

BACHELOR PROJECT SYSTEM REQUIREMENT & TESTING SPECIFICATION

BY

Daniel Christopher Biørrith, 201909298 Lukas Koch Vindbjerg, 201906015

BACHELOR'S THESIS
IN
COMPUTER ENGINEERING

SUPERVISOR: KIM BJERGE

Aarhus University
Department of Electrical and Computer Engineering

June 15, 2022

Contents

1	Intr	roduction	3
	1.1	Purpose	3
	1.2	Glossaries	4
2	Sys	tem introduction and description	5
	2.1	System description	5
	2.2	Assumptions and Dependencies	6
3	Rec	quirements	8
	3.1	Functional Requirements	8
		3.1.1 Actors	8
		3.1.2 Use case diagram	9
		3.1.3 Use case overview	10
			11
			12
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13
			14
			15
			16
	3.2		16
4	Tes	ting introduction	17
_	4.1	9	$\frac{17}{17}$
	4.2	•	17
	1.2	Tropulation prior to testing	
5	Tes	0	18
	5.1	Functionalities	18
	5.2	UC1 testing specification	19
		5.2.1 UC1 extension(s)	19
	5.3	UC2 testing specification	20
		5.3.1 UC2 extension(s)	20
	5.4		21
			21
	5.5	UC4 testing specification	22
		5.5.1 UC4 extension(s)	
	5.6	UC5 testing specification	
	5.7	Result	

	Bachelor	Project -	Requirement	& testing	specification
--	----------	-----------	-------------	-----------	---------------

6	Testing of non-functional requirements	2 4
Bi	bliography	2 5

Introduction

1.1 Purpose

This document provides a description of the functional and non-functional requirements of the Digital Foraminifera Isolation (DFI) system, which in turn provides a description of what the system should to do and how it will perform should be presented. Additionally, based on said requirements, a test specification will be presented.

1.2 Glossaries

Acronym and	Description
technical terms	_
DFI	Digital Foraminifera Identifier, the formal name of the
	project, which it will be referred to as throughout the
	report.
CNC system	Computer numerical control system.
Pylon 6	A software provided by Basler. It comes both with a
	program, Pylon Viewer, which makes it possible to get
	livefeed from the microscope, as well as an SDK for de-
	veloping code to control the camera.
SDK	Software development kit
Foraminifera	A singlecelled organism often found in sediment samples.
Sediment sample	Sediment samples are samples consisting of foraminifera
	and other granular material.
Tray	The observation platform used to place sediment sam-
	ples on during scanning.
G-code	A highly popular CNC programming language, used to
	communicate with the controller.
Grbl	The software located on the controller, which interprets
	the G-code sent.
VS2013	Visual Studio 2013 is an IDE provided by Microsoft,
	which is used to develop the acquisition software.
DIP	Digital Image Processing
CV	Computer Vision
GUI	Graphical user interface.
ML	Machine Learning
USB	Universal serial bus
OpenCV	An open source CV library for Python.
Scikit-image	A collection of algorithms for image processing, devel-
	oped for Python.
Tensorflow	An open source CV library in Python, used for creating
	ConvNets.
JupyterLab	An IDE primarily used to execute .ipynb files.

Table 1.1: List of abbreviations and descriptions thereof

System introduction and description

2.1 System description

This section will go into a more detailed description of the system, its component and which components are designed to handle which actions. The setup of the system can be seen in figure 2.1. The idea is to use a digital microscope to capture images of the sediment sample. The sample should be spread out such that none of the granular material obscure one another. Hence, we use a black tray - shown on figure 2.1 - as a consistent platform for the samples, to improve consistency. The

Figure 2.1: Setup of DFI system

microscope only captures a very small area of the tray and can not capture more than a few dozen grains in one image. Consequently, we have to move it across the tray to capture the entire sample. To do this, the microscope has been rigged to CNC-router. This allows us to control the movement of the microscope to traverse any specified area, with periodic stops to allow the microscope to capture clean pictures. The CNC-router is controlled by a control board attached to the setup. Both the microscope and the control board of the CNC-router can be controlled from the users pc. This allows the user to change settings and procedures depending on their intended use. Finally, a pair of LED lights have been mounted to the system to provide the sensor of the microscope with more light, to optimize the process and maximize the information preserved from the real world sample. With the setup initialised, the acquisition process can then be started and the raw images will be stored on the user's PC With all the images acquired, the next process of the system is to isolate individual objects. This will be done using theory and methods from the field of digital image processing. The selected pictures will first be stitched together into one bigger image and then the granular material will be segmented into images which only contain a single object. These will again be stored on the user's pc. Finally the system will classify these segmented objects using a machine learning model. It will classify an object as either foraminifera or sand. These sets of both foraminifera and sand will likewise be stored on the user's pc in separate directories.

