Scilab Textbook Companion for Advanced Mechanics of Materials by A. P. Boresi and R. J. Schmidt¹

Created by
Maloth Thirupathi
BTECH
Electrical Engineering
IIT BOMBAY
College Teacher
None
Cross-Checked by
Spandana

June 10, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Advanced Mechanics of Materials

Author: A. P. Boresi and R. J. Schmidt

Publisher: John Wiley and Sons, USA

Edition: 6

Year: 2003

ISBN: 978-0-471-43881-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	INTRODUCTION	5	
2	THEORIES OF STRESS AND STRAIN	8	
3	LINEAR STRESS STRAIN TEMPERATURE RELATION	16	
4	INELASTIC MATERIAL BEHAVIOR	21	
5	APPLICATIONS OF ENERGY METHODS	26	
6	TORSION	33	
7	BENDING OF STRAIGHT BEAMS	43	
8	SHEAR CENTER FOR THIN WALL BEAM CROSS SECTIONS	53	
9	CURVED BEAMS	59	
10	BEAMS ON ELASTIC FOUNDATIONS	71	
11	THE THICK WALL CYLLINDER	7 9	
12	ELASTIC AND INELSTIC STABILITY OF COLUMNS	89	
13	FLAT PLATES	91	
14	STRESS CONCENTRATIONS	94	

15 FRACTURE MECHANICS	97
16 FATIGUE PROGRESSIVE FRACTURE	100
17 CONTACT STRESSES	106

List of Scilab Codes

Exa 1.1	Example1	5
Exa 1.2	Example2	6
Exa 1.3	Example3	7
Exa 2.1	Example1	8
Exa 2.2	Example2	10
Exa 2.4	Example4	11
Exa 2.5	Example5	13
Exa 2.7	Example7	14
Exa 3.1	Example1	16
Exa 3.7	Example7	16
Exa 3.8	Example8	18
Exa 4.1	Example1	21
Exa 4.2	Example2	23
Exa 4.3	Example3	24
Exa 5.1	Example1	26
Exa 5.2	Example2	27
Exa 5.6	Example6	28
Exa 5.7	Example7	29
Exa 5.9	Example9	29
Exa 5.10	Example 10	30
Exa 5.12	Example 12	31
Exa 6.1	Example1	33
Exa 6.2	Example2	34
Exa 6.3	Example3	35
Exa 6.4	Example4	36
Exa 6.5	Example5	37
Exa 6.7	Example7	38
Exa 6.8	Example8	39

Exa 6.9	Example9	40
Exa 6.10	Example 10	41
Exa 7.1	Example1	43
Exa 7.2	Example2	44
Exa 7.3	Example3	45
Exa 7.4	Example4	46
Exa 7.5	Example5	47
Exa 7.6	Example6	48
Exa 7.7	Example7	49
Exa 7.8	Example8	50
Exa 7.9	Example9	51
Exa 8.1	Example1	53
Exa 8.2	Chapter8 Example 2	54
Exa 8.3	Example3	55
Exa 8.4	Example4	56
Exa 8.5	Example5	57
Exa 9.1	Example1	59
Exa 9.2	Example2	60
Exa 9.3	Example3	61
Exa 9.4	Example4	62
Exa 9.5	Example5	64
Exa 9.6	Example6	65
Exa 9.7	Example7	66
Exa 9.8	Example8	67
Exa 9.9	Example9	68
Exa 9.10	Example 10	69
Exa 10.1	Example1	71
Exa 10.2	Example2	72
Exa 10.4	Example4	73
Exa 10.5	Example5	74
Exa 10.6	Example6	75
Exa 10.7	Example7	77
Exa 11.1	Example1	79
Exa 11.2	Example2	80
Exa 11.3	Example3	81
Exa 11.4	Example4	84
Exa 11.5	Example5	84
Exa 11.6	Example6	85

Exa 11.8	Example8	86
Exa 11.9	Example9	87
Exa 12.3	Example3	89
Exa 12.5	Example5	89
Exa 13.2	Example2	91
Exa 13.3	Example3	92
Exa 13.4	Example4	92
Exa 14.1	Example1	94
Exa 14.2	Example2	95
Exa 14.3	Example3	95
Exa 15.2	Example2	97
Exa 15.3	Example3	98
Exa 15.4	Example4	98
Exa 15.5	Example5	99
Exa 16.1	Example1	100
Exa 16.2	Example2	101
Exa 16.3	Example3	102
Exa 16.4	Example4	102
Exa 16.5	Example5	103
Exa 17.1	Example1	106
Exa 17.2	Example2	107
Eva 17.3	Example3	109

INTRODUCTION

Scilab code Exa 1.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part (a)
5 a=700 // M Pa from figure 1.8
6 b=100 // M Pafrom figure 1.8
7 m=1/6 // from figure 1.8
8 Y=450 // M Pa from figure 1.9
9 //calculations
10 \text{ sigma\_u=a+m*b}
11 // results
12 printf(' \mid part(a) \mid n')
13 printf(' The ultimate strength is sigma = \%.f M Pa',
      sigma_u)
14 printf('\n and the yield strength is Y = \%.f M Pa',Y
      )
15
16 // part (b)
17 c1=62 // from figure 1.8
18 d1=0.025 // from figure 1.8
19 c2=27 // from figure 1.10a
```

Scilab code Exa 1.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 sigma=500 // Stress M Pa
5 \text{ eps=0.0073} // \text{Strain}
6 sigma_A=343 // M Pa from figure 1.9
7 eps_A=0.00172 // from figure 1.9
8 // part (a)
9 E=sigma_A/eps_A
10
11 // part (B)
12 eps_e=sigma/E
13 eps_p=eps-eps_e
14 // results
15 printf(' part (a) n')
16 printf(' The modulus of elasticity of the rod is E =
       %.d G Pa', E/1000)
17 printf('\n part (b)')
18 printf('\n the permanent strain is = \%.4 \, \text{f}', eps_p)
19 printf('\n and the strain recovered is = \%.4 \,\mathrm{f}', eps_e
```

Scilab code Exa 1.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 D=25 // kN
5 L=60 // kN
6~\text{W=30}~//\mathrm{kN}
7 \text{ Y} = 250 // \text{M Pa}
8 \text{ safety=5/3 } // \text{ AISC}, 1989
9 // calculations
10 Q=(D+L+W)*10^3 // converted to N
11 A=safety*Q/Y
12 r=sqrt(A/%pi)+0.5 // additional 0.5 mm is for extra
      safety
13 d=2*r // diameter
14 // results
15 printf('Part (a) \n ')
16 printf ('A rod of %.d mm in diameter, with a cross
      sectional area of %.d mm<sup>2</sup>, is adequate, d, %pi*d
      ^{2}/4)
17 // The diameter is correct as given in the textbook.
       Area doesn't match due to rounding off error and
       partly because it's a design problem.
```

THEORIES OF STRESS AND STRAIN

Scilab code Exa 2.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 sig_xx=-10 // MPa
5 \text{ sig_yy=30} // \text{MPa}
6 sig_xy=15 // MPa
7 \text{ sig_xz=0} // \text{MPa}
8 \text{ sig\_yz=0} // \text{MPa}
9 \text{ sig_zz=0} //\text{MPa}
10 I1=sig_xx+sig_yy+sig_zz
11 I2=sig_xx*sig_yy-sig_xy^2+sig_zz*sig_xx-sig_xz^2+
      sig_zz*sig_yy-sig_yz^2
12 M=[sig_xx sig_xy sig_xz
       sig_xy sig_yy sig_yz
13
14
       sig_xz sig_yz sig_zz]
15 \quad I3 = det(M)
16 p = [1 -I1 I2 -I3]
17 sigma=roots(p)
18 printf('I1 = \%d I2 = \%d I3 = \%d ',I1,I2,I3)
```

```
19 printf('\n Sigma_1 = \%d Sigma_2 = \%d SIgma_3 = \%d
       ', sigma(1), sigma(3), sigma(2))
20 // We have:
21 // \{S_xx-S_xy_sx_x\}
22 // S_xy S_yy-S S_yz
23 // S_xz S_yz S_zz-S*{1 m n}=0
24 // Substituting for Sigma_1
25 \quad a1=sig_xx-sigma(1)
26 \quad a2=sig_xy
27 \quad a3 = sig_xz
28 \text{ b1=sig_xy}
29 b2 = sig_yy - sigma(1)
30 b3=sig_yz
31 c1=sig_xz
32 c2=sig_yz
33 \quad c3 = sig_zz - sigma(1)
34 // You can solve it using the matrices but since the
        system is imcoplete we get
35 n1=0
36 / b1*11+b2*m1=0
37 // This implies m1=-b1/b2*l1
38 // We also have 11^2+m1^2+n1^2=1
39 \ 11=1/sqrt(1+(b1/b2)^2)
40 \text{ m1=-b1/b2*l1}
41 printf('\n N1 = \%.4 \, \text{fi} + \%.4 \, \text{fj}',11,m1)
42 printf('\n or \n N1 = \%.4 fi + \%.4 fj', -11, -m1)
43 // Similarly Substituting for Sigma_2
44 a1=sig_xx-sigma(3)
45 \quad a2=sig_xy
46 \quad a3=sig_xz
47 	 b1 = sig_xy
48 \quad b2 = sig_yy - sigma(3)
49 \text{ b3=sig\_yz}
50 c1 = sig_xz
51 c2=sig_yz
52 c3=sig_zz-sigma(3)
53 // \text{here}, 12 = m2 = 0
54 12=0
```

```
55 m2 = 0
56 \text{ n2=sqrt}(1)
57 printf ('\n N2 = \%.4 \, \text{fk}',n2)
58 printf ('\n or \n N2 = \%.4 \, \text{fk}',-n2)
59 // Similarly Substituting for Sigma_3
60 \quad a1=sig_xx-sigma(2)
61 \quad a2=sig_xy
62 \quad a3=sig_xz
63 b1 = sig_xy
64 b2 = sig_yy - sigma(2)
65 \text{ b3=sig\_yz}
66 \text{ c1=sig\_xz}
67 c2=sig_yz
68 \quad c3 = sig_zz - sigma(2)
69 // On solving, we get
70 13=1/sqrt(1+(b1/b2)^2)
71 \quad m3 = -b1/b2 * 13
72 \quad n3=0
73 printf ('\n N3 = \%.4 \, \text{fi} + \%.4 \, \text{fj}',13,m3)
74 printf('\n or \n N3 = \%.4 \, \text{fi} + \%.4 \, \text{fj}',-13,-m3)
```

Scilab code Exa 2.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 sig_xx=20 // MPa
5 sig_yy=10 // MPa
6 sig_xy=30 // MPa
7 sig_xz=-10 // MPa
8 sig_yz=80 // MPa
9 I2=-7800 // (MPa)^2
10 // part (a)
11 // Assume sig_zz=k and evaluate determinants to solve for k
```

```
12 det1=sig_xx*sig_yy-sig_xy^2
13 / \det 2 = k * \operatorname{sig}_{x} x - \operatorname{sig}_{z} z^2
14 / \det 3 = k * \operatorname{sig}_{y} y - \operatorname{sig}_{z}^2
15 k=(I2-det1+sig_xz^2+sig_yz^2)/(sig_xx+sig_yy)
16 sig_zz=k
17 I1=sig_xx+sig_yy+sig_zz
18 M=[sig_xx sig_xy sig_xz
19
       sig_xy sig_yy sig_yz
       sig_xz sig_yz sig_zz]
20
21 \quad I3 = det(M)
22 // p = poly([1 -I1 I2 -I3], "x")
23 p = [1 -I1 I2 -I3]
24 sigma=roots(p)
25 // results
26 printf('\n part (a) \n')
27 printf ('The unknown stress component is =\%.d M Pa
       and the stress invariants I1, I2, I3 are
       respectively %.d , %.d , %.d ',sig_zz,I1,I2,I3)
28 printf('\n The principal stresses are sigma1 = \%.3 \,\mathrm{f},
        sigma2\!=\!\!\!\%.3\,f , sigma3\!=\!\!\!\%.3\,f M Pa',sigma(2),sigma
       (3), sigma(1))
```

Scilab code Exa 2.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 sig_xx=120 // MPa
5 sig_yy=55 // MPa
6 sig_xy=-55 // MPa
7 sig_xz=-75 // MPa
8 sig_yz=33 // MPa
9 sig_zz=-85 // MPa
10 // Direction cosines at point A
11 lA=1/sqrt(3)
```

```
12 \text{ mA}=1/\text{sqrt}(3)
13 \text{ nA=1/sqrt}(3)
14 // Direction cosines at point B
15 \ lB=1/sqrt(2)
16 \text{ mB=1/sqrt}(2)
17 \, \text{nB} = 0
18 // calculations
19 I1=sig_xx+sig_yy+sig_zz
20 I2=sig_xx*sig_yy-sig_xy^2+sig_zz*sig_xx-sig_xz^2+
        sig_zz*sig_yy-sig_yz^2
21 M=[sig_xx sig_xy sig_xz
22
        sig_xy sig_yy sig_yz
23
        sig_xz sig_yz sig_zz]
24 \quad I3 = det(M)
25 p = [1 -I1 I2 -I3]
26 sig=roots(p)
27 sig=gsort(sig)
28 \operatorname{sigma}(1) = \operatorname{sig}(1)
29 \operatorname{sigma}(3) = \operatorname{sig}(2)
30 \operatorname{sigma}(2) = \operatorname{sig}(3)
31 // results
32 printf('\n The principal stresses are sigma1 = \%.3 f,
         sigma2=\%.3 f , sigma3=\%.3 f M Pa', sigma(1), sigma
        (2), sigma(3))
33 // Finding about the circles
34 \text{ C11} = (\text{sigma}(2) + \text{sigma}(3))/2
35 \text{ C21} = (\text{sigma}(1) + \text{sigma}(3))/2
36 \quad C31 = (sigma(1) + sigma(2))/2
37 C12=0
38 C22=0
39 C32=0
40 R1=(sigma(2)-sigma(3))/2
41 R2 = (sigma(1) - sigma(3))/2
42 R3=(sigma(1)-sigma(2))/2
43 \operatorname{SnnA}=1A^2*\operatorname{sigma}(1)+\operatorname{mA}^2*\operatorname{sigma}(2)+\operatorname{nA}^2*\operatorname{sigma}(3)
44 SnsA=sqrt(1A^2*sigma(1)^2+mA^2*sigma(2)^2+nA^2*sigma
        (3)^2-SnnA^2
45 SnnB=1B^2*sigma(1)+mB^2*sigma(2)+nB^2*sigma(3)
```

Scilab code Exa 2.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 sig_xx=80 // MPa
5 \text{ sig_yy=60} // \text{MPa}
6 sig_xy=20 // MPa
7 \text{ sig_xz=40} // \text{MPa}
8 \text{ sig\_yz=10} // \text{MPa}
9 sig_zz=20 // MPa
10 // Direction cosines at point A
11 \ l=1/sqrt(6)
12 m=2/sqrt(6)
13 n = 1/sqrt(6)
14 // calculations
15 SpX=sig_xx*l+sig_xy*m+sig_xz*n
16 SpY=sig_xy*l+sig_yy*m+sig_yz*n
17 SpZ=sig_xz*l+sig_yz*m+sig_zz*n
```

