浙江大学 20<u>19</u> - 20<u>20</u> 学年<u>秋冬</u>学期 《计算机组成与设计》课程期末考试试卷

·课程号: 67190020 ,开课学院: _**信息与电子工程学院**_

允许带 1 张 A4 大小的手写资料和计算器入场

考试日期: 2020 年 1 月 12 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

所属院系(专业):

J /	ш д	,	· ———		/ / -4 /0/4	· • ==>•		 _
题序	_	 111	四	五	六	七	八	总 分
得分								
评卷人								

I. CHOICE (Only one correct answer, 60 points)

1. Compute the average CPI (Clock cycle Per Instruction) of the following instructions. (_____)

Instruction type	СРІ	Frequency
ALU	1	50%
Branch	2	20%
Load	2	20%
Store	2	10%

٨	1	Λ
Α.	1	.U

考牛姓名:

B. 1.5

C. 2.0

D. 2.5

- 2. What is the content of stack pointer (SP)? (_____)
- A. address of the current instruction
- B. address of the next instruction
- C. address of the top element of the stack
- D. size of the stack
- 3. What is the function of the compiler? (_____)
- A. Translates assembly language into binary instructions.
- B. Translates source code into intermediates and immediately executes it.
- C. Combines independent programs and resolves labels into an executable file.
- D. Translate a high-level language into assembly language.

4. The bit used to signify that the cache location is updated is (). A. Dirty bit
B. Update bit
C. Reference bit
D. Flag bit
2.1 mg on
5. Interrupts can be generated in response to ().
A. detected program errors such as arithmetic overflow or division by zero
B. detected hardware faults
C. input/output activities
D. All of the above.
6. Write Through technique is used in which memory for updating the data? ()
A. Virtual memory
B. Main memory
C. Auxiliary memory
D. Cache memory
7. The execution of the following two instructions may have the ().
lw x5,0(x6)
lw x7,0(x5)
A. RAW (Read after Write)
B. WAW (Write after Write)
C. WAR (Write after Read)
D. No data dependency.
8. Forwarding is a technique used in a pipeline to reduce the number of stall cycles caused by
hazards. Each sequence of instructions shown below causes a hazard for the version of the
RISC-V pipeline that we studied in class. The pipeline bubble that would be caused by some o
these hazards can be avoided through the use of forwarding. Others cannot. Mark the sequences
for which the bubble cannot be avoided through forwarding. ()
A. $lw x5, 0(x6)$
sll x9, x10, x11
add x7, x8, x5
B. add x7, x8, x9
beq x7, x0, L2
C. sub x5, x6, x7
add x8, x9, x5
D. $lw x5, 0(x6)$
add x7, x8, x5

9. The RISC-V addressing mode of "jal x1, 100" is ().
A. Immediate addressing
B. Base addressing
C. PC-relative addressing
D. None of the above.
10. Which type of parallel computing architecture is no longer commonly encountered in machines today? ()
A. MIMD (Multiple Instruction/Multiple Data Stream)
B. MISD (Multiple Instruction/Single Data Stream)
C. SIMD (Single Instruction/Multiple Data Stream)
D. SISD (Single Instruction/Single Data Stream)
11. Calculate AMAT (Average Memory Access Time) for a machine with the following specs: L1
hits take 3 cycles, L1 local miss rate is 25%. L2 hits take 10 cycles, L2 local miss rate is 60%. L3
hits take 100 cycles, L3 global miss rate is 9%. Main memory accesses take 1000 cycles and all
data is available in memory. ()
A. 105.5 cycles
B. 110.5 cycles
C. 24.5 cycles
D. None of the above.
12. Suppose you have a cache with capacity of 2 ¹⁵ bytes, with 32-byte blocks. Assume the cache is
two-way set associative. How many bits are used to select the set? ()
A. 9 bits
B. 8 bits C. 7 bits
D. None of the above.
D. None of the above.
13. You have a cache with 8B blocks, and a total size of 64B. The cache is two-way set associative Use a least-recently used replacement policy. Given this sequence of accesses on word-addressed memory (4B), what is the hit rate? ()
0, 1, 2, 15, 17, 0, 32, 1
A. 12.5%
B. 25.0%
C. 37.5%
D. None of the above.
14. For a computer with an 8-bit address space, a 64-byte, 2-way set-associative cache has 4B
cache line size. How many bits are there in such cache's tag? ()
A. 2
B. 3
C. 5
D. None of the above.

15. The drawback of building a large memory with DRAM (Dynamic Random Access Memory) is
(
A. The large cost factor
B. The inefficient memory organization
C. The Slow speed of operation
D. All of the mentioned
2.1.11.01.01.01.01.01.01.01
16. What is the decimal of the binary real number 10.01×2^{-1} ? ()
A. 1.125
B. 2.75
C. 2.625
D. 1.375
17. What is the RISC-V assembly code for the binary? ()
00100100011000111010110000100011
A. sw t1, 600(t2)
B. sw t1, 1200(t2)
C. sw t2, 600(t1)
D. sw t2, 1200(t1)
18. The effectiveness of the cache memory is based on the property of ().
A. Locality of reference
B. Memory localization
C. Memory size
D. None of the mentioned
2.1 voice of the inclusioned
19. An L2 cache, out of 100 total accesses to the cache system, missed 20 times. If L1 cache had a
miss rate of 50%, what is the local miss rate of L2 cache? ()
A. 20%
B. 30%
C. 35%
D. 40%
2. 10/0
20. Virtual memory uses a page table to track the mapping of virtual addresses to physical
addresses. Assume 4 KiB pages, 32-bit virtual address. A cache designer wants to design a
virtually indexed, physically tagged cache. To make an 8 KiB direct-mapped cache, assuming 4
words per block. What is the associativity? ()
A. The cache is direct-mapped.
B. The cache is two-way set associative.
C. The cache is four-way set associative.
D. None of the above.
D. None of the above.

II. <u>T</u> RU	E OR E	ALSE (10 points)					
1M	Iultiple lev	vels of page tables will i	ncrease the	total amour	nt of page ta	able storage).
2St	tatic RAM	is typically used to imp	olement Ca	che.			
3F	irst-level o	caches are more concer	ned about	miss rate, a	nd second-l	level caches	s are more
co	oncerned a	bout hit time.					
4T	wo's comp	lement in 8 bits for -128	8 is 1000 0	000.			
5W	hen meeti	ing cache misses, "no w	rite allocat	e" means on	ly writing t	o main mer	nory.
6Pi	pelining a	processor implementat	ion probab	ly will incre	ase through	put.	
7If	hit rates a	re well below 0.9, then	they're cal	led as speed	y computer	S.	
8A	ssume two	cache designs CA and	C _B have th	e same bloc	k size. C _A	is a 32 KiB	2-way set
as	sociative	cache and C _B is a 16 Ki	B direct-ma	apped cache	. The lengtl	h of the tag,	, measured
in	the numb	er of bits, is the same in	C _A and in	C_{B} .			
9E	ach stage i	in pipelining should be	completed	within 5 cyc	les.		
101	f a data ca	ache does not contain a	dirty bit, th	en it must b	e using a w	rite-through	policy.
III. CA	CHE (8)	points)					
The conte	ents of an	associative cache are sh	nown belov	v. This cach	e has four-b	yte blocks	and 32-bit
addresses	s. Tags and	d sets are shown in bina	ry, and data	a values in l	nex. The "	" should b	e replaced
by an app	ropriate n	umber of 0's.					
							=
Set	V	Tag	0	1	2	3	
0	1	11110011110000	0x44	0x33	0x22	0x11	Line A
0	1	10000010110010	0xAA	0xBB	0xCC	0xDD	Line B
1	1	10000011110000	0x01	0x02	0x03	0x04	Line C
1	1	10000010000000	0x12	0xAB	0x34	0xEF	Line D
							_
What are	the addre	esses that are cached in	each bloc	k? Write the	e range in l	hexadecima	l using all
eight digi	ts, e.g. 0x	00000000-0x000000AC	2.				
Line A: _			 				
Line B: _							
Line C:							
Lina D:							

IV. PIPELINE (12 points)

Data hazards occur due to data dependencies among instructions. Forwarding (aka bypassing) can solve many data hazards. We assume that the write is in the first half of the clock cycle and the read is in the second half.

