PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-158365

(43) Date of publication of application: 16.06.1998

(51)Int.CI.

CO8G 59/50 CO8G 59/22 CO8K 5/54 CO8L 63/00

(21)Application number: 08-324295

(71)Applicant: SUMITOMO BAKELITE CO LTD

(22)Date of filing:

04.12.1996

(72)Inventor: OUNAMI KAZUTO

(54) LIQUID EPOXY RESIN SEALING MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a sealing material capable of remarkably improving the reliability of semiconductors in an acceleration test such as PCT(pressure-cooker test) and T/C (thermal cycle test) and useful for the sealing of a PPGA-type semiconductor in contrast with conventional liquid sealing material giving insufficient reliability compared with a hermetic sealing with a ceramic material. SOLUTION: This liquid epoxy resin sealing material is composed mainly of (A) a liquid epoxy resin, (B) a liquid alkylated diaminodiphenylmethane, (C) a polybutadiene having epoxy group and (D) an inorganic filler. The weight ratios of the components satisfy the following formulas; (A)/[(A)+(B)]=0.65 to 0.80, (C)/[(A)+(B)]=0.02 to 0.05 and (D)/[(A)+(B)+(C)+(D)]=0.50 to 0.80.

LEGAL STATUS

[Date of request for examination]

18.05.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3238340

[Date of registration]

05.10.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-158365

(43)公開日 平成10年(1998) 6月16日

	識別記号	FI
59/50		C 0 8 G 59/50
59/22		59/22
5/54		C 0 8 K 5/54
63/00		C 0 8 L 63/00
		審査請求 未請求 請求項の致3 OL (全 6 頁)
}	特顯平8-324295	(71) 出願人 000002141
		住友ベークライト株式会社
(22)出顯日 平成8年(1996)12月4日	平成8年(1996)12月4日	東京都品川区東品川2丁目5番8号
		(72)発明者 海 一登
		東京都品川区東品川2丁目5番8号 住友
		ベークライト株式会社内
	59/22 5/54 63/00	59/50 59/22 5/54 63/00 特顯平8-324295

(54) 【発明の名称】 被状エポキシ樹脂封止材料

(57)【要約】

【課題】 PPGA型半導体の封止には液状の封止材料が用いられているが、セラミックスによる気密封止型に比べて信頼性の点で充分でない。PCT (ブレッシャークッカーデスト)やT/C (冷熱サイクルテスト)等の促進試験において、半導体の信頼性を大幅に向上できる封止材料を提供する。

【解決手段】 (A) 液状エポキシ樹脂、(B) 液状アルキル化ジアミノジフェニルメタン、(C) エポキシ基を有するポリブタジエン、及び(D) 無機充填材を主成分とする液状エポキシ樹脂封止材料において、各成分の配合割合が重量比で、(A) / [(A) + (B)] = 0.65~0.80、(C) / [(A) + (B)] = 0.02~0.05で、且つ(D) / [(A) + (B) + (C) + (D)] = 0.50~0.80であるととを特徴とする液状エポキシ樹脂封止材料。

1

【特許請求の範囲】

【請求項1】 (A) 液状エポキシ樹脂、(B) 液状アルキル化ジアミノジフェニルメタン、(C) エポキシ基を有するポリブタジエン、及び(D) 無機充填材を主成分とする液状エポキシ樹脂封止材料において、各成分の配合割合が重量比で、(A) / [(A) + (B)] = 0.65~0.80、(C) / [(A) + (B)] = 0.01~0.05で、且つ(D) / [(A) + (B) + (C) + (D)] = 0.50~0.80であるととを特徴とする液状エポキシ樹脂封止材料。

