

OOO «Сербалаб» Лицензия ЛО-78-01-007244 Адрес г. Санкт-Петербург, Большой пр. ВО д. 90, к. 2, лит «З» 8 (812) 602-93-38 Info-cerbalab.ru Cerbalab.ru

Молекулярно-генетическое тестирование по профилю «Тромбофилия»

Ф.И.О. пациента: Лабораторный номер:

Дата рождения пациента: Дата выдачи:

Пол: Направляющее учреждение:

Причина направления:

Результаты генетического тестирования

Ген	RS	Полиморфизм	Генотип эффекта	Ваш генотип	
Система свертывания крови и фибринолиза					
F2 (FII)	rs1799963	20210 G>A в 3'-концевой некодирующей части гена	G/A, A/A	G/G	
F5 (FV)	rs6025	1691G>A (Arg506Gln), мутация Лейден	G/A, A/A	G/G	
FGB (FI, FRB)	rs1800790	-455 G>A	G/A, A/A	G/A	
GPIIIa (ITGB3)	rs5918	1565 T>C (Leu33Pro), PLA1/PLA2	T/C, C/C	T/T	
PAI-1	rs1799768	5G>4G в -675 положении промоторной области гена	5G/4G, 4G/4G	5G/5G	
F7 (FVII)	rs6046	10976 G>A (Arg353Gln)	G/A, A/A	G/G	
Метаболизм гомоцистеина					
MTHFR	rs1801133	677 C>T	С/т, т/т	С/Т	

Общая информация

Система гемостаза организма — это целый комплекс веществ, который обеспечивает своевременное свертывание крови при повреждении тканей и сосудов. При нарушении свертывания кровь или долго не останавливается и проникает через неповрежденные сосуды, или свёртывается, образуя тромбы, что может приводить к закупориванию сосудов и нарушению кровоснабжения тканей и органов.

Основные проявления нарушения свертывания – повышенная кровопотеря при травмах и операциях, длительное время остановки кровотечения, геморрагические инсульты (кровоизлияние в органы и ткани).

Основные проявления нарушения противосвертывающей функции — нарушение синтеза веществ, которые препятствуют свертыванию крови. Это приводит к образованию кровяных сгустков внутри сосудов в избыточном количестве или слишком медленное последующее их растворение. Результат этого — инфаркты и ишемические (связанные с недостаточным кровоснабжением) инсульты различных органов

Генетический анализ может помочь проанализировать риск возникновения осложнений, связанных с нарушением свертывающей и противосвертывающей системы.

Анализ рекомендуется перед крупными операциями, а также тем пациентам, в чьей истории или у ближайших родственников были инсульты, инфаркты, тромбозы сосудов, проблемы с остановкой кровотечения, осложнения беременности, перед приемами КОК и ГЗТ.

Интерпретация результатов молекулярно-генетического тестирования предрасположенности к нарушению системы свертывания крови и фибринолиза

Исследование генетических факторов тромбогенного риска				
Уровень риска	среднепопуляционный	незначительно превышает	умеренно превышает	значительно превышает
Предрасположенность к наследственной тромбофилии		V		
Предрасположенность к венозным тромбоэмболиям		V		

Патологическое тромбообразование чаще вызывается сочетанием генетических и средовых факторов. При наличии генетических маркеров тромбофилии и суммарном генетическом риске выше среднепопуляционного уровня наличие средовых факторов риска имеет большее значение. Для снижения риска тромбозов необходимо уделить особое внимание и свести к минимуму наличие средовых факторов. К основным модифицируемым факторам относятся:

- курение (умножает генетический риск на 7);
- метаболический синдром ожирение, артериальная гипертония, сахарный диабет II;
- травмы, операции (необходима профилактика низкомолекулярными гепаринами);
- наличие варикозно-измененных вен;
- прием препаратов, способствующих усилению свертываемости крови;
- наличие хронической анемии (снижения уровня гемоглобина);
- другие индивидуальные факторы риска тромбоза, на которые укажет ваш лечащий врач.

Генетическая предрасположенностых нарушению системы гемостаза

Ген	Ваш генотип	Функция гена	Интерпретация (ассоциировано с)
		Ген отвечает за синтез белка	
		протромбина. Протромбин	
		является одним из главных	
		компонентов системы	
FII	G/G	свертываемости крови. В ходе	Популяционный вариант
		расщепления протромбина	
		образуетсятромбин, участвующий	
		в образовании кровяных сгустков,	
		препятствующих кровотечениям.	
		Ген отвечает за производство	
		фактора свертывания крови V —	
		белка, способствующего	
FV	G/G	образованию тромбина из	
, ,	u/ u	протромбина и являющегося одним	Популяционный вариант
		из главных компонентов системы	
		свертывания.	
	G/A	Ген кодирует бета-фибриноген —	
		один из фрагментов фибриногена	
		(фактор свертывания крови I).	
		Фибриноген — растворимый белок,	
		предшественник фибрина,	
		присутствующий в плазме крови.	Данный полиморфизм вызывает рост
FGB		Под влиянием фермента тромбина	уровня фибриногена крови на 10-30%, в
FGB		из фибриногена на заключительном	Связи с постоянно увеличенной
		этапе свертывания крови образуется	экспрессией гена. У гомозигот содержание фибриногена крови выше,
		нерастворимый белок фибрин,	чем у гетерозигот.
		который образует основу фибринового тромба. Внормальных	TOM Y TOTOPOSVITOT.
		условиях этот механизм устраняет	
		повреждения сосудов и препятствует	
		кровотечению.	
		Ген ITGB3 кодирует аминокислотную	
	T/T	последовательность белковой	
		молекулы рецептора фибриногена	
		(белок свертывания крови) на	
		тромбоцитах(клетки, отвечающие	
GpIlla		за свертываемость крови). Когда	Популяционный вариант
		фибриноген соединяется с этим	Популяционный вариан
		рецептором, тромбоциты начинают	
		склеиваться друг с другом,	
		обеспечивая остановку кровотечения.	
		Ген кодирует выработку белка	
PAI-1	5G/5G	SERPINE1 (или PAI-1), который является	
		ОДНИМ ИЗ ОСНОВНЫХ КОМПОНЕНТОВ	
		системы растворения тромбов в	
		организме. Его главная задача при	
		возникновении кровяного сгустка на	_
		месте повреждения сосуда —	Популяционный вариант
		предотвратить преждевременное	
		растворение этого сгустка и не	
		допустить возобновления	
		кровотечения. Так же белок	
		SERPINE1 (PAI-1) является участником	
		острой фазы любого воспаления.	

FVII	G/G	Кодирует белок, участвующий в процессах коагуляции, активируя факторы свертывания крови X и IX в присутствии витамина К.	Популяционный вариант
------	-----	--	-----------------------

Генетическая предрасположенность к нарушению фолатного цикла

Ген	Ваш генотип	Функция гена	Интерпретация (ассоциировано с)	Вещество
MTHFR	С/Т	Ген кодирует фермент, который в организме превращает гомоцистеин в метионин.	Снижение активности фермента, кодируемого данным геном. Фактор риска нарушения образования активной формы фолиевой кислоты, необходимой для синтеза ДНК. Фактор риска возникновения тромбов и повреждения сосудистой стенки.	Фолиевая кислота, В2(рибофлавин)

КРАТКИЕ РЕЗУЛЬТАТЫ:

- Мутаций, ответственных за развитие наследственной тромбофилии, не выявлено.
- Генетический риск венозных тромбоэмболий незначительно повышен. Расчет абсолютного риска требует тщательного анализа других рисков ВТЭО (анамнез и родословная).

Основные рекомендации будут выдаваться вашим лечащим врачом!

Результаты данного тестирования позволяют судить только о предрасположенности индивида к мультифакториальным заболеваниям с относительной вероятностью и являются важными для профилактики и диагностики, где решающее значение имеют клинические данные.

Блок для клинических специалистов (информация о генах)

Ген F2 Ген коагуляционного фактора 2; ген протромбина (Coagulation factor II MIM:176930)

Ген расположен на хромосоме 11 в локусе 11р11

Полиморфизм в этом гене ассоциирован с риском развития инфаркта миокарда и венозных тромбозов.

Протромбин (коагуляционный фактор II или F2) является одним из главных компонентов системы свертываемости крови. В ходе ферментативного расщепления протромбина образуется тромбин, что является первой стадией образования кровяных слустков.

Тромбоэмболические заболевания (ТЭ) вызываются нарушениями в системе свертываемости крови. Эти нарушения приводят и к сердечно-сосудистым заболеваниям, таким как инфаркт миокарда (риск повышается в 4 раза). Повышенный уровень протромбина крови, преклонный возраст, курение и большие полостные операции являются отягощающими факторами.

У женщин, имеющих нарушения в этом гене, во время беременности могут развиваться такие осложнениям как: невынашивание беременности, фетоплацентарная недостаточность, внутриутробная гибель плода, токсикоз, задержка развития плода, отслойка плаценты.

