Comparison of Classification Methods for Pathogen Detection with High-Dimensional Mi-Fi Data

Huizi Wang

Advisor: Dr. Joshua D Habiger, Department of Statistics, Oklahoma State University Outside committee: Dr. Kitty Cardwell, Institute of Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University

Outline

- Introduction
 - Mi-Fi
 - Mi-Fi Data
 - Research Problems
- 2 Simple Classification Approaches
- 3 High-dimension (HD) classification Approaches
 - Multivariate Approaches
 - Multiple Logistic Regression Approach (MLR)
 - Summary of Models
 - Estimation
- 4 Application
- Future Work
- 6 Acknowledgment
- Reference

Microbe Finder (Mi-Fi)

- Microbe Finder (Mi-Fi) is a diagnostic tool developed by researchers at Oklahoma State University which uses high-throughput sequencing technology to measure the abundance of a pathogen in a sample.
- Data are generated as follows [21]:
 - Step 1: The unique RNA sequence of a pathogen is decomposed into multiple smaller sequences called "e-probes" [9], [8].
 - Step 2: The RNA sequence of a sample to be tested is provided to Mi-Fi platform [3].
 - Step 3: Scan between the RNA sequence of a sample and "e-probes" provided [8].
 - Step 4: The number of "e-probes hits" and the "e-probe scores" in each sample are recorded for each e-probe [9].

Mi-Fi Data (CLas data set)

ID	V.		X_{ij}			
l ID	1 1	X_{i1}	X_{i2}	• • •	X _{i8842}	Z_i
1	0	12	13		0	254.1
2	0	1	1		0	37.88
3	0	11	19		0	169.93
:	:	:	:	÷	:	÷
21	1	2	17		0	881.2
22	1	3	8	• • •	0	393.7

- Y_i : Diagnostic result (qPCR) from lab for sample i. 1 if the sample contains a pathogen, and 0 otherwise.
- X_{ij} : The number of hits for a sample i in e-probe j.
- Z_i : Total Score of a sample i.
 - Continuous.
 - Incorporates number of hits and quality of each hit.

Research Problems

- The basic goal is to determine if a sample should be classified as pathogenic or healthy using Mi-Fi data.
- The challenge is that pathogen abundance is measured as the number of "e-probe hits" for at least 10 and up to 10,000 "e-probes", depending on the pathogen of interest, and there are a relatively few number of samples to train a classifier.
- Hence this is a classification problem
 - One dimension classification problem with a single continuous variable "total score" Z_i.
 - High-dimension (HD) classification problem with count data X_{ij} .

Simple Models

- There are three simple classifiers base on models Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and logistic regression.
- Denote the conditional probability mass function (PMF) of Y given Z by $p(y \mid z)$ as shorthand for $Pr(Y = y \mid Z = z)$.
- For LDA and QDA models, we state $\hat{Y}=1$ if $p(1 \mid z) = \frac{\pi_1 f_1(z)}{\pi_1 f_1(z) + \pi_0 f_0(z)} > K$ for some K.
 - LDA model,
 - $f_0(z)$: $N(\mu_0, \sigma^2)$
 - $f_1(z)$: $N(\mu_1, \sigma^2)$
 - QDA model,
 - $f_0(z)$: $N(\mu_0, \sigma_1^2)$
 - $f_1(z)$: $N(\mu_1, \sigma_2^2)$
- For logistic regression model, we state $\hat{Y} = 1$ if $\log(\frac{p(1|z)}{p(0|z)}) = \beta_0 + \beta_1 z > K$ for some K.

Bayes Decision Boundary

- Bayes decision boundary (when p=1): solves $p(1\mid z)=\frac{1}{2}$ for z when $\pi_1=\pi_0$.
 - LDA: $\hat{Y} = 1 \text{ if } z > \frac{\mu_1 + \mu_0}{2}$
 - QDA: $\hat{Y} = 1 \text{ if } z > \frac{(\frac{\mu_1}{\sigma_1^2} \frac{\mu_0}{\sigma_0^2}) \sqrt{\frac{(\mu_0 \mu_1)^2}{\sigma_0^2 \sigma_1^2} (\frac{1}{\sigma_1^2} \frac{1}{\sigma_0^2}) \times 2\log\frac{\sigma_1}{\sigma_0}}{(\frac{1}{\sigma_1^2} \frac{1}{\sigma_0^2})}$
 - Logistic regression: $\hat{Y}=1$ if $z>-rac{eta_0}{eta_1}$
- Remark: All the Bayesian decision boundaries are closed form of above models.

