DS Sciences Physiques MathSpé

calculatrice: non autorisée

durée: 4 heures

Sujet

•	
Réflexion d'une onde électromagnétique.	2
I. <u>Onde incidente</u>	2
II. Onde réfléchie	
III. <u>Onde totale</u>	2
IV. Onde entre deux plans.	
Propagation d'une onde dans un milieu diélectrique dilué.	4
I.Modèle de Thomson	4
A. Préliminaires.	4
B. Force de rappel élastique.	4
C.Mouvement de l'électron	4
D. Atome dans un champ extérieur	5
E. Mouvement avec amortissement.	
II. <u>Indice d'un milieu diélectrique (isolant) dilué</u>	5
A.Densité volumique de courant dans le milieu	5
B. Vecteur d'onde complexe	6
C. <u>Indice et loi de Cauchy</u> .	6
Champs E et B dans un solénoïde	8
I.Champ B dans un solénoïde en magnétostatique.	8
A. Nappe volumique.	8
B. Nappe surfacique.	
II. Champs dans un solénoïde illimité en régime lentement variable.	10
A. Première étape.	10
B. Deuxième étape.	11
C.Condition à remplir	12

Réflexion d'une onde électromagnétique

I. Onde incidente

Une onde électromagnétique polarisée rectilignement selon \vec{u}_z se propage dans le vide à la vitesse c dans le demi-espace défini par x < a. Cette onde se dirige vers un miroir métallique parfait, plan, noté (M_1) , d'équation x = a, sous l'angle d'incidence θ . Son champ électrique s'écrit: $\vec{E}_{inc} = E_0 \cos(\omega t - k_x x - k_y y) \vec{u}_z$ (avec $k_x > 0$ et $k_y > 0$).

- 1. Écrire le champ \vec{E}_{inc} en notation complexe soit : \vec{E}_{inc} .
- 2. Donner l'expression du vecteur d'onde \vec{k} en fonction de k_x et k_y dans la base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$.
- 3. Exprimer l'angle d'incidence θ (défini positif) en fonction des constantes k_x et k_y .
- 4. Rappeler sans démonstration l'équation de propagation et retrouver la relation entre k_x , k_y , ω et c .
- 5. Déterminer les trois composantes complexes du vecteur champ magnétique de l'onde : \vec{B}_{inc} .
- 6. Montrer avec précision que le champ \vec{E}_{inc} envisagé seul dans le vide ne satisfait pas aux équations de passage au niveau du plan M_1 .

II. Onde réfléchie

On envisage l'existence d'une onde réfléchie $\vec{E}_{ref} = E'_0 \exp j(\omega t - k'_x x - k'_y y) \vec{u}_z$.

- 7. La réflexion de l'onde incidente sur le plan (M_1) se produit conformément aux lois de Snell-Descartes. Exprimer k'_x et k'_y en fonction de k_x et k_y .
- 8. En écrivant l'équation de passage pour le champ $\underline{\vec{E}}$ au niveau du plan, déterminer \underline{E}'_0 .
- 9. Vérifier alors que le coefficient de réflexion \underline{r} pour le champ électrique est bien égal à -1.

III. Onde totale

10. Déterminer alors les champs résultants \vec{E} et \vec{B} dans le vide en notation réelle.

IV. Onde entre deux plans

Un second miroir métallique parfait (M_2) est placé en x=0 de sorte que l'onde existe dans le vide dans la région 0 < x < a (y varie de 0 à l'infini).

11. A quelle condition concernant k_x la solution obtenue précédemment convient-elle?

On suppose désormais $k_x = \pi/a$ et on pose $\omega_0 = c\pi/a$.

12. Écrire la relation entre ω , ω_0 , k_v , c.

13.On suppose $\omega > \omega_0$.

- Trouver \vec{E} et \vec{B}
- Déterminer la valeur moyenne dans le temps du vecteur de Poynting
- En déduire l'expression de la puissance moyenne qui pénètre entre les deux plans, dans le sens positif de l'axe y, pour une surface rectangulaire S perpendiculaire à Oy de côté $\Delta x = a$ et $\Delta z = b$.

14.On suppose $\omega < \omega_0$

- Trouver \vec{E} et \vec{B} .
- Déterminer la valeur moyenne dans le temps du vecteur de Poynting.
- En déduire l'expression de la puissance moyenne qui pénètre entre les deux plans, dans le sens positif de l'axe y, pour une surface rectangulaire S perpendiculaire à Oy de côté $\Delta x = a$ et $\Delta z = b$.

Propagation d'une onde dans un milieu diélectrique dilué

Les deux parties sont relativement indépendantes.

I. Modèle de Thomson

En 1904, le physicien anglais Sir Joseph John Thomson (1856-1940) proposa le modèle suivant pour l'atome d'hydrogène.

- Il est constitué d'une sphère de centre O et de rayon a.
- La charge positive e de l'atome est répartie uniformément dans le volume intérieur de cette sphère (« l'ion »).
- La sphère (« l'ion ») est supposée fixe dans un référentiel galiléen auquel on associe le repère orthonormé direct $O_1(\vec{u}_x, \vec{u}_y, \vec{u}_z)$.
- L'électron de masse m et de charge -e se déplace librement à l'intérieur de la sphère ; on note $\vec{r} = \vec{OM}$ son vecteur position.
- On néglige l'interaction gravitationnelle devant l'interaction électromagnétique.

La vitesse de la lumière dans le vide est notée c. La permittivité du vide est notée ε_0 .

On utilise ici ce modèle pour une molécule ou un atome quelconque à un électron.

A. Préliminaires

On considère une boule de rayon R, de centre \mathcal{O} uniformément chargée en volume par une charge \mathcal{Q} .

- 1. Que peut-on dire du champ créé par cette boule en un point M en tenant compte des symétries et des invariances. Justifier avec soin.
- 2. Établir l'expression du champ électrostatique créé en tout point par cette boule.

B. Force de rappel élastique

3. Quelle est l'expression de la force \vec{F} ressentie par l'électron en fonction des données concernant l'atome? On supposera ici que l'électron reste toujours à l'intérieur de la boule « ion ».

On pose
$$\vec{F} = -m\omega_0^2 \vec{r}$$
.

4. Donner l'expression de ω_0 .

C. Mouvement de l'électron

On néglige pour l'instant tout amortissement du mouvement de l'électron.

- 5. Montrer que le mouvement de l'électron est plan.
- 6. Donner la loi horaire du mouvement de l'électron dans le cadre de ce modèle pour les conditions initiales suivantes : à t=0, $\vec{r}=r_0\vec{u}_x$ et $\vec{v}=v_0\vec{u}_z$.

- 7. Tracer l'allure de la trajectoire, le plan de figure étant celui de la trajectoire.
- 8. Exprimer la fréquence f_0 du mouvement et la longueur d'onde λ_0 associée. On suppose $\lambda_0 = 0,1 \,\mu\,m$. Déterminer f_0 .

D. Atome dans un champ extérieur

L'atome est placé dans un champ extérieur uniforme et permanent $\vec{E} = E \vec{u}_z$.

