Food Delivery Optimization System - Technical Documentation: (Approach)

1. Introduction:

The **Food Delivery Optimization System** is a real-time dispatching and routing application built using **Streamlit**, **FAISS**, **and Reinforcement Learning (RL)**. The system efficiently assigns food delivery riders to customer orders based on their geographic proximity. The application ensures minimal delivery times and provides a user-friendly interface for visualization and optimization.

2. Problem Statement

The main objective of the system is to:

- Efficiently **assign riders to orders** by minimizing the distance between them.
- Visualize the assignments dynamically using interactive maps.
- Implement a scalable and real-time method using FAISS (Facebook Al Similarity Search) for nearest neighbor search.

3. Solution Approach

3.1. Data Generation

The system generates **synthetic data** for:

- Orders: Each order has a unique ID and is placed at a random latitude/longitude.
- Riders: Each rider is assigned a random location within the same city.

3.2. FAISS-Based Nearest Neighbor Search

We use **FAISS IndexFlatL2** (L2 Distance Search) to quickly find the nearest rider for each order.

Steps:

- 1. Convert rider coordinates into a FAISS index.
- 2. Search for the closest rider for each order.

3. Assign the rider to the order and store the result.

3.3. Reinforcement Learning-Based Order Assignment

To enhance efficiency, we implement **Reinforcement Learning (RL)** to improve rider assignments dynamically.

RL Training Process:

- State Representation: The state consists of order locations, rider availability, and estimated delivery times.
- 2. **Action Space**: Assigning a rider to an order is treated as an action.
- 3. Reward Function:
 - Positive reward for minimizing delivery time.
 - Negative reward for late deliveries or inefficient assignments.
- 4. Training Algorithm:
 - We use **Deep Q-Learning** to optimize assignments over multiple iterations.
 - The model learns from past assignments and adapts to new delivery patterns.

3.4. Streamlit UI Implementation

The application consists of:

- **User Input Panel**: Users can specify the number of orders and riders.
- **Delivery Optimization Logic**: FAISS processes the assignments.
- Visualization:
 - Data Table: Displays optimized assignments.
 - Map: Shows order locations (blue) and rider locations (red) using Folium.

4. Code Implementation

food_delivery_optimization/

— app/
— api.py # FastAPI-based backend for API endpoints
— dashboard.py # Streamlit-based UI for visualization
— data/
— optimized_routes.csv # Stores optimized order-to-rider assignments
— synthetic_orders.csv # Synthetic dataset for food orders
— synthetic_riders.csv # Synthetic dataset for rider locations

— models/
— clustering.py # Clustering for optimizing delivery zones
— food_delivery_rl.py # Reinforcement Learning model for optimization
— optimization.py # FAISS-based nearest neighbor search
— reinforcement.py # RL-based training module

```
— utils/
     data_loader.py
                        # Load and preprocess datasets

    distance calc.py # Distance calculation using Haversine formula/OSRM

                         # Data preprocessing for optimization
     preprocess.py
  – venv/
                    # Virtual environment (ignored in production)
 assign orders.py
                         # Script for assigning riders to orders
— food delivery env.py
                           # Simulation environment for RL training
— generate data.py
                          # Script to generate synthetic order & rider data
— optimize routes.py
                          # Main script for food delivery route optimization
 — train model.py
                        # RL training script to optimize rider assignments
— requirements.txt
                        # Dependencies required for the project
--- README.md
                          # Documentation and project details
```

The Food Delivery Optimization System is designed to efficiently assign riders to orders, optimize delivery routes, and enhance real-time decision-making using FAISS, Reinforcement Learning (RL), and Al-driven optimizations. Below is a breakdown of its core logic and functionality.

1. Data Flow and Pipeline

Step 1: Data Generation (Synthetic Data)

To simulate a real-world environment, the system generates synthetic data for:

- Orders: Random customer locations (latitude, longitude) with timestamps.
- Riders: Available delivery riders with unique IDs and locations.
- **Deliveries**: Predefined or dynamically generated delivery requests.

These datasets are stored in CSV files:

- synthetic_orders.csv → Contains customer orders.
- synthetic_riders.csv → Contains rider details.
- synthetic_deliveries.csv → Stores completed deliveries for performance evaluation.

Why is synthetic data needed?

- It allows **testing** of algorithms without real-world data.
- Helps in training reinforcement learning (RL) models in a simulated environment.
- Enables **benchmarking** different optimization approaches.

Step 2: Order Assignment Using FAISS (Nearest Rider Search)

The system assigns the nearest rider to each order using FAISS (Facebook AI Similarity Search), which performs efficient nearest-neighbor search in high-dimensional spaces.

