Functional analysis

Luka Horjak (luka1.horjak@gmail.com)

October 18, 2023

Contents Luka Horjak

Contents

Introduction			
1		nvexity	4
	1.1	Locally convex spaces	4
	1.2	Banach-Alaoglu theorem	7
		Minkowski gauge	
	1.4	Applications of the Hahn-Banach theorem	9
	1.5	Krein-Milman theorem	12
2	C*-8	algebras and continuous functional calculus	15
	2.1	Spectrum	15
	2.2	Banach and C^* -algebras	16
Ιn	dev		10

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Functional analysis in the year 2023/24. The lecturer that year was prof. dr. Igor Klep.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

Convexity Luka Horjak

1 Convexity

1.1 Locally convex spaces

Definition 1.1.1. A topological vector space V is an \mathbb{F} -vector space that is also a topological space, such both addition and scalar multiplication are continuous.

Definition 1.1.2. Let V be an \mathbb{F} -vectors pace. A map $p:V\to\mathbb{R}$ is a *seminorm* if the following holds:

- i) $\forall x \in V : p(x) > 0$,
- ii) $\forall \lambda \in \mathbb{F}, x \in V : p(\lambda x) = |\lambda| p(x),$
- iii) $\forall x, y \in V : p(x+y) < p(x) + p(y)$.

Definition 1.1.3. Let V be an \mathbb{F} -vector space and \mathcal{P} a family of seminorms on V. We define a topology \mathcal{T} on V with the sets

$$U(x_0, p, \varepsilon) = \{ x \in V \mid p(x - x_0) < \varepsilon \}$$

as a subbasis.

Definition 1.1.4. A topological vector space X is a *locally convex space* if its topology is generated by a family of seminorms \mathcal{P} satisfying

$$\bigcap_{p \in \mathcal{P}} \{ x \in X \mid p(x) = 0 \} = \{ 0 \}.$$

Proposition 1.1.5. A locally convex space X is Hausdorff.

Proof. Let $x, y \in X$ be distinct points. Let $p \in \mathcal{P}$ be a seminorm such that $p(x - y) \neq 0$. Then the sets

$$U = \left\{ z \in X \;\middle|\; p(z - x) < \frac{\varepsilon}{2} \right\} \quad \text{and} \quad V = \left\{ z \in X \;\middle|\; p(z - y) < \frac{\varepsilon}{2} \right\}$$

split the points x and y.

Remark 1.1.5.1. The converse is also true.

Definition 1.1.6. A partially ordered set I is upward directed if for all $i', i'' \in I$ there exists some $i \in I$ such that $i \geq i'$ and $i \geq i''$.

Definition 1.1.7. A net is a pair $((I, \leq), x)$, where (I, \leq) is an upward directed set and $x: I \to X$ is a function. We usually write $(x_i)_{i \in I}$.

Remark 1.1.7.1. Let (X, \mathcal{T}) be a topological space and $x_0 \in X$. Partially order the set

$$\mathcal{U} = \{ U \subseteq X \mid x_0 \in U \land U \text{ is open} \}$$

with reverse inclusion. Then any choice function defines a net $(x_U)_{U\in\mathcal{U}}$.

¹ Also linear topological space.

Definition 1.1.8. Let X be a topological space. A net $(x_i)_{i\in I}$ converges so $x\in X$ if for all open sets $U\subseteq X$ with $x\in U$ there exists some index $i_0\in I$ such that for all $i\geq i_0$ we have $x_i\in U$. We write

$$\lim_{i \in I} x_i = x.$$

Definition 1.1.9. A point $x \in X$ is a *cluster point* of a net $(x_i)_{i \in I}$ if for all open sets $U \subseteq X$ with $x \in U$ and index $i_0 \in I$ there exists some index $i \geq i_0$ such that $x_i \in U$.

Proposition 1.1.10. Let X be a topological space and $A \subseteq X$. Then $x \in \overline{A}$ if and only if there exists a net $(a_i)_{i \in I}$ in A such that

$$\lim_{i \in I} a_i = x.$$

Proof. Suppose a net $(a_i)_{i\in I}$ converges to x. For any neighbourhood U of x and some $i_0 \in I$ we have $a_{i_0} \in U$. Therefore, $U \cap A \neq \emptyset$.

Assume now that $x \in \overline{A}$. Again, define

$$\mathcal{U} = \{ U \subseteq X \mid x_0 \in U \land U \text{ is open} \}.$$

There is a choice function a such that $a_U \in A$ for all U. The net $(a_U)_{U \in \mathcal{U}}$ then converges to x.