Estimation

- LDA and QDA
 - Parameters π_0 and π_1 can be estimated using a wide variety of techniques. See Chapter 4 of [11] and Chapter 2 of [15] for details.
 - Parameters μ_0 , μ_1 , σ_0 and σ_1 can be estimated using maximum likelihood estimates. See Chapter 11 of [6] and [5] for details.
- Logistic regression
 - Parameters β_0 and β_1 can be estimated using standard maximum likelihood estimates.

Result

- The estimated decision boundary with K=0 and $\pi_0=\pi_1=0.5$ founded by plugging in estimates in the Bayes decision boundary.
 - For LDA, it is $\hat{z} = 2885.04$.
 - For QDA, it is $\hat{z} = 430.34$.
 - For logistic regression, it is $\hat{z} = 339.34$.

Figure: A Box plot of pathogen vs total score with decision boundaries of *C*Las data set.

• The LOOCV-based confusion matrix with K=0 and $\pi_0=\pi_1=0.5$ of three classifiers for CLas data set.

		Ŷ		
		1	0	Total
Y	1 (P)	5	6	11
I	0 (N)	0	11	11
	Total	5	17	22

	Ŷ			
		1	0	Total
	1 (P)	10	1	11
Y	0 (N)	0	11	11
	Total	10	12	22

	Ŷ			
		1	0	Total
Y	1 (P)	10	1	11
I	0 (N)	0	11	11
	Total	10	12	22

Figure: LDA

Figure: QDA

Figure: Logistic

• For LDA, FN = 6.

• The LOOCV-based summary with K=0 and $\pi_0=\pi_1=0.5$ of the five classification metrics for CLas data set.

Classifier	FPR	TPR	MR	F ₁
LDA	0	0.45	0.27	0.62
QDA	0	0.91	0.05	0.95
Logistic	0	0.91	0.05	0.95

- Useful metrics
 - FPR is Type I Error (α) .
 - TPR is Power (1β) .
 - MR is misclassification rate.
 - F₁ is denotes the number of TPs among the mean of predicted positives (precision) and the mean of real positives [16], [22].
 - For many other useful metrics, see [16], [14], [10] and [22] for a detailed review
- LDA performs poorly because the model of LDA assumes equal variances.

- Receiver operating characteristics (ROC) curve
 - ROC curve plots FPR vs TPR.
 - ullet ROC curve depicts trade-offs between FPR and TPR as we change K.
- Area under the ROC curve (AUROC)
 - AUROC summarizes the ROC curve.
 - If the AUROC is 1 then the classifier is "perfect". If the AUROC is 0.5 then the classifier is poor.

Figure: An ROC graph with three classifiers for CLas data set.

Notation

- Notation of high-dimensional count data. For short, denote
 - $Pr(X_1 = x_1, X_2 = x_2, ..., X_p = x_p, Y = y)$ by $p(x_1, x_2, ..., x_p, y) = p(\mathbf{x}, y)$.
 - $Pr(X_1 = x_1, X_2 = x_2, ..., X_p = x_p \mid Y = y)$ by $p(x_1, x_2, ..., x_p \mid y) = p(\mathbf{x} \mid y)$.
 - $Pr(Y = y \mid X_1 = x_1, X_2 = x_2, ..., X_p = x_p)$ by $p(y \mid x_1, x_2, ..., x_p) = p(y \mid x)$.

Multivariate Approaches

- Assume $p(x \mid y) = \prod_{j=1}^{p} p(x_j \mid y)$. See [2], [7] and [8] for details.
- Specify models for $X \mid y$ such as
 - Poisson [24]
 - Zero-Inflated Poisson (ZIP): considers high proportion of zeros [13].
 - Negative Binomial (NB): considers over-dispersion [24], [18], [1].
 - Zero-Inflated Negative Binomial (ZINB): considers high proportion of zeros and over-dispersion [28].