Process:

- 1. Convert rider locations into a FAISS index (2D space: latitude, longitude).
- 2. Search for the nearest rider for each order using L2 distance search.
- 3. **Assign the closest rider** and store the result in optimized_routes.csv.

Implementation (Python Code)

```
python
CopyEdit
import faiss
import numpy as np
import pandas as pd
def optimize_routes(orders_df, riders_df):
    d = 2 # Dimension (Latitude, Longitude)
    index = faiss.IndexFlatL2(d)
    # Convert rider locations into FAISS index
    rider_locations = np.column_stack((riders_df["Latitude"].values,
riders_df["Longitude"].values)).astype('float32')
    index.add(rider_locations)
    optimized_routes = []
    for _, order in orders_df.iterrows():
        order_location = np.array([[order["Latitude"],
order["Longitude"]]], dtype='float32')
        _, idx = index.search(order_location, 1)
        assigned_rider = riders_df.iloc[idx[0][0]]["Rider ID"]
        optimized_routes.append({"Order ID": order["Order ID"],
"Assigned Rider": assigned_rider})
    return pd.DataFrame(optimized_routes)
```

Why FAISS?

- Highly efficient for large datasets (low-latency search).
- Faster than brute-force distance calculations.
- Scalable for real-world applications.

Step 3: Reinforcement Learning (RL) for Route Optimization

FAISS provides an **initial assignment**, but it **does not account for traffic conditions**, **rider workload**, **or dynamic demand**. To improve the assignments over time, **Reinforcement Learning (RL) is used**.

RL Concept:

- **State**: Current order, rider, location, and environmental factors (e.g., traffic, time of day).
- Action: Assigning a rider to an order.
- **Reward**: Negative of delivery time (faster delivery = higher reward).
- Goal: Maximize the cumulative reward by optimizing assignments.

Basic Q-Learning Approach for Rider Assignment

```
python
CopyEdit
import random
import numpy as np
def train_rl_model(orders, riders, epochs=1000):
    q_table = np.zeros((len(orders), len(riders))) # Q-table for
learning
    alpha = 0.1 # Learning rate
    gamma = 0.9 \# Discount factor
    for _ in range(epochs):
        for i, order in enumerate(orders):
            # Select a random rider assignment
            rider_index = random.randint(0, len(riders) - 1)
            # Calculate reward (negative distance = closer is better)
            reward = -np.linalg.norm(np.array(order) -
np.array(riders[rider_index]))
```

Why RL?

- Learns from past experiences to improve future assignments.
- Adapts to **changing conditions** (e.g., traffic, rider availability).
- Enables better decision-making beyond just distance-based assignment.

Step 4: Route Optimization

Once a rider is assigned, the next step is **finding the best route** using **Open Source Routing Machine (OSRM)** or Google Maps API.

Implementation Steps:

- 1. Retrieve the order's pickup and delivery locations.
- 2. Fetch live traffic data (if available).
- 3. Compute the shortest route using OSRM/Google Maps.
- 4. Display optimized routes on the Streamlit dashboard.

Key Functional Modules

Module	Description			
api.py	Handles API endpoints for order and rider data.			
dashboard.py	Streamlit-based UI for visualization.			
clustering.py	Clusters orders/riders for efficient assignments.			
<pre>food_delivery_r l.py</pre>	Reinforcement Learning model for assignment optimization.			

```
optimization.py FAISS-based rider-to-order matching.

reinforcement.p Handles RL training loop and reward computation.

y

distance_calc.p Computes distances using Haversine formula or OSRM.

y

preprocess.py Prepares and cleans data before training.
```

4.1. Optimizing Delivery Routes with FAISS

```
import faiss
import numpy as np
import pandas as pd
def optimize_routes(orders_df, riders_df):
  d = 2 # Dimension (Latitude, Longitude)
  index = faiss.IndexFlatL2(d)
  rider_locations = np.column_stack((riders_df["Latitude"].values,
riders df["Longitude"].values)).astype('float32')
  index.add(rider_locations)
  optimized_routes = []
  for , order in orders df.iterrows():
     order_location = np.array([[order["Latitude"], order["Longitude"]]], dtype='float32')
     _, idx = index.search(order_location, 1)
     assigned rider = riders df.iloc[idx[0][0]]["Rider ID"]
     optimized routes.append({"Order ID": order["Order ID"], "Assigned Rider": assigned rider})
  return pd.DataFrame(optimized routes)
```

4.2. Streamlit Interface

```
import streamlit as st
import folium
from streamlit_folium import folium_static
st.title("Food Delivery Optimization Dashboard")
# Sidebar User Input
st.sidebar.header("Order Input")
```

```
num orders = st.sidebar.number input("Number of Orders", min value=1, max value=100,
value=10)
num riders = st.sidebar.number input("Number of Riders", min value=1, max value=20,
value=5)
# Generate Data
orders data = {"Order ID": [f"O-{i+1}" for i in range(num orders)],
         "Latitude": np.random.uniform(26.8, 26.9, num orders),
         "Longitude": np.random.uniform(80.9, 81.0, num_orders)}
orders df = pd.DataFrame(orders data)
riders_data = {"Rider ID": [f"R-{i+1}" for i in range(num_riders)],
         "Latitude": np.random.uniform(26.8, 26.9, num riders),
         "Longitude": np.random.uniform(80.9, 81.0, num_riders)}
riders df = pd.DataFrame(riders data)
if st.button("Optimize Delivery Routes"):
  optimized df = optimize routes(orders df, riders df)
  st.subheader("Optimized Assignments")
  st.dataframe(optimized df)
  st.subheader("Route Visualization")
  map = folium.Map(location=[orders df["Latitude"].mean(), orders df["Longitude"].mean()],
zoom start=13)
  # Plot orders (blue)
  for _, row in orders_df.iterrows():
    folium.Marker([row["Latitude"], row["Longitude"]], popup=row["Order ID"],
icon=folium.lcon(color='blue')).add_to(map_)
  # Plot riders (red)
  for , row in riders df.iterrows():
    folium.Marker([row["Latitude"], row["Longitude"]], popup=row["Rider ID"],
icon=folium.lcon(color='red')).add_to(map_)
  folium static(map )
```

5. Streamlit Output

5.1. User Input Panel

| Number of Orders: [10]|

```
| Number of Riders: [ 5]|
| [Optimize Delivery Routes]|
```

5.2. Optimized Assignments (Table)

5.3. Map Visualization:

The map displays blue markers (orders) and red markers (riders) with their respective IDs.

6. Future Enhancements(advance improvement)

To enhance the Food Delivery Optimization System, the following advanced improvements can be incorporated:

1. Enhanced Reinforcement Learning (RL) Training

- Implement Deep Q-Networks (DQN) instead of a basic Q-table to handle large-scale rider-order assignments dynamically.
- Introduce policy gradient methods like PPO (Proximal Policy Optimization) for better optimization.
- Train on real-world traffic data to adapt the learning process to actual delivery conditions.

2. Dynamic Demand Prediction with Al

- Use time-series forecasting (e.g., LSTMs or ARIMA) to predict demand peaks and dynamically allocate more riders.
- Implement clustering methods (DBSCAN, K-Means) to identify hotspots for orders.

3. Traffic-Aware Route Optimization

- Integrate real-time traffic data APIs (e.g., Google Maps, OpenStreetMap).
- Implement A or Dijkstra's algorithm* for real-time route optimization.

Use graph-based reinforcement learning to optimize delivery paths.

4. Multi-Rider Assignments & Order Batching

- Modify FAISS-based search to allow batch assignments (e.g., one rider picks up multiple orders).
- Implement a Vehicle Routing Problem (VRP) solver to group deliveries efficiently.
- Optimize for food freshness by adjusting priority scores.

5. Live Rider Tracking & Real-Time Monitoring

- Use GPS tracking for real-time rider monitoring in the UI.
- Display ETA predictions for each order.
- Implement websocket-based real-time updates in Streamlit.

6. Al-Powered Order Grouping

- Use Graph Neural Networks (GNNs) to identify optimal clusters of orders.
- Implement hierarchical clustering algorithms to group orders based on location and delivery time constraints.

7. API-Based Deployment & Scalability

- 1. Deploy the solution using FastAPI or Flask for easy integration with existing food delivery apps.
- 2. Implement Docker & Kubernetes for scalability.
- 3. Store FAISS indexes in cloud-based vector databases for improved retrieval speeds.

7. Use Cases

- Food Delivery Startups: Optimize order assignments for efficiency.
- E-commerce Logistics: Assigning nearest warehouse personnel to deliveries.
- Last-Mile Delivery: Reducing delivery costs and time in urban areas.
- Emergency Response: Assigning medical responders to nearby incidents.
- Retail Inventory Management: Dynamic supply chain logistics.

8. Conclusion

This FAISS-powered Food Delivery Optimization System provides an efficient method for dynamically matching food orders to delivery riders based on proximity. By using FAISS for nearest-neighbor search, the system optimizes delivery assignments in real-time. The future enhancements will further improve efficiency by incorporating demand forecasting, traffic awareness, and real-time monitoring.