【請求項2】 (A) 液状エポキシ樹脂の少なくとも50重量%の成分の粘度が、8Pa・s/25℃以下である請求項1記載の液状エポキシ樹脂封止材料。

【請求項3】 (D)無機充填材が、(a)平均粒径 0.1~3.0 μ m、最大粒径10 μ m以下の球状シリカ、(b)平均粒径4~10 μ m、最大粒径50 μ m以下の球状シリカからなり、配合割合が重量比で(a)/[(a)+(b)]=0.05~0.50である請求項1記載の液状エボキシ樹脂封止材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体の封止に用いられる液状エポキシ樹脂封止材料に関するものである。

[0002]

【従来の技術】半導体実装における低コスト化、高集積 化の流れは、従来のトランスファー成形によるDIP (デュアルインラインパッケージ) から、COB (チッ **プオンボード)、PPGA(プラスチックピングリッド** アレイ) 等の実装形態へと移行している。 PPGA型半 30 導体の封止には液状の封止材料が用いられているが、セ ラミックスによる気密封止型に比べて信頼性の点で充分 でない。その原因としては、「 バッケージ加工された 有機プリント配線板から湿気が侵入する。 トランスフ ァー成形によるDIPと異なり、無圧下で液状封止材料 を流入し成形するため、気泡が残存し熱ストレスが加わ った際にクラックが発生する。 封止材料と半導体チッ プ・有機基板との線膨張係数が異なるために、熱ストレ スが加わった際に界面で剥離を生じ湿気の侵入を容易に してしまう。」等が挙げられていた。

[0003]

【発明が解決しようとする課題】本発明は、従来の問題点を解決するために鋭意検討を重ねてきた結果、特定のエポキシ樹脂、芳香族ジアミン、エラストマーに無機充填材を配合した組成物が、PCT (ブレッシャークッカーテスト)やT/C (冷熱サイクルテスト)等の促進試験において、半導体の信頼性を大幅に向上できる封止材料となることを見いだし、完成するに至ったものである。

[0004]

【課題を解決するための手段】本発明は、(A)液状エポキシ樹脂、(B)液状アルキル化ジアミノジフェニルメタン、(C)エポキシ基を有するポリブタジエン、及び(D)無機充填材を主成分とする液状エポキシ樹脂封止材料において、各成分の配合割合が重量比で、(A)

止材料において、各成分の配合割合が重量比で、(A) /[(A) + (B)] = 0.65~0.80、(C) / [(A) + (B)] = 0.02~0.05で、且つ (D) / [(A) + (B) + (C) + (D)] = 0.5

0~0.80であるととを特徴とする液状エポキシ樹脂 10 封止材料であり、有機プリント配線板を用いたPPGA 型半導体の信頼性を大幅に向上できるものである。

[0005]

【発明の実施の形態】本発明に用いられる液状エポキシ 樹脂において、その成分の50重量%以上は25°Cにお ける粘度が8Pa・s以下であることが好ましい。エポ キシ樹脂成分の50重量%以上が低粘度のエポキシでな いと組成物の粘度が高くなり、PPGAパッケージを液 状封止材料で流入封止する際に、気泡を巻き込んだり、 コーナー端部への充填不良を発生し易くなり、信頼性低 20 下につながるので好ましくない。エポキシ樹脂の粘度測 定方法としては、室温で液状の場合、25°CにおいてE 型粘度計[東機産業 製]で測定し、室温で固形の場 合、高温用コーンプレート粘度計を用い150°Cで測定 する。

【0006】この要件を満足するエポキシ樹脂であれば、特に限定されるものではないが、具体例を挙げると、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、3、3、5、5、一テトラメチルー4、4、一ジヒドロキシビフェニルジグリシジルエーテル型エポキシ樹脂、1、6一ジヒドロキシナフタレンジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化ビスフェノールAジグリシジルエーテル型エポキシ樹脂、臭素化ビスフェノールAジグリシジルエーテル型エポキシ樹脂、臭素化クレゾールノボラック型エポキシ樹脂等があり、これらは1種又は混合して用いても差し支えない。

