Modelling Club: Week 3

Welcome to Modelling Club!

Modelling Scenario

- Scenario: BF.7 subvariant in Bangladesh
- Main purpose: estimate number of cases, number of hospitalizations, number of deaths caused by BF.7

Model Building Steps

- 1. Identify the question
 - a. Team 1: What is the impact of vaccination on indirect costs?
 - b. Team 2: What is the impact of vaccination on direct costs?
 - c. Team 3: To be determined...

Health economics

Tasks from Week 2

- Meet with your team!
 - Who is on Team 1? Sohel
 - Who is on Team 2? Sharif & Farzana
 - Who is on Team 3? Taifur & Motahara
 - Communication plan? Tasks?

Model Building Steps

- 1. Identify the question
 - a. Team 1: What is the impact of vaccination on indirect costs?
 - b. Team 2: What is the impact of vaccination on direct costs?
 - c. Team 3: To be determined
- 2. Identify existing knowledge: structure, values for parameters

Tasks from Week 2

- Meet with your team!
 - Who is on Team 1?
 - Who is on Team 2?
 - Communication plan? Tasks?
- Find sources of existing knowledge
 - human demographics, natural history of virus, impacts of control
 - similar models?
- -SEIR model structure for COVID-19
- -WHO has estimates for some parameters
- -hospitalization for Bangladesh?
 - -may not be accurate
 - -from previous variants

Estimating proportion hospitalized is very difficult

- -all people hospitalized at any point with COVID-19
- -all people who had COVID-19
- -proportion of infected who are hospitalized

Modelling Club

- Today's goals:
 - discuss possible model structures
 - look at example code for these structures

Choose Model Structure

- What structure is appropriate for COVID-19? SEIR captures stages of disease
- What components do we need to answer our questions?

Identify the question

Identify existing knowledge

Choose model structure

Remember: all models are wrong

- Susceptible, Exposed, Infected, Recovered
 - B is a transmission coefficient
 - γ is recovery rate
 - $1/\gamma$ is the recovery period
 - σ is the rate of change from exposed to infectious
 - $1/\sigma$ is the latent period

- Susceptible, Exposed, Infected, Recovered
 - B is a transmission coefficient
 - γ is recovery rate
 - $1/\gamma$ is the recovery period
 - σ is the rate of change from exposed to infectious
 - 1/σ is the latent period

- Assumptions:
 - no births, migrations, deaths
 - everyone recovers
 - no re-infections

- -start by drawing graphic
- -then write equations
- -same number of equations as compartments
- -incoming arrows are positives
- -outgoing arrows are negatives

- Susceptible, Exposed, Infected, Recovered
 - B is a transmission coefficient
 - γ is recovery rate
 - 1/γ is the recovery period
 - σ is the rate of change from exposed to infectious
 - $1/\sigma$ is the latent period

$$\frac{dS(t)}{dt} = -\beta S(t)I(t)$$

$$\frac{dE(t)}{dt} = \beta S(t)I(t) - \sigma E(t)$$

$$\frac{dI(t)}{dt} = \sigma E(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

-equations describe how everyone moves between compartments -we set up these equations in R to run the model **Example Code: SEIR**

SEIR with Hospitalization

SEIR with Hospitalization

- some infected are hospitalized
- hospitalized have slower recovery

SEIR with Hospitalization

Example Code: SEIHR

One more equation to capture the recovered hospitalizations separately

SEIR with Hospitalization

 $6 \cdot dRH = \gamma_H H$

Example Code: SEIHR Modified

SEIR with Hospitalization and Death

Modelling Teams

Tasks for Next Guided Session

- Meet with your team!
 - discuss how to share the tasks
 - make a plan for communicating with each other
- Find potential sources for existing knowledge
 - make a list or copy the links and send them to me
- Make a structure for your model
 - start with a simpler version
 - add pieces until you have a version that could answer your question

Team 3
-identify key question and send to me

SEIR + H + D
-also need to think about vaccination

Health Economics

- To calculate direct costs, we would take the total cases, hospitalizations, and deaths, and multiply by the different costs associated with each
- For indirect costs, there are several metrics
 - e.g. YLL, DALY, lost productivity
 - YLL: years of life lost, calculated when someone dies of an illness
- For YLL, we would need to know the ages of the person dying
 - the age of those who died is subtracted from life expectancy to get the number of years of life that were lost (because they died prematurely)

Health Economics

- For YLL, we would need to know the ages of the person dying
 - the age of those who died is subtracted from life expectancy to get the number of years of life that were lost (because they died prematurely)
- One way to calculate would be to use averages
 - use estimate of the average age of cases who died (D_{age})
 - use estimate of life expectancy (LE)

```
YLL = \# deaths * (LE - D_{age})
```

so if LE=70 and average age of cases who died is 68, and there are 600 deaths, then there
are 1200 years of life lost

Health Economics

- For YLL, we would need to know the ages of the person dying
 - the age of those who died is subtracted from life expectancy to get the number of years of life that were lost (because they died prematurely)
- Another way could add age groups to the models
 - this would allow for different ages to have different hospitalization and death parameters,
 which is more realistic
 - this would give separate estimates for numbers of hospitalizations and deaths for each age group, then these numbers could be used in the YLL calculation