Experiment No.3 Date:28/09/2021

Verification of Kirchhoff's Voltage Law, Mesh Analysis and Equivalent Resistance

Objectives:

- 1. To verify KVL and find the mesh currents and nodal voltages.
- 2. To verify the equivalent resistance of the circuit from different terminals

Simulation Tool:

LTSpice – dc operating point analysis and transient analysis.

Circuit:

Observation:

I1 = 0.06983A

I2 = -0.00948A

I3 = -0.01293A

S. No	Element/Branch	Current (A)	Voltage (V)	Power (W) Dissipated
1	R1	0.06983A	6.9827 V	0.488W
2	R2	-0.00948A	-1.8965 V	0.018W
3	R3	-0.01293A	-3.8790 V	0.050W
4	R4	0.06034A	3.0172 V	0.182W
5	R5	-0.02241A	1.1205 V	0.025W
6	V1	-0.06983A	10 V	-0.698W
7	V2	-0.01293A	5 V	-0.064W

To Do:

- 1. Find the mesh currents **I1**, **I2** and **I3** using the above measurements
- 2. Verify KVL in the independent loops
- 3. Compute the equivalent resistance of the circuit from terminals **a-b**, **c-d**, **e-f** and understand they are different.
- 4. Insert the picture of all the theoretical calculation done in your notebook

1. KVL and Mesh Analysis:

	Operating Point	
V(a):	10	voltage
V(e):	3.01724	voltage
V(f):	1.12069	voltage
V(c):	5	voltage
I (R5):	-0.0224138	device current
I(R4):	0.0603448	device current
I(R3):	-0.012931	device current
I(R2):	-0.00948276	device current
I(R1):	0.0698276	device current
I (V2):	-0.012931	device current
I (V1):	-0.0698276	device current

Calculations

KVL in loop ():
$$EV_{Active} = EV_{Passive}$$
 $V_{3} = 100 \text{ I}$,

 $V_{+} = V_{3} + V_{6}$
 $10 = 100\text{I}_{1} + 50(\text{I}_{1} + \text{I}_{2})$
 $150\text{I}_{1} + 50\text{I}_{2} = 10$
 $V_{1} = 100$
 $V_{2} = 100$
 $V_{3} = 100$
 $V_{4} = 100$
 $V_{5} = 100$
 $V_{6} = 100$
 $V_{1} = 100$
 $V_{1} = 100$
 $V_{1} = 100$
 $V_{2} = 100$
 $V_{3} = 100$
 $V_{4} = 100$
 $V_{5} = 100$
 $V_{6} = 100$
 $V_{7} = 100$

From @ In = I3 - 6I2

Substituting In (D:

-15 I3 - 90I2 + 5I2 = 1
=)
$$85I_2 + 15I_3 = -1 - 9$$

From @ and 9

 $859I_2 + 150I_3 = -10$

C-28510 I2 75950I3 = 2285

-5800I3 = 75
=) I3 - -75 = -0.01293A

5800 [I3 - 12.93 mA]

