CIS 375 CHAPTER 1

Network Security

Outline

- Importance of Network Security
- Security Goals
- Network Controls
- Risk Assessment
- Ensuring Business Continuity
- Intrusion Prevention
- Best Practice Recommendations
- Implications for Management / Cyber Security

Importance of Network Security

- Security has always been a major business concern
- Computers and the Internet have redefined the nature of information security
- Average value of organizational data and applications far exceeds cost of networks
- Losses associated with security failures can be large
 - Financial loss due to theft and from system downtime
 - Loss of consumer confidence
 - Fines

Introduction

Internet has completely redefined the nature of information security

□ Reasons for an increase in computer security

Security Threats and Controls

threats

Preventing unauthorized access

controls

- □ Preventive controls
- □ Detective controls
- □ Corrective controls

Security Goals

CIA triad

Protection of organizational data from unauthorized disclosure

Security Threats

- Threats to Business Continuity
 - Disruptions A loss or reduction in network service
 - Destruction of data
 - Disasters
- Threat of Unauthorized Access (Intrusion)
 - External attackers exist, but most unauthorized access incidents involve employees

Network Controls

 Network controls are safeguards that reduce or eliminate threats to network security

Preventative controls

- Mitigate or stop a person from acting or an event from occurring
- Act as a deterrent by discouraging or restraining

Detective controls

- Reveal or discover unwanted events (e.g., auditing)
- Documenting events for potential evidence

Corrective controls

Remedy an unwanted event or intrusion

- A key step in developing a secure network
- Assigns level of risks to various threats
- Risk assessment frameworks
 - Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
 - Control Objectives for Information and Related Technology (COBIT)
 - Risk Management Guide for Information Technology Systems (NIST guide)

- Risk Assessment Steps
- 1. Develop risk measurement criteria
- Inventory IT assets
- 3. Identify threats
- 4. Document existing controls
- 5. Identify improvements

- 1. Develop risk measurement criteria
 - The measures used to examine how threats impact the organization
 - Prioritize and evaluate each measure

Impact Area	Priority	Low Impact	Medium Impact	High Impact
Financial	High	Sales drop by less than 2%	Sales drop 2-10%	Sales drop by more than 10%
Productivity	Medium	Increase in operating expenses by less than 3%	Increase in operating expenses between 3-6%	Increase in operating expenses by more than 6%
Reputation	High	Decrease in number of customers by less than 2%	Decrease in number of customers by 2-15%	Decrease in number of customers by more than 15%
Legal	Medium	Incurring fines or fees less than \$10,000	Incurring fines or fees between \$10,000 and \$60,000	Incurring fines or fees exceeding \$60,000

2. Inventory IT assets

- Mission-critical applications and data are the most important
- Document and evaluate why each asset is important to the organization

Asset Type	Examples	
Hardware	 Servers (e.g., mail, web, and file servers) Client computers (e.g., desktops, laptops, tablets, phones, etc.) Networking devices (e.g., switches and routers) 	
Circuits	 LANs, Backbone networks, WANs, Internet access circuits 	
Software	 Operating systems (servers, clients, and networking devices) Application software Some applications may be mission-critical and warrant special attention 	
Organizational data	Databases	

Identify threats

- Any potential occurrence that can do harm, interrupt the systems using the network, or cause a monetary loss to the organization
- Create threat scenarios that describe how an asset can be compromised by a threat
 - Likelihood of occurrence
 - Potential consequences of threat
 - Risk Scores can be used to quantify the impact and likelihood of occurrence

Identify threats

FIGURE 11-5 Likelihood of a threat

- 4. Document existing controls
 - Identify controls and determine how they will be used in the risk control strategy
 - Risk acceptance
 - Organizations may choose to take no actions for risks that have low impacts
 - Risk mitigation
 - Use of control to remove or reduce impact of threat
 - Risk sharing
 - Transferring all or part of impact (e.g., insurance)
 - Risk deferring
 - For non-imminent risks

5. Identify improvements

- It is infeasible to mitigate all risks
- Evaluate adequacy of the controls and degree of risk associated with each threat
- Establish priorities for dealing with threats to network security

- Making certain that organization's data and applications will continue to operate even in the face of disruption, destruction, or disaster
 - Virus Protection
 - Denial of Service Protection
 - Theft Protection
 - Device Failure Protection
 - Disaster Protection

- Virus Protection
 - Nearly all organizations experience computer viruses
 - Widespread infection is less common
 - Viruses, worms, and Trojan horses
 - Malware, spyware, adware, and rootkits
 - Threat mitigated using antivirus software and training