□ Figure: Over dispersion plot 14/36

Poisson Model and Poisson Linear Discriminant Analysis (PLDA) Classifier

- Poisson model
 - Assume $X_j \mid y \overset{\mathrm{ind}}{\sim} \mathsf{POI}\Big(\mu_j(y)\Big)$ so that $\mu_j(0)$ is mean of X_j when y=0 and $\mu_j(1)$ is mean of X_j when y=1.
- PLDA classifier was proposed by [24].
- Theorem 1 Observe, the PLDA classifier $\log \left[\frac{p(x|1)}{p(x|0)}\right] > K$ can be written as

$$C(\boldsymbol{x}) \propto \log \left[\frac{p(\boldsymbol{x} \mid 1)}{p(\boldsymbol{x} \mid 0)} \right]$$

$$= -\sum_{j=1}^{p} \left(\mu_{j}(1) - \mu_{j}(0) \right) + \sum_{j=1}^{p} \left[\log \left(\mu_{j}(1) \right) - \log \left(\mu_{j}(0) \right) \right] x_{j}$$

$$\equiv \boldsymbol{\beta}_{0} + \sum_{j=1}^{p} \boldsymbol{\beta}_{1j} x_{j}.$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● 今へで 15/36

Zero-Inflated Poisson (ZIP) Model and Zero-Inflated Poisson Logistic Discriminate Analysis (ZIPLDA) Classifier

- ZIP model
 - Assume $X_j \mid y \overset{\mathrm{ind}}{\sim} \begin{cases} \mathsf{POI}\Big(\mu_j(y)\Big), & \text{with probability} \quad 1-\pi_j(y), \\ 0, & \text{with probability} \quad \pi_j(y), \end{cases}$ so that $\mu_j(0)$ is mean of X_j when y=0 and $\mu_j(1)$ is mean of X_j when y=1. Similarly, $\pi_j(0)$ is probability of $X_j=0$ when y=0 and $\pi_j(1)$ is probability of $X_j=0$ when y=1.
- ZIPLDA classifier was proposed by [27].

Zero-Inflated Poisson (ZIP) Model and Zero-Inflated Poisson Logistic Discriminate Analysis (ZIPLDA) Classifier

• Theorem 2 Observe, the ZIPLDA classifier $\log \left\lfloor \frac{p(x|1)}{p(x|0)} \right\rfloor > K$ can be written as

$$\begin{split} C(\boldsymbol{x}) &\propto \log \left[\frac{p(\boldsymbol{x} \mid 1)}{p(\boldsymbol{x} \mid 0)} \right] \\ &= \sum_{j=1}^{p} \left[-\left(\mu_{j}(1) - \mu_{j}(0) \right) + \log \left(\frac{1 - \pi_{j}(1)}{1 - \pi_{j}(0)} \right) \right] + \sum_{j=1}^{p} \left[\log \left(\mu_{j}(1) \right) - \log \left(\mu_{j}(0) \right) \right] x_{j} \\ &+ \sum_{j=1}^{p} \left[\log \left(\frac{\pi_{j}(1) + \left(1 - \pi_{j}(1) \right) e^{-\mu_{j}(1)}}{\pi_{j}(0) + \left(1 - \pi_{j}(0) \right) e^{-\mu_{j}(0)}} \right) + \left(\mu_{j}(1) - \mu_{j}(0) \right) - \log \left(\frac{1 - \pi_{j}(1)}{1 - \pi_{j}(0)} \right) \right] I(x_{j} = 0) \\ &\equiv \beta_{0} + \sum_{j=1}^{p} \beta_{1j} x_{j} + \sum_{j=1}^{p} \beta_{2j} I(x_{j} = 0). \end{split}$$

◆□▶◆Φ▶◆豊▶◆豊▶ 豊 からで 17/30

Huizi Wang (OSU)

Negative Binomial (NB) Model and Negative Binomial Linear Discriminant Analysis (NBLDA) Classifier

