Big-Data

Part-2: Coursework

Name: Prakash Dahal

Student Id: 1828421

Date: 2019/19/04

Group Members:

- Prakash Dahal
- Rajan Sapkota (Sharma)

Table of Contents

Α.	R	eporteport	3
1		Introduction to Big Data	3
2	·-	Evaluation of the Tools and Techniques	4
	a.	Oracle and Excel	4
	b.	MongoDB	4
	c.	MapReduce Framework	5
	d.	Hadoop	5
3		Matrix	7
4		Conclusions and recommendations	8
В.	In	vestigation	9
а	١.	Cleaning	9
b	٠.	Manipulation:	. 17
С		Analysis of the data:	. 40
d	l.	Data Visualization:	. 42
C.		Contribution	. 43
Ref	ere	ences	. 44

A. Report

1. Introduction to Big Data

The term Big-Data represents for large amount of data which can be analyzed and processed. The word 'Big-data' became popular since it was introduced by John Mashey in 1990s because data become so useful for analysis, to know the behavior or to get extract information out of it. Better operational efficiency, improving customer efficiency, intelligence for decision taking and many more are the best outcome of processing big data. Example; User data, sensor data, satellite data, etc. gives large data each second. Data also can be in structured or semi-structured or unstructured format.

Data is not regarded as big because of its volume but according to IBM, it is represented by three V's dimensions. They are given below:

a. Volume:

Volume represents data in large size like hundreds of terabytes, petabytes, yottabytes or zettabytes.

b. Velocity:

Velocity represents for the speed of data change. At what speed data is being generated.

c. Variety:

Variety represents different types of data which may include text, audio, video, clicks streams, touch sensors and so on.

Other different V's also represent big-data like Veracity, Value and so on (Sriramoju, 2017) (Chitresh Verma, 2016).

2. Evaluation of the Tools and Techniques

Different tools and techniques are there for processing big-data. There are tools available for processing big data. Hadoop, NoSql, Hive, Mongo DB, etc. are some of the popular tools used for handling big-data (M. Sowmya, 2017). Some of these are explained below:

a. Oracle and Excel

Excel is a spread sheet where data can be saved in the form of row and column. Data saved in excel can be directly imported in oracle and use the data. It's easy to store data in excel and load data easily into database but it can store limited number of row and columns only. In other hand Excel is not good for storing various data like image, audio and so on.

Oracle is a relational database management system. It treats data as a unit which helps for the extraction of related data. Oracle is the first database designed for enterprise which is flexible and cost effective to maintain information. Roll back features make it more unique but still in terms of big data oracle is not good for handling large data and variety of data. But Oracle 12c has some updated features (Cyran, 2005) (Rick Greenwald, 2003).

b. MongoDB

MongoDB is open-source and NoSQL database which means Not only Structured Query Language, so it is not restricted by structured query language. It is highly flexible and scalable which make it more popular. It supports for complex data structure and data index. It stores data in JSON format by automatic subdivision and geographical spatial index. In terms of bigdata, it has document storage limitation, but it supports structured, semi structured and unstructured data. Convenient storage, functional diversity, reliability etc. makes mongo DB stronger (Chaokui Li, 2014) (Prabagaren, 2014).

c. MapReduce Framework

Map Reduce is a parallel data processing technique. It consists of two main phases mapper and reducer. Mapper reads the file and make mapping. It transforms input record to intermediate key-value pairs. After this reducer aggregate the intermediate result and gives output. Map reduce has merged with HDFS for better performance in HDFS. It does not support stream data processing also processing of complex data analytical is difficult. It performs on homogeneous data, so to solve this issue map join reduce was introduced.

