What is claimed is:

1. A compound of Formula (WHH)

$$O = \begin{pmatrix} R^8 & Y^2 - J \\ Y^1 & Z^1 \\ X & X^1 \end{pmatrix}$$
 (WHH)

5

wherein

 R^1 is H, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ haloalkyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ thioalkyl, cyano, halo, $C_{3\text{-}7}$ cycloalkyl, $-C_{1\text{-}6}$ alkylene- $C_{3\text{-}7}$ cycloalkyl, $C_{2\text{-}6}$ alkenyl or $C_{3\text{-}6}$ alkynyl;

10 R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

 X^1 is N;

 Y^1 is N;

15 Y^2 is CH_2 ;

J is CH2 or a bond;

 Z^1 is CH_2 or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_1-C_4$ alkyl)₂ and CN.

20

2. A process for preparing a compound of Formula (WHH)

$$0 = \begin{bmatrix} R^8 & Y^2 - J \\ Y^1 & Z^1 \\ X & X^1 \end{bmatrix}$$
 (WHH)

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

10 X^1 is N;

5

20

 Y^1 is N;

Y² is CH₂;

J is CH₂ or a bond;

Z¹ is CH₂ or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (UFF)

$$HZ$$
 Z^1 Y^2 Br (UFF)

wherein

Z, Z^1, J and Y^2 are defined as for Formula (WHH);

with a compound of Formula (UFF')

$$O \xrightarrow{\mathbb{R}^8} Y^1 \longrightarrow Br \qquad (UFF')$$

5 wherein

R¹, R⁸, X, Y, X¹ and Y¹ are defined as for Formula (WHH);

in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula (VGG)

10

wherein

$$R^1$$
, R^8 , X , Y , X^1 , Y^1 , Y^2 , J , Z^1 and Z are defined as for Formula (WHH);

- and reacting said compound of Formula (VGG) with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.
 - 3. A compound of Formula (Z')

$$O = \begin{pmatrix} R^8 & Y^2 \\ Y & Z^1 \\ X & X^1 \end{pmatrix}$$
 (Z')

wherein

5

15

20

25

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

10 X^1 is N;

 Y^1 is N;

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄.

alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl,
-C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

Z¹ is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

4. A process for preparing a compound of Formula (Z')

$$O = \begin{pmatrix} R^8 & Y^2 & Z^1 \\ Y & Z & Z \\ X & X^1 & Z \end{pmatrix}$$
 (Z')

5

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

10

 R^8 is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

 X^1 is N;

15

 Y^1 is N;

Y² is CH or CR⁵;

20

 R^5 is selected from the group consisting of -CN, -C₁₋₄. alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

25

 Z^1 is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (X')

$$HZ$$
 Z^1
 Y^2
 Br
 (X')

wherein

 Z, Z^1 and Y^2 are defined as for Formula (Z');

with a compound of Formula (UFF')

$$O \xrightarrow{\mathbb{R}^8} Y^1 \longrightarrow \mathbb{B}r \qquad (X ")$$

15

5

wherein

 R^1 , R^8 , X, Y, X^1 and Y^1 are defined as for Formula (Z');

in the presence of a suitable base and polar aprotic solvent to yield a compound of

$$R^8$$
 Y^2
 Br
 Y'
Formula Y')

20

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , Z^1 and Z are defined as for Formula (Z');

and reacting said compound of Formula (Y') with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

5. A compound of Formula (AA')

5

10

20

25

$$O = \begin{pmatrix} R^8 & Y^2 & Z^1 \\ Y^1 & Z & Z^1 \\ X & X^1 & Z \end{pmatrix}$$
 (AA')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

15 X^1 is N;

 Y^1 is N;

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄.

alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃.

6alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl,

-C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁.

4alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁.

4alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂,
amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O
aryl and -O-heterocyclo;

 Z^1 is CR^7 ;

wherein R⁷ is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

6. A process for preparing a compound of Formula (AA')

$$O = \begin{pmatrix} R^8 & Y^2 & Z^1 \\ Y^1 & Z & Z^1 \\ X & X^1 & Z \end{pmatrix}$$
 (AA')

10

5

wherein

 R^1 is H, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ haloalkyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ thioalkyl, cyano, halo, $C_{3\text{-}7}$ cycloalkyl, $-C_{1\text{-}6}$ alkylene- $C_{3\text{-}7}$ cycloalkyl, $C_{2\text{-}6}$ alkenyl or $C_{3\text{-}6}$ alkynyl;

15

 R^8 is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

 X^1 is N:

 Y^1 is N;

20

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄₋ alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -

25

amino-aryl, -amino-heterocyclo, C_{1-6} alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 ;

wherein R⁷ is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (Z')

$$0 \xrightarrow{\mathbb{R}^{8}} Y^{2} \xrightarrow{\mathbb{Z}^{1}} \mathbb{Z}^{1}$$

$$X \xrightarrow{\mathbb{Z}^{1}} \mathbb{Z}^{1} \mathbb{Z}^{1}$$

$$\mathbb{Z}^{1} \mathbb{Z}^{1}$$

$$\mathbb{Z}^{1} \mathbb{Z}^{1}$$

$$\mathbb{Z}^{1} \mathbb{Z}^{1}$$

wherein

10

15
$$R^1, R^8, X, Y, X^1, Y^1, Y^2$$
, and Z are defined as for Formula (AA'); and

 Z^1 is C(O);

with phosphoryl trichloride or phosphoryl tribromide, neat or with a suitable solvent and without a base or with a suitable base.