11.3 Write a C++ program to find Minimum Spanning Tree for a given graph. #include <iostream.h> #include <conio.h> #define ROW 7 #define COL 7 #define infi 9999 //infi for infinity class prims int graph[ROW][COL],nodes; public: prims(); void createGraph(); void primsAlgo(); **}**; prims :: prims() for(int i=0;i<ROW;i++) for(int j=0;j<COL;j++)graph[i][j]=0;} void prims :: createGraph() int i,j; cout < < "Enter Total Nodes: "; cin>>nodes; cout<<"\n\nEnter Adjacency Matrix: \n"; x T LEVEL OF EDUCATION for(i=0;i<nodes;i++)</pre> for(j=0;j<nodes;j++)</pre> cin>>graph[i][j]; //Assigning infinity to all graph[i][j] where weight is 0 for(i=0;i < nodes;i++)for(j=0;j< nodes;j++)if(graph[i][j]==0)graph[i][j]=infi; //Printing graph in matrix form for(i=0;i < nodes;i++)for(j=0;j<nodes;j++)</pre> cout<<" "<<graph[i][j]; if ((j+1)%nodes==0) cout<<endl; } } void prims :: primsAlgo() int selected[ROW],i,j,ne;

```
int false=0,true=1,min,x,y;
for(i=0;i<nodes;i++)</pre>
       selected[i]=false;
selected[0]=true;
ne=0;
while(ne < nodes-1)
       min=infi;
       for(i=0;i<nodes;i++)</pre>
              if(selected[i]==true)
                     for(j=0;j< nodes;j++)
                            if(selected[j]==false)
                                    if(min > graph[i][j])
                                      min=graph[i][j];
                                      x=i;
                                      y=j;
                     }
       selected[y]=true;
       cout<<"\n"<<x+1<<" --> "<<y+1;
       ne=ne+1;
void main(){
  prims MST;
  clrscr();
  cout<<"\nPrims Algorithm to find Minimum Spanning Tree\n";</pre>
  MST.createGraph();
  MST.primsAlgo();
  getch();
}
```

11.5 Explain theoretically, the applications of graphs used in networks.

Ans :- There are mainly 2 applications of graphs are :

- Minimum spanning tree,
- The shortest path through a network

1) Minimum Spanning tree:-

- A minimum spanning tree is a spanning tree in which the total weight of the edges are guaranteed to be minimum of all possible paths in graph.
- A spanning tree is a tree that contains all the vertices in the graph.
- While creating a spanning tree, following properties must be considered:-
 - Every vertex is included.
 - The total edge weight of spanning tree is the minimum possible weight that includes a path between any 2 vertices.
- The overall **cost** of a network is minimized.

2) The Shortest Path through a network :-

- If we are required to find shortest path between two nodes of a network (eq : say between 2 cities in an airline), then we have to use the "shortest path algorithm".
- The shortest path algorithm was first proposed by Dijkstra.
- Dijkstra's algorithm gives the shortest path between any two nodes in a network.
- It can be used for finding costs of the shortest paths between 2 adjacent vertices.
- This algorithm is often used in routing as a subroutine in other graph algorithms, or in GPS Technology. Also it is widely used in network routing protocols (mostly in OSPF) to find shortest route between two places.

11.6 Write algorithms to (university):

```
d) insertArc
```

```
(val
algorithm insertArc
                                graph
                                              <graphHead pointer>.
                                fromKey
                          val
                                                     <keyType>,
                          val
                                toKey
                                              <keyType>)
Adds an arc between two vertices.
```

Pre graph is a pointer to a graph head structure fromKey is the key of the originating vertex

Post Arc added to adjacency list

Return +1 if successful

> -1 is memory overflow -2 if fromKey not found -3 if toKey not found

1 if (memory full) return -1

Locate source vertex

2 fromPtr = graph->first

3 loop (fromPtr not null AND fromKey > fromPtr->data.key) 1 fromPtr =fromPtr->nextVertex

4 if (fromPtr null OR fromKey not equal fromPtr->data.key) 1 return -2

Now locate to vertex

5 toPtr = graph->first 6 loop (toPtr not null AND toKey > toPtr->data.key) 1 toPtr = toPtr->nextVertex 7 if (toPtr null OR toKey not equal toPtr ->data.key) 1 return -3