Map reducer processes slowly for small file and not applicable for synchronized data (Ruchi Bhardwaj, 2014).

d. Hadoop

The concept of Hadoop is officially established by Apache which is open source. The journey of Hadoop started from first version (i.e. Hadoop 1.0) has made lots of impact. The technique of cluster computing, grid computing, cloud computing, distributed file system handling etc. and security support and enhancement from Apache Rhino, Apache Ranger, and Apache Knox has made Hadoop stronger. It handles fault-tolerance. MapReduce of Hadoop is dependent on YARN for parallel processing which makes job scheduling and Cluster Resource management. Hadoop supports big-data characteristics like volume, velocity variety and veracity where each has its own role in the framework (Gurjit singh Bhathal, 2018).

Files	CSV	Json
Technologies		
Oracle	 → Data cleaning is essential → Having big amount of data results in slow processing → Data are broken down for better result 	→ No such Task is performed.
MongoDB	→ No such Task is performed.	→ Concept of NoSql using Mongo helps to manipulate data easily → Coding and its pattern to check data for human needs are better than Oracle
Map Reduce	 → Data Cleaning are performed by mapper and reducer program written in Java → Reducer program also helps because it reads whole file by compiling Java file. 	→ No such task is performed
Hadoop	 → Could have the potential to store read or manipulate large volume of data with effective velocity → Could easily manipulate any forms of data. → Could easily reduce the veracity on the data and results in better output 	→ Could have the potential to store read or manipulate large volume of data with effective velocity → Could easily manipulate any forms of data. Could easily reduce the veracity on the data and results in better output

3. Matrix

	Volume	Velocity	Variety	Veracity
Oracle	Increase in volume	Daily huge data	Oracle is based on	Oracle must have
	slowdowns the	are generated in	relational format	cleaned and structured
	performance of the	an unstructured	and supports	data format but in real
	oracle. The	format where	structured data and	world, impure data are
	processing time	oracle falls back	not able to	generated daily.
	periods are a bit	for this.	applicable for	
	longer than Mongo		unstructured data.	
	DB and Hadoop.			
Mongo	Sharding, fault-	It is based on	It supports	Accurate data can be
DB	tolerance and	NoSQL and has	structured to	achieved from Mongo
	replication are	indexing feature	unstructured data	DB since it handles
	three major key	which maintains	like CSV, JSON	impure data too.
	factors on mongo	changing data.	and so on.	
	DB to handle huge			
	data.			
Hadoop	It includes HDFS	Highly changing	It handles all types	Hadoop supports
	which work on	data on Yahoo,	of data structured,	impure data and can
	distributed way	IBM, Facebook	semi structured	work parallelly on the
	and map reduce	are handled by	and unstructured	given data.
	handles large data	Hadoop since it	data.	
	easily.	can run on		
		multiple nodes and		
		clusters.		

4. Conclusions and recommendations

Data are increasing day by day where comes the concept of Big-data. Data must be managed in the systematic way. Big data is represented by volume, velocity, variety or veracity. Oracle, MongoDB and Hadoop are highly used for handling large data.

All tools have its own merits and demerits. Oracle and mongo DB are suitable for small data where large volume data can be handled by Hadoop since it used map reduce technique. Mongo also supports for semi and unstructured data where oracle lags.

B. Investigation

a. Cleaning

Data cleaning is necessary for investigation so excel is used for cleaning. Cleaning Female data 2020:

Deleting unrequired data

Replacing value before ':'

