修士論文

ボランティアコンピューティング資源活用によるクラウ ドゲーミングの QoE 向上に関する研究

前田 健登

2021年1月25日

奈良先端科学技術大学院大学 先端科学技術研究科 情報科学領域

本論文は奈良先端科学技術大学院大学先端科学技術研究科情報科学領域に 修士(工学) 授与の要件として提出した修士論文である。

前田 健登

審査委員:

飯田 元 教授 (主指導教員) 藤川 和利 教授 (副指導教員) 市川 昊平 准教授 (副指導教員) 高橋 慧智 助教 (副指導教員)

ボランティアコンピューティング資源活用によるクラウドゲーミングの QoE 向上に関する研究*

前田 健登

内容梗概

人類がこの地上に現われて以来、 π の計算には多くの関心が払われてきた。 本論文では、太陽と月を利用して π を低速に計算するための画期的なアルゴリズムを与える。

ここには内容梗概を書く。

キーワード

ネットワーク, クラウド, クラウドゲーミング, ボランティアコンピューティング

^{*}奈良先端科学技術大学院大学 先端科学技術研究科 情報科学領域 修士論文, 2021年1月25日.

Research About QoE Approaving of Cloud Gaming Using Resouces of Volunteer Computing*

Kento Maeda

Abstract

The calculation of π has been paid much attention since human beings appeared on the earth.

This thesis presents novel low-speed algorithms to calculate π utilizing the sun and the moon.

This is a sample abstract. This is a sample abstract.

This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract.

Keywords:

network, cloud, cloud gaming, volunteer computing

^{*}Master's Thesis, Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, January 25, 2021.

目 次

1.	はじ	かに	1
2.	背景		6
	2.1	クラウドゲーミング	6
	2.2	ボランティアコンピューティング	6
3.	設計	-	7
	3.1	提案システムの概要	7
	3.2	実装上の課題	8
	3.3	構成コンポーネント	9
		3.3.1 VC コントローラ	9
		3.3.2 VC クライアントエージェント	9
		3.3.3 VC ホストエージェント	9
		3.3.4 クラウドゲームサーバ/クライアント	10
4.	実装		11
	4.1	VC コントローラとエージェントの連携	11
	4.2	クラウドゲームサーバ/クライアント間の P2P 通信	11
	4.3	システム動作	13
5 .	評価	Ī	15
	5.1	評価環境	15
	5.2	クラウドゲームサーバ/クライアント間の通信性能	16
		5.2.1 リンクに対する生の遅延の大小の影響	16
		5.2.2 リンクに対する遅延の大小のスループットへの影響	16
	5.3	ゲームプレイ時のフレームレート	18
		5.3.1 ネットワーク帯域の大小の影響	18
	5.4	考察	19
6.	まと	めと今後の課題	23

謝辞	24	
参考文献	25	

図目次

1	クラウドゲーミングシステム	2
2	提案システムの概要	8
3	gRPC の概要	12
4	システム動作	14
5	評価環境	16
6	EdgeVPN リンクに対する遅延挿入の影響	17
7	EdgeVPN リンクへの遅延挿入の帯域への影響	18
8	EdgeVPN を使用していないリンクへの遅延挿入の帯域への影響 .	19
9	帯域制限下でのゲームプレイ時のフレームレートの変化 (Albion	
	Online (MMORPG) プレイ時)	20
10	帯域制限下でのゲームプレイ時のフレームレートの変化 (Red Ecli-	
	plse 2 (FPS, Action) プレイ時)	21
11	帯域制限下でのゲームプレイ時のフレームレートの変化 (Simply	
	Chess (ボードゲーム) プレイ時)	22

表目次

1. はじめに

ゲーム産業は娯楽産業の中でも大きな収益を上げている産業であり、2019年の世界ゲームコンテンツ市場の規模は15兆6898億円と推定されている[21]。国内でも10年連続で成長しており、市場規模は1兆7330億円となっている。その中でも家庭用ハードや家庭用ソフトと比較して、スマートフォンのアプリやPC向けのオンラインゲームなどといったオンラインプラットフォームのゲームの市場規模が年々大きく拡大している。このようにゲームのプレイスタイルがゲーム専用のハードを購入するというものから汎用デバイスでのゲームプレイへと変化を見せている。こういった状況下で注目されている新たな手法で展開されるゲームサービスの一つにクラウドゲーミングがある。

