Robot Adoption and Labor Market Dynamics: Matlab Codebook

Anders Humlum

November 26, 2021

 Table 1: Model environment (env structure)

Substructure	Variable	Description
	nYears	Number of simulation years
	nSectors	Number of sectors of the economy
	nOcc	Number of occupations
wrk	nSkills	Number of skill groups
wrk	nAge	Working life span
wrk	nTen	Max value for tenure

Table 2: Initial values and data (init structure)

Substructure	Variable	Description
	wages	Used for initialization of GE solver (wages0)
frm	density	Used for initialization of GE solver (frm.density0)
wrk	density	Used for initialization of GE solver (wrk.density0)
wrk	distEnter	Skill distribution of entering cohort
wrk	mass	Mass of workers

Table 3: Counterfactual Experiments (exper structure)

Variable	Description
nCost Number of counterfactual experiments	
title	Title of experiment
cRobot	Adoption cost schedules for different counterfactuals
surprise	Indicator for whether counterfactual is based on a surprise
tSurprise	Time of shock
	nCost title cRobot surprise

Table 4: Solver Parameters (sol structure)

Substructure	Variable	Description
tol.ge	densityFrm	Tolerance level for firm densities in GE solver
tol.ge	supplyLabor	Tolerance level for worker densities in GE
iter	ge	Maximum iterations in GE shooting algorithm
iter	frm	Maximum iterations in firm DP
lambda	wages	Gauss-Seidel weight used for wages in solver.m
lambda	frm	Gauss-Seidel used for firm densities in solver.m
lambda	wrk	Gauss-Seidel used for worker densities in solver.m

Table 5: Model Parameters (par structure)

Substructure	Variable	Description		
		Firms (Manufacturing)		
frm	sigma	Task substitution elasticity (σ)		
frm	zPoints	Grid points of discretized firm productivity space		
frm	zMu	Mean of productivity process (normalized by par.costAdj)		
frm	zSigma	SD of productivity process		
frm	zRho	Persistence of productivity process		
frm	zGrid	Productivity grid. Defined internally with Tauchen procedure (based		
		on frm.zMu, frm.zRho, par.frm.zSigma, par.frm.zPoints)		
frm	theta	Robot depreciation rate		
frm	nu	Adoption cost shock dispersion		
frm	phiOcc	Factor-augmenting productivities		
frm	gammaProd	Robot hicks-neutral. This is time-varying to ensure constant adoption		
		treatment effects (despite non-stationary wages and thus cost savings		
		for robot adoption)		
frm	epsilon	Elasticity of demand		
frm	gammaOcc	Factor-axugmenting robot technology		
		Workers		
wrk	swCost	Occupational switching costs		
wrk	swAge	Switching cost in age		
wrk	amenity	Amenities in occupation-sectors		
wrk	hcap	Human capital function		
wrk	rho	Dispersion of occupational preference shocks (ρ)		
General Production				
	alpha	Factor bill shares in sectors (cobb-douglas share in services, α_{St})		
	costAdj	Normalization factor for sector price indices. This is the z_t trends that		
		generate growth in wages		
	markup	Markup in sector. Based on par.frm.epsilon		
Common Parameters				
	beta	Discount Factor (β)		
	mu	Manufacturing share in final consumption (μ)		