Proposition 1.1.11. Let X and Y be topological spaces and $f: X \to Y$ a map. Then, f is continuous in $x_0 \in X$ if and only if

$$\lim_{i \in I} f(x_i) = f(x_0)$$

for all nets $(x_i)_{i\in I}$ that converge to x_0 .

Proof. Suppose that f is continuous at x_0 . Take an open neighbourhood U of $f(x_0)$. Then there must exist some $i_0 \in I$ such that for all $i \geq i_0$ we have $x_i \in f^{-1}(U)$, therefore $f(x_i) \in U$.

Now suppose f is discontinuous at x_0 . Let

$$\mathcal{U} = \{ U \subseteq X \mid x_0 \in U \land U \text{ is open} \}$$

and $V \subseteq Y$ be an open set such that $f(x_0) \in V$ and x_0 is not an interior point of $f^{-1}(V)$. Now using the discontinuity of f, for all $U \in \mathcal{U}$ choose $x_U \in U$ such that $f(x_U) \notin V$. Trivially the net $(x_V)_{V \in \mathcal{V}}$ converges to x_0 , but

$$\lim_{V \in \mathcal{V}} f(x_V) \neq f(x_0).$$

Proposition 1.1.12. The following statements are true:

- i) A net $(x_i)_{i\in I}$ in a locally convex space converges to x_0 if and only if the net $(p(x_i x_0))_{i\in I}$ converges to 0 for all $p \in \mathcal{P}$.
- ii) The topology in a locally convex space X is the coarsest topology in which all the maps $x \mapsto p(x x_0)$ are continuous for all $x_0 \in X$ and $p \in \mathcal{P}$.

Proof.

i) If $(x_i)_{i\in I}$ converges to x_0 , just apply the proposition 1.1.11. Suppose that all the nets $(p(x_i - x_0))_{i\in I}$ converge to 0. Choose an open set from the local basis of x_0 . It is given by

$$U = \{ x \in X \mid \forall k \le n \colon p_k(x - x_0) < \varepsilon \}.$$

But as all nets $(p_k(x_i - x_0))_{i \in I}$ converge to 0, there is some index $i_k \in I$ such that for all $i \geq i_k$ we have $p_k(x_i - x_0) < \varepsilon$. Now just take i_0 to be an upper bound of i_k . For all $i \geq i_0$ we then have $x_i \in U$.

ii) Obvious. \Box

Definition 1.1.13. For all $f \in X^*$ define a seminorm $p_f : X \to \mathbb{R}$ as $p_f(x) = |f(x)|$. The family $\mathcal{P} = \{p_f \mid f \in X^*\}$ induces the *weak topology* on X. We denote the weak topology with $\sigma(X, X^*)$.

Remark 1.1.13.1. The space X with the topology $\sigma(X, X^*)$ is a locally convex space by the Hahn-Banach theorem.²

Definition 1.1.14. Let X be a normed space. For all $x \in X$ we define a seminorm $p_x \colon X^* \to \mathbb{R}$ as $p_x(f) = |f(x)|$. The family $\mathcal{P} = \{p_x \mid x \in X\}$ induces the weak-* topology on X^* . We denote the weak-* topology with $\sigma(X^*, X)$.

Remark 1.1.14.1. The weak topology on X^* is finer than the weak-* topology, as X can be isometrically mapped into X^{**} with the map $x \mapsto (f \mapsto f(x))$.

² Introduction to functional analysis, corollary 2.2.5.2.

1.2 Banach-Alaoglu theorem

Theorem 1.2.1 (Banach-Alaoglu). Let X be a normed space. Then the closed unit ball in X^*

$$(X^*)_1 = \{ f \in X^* \mid ||f|| \le 1 \}$$

is compact in the weak-* topology on X^* .

Proof. Assign a disk to all $x \in X$ as $D_x = \{z \in \mathbb{F} \mid |z| \leq ||x||\}$ with the euclidean topology. Define

$$P = \prod_{x \in X} D_x$$

with the product topology. The space P is then compact by Tychonoff's theorem. Now define the map $\Phi: (X^*)_1 \to P$ with $\Phi(f) = (f(x))_{x \in X}$. This map is injective.

Let $(f_i)_{i\in I}$ be a net in $(X^*)_1$ that weak-* converges to $f\in X^*$. Equivalently, we have

$$\lim_{i \in I} f_i(x) = f(x)$$

for all $x \in X$. By the definition of the product topology we have

$$\lim_{i \in I} \Phi(f_i) = \Phi(f).$$

Therefore, Φ is continuous. Analogously, Φ^{-1} : im $\Phi \to (X^*)_1$ is continuous.

Suppose that $(\Phi(f_i))_{i\in I}$ converges to some $p \in P$. By the definition of the product topology this means that $f_i(x)$ converges to p_x for all $x \in X$. Define a map $f: X \to \mathbb{F}$ given by $f(x) = p_x$. Then, f is linear and bounded with $||f|| \le 1$. Thus $p = \Phi(f) \in \operatorname{im}(\Phi)$, therefore, $\Phi((X^*)_1)$ is closed. As $(X^*)_1$ is homeomorphic to its image which is compact, it is also compact.

Corollary 1.2.1.1. Every Banach space X is isometrically isomorphic to a closed subspace C(K) for some compact Hausdorff space K.

Proof. Choose $K = (X^*)_1$ with the weak-* topology. By Banach-Alaoglu, K is compact and Hausdorff. Now define the map $\Delta \colon X \to K$ with $\Delta(x) = (f \mapsto f(x))$. Now observe that

$$\|\Delta(x)\|_{\infty} = \sup_{g \in K} |\Delta(x)(g)| = \sup_{g \in K} |g(x)| = \|x\|$$

by Hahn-Banach.³

³ Introduction to functional analysis, corollary 2.2.5.1.

1.3 Minkowski gauge

Definition 1.3.1. Let X be a \mathbb{F} -vector space. A set $A \subseteq is$

- i) balanced, if for all $x \in A$ and $\alpha \in \mathbb{F}$ with $|\alpha| \leq 1$ we have $\alpha x \in A$,
- ii) absorbing, if for all $x \in X$ there exists some $\varepsilon > 0$ such that for all $t \in (0, \varepsilon)$ we have $tx \in A$,
- iii) absorbing in $a \in A$ if A a is absorbing.

Theorem 1.3.2. Let X be a \mathbb{F} -vector space and $V \subseteq X$ a convex, balanced and absorbing in each of its points. Then there exists a unique seminorm p such that

$$V = \{ x \in X \mid p(x) < 1 \} .$$

Proof. As A is convex, we can define the Minkowski gauge

$$p_V(x) = \inf \left\{ t \ge 0 \mid x \in tV \right\}.$$

It is of course well defined, as A is absorbing. We can check that

$$p_{V}(\alpha x) = \inf \left\{ t \ge 0 \mid x \in \frac{t}{\alpha} V \right\}$$

$$= \inf \left\{ t \ge 0 \mid x \in \frac{t}{|\alpha|} V \right\}$$

$$= |\alpha| \cdot \inf \left\{ \frac{t}{|\alpha|} \ge 0 \mid x \in \frac{t}{|\alpha|} V \right\}$$

$$= |\alpha| p_{V}(x)$$

as A is balanced. Therefore, p_V is homogeneous. As p_V is sublinear,⁴ it is a seminorm. It follows that⁵

$$V = \{ x \in X \mid p_V(x) < 1 \} .$$

Suppose that

$$V = \{ x \in X \mid q(x) < 1 \}$$

for some seminorm $q \neq p_V$. But then we have $p_V(x) \neq q(x)$ for some $x \in X$, therefore there exists some $t \in \mathbb{R}$ such that $p_V(tx) > 1 > q(tx)$ or $q(tx) > 1 > p_V(tx)$.

⁴ Introduction to functional analysis, proposition 2.3.3.

⁵ Introduction to functional analysis, remark 2.3.4.1.

1.4 Applications of the Hahn-Banach theorem

Theorem 1.4.1 (Hahn-Banach). Suppose X is a locally convex space and $A, B \subseteq X$ are disjoint convex sets. If B is compact, there exists a functional $f \in X^*$ that separates A from B – there exist $\alpha, \beta \in \mathbb{R}$ such that for all $a \in A$ and $b \in B$ we have

$$\operatorname{Re} f(a) \le \alpha < \beta \le \operatorname{Re} f(b).$$

Theorem 1.4.2. Suppose X is a locally convex space and $A \subseteq X$ is a convex space. Then the closure of A is the same as the closure in the weak topology.

