(十五) 离散数学: 复习 (Review)

魏恒峰

hfwei@nju.edu.cn

2021年06月17日

Theorem

$$\Sigma \vdash \alpha \Longleftrightarrow \Sigma \models \alpha$$

" \rightarrow " and " \leftrightarrow " are used in a single formula.

" \Longrightarrow " and " \Longleftrightarrow " are used to connect two formulas.

" \rightarrow " and " \leftrightarrow " are used in a single formula.

" \Longrightarrow " and " \Longleftrightarrow " are used to connect two formulas.

$$x \in A \setminus B$$

$$\iff x \in A \land x \notin B$$

$$\iff x \in A \land (x \in U \land x \notin B)$$

$$\iff x \in A \land x \in \overline{B}$$

$$\iff x \in A \cap \overline{B}$$

$$\begin{split} p \oplus q &\triangleq (p \vee q) \wedge \neg (p \wedge q) \\ &= (p \wedge \neg q) \vee (\neg q \wedge q) \end{split}$$

p	q	$p\oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{aligned} p \oplus q &\triangleq (p \lor q) \land \neg (p \land q) \\ &= (p \land \neg q) \lor (\neg q \land q) \end{aligned}$$

p	q	$p\oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

$$p \oplus q = q \oplus r$$
$$(p \oplus q) \oplus r = p \oplus (q \oplus r)$$

Theorem

$\sqrt{2}$ is irrational.

The First Crisis in Mathematics

Theorem (Bézout's Identity)

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

Theorem (Pigeonhole Principle)

If n objects are placed in r boxes, where r < n, then at least one of the boxes contains ≥ 2 ($\geq \lceil \frac{n}{r} \rceil$) object.

Consider the numbers $1, 2, \ldots, 2n$, and take any n+1 of them.

There are two among these n+1 numbers which are relatively prime.

Consider the numbers $1, 2, \ldots, 2n$, and take any n+1 of them. There are two among these n+1 numbers which are relatively prime.

There must be two numbers which are only 1 apart.

Consider the numbers $1, 2, \ldots, 2n$, and take any n+1 of them.

There are two among these n+1 numbers such as one divides the other.

Consider the numbers $1, 2, \dots, 2n$, and take any n + 1 of them.

There are two among these n+1 numbers such as one divides the other.

$$a = 2^k m, \quad (1 \le m \le 2n - 1 \text{ is odd})$$

There n+1 numbers have only n different odd parts.

There must be two numbers with the same odd part.

Hand-shaking

If there are n > 1 people who can shake hands with one another, there are two people who shake hands with the same number of people.

Hand-shaking

If there are n>1 people who can shake hands with one another, there are two people who shake hands with the same number of people.

$$0 \sim n - 1$$

Hand-shaking

If there are n > 1 people who can shake hands with one another, there are two people who shake hands with the same number of people.

$$0 \sim n-1$$

Either the '0' hole or the 'n-1' hole or both must be empty.

Suppose we are given n integers a_1, a_2, \ldots, a_n .

Suppose we are given n integers a_1, a_2, \ldots, a_n .

Then there is a set of consecutive numbers $a_{k+1}, a_{k+2}, \ldots, a_l$ whose sum $\sum_{i=k+1}^{l} a_i$ is a multiple of n.

$$A_i = \sum_{k=1}^{k=i} a_i$$

Suppose we are given n integers a_1, a_2, \ldots, a_n .

$$A_i = \sum_{k=1}^{k=i} a_i$$

$$A_0, A_1, A_2, \dots, A_n$$

Suppose we are given n integers a_1, a_2, \ldots, a_n .

$$A_i = \sum_{k=1}^{k=i} a_i$$

$$A_0, A_1, A_2, \ldots, A_n$$

$$\exists 0 \le i < j \le n. A_i = A_j \mod n$$

Suppose we are given n integers a_1, a_2, \ldots, a_n .

