TD 2 - Morphismes, sous-groupes distingués et groupes quotients

Par défaut, on considère un groupe (G, *), dont on note e l'unité.

Exercice 1. Parmi les applications suivantes, déterminer celles qui sont des morphismes de groupes. Lorsque cela a du sens, étudier leur noyau et leur image.

- 1. $\phi: (\mathbb{Z}, +) \to (\mathbb{R}^{\times}, \times)$ définie par $\phi(x) := 3^x$.
- 2. $\psi: (\mathbb{R}^{\times}, \times) \to (\mathbb{R}, +)$ définie par $\psi(x) := \ln(|x|)$.
- 3. Pour $n \geq 2$, l'application déterminant det : $(GL_n(\mathbb{Z}), \cdot) \to (\mathbb{C}^{\times}, \times)$.
- 4. L'application $\tau: (\mathbb{R}^2, +) \to (\mathbb{R}^2, +)$ définie par $\tau(X) := X + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
- 5. Pour $n \in \mathbb{N}^*$, l'application $\mu : (\mathbb{Z}, +) \to (\mathbb{C}^{\times}, \times)$ définie par $\mu(k) := \exp(\frac{2ik\pi}{n})$.

Exercice 2.

- 1. On se donne A un groupe abélien et un morphisme de groupe $\phi: G \to A$. Montrer que pour tout $g, h \in G$, on a $\phi(ghg^{-1}) = \phi(h)$.
- 2. Soit $\phi: \mathfrak{S}_n \to \mathbb{C}^{\times}$ un morphisme de groupes. Montrer que pour toute transposition $\tau \in \mathfrak{S}_n$, on a $\phi(\tau)^2 = 1$.
- 3. Expliquer pourquoi les transpositions sont conjuguées dans \mathfrak{S}_n (indication : on utilisera l'exercice 9 de la feuille 1).
- 4. Déterminer tous les morphismes de groupes de \mathfrak{S}_n dans \mathbb{C}^{\times} (indication : on rappelle que tout élement de \mathfrak{S}_n peut s'écrire comme produit de transpositions voir exercice 10 de la feuille 1).

Exercice 3. Déterminer les sous-groupes distingués de \mathfrak{S}_3 .

Exercice 4. Soit $g \in G$. On note α_g l'application

$$\begin{array}{ccc} \alpha_g: & G & \to & G \\ & h & \mapsto & \alpha_g(h):=ghg^{-1}. \end{array}$$

- 1. Montrer que α_g est un automorphisme de G. Il s'agit de l'automorphisme intérieur associé à g.
- 2. Montrer que l'ensemble des automorphismes intérieurs, $\operatorname{Int}(G) := \{\alpha_g \mid g \in G\}$, est un sous-groupe distingué de $\operatorname{Aut}(G)$.
- 3. Montrer que l'application $\alpha: G \to \operatorname{Aut}(G)$ définie par $\alpha(g) := \alpha_g$ est un morphisme de groupes. Quel est son noyau?

Exercice 5.

- 1. Montrer qu'un morphisme de groupes $\phi: \mathbb{Z}/n\mathbb{Z} \to G$ est caractérisé par l'image d'un générateur de $\mathbb{Z}/n\mathbb{Z}$.
- 2. En déduire qu'il existe un isomorphisme entre $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ et $\mathbb{Z}/n\mathbb{Z}^{\times}$.

Exercice 6. Soit H un sous-groupe de G.

- 1. Démontrer l'équivalence des assertions suivantes :
 - (a) H est un sous-groupe distingué de G.
 - (b) H est stable par tout automorphisme intérieur de G.
 - (c) Il existe un groupe K et un morphisme de groupes $\phi: G \to K$ tels que $\mathrm{Ker}(\phi) = H$.
 - (d) Pour tout $g \in G$, on a gH = Hg.

2. En déduire que si H est un sous-groupe d'indice 2 dans G alors $H \triangleleft G$.

Exercice 7. Démontrer l'existence des isomorphismes suivants.

