

Informatics Institute of Technology

University of Westminster

5DATA001C. Machine Learning and Data Mining Coursework Report

Student Name : Sundaralingam Gokula Nandhan

UOW ID : W2082091

IIT ID : 20233027

Tutorial Group: L5 SE G9

Table of content

able of content	1
Case Study (A): Predicting Cancer Patients Mortality Status	1
Case Study (A) Analyses Report for Predicting Mortality Status Tasks	1
Task (2) – Exploring and Understanding the Dataset	2
Task (3) – Data Preparation: Cleaning and Transforming your data	2
a) Data Quality Issues in the Cancer Dataset	2
b) Fixing Data Quality Issues Using Python (with Evidence Screenshots)	3
Task (4) - Classification Modelling of Cancer Patients Mortality Status	5
a) Parametric vs Non-Parametric Algorithms and Their Parameters	5
b) Building Classification Models Using Train-Test Split	5
i. Screenshot Requirement	5
ii. Justification of the Training-Test Split Ratio	6
iii. Ensuring Consistency and Label Balance in Train-Test Split	6
Task (5) – Evaluating your Cancer Mortality Status Classification Models	8
a) Evaluation Outputs for Classification Models	8
1.Logistic Regression	8
2. K- Nearest Neighbors	8
3. Naïve Bayes	8
b) Justification of Evaluation Metrics Based on Success Criteria	9
c) Best Classification Model Recommendation for Mortality Status	9
d) Hyperparameter Tuning of the Best Mortality Prediction Model using GridSearchCV	10
i. GridSearchCV Hyperparameter Tuning for Optimized Model	10
ii. Evaluation of Hyperparameter Tuning Impact on Best Model	10
e) Critical Evaluation and Ethical Concerns of the Best Mortality Prediction	ո Model
f) Building a Probability-Based Voting Ensemble Classifier	11
i. Ensemble Classifier Declaration and Fitting	
ii. Justification for Base Learner Selection	11
1. Logistic Regression	11
2.K-Nearest Neighbors	12

Case Study (B): Predicting Cancer Patients Survival Months	
	12
Case Study (B) Analyses Report for Predicting Survival Months Tasks	12
Task (1) – Domain Understanding and Designing Your Regression Experimen	ts12
Task (2) – Modelling: Build Predictive Regression Models a) Benefits of Us Decision Tree Regressor for Survival Month Prediction	•
b) Building and Testing Decision Tree Regression Models (DT-1 and DT-2).	13
i. Python Code Blocks to Import, Declare, and Fit DT-1 and DT-2	13
ii. Explanation of Pruning Method and Its Impact on Cancer Patient Modelling	13
c) Visualisation of Regression Decision Trees DT-1 and DT-2	14
i.Descision Tree-1(Fully Grown DT)	14
ii. Decision Tree -2(Pruned DT)	14
Task (3) – Evaluating your Cancer Survival Months DT Regression Models	
a) Regression Evaluation Metrics – Use or Not Use	15
b) Suggesting the Best Regression Model Based on Performance Metrics	
c) Concerns About Selected Performance Metrics	15
Task (4) – Interpreting Cancer Survival Months Decision Tree Outcomes	16
References	
List of Figures Figure 1:Bar graph of mortality status	
List of Figures Figure 1:Bar graph of mortality status Figure 2:Information of the dataset	2 2
List of Figures Figure 1:Bar graph of mortality status	2 2 2
List of Figures Figure 1:Bar graph of mortality status	2 2 3
List of Figures Figure 1:Bar graph of mortality status	2 2 3 4
List of Figures Figure 1:Bar graph of mortality status	2 2 3 4 4
List of Figures Figure 1:Bar graph of mortality status	2344
List of Figures Figure 1:Bar graph of mortality status	2 2 3 4 4 4
List of Figures Figure 1:Bar graph of mortality status	2 2 4 4 4 5
List of Figures Figure 1:Bar graph of mortality status	2 2 4 4 4 5 5
List of Figures Figure 1:Bar graph of mortality status	2 4 4 4 5 5 6
List of Figures Figure 1:Bar graph of mortality status	244555