	Α	В	С	D	E
1	Area	All Ages	Aged 16 to 24	Aged 25 to 49	Aged 50 to 64
2	Darlington	54,643	4,687	16,845	11,400
3	County Durham	268,344	28,735	78,448	56,984
4	Hartlepool	47,676	4,392	14,519	9,948
5	Middlesbrough	71,291	8,622	21,945	13,458
6	Northumberland	162,752	12,295	44,565	38,107
7	Redcar and Cleveland	69,788	5,865	20,067	15,073
8	Stockton-on-Tees	101,207	9,569	31,812	20,569
9	Gateshead	103,798	10,053	33,527	20,730
10	Newcastle upon Tyne	147,613	26,759	46,648	24,297
11	North Tyneside	106,345	8,548	33,911	22,520
12	South Tyneside	77,221	6,734	23,454	16,809
13	Sunderland	142,470	14,392	43,883	29,866
14	Blackburn with Darwen	73,983	7,854	24,206	13,313
15	Blackpool	69,776	6,649	20,464	14,656
16	Cheshire East	194,796	15,435	55,477	42,599
17	Cheshire West and Che	174,451	16,885	50,925	37,029
18	Halton	65,639	6,018	20,778	13,408
19	Warrington	107,348	9,221	34,386	22,089
20	Cumbria	251,423	20,201	68,906	57,229
21	Bolton	145,402	13,982	46,515	27,807
22	Bury	97,416	8,225	31,357	19,424
23	Manchester	276,986	48,745	105,063	37,565
24	Oldham	120,691	12,165	38,539	22,091
25	Rochdale	111,655	10,677	36,451	21,432
26	Salford	127,542	14,260	45,926	21,561
27	Stockport	150,547	11,923	47,903	30,098
28	Tameside	114 975	10 113	37 120	23 133

Similarly, other data were cleaned.

Manipulation:

Data need to be converted into required format changing it into pivot.

After analyzing these data, redundant rows are cleaned again.

Similarly, other files are changed in and made pivot.

b. Manipulation:

Importing in Oracle:

Importing required data in prakash databases

Changing size to 50 so that the area and age_group field could be longer and making nullable. But leaving population as it is.

Similarly importing all required sheet.

SQL Query:

Query represents total age of each city of male2020.

While analyzing the cleaned pivot csv file, the name given is not suitable so changing the name for mongo DB and Hadoop.

Similarly, giving suitable name for all on each sheet

B5	· ·	fx age_50_6	4	
4	А	В	С	D
1	area 💌	age_group 💌	population 💌	
2	Darlington	all_ages	51885	
3	Darlington	age_16_24	4824	
4	Darlington	age_25_49	15878	
5	Darlington	age_50_64	10752	
6	County Durham	all_ages	260159	
7	County Durham	age_16_24	30190	
8	County Durham	age_25_49	76119	
9	County Durham	age_50_64	54592	
10	Hartlepool	all_ages	45582	
11	Hartlepool	age_16_24	4749	
12	Hartlepool	age_25_49	13737	
13	Hartlepool	age_50_64	9549	
14	Middlesbrough	all_ages	69933	
15	Middlesbrough	age_16_24	9765	
16	Middlesbrough	age_25_49	21835	
17	Middlesbrough	age_50_64	12507	
18	Northumberland	all_ages	155146	

Hadoop:

Making input -output files and putting file in it.

```
1828421@sm1: ~/coursework_2
                                                                        X
                                                                  1828421@sm1:~/coursework 2$ hdfs dfs -rm -R SR DP input
Deleted SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -rm -R SR DP output
Deleted SR DP output
1828421@sm1:~/coursework 2$ hdfs dfs -mkdir SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -mkdir SR DP output
1828421@sm1:~/coursework 2$ hdfs dfs -ls
Found 10 items
drwxr-xr-x - 1828421 hadoop
                                    0 2019-04-02 06:02 PD input
                                    0 2019-04-02 06:05 PD output
drwxr-xr-x - 1828421 hadoop
drwxr-xr-x - 1828421 hadoop
                                    0 2019-04-18 11:18 SR DP input
drwxr-xr-x - 1828421 hadoop
                                    0 2019-04-18 11:18 SR DP output
                                    0 2019-03-23 12:10 input
drwxr-xr-x - 1828421 hadoop
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-29 06:17 input csv
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-23 12:46 input word
                                    0 2019-03-29 06:35 output csv
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-29 05:02 output word
drwxr-xr-x - 1828421 hadoop
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-29 08:04 spark output word
1828421@sm1:~/coursework 2$
1828421@sm1: ~/coursework_2
                                                                   X
drwxr-xr-x - 1828421 hadoop
                                     0 2019-04-18 11:18 SR DP input
drwxr-xr-x - 1828421 hadoop
                                    0 2019-04-18 11:18 SR DP output
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-23 12:10 input
                                    0 2019-03-29 06:17 input csv
drwxr-xr-x
           - 1828421 hadoop
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-23 12:46 input word
                                    0 2019-03-29 06:35 output csv
drwxr-xr-x - 1828421 hadoop
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-29 05:02 output word
drwxr-xr-x - 1828421 hadoop
                                    0 2019-03-29 08:04 spark output word
1828421@sm1:~/coursework 2$ hdfs dfs -put male 2020.csv SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -put male 2021.csv SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -put female 2021.csv SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -put female 2020.csv SR DP input
1828421@sm1:~/coursework 2$ hdfs dfs -ls SR DP input
Found 4 items
           1 1828421 hadoop
                                 42766 2019-04-18 11:21 SR DP input/female
-rw-r--r--
2020.csv
           1 1828421 hadoop
                                 42771 2019-04-18 11:21 SR DP input/female
-rw-r--r--
2021.csv
-rw-r--r--
           1 1828421 hadoop
                                 42724 2019-04-18 11:21 SR DP input/male 20
20.csv
-rw-r--r-- 1 1828421 hadoop
                                 42757 2019-04-18 11:21 SR DP input/male 20
```

21.csv

1828421@sm1:~/coursework 2\$

Compiling Java file, making jar file and running.

```
1828421@sm1:~/coursework 2$ javac -classpath $(hadoop classpath) SR DP.java
1828421@sm1:~/coursework 2$ jar cf SR DP.jar SR*.class
1828421@sm1:~/coursework_2$ hadoop jar SR_DP.jar SR_DP_SR_DP_input/male_2020.csv SR_DP_output
2019-04-18 11:30:40,253 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0
2019-04-18 11:30:40,707 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsin
q not performed. Implement the Tool interface and execute your application with ToolRunner to
remedy this.
2019-04-18 11:30:40,718 INFO mapreduce. JobResourceUploader: Disabling Erasure Coding for path
: /tmp/hadoop-yarn/staging/1828421/.staging/job 1553250033923 0929
2019-04-18 11:30:40,897 INFO input.FileInputFormat: Total input files to process : 1
2019-04-18 11:30:40,944 INFO mapreduce.JobSubmitter: number of splits:1
2019-04-18 11:30:41,062 INFO mapreduce. JobSubmitter: Submitting tokens for job: job 155325003
2019-04-18 11:30:41,063 INFO mapreduce. JobSubmitter: Executing with tokens: []
2019-04-18 11:30:41,197 INFO conf.Configuration: resource-types.xml not found
2019-04-18 11:30:41,197 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2019-04-18 11:30:41,241 INFO impl.YarnClientImpl: Submitted application application 155325003
3923 0929
2019-04-18 11:30:41,267 INFO mapreduce. Job: The url to track the job: http://sml:8088/proxy/a
pplication_1553250033923_0929/
2019-04-18 11:30:41,267 INFO mapreduce.Job: Running job: job_1553250033923_0929
2019-04-18 11:30:47,341 INFO mapreduce.Job: Job job 1553250033923 0929 running in uber mode:
false
2019-04-18 11:30:47,343 INFO mapreduce.Job: map 0% reduce 0%
2019-04-18 11:30:51,405 INFO mapreduce.Job: map 100% reduce 0% 2019-04-18 11:30:56,440 INFO mapreduce.Job: map 100% reduce 100% 2019-04-18 11:30:57,458 INFO mapreduce.Job: Job job_1553250033923_0929 completed successfully
2019-04-18 11:30:57,562 INFO mapreduce.Job: Counters: 53
        File System Counters
```

