Stepan Gordeev Texas Christian University Sudhir Singh University of Rochester

Feb 21, 2025

Southern Methodist University

• misallocation is a big driver of cross-country income differences

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies \rightarrow inputs not allocated to most productive uses

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies \rightarrow inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - poor property rights, communal land distribution, hiring frictions, minimum prices

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - poor property rights, communal land distribution, hiring frictions, minimum prices
- farms grow different products, most grow multiple

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies \rightarrow inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - poor property rights, communal land distribution, hiring frictions, minimum prices
- farms grow different products, most grow multiple
 - India: most common crop grown by 1/4 farms; 2/3 farms grow 2+ crops

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - poor property rights, communal land distribution, hiring frictions, minimum prices
- farms grow different products, most grow multiple
 - India: most common crop grown by 1/4 farms; 2/3 farms grow 2+ crops
 - but misallocation literature uses single-product producers using the same production fn

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - poor property rights, communal land distribution, hiring frictions, minimum prices
- farms grow different products, most grow multiple
 - India: most common crop grown by 1/4 farms; 2/3 farms grow 2+ crops
 - but misallocation literature uses single-product producers using the same production fn

how does heterogeneous product choice affect aggregate misallocation cost?

DATA

DATA

Indian farm-crop-level survey

DATA

- Indian farm-crop-level survey
- estimate product-level production functions
 - crops are significantly heterogeneous in input intensities, returns to scale

DATA

- Indian farm-crop-level survey
- estimate product-level production functions
 - $\,-\,$ crops are significantly heterogeneous in input intensities, returns to scale

MODEL

DATA

- Indian farm-crop-level survey
- estimate product-level production functions
 - $\,-\,$ crops are significantly heterogeneous in input intensities, returns to scale

MODEL

multi-product farms choose products, face misallocative distortions

DATA

- Indian farm-crop-level survey
- estimate product-level production functions
 - crops are significantly heterogeneous in input intensities, returns to scale

MODEL

- multi-product farms choose products, face misallocative distortions
- efficient input markets in India ightarrow aggregate agricultural output \uparrow 4imes

DATA

- · Indian farm-crop-level survey
- estimate product-level production functions
 - crops are significantly heterogeneous in input intensities, returns to scale

MODEL

- multi-product farms choose products, face misallocative distortions
- · efficient input markets in India o aggregate agricultural output \uparrow 4imes
 - 1-product model: understate total cost of misallocation by 30% (3× vs 4× gain)

COMPARED TO THE MULTI-PRODUCT MODEL, STANDARD 1-PRODUCT MODELS:

· overstate frictions in data

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions
 - ightarrow overstate benefit of partial reallocations

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions
 - → overstate benefit of partial reallocations
- · understate farm expansion if frictions lifted

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions
 - → overstate benefit of partial reallocations
- understate farm expansion if frictions lifted
 - miss within-farm productivity dispersion

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions
 - → overstate benefit of partial reallocations
- understate farm expansion if frictions lifted
 - miss within-farm productivity dispersion
 - ignore returns-to-scale heterogeneity between products

- · overstate frictions in data
 - misinterpret optimal crop heterogeneity as frictions
 - miss endogenous product choice response to frictions
 - → overstate benefit of partial reallocations
- understate farm expansion if frictions lifted
 - miss within-farm productivity dispersion
 - ignore returns-to-scale heterogeneity between products
 - → understate total cost of misallocation

· AGRICULTURAL MISALLOCATION

 base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

· AGRICULTURAL MISALLOCATION

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

Multi-Product Firms & Misallocation

· AGRICULTURAL MISALLOCATION

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

Multi-Product Firms & Misallocation

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - → # of products responds to distortions

· AGRICULTURAL MISALLOCATION

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

Multi-Product Firms & Misallocation

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - ightarrow # of products responds to distortions
- this paper:

· AGRICULTURAL MISALLOCATION

- base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
- measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
- identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
- this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

MULTI-PRODUCT FIRMS & MISALLOCATION

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - ightarrow # of products responds to distortions
- this paper:
 - > heterogeneous productivities and production functions

WHY AGRICULTURE?

 \cdot agriculture is the perfect setting to study product choice and misallocation

WHY AGRICULTURE?

- \cdot agriculture is the perfect setting to study product choice and misallocation
 - firm-product (farm-crop) inputs and outputs are feasible to measure

WHY AGRICULTURE?

- \cdot agriculture is the perfect setting to study product choice and misallocation
 - firm-product (farm-crop) inputs and outputs are feasible to measure
- but mechanisms apply to **non-agricultural** settings too
 - → relevant for *more* developed countries too

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with plot-crop-level data

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with plot-crop-level data
- 10,318 plots, 4,803 farmers

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with plot-crop-level data
- 10,318 plots, 4,803 farmers
 - plot-crop-level inputs, outputs

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with plot-crop-level data
- 10,318 plots, 4,803 farmers
 - plot-crop-level inputs, outputs
 - plot-level physical characteristics

HETEROGENEOUS PRODUCT CHOICE

IN INDIA

CROP CHOICE IS HETEROGENEOUS

MANY FARMS GROW MULTIPLE CROPS

MANY FARMS GROW MULTIPLE CROPS

• 3 agricultural seasons: Kharif (monsoon), Rabi (winter/spring), Zaid (summer/dry)

PRODUCTION FUNCTIONS

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

production function:

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

for farm f, crop i, season t

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = physical output

$$y_{f,i,t} = z_{f,i,t}|_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = physical output
- l = land input (quality-adjusted)

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = physical output
- l = land input (quality-adjusted)
- X_{labor} = labor input (days)

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = physical output
- l = land input (quality-adjusted)
- $-x_{labor}$ = labor input (days)
- X_{inter} = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = physical output
- l = land input (quality-adjusted)
- $-x_{labor}$ = labor input (days)
- $-x_{inter}$ = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output
- merge crops into 5 groups:
 - rice
 - wheat
 - other cereals
 - pulses
 - vegetables, fruits, oilseeds
 - ▶ list of crops

· common land input measures are problematic

- · common land input measures are problematic
 - **plot area**: ignores quality

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ► details

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ➤ details
 - supervised machine learning algorithm

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ➤ details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ➤ details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data
 - excels in out-of-sample prediction

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ► details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data
 - excels in out-of-sample prediction
- $\cdot \rightarrow$ quality index = predicted price/acre

- common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ► details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data
 - excels in out-of-sample prediction
- · → quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample

- common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ► details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data
 - excels in out-of-sample prediction
- $\cdot \rightarrow$ quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample
 - removes noise: use predicted values, minimize overfitting → captured variation driven by population patterns, not individual mismeasurement

- common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - reg log price/acre on plot features
 - physical characteristics: soil type, color, salinity, drainage, ...
 - irrigation access: presence of wells, canals, ...
- use random forests for prediction ► details
 - supervised machine learning algorithm
 - naturally adapts to non-linearities and interactions in the data
 - excels in out-of-sample prediction
- $\cdot \rightarrow$ quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample
 - removes noise: use predicted values, minimize overfitting → captured variation driven by population patterns, not individual mismeasurement
- quality-adjusted land = quality index \times plot area

specification:

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

for plot j, crop i, season t

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

- for plot j, crop i, season t
- production function simultaneity bias: inputs are correlated with productivity

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

- for plot j, crop i, season t
- production function simultaneity bias: inputs are correlated with productivity
- solution: 2SLS using instruments for inputs adapting *Gollin, Udry* (2021)'s method

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

- for plot j, crop i, season t
- production function simultaneity bias: inputs are correlated with productivity
- solution: 2SLS using instruments for inputs adapting Gollin, Udry (2021)'s method
- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

- for plot j, crop i, season t
- production function simultaneity bias: inputs are correlated with productivity
- solution: 2SLS using instruments for inputs adapting Gollin, Udry (2021)'s method
- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - \rightarrow serve as instruments for inputs on j

$$\log y_{j,i,t} = \gamma_i \log l_{j,i,t}^{\gamma_i} + \alpha_{labor,i} \log x_{labor,j,i,t} + \alpha_{inter,i} \log x_{inter,j,i,t} + \epsilon_{j,i,t}$$

- for plot j, crop i, season t
- · production function simultaneity bias: inputs are correlated with productivity
- solution: 2SLS using instruments for inputs adapting Gollin, Udry (2021)'s method
- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - \rightarrow serve as instruments for inputs on j
- ▶ details

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

▶ all crops ▶ table ▶ equality tests

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

▶ all crops ▶ table ▶ equality tests

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

▶ all crops ▶ table ▶ equality tests

· OBJECTIVES:

model multi-product farm decisions in presence of distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing
 - Chen, Restuccia, Santaeulalia-Llopis (2022): misallocation in agriculture

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing
 - Chen, Restuccia, Santaeulalia-Llopis (2022): misallocation in agriculture
- add multi-product farms choosing among heterogeneous products

• profit-maximizing farm f: sells output py_f , pays for inputs

$$\max \qquad p \, \underbrace{\frac{\sum_{f} \, l_f \, {}^{\gamma} \, \Pi_g \left(x_{f,g} \, {}^{\alpha_g} \, \right)}_{\text{revenue}} \, - \underbrace{\sum_{g=1}^G r_g \, x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \quad (\lambda_f)$$

- profit-maximizing farm f: sells output py_f , pays for inputs
- Cobb-Douglas production function with TFP Z_f

$$\max \quad p \, \overbrace{z_f \, l_f \, {}^\gamma \, \Pi_g \left(\mathsf{x}_{f,g} \, \stackrel{\alpha_g}{\longrightarrow} \right)}^{y_f} \quad - \, \underbrace{\sum_{g=1}^G r_g}_{\text{flex. input costs}} \quad x_{f,g}$$

$$\text{s.t.} \quad l_f \quad = L_f \quad (\lambda_f)$$

- profit-maximizing farm f: sells output py_f , pays for inputs
- \cdot Cobb-Douglas production function with TFP z_f
- flexible inputs g: labor, intermediates
 - quantity $x_{f,g}$ rented at r_g

$$\max \underbrace{p \; \overline{z_f \; l_f \; \gamma \; \Pi_g \left(x_{f,g} \; \alpha_g \; \right)}}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \; x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \qquad l_f = L_f \quad (\lambda_f)$$

