

Abstract (Basic): WO 97/23615

Biologically active multimeric form of interleukin-16 (IL-16) (A) with a molecular weight of about 70 kD by gel filtration high performance liquid chromatography (HPLC), is new. Also new are biologically active forms of monomeric or multimeric IL-16 subunits containing 0.5-2 metal ions per subunit.

USE - IL-16 is an immunomodulator that binds the CD4 receptor on T cells, stimulates expression of the IL-22 receptor and/or HLA-DR antigen on CD4-positive cells, stimulates proliferation of T helper cells in the presence of IL-2 and T helper cells stimulated by anti-CD3 antibodies and suppresses viral replication, particularly of human or simian immunodeficiency viruses.

ADVANTAGE - Metal-ion containing multimers have higher activity than monomers, or multimers without metal.

Dwg.0/7

Title Terms: BIOLOGICAL; ACTIVE; INTERLEUKIN; USEFUL; INHIBIT; HUMAN; IMMUNODEFICIENCY; VIRUS; REPLICA

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :	A1	(11) Internationale Veröffentlichungsnummer: WO 97/23615
C12N 15/24, C07K 14/54, 1/113		(43) Internationales Veröffentlichungsdatum: 3. Juli 1997 (03.07.97)
(21) Internationales Aktenzeichen:	PCT/EP96/05661	(74) Anwalt: GRUSSDORF, Jürgen; Zellentin & Partner, Rubensstrasse 30, D-67061 Ludwigshafen (DE).
(22) Internationales Anmeldedatum:	17. December 1996 (17.12.96)	
(30) Prioritätsdaten:	195 47 933.5 22. December 1995 (22.12.95) DE	(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO Patent (KE, LS, MW, SD, SZ, UG), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>):	BOEHRINGER MANNHEIM GMBH [DE/DE]; Sandhofer Strasse 112-116, D-68305 Mannheim (DE). BUN- DESREPUBLIK DEUTSCHLAND, vertreten durch den BUNDESMINISTER FÜR GESUNDHEIT [DE/DE]; D-53108 Bonn (DE).	
(72) Erfinder; und		Veröffentlicht
(75) Erfinder/Anmelder (<i>nur für US</i>): LANG, Kurt [DE/DE]; Langoner Strasse 10, D-82377 Penzberg (DE). KURTH, Reinhard [DE/DE]; Erlenweg 4, D-63303 Dreieich (DE). BAIER, Michael [DE/DE]; Eckenheimer Landstrasse 57a, D-60138 Frankfurt (DE). BANNERT, Norbert [DE/DE]; Adickesallee 13, D-60322 Frankfurt (DE). METZNER, Karin [DE/DE]; Brückenstrasse 17, D-60594 Frankfurt (DE). WERNER, Albrecht [DE/DE]; Prankelstrasse 30, D- 69469 Weinheim (DE).	Mit internationalem Recherchenbericht.	

(54) Title: MULTIMER FORMS OF INTERLEUKIN-16 (IL-16), PROCESS FOR THE PREPARATION AND USE THEREOF

(54) Bezeichnung: MULTIMERE FORMEN VON IL-16, VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG

(57) Abstract

The invention relates to a multimer form of IL-16 which optionally contains metal ions in defined quantities and is more active than known IL-16.

(57) Zusammenfassung

Eine multimere Form von IL-16, die gegebenenfalls Metallionen in definierter Menge enthält, ist aktiver als bekanntes IL-16.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Oesterreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Eestland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauritanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Multimere Formen von IL-16, Verfahren zu ihrer Herstellung und Verwendung

Gegenstand der Erfindung sind multimere Formen von Polypeptiden mit IL-16-Aktivität, Verfahren zu ihrer Herstellung und ihre Verwendung.

IL-16 (Interleukin-16) ist ein Lymphokin, welches auch als "lymphocyte chemoattracting factor" (LCF) oder "immunodeficiency virus suppressing lymphokine" (ISL) bezeichnet wird. ISL und seine Eigenschaften sind in der WO 94/28134, der WO 96/31607 sowie von Cruikshank, W.W., et al., Proc. Natl. Acad. Sci. USA 91 (1994) 5109-5113 und von Baier, M., et al., Nature 378 (1995) 563 beschrieben. Dort ist auch die rekombinante Herstellung von IL-16 beschrieben. Danach ist monomeres IL-16 ein Protein mit einer molekularen Masse von 13,385 D. Von Cruikshank wurde ebenfalls gefunden, daß ISL in einer Molekularsieb-chromatographie als multimere Form mit einem Molekulargewicht von 50-60 bzw. 55-60 kD eluiert. Dieser multimere Form wird die "chemoattractant activity" zugeschrieben. Von Baier wird eine homodimere Form von IL-16 mit einem Molekulargewicht von 28 kD beschrieben. Die von Cruikshank et al. in J. Immunol. 146 (1991) 2928-2934 beschriebene "chemoattractant activity" und die von Baier beschriebene Aktivität von rekombinantem humanem IL-16 sind jedoch sehr gering.

Aufgabe der vorliegenden Erfindung ist es, die Aktivität von IL-16 zu verbessern und IL-16-Formen reproduzierbar bereitzustellen, die vorteilhaft für eine therapeutische Anwendung geeignet sind.

Die Aufgabe der Erfindung wird gelöst durch eine biologisch aktive multimere Form von IL-16-Untereinheiten mit einem Molekulargewicht von mindestens ca. 70 kD (gemessen mit Gelfiltrations-HPLC) und/oder mit einem definierten Metallionenanteil.

Es hat sich überraschenderweise gezeigt, daß eine multimere Form von IL-16-Untereinheiten, welche mehr als vier Untereinheiten enthält, wesentlich mehr IL-16-Aktivität zeigt als monomere, dimere oder tetramere Formen. Diese Multimeren unterscheiden sich in ihrem Molekulargewicht deutlich von den von Baier et al. und Cruikshank et al. beschriebenen Formen von IL-16.

- 2 -

Überraschenderweise wurde gefunden, daß eine von Baier et al. als inaktiv beschriebene dimere Form von IL-16 mit einem Molekulargewicht von 28 kD durch eine Inkubation mit Metallionen in eine höhermolekulare aktive Form mit einem Molekulargewicht von 45 ± 4 kD überführt werden kann, die im folgenden zur Unterscheidung von den Dimeren als "Tetramer" bezeichnet wird.

Sowohl die Herstellung dieser tetrameren Form von IL-16 durch einen Zusatz von Metallionen zu IL-16 enthaltenden Lösungen als auch die so erhältliche tetramere Form von IL-16 mit einem Molekulargewicht von mindestens 45 ± 4 kD (abhängig vom Molekulargewicht der Untereinheit) sind ein weiterer Gegenstand dieser Erfindung.

Darüber hinaus wurde gefunden, daß die tetramere Form von IL-16 in eine polymere Form von IL-16 mit einem Molekulargewicht von mindestens ca. 70 kD überführt werden kann, die ebenfalls Gegenstand dieser Erfindung ist.

Eine multimere Form von IL-16 mit einem Molekulargewicht von mindestens ca. 70 kD enthält vorzugsweise eine definierte Anzahl von Untereinheiten, wobei die Zahl der Untereinheiten in einer solchen multimeren Form über sechs, vorzugsweise zwischen 6 und 32, besonders bevorzugt zwischen 8 und 16 liegt. Insbesondere bevorzugt sind multimere Formen von IL-16 mit 8 oder 16 Untereinheiten sowie definierte Gemische hiervon.

Es hat sich weiter gezeigt, daß die Aktivität von IL-16 durch die Gegenwart von Metallionen weiter gesteigert werden kann. Dabei ist es bevorzugt, daß eine Präparation einer aktiven monomeren oder multimeren Form von IL-16-Untereinheiten Metallionen in einer molaren Konzentration von mindestens 50% der molaren Konzentration der in der Lösung enthaltenen IL-16-Untereinheiten enthält. Vorzugsweise beträgt der Anteil der Metallionen pro Untereinheit zwischen 0,5 und 2, besonders bevorzugt zwischen 0,5 und 1. Auch hier ist es bevorzugt, wenn die erfindungsgemäße Form von IL-16 einen definierten Gehalt an Metallionen in den genannten Bereichen besitzt.

Bevorzugte Präparationen hierbei sind:

- IL-16-Untereinheit mit einem Molekulargewicht von ca. 13-35 kD, enthaltend ein Metallion pro Untereinheit,
- Dimeres aus IL-16-Untereinheiten, enthaltend ein oder zwei Metallionen,
- Tetrameres aus IL-16-Untereinheiten, enthaltend zwei oder vier Metallionen.

- 3 -

Eine Präparation von IL-16 im Sinne der Erfindung ist beispielsweise eine wäßrige, vorzugsweise gepufferte Lösung oder ein Lyophilisat. Vorzugsweise ist die Präparation zur therapeutischen Anwendung oder zur Herstellung eines Arzneimittels geeignet. Hierbei liegt die Konzentration von IL-16 in einem therapeutisch wirksamen Bereich. Die Präparation kann zusätzlich Hilfsstoffe, insbesondere pharmazeutische Hilfsstoffe, wie Lösungsvermittler, Füllstoffe, etc. enthalten.

Unter einer biologischen Aktivität von IL-16 ist seine Eigenschaft zu verstehen, an T-Zellen über den CD4 Rezeptor zu binden und vorzugsweise die Replikation von HIV und SIV zu supprimieren, wie in der internationalen Anmeldung WO 96/31607 beschrieben, die Gegenstand der Offenbarung der vorliegenden Erfindung hierfür ist.

Unter dem Ausdruck "IL-16" ist im Sinne der Erfindung ein Polypeptid mit der Aktivität von IL-16 zu verstehen.

In einer bevorzugten Ausführungsform zeigt IL-16 eine immunmodulierende Aktivität, wie sie in der WO 94/28134 beschrieben ist und die hierfür Gegenstand der vorliegenden Erfindung ist. Die immunmodulierende Eigenschaft kann über die Stimulierung der Zellteilung mit IL-16 mit einem Wachstumsfaktor wie IL-2 bzw. mit Anti-CD3-Antikörper bestimmt werden. Ein derartiges Verfahren ist in der WO 94/28134 beschrieben.

