

Mikroprocesorové a vestavěné systémy

# Inteligentní teplotní čidlo s mikrokontrolérem PIC

projekt – vlastní téma

12. prosince 2012

Autor: Radek Ševčík, <u>xsevci44@stud.fit.vutbr.cz</u> Fakulta Informačních Technologií Vysoké Učení Technické v Brně

# Obsah

| 1.   | Úvod                        | . 2 |
|------|-----------------------------|-----|
| 2.   | Mikrokontrolér a jeho okolí | . 3 |
| 2.1. | Teplotní snímač             | . 3 |
| 2.2. | Modbus RTU                  | . 4 |
| 3.   | Činnost aplikace            | . 6 |
| 4.   | Závěr                       | . 6 |
| Met  | riky                        | . 6 |
| Lite | atura                       | . 6 |

## 1. Úvod

Tento dokument popisuje analýzu a implementační dokumentaci projektu z oblasti vestavěných systémů. Tímto projektem je inteligentní teplotní čidlo, sestavené z 8-bitového mikrokontroléru Microchip PIC16f628a a snímače Dallas DS18B20. Inteligentní je v tom, že dokáže komunikovat se svým okolím protokolem Modbus RTU po sériové lince RS-485 a díky tomu může být součástí větších řídicích systémů.

Tento projekt se inspiruje aplikačním protokolem tqs3-modbus společnosti Papouch a snaží se udržet základní kompatibilitu, tudíž i tovární nastavení adresy 31<sub>h</sub> a linky 9600/8-N-1. Pro Modbus RTU je typické nastavení linky 19200/8-E-1.

### 2. Mikrokontrolér a jeho okolí



## 2.1. Teplotní snímač

Teplotní snímač je připojen k mikrokontroléru sériovou sběrnicí typu master-slave 1-Wire™ pomocí jediného IO portu. Každý snímač má svůj unikátní identifikační ROM kód, který v našem případě využijeme pouze k detekci snímače. Pokud bychom na sběrnici napojili více snímačů, vysláním tohoto kódu určíme zařízení, s kterým chceme komunikovat.

| 63 | 56    | 55            | 8 | 7               | 0   |
|----|-------|---------------|---|-----------------|-----|
|    | CRC-8 | Serial Number |   | Family Code (28 | 3h) |

Pokud chceme, aby snímač změřil teplotu, zašleme mu příkaz. Naměřenou teplotu získáme přečtením vnitřní paměti snímače. Tato teplota je ve výchozím nastavení 12-bitová, zapsaná jako rozšířené 16-bitové číslo ve tvaru dvojkového doplňku, kde nejmenší 4 bity tvoří desetinnou část. Při startu má teplota hodnotu 0550<sub>h</sub>, což odpovídá 85,0°C.

| Byte 0 | Temperature LSB (50h)   |
|--------|-------------------------|
| Byte 1 | Temperature MSB (05h)   |
| Byte 2 | T <sub>H</sub> Register |
| Byte 3 | T <sub>L</sub> Register |
| Byte 4 | Configuration Register  |
| Byte 5 | Reserved                |
| Byte 6 | Reserved                |
| Byte 7 | Reserved                |
| Byte 8 | CRC-8                   |

Kontrolní součet CRC-8-Dallas/Maxim je generován polynomem  $X^8 + X^5 + X^4 + 1$ .

#### 2.2. Modbus RTU

Na fyzické vrstvě použijeme průmyslový standard, sériovou master-slave sběrnici RS-485 2W.



2-Wire Multidrop Network Using Terminating Resistors

MODBUS Serial Line protocol definuje rámce ve tvaru:

| Start       | Address | Function | Data       | CRC-16  | End        |
|-------------|---------|----------|------------|---------|------------|
| ≥ 3.5 chars | 8 bits  | 8 bits   | N × 8 bits | 16 bits | ≥ 3.5 char |
|             |         |          |            | Lo Hi   |            |

A slave se řídí těmito konečnými automaty:





MODBUS Application Protocol definuje základní funkce Read Holding Registers  $(03_h)$ , Read Input Registers  $(04_h)$  a Write Single Register  $(06_h)$ . Uvedeme si funkce, kterým bude čidlo rozumět.

| Funkce          | Adresa            | Délka             | Význam                                                  |
|-----------------|-------------------|-------------------|---------------------------------------------------------|
| 03 <sub>h</sub> | 0001 <sub>h</sub> | 0001 <sub>h</sub> | Přečte ID zařízení                                      |
|                 | 0002 <sub>h</sub> | 0001 <sub>h</sub> | Rychlost komunikační linky (0006 <sub>h</sub> = 9600Bd) |
| 04 <sub>h</sub> | 0000 <sub>h</sub> | 0001 <sub>h</sub> | Přečtení naměřené teploty (vynásobeno 10x)              |
|                 | 0001 <sub>h</sub> |                   |                                                         |
| 06 <sub>h</sub> | 0001 <sub>h</sub> | 0001 <sub>h</sub> | Nastavení ID zařízení                                   |
|                 | 0002 <sub>h</sub> | 0001 <sub>h</sub> | Nastavení rychlosti komunikační linky                   |

## 3. Činnost aplikace

Při startu aplikace zinicializuje své nastavení, načte adresu a nastavení linky z EEPROM paměti a otestuje přítomnost teplotního snímače. Pokud se nenadetekuje, mikrokontrolér se podtaktuje na frekvenci 32kHz a po dobu 30s bliká s LED. Poté se nataktuje na frekvenci 4MHz a znovu detekuje snímač. Při nadetekování snímače program přejde do nekonečné smyčky, ve které testuje zda-li uběhl čas pro znovu naměření teploty (každých 30s), popř. jestli snímač teplotu již dočetl (převod trvá cca 750ms). Také v této smyčce kontroluje, zda-li přišel Modbusový rámec nebo jestli má data posílat. K této činnosti jsou využity komponenty časovače a přerušení z jednotky UART. Po příjmu rámce se zkontroluje adresa, bezchybnost a provede se přiřazená akce.

#### 4. Závěr

Projekt byl úspěšně otestován za použití převodníku RS-485<>Ethernet i RS-485<>RS-232 a vlastní aplikace postavenou nad knihovnou libmodbus. Teplotní čidlo bylo odzkoušeno i nasazením na sběrnici RS-485 k jiným čidlům TQS1 zapojeným k PLC systému.

### **Metriky**

Počet řádků zdrojového kódu: 1686

| Memory Summary:    |      |      |   |       |    |           |            |
|--------------------|------|------|---|-------|----|-----------|------------|
| Program space      | used | 536h | ( | 1334) | of | 800h word | ds (65.1%) |
| Data space         | used | 49h  | ( | 73)   | of | E0h byte  | es (32.6%) |
| EEPROM space       | used | 8h   | ( | 8)    | of | 80h byte  | es (6.3%)  |
| Configuration bits | used | 1h   | ( | 1)    | of | 1h word   | d (100.0%) |
| ID Location space  | used | 0h   | ( | 0)    | of | 4h byte   | es ( 0.0%) |

#### Literatura

- Microchip, PIC16F627A/628A/648A FLASH-Based 8-Bit CMOS Data Sheet, http://ww1.microchip.com/downloads/en/DeviceDoc/40044G.pdf
- Maxim Integrated, DS18B20 Programmable Resolution 1-Wire Digital Thermometer, http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
- Maxim Integrated, Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products, APPLICATION NOTE 27, http://pdfserv.maximintegrated.com/en/an/AN27.pdf
- T. Scott Dattalo, An efficient implementation of Maxim's (Dallas Semiconductor) AP Note 27, http://www.dattalo.com/technical/software/pic/crc 8.asm
- Modbus.org, Modbus Serial Line Protocol and Implementation Guide V1.02, http://modbus.org/docs/Modbus over serial line V1 02.pdf
- Modbus.org, MODBUS Protocol Specification, http://modbus.org/docs/Modbus Application Protocol V1 1b3.pdf
- Papouch s.r.o., TQS3 popis modifikace s protokolem MODBUS RTU, <a href="http://www.papouch.com/cz/shop/product/tqs3-e-elektronika-teplomeru-s-rs485/tqs3-modbus.pdf">http://www.papouch.com/cz/shop/product/tqs3-e-elektronika-teplomeru-s-rs485/tqs3-modbus.pdf</a>