L1-MATH- SUITES ET FONCTIONS

FEUILLE DE TRAVAUX DIRIGÉS N° 1

Suites numériques

Enseignant: H. El-Otmany

A.U.: 2014-2015

Exercice n°1 Soit (u_n) ma suite définie par $u_n = n^2 - n + 1$.

- 1. Calculer u_0 et u_{10} .
- 2. Exprimer u_{n+1} , en fonction de n et u_n .

Exercice n°2 Soit (u_n) ma suite définie par $u_n = \frac{1}{n+1}$

- 1. Exprimer $u_{n+1} u_n$ en fonction de n.
- 2. En déduire le sens de variation de la suite (u_n) .

Exercice n°3 Montrer par récurrence que :

- 1. Pour tout entier naturel $n \ge 6$, $2^n \ge 6n + 7$.
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 4 \frac{1}{2^n 1}$ où la suite u_n est définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}u_n + 2$.
- 3. Pour tout $n \in \mathbb{N}$, $2^{2n} + 2$ est un entier divisible par 3 (a divisible par 3 s'écrit a = 3q).
- 4. $a \ge 0$, pour tout $n \in \mathbb{N}^*$, $(1+a)^n \ge 1 + na$.

Exercice n°4 Démontrer

- 1. Pour tout $n \ge 1$, $\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$
- 2. Pour tout $n \ge 1$, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Exercice n°5 Calculer la limite des suites données par les termes généraux suivants :

$$\frac{n^3}{-3+\sin n}, \quad \cos(\frac{1}{n}), \quad e^{-(n+1)^2}\cos(n^3+1)$$
$$\sqrt{n+1} - \sqrt{n}, \quad \frac{3^n - 2^n}{2^n + 3^n}, \quad \frac{1}{n}\ln(1+2n)$$

Exercice n°6 Pour quels réels a non nuls la suite $u_n = \frac{2^n + 3^n}{a^n}$ a-t-elle une limite finie?

Exercice n°7 Soit (u_n) la suite de nombres réels définie par $u_0 = -1$, $u_1 = -1$ et

$$u_{n+2} = (n+1)u_{n+1} - (n+2)u_n.$$

- 1. calculer les quinze premiers termes de la suite.
- 2. Que peut-on conjecturer pour $u_{n+1} u_n$?
- 3. En déduire une conjecture sur la suite (u_n) .
- 4. Démontrer cette dernière conjecture.

Exercice n°8 Déterminer la limite, si celle ci existe, des suites suivantes :

$$a_{n} = \frac{3^{n} - (-2)^{n}}{3^{n} + (-2)^{n}}, \ n \geqslant 0 \quad ; \quad b_{n} = \sqrt{n^{2} + 2n + 1} - \sqrt{n^{2} - 2n - 1}, \ n \geqslant 0$$

$$c_{n} = \frac{n - \sqrt{n^{2} + 1}}{n + \sqrt{n^{2} - 1}}, \ n \geqslant 1 \quad ; d_{n} = \frac{1}{n^{2}} \sum_{k=1}^{n} k, \ n \geqslant 0$$

$$p_{n} = \left(1 + \frac{1}{n}\right)^{n}, \ n \geqslant 1 \quad ; \quad q_{n} = \frac{\sin n}{n + (-1)^{n+1}}, \ n \geqslant 1$$

$$r_{n} = \frac{n - (-1)^{n}}{n + (-1)^{n}}, \ n \geqslant 2 \quad ; \quad s_{n} = \frac{e^{n}}{n^{n}}, \ n \geqslant 1$$

Exercice n°9 On considère la suite (u_n) définie par $u_1 = 1$ et $u_n = \frac{n}{n+1}u_n + \frac{4}{n+1}$.