$$A_i = \sum_{k=1}^{k=i} a_i$$

$$A_0, A_1, A_2, \ldots, A_n$$

$$\exists 0 \le i < j \le n. \ A_i = A_j \mod n$$

$$A_i - A_i = a_{i+1} + \dots + a_i = 0 \mod n$$

"胡司令" (胡荣华) 要安排一次长达 77 天的象棋练习赛。

他想每天至少要有一场比赛,但是总共不超过132场比赛。

请证明, 无论如何安排, 他都要在连续的若干天内恰好完成 21 场比赛。

"胡司令" (胡荣华) 要安排一次长达 77 天的象棋练习赛。

他想每天至少要有一场比赛,但是总共不超过132场比赛。

请证明, 无论如何安排, 他都要在连续的若干天内恰好完成 21 场比赛。

Let a_i denote the number of games he plays up through the *i*-th day.

"胡司令" (胡荣华) 要安排一次长达 77 天的象棋练习赛。

他想每天至少要有一场比赛,但是总共不超过132场比赛。

请证明, 无论如何安排, 他都要在连续的若干天内恰好完成 21 场比赛。

Let a_i denote the number of games he plays up through the *i*-th day.

$$a_1, a_2, \ldots, a_{76}, a_{77}, a_1 + 21, a_2 + 21, \ldots, a_{76} + 21, a_{77} + 21$$

"胡司令" (胡荣华) 要安排一次长达 77 天的象棋练习赛。

他想每天至少要有一场比赛,但是总共不超过132场比赛。

请证明, 无论如何安排, 他都要在连续的若干天内恰好完成 21 场比赛。

Let a_i denote the number of games he plays up through the *i*-th day.

$$a_1, a_2, \ldots, a_{76}, a_{77}, a_1 + 21, a_2 + 21, \ldots, a_{76} + 21, a_{77} + 21$$

There must be ≥ 2 elements having the same value.

"胡司令" (胡荣华) 要安排一次长达 77 天的象棋练习赛。

他想每天至少要有一场比赛,但是总共不超过132场比赛。

请证明, 无论如何安排, 他都要在连续的若干天内恰好完成 21 场比赛。

Let a_i denote the number of games he plays up through the *i*-th day.

$$a_1, a_2, \ldots, a_{76}, a_{77}, a_1 + 21, a_2 + 21, \ldots, a_{76} + 21, a_{77} + 21$$

There must be ≥ 2 elements having the same value.

It must be
$$a_i + 21 = a_j$$
.

ロト (回) (重) (重) 重 の(で

Sequences

In any sequence $a_1, a_2, \ldots, a_{mn+1}$ of mn+1 distinct numbers, there exists an increasing subsequence

$$a_{i_1} < a_{i_2} < \dots < a_{i_{m+1}} \quad (i_1 < i_2 < \dots < i_{m+1})$$

of length m+1, or a decreasing subsequence

$$a_{j_1} > a_{j_2} > \dots > a_{j_{n+1}} \quad (j_1 > i_2 < \dots > j_{n+1})$$

of length n+1, or both.

Paul Erdős (1913 \sim 1996)

Chapter 28 of "Proofs from THE Book"

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C|$$

$$-|A \cap B| - |A \cap C| - |B \cap C|$$

$$+|A \cap B \cap C|$$

Theorem (Inclusion-Exclusion Principle)

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$- \cdots$$

$$+ (-1)^{n-1} |A_1 \cap \cdots \cap A_n|.$$

Theorem (Inclusion-Exclusion Principle)

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k|$$

$$- \cdots$$

$$+ (-1)^{n-1} |A_1 \cap \cdots \cap A_n|.$$

$$\left| \bigcap_{i=1}^{n} \bar{A}_{i} \right| = \left| S - \bigcup_{i=1}^{n} A_{i} \right| = \left| S \right| - \sum_{i=1}^{n} \left| A_{i} \right| + \sum_{1 \leq i < j \leq n} \left| A_{i} \cap A_{j} \right| - \dots + (-1)^{n} \left| A_{1} \cap \dots \cap A_{n} \right|.$$

Counting Integers

How many integers in $1, \ldots, 100$ are not divisible by 2, 3 or 5?

