

Universidade do Minho Escola de Engenharia Departamento de Informática

Programação em Lógica Estendida Conhecimento Imperfeito

LICENCIATURA EM ENGENHARIA INFORMÁTICA MESTRADO integrado EM ENGENHARIA INFORMÁTICA Inteligência Artificial 2022/23

Representação simbólica de conhecimento imperfeito:

- o Incerto;
- Impreciso;
- Interdito;

■ Implementação de mecanismos de raciocínio não monótono.

Motivação

- Manipulação de informação simbólica;
- Representação explícita de conhecimento falso;
- Extensão da capacidade de responder a perguntas;
- Expansão da habilidade para resolver problemas.

Bases de Dados Desenvolvimento de *Software*

Pressuposto dos Nomes Únicos:

 Duas constantes diferentes designam duas entidades diferentes.

Bases de Dados Desenvolvimento de *Software*

- Pressuposto dos Nomes Únicos:
 - Duas constantes diferentes designam duas entidades diferentes.
- Pressuposto do Mundo Fechado:
 - Todo o conhecimento que n\u00e3o existe mencionado \u00e9 considerado falso.

Bases de Dados Desenvolvimento de *Software*

- Pressuposto dos Nomes Únicos:
 - Duas constantes diferentes designam duas entidades diferentes.
- Pressuposto do Mundo Fechado:
 - Todo o conhecimento que não existe mencionado é considerado falso.
 - Pressuposto do Domínio Fechado:
 - Não há mais objetos no universo de discurso para além dos designados por constantes.

Bases de Conhecimento Inteligência Artificial

- Pressuposto dos Nomes Únicos:
 - Duas constantes diferentes designam duas entidades diferentes.
- Pressuposto do Mundo Aberto:
 - Todo o conhecimento que não existe mencionado é considerado falso.
- Pressuposto do Domínio Aberto:
 - Não há mais objetos no universo de discurso para além dos designados por constantes.

Monotonia versus não Monotonia

o Não admite contradição com conclusões anteriores.

Monotonia versus não Monotonia

Não admite contradição com conclusões anteriores.

 Não Monotonia: Justifica-se pela

- o consideração de pressupostos temporários;
- o obtenção de conclusões plausíveis;
- o flexibilização da evolução do conhecimento;
- o dificuldade na representação completa do conhecimento.

Programação em Lógica

■ A programação em lógica determina a veracidade ou falsidade de questões:

- \circ voa(X) \leftarrow ave(X)
- o não-voa(X) ← avestruz(X)

Programação em Lógica Estendida

- \circ voa(X) \leftarrow ave(X)
- o não-voa(X) ← avestruz(X)

■ A extensão à programação em lógica permite representar explicitamente informação falsa:

 $\circ \neg voa(X) \leftarrow avestruz(X)$

- Negação por falha na prova:
 - o atravessar ← não comboio

A Negação por Falha na Prova

- Negação por falha na prova:
 - o atravessar ← não comboio

- Negação clássica:
 - o atravessar ← ¬comboio

A Negação Clássica (explícita, forte, ...)

■ Genericamente, a resposta a uma questão q(X) é:

o verdadeira se

 $\exists x : q(x)$

o falsa se

 $\exists x : \neg q(x)$

■ Genericamente, a resposta a uma questão q(X) é:

o verdadeira se

 $\exists x : q(x)$

o falsa se

 $\exists x : \neg q(x)$

 \circ desconhecida se $\neg \exists X : q(X) \lor \neg q(X)$

- Aplicação do sistema de inferência ao programa:
 - o par(0)
 - o par(suc(suc(X))) $\leftarrow par(X)$

- o par(0)
- o par(suc(suc(X))) $\leftarrow par(X)$

O conjunto de soluções é: {par(0),par(2),par(4)...}

o que permite par(1) ser desconhecido

- o par(0)
- o par(suc(suc(X))) $\leftarrow par(X)$

- O conjunto de soluções é: {par(0),par(2),par(4)...}
 - o que permite par(1) ser desconhecido

- Aplicação do sistema de inferência ao programa:
 - o par(0)
 - \circ par(s(s(X))) \leftarrow par(X)
 - $\circ \neg par(X) \leftarrow n\tilde{a}o par(X)$

- o par(0)
- \circ par(suc(suc(X))) \leftarrow par(X)

- O conjunto de soluções é: {par(0),par(2),par(4)...}
 - o que permite par(1) ser desconhecido

- Aplicação do sistema de inferência ao programa:
 - o par(0)
 - par(suc(suc(X))) ← par(X)
 - ¬par(X) ← não par(X)

Formalização do PMF!

