	Axiomas da Álgebra Booleana		
	Expressão	Denominação	
1	$\mathbf{x} + \mathbf{x} = \mathbf{x}$	Fechamento	
1'	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	rechamento	
2	x + 1 = 1		
2'	$\mathbf{x} \cdot 0 = 0$		
3	$\mathbf{x} + 0 = \mathbf{x}$	Elemento	
3'	$x \cdot 1 = x$	Neutro	
4	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	Comutativa	
4'	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	Comutativa	
5	$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$	Associativa	
5'	$(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$	Associativa	
6	x + x' = 1	Elemento	
6'	$\mathbf{x} \cdot \mathbf{x}' = 0$	Inverso	
7	$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$	Distributiva	
7'	$\mathbf{x} + \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{z})$	Distributiva	

)perações

AND			
a	b	a.b	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR			
a	a+b		
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT		
a	a'	
0	1	
1	0	

Tabela Estímulo FF D			
Estado		Estímulo	
Qi	Q _{i+1}	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Tabela Estímulo FF JK			
Estado		Estímulos	
Qi	Q_{i+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Multiplex 8X1

Mapas de Karnaugh de três e quatro Variáveis

