Algorytm Bresenham

dx,dy, 2dy-2dx P0=2dy-dx

 $Pk<0 \Rightarrow (Xk+1, Yk), Pk+1=Pk+2dy$ $Pk>0 \Rightarrow (Xk+1, Yk+1), Pk+1=Pk+2dy-2dx$

ANTYALIASING

- wstawianie dodatkowych jaśniejszych pikseli
- piksel znajdujący się bliżej odcinka jest ciemniejszy
- · zwiększenie rozdzielczości

ZMIANA ROZDZIELCZOŚCI

- $P1=\alpha B+(1-\alpha)A$
- $P2=\alpha D+(1-\alpha)C$
- $N = \beta P2 + (1-\beta)P1$

DPI – ROZDZIELCZOŚC LINIOWA

• zamiana na cale – podzielić rozdzielczość przez dpi

BARWY W GRAFICE

- RGB (addytywny)
- CMY (substratywny)
- CMYK
- HSV (intuicyjny)
- HLS
- CIEXYZ (barwy fikcyjne)
- La*b* (urządzenia odbijające)
- Lu*v* (urządzenia emitujące)
- YUV
- YCCb

DEFINICJA BARWY BIAŁEJ

ciało doskonale czarne ogrzne do 6500* K

ALGORYTM MID POINT

Jeśli punkt środkowy leży wew okręgu bierzemy pixel z poza okręgu

WYPEŁNIANIE KOLREM

- Scan line
 - szukamy przecięć z krawędziami i numerujemy je. Potem bierzemy po kolei parę liczb z tabeli punktów i wypełniamy linię kolrem.
- Seed
 - wybieramy sobie początkowy punkt, szukamy we wszystkie strony od niego po każdej z linii do napotkania krawędzi.
- Szukanie 4-ech sąsiednich punktów i wypełnianie ich.

WYCINANIE

- 1. dwie fazy
 - dzielenie obiektu na 9 części i eliminacji części obszaru bez znaczenia
 - badanie obiektu i obcięciu jego fragmentów z poza obszaru lub dzielenie odcinka na coraz mniejsze.

OBCINANIE WIELOKATA

· numerowanie odpowiednich węzłów

• po ponumerowaniu zostaje tylko ta część wielokąta z punktów ponumerowanych

KRZYWE BEZIERA

- definiują krzywą po porzez podanie określonej ilości punktów sterujących
- krzywa zawsze przechodzi przez punkt początkowy i końcowy
- odcinek stworzony przez połączenie dwóch pierwszych i dwóch ostatnich punktów jest styczny do krzywej
- · krzywa zawsze leży we wnętrzu otoczki wypukłej

TRANSFORMOWANIE GEOMETRYCZNE

- translacja (przesunięcie)
 - x'=x+tx; y'=y+ty
 - względem p(0,0)
 - $x'=x\cos\Theta-y\sin\Theta$; $y'=x\sin\Theta+y\cos\Theta$
 - względem p(xr, yr)
 - $x'=xr+(x-xr)\cos\Theta-(y-yr)\sin\Theta$; $y'=yr+(x-xr)\sin\Theta+(y-yr)\cos\Theta$
- sklaowanie
 - względem p(0,0)
 - x'=x*Sx; y'=y*Sy
 - względem p(xf, yf)
 - x'=x*Sx+xf(1-Sx); y'=y*Sy+yf(1-Sx)

· operacja pochylenia

GRAFIKA 3D

- · metody modelowania
 - drutowy
 - BREP (reprezentacja brzegowa)
 - CSG (opis bryły za pomocą innych mniejszych)
 - SWEEP (przesuwamy przekrój obiektu)
 - OCTREE (struktura drzewiasta)
 - dzielimy obszar gdzie znajduje się obiekt na 4
 - dopuki rozpatrywane pola są większe od 1 px dzielimy dalej
 - pole przestajemy dzielić jeśli nie znajduje się w nim kawałek obiektu

ELIMINOWANIE RZECZY NIEWIDOCZNYCH

- Metoda wezła normalnego
 - · działa tylko dla brył wypukłych
- · Metoda malarska
 - · rysowanie obiektów od najdalszego
 - wymagane posortowanie obiektów
- · Metoda Z-buffer
 - przypisujemy do pamięci obrazu każdemu pixelowi barwę tła
 - dla każdej komórki zapisujemy w z-buforze największą wartość jaką może przyjąć z
 - jeśli Za < Zbuf to w pamięci obrazu wstawiamy na miejsce barwy tła barwę punktu A, a w zbuforze na miejsce Zmax wstawiamy Za
 - jesli Zb < Zbuf to Za zastępuję wartością Zb
 - jeśli Zc > Zbuf to nic nie zmieniamy
 - · Algorytm jest uniwersalny, nie ma żadnych ograniczeń
 - Algorytm ma same zalety, zawsze można z niego skorzystać
 - Obiekty można przeglądać w dowolnej kolejności

CIENIOWANIE

- ogólne
 - światło pada równolegle do światła naturalnego
 - w zależnaości jak swiatło pada na ściankę przyjmuje ona inny odcień
 - oblicza się kąt nachylenia ścianki do promieni
 - zakłada się także że jest światło rozproszone nie mające źródła, przez to obiekt jest widzoczny
 - trzeba tu rozwiązać problem widoczności od strony padającego światła i obserwatora
- ciagle
 - · aproksymacja powierzchni bocznej: trójkąty
 - widoczna jest struktura trójkątów
 - kolory nie przechodzą stopniowo

GOURAUD

- · poelga to na kolorowania pixeli lini rastra
- interpoujemy punkty pomiędzy B1-B2, B2-B3, B1-B3
- interpoujemy punkty przecięć z liniami rastra
- interpoujemy punkty na liniach rastra
- · cieniowanie stopniowe

PHONG

- · obliczanie wartości normalnych dla każdego wierzchołka
- · interpolacja pomiędzy wierzchołkami
- interpolacja pomiędzy punktami przecięć
- oblicza barwę każdego piksela z osobna
- jest to najlepsza metoda cieniowania, ale kosztowna

Sledzenia promieni

- śledzenie promieni od obserwatora
- do problemu cieniowania wykorzystuje sie dodatkowe promienie pomocnicze
- najwięcej czasu znalezienie miejsc przecięcia się promieni z trójkątami
 - · metody:
 - szukamy przecięć ze wszystkimi trójkątami
 - dzielimy trójkąty na grupy otoczone kulą, szukamy przecięć z kulami
 - dzilimy scenę na sześciay, w każdym z sześcianów znajdują się jakieś obiekty, rozpatrujemy tylko te obiekty, które znajdują się wewnątrz sześcianu przez który przechodzi promień
- metoda daje bardzo dużą dokładność, jest bardzo pracochłonna

WYZNACZANIE BARWY W PRZESTRZENI

• Równanie PHONG'a

TEKSTUROWANIE