Unsupervised and selfsupervised Learning for Graphs

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Project Proposal

- No late days (give yourself a fall break)
- Make sure that you do preliminary analysis on dataset!
 - Not enough: Size, number of graphs
 - Reasonable: Degree distribution, centrality measures, PageRank ...
 - Great: Spectral embeddings, degree of homophily (Homework 2, Qn 2), motifs, clustering ... Innovative methods to analyze the dataset from different perspectives
- Graduate and undergrad course versions have different requirements
- Suggestion: mention how you plan to split the work among group members
 - This is necessary if the group consists of students taking undergraduate as well as graduate versions of the course

Comments on Colabs

- Colab filenames for submission: colab2_firstname_lastname.ipynb
- Coding convention
 - __getitem___, __setitem___ (use slicing [])
 - See many different <u>slicing</u> functionalities
 - We usually inherit __item__ method to empower these slicing functionalities
 - __call__ : directly call the class
 - Call forward function of nn.Module (use model())
 - Similar functionalities: __len__(), __str__(), __contains__()
- Try to respect the prompt (e.g. write within the designated blanks)
 - If possible, don't alter the return values, arguments etc. You could simply name your variables with the specified names of the return values / arguments

Feedback of HW2 (1)

Q1: How difficult do you think HW2 overall is?

Q2:Which questions are too difficult for you?

Feedback of HW2 (2)

Q3: How much time do you spend on it?

Q4: How helpful do you think Homework 2 is?

3 (18.8%)

7 (43.8%)

Comments on Spectral GNN Lecture

- Graph Laplacian (Homework 2)
 - Spectral embeddings: formed by first few eigenvectors of graph laplacian
- DFT: matrix multiplication (that takes $O(n \log n)$ time)
- **Diffusion** wavelets (graph diffusion multi-han attention) Recall: $A_{ppr} = \alpha \sum_{i=0}^{\infty} (1-\alpha)^i A^i = \sum_{i=0}^{\infty} \alpha (1-\alpha)^i A^i$

Spectral analysis ($\sum_{\hat{L}_{sym}}^{\text{Proposition 2.}} \sum_{i=1}^{L} \hat{\lambda}_{i}^{g}$ and λ_{i}^{g} be the i-th eigeinvalues of \hat{L}_{sym} and \hat{L}_{sym} .

$$\frac{\hat{\lambda}_i^g}{\lambda_i^g} = \frac{1 - \frac{\alpha}{1 - (1 - \alpha)(1 - \lambda_i^g)}}{\lambda_i^g} = \frac{1}{\frac{\alpha}{1 - \alpha} + \lambda_i^g}.$$
 (9)

Unsupervised and Self-supervised Learning for Graphs

- Network Community Detection
 - Network Communities
 - Louvain Algorithm
- Strategies for Pre-training Graph Neural Networks

Unsupervised and Self-supervised Learning for Graphs

- Network Community Detection
 - Network Communities
 - Louvain Algorithm

Strategies for Pre-training Graph Neural Networks

Networks & Communities

We often think of networks "looking" like this:

What led to such a conceptual picture?

Flow of Job Information

- How do people find out about new jobs?
 - This question is studied by Mark Granovetter, part of his PhD in 1960s
 - People find the information through personal contacts
- But: Contacts are often acquaintances rather than close friends
 - This is surprising: One would expect your friends to help you out more than casual acquaintances
- Why is it that acquaintances are most helpful?