従来のゲームプレイは、プレイヤーがゲーム専用ハードやゲーミングPC等を所有し、その上でゲームを動作させることによって実現されている。一方、クラウドゲーミングというサービスにおいては、図1のようにクラウドサーバ上でゲームを動作させてその画面をクライアントであるプレイヤーの端末にストリーミングすることで、ゲームをネットワーク越しにプレイすることを可能にしている。このとき、プレイヤーがゲームプレイに使用する端末は、クラウドサーバより送信されるゲーム画面の再生とプレイヤーの操作のサーバへの送信だけを行う。この仕組みによって、スマートフォンやタブレット端末等の性能が貧弱なデバイスでも、従来は高価なゲームハードやゲーミングPCを使用しなければ体験できなかったような高品質なゲーム体験を得られることが期待されている。

クラウドゲーミングは商用のサービスの展開もある。過去には英国のOnLive[1]やアメリカの Gaikai がクラウドゲーミングサービスを展開していた。これらは既にサービスを終了しているが、ソニーが 2012 年に Gaikai を買収し、2015 年にサービスを閉鎖した OnLive の資産を取得した [2]。同年に、ソニーは新たにクラウドゲーミングサービスの PlayStation Now[10]を開始した。また、Google も 2019年にクラウドゲーミングサービスである Goolge Stadia[12]を開始した。同社のウェブブラウザである Google Chrome をインターフェースとしているのが特徴で、ユーザーへのメディアのストリーミングに動画配信サービスの YouTube を使用している。現在は日本を含まない 14 カ国で展開されている。また、グラフィッ

図 1 クラウドゲーミングシステム

クプロセッシングユニットのメーカーとして知られる NVIDIA が提供するクラウドゲーミングサービス GeForce NOW[4] は、従来 PC ゲームをプレイしていたプレイヤーをメインターゲットに据えており注目されている。他に、Microsoft の Project xCloud や Amazon の Luna が海外でサービス開始されている。

商用サービスだけでなく、研究開発用のクラウドゲーミングプラットフォームも存在する。Huang ら [19] は、既存のクローズドソースのシステムではクラウドゲーミングを体験するためのテストベッドの設置が困難であることから、オープンソースのクラウドゲーミングプラットフォームである GamingAnywhere を開発した。GamingAnywhere は Windows、Linux、OS X 上で実装されており、クライアントは iOS や Android 等の他の OS にも移植が可能である。また、GamingAnywhere は詳細な設定を可能にしていて、更にオープンソースであるため拡張的な実装が

可能であるなど、クラウドゲーミングのシステム研究のテストベッドの構築に適している。

従来のゲームシステムとは一線を画するクラウドゲーミングには、依然として重要な課題が存在している [16]。クラウドゲーミングプロバイダの立場から見た課題としては、ゲーム環境の仮想化やサーバにおける負荷分散などといった課題がある。一方、システムのユーザーであるプレイヤーが知覚するゲーム体験の品質の評価指標である Quality of Experience(QoE) を確保することも重要な課題である。クラウドゲーミングのプレイにおける QoE の確保に必要な課題の構成要素としては、以下のようなものがある。

- ストリーミングされるゲーム画面の高品質な画質の担保
- ◆ ゲーム画面のリアルタイムストリーミングに耐えうる、充分なネットワーク帯域の確保
- 伝送データ圧縮や効率的なストリーミング技術
- プレイヤー端末での画面表示やプレイヤーによる操作が画面に反映される までの遅延の最小化

中でもプレイヤーの操作に対する応答性に直結する遅延の問題は重要である。動画配信プラットフォームにおけるライブストリーミングの場合、途切れることなく安定した動画の配信を行うためにバッファリングを行うことで対処する場合がある。しかしクラウドゲーミングは多くの場合、リアルタイムかつインタラクティブな性質を持つコンテンツであるためこの方法を使用することができない。そのため、クラウドサーバ上でのゲーム画面生成の高速化/効率化や、伝送データの圧縮、ネットワーク遅延の最小化などが課題となっている。