Figure 16:Classification report, Confusion matrix and ROC-Curve of KNN	3))
Table 1:Justification table of variable drop and retain for the dataset	
Table 2:Justification table of variable issues	
Table 3:Details of classification algorithms)
Table 4:Evaluation metrics of classification algorithms	
Table 5:KNN report of pre and post tuning10)
Table 6:Evaluation metrics of regression tree	,

Case Study (A): Predicting Cancer Patients Mortality Status <u>Case Study (A) Analyses Report for Predicting Mortality Status Tasks</u>

Task (1) - Domain Understanding: Classification

Variable Name	Retain or Drop	Brief justification for retention or dropping
Patient ID	Drop	Unique identifier for patients. These are providing non- predictive values
Month of Birth	Drop	Risk of overfitting. Does not relevant to the mortality status prediction
Age	Retain	Important variable because directly affects cancer survival risk
Sex	Retain	Gender – based variable for the breast cancer analysis
Occupation	Drop	It lacks direct clinical relevance to cancer survival and may introduce unnecessary bias into the model
T Stage	Retain	Reflects the tumor size and severity, which are critical factors in predicting breast cancer mortality status
N Stage	Retain	Provides information about lymph node involvement, Signals cancer progression and mortality
6th Stage	Retain	Providing a definitive baseline of established cancer critical for predicting patient mortality
Differentiated	Retain	Shows how abnormal cancer cells are compared to normal cells, which means more aggressive cancer and a worse outlook for survival
Grade	Retain	Measures cancer aggressiveness and strongly predicts breast cancer patient outcomes
A Stage	Retain	Essential as it reveals cancer spread (regional vs. distant), a critical factor for predicting patient survival
Tumor Size	Retain	Directly impacts the patient's likely outcome, and smaller tumors often mean better survival
Estrogen Status	Retain	Reveals if estrogen drives the cancer. Impacting treatment and survival
Progesterone Status	Retain	Often indicates a better outcome and influences treatment in breast cancer
Regional Node Examined	Retain	Essential for accurate cancer staging, which directly influences patient mortality prediction
Regional Node Positive	Retain	Independent predictor of patient survival and mortality risk
Survival Months	Retain	Strong predictors for mortality status. Enhance the accuracy of the model
Mortality Status	Retain	Target variable for the mortality status prediction

Table 1:Justification table of variable drop and retain for the dataset

Task (2) - Exploring and Understanding the Dataset

Figure 1:Bar graph of mortality status

Figure 2:Information of the dataset

Figure 3:Instances of Dataset

Task (3) - Data Preparation: Cleaning and Transforming your data

a) Data Quality Issues in the Cancer Dataset

Variable Name	Issue found	Proposed fix	Justification for used fix method
Regional_Node_Positive	Misspelled as "Reginol_Node_Positive"	Rename it with the correct spelling	Typos in variable names can create basic errors that become confusing to resolve
Age	Null values were found in every variable	All null values were filled by using the mean of each	It allows models to work correctly and provide
Sex	in every variable	respective variable.(Mode	reliable results without
Tumor_Size		used for Sex variable)	losing too much
Regional_Node_Examined			information

Age Tumor_Size Regional_Node_Examined Regional_Node_Positive Survival_Months	Outliers found in every variable	Replaced maximum amount of outlier values by using mean of each respective variable	It makes the results and predictions more sensible by stopping weird data from messing them up
Mortality_Status	Found output labels in many spellings (E.g : For Alive – Alive, ALIVE, Alive, alive)	Converted all values to lowercase and mapped as "Alive" and "Dead"	Like Alive' and 'alive' as different things, which would make counts and predictions inaccurate
Sex	Found all values are	Mapped All the variables to	It allows machine learning
T_Stage	assigned with the	numeric value	algorithms to optimize
N_Stage	categorical values		based on numeric values. Ensuring the model can
6th_Stage			learn from the input
A_Stage			features effectively
Eastrogen_Status			
Projesterone_Status			
Mortality_Status			
Age	Found variables with	Converted all the variables	To avoid data type
Regional_Node_Examined	float and object types	to integer type. For	mismatches or errors
Tumor_Size		differentiated it was encoded with numerical	during model training
Differentiated		values	

