Определение 1. Число a называют $npedenom\ nocnedoвательности\ (x_n),\ если\ (x_n)$ можно представить в виде $x_n = a + \alpha_n$, где последовательность (α_n) бесконечно малая. Обозначение: $\lim_{n \to \infty} x_n = a$. Говорят также, что (x_n) стремится к а при n, стремящемся к бесконечности (и пишут $x_n \to a$ при $n \to \infty$).

Определение 2. ε -окрестность точки a (где $\varepsilon > 0$) — это интервал $(a - \varepsilon, a + \varepsilon)$. Обозначение: $\mathcal{U}_{\varepsilon}(a)$.

Определение 3. Число a называют $npedenom\ nocnedoвательности\ (x_n),$ если для всякого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном k > N будет выполнено неравенство $|x_k - a| < \varepsilon$. Формально: $\forall \varepsilon > 0 \quad \exists k \in \mathbb{N} \quad \forall n > k \quad |x_n - a| < \varepsilon$.

Определение 4. Число a называют $npedenom\ nocnedoвательности\ (<math>x_n$), если в любом интервале, содержащем a, содержатся *почти все* члены (x_n) (то есть все, кроме конечного числа).

Утверждение 1. Последовательность не может иметь более одного предела.

Утверждение 2. Пусть последовательность (x_n) имеет предел. Тогда $(x_{n+1}-x_n)$ — бесконечно малая.

Утверждение 3. Определения 1, 3 и 4 эквивалентны.

Задача 1. В два сосуда разлили (не поровну) 1 л воды. Из 1-го сосуда перелили половину имеющейся в нём воды во 2-ой, затем из 2-го перелили половину оказавшейся в нём воды в 1-ый, снова из 1-го перелили половину во 2-ой, и т. д. Сколько воды (с точностью до 1 мл) будет в 1-ом сосуде после 50 переливаний?

Задача 2. Найдите предел (x_n) (если он существует):

a)
$$x_n = 1 + (-1)^n$$
;

6)
$$x_n = 1 + (-0.1)^n;$$

$$\mathbf{B)} \ x_n = \frac{n}{n+1};$$

$$\mathbf{r}) \ x_n = (2^n - 1)/(2^n + 1);$$

e)
$$x_n = \sqrt{n+1} - \sqrt{n}$$

Задача 3. Запишите, не используя отрицания: **a)** «число a не предел (x_n) »; **б)** « (x_n) не имеет предела».

Задача 4. Предел (x_n) положителен. Верно ли, что все члены (x_n) , начиная с некоторого, положительны?

Задача 5°. Последовательность (x_n) имеет предел a. **а)** Обязательно ли (x_n) ограничена?

б) Пусть a>0 и все члены (x_n) положительны. Докажите, что последовательность $(1/x_n)$ ограничена.

Задача 6°. (Aрифметика пределов) Пусть $\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=b$. Докажите:

- a) $\lim_{n\to\infty}(x_n\pm y_n)=a\pm b;$
- $\mathbf{6)} \lim_{n \to \infty} (x_n \cdot y_n) = ab;$
- в) если $b \neq 0$ и все элементы последовательности (y_n) отличны от нуля, то $\lim_{n \to \infty} (x_n/y_n) = a/b$.

Задача 7. Найдите предел (x_n) (если он существует):

a)
$$x_n = 1 + q + \ldots + q^n$$
;

a)
$$x_n = 1 + q + \ldots + q^n$$
; 6) $x_n = (n^2 + 5n + 7)/n^2$;

B)
$$x_n = C_n^{50}/n^{50};$$

г)
$$x_n = n^{50}/10^n;$$
 д) $x_n = \sqrt[n]{n};$

$$\pi$$
) $r_{\cdot \cdot \cdot} = \sqrt[n]{n}$

e)
$$x_n = 1/2 + 2/2^2 + 3/2^3 + \dots + n/2^n$$
.

1	2 a	2 6	2 B	2 Г	2 Д	2 e	3 a	3 6	4	5 a	5 6	6 a	6 6	6 B	7 a	7 6	7 B	7 Г	7 д	7 e

Задача 8°. Пусть $A(x) = a_k x^k + \ldots + a_1 x + a_0$ и $B(x) = b_m x^m + \ldots + b_1 x + b_0$ — многочлены степеней k и m соответственно. Найдите пределы: a) $\lim_{n \to \infty} A(n)/n^k$; б) $\lim_{n \to \infty} A(n)/B(n)$.

Задача 9. Последовательность (x_n) с положительными членами такова, что последовательность (x_{n+1}/x_n) имеет пределом некоторое число, меньшее 1. Докажите, что (x_n) бесконечно малая.

Задача 10. Найдите: а)
$$\lim_{n\to\infty}\frac{4n^2}{n^2+n+1}$$
 б) $\lim_{n\to\infty}\frac{n^2+2n-2}{n^3+n}$; в) $\lim_{n\to\infty}\frac{n^9-n^4+1}{2n^9+7n-5}$.

Задача 11. Найдите ошибку в рассуждении: «Пусть $x_n = (n-1)/n$. Тогда $\lim_{n \to \infty} x_n = \lim_{n \to \infty} (1-1/n) = 1$. С другой стороны, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} (1/n) \cdot \lim_{n \to \infty} (n-1) = 0 \cdot \lim_{n \to \infty} (n-1) = 0$. Отсюда 0 = 1.»

Задача 12. Пусть $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b,$ причём $x_n > y_n$ при $n \in \mathbb{N}$. Верно ли, что **a)** a > b; **б)** $a \geqslant b$?

Задача 13. Пусть
$$\lim_{n\to\infty} x_n = 1$$
. Найдите **a)** $\lim_{n\to\infty} \frac{x_n^2}{7}$; **б)*** $\lim_{n\to\infty} \frac{x_1 + \ldots + x_n}{n}$.

Задача 14. Возьмём любое положительное число x_0 и построим последовательность по такому закону: $x_{n+1} = 0.5 \cdot (x_n + a/x_n)$.

- а) Докажите, что $\lim_{n\to\infty} x_n = \sqrt{a}$.
- **б)*** Сколько понадобится последовательных приближений, чтобы найти $\sqrt{10}$ с точностью до 0.0001, если в качестве начального приближения взять $x_0 = 3$?

Задача 15. а) Рассмотрим фигуру, ограниченную графиком функции $y=x^2$, осью Ox и прямой x=1. Разобьём отрезок [0,1] на n равных частей и построим на каждой части прямоугольник так, чтобы его правая верхняя вершина лежала на графике (см. рис.). Сумму площадей прямоугольников обозначим S_n . Найдите $\lim S_n$.

8 a	8 6	9	10 a	10 б	10 B	11	12 a	12 б	13 a	13 6	14 a	14 б	15 a	15 б