

Computer Vision

Lecture 5 Edge Detection

School of Computer Science and Technology

Ying Fu

Outline

- Overview
- Image gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector

What are image edges?

(A) Cave painting at Chauvet, France, about 30,000 B.C.; (B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 – 200 B.C.; (C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China; (D) Line drawing by 7-year old I. Lleras (2010 A.D.).

Hubel & Wiesel, 1960s

 We know edges are special from human (mammalian) vision studies

Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Edge detection

- Why do we care about edges?
 - Extract information, recognize objects
 - Recover geometry and viewpoint

Origin of edges

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
- Illumination discontinuity

Surface normal discontinuity

Depth discontinuity

Edge detection

- How would you go about detecting edges in an image (i.e., discontinuities in a function)?
- ✓ You take derivatives: derivatives are large at discontinuities.
- How do you differentiate a discrete image (or any other discrete signal)?
- ✓ You use (finite) differences.

Outline

- Overview
- Image gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector

Derivatives in 1D

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

Derivatives in 1D — example

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Discrete Derivative in 1D

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x - 1) = f'(x)$$

Types of Discrete derivative in 1D

Backward
$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Forward
$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Central
$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

- 1D discrete derivate filters
 - Backward filter

$$f(x) - f(x-1) = f'(x)$$

 $[0\ 1\ -1]$

Forward filter

$$f(x) - f(x+1) = f'(x)$$

 $[-1\ 1\ 0]$

Central filter

$$f(x+1)-f(x-1) = f'(x)$$

[10-1]

- Discrete derivate in 2D
 - Given function f(x, y)
 - Gradient vector

$$\nabla f(x,y) = \begin{vmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{vmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

- Gradient magnitude $|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$
- Gradient director $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

2D discrete derivative filters

What about this filter?

$$\begin{array}{c|cccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}$$

in what direction do x and y increase?

2D discrete derivative — example

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

What happens when we apply this filter?

$$\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

2D discrete derivative — example

What happens when we apply this filter?

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$\begin{array}{c|cccc}
 & 1 & 1 & 1 \\
 & 1 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & -1 & -1 & -1
\end{array}$$

2D discrete derivative — example

Now let's try the other filter!

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

2D discrete derivative — example

What happens when we apply this filter?

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

• 3x3 image gradient filters

$$\frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Outline

- Overview
- Image gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

Source: D. Hoiem

• The gradient of an image: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient vector points in the direction of most rapid increase in intensity

The gradient direction is given by
$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Discrete derivative/gradient: example

Which one is the gradient in the x-direction?
 How about y-direction?

Original Image

Gradient magnitude

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a

signal

Effects of noise

Effects of noise

- Discrete gradient filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What is to be done?
 - Smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Smoothing filters

Mean smoothing

Gaussian smoothing

A simple edge detector

Smoothing + peaks

• To find edges, look for peaks in

$$\frac{d}{dx}(f*g)$$

Derivative theorem of convolution

This theorem gives us a very useful property

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

This saves us one operation

Derivative of Gaussian (DOG) filter

2D-gaussian

x - derivative

Derivative of Gaussian filter

Tradeoff between smoothing and localization

- Stronger smoothing removes noise, but blurs edges.
- Finds edges at different "scales".

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$
 1D derivative filter 1 1 0 -1

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 Laplace filter

Laplacian of Gaussian (LoG) filter

 As with derivative, we can combine Laplace filtering with Gaussian filtering

"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

 Zero crossings are more accurate at localizing edges (but not very convenient)

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

2D Gaussian filters

Gaussian

Derivative of Gaussian

Laplacian of Gaussian

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - (1) Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - (2) Good localization: the edges detected must be as close as possible to the true edges

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - (3) Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

Outline

- Overview
- Image gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector
- Hough transform for line detection

Sobel Operator

- Uses two 3×3 kernels which are convolved with the original image to calculate approximations of the derivatives
- One for horizontal changes, and one for vertical

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} \hspace{0.5cm} \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

Sobel Operation

Smoothing + differentiation

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} = egin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} [+1 & 0 & -1]$$

Gaussiansmoothing

differentiation

The Sobel filter

• Horizontal Sober filter:

1	0	-1
2	0	-2
1	0	-1

=

*

1 0 -1

Vertical Sobel filter:

=

*

Sobel Operation

Magnitude:

$$\mathbf{G} = \sqrt{\mathbf{G}_x^2 + \mathbf{G}_y^2}$$

Angle or direction of the gradient:

$$oldsymbol{\Theta} = ext{atan}igg(rac{\mathbf{G}_y}{\mathbf{G}_x}igg)$$

Sobel filter example

which Sobel filter?

which Sobel filter?

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

60

Sobel Filter Problems

- Poor Localization (Trigger response in multiple adjacent pixels)
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges
 - False negatives (missing real edges)

Several derivative filters

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Scharr

3	0	-3	3	10	3
10	0	-10	0	0	0
3	0	-3	-3	-10	-3

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Roberts

0	1
-1	0

1	0
0	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Outline

- Overview
- Image gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
- Use hysteresis and connectivity analysis to detect edges

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

Example

Original image

Computing gradients

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get orientation at each pixel

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Compute gradients

Gradient Magnitude

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression

Non-maximum suppression

- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Compare current pixel vs neighbors along direction of gradient
 - Remove if not maximum

Remove spurious gradients

$|\nabla G|(x,y)$ is the gradient at pixel (x, y)

$$(x',y') \\ (x,y) = \begin{cases} |\nabla G|(x,y) \text{ if } |\nabla G|(x,y) > |\nabla G|(x',y') \\ & \& |\nabla G|(x,y) > |\nabla G|(x'',y'') \\ 0 & \text{otherwise} \end{cases}$$

$$(x'',y'') \\ x' \text{ and } x'' \text{ are the neighbors of } x \text{ along}$$

x' and x" are the neighbors of x along normal direction to an edge

Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Non-maximum suppression

Before After

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
- Use hysteresis and connectivity analysis to detect edges

Detecting edges with a single threshold

Threshold too high

Threshold too low

Hysteresis thresholding

- Define two thresholds: Low and High
- If less than Low, not an edge
- If greater than High, strong edge
- If between Low and High, weak edge
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'strong edge pixel' directly and via pixels between Low and High

Hysteresis thresholding

Final Canny Edges

Canny edge detector

- 1. Filter image with a filter
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - -Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
- –Use the high threshold to start edge curves and the low threshold to continue them

Effect of σ (Gaussian kernel spread/size)

- The choice of σ depends on desired behavior
 - Large σ detects large scale edges
 - Small σ detects fine features

Canny with $\sigma=1$

References

- Basic reading:
 - Szeliski textbook, Chapter 3.2, 4,1