2.2 Assumptions and Dependencies

For our system to function properly we have to make some assumptions that must be true. Hence, we have to depend on some external features. These are mainly the specifications used for the system and some features - both on a hardware and a software level - where the functionalities have been developed by external actors. Therefore, we simply have to rely on these aspects of our system to be working correctly.

- D01. The first article that we are dependent on is the physical CNC-machine[1]. We will assume that with any code and implementation we will get a consistent result. This means that we expect that the movement of the motor will be reliable enough for us to successfully stitch together a larger canvas without any missed sports or distortion.
- D02. In order to move the CNC-machine correctly we therefore also expect the control board[2] to interpret our software correctly. The way we interact with the CNC-router is through the use of Grbl 1.1f which is an embedded, high performance g-code-parser and CNC milling controller[3][4].
- D03. Additionally, the microscope setup[5] is a crucial part of the system's functionality. Here we expect consistency in the images. Any noise or blurriness must stay low enough such that the images contains enough reliable data to be processed in the later steps of the system.
- D04. In order to control the microscope setup we take advantage of the Basel Pylon 6 software [6]. This includes the program developed by Basel themselves

- alongside some provided template code and tools[7][8] which are designed to build applications in C++.
- D05. The software we use for the DM system is developed to work on the Windows operating system. Therefore we can not ensure correct functionalities on any other OS and expect that the user will interact with the system with Windows.
- D06. In order to compile and execute our software implementation it is a requirement that we use Visual Studio 2013[8] as there are some libraries and extensions that requires us to use this version of the Visual Studio IDE.
- D07. The system should be used in stable and well lit environment. The image quality is highly sensitive to movement so if the picture taking process is being performed on an unstable surface this might affect the final image quality which we cannot guarantee will give the same accuracy in the results.

Requirements

By applying the requirement engineering process[9, p. 101] we have derived the functional- and non-functional requirements of the DFI system. The functional requirements are presented by applying the use-case method[9, p. 125], where each use-case is defined using (i) the natural language specification[9, p. 121] and (ii) the structured specification[9, p. 122]. Furthermore, the non-functional requirements are presented using only the natural language specification.

3.1 Functional Requirements

The following section will present the functional requirements of the system. This will be presented both by some statements regarding how the system should work, as well as with use cases as previously described. Some functionalities that the system must have are described below:

- FR01: The motors controls the movement of the microscope.
- FR02: The motors must move the microscope systematically over the samples, with slight image overlap, such that it doesn't miss any potential Foraminifera.
- FR03: The camera must stand still for a fixed amount of time, depending on the exposure time, providing the microscope enough time to grab an image that is in focus.
- FR04: The system must be deployable on a PC on which Windows 11 is installed.
- FR05: The images should be stored on the host PC, so that the user may access and review them manually.

Other functional requirements will now be described with use cases.

3.1.1 Actors

In order to understand the use-cases, we first have to define the actors using the DFI system, as they are actuating the use-cases. These actors can be split into two groups; the primary- and secondary actors. The primary actor is the human

operator of the system, whereas the secondary actors the samples which contains the Foraminifera. As the hardware and software components are part of the system and not external, these will not be included as actors.

Name, type and description of each actor can be found in table 3.1.

Actor name	Actor type	Actor description
User	Primary	The manual user of the system. The user is the only
		primary actor, meaning it's the only actor responsible
		for starting the different parts of the system.
Sample	Secondary	The sample that is to be analyzed, which contains the
		Foraminifera. This should be distributed onto the tray
		as evenly as possible. The sample is a secondary ac-
		tor as it is necessary for the primary actor to perform
		certain use cases. More on this later.

