第四次习题课参考解答

习题 1. $A \in 3 \times 4$ 矩阵, $s = (2,3,1,0)^T$ 是 Ax = 0 的唯一特殊解 (special solution).

- 1. 求 rank(A) 并找出 Ax = 0 的全部解.
- 2. 求 rref(A).
- 3. Ax = b 对任意 b 都有解吗?

参考解答

1. $\operatorname{rank}(A) = 3$,全部解为 $k(2,3,1,0)^T$.

2.
$$rref(A) = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ & & 1 \end{bmatrix}$$
.

3. 都有解. 因为 $rank(A) = \overline{rank}(A \ b) = 3$.

习题 2. Ax = b 和 Cx = b, 对任意 b 都有相同的解集. A = C 成立吗?

参考解答

对任意 x_0 , 取 $b = Ax_0$, 则 x_0 也是 Cx = b 的解. 则 $Cx_0 = b = Ax_0$, $(C - A)x_0 = 0$ 对任意 x_0 都成立. 所以 A = C.

习题 3. 假设 $x_1, ..., x_p$ 是 Ax = b 的解,且 b 非零。证明: $k_1x_1 + ... + k_px_p$ 也是解当且仅当 $k_1 + ... + k_p = 1$ 。

参考解答

直接代入计算即得.

习题 4. A 是 10 阶方阵, $A^2 = 0$ 。则 $rank(A) \le 5$ 。

参考解答

法 1:

证明. 即证 $\dim N(A) \ge 5$. 用反证法. 设 $\dim N(A) \le 5$.

则不妨设 x_1,x_2,x_3,x_4 是 N(A) 的一组基, 将其扩充为 \mathbb{R}^{10} 的一组基 $x_1,\cdots,x_4,x_5,\cdots,x_{10}.$

曲 $A(Ax_i) = A^2x_i = 0$, 则 $Ax_i \in N(A), i = 5, \dots, 10$.

为证 Ax_i 线性无关,令 $\sum_{i=5}^{10} k_i Ax_i = 0$.

则 $A\left(\sum_{i=5}^{10}k_{i}x_{i}\right)=0$,则 $\sum_{i=5}^{10}k_{i}x_{i}\in N(A)$,可以被 N(A) 的基线性表示,有 $\sum_{i=5}^{10}k_{i}x_{i}=\sum_{i=1}^{4}l_{i}x_{i}$.

由 x_1, \dots, x_{10} 线性无关, 可知 k_i, l_i 均等于 0. 从而 $Ax_i, i = 5, \dots, 10$ 线性无关, 与 $\dim N(A) \le 5$ 矛盾! 从而 $\dim N(A) \ge 5$,即 $\operatorname{rank}(A) \le 5$.

法 2:

陈俊杰同学提供了一种巧妙的解答(上图),欢迎同学们在习题课上提出自己的解答。

习题 5. 设 V 为向量空间, $a_1,...,a_n$ 为 V 中线性无关的向量,证明当且仅当 n 为奇数时, $a_1+a_2,a_2+a_3,...,a_{n-1}+a_n,a_n+a_1$ 时线性无关。

参考解答

证明. n=1,2 时显然成立. 下设 $n \ge 3$.

$$\Leftrightarrow k_1(a_1+a_2)+k_2(a_2+a_3)+\cdots+k_n(a_n+a_1)=0.$$
 即 $(k_1+k_n)a_1+(k_1+k_2)a_2+\cdots+(k_{n-1}+k_n)a_n=0.$ 由 a_1,\ldots,a_n 线性无关,可得 $k_1+k_n=0,k_1+k_2=0,\cdots,k_{n-1}+k_n=0.$ 即 $\begin{bmatrix} 1 & & 1 \\ 1 & 1 & \\ & \ddots & \ddots \\ & & 1 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k \end{bmatrix} = 0.$

初等行变换可化为
$$\begin{bmatrix} 1 & & & 1 \\ & 1 & & & -1 \\ & & \ddots & & \vdots \\ & & 1 & (-1)^{n-2} \\ & & & 1-(-1)^{n-2} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = 0$$

n 为奇数时, 矩阵满秩, 方程组只有零解, k_1, \dots, k_n 全为零, $a_1 + a_2, a_2 + a_3, \dots, a_n + a_1$ 线性无关.

n 为偶数时, 矩阵不满秩, 方程组有非零解, k_1, \dots, k_n 不全为零, $a_1 + a_2, a_2 + a_3, \dots, a_n + a_1$ 线性相关.

习题 6 (较难). 设 A 是可逆实反对称矩阵, $b \in \mathbb{R}^n$ 。证明下列等式成立。

1.
$$\operatorname{rank}(A + bb^T) = n_{\circ}$$

2. rank
$$\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = n_{\circ}$$

参考解答

引理. A 为反对称矩阵, 即 $A^T = -A \iff$ 对任意 x, 有 $x^TAx = 0$.

充分性. 注意到 x^TAx 是一个数, 有 $x^TAx = (x^TAx)^T = x^TA^Tx = -x^TAx$. 所以 $x^TAx = 0$.

必要性. 取 $x = e_i$, 可得 $e_i^T A e_i = a_{ii} = 0$. 取 $x = e_i$, 可得 $(e_i + e_j)^T A (e_i + e_j) = a_{ii} + a_{jj} + a_{ij} + a_{ji} = a_{ij} + a_{ji} = 0$. 即 $A^T = -A$.

