CE394M: Isoparametric elements and Gauss integration

Krishna Kumar

University of Texas at Austin

March 1, 2020

Overview

- Rectangular elements
- 2 Isoparametric elements
- Isoparametric quadrilateral elements
- Effect of element shape
- 5 Numerical Integration (Quadrature)
- 6 Gauss integration

An alternative and more elegant approach is to construct the shape functions by the **tensor product method**. This is based on taking products of one-dimensional shape functions.

Construction of two dimensional shape functions.

$$N_2^e = N_2^{e,1d}(x) \times N_1^{e,1d}(y)$$

The four shape functions, also called **bilinear shape functions**, for the quadrilateral element are:

$$\begin{split} N_1^e(x,y) &= \frac{x - x_2^e}{x_1^e - x_2^e} \frac{y - y_4^e}{y_1^e - y_4^e} = \frac{1}{A^e} (x - x_2^e) (y - y_4^e) \\ N_2^e(x,y) &= \frac{x - x_1^e}{x_2^e - x_1^e} \frac{y - y_4^e}{y_1^e - y_4^e} = -\frac{1}{A^e} (x - x_1^e) (y - y_4^e) \\ N_3^e(x,y) &= \frac{x - x_1^e}{x_2^e - x_1^e} \frac{y - y_1^e}{y_4^e - y_1^e} = \frac{1}{A^e} (x - x_1^e) (y - y_1^e) \\ N_4^e(x,y) &= \frac{x - x_2^e}{x_1^e - x_2^e} \frac{y - y_1^e}{y_4^e - y_1^e} = -\frac{1}{A^e} (x - x_2^e) (y - y_1^e) \end{split}$$

where A^e is the area of the element.

The four shape functions are plotted in the following figure:

Four shape functions of the rectangular element (on $[0,2] \times [0,2]$).

If the sf equations are used for interpolating the temperature field over arbitrary quadrilaterals, the scalar field (e.g., temperature) across the element boundaries will be not continuous.

Two element mesh with rectangle shape functions. Although the two nodal values on the edge agree, the temperature distribution is still discontinuous.

CE394M: isoparametric - gauss integration Rectangular elements

-4-noded rectangular element

The computed shape functions are suitable for rectangles and could be used with meshes consisting only of rectangles, but they are not suitable for arbitrary quadrilaterals.

Therefore, these shape functions are of limited use for practical applications. To obtain the shape functions for arbitrary quadrilaterals we need to visit the idea of isoparametric mapping.

Shape functions for a two-noded element.

Global coordinate x and local coordinate ξ

Although isoparametric mapping is not particularly useful in one dimension, it is very helpful for understanding the general approach.

consider a coordinate transformation which transforms (maps) the coordinate x into a local (element specific) coordinate ξ :

Mapping of the parent element onto the physical element.

The coordinate ξ fulfills the relationships: $x = x_1^e$ at $\xi = -1$ and $x = x_2^e$ at $\xi = 1$ "stretch transformation" of $x(\xi)$:

$$x(\xi) = x_1^e + \frac{1}{2}(x_2^e - x_1^e)(1 + \xi)$$
$$= \frac{x_1^e + x_2^e}{2} + \frac{x_2^e - x_1^e}{2}\xi$$

The shape functions $N_1^e = (1 - x/I)$ and $N_2^e = (x/I)$ can also be expressed using ξ :

$$N_1^e(\xi) = \frac{1}{2}(1-\xi)$$
 $N_2^e(\xi) = \frac{1}{2}(1+\xi)$

The key idea of the isoparametric concept is to use these shape functions for writing the coordinate transformation between x and ξ

$$x(\xi) = N_1^e(\xi)x_1^e + N_2^e(\xi)x_2^e$$

$$= \frac{1}{2}(1 - \xi)x_1^e + \frac{1}{2}(1 + \xi)x_2^e$$

$$= \frac{x_1^e + x_2^e}{2} + \frac{x_2^e - x_1^e}{2}\xi$$

Mapping of the parent element onto the physical element.

- The coordinate ξ is usually called the **natural coordinate** and always lies by definition between -1 and +1.
- The parent element is solely for numerical purposes.
- The finite element analysis is still performed over the physical domain.

