Transformers in Large Language Models (LLMs)

Benoît Legat

☐ Full Width Mode ☐ Present Mode

≡ Table of Contents

Large Language Models (LLMs)

Pre-transformers approaches

Attention is all you need

Encoder-only transformer

Encoder-decoder transformer

Large Language Models (LLMs)

References =

- Recurrent neural networks : [GBC16; Chapter 10] and Section 4.7 of <u>The Elements of</u>
 <u>Differentiable Programming book</u>
- Transformers: [VSP+17] and Section 4.8 of <u>The Elements of Differentiable Programming book</u>
- Neural Networks: Zero to Hero by Andrej Karpathy

[GBC16] I. Goodfellow, Y. Bengio and A. Courville. <u>Deep Learning</u> (MIT Press, 2016). Accessed on Aug 28, 2024. [VSP+17] A. Vaswani, N. Shazeer, N. Parmar et al. <u>Attention Is All You Need</u>. In: Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017). Accessed on Oct 11, 2024.

Autoregressive Models

Given a sequence of n_{ctx} past vectors $x_{-1}, \ldots, x_{-n_{\text{ctx}}} \in \mathbb{R}^n$, "predict" the next ones. Key idea : receding horizon:

$$egin{aligned} p(x_0, x_1 | x_{-1}, \dots, x_{-n_{ ext{ctx}}}) \ &= p(x_0 | x_{-1}, \dots, x_{-n_{ ext{ctx}}}) p(x_1 | x_0, x_{-1}, \dots, x_{-n_{ ext{ctx}}+1}, rac{oldsymbol{x}_{-n_{ ext{ctx}}}}{oldsymbol{x}_{-1}(x_0 | x_{-1}, \dots, x_{-n_{ ext{ctx}}+1})} \ &pprox p(x_0 | x_{-1}, \dots, x_{-n_{ ext{ctx}}+1}) p(x_1 | x_0, x_{-1}, \dots, x_{-n_{ ext{ctx}}+1}) \end{aligned}$$

- **Model** : Probability of next vector $\hat{p}(x_0|X)$ where X concatenates $x_{-1},\ldots,x_{-n_{\mathrm{ctx}}}$.
- Loss : Cross-entropy : $\mathcal{L}_{\hat{p}}(X) riangleq H(p,\hat{p}) = -\mathbf{E}_p[\log(\hat{p})] = -\sum_{x_0} p(x_0|X)\log(\hat{p}(x_0|X))$
- Particular case for $\hat{p}(x_0|X) = \delta_y$: $\mathcal{L}_{\hat{p}}(X) = -\log(\hat{p}(y|X))$

What about Language Models? ⇔

Given "past text", predict the "following text". How to turn text into vectors of \mathbb{R}^n ?

Text to vectors : step 1 \rightarrow **tokenization** \rightleftharpoons

Why not encode each letter ? □

• Idea: Turn each letter into its one-hot encoding in \mathbb{R}^{26} .

- Issue : The "past text" only has n_{ctx} characters so n_{ctx} must be large but transformers have a complexity quadratic in n_{ctx} !
- **Practical details**: Text is encoded with <u>UTF-8</u> so each character is encoded into 1 to 4 bytes. We encode each byte to a vector in \mathbb{R}^{256} but care must be taken not to generate invalid UTF-8.

Why not encode each word? ⇔

• Idea: Turn each word into its one-hot encoding in \mathbb{R}^n . The value of n is the number of words. Depending on the language (source):

Language	French	English	Dutch	German
\boldsymbol{n}	408,078	350,000	350,000	200,000

• **Issue**: The value of *n* is **too large**. We cannot trust the words of languages to be a tokenization that optimally compresses text for our dataset.

Byte Pair Encoding

Byte Pair Encoding algorithm [SHB16] greedily merges the most frequent pair of tokens over the dataset into a new token. Most used implementations are SentencePiece [KR18] and tiktoken (play with it here). For instance, on this example, the pair ('a', 'a') is the most frequent so we substitute it by a new token, say 'Z':

```
▶ Dict(('b', 'd') \Rightarrow 1, ('a', 'b') \Rightarrow 2, ('d', 'a') \Rightarrow 1, ('b', 'a') \Rightarrow 1, ('a', 'c') \Rightarrow 1, ('b', 'a') \Rightarrow 1, ('a', 'c') \Rightarrow 1, ('b', 'a') \Rightarrow 1, ('b', 'a') \Rightarrow 1, ('a', 'c') \Rightarrow 1, ('b', 'c') \Rightarrow 1, ('b
```

```
iter_1 = ▶BPE("ZabdZabac", Dict(('a', 'a') ⇒ 'Z'))

1 iter_1 = new_token("aaabdaaabac")
```

```
iter_2 = ▶BPE("ZYdZYac", Dict(('a', 'b') ⇒ 'Y', ('a', 'a') ⇒ 'Z'))
1 iter_2 = new_token(iter_1)
```

