installing on personal machine:

1. Conda create -n tensorflow 1-10 # create new sm in Conda

- 2. conda activate tensorflow 1-10
- 3. pips install tensorphow jupyter matplot lib
- 4. jupyter notebook

Workshop 5

COMP90051 Machine Learning Semester 2, 2018

Learning Outcomes

At the end of this workshop you should be able to:

- explain the fundamental characteristics of the TensorFlow computation model
- 2. implement logistic regression using low-level TensorFlow APIs (Worksheet 5)

Compare 1/ week 3 implementation using Numpy

What is TensorFlow?

"TensorFlow™ is an open source software library for high performance numerical computation."

– www.tensorflow.org

- Project started internally at Google Brain
- Open-sourced under the Apache
 2.0 License in Nov 2015
- Runs on CPUs, GPUs, TPUs

and can min in parallel

Why TensorFlow?

rovel architectures

- Large community of users: easy to get help
- Strikes a good balance between flexibility and scalability

Source: Jiang Jun, GDG-Shanhai TensorFlow Dev Summit 2017

TensorFlow Basics

What's a **tensor**?

For computer scientists:

"a multidimensional array"

- [Note: richer meaning in maths/physics]
- Examples:

* 0-d tensor: a scalar

* 1-d tensor: a vector

* 2-d tensor: a matrix

* 3-d tensor

* ... (clour image)

Data flow graphs

- Computation model adopted by TensorFlow
- A directed graph where
 - * Nodes are operators/variables/constants (function or input)
 - * Edges are tensors

Source: Abrahams et al. TensorFlow For Machine Intelligence. 2016

Data **flow** graphs

naturally corresponds to N.N. notation/diagrams

- Advantages:
 - * Connection to NNs: also represented as directed graphs
 - * Automatic differentiation: break up computation into small, differentiable parts
 - * Distributed computation: can split across CPUs, GPUs, TPUs

Automatic differentiation

- Given a computation graph f, can automatically generate a *new* computation graph that computes ∇f
- How? Traverse the graph in reverse, replacing each node op by the corresponding gradient op
- Automatic so don't need to worry about it!

Source: University of Washington CSE599W Spring 2018 Lecture slides

Basics of graph building

- Create tensors for data input using tf.placeholder() (input node)
- Create tensors for parameters (to be optimised) using tf.get_variable() or tf.Variable()
- Build up operations on tensors:
 - * Simple: e.g. a + b, tf.matmul(a,b)
 - * Composite: e.g. tf.layers.dense(...)

* Convolution layers.

Then use a session to execute operations on the graph

Might change with eager mode

Session, run, initialization

- Need a Session to compute outputs of the graph. Can call tf.Session() to create one.
- Once you've got a session, use the run() method to perform computations:
 - * A feed_dict is required for placeholders
 - * Only runs subgraphs that lead to outputs you've requested
 - * Can get multiple outputs at once
- If you've defined Variables you need to initialise them.
 Can use:
 - * sess.run(tf.global_variables_initializer())

A simple example

constant tensors, remain in memory.

import tensorflow as tf
a = tf.constant(3)
b = tf.constant(5)

with tf.Session() as sess:

print(sess.run(c))

Requesting the value of variable c

Operation doesn't run at define time—just sets up the graph

> starts a semion.

Session allows us to use the defined graph

to Python senion.

High-level APIs on top of TensorFlow

- Keras [tf.keras]
 - * High-level API for ANNs
 - * Now part of TensorFlow core (officially)
 - * Supports other (non-TF) backends

- * Another high-level API for ANNs

 * Supported by DeepMind (Google) ~ suit researcher on DeepMind

- * API for training, evaluation, prediction
- * Recommended to replace skflow offered a similar interface to scikit-learn, now deprecated)

Resources

- Official tutorials: https://www.tensorflow.org/tutorials/
- Official API docs: https://www.tensorflow.org/api_docs/
- Stanford CS20 course website: http://web.stanford.edu/class/cs20si/syllabus.html
- Books:
 - * Aurélien Géron. *Hands-On Machine Learning with Scikit-Learn and TensorFlow.* (2017)
 - * Bharath Ramsundar and Reza Bosagh Zadeh. *TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning.* (2018)

TensorFlow on the lab machines

- Open Start → Anaconda3 (64-bit) → Anaconda Prompt
- In the prompt, run the following commands:
 - > cd "C:\Users\%USERNAME%\Downloads"
 - > mkdir workshop05
 - > cd workshop05
 - > pip install -t . tensorflow "protobuf<3.6.1"</pre>
 - > jupyter notebook
- Copy Worksheet 5 into the workshop@5 directory
- Open Worksheet 5 from within Jupyter

latest ression 1.1.0 recommend install in

Note: This is a workaround installation method due to restrictions on the lab VM machines. On your own device, we recommend following the installation instructions at https://tensorflow.org/install/