Active fluctuations of a tracer in living matter

Étienne Fodor¹, Wylie Ahmed², Timo Betz², Matthias Bussonnier², Nir Gov³, Ming Guo⁴, Paolo Visco¹, David A. Weitz⁴, Frédéric van Wijland¹

- 3. Department of Chemical Physics, Weizmann Institute of Science
- 2. Laboratoire Physico-Chimie Curie, Institut Curie
- 4. Department of Physics, Harvard University

Is it possible to gain information about molecular motor activity from tracers' statistics?

Tracer inside living cell/actin gel: thermal fluctuations and molecular motor activity.

The tracer is trapped in a local mininum of the network potential:

$$\gamma \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = -k(\mathbf{r} - \mathbf{r_0}) + \sqrt{2T\gamma}\boldsymbol{\xi} .$$

- $\blacktriangleright \xi$ isotropic Gaussian white noise,
- ► T bath temperature.

Motor activity induces local rearrangements of the actin network.

Passive case: no motor activity, Active case: local rearrangements.

v_A stochastic active burst

Compare predictions with experimental data → Extract information about motor activity

Non-Gaussian parameter

Tracers embedded in a reconstituted F-actin gel: Toyota et al [1].

 $\mathsf{NGP} = \frac{\left\langle \Delta x^4 \right\rangle}{3 \left\langle \Delta x^2 \right\rangle^2} - 1 \ .$

Best fit parameters:

 $v \simeq 3 \, \mu \mathrm{m/s}, \, \tau \simeq 8 \, \mathrm{s}, \, au_0 \simeq 30 \, \mathrm{s}$. \rightarrow Active power value:

$$P_{\scriptscriptstyle extsf{A}} = rac{ extbf{k}_{\scriptscriptstyle extsf{B}} T_{\scriptscriptstyle extsf{A}}}{ au + au_0} \simeq 50 P_{\scriptscriptstyle extsf{ATP}} \; ,$$

 P_{ATP} released by ATP hydrolysis.

Consistent with the expected value: $P_{\rm A}=NP_{\rm ATP}$, $N\simeq 100$ motors near a tracer.

Probability distribution of displacement

Endogeneous vesicles inside mouse oocytes: BetzLab's measurements.

Central part: passive Gaussian \rightarrow thermal fluctuations Large Δx : Gaussian-like tails \rightarrow active fluctuations

Exponential tails are a crossover between two Gaussian distributions.

Mean square displacement

thermal diffusion $au_{
m d} < t < au$ crossover regime active diffusion

- The MSD saturates to ▶ Passive. an equilibrium value $2k_BT/k$ with a relaxation time $\tau_{\rm d} = \gamma/k$.
- ightharpoonup Active. When $au\gg au_{\rm d}$, the MSD reaches the equilibrium plateau and then has a diffusive behaviour:

$$\mathsf{MSD} \underset{t\gg au}{\sim} rac{2k_{\scriptscriptstyle \mathsf{B}}T_{\scriptscriptstyle \mathsf{A}}}{\gamma} t = rac{2(v au)^2}{3(au+ au_0)} t \; .$$

Active bursts enable the tracer to visit a large volume via the displacement of $\mathbf{r_0}$.

Microinjected PEG-coated tracers in living A7 cells: WeitzLab's measurements.

Best fit parameters: $v \simeq 1\,\mu\mathrm{m/s},\, au \simeq 0.2\,\mathrm{s},\, au_0 \simeq 0.5\,\mathrm{s}$.

→ Active temperature value: $T_{\scriptscriptstyle A} \simeq T/100$.

Microrheology

Autocorrelation function C: tracking, Response function χ : microrheology.

$$ightarrow ~~ T_{ ext{eff}}(\omega) = -rac{\omega ilde{\mathcal{C}}(\omega)}{2 extcolor{k}_{ ext{B}} ilde{\chi}''(\omega)}$$

Spectrum of all the forces acting on the particle: $S(\omega) \propto T_{\rm eff}(\omega)$.

$$T_{ ext{eff}}(\omega) = T + rac{1}{\left(\omega au_{ ext{d}}
ight)^2}rac{T_{ ext{A}}}{1+\left(\omega au
ight)^2} \ .$$

- $ightharpoonup T_{
 m eff} \stackrel{}{\underset{\omega au \gg 1}{\longrightarrow}} T$: thermal fluctuations are predominant.
- ► $T_{\rm eff} \sim_{\omega \tau \ll 1} T_{\rm A}/(\omega \tau_{\rm d})^2$: the power law behaviour agrees with experiments.

The force spectrum at low frequency is given by the active bursts' statistics.

Force spectrum in the time domain: $MSD \star |G|^2$, shear modulus G.

- ► Passive. $MSD \star |G|^2 \propto k_B Tk/R^2$, radius of the tracers R.
- ► Active. Linear growth:

$$\mathsf{MSD} \star |G|^2 \underset{t\gg au}{\sim} \frac{2k_{\mathsf{B}}T_{\mathsf{A}}}{\gamma} \left(\frac{k}{R}\right)^2 t \ .$$

Conclusion

- ► Agreement with known experimental results: short time scale confinement, large time scale free diffusion, and crossover regime with a PDF broader than Gaussian.
- ► Access to the basic features of molecular motor activity: typical times of activity, power injected by the motors, and amplitude of active fluctuations.