Ignorance Is Strength: Improving the Performance of Matching Markets by Limiting Information

Gleb Romanyuk

Harvard University

January 2, 2017

Motivation

Example

Uber driver receives a request

- sees the passenger's rating, name and pick-up location
- does not see passenger's destination until after he picks him up
- but drivers care about the destination

Efficient?

Efficiency

- Primary objective for many matching platforms is to facilitate value-creating transactions
- Revealing information brings more surplus to the receiver of the info

Research Questions

Question

Can a matching platform improve the efficiency of the marketplace by limiting information the buyers and sellers observe about each other before engaging in a match?

What does the optimal disclosure policy depend on?

Research Questions

Question

Can a matching platform improve the efficiency of the marketplace by limiting information the buyers and sellers observe about each other before engaging in a match?

What does the optimal disclosure policy depend on?

Efficiency and supply-demand fit are important issues for companies with platform business model

Examples

- Transportation (e.g. Uber/Lyft, Convoy)
- Housing rental (e.g. Airbnb)
- Labor market (e.g. temp agencies, TaskRabbit)
- Coaching

This paper

Framework for analyzing information intermediation in matching markets

- Model of two-sided matching market with search
- Buyers and sellers have preferences over each other
- The platform is the information intermediary

Preview of Results

- Full disclosure is inefficient
 - i.e. there is an outcome with both higher buyer and seller surpluses
 - Intuition: revealing information to agents leads to cream-skimming and low match rates

Preview of Results

- Full disclosure is inefficient
 - i.e. there is an outcome with both higher buyer and seller surpluses
 - Intuition: revealing information to agents leads to cream-skimming and low match rates
- Oharacterization of the efficient information disclosure policy. Depends on:
 - the shape of unobserved preference heterogeneity
 - agents' capacity constraints
 - buyer-to-seller ratio

Forces behind Inefficiency (1): Cross-side Effect

 Imagine the platform releases more information about buyers to the sellers

Forces behind Inefficiency (1): Cross-side Effect

- Imagine the platform releases more information about buyers to the sellers
- When sellers decide whether or not to accept buyers, they don't internalize the buyer surplus
- Key condition: set of matches that create value for sellers is distinct from the set of matches that create value for buyers

Forces behind Inefficiency (1): Cross-side Effect

- Imagine the platform releases more information about buyers to the sellers
- When sellers decide whether or not to accept buyers, they don't internalize the buyer surplus
- Key condition: set of matches that create value for sellers is distinct from the set of matches that create value for buyers
- Platform cares about both sides of the market
- Disclosing more information to sellers reduces the platform's ability to induce sellers to accept the efficient matches
 - Sellers will single out the matches that are valuable to them and reject other matches that can be valuable to the buyers.

Forces behind Inefficiency (2): Same-side Effect

- Sellers are worse off as a whole when
 - have correlated preferences over buyers,
 - have limited capacity for serving buyers, and
 - are forward-looking.
- Info disclosure stimulates sellers to *cream-skim*, i.e. to chase the most valuable buyers and abandon buyers with average value
- Prisoners' Dilemma problem ⇒ disclosure leads to inefficiency

Contributions

- Market/organizational design: Milgrom 2010, Hagiu-Wright 2015, Fradkin 2015, Horton 2015
 - Emphasizes and clarifies the role of information disclosure as a design tool
 - Shape of the disclosure policy is not restricted in any way (cf. Hoppe et al. 2009)
- 2 Information design literature: Kamenica-Gentzkow 2011, Kolotilin et al. 2015, Bergemann-Morris 2016
 - Technical contribution: approach to solving information disclosure problems with heterogeneous and forward-looking receivers

Other Related Literature

Search and matching in labor: Becker 1973, Shimer-Smith 2000, 01, Kircher 2009

Information disclosure in markets: Akerlof 1970, Hirshleifer 1971, Spence 1973, Anderson-Renault 1999, Hoppe et al. 2009, Athey-Gans 2010, Bergemann-Bonatti 2011, Hagiu-Jullien 2011, Tadelis-Zettelmeyer 2015, Board-Lu 2015

