YData: An Introduction to Data Science

Lecture 23: Confidence Intervals

Jessi Cisewski-Kehe Statistics & Data Science, Yale University Spring 2020

Credit: data8.org

Announcements

Percentiles

Computing Percentiles

The 80th percentile is the value in a set that is at least as large as 80% of the elements in the set

For
$$s = [1, 7, 3, 9, 5]$$
, percentile(80, s) is 7

The 80th percentile is ordered element 4:

For a percentile that does not exactly correspond to an element, take the next greater element instead

The percentile Function

- The pth percentile is the value in a set that is at least as large as p% of the elements in the set
- Function in the datascience module:

```
percentile(p, values)
```

- p is between 0 and 100
- Returns the pth percentile of the array

Discussion Question

```
Which are True, when s = [1, 7, 3, 9, 5]?
percentile(10, s) == 0
percentile(39, s) == percentile(40, s)
percentile(40, s) == percentile(41, s)
percentile(50, s) == 5
```

(DEMO)

Estimation

Inference: Estimation

- How big is an unknown parameter?
- If you have a census (that is, the whole population):
 - Just calculate the parameter and you're done
- If you don't have a census:
 - Take a random sample from the population
 - Use a statistic as an estimate of the parameter

(DEMO)

Variability of the Estimate

- One sample → One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Main question:
 - How different could the estimate have been?
- The variability of the estimate tells us something about how accurate the estimate is:
 - estimate = parameter + error

Where to Get Another Sample?

- One sample → One estimate
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
 - No time, no money
- Stuck?

The Bootstrap

The Bootstrap

- A technique for simulating repeated random sampling
- All that we have is the original sample
 - ... which is large and random
 - Therefore, it probably resembles the population
- So we sample at random from the original sample!

Why the Bootstrap Works

Key to Resampling

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

(DEMO)