*							
	-	ct 1 – Banker's Algorithm, due Saturday, 16 Mar 2019					
		ame: Michael Honsworth CPSC351-05					
		ub.com/ mhonsworth / Bankers Project.git					
Verify each o	f the following ite	ems with a corresponding checkmark. Incorrect items will incur a 5% penalty on the grade.					
Complete	Incomplete	Banker's Algorithm					
嵙		Created the Banker's Algorithm in C, C++, or Java, so that customers make requests of the banker for a limited set of resources.					
M		Reads from and uses the current allocation state and maximum resources needed for each process (customer) from an input text file.					
	Ø	Has an Interactive state, that allows the user to type in a command of the form: * OR <rq ri="" =""> <pre> <pre> <pre> <pre></pre></pre></pre></pre></rq>					
Ø		Has a Simulation state, that has processes make random requests for resources, and attempts to find a safe path for all processes to run to completion and release their resources. The simulation ends when all processes have shut down. (see examples)					
∑		Uses threads to simulate customers making requests and releasing resources when their maximum needs are satisfied					
M		Uses Allocated, Maximum, Needs, and Available matrices to track the resources allocated, the maximum resources needed, resources needed and the resources available.					
Ø	- 0	Does not grant requests that would exceed the maximum resources needed by a process.					
Ø		Does not grant requests that would exceed the total resources available to the system.					
M		Does not allow requests to be granted that would result in the system being in an unsafe state, by granting a proposed request and trying to find a path that satisfies all processes.					
2		Tested the simulation with different input files that are known to have the system in a safe state to see if the simulation can find the solution (use Silberschatz and Stallings).					
×		Tested the simulation with different numbers of resources (3-6), and different numbers of processes (3-10), and are able to describe the effect of doing this. Increasing resource types <u>More denials to random resource vequests</u> Increasing processes <u>system resources</u> yet selicit, more processes waiting for					
M		Tested the simulation to find the most likely combination of processes and resources to cause deadlock faver or split resources & higher # of processes					
M	□.	Understand the code structure to the degree that the student could rewrite any section of the code from scratch.					
M		Project directory pushed to new GitHub repository listed above using GitHub client.					

Tour committee							•	
Interactive	state	exists,	but	not in	the	3 dm 2	torn	ě
		,						