Estrutura de Dados

Prof. Rafael Nunes

Listas

Parte 1

O que é uma Lista?

Lista

Estruturas de armazenamento de dados linear

Prof. então vetores podem ser considerados Listas?

Prof. então vetores podem ser considerados Listas?

Sim! - Podemos!

... Porém temos algumas desvantagens

Vetores como Listas - Desvantagens

```
vetor[100]; //100 posições estáticas
```

Tamanho do vetor é fixo.

- Não existe a possibilidade de se aumentar durante a execução.
- As operações de inserção/remoção dispendiosas (em termos de processamento)

Tipos de Listas

Quais são?

Tipos de Listas

- Listas lineares
 - estáticas
 - dinâmicas

- Como manipulá-las:
 - filas
 - pilhas

Tipos de operações

As operações básicas

Tipos de operações

Operações básicas:

- Busca
- Inclusão
- Remoção

Exercício

Implementando uma lista utilizando vetores

Exercício

 Implemente um programa que simule o funcionamento de uma lista linear estática utilizando os protótipos das funções abaixo:

```
//Insere um caractere no vetor vet
void Insere(char x, char *vet, int pos);
//Busca um caractere no vetor vet
int Busca(char x, char *vet);
//Remove a primeira posição do vetor vet
void Remove( ... )
```

Estáticas

- Fila:
 - -Definição:
 - -"Uma fila é uma *lista linear* em que todas as inserções são realizadas em *um extremo da lista*, e todas as retiradas são realizadas *no outro extremo da lista*" (ZIVIANI, 2004, p. 81)

• Fila:

 e a remoção de elementos de uma seqüência se faz por extremidades opostas, geralmente designadas por cabeça (inicio) e cauda (fim) da fila

 uma fila pode ser considerada como uma restrição de lista

- Fila:
- Comportamento
 - FIFO First In First Out = Fila
 - "Primeiro a entrar, primeiro a sair" (CORMEM et al., 2002, p. 163)

Listas Lineares Estáticas - LLE

Comportamento

 Inserir a cadeia de caracteres "RAFAEL" na Lista abaixo mantendo as características de uma string

 Manipular a lista utilizando fila 								
índice: 0		1	2	3	4	5	6	
FILA[7]								

fim=-1

INSERE (R)

							max-1
índice: 0		1	2	3	4	5	6
FILA[7]							

fim=-1

INSERE (R)

NÃO ESQUECER DO '\0'

Remoção

Retirar elemento da fila sempre do Início

REMOVE – O primeiro que entrou

REMOVE – O primeiro que entrou

REMOVE – O primeiro que entrou

LLE - Comportamento

REESTRUTURA A LISTA

LLE - Comportamento

- Ao INSERIR (ENFILEIRAR) verificar se fila está cheia (fila==max-1):
 - se fila cheia, imprimir mensagem "fila cheia";
 - senão, INSERE elemento e atualiza fim da fila.
- Ao REMOVER (DESENFILEIRAR) verificar se fila está vazia (fim==-1):
 - se fila vazia, não REMOVA. Imprima mensagem "fila vazia;
 - senão, REMOVA, mostre o elemento removido e movimente os elementos das posições i+1 (posição posterior) para i (posição anterior)
 - -i = (0 ... max-1)

Nas listas precisamos *garantir* a ordem dos elementos

Como garantir a ordem dos elementos?

- Pode ser feita de duas formas:
 - Garantir a precedência dos elementos pela contigüidade física na memória utilizando os índices de um arranjo (vetores) – Já visto!
 - Garantir a precedência dos elementos utilizando apontadores, encadeamento

Listas Lineares

Dinâmicas

Listas Lineares Dinâmicas

- Podem crescer e diminuir dinamicamente
- O tamanho máximo não precisa ser conhecido a priori, ou seja, não precisamos definir o tamanho estaticamente
- Provêem flexibilidade permitindo que os itens sejam rearranjados eficientemente
 - Desvantagem: perda no tempo de acesso a qualquer item arbitrário da lista

Tipos de Listas Lineares Dinâmicas

Tipos de Listas Lineares Dinâmicas

Encadeadas -> Simplesmente Ligadas

 Duplamente encadeadas -> Duplamente Ligadas

Setas -> referência externa

Listas Encadeadas

Listas Encadeadas

- É um conjunto de itens organizados, como um *array* (lista seqüencial)
 - em um array a organização é implícita (pela posição)
 - em uma lista encadeada a seqüência de elementos é especificada explicitamente, onde cada elemento contém um ponteiro para o próximo da lista.

Exemplo

Lista simplesmente encadeada

Lista Simplesmente Encadeada

Lista Simplesmente Encadeada

- No exemplo:
 - um elemento é identificado por uma letra
 - cada elemento é representado pela estrutura, info + prox
 - Cada link é representado por uma seta
- Detalhes que devem ser considerados:
 - todo elemento possui um *ponteiro*
 - o ponteiro do último elemento tem que especificar algum *tipo de próximo* (aponta para si próprio ou NULL)

Exercício

Implementar o caso mais simples de Lista Encadeada

Exercício

- Implemente o caso mais simples de lista encadeada
- A inserção dos elementos deverá ser feita no inicio da lista
- As seguintes funções deverão ser implementadas
- inicializa(), insere(), imprime()

Até a próxima...