Minors of sets of topological spaces	1
Shigeo Hattori bayship.org@gmail.com	2
October 31, 2019 First revision: September, 2019	3
1 Contents	5
The first two pages are the main part. The first page gives the main definition by examples. The second page gives the main definitions formally. The rest pages give definitions used in propositions and proofs and prove the propositions which states that the main definitions are super classes or sub classes of standard notions of mathematics.	6 7 8 9 10 11
2 Main definition by examples	12
Some words or some notations in this page are possibly not clear for some readers. All of them will be formally defined in the next page. Let (X, T^2, M^2) denote the 2-dimensional Euclidean space where T^2 is the topology and M^2 is the metric table. Let $S1 := \{L1 \mid L1 \text{ is a subspace of } X \text{ and } L1 \text{ is a closed straight line segment of length } 1 \text{ in terms of } M^2\}$. As a remark, $L1$ represents (a subset of X) and (the restriction of T^2 at ($L1$ as a subset of X)). Meanwhile $L1$ has no information in terms of M^2 . Let $S2 := \{L2 \mid \exists L1 \in S1 \text{ such that } L2 \text{ is homeomorphic to } L1\}$. Then $S1$ and $S2$ are not topologically equivalent. For example, some distinct two members of $S2$ intersect to each other exactly at two or more many countable points whereas the same fails for $S1$ in place of $S2$. Though there are needs to state that $S1$ and $S2$ are almost topologically equivalent. For example, it is true that $(A1.)$ $S1 \subset S2$. And it is possibly true that $(A2.)$ for all three members $(L1, L2, L3)$ of $S1$, if $(S2, L1, L3)$ and $(S2, L2, L3)$	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

logically equivalent.	2
If (*A1 and *A2) holds for $(S1, S2)$ then $S1$ is said a minor of $S2$.	3
	3
3 Main definitions	3
First of all, $\forall m$ is said a memBer if it is a member of some set.	38
Take $\forall c$ as a chain of set ¹ membership. Then all member of c is said a deep	3
member of the maximum member of c . And all member m is said a constant -	- 3
\mathbf{memBer} if all deep member of m is not a point. And all member m is said an	1 3
² end-memBer if m is either a constant-memBer or a point.	3
Needless to say all topological space is a memBer and all memBer m is expressed	3
as a deep graph. To ³ resolve "deep graph", take $\forall m$, then the deep graph of	f 3
m is defined as the directed graph (V, E) on the set V of all deep members of	f 4
$m \text{ such that } E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$	4
Ultimately, two memBers are said isomorphic or isomorphic by f if (their	4
deep graphs are isomorphic by f as a graph isomorphism and relate-constant-	4
$\operatorname{memBer}(f)$. To resolve "relate-constant-memBer", take $\forall L$ as a binary relation,	, 4
then it is written as relate-constant-memBer (L) if (take $\forall (x,y) :\in \mathcal{L}$ such	1 4
that either x or y is a constant-memBer, then $x = y$).	4
	4
Shifting to the notion of minors of memBers.	4
Take $\forall (m1, m2)$ such that	4
(take $\forall d : \neq m1$ as a deep member of $m1$, then d is a deep member of $m2$).	5
Then $m1$ is said a minor of $m2$ if *1 implies *2.	5
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that	5
((m2, d1, d3), (m2, d2, d3)) are isomorphic).	53
2 $((m1, d1, d3), (m1, d2, d3))$ are isomorphic.	5

are topologically equivalent, then (S1, L1, L3) and (S1, L2, L3) are also topo-

 $^{^{1}\}mathrm{The}$ order implies that all member is smaller than the set.

²This word will not be used in the rest.

 $^{^3{\}rm In}$ this article, "to resolve" means to define the meaning of words after using the words.

