Лабораторная работа №5. Решение задач классификации с помощью байесовского классификатора и метода k-ближайших соседей.

Часть 3. Метрический алгоритм к-ближайших соседей.

Используемый набор данных: Iris (https://archive.ics.uci.edu/ml/datasets/Iris)

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, roc_curve, roc_auc_score
import os
import requests

%matplotlib inline
pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris"
downloadFile(url + "/iris.data", "dataset/iris.data")
downloadFile(url + "/iris.names", "dataset/iris.names")
```

In [3]:

```
headers = ["Sepal length", "Sepal width", "Petal length", "Petal width", "Class"]
data = pd.read_csv("dataset/iris.data", names=headers)
data = data.astype({"Class": "category"})
data.sample(40)
```

Out[3]:

	Sepal length	Sepal width	Petal length	Petal width	Class
64	5.6	2.9	3.6	1.3	Iris-versicolor
1	4.9	3.0	1.4	0.2	Iris-setosa
122	7.7	2.8	6.7	2.0	Iris-virginica
62	6.0	2.2	4.0	1.0	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor
118	7.7	2.6	6.9	2.3	Iris-virginica
30	4.8	3.1	1.6	0.2	Iris-setosa
52	6.9	3.1	4.9	1.5	Iris-versicolor
137	6.4	3.1	5.5	1.8	Iris-virginica
73	6.1	2.8	4.7	1.2	Iris-versicolor
133	6.3	2.8	5.1	1.5	Iris-virginica
108	6.7	2.5	5.8	1.8	Iris-virginica
65	6.7	3.1	4.4	1.4	Iris-versicolor
86	6.7	3.1	4.7	1.5	Iris-versicolor
4	5.0	3.6	1.4	0.2	Iris-setosa
144	6.7	3.3	5.7	2.5	Iris-virginica
27	5.2	3.5	1.5	0.2	Iris-setosa
129	7.2	3.0	5.8	1.6	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
72	6.3	2.5	4.9	1.5	Iris-versicolor
85	6.0	3.4	4.5	1.6	Iris-versicolor
146	6.3	2.5	5.0	1.9	Iris-virginica
114	5.8	2.8	5.1	2.4	Iris-virginica
74	6.4	2.9	4.3	1.3	Iris-versicolor
56	6.3	3.3	4.7	1.6	Iris-versicolor
49	5.0	3.3	1.4	0.2	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
22	4.6	3.6	1.0	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
0	5.1	3.5	1.4	0.2	Iris-setosa
88	5.6	3.0	4.1	1.3	Iris-versicolor
37	4.9	3.1	1.5	0.1	Iris-setosa
109	7.2	3.6	6.1	2.5	Iris-virginica
69	5.6	2.5	3.9	1.1	Iris-versicolor
103	6.3	2.9	5.6	1.8	Iris-virginica
71	6.1	2.8	4.0	1.3	Iris-versicolor
119	6.0	2.2	5.0	1.5	Iris-virginica

_		Sepal length	Sepal width	Petal length	Petal width	Class
_	87	6.3	2.3	4.4	1.3	Iris-versicolor
	98	5.1	2.5	3.0	1.1	Iris-versicolor
	135	7.7	3.0	6.1	2.3	Iris-virginica

In [4]:

```
display(data.describe())
display(data.isna().sum())
```

	Sepal length	Sepal width	Petal length	Petal width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000
Sepal	length 0)		
Sepal	width 0)		
Petal	length 0)		
Petal	width 6)		

Class 0 dtype: int64

Пропусков в данных нет.

Подготовим данные для классификации: выберем признаки и метки и сформируем тренировочные и тестовые наборы.

In [5]:

```
classes = data["Class"].unique()
y = label_binarize(data["Class"], classes=classes)
X = data.drop(columns=["Class"]).copy()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2
```

Создадим классификатор, обучим его, а затем выполним классификацию.

In [6]:

```
y_score = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=3)).fit(X_train, y_train
).predict(X_test)
```

Оценим получившуюся классификацию.

In [7]:

```
print(classification_report(y_test, y_score))
```

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	10
	1	1.00	0.75	0.86	4
	2	0.94	1.00	0.97	16
micro	avg	0.97	0.97	0.97	30
macro	avg	0.98	0.92	0.94	30
weighted	avg	0.97	0.97	0.96	30
samples	avg	0.97	0.97	0.97	30

In [8]:

```
def drawROCCurve(y_test, y_score, neighbors):
    n_classes = len(classes)
    fpr, tpr, auc = dict(), dict(), dict()
    for i in range(n_classes):
       y_test_cl = y_test[:,i]
        y_score_cl = y_score[:,i]
        fpr[i], tpr[i], _ = roc_curve(y_test_cl, y_score_cl)
        auc[i] = roc_auc_score(y_test_cl, y_score_cl)
    1w = 2
    colors = ['aqua', 'darkorange', 'cornflowerblue']
    for i, color in zip(range(n_classes), colors):
        plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC of class {0} (AUC = {1:
0.2f})'.format(i, auc[i]))
    plt.plot([0, 1], [0, 1], 'k--', lw=lw)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(f'ROC for KNN, neighbors={neighbors}')
    plt.legend(loc="lower right")
    plt.show()
```

In [9]:

```
drawROCCurve(y_test, y_score, neighbors=3)
```


Подберем оптимальное количество соседей.

In [10]:

```
params = {'n_neighbors': np.arange(1, 25)}
gscv = GridSearchCV(KNeighborsClassifier(), params)
gscv.fit(X, y)
gscv.best_params_
```

Out[10]:

```
{'n_neighbors': 1}
```

Обучим и оценим модель с оптимальным количеством соседей.

In [11]:

```
optimal_neighbors = gscv.best_params_["n_neighbors"]
y_score = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=optimal_neighbors)).fit(
X_train, y_train).predict(X_test)
print(classification_report(y_test, y_score))
```

		precision	recall	f1-score	support
	0 1	1.00 1.00	1.00 0.75	1.00 0.86	10 4
	2	0.94	1.00	0.97	16
micro macro	_	0.97 0.98	0.97 0.92	0.97 0.94	30 30
weighted samples	avg	0.97 0.97	0.97 0.97	0.96 0.97	30 30

In [12]:

drawROCCurve(y_test, y_score, neighbors=optimal_neighbors)

Попробуем различные значения параметра к.

In [13]:

```
k = 10
y_score = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=k)).fit(X_train, y_train
).predict(X_test)
drawROCCurve(y_test, y_score, neighbors=k)
```


In [14]:

k = 11
y_score = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=k)).fit(X_train, y_train
).predict(X_test)
drawROCCurve(y_test, y_score, neighbors=k)

