Bonpoc No 1

Трехмерная графика. Методы удаления скрытых поверхностей, использующие Z-буфер

1. Алгоритм удаления невидимых граней, использующий Z - буфер.

Для реализации этого алгоритма требуется два буфера:

- 1) Буфер глубины (Z буфер).
- 2) Буфер регенерации.

Из 3-х мерной сцены выбираем последовательно грани и развертываем в растр. Но предварительно буфер регенерации заполняем фоновым цветом, а в Z - буфер помещаем значения максимально большие для этой сцены, а в Z - буфере получаются значения значительно большие чем глубина сцены. И для каждого многоугольника во время растровой развертки выполняем следующие алгоритмические шаги:

- 1) Если глубина многоугольника Z(x, y) в текущей точке растровой развертки меньше чем соответствующая точка в Z буфере, то точка находится ближе к наблюдателю и в буфер регенерации в точку (x, y) записываем атрибут многоугольника, $Z_{\text{БУФ}}(x, y) <- Z(x, y)$.
- 2) Иначе $\{Z(x,y)>Z_{\text{БУ}\Phi}(x,y)\}$ переход к следующей точке растровой развертки многоугольника.

Главным недостатком алгоритма является большой размер Z - буфера. Сцена будет появляться в той последовательности в какой мы анализируем грани.

Достоинства: обрабатываются сцены любой сложности, прост в реализации.

$$(x_1, y_1, z_1)$$

$$Ax + By + Cz + D = 0;$$

$$A = \sum_{i=1}^{n} (z_i - z_j)(y_i + y_j);$$

$$B = \sum_{i=1}^{n} (x_i + x_j)(z_i - z_j);$$

$$C = \sum_{i=1}^{n} (x_i - x_j)(y_i + y_j);$$

$$j = \{ecлu \quad i=n, \quad mo \quad 1\}$$
 $j = \{ecлu \quad i\neq n, \quad mo \quad i+1\}$

$$D = -Ax_1 - By_1 - Cz_1;$$

Для облегчения вычисления Z при растровой развертке многоугольника можно воспользоваться:

$$Z(x,y) = \frac{-D - Ax - By}{C};$$

$$Z(x + \Delta x, y) = \frac{-D - Ax - A\Delta x - By}{C} = Z(x,y) - \frac{A}{C} \Delta x = Z(x,y) - \frac{A}{C};$$

$$\Delta x = 1;$$

Аналогично вычисляется Z при переходе на следующую сканирующую строку:

$$Z(y + \Delta y) = Z(y) - \frac{B}{C} \Delta y;$$

Алгоритм удаления невидимых граней, использующий Z - строку.

Работает в рамках одной сканирующей строки. Количество элементов в Z - строке соответствует разрешающей способности по горизонтали. Глубина Z - строки определяет величину значения Z (см. Алгоритм использующий Z - буфер).

Для повышения эффективности работы алгоритма за каждым многоугольником закрепляют верхнюю и нижнюю сканирующие строки.

Z-buffering

Процесс удаления скрытых поверхностей, использующий значения глубины, хранящиеся в Z-буфере. Перед отображением нового кадра, буфер очищается, и

значения величин Z устанавливаются равными бесконечности. При рендеринге объекта устанавливаются значения Z для каждого пиксела: чем ближе расположен пиксел, тем меньше значение величины Z. Для каждого нового пиксела значение глубины сравнивается со значением, хранящимся в буфере, и пиксел записывается в кадр, только если величина глубины меньше сохраненного значения.

Z-sorting

Процесс удаления невидимых поверхностей с помощью сортировки многоугольников в порядке низ-верх, предшествующий рендерингу. Таким образом, при рендеринге верхние поверхности обрабатываются последними. Результаты рендеринга получаются верными только, если объекты не близки и не пересекаются.

Преимуществом этого метода является отсутствие необходимости хранения значений глубины. Недостатком является высокая загрузка процессора и ограничение на пересекающиеся объекты.

Bonpoc No 2

Использование Булевой алгебры для анализа и синтеза логических электронных схем

 $X = 0 \ 0 \ 1 \ 1$ $Y = 0 \ 1 \ 0 \ 1$

Функции и их обозначение:

= <i>J</i>		
F = 0001	$X\!\cap\!Y$	Конъюнкция (Логическое И)
$F = 0 \ 1 \ 1 \ 1$	$X\!\cup\!Y$	Дизъюнкция (Логическое ИЛИ)
F = 1011	$Y \rightarrow X$	Импликация от Y к X
$F = 1 \ 1 \ 0 \ 1$	$X \rightarrow Y$	Импликация от X к Y
$F = 1 \ 1 \ 1 \ 0$	$X \mid Y$	Штрих Шеффера (Отрицание конъюнкции)
F = 10000	$X \downarrow Y$	Стрелка Пирса (отрицание дизъюнкции)
F = 1001	X~Y	Эквивалентность
$F = 0 \ 1 \ 1 \ 0$	$X \oplus Y$	Сумма по модулю 2 (Исключающее ИЛИ)
$F = 0 \ 1 \ 0 \ 0$	$Y\Delta X$	Запрет по Х (Отрицание импликации)

Аксиомы алгебры логики.