```
18 // result
19 printf('part (a)')
20 printf('\n The stress vector is = \%.3 \, \text{f} i + \%.3 \, \text{f} j +
     \%.3 \, f \, k', SpX, SpY, SpZ)
21 // part b
22 I1=sig_xx+sig_yy+sig_zz
23 I2=sig_xx*sig_yy-sig_xy^2+sig_zz*sig_xx-sig_xz^2+
      sig_zz*sig_yy-sig_yz^2
24 M=[sig_xx sig_xy sig_xz
      sig_xy sig_yy sig_yz
25
26
      sig_xz sig_yz sig_zz]
27 \quad I3 = det(M)
28 p = [1 -I1 I2 -I3]
29 sigma=roots(p)
30 \quad tau_max = (sigma(1) - sigma(3))/2
31 tau_oct=sqrt((sigma(1)-sigma(2))^2+(sigma(1)-sigma)
      (3))^2+(sigma(2)-sigma(3))^2)*1/3
32 n=tau_max/tau_oct
33 printf('\n part (b)')
34 printf('\n The principal stresses are sigma1 = \%.3 f,
       sigma2=\%.3 f , sigma3=\%.3 f M Pa', sigma(1), sigma
      (2), sigma(3))
35 printf('\n and maximum shear stress is = \%d M Pa',
      tau_max)
36 printf('\n part (c)')
37 printf('\n octahedral shear stress is \%.3 f MPa',
      tau_oct)
38 printf('\n Comparing tau_oct and tau_max, we see
      that \langle n' \rangle
39 printf(' tau_max = \%.3 f tau_oct',n)
```

Scilab code Exa 2.7 Example 7

```
1 clc
2 // initialization of variables
```

```
3 clear
4 tau_max=160 //MPa
5 S_max=0
6 //S_min=-S_o
7 S_min=S_max-2*tau_max
8 S_o=-S_min
9 printf('part (a)')
10 printf('\n Sigma_o = %d MPa',S_o)
```

LINEAR STRESS STRAIN TEMPERATURE RELATION

Scilab code Exa 3.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part (a)
5 E=72 // G Pa
6 v=0.33 // Poisoon's ratio
7 h=2 // mm
8 R=600 // mm
9 // calculations
10 sig_cir=E*h/(2*(1-v^2)*R)
11 // results
12 printf('\n part (a) \n')
13 printf(' The maximum circumferential stress is %.d M Pa', sig_cir*10^3)
```

Scilab code Exa 3.7 Example 7

```
1 clc
2 // initialization of variables
3 clear
4 tR=0.02 // t/R ration
5 E_A = 69 //G Pa
6 v_A=0.33 // Poisson's ratio
7 alpha_A=21.6*10^-6 // /degree Celcius (Coefficient
      of expansion)
8 E_S=207 // G Pa
9 \text{ v_S=0.280}
10 alpha_S=10.8*10^-6 // /degree Celcius (Coefficient
      of expansion)
11 // calculations
12 // \operatorname{Sig_LA} = a * p + b * \operatorname{delT} + c * \operatorname{sig_th} S
13 // Sig_LS = v_S * Sig_thS + d* delT
14 E_S=E_S*10^9
15 E_A=E_A*10^9
16 \quad a=1/tR*E_A/E_S
17 b=-2/3*alpha_S*E_S
18 c = -E_A/E_S
19 d=-alpha_S*E_S
20 // SigthS = e * p + f * delT
21 // SigthA = g*p+h*delT
22 e = 37.16
23 f=0.8639*10^6
24 g = 1/tR - e
25 h = -f
26 // results
27 p = 689.4 // kPa
28 delT=100 // degree Celcius
29 p=p*10^3 // Pa
30 SigthA=g*p+h*delT
31 SigthS=e*p+f*delT
32 Sig_LA=a*p+b*delT+c*SigthS
33 Sig_LS=v_S*SigthS+d*delT
34 printf('Thus, for p = \%.1 f k Pa and delT = \%.d
      degree celcius \n',p/10^3,delT)
35 printf ('SigthA = \%.1 f M Pa, Sig_LA = \%.d M Pa \n'
```

Scilab code Exa 3.8 Example8

```
1 clc
2 // initialization of variables
4 // Material constants
5 \text{ Ex} = 14700 // \text{ M Pa}
6 Ey=1000 // M Pa
7 Ez=735 // M Pa
8 \text{ Gxy} = 941 // \text{ M Pa}
9 Gxz=1147 // M Pa
10 Gyz = 103 // M pa
11 Vxy = 0.292
12 \ Vxz = 0.449
13 \text{ Vyz} = 0.39
14 // Stresses at a point
15 Sxx=7 // M pa
16 Syy=2.1 // M Pa
17 Szz=-2.8 //M Pa
18 Sxy=1.4 // M Pa
19 Sxz=0 //M Pa
20 \text{ Syz=0} // \text{M Pa}
21 // part (a)
22 th=1/2*atan(2*Sxy/(Sxx-Syy))*180/%pi
23 I1 = Sxx + Syy + Szz
24 I2=Sxx*Syy-Sxy^2+Szz*Sxx-Sxz^2+Szz*Syy-Syz^2
25 M=[Sxx Sxy Sxz
26
       Sxy Syy Syz
       Sxz Syz Szz]
27
28 \quad I3 = det(M)
29 p = [1 -I1 I2 -I3]
```

```
30 S = roots(p)
31 // results
32 printf('Part (a) n')
33 printf ('The maximum principal stress is S1 = \%.2 \, f \, M
       Pa', S(1))
34 printf('\n and occurs in direction th = \%.1 f degrees
       ',th)
35 printf('\n and the intermediate principal stress S2
       = \%.2 \,\mathrm{f} M Pa occurs in the direction th = \%.1 \,\mathrm{f}
       degrees \n',S(3),th+90)
36 printf ('The minimum principal stress is S3 = Szz =
      \%.1 \, f \, M \, Pa', S(2))
37 \quad Ex = Ex * 10^6
38 \text{ Ey} = \text{Ey} * 10^6
39 \text{ Ez} = \text{Ez} * 10^6
40 \, \text{Gxy} = \text{Gxy} * 10^6
41 \text{ Gxz} = \text{Gxz} * 10^6
42 \text{ Gyz} = \text{Gyz} * 10^6
43 // part (b) is to find strains
44 Exx=Sxx/Ex-Vxy*Syy/Ey-Vxz*Szz/Ez
45 Eyy = -Vxy * Sxx / Ex + Syy / Ey - Vyz * Szz / Ez
46 Ezz=-Vxz*Sxx/Ex-Vyz*Syy/Ey+Szz/Ez
47 \quad \text{Exy} = \text{Sxy} / \text{Gxy}
48 \text{ Exz} = \text{Sxz} / \text{Gxz}
49 Eyz=Syz/Gyz
50 printf('\n Part (b)')
51 printf('\n The srains are')
52 printf('\n Exx = \%.2e, Eyy = \%.2e, Ezz = \%.4e',
       Exx, Eyy, Ezz)
53 printf('\n Exy = \%.4e, Exz = \%.2d, Eyz = \%.2d',
       Exy, Exz, Eyz)
54 // Wrong Exx value in the textbook
55 	 th=1/2*atan(Exy/(Exx-Eyy))
56 \text{ th=th*180/\%pi}
57 \quad th2=th+90
58 printf('\n part (c)')
59 printf('\n theta = \%.2 \, \mathrm{f} or theta = \%.2 \, \mathrm{f} degrees',th
       ,th2)
```

 $60\ //\ \mathrm{Wrong}$ theta too since Ex given in textbook is wrong

INELASTIC MATERIAL BEHAVIOR

Scilab code Exa 4.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 P = 170 / kN
5 \text{ A} = 645 // \text{ (mm)}^2
6 // part (a)
7 E=211.4 // G Pa (from figure)
8 Y=252.6 // M Pa (from figure)
9 Beta=0.0799 // G Pa (from figure)
10 \text{ Ey=Y/E}
11 // The stress strain law given is
12 // Sigma= E*eps for eps< Ey
13 // Sigma= (1-Beta)*Y + Beta*E*eps otherwise
14
15 // part (b)
16 th=atan(1.8/2.4)// radians
17 F=P/(2*cos(th))
18 F = F * 10^3 / N
19 A = A * 10^{-6} / m^{2}
```

```
20 E=E*10^9 //Pa
21 \text{ Y=Y*10^6} //Pa
22 L=3.0 /m
23 Sigma=F/A
24 if (Sigma < Y)
25
        eps=Sigma/E
26 else
       eps=(Sigma-(1-Beta)*Y )/(Beta*E)
27
28 end
29 \quad u = eps * L/cos(th)
30 \ u = u * 10^3 / mm
31 // results
32 printf('part (b)\n')
33 printf(' Deflection = \%.3 f mm',u)
34
35 // part (c)
36 P = 270 / kN
37 F=P/(2*cos(th))
38 \text{ F=F*10^3} //N
39 Sigma=F/A
40 if (Sigma < Y)
        eps=Sigma/E
41
42 else
       eps=(Sigma-(1-Beta)*Y )/(Beta*E)
43
44 end
45 \quad u=eps*L/cos(th)
46 \ u = u * 10^3 / mm
47 // results
48 printf('\n part (c)\n')
49 printf(' Deflection = \%.3 \, \text{f} mm for P = \%.d \, \text{kN',u,P})
50
51 P = 300 / kN
52 F = P/(2*\cos(th))
53 F = F * 10^3 / N
54 Sigma=F/A
55 if (Sigma < Y)
        eps=Sigma/E
56
57 else
```

```
58     eps=(Sigma-(1-Beta)*Y )/(Beta*E)
59     end
60     u=eps*L/cos(th)
61     u=u*10^3 //mm
62     // results
63     printf('\n Deflection = %.3 f mm for P = %.d kN',u,P)
```

Scilab code Exa 4.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 // Material properties
5 E = 200 //GPa
6 \text{ A} = 100 / \text{mm}^2
7 \text{ Y1=500 } / \text{M Pa}
8 Y2=250 // MPa
9 // calculations
10 E=E*10^9 // Pa
11 A = A * 10^{-6} / m^{2}
12 \text{ Y1=Y1*10^6} // Pa
13 Y2 = Y2 * 10^6 / Pa
14 L_FG=1 /m
15 L_CD=2 // m
16 P1=Y2*A
17 \text{ e=P1*L_FG/(E*A)}
18 e_FG=e
19 e_{CD}=e
20 P2=E*A*e_FG/L_FG
21 \quad P3=E*A*e_CD/L_CD
22 Py = 2*P1 + 2*P2 + P3
23 / results
24 printf('part (a) n')
25 printf(' Yield Load Py = \%.1 \, f \, kN and the
       displacement is \%.2 \text{ f mm}', Py/10^3, e*10^3
```

Scilab code Exa 4.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 // Stresses
5 \text{ Sxx} = 100 // \text{MPa}
6 \text{ Syy} = -14 \text{ // MPa}
7 \text{ Sxy=50} // \text{MPa}
8 Y=300 // MPa
9 // part (a)
10 Szz=0 // MPa
11 Syz=0 //MPa
12 \text{ Sxz=0} // \text{MPa}
13 // To calculate principal stresses
14 I1 = Sxx + Syy + Szz
15 I2=Sxx*Syy-Sxy^2+Szz*Sxx-Sxz^2+Szz*Syy-Syz^2
16 M=[Sxx Sxy Sxz
17
       Sxy Syy Syz
```

```
18
      Sxz Syz Szz]
19 \quad I3 = det(M)
20 p = [1 -I1 I2 -I3]
21 Sigma=roots(p)
22 Smax=Sigma(1)
23 Smin=Sigma(2)
24 // Smax=max (Sigma)
25 // Smin=min (Sigma)
26 \quad tau_max=Y/2
27 SF=tau_max*2/(Smax-Smin)
28 printf('part (a)n')
29 printf(' SF = \%.2 f if the material obeys Tresca
      criterion', SF)
30
31 // part (b)
32 SF=sqrt(2)*Y/sqrt((Smax^2)+(Smin^2)+(Smin-Smax)^2)
33 printf('\n part (b)')
34 printf('\n SF = \%.2f if the material obeys von Mises
       criterion', SF)
```

APPLICATIONS OF ENERGY METHODS

Scilab code Exa 5.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part (b)
5 K1=2 //N/mm (K1=E1A1/L1)
6 K2=3 //N/mm (K2=E2A2/L2)
7 b1=400 // mm (b1=h)
8 h = 400 // mm
9 b2 = 300 / mm
10 \ u = 30 \ / mm
11 v = 40 / mm
12 // calculations
13 // Units convertion
14 K1=K1*10^3
15 K2=K2*10^3
16 b1=b1*10^-3
17 b2=b2*10^-3
18 h=h*10^-3
19 u=u*10^-3
```

```
20  v=v*10^-3

21  L1=sqrt(b1^2+h^2)

22  L2=sqrt(b2^2+h^2)

23  N1=sqrt((b1+u)^2+(h+v)^2)-L1

24  N2=sqrt((b1+u)^2+(h+v)^2)

25  N3=sqrt((b2-u)^2+(h+v)^2)-L2

26  N4=sqrt((b2-u)^2+(h+v)^2)

27  P=K1*(b1+u)*N1/N2-K2*(b2-u)*N3/N4

28  Q=K1*(h+v)*N1/N2+K2*(h+v)*N3/N4

29  // results

30  printf('part (b)')

31  printf('\n P = %.1 f N',P)

32  printf('\n Q = %.1 f N',Q)
```

Scilab code Exa 5.2 Example2

```
1 clc
 2 // initialization of variables
 3 clear
 4 // Loads and stresses and dimensions
 5 P = 10 / kN
6 \quad Q=30 \quad //kN
7 \text{ SO} = 70 \text{ //MPa}
8 \text{ eps0=0.001}
 9 \text{ b1} = 400 / \text{mm}
10 h = 400 / mm
11 b2=300 / mm
12 A1=300 //mm^2
13 A2=300 / \text{mm}^2
14 // calculations
15 // Units convertion
16 P=P*10^3
17 \ Q = Q * 10^3
18 S0=S0*10^6
19 b1=b1*10^-3
```

```
20 b2=b2*10^-3
21 h=h*10^-3
22 A1=A1*10^-6
23 A2=A2*10^-6
24 L1=sqrt(b1^2+h^2)
25 L2=sqrt(b2^2+h^2)
26 a=L1*(Q*b2+P*h)/(A1*S0*h*(b1+b2))
27 b=L2*(Q*b1-P*h)/(A2*S0*h*(b1+b2))
28 c=L1^2*eps0/(b1+b2)
29 d=L2^2*eps0/(b1+b2)
30 u=c*sinh(a)-d*sinh(b)
31 v=b2/h*c*sinh(a)+b1/h*d*sinh(b)
32 // results
33 printf('u = %.4 f mm', u*10^3)
34 printf('\n v = %.4 f mm', v*10^3)
```

Scilab code Exa 5.6 Example6

```
1 clc
2 // initialization of variables
3 clear
4 // Material constants
5 E=200 //GPa
6 G=77.5 // GPa
7 Lh=5 // Lh = L/h
8 // part (b)
9 rhs1=1.8*Lh*E/G
10 rhs2=7*12*Lh^3/16
11 LHS=1.8*Lh*E/G+7*12*Lh^3/16
12 e=rhs1/LHS*100
13 printf('The error in neglecting small terms is %.2f per cent',e)
```

