

Comment gérer des applications nécessitant la persistance des données avec Kubernetes

Devoxx France - 2018

Florian Woerner

DevOps Engineer / Cloud Architect
Onmyown
florian.woerner@onmyown.io
@woernfl

Agenda

- Contexte
- Volume provider
- 2 manières de gérer le lifecycle de Volumes
- Demo
- Conclusion

Pourquoi choisir Kubernetes plutôt que des VMs?

Pourquoi a-t-on besoin de gérer la persistance des données ?

Types de Volumes - Kubernetes Internals

- configMap
- downwardAPI
- emptyDir
- gitRepo
- hostPath
- local
- persistentVolumeClaim
- projected
- Secret
- csi

Types de Volumes - Public Cloud

- awsElasticBlockStore
- azureDisk
- azureFile
- gcePersistentDisk

Types de Volumes - Non Cloud Dependant

- cephfs
- fc (fibre channel)
- flocker
- glusterfs
- nfs
- iscsi
- portworxVolume
- quobyte
- rbd (Rados Block Device)
- scaleIO
- storageos
- vsphereVolume

Un problème?

CSI c'est quoi?

- Container Storage Interface
- Adopté par Kubernetes, Mesos et Cloud Foundry (pour l'instant)
- Supporté en beta dans Kubernetes
 1.10 (planifié en stable pour 1.12)
- Un moyen standard d'exposer du storage au container

Pourquoi est ce important?

- Interface commune à plusieurs plates-formes (standardisation)
- Permet l'évolution des storage provider en dehors des realease de Kubernetes

Mise en situation avec **Bob** le développeur et **John** le Sysadmin

Référence

- Volumes Kubernetes Doc: https://kubernetes.io/docs/concepts/storage/volumes/
- Kubernetes Tasks: https://kubernetes.io/docs/tasks/
- Configure a Pod to Use a PersistentVolume for Storage:
 https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/
- Run a Single-Instance Stateful Application:
 https://kubernetes.io/docs/tasks/run-application/run-single-instance-stateful-application/
- Run a Replicated Stateful Application:
 https://kubernetes.io/docs/tasks/run-application/run-replicated-stateful-application/
- StatefulSets Kubernetes Doc: <u>https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/</u>

Merci!

