START OF QUIZ Student ID: 52196086,Ahluwalia,Max

Topic: Lecture 4 Source: Lecture 4

Why can we use logarithms for the Viterbi algorithm, but not the forward algorithm? (1)

Topic: Lecture 3 Source: Lecture 3

Imagine that we are doing machine translation instead of POS-tagging. What would be the equivalent of emission probabilities and transition probabilities? Explain. (2)

Topic: Lecture 4 Source: Lecture 4

Iterative algorithms often require a stopping condition. Briefly explain why this is necessary, and why perplexity is a metric to use for stopping HMMs. (2)

Topic: Lecture 2 Source: Lecture 2

Why do outliers cause problems for clustering algorithms like k-means? How can we deal with them? (1)

Topic: Lecture 3 Source: Lecture 3

Explain why HMMs are a generative model, and how that differs from a discriminative model. (1)

Topic: Lecture 2 Source: Lecture 2

Imagine we were using k-means to cluster misspellings around their correct spellings. How many clusters would we need, and what would be a good distance function? Explain. (2)

Topic: Lecture 1 Source: Lecture 1

Suppose we are filling the table for the Levenshtein distance algorithm. We are in cell (x, y). The values of cell (x-1, y-1), (x-1, y), and (x, y-1) are 5, 3, and 1, respectively. What is the value we will put in cell (x, y), given that the letters are NOT equal? (1)

Topic: Lecture 1 Source: Lecture 1

Explain why edit distance (given our formulation) will always choose a substitution, if it can. (1)

Topic: Long

Source: Lecture 4

Please refer to the "Long" question from Lecture 4. $\,$

END OF QUIZ