Mean Sensitivity Proofs

March 11, 2020

Definition 1. The sample mean of database X of size n is

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

1 NEIGHBORING DEFINITION: CHANGE ONE

1.1 ℓ_1 -sensitivity

Theorem 1. Say database X has size n and is bounded above by M and bounded below by m. Then \bar{X} has ℓ_1 -sensitivity bounded above by

$$\frac{M-m}{n}$$
.

Proof. Say X and X' are neighboring databases which differ at data-point x_i . Then

$$\begin{split} \Delta \bar{X} &= \max_{X,X'} \left| \bar{X} - \bar{X}' \right| \\ &= \max_{X,X'} \frac{1}{n} \left| \left(\sum_{\{i \in [n] \mid i \neq j\}} x_i \right) + x_j - \left(\sum_{\{i \in [n] \mid i \neq j\}} x_i' \right) + x_j' \right| \\ &= \max_{X,X'} \frac{1}{n} \left| x_j - x_j' \right| \\ &\leq \frac{M-m}{n}. \end{split}$$

1.2 ℓ_2 -sensitivity

Theorem 2. Say database X has size n and is bounded above by M and bounded below by m. Then \bar{X} has ℓ_2 -sensitivity bounded above by

$$\left(\frac{M-m}{n}\right)^2$$
.

Proof. Say X and X' are neighboring databases which differ only at index j. Then

$$\Delta \bar{X} = \max_{X,X'} (\bar{X} - \bar{X}')^2$$

$$= \max_{X,X'} \frac{1}{n^2} \left(\left(\sum_{i \in [n] | i \neq j} x_i \right) + x_j - \left(\sum_{i \in [n] | i \neq j} x_i' \right) - x_j' \right)^2$$

$$= \max_{X,X'} \frac{1}{n^2} (x_j - x_j')^2$$

$$\leq \frac{(M - m)^2}{n^2}$$

$$= \left(\frac{M - m}{n} \right)^2$$

2 NEIGHBORING DEFINITION: ADD/DROP ONE

2.1 ℓ_1 -sensitivity

Theorem 3. Say database X has size $n \geq 2$ and has elements bounded above by M and bounded below by m. Then \bar{X} has ℓ_1 -sensitivity bounded above by

$$\frac{M-m}{n}$$
.

Proof. WLOG assume point being added/subtracted is x_n . Adding a point: $X' = X \cup x$

$$|\bar{X} - \bar{X}'| = \left| \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{n+1} \sum_{i=1}^{n+1} x_i \right|$$

$$= \left| \left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{i=1}^{n} x_i - \frac{x}{n+1} \right|$$

$$= \frac{1}{n+1} \left| \frac{1}{n} \sum_{i=1}^{n} x_i - x \right|$$

$$\leq \frac{|M-m|}{n+1}$$

Taking a point away: $X' = X \setminus \{x\}$

$$|\bar{X} - \bar{X}'| = \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - \frac{1}{n} \sum_{i=1}^n x_i \right|$$

$$= \left| \left(\frac{1}{n-1} - \frac{1}{n} \right) \sum_{i=1}^{n-1} x_i - \frac{x}{n} \right|$$

$$= \frac{1}{n} \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - x \right|$$

$$\leq \frac{|M - m|}{n}$$

2.2 ℓ_2 -sensitivity

Theorem 4. Say database X has size $n \geq 2$ and has elements bounded above by M and bounded below by m. Then \bar{X} has ℓ_2 -sensitivity bounded above by

$$\left(\frac{M-m}{n}\right)^2$$
.

Proof. We must consider both adding and removing an element from X.

Adding an element:

Let $X' = X \cup x'_{n+1}$. Then,

$$\begin{split} \Delta \bar{X} &= \max_{X,X'} (\bar{X} - \bar{X}')^2 \\ &= \max_{X,X'} \left(\frac{1}{n} \sum_{i=1}^n x_i - \frac{1}{n+1} \sum_{i=1}^{n+1} x_i' \right)^2 \\ &= \max_{X,X'} \left(\left(\frac{1}{n} \sum_{i=1}^n x_i \right) - \left(\frac{1}{n+1} \sum_{i=1}^n x_i' \right) - \frac{x_{n+1}'}{n+1} \right)^2 \\ &= \max_{X,X'} \left(\frac{\left(\sum_{i=1}^n x_i \right) - n x_{n+1}'}{n(n+1)} \right)^2 \\ &= \left(\frac{nM - nm}{n(n+1)} \right)^2 \\ &= \left(\frac{M - m}{n+1} \right)^2. \end{split}$$

Removing an element:

Let $X' = X \setminus \{x_n\}$. Then,

$$\begin{split} \Delta \bar{X} &= \max_{X,X'} (\bar{X} - \bar{X}')^2 \\ &= \max_{X,X'} \left(\frac{1}{n} \sum_{i=1}^n x_i - \frac{1}{n-1} \sum_{i=1}^{n-1} x_i' \right)^2 \\ &= \max_{X,X'} \left(\left(\frac{1}{n} \sum_{i=1}^{n-1} x_i \right) + \frac{x_n}{n} - \left(\frac{1}{n-1} \sum_{i=1}^{n-1} x_i' \right) \right)^2 \\ &= \max_{X,X'} \left(\frac{(n-1)x_n - \sum_{i=1}^{n-1} x_i}{n(n-1)} \right)^2 \\ &= \left(\frac{(n-1)M - (n-1)m}{n(n-1)} \right)^2 \\ &= \left(\frac{M-m}{n} \right)^2. \end{split}$$