Proof. The set \overline{A} is of course a subset of the closure of A in the weak topology. Now choose a point $x \notin \overline{A}$. There exists a functional $f \in X^*$ and numbers $\alpha, \beta \in \mathbb{R}$ such that

$$\operatorname{Re} f(a) \le \alpha < \beta \le \operatorname{Re} f(x)$$

for all $a \in \overline{A}$. But then

$$\overline{A} \subseteq \{y \in X \mid \operatorname{Re} f(y) < \alpha\} = (\operatorname{Re} f)^{-1} ((-\infty, \alpha]) = C,$$

where C is closed in the weak topology. It follows that the closure of A in the weak topology is a subset of C. As $x \notin C$, we get the desired equality.

Corollary 1.4.2.1. A convex set is a locally convex space if and only if it is weakly closed.

Proposition 1.4.3. Let X be a topological vector space and $f: X \to \mathbb{F}$ a linear functional. The following statements are equivalent:

- i) The functional f is continuous.
- ii) The functional f is continuous in 0.
- iii) The functional f is continuous in some point $x_0 \in X$.
- iv) The set $\ker f$ is closed.
- v) The function $x \mapsto |f(x)|$ is a continuous seminorm.

If X is a locally compact space and \mathcal{P} is the family of seminorms defining the topology on X, the above conditions are also equivalent to

$$|f(x)| \le \sum_{k=1}^r \alpha_k p_k(x)$$

for some $\alpha_k \in \mathbb{R}^+$ and $p_k \in \mathcal{P}$.

Proof. The proof of the equivalence of the first 5 statements is the same as for normed spaces. Suppose now that

$$|f(x)| \le \sum_{k=1}^r \alpha_k p_k(x).$$

Let $(x_i)_{i\in I}$ be a net in X that converges to 0. Then

$$0 \le |f(x_i)| \le \sum_{k=1}^r \alpha_k p_k(x_i),$$

which converges to 0. It follows that f is continuous at 0.

Now suppose that f is continuous at 0. The set

$$f^{-1}\left(\mathring{\mathcal{B}}(0,1)\right) = \{x \in X \mid |f(x)| < 1\}$$

contains an open neighbourhood B of the point 0. We can write

$$B = \bigcap_{j=1}^{r} U(0, p_j, \varepsilon).$$

Take $x \in X$. For $\delta > 0$ be such that

$$p_j\left(x\cdot\frac{\varepsilon}{\delta+\sum p_j(x)}\right) = \frac{\varepsilon}{\delta+\sum p_j(x)}\cdot p_j(x) < \varepsilon,$$

therefore,

$$\left| f\left(x \cdot \frac{\varepsilon}{\delta + \sum p_j(x)} \right) \right| < 1,$$

which can be rearranged to

$$|f(x)| < \frac{1}{\varepsilon} \cdot \sum_{j=1}^{r} p_j(x) + \frac{\delta}{\varepsilon}.$$

Taking a limit, we get the desired inequality.

Theorem 1.4.4 (Riesz-Markov). Let X be a compact Hausdorff space and $\Phi \in \mathcal{C}(X)^*$. Then there exists a unique regular Borel measure μ such that

$$\Phi(f) = \int_{X} f \, d\mu$$

for all $f \in \mathcal{C}(X)$. Furthermore, we have $\|\Phi\| = \|\mu\| = |\mu|(X)$.

Proposition 1.4.5. Let X be a completely regular space. Endow the space $\mathcal{C}(X)$ with the topology induced by the seminorms $\{p_K \mid K \subseteq X \text{ is compact}\}$. If $L \in \mathcal{C}(X)^*$, then there exists a compact set $K \subseteq X$ and a regular Borel measure on K such that

$$L(f) = \int_{K} f \, d\mu$$

for all $f \in \mathcal{C}(X)$. Conversely, every such (K, μ) defines a functional $L \in \mathcal{C}(X)^*$.

Proof. Suppose that

$$L(f) = \int_{K} f \, d\mu$$

for some compact set K and measure μ . Then we have

$$|L(f)| = \left| \int_{K} f \, d\mu \right| \le \|\mu\| \cdot \sup_{K} |f| = \|\mu\| \cdot p_{K}(f),$$

so L is continuous.

