Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de función
- * Dominio, Codominio y Rango
- * Funciones inyectivas, sobreyectivas y biyectivas
- * Función inversa

Noción de función

 Una función permite representar la relación entre dos conjuntos

Noción de función

 Una función permite representar la relación entre dos conjuntos

A = {Arias, Benavides, Calero, Cardona, Navarrete}

 $B = \{1.2, 2.9, 4.5, 4.9, 5.0\}$

Noción de función

 Una función permite representar la relación entre dos conjuntos

Noción de función

Una función permite representar la relación entre dos

conjuntos

Noción de función

 Una función permite representar la relación entre dos conjuntos

Función

Función

Función

• Dados dos conjuntos A y B, una función f de A a B, denotada como f: $A \rightarrow B$, asigna a cada elemento de A exactamente un elemento de B

No es función porque z debe tener un valor asignado en B

Función

Función

Función

Función

• Dados dos conjuntos A y B, una función f de A a B, denotada como f: $A \rightarrow B$, asigna a cada elemento de A exactamente un elemento de B

No es función porque debe asignarse exactamente un elemento de B

Función

Indique si la siguiente relación entre los conjuntos $A=\{w,x,y,z\}$ y $B=\{1,2,3,4\}$ es una función.

$$f(w)=3$$
, $f(x)=4$, $f(y)=4$, $f(z)=3$

Indique si la siguiente relación entre los conjuntos $A=\{w,x,y,z\}$ y $B=\{1,2,3,4\}$ es una función.

$$f(w)=3$$
, $f(x)=4$, $f(y)=4$, $f(z)=3$

Es función

Indique si la siguiente relación entre los conjuntos $A=\{a,b,c,d\}$ y $B=\{a,b,c,d\}$ es una función.

$$f(c)=d$$
, $f(a)=c$, $f(b)=a$, $f(c)=b$, $f(d)=c$

Indique si la siguiente relación entre los conjuntos $A=\{a,b,c,d\}$ y $B=\{a,b,c,d\}$ es una función.

$$f(c)=d$$
, $f(a)=c$, $f(b)=a$, $f(c)=b$, $f(d)=c$

No es función

Las funciones se pueden especificar por medio de fórmulas, por ejemplo,

$$f(x)=x+1$$
, de Z a Z

Las funciones se pueden especificar por medio de fórmulas, por ejemplo,

$$f(x)=x+1$$
, de Z a Z

Las funciones se pueden especificar por medio de fórmulas, por ejemplo,

$$f(x)=x+1$$
, de Z a Z

Indique si cada f es, o no, una función de R en R:

•
$$f(x)=1/x$$
 $f(0)=\frac{1}{2}$

•
$$f(x)=\sqrt{x}$$
 $f(-1)=$ $j\in \mathcal{L}$

•
$$f(x)=x^2+1$$

Indique si cada f es, o no, una función de R en R:

- f(x)=1/x. no es una función porque f(0) no está definida
- $f(x)=\sqrt{x}$. no es una función porque f(-1) no está definida
- $f(x)=\pm x$. no es una función porque asigna dos valores a x
- $f(x)=x^2+1$. si es una función

Dominio, Codominio y Rango

Si f es una función de A a B, se dice que:

- A es el dominio
- · B es el codominio

• El rango de f es el conjunto de todas las imágenes de los elementos de A. Si f(a)=b se dice que b es la imagen de a

- Dominio={x,y}
- **Codominio**={1,4,8}
- Rango={1,4}

- Dominio={x,y,z}
- Codominio={a,b,c,d,e}
- Rango={a,c,e}

Indique el rango de la siguiente función:

• $f(x)=x^2$, de los reales a los reales

$$D = R$$

$$C = R$$

$$C > R$$

$$C > 0$$

Indique el rango de la siguiente función:

- $f(x)=x^2$, de los reales a los reales
 - Dominio=R
 - Codominio=R
 - Rango=R⁺∪0

Indique el rango de la siguiente función:

• $f(x)=x^2+4$ de los reales a los reales

$$D=R$$
 $CD=R$ $R^{\dagger} \geq V$

Indique el rango de la siguiente función:

- $f(x)=x^2+4$ de los reales a los reales
 - Dominio=R
 - Codominio=R
 - Rango=Reales mayores o iguales a 4