Result of male 2020

₽ 1828421@sm1: ~/coursework_2

1828421@sm1:~/coursework 2\$ hdfs dfs -cat SR DP output/part-r-00000 "Bristol, 4, 403195.00 "Herefordshire, 4, 152596.00 "Kingston upon Hull, 4, 218420.00 Adur, 4, 50863.00 Allerdale, 4, 76561.00 Amber Valley, 4, 99831.00 Arun, 4, 121612.00 Ashfield, 4, 101664.00 Ashford, 4, 102274.00 Aylesbury Vale, 4, 164163.00 Babergh, 4, 70045.00 Barking and Dagenham, 4, 179256.00 Barnet, 4, 331472.00 Barnsley, 4, 199870.00 Barrow-in-Furness, 4, 52388.00 Basildon, 4, 150221.00 Basingstoke and Deane, 4, 144431.00 Bassetlaw, 4, 93087.00 Bath and North East Somerset, 4, 157015.00 Bedford, 4, 141972.00 Bexley, 4, 200884.00 Birmingham, 4, 947527.00 Blaby, 4, 79091.00 Blackburn with Darwen, 4, 121468.00 Blackpool, 4, 111473.00 Bolsover, 4, 64040.00

Mongo DB:

Loading CSV file:

```
1828421@csl-student: ~
                                                                              X
1828421@csl-student:~$ mongoimport --db db1828421 --username 1828421 --password
1828421MDB --type CSV --headerline --file ./male 2020.csv --collection male 2020
2019-04-18T13:04:06.218+0100
                                  connected to: localhost
2019-04-18T13:04:06.354+0100
                                  imported 1483 documents
1828421@csl-student:~$ mongoimport --db db1828421 --username 1828421 --password
1828421MDB --type CSV --headerline --file ./male_2021.csv --collection male_2021
2019-04-18T13:04:34.117+0100
                                  connected to: localhost
2019-04-18T13:04:34.285+0100
                                  imported 1484 documents
1828421@csl-student:~$ mongoimport --db db1828421 --username 1828421 --password
1828421MDB --type CSV --headerline --file ./female 2021.csv --collection female
2021
2019-04-18T13:04:47.273+0100
                                  connected to: localhost
2019-04-18T13:04:47.431+0100
                                  imported 1484 documents
1828421@csl-student:~$ mongoimport --db db1828421 --username 1828421 --password
1828421MDB --type CSV --headerline --file ./female 2020.csv --collection female
2020
2019-04-18T13:04:57.568+0100
                                  connected to: localhost
2019-04-18T13:04:57.701+0100
                                  imported 1484 documents
```

```
1828421@csl-student: ~
                                                                          X
> show collections
-bash: syntax error near unexpected token `show'
1828421@csl-student:~$ runMongo
Hello: 1828421
MongoDB shell version: 3.2.12
connecting to: 127.0.0.1:27017/db1828421
> show collection
2019-04-18T13:06:20.470+0100 E QUERY [thread1] Error: don't know how to show
[collection] :
shellHelper.show@src/mongo/shell/utils.js:865:11
shellHelper@src/mongo/shell/utils.js:651:15
@(shellhelp2):1:1
> show collections
female 2020
female 2021
katpost
male 2020
male_2021
myCollection
new katpost
student
weather
```

```
1828421@csl-student: ~
                                                                                                                 X
 db.male_2021.find({age_group:'all_ages'}).pretty().limit(5)
         "_id" : ObjectId("5cb867d2d01cf55993e74817"),
"area" : "Darlington",
"age_group" : "all_ages",
"population" : 51886
         " id" : ObjectId("5cb867d2d01cf55993e7481b"),
         "area" : "County Durham",
         "age_group" : "all_ages",
"population" : 260956
         "_id" : ObjectId("5cb867d2d01cf55993e7481f"),
         "area" : "Hartlepool",
         "age_group" : "all_ages",
"population" : 45624
         "_id" : ObjectId("5cb867d2d01cf55993e74823"),
         "area": "Middlesbrough",
"age_group": "all_ages",
"population": 69971
         " id" : ObjectId("5cb867d2d01cf55993e74827"),
         "area" : "Northumberland",
         "age_group" : "all_ages",
"population" : 155234
```