Table 3.1: Actors of the DFI system

With this setup, the hardware and software that are part of the system, rather than actors. This also goes hand-in-hand with the dependencies we previously stated, as we now expect these to work, unlike an actor who have to follow the steps.

3.1.2 Use case diagram

With the actors defined, a use-case diagram of the system was developed. The diagram is depicted in figure 3.1.

Figure 3.1: UML Use Case Diagram

3.1.3 Use case overview

Here follows an overview of each use case found in the use case diagram, including a brief description of each use case. This can be found in table 3.2.

ID	Name	Description
UC1	Set settings	The actor sets variables, such as exposure time and depth,
		to their wanted value for optimizing the picture. When the
		preferred values are chosen, the actor can either save the
		values or cancel, which would prompt to go back to the
		previously set values, or default in case none are set prior.
UC2	Scan samples	Following UC1, when the actor considers the system and
		camera are set up correctly for the desired task, the actor
		starts the scanning process. This prompts the system to
		systematically move the camera and capture images of all
		the samples. These images are then stored in a local
		directory with an appropriate naming scheme.

UC3	Stitch images	Following UC2, the images needs to be stitched. If the	
		images have been capture, the actor may start the image	
		stitching program with images stored in a local directory	
		on the host machine. After starting the stitching program,	
		it will start stitching all the individual pictures together	
		into one large canvas. When finished, this canvas will	
		likewise be stored on the local machine.	
UC4	Segmentation	The actor provides the isolation program with an image, in	
		which the actor wishes for the present object to be detected	
		and isolated. Here, the object will be detected using digital	
		image processing methods. These detected objects will	
		then be isolated into individual picture. Finally, the	
		program will process the images of isolated objects in order	
		to get a consistent format.	
UC5	Classify images	The actor provides the identifier program with a directory	
		in which picture(s) are located. The image(s) must be of an	
		isolated object, possibly following UC4. When the actor	
		starts the program, a trained algorithm determines whether	
		provided object is a Foraminifera or not.	

Table 3.2: Use-cases natural language specification

3.1.4 Fully dressed use case descriptions

Here, a fully dressed description of each use case follows. The descriptions provide a detailed walk through of each use case, including actors, pre -and post conditions and exceptions that may occur.

3.1.4.1 UC1: Set settings

Name	Set settings
Use case ID	UC1
Actor(s)	User
	Sample
Precondition	The sample is distributed across the board
	Pylon 6 or newer is installed on the operating system.
Main scenario	 User starts up the 'Settings' program. A live feed from the camera becomes present for the user to view, along with the parameters that can be changed. This includes exposure time and sensitivity. Extension 1.1, 1.2. User changes settings to their preferred value. Extension 1.2, 1.3. User saves the settings, by which the variables will be saved as the parameters the user provided.
Extension	Extension 1.1:
	1. The user quits the program.
	2. The variables will keep their prior value.
	3. Use case is terminated.
	Extension 1.2:
	1. The camera is not connected via a viable USB
	port.
	2. The program displays a warning to the user, recommending to restart the program and check the camera connection.
	Extension 1.3:
	 The set values exceeds the allowed limit. A warning displays that the value exceed limits. The value of variables will not be changed.
Post condition	The variables are set to the user's wanted values.

Table 3.3: UC1 fully dressed description

3.1.4.2 UC2: Scan samples

Name	Scan samples
Use case ID	UC2
Actor(s)	User
	Sample
Precondition	The sediment sample is spread out on the tray.
	The tray and camera is manually positioned in the top
	left of the desired scanning area.
Main scenario	 The user lines up the camera to the corner of the tray. The user starts the program. Extension 2.1, 2.2. The user starts the scanning, which in turn starts the picture grabbing process. The program starts moving the camera and grabs pictures across the tray. The program finishes, by which the pictures are stored in a local directory on the host machine.
Extension	Extension 2.1:
	 The camera is not connected via a viable USB port. The program displays a warning to the user, recommending to restart the program and check the camera connection. Use case is terminated. Extension 2.2: The controller is not connected via a viable USB port. The program displays a warning to the user, recommending to restart the program and check the controller connection. Use case is terminated.
Post condition	All the images will be stored in a local directory located on the host machine.