Granovetter's Answer (1)

- Two perspectives on friendships
 - Structural: Friendships span different parts of the network
 - Interpersonal: Friendship between two people is either strong or weak
 - Structurally embedded (tightly-connected) edges are also socially **strong**
 - Long-range edges spanning different parts of the network are socially weak

Granovetter's Answer (2)

- Why is it that acquaintances are most helpful?
 - Long-range edges allow you to gather information from different parts of the network and get a job

Structurally embedded edges are heavily redundant in terms of information

access

Real Network, Real Edge Strengths

"Structure and tie strengths in mobile communication networks" Onnela et al. (2007)

- Real edge strengths in mobile call graph
 - Strong ties are more embedded (have higher overlap)

Real Network, Permuted Tie Strengths

"Structure and tie strengths in mobile communication networks" Onnela et al. (2007)

• Same network, same set of edge strengths but now strengths are randomly shuffled

Conceptual Picture of Networks

Granovetter's theory leads to the following conceptual picture of networks

Network Communities

 Granovetter's theory suggests that networks are composed of tightly connected sets of nodes

Network communities:

• Sets of nodes with lots of internal connections and few external ones (to the rest of

the network).

How to Find Network Communities

 How do we automatically find such densely connected groups of nodes?

 Ideally such automatically detected clusters would then correspond to real groups

For example:

Communities, clusters, groups, modules

Example: NCAA Football Network

Nodes: Teams

Network Communities Measure

Communities: sets of tightly connected nodes

- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups disjoint $s \in S$:

$$Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$$

Need a null model

Null Model: Configuration Model (1)

- Given real G on n nodes and m edges, how to know the expected number of edges between nodes i and j?
 - We can construct a network G' with uniformly random connections that has the same degree distribution as G
 - Consider G' as a multigraph (multiple edges can exist between nodes)
- The expected number of edges between nodes i and j of degrees k_i and k_j

equals:
$$k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$$

- There are 2m directed edges (counting i->j and j->i) in total.
- For each of k_i out-going edges from node i, the chance of it landing to node j is $k_i/2m$, hence $k_ik_j/2m$.

Null Model: Configuration Model (2)

• The expected number of edges between nodes i and j of degrees k_i and k_j

equals:
$$k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$$

• The expected number of edges in (multigraph) G':

• =
$$\frac{1}{2}\sum_{i\in N}\sum_{j\in N}\frac{k_ik_j}{2m} = \frac{1}{2}\cdot\frac{1}{2m}\sum_{i\in N}k_i(\sum_{j\in N}k_j) =$$

• = $\frac{1}{4m}2m\cdot2m = m$ Note:

$$\sum_{u\in N}k_u = 2m$$

 Under null model, both the degree distribution and the total number of edges are preserved.

Notice: This model applies to both weighted and unweighted networks. For weighted networks we use the weighted degree (sum of the edge weights).

Modularity (1)

Modularity of partitioning S of graph G:

 $\mathbf{Q} \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

$$Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

$$A_{ij} = \begin{cases} 1, \text{ if } i \to j \\ 0, \text{ otherwise} \end{cases}$$

$$\text{(if G is weighted then } A_{ij} \text{ is the edge weight)}$$

- Modularity values take range [-1,1]
 - It is positive if the number of edges within groups exceeds the expected number
 - Q greater than 0.3-0.7 means significant community structure
 - Notice Modularity applies to weighted and unweighted networks.

Modularity (2)

$$Q(G,S) = rac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - rac{k_i k_j}{2m} \right)$$
 For each group s

Equivalently modularity can be written as:

$$Q = rac{1}{2m} \sum_{ij} igg[A_{ij} - rac{k_i k_j}{2m} igg] \delta(c_i, c_j)$$

- A_{ij} represents the edge weight between nodes i and j;
- k_i and k_j are the sum of the weights of the edges attached to nodes i and j, respectively;
- 2m is the sum of all of the edge weights in the graph;
- ullet c_i and c_j are the communities of the nodes; and
- δ is a simple delta function. $\delta(c_i, c_j) = 1$ if $c_i = c_j$ else 0

Idea: We can identify communities by maximizing modularity

Unsupervised and Self-supervised Learning for Graphs

- Network Community Detection
 - Network Communities
 - Louvain Algorithm

Strategies for Pre-training Graph Neural Networks

Louvain Algorithm (1)

- Greedy algorithm for community detection
 - $O(n \log n)$ run time
- Supports weighted graphs
- Provides hierarchical communities
- Widely utilized to study large networks because:
 - Fast
 - Rapid convergence
 - High modularity output (i.e., "better communities")

