EVALUATION OF THE EFFECT OF SURFACE FINISH ON HIGH-CYCLE FATIGUE OF SLM-IN718

D.M. Lambert, PhD, P.E.

Raytheon, Jacobs ESSSA Group, NASA-MSFC

Marshall Space Flight Center, Alabama

Introduction

- The as-build surface finish of an SLM part is much rougher than the surface finish generated by machining processes
- A rougher surface can reduce the fatigue strength of a part.
- Question: what is an appropriate "knock-down" factor for selective laser melted (SLM) Inconel 718 with an "as-built" surface finish relative to a low-stress ground (LSG) surface which is normally used for fatigue applications?
- Previous work characterizing the effect of surface finish on endurance limit showed good promise.
- Some surface finish data was available.

Characterization of the Current Data

Table I: Average Surface Finishes, As-Built, µin, RMS				
	Room	800F	1000F	1200F
Mean	247	267	243	245
Standard Deviation	39	43	42	67

Early Work

- <u>For steel parts</u>, the endurance limit is a function of tensile strength and surface factor.
- From the graph:
 - \circ 250 μ in \rightarrow 0.57
 - \circ 4 μ in \rightarrow 0.95
- Surface factor \rightarrow 0.57/0.95 = 0.60
- Knock-down = 1 surface factor = 0.40

Analysis

Table II:	Knockdown Factors fo	or As-Built versus	Low-Stress Grinding
	Roon	n Temperature	
			Knockdown = 1 - Smax,nom(as
N (cycles)	Smax,norm(as built)	Smax, nom(LSG)	built)/Smax,norm(LSG)
80,863	0.62	0.91	32%
1,574,926	0.43	0.62	31%
	•	800F	
			Knockdown = 1 - Smax,nom(as
N (cycles)	Smax,norm(as built)	Smax, nom(LSG)	built)/Smax,norm(LSG)
43,551	0.66	0.96	32%
	•	1200F	
			Knockdown = 1 - Smax,nom(as
N (cycles)	Smax,norm(as built)	Smax, norm(LSG)	built)/Smax,norm(LSG)
47,505	0.62	0.97	36%

- 1000F was omitted in the analysis due to sparse data and wide variance.
- A rough estimate of the knockdown is 1/3.
- Subject to gross approximations.
- Limited life range of about 1-million cycles.

Abdulrahim (1988)

- Surface finish included
 - o maximum depth of surface features
 - o radius of curvature of the root.

$$N = A(S_r)^B$$

$$A = P_1(v_D^* * \sigma_3^*)$$

$$B = P_2(v_D^* * \sigma_3^*)$$

- \circ v_D^* is the depth of the surface features.
- $\circ \sigma_3^*$ is the root curvature of the surface features.
- Good correlation with fatigue data.
- Slightly conservative where it differed.

KNOCK-DOWN FACTOR—KP Method

$$K_p \equiv S_{max,norm} * \sqrt{f}$$

- \bullet K_p was defined as the "pseudo-stress intensity factor.
 - Incorporated stress and surface finish
 - Similar to stress-intensity factor, where a defect size is introduced into the calculation along with stress.
 - An empirical development.

Surface Finish Data

- The as-built surface finish data were used in each case.
- The LSG surface finish data was only listed as $< 4 \mu in$.
- Data was graphed and at convenient fatigue lives, data was extracted.

Surface Factor

$$S_{fraction} \equiv \frac{K_p(AB)}{K_p(LSG)} * \sqrt{\frac{f_{avg}(LSG)}{f_{avg}(AB)}}$$

• The radical on the right returns the factor to stress space.

Pseudo-K versus Life HCF, Heat Treat A, Room Temp

Table III: Knockdown for HT A at RT				
N	Kp(LSG)	Kp(AB)	Sfraction	Knockdown = 1 - Sfraction
50,000	1.8	11.4	0.81	19%
100,000	1.7	9.9	0.76	24%
1,000,000	1.3	6.4	0.63	37%
4,000,000	1.1	4.9	0.57	43%

Pseudo-K versus Life HCF, Heat Treat A, 800F

Table IV: Knockdown for HT A at 800F				
N Kp(LSG) Kp(AB) Sfraction Knockdown = 1 - S		Knockdown = 1 - Sfraction		
32,000	2.0	12	0.74	26%
54,000	1.8	10	0.68	32%

Pseudo-K versus Life HCF, Heat Treat A, 1200F

Table V: Knockdown at 1200F				
N	Kp(LSG)	Kp(AB)	Sfraction	Knockdown = 1 - Sfraction
40,000	2.0	13	0.85	15%
100,000	1.8	12	0.86	14%
1,000,000	1.5	11	0.89	11%
1,250,000	1.5	10	0.89	11%

- Linear axes.
- Power-law trend lines were added to suggest a fit.
- RT and 800F data follow a similar trend, increasing with increasing cycles.
- The 1200F data follows a different trend, decreasing with increasing cycles.

- Log-log plot of the data.
- RT and 800F data seem similar, although not the same.
- RT and 800F follow a different trend from 1200F.
- Log-log plots collapse data dramatically, and this is, perhaps, an overstatement of the observations.

Conclusions and Recommendations

- For the first analysis, the knock-down factor was estimated at one-third
 - Consistent across all temperatures and all fatigue lives where data was available.
 - The result was weakened due to the lack of usable data above 1-million cycles.
- The pseudo-stress intensity factor, KP method, showed promise for improving correlation of roughness with a fatigue strength knockdown factor.
 - Knockdown factor of about one-third at lives below about one-million cycles.
 - Knockdown appears to increase with increasing life.
 - Results should probably not be used beyond one-million cycles.
- The data available was incomplete relative to the data used in reference [2].
- Redo evaluation with surface roughness characterized by
 - Traditional surface roughness.
 - o Root radius.
- Remove variabilities arising from multiple vendor processes.
- Use a different material, e.g., Inconel 625, that does not age.

Acknowledgements

- A very large group contributed to this publication, and their contributions were appreciated.
- The contributing groups include
 - Materials Lab
 - Nonmetallic Materials Engineering Branch wherein the Additive Manufacturing Facility resides
 - Mechanical Materials Test Facility
 - Metallic Materials Engineering Branch
 - Liquid Engines Office
 - Propulsion Lab
 - Office of Strategic Analysis and Communication
 - Advanced Development Office at MSFC
- I would especially like to thank Mr. Arthur Brown of the Metallic Materials Engineering Branch, who posed the question that led to this paper.