Table 3.4: UC2 fully dressed description

3.1.4.3 UC3: Stitch images

Name	Stitch images
Use case ID	UC3
Actor(s)	User
Precondition	UC2 is done.
Main scenario	 User starts the stitching program. User provides the program with the directory in which the pictures from UC2 are located. The user chooses to starts the process, by which the program starts stitching the pictures together. Extension 3.1. The program finished, by which the final picture is created.
Extension	Extension 3.1: 1. The pictures cannot be stitched together. 2. No pictures are stitched together. 3. Use case is terminated.
Post condition	All the provided pictures from UC2 are stitched together in a single image that is saved.

Table 3.5: UC3 fully dressed description

3.1.4.4 UC4: Segmentation

Name	Segmentation
Use case ID	UC4
Actor(s)	User
Precondition	UC3 is done.
Main scenario	 The user starts up the segmentation process. The user provides an image to the program from which they wish to isolate the objects on. The user chooses to start, by which the program starts isolating the objects. Extension 4.1 The program finishes, by which the images of the objects images are stored in a local directory on the host machine.
Extension	 Extension 4.1: 1. No objects can be found. 2. A local directory will be created on the local host machine, but no pictures are stored inside of it. 3. Use case is terminated.
Post condition	The objects are isolated and stored in separate image. They're all stored in a local directory on the host machine.

Table 3.6: UC4 fully dressed description

3.1.4.5 UC5: Classify images

Name	Classify images
Use case ID	UC5
Actor(s)	User
Precondition	
Main scenario	 The user starts the identification program. The user provides the objects that were isolated from UC4, or alternative data. The user starts up the identification process where the program will begin to classify each image by applying our machine learning model. The program will label each object and put it into its respective directory, depending on the classification.
Extension	
Post condition	The images will be stored accordingly to their classifica-
	tion in directories with an appropriate naming scheme
	of their type.

Table 3.7: UC5 fully dressed description

3.2 Nonfunctional Requirements

Besides the functional requirements, some non-functional requirements were also derived. These help put a constrains on services offered by the system. They are as follows:

- NF01 The scanning of the samples must be done within a time-frame of maximum 1 hours 30 minutes.
- NF02 The stitching of images must be done within a time-frame of 2 hours.
- NF03 The segmentation of an image must be done within a time-frame of 2 hours.
- NF04 The classification of the sample images must be done within a time-frame of maximum 2 hours.
- NF05 The tray used for the samples must be 9,5 x 5,5 cm in size.
- NF06 The classification must have an accuracy of over 85%.
- NF07 The communication between camera and the host computer is through a serial connection.
- NF08 The communication between controller and the host computer is through a serial connection.

Testing introduction

This chapter will introduce the terms the testing DFI will build upon. This will help ensure that the system meets the requirements. Thus, testing is build upon the requirements set earlier in this document.

4.1 Acceptance of Test Cases

In order for a test case to be considered accepted, the result of the test case must match the expected result. Each test case will in the end be marked with on of the following expressions:

• Passed

A \checkmark will represent passed. It means the test case is accepted.

• Passed w/ remarks

A (\checkmark) will represent passed with remarks. It means the test case is partially accepted but with certain remarks. These remarks will be explained in detail in the 'Comments' column.

Failed

 $A \div$ will represent failed. It means the test case is not accepted.

4.2 Preparation prior to testing

Prior to the test cases, the follow statements must be true for them to be viable:

- The physical set-up must be as described in the chapter 2.
- All physical components must be turned on.
- The sediment samples must be distributed manually across the tray.
- All programs must be installed on the PC device and be able to start.

With these done, one is ready to test the system.

Testing of functional requirements

The following section will specify testing the functional requirements specified Requirement Specification document. The test cases are both of the functionalities and the use-cases. Additionally, test specification of the extensions for each use case will be made.

5.1 Functionalities

In table 5.1, a description of what is to be tested of the is presented.

	Funct	ionality requirement	\mathbf{s}
No.	Expected result	Conclusion	Comments and remarks
1	The motors controls the		
	movement of the microscope.		
2	The motors must move the		
	microscope systematically		
	over the samples, with slight		
	image overlap, such that it		
	doesn't miss any potential		
	Foraminifera.		
3	The camera must stand still		
	for a fixed amount of time,		
	depending on the exposure		
	time, providing the		
	microscope enough time to		
	grab an image that is in		
	focus.		
4	The system must be		
	deployable on a PC on which		
	Windows 11 is installed.		
5	The images should be stored		
	on the host PC, so that the		
	user may access and review		
	them manually.		
	M 11 F 1 M +:	sification of functional	1.0 1.

