Boolean Logic

Applications of Boolean logic

- Computer programs
- And computer addition
- Logic problems
- Sudoku

Boolean propositions

- A proposition is a statement that can be either true or false
 - "The sky is blue"
 - "I is a Engineering major"
 - "x == y"
- Not propositions:
 - "Are you Bob?"
 - "x := 7"

Boolean variables

- We use Boolean variables to refer to propositions
 - Usually are lower case letters starting with p
 (i.e. p, q, r, s, etc.)
 - A Boolean variable can have one of two values true (T) or false (F)
- A proposition can be...
 - A single variable: p
 - An operation of multiple variables: $p \land (q \lor \neg r)$

Introduction to Logical Operators

- About a dozen logical operators
 - Similar to algebraic operators + * /
- In the following examples,
 - -p = "Today is Friday"
 - -q = "Today is my birthday"

Logical operators: Not

- A not operation switches (negates) the truth value
- Symbol: ¬ or ~
- In C++ and Java,
 the operand is !

 $\forall \neg p = \text{``Today is not Friday''}$

p	$\neg p$
Т	F
F	Т

Logical operators: And

- An and operation is true if both operands are true
- Symbol: ∧
 - It's like the 'A' in And
- In C++ and Java,
 the operand is & &
- $p \land q$ = "Today is Friday and today is my birthday"

p	q	$p \land q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

Logical operators: Or

- An or operation is true if either operands are true
- Symbol: V
- In C++ and Java,
 the operand is | |
- p∨q = "Today is Friday or today is my birthday (or possibly both)"

p	q	p∨q
T	Т	T
T	F	Т
F	Т	Т
F	F	F

Logical operators: Exclusive Or

- An exclusive or operation is true if one of the operands are true, but false if both are true
- Symbol: ⊕
- Often called XOR
- $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$
- In Java, the operand is ^ (but not in C++)
- $p \oplus q$ = "Today is Friday or today is my birthday, but not both"

p	q	$p \oplus q$
T	Т	F
T	F	Т
F	Т	Т
F	F	F

Inclusive Or versus Exclusive Or

- Do these sentences mean inclusive or exclusive or?
 - Experience with C++ or Java is required
 - Lunch includes soup or salad
 - To enter the country, you need a passport or a driver's license
 - Publish or perish

Logical operators: Nand and Nor

- The negation of And and Or, respectively
- Symbols: | and ↓, respectively
 - Nand: $p|q \equiv \neg(p \land q)$
 - Nor: $p \downarrow q \equiv \neg(p \lor q)$

p	q	$p \land q$	p∨q	p q	p↓q
T	T	Т	Т	F	F
Т	F	F	Т	Т	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

- A conditional means "if p then q"
- Symbol: →
- p → q = "If today is Friday, then today is my birthday"

p	q	$p \rightarrow q$	$\neg p \lor$
			q
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

- Let p = "I am elected" and q = "I will lower taxes"
- I state: p → q = "If I am elected, then I will lower taxes"
- Consider all possibilities
- Note that if p is false, then
 the conditional is true regardless of whether q is true or false

p	q	$p \rightarrow q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

				Conditional	Inverse	Converse	Contra-posi tive
p	q	eg p	eg q	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$
T	Т	F	F	Т	Т	Т	Т
T	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т	Т

- Alternate ways of stating a conditional:
 - -p implies q
 - If p, q
 - p is sufficient for q
 - -q if p
 - q whenever p
 - q is necessary for p
 - -p only if q

I don't like this one

- A bi-conditional means "p if and only if q"
- Symbol: ↔
- Alternatively, it means "(if p then q) and (if q then p)"
- $p \leftrightarrow q \equiv p \rightarrow q \land q \rightarrow p$
- Note that a bi-conditional has the opposite truth values of the exclusive or

p	q	$p \leftrightarrow q$
T	Т	Т
Т	F	F
F	Т	F
F	F	Т

Let p = "You take this class" and q = "You get a grade"

- Alternatively, it means "If FFF F T you take this class, then you get a grade and if you get a grade then you take (took) this class"

p

 $p \leftrightarrow q$

q

Boolean operators summary

		not	not	and	or	xor	nand	nor	conditional	bi-conditio nal
p	q	eg p	eg q	p∧q	p∨q	p⊕q	p q	p↓q	$p \rightarrow q$	$p \leftrightarrow q$
T	Т	F	F	Т	Т	F	F	F	Т	Т
Т	F	F	Т	F	Т	Т	Т	F	F	F
F	Т	Т	F	F	Т	Т	Т	F	Т	F
F	F	Т	Т	F	F	F	Т	Т	Т	Т

 Learn what they mean, don't just memorize the table!

