## Mixing Times of Card Shuffling and Road Traffic

## Rodrigo Marinho and Joe P. Chen



IST, University of Lisbon



Colgate University

October 09, 2020

► Choose your favourite way to shuffle a deck of cards.

► Choose your favourite way to shuffle a deck of cards.

How many times do you have to shuffle the deck like that to mix it up?

▶ What is the meaning of mixing a deck?

- ▶ What is the meaning of mixing a deck?
- ▶ Deck with n cards  $\Rightarrow n!$  permutations

- ▶ What is the meaning of mixing a deck?
- ▶ Deck with n cards  $\Rightarrow n!$  permutations
- ▶ Deck with 52 cards  $\Rightarrow$  order  $10^{68}$  permutations

- What is the meaning of mixing a deck?
- ▶ Deck with n cards  $\Rightarrow n!$  permutations
- ▶ Deck with 52 cards  $\Rightarrow$  order  $10^{68}$  permutations

# This is much more than the number of particles on Earth!

- What is the meaning of mixing a deck?
- ▶ Deck with n cards  $\Rightarrow n!$  permutations
- ▶ Deck with 52 cards  $\Rightarrow$  order  $10^{68}$  permutations

# This is much more than the number of particles on Earth!

► A deck will be considered mixed whenever all permutations are equiprobable.

 $\blacktriangleright$   $\mu_t$ : Probability distribution of your shuffle at time t

$$\mu_t(\sigma) = \mathbb{P}(\sigma_t = \sigma);$$

 $ightharpoonup \mu_t$ : Probability distribution of your shuffle at time t , that is,

$$\mu_t(\sigma) = \mathbb{P}(\sigma_t = \sigma);$$

 $ightharpoonup U_n$ : Uniform distribution on  $S_n$ ;

$$\mu_t(\sigma) = \mathbb{P}(\sigma_t = \sigma);$$

- $ightharpoonup U_n$ : Uniform distribution on  $S_n$ ;
- $d_n(t) := \|\mu_t U_n\|_{TV} = \frac{1}{2} \sum_{\sigma \in S_n} |\mu_t(\sigma) \frac{1}{n!}|$  (distance to equilibrium);

$$\mu_t(\sigma) = \mathbb{P}(\sigma_t = \sigma);$$

- $ightharpoonup U_n$ : Uniform distribution on  $S_n$ ;

$$\mu_t(\sigma) = \mathbb{P}(\sigma_t = \sigma);$$

- $ightharpoonup U_n$ : Uniform distribution on  $S_n$ ;
- ▶  $d_n(t) := \|\mu_t U_n\|_{TV} = \frac{1}{2} \sum_{\sigma \in S_n} |\mu_t(\sigma) \frac{1}{n!}|$  (distance to equilibrium);
- $ightharpoonup t_{\min}^n := t_{\min}^n (1/4).$







▶ Bayer and Diaconis:  $t_{mix}^n(\varepsilon) = \frac{3}{2} \log_2 n$ .



- ▶ Bayer and Diaconis:  $t_{mix}^n(\varepsilon) = \frac{3}{2} \log_2 n$ .
- ►  $n = 52 \Rightarrow t_{mix}^{52} = 7$ .

The Annals of Applied Probability 1992, Vol. 2, No. 2, 294-313

#### TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By Dave Bayer  $^1$  and Persi Diaconis  $^2$  Columbia University and Harvard University

2. A card trick. Rising sequences, the basic invariant of riffle shuffling, were discovered by magicians Williams and Jordan at the beginning of this

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

297

century. A rising sequence is a maximal subset of an arrangement of cards,

## Overhand shuffle



### Overhand shuffle



•  $t_{\text{mix}}^n = \Theta(n^2 \log n)$ . The correct constant is unknown.

## Overhand shuffle



- $t_{\text{mix}}^n = \Theta(n^2 \log n)$ . The correct constant is unknown.
- ►  $n = 52 \Rightarrow t_{\text{mix}}^{52} \approx 10000$ .

## Top-to-random shuffle



# Top-to-random shuffle



▶ Aldous and Diaconis:  $t_{mix}^n(\varepsilon) = n \log n$ .

## Top-to-random shuffle



- ▶ Aldous and Diaconis:  $t_{mix}^n(\varepsilon) = n \log n$ .