Insbesondere zeigt IL-16 eine oder mehrere der folgenden Eigenschaften:

- Bindung an T-Zellen über den CD4-Rezeptor,
- Stimulierung der Expression von IL-2-Rezeptor und/oder HLA-DR-Antigen auf CD4⁺-Lymphozyten,
- Stimulierung der Proliferation von T-Helferzellen in Gegenwart von IL-2,
- Suppression der Proliferation von mit Anti-CD3-Antikörpern stimulierten T-Helferzellen,
- Suppression der Replikation von Viren, vorzugsweise von HIV-1, HIV-2 oder SIV.

Unter einer IL-16-Untereinheit (IL-16-Monomeres) ist ein Polypeptid zu verstehen, welches nach Multimerisierung IL-16-Aktivität zeigt und

- 4 -

- a) von einer DNA-Sequenz gemäß SEQ ID NO:1 oder einer komplementären Sequenz codiert wird,
- b) codiert wird von DNA-Sequenzen, welche mit SEQ ID NO:1 unter stringenten Bedingungen hybridisieren.

Vorzugsweise zeigt das Polypeptid in dem in der internationalen Anmeldung WO 96/31607 beschriebenen Testverfahren die dort genannte Wirkung oder stimuliert die Zellteilung gemäß WO 94/28134.

Eine IL-16-Untereinheit kann sich in ihrer Sequenz von den von solchen DNA-Sequenzen codierten Proteinsequenzen in gewissem Umfang unterscheiden. Solche Sequenzvariationen können Aminosäureaustausche, -deletionen oder -additionen sein. Vorzugsweise ist die Aminosäuresequenz der IL-16-Untereinheit jedoch zu wenigstens 75%, besonders bevorzugt zu wenigstens 90% identisch mit SEQ ID NO:1 und dem darin enthaltenen aktiven Bereich von IL-16. Der aktive Bereich von SEQ ID NO:1 ist der kürzeste Bereich der Sequenz, der noch IL-16-Aktivität zeigt. Dieser Bereich ist gegenüber SEQ ID NO:1 N-terminal und/oder C-terminal verkürzt. Das Molekulargewicht einer Untereinheit beträgt vorzugsweise ca. 13-35 kD.

Der Ausdruck "unter stringenten Bedingungen hybridisieren" bedeutet, daß zwei Nukleinsäurefragmente unter standardisierten Hybridisierungsbedingungen miteinander hybridisieren, wie beispielsweise beschrieben in Sambrook et al., "Expression of cloned genes in *E. coli*" in Molecular Cloning: A laboratory manual (1989), Cold Spring Harbor Laboratory Press, New York, USA. Solche Bedingungen sind beispielsweise Hybridisierung in 6,0 x SSC bei etwa 45°C; gefolgt durch einen Waschschritt bei 2 x SSC bei 50°C. Zur Auswahl der Stringenz kann die Salzkonzentration im Waschschritt beispielsweise zwischen 2,0 x SSC bei 50°C für geringe Stringenz und 0,2 x SSC bei 50° für hohe Stringenz gewählt werden. Zusätzlich kann die Temperatur des im Waschschritt zwischen Raumtemperatur, ca. 22°C, für geringe Stringenz und 65°C bei hoher Stringenz variiert werden.

Als Metallionen im Sinne der Erfindung sind eine Vielzahl von Metallionen geeignet. Wie sich gezeigt hat, sind sowohl Erdalkalimetalle als auch Elemente der Nebengruppen geeignet. Besonders geeignet sind Erdalkalimetalle, Kobalt, Zink, Selen, Mangan, Nickel, Kupfer, Eisen, Magnesium, Calcium, Molybdän und Silber. Die Ionen können ein-, zwei-, drei- oder vierwertig sein. Besonders bevorzugt werden zweiwertige Ionen, insbesondere Cu(II)-Ionen. Die

- 5 -

Ionen werden vorzugsweise als Lösungen zugesetzt von $MgCl_2$, $CaCl_2$, $MnCl_2$, $BaCl_2$, $LiCl_2$, $Sr(NO_3)_2$, Na_2MoO_4 , $AgCl_2$, Cu(II)-Acetat.

IL-16 wird vorzugsweise rekombinant in prokaryontischen oder eukaryontischen Wirtszellen hergestellt. Derartige Herstellverfahren sind beispielsweise beschrieben in WO 94/28134 und WO 96/31607, die auch hierfür Gegenstand der Offenbarung der vorliegenden Erfindung sind. Um allerdings die erfindungsgemäßen Formen von IL-16 durch rekombinante Herstellung definiert und reproduzierbar zu erhalten, müssen über die dem Fachmann geläufigen Verfahren zur rekombinannten Herstellung zusätzliche Maßnahmen ergriffen werden.

Gegenstand der Erfindung ist deshalb ein Verfahren zur Herstellung einer biologisch aktiven multimeren Form von IL-16 durch Expression einer IL-16 codierenden Nukleinsäure in einer prokaryontischen oder eukaryontischen Wirtszelle und Isolierung der genannten multimeren Form, dadurch gekennzeichnet, daß bei der Herstellung oder Reinigung mindestens 0,25 Metallionen, vorzugsweise mindestens 0,5 Metallionen pro IL-16-Untereinheit zugegen sind und die definierte Oligomerisierung von IL-16 katalysieren. Bei dem Herstellverfahren kann auch ein Gemisch von mehreren multimeren IL-16-Formen entstehen. Dieses Gemisch kann entweder in seine Einzelbestandteile getrennt oder als Gemisch, vorzugsweise nach Aufreinigung, zum Beispiel therapeutisch verwendet werden. Durch das erfindungsgemäße Verfahren ist es überraschenderweise möglich, Polypeptide mit IL-16-Aktivität definiert und reproduzierbar zu multimerisieren. Dabei wird IL-16 je nach Reaktionsbedingungen (z.B. Temperatur, pH-Wert, etc.) in definiertem Oligomerisierungsgrad erhalten.

Die Zugabe der Metallionen kann während der Fermentation oder während der Reinigung erfolgen. Es hat sich gezeigt, daß erfindungsgemäße IL-16-Formen erhalten werden, wenn bei der Fermentation pro Gramm entstehendem rekombinannten IL-16 etwa 0,1 $\mu mol/l$ bis 10 mmol/l Metallionen zugegen sind. Dabei ist die Obergrenze der Metallionenkonzentration an sich unkritisch und hängt lediglich von der Verträglichkeit der Mikroorganismen oder Zelllinien für diese Metallionen sowie von der Löslichkeit der verwendeten Metallverbindung oder Salzes ab. Vorzugsweise wird eine Metallionenkonzentration von 0,5 $\mu mol/l$ bis 10 mmol/l verwendet. Eine Erhöhung der Ausbeute an aktiven Metalloproteinen durch den Zusatz von Metallionen zum Fermentationsmedium ist z.B. von Hoffman et al. in Protein Expression & Purific. 6 (1995) 646-654 beschrieben.

Der Zusatz der Metallionen oder Metallverbindungen, aus denen Metallionen ablösbar sind, erfolgt vorzugsweise im Verlauf des Aufschlusses des Fermentationsansatzes, bei der Reini-

- 6 -

gung oder auf der Stufe des gereinigten IL-16. Zweckmäßig werden die Metallionen vor oder bei einer Dialyse oder einem Chromatographie-Schritt in einem Auftrags- oder Elutionspuffer verwendet.

Bei der rekombinanten Herstellung der erfindungsgemäßen IL-16-Formen wird eine Präparation einer multimeren Form von IL-16-Untereinheiten erhalten, in der die Anzahl der Untereinheiten vorzugsweise 6 bis 32 beträgt und die als Produkt einer rekombinanten Produktion in Prokaryonten im wesentlichen frei von Säugerzellproteinen oder als Produkt einer rekombinanten Produktion in Eukaryonten im wesentlichen frei von natürlichen Humanproteinen ist.

Eine weitere Ausführungsform der Erfindung betrifft ein Verfahren zur Herstellung von multimeren IL-16-Untereinheiten durch Inkubation von monomeren IL-16-Untereinheiten oder IL-16-Dimeren mit Metallionen. Ein solches Verfahren ist unabhängig davon anwendbar, ob die IL-16-Untereinheiten auf rekombinante Weise oder anders (z.B. synthetisch oder aus natürlichen Quellen) isoliert wurden.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Erhöhung des Multimerisierungsgrads einer monomeren oder dimeren Form aus IL-16-Untereinheiten. Bei einem solchen Verfahren wird die monomere oder dimere Form mit Metallionen inkubiert, wodurch eine oder mehrere höher multimerisierte Formen von IL-16-Untereinheiten entstehen.

Die Multimerisierung wird vorzugsweise im schwach-alkalischen, neutralen oder sauren Bereich, vorzugsweise zwischen pH 3 und 9, besonders bevorzugt im Bereich zwischen pH 3 und 8 durchgeführt. Die Ausbeute an multimeren Formen und die Dauer der Multimerisierung können durch Zusatz von Denaturierungsmitteln wie Guanidinhydrochlorid oder Harnstoff verbessert werden. Zweckmäßig werden solche Denaturierungsmittel in Konzentrationen von 0 bis 8 mol/l zugesetzt. Bei der Inkubation mit Metallionen kann die Konzentration an Denaturierungsmittel durch Verdünnung oder Dialyse vorzugsweise auf eine nicht denaturierende Konzentration (für Guanidinhydrochlorid z.B. ca. 0 bis 2 mol/l) verringert werden.

Die Metallionen-abhängige Multimerisierung kann durch Chelatbildner wie EDTA oder durch freie Bindungsstellen für Metallionen auf der für die Reinigung verwendeten Metallaffinitäts-Chelat-Sepharose inhibiert werden.

Eine besonders effiziente Tetramerisierung wird in kurzer Zeit erzielt, wenn Metallionen in annähernd äquimolarer Konzentration oder im Überschuß bezüglich IL-16 mit IL-16 inkubiert

werden, wobei die Reaktionsgeschwindigkeit von der Konzentration der Reaktanden abhängt. Bei niedrigeren Metallionenkonzentrationen ist daher entsprechend länger zu inkubieren. Die Tetramerisierung erfolgt in einem breiten pH-Bereich, insbesondere im Bereich pH 2,5 bis 10. Anschließend an die Tetramerisierung kann die weitere Multimerisierung vorzugsweise zwischen pH 5 bis 7 oder 7,5 auch ohne Zusatz von weiteren Metallionen durchgeführt werden.

