Отчет о выполнении лабораторной работы 3.7.1 Скин-эффек

Костылев Влад, Б01-208

10 октября 2023 г.

Аннотация

Цель работы: исследовать явление проникновение переменного магнитного поля в медный полый цилиндр.

В работе используются: генератор сигналов АКИП–3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS–620, RLC-метрю.

1 Теоретическая справка

В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида.

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор ${\pmb E}$ направлен всюду вдоль оси y и зависит только от координаты x, т. е. $E_x=E_z\equiv 0,\ E_y=E_y(x,t).$ В квазистационарном приближении

$$[\vec{\nabla} \times H] = \sigma E \tag{1}$$

Берем ротор обоих частей:

$$\vec{\nabla} \times [\vec{\nabla} \times H] = \vec{\nabla} (\vec{\nabla} \cdot H) - \vec{\nabla}^2 H = \sigma [\vec{\nabla} \times E]$$
(2)

Используя уравнение Максвелла для ротора E и для дивергенции H получаем

$$\vec{\nabla}^2 H = \sigma \mu \mu_0 \frac{\partial H}{\partial t} + \vec{\nabla} \left(\vec{\nabla} \cdot H \right) = \sigma \mu \mu_0 \frac{\partial H}{\partial t}$$
(3)

Берем ротор еще раз

$$\vec{\nabla} \times (\vec{\nabla}^2 H) = \vec{\nabla}^2 (\vec{\nabla} \times \mathbf{H}) = \sigma \mu \mu_0 \frac{\partial (\vec{\nabla} \times \mathbf{H})}{\partial t}$$
(4)

Осталось подставить первое уравнение, и воспользоваться уравнением Максвелла:

$$\vec{\nabla}^2 E = \sigma \mu \mu_0 \frac{\partial E}{\partial t} \tag{5}$$

Подставляем в (??) наше электрическое поле $E_y = E_y(x,t)$

$$\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{6}$$

Если $E_y(0,t)=E_0e^{i\omega t}$ то решением (6) будет функция вида

$$E_{\nu}(x,t) = E_0 e^{-x/\delta} e^{i(\omega t - x/\delta)} \tag{7}$$

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} \tag{8}$$

Перейдем теперь к описанию скин-эффекту в длинном тонкостенном медном цилиндре.

Из соображении симметрии и непрерывности соответствующих компонент векторов E и H можем сказать что:

$$H_z = H(r)e^{i\omega t}, E_{\varphi} = E(r)e^{i\omega t}$$
 (9)

и при этом функции H(r) и E(r) непрерывны.

Внутри цилиндра токов нет, следовательно $H(r)=H_1={
m const}$ внутри цилиндра. По теореме об электромагнитной индукции

$$E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$

откуда мы получаем граничное условие

$$E_1 = E(a) = -\frac{1}{2}\mu_0 a \cdot i\omega H_1 \tag{10}$$

В приближении $h \ll a$ можем пренебречь кривизной стенки и смоделировать его бесконечной полосой. Тогда, надо решить уравнение (3) с граничными условиями. Решая

уравнение получим связь полей H_1 (поле внутри цилиндра которое мы будем измерять) и H_2 , которое колеблется с частотой ω

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)} \quad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$
(11)

из этой формулы получим сколько по фазе отстает поле H_1 от H_0 . При $\delta \ll h$ (высокочастотная область)

$$\psi \approx \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{12}$$

При $\delta \gg h$ (низкочастотная область)

$$\tan \psi \approx \frac{ah}{\delta^2} = \pi ah\sigma \mu \mu_0 \nu \tag{13}$$

2 Используемое оборудование

В работе используются: генератор сигналов АКИП—3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS—620, RLC-метрю.

3 Результаты измерений и обработка данных

Построим график в координатах $1/\xi^2 = f(\nu^2)$:

N	1	2	3	4	5	6	7	8	9	10
I, MA	202	192	193	190	186	193	180	184	185,5	183
V, MB	66,1	89	120	142	162,3	192,2	199,7	223,6	232,5	238
const (const * nu_h)	0,01	0,015	0,02	0,025	0,03	0,035	0,04	0,045	0,0475	0,05
nu_h, Гц	22,5	33,75	45	56,25	67,5	78,75	90	101,25	106,875	112,5

Из графика видно, что при $\nu = 0$:

$$\xi_0 = \frac{1}{\sqrt{4902.3}} = 0.01428 O$$
m/ Γ u,

где ξ_0 - коэффициент пропорциональности между $\xi = \frac{U}{\nu I}$ и коэффициентом ослабления магнитного поля $|H_1|/|H_0|$.

$$\frac{1}{\xi^2} = k\nu^2 + b^2, k = \pi a h \sigma \mu_0 b$$

$$\sigma_1 = \frac{k}{\pi a h \mu_0 b} = \frac{0.207}{3.14 * 0.021 * 0.0015 * 4 * 3.14 * 10^{-7} * \sqrt{4902.7}} = (24.7 \pm 5.2) \textit{MCm/m}$$

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14
d(phi)/pi	0,8	0,8	0,816667	0,833333333	0,85	0,85	0,86	0,88	0,925926	0,933333	0,942857	0,966667	1	1
nu_h, Гц	112,5	131,25	150	168,75	187,5	206,25	225	337,5	450	562,5	675	787,5	900	1012,5
I, MA	183,00	177,45	173,10	171,14	166,87	163,99	161,53	151,96	146,37	141,97	139,92	135,88	131,86	127,81
V, MB	238,00	256,70	271,46	277,52	289,76	297,08	302,92	318,93	321,10	318,20	315,65	309,24	301,62	293,27

