Mathematics for Data Science Lecture 1

Eva FEILLET¹

 $^{1} {\sf LISN}$ Paris-Saclay University

M1[AI], Fall 2025

Table of Contents

- Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- Rank

Table of Contents

- Vector Spaces
- 2 Subspaces
- Linear transformations
- 4 Rank

Group

Definition

Let G be a non-empty set. G is a group if there exists an operation \star such that:

Group

Definition

Let G be a non-empty set. G is a group if there exists an operation \star such that:

- **Olympic** Closure. For any $x, y \in G$, $x \star y$ also belongs to G.
- **a** Associativity. For any $x, y, z \in G$, $(x \star y) \star z = x \star (y \star z)$.
- Neutral element/Identity. There exists $e \in G$ such that $\mathbf{x} \star \mathbf{e} = \mathbf{e} \star \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in G$.
- **Symmetric element/Inverse.** For each $x \in G$, there exists an element $x' \in G$, such that x' * x = x * x' = e.

Commutative group

Definition

Let G be a group, If for any $x, y \in G$, $x \star y = y \star x$ then we say that the group is commutative.

NB: "Abelian" group is another name for commutative groups

Vector spaces: the basic setting in which linear algebra happens Elements of V are called **vectors**.

Vector spaces: the basic setting in which linear algebra happens Elements of V are called **vectors**.

Vector space

A vector space $(V,+,\cdot)$ on $\mathbb R$ is a set endowed with two operations:

- $+: V \times V \to V$ that allows to sum two vectors: $(x, y) \mapsto x + y$
- $\cdot : \mathbb{R} \times V \to V$ that is the multiplication of a vector by a **scalar**: $(a, x) \mapsto a \cdot x$

Vector spaces can be defined over any **field** \mathbb{F} . We take $\mathbb{F}=\mathbb{R}$ in this course.

 $(V, +, \cdot)$ must follow a number of axioms:

E. Feillet (LISN)

 $(V,+,\cdot)$ must follow a number of axioms:

- \bullet (V, +) is a commutative group.
 - Associativity. For any $x, y, z \in V$, (x + y) + z = x + (y + z)
 - Additive identity. There exists an element in V, denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
 - Additive inverse. For any $x \in V$, there exists an element in V, denoted -x, such that x + (-x) = 0.
 - Commutativity. For any $x, y \in V$, x + y = y + x.

 $(V,+,\cdot)$ must follow a number of axioms:

- \bullet (V,+) is a commutative group.
 - Associativity. For any $x, y, z \in V$, (x + y) + z = x + (y + z)
 - Additive identity. There exists an element in V, denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
 - Additive inverse. For any $x \in V$, there exists an element in V, denoted -x, such that x + (-x) = 0.
 - Commutativity. For any $x, y \in V$, x + y = y + x.
- The law · verifies:
 - Distributivity (left). For all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{R}$, $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$.
 - Distributivity (right). For all $x, y \in V$ and $\alpha \in \mathbb{R}$, $\alpha(x + y) = \alpha x + \alpha y$.
 - "Mixed" associativity. For all $\mathbf{x} \in V$ and $\alpha, \beta \in \mathbb{R}$, $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$.
 - Multiplicative identity. There exists an element in \mathbb{R} , denoted 1, such that $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

Remark

Can we substract vectors ?

Remark

Can we substract vectors?

We can subtract vectors because a subtraction is the addition of the opposite vector.

Examples of Vector Spaces

Example

- ullet $(\mathbb{R},+,\cdot)$ is a vector space where \mathbb{R} is the set of real numbers
- ullet $(\mathbb{R},+,\cdot)$ is also a vector space with the \cdot law defined on \mathbb{Q}
- ullet $(\mathbb{C},+,\cdot)$ with the \cdot law defined on \mathbb{R} or \mathbb{Q}
- The set of matrices with $n \times p$ real-valued coefficients $\mathcal{M}_{n,p}(\mathbb{R})$
- ullet The set of functions from an interval $I\subset\mathbb{R}$ to \mathbb{R}
- ullet The set of sequences in ${\mathbb R}$
- The set of polynoms in \mathbb{R} , denoted $\mathbb{R}_n[X] = \{a_0 + a_1X + \cdots + a_nX^n \mid a_0, a_1, \ldots a_n \in \mathbb{R}\}$, with the following laws: for $P_1, P_2 \in \mathbb{R}_n[X]$, $P_1(X) + P_2(X) = a_0 + a_1X + \cdots + a_nX^n + a'_0 + a'_1X + \cdots + a'_nX^n = (a_0 + a'_0) + (a_1 + a'_1)X + \cdots + (a_n + a'_n)X^n$ and for $\lambda \in \mathbb{R}$, $\lambda P_1[X] = \sum \lambda a_i X^i$
- $(\mathbb{R}^n, +, \cdot)$ is a vector space, called the **Euclidean space**.

