PRODUKTENTWICKLUNG 1

Hochschule Luzern

Technik & Architektur

Stepper Treiber

Konzeptbeschreibung

Autorin:
Bettina Wyss

Projektgruppe: PREN-ET

Inhaltsverzeichnis

1	Fachgruppe Elektrotechnik	2
2	Schrittmotor 2.1 Schritte 2.2 Wicklungen	2 2 3
3	Stepper Motoransteuerung3.1 Grundsätzliches zur Ansteuerung3.2 Treiberstufe	
4	Stepper Driver L64804.1 Funktionsbeschreibung4.2 Schnitstelle4.3 Typical Application	5
5	Ausblick	7
T.i	teratur- und Quellenverzeichnis	Q

1. Januar 2015

1 Fachgruppe Elektrotechnik

Elektrotechnik-Studierenden aus mehreren Gruppen haben sich zusammengeschlossen um gemeinsame Probleme anzugehen. Dabei handelt es sich um die benötigte Hard- und Software, um Motoren anzusteuern und gegebenenfalls zu regeln. In diesem Zusammenschluss werden drei Gruppen gebildet, um Lösungen für DC-, Stepperund Brushless-Motoren auszuarbeiten. Die Idee besteht darin, dass nicht jede Gruppe für dasselbe Problem wo möglich denselben Lösungsansatz verfolgt, sondern die Ressourcen kombiniert, Synergien nutzt um eine bessere Lösung zu erarbeiten. Auf diese Weise kann das Team übergreifende Arbeiten im Rahmen des PREN erlernt und geübt werden. Somit wird Idee der Interdisziplinarität im erweiterten Sinn Rechnung getragen. Die Gruppen und deren Mitglieder sind in Tabelle 1 aufgeführt.

Projekt	Team
DC Motoren	39
Schrittmotor	27, 38
BLDC Motor	27, 32

Tabelle 1: Übersicht der PREN-ET Projektgruppen

2 Schrittmotor

Schrittmotoren oder auch Stepper genannt, sind Synchronmotoren, bei welchen der Rotor um einen bestimmten Winkel gedreht werden kann. So ist die Rotorposition ohne zusätzliche Sensoren bekannt. Dabei ist zu beachten, dass der Motor keine Schritte verliert, was bei Überlast geschehen kann. Da die meisten Schrittmotorensysteme Open- Loop Systeme sind, entsteht eine dauernde Positionsabweichung bei einem Schrittverlust. Grundsätzlich wird zwischen zwei Schrittmotortypen unterschieden:

- Permagnentmagnetmotor
- Reluktanzmotor

Der Permanentmagnetmotor besitzt als Rotor einen Permagnentmagneten. Beim Reluktanzmotor besteht der Rotor aus einem gezahnten Weicheisenkern. Permanentmagnetmotoren erreichen eine kleinere Schrittfrequenz, besitzen jedoch ein grösseres Drehmoment als der Reluktanzmotor. Die Kombination aus Reluktanzmotor und Permanentmagnetmotor ist ein Hybridmotor. Ein Hybridmotor verbindet die Vorteile von Reluktanz- und Permagnentmotor.

2.1 Schritte

Der Vollschrittbetrieb kann einphasig oder auch zweiphasig gesteuert werden. Beim einphasigen Vollschrittbetrieb sind immer zwei gegenüber liegende Pole aktiv. Beim zweiphasigen Vollschrittbetrieb werden jeweils zwei nebeneinander liegende Pole aktiv. Im Halbschrittbetrieb werden die beiden Vollschrittbetriebsarten kombiniert. So kann der Schrittwinkel halbiert werden. Zusätzlich kann der Schrittmotor mit Mikroschritten betrieben werden. Dabei folgt der Strom der sinusförmigen Referenzspannung. (Vgl. Seite 4)

Wie bei anderen Motoren hat auch bei Schrittmotoren die Anzahl Polpaare einen Einfluss auf dessen Drehzahl.

Abbildung 1: Vollschritt

Die Polpaare bilden eine Untersetzung zwischen der elektrischen und der mechanischen Rotation. Die meisten gängigen Schrittmotoren besitzen 50 Polpaare. Da eine elektrische Umdrehung aus vier Schritten besteht ergeben sich bei 50 Polpaaren 200 Schritte für eine Umdrehung. Dies ergibt eine Schrittauflösung von 1.8°.

