21.2. Бази от данни: Нормални форми.

Нормални форми. Проектиране схемите на релационните бази от данни. Аномалии, ограничения, ключове. Функционални зависимости, аксиоми на Армстронг. Първа, втора, трета нормална форма, нормална форма на Бойс-Код. Многозначни зависимости; аксиоми на функционалните и многозначните зависимости; съединение без загуба; четвърта нормална форма.

Аномалии.

Да разгледаме един пример, с който се илюстрират различни недостатъци на една конкретна релационна схема, известни като <u>аномалии</u> на <u>излишество</u>, <u>обновяване</u>, <u>добавяне и отстраняване</u>.

Дадена е релационната схема БИБЛИОТЕКА (Биб#, Адрес, Книга, Брой), с която всяка библиотека е представена чрез своя номер (Биб#) и адрес (Адрес), а всяка книга е представяна с името си (Книга) и броя екземпляри (Брой), които са налични в съответната библиотека. Естествено е да се приеме, че всяка библиотека е еднозначно определена от своя номер, както и, че една и съща книга може да се съхранява в няколко библиотеки. Като следствие от това могат да се направят следните изводи:

- 1. <u>Аномалия от излишество</u> За всяка книга от една и съща библиотека ще има повторение на адреса на библиотеката.
- 2. <u>Аномалия при обновяване</u> От (1) следва, че при промяна на адреса на библиотеката ще е необходимо да се обновят толкова реда на релацията, колкото са книгите, които се съхраняват в нея. При тази операция не е изключена възможността някои от редовете да останат необновени, при което ще настъпи противоречивост в данните на БД.
- 3. <u>Аномалия при добавяне</u> Адресът на една новосъздаваща се библиотека не може да бъде въведен в БД, докато не се посочи поне една книга, която ще се съхранява в тази библиотека. Причината за това е, че ключовите атрибути в тази релационна схема са атрибутите *Биб#* и *Книга* и следователно те трябва да имат точно определени стойности за всеки елемент от релацията.
- 4. <u>Аномалия при изтриване</u> Ако поради ремонт на дадена библиотека книгите, които са се съхранявали в нея, бъдат преместени в друго книгохранилище или библиотека, ще се наложи всички редове от релацията, отнасящи се до тази библиотека, да бъдат отстранени от релацията. Като следствие от това ще бъде "изгубен" и адресът на библиотеката, независимо че тя съществува и адресът й остава същият.

Ключове.

Понеже всяка релация е множество от неповтарящи се n-торки, то всяка релация има **ключ**, който определя еднозначно кортежите в релацията. Естествено е една релация да има и повече от един ключ. Ако едно множество от атрибути A е ключ за една релация R, то всяко съдържащо A множество X също ще идентифицира еднозначно елементите на R. Затова към всеки ключ се предявява и изискването за минималност: Ако K е ключ на релацията R, тогава: 1) За всеки два елемента $r_1 \in R$ и $r_2 \in R$ е в сила $r_1[K] \neq r_2[K]$; 2) Не съществува подмножество от атрибути на K, за което (1) да остава в сила.

Един от всички възможни ключове на всяка релация се избира за ключ на релацията и той се нарича **първичен ключ**.

<u>Външният ключ</u> K^* за една релация R е такъв атрибут или списък от атрибути, който не е ключ за R, но съществува релация Q, за която K^* е първичен ключ.

Ограничения.

<u>Ограниченията</u> дефинират правила за стойностите, допустими за съответните колони, и представляват стандартен механизъм за налагане на цялост. С други думи, ограничението е свойство на таблица или колона от таблица, което предотвратява въвеждането на невалидни стойности на данните. Ето основните ограничения в релационния модел:

• Ограниченията UNIQUE и PRIMARY KEY (първичен ключ) не допускат да бъде въведена стойност, която дублира съществуваща стойност;

- Стойностите на атрибутите, съставящи първичния ключ, не могат да бъдат нулеви;
- Ограничението СНЕСК не допуска да бъде въведена стойност, която не отговаря на определени условия (например Age > 0 или length(EGN) = 10);
- Ограничението FOREIGN KEY (външен ключ) налага връзка между данните в две таблици за всяка ненулева стойност на атрибут, който е външен ключ, трябва да съществува ключов атрибут от друга релация, който съдържа тази стойност;
- Ограничението NOT NULL задава, че не се допуска стойността на атрибут (не непременно ключов) да е нулева (null). Стойност null не означава нула, интервал или символен низ с нулева дължина, като "". Null означава, че не са били въведени данни. Наличието на null обикновено означава, че стойността е или неизвестна, или недефинирана.

