

OBJECTIVES

- To develop an Energy efficient Desalination unit.
- Incorporate modular design to accommodate device **portability**.
- Develop a Recyclable electrode for desalination to reduce carbon footprint.

DESALINATED WATER ACCESS

FRONT VIEW

APPLICATIONS

- Can be implemented where water is brackish or saline.
- Can be used to reduce salinity of irrigating water.
- Can be used for pre-treatment in RO to reduce energy consumption.
- Can produce potable water for drinking and other purposes.
- Emergency water desalination unit incase of floods or calamities.

METHODOLOGY

WE ARE USING COMMERCIALLY AVAILABLE CARBON FIBER AS POROUS CARBON ELECTRODE THROUGH ACID ACTIVATION.

S – SHAPED ACRYLIC FLOW CHANNEL

ION EXCHANGE MEMBRANE COVERED CHANNEL

HNO3 ACTIVATED CARBON CLOTH

OBSERVATIONS

Sl.N o	Voltage (V)	Current (A)	Time (min)	Conductiv ity (µS)	Salinity(P PT) at 30°C
1	0	0	0	70910	44
2	1.5	0.03	10	44300	25.9
3	1.5	0.02	20	31100	17.516
4	1.5	0.01	30	29150	16.313

INSTAQUA Vs. RO

	Instaqua	reverse osmosis	
Power consumption	0.1 – 0.5 kWh/m ³	6.6-9.3 kWh/m3	
Cost per liter	50 – 60 Paise/Liter	1.5Rupees/Liter	
Recovery	More than 80%	Less than 70%	
Weight	2 Kg	Available only in industrial sizes	
Operating cost	Low	High	
Remarks	RECYCLABLE ELECTRODES	EXPENSIVE MEMBRANES	

PRODUCTION COST

COMPONENTS	COST
ELECTRODE (400cm ²)	800
CASING (MATERIAL + MANUFACTURING)	500
ELECTRONICS*	500
FITTINGS	100
MISCELLANEOUS	100
TOTAL COST	2000*

CHARCOAL ACTIVATION

PREPARATION

RECYCLABLE ELECTRODE

RESULTS

ELECTRODE MATERIALS	AREA OF ELECTRODES (CM^2)	INITIAL NaCl CONCENTRATION	APPLIED VOLTAGE	SALT REMOVAL EFFICIENCY
MESOPOROUS CARBON	50	35	1.2	35%
ACTIVATED CARBON FIBER ONLY	50	35	1.2	54%
ACTIVATED CARBON FIBER WITH MEMBRANES	50	35	1.2	73%
CARBON PASTE ELECTRODES WITH HYDROPHILIC COATING	50	35	1.2	BEING RESEARCHED

CONCENTRATION VERSUS TIME

