Uninformed Search Strategies-2

Iterative Deepening Search (IDS)

```
Function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution inputs: problem, a problem for depth = 0 to ∞ do result ← DEPTH-LIMITED-SEARCH(problem, depth) if result ≠ cutoff then return result end
```

Iterative Deepening Search (IDS)

IDS Analysis

- Completeness: Yes!
- Optimality: Yes for Uniform cost edges, can be modified for non-uniform cost trees
 - Iterative lengthening search
- Time Complexity: exponential in d
- Space Complexity: bd
 - \circ Let b=10and d=5
 - $\square N(IDS) = 50 + 400 + 3000 + 20000 + 10000 = 123450$
 - $\square N(BFS) = 10 + 100 + 1000 + 10000 + 10000 = 1111110$
 - In general $N(IDS) = (d)b + (d-1)b^2 + \dots + (1)b^d \sim O(b^d)$

Exercise

- DFS?
- BFS?
- IDS?

Exercise

- DFS?
- BFS?
- IDS?

Problem of Redundant Paths

- Partial reduction in repeated expansion can be done by
 - Checking to see if any children of a node n have the same state as the parent of n
 - Checking to see if any children of a node n have the same state as any ancestor of n (at most d ancestors for n—where d is the depth of n)

Uniform Cost Search (UCS)

- Expand least-cost g(n) unexpanded node
- The name uniform cost search refers to the fact that we are exploring states of the same past cost uniformly
- All action costs are non-negative
 - What if the cost associated with an edge is negative?
 - Bellman-Ford algorithm
- Implementation: Priority queue –sort the nodes in the queue based on cost

High-Level Description

- Explored: states we've found the optimal path to
- Frontier: states we've seen, still figuring out how to get there cheaply
- Unexplored: states we haven't seen

UCS Example

- Initially, we put A on the frontier. We then take A off the frontier and mark it as explored.
 We add B and C to the frontier with past costs 1 and 100, respectively
- Next, we remove from the frontier the state
 with the minimum past cost (priority), which is B.
 We mark B as explored and consider successors A,
 C, D. We ignore A since it's already explored. The
 past cost of C gets updated from 100 to 2. We add
 D to the frontier with initial past cost 101
- Next, we remove C from the frontier; its successors are A, B, D. A and B are already explored, so we only update D's past cost from 101 to 3
- Finally, we pop D off the frontier, find that it's a end state, and terminate the search

Start state : A. End state: D

Algorithm UCS

Add s_{start} to **frontier** (priority queue)

Repeat untill **frontier** is empty:

Remove s with smallest priority p from frontier

If IsEnd(s): return solution

Add s to explored

For each action $a \in Actions(s)$:

Get successor $s' \leftarrow Succ(s, a)$

If s' already in **explored**: continue

Update **frontier** with s' and priority p + Cost(s, a)

Much like Dijkstra's Shortest-path Algorithm

- UCS takes as input a search problem, which implicitly defines a large and even infinite graph, whereas Dijkstra's algorithm (in the typical exposition) takes as input a fully concrete graph
- UCS finds the shortest path to the goal state

Issue with UCS

 May search for useless inexpensive large subtrees before useful path with costly steps

Start state : C, End/Goal state: E

Analysis of UCS: Correctness Theorem

☐ When a state s is popped from frontier and moved to explored, its priority is PastCost(s), the minimum cost to s

Proof:

• Let p_s be the priority of s when s is popped off the frontier. Since all costs are non-negative, p_s increases over the course of the algorithm

 Suppose we pop s off the frontier. Let the blue path denote the path with cost p_s

• Consider any alternative red path from the start state to s. The red path must leave the explored region at some point; let t and u = Succ(t, a) be first pair of states straddling the boundary. We want to show that the red path can't be cheaper than the blue path via a string of inequalities

Analysis of UCS: Correctness Theorem

- First, by definition of PastCost(t) and non-negativity of edge costs, the cost of the red path is at least the cost of the part leading to u, which is PastCost(t) + Cost(t, a) = p_t + Cost(t, a)
- Second, we have p_t + Cost(t, a) ≥ p_u since we updated the frontier based on (t, a)
- Third, we have that $p_u \ge p_s$ because s was present at the top of the frontier
- Note that p_s is the cost of the blue path

UCS Analysis

- Completeness: Yes; if step cost $\geq \epsilon$
- Optimality: Yes; nodes are expanded in increasing order of g(n)
- Time Complexity: # of nodes with $g \le \text{cost of optimal solution}$ $O(b^{\lceil C^*/ \epsilon \rceil})$
- Space Complexity: # of nodes with $g \le \text{cost of optimal solution}$ $O(b^{\lceil C^*/ \epsilon \rceil})$

Exercises

- Can UCS handle cyclic graphs?
- UCS can only deal with non-negative action costs. As an alternative solution one may add a large positive constant to each action cost to make them all nonnegative, and subsequently solve the problem. Will this strategy lead to correct solution? Why or why not?

Performance of Uninformed Search Strategies

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No $O(b^m)$	No $O(b^{\ell})$	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,d} O(b^{d/2})$
Space Optimal?	$O(b^d)$ Yes ^c	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	$O(b^{d/2})$ Yes c,d

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.

Hints on Previous Exercises

- In the game of chess which strategy you would like to prefer to find the winning state?
- In Tic-Tac-Toe, define the states, initial-state, actions, goal test and path cost.
- Whether the tree associated with the Tic-Tac-Toe will be a search tree?
- Tic-Tac-Toe, which strategy should be adopted to avoid loosing the game?
- Whether the search tree of Tic-Tac-Toe will be having the redundancy in terms of paths or nodes? Justify your answer.

Next Class

- Bidirectional Search
- Informed Search strategies:
 - Greedy best first search
 - A* search

References

- CS188 UCB course
- Professor Mausam IIT Delhi Al course
- Rusell and Norvig text book

Bi-directional Search

- Run two simultaneous searches
 - Forward search from the initial state
 - Backward search from the goal state
- Replace the goal test function with a check to see whether the frontiers of the two searches intersect

Bi-directional Search Analysis

- Complete: Yes (b should be finite)
- Time complexity: O(b^{d/2})
- Space complexity: O(b^{d/2})
- Optimal: Yes (if uniform cost search is used in both directions along with a hash table)
- Single goal state vs multiple goal states
- Time and space issues

Exercises

- Go through and analyse the iterative analogue of UCS i.e. iterative lengthening search. Compare it with UCS on 8-puzzle problem
- Describe a state space in which iterative deepening performs much worse than depth-first search
- The heuristic path algorithm is a best first-search in which the evaluation function is f(n)=(2w)*g(n) + w*h(n). For what values of w is this complete?