Besonders bevorzugt sind IL-16-Multimere, die als diskreter peak von einer analytischen Molekularsieb-HPLC-Säule mit einem apparenten Molekulargewicht von ca. über 70 kD, vorzugsweise 90 bis 150 kD eluieren. Die Polymerbildung kann durch eine vorhergehende Metallionen-abhängige Tetramerisierung induziert werden. Weiterhin wird der Multimerisierungsgrad von der jeweiligen Pufferzusammensetzung (Art des Puffers, z.B. Imidazol, MES, Acetat, Glycin, Citrat, pH-Wert, GdmCl-Konz.) beeinflußt.

Eine weitere bevorzugte Ausführungsform von biologisch aktivem IL-16 besitzt ein Molekulargewicht von mindestens 45 ± 4 kD und ist nach Inkubation von Monomeren oder Dimeren mit Metallionen erhältlich.

Derartige IL-16-Präparationen sind besonders zur therapeutischen Verwendung in therapeutischen Zusammensetzungen geeignet. Solche Zusammensetzungen enthalten zweckmäßig noch die üblichen Füll-, Hilfs- und Zusatzstoffe.

Die folgenden Beispiele und Publikationen, das Sequenzprotokoll sowie die Abbildungen erläutern die Erfindung, deren Schutzmfang sich aus den Patentansprüchen ergibt, weiter. Die beschriebenen Verfahren sind als Beispiele zu verstehen, die auch noch nach Modifikationen den Gegenstand der Erfindung beschreiben.

Fig. 1: SDS-PAGE von IL-16 unter reduzierenden Bedingungen (Probe mit 0,1 M DTE)
1) vor Spaltung mit Thrombin, 2) nach Spaltung mit Thrombin und 3)-5) nach Spaltung und Reinigung mittels Q-Sepharose (verschiedene Fraktionen).

Fig. 2: RP-HPLC-Elutionsdiagramm von IL-16 nach Spaltung mit Thrombin und Reinigung mittels Q-Sepharose.

Fig. 3A,

Fig. 3B: Molekularsieb-HPLC-Elutionsdiagramm

A) des IL-16-Fusionsproteins vor Spaltung mit Thrombin, B) von IL-16 nach Spaltung mit Thrombin und Reinigung mittels Q-Sepharose.

- 8 -

- Fig. 4:** Molekularsieb-HPLC-Elutionsdiagramm von dimeren (RT = 11,4 min.) und tetrameren (RT = 10,06 min.) IL-16 nach Renaturierung von denaturierten IL-16 in 0,1 M Tris/HCl, 250 µM Cu(II)-Acetat, pH 8,5 (siehe Beispiel 4).
- Fig. 5:** Eichlauf der HPLC-Siebsäule mit BSA (MW 66 kD; RT 9,17 min.), Ovalbumin (MW 43 kD; RT 9,98 min.), Chymotrypsinogen (MW 25 kD, RT 11,89 min.) und Ribonuklease A (MW 13,7 kD; RT 12,87 min.).
- Fig. 6:** Molekularsieb-HPLC-Elutionsdiagramm von tetrameren IL-16 nach Inkubation von 137 µM IL-16 mit 250 µM Cu(II)-Acetat (siehe Beispiel 10).
- Fig. 7:** Molekularsieb-HPLC-Elutionsdiagramm von Dimeren (3%; RT 11,66 min.), Tetrameren (32%; RT 10,30 min.) und Polymeren (65%; RT 7,93 min.) nach Inkubation von IL-16 für 16 Stunden in 50 mM MES, 250 µM Cu(II)-Acetat, pH 5,5.

SEQ ID NO:1 zeigt die Sequenz von humanem IL-16.

SEQ ID NO:2 zeigt die Aminosäuresequenz gemäß SEQ ID NO:1.

SEQ ID NO:3-8 zeigen Primersequenzen.

SEQ ID NO:9-11 zeigen Peptidsequenzen.

Beispiel 1

Klonierung und Expression von IL-16

1.1 RNA Isolierung

5×10^7 PBMC (vom Menschen oder Affen) wurden 48 Stunden mit 10 µg/ml Concanavalin A und 180 U/ml IL-2 kultiviert. Zur Herstellung der RNA wurden die Zellen einmal mit PBS gewaschen und anschließend mit 5 ml Denaturierungslösung (RNA Isolation Kit, Stratagene) lysiert. Nach Zugabe von 1 ml Na-Acetat, 5 ml Phenol und 1 ml Chloroform/Isoamyl-Alkohol (24:1) wurde das Lysat 15 min. auf Eis gehalten. Die wässrige Phase wurde anschließend mit 6 ml Isopropanol vermischt, um die RNA auszufällen, und 2 Stunden bei -20°C gelagert. Das Präzipitat wurde schließlich einmal mit reinem Ethanol gewaschen und in 150 µl H₂O gelöst. Die Ausbeute wurde photometrisch bestimmt und betrug 120 µg.

- 9 -

1.2 cDNA Synthese

Die Mischung für die cDNA Synthese enthielt 10 µg RNA, 0,2 µg Oligo-dT, 13 mM DTT und 5 µl "bulk first strand reaction mix" (First-Strand cDNA Synthesis Kit, Pharmacia) in einer Menge von 15 µl. Die Mischung wurde 1 Stunde bei 37°C inkubiert und anschließend bei -20°C zur späteren Verwendung gelagert.

1.3 Amplifikation und Klonierung von IL-16 cDNA

Zur Amplifikation von IL-16 cDNA mittels PCR und zur anschließenden Klonierung wurden die folgenden Oligonukleotide synthetisiert:

Primer 1: GCTGCCTCTCATATGGACCTCAACTCCTCCACTGACTCT (SEQ ID NO:3)

Primer 2: GATGGACAGGGATCCCTAGGAGTCTCCAGCAGCTGTGG (SEQ ID NO:4)

Die Primer führen zusätzliche NdeI oder BamHI Schnittstellen ein.

Die PCR-Mischungen (100 µl Reaktionsvolumina) enthielten jeweils 1 µl cDNA (aus der Synthese in Abschnitt 3), 50 pmol Primer 1 und 2, 12,5 µmol dNTPs, 10 µl 10xTAQ Puffer und 2,5 Einheiten Taq Polymerase (Perkin-Elmer).

Die Zyklusbedingungen waren 30 sec., 94°C, 1 min., 53°C und 1 min., 72°C. Es wurden 35 Zyklen durchgeführt.

1.4 Herstellung eines Expressionsklons mit Thrombinspaltstellen

Die PCR-Produkte wurden gereinigt und 16 Stunden bei 37°C mit NdeI und BamHI verdaut. Für die Klonierungspräparation wurde der Vektor pET15b (Novagen) ebenfalls mit NdeI und BamHI gespalten und anschließend über Agarosegel gereinigt.

Die Ligationen wurden 2 Stunden bei Raumtemperatur in 20 µl Mischungen, welche 100 ng Vektor, 25 ng PCR Produkt (Insert), 2 µl 10 x Ligasepuffer und 0,2 µl Ligase (New England Biolabs) enthielten, durchgeführt. Nach Transformation durch Elektroporation bei 2,5 kV, 25 µ Farad, 200 Ohm (BIO-RAD Elektroporator) in E.coli wurden die Zellen auf Ampicillin-resistente Platten aufgetragen. Geeignete E.coli, z.B. DH5, sind dem Fachmann bekannt.

- 10 -

Rekombinante Klone wurden durch Restriktionsanalyse von Plasmidpräparationen (pMISLB) identifiziert und in einen E.coli-Stamm für die beabsichtigte Proteinexpression transformiert. Die Klonierung von IL-16 cDNA konnte zusätzlich durch Bestimmung der Nukleotidsequenzen bestätigt werden. Die gefundenen Sequenzen stimmten mit der publizierten LCF Sequenz (Cruikshank, W.W., et al., Proc. Natl. Acad. Sci. USA 91 (1994) 5109-5113) bis auf eine Diskrepanz in Codon 96 überein. Im Gegensatz zur veröffentlichten Sequenz besteht Codon 96 nicht aus der Basensequenz TTG, sondern aus der Sequenz TTT. Die Sequenzierung von weiteren IL-16-Klonen, die aus unabhängigen PCR Amplifikationen erhalten wurden, zeigte deutlich, daß die authentische IL-16-Sequenz in Codon 96 tatsächlich von der Sequenz TTT dargestellt wird.

1.5 Herstellung von Expressionsklonen für verkürztes IL-16

Klonierungsbeispiel IL-16:

Zur Amplifikation von IL-16cDNA und zur anschließenden Expressionsklonierung wurden die folgenden Oligonukleotide synthetisiert:

Primer ISL1: (SEQ ID NO:5)

ccc gaa ttc tat gca tca cca cca cca cca cga tga cga cga caa acc cga cct caa ctc ctc cac t

Primer ISL2: (SEQ ID NO:6)

ccc gaa ttc tat gcc cga cct caa ctc ctc c

Primer ISL3: (SEQ ID NO:7)

ccc gaa ttc tat gca tca cca cca cca cca cca cga tga cga cga caa aat gcc cga cct caa ctc ctc c

Primer ISL4: (SEQ ID NO:8)

gcg gat cca agc tta gga gtc tcc agc agc tgt

Primer ISL1 fügt nach PCR am IL-16-Gen eine EcoRI Schnittstelle, sowie ein "t" zur Erzeugung von lacZ Fusionen in pUC, 6 Histidin-Codons, und die Codons für eine Enterokinase-Schnittstelle ein (DDDDK; SEQ ID NO:9).

Primer ISL2 fügt nach PCR am IL-16-Gen eine EcoRI Schnittstelle, sowie ein "t" zur Erzeugung von lacZ Fusionen in pUC ein.

- 11 -

Primer ISL3 fügt dieselben Eigenschaften ein wie Primer ISL1 und zusätzlich noch ein weiteres ATG nach dem AAA (Lys) Codon.

Primer ISL4 ist der Gegenprimer zu ISL1 bis ISL3, er fügt am 3'-Ende des IL-16-Gens eine BamHI sowie eine HindIII-Spaltstelle ein.