4 Notations	55
Consider a proposition, e.g., a and b .	56
And consider a proposition, e.g., $a \wedge b$.	57
The two example propositions are unclear whether they are equivalent to each	58
other.	59
In this article, the two are possibly different.	60
Speaking simply, " a and b " are not checked by the author(me) if it can be commutative.	61 62
In this sense, "a and b" is written as "a $and b$ ".	63
And in this sense, "a or b" is written as "a $_{or}\lor$ b".	64
As a remark, I don't have any actual example of " a and b " which is not com-	65
mutative.	66
	67
Definition 4.1 (Restriction of binary relation).	68
Take $\forall (L, X, Y)$ as a binary relation L and sets (X, Y) .	69
$L[X] := \{(x, y) \in L \mid x \in X\}.$	70
$L[,Y] := \{(x,y) \in L \mid y \in Y\}.$	71
5 Properties of equivalence relation	72
Proposition 1 (Reflexive, symmetry, transitive properties).	73
The relation by isomorphisms of memBers has properties of reflexive, symmetry	74
and transitive.	75
Df	= 0
Proof.	76
• *1 has been proved in graph theory.	77
• It is trivial that (*2 $_{and} \land \dots _{and} \land \ *5$) holds.	78
• Hence this proposition holds.	7 9
1 The relation by graph isomorphisms has properties of reflexive, symmetry	80
and transitive.	81
2 Take $\forall f_1, f_2, f_3$ as graph isomorphisms such that	82
$domain(f_2) = image(f_1)$ and \land	83
f_3 is the identity function on domain (f_3) .	84
3 relate-constant-memBer (f_3) and \wedge	85

4 relate-constant-memBer (f_1) = relate-constant-memBer (f_1^{-1}) and \land	86
5 (relate-constant-memBer (f_1) and \land relate-constant-memBer (f_2)) \equiv relate-constant-memBer $(f_2 \circ f_1)$	87 88
	89
6 Homeomorphic topological spaces as isomor	- 90
phic memBers	91
Definition 6.1.	92
Take $\forall (m1, m2, c)$ such that (93
c is a chain of set membership $and \wedge$	94
m1 is the ⁴ minimum member of c	95
m2 is the ⁵ maximum member of c .	96
).	97
Then define (*1 $_{and} \wedge \dots _{and} \wedge $ *5).	98
1 $m1$ is said a deep member of $m2$.	99
	100
Hence all memBer is a deep member of itself.	101
2 c - 1 is said a power of $(m1, m2)$.	102
3 It is written as $m1 \in c -1$ $m2$.	103
4 Let p be the maximum power of $(m1, m2)$.	104
Then $depth(m1, m2) := p$.	105
5 Let $S := \{d \mid \text{there exists } \exists m \text{ such that } d = depth(m, m2)\}.$	106
Then $depth(m2) :=$ "the maixmum member of S ".	107
	1 08
Definition 6.2 (Space of memBer).	109
Take $\forall m$.	110
Then define that	111
$Deep(m) := \{d \mid d \text{ is a deep member of } m \}.$	112
$Space(m) := \{ p \in Deep(m) \mid p \text{ is a point } \}.$	113

⁴No member of c is a member of m1.

⁵No member of c has m2 as a member.

Proposition 2 (Isomorphism of vertices).	114
Take $\forall (m1, m2, f, v1)$ such that (115
$(m1, m2)$ are isomorphic by $f_{and} \land v1 \in Deep(m1)$	116
).	117
Then $v1, f(v1)$ are isomorphic by $f[Deep(v1)]$.	118
Proof.	119
• Let $v2 := f(v1)$.	120
• As C1, claim that $Deep(v2) \subset image(f[Deep(v1)])$.	121
• Assume that the claim fails.	122
• There exists $\exists w2 :\in Deep(v2)$	123
as a minimum counterexample to *C1 compared by $depth(w2, v2)$.	124
• It is trivial that $w2 \neq v2$.	125
• There exists $\exists x2 :\in Deep(v2)$ such that $w2 \in x2$.	126
• Hence x2 is not a counterexample to *C1	127
because $depth(w2, v2) < depth(x2, v2)$.	128
• Hence There exists $\exists x1 :\in Deep(v1)$ such that $f(x1) = x2$.	129
• Hence There exists $\exists w1 :\in x1$ such that	130
$(f(w1) = w2 and \land \ w1 \in Deep(v1)).$ A contradiction.	131
• Hence The assumption on $(\neg *C1)$ is false.	132
• As C2, claim that ($Deep(v1) \subset image(\ f^{-1}[Deep(v2)]\)).$	133
• Though it is trivial that the same logic for the proof of *C1 proves *C2.	134
• Hence $Deep(v2) = image(f[Deep(v1)])$.	135
• Hence $f[Deep(v1)]$ is a graph isomorphism	136
from*to $Deep(v1) * Deep(v2)$.	137
• And it is trivial that	138
relate-constant-memBer $(f) \Rightarrow$ relate-constant-memBer $(f[Deep(v1)])$.	139
(,,)	

□ 140

Proposition 3 (Isomorphism of Spaces).	141
Take $\forall (m1, m2, f)$ such that $(m1, m2)$ are isomorphic by f .	142
Then $f[Space(m1)]$ is a bijection from*to $Space(m1) * Space(m2)$.	143
Proof.	144
• Assume it is false.	145
• $image(f[Space(m1)]) \neq Space(m2)$.	146
	147 148
$(*A0 and \land (*A1 or \lor *A2)) \text{ holds.}$ $\mathbf{A0} \ (p1, p2) :\in Space(m1) * Space(m2)).$ $\mathbf{A1} \ f(p1) \not\in Space(m2).$	149 150 151 152 153
• Assume *A1 holds.	154
\bullet Then $f(p1)$ is either a constant-memBer (or a non-constant-memBer as a set).	155 156
\bullet Though $f(p1)$ can not be a constant-memBer by that relate-constant-memBer (f) .	157 158
• Hence $f(p1)$ is a non-constant-memBer as a set.	159
• Though it contradicts to that f is a graph isomorphism because $f(p1)$ has edge to some its member.	160 161
• Hence the assumption of *A1 is false $_{and} \land$ *A2 holds.	162
• There exists $\exists c1 : \notin Space(m1)$ such that $f(c1) = p2$.	163
• Hence $f^{-1}(p2) = c1$	164
• Though this condition has been denied in the disproof of *A1.	165
• Hence the assumption of *A2 is false $_{and}\wedge$ the main assumption is false.	166

□ 167

Proposition 4 (Pair of member's isomorphisms).	168
Take $\forall (I := \{1, 2, 3, 4\}, \{m_i\}_{i \in I}, f_{1,2}, f_{3,4})$	169
such that (*1 $_{and} \land \dots _{and} \land \ *4$) holds.	170
Then (*5 $_{and} \wedge$ *6) holds.	171
1 $(m1, m2)$ are isomorphic by $f_{1,2}$.	172
2 $(m3, m4)$ are isomorphic by $f_{3,4}$.	173
3 Let $f := f_{1,2} \cup f_{3,4}$ and \land let $f_s := f[Space(f)]$.	174
4 Then f_s is a bijection.	175
5 f is a function.	176
6 f is a bijection.	177
7 relate-constant-memBer (f) .	178
•	179
Proof of *5.	180
• Let $(V, E)_{i:\in\{1,2,3,4\}}$ be the deep graph of m_i .	181
• Assume it is false.	182
• Then there exists $\exists ((m1, m3), (m2, m4))$ as a minimum counterexample by $depth((m1, m3))$ such that f is not a function.	183 184
ullet Let us make sure that f is a union of a set of bijections.	185
• There exists $\exists v :\in V_1 \cap V_3$ such that $ f[\{v\}] \geq 1$ and $v \notin \{m1, m3\}$.	186
• By the way, this proposition accepts the following $args_v$	187
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	188
$ullet \ args_v := ($	189
v,	190
$f_{1,2}(v),$	191
v,	192
$f_{3,4}(v),$	193
$f_{1,2}[Deep(v)],$	194
$f_{3,4}[Deep(v)]$	195
).	196

• In the rest, this $args_v$ is proved to be a counterexample smaller than a 197 minimal counterexample. • As the first step, the such-that clause of this proposition holds for $args_v$ 199 • Equivalently (*1 $_{and} \land \dots \quad _{and} \land *4$) holds for $args_v$ as follows. 201 • Assume *1 fails for $args_v$. • Hence $(v, f_{1,2}(v))$ is not isomorphic by $f_{1,2}[Deep(v)]$. 203 • Though it contradicts to the proposition titled as "Isomorphism of ver- 204 tices". 205 • Hence the last assumption is false. 206 • Hence *1 holds for $args_v$. 207 • Hence *2 holds for $args_v$ because (for $args_v$, *1 and *2 are logically equiv- 208 alent). • Assume *4 fails for $args_v$. • Let $f_v := f_{1,2}[Deep(v)] \cup f_{3,4}[Deep(v)]$ and \land let $f_{v,s} := f_{1,2}[Deep(v)][Space(f_v)] \cup f_{3,4}[Deep(v)][Space(f_v)].$ 212 • Then $f_{v,s}$ is not a bijection. • Though it is false because $f_{v,s} \subset f_s$. Hence *4 holds for $args_v$. 214 • Hence (*1 $_{and} \land \dots \quad _{and} \land *4$) holds for $args_v$. • Moreover *5 fails for $args_v$ as follows. 216 • Assume *5 holds for $args_v$. • Then f_v is a function. 218 • Though $v \in Deep(v) \quad and \land \quad$ 220 $f_v[\{v\}] = f[\{v\}] \quad and \land$ 221 $|f_v[\{v\}]| = |f[\{v\}]| \ge 1.$ 222 • Hence *5 fails for $args_v$.

