Graphs & Algo cheat-sheet

Check bipartite: Look for odd cycles. G is bipartite iff G has no odd cycles. (2-colou r, P) **Independent Set:** $I \subseteq V$ is independent iff $\neg \exists$ edge between vertices in I. NP

• Max degree **d**, then **max** independent set $|I| \ge \frac{n}{d+1}$.

Vertex Cover: Set $S \subseteq V$ such that every edge $(v, w) \in E : v \in S \lor w \in S$. NP

• S is a vertex cover iff $V \setminus S$ is independent.

Matching: Set $M \subseteq E$ such that no vertex V has more than one edge in E. P (Also called *independent edge set*.)

Perfect Matching: Every vertex is exactly incident to one edge in M.

X-saturating matching: Match all vertices of X in a bipartite graph (X,Y).

- max Matching \leq min Vertex Cover. (Equality holds for bipartite graphs.)
- Maximal matching of M? Then **min** vertex cover |C| is: $|M| \le |C| \le |2M|$
- Hall's Theorem : G has an X-saturating matching iff $\forall S \subseteq X$: $|N(S)| \ge |S|$
- Tutte-Berge theorem: $\max M = \min_U \frac{1}{2}(n + U o(G \setminus U))$
- Tutte's matching theorem: *G* has a perfect matching iff $\forall U \subseteq V : o(G \setminus U) \leq |U|$

Dominating set: Set $S \subseteq V$ such that each vertex is either in S or has a neighbour in S.

Probability theory

$$\binom{n}{k} \leq rac{n^k}{k!}$$
 and $\binom{n}{k} \leq (rac{en}{k})^k$ and $\binom{n}{k} \leq 2^n$ and finally for $p \in [0,1]: (1-p)^n \leq e^{-pn}$.

Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ (X non-negative and a > 0.)

Lovasz Local Lemma (LLL): Consider n bad events A_1, \ldots, A_n .

- It also holds that $\forall_{1 \leq i \leq n} : \Pr[A_i] \leq p$ and each A_i depends on at most d other events A_i .
- Then $ep(d+1) \leq 1 \implies \Pr[\bigcap_i \bar{A}_i] > 0$.

Probabilistic idea is to randomly assign (or assign with probability **p**) stuff:

- 1. $\exists i: n_i \geq \mathbb{E}[X]$ and $\exists_j: n_j \leq \mathbb{E}[X]$. This can be useful for expected sizes of certain sets.
- 2. Consider event A(X). If $\Pr[A(X)] > 0$, then there must exist a value of X where A occurs. Similar vice-versa.

Exponential time algorithms

4-CNF-SAT: $(v_4 \lor \neg v_3 \lor v_2 \lor v_1) \land (v_2 \lor v_6 \lor v_5 \lor \neg v_3) \land (\neg v_3 \lor v_5 \lor \neg v_4 \lor v_1)$. n variables, m clauses, k-CNF-SAT with clauses of size at most k.

3-colouring: Whether you can colou r the vertices of a graph with 3 colou rs. Checking if $\forall X \subseteq V$ whether X is independent \to if $G(V \setminus X)$ is 2-colourable? $O^*(2^n)$

Vertex cover: Considering the k decision variant, i.e. vertex cover of at most size k. Brute force: $O^*(2^n)$ by checking all 2^n subsets or all $\sum_{i=0}^k \binom{n}{k}$ subsets. For a random edge, add either u or v and continue recursively on k-1 edges: $O^*(2^k)$. For $u \in V$ where $deg(u) \geq 2$, either add u or add all neighbours: $O^*(1.62^k)$.

Cluster editing: Graph is cluster graph if all connected components are cliques. Look for X such that $(V, E \triangle X)$ is a cluster graph. Look for induced $P_3 : uv, vw \in E \land uw \notin E$. Recurse by either add uw, remove uv or remove vw on k-1: $O^*(3^k)$.

Feedback Vertex Set: Set $X \subseteq V$ such that $G[V \setminus X]$ is a forest, i.e. any cycle has at least one vertex in X. We'll use *iterative compression* here. $O^*(8^k)$ Given FVS of size k+1, see if you can reduce it to k. Start with |X|=k, then iteratively add to n. If reduction was unsuccessful, then |X|=k+1 and we return False.

Subset sum: Given integers w_1, \ldots, w_n and see if any subset sums up to t. Let L be sum of all subsets until $\frac{1}{2}n$, R be the subsets till n, use 2-SUM: $O^*(2^{n/2})$

Dynamic Programming

Subset sum: A[i,j] is true if $\exists X \subseteq \{1,\ldots,i\}$ such that $\sum_{e \in X} w_e = j$. O(nt)

Knapsack: Given w_1,\ldots,w_n and v_1,\ldots,v_n , pick $X\subseteq\{1,\ldots,n\}$ to maximize $\sum_{e\in X}v_e$ while $\sum_{e\in X}w_e\leq W$. A[i,j] is $\max\left\{\sum_{e\in X}v_e \text{ with } X\subseteq\{1,\ldots,i\} \text{ and } \sum_{e\in X}w_e\leq j\right\}$.

k-colouring: $A_k[X]$ is true of it has a k-colouring. Recursion: try all subsets $Y \subseteq X$ and look for $A_{k-1}[X \setminus Y] \wedge A_1[Y]$, where the latter checks if it is an independent set. $O^*(3^n)$.

TSP: Find cycle C such that V[C] = V and $\omega(V[C])$ is minimized.

Walk: Sequence vertices such that their edges are consecutively connected on G.

Path: Walk while only visiting each vertex once.

Cyclic walk: Walk such that we start and end in the first vertex.

Cycle: Path such that we start and end in the first vertex.

Pick arbitrary s, define $A_t[X] = \min\{\omega(E[P]) : P \text{ is a path from } s \text{ to } t \text{ using vertices } V[X]\}$. Recursion works by looking for the minimum path of: $\{\text{in-neighbours } t' + \omega(t',t)\}$ where t' also has to be in X. $O^*(2^n)$, as we need to consider all subsets $X \subseteq V$.

Weighted Independent Set on trees: Pick the maximum $\{(\omega(v) + \sum_{c_1 \in ch(v)} \sum_{c_2 \in ch(c_1)} T[c_2]) \text{ or } (\sum_{c \in ch(v)} T[c]) \}$. So we either include v and continue with grandchildren or exclude v.

Inclusion / Exclusion

Useful if we need a union of sets while we can only calculate the intersection and vice versa.

$$\left|igcap_{i=1}^n P_i
ight| = \sum_{F\subseteq \{1,\dots,n\}} (-1)^{|F|} \left|igcap_{i\in F} ar{P}_i
ight|$$

One can think of P_i as good properties . Note: $\bar{P}_i = U \setminus P_i$ and $|\bigcap_i P_i| = |U \setminus \bigcup_i \bar{P}_i|$.

Hamiltonian cycle: Consider P_i as a cyclic walk of length n visiting vertex i. Then $|\bigcup_{i\in F} \bar{P}_i|$ are all cyclic walks not visiting $F\equiv$ all cyclic walks of length n of $V\setminus F$. DP solution: $w_F(s,t',k)$ is #walks $s\to t$ of length k, and recurse / sum over all $N^-(t)\setminus F$

Treewidth

Tree decomposition: Pair X, T where $X = \{X_1, \ldots, X_l\}$ are bags, with $X_i \subseteq V$. T is the tree on X_i . 1. $\bigcup_{i=1}^l X_i = V$. 2. $E \subseteq \bigcup_{i=1}^l X_i \times X_i$. 3. All X_i containing v are connected. Width: $\max_{i=1}^n |X_i| - 1$. Treewidth: Minimum width of all tree decompositions.

Cops and robbers: w + 1 cops can win iff graph has treewidth $\leq w$.

We can create **Nice tree decompositions** in polynomial time:

Introduce: Bag with one child and $X_i = X_j \cup v$. Leaf: $|X_i| = 1$.