- 9. Déterminer la position d'équilibre de l'électron en présence de ce champ (l'ion est supposé fixe et l'électron est supposé rester à l'intérieur de l'ion).
- 10. Exprimer le moment dipolaire \vec{p} de l'atome. On définit α_0 , polarisabilité statique de l'atome, tel que $\vec{p} = \alpha_0 \varepsilon_0 \vec{E}$. Exprimer α_0 en fonction de R et donner son unité.

E. Mouvement avec amortissement

L'électron perturbé se trouvant immobile à la distance $r_0 < a$ du centre de l'ion, on supprime le champ extérieur \vec{E} à la date t=0. On tient compte en plus d'une force d'amortissement pour l'électron proportionnelle à la vitesse de la forme $\vec{f} = -m\frac{\vec{v}}{\tau}$. On suppose $\tau = 10^{-8} s$.

- 11. Écrire l'équation différentielle vérifiée par $\vec{r}(t)$ puis par $\vec{p}(t)$. On écrira l'équation différentielle sous la forme $\frac{d^2\vec{p}}{dt^2} + \frac{\omega_0}{Q} \frac{d\vec{p}}{dt} + \omega_0^2 \vec{p} = \vec{0}$. Donner l'expression de Q.
- 12. Calculer la valeur numérique du coefficient de qualité Q en utilisant les valeurs numériques données plus haut. En déduire que l'amortissement est très faible.
- 13.En déduire la solution pour $\vec{p}(t)$ en supposant $\vec{p}(t=0) = \vec{p}_0 = p_0 \vec{u}_z$. On justifiera que la pulsation d'oscillation peut être considérée égale à ω_0 et on écrira alors la solution simple obtenue dans le cadre de cette approximation.

II. Indice d'un milieu diélectrique (isolant) dilué

On considère le modèle simplifié suivant pour un milieu isolant dilué. Une onde plane $\vec{E}(M,t) = E(\vec{r},t)\vec{u}_z$ (résultant de l'onde incidente et des ondes émises par les charges mobiles du milieu qui oscillent) notée en complexe $\vec{E} = E_0 \exp i(\omega t - \vec{k} \, \vec{r}) \vec{u}_z$ se propage dans ce milieu , exerçant des forces sur les charges mobiles. Chaque atome du milieu est décrit par un modèle analogue au modèle utilisé précédemment (ion fixe, modèle de l'électron élastiquement lié). Le nombre d'électrons à considérer par unité de volume est N.

On posera
$$\omega_P^2 = \frac{N e^2}{m \varepsilon_0}$$
.

A. Densité volumique de courant dans le milieu

On considère un électron mobile selon un axe z dont la position d'équilibre en l'absence d'onde incidente est z=0. Son mouvement est donné par $-m\omega_0^2z-m\frac{\omega_0}{Q}\frac{dz}{dt}-eE=m\frac{d^2z}{dt^2}$.

14. Indiquer le sens physique des différents termes figurant dans l'équation différentielle proposée.

- 15.On n'a pas tenu compte de l'action du champ magnétique de l'onde. Justifier sachant que la vitesse de l'électron est non relativiste et en supposant que la relation entre $\|\vec{E}\|$ et $\|\vec{B}\|$ est du même ordre de grandeur que celle dans le vide..
- 16. Justifier que, bien que le champ diffère selon la position de l'électron, on puisse le traiter comme uniforme à l'échelle de l'atome considéré. Pour cela, on rappelle que le rayon de l'atome est de l'ordre du nm et on supposera que l'onde étudiée correspond à de la lumière visible. Dans la suite de cette partie, le terme $-\vec{k}\vec{r}$ figurant dans \vec{E} est donc traité comme une constante.
- 17.On se place en régime sinusoïdal forcé, déterminer en travaillant en complexe l'expression de \underline{z} puis de la vitesse $\underline{\vec{v}} = \underline{\hat{z}} \, \vec{u}_z$ de l'électron étudié en fonction de e , m , ω_0 , ω , Q et \vec{E} .
- 18.Le moment dipolaire de l'atome s'écrit: $\vec{p} = \underline{\alpha} \, \varepsilon_0 \vec{E}$. Exprimer la polarisabilité dynamique complexe $\underline{\alpha}$.
- 19.On définit la polarisation volumique complexe (grandeur dépendant évidemment du point et du temps) par $\vec{P} = N \vec{p} = X \varepsilon_0 \vec{E}$. Écrire X en fonction de ω_P , ω_0 , ω , Q.
- 20. Montrer que dans le milieu, la densité volumique de courant s'exprime alors par $\vec{j} = \frac{\partial \vec{P}}{\partial t}$.

B. Vecteur d'onde complexe

21. Écrire les équations de Maxwell dans ce milieu pour l'onde $\vec{E} = E_0 \exp i(\omega t - \vec{k} \vec{r}) \vec{u}_z$. On pourra utiliser la notation X dans les résultats de cette question.

On posera $\vec{k} = k \vec{u}_x$ et dans la suite, on s'intéressera à une onde se propageant vers les x croissants.

- 22. Déterminer la relation de dispersion du milieu sous la forme $k^2 = \frac{\omega^2}{c^2} (1 + f(\omega_P, \omega_0, \omega, Q))$ où l'expression de la fonction $f(\omega_P, \omega_0, \omega, Q)$ est à préciser.
- 23.On pose k = k' + ik'' avec k' et k'' réels. Écrire en notation réelle l'expression du champ \vec{E} en utilisant, sans préciser les expressions, les notations k' et k''. Justifier les signes de k' et k'' Quel phénomène physique est traduit par k''?
- 24. Pour avoir une première idée des variations de k' et de k'' on étudie le cas limite Q infini. Étudier le signe de k^2 et donner l'allure des courbes |k'| et |k''| en fonction de ω . En se contentant de cette première approche simplifiée, indiquer dans quelle(s) zone(s) de pulsations on peut considérer le diélectrique comme transparent à l'onde.

C. Indice et loi de Cauchy

On se place dans le cas Q infini.

- 25. Justifier la relation définissant l'indice n du milieu: $k = n \frac{\omega}{c}$.
- 26. Donner l'expression de n^2 pour le diélectrique étudié.
- 27. Vérifier que pour la lumière visible, on se trouve bien dans la zone de transparence du milieu.

On rappelle que ω_0 correspond à $\lambda_0 = 0.1 \,\mu \, m$.

28.On considère des pulsations telles que $\omega^2 \ll \omega_0^2$. On travaille au premier ordre en $\frac{\omega^2}{\omega_0^2}$. Simplifier l'expression de n^2 et montrer que l'indice du milieu vérifie la loi de Cauchy: $n = A + \frac{B}{\lambda^2}$ où λ désigne la longueur d'onde de la lumière dans le vide.

Champs E et B dans un solénoïde

Données:

En cylindriques:

$$\vec{\nabla} \wedge \vec{A} = \left[\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_{\theta}}{\partial z} \right] \vec{u_r} + \left[\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right] \vec{u_{\theta}} + \left[\frac{1}{r} \frac{\partial (r A_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \right] \vec{u_z}$$

$$\vec{\nabla} \vec{A} = \frac{1}{r} \frac{\partial (r A_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

I. Champ B dans un solénoïde en magnétostatique

A. Nappe volumique

Pour étudier le champ magnétique créé par un solénoïde en régime permanent, on considère une nappe cylindrique épaisse de courant volumique (voir *figure* 1).

On travaille dans la base cylindrique directe $(\vec{u}_r, \vec{u}_\theta, \vec{u}_z)$.

Ce solénoïde épais est équivalent à une densité de courant volumique $\vec{j} = j\vec{u}_{\theta}$ (j est uniforme et indépendant du temps) de grande dimension suivant z (le solénoïde sera supposé infini selon z), de rayon intérieur R et de rayon extérieur R' = R + e.

Figure 1 : Nappe de courant étudiée le solénoïde est en réalité infini selon z

- 1. Quelle est l'unité de B (champ magnétique)?
- 2. Soit un point M quelconque. Existe-t-il un ou des plans de symétrie contenant M. Existe-t-il

un ou des plans d'antisymétrie contenant M. Préciser clairement le ou les plans. Lequel (lesquels) de ce(s) plan(s) suffisent pour conclure quant à la direction de $\vec{B}(M)$. On obtient finalement $\vec{B} = B\vec{u}$. Préciser le vecteur unitaire \vec{u} et justifier que B ne dépend que d'une seule coordonnée cylindrique.

Pour déterminer \vec{B} , on peut utiliser l'équation locale de Maxwell-Ampère pour la magnétostatique.

- 3. Rappeler l'équation de Maxwell-Ampère en magnétostatique.
- 4. En déduire l'équation différentielle vérifiée par B . Quelles sont les trois régions à étudier .On précisera l'équation différentielle pour chacune de ces trois régions.
- 5. Déterminer B en tout point de l'espace en respectant la continuité de \overline{B} dans le cas d'une répartition volumique de courant. Il reste normalement une constante arbitraire à déterminer.
- 6. On indique que le champ magnétique est nul à l'extérieur du solénoïde. En déduire \vec{B} en tout point de l'espace.

On se propose de recommencer la détermination de \vec{B} en partant cette fois du théorème d'Ampère pour la magnétostatique.

7. Retrouver le théorème d'Ampère pour la magnétostatique en partant de l'équation de Maxwell-Ampère pour la magnétostatique.

Figure 2: Contours

8. En admettant que le champ magnétique est nul à l'extérieur du solénoïde et en utilisant le théorème d'Ampère sur les contours proposés à la figure 2, retrouver l'expression du champ magnétique en tout point. On justifiera avec soin les étapes du calcul.

B. Nappe surfacique

On fait alors le passage à la limite suivant: $e \rightarrow 0$, $j \rightarrow \infty$, le produit je restant constant. La

distribution de courant est alors celle d'un cylindre parcouru par un courant surfacique $\vec{j}_S = j_S \vec{u}_\theta$.

- 9. Montrer que $j_s = je$.
- 10. Que devient l'expression de \vec{B} (en fonction de j_s). Vérifier avec précision la relation de passage à la traversée d'une nappe de courant surfacique. On rappelle les équations de passage:

$$\vec{E}_{2}(M) - \vec{E}_{1}(M) = \frac{\sigma(M)}{\varepsilon_{0}} \vec{n}_{1 \to 2}$$
(au (au voisinage voisinage de M dans de M dans le milieu le milieu le milieu 2)
$$\vec{B}_{2}(M) - \vec{B}_{1}(M) = \mu_{0} \vec{j}_{S}(M) \wedge \vec{n}_{1 \to 2}$$
(au (au (au voisinage voisinage voisinage voisinage de M dans de M dans le milieu le milieu le milieu 2)
2)
$$\vec{E}_{1}(M) = \frac{\sigma(M)}{\varepsilon_{0}} \vec{n}_{1 \to 2} \text{ est la normale en M du milieu 1 vers le milieu 2}$$

II. Champs dans un solénoïde illimité en régime lentement variable.

L'intensité dans le solénoïde est désormais alternative de pulsation ω . La densité surfacique de courant est notée en complexes: $\vec{j}_S = j_{S,max} \exp(i\,\omega\,t)$. Il existe alors non seulement un champ magnétique \vec{B} mais aussi un champ électrique \vec{E} . Dans la suite, le champ sur l'axe sera toujours écrit $\vec{B}(r=0,t)=B_0\exp(i\,\omega\,t)$.

11. Montrer que $\vec{E}(M,t)$ est de la forme $\vec{E}(M,t) = E(M,t)\vec{u}_{\theta} = E(r,t)\vec{u}_{\theta}$.

A. Première étape

On admet en première approximation que l'on peut travailler dans le cadre de l'approximation des régimes quasistationnaires magnétiques. Dans ce cas, le champ \vec{B} se calcule comme en magnétostatique sauf que cette fois, le courant donc le champ dépendent du temps. On note $\vec{\underline{B}}(M,t) = \vec{\underline{B}}_0(r) \exp(i\,\omega t)$. On note $\vec{\underline{E}}(M,t) = \vec{\underline{E}}_0(r) \exp(i\,\omega t)$.

- 12.Écrire $\underline{\vec{B}_0}(r)$ pour r < R et r > R en fonction de B_0 . Préciser B_0 en fonction de $j_{S,max}$ et éventuellement des autres données du problème.
- 13. Rappeler l'équation de Maxwell-Ampère et l'équation de Maxwell-Faraday.
- 14.Retrouver en partant de ces équations, les formes intégrales correspondantes: le théorème d'Ampère généralisé et la relation de Faraday. L'une des deux équations de Maxwell citée ci-

dessus n'est pas vérifiée si l'on suppose $\vec{E} = \vec{0}$ et permettra donc d'accéder à la connaissance de \vec{E} . Quelle est cette équation?

- 15. En utilisant cette équation locale, déterminer $\underline{\vec{E}}_0(r)$ pour r < R et r > R.
- 16.On peut déterminer \vec{E} en utilisant la forme intégrale au lieu de l'équation locale précédente. Quels contours devra-t-on choisir pour cette détermination, ceux de la *figure* 3 ou ceux de la *figure* 4 . Déterminer $\vec{E}_0(r)$ par cette méthode.

Figure 3: Contours

Figure 4: Contours

B. Deuxième étape

- 17. Si l'on adopte pour \vec{B} et pour \vec{E} les expressions obtenues ci-dessus, l'une des deux équations de Maxwell citée ci-dessus n'est plus vérifiée. Quelle est cette équation?
- On se propose de corriger l'expression obtenue pour \vec{B} en posant $\underline{\vec{B}}(M,t) = [\vec{B}_0(r) + \vec{B}_1(r)] \exp(i\omega t)$. Le terme correctif est choisi nul en r=0.
- 18. Montrer que le terme correctif $\underline{\vec{B}_1}(r)$ vérifie $\oint_{\mathcal{C}} \underline{\vec{B}_1}(r) d\vec{l} = \varepsilon_0 \mu_0 i \omega \iint_{S} \underline{\vec{E}_0} d\vec{S}$ en partant de l'équation locale de Maxwell évoquée.
- 19. On se limite à la région intérieure au solénoïde. Déterminer $\vec{B_1}(r)$ pour r < R en adoptant un des contours proposés à la *figure* 3 ou à la *figure* 4.

C. Condition à remplir

20.On suppose dans l'approximation des régimes quasi stationnaires ARQS que les champs sont donnés par la première approximation. On admet que ceci est acceptable si le terme correctif pour \vec{B} à l'intérieur du solénoïde est négligeable par rapport à l'expression obtenue pour \vec{B} à l'issue de la première étape. Déterminer la condition à remplir.

Réponses

Réflexion d'une onde électromagnétique

1)
$$\overrightarrow{E}_{inc} = E_0 \cos (\omega t - k_x x - k_y y) \overrightarrow{u_x}$$

$$\overrightarrow{E}_{inc} = E_0 \exp j_{-}(\omega t - k_x x - k_y y) \overrightarrow{u_x}$$

3)
$$\overrightarrow{E}_{inc} = E_0 \exp g(\omega t - \overrightarrow{K} \overrightarrow{r})$$

$$\begin{vmatrix} k_z & z \\ k_y & y \\ (\overrightarrow{u_z}, \overrightarrow{u_y}, \overrightarrow{u_z}) & 0 \end{vmatrix}$$

3)
$$k_x = k \cos \theta$$
 avec $k = V k_{x^2} + k_{y^2}$
 $k_y = k \sin \theta$

On connaît sin θ , cos θ mais on jeut aussi donner tan θ

$$tan \theta = \frac{k_x}{k_z}$$

$$\theta = \tan^{-1}\left(\frac{K_{\pm}}{K_{\infty}}\right)$$

(une seule détormisation possible de θ dans la mesure où l'angle θ est entre 0 et $\frac{T}{2}$ - module 2T -)

$$\Delta \vec{E} - \frac{1}{c^2} \frac{3c\vec{E}}{3t^2} = \vec{O}$$

On projette selon uz

$$\Delta E_{\text{inc}} - \frac{1}{c^2} \frac{\delta^2 E_{\text{inc}}}{\delta t^2} = 0$$

$$\frac{\delta^2 E_{\text{inc}}}{\delta x^2} + \frac{\delta^2 E_{\text{inc}}}{\delta y^2} - \frac{1}{c^2} \frac{\delta^2 E_{\text{inc}}}{\delta t^2} = 0$$

$$\omega_{\text{in}} \text{ passe aux complexes}:$$

$$\frac{\delta^2 E_{\text{inc}}}{\delta x^2} + \frac{\delta^2 E_{\text{inc}}}{\delta y^2} - \frac{1}{c^2} \frac{\delta^2 E_{\text{inc}}}{\delta t^2} = 0$$

$$(-\delta k_{x})^2 E_{\text{inc}} + (-\delta k_{y})^2 E_{\text{inc}} - \frac{1}{c^2} (3\omega)^2 E_{\text{inc}} -$$

5) Equation de Maxwell-Faraday-:

$$rot = -\frac{kE}{8t}$$
 $-\frac{k}{2}$
 $= -\frac{k}{8t}$
 $-\frac{k}{2}$
 $= -\frac{k}{8}$
 $= -\frac{$

6) On sait que le champét tengentiel doit être continu en re= a.

On dans le métal parfait É est nul.

on devrait donc révisier (selon 107)

Einc (x=a, y, t) = E_{metal} (vide)

Eo exp $f(wt-k_{x}a-k_{y}y) \stackrel{?}{=} 0$ $\forall t \forall y$ ce que n'est pao viai.

De manière évidente :

$$k'_{x} = -k_{x}$$

$$k'_{y} = k_{y}$$

Donc ce clamp doit s'annuler dans le vide en x=a.

Einc
$$(x=a, y, t)$$
 + Eref $(x=a, y, t)$ = 0
Eo exp $f(wt-k_xa-k_yy)$ + E'o exp $f(wt-k_ya-k_y'y)$ = 0
Eo exp $f(wt-k_xa-k_yy)$ + E'o exp $f(wt+k_xa-k_yy)$ = 0
Eo exp $(-jk_xa)$ + E'o exp (jk_xa) = 0

E' =- E exp (-2 + k,a)

 $\Gamma = \frac{\text{Eref}(x=a, y, t)}{\text{Einc}(x=a, y, t)}$ $= \frac{-E_0 \exp(-2yk_x a) \exp(wt + k_x a - k_y y)}{E_0 \exp(yt + k_x a - k_y y)}$ $\Gamma = -1$

10)
$$\vec{E} = \begin{bmatrix} E_0 \exp 3(\omega t - k_2 x - k_3 y) - E_0 \exp 3(\omega t - k_2 (2a - x) - k_3 y) \end{bmatrix} \vec{k}_3$$
 $= E_0 \exp 3(\omega t - k_3 y) \left[\exp (-3k_2 x) - \exp (-3k_2 (2a - x)) \right] \vec{k}_3$
 $= E_0 \exp 3(\omega t - k_2 a - k_3 y) \left[\exp 3k_2 (a - x) - \exp - 3k_2 (a - x) \right] \vec{k}_3$
 $\vec{E} = E_0 \exp 3(\omega t - k_2 a - k_3 y) 23 \sin \left[k_2 (a - x) \right] \vec{k}_3$
 $\vec{E} = -2E_0 \sin \left(k_2 (a - x) \right) \sin \left(\omega t - k_2 a - k_3 y \right) \vec{k}_3$
 $\vec{E} = -2E_0 \sin \left(k_2 (a - x) \right) \sin \left(\omega t - k_2 a - k_3 y \right) \vec{k}_3$

Pour Mouver
$$\overrightarrow{B}$$
 $\overrightarrow{RSTE} = -\frac{3\overrightarrow{B}}{3t}$
 $\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{3}{3}\overrightarrow{B}$
 $\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{3}{3}\overrightarrow{B}$
 $\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{3}{3}\overrightarrow{B}$
 $\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{3}{3}\overrightarrow{B}$

$$\frac{B_{x}}{B_{y}} = \frac{-3k_{y}E}{-3\omega} = \frac{k_{y}E}{\omega} = \frac{k_{y}E}{\omega}$$

$$= \frac{-3E}{\omega} = -\frac{3}{\omega} = \frac{3E}{\omega}$$

$$\frac{B_{x}}{-3\omega} = \frac{-\frac{\delta E}{\delta x}}{-\frac{\delta E}{\delta x}} = -\frac{1}{\omega} \frac{\delta E}{\delta x}$$

$$\frac{B_{x}}{\omega} = 23 \frac{k_{y}E_{0}}{\omega} sm(k_{x}(a-x)) exp_{3}(\omega t - k_{x}a - k_{y}y)$$

$$B_{z} = -\frac{2k_{y}E_{0}}{\omega} sm(k_{x}(a-x)) sin(\omega t - k_{x}a - k_{y}y)$$

$$\underline{B}_y = -\frac{1}{w} 2 \int_{0}^{\infty} E_0 \exp \int_{0}^{\infty} \left[wt - k_x a - k_y \right] x - k_x \cos \left(k_x (a - x) \right)$$

$$\frac{By}{\omega} = \frac{-2k_x E_0}{\omega} \cos(k_x(a-x)) \exp_{3}(\omega t - k_x a - k_y y)$$

$$By = -\frac{2k_x E_0}{\omega} \cos(k_x(a-x)) \cos(\omega t - k_x a - k_y y)$$

M) E doit p'annuler en
$$x=0$$

$$\left[\sin\left(k_{x}(a-x)\right)\right]_{x=0}=0$$

$$\sin k_{x}a=0$$

$$k_{x}a=m\pi \pmod{m\in\mathbb{N}^{*}}$$

$$k_{x}^{2} + k_{y}^{2} = \frac{\omega^{2}}{c^{2}}$$

Elle devient

$$\frac{\pi^2}{a^2} + k_y^2 = \frac{\omega^2}{c^2}$$

$$\frac{\omega_0^2}{c^2} + k_y^2 = \frac{\omega^2}{c^2}$$

$$\frac{\omega_{o^2}}{c^2} + k_y^2 = \frac{\omega^2}{c^2}$$

W>Wo , en choisissant by >0 on aura 13)

$$\overrightarrow{E} = -2E_0 \text{ sm} \left(\underbrace{\mathbb{I}(\mathbf{a} - \mathbf{z})} \right) \text{ sm} \left(\mathbf{w} \mathbf{t} - \underbrace{\mathbb{I}(\mathbf{a} - \mathbf{z})} \right) \underbrace{\mathbf{w}}_{\mathbf{a}}^{2} \mathbf{y} \right) \underbrace{\mathbf{w}}_{\mathbf{a}}^{2} \mathbf{y}$$

$$\overrightarrow{E} = 2E_0 \text{ sm} \left(\underbrace{\mathbb{I}(\mathbf{a} - \mathbf{z})} \right) \text{ sm} \left(\mathbf{w} \mathbf{t} - \underbrace{2} \sqrt{\mathbf{w}^{2} - \mathbf{w}^{2}} \mathbf{y} \right) \underbrace{\mathbf{w}}_{\mathbf{a}}^{2}$$

$$B_{x} = -\frac{2 \cdot 2 \sqrt{\omega^2 - \omega_0^2}}{\omega} E_0 \sin \left(\frac{\pi}{a} (a - x) \right) \sin \left(\omega t - \frac{\pi}{a} a - \frac{1}{c} \sqrt{\omega^2 - \omega_0^2} y \right)$$

$$B_{\alpha} = \frac{2\sqrt{\omega^2 - \omega_0^2} E_0}{\omega c} sm(\frac{\pi z}{a}) sm(\omega t - 4\sqrt{\omega^2 - \omega_0^2} y)$$

$$B_y = -\frac{2\pi E_0}{\omega} \cos(\pi(a-x)) \cos(\omega t - \pi a - 4\sqrt{\omega^2 - \omega^2} y)$$

$$B_y = -\frac{\sqrt{\pi} E_0}{\omega a} \cos \left(\frac{\pi x}{a}\right) \cos \left(\omega t - \frac{2}{\sqrt{\omega^2 - \omega^2}} \frac{y}{y}\right)$$

-> Le vecteur de Brynsing est

$$= \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_{o}}$$

$$= \frac{\overrightarrow{E} \overrightarrow{M_{o}} \wedge (B_{x} \overrightarrow{M_{x}} + B_{y} \overrightarrow{M_{y}})}{\mu_{o}}$$

$$= \frac{\overrightarrow{E} B_{x}}{\mu_{o}} \overrightarrow{M_{y}} - \frac{\overrightarrow{E} B_{y}}{\mu_{o}} \overrightarrow{M_{x}}$$

La coordonnée Tre fait intervenir un sin(wt-f(y)) cos(wt-f(y)) sa valeur moyenne dans le temps sera nulle.

$$\langle \overrightarrow{\pi} \rangle = \frac{\langle EB_{xz} \rangle}{\mu_0} \pi i y$$

$$= \frac{4 E_0^2 \sqrt{\omega^2 - \omega_0^2}}{\omega c \mu_0} \text{ am}^2 \left(\frac{\pi z}{a}\right) < \text{ am}^2 \left(\omega t - \frac{1}{c} \sqrt{\omega^2 - \omega_0^2} y\right) > \frac{\pi y}{\omega}$$

$$< \frac{\pi}{a} > = \frac{2 E_0^2 \sqrt{\omega^2 - \omega_0^2}}{\omega c \mu_0} \text{ am}^2 \left(\frac{\pi z}{a}\right) \frac{\pi y}{\omega}$$

$$\langle \overrightarrow{\pi} \rangle = \frac{2 E_0^2 \sqrt{\omega^2 \omega_0^2}}{\omega c N_0} m^2 \left(\frac{\pi x}{a} \right) \frac{\omega_0^2}{\omega c N_0}$$

14) W<Wo done

el faut choisir le signe moins, sonon E Va tendre vers l'infini si y >> 00.

On report les expressions obtenues en 13) pour \sqsubseteq et \underline{B} en ramplagant $\sqrt{W^2-W_0^2}$ par $-\sqrt{2}\sqrt{W_0^2-W_0^2}$

$$\Rightarrow \stackrel{=}{=} 2E, \text{ and } \left(\frac{\pi \times}{a}\right) \times (-j) \exp j\left(\omega t + \frac{1}{2}\sqrt{\omega_0^2 - \omega^2 y}\right) \xrightarrow{M_T}$$

$$\stackrel{=}{=} 2E_0 \exp \left(-\frac{\sqrt{\omega_0^2 - \omega^2} y}{2}\right) \times \min\left(\frac{\pi \times}{a}\right) \times \min\left(\omega t\right) \xrightarrow{M_T}$$

(stationnaire selon x, évanescente selon y)

$$B_{xc} = \frac{-2 \int \sqrt{w_0^2 w^2 E_0}}{wc} \sin\left(\frac{\pi x}{a}\right) \times (-3) \exp 3/wt + 2\sqrt{w_0^2 w^2 y}$$

$$B_{x} = -\frac{2\sqrt{W_{0}^{2}-W^{2}}}{WC} = \frac{2\sqrt{W_{0}^{2}-W^{2}}}{C} = \frac{2\sqrt{W_{0}^{2}-W^{$$

$$B_y = -\frac{2\pi E_0}{\omega a} \cos\left(\frac{\pi z}{a}\right) \exp_3\left(\omega t + \frac{z}{2}\sqrt{\omega_0^2 - \omega^2} y\right)$$

$$By = -\frac{2\pi E}{wa} \exp\left(-\frac{\sqrt{w_0^2 - w^2}}{c}y\right) \cos\left(\frac{\pi x}{a}\right) \cos\left(\omega t\right)$$

-> The et Thy font intervenir sm(wt) cos(wt) donc:

$$T_{\infty}$$
 et T_{∞} et $P=0$ (cf orde évanscente)

Propagation d'une onde dans un milieu diélectrique dilué

1) Tout plan contenant OM est un plan de orgnétrie $E^{*}(M)$ E plan de orgnétrie

De plus $E = E(r, \theta, \Psi)$. Il y a invariance en retation selon θ et unaviance en retation selon Ψ donc E = E(r)

E(M) = E(r) Wr

3) La surface de gauss est une optère de rayon r

r>R

$$E 4\pi r^2 = \frac{e}{\xi_0}$$

r < R

$$E 4\pi r^2 = \frac{e R^3}{E}$$

$$E(r < R) = \frac{e r}{1 + e R^3}$$

3)

$$\overrightarrow{F}$$
 = $(-e)$ \overrightarrow{E}

4) on poe

donc

$$= \frac{e^2/m}{1-5.83}$$

$$\omega_o = \left(\frac{e^2}{4\pi \xi m R^3}\right)^{1/2}$$

5) La force est une force centrale. En appliquent le thétrème du moment cinétique:

le foint M (electron) appartient donc au plan passant per O et perpendiculaire à . La trajectoire est donc plane.

