Session 7: Spectral Theorem, PCA and SVD

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. The Spectral Theorem
- 2. Principal Component Analysis
- 3. Singular Value Decomposition

The Spectral Theorem

The Spectral Theorem 1/1

The spectral theorem

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

Theorem (Matrix formulation)

Let $A\in\mathbb{R}^{n\times n}$ be a **symmetric** matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n\times n$ such that

$$A = PDP^{\mathsf{T}}.$$

The Spectral Theorem 2/17

Geometric interpretation

The Spectral Theorem

The Theorem behind PCA

Theorem

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be an associated orthonormal family of eigenvectors. Then

$$\lambda_1 = \max_{\|v\|=1} v^\mathsf{T} A v$$
 and $v_1 = \underset{\|v\|=1}{\operatorname{arg \, max}} v^\mathsf{T} A v$.

Moreover, for $k = 2, \ldots, n$:

$$\lambda_k = \max_{\|v\| = 1, \, v \perp v_1, \dots, v_{k-1}} v^\mathsf{T} A v \,, \quad \text{and} \quad v_k = \argmax_{\|v\| = 1, \, v \perp v_1, \dots, v_{k-1}} v^\mathsf{T} A v.$$

The Spectral Theorem 4/17

Proof

The Spectral Theorem

UU											

Proof

The Spectral Theorem

UU											

Proof

The Spectral Theorem

UU											

Empirical mean and covariance

We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$

$$d=1$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2 \in \mathbb{R}$$

Empirical mean and covariance

We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$

$$d = 1$$

$$d \ge 2$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}^d$$

Covariance matrix

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)^2 \in \mathbb{R}$$

$$\in \mathbb{R}$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_i a_i^\mathsf{T} \qquad \text{if } \mu = 0.$$

 $S = \frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)(a_i - \mu)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$

PCA

- We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$, where d is «large».
- **Goal:** represent this dataset in lower dimension, i.e. find $\widetilde{a}_1,\ldots,\widetilde{a}_n\in\mathbb{R}^k$ where $k\ll d$.
- Assume that the dataset is centered: $\sum_{i=1}^{n} a_i = 0$.
- Then, S can be simply written as:

$$S = \sum_{i=1}^{n} a_i a_i^{\mathsf{T}} = A^{\mathsf{T}} A.$$

where A is the $n \times d$ "data matrix":

$$A = \begin{pmatrix} -a_1 - \\ \vdots \end{pmatrix}$$
.

Direction of maximal variance

Direction of maximal variance

Direction of maximal variance

Good news: $S = AA^{\mathsf{T}}$ is symmetric.

Spectral Theorem: let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of S and (v_1, \ldots, v_n) an associated orthonormal basis of eigenvectors.

2nd	dir	ect	ion	of	ma	axi	m	al	vai	ria	nc	е	

11/17

$k^{\scriptscriptstyle ext{\tiny LI}}$	¹dir	ect	ion (of m	axim	ial va	rian	ce

Principal Component Analysis

Which value of k should we take?

13/17

Singular Value Decomposition

S	in	g	ul	a	r١	va .	ılı	Je	S	/V	e	ct	0	rs	

15/17

Singular Value Decomposition

Singular Value decomposition

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j$, that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

Geometric interpretation of $U\Sigma V^{\mathsf{T}}$

Questions?

Questions?

