Chapter 9

stevenjin8

April 17, 2021

Comments and Proofs

4.4 Kernel PCA

It took me a while to understand this section. The idea is to leverage the Mercer property of kernels to map the data to a larger (potentially infinite) dimension feature space and to compute the principal components over said feature space. Given that, we first compute the Gram matrix:

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$$
$$k_{i,j} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$$

Using the eigenvalue/eigenvector trick presented earlier we find the formula for \mathbf{V}_{kpca} . Thus the kpca embedding of a data point \mathbf{x}_* is $\phi(\mathbf{x}_*)\mathbf{\Phi}^T\mathbf{U}\mathbf{\Lambda}^{-\frac{1}{2}}$ (note that equation 14.40 is missing a transpose).

I still don't understand algorithm 14.2. Given some new data \mathbf{X}_* , the vectorized equation for $\tilde{\mathbf{K}}_*$ should be

$$\tilde{\mathbf{K}}_* = (\mathbf{\Phi}_* - \frac{1}{N} \sum_i \phi_i) \mathbf{\Phi}^T \mathbf{U}_{:,1:z} \mathbf{\Lambda}_{:,1:z}$$
$$= (\mathbf{K}_* - \mathbf{1}_{N_*} \overline{\mathbf{k}}^T - \overline{\mathbf{k}}_* \mathbf{1}_N^T + \overline{k} \mathbf{1}_{N_*} \mathbf{1}_N^T) \mathbf{U}_{:,1:z} \mathbf{\Lambda}_{:,1:z}$$

where $\mathbf{K}_* = \mathbf{\Phi}_* \mathbf{\Phi}^T$ contain the pairwise kernel between the new data and the training data; $\overline{\mathbf{k}}$ is the row-wise mean for \mathbf{K} ; $\overline{\mathbf{k}}_*$ is the row-wise mean of \mathbf{K}_* ; and \overline{k} is the mean of all values in \mathbf{K} . There is an implementation of this in the notebooks folder.

Regardless, line 8 of the equation cannot be correct since both \mathbf{O}_* and \mathbf{K}_* are $N_* \times N$. Thus, three out of the four terms are not defined.

Something that I found really interesting is that we do not normalize the columns of Φ . It makes sense, however, the whole idea of KPCA is centered around the kernel function and dimensions in the feature space that have more extreme values are going to have a larger impact on the kernel.

Exercises

Exercise 1

a. The plane that separates $\phi(\mathbf{x}_1)$ and $\phi(\mathbf{x}_2)$ with the largest margin is perpendicular to $\phi(\mathbf{x}_2) - \phi(\mathbf{x}_1)$. So $\mathbf{w} \parallel \phi(\mathbf{x}_2) - \phi(\mathbf{x}_1) = \langle 0, 2, 2 \rangle$.

b. The value of the margin is $\sqrt{2}$: half of the distance between $\phi(\mathbf{x}_1)$ and $\phi(\mathbf{x}_2)$.

c.

$$\mathbf{w} = \langle 0, \frac{1}{2} \frac{1}{2} \rangle$$

d. Plugging in our values, we have

$$-w_0 > 1$$

 $2 + w_0 > 1$.

Thus, $w_0 = -1$.

e.

$$f(x) = -1 + \frac{\sqrt{2}}{2}x + \frac{1}{2}x^2$$

Exercise 2

The resulting decision boundary is guaranteed to separate the classes. At a high level, this is a result of the fact that we are regularizing $||\mathbf{w}||$ and not w_0 .

By definition, there exists \mathbf{w} and w_0 such that

$$y_i(\mathbf{w}^T\phi(\mathbf{x}_i) + w_0) > 0$$

for all i. However, we can scale **w** and w_0 by any a > 0 while preserving the above inequality:

$$y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + w_0) > 0$$
$$ay_i(\mathbf{w}^T \phi(\mathbf{x}_i) + w_0) > 0$$
$$y_i((a\mathbf{w})^T \phi(\mathbf{x}_i) + aw_0) > 0.$$

in other words we can scale \mathbf{w} arbitrarily while having f perfectly classify the data. Thus, the regularization loss is meaningless.