Precedence of operators

- Just as in algebra, operators have precedence
 - -4+3*2 = 4+(3*2), not (4+3)*2
- Precedence order (from highest to lowest):

$$\neg \land \lor \rightarrow \leftrightarrow$$

- The first three are the most important
- This means that $p \lor q \land \neg r \rightarrow s \leftrightarrow t$ yields: $(p \lor (q \land (\neg r))) \leftrightarrow (s \rightarrow t)$
- Not is always performed before any other operation

19

Translating English Sentences

• Problem:

```
- p = "It is below freezing"
```

```
-q = "It is snowing"
```

- It is below freezing and it is snowing

 P^q
- It is below freezing but not snowing
- It is not below freezing and it is not snowing $\neg p \land \neg q$
- It is either snowing or below freezing (or both) $P^{\vee q}$
- If it is below freezing, it is also snowing $P \rightarrow Q$
- It is either below freezing or it is snowing, $(p \lor q) \land (p \to \neg q)$ but it is not snowing if it is below freezing
- That it is below freezing is necessary and $p \leftrightarrow q$ sufficient for it to be snowing

- Heard on the radio:
 - A study showed that there was a correlation between the more children ate dinners with their families and lower rate of substance abuse by those children
 - Announcer conclusions:
 - If children eat more meals with their family, they will have lower substance abuse
 - If they have a higher substance abuse rate, then they did not eat more meals with their family

- Let p = "Child eats more meals with family"
- Let q = "Child has less substance abuse
- Announcer conclusions:
 - If children eat more meals with their family, they will have lower substance abuse
 - $p \rightarrow q$
 - If they have a higher substance abuse rate, then they did not eat more meals with their family

$$\forall \neg q \rightarrow \neg p$$

• Note that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent

- Let p = "Child eats more meals with family"
- Let q = "Child has less substance abuse"
- Remember that the study showed a correlation, not a causation

p	q	result	conclusion
Т	Т	Т	Т
Т	F	?	F
F	Т	?	Т
F	F	T	T

- "I have neither given nor received help on this exam"
 - Rephrased: "I have not given nor received ..."
 - Let p = "I have given help on this exam"
 - Let q = "I have received help on this exam"
- Translation is: $\neg p \downarrow q$

p	q	$\neg p$	$\neg p \downarrow q$
Т	Т	F	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

- What they mean is "I have not given and I have not received help on this exam"
 - Or "I have not (given nor received) help on this exam"

р	q	$\neg p \land \neg q$	$\neg (p \!\downarrow\! q)$
Т	Т	F	F
Т	F	F	F
F	Т	F	F
F	F	Т	Т

- The problem: ¬ has a higher precedence than ↓ in Boolean logic, but not always in English
- Also, "neither" is vague

Boolean Searches

(101 OR 202) AND bloomfield AND "computer science"

- Note that Google requires you to capitalize Boolean operators
- Google defaults to AND; many others do not
 - So the AND's were optional
- XOR doesn't work…

Bit Operations 1

- Boolean values can be represented as 1 (true) and 0 (false)
- A bit string is a series of Boolean values
 - 10110100 is eight Boolean values in one string
- We can then do operations on these Boolean strings
 - Each column is its own
 Boolean operation

01011010 ⊕10110100 11101110

Bit Operations 2

Evaluate the following

 $11000 \land (01011 \lor 11011)$

 $= 11000 \wedge (11011)$

= 11000

01011

<u>V11011</u>

11011

11000

<u> 11011</u>

11000

&& vs. & in C/C++

```
Consider the following:
```

```
int p = 11;
int q = 20;
if ( p && q ) {
}
if ( p & q ) {
}
```

In C/C++, any value other than 0 is true

The binary for the integer 11 is 01011

The binary for the integer 20 is 10100

Notice the double ampersand – this is a Boolean operation

As p and q are both true, this is true

Notice the single ampersand – this is a bitwise operation

Bitwise Boolean And operation:

01011 <u>∧10100</u> 00000

This evaluates to zero (false)!

