

Complete Course on Computer Networks - Part III

Introduction to FDs, Formal Definition of FDs and Various Usages of FDs | DBMS

BOOTP and DHCP, ICMP | CN

Programming and Data Structures Practice Questions | P and DS

Phases of Compiler Design Practice Questions | CD

Classification of addresses, Subnetting, **Supernetting Practice Questions | CN**

Linux History | L:1 | Linux Course -

Time

6:00 - 7:00AM

07:00 - 08:00 AM

08:05 - 9:05 AM

5:00- 6:00 PM

6:00 - 7:00PM

7:00 - 8:00PM ~

Introduction to WWW | World Wide Web

8:00 - 9:00 PM 🥌

NOTE:

MF bit	Offset value	Represents
1	0-0	1st Fragment
1	!=0.	Intermediate Fragment
0	!=0	Last Fragment
0	0	No Fragmentation

Reassembly is not done at the routers because-

All the fragments may not meet at the router.

Fragmented datagrams may reach the destination through independent paths.

There may be a need for further fragmentation.

MF -) male fragments

Reassembly Algorithm

Reassembly Algorithm

Receiver applies the following steps for reassembly of all the fragments-1.It identifies whether datagram is fragmented or not using MF bit and Fragment offset field.

2.It identifies all the fragments belonging to the same datagram using identification field.

- 4. It identifies the subsequent fragments using total length, header length and fragment offset.
- 5.It repeats step-04 until MF bit = 0.

KEY POINTS ABOUT ARP

ARP Request is Broadcast

ARP reply is Unicast

Finding the MAC Address of Another host

Finding the MAC Address of a Router

Router wants to find MAC address of Another Router

Router can find MAC address of a Host

Special Address 127

Suppose A has sent some data to B but B has not responded What could be the possibilities? 1,2,3,4,5,6 are the possibilities of failure.

Point 6 deals with NIC card of A So, How we can check if the NIC is working or not? A can send a packet to itself.

For Testing Self Connectivity
IP address 127 is used
Loop back Address

RARP

PCs without a Hard Disk

MAC- ROM IP - RAM

BOOTP AND DHCP

DHCP - Dynamic Host Configuration Protocol

DHCP MAPPING TABLE

Advantage and points to remember:

- Only One DHCP server is enough.
- Dynamic Table

ICMP

Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) is a network layer protocol used TTL Exceed by network devices to diagnose network communication issues. Parameter Problem Error Handling Source Quench and Feedback Messaging Source Redirect Destination Unreachable ICMP Echo Request and Reply Time Stamp request and reply Network mask request and reply Router

Solicitation and Advertisement

Source quench

Destination unreachable

These are things that sender should know:

Who discarded?

Why it got discarded?

What packet did you discard?