クラウドのデータセンターは、通常国内には数箇所しか設置されていない。このため、データセンターに地理的に遠いプレイヤーの端末から接続するとネットワーク遅延が大きくなってしまうという問題がある。データセンターに計算機資源を集約する現在のクラウドアーキテクチャを利用する限り、この遅延を解消することはできない。プレイヤーとクラウド上の計算機資源との間の物理的距離に

起因する遅延の問題解決するためには、プレイヤーの近傍に計算機資源を設置することが必要である。

ところで、多量のタスクを小規模なタスクに分割して、ボランティアの提供する多数のコンピュータリソースに広域に分散して処理するボランティアコンピューティングという枠組みがある。SETI@home[13] や Folding@home[20] に代表されるボランティアコンピューティングプロジェクトが、高エネルギー物理学、分子生物学、医学、天体物理学、気候研究などの分野の研究で利用された。クラウドコンピューティングの枠組みにおいては、クラウドサーバに一極集中したリソースにユーザがアクセスして利用する。それに対し、ボランティアコンピューティングにおいては、広域に分散した一般ユーザーのリソースを活用するという特徴がある。国内に数箇所しか設置されていないクラウドのデータセンターに比べて、広域に分散した一般ユーザーのリソースは地理的に近傍である可能性が高い。この性質を利用し、よりネットワーク遅延の小さい計算機同士での通信でクラウドゲーミングを行えば、遅延の問題を解消する可能性がある。

本研究では、ボランティアが提供する地理的に近傍の遊休コンピュータのリソースを活用することによるクラウドゲーミングシステムを提案する。既存のクラウドゲーミングアーキテクチャにおいては、クラウドのデータセンターでゲームが動作しているために、プレイヤーの端末からデータセンターまでのネットワーク遅延を回避することは不可能である。国内のデータセンターまでのネットワーク遅延は最大50ms程度と言われている(出典がない)。これはゲームプレイにおけるレスポンスの遅延としては無視できない値であり、著しくプレイヤーのQoE低下の原因となり得る。本研究では、プレイヤーの端末からデータセンターまでのネットワーク遅延を削減し、プレイヤーがクラウドゲーミングのプレイを通して体験する画面表示や操作の反映の遅延を最小化することでのプレイヤーのQoEの向上を目的とする。広域に分散したボランティアの提供する遊休コンピュータの中から、プレイヤーの端末から見て地理的に近傍のものを選択し、その上でクラウドゲームサーバを動作させる。これによって遅延の削減を目指す。

本論文の以後の部分は次のように構成されている。2章では、研究分野の背景、 関連研究について述べる。3章では、提案システムの設計について述べる。4章 では、提案システムの実装について述べる。5章では、提案システムの性能評価について述べる。6章では、まとめと今後の展望について述べる。

2. 背景

2.1 クラウドゲーミング

Gaming Anywhere: An Open Cloud Gaming System Huang \circ [19] $\$ Placing Virtual Machines to Optimize Cloud Gaming Experience Hong \circ [18] $\$

2.2 ボランティアコンピューティング

High-Performance Task Distribution for Volunteer Computing Anderson \mathcal{S} [14] $\ensuremath{\mbox{\ensuremath{\upselection}}}$

(EdgeVPN(TinCan) の話は実装の章で)

3. 設計

本章では、従来のクラウドゲーミングにおいてクラウドのデータセンターとプレイヤー端末間の遅延を避けることができないという課題を解決するための、ボランティアコンピューティング資源を活用するクラウドゲーミングシステムを提案する。まず提案システムの概要を述べた後、システムを実装するに当たっての課題について述べる。最後にシステムを構成するコンポーネントとその役割について述べる。

3.1 提案システムの概要

提案システムの概要を図2に示す。提案システムは、クラウドのデータセンターに比べてより近いボランティアが提供する遊休コンピュータでクラウドゲームサーバをホストする。それにより、プレイヤーがクラウドゲーミングのプレイを通して体験する遅延を削減ということを目的とするものである。

