CNN

컨볼루션 신경망

인공신경망 손글씨 모델

▶ 인공신경망으로 만든 MNIST_Simple.ipynb는 98.21%의 정확도를 갖는 단순신

경망 모델

▶ 도식화

▶ 은닉층이 하나인 모델

- ▶ 입력된 이미지에 다시 한번 특징(Feature)를 추출하기 위해 마스크(Mask)를 사용하는 기법
- ▶ 마스크는 필터, 윈도, 커널이라고 함

1	0	1	0
0	1	1	0
0	0	1	1
0	0	1	0

×1 ×0 ×0 ×1

> Mask 2 * 2 가중치 포함

원본 이미지

l×I	0×0	1	0
0×0	l×I	1	0
0	0	1	I
0	0	1	0

원래 값에 가중치를 곱해 줌 (1*1)+(0*0)+(0*0)+(1*1) = 2

	l×I	0×0	1	0	.1	0×I	1×0	0	1	0	l×I	0×0
(0×0	l×I	I	0	0	I×0	l×l	0	0	1	I×0	0×I
	0	0	ı	1	0	0	1	1	0	0	I	1
	0	0	I	0	0	0	I	0	0	0	I	0
	1	0	ı	0	1	0	I	0	1	0	I	0
	0×I	I×0	1	0	0	l×I	1×0	0	0	1	l×I	0×0
(ο×ο	0×1	1	1	0	0×0	l×I	1	0	0	I×O	l×I
	0	0	I	0	0	0	I	0	0	0	I	0
	1	0	1	0	1	0	ı	0	1	0	I	0
	0	1	ı	0	0	1	ı	0	0	1	ı	0
	Ο×Ι	0×0	ı	ı	0	0×I	1×0	1	0	0	l×I	I×O
(0×0	0×I	1	0	0	0×0	I×I	0	0	0	I×0	0×I

- ▶ 새롭게 만들어진 층
 - ▶ 컨볼루션 (합성곱)
 - ▶ 여러 개를 만들면 여러 개의 컨볼루션이 만들어 짐

마스크 1

컨볼루션 1

1	0	1	0
0	1	1	0
0	0	ı	ı
0	0	ı	0

마스크 ㅗ

1	1	1
1	٦	1
0	ı	٦

컨볼루션 그

ı	0	ı	0
0	1	ı	0
0	0	1	Ī
0	0	1	0

D	스	E	n

1	٦	1
0	1	٦
0	1	1

컨볼루션 n

- ▶ 케라스에서 컨볼루션 층을 추가하는 함수는 Conv2D()
 - model.add(Conv2D(32, kernel_size=(3,3), input_shape=(28,28,1), activate='relu')
 - ▶ 첫번째 매개변수 적용시킬 마스크의 개수 지금 32개의 마스크를 적용
 - ▶ kernel_size 마스크의 크기
 - ▶ 입력값(행, 열, 색상)
 - ▶ 네번째 매개변수 활성함수 현재는 relu 선택

- ▶ model.add(Conv2D(64, (3,3), activation='relu'))
 - ▶ 64개 층을 추가한 컨볼루션 층

▶ 컨볼루션 층의 적용

맥스플링(Max pooling)

- ▶ 컨볼루션 층을 통한 이미지 특징 추출 후 결과가 크고 복잡하면 축소가 필요
- ▶ 축소 과정을 풀링(pooling), 서브 샘플링(sub sampling)
- ▶ 풀링 기법의 알고리즘
 - ▶ 정해진 구역안에서 최댓값을 구함

1	0	1	0
0	4	٦	0
0	1	6	1
0	0	1	0

1	0	1	0
0	4	٦	0
0	1	6	1
0	0	1	0

맥스플링(Max pooling)

- ► Maxpooling2D 함수를 사용함
- model.add(Maxpooling2D(pool_size=2)
 - ▶ pool_size는 풀링 창의 크기를 정하는 것 2로 하면 전체 크기가 절반으로 줄어듬

드롭아웃(Dropout)

- ▶ 노드가 많거나 층이 많다고 무조건 학습이 좋아지지는 않음
- ▶ 학습의 효율은 과적합을 효율적으로 피해가는 데 있음
- ▶ 과적합을 회피할 수 있는 간단하지만 효율적인 기법
- ▶ 은닉층에 배치된 노드 중 일부를 임의로 꺼주는 기법

드롭아웃(Dropout)

- ► model.add(Dropout(0.25)
 - ▶ 25%의 노드를 꺼줌
- model.add(Flatten())
 - ▶ 컨볼루션 층이나 맥스풀링 층은 주어진 배열을 2차원 배열인 형태로 다룸
 - ▶ 1차원 함수로 변경한 후 사용하여야 활성함수가 있는 층에서 사용 가능함
 - ▶ 따라서 2차원 배열을 1차원 배열로 변경해줄 필요가 있음

CNN 작업 과정 도식화

최종 결과

```
In [7]: # 테스트 정확도 출력
print("\n Test Accuracy: %.4f" % (model.evaluate(X_test, Y_test)[1]))
10000/10000 [===========] - 2s 231us/step
```

Test Accuracy: 0.9920

- ▶ 98%에서 99.20%로 향상
- ▶ epoch은 7정도에서 학습중단
 - ▶ 과적합 방지

최종결과

▶ 알아내지 못한 손글씨 샘플

