

d22180@students.iitmandi.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning for Computer Vision (course)

Click to register for **Certification exam** (https://examform.nptel.ac.in

/2023 10 lexam_form /dashboard)

If already registered, click to check your payment status

Course outline

How does an **NPTEL** online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

- Neural Networks: A Review - Part 1 (unit?unit=49& lesson=50)
- Neural Networks: A Review - Part 2 (unit?unit=49& lesson=51)
- Feedforward **Neural Networks** Backpropagation -Part 1

Week 4: Assignment 2

Assignment not submitted

- 1) Match the following:
- 1) Dense registration through optical flow
- 2) Wide baseline spatial matching
- 3) Rotation in x y plane
- 4) Bag-of-words

ii) Detect different instances of same object

i) Assumption of rigid transformations

- iii) Two degrees of freedom
- iv) Aperture problem
- v) One degree of freedom
- \bigcirc 1 \rightarrow iv, 2 \rightarrow i, 3 \rightarrow iii, 4 \rightarrow ii O 1→v, 2→ii, 3→iv, 4→i
- O 1→iv, 2→i, 3→v, 4→ii
- \bigcirc 1 \rightarrow v, 2 \rightarrow i, 3 \rightarrow iii, 4 \rightarrow ii
- 2) Which one of the following statements is false?

1 point

1 point

Due date: 2023-08-23, 23:59 IST.

- The difference between VLAD and BoW is that VLAD yields a residual vector
- BoW allows partial matching
- Aggregated Selective Match Kernel uses concepts from Hamming Embedding method and VLAD
- A codebook or a visual vocabulary consists of visual words
- 3) Let us consider RANSAC applied on 100 datapoints. Suppose you fit 10 lines line1 line10 at 1 point each iteration time step t1-t10. Number of outliers for each line is given by

[line1:80, line2:90, line3:55, line4:60, line5:70, line6:40, line7:50, line8:80, line9:90, line10:60, line10While applying the RANSAC algorithm, which line will be stored as solution at time step t5 and t10?

 $t5: line 5, \ t10: line 7$

 \bigcirc $t5: line5, \ t10: line10$

 \bigcirc $t5: line3, \ t10: line6$

 \bigcirc $t5: line4, \ t10: line6$

- 4) Given that a geometric transformation requires 2 correspondences between an input image and the corrosponding transformed image, the degrees of freedom for that respective geometric transformation will be:
 - O₃
 - 04
 - O 5

