Projeto de Arquitetura e Organização de Computadores

Montador e Simulador IJVM

Professor: Danilo Alves

Equipe:

Andressa Gomes

Carlos Augusto

Stefane Adna

Cleton Morais

Introdução.

• Nível de Micro Arquitetura: Uma microarquitetura é a forma como um determinado número de instruções em nível ISA serão implementadas no processador.

• Toda Microarquitetura é dividida em uma Parte Operativa e uma Parte de Controle.

Exemplo de uma Microarquitetura- MIC 1

- O MIC-1 é uma arquitetura de <u>processador</u> que consiste em uma <u>unidade de controle</u> muito simples que executa o <u>microcódigo</u> criado utilizando-se instruções da IJVM.
- Essa arquitetura tem a função de interpretar instrução por instrução do nível ISA.

Foto do MIC-1 da IJVM

O que é a IJVM?

- O IJVM é <u>conjunto de instruções</u> que são usadas para ensinar noções básicas de linguagem de montagem.
- Esse conjunto de microinstruções geralmente são escritos em mnemônicos, e ao serem lidos pela microarquitetura, são então convertidas para o seu equivalente em hexadecimal, para que mais adiante possam ser executado

Mnemônico da IJVM	Equivalente em Hexadecimal	Significado
BIPUSH byte	0X10	Colocar um byte na pilha
ISTORE variável	0x36	Retirar a palavra do topo da pilha e armazenar essa palavra em uma variável local
ILOAD	0x15	Coloca uma variável no topo da pilha
IADD	ox60	Retira da pilha as duas palavras do topo; coloca no topo da pilha o resultado da soma dessas palavras
ISUB	0x64	Retira da pilha as duas palavras do topo; coloca no topo da pilha o resultado da subtração dessas palavras
DUP	0x59	Copia a palavra do topo da pilha e coloca a cópia no topo da pilha
GOTO deslocamento	oxA7	Desvio incondicional
IFLT deslocamento	ox9B	Retira da pilha a palavra do topo; desvia se ela for menor que zero
IOR	ox8o	Retira da pilha as duas palavras do topo; coloca no topo da pilha o resultado da operação OR booleana dessas palavras
IAND	ox7E	Retira da pilha as duas palavras do topo; coloca no topo da pilha o resultado da operação AND booleana dessas palavras
NOP	OXOO	Não faz nada

Registradores da MIC-1

Pode ser notado que os quatro primeiros registradores (MAR, MDR, PC e MBR) são registradores que trabalham diretamente com os endereços na memória, onde:

- MAR e PC apenas enviam para a memória.
- MBR recebe e é de comunicação exclusiva com a memória.
- Já MDR trabalha tanto enviando como recebendo dados referentes à memória.

Assim, temos os seguintes registradores e suas funções:

- MAR: Registrador de Endereço de Memória para o barramento 32 bits.
- MDR: Registrador de Dados de Memória para o barramento de 32 bits, apontado por MAR.
- MBR: Registrador de Dados de Memória para o barramento de 8 bits, apontado por PC.
- **PC**: Contador de Programa. Aponta para a Memória em um Barramento de 8 bits, que contém instruções.
- **SP**: Apontador de Pilha.
- LV: Apontador para a base das Variáveis Locais, localizada na pilha.
- **CPP**: Aponta para o POOL de constantes e apontadores para outras áreas da memória.
- TOS e OPC: Registradores Temporários.
- H: Acumulador.

Apresentação do Projeto

Referências

- https://jansebp.wordpress.com/2013/08/20/microarquiteturas-mic-1-e-mic-2-parte-i-apresentacao/
- http://www.dpi.inpe.br/~carlos/Academicos/Cursos/ArqComp/aula_7.html
- https://en.wikipedia.org/wiki/IJVM
- https://pt.wikipedia.org/wiki/Microarquitetura