15-312 Assignment 1

Andrew Carnegie (andrew)

October 25, 2017

```
Type \tau ::=
                                                                                             naturals
         nat
                                        nat
                                                                                             unit
          unit
                                        unit
          bool
                                        bool
                                                                                             boolean
                                                                                             product
         \mathtt{prod}(\tau_1; \tau_2)
                                        \tau_1 \times \tau_2
          \mathtt{arr}(	au_1;	au_2)
                                        \tau_1 \to \tau_2
                                                                                             function
          list(\tau)
                                                                                             list
                                        \tau \, {\tt list}
 Exp e ::=
                                        x
                                                                                             variable
         \mathtt{nat}[n]
                                        \overline{n}
                                                                                             number
         unit
                                        ()
                                                                                             unit
                                        Τ
                                                                                             true
                                        F
         F
                                                                                             false
                                                                                             if
          if(x;e_1;e_2)
                                        if x then e_1 else e_2
          lam(x:\tau.e)
                                                                                             abstraction
                                        \lambda x : \tau . e
          ap(f;x)
                                        f(x)
                                                                                             application
          tpl(x_1; x_2)
                                        \langle x_1, x_2 \rangle
                                                                                             pair
                                        case p\{(x_1; x_2) \hookrightarrow e_1\}
          \mathtt{case}(x_1, x_2.e_1)
                                                                                             match pair
          nil
                                                                                             nil
          cons(x_1; x_2)
                                                                                             cons
                                        x_1 :: x_2
          {\tt case}\{l\}(e_1;x,xs.e_2) \quad {\tt case} \ l \ \{{\tt nil} \hookrightarrow e_1 \ | \ {\tt cons}(x;xs) \hookrightarrow e_2\}
                                                                                             match list
          let(e_1; x : \tau.e_2)
                                        \mathtt{let}\; x = e_1 \; \mathtt{in}\; e_2
                                                                                             let
  Val v ::=
                                                                                             numeric value
          val(n)
                                        n
          val(T)
                                        Т
                                                                                             true value
          val(F)
                                                                                             false value
          val(Null)
                                        Null
                                                                                             null value
                                                                                             function value
          val(cl(V; x.e))
                                        (V, x.e)
                                                                                             loc value
          val(l)
          val(pair(v_1; v_2))
                                        \langle v_1, v_2 \rangle
                                                                                             pair value
State s ::=
          alive
                                        alive
                                                                                             live value
                                                                                             dead value
          dead
                                        dead
  \operatorname{\mathsf{Loc}}\ l ::=
                                        l
          loc(l)
                                                                                             location
  Var l ::=
                                                                                             variable
          var(x)
                                        \boldsymbol{x}
```

1 Paths and aliasing

Model dynamics using judgement of the form:

$$V, H, R, F \vdash e \Downarrow v, H', F'$$

Where $V: \mathsf{Var} \to \mathsf{Val} \times \mathsf{State}$, $H: \mathsf{Loc} \to \mathsf{Val}$, $R \subseteq \mathsf{Loc}$, and $F \subseteq \mathsf{Loc}$. This can be read as: under stack V, heap H, roots R, freelist F, the expression e evaluates to v, and engenders a new heap H' and freelist F'.

For a partial map $f:A\to B$, we write dom for the defined values of f. Sometimes we shorten $x\in dom(f)$ to $x\in f$. We write $f[x\mapsto y]$ for the extension of f where x is mapped to y, with the constraint that $x\notin dom(f)$. We write $f\{x\mapsto y\}$ for the update map, which is the same as the extension map, except that x is remapped to y when $x\in dom(f)$. Write $C\lhd f:C\to B$ for the domain restriction of f to C where $C\subseteq A$. Write $C\unlhd f:(A\setminus C)\to B$ for the domain anti-restriction of f to C.

Note that the stack maps each variable to a value v and a state s. If s is alive, then v can still be used, while dead indicates that v is already used and cannot be used again. We write $\overline{V} = \{x \in V \mid V(x) = (_, \mathtt{alive})\}$ for the variables in V that are alive, and $V^* : \overline{V} \to \mathsf{Val}$ for the associated restricted map $x \mapsto fst(V(x))$ which projects out the value component of live variables.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

In order prove soundness of the type system, we need some auxiliary judgements to defining properties of a heap. Below we define $reach: Val \rightarrow \{\{Loc\}\}\$ that maps stack values its the root multiset, the multiset of locations that's already on the stack.

