Лабораторная работа Анализ работы протокола ARP

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Основной шлюз
R1	G0/1	192.168.1.1	255.255.255.0	_
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1
S2	VLAN 1	192.168.1.12	255.255.255.0	192.168.1.1
ПК-А	Сетевой адаптер	192.168.1.3	255.255.255.0	192.168.1.1
ПК-Б	Сетевой адаптер	192.168.1.2	255.255.255.0	192.168.1.1

Задачи

Часть 1. Создание и настройка сети

Часть 2. Использование команды arp в ОС Windows

Часть 3. Использование команды show arp в IOS

Часть 4. Анализ обмена сообщениями ARP с помощью программы Wireshark

Общие сведения

Протокол разрешения адресов (ARP) используется сопоставления адреса сетевого уровня (ІР-адрес) с физическим адресом канального уровня (МАС-адрес). В кадре, помещаемом в сеть, должен содержаться МАС-адрес узла назначения. Для динамического определения МАС-адреса назначения локальной узла ПО сети отправляется широковещательный ARP-запрос. Узел, которому присвоен IP-адрес назначения, отвечает на этот запрос, и его МАС-адрес записывается в ARP-кэш. Каждый узел в локальной сети имеет собственный ARP-кэш (область ОЗУ, где хранятся результаты выполненных ARP-запросов). Таймер ARP-кэша удаляет записи ARP, которые не использовались в течение заданного промежутка времени (время жизни).

ARP — пример компромисса производительности. Если бы кэш отсутствовал, протокол ARP должен был бы каждый раз запрашивать сопоставление адресов, перед помещением кадра в сеть. И при установлении соединения всегда добавлялось бы время ожидания ответа, что вызвало бы увеличение трафика в локальной сети. В другом случае, использование неограниченного времени жизни записей ARP-кэша могло привести к ошибкам из-за устройств, которые выходят из сети или динамически изменяют сетевой адрес.

Протокол ARP может создавать уязвимости в системе безопасности сети. Злоумышленники используют ARP-спуфинг, или «отравление» ARP-кэша, для распространения в сети фальшивых MAC-адресов. Злоумышленник отвечает на ARP-запрос фальшивым MAC-адресом узла, вследствие чего кадры передаются на ложный адрес назначения. Одним из способов предотвращения подобных атак является использование статических записей ARP-кэша. Кроме того, для предотвращения несанкционированного доступа к сети со стороны злоумышленников, на устройствах Cisco можно настроить список допустимых MAC-адресов.

В данной лабораторной работе необходимо изучить таблицу ARP с помощью команд arp в OC Windows и show arp на устройствах Cisco. Кроме того, научиться очищать ARP-кэш и добавлять статические записи ARP.

Примечание. В зависимости от модели устройства и версии Cisco IOS доступные команды, синтаксис и вывод их результатов может отличаться от приведенных в лабораторной работе примеров.

Примечание. Проверьте удаление всех настроек и файлов загрузочной конфигурации на устройствах.

Необходимые ресурсы

- 1 маршрутизатор Cisco с универсальным образом Cisco IOS
- 2 коммутатора Cisco, с универсальным образом Cisco IOS
- Консольные кабели для настройки устройств Cisco IOS через консольные порты
- 2 компьютера с OC Windows, с установленными программами эмулятора терминала и Wireshark
- Кабели Ethernet для создания сети в соответствии с заданной Топологией

- Часть 1: Создание и настройка сети
- Шаг 1: Соберите сеть в соответствии с Топологией.
- **Шаг 2: Настройте IP-адреса устройств в соответствии с Таблицей адресации.**
- Шаг 3: Проверьте соединение, отправив из окна командной строки компьютера ПК-Б с помощью команды ping эхо-запросы на все устройства.

Часть 2: Использование команды arp OC Windows

Команда arp OC Windows предназначена для просмотра и изменения содержимого ARP-кэша.

Шаг 1: Просмотр содержимого ARP-кэша.

