Цифровая обработка изображений

3. Сегментация и детекция

План занятия

- 3.1 Сегментация
- 3.2 Детекция объектов
- 3.3 Трекинг объектов на видео
- 3.4 Пример. Распознавание жестов

Примеры

Пример. Удаление фона

Пример. Сегментация медицинских снимков

Пример. Детекция лица для автофокусировки камеры

Пример. Детекция и распознавание объектов для оценки дорожной ситуации

Пример. Управление устройством с помощью жестов

https://www.youtube.com/watch?v=mLT4CFLli8A

3.1 Сегментация

Основные подходы

- сегментация по порогу
- выделение контура объекта
- водораздел
- супер-пиксель
- алгоритмы на графах

3.1.1 Сегментация по порогу

Сегментация по порогу

Сегментация по порогу

cv2.**threshold**(src, thresh, maxval, type)

```
src – исходное изображение
```

thresh – пороговое значение

maxval – значение записывается, в случае если интенсивность пикселя выше порога

type – cv2.THRESH_BINARY, cv2.THRESH_TRUNC, cv2.THRESH_TOZERO

Сегментация по порогу

- прост в реализации
- неустойчив к шумам
- неустойчив к изменению освещенности различных частей изображения

- для каждого пикселя вычисляется усредненное значение интенсивности в окрестности
- в качестве значения порога используют либо само среднее значение
- либо вычисляется взвешенное среднее с гауссовским ядром

cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

src - исходное одноканальное изображение
maxValue - значение пикселей для которых интенсивность выше порога
adaptiveMethod - метод оценки порога: cv2.ADAPTIVE THRESH MEAN C,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C

thresholdType – тип порога: cv2.THRESH_BINARY или cv2.THRESH_BINARY_INV blockSize – размер блока для вычисления порога: 3, 5, 7 и т.д.

С – константа, вычитается из оценки значения порога

- устойчив к локальным изменениям на изображении
- требует больше вычислительных ресурсов по сравнению с бинарным порогом

- находит границы объекта на изображении
- добавляет информацию о форме объекта
- можно использовать для детекции и распознавания объектов

- для поиска контура необходимо бинаризовать исходное изображение
- бинаризовать можно по порогу
- либо применить предобработку с помощью детектора граней
- для получения информации о форме объекта полученные контуры необходимо аппроксимировать полигоном

cv2.**findContours**(image, mode, method[, contours[, hierarchy[, offset]]]) → contours, hierarchy

image - бинаризованное изображение
 mode - определяет какие контуры необходимо найти,
 cv2.CV_RETR_EXTERNAL, cv2.CV_RETR_TREE
 method - метод поиска и фильтрации точек контура
 contours — массив контуров, каждый контур - это массив точек
 hierarchy - задает иерархию вложенности контуров
 offset - задает сдвиг точек контура

- метод требует предобработки (бинаризации) изображения
- время работы зависит от сложности входного изображения
- позволяет получить информацию о форме сегмента

3.1.3 Водораздел

- изображение представляется в виде рельефа
- ТОЧКИ С ВЫСОКОЙ ИНТЕНСИВНОСТЬЮ ВОЗВЫШЕННОСТИ
- точки с низкой интенсивностью низины
- помимо интенсивности, используют фактор расстояния пикселя до грани

- начинаем заполнять низины
- там где сталкиваются области из разных бассейнов проходит граница объекта
- заполняем до тех пор, пока все вершин не скроются под водой

- из-за шума и не идеальной структуры сегменты могут объединяться в один
- необходимо указать начальное приближение (маркеры) для сегментации

Супер-пиксель (super-pixel)

Супер-пиксель

- объединение нескольких соседних пикселей на изображении в единую область
- объединение происходит по таким признакам как цвет или текстура
- в результате объединения пикселей получается упрощенное представление изображения, которое можно использовать в задачах распознавания

Супер-пиксель

Superpixels Extracted via Energy-Driven Sampling

Распознавание географических мест на фото при изменении окружения

Graph Cut

- необходимо задать начальные приближения для пикселей фона и объекта
- по этим приближениям оцениваются распределения цвета фона и картинки
- зная эти распределения, можно получить вероятность принадлежности пикселя фону или картинке

