Finite Automata 03

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Nondeterministic Finite Automaton

- Let $\Sigma = \{0, 1\}$
- Different between Deterministic Finite Automaton (DFA) and Nondeterministic Finite Automaton (NFA):
 - DFA always has exactly one exiting transition arrow for each symbol in the alphabet
 - NFA may have none, one, or many exiting arrows for each symbol
 - ullet DFA have no arrow with the label arepsilon
 - NFA may have Zero, one, or many arrows exiting from each state with the label E.

Compute an NFA

- If you encounter a state with multiple way to proceed for a regular input:
 - The machine splits into multiple copies of itself
 - The machines follow all the possibilities in parallel.
 - Each copy of the machine takes one of the possible ways.
- If you encounter a state with an ε symbol as an exiting arrow:
 - Without reading any input, the machine splits into multiple copies.
 - Each follows each of the exiting ε -labeled arrows, and
 - One stays at the current state.

 \bullet Computation of the machine on input 010110

Symbol read Start

 \bullet Computation of the machine on input $\underline{0}10110$

 \bullet Computation of the machine on input 010110

 \bullet Computation of the machine on input $01\underline{0}110$

 \bullet Computation of the machine on input $010\underline{1}10$

 \bullet Computation of the machine on input $0101\underline{1}0$

 \bullet Computation of the machine on input $01011\underline{0}$

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not in A).

- Design a DFA for this problem is quite complicate
- Design an NFA is easier

- The transition from q_1 to q_2 is our guess that this is the 1 in the third position from the end.
- If our guess is wrong:
 - The input string is shorter, it will end at reject state.
 - The input string is longer, the machine will die but other one remains alive.

• An equivalent DFA machine

Name states according to the last three symbols

Suppose the alphabet Σ is $\{0\}$. Design a machine that recognizes the language A where A is an empty string or all strings over Σ that their length is a multiple of 2 or 3.

Suppose the alphabet Σ is $\{0\}$. Design a machine that recognizes the language A where A is an empty string or all strings over Σ that their length is a multiple of 2 or 3.

Suppose the alphabet Σ is $\{0\}$. Design a machine that recognizes the language A where A is an empty string or all strings over Σ that their length is a multiple of 2 or 3.

Formal Definition of A Nondeterministic Finite Automaton

A nondeterministic finite automaton is a 5-tuple

$$(Q, \Sigma, \delta, q0, F)$$

- $oldsymbol{0}$ Q is a finite set of states
- ${f 2}$ Σ is a finite alphabet
- - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and
 - $\mathcal{P}(Q)$ is the **powerset** of Q (set of set of states).
- $q_0 \in Q$ is the start state
- **5** $F \subseteq Q$ is the set of accept states.

Notes

- In an NFA, one input symbol can change the state of the machine to multiple states.
 - Split to multiple copies with different current states
 - Example: $\delta(q_0, 1) = \{q_0, q_1\}$

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0,1\}$ and $\Sigma_{\varepsilon} = \{0,1,\varepsilon\}$
- \bullet δ is given as

δ	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

- ullet We treat arepsilon as a regular input symbol
- If there is no ε transitions, we can ignore the ε column
- \bullet q_1 is the start state
- $F = \{q_4\}$

NFA and DFA

- NFA is a slightly different computation model compared to DFA
 - NFA can split into multiple copies
 - ullet NFA may have arepsilon transitions
- Is there a language that can be recognized by an NFA but cannot be recognized by any DFAs?
- In theory of computation, we try to see whether we can capture the behavior of an NFA using a DFA

Simulating and NFA with a DFA

• Simulate 010110

Equivalence of NFAs and DFAs

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

- \bullet Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A
- We are going to construct a DFA $M=(Q',\Sigma,\delta',q'_0,F')$ recognizing A
- ullet Let's consider the case where N has no arepsilon transitions.

 - $q_0' = \{q_0\}$

• Let Σ be $\{0,1\}$. The following NFA N recognizes the language A where A is a set of strings that end with a 1.

- $N = (Q, \Sigma, \delta, q_0, F)$

 - **2** $\Sigma = \{0, 1\}$
 - $oldsymbol{\delta}$ is given as

	0	1
$\overline{q_0}$	$\{q_0\}$	$\{q_0,q_1\}$
q_1	Ø	Ø

- \mathbf{q}_0 is the start state
- **6** $F = \{q_1\}$

- Construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$
 - $Q' = \mathcal{P}(Q) = \mathcal{P}(\{q_0, q_1\})$

$$Q' = \{\emptyset, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}\$$

- We will construct δ' later
- $q_0' = \{q_0\}$ where q_0 is the start state of the NFA
- $\bullet \ F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$

$$F' = \{\{q_1\}, \{q_0, q_1\}\}\$$

where $F = \{q_1\}$

- Let's focus on transition functions
- The transition function δ of the NFA is as follows:

 Recall that the set of state of the equivalent DFA is the power set of set of state of the NFA

δ'	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0,q_1\}$

- Machine $M=(Q',\Sigma,\delta',q'_0,F')$ equivalent to N can be defined as follows:
 - $Q' = \mathcal{P}(Q) = \{\emptyset, \{q_0\}, \{q_1\}, \{q_0, q_1\}\},\$
 - $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$

•
$$\delta'(\emptyset,0) = \bigcup_{r=0}^{\infty} \delta(r,0) = \emptyset$$

•
$$\delta'(\emptyset, 1) = \bigcup_{r=0}^{\infty} \delta(r, 1) = \emptyset$$

•
$$\delta'(\{q_0\},0) = \bigcup_{r \in \{q_0\}} \delta(r,0) = \delta(q_0,0) = \{q_0\}$$

•
$$\delta'(\{q_0\}, 1) = \bigcup_{r \in \{q_0\}} \delta(r, 1) = \delta(q_0, 1) = \{q_0, q_1\}$$

•
$$\delta'(\{q_1\}, 0) = \bigcup_{r=1}^{\infty} \delta(r, 0) = \delta(q_1, 0) = \emptyset$$

•
$$\delta'(\{q_1\}, 1) = \bigcup_{r \in \{q_1\}} \delta(r, 1) = \delta(q_1, 1) = \emptyset$$

- Machine M (Continue)
 - δ' (Continue)

$$\delta'(\{q_0,q_1\},0) = \bigcup_{r \in \{q_0,q_1\}} \delta(r,0) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0\} \cup \emptyset = \{q_0\}$$

$$\delta'(\{q_0,q_1\},1) = \bigcup_{r \in \{q_0,q_1\}} \delta(r,0) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$$

• Thus δ' is given by

δ'	0	1
Ø	Ø	Ø
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	Ø	Ø
$\{q_0, q_1\}$	$\{q_0\}$	$\{q_0, q_1\}$

• The state diagram of the machine $M=(Q',\Sigma,\delta',q'_0,F')$ equivalent to N (L(M)=L(N)) is shown below:

- Without bottom part, it is the same as one of our previous example
- It is okay for a DFA to have unreachable states

NFA to DFA with ε Symbol

• Let E(R) be the collection of states that can be reached from members of R by going only along ε arrows, including the members of R themselves.

$$E(R) = \{q \mid q \text{ can be reached from } R \text{ by travel along} \\ 0 \text{ or more } \varepsilon \text{ arrows}\}$$

- Note that a state q can be reached from its own state q by travel along no ε arrow $(R \subseteq E(R))$
- Example:

- $E(\{q_1\}) = \{q_1\}$
- $E(\{q_2\}) = \{q_2, q_3\}$
- $E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}$
- $E(\{q_1, q_3\}) = \{q_1, q_3\}$

NFA to DFA with ε Symbol

- Let NFA $N=(Q,\Sigma,\delta,q_0,F)$ with ε transitions that recognizes a language A
- We can construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ as

 - ${\color{red} {\bf 0}} \ \delta'$ is given by

$$\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$$

- $q_0' = E(\{q_0\})$
 - If q_0 has no exiting arrow for ε , $q_0' = \{q_0\}$

• Consider the following NFA machine:

- $N = (Q, \Sigma, \delta, q_0, F)$
 - $Q = \{1, 2, 3\}$
 - $\bullet \ \Sigma = \{a,b\}$
 - $\bullet \ \delta$ is given by

	a	b	ε
1	Ø	{2}	{3}
2	$\{2, 3\}$	{3}	Ø
3	{1}	Ø	Ø

- $q_0 = 1$
- $F = \{1\}$

- Machine $M = (Q', \Sigma, \delta', q'_0, F')$ equivalent to N:
 - $Q' = \mathcal{P}(Q) = \mathcal{P}(\{1,2,3\})$ $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
 - Start state is $E(\{1\}) = \{1, 3\}$
 - F' is a set of set of states that contain accept states of N $(F = \{1\}).$

$$F' = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$$

• $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$

- Let's focus on transition functions
- ullet The transition function δ of the NFA is as follows:

δ	а	b	ε
1	Ø	{2}	{3}
2	$\{2, 3\}$	{3}	Ø
3	{1}	Ø	Ø

 Recall that the set of state of the equivalent DFA is the power set of set of state of the NFA

δ'	а	b		
Ø	Ø	Ø		
{1}	Ø	$\{2\}$		
{2}	$\{2, 3\}$	$\{3\}$		
{3}	$\{1, 3\}$	Ø		
$\{1, 2\}$	$\{2, 3\}$	$\{2, 3\}$		
$\{1, 3\}$	$\{1, 3\}$	$\{2\}$		
$\{2, 3\}$	$\{1, 2, 3\}$	$\{3\}$		
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$		

