APPM2720 Homework 2 solutions

```
library( dataWorkshop)
## Loading required package: maps
## Loading required package: fields
## Loading required package: spam
## Loading required package: grid
## Spam version 1.4-0 (2016-08-29) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
##
## Attaching package: 'spam'
## The following objects are masked from 'package:base':
##
##
       backsolve, forwardsolve
data(BoulderTemperature)
data( AudiA4)
```

- (1) Solution is self evident!
- (2) Load the A4 data set into your R session and create mileage data set: mileage <-AudiA4[,2] If you divide the mileage by 1000 how do the mean and median change?

These stats scale by 1000. E.g. median (mileage/1000) == median(mileage)/1000

How does the interquartile range and the standard deviation change?

Also scale by 1000.

If you subtract 1400 from the mileage how does the median change?

```
median( mileage - 1400) == median( mileage) - 1400
```

How does the interquartile range change?

The IQR does **not** change because shifting the data by a constant does not effect the spread.

- (3) For (BoulderTemperature.rda) make a plot of April temperatures against May temperatures.
- (4) Use the abline function to add a line through your scatterplot that summarizes the relationship.

I don't see a strong relationship between the months but there may be slight positive dependence. I.e. colder April implies a colder May and a warmer Apr implies a warmer May. But there is quite a bit of varibility. For example one of the warmest April means (55 F) is followed by a cold May (~51 F).

```
plot(BoulderTemperature$apr, BoulderTemperature$may,
ylab="may average temperatures (F)",
xlab= "april average temperatures (F)",
# some nice options to make the plot clearer
pch=16, cex=1.5, col="grey")

title("Boulder monthly average temperature 1897 - 2013")
```

```
# nice option is to make line thicker
abline( 48, .18, col="red", lwd= 3)
```

Boulder monthly average temperature 1897 – 2013

(5) Average the june, july, and august temperatures together for each year. Do you see any obvious trend in these summer temperatures over time?

Boulder average summer temperatures

are no strong patterns although it does seem that the period 1940 through 1960 tended to be warmer.

(6) Write a function that takes a data set and returns the 6 values: min, first quartile, median, mean, third quartile and max.

There

There are several ways to write this here I took a style that leverages the quantile and range functions. Note default is to not removes NAs

Test it out.

```
myStats(1:11)

## min Q1 mean median Q3 max

## 1.0 3.5 6.0 6.0 8.5 11.0
```