Освен тези ограничения, друг широк клас от ограничения за цялостност се въвеждат с помощта на функционални зависимости.

Функционални зависимости.

Нека A_1 , A_2 , ..., A_n е един какъв да е списък от n атрибута, n>=1, който накратко ще означаваме с $A_1A_2...A_n$ (без запетайки) или само с A. Предполага се, че списъкът A е неподреден и няма повтарящи се елементи, т.е. A е множество от имена на атрибути. Знае се, че ако A има n елемента, то броят на подмножествата на A е 2^n .

Нека r е релация, а R(A) е нейната релационна схема. r(R) е математическа релация от степен n върху домейните $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$ – подмножество на декартовото произведение на домейните, които дефинират R. Това може да се изрази чрез $r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$. r(R) е множество от n-торки (tuples), $r = \{t_1, t_2, ..., t_m\}$. Всяка n-торка е подреден списък от n стойности $t = \langle v_1, v_2, ..., v_n \rangle$, където v_i , $1 \le i \le n$, е елемент от $dom(A_i)$ или специалната стойност n NULL.

Нека X, Y \in A. Казва се, че атрибутът X функционално определя атрибута Y, ако за всяка релация r с релационна схема R(A) при наличието на кои да е два кортежа t_1 , $t_2 \in r$, за които $t_1.X = t_2.X$, следва, че $t_1.Y = t_2.Y$, т.е. при равенство на кортежи по атрибута X следва равенството им по атрибута Y. X и Y могат да бъдат както прости атрибути, така и съставни, т.е. да се състоят от няколко прости атрибута (ако $A_1A_2...A_n \rightarrow B_1$ и $A_1A_2...A_n \rightarrow B_2$ и

 $A_1A_2...A_n \rightarrow B_m$, то $A_1A_2...A_n \rightarrow B_1B_2...B_m$). Когато X функционално определя Y, казва се също, че Y <u>зависи функционално</u> от X или че е налице <u>функционална зависимост</u> (Ф3) от X в Y, като се използва означението R.X \rightarrow R.Y. Множеството от Ф3 се означава с F, а с малка буква f се означава единична Ф3. Зависимостта $A_1A_2...A_n \rightarrow$ B се нарича <u>функционална</u>, защото има функция, която на списък от стойности (по една за всяко $A_1A_2...A_n$) съпоставя уникална стойност за B. Тук функцията обаче не се изчислява по стандартния начин, а "изчислението" става чрез търсене в релацията.

ФЗ са твърдения за схемата на релацията, не за конкретен екземпляр, т.е. те са свойства на семантиката на атрибутите и всички данни ги удовлетворяват. Затова те не могат да се определят чрез просто преглеждане на данните.

Графично представяне на Φ 3 A \rightarrow B:

Например, в релацията Movies се наблюдават следните функционални зависимости: title year → length; title year → filmType; title year → studioName; но HE! title year → starName.

 $K = \{A_1, A_2, ..., A_n\}$ е **ключ** на релацията R, ако:

- 1. Множеството К функционално определя всички атрибути на R;
- 2. За нито едно подмножество на К не е вярно (1).

Ако К удовлетворява (1), но не удовлетворява (2), то К е **суперключ**.

Например, за релацията Movies (title, year, length, filmType, studioName, starName) ключът е {title, year, starName} и няма други ключове, но има много суперключове – всички супермножества на {title, year, starName}, например {title, year, starName, length, type}.

Аксиоми на Армстронг.

Зависимостите, които е възможно да се определят в рамките на една релационна схема, макар и краен брой, понякога могат да бъдат твърде много. Затова естествено е да се постави въпросът, как по дадено множество от ФЗ F могат да се получат всичките ФЗ.

