala	390 Gly ggy	Lys	CCW Pro	tay Tyr	gar Glu	Phe 395	Ser	aty : Ile	gay Asp	tgy Cys	1200
gay Asp 400	Lys	atm Ile	aay Asn	ytw Leu	ttc Phe 405	Arg	Gly	gty Val	tty Phe	gck Ala 410	Phe	ytk Leu	yta Lev	tay Tyr	y gty Val 415	1248
gcy Ala	acy Thr	tty Phe	atg Met	tay Tyr	gtw Val	tty Phe	wsy Ser	ack Thr	tty Phe	gcy Ala	aay Asr	atw lle	ytı Lev	a Ard	aay Asn	1296

420 425 430

aar gar wsy tagtgatete etaggaagee egeetaatga gegggetttt Lys Glu Ser 1345

tttttctggt

1355

<210> 594

<211> 434

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: M13-III
 protein sequence

<400> 594

Ala Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu 1 5 10 15

Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala Ala Ser Asp Ile Asn Asp 20 25 30

Asp Arg Met Ala Ser Thr Ala Glu Thr Val Glu Ser Cys Leu Ala Lys 35 40 45

Pro His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr 50 55 60

Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly 65 70 75 80

Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val 85 90 95

Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly Gly Ser Glu Gly 100 105 110

Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Thr Lys Pro Pro 115 120 125

Glu Tyr Gly Asp Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu 130 135 140

Asp Gly Thr Tyr Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn 145 150 155 160

Pro Ser Leu Glu Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn 165 170 175

Asn Arg Phe Arg Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr 180 185 190

Val Thr Gln Gly Thr Asp Pro Val Lys Thr Tyr Tyr Gln Tyr Thr Pro 195 200 205 Val Ser Ser Lys Ala Met Tyr Asp Ala Tyr Trp Asn Gly Lys Phe Arg 210 215 220