Sea f la función que toma cualquier cadena de 3 bits y devuelve la cantidad de 1's. Indique el dominio y el rango

Sea f la función que toma cualquier cadena de 3 bits y devuelve la cantidad de 1's. Indique el dominio y el rango

Sea f la función que toma cualquier cadena de 3 bits y asigna el valor absoluto de la diferencia entre la cantidad de 1's y 0's Indique el dominio y el rango

$$000 \rightarrow 3 \qquad 010 \rightarrow 1$$

$$110 \rightarrow 1$$

Tipos de funciones

- Inyectiva
- Sobreyectiva
- Biyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Función inyectiva

Indique cuáles de las siguientes funciones son inyectivas:

- f de {a,b,c,d} a {1,2,3,4,5} donde f(a)=4, f(b)=5, f(c)=1 y f(d)=3
- $f(x)=x^2$ de los enteros a los enteros
- f(x)=x+1 de los enteros a los enteros

f de $\{a,b,c,d\}$ a $\{1,2,3,4,5\}$ donde f(a)=4, f(b)=5, f(c)=1 y f(d)=3

Es inyectiva

• $f(x)=x^2$ de los enteros a los enteros, **no es inyectiva** porque f(1)=f(-1)=1

• f(x)=x+1 de los enteros a los enteros, si es inyectiva porque cada x tiene un solo y asignado, x+1

Función sobreyectiva

Función sobreyectiva

- Una función f es sobreyectiva, si y solo si, para cada elemento $b \in B$ (codominio), existe un elemento $a \in A$ tal que f(a)=b
- Una función es sobreyectiva si el codominio es igual al rango

Función sobreyectiva

Función sobreyectiva

Es sobreyectiva

Función sobreyectiva

Función sobreyectiva

• Una función f es sobreyectiva, si y solo si, para cada elemento $b \in B$, existe un elemento $a \in A$ tal que f(a)=b

No es sobreyectiva porque 10 no está en el rango

Función sobreyectiva

Función sobreyectiva

Función sobreyectiva

Función sobreyectiva

Indique cuáles de las siguientes funciones son sobreyectivas:

- f de {a,b,c,d} a {1,2,3} donde f(a)=3, f(b)=2, f(c)=1 y f(d)=3
- $f(x)=x^2$ de los enteros a los enteros \times
- f(x)=x+1 de los enteros a los enteros

f de $\{a,b,c,d\}$ a $\{1,2,3\}$ donde $\{a,b,c,d\}$ a $\{a,b,c,d\}$ a

Es sobreyectiva

• $f(x)=x^2$ de los enteros a los enteros, **no es sobreyectiva** porque -1 que está en el codominio no está en el rango

• f(x)=x+1 de los enteros a los enteros, si es sobreyectiva porque cada y del codominio es una imagen

Función biyectiva

Función biyectiva

Función biyectiva

Función biyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

No es biyectiva porque no es inyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

Función biyectiva

· Una función f es biyectiva si es inyectiva y sobreyectiva

No es biyectiva porque no es sobreyectiva

Indique si la función f de $\{a,b,c,d\}$ a $\{1,2,3,4\}$ donde f(a)=4, f(b)=2, f(c)=1, f(d)=3 es biyectiva

Indique si la función f de $\{a,b,c,d\}$ a $\{1,2,3,4\}$ donde $\{a,b,c,d\}$ a $\{b,c,d\}$ donde $\{a,b,c,d\}$ a $\{a,b,c,d\}$ donde $\{a,b,c,d\}$ dond

Es biyectiva

Clasifique cada una de las siguientes funciones como inyectiva, sobreyectiva o biyectiva

Inyectiva pero no sobreyectiva

Sobreyectiva pero no inyectiva

Biyectiva

Ni inyectiva ni sobreyectiva

No es función

Función inversa

Dada una función $f:A \rightarrow B$, la función inversa de f, denotada por f^{-1} , asigna a un elemento $b \in B$ un solo elemento $a \in A$ tal que f(a)=b

Función inversa

Dada una función $f:A \rightarrow B$, la función inversa de f, denotada por f^{-1} , asigna a un elemento $b \in B$ un solo elemento $a \in A$ tal que f(a)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{a,b,c,d\}$, $B=\{1,2,3,4\}$ y f(a)=2, f(b)=3, f(c)=1, f(d)=4

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{a,b,c,d\}$, $B=\{1,2,3,4\}$ y f(a)=2, f(b)=3, f(c)=1, f(d)=4

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

 La relación que hay de B→A no es una función f⁻¹(a)=x f⁻¹(a)=y

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y,z\}$, $B=\{a,b\}$ y f(x)=a, f(y)=a, f(z)=b

 La relación que hay de B→A no es una función f⁻¹(a)=x f⁻¹(a)=y

f-1 no está definida cuando f no es inyectiva

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

• La relación que hay de $B \rightarrow A$ no es una función porque no se tiene $f^{-1}(c)$

Muestre la inversa para $f:A \rightarrow B$, donde $A=\{x,y\}$, $B=\{a,b,c\}$ y f(x)=a, f(y)=b

• La relación que hay de $B \rightarrow A$ no es una función porque no se tiene $f^{-1}(c)$

f-1 no está definida cuando f no es sobreyectiva

Función inversa

Una función $f:A \rightarrow B$ es invertible si es biyectiva

Indique cuáles de las siguientes funciones son invertibles.

f:R
$$\rightarrow$$
R

• f(x)=2x+1

• f(x)=x^2+1

• f(x)=x^3

• f(x)=(x^2+1)/(x^2+2)

• \Rightarrow S

• N \Rightarrow S

Indique cuáles de las siguientes funciones son invertibles. f:R→R

- f(x)=2x+1, es invertible
- $f(x)=x^2+1$, no es invertible. f(-1)=f(1)=1 no es inyectiva
- $f(x)=x^3$, es invertible
- $f(x)=(x^2+1)/(x^2+2)$, no es invertible. no es inyectiva [f(-1)=f(1)=2/3], ni sobreyectiva (1 no es imagen en f)

Determine si las siguientes funciones, de R a R, son invertibles:

Determine si las siguientes funciones, de R a R, son invertibles:

- f(x)=[x/2]. no, no es inyectiva. f(1)=f(2)=1
- $f(x)=3x^2+7$. **no**, no es inyectiva. f(1)=f(-1)=10
- f(x)=(x+1)/(x+2). **no**, no es sobreyectiva. 1 no es imagen
- $f(x)=x^5+1$. si

Dadas las siguientes funciones de los enteros a los enteros, complete la tabla indicando si cumple, o no, cada propiedad

•
$$f_1(x) = x^2 - 1$$

•
$$f_2(x) = 5x - 8$$

1.		Α.	_	L
l)	0	n	חו	. 2
$\boldsymbol{\smile}$	•	111	,,,	

Cod	Ö	M //	110
	•	' '	,

_	Inyectiva	Sobreyectiva	Biyectiva
f ₁	No	No	NO
f ₂	8	5I	SI

Justifique solamente las propiedades que no se cumplen

Las función son invertibles si y sólo sí son biyectivas

• f_1 de {a,b,c,d} a {1,2,3} donde $f_1(a)=3$, $f_1(b)=1$, $f_1(c)=2$ y $f_1(d)=3$

Rongo- R

- $f_2(x)=x^2+4$ de los <u>reales</u> a los <u>reales positivos mayores o iguales a 4.0</u>
- $f_3(x)=x^3+1$ de los reales a los reales

F(-1)= F(2)

	Inyectiva	Sobreyectiva	Biyectiva
f_1	V 0	SI	VØ
f ₂	NO	SI	NO
f ₃	St	st	S±

Indique si las siguientes funciones son invertibles de Enteros positivos a Enteros, indicando si son invectivas o sobreyectivas

$$2) \quad x^3 + 8x \rightarrow \mathcal{I} = \checkmark \qquad \mathcal{S} = \checkmark$$

3)
$$-x+3 \rightarrow \bot = \checkmark \{2, 1, 0, -1, -0\}$$

78. a) Show that a partial function from
$$A$$
 to B can be viewed as a function f^* from A to $B \cup \{u\}$, where u is not an element of B and

$$f^*(a) = \begin{cases} f(a) \text{ if } a \text{ belongs to the domain} \\ \text{of definition of } f \\ u \text{ if } f \text{ is undefined at } a. \end{cases}$$

$$F(x) \times F(x) = 0$$

$$X \notin S \qquad S \subseteq U$$

$$S \subseteq U$$

72. Suppose that f is a function from A to B, where A and Bare finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.

