ABALONE DATASET EDA & REGRESSION

Name: Harsh Kumawat

August 12, 2023

IMPORTING LIBRARIES

```
[4]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
```

IMPORT DATA

```
[5]: df=pd.read_csv('/Users/harshkumawat/Desktop/GDSC TASK/data.csv') df
```

[5]:		Sex	Length	Diameter	Height	Whole weigh	nt Shucke	d weight	\
	0	М	0.455	0.365	0.095	0.514		0.2245	
	1	М	0.350	0.265	0.090	0.225	55	0.0995	
	2	F	0.530	0.420	0.135	0.677	70	0.2565	
	3	М	0.440	0.365	0.125	0.516	30	0.2155	
	4	I	0.330	0.255	0.080	0.205	50	0.0895	
			•••	•••		•••	•••		
	4172	F	0.565	0.450	0.165	0.887	70	0.3700	
	4173	M	0.590	0.440	0.135	0.966	30	0.4390	
	4174	М	0.600	0.475	0.205	1.176	30	0.5255	
	4175	F	0.625	0.485	0.150	1.094	15	0.5310	
	4176	M	0.710	0.555	0.195	1.948	35	0.9455	
		Vis		ght Shell	_	_			
	0		0.1	010	0.1500	15			
	1		0.0	485	0.0700	7			
	2		0.1	415	0.2100	9			
	3		0.1	140	0.1550	10			
	4		0.0	395	0.0550	7			
	•••		•••						
	4172		0.2	390	0.2490	11			
	4173		0.2	145	0.2605	10			
	4174		0.2	875	0.3080	9			
	4175		0.2	610	0.2960	10			
	4176		0.3	765	0.4950	12			

[4177 rows x 9 columns]

EXPLORATORY DATA ANALYSIS (EDA)

[6]: df.describe()

[6]:		Length	Diameter	Height	Whole weight	Shucked weight	\
	count	•	1177.000000 4	177.000000	4177.000000	4177.000000	
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	
	std	0.120093	0.099240	0.041827	0.490389	0.221963	
	min	0.075000	0.055000	0.000000	0.002000	0.001000	
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	
	max	0.815000	0.650000	1.130000	2.825500	1.488000	
		Viscera weight	Shell weigh	t Ri	ngs		
	count	4177.000000	4177.00000	0 4177.000	000		
	mean	0.180594	1 0.23883	9.933	684		
	std	0.109614	0.13920	3 3.224	169		
	min	0.000500	0.00150	0 1.000	000		
	25%	0.093500	0.13000	0 8.000	000		
	50%	0.171000	0.23400	0 9.000	000		
	75%	0.253000	0.32900	0 11.000	000		

29.000000

1.005000

[7]: df.shape

max

- [7]: (4177, 9)
- [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

0.760000

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtyp	es: float64(7),	int64(1), object	(1)

memory usage: 293.8+ KB

[9]: df.isnull().sum()

```
[9]: Sex
                        0
     Length
                        0
      Diameter
                        0
      Height
                        0
     Whole weight
                        0
      Shucked weight
                        0
      Viscera weight
                        0
      Shell weight
                        0
      Rings
                        0
      dtype: int64
[10]: df["Sex"].value_counts()
[10]: M
           1528
      Ι
           1342
      F
           1307
      Name: Sex, dtype: int64
     Graphical Analysis
       1. Sex & Rings
[11]: print(df['Sex'].unique())
      plt.bar(df['Sex'], df['Rings'])
      plt.show()
     ['M' 'F' 'I']
```


2. Length & Rings

```
[12]: plt.figure (figsize= (16, 8))
  plt.scatter (df['Length'], df['Rings'], c='black')
  plt.show ()
```


3. Height & Rings

```
[13]: plt.figure (figsize= (16, 8))
  plt.scatter (df['Height'], df['Rings'], c='darkblue')
  plt.show ()
```


3.1 Removing Outliers from Height

```
[14]: max_thresold = df['Height'].quantile(0.9996)
max_thresold
```

[14]: 0.3373440000000073

[15]: df[df['Height']>max_thresold]

```
[15]:
           Sex Length Diameter
                                 Height Whole weight Shucked weight \
      1417
            М
                0.705
                           0.565
                                   0.515
                                                 2.210
                                                                1.1075
      2051
            F
                0.455
                           0.355
                                   1.130
                                                 0.594
                                                               0.3320
```

```
Viscera weight Shell weight Rings
1417 0.4865 0.5120 10
2051 0.1160 0.1335 8
```

[16]: df= df.drop(df.index[[1417,2051]])

[17]: df.index[1417]

[17]: 1418

```
[18]: new_df = df. loc[(df['Height'] < max_thresold)]
print( 'Size of new data:' ,len (new_df))</pre>
```