Counting Integers

How many integers in $1, \ldots, 100$ are not divisible by 2, 3 or 5?

$$100 - (50 + 33 + 20) + (16 + 10 + 6) - 3 = 26.$$

Suppose there is a deck of n cards numbered from 1 to n. Suppose a card numbered i is in the correct position if it is the i-th card in the deck. How many ways can the cards be shuffled without any cards being in the correct position?

Suppose there is a deck of n cards numbered from 1 to n. Suppose a card numbered i is in the correct position if it is the i-th card in the deck. How many ways can the cards be shuffled without any cards being in the correct position?

Suppose there is a deck of n cards numbered from 1 to n. Suppose a card numbered i is in the correct position if it is the i-th card in the deck. How many ways can the cards be shuffled without any cards being in the correct position?

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = \left| S - \bigcup_{i=1}^{n} A_i \right| = n! - \sum_{i=1}^{n} |A_i| + \sum_{1 \le i < j \le n} |A_i \cap A_j|$$
$$- \dots + (-1)^n |A_1 \cap \dots \cap A_n|.$$

Suppose there is a deck of n cards numbered from 1 to n. Suppose a card numbered i is in the correct position if it is the i-th card in the deck. How many ways can the cards be shuffled without any cards being in the correct position?

$$\left|\bigcap_{i=1}^{n} \overline{A_i}\right| = \left|S - \bigcup_{i=1}^{n} A_i\right| = n! - \sum_{i=1}^{n} |A_i| + \sum_{1 \le i < j \le n} |A_i \cap A_j|$$
$$- \dots + (-1)^n |A_1 \cap \dots \cap A_n|.$$

$$S_k \triangleq \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| =$$

Suppose there is a deck of n cards numbered from 1 to n. Suppose a card numbered i is in the correct position if it is the i-th card in the deck. How many ways can the cards be shuffled without any cards being in the correct position?

$$\left|\bigcap_{i=1}^{n} \overline{A_i}\right| = \left|S - \bigcup_{i=1}^{n} A_i\right| = n! - \sum_{i=1}^{n} |A_i| + \sum_{1 \le i < j \le n} |A_i \cap A_j|$$
$$- \dots + (-1)^n |A_1 \cap \dots \cap A_n|.$$

$$S_k \triangleq \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| = \binom{n}{k} (n-k)! = \frac{n!}{k!}$$

$$S_k = \frac{n!}{k!}$$

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$
$$= n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

$$S_k = \frac{n!}{k!}$$

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$
$$= n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

$$n \to \infty \implies \sum_{k=0}^{n} \frac{(-1)^k}{k!} \to e^{-1} \approx 0.368$$

20/23

$$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-t}) + g(n)$$

$$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-t}) + g(n)$$

recurrence type	typical example
first-order	
linear	$a_n = na_{n-1} - 1$
nonlinear	$a_n = 1/(1 + a_{n-1})$
second-order	
linear	$a_n = a_{n-1} + 2a_{n-2}$
nonlinear	$a_n = a_{n-1}a_{n-2} + \sqrt{a_{n-2}}$
variable coefficients	$a_n = na_{n-1} + (n-1)a_{n-2} + 1$
tth order	$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-t})$
full-history	$a_n = n + a_{n-1} + a_{n-2} \dots + a_1$
divide-and-conquer	$a_n = a_{\lfloor n/2 \rfloor} + a_{\lceil n/2 \rceil} + n$

 Table 2.1
 Classification of recurrences

Homogeneous Linear Recurrence Relations with Constant Coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_t a_{n-t}$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn