1

Assignment 1

Aryan Sharan Reddy (BT21BTECH11002)

Abstract—This document contains the solution for Assignment 1 (ICSE Class 10 Maths 2019 Q.8(C))

8(C) [ICSE 10 2019]: Using a ruler and a compass only construct a semicircle with diameter BC=7cm. Locate a point A on the circumference on the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral ABCD, such that D is equidistant from AB and BC. Measure $\angle ADC$ and write it down.

Solution:

Fig. 1: figure shows the cyclic quadrilateral inscribed in the circle

Let O be the centre of the semicircle.

The diameter of the given semicircle is BC=7cm. \implies It's radius "r"= $\frac{7}{2}cm = 3.5cm$.

Clearly, A must lie on the perpendicular bisector of BC, as it is equidistant from B and C.

Construction: Join AD.

 \therefore D is equidistant from AB and BC \implies D lies on the angular bisector of $\angle ABC$. Now, by using basic geometry, we can write, $\angle BAC = 90^{\circ} \tag{1}$

(Angle in a semicircle is 90°)

Also AB=AC (Given)

$$\Longrightarrow \angle ABC = \angle ACB = x(say) \tag{2}$$

The sum of angles in a triangle is 180°.

$$\implies \angle ABC + \angle ACB + \angle BCA = 180^{\circ}.$$
 (3)

Equations (1) and (2),

$$\implies x + x + 90^{\circ} = 180^{\circ} \tag{4}$$

$$\implies 2x + 90^{\circ} = 180^{\circ} \tag{5}$$

$$\implies 2x = 180^{\circ} - 90^{\circ} \tag{6}$$

$$\implies 2x = 90^{\circ} \tag{7}$$

$$\implies x = 45^{\circ}$$
 (8)

The input and output parameters required for drawing the figure are available in the below table.

We know that the opposite angles in a cyclic quadrilateral are supplementary.

$$\implies \angle ABC + \angle ADC = 180^{\circ}$$
 (9)

Equation (8),

Variable	Value	Input/Output
r	3.5	Input
$\angle BAC = \theta$	90°	Input
$\angle ABC$	$\frac{180 - \theta}{2} = 45^{\circ}$	Calculated
$\angle DBC$	$\frac{180 - \theta}{4} = 22.5^{\circ}$	Calculated
О	0	Input
A	$\begin{pmatrix} 0 \\ 3.5 \end{pmatrix}$	Input
В	$\begin{pmatrix} -3.5 \\ 0 \end{pmatrix}$	Input
C	$\begin{pmatrix} 3.5 \\ 0 \end{pmatrix}$	Input
D	$ \begin{pmatrix} 2r\cos\frac{180-\theta^{\circ}}{4} \\ 2r\sin\frac{180-\theta^{\circ}}{4} \end{pmatrix} $	Output

$$\Longrightarrow 45^{\circ} + \angle ADC = 180^{\circ} \tag{10}$$

$$\Longrightarrow \angle ADC = 135^{\circ} \tag{11}$$

 \therefore The measure of $\angle ADC$ is 135°