From and to vertices located. Insert new arc

8 fromPtr->outDegree = fromPtr->outDegree + 1 9 toPtr->inDegree = toPtr->inDearee + 1 10 allocate (newPtr)

First find source and destination vertex Change indegree and outdegree Allocate new and assign its destⁿ to destⁿPTR If sorce arc null insert first Find location

PRE and LOCN If pre null insert before first arc

Else assign it after PRE NEW->NEXT = LOCN

Khan S. Alam 3 https://E-next.in

```
11 newPtr->destination = toPtr
12 if (fromPtr->arc null)
    Inserting first arc
       1 fromPtr->arc
                            = newptr
       2 newPtr->nextarc = null
       3 return 1
Find insertion point in adjacency (arc) list
13 \text{ predptr} = \text{null}
14 locnPtr = fromPtr->arc
15 loop (locnPtr not null AND toKey >= locnPtr->destination->data.key)
       1 predPtr
                           = locnPtr
       2 locnPtr
                           = locnPtr->nextArc
16 if (predPtr null)
    Insertion before first arc
          fromPtr->arc
                         = newPtr
17 else
          predPtr->nextArc = newPtr
18 newPtr->nextArc =locnPtr
19 return 1
end insertArc
e) deleteArc
                                  <graphHead pointer>.
algorithm deleteArc (val graph
                     Val fromKey <keyType>.
                     Val toKev
                                   <keyType>)
Deletes an arc between two vertices.
       Pre
                    graph is a pointer to a head structure VEL OF EDUCATION
                    fromKey is the key of the originating vertex
                    toKey is the key of the destination vertex
       Post
                    Vertex deleted
       Return
                    +1 if successful
                    -2 if fromKey not found
                    -3 if toKey not found
1 if (graph->first null)
      return -2
Locate source vertex
2 fromVertex = graph->first
3 loop (fromVertex not null AND fromKey > fromVertex->data.key)
       1 fromVertex = fromVertex->nextVertex
4 if (fromVertex null or fromKey < fromvertex-data.key)
       1 return -2
Locate destination vertex in adjacency list
5 if (fromVertex->arc null)
       1 return -3
6 \text{ prePtr} = \text{null}
7 arcPtr = fromVertex->arc
8 loop (arcPtr not null AND toKey > arcPtr->destination->data.key)
       1 prePtr = arcPtr
       2 arcPtr = arcPtr->nextArc
9 if (arcPtr null or toKey < arcPtr->destination->data.key)
```

4

https://E-next.in

Khan S. Alam

```
1 return - 3
10 toVertex = arcPtr->destination
fromVertex, toVertex, and arcPtr all located. Delete arc
11 fromVertex->outDegree = fromVertex->outDegree - 1
12 toVertex->inDegree
                           = toVertex->inDegree - 1
13 if (prePtr null)
      Deleting first arc
       1 fromVertex->arc = arcPtr->nextArc
14 else
      1 prePtr->nextArc =arcPtr->nextArc
15 recycle (arcPtr)
16 return 1
end deleteArc
g) shortestPath (Dijkstra)
algorithm shortestPath(graph < pointer to graphHead>)
Determines shortest path from a network vertex to other vertices.
      Pre
             graph is pointer to network
```

2 vertexPtr=graph->first

1 if (graph->first null)

1 return

3 loop (vertexPtr not null)

Initialize inTree flags & path length.

Post Minimum path tree determined

1 vertexPtr->inTree=false

2 vertexPtr->pathLength=+8

3 edgePtr=vertexPtr->edge

4 loop(edgePtr not null)

1 edgePtr->inTree=false

2 edgePtr=edgePtr->nextEdge

5 vertexPtr=vertexPtr->nextVertex

Now derive minimum path tree

4 vertexPtr=graph->first

5 vertexPtr->inTree=true

- 6 vertexPtr->pathLength=0
- 7 treeComplete=false
- 8 loop(not treeComplete)
 - 1 treeComplete=true
 - 2 chkVertexPtr=vertexPtr->edge
 - 3 minEdgePtr=null
 - 4 pathPtr=null
 - 5 newPathLen=+8
 - 6 loop(chkVertexPtr not null)

Walk through graph checking vertices in tree.