а. Откройте окно командной строки на компьютере ПК-А и введите:

```
X
 Командная строка
C:\>arp
Отображение и изменение таблиц преобразования ІР-адресов в физические,
используемые протоколом разрешения адресов (ARP).
ARP -s inet_addr eth_addr [if_addr]
ARP -d inet_addr [if_addr]
ARP -a [inet_addr] [-N if_addr] [-v]
                Отображает текущие ARP-записи, опрашивая текущие данные
                протокола. Если задан inet_addr, то будут отображены IP и
                физический адреса только для заданного компьютера. Если
                ARP используют более одного сетевого интерфейса, то будут
                отображаться записи для каждой таблицы.
                То же, что и параметр -а.
  -g
                Отображает текущие ARP-записи в режиме подробного
               протоколирования. Все недопустимые записи и записи в
               интерфейсе обратной связи будут отображаться.
  inet addr
               Определяет ІР-адрес.
  -N if addr
                Отображает ARP-записи для заданного в if_addr сетевого
                интерфейса.
  -d
                Удаляет узел, задаваемый inet_addr. Параметр inet_addr может
                содержать знак шаблона * для удаления всех узлов.
                Добавляет узел и связывает адрес в Интернете inet_addr
  -5
                с физическим адресом eth_addr. Физический адрес задается
                6 байтами (в шестнадцатеричном виде), разделенных дефисом.
                Эта связь является постоянной
                Определяет физический адрес.
  eth addr
                Если параметр задан, он определяет адрес интерфейса в
  if_addr
                Интернете, чья таблица преобразования адресов должна
                измениться. Если параметр не задан, будет использован
                первый доступный интерфейс.
  > arp -s 157.55.85.212 00-аа-00-62-c6-09 .. Добавляет статическую запись.
                                              .. Выводит ARP-таблицу.
  > arp -a
```

b. Проанализируйте полученные данные. Какой формат команды **arp** отображает все записи ARP-кэша?

Какой формат команды arp удаляет все записи ARP-кэша?

Какой формат команды атр удаляет записи ARP-кэша для IP-адреса 192.168.1.11?

с. Введите

```
Х
Командная строка
C:\>arp -a
Интерфейс: 192.168.1.3 --- 0х13
 адрес в Интернете
                        Физический адрес
                       ec-43-f6-d1-9f-9c
 192.168.1.1
                                              динамический
 192.168.1.255
                       ff-ff-ff-ff-ff
                                              статический
 224.0.0.2
                       01-00-5e-00-00-02
                                              статический
 224.0.0.22
                       01-00-5e-00-00-16
                                              статический
                       01-00-5e-00-00-fb
 224.0.0.251
                                              статический
 224.0.0.252
                       01-00-5e-00-00-fc
                                              статический
 239.255.102.18
                       01-00-5e-7f-66-12
                                              статический
                       01-00-5e-7f-ff-fa
 239.255.255.250
                                              статический
                       ff-ff-ff-ff-ff
 255.255.255.255
                                              статический
::\>_
```

для отображения таблицы ARP.

Примечание. В ОС Windows XP таблица ARP может быть пустой.

d. Из окна командной строки компьютера ПК-А с помощью команды ping отправьте эхо-запрос на IP-адрес компьютера ПК-Б для динамического добавления записи в ARP-кэш.

Запишите физический адрес компьютера ПК-Б.

Шаг 2: Ручная настройка записей в ARP-кэше.

Для удаления записей из ARP-кэша, выполните команду: arp -d {ip-appec | *}

Можно удалить адреса по отдельности, указав соответствующий IP-адрес, или удалить все записи сразу с помощью группового символа *.

Проверьте, что ARP-кэш содержит записи для следующих IP-адресов: основного шлюза R1 G0/1 (192.168.1.1), компьютера ПК-Б (192.168.1.2) и коммутаторов S1 (192.168.1.11) и S2 (192.168.1.12).

