[1. Basic Linear Algebra]	202	2863	un olg
· Contents	102)	2007	0.(., (.9
· Canchy-Schwarz Inequality			
· Orthogonal basis			
· Column, row, and null spaces			
· Rank and determinant of matrix			
· Properties of rank			
· Properties of determinant			
·Trace			

* Cauchy-Schwarz inequality

- 기를 내적 공간이라고 할 때,
 - | < x, y> |2 ≤ ||x||2 ||y||2, #x, y ∈ V
 - · |xTy|2 = ||x||2. ||y||2 + x, y = |R^1.

* Orthogonal basis

- · [X,, X2, Xx] 가 내적 공간 시에 있고, 〈Xi, Xi〉=0 보고+j 이면, orthogonal 카다고 할.
- · 그리고 이 기저 {X1, X2,..., Xx}들의 ||Xi||= 1 이런 orthonormal 하다고 함.
- · 만약 [x1, x2, .., xx]가 Lel orthonomal 기저이고 YEL 이연,

· Column, row and null spaces.

- · L(A): A=1 column space
 - · A 의 column 들이 의해 사성된 선명 Subspace

- · R(A): A=1 row space
 - · A 의 row 로 인해 생성된 선형 Subspace.
 - · AT=1 column space

.
$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 $2 = H [(1.4, 1), (2.5, 8), (3.6.9)]$

- · N(A): A= | null space
 - · Ax=0 을 만족시커는 X.

Q. aklig go 741B...

* Null space (여당간)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, Ax = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} \frac{2}{2} \\ -2 \end{bmatrix}, \dots c \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$x_n = c \begin{bmatrix} 1 \\ -1 \end{bmatrix} (N(A) L + C(A) + \frac{1}{2} + \frac$$

*Rank and determinant of a matrix.

- · A < RTXP & EH, dim (C(A)) = dim (R(A))
- · or at, rank (A) & dim ((A)) 2.
- 행결 A의 determinant는 다음과 같음.

* rank (by 22 2 1 7 15)

- · 항영2월01 가21는 Independent > column=1 수, dim(C(A)), dim(RCA))
- # . Independent it columnes 4 = Independent it rower 4 (rank (A) = rank (AT))

 . S.) A [1237 rank (A) = dim (e(A)) = 1 p = (1017 rank (B) = 2

•
$$\mathcal{E}_{x}$$
) $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$, $rank(A) = dim(e(A)) = 1$, $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $rank(B) = 2$

* Linear combination

- · Q, V,+ QzV2 + Q3 V3 (이렇게 선평조합하는 것, Span 하는 것)
- 라아 V= (1,1) V2 = (2,2) 이연? · {×) is span space (vector space) →×,

* Linear Independent

- · orthogonal C Independent
- · a, v, + a2 V2=0 010= , V, 2+ V2 dependent.

* basis

- 어떤 공간을 이유는 필수적인 거성모소
- 대표적인 2計制 H basis: [1]] [1]

* Properties of rank

- · A, B E R^{NO}일 꽤, 아래 특강들은 가길 A= n | nxp 7 , rank(A)= r \mathbb{D} rank $(A) \leq \min(\Lambda, P)$
 - A rank (A) = dim(c(A)) = r, dim(R(A)) @ $rank(A) = rank(A^T)$
 - ③ rank(A) + dim(N(A))= p -> Q. 이거 증명 夏見
 - ④ 만약 AER^{nxn} 이런, Q.이게 무슨 의미?

- rank(A)=n, det(A) to, At nonsingular sted A-1 + 至24.

- A A 기가 존ᅫ하면, A는 E rank (A, B) = rank (A) if B is nonsingular
- 6 rank (A, B) = rank (B) if A is nonsingular
- ① $rank(A, B) \leq min \{ rank(A), rank(B) \}$
- (2) $rank(A^TA) = rank(AA^T) = rank(A)$

- Invertible matrix or Non singular matrix 2.
- Sx) A=[]]是

Singular matrix

(: det (A)=0)

* Properties of determinant

· A, B $\in \mathbb{R}^{n\times n}$ 일 때, 아래 특명 가실.

1 Multilinear

•
$$det(a_1, a_2, ..., ca_i + d, ..., a_n)$$

= $c \cdot det(a_1, ..., a_n) + det(a_1, ..., d, ..., a_n)$

2 Alternating

3 Normalized

* Trace

- · tr(A) 3 至1124年, A=1 dialog &2号目 智.
- · 아래아 같은 특징 종21

$$3 tr(AB) = tr(BA)$$