CS 231

Segmentation

5/12/2017 Slide credit: G.D. Hager

- Grouping and Segmentation appear to be one of the early processes in human vision
- They are a way of *organizing* image content into "semantically related" groups
- In some applications, segmentation is the crucial step (e.g. some types of aerial image interpretation).

Grouping is the process of associating similar image features together

- Grouping is the process of associating similar image features together
- The Gestalt School:
 - Proximity:tokens that are nearby tend to be grouped.
 - Similarity:similar tokens tend to be grouped together.
 - Common fate:tokens that have coherent motion tend to be grouped together.
 - Common region:tokens that lie inside the same closed region tend to be grouped together.
 - Parallelism:parallel curves or tokens tend to be grouped together.
 - Closure: tokens or curves that tend to lead to closed curves tend to be grouped together.
 - Symmetry: curves that lead to symmetric groups are grouped together.
 - Continuity: tokens that lead to "continuous" (as in "joining up nicely", rather than in the formal sense): curves tend to be grouped.
 - Familiar Conguration: tokens that, when grouped, lead to a familiar object, tend to be grouped together

Parallelism

Symmetry

Continuity

Closure

 Segmentation is the process of dividing an image into regions of "related content"

 Segmentation is the process of dividing an image into regions of "related content"

- Both are an ill defined problem --- related or similar is often a high-level, cognitive notion
- The literature on segmentation and grouping is large and generally inconclusive --- we'll discuss a couple of algorithms and an example.

Simple Thresholding

- Choose an image criterion c
- Compute a binary image by b(i,j) = 1 if c(I(i,j)) > t; 0 otherwise
- Perform "cleanup operations" (image morphology)
- Perform grouping
 - Compute connected components and/or statistics thereof

An Example: Motion

Detecting motion:

Thresholded Motion

Detecting motion:

> 50

Candidate areas for motion

A Closer Look

Color: A Second Example

Homogeneous Color Region: Photometry

Homogeneous Region: Photometry

Sample

PCA-fitted ellipsoid

Binary Image Processing

After thresholding an image, we want to know usually the following about the regions found ...

- How many objects are in the image?
- Where are the distinct "object" components?

Connected Component Labeling

Goal: Label contiguous areas of a segmented image with unique labels

One uses a 4neighbor or 8-neighbor connectivity

Limitations of Thresholding

- A uniform threshold may not apply across the image
- It measures the uniformity of regions (in some sense), but doesn't examine the inter-relationship between regions.
- Local "disturbances" can break up nominally consistent regions

More General Segmentation

- Region Growing:
 - Tile the image
 - Start a region with a seed tile
 - Merge similar neighboring tiles in the region body
 - When threshold exceeded, start a new region

Bottom-up approach

- Region Splitting
 - Start with one large region
 - Recursively
 - Choose the region with highest dissimilarity
 - If sufficiently similar, stop, otherwise split
 - repeat until no more splitting occurs

Top-down approach

Another Example: Image Segmentation

- The goal: to choose regions of the image that have similar "statistics."
- Possible statistics:
 - mean
 - Variance
 - Histograms

An Image Histogram

How does one form a histogram?

- Let us consider a gray scale image for simplicity (image values ranging from 0-255)
- Select the number of bins n (max 256 bins)
- Width of each bin is 256/n. If n = 8, width = 32

0-32	33-64	65-96						
------	-------	-------	--	--	--	--	--	--

- Set counter for each bin to zero.
- Now for each pixel, depending on its gray scale value, increment the counter of the bin where the gray scale value of the pixel falls.
- The final counter values of the bins is the histogram of the image for the specified number of bins.

Comparing Histograms

Which is More Similar?

.906

.266

Results of a Merge Segmentation

More Examples

K-Means

Algorithm

- Choose a fixed number of clusters and initial cluster centers
- Allocate points to clusters that they are closest too
- Recompute the cluster centers
- Go back to step 2, and repeat until convergence

K-means clustering using intensity alone and color alone

An Example: BlobWorld

(Carson, Belongie, Greenspan, Malik)

The problem: query images (e.g. from the WEB) using image information

The solution: segment images into roughly uniform regions and search based on feature vectors

The features:

color texture location (i.e. spatial compactness)

Example Segmentations

Figure 5. Segmentation of randomly selected images of figers, cheetaha/leoparda/jaguars, zebras, airplanes, and baid eagles. Boundaries and regions smaller than 1% of the image (which do not become blobs) are shown in gray.

More Complex Segmentation Methods

- Snakes
- Level Sets
- Graph Cuts
- Generalized PCA

Snakes

Images taken from http://www.cs.bris.ac.uk/home/xie/content.htm

Level Sets

Images taken from http://www.cgl.uwaterloo.ca/~mmwasile/cs870/

Graph Cuts

Images taken from efficient graph-based segmentation paper

GPCA (Rene Vidal)

Human GPCA