Next we define reachability of values:

$$reach_H(\langle v_1, v_2 \rangle) = reach_H(v_1) \uplus reach_H(v_2)$$

 $reach_H(l) = \{l\} \uplus reach_H(H(l))$
 $reach_H(L) = \emptyset$

For a multiset S, we write $\mu_S: S \to \mathbb{N}$ for the multiplicity function of S, which maps each element to the count of its occurence. If $\forall s \in S.\mu(s) = 1$, then S is a property set, and we denote it by $\mathsf{set}(S)$. Additionally, $A \uplus B$ denotes counting union of sets where $\mu_{A \uplus B}(s) = \mu_A(s) + \mu_B(s)$, and $A \cup B$ denotes the usual union where $\mu_{A \cup B}(s) = \max(\mu_A(s), \mu_B(s))$. For the disjoint union of sets A and B, we write $A \sqcup B$.

Next, we define the predicates no_alias, no_ref, and disjoint:

no_alias
$$(V,H)$$
: $\forall x,y \in \overline{V}, x \neq y$. Let $r_x = reach_H(\overline{V}(x)), r_y = reach_H(\overline{V}(y))$. Then:
1. $set(r_x), set(r_y)$

$$\begin{array}{l} 2.\ r_x\cap r_y=\emptyset\\ \\ \text{no_ref}(V,H,v) \colon \ (reach_H(v))\cap (\bigcup_{x\in \overline{V}} reach_H(V(x)))=\emptyset. \\ \\ \text{disjoint}(\mathcal{C}) \colon \ \forall X,Y\in \mathcal{C}.\ X\cap Y=\emptyset \end{array}$$

For a stack V and a heap H, whenever $\mathsf{no_alias}(V,H)$ holds, visually, one can think of the situation as the following: the induced graph of heap H with variables on the stack as additional leaf nodes is a forest: a disjoint union of arborescences (directed trees); consequently, there is at most one path from a live variable on the stack V to a location in H by following the pointers.

Next, we define $locs_{V,H}$ using the previous notion of reachability. size calculates the number of cells a value occupies. copy(H, L, v) takes a heap H, a set of locations L, and a value v, and returns a new heap H' and a location l such that l maps to v in H'.

$$\begin{split} locs_{V,H}(e) &= \bigcup_{x \in FV(e)} reach_H(V(x)) \\ size(\langle v_1, v_2 \rangle) &= size(v_1) + size(v_2) \\ size(\lrcorner) &= 1 \\ \\ copy(H, L, \langle v_1, v_2 \rangle) &= \\ let \ L_1 \sqcup L_2 \subseteq L \\ \\ \text{where } |L_1| &= size(v_1) \ , |L_2| = size(v_2) \\ let \ H_1 &= copy(H, L_1, v_1) \\ let \ H_2 &= copy(H, L_2, v_2) \ \text{in} \\ H_2[l \mapsto v] \\ copy(H, L, v) &= \\ let \ l \in H \ \text{in} \\ H[l \mapsto v] \end{split}$$

2 Garbage collection semantics

$$\frac{V(x) = (v, alive)}{V, H, R, F \vdash x \Downarrow v, H, F}(S_1) \qquad V, H, R, F \vdash \overline{\eta} \Downarrow val(n), H, F}(S_2)$$

$$\overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_3) \qquad \overline{V, H, R, F \vdash \overline{\eta} \Downarrow val(n), H, F}(S_4)$$

$$\overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_4)$$

$$\overline{V, H, R, F \vdash T \Downarrow val(T), H, F}(S_5)$$

$$V(x) = T \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F' \\ V, H, R, F \vdash if(x; e_1; e_2) \Downarrow v, H', F' \qquad (S_7)$$

$$\overline{V(x)} = F \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_2)\} \qquad V, H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \\ V, H, R, F \vdash if(x; e_1; e_2) \Downarrow v, H', F' \qquad (S_8)$$

$$\overline{V(x)} = F \qquad F' = F \setminus \{l\} \qquad H' = H[l \mapsto (V, x.e)] \\ V, H, R, F \vdash lam(x : x.e) \Downarrow l, H', F' \qquad (S_8)$$