Една ФЗ X \rightarrow Y се нарича <u>логическо следствие</u> на множеството от ФЗ F, ако за всяка релация r, удовлетворяваща зависимостите F, следва, че е X \rightarrow Y се удовлетворява от r. **Армстронг** показва, че като се използват т.нар. правила или **аксиоми за извод** при дадено множество от ФЗ, се получават нови ФЗ, при това могат да се получат всичките ФЗ. При формулировката на аксиомите, дадени по-долу, се предполага, че: R(A) е релационна схема; F е множество от ФЗ в A; X, Y, Z и W са списъци от атрибути на A; r е произволна релация със схема R(A).

A1. <u>Рефлексивност</u> (reflexivity): Ако $Y \subseteq X$, то $X \rightarrow Y$.

Пример: title year \rightarrow title

A2. Разширение, попълнение (augmentation): Aко X \rightarrow Y, то XW \rightarrow YW.

Пример: От title year \rightarrow length получаваме title year filmType \rightarrow length filmType

A3. Транзитивност (transitivity): Ако X \rightarrow Y и Y \rightarrow Z, то X \rightarrow Z.

Доказателства на аксиомите на Армстронг:

- A1. <u>Рефлексивност</u>: Всеки 2 кортежа t и и съвпадат по всички атрибути на X, \Rightarrow те съвпадат и по всяко подмножество на X, включително Y.
- A2. Разширение, попълнение: Да допуснем, че има кортежи t и и, които съвпадат по всички атрибути на XW, но не съвпадат по YW. t и и задължително съвпадат по W, \Rightarrow се различават по някой от атрибутите на Y, което противоречи на X → Y.
- А3. Транзитивност: Да допуснем, че има 2 кортежа (x, y_1, z_1) и (x, y_2, z_2) , които съвпадат по всички атрибути на Х. Х -> Ү, следователно, щом съвпадат по всички атрибути на X, задължително съвпадат по всички атрибути на Y, т.е. $y_1 = y_2$. Аналогично, от Y \rightarrow Z следва, че $z_1 = z_2$. \Rightarrow двата кортежа съвпадат.

Следствия от аксиомите на Армстронг:

- Сл.1. Обединение: Ако X \rightarrow Y и X \rightarrow Z, то X \rightarrow YZ.
- Сл.2. Псевдотранзитивност: Aко X \rightarrow Y и WY \rightarrow Z, то XW \rightarrow Z.
- Сл.3. Декомпозиция: Ако X \rightarrow Y и Z \subseteq Y, то X \rightarrow Z.

Доказателства на следствията от аксиомите на Армстронг:

- Сл.1. Обединение: X \rightarrow Y, следователно X \rightarrow XY (A2). X \rightarrow Z, \Rightarrow XY \rightarrow ZY (A2). От получените $X \rightarrow XY$ и $XY \rightarrow ZY$ следва, че $X \rightarrow ZY$ (A3).
- Сл.2. Псевдотранзитивност: $X \rightarrow Y$, следователно $WX \rightarrow WY$ (A2). Но имаме, че WY \rightarrow Z, следователно WX \rightarrow Z (A3).
- Сл.3. <u>Декомпозиция</u>: $Z \subseteq Y$, следователно $Y \rightarrow Z$ (от A1). Но имаме, че $X \rightarrow Y$, следователно $X \rightarrow Z$ (A3).

Правило за декомпозиция: Ako AA \rightarrow B₁B₂...B_n, to AA \rightarrow B₁, AA \rightarrow B₂, ..., AA \rightarrow B_n.

Правило за обединение: Ако AA \rightarrow B₁, AA \rightarrow B₂, ..., AA \rightarrow B_n, то AA \rightarrow B₁B₂...B_n.

Функционалната зависимост $A_1A_2...A_n \rightarrow B$ се нарича <u>тривиална</u>, ако атрибутът В съвпада с някой от атрибутите $A_1A_2...A_n$. В противен случай се нарича <u>нетривиална</u>.