- **a**. Из окна командной строки компьютера ПК-А с помощью команды ріng отправьте эхо-запросы на все IP-адреса в **Таблице адресации**.
- **b**. Убедитесь, что записи для всех IP-адресов добавлены в ARP-кэш. Если запись для IP-адреса в ARP-кэше отсутствует, с помощью команды **ping** отправьте эхо-запрос на данный IP-адрес и посмотрите, добавилась ли запись для IP-адреса в ARP-кэш.

```
Х
Командная строка
C:\>arp -a
Интерфейс: 192.168.1.3 --- 0х13
 адрес в Интернете Физический адрес
                                             Тип
 192.168.1.1
                      ec-43-f6-d1-9f-9c
                                            динамический
                     00-50-56-be-f6-db
 192.168.1.2
                                           динамический
                     0c-d9-96-e0-0a-40
 192.168.1.11
                                          динамический
 192.168.1.12
                     0c-d9-96-d2-40-40
                                          динамический
                      ff-ff-ff-ff-ff
 192.168.1.255
                                           статический
                      01-00-5e-00-00-02
 224.0.0.2
                                           статический
 224.0.0.22
                      01-00-5e-00-00-16
                                            статический
                      01-00-5e-00-00-fb
 224.0.0.251
                                            статический
 224.0.0.252
                      01-00-5e-00-00-fc
                                            статический
 239.255.102.18
                      01-00-5e-7f-66-12
                                           статический
 239.255.255.250
                      01-00-5e-7f-ff-fa
                                           статический
 255.255.255.255
                      ff-ff-ff-ff-ff
                                            статический
::\>_
```

с. Откройте командную строку от имени администратора.

В поле **Найти программы и файлы** введите cmd

Щелкните правой кнопкой мыши на появившемся значке cmd, и выберите в контекстном меню пункт Запуск от имени администратора.

Примечание. Пользователям ОС Windows XP не нужны права администратора для изменения записей в ARP-кэше.

d. В окне командной строки введите

Данная команда удаляет все записи из ARP-кэша. Убедитесь, что все

записи из ARP-кэша удалены. Для этого в командной строке введите:

```
Выбрать Администратор: Командная строка — X

C:\>arp -a

Не найдены записи в таблице ARP

C:\>
```

е. Подождите несколько минут. Протокол обнаружения соседей снова начнет заполнять ARP-кэш.

Примечание. В ОС Windows XP протокол обнаружения соседей может не работать.

f. Из окна командной строки компьютера ПК-A с помощью команды ping отправьте эхо-запросы на IP-адрес компьютера ПК-Б (192.168.1.2) и на IP-адреса виртуальных интерфейсов коммутаторов S1 (192.168.1.11) и S2 (192.168.1.12), чтобы добавить записи ARP. Проверьте, что все записи ARP добавлены в ARP-кэш.

```
Командная строка
                                                                      Х
C:\>arp -a
Интерфейс: 192.168.1.3 --- 0х13
 адрес в Интернете
                      Физический адрес
 192.168.1.2
                      00-50-56-be-f6-db
                                            динамический
 192.168.1.11
                      0c-d9-96-e0-0a-40
                                            динамический
                      0c-d9-96-d2-40-40
 192.168.1.12
                                            динамический
                      ff-ff-ff-ff-ff
 192.168.1.255
                                            статический
 224.0.0.2
                      01-00-5e-00-00-02
                                            статический
 224.0.0.22
                      01-00-5e-00-00-16
                                            статический
 224.0.0.251
                      01-00-5e-00-00-fb
                                            статический
  224.0.0.252
                      01-00-5e-00-00-fc
                                            статический
  239.255.102.18
                      01-00-5e-7f-66-12
                                            статический
                      01-00-5e-7f-ff-fa
 239.255.255.250
                                           статический
                      ff-ff-ff-ff-ff
 255.255.255.255
                                            статический
```

g. Запишите физический адрес коммутатора S2.

```
h. Введите в командной строке
```

arp -d ip-адрес

для удаления отдельной записи ARP.