Let now $L \in \mathcal{C}(X)^*$. We can therefore write

$$|L(f)| \le \sum_{k=1}^r \alpha_k p_{K_j}(f)$$

for some compact sets K_j . We can simplify the above to

$$|L(f)| \le \alpha \cdot p_K(f),$$

where

$$K = \bigcup_{j=1}^{r} K_j.$$

Note that if we have $f \in \mathcal{C}(X)$ and $f|_K = 0$, it follows that L(f) = 0. Now define $F: \mathcal{C} \to \mathbb{F}$ as follows; for any $g \in \mathcal{C}$ choose an extension $\widetilde{g} \in \mathcal{C}(X)$ of g and set

$$F(g) = L(\widetilde{g}).$$

This map is well defined by the above observation. We can check that F is indeed linear. Note that

$$\left|F(g)\right| = \left|L\left(\widetilde{g}\right)\right| \leq \alpha \cdot p_{K}\left(\widetilde{g}\right) = \alpha \cdot \left\|g\right\|_{\infty,K},$$

therefore, F is continuous. By the Riesz-Markov theorem there exists a regular Borel measure μ on K such that

$$F(g) = \int_{K} g \, d\mu.$$

If $f \in \mathcal{C}(X)$, we have $g = f|_K \in \mathcal{C}(K)$, so

$$L(f) = F(g) = \int_{K} g \, d\mu.$$

1.5 Krein-Milman theorem

Definition 1.5.1. Let X be a vector space and $C \subseteq X$ a convex subset.

- i) A non-empty convex subset $F \subseteq C$ is a face if for all $t \in (0,1)$ and $x,y \in C$ satisfying $tx + (1-t)x \in F$, we also have $x,y \in F$.
- ii) A point $x \in C$ is an extreme point if $\{x\} \subseteq C$ is a face. We denote the set of extreme points of C by ext C.

Definition 1.5.2. For a vector space X and $A \subseteq X$ define the *convex hull* of A as

$$\operatorname{co} A = \left\{ \sum_{i=1}^{n} \alpha_{i} x_{i} \;\middle|\; n \in \mathbb{N} \land \alpha_{j} \in \mathbb{R}_{\geq 0} \land \sum_{i=1}^{n} \alpha_{i} = 1 \land x_{i} \in A \right\}.$$

If X is a topological vector space, define the closed convex hull as

$$\overline{\operatorname{co}} A = \overline{\operatorname{co} A}.$$

Proposition 1.5.3. The set co A is the smallest convex set that contains A. The set $\overline{\operatorname{co}} A$ is the smallest closed set that contains A.

Proof. The only nontrivial part of the proof is convexity of the set $\overline{\operatorname{co}} A$. Let $(x_i)_{i\in I}$ and $(y_i)_{i\in I}$ be two nets that converge to x and y, where $x,y\in\overline{\operatorname{co}} A$. For any $t\in(0,1)$ we have

$$tx + (1-t)y = \lim_{i \in I} (tx_i + (1-t)y_i) \in \overline{\operatorname{co}} A.$$

Lemma 1.5.4. Let X be a topological vector space and $C \subseteq X$ be a non-empty compact convex subset. Then for any $\phi \in X^*$ the set

$$F = \left\{ x \in C \mid \operatorname{Re} \phi(x) = \min_{C} \operatorname{Re} \phi \right\}$$

is a closed face of C.

Proof. As C is a compact set, the set F is obviously non-empty. Also note that, as a preimage of a closed point, F is a closed set. Convexity of F follows from linearity of ϕ . Suppose that $tx + (1-t)y \in F$. As

$$\min_{C} \operatorname{Re} \phi = \operatorname{Re} \phi(tx + (1-t)y) = t\phi(x) + (1-t)\phi(y) \ge \min_{C} \operatorname{Re} \phi,$$

it follows that $x, y \in F$. By definition, F is a face.

Theorem 1.5.5 (Krein-Milman). Let X be a locally convex space and $C \subseteq X$ a non-empty convex compact subset. Then

$$C = \overline{\operatorname{co}} (\operatorname{ext} C)$$
.

October 18, 2023

Proof. Let $\mathcal{F} = \{\text{closed faces in } C\}$ be a set, ordered with \supseteq . As $C \in \mathcal{F}$, this is a non-empty set. As each increasing chain in \mathcal{F} has its intersection⁶ as an upper bound, we can apply Zorn's lemma and find a maximal element $F_0 \in \mathcal{F}$.

Suppose there are distinct elements $x, y \in F_0$. By Hahn-Banach, there exists a functional $\phi \in X^*$ such that $\operatorname{Re} \phi(x) < \operatorname{Re} \phi(y)$. Now let

$$F_1 = \left\{ z \in F_0 \mid \operatorname{Re} \phi(z) = \min_{F_0} \operatorname{Re} \phi \right\}.$$

As $F_1 \subset F_0$ is a closed face in F_0 by lemma 1.5.4, it is a closed face in C. This is a contradiction, so $|F_0| = 1$. Therefore, ext $C \neq \emptyset$.

