University of Texas at Dallas

CS 6364

Artificial Intelligence

Fall 2020

Instructor: Dr. Sanda Harabagiu

Bayesian Networks Problems Set 2

Problem 1.

A) Given the following Bayesian Net:

With the CPTs:

At node A:

Α	P(A)
Т	0.4
F	0.6

At node B:

At node C:

С	P(C)
T	0.3
F	0.7

At node D:

Α	В	P(D)
Т	Т	1
Т	F	0.5
F	Т	0.9
F	F	0

At node E:

С	P(E)
Т	0.9
F	0.7

At node F:

С	D	P(F)
Т	Т	0.4
Т	F	0.3
F	Т	0.2
F	F	0.1

Compute the probability of each node in the network.

Solution Method 1 (Possible Worlds)

P(A)=0.4 P(B)=0.8 P(C)=0.3

At node D:	Α	В	P(D)	P(W)
	Т	Т	1	$0.4 \times 0.8 = 0.32$
	T	F	0.5	$0.4 \times (1 - 0.8) = 0.08$
	F	Т	0.9	$(1 - 0.4) \times 0.8 = 0.48$
	F	F	0	$(1 - 0.4) \times (1 - 0.8) = 0.12$

We compute: $P(D) = 1 \times 0.32 + 0.5 \times 0.08 + 0.9 \times 0.48 + 0 \times 0.12 = 0.792$

At node E: C P(E) P(W)
T 0.9 0.3
F 0.7 (1-0.3)=0.7

 $P(E) = 0.9 \times 0.3 + 0.7 \times 0.7 = 0.76$

 $P(F) = 0.4 \times 0.2376 + 0.3 \times 0.0624 + 0.2 \times 0.5544 + 0.1 \times 0.1456 = 0.2392$

Method 2 (Variable Elimination)

Build initial factors:

	Α	g(A)	В
	1	0.4	1
	0	0.6	0
P(A)=0.4			P(

В	g(B)	
1	0.8	
0	0.2	
P(R) = 0.8		

С	g(C)
0	0.3
1	0.7
P(0	C) = 0.3

Α	В	D	g(D)
1	1	1	1
1	1	0	0
1	0	1	0.5
1	0	0	0.5
0	1	1	0.9
0	1	0	0.1
0	0	1	0
0	0	0	1

To compute P(D) we need to compute:

 $h1 = g(D) \times g(A) \times g(B)$

Α	В	D	h1
1	1	1	$1 \times 0.4 \times 0.8 = 0.32$
1	1	0	$0 \times 0.4 \times 0.8 = 0$
1	0	1	$0.5 \times 0.4 \times 0.2 = 0.04$
1	0	0	$0.5 \times 0.4 \times 0.2 = 0.04$
0	1	1	$0.9 \times 0.6 \times 0.8 = 0.402$
0	1	0	$0.1 \times 0.6 \times 0.8 = 0.048$
0	0	1	$0 \times 0.6 \times 0.2 = 0$
0	0	0	$1 \times 0.6 \times 0.2 = 0.12$

Then eliminate A => h2

В	D	h2
1	1	0.32 + 0.402 = 0.722
1	0	0 + 0.048 = 0.048
0	1	0.04 + 0 = 0.04
0	0	0.04 + 0.12 = 0.16

Then eliminate B => h3

D	h3
1	0.722 + 0.04 = 0.762
0	0.048 + 0.16 = 0.204

$$P(D) = alpha < 0.762, 0.204 > = < 0.792, 0.208 > P(D) = 0.792$$

Then we still need to compute P(E) and P(F). Let us first compute P(E). To build the factors for E and C we have:

			<u>.</u>		
C	Е	g(E)	and	C	g(C)
1	1	0.9		1	0.3
1	0	0.1		0	0.7
0	1	0.7			
0	0	0.3			

Computing P(E) results from generating a new factor $h4 = g(E) \times g(C)$

С	Е	h4
1	1	$0.9 \times 0.3 = 0.27$
1	0	$0.1 \times 0.3 = 0.03$
0	1	$0.7 \times 0.7 = 0.49$
0	0	$0.3 \times 0.7 = 0.21$

Now we can eliminate C from h4=>h5, a new factor:

Е	h5
1	0.27 + 0.49 = 0.76
0	0.03 + 0.21 = 0.24

$$P(E) = 0.76$$

Finally, we generate the factor g(F):

С	D	F	g(F)
1	1	1	0.4
1	1	0	0.6
1	0	1	0.3
1	0	0	0.7
0	1	1	0.2
0	1	0	0.8
0	0	1	0.1
0	0	0	0.9

Now we have two options:

Option1:

Since we already know the P(C) and P(D) we could eliminate them from g(F). Let us first use P(C)=0.3 and create a new factor h6 by eliminating C from g(F), while multiplying the values of g(F) with the corresponding values for P(C) or P(\neg C):

D	F	h6
1	1	$0.4 \times 0.3 + 0.2 \times 0.7 = 0.12 + 0.14 = 0.26$
1	0	$0.6 \times 0.3 + 0.8 \times 0.7 = 0.18 + 0.56 = 0.74$
0	1	$0.3 \times 0.3 + 0.1 \times 0.7 = 0.09 + 0.07 = 0.16$
0	0	$0.7 \times 0.3 + 0.9 \times 0.7 = 0.21 + 0.63 = 0.84$

Now we eliminate D from h6, while multiplying the values of h6 with the corresponding values of P(D)=>h7

F	h7
1	$0.26 \times 0.792 + 0.16 \times 0.208 = 0.2392$
0	$0.74 \times 0.792 + 0.84 \times 0.208 = 0.7608$

Option 2:

Compute the factors and eliminate variables from scratch. This entails that you will need to compute a new factor $h8=g(C) \times g(D) \times g(F)$. From h8, by eliminating C, you will obtain h9. Then by eliminating D from h9, you should obtain h7.