Durch geeignete Kombination der obigen Primer und Einklonierung der PCR-Produkte in geeignete Vektoren ist es möglich, in *E. coli* verschiedene Arten von IL-16 zur Expression zu bringen:

Eine Kombination von ISL1 mit ISL4 ergibt z.B. nach PCR, Nachschneiden des Produktes mit EcoRI und HindIII und Einklonieren hinter z.B. einen lac-Promoter bei Expression ein IL-16, das N-terminal 6 Histidine und eine Enterokinase-Schnittstelle enthält und nach Aufarbeitung und Schnitt mit Enterokinase reifes IL-16 ohne N-terminales Met ergibt (N-terminus PDLS; SEQ ID NO:10).

Eine Kombination von ISL2 mit ISL4 ergibt nach PCR, Nachschneiden des Produktes mit EcoRI und HindIII sowie Einklonieren hinter z.B. einen lac-Promoter nach Expression direkt ein reifes IL-16, welches mit der Sequenz MPDLS (SEQ ID NO:11) beginnt.

Eine Kombination von ISL3 mit ISL4 ergibt nach PCR, Nachschneiden des Produktes mit EcoRI und HindIII sowie Einklonieren hinter z.B. einen lac-Promoter nach Expression und Schnitt mit Enterokinase reifes IL-16 mit der N-terminalen Sequenz MPDLS (SEQ ID NO:11).

Je nach verwendetem Plasmid kann eine lacZ-Fusion (z.B. beim Klonieren in pUC-Plasmide) entstehen.

Es liegt auf der Hand, daß außer dem lac Promoter jeglicher in *E. coli* gut funktionierender Promoter verwendet werden kann. Beispiele wären z.B. der tac-Promoter oder auch der mgl-Promoter. Als Plasmide kommen sowohl low-copy als auch high-copy Plasmide in Frage.

Beispiel 2**10 l Fermentation eines E. coli Expressionsklons für IL-16 und Hochdruckaufschluß**

Aus Stammkulturen (Plattenausstrich oder bei -20°C gelagerten Ampullen) werden Vorkulturen angesetzt, die geschüttelt bei 37°C inkubiert werden. Das Überimpfvolumen in die nächsthöhere Dimension beträgt jeweils 1-10 Vol.-%. Zur Selektion gegen Plasmidverlust wird in Vor- und Hauptkultur Ampicillin (50-100 mg/l) eingesetzt.

Als Nährstoffe werden enzymatisch verdautes Eiweiß und/oder Hefeextrakt als N- und C-Quelle sowie Glycerin und/oder Glucose als zusätzliche C-Quelle verwendet. Das Medium wird auf pH 7 gepuffert und Metallsalze werden zur Stabilisierung des Fermentationsprozesses in physiologisch verträglichen Konzentrationen zugesetzt. Die Fermentation wird als Feedbatch mit einer gemischten Hefeextrakt/C-Quellen-Dosage durchgeführt. Die Fermentationstemperatur beträgt 25-37°C. Über Belüftungsrate, Drehzahlregulierung und Dosagegeschwindigkeit wird der gelöste Sauerstoffpartialdruck (pO_2) < 20% gehalten.

Das Wachstum wird über Ermittlung der optischen Dichte (OD) bei 528 nm bestimmt. Mittels IPTG wird die Expression des IL-16 induziert. Nach einer Fermentationsdauer von ca. 10 Stunden wird bei OD-Stillstand die Biomasse durch Zentrifugation geerntet. Die Biomasse wird in 50 mM Natriumphosphat, 5 mM EDTA, 100 mM Natriumchlorid, pH 7 aufgenommen und über eine kontinuierliche Hochdruckpresse bei 1000 Bar aufgeschlossen. Die so erhaltene Suspension wird erneut abzentrifugiert und der Überstand, der das gelöste IL-16 enthält, wird weiterverarbeitet.

Beispiel 3**Reinigung von rekombinantem IL-16**

550 ml Aufschlußüberstand in 50 mM Natriumphosphat, 5 mM EDTA, 100 mM NaCl, pH 7,2 wurden mit 55 ml 5 M NaCl, 60 mM MgCl₂, pH 8,0 versetzt, 30 min. gerührt und anschließend 30 min. bei 20.000 g zentrifugiert. 400 ml des Überstandes wurden auf eine Nickel-Chelat-Sepharose-Säule (V=60 ml; Pharmacia) aufgezogen, die vorher mit 30 µMol NiCl₂/ml Gel beladen und mit 50 mM Natriumphosphat, 0,2 M NaCl, pH 8,0 äquilibriert worden war. Die Säule wurde anschließend mit 300 ml 50 mM Natriumphosphat, 0,5 M NaCl, pH 7,0 gespült und das IL-16-Fusionsprotein dann mit einem Gradienten von 0 M bis 300 mM Imidazol, pH 7,0 in 50 mM Natriumphosphat, 0,1 M NaCl, pH 7,0 (2* 0,5 l Gradientenvolu-

- 13 -

men) eluiert. IL-16 enthaltende Fraktionen wurden mittels SDS-PAGE identifiziert und vereinigt.

300 mg des so erhaltenen Fusionsproteins wurden bei 4°C gegen 20 l 20 mM Imidazol, pH 5,5 dialysiert und anschließend zur Entfernung von Trübungen 30 min. bei 20.000 g zentrifugiert. Der Überstand der Zentrifugation wurde anschließend mit NaOH auf pH 8,5 eingestellt, mit 0,3 mg Thrombin (Boehringer Mannheim GmbH) versetzt und 4 Stunden bei 37°C inkubiert. Anschließend wurde der Spaltansatz mit HCl auf pH 6,5 und die Leitfähigkeit durch Verdünnung mit H₂O auf 1,7 mS eingestellt. Die Probe wurde auf eine Q-Sepharose FF-Säule (45 ml; Pharmacia) aufgetragen, die vorher mit 20 mM Imidazol, pH 6,5 äquilibriert worden war. Die Elution von IL-16 erfolgte mit einem Gradienten von 0 bis 0,3 M NaCl in 20 mM Imidazol, pH 6,5. IL-16 enthaltende Fraktionen wurden mittels SDS-PAGE identifiziert und vereinigt. Die Identität von IL-16 wurde durch Massenanalyse (Molekulargewicht 13.566 ± 3 D) und automatisierte N-terminale Sequenzanalyse bestätigt. Zur Konzentrationsbestimmung wurde die UV-Absorption von IL-16 bei 280 nm und ein berechneter molarer Extinktionskoeffizient von 5540 M⁻¹cm⁻¹ bei dieser Wellenlänge (Mack et al. (1992) Analyt. Biochem. 200, 74-80) und ein Molekulargewicht von 13566 D verwendet.

Das so erhaltene IL-16 wies in der SDS-PAGE unter reduzierenden Bedingungen eine Reinheit von mehr als 95% auf.

Von einer analytischen HPLC-Gelfiltrationssäule (Superdex HR 75; Pharmacia), die mit BSA, Ovalbumin, Chymotrypsinogen und Ribonuklease A geeicht worden war, eluierte IL-16 mit einem apparenten Molekulargewicht von ca. 27.000 D (siehe Fig. 3), weshalb diese Molekülspartie im folgenden als "Dimer" bezeichnet wird.

Die analytische Superdex 75 FPLC-Säule (Pharmacia) wurde mit 25 mM Na-Phosphat, 0,5 M NaCl, 10% Glycerin, pH 7,0 und einer Flußrate von 1 ml/min. eluiert. Die aufgetragene Proteinmenge in einem Volumen von 100 bis 150 µl betrug 1,5 bis 15 µg Protein. Die Detektion erfolgte bei 220 nm.

Zur Reinheitsanalyse mittels RP-HPLC wurde eine Vydac, Protein & Peptide C18, 4x180 mm Säule verwendet. Die Elution erfolgt durch einen linearen Gradienten von 0% nach 80% B (Lösungsmittel B: 90% Acetonitril in 0,1% TFA; Lösungsmittel A: 0,1% TFA in H₂O) innerhalb von 30 min. mit einer Flußrate von 1 ml/min. Die Detektion erfolgte bei 220 nm.

- 14 -

Da von Cruikshank, W.W., et. al., in Proc. Natl. Acad. Sci. USA 91 (1994) 5109-5113 eine polymere Form von IL-16 mit einem apparenten Molekulargewicht von 50-60 kD als aktive Molekülspezies beschrieben worden war, wurde durch De- und Renaturierungsexperimente mit dem derart isolierten hochreinen IL-16 versucht, die dimere Form in eine polymere Form zu überführen.

Beispiel 4

De- und Renaturierung von IL-16

(a) Einfluß von pH-Wert, EDTA und Kupfer(II)-Acetat auf die Renaturierung-/Tetramerisierung von IL-16

37 mg IL-16 wurden gegen 20 mM Natriumphosphat, pH 7,0 dialysiert und anschließend auf eine Konzentration von 7,1 mg/ml konzentriert. Die Denaturierung von IL-16 erfolgte durch die Zugabe von 1 ml 8 M GdmCl, 0,1 M Glycin/HCl, 2 mM EDTA, 1 mM DTE, pH 1,8 zu 0,5 ml des IL-16 Konzentrates. Nach 1 Stunde Inkubation wurden je 100 µl dieser Lösung in je 2,2 ml der in Tabelle 1 beschriebenen Renaturierungspuffer bei Raumtemperatur (23+/-3°C) verdünnt. Die Bildung von polymeren IL-16 wurde nach einer Inkubtion von mindestens 2 Stunden mittels Molekularsieb-HPLC analysiert.

Wie aus Tabelle 1 hervorgeht, wurden bei Renaturierung in Puffern mit vorheriger N₂-Begasung und EDTA unabhängig vom pH-Wert keine höhermolekularen IL-16-Spezies gebildet. Höhermolekulare IL-16-Assoziate wurden überraschenderweise nur in Puffern ohne EDTA und ohne Stickstoffbegasung, sowie insbesondere in Gegenwart von Kupferacetat gebildet. Die höhermolekulare Form eluiert als homogener peak von einer analytischen Molekularsieb-HPLC-Säule (siehe Fig. 4) und hat ein apparentes Molekulargewicht von ca. 45 ± 4 kD. Zur Unterscheidung von der "dimeren" Form wird diese Molekülspezies im weiteren als "Tetramer" bezeichnet.

Da Kupferionen auch zur oxidativen Herstellung von Disulfidbrücken verwendet werden, wurde der Einfluß von Redox-Systemen auf die Tetramerisierung im folgenden näher untersucht.