Table 5.1: Testing specification of functionalities defined in the requirement document.

5.2 UC1 testing specification

	Use case 1: Set settings				
No.	Action	Expected result	Result	Comment	
1	User starts	The setting program			
	up the	starts and a live feed			
	'Settings'	from the camera			
	program.	becomes present,			
		along with a UI			
		guiding the user.			
2	The user	The setting will be			
	sets a	set to the provided			
	setting with	input			
	an input				

Table 5.2: Testing specification of use case 1

5.2.1 UC1 extension(s)

	Use case 1 extension 1.1				
No.	Action	Expected result	Conclusion	Comment	
1	The user	The program			
	quits the	terminates with			
	program.	variables keeping			
		their prior values.			

Table 5.3: Testing specification of use case 1 extension 1.1

	Use case 1 extension 1.2				
No.	Action	Expected result	Conclusion	Comment	
1	The camera	The program			
	is not	displays a warning			
	connected	to the user,			
	via a viable	recommending to			
	USB port.	restart the program			
		and check the			
		camera connection.			

Table 5.4: Testing specification of use case 1 extension 1.2

	Use case 1 extension 1.3				
No.	Action	Expected result	Conclusion	Comment	
1	The set	A warning displays			
	values	that the value			
	exceeds the	exceed limits. The			
	allowed	value of variables			
	limit	will not be changed.			

Table 5.5: Testing specification of use case 1 extension 1.3

5.3 UC2 testing specification

	Use case 2: Scan samples				
No.	Action	Expected result	Conclusion	Comment	
1	The user	The program will			
	starts the	start, providing the			
	program.	user the option to			
		start scanning.			
3	The system	Images of the tray			
	performs	are acquired in a			
	the	systematic manner			
	grabbing of	and stored in a local			
	images.	directory.			

Table 5.6: Testing specification of use case 2

5.3.1 UC2 extension(s)

	Use case 2 extension 2.1				
No.	Action	Expected result	Conclusion	Comment	
1	The camera	The program			
	is not	displays a warning			
	connected	to the user,			
	via a viable	recommending to			
	USB port.	restart the program			
		and check the			
		camera connection.			

Table 5.7: Testing specification of use case 2 extension 2.1

	Use case 2 extension 2.2				
No.	Action	Expected result	Conclusion	Comment	
1	The	The program			
	controller is	displays a warning			
	not	to the user,			
	connected	recommending to			
	via a viable	restart the program			
	USB port.	and check the			
		controller			
		connection.			

Table 5.8: Testing specification of use case 2 extension 2.2

5.4 UC3 testing specification

	Use case 3: Stitch images				
No.	Action	Expected result	Conclusion	Comment	
1	User starts	The program will			
	up the	start, asking the			
	Stitching	user to provide a			
	program.	directory.			
2	User	The images in the			
	provides a	provided directory			
	directory	are stitched together			
	and starts	to one large image.			
	the				
	stitching				
	process.				

Table 5.9: Testing specification of use case 3

5.4.1 UC3 extension(s)

	Use case 3 extension 3.1				
No.	Action	Expected result	Conclusion	Comment	
1	The images	A warning message			
	cannot be	appears, telling the			
	stitched	user the images			
	together	could not be			
		stitched together.			

Table 5.10: Testing specification of use case 3 extension 3.1

5.5 UC4 testing specification

	Use case 4: Segmentation				
No.	Action	Expected result	Conclusion	Comment	
1	User starts	The program will			
	up the Seg-	start, asking the			
	mentation	user to provide a			
	program.	directory.			
2	User	A directory will be			
	provides a	created, in which all			
	directory	segmented objects			
	and starts	are stored in their			
	the segmen-	own image.			
	tation				
	process.				

Table 5.11: Testing specification of use case 4

5.5.1 UC4 extension(s)

	Use case 4 extension 4.1				
No.	Action	Expected result	Conclusion	Comment	
1	No objects	A warning message			
	are found	appears, telling the			
	on the	user no objects			
	image.	could be found.			