Scilab code Exa 5.7 Example7

```
1 clc
2 // initialization of variables
3 clear
4 // Specifications
5 \text{ T=2} //\text{kN.m}
6 E = 72 // G Pa
7 G=27 // GPa
8 b=30 / mm
9 h=40 /mm
10 d = 60 / mm
11 \ 11 = 400 \ / \ mm
12 12=800 //mm
13 // calculations
14 E=E*10^9
15 G = G * 10^9
16 b=b*10^-3
17 h=h*10^-3
18 d = d * 10^{-3}
19 11=11*10^-3
20 12=12*10^-3
21 T = T * 10^3 / N.m
22 Ix=b*h^3/12
23 J = \%pi * d^4/32
24 \text{ thB} = 2*11^3/3*0.001^2*T/(E*Ix)+T*12/(G*J)
25 printf ('The rotation of shaft B is th = \%.3 f rad',
      thB)
26 // Wrong answer to an extent in the textbook
```

Scilab code Exa 5.9 Example9

```
1 clc
2 // initialization of variables
3 clear
```

```
4 // specification
5 R=65 / mm
6 E=200 //GPa
7 G = 77.5 //GPa
8 v = 0.29
9 P=6 / kN
10 //calculations
11 R = R * 10^{-3}
12 E=E*10^9
13 G=G*10<sup>9</sup>
14 P=P*10^3
15 \quad A = 30^2 \times 10^- - 6
16 I=30^4/12*10^-12
17 q_p1=3*\%pi*P*R/(4*E*A)+1.2*3*\%pi*P*R/(4*G*A)+(9*\%pi*P*R)
      /4+2)*P*R^3/(E*I)
18 printf('part (a)')
19 printf('\n qp = %.4 f mm',q_p1*10^3)
20 //part (b)
21 // if Un and Us are neglected
22 q_p2 = (9*\%pi/4+2)*P*R^3/(E*I)
23 e=(q_p1-q_p2)/q_p1*100
24 printf('\n part (b)')
25 printf('\n error = \%.2 f per cent',e)
```

Scilab code Exa 5.10 Example10

```
1 clc
2 // initialization of variables
3 clear
4 // part (b)
5 // Specifications
6 P=150 //N
7 R=200 //mm
8 d=20 //mm
9 E=200 //GPa
```

```
10 G = 77.5 //GPa
11 //calculations
12 R=R*10^-3
13 d=d*10^-3
14 E=E*10^9
15 G = G * 10^9
16 r1=R+d/2
17 r2=R-d/2
18 \quad A = 314 * 10^{-6}
19 I = 7850 * 10^{-12} / m^4
20 Ax=3*\%pi/4*P*R/(E*A)
21 Sh=3*\%pi/4*1.33*P*R/(G*A)
22 M = (7*\%pi/4+1)*P*R^3/(E*I)
23 //qc = 3*\%pi/4*P*R/(E*A) + 3*\%pi/4*1.33*P*R/(G*A) + (7*\%pi)
      /4+1)*P*R^3/(E*I)
24 \text{ qc} = Ax + Sh + M
25 printf ('qc = \%.2 f mm among which due to Axial is \%.4
      f mm, %.4f mm is due to shear, and %.4f mm is due
       to moment',qc*10^3,Ax*10^3,Sh*10^3,M*10^3)
26 printf('\n which means The concentrations of axial
      loads and shear are negligible')
```

Scilab code Exa 5.12 Example12

```
1 clc
2 // initialization of variables
3 clear
4 // Material properties and dimensions
5 E=72 //G Pa
6 P=10 //kN
7 Q=5 //kN
8 Aab=150 //mm^2
9 Abc=900 //mm^2
10 Acd=900 //mm^2
11 Ade=900 //mm^2
```

```
12 Abd=150 / \text{mm}^2
13 Abe=150 / \text{mm}^2
14 \text{ Lab=2} //\text{m}
15 Lbc=2.5 //m
16 Lbd=1.5 //m
17 Lbe=2.5 //m
18 \text{ Lcd=2} //\text{m}
19 Lde=2 //m
20 //calculations
21 E=E*10^9
22 P=P*10^3
23 Q = Q * 10^3
24 Aab=150
25 \text{ Aab} = \text{Aab} * 10^-6
26 \text{ Abc} = \text{Abc} * 10^{-6}
27 \text{ Acd} = \text{Acd} * 10^{-6}
28 \text{ Ade} = \text{Ade} * 10^{-6}
29 \text{ Abd} = \text{Abd} * 10^{-6}
30 \text{ Abe=Abe*10^--6}
31 M = 0
32 \text{ Nab} = 4/3*(Q+2*P) - 5*M/(3*Lbe)
33 dNab = -5/(3*Lbe)
34 \text{ Nbc} = -5/3*(Q+P)
35 \, dNbc=0
36 \, \text{Nbd} = Q
37 \text{ dNbd=0}
38 \text{ Nbe} = 5*P/3-4/3*M/Lbe}
39 \text{ dNbe} = -4/(3*Lbe)
40 \, \text{Ncd} = -4*P/3+5/3*M/Lbe
41 \, dNcd=5/(3*Lbe)
42 \, \text{Nde=Ncd}
43 thBE=Nab*Lab*dNab/(E*Aab)+Nbc*Lbc*dNbc/(E*Abc)+Nbd*
        Lbd*dNbd/(E*Abd)+Nbe*Lbe*dNbe/(E*Abe)+2*Ncd*Lcd*
       dNcd/(E*Lcd)
44 printf ('The rotation of member BE is %.5 f rad', thBE)
45 // Wrong answer in the text
```

Chapter 6

TORSION

Scilab code Exa 6.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part (a)
5 a = 22 / mm
6 b=25 / mm
7 T = 500 / N m
8 // calculations
9 a=a*10^-3
10 b=b*10^-3
11 J=\%pi*(b^4-a^4)/2
12 \quad tau_max = T*b/J
13 printf(' part (a) n')
14 printf(' Maximum shear stress in shaft = %.1 f M Pa'
      , tau_max/10^6)
15 // part (b)
16 G=77 //GPa
17 G=G*10^9
18 th=T/(G*J)
19 printf('\n part (b)')
20 printf('\n The angle of twist per unit length is =\%
```

Scilab code Exa 6.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 T=113 / Nm
5 L1 = 1 / m
6 L2=1.27 /m
7 \text{ Y} = 414 / \text{MPa}
8 G=77 //GPa
9 SF=2
10 // part (a)
11 T1=T*2
12 T2 = T
13 Y = Y * 10^6
14 G = G * 10^9
15 \quad tau_max = 0.25 * Y
16 r1=(2*T1/(\%pi*tau_max))^(1/3)
17 d1 = 2 * r1
18 r2=(2*T2/(\%pi*tau_max))^(1/3)
19 d2 = 2 * r2
20 inch=25.4 /mm
21 printf(' part (a) n')
22 printf(' d1 = %.2 f mm
                             d2 = \%.2 \text{ f mm}', d1*10^3, d2
      *10^3)
23 printf('\n Since the dimensons are not standard, we
      choose d1 = \%.1 f mm and d2 = \%.2 f mm', inch, 0.75*
      inch)
24 // part (b)
25 d1 = inch * 10^{-3}
26 \text{ r1}=d1/2
27 d2=0.75*inch*10^-3
28 r2=d2/2
```

Scilab code Exa 6.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 tau_Y=190 //MPa
5 G=27 //GPa
6 L=2 /m
7 Do=60 /mm
8 \text{ Di} = 40 / \text{mm}
9 SF=2 // Factor of safety
10 // Angle of twist can't be greater than 0.2 rad
11 thM=0.2 //rad
12 Do=Do*10^-3
13 Di = Di * 10^{-3}
14 G = G * 10^9
15 tau_Y=tau_Y*10^6
16 J=\%pi/2*((Do/2)^4-(Di/2)^4)
17 T=tau_Y*J*2/(Do*SF)
18 printf(' part (a)')
19 printf('\n Design torque T = \%.3 f \text{ kN.m', T/10^3})
20
21 // part (b)
22 T = G * J * thM/SF
```

```
23 printf('\n part (a)')
24 printf('\n Design torque limited by angle of twist
is T = %.3 f kN.m', T/10^3)
```

Scilab code Exa 6.4 Example4

```
1 clc
 2 // initialization of variables
4 // Material specifications
 5 G = 77.5 //GPa
 6 // Following values of torsion are obtained from
       figure
7 Toa=-12.5 //kN
8 Tab=-8.5 //kN
9 Tbc=1.5 //kN
10 D1=10 //cm
11 D2 =5 //cm
12 D3 = D1 //cm
13 \text{ Loa}=500 / \text{mm}
14 Lab=400 //mm
15 Lbc=300 //mm
16 //calculations
17 G = G * 10^9
18 \quad Toa=Toa*10^3
19 Tab=Tab*10^3
20 \text{ Tbc=Tbc*10^3}
21 D1 = D1 * 10^{-2}
22 D2 = D2 * 10^{-2}
23 \quad D3 = D3 * 10^{-2}
24 \quad Loa=Loa*10^-3
25 \text{ Lab=Lab*}10^{-3}
26 \text{ Lbc=Lbc*}10^{-3}
27 r1 = D1/2
28 Joa=%pi*r1^4/2
```

```
29 \quad tauOA = -Toa*D1/(2*Joa)
30 \text{ r}2=D2/2
31 \text{ r3} = \text{D3}/2
32 \text{ Jbc=\%pi*r2}^4/2
33 Jab=%pi*r3^4/2
34 \text{ tauBC=Tbc*D2/(2*Jbc)}
35 tau=max(tauOA,tauBC)
36 printf('The maximum shear stress is = \%.2 f M Pa in
      segment OA', tau/10^6)
37 // part (b)
38 psiA=Toa*Loa/(G*Joa)
39 psiBA=Tab*Lab/(G*Jab)
40 psiB=psiA+psiBA
41 psiCB=Tbc*Lbc/(G*Jbc)
42 psiC=psiB+psiCB
43 printf('\n PsiA = \%.5 f rad PsiB = \%.5 f rad PsiC =
      \%.5 \, f \, rad \, ,psiA,psiB,psiC)
```

Scilab code Exa 6.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 // Shaft specifications
5 Pi=100 //kW
6 f1=100 //Hz
7 f2=10 //Hz
8 tau_Y=220 //MPa
9 SF=2.5 // Safety factor
10 Po=100 //kW
11 // calculations
12 Pi=Pi*10^3
13 tau_Y=tau_Y*10^6
14 Po=Po*10^3
15 Tin=Pi/(2*%pi*f1)
```

Scilab code Exa 6.7 Example7

```
1 clc
2 // initialization of variables
3 clear
4 // Flange specifications
5 \text{ T} = 5000 / \text{Nm}
6 \text{ b_f} = 266 \text{ //mm}
7 d = 779 / mm
8 \text{ t_w} = 16.5 / \text{mm}
9 \text{ t_f} = 30 / \text{mm}
10 G=200 // GPa
11 // calculations
12 b_f = b_f * 10^-3
13 d=d*10^-3
14 t_w=t_w*10^-3
15 t_f=t_f*10^-3
16 \ G = G * 10^9
17 // calculations
18 k1 = 0.308 // flange (b/h) < 10
19 Jf = 2 * k1 * b_f * t_f^3
20 k1=0.333 // web (b/h)>10
21 Jw=k1*(d-2*t_f)*t_w^3
J = Jf + Jw
23 // part (a)
24 \text{ hmax} = 0.015
25 \quad tau_max = 2*T*hmax/J
26 printf('part (a)n')
27 printf ('Maximum shear stress is = \%.2 \, \text{f MPa'}, tau_max
```

Scilab code Exa 6.8 Example8

```
1 clc
2 // initialization of variables
3 clear
4 // Rod dimensions and material properties
5 \text{ b1} = 60 / \text{mm}
6 \ 11=3 \ //m
7 12=1.5 / m
8 \text{ h1} = 40 \text{ //mm}
9 b2 = 40 / mm
10 \text{ h}2=30 \text{ //mm}
11 G = 77.5 //GPa
12 T1=750 /N_{\rm m}
13 T2=400 /N_{\rm m}
14 //calculations
15 b1=b1*10^-3
16 h1=h1*10^-3
17 b2=b2*10^-3
18 h2=h2*10^-3
19 G=G*10^9
20 // for the left portion of the rod
21 k11=0.196
22 k21=0.231
23 // for the right portion of the rod
24 \text{ k1r} = 0.178
25 \text{ k2r} = 0.223
26 T = T1 + T2
```

Scilab code Exa 6.9 Example9

```
1 clc
2 // initialization of variables
3 clear
4 Do = 22 / mm
5 \text{ Di} = 18 / \text{mm}
6 \text{ Dm} = 20 / \text{mm}
7 tD=0.1 // t/D
8 // part (a)
9 \text{ tau}=70 \text{ //MPa}
10 G = 77.5 //GPa
11 //calculations
12 Do = Do * 10^{-3}
13 Di=Di*10^-3
14 \quad Dm = Dm * 10^{-3}
15 tau=tau*10^6
16 G=G*10^9
17 A = \%pi * Dm^2/4
18 t = Dm * tD
19 T1=2*A*tau*t
20 th1=tau*\%pi*Dm/(2*G*A)
21 J = \%pi/32*(Do^4-Di^4)
22 r = Dm/2
```

```
23 T2=tau*J/r
24 	 th2=tau/(G*r)
25 printf('part (a)n')
26 printf(' Using formula_1 T = \%.2 f Nm theta = \%.7 f
      rad/mm ',T1,th1*10^-3)
27 printf('\n Using formula_2 T = \%.2 f Nm theta = \%.7 f
      rad/mm ',T2,th2*10^-3)
  //part (b)
29 h = 1 / mm
30 h=h*10^-3
31 b = 10 * \%pi
32 b=b*10^-3
33 T = 8 * b * h^2 * tau/3
34 \text{ th=tau/(2*G*h)}
35 printf('\n part (b)')
36 printf('\n T = \%.3 \, f \, N.m
                                theta = \%.7 \, \text{f} \, \text{rad/mm} ', T,
      th*10^-3)
```

Scilab code Exa 6.10 Example10

```
16
17 12=r2*%pi
18 \ G = G * 10^3
19 A1=13<sup>2</sup>
20 \quad A2 = \%pi * r2^2/2
21 T1=2*A1
22 T2=2*A2
23 \quad tha1=11/t1+13/t3
24 \text{ tha1=tha1/(2*G*A1)}
25 \text{ tha}2 = -13/t3
26 \text{ tha2=tha2/(2*G*A1)}
27 \text{ thb1} = -13/t3
28 \text{ thb1=thb1/(2*G*A2)}
29 \text{ thb2=}12/\text{t2+}13/\text{t3}
30 \text{ thb2=thb2/(2*G*A2)}
31 // Since tha=thb
32 Qr = (thb2 - tha2)/(tha1 - thb1)
33 printf ('q1/q2 = \%.3 \, \text{f}',Qr)
34 q2=tau_max*t2
35 q1=Qr*q2
36 qdif=q1-q2
37 tau_1=q1/t1
38 tau_2=q2/t2
39 \text{ tau}_3=\text{qdif}/\text{t3}
40 \quad T = 2 * A1 * q1 + 2 * A2 * q2
41 th=tha1*q1+tha2*q2
42 printf ('\n T = \%.3 \, \text{f kN.m'}, T/10^6)
43 printf('\n theta = \%.4 \, \text{f rad/m'}, th*10^3)
```

Chapter 7

BENDING OF STRAIGHT BEAMS

Scilab code Exa 7.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 E = 200 //G Pa
5 \text{ Y} = 250 / \text{M} \text{ Pa}
6 \text{ SF} = 1.9
7 w=1 / kN/m
8 L=3 /m
9 S_max = Y
10 // Calculations
11 E=E*10^9
12 Y=Y*10^6
13 \ w = w * 10^3
14 Mx = -SF * w * L^2/2
15 \quad S_max = S_max * 10^6
16 \text{ k=2} // \text{c_max=h/k}
17 //Formula to be used
18 // S_max = abs(Mx) * c_max/Ix
19 // Note that c_max=h/2 and Ix=h^4/24
```