Note that the new tokens can also be part of the most frequence pair!

```
iter_3 = ▶BPE("XdXac", Dict(('a', 'b') ⇒ 'Y', ('Z', 'Y') ⇒ 'X', ('a', 'a') ⇒ 'Z'))

1 iter_3 = new_token(iter_2)
```

[SHB16] R. Sennrich, B. Haddow and A. Birch. <u>Neural Machine Translation of Rare Words with Subword Units</u> (<u>Jun 2016</u>), <u>arXiv:1508.07909</u>. Accessed on Oct 23, 2024.

[KR18] T. Kudo and J. Richardson. <u>SentencePiece: A Simple and Language Independent Subword Tokenizer and Detokenizer for Neural Text Processing</u> (Aug 2018), <u>arXiv:1808.06226</u>. Accessed on Oct 23, 2024.

Increasing length of "past text" =>

Challenging tradeoff: Encode text to **increase** length of "past text" while keeping $n_{\rm ctx}$ and n small enough.

Length of "past text" increases with vocabulary size $n_{\rm voc}$ and context window $n_{\rm ctx}$.

Name	Ref	$n_{ m voc}$	$n_{ m ctx}$	Tokenizer
GPT-2	[RWCL19]	<u>50k</u>	1024	tiktoken
GPT-3	[BMRS20]	50k	2048	tiktoken
GPT-3.5		<u> 100k</u>	4096	tiktoken
GPT-4		<u> 100k</u>	32k	tiktoken
GPT-4o		<u>200k</u>	128k	tiktoken
Gemini-1	[TABA24]	256k	10M	SentencePiece
Gemini-1.5	[TGLB24]	256k	10M	SentencePiece
Gemma	[TMHD24]	256k	8192	SentencePiece
Gemma-2	[TRPS24]	256k	8192	SentencePiece
Llama-2	[TMSA23]	<u>32k</u>	<u>4k</u>	SentencePiece
Llama-3		128k	8k	tiktoken
Llama-3.1		128k	128k	tiktoken
Llama-3.2		128k	128k	tiktoken
MegaByte	[YSFA23]	256	8192	Bytes

[TGL+24] G. Team, P. Georgiev, V. I. Lei et al. <u>Gemini 1.5: Unlocking Multimodal Understanding across Millions of Tokens of Context</u> (Aug 2024), <u>arXiv:2403.05530</u>. Accessed on Nov 11, 2024.

[TAB+24] G. Team, R. Anil, S. Borgeaud *et al.* Gemini: A Family of Highly Capable Multimodal Models (Jun 2024), arXiv:2312.11805. Accessed on Nov 11, 2024.

[TMH+24] G. Team, T. Mesnard, C. Hardin et al. <u>Gemma: Open Models Based on Gemini Research and Technology</u> (<u>Apr 2024</u>), <u>arXiv:2403.08295</u>. Accessed on Nov 11, 2024.

[TRP+24] G. Team, M. Riviere, S. Pathak et al. <u>Gemma 2: Improving Open Language Models at a Practical Size</u> (<u>Oct 2024</u>), <u>arXiv:2408.00118</u>. Accessed on Nov 11, 2024.

[SHB16] R. Sennrich, B. Haddow and A. Birch. *Neural Machine Translation of Rare Words with Subword Units* (Jun 2016), arXiv:1508.07909. Accessed on Oct 23, 2024.

[RWC+19] A. Radford, J. Wu, R. Child et al. Language Models Are Unsupervised Multitask Learners (2019). Accessed on Oct 23,

2024.

[BMR+20] T. B. Brown, B. Mann, N. Ryder et al. <u>Language Models Are Few-Shot Learners</u> (Jul 2020), <u>arXiv:2005.14165</u>. Accessed on Nov 11, 2024.

[TMS+23] H. Touvron, L. Martin, K. Stone *et al.* Llama 2: Open Foundation and Fine-Tuned Chat Models (Jul 2023), arXiv:2307.09288. Accessed on Oct 23, 2024.