- profit-maximizing farm f: sells output py_f , pays for inputs
- \cdot Cobb-Douglas production function with TFP z_f
- flexible inputs g: labor, intermediates
 - quantity $x_{f,g}$ rented at r_g
- land input l is in fixed supply L_f
 - almost no land market in India

$$\max \qquad p \ \overline{z_f \ l_f \ ^\gamma \ \Pi_g \left(x_{f,g} \right. ^{\alpha_g} \right)} \ - \sum_{g=1}^G r_g \overline{\tau_{f,g}} \qquad x_{f,g}$$

$$\text{revenue} \qquad \qquad - \sum_{g=1}^G r_g \overline{\tau_{f,g}} \qquad x_{f,g}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \qquad (\lambda_f)$$

- farm-input distortions $\tau_{f,q}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g

FARM: DISTORTIONS

$$\max \quad p \ \overline{z_f \ l_f \ ^\gamma \ \Pi_g \left(x_{f,g} \right. ^{\alpha_g} \right)} \quad - \ \sum_{g=1}^G r_g \tau_{f,g} \qquad x_{f,g}$$

$$\text{revenue} \qquad \qquad - \ \sum_{g=1}^G r_g \tau_{f,g} \qquad x_{f,g}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \qquad (\lambda_f)$$

- farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g
- between inputs: $au_{f,labor} > au_{f,inter} o ext{farm } f ext{ uses "too little" labor}$
 - $-\,$ e.g. hiring frictions, credit constraints, adjustment costs, transport costs

FARM: DISTORTIONS

$$\max \underbrace{p \; \overline{z_f \; l_f \; {}^{\gamma} \; \Pi_g \left(x_{f,g} \; {}^{\alpha_g} \; \right)}}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \tau_{f,g} \qquad x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \quad (\lambda_f)$$

- farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g
- between inputs: $au_{f,labor} > au_{f,inter} o ext{farm } f ext{ uses "too little" labor}$
 - e.g. hiring frictions, credit constraints, adjustment costs, transport costs
- between farms: $\tau_{1,g} > \tau_{2,g} \; \forall g \; \rightarrow$ farm 1 is "too small" given its TFP z_f
 - e.g. market power, gov't subsidies, corruption

FARM: DISTORTIONS

$$\max \underbrace{p \; \overbrace{z_f \; l_f \; {}^\gamma \; \Pi_g \left(x_{f,g} \; {}^{\alpha_g} \; \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \tau_{f,g} \qquad x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \qquad (\lambda_f)$$

- farm-input distortions $au_{f,q}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g
- between inputs: $au_{f,labor} > au_{f,inter} o ext{farm } f ext{ uses "too little" labor}$
 - e.g. hiring frictions, credit constraints, adjustment costs, transport costs
- between farms: $\tau_{1,g} > \tau_{2,g} \ \forall g \ \rightarrow$ farm 1 is "too small" given its TFP z_f
 - e.g. market power, gov't subsidies, corruption
- · L_f fixed \rightarrow land is also distorted unless distributed to equalize λ_f
 - e.g. lacking property rights, communal land distribution

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{Z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(X_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

• heterogeneous crops i = 1...N

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \quad (\lambda_{f})$$

- heterogeneous crops i = 1...N
- l in fixed supply $L_f \rightarrow$ interdependent crop production
 - params of crop i change $\rightarrow \lambda_f$ changes \rightarrow inputs and outputs of crops -i change
 - Just, Zilberman, and Hochman (1983), Shumway, Pope, Nash (1984)
 - justifies Gollin, Udry (2021) prod. fn. identification

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{Z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(X_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- heterogeneous crops i = 1...N
- l in fixed supply $L_f \rightarrow$ interdependent crop production
 - params of crop i change $\rightarrow \lambda_f$ changes \rightarrow inputs and outputs of crops -i change
 - Just, Zilberman, and Hochman (1983), Shumway, Pope, Nash (1984)
 - justifies Gollin, Udry (2021) prod. fn. identification
- farm-input-crop distortions $\tau_{f,q,i}$, $\tau_{f,l,i}$
 - ightarrow fit observed input ratio heterogeneity across crops within a farm

FARM: FIXED COST

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- fixed cost ω per produced crop
 - ightarrow farms choose ${f crop\ set}$ in addition to ${f crop\ mix}$
 - farms don't all produce everything
 - → fit observed heterogeneity in crop sets

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{Z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(X_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

· crop-level concavity term $\eta < 1$

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{Z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(X_{f,g,i}^{\alpha_{g,i}} \right)}^{y_{f,i}} \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power
 - farm's problem with η equivalent to subsistence or market power \triangleright details

FARM: CONCAVITY

$$\max \underbrace{\sum_{i=1}^{N} \left(p_{i} \underbrace{Z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(X_{f,g,i}^{\alpha_{g,i}} \right) \right)^{\eta}}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power
 - farm's problem with η equivalent to subsistence or market power \triangleright details
 - **▶** solution

• representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_{i}C_{i} = \sum_{g} r_{g}X_{g}^{agg} + \Pi$$

• representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_i C_i = \sum_{g} r_g X_g^{agg} + \Pi$$

• goods markets clear ∀*i*:

$$C_i = \sum_f y_{f,i}$$

· representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_{i}C_{i} = \sum_{g} r_{g}X_{g}^{agg} + \Pi$$

• goods markets clear ∀i:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_i C_i = \sum_{g} r_g X_g^{agg} + \Pi$$

• goods markets clear ∀i:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

• estimate $\sigma = 1.7$ from consumption FOC \blacktriangleright details

representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_{i}C_{i} = \sum_{g} r_{g}X_{g}^{agg} + \Pi$$