```
20 h=(abs(Mx)*24/(k*S_max))^(1/3)
21 printf('h = %.4 f m',h)
```

Scilab code Exa 7.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 P1=1.5 //kN
5 P2=4.5 / kN
6 // part (a)
7 \text{ A} = 1000 / \text{mm}^2
8 \text{ A1} = 500 / \text{mm}^2
9 \text{ A2=500 } / \text{mm}^2
10 //calculation
11 A = A * 10^{-6}
12 \quad A1 = A1 * 10^{-6}
13 \quad A2 = A2 * 10^{-6}
14 y1 = 25 * 10^{-3}
15 y2=55*10^{-3}
16 c1 = (A1 * y1 + A2 * y2) / A
17 c2=60*10^{-3}-c1 // c1+c2=60 mm
18 \quad y_1 = c1 - 25 * 10^{-3}
19 \quad y_2 = c2 - 5 * 10^{-3}
20 b1=50*10^{-3}
21 h1 = 10 * 10^{-3}
22 h2=50*10^{-3}
23 b2=10*10^{-3}
24 \text{ Ix}=1/12*b1*h1^3 + A1*y_1^2 + 1/12*b2*h2^3 + A2*y_2^2
25 printf('part (a)')
26 R1 = 2550 / N
27 \text{ Vy} = 750 / N
28 \text{ Mx} = 975 / \text{N.m}
29 S_zT=Mx*c1/Ix
30 S_zzC=Mx*(-c2)/Ix
```

Scilab code Exa 7.3 Example3

```
2 // initialization of variables
3 clear
4 P=12 / kN
5 \text{ Phi} = \% \text{pi} / 3
6 // calculations
7 L=3 /m
8 P=12 //kN
9 \text{ A} = 10000 / \text{mm}^2
10 Ix = 39.69 * 10^6 / mm^4
11 yo = 82 / mm
12 Iy=30.73*10^6 //mm^4
13 \quad Ixy=0
14 P=P*10^3
15 Ix = Ix * 10^{-12}
16 \quad Iy = Iy * 10^{-12}
17 alpha=atan(-Ix/(Iy*tan(Phi)))
18 \quad M = -L * P
19 Mx=M*sin(Phi)
20 \text{ yA} = -118*10^{-3} / \text{m}
21 \text{ xA} = -70*10^{-3} / \text{m}
22 \quad xB = -xA
23 \text{ yB} = 82 \times 10^{-3} / \text{m}
24 S_A=Mx*(yA-xA*tan(alpha))/(Ix-Ixy*tan(alpha))
25 \quad S_B=Mx*(yB-xB*tan(alpha))/(Ix-Ixy*tan(alpha))
26 printf(' Sigma A = \%.1 \text{ f M Pa } \text{ n', S_A/10^6})
27 printf(' Sigma B = \%.1 \,\mathrm{f} M Pa', S_B/10^6)
```

Scilab code Exa 7.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 P=4 / kN
5 L=1.2 /m
6 \text{ A} = 1900 / \text{mm}^2
7 Ix = 2.783 * 10^6 / mm^4
8 Iy=1.003*10^6 /\text{mm}^4
9 Ixy=-0.973*10^6 /\text{mm}^4
10 P=P*10<sup>3</sup>
11 Ix = Ix * 10^- - 12
12 Iy = Iy * 10^{-12}
13 Ixy = Ixy * 10^{-12}
14 A = 1900 / mm^2
15 \text{ xo} = 19.74 / \text{mm}
16 \text{ yo} = 39.74 / \text{mm}
17 Phi=2*%pi/3
18 Nr=Ixy-Ix/tan(Phi)
19 Dr=Iy-Ixy/tan(Phi)
20 alpha=atan(Nr/Dr)
21 \quad M=L*P
22 \text{ Mx=M*sin}(Phi)
23 yA = 39.74 * 10^{-3} / m
24 \text{ xA} = -60.26*10^{-3} / \text{m}
25 \text{ xB} = 19.74 * 10^{-3}
26 \text{ yB} = -80.26*10^{-3} / \text{m}
27 \text{ S_A=Mx*(yA-xA*tan(alpha))/(Ix-Ixy*tan(alpha))}
28 S_B=Mx*(yB-xB*tan(alpha))/(Ix-Ixy*tan(alpha))
29 printf('part (a)')
30 printf('\n Sigma A = \%.1 f M Pa \n', S_A/10^6)
31 printf(' Sigma B = \%.1 f M Pa', S_B/10^6)
32
```

```
33 // part (b)
34 	 th = 1/2 * atan(-2 * Ixy/(Ix-Iy))
35 \text{ th1=0.415 } //\text{rad}
36 \text{ th} 2 = -1.156 // \text{rad}
37 \text{ IX=Ix*}(\cos(\tanh 1))^2+\text{Iy*}(\sin(\tanh 1))^2-2*\text{Ixy*}\sin(\tanh 1)*
        cos(th1)
38 \quad IY = Ix + Iy - IX
39 Phi = 2 * \%pi / 3 - th1
40 alphA=-IX/(IY*tan(Phi))
41 alpha=alphA+th1
42 XA = xA * \cos(th1) + yA * \sin(th1)
43 YA = yA * \cos(th1) - xA * \sin(th1)
44 XB=xB*cos(th1)+yB*sin(th1)
45 YB=yB*cos(th1)-xB*sin(th1)
46 \text{ MX}=\text{M*sin}(\text{Phi})
47 MY = -M * \cos(Phi)
48 \quad S_A = MX * YA / IX - MY * XA / IY
49 \quad S_B = MX * YB / IX - MY * XB / IY
50 printf('\n part (b)')
51 printf('\n Sigma A = \%.1 f M Pa \n', S_A/10^6)
52 printf ('Sigma B = \%.1 \, \text{f M Pa', S_B/10^6})
```

Scilab code Exa 7.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 A=3085.9 //mm^2
5 Ix=29.94e-6 //m^4
6 Iy=4.167e-6 //m^4
7 Ixy=0
8 ybar=207.64 //mm
9 tau_max=165e6 //Pa
10 // calculations
11 A=A*1e-6
```

```
12 \text{ ybar=ybar*1e-3}
13 Mxk = -6.1*cos(\%pi/6) // Mx=Mxk*P
14 Myk = -6.1*sin(\%pi/6) //My=Myk*P
15 // Equation to be followed
16 // S_zz = Mx*y/Ix-My*x/Iy
17 // At A x=100 \text{ mm} y=-92.36 \text{ mm}
18 x = 100 e - 3
19 y = -92.36e-3
20 S_zzA=Mxk*y/Ix-Myk*x/Iy //Sigma_zz=S_zz*P
21 // At B x=-100 \text{ mm} y=-92.36 \text{ mm}
22 x = -100 e - 3
y = -92.36e-3
24 S_zzB=Mxk*y/Ix-Myk*x/Iy //Sigma_zz=S_zz*P
25 // At C x=-3.125 \text{ mm} y=207.64 \text{ mm}
26 \quad x = -3.125 e - 3
27 y = 207.64 e - 3
28 S_zzC=Mxk*y/Ix-Myk*x/Iy //Sigma_zz=S_zz*P
29 // To find P
30 P=2*tau_max/max(S_zzA,S_zzB,S_zzC)
31 printf ('P = \%.2 \text{ f kN', P/10^3})
```

Scilab code Exa 7.6 Example6

```
1 clc
2 // initialization of variables
3 clear
4 P=35 //kN
5 Phi=5*%pi/9
6 E=72e9 //Pa
7 L=3 //m
8 Ix=39.69*10^6 //mm^4
9 Iy=30.73*10^6 //mm^4
10 Ixy=0
11 //calculations
12 P=P*1e3
```

```
13 Ix = Ix * 10^{-12}
14 \quad Iy = Iy * 10^{-12}
15 alpha=atan(-Ix/(Iy*tan(Phi)))
16 M = P * L / 4
17 Mx=M*sin(Phi)
18 \text{ yA} = -118*10^{-3} / \text{m}
19 xA = 70 * 10^{-3} / m
20 \times B = -xA
21 \text{ yB} = 82 * 10^{-3} / \text{m}
22 S_{comp}=Mx*(yA-xA*tan(alpha))/(Ix-Ixy*tan(alpha))
23 S_{tens}=Mx*(yB-xB*tan(alpha))/(Ix-Ixy*tan(alpha))
24 printf(' Tensile strength = \%.1 f M Pa \n', S_tens
       /10^6)
25 printf(' Compressive Strength = \%.1 f M Pa', S_comp
       /10^6)
26 \text{ v=P*L}^3*\sin(\text{Phi})/(48*E*Ix)
27 \quad u = -v * tan(alpha)
28 \text{ delta=} \text{sqrt}(\text{u}^2+\text{v}^2)
29 printf('\n The total deflection is \%.2\,\mathrm{f} mm', delta
       *10^3)
```

Scilab code Exa 7.7 Example 7

```
1 clc
2 // initialization of variables
3 clear
4 L=3 //m
5 Ix=56.43e6 //mm^4
6 Iy=18.11e6 //mm^4
7 Ixy=22.72e6 //mm^4
8 Phi=%pi/3
9 E=200e9 //Pa
10 Y=300e6 //Pa
11 // calculations
12 Ix=Ix*10^-12
```

```
13 Iy = Iy * 10^{-12}
14 \quad Ixy = Ixy * 10^- - 12
15 yA = -120*10^{-3} / m
16 \text{ xA} = -91*10^{-3} / \text{m}
17 Nr=Ixy-Ix/tan(Phi)
18 Dr=Iy-Ixy/tan(Phi)
19 alpha=atan(Nr/Dr)
20 // M=-L*P To know P we do the following
21 Mxk = -L * sin(Phi) / Mx = Mxk * P
22 P=Y*(Ix-Ixy*tan(alpha))/(Mxk*(yA-xA*tan(alpha)))
23 printf ('P = \%.2 \text{ f kN } \text{n',P/10^3})
v=P*L^3*sin(Phi)/(3*E*(Ix-Ixy*tan(alpha)))
25 \quad u=-v*tan(alpha)
26 \text{ delta=} \text{sqrt}(\text{u}^2+\text{v}^2)
27 printf(' deflection = \%.2 \text{ f mm'}, delta*10^3)
28 // Wrong calculation starting from v in Textbook
```

Scilab code Exa 7.8 Example8

```
1 clc
2 // initialization of variables
3 clear
4 Ix=937e+06 //mm^4
5 Iy=18.7e+6 /mm<sup>4</sup>
6 \text{ Ixy} = 0
7 \text{ yA} = 305 / \text{mm}
8 \text{ xA} = 90.5 / \text{mm}
9 Phi=1.5533 // \text{rad}
10 //calculations
11 Ix = Ix * 10^{-12}
12 Iy = Iy * 10^{-12}
13 Ixy = Ixy * 10^- - 12
14 yA = yA * 10^{-3} / m
15 xA = xA * 10^{-3} / m
16 alpha=atan(-Ix/(Iy*tan(Phi)))
```

Scilab code Exa 7.9 Example9

```
1 clc
2 // initialization of variables
3 clear
4 Y = 280 / MPa
5 \text{ AB}=40 / \text{mm}
6 \text{ BC}=60 \text{ //mm}
7 //calculations
8 Y = Y * 10^6
9 alpha=atan(BC/AB)
10 \text{ C11} = 20/3 / \text{mm}
11 C12 = -10 / mm
12 C21 = -20/3 / mm
13 C22=10 / mm
14 Beta=atan((C11-C21)/(C22-C12))
15 Phi=%pi/2+Beta
16 d = sqrt((AB/2-C11)^2+(BC/2-C22)^2)
17 d=d*10^-3 /m
18 At=1/2*AB*BC/2*10^-6
```

```
19 Mp=At*Y*d
```

20 printf('Mp = $\%.3 \, f \, kN.m'$, Mp/10^3)

Chapter 8

SHEAR CENTER FOR THIN WALL BEAM CROSS SECTIONS

Scilab code Exa 8.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 t=4 /mm
5 // calculations
6 l1=100 //mm See figure
7 12=50 //mm See figure
8 \text{ ybar}=125 / \text{mm}
9 t=t*10^-3
10 ybar = ybar *10^-3
11 11=11*10^-3
12 12=12*10^-3
13 Ix=2*t*(2*(11+12))^3/12-t*(2*11)^3/12
14 qAk=11*t*ybar // qA=qAk*V
15 \quad qBk = qAk + 11 * t * 11/2
16 qave=qAk+2/3*(qBk-qAk)
17 F2k=200*qave*10^-3 //F2=F2k*V
```

```
18  D0=100/tan(30*%pi/180) // from figure
19  // Now we need to solve the following equation
20  // (DO-e)*V=DO*F2
21  e=D0*(1-F2k/Ix)
22  printf('e = %.1 f mm',e)
```

Scilab code Exa 8.2 Chapter8 Example 2

```
1 clc
2 // initialization of variables
3 clear
4 // Defining the legs
5 a=50 //mm Top horizontal leg
6 b=100 //mm Verical leg
7 c=100 / \text{mm bottom leg}
8 t=4 /mm
9 Ix=1.734e6 //mm^4
10 Iy=0.876e6 //mm^4
11 Ixy=-0.5e6 //mm^4
12 I = [Ix Ixy]
13
       Ixy Iy]
14 theta=1/2*atan(-2*Ixy/(Ix-Iy))
15 Q = [\cos(\text{theta}) - \sin(\text{theta})]
16
      sin(theta) cos(theta)]
17 I_1 = Q * I * Q ' // I_1 = [IX IXY | IXY IY]
18 // Finding out the centroidal coordinates
19 // We have x_bar = Summation(Ai*Xi)/Summation(Ai)
20 // We take D as reference
21 Aa=a*t
22 \quad Ab=b*t
23 Ac=c*t
24 \quad A = Aa + Ab + Ac
25 \text{ x_D} = ((Ac*c/2) + (Aa*a/2))/A
26 \text{ y_D} = ((Ab*b/2) + (Aa*b))/A
27 // Finding out B coordinates
```

```
28 \text{ xb=a-x_D}
29 \quad yb=b-y_D
30 x = [xb; yb]
31 X=Q'*x //New coordinates of B in transformed system
32 function y=f(1),
33
        y=t*1/I_1(1)*(X(2)+1/2*1*sin(theta)),
34 endfunction
35 F3=intg(0,a,f) // This is the coefficient of VY
36 \, e_X = b * F3
37 printf ('eX = \%.2 \text{ f mm'}, e_X)
38 // To find eY
39 function y1=g(1),
40
        y1=t*1/I_1(4)*(X(1)-1/2*1*cos(theta)),
41 endfunction
42 F3=intg(0,a,g) // This is the coefficient of VX
43 \text{ e}_{Y}=b*F3
44 printf('\n eY = \%.2 \text{ f mm'}, e_Y)
45 \text{ XC=Q'*[x_D]}
46
           y_D]
47 \quad XC = XC + [e_X]
          -e_Y]
48
49 printf('\n In terms of intial coordinates, the shear
        center C is located at \n XC = \%.2 \text{ f mm}', XC(1)
50 printf('\n YC = \%.2 \text{ f mm'}, XC(2))
51 \text{ xC=Q*XC}
52 printf('\n The x and y coordinates of shear center C
        are \n xC = \%.2 \text{ f mm}, xC(1))
53 printf('\n yC = \%.2 \text{ f mm'}, xC(2))
```

Scilab code Exa 8.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 t1=1 //mm
```

```
5 t2=2 /mm
6 oT=9.67 //mm distance between base and the centroid
      of each T-ection
7 y2_bar=100+10+1+oT //mm (follwos from the figure)
8 \text{ A1} = 400 / \text{mm}^2
9 y1_bar=100 //mm
10 \text{ A2} = 324 / \text{mm}^2
11 Ix=2*A1*y1_bar^2+2*A2*y2_bar^2
12 q1k=A2*y2_bar //q1=q1k*Vy/Ix
13 F1k=(oT+t1/2)*q1k // Fi=Fik*Vy/Ix
14 F2k = 60*q1k
15 F3k = (10+t1/2)*q1k
16 \quad q2k=q1k+(A1*y1_bar)
17 F4k = (10+t2/2)*q2k
18 F5k = 200 * q2k
19 V_pk = 2*(F1k + 2*F3k + F5k)/Ix // V_p = V_pk *Vy
e = (-2*F1k*71-2*F3k*11+F2k*221+F4k*200)/Ix
21 printf ('e = \%.2 \text{ f mm'}, e)
```

