Geospatial analysis of the flint water crisis

Adam Chaffee
M.S. Statistics candidate, 2017
March 2017

Overview

- In 2014, the City of Flint, Michigan, changed its water source from treated water sourced from Lake Huron to the Flint River
- Officials failed to apply corrosion inhibitors into the water source
 (c) Adam Chaffee 2017
- The water from Flint River irreversibly corroded the aging local pipe system causing unsafe levels of lead and copper to leach into the water supply
- Estimated cost to repair: \$100M \$1.5B, full extent of damage unknown

Service lines

Goovaerts (20

Data Source

- Residents were supplied with testing kits and instructions to test the water in their own homes for lead and copper levels
- Obtained most recent residential testing results collected 1/1/17 3/2/17 (~550 observations after cleaning)
 - http://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297---,00.html

Bubble Plot

EPA recommended level: 0 PPB

EPA mandatory action level: 15 PPB

Weak Correlation - Lead and Copper


```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.6373     5.1107    7.364   6.7e-13 ***
flint$Pb     5.0081     0.3698   13.542   < 2e-16 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 115.3 on 539 degrees of freedom
Multiple R-squared: 0.2539, Adjusted R-squared: 0.2525
```

Fitted Variograms

Comparing Kriging Methods

Improvement from co-kriging due to weak association with copper levels

(c) Adam Chaffee 2017

Method	Cross Validated PRESS
Co-Kriging with Cu	74,459.97
Simple Kriging	97,125.73
Ordinary Kriging	97,485.79
Universal Kriging	97,687.85

Raster Map Using Co-kriging

Indicator Kriging Results

Indicator Conversion:

1 assigned to lead level > 15 PPB

O assigned to lead level < 15 PPB

Method	Cross Validated PRESS
Simple Kriging	21.07
Ordinary Kriging	21.08
Universal Kriging	21.09

Raster Map - Indicator Simple Kriging

Raster Map using Indicator Kriging

Voluntary vs. State Testing - Goovaerts (2016)

- Sentinel state run testing
- Non-sentinel any other testing, including voluntary

Table 5 (c) Adam Chaffee 2017 Odds ratio for covariates of the GEE regression models fitted to five different WLL thresholds using all the data collected between 10/16/2015 and 9/15/2016.

Effects	WLL thresholds					
	1 μg/L	10 μg/L	15 μg/L	25 μg/L	50 μg/I	
SL: lead vs others	2.929**	1.687**	1.582**	1.207	1.039	
SL: unknown vs others	1.449**	1.148*	1.125	1.082	0.985	
Built year: <1940 vs 1960-2016	3.143**	2.171**	2.106**	2.195**	2.232**	
Built year: 1940-1959 vs 1960-2016	1.318**	1.426**	1.377**	1.348*	1.398*	
Poverty: 25-50% vs < 25%	0.877**	0.968	1.021	1.040	1.056	
Poverty: >50% vs < 25%	0.600**	0.760**	0.786*	0.817	0.835	
Δt source switch (week)	1.001	1.001	1.002	1.006	1.011*	
Sentinel site: No vs Yes	0.879*	1.331**	1.480**	1.712**	2.055**	

^{*} Significantly different from 1 at $\alpha = 0.05$.

WLL data

^{**} Significantly different from 1 at $\alpha = 0.01$.

Conclusions

- Co-kriging was the best estimator using the most recent data
 - Only showed nugget effect
 - Some clear hot spots which may serve as a guide for most troubled areas
- Indicator kriging with transformed data paints a different story less targeted but overall more dangerous
- Controversial data source
 - Voluntary reporting differs from government reports
 - ▶ Possible non-random sampling from citizens, government, or both
- Uncertainty around method. Water pipes have lots of elbow joints and do not expand straight out in every direction.
 - Makes assumption of stationarity difficult due uncertain distances between points

Thank you!

Sources:

- ► Goovaerts, P. The drinking water contamination crisis in Flint: Modeling temporal trends of lead level since returning to Detroit water system. Sci Total Environ. 2017 Mar 1;581-582:66-79. doi: 10.1016/j.scitotenv.2016.09.207. Epub 2016 Oct 5.
- ▶ Data from http://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297---,00.html
- Special thanks to:
 - Dr. Nicolas Christou
 - Flint citizens who tested their water