Centralized matching: Roth 2008, Akbarpour et al. 2016

Peer-to-peer markets: Hitsch et al. 2010, Fradkin 2015, Horton 2015

Two-sided markets: Rochet-Tirole 2006, Armstrong 2006, Weyl 2010

Platforms in OR: Ashlagi et al. 2013, Arnosti et al. 2014, Taylor 2016

Outline

- Introduction
- Model of Matching Market
- Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- 4 Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- Proof Sketch of the Main Theorem
- Conclusion

- Introduction
- Model of Matching Market
- Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- 4 Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- 5 Proof Sketch of the Main Theorem
- 6 Conclusion

AVAILABLE SELLERS

BUSY SELLERS

BUSY SELLERS

Spot Matching Process, ctd

- Continuous time
- Mass 1 of sellers, always stay on the platform
 - presented with a sequence of buyers at a Poisson rate
 - decides to accept or reject
- Match lasts time au
 - during which the seller cannot accept new jobs
- Continuum of potential buyers, short-lived
 - gradually arrive at rate β
 - one buyer
- Buyer search is costly:
 - accepted -> buyer stays until the job is completed
 - rejected -> leaves

Assumptions on Matching Process

Assumption

Buyers contact available sellers only.

- I focus on search frictions due to preferences heterogeneity
- Kircher 2009, Arnosti et al. 2014: focus on friction owing to simultaneity and unavailability

Assumptions on Matching Process

Assumption

Buyers contact available sellers only.

- I focus on search frictions due to preferences heterogeneity
- Kircher 2009, Arnosti et al. 2014: focus on friction owing to simultaneity and unavailability

Assumption

Buyers contact an available seller chosen uniformly at random

Relaxed in an extension in the paper

Assumptions on Matching Process

Assumption

Buyers contact available sellers only.

- I focus on search frictions due to preferences heterogeneity
- Kircher 2009, Arnosti et al. 2014: focus on friction owing to simultaneity and unavailability

Assumption

Buyers contact an available seller chosen uniformly at random

Relaxed in an extension in the paper

Assumption

Buyers make a single search attempt

Simplifying assumption: lost search efforts

Assumptions on Matching Process, ctd

- au time sellers remain busy after matching
- β buyer arrival rate (mass of buyers per unit of time)

Assumption (No Excess Demand)

Collectively, it is physically possible for sellers to accept all buyers: $\beta au < 1$

- Simplifies the notation, otherwise deal with queues
- Extension in the paper

Heterogeneity and Payoffs

$x \in X \subset \mathbb{R}^n$ $x \sim F$, pdf $f > 0$	Buyer characteristics observed by the platform
$u(x) \geq 0$	Buyer match payoff
$\pi(x)$ continuous $\exists x : \pi(x) > 0$	Seller match payoff

(passenger destination on Uber)

Platform: Information Disclosure of Buyer Characteristics to Sellers

Platform chooses how to reveal buyer type x to sellers

$$S = \Delta(X) \qquad \begin{array}{ll} \text{Set of all posterior} \\ \text{distributions over } X \\ \\ s \in S & \begin{array}{ll} \text{Platform's "signal" to the} \\ \text{seller} \end{array} \qquad \begin{array}{ll} \text{(Hypothetical mark to Uber driver "remote neighborhood")} \\ \\ \lambda \in \Delta(S) & \begin{array}{ll} \text{Disclosure policy} = \\ \text{distribution of signals} \end{array} \end{array}$$

• λ' is coarser than λ'' if λ' is less informative than λ''

Steady State of the Matching Process: State Variables

State of the matching system:

- $oldsymbol{0}$ $\alpha \in [0,1]$ acceptance rate
 - fraction of buyers accepted by an available seller, $\alpha = \lambda(s)$ is accepted)
- - fraction of busy sellers

Steady State of the Matching Process: Seller Flows

Steady State of the Matching Process: Seller Flows

Steady State of the Matching Process: SS Condition

In a steady state, the flows to and from the pool of busy sellers are equal:

$$\beta\alpha = \frac{\rho}{\tau}.$$

Sanity check:

• ρ increases in α , in β , and in τ .

