

Information Retrieval

Search Architecture

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Search infrastructure

Search engines run on resource-intensive regimes

- Bandwidth for handling crawling and search traffic
- Storage for persisting documents, indexes, metadata
- Processing for crawling, indexing and retrieval

Must scale from a single computer in one datacenter...

... to huge clusters spread across availability zones

Financial costs

Depreciation

Old hardware needs to be replaced

Maintenance

Failures need to be handled

Operational

Energy spending needs to be reduced

Search architecture

A software architecture consists of software components, the interfaces provided by those components, and the relationships between them

For search, we are concerned about

- Effectiveness (quality of results)
- Efficiency (response time and throughput)

Search components

Search components

World Wide Web

Crawling overview

Document acquisition

- Builds a local corpus for searching
- Many types Web, enterprise, desktop

Web crawlers follow links to find documents

 Must efficiently find huge numbers of web pages (coverage) and keep them up-to-date (freshness)

Crawling overview

Key challenges

Web is huge and constantly changing

- Not under the control of search providers
- A lot of time is spent waiting for responses
- Parallel crawling is essential
- Could potentially flood sites with requests
- To avoid this problem, use politeness policies

Search components

Search components

Indexing overview

Document representation

- From raw text to index terms
- +annotations (e.g., entities, categories, embeddings)

Off-document evidence

- Anchor text, link analysis
- Social network signals

Document representation

Fred's Tropical Fish Shop is the best place to find tropical fish at low, low prices. Whether you're looking for a little fish or a big fish, we've got what you need. We even have fake seaweed for your fishtank (and little surfboards too).

Document representation

Fred's Tropical Fish Shop is the best place to find tropical fish at low, low prices. Whether you're looking for a little fish or a big fish, we've got what you need. We even have fake seaweed for your fishtank (and little <u>surfboards</u> too).

Topical features

- 9.7 fish
- 4.2 tropical
- 22.1 tropical fish
 - 8.2 seaweed
 - 4.2 surfboards

Quality features

- 14 incoming links
 - 3 days since last update

Indexing overview

Key challenges

Support effective retrieval

- Extract meaningful document features
- Both topical and quality features

Support efficient retrieval

Quick scoring of matched documents

Index structures

Indexes are designed to make search faster

- Unique requirements, unique data structures
- Most common structure is the inverted index
- General name for a class of structures
- "Inverted" because documents are associated with words, rather than words with documents

Example "corpus"

d_1	Tropical fish include fish found in tropical environments around the
	world, including both freshwater and salt water species.

- Fish keepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.
 - Tropical fish are popular aquarium fish, due to their often bright coloration.
 - In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

Incidence matrix

Straigthforward but... is it efficient?

Inverted index

and aquarium are around as both bright coloration derives due environments fish

Aren't we missing anything?

Inverted index: counts

Can we do better?

Inverted index: positions

Inverted index: fields

Document structure is useful in search

- Field restrictions (e.g., date:, from:)
- Some fields more important (e.g., title, h1)

A couple of options

- Separate inverted lists for each field type
- Add information about fields to postings

Auxiliary structures

Vocabulary, dictionary, or lexicon

- Lookup table from term to inverted list
- Either hash table in memory or B-tree for disk

Additional structures for document data

Basic statistics, static features, metadata

Additional structure for corpus statistics

Search components

Search components

Query processing overview

Query representation

Infers user's need from a keyword query

Document ranking

Matches and scores indexed documents

Feedback handling

Both explicit and implicit signals

Query processing overview

Key challenges

Queries are typically short, ill-specified

Long queries tend to be difficult

Finding matching documents can be expensive

- Particularly for common terms or long queries
- Ranking is a tough business
- Different queries, different requirements

Query understanding: expand matches

Query relaxation

[information about tropical fish]

Ly [tropical fish]

Query expansion

[tropical fish]

Ly [tropical fish aquarium]

Query understanding: narrow results

Query segmentation

[tropical fish captive breeding]
 ["tropical fish" AND "captive breeding"]

Query scoping

[tropical fish hawaii]

Ly [category:"tropical fish" place:hawaii]

Document matching

Scan postings lists for all query terms

[aquarium fish]

Document matching

Scan postings lists for all query terms

[aquarium fish]

Score matching documents

$$\circ f(q,d) = \sum_{t \in q} f(t,d)$$

Document ranking

Many alternatives

- Lexical models (bag-of-words)
- Structural models (query + document structure)
- Semantic models (implicit + explicit semantics)
- Interactive models (user feedback)
- Feature-based models (aka learning to rank)

Summary

Search is a tough business

Big data, big usage

An architecture tailored for efficiency is crucial

Crawling, indexing, query processing

Must also cater for effectiveness

Rule of thumb: don't throw anything away

References

<u>Search Engines: Information Retrieval in Practice</u>, Ch. 2 Croft et al., 2009

Scalability Challenges in Web Search Engines

Cambazoglu and Baeza-Yates, 2015

Coming next...

Web Crawling

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br