Mandatory Assignment — MAT2400

Ivar Haugaløkken Stangeby

February 16, 2016

Problem 1

In this problem we consider the series given by

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2x}.\tag{1}$$

First and foremost, we are interested in under what values of x this series converge. We see that by setting x = 0, then the series read $1 + 1 + 1 + \dots$ which clearly sums to infinity. So we can conclude that for x = 0 the series diverges. For x > 0 we now have a contribution from the n's again. We know that $1/(1+n^2x)$ is certainly smaller than $1/(n^2x)$ for all x > 0. Hence we have the following inequality:

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2 x} < \sum_{n=1}^{\infty} \frac{1}{n^2 x} = \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{M}{x}.$$

Hence no matter what x we chose, the limit is always smaller than M/x.¹ Hence the series converges for any x > 0.

We are now interested in whether the convergence is uniform or not on the interval $[a, \infty)$. Weierstrass' M-test immediately tells us that the convergence is uniform for the interval under the condition that $a \ge 1$. The problem lies in the area between zero and one.

¹ M was shown by Euler to be equal to $\pi^2/6$.