In an isoparametric element the field variable, like displacement, is approximated with the same set of shape functions as those used for the coordinate transformation:

$$u(\xi) = N_1^e(\xi)a_1^e + N_2^e(\xi)a_2^e$$

To compute the derivatives which appear in the weak form the chain rule is used:

$$\frac{du}{dx} = \frac{du}{d\xi} \frac{d\xi}{dx}$$

The derivative $d\xi/dx$ is determined from the mapping between ξ and x

Isoparametric mapping of a quadrilateral element

The idea of isoparametric mapping is used for deriving shape functions for arbitrary quadrilateral elements:

 $Mapping\ of\ the\ bi\hbox{--}unit\ parent\ element\ onto\ the\ quadrilateral\ element\ in\ the\ physical\ space.$

Isoparametric mapping of a quadrilateral element

The bi-unit square is the parent domain and ξ and η are its natural coordinates.

To map points from the parent domain onto the quadrilateral in the physical domain the four nodal shape functions are used:

$$x(\xi,\eta) = \mathbf{N}^{4Q}(\xi,\eta)x^e \quad y(\xi,\eta) = \mathbf{N}^{4Q}(\xi,\eta)y^e$$

where $N^{4Q}(\xi, \eta)$ are the four-node element shape functions in the natural coordinates and x^e and y^e are the vectors of the element coordinates:

$$\mathbf{x}^e = \begin{bmatrix} x_1^e \\ x_2^e \\ x_3^e \\ x_4^e \end{bmatrix} \quad \mathbf{y}^e = \begin{bmatrix} y_1^e \\ y_2^e \\ y_3^e \\ y_4^e \end{bmatrix}$$

Isoparametric mapping of a quadrilateral element

As the parent element is a bi-unit square its shape functions are identical to those of the rectangular element expressed in ξ and η coordinates.

$$\begin{split} N_1^{4Q}(\xi,\eta) &= \frac{1}{4}(1-\xi)(1-\eta) \\ N_2^{4Q}(\xi,\eta) &= \frac{1}{4}(1+\xi)(1-\eta) \\ N_3^{4Q}(\xi,\eta) &= \frac{1}{4}(1+\xi)(1+\eta) \\ N_4^{4Q}(\xi,\eta) &= \frac{1}{4}(1-\xi)(1+\eta) \end{split}$$

Isoparametric shape functions

The temperature will be approximated with the same shape functions:

$$T^e = \mathbf{N}^{4Q}(\xi,\eta)\mathbf{a}^e$$

The element is called *isoparametric* because the temperature approximation and the mapping of the geometry is accomplished with the same shape functions.

The displacement will be approximated as:

$$\mathbf{u}^e = \mathbf{N}^{4Q}(\xi, \eta)\mathbf{a}^e$$

$$=\begin{bmatrix} N_1^{4Q} & 0 & N_2^{4Q} & 0 & N_3^{4Q} & 0 & N_4^{4Q} & 0 \\ 0 & N_1^{4Q} & 0 & N_2^{4Q} & 0 & N_3^{4Q} & 0 & N_4^{4Q} \end{bmatrix} \begin{bmatrix} a_{1x}^e \\ a_{1y}^e \\ a_{2x}^e \\ a_{2y}^e \\ a_{3x}^e \\ a_{3y}^e \\ a_{4x}^e \end{bmatrix}$$
13 Kumar (UT Austin) CE394M: isoparametric - gauss integration March 1, 2020 14/

The gradient of displacement for the four-node (isoparametric) quadrilateral element is:

