

LIGKA

NBS REPORT 5579

PROPERTY OF SOUTHWEST RE EARCH INSTITUTE LIBRARY SAN ANIONIO, TEXAS

HOURLY CORRELATION OF RADIO
PATH LENGTHS AND SURFACE REFRACTIVITY INDEX
FROM MAUI, T. H., PHASE STABILITY PROGRAM

by

M. C. Thompson, Jr. and Frank E. Freethey

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS BOULDER LABORATORIES

Boulder, Colorado

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards: the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside back cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT NBS REPORT

8360-12-8865

June 24, 1958

5579

HOURLY CORRELATION OF RADIO
PATH LENGTHS AND SURFACE REFRACTIVITY INDEX
FROM MAUI, T. H., PHASE STABILITY PROGRAM

by

M. C. Thompson, Jr. and Frank E. Freethey

The research contained in this report was sponsored in part by the Air Force Ballistic Missile Division. AF 04 (647-134)

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

BOULDER LABORATORIES
Boulder, Colorado

NATIONAL BUREAU OF STANments intended for use within is subjected to additional evalution, or open-literature listing mission is obtained in writing fi 25, D. C. Such permission is been specifically prepared if tl Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

ragress accounting docuis formally published it ian, reprinting, reproducot outhorized unless perof Standards, Washington far which the Report hos s for its own use.

TABLE OF CONTENTS

	Page	
Introduction	. 1	
Terrain	. 1	
Airborne Index Measurements	. 2	
Ground Measurements	. 3	
Data Reduction and Presentation	. 4	
General Weather	. 6	
Summary	. 6	
Acknowledgments	. 7	
References	. 8	

LIST OF ILLUSTRATIONS

- Figure 1. Terrain Plan (Map of Maui)
- Figure 2. Terrain Profile
- Figure 3. Refractometer Data (Altitude vs Variance)
- Figure 4. Refractometer Spectrum
- Figure 5. Hourly Values of N for Five Stations with Average of Five Stations and Average of Terminal Stations
- Figure 6a. Daily Comparison of Hourly Values of N for Puunene, 110'
- Figure 6b. Daily Comparison of Hourly Values of N for Station #1, 3000'
- Figure 6c. Daily Comparison of Hourly Values of N for Station #2, 7000'
- Figure 6d. Daily Comparison of Hourly Values of N for Station #3, 8.600'
- Figure 6e. Daily Comparison of Hourly Values of N for Haleakala, 10,025'
- Figure 7. Daily Comparison of Hourly Values of Weighted Average
 Ng for Five Stations
- Figure 8. Altitude-Time Contours of Equal Index for Maui Experiment
- Figure 9. Relative Radio Path Index versus N at Puunene, 110'
- Figures 9a, 9b, 9c, 9d, 9e, and 9f. Relative Radio Path Index versus N at Puunene, 110' Subdivided into 6 Daily Time Periods of 4 Hours Each
- Figure 10. Relative Radio Path Index versus Ng at Station #1, 3000'
- Figure 10a, 10b, 10c, 10d, 10e, and 10f. Relative Radio Path Index versus

 N at Station #1, 3000', Subdivided into 6 Daily Time
 Periods of 4 Hours Each
- Figure 11. Relative Radio Path Index versus N at Station #2, 7000
- Figure 11a, 11b, 11c, 11d, 11e, and 11f. Relative Radio Path Index versus N at Station #2, 7000', Subdivided into 6 Daily Time Periods of 4 Hours Each.

