Dhruv Devulapalli

Website: dhruvd.dev Email: devulapallidhruv@gmail.com

Education

University of Maryland

College Park, MD

Ph.D. in Physics, GPA: 3.8/4.0

August 2019-Current

Advisors: Andrew M. Childs and Alexey V. Gorshkov

NSF Graduate Research Fellowship, LPS Quantum Graduate Fellowship

University of California

Berkeley, CA

August 2015-May 2019

B.A in Physics, B.A in Computer Science, GPA: 3.95/4.00

High Distinction in General Scholarship, Phi Beta Kappa, Upsilon Pi Epsilon (CS Honor Society)

Research Experience

Joint Center for Quantum Information and Computer Science (QuICS), UMCP Graduate Research Assistant

College Park, MD August 2019-Current

Advised by Professor Alexey Gorshkov and Professor Andrew Childs

- My research interests are mainly in quantum computation, including architecture-aware unitary synthesis, quantum algorithms, and complexity theory.
- Designed protocols for quantum routing and circuit synthesis.
- Designed algorithms for quantum state preparation and for efficient classically verifiable quantum advantage.
- Proved lower bounds on the time taken for different fundamental tasks in quantum information processing, making use of graph theory and computational complexity theory.
- Co-authored 4 peer reviewed publications, 7 conference presentations, and 4 articles in preparation or under submission.

Whaley Group, UC Berkeley

Berkeley, CA

Research Assistant

January 2018-May 2019

 Applied tensor network-based quantum machine learning models to image recognition tasks in Prof. Birgitta Whaley's group.

ATLAS, Lawrence Berkeley National Lab

Berkeley, CA

Research Assistant

August 2016-January 2018

Analyzed potential dark matter signatures in ATLAS collider data

Industry Experience

IBM Quantum

Yorktown Heights, NY

Quantum Research Intern

May 2024-August 2024

- Investigated quantum circuit synthesis and compilation for fault-tolerant architectures.
- Investigated efficient encodings for simulating systems of fermions.

Zapata Computing

Boston, MA

Quantum AI Research Intern

May 2022-October 2022

 Researched approaches to mitigate the occurrence of barren plateaus in Quantum Neural Networks, which are a major challenge for training in Quantum Machine Learning.

Amazon (AWS)

Software Engineering Intern

Seattle, WA May 2018-August 2018

Created an SDK to for computer vision applications

Sonos

Boston, MA June 2017-August 2017

Software Engineering Intern

Built full-stack features across Android, iOS, Mac and Windows.

Publications and Research Work

- [1] S. Austin, **D. Devulapalli**, K. Hoang, F. Zhou, K. Srinivasan, and A. Gorshkov, A vapor cavity qed system for quantum computation and communication, In preparation. Draft available on request.
- [2] **D. Devulapalli**, T. Mooney, and J. D. Watson, *The complexity of determining whether finite-sized quantum systems thermalize*, In preparation. Draft available on request.
- [3] N. Berthusen, **D. Devulapalli**, E. Schoute, A. M. Childs, M. J. Gullans, A. V. Gorshkov, and D. Gottesman, "Toward a 2d local implementation of quantum low-density parity-check codes", *PRX Quantum*, vol. 6, no. 1, p. 010 306, Jan. 2025. eprint: arXiv:2404.17676.
- [4] **D. Devulapalli**, C. Yin, A. Y. Guo, E. Schoute, A. M. Childs, A. V. Gorshkov, and A. Lucas, "Quantum routing and entanglement dynamics through bottlenecks", no. arXiv:2505.16948, May 2025, arXiv:2505.16948 [quant-ph].
- [5] Z. Liu, **D. Devulapalli**, D. Hangleiter, Y.-K. Liu, A. J. Kollár, A. V. Gorshkov, and A. M. Childs, "Efficiently verifiable quantum advantage on near-term analog quantum simulators", *PRX Quantum*, vol. 6, no. 1, p. 010 341, Mar. 2025. eprint: arXiv:2403.08195.
- [6] N. Constantinides, A. Fahimniya, **D. Devulapalli**, D. Bluvstein, M. J. Gullans, J. V. Porto, A. M. Childs, and A. V. Gorshkov, "Optimal routing protocols for reconfigurable atom arrays", no. arXiv:2411.05061, Nov. 2024, arXiv:2411.05061 [quant-ph].
- [7] **D. Devulapalli**, E. Schoute, A. Bapat, A. M. Childs, and A. V. Gorshkov, "Quantum routing with teleportation", *Physical Review Research*, vol. 6, no. 3, p. 033313, Sep. 2024. eprint: arXiv:2204.04185.
- [8] A. Y. Guo, A. Deshpande, S.-K. Chu, Z. Eldredge, P. Bienias, **D. Devulapalli**, Y. Su, A. M. Childs, and A. V. Gorshkov, "Implementing a fast unbounded quantum fanout gate using power-law interactions", *Physical Review Research*, vol. 4, no. 4, p. L042016, Oct. 2022. eprint: arXiv:2007.00662.

Leadership and Service

- Reviewer/Subreviewer
 - Conferences: Quantum Information Processing (QIP) 2023, 2024, Journals: Quantum
- Quantum Computing at Berkeley
 - Established student-run quantum computing club; led seminars, events, and industry panels
 - Designed and taught an introductory quantum computing course to 27 undergraduate students.
- Mentorship
 - Mentored 3 undergraduates for research in quantum computing on verifiable quantum advantage and quantum routing.

Skills

• Programming: C, C++, Python, Java, Scheme/Lisp