- 1 if(chkVertexPtr->inTree true AND chkVertexPtr->outDegree > 0)
 - 1 edgePtr=chkVertexPtr->edge
 - 2 minPath=chkVertexPtr->pathLength
 - 3 minEdge=+8
 - 4 loop(edgePtr not null)

Locate smallest path from this vertex

1 if(edgePtr->destination->inTree false) O F E D U C A T I O N

1treeComplete=false

2 if(edge->weight < minEdge)

1 minEdge = edgePtr->weight

2 minEdgePtr = edgePtr

2 edgePtr = edge->nextEdge

Test for shortest path

5 if(minPath + minEdge < newPathLen)

1 newPathLen = minPath + minEdge

2 pathPtr = minEdgePtr

2 chkVertexPtr = chkVertexPtr->nextVertex

7 if(pathPtr not null)

Found edge to insert into tree.

```
1 pathPtr->inTree=true
```

- 2 pathPtr->destination->inTree=true
- 3 pathPtr->destination->pathLength=newPathLen

9 return

end shortestPath

h) BreadthFirstTraversal

algorithm breadthfirst (val graph < graphHead pointer>)

Process the keys of the graph in breadth-first order.

Pre graph is a pointer to a graph head structure

Post vertices processed

- 1.if(graph->first null)
 - 1.return

First set all processed flags to not processed

Flag: 0---not processed, 1---enqueued, 2---processed

- 2.queue=createQueue
- 3.walkPtr=graph->first
- 4.loop (walkPtr not null)
 - 1.walkPtr->processed=0
 - 2.walkPtr=walkPtr->nextVertex

Process each vertex in vertex List

- 5.walkPtr=graph->first
- 6.loop(walkPtr not null)
 - 1.If(walkPtr->processed <2)
 - 1.If(walkPtr->processed <1)

Enqueue and set processed flag to queued(1)

- 1.enqueue(queue,walkPtr)
- 2.walkPtr->processed=1

Now Process descendents of vertex at queue front

Khan S. Alam 7 https://E-next.in

- 2. loop(not emptyQueue(queue))
 - 1.dequeue(queue,vertexPtr)

Process vertex and flag as processed

- 2.process(vertexPtr)
- 3.vertexPtr->processed=2

Enqueue all vertices from adjacency list

- 4.arcPtr=vertexPtr->arc
- 5.loop(arcPtr not null)
 - 1.toPtr=arcPtr->destination
 - 2.if(toPtr->processed is 0)
 - 1.enqueue(queue,toPtr)
 - 2.toPtr->processed=1
 - 4.arcPtr=arcPtr->nextArc
- 2. walkPtr=walkPtr->nextVertex
- 7. destroyQueue(queue)
- 8. return

end breadthFirst

THE NEXT LEVEL OF EDUCATION

i) DepthFirstTraversal

algorithm depth-first (val grah<metadata>)

Process the keys of the graph in depth-first order.

Pre: grah os a pointer to a graph head structure.

Post: vertices "processed"

- 1. If (empty graph)
 - 1. Return

Set processedflag to not processed

- 2. Walker = graph-first
- 3. Loop (walker)
 - Walker ->processed =0
 - 2. walker = walker ->nextvertvertex
- 4. End loop

Process each each vertex in list

- Create stack(stack)
- 6. Walkptr = graph-first
- 7. Loop (walker not NULL)
 - If (walkptr -> processed <2)

Push and set flag to stack

- pushstack(stack, walkptr)
- 2. walkptr ->processed = 1
- 2. End if

Process vertex at stack top

- 7.1. 3 loop (not empty(stack))
 - 1. popstack (stack, vertexptr)
 - 2. process(vertexptr -> dataptr)
 - 3. vertexptr -> processed =2

Push all vertices from adjacency list

- 4. arcwalker = vertex -> arc
- loop(arcwalkptr not NULL)
 - 1. vertToptr = arcwalkptr -> destination
 - 2. if (vertTo ptr -> processed is 0)
 - 1. pushstack(stack, vertexToptr)
 - 2. vertToptr -> processed =1
 - 3 Fnd if
 - 4. arcwalker = arcwalkptr -> nextarc
- 6. End loop
- 7.1.4. End loop
- 7.2 End if
- 7.3. walkptr = walkptr ->nextvertex
- 8. End loop
- 9. destroyStack(stack)
- 10. return

end depth-first

-next

11.vii. Solve the following university questions:

h) D2009-Q6 b)

Give DFS and BFS traversal of the graph shown below.