Now from @,

70 (-75) + 10I2 = -1

=) $10I_2 = -1 + 525$
580

=) $I_2 = -55 = -0.0091627 A$
5800

 $I_1 = -12 - 6I_2$
= $75 + 55x6$
5800

 $I_1 = -13 - 6I_2$
= $75 + 55x6$
5800

 $I_1 = -13 - 6I_2$
= $75 + 55x6$
5800

 $I_1 = -13 - 6I_2$
= $75 + 55x6$
5800

 $I_1 = -13 - 6I_2$
= $75 + 55x6$
5800

 $I_1 = -13 - 6I_2$
= $75 - 55 - 55x6$
5800

 $I_1 = -15 - 55x6$
5800

 $I_1 = -15 - 61$
 $I_2 = -15 - 61$
 $I_3 = -15 - 61$
 $I_4 = -15 - 61$
 $I_5 = -15 - 61$
 $I_5 = -15 - 61$
 $I_7 = -15 - 61$
 $I_8 = -15 - 61$
 $I_9 = -15$
 I_9

```
⇒ V_{4} = 50 (I_{1} + I_{2})

= 50 (0.069827 - 0.0094827)

= 50 (0.0603443)

V_{4} = 3.0172 V] = V_{6}

⇒ V_{7} = -50 (I_{2} + I_{3})

= -50 (-0.0094827 - 0.01293)

V_{7} = 1.12 V] = V_{f}

⇒ I_{R_{1}} = I_{1} = 0.06984

⇒ I_{R_{2}} = I_{2} = -0.0094834

⇒ I_{R_{3}} = I_{3} = -0.012934

⇒ I_{R_{1}} = I_{1} + I_{2} = 0.069827 - 0.0094827

I_{R_{1}} = 0.060344
```

```
IR = (12+13)
        = - (0.009h827+0.01293)
      =- 0.0224120A
 -) IR5 = -0. 02241A)
- Iv = - I, = -0.06983A
-> IV= I3=- 0.01293A
telles
    Power dissipated:
   PR = IXV3
                                 PRG = -IR V7
      = 0.487589 W
                                     = 0.0251189 W
 =) [Pe, = 0. 488 W]
                               =) PRS = 0.025W
   Paz = IxVh
                                Pv = - I, V -
       =0.017984W
                                    =-0.698276 W
 =) PR2 = 0.018W
                              =) Pv = -0.698W)
   PR3 = I3XVS
                                PV2 = I3 V2
= 0.050163 W
=) PR3 = 0.05 W
                                   =-0.064655 W
                              =)P12 = - 0.064 W]
  PRN = IRV6
= 0.182074
=) PRy= 0.182W
```

2. Compute Equivalent Resistance between different nodes

<u>a-b</u>

<u>c-d</u>

Do it yourself:

For the circuit given below, Verify KVL, KCL, Nodal Analysis and Mesh Analysis using LTSpice and TinkerCAD

1) KVL – Mesh Analysis

KVL in loop 1:
$$V_{active} = V_{bassive}$$
 $V_{h} + V_{2} = V_{5}$
 $2(i_{2} - i_{1}) + 6 = 10i,$
 $3 + 12i_{1} - 2i_{2} = 6$
 $3 + 12i_{1} - 2i_{2} = 3$
 $4 + 12i_{2} - 3i_{2} - 6i_{3}$
 $5 + 12i_{2} - 3i_{3} - 6i_{3}$
 $5 + 12i_{3} - 6i_{3} - 6i_{3}$

From (2).

From (3).

$$i_3 = 8 - 2i_1 + 7i_2$$

Substituting i_3 $i_1(3)$
 $-12i_1 + 51i_2 = -56$
 $-12i_1 + 51i_2 = -56$

2) KCL – Nodal Analysis

KCL at node @:
$$\sum I_{entering} = \sum I_{leaving}$$

$$I_2 = I_1 + I_3$$

$$= V_1 = V_1 - V_2 + V_1 - V_2$$

$$\Rightarrow -5V_1 = 2V_1 - 2V_2 + 10V_1 - 10V_2$$

$$\Rightarrow \left[I_{3}V_1 - 10V_2 - 2V_3 = 0\right]$$
KCL at node @: $\sum I_{entering} = \sum I_{leaving}$

$$I_3 + i = I_1 - 2$$

$$K(L at node @: \sum I_{entering} = \sum I_{leaving}$$

$$I_1 + I_1 = I_2$$

$$= I_1 - I_1 - I_2$$

$$I_1 = I_2 - I_1 - I_3$$
From @ and @
$$I_3 + i = I_3 - I_1$$

$$V_1 - V_2 + V_1 = V_2 - (V_1 - V_3)$$

$$= V_1 - V_2 + V_3 - V_2 = V_3 - (V_1 - V_3)$$

$$= V_1 - V_2 + V_3 - V_2 = V_3 - (V_1 - V_3)$$

$$= V_1 - V_2 + V_3 - V_2 = V_3 - (V_1 - V_3)$$

$$= V_1 - V_2 + V_3 - V_4 = V_3 - (V_1 - V_3)$$

$$= V_1 - V_2 + V_3 - V_4 = V_4 - (V_1 - V_3)$$

$$= \int 5V_1 - 5V_2 + 80 = 10V_2 = 2V_3 - V_1 + V_3$$

$$= \int -6V_1 + 15V_2 + 3V_3 = 80 - 6$$

$$= V_2 - V_3 = 6 - 6$$

From ©,
$$V_3 = V_2 = 6$$
 $V_3 = V_4 = 6$
 $V_3 = V_4 = 6$
 $V_4 = V_4 =$

3) LTSpice

	Operating Point	
V(1):	4.10256	voltage
V(2): V(4):	6.81197 8	voltage voltage
V(3):	0.811966	voltage
I(R5): I(R4):	0.32906 1.3547	<pre>device_current device current</pre>
I(R3):	0.162393	device_current
I(R2):	-1.18803 -1.02564	<pre>device_current device current</pre>
I(R1): I(V2):	-0.166667	device_current
I(V1):	-1.18803	device_current

4) TinkerCAD

