DCBA 3D Scanner

Low-Cost, High-Precision, User-Friendly

Vision

Our Vision:

All work in measurement, design, art, and manufacturing will soon take advantage of the accuracy and speed of 3D scanning.

Our Goal:

We will develop high-quality 3D scanners accessible to individuals and businesses on small budgets.

Market

- Existing \$350 million 3D scanning market targets large businesses – similar accuracy and lower price exposes a much larger market
- Potential users
 - Research labs
 - Hobbyist builders
 - Artists
 - Product Designers
 - Small manufactures
- Interest in and use of 3D printing is growing wildly. 3D scanning is the second half of this revolution

Global Personal 3D Printer Sales

Machines or kits priced between \$500 and \$4,000

Data from Wohlers Report 2012: Additive Manufacturing and 3D Printing State of the Industry

Relevant Technology Advances

Optics and Digital Imaging

 Notably emergence of high-quality, compact, and cheap cell phone cameras

Computing

High-power computers are practically ubiquitous

Digital Fabrication

 High-precision laser cutting and CNC machining is now easily attainable

Scanning Techniques

- Existing methods include
 - Structured Light
 - Image Reconstruction
 - Laser Time of Flight
 - Laser Triangulation
 - Computed Tomography
 - Serial Sectioning
 - Contact Scanning
- Recent interest in 3D scanning has spurred academic research advances, particularly in structured light and image reconstruction

Structured Light Scanning

- 1. Known light pattern is projected onto scene
- 2. Scene is imaged using one or more cameras
- 3. Point cloud calculated by triangulation

Product Goals

Accurate

- 0.025 mm accuracy
- This level of precision comparable to or better than most manufacturing processes
- Low-cost less than \$500
- Usable
 - Intuitive website and software UI
 - Computer-controlled calibration
- Compact fits on top of a desk

Our Team

Troy Astorino

Year: 2013

Major: Physics/AeroAstro

Job: Team Lead/Programming

Gus Downs Year: 2013

Major: Physics, Math

Job: Mechanical & Electrical

Engineering

Craig Cheney

Year: 2014

Major: Mech. Eng.

Job: Mechanical Engineering

Our Current State

- Can successfully complete a scan using a DLP Projector
- Confident an array of cheap pinhole CMOS cameras can provide desired cost and accuracy
- DLP Projector is cost driver low-cost alternatives to DLP Projection include:
 - Fixed and moving gratings over LEDs (Talbot imaging)
 - Optical interference fringes

Next Steps

- Prototype Prototype!
- Validate viability of low-cost projection alternatives
- Explore algorithmic methods for combining multiple scanning methods and reducing error