ECE408 Applied Parallel Programming

Final Report

Prerit Oberai

Team Information

Team Member Names	Prerit Oberai, Jeonghyun Woo, Sagar Vyas	
NetIDs	poberai2, jwoo15, sagarv2	
Team Name	Team Ampere	
School Affiliation	Illinois	

Table 1: Team Information

Milestone 1

- Team registered on Google Sheet, nothing needed here

Milestone 2 - CPU Convolution

- RAI Output for running Mini-DNN on the CPU (CPU convolution implemented) for batch size of 10k images

```
[100%] Built target m3
[100%] Built target final
[100%] Built target m2
[100%] Built target m4
* Running /bin/bash -c "time ./m2"
Test batch size: 10000
Loading fashion-mnist data...Done
Loading model...Done
Conv-CPU==
Op Time: 84416.6 ms
Conv-CPU==
Op Time: 245789 ms
Test Accuracy: 0.8714
        7m5.418s
real
user
        7m4.432s
        0m0.988s
* The build folder has been uploaded to http
97069bb.tar.gz. The data will be present for
~/Desktop/classes/ece408/Project > 7 master
```

Figure 1: RAI output for Mini-DNN on CPU with CPU Convolution

- List Op Times (CPU convolution implemented) for batch size of 10k images

Batch Size	Operation Execution Time
100	822.935 ms + 2458.4 ms
1000	8195.81 ms + 23951.8 ms
10000	84416.6 ms+ 245789 ms

Table 2: Operation Times for CPU Convolution

- List whole program execution time (CPU convolution implemented) for batch size of 10k images

Batch Size	Program Execution Time	
100	real 0m4.248s user 0m4.228s sys 0m0.020s	
1000	real 0m41.584s user 0m41.463s sys 0m0.120s	
10000	real 7m5.418s user 7m4.432s sys 0m0.988s	

Table 3: Entire Program Execution Times for CPU Convolution

Milestone 3 - GPU Convolution

After implementing the GPU version of the convolution, for the default batch size (10000), I get the following output showing that the GPU version of the convolution is implemented correctly because I get the same test accuracy compared to the CPU implementation.

```
* Running /bin/bash -c "./m3"
Test batch size: 10000
Loading fashion-mnist data...Done
Loading model...Done
Conv-GPU==
Allocating Memory..
Settting Kernel Dimensions
Launching Kernel
Copying Data back to Host
Freeing Memory
Op Time: 839.665 ms
Conv-GPU==
Allocating Memory..
Settting Kernel Dimensions
Launching Kernel
Copying Data back to Host
Freeing Memory.
Settting Kernel Dimensions
Launching Kernel
Copying Data back to Host
Freeing Memory
Op Time: 505.978 ms
Test Accuracy: 0.8714
```

Figure 2: Figure 1: RAI output for Mini-DNN on CPU with GPU Convolution

Specifically, the timing and accuracy that I get from my implementation for the batch sizes of 100, 1000, and 10000 are included in the following table.

Batch Size	Operation Execution Time	Accuracy
100	91.3695 ms + 5.75664 ms	0.86
1000	130.565 ms + 50.7728 ms	0.886
10000	839.665 ms + 505.978 ms	0.8714

Table 4: Timing and Accuracy for GPU convolution with varying Batch Size

And then after modifying `rai_build.yml` to generate a nsys profile instead of just executing the code, as per the instructions, I get the following output showing the detailed statistics from running my code

		.,	_			
/build/rep Generating	uccessfully to ort1.sqlite CUDA API Stati tatistics (nand					
		Calls				
79.9 19.9 0.2 0.0 Generating	1140082019 283736656 2356146 243471 CUDA Kernel St		190013669.8 47289442.7 392691.0 121735.5	173311 84436 71806 45283	555749338 281401238 801261 198188	cudaMemcpy cudaMalloc cudaFree cudaLaunchKernel
	CUDA Memory Op 1 Statistics (r		istics			
100.0						conv_forward_kernel
CUDA Memor						
		Operations	Average	Minimum	Maximum	Name
91.2 8.8						[CUDA memcpy DtoH] [CUDA memcpy HtoD]
CUDA Momor	y Operation Sta					
CODA HEIIOT						
						aximum Name
5: Generating	Operating Syst	em Runtime Af	861250.0 134729.0 PI Statistics cs (nanoseconds)	722500.000 0.766	100 28	0000.0 [CUDA memcpy DtoH] 8906.0 [CUDA memcpy HtoD]
33.3 22.1 11.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	95385439913 63262626874 32009626812 211079400 17434867 2945602 1021706 239966 101032 73452 73452 71194 64760 62263 51186 28410	967 967 967 2 64 855 9972 97 181 5 14 15 16 24 3 2	98648579.8 16313138937.0 500150406.4 246876.5 1921.8 30367.0 10115.9 47993.2 7216.6 4896.8 4465.0 2966.4 21586.7 31131.5 17062.0 5682.0	38428 59899 22998787988 599988981 1117 1243 1057 4982 33273 1011 2465 1773 1051 7269 22372 2987 4213	23764 62057 18104 10007 16075 10342 50191 39891	open64 pthread_create fflush write munmap fopen fgets pthread_mutex_lock fopen64