- 1. Pour tout entier $n \geq 2$, $\mathfrak{S}_n/\mathfrak{A}_n \simeq \{-1,1\}$.
- 2. $\operatorname{GL}_n(\mathbb{k})/\operatorname{SL}_n(\mathbb{k}) \simeq \mathbb{k}^*$ où \mathbb{k} désigne un corps.
- 3. $\operatorname{GL}_n(\mathbb{Z})/\operatorname{SL}_n(\mathbb{Z}) \simeq \{-1,1\}.$
- 4. Pour $n \in \mathbb{N}^*$, $\mathbb{Z}/n\mathbb{Z} \simeq \mu_n$ où μ_n désigne l'ensemble des racines n^{ieme} de l'unité muni de la multiplication.

Exercice 8. On pose $\mathbb{U} := \{z \in \mathbb{C} : |z| = 1\}.$

- 1. Montrer que \mathbb{U} est un sous-groupe de $(\mathbb{C}^{\times}, \times)$.
- 2. Vérifier que l'application $\phi : \mathbb{R} \to \mathbb{C}^{\times}$ définie par $\phi(x) := e^{2i\pi x}$ est un morphisme de groupes. Déterminer son noyau et son image.
- 3. En déduire qu'il existe un isomorphisme $\mathbb{R}/\mathbb{Z} \simeq \mathbb{U}$.

Exercice 9 (« Deuxième théorème d'isomorphisme »). Soient H et K deux sous-groupes de G.

- 1. Montrer que $HK := \{hk \mid h \in H, k \in K\}$ est un sous-groupe de G si et seulement si HK = KH.
- 2. On suppose à présent que K est distingué dans G.
 - (a) Expliquer pourquoi HK est un sous-groupe de G.
 - (b) Vérifier que $H \cap K \triangleleft H$ et $K \triangleleft HK$.
 - (c) Introduire un morphisme de groupes de H vers HK/K et en déduire un isomorphisme

$$H/(H \cap K) \simeq HK/K$$
.

Exercice 10 (« Troisième théorème d'isomorphisme »).

Soient H et K deux sous-groupes distingués de G tels que $K \subset H$.

- 1. Montrer qu'il existe un morphisme de groupes $\phi: G/K \to G/H$. (indication : on utilisera le théorème de factorisation canonique).
- 2. Déterminer le noyau $Ker(\phi)$.
- 3. En déduire qu'il existe un isomorphisme $(G/K)/(H/K) \simeq G/H$.

Exercice 11. Soit $n \in \mathbb{N}^*$. On note les éléments de $\mathbb{Z}/n\mathbb{Z}$ comme $[0]_n, [1]_n, \dots, [n-1]_n$.

- 1. Montrer qu'un sous-groupe H de $\mathbb{Z}/n\mathbb{Z}$ est engendré par un élément $[d]_n$ tel que d divise n. On note alors $H=(d\mathbb{Z})/(n\mathbb{Z})$.
- 2. Soit d un diviseur de n. Montrer que $(d\mathbb{Z})/(n\mathbb{Z})$ est l'unique sous-groupe d'ordre $\frac{n}{d}$ de $\mathbb{Z}/n\mathbb{Z}$. Montrer que $(\mathbb{Z}/n\mathbb{Z})/(d\mathbb{Z}/n\mathbb{Z})$ est isomorphe à $\mathbb{Z}/d\mathbb{Z}$.
- 3. Montrer qu'un morphisme de groupes $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ est uniquement déterminé par $\varphi([1]_n) \in \mathbb{Z}/m\mathbb{Z}$, et que $n.\varphi([1]_n) = [0]_m \in \mathbb{Z}/m\mathbb{Z}$.
- 4. Réciproquement, montrer que, si $[l]_m \in \mathbb{Z}/m\mathbb{Z}$ est tel que $n.[l]_m = [0]_n \in \mathbb{Z}/m\mathbb{Z}$, alors poser $\varphi([k]_n) := [k.l]_m \in \mathbb{Z}/m\mathbb{Z}$ définit un morphisme de groupes $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$.
- 5. Soit $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ un morphisme de groupes, on note $[l]_m := \varphi([1]_n)$. Montrer que $\operatorname{Im} \varphi = ((l \land m)\mathbb{Z})/m\mathbb{Z}$ où $l \land m$ est le PGCD de l et m. En déduire que $|\operatorname{Ker} \varphi| = \frac{(l \land m)n}{m}$. En déduire enfin que $\operatorname{Ker} \varphi = (\frac{m}{l \land m}\mathbb{Z})/n\mathbb{Z}$.