Когато B е съставен атрибут, т.е. B = $B_1B_2...B_m$, то Φ 3 $A_1A_2...A_n \rightarrow B_1B_2...B_m$ е:

- тривиална, ако $B_1B_2...B_m \subseteq A_1A_2...A_n$;
- <u>нетривиална</u>, ако поне един атрибут от $B_1B_2...B_m$ не е от $A_1A_2...A_n$.
- напълно нетривиална, ако никой от атрибутите от $B_1B_2...B_m$ не е от $A_1A_2...A_n$.

Правило на тривиалната зависимост: Имаме право от дясната част на една ФЗ да премахнем тези атрибути, които принадлежат на лявата част – така от $A_1A_2...A_n \rightarrow B_1B_2...B_m$ получаваме $A_1A_2...A_n$ \rightarrow $C_1C_2...C_k$, където $\{C_1,\ C_2,\ ...,\ C_k\}\subseteq \{B_1,\ B_2,\ ...,\ B_m\}$ и нито един от атрибутите С не е от $A_1A_2...A_n$.

Може без док-ва

Може да не се доказват

Първа, втора, трета нормална форма, нормална форма на Бойс-Код.

Виждаме, че основен проблем при изграждането на модели на дадена предметна област е определянето на същностите и на свойствата, които ги характеризират. Сложността на проблема е следствие от нееднозначността на неговото решение. Естествено е в такъв случай да се поставят въпроси като: кога една релационна схема е добра; кога две схеми са еквивалентни или коя от двете схеми е по-добрата. Всеки от тези въпроси всъщност се докосва до необходимостта от формален инструмент за анализ на релационни схеми. Такъв инструмент е т.нар. нормализация — процес, насочен към преобразуването на релационни схеми, при който на новополучените релационни схеми се налагат известни ограничения, елиминиращи някои нежелани свойства.

Една релационна схема е в **първа нормална форма** (1НФ), ако областите на съставящите я атрибути са атомарни (прости), т.е. атрибутите й са атомарни. Иска се и, естествено, да няма повтарящи се кортежи, което е основно изискване за една релация.

Един атрибут X от релационната схема R(A) с множество от Ф3 F се нарича <u>първичен атрибут</u>, ако влиза в състава на ключа (първичния ключ). В противен случай се нарича непървичен. Една релационна схема е във **втора нормална форма** (2НФ) относно множеството от Ф3 F, ако тя е в 1НФ и всеки непървичен атрибут е в <u>пълна Ф3</u> от ключа, т.е. зависи от целия ключ, а не от някакво негово подмножество.

Нека R(A) е релационна схема със съответно множество от Ф3 F, а X и Z са подмножества на A. Казва се, че атрибутът Z е <u>транзитивно зависим</u> от X, ако съществува такова множество от атрибути Y, Y \subset A, Z \notin XY, за което са в сила свойствата: X \rightarrow Y, Y \rightarrow Z. Една релационна схема R(A) е в <u>трета нормална форма</u> (3НФ) относно множеството от Ф3 F, ако тя е в 1НФ и нито един първичен атрибут не е транзитивно зависим от ключа (а всеки непървичен атрибут е не-транзитивно, т.е. директно зависим от ключа). Друга дефиниция на <u>3НФ</u>: R е в 3НФ тогава и само тогава, когато за всяка нетривиална Ф3 или лявата страна е суперключ, или дясната е първичен атрибут.

В определението на 2НФ се иска наличие на 1НФ, т.е. всяка релационна схема, която е във 2НФ, е и в 1НФ. В определението на 3НФ не се изисква релационната схема да е във 2НФ, но може да се покаже, че всяка релационна схема, която е в 3НФ, е и във 2НФ.

Релацията R е в **нормална форма на Бойс-Код** (Boyce-Codd Normal Form, BCNF) тогава и само тогава, когато за всяка нетривиална зависимост $A_1A_2...A_n \rightarrow B_1B_2...B_m$ от R, съответното множество от атрибути $\{A_1, A_2, ..., A_n\}$ е суперключ за R.