Scilab code Exa 8.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 b=300 //mm
5 h=500 //mm
6 t1=20 //mm
7 t2=10 //mm
8 t3=t2
9 Ix=687.5e+06 //mm^4
10 q_P=b*t2*h/2
11 q_Q=q_P+h/2*t1*h/4
12 q_S=h/2*t3*h/4
13 q_A=-1/(h/t1+b/t2+h/t3+b/t2)*((-q_P-2/3*(q_Q-q_P))*h/t1-q_P/2*b/t2+2/3*q_S*h/t3-q_P/2*b/t2)
```

Scilab code Exa 8.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 = 500 / mm
5 b=a
6 \text{ t1=5} //\text{mm}
7 t2=10 / mm
8 t3 = 20 / mm
9 // calculations
10 Ix=2343.75e+06//mm^4
11 q_B=b*t2*a/2
12 q_C = q_B + a/2 * t1 * a/4
13 q_S=a/2*t3*a/4
14 q_G=2*b*t2*a/2
15 q_H=q_G+a/2*t3*a/4
16 // th_L = th_R = 0
17 // Writing the above in following form
18 / Ab = c ; b = \{q_A q_F\}
19 A11=a/t1+b/t2+a/t3+b/t2
20 \text{ A12=a/t3}
21 c1 = (q_B + 2/3*(q_C - q_B))*a/t1 + 1/2*q_B*b/t2 - 2/3*q_S
      *a/t3 + 1/2*q_B*b/t2
22 A21=A12
23 \quad A22=a/t3+2*b/t2+a/t3+2*b/t2
c2 = (q_G+2/3*(q_H-q_G))*a/t3+1/2*q_G*2*b/t2-2/3*q_S*a
```

```
/t3+1/2*q_G*2*b/t2
25 \quad A = [A11 \quad A12]
      A21 A22]
26
27 c = [c1]
28
      c2]
29 b=inv(A)*c
30 \text{ q_A=b(1)/1000 //kN/mm}
q_F = b(2) / 1000 / kN/mm
32 q_B = q_B / 1000
33 q_C = q_C / 1000
34 q_S = q_S / 1000
35 q_G = q_G / 1000
36 q_H=q_H/1000
37 b=a // rewriting to it's initival value
38 // To find out e, balance the moments
    e=-((q_B-q_A+2/3*(q_C-q_A-(q_B-q_A)))*a*b + 1/2*(
39
       q_B-q_A)*219.1*a - 1/2*q_A*280.9*a + 1/2*q_F
       *471.9*a -1/2*(q_G-q_F)*528.1*a-(q_G-q_F+2/3*(
       q_H-q_F-(q_G-q_F)))*a*2*b)
40 \text{ e=e/Ix}
    printf('e = %.1 f mm', e*10^3)
41
42
    // Wrong answer in the text
```

Chapter 9

CURVED BEAMS

Scilab code Exa 9.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 a=30 / mm
5 c = 80 / mm
6 b = 50 / mm
7 P=9.5 / kN
8 d=100 //mm position of P
9 //calculations
10 P = P * 10^3
11 \quad A=b^2
12 A = b * (c-a)
13 Am=b*log(c/a)
14 R = (a+c)/2
15 p=d+R
16 \text{ Mx} = p * P
17 r=a
18 S_{thB=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))}
19 r=c
20 S_{thC=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))}
21 printf('The maximum tensile stress is (at point B) =
```

```
%.1 f MPa',S_thB)

22 printf('\n The maximum cpmpressive stress is (at point C) = %.1 f MPa',S_thC)
```

Scilab code Exa 9.2 Example2

```
1 clc
     2 // initialization of variables
     3 clear
    4 // part (c)
    5 \text{ r_A} = 1.47 \text{ //m}
     6 theta=%pi
     7 // S_{th} = -125 * \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (1 - \cos (theta) + (14.2857 - 9.5250 * r) / r * (14.2857 - 9.5250 * r) / r
                                              theta)) *10^5 //kPa
     8 r = r_A
     9 S_{th}=-125*\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-\cos(theta)+(14.2857-9.5250*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(1-36.2850*r)/r*(
                                             theta))*10^5 //kPa
10 S_A=S_th
11
12 \text{ r}_B = 1.53 \text{ //m}
13 r=r_B
14 S_{th} = -125*\cos(theta) + (14.2857 - 9.5250*r)/r*(1-\cos(theta))
                                             theta))*10^5 //kPa
15 S_B=S_th
16 printf('part (c)')
17 printf('\n The tensile stress at A is %.2f MPa',S_A
                                             /1000)
18 printf('\n The compressive stress at B is %.2 f MPa',
                                             S_B/1000)
19
20 // part (d)
21 theta=%pi/2
22 r = r_A
23 S_{th} = -125*\cos(theta) + (14.2857 - 9.5250*r)/r*(1-\cos(theta))
                                             theta))*10^5 //kPa
```

Scilab code Exa 9.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 \text{ Y} = 500 / \text{MPa}
5 \text{ SF} = 2.00
6 \text{ A1} = 1658.76 / \text{mm}^2
7 R1 = 73.81 / mm
8 \text{ Am1} = 22.64 / \text{mm}
9 A2 = 6100 / mm^2
10 R2=126.62 //mm
11 Am2 = 50.57 / mm
12 A3=115.27 //mm^2
13 R3=186.01 /mm
14 \text{ Am} 3 = 0.62 / \text{mm}
15 \quad A = A1 + A2 + A3
16 \quad Am = Am1 + Am2 + Am3
17 R = (A1*R1+A2*R2+A3*R3)/A
18 \text{ rB}=60 \text{ //mm}
19 rC=rB+24+100+5 // follows from figure
20 //P unknown, so put unity to solve for it later
```

```
21  P=1
22  Mx=116.37*P
23  r=rB
24  S_thB=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))
25  r=rC
26  S_thC=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))
27  S_th=max(abs(S_thB), abs(S_thC))
28  Pf=Y/S_th
29  P=Pf/SF
30  printf('P = %.d N',P)
```

Scilab code Exa 9.4 Example4

```
1 clc
   2 // initialization of variables
   3 clear
  4 // part (b)
   5 // Following is the formula used in evaluating the
                           circumferential stress
   6 // Nr = (ro + ri) * (ro - ri - r * log (ro / ri))
   7 // Dr=r*((ro+ri)*log(ro/ri)-2*(ro-ri))
   8 // S_{th}=P*((sin(th)-th*cos(th))/(\%pi*(r0-ri)*t))*(1+
                          Nr/Dr)
  9 \text{ ri} = 60 / \text{mm}
10 ro = 180 / mm
11 t = 50 / mm
12 th=%pi/2
13 // For, maximum tensile stress r=ri
14 r=ri
15 Nr=(ro+ri)*(ro-ri-r*log(ro/ri))
16 Dr=r*((ro+ri)*log(ro/ri)-2*(ro-ri))
17 // Question was asked in terms of P, so let it be
                          unity
18 P = 1
19 S_{th}=P*((sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th))/(%pi*(ro-ri)*t))*(1+Nr/sin(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(th)-th*cos(t
```

```
Dr)
20 S_max1=S_th
21 // For maximum compressive stress r=ro
22 r=ro
23 Nr=(ro+ri)*(ro-ri-r*log(ro/ri))
24 Dr=r*((ro+ri)*log(ro/ri)-2*(ro-ri))
25 \text{ S_th=P*((sin(th)-th*cos(th))/(\%pi*(ro-ri)*t))*(1+Nr/th)}
      Dr)
26 \quad S_{max}2=S_{th}
27 printf('part (b)')
28 printf('\n for theta=90 degrees')
29 printf('\n Maximum tensile stress = \%.6 \, \text{f} \, \text{P',S_max1})
30 printf('\n Maximum compressive stress = \%.6 \, \mathrm{f} \, \mathrm{P}',
      S_{max2}
31
32
33 th=%pi
34 // For, maximum tensile stress r=ri
35 r=ri
36 \text{ Nr}=(\text{ro}+\text{ri})*(\text{ro}-\text{ri}-\text{r*}\log(\text{ro}/\text{ri}))
37 \text{ Dr} = r*((ro+ri)*log(ro/ri)-2*(ro-ri))
38 // Question was asked in terms of P, so let it be
      unity
39 P = 1
40 \text{ S\_th=P*((sin(th)-th*cos(th))/(\%pi*(ro-ri)*t))*(1+Nr/th})
41 \quad S_max1=S_th
42 // For maximum compressive stress r=ro
44 Nr=(ro+ri)*(ro-ri-r*log(ro/ri))
45 Dr=r*((ro+ri)*log(ro/ri)-2*(ro-ri))
Dr)
47 \quad S_{max}2=S_{th}
48 printf('\n for theta=180 degrees')
49 printf('\n Maximum tensile stress = \%.6 \, \text{f P',S_max1})
50 printf('\n Maximum compressive stress = \%.6 \, \mathrm{f} \, \mathrm{P}',
      S_{max2}
```

Scilab code Exa 9.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 P = 120 / kN
5 \text{ b1=120 } / \text{mm}
6 \text{ b2=120 } / \text{mm}
7 h1 = 48 / mm
8 h2 = 24 / mm
9 P = P * 10^3
10 \quad A = h1 * b1 + b2 * h2
11 R = (b1*h1*96+b2*h2*180)/A
12 Am=b1*log(b1/72)+h2*log(240/b2)
13 r = 72
14 \text{ Mx} = 364 * P
15 S_{thB=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))}
16
17 \text{ r1} = 120 / \text{mm}
18 t = 24 / mm
19 A1=h1*r1
20 Am1=r1*log(r1/r)
21 \quad S_{rr} = (A*Am1-A1*Am)*Mx/(t*r1*A*(R*Am-A))
22 printf('Circumferential stress is %.1f MPa', S_thB)
23 printf('\n Radial stress is %.1f MPa',S_rr)
```

Scilab code Exa 9.6 Example6

```
1 clc
   2 // initialization of variables
   3 clear
   4 Mo=96 //kN
   5 P = 120 / kN
  6 \text{ b1=150} / \text{mm}
  7 \text{ h1} = 60 / \text{mm}
   8 b2 = 120 / mm
  9 \text{ h}2=50 \text{ //mm}
10 b3=b1
11 h3 = 40 / mm
12 \text{ ro}=80 / \text{mm}
13 \text{ r1} = 140 / \text{mm}
14 \text{ r2} = 260 / \text{mm}
15 r3=300 //mm
16 // calculations
17 Mo=Mo*10^6 // N.mm
18 P=P*10^3 // N
19 A=b1*h1+b2*h2+b3*h3
20 Am=b1*log(r1/ro)+h2*log(r2/r1)+b3*log(r3/r2)
21 R = (b1*h1*110+b2*h2*200+b3*h3*280)/A
22 \quad Mx = Mo + P * R
23 r = 80 / mm
24 S_{th}=P/A+(Mx*(A-r*Am))/(A*r*(R*Am-A))
25
26 \text{ A1} = 9000 / \text{mm}^2
27 \text{ r1} = 140 \text{ //mm}
28 t = 50 / mm
29 Am1=b1*log(r1/ro)
30 N = 120000
31 S_{rr} = A1*N/(A*t*r1) + (A*Am1-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*A*(R*Am-A1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx/(t*r1*Am)*Mx
                           A))
```

```
32  printf('Circumferential stress is %.2 f MPa', S_th)
33  printf('\n Radial stress at B1 is %.2 f MPa', S_rr)
34  // to find radial stress at C;
35  A1=b1*h1+b2*h2
36  Am1=b1*log(r1/ro)+h2*log(r2/r1)
37  r1=260  //mm
38  t=50  //mm
39  S_rr=A1*N/(A*t*r1) + (A*Am1-A1*Am)*Mx/(t*r1*A*(R*Am-A))
40  printf('\n Radial stress at C1 is %.2 f MPa', S_rr)
```

Scilab code Exa 9.7 Example7

```
1 clc
2 // initialization of variables
3 clear
4 1=15 /m
5 R = 10 / m
6 d=0.8 / m
7 b=0.13 / m
8 Po = 2400 / N/m
9 P = 4800 / N/m
10 //calculations
11 \ a=R-d/2
12 c = R + d/2
13 A = b * d
14 Am=b*log(c/a)
15 Mx = (Po+P)*1^2/8
16 S_{thMax=Mx*(A-a*Am)/(A*a*(R*Am-A))}
17 // To find out max radial stress
18 // Nr=d*log(r/a)-(r-a)*log(c/a)
19 // Dr = r * d * (R * log (c/a) - d)
20 // S_r r = Mx/b * Nr/Dr
21 r=a*exp(1-(a/d*log(c/a)))
22 \operatorname{Nr}=d*\log(r/a)-(r-a)*\log(c/a)
```

Scilab code Exa 9.8 Example8

```
1 clc
2 // initialization of variables
3 clear
4 // part(a)
5 \text{ Y} = 280 \text{ //MPa}
6 \text{ A} = 4000 / \text{mm}^2
7 \text{ Am} = 44.99 / \text{mm}
8 R = 100.0 / mm
9 r = 180 / mm
10 r = 60 / mm
11 // Mx is not yet known take it as unity
12 Mx=1 //unity
13 r = 180
14 S_{thMax=Mx*(A-r*Am)/(A*r*(R*Am-A))}
15 Mx=Y/(abs(S_thMax))
16 printf('part(a)')
17 printf ('\n Mx = \%.2 \text{ f kN.m'}, Mx/10^6)
18 // part(b)
19 k1=1.143
```

```
20 t_w = 20
21 b_p = 40
22 \quad alpha=0.651
23 \text{ Beta} = 1.711
24 r = 60 / mm
25 b1=2*alpha*b_p+t_w
26 \quad A = b1 * t_w + t_w * R
27 R = (b1*t_w*70+t_w*R*130)/A
28 Am=b1*log(80/r)+t_w*log(180/80)
29 // Mx not yet known teke it as unity
30 \text{ Mx} = 1
31 S_{thMax=Mx*(A-r*Am)/(A*r*(R*Am-A))}
32 r = 70 / mm
33 S_{thbar}=Mx*(A-r*Am)/(A*r*(R*Am-A))
34 S_x = -Beta * S_thbar
35 / \tan x = Y/2 = (S_{th} - S_{xx})/2
36 \text{ Mx=Y/(S\_thMax-S\_xx)}
37 printf('\n part (b)')
38 printf('\n Mx = \%.2 \text{ f kN.m'}, Mx/10^6)
```

Scilab code Exa 9.9 Example9