Dec. 2009

Solution:

Depth-first Traversal. A C G H D E F B

Breadth-first trversal: A B C D E F G H

i) M2009-Q6 b) ii) and j) D2008-Q6 b) ii)

Determine the minimum spanning tree of the following graph using Kruskal's algorithm.

THE NEXT LEVEL OF EDUCATION

List of Edges in Ascending of Their Weights				
EDGE	WEIGHT	Allowed / Disallowed		
E-G	1	Yes		
H-I	1	Yes		
В-С	2	Yes		
C-H	2	Yes		
F-H	2	Yes		
B-E	3	Yes		

C-E	3	No
A-B	4	Yes
C-F	4	No
E-H	4	No
G-H	5	No
D-G	5	Yes
G-I	6	No
A-C	7	No
B-G	7	No
B-D	10	No

THE NEXT LEVEL OF EDUCATION

Step-5 : Adding Edge C-H 2 2 XT LEVEL OF EDUCATION

Step-7: Adding Edge B-E

B

2

C

B

1

THE ONT LEVEL OF EDUCATION

Step-9: Adding Edge D-G

k) Year-2008 (May) Q1 (B) 5 Marks (i) Directed and Undirected graph

Ans:-

Directed graph

A directed graph is graph, i.e., a set of objects (called vertices or nodes) that are connected together, where all the edges are directed from one vertex to another. A directed graph is sometimes called a digraph or a directed network. In contrast, a graph where the edges are bidirectional is called an undirected graph.

A directed graph with 6 vertices (or nodes) and 7 edges.

Undirected graph

An undirected graph is graph, i.e., a set of objects (called vertices or nodes) that are connected together, where all the edges are bidirectional. An undirected graph is sometimes called an undirected network. In contrast, a graph where the edges point in a direction is called a directed graph.

An undirected graph with 6 vertices (or nodes) and 7 edges.

I) Year-2008 (May) Q7 (A) 10 Marks Explain Warshall's algoritham with a suitable example.

Warshall's Algorithm :-

Warshall's algorithm is an efficient method for computing the transitive closure of a relation. Warshall's algorithm takes as input the matrix M_R . representing the relation R.; and outputs the matrix M_R .* of the relation R.*; the transitive closure of R.

Khan S. Alam 22 https://E-next.in

Let's examine the **algorithm** closely. When the inner *for* loop is being executed, the only value which is changing is j . Notice that the value of w_{kj} does not depend on j. Thus, during each iteration of the inner loop, w_{kj} is constant. If $w_{kj}=0$, then

$$w_{ij} = w_{ij} \vee (w_{ik} \wedge w_{kj}) = w_{ij} \vee (0 \wedge w_{kj}) w_{ij} \vee (0) = w_{ij}$$

and if $w_{ik} = 1$, then

$$W_{ij} = W_{ij} \vee (W_{ik} \wedge W_{kj}) = W_{ij} \vee (1 \wedge W_{kj}) = W_{ij} \vee W_{kj}$$

for each value of J.Thus, the values of w_{ij} remain unchanged if $w_{ik} = 0$, and become $w_{ij} \vee w_{ik}$ if $w_{ik} = 1$. It is this observation which leads to the second algorithm. Notice that when $w_{ik} = 1$, we are simply replacing the i th row of the matrix with OR of the i th and k th rows of the matrix.

Example: The matrix $W_0 = M_R$ below is the matrix representation for a relation R. Find the matrix representation M_R^* of R^* , the transitive closure of R.

$$MR = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Solution: We know that $W_0 = MR$. To compute W_0 , we notice that in the first column of W_0 , there are "1" s in rows 1 and 4. Thus, we replace rows 1 and 4 with the OR of themselves and row 1.

We obtain

$$W_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

To compute W_2 , we notice that in the second column of W_1 , there is a "1" in row 3. Thus, we replace row 3 with the OR of rows 3 and 2, obtaining.

$$W_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

To compute W_3 , we notice that in the third column of W_2 , there is a "1" in every row. Thus, we replace each row with the OR of itself and row 3, obtaining.