Многозначни зависимости

Терминът "<u>многозначна зависимост</u>" се използва, когато два атрибута или множество атрибути са независими помежду си. Това състояние обобщава идеята за ФЗ в този смисъл, че всяка функционална предполага съответна многофункционална зависимост.

Съществуват схеми в BCNF, които съдържат излишни данни. Най-често това се получава при опит да се поставят две или повече връзки "много към много" в една релация. Това излишество е резултат от независимостта на атрибутите. Например, в Tutor/Student Cross-Reference без проблем могат да се въведат два различни номера на социална осигуровка за един и същ ръководител, а това не е желателно.

Пример:

Ще предположим, че известните личности имат по няколко адреса. Разделяме тези адреси на части (град, улица). Редом до информацията за "звездите" ще включим и познатата ни информация за заглавията и годините на филмите, в които са участвали те.

Name	Street	City	Title	Year
Carrie Fisher	123 Maple Str	Hollywood	Star Wars	1977
Carrie Fisher	5 Locust Ln.	Malibu	Star Wars	1977
Carrie Fisher	123 Maple Str	Hollywood	Empire Strikes Back	1980
Carrie Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
Carrie Fisher	123 Maple Str	Hollywood	Return or the Jedi	1983
Carrie Fisher	5 Locust Ln.	Malibu	Return or the Jedi	1983

Нека обърнем внимание на двата адреса и трите най известни филма на Carrie Fisher. Няма причина да асоциираме определен адрес с определен филм, а не с друг филм. Поради това единственият начин да покажем, че адресите и филмите са независими свойства, е да добвим всеки адрес към всеки филм. Но, когато повторим адресите и данните за филмите във всички комбинации, се получава явно излишество на данни. Например, всеки от адресите на Carrie Fisher се повтаря по три пъти (веднъж за всеки от филмите) и всеки филм се повтаря по два пъти (веднъж за всеки от адресите).

Въпреки това, няма нарушение на BCNF в тази релация. Няма и никакви нетривиални Φ 3. Например атрибутът City не е функционално определен от другите 4 атрибута. Може да има звезда с два дома, които имат един и същ адрес на улица в различни градове. Тогава ще има два кортежа, чиито атрибути си съответстват напълно, освен по атрибута City. Така че name street title year \rightarrow city HE е Φ 3 за нашата релация. Никой от петте атрибута не е функционално определен от другите четири. Тъй като няма нетривиални Φ 3, следва, че всички пет атрибута формират един суперключ и няма нарушение на BCNF.

<u>Многозначна зависимост</u> (multivalued dependency, MVD, M3) е твърдение за релация R, за която, при фиксиране на стойностите за определени атрибути, стойностите в точно определени други атрибути са независими от стойностите на всички други атрибути в

релацията. Многозначната зависимост $X \to Y$ утвърждава, че, ако 2 кортежа в една релация съвпадат по всички атрибути на X, техните компоненти от множеството атрибути Y могат да бъдат разменени и резултатът ще даде Y нови кортежа, които също принадлежат на релацията.

Дефиниция: $A_1A_2...A_n \to B_1B_2...B_m$ е **многозначна зависимост** в R, ако за всяка двойка кортежи t, u от R, за които $t[A_1A_2...A_n] = u[A_1A_2...A_n]$, съществува кортеж v от R, за който:

- $v[A_1A_2...A_n] = t[A_1A_2...A_n] = u[A_1A_2...A_n]$
- $v[B_1B_2...B_m] = t[B_1B_2...B_m]$
- $v[C_1C_2...C_k] = u[C_1C_2...C_k],$

където $C_1C_2...C_k$ са всички атрибути от R, с изключение на $(A_1A_2...A_n \cup B_1B_2...B_m)$.

Можем да използваме това правило с разменени t и u, за да подскажем съществуването на четвърти кортеж w, който се съгласува с u и t. В последствие за всички фиксирани

стойности на А съответните стойности от В и останалите атрибути се появяват във всички възможни комбинации в различни кортежи.