6 on applique le principe fordamental

$$\overrightarrow{F} = m \overrightarrow{a}$$

$$-m w_0^2 \overrightarrow{r} = m \frac{d^2 \overrightarrow{r}}{dt^2}$$

$$\frac{d^2r^2}{dt^2} + w^2r^2 = 0$$

On jeux déterminer la valeur du moment unétique :

La trajectoire & effectus donc dans le plan 202 (perpendiculaire à try)

En pogetant selon ox et 03

$$\frac{d^2x}{dt^2} + w_0^2 \approx 0$$

$$z = A \cos(\omega_0 t) + B \sin(\omega_0 t)$$

$$c.I. \quad | r_0 = A$$

$$0 = B\omega_0$$

$$z = r_0 \cos(\omega_0 t)$$

$$z = c \cos(\omega_0 t) + D \sin(\omega_0 t)$$

$$c.I. \quad | 0 = c$$

$$v_0 = D\omega_0$$

$$z = \frac{v_0}{\omega_0} \sin(\omega_0 t)$$

7) La trajectoire est une ellips :

$$\left(\frac{2}{C_0}\right)^2 + \left(\frac{3}{V_0/W_0}\right)^2 = 1$$

3)

$$\lambda_o = \frac{2\pi c}{\omega_o}$$

A.N.

$$f_0 = c/\lambda_0$$

= 3.108/01/10-6

9) L'electron est soumis à la force - e E' (dans exterieur) et à la force de rayel - m Wo ?? . A l'equilire:

19

ici, le barycentre des charges positivées est on O, la charge negative est en M

$$\overrightarrow{P} = e \overrightarrow{OO} + (-e) \overrightarrow{r}$$
 $(c'est \ \overrightarrow{a} \ dine : e \overrightarrow{NP})$
 $= e \overrightarrow{MO}$

P = -e 7

$$\overrightarrow{P} = \frac{e^2}{m \omega_o^2} \overrightarrow{E}$$

$$= \frac{e^2}{\left(\frac{e^2}{4\pi \epsilon_0 R^3}\right)} \overrightarrow{E}$$

$$\propto = 4\pi R^3$$

a, em m³

11) Equation différentielle du mouvement :

on pose
$$\frac{1}{7} = \frac{\omega_0}{Q}$$

12)

et puisque
$$\overrightarrow{P} = -e\overrightarrow{r}$$

$$\frac{d^2\overrightarrow{P}}{dt^2} + \frac{\omega_0}{Q} \frac{d\overrightarrow{P}}{dt} + \omega_0^2 \overrightarrow{P} = 0$$

AN.
$$Q = \omega_0 T$$

= $2\pi f_0 T$
= $2\pi f_0 T$

a>>1 l'amortissement est extremement faible.

Avec
$$P = P M_g$$

$$\frac{d^2P}{M^2} + \frac{\omega_0}{Q} \frac{dP}{dt} + \omega_0^2 P = 0$$

or early l'equation canadionistique

$$\Gamma^2 + \frac{\omega_0}{Q} \Gamma + \omega_0^2 = 0$$

$$\Gamma = -\frac{\omega_0}{2Q} \pm \sqrt{\frac{\omega_0^2}{4Q^2} - \omega_0^2} < 0$$

$$= -\frac{\omega_0}{2Q} \pm i \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \text{ negligeable}$$

$$P = e^{-\frac{\omega_0}{2Q}t} \left(A \in \text{Aust} + B e^{-\text{Aust}}\right)$$

$$P = e^{-\frac{\omega_0}{2Q}t} \left(A \in \text{Aust} + B e^{-\text{Aust}}\right)$$

on jeut approximen la solution à un cosinus avec $\frac{4=0}{P}$ $P = P e^{-\frac{w_0}{2Q}t} \cos(w_0t) \overline{w_0^2}$

$$\overrightarrow{P} = \overrightarrow{P}_0 e^{-\frac{\omega_0}{2Q}t} \cos(\omega_0 t) \overrightarrow{\omega_0}$$

$$\overrightarrow{P} = \overrightarrow{P}_0 e^{-\frac{t}{2Q}} \cos(\omega_0 t)$$

14)
$$-m\omega_{o}^{2}z - m\frac{\omega_{o}}{Q}\frac{dz}{dt} - eE = m\frac{d^{2}z}{dt^{2}}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
force de force force exercé par rappel elastrque amortissement le champ E de l'ond-e

en supposant que on a comme dans le vile, IIBII a EII

$$\frac{\|\vec{F}_{B}\|}{\|\vec{F}_{E}\|} \leqslant \frac{\|\nabla^{2}\|}{C} \ll 1$$

puisque IVII « C (vitasses non relativistes).
On peut donc négliger la force due au champ magnétique.

16) Le champ vanie sur des dimonsimo de l'ordre de la briqueur d'orde &

La dimension de l'atomne est de l'ordre de R.

Si on Kowe:

on pourra suppour le champ uniforme à l'exhelle de l'atome.

$$\frac{R}{\lambda} \simeq 10^{-3} \text{ m} \ll 1$$

17)
$$m\frac{d^{2}x}{dt^{2}} + m\frac{\omega_{0}}{Q}\frac{dx}{dt} + m\omega_{0}^{2}x = -eE$$

$$\frac{d^{2}x}{dt^{2}} + \frac{\omega_{0}}{Q}\frac{dx}{dt} + \omega_{0}^{2}x = -eE$$

$$(i\omega)^{2}x + \frac{\omega_{0}}{Q}(i\omega)^{2}x + \omega_{0}^{2}x = -eE$$

$$\frac{-eE}{(i\omega)^{2} - \omega^{2}} + i\frac{\omega\omega_{0}}{Q}$$

$$\frac{x}{2} = -i\omega \frac{eE}{(i\omega)^{2} - \omega^{2}} + i\frac{\omega\omega_{0}}{Q}$$

$$\frac{x}{2} = -i\omega \frac{eE}{(i\omega)^{2} - \omega^{2}} + i\frac{\omega\omega_{0}}{Q}$$