- Figure 12. Relative Radio Path Index versus N_s at Station #3, 8,600°
- Figure 12a, 12b, 12c, 12d, 12e, and 12f. Relative Radio Path Index versus N at Station #3, 8,600', Subdivided into 6 Daily Time Periods of 4 Hours Each
- Figure 13. Relative Radio Path Index versus N_s at Haleakala, 10,025
- Figure 13a, 13b, 13c, 13d, 13e, and 13f. Relative Radio Path Index versus N at Haleakala, 10,025', Subdivided into 6 Daily
 Time Periods of 4 Hours Each
- Figure 14. Relative Radio Path Index versus Weighted Average N for Five Stations
- Figure 14a, 14b, 14c, 14d, 14e, and 14f. Relative Radio Path Index versus Weighted Average N for Five Stations, Subdivided into 6 Daily Time Periods of 4 Hours Each
- Figure 15. Relative Radio Path Index versus Simple Average N for Five Stations
- Figure 15a, 15b, 15c, 15d, 15e, and 15f. Relative Radio Path Index versus Simple Average N for Five Stations, Subdivided into 6 Daily Time Periods of 4 Hours Each
- Figure 16. Relative Radio Path Index versus Average N for Two
 End Points
- Figure 16a, 16b, 16c, 16d, 16e, and 16f. Relative Radio Path Index versus Average N for Two End Points, Subdivided into 6 Daily Time Periods of 4 Hours Each
- Figure 17. Summary of Phase Record With Meteorological Notes

HOURLY CORRELATION OF RADIO PATH LENGTHS AND SURFACE REFRACTIVITY INDEX FROM MAUI, T. H., PHASE STABILITY PROGRAM

by

M. C. Thompson, Jr. and Frank E. Freethey

I. Introduction:

This report describes refractive index measurements made during the NBS phase stability experiments $\frac{1-2}{}$ conducted on the island of Maui, T. H., during November 1956 and their correlation with the phase measurements. The object of these measurements was to determine to what extent it might be feasible to predict phase variability from ordinary meteorological observations.

II. Terrain:

A map of the island of Maui, T. H., is shown in Figure 1. The lower station of the propagation path was located at the old naval airport at Puunene at an elevation above mean sea level of 110 feet, and the upper station on the top of Haleakala peak, 10,025 feet above mean sea level and approximately 81,608 feet distant by line of sight from the Puunene location. The surface profile beneath the propagation path is shown in Figure 2. The radio path elevation angle was 6.8°. Meteorological instrument stations were maintained at three intermediate points on the slope of Haleakala. No. 1, at an elevation of about 3000 feet, was situated about 3 miles NE of the propagation path and was generally under the influence of the NE trade wind. Station No. 2 was about 7000 feet above sea level and 3 miles NE of the path. This location was sometimes influenced by an upslope condition deriving

from the trade winds, but more often was swept by a return, or SW wind, resulting from the circulation of the trade winds about Haleakala from the west Maui mountains. Station No. 3 was about 2 miles NE of the path at an elevation of 8,600 feet and was usually influenced by the SW circulation wind.

We feel that the most serious weaknesses in this analysis are:

- The discontinuities in the phase recordings due to interruptions in radio signals and equipment performance.
- 2. The fact that, except for the end points, the surface meteorological stations could not be located closer to the radio path, especially in an area having such unusual wind circulation characteristics. 3 /

III. Airborne Index Measurements:

The airborne measurements were made using an NBS Model 2 microwave refractometer built for the Arizona Electronic Proving Grounds, Ft. Huachuca, Arizona, 4 / and on loan from that organization. The refractometer was installed in an L-20 aircraft rented from the U. S. Army installation at Wheeler AFB, Oahu, T. H.

The normal flight patterns were to climb to about 11,000 feet in the vicinity of Puunene, proceed to the upper site at Haleakala Summit, turn 180° and descend along a line approximately parallel to and 1000 feet above the actual radio path. The indicated air speed during this descent usually varied between 90 and 120 mph with the rate of descent approximately 1,500 ft/min. Since the region near the path included the local commercial airlanes, radio path descents were feasible

LOCATION OF PROPAGATION PATHS USED IN MAUI EXPERIMENT

Figure 2

only during the few hours of each day when clouds were not present in the area.

Figures 3 and 4 represent the type of data obtained from these flights. The variations in index roughness (as indicated by RMS values of the fluctuations in a band width of approximately .05 to 30 cps.) with altitude are shown in Figure 3. The power density spectrum of a sample of data obtained in level flight at approximately 3,800 altitude is shown in Figure 4. This level was normally found to be characterized by larger index variations. The flight pattern was again along the line between the terminals of the radio path but at constant altitude. Because of the rising terrain this flight path extended along only about half of the extent of the radio path.

IV. Ground Measurements:

Surface observations of meterological data were taken at five ground stations. These recordings are summarized in the following:

Station	Altitude (MSL)	<u>Instruments</u>
Puunene	110 ft.	Microbarograph Hygrothermograph Aerovane wind recorder
1	3000	Microbarograph
		Hygrothermograph
2	7000	Microbarograph
		Hygrothermograph
3	8,600	Microbarograph
		${f Hygrothermograph}$
Haleakala	10,000	Mercury barometer Hygrothermograph Aerovane wind recorder

The station at Haleakala was in operation from 1000, November 5 to 1800, November 9. All others were operated from 1000, November 5 to 0800, November 10. The pressure record at Haleakala consists of barometer readings at 30 minute intervals. All other records were continuous. The radio phase records were made at 9,414 MC between Puunene and Haleakala and the analysis of these records covers the period from 0200, November 6 to 1800, November 9.

V. Data Reduction and Presentation:

- \underline{a} . Hourly N s values at each station throughout operating period were computed from records of pressure, temperature and relative humidity.
- <u>b.</u> These hourly N_s values were plotted as ordinates against time of day and date for the entire operating period, as a family of curves representing each station, simple average of hourly N_s for all stations, and simple average of hourly N_s for upper and lower stations only (see Figure 5).
- c. For daily comparison of hourly N_s variations at each station, the curves of b, above were replotted as a series of families representing each day's fluctuations at each of the five stations. (See Figures 6a, 6b, 6c, 6d, and 6e).
- d. Average values of hourly N_s for the entire path, weighted for altitude differences (Δh) between the recording stations were computed and plotted versus time of day in a family of curves representing each day's fluctuations (See Figure 7).
- e. Equal N_s contours at 5N intervals were plotted as a family of curves on a graph having altitude as ordinate versus time for the entire period of the run as abscissa. Since only five determinations of N for any one hour were actually made at the respective altitudes of

Figure 3

Figure 4

Figure 5

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 6e

DAILY COMPARISON OF WEIGHTED AVERAGE SURFACE REFRACTIVITY FOR FIVE STATIONS

Figure 7

the five recording stations, the spacing of the 5N intervals between stations was done by linear interpolation. Each 5N change, therefore, was assumed to occur at equally spaced altitude intervals between any two stations (See Figure 8).

f. From the records of variations in the phase of the signal over the round trip path between Puunene and Haleakala, the phase changes were read off for the time interval from 0130, November 6 to 1815, November 9, at intervals of approximately 15 minutes. Using only those cumulative shifts corresponding to the full hour intervals, these phase changes in terms of equivalent $\Delta N \phi$, were plotted against the known N value for the respective hour and day as a point array for:

- Puunene (Figure 9)
- Station #1 (Figure 10)
- Station #2 (Figure 11)
- Station #3 (Figure 12)
- Haleakala (Figure 13)

- 6. Weighted average N for entire path (Figure 14)
 7. Simple average N for five stations (Figure 15)
 8. Simple average N for upper and lower stations (Figure 16)

The scales on these graphs were so chosen as to make the theoretical line determined by the point array have a slope of unity.

Each single composite graph described in paragraph f above, was replotted as six separate graphs, each covering a four hour period of the day, e.g. 0100 - 0400 inclusive, 0500 - 0800 inclusive, etc. (See Figures 9a, 9b, 9c, 9d, 9e, 9f, etc. through Figures 16a, 16b, 16c, 16d, 16e, 16f).

For each of the point arrays plotted as described in paragraphs f and g, a regression line (indicated by a broken line on the graphs) was calculated and drawn and the following information computed and

noted on the graph concerned:

n = number of points
 b = slope of regression line
 γ = correlation coefficient of points
 about regression line
 %>t = A percentage figure which is
 a measure of how well the observed
 slope b agrees with the expected
 value of unity. Specifically, this
 number answers the question: What
 is the percent probability that in
 repeated samplings the quantity 1-b
 will be larger than that obtained in
 the sample plotted?

h. The relative phase variation versus time of day and date was plotted at 15 minute intervals for the period from 0130, November 7 to 1800, November 9 with gross weather conditions as noted in the Haleakala log, chronologically indicated (See Figure 17).