$$\overline{V(f)} = (V_1, x.e) \qquad V(x) = v_1 \qquad V_1[x \mapsto v_1], H, R \vdash e \Downarrow v, H', F' \\ V, H, R, F \vdash f(x) \Downarrow v, H', F' \qquad (S_9)$$

$$\overline{V(x_1)} = v_1 \qquad V(x_2) = v_2 \\ V, H, R, F \vdash (x_1, x_2) \Downarrow (v_1, v_2), H, F \qquad (S_{10})$$

$$\overline{V(x_1)} = v_1 \qquad V(x_2) = v_2 \\ V, H, R, F \vdash case x \qquad \{(x_1; x_2) \mapsto v_2\}, H, R, F \cup g \vdash e \Downarrow v, H', F' \qquad (S_{11})$$

$$\overline{V, H, R, F \vdash case x \qquad \{(x_1; x_2) \mapsto e\} \qquad v, H', F'} \qquad (S_{11})$$

$$\overline{V, H, R, F \vdash case x \qquad \{(x_1; x_2) \mapsto e\} \qquad v, H', F'} \qquad (S_{12})$$

$$\overline{V, H, R, F \vdash case x \qquad \{(x_1; x_2) \mapsto e\} \qquad v, H', F'} \qquad (S_{13})$$

$$\overline{V(x)} = \text{Null} \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V',H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F' \qquad (S_{14})$$

$$V(x) = (l, alive) \qquad V' = V\{x \mapsto (l, dead)\} \qquad V'' = V'[x_h \mapsto (v_h, alive), x_t \mapsto (v_h, alive)]$$

$$g = \{l \in H \mid l \notin F \cup R \cup locs_{V',H}(e_2)\} \qquad V'', H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \qquad (S_{14})$$

$$V(x) = (l, alive) \qquad V' = V\{x \mapsto (l, dead)\} \qquad V'' = V'[x_h \mapsto (v_h, alive), x_t \mapsto (v_h, alive)]$$

$$q = \{l \in H \mid l \notin F \cup R \cup locs_{V',H}(e_2)\} \qquad V'', H, R, F \cup g \vdash e_2 \Downarrow v, H', F' \qquad (S_{15})$$

$$V(x) = (l, alive) \qquad V' = V\{x \mapsto (l, dead)\} \qquad V'' = V'[x_h \mapsto (v_h, alive)] \qquad V'' = V'[x \mapsto (v_h, alive)]$$

$$R'' = R \cup locs_{V',H_1}(ax) \qquad F'' \in V'(x_1) \land V(x_2) \qquad V'' \in V'(x_2) \land V(x_2) \qquad V'' \in V'(x_1) \land V(x_2) \qquad V'' \in V'(x_2) \land V(x_2) \qquad V'' \in V'(x_$$

 $V, H, R, F \vdash \mathtt{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2, F_2$

3 Operational semantics

In order to prove the soundess of the type system, we also define a simplified operational semantics that does not account for garbage collection.

$$V, H \vdash e \Downarrow v, H'$$

This can be read as: under stack V, heap H the expression e evaluates to v, and engenders a new heap H'. We write the representative rules.

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad H', l = copy(H, L, v)}{V, H \vdash \mathsf{cons}(x_1; x_2) \Downarrow l, H'} (S_{17})$$

$$\frac{V(x) = (l, \mathsf{alive}) \qquad H(l) = \langle v_h, v_t \rangle \qquad V' = V\{x \mapsto (l, \mathsf{dead})\}}{V'' = V'[x_h \mapsto (v_h, \mathsf{alive}), x_t \mapsto (v_t, \mathsf{alive})] \qquad V'', H \vdash e_2 \Downarrow v, H'} (S_{18})$$

$$\frac{V, H \vdash e_1 \Downarrow v_1, H_1 \qquad V' = V[x \mapsto v_1] \qquad V', H_1 \vdash e_2 \Downarrow v_2, H_2}{V, H \vdash \mathsf{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2} (S_{19})$$

4 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

Now if we take $\dagger: L^p(A) \mapsto L(A)$ as the map that erases resource annotations, we obtain a simpler typing judgement $\Sigma^{\dagger}; \Gamma^{\dagger} \vdash e : B^{\dagger}$.