• goods markets clear ∀i:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

• estimate $\sigma = 1.7$ from consumption FOC \blacktriangleright details

▶ profits details

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot
ightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \to {\sf extracted}$ fundamentals rationalize observed dispersion b/w farms frictionless economy

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

o extracted fundamentals rationalize observed dispersion b/w farms frictionless economy \Leftrightarrow $au_{f,g} au_{f,g,i}=1$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g} au_{f,g,i} = 1 \Leftrightarrow ext{mrp} ag_{i}, ext{ mrp} ag_{i}, ext{mrp} ag_{i}$$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow$$
 $\tau_{f,g}\tau_{f,g,i}=1$ \Leftrightarrow $mrpg_{f,i}=\overline{mrpg}_i,\ mrpl_{f,i}=\overline{mrpl}_i$

distorted economy

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g} au_{f,g,i} = 1 \Leftrightarrow ext{mrp} au_{f,i} = \overline{\text{mrp}} au_i, ext{mrp} au_{f,i} = \overline{\text{mrp}} au_i$$
 distorted economy $\Leftrightarrow ext{heterog.} au_{f,a} au_{f,a,i}$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g} au_{f,g,i} = 1 \Leftrightarrow ext{mrp} au_{f,i} = \overline{\text{mrp}} au_i, ext{ mrp} all_{f,i} = \overline{\text{mrp}} all_i$$
 distorted economy $\Leftrightarrow ext{ heterog. } au_{f,q} au_{f,g,i} \Leftrightarrow ext{ heterog. } ext{mrp} all_{f,i}$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g} au_{f,g,i} = 1 \Leftrightarrow mrpg_{f,i} = \overline{mrpg}_i, mrpl_{f,i} = \overline{mrpl}_i$$
 distorted economy \Leftrightarrow heterog. $au_{f,g} au_{f,g,i} \Leftrightarrow \text{heterog. } mrpg_{f,i}, mrpl_{f,i}$

► splitting distortions

 \cdot aus reproducing data need to be extreme if η is too high or too low

• τ s reproducing data need to be extreme if η is too high or too low

• low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions

 \cdot τ s reproducing data need to be extreme if η is too high or too low

- low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions
- high η : farm, farm-crop output more dispersed in efficient allocation
 - \rightarrow data farm size "too uniform", farms mix crops "too much" \rightarrow extreme distortions

• τ s reproducing data need to be extreme if η is too high or too low

- · low η : farm, farm-crop output more uniformly distributed in efficient allocation
 - ightarrow data farm size "too varied", farms mix crops "too little" ightarrow extreme distortions
- high η : farm, farm-crop output more dispersed in efficient allocation
 - ightarrow data farm size "too uniform", farms mix crops "too much" ightarrow extreme distortions
- ightarrow pick η that minimizes distortions required to explain observed output distribution
 - → conservative misallocation estimates

• τ s reproducing data need to be extreme if η is too high or too low

- · low η : farm, farm-crop output more uniformly distributed in efficient allocation
 - \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions
- high η : farm, farm-crop output more dispersed in efficient allocation
 - ightarrow data farm size "too uniform", farms mix crops "too much" ightarrow extreme distortions
- ightarrow pick η that minimizes distortions required to explain observed output distribution
 - → conservative misallocation estimates

• to quantify aggregate cost of distortions, conduct counterfactual reallocations

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms
- prohibit product set switching

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- · equalize (or reduce) distortions between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output

► reallocation exercise details

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- compute counterfactual Δ output
 - reallocation gain = Δ output between counterfactual and current

► reallocation exercise details

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output
 - reallocation gain = Δ output between counterfactual and current
 - $-\;$ aggregate inputs are fixed \rightarrow aggregate output \uparrow reflects aggregate TFP \uparrow

► reallocation exercise details

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- · equalize (or reduce) distortions between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual ∆output
 - reallocation gain = Δ output between counterfactual and current
 - aggregate inputs are fixed \rightarrow aggregate output \uparrow reflects aggregate TFP \uparrow
 - farm-level TFPs are fixed → aggregate TFP ↑ reflects pure reallocation gain or misallocation cost
 - ► reallocation exercise details

BENCHMARK EXERCISE

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_{\!f}, au_{\!f,g}$

BENCHMARK EXERCISE

- \cdot equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{\!f,l,i}, au_{\!f,g,i}$

BENCHMARK EXERCISE

- \cdot equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

· more conservative and practical

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

FXFRCISES

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_f, \tau_{f,a}$
- keep within-farm distortions $\tau_{f,l,i}, \tau_{f,q,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- · more conservative and practical
- downscale frictions st. their variances match those in the least-distorted state

reallocation gain

multi-product: 294%

1-product: **212**% $(28\% \downarrow)$

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- more conservative and practical
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- more conservative and practical
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

multi-product: 35%

1-product: **45**% (26% ↑)

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- more conservative and practical
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

▶ sensitivity to concavity ▶ role of states, seasons

reallocation gain

multi-product: 294%

1-product: **212**% (28% ↓)

multi-product: 35%

1-product: **45**% (26% ↑)

1-PRODUCT MODEL ERROR

MECHANISMS CONTRIBUTING TO

• 1-product model misinterprets crop heterogeneity as frictions

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veg}} \rightarrow \text{high } \frac{l_1}{x_{1,labor}}$

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veq}} \rightarrow \text{high } \frac{l_1}{x_{1,labor}}$
 - farm 2: $low \frac{y_1, veg}{y_2, rice} \rightarrow low \frac{l_2}{x_2, labor}$

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veg}} \rightarrow$ high $\frac{l_1}{x_{1,labor}}$
 - farm 2: low $\frac{y_{2,rice}}{y_{2,veg}} \rightarrow low \frac{l_2}{x_{2,labor}}$
 - assume no frictions $\rightarrow \frac{\alpha_{labor,rice}\eta(p_{rice}y_1)^{\eta}}{x_{1,labor}} = \frac{\alpha_{labor,veg}\eta(p_{veg}y_2)^{\eta}}{x_{2,labor}}$ in multi-crop model

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veq}} \rightarrow$ high $\frac{l_1}{x_{1,labor}}$
 - farm 2: low $\frac{y_2, rice}{y_2, veg} \rightarrow low \frac{l_2}{x_2, labor}$
 - $\text{ assume no frictions} \rightarrow \frac{\alpha_{labor,rie}\eta(p_{rice}\eta(p_{rice}y_1)^{\eta}}{\frac{x_{1,labor}}{x_{2,labor}}} = \frac{\alpha_{labor,veg}\eta(p_{veg}y_2)^{\eta}}{\frac{x_{2,labor}}{x_{2,labor}}} \text{ in multi-crop model}$ $\text{ 1-product model: } \frac{\alpha_{labor,agg}\eta(p_{ogg}y_1)^{\eta}}{\frac{x_{1,labor}}{x_{1,labor}}} \neq \frac{\alpha_{labor,agg}\eta(p_{ogg}y_2)^{\eta}}{\frac{x_{2,labor}}{x_{2,labor}}} \rightarrow \text{imputes frictions}$

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veq}} \rightarrow$ high $\frac{l_1}{x_{1,labor}}$
 - farm 2: low $\frac{y_2, rice}{y_2, veg} \rightarrow low \frac{l_2}{x_2, labor}$
 - assume no frictions $\rightarrow \frac{\alpha_{labor,rice}\eta(\rho_{rice}y_1)^{\eta}}{\frac{X_{1,labor}}{X_{1,labor}}} = \frac{\alpha_{labor,veg}\eta(\rho_{veg}y_2)^{\eta}}{\frac{X_{2,labor}}{X_{2,labor}}}$ in multi-crop model 1-product model: $\frac{\alpha_{labor,agg}\eta(\rho_{agg}y_1)^{\eta}}{\frac{X_{1,labor}}{X_{1,labor}}} \neq \frac{\alpha_{labor,agg}\eta(\rho_{agg}y_2)^{\eta}}{\frac{X_{2,labor}}{X_{2,labor}}} \rightarrow \text{imputes frictions}$

 - → 1-product model overstates misallocation

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice farm 2 draws high z in vegetables
 - farm 1: high $\frac{y_{1,rice}}{y_{1,veq}} \rightarrow$ high $\frac{l_1}{x_{1,labor}}$ - farm 2: low $\frac{y_2, rice}{y_2, veg} \rightarrow low \frac{l_2}{x_2, labor}$
 - $\begin{array}{l} \text{ assume no frictions} \rightarrow \frac{\alpha_{labor,rice}\eta(p_{rice}y_1)^{\eta}}{\chi_{1,labor}} = \frac{\alpha_{labor,veg}\eta(p_{veg}y_2)^{\eta}}{\chi_{2,labor}} \text{ in multi-crop model} \\ \text{ 1-product model: } \frac{\alpha_{labor,agg}\eta(p_{agg}y_1)^{\eta}}{\chi_{1,labor}} \neq \frac{\alpha_{labor,agg}\eta(p_{agg}y_2)^{\eta}}{\chi_{2,labor}} \rightarrow \text{imputes frictions} \end{array}$

 - → 1-product model overstates misallocation
- exercise to isolate: apply 1-product model to counterfactual reallocation data generated by multi-product model

• simulated multi-product farm as labor distortion $\tau_{f,labor}$ is varied:

• $\tau_{f,labor} \uparrow \rightarrow$ shift from labor-intensive vegetables to land-intensive rice

• apply single-product model to extract frictions from simulated multi-product data

- apply single-product model to extract frictions from simulated multi-product data
- · multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor

- apply single-product model to extract frictions from simulated multi-product data
- · multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor
- 1-product model: high input ratio dispersion → infer large heterogeneity in frictions

- apply single-product model to extract frictions from simulated multi-product data
- multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor
- 1-product model: high input ratio dispersion ightarrow infer large heterogeneity in frictions
 - \rightarrow 1-crop model overstates misallocation

- exercise to isolate: prohibit farms in multi-product model to change product choice in counterfactuals
 - keep product sets fixed
 - keep input allocation across crops fixed: farm can choose $\sum_i x_{f,g,i}$ but $x_{f,g,i}$ gets a fixed share of total

• 1-product model understates TFP dispersion

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = Z_H

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_{M}

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_{M}
 - ightarrow 1-product model understates misallocation

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_{M}
 - → 1-product model understates misallocation
- exercise to isolate: treat farm-crops as separate farms for 1-product model

 \cdot some products have higher returns to scale o some farms grow more in reallocation

- \cdot some products have higher returns to scale \rightarrow some farms grow more in reallocation
- $\cdot \to \mathsf{consumer} \; \mathsf{can} \; \mathsf{substitute} \; \mathsf{toward} \; \mathsf{high}\mathsf{-RS} \; \mathsf{products} \; \mathsf{to} \; \mathsf{take} \; \mathsf{advantage}$

