DATA ANALYSIS AND VISUALIZATION

INSTRUCTOR: UMME AMMARAH

IMAGE ENHANCEMENT

SPATIAL DOMAIN METHODS

IMAGE ENHANCEMENT

To process an image so that the result is more suitable than the original image for a specific application.

- Categories:
 - Spatial domain methods
 - Frequency domain methods

SPATIAL DOMAIN METHOD

A 3×3 neighborhood about a point (x_0, y_0) in an image. The neighborhood is moved from pixel to pixel in the image to generate an output image.

SPATIAL DOMAIN METHODS

• When the neighborhood is $I \times I$ then g depends only on the value of f at (x, y) and T becomes a gray-level transformation (or mapping) function.

 Examples: Point processing techniques (e.g. contrast stretching, thresholding)

CONTRAST STRETCHING AND THRESHOLDING

INTENSITY TRANSFORMATION

LOG TRANSFORMATIONS

- Log function: $s = c \log(1+r)$
 - Stretch low intensity levels Compress high intensity levels
- Inverse log function: $s = c \log^{-1}(r)$
 - Stretch high intensity levels Compress low intensity levels

POWER LAW (GAMMA) TRANSFORMATION

$$s = cr^{\gamma}$$

Gamma correction/gamma encoding

Results of applying the transformation with g = 3 0., 4.0, and 5.0, respectively. (c = I in all cases.)

Washed-out appearance was reduced by a large gamma value

INTENSITY LEVEL SLICING

■ To highlight a specific range of gray levels in an image (e.g. to enhance certain features). L-1

 One way is to display a high value for all gray levels in the range of interest and a low value for all other gray levels (binary image).

INTENSITY LEVEL SLICING

The second approach is to brighten the desired range of gray levels but preserve the background and graylevel tonalities in the image.

EXAMPLE

Original Image

Result of using slicing method I

Result of using slicing method 2

BIT PLANE SLICING

- To highlight the contribution made to the total image appearance by specific bits.
 - Plane I contains the least significant bit and plane 8 contains the most significant bit.
 - Only the higher order bits (top four) contain visually significant data. The other bit planes contribute the more subtle details.
 - Plane 7 corresponds exactly with an image thresholded at gray level 128.

Each pixel is represented by 8 bits, the image is composed of 8 1-bit planes

(a) An 8-bit gray-scale image of size 550 x I 192 pixels. (b) through (i) Bit planes 8 through I, with bit plane I corresponding to the least significant bit. Each bit plane is a binary image...

IMAGE RECONSTRUCTED FROM BIT PLANES

(a) 8 and 7 (b) 8, 7, and 6 (c) 8, 7, 6, and 5

We conclude that, in this example, storing the four highest-order bit planes would allow us to reconstruct the original image in acceptable detail. Storing these four planes instead of the original image requires 50% less storage.

HISTOGRAM PROCESSING

METHODS OF HISTOGRAM PROCESSING

- Two well-known methods of image enhancement:
 - Histogram equalization
 - Histogram matching

IMAGE HISTOGRAM

Mathematically represented as:

$$h(r_k) = n_k$$

• r_k represents the intensities of an L-level digital image. k = 0, 1, 2, ... L-I and n_k is the number of pixels in f with intensity r_k

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

- Normalized Histogram:
 - M and N are the number of image rows and columns, sum of $p(r_k)$ for all values of k is always 1.
 - It estimates of the probabilities of intensity levels occurring in an image

IMAGE HISTOGRAM

An image histogram is a plot of the gray level frequencies.