It is clear that $\overline{\operatorname{co}}(\operatorname{ext} C) \subseteq C = \overline{\operatorname{co}} C$. Suppose that $x \in C \setminus \overline{\operatorname{co}}(\operatorname{ext} C)$. By Hahn-Banach, there exists a functional $\psi \in X^*$ such that

$$\operatorname{Re} \psi(x) < \min_{\overline{\operatorname{co}} (\operatorname{ext} C)} \operatorname{Re} \psi.$$

Let

$$F = \left\{ z \in C \mid \operatorname{Re} \psi(z) = \min_{C} \operatorname{Re} \psi \right\}$$

be a closed face in C. As there exists some $z \in \operatorname{ext} F \subseteq \operatorname{ext} C$, we have

$$\min_{C} \operatorname{Re} \psi = \operatorname{Re} \psi(z) = \min_{\overline{\operatorname{co}} \, (\operatorname{ext} \, C)} \operatorname{Re} \psi > \operatorname{Re} \psi(x) \ge \min_{C} \operatorname{Re} \psi.$$

Such x therefore cannot exist.

Proposition 1.5.6. The space c_0 is not the dual space of a Banach space.

Proof. Let X be a Banach space. By Banach-Alaoglu, the set $(X^*)_1$ is compact, therefore, $(X^*)_1 = \overline{\operatorname{co}}(\operatorname{ext}(X^*)_1)$ by Krein-Milman. In particular, $(X^*)_1$ has extreme points.

Let $x \in (c_0)_1$. There exists some $N \in \mathbb{N}$ such that $|x_n| < \frac{1}{2}$ for all n > N. Now define $y, z \in c_0$ with $y_n = z_n = x_n$ for $n \leq N$ and

$$y_n = x_n + \frac{1}{2^n}, \quad z_n = x_n - \frac{1}{2^n}$$

for n > N. Clearly, x = y + z, therefore, $x \notin \text{ext}(c_0)_1$. It follows that $(c_0)_1$ has no extreme points.

Theorem 1.5.7 (Milman). Let X be a locally convex space and $K \subseteq K$ a compact space. Suppose that $\overline{\operatorname{co}}(K)$ is compact. Then $\operatorname{ext}(\overline{\operatorname{co}}K) \subseteq K$.

Proof. Assume that there exists some $x_0 \in \text{ext}(\overline{\text{co}} K) \setminus K$. Then there exists a basis neighbourhood V of 0 in X such that $x_0 \notin K + \overline{V}$. Now write

$$K \subseteq \bigcup_{x \in K} (x + V).$$

⁶ The intersection is non-empty as C is compact.

As K is compact, we can write

$$K \subseteq \bigcup_{i=1}^{n} (x_i + V)$$

for some points $x_i \in K$. Now form

$$K_i = \overline{\operatorname{co}}(K \cap (x_i + V)).$$

Note that K_j is convex and compact as it is a subset of $\overline{\operatorname{co}} K$. We also have

$$K_j \subseteq x_j + \overline{V}$$
.

Note that

$$K \subseteq \bigcup_{i=1}^{n} K_i$$
.

Let

$$\Sigma = \left\{ t \in [0,1]^n \mid \sum_{i=1}^n t_i = 1 \right\}.$$

Define the map

$$f \colon \Sigma \times \prod_{i=1}^{n} K_i \to X$$

with

$$f(t,k) = \sum_{i=1}^{n} t_i k_i.$$

Note that $C = \operatorname{im} f$. As

$$C \subseteq \operatorname{co}\left(\bigcup_{i=1}^{n} K_i\right),$$

the set C is convex. As it is the image of a compact set, it is also compact. Because $K_j \subseteq C$ for all j, it follows that

$$C = \operatorname{co}\left(\bigcup_{i=1}^{n} K_i\right).$$

It follows that

$$\overline{\operatorname{co}} K \subseteq \overline{\operatorname{co}} \left(\bigcup_{i=1}^{n} K_i \right) = \operatorname{co} \left(\bigcup_{i=1}^{n} K_i \right).$$

We can therefore deduce

$$\overline{\operatorname{co}} K = \operatorname{co} \left(\bigcup_{i=1}^{n} K_i \right).$$

As x_0 is an element of this set, we can write

$$x_0 = \sum_{i=1}^n t_i y_i$$

for $t_i \in [0,1]$ and $y_i \in K_i$. As x_0 is an extreme point, we must have $y_j = x_0$ for some j, therefore $x_0 \in K_j \subseteq x_j + \overline{V} \subseteq K + \overline{V}$, which is a contradiction.