= *		
1. $X = X$	-	закон двойного отрицания.
2. $X \cap Y = Y \cap X$	-	коммутативный закон для умножения
3. $X \cap (Y \cap Z) = X \cap Y \cap Z$	-	сочетательный закон для умножения
4. $X \cap X = X$	-	закон тождества для умножения
5. $1 \cap X = X$	-	закон умножения на единицу
6. $0 \cap X = 0$	-	закон умножения с нулем
7. $X \cup Y = Y \cup X$	-	коммутативный закон для сложения
8. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$	-	сочетательный закон для сложения

9. $X \cup X = X$ закон тождества для сложения $10.1 \cup X=1$ закон сложения с единицей $11.0 \cup X = X$ закон сложения с нулем $12.X \cap (Y \cup Z) = X \cap Y \cup X \cap Z$ первый распределительный закон $13.X\!\cup\!Y\!\cap\!Z\!\!=\!\!(X\!\cup\!Y)\,\cap\,(X\!\cup\!Z)\ \text{--}$ второй распределительный закон $14.X \cup X \cap Y=X$ $15.X \cap (X \cup Y)=X$ законы поглощения 16. $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$ 17. $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$ законы де Моргана (инверсии) $18.X \cup \overline{X} = 1$ закон исключенного третьего закон противоречия. $19.X \cap \overline{X} = 0$

Обозначение функциональных узлов

Ооозначение фу			
Название	Обозначение		
	Россия	США	
инвертор	1		
Конъюнктор(и)			
Дезъюнктор(и ли)	1		
Исключающее или	=1		

Функциональную схему логического устройства получают в результате абстрактного синтеза, который состоит из следующих этапов:

- 1. словесная формулировка функций логического устройства
- 2. составление таблицы истинности по словесной формулировке
- 3. запись логического уравнения устройства в виде СДНФ или СКНФ
- 4. минимизация логического уравнения
- 5. выбор одного из логических базисов
- 6. преобразование логического уравнения с использованием правил де Моргана
- 7. построение функциональной схемы логического устройства

Пример:

1. синтезировать логическое устройство на три входные переменные генерирующее сигнал 1 на выходе, если две рядом стоящие переменные из трех принимают значение 1

2. таблица истинности

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

3.
$$Y = \overline{A} \cap B \cap C \cup A \cap B \cap \overline{C} \cup A \cap B \cap C$$

 $=B\cap A\cup B\cap C$

5. принять для реализации схемы логического устройства базис и-не

6.
$$Y = \overline{Y} = \overline{(B \cap A \cup B \cap C)} = \overline{(\overline{(B \cap A)} \cap \overline{(B \cap C)})}$$

Bonpoc № 3

Найти кратчайшее расстояние от точки A(0; 1) до прямой y=2x+3, используя методы вариационного исчисления

I способ. Аналитический.

y=2x+3 -> 2x-y+3=0, тогда нормальный вектор к данной прямой $n=\{2:-1\}$

пусть P — основание перпендикуляра , тогда уравнение прямой PA, перпендикулярной исходной прямой будет иметь вид

$$\frac{x-0}{2} = \frac{y-1}{-1}$$

Определим координаты точки Р

т.к. Р точка пересечения двух прямых решив систему, найдем ее координаты

$$\left\{ \begin{array}{l} x/2+y=1 \\ y=2x+3 \\ x=-4/5 \\ y=7/5 \end{array} \right.$$

теперь найдем искомое расстояние АР

$$AP = \sqrt{(0+4/5)^2 + (1-7/5)^2} = 0.4\sqrt{5}$$

II способ геометрический

AP(искомое расстояние) перпендикулярно MN

тр-ик MNO подобен тр-ику MPA \rightarrow MN/MA = NO/AP \rightarrow AP=NO*MA/MN

MA=2 NO=1.5 MN=
$$\sqrt{MO^2 + NO^2} = \sqrt{3^2 + 1.5^2} = 1.5\sqrt{5}$$

$$AP = 0.4\sqrt{5}$$

III способ. Оптимизационный

Запишем функцию расстояния от точки до прямой и любым методом оптимизации (например, сканирование, метод золотого сечения)

$$y=2*x+3$$

 $s=sqrt(x^2+(2x+3-1)^2)=sqrt(x^2+4*(x+1)^2)=sqrt(5*x^2+8*x+4);$

 $s'=(10*x+8)*0.5/sqrt(5*x^2+8*x+4)=(5*x+4)/sqrt(5*x^2+8*x+4)=0$; следовательно x=-10*x+80.8:

$$s = sqrt(0.8) = 0.4\sqrt{5}$$

Уравнение Эйлера (численный)

