

Robótica Móvel

Planejamento de caminhos – PRM/RRT

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Introdução

- Técnicas determinísticas apresentam dificuldades em ambientes complexos e robôs com vários DoF
 - Discretição do espaço/estados
 - Determinação do C-space
 - Tarefas complexas e caras

• É fácil testar se uma configuração é válida!

http://lavalle.pl/rrt/gallery_xwing.html

Introdução

Abordagens baseadas em amostragem

- Ideia geral
 - Gerar e distribuir um conjunto aleatório de configurações válidas no ambiente e tentar conectá-las em um grafo/árvore
- Completude e eficácia vs. Simplicidade e eficiência
- Métodos
 - Probabilistic Roadmaps (PRM)
 - Rapidly-Exploring Random Tree (RRT)

Construção

- Usando uma distribuição qualquer de probabilidades, gerar uma amostra x no domínio do \mathcal{C} -space $(\mathbb{R}^2, SE(2), SE(3))$
 - Distribuição uniforme é a mais simples
- Verificar que a amostra gerada é válida \rightarrow $q(x) \in C_{free}$
- Conectar a amostra/vértice aos k vizinhos mais próximos

- Adicionar q_{start} e q_{goal} ao grafo
- Realizar a busca pelo melhor caminho

Construção

- Usando uma distribuição qualquer de probabilidades, gerar uma amostra x no domínio do \mathcal{C} -space $(\mathbb{R}^2, SE(2), SE(3))$
 - Distribuição uniforme é a mais simples
- Verificar que a amostra gerada é válida \rightarrow $q(x) \in C_{free}$
- Conectar a amostra/vértice aos k vizinhos mais próximos

- Adicionar q_{start} e q_{goal} ao grafo
- Realizar a busca pelo melhor caminho

Construção

- Usando uma distribuição qualquer de probabilidades, gerar uma amostra x no domínio do \mathcal{C} -space $(\mathbb{R}^2, SE(2), SE(3))$
 - Distribuição uniforme é a mais simples
- Verificar que a amostra gerada é válida \rightarrow $q(x) \in C_{free}$
- Conectar a amostra/vértice aos k vizinhos mais próximos

- Adicionar q_{start} e q_{goal} ao grafo
- Realizar a busca pelo melhor caminho

Construção

- Usando uma distribuição qualquer de probabilidades, gerar uma amostra x no domínio do \mathcal{C} -space $(\mathbb{R}^2, SE(2), SE(3))$
 - Distribuição uniforme é a mais simples
- Verificar que a amostra gerada é válida \rightarrow $q(x) \in C_{free}$
- Conectar a amostra/vértice aos k vizinhos mais próximos

- Adicionar q_{start} e q_{goal} ao grafo
- Realizar a busca pelo melhor caminho

Construção

- Usando uma distribuição qualquer de probabilidades, gerar uma amostra x no domínio do \mathcal{C} -space $(\mathbb{R}^2, SE(2), SE(3))$
 - Distribuição uniforme é a mais simples
- Verificar que a amostra gerada é válida \rightarrow $q(x) \in C_{free}$
- Conectar a amostra/vértice aos k vizinhos mais próximos

- Adicionar q_{start} e q_{goal} ao grafo
- Realizar a busca pelo melhor caminho

Probabilistic Roadmaps Desafios

- Criação das arestas → Planejador local
 - Encontrar um caminho válido entre duas amostras
 - Linha reta → Robô holonômico (atua em todos os DoF)
 - Robô com restrições \rightarrow Integrar por Δt usando $\dot{x} = f(x, u)$
- Geralmente maior tempo gasto na checagem de colisão
 - Checar a amostra é rápido, verificar a aresta pode ser custoso
- Qual distribuição usar? E se usarmos outras informações?

Probabilistic Roadmaps Melhorias

- Pós-processamento
 - Adicionar/remover vértices auxiliares
 - Suavizar/reduzir o caminho atual
- Diferentes distribuições probabilísticas
 - Considerar "tendências" na inserção dos pontos
- Diferentes planejadores locais

Probabilisticamente completo

 Com o aumento do número de amostras N (iterações), uma solução (caminho) admissível será encontrada (se houver)

$$\lim_{N\to\infty} \Pr(encontrar\ solução) = 1$$

Assintoticamente ótimo

Eventualmente, encontra solução ótima com aumento de amostras

$$\lim_{N\to\infty} \Pr(custo\ solução = \acute{o}timo) = 1$$

- Vantagens
 - Representação simplificada do C-space

- Desvantagens
 - Não é determinístico
 - Caminhos geralmente ineficientes
 - Dificuldades em certos ambientes
 - Ex: locais com passagens estreitas

Fonte: Planning Algorithms

- Expandir uma árvore <u>aleatoriamente</u> de maneira <u>incremental</u> a partir da raiz (q_{start}) até um galho estar suficientemente perto do goal (q_{goal})
- Principal característica
 - Viabilidade do caminho, não otimalidade
- Diversas extensões na literatura
 - RRT*, CL-RRT, DMA-RRT, RG-RRT, ...


```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
        x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow \mathsf{SELECT\_INPUT}(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t)
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```

O algoritmo recebe como parâmetros básicos o ponto inicial (raiz), o número máximo de vértices a serem inseridos, e o passo de integração usado para criação do novo estado.

A árvore é iniciada vazia, e enquanto o número máximo de vértices não for inserido os seguintes passos são executados. Também podemos interromper a execução se um caminho até o goal já tiver sido encontrado.


```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
        x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow SELECT\_INPUT(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```



```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
        x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow SELECT\_INPUT(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```



```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
        x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow \mathsf{SELECT\_INPUT}(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```



```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
         x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow \mathsf{SELECT\_INPUT}(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```



```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
        x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow SELECT\_INPUT(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add_edge(x_{near}, x_{new}, u);
    return T
```



```
GENERATE_RRT(x_{init}, K, \Delta t)
   T.init();
    for k = 1 to K do
         x_{rand} \leftarrow RANDOM\_STATE();
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x_{rand}, T);
        u \leftarrow \mathsf{SELECT\_INPUT}(x_{rand}, x_{near});
        x_{new} \leftarrow \text{NEW\_STATE}(x_{near}, u, \Delta t);
        T.add_vertex(x_{new});
        T.add edge(x_{near}, x_{new}, u);
    return T
```


Se não ocorrer nenhuma colisão no trajeto entre x_{near} e x_{new} o vértice e a aresta podem ser adicionados à árvore.

Geralmente vamos considerar uma região ao redor da posição alvo como suficiente para terminar a execução do algoritmo.

https://youtu.be/jVKEoXL5-ns

iRRT Simulator: http://correll.cs.colorado.edu/?p=1623

Rapidly-Exploring Random Tree Melhorias

- Exploração ocorre em todas as direções
 - Perda de tempo olhar em direções desnecessárias
 - Adicionar um bias na busca (direcionar)
 - Porcentagem das amostras é o próprio goal
- Árvores bi-direcionais
 - Crescer a árvore em ambas direções
 - Tentar conectar os vértices das árvores

Rapidly-Exploring Random Tree Melhorias – Bias

Rapidly-Exploring Random Tree Melhorias – Bias

Melhorias – Bi-direcional

Rapidly-Exploring Random Tree Melhorias

Rapidly-Exploring Random Tree Múltiplos DoF

Rapidly-Exploring Random Tree Múltiplos DoF

Rapidly-Exploring Random Tree Múltiplos DoF

http://lavalle.pl/rrt/gallery_3dnorot.html http://lavalle.pl/rrt/gallery_3drot.html

Restrições cinemáticas

lacktriangle Dado um estado x e entrada u, temos que

$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$

Considerar o modelo cinemático

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & \frac{\tan u_{\phi}}{L} \end{bmatrix} \begin{bmatrix} u_{s} \\ u_{\phi} \end{bmatrix}$$

Você também pode usar soluções analíticas, por exemplo, curvas de Dubins!

Deve-se realizar uma integração numérica

Restrições cinemáticas

- Vantagens
 - Simples de implementar
 - Fácil adicionar restrições mais complexas
 - Probabilisticamente completo

- Desvantagens
 - Não determinístico (assintoticamente ótimo)
 - Caminhos geralmente ineficientes

Considerações finais PRM vs. RRT

- Probabilistic Roadmaps (PRM)
 - Multiple-query model
 - Grafo gerado pode ser usados várias vezes

- Rapidly-Exploring Random Tree (RRT)
 - Single-query model
 - Árvore com foco em uma única utilização

