Zahlensysteme v1.2

Kurzzusammenfassung über Zahlensysteme: Rechenoperationen und Konvertierungen. Inklusive Look-Up-Tables für ganze faule. Diesmal eines ohne Kopfzeile um Platz zu sparen. https://github.com/eisenwinter/fh-hgb-stuff, MIT Jan Caspar, Aktualisiert 30. Jänner 2017

Zahlensysteme

Konvertierungen

Dual in Dezimal

Sollte eigentlich klar sein.

- 1. Indizes anschreiben
- 2. Radix hoch Zahlenindex mal Zahl und aufsummieren

		паспкотт	4
	210 -1	$\overline{}$	
ispiel	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 * 2^{-1}$	$= 5, 5_{10}$

Dezimal in Dual (Hornerschema)

Sollte eigentlich klar sein.

Vorkommastellen

Beispiel $91_{10} = ?_2$

Bei

- $91/2 = 24 R 1 a_0$
- $45/2 = 22 R 1 a_1$
- $22/2 = 11 \text{ Ro } a_2$
- $11/2 = 5 R 1 a_3$
- $5/2 = 2 R 1 a_4$
- $2/2 = 1 \text{ Ro } a_5$
- $1/2 = 0 R 1 a_6 \uparrow$
- 1011011₂! Von unten nach oben Rest!

Nachkommastellen

Beispiel $0,375_{10} = ?_2$

- \cdot , 375 * 2 = 0, 75
- \cdot , 75 * 2 = 1, 5
- $, 5 * 2 = 1, 0 \rightarrow$ ewig weiter, oer bleibt

 $0.375_{10} = 0.011_2$

Beliebig in Dezimal (Hornerschema)

5423gins Dezimalsystem

- Wir ermitteln den Radix, also wir lesen einfach was hinten für ne Basis steht. In dem Fall ist es ist die 8. Das notieren wir uns mit x = 8
- 2. Wir stellen die Tabelle für alle Zahlen auf. Die sieht so aus:

x=8	5	4	2	3

3. Im nächsten Schritt schreiben wir die o unter den 5er, weil die Ziffer links vom 5er ja eigentlich die o ist. (Das was in der Formel mit a_{n-1} angeschrieben ist.

3			(
x=8	5	4	2	3
	0			

4. Nun addieren wir die Werte. 5 + 0 = 5

x=8	5	4	2	3
	0			
	5			

5. Jetzt brauchen wir unser x, wir multiplizieren das Ergebnis mit unserem x, in diesem

13 * 8 = 40				
<= 8	5	4	2	3
	0	40		
	5			

6. Nun wiederholen wir die Schritte bis wir bei der letzten Spalte angekommen sind.

x=8	5	4	2	3
	0	40	352	2832
	5	44	354	2835

Sonderfall Radix von 2er Potenzen (Bin, Hex, Okt)

- $1011111011, 11_2 = ?_{16}$
- 0001 | 0111 | 1011, | 1100 (4er Gruppen bilden, auffüllen auf ganze Gruppe)
- $17BC \rightarrow 17B, C_{16} = 101111011, 11_2$

Hexadezimal in Dual

Ähnlich wie beim Umrechnen von einer Binärzahl in eine Hexadezimalzahl , wird beim umgekehrten Weg einfach jede Ziffer der Hexadezimalzahl durch das entsprechende Vierer-Paar an Binärzahlen ersetzt.

Dez	Hex	Bin	Okt	Dez	Hex	Bin
0	0	0	0	8	8	1000
1	1	1	1	9	9	1001
2	2	10	2	10	А	1010
3	3	11	3	11	В	1011
4	4	100	4	12	С	1100
5	5	101	5	13	D	1101
6	6	110	6	14	E	1110
7	7	111	7	15	F	1111

Beispiel 2 *B C E* 1₁₆ = (00)10 1011 1100 1110 0001₂

Beispiel $22761_8 = (0)10010111110001_2$

Oktal in Hexa

 $15053_8 = ?_{16}$

- 1. Umwandeln in Dezimal $1 * 8^4 + 5 * 8^3 + 0 * 8^2 + 5 * 8^1 + 3 * 8^0 = 6699$
- 2. Umwandeln in Hex

Zahl	Quotient	Rest
6699 : 16 =	418	11 = <i>B</i>
418 : 16 =	26	2
26 : 16 =	1	10 = A
1 : 16 =	0	1

