Piecewise linear approximations of sigmoid-type functions

Daniel Coble^a

^aDepartment of Mechanical Engineering, University of South Carolina

1. Introduction

An important component of neural networks is the nonlinear activation function. In edge computing, however, it is not always possible to use the computationally intensive functions which an off-line model was trained with. Therefore, there is a need to create approximations of activation functions which are computationally cheap but still yield relatively accurate results.

This work follows from a paper by Amin, Curtis and Hayes-Gill. In that paper, the authors create a piecewise linear approximation (PLAN or PWL approximation) of the sigmoid function $y = \frac{1}{1+e^{-x}}$. By choosing slopes which are powers of 2, multiplication can be replaced with shift operations (in the case of fixed-point numbers).

A natural question is what is the 'best' that we can do under this constraint? Below I create a methodology for finding a best linear approximation. I apply it to three functions: the sigmoid function above, and two other similar functions: arctan and tanh.

2. Methodology

First, we must define what we mean by the 'best' approximation. Let f(x) be our sigmoidal function and $\bar{f}(x)$ be the PWL approximation. We will say that the best function is the one with the minimum maximum variation between f(x) and $\bar{f}(x)$ (maximum across x, minimum across f(x)). Another way to say it is we would like to minimize the score $\max(|f(x) - \bar{f}(x)|)$.

We will use four properties which all three functions share:

- 1. All f(x) are related by some h(y) such that f(-x) = h(f(x)). arctan and tanh are odd, so h(y) = -y For the sigmoid function σ we have h(y) = 1 y.
- 2. The functions are asymptotic

$$\lim_{x \to \infty} f(x) = c$$

- 3. In the positive domain the functions have a positive derivative.
- 4. In the positive domain the functions have a negative second derivative.

Item 1. tells us that we only have to worry about the positive domain. To perform the function on a negative value x < 0, we take h(f(-x)). Let our piecewise function take the form

$$\bar{f}(x) = \begin{cases} m_0 x + b_0 & 0 \le x < x_{c1} \\ m_1 x + b_1 & x_{c1} \le x < x_{c2} \\ \vdots & \vdots \\ m_n x + b_0 & x_{cn} \le x < x_{cn+1} \\ c & x > x_{cn+1} \end{cases}$$

Preprint submitted to December 16, 2021

Where $m_0...m_n$ are given. For our case we have $m_{i+1} = \frac{1}{2}m_i$, and for all three functions, the derivative at 0 is a reasonable choice for m_0 .

$$\frac{d}{dx}\sigma(x) = \frac{1}{4}$$
$$\frac{d}{dx}\arctan = \frac{d}{dx}\tanh = 1$$

The only thing necessary for the proof though is that m_i are given. We must choose x_{ci} and b_i to minimize $\max(|f(x) - \bar{f}(x)|)$. Still, there is a trivial way to create a 'best' $\bar{f}(x)$ by taking very small line segments. This isn't useful, so we say that $\bar{f}(x)$ must also be continuous on x > 0.

2.1. Lemma

Let x_{di} be the value such that

$$\frac{df}{dx}x_{di} = m_i$$

 x_{di} is unique (there is only one x_{di} such that $\frac{df}{dx}x_{di}=m_i$. x_{di}). This follows from the fourth item in the list of properties.

2.2. Lemma

For a single line segment $m_i x + b_i$, x is bounded by x_{di} and x_c ($x_{di} \le x \le x_c$ if $x_{di} \le x_c$, $x_{di} \ge x \ge x_c$ if $x_{di} \ge x_c$), the maximum variation can only occur at x_{di} or x_c .

It is a calculus principle that at a maximum can only occur at endpoints or where the derivative is zero.

$$\frac{d}{dx}\max(|f(x) - m_i x + b_i|) = 0$$

$$f'(x) = \pm m_i$$

The third item in the list of properties states that f'(x) > 0.

$$f'(x) = m_i$$

which is x_{di} , already an endpoint.

2.3. Lemma

Varying only b_i , a line segment $m_i x + b_i$, bounded by x_{di} and x_c , will be at a minimum when $f(x_{di}) - (m_i x_{di} + b_i) = (m_i x_c + b_i) - f(x_{di}) \ge 0$.

Assume that in all locations where the maximum variation occurs, $f(x) - (m_i x + b_i)$, has the same sign. Then $m_i x + b_i$ is not at a minimum because b_i can be changed to reduce the maximum variation (increased if $f(x) - (m_i x + b_i)$ is positive, decreased if $f(x) - (m_i x + b_i)$ is negative). So the maximum variation must occur at two locations (both endpoints), and $f(x) - (m_i x + b_i)$ must have different signs at those two locations.