Полиморфизм с.*97G>A. Полиморфизм гена протромбина G20210A характеризуется заменой нуклеотида гуанина (G) нуклеотидом аденин (A) в позиции 20210. Наличие аллеля риска A как в гомо- так и в гетерозиготном состоянии приводит к увеличению экспрессии гена протромбина и повышению его уровня в 1,5-2 раза по сравнению с нормой. Это означает, что тромбофилия возникает даже у гетерозиготного носителя измененного гена (G/A).

Генотип G/A ассоциирован с повышением риска развития тромбозов и инфаркта миокарда, особенно в сочетании с мутацией Лейден. При курении и наличии аллеля риска в гене протромбина риск инфаркта миокарда повышается в 40 раз по сравнению с не носителями.

Этот аллель приводит также к трехкратному увеличению риска венозного тромбоза. Риск тромбоза увеличивается для всех возрастов и для обоих полов.

Ген F5 Коагуляционный фактор 5 (Лейденовская мутация) (Coagulation factor V –leiden MIM:227400)

Ген расположен на хромосоме 1 в локусе 1q23

Коагуляционный фактор V или фактор V свертывания крови является белковым кофактором при образовании тромбина из протромбина. Полиморфизм в этом гене ассоциирован с риском развития инфаркта миокарда, венозных и артериальных тромбозов, в том числе развитием тромбоэмболических заболеваний в молодом возрасте. Характерен рецидивирующий характер образования тромбов. Для семейного анамнеза характерно накопление сердечно-сосудистых заболеваний (в первую очередь тромбоэмболий, ишемической болезни сердца, ишемических инсультов). Вероятность возникновения тромбозов возрастает у женщин при применении менопаузальной гормонотерапии, приеме гормональных контрацептивов.

Риск развития тромбозов повышается в 8 раз при сочетании мутации Лейден фактора V с аллелем Т полиморфизма С677T гена метилтетрагидрофолатредуктазы (MTHFR).

Полиморфизм G1691A Leiden (аминокислотная замена Arg (R) -> Gln (Q) в позиции 506, известная также как «мутация Лейден») является показателем риска развития венозных тромбозов. Распространенность аллеля риска А

в популяциях европейского типа составляет 2-6%.

Самопроизвольное прерывание беременности у женщин-носительниц лейденской мутации чаще происходит на поздних сроках: во втором триместре или в III триместре.

Риск привычного невынашивания беременности повышен даже при носительстве мутации в гетерозиготном состоянии.

Ген ||TGB3(Gp|||a) тромбоцитарный гликопротеин |||a (INTEGRIN, BETA-3 MIM 173470).

Ген расположен на хромосоме 17 в локусе 17q21.32.

Ген ITGB3 кодирует аминокислотную последовательность белковой молекулы тромбоцитарного рецептора фибриногена. Данный рецептор обеспечивает взаимодействие тромбоцитов с фибриногеном плазмы крови, в результате чего происходит агрегация тромбоцитов и образование тромба.

Полиморфизм с.176Т>С данного гена связан с изменением свойств тромбоцитарного рецептора фибриногена. Аллелем риска полиморфизма является аллель С. У носителей аллеля риска тромбоциты приобретают повышенную склонность к агрегации, что приводит к повышенному риску тромбообразования с такими последствиями, как инфаркт миокарда, развитие острого коронарного синдрома. В то же время у пациентов с этим вариантом полиморфизма отмечается сниженная эффективность применения в качестве антиагрегантов таких препаратов, как аспирин (ацетилсалициловая кислота) и плавикс.

Генотипы СС и ТС предрасполагают к развитию инфаркта миокарда (аспиринрезистентного).

Ген F7 Коагуляционный фактор 7 (COAGULATION FACTOR VII MIM 613878)

Ген расположен на хромосоме 13 в локусе 13а34

В активном состоянии фактор VII свертывающей системы крови взаимодействует с фактором III, что приводит к активации факторов IX и Хсистемысвертывания крови, то есть коагуляционный фактор VII участвует в образовании кровяного сгустка.

Полиморфизмы в гене ассоциированы со снижением риска инфаркта миокарда и фатального исхода при инфаркте миокарда, снижением уровня коагуляционного фактора VII в крови и вероятности тромбоэмболий.

Полиморфизм R353Q связан с уменьшением концентрации плазменного фактора VII. У больных атеросклерозом с генотипом AA уровень активированного фактора VII снижен на 72% по сравнению с носителями генотипа дикого типа GG.

У пациентов с атеросклеротическим поражением сосудов аллель А в гетерозиготном генотипе является протективным в отношении развития инфаркта миокарда. Выявлен пониженный риск ИБС у носителей аллеля А, по сравнению с аллелем G.

Частота встречаемости протективного аллеля гена: 10-20%.

Носительство полиморфизмов в гене F7 при беременности обладает протективным эффектом в отношении тромбофилии, однако повышает риск послеродовых кровотечений.

Ген FGB Фибриноген бета (Beta-fibrinogen MIM:134830)

Ген расположен на хромосоме 4 в локусе 4q28

Фибриноген (фактор свертывания I) - растворимый белок, предшественник фибрина, присутствующий в плазме крови. Под влиянием фермента тромбина из фибриногена образуется нерастворимый белок фибрин на заключительном этапе свертывания крови. Тромбин последовательно отщепляет фибринопептиды A и B от α- и β-цепей фибриногена, превращая его в фибрин-мономер, который затем полимеризуется и образует основу фибриновоготромба.

Уровень фибриногена в крови определяется рядом факторов, среди которых прием лекарственных препаратов, курение, прием алкоголя и вес тела. Однако и генотипам G и A соответствует заметная разница в уровнях фибриногена крови (10-30% по различным исследованиям).

Уровень фибриногена возрастает с возрастом (на 5-7% каждые 10 лет), поэтому при наличии полиморфизма, чем старше пациент, тем больше вероятность гиперфибриногенемии.

Риск инсульта (ишемического или геморрагического) повышается в 2-3 раза при увеличении содержания фибриногена крови. Риск дополнительно увеличивается при повышенном систолическом давлении (>160мм рт. ст.)

Полиморфизмы в гене ассоциированы с повышением уровня фибриногена плазмы крови, повышением артериального давления, тромбоэмболическими заболеваниями, инсультом.

Полиморфизм -455G/A. Аллель риска А вызывает повышение активности гена, что приводит к повышению уровня фибриногена в плазме и частоты инфаркта лакун, обусловленных повышенным артериальным давлением.

Ген SERPINE1(PAI-1) Ингибитор активатора плазминогена (serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 MIM: 173360)

Ген расположен на хромосоме 7 в локусе 7q21.3-q22

Полиморфизм в этом гене ассоциирован с развитием тромбоза портальной вены, тромбоза сосудов внутренних органов, инфарктом миокарда, ишемической болезнью сердца, повышенном уровнем плазминогена крови, ожирением.

Белок SERPINE1 (или PAI-1) один из основных компонентов тромболитической плазминоген-плазминовой системы. PAI-1 блокирует работу тканевого и урокиназного активаторов плазминогена. Соответственно, PAI-1 играет важную роль в предрасположенности к сердечно-сосудистым заболеваниям.

Ингибитор активатора плазминогена 1 типа (PAI1) образуется в эндотелиальных клетках, гепатоцитах, депонируется в тромбоцитах в неактивной форме. Время полужизни активной молекулы в кровотоке – около 2 часов. Основная функция ингибитора активатора плазминогена 1 – ограничить фибринолитическую активность местом расположения гемостатической пробки за счет ингибирования тканевого активатора плазминогена. Это выполняется за счет большего содержания его в сосудистой стенке по сравнению с тканевым активатором плазминогена. Таким образом, на месте повреждения активированные тромбоциты выделяют избыточное количество ингибитора активатора плазминогена 1, предотвращая преждевременный лизис фибрина.

Концентрация PAI-1 зависит как от внешних (уровень триглицеридов, курение), так и внутренних (генетических) факторов.

PAI является белком острой фазы воспаления. Его активность возрастает после больших операций, тяжелых травм, инфаркта миокарда. После введения в организм кортикостероидов, эндотоксина (бактериальный LPS) активность PAI нарастает. Статины вызывают снижение экспрессии гена PAI-1. Уровень тканевого активатора плазминогена в плазме пострадавших с травматическим шоком уменьшается в 2—3 раза, а его ингибитора в 1,8—2 раза.

Выявлено повышенное содержание PAI-1 в тучных клетках, что подтверждает участие этого белка в патогенезе бронхиальной астмы и других IgE-опосредованных аллергических заболеваниях. Также показано участие PAI-1 в ремоделировании дыхательных путей.

