Department of Statistics and Actuarial Science University of Hong Kong

Tutorial 8: MCMC - Real Examples

ZHANG Yan

October 30, 2021

Overview

Random Disks

Problem formulation Sampling strategy Simulation results

Ising Model

Problem formulation Sampling strategy Simulation results

Slice Sampler

Problem formulation Sampling strategy

References

Random Disks

Figure 11.1: The left panel shows N=224 disks of diameter about 0.0692 closely packed into the unit square. The boundary of the square is visible in a few places. The boundary is periodic, and so a disk that intersects an edge is plotted twice, and a disk intersecting the corner is plotted four times. The right panel shows 224 disks of diameter about 0.0536.

► The problem that motivated Metropolis to invent MCMC.

Assumptions:

- 224 equally large circular disks are packed into a unit square.
- Wraparound boundary (better approximation to an enormous system).
- ▶ No overlap (disks are not independent).

Goals:

- ▶ Draw samples, where each sample is the 224 disks randomly distributed on the square.
- Do inference based on samples, like the distribution of distance from each disk to its nearest neighbor.
- Consider different sizes of disks.

Difficulties:

- ► A 448 dimensional sampling problem.
- Sampling sequentially (choosing centers one at a time and never placing one overlapping with a previous point), but we may have no room to place the late points.

Solution:

Do random perturbations sequentially based on MCMC (a technique called the Metropolis within Gibbs).

Random Disks

Sampling strategy - the target distribution

- ▶ Assume the diameter $d_0 = d_{\text{max}}(1 2^{\nu 8})$, $0 \le \nu \le 7$, $d_{\text{max}} = 1/14$. Each sample is a 224 × 2 matrix $\mathbf{x} = [x_{jk}]$, j = 1, ..., 224, k = 1, 2.
- ▶ Define the distance in the unit square:

$$d((x_{j1},x_{j2}),(x_{j'1},x_{j'2})) = \sqrt{d_W(x_{j1},x_{j'1})^2 + d_W(x_{j2},x_{j'2})^2},$$

where d_W is the wraparound distance

$$d_W(x_{jk}, x_{j'k}) = \frac{1}{2} - ||x_{jk} - x_{j'k}| - \frac{1}{2}|.$$

► The (unnormalized) target distribution is

$$\pi_{u}(\mathbf{x}) = \begin{cases} 1 & \text{if } \min_{j,j'} d((x_{j1}, x_{j2}), (x_{j'1}, x_{j'2})) \geq d_0, \\ 0 & \text{otherwise.} \end{cases}$$

- Initialize the simulation at x_0 , which has the disks centered on a grid ensuring no overlap.
- ► Given **x**, for the disk *j*:

$$x'_{j} = (x_{j1}, x_{j2}) + \mathcal{U}([-\alpha, \alpha]^{2}), \alpha = d_{\max} - d_{0},$$

and denote x' as the old x with row j replaced by x'_i .

► The M-H acceptance probability is

$$\min(1, \frac{\pi_u(\mathbf{X}')}{\pi_u(\mathbf{X})}) = \min(1, \pi_u(\mathbf{X}')) = \pi_u(\mathbf{X}').$$

So, we accept this move if there is no overlap in x'.

► The 224 updates complete one iteration of this sampler, called the **Metropolis within Gibbs**.

Figure 11.8: This figure shows histograms of the distance from each disk to its nearest neighbor, as a multiple of the disk diameter. On the left the diameters are given by (11.28) with $\nu=3$ and on the right $\nu=6$.

- ▶ 1600 iterations with thinning parameter 16.
- ► 22400 distances in each histogram.

Random Disks

Simulation results - trajectories

Ising Model

Figure 11.2: The Ising model with J=1 and B=0, sampled at 3 temperatures T on a 100×100 grid, with periodic boundary conditions. The left panel is roughly half black but some renderings make it look like a higher fraction black.

An example from physics.

- ► At each of $N = 100^2$ grid points there is a dichotomous variable with charge 1 or -1, or equivalently we have $x \in \{-1, 1\}^{100^2}$.
- ► Define the Hamiltonian energy function

$$H(\mathbf{x}) = -J\sum_{j\sim k} x_j x_k - B\sum_{j=1}^N x_j,$$

where $\sum_{j\sim k} x_j x_k$ is the number of neighbor pairs with matching signs minus the number that differ. Assume **wraparound**.

► Based on the Boltzmann's law:

$$\pi(\mathbf{x}) \propto \exp(-\frac{H(\mathbf{x})}{T}),$$

where *T* is the called the **temperature**.

The energy function:

$$H(\mathbf{x}) = -J\sum_{j\sim k} x_j x_k - B\sum_{j=1}^N x_j.$$

- When J > 0, matching neighbors result in lower energy $H(\mathbf{x})$ thereby raising the probability $\pi(\mathbf{x})$ and mismatched neighbors have the opposite effect. This is known as the **ferromagnetic** case.
- ▶ If *J* < 0 then we have the **antiferromagnetic case** and the neighbors tend to differ from each other.
- ▶ If $B \neq 0$ then the model is **biased** towards more charges of the same sign as B.

The probability function:

$$\pi(\mathbf{x}) \propto \exp(-\frac{H(\mathbf{x})}{T}) = \exp(-H(\mathbf{x}))^{1/T}.$$

- ► About *T*, in a very **hot system**, the Ising model is nearly a uniform distribution.
- In a very **cold system**, the Ising model puts almost all of its probability on states that achieve the minimum value of H(x), which are called the **ground states**. (annealing)
- Actually, the interesting temperatures are intermediate.

