

Ch9.3 Representing Relations (Week 18)

Representing Relations Using Matrices

Suppose that R is a relation from $A=\{a_1,a_2,\ldots,a_m\}$ to $B=\{b_1,b_2,\ldots,b_n\}$.

The relation R can be represented by the matrix $M_R = [m_{ij}]$, where $m_{ij} = egin{cases} 1 & ext{if } (a_i,b_j) \in R \ 0 & ext{if } (a_i,b_j)
otin R.$

▼ Example 1

Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a,b) if $a\in A,b\in B$, and a>b. What is the matrix representing R if $a_1=1,a_2=2,a_3=3,b_1=1,b_2=2$?

Solution:

Because
$$R=\{(2,1),(3,1),(3,2)\}$$
 , the matrix for R is $M_R=\begin{bmatrix}0&0\\1&0\\1&1\end{bmatrix}$.

Properties when Using Matrices

- Reflexive: R is reflexive iff $m_{ii}=1$ for $i=1,2,\ldots,n$. i.e. R is reflexive if all the elements on the main diagonal of M_R are equal to 1.
- Symmetric: R is symmetric iff $m_{ji}=1$ whenever $m_{ij}=1$. i.e. $m_{ji}=0$ whenever $m_{ij}=0$. $\Rightarrow R$ is symmetric iff $m_{ij}=m_{ji}$.
- Antisymmetric: R is antisymmetric iff $(a,b) \in R$ and $(b,a) \in R$ imply that a=b. i.e. if $m_{ij}=1$ with $i \neq j$, then $m_{ji}=0$ (or either $m_{ij}=0$ or $m_{ji}=0$ when $i \neq j$).

(a) Symmetric

(b) Antisymmetric

▼ Example 3

Suppose that the relations R on a set if represented by the matrix $M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

Is R reflexive, symmetric, and/or antisymmetric?

Solution:

R is reflexive \rightarrow all diagonal elements = 1.

R is symmetric $\rightarrow M_R$ is symmetric.

R is not anti-symmetric.

- Union: $M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$
- Intersection: $M_{R_1\cap R_2}=M_{R_1}\wedge M_{R_2}$
- Composite: $M_{S \circ R} = M_R \odot M_S$

▼ Example 5

Find the matrix representing the relations $S \circ R$, where the matrices representing R and S are $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

and
$$M_S=egin{bmatrix}0&1&0\0&0&1\1&0&1\end{bmatrix}$$
 .

Solution: The matrix for
$$S\circ R$$
 is $\ M_{S\circ R}=M_R\odot M_S=egin{bmatrix}1&1&1\\0&1&1\\0&0&0\end{bmatrix}.$

 \rightarrow The matrix representing the composite of two relations can be used to find the matrix for M_{R^n} , $M_{R^n}=M_R^{[n]}$. (works the same way as multiplication for matrices)

Representing Relations Using Digraphs

▼ Example 7

The directed graph with vertices a, b, c and d and edges (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b) is displayed below.

Properties when Using Digraphs

- *Reflexive*: *iff* there is a loop at every vertex of the directed graph.
- Symmetric: iff for every edge between distinct vertices in its digraph there is an edge in the opposite direction.
- Antisymmetric: iff there are never two edges in opposite directions between distinct vertices.
- *Transitive*: *iff* whenever there is an edge $x \to y, y \to z$, there is an edge $x \to z$. (completing a triangle w/ the correct direction)

▼ Example 10

Determine whether the relations for the directed graphs shown in Figure 6 are reflexive, symmetric, antisymmetric, and/or transitive.

R is reflexive \rightarrow every vertex there are a loop.

R is neither symmetric nor antisymmetric \rightarrow there is an edge $a \rightarrow b$, but not $b \rightarrow a$, and there are edges in both directions $b \leftrightarrow c$.

R is not transitive $\ o$ there is $a o b, \ b o c$, but no a o c.

S is not reflexive \rightarrow no loops in all vertices.

S is symmetric and not antisymmetric \rightarrow every edge between distinct vertices is accompanied by an edge in the opposite direction.

S is not transitive.