- 15 -

Tabelle 1

Einfluß von pH-Wert, EDTA und Kupfer(II)-Acetat auf die Renaturierung von IL-16

Nr.	Renaturierungspuffer	Dimer [%]	Tetramer [%]
1	20 mM Tris/HCl, pH 8,0, 1 mM EDTA	100	0
2	20 mM Na-Phosphat, pH 7, 1 mM EDTA	100	0
3	20 mM Na-Phosphat, pH 7,0, 1 mM EDTA, 150 mM NaCl	100	0
4	20 mM Na-Phosphat, pH 6,0, 1 mM EDTA, 150 mM NaCl	100	0
5	20 mM Na-Phosphat, pH 5,0, 1 mM EDTA, 150 mM NaCl	100	0
6	20 mM Na-Phosphat, pH 4,0, 1 mM EDTA, 150 mM NaCl	100	0
7	0,1 M Tris/HCl, pH 8,5	88	12
8	0,1 M Tris/HCl, pH 8,5, 250 uM Cu(II)-Acetat	64	36

(b) Einfluß der Denaturierung, von Redox-Systemen und von Metallionen auf die "Tetramerisierung" von IL-16

Je 400 ul des in Beispiel 1 beschriebene Konzentrates von IL-16 mit einer Konzentration von 7,1 mg/ml wurden in

- 1) 800 ul 8,0 M GdmCl, 0,1 M Glycin/HCl, 1 mM DTE, pH 1,8 (=denaturiertes IL-16)
oder
- 2) 800 ul 20 mM Natriumphosphat, pH 7,0 (=natives IL-16)

verdünnt und 1 Stunde inkubiert. Je 100 ul dieser Verdünnungen wurden anschließend in je 2,2 ml einer wässrigen Lösung aus 0,1 M Tris/HCl, pH 8,5 sowie der in Tabelle 2 beschriebenen Zusätze verdünnt, wobei die Puffer, in die das "native IL-16" aus 2) verdünnt wurden, zusätzlich 0,23 M GdmCl enthielten, so daß alle Renaturierungslösungen identische Konzentrationen auch an GdmCl aufwiesen.

- 16 -

Wie Tabelle 2 zeigt, scheinen Redox-Reaktionen keinen Einfluß auf die Tetramerisierung zu haben, da die üblichen Redox-Syteme für Proteine aus GSH und GSSG keinen Einfluß haben. Vielmehr scheinen Metallionen für eine Stabilisierung des Tetramers essentiell zu sein, da neben Kupfer- auch Magnesium- und Calciumionen die Tetramerisierung induzieren können. Eine Denaturierung von IL-16 durch hohe Konzentrationen an Denaturierungsmittel ist offenbar für eine Tetramerisierung nicht erforderlich, da diese auch ohne vorhergehende Denaturierung von IL-16 erfolgt.

Wie bei einer Gleichgewichtseinstellung und auch bei einer Assoziationsreaktion zweiter Ordnung zu erwarten, nimmt weiterhin die Ausbeute an Tetrameren IL-16 mit der Konzentration an Metallionen zu, wie es in der Tabelle 2 für Cu-Acetat ersichtlich ist.

- 17 -

Tabelle 2

Einfluß der Denaturierung, von Redox-Systemen und Metallionen auf die Tetramerisierung von IL-16

Nr.	IL-16	Verdünnungspuffer	% Tetramer
1	denat. ¹⁾	0,1 M Tris/HCl, pH 8,5 ohne Zusätze	0
2	nativ ²⁾	0,1 M Tris/HCl, pH 8,5 ohne Zusätze	0
3	denat.	0,1 M Tris/HCl, pH 8,5, 250 uM Cu(II)-Acetat	42
4	nativ	0,1 M Tris/HCl, pH 8,5, 250 uM Cu(II)-Acetat	45
5	denat.	0,1 M Tris/HCl, pH 8,5, 750 uM Cu(II)-Acetat	56
6	nativ	0,1 M Tris/HCl, pH 8,5, 750 uM Cu(II)-Acetat	60
7	denat.	0,1 M Tris/HCl, pH 9,5, 250 uM Cu(II)-Acetat	49
8	nativ	0,1 M Tris/HCl, pH 9,5, 250 uM Cu(II)-Acetat	60
9	denat.	20 mM Na-Phosphat, pH 6,0, 250 uM Cu(II)-Acetat	65
10	nativ	20 mM Na-Phosphat, pH 6,0, 250 uM Cu(II)-Acetat	56
11	denat.	0,1 M Tris/HCl, pH 8,5, 750 uM CaCl ₂	34
12	nativ	0,1 M Tris/HCl, pH 8,5, 750 uM CaCl ₂	38
13	denat.	0,1 M Tris/HCl, pH 8,5, 750 uM MgCl ₂	38
14	nativ	0,1 M Tris/HCl, pH 8,5, 750 uM MgCl ₂	42
15	denat.	0,1 M Tris/HCl, pH 8,5 0,5 mM GSH, 1 mM EDTA	0
16	nativ	0,1 M Tris/HCl, pH 8,5 0,5 mM GSH, 1 mM EDTA	0
17	denat.	0,1 M Tris/HCl, pH 8,5 0,5 mM GSH, 5,0 mM GSSG	0

Nr.	IL-16	Verdünnungspuffer	% Tetramer
18	nativ	0,1 M Tris/HCl, pH 8,5 0,5 mM GSH, 5,0 mM GSSG	0
19	denat.	0,1 M Tris/HCl, pH 8,5 5,0 mM GSSG, 1 mM EDTA	0
20	nativ	0,1 M Tris/HCl, pH 8,5 5,0 mM GSSG, 1 mM EDTA	0

- ¹⁾ Die Zwischenverdünnung der IL-16-Stammlösung erfolgte in 8 M GdmCl.
²⁾ Die Zwischenverdünnung der IL-16-Stammlösung erfolgte in 20 mM Natriumphosphat, pH 7,0.

Beispiel 5

Einfluß von GdmCl auf die Tetramerisierung

Da eine vollständige Denaturierung von IL-16 für eine Tetramerisierung offenbar nicht erforderlich ist, wurde der Einfluß niedriger GdmCl-Konzentrationen untersucht. Dazu wurde das in Beispiel 4a beschriebene IL-16-Konzentrat 71-fach in 0,1 M Tris/HCl, pH 8,5 verdünnt, das zusätzlich die in Tabelle 3 beschriebenen Zusätze enthielt.

Wie aus Tabelle 3 hervorgeht, kann bei geringen IL-16 Konzentrationen für verschiedene Metallionen durch den Zusatz von nicht-denaturierenden Konzentrationen an Denaturierungsmittel die Tetramerisierung unterstützt werden.

- 19 -

Tabelle 3**Einfluß von GdmCl auf die Tetramerisierung von IL-16 durch Metallionen**

Nr.	Pufferzusatz zu 0,1 M Tris/HCl, pH 8,5	% Tetramere
1	ohne Zusatz	0
2	0,23 M GdmCl	0
3	250 uM MgCl ₂	0
4	250 uM MgCl ₂ + 0,23 M GdmCl	10
5	250 uM CaCl ₂	0
6	250 uM CaCl ₂ + 0,23 M GdmCl	34
7	250 uM MnCl ₂	0
8	250 uM MnCl ₂ + 0,23 M GdmCl	10
9	250 uM Cu(II)-Acetat	48
10	250 uM Cu(II)-Acetat + 0,125 M GdmCl	72
11	250 uM Cu(II)-Acetat + 0,25 M GdmCl	83
12	250 uM Cu(II)-Acetat + 0,50 M GdmCl	92
13	250 uM Cu(II)-Acetat + 1,0 M GdmCl	94
14	250 uM Cu(II)-Acetat + 2,0 M GdmCl	92

Beispiel 6**Kinetik der Tetramerisierung von IL-16 mit Cu(II)-Acetat**

Da es sich bei der Tetramerisierung von IL-16 um eine Reaktion zumindest 2. oder höherer Ordnung handelt, wurde die Geschwindigkeit der Tetramerisierung in Gegenwart von Cu(II)-Acetat untersucht.

Dazu wurden 20 ul eines in Beispiel 4a beschriebenen IL-16-Konzentrates in 800 ul 0,1 M Tris/HCl, 250 uM Cu(II)-Acetat, 0,25 M GdmCl, pH 8,5 verdünnt und nach unterschiedlichen Inkubationszeiten Proben mittels einer analytischen Molekularsieb-HPLC-Säule auf ihren Tetramergehalt analysiert. Wie Tabelle 4 zeigt, ist die Tetramerisierung eine relativ langsame Reaktion, deren Geschwindigkeit jedoch von der Konzentration der Reaktanden abhängt.

- 20 -

Tabelle 4
Kinetik der Tetramerisierung von IL-16 mit Cu(II)-Acetat

Inkubationzeit (min.)	Tetramere (%)
5 min.	12
60 min.	75
150 min.	81

Beispiel 7

Einfluß von EDTA auf die Tetramerisierung von IL-16 durch Cu(II)-Acetat

EDTA bildet mit 2-wertigen Metallionen einen hochaffinen Komplex. Die Inhibition der Tetramerisierung durch EDTA sollte daher beweisen, daß diese durch 2-wertige Metallionen induziert wird.

Dazu wurde ein in Beispiel 4a beschriebenes IL-16-Konzentrat 40-fach in Puffer verdünnt, die sich aus 0,1 M Tris/HCl, 0,25 M GdmCl, 250 uM Cu(II)-Acetat, pH 8,5 und steigenden Konzentrationen an EDTA zusammensetzten. Der Tetramergehalt wurde wiederum mittels Molekularsieb-HPLC nach einer Inkubationszeit von mindestens 1 Stunde ermittelt.

Wie die Ergebnisse in Tabelle 5 zeigen, sind äquimolare Konzentrationen an EDTA bezüglich Cu(II)-Acetat tatsächlich in der Lage, die Tetramerisierung von IL-16 zu inhibieren.

Tabelle 5
Inhibition der Tetramerisierung von IL-16 durch EDTA

EDTA-Konzentration [uM]	Tetramere (%)
0	77
125	69
250	0
500	0
1000	0
2000	0

- 21 -

Beispiel 8**a) Einfluß der Konzentration von Cu(II)-Acetat auf die Tetramerisierung von IL-16 bei kurzer Inkubationszeit**

Sollte es sich bei IL-16 um ein Metalloprotein handeln, ist zu erwarten, daß stöchiometrische Mengen bzgl. Monomer oder Dimer zur Stabilisierung der tetrameren Form erforderlich sind. Im Gegensatz dazu sollten für eine katalytische Funktion der Cu²⁺-Ionen, z.B. bei einer Oxidation von IL-16 unter optimalen Bedingungen, geringere Mengen ausreichend sein.