5 Soundness for garbage collection semantics

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Lemma 1.1. If Σ ; $\Gamma \mid \frac{q}{q'} e : B$, then Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

Lemma 1.2. If $V, H, R, F \vdash e \Downarrow v, H', F'$, then $\forall x \in V$, $reach_H(V(x)) = reach_{H'}(V(x))$.

Proof. Induction on the evaluation judgement.

Lemma 1.3. For all stacks V and heaps H, if $V, H, R, F \vdash e \Downarrow v, H', F', \Sigma^{\dagger}; \Gamma^{\dagger} \vdash e : B^{\dagger}, H \vDash V : \Gamma$, no_alias(V, H), and disjoint $(\{R, F, locs_{V,H}(e)\})$, then $\operatorname{set}(reach_{H'}(v))$, disjoint $(\{R, F', reach_{H'}(v)\})$, no_ref $(FV(e) \subseteq V, H, v)$, and no_alias(V, H').

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 1: E:Var

(1)

(case)

Case 2: E:Const* Due to similarity, we show only for E:ConstI

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : \text{bool}$$
 (ad.)

$$H \models V : \Gamma'$$
 (def of W.F.E)

$$\Sigma; \Gamma' \left| \frac{q}{q'} e_t : B \right|$$
 (ad.)

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F'$$
 (ad.)

$$|F \cup g| - |F'| \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 (IH)

$$|F| - |F'| \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

Case 6: E:CondF Similar to E:CondT

NTS $R \cap locs_{V',H_1}(e_2) = \emptyset$ Let $l \in locs_{V',H_1}(e_2)$ be arb.

 $V, H, R, F \vdash let(e_1; x : \tau.e_2) \Downarrow v_2, H_2, F_2$

Case 7: E:Let

$$\begin{array}{lll} V,H,R',F\vdash e_1\Downarrow v_1,H_1,F_1 & \text{(ad.)}\\ \Sigma;\Gamma_1,\Gamma_2\vdash \mathsf{let}(e_1;x:\tau.e_2):B & \text{(case)}\\ \Sigma;\Gamma_1\vdash e_1:A & \text{(ad.)}\\ \Sigma;\Gamma_2,x:A\vdash e_2:B & \text{(ad.)}\\ \mathrm{Suppose\ no_alias}(V,H),\mathrm{disjoint}(\{R,F,locs_{V,H}(e)\}),\ \mathrm{and}\ H\vDash V:\Gamma\\ H\vDash V:\Gamma_1 & \text{(def\ of\ W.D.E)}\\ F\cap R'=\emptyset & (F\cap locs_{V,H}(e)=\emptyset\ \mathrm{and}\ locs_{V,H}(e_1)\subseteq locs_{V,H}(e))\\ R'\cap locs_{V,H}(e_1)=\emptyset & (\mathrm{no_alias}(V,H))\\ F\cap locs_{V,H}(e_1)=\emptyset & (\mathrm{Sp.)}\\ \mathrm{Thus\ we\ have\ disjoint}(R',F,locs_{V,H}(e_1))}\\ \mathrm{By\ IH},\ \mathrm{set}(reach_{H_1}(v_1)),\mathrm{disjoint}(\{R',F_1,reach_{H_1}(v_1)\}),\mathrm{no_ref}(V,H,v),\ \mathrm{and\ no_alias}(V,H_1)\\ (F_1\cup g)\cap R=\emptyset & (\mathrm{since\ }F_1\cap R'=\emptyset\ \mathrm{together\ with\ def.\ of\ }g\ \mathrm{and\ }R') \end{array}$$

```
case: l \in reach_{H_1}(V'(x')) for some x' \in FV(e_2) where x' \neq x
   x' \in V
                                                                                                                (def of V')
   l \in reach_H(V(x'))
                                                                                                             (Lemma 1.2)
   x' \in FV(e)
                                                                                                               (\text{def of } FV)
   l \in locs_{V,H}(e)
                                                                                                          (def of locs_{V,H})
   l \notin R
                                                                                        (disjoint({R, F, locs_{V,H}(e)}))
case: l \in reach_{H_1}(V'(x))
   l \in reach_{H_1}(v_1)
                                                                                                                (def of V')
   l \notin R'
                                                                                   (disjoint(\lbrace R', F_1, reach_{H_1}(v_1)\rbrace))
   l \notin R
                                                                                                           (since R \subseteq R')
Thus R \cap locs_{V',H_1}(e_2) = \emptyset
(F_1 \cup g) \cap R = \emptyset
                                                             (by def of g and disjoint(\{R', F_1, reach_{H_1}(v_1)\}\))
Hence disjoint(\{R, F_1 \cup g, locs_{V', H_1}(e_2)\})
H \vDash V : \Gamma_2
                                                                                                          (def of W.D.E)
NTS no_alias(V', H_1)
TODO
V', H_1, R, F_1 \cup g \vdash e_2 \Downarrow v_2, H_2, F_2
                                                                                                                        (ad.)
By IH, set(reach_{H_2}(v_2)), disjoint(\lbrace R, F_2, reach_{H_2}(v_2)\rbrace), no\_ref(V', H_2, v_2), and no\_alias(V', H_2)
                                                                                                                  (\overline{V} \subset \overline{V}')
no\_ref(V, H_2, v_2) and no\_alias(V, H_2)
```

