SEQUENCE LISTING

<110> MASUDA, ESTEBAN

50

```
<120> METHODS OF SCREENING CYCLIC PEPTIDES AND
  IDENTIFYING TARGETS THEREFOR
<130> RIGL-023
<140> 10/533,144
<141> 2005-04-27
<150> US03/27370
<151> 2003-08-30
<150> 60/407,385
<151> 2002-08-30
<160> 2
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1227
<212> DNA
<213> Artificial Sequence
<223> recombinant polynucleotide
<221> CDS
<222> (1)...(1227)
<220>
<221> misc feature
<222> 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171
<223> n = A, T, C or G
<400> 1
atg gag agc ggc agc ccc gag atc gag aag ctg agt cag agc gac atc
Met Glu Ser Gly Ser Pro Glu Ile Glu Lys Leu Ser Gln Ser Asp Ile
tac tgg gac agc atg gtg agc atc acc gag acc ggc gtg gag gtg
                                                                   96
Tyr Trp Asp Ser Met Val Ser Ile Thr Glu Thr Gly Val Glu Glu Val
             20
                                 25
                                                      30
                                                                   144
ttc gac ctg acc gtg ccc ggc ccc cac aac ttc gtg gcc aac gac atc
Phe Asp Leu Thr Val Pro Gly Pro His Asn Phe Val Ala Asn Asp Ile
         35
                             40
atc gtc cac aac agc nnn nnn nnn nnn tgc atc agc ggc gac agc ctg
                                                                   192
Ile Val His Asn Ser Xaa Xaa Xaa Cys Ile Ser Gly Asp Ser Leu
```

55

60

									gac Asp		240
									acc Thr		288
									aag Lys 110		336
									gcc Ala		384
									gac Asp		432
									agc Ser		480
									ggc Gly		528
									ggc Gly 190		576
									gat Asp		624
									aag Lys		672
									gtg Val		720
									ttc Phe		768
									ttc Phe 270		816
									ggc Gly		864
_		_		_	_		_		gag Glu		912

aac atc ctg ggg Asn Ile Leu Gly 305									960
tat atc atg gcc Tyr Ile Met Ala				lle Ly					1008
atc cgc cac aac Ile Arg His Asn 340									1056
cag cag aac acc Gln Gln Asn Thr 355									1104
cac tac ctg agc His Tyr Leu Ser 370					p Pro				1152
cgc gat cat atg Arg Asp His Met 385									1200
ctc ggc atg gac Leu Gly Met Asp			taa *						1227
<210> 2 <211> 408 <212> PRT <213> Artificia	l Sequenc	ce							
<220> <221> VARIANT <222> 54, 55, 5 <223> Xaa = Any		eid							
<220> <223> recombina	nt polype	eptide							
<400> 2 Met Glu Ser Gly 1	Ser Pro	Glu Ile	Glu Lys	Leu Se	r Gln	Ser	Asp 15	Ile	
Tyr Trp Asp Ser 20	Met Val	Ser Ile	Thr Glu 25	Thr Gl	y Val	Glu 30	Glu	Val	
Phe Asp Leu Thr	Val Pro	Gly Pro	His Asr	Phe Va	l Ala 45	Asn	Asp	Ile	
Ile Val His Asn	Ser Xaa		Xaa Cys	: Ile Se:		Asp	Ser	Leu	
Ile Ser Leu Ala	Ser Thr		Arg Val		e Lys	Asp	Leu	Leu 80	
Asp Glu Lys Asp		Ile Trp	Ala Ile	=	u Gln	Thr	Met 95	-	
Leu Glu Ser Ala		Ser Ara		Cys Th	r Gly	Lys		Leu	
100	2,0 .01		105	-	•	110	-		

•	•	•															
•				115					120					125			
		Asn	His 130	Arg	Phe	Leu	Thr	Ile 135	Asp	Gly	Trp	Lys	Arg 140	Leu	Asp	Glu	Leu
		Ser 145	Leu	Lys	Glu	His	Ile 150	Ala	Leu	Pro	Arg	Lys 155	Leu	Glu	Ser	Ser	Ser 160
		Leu	Gln	Leu	Gly	Leu 165	Arg	Gly	Gln	Ile	Asp 170	Val	Ser	Lys	Gly	Glu 175	Glu
		Leu	Phe	Thr	Gly 180	Val	Val	Pro	Ile	Leu 185	Val	Glu	Leu	Asp	Gly 190	Asp	Val
		Asn	Gly	His 195	Lys	Phe	Ser	Val	Ser 200	Gly	Glu	Gly	Glu	Gly 205	Asp	Ala	Thr
		Tyr	Gly 210	Lys	Leu	Thr	Leu	Lys 215	Phe	Ile	Cys	Thr	Thr 220	Gly	Lys	Leu	Pro
		Val 225	Pro	Trp	Pro	Thr	Leu 230	Val	Thr	Thr	Leu	Thr 235	His	Gly	Val	Gln	Cys 240
		Phe	Ser	Arg	Tyr	Pro 245	Asp	His	Met	Lys	Gln 250	His	Asp	Phe	Phe	Lys 255	Ser
		Ala	Met	Pro	Glu 260	Gly	Tyr	Val	Gln	Glu 265	Arg	Thr	Ile	Phe	Phe 270	Lys	Asp
		Asp	Gly	Asn 275	Tyr	Lys	Thr	Arg	Ala 280	Glu	Val	Lys	Phe	Glu 285	Gly	Asp	Thr
		Leu	Val 290	Asn	Arg	Ile	Glu	Leu 295	Lys	Gly	Ile	Asp	Phe 300	Lys	Glu	Asp	Gly
		Asn 305	Ile	Leu	Gly	His	Lys 310	Leu	Glu	Tyr	Asn	Phe 315	Asn	Ser	His	Asn	Val 320
		Tyr	Ile	Met	Ala	Asp 325	Lys	Gln	Lys	Asn	Gly 330	Ile	Lys	Ala	Asn	Phe 335	Lys
		Ile	Arg	His	Asn 340	Ile	Glu	Asp	Gly	Ser 345	Val	Gln	Leu	Ala	Asp 350	His	Tyr
		Gln	Gln	Asn 355	Thr	Pro	Ile	Gly	Asp 360	Gly	Pro	Val	Leu	Leu 365	Pro	Asp	Asn
		His	Tyr 370	Leu	Ser	Thr	Gln	Ser 375	Ala	Leu	Ser	Lys	Asp 380	Pro	Asn	Glu	Lys
		Arg 385	Asp	His	Met	Val	Leu 390	Leu	Glu	Phe	Val	Thr 395	Ala	Ala	Gly	Ile	Thr 400
			Gly	Met	Asp	Glu 405		Tyr	Lys								