- β_A buyer Poisson arrival rate when a seller is available
 - $\beta_A = \frac{\beta}{1-\rho}$ is endogenous b/c mass of available sellers is endogenous

- β_A buyer Poisson arrival rate when a seller is available
 - $\beta_A = \frac{\beta}{1-\rho}$ is endogenous b/c mass of available sellers is endogenous $s(x) := \frac{\beta}{1-\rho} (x) ds(x)$ expected profit if he accepts a buyer with signal
- $\pi(s) := \int_X \pi(x) \, ds(x)$ expected profit if he accepts a buyer with signal s
- v(s) be the value of a buyer with signal s
 - v(s) includes the option value of rejecting the buyer and the opportunity cost of accepting him
 - $v(s, y) = \max\{0, \pi(s, y) \tau V(y)\}$

- β_A buyer Poisson arrival rate when a seller is available
 - $\beta_A = \frac{\beta}{1-\rho}$ is endogenous b/c mass of available sellers is endogenous s) := $\int_{-\pi}^{\pi} \pi(x) ds(x)$ expected profit if he accepts a buyer with signal
- $\pi(s) := \int_X \pi(x) \, ds(x)$ expected profit if he accepts a buyer with signal s
- v(s) be the value of a buyer with signal s
 - v(s) includes the option value of rejecting the buyer and the opportunity cost of accepting him
 - $v(s, y) = \max\{0, \pi(s, y) \tau V(y)\}$
- V per-moment value of being available, in the optimum

- β_A buyer Poisson arrival rate when a seller is available
 - $\beta_A = \frac{\beta}{1-\rho}$ is endogenous b/c mass of available sellers is endogenous
- $\pi(s) := \int_X \pi(x) \, ds(x)$ expected profit if he accepts a buyer with signal s
- v(s) be the value of a buyer with signal s
 - v(s) includes the option value of rejecting the buyer and the opportunity cost of accepting him
 - $v(s, y) = \max\{0, \pi(s, y) \tau V(y)\}$
- ullet V per-moment value of being available, in the optimum

Seller optimization problem

$$V = \beta_A \int \max\{0, \pi(s) - \tau V\} d\lambda(s). \tag{1}$$

- No discounting
- $\sigma(s): S \to [0,1]$ acceptance strategy

Impatient Sellers

Steady-State Equilibrium

 (σ, ρ) is a steady-state equilibrium if

- [Optimality] Every available seller takes as given Poisson arrival rate $\beta_A = \beta/(1-\rho)$ and acts optimally -> σ
- 2 [SS] σ induces acceptance rate α -> utilization ρ arises in a steady state

Steady-State Equilibrium

 (σ, ρ) is a steady-state equilibrium if

- [Optimality] Every available seller takes as given Poisson arrival rate $\beta_A = \beta/(1-\rho)$ and acts optimally -> σ
- 2 [SS] σ induces acceptance rate α -> utilization ρ arises in a steady state

Proposition (1)

Steady-state equilibrium exists and is unique.

Market Design: Information Disclosure

Equilibrium (σ, ρ) is a function of disclosure policy λ

How does equilibrium welfare of each side depend on λ ?

- Introduction
- Model of Matching Market
- Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- 4 Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- 5 Proof Sketch of the Main Theorem
- 6 Conclusion

Pareto Optimality and Implementability

- Economic outcome O = (U, V) is a combination of buyers' and sellers' surpluses
- An outcome is feasible if there is a seller strategy profile that generates it
- A feasible O is $Pareto\ optimal$ if there is no other feasible O' such that U'>U and V'>V
- O is *implementable* if there is a disclosure λ such that the equilibrium outcome is O

First Main Result: Inefficiency of the Full Disclosure

 V^σ , ρ^σ , U^σ denote steady-state buyers' surplus, sellers' surplus and utilization rate when strategy profile σ is played

Proposition (2)

Let σ^{FD} be the equilibrium strategy profile under full disclosure. Then there exists $\tilde{\sigma}$ such that:

$$egin{array}{lll} ilde{V} &>& V^{FD}, \ ilde{
ho} &>&
ho^{FD}, \ ilde{U} &>& U^{FD}. \end{array}$$

- In full disclosure equilibrium, accepted matches are $\pi(x) \geq \tau V^{FD}$
 - Seller's option value of rejecting is $au V^{FD}$

- In full disclosure equilibrium, accepted matches are $\pi(x) \geq \tau V^{FD}$
 - Seller's option value of rejecting is τV^{FD}
- Consider $\tilde{\sigma}$ that accepts matches

$${x: \pi(x) \geq 0}.$$

• $\tilde{\sigma}$ additionally accepts $X' := \{x : 0 \le \pi(x) < \tau V^{FD}\}$

