Matematicas aplicadas

Susana Hernández

Invalid Date

Table of contents

Preface		3
1	Introduction	4
2	Summary	5
3	Tarea 1	6
4	Tarea 2 Demostración:	14 14
5	Tarea 3	17
6	Tarea 4	28
7	Tarea 5	34
9	Tarea 7	42
10	Tarea 8	47
Re	eferences	52

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

2 Summary

In summary, this book has no content whatsoever.

3 Tarea 1

Exercise 3.1. Se generan variables aleatorias Bernoulli y el histograma de los valores que toma con paremetro p = 0.3.

 ${f Listing}$ 3.1 Exploring functions to generate random variables with a Bernoulli distribution.py

Exercise 3.2. Se generan variables aleatorias normales y el histograma de los valores que toma.

Exercise 3.3. Modificando reproducir el gráfico de una distribución gaussiana bivariada con media vectorial $\mu[0.1, 0.5]$ y matriz de covarianza

$$\Sigma = \begin{bmatrix} 3.0 & 0.3 \\ 0.75 & 1.5 \end{bmatrix}$$

Figure 3.1: Figura 3

 ${f Listing}$ 3.2 Exploring functions to generate random variables with a Gaussian distribution.py

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
fig, ax = plt.subplots(1, 1)
mean, var, skew, kurt = norm.stats(moments='mvsk')
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
ax.plot(
    x,
    norm.pdf(x),
    'r-',
    lw=5,
    alpha=0.6,
    label='norm pdf'
rv = norm()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
vals = norm.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))
r = norm.rvs(size=50000)
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
ax.set_xlim([x[0], x[-1]])
ax.legend(loc='best', frameon=False)
plt.show()
```

Listing 3.3 Revising multivariate Gaussian.py

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from scipy.stats import multivariate_normal
x = np.linspace(0, 5, 100, endpoint=False)
y = multivariate_normal.pdf(x, mean=2.5, cov=0.5);
fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax.plot(x, y)
# plt.show()
x, y = np.mgrid[-5:5:.1, -5:5:.1]
pos = np.dstack((x, y))
rv = multivariate_normal([0.1, 0.5], [[3.0, 0.3], [0.75, 1.5]])
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.contourf(x, y, rv.pdf(pos))
# plt.show()
ax = plt.figure().add_subplot(projection='3d')
ax.plot_surface(
    х,
    у,
    rv.pdf(pos),
    edgecolor='royalblue',
    1w = 0.5,
    rstride=8,
    cstride=8,
    alpha=0.4
ax.contour(x, y, rv.pdf(pos), zdir='z', offset=-.2, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='x', offset=-5, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='y', offset=5, cmap='coolwarm')
ax.set(
    xlim=(-5, 5),
    ylim=(-5, 5),
    zlim=(-0.2, 0.2),
                                    13
    xlabel='X',
    ylabel='Y',
    zlabel='Z'
plt.show()
```

4 Tarea 2

Sea $Y_{\delta,h}(t)$ una caminata aleatoria. Demuestre que para δ y h pequeño tenemos

$$E\exp[i\lambda Y_{\delta,h}(t)]\approx \exp\left[-\frac{t\lambda^2h^2}{2\delta}-\frac{t\lambda^4h^4}{12\delta}\right]$$

Demostración:

Considere una caminata aleatoria que comienza en 0 con saltos h y -h igualmente probables en los momentos δ , 2 δ ,..., donde h y δ son números positivos. Más precisamente, sea $\{X_n\}_{n=1}^{\infty}$ una sucesión de elementos aleatorios independientes e idénticamente distribuidos. variables con

$$P\left[X_{i}=h\right]=P\left[X_{i}=-h\right]=\frac{1}{2},\forall i,$$

Sea $Y_{\delta,h}(0) = 0$ y pongamos

$$Y_{\delta,h}(n\delta) = X_1 + X_2 + \dots + X_n.$$

Para t>0, defina $Y_{\delta,h}(t)$ mediante linealización, es decir, para $n\delta < t < (n+1)\delta$, defina

$$Y_{\delta,h}(t) = \frac{(n+1)\delta - t}{\delta} Y_{\delta,h}(n\delta) + \frac{t - n\delta}{\delta} Y_{\delta,h}((n+1)\delta).$$

Calculemos la función característica de $Y_{\delta,h}(t)$, donde $\lambda \in \mathbb{R}$ fijo y sea $t=n\delta$ así, $n=t/\delta$. Entonces se tiene que

$$E \exp \left[i\lambda Y_{n,\delta}(t)\right] = \prod_{j=1}^{n} E e^{i\lambda X_{j}}, \text{ por ser variables independientes},$$
 (4.1)

$$= (Ee^{i\lambda X_j})^n, \text{ por ser idénticamente distribuidas}, (4.2)$$

$$= \frac{1}{2}(e^{i\lambda h} + e^{-i\lambda h})^n, \tag{4.3}$$

$$= (\cos(\lambda h))^n, \tag{4.4}$$

$$= (\cos(\lambda h))^{t/\delta}, \tag{4.5}$$

(4.6)

Por otro lado, sea $u = \left[\cos\left(\lambda h\right)\right]^{1/\delta} \Rightarrow \ln\left(u\right) = \frac{1}{\delta}\ln\left[\cos\left(\lambda h\right)\right].$

Usando la expansión de Taylor de $\cos(x)$ se tiene que

$$\cos(\lambda h) \approx 1 - \frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^4}{4!},$$

entonces

$$\ln\left(\cos\left(\lambda h\right)\right) ~\approx ~ \ln\left[1 - \frac{\left(\lambda h\right)^2}{2} + \frac{\left(\lambda h\right)^4}{4!}\right] \tag{4.7}$$

$$\approx -\frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^4}{4!} - \frac{1}{2} \left(-\frac{\lambda^2 h^2}{2!} + \frac{\lambda^4 h^4}{4!} \right)^2 \tag{4.8}$$

$$= -\frac{\lambda^2 h^2}{2!} + \frac{\lambda^4 h^4}{4!} - \frac{1}{2} \left(\frac{\lambda^4 h^4}{4} - \frac{\lambda^6 h^6}{24^2} + \frac{\lambda^8 h^8}{24} \right)$$
(4.9)

$$= -\frac{\lambda^2 h^2}{2} + \frac{\lambda^4 h^4}{24} - \frac{\lambda^4 h^4}{8} - \frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48}$$
 (4.10)

$$= -\frac{\lambda^2 h^2}{2} - \frac{\lambda^4 h^4}{12} - \frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48}$$
 (4.11)

para una h pequeña, se satisface que,

$$-\frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48} \approx 0$$

Por lo tanto, $\ln\left(\cos\left(\lambda h\right)\right)\approx-\frac{\lambda^2h^2}{2}-\frac{\lambda^4h^4}{12}$.\ Así, para δ y h pequeña, se tiene que $\ln u\approx\frac{1}{\delta}\left(-\frac{\lambda^2h^2}{2}-\frac{\lambda^4h^4}{12}\right)$.\ Entonces

$$u \approx \exp\left[\frac{1}{\delta}\left(-\frac{\lambda^2 h^2}{2} - \frac{\lambda^4 h^4}{12}\right)\right]$$
 (4.12)

Entonces por la ecuación (Equation 4.6),

$$E \exp\left[i\lambda Y_{n,\delta}(t)\right] \approx \exp\left[-\frac{t\lambda^2 h^2}{2\delta} - \frac{t\lambda^4 h^4}{12\delta}\right]$$
 (4.13)

Calculando el limite

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right)\right)\right] = \lim_{\delta \to 0} \exp\left[-t\left(\left[\frac{h^2}{\delta}\right]\left(\frac{\lambda^2}{2} - \frac{\lambda^4 h^2}{24}\right)\right)\right],$$

Asumamos que $\delta \to 0$, $h \to 0$ pero $h^2/\delta \to \infty$. Entonces $\lim_{\delta \to 0} Y_{\delta,h}(t)$ no existe. Por otro lado, consideremos la siguiente renormalización,

$$E\exp\left[i\lambda Y_{n,\delta}\left(t\right) + \frac{th^2\lambda^2}{2\delta}\right] = E\left[\exp(i\lambda Y_{n,\delta}\left(t\right))\exp\left(\frac{th^2\lambda^2}{2\delta}\right)\right] \tag{4.14}$$

$$= \exp\left(\frac{th^2\lambda^2}{2\delta}\right)E\exp\left[i\lambda Y_{n,\delta}(t)\right] \tag{4.15}$$

$$\approx \exp\left(\frac{th^2\lambda^2}{2\delta}\right) \exp\left[-\frac{t\lambda^2h^2}{2\delta} - \frac{t\lambda^4h^4}{12\delta}\right] \tag{4.16}$$

$$= \exp\left(-\frac{t\lambda^4 h^4}{12\delta}\right) \tag{4.17}$$

Así, si $\delta,h\to 0$ de tal manera que $h^2/\delta\to \infty$ y $h^4/\delta\to 0,$ entonces

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right) + \frac{th^2\lambda^2}{2}\right)\right] = \lim_{\delta \to 0} \exp\left(\frac{\left(\lambda h\right)^4}{24\delta}\right) = 1$$

5 Tarea 3

Exercise 5.1. Si $X \sim N(\mu, \sigma^2)$ entonces $\left(\frac{X - \mu}{\sigma}\right) \sim N(0, 1)$.