Ein in Beispiel 4a beschriebenes IL-16-Konzentrat wurde zu einer Konzentration von 15 uM in Puffer verdünnt, die 50 mM MES, 250 mM GdmCl, pH 6,5 und zusätzlich zunehmende Konzentrationen an Cu(II)-Acetat enthielten. Proben dieser Verdünnungen wurden nach mindestens 9 Stunden Inkubationszeit mittels Molekularsieb-HPLC auf ihren Tetramergehalt analysiert.

Wie aus Tabelle 5a hervorgeht, sind unter diesen Bedingungen katalytische Mengen an Cu(II)-Acetat für eine Tetramerisierung nicht ausreichend.

Tabelle 5a

Cu(II)-Acetat-Konzentration [uM]	Tetramere (%)
0	0
2,5	2
5,0	4
10,0	5
15,0	17
20,0	93
40,0	97
80,0	97
250,0	98

b) Einfluß der Konzentration von Cu(II)-Acetat auf die Tetramerisierung von IL-16 bei längerer Inkubationszeit

Das IL-16-Konzentrat wurde zu einer Konzentration von 10 uM (0,14 mg/ml) in Puffer verdünnt, die 50 mM HEPES, 250 mM GdmCl, pH 7,5 und zusätzlich zunehmende Konzentrationen an Cu(II)-Acetat enthielten. Proben dieser Verdünnungen wurden nach ca. 100 Stunden Inkubationszeit mittels Molekularsieb-HPLC auf ihren Tetramerengehalt analysiert.

Wie aus der folgenden Tabelle 5b hervorgeht, sind katalytische Mengen an Cu(II)-Acetat für eine Tetramerisierung unter diesen Bedingungen ausreichend, da die niedrigste hier verwendete Konzentration an Cu-Acetat (2,5 uM) wesentlich geringer ist als die IL-16-Konzentration (10 uM) und dennoch eine Tetramerisierung von ca. 80% der Moleküle erfolgt.

Tabelle 5b

Cu(II)-Acetat-Konzentration [uM]	Tetramere (%)
0	0
2,5	83
5,0	84
7,5	88
12,5	85
15,0	85
20,0	97

Beispiel 9

Einfluß von verschiedenen Metallionen auf die Tetramerisierung von IL-16

Um einen Eindruck über die Spezifität der Metallbindung von IL-16 und der Affinität für verschiedene Metallionen zu erhalten, wurde ein in Beispiel 4 a beschriebenes IL-16-Konzentrat zu einer Konzentration von 0,2 mg/ml in einen Puffer (0,1 M Tris/HCl, 0,23 M GdmCl, 1 mM EDTA, pH 8,5) verdünnt, der unterschiedliche Metallsalze in einer Konzentration von jeweils 500 uM enthielt. Der Tetramerengehalt der Proben wurde mittels Molekularsieb-HPLC ca. 3 Stunden nach der Verdünnung, sowie nach aufeinanderfolgenden Dialysen gegen Puffer, die kein GdmCl (1.Dialyse) bzw. kein Metallsalz (2.Dialyse) enthielten, analysiert.

- 23 -

Wie aus Tabelle 6 hervorgeht, sind verschiedene Metallionen prinzipiell in der Lage, eine Tetramerisierung von IL-16 zu induzieren. Die im Vergleich zu Cu(II)-Acetat geringeren Ausbeuten an Tetramer können durch die spezifischen unphysiologischen Pufferbedingungen verursacht werden und unter anderen Bedingungen eventuell wesentlich höher sein.

Tabelle 6
Einfluß von verschiedenen Metallionen auf die Tetramerisierung von IL-16

Pufferzusatz	Tetramer vor Dia-lyse [%]	Tetramer nach Dia-lysen [%]
ohne Zusatz	0	4
1 mM EDTA	0	0
MnCl ₂	4	11
CdCl ₂	0	0
BaCl ₂	10	22
LiCl ₂	10	15
Sr(NO ₃) ₂	22	29
Na ₂ MoO ₄	13	14
GSSG/EDTA	0	0
Cu(II)-Acetat	85	72
CuCl ₂	87	nicht best.

Beispiel 10

Tetramerisierung von IL-16 bei hohen Proteinkonzentrationen mit und ohne GdmCl und Stabilität des Komplexes

Für die präparative Herstellung von tetramerem IL-16 wurde eine IL-16-Lösung mit 1,85 mg IL-16/ml (137 uM IL-16) in 20 mM Imidazol, 150 mM NaCl, pH 6,5 mit 250 uM Cu(II)Acetat in An- und Abwesenheit von 0,25 M GdmCl versetzt und der Tetrameranteil nach 90 min. mittels Molekularsieb-HPLC analysiert. Wie Tabelle 7 zeigt, ist die Tetramerisierung nahezu vollständig und unabhängig von der GdmCl-Konzentration unter diesen Bedingungen.

- 24 -

Bei einer anschließenden Dialyse dieser Proben mit überwiegend Tetrameren für bis zu 4 Tage gegen 20 mM Na-Phosphat, 150 mM NaCl, pH 7,0 wurde keine signifikante Abnahme der Tetramere beobachtet.

Tabelle 7
Tetramerisierung von IL-16 bei hohen Proteinkonzentrationen mit und ohne GdmCl

Pufferzusätze	Tetramere [%]
0,25 M GdmCl + 250 uM Cu(II)Acetat	96
250 uM Cu(II)Acetat (ohne GdmCl)	92
0,25 M GdmCl (ohne Cu-Acetat)	0

Beispiel 11

Abhängigkeit der Tetramerisierung und Polymerisierung von IL-16 vom pH-Wert in Gegenwart von 0,25 GdmCl

Eine in Beispiel 4a beschriebene IL-16 Stammlösung wurde zu einer Konzentration von 0,2 mg/ml in Puffer mit verschiedenen pH-Werten verdünnt, die jeweils 250 uM Cu(II)Acetat und 0,25 M GdmCl enthielten.

Der Anteil an Tetrameren wurde mittels Molekularsieb-HPLC analysiert. Dabei wurde eine neue polymere Spezies von IL-16 detektiert, die im sauren pH-Bereich gebildet wird, mit einem apparenten Molekulargewicht von ca. 100 kD eluiert und zur Unterscheidung von der Dimeren und tetrameren Form von IL-16 im folgenden als "Polymer" bezeichnet wird. Offenbar kann IL-16 abhängig von den Pufferbedingungen in drei diskreten Assoziationszuständen vorliegen (Dimer, Tetramer und Polymer).

Die Tetramerisierung ist im wesentlichen Metallionen-abhängig und hat ein breites pH-Optimum, während die Polymerisierung in einem relativ engen pH-Bereich erfolgt.

- 25 -

Tabelle 8

Abhangigkeit der Tetramerisierung und Polymerisierung von IL-16 vom pH-Wert in Gegenwart von 0,25 GdmCl

Puffer und pH-Wert	Tetramer [%]	Polymere [%]
50 mM CAPS, pH 10,5	8	/
50 mM Tris/HCl, pH 9,5	85	/
50 mM Tris/HCl, pH 8,5	85	/
50 mM HEPES, pH 7,5	97	/
50 mM MES, pH 6,5	96	2
50 mM MES, pH 5,5	96	2
50 mM Essigsure, pH 4,0	55	40
50 mM Glycin/HCl, pH 2,0	8	62

Beispiel 12

Abhangigkeit der Tetramerisierung und Polymerisierung von IL-16 vom pH-Wert in Abwesenheit von GdmCl

Da aus obigen Beispielen ersichtlich ist, daß eine Tetramerisierung auch in Abwesenheit von GdmCl erfolgen kann, wurde die pH-Wert-Abhangigkeit dieser Reaktion in Analogie zu Beispiel 10 auch in Abwesenheit von GdmCl untersucht.

Wie Tabelle 9 zeigt, ist der pH-Bereich der Tetramerisierung unter diesen Bedingungen enger, und vor allem werden Polymere fast ausschlielich bei pH 5,5 gebildet.

Eine erhohte Ausbeute an polymeren IL-16 von 65% wurde erzielt, wenn die Inkubation von IL-16 in 50 mM MES, pH 5,5 bei einer Proteinkonzentration von 0,4 anstelle von den in Tabelle 9 verwendeten 0,2 mg/ml IL-16 erfolgte und die Inkubationszeit vor der Analytik von ca. 3 Stunden auf 16 h verlangert wurde. Durch eine Optimierung der Bedingungen kann also voraussichtlich annhernd quantitativ polymeres IL-16 hergestellt werden.

- 26 -

Tabelle 9

**Abhangigkeit der Tetramerisierung und Polymerisierung von IL-16 vom pH-Wert in
Abwesenheit von GdmCl**

Puffer und pH-Wert	Tetramer [%]	Polymere [%]
50 mM CAPS, pH 10,5	0	/
50 mM Tris/HCl, pH 9,5	56	/
50 mM Tris/HCl, pH 8,5	60	/
50 mM HEPES, pH 7,5	91	/
50 mM Imidazol, pH 6,5	83	/
50 mM MES, pH 6,5	91	/
50 mM MES, pH 5,5	45	51
50 mM Essigsure, pH 4,0	92	/
50 mM Glycin/HCl, pH 2,0	86	/

Referenzliste

- Baier, M., et al., Nature 378 (1995) 563
 Cruikshank, W.W., et al., J. Immunol. 146 (1991) 2928-2934
 Cruikshank, W.W., et al., Proc. Natl. Acad. Sci. USA 91 (1994) 5109-5113
 Hoffman et al. in Protein Expression & Purific. 6 (1995) 646-654
 Mack et al., Analyt. Biochem. 200 (1992) 74-80
 Sambrook et al., "Expression of cloned genes in E. coli" in Molecular Cloning: A laboratory manual (1989), Cold Spring Harbor Laboratory Press, New York, USA
 WO 94/28134
 WO 96/31607

- 27 -

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

(i) ANMELDER:

- (A) NAME: BOEHRINGER MANNHEIM GMBH
- (B) STRASSE: Sandhofer Str. 116
- (C) ORT: Mannheim
- (E) LAND: Germany
- (F) POSTLEITZAHL: D-68305
- (G) TELEFON: 08856/60-3446
- (H) TELEFAX: 08856/60-3451

