Sequence Learning with Connectionist Temporal Classification

Alex Graves, 2006

Rakesh Rao Stanford University

June 14, 2015

References

- Graves, Alex. Supervised sequence labelling with recurrent neural networks. Vol. 385. Heidelberg: Springer, 2012.
- Graves, Alex, et al. "A novel connectionist system for unconstrained handwriting recognition." Pattern Analysis and Machine Intelligence, IEEE Transactions on 31.5 (2009): 855-868.
- Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks."
 Proceedings of the 23rd international conference on Machine learning. ACM, 2006.

Motivation

Learn a sequence of labels from an input stream

- Input and output of variable lengths
- Location unknown/undefined

Figure: Statistics

The Model

- Input is a sequence in \mathbb{R}^n (here n=20, the image height)
- ullet Output is a sequence in \mathbb{R}^k (here k=26, the number of classes)
- k-vector sums to unity

---sssssss----ttttt--

Recurrent Neural Network

• Say, in previous slide, 20=2 and 26=2, i.e. image height is two pixels, and there are only two classes. Then we can ...

Figure: Parallel lines share weights

Recurrent Neural Network

- Now each input **node** is n vector and output **node** k vector
- Each arrow is now a matrix multiplication
- Parallel arrows have same weight matrix

Figure: RNN for a sequence with seven timesteps

A Good Output for CAB

- Alphabet = $\{A, B, C, D\}$, k = 4 + 1
- Add a blank or null class the network can fall back to. It reduces memory burden on the network and allows repeated labels

Figure: RNN outputs for a sequence with seven timesteps. _C_A_B_ is the most likely labeling given the output.

Looking for the intractable CAT

- ullet Out of the t time steps, the letters we want can 'stand out' anytime.
- Each such sequence is called a path e.g:- For t=7 and output = cat, we can have $_ca__t_$, $_c_a_t_$, $_c_a_t_$, etc. are all good paths
- ullet Intractable number of paths for large t

Figure : All six excitations give us a strong cat (t = 100)

Given all the above

- How do we train the network?
- How do we bell the cat?

Notation

- Alphabet $A' = A \cup \{\mathtt{blank}\}$
- ullet y_k^t activation of k^{th} class at time t (interpreted as probability)
- ullet A'^T set of length T sequences over A'
- π one such path in A'^T e.g. $\pi = _ca_tt_$ for T = 7.
- According to the model,

$$p(\pi|\mathbf{x}) = \prod_{t=1}^{T} y_{\pi_t}^t$$

- $\mathcal{F}:A'^T\to A^{\leq T}$ mapping from path to labeling. e.g.- $\mathcal{F}(_c_a_t_)=\mathcal{F}(ccaa_t_)=\cdots=cat$
- Probability of a/correct labelling:

$$p(\mathbf{l}|\mathbf{x}) = \sum_{\pi \in \mathcal{F}^{-1}(\mathbf{l})} p(\pi|\mathbf{x})$$

All the cat's paths

Figure: Black circles are blanks, white are labels. Arrows are allowed transitions. One traverasl from left to right is a *path* corresponding to the labelling cat or equivalently _c_a_t_ (wlog)

Forward probabilities

U is length of I (i.e. height of the picture in previous slide)

$$\alpha(t,u) = \sum_{\pi \in V(t,u)} \prod_{i=1}^t y_{\pi_i}^i$$

where V(t,u) is the set of all paths going through label u at time t. (t,u) a circle in picture.

$$\begin{split} p(\mathbf{l}|\mathbf{x}) &= \alpha(T,U) + \alpha(T,U-1) \\ \alpha(1,1) &= y_{\mathtt{blank}}^1 \\ \alpha(1,2) &= y_{l_1}^1 \\ \alpha(1,3) &= \alpha(1,4) = \dots = \alpha(1,U) = 0 \end{split}$$

CTC will bell the CAT

Forward recursion: Just add the paths entering a circle and multiply the sum by the activation of that circle

$$\alpha(t+1,u) = \{\alpha(t,u) + \alpha(t,u-1) + \mathbb{1}(l_u \neq \mathtt{blank}) \ \alpha(t,u-2)\} \ y_{l_u}^{t+1}$$

Summary

Apply RNN on input

$$\mathbf{y} = RNN(\mathbf{x}; \Theta)$$

Find Forward probabilities

$$\alpha(t+1,u) = y_{l_u}^{t+1} \left[\alpha(t,u) + \alpha(t,u-1) + \mathbb{1}(l_u \neq \mathtt{blank}) \ \alpha(t,u-2) \right]$$

Find probability of the desired labelling

$$p(\mathbf{l}|\mathbf{x}) = \alpha(T, U) + \alpha(T, U - 1)$$

ullet Calculate Negative log-likelihood loss over the entire dataset S

$$\mathcal{L}(S) = -\sum_{(\mathbf{x}, \mathbf{l}) \in S} \ln p(\mathbf{l}|\mathbf{x})$$

• Back-propagate Symbolic-differentiate \mathcal{L} and gradient descend in the weight space for the $\operatorname{argmin} \Theta \equiv \{\mathbf{W}_{ih}, \mathbf{W}_{hh}, \mathbf{W}_{ho}\}$

Input Dim: 8 Num Classes: 6 Num Samples: 1000 Preparing the Data Building the Network Training the Network Epoch : 0 ## TRAIN cost: 38.611 Shown : 5 2 2 Seen: 43443234 Image Shown: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Firings: 0 | 1 | 2 | 3 | 4 | 5 | 6 |

Thank you