Remark 1.5.7.1. In finite-dimensional vector spaces, the convex hull of a compact set is compact.

Remark 1.5.7.2. The set $\operatorname{ext} C$ is not always closed.

2 C^* -algebras and continuous functional calculus

2.1 Spectrum

Definition 2.1.1. Let A be a complex algebra with unity 1. Define the set

$$GL(A) = \{ a \in A \mid \exists b \in A \colon ab = ba = 1 \}.$$

The spectrum of $x \in A$ is the set

$$\sigma_A(x) = \{ \lambda \in \mathbb{C} \mid x - \lambda \cdot 1 \notin GL(A) \}.$$

Proposition 2.1.2. Let A be a complex algebra with unity 1 and $x, y \in A$. Then

$$\sigma_A(xy) \cup \{0\} = \sigma_A(yx) \cup \{0\}.$$

Proof. By scaling, it is enough to check that $1 \in \sigma_A(xy) \iff 1 \in \sigma_A(yx)$. Suppose that $1 - xy \in GL(A)$. We can check that 1 - yx is invertible with

$$(1 - yx)^{-1} = 1 + y(1 - xy)^{-1}x.$$

2.2 Banach and C^* -algebras

Definition 2.2.1. A Banach algebra is a Banach space A that is also an algebra, such that $||xy|| \le ||x|| \cdot ||y||$ holds for all $x, y \in A$. If a Banach algebra has an unity, we also demand ||1|| = 1.

Definition 2.2.2. An *involution* on a Banach algebra A is a skew-linear map $*: A \to A$, satisfying the following for all $x, y \in A$:

- i) $(xy)^* = y^*x^*$,
- ii) $(x^*)^* = x$,
- iii) $||x^*|| = ||x||$.

A Banach algebra with involution is called a Banach *-algebra.

Definition 2.2.3. A Banach *-algebra A that also satisfies $||x^*x|| = ||x||^2$ for all $x \in A$ is called a C^* -algebra.

Proposition 2.2.4. Let A be a Banach *-algebra. Then, for all $x \in A$ we have $(x^*)^{-1} = (x^{-1})^*$ and $\sigma_A(x^*) = \overline{\sigma_A(x)}$.

Proposition 2.2.5. Let A be a Banach algebra. The following statements are true:

i) Let $x \in A$. If ||x|| < 1, then $1 - x \in GL(A)$ and

$$(1-x)^{-1} = \sum_{n \in \mathbb{N}_0} x^n.$$

ii) The set GL(A) is an open subset of A and the map $x \mapsto x^{-1}$ is continuous on GL(A).

Proof. Let $y \in GL(A)$. If $||x-y|| < \frac{1}{||y^{-1}||}$, then

$$||1 - xy^{-1}|| = ||(y - x)y^{-1}|| < 1,$$

therefore, xy^{-1} is invertible. It follows that x is also invertible, so GL(A) is open.

Note that

$$\|(xy^{-1})^{-1}\| = \|(1 - (1 - xy^{-1}))^{-1}\|$$

$$\leq \sum_{n \in \mathbb{N}_0} \|1 - xy^{-1}\|^n$$

$$\leq \sum_{n \in \mathbb{N}_0} \|y^{-1}\|^n \cdot \|x - y\|^n$$

$$= \frac{1}{1 - \|y^{-1}\| \|x - y\|} .$$

It follows that

$$\begin{aligned} \left\| x^{-1} - y^{-1} \right\| &= \left\| x^{-1} (y - x) y^{-1} \right\| \\ &\leq \left\| y^{-1} (x y^{-1})^{-1} \right\| \cdot \left\| y^{-1} \right\| \cdot \left\| x - y \right\| \\ &\leq \frac{\left\| y^{-1} \right\|^2}{1 - \left\| y^{-1} \right\| \cdot \left\| x - y \right\|} \cdot \left\| x - y \right\|. \end{aligned}$$

Proposition 2.2.6. Let A be a Banach algebra and $x \in A$. Then $\sigma_A(x)$ is a non-empty compact set.

Proof. Introduction to functional analysis, theorem 6.1.15.

Theorem 2.2.7 (Gelfald-Mazur). If A is a Banach algebra that is also a division ring, then $A = \mathbb{C}$.

