

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

What is a data lake?

A scalable and secure data platform that allows enterprises to ingest, store, process, and analyze any type or volume of information.

Components of a Data Engineering ecosystem

- Data sources
- Data sinks
 - Central data lake repository
 - Data warehouse
- Data pipelines (batch and streaming)
- High-level orchestration workflows

Our focus in this module

Our focus in the next module

Our focus in other courses

Data Engineering is like Civil Engineering

Raw Materials need to be brought to the job site (into the Data Lake).

Transform raw materials into a useful form

- Raw Materials need to be brought to the job site (into the Data Lake).
- Materials need to be cut and transformed for purpose and stored (pipelines to data sinks).

The new building is the new insight, ML model, etc.

- Raw Materials need to be brought to the job site (into the Data Lake).
- Materials need to be cut and transformed for purpose and stored (pipelines to data sinks).
- The actual building is the new insight or ML model etc.

An orchestrator governs all aspects of the workflow

- Raw Materials need to be brought to the job site (into the Data Lake).
- Materials need to be cut and transformed for purpose and stored (pipelines to data sinks).
- The actual building is the new insight or ML model etc.
- The supervisor directs all aspects and teams on the project (workflow orchestration).

- 1. Data sources
- 2. Data lake
- 3. Data pipelines
- 4. Data warehouse
- 5. Used for ML and analytics workloads

- 1. Data sources
- 2. Data lake
- 3. Data pipelines
- 4. Data warehouse
- 5. Used for ML and analytics workloads

- 1. Data sources
- 2. Data lake
- 3. Data pipelines
- 4. Data warehouse
- 5. Used for ML and analytics workloads

- 1. Data sources
- 2. Data lake
- 3. Data pipelines
- 4. Data warehouse
- 5. Used for ML and analytics workloads

The suite of big data products on Google Cloud

You will build scalable, durable, Data Lakes with Google Cloud storage solutions

Data lake versus data warehouse

A data lake is a capture of every aspect of your business operation. The data is stored in its natural/raw format, usually as object blobs or files.

- Retain all data in its native format
- Support all data types and all users
- Adapt to changes easily

Data lake versus data warehouse

A data lake is a capture of every aspect of your business operation. The data is stored in its natural/raw format, usually as object blobs or files.

- Retain all data in its native format
- Support all data types and all users
- Adapt to changes easily
- Tends to be application-specific

Data lake versus data warehouse

In contrast, a data warehouse typically has the following characteristics:

- Typically loaded only after a use case is defined.
- Processed/organized/transformed.
- Provide faster insights.
- Current/historical data for reporting.
- Tends to have consistent schema shared across applications.

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

Storage options for your data on Google Cloud

The path your data takes to get to the cloud depends on

- Where your data is now
- How big your data is
- Where it has to go
- How much transformation is needed

The method you use to load data depends on how much transformation is needed

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

Cloud Storage

Qualities that Cloud Storage contributes to data engineering solutions:

- Persistence
- Durability
- Strong consistency
- Availability
- High throughput

Cloud Storage

How does Cloud Storage work?

- Single global namespace simplifies locating buckets and objects
- Location to control latency
- Durability and availability
- Long object names simulate structure

Bucket properties

Overview of storage classes

Storage Class	Minimum duration	Availability SLA	Typical monthly availability	Use cases	Name for APIs and gsutil
Standard Storage	None	Multi-region 99.95% Dual-region 99.95% Region 99.9%	>99.99% availability in multi-regions and dual-regions; 99.99% in regions	Access data frequently ("hot" data) and/or store for brief periods • Serve website content • Stream videos • Interactive workloads • Mobile and gaming apps	STANDARD
Nearline Storage	30 days	Multi-region 99.9% Dual-region 99.9% Region 99.0%	99.95% availability in multi-regions and dual-regions; 99.9% in regions	 Read/modify data ≤ once per month Data backup Serve long-tail multimedia content 	NEARLINE
Coldline Storage	90 days	Multi-region 99.9% Dual-region 99.9% Region 99.0%	99.95% availability in multi-regions and dual-regions; 99.9% in regions	Read/modify data no more than once a quarter	COLDLINE
Archive Storage	365 days	None	99.95% availability in multi-regions and dual-regions; 99.9% in regions	Read/modify data < once a yearCold data storageDisaster recovery	ARCHIVE

Cloud Storage simulates a file system

Cloud Storage has many object management features

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

Controlling access with IAM and access lists

Data encryption options for many requirements

GMEK Google-managed encryption keys **Encrypted DEK** Cloud KMS Key Management

Service Encryption is automatic

Cloud Storage supports many special use cases

Data locking Client-side for audits encryption Decompressive coding object Requester pays Signed URLs for **OBJECT** anonymous sharing HOLD **BUCKET** Retention Period expirations Client-side LOCK **POLICY** encryption Composite objects LOCK

01	Introduction to data lakes	
02	Data storage and ETL options on Google Cloud	
03	Build a data lake using Cloud Storage	
04	Secure Cloud Storage	
05	Store all sorts of data types	
06	Cloud SQL as a relational data lake	

Different considerations for transactional workloads

Transactional versus analytical

	Transactional	Analytical
Source of data	Operational data; OLTPs are the original source of the data	Consolidation data; OLAP data comes from the various OLTP databases
Purpose of data	Control and run fundamental business tasks	Help with planning, problem solving, and decision support
What the data shows	Reveals snapshot of ongoing business processes	Multi-dimensional views of various kinds of business activities
Inserts and updates	Short and fast inserts and updates initiated by end users	Periodic long-running batch jobs refresh the data
Queries	Relatively standardized and simple queries returning relatively few records	Often complex queries involving aggregations
Processing speed	Typically very fast	Depends on amount of data involved; improve query speed with indexes
Space requirements	Can be relatively small if historical data is archived	Larger, more indexes than OLTP

Transactional systems are 80% writes and 20% reads

Analytical systems are 20% writes and 80% reads

Data engineers build the pipelines between the systems

Use Cloud Storage for scalable staging of raw data

Choose from cloud relational databases for transactional workloads

Choose from cloud data warehouses for analytic workloads

Building a Data Lake

01	Introduction to data lakes
02	Data storage and ETL options on Google Cloud
03	Build a data lake using Cloud Storage
04	Secure Cloud Storage
05	Store all sorts of data types
06	Cloud SQL as a relational data lake

Cloud SQL is a fully managed database service that makes it easy to set up and administer your relational databases in the cloud

Cloud SQL can be used with other Google Cloud services

Cloud SQL can be used with App Engine using standard drivers.

You can configure a Cloud SQL instance to follow an App Engine application.

Compute Engine instances can be authorized to access Cloud SQL instances using an external IP address.

Cloud SQL instances can be configured with a preferred zone.

Cloud SQL can be used with external applications and clients.

Standard tools can be used to administer databases.

External read replicas can be configured.

Backup, recovery, scaling, and security is managed for you

- Google security
- Managed backups
- Vertical scaling (read and write)
- Horizontal scaling (read)
- Automatic replication

Cloud SQL replication

Cloud SQL replication caveats

- The failover replica is charged as a separate instance
- Existing connections to the instance are closed
- The replica becomes the primary

Fully managed versus serverless

Modern serverless data management architecture

Lab Intro

Loading Taxi Data into Cloud SQL

Lab objectives

- Create a Cloud SQL instance which can hold multiple databases.
- O2 Create a new Cloud SQL database.
- 103 Import text data into Cloud SQL.
- Oheck the data for integrity.