Forget: Bag with one child and $X_i = X_j \setminus v$. **Join:** Bag with two children, $X_i = X_j = X_{j'}$.

Planar graph: Can be drawn without overlapping edges. ($O(n^2)$ or even O(n))

Euler's formula: If G is planar and connected, then n - m + f = 2 (m edges, f faces).

Contracting an edge: merge \boldsymbol{u} and \boldsymbol{v} into \boldsymbol{w} with neighbours of \boldsymbol{u} and \boldsymbol{v} .

Graph \boldsymbol{H} is a minor of \boldsymbol{G} if it can be obtained by contracting only.

Grid Minor Theorem: $\forall l \in \mathbb{N}$: all planar graphs have either $(l \times l)$ -grid as a minor or

Treewidth at most 91. This can be found in polynomial time

Kuratowski's theorem: G is planar iff it has no K_5 or $K_{3,3}$ as minor.

Randomized Algorithms (expected running times here)

Incremental construction: First randomly permute the input objects. Then add objects one by one in a list, maintaining a partial solution $1 \dots i$. Then add i+1 to the list.

Backward analysis: Calculate $\mathbb{E}[\mathcal{I}_i]$ in backward direction. Cu rrently at Sol(i), want to go back to Sol(i-1). Sorting example: s_1,\ldots,s_i are already sorted. Remove s_k , affects points $L_{k-1}=(s_{k-1},s_{k+1})$. Prob of picking interval is $\frac{1}{i}$. $\mathbb{E}[\mathcal{I}_i]=\frac{|L_1|}{i}+\cdots+\frac{|L_i|}{i}\leq \frac{2n}{i}$.

Convex hull: For each point in C_i , make a bidirectional pointer to edge e of C_i , by means of intersection with origin. New point p_{i+1} outside? Delete intersected edge + points and walk along C to remove vertices until convex hull good again O(n). Then update all pointers that pointed to the removed edges to the 2 new edges.

Backwards analysis: Ha ve $|C_i| \leq i$. Remove random point p_k . Inside? Do nothing. On C_i ? Remove two edges. Let |e| be #points pointing to e. Then $\mathbb{E}[\mathcal{I}_i] = \sum_{e \in C_i} \frac{2|e|}{i} \leq O(\frac{n}{i})$.

Karger's min cut algorithm: Want to find S such that edges between S and \bar{S} is minimized.

Contraction: Same as in Treewidth, but we can ha ve multiple edges now. Choose random edge e and contract until 2 vertices are left. Suppose k min-cut. Then $\forall_{v \in V} d(v) \geq k$ and thus $m \geq \frac{nk}{2}$. $O(n^4)$. Speed up version after recursion: $O(n^2 \log n)$.

Probabilistic exponential time algorithms

Algorithms that output **true** with a certain probability ($1 - \frac{1}{e}$), but never a false positive.

Stirling's approximation: $n! \approx \binom{n}{e}$ for $O^*(n)$ algorithms.

k-path: Given directed graph, determine whether k-path exists. Note: for DAGs, solvable in $O^*(1)$ time via simple DP.

General k-path 1: randomly assign numbers $\{1, \ldots, k\}$ to vertices. Transform into DAG by only keeping consecutive edges. Look for k-path. Probability $\frac{1}{k^k}$, so need to repeat this k^k time.

General k-path 2: randomly assign colours $\{1, \ldots, k\}$ to vertices. Look for *colourful* k-path via DP: Check whether all different-coloured in-neighbours have a solution for k-1 colours, namely $X \setminus c(v)$. $O^*(2^k)$. Doing this check e^k times for c.e.p., so $O^*((2e)^k)$.

Schoning's algorithm for k-CNF-SAT: Use hamming distance (H(00101, 10110) = 3). Local search: Given x, see if we can satisfy y with $\leq d$ edits: if \exists clause not satisfied, then flip all literals independently and see if we can solve one of the localsearch $(\phi, x', d-1)$. $O(k^d)$

Algorithm: Pick uniformly $x \in \{0,1\}^n$ at random. $d = \frac{n}{k+1}$. Check if localSearch returns true. Repeat for $2^n/\binom{n}{d}$ times. Results in $O^*((\frac{2k}{k+1})^n)$ algorithm.