У больных инфарктом миокарда отмечено повышение активности PAI и снижение содержания и активности тканевого активатора. Часто активность PAI повышается у больных венозными тромбозами. Повышение PAI у таких больных в предоперационном периоде угрожает послеоперационным тромбозом.

Полиморфизм 4G(-675)5G. Аллель 4G приводит к увеличению экспрессии гена PAI-1, что вызывает повышение уровня ингибитора активатора плазминогена в крови. Из-за этого замедляется работа тромболитической системы и увеличивается риск тромбообразования.

У носителей аллеля 4G наблюдается увеличение риска развития инфаркта миокарда, особенно в сочетании с полиморфизмом L33P в гене ITGB3 (в 4,5 раза у женщин и в 6 раз у мужчин при наличии аллелей риска по обоим полиморфизма), вероятность тромбоза портальной вены и сосудов внутренних органов у них повышена в 1,7 раза.

Полиморфизм 4G/5G также ассоциирован со средними уровнями PAI-1 в крови при ожирении, причем наличие аллеля 4G коррелирует с ожирением центрального генеза. Так как пациенты с центральным типом ожирения в особенности подвержены риску сердечно-сосудистых заболеваний, носительство аллеля 4G может приводить к дополнительному увеличениюриска.

У гомозигот 4G/4G семейный риск ишемической болезни сердца повышен в 1,6 раза. Также у гомозиготных по аллелю риска женщин выше риск самопроизвольного прерывания беременности. Распространенность генотипа 4G/4G в европеоидных популяциях составляет 5-8%

Полиморфизм 4G/4G в гомозиготном состоянии достоверно повышает риск привычного невынашивания беременности. Также существует взаимосвязь между наличием полиморфизма в гене PAI1 и преэклампсией.

Ген MTHFR метилтетрагидрофолат редуктазы (5,10-ETHYLENETETRAHYDROFOLATE REDUCTASE; MIM 607093)

Ген расположен на хромосоме 1, в локусе 1р36.22.

Аллели риска в данном гене повышают вероятность развития гомоцистинурии, обусловленной недостаточностью MTHFR; обуславливают предрасположенность к тромбоэмболии и заболеваниям сосудов.

Ген MTHFR отвечает за выработку фермента 5,10-метилентетрагидрофолат-редуктазы, которая является ключевым ферментом фолатного цикла. Этот фермент участвует в синтезе метионина из гомоцистеина. Полиморфизмы в гене MTHFR ассоциированы с повышенным рискомгипергомоцистеинемии.

Гомоцистеин в свою очередь приводит к повреждению эндотелия сосудов и активации внешнего пути свертывания. Это способствует образованию атеросклеротических бляшек, так как с его участием образуются радикалы, приводящие к окислительному разрушению липопротеинов низкой плотности (ЛПНП).

Это вещество также обладает гипертензивными свойствами вследствие снижения вазодилатации (расширения сосудов)

Гомоцистеин также блокирует действие антикоагулянтов. Он также активирует такие прокоагулянты как фактор V и фактор свертывания крови в тканях.

Ему свойственны некоторые другие действия, включая разрастание гладкой мускулатуры сосудов и повышение разрушения тромбоцитов.

Гомоцистеин взаимодействует с хелатными соединениями меди и способствует ингибированию лизилоксидазы, ослабляющей связь между коллагеном и эластином и приводящей к возникновению аномалий в соединительных тканях.

Помимо этого, в ранние сроки беременности гомоцистеин обладает прямым токсическим действием на плод.

Ряд исследований показали, что достаточное содержание фолатов в диете уменьшает риск развития определенных опухолей.

Полиморфизм с.677С>Т гена МТНFR связан с заменой в соответствующей позиции нуклеотида цитозина (С) на тимин (Т), что приводит к замене аминокислотного остатка аланина на валин в позиции 222. Аллелем риска является аллель Т

У носителей этого генотипа высок риск развития побочных эффектов при приёме некоторых лекарственных препаратов, используемых в раковой химиотерапии, например, метотрексата.

У лиц с гетерозиготным гетерозиготным генотипом (С/Т) не отмечено существенного снижения активности фермента МТГФР, однако он может усиливать проявления других полиморфных вариантов других генов фолатного цикла.

Неблагоприятное воздействие аллеля Т сильно зависит от внешних факторов - низкого содержания в пище фолатов, курения, приёма алкоголя и злоупотребления кофе (более 5 чашек в день)
Назначение фолиевой кислоты в активной форме (в виде метафолина) может значительно снизить риск последствий данного полиморфизма.

Анализ проводили:

Биолог Рук. Лаб. службы

