II – Séries numériques

I. Révision sur les suites : le théorème de Césaro

1) Soit $\varepsilon > 0$. Comme $u_n \xrightarrow[n \to +\infty]{} 0$, il existe $N \in \mathbb{N}$ tel que pour tout $k \geq N$, $|u_k| \leq \varepsilon$. Pour $n \geq N$,

$$|v_n| = \left| \frac{1}{n+1} \sum_{k=0}^n u_k \right| \le \frac{1}{n+1} \left(\sum_{k=0}^{N-1} |u_k| + \sum_{k=N}^n |u_k| \right) \le \frac{A}{n+1} + \frac{n-N+1}{n+1} \varepsilon,$$

où $A=\sum_{k=0}^{N-1}|u_k|$. Choisissons n assez grand pour avoir $\frac{A}{n+1}\leq \varepsilon$ (par exemple $n+1\geq A/\varepsilon$). Alors

$$|v_n| \le \varepsilon + \varepsilon = 2\varepsilon$$
.

Comme $\varepsilon > 0$ est arbitraire, on en déduit $v_n \xrightarrow[n \to +\infty]{} 0$.

2) (Théorème de Césaro) Si u_n converge, alors v_n converge et $\lim v_n = \lim u_n$.

Supposons $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{C}$. Posons $w_n = u_n - \ell$, alors $w_n \xrightarrow[n \to +\infty]{} 0$. On écrit

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u_k = \frac{1}{n+1} \sum_{k=0}^n (\ell + w_k) = \ell + \frac{1}{n+1} \sum_{k=0}^n w_k.$$

Grâce à la première question, comme $w_k \xrightarrow[n \to +\infty]{} 0$, on a $\frac{1}{n+1} \sum_{k=0}^{n} w_k \to 0$. Donc $v_n \xrightarrow[n \to +\infty]{} \ell$, d'où le résultat.

3) Considérons $u_n = (-1)^n$, qui n'admet pas de limite. Pourtant,

$$v_n = \frac{1}{n+1} \sum_{k=0}^n (-1)^k = \begin{cases} 0 & \text{si } n \text{ est impair,} \\ \frac{1}{n+1} & \text{si } n \text{ est pair,} \end{cases}$$

donc $v_n \xrightarrow[n \to +\infty]{} 0$. Ainsi, (v_n) peut converger sans que (u_n) ne converge.

II. Révision sur les suites : irrationalité de e

- 1) (u_n) est croissante. En effet, $u_{n+1} u_n = \frac{1}{(n+1)!} > 0$.
 - (v_n) est décroissante à partir de $n \geq 1$. En effet, on a

$$v_{n+1} - v_n = \left(u_n + \frac{1}{(n+1)!}\right) + \frac{1}{(n+1)!} - \left(u_n + \frac{1}{n!}\right) = \frac{2}{(n+1)!} - \frac{1}{n!} = -\frac{n-1}{(n+1)!} \le 0$$

(et strictement négatif pour $n \geq 2$).

— Pour tout n,

$$v_n - u_n = \frac{1}{n!} \xrightarrow[n \to \infty]{} 0.$$

Ainsi, (u_n) est croissante, (v_n) est décroissante et $v_n - u_n \xrightarrow[n \to +\infty]{} 0$: les deux suites sont adjacentes. Elles convergent donc vers la même limite, que l'on note ℓ .

2) On raisonne par l'absurde. Supposons $\ell = \frac{p}{q}$ avec $p, q \in \mathbb{Z}, q \ge 1$, irréductible. Alors $q! \ell = \frac{q! p}{q} = (q-1)! p \in \mathbb{Z}$ et, comme $q! u_q = \sum_{k=1}^{q} \frac{q!}{k!} \in \mathbb{Z}$, on obtient

$$q! (\ell - u_q) \in \mathbb{Z}.$$

D'un autre côté, comme $\ell \in]u_q,v_q[$ car pour tout $n,\,u_n < v_n$ et les suites sont adjacentes, on a

$$0 < \ell - u_q < \frac{1}{q!}$$
 donc $0 < q! (\ell - u_q) < 1$.

On a donc un entier strictement compris entre 0 et 1, ce qui constitue une contradiction. Par conséquent, ℓ est irrationnel.

Bien sûr, il est connu que $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$, donc $\ell = e$ et e est irrationnel.

III. Série harmonique et constante d'Euler

- a. Comparaison série-intégrale et série télescopique :
 - **1.** Pour $x \in [k, k+1]$ avec $k \ge 1$, on a $\frac{1}{k+1} \le \frac{1}{x} \le \frac{1}{k}$. En intégrant sur [k, k+1] puis en sommant pour k=1 à n-1, on obtient

$$\sum_{k=2}^{n} \frac{1}{k} \leqslant \int_{1}^{n} \frac{\mathrm{d}x}{x} \le H_{n-1},$$

soit

$$\int_{1}^{n+1} \frac{\mathrm{d}x}{x} \le H_n \le 1 + \int_{1}^{n} \frac{\mathrm{d}x}{x},$$

d'où

$$\ln(n+1) \le H_n \le 1 + \ln n.$$

Puisque $\ln(n+1) \sim 1 + \ln n \sim \ln n$, $H_n \sim \ln n$.

2. On calcule

$$u_{n+1} - u_n = (H_{n+1} - \ln(n+1)) - (H_n - \ln n) = \frac{1}{n+1} - \ln(1 + \frac{1}{n}).$$

Or

$$\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right) \quad \text{et} \quad \frac{1}{n+1} = \frac{1}{n} - \frac{1}{n^2} + O\left(\frac{1}{n^3}\right).$$

Ainsi

$$u_{n+1} - u_n = \left(\frac{1}{n} - \frac{1}{n^2} + O\left(\frac{1}{n^3}\right)\right) - \left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{1}{2n^2} + O\left(\frac{1}{n^3}\right),$$

$$donc u_{n+1} - u_n = O\left(\frac{1}{n^2}\right).$$

3. Posons $v_n=u_{n+1}-u_n$. Alors $v_n=O(1/n^2)$, donc la série $\sum_{n\geq 1}v_n$ est absolument convergente. Or

$$\sum_{n=1}^{N} v_n = \sum_{n=1}^{N} (u_{n+1} - u_n) = u_{N+1} - u_1$$

par téléscopage. Le fait que $\sum v_n$ converge implique que $(u_{N+1})_{N\in\mathbb{N}}$ converge : ainsi (u_n) est convergente. On note sa limite γ (c'est la constante d'Euler).

b. Méthode des deux suites adjacentes :

Posons, pour $n \ge 1$,

$$w_n = u_n + \ln n - \ln(n+1) = H_n - \ln(n+1).$$

Alors

$$u_n - w_n = \ln(n+1) - \ln n = \ln\left(1 + \frac{1}{n}\right) > 0$$
 et $u_n - w_n \xrightarrow[n \to \infty]{} 0$.

De plus,

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0,$$

donc (u_n) est décroissante, tandis que

$$w_{n+1} - w_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n+1}\right) > 0,$$

donc (w_n) est croissante. Les suites (w_n) et (u_n) sont adjacentes, elles convergent donc vers la même limite γ . On retrouve ainsi la convergence de (u_n) .

IV. Une décomposition de somme

Déjà, S_k est bien définie, car c'est une série de Riemann avec k > 1.

De plus, pour tout $N \in \mathbb{N}^*$, $\sum_{n=1}^{2N+1} \frac{1}{n^k} = \sum_{n=1}^N \frac{1}{(2n)^k} + \sum_{n=0}^N \frac{1}{(2n+1)^k}$. Par passage à la limite concernant trois séries à termes réels positifs quand $N \longrightarrow +\infty$, les réels T_k et $V_k = \sum_{n=1}^{+\infty} \frac{1}{(2n)^k}$ sont bien définis et $S_k = T_k + V_k$.

De plus
$$V_k = \frac{1}{2^k} \sum_{n=1}^{+\infty} \frac{1}{n^k} = \frac{1}{2^k} S_k$$
.

Ainsi
$$S_k = \frac{1}{1 - \frac{1}{2^k}} T_k$$
.

V. Natures de deux séries

Si (S_n) converge, notons ℓ sa limite. Alors $\ell > 0$ donc $S_n \sim \ell$, et donc $v_n \sim \frac{u_n}{\ell}$, donc $\sum v_n$ converge aussi. Si (S_n) diverge, alors soit (v_n) ne tend pas vers 0 et $\sum v_n$ diverge grossièrement.

Si (S_n) diverge, alors soit (v_n) ne tend pas vers 0 et $\sum v_n$ diverge grossierement. Ou alors $\overrightarrow{n} \xrightarrow[n \to +\infty]{} 0$ auquel cas $w_n \sim v_n$. Donc $\sum v_n$ et $\sum w_n$ nt la même nature. Mais $w_n = \ln\left(\frac{S_n - u_n}{S_n}\right) = \ln(S_{n-1}) - \ln S_n$. Alors $\sum w_n$ a la même nature que (S_n) : elle diverge.

Dans tous les cas, $\sum u_n$ et $\sum w_n$ ont la même nature.

VI. Transformation d'Abel

Remarque : on compare souvent la transformation d'Abel à l'intégration par parties.

- 1) Soit M un majorant de $(|S_n|)$. Alors $0 \le |(a_n a_{n+1})S_n| \le a_n a_{n+1}$. Or $\sum a_n a_{n+1}$ a même nature que la suite (a_n) , donc elle cv. Donc $\sum |(a_n a_{n+1})S_n|$ aussi, donc $\sum (a_n a_{n+1})S_n$ cv absolument.
- 2) $\sum_{n=0}^{N} a_{n+1}(S_{n+1} S_n) = -\sum_{n=0}^{N} a_{n+1}S_n + \sum_{n=0}^{N} a_{n+1}S_{n+1} = -\sum_{n=0}^{N} a_{n+1}S_n + \sum_{n=0}^{N} a_nS_n = -a_0S_0 + a_{N+1}S_{N+1} + \sum_{n=0}^{N} (a_n a_{n+1})S_n. \text{ Or } \sum_{n=0}^{N} (a_n a_{n+1})S_n \text{ ev et } a_{N+1}S_{N+1} \xrightarrow[N \to +\infty]{} 0, \text{ donc } \sum_{n=0}^{N} a_{n+1}(S_{n+1} S_n) \text{ ev.}$
- 3) Appliquer ce qui précède avec $a_n = \frac{1}{n}$ et $S_n = \sum_{k=0}^n \cos(kx) = \operatorname{Re}\left(\sum_{k=0}^n e^{ikx}\right) = \operatorname{Re}\left(\frac{e^{i(n+1)x} 1}{e^{ix} 1}\right)$. On vérifiera bien les hypothèses!