[YSF+23] L. Yu, D. Simig, C. Flaherty et al. <u>MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers</u> (<u>May</u> 2023), <u>arXiv:2305.07185</u>. Accessed on Oct 23, 2024.

Text to vectors: step $2 \rightarrow$ embedding

Consider one-hot encoding with vocabulary size n_{voc} and a bigram model

$$\hat{p}(x_0|x_{-1}) = \operatorname{softmax}(W_d \tanh(\cdots \tanh(W_1 x_{-1}) \cdots))$$

The matrix W_d has $n_{
m voc}$ rows and W_1 has $n_{
m voc}$ columns ightarrow issue if $n_{
m voc}$ is large

Embedding : Use vectors $c_1, \ldots, c_{n_{ ext{voc}}} \in \mathbb{R}^{d_{ ext{emb}}}$ with embedding size (aka hidden size) $d_{ ext{emb}} \ll n_{ ext{voc}}$.

Equivalently, we still use one-hot encoding but we add an encoder $C \in \mathbb{R}^{d_{\text{emb}} \times n_{\text{voc}}}$ and decoder $D \in \mathbb{R}^{n_{\text{voc}} \times d_{\text{emb}}}$

$$\hat{p}(x_0|x_{-1}) = \operatorname{softmax}(DW_d \operatorname{tanh}(\cdots \operatorname{tanh}(W_1Cx_{-1})\cdots)$$

▶ What difference do you expect with respect to the previous model ?

Forcing $D = C^{\top}$ appears to work well in practice [PW17], this is what is used in [VSP+17].

lacktriangle Why don't we use $D=C^{-1}$?

[PW17] O. Press and L. Wolf. <u>Using the Output Embedding to Improve Language Models</u> (Feb 2017), <u>arXiv:1608.05859</u>. Accessed on Nov 11, 2024.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar et al. <u>Attention Is All You Need</u>. In: Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017). Accessed on Oct 11, 2024.

Pre-transformers approaches

Shared embedding □

With $n_{\text{ctx}} > 1$, the encoder C is shared by all tokens: See for instance the network below taken from [BDV00; Figure 1], the first popular application of neural nets for languages:

$$\hat{p}(x_0|x_{-1},\ldots,x_{-n_{ ext{ctx}}})= egin{array}{c} computation here \ computation h$$

lacktriangle What are the number of columns of W_1 and number of rows of W_2 now ?

[BDV00] Y. Bengio, R. Ducharme and P. Vincent. <u>A Neural Probabilistic Language Model</u>. In: Advances in Neural Information *Processing Systems*, Vol. 13 (MIT Press, 2000). Accessed on Oct 11, 2024.

Embedding sizes in LLMs

See the table below for the size of embeddings of large language models:

Name	Num params	Ref	$n_{ m voc}$	$d_{ m emb}$
GPT-2	1.5B	[RWCL19]	<u>50k</u>	768
Gemma	2B	[TMHD24]	256k	2048
Gemma	7B	[TMHD24]	256k	3072
Gemma- 2	27B	[TRPS24]	256k	4608
Gemma- 2	2B	[TRPS24]	256k	2304
Gemma- 2	9В	[TRPS24]	256k	3584
Llama- 2	7B	[TMSA23]	<u>32k</u>	4096
base		[VSPU17]	37k	512
big		[VSPU17]	37k	1024

[TMH+24] G. Team, T. Mesnard, C. Hardin et al. <u>Gemma: Open Models Based on Gemini Research and Technology</u> (<u>Apr 2024</u>), <u>arXiv:2403.08295</u>. Accessed on Nov 11, 2024.

[TRP+24] G. Team, M. Riviere, S. Pathak et al. <u>Gemma 2: Improving Open Language Models at a Practical Size</u> (Oct 2024), <u>arXiv:2408.00118</u>. Accessed on Nov 11, 2024.

[RWC+19] A. Radford, J. Wu, R. Child et al. <u>Language Models Are Unsupervised Multitask Learners</u> (2019). Accessed on Oct 23, 2024.

[TMS+23] H. Touvron, L. Martin, K. Stone et al. <u>Llama 2: Open Foundation and Fine-Tuned Chat Models</u> (Jul 2023), <u>arXiv:2307.09288</u>. Accessed on Oct 23, 2024.

Recurrent neural networks (RNN)

$$egin{aligned} h^{(t+1)} &= anh(Wh^{(t)} + Ux^{(t+1)} + b) \ o^{(t)} &= Vh^{(t)} + c \ \hat{y}^{(t)} &= ext{softmax}(o^{(t)}) \end{aligned}$$

Illustrated on the right [GBC16; Figure 10.3].