Proof. Calculemos la función característica de la variable $\frac{X-\mu}{\sigma}$,

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = E\left[e^{it\left(\frac{X-\mu}{\sigma}\right)}\right]$$
 (5.1)

$$= E\left[e^{\left(\frac{itX}{\sigma} - \frac{it\mu}{\sigma}\right)}\right] \tag{5.2}$$

$$= e^{-\frac{it\mu}{\sigma}} E\left[e^{\left(\frac{itX}{\sigma}\right)}\right] \tag{5.3}$$

$$= e^{-\frac{it\mu}{\sigma}} \int_{-\infty}^{\infty} e^{\frac{itx}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (5.4)

$$= e^{-\frac{it\mu}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{itx}{\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (5.5)

$$= e^{-\frac{it\mu}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{itx}{\sigma} - \frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (5.6)

$$= e^{-\frac{it\mu}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\frac{(x-\mu)^2 - 2itx\sigma}{\sigma^2}} dx$$
 (5.7)

(5.8)

Observemos que,

$$\frac{(x-\mu)^2 - 2itx\sigma}{\sigma^2} = \frac{x^2 - 2x\mu + \mu^2 - 2itx\sigma}{\sigma^2}$$
 (5.9)

$$= \frac{x^2}{\sigma^2} - \frac{2x\mu}{\sigma^2} + \frac{\mu^2}{\sigma^2} - \frac{2itx\sigma}{\sigma^2}$$
 (5.10)

$$= \frac{x^2}{\sigma^2} - \frac{2x}{\sigma} \left(\frac{\mu + it\sigma}{\sigma^2} \right) + \frac{\mu^2}{\sigma^2}$$
 (5.11)

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \left(\frac{\mu + it\sigma}{\sigma}\right)^2 + \frac{\mu^2}{\sigma^2}$$
 (5.12)

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \frac{2it\sigma\mu}{\sigma^2} - \frac{(it\sigma)^2}{\sigma^2}$$
 (5.13)

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \frac{2it\mu}{\sigma} + t^2. \tag{5.14}$$

(5.15)

Sustituyendo (Equation 5.15) en (Equation 5.8), resulta

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{it\mu}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left[\left(\frac{x}{\sigma} - \left(\frac{\mu+it\sigma}{\sigma}\right)\right)^2 - \frac{2it\mu}{\sigma} + t^2\right]} dx$$
 (5.16)

$$= e^{-\frac{it\mu}{\sigma}} e^{\frac{it\mu}{\sigma} - \frac{t^2}{2}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2} dx$$
 (5.17)

$$= e^{-\frac{t^2}{2}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2} dx \tag{5.18}$$

(5.19)

Sea $u = \frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right) \Longrightarrow du = \frac{1}{\sigma}dx$, sustituyendo esto en (Equation 5.19), resulta

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du$$
 (5.20)

(5.21)

de aquí se sigue que $u \sim N(0,1)$, entonces

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} dx = 1.$$

sustituyendo esto ultimo en (Equation 5.21), se tiene,

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{t^2}{2}},$$
(5.22)

(5.23)

Por otro lado, consideremos $Z \sim N(0,1)$, entonces

$$\varphi_Z(t) = e^{-\frac{t^2}{2}}.$$

Entonces $\varphi_Z(t)=\varphi_{\frac{X-\mu}{\sigma}}(t)$, como las funciones características coinciden se concluye que $\frac{X-\mu}{\sigma}\sim$ N(0,1).

Exercise 5.2. Si $Y \sim N(0,1)$ entonces $\sigma Y + \mu \sim N(\mu,\sigma)$.

Proof. Calculemos la función característica de la variable $\sigma Y + \mu$,

$$\varphi_{\sigma Y + \mu}(t) = E \left[e^{it(\sigma Y + \mu)} \right]$$

$$= E \left[e^{it\sigma Y + it\mu} \right]$$

$$= e^{it\mu} E \left[e^{it\sigma Y} \right]$$

$$(5.24)$$

$$(5.25)$$

$$= E\left[e^{it\sigma Y + it\mu}\right] \tag{5.25}$$

$$= e^{it\mu} E\left[e^{it\sigma Y}\right] \tag{5.26}$$

$$= e^{it\mu} \int_{-\infty}^{\infty} e^{it\sigma y} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy \qquad (5.27)$$

$$= e^{it\mu} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^2 - 2yit\sigma)} dy.$$
 (5.28)

(5.29)

Observemos que,

$$y^{2} - 2yit\sigma = (y - it\sigma)^{2} - (it\sigma)^{2}$$

$$= (y - it\sigma)^{2} + t^{2}\sigma^{2}.$$
(5.30)

$$= (y - it\sigma)^2 + t^2\sigma^2. (5.31)$$

(5.32)

Sustituyendo, (Equation 5.32) en (Equation 5.29) resulta

$$\varphi_{\sigma Y + \mu}(t) = e^{it\mu} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}((y - it\sigma)^2 + t^2\sigma^2)} dy$$
(5.33)

$$= e^{it\mu} e^{-\frac{1}{2}t^2\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-it\sigma)^2} dy$$
 (5.34)

(5.35)

Tomando $u = y - it\sigma \Longrightarrow du = dy$, se tiene que

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y - it\sigma)^2} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du,$$

entonces $U \sim N(0,1)$, por lo tanto,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-it\sigma)^2} dy = 1$$

sustituyendo esto ultimo en (Equation 5.35), resulta,

$$\varphi_{\sigma Y + \mu}(t) = e^{it\mu} e^{-\frac{1}{2}t^2\sigma^2} = e^{it\mu - \frac{t^2\sigma^2}{2}}.$$

Sea Zuna variable aleatoria tal que $Z \sim N(\mu, \sigma)$ sabemos que,

$$\varphi_{\mathbf{Z}}(t) = e^{it\mu - \frac{t^2\sigma^2}{2}}.$$

De estas dos ultimas igualdades se sigue que,

$$\varphi_Z(t) = \varphi_{\sigma Y + \mu}(t).$$

Dado que tienen iguales funciones características se concluye que,

$$\sigma Y + \mu \sim N(\mu, \sigma)$$

Exercise 5.3. Si $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ además X y Y son independientes entonces $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Proof. Por definición, se tiene que,

$$\varphi_{X+Y}(t) = E[e^{it(X+Y)}] \tag{5.36}$$

$$= E[e^{itX}e^{itY}]$$
 por ser independientes, del ejercicio 4 (5.37)

$$= E[e^{itX}]E[e^{itY}] (5.38)$$

$$= \varphi_X(t)\varphi_Y(t). \tag{5.39}$$

(5.40)

Por otro lado, sea Z una variables aleatoria tal que, $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$, sabemos que la función característica de Z, esta dada por,

$$\begin{array}{rcl} \varphi_Z(t) & = & e^{it(\mu_1 + \mu_2) - \frac{t^2}{2}(\sigma_1^2 + \sigma_2^2)} \\ & = & e^{it\mu_1 - \frac{t^2\sigma_1^2}{2} + it\mu_2 - \frac{t^2\sigma_2^2}{2}} \\ & = & e^{it\mu_1 - \frac{t^2\sigma_1^2}{2}} e^{it\mu_2 - \frac{t^2\sigma_2^2}{2}} \\ & = & \varphi_X(t)\varphi_Y(t), \end{array}$$

entonces, de esta ultima igualdad y de (Equation 5.40) se sigue que,

$$\varphi_Z(t) = \varphi_{X+Y}(t).$$

Como las funciones características coinciden se sigue que, $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Exercise 5.4 (Ejercicio 4:). Si X, Y son variables aleatorias normales entonces X, Y son independientes si y solo si E(XY) = E(X)E(Y).