2

Abbildung 2: Halbschritt

Abbildung 3: Mikroschritt

2.2 Wicklungen

Ein Schrittmotor besitzt zwei getrennte Wicklungen. Diese sind rechtwinklig zueinander angeordnet. Bei Motoren mit mehr als einem Polpaar sind entsprechend mehr die Wicklungen verbaut. Beim Aufbau der Wicklungen wird zwischen unipolaren und bipolaren Wicklungen unterschieden. Die unipolare Wicklung besitzt einen Mittelabgriff. Dieser wird meistens mit der Versorgungsspannung verbunden. Die beiden anderen Enden werden nun mit einer Lowside Treiberstufe angesteuert. Dadurch kann der magnetische Fluss mit einem geringen elektronischen Aufwand umgekehrt werden. Jedoch ist immer nur eine Hälfte der Wicklung aktiv. Zudem ist die Herstellung aufwendiger und somit auch teuerer. Bei einer bipolaren Wicklung fehlt der mittlere Abgriff. Die Umkehrung des magnetischen Flusses muss über die Umkehrung der angelegten Spannung erfolgen. Deshalb muss für beide Wicklungen jeweils eine Brückenschaltung verwendet werden. Da bei bipolaren Schrittmotoren immer die gesamte Wicklung verwendet wird, kann damit ein grösseres Drehmoment erzeugt werden als mit einem gleich grossen unipolaren Schrittmotor. Die Ansteuerung der beiden Wicklungsarten sind in Abbildung 4 ersichtlich. (Prof. Dr. Wolfgang Matthes, 2007)

Abbildung 4: bipolarer und unipolarer Betrieb (Prof. Dr. Wolfgang Matthes, 2007)

3 Stepper Motoransteuerung

3.1 Grundsätzliches zur Ansteuerung

Grundsätzlich besteht die Ansteuerung aus drei Teilen, wie in Abbildung 5 gezeigt. Um die Ansteuerung zu

Abbildung 5: Komponenten der Ansteuerung eines Schrittmotores

realisieren, gibt es eine Vielzahl von integrierten Schaltkreisen. Diese unterscheiden sich wie folgt:

- Interfaces: Einzelanschlüsse, einfache Busschnittstellen oder Mikrocontrollerschnittstellen wie SPI, II2
- Steuerfunktionen: Einzelne Schritte oder Bewegungsabläufe (Motion Control Function)
- Schaltungsintegration: Steuerung und Treiberstufe als getrennte Schaltkreise, oder in einem Schaltkreis zusammengefasst.

(Prof. Dr. Wolfgang Matthes, 2007)

Der gewählte integrierte Schaltkreis ist der L6480 von STMicroelectronics. Dieser wird über die SPI Schnittstelle gesteuert und besitzt eine Motion Contol Engine. Die Treiberstufe wird extern realisiert. (Vgl. Kapitel 4)

3.2 Treiberstufe

Wird ein Schrittmotor unipolar betrieben, so können die vier Wicklungen direkt mit Lowside Treibern angesteuert werden. Für den bipolaren Betrieb benötigt man für beide Wicklungen je eine H- Brücke. Die einfachste Methode ist es, den Strom nur durch den Wicklungswiderstand zu begrenzen. Der Nachteil ist, dass die Zeitkonstante durch den Wicklungswiderstand und die Induktivität bestimmt ist, und so bei höheren Schrittfrequenzen der gewünschte Strom und damit das Drehmoment nicht mehr erreicht wird. Deshalb wird ein zusätzlicher Vorwiderstand in Serie geschaltet, und so die Zeitkonstante verkleinert. Typische Verhältnisse sind vierfacher- oder fünffacher Widerstand, was eine vierfache bzw. fünffache Speisespannung voraussetzt. Diese Methode wiederum führt zu einer höheren Verlustleistung in den Widerständen. Im Ruhezustand ist es sinnvoll, den Strom soweit zu senken, dass das Haltemoment nicht unterschritten wird. Eine Spannungsumschaltung hat den weiteren Vorteil, dass so beim Anfahren eine steilere Stromkurve erreicht werden kann. (Vgl. Abbildung 6) Der Schrittmotor kann

Abbildung 6: Spannungsumschaltung (Thomas Hopkins, 2012)

alternativ auch stromgesteuert betrieben werden. Dabei folgt der Stromverlauf dem Verlauf einer Referenzspannung (Sollwert). Der Stromverlauf wird auf den Sollwert geregelt. Die Betriebsspannung muss so nicht stabilisiert werden.