システムの構成要素として、プレイヤーPC、クラウド上のボランティアクラウドゲーミングコントローラ、およびボランティアが提供する遊休コンピュータの3つのハードウェアがある。プレイヤーPCは、クラウドゲーミングをプレイするプレイヤーの所有するPCである。遊休コンピュータはボランティアが所有しているコンピュータの、一時的に使用していないコンピュータリソースを貸与している状態のものを指す。ボランティアクラウドゲーミングコントローラはプレイヤーPCと遊休コンピュータのマッチングを行う。

それぞれのハードウェアで動作するソフトウェアの構成要素について述べる。 プレイヤーPCで動作するボランティアクラウド (VC) クライアントエージェント は、プレイヤーの希望に応じてボランティアクラウドゲーミングコントローラに ゲームプレイを要求する。ボランティアクラウドゲーミングコントローラ上で動 作する VC コントローラは、プレイヤーPC から要求を受け取ると遊休コンピュー タとのマッチングを行う。遊休コンピュータ上で動作する VC ホストエージェン トは、VC コントローラからのクラウドゲームの実行要求に応じてクラウドゲー ムサーバの起動を行う。クラウドゲームサーバとクラウドゲームクライアントは、

図 2 提案システムの概要

遊休コンピュータとプレイヤー PC を直接接続してクラウドゲーミングのプレイを実現する。

3.2 実装上の課題

パブリッククラウドやビジネス向けのサーバでクラウドゲーミングサービスを 提供する場合と異なり、提案システムはクラウドゲームサーバをボランティアの 提供するユーザコンピュータ上で実行する。しかしユーザコンピュータは NAT やファイアウォールの背後にあり、また固定 IP アドレスを有しないことが一般 的であるため遊休コンピュータとプレイヤー PC が直接通信することが困難であ る。そのため、提案システムの実装にあたり次の 2 点の課題が生じる。

- クラウド上のコントローラから遊休コンピュータへクラウドゲームの実行等の直接命令を送ることができない
- クラウドゲームサーバ/クライアントを展開する遊休コンピュータとプレイ ヤーPC間での通信において、双方向的な直接通信を展開できない

3.3 構成コンポーネント

本項では各構成要素の詳細を述べる。

3.3.1 VC コントローラ

クラウド上に配備する VC コントローラはゲームをプレイしたいプレイヤーの PC と利用可能な遊休コンピュータをマッチングする役割を果たす。主な機能は 以下の通りである。

- プレイヤーからのゲームプレイ要求を受け付ける
- 最適な遊休コンピュータを発見して割り当てる
- プレイヤー PC と遊休コンピュータが通信を確立するための接続情報を配 布する

マッチングの要件として、プレイヤーPCと遊休コンピュータが接続する際のネットワーク遅延が小さいことがある。そのため、VCコントローラはプレイヤーからのゲームプレイ要求に基づき、利用可能な遊休コンピュータの中から最も遅延の小さくなるものを探す。

3.3.2 VC クライアントエージェント

VC クライアントエージェントは、プレイヤーの希望に応じてボランティアクラウドゲーミングコントローラにゲームプレイの要求をする役割を持つ。プレイしたいゲームやサーバとリンクを張るために必要なネットワーク情報などを付帯して、VC コントローラへゲームプレイの要求を送信する。

3.3.3 VC ホストエージェント

VC ホストエージェントは VC コントローラの実行要求に応じてクラウドゲームサーバの起動を行う役割を果たす。また、プレイヤーが実際にプレイするゲー

ムの起動も行う。起動が完了すると、接続に必要な情報と共に VC コントローラを経由して VC クライアントエージェントに起動完了の通知を送信する。

3.3.4 クラウドゲームサーバ/クライアント

クラウドゲームサーバ/クライアントは遊休コンピュータとプレイヤーPCを接続して、クラウドゲーミングのゲームプレイを提供する役割を果たす。クラウドゲームサーバはゲーム画面をキャプチャして、ビデオストリームとしてクラウドゲームクライアントに送信する。一方で、クラウドゲームクライアントは受け取ったゲーム画面の描画を行う。また、クラウドゲームクライアントはプレイヤーの入力操作をキャプチャしてクラウドゲームサーバ上のゲームの入力となるように送信を行う。