Asp Cys Ala Phe His Ser Gly Phe Asn Glu Asp Pro Phe Val Cys Glu 225 230 235 240

Tyr Gln Gly Gln Ser Ser Asp Leu Pro Gln Pro Pro Val Asn Ala Gly 245 250 255

Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Glu Gly Gly Ser 260 265 270

Glu Gly Gly Ser Gly Gly Gly Ser Gly Ser Gly Asp Phe Asp Tyr 275 280 285

Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp 290 295 300

Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala 305 310 315 320

Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly 325 330 335

Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser 340 345 350

Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn 355 360 365

Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro 370 375 380

Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp 385 390 395 400

Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala 405 410 415

Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys 420 425 430

Glu Ser

<210> 595

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 595

cgttgatatc gctagcctat gc

```
<210> 596
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 596
                                                                    30
gataggetta getagecegg agaacgaagg
<210> 597
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 597
                                                                    37
ctttcacagc ggtttcgcta gcgacccttt tgtctgc
<210> 598
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 598
                                                                   50
ctttcacagc ggtttcgcta gcgacccttt tgtcagcgag taccagggtc
<210> 599
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 599
gactgtctcg gcagcatgcg ccatacgatc atcgttg
                                                                     37
<210> 600
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> CDS
<222> (2)..(25)
<400> 600
                                                                    37
c aac gat gat cgt atg gcg cat gct gccgagacag tc
 Asn Asp Asp Arg Met Ala His Ala
<210> 601
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 601
Asn Asp Asp Arg Met Ala His Ala
                  5
<210> 602
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 602
                                                                    37
ctttcacagc ggtttgcatg cagacccttt tgtctgc
<210> 603
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 603
ctttcacagc ggtttgcatg cagacccttt tgtcagcgag taccagggtc
                                                                    50
<210> 604
<211> 7
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Illustrative
      peptide
<400> 604
Tyr Ala Asp Ser Val Lys Gly
<210> 605
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 605
                                                                   . 21
cctcgacagc gaagtgcaca g
<210> 606
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 606
                                                                    38
ggctgagtca agacgctctg tgcacttcgc tgtcgagg
<210> 607
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      peptide
<400> 607
Gln Ser Ala Leu Thr Gln Pro
<210> 608
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 608
                                                                     22
cctctgtcac agtgcacaag ac
```

```
<210> 609
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 609
                                                                   42
cctctgtcac agtgcacaag acatccagat gacccagtct cc
<210> 610
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 610
                                                                   50
gggaggatgg agactgggtc gtctggatgt cttgtgcact gtgacagagg
<210> 611
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      peptide
<400> 611
Gln Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
<210> 612
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 612
                                                                    20
gactgggtgt agtgatctag
<210> 613
<211> 28
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 613
                                                                    28
ggtgtagtga tcttctagtg acaactct
<210> 614
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 614
Val Ser Ser Arg Asp Asn
<210> 615
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> CDS
<222> (1)..(15)
<400> 615
                                                                     15
tac tat tgt gcg aaa
Tyr Tyr Cys Ala Lys
 <210> 616
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
 <400> 616
 Tyr Tyr Cys Ala Lys
 <210> 617
 <211> 36
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 617
ggtgccgata ggcttgcatg caccggagaa cgaagg
                                                                    36
<210> 618
<211> 95
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 618
cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta 60
agggctgagg acactgcagt ctactattgt acgag
<210> 619
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 619
                                                                    10
gatnnnnatc
<210> .620
<211> 10
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3-derived
      peptide
<400> 620
Met Lys Leu Leu Asn Val Ile Asn Phe Val
  1
<210> 621
```

```
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CJRA05-derived
     peptide
<400> 621
Met Ser Val Leu Val Tyr Ser Phe Ala Ser Phe Val Leu Gly Trp Cys
Leu Arg Ser Gly Ile Thr Tyr Phe Thr Arg Leu Met Glu
                                 25
<210> 622
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      nucleotide sequence
<400> 622
ttttttttt tttt
<210> 623
<211> 87
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3-derived
      peptide
<400> 623
Met Ile Lys Val Glu Ile Lys Pro Ser Gln Ala Gln Phe Thr Thr Arg
Ser Gly Val Ser Arg Gln Gly Lys Pro Tyr Ser Leu Asn Glu Gln Leu
Cys Tyr Val Asp Leu Gly Asn Glu Tyr Pro Val Leu Val Lys Ile Thr
Leu Asp Glu Gly Gln Pro Ala Tyr Ala Pro Gly Leu Tyr Thr Val His
     50
Leu Ser Ser Phe Lys Val Gly Gln Phe Gly Ser Leu Met Ile Asp Arg
```

Leu Arg Leu Val Pro Ala Lys

85

```
<210> 624
<211> 29
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3-derived
      peptide
<400> 624
Met Ser Val Leu Val Tyr Ser Phe Ala Ser Phe Val Leu Gly Trp Cys
                                     10
Leu Arg Ser Gly Ile Thr Tyr Phe Thr Arg Leu Met Glu
<210> 625
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7) ... (10)
<223> A, T, C, G, other or unknown
<400> 625
ctcttcnnnn
<210> 626
<211> 87
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: CJRA05-derived
      peptide
Met Ile Lys Val Glu Ile Lys Pro Ser Gln Ala Gln Phe Thr Thr Arg
Ser Gly Val Ser Arg Gln Gly Lys Pro Tyr Ser Leu Asn Glu Gln Leu
                                  25
Cys Tyr Val Asp Leu Gly Asn Glu Tyr Pro Val Leu Val Lys Ile Thr
Leu Asp Glu Gly Gln Pro Ala Tyr Ala Pro Gly Leu Tyr Thr Val His
     50
                          55
                                               60
```

Leu Ser Ser Phe Lys Val Gly Gln Phe Gly Ser Leu Met Ile Asp Arg

gacgcagtct ccaggcacc

```
<210> 631
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 631
                                                                   19
gacgcagtct ccagccacc
<210> 632
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 632
                                                                    19
gtctcctgga cagtcgatc
<210> 633
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 633
                                                                     19
ggccttggga cagacagtc
<210> 634
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 634
                                                                     19
gtctcctgga cagtcagtc
<210> 635
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 635 ggccccaggg cagagggtc