Введите в командной строке

arp -d 192.168.1.12

для удаления записи ARP для коммутатора S2.

i. Проверьте, удалена ли запись ARP для коммутатора S2 из ARP-кэша:

```
X
                                                                     Командная строка
C:∖>arp -a
Интерфейс: 192.168.1.3 --- 0х13
 адрес в Интернете Физический адрес
 192.168.1.2
                      00-50-56-be-f6-db
                                           динамический
 192.168.1.11
                                          динамический
                    0c-d9-96-e0-0a-40
 192.168.1.255
                    ff-ff-ff-ff-ff
                                          статический
 224.0.0.2
                     01-00-5e-00-00-02
                                         статический
 224.0.0.22
                     01-00-5e-00-00-16
                                          статический
 224.0.0.251
                     01-00-5e-00-00-fb
                                          статический
 224.0.0.252
                     01-00-5e-00-00-fc
                                           статический
 239.255.102.18
                     01-00-5e-7f-66-12
                                           статический
 239.255.255.250
                      01-00-5e-7f-ff-fa
                                           статический
                     ff-ff-ff-ff-ff
 255.255.255.255
                                           статический
::\>_
```

j. Введите команду:

arp -s ip-адрес mac-адрес

для добавления отдельной статической записи в ARP-кэш.

Используйте IP- и MAC-адрес (записанный в шаге **g**) коммутатора S2 arp -s 192.168.1.12 0c-d9-96-d2-40-40

k. Проверьте, что статическая запись для коммутатора \$2 добавилась в ARP-кэш.

Часть 3. Использование команды show arp на устройствах Cisco

Команды show arp или show ip arp отображают содержимое таблицы ARP на устройствах Cisco.

Шаг 1. Просмотр содержимого таблицы ARP на маршрутизаторе R1.

```
R1#show arp
Protocol Address
                        Age (min) Hardware Addr
                                                    Type
                                                           Interface
Internet 192.168.1.1
                                   d48c.b5ce.a0c1
                                                    ARPA
                                                           GigabitEthernet0/1
Internet 192.168.1.2
                               0
                                   0050.56be.f6db
                                                    ARPA
                                                           GigabitEthernet0/1
Internet 192.168.1.3
                               0
                                   0050.56be.768c
                                                    ARPA
                                                           GigabitEthernet0/1
R1#
```

Первая запись в таблице ARP для интерфейса G0/1 маршрутизатора R1 (основной шлюз в локальной сети) не имеет срока жизни. Срок жизни — это количество минут, в течение которых запись удерживается в ARP-кэше. Для других записей это значение будет увеличиваться.

Шаг 2. Добавьте записи в таблицу ARP на маршрутизаторе R1.

Отправляя из командной строки с помощью команды ping эхо-запросы на другие устройства, можно добавлять записи в ARP-таблицу маршрутизатора.

a. Отправьте с помощью команды ping эхо-запрос на IP-адрес виртуального интерфейса коммутатора \$1.

```
R1#ping 192.168.1.11

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.11, timeout is 2 seconds:
.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 1/2/4 ms
```

b. Проверьте, что запись ARP для IP-адреса виртуального интерфейса коммутатора S1 добавлена в ARP-таблицу маршрутизатора R1.

```
R1#show ip arp
                                                  Туре
Protocol Address
                       Age (min)
                                 Hardware Addr
                                                         Interface
Internet 192.168.1.1
                                                  ARPA
                                 d48c.b5ce.a0c1
                                                         GigabitEthernet0/1
Internet 192.168.1.2
                              6
                                 0050.56be.f6db
                                                  ARPA
                                                         GigabitEthernet0/1
Internet 192.168.1.3
                              6
                                 0050.56be.768c
                                                  ARPA
                                                         GigabitEthernet0/1
                                                 ARPA
Internet 192.168.1.11
                      0 0cd9.96e8.8a40
                                                        GigabitEthernet0/1
R1#
```

Шаг 3: Просмотрите содержимое таблицы ARP на коммутаторе S1.

```
S1#show ip arp
Protocol
         Address
                                   Hardware Addr
                        Age (min)
                                                    Туре
                                                           Interface
Internet 192.168.1.1
                              46
                                   d48c.b5ce.a0c1
                                                    ARPA
                                                           Vlan1
Internet 192.168.1.2
                               8
                                   0050.56be.f6db
                                                    ARPA
                                                           Vlan1
Internet 192.168.1.3
                               8
                                   0050.56be.768c
                                                    ARPA
                                                           Vlan1
Internet 192.168.1.11
                                   0cd9.96e8.8a40
                                                    ARPA
                                                           Vlan1
S1#
```

Шаг 4: Добавьте записи в таблицу ARP на коммутаторе

Отправляя из командной строки с помощью команды ping эхо-запросы на другие устройства, можно добавлять записи в ARP-таблицу коммутатора.

a. Отправьте с помощью команды ping эхо-запрос на IP-адрес виртуального интерфейса коммутатор \$2.