- (A) NAME: Bundesrepublik Deutschland vertreten durch den Bundesminister fuer Gesundheit
- (B) STRASSE: -
- (C) ORT: Bonn
- (E) LAND: Germany
- (F) POSTLEITZAHL: D-53108

(ii) BEZEICHNUNG DER ERFINDUNG: Multimere Formen von IL-16, Verfahren zu ihrer Herstellung und Verwendung

(iii) ANZAHL DER SEQUENZEN: 11

(iv) COMPUTER-LESBARE FASSUNG:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30B. (EPA)

(vi) DATEN DER URANMELDUNG:

- (A) ANMELDENUMMER: DE 195 47 933.5
- (B) ANMELDETAG: 22-DEC-1995

(2) ANGABEN ZU SEQ ID NO: 1:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1005 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1005

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

- 28 -

ATG AAA TCC TTG CTG TGC CTT CCA TCT TCT ATC TCC TGT GCC CAG ACT	48
Met Lys Ser Leu Leu Cys Leu Pro Ser Ser Ile Ser Cys Ala Gln Thr	
1 5 10 15	
CCC TGC ATC CCC AAG GAA GGG GCA TCT CCA ACA TCA TCA TCC AAC GAA	96
Pro Cys Ile Pro Lys Glu Gly Ala Ser Pro Thr Ser Ser Asn Glu	
20 25 30	
GAC TCA GCT GCA AAT GGT TCT GCT GAA ACA TCT GCC TTG GAC ACA GGG	144
Asp Ser Ala Ala Asn Gly Ser Ala Glu Thr Ser Ala Leu Asp Thr Gly	
35 40 45	
TTC TCG CTC AAC CTT TCA GAG CTG AGA GAA TAT ACA GAG GGT CTC ACG	192
Phe Ser Leu Asn Leu Ser Glu Leu Arg Glu Tyr Thr Glu Gly Leu Thr	
50 55 60	
GAA GCC AAG GAA GAC GAT GAT GGG GAC CAC AGT TCC CTT CAG TCT GGT	240
Glu Ala Lys Glu Asp Asp Asp Gly Asp His Ser Ser Leu Gln Ser Gly	
65 70 75 80	
CAG TCC GTT ATC TCC CTG CTG AGC TCA GAA GAA TTA AAA AAA CTC ATC	288
Gln Ser Val Ile Ser Leu Leu Ser Ser Glu Glu Leu Lys Lys Leu Ile	
85 90 95	
GAG GAG GTG AAG GTT CTG GAT GAA GCA ACA TTA AAG CAA TTA GAC GGC	336
Glu Glu Val Lys Val Leu Asp Glu Ala Thr Leu Lys Gln Leu Asp Gly	
100 105 110	
ATC CAT GTC ACC ATC TTA CAC AAG GAG GAA GGT GCT GGT CTT GGG TTC	384
Ile His Val Thr Ile Leu His Lys Glu Glu Gly Ala Gly Leu Gly Phe	
115 120 125	
AGC TTG GCA GGA GGA GCA GAT CTA GAA AAC AAG GTG ATT ACG GTT CAC	432
Ser Leu Ala Gly Gly Ala Asp Leu Glu Asn Lys Val Ile Thr Val His	
130 135 140	
AGA GTG TTT CCA AAT GGG CTG GCC TCC CAG GAA GGG ACT ATT CAG AAG	480
Arg Val Phe Pro Asn Gly Leu Ala Ser Gln Glu Gly Thr Ile Gln Lys	
145 150 155 160	
GGC AAT GAG GTT CTT TCC ATC AAC GGC AAG TCT CTC AAG GGG ACC ACG	528
Gly Asn Glu Val Leu Ser Ile Asn Gly Lys Ser Leu Lys Gly Thr Thr	
165 170 175	
CAC CAT GAT GCC TTG GCA ATC CTC CGC CAA GCT CGA GAG CCC AGG CAA	576
His His Asp Ala Leu Ala Ile Leu Arg Gln Ala Arg Glu Pro Arg Gln	
180 185 190	
GCT GTG ATT GTC ACA AGG AAG CTG ACT CCA GAG GCC ATG CCC GAC CTC	624
Ala Val Ile Val Thr Arg Lys Leu Thr Pro Glu Ala Met Pro Asp Leu	
195 200 205	
AAC TCC TCC ACT GAC TCT GCA GCC TCA GCC TCT GCA GCC AGT GAT GTT	672
Asn Ser Ser Thr Asp Ser Ala Ala Ser Ala Ser Ala Ala Ser Asp Val	
210 215 220	

- 29 -

TCT	GTA	GAA	TCT	ACA	GCA	GAG	GCC	ACA	GTC	TGC	ACG	GTG	ACA	CTG	GAG		720
Ser	Val	Glu	Ser	Thr	Ala	Glu	Ala	Thr	Val	Cys	Thr	Val	Thr	Leu	Glu		
225					230					235					240		
AAG	ATG	TCG	GCA	GGG	CTG	GGC	TTC	AGC	CTG	GAA	GGA	GGG	AAG	GGC	TCC		768
Lys	Met	Ser	Ala	Gly	Leu	Gly	Phe	Ser	Leu	Glu	Gly	Gly	Lys	Gly	Ser		
					245				250					255			
CTA	CAC	GGA	GAC	AAG	CCT	CTC	ACC	ATT	AAC	AGG	ATT	TTC	AAA	GGA	GCA		816
Leu	His	Gly	Asp	Lys	Pro	Leu	Thr	Ile	Asn	Arg	Ile	Phe	Lys	Gly	Ala		
					260			265					270				
GCC	TCA	GAA	CAA	AGT	GAG	ACA	GTC	CAG	CCT	GGA	GAT	GAA	ATC	TTG	CAG		864
Ala	Ser	Glu	Gln	Ser	Glu	Thr	Val	Gln	Pro	Gly	Asp	Glu	Ile	Leu	Gln		
					275			280				285					
CTG	GGT	GGC	ACT	GCC	ATG	CAG	GGC	CTC	ACA	CGG	TTT	GAA	GCC	TGG	AAC		912
Leu	Gly	Gly	Thr	Ala	Met	Gln	Gly	Leu	Thr	Arg	Phe	Glu	Ala	Trp	Asn		
					290			295			300						
ATC	ATC	AAG	GCA	CTG	CCT	GAT	GGA	CCT	GTC	ACG	ATT	GTC	ATC	AGG	AGA		960
Ile	Ile	Lys	Ala	Leu	Pro	Asp	Gly	Pro	Val	Thr	Ile	Val	Ile	Arg	Arg		
					305		310			315			320				
AAA	AGC	CTC	CAG	TCC	AAG	GAA	ACC	ACA	GCT	GCT	GGA	GAC	TCC	TAG		1005	
Lys	Ser	Leu	Gln	Ser	Lys	Glu	Thr	Thr	Ala	Ala	Gly	Asp	Ser	*			
					325				330			335					

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 335 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met	Lys	Ser	Leu	Leu	Cys	Leu	Pro	Ser	Ser	Ile	Ser	Cys	Ala	Gln	Thr		
1					5					10				15			
Pro	Cys	Ile	Pro	Lys	Glu	Gly	Ala	Ser	Pro	Thr	Ser	Ser	Ser	Asn	Glu		
					20				25					30			
Asp	Ser	Ala	Ala	Asn	Gly	Ser	Ala	Glu	Thr	Ser	Ala	Leu	Asp	Thr	Gly		
					35			40					45				
Phe	Ser	Leu	Asn	Leu	Ser	Glu	Leu	Arg	Glu	Tyr	Thr	Glu	Gly	Leu	Thr		
					50			55			60						
Glu	Ala	Lys	Glü	Asp	Asp	Asp	Gly	Asp	His	Ser	Ser	Leu	Gln	Ser	Gly		
					65		70			75					80		

- 30 -

Gln	Ser	Val	Ile	Ser	Leu	Leu	Ser	Ser	Glu	Glu	Leu	Lys	Lys	Leu	Ile
					85				90						95
Glu	Glu	Val	Lys	Val	Leu	Asp	Glu	Ala	Thr	Leu	Lys	Gln	Leu	Asp	Gly
					100				105						110
Ile	His	Val	Thr	Ile	Leu	His	Lys	Glu	Glu	Gly	Ala	Gly	Leu	Gly	Phe
					115				120						125
Ser	Leu	Ala	Gly	Gly	Ala	Asp	Leu	Glu	Asn	Lys	Val	Ile	Thr	Val	His
					130				135						140
Arg	Val	Phe	Pro	Asn	Gly	Leu	Ala	Ser	Gln	Glu	Gly	Thr	Ile	Gln	Lys
					145				150						160
Gly	Asn	Glu	Val	Leu	Ser	Ile	Asn	Gly	Lys	Ser	Leu	Lys	Gly	Thr	Thr
					165				170						175
His	His	Asp	Ala	Leu	Ala	Ile	Leu	Arg	Gln	Ala	Arg	Glu	Pro	Arg	Gln
					180				185						190
Ala	Val	Ile	Val	Thr	Arg	Lys	Leu	Thr	Pro	Glu	Ala	Met	Pro	Asp	Leu
					195				200						205
Asn	Ser	Ser	Thr	Asp	Ser	Ala	Ala	Ser	Ala	Ser	Ala	Ala	Ser	Asp	Val
					210				215						220
Ser	Val	Glu	Ser	Thr	Ala	Glu	Ala	Thr	Val	Cys	Thr	Val	Thr	Leu	Glu
					225				230						240
Lys	Met	Ser	Ala	Gly	Leu	Gly	Phe	Ser	Leu	Glu	Gly	Gly	Lys	Gly	Ser
					245				250						255
Leu	His	Gly	Asp	Lys	Pro	Leu	Thr	Ile	Asn	Arg	Ile	Phe	Lys	Gly	Ala
					260				265						270
Ala	Ser	Glu	Gln	Ser	Glu	Thr	Val	Gln	Pro	Gly	Asp	Glu	Ile	Leu	Gln
					275				280						285
Leu	Gly	Gly	Thr	Ala	Met	Gln	Gly	Leu	Thr	Arg	Phe	Glu	Ala	Trp	Asn
					290				295						300
Ile	Ile	Lys	Ala	Leu	Pro	Asp	Gly	Pro	Val	Thr	Ile	Val	Ile	Arg	Arg
					305				310						320
Lys	Ser	Leu	Gln	Ser	Lys	Glu	Thr	Thr	Ala	Ala	Gly	Asp	Ser	*	
					325				330						335

