federico ardila

homework one . due thursday feb 4

Note. You are encouraged to work together on the homework, but please state who you worked with **in each problem**. Write your solutions independently and in your own words. (I recommend putting away the notes from your discussions with others, and reproducing the solutions by yourself.)

- 1. (Group actions as homomorphisms.) Write precise statements and detailed proofs of the following two facts:
 - (a) A group action of a group G on a set A is the same thing as a homomorphism from G to the symmetric group S_A .
 - (b) A (linear) group action of a group G on a vector space V is the same thing as a homomorphism from G to the general linear group GL(V).
- 2. (An action of the symmetric group S_3 on \mathbb{R}^2 .) Consider an equilateral triangle $V_1V_2V_3$ with center at (0,0), vertex $V_1=(1,0)$, and vertices labeled V_1,V_2,V_3 in countersclockwise order. Consider the action of the symmetric group S_3 on $\{V_1,V_2,V_3\}$ where $\pi \in S_3$ takes each vertex V_i to $V_{\pi(i)}$. This extends to a unique (linear) action of S_3 on \mathbb{R}^2 , say $X:S_3\to GL_2(\mathbb{R})$. Compute the six matrices $\{X(\pi):\pi\in S_3\}$ and show they faithfully represent S_3 .
- 3. (A representation of an infinite group.) Let $SO_2(\mathbb{R})$ be the group of rotations of the circle under the operation of composition.
 - (a) Prove that, considering \mathbb{R} as an additive group, we have

$$SO_2(\mathbb{R}) \cong \mathbb{R}/2\pi\mathbb{R}$$
.

(b) Prove that

$$SO_2(\mathbb{R}) \cong \{ A \in GL_2(\mathbb{R}) : A^t A = I, \det A = 1 \}.$$

(c) Consider the map $\varphi: SO_2(\mathbb{R}) \to GL_2(\mathbb{C})$ which sends $\theta \in \mathbb{R}/2\pi\mathbb{R}$ to

$$\varphi(\theta) = \begin{bmatrix} \alpha & \alpha^2 - \alpha \\ 0 & \alpha^2 \end{bmatrix}$$

where $\alpha = e^{i\theta}$. Prove that φ is a group representation of $SO_2(\mathbb{R})$.

- 4. (The sign of a permutation.) An inversion in a permutation $\pi = \pi_1 \dots \pi_n$ is a pair of indices i < j such that $\pi_i > \pi_j$. Let inv (π) be the number of inversions of π .
 - (a) If π is a product of k transpositions, prove that $k \equiv \text{inv}(\pi) \pmod{2}$.
 - (b) Conclude that the sign of a permutation is well defined.
 - (c) Conclude that the sign representation of S_n is indeed a representation.
- 5. (Representations of p-groups in characteristic p.) Let G be a group with $|G| = p^n$ for a prime number p and a positive integer n, and let \mathbb{K} be a field of characteristic p. Prove that the every representation of G over \mathbb{K} is trivial.