MAT2440, Classwork28, Spring2025

ID:	Name:
:	

1. Searching algorithm II: Algorithm and Pseudocode of the **Binary Search**.

In this algorithm, the list $\{a_i\}$ must be in **ascending** order, that is, $a_1 < a_2 < a_3 < \cdots < a_n$.

Here we use an example to explain the algorithm.

Given a list
$$\{a_i\}$$
 with 16 elements where $\{a_i\} = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\} = \{1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22\}$

Algorithm (for searching (x = 15)) and output the location):

(1) Split this list in half:
$$\{a_1, \dots, a_8\}$$
 and $\{a_9, \dots, a_{16}\}$, $\{a_9, \dots, a_{16}\}$

(2) Split the list in half:
$$\{a_9, \dots, a_{12}\}$$
 and $\{a_{13}, \dots, a_{16}\}$,

(3) Split the list in half:
$$\{a_9, a_{10}\}$$
 and $\{a_{11}, a_{12}\}$,

$$Q_{\omega} = 13$$
 (T)

(4) Split the list in half: $\{a_{11}\}$ and $\{a_{12}\}$,

$$a_{11}=15$$
, $15>15 (F)$

(5) Comparing x and a_{11} ,

if
$$\text{True}(x > a_8)$$
 then $\{a_9, \dots, a_{16}\}$
if $\text{Fales}(x > a_8)$ then $\{a_1, \dots, a_8\}$

if True($x > a_{12}$) **then** $\{a_{13}, \dots, a_{16}\}$ **if** Fales($x > a_{12}$) **then** $\{a_9, \dots, a_{12}\}$

if
$$True(x > a_{10})$$
 then $\{a_{11}, a_{12}\}$
if $Fales(x > a_{10})$ then $\{a_9, a_{10}\}$

if True(
$$x > a_{11}$$
) then $\{a_{12}\}$
if Fales($x > a_{11}$) then $\{a_{11}\}$

if True $(x = a_{11})$ then location = $\boxed{ }$ if False $(x = a_{11})$ then location=_

15 is NOT in the list

Pseudocode:

```
procedure binary_search(x: integer, a_1, a_2, \dots, a_n: distinct integers)
n := \text{the } \{a_i\}
j := N (which is y \in M end location)
while (i \le j)
     m = \left| \frac{i+j}{2} \right| (which is the locate the <u>Middle</u> of the sequence)
     if x > a_m then i := M \uparrow [
                else j := M
if x = Q_i then location = b
           else location = \bigcirc
return [cation] { location is the subscript of the term that equals x, or 0 if x is not found.}
```

6. How does this pseudocode work with {1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22} and searching for x = 15? How many elements do we have * · do Nothing Initialization: n = 16, i = 1, and j = 16. $x > a_m (T/F)$ i = m + 1round = mm a_m 10 16 13 1.5 $(x = a_i)$ is tyus implies location = 1

which is "i" Return: Ocation = 1

7. How does this pseudocode work with $\{2, 3, 8, 9\}$ and searching for x = 6?

Initialization: n = , i = , and j = .

round	i < j (T/F)	m	a_m	$x > a_m \text{ (T/F)}$	i = m + 1	j = m
1						
2						
3						

 $(x = a_i)$ is _____ implies location =____.

Return: