Examen 2009

Durée deux heures. Aucun document n'est autorisé. Les exercices sont indépendants. Seule les réponses soigneusement justifiées seront prises en compte. Si z_{α} est le quantiles de niveau α d'une loi normale centrée et réduite, on donne : $z_{0.8} = 0.841$, $z_{0.9} = 1.281$, $z_{0.95} = 1.645$, $z_{0.975} = 1.96$, $z_{0.99} = 2.326$.

Exercice 1. Soit (X,Y) le vecteur gaussien centré de matrice de covariance $\begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}$ et Z = Y - X.

- (a) Calculer le coefficient de correlation $\rho_{X,Y}$ entre X et Y.
- (b) Déterminer la loi de la v.a. Z.
- (c) Soit $W = X + \alpha Y$. Déterminer α tel que Z et W soient indépendantes.

Exercice 2. Soit $(U_n)_{n\geq 1}$ une suite de v.a. iid de loi $\mathcal{U}([0,\theta])$ avec $\theta>0$. On pose $X_n=n\min_{1\leq k\leq n}U_k$. Montrer que X_n converge en loi vers une v.a. $\mathcal{E}(1/\theta)$.

Exercice 3. Soit X_1, \ldots, X_n un échantillon de loi $\mathcal{U}([0, \theta])$ avec $\theta > 0$.

- (a) Déterminer l'estimateur de maximum de vraisemblance T_n pour θ .
- (b) Montrer que T_n est biaisé et calculer le biais pour tout $n \ge 1$.
- (c) Proposer un estimateur sans biais de θ .

Exercice 4. Soit $X \sim \mathcal{N}(1,1)$.

- (a) Déterminer c tel que $\mathbb{P}(|2X 2| \le c) = 0.95$.
- (b) Calculer $\mathbb{E}[X^3]$.
- (c) (difficile) Calculer $\mathbb{E}[Xe^X]$.

Exercice 5. Soit X une v.a. discrète telle que $\mathbb{P}(X=-1)=\mathbb{P}(X=1)=p$, $\mathbb{P}(X=0)=1-2p$. On considère un échantillon de taille n de loi celle de X.

- (a) Trouver une statistique exhaustive S_n pour p.
- (b) Déterminer un estimateur T_n de p par la méthode des moments.
- (c) Déterminer la loi de T_n .
- (d) Montrer que la suite $(T_n)_{n\geq 1}$ est asymptotiquement normale.

Exercice 6. On observe un échantillon de taille n issu de la loi $X \sim \mathcal{N}(\theta, \theta^2)$ avec $\theta > 0$. Quelle est la loi de $\sqrt{n}(\bar{X}_n - \theta)/\theta$? Déterminer un intervalle de confiance pour θ de niveau $1 - \alpha$.

Exercice 7. On considère un échantillon de taille n de loi $\mathcal{N}(1, \sigma^2)$. Déterminer la région critique du test UPP à niveau $\alpha = 5\%$ pour $H_0: \sigma^2 = 1$ contre $H_1: \sigma^2 = 4$.