ДЗ по дискретной математике на 17.12.2021

Кожевников Илья 2112-1

16 декабря 2021 г.

№1

Искомое количество будет равно $\frac{C_{10}^2 \cdot C_8^2 \cdot C_4^2 \cdot C_2^2}{5!} = \frac{\frac{10!}{2!(10-2)!} \cdot \frac{8!}{2!(8-2)!} \cdot \frac{6!}{2!(8-2)!} \cdot \frac{4!}{2!(4-2)!} \cdot \frac{2!}{2!(2-2)!}}{5!} = \frac{45 \cdot 28 \cdot 15 \cdot 6 \cdot 1}{120} = 945, \text{ (делим на 5!, т.к. значение}$ в числителе равняется количеству таких пар, если бы их порядок был бы важен) Ответ: 945.

№2

Рассмотрим все варианты расставить числа из 12-элементного набора.

Наибольшее и наименьшее числа мы можем поставить на 1 и на 2 позиции, на 2 и на 3, и т.д. Всего таких вариантов будет 11. И в каждом из них у нас 10! вариантов расстановок остальных 10 чисел. При этом, наибольшее и наименьшее числа мы можем поменять местами, поэтому искомое количество будет равно:

 $2 \cdot 11 \cdot 10! = 79833600$ Ответ: 79833600

№3

Возьмем два несравнимых элемента, назовем их х и у. Так, мы можем выбрать несравнимую пару мы можем выбрать $C_n^2=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2}$ способами. Далее, если мы будем записывать линейные порядки на n-2 - элементном множестве, то таких способов это сделать будет (n-2)!. И, наконец, мы можем в этот линейный порядок вставить х и у n-1 способами. Итого, искомое число будет равно $\frac{n(n-1)}{2} \cdot (n-1) \cdot (n-2)! = \frac{n!(n-1)}{2}$ Otbet: $\frac{n!(n-1)}{2}$

№4

Заметим, что мы можем записать все цифры по порядку, и тогда все наши искомые числа можно будет получить путем вычеркивания трех цифр в последовательности. Тогда искомое количество будет равно $\frac{9!}{3!(9-3)!}=\frac{9\cdot 8\cdot 7}{6}=12\cdot 7=84$

Ответ: 84

№5

Т.к. у нас всего 10 позиций и по 5 чисел каждой четности, то всего таких записей будет равно $\frac{10!}{5!(10-5)!} = \frac{6\cdot7\cdot8\cdot9\cdot10}{5!} = 252$ (т.к. при выборе одной подпоследовательности вторая определяется однозначно).

Ответ: 252

№6

Посчитаем количество диагоналей в таком n-угольнике. Оно будет равна $\frac{n(n-3)}{2}$. Количество же пар диагоналей равняется $\frac{\frac{n(n-3)}{2}(\frac{n(n-3)}{2}-1)}{2}=\frac{n^4-6n^3+7n^2+6n}{8}$. Количество же непересекающихся диагоналей тогда будет равно $\frac{n^4-6n^3+7n^2+6n}{8}-\frac{n!}{4!(n-4)!}=\frac{x^4-6x^3+5x^2+12x}{12}$ Ответ: $\frac{x^4-6x^3+5x^2+12x}{12}$

№7

Построим таблицу, которую будем заполнять следующим образом:

Значение в каждой клеточке будет равно сумме клетки снизу, клетки слева и клетки на 2 позиции левее и ниже. В левый нижний угол поставим 1. Тогда будет такой результат:

1	6	25	76	189
1	5	18	47	101
1	4	12	26	47
1	3	7	12	18
1	2	3	4	5
1	1	1	1	1

Значит, ответ - 189.

Ответ: 189