- 1. Calculer u_2 .
- 2. Démontrer que la suite (v_n) définie par $v_n = nu_n$ est une suite arithmétique dont on précisera le premier terme et la raison de (v_n) .
- 3. En déduire l'expression de (v_n) en fonction de n, puis celle de u_n en fonction de n.
- 4. En déduire que la suite (u_n) est strictement monotone et bornée.

Exercice n°10 Étudier la nature des suites suivantes :

- 1. $u_0 \in \mathbb{C}$ et $u_{n+1} = \frac{1}{5}(3u_n 2\overline{u}_n)$
- 2. $u_n = \left(2\sin(\frac{1}{n}) + \frac{3}{4}\cos(n)\right)^n$

Exercice n°11 Soit $(u_n)_{n\geqslant 1}$ une suite définie par

$$u_n = \left(1 + \frac{1}{n^2}\right)\left(1 + \frac{2}{n^2}\right) + \dots + \left(1 + \frac{n-1}{n^2}\right)\left(1 + \frac{n}{n^2}\right)$$

On pose $v_n = \ln(u_n)$.

- 1. Montrer, pour tout $x\geqslant 0$ l'inégalité $x-\frac{x^2}{2}\leqslant \ln(x+1)\leqslant x$.
- 2. En déduire que

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \leqslant v_n \leqslant \frac{n+1}{2n}.$$

On admettra que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

- 3. Montrer que (v_n) converge, et préciser sa limite.
- 4. Montrer que (u_n) converge, et préciser sa limite.

Exercice n°12 Soit
$$u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{\dots + \sqrt{1}}}}$$
.

- 1. Écrire une formule de récurrence liant u_{n-1} et u_n .
- 2. Montrer que la suite $(\frac{u_n}{\sqrt{n}})$ est bornée.
- 3. Déterminer sa limite.

Exercice n°13

Soit f la fonction définie sur \mathbb{R} par $f(x) = x - x^2$, et (u_n) la suite définie par $u_0 \in]0,1[$ et $u_{n+1} = f(u_n)$.

- 1. Étudier les variations de f.
- 2. Montrer, pour tout n, $0 < u_n < \frac{1}{n+1}$.
- 3. En déduire que la suite (v_n) définie par $v_n = nu_n, n \geqslant 0$, est croissante.
- 4. Montrer que la suite (v_n) admet une limite l appartenant à]0,1[(on ne demande pas de calculer l pour le moment).
- 5. On pose $w_n = n(v_{n+1} v_n)$. Montrer que (w_n) converge vers l(1 l).
- 6. Soit (t_n) une autre suite telle, pour $n \ge n_0$, on a

$$t_{n+1} - t_n \geqslant \frac{a}{n},$$

où a > 0. Montrer que $t_{2n} - t_n \ge \frac{a}{2}$ pour $n \ge n_0$, puis que (t_n) est divergente.

7. Montrer que si $l \neq 1$, la suite (v_n) vérifie les mêmes conditions que la suite (t_n) de la question précédente. En déduire la valeur de l.

Exercice n°14 Pour tout $n \in \mathbb{N}$, on considère $S_n(p) = \sum_{k=0}^n \frac{k^p}{k^{p+1}+1}$ pour tout entier $p \geqslant 1$.

- 1. Montrer que pour tout $n \ge 1$, on a $S_{2n}(p) S_n(p) \ge \frac{1}{4}$, $\forall p \ge 1$.
- 2. En déduire que $\lim_{n \to +\infty} S_n(p) = +\infty, \forall p \geqslant 1.$

Exercice $n^{\circ}15$ On considère la suite (u_n) de nombre réels définie par la relation de récurrence :

$$\begin{cases} 0 < u_0 \leqslant 1, \\ u_{n+1} = \frac{u_n}{2} + \left(\frac{u_n}{2}\right)^2, \forall n \geqslant 1. \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n > 0$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leqslant 1$.
- 3. Montrer que la suite (u_n) est monotone. En déduire que la suite est convergente.
- 4. Déterminer la limite de la suite (u_n) .