If $x_c \leq x_{di}$, then by property 4 we have

$$\frac{d}{dx}(f(x_c) - (m_i x_c + b_i)) = f'(x_c) - m_i) \ge 0$$

If $f(x_c) - (m_i x_c + b_i) \ge 0$, $f(x_{di}) - (m_i x_{di} + b_i) \ge 0$ and the line segment is not at a minimum. If $x_c \ge x_{di}$, then we have

$$\frac{d}{dx}(f(x_c) - (m_i x_c + b_i) = f'(x_c) - m_i) \le 0$$

If $f(x_c) - (m_i x_c + b_i) \ge 0$, $f(x_{di}) - (m_i x_{di} + b_i) \ge 0$ and the line segment is not at a minimum. Therefore, if the line segment is at a minimum, $f(x_c) - (m_i x_c + b_i) \le 0$ (for all x_c) and $f(x_{di}) - (m_i x_{di} + b_i) \ge 0$. (It's easier to understand this through a graph)

2.4. Definition

So now with given x_c we can vary b_i to create the best line from x_{di} to x_c . We also know that the maximum variation will occur at x_c . Let's create a function $g_i(x)$ which takes as input x_c and outputs $m_i x_c + b_i$ for the best b_i . There's a few steps of math but eventually we get

$$g_i(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x_{di}) - \frac{1}{2}m_ix_{di} + \frac{1}{2}m_ix_{di}$$

Figure 1: f(x) (black) and a $g_i(x)$ (blue dashed)

And we can make another function G(x) defined as

$$G(x) = \min_{i}(g_i(x))$$

2.5. Lemma

 $\max(G(x) - f(x))$ is a lower bound to $\max(|f(x) - \bar{f}(x)|)$.

Let x_G be the value satisfying

$$G(x_G) - f(x_G) = \max(G(x) - f(x))$$

Assume we have $\bar{f}(x_G) - f(x) < G(x_G) - f(x_G)$ (or simply $\bar{f}(x_G) < G(x_G)$). Say at x_G , $\bar{f}(x) = m_i x + b_i$. If x_{di} lies within x_{ci} to x_{ci+1} , then by the definition of G(x),

$$f(x_{di}) - m_i x_{di} + b_i > G(x_G) - f(x_G)$$

. If x_{di} lies outside x_{ci} to x_{ci+1} , we can see that

$$f(x) - \bar{f}(x) > f(x_{di}) - m_i x_{di} + b_i > G(x_G) - f(x_G)$$

(This is hard to explain in words, but easy to see from a graph. We rely on \bar{f} being continuous.)

Figure 2: This cluttered diagram (not to scale) explains this argument. In blue we have what I am proposing as the best PWL function. We can see that at three different places it has a variation Δ (purple lines). If we try to propose any other PWL with a smaller variation at x_G (dashed red lines), this function must have a greater variation at one of the two x_d . If the function has another piecewise segment before reaching x_d (branches on the dashed red lines), it will have a strictly greater variation.

2.6. Final Steps

So we have that $\max(G(x) - f(x))$ is a lower bound to the maximum variation. Let's name this Δ . If we can create a PWL function which has a maximum variation of Δ then we are done. This can be done by choosing starting at x_G and expanding on either side, choosing the next x_c when $m_i x + b_i$ intersects G(x). To the left, this will eventually hit the x-intercept. To the right, this can repeat until we choose to round off to the asymptote. One thing I want to include in the tables in Results is how many line segments are required so that this round off is less than Δ .

We can calculate x_G . We know x_G will occur at a point where two g(x) functions intersect, say $g_i(x)$ and $g_{i+1}(x)$. Then we can show that.

$$x_G = \frac{f(x_{di}) - f(x_{di+1}) - m_i x_{d_i} + m_{i+1} x_{di+1}}{m_{i+1} - m_i}$$
$$\Delta = g_i(x_G) - f(x_G)$$

This means we can get a closed form solution if x_{di} can be explicitly solved for. Otherwise we need the use of a numerical solver.

3. Results

I want to create tables for x_c and b, also some graphs. Right now my code doesn't necessarily produce a continuous PWL function.

f(x)	Δ
σ	0.01132
arctan	0.02606
tanh	0.02265

Acknowledgments

References