Figure 3: Detailed Stats for GPU Convolution

As we can see from the figure above, the list of kernels that collectively consume more than 90% of the program time are: `conv_forward_kernel`.

On the other hand, the list of CUDA API calls that collectively consume more than 90% of the program time are: `cudaMemcpy` and `cudaMalloc`. The reason `cudaMalloc` is included in this list is that each call consumes 19.9% but because it's called 6 times, that collectively consumes more than 90%.

The key differences between kernels and API calls are that kernels allow programmers to define their own functions when called, are executed in parallel by different threads. API calls, on the other hand, are made by the code (or other CUDA API calls in the code) into the CUDA driver and/or runtime libraries. The driver API provides an additional level of control by exposing even lower-level concepts such as contexts and modules.

Finally, the execution of my kernel of the GPU SOL utilization looks like the following:

Figure 4: Nsight Stats for GPU Baseline Convolution for batch size = 10000

Milestone 4.1 - Add 3 Optimizations

Optimization 1: Using Fixed Point Arithmetic

Our first optimization was using fixed point arithmetic instead of floating point and the way we arrived at this optimization opportunity was due to the recommendations offered by the instructors on the project github.

We thought that this approach would be fruitful because floating point operations are inherently time-consuming for a generic processor as it involves multiple steps to account for the

difference in the exponential values. Fixed point operations, however mean that the decimal point is fixed in the number representation allowing for the operation hardware to be simplified. [1,2] Additionally, having done more research into why fixed point arithmetic on GPUs might offer benefits, we arrived at a blog post indicating that using fixed point numbers can "reduce the amount of data that needs to move from device memory to the GPU" [3] and decided that it was enough reason to try it out.

Ultimately, after implementing fixed point implementation [4,5], we observed that the test accuracy hadn't changed (which was what we wanted) but the GPU time, operation time and layer times varied slightly and were actually worse in certain situations as shown in table 5.

Batch Size	Baseline Operation Times	FP16 Operation Times
100	Layer 1 GPUTime: 0.150943 ms Layer 1 OpTime: 0.166175 ms Layer 1 LayerTime: 11.281809 ms Layer 2 GPUTime: 0.786906 ms Layer 2 OpTime: 0.80297 ms Layer 2 LayerTime: 6.142256 ms	Layer 1 GPUTime: 0.303806 ms Layer 1 OpTime: 0.331198 ms Layer 1 LayerTime: 7.946445 ms Layer 2 GPUTime: 1.139608 ms Layer 2 OpTime: 1.159576 ms Layer 2 LayerTime: 6.317432 ms
1000	Layer 1 GPUTime: 1.620341 ms Layer 1 OpTime: 1.636309 ms Layer 1 LayerTime: 67.498953 ms Layer 2 GPUTime: 8.592806 ms Layer 2 OpTime: 8.616421 ms Layer 2 LayerTime: 61.967887 ms	Layer 1 GPUTime: 2.982319 ms Layer 1 OpTime: 3.041807 ms Layer 1 LayerTime: 200.7771 ms Layer 2 GPUTime: 11.345533 ms Layer 2 OpTime: 11.386781 ms Layer 2 LayerTime: 61.598933 ms
10000	Layer 1 GPUTime: 33.531234 ms Layer 1 OpTime: 33.541186 ms Layer 1 LayerTime: 657.95256 ms Layer 2 GPUTime: 86.001188 ms Layer 2 OpTime: 86.027556 ms Layer 2 LayerTime: 581.144942 ms	Layer 1 GPUTime: 29.563294 ms Layer 1 OpTime: 29.600254 ms Layer 1 LayerTime: 638.703443 ms Layer 2 GPUTime: 112.910752 ms Layer 2 OpTime: 112.9504 ms Layer 2 LayerTime: 581.635624 ms

