Natural language processing Different tasks

Linas Petkevičius, PhD

Institute of Computer Science Vilnius University linas.petkevicius@mif.vu.lt

30th November 2022

Today

- Team project
- Measures for readability

Multi-task learning

Multi-task learning

Example

Alternative: Finetuning model using custom loss

```
from transformers import Trainer

class BartTrainer(Trainer):
    def compute_loss(self, model, inputs):
        # implement custom logic here
        custom_loss = ...
        return custom_loss
```

Perplexity

Perplexity is a measurement of how well a probability distribution or probability model predicts a sample.

Perplexity
$$(M) = M(s)^{-1/n}$$

$$= \sqrt[n]{\prod_{k=1}^{n} \frac{1}{M(w_k|w_0w_1\cdots w_{k-1})}}$$

Bilingual Evaluation Understudy Score (BLEU)

Mathematically, the BLEU score is defined as:

$$\text{BLEU} = \underbrace{\min \Big(1, \exp \big(1 - \frac{\text{reference-length}}{\text{output-length}}\big) \Big) \Big(\prod_{i=1}^{4} precision_i \Big)^{1/4}}_{\text{n-gram overlap}}$$

with

$$precision_i = rac{\sum_{ ext{snt} \in ext{Cand-Corpus}} \sum_{i \in ext{snt}} \min(m_{cand}^i, m_{ref}^i)}{w_t^i = \sum_{ ext{snt'} \in ext{Cand-Corpus}} \sum_{i' \in ext{snt}}, m_{cand}^{i'}}$$

where

- $\bullet \ m^i_{cand}$ $\ \$ is the count of i-gram in candidate matching the reference translation
- ullet m^i_{ref} is the count of i-gram in the reference translation
- $ullet w_t^i$ is the total number of i-grams in candidate translation

```
In [9]: from nltk.translate.bleu score import sentence bleu
         reference = [['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']]
         candidate = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']
         score = sentence bleu(reference, candidate)
         print(score)
         1.0
In [10]: # one word different
         from nltk.translate.bleu score import sentence bleu
         reference = [['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']]
         candidate = ['the', 'fast', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']
         score = sentence bleu(reference, candidate)
         print(score)
         0.7506238537503395
In [11]: from nltk.translate.bleu score import sentence bleu
         reference = [['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']]
         candidate = ['the', 'fast', 'brown', 'fox', 'jumped', 'over', 'the', 'sleepy', 'dog']
         score = sentence bleu(reference, candidate)
         print(score)
         0.4854917717073234
```

```
In [12]: from nltk.translate.bleu score import sentence bleu
         reference = [['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']]
         candidate = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
         score = sentence bleu(reference, candidate)
         print(score)
In [13]: # shorter candidate
         from nltk.translate.bleu score import sentence bleu
         reference = [['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']]
         candidate = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the']
         score = sentence bleu(reference, candidate)
         print(score)
         0.7514772930752859
```

Examples

Calculating precision₁

Consider this reference sentence and candidate translation:

Reference: the cat is on the mat Candidate: the the the cat mat

The first step is to count the occurrences of each unigram in the reference and the candidate. Note that the BLEU metric is case-sensitive

Unigram	m^i_{cand}	m^i_{ref}	$\min(m^i_{cand}, m^i_{ref})$
the	3	2	2
cat	1	1	1
is	0	1	0
on	0	1	0
mat	1	1	1

The total number of unigrams in the candidate (w_t^1) is 5, so $precision_1$ = (2 + 1 + 1)/5 = 0.8.

Calculating the BLEU score

Reference: The NASA Opportunity rover is battling a massive dust storm on Mars .

Candidate 1: The Opportunity rover is combating a big sandstorm on Mars .

Candidate 2: A NASA rover is fighting a massive storm on Mars .

The above example consists of a single reference and two candidate translations. The sentences are tokenized prior to computing the BLEU score as depicted above; for example, the final period is counted as a separate token.

To compute the BLEU score for each translation, we compute the following statistics.

N-Gram Precisions

The following table contains the n-gram precisions for both candidates.

Brevity-Penalty

The brevity-penalty is the same for candidate 1 and candidate 2 since both sentences consist of 11 tokens.

BLEU-Score

Note that at least one matching 4-gram is required to get a BLEU score > 0. Since candidate translation 1 has no matching 4-gram, it has a BLEU score of 0.

Metric	Candidate 1	Candidate 2
$precision_1$ (1gram)	8/11	9/11
$precision_2$ (2gram)	4/10	5/10
$precision_3$ (3gram)	2/9	2/9
$precision_4$ (4gram)	0/8	1/8
Brevity-Penalty	0.83	0.83
BLEU-Score	0.0	0.27

 N-gram Co-Occurrence Statistics (ROUGE-N)

Formally, ROUGE-N is an n-gram recall between a candidate summary and a set of reference summaries. ROUGE-N is computed as follows:

$$ROUGE-N = \frac{\sum_{S \in \{ReferenceSummaries\}} \sum_{gram_n \in S} Count_{match}(gram_n)}{\sum_{S \in \{ReferenceSummaries\}} \sum_{gram_n \in S} Count(gram_n)}$$
(1)

Where n stands for the length of the n-gram, $gram_n$, and $Count_{match}(gram_n)$ is the maximum number of n-grams co-occurring in a candidate summary and a set of reference summaries.

¹Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 2002.

Q & A