Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Chapter 4 Poisson's Equation and the Newtonian Potential

Yung-Hsiang Huang*

2017.02.28

- 1. Proof. (a) WLOG, we assume $\gamma = \min(\alpha, \beta) = \alpha$.
 - (1) Given $x, y \in \Omega$, then

$$\begin{aligned} |u(x)v(x) - u(y)v(y)| &\leq |u(x)||v(x) - v(y)| + |v(y)||u(x) - u(y)| \\ &\leq ||u||_0[v]_\beta |x - y|^\beta + ||v||_0[u]_\alpha |x - y|^\alpha \\ &\leq |x - y|^\gamma \max(1, d^{\alpha + \beta - 2\gamma}) \Big(||u||_0[v]_\beta + ||v||_0[u]_\alpha \Big). \end{aligned}$$

Hence, $[uv]_{\gamma} \leq \max(1, d^{\alpha+\beta-2\gamma}) \Big(\|u\|_0 [v]_{\beta} + \|v\|_0 [u]_{\alpha} \Big)$. Furthermore,

$$||uv||_{\gamma} \le \max(1, d^{\alpha+\beta-2\gamma}) \Big(||u||_{0} ||v||_{0} + ||u||_{0} [v]_{\beta} + ||v||_{0} [u]_{\alpha} \Big) \le \max(1, d^{\alpha+\beta-2\gamma}) ||u||_{\alpha} ||v||_{\beta}.$$

(2) Given $x, y \in \Omega$, then

$$\begin{split} \frac{|u(x)v(x)-u(y)v(y)|}{|x-y|^{\gamma}} & \leq \frac{|u(x)||v(x)-v(y)|+|v(y)||u(x)-u(y)|}{|x-y|^{\gamma}} \\ & \leq \|u\|_0 \frac{[v]'_{\beta}|x-y|^{\beta}}{d^{\beta}|x-y|^{\gamma}} + \|v\|_0 \frac{[u]'_{\alpha}|x-y|^{\alpha}}{d^{\alpha}|x-y|^{\gamma}} = \|u\|_0 \frac{[v]'_{\beta}|x-y|^{\beta-\gamma}}{d^{\beta-\gamma}d^{\gamma}} + \|v\|_0 \frac{[u]'_{\alpha}}{d^{\gamma}} \\ & \leq \|u\|_0 \frac{[v]'_{\beta}}{d^{\gamma}} + \|v\|_0 \frac{[u]'_{\alpha}}{d^{\gamma}}. \end{split}$$

Hence, $[uv]'_{\gamma} \leq ||u||_0[v]'_{\beta} + ||v||_0[u]'_{\alpha}$ and therefore $||uv||'_{\gamma} \leq ||u||'_{\alpha}||v||'_{\beta}$.

(b) Given $W \subset\subset \Omega$ and two distinct points $x, y \in W$, denote I be the interval between g(x) and g(y) and $L_{f,I}$ be the Holder constant of f on I, then

$$|f(g(x)) - f(g(y))| \le L_{f,I}|g(x) - g(y)|^{\alpha} \le L_{f,I}(L_{g,W}|x - y|^{\beta})^{\alpha}.$$

^{*}Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

- 2. Go back to check the convergence of the integrals in the proof of Lemma 4.2.
- 3. I think we need to assume p > n rather than p > n/2. See Exercise 8. Also see Lieb and Loss, [3, Chapter 10].

Proof.
$$\Box$$

4. Proof.
$$\Box$$

5. Proof. Denote fundamental solution for Laplaian with pole y by $\Gamma_y(x) := \Gamma(x - y)$. Put $v(x) = \Gamma_y(x) - \Gamma(R')$, where $0 < R' \le R$, in the Green's identity

$$\int_{\Omega} u \Delta v - v \Delta u \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \, dS_x,$$

with $\Omega = B_{R'}(y) \setminus B_{\epsilon}(y)$ and letting $\epsilon \to 0$, we have

$$u(y) = \int_{B_{R'}} \Delta u(x) \left[\Gamma_y(x) - \Gamma(R') \right] dx + \int_{\partial B_{R'}} u \frac{\partial \Gamma_y(x)}{\partial n} - \left[\Gamma_y(x) - \Gamma(R') \right] \frac{\partial u}{\partial n} dS_x$$
$$= (\leq, \geq) \frac{1}{n w_n(R')^{n-1}} \int_{\partial B_{R'}} u dS_x + \int_{B_{R'}} f(x) \left[\Gamma_y(x) - \Gamma(R') \right] dx,$$

where $\Delta u = (\geq, \leq) f$. Next, we only consider the equality case since the other cases are similar.