&& vs. & in C/C++

- Note that Java does not have this "feature"
 - If p and q are int:
 - p & q is bitwise
 - p && q will not compile
 - If p and q are boolean:
 - Both p & q and p && q will be a Boolean operation
- The same holds true for the or operators
 (| and | |) in both Java and C/C++

Tautology and Contradiction

- A tautology is a statement that is always true
 - p ∨ ¬p will always be true (Negation Law)
- A contradiction is a statement that is always false
 - p ∧ ¬p will always be false (Negation Law)

p	$p \vee \neg p$	$p \wedge \neg p$
Т	Т	F
F	Т	F

Logical Equivalence

- A logical equivalence means that the two sides always have the same truth values
 - Symbol is ≡ or ⇔
 - We'll use ≡, so as not to confuse it with the bi-conditional

Logical Equivalences of And

• $p \wedge T \equiv p$

Identity law

p	T	$p \wedge T$
Т	T	Т
F	Т	F

• *p* ∧ **F** ≡ **F**

Domination law

p	F	<i>p</i> ∧F
Т	F	F
F	F	F 33

Logical Equivalences of And

• $p \land p \equiv p$

Idempotent law

р	p	p∧p
Т	Т	Т
F	F	F

• $p \land q \equiv q \land p$

Commutative law

р	q	p∧q	q∧p
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	347

Logical Equivalences of And

• $(p \land q) \land r \equiv p \land (q \land r)$ Associative law

р	q	r	p∧q	(p∧q)∧r	q∧r	p∧(q∧r)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	F	F	Т	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

35

Logical Equivalences of Or

Identity law

Domination law

Idempotent law

•
$$p \lor q \equiv q \lor p$$

Commutative law

•
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
 Associative law

Corollary of the Associative Law

- $(p \land q) \land r \equiv p \land q \land r$
- $(p \lor q) \lor r \equiv p \lor q \lor r$
- Similar to (3+4)+5 = 3+4+5
- Only works if ALL the operators are the same!

Logical Equivalences of Not

- ¬(¬p) ≡ p Double negation law
- p ∨ ¬p ≡ T Negation law
- p ∧ ¬p ≡ F Negation law

DeMorgan's Law

- Probably the most important logical equivalence
- To negate p∧q (or p∨q), you "flip" the sign, and negate BOTH p and q
 - Thus, $\neg(p \land q) \equiv \neg p \lor \neg q$
 - Thus, $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	¬р	$\neg q$	рΛ	¬(p∧q)	$\neg p \lor \neg q$	рV	¬(p∨q)	_b∨_d
				q			q		
T	Т	F	H	Η	т	Т	Η	Η	F
T	F	F	T	F	Т	Т	Т	F	F
F	T	T	F	F	Т	Т	Т	F	F
F	F	T	T	F	T	T	F	T	T

39

Yet more equivalences

Distributive:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption

```
p \lor (p \land q) \equiv p
p \land (p \lor q) \equiv p
```

How to prove two propositions are equivalent?

- Two methods:
 - Using truth tables
 - Not good for long formulae
 - In this course, only allowed if specifically stated!
 - Using the logical equivalences
 - The preferred method
- Example: show that:

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Using Truth Tables

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

р	q	r	p→r	q →r	(p→r)∨(q	рΛ	(p∧q)
					⇒r)	9	⇒r
Т	Т	Т	Т	T	Т	Т	Т
T	Т	F	F	F	F	Т	F
T	F	Т	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	T	F	T

Using Logical Equivalences

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r \qquad \text{Original statement}$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg (p \land q) \lor r \qquad p \to q \equiv \neg p \lor q$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv (\neg p \lor \neg q) \lor r \qquad \neg (p \land q) \equiv \neg p \lor \neg q$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv (\neg p \lor \neg q) \lor r \qquad \neg (p \land q) \equiv \neg p \lor \neg q$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r \qquad (\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor r \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor \neg q \lor r$$