- NB model
 - Assume $X_j \mid y \stackrel{\mathrm{ind}}{\sim} \mathsf{NB}\Big(\mu_j(y), \phi_j\Big)$ so that $\mu_j(0)$ is mean of X_j when y=0 and $\mu_j(1)$ is mean of X_j when y=1, and ϕ_j is the dispersion of X_j .
- The NBLDA classifier was proposed by [4].
- Theorem 3 Observe, the NBLDA classifier $\log \left\lfloor \frac{p(x|1)}{p(x|0)} \right\rfloor > K$ can be written as

$$C(\boldsymbol{x}) \propto \log \left[\frac{p(\boldsymbol{x} \mid 1)}{p(\boldsymbol{x} \mid 0)} \right]$$

$$= -\sum_{j=1}^{p} \phi_{j}^{-1} \log \left(\frac{1 + \phi_{j}\mu_{j}(1)}{1 + \phi_{j}\mu_{j}(0)} \right) + \sum_{j=1}^{p} \left[\log \left(\mu_{j}(1) \right) - \log \left(\mu_{j}(0) \right) - \log \left(\frac{1 + \phi_{j}\mu_{j}(1)}{1 + \phi_{j}\mu_{j}(0)} \right) \right] x_{j}$$

$$\equiv \beta_{0} + \sum_{j=1}^{p} \beta_{1j} x_{j}.$$

Zero-Inflated Negative Binomial (ZINB) Model and Zero-Inflated Negative Binomial Logistic Discriminate Analysis (ZINBLDA) Classifier

- ZINB model
 - Assume $X_j \mid y \overset{\mathrm{ind}}{\sim} \begin{cases} \mathsf{NB}\Big(\mu_j(y), \phi_j\Big), & \text{with probability} \quad 1 \pi_j(y), \\ 0, & \text{with probability} \quad \pi_j(y), \end{cases}$ so that $\mu_j(0)$ is mean of X_j when y = 0 and $\mu_j(1)$ is mean of X_j when y = 1. Similarly, $\pi_j(0)$ is probability of $X_j = 0$ when y = 0 and $\pi_j(1)$ is probability of $X_j = 0$ when y = 1.
- The ZINBLDA classifier was proposed by [28].

□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ 19/36

Zero-Inflated Negative Binomial (ZINB) Model and Zero-Inflated Negative Binomial Logistic Discriminate Analysis (ZINBLDA) Classifier

• Theorem 4 Observe, the ZINBLDA classifier $\log \left[\frac{p(x|1)}{p(x|0)}\right] > K$ can be written as

$$\begin{split} C(\boldsymbol{x}) &\propto \log \left[\frac{p(\boldsymbol{x} \mid 1)}{p(\boldsymbol{x} \mid 0)} \right] \\ &= \sum_{j=1}^{p} \left[\log \left(\frac{1 - \pi_{j}(1)}{1 - \pi_{j}(0)} \right) - \phi_{j}^{-1} \log \left(\frac{1 + \phi_{j}\mu_{j}(1)}{1 + \phi_{j}\mu_{j}(0)} \right) \right] + \sum_{j=1}^{p} \left[\log \left(\mu_{j}(1) \right) - \log \left(\mu_{j}(0) \right) - \log \left(\frac{1 + \phi_{j}\mu_{j}(1)}{1 + \phi_{j}\mu_{j}(0)} \right) \right] x_{j} \\ &+ \sum_{j=1}^{p} \left[\log \left(\frac{\pi_{j}(1) + \left(1 - \pi_{j}(1) \right) \left(\frac{1}{1 + \phi_{j}\mu_{j}(1)} \right)^{\phi_{j}^{-1}}}{\pi_{j}(0) + \left(1 - \pi_{j}(0) \right) \left(\frac{1}{1 + \phi_{j}\mu_{j}(0)} \right)^{\phi_{j}^{-1}}} \right) - \log \left(\frac{1 - \pi_{j}(1)}{1 - \pi_{j}(0)} \right) + \phi_{j}^{-1} \log \left(\frac{1 + \phi_{j}\mu_{j}(1)}{1 + \phi_{j}\mu_{j}(0)} \right) \right] I(x_{j} = 0) \\ &\equiv \beta_{0} + \sum_{i=1}^{p} \beta_{1j}x_{j} + \sum_{i=1}^{p} \beta_{2j}I(x_{j} = 0). \end{split}$$

Multiple Logistic Regression Approach (MLR)

