Discrete Mathematics

Recursively defined sets, functions, structures

Srinivasan, Assistant Professor
Amrita Vishwa Vidyapeetham, Coimbatore, INDIA

Recursive Definitions

- > To define an object in terms of itself is called recursion
- > We can use recursion to define sequences, functions, and sets

EXAMPLE

- \triangleright The sequence of powers of 2 is given by $a_n=2^n$ for n = 0, 1, 2, . . .
- ➤ Define a sequence recursively by specifying how terms of the sequence are found from previous terms.

Two Steps

- 1. Basis step: first term of the sequence: $a_0 = 1$
- 2. Recursive step: rule to find terms of the sequence from the previous one

$$a_{n+1} = 2a_n \text{ for } n = 0, 1, 2, 3, \dots n$$

Give a recursive definition of the sequence $\{a_n\}$, n = 1, 2, 3,... if $a_n = 2n+1$

Basis step: $a_0=1$

Recursive step: $a_n = a_{n-1} + 2, n \ge 1$

EXAMPLE

Give a recursive definition for a^n for $a \in R$ and non-negative and is positive integer.

Give a recursive definition of the sequence $\{a_n\}$, n = 1, 2, 3, ... if $a_n = 5^n$

Give a recursive definition of a^n , where a is a nonzero real number and n is a nonnegative integer.

Solution: The recursive definition contains two parts. First a^0 is specified, namely, $a^0=1$. Then the rule for finding a^{n+1} from a^n , namely, $a^{n+1}=a\cdot a^n$, for $n=0,1,2,3,\ldots$, is given. These two equations uniquely define a^n for all nonnegative integers n.

Recursive or inductive definition

Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers as its domain:

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller integers.

Suppose that f is defined recursively by

$$f(0) = 3,$$

 $f(n + 1) = 2f(n) + 3.$

Find f(1), f(2), f(3), and f(4).

Solution: From the recursive definition it follows that

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9,$$

 $f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21,$
 $f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45,$ $f(4) = 2f(3) + 3 = 2 \cdot 45 + 3 = 93.$

Give a recursive definition of

$$\sum_{k=0}^{n} a_k.$$

Solution: The first part of the recursive definition is

$$\sum_{k=0}^{0} a_k = a_0.$$

The second part is

$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^n a_k\right) + a_{n+1}.$$

Fibonacci Numbers

Recall the set of Fibonacci numbers

How is each number related and found?

Lets give a recursive definition to this sequence.

Two steps

- 1. Basis step: $f_0 = 0, f_1 = 1$
- 2. Recursive step:

$$f_n = f_{n-1} + f_{n-2}, \ n \ge 2$$

Recursively defined sets and structures

The set of natural numbers $N = \{0, 1, 2,\}$

Basis step: $0 \in N$

Recursive step: how to find other elements using 0.

if $n \in N \text{ then } n+1 \in N$

EXAMPLE

Let S be a subset of the integers defined recursively by

Basis step: $7 \in S$

Recursively step: if $x \in S$ and $y \in S$ then $x + y \in S$

Recursive definitions play an important role in the study of strings

The set Σ^* of *strings* over the alphabet Σ is defined recursively by

BASIS STEP: $\lambda \in \Sigma^*$ (where λ is the empty string containing no symbols).

RECURSIVE STEP: If $w \in \Sigma^*$ and $x \in \Sigma$, then $wx \in \Sigma^*$.

Rooted Trees recursively defined

The set of *rooted trees*, where a rooted tree consists of a set of vertices containing a distinguished vertex called the *root*, and edges connecting these vertices, can be defined recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n , respectively. Then the graph formed by starting with a root r, which is not in any of the rooted trees T_1, T_2, \ldots, T_n , and adding an edge from r to each of the vertices r_1, r_2, \ldots, r_n , is also a rooted tree.

Building Up Rooted Trees.

Binary trees are a special type of rooted trees.

We will provide recursive definitions of two types of binary trees –
full binary trees and extended binary trees

The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: If T_1 and T_2 are disjoint extended binary trees, there is an extended binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 when these trees are nonempty.

Building Up Extended Binary Trees

Building Up Full Binary Trees

The set of full binary trees can be defined recursively by these steps:

BASIS STEP: There is a full binary tree consisting only of a single vertex r.

RECURSIVE STEP: If T_1 and T_2 are disjoint full binary trees, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 .