Cost-Sensitive Label Embedding for Multi-Label Classification

Kuan-Hao Huang and Hsuan-Tien Lin CSIE Department, National Taiwan University

Multi-Label Classification image x Image x tag {dog, cat} {dog} {dog, cat, rabbit} {shark} label y (1,1,0,0) (1,0,0,0) (1,1,1,0) (0,0,0,1)

- given training instances $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$
- ▶ learn a predictor h from \mathcal{D}
- ▶ let prediction $\tilde{\mathbf{y}} = h(\mathbf{x})$ be close to ground truth \mathbf{y}

Cost-Sensitivity

- different applications use different evaluation criteria
- Hamming loss, Ranking loss, F1 score, Accuracy score, etc.
- take the evaluation criterion as the additional input
- make predictions toward the criterion

Cost-Sensitive Multi-Label Classification

- ▶ given $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^N$ and cost function $c(\cdot, \cdot)$
- ▶ learn a predictor h from both \mathcal{D} and $c(\cdot, \cdot)$
- lacktriangleright make prediction $\tilde{\mathbf{y}} = h(\mathbf{x})$ such that $c(\mathbf{y}, \tilde{\mathbf{y}})$ is small

Label Embedding Approach

- label space \mathcal{Y}
- embedded space \mathcal{Z}
- feature space \mathcal{X}
- ightharpoonup embedding function Φ : label vector $\mathbf{y} \to \mathbf{e}$ embedded vector \mathbf{z}
- ▶ learn a regressor g from $\{(\mathbf{x}^{(n)}, \mathbf{z}^{(n)})\}_{n=1}^{N}$
- for testing instance \mathbf{x} , predicted embedded vector $\tilde{\mathbf{z}} = g(\mathbf{x})$
- ▶ decoding function Ψ : predicted embedded vector $\tilde{\mathbf{z}}$ → predicted label vector $\tilde{\mathbf{y}}$

Related Works

of

- cost-sensitivity: PCC and CFT [Li et al., 2014; Dembczynski et al., 2010]
- ▶ label embedding: PLST, FaIE, RAkEL, etc. [Tai et al., 2012; Lin et al., 2014; Tsoumakas et al., 2011]
- cost-sensitivity + label embedding: no existing works

Proposed Cost-Sensitive Label Embedding (CLEMS)

Embedding

- ▶ cost information ⇔ distances between embedded vectors
- ▶ higher (lower) cost $c(\mathbf{y}_i, \mathbf{y}_i) \Leftrightarrow$ larger (smaller) distance $d(\mathbf{z}_i, \mathbf{z}_i)$
- let $d(\mathbf{z}_i, \mathbf{z}_j) \approx \sqrt{c(\mathbf{y}_i, \mathbf{y}_j)}$ by multidimensional scaling (manifold learning)
- embedding function Φ : mapping $\mathbf{y}_i \to \mathbf{z}_i$

Decoding

- for testing instance x, predicted embedded vector $\tilde{\mathbf{z}} = g(\mathbf{x})$
- ▶ find nearest embedded vector \mathbf{z}_q of $\tilde{\mathbf{z}}$ from a candidate set
- ightharpoonup cost-sensitive prediction $\tilde{\mathbf{y}} = \mathbf{y}_q$
- decoding function Ψ : nearest neighbor + inverse mapping Φ^{-1}

Theoretical Explanation

• for ground truth y, prediction \tilde{y} , the cost $c(y, \tilde{y})$ has upper bound

$$c(\mathbf{y}, \tilde{\mathbf{y}}) \leq 5 \left(\underbrace{\left(d(\mathbf{z}, \mathbf{z}_q) - \sqrt{c(\mathbf{y}, \tilde{\mathbf{y}})} \right)^2}_{\text{embedding error}} + \underbrace{d(\mathbf{z}, \tilde{\mathbf{z}})^2}_{\text{regression error}} \right)$$

- ▶ embedding error → multidimensional scaling
- ightharpoonup regression error ightharpoonup regressor g

Mirroring Trick for Asymmetric Cost Function

- asymmetric cost vs. symmetric distance
- $ullet c(\mathbf{y}_i, \mathbf{y}_j)
 eq c(\mathbf{y}_j, \mathbf{y}_i) \text{ VS. } d(\mathbf{z}_i, \mathbf{z}_j)$
- lacktriangle two roles of z: ground truth role $\mathbf{z}_i^{(t)}$ and prediction role $\mathbf{z}_i^{(p)}$
- ▶ predict \mathbf{y}_i as $\mathbf{y}_j \Rightarrow \sqrt{c(\mathbf{y}_i, \mathbf{y}_j)}$ for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$
- ▶ predict \mathbf{y}_j as $\mathbf{y}_i \Rightarrow \sqrt{c(\mathbf{y}_j, \mathbf{y}_i)}$ for $\mathbf{z}_i^{(p)}$ and $\mathbf{z}_j^{(t)}$
- ▶ learn regressor g from $\mathbf{z}_i^{(p)}, \mathbf{z}_2^{(p)}, ..., \mathbf{z}_L^{(p)}$
- find nearest embedded vector of $\tilde{\mathbf{z}}$ from $\mathbf{z}_1^{(t)}, \mathbf{z}_2^{(t)}, ..., \mathbf{z}_L^{(t)}$

Experimental Results

Figure: Average predicting time

EUR-Lex(dc)

Table: Performance across different evaluation criteria

data	F1 score (↑)				Accuracy score (↑)				Rank loss (↓)				Composition loss (\downarrow)			
	BR	CLEMS	CFT	PCC	BR	CLEMS	CFT	PCC	BR	CLEMS	CFT	PCC	BR	CLEMS	CFT	PCC
emot.	0.596	0.676	0.640	0.643	0.523	0.589	0.557	_	1.764	1.484	1.563	1.467	0.352	0.271	0.324	_
scene	0.577	0.770	0.703	0.745	0.568	0.760	0.656	_	1.169	0.672	0.723	0.645	0.866	0.578	0.776	_
yeast	0.611	0.671	0.649	0.614	0.503	0.568	0.543	_	9.673	8.302	8.566	8.469	1.345	1.308	1.335	_
birds	0.569	0.677	0.601	0.636	0.551	0.642	0.586	_	6.845	4.886	4.908	3.660	0.656	0.563	0.607	_
med.	0.517	0.814	0.635	0.573	0.496	0.786	0.613	_	13.78	5.170	5.811	4.234	0.562	0.289	0.438	_
enron	0.543	0.606	0.557	0.542	0.433	0.491	0.448	_	44.83	29.40	26.64	25.11	0.688	0.659	0.677	_
lang.	0.160	0.375	0.168	0.247	0.159	0.327	0.164	_	43.46	31.03	34.16	19.11	0.919	0.734	0.910	_
arts	0.167	0.492	0.334	0.349	0.156	0.451	0.281	_	17.22	9.865	10.07	8.467	1.117	0.815	1.001	_
EUR.	0.417	0.670	0.456	0.483	0.411	0.650	0.450	_	168.3	89.52	129.5	43.28	0.593	0.344	0.552	_

- ► cost-sensitivity: CLEMS = CFT > PCC
- ▶ performance: CLEMS \approx PCC > CFT

CLEMS is a promising algorithm!