- Denial of Service Protection
 - Denial of Service (DoS) attacks flood a network with messages that prevent normal access
 - A Distributed DoS (DDoS) attack uses multiple devices to perform the attack
 - DDoS attacks are often performed using a network of compromised devices (called agents, bots, or zombies)

FIGURE 11-8 A distributed denial-of-service attack

- Denial of Service Protection
 - Traffic filtering
 - Traffic limiting
 - Traffic analysis
 - Using traffic anomaly analyzer

FIGURE 11-9 Traffic analysis reduces the impact of denial of service attacks

- Theft Protection
 - Mitigated using physical security and training
- Device Failure Protection
 - All devices fail eventually
 - Methods of reducing failures or their impacts
 - Redundancy in devices and circuits
 - e.g., redundant array of independent disks (RAID)
 - Uninterruptible power supplies (UPS)
 - Failover server clusters (or high-availability clusters)

- Disaster Protection
 - Avoidance
 - e.g., storing data in multiple locations and avoiding locations prone to natural disasters
 - Disaster Recovery
 - Organizations should have a clear disaster recovery plan (DRP)
 - Identify responses to different types of disasters
 - Provide recovery of data, applications and network
 - Specify the backup and recovery controls
 - Some organizations outsource to disaster recovery firms

Virus Protection

Denial of Service Attack Protection

Theft Protection

Device Failure Protection

Disaster Protection

- Security Policy
- Physical Security
- Types of intruders
 - "Script kiddies" novices using software created by others
 - Recreational hackers motivated by philosophy or entertainment
 - Professional hackers performing espionage or fraud
 - Organizational employees

- 1. Casual intruder
- 2. Hacker
- 3. Professional.
- 1. Security Policy acceptable use policy, user training, annual risk assessment, reporting incidents insider (spam@ou.edu, security@ou.edu)
- 2. Perimeter Security and Firewalls
- 3. Server and Client Protection security holes, update patches, zero-day attacks, spyware, adware, Trojan
- 4. Encryption
- 5. User Authentication
- Preventing Social Engineering mock phishing attacks, user training
- 7. Intrusion Prevention Systems
- 8. Intrusion Recovery have a plan

- Firewalls restrict access to the network
- Packet-level firewalls
 - Examine the source/destination address of every packet
 - Using access control list (ACL) rules, decides which packets are allowed or denied

FIGURE 11-12

Using a firewall to protect networks

Packet-level firewall

FIGURE 11-13 How packet-level firewalls work

- Application-level firewalls
 - Use stateful inspection to examine traffic at layer 5 for anomalous behavior
- Network address translation (NAT)
 - Converts one IP address to another
 - Often from a publicly routable address to a private address

10.0.0.1

208.64.38.55

Internet

FIGURE 11-14 A typical network design using firewalls

NAT Firewall

Class A 10.0.0.0 – 10.255.255.255 Class B 172.16.0.0 – 172.31.0.0 Class C 192.168.0.0 – 192.168.255.255

SIP should be 192.168.1.3

FIGURE 11-18 Intrusion prevention system (IPS) DMZ = demilitarized zone; DNS = Domain Name Service; NAT = network address

Layered Architecture

- Encryption is disguising information using mathematical rules, providing confidentiality
- The strength of the encryption is based on
 - The strength of the algorithm
 - The strength of the key
- Often the algorithm is widely known
- A brute-force attack on encryption means to try every possible key

Symmetric encryption

- Uses a single key for encrypting and decrypting
- Challenge in sharing key
- Used for bulk encryption because the algorithms are usually fast
- Stream Ciphers
 - Encrypt one bit at a time
 - e.g., RC4
- Block Ciphers
 - Encrypt a group of bits at a time
 - e.g., advanced encryption standard (AES)

Symmetric Encryption Algorithm Symmetric Encryption Algorithm

Asymmetric (public-key) encryption

- A pair of keys are used
- One key is designated the public key and can be freely shared
- The other key is designated the secret private key
- When a message is encrypted using one key, it can only be decrypted with the other
- Based on mathematical calculations that are easy in one direction but difficult in reverse
- e.g., RSA

Sender

Receiver

Receiver Public KEY Receiv er Private KEY

Receiver Public KEY

Cleartext Message

Secrets!

Asymmetric Encryption Algorithm **Asymmetric Encryption**

 The sender uses the public key of the receiver to encrypt the message and then the receiver uses its private key to decrypt

Asymmetric Encryption Algorithm

- Asymmetric (public-key encryption)
 - The public key infrastructure (PKI) is a set of hardware, software, organizations, and policies to associate a set of keys with an individual or organization
 - Certificate authorities (CAs) are trusted organizations that issue digital certificates proving that an individual or organization owns a public key
 - Digital certificates can be used to authenticate messages

Sender

Receiver

Sender Private KEY

Sender Public KEY

Cleartext Message

Secrets!

Asymmetric Encryption Algorithm

Message Authentication

 The sender uses its private key encrypt the message and then the receiver uses the sender's public key to decrypt

Asymmetric Encryption Algorithm

Encryption

- Single key
 - DES 56 bit key characters
 - Breakable by Brute force method
 - Triple DES (3x DES)⁷ characters
 - 3x 56 bit (Unbreakable)
 - AES 16 characters, 24 characters, 32 characters

Key management is a problem

Encryption (cont.)

Dual key

• 2 keys (1 public encryption, 1 private decryption) PBBJ/hKyppoi1BPxcKc+M4vRQlbsaV6Rlmb4+eQ0EbPhumYVO

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBFRQCxgBCACaDQWRERL/VuDC6tcLPSL7cmxuFT0vQNKv42WrCSydS00fvLAP 51Xk44rss4eYEJV1nqKCOF3DkUIWt0zgtQaCJ2oV6dWH9DiXTklY3Kx8467

Version: GnuPG v2

18GkOFYNE0ISJ4MpCGiWpHMGGfU2m1nGJ4PVRt7cZj77jjiouS/D4X/c3Mc • 256, 512, 1024 bits TlabaWiZZ6/7d1mTHPLHSCkC4m74kCumeUGL/UUZWjt2Szrf17d5bsl5UEw ueuXFt5Oo6wL2LdYM2bCDBd9MHIJ/4VVwMVtABEBAAG0IUFsZXhhbmRy aWtvdmEgPGFsZXhAb3UuZWR1PokBOQQTAQIAIwUCVFALGAIbLwcLCQ Receiver's **aHAwIBBhUI** AgkKCwQWAgMBAh4BAheAAAoJEBHVM4CfRB/SgYAH/Rr1S8T1XOPIxN6 **PUBLIC KEY** Cypher text Internet AXybDjj1qMLkDfqAnT7sd7m1 8PAAx6YERboZBES/QHRRBYm+5qAjWys2wVb+ VDJufy8o= =Y6Fk ----END PGP PUBLIC KEY BLOCK-----

Friend's • Digital Signature PUBLIC KEY Signed/Authenticated Alex's Signed text **PRIVAT** Cypher text E KEY This is an example of a clearsigned message. The digital signature is attached below. Internet TEXT Ale Χ Decrypted Signed Signed Authenticate Cypher text **TEXT** d Text TEXT **→TEXT** Decrypt Alex's Friend's **PUBLIC PRIVATE** Frien **KEY KEY**

- Applications of encryption
 - Pretty good privacy (PGP) is used for encrypting email and some files
 - Transport layer security (TLS) succeeds secure sockets
 layer (SSL) as the primary encryption protocol on the Internet
 - IP security protocol (IPSec) is a network layer encryption protocol

- User authentication
 - User profiles are used to manage access to resources
 - Types of authentication
 - Something you know
 - e.g., passwords, passphrases, and pin numbers
 - Something you have
 - e.g., access cards, smart cards, tokens, phones
 - Something you are
 - Biometrics like fingerprints, handprints, retina
 - Using multiple types of authentication provides increased security (multi-factor authentication)
 - Most organizations moving to centralized authentication

User Authentication

Level 2 – Something you have

Access Card
Token/One time password

Single Sign On

Central Authentication – RADIUS, PAP, CHAP, EAP, KERBEROS

Social Engineering - Phishing

Recovery

- Public statements
- Correct security plan
- Collect evidence for court
 - □ Forensic computing

Recommended Practices

- Clear disaster recovery plan
- Strong security policy
 - Rigorously enforced
 - User training
- Use of security controls
- Content filtering

Implications for Management

- Fastest growing area of networking
- Cost of security expected to increase
 - More sophisticated controls
 - More sophisticated attacks
- Network becoming mission critical

Best Practice Recommendations

- Security policy
- Disaster recovery plan
- □ Encryption stored data & moving data
- Content filtering
- Security attacks are here to stay

