Date: 16 October 2023 Team ID: 329 PROJECT ID: Proj_227277_Team_1 NAME: Gunasekar B

Installing Packages

Package name: transformers
 Use: For GPT-3 integration

Command to install: pip install transformers

2. Package name: Flask

Use: For web app development Command to install: pip install Flask

```
Account windows (Version 10.0.1883.1556)
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\CCMPAOppip install Flask
Defaulting to user installation because normal site-packages is not writeable
Collecting Flask
Downloading flask-3.0.0-py3-none-any.whl (99 kB)

Collecting blinker-1.6.2
Downloading blinker-1.6.3-py3-none-any.whl (13 kB)
Collecting ichi-w8.1.3

Downloading click-8.1.7-py3-none-any.whl (97 kB)

Sounloading listongerous-2.1.2
Downloading listongerous-2.1.2-py3-none-any.whl (13 kB)
Collecting iffigures-1.2.2

Collecting iffigures-1.2.2

Collecting iffigures-1.2.2

Collecting iffigures-1.2.2

Downloading verkzueg-3.1.2

Downloading verkzueg-3.1.2

Downloading verkzueg-3.1.2

Downloading verkzueg-3.1.2

Downloading werkzueg-3.0.0

Collecting Minfac-3.1.2-py3-none-any.whl (13 kB)

Collecting iffigures-3.0.0

Collecting iffigures-3.0.0

Downloading werkzueg-3.0.0

Downloading werkzueg-3.0.0

Downloading werkzueg-3.0.0

Downloading Minfac-3.1.2-py3-none-any.whl (226 kB)

Requirement already satisfied: colorama in clusers\Compaquapadata\roaming\python\python310\site-packages (from click>=8.1.3->Flask) (0.4.6)

Collecting MinkupsAre-2.0

Collectin
```

Program for basic chat bot conversation

I provided source code file called "AI Phase3 source code.ipynb" in my git hub repository

import all required libraries
import numpy as np
import string
from nltk.corpus import stopwords
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import CountVectorizer

from sklearn.neural_network import MLPClassifier from sklearn.feature_extraction.text import TfidfTransformer,TfidfVectorizer from sklearn.pipeline import Pipeline

importing the dataset
df = pd.read_csv(r"C:\Users\COMPAQ\Desktop\IBM\dataset\dialogs.txt", sep='\t')
df.head()

	hi, how are you doing?	i'm fine. how about yourself?
0	i'm fine. how about yourself?	i'm pretty good. thanks for asking.
1	i'm pretty good. thanks for asking.	no problem. so how have you been?
2	no problem. so how have you been?	i've been great. what about you?
3	i've been great. what about you?	i've been good. i'm in school right now.
4	i've been good. i'm in school right now.	what school do you go to?

#add column names

df.columns=['Questions','Answers']
df

	Questions	Answers	
0	i'm fine. how about yourself?	i'm pretty good. thanks for asking.	
1	i'm pretty good. thanks for asking.	no problem. so how have you been?	
2	no problem. so how have you been?	i've been great. what about you?	
3	i've been great. what about you?	i've been good. i'm in school right now.	
4	i've been good. i'm in school right now.	what school do you go to?	
3719	that's a good question. maybe it's not old age.	are you right-handed?	
3720	are you right-handed?	yes. all my life.	
3721	yes. all my life.	you're wearing out your right hand. stop using	
3722	you're wearing out your right hand. stop using	but i do all my writing with my right hand.	
3723	but i do all my writing with my right hand.	start typing instead. that way your left hand	
3724 rows × 2 columns			

```
# Data Preprocessing
# Assuming you have a DataFrame 'df' with 'Questions' and 'Answers' columns
df['question tokens'] = df['Questions'].apply(lambda x: len(x.split()))
df['answer tokens'] = df['Answers'].apply(lambda x: len(x.split()))
plt.style.use('fivethirtyeight')
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 5))
sns.set palette('Set2')
# Create bar plots for question tokens and answer tokens
sns.barplot(x='question tokens', y=df.index, data=df, ax=ax[0])
ax[0].set xlabel('Question Tokens')
ax[0].set_ylabel('Index')
ax[0].set title('Question Tokens Bar Plot')
sns.barplot(x='answer tokens', y=df.index, data=df, ax=ax[1])
ax[1].set_xlabel('Answer Tokens')
ax[1].set ylabel('Index')
ax[1].set_title('Answer Tokens Bar Plot')
# Create a scatter plot with a regression line for the relationship between question and
answer tokens
sns.regplot(x='question tokens', y='answer tokens', data=df, ax=ax[2],
scatter kws={'alpha':0.5})
ax[2].set xlabel('Question Tokens')
ax[2].set_ylabel('Answer Tokens')
ax[2].set title('Scatter Plot of Question Tokens vs. Answer Tokens')
plt.tight layout()
plt.show()
```



```
#Function for converting upper to lower case
def cleaner(x):
    return [a for a in (".join([a for a in x if a not in string.punctuation])).lower().split()]

#Model
Pipe = Pipeline([
    ('bow',CountVectorizer(analyzer=cleaner)),
    ('tfidf',TfidfTransformer()),
    ('classifier',MLPClassifier())
])

Pipeline

Pipeline
```

```
► CountVectorizer

► TfidfTransformer

► MLPClassifier
```

Pipe.fit(df['Questions'],df['Answers'])

```
► Pipeline

► CountVectorizer

► TfidfTransformer

► MLPClassifier
```

#Text

Pipe.predict(['like how clear the sky gets after it rains.'])[0]

```
'i feel the same way. it smells so good after it rains.'
```

Pipe.predict(['i want this trip to be perfect, i hope it stays warm.'])[0]

```
"this california weather is so uncertain, it's impossible to know what'll happen."
```

Pipe.predict(['it would not be good if it got cold this weekend.'])[0]

```
'i want this trip to be perfect, i hope it stays warm.'
```

Pipe.predict(['it would be nice if the weather would never change.'])[0]

```
'that would be great, then we could plan things sooner.'
```

Pipe.predict(['why is that?'])[0]

```
'because i love the snow.'
```

Pipe.predict(['What are you doing'])[0]

```
"i'm going to change the light bulb. it burnt out."
```