S1#ping 192.168.1.12 Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.12, timeout is 2 seconds:

. ! ! ! !

Success rate is 80 percent (4/5), round-trip min/avg/max = 1/2/8 ms

b. Проверьте, что запись для IP-адреса виртуального интерфейса коммутатора S2 добавлена в ARP-таблицу коммутатора S1.

S1#show ip arp Protocol Address Age (min) Hardware Addr Туре Interface Internet 192.168.1.1 5 d48c.b5ce.a0c1 ARPA Vlan1 Internet 192.168.1.2 11 0050.56be.f6db ARPA Vlan1 Internet 192.168.1.3 0050.56be.768c ARPA Vlan1 11 Internet 192.168.1.11 0cd9.96e8.8a40 Vlan1 ARPA Internet 192.168.1.12 2 0cd9.96d2.4040 ARPA Vlan1

S1#

Часть 4. Анализ сообщений ARP с помощью программы Wireshark

В этой части необходимо проанализировать обмен сообщениями ARP, используя для их захвата и анализа программу Wireshark. А также оценить задержки сети, вызванные обменом ARP-сообщениями между устройствами.

Шаг 1. Настройте программу Wireshark для захвата кадров.

- **a**. Запустите на компьютере ПК-А программу Wireshark.
- **b**. Выберите соответствующий сетевой интерфейс компьютера ПК-A, который будет использоваться для захвата сообщений ARP.

Шаг 2. Захватите и проанализируйте сообщения ARP.

- **a**. Начните захват кадров в программе Wireshark. Используйте фильтр, для отображения кадров, содержащих только сообщения ARP.
 - **b**. Очистите ARP-кэш с помощью команды: arp -d *.
 - **с**. Проверьте, что ARP-кэш очищен.
- **d**. Из окна командной строки с помощью команды ping отправьте эхо-запрос на IP-адрес основного шлюза.
 - e. Остановите захват кадров программой Wireshark.
- **f**. В Панели сведений о захваченных кадрах, найдите кадры, содержащие сообщения ARP.

Какой кадр, содержащий ARP был захвачен первым?

Заполните таблицу данными из первого захваченного кадра, содержащего сообщение ARP.

Поле	Значение поля
МАС-адрес источника	
IP-адрес источника	
МАС-адрес назначения	
IP-адрес назначения	

Какой кадр, содержащий ARP был захвачен вторым?

Заполните таблицу данными из второго захваченного кадра, содержащего сообщение ARP.

20Habii:			
Поле	Значение поля		
МАС-адрес источника			
IP-адрес источника			
МАС-адрес назначения			
IP-адрес назначения			

Шаг 3. Проанализируйте задержки сети, вызванные сообщениями ARP.

- а. Очистите ARP-кэш на компьютере ПК-А.
- **b**. Начните захват кадров программой Wireshark.
- **c**. С помощью команды ping отправьте эхо-запрос на IP-адрес виртуального интерфейса коммутатора \$2 (192.168.1.12). Второй эхо-запрос, отправленный с помощью команды ping, должен быть полностью (0% потерь) успешным.