Case 13: E:MatCons

$$V(x) = (l, \texttt{alive}) \tag{ad.}$$

$$H(l) = \langle v_h, v_t \rangle \tag{ad.}$$

$$\Gamma = \Gamma', x : L(A) \tag{ad.}$$

$$\Sigma; \Gamma', x_h : A, x_t : L(A) \vdash e_2 : B \tag{ad.}$$

$$V'', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F' \tag{ad.}$$

$$Suppose \ H \vDash V : \Gamma, \mathsf{no_alias}(V, H), \ \mathsf{and} \ \mathsf{,disjoint}(\{F, R, locs_{V,H}(e)\})$$

$$H \vDash V(x) : L(A) \tag{def of W.D.E}$$

$$H'' \vDash v_h : A, \ H'' \vDash v_t : L(A) \tag{ad.}$$

$$H \vDash v_h : A, \ H \vDash v_t : L(A) \tag{ad.}$$

$$H \vDash V'' : \Gamma', x_h : A, x_t : L(A) \tag{def of W.D.E}$$

$$\mathsf{NTS} \ \mathsf{no_alias}(V'', H)$$

$$\mathsf{Let} \ x_1, x_2 \in \overline{V}'', x_1 \neq x_2, r_{x_1} = reach_H(\overline{V}''(x_1)), r_{x_2} = reach_H(\overline{V}''(x_2))$$