VI. General Weather:

From 2000 to about 0900 daily weather in the path was clear. During the middle of the day, from 0900 to 1700 clouds or fog was the rule, sometimes in the path, sometimes above it. It usually began to break up to light scattered clouds by 1800. The sun at this season rose about 0600 on the peak and about an hour later on Puunene in the valley, when it first illuminated the path. Sunset occurred about 1730. Summary:

Because of the limited period covered by the records described above, as well as discontinuities that exist in some of them, it is difficult, if not impossible, to analyze conclusively the information they may contain. Well established diurnal variations in refractive index

Figure 9

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT PUUNENE, ELEVATION 110 FEET

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT STATION # I, ELEVATION 3,000 FEET

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT STATION #2, ELEVATION 7,000 FEET

Figure 12

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT STATION #3, ELEVATION 8,600 FEET

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT HALEAKALA, ELEVATION 10,025 FEET

Figure 13

RELATIVE RADIO PATH INDEX VERSUS SURFACE INDEX AT HALEAKALA, ELEVATION 10,025 FEET

Figure 14

VERSUS WEIGHTED AVERAGE SURFACE INDEX AT FIVE STATIONS RELATIVE RADIO PATH INDEX

Figure 15

VERSUS SIMPLE AVERAGE SURFACE INDEX AT FIVE STATIONS RELATIVE RADIO PATH INDEX

RELATIVE RADIO PATH INDEX VERSUS END POINT AVERAGE SURFACE INDEX

SUMMARY OF PHASE RECORD WITH METEOROLOGICAL NOTES

appeared consistently, but the equable weather which prevailed during most of the run provided no dramatic front phenomena to be studied, nor, of necessity, any seasonal variations. The main analytic effort, therefore, of this study was aimed at (1) determining the simplest reliable way to average the index over the propagation path from records taken at five stations covering a vertical distance of 10,000 feet; and (2) to learn if any particular period of the day appeared most favorable for correlating phase measurements with surface index variations. A comparison of the plots of Figures 9 through 16 seems to indicate that either the weighted or the simple average index of all five stations give the best average N for the path at any particular time; and those of Figures 9a, b, c, etc. through 16a, b, c, etc., (though of doubtful validity because of the small number of points in each array) suggest that the daily period from 2100 to 0400 is the time when the atmosphere is normally most stable, in this sense, and measurements of this nature most reliably made.

Acknowledgments:

As described in (1) and (2) the Maui experiments were conducted as a joint effort of several sections of the Radio Propagation Engineering Division. In the preparation of this report of a relatively small part of the experiment, the assistance of the following persons is gratefully acknowledged: H. B. Janes, A. W. Kirkpatrick, J. W. Herbstreit, and B. R. Bean.

REFERENCES

- "Radio Studies of Atmospheric Turbulence, Volumes I, II," NBS Report No. 3579, May 31, 1956.
- "An Experimental Study of Phase Variations in Line-of-Sight Microwave Transmissions," NBS Report No. 6CB105 (Confidential).
- 3. "The Interaction of Trade Wind and Sea Breeze, Hawaii,"

 Luna B. Leopold Journal of Meteorology, Vol. 6, No. 5,

 pp 312-320, October 1949.
- 4. M. C. Thompson, Jr. and M. J. Vetter, "Compact Microwave Refractometer for Use in Small Aircraft," The Review of Scientific Instruments, December 1958.

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of the scientific program of the National Bureau of Standards at laboratory centers in Washington, D. C., and Boulder, Colorado, is given in the following outline: Washington, D.C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine Fuels. Free Radicals.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems. Application Engineering.

• Office of Basic Instrumentation

• Office of Weights and Measures

Boulder, Colorado
BOULDER LABORATORIES
F. W. Brown, Director

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionosphere Research. Regular Propagation Services. Sun-Earth Relationships. VHF Research. Ionospheric Communications Systems.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Electronic Calibration Center. Microwave Physics. Microwave Circuit Standards.

Department of Commerce
National Bureau of Standards
Boulder Laboratories
Boulder, Colorado

Official Business

Postage and Fees Paid
U. S. Department of Commerce