Size of new data: 4175

```
[19]: plt.figure (figsize= (16, 8))
  plt.scatter (df['Height'], df['Rings'], c='darkgreen')
  plt.xlabel ('Height of abalone (mm) ')
  plt.ylabel ("Number of rings")
  plt.show ()
```


4. Diameter & Rings

```
[20]: plt.figure (figsize= (16, 8))
  plt.scatter (df['Diameter'], df['Rings'], c='seagreen')
  plt.xlabel ('Diameter of abalone (mm) ')
  plt.ylabel ("Number of rings")
  plt.show ()
```


5. Whole Weight & Rings

```
[21]: plt.figure (figsize= (16, 8))
  plt.scatter (df['Whole weight'], df['Rings'], c='brown')
  plt.xlabel ('Whole Weight of abalone (mm) ')
  plt.ylabel ("Number of rings")
  plt.show ()
```


LABEL ENCODING ON SEX

```
[22]: label = preprocessing.LabelEncoder()
      df['Sex'] = label.fit_transform(df['Sex'])
      print(df['Sex'].unique())
      df['age'] = df['Rings'] + 1.5
      df
     [2 0 1]
[22]:
                 Length Diameter Height Whole weight Shucked weight \
            Sex
              2
                   0.455
                             0.365
                                     0.095
                                                   0.5140
                                                                    0.2245
      1
              2
                  0.350
                             0.265
                                     0.090
                                                   0.2255
                                                                    0.0995
      2
              0
                             0.420
                  0.530
                                     0.135
                                                   0.6770
                                                                    0.2565
      3
              2
                   0.440
                             0.365
                                     0.125
                                                   0.5160
                                                                    0.2155
      4
                   0.330
                             0.255
              1
                                      0.080
                                                   0.2050
                                                                    0.0895
                               •••
      4172
                   0.565
                             0.450
                                      0.165
                                                   0.8870
                                                                    0.3700
              0
                             0.440
      4173
              2
                   0.590
                                     0.135
                                                   0.9660
                                                                    0.4390
      4174
              2
                  0.600
                             0.475
                                     0.205
                                                   1.1760
                                                                    0.5255
      4175
                             0.485
              0
                  0.625
                                     0.150
                                                   1.0945
                                                                    0.5310
      4176
                             0.555
              2
                  0.710
                                     0.195
                                                   1.9485
                                                                    0.9455
            Viscera weight
                             Shell weight
                                            Rings
                                                    age
      0
                     0.1010
                                   0.1500
                                               15
                                                   16.5
                                                    8.5
      1
                     0.0485
                                   0.0700
                                                7
      2
                     0.1415
                                   0.2100
                                                9
                                                  10.5
      3
                     0.1140
                                   0.1550
                                               10
                                                   11.5
      4
                                                    8.5
                     0.0395
                                   0.0550
                                                7
      4172
                                               11 12.5
                     0.2390
                                   0.2490
                                               10 11.5
      4173
                     0.2145
                                   0.2605
      4174
                     0.2875
                                   0.3080
                                                9 10.5
      4175
                                               10 11.5
                     0.2610
                                   0.2960
      4176
                     0.3765
                                   0.4950
                                               12 13.5
      [4175 rows x 10 columns]
     DATA SPLITTING
[23]: x= df.drop(columns=['age', 'Rings'], axis=1)
      y= df['age']
[24]: x
[24]:
            Sex Length Diameter
                                    Height
                                             Whole weight
                                                           Shucked weight \
              2
                  0.455
                             0.365
                                     0.095
                                                   0.5140
                                                                    0.2245
      0
              2
                  0.350
                             0.265
      1
                                     0.090
                                                   0.2255
                                                                    0.0995
      2
              0
                  0.530
                             0.420
                                      0.135
                                                   0.6770
                                                                    0.2565
      3
              2
                   0.440
                             0.365
                                     0.125
                                                   0.5160
                                                                    0.2155
```

```
0.565
                                                  0.8870
      4172
              0
                             0.450
                                     0.165
                                                                   0.3700
      4173
                            0.440
                                     0.135
                                                                   0.4390
              2
                  0.590
                                                  0.9660
      4174
              2
                  0.600
                            0.475
                                     0.205
                                                  1.1760
                                                                   0.5255
      4175
                  0.625
                             0.485
                                     0.150
                                                  1.0945
                                                                   0.5310
              0
      4176
              2
                  0.710
                            0.555
                                     0.195
                                                  1.9485
                                                                   0.9455
            Viscera weight Shell weight
      0
                    0.1010
                                   0.1500
                    0.0485
                                   0.0700
      1
      2
                    0.1415
                                   0.2100
      3
                    0.1140
                                   0.1550
      4
                    0.0395
                                   0.0550
                                   0.2490
      4172
                    0.2390
      4173
                                   0.2605
                    0.2145
      4174
                    0.2875
                                   0.3080
      4175
                    0.2610
                                   0.2960
      4176
                    0.3765
                                   0.4950
      [4175 rows x 8 columns]
[25]: y
[25]: 0
              16.5
               8.5
      2
              10.5
              11.5
      3
      4
               8.5
      4172
              12.5
      4173
              11.5
      4174
              10.5
              11.5
      4175
      4176
              13.5
      Name: age, Length: 4175, dtype: float64
     TRAIN-TEST SPLIT
[26]: from sklearn.model_selection import train_test_split
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,_
       →random_state=0)
      print("Shape of x_train :", x_train.shape)
      print("Shape of x_test :", x_test.shape)
      print("Shape of y_train :", y_train.shape)
```