(2) ANGABEN ZU SEQ ID NO: 3:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang

- 31 -

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GCTGCCTCTC ATATGGACCT CAACTCCTCC ACTGACTCT

39

(2) ANGABEN ZU SEQ ID NO: 4:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 38 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

GATGGACAGG GATCCCTAGG AGTCTCCAGC AGCTGTGG

38

(2) ANGABEN ZU SEQ ID NO: 5:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 67 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

CCCGAATTCT ATGCATCACCC ACCACCACCA CGATGACGAC GACAAACCCG ACCTCAACTC 60

CTCCACT 67

(2) ANGABEN ZU SEQ ID NO: 6:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 31 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

- 32 -

- (ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

CCCGAATTCT ATGCCCGACC TCAACTCCTC C

31

(2) ANGABEN ZU SEQ ID NO: 7:

- (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 67 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

CCCGAATTCT ATGCATCACCC ACCACCACCA CGATGACGAC GACAAAATGC CCGACCTCAA 60

CTCCTCC 67

(2) ANGABEN ZU SEQ ID NO: 8:

- (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 33 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: other nucleic acid
 (A) BESCHREIBUNG: /desc = "Primer"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

GCGGATCCAA GCTTAGGAGT CTCCAGCAGC TGT

33

(2) ANGABEN ZU SEQ ID NO: 9:

- (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 5 Aminosäuren
 (B) ART: Aminosäure
 (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: Peptid

- 33 -

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Asp Asp Asp Asp Lys
1 5

(2) ANGABEN ZU SEQ ID NO: 10:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 5 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Pro Asp Leu Asn Ser
1 5

(2) ANGABEN ZU SEQ ID NO: 11:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 6 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Met Pro Asp Leu Asn Ser
1 5

Patentansprüche

1. Biologisch aktive multimere IL-16-Form mit einem Molekulargewicht von mindestens ca. 70 kD (Gelfiltrations-HPLC).
2. IL-16-Form nach Anspruch 1, dadurch gekennzeichnet, daß die IL-16-Form aus einer definierten Anzahl von Untereinheiten besteht, wobei die Anzahl der Untereinheiten zwischen 6 und 32, vorzugsweise zwischen 8 und 16 liegen kann.
3. Biologisch aktive Form einer monomeren IL-16-Untereinheit oder multimeren IL-16-Untereinheiten mit einem definierten Gehalt an Metallionen, wobei die Anzahl der Metallionen zwischen 0,5 und 2 pro Untereinheit, vorzugsweise zwischen 0,5 und 1 pro Untereinheit beträgt.
4. Biologisch aktive dimere oder tetramere Form von IL-16-Untereinheiten, die einen Metallionengehalt von 0,5-2 Metallionen pro Dimer oder Tetramer besitzt.
5. Präparation einer biologisch aktiven monomeren oder multimeren Form von IL-16-Untereinheiten, enthaltend Metallionen in einer molaren Konzentration von mindestens 50% der molaren Konzentration der enthaltenen IL-16-Untereinheiten.
6. Präparation einer IL-16-Untereinheit mit einem Molekulargewicht von ca. 13-35 kD, enthaltend ein Metallion pro Untereinheit.
7. Präparation eines Dimeren, Tetrameren oder Oktameren der IL-16-Untereinheit gemäß Anspruch 6.
8. Verfahren zur Herstellung einer biologisch aktiven Form eines Multimeren von IL-16-Untereinheiten durch Expression einer IL-16 codierenden Nukleinsäure in einer prokaryontischen oder eukaryontischen Wirtszelle und Isolierung des IL-16-Proteins, dadurch gekennzeichnet, daß im Verlauf der Herstellung oder Reinigung Metallionen zugegen sind.
9. Verfahren zur Herstellung einer biologisch aktiven multimeren Form von IL-16-Untereinheiten, dadurch gekennzeichnet, daß IL-16-Untereinheiten in monomerer Form

- 35 -

und/oder dimerer Form mit Metallionen inkubiert werden und die dabei entstandene multimere Form aus IL-16-Untereinheiten entweder einzeln oder als Gemisch isoliert wird.

10. Verfahren zur Erhöhung des Multimerisierungsgrads einer monomeren und/oder multimeren Form von IL-16-Untereinheiten (Ausgangsform), dadurch gekennzeichnet, daß die monomere oder multimeren Form mit Metallionen inkubiert wird, wobei eine oder mehrere höher multimerisierten Form oder Formen von IL-16-Untereinheiten entstehen, und die höher multimerisierten Form oder Formen von den Ausgangsformen abgetrennt werden.
11. Verfahren nach den Ansprüchen 8 bis 10, dadurch gekennzeichnet, daß zusätzlich ein Denaturierungsmittel wie Guanidinhydrochlorid oder Harnstoff zugesetzt wird.
12. Verfahren nach den Ansprüchen 9 bis 11, dadurch gekennzeichnet, daß die Inkubation bei pH 3-9, vorzugsweise bei pH 5-7,5 durchgeführt wird.

Fig. 1

1 / 8

ERSATZBLATT (REGEL 26)

Fig. 2

Fig. 3A

Fig. 3B

Fig. 4

Fig. 5

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/05661

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/24 C07K14/54 C07K1/113

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PROC. NATL. ACAD. SCI. USA, vol. 91, May 1994, pages 5109-5113, XP002028072 CRUIKSHANK W.W. ET AL.: "Molecular and functional analysis of a lymphocyte chemoattractant factor: Association of biologic function with CD4 expression." cited in the application see the whole document ---	1-12
A	WO 94 28134 A (UNIV BOSTON) 8 December 1994 cited in the application see the whole document, in particular page 27, Zeilen 13-29 ---	1-12 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

2

Date of the actual completion of the international search

24 March 1997

Date of mailing of the international search report

03.04.97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Mandl, B

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 96/05661

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9428134 A	08-12-94	EP 0700439 A JP 8510907 T	13-03-96 19-11-96
EP 0360937 A	04-04-90	AU 631356 B AU 2284188 A DE 3887889 D DE 3887889 T	26-11-92 29-03-90 24-03-94 25-08-94
US 4572798 A	25-02-86	AU 594930 B AU 5005285 A CA 1248300 A DE 3586987 A EP 0185459 A GB 2168055 A,B JP 6096600 B JP 61140600 A KR 9303475 B	22-03-90 12-06-86 03-01-89 25-02-93 25-06-86 11-06-86 30-11-94 27-06-86 22-04-94

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/05661

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 360 937 A (CETUS CORP) 4 April 1990 see line A see page 6, line 6 - line 25 see page 6, line 42 - page 7, line 10 ---	1-12
A	US 4 572 798 A (KOTHS KIRSTON E ET AL) 25 February 1986 see the whole document ---	1-12
T	IMMUNOLOGY TODAY, vol. 17, no. 10, October 1996, pages 476-481, XP002028073 CEMTER D.M. ET AL.: "Interleukin 16 and its function as a CD4 ligand." see the whole document ---	1-12
T	JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY., vol. 99, no. 1, part 2, January 1997, page s54 XP002028074 WU D.M.H.: "Cloning and functional characterization of the murine CD4 ligand interleukin-16." see abstract 222 ---	1-12
T	JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, vol. 99, no. 1, part 2, January 1997, page s54 XP002028075 CHUPP G. ET AL.: "Pro-IL-16 is an 80 kDa cytoplasmic protein expressed in blood T-lymphocytes." see abstract 224 -----	1-12

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PC1/EP 96/05661

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C12N15/24 C07K14/54 C07K1/113

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C12N C07K

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PROC. NATL. ACAD. SCI. USA, Bd. 91, Mai 1994, Seiten 5109-5113, XP002028072 CRUIKSHANK W.W. ET AL.: "Molecular and functional analysis of a lymphocyte chemoattractant factor: Association of biologic function with CD4 expression." in der Anmeldung erwähnt siehe das ganze Dokument --- WO 94 28134 A (UNIV BOSTON) 8. Dezember 1994 in der Anmeldung erwähnt siehe das ganze Dokument, besonders Seite 27, Zeilen 13-29 --- -/-/	1-12
A		1-12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- 'X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- 'Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

2

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
24. März 1997	03.04.97
Name und Postanschrift der internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+ 31-70) 340-3016	Bevollmächtigter Bediensteter Mandl, B

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PC1/EP 96/05661

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 360 937 A (CETUS CORP) 4.April 1990 siehe Zeile A siehe Seite 6, Zeile 6 - Zeile 25 siehe Seite 6, Zeile 42 - Seite 7, Zeile 10 ---	1-12
A	US 4 572 798 A (KOTHS KIRSTON E ET AL) 25.Februar 1986 siehe das ganze Dokument ---	1-12
T	IMMUNOLOGY TODAY, Bd. 17, Nr. 10, Oktober 1996, Seiten 476-481, XP002028073 CEMTER D.M. ET AL.: "Interleukin 16 and its function as a CD4 ligand." siehe das ganze Dokument ---	1-12
T	JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY., Bd. 99, Nr. 1, part 2, Januar 1997, Seite s54 XP002028074 WU D.M.H.: "Cloning and functional characterization of the murine CD4 ligand interleukin-16." siehe Zusammenfassung 222 ---	1-12
T	JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Bd. 99, Nr. 1, part 2, Januar 1997, Seite s54 XP002028075 CHUPP G. ET AL.: "Pro-IL-16 is an 80 kDa cytoplasmic protein expressed in blood T-lymphocytes." siehe Zusammenfassung 224 -----	1-12
2		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 96/05661

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9428134 A	08-12-94	EP 0700439 A JP 8510907 T	13-03-96 19-11-96
EP 0360937 A	04-04-90	AU 631356 B AU 2284188 A DE 3887889 D DE 3887889 T	26-11-92 29-03-90 24-03-94 25-08-94
US 4572798 A	25-02-86	AU 594930 B AU 5005285 A CA 1248300 A DE 3586987 A EP 0185459 A GB 2168055 A,B JP 6096600 B JP 61140600 A KR 9303475 B	22-03-90 12-06-86 03-01-89 25-02-93 25-06-86 11-06-86 30-11-94 27-06-86 22-04-94