Table 2: Justification table of variable issues

b) Fixing Data Quality Issues Using Python (with Evidence Screenshots)

Figure 4:Misspelled variable before and after (Regional_Node_Positive)

Figure 5:Numerical value imputation for null values(Before and After)

```
Number of outliers in Age : 4

Number of outliers in Grade : 0

Number of outliers in Tumor_Size : 221

Number of outliers in Regional_Node_Examined : 73

Number of outliers in Regional_Node_Positive : 344

Number of outliers in Survival_Months : 19

Number of outliers in Regional_Node_Positive : 0

Number of outliers in Survival_Months : 15
```

Figure 6:Outlier imputation (before and after)

Figure 7:Unnecessary label reduction of mortality status (Before and after)

Figure 8:Labialization for differentiated column (Before and after)

```
<class 'pandas.core.frame.DataFrame'>
Index: 3655 entries, 0 to 4023 Data columns (total 15 columns):
                                        Non-Null Count Dtype
                                        3655 non-null
                                                             float64
       Sex
                                        3655 non-null
                                                             object
       T_Stage
                                        3655 non-null
                                                             object
       N_Stage
                                        3655 non-null
      6th_Stage
Differentiated
                                        3655 non-null
                                                             object
                                       3655 non-null
3655 non-null
                                                             object
int64
      Grade
      A_Stage
                                        3655 non-null
                                                             object
      Tumor_Size
                                        3655 non-null
      Estrogen_Status
                                        3655 non-null
                                                             object
 10 Progesterone_Status 3655 non-null
11 Regional_Node_Examined 3655 non-null
                                                             object
float64
  12 Regional_Node_Positive
                                        3655 non-null
13 Survival_Months 3655 non-n
14 Mortality_Status 3655 non-n
dtypes: float64(3), int64(3), object(9)
memory usage: 456.9+ KB
                                        3655 non-null
                                                             int64
                                        3655 non-null
                                                             object
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3655 entries, 0 to 3654
    Data columns (total 15 columns):
                                    Non-Null Count Dtvpe
     # Column
                                   3655 non-null
                                                     int64
         Age
          Sex
                                   3655 non-null
                                                     int64
          T_Stage
                                   3655 non-null
                                                     int64
          N_Stage
                                    3655 non-null
                                                     int64
          6th_Stage
                                   3655 non-null
         Differentiated
                                   3655 non-null
                                                     int64
         Grade
                                   3655 non-null
         A_Stage
Tumor_Size
                                    3655 non-null
                                                     int64
                                    3655 non-null
                                                     int64
         Estrogen_Status
                                    3655 non-null
                                                     int64
     10 Progesterone_Status 3655 non-null
11 Regional_Node_Examined 3655 non-null
                                                     int64
                                                     int64
     12 Regional Node_Positive 3655 non-null
                                                     int64
     13 Survival Months
                                    3655 non-null
                                                     int64
     14 Mortality_Status
                                    3655 non-null
    dtypes: int64(\overline{15})
    memory usage: 428.4 KB
```

Figure 9:Converting datatypes of columns (Before and After)

Task (4) - Classification Modelling of Cancer Patients Mortality Status

a) Parametric vs Non-Parametric Algorithms and Their Parameters

Algorithm Name	Algorithm Type	Learnable Parameters	Some Strategic Hyperparameters
NB	Parametric	Class prior probabilities, Feature likelihoods	Smoothing parameter
LR	Parametric	Feature weights,	Regularization strength, penalty type, solver
KNN (N=5)	Non- Parametric	None	Number of neighbors, distance metric, weighting

Table 3:Details of classification algorithms

b) Building Classification Models Using Train-Test Split

i. Screenshot Requirement

```
Index(['Age', 'Sex', 'T_Stage', 'N_Stage', 'Offferentiated', 'Grade', 'A_Stage', 'Tumor_Size', 'Estrogen_Status', 'Progesterone_Status', 'Regional_Node_Examined', 'Regional_Node_Positive', 'Survival_Months', 'Mortality_Status'],

dtype='object')

Training set shape: (2924, 14)
Test set shape: (731, 14)
```

Figure 10:List of Classification data columns

An 80:20 training-test split was utilized to ensure a sufficient dataset for model learning while leaving sufficient data intact for proper evaluation. There were 3,655 cleaned records, out of which 2,924 were allocated for training and 731 for testing, such that models could learn meaningful patterns without compromising validation integrity. 80:20 ratio is a commonly proposed strategy in machine learning because it provides a balanced trade-off between bias and variance in performance assessment (Zhang et al., 2019). The approach also helps decrease overfitting and allows the realistic estimation of the model's ability to generalize to new instances. With the moderate size of the dataset, this ratio seems suitable and adequate.

iii. Ensuring Consistency and Label Balance in Train-Test Split

```
Code Reuse Session: 02 | Tutorial No: 03(Page 5)

[38] #import train-test-split module from scikit-learn
from sklearn.model_selection import train_test_split

Code Reuse Session: 02 | Tutorial No: 03(Page 5)

[39] #split the data into training and testing
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size= 0.2, random_state= 42, stratify = Y)
```

Figure 11:Code block of split train and test data

```
#display information about the training features dataset
X_train.info()
print("\n")

#display the same structural information for the testing features dataset
X_test.info()
print("\n")

#display info about the training target variable (Mortality Status)
Y_train.info()
print("\n")

#display info about the test target variable to verify consistency
Y_test.info()
```

Figure 12:Code block for getting information about train and test dataset

```
→ <class 'pandas.core.frame.DataFrame'>
    Index: 2924 entries, 1850 to 437
    Data columns (total 14 columns):
    # Column
                                Non-Null Count Dtype
                                2924 non-null
                                                int64
        Age
                                2924 non-null
                                                int64
         T_Stage
                                2924 non-null
                                                 int64
        N_Stage
                                2924 non-null
                                                int64
        6th_Stage
                                2924 non-null
                                                int64
        Differentiated
                                2924 non-null
        Grade
                                2924 non-null
                                                int64
                                                int64
        A_Stage
                                2924 non-null
        Tumor Size
                                2924 non-null
                                                int64
        Estrogen Status
                                2924 non-null
                                                int64
     10 Progesterone_Status
                                2924 non-null
                                                int64
     11 Regional_Node_Examined 2924 non-null
                                                int64
     12 Regional_Node_Positive 2924 non-null
                                                int64
     13 Survival Months
                                 2924 non-null
                                                int64
    dtypes: int64(14)
    memory usage: 342.7 KB
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 731 entries, 3371 to 1309
Data columns (total 14 columns):
                            Non-Null Count Dtype
# Column
a
    Age
                            731 non-null
                                             int64
                            731 non-null
                                             int64
    T_Stage
                            731 non-null
                                             int64
    N_Stage
                            731 non-null
                                             int64
    6th_Stage
                            731 non-null
                                             int64
    Differentiated
                            731 non-null
                                             int64
    Grade
                            731 non-null
                                             int64
    A_Stage
                            731 non-null
                                             int64
    Tumor_Size
                            731 non-null
                                             int64
   Estrogen_Status
                            731 non-null
                                             int64
10 Progesterone_Status
                            731 non-null
                                             int64
11 Regional_Node_Examined 731 non-null
                                             int64
12 Regional_Node_Positive 731 non-null
                                             int64
13 Survival_Months
                             731 non-null
                                             int64
dtypes: int64(14)
memory usage: 85.7 KB
```

Figure 13: Variable distribution of train and test dataset

Figure 14:Outputs of the above code block

To ensure unbiased judgment and similar outcomes between models, a fixed random_state was used in train_test_split(), meaning all models would be trained on and tested with the same set of data subsets. This eliminates randomness as the source of variance in performance. The stratify parameter was also specified as the target variable (Mortality Status: "Alive" vs "Dead") in order to preserve the original distribution of classes. Stratified sampling is necessary for class-balanced classification problems to guarantee that the model learns from a representative sample (Kohavi, 1995).