Product of vector spaces

Definition

Cartesian product of two sets A and B, denoted $A \times B$:

$$A \times B = \{(a, b), a \in A, b \in B\}$$

Product of vector spaces

Definition

Cartesian product of two sets A and B, denoted $A \times B$:

$$A \times B = \{(a, b), a \in A, b \in B\}$$

Definition

Let E and F be two \mathbb{F} -vector spaces. The sum of $(x,y) \in E \times F$ and $(x',y') \in E \times F$ is defined as (x,y)+(x',y')=(x+x',y+y'). The multiplication of (x,y) by a scalar $\lambda \in \mathbb{F}$ is defined as $\lambda \cdot (x,y)=(\lambda \cdot x,\lambda \cdot y)$.

Product of vector spaces

Definition

Cartesian product of two sets A and B, denoted $A \times B$:

$$A \times B = \{(a, b), a \in A, b \in B\}$$

Definition

Let E and F be two \mathbb{F} -vector spaces. The sum of $(x,y) \in E \times F$ and $(x',y') \in E \times F$ is defined as (x,y)+(x',y')=(x+x',y+y'). The multiplication of (x,y) by a scalar $\lambda \in \mathbb{F}$ is defined as $\lambda \cdot (x,y)=(\lambda \cdot x,\lambda \cdot y)$.

Proposition

Endowed with the above operations, $(E \times F, +, \cdot)$ is a \mathbb{F} -vector space. It is called the **product vector space** of E by F.

4 D > 4 B > 4 B > 4 B > 9 Q P

Euclidean space

Let n be a positive integer.

Example

 $(\mathbb{R}^n,+,\cdot)$ is a vector space, called the **Euclidean space**.

Euclidean space

The vectors in the Euclidean space consist of *n*-tuples of real numbers, i.e. for $x \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$. The x_i are the components or entries of the vector.

NB: you can think of vectors of \mathbb{R}^n as $n \times 1$ matrices, or **column vectors**.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Examples of Operations

Example

- Summation of two vectors in \mathbb{R}^2 .
- Multiplication by a scalar in \mathbb{R}^n .

Examples of Operations

Example

- Summation of two vectors in \mathbb{R}^2 .
- Multiplication by a scalar in \mathbb{R}^n .

Addition and scalar multiplication are defined component-wise on vectors in \mathbb{R}^n :

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}, \quad \alpha \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

In \mathbb{R}^n , a vector **x** has a **direction** and an **amplitude**.

Scalar multiplication changes the amplitude but keeps the same direction. Parallel vectors: We say that two vectors $v, w \in \mathbb{R}^n$ are **parallel** if there is a non-zero scalar $r \in \mathbb{R}$ such that

w = rv.

Figure 1: Vector addition and scalar multiplication: a vector \mathbf{v} (blue) is added to another vector \mathbf{w} (red, upper illustration). Below, \mathbf{w} is multiplied by a factor of 2, yielding the sum $\mathbf{v} + 2\mathbf{w}$. (image from Wikipedia)

E. Feillet (LISN) Maths for Data Science Fall 2025 13 / 47

Table of Contents

- 1 Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- 4 Rank

Subspaces

Vector spaces can contain other vector spaces.

Subspaces

If V is a vector space, then $S \subseteq V$ is said to be a **subspace** of V if

- **0 0** ∈ *S*
- **(4)** S is closed under addition: $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x} + \mathbf{y} \in S$
- **3** Is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$

Subspaces

Example

- V is always a subspace of V.
- The trivial vector space which contains only 0.
- A line passing through the origin is a subspace of the Euclidean space.
- The set of real-valued sequences that converge is a subspace of the set of real-valued sequences.
- The set of continuous fonctions from an interval $I \subset \mathbb{R}$ into \mathbb{R} is a subspace of the set of fonctions from I to \mathbb{R} .
- The set of polynomials from degree at most k < n is a subspace of the set of polynomials of degree at most n.

Subspaces

Proposition

Let V be a vector space on \mathbb{F} . Any subspace U of V is a vector space on \mathbb{F} .

Exercise: Proof. By definition, the null element belongs to U. Verify that the composition rules $+, \cdot$ defined on V also hold for U.

Linear Combination

Linear combination

Given vectors $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ and scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$ we say that a vector of the form

$$w = c_1v_1 + c_2v_2 + \cdots + c_kv_k$$

is a **linear combination** of the vectors v_1, v_2, \ldots, v_k with scalar coefficients c_1, c_2, \ldots, c_k .

NB : The scalars c_i are sometimes called **weights**.

Span (Sous-espace vectoriel engendré)

Span

The **span** of a set of vectors $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ is the set of all the vectors which can be written as a linear combination of the v_1, v_2, \ldots, v_k , i.e.

$$\mathrm{span}\{v_1, v_2, \ldots, v_k\} = \{c_1v_1 + c_2v_2 + \cdots + c_kv_k \mid c_1, c_2, \ldots, c_k \in \mathbb{R}\}.$$

NB: equivalent to the French notation $Vect(v_1, v_2, ..., v_k)$

Example

- $\operatorname{span}((1,0),(0,1)) = \mathbb{R}^2$
- What is the span of ((2,0),(0,1))?
- What is the span of ((1,0),(3,0))?

Properties of subspaces

Proposition

Let $n \in \mathbb{N}$, $a_1, a_2, \dots a_n \in \mathbb{R}$. The following set F is a vector subspace of \mathbb{R}^n .

$$\{(x_1,x_2,\ldots x_n), \sum_{i=1}^n a_i x_i = 0\}$$

Proposition

Let F and G be subspaces of a vector space E. Then $F \cap G$ is a subspace of E.

Given p_0 , fixed in \mathbb{R}^n , a line in \mathbb{R}^n is given by (cf affine equation in \mathbb{R}^2):

$$\ell = \{ x \in \mathbb{R}^n \mid x = p_0 + tv, \ t \in \mathbb{R} \}.$$

A special case is $\operatorname{span}\{v\}=\{tv\mid t\in\mathbb{R}\}$, the line through the origin $(p_0=0)$ in direction v.

Example

Let $p_1 = (1, 2)$ and $p_2 = (3, 1)$ be on

$$\ell = \{(1,2) + (2,-1)t \mid t \in \mathbb{R}\}.$$

Is $p_1 + p_2$ on the line?

Given p_0 , fixed in \mathbb{R}^n , a line in \mathbb{R}^n is given by (cf affine equation in \mathbb{R}^2):

$$\ell = \{ x \in \mathbb{R}^n \mid x = p_0 + tv, \ t \in \mathbb{R} \}.$$

A special case is $\operatorname{span}\{v\} = \{tv \mid t \in \mathbb{R}\}$, the line through the origin $(p_0 = 0)$ in direction v.

Example

Let $p_1 = (1, 2)$ and $p_2 = (3, 1)$ be on

$$\ell = \{(1,2) + (2,-1)t \mid t \in \mathbb{R}\}.$$

Is $p_1 + p_2$ on the line?

NB: If $u, w \in \operatorname{span}\{v_1, \dots, v_k\}$, then $u + w \in \operatorname{span}\{v_1, \dots, v_k\}$.

However, the sum of two points on a line need not be on the line.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕久○

A plane in \mathbb{R}^n through p_0 with directions \mathbf{u}, \mathbf{v} is

$$P = \{x \in \mathbb{R}^n \mid x = p_0 + s\mathbf{u} + t\mathbf{v}, \ s, t \in \mathbb{R}\}.$$

If $p_0 = 0$, then $P = \operatorname{span}\{\mathbf{u}, \mathbf{v}\}$.

Figure 2: The cross-hatched plane is the linear span of \mathbf{u} and \mathbf{v} in both \mathbb{R}^2 and \mathbb{R}^3 (figure in perspective from Wikipedia).