<u>Пример</u>: name \rightarrow → street city

Name	Street	City	Title	Year
C. Fisher*	123 Maple Str	Hollywood	Star Wars*	1977
C. Fisher*	5 Locust Ln.*	Malibu*	Star Wars*	1977
C. Fisher	123 Maple Str	Hollywood	Empire Strikes Back	1980
C. Fisher*	5 Locust Ln.*	Malibu*	Empire Strikes Back	1980
C. Fisher	123 Maple Str	Hollywood	Return or the Jedi	1983
C. Fisher	5 Locust Ln.	Malibu	Return or the Jedi	1983

Аксиоми на многозначните зависимости.

 $M3 A_1A_2...A_n \longrightarrow B_1B_2...B_m$ се нарича **тривиална**, когато $B_1B_2...B_m \subseteq A_1A_2...A_n$ или $(A_1A_2...A_n \cup B_1B_2...B_m)$ съдържа всички атрибути на R.

М3 $A_1A_2...A_n \to B_1B_2...B_m$ е <u>нетривиална</u>, когато нито един от атрибутите $B_1B_2...B_m$ не съвпада с $A_1A_2...A_n$ и не всички атрибути на R принадлежат на $(A_1A_2...A_n \cup B_1B_2...B_m)$.

Има няколко правила за М3, които са подобни на тези за Ф3:

- Пр.1. <u>Транзитивно правило</u>: Ако $A_1A_2...A_n \to B_1B_2...B_m$ и $B_1B_2...B_m \to C_1C_2...C_k$, то $A_1A_2...A_n \to C_1C_2...C_k$.
- Пр.2. <u>Правило на обединението</u>: Ако $X_1X_2...X_n \to Y_1Y_2...Y_m$ и $X_1X_2...X_n \to Z_1Z_2...Z_k$, то $X_1X_2...X_n \to (Y_1Y_2...Y_m \cup Z_1Z_2...Z_k)$.
- Пр.3. <u>Правило на допълнението</u>: Ако $A_1A_2...A_n \longrightarrow B_1B_2...B_m$, то $A_1A_2...A_n \longrightarrow C_1C_2...C_k$, където $C_1C_2...C_k$ е м-то от всички атрибути на R с изключение на $(A_1A_2...A_n \cup B_1B_2...B_m)$.

<u>Пример</u>: От name $\to\to$ street city, съгласно правилото на допълнението name $\to\to$ title year също трябва да е в сила за тази релация, защото title и year са атрибути, които не са споменати в първата M3. Втората M3 означава, че всяка всяка известна личност е участвала в няколко филма, които са независими от адресите на звездата.

Забележка: Подобно на Φ 3, не може да се разделя лявата част на M3. За разлика от Φ 3 обаче, не може да се разделя и дясната част — понякога се налага да се оставят няколко атрибута в дясната част. Например, ако върху M3 name $\to\to$ street city се приложи

правилото за разделяне, тогава трябва да очакваме, че е вярно и следното: name $\rightarrow \rightarrow$ street. Тази М3 показва, че всеки адрес на звезда е независим от другите атрибути, включително и от града. Обаче това твърдение не е вярно. Например — първите 2 кортежа. Предполагаемата М3 ще ни позволи да загатнем, че кортежите с улиците са се разменили:

Name	Street	City	Title	Year
C. Fisher	5 Locust Ln.	Hollywood	Star Wars	1977
C. Fisher	123 Maple Str	Malibu	Star Wars	1977

Но тези кортежи не са правилни, защото домът на 5 Locust Ln. се намира в Малибу, а не в Холивуд.

Пр.4. <u>Правило FD-IS-AN-MVD</u> (всяка функционална зависимост е многозначна зависимост): Ако $A_1A_2...A_n \rightarrow B_1B_2...B_m$ то: $A_1A_2...A_n \rightarrow B_1B_2...B_m$.

<u>Доказателство</u>: Да предположим, че R е релация, за която е вярна Φ 3 $A_1A_2 \dots A_n \to B_1B_2 \dots$ B_m , и да предположим, че t и и са кортежите, които съвпадат в A. За да покажем, че е вярна M3 $A_1A_2 \dots A_n \to B_1B_2 \dots B_m$, трябва да докажем, че R също съдържа кортеж v, който се съгласува с t и и по A, с t по B и с и по всички останали атрибути. Но v може да е и. Със сигурност и съвпада с t и и в A. Φ 3 $A_1A_2 \dots A_n \to B_1B_2 \dots B_m$ предполага, че и съвпада с t в B. И разбира се и се съгласува със себе си по другите атрибути. Така че, когато е в сила функционалната зависимост, то е в сила и многозначната зависимост.