B) Compute the probability of F given B and C: P(F|BC)

Method 1: (Possible Worlds)

The parent of F is D \Rightarrow need to compute the conditional probability of D given B and C.

Α	В	P(D)	P(W)
1	1	1	$0.4 \times 1 = 0.4$
1	0	0.5	$0.4 \times 0 = 0$
0	1	0.9	$(1 - 0.4) \times 1 = 0.6$
0	0	0	$(1 - 0.4) \times 0 = 0$

$$P(D) = 1 \times 0.4 + 0.9 \times 0.6 = 0.94$$

At node F:

С	D	P(F)	P(W)
1	1	0.4	$1 \times 0.94 = 0.94$
1	0	0.3	$1 \times (1 - 0.94) = 0.06$
0	1	0.2	$0 \times 0.94 = 0$
0	0	0.1	$0 \times (1 - 0.94) = 0$

$$P(F) = 0.4 \times 0.94 + 0.3 \times 0.06 = 0.394$$

Method 2: (Variable Elimination) P(F|BC)

Since F depends on D and C, we first need to compute P(D|BC). Let us build initial factors for A and D when P(B)=1; P(C)=1:

Α	g(A)
1	0.4
0	0.6

Α	D	g1(D)
1	1	1
1	0	0
0	1	0.9
0	0	0.1

To compute P(D|BC) we need to compute:

$$f1 = g1(D) \times g(A)$$

Α	D	f1
1	1	1 x 0.4=0.4
1	0	0 x 0.4=0
0	1	0.9 x 0.6=0.54
0	0	0.1 x 0.6=0.06

Then eliminate A from f1=> f2

D	f2
1	0.4_0.54=0.94
0	0.06

We can see how we can generate the factor for F, when P(C)=1 and P(B)=1. We notice that F is influenced by both C and D, but P(C)=1, therefore we have the factor g1 for F as:

D	F	g1(F)
1	1	0.4
1	0	0.6
0	1	0.3
0	0	0.7

The new factor for F when P(C)=1 and P(B)=1 results from f2 x g1(F)=f3

D	F	f3
1	1	$0.4 \times P(D) = 0.4 \times 0.94 = 0.376$
1	0	$0.6 \times P(D) = 0.6 \times 0.94 = 0.564$
0	1	$0.3 \times P(\neg D) = 0.3 \times 0.06 = 0.018$
0	0	$0.7 \times P(\neg D) = 0.7 \times 0.06 = 0.042$

Now we can reduce D from $f3 \Rightarrow$ generate a new factor f4

F	f4
1	0.376+0.018= 0.394
0	0.564+0.042=0.606

Problem 2

Given the Bayesian Network:

and the CPTs:

At node A:

A P(A)

T a1

F (1-a1)

At node B:

At node C:

Compute $P(A|B,\neg C)$

Solution:

Use Bayes' Rule:

$$P(A|B,\neg C) = \frac{P(B,\neg C|A) \times P(A)}{P(B,\neg C)}$$

a) Compute P(A) = a1

b) Compute
$$P(B,\neg C|A) = P(B|A) \times P(\neg C|A) = b1(1-c1)$$

c) Compute P(B, \neg C) or the normalization constant, *alpha*.

For computing *alpha* we need to compute also $P(B, \neg C| \neg A) \times P(\neg A) \Rightarrow$

1)
$$P(B,\neg C|\neg A) = P(B|\neg A) \times P(\neg C|\neg A) = b0 \times (1 - c0)$$

2) Then P(B, \neg C| \neg A) x P(\neg A) = b0×(1-c0)×(1-a1)

$$alpha = \frac{1}{a1 \times b1 \times (1 - c1) + b0 \times (1 - c0) \times (1 - a1)}$$

Then we have:

$$P(A|B, \neg C) = \frac{a1 \times b1 \times (1 - c1)}{a1 \times b1 \times (1 - c1) + b0 \times (1 - c0) \times (1 - a1)}$$

Problem 3

Given the following Bayesian network:

В

with the following CPTs:

Compute P(A|B).

Solution:

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Compute
$$P(A) \Rightarrow P(A) = a1$$

$$P(B|A) \Rightarrow P(B|A) = b1$$

$$P(B) \Rightarrow P(B) = a1 \times b1 + (1-a1) \times b0$$

then
$$P(A \mid B) = \frac{a1 \times b1}{a1 \times b1 + (1 - a1) \times b0}$$

We could have computed $P(A \mid B)$ by considering the normalization constant as well:
