Corrigé partiel de l'interro 1

Exercice 1. Soit f une fonction holomorphe vérifiant Re(f) = P et f(0) = 0. Il existe $Q: \mathbb{R}^2 \to \mathbb{R}$ telle que f se mette sous la forme f = P + iQ. f étant holomorphe, on a alors d'après les conditions de Cauchy-Riemann

$$\begin{cases} \frac{\partial P}{\partial x} &= \frac{\partial Q}{\partial y} \\ \frac{\partial P}{\partial y} &= -\frac{\partial Q}{\partial x} \end{cases}$$

On a donc, en dérivant partiellement P:

$$\begin{cases}
\frac{\partial Q}{\partial y} = e^{-x}(-x\sin(y) + \sin(y) + y\cos(y)) & (1) \\
\frac{\partial Q}{\partial x} = e^{-x}(-x\cos(y) + \cos(y) - y\sin(y)) & (2)
\end{cases}$$

En intégrant (1) par rapport à y il existe une fonction réelle c telle que

$$Q(x,y) = e^{-x}(x\cos(y) + y\sin(y)) + c(x)$$

Et en dérivant cette dernière relation par rapport à x on obtient d'après (2):

$$-e^{-x}(x\cos(y) + y\sin(y)) + e^{-x}\cos(y) + c'(x) = e^{-x}(-x\cos(y) + \cos(y) - y\sin(y))$$

d'où c'(x) = 0 et c(x) = c, une constante. La condition f(0) = 0 impose de plus Q(0,0) = 0 et donc c = 0.

On a donc montré que la seule fonction Q telle que f = P + iQ soit holomorphe est

$$Q(x,y) = e^{-x}(x\cos(y) + y\sin(y))$$

On a alors

$$f(z) = e^{-x}(x\sin(y) - y\cos(y) + ix\cos(y) + iy\sin(y))$$

= $e^{-x}(x(\sin(y) + i\cos(y)) + iy(i\cos(y) + \sin(y)))$
= $e^{-x}(x + iy)ie^{-iy} = ize^{-z}$

et donc f vérifie bien les conditions demandées.

Exercice 2.

- La fonction $f_0(z) = \ln(|z|) + i\arg(z)$ avec $\arg(z) \in]-\frac{3\pi}{2}; \frac{\pi}{2}[$ est continue sur l'ouvert $\mathbb{C}\setminus\{z: \operatorname{Re}(z)=0 \text{ et } \operatorname{Im}(z)\geq 0\}$ et vérifie $\exp(f_0(z))=z$, c'est donc une détermination du logarithme sur cet ouvert. Toutes les déterminations du logarithmes sur cet ouvert sont donc de la forme $f_0+2ik\pi$ avec $k\in\mathbb{Z}$. Comme $f_0(1)=0$, la seule détermination vérifiant f(1)=0 correspond à k=0 et donc à f_0 .
- On calcule d'après la formule explicite, en prenant bien soin de prendre l'argument dans l'intervalle annoncé] $-\frac{3\pi}{2}$; $\frac{\pi}{2}$ [.

$$f(-2i) = \ln(2) - i\frac{\pi}{2}$$

$$f(-5) = \ln(5) - i\pi$$

$$f(-1+i) = \frac{1}{2}\ln(2) - i\frac{5\pi}{4}$$

- Log est définie sur $\mathbb{C}\setminus\{z: \mathrm{Im}(z)=0 \text{ et } \mathrm{Re}(z)\leq 0\}$. f et Log deux déterminations du logarithme sur l'ouvert connexe $\mathbb{C}\setminus\{z: \mathrm{Im}(z)\geq 0 \text{ et } \mathrm{Re}(z)\leq 0\}$ diffèrent d'un multiple de $2i\pi$ or elles sont égales en 1, donc elles coïncident sur tout cet ouvert. Sur le complémentaire on a $Log=f+2i\pi$ (vérifier par exemple en −1 + i).
- On vérifie que $g'_C(z) = \frac{1}{z}$ donc g_C est à une constante près une détermination du logarithme. Il existe donc une valeur de C telle que $g_C = f$. Comme $g_C(-2i) = 0$ et que $f(-2i) = \ln(2) i\frac{\pi}{2}$, il faut prendre $C = \ln(2) i\frac{\pi}{2}$. g coïncide aussi avec Log puisque f et Log sont égales sur U.

