ORF 524: Statistical Theory and Methods

Fall 2016

Lecture 10: 10/17/2016

Lecturer: Prof. Samory Kpotufe Scribe: Kiran Vodrahalli

Note: LaTeX template courtesy of UC Berkeley EECS dept.

10.1 Confidence Sets with Gaussian Assumptions, Continued

Example 1. Regression (confidence bands).

Let $y=Xw+\eta, X\in\mathbb{R}^{n\times d}$ fixed, $w\in\mathbb{R}^d$. Let $\eta\sim\mathcal{N}(0,I_n), \ \widehat{w}=(X^TX)^{-1}X^Ty$ is well-defined. Let $f(x)=x^Tw, \ \widehat{f}(x)=x^T\widehat{w}, \ \text{and we have}$

$$x^{T}(\widehat{w} - w) = x^{T} \left((X^{T}X)^{-1}X^{T}(y - Xw) \right)$$
$$= A\eta \sim \mathcal{N}(0, AA^{T})$$
(10.1)

where $A = x^{T}(X^{T}X)^{-1}X^{T} \implies AA^{T} = x^{T}(X^{T}X)^{-1}x = \sigma_{x}^{2}$.

Thus we have

$$\Pr\left(-z_{\alpha/2} \le \frac{x^T \widehat{w} - f(x)}{\sigma_x} \le z_{\alpha/2}\right) = 1 - \alpha \tag{10.2}$$

which we can rephrase as $f(x) \in S(y) = x^T \widehat{w} \pm z_{\alpha/2} \sigma_x$ with probability $1 - \alpha$.

Figure 10.1: Confidence Band for Linear Regression

Exercise: Let Φ denote the c.d.f. of $\mathcal{N}(0,1)$ and let $z_{\alpha} \in \mathbb{R}$ denote the critical value satisfying $\Phi(z_{\alpha}) = 1 - \alpha$. Consider the above fixed design.

- 1. Derive an ellipsoidal (1α) -confidence set for $w \in \mathbb{R}^d$ using z_α values. (Remember $\{x : \|Ax\| \le r\}$ for $A \succeq 0$ is an ellipsoid.)
- 2. Derive a hypercubic (1α) -confidence set for $w \in \mathbb{R}^d$ of the form $\{w : ||w c||_{\infty} < r\}$.
- 3. Suppose now that the design matrix X is also random. Are the confidence sets in the first two parts still of level $1-\alpha$?

10-2 Lecture 10: 10/17/2016

Exercise: (Note that this draws upon the notation from the example above). Suppose w is k-sparse; i.e. has exactly k non-zero coordinates i_1, \dots, i_k with $X^TX = nI_d$. Design a procedure that identifies $\mathrm{supp}(w) = \{i_1, \dots, i_k\}$. How large should n be for the procedure to be successful with probability $\geq 1 - \alpha$?

Exercise: Let $x \sim \operatorname{Unif}^n([0,\theta])$. Find a $(1-\alpha)$ -S for θ . Suppose each $P \in \mathcal{P}$ has median m = m(P), $x \sim P^n$. What is the confidence coefficient of the intervals $[x_{(1)}, \infty), (-\infty, x_{(n)}], [x_{(1)}, x_{(n)}]$?

Remark 1. Smallest confidence sets are hard to obtain, and known in some cases by restricting attention to particular sets (see example below).

Proposition 2. Let $x \sim \mathcal{N}^n(\mu, \sigma^2)$ with σ^2 known. Then $S(x) = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is shortest among $S'(x) = [\bar{x} - a_1, \bar{x} + a_2]$ with coverage $1 - \alpha$.

 $\begin{array}{l} \textit{Proof.} \ \ \text{For any such } S', \Pr_{\mu}\left(\mu \in S'(x)\right) = \Pr_{Z}\left(a \leq Z \leq b\right) \text{ for some fixed } a, b \text{ proportional to } a_{1}, a_{2} \text{: } (a = \frac{a_{1}}{\sigma_{\overline{x}}}, b = \frac{a_{2}}{\sigma_{\overline{x}}}, \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}). \text{ So we just need to show that if } \Pr_{Z}\left(a \leq Z \leq b\right) = 1 - \alpha \text{ then } b - a \geq 2z_{\alpha/2}. \end{array}$

Figure 10.2: Intuition for Optimal Interval

First consider $a < b \le -z_{\alpha/2}$. By the Mean-Value theorem (MVT),

$$\int_{a}^{b} f_{z} = (b - a)f_{z}(\alpha_{1}) = 2z_{\alpha/2}f_{z}(\alpha_{2}) = \int_{-z_{\alpha/2}}^{z_{\alpha/2}} f_{z}$$
(10.3)

where $\alpha_1 \in (a,b)$, $\alpha_2 \in (-z_{\alpha/2},z_{\alpha/2})$. Therefore $f_z(\alpha_1) < f_z(\alpha_2) \implies (b-a) \ge 2z_{\alpha/2}$.

Now consider $a < -z_{\alpha/2} < b < z_{\alpha/2}$. We have

$$\int_{a}^{b} f_{z} = \int_{-z_{\alpha/2}}^{z_{\alpha/2}} f_{z} + \int_{a}^{-z_{\alpha/2}} f_{z} - \int_{b}^{z_{\alpha/2}} f_{z} = 1 - \alpha$$
 (10.4)

Then, since $\int_a^{-z_{\alpha/2}} f_z = \int_b^{z_{\alpha/2}}$, the Mean-Value theorem implies $(-z_{\alpha/2} - a) \ge (z_{\alpha/2} - b)$, or $b - a \ge 2z_{\alpha/2}$.

Now we're done since all other cases are solved by symmetry.