W₃ =

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0_{1} & 1_{1} & 1_{1} \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}$$
EVEL OF EDUCATION

To compute W_4 , we notice that in the fourth column of W_3 , there is a "1" in every row. Thus, we replace each row with the OR of itself and row 4, obtaining.

m) M2007.Q6.a.)

Write the algorithm for breadth first traversal of graph & give the Breadth First traversal of graph in figure given below: (10 marks)

Ans: BREADTH-FIRST TRAVARSAL

In the breadth-first traversal of a graph, all adjacent vertices of a vertex before going to next level.

Algorithm:

algorithm breadthfirst (val graph < graphHead pointer>)

Process the keys of the graph in breadth-first order.

Pre graph is a pointer to a graph head structure

Post vertices processed

1.if(graph->first null)

1.return

First set all processed flags to not processed

Flag: 0---not processed, 1---enqueued, 2---processed

- 2.queue=createQueue
- 3.walkPtr=graph->first
- 4.loop (walkPtr not null)
 - 1.walkPtr->processed=0
 - 2.walkPtr=walkPtr->nextVertex

Process each vertex in vertex List

5.walkPtr=graph->first

6.loop(walkPtr not null)

- 1.If(walkPtr->processed <2)
 - 1.If(walkPtr->processed <1)

Enqueue and set processed flag to queued(1)

- 1.enqueue(queue,walkPtr)
- 2.walkPtr->processed=1

Now Process descendents of vertex at queue front

- 2. loop(not emptyQueue(queue))
 - 1.dequeue(queue,vertexPtr)

Process vertex and flag as processed

- 2.process(vertexPtr)
- 3.vertexPtr->processed=2

Enqueue all vertices from adjacency list

- 4.arcPtr=vertexPtr->arc
- 5.loop(arcPtr not null)
 - 1.toPtr=arcPtr->destination
 - 2.if(toPtr->processed is 0) LEVEL OF EDUCATION
 - 1.enqueue(queue,toPtr)
 - 2.toPtr->processed=1
 - 4.arcPtr=arcPtr->nextArc
- 2. walkPtr=walkPtr->nextVertex
- 7. destroyQueue(queue)
- 8. return

end breadthFirst

Now, in the example,

The breadth first traversal for above graph is **ABCEDFGHI**.

n) Year-2006 (Nov) Q4 (B) 8 Marks Find the Minimum Spanning Tree of the graph given below.

Ans:

Minimum Spanning Tree :- Definitions:-

- > A tree is a connected graph without cycles.
- > A subgraph that spans (reaches out to) all vertices of a graph is called a spanning subgraph.

- > A subgraph that is a tree and that spans (reaches out to) all vertices of the original graph is called a spanning tree.
- > Among all the spanning trees of a weighted and connected graph, the one (possibly more) with the least total weight is called a minimum spanning tree (MST).

Properties of Trees:-

- > A graph is a tree if and only if there is one and only one path joining any two of its vertices.
- ➤ A connected graph is a tree if and only if every one of its edges is a bridge.
- > A connected graph is a tree if and only if it has N vertices and N; 1 edges.

Set Of Vertices in the Minimal Spanning Tree Edges which have exactly one end belonging to the partial Minimal The Edge Chosen	The new partial Minimal Spanning Tree
--	---------------------------------------

Khan S. Alam 28 https://E-next.in

	Spanning Tree		
А	(A,B) (A,C) (A,G)	(A,G)	A 1 G
(A,G)	(A,B) (A,C) (G,F) (G,E)	(G,F)	A F G
(A,G,F)	(A,B) (A,C) (G,E) (F,C) (F,H)	(A,C)	A 3 C 1 C F C G F C ATION
(A,G,F,C)	(A,B) (G,E) (F,H) (C,D)	(A,B)	A 3 C 1 F G

(A,G,F,C,B)	(G,E) (F,H) (C,D) (B,E)	(B,E)	B C 1 F
(A,G,F,C,B,E)	(F,H) (C,D)	(F,H)	B C 1 F 7 H
(A,G,F,C,B,E,H)	(C,D)(D,H)	(D,H)	$ \begin{array}{c cccc} B & C & D \\ 3I & I5 \\ \hline E & F & H \\ \hline G & G \end{array} $
	тот	AL MININ	