Отчёт по лабораторной работе №2

Вариант 39

Александр Олегович Воробьев

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	8
Выводы	17
Список литературы	18

Список иллюстраций

1	Определение данных значений, выражение t лодки и t катера	
2	Тангенциальная и радиальная скорости, расчёт тангенциальной	
	скорости	11
3	Система дифференциальных уравнений	11
4	Начальные условия	12
5	Уравнение описывающее траекторию движения катера	13
6	Обозначение переменных	13
7	Функция движения катера	13
8	Обозначение значений переменных для первого случая	14
9	Объявление tetha, вызов функции ode	14
10	Функция движения лодки	14
11	Переменная t	14
12	Вызов функций polarplot и plot2d: 1 случай	14
13	Модель траекторий: 1 случай	15
14	Обозначение значений переменных для второго случая	15
15	Модель траекторий: 2 случай	16

Список таблиц

Цель работы

Изучить задачу о погоне и реализовать модель траекторий (лодки и катера) программно.

Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 21 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,5 раза больше скорости браконьерской лодки.

- 1. Записать уравнение описывающее движение катера, с начальными условиями для двух случаев.
- 2. Построить траекторию движения катера и лодки для вдух случаев.
- 3. Найти точку персечения траектории катера и лодки.

Теоретическое введение

Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v.

Скорость катера раскладывается на две составляющие: vr - радиальная скорость и vt - тангенциальная скорость.

Радиальная скорость - это скорость, с которой катер удаляется от полюса.

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса.

Выполнение лабораторной работы

1. Проводим рассуждения, аналогичные примеру.

Обозначаем исходные данные из условия, выражаем время, пройденное за расстояние х:

Рис. 1: Определение данных значений, выражение t лодки и t катера

Находим значения x1 и x2 для первого и второго случая соответственно:

55xx, = 2011-x/ 55 X, = K-X, 68X12K

Раскладываем скорость катера на две составляющие: радиальную и тангенциальную скорос

Рис. 2: Тангенциальная и радиальная скорости, расчёт тангенциальной скорости

Получаем систему из двух дифференциальных уравнений:

Рис. 3: Система дифференциальных уравнений

Решаем систему со следующими начальными условиями:

Рис. 4: Начальные условия

Исключая из полученной системы производную по t, переходим к следующему уравнению:

Рис. 5: Уравнение описывающее траекторию движения катера

2. Пишем программу для построения модели, описывающей траектории лодки и катера.

Задаём начальное расстояние от лодки до катера, указанное в условии варианта, угол fi

```
s -= ·21; ·//·начальное -расстояние · от · лодки · до · катера
fi ·= ·3*%pi/4;
```

Рис. 6: Обозначение переменных

Прописываем функцию dr, описывающую движение катера береговой охраны:

```
function dr = \frac{f}{f}(tetha, r)

dr = \frac{r}{sqrt}(29.25);

endfunction;
```

Рис. 7: Функция движения катера

Подставляем значения r0 и tetha для первого случая:

```
r0 -= -s/6,5;
tetha0 -= -0;
```

Рис. 8: Обозначение значений переменных для первого случая

Tetha меняется от 0 до pi^2^:

```
tetha = \cdot 0:0.01:2*pi;

r = \cdot ode(r0, \cdot tetha0, \cdot tetha, \cdot \underline{f});
```

Рис. 9: Объявление tetha, вызов функции ode

Прописываем функцию xt, которая описывает движение лодки:

```
function · xt=f2(t) · //описывает · движение · катера
    · · · · xt ·= · tan(fi)*t;
endfunction;
```

Рис. 10: Функция движения лодки

Переменная t принимает значения от 0 до 30:

```
t == 0:1:30;
```

Рис. 11: Переменная t

Вызывая функции polarplot и plot2d строим траектории катера и лодки для первого случа

```
роlarplot (tetha, -r, -style=color('green')); -//траектория - катера plot2d(t, -\underline{f2}(t), -style=color('red'));//лодка
```

Рис. 12: Вызов функций polarplot и plot2d: 1 случай

Запускаем программу для отображения модели с траекториями для первого случая:

Рис. 13: Модель траекторий: 1 случай

Меняем значения r0 и tetha под второй случай:

Рис. 14: Обозначение значений переменных для второго случая

Запускаем программу для отображения модели с траекториями для второго случая:

Рис. 15: Модель траекторий: 2 случай

Выводы

В ходе выполнения лабораторной работы я изучил теорию для решения задачи о погоне и реализовал модели для двух случаев, допускаемых этой задачей.

Список литературы

- 1. Кулябов Д.С. Задача о погоне. 4 с.
- 2. Полярная система координат [Электронный ресурс]: Википедия. Свободная энциклопедии. URL: https://ru.wikipedia.org/wiki/Полярная_система_координат (дата обращения: 18.