Bài 1: Tìm tập xác định của các hàm số:

Tìm tập xác định của các hàm số:

a)
$$y = (1 - x)^{\frac{1}{3}}$$

b)
$$y = (2 - x^2)^{\frac{2}{5}}$$

c)
$$y = (x^2 - 1)^{-2}$$

d)
$$v = (x^2 - x - 2)^{\sqrt{2}}$$

Lời giải:

a) Ta có:
$$D = \{x \in R/1 - x > 0\} = (-\infty; 1)$$

b) Ta có:
$$D = \{x \in R / 2 - x^2 > 0\} = (-\sqrt{2}; \sqrt{2})$$

c) Ta có:
$$y = (x^2 - 1)^{-2} = \frac{1}{(x^2 - 1)^2}$$

Hàm số xác định với $x \in R$,

sao cho $x^2 - 1 \neq 0 \Leftrightarrow x \neq \pm 1$

Tập xác định: $D = R \setminus \{-1; 1\}$

d) Ta có:
$$D = \{x \in R / x^2 - x - 2 > 0\}$$

hay $D = (-\infty; -1) \cup (2; +\infty)$

Bài 2 : Tính đạo hàm của các hàm số:

Tính đạo hàm của các hàm số:

a)
$$y = (2x^2 - x + 1)^{\frac{1}{3}}$$

c)
$$y = (4 - x - x^2)^{\frac{1}{4}}$$

b)
$$y = (3x + 1)^{\frac{\pi}{2}}$$

d)
$$y = (5 - x)^{\sqrt{3}}$$

Lời giải:

a) Ta có:
$$\left[(2x^2 - x + 1)^{\frac{1}{3}} \right]'$$

$$= \frac{1}{3} (2x^2 - x + 1)^{\frac{1}{3} - 1} (2x^2 - x + 1)'$$

$$= \frac{4x - 1}{3(2x^2 - x + 1)^{\frac{2}{3}}}$$

b) Ta có:
$$\left[(4 - x - x^2)^{\frac{1}{4}} \right]'$$

$$= \frac{1}{4} (4 - x - x^2)^{\frac{1}{4} - 1} (4 - x - x^2)'$$

$$= \frac{-2x - 1}{4(4 - x - x^2)^{\frac{3}{4}}}$$

c) Ta có:
$$[3x + 1)^{\frac{\pi}{2}}]' = \frac{\pi}{2} (3x + 1)^{\frac{\pi}{2} - 1} (3x + 1)'$$

= $\frac{3\pi}{2} (3x + 1)^{\frac{\pi}{2} - 1}$

d) Ta có:
$$\left[(5-x)^{\sqrt{3}} \right]' = \sqrt{3} (5-x)^{\sqrt{3}-1} (5-x)'$$

= $-\sqrt{3} (5-x)^{\sqrt{3}-1}$

Bài 3 : Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:

a)
$$y = x^{\frac{4}{3}}$$

b)
$$y = x^{-3}$$

Lời giải:

a) Xét hàm số
$$y = x^{\frac{4}{3}}$$
, ta có:

D=R
$$\lim_{x \to \pm \infty} y = +\infty$$

$$y' = \frac{4}{3}x^{\frac{1}{3}}$$

Bảng biến thiên:

X	-∞		0		+∞
у'		-	0	+	
у	+8		× ₀ /		+∞ #

Đồ thị

b) Xét hàm số
$$y = x^{-3} = \frac{1}{x^3}$$
, ta có:

$$D = R \setminus \{0\}$$

$$\lim_{x \to 0^-} y = -\infty, \lim_{x \to 0^+} y = +\infty$$

$$=> tiệm cận đứng là x= 0$$

$$\lim_{x \to \pm \infty} y = 0 => tiệm cận ngang là y = 0$$

$$Dố y' = -\frac{3}{x^4} < 0 \ \forall x \in R\{0\} \text{ nên hàm số}$$

luôn nghịch biến trên khoảng xác định. Bảng biến thiên:

X	-ox	0	+ ∝
y'	-		-
у	0 ∝		+« 0

Đồ thị

Bài 4 : Hãy so sánh các số sau với 1:

Hãy so sánh các số sau với 1;

- a) $(4,1)^{2,7}$
- b) $(0,2)^{0,3}$
- c) $(0,7)^{3,2}$ d) $(\sqrt{3})^{0,4}$

Lời giải:

- a) Ta có: $4,1 \ge 1$ nên $(4,1)^{2,7} > 1^{2,7} = 1$
- b) Ta có: $(0,2)^{0,3} = \left(\frac{1}{\epsilon}\right)^{0,3} = \frac{1}{\epsilon^{0,3}}$

Vì 5 > 1 và 0,3 > 0 nên $5^{0,3} > 5^0 \Leftrightarrow 5^{0,3} > 1$

$$V_{ay}^{1} = 1 \text{ hay } (0,2)^{0,3} < 1$$

- c) Vì 0 < 0.7 < 1 và 3.2 > 0 nên $(0.7)^{3.2} < (0.7)^0 \Leftrightarrow (0.7)^{3.2} < 1$
- d) $\sqrt{3} > 1$; 0,4 > 0 nên $(\sqrt{3})^{0.4} > (\sqrt{3})^{0} \Leftrightarrow (\sqrt{3})^{0.4} > 1$

Bài 5 : So sánh

- a) $(3,1)^{7,2}$ và $(4,3)^{7,2}$
- b) $\left(\frac{10}{11}\right)^{2,3} v \grave{a} \left(\frac{12}{11}\right)^{2,3}$
- c) c) $(0,3)^{0,3}va$ $(0.2)^{0,3}$

Lời giải:

Theo tính chất của hàm lũy thừa $y = x^{\alpha}$ với $\alpha > 0$ trên tập xác định D=(0; +\infty) thì $y' = \alpha x^{\alpha-1} > 0$ Với $\forall x \in D$ nên hàm số đồng biến trên D.

- a) Hàm số $y = x^{7,2}$ đồng biến 3,1 < 4,3) nên $((3,1)^{7,2} < (4,3)^{2,3}$
- b) Hàm số $y = x^{2,3}$ đồng biến và

$$0 < \frac{10}{11} < \frac{12}{11} = > \left(\frac{10}{12}\right)^{2,3} < \left(\frac{12}{11}\right)^{2,3}$$

c) Ta có: $(0,3)^{0,3} > (0.2)^{0,3}$