The info() function is used to verify the integrity and structure of training and test datasets. It checks for the number of rows, columns, data types, and missing values in X_train, X_test, Y_train, and Y_test. This confirms features are in correct format and missing data is none, ensuring the data is divided correctly and available for model evaluation and training.

Task (5) - Evaluating your Cancer Mortality Status Classification Models

a) Evaluation Outputs for Classification Models

1.Logistic Regression

Figure 15:Classification report, Confusion matrix and ROC-Curve of Logistic Regression

2. K- Nearest Neighbors

Figure 16:Classification report, Confusion matrix and ROC-Curve of KNN

3. Naïve Bayes

Figure 17:Classification report, Confusion matrix and ROC-Curve of Naive Bayes

b) Justification of Evaluation Metrics Based on Success Criteria

Metrics	USE or DO NOT USE	Justification for choosing "USE" or "DO NOT USE" in relation to the success criteria	Model Name	Test Score
Accuracy	Do not use	Can be misleading in imbalanced	NB	0.84
		datasets; may favor the majority class ("Alive")	LR	0.9
		(Alive)	KNN (K=5)	0.89
Recall	Use	"Dead" cases (true positives)	NB	0.52
			LR	0.47
			KNN (K=5)	0.45
Precision	Do not use	Precision is less important when false negatives (missed dead patients) are	NB	0.45
		more harmful	LR	0.75
			KNN (K=5)	0.64
F1-Score	Use	Balances recall and precision. Useful	NB	0.48
		when there's class imbalance	LR	0.58
			KNN (K=5)	0.53
AUC-ROC	Shows model's ability to separate classes at various thresholds. Useful for imbalanced classification	NB	0.82	
			LR	0.86
			KNN (K=5)	0.78

Table 4:Evaluation metrics of classification algorithms

c) Best Classification Model Recommendation for Mortality Status

Based on the performance metrics considered - Recall, F1-Score, and AUC-ROC - the KNN (K=5) classifier is chosen as the best model. Though Logistic Regression is marginally better than KNN on all three metrics, the differences are small (within 0.1), and KNN is an acceptable alternative. KNN achieves a good balance between predicting "Dead" cases correctly and not having too many false positives. It also allows for easier interpretation and more flexibility in dealing with nonlinear data. Hence, KNN satisfies the needs of healthcare professionals by delivering stable and balanced performance in identifying high-risk patients with steady overall classification accuracy.

d) Hyperparameter Tuning of the Best Mortality Prediction Model using GridSearchCV

i. GridSearchCV Hyperparameter Tuning for Optimized Model

Figure 18:Code block for implementation for GridSearchCV

ii. Evaluation of Hyperparameter Tuning Impact on Best Model

Figure 19:Confusion metrics of KNN (Pre and Post tuned)

KNN Report	Before Tuning	After Tuning
Recall	0.45	0.48
F1 – Score	0.53	0.57
AUC - ROC	0.78	0.91

Table 5:KNN report of pre and post tuning

e) Critical Evaluation and Ethical Concerns of the Best Mortality Prediction Model

Although the performance of the KNN model improved with hyperparameter tuning, it remains far from perfect. It is very sensitive to scaling and distribution of the data, and its performance decreases in the presence of irrelevant features. Further, KNN may not generalize well to new unseen data, especially with class imbalance, a problem with this dataset considering the fewer "Dead" cases. Ethically, KNN can introduce bias against underrepresented patient groups in the training data. Also, false negatives can be costly in healthcare, potentially overlooking patients at risk.

f) Building a Probability-Based Voting Ensemble Classifier

i. Ensemble Classifier Declaration and Fitting

Figure 20:Code block for ensemble learner implementation

ii. Justification for Base Learner Selection

Logistic Regression and KNN were chosen as base learners since they complement one another. Logistic Regression is good at linear relationships, whereas KNN can model complex patterns. Their differences make their combination a well-balanced ensemble that can take advantage of the strengths of both.

