Springer Series in Operations Research and Financial Engineering

Sidney I. Resnick

Extreme Values, Regular Variation, and Point Processes

Contents

	Preface to the Soft Cover Edition	
	Preface to the Hard Cover Edition	vii
0	Preliminaries	1
0.1	Uniform Convergence	1
0.2	Inverses of Monotone Functions	3
0.3	Convergence to Types Theorem and Limit Distributions of	
	Maxima	7
0.4	Regularly Varying Functions of a Real Variable	12
0.4.1	Basics	13
0.4.2	Deeper Results; Karamata's Theorem	16
0.4.3	Extensions of Regular Variation: Π-Variation, Γ-Variation	26
1	Domains of Attraction and Norming Constants	38
1.1	Domain of Attraction of $\Lambda(x) = \exp\{-e^{-x}\}$	38
1.2	Domain of Attraction of $\Phi_{\alpha}(x) = \exp\{-x^{-\alpha}\}, x > 0 \dots$	54
1.3	Domain of Attraction of $\Psi_{\alpha}(x) = \exp\{-(-x)^{\alpha}\}, x < 0 \dots$	59
1.4	Von Mises Conditions	62
1.5	Equivalence Classes and Computation of Normalizing	
	Constants	67
2	Quality of Convergence	76
2.1	Moment Convergence	76
2.2	Density Convergence	85
2.3	Large Deviations	94
2.4	Uniform Rates of Convergence to Extreme Value Laws	107
2.4.1	Uniform Rates of Convergence to $\Phi_{\alpha}(x)$	107
2.4.2	Uniform Rates of Convergence to $\Lambda(x)$	114
3	Point Processes	123
3.1	Fundamentals	123
3.2	Laplace Functionals	128
3.3	Poisson Processes	130

xiv Contents

3.3.1	Definition and Construction
3.3.2	Transformations of Poisson Processes
3.4	Vague Convergence
3.5	Weak Convergence of Point Processes and Random Measures
4	Records and Extremal Processes
4.1	Structure of Records
4.2	Limit Laws for Records
4.3	Extremal Processes
4.4	Weak Convergence to Extremal Processes
4.4.1	Skorohod Spaces
4.4.2	Weak Convergence of Maximal Processes to Extremal
	Processes via Weak Convergence of Induced Point Processes.
4.5	Extreme Value Theory for Moving Averages
4.6	Independence of k-Record Processes
5	Multivariate Extremes
5.1	Max-Infinite Divisibility
5.2	An Example: The Bivariate Normal
5.3	Characterizing Max-id Distributions
5.4	Limit Distributions for Multivariate Extremes
5.4.1	Characterizing Max-Stable Distributions
5.4.2	Domains of Attraction; Multivariate Regular Variation
5.5	Independence and Dependence
5.6	Association
	References
	Index

criteria are only a control on the right tail. For instance, if $F \in D(\Phi_{\alpha})$ then $1 - F(x) \sim x^{-\alpha} L(x)$ as $x \to \infty$. This implies

$$\int_0^\infty x^k F(dx) < \infty \qquad \text{if } k < \alpha$$

(Exercise 1.2.2), but no control is provided over the left tail and it is possible for $\int_{-\infty}^{0} |x|^k F(dx) = \infty$ for any k > 0. Similarly $F \in D(\Lambda)$ implies when $x_0 = \infty$ that

$$\int_0^\infty x^k F(dx) < \infty \qquad \text{for all } k > 0$$

(Exercise 1.1.1) but implies nothing about behavior of the left tail.

Thus in investigating (2.1) it is necessary to impose some condition on the left tail of F.

Proposition 2.1. For an extreme value distribution G, suppose $F \in D(G)$.