- some products have higher returns to scale → some farms grow more in reallocation
- $\cdot \rightarrow$ consumer can substitute toward high-RS products to take advantage
- → 1-product model understates misallocation

- some products have higher returns to scale \rightarrow some farms grow more in reallocation
- $\cdot \to \mathsf{consumer} \ \mathsf{can} \ \mathsf{substitute} \ \mathsf{toward} \ \mathsf{high}\mathsf{-RS} \ \mathsf{products} \ \mathsf{to} \ \mathsf{take} \ \mathsf{advantage}$
- → 1-product model understates misallocation
 - exercise to isolate: rescale input elasticities to equalize returns to scale

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

- \cdot assess total drag of misallocation \rightarrow farms' ability to expand matters most
 - → single-product model understates misallocation

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

- \cdot consider partial reallocations \rightarrow estimation of frictions matters most
 - → single-product model overstates misallocation ▶ details

• existing misallocation estimates: single product or multiple homogeneous products

- existing misallocation estimates: single product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India

- existing misallocation estimates: single product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:

- existing misallocation estimates: single product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by

- existing misallocation estimates: single product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions

- existing misallocation estimates: single product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response

- existing misallocation estimates: single product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
 - understate misallocation by

- existing misallocation estimates: single product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity

- existing misallocation estimates: single product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops

- existing misallocation estimates: single product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
- benchmark exercise: 1-product model understates misallocation

- existing misallocation estimates: single product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
- benchmark exercise: 1-product model understates misallocation
 - but overstates what can be attained with partial policies

• WIP: input-driven production method heterogeneity and misallocation

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods
 - production method heterogeneity can get mislabeled as misallocation

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods
 - production method heterogeneity can get mislabeled as misallocation
- study the dynamics of product choice

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods
 - production method heterogeneity can get mislabeled as misallocation
- study the dynamics of product choice
 - crop rotation, crop complementarities between seasons, years

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods
 - production method heterogeneity can get mislabeled as misallocation
- study the dynamics of product choice
 - crop rotation, crop complementarities between seasons, years
 - sticky input choices between seasons

- WIP: input-driven production method heterogeneity and misallocation
 - cluster plots into land types by physical land features
 - heterogeneity in land features \rightarrow different production methods
 - production method heterogeneity can get mislabeled as misallocation
- study the dynamics of product choice
 - crop rotation, crop complementarities between seasons, years
 - sticky input choices between seasons
 - ightarrow input choices may appear inefficient statically but be optimal dynamically

FARM SOLUTION EXPRESSIONS

$$\begin{split} \sum_{i \in I_{f}} \left(\lambda_{f}^{\frac{\eta \sum_{g} \alpha_{g,i} - 1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \right) \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \left(\frac{\gamma_{i}}{\tau_{f,l,i}} \right)^{1 - \eta \sum_{g} \alpha_{g,i}} \Pi_{g} \left(\frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \right)^{\eta \alpha_{g,i}} \right)^{\frac{1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \tau_{f,l,i} = L_{f} \\ x_{f,g,i} &= \frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \left(\frac{\gamma_{i}}{\lambda_{f} \tau_{f,l,i}} \right)^{\frac{\eta \gamma_{i}}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \Pi_{h} \left(\frac{\alpha_{h,i}}{r_{h} \tau_{f,h} \tau_{f,h,i}} \right)^{\eta \alpha_{h,i}} \right)^{\frac{1}{1 - \eta \sum_{h} \alpha_{h,i} - \eta \gamma_{i}}} \\ l_{f,i} &= \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \left(\frac{\gamma_{i}}{\lambda_{f} \tau_{f,l,i}} \right)^{1 - \eta \sum_{g} \alpha_{g,i}} \Pi_{g} \left(\frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \right)^{\eta \alpha_{g,i}} \right)^{\frac{1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \end{split}$$

LIST OF CROPS

Crop list

Rice	Wheat	Other Cereals	Pulses	Oilseeds, Fruits and Vegetables		
		Barley Maize Sorghum Pearl millet Finger millet Others	Black gram Green peas Pigeon peas Horse gram Cowpea Kidney bean Lentil Chickpeas Others	Oilseeds Sesame Groundnut Castor Sunflower Niger Soybean Safflower Rapseed Linseed Others	Vegetables Ash gourd Beet root Bitter gourd Bottle gourd Eggplant Board bean Cabbage Cauliflower Carrot Potato Cucumber Peas	Fruits / Condiments Mango Papaya Grapes Plum Cardamom Chilli Cumin Dill seed Indian mustard Other

- · labor:
 - family and hired labor days by plots

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure
- · intermediate inputs:
 - expenses on seeds, fertilizer, irrigation, machinery and bullocks, and fuels

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure
- · intermediate inputs:
 - expenses on seeds, fertilizer, irrigation, machinery and bullocks, and fuels
- · output:
 - market value of quantity harvested

· assumptions:

- · assumptions:
 - observed shocks to farm f's plot k affect shadow price of inputs on f's plot j

· assumptions:

- observed shocks to farm f's plot k affect shadow price of inputs on f's plot j
- observed shocks affecting input demand on plot k are not correlated with unobserved shocks affecting input demand on plot j, conditional on observed shocks to j

· assumptions:

- **observed** shocks to farm f's plot k affect **shadow price** of inputs on f's plot j
- observed shocks affecting input demand on plot k are not correlated with unobserved shocks affecting input demand on plot j, conditional on observed shocks to j
- f-level shocks interacted with plot-level features provide such shocks

· assumptions:

- **observed** shocks to farm f's plot k affect **shadow price** of inputs on f's plot j
- observed shocks affecting input demand on plot k are not correlated with unobserved shocks affecting input demand on plot j, conditional on observed shocks to j
- f-level shocks interacted with plot-level features provide such shocks

2SLS first stage:

$$M_{j,i,t} = Z_{k \neq j,i,t} + \mu_{j,i,t}$$

- M = land, labor, intermediates
- $-Z_{k\neq j,i,t}$: instruments from other plots within farm
 - > agricultural shocks interacted with plot characteristics
 - > household, community characteristics & shocks interacted with plot characteristics

· procedure

- · procedure
 - 1. split data into training sample (2/3) and test sample (1/3)

- · procedure
 - 1. split data into training sample (2/3) and test sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation

- procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on test data
 - > to preclude overfitting

- procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on test data
 - > to preclude overfitting
- results

	OLS	RF
MSE	0.61	0.49
\mathbb{R}^2	0.39	0.51

PRODUCTION FUNCTIONS: ALL CROPS

PRODUCTION FUNCTIONS: TABLE

	Aggregate	Rice	Wheat	Other Cereals	Pulses	Veg, Frt, Oil
Land	0.427	0.511	0.414	0.407	0.379	0.330
	(0.031)	(0.021)	(0.032)	(0.034)	(0.060)	(0.035)
Labor	0.189	0.161	0.122	0.248	0.316	0.430
	(0.031)	(0.037)	(0.036)	(0.058)	(0.074)	(0.064)
Intermediates	0.351	0.307	0.517	0.245	0.255	0.127
	(0.041)	(0.033)	(0.040)	(0.046)	(0.076)	(0.052)
Observations	14,705	4,807	3,566	2,779	1,128	2,338
R^2	0.624	0.742	0.713	0.590	0.417	0.572
Village FEs	Υ	Υ	Υ	Υ	Υ	Υ
Season FEs	Υ	Υ	Υ	Υ	Υ	Υ
			First Sta	age: F statistics		
Land	77.0	62.0	40.3	37.8	15.7	19.3
Labor	49.3	34.7	17.7	25.2	12.9	14.8
Intermediates	35.8	31.7	21.5	19.9	8.9	11.8
K-Paap Wald F statistic	51.1	40.4	16.0	30.8	12.4	12.7

PRODUCTION FUNCTIONS: PAIRWISE EQUALITY TEST P-VALUES

• for each farm f, need to check all 2^N possible sets of nonzero crops

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's $\lambda_{\rm f}$ by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's $\lambda_{\rm f}$ by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f
 - 3. compute optimal profit net of fixed cost
 - **▶** expressions

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f
 - ${\tt 3.}$ compute optimal profit net of fixed cost
 - ▶ expressions
- for each farm, pick profit-maximizing crop set

· subsistence farmer with love of variety

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

 \rightarrow mix crops to provide a diverse diet

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- · crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

ightarrow mix crops due to downward-sloping demand in each crop

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops due to downward-sloping demand in each crop
- \cdot both setups produce farm-level FOCs that are identical to the main model

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility *U*:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops due to downward-sloping demand in each crop
- both setups produce farm-level FOCs that are identical to the main model
 - but the appropriate way to define GE may be different

• splitting $r_g au_{f,g} au_{f,g,i}$ into 3 terms is arbitrary from farm f's POV

- splitting $r_g au_{f,g} au_{f,g,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $au_{f,g,i}$ don't distort f-level demand of g

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,g,i}$ don't distort f-level demand of g
 - $\rightarrow X_{f,g} = \sum_{i} X_{f,g,i} = \sum_{i} \tau_{f,g,i} X_{f,g,i}$

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,q,i}$ don't distort f-level demand of g

$$\rightarrow X_{f,g} = \sum_i X_{f,g,i} = \sum_i \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,g,i}$ don't distort f-level demand of g

$$ightarrow X_{f,g} = \sum_i X_{f,g,i} = \sum_i \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

$$\rightarrow$$
 $L_f = \sum_i l_{f,i} = \sum_i \tau_{f,l,i} l_{f,i}$

- splitting $r_g \tau_{f,g} \tau_{f,g,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,g,i}$ don't distort f-level demand of g

$$ightarrow X_{f,g} = \sum_i X_{f,g,i} = \sum_i \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

$$\rightarrow L_f = \sum_i l_{f,i} = \sum_i \tau_{f,l,i} l_{f,i}$$

 \cdot split of r_g from $au_{f,g}$ imposed by GE

ESTIMATE THE ELASTICITY OF SUBSTITUTION

· from consumption FOC:

$$\log\left(\frac{p_iC_i}{\sum_j p_jC_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

ESTIMATE THE ELASTICITY OF SUBSTITUTION

• from consumption FOC:

$$\log\left(\frac{p_iC_i}{\sum_j p_jC_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

• estimate with 2SLS: $\log s_{h,i} = \beta_0 + \beta_1 \log p_{h,i} + \gamma_i + \varepsilon_{h,i}$