O conjunto de soluções é:

o que permite par(1) ser falso

Representação de Conhecimento Imperfeito

IncertoDesconhecido, genericamente;

Impreciso
 Desconhecido, mas de um conjunto determinado de hipóteses;

Interdito
 Desconhecido e n\u00e3o permitido conhecer.

Base de conhecimento

Relação Filho: Filhos x Pais

Filhos	Pais
João	José
José	Manuel
Carlos	José

- o O João é filho do José?
- o O João é filho do Adão?

- o filho(joao,jose).
- o filho(jose,manuel).
- o filho(carlos, jose).
- 0

- o filho(joao,jose)?
- o filho(joao,adao)?

Filhos	Pais
João	José
José	Manuel
Carlos	José

- o O João é filho do José?
- o O João é filho do Adão?

Formalização do PMF

- o filho(joao,jose).
- o filho(jose,manuel).
- o filho(carlos, jose).
- ¬filho(F,P) ← não filho(F,P) ∧
 não exceção(F,P)

- o filho(joao,jose)?
- o filho(joao,adao)?

Filhos	Pais
João	José
José	Manuel
Carlos	José
Belém	Alguém

- o A Belém é filha do Adão?
- o A Belém é filha do João?

- o filho(joao,jose).
- o filho(jose,manuel).
- o filho(carlos, jose).
- \circ ¬filho(F,P) ← não filho(F,P) ∧ não exceção (F,P)
- o filho(belém, alguém)
- o exceção(F,P) ← filho(F,alguém)
- o filho(belem, adao)?
- o filho(belem,joao)?

Filhos	Pais
João	José
José	Manuel
Carlos	José
Belém	Alguém
Maria	{ Faria, Garcia }

- o A Maria é filha do Faria?
- o A Maria é filha da Sofia?

- o filho(joao,jose).
- o filho(jose,manuel).
- o filho(carlos, jose).
- ¬filho(F,P) ← não filho(F,P) ∧
 não exceção(F,P)
- 0 ...
- o exceção(maria,faria).
- o exceção(maria, garcia).
- o filho(maria,faria)?
- o filho(maria, sofia)?

Filhos	Pais
João	José
José	Manuel
Carlos	José
Belém	Alguém
Maria	{ Faria, Garcia }
Bebé	Júlio

- o O André é filho do Júlio?
- o O André é filho do Júlio.


```
0 ...
```

¬filho(F,P) ← não filho(F,P) ∧
 não exceção(F,P).

Representação estática do

- o filho(bebe, julio).
- conhecimento
- o exceção(F,P) ← filho(bebe,P).

- o filho(andre, julio)?
- o filho(andre, julio).

Filhos	Pais
João	José
José	Manuel
Carlos	José
Belém	Alguém
Maria	{ Faria, Garcia }
Bebé	Júlio

- O André é filho do Júlio?
- O André é filho do Júlio.

0 ...

¬filho(F,P) ← não filho(F,P) ∧
 não exceção(F,P).

- o filho(bebe, julio).
- o exceção(F,P) ← filho(bebe,P).

Representação dinâmica do

o nulo(bebe).

- conhecimento
- ←filho(F,julio) ∧ não nulo(F)
- o filho(andre, julio)?
- o filho(andre, julio).

Sistema de inferência

si: Questão x Resposta

o verdadeira

$$\exists x : q(x)$$

o falsa

$$\exists x : \neg q(x)$$

o desconhecida

$$\neg \exists x : q(x) \lor \neg q(x)$$

```
 si( Questao, verdadeiro ) :-
 Questao.
```

- si(Questao, falso) :--Questao.
- si(Questao, desconhecido) :nao(Questao), nao(-Questao).

Conclusões

- Extensão à Programação em Lógica:
 - Duas formas de negação;
 - O Distinção entre falso e não verdadeiro.
- Formalização do PMF na PLE:
 - Maior flexibilidade;
 - o Identificação, tratamento e raciocínio sobre valores nulos.

Novo tipo de dados: Valores Nulos.

Sugestões de trabalho futuro

Sofisticação do interpretador;

Tratamento da assimilação de conhecimento e aprendizagem;

Manipulação de bases de conhecimento não destrutivas.

Referências bibliográficas

- Ivan Bratko, "PROLOG: Programming for Artificial Intelligence", 3rd Edition, Addison-Wesley Longman Publishing Co., Inc., 2000.
- Hélder Coelho, "A Inteligência Artificial em 25 lições", Fundação Calouste Gulbenkian, 1995.

Universidade do Minho Escola de Engenharia Departamento de Informática

Programação em Lógica Estendida Conhecimento Imperfeito

LICENCIATURA EM ENGENHARIA INFORMÁTICA MESTRADO integrado EM ENGENHARIA INFORMÁTICA Inteligência Artificial 2022/23