(i) If $G = \Phi_{\alpha}$, set $a_n = (1/(1 - F))^{\leftarrow}(n)$, $b_n = 0$. If for some integer $0 < k < \alpha$

$$\int_{-\infty}^{0} |z|^k F(dx) < \infty \tag{2.3}$$

then

$$\lim_{n\to\infty} E(M_n/a_n)^k = \int_{-\infty}^{\infty} x^k \Phi_{\alpha}(dx) = \Gamma(1-\alpha^{-1}k).$$

(ii) If $G = \Psi_{\alpha}$ and F has right end x_0 set

$$a_n = x_0 - (1/(1-F))^{-}(n), \qquad b_n = x_0.$$

If for some integer k > 0

$$\int_{-\infty}^{x_0} |x|^k F(dx) < \infty \tag{2.4}$$

then

$$\lim_{n\to\infty} E((M_n - x_0)/a_n)^k = \int_{-\infty}^0 x^k \Psi_{\alpha}(dx) = (-1)^k \Gamma(1 + \alpha^{-1}k).$$

(iii) If $G = \Lambda$ and F has right end x_0 with representation (1.5) set $b_n = (1/(1-F))^{-1}(n)$, $a_n = f(b_n)$. If for some integer k > 0

$$\int_{-\infty}^{0} |x|^{k} F(dx) < \infty$$
 Question 2 (2.5)

then

$$\lim_{n\to\infty} E((M_n-b_n)/a_n)^k = \int_{-\infty}^{\infty} x^k \Lambda(dx) = (-1)^k \Gamma^{(k)}(1)$$

where $\Gamma^{(k)}(1)$ is the kth derivative of the gamma function at x = 1.

Remarks. (i) Conditions (2.3), (2.4), and (2.5) can be weakened slightly. See Exercise 2.1.1.

(ii) For any norming constants a_n , b_n satisfying (2.1) (not just the ones specified in the statement of the proposition), we also have (2.2) satisfied provided the appropriate condition (2.3), (2.4), or (2.5) holds. See Exercise 2.1.2.

We only prove (i) and (iii) in Proposition 2.1. Part (iii) requires that our tool box be equipped with the following inequalities.

Lemma 2.2. Suppose $F \in D(\Lambda)$ with representation (1.5) and that a_n and b_n are as specified in part (iii) of Proposition 2.1.

(a) Given $\varepsilon > 0$, we have for s > 0 and all sufficiently large n

$$f(b_n)/f(a_n s + b_n) \ge (1 + \varepsilon s)^{-1}$$
 (2.6)

and consequently if y > 0 and n is large

$$1 - F^n(a_n \nu + b_n) \le (1 + \varepsilon)^3 (1 + \varepsilon \nu)^{-\varepsilon^{-1}}. \tag{2.7}$$

(b) Recall the meaning of z_0 in the representation (1.5). Given ε , pick $z_1 \in (z_0, x_0)$ such that $|f'(x)| \le \varepsilon$ if $x > z_1$. Then for large n and $u \in (a_n^{-1}(z_1 - b_n), 0)$ we have

$$f(b_n)/f(a_n u + b_n) \ge (1 + \varepsilon |u|)^{-1}$$
 (2.8)

and consequently for large n and $s \in (a_n^{-1}(z_1 - b_n), 0)$

$$F^{n}(a_{n}s + b_{n}) \le e^{-(1-\varepsilon)^{2}(1+\varepsilon|s|)^{\varepsilon^{-1}}}.$$
 (2.9)

PROOF OF LEMMA 2.2. (a) For n such that $|f'(t)| \le \varepsilon$ if $t \ge b_n$ we have for s > 0

$$(f(a_n s + b_n)/f(b_n)) - 1 = \int_{b_n}^{a_n s + b_n} (f'(u)/f(b_n))du$$

and recalling $a_n = f(b_n)$ this is

$$\int_0^s f'(a_n u + b_n) du \le \varepsilon s.$$

Consequently $f(b_n)/f(a_ns + b_n) \ge (1 + \varepsilon s)^{-1}$ as asserted.

To check (2.7) note that

$$1 - F(b_n) \sim n^{-1}$$

so that for large n and y > 0

$$n(1 - F(a_n y + b_n) \le (1 + \varepsilon)(1 - F(a_n y + b_n))/(1 - F(b_n))$$

and from (1.5) this is

$$(1+\varepsilon)c(a_ny+b_n)c^{-1}(b_n)e^{-\int_{b_n}^{a_ny+b_n}(1/f(s))ds}.$$

Since $c(x) \to c > 0$ as $x \uparrow x_0$ we have the preceding

$$\leq (1+\varepsilon)^2 e^{-\int_0^s (f(b_n)/f(a_ns+b_n))ds}$$