4 Stepper Driver L6480

Wie bereits im Kapitel 3.1 erwähnt, wird der L6480 von STMicroelectronics verwendet.

4.1 Funktionsbeschreibung

Diese Schrittmotorensteuerung ist für den Betrieb von zweiphasigen (Vgl. Kpaitel 2) Schrittmotoren mit Mikrosteps (Vgl. Kapitel 2) geeignet. Der L6480 erreicht eine maximale Auflösung von einem 1/128 Schritt. Die Steuerung generiert intern die PWM- Signale für die Motorenansteuerung. Alternativ kann auch mit Vollschritten oder Halbschritten gearbeitet werden. Die beiden H- Brücken werden extern mit N-Kanal MOSFETs realisiert. Es können Bewegungsprofile konfiguriert werden, so dass die Motoren definiert anfahren, abbremsen oder ein Punkt direkt angefahren werden kann. So kann der Aufwand bei der Mikrocontrollerprogrammierung verringert werden. Die Befehle werden über eine SPI- Schnittstelle übertragen. Die absolute Position ist in einem 22- Bit Register gespeichert. Der Bereich liegt dementsprechend zwischen -2^{21} und $2^{21}-1$. (STMicroelectronics, 2012)

4.2 Schnitstelle

Der steuernde Mikrocontroller benötigt 8 Pins für die Kommunikation mit dem L6480 (STMicroelectronics, 2012):

Pin	IO	Funktion
\overline{FLAG}	Output (Open Drain)	Wird bei einem Fehler intern auf GND gezo-
\overline{BUSY} / SYNC	Output (Open Drain)	gen. Wird während dem Ausführen eines Befehls intern auf GND gezogen.
$\overline{STBY/RESET}$	Input	Standby- und Resetmodus, falls extern GND anliegt.
STCK	Input	Im Step-Clock- Mode führt jede positive Flanke an diesem Pin zu einem Schritt.
SPI		
\overline{CS}	Input	Chip Select: Falls extern GND anliegt, startet die Kommunikation. Um die Kommunikation zu beenden, muss \overline{CS} extern auf High gehalten werden.
CK	Input	Serial Clock: Synchronisierung der Kommunikation.
SDO	Output	Slave Data Out: Daten für den Mikrocontroller.
SDI	Input	Slave Data In: Befehle und Daten für den L6480.

Tabelle 3: Schnittstelle des Treibers L6480

4.3 Typical Application

Abbildung 7: Typical Application (STMicroelectronics, 2012)

5 Ausblick

In einem nächsten Schritt soll der L6480 bestellt werden und in einer Testschaltung getestet werden. Weiter soll ein Schema und ein Layout geplant und produziert werden, welche alle Teammitglieder in ihrem Projekt verwenden können, falls sie dies benötigen.

1. Januar 2015

Literatur- und Quellenverzeichnis

Prof. Dr. Wolfgang Matthes. (2007). Schrittmotoren (Einführung) [Software-Handbuch]. Peukinger Weg 34, 59423 Unna.

STMicroelectronics. (2012). L6480, $cSPIN^{TM}$: microstepping motor controller with motion engine and SPI (Datasheet). 39, Chemin du Champ des FillesPlan-Les-Ouates, CH1228 Geneva: Autor.

Thomas Hopkins. (2012). AN235 Application note, Stepper motor driving (App. Note). 39, Chemin du Champ des FillesPlan-Les-Ouates, CH1228 Geneva: STMicroelectronics. (Doc ID 1679 Rev 2)

Abbildungsverzeichnis

1	Vollschritt
2	Halbschritt
3	Mikroschritt
4	bipolarer und unipolarer Betrieb
5	Komponenten der Ansteuerung eines Schrittmotores
6	Spannungsumschaltung
7	Typical Application
Γab	ellenverzeichnis
1	Übersicht der PREN-ET Projektgruppen
3	Schnittstelle des Treibers L6480

1. Januar 2015