1. Logistic Regression

Figure 21:Classification report, Confusion matrix and ROC-Curve of Logistic Regression

Figure 22:Classification report, Confusion matrix and ROC-Curve of KNN

. Ensemble Learner Classification Model

Figure 23:Classification report, Confusion matrix of Ensemble learner

The Voting Ensemble Learner shows somewhat better overall accuracy and better stability in classifying both classes, particularly enhancing recall and F1-score for the minority "Dead" class. These improvements are essential to accurately identify high-risk cases in mortality prediction. It achieves a balanced and stable classification by reducing KNN's risk of overfitting and Logistic Regression's majority class bias. Therefore, the ensemble learner is a better reliable choice to help healthcare professionals attain accurate mortality estimates.

Case Study (B): Predicting Cancer Patients Survival Months Case Study (B) Analyses Report for Predicting Survival Months Tasks

Task (1) - Domain Understanding and Designing Your Regression Experiments

Figure 24:Column distribution of regression dataset

Task (2) - Modelling: Build Predictive Regression Models

a) Benefits of Using a Decision Tree Regressor for Survival Month Prediction

A Decision Tree Regressor has several benefits for healthcare survival month prediction. It is easy to interpret and visualize, which is beneficial for medical professionals to see the impact of input features (e.g., age, diagnosis, treatment) on survival outcomes. It can handle both numerical and categorical data without requiring normalization or scaling. Decision trees are capable of learning non-linear dependencies and feature interactions, which are common in medical data. They also perform well with missing values and provide feature importance, which can be utilized to identify the most influential factors in survival prediction. These advantages make decision trees an interpretable and valuable tool in healthcare analytics (Loh, 2011).

b) Building and Testing Decision Tree Regression Models (DT-1 and DT-2)

i. Python Code Blocks to Import, Declare, and Fit DT-1 and DT-2

Figure 25:Decision tree regressor declaration of fully grown tree and pruned

ii. Explanation of Pruning Method and Its Impact on Cancer Patient Modelling

In DT-2, less-complex pruning was applied with max_depth = 4, which limits the decision tree's growth before its full expansion. This will avoid overfitting as the model is made simpler and less complicated, especially in healthcare data that is susceptible to noise and anomalies. A more shallow tree is preferable for generalization and interpretation in this scenario of cancer patient survival month prediction, where medical professionals can interpret important decision factors.

The key advantage of this technique is that it focuses the model on the most relevant patterns, leading to more stable predictions on new patient data. Additionally, the reduced model complexity speeds up computation and results interpretation in the clinical setting.

However, it has one major drawback: underfitting can result, where meaningful relationships in the information are missed because of the depth limitation. Therefore, pruning at a suitable level needs to be done to maintain the model accurate and interpretable

c) Visualisation of Regression Decision Trees DT-1 and DT-2

i.Descision Tree-1(Fully Grown DT)

Figure 26:Fully grown decision tree

ii. Decision Tree -2(Pruned DT)

Figure 27:Pruned decision tree

Task (3) - Evaluating your Cancer Survival Months DT Regression Models

a) Regression Evaluation Metrics – Use or Not Use

Metrics	USE or DO NOT USE	Justification in relation to the success criteria	Model Name	Test Score
MSE	Do not use	Squares errors, making it sensitive to outliers, which can distort performance in	DT-1 (Fully Grown DT)	0.1477
		survival predictions with extreme values.	DT-2 (Pruned DT)	0.0766
MAE	MAE Use	Gives average error, is more robust to outliers, and better reflects real-world	DT-1 (Fully Grown DT)	0.1477
		survival month deviations for cancer patients.	DT-2 (Pruned DT)	0.1473
R-Square	Use	Indicates how well the model explains variation in survival months; higher R ²	DT-1 (Fully Grown DT)	-0.0914
		means better prediction power and reliability.	DT-2 (Pruned DT)	0.4341