- ► In the random scan Gibbs sampler, the component to update is chosen at random.
- ▶ To draw samples from the Ising Model, given x, we randomly picking a j and **change** x_j **to** $-x_j$, and denote x' as the old x with the jth element changed.
- ► The M-H acceptance probability is

$$\min(1, \frac{\pi(\mathbf{x}')}{\pi(\mathbf{x})}) = \min(1, \exp(\frac{H(\mathbf{x}) - H(\mathbf{x}')}{T}))$$
$$= \min(1, \exp(-\frac{2x_j(J\sum_{k:k\sim j} x_k + B)}{T})).$$

▶ One **sweep** corresponds to $N = 100^2$ updates.

- ► The strategy to use the **Metropolis within Gibbs** in the discrete setting in this way is called the **Metropolized Gibbs sampler**.
- If we directly use the Gibbs here. The probability to move would be smaller:

$$\frac{\pi(\mathbf{x}')}{\pi(\mathbf{x}') + \pi(\mathbf{x})} \leq \frac{\pi(\mathbf{x}')}{\max(\pi(\mathbf{x}'), \pi(\mathbf{x}))} = \min(1, \frac{\pi(\mathbf{x}')}{\pi(\mathbf{x})}).$$

Figure 11.10: Mean energy versus mean spin for the Ising model with J=1 and B=0, temperature T=8.0 on a 100×100 grid. Four trajectories of 500 sweeps are shown as described in the text. The starting points are solid.

- ▶ The **mean spin** is $\sum_{j=1}^{N} x_j/N$.
- ▶ The mean energy is H(x)/N.

Figure 11.12: This figure shows the mean spin per site in x_i , versus the simulation index i, after every 200'th sweep, for the Ising simulation at the critical temperature $T_c = 2.269$.

▶ The critical temperature is $T_c = 2.269$.

Figure 11.11: Autocorrelation functions for the Ising model at temperatures 8 and $T_c=2.269$. The ACFs for mean absolute spin are on the left and the ACFs for mean energy are on the right. The lags for T=8 go up to 50 while those for $T=T_c$ go up to 1000 in steps of 20.

► The absolute mean spin is $|\sum_{j=1}^{N} x_j/N|$.

Slice Sampler

Figure 12.7: This figure illustrates the slice sampler. The unnormalized density π_u is given by the thick line. The slice sampler starts at the solid point (1,4) and from there executes 25 steps of the Gibbs sampler for the uniform distribution under π_u over the interval [-2,2].

An important variation of the Gibbs sampler.

The full conditional distributions:

- ▶ To draw samples from $\pi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^d$, we define the region $\mathcal{R} = \{(\mathbf{x}, \mathbf{z}) : 0 \le \mathbf{z} \le \pi(\mathbf{x})\}$. If $(\mathbf{X}, \mathbf{Z}) \sim \mathcal{U}(\mathcal{R})$, $\mathbf{X} \sim \pi(\mathbf{x})$.
- Given x, the full conditional distribution of Z is $\mathcal{U}(\mathcal{R}(x))$, where $\mathcal{R}(x) = \{z : 0 \le z \le \pi(x)\}$ is an one dimensional set.
- Given \mathbf{x}_{-j} and z, the full conditional distribution of X_j is $\mathcal{U}(\mathcal{R}(\mathbf{x}_{-j}, z))$, where $\mathcal{R}(\mathbf{x}_{-j}, z) = \{x_j : z \leq \pi(\mathbf{x})\}$.

The algorithm:

- ➤ So, the **slice sampler** is simply to draw samples by the Gibbs sampler with these one dimensional uniform distributions.
- ▶ To draw one sample from $\mathcal{U}(\mathcal{R}(\mathbf{x}_{-j}, z))$, one naive method is to repeatedly draw $\mathcal{U}([L, R])$ for small L and big R and accept the first one inside $\mathcal{R}(\mathbf{x}_{-j}, z)$, but it is **too wasteful**.
- Instead, we will consider a two stage strategy.

The **stepping out procedure** (for the *j*th substep):

- ▶ Given x_j and $\mathcal{R}(\mathbf{x}_{-j}, z)$.
- ► Set hyperparameters *W* (the initial estimated slice size) and *M* (the limit on iterations).
- ▶ Do initialization: $L = x_j \mathcal{U}([0, W]), R = L + W; J = \lfloor \mathcal{U}([0, M]) \rfloor, K = M 1 J.$
- ▶ While J > 0 or $L \in \mathcal{R}(\mathbf{x}_{-i}, z)$: L = L W, J = J 1.
- ▶ While K > 0 or $R \in \mathcal{R}(\mathbf{x}_{-j}, z)$: R = R + W, K = K 1.
- ightharpoonup Return [L, R].

The **shrinkage sampling procedure** (for the *j*th substep):

- ► Given x_j , $\mathcal{R}(\mathbf{x}_{-j}, z)$ and [L, R].
- ► Loop:
 - $ightharpoonup x_i' = \mathcal{U}([L, R]).$
 - ▶ If $x_i' \in \mathcal{R}(\mathbf{x}_{-i}, z)$: Return x_i' .

Some comments:

- If the hyperparameters are carefully tuned, combining these two stages will result in **detailed balance**.
- ► The biggest practical issue is to pick the width W for different j.

References

- ▶ Owen, A. B. (2013). Monte Carlo theory, methods and examples.
- ▶ Neal, R. M. (2003). Slice sampling. The annals of statistics, 31(3), 705-767.

Thanks!