Coping with a variable environment: evolvability and/vs regulation

Course Computational Biology 2018/2019; Paulien Hogeweg; Theoretical Biology and Bioinformatics Grp Utrecht University

Some "surprising" (and debated) observations on the dynamics of evolution (of complexity) gleaned from phylogenetic analysis

Early complexity

- biological Big Bangs: major transitions in evolution
- from pylogenies: large common ancestors
- from pylogenies: closely packed early species radiations
- important role of gene LOSS in adaptation
- FECA to LECA: many gene duplications before species radiation
- genes with "late" function often predate that function

• Whole Genome duplication rare but important

- occurs often (especially plants) but rarely fixed
- at root of major radiation
- during major environmental shifts (?)

early gene innovation - and loss Alm Nature2010

Gene loss as major evolutionary process

Metazoa Loss of homeoboxgenes Drosophila species gain/loss of genes

van der Peer et al 2009, Nature genetic reviews

Evolution in virtual cells: genome. GRN, metabolism

based on "plausible" minimal multilevel 'cell' mutations segmental duplications/ deletions, pointmutations fitness: homestasis (evolves regulatory adaptation) evolving in varying environment

Questions

Are some of the features seen in phylogenetic analysis observable in evolution of such cells?

Early complexity, dominance of gene loss whole genome duplication at "roots" of lineages mutational/selectional enforced conservation

Cuypers & Hogeweg 2012, 2014, Cuypers, Rutten 2017

virtual cell model (adapted from Neyfakh et al 2009 Biol Direct)

$$\frac{d[A]}{dt} = ([A]_{out} - [A])Perm$$
 (1)

$$\int \frac{d[A]}{dt} = \frac{[A]_{out}[X] V_{max_p}[Prot]_p}{([A]_{out} + KA_p)([X] + KX_p)} \qquad (2)$$

$$\frac{d[X]}{dt} = \frac{-d[A]}{dt} \tag{3}$$

$$\int \frac{d[A]}{dt} = \frac{-[Prot]_C[A]Vmax_C}{[A] + KA_C}$$
 (4)

$$\frac{d[X]}{dt} = \frac{-d[A]}{dt} \quad \text{for} \quad (5)$$

$$\frac{d[A]}{dt} = \frac{-[Prot]_{\sigma}[A][X] \forall \mathsf{max}_{\bullet}}{([A] + \mathsf{KA}_{\bullet})([X] + \mathsf{KX}_{\bullet})} \tag{6}$$

$$\frac{d[X]}{dt} = \frac{d[A]}{dt} \tag{7}$$

$$\frac{d[Prot]}{dt} = Pr \cdot Reg - Degr[Prot]$$
 (8)

Processes modelled in the cell:

- diffusion (1): A follows the gradient over the cell membrane
- pumping (2,3): pump enzymes consume X to import A
- catabolism (4,5): catabolic enzymes convert resource (A) into energy (X)
- anabolism (6,7): anabolic enzymes consume A and X to produce building blocks
- protein production and degradation (8): TFs regulate the rate of transcription of proteins; degradation takes place at a constant rate

ecology and evolution of virtual cells

- Environmental fluctuation of resource A $[A_{out}]$ varies 4 orders of magnitude Cell 'sees' 1-3 randomly chosen concentration in lifetime
- **Fitness**: homeostasis distance to set value, average over lifetime
- Population of cells compete
 Replication probability proportional to fitness
- Mutations upon replication
 INDELS, LCR, values of parameters (Vmax, binding etc)

Analysis along ancestral lineage evaluated in 3 standard environments

Note Differences with previous models not on-off genes; fitness not expressed as gene expression but as effect of gene expression, reacts on environment, allows regulatory adaptation

Typical evolutionary dynamics:

Genome inflation(s) - followed by fitness increase - followed by stream lining - followed by genome size fluctuations

Genome size and fitness

Ancestor trace

early genome inflation a "generic" pattern? Yes... in the sense that:

It occurs most pronounced in those runs which achieve high fitness eventually

It occurs most pronounced with mutational parameters which achieve often high fitness

trend mutation type	genome inflation	streamli- ning	final fitness
point mutation	1		-
single gene dup/del	_	+	_
deletion bias	-	+	_

Local landscapes, genome expansion and future fitness

Duplications			Deletions		
t=1-100	t=101-200	ΔF	t=1-100	t=101-200	ΔF
+	(+)	> 1.05	=	=	> 1.05
(+)	+	.95 - 1.05	=	+	.95 - 1.05
_	_	< .95	=	_	< .95
Genome Size			Fitness		
t=1-100	t=101-200		t=1-100	t=101-200	
+	+		=	=	

Why initial inflation?

Duplications more often advantageous than deletions
+ hitchhiking of other genes (which might later become functional)

higher degrees of freedom increases adaptability

why streamlining?

gene loss decreases mutational load of neutral genes

Conclusion (1)

Surprising observations from bioinformatic data analysis of early genome inflation adaptation by gene loss are generic properties of Darwinian evolution

Models ++

e.g. AEVOL, Virtual Microbe, Function optimization, ...

Results ++

- Pattern of WGD fixation and subsequent evolution
- evolution of regulation vs evolution of evolution
- evolution of mutational neighborhood

WGD in (adapted) virtual cell model ab initio evolution and re-adaptation switching to novel environment

- almost all fit lineages had an early WGD and became fit much later
- minority of cases had WGD after switch
- NO WGD at intermediate times
- some VERY fast re-adaptation (no WGD)< 5 mutations

Differential gene loss after WGD :doses balance selection

- Streamlining, but larger genomes after WGD: "irremediable complexity"
- TF preferential kept
- with high connectivity
- NO sub-functionalization
- adaptation by peripheral TFs

their out-degree

conserved binding

Use the evolved (fit) virtual cells to study short term evolution. Maintaining homeostasis in NOVEL environments

proxy for novel environments:

(2-4fold) in/decrease conversion factor. passive diffusion, decay

These change internal state (can be 'sensed')

regulation and evolvability alternative solutions evolution of evolvability 'easier'

periodicity of switches

orange: evolver; blue regulator

2 different environments

average fitness over 30 generations after switch

switch every 30 generations: dark blue: regulator; brown evolver switch every 100 generations: light blue evolver

Note: higher fitness for less frequent switches 'better' adapted — > better evolvable

Conclusions evolution of virtual cells

- early genome inflations,
 increases degrees of freedom and therewith adaptability
- Intricate interplay of neutral and adaptive processes: adaptation --> neutrality; neutrality -- adaptation
- Evolved genotype phenotype mapping maximizes neutrality AND selection
- Evolved genotype phenotype mapping increases evolvability to NOVEL conditions
- Evolvability and regulation 'equal' alternatives to cope with fluctuating environments
- Evolvability easier to evolve
- WGD frequent but rarely accepted
 only early in evolution or after environmental change

Conclusions:

Some "NON surprising" (and debated) observations generic properties of multilevel evolution

Early complexity

- ** biological Big Bangs: major transitions in evolution
- ** large common ancestors
- ?* closely packed early species radiations
- ** important role of gene LOSS in adaptation
- ?* FECA to LECA: many gene duplications before species radiation
- ?? genes with "late" function often predate that function

• Whole Genome duplication rare but important

- ** occurs often but rarely fixed
- ** at root of major radiation
- ** during major environmental shifts (?)

ResutIts ++ AND Models ++ Evolution of mutational neighborhood: U-shape

Flat and Steep; Neutral and high Selection Robust at individual and at population level Evolvable at population level Few slightly deleterious mutations

U-shape: evolved property AND ideal for evolution

Mutator strains in E.coli e.g. 50% LTEE experiments

genome-size: WT and mutator

U shape mutational profile and mutator strains ancestor t=300.000 vs t=390.000

neutral unfit Wildtype

decrease genome size

neutral unfit $\text{WT - Mutator } (\mu*100)$ increase genome size

0.4

0.3

0.2

0.1 0.09 0.08

0.07

0.06

0.05

0.04

0.03 0.010

final fitness similar

Rutten, Hogeweg & Beslon (in prep)

U shape mutational profile and mutator strains ancestor t=300.000 vs t=390.000

Increase of genome size to increase deleterious mutations, to regain fitness

Conclusions Mutational Neighborhood

- U-shaped mutational neighborhood: high neutrality AND high selection
- Genome size and mutation rate:
 high mutation rate: small genomes, overlapping genes (virusses
 Lower mutation rate: larger but compact genomes; operon,
 little overlap
 BUT
 mutator strains increase genome size and regain fitness
- increased genome size due to increase non-coding regions (decrease of coding length leads to increase in "nonSNP's (LCR) and deleterious mutations skewed U-shape and stronger selection Compare RNA at high mutation rates!

Conclusions/Discussion Non-supervised multilevel modeling

Generic properties from case studies? (compare model organisms)

Not: All such are such in predefined universe

But: these patterns emerge in

"arbitrary/plausible" universes

Not: What Did happen in evolution

But: What do we expect to happen by mutation/selection

search images