$$\mathsf{case:} \ x_1 \notin \{x_h, x_t\}, x_2 \notin \{x_h, x_t\}$$

$$(1), (2) \ \mathsf{from} \ \mathsf{no_alias}(V, H)$$

$$\mathsf{case:} \ x_1 = x_h, x_2 \notin \{x_h, x_t\}$$

```
(since set(H(l)) from no\_alias(V, H))
  set(r_{x_1})
  set(r_{x_2})
                                                                                             (since no\_alias(V, H))
  AFSOC, suppose l' \in r_{x_1} \cap r_{x_2}
  but reach_H(\overline{V}(x)) \cap r_{x_2} = \emptyset, contradiction
                                                                                                      (def of reach)
  hence r_{x_1} \cap r_{x_2} = \emptyset
case: x_1 = x_h, x_2 = x_t
  set(r_{x_1}) since set(H(l)) from no_alias(V, H)
  set(r_{x_2}) since set(H(l)) from no_alias(V, H)
   AFSOC, suppose l' \in r_{x_1} \cap r_{x_2}
  but then \mu_{reach_H(l)}(l') \geq 2, and set(H(l)) does not hold.
  hence r_{x_1} \cap r_{x_2} = \emptyset
case: otherwise
  similar to the above
Thus we have no\_alias(V'', H)
(F \cup g) \cap R = \emptyset
                                                                            (since F \cap R = \emptyset and by def of g)
NTS R \cap locs_{V'',H}(e_2) = \emptyset
Let l' \in locs_{V'',H}(e_2) be arb.
case: l' \in reach_H(V''(x')) for some x' \in FV(e_2) where x' \notin \{x_h, x_t\}
  x' \in V
                                                                                                          (\text{def of }V'')
  l' \in reach_H(V(x'))
  x' \in FV(e)
                                                                                                         (\text{def of } FV)
  l' \in locs_{V,H}(e)
                                                                                                    (\text{def of } locs_{V,H})
  l' \notin R
                                                                                   (disjoint({R, F, locs_{V,H}(e)}))
case: l' \in reach_H(V''(x_h))
  l' \in reach_H(v_h)
  l' \in reach_H(V^*(x))
                                                                                                      (def of reach)
  l' \in locs_{V,H}(e)
                                                                                                    (\text{def of } locs_{V,H})
  l' \notin R
                                                                            (since disjoint(\{F, R, locs_{V,H}(e)\}))
case: l' \in reach_H(V''(x_t))
  similar to above
Hence R \cap locs_{V'',H}(e_2) = \emptyset
F \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                 (Similar to above)
g \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                           (def. of q)
(F \cup g) \cap locs_{V'',H}(e_2) = \emptyset
Thus disjoint(\{R, F \cup g, locs_{V'', H}(e_2)\})
By IH, set(reach_{H'}(v)), disjoint(\{R, F', reach_{H'}(v)\}), no\_ref(V'', H', v), and no\_alias(V'', H')
NTS no_ref(V, H', v)
```

```
Let l' \in reach_{H'}(\overline{V}(x)) be arb
l' \in reach_H(l)
                                                                                                          (Lemma 1.2, ad.)
Then l' \in reach_{H'}(v_h) or l' \in reach_{H'}(v_t)
                                                                                                               (def of reach)
Wlog l' \in reach_{H'}(v_h)
l' \in reach_{H'}(V''(x_h))
                                                                                                                   (\text{def of }V'')
                                                                                                         (\mathsf{no\_ref}(V'', H', v))
l' \notin reach_{H'}(v)
(reach_{H'}(v)) \cap (\bigcup_{x' \in \overline{V} \setminus x} reach_{H'}(V(x'))) = \emptyset
                                                                                                         (\mathsf{no\_ref}(V'', H', v))
(reach_{H'}(v)) \cap (\bigcup_{x' \in \overline{V}} reach_{H'}(V(x'))) = \emptyset
no\_ref(V, H', v)
NTS no\_alias(V, H')
Let x_1, x_2 \in \overline{V}, x_1 \neq x_2, r_{x_1} = reach_H(\overline{V}(x_1)), r_{x_2} = reach_H(\overline{V}(x_2)) be arb.
case: x_1 \neq x, x_2 \neq x
                                                                                                          (no\_alias(V'', H'))
   (1),(2)
   case: x_1 = x, x_2 \neq x
   set(r_{x_1})
                                                                                                          (no\_alias(V'', H'))
                                                                                                          (no\_alias(V'', H'))
   set(r_{x_2})
case: otherwise
   similar to above
Thus no\_alias(V, H')
Thus no\_ref(V, H', v) and no\_alias(V, H')
```

Task 1.4 (Soundness). let $H \vDash V : \Gamma$, Σ ; $\Gamma = \frac{q}{q'} e : B$, and $V, H \vDash e \Downarrow v, H'$. Then $\forall C \in \mathbb{Q}^+$ and $\forall F, R \subseteq \mathsf{Loc}$, if $\mathsf{no_alias}(V, H)$, $\mathsf{disjoint}(\{R, F, locs_{V,H}(e)\})$, and $|F| \ge \Phi_{V,H}(\Gamma) + q + C$, then there exists $F' \subseteq \mathsf{Loc}\ s.t.$

1.
$$V, H, R, F \vdash e \Downarrow v, H', F'$$

2.
$$|F'| \ge \Phi_{H'}(v:B) + q' + C$$

Proof. Induction on the evaluation judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$
 (admissibility)
 $\Sigma; x : B \mid_{\overline{q}}^{\underline{q}} x : B$ (admissibility)
 $|F| - |F'|$ (2)

$$=|F|-|F| \tag{ad.}$$

$$=0 (3)$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') \tag{4}$$

$$= \Phi_{V,H}(x:B) + q - (\Phi_H(V(x):B) + q)$$
 (ad.)

$$= \Phi_H(V(x): B) + q - (\Phi_H(V(x): B) + q)$$
 (def. of $\Phi_{V,H}$)

$$=0 (5)$$

((3),(5))

 $|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$

$$|F| - |F'| = |F| - |F|$$
 (ad.)

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$
(ad.)
$$= 0$$
(def of $\Phi_{V,H}$)

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : bool$$
 (ad.)

$$H \vDash V : \Gamma'$$
 (def of W.F.E)

$$\Sigma; \Gamma' \frac{q}{q'} e_t : B \tag{ad.}$$

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F'$$
 (ad.)