• Specify the model $Y \mid \mathbf{x} \sim \text{Bern}(p(1 \mid \mathbf{x}))$ where

$$C(\mathbf{x}) \propto \log \left(\frac{p(1 \mid \mathbf{x})}{p(0 \mid \mathbf{x})} \right)$$

$$= \beta_0 + \sum_{j=1}^p \beta_{1j} x_j + \sum_{j=1}^p \beta_{2j} I(x_j = 0).$$
(1)

□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ○ ○ 21/36

Summary of Models

- Models
 - Multivariate
 - PLDA
 - ZIPLDA
 - NBLDA
 - ZINBLDA
 - Multiple Logistic Regression
- Main Point
 - Main Theory: All classifiers of the form $\hat{Y}=1$ if

$$C(\mathbf{x}) \propto \beta_0 + \sum_{j=1}^{p} \beta_{1j} x_j + \sum_{j=1}^{p} \beta_{2j} I(x_j = 0) > K.$$
 (2)

- Theorem 1-4
 - β_0 , β_{1j} and β_{2j} are function of $\mu_i(y)$'s, $\pi_i(y)$'s and ϕ_i .
 - How to estimate β_0 , β_{1i} and β_{2i} .

Huizi Wang (OSU)

Department of Statistics

April 12, 2024

22/36

PLDA-based Estimation

- ullet [24] considered unpenalized MLE-type estimators for $\mu_j(y)$'s
 - can be plugged into Theorem 1 expression.
- [24] proposed penalized/shrinkage maximum likelihood estimators for $\mu_j(y)$'s (or a parameter proportion to $d_j(y)$'s)
 - L_1 type penalty for tuning parameter ρ .
 - ho is non-negative tuning parameter that can be chosen by cross-validation.
 - When $\rho=0$, no shrinkage occurs. When ρ is large, many $\hat{\beta}_{1j}$ s are 0.
- Remark: [24] is the only one who considered variable selection or L_1 type penalized estimators for parameters $\mu_j(y)$'s (or a parameter proportion to $\mu_j(y)$'s) in the PLDA classifier.

Other Multivariate Approaches Estimation

- Many other multivariate-type estimators of $\mu_j(y)$'s, $\pi_j(y)$'s and ϕ_j considered with some type of penalty. For example,
 - [19] proposed Method of Moment Estimator of dispersion parameter ϕ_j .
 - [25] introduced the generalized shrinkage estimator for dispersion parameter ϕ_j . This generalized shrinkage estimator shrinks the dispersion parameter ϕ_j toward a target value as tuning parameter increases.
 - [17] proposed the L_2 type penalized maximum likelihood estimator of $\mu_j(y)$'s, $\pi_j(y)$'s and ϕ_j .

MLR-based Estimation

The negative log likelihood is

$$\ell(\beta_0, \beta) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log p(1 \mid \boldsymbol{x}_i) + (1 - y_i) \log p(0 \mid \boldsymbol{x}_i) \right] = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \left(\beta_0 + \beta^T \boldsymbol{x}_i \right) - \log \left(1 + e^{\beta_0 + \beta^T \boldsymbol{x}_i} \right) \right].$$

- Common penalized likelihood estimators
 - Ridge Estimator [12] it the solution of $\underset{(\beta_0,\beta)\in\mathbb{R}\times\mathbb{R}^p}{\text{minimize}}\Big\{\ell\big(\beta_0,\beta\big)+\lambda\|\beta\|_2^2\Big\}.$
 - $\bullet \ \ \text{Lasso Estimator [23] is the solution of} \ \ \min_{(\beta_0,\beta)\in\mathbb{R}\times\mathbb{R}^p} \Bigl\{\ell\bigl(\beta_0,\beta\bigr) + \lambda \|\beta\|_1\Bigr\}.$
 - $$\begin{split} \bullet & \text{ Elastic-net Estimator [29] is the solution of} \\ & \underset{(\beta_0,\beta) \in \mathbb{R} \times \mathbb{R}^p}{\text{minimize}} \bigg\{ \ell(\beta_0,\beta) + \lambda \Big[\frac{1}{2} (1-\alpha) \|\beta\|_2^2 + \alpha \|\beta\|_1 \Big] \bigg\}. \end{split}$$
- β could be β_1 in PLDA and NBLDA, or could be β_1 in ZIPLDA and ZINBLDA by taking $\beta_2 = 0$.