Ergebnis $15053_8 = 1A2B_{16}$

BCD

	Ziffer	Code
Γ	0	0000
ľ	1	0001
	9	1001

 $12, 3_{10} = (00010010, 001)_{BCD}$

Gleitkommadarstellung

1	е	m+n
S	E	М

$$Exp = E - offset(bias)$$

Beispiel

N = '	101101, 1	$01_2 \rightarrow Gleitkom$	madarstellung mit $e = 5$, $m + n = 10$, Exzess-16
1	e=5	m+n = 10	
0	10110	,1011011010	

$$101101, 101_2 = 0, 101101101_2 * 2^6$$

- $0_{10} = 10000_{E16}$
- $1_{10} = 10001_{E16}$
- · 2₁₀ = 10010_{F16}
- $6_{10} = 10100_{E16}$

18,4 in dualer Gleitkommadarstellung

- 1. Vorkommazahl umrechnen (18 \rightarrow 10010)
- 2. Nachkommazahl umrechnen $(0, 4 \rightarrow 0, 01100110011...)$ Gesamtergebnis!
- 3. Normieren bzw. Normalisieren (Mantisse ermitteln). Bei der Normalisierung verschiebt man das Komma so, das man eine normalisierte Zahl erhält. (10010, 0110011 $\cdots * 2^0 \rightarrow 1,00100110011 \cdots * 2^4)$ (1 = hidden bit)
- 4. Exponent umrechnen (Charakteristik ermitteln). Um wie viel der Wertebereich verschoben wird, h\u00e4ngt von der gew\u00e4hlten Genauigkeit (Anzahl der Bits) ab. Einfach Genauigkeit (32 Bit) bedeutet einen Bias von 127. Da wir mit einer einfachen Genauigkeit (32 Bit) arbeiten entspricht das einem Versatz (Bias) von 127. Im Prinzip zieht man den Bias vom ermittelten Exponenten (durch die Normalisierung) ab und erh\u00e4lt auf diese Weise die Charakteristik. Charakteristik = Exponent * Bias = 4 + 127 = 131 = 100000112
- 5. Vorzeichen bestimmen Positiv = o, Negativ = 1

1	e=8	m+n = 23
0	10000011	001001100110011

Rechenoperationen

Dualsystem

Multiplikation

Subtraktion (2K)

$$7_{10} - 9_{10} \rightarrow 7 + (-9) = -2$$

$$7_{10} = 111_2 = 0111_{2k}$$

$$9 = -1001_2 = -01001_2 = 10110 + 1 = 10111_{2k}$$

$$00111_{2k} signext!$$

$$\frac{10111_{2k} + 0}{0}$$

$$01111_{0} \rightarrow \ddot{U}bertrag$$

Übertrag gleich, weglassen! Probe 11110_{2k} -16 + 8 + 4 + 2 = -2 bzw $10_{2k} = -2 + 0 = -2_{2k}$

Tabellen

Lookup -25 bis +37

LOUK	up -25 n	3,		
Dez	Bin	Hex	Okt	Bin2k (10bit)
-25	-11001	- 19	-31	1111100111
-24	-11000	- 18	-30	1111101000
-23	-10111	- 17	-27	1111101001
-22	-10110	-16	-26	1111101010
-21	-10101	- 15	-25	1111101011
-20	-10100	- 14	-24	1111101100
-19	-10011	- 13	-23	1111101101
-18 -17	-10010 -10001	-12	-22	1111101110 1111101111
-16	-10001	-11 -10	-21 -20	1111110000
-15	-1111	-10 -F	-17	1111110000
-14	-1110	-E	-16	1111110001
-13	-1101	-D	- 15	1111110011
-12	-1100	-c	- 14	1111110100
-11	-1011	-В	- 13	1111110101
-10	-1010	-A	-12	1111110110
- 9	-1001	-9	-11	1111110111
-8	-1000	-8	-10	1111111000
- 7	-111	-7	-7	1111111001
- 6	-110	-6	-6	1111111010
- 5	-101	-5	-5	1111111011
-4	-100	-4	-4	1111111100
- 3	-11	-3	-3	1111111101
- 2	-10	-2	-2	1111111110
- 1	-1	-1	-1	1111111111
0	0	0	0	000000000
1	1	1	1	000000001
2	10	2	2	000000010
3	11 100	3	3	000000011 000000100
4	100	4	4	000000100
5 6	110	5 6	5 6	000000101
7	111	7	7	0000000110
8	1000	8	10	0000001000
9	1001	9	11	0000001001
10	1010	A	12	0000001010
11	1011	В	13	0000001011
12	1100	С	14	0000001100
13	1101	D	15	0000001101
14	1110	Е	16	0000001110
15	1111	F	17	0000001111
16	10000	10	20	0000010000
17	10001	11	21	0000010001
18	10010	12	22	0000010010
19	10011	13	23	0000010011
20	10100	14	24	0000010100
21	10101	15	25	0000010101
22	10110 10111	16 17	26	0000010110 0000010111
23 24	11000	18	27 30	0000010111
25	11000	19	31	0000011000
26	11010	19 1A	32	0000011001
27	11010	1B	33	0000011010
28	11100	1C	34	0000011100
29	11101	1D	35	0000011101
30	11110	1E	36	0000011110
31	11111	1F	37	0000011111
32	100000	20	40	0000100000
33	100001	21	41	0000100001
34	100010	22	42	0000100010
35	100011	23	43	0000100011
36	100100	24	44	0000100100
37	100101	25	45	0000100101

Lookup 38 bis 105

Dez	Bin	Hex	Okt	Bin2k (10bit)
38	100110	26	46	0000100110
39	100111	27	47	0000100111
40	101000	28	50	0000101000
41	101001	29	51	0000101001
42	101010	2A	52	0000101010
43	101011	2B	53	0000101011
	101100	2B 2C		0000101011
44	101100	2C 2D	54	0000101100
45		ļ	55	
46	101110	2E	56	0000101110
47	101111	2F	57	0000101111
48	110000	30	60	0000110000
49	110001	31	61	0000110001
50	110010	32	62	0000110010
51	110011	33	63	0000110011
52	110100	34	64	0000110100
53	110101	35	65	0000110101
54	110110	36	66	0000110110
55	110111	37	67	0000110111
56	111000	38	70	0000111000
57	111001	39	71	0000111001
58	111010	3A	72	0000111010
59	111011	3B	73	0000111011
60	111100	3C	74	0000111100
61	111101	3D	75	0000111101
62	111110	3E	76	0000111110
63	111111	3F	77	0000111111
64	1000000	40	100	0001000000
65	1000001	41	101	0001000001
66	1000010	42	102	0001000010
67	1000011	43	103	0001000011
68	1000100	44	104	0001000100
69	1000101	45	105	0001000101
70	1000110	46	106	0001000110
71	1000111	47	107	0001000111
72	1001000	48	110	0001001000
73	1001001	49	111	0001001001
74	1001010	4A	112	0001001010
75	1001011	4B	113	0001001011
76	1001100	4C	114	0001001100
77	1001101	4D	115	0001001101
78	1001110	4E	116	0001001110
	1001111	1	117	0001001111
79 80		4F	117	0001001111
	1010000	50		
81	1010001	51	121	0001010001
82	1010010	52	122	0001010010
83	1010011	53	123	0001010011
84	1010100	54	124	0001010100
85	1010101	55	125	0001010101
86	1010110	56	126	0001010110
87	1010111	57	127	0001010111
88	1011000	58	130	0001011000
89	1011001	59	131	0001011001
90	1011010	5A	132	0001011010
91	1011011	5B	133	0001011011
92	1011100	5C	134	0001011100
93	1011101	5D	135	0001011101
94	1011110	5E	136	0001011110
95	1011111	5E	137	0001011111
95 96	1100000	60		0001011111
		ļ	140	
97	1100001	61	141	0001100001
98	1100010	62	142	0001100010
99	1100011	63	143	0001100011
100	1100100	64	144	0001100100
101	1100101	65	145	0001100101
102	1100110	66	146	0001100110
103	1100111	67	147	0001100111
104	1101000	68	150	0001101000
40=				

Lookup 106 bis 124

Dez	Bin	Hex	Okt	Bin2k (10bit)
106	1101010	6A	152	0001101010
107	1101011	6B	153	0001101011
108	1101100	6C	154	0001101100
109	1101101	6D	155	0001101101
110	1101110	6E	156	0001101110
111	1101111	6F	157	0001101111
112	1110000	70	160	0001110000
113	1110001	71	161	0001110001
114	1110010	72	162	0001110010
115	1110011	73	163	0001110011
116	1110100	74	164	0001110100
117	1110101	75	165	0001110101
118	1110110	76	166	0001110110
119	1110111	77	167	0001110111
120	1111000	78	170	0001111000
121	1111001	79	171	0001111001
122	1111010	7A	172	0001111010
123	1111011	7B	173	0001111011
124	1111100	7C	174	0001111100

Exzess

Notation	Bits	Zero Bit Pattern	Zero Dezimal
Exzess 4	3	100	4
Exzess 8	4	1000	8
Exzess 16	5	10000	16
Exzess 32	6	100000	32
Exzess 64	7	1000000	64
Exzess 128	8	10000000	128

ASCII

Steuerzeichen & o-9

Dez	Hex	Okt	Zeichen	Dez	Hex	Okt	Zeichen
0	oxoo	000	NUL	32	0x20	040	SP
1	0x01	001	SOH	33	0X20	040	!
	0x02	002	STX		0X21		.,
2				34		042	#
3	0x03	003	ETX EOT	35	0x23	043	\$
4	0x04	004		36	0x24	044	, %
5	0x05	005	ENQ	37	0x25	045	
6	0x06	006	ACK	38	0x26	046	& ,
7	0x07	007	BEL	39	0x27	047	
8	0x08	010	BS	40	0x28	050	(
9	0x09	011	TAB	41	0x29	051)
10	oxoA	012	LF	42	Ox2A	052	*
11	oxoB	013	VT	43	Ox2B	053	
12	oxoC	014	FF	44	Ox2C	054	,
13	oxoD	015	CR	45	Ox2D	055	-
14	OXOE	016	SO SO	46	OX2E	056	
15	oxoF	017	SI	47	Ox2F	057	/
16	0x10	020	DLE	48	0x30	060	0
17	OX11	021	DC1	49	0X31	061	1
18	0X12	022	DC2	50	0x32	062	2
19	0x13	023	DC3	51	0x33	063	3
20	OX14	024	DC4	52	0x34	064	4
21	0x15	025	NAK	53	0x35	065	5
22	0x16	026	SYN	54	0x36	066	6
23	OX17	027	ETB	55	0x37	067	7
24	Ox18	030	CAN	56	0x38	070	8
25	OX19	031	EM	57	OX39	071	9
26	OX1A	032	SUB	58	охзА	072	:
27	Ox1B	033	ESC	59	ох3В	073	;
28	OX1C	034	FS	60	ox3C	074	"<
29	Ox1D	035	GS	61	0x3D	075	=
30	OX1E	036	RS	62	0x3E	076	">
31	OX1F	037	US	63	0x3F	077	?

Alphabet

Dez	Hex	Okt	Zeichen	Dez	Hex	Okt	Zeichen
64	0x40	100	@	96	0x60	140	,
65	OX41	101	A	97	0x61	141	a
66	OX42	102	В	98	0x62	142	b
67	0x43	103	С	99	0x63	143	c
68	OX44	104	D	100	0x64	144	d
69	Ox45	105	E	101	ox65	145	e
70	0x46	106	F	102	ox66	146	f
71	OX47	107	G	103	Ox67	147	g
72	0x48	110	н	104	0x68	150	h
73	OX49	111	1	105	0x69	151	i
74	ох4А	112	J	106	ox6A	152	j
75	ox4B	113	К	107	ox6B	153	k
76	OX4C	114	L	108	ox6C	154	l
77	ox4D	115	м	109	ox6D	155	m
78	OX4E	116	N	110	Ox6E	156	n
79	0x4F	117	0	111	ox6F	157	0
80	0x50	120	P	112	0x70	160	р
81	OX51	121	Q	113	OX71	161	q
82	0x52	122	R	114	0X72	162	r
83	0x53	123	s	115	0x73	163	s
84	0x54	124	Т	116	0x74	164	t
85	0x55	125	U	117	0x75	165	u
86	0x56	126	v	118	0x76	166	v
87	OX57	127	w	119	0x77	167	w
88	0x58	130	х	120	0x78	170	х
89	0x59	131	Y	121	OX79	171	у
90	ox5A	132	Z	122	ох7А	172	z
91	ox5B	133		123	Ox7B	173	{
92	ox5C	134	\	124	OX7C	174	
93	0x5D	135]	125	OX7D	175	}
94	0x5E	136	^	126	OX7E	176	
95	Ox5F	137	-	127	OX7F	177	DEL

Zweierkomplement Grenzen (2^Bits)

Bits	Min	Man
4	-8	7
5	-16	15
6	-32	31
7	-64	63
8	-128	127
9	-256	255
10	-512	511
11	-1024	1023
12	-2048	2047

Zweierpotenzen

Zweier poter				
х	2^x			
3	8			
4	16			
5	32			
6	64			
7	128			
8	256			
9	512			
10	1024			
11	2048			
12	4096			
13	8192			
14	16384			
15	32768			
16	65536			
17	131072			
18	262144			
19	524288			
20	1048576			