```
1 clc
2 // initialization of variables
3 clear
4 E=72 //GPa
5 t=60 //mm
6 M=24 //kN.m
7 //part(a)
8 ro=100 //mm
9 r1=150 //mm
10 A=t*r1
11 Am=t*log((ro+r1)/ro)
12 R=ro+r1/2
13 E=E*10^3
```

```
14  Mx=M*10^6
15  Phi=Am*Mx*%pi/(A*(R*Am-A)*E)
16  printf('part(a)')
17  printf('\n Phi = %.5 f rad', Phi)
18  //part(b)
19  //Mx=Mx+P*R*sin(th)
20  delta_P=Am*Mx*R*2/(A*(R*Am-A)*E)
21  printf('\n part(b)')
22  printf('\n deflection = %.3 f mm', delta_P)
```

Scilab code Exa 9.10 Example10

```
1 clc
2 // initialization of variables
3 clear
4 P=11.2 / kN
5 E = 200 //GPa
6 v = 0.3
7 Ix=181.7e+03 //mm^4
8 k1 = 0.643
9 b1 = 34.7 / mm
10 h1 = 10 / mm
11 b2 = 40 / mm
12 h2 = 10 / mm
13 t = 10 / mm
14 h = 50 / mm
15 E=E*10<sup>3</sup>
16 \quad A = b1 * h1 + b2 * h2
17 R = (b1*h1*35+b2*h2*60)/A
18 Am=b1*log(40/30)+h1*log(80/40)
19 G=E/(2*(1+v))
20 Aw=t*h
21 P=P*10^3
22 \text{ delta}_P = 2*P*100/(Aw*G) + 2*P/(E*3*Ix)*100^3 + P
      *48.4*\%pi/(2*Aw*G) + P*48.4*%pi/(2*A*E) + P
```

```
*16.9/(A*(48.4*16.9-A)*E)*(100^2*%pi+%pi/2*(48.4)
^2+2*100*2*48.4)
23 printf('seperation = %.3 f mm', delta_P)
```

BEAMS ON ELASTIC FOUNDATIONS

Scilab code Exa 10.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part(a)
5 E = 200 //GPa
6 d = 184 / mm
7 c = 99.1 / mm
8 \text{ Ix} = 36.9 \text{ e} + 06 / \text{mm}^4
9 \text{ k} = 14.0 / \text{N/mm}^2
10 P = 170 / kN
11 //calculations
12 E=E*10^3
13 P=P*10<sup>3</sup>
14 Beta=(k/(4*E*Ix))^(1/4)
15 y_max=P*Beta/(2*k)
16 \text{ M_max=P/(4*Beta)}
17 S_max=M_max*c/Ix
18 printf('part (a)')
19 printf('\n y_max = \%.3 \text{ f mm'}, y_max)
```

```
20 printf ('\n M_max = \%.2 \text{ f kN.m'}, M_max/10^6)
21 printf('\n S_{max} = \%.1 f MPa', S_{max})
22 // part (b)
23 z1 = 1.7 / m
24 z1=z1*10^3 /mm
25 z2 = 2 * z1
26 // A_bz=exp(-Beta*z)*(sin(Beta*z)+cos(Beta*z))
27 // C_bz=exp(-Beta*z)*(-sin(Beta*z)+cos(Beta*z))
28 \quad A_bzo=1
29 \quad C_bzo=1
30 A_bz1=exp(-Beta*z1)*(sin(Beta*z1)+cos(Beta*z1))
31 A_bz2=exp(-Beta*z2)*(sin(Beta*z2)+cos(Beta*z2))
32 \quad C_bz1 = exp(-Beta*z1)*(-sin(Beta*z1)+cos(Beta*z1))
33 C_bz2=exp(-Beta*z2)*(-sin(Beta*z2)+cos(Beta*z2))
34 \text{ y_end=P*Beta/(2*k)*(A_bzo+A_bz1+A_bz2)}
35 \text{ M_end=P/(4*Beta)*(C_bzo+C_bz1+C_bz2)}
36 \text{ y_center=P*Beta/(2*k)*(A_bzo+2*A_bz1)}
37 M_center=P/(4*Beta)*(C_bzo+2*C_bz1)
38 y_max=max(y_end,y_center)
39 M_max=max(M_end, M_center)
40 \quad S_{max}=M_{max}*c/Ix
41 printf('\n part(b)')
42 printf ('\n y_max = \%.3 f mm', y_max)
43 printf ('\n M_max = \%.2 \text{ f kN.m'}, M_max/10^6)
44 printf ('\n S_max = \%.1 \text{ f MPa'}, S_max)
```

Scilab code Exa 10.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 d=100 //mm
5 Ix=2.45e+06 //mm<sup>4</sup>
6 E=72 //GPa
7 L=6.8 //m
```

```
8 \text{ K} = 110 / N/\text{mm}
9 1=1.1 / m
10 P=12 //kN
11 //calculations
12 E=E*10^3
13 P=P*10<sup>3</sup>
14 1=1*10^3
15 \text{ k=K/l}
16 L1=7*1
17 Beta=(k/(4*E*Ix))^(1/4)
18 if(1<%pi/(4*Beta))
19 if(L1>3*%pi/(2*Beta))
20
        y_max=P*Beta/(2*k)
        M_max=P/(4*Beta)
21
        S_max = M_max *d/(2*Ix)
22
23 end
24 end
25 printf('y_max = \%.3 \, \text{f mm'},y_max)
26 printf('\n M_max = \%.2 f kN.m', M_max/10^6)
27 printf ('\n S_max = \%.1 \text{ f MPa', S_max})
28 A_bl = exp(-Beta*1)*(sin(Beta*1)+cos(Beta*1))
29 A_2bl = exp(-Beta*2*1)*(sin(Beta*2*1)+cos(Beta*2*1))
30 \quad A_3bl = \exp(-Beta*3*1)*(\sin(Beta*3*1)+\cos(Beta*3*1))
        y_C=P*Beta/(2*k)*A_bl
31
        y_B=P*Beta/(2*k)*A_2bl
32
33
        y_A=P*Beta/(2*k)*A_3bl
34 printf('\n y_C = \%.2 \text{ f mm'}, y_C)
35 printf('\n y_B = \%.2 \text{ f mm'}, y_B)
36 printf('\n y_A = \%.2 \, \text{f mm'}, y_A)
```

Scilab code Exa 10.4 Example4

```
1 clc
2 // initialization of variables
3 clear
```

```
4 E=10 //GPa
5 h = 200 / mm
6 b = 100 / mm
7 ko = 0.04 / N/mm^3
8 \text{ w} = 35 / N/\text{mm}
9 L1=3.61 //m
10 //calculations
11 E=E*10^3
12 L1=L1*10^3
13 k=b*ko
14 \text{ Ix=b*h^3/12}
15 Beta=(k/(4*E*Ix))^{(1/4)}
16 ba=2.00 // ba = Beta*a based on the discussion
17 / D_bz = \exp(-Beta*z)*\sin(Beta*z)
18 D_ba = exp(-ba) * cos(ba)
19 y_max=w/k*(1-D_ba)
20 ba=0.777 //Beta*a
21 bb=4.777 / Beta*b
22 \quad B_ba = \exp(-ba) * \sin(ba)
23 B_b = \exp(-bb) * \sin(bb)
24 M_{max}=abs(-w*(B_ba-B_bb)/(4*Beta^2))
25 c=h/2
26 \quad S_{max} = M_{max} * c / Ix
27 // calculation of M_H
28 ba=\%pi/4 //Beta*a
29 bb=4-\%pi/4 //Beta*b
30 B_ba = \exp(-ba) * \sin(ba)
31 B_b = \exp(-bb) * \sin(bb)
32 M_H=w/(4*Beta^2)*(B_ba+B_bb)
33 printf('y_max = \%.3 \text{ f mm'},y_max)
34 printf('\n M_max = \%.3 f kN.m', M_max/10^6)
35 printf('\n S_max = \%.3 \, \text{f MPa',S_max})
36 printf('\n M.H = \%.3 \, f \, kN.m', M_H/10^6)
```

Scilab code Exa 10.5 Example5

```
1 clc
 2 // initialization of variables
 3 clear
4 E = 200 //GPa
5 h = 102 / mm
6 b = 68 / mm
 7 \text{ Ix} = 2.53 \text{ e} + 06 / \text{mm}^4
8 L1=4 //m
9 ko = 0.35 / N/mm^3
10 P = 30.0 / kN
11 //calculations
12 E=E*10<sup>3</sup>
13 P=P*10<sup>3</sup>
14 L1=L1*10^3
15 \text{ k=b*ko}
16 Beta=(k/(4*E*Ix))^(1/4)
17 if (L1>3*%pi/(2*Beta))
        y_max = 2*P*Beta/k
18
       M_max = -0.3224*P/Beta
19
20
       S_{max} = abs(M_{max} * h/(2*Ix))
21 end
22 z = \%pi/(4*Beta)
23 printf('y_max = \%.2 \text{ f mm'},y_max)
24 printf('\n M_max = \%.2 f kN.m', M_max/10^6)
25 printf('\n S_max = %.1 f MPa',S_max)
26 printf('\n Location of Sigma_max is z = \%d \text{ mm'}, z)
```

Scilab code Exa 10.6 Example6

```
1 clc
2 // initialization of variables
3 clear
4 P=30.0 //kN
5 a=500 //mm
6 h=102 //mm
```

```
7 b = 68 / mm
8 \text{ k} = 23.8 / N/\text{mm}^2
9 Beta=0.001852
10 Ix=2.53e+06 /mm<sup>4</sup>
11 //calculations
12 P=P*10^3
13 C_{ba=exp}(-Beta*a)*(-sin(Beta*a)+cos(Beta*a))
14 D_ba=exp(-Beta*a)*cos(Beta*a)
15 // y = P*Beta/(2*k)*(A_bz+2*D_ba*D_baz+C_ba*C_baz)
16 // Mx = P/(4*Beta)*(C_bz-2*D_ba*B_baz-C_ba*A_baz)
17 A_{ba=exp}(-Beta*a)*(sin(Beta*a)+cos(Beta*a))
18 B_ba=exp(-Beta*a)*sin(Beta*a)
19 C_{ba=exp}(-Beta*a)*(-sin(Beta*a)+cos(Beta*a))
20 D_ba=exp(-Beta*a)*cos(Beta*a)
21 z1 = 424 / mm
22 z = z1 - a
23 A_bz = exp(-Beta*z)*(sin(Beta*z)+cos(Beta*z))
24 B_bz = exp(-Beta*z)*sin(Beta*z)
25 \quad C_bz = exp(-Beta*z)*(-sin(Beta*z)+cos(Beta*z))
26 D_bz=exp(-Beta*z)*cos(Beta*z)
27 // to find out X<sub>-</sub>baz
28 z=a+z
29 A_{baz} = \exp(-Beta*z)*(\sin(Beta*z)+\cos(Beta*z))
30 B_baz=exp(-Beta*z)*sin(Beta*z)
31 C_{baz} = \exp(-Beta*z)*(-\sin(Beta*z)+\cos(Beta*z))
32 D_baz=exp(-Beta*z)*cos(Beta*z)
33 y_max = P*Beta/(2*k)*(A_bz+2*D_ba*D_baz+C_ba*C_baz)
34 printf('y_max = \%.4 \text{ f mm'},y_max)
35 // For M_max
36 \text{ z}1=500 \text{ //mm}
37 z = z1 - a
38 \text{ A_bz=exp}(-\text{Beta*z})*(\sin(\text{Beta*z})+\cos(\text{Beta*z}))
39 B_bz=exp(-Beta*z)*sin(Beta*z)
40 C_bz = exp(-Beta*z)*(-sin(Beta*z)+cos(Beta*z))
41 D_bz = exp(-Beta*z)*cos(Beta*z)
42 // to find out X_baz
43 z=a+z
44 A_{baz} = \exp(-Beta*z)*(\sin(Beta*z)+\cos(Beta*z))
```

```
45  B_baz=exp(-Beta*z)*sin(Beta*z)
46  C_baz=exp(-Beta*z)*(-sin(Beta*z)+cos(Beta*z))
47  D_baz=exp(-Beta*z)*cos(Beta*z)
48  M_max = P/(4*Beta)*(C_bz-2*D_ba*B_baz-C_ba*A_baz)
49  printf('\n M_max = %d N.mm', M_max)
50  S_max=M_max*h/(2*Ix)
51  printf('\n Sigma_max = %.1 f MPa', S_max)
```

Scilab code Exa 10.7 Example7

```
1 clc
2 // initialization of variables
3 clear
4 D=30 /m
5 t = 10 / m
6 h=20 / mm
7 E = 200 //GPa
8 v = 0.29
9 rho=900 // kg/m^3
10 //calculations
11 // part (a)
12 E=E*10^3
13 a=D/2*10^3
14 p=t*10^3*9.807*rho*10^-9
15 S_{th=p*a/h}
16 tau_max=S_th/2
17 printf('part (a)')
18 printf('\n Maximum shear stress= \%.2 f MPa', tau_max)
19 // part (b)
20 \text{ k=E*h/(a^2)}
21 Beta=(3*(1-v^2)/(h^2*a^2))^(1/4)
22 L1=3*%pi/(4*Beta) //L1=L/2
23 \quad u=S_th*a/E
24 \text{ w=} 2*\text{k*u/(Beta)}
25 \text{ M_max=w/(4*Beta)}
```

```
26 \text{ Szz_max} = M_{\text{max}} * (h/2) / (h^3/12)
27 \text{ Sth_max=v*Szz_max}
28 tau_max=Szz_max/2
29 \quad u_b = w * (1 - v) * a / (2 * E * h)
30 printf('\n part (b)')
31 printf('\n Maximum shear stress= \%.2 \, f MPa', tau_max)
32 printf('\n u_bottom = \%.3 \text{ f mm'}, u_b)
33 // part (c)
34 \text{ w=u*k/(2*Beta)}
35 z = \%pi/(4*Beta)
36 B_bz=exp(-Beta*z)*sin(Beta*z)
37 \text{ M_max=-w*B_bz/Beta}
38 c = 6
39 I=h^2
40 Szz_max = (M_max*c/I)
41 S_{th1}=v*(Szz_{max})
42 k=0.3224
43 S_{th2} = (1-k)*S_{th}
44 Sigma_th=S_th1+S_th2
45 tau_max=(Sigma_th-Szz_max)/2
46 printf('\n part (c)')
47 printf('\n Maximum shear stress= %.2 f MPa', tau_max)
```

THE THICK WALL CYLLINDER

Scilab code Exa 11.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 E=200 //GPa
5 v = 0.29
6 \text{ Di} = 20 / \text{mm}
7 Do = 100 / mm
8 \ a=10 \ //mm
9 b = 50 / mm
10 p1=300 //MPa
11 //calculations
12 // S_r r = p1 * (a^2 * (r^2 - b^2)) / (r^2 * (b^2 - a^2))
13 // S_th=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
14 r = 10
15 S_{rr}=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
16 S_{th}=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
17 printf('r = %d mm',r)
18 printf('\n Radial stress = \%.1 f MPa', S_rr)
19 printf('\n circumferential stress = \%.1 f MPa', S_th)
```

```
20  r=25
21  S_rr=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
22  S_th=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
23  printf('\n r = %d mm',r)
24  printf('\n Radial stress = %.1 f MPa',S_rr)
25  printf('\n circumferential stress = %.1 f MPa',S_th)
26  r=50
27  S_rr=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
28  S_th=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
29  printf('\n r = %d mm',r)
30  printf('\n Radial stress = %.1 f MPa',S_rr)
31  printf('\n circumferential stress = %.1 f MPa',S_th)
```