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

$$|F| - |F'| < \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$
(IH)

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$V, H \vdash e \Downarrow v_2, H_2$$
 (case)

$$V, H \vdash e_1 \Downarrow v_1, H_1 \tag{ad.}$$

$$\Sigma; \Gamma_1 \mid_{\overline{p}}^{q} e_1 : A \tag{ad.}$$

$$H \vDash V : \Gamma_1 \tag{\Gamma_1 \subseteq \Gamma}$$

Let $C \in \mathbb{Q}^+, F, R \subseteq \mathsf{Loc}$ be arb.

Suppose no_alias(V, H), disjoint $(\{R, F, locs_{V,H}(e)\})$, and $|F| \ge \Phi_{V,H}(\Gamma) + q + C$ NTF F' s.t.

$$1.V, H, R, F \vdash e \Downarrow v_2, H_2, F'$$
 and

$$2.|F'| \ge \Phi_{H_2}(v_2:B) + q' + C$$

Let
$$R' = R \cup locs_{V,H}(lam(x : \tau.e_2))$$

$$disjoint(\{R', F, locs_{V,H}(e_1)\})$$

(Similar to case in Lemma 1.2)

Instantiate IH with $C = C + \Phi_{V,H}(\Gamma_2), F = F, R = R'$, we get F'' s.t.

$$1.V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F''$$
 and

$$2.|F''| \ge \Phi_{H_1}(v_1:A) + p + C + \Phi_{V',H_1}(\Gamma_2)$$

Where
$$|F| \ge \Phi_{V,H}(\Gamma_1) + q + C + \Phi_{V,H}(\Gamma_2)$$
 since $|F| \ge \Phi_{V,H}(\Gamma) + q + C$

For the second premise:

$$\Sigma; \Gamma_2, x : A \left| \frac{p}{q'} e_2 : B \right|$$
 (ad.)

$$H_1 \vDash v_1 : A \text{ and}$$
 (Theorem 3.3.4)

$$H_1 \vDash V : \Gamma_2 \tag{???}$$

$$H_1 \vDash V' : \Gamma_2, x : A$$
 (def of \vDash)

$$V', H_1 \vdash e_2 \Downarrow v_2, H_2 \tag{ad.}$$

Let
$$g = \{l \in H_1 \mid l \notin F_1 \cup R \cup locs_{V', H_1}(e_2)\}$$

Then we have $no_alias(V', H_1)$ and $disjoint(\{R, F'' \cup g, locs_{V', H_1}(e_2)\})$

(similar to case in Lemma 1.2)

Instantiate IH with $C = C, F = F'' \cup g, R = R$, we get $F^{(3)}$ s.t.

$$1.V', H_1, R, F'' \cup q \vdash e_2 \Downarrow v_2, H_2, F^{(3)}$$

$$2.|F^{(3)}| \ge \Phi_{H_2}(v_2:B) + q' + C$$

Where we verify the precondition $|F'' \cup g| \ge \Phi_{V',H_1}(\Gamma_2,x:A) + p + C$

$$|F'' \cup g| \ge |F''|$$

$$\geq \Phi_{H_1}(v_1:A) + p + C + \Phi_{V,H}(\Gamma_2)$$
 (IH)

$$= \Phi_{H_1}(v_1:A) + p + C + \Phi_{V',H_1}(\Gamma_2)$$
 (Lemma 4.3.3)

$$= \Phi_{V',H_1}(\Gamma_2, x:A) + p + C \tag{def of } \Phi)$$

Take $F' = F^{(3)}$

$$V, H, R, F \vdash e \Downarrow v_2, H_2, F'$$
 and (E:Let)

$$|F'| \ge \Phi_{H_2}(v_2:B) + q' + C$$
 (from IH)

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

Case 11: E:Cons

$$|F| - |F'|$$

$$= |F| - |F \setminus \{l\}|$$

$$= 1$$
(ad.)

