

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

강동규

DeepSync, South Korea

Introduction: In-Context Learning

- In-context Learning : 모델 자체는 건드리지 않고 추론할 때 질문을 잘 해서 label이 붙어있지 않은 unseen data를 추론하자.
 - 기본적인 모델이 가지고 있는 용량, 지식에 기반하여 labeling이 되어 있지 않은 모델을 추론해보자.
 - 어떻게 잘 추론할 것인가? → 예시를 제공해서 추론하자
- One-Shot, Few-Shot, Zero-Shot → 제공하는 예시(context)의 개수 차이
- Model이 task와 관련된 token에 높은 확률을 주고 다음 단어를 예측하므로 예시를 통해 context를 이해하고 추론할 수 있다.

Introduction: In-Context Learning

- 과제: 국가의 수도에 관한 질문에 답하시오.
- Few-Shot 학습 설정: 모델에는 작업을 설명하는 소수의 예제(샷)가 제공된다.
 - 이러한 예는 질문-답변 쌍의 형태로 되어 있다.
- 1. 질문: 프랑스의 수도는 무엇입니까? 답변: 파리.
- 2. 질문: 일본의 수도는 무엇입니까? 답변: 도쿄.
- 3. 질문: 캐나다의 수도는 무엇입니까? 답변: 오타와.

답변

- 질문: 호주의 수도는 무엇입니까?
- <Answer> → <캔버라>

Introduction: In-Context Learning

- In-context Learning
 - Min, Sewon, et al. "Rethinking the role of demonstrations: What makes in-context learning work?",
 2022
 - Label이 없는 경우 성능이 크게 하락
 - 부정확한 label, random label을 사용하여도 성능이 크게 저하되지 않음.
 - Input-target pair 예시가 주어져야 하기 때문에 computational cost가 높다. → Key, Value 캐싱해 보완가능
 - Fine-tuning에 비해 성능이 떨어진다.
 - o Template에 따라 결과의 변동성이 크다.

a)

Introduction: PEFT (Parameter-Efficient Fine-Tuning)

- Parameter-Efficient Fine-Tuning
 - o 효과적인 fine-tuning 을 위해, trainable parameter 수를 줄이는 방법

- Parameter-Efficient Fine-Tuning
 - Prompt tuning: 입력에 k개의 학습 가능한 파라미터인 토큰 임베딩 벡터를 추가하는 방식

Introduction: Few-Shot PEFT

- In-context learning 시 소량의 데이터를 사용
- In-context learning 보다 훨씬 좋은 성능
- Full fine-tuning 보다 훨씬 적은 training cost
- Yuxian Gu, et al. "PPT: Pre-trained Prompt Tuning for Few-shot Learning"
 - o Downstream task group을 통해 Soft Prompt를 학습, Prompt Initialization으로 사용하는 방법론 제안

- Prompt Tuning: Mixed-task batch 사용 → Multitask Model
- Labeled data가 매우 적은 경우의 연구가 부족함

Introduction: Few-Shot PEFT

- Few-Shot ICL에 비해 경쟁력을 얻기 위해서는?
- 1. Storage, Memory 비용이 들지 않도록 가능한 적은 수의 파라미터 학습
- 2. Unseen data에 대한 강력한 성능
- 3. Mixed-task batches가 가능한 모델

$$\rightarrow IA^3$$
 제시

• IA³: Infused Adaptor by Inhibiting and Amplifying Inner Activation

Figure 1: Diagram of (IA)³ and the loss terms used in the T-Few recipe. Left: (IA)³ introduces the learned vectors l_k , l_v , and $l_{\rm ff}$ which respectively rescale (via element-wise multiplication, visualized as \odot) the keys and values in attention mechanisms and the inner activations in position-wise feed-forward networks. Right: In addition to a standard cross-entropy loss $L_{\rm LM}$, we introduce an unlikelihood loss $L_{\rm UL}$ that lowers the probability of incorrect outputs and a length-normalized loss $L_{\rm LN}$ that applies a standard softmax cross-entropy loss to length-normalized log-probabilities of all output choices.

- IA³: Infused Adaptor by Inhibiting and Amplifying Inner Activation
 - Inspired by Prompt Tuning

Prompt Tuning

• IA³: Infused Adaptor by Inhibiting and Amplifying Inner Activation

• IA³: Infused Adaptor by Inhibiting and Amplifying Inner Activation

- IA³: Infused Adaptor by Inhibiting and Amplifying Inner Activation
 - Numbers of parameters
- Prompt Tuning은 입력에 포함되는 입력 토큰의 개수를 조정해야 한다.
- 하지만 IA³ 는 조정할 필요가 없다.

- Base Model: T0 (사전 훈련된 다양한 모델에서 PEFT 방법을 적용한 실험 중 최고의 성능을 보임)
 - o T5를 기반으로 Labeling되지 않은 대규모 데이터에 대해 사전학습된 모델
 - o Zero-Shot Generalization을 하기 위해 T5를 fine-tuning하여 생성
- T5: Text-to-Text Transfer Transformer

- Base Model: T0 (사전 훈련된 다양한 모델에서 PEFT 방법을 적용한 실험 중 최고의 성능을 보임)
 - o T5를 기반으로 Labeling되지 않은 대규모 데이터에 대해 사전학습된 모델
 - o Zero-Shot Generalization을 하기 위해 T5를 fine-tuning하여 생성

- Unlikelihood Training
- T0 의 평가: 모든 가능한 label 문자열에 대해 log-likelihood를 이용해 확률을 순위로 매기고 가장 높은
 확률을 가진 것이 정답일 경우 모델의 예측이 올바른 것으로 간주
 - → 올바른 선택, 잘못된 선택을 모두 고려
 - → 잘못된 선택은 낮은 확률을 전달하자
 - \circ N: 잘못된 선택의 개수, $T^{(n)}$: 전체 토큰 수

$$L_{\text{UL}} = -\frac{\sum_{n=1}^{N} \sum_{t=1}^{T^{(n)}} \log(1 - p(\hat{y}_i^{(n)} | \mathbf{x}, \hat{y}_{< t}^{(n)}))}{\sum_{n=1}^{N} T^{(n)}}$$

$$L_{LM} = -\frac{1}{T} \sum_{T} \log p(y_t | \mathbf{x}, y_{< t})$$

- Length Normalization
- 예제에 따라 길이가 다른 경우가 많을 것. 이때, 각 토큰에 할당된 모델의 확률이 <= 1 이기 때문에 짧은 문장이
 더 좋다고 생각할 수 있음.
- Ex) Q. 오늘 날씨는 어때?
 - o A1: 좋아.(0.7)
 - A2: 하늘이(0.2) * 맑고(0.6) 햇빛이(0.4) * 쨍쨍해서(0.5) * 좋아.(0.7) = 0.0168
 - A3: 하늘이 (0.2) * 맑고(0.6) * 햇빛이(0.4) * 쨍쨍하면서(0.6) * 바람도(0.8) * 잘(0.6) * 불어서(0.4) * 좋아. (0.9)

- Length Normalization
- 문장 길이를 정규화
- y: 올바른 선택, \hat{y} : 잘못된 선택, $\beta(x,y)$: 문장 길이로 정규화한 log-probablility

$$L_{\text{LN}} = -\log \frac{\exp(\beta(\mathbf{x}, \mathbf{y}))}{\exp(\beta(\mathbf{x}, \mathbf{y})) + \sum_{n=1}^{N} \exp(\beta(\mathbf{x}, \hat{\mathbf{y}}^{(n)}))}$$

$$Loss Function = L_{LM} + L_{Ul} + L_{LN}$$

Experiments

- T-Few Model : T0 + pre-training IA^3
- Loss: $L_{LM} + L_{Ul} + L_{LN}$
- Pre-Training *IA*³
 - o 100,000 steps, with a batch size of 16
 - o T0 학습할 때 사용된 T0 multitask mixture dataset을 사용
- Training T-Few
 - o 1,000 steps, with a batch size of 8

Difference between Model

T-Few	- T0 + IA ³ + Loss Function - T0 기반 PEFT
ТО	- T5 + Multitask Prompt Learning - Zero-Shot Generalization에 좋은 성능
T5	- Text-to-Text로 Multitask 가능
GPT-3	- In-context Learning에 좋은 성능을 보임

Result

Result

- FLOPs
 - 모델 파라미터 수 * 토큰 수
- T-Few 는 학습 필요하지만 시간 짧고 성능 좋음

Method	Inference FLOPs	Training FLOPs	Disk space	Acc.
T-Few	1.1e12	2.7e16	4.2 MB	72.4%
T0 [1]	1.1e12	0	0 B	66.9%
T5+LM [14]	4.5e13	0	16 kB	49.6%
GPT-3 6.7B [4]	5.4e13	0	16 kB	57.2%
GPT-3 13B [4]	1.0e14	0	16 kB	60.3%
GPT-3 175B [4]	1.4e15	0	16 kB	66.6%

Table 1: Accuracy on held-out T0 tasks and computational costs for different few-shot learning methods and models. T-Few attains the highest accuracy with 1,000× lower computational cost than ICL with GPT-3 175B. Fine-tuning with T-Few costs about as much as ICL on 20 examples with GPT-3 175B.

Conclusion

- T-Few Model : T0 + pre-training IA^3 + L_{Ul} + L_{LN}
- 작은 파라미터 업데이트하는 방식
- 하이퍼 파라미터 튜닝을 최소화
- Mixed-Task Batch 사용 가능
- Unseen Data에 대해 강력한 성능

Thank you for your time