برنامهریزی نیمه معین برای طراحی الگوریتمهای تقریبی

جلسه اول: معرفی درس

جایگاه درس

سلسلهمراتب برنامهریزیهای ریاضی

مثال/كاربرد	محدوديت
کوتاهترین مسیر در گراف، شار بیشینه،	خطی
	???
	محدب
	بدون

محدوديت

• داستان برنامهریزی ریاضی ...

• مدلسازی

بهینه کن	f(x)
با شرط	برخی قیود روک X
	$x \in R^m$

سلسلهمراتب برنامهریزیهای ریاضم

	4		
ر باضی	برنامهريزي	داستان	

• مدلسازی

مثال/كاربرد	محدوديت
کوتاهترین مسیر در گراف، شار بیشینه،	خطی
	???
	محدب
	بدون محدودیت

بهینه کن	f(x)
با شرط	برخی قیود روک X
	$x \in R^m$

سلسلهمراتب برنامهریزیهای ریاضم

ر راضه	<u>بر</u> نامەريزى	داستان	
رياضي	برنامهريري	داستان	

• مدلسازى

بهینه کن	f(x)
با شرط	برخی قیود روک X
	$x \in R^m$

Y THE STATE OF THE	
مثال/كاربرد	محدوديت
کوتاهترین مسیر در گراف، شار بیشینه،	خطی
برنامەرىزى نىمەمعىن	? ??
	محدب
	بدون
	محدوديت

بهینه کن	f(x)
با شرط	برخی قیود روک x
	$\mathbf{x} \in \{0,1\}^m$

بهینه کن	f(x)
با شرط	برخی قیود روک X
	$\mathbf{x} \in \{0,1\}^m$

مثال/كاربرد	محدوديت	
کوتاهترین مسیر در گراف، شار بیشینه،	خطی	
برنامهریزی نیمهمعین	???	
	محدب	
	بدون محدودیت	

بهینه کن	f(x)
با شرط	برخی قیود روک X
	$\mathbf{x} \in \{0,1\}^m$
	6

مثال/كاربرد	محدوديت	
کوتاهترین مسیر در گراف، شار بیشینه،	خطی	
برنامهریزی نیمهمعین	???	
	محدب	
	بدون محدودیت	

Bernd Gärtner · Jiří Matoušek

Approximation Algorithms and Semidefinite Programming

مباحث

Part I (by Bernd Gärtner)

1	\mathbf{Intr}	roduction: MaxCut Via Semidefinite Programming	3
	1.1	The MAXCUT Problem	3
	1.2	Approximation Algorithms	4
	1.3	A Randomized 0.5-Approximation Algorithm for MAXCUT	6
	1.4	The Goemans–Williamson Algorithm	7
2	Sen	nidefinite Programming	15
	2.1	From Linear to Semidefinite Programming	15
	2.2	Positive Semidefinite Matrices	16
	2.3	Cholesky Factorization	17
	2.4	Semidefinite Programs	18
	2.5	Non-standard Form	20
	2.6	The Complexity of Solving Semidefinite Programs	20
3	Sha	nnon Capacity and Lovász Theta	27
	3.1	The Similarity-Free Dictionary Problem	27
	3.2	The Shannon Capacity	29
	3.3	The Theta Function	31
	3.4	The Lovász Bound	32
	3.5	The 5-Cycle	35
	3.6	Two Semidefinite Programs for the Theta Function	36
	3.7	The Sandwich Theorem and Perfect Graphs	39

4	Dua	ality and Cone Programming	45
	4.1	Introduction	45
	4.2	Closed Convex Cones	47
	4.3	Dual Cones	49
	4.4	A Separation Theorem for Closed Convex Cones	51
	4.5	The Farkas Lemma. Cone Version	52
	4.6	Cone Programs	57
	4.7	Duality of Cone Programming	62
	4.8	The Largest Eigenvalue	68
5	$\mathbf{A}\mathbf{p}$	proximately Solving Semidefinite Programs	75
	5.1	Optimizing Over the Spectahedron	76
	5.2	The Case of Bounded Trace	78
	5.3	The Semidefinite Feasibility Problem	80
	5.4	Convex Optimization Over the Spectahedron	82
	5.5	The Frank–Wolfe Algorithm	84
	5.6	Back to the Semidefinite Feasibility Problem	89
	5.7	From the Linearized Problem to the Largest Eigenvalue	90
	5.8	The Power Method	92
6	An	Interior-Point Algorithm for Semidefinite Programming	99
	6.1	The Idea of the Central Path	100
	6.2	Uniqueness of Solution	101
	6.3	Necessary Conditions for Optimality	102
	6.4	Sufficient Conditions for Optimality	106
	6.5	Following the Central Path	109

7	Cop	positive Programming	
	7.1	The Copositive Cone and Its Dual	
	7.2	A Copositive Program for the Independence Number	
		of a Graph	
	7.3	Local Minimality Is coNP-hard	

Part II (by Jiří Matoušek)

8	Lov	Lower Bounds for the Goemans-Williamson MaxCut		
	\mathbf{Alg}	orithm		
	8.1	Can One Get a Better Approximation Ratio?		
	8.2	Approximation Ratio and Integrality Gap		
	8.3	The Integrality Gap Matches the Goemans-Williamson Ratio 136		
	8.4	The Approximation Ratio Is At Most α_{GW}		
	8.5	The Unique Games Conjecture for Us Laymen, Part I 152		
9	Col	oring 3-Chromatic Graphs		
	9.1	The 3-Coloring Challenge		
	9.2	From a Vector Coloring to a Proper Coloring 158		
	9.3	Properties of the Normal Distribution		
	9.4	The KMS Rounding Algorithm		
	9.5	Difficult Graphs		

10	Maximizing a Quadratic Form on a Graph
	10.1 Four Problems
	10.2 Quadratic Forms on Graphs
	10.3 The Rounding Algorithm
	10.4 Estimating the Error
	10.5 The Relation to $\vartheta(\overline{G})$
11	Colorings with Low Discrepancy
	11.1 Discrepancy of Set Systems
	11.2 Vector Discrepancy and Bansal's Random Walk Algorithm 182
	11.3 Coordinate Walks
	11.4 Set Walks
10	Constraint Satisfaction Problems and Delaying Thom
14	Constraint Satisfaction Problems, and Relaxing Them
	Semidefinitely
	12.1 Introduction
	12.2 Constraint Satisfaction Problems
	12.3 Semidefinite Relaxations of 2-CSP's
	12.4 Beyond Binary Boolean: Max-3-Sat & Co 205

13	Rounding Via Miniatures
	13.1 An Ultimate Rounding Method?
	13.2 Miniatures for MAXCUT
	13.3 Rounding the Canonical Relaxation of Max-3-Sat
	and Other Boolean CSP

ارزشیابی

- پایانترم: ۶ نمره
- آزمونک: ۴ نمره، ۵ آزمونک
 - تمرين: ۵ نمره
 - تمرین خانهبر: ۵ نمره
 - ؟ نمودار

پیشنیاز

- لازم:
- تحقیق در عملیات ۱
 - جبرخطي
- برنامهریزی خطی و تعبیرهای هندسی و دوگانی در برنامهریزی خطی
 - الگوريتم
 - ، خوب:
- بهینه سازی ترکیبیاتی، بهینه سازی محدب، الگوریتم های تقریبی، پیچیدگی محاسباتی

اخلاق علمي

- تمرینها
- خودتان حل کنید،
- مشورت: مجاز، اما كليات، حتما ذكر شود
 - تقلب
 - ممنوع! اما چه کنیم؟

سوال؟