Topological Insulators and Topological Superconductors

we.taper

July 6, 2016

Abstract

This is a draft.

Contents

1	Lec	tures on the Frontiers of Physics	-
	1.1	By JQ. He	6
	1.2	By Lang. Chen	
	1.3	By Alan	
	1.4	By Li, Huang	9
	1.5	By Junfen, Liu	
	1.6	By Haizhou, Lu	
	1.7	By Kedong Wang	
2	Pro 2.1	Chapter 2	4
3	Miscellnaneous Notes		
	3.1	Super conductor	ļ
	3.2	Why $0/0$ is undefined?	(
	3.3	Preface of BSCS	,
	3.4	System of Differential Equations	,
	3.5	ODE by Arnold	
	3.6	Appearance of Gauge Structure in Simple Dynamical Systems	8
4	And	chor	ę
5	Lice	onso	•

1 Lectures on the Frontiers of Physics

Given by professor of physics in SUSTC

1.1 By JQ. He.

Thermal electrics

1.2 By Lang. Chen

Grow thin films.

- Rheed-Assited PLD/MBE. (Ray as an exmination).
- orbital contral of electrons -> orbitronics -> Control of Spin orbital coupling.
- Multiferroics -> multiple order parameters, and the interaction between them. E.g. BiFeO₃.
- Ferrotorodicity: Spontaneous Toroidal Momennt. Time and spacial symmetries simultaneous broken.
- What is a iridates $Ir_2(X)O_4$, (e.g. Sr_2RuO_4) exactly in theoretical physics?
- H_2S : 200K superconductor?
- The Double Exchange effect of oxygem -> Half-metal, phase transition.

1.3 By Alan

Photocatalysis: TiO_2 . Hongkong has TiO_2 spurred on the keys.

1.4 By Li, Huang

- Computational Physics
- Surface Dynamics
- Structural factor from 2D to 3D.
- Finding Order Amid the Chaos. amorphous -> spatially resolved distributed function.
- ?: What is genetically algorithm.

Computational and theoretical studies of Surface dynamics

- Surface atoms is immersed in a very different environment compared with the bulk atoms.
- First-principle calculations
- DFT + LDA -> Conser equation
- Plane wave basis + Ultrasoft pseudopotentials to solve the Conser equation
- Continumm method ?

1.5 By Junfen, Liu

- electronic transport in mesoscopic systems:
- Spintronics
- Graphene eletronics
- Superconductors etc.

Quantum wire conducting The conduction channel in quantum wire is quantized, with discrete value of conductance.

- λ_F Fermi wavelength
- L_m Momuntum relaxation length <- impurities.
- L_{ϕ} Phase relaxation length <- memory of phase, related to energy $\omega = E/\hbar$.
- L Sample length
- Ballistic transport: $L \ll L_m$ No scattering.
- Diffusive $L > L_m$, scattering, reduced transmission.
- Localization $L_m << L << L_{\phi}$ -> Prof. Haizhou Lu.
- Classical. (Omitted)

Conductance No back-scattering

$$G = \frac{I}{V} = \frac{2e^2}{h}$$

Landauer formula $G = \frac{2e^2}{h} \cdot T$, T is some coefficient accounting for the back scattering, perhaps the transmission probability. In reality, $G = \sum_{\text{Different channels}} G_i$,

We can turn the G into resisivity:

Resistance =
$$\frac{h}{2e^2} + \frac{h}{2*e^2} \frac{R}{T}$$

R+T=1

Resonate Transmission (Omitted)

Spintronics Use the extra freedom of Spin.

Spin field eletroncis: Datta and Das, Appl. Phys. Lett. 56, 665(1990) GMR: 2007 Nobel prize in Physics.

Hall Effect (Omitted) Spin Hall Effect: S. murakami, et.al. Science 301 1348(2004);

J. Sinova et.al. Phys.Rev.Lett. 92, 126603 (2004). (Omitted)

Graphene Carrier -> Relativistic Dirac fermions. Klein Paradox

Josephson Junction A phase difference could conduct electricity in Superconductors.

1.6 By Haizhou, Lu

Quantum Anomalous Hall Effect Requires strong magnetic field: ≈ 10 Tesla.

Anomalous Hall Effect: Without magnetic field. $R_H = R_0 B + R_A M$ where M is the magnetic susceptibility. Two-factors: SO coupling. Spin-dependent Hall Effect.

An excellent illustrations is found in [4]:

FIG. 1. (Color online) Six members in the family of Hall effect. (a) Hall effect; (b) Anomalous Hall effect; (c) Spin Hall effect; (d) Quantum Hall effect; (e) Quantum anomalous Hall effect; and (f) Quantum spin Hall effect.

Figure 1: Illustration

1.7 By Kedong Wang

Tunneling current $I \propto Ve^{-2kz}$, where $k=\frac{\sqrt{2m\phi}}{\hbar}$, ϕ is the Work function. I is very sensitive to the distance z.

Work function ϕ characterize the obstruction that prevents electron from escaping the sample.