► Hildebrand and Wilson:  $t_{\min}^n(\varepsilon) = \Theta(n^3 \log n)$ . The correct constant is unknown.



▶ Hildebrand and Wilson:  $t_{\min}^n(\varepsilon) = \Theta(n^3 \log n)$ . The correct constant is unknown. Work in progress with P. Gonçalves, M. Jara and D. Moreira.



- ▶ Hildebrand and Wilson:  $t_{\min}^n(\varepsilon) = \Theta(n^3 \log n)$ . The correct constant is unknown. Work in progress with P. Gonçalves, M. Jara and D. Moreira.
- ►  $n = 52 \Rightarrow t_{mix}^{52} \approx 14000.$



| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 5 | 3 | 4 | 2 | 6 | 7 |

#### Example

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 5 | 3 | 4 | 2 | 6 | 7 |

► Diaconis and Shahshahani, and Matthews

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 5 | 3 | 4 | 2 | 6 | 7 |

- ► Diaconis and Shahshahani, and Matthews
- $t_{\mathsf{mix}}^n(\varepsilon) = \tfrac{1}{2} n \log n.$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 5 | 3 | 4 | 2 | 6 | 7 |

- ► Diaconis and Shahshahani, and Matthews
- $t_{\mathsf{mix}}^n(\varepsilon) = \tfrac{1}{2} n \log n.$

# Random adjacent transposition shuffle

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 2 | 4 | 3 | 5 | 6 | 7 |

# Random adjacent transposition shuffle

#### Example

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 2 | 4 | 3 | 5 | 6 | 7 |

▶ Wilson (2004) and Lacoin (2016).

# Random adjacent transposition shuffle

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 1 | 2 | 4 | 3 | 5 | 6 | 7 |

- ▶ Wilson (2004) and Lacoin (2016).
- $t_{\mathsf{mix}}^n(\varepsilon) = \tfrac{1}{\pi^2} n^3 \log n.$

# Cutoff phenomenon



#### Cutoff phenomenon



$$\lim_{n\to\infty} d_n(\kappa \ t_{\mathit{mix}}^n) = \begin{cases} 1, & \text{if } \kappa < 1; \\ 0, & \text{if } \kappa > 1. \end{cases}$$

▶ G = (V, E): finite connected graph;

▶ G = (V, E): finite connected graph;



ightharpoonup G = (V, E): finite connected graph;



 $\blacktriangleright$  At each vertex of G we put a card and at each edge of G we attach an exponential clock of rate 1.





▶ Flip edges, exchanging the cards on the two incident vertices.



- ▶ Flip edges, exchanging the cards on the two incident vertices.
- ▶ Interchange process  $\{\sigma_t : t \geq 0\}$ .

▶ When *G* is the complete graph  $K_n \Rightarrow$  Random transposition shuffle;



▶ When *G* is the complete graph  $K_n \Rightarrow$  Random transposition shuffle;



▶ When G is the graph  $P_n \Rightarrow$  Adjacent transposition shuffle;



▶ When *G* is the complete graph  $K_n \Rightarrow$  Random transposition shuffle;



▶ When *G* is the graph  $P_n \Rightarrow$  Adjacent transposition shuffle;



▶ The cutoff has been proven only for:  $K_n$ ,  $P_n$  and star graphs  $(n \log n)$ 



until now...

ightharpoonup We proved that the interchange process on any graphs  $G_n$  presents cutoff at times

$$\frac{1}{2\,\lambda_1^n}\,\log|V_n|,$$

whenever the  $G_n$  is a discretization of a compact set on  $\mathbb{R}^d$ .

ightharpoonup We proved that the interchange process on any graphs  $G_n$  presents cutoff at times

$$\frac{1}{2\,\lambda_1^n}\,\log|V_n|,$$

whenever the  $G_n$  is a discretization of a compact set on  $\mathbb{R}^d$ .

Above  $-\lambda_1^n$  stands for the largest-nonzero eigenvalue of the Laplacian operator  $\Delta_n$  on  $G_n$  which is given by

$$\Delta_n f(x) = \sum_{y \sim x} (f(y) - f(x))$$

for any  $f: V_n \to \mathbb{R}$ .