Scilab code Exa 11.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 E=72 //GPa
5 v = 0.33
6 Di = 200 / mm
7 Do = 800 / mm
8 a = 100 / mm
9 r=a
10 \text{ b=Do/2} / \text{mm}
11 p1=150 / MPa
12 E=E*10<sup>3</sup>
13 S_{rr}=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
14 S_{th}=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
15 S_zz=p1*a^2/(b^2-a^2)
16 \quad tau_max = (S_th - S_rr)/2
17 u_a=p1*a/(E*(b^2-a^2))*((1-2*v)*a^2+(1+v)*b^2)
18 printf('Radial stress = \%.1 f MPa', S_rr)
19 printf('\n circumferential stress = \%.1 f MPa', S_th)
20 printf('\n Normal stress = %d MPa',S_zz)
```

```
printf('\n Maximum shear stress = %d MPa',tau_max) printf('\n u | r=a = %.4 f mm',u_a)
```

Scilab code Exa 11.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 E = 200 //GPa
5 a=10 /mm
6 v = 0.29
7 \text{ ci} = 25.072 / \text{mm}
8 \text{ co} = 25 / \text{mm}
9 b = 50 / mm
10 \text{ rr} = 0.072 / \text{mm}
11 re=0.025 / mm
12 alpha=0.0000117 // per celcius
13 //calculations
14 E=E*10^3
15 p1 = 300 / MPa
16 term1=co/(E*(b^2-co^2))*((1-v)*co^2+(1+v)*b^2)
17 term2=-ci/(E*(ci^2-a^2))*((-(1-v)*ci^2)-(1+v)*a^2)
18 ps=rr/(term1+term2)
19
20 // Inner cylinder p1=0 p2=ps a=10 b=25
21 // outer cylinder p1=ps p2=0 a=25 b=50
22 // S_rr = (p1*a^2-p2*b^2)/(b^2-a^2)-(a^2*b^2)/(r^2*(b^2-a^2))
      ^2-a^2))*(p1-p2)
23 // S_{th} = (p1*a^2-p2*b^2)/(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2))
      ^2-a^2) )*(p1-p2)
24 // results
25 // residual stresses for inner cylinder
26 p1=0
27 p2=ps
28 r = 10
```

```
29 a = 10
30 b = 25
31 S_{rri1}=(p1*a^2-p2*b^2)/(b^2-a^2)-(a^2*b^2)/(r^2*(b^2-a^2))
       ^2-a^2))*(p1-p2)
32 S_{thi1} = (p1*a^2-p2*b^2)/(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2))
       ^2-a^2))*(p1-p2)
33 printf('\n Inner cylinder')
34 printf('\n r = \%d mm',r)
35 printf('\n S_rr | R = %d MPa, S_th | R = %.1 f MPa',
       S_rri1,S_thi1)
36 r = 25
37 S_rri2=(p1*a^2-p2*b^2)/(b^2-a^2)-(a^2*b^2)/(r^2*(b
       ^2-a^2))*(p1-p2)
38 \text{ S_thi2} = (p1*a^2-p2*b^2)/(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2+b^2))
       ^2-a^2))*(p1-p2)
39 printf('\n r = \%d mm',r)
40 printf ('\n S_rr | R = \%.1 f MPa, S_th | R = \%.1 f MPa',
       S_rri2,S_thi2)
41 // residual stresses for outer cylinder
42 p1=ps
43 p2=0
44 a = 25
45 b = 50
46 r = 25
47 S_rro1=(p1*a^2-p2*b^2)/(b^2-a^2)-(a^2*b^2)/(r^2*(b
       ^2-a^2))*(p1-p2)
48 S_{tho1}=(p1*a^2-p2*b^2)/(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2))
       ^2-a^2))*(p1-p2)
49 printf('\n')
50 printf('\n Outer cylinder')
51 printf('\n r = \%d mm',r)
52 printf ('\n S_rr | R = %d MPa, S_th | R = %.1 f MPa',
       S_rro1,S_tho1)
53 r = 50
54 S_{rro2}=(p1*a^2-p2*b^2)/(b^2-a^2)-(a^2*b^2)/(r^2*(b^2-a^2))
       ^2-a^2))*(p1-p2)
55 S_{tho2} = (p1*a^2-p2*b^2)/(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2*b^2)/(r^2*(b^2-a^2)+(a^2+b^2))
       ^2-a^2))*(p1-p2)
```

```
56 printf('\n r = \%d mm',r)
57 printf('\n S_rr | R = \%.1 f MPa, S_th | R = \%.1 f MPa',
      S_rro2, S_tho2)
58 // AN internal pressure of 300 MPa
59 a = 10 / mm
60 b = 50 / mm
61 \text{ p1} = 300 //\text{MPa}
62 r = 10
63 S_{rr}=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
64 S_{th}=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
65 S_rr1=S_rr+S_rri1
66 S_{th1}=S_{th+S_{thi1}}
67 printf('\n')
68 printf('\n Inner cylinder')
69 printf ('\n r = \%d mm',r)
70 printf('\n S_rr = %.1 f MPa, S_th = %.1 f MPa', S_rr1
      ,S_th1)
71 r = 25
72 S_{rr}=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
73 S_{th=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))}
74 S_rr2=S_rr+S_rri2
75 S_{th2}=S_{th}+S_{thi2}
76 printf ('\n r = \%d mm',r)
77 printf('\n S_rr = %.1 f MPa, S_th = %.1 f MPa', S_rr2
      ,S_th2)
78 // Outer Cyllinder
79 S_rr1=S_rr+S_rro1
80 S_{th1}=S_{th}+S_{tho1}
81 printf('\n')
82 printf('\n Outer cylinder')
83 printf('\n r = \%d mm',r)
84 printf('\n S_rr = %.1 f MPa, S_th = %.1 f MPa', S_rr1
      ,S_{th1}
85 r = 50
86 S_{rr}=p1*(a^2*(r^2-b^2))/(r^2*(b^2-a^2))
87 S_{th}=p1*(a^2*(r^2+b^2))/(r^2*(b^2-a^2))
88 S_rr2=S_rr+S_rro2
89 S_{th2}=S_{th}+S_{tho2}
```

Scilab code Exa 11.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 SF=1.75
5 p1=300 //MPa
6 S_rr=-SF*p1
7 S_th=SF*325
8 Y=1/sqrt(2)*sqrt((S_th-S_rr)^2+S_rr^2+S_th^2)
9 printf('Y = %.1 f MPa', Y)
```

Scilab code Exa 11.5 Example5

Scilab code Exa 11.6 Example6

```
1 clc
2 // initialization of variables
3 clear
4 SF=1.8
5 a = 20 / mm
6 b = 40 / mm
7 \text{ Y} = 450 \text{ //MPa}
8 //part (a)
9 tau_Y=Y/sqrt(3)
10 Pp=2*tau_Y*log(b/a)
11 S_{th}=2*tau_Y*(1-log(b/a))
12 S_rr = -Pp
13 S_z = (S_th + S_r)/2
14 printf('part (a)')
15 printf('\n S_th = \%.1 \text{ f MPa', S_th})
16 printf ('\n S_zz = \%.1 f MPa', S_zz)
17 // part (b)
18 S_{thR}=S_{th}-Pp*(b^2+a^2)/(b^2-a^2)
19 S_{zzR}=S_{zz}-Pp*(a^2)/(b^2-a^2)
20 S_{thR}=S_{thR}/2
```

```
21 S_zzR=S_zzR/2
22 printf('\n part (b)')
23 printf('\n S_th|R = \%.1f MPa',S_thR)
24 printf('\n S_zz|R = \%.1f MPa',S_zzR)
25 // par (c)
26 // We need to find out p1. To do that let it be
27 p1=1
28 S_{thR}=-S_{thR}
29 S_zzR = -S_zzR
30 S_rr = -SF * p1
31 S_{th}=SF*p1*(b^2+a^2)/(b^2-a^2)
32 S_{zz}=SF*p1*a^2/(b^2-a^2)
33 // 2Y^2 = (s_th - S_rr)^2 + (S_rr - S_zz)^2 + (S_zz - S_th)^2
34 // S_th=S_th*p1-S_thR
35 // S_zz=S_zz*p1-S_zzR
36 / a*p1^2+b*p+c=0
a = (S_{th} + SF)^2 + (-SF - S_{zz})^2 + (S_{zz} - S_{th})^2
38 c=S_{thR^2+S_{zzR^2+(S_{thR-S_{zzR})^2}}
39 b=-2*(S_th+SF)*S_thR+2*S_zzR*(-SF-S_zz)+2*(S_zz-S_th
      )*(S_{thR}-S_{zzR})
40 c = c - 2 * Y^2
41 p11=roots([a b c])
42 p12 = roots([a 0 -2*Y^2])
43 p11=p11(1)
44 p12=p12(1)
45 printf('\n Internal working pressure is %.1f MPa,',
      p11)
46 printf('\n Without residual stresses %.1f MPa',p12)
```

Scilab code Exa 11.8 Example8

```
1 clc
2 // initialization of variables
3 clear
```

```
4 a = 100 / mm
5 b = 300 / mm
6 \text{ Y} = 620 / \text{MPa}
7 E = 200 //GPa
8 S_zz=0
9 v = 0.29
10 rho=7.85e+03 // kg/m^3
11 // part (a)
12 S_{thmax} = Y
13 Wy = sqrt(4*Y/(rho*((3+v)*b^2+(1-v)*a^2)))
14 printf('part (a)')
15 printf('\n Omega_y = \%d rad/s', Wy*10^6)
16 // part (b)
17 Wp = sqrt(3*Y/(rho*(b^2+a*b+a^2)))
18 ratio=Wp/Wy
19 printf('\n Omega_p = \%d rad/s', Wp*10^6)
20 printf ('\n ratio = \%.2 \, \text{f}', ratio)
```

Scilab code Exa 11.9 Example9

```
1 clc
2 // initialization of variables
3 clear
4 = 100 / mm
5 b = 300 / mm
6 v = 0.29
7 a=a*10^-3
8 b=b*10^-3
                   S_{rr} | R/Y S_{th} | R/Y (S_{th}/R-S_{rr})
9 printf('r
      /\mathrm{R})/\mathrm{Y}
10 \text{ for } i=1:21
11
       r=0.09+0.01*i
12 S_{rrR} = ((r-a)/r - 3/(b^2+a*b+a^2)*((r^3-a^3)/(3*r) +
      (3+v)/8*(a^2+b^2-r^2-a^2*b^2/r^2)))
13 S_{thR}=(1-3/(8*(b^2+a*b+a^2))*((3+v)*(a^2+b^2+a^2*
```

ELASTIC AND INELSTIC STABILITY OF COLUMNS

Scilab code Exa 12.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 b=25 //mm
5 L=250 //mm
6 E_T=31 //GPa
7 Sigma_T=262 //MPa // From the curve
8 r=b/sqrt(12)
9 Q=%pi^2*E_T/((L/r)^2)
10 // Since this is not close enough, increment E_T
11 E_T=31.6 //GPa
12 Q=%pi^2*E_T/((L/r)^2)
13 P_T=Q*b^2
14 printf('Buckling load is %d kN',P_T)
```

Scilab code Exa 12.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 L=1 /m
5 b=40 /mm
6 h = 75 //mm
7 \text{ SF} = 2.5
8 K = 1
9 L=L*10^3
10 Iy=b*h^3/12
11 A = b * h
12 ry=sqrt(Iy/A)
13 \text{ K_y=K*L/ry}
14 rz=b/sqrt(12)
15 \quad K = 0.5
16 \text{ K_z=K*L/rz}
17 S_cr=229 //MPa
18 P_cr=S_cr*A
19 P=P_cr/SF
20 printf('P = \%d kN', P/10^3)
```

FLAT PLATES

Scilab code Exa 13.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 d=3.6 / m
5 \text{ w} = 2.7 / \text{m}
6 ha=3.0 //m
7 b=0.9 / m
8 a=1.2 /m
9 v = 0.29
10 E = 200 //GPa
11 p=ha*9.8
12 //part (a)
13 S_w = 124 / MPa
14 b_a=b/a
15 \quad M=0.04*p*b^2*10^3
16 h = sqrt (6*M/S_w)
17 printf('part (a)')
18 printf('\n h = \%.2 \text{ f mm'},h)
19 // part (b)
20 C=0.032/(1+b_a^4)
21 p=p*10^3
```

```
22 E=E*10^9

23 b=b*10^3

24 w_max=C*(1-v^2)*p*b^4/(E*h^3)

25 printf('\n part (b)')

26 printf('\n w_max = %.2 f mm', w_max)
```

Scilab code Exa 13.3 Example3

```
1 clc
 2 // initialization of variables
 3 clear
4 E=200 //GPa
 5 v = 0.29
 6 \text{ Y} = 315 \text{ //MPa}
7 h = 10 / mm
8 D = 200 / mm
9 \text{ SF} = 2.0
10 //part (a)
11 \quad a=D/2
12 E=E*10<sup>3</sup>
13 Py=1 // Since unknown
14 \, S_{maxk} = 3/4 * Py * a^2/h^2
15 Py=Y/S_maxk
16 \text{ w_max} = 3/16*(1-v^2)*Py*a^4/(E*h^3)
17 printf('Py = %.2 f MPa', Py)
18 printf('\n W_max = \%.3 \text{ f mm'}, w_max)
19 // part (b)
20 \text{ Pw=Py/SF}
21 printf('\n part (b)')
22 printf('\n Pw = \%.2 \, f MPa', Pw)
```

Scilab code Exa 13.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 D=500 /mm
5 h=5 /mm
6 \text{ Sigma=288 } //\text{MPa}
7 E=72 //GPa
8 \text{ SF}=2
9 //part (a)
10 \ a=D/2
11 E=E*10^3
12 f=Sigma*a^2/(E*h^2)
13 // w_max/h has to be 2.4 since f=10
14 Pr=50
15 p=Pr*E*h^4/a^4
16 p = p/2
17 printf('part (a)')
18 printf('\n Allowable pressure = %d kPa',p*10^3)
19 // part (b)
20 q=p*a^4/(E*h^4)
21 // Corresponding w_max/h = 1.8
22 \text{ w_max} = 1.8 * h
23 printf('\n part (b)')
24 printf('\n W_max = \%.2 \text{ f mm'}, w_max)
```

STRESS CONCENTRATIONS

Scilab code Exa 14.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 // part (a)
5 \text{ ab_r=} 100
6 \text{ Sigma}_1 = -20 / \text{MPa}
7 \text{ Sigma}_2 = -75 / \text{MPa}
8 alphao=0.01 //rad
9 //calculations
10 A=(Sigma_1+Sigma_2)/(Sigma_1-Sigma_2)
11 th=1/2*acos((A*sinh(2*alphao)-1/2*(sinh(2*alphao)+
      cosh(2*alphao)))/A)
12 printf('pat (a)')
13 printf('\n theta = \%.4 f rad',th)
14 //part (b)
15 S_bb=-(Sigma_1-Sigma_2)^2/(2*(Sigma_1+Sigma_2))*(1+
      cosh(2*alphao)/sinh(2*alphao))
16 printf('\n part (b)')
17 printf('\n Maximum tensile stress = %d MPa', S_bb)
18 //part (c)
19 Beta=\exp(2*alphao)*\cosh(2*alphao)-2*A^2*(\sinh(2*alphao))
```

```
alphao))^2
20 Beta=1/2*acos(Beta/(exp(2*alphao)))
21 printf('\n part (c)')
22 printf('\n Beta = %.4 f rad', Beta)
```