Logical Thinking

- At a trial:
 - Bill says: "Sue is guilty and Fred is innocent."
 - Sue says: "If Bill is guilty, then so is Fred."
 - Fred says: "I am innocent, but at least one of the others is guilty."
- Let b = Bill is innocent, f = Fred is innocent, and s = Sue is innocent
- Statements are:
 - ¬s ∧ f
 - $\neg b \rightarrow \neg f$
 - $-f \wedge (\neg b \vee \neg s)$

Can all of their statements be true?

• Show: $(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s))$

b	f	S	P	Ť	rs	¬s∧f	¬b→¬f
Т	Т	Т	F	F	F	F	Т
Т	Т	F	F	F	Т	Т	Т
Т	F	Т	F	Т	F	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	Т	Т	F
F	F	Т	Т	Т	F	F	Т
F	F	F	Τ	Т	Т	F	Т

f∧(¬b∨¬s)
F
Т
F
F
Т
Т
F
F

Are all of their statements true? Show values for s, b, and f such that the equation is true

$$(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s)) \equiv T$$

$$(\neg s \land f) \land (b \lor \neg f) \land (f \land (\neg b \lor \neg s)) \equiv T$$

$$\neg s \land f \land (b \lor \neg f) \land f \land (\neg b \lor \neg s) \equiv T$$

$$\neg s \land f \land (b \lor \neg f) \land (\neg b \lor \neg s) \equiv T$$

$$f \land (b \lor \neg f) \land \neg s \land (\neg s \lor \neg b) \equiv T$$

$$f \land (b \lor \neg f) \land \neg s \Rightarrow T$$

$$(f \land (b \lor \neg f)) \land \neg s \equiv T$$

$$(f \land b) \lor (f \land \neg f)) \land \neg s \equiv T$$

$$(f \land b) \lor F) \land \neg s \equiv T$$

$$(f \land b) \land \neg s \equiv T$$

$$f \land b \land \neg s \equiv T$$

Original statement

Definition of implication

Associativity of AND

Re-arranging

Idempotent law

Re-arranging

Absorption law

Re-arranging

Distributive law

Negation law

Domination law

Associativity of AND

What if it weren't possible to assign such values to s, b, and f?

$$(\neg s \land f) \land (\neg b \rightarrow \neg f) \land (f \land (\neg b \lor \neg s)) \land s = T$$

$$(\neg s \land f) \land (b \lor \neg f) \land (f \land (\neg b \lor \neg s)) \land s = T$$

$$(f \land b) \land \neg s \land s = T$$

$$f \land b \land \neg s \land s = T$$

$$f \land b \land F = T$$

$$f \land F = T$$

$$F = T$$

Original statement

Definition of implication

... (same as previous slide)

Domination law

Re-arranging

Negation law

Domination law

Domination law

Contradiction!

Functional completeness

- All the "extended" operators have equivalences using only the 3 basic operators (and, or, not)
 - The extended operators: nand, nor, xor, conditional, bi-conditional
- Given a limited set of operators, can you write an equivalence of the 3 basic operators?
 - If so, then that group of operators is functionally complete

Functional completeness of NAND

- Show that | (NAND) is functionally complete
- Equivalence of NOT:
 - $-p \mid p \equiv \neg p$
 - $\neg(p \land p) \equiv \neg p$ Equivalence of NAND
 - $\neg(p) \equiv \neg p$ Idempotent law

Functional completeness of NAND

- Equivalence of AND:
 - $-p \land q \equiv \neg(p \mid q)$ Definition of nand
 - $-p \mid p$ How to do a not using nands
 - $-(p \mid q) \mid (p \mid q)$ Negation of $(p \mid q)$
- Equivalence of OR:
 - $-p \lor q \equiv \neg(\neg p \land \neg q)$ DeMorgan's equivalence of OR
 - As we can do AND and OR with NANDs, we can thus do ORs with NANDs
- Thus, NAND is functionally complete