# EDO II

por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2019

16, 21 e 23 de maio de 2019

## Considere a EDO homogênea

$$y'' + p(x)y' + q(x)y = 0 (1)$$

**Teorema (Princípio da Superposição)**: Se  $y_1(x)$  e  $y_2(x)$  são soluções de (2), então

$$y(x) = Ay_1(x) + By_2(x),$$

com  $A, B \in \mathbb{R}$ , também é solução de (2). Vamos chamar a solução  $y(x) = Ay_1(x) + By_2(x)$  de solução geral da EDO. Exemplo: Determine a solução geral da EDO y'' - 2y' - 15y = 0.

40149141111 1 000

**Teorema (D'Alembert)**: Sejam  $y_1(x)$  uma solução, não nula, da EDO

$$y'' + p(x)y' + q(x)y = 0,$$
 (2)

então a substituição  $y(x)=v(x)y_1(x)$  transforma a EDO (2) em uma EDO linear homogênea de ordem 1 para  $v'=\frac{dv}{dx}$ . Além disso, se  $v_1(x)$  é uma solução, não nula, dessa EDO de ordem 1, então  $v_1(x)y_1(x)$  é outra solução de (2). Assim, toda solução de (2) é da forma  $y(x)=Av_1(x)+Bv_1(x)y_1(x)$ , com  $A,B\in\mathbb{R}$ .

*Exemplo*: Verifique que  $y_1(x) = x$  é solução da EDO  $x^2y'' - x(x+2)y' + (x+2)y = 0$  e depois determine a solução geral da EDO.

2º **Caso**: As raízes  $r_1$  e  $r_2$  da equação  $ar^2 + br + c = 0$  são reais e iguais, ou seja,  $r_1 = r_2 = r$ .

Neste caso,  $y_1(x) = e^{rx}$  e  $y_2(x) = v(x)e^{rx}$  são soluções da EDO ay'' + by' + cy = 0 e portando qualquer solução da EDO é da forma  $y(x) = Ae^{rx} + Bv(x)e^{rx}$ , com  $A, B \in \mathbb{R}$ .

Exemplo: Determine a solução geral da EDO 4y'' - 12y' + 9y = 0.

3° **Caso**: As raizes  $r_1$  e  $r_2$  da equação  $ar^2 + br + c = 0$  são complexas conjugadas, ou seja,  $r_1 = \alpha + \beta i$  e  $r_2 = \alpha - \beta i$ . Neste caso,  $\tilde{y}_1(x) = e^{(\alpha + \beta i)x}$  e  $\tilde{y}_2(x) = e^{(\alpha - \beta i)x}$  são soluções da EDO ay'' + by' + cy = 0 (só que são complexas). Usando alguns argumentos algébricos podemos mostrar que  $e^{\alpha x} \cos \beta x$  e  $e^{\alpha x} \sin \beta x$  são soluções da EDO e portando qualquer solução da EDO é da forma  $y(x) = Ae^{\alpha x} \cos \beta x + Be^{\alpha x} \sin \beta x$ , com  $A, B \in \mathbb{R}$ . *Exemplo*: Determine a solução geral da EDO y'' + 2y' + 5y = 0. *Exercício*: Determine a solução geral da EDO  $y'' + b^2 y = 0$ , com  $b \in \mathbb{R}$ .

# Definição 1

Um problema de valor inicial (PVI) é uma EDO com uma condição inicial, ou seja,

$$y'' + p(x)y' + q(x)y = 0, y(x_0) = y_0, y'(x_0) = y'_0$$

Exemplo: Determine a solução do PVI's abaixo.

(a) 
$$y'' + y' - 2y = 0$$
,  $y(0) = 1$ ,  $y'(0) = 2$ ;

(b) 
$$6y'' - 5y' + y = 0$$
,  $y(0) = 4$ ,  $y'(0) = 0$ ;

(c) 
$$y'' + 4y' + 3y = 0$$
,  $y(0) = 2$ ,  $y'(0) = -1$ ;

(d) 
$$y'' + 8y' - 9y = 0$$
,  $y(1) = 1$ ,  $y'(1) = 0$ ;

(e) 
$$y'' + y' - 6y = 0$$
,  $y(0) = 1$ ,  $y'(0) = 1$ .

#### Teorema 1

O PVI

$$y'' + p(x)y' + q(x) = f(x), y(x_0) = y_0 e y'(x_0) = y'_0,$$
 (3)

para p(x), q(x) e f(x) contínuas em um intervalo aberto l contendo  $x_0$ , tem única solução em l.

#### Considere o PVI:

$$y'' + p(x)y' + q(x)y = 0, y(x_0) = y_0, y'(x_0) = y'_0$$
 (4)

em que  $y_0$  e  $y_0'$  são condições iniciais dadas no problema.

**Teorema**: Sejam  $y_1(x)$  e  $y_2(x)$  duas soluções da EDO (2) tais que, em um ponto  $x_0 \in \mathbb{R}$ ,

$$\det \begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{bmatrix} \neq 0.$$

Então para todo par de condições iniciais  $(y_0, y'_0)$  o PVI (4) tem uma única solução  $y(x) = Ay_1(x) + By_2(x)$ .

## Definição 2

(1) O determinante

$$W[y_1, y_2] = \det \begin{bmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{bmatrix}$$

é chamado **Wronskiano** das funções  $y_1(x)$  e  $y_2(x)$  em  $x_0$ .

- (2) Se  $y_1(x)$  e  $y_2(x)$  são duas soluções de (2) tais que  $W[y_1,y_2] \neq 0$  em  $x_0 \in \mathbb{R}$ , então essas soluções são chamadas soluções fundamentais.
- (3) Se  $y_1(x)$  e  $y_2(x)$  são soluções fundamentais de (2), então a família de soluções  $y(x) = Ay_1(x) + By_2(x)$ , com  $A, B \in \mathbb{R}$ , é chamada **solução geral de** (2). Duas soluções satisfazendo (2) e (3) formam um **conjunto fundamental de soluções**.

Exemplo: Determine se conjunto formado pelas soluções das EDO's abaixo formam um conjunto fundamental de soluções.

(a) 
$$y'' + y' - 2y = 0$$
;

(b) 
$$y'' - 3y' + 2y = 0$$
;

(c) 
$$y'' + 4y' + 3y = 0$$
;

(d) 
$$y'' + 8y' - 9y = 0$$
;

(e) 
$$y'' + y' - 6y = 0$$
.

Exercícios: (1) Determine o Wronskiano de cada par de funções abaixo.

- (a)  $e^{2x}$ ,  $e^{-3x/2}$ ;
- (b)  $e^{-2x}$ ,  $xe^{-2x}$ ;
- (c)  $e^x sen x$ ,  $e^x cos x$ ;
- (d)  $\cos^2 x$ , 1 +  $\cos 2x$ ;
- (2) Determine se  $y_1(x)$  e  $y_2(x)$  são soluções das EDO's e se elas formam um conjunto fundamental de soluções.
- (a) y'' + 4y = 0;  $y_1(x) = \cos 2x \text{ e } y_2(x) = \sin 2x$ ;
- (b) y'' 2y' + y = 0;  $y_1(x) = e^x$  e  $y_2(x) = xe^x$ ;
- (c)  $x^2y'' x(x+2)y' + (x+2)y = 0; x > 0; y_1(x) = x e y_2(x) = xe^x;$
- (d)  $(1 x \cot y)y'' xy' + y = 0; 0 < x < \pi; y_1(x) = x e y_2(x) = \sec x.$