Scilab code Exa 14.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 S_u = 420 / MPa
5 \text{ SF} = 4.00
6 D = 110 / mm
7 d=50.0 / mm
8 \text{ w} = 20 / \text{mm}
9 \text{ rho} = 10.0 / \text{mm}
10 \text{ SF} = 4.0
11 //calculations
12 t = (D-d)/2
13 tr=t/rho
14 rd=rho/d
15 \quad S_cs=1+2*sqrt(tr)
16 \quad A = w * d
17 Pf = S_u * A / 1.83
18 P=Pf/SF
19 printf ('P = \%.1 \text{ f kN', P/10^3})
```

Scilab code Exa 14.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 // part(a)
```

```
5 \text{ H} = 200 / \text{mm}
6 h = 100 / mm
7 rho=10 / mm
8 Sigma_u=250 //MPa
9 P=1.5 //kN
10 L=1.4 //m
11 b=40 / mm
12 P=P*10^3
13 L=L*10<sup>3</sup>
14 \text{ Hr=H/h}
15 rh=rho/h
16 \, S_cc=1.77
17 c=h/2
18 I = b * h^3 / 12
19 \quad S_max = S_cc*P*L*c/I
20 printf('part (a)')
21 printf('\n Flexural design stress = \%.1 f MPa', S_max)
22 //part (b)
23 SF=Sigma_u*I/(S_cc*P*L*c)
24 printf('\n part (b)')
25 printf('\n SF =%.2 f', SF)
```

FRACTURE MECHANICS

Scilab code Exa 15.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 d = 250 / mm
5 c=30 /mm
6 t = 25 / mm
7 // part (a)
8 a=5 /mm
9 lambda=a/(2*c)
10 f1l=1.22 //from the tble
11 f21=1.02
12 //We don't know P yet so say P=1
13 P = 1
14 Sfl=P/(t*2*c)*f11+3*280*P*f21/(2*t*c^2)
15 \text{ K_IC=} 59*\text{sqrt} (1000)
16 P=K_IC/(Sfl*sqrt(a*%pi))
17 printf('part (a)')
18 printf('\n P = \%.1 \text{ f kN', P/10^3})
19 // part (b)
20 \ a=10 \ //mm
21 \quad lambda=a/(2*c)
```

```
22 f1l=1.33 //from the tble
23 f2l=1.05
24 // We don't know P yet so say P=1
25 P=1
26 Sfl=P/(t*2*c)*f1l+3*280*P*f2l/(2*t*c^2)
27 K_IC=59*sqrt(1000)
28 P=K_IC/(Sfl*sqrt(a*%pi))
29 printf('\n part (b)')
30 printf('\n P = %.1 f kN',P/10^3)
```

Scilab code Exa 15.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 a=100/2 /mm
5 \text{ Y} = 1500 / \text{MPa}
6 t=6 /mm
7 \text{ w} = 800 / \text{mmm}
8 c = 200 / mm
9 a_c=a/c
10 \text{ fl} = 1.045
11 w = w * 10^{-3}
12 t=t*10^-3
13 a=a*10^-3
14 A = w * t
15 Sigma=1/A
16 K_I=Sigma*sqrt(%pi*a)*fl
17 printf('part (a)')
18 printf('\n K_I = \%.2 \, f MPa sqrt(m)',K_I)
```

Scilab code Exa 15.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 S_u=1300 //MPa
5 K_C=69 // MPa sqrt(m)
6 SF=2.2
7 //calculations
8 S_c=S_u/2.2
9 a=1/%pi*(K_C/S_c)^2
10 printf('a = %.2 f mm',a*10^3)
```

Scilab code Exa 15.5 Example5

```
1 clc
2 // initialization of variables
3 clear
4 // For 30 mm crack
5 a=30/2 // mm crack
6 S_30 =600 //MPa
7 a=a*10^-3
8 C=S_30*sqrt(a)
9 // For 120 mm crack
10 a=120/2
11 a=a*10^-3
12 S_120=C/sqrt(a)
13 printf('Sigma_120 = %d MPa',S_120)
```

FATIGUE PROGRESSIVE FRACTURE

Scilab code Exa 16.1 Example1

```
1 clc
2 // initialization of variables
3 clear
4 Y = 345 / MPa
5 S_u = 586 / MPa
6 d = 20 / mm
7 R = 800 / mm
8 //part (a)
9 \text{ SF} = 1.8
10 N = 1e + 07
11 S_{am} = 290 / MPa
12 // P_max not yet known. take it as unity until an
      equation to be solved is encountered
13 P_max=1
14 c = d/2
15 M=SF/2*P_max*R //M=T
16 I = \%pi * c^4/4
17 Sigma=M*c/I
18 J = \%pi * c^4/2
```

```
19 tau=M*c/J
20 S_max=315 //MPa
21 // P_max^2*(3*(tau/S_max)^2+(Sigmaa/S_max)^2)=1
22 P_max=sqrt(1/((3*(tau/S_max)^2)+(Sigma/S_max)^2))
23 P_min=-5/6*P_max
24 printf('part(a)')
25 printf('\n P_max = %d N', P_max)
26 printf('\n P_min = %d N', P_min)
```

Scilab code Exa 16.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 b=10 / mm
5 M=1
6 t=50 / mm
7 rho=5 / mm
8 h = 25 / mm
9 c = 60 / mm
10 \text{ SF} = 4.0
11 //part (a)
12 S_cc=2.8
13 q = 0.94
14 S_ce = 1 + q * (S_cc - 1)
15 // M is not known. take it as unity
16 S_n=3*M*t/(2*h*(c^3-t^3))
17 S_e=S_ce*S_n
18 printf('part (a)')
19 printf('\n Effective stress = \%.1e \text{ M',S_e})
20 //part (b)
21 \quad S_max = 172 \quad //MPa
22 S_w = S_max/SF
23 \text{ M=S_w/S_e}
24 printf('\n part (b)')
```

Scilab code Exa 16.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 rho = 0.75 / mm
5 S_n = 32.97 e - 06 // M
6 S_cc=6.1
7 q = 0.69
8 S_ce=1+q*(S_cc-1)
9 // M is not known. take it as unity
10 M = 1
11 S_e=S_ce*S_n
12 printf('part (a)')
13 printf('\n Effective stress = \%.1e M', S_e)
14 // part (b)
15 S_w = 43 / MPa
16 \text{ M=S_w/S_e}
17 printf('\n part (b)')
18 printf('n M = \%.1 f N.m', M/10^3)
```

Scilab code Exa 16.4 Example4

```
1 clc
2 // initialization of variables
3 clear
4 E=72 //Gpa
5 v=0.33
6 S_u=470 //MPa
7 Y=330 //MPa
8 S_an=190 //MPa
```

```
9 N=1e+06 // \text{cycles}
10 \text{ T} = 10 \text{ //mm}
11 D=59 //mm
12 d=50 / mm
13 t=3 /mm
14 \text{ rho=t}
15 P_min=20 / kN
16 q = 0.95
17 //calculations
18 P_min=P_min*10^3
19 S_cc=1.90
20 S_ce=1+q*(S_cc-1)
21 \quad A = T * d
22 S_nMin=P_min/A
23 S_nam=S_an/S_ce
24 / (S_na/S_nam) + (S_nm/S_u)^2 = 1
25 // S_nm^2 = S_nMin^2 + S_na^2 + 2*S_na*S_nMin
26 c=S_nMin^2-S_u^2
27 a=1
28 b=2*S_nMin+S_u^2/S_nam
29 S_na=roots([a b c])
30 S_na=S_na(2)
31 // Solving gives S<sub>na</sub>
32 S_nm=S_nMin+S_na
33 S_nMax=S_nMin+2*S_na
34 \quad P_max = A*S_nMax
35 \quad S_{max}=S_{nm}+S_{ce}*S_{na}
36 \quad S_min=S_nm-S_ce*S_na
37 printf('P_{max} = \%.1 f kN', P_{max}/10^3)
38 printf('\n S_max = \%.1 f MPa', S_max)
39 printf('\n S_min = \%.1 f MPa', S_min)
```

Scilab code Exa 16.5 Example5

1 clc

```
2 // initialization of variables
3 clear
4 // Equation given: E_l = E_p + E_e
5 // E_p = 0.58*(2N)^--0.57
6 // E_e = 0.0062*(2N)^- - 0.09
7 // Part (a)
8 function [f]=func(N)
        f = 0.58*(2*N)^{(-0.57)} + 0.0062*(2*N)^{(-0.09)}
           -0.01:
10 endfunction
11
12 \text{ Nc} = 6390
13 \, \text{N} = \text{Nc}
14 E_p = 0.58*(2*N)^-0.57
15 E_e = 0.0062*(2*N)^-0.09
16 \quad E_l = E_p + E_e
17 printf('Part (a)')
18 printf('\n Total strain = \%.5 \, \text{f}',E_1)
19 //part (b)
20 N = 1/2 * 10^6
21 E_p = 0.58*(2*N)^-0.57
22 E_e = 0.0062*(2*N)^-0.09
23 \quad E_1 = E_p + E_e
24 printf('\n Part (b)')
25 printf('\n Total strain = \%.5 \, \text{f}', E_1)
26 // part (c)
27 E_1=0.01
28 // In order to solve for N We have to solve a non-
      linear equation
29
30 N = 1; // initial guess
31 f = 1; //initial guess
32 \text{ while (abs (f) > 0.000001)},
33
        f = func(N);
34
       if f>0 then
35
            N = N+1;
        elseif f<0 then
36
37
            N = N-1;
```

```
38 end  
39 end  
40 printf('\n N = %d cycles.',N);
```

CONTACT STRESSES

Scilab code Exa 17.1 Example1

```
1 clc
        2 // initialization of variables
       3 clear
       4 E1=200 //GPa
       5 E2 = 200 //Gpa
       6 v1=0.29
       7 v2=0.29
       8 R1 = 60 / mm
       9 R11=130 /mm
  10 R2 = 80 / mm
 11 R22 = 200 / mm
 12 th = \%pi/3
 13 P=4.5 / kN
 14 P=P*10^3
 15 E=E1*10^3
 16 B=1/4*(1/R1+1/R2+1/R11+1/R22)+1/4*((1/R1+1/R2-1/R11)+1/R2+1/R11)+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R2+1/R11+1/R11+1/R2+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R1+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+1/R11+
                                                           -1/R22)^2 - 4*(1/R1-1/R11)*(1/R2-1/R22)*(sin(th))
                                                             ^2)) ^(1/2)
17 \quad A = 1/4 * (1/R1 + 1/R2 + 1/R11 + 1/R22) - 1/4 * ((1/R1 + 1/R2 - 1/R11) + 1/R12 
                                                           -1/R22)^2 - 4*(1/R1-1/R11)*(1/R2-1/R22)*(sin(th))
                                                             ^2))^(1/2)
```

```
18 Del=2*(1-v1^2)/(E*(A+B))
19 BAr=B/A
20 \text{ Cb} = 0.77
21 \text{ Cs} = 0.724
22 \text{ Ct} = 0.24
23 \text{ Cg=0.22}
24 \text{ Cz} = 0.53
25 \text{ Cd} = 2.10
26 b = Cb * (P * Del)^{(1/3)}
27 br=b/Del
28 S_max = -Cs*br
29 tau_max=Ct*br
30 tau_oct=Cg*br
31 \text{ Zs=Cz*b}
32 \text{ delta=Cd*P/\%pi*((A+B)/br)}
33 printf('Sigma_max = %d MPa', S_max)
34 printf('\n tau_max = \%d MPa',tau_max)
35 printf('\n tau_oct_max = \%d MPa',tau_oct)
36 printf ('\n Zs = \%.2 \text{ f mm'}, Zs)
37 printf('\n delta = \%.3 \text{ f mm}', delta)
38 // S_max doesn't match due to round off error
```

Scilab code Exa 17.2 Example2

```
1 clc
2 // initialization of variables
3 clear
4 E=200 //GPa
5 v=0.29
6 Y=1600 //MPa
7 Po=4.2 //kN
8 Omega=3000 //rpm
9 th=%pi/3
10 P=1.75 //kN
11 R1=4.76 //mm
```

```
12 R11=R1
13 R2=-4.86 //mm
14 R22=18.24 /mm
15 //part (a)
16 E=E*10^3
17 Po=Po*10<sup>3</sup>
18 P=P*10^3
19 B=1/4*(1/R1+1/R2+1/R11+1/R22)+1/4*((1/R1+1/R2-1/R11
       -1/R22)^2 - 4*(1/R1-1/R11)*(1/R2-1/R22)*(sin(th))
       ^2)) ^(1/2)
20 A=1/4*(1/R1+1/R2+1/R11+1/R22)-1/4*((1/R1+1/R2-1/R11)
      -1/R22)^2 - 4*(1/R1-1/R11)*(1/R2-1/R22)*(sin(th))
       ^2))^(1/2)
21 Del=2*(1-v^2)/(E*(A+B))
22 \quad BAr = B/A
23 \text{ Cb} = 0.32
24 k = 0.075
25 \text{ Cs} = 1.00
26 \text{ Ct} = 0.3
27 \text{ Cg} = 0.27
28 \text{ Cz} = 0.78
29 b=Cb*(P*Del)^(1/3)
30 a=b/k
31 br=b/Del
32 \quad S_max = -Cs*br
33 \text{ tau_max=Ct*br}
34 tau_oct=Cg*br
35 \text{ Zs} = \text{Cz} * \text{b}
36 \text{ tauo} = 0.486*b/(2*Del)
37 \text{ Zo} = 0.41 * b
38 printf ('b = \%.4 \text{ f mm'}, b)
39 printf ('\n a = \%.3 f mm', a)
40 printf('\n b/Delta = \%d MPa',br)
41 printf('\n Sigma_max = %d MPa', S_max)
42 printf('\n tau_max = \%d MPa', tau_max)
43 printf('\n tau_oct_max = \%d MPa',tau_oct)
44 printf('\n Zs = \%.3 f mm', Zs)
45 printf('\n Tau_0 = \%d MPa', tauo)
```

```
46  printf('\n Zo = %.3 f mm',Zo)
47
48  // part (b)
49  tau_oY=sqrt(2)*Y/3
50  Py = 1/Del*(tau_oY/(Cg*Cb)*Del)^3
51  printf('\n part (b)')
52  printf('\n P_Y = %d N',Py)
53  SF=Py/P
54  printf('\n SF = %.2 f ',SF)
```

Scilab code Exa 17.3 Example3

```
1 clc
2 // initialization of variables
3 clear
4 E = 200 //GPa
5 v = 0.29
6 R=40 /mm
7 h = 20 / mm
8 P = 24.1 / kN
9 S_max = 1445 / MPa
10 tau_max=433 //MPa
11 tau_octM=361 //MPa
12 //calculations
13 E=E*10^3
14 P=P*10^3
15 Del=2*R*(1-v^2)/E
16 b=sqrt(2*P*Del/(h*%pi))
17 br=b/Del
18 S_maxT = 2*b/(9*Del)
19 S_maxC = -1.13*br
20 \quad tau_max = 0.31*br
21 \quad tau_octM=0.255*br
22 printf('Sigma_max (tension) = %d MPa', S_maxT)
23 printf('\n Sigma_max (compression) = \%d MPa', S_maxC)
```

```
24 printf('\n tau_max = %d MPa',tau_max)
25 printf('\n tau_oct_max = %d MPa',tau_octM)
```