Примечание. Если первый эхо-запрос был полностью успешный, необходимо перезагрузить коммутатор S1, чтобы посмотреть задержки сети из-за ARP.

```
Выбрать Командная строка — — Х

С:\>ping 192.168.1.12

Обмен пакетами с 192.168.1.12 по с 32 байтами данных:
Превышен интервал ожидания для запроса.
Ответ от 192.168.1.12: число байт=32 время=2мс TTL=64
Ответ от 192.168.1.12: число байт=32 время=2мс TTL=64
Ответ от 192.168.1.12: число байт=32 время=2мс TTL=64

Статистика Ping для 192.168.1.12:
Пакетов: отправлено = 4, получено = 3, потеряно = 1
(25% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 1мсек, Максимальное = 3 мсек, Среднее = 2 мсек

С:\>
```

- **d**. Остановите захват кадров программой Wireshark. Используйте фильтр для отображения только данных протоколов ARP и ICMP.
- е. Изучите захваченные кадры. В приведенном примере кадр 10 является первым ICMP-кадром, отправленным с компьютера ПК-Б на коммутатор S1. Т. к. для коммутатора S1 нет записи в ARP-кэше, на IP-адрес виртуального интерфейса коммутатора S1 был отправлен ARP-запрос для получения MAC-адреса. Во время обмена данными эхо-запрос, отправленный с помощью команды ping, не получил ответ за отведённое время (кадры 11-12).

После добавления записи в ARP-кэш для IP-адреса виртуального интерфейса коммутатора S1, последние три обмена данными ICMP прошли успешно, что подтверждают кадры 26, 27 и 30-33.

```
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

    ● ● ▲ ■ ∅ | □ □ □ X ❷ | Q ← ♠ ♠ ▼ ½ | □ □ □ □ Q Q □ □ | W X 5 % | Ø

                                                       ▼ Expression... Clear Apply Save
 Filter: arp or icmp
   9 1.651202000 Cisco_59:91:c0 Dell_19:55:92 ARP
                                                             60 192.168.1.12 is at 00:23:5d:59:91:c0
  10 1.651489000 192.168.1.3 192.168.1.12 ICMP
                                                             74 Echo (ping) request id=0x0001, seq=187:
                                                              60 who has 192.168.1.3? Tell 192.168.1.12
  11 1.653790000 cisco_59:91:c0 Broadcast
                                                  ARP
  12 1.653999000 Dell_19:55:92 Cisco_59:91:c0 ARP
                                                             42 192.168.1.3 is at 5c:26:0a:19:55:92
  26 6.562409000 192.168.1.3 192.168.1.12 ICMP 74 Echo (ping) request id=0x0001, seq=1874
  27 6.564426000 192.168.1.12 192.168.1.3 ICMP
                                                             74 Echo (ping) reply id=0x0001, seq=1874
  30 7.560977000 192.168.1.3 192.168.1.12 ICMP
                                                        74 Echo (ping) request id=0x0001, seq=1875
  31 7.563586000 192.168.1.12 192.168.1.3
                                                 ICMP
                                                              74 Echo (ping) reply
                                                                                       id=0x0001, seq=187
                                  192.168.1.12 ICMP
                                                              74 Echo (ping) request id=0x0001, seq=1876
  32 8.559352000 192.168.1.3
  33 8.560466000 192.168.1.12 192.168.1.3 ICMP
                                                             74 Echo (ping) reply
                                                                                      id=0x0001, seq=1876
⊕ Frame 8: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0

    Ethernet II, Src: Dell_19:55:92 (5c:26:0a:19:55:92), Dst: Broadcast (ff:ff:ff:ff:ff)

    □ Address Resolution Protocol (request)

    Hardware type: Ethernet (1)
    Protocol type: IP (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: request (1)
    Sender MAC address: Dell_19:55:92 (5c:26:0a:19:55:92)
    Sender IP address: 192.168.1.3 (192.168.1.3)
    Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
    Target IP address: 192.168.1.12 (192.168.1.12)
0000 ff ff ff ff ff ff 5c 26 0a 19 55 92 08 06 00 01 .....\& ..u.....
0010 08 00 06 04 00 01 5c 26 0a 19 55 92 c0 a8 01 03 .....\& ..u.....
0020 00 00 00 00 00 00 c0 a8 01 0c ......
```

Вопросы на повторение

- 1. Когда удаляются статические записи из ARP-кэша?
- 2. Зачем добавлять в ARP-кэш статические записи?
- 3. Почему не следует снимать ограничения на время ожидания отклика для сообщений ARP?