 $\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$

$$= \Phi_{V,H}(x_h : A, x_t : L^p(A)) + q + p + 1 - (\Phi_{H'}(v : L^p(A)) + q)$$
(ad.)
$$= \Phi_{V,H}(x_h : A, x_t : L^p(A)) + p + 1 - \Phi_{H'}(v : L^p(A)))$$

$$= \Phi_{H}(V(x_h) : A) + \Phi_{H}(V(x_t) : L^p(A)) + p + 1 - \Phi_{H'}(v : L^p(A)))$$
(def of $\Phi_{V,H}$)
$$= \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)) + p + 1 - \Phi_{H'}(v : L^p(A)))$$
(ad.)
$$= \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)) + p + 1 - (p + \Phi_{H'}(v_h : A) + \Phi_{H'}(v_t : L^p(A)))$$
(Lemma 4.1.1)
$$= \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)) + p + 1 - (p + \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)))$$
(Lemma 4.3.3)
$$= 1$$

Hence,

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 12: E:MatNil Similar to E:Cond*

Case 13: E:MatCons

$$V(x) = (l, \texttt{alive})$$
 (ad.)

$$H(l) = \langle v_h, v_t \rangle \tag{ad.}$$

$$\Gamma = \Gamma', x : L^p(A) \tag{ad.}$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \Big|_{q'}^{q+p+1} e_2 : B$$
 (ad.)

$$V'', H \vdash e_2 \Downarrow v, H'$$
 (ad.)

Let $C \in \mathbb{Q}^+, F, R \subseteq \text{Loc}$ be arb.

$$H \vDash V(x) : L^p(A)$$
 (def of W.D.E)

$$H'' \vDash v_h : A, \ H'' \vDash v_t : L^p(A) \tag{ad.}$$

$$H \vDash v_h : A, \ H \vDash v_t : L^p(A) \tag{???}$$

$$H \vDash V'' : \Gamma', x_h : A, x_t : L^p(A)$$
 (def of W.D.E)

Suppose no_alias(V, H), disjoint $(\{R, F, locs_{V,H}(e)\})$, and $|F| \ge \Phi_{V,H}(\Gamma) + q + C$

NTF F' s.t.

$$1.V, H, R, F \vdash e \Downarrow v, H', F'$$
 and

$$2.|F'| \ge \Phi_{H'}(v:B) + q' + C$$

Let
$$g = \{l \in H \mid l \notin F \cup R \cup locs_{V'',H}(e_2)\}$$

We want to g nonempty, in particular, that $l \in g$

$$l \notin F \cup R$$
 $(disjoint(\{R, F, locs_{V,H}(e)\}))$

AFSOC $l \in locs_{V'',H}(e_2)$

Then $l \in reach_H(\overline{V}''(x'))$ for some $x' \neq x$

$$x' \in \{x_h, x_t\}$$
 (since $reach_H(\overline{V}(x')) \cap reach_H(\overline{V}(x)) = \emptyset$ from $no_alias(V, H)$)

WLOG let $x' = x_h$

But then $\mu_{reach_H(\overline{V}(x))}(l) \ge 2$ and $\mathsf{set}(reach_(\overline{V}(x)))$ doesn't hold

 $l \notin locs_{V'',H}(e_2)$

```
Hence l \in g
```

Next, we have $no_alias(V'', H)$ and $disjoint(\{R, F \cup g, locs_{V'', H}(e_2)\})$

(similar to case in Lemma 1.2)

By IH with $C'=C, F''=F\cup g$ and the above conditions, we have: $F^{(3)}$ s.t.

$$1.V'', H, R, F \cup g \vdash e_2 \Downarrow v, H', F^{(3)}$$

$$2.|F^{(3)}| \ge \Phi_{H'}(v:B) + q' + C$$

Where we also verify the precondition that $|F''| \ge \Phi_{V'',H}(\Gamma', x_h : A, x_t : L^p(A)) + q + p + 1 + C'$:

$$|F''| = |F \cup g|$$

$$= |F| + |g|$$

$$\geq \Phi_{V,H}(\Gamma) + q + C + |g|$$

$$= \Phi_{V,H}(\Gamma', x_h : A, x_t : L^p(A)) + p + q + C + |g|$$

$$= \Phi_{V,H}(\Gamma', x_h : A, x_t : L^p(A)) + p + q + C + 1$$
(*g* nonempty)
(*g* nonempty)

Now take $F' = F^{(3)}$

$$V, H, R, F \vdash e \Downarrow v, H', F'$$
 (E:MatCons)

$$|F'| \ge \Phi_{H'}(v:B) + q' + C$$
 (From the IH)