• Un-penalized estimates for β_{1j} when p=3

Estimates	E-probe 881	E-probe 3756	E-probe 4037
PLDA	-0.21	-0.44	1.47
MLR	-0.13	-0.34	1.24

- ullet L_1 type penalized estimates for eta_{1j} when p=3
 - Left: PLDA with tuning parameters $\rho \in [0, 2]$.
 - Right: MLR with tuning parameter $\lambda \in [0, 0.26]$ and $\alpha = 1$.

• Un-penalized estimates for β_{1j} when p=4

Estimates	Ep 881	Ep 3756	Ep 4037	Ep 8255
PLDA	-0.22	-0.44	1.47	0.01
MLR	-0.13	-0.35	1.26	0.02

- L_1 type penalized estimates for β_{1j} when p=4
 - Left: PLDA with tuning parameters $\rho \in [0, 2]$.
 - Right: MLR with tuning parameter $\lambda \in [0, 0.26]$ and $\alpha = 1$.

- L_1 type penalized estimates for β_{1j} when p = 8842
 - PLDA
 - Chose LOOCV-based best ρ which has the smallest MR.
 - Using the best $\rho = 0.02$ to fit penalized PLDA.
 - MLR
 - Fix $\alpha = 1$, chose LOOCV-based best λ which has the smallest MR.
 - Using the best $\lambda = 0.17$ to fit penalized MLR.

- Many $\hat{\beta}_{1j}$'s have same value 0 between PLDA and MLR L_1 type penalized estimates. For example, e-probe 1, 5, 660, 1016, 1341 are shrinkage to 0.
 - Because most of these e-probes don't have any hit when Y=0, and have less than 5 hits when Y=1 for some samples.
- Both PLDA and MLR L₁ type penalized estimates are not 0, but it has the same estimates between PLDA and MLR. For example, e-probe 1648.
 - Because this e-probe don't have any hit when Y=0. However, it has many large number of hits when Y=1 for some samples.

- PLDA and MLR L₁ type penalized estimates are different. For example, e-probe 4368.
 - PLDA estimates is around 0 but MLR estimates is around 0.5.
 - Because this e-probe don't have any hit when Y=0. However, it has many hits and there is a sample that has a large number of hits when Y=1.
- PLDA and MLR L₁ type penalized estimates are different. For example, e-probe 8255.
 - PLDA estimates is around -4 but MLR estimates is 0.
 - Because this e-probe has 18 hits when Y=0 on a sample. However, it has few hits (around 3) when Y=1 for some samples.
 - PLDA thinks this e-probe is important to be included in the classification, but MLR thinks it is unnecessary to be included in the classification. The reason it that PLDA estimates considers difference $\log(\mu_j(1)) \log(\mu_j(0))$ (or a parameter proportion to $\mu_j(y)$). However, MLR estimates β_{1j} using maximum likelihood directly.

Y	Ep 5	Ep 1648	Ep 3756	Ep 4368	8255
0	0	0	0	0	0
0	0	0	2	0	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	4	0	3
0	0	0	3	0	1
0	0	0	7	0	2
0	0	0	0	0	1
0	0	0	3	0	18
0	0	0	0	0	0
0	0	0	0	0	10
1	2	3	2	7	4
1	0	18	0	8	0
1	1	10	2	5	2
1	0	17	4	4	4
1	3	28	2	25	5
1	0	4	1	3	1
1	0	8	0	1	2
1	0	0	0	2	0
1	0	1	0	0	3
1	0	0	0	2	2
1	0	0	4	5	0

• MLR approach: LOOCV-based confusion matrix with K=0, $\pi_0=\pi_1=0.5$ of Ridge, Elastic-net and Lasso classifiers with LOOCV-based best tuning parameter λ which has smallest MR for CLas data set.

	Ŷ			
		1	0	Total
Y	1 (P)	8	4	12
ľ	0 (N)	0	10	10
	Total	8	14	22

Figure: Ridge with $\alpha = 0$ and $\lambda = 3.1$

	Ŷ				
		1	0	Total	
.,	1 (P)	6	6	12	
Y	0 (N)	1	9	10	
	Total	7	15	22	

Figure: Elastic-net with $\alpha=0.3$ and $\lambda=0.4$

		Ŷ		
		1	0	Total
v	1 (P)	6	6	12
Y	0 (N)	1	9	10
	Total	7	15	22

Figure: Elastic-net with $\alpha = 0.5$ and $\lambda = 0.3$

• Multivariate approach: LOOCV-based confusion matrix with K=0 of classifier with LOOCV-based best tuning parameter ρ which has smallest MR for CLas data set.