4

1

0.330

0.255

•••

0.080

0.2050

0.0895

```
print("Shape of y_test :", y_test.shape)
     Shape of x_{train}: (3340, 8)
     Shape of x_{test}: (835, 8)
     Shape of y_train : (3340,)
     Shape of y_test : (835,)
[27]: x_train
[27]:
            Sex
                  Length
                          Diameter
                                     Height
                                             Whole weight
                                                             Shucked weight
      188
              0
                   0.630
                              0.480
                                      0.160
                                                    1.1990
                                                                      0.5265
      2326
               2
                   0.430
                              0.345
                                      0.115
                                                    0.3045
                                                                     0.0925
      219
              0
                   0.415
                              0.305
                                      0.130
                                                    0.3200
                                                                      0.1305
      380
               2
                   0.605
                              0.470
                                      0.180
                                                    1.1405
                                                                      0.3755
      218
              2
                   0.470
                              0.360
                                      0.135
                                                    0.5010
                                                                      0.1665
                                •••
              2
                                      0.185
                                                    1.6220
      1033
                   0.650
                              0.525
                                                                     0.6645
      3266
                   0.495
                              0.385
                                      0.135
                                                    0.6625
                                                                      0.3005
              0
      1654
              1
                   0.595
                              0.460
                                      0.150
                                                    0.8335
                                                                     0.3770
      2609
              0
                   0.630
                              0.495
                                      0.200
                                                    1.4255
                                                                      0.6590
      2734
                   0.420
                              0.325
                                                    0.3140
                                                                      0.1295
               1
                                      0.115
            Viscera weight
                              Shell weight
      188
                     0.3350
                                     0.315
      2326
                     0.0550
                                     0.120
      219
                     0.0755
                                     0.105
      380
                     0.2805
                                     0.385
                                     0.165
      218
                     0.1150
      1033
                     0.3225
                                     0.477
      3266
                                     0.185
                     0.1635
      1654
                     0.1925
                                     0.235
      2609
                     0.3360
                                     0.380
      2734
                     0.0635
                                     0.100
      [3340 rows x 8 columns]
[28]:
     y_train
[28]: 188
               12.5
      2326
               12.5
      219
                9.5
      380
               16.5
      218
               11.5
      1033
               11.5
      3266
               12.5
```

```
1654
              9.5
     2609
             12.5
     2734
              9.5
     Name: age, Length: 3340, dtype: float64
     MULTIPLE LINEAR REGRESSION MODEL TRAINGING
[29]: from sklearn.linear_model import LinearRegression
     lr=LinearRegression()
     lr.fit(x_train,y_train)
[29]: LinearRegression()
     DATA PREDICTION
[30]: y_pred=lr.predict(x_test)
     R2 SCORE CALCULATION
[31]: from sklearn.metrics import r2_score,

explained_variance_score,max_error,mean_absolute_error
     r2=r2_score(y_test,y_pred)
     vs=explained_variance_score(y_test,y_pred)
     r2=round(r2,3)
     me=mean_absolute_error(y_test,y_pred)
     me=round(me,2)
     e=max_error(y_test,y_pred)
     e=round(e,3)
     print("The R2 and Variance Score of Model is: ", r2)
     print("The Maximum Possible Error is: ",e,"%")
     print("The Mean Absolute Error is: ",me)
     print("The Accuracy of Model is: ", r2*100,"%")
     The R2 and Variance Score of Model is: 0.512
     The Maximum Possible Error is: 13.93 %
     The Mean Absolute Error is: 1.61
     The Accuracy of Model is: 51.2 %
     GRAPHICAL PLOTTING
[33]: import seaborn as sns
     sns.regplot(x=y_test,y=y_pred,ci=None,color ='darkblue')
```

[33]: <Axes: xlabel='age'>

[]: