Прикладная алгебра и теория чисел

Оглавление

1	Вводная информация		
	1.1	Группы	3
	1.2	Поля и кольца	4
2 Помехоустойчивое кодирование		мехоустойчивое кодирование	5
	2.1	Метрика Хэмминга	5

Глава 1

Вводная информация

Эта глава содержит определения, утверждения и теоремы о группах, кольцах и полях. Эта информация понадобится для понимания дальнейшего материала.

1.1 Группы

Определение 1 (Группа). Γ p y n n o \ddot{u} \mathfrak{G} называется четверка $(G, *^{(2)}, e^{(0)}, -1^{(1)})$, $\varepsilon \partial e$

$$\begin{cases} x * (y * z) = (x * y) * z, \\ x * e = x, \\ x * x^{-1} = e \end{cases}$$

Определение 2 (Абелева группа). *А* белевой группа ой называется группа, в которой * коммутативна (x * y = y * x).

Определение 3 (Порядок). Π о p я d о κ r p y n n u, ord \mathfrak{G} — количество элементов.

Определение 4 (Циклическая группа). $G = \{e, x^1, x^2, x^3, \dots, x^{-1}, x^{-2}, x^{-3}, \dots\}$

Определение 5 (Подгруппа). \mathfrak{G} - группа (G, *, e, -1). U множество $H \subseteq G$. Тогда \mathfrak{H} называется n о d r p y n n о \ddot{u} , если замкнута относительно операци \ddot{u} *, e, -1.

Продолжение следует...

1.2 Поля и кольца

Будет написано...

Глава 2

Помехоустойчивое кодирование

2.1 Метрика Хэмминга

Рисунок

Определение 6 (Метрика Хэмминга). Σ - алфавит, n - длина слова. Слова $u, v \in \Sigma^n$. Тогда метрика Хэмминга, $\rho(u, v)$ — количество позиций в словах u, v, s которых они различаются.

Теорема 1. ρ — метрика.

Доказательство. Проверим все свойства метрик:

- $\bullet \rho(u,v) = 0 \Leftrightarrow u = v$
- $\bullet \ \rho(u,v) = \rho(v,u)$
- $\rho(u,v) \geq 0$
- $\rho(u,v) + \rho(v,w) = \rho(u,w)$

Отрезки

 $\Sigma^m \xrightarrow{f} \Sigma^n \leadsto \Sigma^n \xrightarrow{g} \Sigma^m$

c — кодовое слово

c' — слово с ошибками

Окружности

Теорема 2. Код обнаруживает n ошибок $\Leftrightarrow \rho(c_1, c_2) > n$ для любых кодовых слов c_1, c_2 .

Доказательство. (\Rightarrow) Допустим $\rho(c_1, c_2) \leq n$. c_1 и c_2 отличаются не более чем в n позициях. Можно в c_1 сделать n ошибок и получить c_2 .

 (\Leftarrow) $\rho(c_1,c_2)>n$. Слово c' содержит не больше n ошибок, c — исходное слово. Следовательно, если $c\neq c'$ — ошибки были.

Определение 7 (Наименьшее расстояние). Наименьшее расстояние между кодовыми словами (м и н и м а л ь н о е р а а с т о я н и е к о д а) — число измененных символов, необходимое для перехода одного кодового слова в другое.

Минимальное расстояние кода является главной характеристикой кода.

Теорема 3. Код может исправить $\leq n$ ошибок \Leftrightarrow минимальное расстояние этого кода > 2n.

Доказательство. (⇒) Допустим, минимальное расстояние $\leq 2n$.

$$\rho(c_1, c_2) \le 2n$$

Существует c': $\rho(c', c_1) \leq n$ и $\rho(c', c_2) \leq n$.

c' — принятое сообщение. Исправление невозможно.

$$(\Leftarrow) \rho(c_1, c_2) > 2n.$$

c' — слово с не более чем n ошибками. Существует единственное кодовое слово c, для которого $\rho(c,c') \leq n$. Следовательно, c — единствено возможный результат декодирования.