- In full disclosure equilibrium, accepted matches are $\pi(x) \geq \tau V^{FD}$
 - Seller's option value of rejecting is τV^{FD}
- Consider $\tilde{\sigma}$ that accepts matches

$$\{x\colon \pi(x)\geq 0\}.$$

- $\tilde{\sigma}$ additionally accepts $X' := \{x : 0 \le \pi(x) < \tau V^{FD}\}$
- Sellers are better off under $\tilde{\sigma}$
 - There is x with $\pi(x) > 0 \Rightarrow V^{FD} > 0$
 - X convex, π continuous in $x \Rightarrow X' \neq \emptyset$

- In full disclosure equilibrium, accepted matches are $\pi(x) \geq \tau V^{FD}$
 - Seller's option value of rejecting is τV^{FD}
- Consider $\tilde{\sigma}$ that accepts matches

$$\{x\colon \pi(x)\geq 0\}.$$

- $\tilde{\sigma}$ additionally accepts $X' := \{x : 0 \le \pi(x) < \tau V^{FD}\}$
- Sellers are better off under $\tilde{\sigma}$
 - There is x with $\pi(x) > 0 \Rightarrow V^{FD} > 0$
 - X convex, π continuous in $x \Rightarrow X' \neq \emptyset$
- ullet Buyers are better off under $ilde{\sigma}$
 - $u(x) \ge 0 \ \forall x$ by assumption

Disclosure Reduces Buyer Surplus: Intuition

- Set of matches that create positive surplus for sellers is distinct from the set of matches that create positive surplus for buyers
- Sellers do not internalize buyer surplus
- Disclosing more information to the sellers reduces the platform's ability to induce them to accept the efficient matches
- Sellers cream-skim: single out the matches that are valuable to them and reject other matches that can be valuable to the buyers

Disclosure Reduces Seller Surplus: Seller Coordination Problem

- Coordination problem, intuitively:
 - a seller keeps his schedule open by rejecting low-value jobs to increase his individual chances of getting high-value jobs
 - as a result in eqm, sellers spend a lot of time waiting for high-value jobs
 - collectively, this behavior is suboptimal because all profitable jobs have to be completed

(feasible by No Excess Demand assumption)

Disclosure Reduces Seller Surplus: Seller Coordination Problem

- Coordination problem, intuitively:
 - a seller keeps his schedule open by rejecting low-value jobs to increase his individual chances of getting high-value jobs
 - as a result in eqm, sellers spend a lot of time waiting for high-value jobs
 - collectively, this behavior is suboptimal because all profitable jobs have to be completed (feasible by No Excess Demand assumption)
- Cream-skimming externality: by rejecting a job a seller makes himself available and decreases the other sellers' chances of getting subsequent jobs
- Coordination problem arises because sellers jointly are not capacity constrained (in time) while individually, they are capacity constrained

- Introduction
- 2 Model of Matching Market
- 3 Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- 5 Proof Sketch of the Main Theorem
- 6 Conclusion

Implementability with Known Seller Preferences

Proposition

Suppose the platform knows seller preferences. Then a platform can implement any Pareto-optimal outcome that satisfies the participation constraint.

Implementability with Known Seller Preferences

Proposition

Suppose the platform knows seller preferences. Then a platform can implement any Pareto-optimal outcome that satisfies the participation constraint.

Proof sketch:

- Platform knows what matches should be made
- 2 actions -> binary signaling structure is sufficient (Revelation principle)
 - recommend matches to sellers
 - provide no further information
- The sellers follow the recommendations
 - With binary signaling structure, seller dynamic problem reduces to static problem
 - Pariticipation constrained holds ⇒ the value of the recommendation to accept is positive on average

Implementability with Known Seller Preferences

- Introduction
- 2 Model of Matching Market
- 3 Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- 4 Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- 5 Proof Sketch of the Main Theorem
- 6 Conclusion

Unobserved Heterogeneity in Seller Preferences

$y \in Y \subset \mathbb{R}^m$ $y \sim G$, pdf $g > 0$	Seller characteristics unobserved by the platform	(driver's preference for long rides)
$x \in X \subset \mathbb{R}^n$ $x \sim F, \text{ pdf } f > 0$	Buyer characteristics observed by the platform	(passenger destination on Uber)
$u(x,y)\geq 0$	Buyer match payoff	
$\pi(x,y)$ continuous	Seller match payoff	

Existence and Inefficiency Remain

- $\lambda \in \Delta(S)$ *public* disclosure policy
 - Platform does not elicit y
- $\alpha(y)$ acceptance rate, $\rho(y)$ utilization rate

Existence and Inefficiency Remain

- $\lambda \in \Delta(S)$ public disclosure policy
 - Platform does not elicit y
- $\alpha(y)$ acceptance rate, $\rho(y)$ utilization rate

Proposition

Steady-state equilibrium exists and is unique. Full disclosure equilibrium is inefficient.