4. 実装

本章では提案システムの実装について述べる。まず3章で述べた設計を実装する際に生じる課題の解決方法について述べた後、システムの動作について述べる。

4.1 VC コントローラとエージェントの連携

VCコントローラと遊休コンピュータ上で動作する VCホストエージェントとの通信の課題については gRPC[17]を用いる。gRPCは Google が開発しているオープンソースの RPC フレームワークで、異なるコンピュータ間情報をやり取りするために使用される。gRPCではクライアントアプリケーションがローカルで実装されたメソッドを使用するかのようにサーバアプリケーションのメソッドを直接呼び出すことができるため、分散アプリケーション等の実装に適している(図3)。サーバ側ではサービスを定義してそのインターフェースを実装する。クライアント側ではサーバと同じメソッドを提供するスタブを介してサーバアプリケーションの機能を使えるようにしているのが特徴である。

gRPCの Response Streaming gRPC という機能は、単一の要求に対して複数のレスポンスを任意のタイミングで返すことが可能である。これを使用することで、VCクライアントが送信した単一のゲームプレイ要求に対して、ACKや起動報告、実行終了時の完了報告、エラーの通知など様々なレスポンスを返すことができる。

4.2 クラウドゲームサーバ/クライアント間の P2P 通信

実際にリモートでのゲームプレイを実現するクラウドゲームサーバとクラウドゲームクライアントには GamingAnywhere を使用する。遊休コンピュータ上に GamingAnywhere サーバ、プレイヤー PC 上に GamingAnywhere クライアントを起動し、GamingAnywhere サーバが展開する RTSP サーバにクライアントが接続することでクラウドゲームのプレイが開始される。

図 3 gRPCの概要

ここで、ユーザコンピュータで動作する Gaming Anywhere サーバ/クライアン ト間で双方向的な直接通信を行えないという問題がある。この問題の解決策とし て、遊休コンピュータおよびプレイヤーPCのファイアウォールを解除する、ある いは特定の通信を許可する設定をするという方法がある。しかし、これはセキュ リティ上の危険や、煩雑な設定をユーザに強いるという課題がある。そこで、本 研究では Gaming Anywhere の通信を行うリンクに対し Edge VPN [9] を使用する。 EdgeVPN は、分散コンピューティング環境のエッジに存在するリソース間の通信 にスケーラブルな VPN オーバレイを展開するためのオープンソースソフトウェ アである。EdgeVPN は IP-over-P2P(IPOP) プロジェクト [25] の進化版である。 IPOPは、個人の端末を対象としたIPベースのP2Pオーバレイであり、一元化さ れたユーザー/グループ管理をサポートしている。EdgeVPN を使用することで、 エッジデバイス同士が、NAT/ファイアウォール、およびクラウドコンピューティ ングリソースの背後にあるネットワークアドレスに透過的に接続し、インターネッ トを介したトラフィックを P2P で暗号化およびトンネリングすることができる。 また、EdgeVPN は XMPP プロトコル [23] を使用してピアとの接続情報を検出お よび交換する。パケット交換とルーティングは分散されているため、スケーラブ ルな P2P オーバレイを展開しつつ、メンバーシップの一元管理も可能である。

EdgeVPN はピア間でカプセル化/暗号化されたイーサネットフレームを伝送する仮想リンクの構築に、Juste ら [24] が開発した TinCan を使用している。TinCan は、XMPP サーバを使用してエンドツーエンドの VPN トンネルをブートストラップすることにより、コントローラとデータパスを分離するモデルを実現している。また、ノードが接続先に自身のパブリック IP やポートを知らせるためのリフレクションサービスとして STUN プロトコル [26] を使用する。一方、制限の強いファイアウォールや Symmetric NAT の背後にあり直接 P2P 接続を構築できないノードがある場合はリレーサービスとして TURN プロトコル [22] を実行するサーバによりトラフィックをプロキシしている。

4.3 システム動作

本節ではシステムの動作のシーケンスについて述べる。まず始めにクラウド 上に存在する XMPP サーバを使用して、プレイヤー PC と遊休コンピュータが gRPC および EdgeVPN のリンクを張るための接続情報をそれぞれに通知する(図 4 矢印 1)。次に、プレイヤーの希望に応じて、プレイヤー PC 上の VC クライアン トエージェントがgRPCクライアントとして、遊休コンピュータで動作するVC ホストエージェント上のgRPCサーバにゲーム起動要求を送信する(矢印2)。こ れを受信した VC ホストエージェントは、クラウドゲームサーバの役割を果たす GamingAnywhere サーバとプレイヤーが指定した所望のゲームを起動し (矢印3)、 GamingAnywhere サーバがゲーム画面のキャプチャを開始した後 (矢印4)、了解 を返す (矢印 5)。その後、遊休コンピュータとプレイヤー PC 間に EdgeVPN の リンクを張り、プレイヤー PC が Gaming Anywhere クライアントを起動して、ト ンネルを介して GamingAnywhere サーバに接続することでゲームプレイを開始 する (矢印 6)。また、ゲームプレイ終了時は Gaming Anywhere クライアントの終 了によって接続の切断が GamingAnywhere サーバに通知されるため、それを観 測することで VC クライアントエージェントは終了を検知し、GamingAnywhere とゲームを終了する (矢印7)。

図4 システム動作

5. 評価

本章では、提案システムの性能評価について述べる。本評価ではボランティアコンピューティングを活用したクラウドゲーミングシステムの実現可能性を評価することを目的とする。また、提案システムが実現可能であるときそれが有用な条件は、プレイヤーPCからデータセンターよりもボランティアの提供する遊休コンピュータに接続する方がネットワーク遅延が小さい状況である。提案システムの実現可能性を評価するため、通信性能の評価および、ゲームプレイにおけるQoEを測定するためにフレームレートの評価も行う。

まず、評価を行う環境について述べる。次に、クラウドゲームサーバ/クライアント間の通信性能の評価について述べる。その後、ゲームプレイ時のフレームレートの評価について述べる。最後に評価についての考察を述べる。

5.1 評価環境

既存のクラウドゲーミングシステムはクラウドのデータセンター上でクラウドゲームサーバが動作している。これに対し、提案システムはボランティアが提供する遊休コンピュータ上でクラウドゲームサーバを動作させることで、プレイヤーからデータセンターまでの遅延を削減することを目指した。一般にユーザコンピュータからデータセンターへの遅延は大きくても50ms程度であるが、提案システムでのゲームプレイ中に発生する遅延がこの基準を下回るかどうかを評価する。また、提案システムの通信を実現するために組み込んだトンネリングのオーバヘッドについても評価を行う。

評価を行う環境を図5のように構築した。ボランティアクラウドゲーミングコントローラは用意せず、クラウドサーバ上には EdgeVPN のリンクを確立するために必要な XMPP サーバのみを用意した。プレイヤー PC の役割を果たす sicilia では gRPC クライアントと Gaming Anywhere クライアントが動作する。また、遊休コンピュータの役割を果たす firenze では gRPC サーバ、Gaming Anywhere サーバおよびゲームが動作する。sicilia と firenze はそれぞれ Ubuntu 20.04 で動作するマシンを用い、1Gbps のリンクを持つネットワークで接続した。このリンクに遅

図 5 評価環境

延挿入や帯域制限をかけることで様々なネットワーク環境での評価を実現する。

5.2 クラウドゲームサーバ/クライアント間の通信性能

5.2.1 リンクに対する生の遅延の大小の影響

siciliaと firenze の間のネットワーク遅延の大小によって、Gaming Anywhere サーバ/クライアント間のリンクを張るために使用している Edge VPN のオーバーヘッドがリンクの遅延に与える影響について調査した。tc[6] を用いてリンクに 0-60ms の遅延を挿入し、Edge VPN を利用する場合と直接接続する場合の遅延増加の様子 ping[15] を用いて計測した。計測遅延と挿入遅延の値の差をプロットしたものが図 6 である。計測値には ping を 10 回実行した際の値の平均値を使用している。

直接通信に比べて、EdgeVPNを利用する場合は平均して 1ms 程度遅延のオーバヘッドが存在することがわかる。また、遅延のオーバーヘッドは挿入遅延の大きさに関わらずほぼ一定であるといえる。

5.2.2 リンクに対する遅延の大小のスループットへの影響

sicilia と firenze の間のネットワーク遅延の大小の影響で、GamingAnywhere サーバ/クライアント間のリンクで展開した EdgeVPN がリンクのネットワークス

図 6 EdgeVPN リンクに対する遅延挿入の影響

ループットに与える影響について調査した。5.2.1 と同様に tc を用いてリンクに 0-60ms の遅延を挿入し、EdgeVPN を利用する場合と直接接続する場合の帯域減 少の様子を iperf[5] を使用して計測した。計測値は iperf を 60 秒間の設定で 10 回 実行した結果を用いている。EdgeVPN を利用する通信についての結果をプロットしたものが図 7、直接接続する通信についての結果をプロットしたものが図 8 である。

EdgeVPN を利用する通信において、スループットが指数関数的に減少していることがわかる。一方で、最も大きい 60ms まで遅延が増大した状況下においても 40Mbps 程度のスループットを GamingAnywhere サーバ/クライアント間のリンクにおいて維持できている。(これは許容量であるみたいなことを関連研究のとこ書いてから書く)

図7 EdgeVPN リンクへの遅延挿入の帯域への影響

5.3 ゲームプレイ時のフレームレート

5.3.1 ネットワーク帯域の大小の影響

提案システムを使用して実際にゲームをプレイしている間、sicilia と firenze の間のネットワーク帯域幅のサイズがゲーム画面のフレームレートにどのように影響するかを調査した。

実験は Gaming Anywhere サーバの設定でフレームレートを 60fps に設定した 状態で行った。ゲームのジャンルにより画面の動きが激しく、フレームレートの 変動の影響が大きいものとそうでないものがあるため、複数のジャンルから選ん だゲームを実験に使用した。実験に使用したゲームは MMORPG に分類される Albion Online[3]、FPS/Pクションに分類される Red Eclipse 2[7]、およびボード ゲームである Simply Chess[8] の3種類である。いずれも PC ゲームのダウンロード販売等を行うプラットフォームである Steam[11] で公開されている、Linux に 対応したゲームである。

GamingAnywhere サーバ/クライアント間のリンクに tc を使用して帯域制限を施し、EdgeVPN を利用する場合と直接接続する場合のそれぞれについてフレームレートの変化を観測した。帯域制限は、制限をかけていない1Gbps および100Mbps

図 8 EdgeVPN を使用していないリンクへの遅延挿入の帯域への影響

と 10Mbps の 3 つの条件で行った。計測値は Gaming Anywhere クライアントが定期的に出力するフレームレートの値を 10 回分計測し、その平均値を使用している。 Albion Online をプレイした際の結果を図 9、Red Eclipse 2 をプレイした際の結果を図 10、Simply Chess をプレイした際の結果を図 11 にそれぞれ示した。

動きのあまり少ないボードゲームのSimply Chessのプレイ中においてはEdgeVPNを利用するかどうかに関わらず、帯域制限下でもほぼ60fpsのフレームレートを保っている。また、常に画面の少なくとも一部に動きが生じるジャンルであるMMORPGのAlbion Onlineのプレイ中においても、帯域制限下で60fpsを大きく下回ることなくパフォーマンスが安定している。さらに、常に画面全体に激しい動きが発生するFPS/アクションに分類されるRed Eclipse 2のプレイ中においても、帯域制限下でフレームレートの低下は確認されなかった。

5.4 考察

どれぐらい数値が良ければ既存に勝てるのかみたいなこと

図 9 帯域制限下でのゲームプレイ時のフレームレートの変化 (Albion Online (MMORPG) プレイ時)

図 10 帯域制限下でのゲームプレイ時のフレームレートの変化 (Red Ecliplse 2 (FPS, Action) プレイ時)

図 11 帯域制限下でのゲームプレイ時のフレームレートの変化 (Simply Chess (ボードゲーム) プレイ時)