Network and communities:

Dendrogram:

"Fast unfolding of communities in large networks" Blondel et al. (2008)

Louvain Algorithm (2)

- Louvain algorithm greedily maximizes modularity
- Each pass is made of 2 phases:
 - Phase 1 (Partitioning): Modularity is optimized by allowing only local changes to node-communities memberships

• Phase 2 (Restructuring): The identified communities are aggregated into super-nodes

to build a new network

- Go to Phase 1
- The passes are repeated iteratively until no increase of modularity is possible.

Louvain Algorithm (3)

- Louvain algorithm considers graphs as weighted
 - The original graph can be unweighted (i.e., edge weights are all 1)
 - As the communities get identified and aggregated into super-nodes, weighted graphs are created (weights count the number of edges in the original graph)
 - Weighted version of Modularity is applied

Louvain: 1st phase (Partitioning)

- Put each node in a graph into a distinct community (one node per community)
- For each node i, the algorithm performs two calculations
 - Compute the modularity delta (ΔQ) when putting node i into the community of some neighbor j
 - Move i to a community of node j that yields the largest gain in ΔQ
- Phase 1 runs until no movement yields a gain

Note that the output of the algorithm depends on the order in which the nodes are considered. Research indicates that the ordering of the nodes does not have a significant influence on the overall modularity that is obtained.

Louvain 1st phase: Modularity Gain

What is ΔQ if we move node i from community D to C?

$$\Delta Q(D \to i \to C) = \Delta Q(D \to i) + \Delta Q(i \to C)$$

Removing *i* from *D*

$$\Delta Q(D \rightarrow i)$$

After:

of node i

Merging *i* into *C*

$$\Delta Q(i \rightarrow C)$$

Louvain 1st phase: Deriving $\Delta Q(i \rightarrow C)$ (1)

- Let's derive $\Delta Q(i \rightarrow C)$
- First, we derive modularity within C, i.e., Q(C).
- Define:
 - $\Sigma_{in} \equiv \sum_{i,j \in C} A_{ij}$
 - sum of link weights <u>between</u> nodes in *C*
 - $\Sigma_{tot} \equiv \sum_{i \in C} k_i$
 - sum of <u>all</u> link weights of nodes in *C*

Louvain 1st phase: Deriving $\Delta Q(i \rightarrow C)$ (2)

• Define:

- $\Sigma_{in} \equiv \sum_{i,j \in C} A_{ij}$... sum of link weights <u>between</u> nodes in C
- $\Sigma_{tot} \equiv \sum_{i \in C} k_i$... sum of <u>all</u> link weights of nodes in C
- Then, we have

$$Q(C) \equiv \frac{1}{2m} \sum_{i,j \in C} \left[A_{ij} - \frac{k_i k_j}{2m} \right] = \frac{\sum_{i,j \in C} A_{ij}}{2m} - \frac{(\sum_{i \in C} k_i)(\sum_{j \in C} k_j)}{(2m)^2}$$
Links within the community $\frac{\sum_{in}}{2m} - \frac{\sum_{tot}}{2m}$ Total links

Q(C) is large when most of the total links are within-community links

Louvain 1st phase: Deriving $\Delta Q(i \rightarrow C)$ (3)

Further define:

- $k_{i,in} \equiv \sum_{j \in C} A_{ij} + \sum_{j \in C} A_{ji}$... sum of link weights connecting node i and C
 - Note that each edge gets counted twice, see formula
- k_i ... sum of <u>all</u> link weights (i.e., degree) of node i

Louvain 1st phase: Deriving $\Delta Q(i \rightarrow C)$ (4)

Before merging

Isolated community of node *i*

$$Q_{\text{before}} = Q(C) + Q(\{i\})$$

$$= \left[\frac{\Sigma_{in}}{2m} - \left(\frac{\Sigma_{tot}}{2m}\right)^{2}\right] + \left[0 - \left(\frac{k_{i}}{2m}\right)^{2}\right]$$

After merging

 $k_{i,in} = 4$

$$k_i = 4$$

"
$$\Sigma_{in}$$
" of $C + \{i\}$ " Σ_{tot} " of $C + \{i\}$

Louvain 1st phase: Modularity Gain

•
$$\Delta Q(i \to C) = Q_{\text{after}} - Q_{\text{before}}$$

$$= \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m} \right)^2 \right]$$

$$- \left[\frac{\sum_{in} - \left(\frac{\sum_{tot}}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]$$

- $\Delta Q(D \rightarrow i)$ can be derived similarly.
- In summary, we can compute:

$$\Delta Q(D \to i \to C) = \Delta Q(D \to i) + \Delta Q(i \to C)$$

Louvain 1st Phase: Summary

- Iterate until no node moves to a new community
 - For each node $i \in V$ currently in community C, compute the best community C':

$$C' = \operatorname{argmax}_{C'} \Delta Q(C \rightarrow i \rightarrow C')$$

• If $\Delta Q(C \rightarrow i \rightarrow C') > 0$, then update the community:

- $C \leftarrow C \{i\}$
- $C' \leftarrow C' + \{i\}$

Louvain: 2nd phase (Restructuring)

- The communities obtained in the first phase are contracted into super-nodes, and the network is created accordingly:
 - Super-nodes are connected if there is at least one edge between the nodes of the corresponding communities
 - The weight of the edge between the two super-nodes is the sum of the weights from all edges between their corresponding communities
- Phase 1 is then run on the super-node network

Louvain 2st Phase: Summary

Super nodes are constructed by merging nodes in the same community.

Interesting Questions

- Can we use GNNs to perform clustering / community detection?
 - Direct classification of nodes into clusters
 - Link prediction
- Can we use community information to improve GNN models
 - Additional node features
 - ClusterGCN
 - DiffPool
- Theoretical questions
 - Investigate the relation between clustering and over-smoothing phenomenon

Unsupervised and Self-supervised Learning for Graphs

- Network Community Detection
 - Network Communities
 - Louvain Algorithm

Strategies for Pre-training Graph Neural Networks

Supervised Learning on Graphs (1)

- Usually we train a GNN with some supervised labels:
 - Node labels y_v : in a citation network, which subject area does a node belong to
 - Edge labels y_{uv} : in a transaction network, whether an edge is fraudulent
 - Graph labels y_G : among molecular graphs, the drug likeness of graphs
- And apply a loss function $l(\cdot)$ to optimize the parameters $\min l(y, \widehat{y})$

Predicted labels

Supervised Learning on Graphs (2)

Different supervised labels on graph

Challenge of Supervised Learning on Graphs

- Task-specific labels can be extremely scarce
 - Obtaining labels requires expensive lab experiments and human annotation
 - Machine learning models easily overfit to small training data
 - E.g., testing the chemical property of a molecule in a wet laboratory
- Graph data often contains out-of-distribution samples
 - Graphs in the training set are structurally very different from graphs in the test set
 - E.g., predict chemical properties of a new molecule which is different from all molecules in training set

Self-supervised Learning on Graphs (1)

- How to improve model's out-of-distribution prediction performance even with limited data?
- The solution: self-supervised learning!
 - We can find abundant supervision signals within the graph
 - Node-level y_v . Node statistics: such as clustering coefficient, PageRank
 - Edge-level y_{uv} . Link prediction: hide the edge between two nodes, predict if there should be a link
 - Graph-level y_G . Graph statistics: for example, predict if two graphs are isomorphic
 - Self-supervised learning can inject domain knowledge into a model
 - Model can generalize well without many task-specific labeled data

Self-supervised Learning on Graphs (2)

- Key idea: Use self-supervised signals to pre-train a model, then finetune the model with (scarce) training data
 - Pre-train: train the model on relevant tasks with self-supervised signals
 - Finetune: adapt the model to downstream task by using task-specific labels to tune the pretrained model

Pre-training GNNs (1)

- How to design pre-training strategies for GNNs?
- Let's think about molecular property prediction task
 - Node: atom
 - Edge: interaction between two atoms
 - Task: Given a molecular graph, predict its corresponding chemical property

$$f(\bigcirc) = \begin{cases} Toxicity A? \\ Toxicity B? \\ \vdots \\ Bioactivity A? \end{cases}$$

Pre-training GNNs (2)

- We can apply GNN to learn the molecular graph representation
 - Local level: Iteratively perform neighbor aggregation to obtain node representation
 - Global level: Use pooling operation to obtain graph representation

Pre-training GNNs (3)

- How to pre-train GNN for molecular graph?
 - We can pre-train both node and graph embeddings
 - GNN can capture domain-specific knowledge of both local and global structure

Node-level Pre-training: Attribute Masking (1)

- Node-level self-supervised task: Attribute Masking
 - Self-supervised signal: original node feature (atom type)
 - Mask some node features
 - Use GNN to generate node embeddings
 - Apply a linear model on the embeddings to predict the masked node feature

Node-level Pre-training: Attribute Masking (2)

- Intuition: atoms on the molecular graph follow chemistry rules
- Attribute masking can enforce GNN to learn such domain knowledge
 - Valency
 - Electronic or steric properties of functional groups

Node-level Pre-training: Context Prediction (1)

- Node-level self-supervised task: Context prediction
 - Self-supervised signal: context graph
- K-hop neighbor graph G_v^K
 - The subgraph containing all nodes and edges that are at most K-hop away from v
- Context graph $G_v^c(r_1, r_2)$
 - The subgraph containing all nodes and edges that are between r_1 -hop and r_2 -hop away from v
 - It is a ring of width $r_2 r_1$
- Given a center node v, we require $r_1 < K$ and the nodes which are shared between neighbor and context graph are context anchor nodes

Node-level Pre-training: Context Prediction (2)

• An example of K-hop neighbor graph G_v^K and Context graph $G_v^C(r_1, r_2)$

Node-level Pre-training: Context Prediction (3)

- Node-level self-supervised task: Context prediction
 - Key idea: use subgraphs to predict their surrounding graph structures
 - Encode the G^K_v using the main GNN to obtain center node embedding \mathbf{h}^K_v
 - Encode the $G_v^c(r_1,r_2)$ using context GNN to obtain the context anchor node embeddings
 - Context GNN is an auxiliary GNN
 - Simply average all the context anchor nodes' embedding to obtain context embedding \mathbf{h}_{v}^{c}
 - Minimize the distance between \mathbf{h}_v^K and \mathbf{h}_v^c :

$$\min \sum_{v} 1 - \sigma(\mathbf{h}_{v}^{K} \cdot \mathbf{h}_{v}^{c})$$
Inner product
Inner product

Node-level Pre-training: Context Prediction (4)

- Intuition: subgraphs that are surrounded by similar contexts are semantically similar
- Pre-trained with Context prediction task, GNN can map nodes appearing in similar structural contexts to nearby embeddings

Graph-level Pre-training: Attribute Prediction

- Graph-level supervised task: Attribute prediction
 - Multi-task supervised pretraining: Predict a diverse set of supervised labels
 - Toxicity A? Toxicity B? Bioactivity A? Bioactivity B?
 - Each property corresponds to a binary classification task
 - Training GNN on many relevant tasks simultaneously

Pre-training on Graph: Overview

- Pretraining a GNN on molecular graph
 - Node-level pretraining: attribute masking and context prediction
 - Graph-level pretraining: attribute prediction

Summary

- Unsupervised learning for graph: community detection
 - What is Network Communities?
 - Network community measure Modularity
 - Detection method: Louvain Algorithm
 - Phase 1 (Partitioning) and Phase 2 (Reconstructing)
- Strategies for pretraining Graph Neural Networks
 - Node-level pretraining
 - Graph-level pretraining