On three domination-based identification problems on block graphs*

Dipayan Chakraborty[†]

— joint work with

Florent Foucaud[†], Aline Parreau[‡] & Annegret Wagler[†]

 $^{^*{\}rm This}$ work was sponsored by a public grant overseen by the French National Research Agency as part of the "Investissements d'Avenir" through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001).

[†]LIMOS, Université Clermont Auvergne, France

[‡]CNRS, LIRIS, Université Claude Bernard Lyon 1, France

[Karpovsky et. al., 1998]

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

Open-locating-dominating set

[Karpovsky et. al., 1998]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set

(LD-set) [Slater, 1987]

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set (LD-set) [Slater, 1987]

• B is a dominating set of G; Unique $N(v) \cap B \ \forall v \notin B$.

• B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.

Locating-dominating set (LD-set) [Slater, 1987]

• B is a dominating set of G; Unique $N(v) \cap B \ \forall v \notin B$.

Open-locating-dominating set (OLD-set) [Seo & Slater, 2010]

• B is total-dominating set of G; Unique $N(v) \cap B \ \forall v \in V(G)$.

- B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.
- ID-number $\gamma^{ID}(G) = \min |B|$ \forall ID-code B of G

Locating-dominating set (LD-set) [Slater, 1987]

- B is a dominating set of G; Unique $N(v) \cap B \ \forall v \notin B$.
- LD-number $\gamma^{LD}(G) = \min |B|$ \forall LD-set B of G

- B is total-dominating set of G; Unique $N(v) \cap B \ \forall v \in V(G)$.
- OLD-number $\gamma^{OLD}(G) = \min |B| \ \forall \ \text{OLD-set} \ B \ \text{of} \ G$

- B is a dominating set of G; Unique $N[v] \cap B \ \forall v \in V(G)$.
- ID-number $\gamma^{ID}(G) = \min |B|$ \forall ID-code B of G

Locating-dominating set (LD-set) [Slater, 1987]

- B is a dominating set of G; Unique $N(v) \cap B \ \forall v \notin B$.
- LD-number $\gamma^{LD}(G) = \min |B|$ \forall LD-set, B of G

Open-locating-dominating set (OLD-set) [Seo & Slater, 2010]

- B is total-dominating set of G; Unique $N(v) \cap B \ \forall v \in V(G)$.
- OLD-number $\gamma^{OLD}(G) = \min |B| \ \forall \ \text{OLD-set} \ B \ \text{of} \ G$

Exists only if G is closed twin-free.

Always exists!

Exists only if G is open twin-free and has no isolated vertices.

Some examples of code numbers

(a)
$$\gamma^{ID}(St_6) = \gamma^{LD}(St_6) = 5$$

(a)
$$\gamma^{OLD}(HG) = 8$$

(b)
$$\gamma^{LD}(K_6) = \gamma^{OLD}(K_6) = 5$$

(b)
$$\gamma^{OLD}(SSt_6) = 12$$

Theorem (Conjecture. Argiroffo et. al. (2018))

Let G be a closed twin-free block graph. Then $\gamma^{ID}(G) \leq n_Q(G)$, where $n_Q(G)$ is the number of blocks of G.

Theorem

Let G be a block graph, $n_Q(G)$ be the number of blocks of G and $S = \{S \subset V(G) : S \text{ is a maximal set of pairwise closed twins in some block }\}$. Then, $\gamma^{LD}(G) \leq n_Q(G) + \sum_{S \in S} (|S| - 2)$.

Theorem

Let G be a twin-free block graph without isolated vertices. Then, $\gamma^{LD}(G) \leq \frac{1}{2}|V(G)|$.

Conjecture. Garijo et. al (2014): Let G be a twin-free graph without isolated vertices. Then, $\gamma^{LD}(G) \leq \frac{1}{2}|V(G)|$.

Theorem

Let G be an open twin-free block graph, with no isolated vertices and $G \not\cong P_2$, P_4 . Let $m_Q(G)$ be the number of non-leaf blocks with at least one non-articulation vertex. Then, $\gamma^{OLD}(G) \leq |V(G)| - 1 - m_Q(G)$.

Foucaud et. al. (2021): For an open twin-free graph G, $\gamma^{OLD}(G) \leq |V(G)| - 1$ unless G is a half-graph (a special kind of bipartite graph)

Theorem

Let G be a block graph. Then

- $\gamma^{ID}(G) \ge \frac{|V(G)|}{3} + 1$,
- $\gamma^{OLD}(G) \geq \frac{|V(G)|}{3} + 1$ (except when $G \cong$ kite), and
- $\gamma^{LD}(G) > \frac{|V(G)|+1}{2}$.

General lower bound: $\gamma^{ID}(G)$, $\gamma^{LD}(G)$, $\gamma^{OLD}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

(b)
$$\gamma^{OLD}(G) = 6, |V(G)| = 15$$

(a)
$$\gamma^{ID}(G) = 6$$
, $|V(G)| = 15$ (b) $\gamma^{OLD}(G) = 6$, $|V(G)| = 15$ (c) $\gamma^{LD}(G) = 6$, $|V(G)| = 17$

Theorem

Let G be a block graph. Then

- $\gamma^{ID}(G) \geq \frac{3(n_Q(G)+2)}{7}$,
- $\gamma^{LD}(G) \geq \frac{n_Q(G)+2}{3}$, and
- $\gamma^{OLD}(G) \geq \frac{n_Q(G)+3}{2}$.

(b)
$$\gamma^{OLD}(G) = 6$$
, $|V(G)| = 10$

(c)
$$\gamma^{LD}(G) = 5$$
, $|V(G)| = 12$

Thank you!