

COORDENADORIA DO CURSO DE ENGENHARIA DE TELECOMUNICAÇÕES PLANO DE ENSINO

Disciplina: Tópicos Especiais – <i>Deep Learning</i> aplicado à Visão Computacional			Período:10º		Currículo: 2010
Docente Responsável: João Pedro Hallack			Unidada Acadâmica: DTECH		
Sansão			Ullidade Acade	illica. Di E	-CH
Pré-requisito: Cálculo Numérico			Correquisito: -		
C.H. Total: 72 h-a (66 h)	C.H. Prática: 36 h-a (33 h)	C.H. Teórica: 36 h-a (33 h)	Grau: Bacharelado	Ano: 2021	Semestre: 2º
C.H. Síncrona: 14 h-a (12,83 h)	C.H. Assíncrona: 58 h-a (53,17 h)				

EMENTA

Elementos de visão computacional. Elementos de redes neurais artificiais e aprendizado profundo (*Deep learning*). Redes neurais convolucionais (CNN). Aprendizado por transferência (*Transfer learning*). Redes generativas adversariais (GAN). Aplicações em Visão Computacional: Classificação de imagens, detecção de objetos, reconhecimento facial.

OBJETIVOS

Neste curso serão vistos os princípios do aprendizado profundo, com redes neurais avançadas e alguns dos principais métodos utilizados na literatura em aplicações típicas de Visão Computacional (reconhecimento de padrões, classificação, detecção e localização de objetos, reconhecimento facial).

Serão apresentados exemplos práticos de utilização e estudos de caso para melhor compreensão da técnicas.

Familiarização com as bibliotecas Keras e TensorFlow.

CONTEÚDO PROGRAMÁTICO

- 1. Elementos de visão computacional.
- 2. Elementos de redes neurais artificiais e aprendizado profundo (*Deep learning*).
- 3. Redes neurais convolucionais (CNN).
- 4. Aprendizado por transferência (*Transfer learning*).
- 5. Redes generativas adversariais (GAN).
- 6. Aplicações em Visão Computacional:
 - 1. Classificação de imagens;
 - 2. Localização e detecção de objetos;
 - 3. Reconhecimento facial;
 - 4. Transferência de estilo;
 - 5. Outras aplicações.

METODOLOGIA DE ENSINO

O aluno será exposto ao conteúdo programático através de aulas expositivas gravadas em videoaulas. O conteúdo será complementado pelo desenvolvimento de trabalhos práticos, guias de estudo e listas de exercícios para aprofundamento do conteúdo. O curso usará recursos computacionais disponíveis na plataforma Google Colab e depende que o aluno tenha acesso a uma conexão estável com a Internet. A carga horária assíncrona corresponde a 58 horas-aula do curso, com conteúdo disponibilizado no portal

didático da UFSJ, atividades propostas, estudo individual, desenvolvimento de trabalhos e avaliações. A carga horária síncrona corresponde a 14 horas-aula, sendo uma hora semanal pelas plataformas "ConferênciaWeb RNP" ou "Google Meet", de acordo com disponibilidade dos recursos, para orientações e solução de dúvidas nas atividades, em horário designado pela coordenação.

CONTROLE DE FREQUÊNCIA E CRITÉRIOS DE AVALIAÇÃO

São propostas 10 atividades de avaliação de igual valor, que serão distribuídas ao longo do período. Estas atividades podem constituir em: projetos, trabalhos práticos computacionais, questionários e avaliações teóricas. Uma avaliação substitutiva será oferecida para os alunos que a solicitem de acordo com as normas vigentes.

Critério de Aprovação: NF >= 6,0 e frequência aferida conforme as resolução/CONEP n^{o} 004, de 25 de março de 2021.

BIBLIOGRAFIA BÁSICA

- 1. Elgendy, M. (2020). Deep learning for vision systems. New York, NY: Manning Publications.
- 2. Koul, A., Ganju, & Kasam, M. (2019). Practical deep learning for cloud, mobile, and edge: Real-world AI & computer-vision projects using python, keras & tensorflow. O'Reilly Media.
- 3. Ballard, W. (2018). Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision applications using TensorFlow and Keras. Birmingham, England: Packt Publishing.

BIBLIOGRAFIA COMPLEMENTAR

- 1. Chollet, F. (2017). Deep learning with python. New York, NY: Manning Publications.
- Geron, A. (2019). Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems (2nd ed.). Sebastopol, CA: O'Reilly Media.
- 3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. London, England: MIT Press.
- 4. Kar, K. (2020). Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques. Birmingham, England: Packt Publishing.
- 5. TensorFlow Team. Tutorials. Acessado em 19 de Junho de 2021, url: https://www.tensorflow.org/tutorials/
- 6. Keras Team. Developer guides. Acessado em 19 de Junho de 2021, url: https://keras.io/guides/

	Aprovado pelo Colegiado em / /
Docente Responsável João Pedro Hallack Sansão	Prof. Moacir de Souza Júnior Coordenador do Curso de Engenharia de Telecomunicações