Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: М. А. Остров

Студент группы 321703

Проверил: В. Н. Тищенко

СОДЕРЖАНИЕ

1	Постановка задачи	3
2	Формализованный текст	4
3	Формальная семантическая спецификация библиографических ис-	
	точников	8
38	аключение	9
\mathbf{C}	писок использованных источников	10

1 ПОСТАНОВКА ЗАДАЧИ

Часть 2 Учебной дисциплины ''Представление и обработка информации в интеллектуальных системах''

- \Rightarrow библиографическая ссылка*:
 - Стандарт OSTIS
 - Материалы конференций OSTIS
 - Журнал "Онтология проектирования"
 - Справочник по Искусственному интеллекту в трех томах
 - Энциклопедический словарь по информатике для начинающих
 - Толковый словарь по Искусственному интеллекту
 - \Rightarrow *URL**:

[http://raai.org/library/tolk/aivoc.html]

- ...
- \Rightarrow аттестационные вопросы*:
 - **(●** Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"
 - Вопрос 2 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"
 - ...

Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- := [Понятие кибернетической системы. Архитектура и типология кибернетических систем. Критерии качества (эффективности) кибернетических систем. Факторы интеллектуальности кибернетических систем.]
- \Rightarrow библиографическая ссылка*:
 - Предметная область и онтология кибернетических систем
 ∈ раздел Стандарта OSTIS
 - ЭнцикК-1974кн
 - = [Энциклопедия кибернетики. В 2-х томах. Киев, 1974.]
- \Leftrightarrow следует отличать*:

Вопрос 3 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

2 ФОРМАЛИЗОВАННЫЙ ТЕКСТ

Большие данные [Big Data] [технология обработки структурированных и неструктурированных данных] := \Rightarrow определяющая характеристика*: {• Объём данных (от 100 Тбайт) позволяет более точно находить различные связи для дальнейшего представления аналитики в агрегированном, понятном для чтения виде] [Вариативность позволяет выявить зависимости там, где на первый взгляд их не стоит искать. Например, зависимость активности покупателей от погоды или зависимость продолжительности сна от потребления лекарств. Она определяется следующим образом: «данные собираются из одного или нескольких источников и, возможно, в разных форматах»] [Скорость характеризует захват и обработку данных в режиме, близком к реальному времени, а также скорость накопления данных, подлежащих анализу] [Ценность] распространение*: {• [Интернет-ресурсы, занимающиеся продажей товаров и услуг] разбиение*: \Rightarrow область применения { ● медицина банковская сфера военная сфера полиция экономика государств изучение социальных явлений управление большими и малыми социальными группами \Rightarrow декомпозиция*: пример Google Facebook Youtube декомпозиция*: \Rightarrow используемая технология *MapReduce* { ● Hadoop разбиение*: методика анализа { ● [Интеллектуальный анализ данных - выявление скрытых закономер-

ностей, обнаружения в необработанных данных ранее неизвестных, нетривиальных знаний, простых для интерпретации и практически полезных в принятии решений во всех областях человеческой жиз-

ни

- [Обучение ассоциативным правилам служит для выявления взаимосвязей, т.е. ассоциативных правил между переменными величинами в больших массивах данных]
- [Кластерный анализ статистический метод классификации объектов по группам за счет выявления заранее неизвестных общих признаков]
- [Классификация категоризация новых данных на основе принципов, ранее применённых к уже имеющимся данным]
- [Регрессионный анализ набор статистических методов для выявления закономерности между изменением зависимой переменной и одной или несколькими независимыми]

s принцип работы*:

[Прежде всего, данные собираются на сетевых хранилищах, которые могут быть как разрозненными, так и объединены в единую систему. Информация в обязательном порядке дублируется для исключения возможных потерь и для неё характерно отсутствие структуры, т.е. это может быть текст, изображения в различных форматах, голос, музыка и т.п. В дальнейшем данные обрабатываются алгоритмом, написанным программистами для получения информации в удобном для человека виде. После работы алгоритма человек или группа людей делает аналитику в области обработанных данных и принимают решения о дальнейших действиях]

следует отличать*

 \Rightarrow

- ∋ {• Большие данные
 - структурированные базы данных
- \Rightarrow отличие*:

[умение приспосабливаться под задачу]

 \Rightarrow аннотация*:

[Большие данные являются относительно новым витком в информационных технологиях и в ближайшее время проникнут во все сферы деятельности человека, вытесняя обычные базы данных с их бизнес-аналитиками]

наука о данных

- := [Data Sience]
- := [наука, изучающая вопросы получения, обработки, анализа информации и предоставления этих данных в понятной форме]
- \Rightarrow результат развития*:
 - технология машинного обучения

социальные данные

- ≔ [Social Data]
- := [часть больших данных, создаваемая людьми в некоммерческих целях, то есть различные социальные сети, фотобанки, блоги, чаты и т.д.]