Exercice n°16 Soit $\alpha > 0$ et soit $(u_n)_{n \ge 1}$ la suite de nombres réels définie par $u_0 > 0$ et

$$u_n \frac{1}{2} \left(u_n + \frac{\alpha}{u_n} \right), \ n \geqslant 0.$$

1. Montrer que

$$u_{n+1}^2 - \alpha = \frac{(u_n^2 - \alpha)^2}{4u_n^2}.$$

- 2. Montrer que pour tout $n \ge 1$, on a $u_n \ge \sqrt{\alpha}$ et que la suite (u_n) est décroissante.
- 3. En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 4. En appliquant l'identité remarquable à $u_{n+1}^2 \alpha$, donner une majoration de $u_{n+1} \sqrt{\alpha}$ en fonction de $u_n \sqrt{\alpha}$.
- 5. Si $u_1 \sqrt{\alpha} \leqslant k$ et pour $n \geqslant 1$, montrer que

$$u_n - \sqrt{\alpha} \leqslant 2\sqrt{\alpha} \left(\frac{k}{2\sqrt{\alpha}}\right)^{2^{n-1}}.$$

6. Application : calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Exercice n°17 Soit (S_n) la suite définie par $S_n = \sum_{k=1}^n \frac{1}{k}$.

1. En utilisant une intégrale, montrer, pour tout n > 0, l'inégalité suivante :

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

- 2. Montrer que $\ln(n+1) \leqslant S_n \leqslant \ln(n) + 1$.
- 3. Déterminer la limite de S_n .
- 4. Montrer que la suite de terme général $u_n := S_n \ln(n)$ converge (indication : on montrera que $(u_n)_{n>0}$ est décroissante.

Exercice n°18 Pour tout entier naturel $n \ge 1$, on considère $u_n = \sum_{k=1}^n \frac{1}{k(k-1)}$.

- 1. Montrer que (u_n) converge et déterminer sa limite.
- 2. En déduire que la suite (v_n) définie pour tout $n \in \mathbb{N}^*$: $v_n = \sum_{k=1}^n \frac{1}{k^2}$, est convergente.

Exercice n°19 Soit (u_n) une suite réelle telle que : $\forall n \in \mathbb{N}, 0 \leq u_n < 1$.

- 1. Étudier la nature de la suite (v_n) telle que $v_n = \prod_{i=0}^n u_i, n \in \mathbb{N}$.
- 2. On suppose maintenant qu'il existe $q \in \mathbb{R}^*$ tel que pour tout $n \in \mathbb{N}$, $u_n < q < 1$. Déterminer la limite de v_n lorsque n tend vers $+\infty$.
- 3. Soit (a_n) une suite à termes positifs et borné. On définit la suite (w_n) par :

$$\begin{cases} w_0 = a_0, \\ w_n = \sum_{k=0}^n a_k u_k^k, & n \in \mathbb{N}^*. \end{cases}$$

Étudier la suite (w_n) .

Exercice n°20 Soit (u_n) la suite de nombres réels définie pour tout $n \ge 1$ par :

$$u_n = \frac{1}{\sqrt{n}} E(\sqrt{n}).$$

Montrer que la suite (u_n) est convergente et déterminer sa limite.

Exercice n°21 On considère les suites (u_n) et (v_n) définies pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}, \quad v_n = u_n + \frac{1}{n \cdot n!}.$$

- 1. Montrer que les suites (u_n) et (v_n) sont adjacentes. Elles convergent donc vers une même limite, notée e.
- 2. Montrer que e est irrationnel.

Exercice n°22

1. Étudier la suite $(u_n)_{n\in\mathbb{N}}$, définie par la relation de récurrence :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + a^n, \end{cases}$$

où a est un réel donné.

2. Généraliser le résultat au cas où la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$\begin{cases} u_0 \in \mathbb{C} \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + v_n, \end{cases}$$

avec v_n est une suite donnée.