Remark 3. More generally "size" might denote "volume". Other notions of optimality (e.g. Probability of False Coverage) are related to UMPs in hypothesis testing (see 9.3.2 in Casella-Berger).

10.2 Hypothesis Testing

Definition 4. Given \mathcal{P} and some parameter $\theta \in \Theta$, a hypothesis "test" is a procedure to decide between hypotheses of the form $\theta \in \Theta$ (disjoint subsets of Θ) based on observations $x \sim P \in \mathcal{P}$.

Lecture 10: 10/17/2016 10-3

Example 2. Let p be the proportion of voters supporting candidate 1 out of 2. Let H_0 be the case where $p \le 1/2$, i.e. candidate 1 will lose and H_1 be the case where p > 1/2, i.e. candidate 1 will win.

Remark 5. We will focus on the case with 2 hypotheses which will illustrate the main ideas.

Definition 6. H_0 is known as the **null hypothesis** and is chosen as a sort of default belief. H_1 is the **alternative hypothesis**.

Definition 7. A test T for a family \mathcal{P} defines a rejection region $R(T) \subset \mathcal{X}$ (assume supp $(P) \subset \mathcal{X} \ \forall P \in \mathcal{P}$) such that if the observation $x \in R(T)$, then H_0 is rejected; otherwise, if $x \in \mathcal{X} \setminus R(T) = A(T)$, H_1 is rejected (i.e., the null hypothesis is accepted). A(T) is called the acceptance region.

T can be viewed as the following function:

$$T(x) = \begin{cases} 1 & x \in R(T) \\ 0 & x \in A(T) \end{cases}$$

1 means "accepting" 1 and 0 means "accepting" 0.

Definition 8. The **error** of a test T for $H_0: \theta \in \Theta_0$, $H_1: \theta \in \Theta_1$ is $err(T) = Pr_{\theta}(()T = 1)\mathbf{1}\{\theta \in \Theta_0\} + Pr_{\theta}(T = 0)\mathbf{1}\{\theta \in \Theta_1\}$.

Type I error is $\Pr_{\theta}(T=1)$ for any $\theta \in \Theta_0$ and Type II error is $\Pr_{\theta}(T=0)$ for any $\theta \in \Theta_1$. Note that these are also called "probability" of Type I/II error.

Remark 9. While err(T), the probability that T chooses the wrong hypothesis, appears to be a natural quantity measure, it has some undesirable properties. For example;

Example 3. Let $x = \{x_i\} \sim \mathcal{N}(\mu, \sigma^2)$, $H_0 : \mu \leq \mu_0$, $H_1 : \mu > \mu_0$. Consider tests of the form $T_i(x) = 1$ if $\bar{x} \geq t_i$. Consider any $t_1 < t_2$. The difference $\text{err}(T_1) - \text{err}(T_2)$ is $\text{Pr}(t_1 \leq x < t_2)$ when $\mu \leq \mu_0$ and $-\text{Pr}(t_1 \leq x < t_2)$ when $\mu > \mu_0$.

Figure 10.3: Rejection Regions for T_1 and T_2

In other words, none of the two is guaranteed to be better in terms of error. The problem is that our error function treates both Type I and Type II error equally, when in particular settings in practice, we may prefer to minimize one over the other.

The usual solution to this problem is to fix Type I error and aim for a small Type II error.

Definition 10. A test T has significance level α for the problem $H_0: P \in \mathcal{P}_0, H_1: P in\mathcal{P}_1, \mathcal{P}_i = P \in \mathcal{P}$ such that $\theta(P) \in \mathcal{P}_i$.

$$\operatorname{size}(T) = \sup_{P \in \mathcal{P}_0} P(R(T)) \le \alpha \tag{10.5}$$

for $0 < \alpha < 1$. We call P(R(T)) the **power** of T, and is denoted $\beta(P)$ and is viewed as a function of P. If $P \in \mathcal{P}_1$, then $\beta(P) = 1$ —(Type II error for P).

10-4 Lecture 10: 10/17/2016

Example 4. Let $H_0: \mu \leq \mu_0$ and $H_1: \mu > \mu_0$. Let $x = \{x_i\} \sim \mathcal{N}^n(\mu, \sigma^2)$ for a known σ^2 . Suppose we want T(x) := 1 iff $\bar{x} \geq t$. Then notice that

$$\Pr_{\mu_0}(\bar{x} \ge t) \ge \Pr_{\mu}(\bar{x} \ge t) \tag{10.6}$$

for $\mu \leq \mu_0$. So we only need to reconsider μ_0 to get level $1 - \alpha$:

$$\Pr\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \ge z_\alpha\right) = \alpha \tag{10.7}$$

Therefore $t = \mu_0 + \frac{z_{\alpha} \cdot \sigma}{\sqrt{n}}$.

Figure 10.4: H_0 and H_1

Remark 11. By the above, we get the same test for $H_0: \mu = \mu_0, H_1: \mu > \mu_0$. Tests of the form $H_0: \theta = \theta_0$ often yield general insight.

Example 5. Same $\mathcal{P} = \mathcal{N}^n(\mu, \sigma^2)$ as before, $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$. T(x) := 1 iff $\left| \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \right| \geq z_{\alpha/2}$ has size $1 - \alpha$.

Remark 12. Suppose we don't know σ . We can just use $\frac{\sqrt{n}(\bar{x}-\mu_0)}{S_{n-1}} \sim$ Student's t-distribution to get R(t) since the distribution is then known.

Exercise: What is the power $\beta(\mu)$ for the above tests in terms of Φ , the standard normal c.d.f.? Draw an outline of this function. How does $\beta(\mu)$ behave as $n \to \infty$? Note that we want $\beta(\mu)$ to grow quickly towards 1, as $|\mu - \mu_0| \to \infty$. (See Figure 10.5).

Figure 10.5: The Power