0	0	1	0	2	0
1	0	7	7	7	0
0	7	0	0	7	0
1	0	0	7	2	0
0	0	7	1	0	1
1	0	7	7	7	0

gray-levels

NORMALIZED HISTOGRAM

Divide frequencies by total number of pixels to represent as probabilities.

$$P(0) = \frac{f(0)}{36} = \frac{1}{2} \qquad P(1) = \frac{f(1)}{36} = \frac{1}{6}$$

$$P(2) = \frac{f(2)}{36} = \frac{1}{18} \qquad P(3) = P(4) = P(5) = P(6) = 0$$

$$P(7) = \frac{f(7)}{36} = \frac{5}{18}$$

HISTOGRAM EQUALIZATION

■ The main idea is to redistribute the gray-level values uniformly.

PROBABILITY DENSITY/ PROBABILITY DISTRIBUTION

■ The probability density function (pdf) is a real-valued function $f_x(x)$ describing the density of probability at each point in the sample space.

• The integral of $f_x(x)$ defines the cumulative probability distribution function(cdf) $F_x(x)$

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(a) da$$

EXAMPLE

In the discrete case:

$$F_X(x) = P(X \le x) = \sum_{k=0}^{x} P(X = k)$$

$$F_X(0) = P(X \le 0) = P(X = 0) = 1/8$$

$$F_X(1) = P(X \le 1) = P(X = 0) + P(X = 1) = 1/2$$

$$F_X(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 7/8$$

$$F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1$$

non-decreasing

EXAMPLE

I	2	l	l	
2	5	3	5	2
2	5	5	5	2
2	5	3	5	2
I	I	I	2	ı

Max Value = 5 (requires 3 bits) Number of grey levels (L) = 8 N = 25

Gray level r_k	n_k	P(r_k)= n_k/N (pdf)	s_k (CDF)	Sk x(L-I)	Hist. equalized level
0	0	0	0	0	0
I	8	0.32	0.32	2.24	2
2	8	0.32	0.64	4.48	4
3	2	0.08	0.72	5.04	5
4	0	0	0.72	5.04	5
5	7	0.28		7	7
6	0	0		7	7
7	0	0	l	7	7

EXAMPLE CONT.

Grey Level	0	2	4	5	7
Frequ ency	0	8	8	6 2	7

2	4	2	2	2
4	7	5	7	4
4	7	7	7	4
4	7	5	7	4
2	2	2	4	2

Modified Image according to equalized histogram

SPATIAL FILTERING

FILTER KERNEL

- The kernel is an array whose size defines the neighborhood of operation
- Whose coefficients determine the nature of the filter.
- Other terms used to refer to a spatial filter kernel are mask, template, and window.

LINEAR SPATIAL FILTERING

- The process consists simply of moving the filter mask from point to point in an image.
- At each point (x,y) the response of the filter at that point is calculated using a predefined relationship.
- A linear spatial filter performs a sum-of-products operation between an image f and a filter kernel, w.

TRANSFORMED VALUE OF A PIXEL

The result is the sum of products of the mask coefficients with the corresponding pixels directly under the mask.

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots + w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$$

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Spatial Filtering (Neighborhood Processing)

Linear Spatial Filtering

0	-1	0
-1	4	-1
0	-1	0

w: positioned so that its center coefficient is coincident with the origin of f

2	3	5	7	2
3	4	7	5	2
5	6	5	3	1
2	6	2	2	1
7	3	3	2	0

0	-1	0			
-1	42	-13	5	7	2
0	-13	0_4	7	5	2
	5	6	5	3	1
	2	6	2	2	1
	7	3	3	2	0

0	-1	0		
-12	43	-1 ₅	7	2
03	-14	0_7	5	2
5	6	5	3	1
2	6	2	2	1
7	3	3	2	0

	0	-12	03	5	7	2
	-1	- 4 ₃	-14	7	5	2
7 1 3 16 -	1 0	-1_5	06	5	3	1
Y		2	6	2	2	1
		7	3	3	2	0

	2	1	3	16 -	-1
	1	-3			
ŀ					

02	-13	05	7	2
-13	44	-17	5	2
0 ₅	-1_6	0 5	3	1
2	6	2	2	1
7	3	3	2	0