DigitLabwork#6 Operation of An Elevator-in-Lab

11	Training goal	_
		•

- [2] Preparations
- [3] Lab-task instruction
- [4] Observations/Evaluation

[1] Training goals

Through the lab-work, class members are expected to get acquainted with the following matters.

- a)) Issues concerning proper control over elevator operations and how the control should be done via the use of sequential logic or FSM.
 - ** operation of one single elevator with primitive controls;
- b)) the use of Verilog for logic circuit description and simulation, including
 - ** circuit module building up in Verilog,
 - ** setting up of the test data;
- c)) the interactive commands required in operating the Verilog-code development system:
 - ** compilation for a syntax error-free Verilog description and test data set;
 - ** simulation of the Verilog-coded circuit module;
 - [** synthesis of the Verilog-coded circuit module].

[2] Preparation

Every class member should get prepared with the following knowledge prior to attending the lab-work sessions.

- a)) operation of counters.
- b)) skills of generating required outputs during state transitions in the operation of a sequential circuit.

[3] Lab-task instruction

In digitlabwork#5, 1 task is assigned to every class members as given below.

[TASK1]

(1) Write a Verilog code for elevator operation under simplified controls in compliance with the requirements given below.

- (2) Put the codes under simulation; observe and interpret the waveforms of output signals
- (3) Try drawing the state transition diagram (or FSM) for the elevator operation of your own design,
- (4) Try drawing the circuit diagram of your design using counters, logic gates and components one deems as necessary.

a)) circuit operational specifications

- ** All signals are high-active
- ** All inputs arrive at the falling edge of the clock
- ** All outputs appear at the rising edge of the clock
- ** I/O layout: inputs reset, clk, PEOPLE, GOGO[2:0];
 - outputs OPEN, FLOOR[2:0];
- ** signal implications:

signal	implications				
reset	** initiation of the system at clock-synchronization;				
	** appears only once for every power-up operating cycle				
PEOPLE	** indicating the situation when the user depresses destination-floor button after entering the car;				
	** may last for 1 clock or two when becoming active;				
	** at the rising edge of the clock following the high-to-low transition of PEOPLE, the elevator starts				
	moving up or down at the rate of 1 floor level per clock;				
GOTO[2:0]	** indicating that a destination-floor button, ranging from 1 to 7, is depressed by the user in the car;				
	** valid only when PEOPLE is active, 0 otherwise;				
	** in the case that PEOPLE remains active for two clocks, two distinct or same GOTO values are				
	allowed as destination-floor requests, first-come-first-served;				
clk	** all inputs supplied at falling edge of the clock;				
	** the system samples inputs at rising of the clock and reacts accordingly;				
FLOOR[2:0]	** indicating the floor level which the car is currently standing on or passing through;				
	** starts changing at the 1 st clock following the falling edge of PEOPLE, either increasing or				
	decreasing by 1 per clock;				
OPEN	** indicating the open/close of the doors of the elevator;				
	** remains active for 1 clock when the elevator reaches the floor level designated by GOTO value;				

b)) coding specifications:

- ** write behavior-level descriptions for the elevator operations of your own design, fulfilling the operational protocol given below.
- ** the module has reset, clk, PEOPLE and GOTO[2:0] as inputs, and FLOOR[2:0] as outputs.
- ** elevator operation protocol

Event	reactions			
at receiving reset	entering initial state:			
(reset (clk^))	1) FLOOR: 1 2) OPEN: 0 3) initiation for internal use			
at receiving PEOPLE	1) recording GOTO value			
(PEOPLE (clk^))	 recording one more GOTO value if PEOPLE remains valid for the 2nd clock in the case of receiving two GOTO values, first-come-first served policy is undertaken 			
	4) FLOOR starts updating at the rising edge of the clock following the high-to-low transition of			

PEOPLE, either increasing or decreasing by 1 per clock until one or both designated-floor level(s) reached in order.

- 5) when reaching the designated-floor level, for the case of receiving 1 GOTO value
 - *)) OPEN becomes active for 1 clock,
 - *)) the elevator then stands still on the very floor level , waiting for further PEOPLE input otherwise,
 - *)) OPEN becomes active for 1 clock,
 - *)) the elevator then, in the following clock, starts moving toward the floor level designated by 2nd GOTO value,
 - *)) OPEN becomes active for 1 clock when reaching the floor level designated by the 2nd GOTO value,
 - *)) the elevator then stands still on the very floor level .

** Timing: no delay(s) to be considered in this task

c)) testing data:

to be supplied by TAs.

[4] Observations

** Imaging how messy things can go when two elevators running in conjunctive operation in a building 7-level above the ground and 1-level under.