Loading JSON:

Making collection of json uow

```
1828421@csl-student: ~
                                                                           Х
1828421@csl-student:~$ runMongo
Hello: 1828421
MongoDB shell version: 3.2.12
connecting to: 127.0.0.1:27017/db1828421
> show collections
female 2020
female 2021
katpost
male 2020
male 2021
myCollection
new katpost
student
uow
weather
```

Displaying first two uow data

```
1828421@csl-student: ~
                                                                          \times
student
uow
weather
> db.uow.find(2)
2019-04-18T15:37:37.408+0100 E QUERY
                                        [thread1] Error: don't know how to massa
ge : number :
DBCollection.prototype. massageObject@src/mongo/shell/collection.js:218:11
DBCollection.prototype.find@src/mongo/shell/collection.js:266:1
@(shell):1:1
 db.uow.find().pretty().limit(2)
        " id" : ObjectId("5c53295defc5690091f1182c"),
        "created at" : "Thu Jan 31 15:42:29 +0000 2019",
        "id" : NumberLong("1090998762619711494"),
        "id str": "1090998762619711494",
        "text" : "The heating in the Performance Hub (WD), Walsall Campus, is no
w working. The building will remain shut today and re... https://t.co/019DtvbQmb",
        "truncated" : true,
        "entities" : {
                "hashtags" : [],
                "symbols" : [],
                "user mentions" : [ ],
                "urls" : [
```

```
1828421@csl-student: ~
                                                                       \Box
                                                                             X
 db.uow.find({'lang':'en'}, {'lang':1}).pretty().count()
3164
 db.uow.find({'lang':'en'}, {'lang':1}).pretty()
 " id" : ObjectId("5c53295defc5690091f1182c"), "lang" : "en" }
 "_id" : ObjectId("5c53295defc5690091f1182d"), "lang" : "en"
 "id": ObjectId("5c53295defc5690091f1182e"), "lang": "en"
 "id" : ObjectId("5c53295eefc5690091f1182f"), "lang" :
   id" : ObjectId("5c53295eefc5690091f11830"), "lang" :
   id" : ObjectId("5c53295eefc5690091f11831"), "lang" :
 " id" : ObjectId("5c53295eefc5690091f11832"), "lang" : "en"
 "id": ObjectId("5c53295eefc5690091f11833"), "lang": "en"
 "id": ObjectId("5c53295eefc5690091f11834"), "lang"
 "id": ObjectId("5c53295eefc5690091f11835"), "lang": "en"
 "id": ObjectId("5c53295eefc5690091f11836"), "lang"
                                                      : "en"
   id" : ObjectId("5c53295eefc5690091f11837"), "lang"
   id" : ObjectId("5c53295eefc5690091f11838"), "lang" : "en"
 "id": ObjectId("5c53295eefc5690091f11839"), "lang": "en"
 "id": ObjectId("5c53295fefc5690091f1183a"), "lang": "en"
 "id": ObjectId("5c53295fefc5690091f1183b"), "lang": "en"
 "id": ObjectId("5c53295fefc5690091f1183c"), "lang":
   id" : ObjectId("5c53295fefc5690091f1183d"), "lang"
   id" : ObjectId("5c53295fefc5690091f1183e"), "lang" :
   id" : ObjectId("5c53295fefc5690091f1183f"), "lang" : "en"
Type "it" for more
```

Py-Spark:

Loading csv and converting into view:

```
# 1828421@sm1: ~/coursework_2
                                                                                           X
1828421@sm1:~/coursework 2$ pyspark
Python 2.7.15+ (default, Oct 2 2018, 22:12:08)
[GCC 8.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information. Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
                                version 2.4.0
Using Python version 2.7.15+ (default, Oct 2 2018 22:12:08)
SparkSession available as 'spark'.
>>> Male2020 = spark.read.format("csv").load("hdfs://localhost:9000/user/1828421/SR_DP_input/
male 2020.csv")
>>> Male2020.createOrReplaceTempView("Male2020")
>>> Male2021 = spark.read.format("csv").load("hdfs://localhost:9000/user/1828421/SR_DP_input/
male 2021.csv")
>>> Male2021.createOrReplaceTempView("Male2021")
>>> Female2020 = spark.read.format("csv").load("hdfs://localhost:9000/user/1828421/SR DP inpu
t/female 2020.csv")
>>> Female2020.createOrReplaceTempView("Female2020")
>>> Female2021 = spark.read.format("csv").load("hdfs://localhost:9000/user/1828421/SR_DP_input/female_2021.csv")
>>> Female2021.createOrReplaceTempView("Female2021")
```

Joining two tables of male and female of 2020

```
1828421@sm1: ~/coursework_2
                                                                                                                                                                                                                                                                                                                                                                                                              ×
>>> df2020 = spark.sql("SELECT m.*,f. c2 no of female FROM Male2020 m, Female2020 f WHERE m.
c0=f. c0").show(20, False)
                                                                                                            |_c2
                                                                                                                                           |no of female|
                                                            |all_ages |51885 |11400
|Darlington
                                                             |all_ages |51885 |16845
|all_ages |51885 |4687
  Darlington
  Darlington
 Darlington
                                                             |all_ages |51885 |54643
 |Darlington
                                                              |age_16_24|4824 |11400
                                                             |Darlington
   Darlington
                                                             |age_25_49|15878 |16845
                                                            |age_25_49|15878 |4687
|age_25_49|15878 |54643
|age_50_64|10752 |11400
|age_50_64|10752 |16845
 |Darlington
  Darlington
  |Darlington
Darlington
                                                              |age_50_64|10752 |4687
  |Darlington
|Darlington | age_50_64|10752 |54643 | | |County Durham | all ages | 260159|56984 | |County Durham | all ages | 260159|78448 | |County Durham | all ages | 260159|28735 | |County Durham | age | 260159|28735 | |County Durham | all ages | al
 |County Durham|all ages |260159|268344
only showing top 20 rows
```

Female of 2021

JSON with py-spark


```
₽ 1828421@sm1: ~
                                                                       X
>>> df.select("text","lang").show()
                text|lang|
----+
|The heating in th...| en|
|We're delighted t...| en|
|BTW... The Univer...| en|
|RT @wlv_alumni: F...| en|
|RT @wlv teaching:...| en|
|@holyhead6thform ...| en|
|STUDENTS - The Li... | en |
|STUDENTS/STAFF - ...| en|
|@bluenoze63 We'd ...| en|
|RT @WLV Arts: Joi...|
                       en|
|We're all set to ...|
                       en|
|A Computer Scienc...| en|
|STUDENTS : The Na...| en|
|RT @BCCCmembers: ...| en|
|@fungaindem @geth...| en|
|We're holding a f...|
                       en|
|Congratulations t...|
                       en|
|RT @WolveUniCop: ... | en |
|RT @Jamesd1307: F...|
                       en|
|RT @stonesthrowlt...| en|
₽ 1828421@sm1: ~
                                                                        \times
```

c. Analysis of the data:

Data analysis is most important part to understand about the data and extract information out of it. Two different years is selected 2020 and 2021. From these two years, male and female are selected so that the comparison of male of both years can be analyzed. So, with the female. Total population can be extracted adding total population of male and female.

Oracle Query displays the result of all aged group population and selecting female of 2020 and 2021 and joining by area and only displaying which population is less than 1000.

In Map-Reduce, population is added as per the area and gives number of area and total population of the respective area.

```
1828421@sm1: ~/coursework_2

1828421@sm1: ~/coursework_2$ hdfs dfs -cat SR_DP_output/part-r-00000

"Bristol, 4, 403195.00

"Herefordshire, 4, 152596.00

"Kingston upon Hull, 4, 218420.00

Adur, 4, 50863.00

Allerdale, 4, 76561.00

Amber Valley, 4, 99831.00

Arun, 4, 121612.00

Ashfield, 4, 101664.00

Ashford, 4, 102274.00

Aylesbury Vale, 4, 164163.00

Babergh, 4, 70045.00
```

Loading and displaying result from json file in mongo and pyspark

In spark, also displaying text and language except English and undefined.