1. Given the RV32I code below, spot the data dependencies in the code below. (2 points)

Figure out how forwarding can resolve data hazards. (2 points)

Instruction	C0	C1	C2	С3	C4	C5	C6
addi t0, s0,-1	IF	ID	EX	MEM	WB		
and s2, t0, a0		IF	ID	EX	MEM	WB	
sw s0, 100(t0)			IF	ID	EX	MEM	WB

2. Given the RV32I code below and a pipelined CPU with no forwarding, write out all hazards, using the following form: instruction 1-2. (4 points)

What types are each hazard (data hazard or control hazard)? (2 points)

How many stalls would there need to be in order to fix each data hazard(s)? (2 points)

	Instruction	C0	C1	C2	C3	C4	C5	C6	C7	C8
1	addi t0, s0,-1	IF	ID	EX	MEM	WB				
2	and s2, t0, a0		IF	ID	EX	MEM	WB			
3	sw s2, 100(t0)			IF	ID	EX	MEM	WB		
4	beq s0, s3, label				IF	ID	EX	MEM	WB	
5	addi t2, x0, x0					IF	ID	EX	MEM	WB

V. VIRTUAL MEMORY (10 points)

Given the information below:

- ➤ 1 MiB of virtual memory
- ➤ 256 KiB of physical memory
- ➤ 4 KiB page size
- > TLB: 8 entries, 2-way set associative
- 1. How many bits are needed to represent the virtual address space, physical address space and page offset respectively? (3 points)
- 2. How many bits are in the TLB index and TLB tag respectively? (2 points)
- 3. Translate virtual address 0x15213 to physical address, given the contents of the TLB and the first 32 entries of the page table below. (5 points)

TLB

Index	Tag (Hex)	Physical page number (Hex)	Valid
0	05	13	1
U	3F	15	1
1	10	0F	1
1	0F	1E	0
2	1F	01	1
2	11	1F	0
3	03	2B	1
3	1D	23	0

Page Table

VPN(Hex)	PPN(Hex)	Valid	VPN(Hex)	PPN(Hex)	Valid
00	17	1	10	26	0
01	28	1	11	17	0
02	14	1	12	0E	1
03	0B	0	13	10	1
04	26	0	14	13	1
05	13	0	15	18	1
06	0F	1	16	31	1
07	10	1	17	12	0
08	1C	0	18	23	1
09	25	1	19	04	0
0A	31	0	1A	0C	1
0B	16	1	1B	2B	0
0C	01	0	1C	1E	0
0D	15	0	1D	3E	1
0E	0C	0	1E	27	1
0F	2B	1	1F	15	1

VPN=
TLB Tag=, TLB miss or hit
Page table miss or hit
Physical Address= (If you don't have enough information to fill the blank, fill the blank
with "/")

Instruction encoding for a reducing RISC-V ISA

name	format type	instruction format					
beq	B-type	imm[12/10:5]	rs2	rs1	000	imm[4:1/11]	1100011
lw	I-type	imm[11:0]		rs1	010	rd	0000011
sw	S-type	imm[11:5]	rs2	rs1	010	imm[4:0]	0100011
addi	I-type	imm[11:0]		rs1	000	rd	0010011
add	R-type	0000000	rs2	rs1	000	rd	0110011
sub	R-type	0100000	rs2	rs1	000	rd	0110011
sll	R-type	0000000	rs2	rs1	001	rd	0110011
srl	R-type	0000000	rs2	rs1	101	rd	0110011
or	R-type	0000000	rs2	rs1	110	rd	0110011
and	R-type	0000000	rs2	rs1	111	rd	0110011
jal	J-type	imm[20/10:1/11/19:12]				rd	1101111