Strain: $\epsilon = \mathbf{B}^e \mathbf{a}^e$

$$\begin{bmatrix} \epsilon^{e}_{xx} \\ \epsilon^{e}_{yy} \\ 2\epsilon^{e}_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_{1}^{4Q}}{\partial x} & 0 & \frac{\partial N_{2}^{4Q}}{\partial x} & 0 & \frac{\partial N_{3}^{4Q}}{\partial x} & 0 & \frac{\partial N_{4}^{4Q}}{\partial x} & 0 \\ 0 & \frac{\partial N_{1}^{4Q}}{\partial y} & 0 & \frac{\partial N_{2}^{4Q}}{\partial y} & 0 & \frac{\partial N_{3}^{4Q}}{\partial y} & 0 & \frac{\partial N_{4}^{4Q}}{\partial y} \\ \frac{\partial N_{1}^{4Q}}{\partial y} & \frac{\partial N_{1}^{4Q}}{\partial x} & \frac{\partial N_{2}^{4Q}}{\partial y} & \frac{\partial N_{2}^{4Q}}{\partial x} & \frac{\partial N_{3}^{4Q}}{\partial y} & \frac{\partial N_{3}^{4Q}}{\partial x} & \frac{\partial N_{4}^{4Q}}{\partial x} & \frac{\partial N_{4}^{4Q}}{\partial x} \end{bmatrix}$$

 $\begin{bmatrix} u_{1y}^e \\ u_{2x}^e \\ u_{2y}^e \\ u_{3x}^e \\ u_{4x}^e \\ u_{4y}^e \end{bmatrix}$

To compute shape function derivatives the chain rule will be used:

$$\frac{\partial N_I^{4Q}}{\partial \xi} = \frac{\partial N_I^{4Q}}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial N_I^{4Q}}{\partial y} \frac{\partial y}{\partial \xi}$$
$$\frac{\partial N_I^{4Q}}{\partial \eta} = \frac{\partial N_I^{4Q}}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial N_I^{4Q}}{\partial y} \frac{\partial y}{\partial \eta}$$

written as matrices and vectors this becomes:

$$\begin{bmatrix} \frac{\partial N_I^{4Q}}{\partial \xi} \\ \frac{\partial N_I^{4Q}}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial N_I^{4Q}}{\partial x} \\ \frac{\partial N_I^{4Q}}{\partial y} \end{bmatrix}$$

 J^e is the Jacobian which contains the derivatives of the physical coordinates with respect to the natural coordinates.

The derivatives required for the weak form are computed by inverting the above expression:

$$\begin{bmatrix} \frac{\partial N_I^{4Q}}{\partial x} \\ \frac{\partial N_I^{4Q}}{\partial y} \end{bmatrix} = (\mathbf{J}^e)^{-1} \begin{bmatrix} \frac{\partial N_I^{4Q}}{\partial \xi} \\ \frac{\partial N_I^{4Q}}{\partial \eta} \end{bmatrix}$$

The inverse of J^e is:

$$\mathbf{J}^{\mathrm{e}-1} = \frac{1}{|\mathbf{J}^{\mathrm{e}}|} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{bmatrix}$$

Where $|\mathbf{J}^e|$ is the determinant of the Jacobian, which represents the ratio of an area element in the physical domain to the corresponding area element in the parent domain.

Jacobian

The Jacobian can also be thought of as describing the amount of "stretching", "rotating" or "transforming" that a transformation imposes locally. For example, if (x',y')=f(x,y) is used to transform an image, the Jacobian $\mathbf{J}f(x,y)$, describes how the image in the neighborhood of (x,y) is transformed.

The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (in translucent white on the right-side), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.

The isoparametric mapping is used to compute the Jacobian:

$$x(\xi, \eta) = \mathbf{N}^{4Q}(\xi, \eta)\mathbf{x}^{e}$$
 $y(\xi, \eta) = \mathbf{N}^{4Q}(\xi, \eta)\mathbf{y}^{e}$

which leads to:

$$\mathbf{J}^{e} = \begin{bmatrix} \frac{\partial N_{1}^{4Q}}{\partial \xi} & \frac{\partial N_{2}^{4Q}}{\partial \xi} & \frac{\partial N_{3}^{4Q}}{\partial \xi} & \frac{\partial N_{4}^{4Q}}{\partial \xi} \\ \frac{\partial N_{1}^{4Q}}{\partial \eta} & \frac{\partial N_{2}^{4Q}}{\partial \eta} & \frac{\partial N_{3}^{4Q}}{\partial \eta} & \frac{\partial N_{4}^{4Q}}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_{1}^{e} & y_{1}^{e} \\ x_{2}^{e} & y_{2}^{e} \\ x_{3}^{e} & y_{3}^{e} \\ x_{4}^{e} & y_{4}^{e} \end{bmatrix}$$

Higher order quadrilateral element

Nine-node ispoarametric quadrilateral in parameter (left) and physical space (right).