Similarly, CSV file is loaded and manipulated in both mongo db. and py spark. Instead of header option, default column is used. It displays, male2020 all col and female total population.

```
# 1828421@sm1: ~/coursework_2
   >> df2020 = spark.sql("SELECT m.*,f._c2 no_of_female FROM Male2020 m, Female2020 f WHERE m.
   0=f._c0").show(20, False)
                                                                                                                                                                                             |no_of_female|
                                                                                        |all ages |51885 |11400
   Darlington
                                                                                      |all_ages |51885 |16845
                                                                                     | all ages | 51885 | 4687 | all ages | 51885 | 54643 | age | 16_24|4824 | 11400 | age | 16_24|4824 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 16845 | 1685 | 1685 | 1685 | 1685 | 1685 | 1685 | 1685 | 1685 | 1685 | 16
   Darlington
  Darlington
  Darlington
  Darlington
                                                                                      |age_16_24|4824 |4687
|age_16_24|4824 |54643
  Darlington
                                                                                        |age_25_49|15878 |11400
|age_25_49|15878 |16845
  Darlington
                                                                                        |age_25_49|15878 |4687
|age_25_49|15878 |54643
|age_50_64|10752 |11400
```

d. Data Visualization:

Taking five different cities of male 2020 and displaying graph of age 16 to 24. Conty Durham has more population than usual.

Adding all male2020 population and analyzing age group, age from 25 to 49 has more population.

C. Contribution

For this report, both of us worked together discussing on different topic and ideas. Both of us selected different research papers, sites and discussed to complete this report. Practical is important in real world so practical was done individually except oracle. Though everything was discussed, some of the contribution is mentioned below:

Name	Prakash Dahal	Rajan Sapkota (Sharma)	
	Different references were discussed and finally,		
Report	introduction, evaluation, matrix and conclusion were		
	written with the agreement of both.		
Investigation: Oracle	Data cleaning, Pivot tables	Importing and SQL Query	
Investigation: Mongo DB	Individual	Individual	
Investigation: Hadoop	Individual	Individual	

References

Chaokui Li, W. Y., 2014. The distributed storage strategy research of remote sensing image based on Mongo DB. Changsha, IEEE.

Chitresh Verma, R. P., 2016. Cloud System and Big Data Engineering (Confluence). Noida, India, IEEE.

Cyran, M., 2005. Oracle Database Concepts, s.l.: Oracle.

Gurjit singh Bhathal, A. S. D., 2018. *Big Data Solution: Improvised Distributions Framework of Hadoop.* Madurai, IEEE.

Huadong Dai, S. Z. L. W. Y. D., 2016. Research and implementation of big data preprocessing system based on Hadoop. Hangzhou, IEEE.

M. Sowmya, N. S., 2017. Big Data: An Overview of Features, Tools, Techniques and Applications. *International Journal of Engineering Science and Computing*, pp. 1364-13647.

Prabagaren, G., 2014. Systematic approach for validating Java-MongoDB Schema. Chennai, IEEE.

Richard L. Villars, D. V., 2014. Building a Datacenter Infrastructure to Support Your, s.l.: IDC.

Rick Greenwald, D. C. K., 2003. *Oracle in a Nutshell: A Desktop Quick Reference*. Sebastopol: O'Reilly Media, Inc.

Ruchi Bhardwaj, N. M. R. K., 2014. Data analyzing using Map-Join-Reduce in cloud storage. Solan, IEEE.

Sriramoju, S. B., 2017. *INTRODUCTION TO BIG DATA: INFRASTRUCTURE AND NETWORKING CONSIDERATIONS*. Warangal, India: Horizion Books.