Большие данные

глубокое машинное обучение

- := [глубинное машинное обучение]
- := [deep machine learning]

- := [набор алгоритмов машинного обучения, основанный на нейросетях, которые пытаются моделировать высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований]
- \Rightarrow применение*:
 - € искусственная нейронная сеть}
- *⇒* задача*:
 - { [Представление изображения в виде вектора интенсивности значений на пиксель]
 - [Представление изображения в виде множества примитивов, областей определенной формы]
 - [Автоматизация процесса выбора и настройки признаков]
- машинное обучение

искусственная нейронная сеть

- **:=** [ИНС]
- := [сеть элементов искусственных нейронов связанных между собой синаптическими соединениями]
- := [математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма]
- \Rightarrow разбиение*:

подход создания

- - [Биологический: при моделировании важно полное биоподобие, и необходимо детально изучать работу биологического нейрона]
- *⇒* условие*:
 - [обучение на большом объеме данных]
- *⇒ свойство**:
 - [Автоматическое отделение нужных данных от ненужных]
 - [Определение правильных признаков]
 - [Потребность в больших вычислительных мощностях]
 - [Исключение массы человеческих ошибок]
 - [Параллельность обработки информации]
 - [Способность к полной обработке информации]
 - [Самоорганизация]
 - [Надежность]
 - [Обучаемость]
 - [Способность к обобщению]
 - [Способность к абстрагированию]
- \Rightarrow примечание*:

[Текущий уровень развития не даёт возможности целиком и полностью автоматизировать управление многими процессами только искусственными нейронными сетями, тем более, когда речь идёт о нестандартных ситуациях, хотя, ситуация является

нестандартной, пока человек или ИНС не научатся в ней действовать] машинное обучение

биологическая нейронная сеть

≔ [мозг]

 \subset

- \Rightarrow единица строения*:
 - {● биологичексий нейрон}
- \Rightarrow принцип работы*:

[Предполагается, что мозг работает не с аналоговыми, а с дискретными сигналами, таким образом, мозг (кора мозга) работает с конечным числом дискретных понятий. Вводится понятие интерференции информационной волны, способствующей формированию ключа воспоминаний (время, пространство, обстоятельства и пр.) для работы памяти с информацией, которую необходимо запомнить]

сравнение*

- ∋ { [принцип работы биологической нейронной сети]
 - [принцип работы искусственной нейронной сети]
- \Rightarrow аналогия*:

[Для хранения информации используются различные метки (путь к файлу, время создания, различные теги и т.п.), для того, чтобы потом можно было легко найти файл даже по части имеющейся в ключе информации]

 \Rightarrow отличие*:

[Сохранение информации происходит не в конкретном месте, как в инс, а распределено по всему мозгу (биологической нейронной сети). Подразумевается распределение не частей информации по разным местам, а сохранение всего жизненного объёма информации во множестве мест в головном мозге в кортикальных столбах]

 \Rightarrow комментарий*:

[Крупные работы в исследованиях биологических нейронных сетей принадлежат Эндрю Хаксли, Алану Ходжкину, Бернарду Катцу, Джону Экклзу и Стивену Куффлеру]

биологичексий нейрон

- := [нервная клетка, нейрон]
- \Rightarrow основное свойство*:
 - [Имеет множество синапсов контактов для передачи информации]
 - [Нейрон взаимодействует путем обмена электрохимическими сигналами двух видов: электротоническими (с затуханием) и нервными импульсами (спайками), распространяющимися без затухания]

3 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Тихонов А.А.Больш ДиГМОвИНС-2018ст

- \Rightarrow ключевой знак*:
 - Большие данные
 - искусственная нейронная сеть
 - наука о данных
 - биологическая нейронная сеть
 - глубокое машинное обучение
- \Rightarrow аннотация*:

[В статье раскрываются понятия Больших данных и глубокого машинного обучения искусственных нейронных сетей, а также описание областей их применения. Затрагивается проблема необходимости эволюции нейронных сетей посредством изменения их архитектуры и принципа работы]

 \Rightarrow uumama*:

[Становится очевидно, что эти сети будут иметь всё большее значение и участвовать в большем количестве процессов с нарастающей долей. И при дальнейшей эволюции искусственных нейронных сетей мы рано или поздно придём к созданию искусственного интеллекта]

 $\Rightarrow URl^*$:

[https://cyberleninka.ru/article/n/bolshie-dannye-i-glubokoe-mashinnoe-obuchenie-v-iskusstvennyh-neyronnyh-setyah/viewer]

Заенцев И.В.НейроСОМ-1999учпос

- \Rightarrow ключевой знак*:
 - искусственная нейронная сеть
 - биологическая нейронная сеть
 - биологический нейрон
- \Rightarrow аннотация*:

[Теория нейронных сетей включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемотехники и технологии. Поэтому понятие "нейронные сети"детально определить сложно. В учебном пособии рассматриваются основные характеристики нейронных сетей, в частности ИНС(искусственные нейронные сети) и БНС(биологичексие нейронные сети), и принципы их работы]

 \Rightarrow URl^* :

[https://box.cs.istu.ru/public/docs/other/New/Documantation/Ai/Neuro/course.pdf]

Денисова О.Ю..БольшД-ЭнТРД-2015ст

- \Rightarrow ключевой знак*:
 - Большие данные
 - социальные данные
- \Rightarrow аннотация*:

[В статье рассматривается понятие Больших данных, как новый тип научного инструмента для социальных наук, изучения поведения людей и обществ]

 \Rightarrow URl^* :

[https://cyberleninka.ru/article/n/bolshie-dannye-eto-ne-tolko-razmer-dannyh/viewer]

ЗАКЛЮЧЕНИЕ

В ходе выполнения практического задания приобрел навыки работы с научным текстом. Выделил и формализовал основные понятия из выбранных источников, соблюдая при этом неабходимые правила. Получил новые знания в рамках описываемой предметной области.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] А.А., Тихонов. Большие данные и глубокое машинное обучение в нейронных сетях / Тихонов А.А. Наука и образование сегодня, 2018. С. 4.
- [2] Заенцев, И. В. Нейронные сети: основные модели / И. В. Заенцев. И. В. Заенцев, 1999. С. 76.
- [3] О.Ю., Денисова. Большие данные это не только размер данных / Денисова О.Ю., Мухутдинов Э.А. Вестник Казанского технологического университета, 2015. С. 5.