Hypersurfaces: In \mathbb{R}^n , through p_0 in directions v_1, \ldots, v_k :

$$P = \{ x \in \mathbb{R}^n \mid x = p_0 + s_1 v_1 + \dots + s_k v_k, \ s_1, \dots, s_k \in \mathbb{R} \}.$$

If $p_0 = 0$, then $P = \text{span}\{v_1, ..., v_k\}$.

Spanning List

Spanning list

A **spanning list** of V is a list whose span is V.

NB: French speakers "famille génératrice de V"

The family of vectors $v_1, v_2, ..., v_k$ spans the \mathbb{R} -vector space V if for any $x \in V$, there exist coefficients $\lambda_1, \lambda_2...\lambda_k$ such that $x = \sum_{i=1}^k \lambda_i v_i$.

Example

- Verify that $\{(2,1),(0,1)\}$ is a spanning list of \mathbb{R}^2 .
- Let us consider $V = \{(x,0,0), x \in \mathbb{R}\}$ and $v_1 = (1,0,0)$. Verify that V is a vector space and that (v_1) is a spanning list of V.

Linear Independence

Linear independence

A list/family of vectors v_1, \ldots, v_k is **linearly independent**/free if none of the vectors can be written as a linear combination of the others, i.e.

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \cdots = \alpha_k = \mathbf{0}$$

Example

Are the following vectors linearly independent ?

$$v_1 = (1,0,0), v_2 = (3,0,0), v_3 = (0,0,1)$$

$$v_1 = (1,0), v_2 = (0,2)$$

Basis of a vector space

Basis

A linearly-independent spanning list of vectors from a vector space V is called a **basis** of V.

Basis of a vector space

Basis

A linearly-independent spanning list of vectors from a vector space V is called a **basis** of V.

Example

The standard basis of \mathbb{R}^n , called the **canonical basis**:

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, 0, \dots, 0), \quad \dots, \quad e_n = (0, \dots, 0, 1)$$

Basis of a vector space

Basis

A linearly-independent spanning list of vectors from a vector space V is called a **basis** of V.

Example

The standard basis of \mathbb{R}^n , called the **canonical basis**:

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, 0, \dots, 0), \quad \dots, \quad e_n = (0, \dots, 0, 1)$$

Proposition

Given a basis, every vector has a unique coordinate representation.

Dimension of a vector space

Proposition

Let V be a finite-dimensional vector space. Then:

- V admits a basis.
- 2 All bases of V have the same cardinality.
- Any family of linearly independant vectors from V can be completed to obtain a basis of V (FR: "théorème de la base incomplète")
- A basis of V can be extracted from any spanning family of V (FR: "théorème de la base extraite").

Dimension

All bases of a vector space have the same length, called the dimension.

Example

 $\dim(\mathbb{R}^n) = n$

4 D > 4 A > 4 B > 4 B > B 9 Q C

Rank of a family of vectors

Definition

Let $\mathcal{F}=(v_1,v_2,...v_k)$ be a family of vectors from a vector space V. The **rank** of \mathcal{F} is dimension of its the span, i.e. the dimension of the vector space generated by all the linear combinations of vectors from \mathcal{F} .

$$rank(\mathcal{F}) = dim(span(\mathcal{F}))$$

Sum of subspaces

Definition

Let F and G be subspaces of E. Their sum is defined as

$$F + G = \{x \in V, \exists u \in F, v \in G, x = u + v\}$$

Exercise: Verify that this set is also a subspace of V.

Sum of subspaces

Definition

Let F and G be subspaces of E. Their sum is defined as

$$F + G = \{x \in V, \exists u \in F, v \in G, x = u + v\}$$

Exercise: Verify that this set is also a subspace of V.

Definition

If $U \cap W = \{0\}$, the sum is said to be a **direct sum** and written $U \oplus W$.

NB: (sous-espaces vectoriels supplémentaires in French)

Proposition

Every vector in $U \oplus W$ can be written uniquely as the sum of a vector from U and a vector from W.

4 D > 4 A > 4 B > 4 B > 9 C

Table of Contents

- Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- 4 Rank

Function

Function

A **function** f from a set X to a set Y assigns to each element of X exactly one element of Y. Notation: $f: X \to Y$.

Vocabulary

Function

Function

A **function** f from a set X to a set Y assigns to each element of X exactly one element of Y. Notation: $f: X \to Y$.