18 / 24

ightharpoonup We proved that the interchange process on any graphs  $G_n$  presents cutoff at times

$$\frac{1}{2\,\lambda_1^n}\,\log|V_n|,$$

whenever the  $G_n$  is a discretization of a compact set on  $\mathbb{R}^d$ .

Above  $-\lambda_1^n$  stands for the largest-nonzero eigenvalue of the Laplacian operator  $\Delta_n$  on  $G_n$  which is given by

$$\Delta_n f(x) = \sum_{y \sim x} (f(y) - f(x))$$

for any  $f: V_n \to \mathbb{R}$ .

• We call  $\lambda_1^n$  by spectral gap.

ightharpoonup We proved that the interchange process on any graphs  $G_n$  presents cutoff at times

$$\frac{1}{2\lambda_1^n}\log|V_n|,$$

whenever the  $G_n$  is a discretization of a compact set on  $\mathbb{R}^d$ .

Above  $-\lambda_1^n$  stands for the largest-nonzero eigenvalue of the Laplacian operator  $\Delta_n$  on  $G_n$  which is given by

$$\Delta_n f(x) = \sum_{y \sim x} (f(y) - f(x))$$

for any  $f: V_n \to \mathbb{R}$ .

▶ We call  $\lambda_1^n$  by *spectral gap*. In spectral graph theory it is called *algebraic connectivity*.

# This is more or less what we are assuming on $G_n$



#### Example: adjacent transposition shuffle on a grid



#### Example: L-adjacent transposition shuffle



▶ Let us colour  $\ell$  cards in black and  $|V_n| - \ell$  cards in red;

- ▶ Let us colour  $\ell$  cards in black and  $|V_n| \ell$  cards in red;
- ▶ Define  $\eta_t^n: V \to \{0,1\}$  as the function that assigns value 1 to vertices with black cards and value 0 to vertices with red cards of permutation  $\sigma_t^n$ .

- ▶ Let us colour  $\ell$  cards in black and  $|V_n| \ell$  cards in red;
- ▶ Define  $\eta_t^n: V \to \{0,1\}$  as the function that assigns value 1 to vertices with black cards and value 0 to vertices with red cards of permutation  $\sigma_t^n$ .

- ▶ Let us colour  $\ell$  cards in black and  $|V_n| \ell$  cards in red;
- ▶ Define  $\eta_t^n: V \to \{0,1\}$  as the function that assigns value 1 to vertices with black cards and value 0 to vertices with red cards of permutation  $\sigma_t^n$ .

$$\eta(x) = \begin{cases} 1, & \text{if the card at vertex x is black;} \\ 0, & \text{if the card at vertex x is red.} \end{cases}$$



▶  $d_{n,\ell}(t)$  and  $t_{\text{mix}}^{n,\ell}(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the exclusion process with  $\ell$  particles;

- ▶  $d_{n,\ell}(t)$  and  $t_{\min}^{n,\ell}(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the exclusion process with  $\ell$  particles;
- ▶  $d_n(t)$  and  $t_{\text{mix}}^n(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the interchange process.

- ▶  $d_{n,\ell}(t)$  and  $t_{\min}^{n,\ell}(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the exclusion process with  $\ell$  particles;
- ▶  $d_n(t)$  and  $t_{\text{mix}}^n(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the interchange process.
- Observe that a projection can not increase distances.

- ▶  $d_{n,\ell}(t)$  and  $t_{\text{mix}}^{n,\ell}(\varepsilon)$ : Distance to equilibrium and ε-mixing time of the exclusion process with  $\ell$  particles;
- ▶  $d_n(t)$  and  $t_{\text{mix}}^n(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the interchange process.
- Observe that a projection can not increase distances.



- ▶  $d_{n,\ell}(t)$  and  $t_{\min}^{n,\ell}(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the exclusion process with  $\ell$  particles;
- ▶  $d_n(t)$  and  $t_{\text{mix}}^n(\varepsilon)$ : Distance to equilibrium and  $\varepsilon$ -mixing time of the interchange process.
- Observe that a projection can not increase distances.



Thus,  $d_{n,\ell}(t) \leq d_n(t)$  and

$$t_{\mathsf{mix}}^{n,\ell}(\varepsilon) \leq t_{\mathsf{mix}}^n(\varepsilon).$$

