When randomness opens new possibilities: Acknowledging the stimulus sampling variability in Experimental Psychology

Ottavia M. Epifania^{1,2,3}, Pasquale Anselmi¹, Egidio Robusto¹

University of Padova (IT)
 Psicostat Group, University of Padova (IT)
 Catholic University of the Sacred Heart, Milan (IT)

Randomness and possibilities

Introduction
Stimuli are fixed, respondents are random

Introduction

Stimuli are fixed, respondents are random

Randomness and possibilities

Introduction
Stimuli are fixed, respondents are random

Respondents are random

Sampled from a lager population Need for acknowledging the sampling variability Results can be generalized to other respondents belonging to the same population

Stimuli/item are fixed

Taken to be entire population

There is no sampling variability

There is no need to generalize the results because the stimuli are the population

```
Randomness and possibilities

Introduction
Stimuli are fixed, respondents are random
```

However...

The stimuli can also represent a sample of a larger universe:

Example

Positive vs. Negative attributes in Linguistic

There is a universe of positive words

Only a sample of positive attributes (e.g., good, nice) and negative attributes (e.g., bad, evil) are administered

So... there must be a sampling variability

andonniess and possibilities	
-Introduction	
What if the sampling variability is not acknowledged	

Introduction

What if the sampling variability is not acknowledged

Generalizability

The results can be generalized at the respondents level but not at the stimulus level \rightarrow Results can be generalized if and only if the exact same set of stimuli is used

Generalizability is bounded to the specific set of stimuli used in the experiment

Robustness of the results

Random variability at the stimulus level might inflate the probability of committing Type I errors

Averaging across stimuli to obtain a person-level score results in biased estimates due to the noise in the data

Loss of information

Every stimulus is assumed to be equal \rightarrow to have the same effect on the observed score

All the variability is not considered as well as all the information that can be obtained from it

Generalized linear model for dichotomous responses

Generalized linear model for dichotomous responses

Random effects and random factors

Linear component in a (G)LM:

$$\eta = \beta X,\tag{1}$$

where β indicates the coefficients of the fixed intercept and slope(s), and X is the model-matrix.

Linear components in a (Generalized) Linear Mixed-Effects Model (GLMM):

$$\eta = \beta X Z d, \tag{2}$$

where Z is the matrix and d is the vector of the random effects (not parameters!)

Random effects and random factors

Linear component in a (G)LM:

$$\eta = \beta X,\tag{1}$$

where β indicates the coefficients of the fixed intercept and slope(s), and X is the model-matrix.

Linear components in a (Generalized) Linear Mixed-Effects Model (GLMM):

$$\eta = \beta X Z d, \tag{2}$$

where Z is the matrix and d is the vector of the random effects (not parameters!)

Best Linear Unbiased Predictors

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

$$P(x_{ps} = 1) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

GLM

$$P(x_{ps} = 1) = \frac{\exp(\theta_p + b_s)}{1 + \exp(\theta_p + b_s)}$$

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

$$P(x_{ps} = 1) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

$$P(x_{ps} = 1) = \frac{\exp(\theta_p + b_s)}{1 + \exp(\theta_p + b_s)}$$

Randomness and possibilities

Random stimuli in Experimental Psychology
Experiment

Random stimuli in Experimental Psychology

Experiment

Randomness and possibilities Random stimuli in Experimental Psychology ∟_{Experiment}

The stimuli

12 Object stimuli

White people faces

Black people faces

16 Attribute stimuli

peace, happy, joy, love

Positive attributes

Good, laughter, pleasure, glory,

Evil, bad, horrible, terrible, nasty,

Negative attributes

pain, failure, hate

Randomness and possibilities

Random stimuli in Experimental Psychology

Experiment

The task

Two experimental conditions

White-Good/Black-Bad (WGBB): 60 trials

Black-Good/White-Bad (BGWB): 60 trials

Randomness and possibilities

Random stimuli in Experimental Psychology

Models

Random stimuli in Experimental Psychology

Models

☐ Random stimuli in Experimental Psychology
☐ Models

The expected response at far the observation i = 1. If or respondent

The expected response y for the observation $i=1,\ldots,I$ for respondent $p=1,\ldots,P$ on stimulus $s=1,\ldots,S$ in condition $c=1,\ldots,C$:

Model 1:

Randomness and possibilities

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i)$$
$$\alpha_p \sim \mathcal{N}(0, \sigma_p^2),$$
$$\alpha_s \sim \mathcal{N}(0, \sigma_s^2).$$

Model 2:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]} c_i + \varepsilon_i)$$
$$\alpha_p \sim \mathcal{N}(0, \sigma_p^2),$$
$$\beta_s \sim \mathcal{MVN}(0, \Sigma_{sc}).$$

Model 3:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]}c_i + \varepsilon_i)$$
$$\alpha_s \sim \mathcal{N}(0, \sigma_s^2),$$
$$\beta_p \sim \mathcal{MVN}(0, \Sigma_{pc}).$$

Accuracy: $\epsilon \sim Logistic(0, \sigma^2)$

The expected response y for the observation $i=1,\ldots,I$ for respondent $p=1,\ldots,P$ on stimulus $s=1,\ldots,S$ in condition $c=1,\ldots,C$:

Model 1:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i)$$

$$\alpha_p \sim \mathcal{N}(0, \sigma_p^2),$$

$$\alpha_s \sim \mathcal{N}(0, \sigma_s^2).$$

Model 2:

$$y_{i} = logit^{-1}(\alpha + \beta_{c}X_{c} + \alpha_{p[i]} + \beta_{s[i]}c_{i} + \varepsilon_{i})$$

$$\alpha_{p} \sim \mathcal{N}(0, \sigma_{p}^{2}),$$

$$\beta_{s} \sim \mathcal{MVN}(0, \Sigma_{sc}).$$

Model 3:

$$y_{i} = logit^{-1}(\alpha + \beta_{c}X_{c} + \alpha_{s[i]} + \beta_{p[i]}c_{i} + \varepsilon_{i})$$

$$\alpha_{s} \sim \mathcal{N}(0, \sigma_{s}^{2}),$$

$$\beta_{p} \sim \mathcal{MVN}(0, \Sigma_{pc}).$$

Accuracy: $\epsilon \sim Logistic(0, \sigma^2)$

Fixed Effects

Random structure

Randomness and possibilities
Random stimuli in Experimental Psychology
Results

Random stimuli in Experimental Psychology

Results

Model 2 is the least wrong model

Rasch model: Model 2

Condition—specific easiness

HIGHLY CONTRIBUTING STIMULI

evil joy BGWB BĠWB WGBB WGBB 8

LOWLY CONTRIBUTING STIMULI

Randomness and possibilities _In the end

- Improve generalizability of the results to other sets of stimuli
- Control for random variance in the data
- Allow for obtaining a Rasch-like parametrization of the data
- Possibility of extending the (linear) model to other dependent variables (e.g., response times)