• $args_v$ is a counterexample.

• And the size as a counterexample of $args_v$ equals to $depth((v, v))$.	25
	26 27
• Hence arg_v is a counterexample smaller than a minimum counterexample. 2	28
• Hence the main assumption is false.	29
	30
Proof of *6.	31
Onsider the proposition *P $_{S}$ titled as "Reflexive, symmetry,transitive properties".	32 33
• Consider the proposition P_I titled as "Isomorphism of spaces".	34
(\frac{1}{2} \text{ and } \frac{1}{2} \text{ and } \text{ and } \frac{1}{2} \text{ and } \frac{1}{2} \text{ and } \text{ and } \frac{1}{2} \text{ and } \text	35 36
S1 $(m2, m1)$ are isomorphic by $f_{1,2}^{-1}$ as an isomorphism.	37
S2 $(m4, m3)$ are isomorphic by $f_{3,4}^{-1}$ as an isomorphism.	38
S3 Let $f_{-1} := f_{1,2}^{-1} \cup f_{3,4}^{-1}$ and $f_{s,-1} := f_{-1}[Space(f_{-1})]$.	39
S4 Then $f_{s,-1}$ is a bijection.	40
(0.1)	41 42
• Moreover *5 implies that f_{-1} is a function.	43
• Hence f^{-1} is a function.	44
• Hence *5 implies that f is an injection.	45
ullet By the way, f is surjective because f is not defined the codomain.	46
• Hence f is a bijection.	47
	48
Proof of *7.	49
$^{6}(x,y):=\{\{x\},\{x,y\}\}$	

• Assume it is false.	250
• There exists $\exists (x,y) :\in f$ such that (either x or y is a constant-memBer) $and \land (x \neq y)$.	251 252
• Though $f = f_{1,2} \cup f_{3,4}$.	253
• Hence $(x,y) \in f_{1,2}$ or $(x,y) \in f_{3,4}$.	254
• There exists $\exists g :\in \{f_{1,2}, f_{3,4}\}$ such that $\neg(\text{relate-constant-memBer}(g)).$	255 256
• It contradicts to (*1 $_{and} \land$ *2).	257
• The assumption is false.	258
	259
Definition 6.3 (Constant space). A constant space D is most likely a function to be used to state conditions on variables.	260261262
For example, let D be a function and let $x,y,z \in Z*Z*Z$ such that $x=D(z)$ and $y=D(z)$. Then $x=y$. In this case, D is used to make sure that variables hold equal values. Be careful that all constant space is just a usual variable but a global constant.	263264265266
Proposition 5 (Isomorphism by member's isomorphisms). Let *P_P denote the proposition titled as "Pair of member's isomorphisms". Take $\forall (S1, S2, f, F)$ as sets $(S1, S2)$ such that $(^*A1 \ _{and} \land \ldots \ _{and} \land ^*A7)$. Then $(^*10 \ _{and} \land \ldots \ _{and} \land 12)$ holds.	268 269 270 271
A1 $Deep(\{S1, S2\})$ \leq continuum.	272
A2 f is a bijection from*to $S1 * S2$.	273
A3 There exists $\exists D$ as a function and as a constant space.	274
A4 Take $\forall ((m1, m2), (m3, m4)) :\in f^2$.	275
A5 There exists $\exists f_{1,2}, f_{3,4}$ such that $f_{1,2} = D((m1, m2))$ $A = D((m3, m4))$	276 277
Since that $(1.9 - 1.00101 - 10.011 - 20.37) - 19.4 = 1.00103 - 10.401$	011