证明.

- 1. 考虑方程 $(A+bb^T)x=0$ 。则 $x^T(A+bb^T)x=0$ 。但 $x^TAx=0$,因此 $(b^Tx)^2=0$,即 $b^Tx=0$,于是 Ax=0。而 A 可逆,故 x=0,因此 $A+bb^T$ 可逆。
- 2. 利用初等行列变换, $\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix}$ 可以化成 $\begin{bmatrix} A & 0 \\ 0 & -b^TA^{-1}b \end{bmatrix}$ 。A 反对称,则 A^{-1} 反对称,得 $b^TA^{-1}b = 0$ 。因此原矩阵的秩和 A 相同。

习题 7 (练习 2.3.11). 设 A,B,C 分别为 m×n,n×k,k×s 矩阵, 证明:

$$rank(AB) + rank(BC) \le rank(ABC) + rank(B)$$

提示: 构造合适的分块上三角矩阵.

参考解答

$$\begin{bmatrix} B \\ ABC \end{bmatrix} \longrightarrow \begin{bmatrix} BC & B \\ ABC \end{bmatrix} \longrightarrow \begin{bmatrix} BC & B \\ -AB \end{bmatrix}. \text{ id } \operatorname{rank}(ABC) + \operatorname{rank}(B) = \operatorname{rank}(\begin{bmatrix} BC & B \\ ABC \end{bmatrix}) = \operatorname{rank}(\begin{bmatrix} BC & B \\ -AB \end{bmatrix}) \geqslant \operatorname{rank}(-AB) + \operatorname{rank}(BC) = \operatorname{rank}(AB) + \operatorname{rank}(BC).$$

习题 8 (练习 2.3.19). 对二阶方阵 A, 如果存在 n > 2, 使得 $A^n = O$, 求证: $A^2 = O$.

参考解答

参考习题 11 解答.

习题 9 (练习 2.4.16). (Fredholm 二择一定理) 线性方程组 Ax = b 有解当且仅当 $\begin{bmatrix} A^T \\ b^T \end{bmatrix} y = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$ 无解. 注意: 前一个方程组中 x 为未知向量,后一个方程组中 y 为未知向量.

参考解答

习题 10 (练习 2.4.18). 设 A,B 分别为 $m \times n, n \times k$ 矩阵, 证明, $rank(AB) \geqslant rank(A) + rank(B) - n$.

参考解答

在秩不等式 $rank(AB) + rank(BC) \le rank(ABC) + rank(B)$ 中取三个变量分别为 A, I_n, B 即得.

习题 11 (练习 2.4.24). 给定 n 阶方阵 A.

- 1. 对任意 k, 证明 $\mathcal{R}(A^k) \supset \mathcal{R}(A^{k+1})$;
- 2. 假设 $\mathcal{R}(A^k) = \mathcal{R}(A^{k+1})$, 求证 $\mathcal{R}(A^{k+1}) = \mathcal{R}(A^{k+2})$;
- 3. 求证: 存在 $k \leq n$, 满足 $\operatorname{rank}(A^k) = \operatorname{rank}(A^{k+1}) = \cdots$. 由此证明, 如果存在 p 使得 $A^p = O$, 则 $A^n = O$.

参考解答

证明.

- 1. 对任意 $y \in \mathcal{R}(A^{k+1})$, 能找到 x, 使得 $y = A^{k+1}x = A^k(Ax)$, 从而 $y \in \mathcal{R}(A^k)$, 即 $\mathcal{R}(A^k) \supseteq \mathcal{R}(A^{k+1})$.
- 2. 对任意 $y \in \mathcal{R}(A^{k+1})$,能找到 x,使得 $y = A^{k+1}x = A(A^kx)$. 由 $\mathcal{R}(A^k) = \mathcal{R}(A^{k+1})$,则可以找到 z,满足 $A^kx = A^{k+1}z$. 则 $y = A(A^{k+1}z) = A^{k+2}z \in \mathcal{R}(A^{k+2})$,即 $\mathcal{R}(A^{k+1}) \subseteq \mathcal{R}(A^{k+2})$. 由 1 知 $\mathcal{R}(A^{k+1}) \supseteq \mathcal{R}(A^{k+2})$,从而 $\mathcal{R}(A^{k+1}) = \mathcal{R}(A^{k+2})$.
 - 3. 若 A 可逆, 则有 $n = \text{rank}(A) = \text{rank}(A^2) = \cdots$. 此时 k = 1.

若 A 不可逆. 由 1 知 $\mathrm{rank}(A^k) \geqslant \mathrm{rank}(A^{k+1})$. 若对某个 k 有 $\mathrm{rank}(A^k) = \mathrm{rank}(A^{k+1})$,由 2 可知 $\mathrm{rank}(A^k) = \mathrm{rank}(A^{k+1}) = \mathrm{rank}(A^{k+2}) = \cdots$. 否则,设对所有 k 都有 $\mathrm{rank}(A^k) > \mathrm{rank}(A^{k+1})$,必存在一个最小正整数 p,使得 $\mathrm{rank}(A^p) = \mathrm{rank}(A^{p+1}) = \cdots = 0$. 由 $n > \mathrm{rank}(A) > \cdots > \mathrm{rank}(A^p) = 0$ 知 $p \leqslant n$.