

1.

1.	$\int_{-\frac{\pi}{2}}^{0} \sqrt{\cos x - \cos x}$	$\cos^3 x dx$		

(1)
$$\frac{2}{3}$$

(2)
$$-\frac{2}{3}$$
 nathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

2. The value of the integral
$$\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx$$
 is

(1)
$$\frac{\pi}{2} - 1$$

(4)
$$\frac{\pi}{2} + 1$$

Evaluate the following
$$\int_{0}^{\frac{1}{2}} \frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} dx$$

$$(2)$$
 $6\pi - \sqrt{2}$

(3) 1

(1)
$$\frac{\sqrt{3}\pi}{12}$$
 mg mathong with mathong with mathong with mathong with mathon with mat

$$(3) \quad \frac{6\pi - \sqrt{3}}{12}$$

4. Let
$$F(x) = f(x) + f\left(\frac{1}{x}\right)$$
, where $f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$, Then $F(e)$ equals

(4)
$$\frac{6-\pi\sqrt{3}}{12}$$
/// mathongo /// mathongo /// mathongo /// mathongo ///

Let
$$F(x) = f(x) + f\left(\frac{1}{x}\right)$$
, where $f(x) = \int_{1}^{1} \frac{\log t}{1+t} dt$, Then $F(e)$ equals

$$(2)$$
 (4)

5. The value of
$$x>1$$
 satisfying the equation $\int\limits_{-\infty}^{x}t\log tdt=\frac{1}{4},$ is

(3)a1/2 ongo /// mathongo /// mathongo

$$\binom{1}{2} \frac{m_3}{e^2}$$
 thongo $\binom{1}{2}$ mathongo $\binom{1}{2}$ mathongo $\binom{1}{2}$ mathongo $\binom{1}{2}$

(1)
$$\sqrt{e}$$
 mathongo // mathongo // mathongo // mathongo //

(4)
$$2e - 1$$

If for
$$n \geqslant 1$$
, $P_n = \int_1^e (\log x)^n dx$, then $P_{10} - 90P_8$ is equal to though

(1)
$$10e$$

$$(4)$$
 $-9e$ mathongo

7. If
$$\int_0^\infty e^{-ax} dx = \frac{1}{a}$$
, then $\int_0^\infty x^n e^{-ax} dx$ is

(1) $\frac{(-1)^n n!}{n!}$

(2)
$$\frac{(-1)^n(n-1)}{a^n}$$

(1)
$$\frac{(-1)^m}{a^{m+1}}$$
 (3) $\frac{n!}{a^{m+1}}$ (3) $\frac{n!}{a^{m+1}}$ (3) $\frac{n!}{a^{m+1}}$ (4) mathongo (7) mathongo (8) If $m,n\in N$, then $I_{m,n}=\int_0^1 x^m(1-x^n)dx$ is equal to

(1)
$$\frac{m \ln!}{(m+n+2)!}$$
 // mathongo // mathongo // mathongo // mathongo

(2)
$$\frac{2m!n!}{(m+n+1)!}$$
 (4) None of these

$$\frac{\pi}{(m+n+1)!}$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cot x}{\cot x + \cot x} dx = m(\pi+n), \text{ then } mn \text{ is equal to}$$

If
$$\int_{0}^{\frac{\pi}{2}} \frac{dx \cos x}{\cot x + \csc x} dx = m(\pi + n)$$
, then mn is equal to m mathongo m

$$\prod_{0} \int_{0}^{\infty} \frac{1}{\cot x + \csc x} dx = m(n+n), \text{ then } mn \text{ is equal to}$$
(1) 1

(2)
$$\frac{1}{2}$$

$$(4)_{1\overline{11}}\frac{1}{2}$$
inongo /// mathongo /// mathongo ///

(3)
$$-1$$
 mathong whathong whathon which which