Analiza porównawcza algorytmów minimalizacji stochastycznej PRS i GA w optymalizacji funkcji Ackleya i Alpine02

Adrian Krawczyk, Damian Chłus
30 stycznia 2025

Streszczenie

Niniejszy eksperyment przedstawia szczegółową analizę porównawczą efektywności algorytmów Pure Random Search (PRS) i Algorytmu Genetycznego (GA) w kontekście minimalizacji dwóch funkcji testowych: Ackleya i Alpine02. Przeprowadzono kompleksowe eksperymenty w przestrzeniach 2-, 10- i 20-wymiarowych, wykonując po 100 niezależnych prób dla każdej konfiguracji przy limicie 1000 ewaluacji funkcji. Wyniki wskazują na znaczącą przewagę GA w przypadku funkcji Ackleya, szczególnie w niższych wymiarach, podczas gdy dla funkcji Alpine02 algorytm PRS wykazał lepszą efektywność w wyższych wymiarach. Badanie dostarcza istotnych wskazówek dotyczących wyboru odpowiedniego algorytmu w zależności od charakterystyki problemu optymalizacyjnego.

1 Wprowadzenie

Optymalizacja funkcji wielowymiarowych stanowi fundamentalne wyzwanie w dziedzinie algorytmów obliczeniowych i sztucznej inteligencji. W praktyce często spotykamy się z problemami optymalizacyjnymi o różnej charakterystyce i złożoności, co wymaga odpowiedniego doboru metod optymalizacji. W niniejszym eksperymencie skupiamy się na porównaniu dwóch fundamentalnie różnych podejść:

- Pure Random Search (PRS) algorytm działa poprzez losowe generowanie punktów w przestrzeni poszukiwań. Każdy nowy punkt jest porównywany z dotychczas najlepszym znalezionym rozwiązaniem. Jeśli wartość funkcji celu w nowym punkcie jest niższa, aktualizujemy najlepsze znane rozwiązanie. Po zakończeniu iteracji wynik algorytmu stanowi wartość funkcji w ostatnio zarejestrowanym najlepszym punkcie.
- Algorytm Genetyczny (GA) metoda optymalizacji inspirowana mechanizmami ewolucji, takimi jak selekcja, krzyżowanie i mutacja. Proces rozpoczyna się od losowego wygenerowania początkowej populacji rozwiązań. Następnie każdemu rozwiązaniu przypisywana jest wartość funkcji celu, a najlepsze osobniki są wybierane do dalszej reprodukcji. Poprzez operacje genetyczne, takie jak krzyżowanie (łączenie cech dwóch rodziców) i mutacja (wprowadzanie losowych zmian), tworzone są nowe potencjalnie lepsze rozwiązania. Proces powtarza się przez określoną liczbę iteracji lub do osiągnięcia satysfakcjonującego wyniku.

Celem badania jest określenie efektywności obu metod w kontekście różnych funkcji testowych i wymiarowości przestrzeni rozwiązań, co ma istotne znaczenie praktyczne przy wyborze odpowiedniej metody optymalizacji dla konkretnych zastosowań.

2 Metodologia badań

2.1 Środowisko eksperymentalne

Wszystkie eksperymenty przeprowadzono w środowisku R, wykorzystując następujące biblioteki:

- smoof do implementacji funkcji testowych
- ecr do implementacji algorytmu genetycznego
- ggplot2 do wizualizacji wyników
- stats do analiz statystycznych

2.2 Implementacja algorytmów

2.2.1 Pure Random Search (PRS)

Implementacja PRS opiera się na następujących założeniach:

• Liczba ewaluacji funkcji celu: 1000

2.2.2 Algorytm Genetyczny (GA)

Konfiguracja GA objęła następujące parametry:

- Wielkość populacji: $\mu = 50$ osobników
- Liczba potomków: $\lambda = 25$ w każdej generacji
- Operator mutacji: mutacja gaussowska z adaptacją do granic przestrzeni poszukiwań
- Kryterium stopu: 1000 ewaluacji funkcji celu

3 Funkcje testowe

3.1 Funkcja Ackleya

$$f(\mathbf{x}) = -20 \exp\left(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$
 (1)

Rysunek 1: Wizualizacja funkcji Ackleya w 3D

Charakterystyka:

• Minimum globalne: $f(\mathbf{0}) = 0$

• Dziedzina: $x_i \in [-32.768, 32.768]$

• Wielomodalna z wieloma lokalnymi minimami

• Symetryczna względem początku układu współrzędnych

• Charakterystyczny kształt "igły w stogu siana"

3.2 Funkcja Alpine02

$$f(\mathbf{x}) = \prod_{i=1}^{n} \sqrt{x_i} \sin(x_i)$$
 (2)

Rysunek 2: Wizualizacja funkcji Alpine02 w 3D

Charakterystyka:

- Dziedzina: $x_i \in [0, 10]$
- Złożona struktura z wieloma lokalnymi ekstremami
- Nieliniowa zależność między wymiarami
- Nieregularna powierzchnia

4 Wyniki eksperymentalne

Funkcja	Wymiar	Algorytm	Średnia	Oczekiwane Minimum	Mediana	Wartość p	Bliżej Minimum
Ackley	2D	PRS GA	$4.159 \\ 0.285$	0	4.115 0.001	8.62×10^{-46}	GA
Ackley	10D	PRS GA	18.115 8.743	0	18.295 8.786	4.63×10^{-68}	GA
Ackley	20D	PRS GA	19.829 10.953	0	19.866 11.017	2.89×10^{-82}	GA
Alpine02	2D	PRS GA	-6.078 -6.129	-2.18277	-6.092 -6.130	4.52×10^{-18}	GA
Alpine02	10D	PRS GA	-793.323 -1814.709	-1124.79	-589.665 -1457.397	2.46×10^{-10}	PRS
Alpine02	20D	PRS GA	-38843.84 -393902.27	-2.76154×10^6	-12494.70 -161473.80	1.27×10^{-5}	PRS

4.1 Wykresy dla funkcji Ackleya

Rysunek 3: Wyniki dla funkcji Ackleya w przestrzeni 2D

Rysunek 4: Wyniki dla funkcji Ackleya w przestrzeni 10D

Rysunek 5: Wyniki dla funkcji Ackleya w przestrzeni 20D

4.2 Wykresy dla funkcji Alpine02

Rysunek 6: Wyniki dla funkcji Alpine02 w przestrzeni 2D

Rysunek 7: Wyniki dla funkcji Alpine02 w przestrzeni 10D

(a) Histogram 1 Ito (20D) (b) Histogram GA (20D) (c) I ofowname boxplot (2

Rysunek 8: Wyniki dla funkcji Alpine02 w przestrzeni 20D

Rysunek 9: Zbiorcze porównanie wyników dla wszystkich funkcji i wymiarów

5 Analiza wyników

Test t-Studenta potwierdził istotność statystyczną różnic w każdym przypadku (p < 0.05), więc odrzucamy możliwość hipotezy zerowej.

5.1 Funkcja Ackleya

5.1.1 Przestrzeń 2D

- GA osiągnął znacząco lepszą średnią wartość (0.285) w porównaniu do PRS (4.159)
- Mniejszy rozrzut wyników GA świadczy o wysokiej stabilności algorytmu

5.1.2 Przestrzeń 10D

- GA utrzymał przewagę z średnią 8.743 wobec 18.115 dla PRS
- Wzrost wymiarowości znacząco wpłynął na trudność optymalizacji
- GA wykazał lepszą zdolność do eksploracji wysokowymiarowej przestrzeni

5.1.3 Przestrzeń 20D

- Przewaga GA została utrzymana (średnia 10.953 vs 19.829 dla PRS)
- Oba algorytmy napotkały większe trudności w znalezieniu optimum
- GA zachował lepszą zdolność do unikania lokalnych minimów

5.2 Funkcja Alpine02

5.2.1 Przestrzeń 2D

- Oba algorytmy osiągnęły wyniki zbliżone do oczekiwanego minimum (-2.18277), ale żaden nie zbliżył się do niego w pełni.
- GA wykazał nieznacznie lepszą efektywność (średnia -6.129 vs -6.078 dla PRS).
- Praktyczna różnica w efektywności była minimalna (różnica średnich: 0.051).

5.2.2 Przestrzeń 10D

- PRS osiągnął lepsze wyniki średnie (-793.323) w porównaniu do GA (-1814.709).
- PRS wykazał większy rozrzut wyników, spowodowany losowością algorytmu.

5.2.3 Przestrzeń 20D

- PRS kontynuował trend lepszej efektywności (średnia -38843.84 vs -393902.27 dla GA).
- Zaobserwowano znaczący wzrost rozrzutu wyników dla obu algorytmów, ale PRS nadal wypadł lepiej.
- Struktura funkcji w wysokich wymiarach faworyzowała PRS.

6 Dyskusja wyników

6.1 Wpływ wymiarowości

• Funkcja Ackleya:

- Wzrost wymiarowości prowadził do pogorszenia wyników obu algorytmów.
- GA zachował względną przewagę we wszystkich wymiarach.
- Różnica w efektywności między algorytmami rosła wraz z wymiarem.

• Funkcja Alpine02:

- Wpływ wymiarowości był bardziej złożony.
- W niskich wymiarach oba algorytmy osiągały podobne wyniki.
- W wysokich wymiarach PRS wykazał przewagę.

6.2 Charakterystyka zachowania algorytmów

• Pure Random Search:

- Wykazał stabilną efektywność niezależnie od struktury funkcji.
- Lepiej radził sobie z funkcjami o nieregularnej strukturze.
- Większy rozrzut wyników był spowodowany losowością tego algorytmu.

• Algorytm Genetyczny:

- Bardzo efektywny dla funkcji o regularnej strukturze.
- Lepsza stabilność wyników w niższych wymiarach.
- Mógł pojawić się problem utkwienia w lokalnych minimach, co może występować w przypadku algorytmów gradientowych.

7 Wnioski końcowe

7.1 Główne obserwacje

- Efektywność algorytmów silnie zależy od charakterystyki funkcji celu.
- Wymiarowość przestrzeni ma kluczowy wpływ na zachowanie algorytmów.
- Regularna struktura funkcji sprzyja algorytmom ewolucyjnym.
- Złożone, nieregularne funkcje mogą być lepiej optymalizowane przez PRS.

7.2 Zalecenia praktyczne

• Dla funkcji o regularnej strukturze (jak Ackley):

- Rekomendowane jest użycie GA.
- Szczególnie efektywne w niższych wymiarach.
- Należy zwrócić uwagę na parametry operatorów genetycznych.

• Dla funkcji o złożonej strukturze (jak Alpine02):

- PRS może być lepszym wyborem, szczególnie w wysokich wymiarach.
- Użycie PRS może poprawić wyniki w problemach, gdzie klasyczne metody gradientowe mogą utknąć w lokalnych minimach.