2 Problems in Bernevig's Topological ...

2.1 Chapter 2

Non-Abelian Berry Transport Derive Berry curvature to the adiabatic transport of a degenerate multiplet of states separated by a gap from the excited states. (Cautious about rotation within degenerate states).

Answer: $\gamma_{mn}(t)=i\int_0^t \langle m(R(t'))|\frac{d}{dt'}|n(R(t'))\rangle\,dt'$ Approach: Assuming that the those degenerate states are labeled by $1 \cdots N$. Thus we have naturally:

$$H\phi = i\hbar \frac{\partial}{\partial t}\phi, \ \phi = \sum_{n} A_{n}\psi_{n} \tag{2.1.1}$$

Then we have:

$$H \sum_{n} A_{n} \psi_{n} = i\hbar \frac{\partial}{\partial t} \sum_{n} A_{n}(t) \psi_{n}(R(t))$$

$$\sum_{n} E A_{n} \psi_{n} = i\hbar \sum_{n} \left(\frac{\partial A_{n}(t)}{\partial t} \psi_{n}(R(t)) + A_{n}(t) \frac{\partial \psi_{n}(R(t))}{\partial t} \right)$$

$$E A_{m} = i\hbar \frac{\partial A_{m}(t)}{\partial t} + \sum_{n} A_{n}(t) \langle m | \frac{\partial}{\partial t} | n \rangle$$
(2.1.2)

Put in another form:

$$\sum_{n} \left(\delta_{m}^{n} E - \langle m | \frac{\partial}{\partial t} | n \rangle \right) A_{n} = i\hbar \frac{\partial A_{m}(t)}{\partial t}$$

In matrix form:

$$(E - P)\mathbf{A} = i\hbar\dot{\mathbf{A}} \tag{2.1.3}$$

where:

$$E = \begin{pmatrix} \dots & & \\ & E & \\ & \dots \end{pmatrix} \tag{2.1.4}$$

$$P = (P_n^m) = \left(\langle m | \frac{\partial}{\partial t} | n \rangle \right) \tag{2.1.5}$$

$$A = \begin{pmatrix} A_1(t) \\ A_2(t) \\ \dots \end{pmatrix} \tag{2.1.6}$$

Note that $\langle n|\frac{\partial}{\partial t}|m\rangle^* \neq \langle m|\frac{\partial}{\partial t}|n\rangle$, thus P may not be Hermitian. Ergo E-P is Hermitian. So it is diagonalizable.

Notice that

$$0 = \frac{\partial}{\partial t} \langle m | n \rangle = \langle \frac{\partial}{\partial t} m | n \rangle + \langle m | \frac{\partial}{\partial t} n \rangle \qquad (\text{any } m, n)$$
 (2.1.7)

temporary mathematica code:

3 Miscellnaneous Notes

Super conductor

Mean-field approach to deal with a four operator diagonalization.

Suppose we have: D^*C^*CD , then let $\delta = CD - \langle CD \rangle = CD - avg$. Then if we assume $\langle CD \rangle \neq 0$, and $\delta \approx 0$. Then we have:

$$\delta^2 \approx 0$$

i.e.:

$$((CD)^* - avg)(CD - avg) = 0 (3.1.1)$$

$$D^*C^*CD = avg * (CD + D^*C^*) - avg^2$$
(3.1.2)

Hence a four operator is reduced into a few of two operators. Such method could be naturally extended to treat the operator $\sum_{i,j} D_i^* C_i^* C_j D_j$.

A copper pair has the energy of:

$$\Delta = \langle C_{k\uparrow} C_{-k\downarrow} \rangle$$

To resist the flow of current carried by Copper Pair, is equivlant to destroying a pair of Copper Pair:

$$\langle C_{k\uparrow}C_{-k\downarrow}\rangle \longrightarrow C_{k\uparrow}C_{-k\downarrow}$$

This will require an additional energy of 2Δ .

The exact meaning of "equivalent to" is as follows:

break a copper pair ---- scatter two electrons consecutively

 \longrightarrow create two electron-hole mixed type quasi-particle $\longrightarrow 2\Delta$

3.2 Why 0/0 is undefined?

If we suppose

$$\frac{0}{0} = \triangle$$

Consider the following derivation:

$$\frac{0}{0} \cdot 1 = \triangle \cdot 1 = \triangle \tag{3.2.1}$$

$$0 \cdot \frac{1}{0} = \Delta \tag{3.2.2}$$

$$\Rightarrow \triangle = 0 \tag{3.2.3}$$

This is already bad enough. And we are forced to define $\frac{1}{0}$. Let $\frac{1}{0} = \square$, which literally means $1 = 0 \cdot \square = 0$. This is disastrous.

Alternatively, we could let

- 1. Let $\frac{1}{0}$ be undefined.
- 2. Or let $\frac{1}{0} = \infty$.
- 3. Or, let $\frac{a}{b} \cdot c = a \cdot \frac{c}{b}$ be not true when b = 0.

