UnionVsJunta

a)

Queremos demostrar que: G es un grafo unión $\leftrightarrow G$ es disconexo. Probemos la ida y la vuelta:

G es un grafo unión \rightarrow G es disconexo:

Como G es un grafo unión, existe G_1 y G_2 tales que $G = G_1 \cup G_2$. Por la definición de la operación unión en grafos (poner todos los vértices y aristas de cada uno en un solo grafo , sin unirlos entre sí), no existe ningún camino que conecte vértices de G_1 a G_2 en G. Luego, G tiene dos partes conexas, lo que lo vuelve disconexo.

G es disconexo \rightarrow G es un grafo unión:

Como G es un grafo disconexo, este tiene más de una parte conexa. Sea n la cantidad de partes conexas. Podemos asignarle a cada i-ésima parte conexa como un G_i grafo, hasta cubrir todas las partes. Definamos a G' grafo como $G' = G_2 \cup ... \cup G_n$. Redefinamos a G ahora como $G = G_1 \cup G'$. Se observa que G es claramente un grafo unión. \square

b)

Queremos demostrar que: G es un grafo junta $\leftrightarrow \overline{G}$ es un grafo unión. Probemos la ida y la vuelta:

G es un grafo junta $\to \overline{G}$ es un grafo unión:

Por ser G junta, existen G_1 y G_2 grafos tal que:

$$G = G_1 + G_2$$

Entonces:

$$\overline{G} = \overline{G_1 + G_2}$$

Como la operación + nos conecta todos los vértices de G_1 con los de G_2 , al tomar el complemento, claramente estas dos partes son ahora disconexas, dejándonos a \overline{G} como disconexo. Como probamos en (a), esto nos dice que \overline{G} es un grafo unión.

\overline{G} es un grafo unión $\to G$ es un grafo junta:

Por ser \overline{G} unión, existen G_1 y G_2 grafos tal que:

$$\overline{G} = G_1 \cup G_2$$

Tomemos ahora el complemento de \overline{G} :

$$\overline{\overline{G}} = G = \overline{G_1 \cup G_2}$$

Ignorando las nuevas conexiones formadas entre G_1 y G_2 , llamemos G_1' y G_2' al grafo resultante de tomar conjugado y restarle las conexiones entre ambos. Luego, ahora vale que:

$$G = G_1' + G_2'$$

Luego, G es un grafo junta. \square

 $\mathbf{c})$

Queremos demostrar que G es un grafo junta $\leftrightarrow \overline{G}$ es disconexo. Probemos la ida y la vuelta:

G es un grafo junta $\to \overline{G}$ es disconexo: Como G es un junta, por el enunciado (b) tenemos que \overline{G} es unión. Luego, por el enunciado (a), \overline{G} es disconexo.

\overline{G} es disconexo ightarrow G es un grafo junta:

Al ser \overline{G} disconexo, por el enunciado (a), \overline{G} es unión. Luego, por el enunciado (b), $\overline{\overline{G}} = G$ es junta. \square