Gliederung

- Aufgabenstellung
- Ergebnis
- Methoden
 - Polygon-Triangulation
 - · GUI
 - Transfer
 - Splitting

Aufgabenstellung

 Erstellung parametrisierter geometrischer Körper (ähnlich zu CAD-Systemen)

 Manipulation des Parameterraums (Zu-/ Ausschneiden von polygonalen Flächen)

 Boolsche Operationen auf geometrischen Körpern

Ergebnis

 Erstellung parametrisierter geometrischer Körper (ähnlich zu CAD-Systemen)

 Manipulation des Parameterraums (Zu-/ Ausschneiden von polygonalen Flächen)

 Boolsche Operationen auf geometrischen Körpern

- 2-teiliger Algorithmus
 - Zerlegung in y-monotone Polygone
 - Triangulation der y-monotonen Polygone

- Laufzeit: O(n log(n))
- Speicher: O(n)

(Computational Geometry, de Berg et al., C. 3)

- 2-teiliger Algorithmus
 - Zerlegung in y-monotone Polygone

- 2-teiliger Algorithmus
 - Zerlegung in y-monotone Polygone

- 2-teiliger Algorithmus
 - Triangulation der y-monotonen Polygone

- · Probleme:
 - Degenerierte Dreiecke

- Lösung:
 - Modifizierte Eingabe (Störung)

GUI

- 2D Darstellung (Ausschnitt)
- Triangulierter
 Parameterraum

GUI

- 3D Darstellung (Ausschnitt)
- Zusammenschluss aller transferierten
 2D Parameterräume

Transfer

Beispiel: Einheitskreis

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
 für $0 \le t < 2\pi$.

- Transfer: $t \longrightarrow (x,y)$
- Raumkoordinaten durch lösen der Gleichung
- Normale (3D) durch Kreuzprodukt der partiellen Ableitungen

Dreieck Splitting

- Split an jeder
 Seitenhalbierenden
- Erzeugt viele 'unnötige' Dreiecke
- Geometrie / Winkel bleiben erhalten

Dreieck Splitting

- Split an der längsten Kante
- Erzeugt nur notwendige Dreiecke
- Verbessert Geometrie / Winkel