- Existence and inefficiency by similar reasons
 - Details in the paper

Linear Payoff Environment

- X = [0, 1]
 - · e.g. remoteness of drop-off location
- $Y = [0, \bar{y}]$
 - e.g. driver's preference for long rides
- $\pi(x, y) = y x$
- $u(x,y) \equiv u$

Platform's Disclosure Problem

$$\max_{\lambda \in \Delta(S)} \mathcal{J}(\gamma) = \gamma U + (1 - \gamma)V$$

- *U* joint buyer surplus
- *V* joint seller surplus
- $\gamma \in [0, 1]$
 - $\gamma = 1/2$ total surplus max'n

Platform's Disclosure Problem

$$\max_{\lambda \in \Delta(S)} \mathcal{J}(\gamma) = \gamma U + (1 - \gamma)V$$

- *U* joint buyer surplus
- V joint seller surplus
- $\gamma \in [0, 1]$
 - $\gamma = 1/2$ total surplus max'n

Three main challenges for the analysis:

- **1** The class of information structures is entire $\Delta(S)$
- Sellers have private payoff types
- 3 Sellers are forward-looking

Second Main Result: Optimal Disclosure for Uniform Seller Distribution

Definition

The disclosure policy λ is x^* -upper-coarsening for some $x^* \in [0,1]$ if λ fully reveals $x < x^*$ and pools all $x > x^*$.

Second Main Result: Optimal Disclosure for Uniform Seller Distribution

Definition

The disclosure policy λ is x^* -upper-coarsening for some $x^* \in [0,1]$ if λ fully reveals $x < x^*$ and pools all $x > x^*$.

Proposition (5)

Suppose $G=U[0,\overline{y}], \ \overline{y}\geq 1$. Then for any $\gamma\in[0,1]$, there is unique $x_{\gamma}^*\in[0,1]$ such that x_{γ}^* -upper-coarsening maximizes $\mathcal{J}(\gamma)$.

Second Main Result: Optimal Disclosure for Uniform Seller Distribution

Definition

The disclosure policy λ is x^* -upper-coarsening for some $x^* \in [0,1]$ if λ fully reveals $x < x^*$ and pools all $x > x^*$.

Proposition (5)

Suppose $G = U[0, \overline{y}]$, $\overline{y} \ge 1$. Then for any $\gamma \in [0, 1]$, there is unique $x_{\gamma}^* \in [0, 1]$ such that x_{γ}^* -upper-coarsening maximizes $\mathcal{J}(\gamma)$.

- **1** x_{γ}^* is decreasing in γ .
- ② There is γ^* and there exist $\beta \tau$ and \overline{y} that are large enough so that $x_{\gamma}^* < 1$ for $\gamma > \gamma^*$ (some coarsening is strictly optimal).
- **3** If $0 < \beta \tau < 1/2$, then $x_{\gamma}^* = 1$ for any γ (full disclosure is strictly optimal).

Elaborations

- More weight on seller surplus (smaller γ) \Rightarrow optimal policy is more revealing
- ② When buyer traffic (β) or capacity constraint (τ) is large \Rightarrow optimal to pool high x's
- When buyer traffic and capacity constraint are small ⇒ truthfully reveal all x's

βau and \overline{y} are large

$\beta \tau \in (0, 1/2)$

Intuition for Optimality of Upper-coarsening

- Buyer traffic (β) or capacity constraint (τ) is large \Rightarrow sellers' option value of rejecting is big
- High buyer types are marginal for high seller types ⇒ pooling those buyers makes high sellers accept more
- Low buyer types have relatively smaller option value of rejecting, and less surplus ⇒ need to provide information for them to make the right choices

Special Case: Unconstrained Sellers

Benchmark

Suppose $\tau = 0$. Then:

- ullet If g is decreasing, then full disclosure is optimal
- If g is increasing, no disclosure is optimal.
- If g is constant, then disclosure is irrelevant for the matching rate
- Appears e.g. in Kolotilin et al. 2015
- The implied concavification reasoning goes back to Aumann-Maschler 1995 and Kamenica-Gentzkow 2011

Special Case: Unconstrained Sellers

Benchmark

Suppose $\tau = 0$. Then:

- If g is decreasing, then full disclosure is optimal
- If g is increasing, no disclosure is optimal.
- If g is constant, then disclosure is irrelevant for the matching rate
- Appears e.g. in Kolotilin et al. 2015
- The implied concavification reasoning goes back to Aumann-Maschler 1995 and Kamenica-Gentzkow 2011

Intuition: More Detailed

Assume G = U[0, 1]. Moving to $\tau > 0$ introduces two effects:

- Endogenous availability
 - High seller types are less available because they accept more
- Option value of waiting
 - Conceal information to reduce the option value
 - High seller types have larger option value

- Introduction
- 2 Model of Matching Market
- 3 Inefficiency of the Full Disclosure
 - Implementability with known seller preferences
- Optimal Disclosure: Unobservably Heterogeneous Seller Preferences
- 5 Proof Sketch of the Main Theorem
- 6 Conclusion

Proof in Four Steps

- Lemma 1: Representation of signaling structures as a particular class of convex functions
- Lemma 2: Convenient presentation of the seller dynamic optimization problem
- Lemma 3: First order condition of optimality using calculus of variation
- Lemma 4: Back out the optimal information structure from the FOC

Representation of Disclosure Policies

- Fix disclosure λ
- z(s) posterior mean of buyer type x after signal s
- $F^{\lambda}(\zeta) = \lambda\{z(s) \le \zeta\}$ cdf of posterior means

Representation of Disclosure Policies

- Fix disclosure λ
- z(s) posterior mean of buyer type x after signal s
- $F^{\lambda}(\zeta) = \lambda\{z(s) \le \zeta\}$ cdf of posterior means
- Define the option value function $\Lambda \colon [0,\infty) \to \mathbb{R}_+$:

$$\Lambda(z;\lambda):=\int_0^z F^\lambda(\zeta)\,d\zeta.$$

Representation of Disclosure Policies

- Fix disclosure λ
- z(s) posterior mean of buyer type x after signal s
- $F^{\lambda}(\zeta) = \lambda\{z(s) \le \zeta\}$ cdf of posterior means
- Define the option value function $\Lambda \colon [0,\infty) \to \mathbb{R}_+$:

$$\Lambda(z;\lambda):=\int_0^z F^\lambda(\zeta)\,d\zeta.$$

- $\overline{\Lambda}$ option value function under full disclosure
- $\underline{\Lambda}$ be the option value function under no disclosure

Representation of Disclosure Policies

- Fix disclosure λ
- z(s) posterior mean of buyer type x after signal s
- $F^{\lambda}(\zeta) = \lambda\{z(s) \le \zeta\}$ cdf of posterior means
- Define the option value function $\Lambda \colon [0,\infty) \to \mathbb{R}_+$:

$$\Lambda(z;\lambda):=\int_0^z F^\lambda(\zeta)\,d\zeta.$$

- $\overline{\Lambda}$ option value function under full disclosure
- $\underline{\Lambda}$ be the option value function under no disclosure

Lemma (1)

A convex function ℓ is point-wise between $\overline{\Lambda}$ and $\underline{\Lambda}$ if and only if there is $\lambda \in \Delta(S)$ such that $\Lambda(\cdot, \lambda) = \ell$.

- e.g. appears in Kolotilin et al. 2015
- Proof idea: Distribution of x is the mean preserving spread of distribution of posterior means of x

Disclosure Policy Representation, ctd

Seller Optimization Problem

• $Z = \{ \int x \, s(dx) \colon s \in S \}$ is the set of posterior means of x

Lemma (2)

For any disclosure policy λ , seller's optimal strategy has a cutoff form with cutoff $\hat{z}(y)$. Furthermore, seller payoff V(y) and the cutoff $\hat{z}(y)$ are solution to:

$$V(y) = \frac{y - \hat{z}(y)}{\tau} = \beta_A \Lambda(\hat{z}(y)).$$

 \Rightarrow probability of accepting and seller welfare depends on λ only through Λ

First Order Condition

- ullet Use representation of disclosure policy via Λ
- Use calculus of variations to write down the optimality condition

Lemma (3: Main lemma)

The variational derivative of the match rate M with respect to Λ exists and equals

$$\frac{\delta M}{\delta \Lambda} = K_1 \cdot \left[g(y) \nu'(y) - (g(y) \nu^2(y))' \right],$$

where $K_1 > 0$.