48) D D électron

$$\overrightarrow{P} = \frac{e^2}{m} \overrightarrow{E}$$

$$(w_o^2 - w^2) + \frac{i w w_o}{Q}$$

$$\frac{\alpha}{(\omega_0^2 - \omega^2) + i \omega \omega_0}$$

ID) $\overline{\mathcal{D}} = N \times \mathbb{E}$

X = N &

$$\frac{\chi}{(\omega_0^2 - \omega^2) + \frac{\lambda \omega \omega_0}{Q}}$$

روه

$$\frac{\partial}{\partial t} = N(-e) \overrightarrow{\nabla}$$

$$= N(-e) \xrightarrow{\partial} (\overrightarrow{X} \overrightarrow{M}_{\mathcal{S}})$$

$$= N(-e) \xrightarrow{\mathcal{P}} (-e)$$

$$\overrightarrow{\mathcal{P}} = \overrightarrow{\mathcal{P}}$$

21) Equations de Maxwell:

$$\frac{1}{100} = \frac{1}{100} = \frac{1$$

$$\vec{B} = \frac{\vec{K} \wedge \vec{E}}{\omega}$$

(l'équation Maxwell-flux out donc vérifiée pusque on a bien div $\vec{B} = -i \vec{R} \cdot \vec{B}$ mul car $\vec{B} \perp \vec{R}$ - onde TM -)

$$\begin{array}{rcl}
 & \overrightarrow{A} & \overrightarrow{A}$$

(l'équation de Maxwell-gauss n'est plus à vérifier pursque on aura dur E = -it E' mul - p nul et onde TE-car ELt)

22) D'où en reportant M. Faraday dans M. Ampere: - 犬 ヘ(茶 ヘビ) = ※ (× +1) ビ $-\frac{1}{2}\left(\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\frac{1}{2}\frac{1}{2}\left(\frac{1}{2}+1\right)\right)$ $2^{2} = \frac{\omega^{2}}{c^{2}} \left(1 + \frac{\omega_{\rho}^{2}}{(\omega_{\rho}^{2} - \omega^{2}) + \frac{i\omega\omega_{\rho}}{\Omega}} \right)$

23)
$$k = k' + ik''$$

$$\overrightarrow{E} = E_0 \exp i[\omega t - (k' + ik'') \times) \overrightarrow{w_0}$$

$$= E_0 \exp[k'' \times) \exp i[\omega t - k' \times) \overrightarrow{w_0}$$

$$\overrightarrow{E} = E_0 \exp[k'' \times) \cos[\omega t - k' \times) \overrightarrow{w_0}$$

K'>0 tradiut que l'onde se propage vers les x croisants

K''<0 K''=- « E est en exp(-«x) tradiusant

le phénomène d'absorption dans le vilieu au fur

et à meoure de la propagation.

24) Q→∞

$$\mathcal{R}^{2} = \frac{\omega^{2}}{C^{2}} \left(1 + \frac{\omega_{p}^{2}}{\omega_{0}^{2} - \omega^{2}} \right)$$
$$= \frac{\omega^{2}}{C^{2}} \left(\frac{\omega_{0}^{2} + \omega_{p}^{2} - \omega^{2}}{\omega_{0}^{2} - \omega^{2}} \right)$$

ω²	0	w _o ²	ω,	2+wp2		<i>∞</i>
R2	0 >0 & réel	∞	<О k Imagi⊓aii	o re	>0 Bréel	 0

(-R") nul pour w<wo et pour w>Vwo2+wp2
le milieu y est donc transparent.

25) Pour repondre à la question, je suppose le réel (mais la définition est généralisable à le complexe. Dans ce cas l'indice sera lui aussi complexe)

$$\frac{\omega}{k} = \frac{\omega}{k} = k \text{ milieu}$$

$$C = \frac{\omega}{k} = \frac{\omega}{k}$$

$$n = \frac{c}{v_{\varphi}}$$

$$= \frac{k}{k_{\text{vide}}}$$

$$n = \frac{kc}{\omega}$$

 $n^2 = 1 + \frac{\omega \rho^2}{\omega_0^2 - \omega^2}$

0,4 µm < > visible < 0,8 µm rouge

done

or pursque $\lambda = \frac{2\pi c}{\omega}$

on se trouve bien dans la zone de transperence (cf 24))

28) on suppose

$$\frac{\omega^2}{\omega_o^2} \ll 1$$

$$m^2 = 1 + \frac{\omega_p^2}{\omega_o^2 - \omega^2}$$

$$= 1 + \frac{\omega_p^2}{\omega_o^2} \left(\frac{1}{1 - \frac{\omega^2}{\omega_o^2}} \right)$$

$$\approx 1 + \frac{\omega_p^2}{\omega_o^2} \left(1 + \frac{\omega^2}{\omega_o^2} \right)$$

$$\pi^2 = \left(1 + \frac{\omega_p^2}{\omega_o^2} \right) + \frac{\omega_p^2}{\omega_o^4} \omega^2$$

on introduit &

$$n^{2} = (1 + \frac{\omega_{p}^{2}}{\omega_{o}^{2}}) + \left(\frac{4\pi^{2}c^{2}\omega_{p}^{2}}{\omega_{o}^{4}}\right)\frac{1}{\lambda^{2}}$$

de la forme:

$$n^{2} = a + \frac{b}{\lambda^{2}}$$
En biautant $\frac{b}{\lambda^{2}}$ comme un torme correctif « a
$$n^{2} = a \left(1 + \frac{b}{a} \frac{1}{\lambda^{2}}\right)$$

$$n = a^{1/2} \left(1 + \frac{b}{a} \frac{1}{\lambda^{2}}\right)^{1/2}$$

$$= a^{1/2} \left(1 + \frac{1}{2} \frac{b}{a} \frac{1}{\lambda^{2}}\right)$$

$$= a^{1/2} + \frac{b}{2a^{1/2}} \frac{1}{\lambda^{2}}$$

$$n = \sqrt{1 + \frac{\omega p^{2}}{w_{o}^{2}}} + \frac{2\pi^{2}c^{2}\omega^{2}p}{\omega_{o}^{4}\sqrt{1 + \frac{\omega p^{2}}{\omega^{2}}}} \frac{1}{\lambda^{2}}$$

 $m = A + B \frac{1}{\lambda^2}$

Champs E et B dans un solénoïde

est en T (Tesla) B

ચ

Le plan (M, ur, ur) est un plan de symatrie Le plan (M, ur, ur) est un plan d'antinymétrie

B = B mg

avec

 \mathfrak{B} en rotation

= B(n) Az B

3) Maxwell - Ampere :

note = M. F + Sall. 第

En magnetistatique (negunes primerente: \$ =0)

not B = Mo 7

4) rest
$$\overrightarrow{B} = (\frac{1}{r} \frac{\partial B_2}{\partial \theta} - \frac{\partial B_0}{\partial \theta}) \overrightarrow{ur} + (\frac{\partial B_1}{\partial \theta} - \frac{\partial B_2}{\partial \theta}) \overrightarrow{u\theta} + (\frac{1}{r} \frac{\partial (rB_0)}{\partial r} - \frac{\partial B_1}{\partial \theta}) \overrightarrow{u\theta}$$

