

STM32 IDE Ecosystem ref[1]

- ➤ STM32 CubeMX program can be used to customize any STM32 device configuration and peripherals. By using its graphical user interface, you can generate C-code for STM32 CubeIDE tool.
- ➤ STM32CubeIDE is an Integrated Development Environment for STM32 processors. It is based on open-source solutions like Eclipse or the GNU C/C++ toolchain. CubeMX allows us to add and modify generated code. After compiling and build our project, we program our chip through the CubeIDE programer. Finally, there are advanced tools for debugging our application.
- STM32CubeMonitor
- ➤ STM32CubeProgrammer
- > Other tools

Fig. 1 ref[1]

New user?

myST brings you a set of personalized features:

- · Participate to ST Events
- Stay informed with ST eNewsletters
- o Get help with ST Online Support
- · Discuss on the ST Community
- o Benefit from our Online Design Tools
- Download Software
- Order free samples
- · Manage your weekly product updates
- o Buy ST Products & Tools

Create Account

First name*:	
Last name*:	
Email*:	
Email Confirmation*:	
Function*:	Select one •
Company/University*:	
Industry*:	ADAS -
Country/Region*:	Select one -

Links:

1.STMCubeMX:

https://www.st.com/en/development-tools/stm32cubemx.html

2. STMCubeIDE:

https://www.st.com/en/development-tools/stm32cubeide.html

3. STM Link Server:

https://www.st.com/en/development-tools/st-link-server.html#overview

Get Software

> Although it is better to work with the latest version, if you want to import your project into the lab PC, your tools versions should match.

Key messages of STM32L4+ series

More performance and still ULP leader

ST has stretched the <u>STM32L4 architecture</u> to reach 150 MIPS based on its Arm Cortex-M4 core with FPU and ST ART Accelerator™ at 120 MHz while keeping best-in-class, ultra-low-power (ULP) figures.

More Graphics and Innovation

Enhanced graphics acceleration and innovative peripherals are embedded to optimize the BOM cost.

More Integration

2 MB of Flash and 640 KB of SRAM with safety and security features, smart and numerous peripherals, advanced and low power analog circuits in packages as small as 4.62 x 4.14 mm.

Great Investment

Great Investment This new STM32 member benefits from the pin-to-pin compatibility of the STM32 family and the STM32 Ecosystem.

Providing more performance

Stretching the performance and still excellent in Power consumption

- Up to 120 MHz/ 150 DMIPS with ART Accelerator[™]
- Up to 409 CoreMark Result
- Arm® Cortex® -M4 with DSP instructions and floating-point unit (FPU)
- 2 x DMA (14 channels)
- SPI up to 60 Mbit/s, Octo-SPI up to 86 MHz USART up to 10 Mbit/s

Ref: "en.stm32l4plus_pres" document

Ultra-low-power modes

Tamper detection: 3 I/Os, RTC

Wake-up sources: + BOR, IWDG

COMPs, I²C, LPUART, LPTIM

Wake-up sources: + all I²C, UART

Wake-up sources: reset pin, 5 I/Os, RTC

Wake-up sources: + all I/Os, PVD, LCD,

Best power consumption numbers with full flexibility

3 nA / 300 nA* Wake-up time

Shutdown 22 nA / 180 nA* 250 µs

Standby 14 µs 42 nA / 190 nA*

> Standby + 8-Kbyte RAM 242 nA / 390 nA*

Stop 2 (retention: 256-Kbyte RAM) 2.5 µA / 2.9 µA *

Stop 2 (full retention: 640-Kbyte RAM) 3.9 µA / 4.3 µA*

Sleep 13 µA/MHz **

Wake-up sources: any interrupt or event

Run up to 120 MHz Down to 43 µA/MHz **

Note: * without RTC / with RTC

** with external SMPS Ref: "en.stm32l4plus pres" document

14 µs

5 µs

5 µs

6 cycles

Smart peripherals metering

Smart peripherals fitness tracker - wristband

STM32L, a complete offer

STM32L4+ completes the ultra-low-power family

Ref: "en.stm32l4plus_pres" document

Safety and security

Integrated safety and security features

Links:

STM32L4+ Discovery kit IoT node, low-power wireless

https://www.st.com/en/evaluation-tools/b-l4s5i-iot01a.html

STM32L4S5VI

https://www.st.com/en/microcontrollers-microprocessors/stm32l4s5vi.html

Schematic

https://www.st.com/en/evaluation-tools/b-

14s5i-iot01a.html#cad-resources

wiki.st.com/stm32mpu

UM1884

https://www.st.com/resource/en/user_manual/dm00173145description-of-stm32l4l4-hal-and-lowlayer-driversstmicroelectronics.pdf

File Help Window

Existing Projects

Other Projects

Recent Opened Projects

lab5.ioc Last modified date : 15/11/2021 23:10:17	MX
uart_project.ioc Last modified date : 09/11/2021 22:33:50	MX
Lab7.ioc Last modified date : 10/11/2021 9:32:29	MX
lab6.ioc Last modified date : 31/10/2021 22:28:49	MX
lab4.ioc Last modified date : 20/10/2021 13:44:46	MX

New Project

Manage software installations

Check for STM32CubeMX and embedded software packages updates

Install or remove embedded software packages

Home

File

Window

Help

GENERATE CODE

F D Y X X

STM32L4S5VITx - B-L4S5I-IOT01A

Untitled - Clock Configuration

Table 4. Button and LED control port

Reference	Color	Name	Comment
B1	Black	Reset	-
R2	Rlue	Wake-un	Wake-up alternate function
LD1	Green	LED1	PA5 (Alternate with ARD.D13)
LD2	Green	LED2	PB14
LD3	Yellow	LED3 (Wi-Fi®)	PC9, Wi-Fi® activity
LD4	Blue	LED4 (BLE)	PC9, Bluetooth® activity
LD5	Green	5V Power	5 V available
LD6	Bicolor (Red and green)	ST-LINK COM	Green during communication
LD7	Red	Fault Power	Current higher than 750 mA
LD8	Red	V _{BUS} OCRCR	PE3
LD9	Green	V _{BUS} OK	5 V USB available

STM32 CubeMX File

Help Window

STM32L4S5VITx - B-L4S5I-IOT01A

Untitled - Project Manager **GENERATE CODE**


```
/* USER CODE BEGIN 2 */
 char status = 0;
 /* USER CODE END 2 */
 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
   /* USER CODE END WHILE */
   /* USER CODE BEGIN 3 */
 status = HAL_GPIO_ReadPin(myButton_GPIO_Port, myButton_Pin);
 if (status == 0)
 HAL_GPIO_WritePin(myLed_GPIO_Port, myLed_Pin, GPIO_PIN_SET);
 else
 HAL GPIO WritePin(myLed GPIO Port, myLed Pin, GPIO PIN RESET);
  /* USER CODE END 3 */
```