Vocabulary

- The set X is called the **domain** of the function
- The set Y is called the **codomain** of the function.
- If the element $y \in Y$ is assigned to $x \in X$ by the function f, one says that f maps x to y, and this is commonly written y = f(x).
- In this notation, x is the **argument** or **variable** of the function.
- A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the f.

Remark: functional notation, arrow notation

Vocabulary

NB: In some branches of mathematics, the term map is used to mean a function.

- A homomorphism is a <u>structure-preserving map</u> between two algebraic structures of the same type (e.g. two groups, or two vector spaces).
- Homomorphisms of vector spaces are also called linear maps, linear mappings or linear transformations.
- A homomorphism from a vector space V to the same vector space is called an endomorphism.
- A bijective homomorphism is called an **isomorphism**.

Image (range) and Preimage (inverse image)

Image/range

The image (or range) of a function is the set of the images of all the elements in the domain. Notation: f(X).

$$f(X) = \{f(x) \mid x \in X\}$$

Image (range) and Preimage (inverse image)

Image/range

The image (or range) of a function is the set of the images of all the elements in the domain. Notation: f(X).

$$f(X) = \{f(x) \mid x \in X\}$$

NB: If A is a subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A. We have $f(A) \subset f(X)$.

Image (range) and Preimage (inverse image)

Image/range

The image (or range) of a function is the set of the images of all the elements in the domain. Notation: f(X).

$$f(X) = \{f(x) \mid x \in X\}$$

NB: If A is a subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A. We have $f(A) \subset f(X)$.

Preimage

The **inverse image** or **preimage** under f of an element y of the codomain Y is the set of all elements of the domain X whose images under f equal y. Notation : $f^{-1}(y)$.

$$f^{-1}(y) = \{x \in X \mid f(x) = y\}$$

Let $f: X \to Y$ be a function.

Injectivity

The function f is injective if $f(a) \neq f(b)$ for every two different elements a and b of X. Equivalently, f is injective iff, for every $y \in Y$, the preimage $f^{-1}(y)$ contains at most one element.

Let $f: X \to Y$ be a function.

Injectivity

The function f is injective if $f(a) \neq f(b)$ for every two different elements a and b of X. Equivalently, f is injective iff, for every $y \in Y$, the preimage $f^{-1}(y)$ contains at most one element.

Surjectivity

The function f is surjective if its image f(X) equals its codomain Y. That is, for every element $y \in Y$, there exists an element $x \in X$ such that f(x) = y. Equivalently : $\forall y \in Y, f^{-1}(y) \neq \emptyset$.

Let $f: X \to Y$ be a function.

Injectivity

The function f is injective if $f(a) \neq f(b)$ for every two different elements a and b of X. Equivalently, f is injective iff, for every $y \in Y$, the preimage $f^{-1}(y)$ contains at most one element.

Surjectivity

The function f is surjective if its image f(X) equals its codomain Y. That is, for every element $y \in Y$, there exists an element $x \in X$ such that f(x) = y. Equivalently : $\forall y \in Y, f^{-1}(y) \neq \emptyset$.

Bijectivity

The function f is bijective if it is both injective and surjective.

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ・ り Q ()

Figure 3: image source: Wikipedia

Linear transformation

Linear transformation

L:V o W is linear if for all $v_1,v_2\in V$ and $a,b\in\mathbb{R}$,

$$L(av_1 + bv_2) = aL(v_1) + bL(v_2)$$

Example

- Show that $L:(x,y)\mapsto (x,0)$ is linear.
- Show that $L:(x,y)\mapsto 10(x,y)$ is linear.

Kernel / Null Space

Kernel / Null space

If $L:V\to W$ is a linear map, we define the **nullspace** (also called **kernel**^a) and denoted $\operatorname{null}(L)$ (or $\ker(L)$) of L as

$$\mathsf{null}(\mathit{L}) = \{ \mathbf{x} \in \mathit{V} \mid \mathit{L}(\mathbf{x}) = \mathbf{0} \}$$

^aWatch out, the word "kernel" has another meaning in machine learning.

Example

For L(x, y) = x, $ker(L) = \{(0, y) \mid y \in \mathbb{R}\}.$

Reminder: the range of a linear map $L: U \mapsto V$ writes :

$$range(L) = \{ y \in V \mid \exists x \in U, L(x) = y \}.$$

Properties of subspaces and linear maps

Proposition

If $L: U \mapsto V$ is a linear map, then

- the kernel of L is a subspace of U
- 2 the range of L is a subspace of V
- **3** *L* is injective iff $ker(L) = \{0_U\}$
- L is surjective iff range(L) = V

Exercise: Proof. Hint: show that the range is closed under vector addition and scalar multiplication. Use the linearity of L to show that $L(0_U) = 0_V$.

Proposition (Range of the zero map)

If $L: U \mapsto V$ is a linear map, then

$$range(L) = \{0_V\} \iff L = 0$$

Properties of subspaces and linear maps

Proposition

Let E, F be two vector spaces defined over \mathbb{F} , $\mathcal{B}_E = (e_1, e_2, \dots e_n)$ a basis of E and $\mathcal{F} = (f_1, f_2, \dots f_k)$ a family of vectors in F. Then there exists a unique linear application $g: E \mapsto F$ such that

$$\forall i, 1 \leq i \leq n, g(e_i) = f_i$$

In addition:

- **1** g is injective iff \mathcal{F} is free.
- 2 g is surjective iff \mathcal{F} spans F.
- \odot g is bijective iff \mathcal{F} is a basis of F.

Isomorphic vector spaces

Definition

We say that two vector spaces E and F are **isomorphic** if there exists an isomorphism from E to F.

NB: equivalently, we could write "from F to E" since it is a bijection.

Proposition

Finite-dimensional vector spaces (defined over the same field) of the same dimension are isomorphic.

NB: Using the previous property, with dim(U) = dim(V) = n, $\mathcal{B} = (e_1, e_2, \dots e_n)$ a basis of U and $\mathcal{F} = (f_1, f_2, \dots f_n)$ a basis of V, we know that there exists a unique linear application $g: E \mapsto F$ such that

$$\forall i, 1 \leq i \leq n, g(e_i) = f_i$$

and that g is bijective.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Table of Contents

- 1 Vector Spaces
- 2 Subspaces
- 3 Linear transformations
- Rank

Rank

Rank of a linear transformation

The **rank** of a linear transformation $L: V \to W$ is:

$$\operatorname{rank}(L) = \dim(L(V))$$

where $L(V) = \{ y \in W \mid y = L(x), x \in V \}.$

Reminder: L(V) is called the **range** or **image** of L. We also write rank(L) = dim(Im(L)).

Rank

Rank of a linear transformation

The **rank** of a linear transformation $L: V \to W$ is:

$$\operatorname{rank}(L) = \dim(L(V))$$

where $L(V) = \{ y \in W \mid y = L(x), x \in V \}.$

Reminder: L(V) is called the **range** or **image** of L. We also write rank(L) = dim(Im(L)).

Example

Example: $L: \mathbb{R}^2 \to \mathbb{R}$ given by L(x, y) = x has rank 1.

E. Feillet (LISN)

Properties of the rank

Proposition

Let $L: U \mapsto V$ be a linear map, U and V of finite dimension. Then L is bijective iff rank(L) = dim(V) = dim(U).

Cartesian product and dimension

Proposition

Let n > 2 an integer, we suppose that $E_1, ... E_n$ are n finite-dimensional vector spaces on \mathbb{F} . Then their cardinal product is finite-dimensional, with dimension

$$dim(E_1 \times E_2 \times \cdots \times E_n) = \sum_{i=1}^n dim(E_i).$$

Exercise: Proof (reasoning by recurrence)

Rank-Nullity Theorem

Rank-Nullity Theorem

If V, W are finite-dimensional vector spaces and $L: V \to W$ is linear:

$$rank(L) + dim(ker(L)) = dim(V)$$

Example

For
$$L: \mathbb{R}^2 \to \mathbb{R}$$
, $(x, y) \mapsto (2x, 0)$, $rank(L) = 1$ and $dim(ker(L)) = 1$.

Proof

Sum of subspaces

Proposition

For U and W subspaces of V,

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

Exercise: Proof.

Corollary

 $dim(U \oplus W) = dim(U) + dim(W)$ for a direct sum.

Next topics

Next class : matrices (Lecture 2)