Multiply both sides with $(R')^{n-1}$ and integrate w.r.t R' from 0 to R, we have, for n > 3,

$$\begin{split} u(y) &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{(2-n)w_n R^n} \int_0^R \int_{B_{R'}(y)} f(x) \Big[|x-y|^{2-n} - (R')^{2-n} \Big] \, dx (R')^{n-1} \, dR' \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{(2-n)w_n R^n} \int_0^R \int_{\partial B_1(0)}^{R'} f(y+rw) \, dw \Big[r^{2-n}(R')^{n-1} - R' \Big] r^{n-1} \, dr \, dR' \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{(2-n)w_n R^n} \int_0^R \int_{\partial B_1(0)} \int_r^R \Big[r^{2-n}(R')^{n-1} - R' \Big] \, dR' f(y+rw) \, dw r^{n-1} \, dr \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{(2-n)w_n R^n} \int_0^R \int_{\partial B_1(0)} \Big[\frac{r^{2-n}}{n} (R^n - r^n) - \frac{1}{2} (R^2 - r^2) \Big] f(y+rw) \, dw r^{n-1} \, dr \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{n(2-n)w_n} \int_0^R \int_{\partial B_1(0)} \Big[r^{2-n} + \frac{n-2}{2} \frac{r^2}{R^n} - \frac{n}{2} R^{2-n} \Big] f(y+rw) \, dw r^{n-1} \, dr \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx + \frac{1}{n(2-n)w_n} \int_{B_R(0)} \Big[|Z|^{2-n} + \frac{n-2}{2} \frac{|Z|^2}{R^n} - \frac{n-2}{2} \frac{R^2}{R^n} - R^{2-n} \Big] f(y+Z) \, dZ \\ &= \frac{1}{w_n R^n} \int_{B_R(y)} u \, dx - \frac{1}{nw_n} \int_{B_R(0)} \Big[\frac{1}{n-2} (|Z|^{2-n} - R^{2-n}) + \frac{1}{2R^n} (|Z|^2 - R^2) \Big] f(y+Z) \, dZ. \end{split}$$

The calculation for n=2 is similar.

6. Proof. (incomplete!!!!!) Since Ω is C^2 and bounded, we can find a neighborhood Γ of $\partial\Omega$ in Ω such that $\operatorname{dist}(x,\partial\Omega)=:d(x)\in C^2(\overline{\Gamma})$ and hence $\nabla d,\Delta d$ are bounded in Γ . Moreover, since Ω is compact, there exists $\delta>0$ such that $B(x,\delta)\cap\Omega\subset\Gamma$ for every $x\in\Omega$.

Let $\eta \in C_c^{\infty}(B_{\delta}(0))$ with $0 \le \eta \le \eta(0) = (\beta(1-\beta))^{-1}$. Given $x \in \partial\Omega$ and let $\eta_x(y) := \eta(y-x)$. Since

$$\Delta(d^{\beta}\eta_{x}) = d^{\beta}\Delta\eta_{x} + 2\nabla d^{\beta}\nabla\eta_{x} + \Delta(d^{\beta})\eta_{x}$$
$$= -d^{\beta-2}[\beta(1-\beta)\eta_{x} - \beta d(\Delta d)\eta_{x} - 2\beta d\nabla d\nabla\eta_{x} - d^{2}\Delta\eta_{x}],$$

we can find a small r > 0 indepdent of x such that for $y \in B_r(x)$, $\Delta(d^{\beta}\eta_x)(y) \leq \frac{-1}{2}d^{\beta-2}$. On the other hand, for $y \notin B_r(x)$, $|\Delta(d^{\beta}\eta_x)(y)| \leq C(\beta, ||d||_{C^2(\Gamma)}, r) =: C$ (Note $\eta_x = 0$ on $\Omega \setminus B_{\delta}(x)$.)

Since $\partial\Omega$ is compact, there exists finite many $x_1\cdots x_m$ such that $\{B_r(x_i)\}_i$ covers $\partial\Omega$. Let v be the solution of $\Delta v = -mC$ in Ω and v = 0 on $\partial\Omega$

Define $w = \sum \eta_{x_i} d^{\beta} + v$, then w = 0 on $\partial \Omega$ and $\Delta w \leq -\frac{1}{2} d^{\beta-2}$. So $\Delta(2Nw \pm u) \leq 0$ in Ω and $2Nw \pm u = 0$ on $\partial \Omega$. So $|u(x)| \leq 2Nw(x)$ in Ω by the maximum principle. It remains to estimate v(x).

Note that since $|\nabla d(y)| \to 1$ as $y \to \partial \Omega$.

$$\Delta(d^{\beta})(y) = d(y)^{\beta-2} [\beta(\beta-1)|\nabla d(y)|^2 + \beta d(y)\Delta d(y)] \to -\infty \text{ as } y \to \partial\Omega.$$

So there exists a neighborhood $\Gamma' \subset \Gamma$ of $\partial\Omega$ and C' such that

$$\Delta(C'd^{\beta}-v) < 0$$
 in Γ' and $C'd^{\beta}-v > 0$ on $\partial\Gamma'$.

By the maximum principle, $v(x) \leq C'd(x)^{\beta}$ in Γ' .

- 7. Standard change of variables. I think this is the same as the derivation of Laplace-Beltrami operator in Riemannian geometry.
- 8. See Lieb and Loss, [3, Chapter 10].

9. Proof. (a) Since $\Delta(\eta P) = (\Delta \eta)P + 2\nabla \eta \nabla P$, supp $(\Delta(\eta P)) \subset \{1 \leq |x| \leq 2\}$. Then for any $x \neq 0$ and $y \in B_{\frac{1}{2}|x|}(x)$, for all but finitely many $k, \Delta(\eta P)(t_k y) \neq 0$. So f is continuous at any $x \neq 0$. At the origin, we know f(0) = 0 from the definition. Since $|f(x)| = |c_k \Delta(\eta P)(t_k x)| \leq M|c_k|$ if $2^{-k} \leq x \leq 2^{-k+1}$ and $c_k \to 0$, f is continuous at the origin.

Next, we define $v(x) = \sum \frac{c_k}{t_k^2} (\eta P)(t_k x)$. For each $x \neq 0$ and $y \in B_{\frac{1}{2}|x|}(x)$, we see only finite terms contribute v(y) and hence $v \in C^2(\mathbb{R}^n \setminus \{0\})$. Since $\sum \frac{|c_k|}{t_k^2}$ converges and ηP is bounded, v is continuous everywhere (and hence bounded near the origin).

Since for each $x \neq 0$, there is only one k_0 such that $1 \leq |2^{k_0}x| \leq 2$, then for some $|\alpha| = 2$, $D^{\alpha}P \equiv P_{\alpha} \neq 0$ and

$$\partial^{\alpha} v(x) = \sum_{k_0 - 1}^{k_0 - 1} c_k P_{\alpha} + c_{k_0} \eta(2^{k_0} x) P_{\alpha} + \sum_{i, \alpha_i = 1}^{k_0 - 1} c_{k_0} (\partial_i \eta) (2^{k_0} x) (\partial^{\alpha - \alpha_i} P) (2^{k_0} x)$$

Since $k_0(x) \to \infty$ as $|x| \to 0$, $c_{k_0(x)} \to 0$ as $|x| \to 0$. Moreover, since $\sum c_k$ diverges, $\lim_{|x|\to 0} \partial^{\alpha} v(x)$ does not exists.

Given $\epsilon > 0$. Suppose there exist classical solution to $\Delta u = f$ in B_{ϵ} , then u - v is bounded harmonic in $B_{\epsilon/2} \setminus \{0\}$. By removable singularity, we know u - v has a harmonic extension to the origin, which implies the contradiction that v has a C^2 extension to the origin.

(b) Similarly, we see $w(x) := \sum \frac{c_k}{t_k^3} (\eta Q)(t_k x)$ is $C^3(\mathbb{R}^n \setminus \{0\}) \cap C(\mathbb{R}^n)$. We also note that for each $x \neq 0, \Delta w(x) = g(x) = \sum \frac{c_k}{t_k} (\Delta(\eta Q))(t_k x)$ and $D_i g(x) = \sum c_k (D_i \Delta(\eta Q))(t_k x)$, so $g \in C^1(\mathbb{R}^n \setminus \{0\})$. At the origin, we know g(0) = 0 from the definition and for each $h \neq 0$, there is only one k_0 such that $1 \leq |2^{k_0} h| \leq 2$. Note that $k_0(h) \to \infty$ as $h \to 0$ and

$$\left|\frac{g(he_i) - g(0)}{h}\right| = \left|c_{k_0} \frac{\Delta(\eta P)(2^{k_0} he_i)}{2^{k_0} h}\right| \le \left|c_{k_0}\right| M \to 0 \text{ as } h \to 0.$$

So $D_i g(0) = 0$. Since $|D_i g(x)| = |c_k D_i \Delta(\eta P)(t_k x)| \le M' |c_k|$ if $x \in [2^{-k}, 2^{-k+1})$ and $c_k \to 0, D_i g$ is continuous at the origin for each i. Therefore, $g \in C^1(\mathbb{R}^n)$.