The third idea is disastrous for algebraic manipulation. ¹ The first idea is not good. Since defining $\frac{1}{0} = \infty$ turns out to be very useful in both mathematics and physics. Actully, in physics it is common practice to set $\frac{a}{0} = \pm \infty$ for any nonzero number a, where the sign of ∞ is determined by the sign of a. The second idea is okey. But then we are faced with a serious problem. We have to define $\Delta \equiv 0 \cdot \infty$

$$\triangle \cdot 2 = \triangle$$
, What will be of $\triangle + 1$?

¹ Or more speicifically, it is a disaster for field theory.

3.3 Preface of BSCS

BSCS: see [2]. Parallism between theories in condensed matter physics and those in particle physics.

- Anderson-Higgs Phenomenon (Paritcle), Meissner effect (C.M.P.)
- 'inflation' in Cosmology, first order phase transition
- 'cosmic strings', magnetic field vortex lines in type II superconductors
- Hadron-meson interaction, Ginzburg-Landau theory of superfluid He^3 .

Same ideas on different space-time scales, different hierachical 'layers'. Strong parallism: strongly correlated low dimensional system

The problem of formation and structure of heavy particles - hadrons and mesons. The corresponding fine structure constant $\alpha_G \approx 1$.

Approaches:

- 1. Exact solutions
- 2. Reformulate complicated interacting models in such a way that they become weekly interacting. -> Bosonization.

Spin 1/2 anisotropic Hisenberg chain \approx Model of interacting fermions. (Jordan and Wigner, 1928)

Bosonization: transformation from fermions to a scalar massless bosonic field.

3.4 System of Differential Equations

This is a small note of [3].

pp. 266.

Definition 3.1. $\mathbf{x}(\mathbf{t})$ is a vector whose elements are $x_i(t)$. $\frac{d}{dt}$ acts on vector \mathbf{x} element-wise. $\dot{\mathbf{x}}$ is abbrevation for $\frac{d}{dt}\mathbf{x}$

pp. 291.

Theorem 3.1 (Existence-uniqueness theorem). There exists one, and only one, solution of the initial-value problem

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(t_0) = \mathbf{x}^0 = \begin{pmatrix} x_1^0 \\ x_2^0 \\ \dots \end{pmatrix}$$
 (3.4.1)

Moreover, this solution exists for $-\infty \langle t \langle \infty.$

Remark 3.1. By this, any non-trivial solution $\mathbf{x}(t) \neq 0$ at any time t. Also notice that the elements of \mathbf{A} are just numbers.

Theorem 3.2. The dimension of the space V of all solutions of the homogeneous linear system of differential equations:

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} \tag{3.4.2}$$

is n, i.e. the dimension of vector \mathbf{x} .

3.5 ODE by Arnold

sec. 14

Definition 3.2.

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!}$$
 (3.5.1)

or

$$e^{A} = \lim_{n \to \infty} (I + \frac{A}{n})^{n} \tag{3.5.2}$$

where I is the identity matrix.

Equivalence of the two definition will be addressed in the Theorem on pp. 165.

Important theorems:

Theorem 3.3 (pp. 158). The series e^A converges for any A uniformly on each set $X = \{A : ||A|| \le a\}, a \in \mathbb{R}$.

Theorem 3.4 (pp. 160).

$$e^{At} = H^t$$

where H^t is the translation operator which sends every polynomial p(x) into p(x + t).

Theorem 3.5 (pp. 163).

$$\frac{d}{dt}e^{tA} = Ae^{tA}$$

Theorem 3.6 (Fundamental Theorem of the Theory of Linear Equations with Constant Coefficients). *The solution of:*

$$\dot{\mathbf{x}} = A\mathbf{x} \tag{3.5.3}$$

with initial condition $\phi(0) = \mathbf{x}_0$ is

$$\phi(t) = e^{tA} \mathbf{x}_0 \tag{3.5.4}$$

Practically solution to

$$\dot{\mathbf{x}} = A\mathbf{x}$$

(pp. 173, Sec 17) (Assuming A is diagonalizable.)

- Find the eigenvectors ξ_1, \dots, ξ_n and eigenvalues $\lambda_1, \dots, \lambda_n$. Use them as basis.
- Expand the initial condition in the new basis.

$$\mathbf{x}_0 = \sum_{k=1}^n C_k \xi_k \tag{3.5.5}$$

• Then $\phi(t) = \sum_{k=1}^{n} C_k e^{\lambda_k t} \xi_k$

3.6 Appearance of Gauge Structure in Simple Dynamical Systems

$$0 = (\eta_b, \dot{\eta}_a) = (\eta_b, \dot{U}_{ac}\psi) + (\eta_b, U_{ac}\dot{\psi}_c)$$
 (3.6.1)

4 Anchor

References

- [1] Sakurai, J. J. Modern Quantum Mechanics, Addison Wesley.
- [2] Bosonization and Strongly Correlated Systems. Cambridge. Cambridge Press Link
- [3] Martin Braun. Differential Equations and Their Applications. 4ed. Springer.
- [4] http://arxiv.org/abs/1508.07106v1

5 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.