Ici $\overrightarrow{B} = B(r) \overrightarrow{u\theta}$ done

done équa diff:

$$-\frac{dB(r)}{dr} = p_0 f$$

$$r < R - \frac{dB(r)}{dr} = 0$$

$$R < r < R + e - \frac{dB(r)}{dr} = \mu \cdot \delta$$

$$r > R + e - \frac{dB(r)}{dr} = 0$$

5) on obtant:

$$r > R+e$$
 $B(r) = constante$

$$B(r) = A$$

$$R < r < R+e$$
 $B(r) = -Mofr + C$
on early la continuté en $R+e$

$$-\mu_0 f(R+e) + C = A d'où C$$

$$B(n) = \mu_0 \mathcal{J}(R+e-r) + A$$

$$n < R$$

$$B(n) = constante$$

$$B(n) = D$$

$$on e out la continuté en R$$

$$D = \mu_0 \mathcal{J}(R+e-R) + A$$

6 B and it extrem done
$$A=0$$
 $r > R+e$
 $B(r) = 0$
 $R < r < R+e$
 $B(r) = \mu_0 f(R+e-r)$
 $r < R$
 $B(r) = \mu_0 fe$

8)

$$\frac{\text{contour a}}{\text{6 B att}} = N_0 \frac{\text{Tenlace}}{\text{1 enlace}}$$

$$\frac{\text{Btt}}{\text{Btt}} + \int_{\mathbb{R}} \frac{\text{Btt}}{\text{Btt}} + \int_{\mathbb{R}} \frac{\text{Btt}}{\text{Btt}} + \int_{\mathbb{R}} \frac{\text{Btt}}{\text{Bt}} +$$

finalement

$$B_{(r < R)} (3max-3min) = Ao je (3max-3min)$$

$$B_{(r < R)} = Ao je M_3$$

• contour b

dI = jedz 2) devont lors du passage à la limite dI = to do

done:

10) En remplayant je par js (et e
$$\rightarrow$$
 0)
$$\overrightarrow{B}(r < R) = Ac js \overrightarrow{M}_{g}$$

$$\overrightarrow{B}(r > R) = 0 \quad \overrightarrow{M}_{g}$$

on verifie la relation de passage:

(1: region r>R 2: region r<R

 \overrightarrow{B}_{2} - \overrightarrow{B}_{1} $\stackrel{?}{=}$ μ_{0} \overrightarrow{J}_{5} $\overrightarrow{\Lambda}$ \overrightarrow{n}_{12} \overrightarrow{R}_{0} \overrightarrow{J}_{5} \overrightarrow{M}_{3} - \overrightarrow{O} $\stackrel{?}{=}$ μ_{0} \overrightarrow{J}_{5} \overrightarrow{M}_{0} $\overrightarrow{\Lambda}$ - \overrightarrow{M}_{1}

clest correct.

11) Le plan (M, Ter, Tez) est un plan d'antigmétrie.

E est perpendiculaire à ce plan donc

E = E 110

au niveau opatial, vu la nométrie cylindrique, È ne depend que de r donc finalement:

$$\frac{B(r \langle R, t \rangle)}{B(r \rangle R, t)} = \frac{\mu_0 \int_{S_{max}} \exp(\lambda i \omega t) \frac{\mu_0^2}{\mu_0^2}}{B_0(r \rangle R)} = 0$$

$$\frac{B_0(r \rangle R)}{B_0(r \rangle R)} = \frac{\mu_0 \int_{S_{max}} \frac{\mu_0^2}{\mu_0^2} \frac{\mu_0^2}{\mu_0^2} \frac{\mu_0^2}{\mu_0^2} \frac{\mu_0^2}{\mu_0^2}$$

M.A. not
$$\overrightarrow{B} = \mu_0 \overrightarrow{J} + \xi_0 \mu_0 \overrightarrow{J} = \frac{1}{3}$$

M.F. not $\overrightarrow{E} = -\frac{3}{3}$

- Si on suppose $\vec{E} = \vec{o}$ donc $\phi_{\vec{E}} = 0$ le thérème d'Ampère s'évrit comme en magnetostatique $\phi \vec{B}$ et = $\mu_0 \vec{I}$ enlocé.

 C'aut ainsi que l'on a déterminé \vec{B} .
- -> Par contre, la loi de Faraday n'est pas vérifiée. L'équation de Maxwell-Faraday n'est pas vérifiée

15)
$$not \stackrel{=}{=} -\frac{\lambda \vec{B}}{\lambda t}$$

$$not \stackrel{=}{=} -i\omega \vec{B}$$

$$not \stackrel{=}{=} -i\omega \vec{B}(n)$$

$$\frac{1}{net} \left(E_{o}(r) \overrightarrow{ue} \right) = -i \omega B_{o}(r) \overrightarrow{ue}$$

$$\frac{1}{net} \left(r E_{o}(r) \right) = -i \omega B_{o}(r)$$

four r<R

$$7 \frac{1}{2\pi} (r \underline{E}_{0}(r)) = -i\omega B_{0}$$

$$r \underline{E}_{0}(r) = -i\omega B_{0} \quad \frac{r^{2}}{2} + A$$

$$\underline{E}_{0}(r) = -i\omega B_{0} \quad \frac{r}{2} + \frac{A}{r}$$

A doit être nul can Eo(r) dont être défini en r=0

Le champ est tangential. Il doit être continu en R

$$-i\omega$$
 B, $\frac{R}{2} = \frac{C}{R}$

$$E_0(r>R) = -\omega B_0 \frac{R^2}{2r}$$

16) Methoda integrale

E'est suvant 40 et me depend que de r. On utilise les contours figure 4)

pour nKR

$$E_0 = -i\omega (B_0 \times \pi r^2)$$

 $E_0 (r < R) = -i\omega B_0 \frac{r}{2}$

(on retrouve le nême résultat)

E 2π = - iω (B x TR2) $E_0(r>R) = -1\omega B_0 \frac{R^2}{2r}$

(idem)

13

L'équation de Maxwell-Ampère était vérifiée si on supposait É nul. Ce n'est donc plus le cas.

on a maintenent

Le terme covertif verifie donc:

191 Pursque By est solon my, on milise le contour

JEINE + EINT + EINT = ENOIN J-in Bog drag

$$\underline{B}_{1}(r)\left(3_{min}-3_{max}\right)=\frac{\omega^{2}}{c^{2}}\cdot B_{0}\left(3_{max}-3_{min}\right)\frac{1}{2}\frac{r^{2}}{r^{2}}$$

$$\underline{B}_{1}(r < R) = -\frac{\omega^{2}}{c^{2}} B_{0} \frac{r^{2}}{4}$$

29) On Vent que
$$\frac{\omega^2}{c^2} B_0 \frac{r^2}{4} \ll B_0 \qquad \text{pour } r \ll R$$

$$\frac{r}{c} \ll 2 \frac{1}{\omega}$$

 $\frac{\Gamma}{C}$ << 2 $\frac{1}{\omega}$ en introduisant R pour se placor dans le cas le plus défavorable :

en sumplifiant: $\frac{R}{c} \ll \frac{1}{\pi} T$

temps de période des propagations des variations des courants distance R et des chan des courants et des champs