Course: Machine learning Foundations

Solve with Instructor

WEEK 9

Which of the following sets are convex, closed and bounded?

$$egin{align} A &= \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \leq 4\} \ B &= \{(x,y) \in \mathbb{R}^2; y = 2x + 4\} \ C &= \{(x,y) \in \mathbb{R}^2; x + y \leq 2, x \geq 0, y \geq 0\} \ D &= \{(x,y) \in \mathbb{R}^2; y > x^2\} \ E &= \{(x,y) \in \mathbb{R}^2; xy > 1, x \geq 0, y \geq 0\} \ F &= \{(x,y) \in \mathbb{R}^2; xy > 1, x \leq 0, y \leq 0\} \ \end{align}$$

https://www.geogebra.org/m/kuk45ab4

Let $f(x) = 3 + x^2 + x$ and $g(x) = e^{-x}$. What can you say about their composition $h_1 = fog$ and $h_2 = gof$?

- A. h_1 is convex and h_2 is concave
- B. h_1 is concave and h_2 is convex
- C. h_1 and h_2 is convex
- D. h_1 and h_2 is concave

https://www.geogebra.org/m/esqcd4he

Consider the following problem.

Maximize x + y subject to the constraints

$$x \ge 0$$
, $y \ge 0$, $-3x + 2y \le -1$, $x - y \le 2$.

Is the feasible region bounded or unbounded?

https://www.geogebra.org/m/fggdwdsc

☐ Given below is a set of data points and their labels.

X	У
[1,2]	2.5
[2,1.5]	3
[2,3]	5
[3,4]	7

Perform linear regression on this data set. Let initial w at t=1 be $[0.1, 0.1]^T$. Using the gradient descent update equation with a learning rate as 0.1, compute the value of w at t=2.

$$\square X^T X = \begin{bmatrix} 18 & 23 \\ 23 & 31.25 \end{bmatrix}$$

$$\square X^T y = \begin{bmatrix} 39.5 \\ 52.5 \end{bmatrix}$$

$$\square w^2 = \begin{bmatrix} 3.64 \\ 4.807 \end{bmatrix}$$

Thank You