A5 Let $args := ($	278
m1, m2, m3, m4,	279
$f_{1,2},$	280
$f_{3,4}$	281
).	282
Then ${}^*\mathbf{P}_P$ accepts $args$	283
in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.	284
A6 *P _P .(*1 $and \wedge and \wedge *4$) holds for $args$.	285
A7 Let $D_{1,2} := \{D((m1, m2)) \mid (m1, m2) \in f\}.$ Then $F = \text{union } D_{1,2}.$	286 287
C10 $F[Space(F)]$ is bijective.	288
C11 F is a function.	289
\mathbf{C} 12 F is bijective.	290
C13 relate-constant-memBer (F) .	291
C14 $(S1, S2)$ are isomorphic by $F \cup \{S1, S2\}$.	292
	2 93
Proof of $*C10$.	294
• First of all, it is trivial that	295
$domain(F[Space(F)]) = Space(S1)$ and \land	296
image(F[Space(F)]) = Space(S2).	297
• Assume it is false.	298
• There exists $\exists (p1, p2) :\in Space(S1) * Space(S2)$ such that	299
$ F(p1) \ge 1$ or $ F^{-1}(p2) \ge 1$.	300
\bullet Though it implies that the antecedent of this proposition have failed.	301
• Namely, there exists $\exists ((m1, m2), (m3, m4))$	302
which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4	303
such that, of *A6, *P _P .(*4) have failed for $((m1, m2), (m3, m4))$.	304
• Hence the assumption is false.	305
	□ 306

Proof of (*C11 $_{and} \land \ ^*C12 \ _{and} \land \ ^*C13$).	307
\bullet First of all, consider the proposition titled as "Pair of member's isomorphisms".	308 309
\bullet The proposition implies that the antecedent of this proposition implies that *A6 can be modified as the following *A6 typed in red.	310 311
• That is, the original "*4" has been replaced with "*7".	312
• A6 *P _P .(*1 $_{and} \land$ $_{and} \land *7$) holds for $args$.	313
• Call this modified antecedent as the modified antecedent.	314
• By the way, assume (*C11 $_{and} \land$ *C12 $_{and} \land$ *C13) is false.	315
• (*B1 $_{or} \lor$ *B2) holds.	316
• B1 There exists $\exists (x1, x2) :\in S1 * S2$ such that $ F(x1) \ge 1$ or $\lor F^{-1}(x2) \ge 1$.	317 318
• B2 There exists $\exists f_{1,2} :\in D_{1,2}$ such that \neg relate-constant-memBer $(f_{1,2})$.	319 320
• Though it implies that the modified antecedent have failed.	321
• Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, $P_P.(*5_{and} \land *6_{and} \land *7)$ have failed for $((m1, m2), (m3, m4))$.	322 323 324 325
• Hence the assumption is false.	326
	327
Proof of *C14.	328
• Assume it is false.	329
• Let $F_+ := F \cup \{S1, S2\}$, Then (*B1 $_{or} \lor$ *B2) holds.	330
• As B1 , $(S1, S2)$ are not graph-isomorphic by F_+ .	331
• As B2 , \neg relate-constant-memBer(F_+).	332
• Assume *B2 holds.	333
• Hence ¬ relate-constant-memBer({S1, S2})	334

• Hence there exists $\exists (T1, T2) :\in \{(S1, S2), (S2, S1)\}$ such that $T1$ is a constant-memBer $and \land T2$ is not a constant-memBer.	335 336
• There exists $\exists (c_1, p_2) :\in F$ such that $(c_1 \text{ is a constant-memBer } and \land p_2)$ is not a point.	337 338
By this contradiction, the assumption on *B2 is false. • Hence *B1 holds.	339 340
• There exists $\exists (v1, v2) :\in S1 * S2$ such that $F(v1) \not\in S2 or \lor F^{-1}(v2) \not\in S1$.	341 342
• Though there exists $\exists f_{1,2} :\in D_{1,2}$ such that ($(v1, F(v1)) \in f_{1,2} and \land$ $f_{1,2}$ is a bijection from*to $\text{Deep}(v1)$ * $\text{Deep}(F(v1))$	343 344 345
). $ \bullet \text{ Moreover } F \supset f_{1,2}. $	346347
• Hence the assumption on *B1 is false.	348
• The main assumption is false.	349
	350
Definition 6.4 (Variations of Indexed set). As you know, for example, $\{x_i\}_{i\in\{1,2\}} := \{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}} := (x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}} := (x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}} := (\{x_1\},\{x_2\})$.	351 352 353 354 355 356
As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$.	352 353 354 355 356
As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most	352 353 354 355 356 357
As you know, for example, $\{x_i\}_{i\in\{1,2\}}:=\{x_1,x_2\}$, in mathematics. In this article, analogously, $(x_i)_{i\in\{1,2\}}:=(x_1,x_2)$. As an alternative simplified form, $(x)_{i\in\{1,2\}}:=(x_1,x_2)$. As one of many variations, $(\{x\})_{i\in\{1,2\}}:=(\{x_1\},\{x_2\})$. As a comment, the order on the composed sequence should respect the most natural order on the index set.	352 353 354 355 356 357 358 369 360 361 362 363

