# Lab 7: Debt, the Last Seventy Years

Ankita Shankhdhar 30 October 2015

### Load Data

```
setwd("/Users/ankitashankhdhar/Documents/Grad 2nd yr/Comp Stats/Lab 7")
debt<-read.csv("debt.csv")</pre>
```

### Problem 2

```
avgGDP<-tapply(debt$growth,debt$Country,mean)
avgGDP<- as.table(avgGDP)</pre>
```

### Problem 3

```
avgGDPyr<-tapply(debt$growth,debt$Year,mean)
avgGDPyr.new<-as.vector(avgGDPyr)
plot(as.numeric(rownames(avgGDPyr)),avgGDPyr,ylab="Average GDP per year", xlab="Year")</pre>
```



### Problem 4

#### -Part a

```
cor(debt$growth,debt$ratio)
## [1] -0.199468
-Part b
country<-split(debt,debt$Country)</pre>
names(country)
   [1] "Australia"
                        "Austria"
                                       "Belgium"
                                                      "Canada"
                                                                    "Denmark"
##
## [6] "Finland"
                        "France"
                                       "Germany"
                                                      "Greece"
                                                                    "Ireland"
## [11] "Italy"
                        "Japan"
                                       "Netherlands" "New Zealand" "Norway"
                                                                    "US"
## [16] "Portugal"
                        "Spain"
                                       "Sweden"
                                                     "UK"
index_cor<-function(data){</pre>
  x<-data$growth
  y<-data$ratio
  correlation.xy<-cor(x,y)</pre>
  return(correlation.xy)
correlation.country<- sapply(country,index_cor)</pre>
mean(correlation.country)
## [1] -0.177822
hist(correlation.country)
```

## Histogram of correlation.country



```
par(cex=0.5)
plot(correlation.country)
axis(1,at=1:20,labels=names(correlation.country))
```



-Part c

```
year<-split(debt,debt$Year)
names(year)

## [1] "1946" "1947" "1948" "1949" "1950" "1951" "1952" "1953" "1954" "1955"
## [11] "1956" "1957" "1958" "1959" "1960" "1961" "1962" "1963" "1964" "1965"
## [21] "1966" "1967" "1968" "1969" "1970" "1971" "1972" "1973" "1974" "1975"
## [31] "1976" "1977" "1978" "1979" "1980" "1981" "1982" "1983" "1984" "1985"
## [41] "1986" "1987" "1988" "1989" "1990" "1991" "1992" "1993" "1994" "1995"
## [51] "1996" "1997" "1998" "1999" "2000" "2001" "2002" "2003" "2004" "2005"
## [61] "2006" "2007" "2008" "2009"

correlation.year<- sapply(year,index_cor)
mean(correlation.year)

## [1] -0.1905526</pre>
```

plot(correlation.year)

axis(1,at=1:64,labels=names(correlation.year))



-Part d Yes there are a few European countries that seem to be outside the trend. Such as Norway, Italy, Germany and France. Also Japan seems to be a outside the general trend as well. For the years I would say that 1946, 1957 and and 1978 seem to outside the general tread. There is more varibality in the correlation between the year than there is for the countries.

## Problem 5

```
par(cex=0.5)
plot(debt$ratio,debt$growth, main="GDP Growth vs. Debt-GDP Ratio", xlab="Debt Ratio",ylab="GDP Growth")
```

#### GDP Growth vs. Debt-GDP Ratio



Yes the shape does match what I expected from problem 4 specially because we can observe the GDP growth decreasing as the debt ratio increases. So they are negatively correlated which can be seen in the graphs in problem 4 as the correlations between the debt and GDP growth are in the negative region.