EE-2023

EE24Btech11022 - Eshan Sharma

- 1) Which of the following statement(s) is/are true?
 - a) If an LTI system is causal, it is stable.
 - b) A discrete time LTI system is causal if and only if its response to a step input u[n] is 0 for n < 0.
 - c) If a discrete time LTI system has an impulse response h[n] of finite duration, the system is stable.
 - d) If the impulse response 0 < |h[n]| < 1 for all n, then the LTI system is stable.
- 2) The bus admittance (Y_{bus}) matrix of a 3-bus power system is given below.

$$Y_{\text{bus}} = \begin{bmatrix} -j15 & j10 & j5\\ j10 & -j13.5 & j4\\ j5 & j4 & -j8 \end{bmatrix}$$

Considering that there is no shunt inductor connected to any of the buses, which of the following can NOT be true?

- a) Line charging capacitor of finite value is present in all three lines
- b) Line charging capacitor of finite value is present in line 2-3 only
- c) Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 1 only
- d) Line charging capacitor of finite value is present in line 2-3 only and shunt capacitor of finite value is present in bus 3 only
- 3) The value of parameters of the circuit shown in the figure are:

$$R_1 = 2 \Omega$$
, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $L = 10 \text{ mH}$, $C = 100 \mu\text{F}$

For time t < 0, the circuit is at steady state with the switch 'K' in closed condition. If the switch is opened at t = 0, the value of the voltage across the inductor (V_L) at $t = 0^+$ in Volts is _____ (Round off to 1 decimal place).

4) A separately excited DC motor rated 400 V, 15 A, 1500 RPM drives a constant torque load at rated speed operating from 400 V DC supply drawing rated current. The armature resistance is 1.2 Ω. If the supply voltage drops by 10% with field current unaltered, then the resultant speed of the motor in RPM is _____ (Round off to the nearest integer).

5) For the signals x(t) and y(t) shown in the figure, z(t) = x(t) * y(t) is maximum at $t = T_1$. Then T_1 in seconds is _____ (Round off to the nearest integer).

6) For the circuit shown in the figure, $V_1 = 8$ V, DC and $I_1 = 8$ A, DC. The voltage V_{ab} in Volts is _____ (Round off to 1 decimal place).

7) A 50 Hz, 275 kV line of length 400 km has the following parameters:

Resistance, $R = 0.035 \Omega/\text{km}$;

Inductance, L = 1 mH/km;

Capacitance, $C = 0.01 \,\mu\text{F/km}$;

The line is represented by the nominal- π model. With the magnitudes of the sending end and the receiving end voltages of the line (denoted by V_S and V_R , respectively) maintained at 275 kV, the phase angle difference (θ) between V_S and V_R required for maximum possible active power to be delivered to the receiving end, in degrees is _____ (Round off to 2 decimal places).

8) In the following differential equation, the numerically obtained value of y(t), at t = 1, is ______ (Round off to 2 decimal places).

$$\frac{dy}{dt} = \frac{e^{-\alpha t}}{2 + \alpha t}, \quad \alpha = 0.01 \text{ and } y(0) = 0$$

- 9) Three points in the x-y plane are (-1,0.8), (0,2.2) and (1,2.8). The value of the slope of the best fit straight line in the least square sense is _____ (Round off to 2 decimal places).
- 10) The magnitude and phase plots of an LTI system are shown in the figure. The transfer function of the system is

- a) $2.51e^{-0.032s}$
- b) $\frac{e^{-2.514s}}{1}$
- c) $1.04e^{-2.514s}$
- d) $2.51e^{-1.047s}$
- 11) Consider the OP AMP based circuit shown in the figure. Ignore the conduction drops of diodes D_1 and D_2 . All the components are ideal, and the breakdown voltage of the Zener is 5 V. Which of the following statements is true?

- a) The maximum and minimum values of the output voltage V_O are +15 V and -10 V, respectively.
- b) The maximum and minimum values of the output voltage V_O are +5 V and -15 V, respectively.
- c) The maximum and minimum values of the output voltage V_O are +10 V and -5 V, respectively.
- d) The maximum and minimum values of the output voltage V_O are +5 V and -10 V, respectively.
- 12) Consider a lead compensator of the form

$$K(s) = \frac{1 + \frac{s}{a}}{1 + \frac{s}{\beta a}}, \quad \beta > 1, \ a > 0$$

The frequency at which this compensator produces maximum phase lead is 4 rad/s. At this frequency, the gain amplification provided by the controller, assuming asymptotic Bode-magnitude plot of K(s), is 6 dB. The values of a and β , respectively, are

- a) 1, 16
- b) 2, 4
- c) 3, 5
- d) 2.66, 2.25
- 13) A 3-phase, star-connected, balanced load is supplied from a 3-phase, 400 V (rms), balanced voltage source with phase sequence R-Y-B, as shown in the figure. If the wattmeter reading is -400 W and the line current is $I_R = 2$ A (rms), then the power factor of the load per phase is

- a) Unity
- b) 0.5 leading
- c) 0.866 leading
- d) 0.707 lagging