

adrenergic transmission

- noradrenaline
 - from sympathetic nerve endings
- adrenaline
 - from adrenal glands
- (dopamine)
 - mainly in CNS
 - but also gut & visceral blood vessels

sites of drug action

- synthesis
 - false transmitters
 - methyl dopa
 - 6 hydroxydopamine
- storage
- release
- receptor binding
- uptake

sites of drug action

- synthesis
- storage
 - reserpine
 - blocks uptake into vesicles
 - causes NA depletion
- release
- receptor binding
- uptake

sites of drug action

- synthesis
- storage
- release
 - guanethidine
 - bretylium
 - Ca blockers
- receptor binding
- uptake

receptor	transmitter	useful effects	agonist	antagonist
α1	adrenaline	vasoconstriction noradrenaline	phenylephrine mydriasis	prazosin
α 2 detomidi	adrenaline ne	(vasodilatation) noradrenaline atipamezole	xylazine sedation & analges	yohimbine sia
β 1 dopamin	adrenaline ne	+ve inotropy (noradrenaline) metoprolol	dobutamine tachycardia	atenolol
β 2 clenbute relaxation	adrenaline rol	bronchodilatation (nonselective)	salbutamol vasodilatation (mus	propranolol sc) uterine
(β 3	adrenaline	lipolysis	SR58611A	SR59230A)

clinical use of agonists

- heart failure
 - adrenaline & β1 agonists
- anaphylactic reactions
 - adrenaline
- delay parturition
 - clenbuterol
- sedation and analgesia
 - xylazine and α2 agonists

- tricyclic antidepressants
- "selective"serotonin uptake inhibitors (SSRIs)
- monoamine oxidase inhibitors
- cocaine
- amphetamine

co-transmission

- ATP
 - P2x purinoceptors responsible for fast transmission
 - > 7 subtypes
 - CNS as well as smooth muscle & peripheral nerves
 - P2y purinoceptors ??
 - potentiates effects of noradrenaline
- peptides
 - neuropeptide Y
 - chromogranin??

non-adrenergic noncholinergic transmission

- nitric oxide
- vasoactive intestinal peptide
- neuropeptide Y
- gonadotrophin releasing hormone
- 5 hydroxytryptamine
- y aminobutyric acid
- dopamine

NANC transmission

- nitric oxide NO
 - vasodilator & neuromodulator
- nitrous oxide N₂O
 - anaesthetic gas
- nitrogen dioxide NO₂
 - environmental pollutant

noradrenergic transmission

- NA synthesised from tyrosine & stored in vesicles
- release requires calcium
- NA binds to a variety of adrenergic receptors throughout the body
- action terminated by reuptake
- all these processes can be affected by drugs
- ATP co-transmission important