

Design, Implementation and Evaluation of an Incremental Nonlinear Dynamic Inversion Controller for a Nano-Quadrotor

Entwurf, Implementierung und Evaluierung eines Inkrementellen Nichtlinearen Dynamischen Inversionsreglers für einen Nano-Quadrotor

Semesterarbeit

Author: Evghenii Volodscoi

Matriculation number: 03663176

Supervisor: Dr. Ewoud Smeur

Statutory Declaration

I, Evghenii Volodscoi, declare on oath towards the Institute of Flight System Dynamics of Technische Universität München, that I have prepared the present Semester Thesis independently and with the aid of nothing but the resources listed in the bibliography.

This thesis has neither as-is nor similarly been submitted to any other university.

Garching,

Kurzfassung

Deutsche Kurzfassung der Arbeit.

Abstract

English abstract of the thesis.

Table of Contents

1	Intro	duction	1	1
	1.1	Motiva	ation	1
	1.2	Contri	bution of the Thesis	1
	1.3	Struct	ure of the Thesis	1
2	The	oretical	Background	2
	2.1	Nonlin	near Dynamic Inversion	2
	2.2	Incren	nental Nonlinear Dynamic Inversion	2
3	Impl	ementa	ation	3
	3.1	Resea	arch Quadrotor	3
	3.2	Simuli	nk Model	3
		3.2.1	Purpose	3
		3.2.2	Structure	3
			Simulation Results	3
	3.3	Impler	mentation on Hardware	3
		3.3.1	Testing with contact Forces and Moments	3
4	Res	ults		4
5	Disc	ussion		5
Αp	pend	lix		i

List of Figures

List of Tables

Table of Acronyms

Acronym Description

ADF Automatic Direction Finder
ADI Automatic Direction Indicator

Table of Symbols

Latin Letters

Symbol	Unit	Description
F	N	Force
g	m/s^2	Gravitational acceleration

Greek Letters

Symbol	Unit	Description
α	rad	Angle of attack
ζ	_	Damping of a linear second order system
Indices		

Symbol Unit Description

m Variable related to pitch moment

W Wind

- 1 Introduction
- 1.1 Motivation
- 1.2 Contribution of the Thesis
- 1.3 Structure of the Thesis

- 2 Theoretical Background
- 2.1 Nonlinear Dynamic Inversion
- 2.2 Incremental Nonlinear Dynamic Inversion

- 3 Implementation
- 3.1 Research Quadrotor
- 3.2 Simulink Model
- 3.2.1 Purpose
- 3.2.2 Structure
- 3.2.3 Simulation Results
- 3.3 Implementation on Hardware
- 3.3.1 Testing with contact Forces and Moments

4 Results

5 Discussion

Appendix