CE394M: isoparametric - gauss integration | Isoparametric quadrilateral elements

-Higher order quadrilateral element

Higher order quadrilateral elements provide the ability to model curved edges. The advantage of curved edges is that fewer elements can be used around holes and other curved surfaces than with straight-sided elements. The nine-node isoparametric element is constructed as a tensor product of the one-dimensional quadratic shape functions. The \mathbf{B}_e matrix for the nine noded element is computed with the same approach as discussed in the previous section.

Consider the following isoparametric mapping for a four-node quadrilateral element:

The Jacobian of this mapping:

$$\mathbf{J}^{e} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

is computed from

$$\begin{split} x &= 0.0N_1^{4Q} + 5.0N_2^{4Q} + 3.0N_3^{4Q} + 0.0N_4^{4Q} \\ &= 2\xi - \frac{1}{2}\eta - \frac{1}{2}\xi\eta + 2 \\ y &= 0.0N_1^{4Q} + 0.0N_2^{4Q} + 3.0N_3^{4Q} + 5.0N_4^{4Q} \\ &= -\frac{1}{2}\xi + 2\eta - \frac{1}{2}\xi\eta + 2 \end{split}$$

After some algebra we obtain:

$$\mathbf{J}^{e} = \begin{bmatrix} 2 - \frac{\eta}{2} & -\frac{1}{2} - \frac{1}{2}\eta \\ -\frac{1}{2} - \frac{1}{2}\xi & 2 - \frac{1}{2}\xi \end{bmatrix}$$

The Jacobian has to be invertible for computing the derivatives of the shape functions with respect to the physical coordinates.

For the mapping to be invertible, the determinant of the Jacobian has to be larger than zero over the entire element:

$$det \mathbf{J}^e = \frac{5}{4}(3 - \xi - \eta) > 0$$

which is the case for this mapping.

In contrast to the previous mapping, it can be for the following mapping shown:

that the determinant of the Jacobian is zero or negative close to the non-convex corner.

CE394M: isoparametric - gauss integration Effect of element shape

Effect of element shape on isoparametric mapping

Notice that some region of the parent element close to node 3 is mapped outside the physical domain. If such non-convex elements are present in the finite element mesh, the results of the finite element computation will be useless.

Numerical integration (Quadrature)

- During the finite element solution procedure, it is necessary to integrate various quantities, for instance the stiffness matrix or force vectors.
- For isoparametric elements these quantities must in general be integrated numerically due to the presence of the Jacobian.
- Although there are many different numerical integration techniques, in finite elements Gauss integration is preferred.

Review of Basic Integration Rules

Consider the following integral which is to be integrated numerically:

$$\int_{a}^{b} f(x) dx$$

The integration domain [a, b] is first split into N equidistant subintervals:

$$x_I = a + Ih$$

with:

$$h = \frac{b-a}{N} \quad I = 0, 1, \dots, N$$

There are various schemes for approximating the integral using the function values at N positions

Rectangle rule (constant approximation)

Integration of f(x) with the rectangle rule between x = a and x = b.

$$\int_a^b f(x)dx \approx h(f(x_0) + f(x_1) + f(x_2) + \cdots + f(x_{N-1}))$$

Trapezoidal rule (linear approximation)

Integration of f(x) with the trapezoidal rule between x = a and x = b.

$$\int_a^b f(x)dx \approx \frac{h}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{N-1}) + f(x_N))$$

Integration rule

Simpson's rule (quadratic approximation)

$$\int_a^b f(x)dx \approx \frac{1}{3}h(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+\cdots+4f(x_{N-1})+f(x_N))$$

Notice that all these integration rules can be written in the following form:

$$\int_a^b f(x)dx \approx \sum_{l=0}^N w_l f(x_l)$$

where w_I are the integration weights and x_I are the integration points.

Gauss integration in 1D

Gauss integration formulas are always given over the parent domain [-1,1]:

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{I=1}^{N} w_{I} f(\xi_{I})$$

- a very efficient technique for integrating functions that are (almost) polynomials, like finite element shape functions.
- needs fewer subintervals to provide the same accuracy as the other integration rules.
- Number of integration points is of great importance for practical computations since the fewer the integration points the faster the finite element analysis will be.

Two-point Gauss integration in 1D

Integration of $f(\xi)$ between $\xi = -1$ and $\xi = 1$ using two Gauss points:

$$\int_{-1}^{1} f(\xi) d\xi \approx 1.0 f(-\frac{1}{\sqrt{3}}) + 1.0 f(\frac{1}{\sqrt{3}})$$

Gauss integration weights and position in 1D

Ν	location ξ_I	weight <i>w_I</i>
1	0	2
2	$\frac{-1/\sqrt{3}}{1/\sqrt{3}}$	1
	$1/\sqrt{3}$	1
3	$-\sqrt{0.6}$	5/9
	0	8/9
	$\sqrt{0.6}$	5/9 8/9 5/9

With N Gauss points the integration is exact up to polynomial order (2N-1).

N	location ξ_I	weight wy	
1	0	2	
2	$-1/\sqrt{3}$ $1/\sqrt{3}$	1 1	
3	-√0.6 0 √0.6	5/9 8/9 5/9	

Notice the distances between the integration points are not constant as in conventional schemes.

-Gauss integration weights and position in 1D

For example, using two integration points (N = 2) linear, quadratic and cubic functions are exactly integrated.

$$\int_{-1}^{1} (3\xi^2 + \xi) d\xi$$
$$\int_{-1}^{1} (3\xi^2 + \xi) d\xi = (\xi^3 + \xi^2/2 + C)|_{-1}^{+1} = 2$$

The quadrature approximation is:

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{I=1}^{N} w_{I} f(\xi_{I})$$

where GP is the number of Gauss points.

one-point Gaussian integration:

$$\sum_{I=1}^{1} w_I \cdot f(I) = 2 \cdot (3(0)^2 + (0)) = 0.$$

The quadrature approximation is:

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{I=1}^{N} w_{I} f(\xi_{I})$$

Two-point Gaussian integration:

$$\sum_{I=1}^{2} w_{I} \cdot f(I) = 1 \cdot (3(-1/\sqrt{3})^{2} + (-1/\sqrt{3})) + 1 \cdot (3(1/\sqrt{3})^{2} + (1/\sqrt{3})) = 2.$$

Three-point Gaussian integration:

$$\sum_{I=1}^{3} w_I \cdot f(I) = \frac{5}{9} \cdot (3(-\sqrt{0.6})^2 + (-\sqrt{0.6})) + \frac{8}{9} \cdot (3(0)^2 + (0)) + \frac{5}{9} \cdot (3(\sqrt{0.6})^2 + (\sqrt{0.6}))$$

$$= 2$$

Assume that we want to integrate an arbitrary cubic polynomial over the parent domain [-1,1]:

$$f(\xi) = \alpha_1 + \alpha_2 \xi + \alpha_3 \xi^2 + \alpha_4 \xi^3$$

where $\alpha_1, \alpha_2, \alpha_3$ and α_4 are constants. The integral will be approximated with two integration points:

Integration of $f(\xi)$ between $\xi = -1$ and $\xi = 1$ using two Gauss points:

$$\int_{-1}^{+1} f(\xi)d\xi = w_1 f(\xi_1) + w_2 f(\xi_2)$$

$$= w_1 (\alpha_1 + \alpha_2 \xi + \alpha_3 \xi^2 + \alpha_4 \xi^3)$$

$$+ w_2 (\alpha_1 + \alpha_2 \xi + \alpha_3 \xi^2 + \alpha_4 \xi^3)$$

Alternatively, the integration can be performed analytically:

$$\int_{-1}^{+1} f(\xi)d\xi = \int_{-1}^{+1} (\alpha_1 + \alpha_2 \xi + \alpha_3 \xi^2 + \alpha_4 \xi^3) dx$$
$$= \left[\alpha_1 \xi + \alpha_2 \frac{\xi^2}{2} + \alpha_3 \frac{\xi^3}{3} + \alpha_4 \frac{\xi^4}{4} \right]_{-1}^{+1}$$
$$= 2\alpha_1 + 0 + \frac{2}{3}\alpha_3 + 0$$

Comparing the coefficients of the constants in equations:

$$w_1 + w_2 = 2$$

$$w_1\xi_1 + w_2\xi_2 = 0$$

$$w_1\xi_1^2 + w_2\xi_2^2 = \frac{2}{3}$$

$$w_1\xi_1^3 + w_3\xi_2^2 = 0$$

This is a set of four nonlinear equations for determining the values of w_1 , w_2 , ξ_1 and ξ_2 . Symmetry considerations require that $w_1=w_2$ and $\xi_1=-\xi_2$:

$$\begin{aligned} w_1 = & w_2 = 1 \\ \xi_1 = -\frac{1}{\sqrt{3}} \quad \text{and} \quad \xi_2 = \frac{1}{\sqrt{3}} \end{aligned}$$

Integration over quadrilateral elements

For the integration over the bi-unit parent element we have:

$$\int_{-1}^{+1} \int_{-1}^{+1} f(\xi, \eta) d\xi d\eta = \int_{-1}^{+1} \left(\int_{-1}^{+1} f(\xi, \eta) d\xi \right) d\eta$$
$$= \sum_{J=1}^{M} \left(\sum_{I=1}^{N} f(\xi_{I}, \eta_{J}) w_{I} \right) w_{K}$$

Four-point (left) and nine-point (right) integration over bi-unit square.

Evaluation of FE integrals

The integration domain for finite element matrices and vectors is the physical element domain. Therefore, we need to consider the isoparametric mapping from the the parent domain $([-1,+1]\times[-1,+1])$ to the physical element domain Ω_e :

$$\begin{split} \mathbf{K}^{e} &= \int_{\Omega_{e}} \mathbf{B}^{e^{T}}(x, y) \mathbf{D} \mathbf{B}^{e}(x, y) d\Omega \\ &= \int_{\Omega_{e}} \mathbf{B}^{e^{T}}(x, y) \mathbf{D} \mathbf{B}^{e}(x, y) dx dy \\ &= \int_{-1}^{+1} \int_{-1}^{+1} \mathbf{B}^{e^{T}}(\xi, \eta) \mathbf{D} \mathbf{B}^{e}(\xi, \eta) |\mathbf{J}^{e}(\xi, \eta)| d\xi d\eta \end{split}$$

where $|\mathbf{J}^e|$ is the Jacobian of the isoparametric mapping and takes care of the mapping of infinitesimal area elements from parent to the physical domain.

$$dxdy = |\mathbf{J}^e| \, d\xi d\eta$$

Number of integration points to use

- If a high number of integration points is used, finite element integrals are evaluated very accurately.
- ② On the other hand with too few integration points the finite element integrals may be evaluated poorly.
- In particular the stiffness matrix integrated with too few points can cause rank- deficiency and can render the problem unsolvable.
- As a rule, the number of integration points is chosen so that the matrices and vectors are accurately computed for an undistorted isoparametric element (with constant Jacobian).
- For the stiffness matrix of the quadrilateral element number of integratio points:
 - Four-noded: 2 × 2
 Nine-noded: 3 × 3

CE394M: isoparametric - gauss integration
Gauss integration
Number of integration points to use

Number of integration points to use

If a high number of integration points is used, finite element integrals are evaluated very accurately.

On the other hand with too few integration points the finite element.

integrals may be evaluated poorly.

In particular the stiffness matrix integrated with too few points can cause rank- deficiency and can render the problem unsolvable.

cause rank- deficiency and can render the problem unsolvable.

As a rule, the number of integration points is chosen so that the matrices and vectors are accurately computed for an undistorted isoparametric element (with constant Jacobian).

For the stiffness matrix of the quadrilateral element - number of integratio points: g Four-noded: 2 × 2

Nine-noded: 3 × 3

Under some circumstances the displacements calculated by the finite element method are orders of magnitude smaller than they should be, and when this happens, the elements are said to be locking. The two most common types of locking are shear and pressure locking. Locking occurs in lower order elements because an elementes kinematics arenet rich enough to represent the correct solution. Shear locking occurs when elements are subjected to bending, and pressure locking occurs when the material is incompressible. Most of the research on reducing locking is devoted to elements with linear shape functions, with the remainder devoted to quadratic elements.