1 of 3 13/08/23, 16:21

(unit?unit=49& lesson=52)	3 or 4
Feedforward Neural Networks and Backpropagation - Part 2 (unit?unit=49& lesson=53)	O 4 or 5 5) Consider 2 images $(X \text{ and } Y)$ where 2 binarized descriptors from each image are assigned to the 1 point same visual word. Given the following descriptors for each image, compute the score using Hamming embedding: • First Binarized descriptor for image $X(b_{x1}):[1,1,0,0,1]$ • Second Binarized descriptor for image $X(b_{x2}):[0,1,1,1,1]$ • First Binarized descriptor for image $Y(b_{y1}):[0,0,0,1,1]$
Gradient Descent and Variants - Part 1 (unit?unit=49& lesson=54)	$ullet$ Second Binarized descriptor for image $Y(b_{y2}):[0,1,1,1,1]$ Consider the threshold $ au=3$.
Gradient Descent and Variants - Part 2 (unit?unit=49& lesson=55)	0 2 0 3 0 4
Regularization in Neural Networks - Part 1 (unit?unit=49& lesson=56)	Consider two 3×3 images x_1 and x_2 such that $x_1=\begin{bmatrix}1&2&3\\4&6&8\\5&11&12\end{bmatrix}$ and $x_2=\begin{bmatrix}3&2&7\\9&1&8\\4&5&6\end{bmatrix}$. Their corresponding one-hot encoded label vectors are $y_1=[1,0,0]$ and $y_2=[0,1,0]$. Perform mixup data augmentation between x_1 and x_2 given that $\lambda=0.6$.
Regularization in Neural Networks - Part 2 (unit?unit=49& lesson=57)	$ ilde{x} = egin{bmatrix} 1.8 & 2.0 & 4.6 \ 6.0 & 4.0 & 8.0 \ 4.6 & 8.6 & 9.6 \end{bmatrix}; ilde{y} = [0, 0.6, 0.4]$
Improving Training of Neural Networks - Part 1 (unit?unit=49& lesson=58)	$ ilde{x} = egin{bmatrix} 1.8 & 2.0 & 4.6 \ 6.0 & 3.0 & 8.0 \ 4.6 & 8.4 & 10.8 \end{bmatrix}; ilde{y} = [0.6, 0.4, 0] \ egin{bmatrix} 0 \ 1.8 & 2.0 & 4.6 \end{bmatrix}$
Improving Training of Neural Networks - Part 2 (unit?unit=49& lesson=59)	$ ilde{x} = egin{bmatrix} 1.8 & 2.0 & 4.6 \ 6.0 & 4.0 & 8.0 \ 4.6 & 8.6 & 9.6 \end{bmatrix}; ilde{y} = [0.6, 0.4, 0] \ ilde{o} & ilde{x} = egin{bmatrix} 5.2 & 4.2 & 3.2 \ 5.6 & 9.0 & 10.4 \ 1.4 & 5.4 & 6.0 \end{bmatrix}; ilde{y} = [0, 0.4, 0.6] \ \end{cases}$
Lecture Materials (unit?unit=49& lesson=60)	[1.4 5.4 6.0] 7) Which of the following statements are true ?(select all that apply)
Quiz: Week 4: Assignment 2 (assessment?na me=226)	 □ Batch Normalization increases the dependence on weight initialization. □ Any constant weight initialization will result in poor results. □ We cannot use higher learning rates when Batch Normalization is applied. □ Both very large and small weights can cause certain activation functions (sigmoid/tanh) to saturate, leading to small gradients. 8) Consider a simple perceptron f such that f: ℝ⁴ → ℝ which uses tanh as its activation function. I point The input X = [0.4, 0.3, 0.8, 0.2] and the corresponding weights W = [1.2, -0.8, 0.2, 0.5]. Compute the derivative of tanh of z, where z is a linear combination of weights vector W and input vector X. Ignore the biasterm.
Quiz: Week 4: Programming Quiz 1 (assessment?nam e=227)	
Week 4 Feedback Form : Deep Learning for Computer Vision (unit?unit=49&	0.87 0.82 0.78 0.35
lesson=210)	9) Consider the following statements. 1 point
	(i) Adding Gaussian noise (with zero mean) to input is equivalent to L2 weight decay when loss function is MSE.

Download Videos ()
Live Session ()
Text Transcripts ()
Books ()
Problem Solving Session - July 2023 ()

(ii) At test time, batch normalization uses running average of training mini-batch mean and variance.
 statement (i) is true but statement (ii) is false. statement (ii) is true but statement (i) is false. Both statements are false. Both statements are true.
10) Which one of the following statements is true : 1 point
 Weight change criterion is a method of 'early stopping' that checks whether or not the error is dropping over epochs to decide whether to continue training or stop. L₂ norm tends to create more sparse weights than L₁ norm. During the training phase, for each iteration, Dropout ignores a random fraction, p, of nodes, and accounts for it in the test phase by scaling down the activations by a factor of p. A single McCulloch-Pitts neuron is capable of modeling AND, OR, XOR, NOR, and NAND functions. Using Adagrad-based gradient descent, find the new value of parameter θ_{t+1}, given that the old value
$ heta_t=0.9$, aggregated gradient $\Delta heta_t=0.8$, gradient accumulation $r_{t-1}=0.5$, learning rate $lpha=0.2$ and small constant $\delta=10^{-8}$. (Round decimal point till 3 places.)
1 point
12) Using RMSProp-based gradient descent, find the new value of parameter θ_{t+1} , given that the old value $\theta_t=1.8$, aggregated gradient $\Delta\theta_t=0.6$, gradient accumulation $r_{t-1}=0.4$, learning rate $\alpha=0.1$, decay rate $\rho=0.6$ and small constant $\delta=10^{-9}$. (Round decimal point till 3 places.)
You may submit any number of times before the due date. The final submission will be considered for grading. Submit Answers

3 of 3 13/08/23, 16:21