Table 5: Timing comparing GPU convolution with with baseline kernel vs FP16 kernel

Because this was not as insightful as we thought it would be, we then generated an nsight report outlining the memory and compute usage. Having done so, we arrived at the results shown in Figure 5. As it can be seen when comparing Figures 4 and 5, this optimization was fruitful because the memory utilization drastically decreased from ~90% down to 70%. Therefore, whereas in the baseline kernel, we were bounded by the memory utilization, we are now bounded by the compute (SM) utilization, illustrating that this optimization was indeed beneficial.

Figure 5: Nsight Stats for GPU Convolution with FP16 Optimization for batch size = 10000

Optimization 2: Using Constant Memory for Weights + Varying Tile Size

For our 2nd optimization we loaded the convolution weights in constant memory. In addition to that, we also explored the effect of the parameter TILE_WIDTH on the operation times. Four different values of TILE_WIDTH were used viz., 4, 8, 16 and 32. The results of this optimization (for a batch size of 10000) are presented in Table 6 shown below.

Туре	TILE_WIDTH	Operations times
Baseline	32	Layer 1 GPUTime: 33.531234 ms Layer 1 OpTime: 33.541186 ms Layer 1 LayerTime: 657.95256 ms Layer 2 GPUTime: 86.001188 ms Layer 2 OpTime: 86.027556 ms Layer 2 LayerTime: 581.144942 ms
Constant Memory	4	Layer 1 GPUTime: 66.907754 ms Layer 1 OpTime: 66.925994 ms Layer 1 LayerTime: 672.242977 ms Layer 2 GPUTime: 179.527176 ms Layer 2 OpTime: 179.550504 ms

		Layer 2 LayerTime: 615.589251 ms
Constant Memory	8	Layer 1 GPUTime: 28.894742 ms Layer 1 OpTime: 28.91135 ms Layer 1 LayerTime: 643.301828 ms Layer 2 GPUTime: 66.781428 ms Layer 2 OpTime: 66.8101 ms Layer 2 LayerTime: 508.12481 ms
Constant Memory	16	Layer 1 GPUTime: 14.718295 ms Layer 1 OpTime: 14.735703 ms Layer 1 LayerTime: 605.94236 ms Layer 2 GPUTime: 77.13176 ms Layer 2 OpTime: 469.649213 ms Layer 2 LayerTime: 508.131762 ms
Constant Memory	32	Layer 1 GPUTime: 23.131365 ms Layer 1 OpTime: 23.154245 ms Layer 1 LayerTime: 636.520045 ms Layer 2 GPUTime: 140.392697 ms Layer 2 OpTime: 140.418937 ms Layer 2 LayerTime: 569.271794 ms

Table 6: Timing comparing constant memory GPU convolution for 4 different TILE_WIDTH values with baseline kernel

As seen in Table 6, a TILE_WIDTH of 16 works best for the constant memory optimization for the 1st layer whereas, a TILE_WIDTH of 8 works best for the 2nd layer. This opens up a new avenue of optimization where we can implement a different TILE_WIDTH for the first and second convolution layer in our convolutional network. Overall, a TILE_WIDTH of 8 works best as the total operation time is approximately 96 ms i.e., almost 24 ms lower than the baseline.

Figure 6: Nsight Stats for constant memory GPU Convolution with TILE_WIDTH = 8 for batch size = 10000

To gain a better understanding of why a TILE_WIDTH of 8 performs better than a TILE_WIDTH of 32, we profiled our code and generated Fig. 6 using Nsight. As seen there, the SM and memory utilizations for the constant memory optimization are quite low compared to the baseline run shown in Fig. 4. The lower SM utilization can be attributed to the lower value of TILE_WIDTH (8) for the constant memory optimization as opposed to the greater value (32) for the baseline, whereas the lower memory utilization is a direct outcome of loading the weight in constant memory. From these observations, it is clear that the performance boost is strictly a result of minimizing calls to global memory by storing the convolution weights in constant memory.

Optimization 3: Unroll + Shared Memory Matrix Multiplication

Our third optimization was using unrolling and shared memory matrix multiplication techniques. We thought this optimization would be beneficial because we could get a speed up due to adapting several optimized matrix multiplications even though additional time would be spent on unrolling the input and weights [5]. However, we got a significant speed drop as shown in table 7. We think there are three reasons for speed down.