		Ŷ		
		1	0	Total
Y	1 (P)	6	6	12
I	0 (N)	1	9	10
	Total	7	15	22

Figure: Elastic-net with $\alpha = 0.7$ and $\lambda = 0.2$

		Ŷ				
		1	0	Total		
Y	1 (P)	6	6	12		
	0 (N)	1	9	10		
	Total	7	15	22		

Figure: Lasso with $\alpha = 1$ and $\lambda = 0.17$

		Ŷ				
		1	0	Total		
Y	1 (P)	8	4	12		
	0 (N)	0	10	10		
	Total	8	14	22		

Figure: PLDA with $\rho = 0.02$

- MLR approach: LOOCV-based summary of classification metrics with $K=0, \ \pi_0=\pi_1=0.5$ of Ridge, Elastic-net and Lasso classifiers with LOOCV-based best tuning parameter λ which has smallest MR for CLas data set.
- Multivariate approach: LOOCV-based summary of classification metrics with K=0 of classifier with LOOCV-based best tuning parameter ρ which has smallest MR for CLas data set.

Classifier	FPR	TPR	MR	\mathbf{F}_{1}	AUROC
Ridge	0	0.67	0.18	0.8	0.89
Elastic-net ($\alpha = 0.3$)	0.1	0.5	0.32	0.63	0.79
Elastic-net ($\alpha = 0.5$)	0.1	0.5	0.32	0.63	0.79
Elastic-net ($\alpha = 0.7$)	0.1	0.5	0.32	0.63	0.72
Lasso	0.1	0.5	0.32	0.63	0.72
PLDA	0	0.67	0.18	0.8	0.81

Future Work

- Application for Theorem 2 that incorporate zero-inflation.
 - The negative log likelihood is

$$\ell(\beta_{0}, \beta) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i} \log p(1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log p(0 \mid \mathbf{x}_{i}) \right] = \\ -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i} \left(\beta_{0} + \sum_{g=1}^{G} \beta_{g}^{T} \mathbf{x}_{i,g} \right) - \log \left(1 + e^{\beta_{0} + \sum_{g=1}^{G} \beta_{g}^{T} \mathbf{x}_{i,g}} \right) \right].$$

- Common penalized likelihood estimators
 - Group Lasso Estimator [26] is the solution of $\min_{\beta_0 \in \mathbb{R}, \beta_g \in \mathbb{R}^{p_g}} \Big\{ \ell(\beta_0, \beta) + \lambda \sum_{g=1}^G \sqrt{p_g} \|\beta_g\|_2 \Big\}.$
 - $$\begin{split} \bullet & \text{ Sparse Group Lasso Estimator [20] is the solution of} \\ & \underset{\beta_0 \in \mathbb{R}, \beta_g \in \mathbb{R}^{p_g}}{\text{minimize}} \left\{ \ell(\beta_0, \beta) + \lambda \sum_{g=1}^{\mathcal{G}} \left[(1-\alpha) \|\beta_g\|_2 + \alpha \|\beta_g\|_1 \right] \right\}. \end{split}$$
- Application for Theorem 3 that incorporate over-dispersion.
- Application for Theorem 4 that incorporate zero-inflation and over-dispersion.
- Simulation Study.

Acknowledgment

- I would like to express my deepest gratitude to my advisor Dr. Joshua D Habiger.
- I would like to express my deepest appreciation to my committee Dr. Lan Zhu and Dr. Ye Liang, and outside committee Dr. Kitty Cardwell.
- Special thanks to Dr. Pratyaydipta Rudra, Dr. Andres Espindola Camacho, and Dami.
- I would like to acknowledge my parents.