First Order Condition

- Use representation of disclosure policy via Λ
- Use calculus of variations to write down the optimality condition

Lemma (3: Main lemma)

The variational derivative of the match rate M with respect to Λ exists and equals

$$\frac{\delta M}{\delta \Lambda} = K_1 \cdot \left[g(y) \nu'(y) - (g(y) \nu^2(y))' \right],$$

where $K_1>0$. Similarly, the variational derivative of the joint seller profits V with respect to Λ exists and equals

$$\frac{\delta V}{\delta \Lambda} = \frac{\delta M}{\delta \Lambda} \cdot K_2 + \beta_A \nu(y) g(y),$$

where $K_2 > 0$.

Intuition: Uniform Distribution of Seller Type

- Consider G = U[0, 1]
- Unconstrained sellers ($\tau = 0$),

$$\frac{\delta M}{\delta \Lambda} = 0, \quad \forall \Lambda.$$

• Constrained sellers ($\tau > 0$):

$$\frac{\delta M}{\delta \Lambda} \propto -(\underbrace{(1-\rho(y))^2}_{\text{availability factor}} + \underbrace{\rho(y)}_{\text{continuation value factor}})'.$$

- Additional effects when $\tau > 0$:
 - endogenous availability
 - option value of waiting

Intuition: General Distribution of Seller Type

- Consider general G with pdf g
- Unconstrained sellers $(\tau = 0)$,

$$\frac{\delta M}{\delta \Lambda} \propto -g'(y).$$

• Constrained sellers ($\tau > 0$):

$$\frac{\delta M}{\delta \Lambda} = K_1 \cdot \left[g(y) \nu'(y) - (g(y) \nu^2(y))' \right].$$

Back out the Information Structure

Lemma (4)

If λ_0 maximizes \mathcal{J} , and $\delta \mathcal{J}/\delta \Lambda$ evaluated at λ_0 crosses 0 from above at most once, then λ_0 is upper-coarsening.

Conclusion

Summary

- Heterogeneous matching market is inefficient when full information is disclosed
 - Information provision stimulates search that leads to inefficiency when search is costly
- The platform can improve efficiency by limiting information exchange to sellers when
 - sellers' preferences are known
 - high buyer-to-seller ratio
 - tight capacity constraints

Further Directions

- Endogenous participation
- Optimal pricing and disclosure to maximize revenue
- Mechanism design vs. information design

Congestion?

In congested markets, participants send more applications than is desirable

Reasons for failed matches: screening (20%), mis-coordination (6%), stale vacancies (21%) (Fradkin 2015, on Airbnb data)

- Screening: rejection due to the searcher's personal or job characteristics
- Mis-coordination: inquiry is sent to a seller who is about to transact with another searcher
- 3 Stale vacancy: seller did not update his status to "unavailable"

 $\ref{eq:coordination}$ Kircher 2009, Arnosti et al. 2014: mis-coordination My paper: screening

Impatient Sellers

Results generalize to the case when the seller has discount rate ρ by changing τ to

$$au_
ho = rac{1 - \mathrm{e}^{-
ho au}}{
ho}$$

Examples of Match Quality/Rate Tradeoff

Uber:

drivers reject requests ⇒ passengers wait longer

Airbnb:

- guests (buyers) request services from hosts (sellers)
- ave. #requests is 2.5
- half of request are rejected
- conditional on being rejected from their first request, buyers are 51% less likely to eventually book (Fradkin 2016)

When sellers reject, they slow down the buyer side of the market Pack

Examples of Information Coarsening

- Uber: hide passenger destination
- Airbnb: incentivize hosts to accept based on few guest attributes (Instant Book feature)
- TaskRabbit (labor platform): breadth of task categories sellers commit to
- Star ratings: half-star step/10th-of-star step

