Report: Implementation of Access Control Measures

1. Access Control List (ACL) Configuration

- **Objective**: Restrict access to a server such that only a specific range of IPs can connect via SSH, while all other traffic is denied.
- Scenario:
 - Allow SSH access only from the subnet 192.168.1.0/24.
 - Deny all other traffic by default.

ACL Configuration (example using a Cisco Router):

```
ip access-list extended SSH_ACCESS permit tcp 192.168.1.0 0.0.0.255 any eq 22 deny ip any any
```

Implementation Steps:

- 1. Access the router configuration terminal.
- 2. Define the ACL (SSH ACCESS) and specify the rules:
 - Permit SSH (TCP on port 22) from 192.168.1.0/24.
 - **Deny** all other traffic.
- 3. Apply the ACL to the inbound traffic of the router interface:
- 4. interface GigabitEthernet0/0 ip access-group SSH_ACCESS in

2. Access Control Model

- Model Used: Discretionary Access Control (DAC)
- **Objective**: Allow the owner of a file or resource to define access permissions for other users.

Example Implementation:

- Scenario: A file named project_data.txt should only be accessible by the owner (alice) and a specific user (bob).
- Steps (Linux File Permissions):
 - 1. Set ownership of the file:
 - 2. chown alice:users project_data.txt
 - 3. Configure permissions to allow only the owner and a specific group (users) to read/write:

- 4. chmod 640 project_data.txt
 - Owner (alice): Read and Write.
 - Group (users): Read only.
 - Others: No access.
- 5. Add bob to the users group to grant him access:
- 6. usermod -aG users bob

3. User Access Level

• **Objective**: Implement role-based access control (RBAC) by assigning distinct access levels for users based on roles.

Example Implementation:

- Roles:
 - Admin: Full control over all resources.
 - Manager: Access to reports and configuration settings but no system-wide changes.
 - **Employee**: Read-only access to reports.

Implementation Steps:

- 1. Define user roles in a system (e.g., Active Directory or Linux system).
 - Linux Example: Use groups to define roles.
 - groupadd admins groupadd managers groupadd employees
- 2. Assign users to groups based on their roles:
- usermod -aG admins admin_user usermod -aG managers manager_user usermod -aG employees employee_user
- 4. Restrict file access based on roles:
 - Admins have full access:
 - chown root:admins /etc/important_config chmod 770 /etc/important_config
 - Managers have read and execute access to specific directories:
 - chown root:managers /home/manager_reports chmod 750 /home/manager_reports
 - Employees have read-only access:

• chown root:employees /home/public_data chmod 740
/home/public_data

Example Scenario

- Scenario:
 - Alice (Admin) configures a sensitive file for restricted access.
 - Bob (Manager) reads the project report file but cannot modify it.
 - Charlie (Employee) has read-only access to public resources.

Test Case:

- Bob attempts to edit project_data.txt but is denied due to permission settings (chmod 640).
- Alice successfully modifies the file since she is the owner.
- Charlie cannot access project_data.txt because he is not in the allowed group.