Table 6:Evaluation metrics of regression tree

b) Suggesting the Best Regression Model Based on Performance Metrics

Based on the performance metrics used-MAE and R²-DT-2 is the better regression model. DT-2 achieves a lower MAE (0.1473), indicating that it makes lower average prediction errors than DT-1. DT-2 also achieves a positive R² value (0.4341), indicating that it explains about 43% of the variability in survival months, while DT-1 results in a negative R², indicating poor model fit. These results show that DT-2 provides more accurate and reliable survival month predictions, which is very important in helping healthcare professionals with patient prognosis. Pruning also avoids overfitting, leading to better generalization for new, unseen patients, fulfilling the success criteria to a larger degree.

c) Concerns About Selected Performance Metrics

MSE is not appropriate for medical forecasting because it's outlier-sensitive, which could make model performance biased. MAE is more reliable because it's outlier-robust and provides a clearer reflection of average errors. DT-2 is lower than DT-1 in MAE, hence it's more accurate. R² describes the effectiveness of a model to account for variance, and DT-2 have a positive R² (0.4341) as opposed to the negative R² of DT-1, showing better performance than DT-1. The better model is DT-2, but replication according to clinical advice is recommended.

Task (4) - Interpreting Cancer Survival Months Decision Tree Outcomes

To estimate the predicted survival months of patient B002565, the DT-2 model (Decision Tree Regressor trimmed down to a maximum depth of 4) was employed. It was employed instead of the fully trained DT-1 because it outperformed the latter, as indicated by its lower Mean Absolute Error (MAE) and Mean Squared Error (MSE), along with a positive R² score that indicates a better generalization.

With the aid of the high-resolution graphical representation of DT-2, the B002565 forecast was executed in a series of decision rules as per her clinical features. Features of the patient are:

- 1. Age coded as 29
- 2. Sex coded as 2 (Female)
- 3. T_Stage coded as 3 (T3)
- 4. N_Stage coded as 1 (N1)
- 5. 6th Stage coded as 3 (IIIC)
- 6. Differentiation coded as 0 (Moderately differentiated)
- 7. Grade coded as 2
- 8. A_Stage coded as 1 (Regional)
- 9. Tumor Size 41
- 10. Estrogen_Status coded as 0 (Negative)
- 11. Progesterone_Status coded as 1 (Positive)
- 12. Regional_Node_Examined as 5
- 13. Regional Node Positive as 1

Decision Path (Rules from the Tree):

- 1. 6th Stage \leq 2.5? \rightarrow No \rightarrow move right
- 2. **T Stage \leq 2.5?** \rightarrow **No** \rightarrow move right
- 3. Tumor Size \leq 43.5? \rightarrow Yes \rightarrow move left
- 4. Estrogen Status ≤ 0.5? → Yes → move left → Predicted survival months: 53.06

Using the **pruned Decision Tree Regressor (DT-2)**, patient **B002565** is predicted to survive approximately **53.06 months**. This estimate is based on a series of decision rules derived from the patient's tumor stage, size, and hormone receptor status.

References

Loh, W.-Y., 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), pp.14–23. https://doi.org/10.1002/widm.8 [Accessed 13 May 2025]

Simplilearn, 2021. Model Evaluation in Machine Learning | Machine Learning Tutorial For Beginners | Simplilearn. [video] YouTube. Available at: https://youtu.be/hDKCxebp88A?si=6XQiYppPK5gpfzYi [Accessed 13 May 2025]

DataHeroes.ai, 2024. Unleashing the Power of ML: The Art of Training Models and Its Vital Significance. [online] Available at: https://dataheroes.ai/blog/unleashing-the-power-of-ml-the-art-of-training-models-and-its-vital-significance/ [Accessed 13 May 2025]

Zhang, K., Ye, B., Wu, L., Ni, S., Li, Y., Wang, Q., Zhang, P. and Wang, D., 2023. *Machine learning-based prediction of survival prognosis in esophageal squamous cell carcinoma*. Scientific Reports, 13, Article number: 13532. Available at: https://www.nature.com/articles/s41598-023-40780-8 [Accessed 14 May 2025].

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Volume 2. Montreal, Canada, 20–25 August 1995. San Francisco: Morgan Kaufmann, pp.1137–1143 [Accessed 13 May 2025].