Automata and Language Theory Chapter 3(Context Free Grammar)

Dr. Doaa Shebl
Faculty of Computers and Artificial Intelligence
Beni-Suef University

How to Construct Grammar ????

Example 1: Construct the grammar for the set of strings over {a, b} that contain exactly 2b's.

<u>a*b a* b a*</u>

G:S
$$\rightarrow$$
 AbAbA
 $A \rightarrow aA/\lambda$

Example 2: Construct the grammar for the set of strings over {a, b} that contain substring bb.

$$(a \cup b)^* bb (a \cup b)^*$$

G:S
$$\rightarrow$$
 AbbA
A \rightarrow aA/bA/ λ

Remark:

Example 3: Construct the grammar for the set of strings over {a, b} that contain at least 2b.

$$(a \cup b)^* b (a \cup b)^* b (a \cup b)^*$$

G:
$$S \rightarrow AbAbA$$

 $A \rightarrow aA/bA/\lambda$

Example 4(Chapter 2 : Exercise 12)

Give the regular expression for the set of strings over $\{a, b, c\}$ which all the a's precede the b's, which in turn precede the c's. It is possible that there are no a's, b's, or c's.

Solution

Construct the grammar

G: S
$$\rightarrow$$
 aS / A
A \rightarrow bA / B
B \rightarrow cB / λ

OR
G: S \rightarrow aS / A / λ
A \rightarrow bA / B / λ
B \rightarrow cB / λ

Example 5 (Chapter 2 : Exercise 13)

Give the regular expression for the set of strings over {a, b, c} which all the a's precede the b's, which in turn precede the c's. without the null string.

Solution

Construct the grammar

G:
$$S \rightarrow aS / aA$$

 $A \rightarrow bA / bB$
 $B \rightarrow cB / c$

Example 6: Construct the grammar that has a regular expression: <u>a+b*</u>

Solution

G: S
$$\rightarrow$$
 aS / aB
OR A \rightarrow aA / a
B \rightarrow bB / λ

Construct the language for the grammar

G: S
$$\rightarrow$$
 aSa / aB a
B \rightarrow bB / λ

Solution

S ⇒ aSa

⇒ aaSaa

⇒
$$a^n S a^n$$
⇒ $a^n S a^n$
⇒ $a^n aBa a^n$

L(G)= $\{a^n b^m a^n, n > 0, m \ge 0\}$

⇒ $a^n b^m a^n$

Construct the language for the grammar

G:
$$S \rightarrow aSa / aB a$$

 $B \rightarrow bB / b$

Solution

S ⇒ aSa
⇒ aaSaa
⇒
$$a^n S a^n$$

⇒ $a^n S a^n$
⇒ $a^n aBa a^n$
⇒ $a^n b^m a^n$
L(G)= { $a^n b^m a^n, n, m > 0$ }

Construct the language for the grammar

G:
$$S \rightarrow aSbb / A$$

 $A \rightarrow cA / c$
Solution
 $S \Rightarrow aSbb$
 $\Rightarrow aaSbbbb$
 $\Rightarrow a^n S (bb)^n$
 $\Rightarrow a^n A (bb)^n$
 $\Rightarrow a^n c^m (bb)^n$
 $\Rightarrow a^n c^m (bb)^n$