Africast-Time Series Analysis & Forecasting Using R

2. Time series patterns and basic graphics

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Key patterns of time series

- Level
- Underlying trend
- Seasonal/cycle
- Autocorrelation
- Unpredictable patterns/Noise
- Different types of events and driving factors (i.e. predictors) may affect the time series

Level The *level* of a time series describes the center of the series.

Trend A *trend* describes predictable increases or decreases in the level of a series.

Seasonal Seasonality is a consistent pattern that repeats over a fixed period of time. pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Level

Trend

Seasonality

Additive versus multiplicative seasonality

Cycles

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Time plots

```
ansett %>%
  filter(Airports=="MEL-SYD", Class=="Economy") %>%
  autoplot(Passengers)
```


Time plots

```
PBS %>% filter(ATC2 == "A10") %>%
  summarise(Cost = sum(Cost)/1e6) %>% autoplot(Cost) +
  ylab("$ million") + xlab("Year") +
  ggtitle("Antidiabetic drug sales")
```


Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Quarterly Australian Beer Production

```
beer <- aus_production |>
  select(Quarter, Beer) |>
  filter(year(Quarter) >= 1992)
beer |> autoplot(Beer)
```


Quarterly Australian Beer Production

beer |> gg_season(Beer, labels = "right")

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
  Time
                       Demand Temperature Date Holiday
  < dttm>
                        <fdb>>
                                    <dbl> <date>
                                                     <lgl>
 1 2012-01-01 00:00:00 4383.
                                     21.4 2012-01-01 TRUE
 2 2012-01-01 00:30:00 4263.
                                     21.0 2012-01-01 TRUE
 3 2012-01-01 01:00:00
                        4049.
                                     20.7 2012-01-01 TRUE
 4 2012-01-01 01:30:00
                        3878.
                                     20.6 2012-01-01 TRUE
 5 2012-01-01 02:00:00
                        4036.
                                     20.4 2012-01-01 TRUE
 6 2012-01-01 02:30:00
                        3866.
                                     20.2 2012-01-01 TRUE
 7 2012-01-01 03:00:00
                        3694.
                                     20.1 2012-01-01 TRUE
8 2012-01-01 03:30:00
                        3562.
                                     19.6 2012-01-01 TRUE
 9 2012-01-01 04:00:00
                        3433.
                                     19.1 2012-01-01 TRUE
10 2012-01-01 04:30:00
                        3359.
                                     19.0 2012-01-01 TRUE
# i 52,598 more rows
```

vic_elec |> gg_season(Demand)

vic_elec |> gg_season(Demand, period = "week")

vic_elec |> gg_season(Demand, period = "day")

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

beer |> gg_subseries(Beer)

Australian holidays

```
holidays <- tourism |>
  filter(Purpose == "Holiday") |>
  group_by(State) |>
  summarise(Trips = sum(Trips))
# A tsibble: 640 x 3 [10]
# Key: State [8]
  State Quarter Trips
  <chr> <gtr> <dbl>
 1 ACT 1998 Q1 196.
 2 ACT 1998 02 127.
```

1999 Q2

1999 Q3

125.

178.

3 ACT 1998 Q3 111. 4 ACT 1998 Q4 170. 5 ACT 1999 O1 108.

6 ACT

7 ACT

Australian holidays

```
holidays |> autoplot(Trips) +
  labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Seasonal plots

```
holidays |> gg_season(Trips) +
  labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Seasonal subseries plots

```
holidays |> gg_subseries(Trips) +
  labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Calendar plots

```
library(sugrrants)
vic elec |>
 filter(vear(Date) == 2014) |>
 mutate(Hour = hour(Time)) |>
 frame_calendar(x = Hour, y = Demand, date = Date, nrow = 4) |>
 ggplot(aes(x = .Hour, y = .Demand, group = Date)) +
 geom_line() -> p1
prettify(p1,
 size = 3.
 label.padding = unit(0.15, "lines")
```

- frame_calendar() makes a compact calendar plot
- facet_calendar() provides an easier ggplot2
 integration.