In order to implement this optimization, we needed to split the input into mini batches since our global memory capacity (11.78GB) was not enough to contain 10K batches of unrolling input images. This meant that we faced a significant bottleneck because the kernels needed to run in an iterative manner. As a further optimization, we believe this could be accelerated by using fixed point arithmetic (optimization 1) because we could reduce the computation time when unrolling the input images and can compute the output with only one kernel.

Second, since we were using different kernels for unrolling and shared-memory matrix multiply, we face another performance overhead. Specifically, we see an additional 10.21 us for unrolling the input and 5.41 us for reshaping at the end which is required to run matrix multiplication kernel - which only takes 10.05 us (figures 7-9). We think we can get a greater speed up by fusing the kernels for unrolling and matrix multiplication.

Third, using a naive shared matrix multiplication implementation is not enough to efficiently utilize GPU resources. Figure 8 shows the penalty we pay with the compute and memory resources in GPU when using naive matrix multiplication. To achieve a greater speed up we will try to use a more advanced matrix multiplication algorithm for the final submission, such as register-tiled matrix multiplication.

Figure 6: Nsight Stats for unrolling weights kernel

Figure 7: Nsight Stats for unrolling input kernel

Figure 8: Nsight Stats for shared matrix multiply kernel

Figure 9: Nsight Stats for reshape kernel

Batch Size	Baseline Operation Times	Unroll + Shared Memory Operation Times
100	Layer 1 GPUTime: 0.150943 ms Layer 1 OpTime: 0.166175 ms Layer 1 LayerTime: 11.281809 ms Layer 2 GPUTime: 0.786906 ms Layer 2 OpTime: 0.80297 ms Layer 2 LayerTime: 6.142256 ms	Layer 1 GPUTime: 1.850167 ms Layer 1 OpTime: 2.158643 ms Layer 1 LayerTime: 8.906112 ms Layer 2 GPUTime: 2.590801 ms Layer 2 OpTime: 3.508012 ms Layer 2 LayerTime: 15.348165 ms
1000	Layer 1 GPUTime: 1.620341 ms Layer 1 OpTime: 1.636309 ms	Layer 1 GPUTime: 18.493263 ms Layer 1 OpTime: 31.206955 ms

	Layer 1 LayerTime: 67.498953 ms Layer 2 GPUTime: 8.592806 ms Layer 2 OpTime: 8.616421 ms Layer 2 LayerTime: 61.967887 ms	Layer 1 LayerTime: 100.196876 ms Layer 2 GPUTime: 26.111311 ms Layer 2 OpTime: 29.158747 ms Layer 2 LayerTime: 75.945948 ms
10000	Layer 1 GPUTime: 33.531234 ms Layer 1 OpTime: 33.541186 ms Layer 1 LayerTime: 657.95256 ms Layer 2 GPUTime: 86.001188 ms Layer 2 OpTime: 86.027556 ms Layer 2 LayerTime: 581.144942 ms	Layer 1 GPUTime: 174.345829 ms Layer 1 OpTime: 201.846313 ms Layer 1 LayerTime: 786.21534 ms Layer 2 GPUTime: 233.728146 ms Layer 2 OpTime: 260.214675 ms Layer 2 LayerTime: 687.945379 ms

Table 7: Timing comparing GPU convolution with with baseline kernel vs Unroll + GEMM Optimization kernel

Team Organization + Work Splitting

For the purposes of Milestone 4, we decided to split up the work such that one team member would be responsible for a single optimization but could obviously reach out to others on the team to ask for help/ideas. The idea behind this method was that we couldn't actually meet up and work through the optimization together and so by splitting up the work evenly, each of us had a better understanding of our respective optimizations. For the final project, we're hoping to work more intimately and combine these optimizations in order to climb up the leaderboard!

References

- [1] https://www.ti.com/lit/wp/spry061/spry061.pdf?ts=1605931009759
- [2] https://www.microcontrollertips.com/difference-between-fixed-and-floating-point/
- [3]https://stackoverflow.com/questions/35198856/half-precision-difference-between-float2half-vs-float2half-rn/35202978
- [4] https://docs.nvidia.com/cuda/cuda-math-api/group CUDA MATH HALF MISC.html
- [5] Kim, H., Nam, H., Jung, W., & Lee, J. (2017, April). Performance analysis of CNN frameworks for GPUs. In 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) (pp. 55-64). IEEE.