Machine M's δ'

$$\begin{split} \delta'(\emptyset, a) &= \bigcup_{r \in \emptyset} E(\delta(r, a)) \\ &= \emptyset \\ \delta'(\emptyset, b) &= \bigcup_{r \in \emptyset} E(\delta(r, b)) \\ &= \emptyset \\ \delta'(\{1\}, a) &= \bigcup_{r \in \{1\}} E(\delta(r, a)) \\ &= E(\delta(1, a)) \\ &= E(\emptyset) \\ &= \emptyset \\ \delta'(\{1\}, b) &= \bigcup_{r \in \{1\}} E(\delta(r, b)) \\ &= E(\delta(1, b)) \\ &= E(\{2\}) \\ &= \{2\} \\ \delta'(\{2\}, a) &= \bigcup_{r \in \{2\}} E(\delta(r, a)) \\ &= E(\{2, a\}) \\ &= \{2, 3\} \end{split}$$

$$\delta'(\{2\},b) = \bigcup_{r \in \{2\}} E(\delta(r,b))$$

$$= E(\delta(2,b))$$

$$= E(\{3\})$$

$$= \{3\}$$

$$\delta'(\{3\},a) = \bigcup_{r \in \{3\}} E(\delta(r,a))$$

$$= E(\delta(3,a))$$

$$= E(\{1\})$$

$$= \{1,3\}$$

$$\delta'(\{3\},b) = \bigcup_{r \in \{3\}} E(\delta(r,b))$$

$$= E(\delta(3,b))$$

$$= E(\emptyset)$$

$$= \emptyset$$

$$\delta'(\{1,2\},a) = \bigcup_{r \in \{1,2\}} E(\delta(r,a))$$

$$= E(\delta(1,a)) \cup E(\delta(2,a))$$

$$= \emptyset \cup \{2,3\}$$

$$= \{2,3\}$$

Machine M's δ'

$$\begin{split} \delta'(\{1,2\},b) &= \bigcup_{r \in \{1,2\}} E(\delta(r,b)) \\ &= E(\delta(1,b)) \cup E(\delta(2,b)) \\ &= \{2\} \cup \{3\} \\ &= \{2,3\} \\ \delta'(\{1,3\},a) &= \bigcup_{r \in \{1,3\}} E(\delta(r,a)) \\ &= E(\delta(1,a)) \cup E(\delta(3,a)) \\ &= \emptyset \cup \{1,3\} \\ &= \{1,3\} \\ \delta'(\{1,3\},b) &= \bigcup_{r \in \{1,3\}} E(\delta(r,b)) \\ &= \{1,3\} \\ \delta'(\{1,3\},b) &= \bigcup_{r \in \{1,3\}} E(\delta(r,b)) \\ &= \{2\} \cup \emptyset \\ &= \{2\} \\ \delta'(\{2,3\},a) &= \bigcup_{r \in \{2,3\}} E(\delta(r,a)) \\ &= E(\delta(2,a)) \cup E(\delta(3,a)) \\ &= \{2,3\} \cup \{1,3\} \\ &= \{1,2,3\} \end{split}$$

$$\delta'(\{2,3\},b) = \bigcup_{r \in \{2,3\}} E(\delta(r,b))$$

$$= E(\delta(2,b)) \cup E(\delta(3,b))$$

$$= \{3\} \cup \emptyset$$

$$= \{3\}$$

$$\delta'(\{1,2,3\},a) = \bigcup_{r \in \{1,2,3\}} E(\delta(r,a))$$

$$= E(\delta(1,a) \cup E(\delta(2,a)) \cup E(\delta(3,a))$$

$$= \emptyset \cup \{2,3\} \cup \{1,3\}$$

$$= \{1,2,3\}$$

$$\delta'(\{1,2,3\},b) = \bigcup_{r \in \{1,2,3\}} E(\delta(r,b))$$

$$= E(\delta(1,b) \cup E(\delta(2,b)) \cup E(\delta(3,b))$$

$$= \{2\} \cup \{3\} \cup \emptyset$$

$$= \{2,3\}$$

ullet Recall the transition function of M

	a	b
Ø	Ø	Ø
{1}	Ø	$\{2\}$
{2}	$\{2, 3\}$	$\{3\}$
$\{3\}$	$\{1,3\}$	Ø
$\{1, 2\}$	$\{2, 3\}$	$\{2, 3\}$
$\{1, 3\}$	$\{1, 3\}$	$\{2\}$
$\{2, 3\}$	$\{1, 2, 3\}$	$\{3\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$

 $\bullet\,$ The state diagram of M

Closure Under Union Operation

- N_1 recognizes a regular language A
- N_2 recognizes a regular language B
- N recognizes $A \cup B$ ($A \cup B$ is regular)