Mesh locking

Volume mesh locking Conventional FE formulations produce very stiff behavior of an element when modeling nearly incompressible materials. The volume at each integration point is fixed and this condition puts sever constraints on the kinematically admissible displacement fields at the nodes. The stiff behavior is called "**mesh locking**". For soils, incompressible conditions (no volume change) occurs when it is in undrained condition.

The neutral axis is the line y=0, and cross-sections, which are initially perpendicular to the neutral axis, are deined by lines of constant x. If the element is subjected to applied moments on the left and right edges, the resulting deformation is bilinear. As shown, it is symmetric about x=0:

$$u = \delta \frac{x}{b} \frac{y}{h}$$
$$v = 0$$

Differentiating, the strain, as a function of x and y:

$$\epsilon_{11} = \frac{\delta y}{bh}$$

$$\epsilon_2 = 0$$

$$\epsilon_{11} = \frac{\delta x}{2bh}$$

CE394M: isoparametric - gauss integration —Gauss integration

-Mesh locking

Volume Locking The volume strain is $\epsilon_{11}+\epsilon_{22}+\epsilon_{33}$. In plane strain , ϵ_{33} is always zero. An incompressible material in plane strain therefore requires $\epsilon_{22}=-\epsilon_{11}$. Looking at strain equation, ϵ_{22} must be linear in y just like ϵ_{33} to satisfy the incompressibility constraint.

CE394M: isoparametric - gauss integration
Gauss integration
Mesh locking

Volume meah locking Conventional FE formulations produce very still behavior of an element when modeling nearly incompessable materials. The volume at each integration points in fixed and this condition puts sever constraints on the hierarcially administrate deplacement fields at the incompessable conditions of the control of the cont

undrained condition

This demonstrates that a quadrilateral element with linear shape functions can't satisfy the incompressibility constraint exactly in bending. Even if we ignore the impossibility of satisfying the incompressibility constraint pointwise throughout the element, it's also clear that the constraint can't be satisfied at the Gauss points for 2 x 2 integration because the sign of ϵ_{22} must change sign between the upper and lower rows of integration points. The sign change implies that ϵ_{22} must be at least linear in y, which therefore implies that v must be at least quadratic in y. There is one point where the incompressibility constraint is satisfied for the bending mode, namely the element centroid. The incompressibility constraint is, therefore, usually imposed at the element centroid in 4-node quadrilateral and 8-node brick elements.

CE394M: isoparametric - gauss integration 2020-03-01 Gauss integration

Mesh locking

esh locking Conventional FE formulations produce very stif behavior of an element when modeling nearly incompressible materials. The volume at each integration point is fixed and this condition puts sever constraints on the kinematically admissible displacement fields at the nodes. The stiff behavior is called "mesh locking". For soils, incompressible conditions (no volume change) occurs when it is in undrained condition

Use reduced integration method to "soften" the element.

- 4 node isoparametric element uses 4 integration points, but one point in the middle in reduced integration.
- The solution may be affected by the mesh size and mesh instability. Need to investigate there are no problems before the analysis.
- This problem is because of lower order FEs.

Use selectively reduced integration method

- Volumetire and deviatoric strains are decomposed and different integration schemes are used.
- Some commercial programs have this capability

Modeling considerations: Element geometries

- if $det(\mathbf{J}^e)$ is zero, an area element in the parent element is mapped into a zero area in the physical element, which is not acceptable.
- ② Similarly, if elements are excessively distorted, an area element in the parent element is mapped into a nearly zero area.
- **③** To ensure that $det(\mathbf{J}^e)$ is safely larger than zero, certain severely distorted element shapes must be avoided.

Quadrilateral element geometries to be avoided.

Modeling considerations: Higher-order element

Notice for higher order elements, like the nine-noded one, the position of the mid-nodes contribute to the element distortion. Therefore, they must lie at a certain distance from the corner nodes.

Range of acceptable positions for the midnodes of a nine-node quadrilateral element