一、给定如下两个字符串:

A = "acbdhayjlo",

B = "abedcyl",

请采用动态规划方法求解A与B的最长公共子序列。

一、给定如下两个字符串:

A = "acbdhayjlo",

B = "abedcyl",

请采用动态规划方法求解A与B的最长公共子序列。

分析:

求解最长公共子序列长度的递推式为:

$$L[i,j] = \begin{cases} 0 & \text{ $ \vec{a}$ i = 0$ \vec{a} j = 0 } \\ L[i-1,j-1]+1 & \text{ $ \vec{a}$ i > 0, $j > 0$ $\pi a_i = b_j } \\ \max\{L[i,j-1],L[i-1,j]\} & \text{ $ \vec{a}$ i > 0, $j > 0$ $\pi a_i \neq b_j } \end{cases}$$

一、给定如下两个字符串:

A = "acbdhayjlo",

B = "abedcyl",

请采用动态规划方法求解A与B的最长公共子序列。

ą.	a₽	C↔	b₽	d₽	h₽	a₽	y₽	j₽	1₽	0€
a↔	10-	→ 1₽	14	14	1€	1₽	1₽	1₽	1₽	1₽
b₽	14	1₽	2₽	24	2₽	24	2₽	2₽	2₽	2₽
e₽	14	1€	2₽	24	2₽	24	2₽	2₽	2₽	2₽
d₽	147	1₽	2₽	3.₽	3₽	3₽	3₽	3₽	3₽	3.₽
C€	14	2€	2₽	3↔	→ 3 <i>-</i> -	→ 3₽	3₽	3₽	3₽	3₽
y⇔	14	2₽	2₽	3₽	3₽	3₽	4	→ 4₽	4₽	4₽
1₽	14	2₽	2₽	3₽	3₽	3₽	4₽	4₽	5₽	5₽

最长公共子序列长度为5,子序列为abdyl。

- 二、求对下列4个矩阵连乘:
- $A1(2\times10)$, $A2(10\times1)$, $A3(1\times5)$, $A4(5\times4)$ _o
- (1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)
 - (2) 写出通过此算法解决上述问题的过程及结果

二、求对下列4个矩阵连乘:

 $A1(2\times10)$, $A2(10\times1)$, $A3(1\times5)$, $A4(5\times4)$ _o

(1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)

定义矩阵 $M_{i,j} = M_i \cdots M_j$, C[i,j]表示计算 $M_{i,j}$ 所需的最小乘法次数。 若依据下标k将 $M_{i,j}$ 划分为两部分: $M_{i,k-1}$ 和 $M_{k,j}$ 则有递推式: $C[i,j] = \min_{i < k \le j} \{C[i,k-1] + C[k,j] + r_i r_k r_{j+1}\}$

二、求对下列4个矩阵连乘:

 $A1(2\times10)$, $A2(10\times1)$, $A3(1\times5)$, $A4(5\times4)$ _o

(1) 写出解决上述问题的动态规划实现算法(文字描述或者伪代码)

```
输入: r[1..n+1], 表示n个矩阵规模的n+1个整数.
```

输出: n个矩阵连乘的最小乘法次数.

- 1. for i←1 to n {填充对角线d₀}
- 2. C[i,i] ←0
- 3. end for
- 4. for d←1 to n-1 {填充对角线d₁到d_{n-1}}
- 5. for i←1 to n-d {填充对角线d_i的每个项目}
- 6. j←i+d {该对角线上j,i满足的关系}
- 7. $C[i,j] \leftarrow \infty$
- 8. for $k \leftarrow i + 1$ to j
- 9. $C[i,j] \leftarrow min\{C[i,j], C[i,k-1] + C[k,j] + r_i \times r_k \times r_{i+1}\}$
- 10. end for
- 11. end for
- 12.end for
- 13.return C[1,n]

二、求对下列4个矩阵连乘:

 $A1(2\times10)$, $A2(10\times1)$, $A3(1\times5)$, $A4(5\times4)$ _o

(2) 写出通过此算法解决上述问题的过程及结果

	1	2	3	4
1	0	20(2)	30(3)	48(3)
2	-	0	50(3)	60(3)
3	-	-	0	20(4)
4	-	-	-	0

最优计算次序: ((A1 ×A2) ×(A3 ×A4))

最优值: 48