RNNs as language model showcased in [MKB+10].

Issue: Training time and space complexity is proportional to $n_{\rm ctx}$ and **cannot parallelize** to speed up.

[MKB+10] T. Mikolov, M. Karafiát, L. Burget *et al.* <u>Recurrent Neural Network Based Language Model</u>. In: <u>Proc. Interspeech 2010</u> (2010); pp. 1045–1048. Accessed on Nov 11, 2024.

[GBC16] I. Goodfellow, Y. Bengio and A. Courville. <u>Deep Learning</u> (MIT Press, 2016). Accessed on Aug 28, 2024.

Extensions of RNNs =

It's difficult to model long-term dependencies as their gradient either vanish or explodes exponentially (think of the power method) [GBC16; Section 10.7]

Gated extensions attempting to solve this issue [GBC16; Section 10.10]:

- Long short-term memory (LSTM) [Gra14]
- Gated recurrent unit (GRU) [CvMBB14]

Recently, Mamba suggests a solution to the complexity issue [GD24]. As it scales better with $n_{\rm ctx}$, it is even suggested to get rid of the tokenizer: [WGYR24].

[CvMBB14] K. Cho, B. van Merrienboer, D. Bahdanau and Y. Bengio. <u>On the Properties of Neural Machine Translation: Encoder-Decoder Approaches</u> (Oct 2014), <u>arXiv:1409.1259</u>. Accessed on Nov 11, 2024.

[Gra14] A. Graves. <u>Generating Sequences With Recurrent Neural Networks</u> (Jun 2014), <u>arXiv:1308.0850</u>. Accessed on Nov 11, 2024.

[GBC16] I. Goodfellow, Y. Bengio and A. Courville. <u>Deep Learning</u> (MIT Press, 2016). Accessed on Aug 28, 2024.

[GD24] A. Gu and T. Dao. <u>Mamba: Linear-Time Sequence Modeling with Selective State Spaces</u> (May 2024), <u>arXiv:2312.00752</u>. Accessed on Nov 11, 2024.

[WGYR24] J. Wang, T. Gangavarapu, J. N. Yan and A. M. Rush. <u>MambaByte: Token-free Selective State Space Model</u> (<u>Aug 2024</u>), <u>arXiv:2401.13660</u>. Accessed on Nov 11, 2024.

Attention is all you need

Numerical dictionary \Rightarrow

What would a numerical dictionary look like? Consider keys $k_i \in \mathbb{R}^{d_k}$ and values $v_i \in \mathbb{R}^{d_v}$. Given a query $q \in \mathbb{R}^{d_k}$,

```
dict = ▶ Dict([1, 0] ⇒ [1, 1], [0, 1] ⇒ [-1, 1])

1 dict = Dict([1, 0] => [1, 1], [0, 1] => [-1, 1])
```

```
>[1, 1]
1 dict[[1, 0]]
```

```
numerical_lookup (generic function with 1 method)

1 function numerical_lookup(dict, query)
2 _, i = findmax([dot(query, key) for key in keys(dict)])
3 return collect(values(dict))[i]
4 end
```

```
▶[1, 1]
1 numerical_lookup(dict, [0.8, 0.2])
```

Attention head =>

Attention head provides a differentiable numerical dictionary [BCB16]

$$lpha = \operatorname{softmax}(\langle q, k_1
angle, \ldots, \langle q, k_{n_{\operatorname{ctx}}}
angle) \qquad \operatorname{Attention}(q, k, v) = \sum_{i=1}^{n_{\operatorname{ctx}}} lpha_i v_i$$

```
softmax_lookup (generic function with 1 method)

1 function softmax_lookup(dict, query)
2    ks = keys(dict)
3    α = softmax([dot(query, key) for key in keys(dict)])
4    @show α
5    return sum(α * value for (α, value) in zip(α, values(dict)))
6 end
```

```
>[0.291313, 1.0]

1 softmax_lookup(dict, [0.8, 0.2])

α = [0.6456563062257954, 0.3543436937742045]

②
```

[BCB16] D. Bahdanau, K. Cho and Y. Bengio. <u>Neural Machine Translation by Jointly Learning to Align and Translate</u> (<u>May 2016</u>), <u>arXiv:1409.0473</u>. Accessed on Oct 23, 2024.

Matrix form of attention

$$Q = [q_1 \quad \cdots \quad q_{n_{ ext{ctx}}}] \qquad K = [k_1 \quad \cdots \quad k_{n_{ ext{ctx}}}] \qquad K^ op Q = egin{bmatrix} \langle k_1, q_1
angle & \cdots & \langle k_1, q_{n_{ ext{ctx}}}
angle \ dots & \ddots & dots \ \langle k_{n_{ ext{ctx}}}, q_1
angle & \cdots & \langle k_{n_{ ext{ctx}}}, q_{n_{ ext{ctx}}}
angle \end{aligned}$$

softmax is then applied to each **column**:

$$\operatorname{softmax}(K^\top Q/\sqrt{d_k})$$

Division by $\sqrt{d_k}$ scales the input of softmax to preferable regions [VSP+17; Secton 3.2.1].

Illustrated on the right from [BCB16; Figure 3(a)].

$$\operatorname{Attention}(V,K,Q) = V \operatorname{softmax}(K^{ op}Q/\sqrt{d_k})$$

[BCB16] D. Bahdanau, K. Cho and Y. Bengio. <u>Neural Machine Translation by Jointly Learning to Align and Translate</u> (<u>May 2016</u>), arXiv:1409.0473. Accessed on Oct 23, 2024.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar et al. <u>Attention Is All You Need</u>. In: Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017). Accessed on Oct 11, 2024.

Masked Attention ⇔

Yey idea In the model for

Mask prevent \hat{p} to look input the future:

 $\hat{p}(x_0|x_{-1},\ldots,x_{-n_{ ext{ctx}}})$, incorporate sub-models

$$egin{aligned} ar{p}(x_0|x_{-1},\ldots,x_{-n_{ ext{ctx}}}) \ ar{p}(x_{-1}|x_{-2},\ldots,x_{-n_{ ext{ctx}}}) \ & dots \ ar{p}(x_{-n_{ ext{ctx}}+1}|x_{-n_{ ext{ctx}}}). \end{aligned}$$

$$M = egin{bmatrix} 0 & 0 & \cdots & 0 \ -\infty & 0 & \ddots & dots \ dots & \ddots & \ddots & 0 \ -\infty & \cdots & -\infty & 0 \end{bmatrix}$$

 $ext{Masked-Attention}(V, K, Q) = V ext{softmax}(M + K^{ op}Q/\sqrt{d_k})$

Multi-Head Attention \bigcirc

Heads focus on different aspects. Their outputs are **combined** with $W^O \in \mathbb{R}^{d_{emb} \times hd_v}$:

$$\mathrm{head}_j = \mathrm{Attention}(W_j^V V, W_j^K K, W_j^Q Q)$$
 $\mathrm{MultiHead}(V, K, Q) = W^O \mathrm{vcat}(\mathrm{head}_1, \ldots, \mathrm{head}_h)$

See [VSP+17; Figure 2] on the right.

Similarly, in the masked case:

$$ext{head}_j = ext{Masked-Attention}(W_j^V V, W_j^K K, W_j^Q Q)$$

$$ext{Masked-MultiHead}(V, K, Q) = W^O ext{vcat}(ext{head}_1, \dots, ext{head}_h)$$

$$lacksquare$$
 Is W^O needed if $h=1$?

Encoder-only transformer \ominus

Self-Attention ⇔

Self-Attention with embedding C is:

Masked-MultiHead(CX, CX, CX)

The embedding vectors CX take then different projections for value, key, query and also for different heads!

 $\operatorname{head}_j = \operatorname{Masked-Attention}(W_j^V CX, W_j^K CX, W_j^Q CX)$

▶ Is the order between the tokens taken into account by the model ?

Positional encoding =

Cannot sum Cx_i+e_i with one-hot encoding $e_i\in\mathbb{R}^{n_{ ext{ctx}}}$ as the dimension of Cx_i is $\mathbb{R}^{d_{ ext{emb}}}$.

So we also add a positional embedding P : $Cx_i + Pe_i = Cx_i + p_i$.

With Self-Attention:

 ${\bf Self\text{-}MultiHead}(CX+P,CX+P,CX+P)$

Residual connection =

[HZRS15] K. He, X. Zhang, S. Ren and J. Sun. <u>Deep Residual Learning for Image Recognition</u> (Dec 2015), <u>arXiv:1512.03385</u>. Accessed on Nov 12, 2024.

Layer normalization =

Norm of gradient increases exponentially with depth. Issue for deep neural net. Consider output

$$egin{bmatrix} y_{1,1} & \cdots & y_{1,d_{\mathrm{emb}}} \ dots & \ddots & dots \ y_{d_{\mathrm{batch}},1} & \cdots & y_{d_{\mathrm{batch}},d_{\mathrm{emb}}} \end{bmatrix}$$

Normalization : $y_{i,j}\mapsto g(y_{i,j}-\mu_{i,j})/\sigma_{i,j}$ for gain g, mean μ and standard deviation σ .

- Batch normalization : $\sigma_{i,j} = \sigma_j$ [IS15]
- Layer normalization : $\sigma_{i,j} = \sigma_i$ [BKH16]

Batch norm depends on the batch hence <u>is tricky</u> to <u>implement</u>. Layer normalization is used in [VSP+17].

[IS15] S. loffe and C. Szegedy. <u>Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift</u> (Mar 2015), arXiv:1502.03167. Accessed on Nov 12, 2024.

[BKH16] J. L. Ba, J. R. Kiros and G. E. Hinton. <u>Layer Normalization</u> (Jul 2016), <u>arXiv:1607.06450</u>. Accessed on Nov 12, 2024. [VSP+17] A. Vaswani, N. Shazeer, N. Parmar et al. <u>Attention Is All You Need</u>. In: Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017). Accessed on Oct 11, 2024.

Feed-Forward network ⇔

Different weights $W_1 \in \mathbb{R}^{d_{ ext{ff}} imes d_{ ext{emb}}}$, $W_2 \in \mathbb{R}^{d_{ ext{emb}} imes d_{ ext{ff}}}$ for each layer:

$$x\mapsto W_2\max(0,W_1x+b_1)+b_2$$

Expansion factor $d_{\rm ff}/d_{\rm emb}$ is typically 4× like suggested in [VSP+17] (but not for Gemma)

GPT-2 [RWCL19] 768 3072 Gemma [TMHD24] 2048 32768 Gemma [TMHD24] 3072 49152 Gemma-2 [TRPS24] 2304 18432 Gemma-2 [TRPS24] 3584 28672 Gemma-2 [TRPS24] 4608 73728 Llama-3 4098 base [VSPU17] 512 2048				
Gemma [TMHD24] 2048 32768 Gemma [TMHD24] 3072 49152 Gemma-2 [TRPS24] 2304 18432 Gemma-2 [TRPS24] 3584 28672 Gemma-2 [TRPS24] 4608 73728 Llama-3 4096 base [VSPU17] 512 2048	Name	Ref	$d_{ m emb}$	$d_{ m ff}$
Gemma [TMHD24] 3072 49152 Gemma-2 [TRPS24] 2304 18432 Gemma-2 [TRPS24] 3584 28672 Gemma-2 [TRPS24] 4608 73728 Llama-3 4096 base [VSPU17] 512 2048	GPT-2	[RWCL19]	<u>768</u>	3072
Gemma-2 [TRPS24] 2304 18432 Gemma-2 [TRPS24] 3584 28672 Gemma-2 [TRPS24] 4608 73728 Llama-3 4096 base [VSPU17] 512 2048	Gemma	[TMHD24]	2048	32768
Gemma-2 [TRPS24] 3584 28672 Gemma-2 [TRPS24] 4608 73728 Llama-3 4096 base [VSPU17] 512 2048	Gemma	[TMHD24]	3072	49152
Gemma-2 [TRPS24] 4608 73728 Llama-3 4096 base [VSPU17] 512 2048	Gemma-2	[TRPS24]	2304	18432
Llama-3 4096 base [VSPU17] 512 2048	Gemma-2	[TRPS24]	3584	28672
base [VSPU17] 512 2048	Gemma-2	[TRPS24]	4608	73728
	Llama-3			4096
L: - [VCDU47] 4004 4004	base	[VSPU17]	512	2048
big [VSPU17] 1024 4096	big	[VSPU17]	1024	4096

The feed-forward network is implemented **independently** for the output of each query so each query can be processed independently through each **layer**. The next layer allows each queries to then look at the results of the previous layer for **past** (because of the mask) queries.

Transformer variations =

Pre-activation for residual neural networks introduced in [HZRS16] and used in GPT-2 [RWC+19]. See figure on the right.

Rotary Positional Encoding [SLP+23] replaces $W^K(Cx_i+p_i)$ and $W^Q(Cx_i+p_i)$ by $R^iW^KCx_i$ and $R^iW^QCx_i$ where R is a rotation matrix. Advantage : $\langle k_i,q_j\rangle$ contains R^{i-j} \rightarrow relative difference of position.

[HZRS16] K. He, X. Zhang, S. Ren and J. Sun. <u>Identity Mappings in Deep Residual Networks</u>. In: <u>Computer Vision – ECCV 2016</u>, edited by B. Leibe, J. Matas, N. Sebe and M. Welling (Springer International Publishing, Cham, 2016); pp. 630–645. [RWC+19] A. Radford, J. Wu, R. Child *et al.* <u>Language Models Are Unsupervised Multitask Learners</u> (2019). Accessed on Oct 23, 2024.

[SLP+23] J. Su, Y. Lu, S. Pan et al. <u>RoFormer: Enhanced Transformer with Rotary Position Embedding</u> (Nov 2023), <u>arXiv:2104.09864</u>. Accessed on Nov 12, 2024.

Cost of LLMs

- ▶ What is the time complexity of inference with respect to $d_{
 m emb}$, $n_{
 m voc}$, $n_{
 m ctx}$, $d_{
 m ff}$, h and N ?
- ▶ How does the number of parameters of transformers compare with [BDV00] or RNNs for large $n_{\rm ctx}$?

[BDV00] Y. Bengio, R. Ducharme and P. Vincent. <u>A Neural Probabilistic Language Model</u>. In: Advances in Neural Information *Processing Systems*, Vol. 13 (MIT Press, 2000). Accessed on Oct 11, 2024.

Key-Value (KV) cache ⇔

Let \hat{Y}_i be the intermediate output of $i \in \{1, \dots, N\}$. The the columns of the matrix $\mathbf{softmax}(C^{\top}\hat{Y}_i)$ (column-wise softmax) can be thought as intermediate probabilities that we denote \hat{p}_i :

$$(\hat{p}_i(x_{-n_{ ext{ctx}}+1}|x_{-n_{ ext{ctx}}}), \ldots, \hat{p}_i(x_{-1}|x_{-2}, \ldots, x_{-n_{ ext{ctx}}}), \hat{p}_i(x_0|x_{-1}, \ldots, x_{-n_{ ext{ctx}}}))$$

and we predict the next token using $\hat{p}_N(x_0|x_{-1},\ldots,x_{-n_{ ext{ctx}}})$.

ightharpoonup Should we discard all these intermediate \hat{Y}_i we computated or can we reuse it for the following token ?

Encoder-decoder transformer \Rightarrow

Machine translation =

- LSTM encoder → context → LSTM decoder [SVL14]. See [SVL14; Figure 1] below.
- Issue with *encoder bottleneck*. All information has to be summarized in the **context**.

[SVL14] I. Sutskever, O. Vinyals and Q. V. Le. <u>Sequence to Sequence Learning with Neural Networks</u>. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS'14 (MIT Press, Cambridge, MA, USA, Dec 2014); pp. 3104–3112. Accessed on Oct 23, 2024.

Cross-Attention =

Cross-Attention between

- values and keys E(CX+P) where E is the encoder, and X is the matrix of input tokens
- ullet query $oldsymbol{Q}$ depending on past output $oldsymbol{Y}$ and number of layers already applied

$$MultiHead(E(CX+P), E(CX+P), Q)$$

The embedding vectors CX take then different projections for value, key, query and also for different heads!

$$ext{head}_j = ext{Attention}(W_j^V V, W_j^K K, W_j^Q Q) \ ext{where } V = K = E(CX + P)$$

Utils =

- using PlutoUI, DataFrames, PrettyTables, LinearAlgebra, Luxor, LaTeXStrings,
 MathTeXEngine, PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral; @htl, @htl_str
 PlutoTeachingTools
- 1 import DocumenterCitations, CSV, Logging
- qa (generic function with 2 methods)
 - 1 include("utils.jl")

```
biblio =
▶ CitationBibliography("/home/runner/work/LINMA2472/LINMA2472/Lectures/biblio.bib", AlphaSt
 1 biblio = load_biblio!()
① Loading bibliography from `/home/runner/work/LINMA2472/LINMA2472/Lectures/bibli
   o.bib`...

    Loading completed.

cite (generic function with 1 method)
 1 cite(args...) = bibcite(biblio, args...)
bib (generic function with 1 method)
 1 bib(args...) = bibrefs(biblio, args...)
draw_transformer (generic function with 2 methods)
 1 function draw_transformer(decoder_only = true)
       scale(0.4, 0.4)
       Luxor.placeimage(readpng("images/transformer.png"), centered = true)
       if decoder_only
           sethue("red")
           setopacity(0.4)
           box(Point(-350, -160), Point(320, 20), :fill)
           box(Point(-350, 20), Point(0, 460), :fill)
           translate(Point(-170, -190))
           setopacity(1)
           fontsize(32)
           text("Not used for now", halign = :center)
       end
14 end
highlight (generic function with 1 method)
 1 function highlight(a, b, c, d)
       sethue("green")
       setopacity(0.4)
       \#box(Point(a, b), Point(c, d), :fill)
       polysmooth(box(Point(a, b), Point(c, d), vertices=true), 10, action = :fill)
       setopacity(1)
       polysmooth(box(Point(a, b), Point(c, d), vertices=true), 10, action = :stroke)
 8 end
 1 struct BPE
       text::String
       pairs::Dict{Tuple{Char,Char},Char}
   end
```

```
add_pair (generic function with 1 method)
 1 function add_pair(bpe::BPE, subs)
       pairs = copy(bpe.pairs)
       push!(pairs, subs)
       return BPE(replace(bpe.text, prod(subs.first) => subs.second), pairs)
 5 end
pair_stats (generic function with 1 method)
 1 function pair_stats(text::String)
       stats = Dict{Tuple{Char,Char},Int}()
       for i in eachindex(text)
           j = nextind(text, i)
           if j > lastindex(text)
               break
           end
           a = text[i]
           b = text[j]
           stats[(a, b)] = get(stats, (a, b), 0) + 1
       end
       return stats
13 end
substitute (generic function with 1 method)
 function substitute(text::String, pair::Tuple{Char,Char})
       new_char = min('Z' + 1, minimum(text)) - 1
       return replace(text, prod(pair.first) => pair.second)
 4 end
new_token (generic function with 1 method)
 1 new_token(text::String) = new_token(BPE(text, Dict()))
new_token (generic function with 2 methods)
 1 function new_token(bpe::BPE)
       stats = pair_stats(bpe.text)
       pair = findmax(stats)[2]
       new_char = min('Z' + 1, minimum(bpe.text)) - 1
       return add_pair(bpe, pair => new_char)
```

6 end

llms =

	Name	Num params	Ref	``n_\text
1	"Gemini-1.5"	missing	"[TGLB24]"	"256k"
2	"Gemini-1"	"1.[8B/3.25B](https://storage.googleapis.	"[TABA24]"	"256k"
3	"Gemma-2"	"27B"	"[TRPS24]"	"256k"
4	"Gemma-2"	"9B"	"[TRPS24]"	"256k"
5	"Gemma-2"	"2B"	"[TRPS24]"	"256k"
6	"Gemma"	"7B"	"[TMHD24]"	"256k"
7	"Gemma"	"2B"	"[TMHD24]"	"256k"
8	"GPT-2"	"1.5B"	"[RWCL19]"	"[50k](https://github
9	"Llama-2"	"7B"	"[TMSA23]"	"[32k](https://github
10	"GPT-40"	missing	missing	"[200k](https://githu
: 1	nore			
19	"big"	missing	"[VSPU17]"	"37k"
1 -	llms = <u>load_ll</u>	.ms()		

load_llms (generic function with 1 method)

```
function load_llms()
llms = DataFrame(CSV.File("llms.csv"))
rename!(llms, "Embedding dimension" => "'`d_\\text{emb}``")
rename!(llms, "Vocabulary size" => "'`n_\\text{voc}``")
rename!(llms, "Context window" => "'`n_\\text{ctx}``")
rename!(llms, "Feed-Forward hidden dimension" => "'`d_\\text{ff}`")
return llms
end
```

```
>["Name", "Num params", "Ref", "'`n_\\text{voc}``", "'`d_\\text{emb}``", "'`n_\\text{ctx}`
1 names(llms)
```

```
table (generic function with 1 method)
 1 function table(df; mandatory_columns = String[], included_columns = nothing)
       for col in mandatory_columns
            df = df[(!ismissing).(df[!, col]), :]
       end
       if !isnothing(included_columns)
            df = unique(df[!, included_columns])
       end
       Markdown.parse(pretty_table(
            String,
            sort(df),
           backend = :markdown,
            column_labels = names(df),
            allow_markdown_in_cells = true,
            formatters = [(v, _-, _-) \rightarrow ismissing(v) ? "" : v],
        ))
16 end
```