Декомпозиция на релации. Съединение без загуба.

Декомпозиция на релацията $R(A_1, ..., A_n)$ е заместването й с множество релации $R_1, ..., R_n$, получени чрез проекции така, че $R_1 \cup R_2 \cup ... \cup R_n$ имат една и съща схема.

Например, дадена е релация R със схема $\{A_1, A_2, ..., A_n\}$. За да няма загуба на информация и да се намери най-оптималното решение за представяне, трябва да се декомпозира в две релации S и T със схеми $\{B_1, B_2, ..., B_m\}$ и $\{C_1, C_2, ..., C_k\}$, така, че: $\{A_1, A_2, ..., A_n\}$ = $\{B_1, B_2, ..., B_m\}$ U $\{C_1, C_2, ..., C_k\}$. Кортежите в релацията S са проекции на всички кортежи в R върху $\{B_1, B_2, ..., B_m\}$ (за всеки кортеж t от текущия екземпляр на R се избират компонентите, които съответстват на атрибутите $\{B_1, B_2, ..., B_m\}$; тези компоненти образуват нов кортеж, който принадлежи на текущия екземпляр на S; прави се само по 1 копие на кортеж). Аналогично, кортежите в релацията T са проекции на всички кортежи в R върху атрибутите $\{C_1, C_2, ..., C_k\}$.

Нека R (A₁, A₂, ..., A_n) е релация и R се декомпозира на две релации S (B₁, B₂, ..., B_m) и T (C₁, C₂, ..., C_k). Казваме, че декомпозицията е със <u>съединение без загуба</u>, ако R = S \bowtie T.

Декомпозицията на релацията R (A_1 , A_2 , ..., A_n) на 2 релации S (B_1 , B_2 , ..., B_m) и T (C_1 , C_2 , ..., C_k) е със съединение без загуба тогава и само тогава, когато за R е изпълнена поне една от следните функционални зависимости: S \cap T \rightarrow S или S \cap T \rightarrow T.

Нека R (A_1 , A_2 , ..., A_n) е релация, за която е изпълнено множеството от функционални зависимости F и R се декомпозира на две релации S (B_1 , B_2 , ..., B_m) и T (C_1 , C_2 , ..., C_k). Казваме, че декомпозицията е със <u>съединение без загуба на функционалните</u> <u>зависимости</u>, ако $F_1 \cup F_2 = F$, където F_1 и F_2 са проекциите на F съответно върху S и T.

Чрез подходящи декомпозиции, всяка схема на релация може да се декомпозира на няколко схеми, така че да са изпълнени следните условия: 1) Всички получени релации да са в BCNF; 2) Декомпозицията да е със съединение без загуба.

Не е задължително да се включва

Стратегията за декомпозиция, която възприемаме, е следната.

Нека $A_1 A_2 ... A_n \rightarrow B_1 B_2 ... B_m$ е нетривиална функционална зависимост и $\{A_1, A_2, ..., A_n\}$ не е суперключ. Тогава декомпозираме релацията R на следните две релации:

- 1. Първата релация има атрибути A₁, A₂, ..., A_n, B₁, B₂, ..., B_m.
- 2. Втората релация има атрибути A_1 , A_2 , ..., A_n и всички останали атрибути на R, които не участват във функционалната зависимост.

Ако новополучените релации не са в BCNF, то към тях прилагаме същата процедура. При това, функционалните зависимости в новите релации се изчисляват чрез <u>проектиране</u> на ФЗ от изходната релация (т.е. функционалните зависимости в новите релации са точно онези, които следват от предишните ФЗ и в които участват само новите атрибути).

Процесът на декомпозиране ще е краен, тъй като винаги получаваме релации с по-малко атрибути, а всяка релация с два атрибута е в BCNF.