Calendar plots

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- **Seasonal** pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
aus_production |>
 filter(year(Quarter) >= 1980) |>
  autoplot(Electricity) +
 labs(y = "GWh", title = "Australian electricity production")
```



```
us_employment |>
filter(Title == "Retail Trade", year(Month) >= 1980) |>
autoplot(Employed / 1e3) +
labs(title = "Retail employment, USA", y = "Million people")
```



```
gafa_stock |>
filter(Symbol == "AMZN", year(Date) >= 2018) |>
autoplot(Close) +
labs(title = "Amazon closing stock price", x = "Day", y = "$")
```


Time series patterns

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Example: Beer production

```
new_production <- aus_production |>
  filter(year(Quarter) >= 1992)
new_production
```

```
# A tsibble: 74 x 7 [10]
            Beer Tobacco Bricks Cement Electricity
                                                         Gas
     <atr> <dbl>
                    <dbl>
                            <dbl>
                                   <dbl>
                                                 <dbl> <dbl>
1 1992 01
              443
                     5777
                              383
                                    1289
                                                 38332
                                                         117
2 1992 02
             410
                     5853
                              404
                                    1501
                                                 39774
                                                         151
3 1992 03
             420
                     6416
                              446
                                    1539
                                                 42246
                                                         175
4 1992 04
                                    1568
              532
                     5825
                              420
                                                 38498
                                                         129
5 1993 Q1
             433
                     5724
                              394
                                    1450
                                                 39460
                                                         116
6 1993 Q2
              421
                     6036
                              462
                                     1668
                                                 41356
                                                         149
7 1993 03
                     6570
                              475
                                     1648
                                                         163
              410
                                                 42949
8 1993 04
              512
                     5675
                              443
                                     1863
                                                         138
                                                 40974
9 1994 01
              449
                     5311
                              421
                                     1468
                                                 40162
                                                         127
10 1994 02
              381
                     5717
                              475
                                     1755
                                                 41199
                                                         159
```

Example: Beer production

new_production |> gg_lag(Beer)

Example: Beer production

new_production |> gg_lag(Beer, geom = "point")

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $\blacktriangleright \ r_2 = \mathsf{Correlation}(y_t, y_{t-2})$
 - $\qquad \qquad \mathbf{r}_3 = \mathsf{Correlation}(y_t, y_{t-3})$
 - etc.
- If there is **seasonality**, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

Autocorrelation

Results for first 9 lags for beer data:

```
new production |> ACF(Beer, lag max = 9)
# A tsibble: 9 x 2 [1Q]
      lag acf
  <cf_lag> <dbl>
       1Q - 0.102
       20 -0.657
   30 -0.0603
       40 0.869
       50 -0.0892
6
       60 -0.635
       70 -0.0542
       80 0.832
9
       90 -0.108
```

Autocorrelation

Results for first 9 lags for beer data:

```
new_production |>
  ACF(Beer, lag_max = 9) |>
  autoplot()
```


ACF

```
new_production |>
  ACF(Beer) |>
  autoplot()
```


Australian holidays

holidays |> ACF(Trips)

```
# A tsibble: 152 x 3 [10]
# Key: State [8]
  State lag acf
  <chr> <cf_lag> <dbl>
1 ACT
             10 0.0877
2 ACT
             20 0.252
3 ACT
             30 -0.0496
4 ACT
             40 0.300
5 ACT
             5Q -0.0741
6 ACT
             6Q 0.269
7 ACT
             70 -0.00504
8 ACT
             80 0.236
9 ACT
             90 -0.0953
10 ACT
            100 0.0750
4 - 140 ----
```

Australian holidays

holidays |> ACF(Trips) |> autoplot()

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

US retail trade employment

```
retail <- us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980)
retail |> autoplot(Employed)
```


US retail trade employment

Google stock price

6 2015-01-09 493. 7 2015-01-12 490. 8 2015-01-13 493. 9 2015-01-14 498.

```
google_2015 <- gafa_stock |>
  filter(Symbol == "GOOG", year(Date) == 2015) |>
 select(Date, Close)
google_2015
# A tsibble: 252 x 2 [!]
  Date
             Close
  <date> <dbl>
 1 2015-01-02 522.
 2 2015-01-05 511.
3 2015-01-06 499.
 4 2015-01-07
              498.
 5 2015-01-08
               500.
```

Google stock price

google_2015 |> autoplot(Close)

Google stock price

54

Which is which?

Outline

- 1 Time series Patterns
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```



```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```


- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Number of pigs slaughtered in Victoria

60

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not** a **white noise series**.