Далее построим график зависимости **фазового сдвига** (из предыдущих данных) от частоты $\operatorname{tg} \psi = f(\nu)$ (не забудем учесть $\pi/2$):

(Видим, что при высоких частотах - больший разброс, поэтому будем использовать первый график).

$$\tan\psi=k, k=\pi a h \sigma \mu_0$$

$$\sigma_2=\frac{k}{\pi a h \mu_0}=\frac{0.0073}{3.14*0.021*0.0015*4*3.14*10^{-7}}=(58.7\pm3.1)MC\text{M/M}$$

Проделаем похожие действия, только при $\psi - \pi/4 = f(\sqrt(\nu))$:

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d(phi)/pi	1	1,090909	1,2	1,333333333	1,363636	1,4	1,5	1,571429	1,666667	1,666667	1,769231	1,869565	1,904762	2	2,03703704
nu_h, Гц	1012,5	3300	5475	7650	9825	12000	14175	16350	18525	20700	22875	25050	27225	29400	31575
I, MA	125,78	71,01	43,69	33,24	28,02	19,17	15,62	12,40	9,43	8,39	7,23	6,61	3,85	2,63	1,26
V, MB	288,94	160,61	93,88	67,95	55,01	34,19	26,70	20,69	16,06	13,97	13,15	12,68	9,82	8,42	6,02

$$\tan\psi - \frac{\pi}{4} = \sqrt{k}, k = h\sqrt{\pi a\sigma\mu_0}$$

$$\sigma_3 = \frac{k^2}{\pi ah\mu_0} = \frac{0.0505^2}{3.14*0.0015^2*4*3.14*10^{-7}} = 287MC\text{M}/\text{M}$$

Теперь построим **график зависимости индуктивности катушки** от частоты $L(\nu)$:

N	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
пи, Гц	50		75	100	150	250	300	500	800	1500	2000	2500	3000	5000	6000	7500	10000	15000	20000	25000	30000
L_s, mГн	9,85	9	1,3	8,55	7,2	5,3	4,8	3,67	3,2	2,96	2,92	2,9	2,893	2,8918	2,9012	2,9211	2,9811	3,226	3,73	4,79	7,68
R s, OM	27	26	8,8	28,7	31,5	32,3	33,2	35,1	35	36,2	36,6	36,9	34,2	36,62	38,12	40,96	47,3	64,4	98,2	185,45	581,5

Откуда:

$$L_{max} = 9,85$$
м Γ н $L_{min} = 2,89$ м Γ н

Построим теперь следующий график:

$$k = (\pi a h \sigma \mu_0)^2$$

$$\sigma_4 = \frac{\sqrt{k}}{\pi a h \mu_0} = \frac{\sqrt{0,00005854}}{3.14*0.021*0.0015*4*3.14*10^{-7}} = (61.6 \pm 4.8) \textit{MCm/m}$$

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5—58 МСм/м.

Практические	nu_h, Γц	22,5	33,75	45	56,25	67,5	78,75	90	101,25	106,875	112,5						
	[H1]/[H0]	1,01825	0,961616	0,967382166	0,930248	0,905083	0,885385	0,863077	0,840322	0,821088	0,809394	п.3					
	nu_h, Γιι	112,5	131,25	150	168,75	187,5	206,25	225	337,5	450	562,5	675	787,5	900	1012,5		
	[H1]/[H0]	0,809394	0,771661	0,731997733	0,672786	0,648424	0,614943	0,583537	0,435387	0,341315	0,278983	0,233986	0,20234	0,177944	0,15866445	n.4	
	nu_h, Γιι	1012,5	3300	5475	7650	9825	12000	14175	16350	18525	20700	22875	25050	27225	29400	31575	
	[H1]/[H0]	0,158845	0,047987	0,027476578	0,018711	0,013989	0,010407	0,008442	0,007143	0,006437	0,005632	0,005567	0,005364	0,006563	0,00762422	0,010622 n	.5
Теоретические	nu_h, Γц	22,5	33,75	45	56,25	67,5	78,75	90	101,25	106,875	112,5						
	[H1]/[H0]	0,989204	0,976188	0,958799538	0,937751	0,913814	0,887758	0,860296	0,832055	0,817811	0,803562	для малых					
	nu_h, Гц	112,5	131,25	150	168,75	187,5	206,25	225	337,5	450	562,5	675	787,5	900	1012,5	для малых	
	[H1]/[H0]	0,803562	0,756619	0,711491495	0,668972	0,629429	0,592956	0,55948	0,410371	0,319784	0,26067	0,219516	0,189371	0,1664	0,14834312		
	nu_h, Γιι	1012,5	3300	5475	7650	9825	12000	14175	16350	18525	20700	22875	25050	27225	29400	31575 д	ля больших
	[H1]/[H0]	0,146839	0,046658	0,025301396	0,015982	0,010952	0,007905	0,005917	0,004552	0,003576	0,002859	0,002318	0,001902	0,001577	0,00131871	0,001112	

4 Заключение

В заключение можно сказать, что в данной лабораторной работе мы научились исследовать явление проникновение переменного магнитного поля в медный полый цилиндр.