- строится граф с двумя вершинами: источник (фон) и сток (объект)
- каждый пиксель изображения соединяется с источником и стоком
- вес ребра пропорционален вероятности принадлежности пикселя фону и объекту соответственно

- пикселы изображения разделяются на части алгоритмом Minmium Cut
- алгоритм разрезает связный граф на две части таким образом, чтобы сумма весов ребер через которые проходит разрез была минимальна

3.2 Детекция объектов

Постановка задачи

• Детекция

- о поиск объекта на изображении
- о в результате получаем область на изображении с соответствующим объектом
- о в некоторых случаях выдается оценка вероятность детекции

3.2 Детектор лиц на изображении

Детектор лиц на изображении

Детектор лиц на изображении

- детектор по деталям
 - отдельно детектируем части лица (глаза, нос, рот)
 - о объединяем части в результат детекции
- детектор лица в целом
 - сканирующим окном проходим по изображению
 - о оцениваем похожесть на лицо каждую часть изображения
 - о есть ограничение на допустимый размер окна

Подготовка данных

- подготавливаем положительные и отрицательные примеры изображений
- как правило положительных примеров больше, чем отрицательных
- для баланса выборки можно применить аугментацию изображений

Аугментация изображения

- масштабирование
- поворот
- СДВИГ
- зеркальное отображение
- вычитание градиента (эмуляция освещенности)
- выравнивание гистограммы интенсивности

Подготовка данных

Обучение модели

- РСА + Кластеризация
- Нейросеть
- Бустинг (Viola, Jones)

Кластеризация + РСА

- снижаем размерность изображения с помощью РСА преобразования
- кластеризуем изображения в каждой группе на 6 кластеров
- в результате получается 12 центроидов
- расстояние от изображения до центроида используем в качестве фактора для обучения
- обучаем модель SVM, RandomForest, Neural Network

Кластеризация + РСА

Нейронная сеть

- детектор Viola и Jones
- предложен подход с использованием бустинга в задачах компьютерного зрения

$$h(\boldsymbol{x}) = \text{sign} \left[\sum_{j=0}^{m-1} \alpha_j h_j(\boldsymbol{x}) \right]$$

h(x) - финальный классификатор m - число классификаторов в ансамбле h_j(x) - базовый классификатор alpha_j - вес базового классификатора (зависит от ошибки)

$$h_j(\boldsymbol{x}) = a_j[f_j < \theta_j] + b_j[f_j \ge \theta_j] = \begin{cases} a_j & \text{if } f_j < \theta_j \\ b_j & \text{otherwise,} \end{cases}$$

а_j - решение принимается в случае если значение фактора f меньше порога theta

b_j - принимается в противном случае

- при инициализации присваиваем всем объектам в выборке одинаковый вес
- на очередном шаге ј среди множества простых классификаторов выбираем тот, который дает наибольший прирост качества
- вычисляем коэффициент alpha пропорциональный приросту качества с учетом весов объектов
- увеличиваем вес объектов, которые остаются классифицированы неверно

- ориентировочное число простых моделей в ансамбле ~3000
- поиска скользящим окном по изображению большим ансамблем может занимать слишком много времени
- на практике строят каскады ансамблей меньшего размера
- область классифицируется очередным ансамблем в каскаде, только если предыдущий ансамбль классифицировал область как положительную

- предобученные модели для орепсу доступны по <u>ссылке</u>
- opencv предоставляет утилиты для подготовки данных обучения детектора: <u>инструкция</u>

- алгоритм сравнительно быстро вычисляет детекции
- но медленно обучается, тк на каждом шаге необходимо перебрать большое число вариантов простых классификаторов

3.3 Трекинг объектов на видео

Трекинг

Постановка задачи

- отслеживание перемещения объекта в кадре
- предсказание направления перемещения
- сообщение в случае потери объекта

Сложности

- несколько объектов на кадре
- частичное или полное перекрытие другими объектами
- реидентификация после временной потери из зоны видимости
- объект может изменять внешний вид во время наблюдения (повороты, масштаб)

Детекция и трекинг

- как правило, детекция сложнее чем трекинг
- трекинг использует информацию из предыдущих кадров
- трекер может накапливать ошибку
- детектор ищет объект на изображении без учета предыдущих кадров
- на практике алгоритм детекции запускается реже чем трекинг

Обзор подходов

- оптический поток (Kanade-Lucas-Tomashi)
 - трекинг характерных точек между кадрами
- калмановский фильтр
 - использует априорную информацию о возможных перемещениях объекта для предсказания позиции в будущем

Обзор подходов

- трекинг отдельного объекта
 - о детектируем объект на первом кадре, затем отслеживаем его перемещение с помощью трекера
- трекинг нескольких объектов
 - детектор для каждого кадра детектор выдает предсказания, задача трекера поставить в соответствие детекции между кадрами

Алгоритмы трекинга в OpenCV

- для использования трекеров в орепсу необходимо установить пакет <u>opency-contrib-python</u>
- трекеру необходимо хранить состояние между вызовами
- состояние хранится в объекте трекера
- создать объект трекера можно с помощью функции cv2.Tracker<aлгоритм_трекинга>_create()

Boosting Tracker

- основан на онлайн версии алгоритма AdaBoost
- детекция является положительным примером для обучения
- область вокруг детекции отрицательные примеры
- для определения объекта на очередном фрейме запускается поиск в окрестности предыдущей детекции
- качество работы среднее

Boosting Tracker

MIL - Multiple Instance Learning

- решение аналогично Boosting Tracker
- в отличие от Boosting Tracker семплируется несколько примеров вокруг вокруг детекции
- полученные семплы объединяются в группу
- задача классификатора предсказать класс группы
- качество детекции выше, чем у Boosting Tracker
- устойчив к частичным перекрытием объектов
- не восстанавливается после полной потери объекта из зоны видимости.

MIL - Multiple Instance Learning

http://vision.stanford.edu/teaching/cs231b spring1415/slides/MIL kelsie.pdf

KCF - Kernelized Correlation Filters

- идея семплирования положительных примеров, аналогичная MIL
- используется факт перекрытия положительных семплов
- скорость работы и качество выше, чем у Boosting Tracker и MIL
- не устойчив к потере объекта из зоны видимости

3.4 Пример. Распознавание жестов

Распознавание жестов

Постановка задачи

- разработать программируемую систему управления компьютером с помощью жестов
- жесты распознаются в реальном виде
- видеопоток поступает в реальном времени через веб-камеру

Этапы решения

- сегментация: отделение кисти от фона
- детекция: определяем положение кисти на изображении
- распознавание жеста

Сегментация кисти

- задаем области на изображении, которые относятся к кисти
- оцениваем гистограмму цветов в пространстве HSV
- используем эту оценку для сегментации
- сегментируем по гистограмме кисть функцией cv2.calcBackProject

Сегментация кисти

Сегментация кисти

- находим все контуры сегментированного изображения
- контур наибольшей площадью считаем кистью
- находим выпуклую оболочку контура с помощью функции <u>cv2.convexHull</u>

- оцениваем центр ладони
- оцениваем радиус кисти
- удаляем точки на выпуклой оболочки таким образом, чтобы осталось не более пяти точек (одна точка на палец)

Распознавание жеста

- входные данные: координаты центра ладони, радиус и координаты пальцев
- задаем базу размеченных жестов в таком же формате
- ищем в базе наиболее близкий жест к детектированному

Распознавание жеста

Резюме

- сегментация по порогу
- выделение контура объекта
- водораздел
- суперпиксели
- graph cut

Резюме

- эффективным способом детекции объектов является каскад AdaBoost классификаторов
- в качестве признаков для базовых классификаторов используются разностные свертки
- метод быстро работает на этапе применения
- но требует сравнительно много времени и большого числа примеров для обучения

Резюме

- один из способов решения задачи трекинга трекинг через детекцию (tracking by detection)
- на кадре с детекцией обучаем модель
- обученную модель применяем на следующем шаге

Полезные материалы

Computer Vision: Algorithms and Applications (Chapter 5)

Computer Vision: Algorithms and Applications (Chapter 14)

Image segmentation (Wikipedia)

Visual Tracking: An Experimental Survey