ESTIMATE THE ELASTICITY OF SUBSTITUTION

• from consumption FOC:

$$\log\left(\frac{p_i C_i}{\sum_j p_j C_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

• estimate with 2SLS: $\log s_{h,i} = \beta_0 + \beta_1 \log p_{h,i} + \gamma_i + \varepsilon_{h,i}$

	$\log s_{h,i}$
σ	1.699
$\log p_{h,i}$	-0.699 (0.067)
Observations Kleibergen-Paap F stat	40,833 230.9

Village-level instruments: Elevation \times rain, ruggedness \times rain, pucca roads availability

Choose η That Minimizes Implied Dispersion

· farm-crop revenue:

$$p_{i}y_{f,i} = \left(\underbrace{\left(\frac{1}{\lambda_{f}\tau_{f,m,i}}\right)^{\gamma_{i}}\Pi_{g}\left(\frac{1}{\tau_{f,g}\tau_{f,g,i}}\right)^{\alpha_{g,i}}}_{\text{composite distortion, } dist_{f,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}\underbrace{\left(p_{i}Z_{f,i}\gamma_{i}^{\gamma_{i}}\eta^{\sum_{g}\alpha_{g,i}+\gamma_{i}}\Pi\left(\frac{\alpha_{g,i}}{r_{g}}\right)^{\alpha_{g,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}}_{\text{"objective" factors}}$$

Choose η That Minimizes Implied Dispersion

· farm-crop revenue:

$$p_{i}y_{f,i} = \left(\underbrace{\left(\frac{1}{\lambda_{f}\tau_{f,m,i}}\right)^{\gamma_{i}}\Pi_{g}\left(\frac{1}{\tau_{f,g}\tau_{f,g,i}}\right)^{\alpha_{g,i}}}_{\text{composite distortion, } dist_{f,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}\underbrace{\left(p_{i}z_{f,i}\gamma_{i}^{\gamma_{i}}\eta^{\sum_{g}\alpha_{g,i}+\gamma_{i}}\Pi\left(\frac{\alpha_{g,i}}{r_{g}}\right)^{\alpha_{g,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}}_{\text{"objective" factors}}$$

· $Var(\log dist_{f,i})$ needed to match observed output dispersion depends on chosen η

GE PROFITS

$$\Pi = \sum_{f} \left[\sum_{i=1}^{N} p_{i} y_{f,i} - \sum_{g=1}^{G} r_{g} \sum_{i=1}^{N} x_{f,g,i} \right]$$

- distortions au, fixed costs ω , concavity η are not reflected in dividends sent to consumer
 - farmers act as if frictions they face had monetary representations
 - but these are non-monetary and not added/subtracted from dividends
- equivalent formulation: aus, ω s are monetary taxes/subsidies, administered by consumer
 - show up in dividends and consumer's BC as government revenue/expense
- choice is arbitrary: both formulations (or any mixture) produce identical equilibrium conditions

• benchmark: equalize land and labor distortions

- benchmark: equalize land and labor distortions
 - $\,-\,$ farms can't change crop sets, but can change crop ratios

- benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - $-\ \ \text{crop sets fixed} \rightarrow \text{extract all needed fundamentals from data}$

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, \bar{\lambda}$

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, ar{\lambda}$
- · least-distorted state:

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, \bar{\lambda}$
- · least-distorted state:
 - Tamil Nadu has the lowest variance of the composite distortion

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, \bar{\lambda}$
- · least-distorted state:
 - Tamil Nadu has the lowest variance of the composite distortion
 - compute variances of each type of distortion in Tamil Nadu

- · benchmark: equalize land and labor distortions
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, \bar{\lambda}$
- · least-distorted state:
 - Tamil Nadu has the lowest variance of the composite distortion
 - compute variances of each type of distortion in Tamil Nadu
 - downscale each Indian farm's frictions s.t. aggregate variances match Tamil Nadu variances

	0.93	1588	1781	1961	2123	2267	2393	2503
	0.83	1300	1472	1635	1787	1924	2047	2157
	0.73	762	837	909	977	1040	1098	1152
=	0.63			289	294	299	303	306
	0.53							
	0.43							
	0.33							
		1.1	1.3	1.5	1.7 σ	1.9	2.1	2.3

(a) reallocation gain, %

(a) reallocation gain, %

· misallocation estimates are always sensitive to calibrated concavity

	0.93	1588	1781	1961	2123	2267	2393	2503
	0.83	1300	1472	1635	1787	1924	2047	2157
	0.73	762	837	909	977	1040	1098	1152
_	0.63		284	289	294	299	303	306
	0.53							
	0.43							
	0.33							
		1.1	1.3	1.5	1.7 σ	1.9	2.1	2.3

(a) reallocation gain, %

- $\boldsymbol{\cdot}$ misallocation estimates are always sensitive to calibrated concavity
 - $-\,$ farms can expand more easily in reallocation \rightarrow greater gain

(a) reallocation gain, %

(b) single-product model error, %

- $\boldsymbol{\cdot}$ misallocation estimates are always sensitive to calibrated concavity
 - farms can expand more easily in reallocation \rightarrow greater gain
- \cdot sign and magnitude of single-product model's error also depends on calibration

REALLOCATION: ROLE OF STATES AND SEASONS

	main	within state	no split by season
multi-product:	294%	107%	314%
1-product:	212%	124%	260%

Remove More Distortions → 1-Product Model Overstates

• 1-product error when conducting increasingly expansive reallocations:

