

Focus for this lecture

Data Visualization

When Data is High-Dimensional

Motivation

Two sides to data visualization:

- Data Exploration: Making sure you understand your data
- Data Communication: Making sure others understand your insights and/or can use your data easily

Why Data Visualization

How do we look at HD data?

- Dimensionality Reduction
- Other methods
 - Have limitations

PLOT INDEPENDENT DIMENSIONS

Dimensionality Reduction: Assumptions

- High-dimensional data often lives in a lower dimensional manifold (sub-space)
- We can represent the data points well by using just their lower dimensional co-ordinates
- The lower dimensional data will capture the distribution of (pair-wise distances between) points in high dimensions
- If the manifold is a linear sub-space, we can use PCA

Principal Component Analysis

PCA is used to reduce the dimensionality of data

Dimensionality Reduction: Approaches

- Global Approach: All distances in HD are equally important and should be captured in the LD representation
 - Like PCA?
- Local Approach: Only smaller distances in HD are meaningful /reliable/ interesting to us
 - Could weigh smaller and larger distances differently?

Learning Problem

high-dimensional data set

$$X = \{x_1, x_2, ..., x_n\}$$

two or three-dimensional data

$$\rightarrow \mathcal{Y} = \{y_1, y_2, ..., y_n\}$$

Formal Framework

Minimize an objective function that measures the discrepancy between similarities in the data and similarities in the map

MDS (Multidimensional scaling)

 Minimize an objective function that measures the discrepancy between similarities in the data and similarities in the map.

• Distance between samples in "high" dimension and "low" dimension is same (or D-d) is minimized.

MDS: Multidimensional Scaling

- Find a representation that best preserves pair-wise distances
- Mathematically:
- Start with random vectors in LD
- Update the vectors so as to minimize the cost function
 - Gradient descent

$$Cost = \sum_{i < j} (d_{ij} - \hat{d}_{ij})^2$$

$$d_{ij} = ||x_i - x_j||^2$$

$$\hat{d}_{ij} = \mid\mid y_i - y_j \mid\mid^2$$

Can get stuck in local minima

Still Linear Can be PCA

In complex datasets, large distances are usually less indicative

PCA: Fundamental Shortcoming

World is often non-linear

Consider the Swiss-Roll dataset

– What would PCA give?

- What do we want?

What do we really want?

- Find a lower-dimensional representation such that:
 - Distances in LD ≅ Distances in HD
 - Closer distances are more important
- Unrolling the Swiss roll
- Do not insist on being able to get HD back from LD
 - —Using for visualization

In some cases, geodesic distances are better than Euclidean distances

t-SNE

Non-Linear Dimensionality Reduction

ISOMAP and LLE

Deploy

Model

ISOMAP (Isometric Mapping)

- $d(\bullet, \circ) > d(\bullet, \bullet)$
- Is Euclidean metric the right distance metric?
- How to robustly measure distances along the manifold?

ISOMAP

- How does ISOMAP measure the MD?
- Connect each data point to its K nearest neighbors in the high-dimensional space.
- Link weights: True Euclidean distances.
- MD(A,B) = ShortestPath(A,B) in this **neighborhood graph**.
- Compute the low-dimensional embedding as in Metric MDS.

Dijkstra's algorithm for shortest path

Dynamic Programming

Issues with ISOMAP

- The connectivity of each data point in the neighborhood graph is defined as its nearest k Euclidean neighbors in the highdimensional space.
- This step is vulnerable to "short-circuit errors" if *k* is too large with respect to the manifold structure or if noise in the data moves the points slightly off the manifold.
- Even a single short-circuit error can alter many entries in the geodesic distance matrix, which in turn can lead to a drastically different (and incorrect) low-dimensional embedding.
- Conversely, if k is too small, the neighborhood graph may become too sparse to approximate geodesic paths accurately.

ISOMAP on Swiss Roll data

LLE: Locally Linear Embedding

Idea: Preserve the structure of local neighbourhood

$$\mathbf{x}_i \approx \sum_{i} w_{ij} \mathbf{x}_j$$

- Approach:
 - Approach: j—Represent each point as a weighted combination of its Neighbours in HD. Remember the $w_{ij}s$.
 - —Find a LD representation that minimize the representation error:

$$Cost = \sum_{i} ||\mathbf{y}_{i} - \sum_{j \in N(i)} w_{ij} \mathbf{y}_{j}||^{2}$$

- The weights w_{ij} refer to the amount of contribution the point x_i has while reconstructing the point x_i . The cost function is minimized under two constraints: (a) Each data point x_i is reconstructed only from its neighbors, thus enforcing w_{ij} to be zero if point x_i is not a neighbor of the point x_i and (b) The sum of every row of the weight matrix equals 1.
- Also ys should have unit variance across each dimension.

LLE Examples

t-SNE (T-distributed_stochastic_neighbor_embedding)

Improving Visualization

SNE and t-SNE

- Idea is simple: Instead of distance think about probabilities. P_{ij} as the probability of j in the neighborhood of i.
- For each point, we have now a probability vector (of size N).
 - SNE uses Gaussian. T-SNE uses another t-distribution (with 1 degree of freedom).
- We want these prob vectors to be the same in low dimensional.
- Optimize using gradient descent.

SNE: A Probabilistic Embedding

- For point j, there is a probability of it being called a neighbour of i.
- The probability is a function of the distance between i and j in HD.
- We end up with a matrix of probabilities.
- Each point is then represented as a probability distribution over all other points: A row of the above matrix

$$p_{j|i} = \frac{e^{-d_{ij}^2/2\sigma_i^2}}{\sum_{k} e^{-d_{ik}^2/2\sigma_i^2}}$$

SNE on MNIST

MNIST Handwritten digits dataset

- 28x28 binary images
- Large variations in writing

t-SNE on MNIST; Summary

- Classes are much better separated
- Note that the method is unsupervised!!!
- Efficient approximations exist
- Most popular LD visualization at the moment.

PCA on MNIST (0-9)

SNE on MNIST *(0-5)*

Are we overfitting?

"classic" Machine Learning	vs Visualization
Goal: Generalization	Goal: Visualization
Given a Training set, Do well on a Test set.	We just want to "do well" on our data ("training set")
Overfitting is undesirable	"Overfitting" is desirable

t-SNE

9

ImageNet

ImageNet

Word2vec

- Input: large corpus of text
- Embed words in to a high-dim space
 - Words with common contexts in the corpus are close in the space

Word2vec

http://nlp.yvespeirsman.be/blog/visualizing-word-embeddings-with-tsne/

Summary

Thanks!!

Questions?