FVS 2: Lemma: $|X| \ge \frac{|E|}{2}$. Algorithm: first remove edge cases (v,v), $deg(v) \le 2$. Then pick an edge + its endpoint at random, probability of $\frac{1}{4}$ of being in X. Recurse on k-1. Need to repeat this at most 4^k time as probability is $\frac{1}{4^k}$ of getting correct FVS. $O^*(4^k)$

k-path in $O(2^k)$

 $\mathbb{Z}_2^k = \text{set of } k$ -dimensional binary vectors. $1110 + 1011 = 0101, \langle 1110, 1011 \rangle = 0$. Two vectors are orthogonal if $\langle x,y \rangle = 0$. Rank-Nullity Theorem: If $x^1,\ldots,x^n \in \mathbb{Z}_2^k$, #vectors $y \in \mathbb{Z}_2^k$ satisfying $\forall_{1 \leq i \leq n} \langle x^i,y \rangle = 0$ is $2^{k-rk(x^1,\ldots,x^n)}$

Algorithm: randomly assign each vertex $c(v) \in \mathbb{Z}_2^k$. Then check whether G has a linearly independent k-path, which can be done in $O^*(2^k)$ time. Simpler, because walks \Rightarrow paths.

Lemma: If we assign each vertex a binary k-vector at random, then the probability that a k-path is linearly independent is $\geq \frac{1}{4}$.

Rank-Nullity theorem implies $\sum_{y \in \mathbb{Z}_2^k} w_{ORTH(y)}(k)$, where $w_{ORTH(y)}(k)$ the number of k-walks on all vertices orthogonal to y when calculating modulo 2.

Isolation: given family $F \subseteq 2^U$ and weight function ω , ω isolates F if there is a unique $S \in F$ such that $\omega(S) = \min_{S' \in F} \omega(S')$. I.e. there is a unique set that has the minimum value of all sets in F.

Isolation Lemma: For every $e \in U$, choose $\omega(e) \in \{1, ..., N\}$ at random. So randomly assignment numbers a set results in a unique minimizing set $\Pr[\omega \text{ isolates } F] \geq 1 - \frac{|U|}{N}$

We let the universe be all edges, and assign $\{1, \ldots, 2|E|\}$ to each edge. Then w.p. $\geq 1/2$ there exists a unique min-weight linearly independent k-path. Then we calculate the term for each weight W, and with probability at least 1/2 there is a unique k-path that satisfies this, thus we get our uneven term in the mod 2. Then, if the re is one where sum=1, then we have found it.

Matrix multiplications

We can multiply two matrices in $O(n^\omega)$ time, where $\omega \leq 2.37$. ($\omega \approx 2.81$ in lecture notes) For graph G with adjacency matrix A. Define $B = A^2$, then $b_{ik} = \sum_{j=1}^n a_{ij}a_{jk}$ is the number of walks on two edges from v_i to v_k . So A^3 contains the number of 3-walks. Triangle count: Compute $trace(A^3)/6$, where the /6 comes from the fact that one can start at three vertices in two directions and $trace(A) = \sum_{i=1}^m a_{ii}$, sum of diagonal. Max weighted triangle: Let $a_{i,j} = n^{3\omega(v_i,v_j)}$ and $C = A^3$. Then $c_{ii} = n^{3(\omega(v_i,v_j)+\omega(v_j,v_k)+\omega(v_k,v_i))}$. Let OPT be the max weight triangle for vertex v_i . If OPT exists, then $c_{ii} \geq n^{3OPT}$, otherwise $c_i i < n^{3OPT}$ (as in the worst case, there are n^2 triangle of val $n^{3OPT-1} < n^{3OPT}$). So just have max integer c such that $c_{i,i} \geq n^c$ and then go over diagonals and find max $c_{i,i}$.

Max-2-SAT: Find maximum number of satisfying clauses.