Table 5.12: Testing specification of use case 4 extension 4.1

5.6 UC5 testing specification

Use case 5: Classification								
No.	Action	Expected result	Conclusion	Comment				
1	User starts	The program will						
	up the	start, asking the						
	Classifica-	user to provide a						
tion		directory.						
	program.							
2	User	A directory, which						
	provides a	contains						
directory		sub-directories for						
	and starts the groups of							
	the classifi- classes, wil							
	cation created. Objects will							
	process.	be stored in a						
		respective folder,						
		depending on what						
		they're classified as.						

Table 5.13: Testing specification of use case 5

5.7 Result

The result of each case will be summarized in a table 5.14.

Use case testing summary							
UC No.	Results	Comments					
UC1							
UC2							
UC3							
UC4							
UC5							

Table 5.14: Summary of use case testing.

Testing of non-functional requirements

The following section provides an overview of how the non-functional requirements will be tested.

The tests of non-functional requirements are specified in table 6.1. Not all non-functional requirements are included. The ones not included are: NF05, NF07 and NF08, as are part of the design instead of testing.

Use case testing summary						
ID	Requirement	Testing	Result	Comments		
NF01	Acquiring images	The acquiring				
	of the whole tray	program will be				
	must finish within	timed.				
	a time-frame of 1					
	hour 30 minutes					
NF02	The stitching of	The stitching				
	images must be	program will be				
	done within a	timed.				
	time-frame of 2					
	hours					
NF03	The segmentation	The segmentation				
	of an image must	program will be				
	be done within a	timed.				
	time-frame of 2					
	hours					
NF04	The classification	The classification				
	of images must be	program will be				
	done within a	timed.				
	time-frame of 2					
	hours					
NF06	The classification	The model will be				
	must have an	tested in a test-set				
	accuracy of over	of data.				
	85%.					

Table 6.1: Summary of use case testing.

Bibliography

- [1] Genmitsu Industries LLC. "Original genmitsu 3018-pro." (2022), [Online]. Available: https://genmitsu.com/ (visited on 03/29/2022).
- [2] Desktop CNC Supply. "Woodpecker cnc control board v3.4." (2022), [Online]. Available: https://www.3018nc.com/product/3018-pro-cnc-router-control-board/ (visited on 03/29/2022).
- [3] Grbl CNC controller. "Grbl." (2021), [Online]. Available: https://github.com/grbl/grbl (visited on 04/04/2022).
- [4] reprap. "G-code." (2022), [Online]. Available: https://reprap.org/wiki/G-code (visited on 04/04/2022).
- [5] A. Kathigamanathan, R. K. H. Thomsen, and J. E. E. Sømod, "Udviklingen af et fuldautomatisk system til artsbestemmelse af foraminiferer ved brug af neurale netværk," Dec. 2020.
- [6] Basler AG. "Pylon 6.0.1 camera software suite windows." (2022), [Online]. Available: https://www.baslerweb.com/en/sales-support/downloads/software-downloads/pylon-6-0-1-windows/ (visited on 03/29/2022).
- [7] —, "Pylon sdk samples manual." (2021), [Online]. Available: https://www.baslerweb.com/fp-1615186793/media/downloads/documents/users_manuals/AW00148804000_pylon_SDK_Samples_Manual.pdf (visited on 03/29/2022).
- [8] —, "How to build basler pylon c++ applications with free microsoft visual studio." (2017), [Online]. Available:

 https://www.baslerweb.com/fp-1508418766/media/downloads/
 documents/application_notes/AW00064406000_Application_Note_
 Build_pylon_C_Apps_with_Free_Visual_Studio_IDE.pdf (visited on 03/29/2022).
- [9] I. Sommerville, Software Engineering, Global Edition, 10. edition. Pearson Education Limited, 2016, ISBN: 9781292096148. [Online]. Available: https://books.google.dk/books?id=W_LjCwAAQBAJ (visited on 03/29/2022).
- [10] D. C. B. Lukas Koch Vindbjerg. "Appendix." (2022), [Online]. Available: https://github.com/Biorrith/Bachelor-project/tree/main/References (visited on 04/11/2022).