В общия случай декомпозицията в BCNF не е със съединение без загуба на функционалните зависимости. Съществува обаче алгоритъм за декомпозиция в ЗНФ, който е със съединение без загуба и запазва ФЗ. Този алгоритъм в повечето случаи се справя с излишествата, породени от фукционални зависимости.

Пример за съединение със загуба:

Т	Employee	Project	Branch
	Brown	Mars	L.A.
	Green	Jupiter	San Jose
	Green	Venus	San Jose
	Hoskins	Saturn	San Jose
	Hoskins	Venus	San Jose

Функционалните зависимости са: Employee → Branch и Project → Branch.

Декомпозиция на релацията Т:

T1	Employee	Branch
	Brown	L.A.
	Green	San Jose
	Hoskins	San Jose

T2	Project	Branch
	Mars	L.A.
	Jupiter	San Jose
	Saturn	San Jose
	Venus	San Jose

След прилагане на естествено съединение резултатът е различен от първоначалната релация и информацията не може да бъде възстановена:

Т	Employee	Project	Branch
	Brown	Mars	L.A.
	Green	Jupiter	San Jose
	Green	Venus	San Jose
	Hoskins	Saturn	San Jose
	Hoskins	Venus	San Jose
	Green	Saturn	San Jose
	Hoskins	Jupiter	San Jose

Четвърта нормална форма.

Излишеството, което произтича от М3, не може да се отстрани чрез привеждане в НФ на Бойс-Код. Необходима е по-строга НФ, наречена <u>четвърта нормална форма</u> (4НФ), която третира М3 като Ф3 по отношение на декомпозицията, но не и по отношение на ключовете. В тази НФ всички М3 за елиминирани, както всички Ф3, които нарушават ВСNF. В резултат, декомпозираните релации нямат излишък нито от Ф3, нито от М3. В основата си четвъртата нормална форма е BCNF, но е приложена върху М3 вместо върху Ф3.

Релацията R е в <u>четвърта нормална форма</u>, ако за всяка нетривиална M3 $A_1A_2...A_n \rightarrow B_1B_2...B_m$ е изпълнено, че $A_1A_2...A_n$ е суперключ.

<u>Пример</u>: Релацията, която разглеждахме досега, нарушава условието за 4НФ. Например, name $\rightarrow \rightarrow$ street city е нетривиална М3, въпреки това name не е суперключ. Всъщност единственият ключ за релацията са всички атрибути.

<u>Декомпозиция към 4NF</u>: Ако $X \to \to Y$ нарушава 4NF, правим следната декомпозиция: XY е едната от декомпозираните релации, а всички атрибути без $X \cup Y$ е другата.

<u>Пример</u>: Нека да продължим със същия пример. Видяхме, че name $\rightarrow \rightarrow$ street city нарушава 4НФ. Правилото за декомпозиция ни кара да заменим схемата с пет атрибута със схема, която има само три атрибута от горната МЗ, и друга схема, състояща се от лявата страна (name) + атрибутите, които не се появяват в тази МЗ. Тези атрибути са title и year. Така след декомпозирането получаваме следните две схеми: R (name, street, city) и S(name, title, year). Във всяка от схемите няма нетривиални многозначни (или функционални) зависимости, така че те са в 4НФ.

Обобщение на нормалните форми.

Свойство	3НФ	BCNF	4НФ
Отсъствие на FD излишество	В повечето случаи	Да	Да
Отсъствие на MVD излишество	He	He	Да
Запазване на FD	Да	Не винаги	Не винаги
Запазване на MVD	Не винаги	Не винаги	Не винаги

ВСNF (следователно и 4НФ) елиминират излишеството и други аномалии, които са причинени от Ф3, докато само 4НФ елиминира допълнителния излишък, причинен от наличието на нетривиални М3, които не са Ф3. Често 3НФ е достатъчна за премахването на този излишък, но има примери, където не е. ВСNF не гарантира запазването на Ф3 и никоя от нормалните форми не гарантира запазване на М3, въпреки че в типични случаи зависимостите се запазват.