```
% Thomas algorithm
% Midterm Problem 1(a)
clear
clc
close all
load('iterative_testproblem.mat')
[xTA,iterations] = tridiag(Ait,bit);
disp('Solution with Thomas algorithm: ')
disp(xTA);
xMAT = Ait\bit;
disp('Matlab built-in solution: ')
disp(xMAT);
ERR = xMAT - xTA;
disp('Error: ')
disp(ERR)
disp('Number of multiplications required for Thomas algorithm: ')
disp(iterations);
table(xTA, xMAT, ERR)
```

```
Solution with Thomas algorithm:
    0.0329
    0.1316
    0.2400
    0.3375
    0.4142
    0.4642
    0.4839
    0.4720
    0.4293
    0.3584
    0.2641
    0.1526
   0.0310
   -0.0926
   -0.2101
   -0.3138
   -0.3971
   -0.4544
   -0.4819
   -0.4780
   -0.4427
   -0.3785
   -0.2896
   -0.1817
   -0.0619
    0.0619
    0.1817
    0.2896
```

0.3785

0.4780 0.4819 0.4544 0.3971 0.3138 0.2101 0.0926 -0.0310 -0.1526 -0.2641 -0.3584 -0.4293 -0.4720 -0.4839 -0.4642 -0.4142 -0.3375 -0.2400 -0.1316 -0.0329 Matlab built-in solution: 0.0329 0.1316 0.2400 0.3375 0.4142 0.4642 0.4839 0.4720 0.4293 0.3584 0.2641 0.1526 0.0310 -0.0926 -0.2101 -0.3138 -0.3971 -0.4544 -0.4819 -0.4780 -0.4427 -0.3785 -0.2896 -0.1817 -0.0619 0.0619 0.1817 0.2896 0.3785 0.4427 0.4780 0.4819 0.4544 0.3971 0.3138 0.2101 0.0926 -0.0310

0.4427

-0.1526 -0.2641 -0.3584 -0.4293 -0.4720 -0.4839 -0.4642 -0.4142 -0.3375 -0.2400 -0.1316 -0.0329 Error: 1.0e-15 * -0.0069 -0.0278 -0.0278 -0.0555 -0.0555 -0.0555 0.0555 0 -0.0555 0.0555 -0.0278 -0.0035 0.0139 0.0555 0.0555 0.1110 0.0555 0.0555 0.0555 0.0555 0 0 0.0278 -0.0139 -0.0555 -0.1110 -0.1110 -0.1110 -0.1110 -0.1110 -0.1110 0 0 0 0 0.0035 0 0.0555 0.0555 0.0555

0.05550.05550.0555

0.0555 0.0555 0.0278 0

Number of multiplications required for Thomas algorithm: 246

ans =

50×3 table

хТА	×MAT	ERR
0.032907	0.032907	-6.9389e-18
0.13163	0.13163	-2.7756e-17
0.23995	0.23995	-2.7756e-17
0.33746	0.33746	-5.5511e-17
0.4142	0.4142	0
0.4642	0.4642	-5.5511e-17
0.48393	0.48393	-5.5511e-17
0.47203	0.47203	5.5511e-17
0.42926	0.42926	0
0.35842	0.35842	-5.5511e-17
0.26413	0.26413	5.5511e-17
0.15256	0.15256	-2.7756e-17
0.031021	0.031021	-3.4694e-18
-0.092552	-0.092552	1.3878e-17
-0.21007	-0.21007	5.5511e-17
-0.31385	-0.31385	0
-0.3971	-0.3971	5.5511e-17
-0.45437	-0.45437	1.1102e-16
-0.48193	-0.48193	5.5511e-17
-0.47796	-0.47796	5.5511e-17
-0.44273	-0.44273	5.5511e-17
-0.37854	-0.37854	5.5511e-17
-0.28958	-0.28958	0
-0.18169	-0.18169	0
-0.061914	-0.061914	2.7756e-17
0.061914	0.061914	-1.3878e-17
0.18169	0.18169	-5.5511e-17
0.28958	0.28958	-1.1102e-16
0.37854	0.37854	-1.1102e-16
0.44273	0.44273	-1.1102e-16
0.47796	0.47796	-1.1102e-16
0.48193	0.48193	-1.1102e-16
0.45437	0.45437	-1.1102e-16
0.3971	0.3971	0
0.31385	0.31385	0
0.21007	0.21007	0
0.092552	0.092552	0
-0.031021	-0.031021	3.4694e-18
-0.15256	-0.15256	0
-0.26413	-0.26413	5.5511e-17
-0.35842	-0.35842	5.5511e-17
-0.42926	-0.42926	5.5511e-17
-0.47203	-0.47203	5.5511e-17
-0.48393	-0.48393	5.5511e-17

5.5511e-17	-0.4642	-0.4642
5.5511e-17	-0.4142	-0.4142
5.5511e-17	-0.33746	-0.33746
2.7756e-17	-0.23995	-0.23995
0	-0.13163	-0.13163
6.9389e-18	-0.032907	-0.032907

Published with MATLAB® R2020b