Since for each $x \neq 0$, there is only one k_0 such that $1 \leq |2^{k_0}x| \leq 2$, then for some $|\alpha| = 3$, $D^{\alpha}Q \equiv Q_{\alpha} \neq 0$ and

$$\partial^{\alpha} w(x) = \sum_{k=0}^{k_0 - 1} c_k Q_{\alpha} + c_{k_0} \eta(2^{k_0} x) Q_{\alpha} + \sum_{\beta \le \alpha} c_{k_0} \frac{\alpha!}{\beta! (\alpha - \beta)!} (\partial^{\beta} \eta) (2^{k_0} x) (\partial^{\alpha - \beta} P) (2^{k_0} x)$$

Since $k_0(x) \to \infty$ as $|x| \to 0$, $c_{k_0(x)} \to 0$ as $|x| \to 0$. Moreover, since I assume $|\sum c_k| = \infty$, $\lim_{|x| \to 0} |\partial^{\alpha} w(x)| = \infty$ and hence w is not $C^{2,1}$ in any neighborhood of the origin by the mean value theorem (MVT).

Remark 1. Another example is given in [2, Section 3.4] where $u = (x_1^2 - x_2^2)(-\log|x|)^{1/2}$ on $B_R(0), R < 1$.

Remark 2. This problem is concern the existence of $C^2(\Omega)$ solution to Dirichlet problem in B_1 . Another problem one may ask is whether the C^2 -global regularity theorem true? That is, if $u \in C^2(B_1) \cap C^0(\overline{B_1})$ solves $\Delta u = f \in C^0(\overline{B_1})$ and $u = g \in C^2(\overline{B_1})$, can we conclude that $u \in C^2(\overline{B_1})$?

This question is related to the analytic continuation, I find it's answered negatively in [1, Chapter II.3]. The example is the following:

Consider a conformal map $f: D \subset \mathbb{C} \to \Omega$ where $\Omega = \{x + iy : 0 < x < \frac{1}{1+|y|}\}$. Clearly, f is unbounded. On the other hand, Re f has a continuous extension to \overline{D} because it has a finite limit. Write $f(z) = \sum_{n=0} c_n z^n$ and define $F(z) = \sum_{n=1} c_n n^{-2} z^n$. ReF will be the counterexample. The reason is:

If all the second partial derivatives of ReF are bounded on \overline{D} , then F'' is bounded by Cauchy-Riemann equations. But this is impossible since $f(z) - f(0) = z(zF')' = zF' + z^2F''$ where the left hand side is unbounded and the right hand side is bounded by MVT.

10. I think the denominator in (a) should be 2(n-2), not 2n. (Of course, this is for $n \geq 3$, and for n=2, we use the same technique as the proof for Theorem 4.6 to show the denominator can be 2(3-2)=2). For example, take radial function $f=f(r)\in C_c^{\infty}(B_R(0))$ such that $-1\leq f\leq 0, f\equiv -1$ on $r\leq R-2\epsilon$ and $f\equiv 0$ on $r>R-\epsilon$. Then $|u(0)|=\int_B \frac{|x-y|^{2-n}f(y)}{nw_n(2-n)}\,dy=\int_0^R rf(r)\,dr/(2-n)\in (\frac{(R-2\epsilon)^2}{2(n-2)},\frac{(R-\epsilon)^2}{2(n-2)}).$

Proof. Since $u \in C_0^2(B)$, $f \in C_0(B)$ and hence for $n \geq 3$ and for each $x \in B$,

$$|u(x)| = \left| \int_{B} \frac{|x - y|^{2-n} f(y)}{n w_n(2 - n)} \, dy \right| \le |f|_0 \frac{R^2}{2(n - 2)}$$

On the other hand, for each $x \in B$ and for $n \ge 2$,

$$|D_i u(x)| = |\int_B \frac{|x - y|^{-n} (x_i - y_i) f(y)}{n w_n} dy| \le \int_{B_R(x)} \frac{|x - y|^{1-n}}{n w_n} dy |f|_0 = R|f|_0.$$

References

- [1] John B Garnett and Donald E Marshall. *Harmonic measure*, volume 2. Cambridge University Press, 2005.
- [2] Qing Han and Fanghua Lin. Elliptic Partial Differential Equations, volume 1. American Mathematical Soc., 2nd edition, 2011.
- [3] Elliott H Lieb and Michael Loss. *Analysis*, volume 14. American Mathematical Society, Providence, RI,, 2nd edition, 2001.