Proof. Primero recordemos que

$$E\left(XY\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}\left(x,y\right) \mathrm{d}x \mathrm{d}y$$

Como X, Y son independientes, sabemos que

$$f_{XY}(x,y) = f_X(x) f_Y(y)$$

Entonces

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) dx dy$$
 (5.41)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) f_y(y) dx dy$$
 (5.42)

$$= \left(\int_{-\infty}^{\infty} x f_X\left(x\right) \mathrm{d}x \right) \left(\int_{-\infty}^{\infty} y f_y\left(y\right) \mathrm{d}y \right) \tag{5.43}$$

$$= E(X)E(Y) (5.44)$$

Theorem 5.1 (Designaldad de Chebyshev). Sea X una variable aleatoria con esperanza $\mu = E(X)$ y sea $\varepsilon > 0$. Entonces

$$P(|X - \mu| \ge \varepsilon) \le \frac{Var(X)}{\varepsilon^2}$$

Proof. Sea $Y = |X - \mu|$, observemos que Y es positiva, así por la desigualdad de Markov y dado que $\mathcal{P}[|X - \mu| \ge \epsilon] = \mathcal{P}[|X - \mu|^2 \ge \epsilon^2]$, se cumple que

$$\mathcal{P}[|X - \mu| \ge \epsilon] = \mathcal{P}[|X - \mu|^2 \ge \epsilon^2]$$
(5.45)

$$\leq \frac{E\left[\left(X-\mu\right)^{2}\right]}{\epsilon^{2}} = \frac{\operatorname{Var}\left[X\right]}{\epsilon^{2}}$$
(5.46)

Theorem 5.2 (Ley de los grandes números). Sean X_1, X_2, \dots, X_n procesos de ensayos independientes, con esperanza finita $\mu = E(X_j)$ y varianza finita $\sigma^2 = Var(X_j)$. Sean $S_n = X_1 + X_2 + \dots + X_n$. Entonces para cada $\epsilon > 0$.

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \geq \epsilon\right] \to 0$$

Proof. Observemos que

$$\operatorname{Var}\left[\frac{S_n}{n} - \mu\right] = \frac{1}{n^2} \operatorname{Var}\left(S_n\right) \tag{5.47}$$

$$= \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i), \text{ por ser iid}$$
 (5.48)

$$= \frac{\sigma^2}{n} \tag{5.49}$$

Entonces, por el Teorema 5.1,

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon},$$

así, tomando el limite cuando $n \to \infty$

$$\frac{\sigma^2}{n\epsilon} \to 0$$

Entonces

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \to 0$$

Theorem 5.3 (Teorema del Limite Central). Sea $\{X_i\}_{i=1}^{\infty}$ una secuencia de v.a.i.id con media a y varianza b^2 . Entonces para doo $\alpha, \beta \in \mathbb{R}$, con $\alpha < \beta$, entonces

$$\mathcal{P}\left(\lim_{M\to\infty}\alpha\leq\frac{\displaystyle\sum_{i=1}^{M}X_{i}-Ma}{\sqrt{M}b}\leq\beta\right)=\frac{1}{\sqrt{2\pi}}\int_{\alpha}^{\beta}e^{\left(-\frac{1}{2}x^{2}\right)}\mathrm{d}x$$

Proof. Definamos a

$$S_M = \sum_{i=1}^M \left[X_i - a \right],$$

у

$$Y_M = \frac{S_M}{\sqrt{M}b}.$$

Sea φ_{Y_M} la función generadora de momentos de Y_M y φ la función generadora de momentos de la distribución normal estándar, demostraremos que $\varphi_{Y_M} \to \varphi$.

Por definición,

$$\varphi_{Y_M}(t) = E \left[\exp \left(t \frac{S_M}{\sqrt{Mb}} \right) \right]$$
(5.50)

$$= \varphi_{S_M} \left(\frac{t}{\sqrt{M}b} \right) \tag{5.51}$$

$$= \left[\varphi_{(X_1 - a)} \left(\frac{t}{\sqrt{Mb}} \right) \right]^M \text{ ya que, las } X_i \text{ son i.i.d}$$
 (5.52)

$$= \left[E \left[\exp \left(\frac{t}{b\sqrt{M}} \left(X_1 - a \right) \right) \right] \right]^M \tag{5.53}$$

Recordando la serie de Taylor

$$\varphi_{Y_{M}}\left(t\right) = \left[\sum_{i=0}^{\infty} \frac{E\left[\left(\frac{t}{b\sqrt{M}}\left(X_{1}-a\right)\right)^{i}\right]}{i!}\right]^{M} \tag{5.54}$$

$$= \left[1 + \frac{1}{2} \left(\frac{t}{b\sqrt{M}}\right)^2 E\left[\left(X_1 - a\right)^2\right] + \epsilon \left(3\right)\right]^M \tag{5.55}$$

$$= \left[1 + \frac{1}{M}\frac{t^2}{2} + \epsilon(3)\right]^M, \tag{5.56}$$

donde

$$\epsilon(3) = \sum_{i=3}^{\infty} \frac{E\left[\left(\frac{t}{b\sqrt{M}}(X_1 - a)\right)^i\right]}{i!},$$
(5.57)

Ahora sea $s = \frac{t}{b\sqrt{M}}$, así,

$$\epsilon\left(3\right)=\sum_{i=3}^{\infty}\frac{E\left[\left(X_{1}-a\right)^{i}\right]s^{i}}{i!}$$

Además observemos que, cuando $t \to 0$, $s \to 0$.

Así, de lo anterior, si φ_1 existe, se cumple que,

$$\frac{\epsilon\left(3\right)}{s^{2}}=\sum_{i=3}^{\infty}\frac{E\left[\left(X_{1}-a\right)^{i}\right]s^{i-2}}{i!}\rightarrow0,\text{ cuando, }s\rightarrow0.$$

Por otro lado,

$$\varphi_{Y_{M}}\left(t\right)=\left[1+\frac{1}{M}\left[\frac{t^{2}}{2}+M\epsilon\left(3\right)\right]\right]^{M},$$

y $s \to 0$ cuando $M \to \infty$.

Entonces $\epsilon\left(3\right)s^{-2}=M\epsilon\left(3\right)b^{2}t^{-2}\to0$. Dado que b,t estan fijas, se cumple que

$$M\epsilon(3) \to 0$$
, cuando, $M \to \infty$,

por lo tanto

$$\frac{t^{2}}{2}+M\epsilon\left(3\right)\rightarrow\frac{t^{2}}{2},\text{ cuando, }M\rightarrow\infty$$

esto implica que,

$$\left[1 + \frac{1}{M} \left[\frac{t^2}{2} + M\epsilon\left(3\right)\right]\right]^M \to \exp\left(t^2/2\right), M \to \infty$$

De aqui se concluye que,

$$\lim_{M \to \infty} \varphi_M(t) = \exp(t^2/2) = \varphi(t)$$

la cual es la función generadora de momentos de la distribución normal estándar. Por lo tanto

$$F_M(x) \rightarrow F_{N(0,1)}(x)$$

que es equivalente a,

$$F_{M}\left(b\right)-F_{M}\left(a\right)\to F_{N}\left(b\right)-F_{N}\left(a\right)$$

$$\mathcal{P}\left(\lim_{M\to\infty}\alpha\leq\frac{\displaystyle\sum_{i=1}^{M}X_{i}-Ma}{\sqrt{M}b}\leq\beta\right)=\frac{1}{\sqrt{2\pi}}\int_{\alpha}^{\beta}\exp\left(-\frac{1}{2}x^{2}\right)\mathrm{d}x$$

Theorem 5.4. Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de v.a.i.i.d con media a. Entonces

$$\mathcal{P}\left[\lim_{M\to\infty}\frac{1}{M}\sum_{i=1}^MX_i=a\right]=1.$$

Proof. Esto es similar a decir que

$$\lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} X_i \stackrel{\text{c.s}}{=} a$$

Sin perdida de generalidad, diremos que $X_i \geq 0, \forall i.$ Definamos

$$Y_n = X_n I_{[|X_n| \leq n]}, Q_n = \sum_{i=1}^n Y_i$$

Por la desigualdad de Chebyshev

$$\sum_{n=1}^{\infty} \mathcal{P}\left[\left|\frac{Q_n - E\left[Q_n\right]}{n}\right| \ge \epsilon\right] \le \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left(Q_n\right)}{\epsilon^2 n^2} = \sum_{n=1}^{\infty} \frac{1}{\epsilon^2 n^2} \sum_{i=1}^n \operatorname{Var}\left(Y_i\right)$$
 (5.58)

$$\leq \sum_{n=1}^{\infty} \frac{E(Y_n^2)}{\epsilon^2 n^2} = \sum_{n=1}^{\infty} \frac{1}{\epsilon^2 n^2} \int_0^n x^2 dF$$
(5.59)

$$\leq \sum_{n=1}^{\infty} \frac{1}{\epsilon^2} \int_0^n x dF < \infty, \tag{5.60}$$

donde F es la función de distribución de X_i . Luego

$$E\left[X_{1}\right]=\lim_{n\rightarrow\infty}\int_{0}^{n}x\mathrm{d}F=\lim_{n\rightarrow\infty}E\left[Y_{n}\right]=\lim_{n\rightarrow\infty}\frac{E\left[Q_{n}\right]}{n}.$$

Entonces, por el Lema de Borel Canteli. $\mathcal{P}\left[\limsup\left(\left|\frac{Q_n-E\left[Q_n\right]}{n}\right|\geq\epsilon\right)\right]=0$

$$\lim_{n\to\infty}\frac{Q_n}{n}=E\left[X_1\right], \text{c.s}$$

Ahora, calcularemos la siguiente probabilidad

$$\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}\neq Y_{i}\right]=\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}>n\right]$$

como $E\left[X_{i}\right]<\infty$ y X_{i} son v.a.i.i.d.

$$\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}>n\right]\leq E\left[X_{1}\right]<\infty$$

De nuevo, por el Lema de Borel Cantelli.

$$\mathcal{P}\left[\limsup\left[X_{i}\neq Y_{i}\right]\right]=0,\forall i$$

Entonces

$$X_i = Y_i, \text{c.s} (5.61)$$

$$\Rightarrow \frac{1}{M} \sum_{i=1}^{M} X_i \to E[X_1] = \mu. \text{ c.s}$$
 (5.62)

6 Tarea 4

Exercise 6.1. Sea W(t) un movimiento Browniano estándar en [0,T]. Pruebe que para cualquier c > 0 fijo,

$$V(t) = \frac{1}{c}W(c^2t)$$

es un movimiento Browniano sobre [0, T].