Элементарное ΔS расстояние между двумя точками на плоскости, координаты которых отличаются на dt и dx, равно: $\Delta S = \sqrt{dx^2 + dt^2}$

Выполним некоторые преобразования: $\Delta S = \sqrt{dt^2 + \frac{dx^2}{dt^2}} dt^2 = \sqrt{1 + \frac{dx^2}{dt^2}} dt = \sqrt{1 + (x')^2} dt$

Расстояние между двумя точками на плоскости выразится интегралом: $S = \int_{0}^{t_1} \sqrt{1 + (x')^2} dt$.

Задача сводится к нахождению экстремального значения интеграла при условии, что левый конец точка A(0,1), а правый прямая x=2t+3. Таким образом, в нашем случае имеем $\Psi(t)=2t+3$.

Для составления уравнения Эйлера запишем: $\frac{\partial F/\partial x = 0 \partial F/\partial x' = x'/\sqrt{1 + (x')^2}}{\frac{d}{dt}(\frac{\partial F}{\partial x'}) = \frac{x''\sqrt{1 + (x')^2} - (x')^2 x''/\sqrt{1 + (x')^2}}{1 + (x')^2}}$

$$\partial F/\partial x = 0 \partial F/\partial x' = x'/\sqrt{1 + (x')^2}$$

$$\frac{d}{dt} \left(\frac{\partial F}{\partial x'}\right) = \frac{x''\sqrt{1 + (x')^2} - (x')^2 x''/\sqrt{1 + (x')^2}}{1 + (x')^2}$$

Уравнение Эйлера имеет вид х"=0. Общее решение уравнения Эйлера: $x=C_1t+C_2$.

Условия трансверсальности имеют вид $(\sqrt{1+(x')^2}+(2-x')\frac{x'}{\sqrt{1+(x')^2}})\Big|_{t=t_1}=0$. Т.к. $x'=C_1$,

получим: $\sqrt{1+C_1^2}+(2-C_1)\frac{C_1}{\sqrt{1+C_1^2}}=0$. Уравнения в данном случае принимают вид

 $C_1t_0+C_2=x_0$, $C_1t_1+C_2=2t_1+3$. В результате имеем систему уравнений: $x_0=x(t_0,C_1,C_2)$ $C_1*0+C_2=1$ $x(t_1,C_1,C_2)=\psi(t_1)$ $\Rightarrow C_1t_1+C_2=2t_1+3$

$$x_0 = x(t_0, C_1, C_2)$$
 $C_1 * 0 + C_2 = 1$
 $x(t_1, C_2, C_3) = \psi(t_1)$ $\Rightarrow C_1 t_2 + C_2 = 2t_1 + t_2$

$$x(t_1, C_1, C_2) = \psi(t_1)$$
 $\Rightarrow C_1 t_1 + C_2 = 2t_1 + 3$

$$f + (x'(t_1, C_1, C_2) - \psi'(t)) \frac{\partial f}{\partial x} \bigg|_{t=t_1} = 0 \qquad \sqrt{1 + C_1^2} + (2 - C_1) \frac{C_1}{\sqrt{1 + C_1^2}} = 0$$

Из системы C_2 =1. Необходимо найти t_1 , C_1

$$\begin{cases} C_{1}t_{1} + C_{2} = 2t_{1} + 3 \\ \sqrt{1 + C_{1}^{2}} + (1 - C_{1}) \frac{C_{1}}{\sqrt{1 + C_{1}^{2}}} = 0 \Rightarrow \sqrt{1 + C_{1}^{2}} + (2 - C_{1}) \frac{C_{1}}{\sqrt{1 + C_{1}^{2}}} = 0 \setminus \sqrt[8]{1 + C_{1}^{2}} \Rightarrow C_{1}^{2} \neq -1 \\ 1 + C_{1}^{2} + (2 - C_{1})C_{1} = 0 \Rightarrow 1 + 2C_{1} = 0 \Rightarrow C1 = -0,5 \\ -0.5t_{1} + 1 = 2t_{1} + 3 \Rightarrow t_{1} = -0,8 \\ S = \int_{-2/3}^{0} \sqrt{1 + (-0.5)^{2}} dt = 0.894 \ . \end{cases}$$