- [1] Simon Anders and Wolfgang Huber. "Differential expression analysis for sequence count data". In: *Nature Precedings* (2010), pp. 1–1.
- [2] Peter J Bickel and Elizaveta Levina. "Some theory for Fisher's linear discriminant function, naive Bayes', and some alternatives when there are many more variables than observations". In: *Bernoulli* 10.6 (2004), pp. 989–1010.
- [3] Somnath Datta and Dan Nettleton. "Statistical analysis of next generation sequencing data". In: (2014).
- [4] Kai Dong et al. "NBLDA: negative binomial linear discriminant analysis for RNA-Seq data". In: *BMC bioinformatics* 17 (2016), pp. 1–10.
- [5] Qian Du. "Modified Fisher's linear discriminant analysis for hyperspectral imagery". In: *IEEE geoscience and remote sensing letters* 4.4 (2007), pp. 503–507.

- [6] Richard O Duda. *Patter Classification an Scene Analysis*. John Wiley, 1973.
- [7] Sandrine Dudoit, Jane Fridlyand and Terence P Speed. "Comparison of discrimination methods for the classification of tumors using gene expression data". In: *Journal of the American statistical association* 97.457 (2002), pp. 77–87.
- [8] Andres S Espindola and Kitty F Cardwell. "Microbe finder (mifi®): Implementation of an interactive pathogen detection tool in metagenomic sequence data". In: Plants 10.2 (2021), p. 250.
- [9] Andres S Espindola et al. "A step towards validation of high-throughput sequencing for the identification of plant pathogenic oomycetes". In: *Phytopathology* 112.9 (2022), pp. 1859–1866.
- [10] Maria Halkidi, Yannis Batistakis and Michalis Vazirgiannis. "On clustering validation techniques". In: *Journal of intelligent information systems* 17 (2001), pp. 107–145.

- [11] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer, 2009.
- [12] A Hoerl and R Kennard. Ridge regression, in 'encyclopedia of statistical sciences', vol. 8. 1988.
- [13] Diane Lambert. "Zero-inflated Poisson regression, with an application to defects in manufacturing". In: *Technometrics* 34.1 (1992), pp. 1–14.
- [14] Antonio Maratea, Alfredo Petrosino and Mario Manzo. "Adjusted F-measure and kernel scaling for imbalanced data learning". In: Information Sciences 257 (2014), pp. 331–341.
- [15] Geoffrey J McLachlan. Discriminant analysis and statistical pattern recognition. John Wiley & Sons, 2005.
- [16] David MW Powers. "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation". In: arXiv preprint arXiv:2010.16061 (2020).

- [17] Davide Risso et al. "A general and flexible method for signal extraction from single-cell RNA-seq data". In: *Nature communications* 9.1 (2018), p. 284.
- [18] Mark D Robinson, Davis J McCarthy and Gordon K Smyth. "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data". In: bioinformatics 26.1 (2010), pp. 139–140.
- [19] Krishna Saha and Sudhir Paul. "Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter". In: *Biometrics* 61.1 (2005), pp. 179–185.
- [20] Noah Simon et al. "A sparse-group lasso". In: *Journal of computational and graphical statistics* 22.2 (2013), pp. 231–245.
- [21] Anthony H Stobbe et al. "E-probe Diagnostic Nucleic acid Analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics". In: Journal of microbiological methods 94.3 (2013), pp. 356–366.

- [22] Alaa Tharwat. "Classification assessment methods". In: Applied computing and informatics 17.1 (2020), pp. 168–192.
- [23] Robert Tibshirani. "Regression shrinkage and selection via the lasso". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.
- [24] Daniela M Witten. "Classification and clustering of sequencing data using a Poisson model". In: (2011).
- [25] Danni Yu, Wolfgang Huber and Olga Vitek. "Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size". In: *Bioinformatics* 29.10 (2013), pp. 1275–1282.
- [26] Ming Yuan and Yi Lin. "Model selection and estimation in regression with grouped variables". In: *Journal of the Royal Statistical Society Series B: Statistical Methodology* 68.1 (2006), pp. 49–67.

- [27] Yan Zhou et al. "Classifying next-generation sequencing data using a zero-inflated Poisson model". In: *Bioinformatics* 34.8 (2018), pp. 1329–1335.
- [28] Jiadi Zhu et al. "Selecting classification methods for small samples of next-generation sequencing data". In: *Frontiers in Genetics* 12 (2021), p. 642227.
- [29] Hui Zou and Trevor Hastie. "Regularization and variable selection via the elastic net". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 67.2 (2005), pp. 301–320.