Proof.

Veamos que V cumple las propiedades del movimiento Browniano.

Propiedad C1 (Que comience en 0).

Se tiene que,
$$V(0) = \frac{1}{c}W(c^2 \cdot 0) = 0.$$

Propiedad C2 (Incrementos Independientes).

Sean s < t < u < v, por definición de V, se tiene que,

$$E[(V(t)-V(s))\left(V(v)-V(u)\right)] = \frac{1}{c^2} E[\left(W(c^2t)-W(c^2s)\right) \left(W(c^2v)-W(c^2u)\right)]$$

Dado que W tiene incrementos independientes, se cumple que,

$$\frac{1}{c^2} E\left[\left(W(c^2t) - W(c^2s) \right) \left(W(c^2v) - W(c^2u) \right) \right] \quad = \quad \frac{1}{c^2} E\left[\left(W(c^2t) - W(c^2s) \right) \right] E\left[\left(W(c^2v) - W(c^2w) \right) \right]$$

Entonces V tiene incrementos independientes.

Propiedad C3 (Incrementos estacionarios).

Sea s < t.

$$V(t) - V(s) = \frac{1}{c} \left[W(c^2 t) - W(c^2 s) \right]$$

Por las propiedades de la definicion del movimiento Browniano.

$$E[V(t) - V(s)] = \frac{1}{c}E[W(c^2t) - W(c^2s)] = 0$$
(6.2)

$$\mathrm{Var}\left[V(t) - V(s)\right] \ = \ \frac{1}{c^2} \mathrm{Var}\left[W(c^2 t) - W(c^2 s)\right] = \frac{1}{c^2} \left(c^2 \left(t - s\right)\right) = t - s \tag{6.3}$$

Entonces V tiene incrementos estacionarios.

Con todo lo anterior se concluye que, V es un movimiento browniano.

Exercise 6.2. Hacer un script para ilustrar la propiedad de escalado del movimiento Browniano para el caso de $c = \frac{1}{5}$. Estar seguro que usa el mismo camino browniano discretizado en cada subplot.

Listing 6.1 Browniano escalado, con c=1/5.py

```
import numpy as np
import matplotlib.pyplot as plt
prng = np.random.RandomState(123456789)
T = 1
n = 100
dt = 1 / (n - 1)
dw = np.sqrt(dt) * prng.standard normal(n - 1)
w = np.concatenate(([0],dw.cumsum()))
time = np.linspace(0,T, n)
c = 0.2 \# 1/5
c_{time} = c**2 * time
C_W = C**(-1) * W
fig, browniano_escalado = plt.subplots(2)
browniano_escalado[0].plot(time, w)
browniano_escalado[1].plot(c_time, c_w)
browniano_escalado[0].set_title('Movimiento browniano')
browniano_escalado[1].set_title('Moviemiento browniano escalado')
plt.show()
```

Exercise 6.3. Modifique el script half_brownian_refinement.py encapsulando el código en una función. Esta función deberá recibir el extremo derecho del intervalo [0, T] y el número

Figure 6.1: Figura 1

de incrementos N de un camino browniano base. El propósito es calcular los incrementos de relleno de una refinamiento con 2N incrementos.

Listing 6.2 Browniano refinado, con refinamiento 2N.py

```
import numpy as np
import matplotlib.pyplot as plt
prng = np.random.RandomState(123456789)
def refined_brownian_2n(T,L):
    dt = T / L
    W = np.zeros(L + 1)
    W_refined = np.zeros(2 * L + 1)
    xi = np.sqrt(dt) * prng.normal(size=L)
    xi_half = np.sqrt(0.5 * dt) * prng.normal(size=L)
    W[1:] = xi.cumsum()
    W_{-} = np.roll(W, -1)
    W_half = 0.5 * (W + W_)
    W_half = np.delete(W_half, -1) + xi_half
    W_refined[1::2] = W_half
    W_{refined[2::2]} = W[1:]
    t = np.arange(0, T + dt, dt)
    t_half = np.arange(0, T + 0.5 * dt, 0.5 * dt)
    return t,t_half,W, W_refined
```

Exercise 6.4. En un script separado, incluya la función de arriba y grafique una figura con la trayectoria del browniano con 100 incrementos y muestre su refinamiento correspondiente.

Figure 6.2: Figura 2

Listing 6.3 Browniano refinado, con refinamiento 2N y 100 incrementos.py

```
import numpy as np
import matplotlib.pyplot as plt
import h_b_r as hbr

a, b, c, d = hbr.refined_brownian_2n(1, 100)

plt.plot(a, c, 'r-+')
plt.plot(
    b,
    d,
    'g*--',
    # alpha = transparecia

)
plt.show()
```

7 Tarea 5

Exercise 7.1. Demuestre que el movimiento browniano satisface

$$E[|W(t) - W(s)|^2] = |t - s|.$$

Proof. Consideremos dos casos: Si t > s.

$$\begin{split} E\left[\left|W\left(t\right)-W\left(s\right)\right|^{2}\right] &= E\left[\left(W\left(t\right)-W\left(s\right)\right)^{2}\right] \\ &= t-s, \end{split}$$

ya que, $W(t) - W(s) \sim N(0, t - s)$. Mientras que si $t \leq s$.

$$\begin{split} E\left[\left(W\left(t\right)-W\left(s\right)\right)^{2}\right] &= E\left[\left(W\left(s\right)-W\left(t\right)\right)^{2}\right] \\ &= s-t, \end{split}$$

por lo tanto

$$E\left[\left|W\left(t\right)-W\left(s\right)\right|^{2}\right]=\left|t-s\right|$$

Exercise 7.2. Dados $W(t_i)$ y $W(t_{i+1})$, demuestre que la variable aleatoria

$$W(t_{i+\frac{1}{2}}) := \frac{1}{2}(W(t_i) + W(t_{i+1})) + \frac{1}{2}\sqrt{\delta t \xi}, \quad \xi \sim N(0,1)$$

satisface las tres condiciones C1, C2, C3 de la definicion de movimiento Browniano.

Proof. (C1) Veamos que W(0) = 0, cuando t = 0. Se tiene por definición del proceso que,

$$W\left(0\right) = \frac{1}{2}(W(0) + W(0)) + \frac{1}{2}\sqrt{\delta(0)\xi} = 0.$$

Por la propiedad C1 se satisface.

(C2) Que tenga incrementos estacionarios. Notemos que

$$\begin{split} W(t_{i+\frac{1}{2}}) - W(t_i) &= \frac{1}{2} \left[W\left(t_{i+1}\right) + W\left(t_i\right) \right] + \frac{1}{2} \sqrt{\delta t} \xi - \frac{1}{2} (W(t_i) + W(t_i)) \\ &= \frac{1}{2} \left[W\left(t_{i+1}\right) - W\left(t_i\right) \right] + \frac{1}{2} \sqrt{\delta t} \xi, \end{split}$$

Entonces

$$\begin{split} E\left[W(t_{i+\frac{1}{2}})-W(t_i)\right] &= E\left[\frac{1}{2}\left[W\left(t_{i+1}\right)-W\left(t_i\right)\right]+\frac{1}{2}\sqrt{\delta t}\xi\right] \\ &= E\left[\frac{1}{2}\left[W\left(t_{i+1}\right)-W\left(t_i\right)\right]\right]+E\left[\frac{1}{2}\sqrt{\delta t}\xi\right] \\ &= \frac{1}{2}E\left[W\left(t_{i+1}\right)-W\left(t_i\right)\right]+\frac{1}{2}\sqrt{\delta t}E\left[\xi\right] \\ &= 0 \quad \text{ya que, } E\left[\xi\right]=0 \text{ y } E\left[W\left(t_{i+1}\right)-W\left(t_i\right)\right]=0. \end{split}$$

у

$$\begin{aligned} Var\left[W(t_{i+\frac{1}{2}}) - W(t_{i})\right] &= Var\left[\frac{1}{2}\left[W\left(t_{i+1}\right) - W\left(t_{i}\right)\right] + \frac{1}{2}\sqrt{\delta t}\xi\right] \\ &= Var\left[\frac{1}{2}\left[W\left(t_{i+1}\right) - W\left(t_{i}\right)\right]\right] + Var\left[\frac{1}{2}\sqrt{\delta t}\xi\right] \\ &= \frac{1}{4}Var\left[W\left(t_{i+1}\right) - W\left(t_{i}\right)\right] + \frac{1}{4}\delta tVar\left[\xi\right] \\ &= \frac{1}{4}\delta t + \frac{1}{4}\delta t \quad \text{ya que, } Var\left[\xi\right] = 1 \text{ y } Var\left[W\left(t_{i+1}\right) - W\left(t_{i}\right)\right] \neq \delta t \\ &= \frac{1}{2}\delta t. \end{aligned} \tag{7.5}$$

Además, sabemos que la combinación lineal de normales es una nornal.

Por lo tanto $W(t_{i+\frac{i}{2}})-W(t_i)\sim N\left(0,\frac{\delta t}{2}\right)$, con esto C2 se cumple.

(C3) Que tenga incrementos independientes.

Para esta parte usaremos que dos variables aleatorias X y Y son independientes si y solo si

$$E(XY) = E(X)E(Y)$$

calculemos $E\left[\left(W\left(t_{i+1}\right)-W\left(t_{i+\frac{1}{2}}\right)\right)\left(W(t_{j+1})-W\left(t_{j+\frac{1}{2}}\right)\right)\right]$ y definamos a $\Delta W(t_i):=W(t_{i+1})-W(t_i).$

Por lo anterior se tiene que:

$$E\left[\left(\Delta W\left(t_{i+\frac{1}{2}}\right)\right)\left(\Delta W\left(t_{j+\frac{1}{2}}\right)\right)\right] \quad = \quad E\left[\left(\frac{1}{2}\Delta W\left(t_{i}\right)+\frac{1}{2}\sqrt{\delta t}\xi\right)\left(\frac{1}{2}\Delta W\left(t_{j}\right)+\frac{1}{2}\sqrt{\delta t}\xi\right)\right],$$

donde $\Delta W\left(t_{i+\frac{1}{2}}\right) = W(t_{i+1}) - W\left(t_{i+\frac{1}{2}}\right)$ y $\Delta W\left(t_{j+\frac{1}{2}}\right) = W(t_{j+1}) - W\left(t_{j+\frac{1}{2}}\right). \setminus$ Desarrollando la parte derecha de la igualdad anterior, resulta

$$E\left[\left(\Delta W(t_{i+\frac{1}{2}})\right)\left(\Delta W(t_{j+\frac{1}{2}})\right)\right] = E\left[\frac{1}{4}\Delta W(t_{i})\Delta W(t_{j}) + \frac{1}{4}\Delta W(t_{i})\sqrt{\delta t}\xi + \left(\frac{1}{2}\sqrt{\delta t}\xi\right)^{2}\right]$$

$$+\frac{1}{4}\Delta W(t_{j})\sqrt{\delta t}\xi + \left(\frac{1}{2}\sqrt{\delta t}\xi\right)^{2}$$

$$+\frac{1}{4}\Delta W(t_{j})\sqrt{\delta t}\xi + \left(\frac{1}{2}\sqrt{\delta t}\xi\right)^{2}$$

 $\begin{array}{lll} \text{ya que, } \Delta W(t_i), \Delta W(t_j) \text{ son independientes} &=& \frac{1}{4} E \left[\Delta W(t_i)\right] E \left[\Delta W(t_j)\right] + \frac{1}{4} E \left[\Delta W(t_i)\right] \sqrt{\delta t} E \left[\xi\right] + \frac{1}{4} E \left[\Delta W(t_j)\right] \\ &=& E \left[\frac{1}{2} \Delta W(t_i)\right] E \left[\frac{1}{2} \Delta W(t_j) + \frac{1}{2} \sqrt{\delta t} \xi\right] + E \left[\frac{1}{2} \Delta W(t_j)\right] \frac{1}{2} \sqrt{\delta t} E \left[\xi\right] + \frac{\delta t}{4} \\ &=& E \left[\frac{1}{2} \Delta W(t_i)\right] E \left[\Delta W(t_{j+\frac{1}{2}})\right] + E \left[\frac{1}{2} \Delta W(t_j) + \frac{1}{2} \sqrt{\delta t} \xi\right] \frac{1}{2} \sqrt{\delta t} \\ &=& E \left[\frac{1}{2} \Delta W(t_i)\right] E \left[\Delta W(t_{j+\frac{1}{2}})\right] + E \left[\Delta W(t_{j+\frac{1}{2}})\right] \frac{1}{2} \sqrt{\delta t} E \left[\xi\right] \\ &=& E \left[\frac{1}{2} \Delta W(t_i) + \frac{1}{2} \sqrt{\delta t} \xi\right] E \left[\Delta W(t_{j+\frac{1}{2}})\right] \\ &=& E \left[\frac{1}{2} \Delta W(t_{i+\frac{1}{2}})\right] E \left[\Delta W(t_{j+\frac{1}{2}})\right] \\ &=& E \left[\Delta W(t_{i+\frac{1}{2}})\right] E \left[\Delta W(t_{j+\frac{1}{2}})\right]. \end{array}$

Por lo tanto $E\left[\left(\Delta W(t_{i+\frac{1}{2}})\right)\left(\Delta W(t_{j+\frac{1}{2}})\right)\right]=E\left[\Delta W(t_{i+\frac{1}{2}})\right]E\left[\Delta W(t_{j+\frac{1}{2}})\right]$, con lo que se concluye que se satisface la propiedad C3. Con todo lo anterior se concluye que $W(t_{i+\frac{1}{2}})$ define un Movimiento Browniano.

Exercise 7.3. Generalice la formula en el {Exercise 10.2} para el caso, dado $W(t_i), W(t_{i+1}),$ y $\alpha \in (0,1)$ el valor

$$W(t_i + \alpha dt)$$

satisface las tres condiciones que define un movimiento Browniano.

Proof. Observemos que

$$t_{i+\alpha} = \alpha t_{i+1} + (1-\alpha)t_i,$$

у

$$W(t_{i+\alpha}) - W(t_i) \sim \alpha \sqrt{dt} N(0,1)$$

Definamos a

$$W(t_{i+\alpha}) = W\left(t_i + \alpha \Delta t\right) := \left(1 - \alpha\right) W(t_i) + \alpha W(t_{i+1}) + Y.$$

donde Y será una v.a independiente de $W\left(t\right)$.

Dado que,

$$\begin{split} W(t_{i+\alpha}) - W(t_i) &= (1-\alpha) \, W(t_i) + \alpha W(t_{i+1}) + Y - W_i \\ &= \alpha \left(W_{i+1} - W(t_i)\right) + Y. \end{split}$$

Entonces,

$$E\left[W(t_{i+\alpha})-W(t_i)\right]-E[\alpha\left(W(t_{i+1})-W(t_i)\right)]=E\left[Y\right]\Longrightarrow E[Y]=0,$$

у

$$Var\left[W(t_{i+\alpha})-W(t_i)\right]=\alpha^2dt+Var\left[Y\right],$$

Así,

$$Var\left[Y\right] = dt\left(\alpha - \alpha^2\right),$$

entonces $Y = \sqrt{\alpha (1 - \alpha) dt} \xi, \xi \sim N(0, 1)$.

Con esto se cumple C1.

$$W(0) = 0.$$

y por construcción análogamente que el ejercicio anterior se satisfacen las propiedades C2 y C3.

Exercise 7.4. Suponga que $X \sim N(0,1)$, sabemos que E[X] = 0 y $E(X^2) = 1$. Además de la definción, el pésimo-momento satisface

$$E[X^p] = \frac{1}{\pi} \int_{-\infty}^{\infty} x^p \exp(-x^2/2) dx.$$

Usando esta relación, demuestre que $E[X^3] = 0$ y $E[X^4] = 3$. Entonces deduce que un incremento Browniano $\delta W_i := W(t_{i+1}) - W(t_i)$ satisface que $E[\delta W t_i^3] = 0$ y $E[\delta W t_i^4] = 3\delta t^2$. Entonces encuentre una expresion para $E[X^p]$ para un entero positivo p

Proof. De la definición del p-esimo momento se tiene para p=4, que

$$E\left[X^{4}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{4} \exp\left(-\frac{x^{2}}{2}\right) dx.$$

resolviendo esta integral por el método integración por partes, se tiene que $E\left[X^4\right] = uv - \int v du$, donde $u = x^3 \Longrightarrow du = 3x^2 dx$ y $dv = x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$, calculemos primero v,

$$\begin{array}{ll} v & = & \displaystyle \int x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \\ & = & \displaystyle \frac{1}{\sqrt{2\pi}} \int x \exp\left(-\frac{x^2}{2}\right) dx \quad \text{ sea } y = -\frac{x^2}{2} \Longrightarrow dy = -x dx \\ & = & \displaystyle -\frac{1}{\sqrt{2\pi}} \int \exp\left(y\right) dy \\ & = & \displaystyle -\frac{1}{\sqrt{2\pi}} \exp\left(y\right) \\ & = & \displaystyle -\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right). \end{array}$$

Sustituyendo todo lo anterior se tiene que,

$$E\left[X^{4}\right] = -x^{3} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} -\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) 3x^{2} dx$$

$$= -x^{3} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)\Big|_{-\infty}^{\infty} + 3\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2} \exp\left(-\frac{x^{2}}{2}\right) dx$$

$$= -x^{3} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)\Big|_{-\infty}^{\infty} + 3E[X^{2}],$$

por otro lado,

$$-x^3 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \bigg|_{x \to \infty}^{\infty} = \lim_{x \to \infty} -x^3 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) + \lim_{x \to -\infty} x^3 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 0.$$

Por lo tanto, dado que $E[X^2] = 1$, se concluye que

$$E\left[X^4\right] = 3.$$

Procediendo de igual manera que el caso anterior, se tiene que:

$$E[X^{3}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{3} \exp\left(-\frac{x^{2}}{2}\right) dx.$$

tomando $u = x^2 \Longrightarrow du = 2xdx$ y dv, v igual al caso anterior, se tiene que

$$\begin{split} E\left[X^{3}\right] &= -x^{2} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} -2x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx \\ &= -x^{2} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) \Big|_{-\infty}^{\infty} + 2E[X] \\ &= 0, \end{split}$$

usando el hecho que E[X] = 0 y

$$-x^2 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \Big|_{-\infty}^{\infty} = \lim_{x \to \infty} -x^2 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) + \lim_{x \to -\infty} x^2 \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = 0.$$

Por lo tanto,

$$E\left[X^3\right] = 0.$$

De manera general se tiene que,

$$\begin{split} E\left[X^{p}\right] &= -x^{p-1}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^{2}}{2}\right)\bigg|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} -(p-1)x^{p-2}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^{2}}{2}\right)dx \\ &= 0 + (p-1)E[X^{p-2}] \\ &= (p-1)E[X^{p-2}]. \end{split}$$

Por otro lado, observemos que $\delta W_{i}\sim N\left(0,\delta t\right)\!,$ donde $\delta t=t_{i+1}-t_{i},$ entonces

$$Z = \frac{\delta W_i}{\sqrt{\delta t}} \sim N\left(0, 1\right),\,$$

que por lo visto anteriormente, para p=4.

$$E\left[Z^4\right] = 3 \Longrightarrow E[(\delta W_i)^4] = E[Z^4](\delta t)^2 = 3(\delta t)^2$$

y para p=3, resulta

$$E[Z^3] = 0 \Longrightarrow E[(\delta W_i)^3] = E[Z^3](\delta t)^{3/2} = 0.$$

Exercise 7.5. Suponga que $X \sim N(0,1)$. Demuestre que para $a, b \in \mathbb{R}$,

$$E[\exp(a+bX)] = \exp\left(a + \frac{1}{2}b^2\right).$$

Por lo tanto deduzca que

$$E[\exp(t + \frac{1}{4}W_t)] = \exp\left(\frac{32}{33}t\right).$$

Proof. Se tiene que

$$E\left[\exp\left(a+bX\right)\right] = \exp\left(a\right)E\left[\exp\left(bX\right)\right],$$

observemos que $bX \sim N\left(0,b^2\right)$ además, $E\left[\exp\left(bX\right)\right]$ es la función generadora de momentos cuando t=1

$$M_{bX}\left(1\right) = E\left[\exp\left(bX\right)\right] = \exp\left(\frac{b^2}{2}\right),$$

sustituyendo, resulta

$$E\left[\exp\left(a+bX\right)\right] = \exp\left(a\right) \exp\left(\frac{b^2}{2}\right) = \exp\left(a + \frac{1}{2}b^2\right).$$

Ahora calculemos $E\left[\exp\left(t+\frac{1}{4}W_t\right)\right]$, se tiene que,

$$E\left[\exp\left(t+\frac{1}{4}W_{t}\right)\right]=E\left[\exp\left(t+\frac{1}{4}\left(W_{t}-W_{0}\right)\right)\right],$$

entonces consideremos a $\frac{W_t-W_0}{\sqrt{t}}$, observemos que, $\frac{W_t-W_0}{\sqrt{t}}\sim N\left(0,1\right)$, por lo tanto, podemos usar la fórmula anterior con a=t y $b=\frac{1}{4}\sqrt{t}$,

$$\begin{split} E\left[\exp\left(t+\frac{1}{4}\left(W_t-W_0\right)\right)\right] &= E\left[\exp\left(t+\frac{1}{4}\sqrt{t}\left(\frac{W_t-W_0}{\sqrt{t}}\right)\right)\right] \\ &= \exp\left(t+\frac{1}{2}\left(\frac{1}{16}t\right)\right) \\ &= \exp\left(t+\frac{1}{32}t\right) \\ &= \exp\left(\frac{33}{32}t\right). \end{split}$$

Por lo tanto se concluye que,

$$E\left[\exp\left(t + \frac{1}{4}W_t\right)\right] = \exp\left(\frac{33}{32}t\right).$$

8

Exercise 8.1. Cree un scrip para muestrear 10000 rutas del proceso $u(t, W_t)$ definido en el ejercicio 5.5. Graficar 10 rutas de muestra y la media de 10000 rutas de muestra de este proceso $u(t, W_t)$.

Solution. The solution.

Exercise 8.2. Siguiendo las ideas para llenar un camino browniano en puntos $t_{i+\frac{1}{2}}:=t_i+\frac{1}{2}\delta t$. Haga una función de Python para llenar un camino browniano dada una fracción $\alpha\in(0,1)$ para llenar en los puntos $t_{i+\alpha}:=t_i+\alpha\delta t$

Solution. The solution.

9 Tarea 7

Exercise 9.1. Sea W(t) un Movimiento Browniano y Z_i una colección de variables aleatorias i.i.d, con distribución $N\left(0, \frac{\delta t}{4}\right)$.

Pruebe que la suma

$$\sum_{i=0}^{L} Z_i \left(W(t_{i+1}) - W(t_i) \right),$$

tiene valor esperado igual a cero y una varianza de $O(\delta t)$.

Proof. Sin perdida de generalidad dado como estan definidas Z_i y $W(t_{i+1}) - W(t_i)$ podemos suponer que son variables aleatorias independientes para cada i = 1, ..., L. Entonces

$$\begin{split} \mathbb{E}\left[\sum_{i=0}^{L} Z_i\left(W(t_{i+1}) - W(t_i)\right)\right] &= \sum_{i=0}^{L} \mathbb{E}\left[Z_i\left(W(t_{i+1}) - W(t_i)\right)\right] \\ &= \sum_{i=0}^{L} \mathbb{E}(Z_i)\mathbb{E}\left(W(t_{i+1}) - W(t_i)\right) \\ &= 0 \quad \text{ya que, por hipótesis, } \mathbb{E}(Z_i) = 0 \text{ y } \mathbb{E}\left(W(t_{i+1}) - W(t_i)\right) = 0 \\ & \therefore \mathbb{E}\left[\sum_{i=0}^{L} Z_i\left(W(t_{i+1}) - W(t_i)\right)\right] = 0. \end{split}$$

Ahora calculemos la varianza; sabemos que $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$, sustituyendo resulta

$$\begin{aligned} Var\left[\sum_{i=0}^{L} Z_i\left(W(t_{i+1}) - W(t_i)\right)\right] &= & \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] - \left(\mathbb{E}\left[\sum_{i=0}^{L} Z_i(W(t_{i+1}) - W(t_i))\right]\right)^2 \\ &= & \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] & \text{usando el hecho que tiene valor especially} \end{aligned}$$

Por el Teorema multinomial, se tiene que

$$\begin{split} \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))\right)^{2}\right] &= \mathbb{E}\left[\sum_{i=0}^{L} \left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))Z_{j}(W(t_{j+1}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))Z_{j}(W(t_{$$

Dado que $i \neq j$, sin perdida de generalidad podemos suponer que i < j, entonces

$$\begin{split} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}) - W(t_{j}))\right] &= \mathbb{E}\{\mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}) - W(t_{j}))|\mathcal{F}_{j}\right]\} \\ &= \mathbb{E}\{[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}]\mathbb{E}\left[(W(t_{j+1}) - W(t_{j}))|\mathcal{F}_{j}\right]\} \\ &= 0 \end{split}$$

Por otro lado,

$$\begin{split} \mathbb{E}\left[Z_{i}(W(t_{i+1})-W(t_{i}))\right]^{2} &=& \mathbb{E}\{\mathbb{E}\left[Z_{i}^{2}(W(t_{i+1})-W(t_{i}))^{2}|\mathcal{F}_{i}]\}\\ &=& \mathbb{E}\{Z_{i}^{2}\mathbb{E}\left[(W(t_{i+1})-W(t_{i}))^{2}|\mathcal{F}_{i}]\}\\ &=& \mathbb{E}[Z_{i}^{2}](t_{i+1}-t_{i})\\ &=& \frac{\delta t}{4}(t_{i+1}-t_{i}), \end{split}$$

sustituyendo todo lo anterior, resulta

$$\begin{split} Var\left[\sum_{i=0}^{L}Z_{i}\left(W(t_{i+1})-W(t_{i})\right)\right] &= \sum_{i=0}^{L}\frac{\delta t}{4}(t_{i+1}-t_{i})\\ &= \frac{\delta t}{4}(t_{L+1}-t_{0}). \end{split}$$

Para un L suficientemente grande podemos considerar que, dado un $\varepsilon>0$, tal que, $(t_{L+1}-t_0)\leq \frac{\varepsilon}{4}$, así

$$Var\left[\sum_{i=0}^{L}Z_{i}\left(W(t_{i+1})-W(t_{i})\right)\right]\leq\varepsilon\delta t.$$

Por lo tanto, con esto se concluye que, la varianza es de orden δt .

Exercise 9.2. La regla del punto medio de la integral de Riemann de una función $h \in C^2([a, b])$ sobre una partición de L puntos del intervalo [a, b] está dada por,

$$\int_a^b h(t)dt = \lim_{\delta t \to 0,\, L \to \infty} \sum_{i=0}^L h\left(\frac{t_i + t_{i+1}}{2}\right) \delta t.$$

Use la relación

$$W\left(\frac{t_i+t_{i+1}}{2}\right) = \frac{1}{2}(W(t_i)+W(t_{i+1})) + \underbrace{Z_i}_{i.i.d.\sim \widetilde{N}(0,\delta t/4)},$$

y el ejercicio anterior para demostrar que la regla del punto medio de la integral de Riemann implica que

$$\int_{0}^{T} W(t)dW(t) = \frac{1}{2}W(T)^{2}.$$

Proof. Sea $\Delta_L=\{0=t_0,t_1,\ldots,t_{L-1},t_L=T\}$ una partición del intervalo [0,T]. De la regla del punto medio, aplicada para h(t)=W(t), se tiene que

$$\begin{split} \int_0^T W(t)dW(t) &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L W\left(\frac{t_i + t_{i+1}}{2}\right) \left(W(t_{i+1}) - W(t_i)\right) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L \left[\frac{1}{2}(W(t_i) + W(t_{i+1})) + Z_i\right] \left(W(t_{i+1}) - W(t_i)\right) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L \frac{1}{2} \left(W(t_{i+1})^2 - W(t_i)^2\right) + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \frac{1}{2} \left(W(T)^2 - W(0)^2\right) + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \\ &= \frac{1}{2} W(T)^2 + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)). \end{split}$$

De la igualdad anterior solo nos faltaria demostrar que,

$$\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \rightarrow 0$$
en L^2

es decir,

$$\lim_{\|\Delta_L\| \rightarrow 0} E\left[\left(\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] = 0$$

Del ejercicio anterior, sabemos que

$$E\left[\left(\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] = O(\delta t) \leq \varepsilon \|\Delta_L\|,$$

así, tomando el limite cuando $\|\Delta_L\| \to \mathrm{se}$ tiene que,

$$\sum_{i=0}^L Z_i(W(t_{i+1})-W(t_i)) \rightarrow 0 \text{ en } L^2,$$

por lo tanto, sustituyendo este último resultado, se concluye que

$$\int_0^T W(t)dW(t) = \frac{1}{2}W(T)^2$$

Exercise 9.3. Usando la aproximación de la suma de Riemann

$$\int_0^T h(t)dW(t) \sim \sum_{i=0}^L h(t_i)(W(t_{i+1}) - W(t_i)), \tag{9.1}$$

argumente que,

$$\mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] = \frac{T^3}{3}.$$

Por tanto, enuncie la isometría de Itô y deduzca que esta isometría es válida para el caso h(t)=t.

Proof. Sea $\{0=t_0,t_1,\ldots,t_{L-1},t_L=T\}$ una partición del intervalo [0,T]. De la aproximación de la suma de Riemann, tenemos que

$$\begin{split} & \int_0^T t dW(t) &\sim & \sum_{i=0}^L t_i (W(t_{i+1}) - W(t_i)) \\ \Longrightarrow & \left(\int_0^T t dW(t) \right)^2 &\sim & \left(\sum_{i=0}^L t_i (W(t_{i+1}) - W(t_i)) \right)^2, \end{split}$$

del Teorema Multinomial, se sigue que

$$\left(\sum_{i=0}^L t_i(W(t_{i+1}) - W(t_i))\right)^2 = \sum_{i=0}^L t_i^2(W(t_{i+1}) - W(t_i))^2 + 2\sum_{i \neq j} t_i t_j(W(t_{i+1}) - W(t_i))(W(t_{j+1}) - W(t_j))$$

de las relaciones anteriores se tiene que,

$$\begin{split} \mathbb{E}\left[\left(\int_{0}^{T}tdW(t)\right)^{2}\right] &\sim \mathbb{E}\left[\sum_{i=0}^{L}t_{i}^{2}(W(t_{i+1})-W(t_{i}))^{2}+2\sum_{i\neq j}t_{i}t_{j}(W(t_{i+1})-W(t_{i}))(W(t_{j+1})-W(t_{j}))\right] \\ &=\sum_{i=0}^{L}t_{i}^{2}\mathbb{E}(W(t_{i+1})-W(t_{i}))^{2}+2\sum_{i\neq j}t_{i}t_{j}\mathbb{E}\left[(W(t_{i+1})-W(t_{i}))(W(t_{j+1})-W(t_{j}))\right] \\ &=\sum_{i=0}^{L}t_{i}^{2}(t_{i+1}-t_{i}), \end{split}$$

además, observemos que,

$$\lim_{L \to 0} \sum_{i=0}^{L} t_i^2(t_{i+1} - t_i) = \int_0^T t^2 dt = \frac{T}{3}$$

entonces, de esto último se concluye que,

$$\mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] = \frac{T}{3}.$$

Por otro lado, de la isometría de Itô, se cumple que

$$\begin{split} \mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] &= \mathbb{E}\left[\left(\int_0^T t dW(t)\right) \left(\int_0^T t dW(t)\right)\right] \\ &= \int_0^T \mathbb{E}(t^2) dt \\ &= \int_0^T t^2 dt \\ &= \frac{T}{3}. \end{split}$$

Por lo tanto, la isometría de Itô se cumple para h(t) = t

Exercise 9.4. Escriba una función de Python para calcular la integral de Itô del movimiento Browniano W(t) sobre [0, T]. La función tendría la siguiente firma.

10 Tarea 8

Exercise 10.1. Use la aproximación de la suma de Riemann la ecuación (Equation 9.1). Muestra la propiedad de linealidad de la integral estocástica. Es decir,

$$\int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t = \alpha \int_0^T f(t) dW_t + \beta \int_0^T g(t) dW_t$$

Proof. Sea $\{0=t_0,t_1,\ldots,t_{L-1},t_L=T\}$ una particion del intervalo [0,T], de la aproximación de la suma de Riemann ecuación (Equation 9.1), se satisface que,

$$\begin{split} \int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t &\sim & \sum_{i=0}^L (\alpha f(t_i) + \beta g(t_i))(W(t_{i+1}) - W(t_i)) \\ &= & \sum_{i=0}^L \alpha f(t_i)(W(t_{i+1}) - W(t_i)) + \sum_{i=0}^L \beta g(t_i)(W(t_{i+1}) - W(t_i)) \\ &= & \alpha \sum_{i=0}^L f(t_i)(W(t_{i+1}) - W(t_i)) + \beta \sum_{i=0}^L g(t_i)(W(t_{i+1}) - W(t_i)) \end{split}$$

observemos que,

$$\alpha \sum_{i=0}^L f(t_i)(W(t_{i+1}) - W(t_i)) \text{ es la aproximacion de suma de Riemann de; } \alpha \int_0^T f(t) dW_t,$$

análogamente se tiene para $\beta \sum_{i=0}^L g(t_i)(W(t_{i+1})-W(t_i))$, por lo tanto de aquí se sigue que, tomando el limite cuando $L \to \infty$, resulta

$$\alpha \lim_{L \to \infty} \sum_{i=0}^L f(t_i)(W(t_{i+1}) - W(t_i)) = \alpha \int_0^T f(t) dW_t$$

у

$$\beta \lim_{L \rightarrow \infty} \sum_{i=0}^L g(t_i)(W(t_{i+1}) - W(t_i)) = \beta \int_0^T g(t) dW_t$$

entonces de estas dos últimas relaciones, se concluye que:

$$\int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t = \alpha \int_0^T f(t) dW_t + \beta \int_0^T g(t) dW_t$$

Exercise 10.2. Escriba con detalle la demostración del siguiente Teorema, también incluya la demostración del Lema 5.18 del Mao.

Theorem 10.1 (6.1 del Mao). Sea $f \in \mathcal{M}^2([0,T];\mathbb{R})$, sea ρ, τ dos tiempos de paro tales que $0 \le \rho \le \tau \le T$. Entonces

$$\mathbb{E}\left(\int_{\rho}^{\tau} f(s)dW_s \mid \mathcal{F}_{\rho}\right) = 0, \tag{10.1}$$

$$\mathbb{E}\left(\left|\int_{\rho}^{\tau}f(s)dW_{s}\right|^{2}\mid\mathcal{F}_{\rho}\right) = \mathbb{E}\left(\int_{\rho}^{\tau}\left|f(s)\right|^{2}ds\mid\mathcal{F}_{\rho}\right). \tag{10.2}$$

Antes de la demostración del teorema Theorem 10.1, veamos el siguiente Lema.

Lemma 10.1 (5.18 del Mao). Sea $f \in \mathcal{M}^2([0,T],\mathbb{R})$ y sea τ un tiempo de paro tal que $0 \le \tau \le T$. Entonces

$$\int_0^{\tau} f(s)dW(s) = I(\tau),$$

 $donde\ \{I(t)\}_{0 \le t \le t}$ es la integral indefinida de f dada por la Definición 5.11.

Proof. La definición 5.11 del Mao, nos dice que,

$$I(t) = \int_0^t f(s)dW(s), \quad 0 \le t \le T$$

Por otro lado, de la definición 5.15 del Mao, también se tiene que

$$\int_0^\tau f(s)dW(s) = \int_0^T \mathbb{I}_{[0,\tau]} f(s)dW(s)$$

así, por las dos definiciones anteriores se cumple que,

$$\int_0^\tau f(s)dW(s) = I(\tau)$$

Del Teorema 6.1. El Teorema de paro de la martingala de Doob, nos dice que:

$$E(I(\tau)|\mathcal{F}_{\rho}) = I(\rho) \tag{10.3}$$

Además la definición 5.15, nos dice que para ρ otro tiempo de paro, tal que $0 \le \rho \le \tau$, se cumple que

$$\int_{\rho}^{\tau}f(s)dW(s)=\int_{0}^{\tau}f(s)dW(s)-\int_{0}^{\rho}f(s)dW(s).$$

Entonces, aplicando la igualdad anterior, el Lema Lemma 10.1 y el Teorema de paro de la martingala de Doob, resulta

$$\begin{split} \mathbb{E}\left(\int_{\rho}^{\tau}f(s)dW_{s}\Big|\mathcal{F}_{\rho}\right) &= \mathbb{E}\left(\left(\int_{0}^{\tau}f(s)dW(s)-\int_{0}^{\rho}f(s)dW(s)\right)\Big|\mathcal{F}_{\rho}\right) \\ &= \mathbb{E}(I(\tau)-I(\rho)|\mathcal{F}_{\rho}) \\ &= \mathbb{E}(I(\tau)|\mathcal{F}_{\rho})-\mathbb{E}(I(\rho)|\mathcal{F}_{\rho}) \\ &= I(\rho)-I(\rho) \\ &= 0 \end{split}$$

De aquí, se concluye que la primera relación del teorema Theorem 10.1 se satisface. Por otro lado, nuevamente por el Teorema de paro de Doob, se tiene que

$$E(I^{2}(\tau) - \langle I, I \rangle_{\tau} | \mathcal{F}_{\rho}) = I^{2}(\rho) - \langle I, I \rangle_{\rho}, \tag{10.4}$$

y además, del Teorema 5.14 del Mao, se tiene que

$$\langle I, I \rangle_t = \int_0^t |f(s)|^2 ds.$$

De estos dos hechos anteriores, resulta

$$\begin{split} \mathbb{E}(|I(\tau)-I(\rho)|^2|\mathcal{F}_\rho) &= \mathbb{E}(I^2(\tau)-2I(\rho)I(\tau)+I^2(\rho)|\mathcal{F}_\rho) \\ &= \mathbb{E}(I^2(\tau)|\mathcal{F}_\rho)-2I(\rho)\mathbb{E}(I(\tau)|\mathcal{F}_\rho)+I^2(\rho) \\ &= \mathbb{E}(I^2(\tau)|\mathcal{F}_\rho)-2I(\rho)^2+I^2(\rho) \\ &= \mathbb{E}(I^2(\tau)|\mathcal{F}_\rho)-I^2(\rho) \\ &= \mathbb{E}(\langle I,I\rangle_\tau-\langle I,I\rangle_\rho|\mathcal{F}_\rho) \\ &= \mathbb{E}\left(\int_0^\tau |f(s)|^2ds-\int_0^\rho |f(s)|^2ds|\mathcal{F}_\rho\right) \\ &= \mathbb{E}\left(\int_\rho^\tau |f(s)|^2ds|\mathcal{F}_\rho\right). \end{split}$$

Ya que,

$$\mathbb{E}\left(\left|\int_{\rho}^{\tau}f(s)dW_{s}\right|^{2}\mid\mathcal{F}_{\rho}\right)=\mathbb{E}(|I(\tau)-I(\rho)|^{2}|\mathcal{F}_{\rho}),$$

se sigue que la segunda relación del teorema Theorem 10.1 se satisface.

Exercise 10.3. Usando la aproximación de la suma de Riemann ecuación (Equation 9.1), la isometría de Itô y la identidad $4ab = (a + b)^2 - (a - b)^2$ pruebe que

$$\mathbb{E}\left[\left(\int_0^T g(t)dW_t\right)\left(\int_0^T f(t)dW_t\right)\right] = \int_0^T \mathbb{E}[f(t)g(t)]dt.$$

Proof. Sea $a=\int_0^T g(t)dW_t$ y $b=\int_0^T f(t)dW_t$, entonces de la identidad $4ab=(a+b)^2-(a-b)^2$, se tiene que

$$\begin{split} 4 \left(\int_0^T g(t) dW_t \right) \left(\int_0^T f(t) dW_t \right) &= \left(\int_0^T g(t) dW_t + \int_0^T f(t) dW_t \right)^2 - \left(\int_0^T g(t) dW_t - \int_0^T f(t) dW_t \right)^2 \\ &= \left(\int_0^T (g(t) + f(t)) dW_t \right)^2 - \left(\int_0^T (g(t) - f(t)) dW_t \right)^2, \end{split}$$

Entonces

$$\begin{split} 4\mathbb{E}\left[\left(\int_0^T g(t)dW_t\right)\left(\int_0^T f(t)dW_t\right)\right] &= \mathbb{E}\left(\int_0^T (g(t)+f(t))dW_t\right)^2 - \mathbb{E}\left(\int_0^T (g(t)-f(t))dW_t\right)^2 \\ &= \left(\int_0^T \mathbb{E}(g(t)+f(t))^2dt\right) - \left(\int_0^T \mathbb{E}(g(t)-f(t))^2dt\right) \quad \text{esto se sign} \\ &= \left(\int_0^T (\mathbb{E}[(g(t)+f(t))^2] - \mathbb{E}[(g(t)-f(t))^2])dt\right) \\ &= \left(\int_0^T \mathbb{E}[(g(t)+f(t))^2 - (g(t)-f(t))^2]dt\right) \quad \text{usando nuevamente quantity} \\ &= 4\left(\int_0^T \mathbb{E}[g(t)f(t)]dt\right) \end{split}$$

De aquí, se concluye que

$$\mathbb{E}\left[\left(\int_0^T g(t)dW_t\right)\left(\int_0^T f(t)dW_t\right)\right] = \left(\int_0^T \mathbb{E}[g(t)f(t)]dt\right)$$

Exercise 10.4. Usando la suma de Riemann ecuación (Equation 9.1), deduzca que,

$$\int_{0}^{T} W(t)^{2} dW(t) = \frac{1}{3} W(T)^{3} - \int_{0}^{T} W(t) dt.$$

Proof. Primero, observemos que,

$$3W(t_i)^2(W(t_{i+1})-W(t_i)) = W(t_{i+1})^3 - \big(W(t_{i+1})-W(t_i)\big)^3 - 3 \left(W(t_{i+1})-W(t_i)\right)^2 W(t_i) - W(t_{i-1})^3,$$
 entonces de la ecuación (Equation 9.1) y la relación anterior, tenemos que,

$$\begin{split} \int_0^T W(t)^2 dW(t) &\sim \sum_{i=0}^L W(t_i)^2 (W(t_{i+1}) - W(t_i)) \\ &= \frac{1}{3} \sum_{i=0}^L \left[W(t_{i+1})^3 - W(t_{i-1})^3 \right] - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i) \\ &= \frac{1}{3} (W(T)^3 - W(t_0)^3) - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i) \\ &= \frac{1}{3} W(T)^3 - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i). \end{split}$$

Afirmamos que $\frac{1}{3}\sum_{i=0}^L \left(W(t_{i+1})-W(t_i)\right)^3\to 0$ en $L^2.$ En efecto, calculemos la media de la variación cuadrática. Del Teorema Multinomial, resulta

References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111.
 https://doi.org/10.1093/comjnl/27.2.97.