Лабораторная работа №6 «Гонка вооружений между двумя странами»

Выполнила: Рулева В.О.

Группа: ПИН-41

1. ЗАДАНИЕ:

Изучить материал по книге Самарского, Михайлова стр. 173. Исследование модели "Гонка вооружений между двумя странами".

2. ВЫПОЛНЕНИЕ РАБОТЫ:

2.1. Моделирование гонки вооружений между двумя странами

2.1.1. Описание модели:

Параметры модели:

- $M_1(0)$ начальный объем вооружений первой страны, $M_1(0) \ge 0$;
- $M_2(0)$ начальный объем вооружений второй страны, $M_2(0) \ge 0$;
- α_1 скорость наращивания вооружений первой страной, $\alpha_1 > 0$;
- α_2 скорость наращивания вооружений второй страной, $\alpha_2 > 0$;
- β_1 скорость «старения» вооружений первой страны, $\beta_1 > 0$;
- β_2 скорость «старения» вооружений второй страны, $\beta_2 > 0$;
- γ_1 уровень настороженности первой страны, $\gamma_1 > 0$;
- γ_2 уровень настороженности второй страны, $\gamma_2 > 0$.

Пространство состояний:

- t время;
- $M_1(t)$ объем вооружений первой страны, $M_1(t) \ge 0$;
- $M_2(t)$ объем вооружений второй страны, $M_2(t) \ge 0$.

2.1.2. Рисунок:

2.1.3. Постановка задачи:

Исследование изменения объёмов вооружений двух стран, находящихся в состоянии ненападения. Паритет численности арсеналов является гарантом отсутствия боевых действий

Объект исследования: численность арсеналов двух стран, втянутых в гонку вооружений.

2.1.4. Идеализация объекта:

Общее количество вооружений у каждой страны изменяется со временем в зависимости от трех факторов:

- Количества оружия у противника;
- Износа уже существующего вооружения;
- Степени недоверия между противниками.

Влиянием других факторов пренебрегаем.

- Скорости наращивания и «старения» вооружений не зависят от времени;
- Уровень взаимной настороженности не зависит от количества вооружений, а определяется другими причинами;
- Уровень взаимной настороженности не зависит от времени.

2.1.5. Алгоритм решения:

Учитывая, что темпы прироста и уменьшения вооружений пропорциональны коэффициентам α , β и γ , получаем систему:

$$\frac{dM_1}{dt} = \alpha_1(t)M_2 - \beta_1(t)M_1 + \gamma_1(t) \frac{dM_2}{dt} = \alpha_2(t)M_1 - \beta_2(t)M_2 + \gamma_2(t)$$

При идеализации объекта мы пренебрегаем зависимостью коэффициентов α , β и γ от времени t:

$$\frac{dM_1}{dt} = \alpha_1 M_2 - \beta_1 M_1 + \gamma_1 \frac{dM_2}{dt} = \alpha_2 M_1 - \beta_2 M_2 + \gamma_2$$

Уравнения выше имеют положения равновесия

$$\frac{dM_1}{dt} = 0$$
 и $\frac{dM_2}{dt} = 0$

Равновесные значения M_1^0 и M_2^0 находятся из условий:

$$\alpha_1 M_2 - \beta_1 M_1 + \gamma_1 = 0 \alpha_2 M_1 - \beta_2 M_2 + \gamma_2 = 0$$

И равны:

$$M_1^0 = \frac{\alpha_1 \gamma_2 + \beta_2 \gamma_1}{\beta_1 \beta_2 - \alpha_1 \alpha_2}, M_2^0 = \frac{\alpha_2 \gamma_1 + \beta_1 \gamma_2}{\beta_1 \beta_2 - \alpha_1 \alpha_2}$$

Получается, для того чтобы равновесие существовало при положительных значениях величин M_1^0 и M_2^0 , должно выполняться неравенство:

$$\beta_1 \beta_2 > \alpha_1 \alpha_2$$

2.1.6. Реализация

Запускаемый файл task1.ipynb

Coxpaнeнный пример в файле task1.html

Сначала проверим выполнение условия равновесия. Зададим такие коэффициенты α и β , чтобы $\beta_1\beta_2>\alpha_1\alpha_2$:

```
b1*b2 = 24.0
a1*a2 = 6.0
Положение равновесия первой страны = 816.67
Положение равновесия второй страны = 588.89
```

На графике фазовых траекторий видно, что объёмы от начальных (обозначены красными звёздочками) стремятся к положению равновесия, то есть к равновесным значениям M_1^0 и M_2^0 :

На временной диаграмме это также заметно:

Теперь изучим ситуацию, когда произведение скоростей наращивания вооружений больше произведения скоростей «старения», то есть зададим такие коэффициенты α и β , чтобы $\beta_1\beta_2 < \alpha_1\alpha_2$:

```
b1*b2 = 24.0
a1*a2 = 25.0
Положение равновесия первой страны = -13.00
Положение равновесия второй страны = -21.00
```

Даже точка равновесия получилась с отрицательными координатами. А на графике фазовых траекторий видно, что объёмы вооружений от начальных стремятся к бесконечности вдоль изоклины:

На временной диаграмме нетрудно заметить, что объемы вооружений продолжают увеличиваться и уходить от своих равновесных положений. Получается неограниченный рост арсеналов каждой страны, то есть эскалация гонки вооружений.

В случае, когда уровень настороженности обеих стран равен 0, то координаты положения равновесия M(0,0). При $\beta_1\beta_2>\alpha_1\alpha_2$ получаем:

```
b1*b2 = 30.0
a1*a2 = 16.0
Положение равновесия первой страны = 0.00
Положение равновесия второй страны = 0.00
```

На графике фазовых траекторий видно, что объёмы вооружения от начальных стремятся к положению равновесия, а так как оно нулевое, то наступает полное разоружение стран.

Аналогичную ситуацию можно заметить на временной диаграмме:

Теперь проверим, что изменится если положение равновесия также останется нулевым, но $\beta_1\beta_2<\alpha_1\alpha_2$:

```
b1*b2 = 2.0
a1*a2 = 4.0
Положение равновесия первой страны = -0.00
Положение равновесия второй страны = -0.00
```

Получаем противоположную ситуацию. Хотя никакой настороженности и нет, но уровень вооружения продолжает неограниченно расти.

Если же подобрать такие коэффициенты, при которых $\beta_1\beta_2=\alpha_1\alpha_2$, то положение равновесия вычислить нельзя.

```
b1*b2 = 1.0
a1*a2 = 1.0
Положения равновесия не существует
```

В некоторых ситуациях объёмы вооружений постепенно сводятся к каким-то равновесным значениям:

Но могут и стремиться к бесконечности:

Вторая страна

3.0

2.5

2.0

1.5 Время t

0

0.0

0.5

10

2.2. Моделирование гонки вооружений между двумя странами при условии зависимости коэффициентов от времени

2.2.1. Описание модели:

Параметры модели:

- $M_1(0)$ начальный объем вооружений первой страны, $M_1(0) \ge 0$;
- $M_2(0)$ начальный объем вооружений второй страны, $M_2(0) \ge 0$;
- $\alpha_1(t)$ скорость наращивания вооружений первой страной, $\alpha_1 > 0$;
- $\alpha_2(t)$ скорость наращивания вооружений второй страной, $\alpha_2 > 0$;
- $\beta_1(t)$ скорость «старения» вооружений первой страны, $\beta_1 > 0$;
- $\beta_2(t)$ скорость «старения» вооружений второй страны, $\beta_2 > 0$;
- $\gamma_1(t)$ уровень настороженности первой страны, $\gamma_1 > 0$;
- $\gamma_2(t)$ уровень настороженности второй страны, $\gamma_2 > 0$.

Пространство состояний:

- t время;
- $M_1(t)$ объем вооружений первой страны, $M_1(t) \ge 0$;
- $M_2(t)$ объем вооружений второй страны, $M_2(t) \ge 0$.

2.2.2. Постановка задачи:

Исследование изменения объёмов вооружений двух стран, находящихся в состоянии ненападения, учитывая зависимость коэффициентов от времени. Паритет численности арсеналов является гарантом отсутствия боевых действий

Объект исследования: численность арсеналов двух стран, втянутых в гонку вооружений.

2.2.3. Идеализация объекта:

Общее количество вооружений у каждой страны изменяется со временем в зависимости от трех факторов:

- Количества оружия у противника;
- Износа уже существующего вооружения;
- Степени недоверия между противниками.

Влиянием других факторов пренебрегаем:

• Уровень взаимной настороженности не зависит от количества вооружений, а определяется другими причинами;

2.2.4. Алгоритм решения:

Усложняем модель и учитываем, что скорости наращивания и «старения» вооружений зависят от времени, а также уровень взаимной настороженности зависит от времени. Получаем систему:

$$\frac{dM_1}{dt} = \alpha_1(t)M_2 - \beta_1(t)M_1 + \gamma_1(t)$$

$$\frac{dM_2}{dt} = \alpha_2(t)M_1 - \beta_2(t)M_2 + \gamma_2(t)$$

Уравнения выше имеют положения равновесия

$$\frac{dM_1}{dt} = 0$$
 и $\frac{dM_2}{dt} = 0$

Равновесные значения $M_1^0(t)$ и $M_2^0(t)$ находятся из условий:

$$\alpha_1(t)M_2 - \beta_1(t)M_1 + \gamma_1(t) = 0$$

$$\alpha_2(t)M_1 - \beta_2(t)M_2 + \gamma_2(t) = 0$$

И равны:

$$M_1^0(t) = \frac{\alpha_1(t)\gamma_2(t) + \beta_2(t)\gamma_1(t)}{\beta_1(t)\beta_2(t) - \alpha_1(t)\alpha_2(t)}, M_2^0(t) = \frac{\alpha_2(t)\gamma_1(t) + \beta_1(t)\gamma_2(t)}{\beta_1(t)\beta_2(t) - \alpha_1(t)\alpha_2(t)}$$

2.2.5. Реализация

Запускаемый файл task2.ipynb

Сохраненный пример в файле task2.html

Зададим такие функции коэффициентов α и β , чтобы $\beta_1\beta_2 > \alpha_1\alpha_2$:

```
# скорость «старения» вооружений
b = [y*2+2, y*2+4]
# скорость наращивания вооружений
a = [abs(sympy.sin(y)*3), abs(sympy.sin(y)*sympy.cos(y))]
# уровень настороженности
g = [1500*y, 1000*y]
```

Положение равновесия:

```
Начальное | В середине | Конечное (положение равновесия)
М1: 0.00 | 581.87 | 578.80
М2: 0.00 | 220.15 | 308.09
```

Положение равновесия не стационарно, при попытке его достичь объёмы вооружений отстают, но в целом стремятся к нему. Особенно это заметно на временной диаграмме.

Рассмотрим противоположную ситуацию, когда $\beta_1\beta_2 < \alpha_1\alpha_2$:

```
# скорость «старения» вооружений
b = [abs(sympy.sin(y)*3), abs(sympy.sin(y)*sympy.cos(y))]
# скорость наращивания вооружений
a = [y*2+2, y*2+4]
# уровень настороженности
g = [1500*y, 1000*y]
```

Положение равновесия будет получаться с отрицательными координатами:

```
Начальное | В середине | Конечное (положение равновесия)
М1: 0.00 | -220.15 | -308.09
М2: 0.00 | -581.87 | -578.80
```

Видно, что объёмы вооружений продолжают увеличиваться и не достигают никаких равновесных значений. Происходит такое же постоянное увеличение, как и при постоянном t.

Зададим $\beta_1\beta_2 > \alpha_1\alpha_2$ и нулевой уровень настороженности:

```
y = sympy.symbols("y")
# скорость «старения» вооружений
b = [y*2+2, y*2+4]
# скорость наращивания вооружений
a = [abs(sympy.sin(y)*3), abs(sympy.sin(y)*sympy.cos(y))]
# уровень настороженности
g = [0*y, 0*y]
```

Положение равновесия в нуле:

```
Начальное | В середине | Конечное (положение равновесия)
M1: 0.00 | 0.00 | 0.00
M2: 0.00 | 0.00 | 0.00
```

Объёмы вооружения, также как и при константных значениях, от начальных стремятся к положению равновесия, и наступает полное разоружение стран.

Фазовые траектории вооружений двух стран

При $\beta_1\beta_2 < \alpha_1\alpha_2$ и нулевом уровне настороженности ситуация получилась почти такая же как и во втором случае. Только равновесное положение не в отрицательных координатах, а в нуле.

При равных функциях коэффициентов $\beta_1\beta_2=\alpha_1\alpha_2$, вычислить положение равновесия опять же нельзя.

```
# скорость «старения» вооружений
b = [abs(sympy.sin(y)), abs(sympy.sin(y)*sympy.cos(y))]
# скорость наращивания вооружений
a = [abs(sympy.sin(y)), abs(sympy.sin(y)*sympy.cos(y))]
# уровень настороженности
g = [y*4, y*5]
```

На графиках объёмы вооружений постепенно сводятся к каким-то равновесным значениям, но при некоторых функциях прослеживается тенденция к бесконечности.

3. ВЫВОД

Рассматривая первую и вторую модель, можно сделать вывод, что большинство тенденций сохраняется. Да, вторая модель точнее, но первая гораздо проще в реализации и анализе.

Результаты на графиках подтверждают аналитический вывод положения равновесия при $\beta_1\beta_2>\alpha_1\alpha_2$. Также замечены ситуации, когда страны достигают полного разоружения ($\beta_1\beta_2>\alpha_1\alpha_2$ и нулевой уровень настороженности), и, когда объемы вооружений неограниченно растут ($\beta_1\beta_2<\alpha_1\alpha_2$).