Premier principe de la thermodynamique pour un système fermé

Le premier principe pour un système fermé est le suivant :

$$\Delta U + (\Delta E_{c \text{ (macro)}} + \Delta E_{p \text{ (macro)}}) = W + Q$$

On l'utilise lorsque le fluide effectue tout son cycle dans une seule et même enceinte.

Exemple:

Pour les moteurs à essence le cycle est le suivant (cycle de Beau de Rochas) :

Pendant tout le cycle $B \rightarrow C \rightarrow D \rightarrow E \rightarrow B$ (l'admission $A \rightarrow B$ et l'échappement $B \rightarrow A$ ne comptent pas) le mélange air/essence reste dans une seule et même enceinte : le cylindre. On applique donc le premier principe pour un système fermé.

Premier principe de la thermodynamique pour un système ouvert

Le premier principe pour un système ouvert est le suivant :

$$\Delta H + (\Delta E_{c \text{ (macro)}} + \Delta E_{p \text{ (macro)}}) = W_{\text{utile}} + Q$$

Il provient du premier principe pour un système fermé et sera démontré en deuxième année.

On l'utilise lorsque le fluide effectue chaque transformation du cycle dans une enceinte différente.

 $W_{\rm utile}$ n'est qu'une partie du travail des forces pressantes W, et correspond au travail apporté par les parois mobiles des machines.

Exemple:

Pour les réfrigérateurs le cycle est le suivant :

Chaque transformation du cycle se fait dans une enceinte différente : $1\rightarrow 2$ dans le compress ur, $2\rightarrow 3$ dans le condenseur, $3\rightarrow 4$ dans la vanne de détente, $4\rightarrow 1$ dans l'évaporateur. À la fin de chaque transformation le fluide est transvasé dans l'élément suivant. On applique donc le premier principe pour un système ouvert.