【0007】本発明に用いられる液状のアルキル化ジア 40 ミノジフェニルメタンは、ジアミノジフェニルメタンの ベンゼン核の水素の1個あるいは2個以上をメチル基、 エチル基等、アルキル基で置換したものであり、アルキル基の炭素数が4以下でないと、組成物の粘度が高くなり、パッケージを液状封止材料で流入封止する際に気泡を巻き込んだり、コーナー端部への充填不良を発生し易くなり、信頼性低下につながるので好ましくない。この 要件を満足するアルキル化ジアミノジフェニルメタンで あれば、特に限定するものではないが、具体例を挙げると、3、3、-ジエチル-4、4、-ジアミノジフェニ

50 ルメタン、3, 3', 5, 5'ーテトラメチルー4,

4'-ジアミノジフェニルメタン、3,3',5,5' -テトラエチル-4,4'-ジアミノジフェニルメタン 等であり、これらは1種又は混合して用いても差し支え ない。

【0008】液状エポキシ樹脂(A)と液状アルキル化 ジアミノジフェニルメタン(B)の重量配合割合は (A) / [(A) + (B)] = 0.65~0.80の範 囲にあることが望ましい。(A)/[(A)+(B)] が0.80を越えると、未反応のエポキシ基が増え、ガ の信頼性が低下するので好ましくなく、また0.65未 満だと、組成物の保存性が低下するので好ましくない。 【0009】本発明に用いられるエポキシ基を有するポ リブタジエン(C)は、数平均分子量が1000~50 00が好ましい。1000未満では可とう性付与の効果 が小さくなり、5000を越えると粘度が上昇し、作業 性が低下するので好ましくない。またエポキシ基含有率 (主鎖付加モル分率%)は、3~10%が好ましい。3 %以下では液状エポキシ樹脂(A)との相溶性に欠け、 10%を越えると硬化剤と架橋し、海島構造を取らなく なるため低応力化が望めなくなり、可とう性付与効果が 小さくなるので好ましくない。エポキシ基を有するポリ ブタジエン (C) は、重量配合割合で(C) / [(A) + (B)]=0.01~0.05の範囲にすることで、 冷熱サイクル試験時に発生する熱ストレスの緩和効果を 有する。0.01未満ではストレス緩和の向上効果に乏 しく、0.05を越えると、硬化物のガラス転移温度の 低下、組成物の粘度上昇、相溶性悪化による硬化物表面 への浮き出しが発生するため、好ましくない。

【0010】無機充填剤(D)としては溶融シリカや結 晶シリカ等が挙げられる。形状は一般に球状、破砕状等 があるが、線膨張係数の低減を狙い、多くの充填剤を添 加するためには、球状の充填剤が最も好ましい。無機充 填剤 (D) は重量配合割合で (D) / [(A) + (B) + (C) + (D)] = 0.50~0.80の範囲にある ことが望ましい。0.50未満では線膨張係数の低減効 果が小さく、0.80を越えると組成物の粘度が上昇 *

・ビスフェノールF型エポキシ樹脂:

100重量部

(エポキシ当量 1 6 1、2 5 ℃での粘度 1. 5 P a · s)

・3、3'-ジエチル-4、4'-ジアミノジフェニルメタン:40重量部

・エポキシ変性ポリブタジエン:

6重量部

(数平均分子量1800、エポキシ当量250)

・球状溶融シリカ(1):

340重量部

(平均粒径6μm、最大粒径48μm)

・球状溶融シリカ(2):

40重量部

(平均粒径0.5μm、最大粒径2μm)

【0012】・組成物の粘度: E型粘度計、2.5 г р

·パッケージへの充填性:80℃にて、PPGAパッケ

・剥離・クラックの有無確認: (1)常態(硬化後)

ージにディスペンスし、5分後にキャビティへの充填性 50 (2) PCT (プレッシャークッカーテスト) 処理

を確認した。

[0011]

沈降が生じ易くなり、充填剤の分布が不均一になる。充 填剤の分布が不均一になると、線膨張係数が各部分で異 なったり、充填剤量の少ない上部でクラックが発生し易 くなる。又、最大粒径がワイヤー間隔より大きいと、ワ イヤー下部への充填不良、ワイヤー変形によるショート ラス転移温度等の耐熱性が低下し、冷熱サイクル試験で 10 不良が発生し易くなる。上記問題を解決するために検討 を重ね、粒径の異なるシリカ、すなわち(a)平均粒径 0.1~3.0 μm、最大粒径10 μm以下の球状シリ カ、(b) 平均粒径4~10μm、最大粒径50μm以 下の球状シリカを、重量比で(a)/[(a)+ (b)]=0.05~0.50に配合することで、流動 性を損なわず、沈降の抑制が可能なことを見いだした。 これらの要件を満足するシリカであれば、特に限定する ものではなく、(a)、(b)は各々1種又は混合して 用いても差し支えない。粒度分布及び平均粒径は、レー ザー式 (Horiba LA-500) にて測定し、平 均粒径はメジアン径とした。本発明の液状封止材料に は、前記必須成分の他に必要に応じて他の樹脂や反応を 促進するための触媒、希釈剤、顔料、カップリング剤、 レベリング剤、消泡剤等の添加物を用いても差し支えな い。液状封止材料は各成分、添加物等を3本ロールに て、分散混練し、真空脱法処理をして製造する。

* し、作業性の低下をきたすので、好ましくない。一般に

粒径の小さな充填剤を用いると、樹脂組成物の粘度は上 昇し、流動性が低下するため、気泡の巻き込み、充填不

良が発生する。一方、粒径の大きな充填剤を用いると、

【実施例】以下本発明を実施例を用いて具体的に説明す

(実施例1)次の原料を3本ロールにて分散混練し、真 空脱泡処理をして液状エポキシ樹脂封止材料を得た。得 られたエポキシ樹脂封止材料を用いて、PPGAパッケ ージを封止し、165℃で3時間、オーブンにて硬化し て半導体パッケージを得た。また、下記の評価方法によ り半導体チップ及びプリント基板界面との剥離・クラッ クの有無、フィラーの沈降を確認し、その結果を表1に 示した。

125℃/2. 3atm、168時間後 (3) T/C(冷熱サイクルテスト)処理 -65℃/30分←→150℃/30分、1000サイ クル後

について、超音波探傷機(以下SATという)にて、半 導体チップ及びプリント基板界面との剥離・クラックの 有無を確認した。

・フィラー沈降:硬化後のパッケージをクロスセクショ ンし、走査型電子顕微鏡(以下SEMという)にて断面 観察を行い、硬化物上部からの沈降を測定した。実施例 10 ェニルメタン:(日本化薬(株)製、カヤボンドC-2 1のものは剥離・クラックとも認められず、またフィラ ーの沈降も極僅かであり、良好な信頼性を有していると とが判明した。各評価に用いたパッケージ数は10個で ある。その結果を表1に示す。

【0013】(実施例2~8、比較例1~8)表1、2 に示した配合処方で、とれ以外は全て実施例1と同様の 方法にて液状エポキシ樹脂封止材料を得て、PPGAパ ッケージを封止し、その信頼性を評価した。その結果を 表1、2に示す。

【0014】実施例1及びその他で使用した原料は次の 20 物である。

·ビスフェノールF型エポキシ樹脂: (大日本インキ化 学工業(株)製、EXA-830LVP、エポキシ当量 161、25℃での粘度1.5Pa·s)

·ビスフェノールA型エポキシ樹脂(1): (大日本イ ンキ化学工業 (株) 製、EXA-850CRP、エポキ シ当量171、25℃での粘度4.5Pa·s)

· ビスフェノールA型エポキシ樹脂(2): (油化シェ ルエポキシ (株) 製、エピコート1001、エポキシ当 量470、固形)

・1,6-ジヒドロキシナフタレン型エポキシ樹脂: (大日本インキ化学工業(株)製、HP-4032D、 エポキシ当量140、25°Cでの粘度25Pa·s) ・3, 3' 一ジエチルー4, 4' 一ジアミノジフェニル メタン: (日本化薬(株)製、カヤハードA-A) ・3,3'-5,5'-テトラメチル-4,4'-ジアミノジフ 00)

・エポキシ変性ポリブタジエン: (日本石油化学(株) 製、E-1800-6.5、数平均分子量1800、エ ポキシ当量250)

・球状溶融シリカ(1): (電気化学工業(株)製、F B-30、平均粒径6μm、最大粒径48μm)

・球状溶融シリカ(2): ((株)アドマテックス製、 SO-25R、平均粒径0.5μm、最大粒径2μm) ・球状溶融シリカ(3): ((株)アドマテックス製、 SO-32R、平均粒径2.0μm、最大粒径8μm) ・球状溶融シリカ(4): (上記の球状溶融シリカ (2)と(3)の混合物(重量比1:1)、平均粒径 1. 0 μm、最大粒径 8 μm)

・球状溶融シリカ(5): (電気化学工業(株)製、F B-25S、平均粒径17μm、最大粒径75μm) [0015]

【表1】

8

						
	1	2	3	4	5	6
配合(風景部)						
ピスフェノールF型エポキシ樹脂	100	100	100		100	50
ピスフェノールA型エポキシ樹脂(1)				100		
1、6ージヒドロヤシナフタレン樹エポキシ樹脂						50
3、3、一ツエチルー4、4、一ジアミノジフェニルメタン	40	40	40	37	32	43
3, 8' - 5, 6' -テトラメナル-					5	
4、4′ージアミノジフェニルメタン						
エポキシ変性ポリプタジエン	в	6	6	6	6	6
球状溶励シリカ (1)	340	230	230	340	800	260
球状溶励シリカ(2)	40	160		40		110
球状溶励シリカ(3)		i '			80	
球状溶融シリカ(4)			160			
特性						
組成物站度(Pa·s)	20	17	18	80	19	35
パッケージ充壌性	良好	良好	良好	良好	良好	鬼好
親臼 硬化後	0	0	0	0	0	0
PCT後	0	0	0	0	0	0
T/C袋	0	0	0	0	0	0
クラック 硬化後	0	0	0	0	0	0
PCT後	0	0	0	0	0	0
T/C後	0	0	0	0	0	0
フィラー沈降(μm)	24	7以8	不以的	20	10	5

[0016]

* *【表2】

		比較例					
		1	2	3	4	5	6
配合(闰量部)							
ピスフェノーノ	VF型エポキシ樹脂	100	100	100	100	100	30
ピスフェノーノ	VA型エポキシ樹脂(2)			1	1		70
3, 3'ジエチ/	V-4、4° ージアミノジフェニルメタン	40	40	40	40	40	40
エポキシ変性が	ドリブタジエン	6	6		6	6	6
球状胸融シリオ	b (1)	380	420	280	110		340
球状溶験シリオ	7 (2)		280	160	260		40
球状溶融シリカ	(5)					380	
特性							
組成物粘度(Pa·s)		30	120	17	130	27	125
パッケージ充填性		良好	不良	良好	不良	良好	不良
到庭	硬化後	0	-	0	_	0	
	PCT後	0		8	_	0	_
	T/C後	3		0		4	
クラック	硬化後	0	_	0	-	0	_
	PCT後	0	-	3	_	0	_
	T/C後	5		0		8	
フィラー沈降 (μm)		80		3以下		100	_

ジの封止を行うと、流動性・作業性を損なわずに、ブレ ッシャークッカーテストや冷熱サイクルテストにおい

て、剥離・クラックの無い髙信頼性の半導体パッケージ を得ることができるので、工業的メリットが大きい。