• There exists $\exists v_1 :\in Deep(S1)$ as a minimum counterexample	367
compared by $depth(v_1)$ such that	368
$f(v_1) \neq g(v_1).$	369
• It is trivial that $depth(v_1) > 0$.	370
• Hence v_1 is a set.	371
• $f[v_1] = g[v_1]$ because (372
take $\forall w_1 :\in v_1$,	373
then $(\operatorname{depth}(w_1) < \operatorname{depth}(v_1) and \land w_1 \text{ is not a counterexample})$	374
).	375
• Hence $f(v_1) = image(f[v_1]) = image(g[v_1]) = g(v_1)$.	376
• The assumption is false.	377
	070
	□ 378
Definition 6.5 (Isomorphism by spaces).	379
Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,F)$ such that	380
$(S)_{i:\in\{1,2\}}$ are isomorphic by F and \wedge $Space(F) \subset f \subset F$.	381
Then $(S)_{i:\in\{1,2\}}$ are also said isomorphic by f .	382
Proposition 7 (Homeomorphism as isomorphism).	383
As you know, the set theory defines that	384
$(x,y) := \{\{x\}, \{x,y\}\}.$	385
Take $\forall ((X,T))_{i:\in\{1,2\}}, \forall H$ such that (386
$((X,T))_{i:\in\{1,2\}}$ is a pair of topological spaces $and \land$	387
H is a bijection from*to $X_1 * X_2$ and \wedge	388
$((X,T))_{i:\in\{1,2\}}$ are homeomorphic by H	389
).	390
Then (*1 $_{and} \wedge \dots _{and} \wedge *5$) holds.	391
1. $(X)_{i:\in\{1,2\}}$ are isomorphic by H .	392
2. Take $\forall (t_1, t_2) :\in T1 * T2$ such that $t_2 = image(H[t_1])$.	393
Then $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1]$.	394
3. $(T)_{i:\in\{1,2\}}$ are isomorphic by H .	395
4. $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by H .	396
5. $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by <i>H</i> .	397

6. $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic by H .	398
	399
Proof of *1.	400
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	401 402
• $(X)_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2)\}.$	403
	404
Proof of *2.	405
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	406 407
• $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1] \cup \{(t1,t2)\}.$	408
	409
Proof of *3.	410
\bullet Consider the proposition titled as "Isomorphism by member's isomorphisms".	411 412
• Consider *2.	413
• Let $t_{1,2} := \{(t_1, t_2) \in T1 * T2 \mid t_2 = image(H[t_1])\}.$	414
• $(T)_{i:\in\{1,2\}}$ are isomorphic by $H \cup t_{1,2} \cup \{(T1,T2)\}.$	415
	416
Proof of *4.	417
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	418 419
• Consider *1.	420
• $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2), (\{X1\}, \{X2\})\}.$	421
	422
Proof of *5.	423

 Consider the proposition titled as "Isomorphism by member's isomorphisms". 	- 424 425
• Consider *1 and *3.	426
• $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(T1,T2),(\{X1,T1\},\{X2,T2\})\}.$	427 428
	429
Proof of *6.	430
• Consider the proposition titled as "Isomorphism by member's isomorphisms".	- 431 432
• Consider *4 and *5.	433
• $(\{\{X\},\{X,T\}\})_{i:\in\{1,2\}}$ are isomorphic	434
• by $H \cup \{$ (X1, X2), (T1, T2), $(\{X1, T1\}, \{X2, T2\}),$ $(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})$ }.	435 436 437 438 439 440
L	441

References 442