Proof. Let $x \in A$ and $\lambda \in \sigma_A(x)$. As $x - \lambda \cdot 1 \notin GL(A) = A \setminus \{0\}$, we have $x = \lambda \cdot 1 \in \mathbb{C}$.

Definition 2.2.8. If

$$f(x) = \sum_{j=0}^{n} a_j x^j$$

is a polynomial and $a \in A$ an element of an algebra, we define

$$f(a) = \sum_{j=0}^{n} a_j a^j \in A.$$

Theorem 2.2.9 (Spectral mapping theorem for polynomials). Let A be an algebra and $f \in \mathbb{C}[x]$. Then

$$f(\sigma_A(a)) = \sigma_A(f(a))$$

holds for all $a \in A$.

Proof. Let $\lambda \in \sigma_A(a)$ and

$$f(x) = \sum_{j=0}^{n} a_j x^j.$$

We can write

$$f - f(\lambda) = (x - \lambda) \cdot \sum_{j=1}^{n} a_j \sum_{k=0}^{j-1} x^k \lambda^{j-i-k}.$$

It follows that

$$f(a) - f(\lambda) = (a - \lambda) \cdot \sum_{j=1}^{n} a_j \sum_{k=0}^{j-1} a^k \lambda^{j-1-k}.$$

As $a - \lambda$ is not invertible and commutes with the second factor, it follows that $f(a) - f(\lambda)$ is also not invertible.

Conversely, if $\mu \notin f(\sigma_A(a))$, we can write

$$f - \mu = a_n \cdot \prod_{j=1}^n (x - \lambda_j).$$

As $f(\lambda) - \mu \neq 0$ for all $\lambda \in \sigma_A(a)$, we have $\lambda_i \notin \sigma_A(a)$ for all i. Therefore, it follows that $f(a) - \mu \in GL(A)$.

Definition 2.2.10. Let A be a Banach algebra and $x \in A$. The spectral radius of x is

$$r(x) = \sup_{\lambda \in \sigma_A(x)} |\lambda|.$$

Theorem 2.2.11 (Spectral radius formula). Let A be a Banach algebra and $x \in A$. Then, the limit

$$\lim_{n\to\infty}\sqrt[n]{\|x^n\|}$$

exists and

$$r(x) = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Proof. Introduction to functional analysis, theorem 6.1.20.

Definition 2.2.12. Let A be a Banach *-algebra and $x \in A$.

- i) The element x is normal if $xx^* = x^*x$.
- ii) The element x is selfadjoint if $x = x^*$.
- iii) The element x is skew selfadjoint if $x = -x^*$.

Corollary 2.2.12.1. Let A be a Banach *-algebra and $x \in A$ a normal element. Then

$$r(x^*x) \le r(x)^2.$$

If A is a C^* -algebra, then $r(x^*x) = r(x)^2$.

Proof. Note that

$$r(x^*x) = \lim_{n \to \infty} \sqrt[n]{\|(x^*x)^n\|} \le \lim_{n \to \infty} \sqrt[n]{\|x^n\|}^2 = r(x)^2.$$

If A is a C^* -algebra, we have equality.

Proposition 2.2.13. Let A be a C^* -algebra and $x \in A$ a normal element. Then

$$r(x) = ||x||.$$

Proof. The statement holds for selfadjoint elements by Introduction to functional analysis, corollary 6.1.20.1. We can therefore write

$$||x||^2 = ||x^*x|| = r(x^*x) = r(x)^2.$$

Index

A absorbing set, 8
B balanced set, 8 Banach algebra, 16 Banach-Alaoglu theorem, 7
C C*-algebra, 16 closed convex hull, 12 cluster point, 5 converging net, 5 convex hull, 12
E extreme point, 12
F face, 12
${f G}$ Gelfald-Mazur theorem, 17
H Hahn-Banach theorem, 9
I involution, 16
${f K}$ Krein-Milman theorem, 12
${f L}$ locally convex space, ${f 4}$
M Milman theorem, 13 Minkowski gauge, 8
N net, 4 normal, 18
R Riesz-Markov theorem, 10
S selfadjoint, 18 seminorm, 4 skew selfadjoint, 18

```
spectral mapping theorem, 17
spectral radius, 17
spectral radius formula, 18
\rm spectrum, \, {\color{red}15}
\mathbf{U}
upward directed set, 4
\mathbf{W}
weak topology, 6
weak-* topology, 6
```