

Progreso y estado actual

Equipo		Mision	Radiacion	RF	Antena	PCB	Estructura	Orientación	Telecomando	CPU	MS	Electrico	Termico	AIT	Ensayos
Felix	EA4GQS														
Daniel	EA4GPZ														
Leornardo Garces (MX)															
Raúl	EA4GVA														
Ignacio de Mendizábal															
Diego Vilca															
Felipe	EA7KAN/4														
Jose	EA7KBZ														
Manuel	EA7JWV														
César	EA8CEK/4														
Eduardo	EA3GHS/4														
Octavi Blazquez															
sin asignar															
necesario refuerzo															

Misión

- Satélite órbita baja para comunicaciones por voz
- Modo principal de trabajo FM
 - Pero posibilidad de otras modalidades (transpondedor lineal)
- Subida en VHF y bajada en UHF
- Operable con
 - Walkie-talkies
 - Antena directiva de mano
- Arquitectura: PocketQube 5x5x10cm

Organización

- ¿Cuál es la lista de tareas a realizar para construir y lanzar un satélite al espacio?
- Para ser exhaustivos y no olvidar nada, el plan se ha inspirado en los libros:
 - Space mission engineering, The New SMAD, Larson-Wertz-Everett
 - Spacecraft System Engineering Misión, Fortescue

Tareas

ÓRBITA Y TRANSPORTE

- Geometría orbital
- Deorbit
- Transporte
- Expulsor

ENTORNO ESPACIAL

- Radiación
- Electroestática
- Selección Componentes

CARGA UTIL

- Transponder VHF>UHF
- Antenas

SUBSISTEMAS

- Estructura
- Orientación y control
- Telecomando/telemetría
- Unidad de control+Software
- Subsistema eléctrico EPS
- Control térmico

AIT

- Modelos
- Fabricación+Ensamblaje
- Campaña de Ensayos

Requisitos

- Construir satélite para comunicaciones por voz
- Modo principal: FM
 - deseable otros modos (-> transpondedor lineal)
- Subida en VHF y bajada en UHF
- Operable con walkie-talkies y antena directiva de mano
- Limitaciones
 - Técnicas: algunos elementos deben adquirirse
 - Estructura
 - Paneles solares
 - Económicas: mínimo coste posible
 - PocketQube 5x5x10cm preferible a CubeSat
 - Órbita LEO
 - Componentes no específicos espacio/balance coste-riesgo

Orbita, Transporte y Lanzador (POD)

http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/Twiggs_PocketQube.pdf

nanosats.eu

Entorno Espacial

- Radiación
- Electroestática
- Selección Componentes

SIN ASIGNAR, SE BUSCA VOLUNTARIO

Determinación de orientación y control

Eje Z:

- Un imán alinea el eje con el campo magnético de la tierra
- Sobre este eje se monta un dipolo RX/TX

Ejes X/Y:

- Giran libremente
- Estimado: 10grados/min

IDEAS:

- Uso de pinturas (?)
- Uso de los paneles solares para conocer la posición del sol (?)

•

Energía generada

POWER BUDGET PICOSATELITE EN	ORBITA				110CT2016
POTENCIA ENTRADA		1P	2P	10	
PERIODO	min	90	90	90	
%Tiempo sol	%	66	66	66	una hora
%Tiempo sombra	%	33	33	33	
AREA CARA	cm2	4.7	4.7	9.84	
eficiencia célula		0.785	0.785	0.785	
	m2	0.00037	0.00037	0.00077	
POTENCIA SOL	W/m2	1000	1000	1000	
POTENCIA PANEL	W	0.369	0.369	2.400	2.4 maaaal
CARAS ILUMINADAS		1.25	2.25	1.5	justificar
Potencia disponible	W	0.461	0.830	3.600	
eficiencia punto trabajo		0.667	0.667	0.667	justificar
Potencia disponible	W	0.307	0.553	2.400	
Iout@MPPT4V2	mΑ	0.073	0.132	0.571	corriente típica salida MPPT
potencia media 1 orbita	W	0.203	0.365	1.584	•
energia media	Wh	0.135	0.244	1.056	
-	mWh	135	244	1056	

Balance de Enlace

LINK BUDGET: VHF>UHF TRANSPONDER WITH AGC REV3 14NOV16

YAGI 3EL=8dBi : 9EL=11dBi levels refered to output

SNR referido a ruido termico únicamente

CASE	Į	500k5W	1	500k5W	1500	0k500m	5(90k50W
path/km		500		1500		1500		500
UL/MHz		146		146		146		146
loss/dB		-130		- 139		- 139		-130
DL/MHz		436		436		436		436
loss/dB		-139		- 149		- 149		-139
STAGE	G/dB	P/dBm	G/dB	P/dBm	G/dB	P/dBm	G/dB	P/dBm
GNDTX		37		37		27		47
GNDANT	8	45	8	45	8	35	8	55
UL	-130	-85	-139	-94	-139	- 104	-130	- 75
DIPOLE	2	-83	2	-92	2	- 102	2	-73
RX	57	-26	57	-35	57	-45	57	-16
AGC	- 10	-36	0	-35	0	- 45	-20	-36
TX	60	24	60	25	60	15	60	24
DIPOLE	2	26	2	27	2	17	2	26
DL	-139	-113	-149	-122	-149	-132	-139	-113
GNDANT	11	-102	11	-111	11	-121	11	-102
GNDRX								

•	u Dill
9	- 70
8	- 76
7	-82
6	-88
5	- 94
4	- 100
3	- 106
2	-112
1	-118
0	-124

dRm

Partes del satélite

- Transponder VHF>UHF
- Antenas
- Estructura
- Orientación y control

Telecomando/telemetría

Control térmico

- Unidad de control
- Software
- Subsistema eléctrico EPS

MPTT MPTT BATT CPU RXTX

solar cell

Estructura

La batería se coloca tal que el centro de masa este contenido en el centro geométrico

Unidad de Control CPU

Unidad de Control CPU (dev)

Subsistema eléctrico

Transponder VHF>UHF

Control térmico

Filosofía de modelos

- Prototipo
 - funcional (con placas RF comerciales)
 - eléctrico BB (equivalente exacto eléctrico)
- Modelo
 - de Vuelo FM
 - de Calificación QM
- FM y QM idénticos
- El modelo FM
 - se ensaya en un rango reducido de temperaturas y vibraciones para evitar estresarlo
 - es el que finalmente vuela
- El modelo QM
 - Se estresa durante los ensayos
 - se queda en tierra y sirve como banco de ensayos a efectos comparativos
 - vuela en la siguiente oportunidad, si el cohete explota

¿Te unes al reto?

contacto@amsat-ea.org

Sigue el desarrollo en:

https://www.amsat-ea.org/easat2

https://github.com/AMSAT-EA/easat-2

¿Comentarios? ¿Preguntas?