Closure Under Union Operation

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 .
- Let $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 .
- To construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognizes $A_1 \cup A_2$:
 - $Q = \{q_0\} \cup Q_1 \cup Q_2$
 - 2 The state q_0 is the start state of N
 - **3** The set of accept state $F = F_1 \cup F_2$
 - $oldsymbol{0}$ δ is given by

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

- ullet Given state diagrams of finite-state machines N_1 and N_2
- To draw a state diagram of a new machine N where $L(N) = L(N_1) \cup L(N_2)$:
 - **1** Draw the state diagram of N_1 on the top half
 - 2 Draw the state diagram of N_2 on the bottom half
 - Add a new start state
 - **4** Add ε transitions from the new start state to the start states of N_1 and N_2 , respectively

ullet Draw N_1 on the top half

ullet Draw N_2 on the bottom half

г

Add new start state

ullet Add arepsilon transitions

- Let N_1 recognizes A and N_2 recognizes B
- Given a string w, how do we know whether $w \in AB$?
- Recall the definition of AB (A concatenated by B)

$$AB = \{ xy \mid x \in A \text{ and } y \in B \}$$

- For w to be in AB, w must be divided into two strings x and y where w=xy such that $x\in A$ and $y\in B$
 - If $x \in A$, $x \in L(N_1)$
 - Since $x \in L(N_1)$, by simulating N_1 on input x, the simulation will end in an accept state of N_1 (N_1 accepts x)
 - But if $x \notin A$, simulation will end in a non-accept state of N_1
 - If $y \in B$, $y \in L(N_2)$
 - Since $y \in L(N_2)$, by simulating N_2 on input y, the simulation will end in an accept state of N_2 (N_2 accepts y)
 - ullet But if $y
 ot\in B$, simulation will end in a non-accept state of N_2

- N_1 recognizes a regular language A
- N_2 recognizes a regular language B
- N recognizes AB (AB is regular)

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 .
- Let $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognizes A_2 .
- To construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognizes $A_1 \circ A_2$:

 - 2 The state q_1 is the start state of N
 - **3** The set of accept state $F = F_2$
 - $oldsymbol{0}$ δ is given by

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not\in F_1 \\ \delta_2(q,a) & q \in Q_2 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

- ullet Given state diagrams of finite-state machines N_1 and N_2
- To draw a state diagram of a new machine N where $L(N) = L(N_1) \circ L(N_2)$:
 - lacktriangle Draw the state diagram of N_1 on the left side
 - ② Draw the state diagram of N_2 on the right side
 - § For every accept state of N_1 , add the ε transition to the start state of N_2
 - **1** Change all accept states of N_1 to non-accept states

ullet Draw the state diagram of N_1 on the left side

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Finite Automata 03

ullet Draw the state diagram of N_2 on the right side

ullet from accept states of N_1 to start state of N_2

ullet Accept states of N_1 to non-accept states

• Star operator is similar to concatenation except that it can be concatenated any number of times:

$$A^* = \{x_1 x_2 x_3 \dots x_k \mid k \ge 0 \text{ and } x_i \in A\}$$

and

 $\varepsilon \in A^*$ for any language A

N₁

- N_1 recognizes a regular language A
- N recognizes A^* (A^* is regular)

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 .
- To construct $N=(Q,\Sigma,\delta,q_0,F)$ to recognizes A_1^* :
 - $Q = \{q_0\} \cup Q_1$
 - 2 The state q_0 is the start state of N
 - **3** The set of accept state $F = \{q_0\} \cup F_1$
 - $oldsymbol{\Phi}$ δ is given by

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not \in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \not \in \varepsilon \end{cases}$$

- ullet Given state diagrams of finite-state machines N_1
- To draw a state diagram of a new machine N where $L(N) = L(N_1)^*$:
 - **1** Draw the state diagram of N_1
 - Add a new start state and make it an accept state
 - **③** Add arepsilon transition from the new start state to the start state of N_1
 - **③** For each **original** accept state of N_1 , add ε transition to the **original** start state of N_1

ullet Draw the state diagram of N_1

г

• Add a new start state and make it an accept state

 \bullet Add ε from thew new start state to the original start state of N_1

• For each original accept state of N_1 , add ε transition to the original start state of N_1

Conclusions

- A Nondeterministic Finite Automata (NFA) has an equivalent Deterministic Finite Automata (DFA)
 - \bullet The algorithm how to convert from an NFA N to an equivalent DFA D where L(N)=L(D) has been discussed
- The set of all regular languages is closed under union, concatenation, and star operations:
 - If A and B are regular languages, $A \cup B$ is a regular language
 - If A and B are regular languages, AB $(A \circ B)$ is a regular language
 - ullet If A is a regular language, A^* is a regular language
- The proof process also gives us an algorithm how to construct DFAs