6. まとめと今後の課題

今後、ボランティアクラウドゲームコントローラの実装。遊休コンピュータ、 プレイヤー PC の数を増やしての動作での負荷試験。

謝辞

ありあとやす

参考文献

- [1] OnLive GAMES ON DEMAND, 2015. http://onlive.com/.
- [2] ゲームストリーミングサービスの「OnLive」がサービスを閉鎖、資産をソニーが取得, 2015. https://automaton-media.com/articles/newsjp/onlive-sony-gaikai/.
- [3] Albion Online: The Fantasy Sandbox MMORPG, 2020. https://albiononline.com/en/home.
- [4] GeForce NOW あなたの PC ゲームをどこでもプレイするための「力」, 2020. https://www.nvidia.com/ja-jp/geforce-now/.
- [5] iperf3, 2020. https://software.es.net/iperf/.
- [6] iproute2, 2020. https://wiki.linuxfoundation.org/networking/iproute2.
- [7] Red Eclipse, 2020. https://www.redeclipse.net/.
- [8] Simply Chess, 2020. http://bluelinegamestudios.com/simply-chess/.
- [9] Open-source VPN for Edge Computing, 2021. https://edgevpn.io/.
- [10] PlayStaion Now, 2021. https://www.playstation.com/ja-jp/ps-now/.
- [11] Simply Chess, 2021. https://store.steampowered.com/?l=japanese.
- [12] Stadia One place for all the ways we play, 2021. https://stadia.google.com/.
- [13] David Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. SETI@home: An Experiment in Public-Resource Computing. Commun. ACM, 45:56-61, 11 2002.

- [14] David P Anderson, Eric Korpela, and Rom Walton. High-performance task distribution for volunteer computing. In *First International Conference on e-Science and Grid Computing (e-Science'05)*, pages 8–pp. IEEE, 2005.
- [15] Robert Braden. RFC1122: Requirements for Internet hosts-communication layers, 1989.
- [16] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu, Victor CM Leung, and Cheng-Hsin Hsu. A survey on cloud gaming: Future of computer games. *IEEE Access*, 4:7605–7620, 2016.
- [17] The Linux Foundation. gRPC A high performance, open source universal RPC framework, 2020. https://grpc.io/.
- [18] Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu. Placing Virtual Machines to Optimize Cloud Gaming Experience. IEEE Transactions on Cloud Computing, 3(1):42–53, 2014.
- [19] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. GamingAnywhere: an open cloud gaming system. In *Proceedings of the 4th ACM multimedia systems conference*, pages 36–47, 2013.
- [20] Stefan M Larson, Christopher D Snow, Michael Shirts, and Vijay S Pande. Folding@ Home and Genome@ Home: Using distributed computing to tackle previously intractable problems in computational biology. arXiv preprint arXiv:0901.0866, 2009.
- [21] 株式会社 KADOKAWA Game Linkage (KADOKAWA グループ). 2019 年世界ゲームコンテンツ市場は前年比約 2 割増の 15 兆 6898 億円。国内は 10 年連続で成長! 過去最高の 1 兆 7330 億円に。~『ファミ通ゲーム白書 2020』発刊~, 2020. https://prtimes.jp/main/html/rd/p/000007188.000007006.html.

- [22] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). Technical report, RFC 5766, 2010.
- [23] Peter Saint-Andre et al. Extensible Messaging and Presence Protocol (XMPP): Core. 2004.
- [24] Pierre St Juste, Kyuho Jeong, Heungsik Eom, Corey Baker, and Renato Figueiredo. Tincan: User-defined p2p virtual network overlays for ad-hoc collaboration. EAI Endorsed Transactions on Collaborative Computing, 1(2), 2014.
- [25] Kensworth Subratie, Saumitra Aditya, Vahid Daneshmand, Kohei Ichikawa, and Renato Figueiredo. On the Design and Implementation of IP-over-P2P Overlay Virtual Private Networks. *IEICE Transactions on Communications*, 103(1):2–10, 2020.
- [26] Dan Wing, Philip Matthews, Rohan Mahy, and Jonathan Rosenberg. Session Traversal Utilities for NAT (STUN). RFC5389, October, 2008.