Liouville's Theorem on integrability via elementary functions

Vanya Vorobiov

Sher

January 16, 2025

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

representing certain integrals.

From high school, we are familiar with the idea that some integrals cannot

 $\int e^{\pm x^2} dx$, $\int \frac{dx}{\ln x}$, $\int \frac{e^x}{x} dx$, $\int \frac{\sin x}{x} dx$, $\int \frac{\sinh x}{x} dx$, $\int \log \log x dx$

be expressed in terms of elementary functions. For instance:

These examples highlight the limitations of elementary functions in

Lemma

Theorem (proof) t is a trancendental logarithm

t is a trancendental

Corollaries

Bibliography

Basic definitions

elementary terms

(statement) The Main

Liouville's

The Main Lemma Liouville's

Theorem (proof)

t is a trancendental logarithm t is a trancendental

t is algebraic

Corollaries

Bibliography

From high school, we are familiar with the idea that some integrals cannot be expressed in terms of elementary functions. For instance:

$$\int e^{\pm x^2} \, dx, \quad \int \frac{dx}{\ln x}, \quad \int \frac{e^x}{x} \, dx, \quad \int \frac{\sin x}{x} \, dx, \quad \int \frac{\sinh x}{x} \, dx, \quad \int \log \log x \, dx$$

These examples highlight the limitations of elementary functions in representing certain integrals.

In this presentation, we will:

- Introduce and prove a powerful tool: Liouville's theorem.
- ▶ Derive these integrals as a consequence.
- If time permits, discuss some special from of elliptic integrals, which also cannot be expressed in elementary terms.

$$\int \frac{dx}{\sqrt{P(x)}}$$

for deg P = 2, 3 and P hasn't multiple roots.

Basic definitions

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Liouville's Theorem

Vanya Vorobiov

Introduction

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The Main Lemma Liouville's

Theorem (proof)

logarithm
t is a trancendental

exponent t is algebraic

: is algebraic

Corollaries

The main corollary
Some special cases
On alliptic integrals

Bibliography

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Lemma

Theorem (proof)

t is a trancendental logarithm

t is algebraic

Corollaries

The main corollary

(statement)

The Main

Liouville's

t is a trancendental

Bibliography

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

The Main Lemma Liouville's

Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary Some special cases

Bibliography

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

Definition

Differential extension of the differential field F is field E such that $E \supset F$ and there is the same differentiation ' on E.

Bibliography

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

Definition

Differential extension of the differential field F is field E such that $E \supset F$ and there is the same differentiation ' on E.

Definition

Let F be the differential field. Then

- b is called the logarithm of a if $b' = \frac{a'}{a}$
- b is called the exponent of a if $a' = \frac{b'}{L}$

What is expression in elementary terms

Liouville's Theorem

Vanya Vorobiov

Introduction Basic definitions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Bibliography

Definition

The extension E of F is called elementary if it can be presented as $E = F(t_1, ..., t_n)$ and for all i t_i is logarithm or exponent or algebraic over $F(t_1, \ldots, t_{i-1}).$

Liouville's

Theorem

Bibliography

Definition

The extension E of F is called elementary if it can be presented as $E = F(t_1, ..., t_n)$ and for all i t_i is logarithm or exponent or algebraic over $F(t_1, \ldots, t_{i-1}).$

Remark

Common sense says us that some function $f: \mathbb{C} \to \mathbb{C}$ is elementary iff it can be constucted via finite number of radicals, sines, cosines, exponents, logarithms and hyperbolic functions. One can see that it's consistent with our approach. Futhermore our definition on elementarity is more general.

Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Bibliography

Theorem (Liouville, 1833-1841)

Let F be a differential field, and K is its subfield of constants. If for $\alpha \in F$ equation $x' = \alpha$ has the solution in some elementary extension of F, such that its subfield of constants is still K, then

$$\alpha = \sum_{i=1}^m c_i \frac{u_i'}{u_i} + v'$$

for some $c_1, \ldots, c_m \in K$, $u_1, \ldots, u_m, v \in F$.

Bibliography

Lemma

Let F be a differential field, t is trancendental over F, and t is a logarithm or an exponent of some element from F. And let $f \in F[x]$ be a polynomial, $deg f = k \ge 1$

- If t is a logarithm then the degree of (f(t))' is k if the leading coefficient of is not a constant, and it has degree k-1 if the leading coefficient is a constant.
- If t is an exponent then the degree of (f(t))' is k and it's multiple of f if and only if f is a monomial.

Liouville's Theorem (statement)

The Main

Liouville's Theorem (proof)

t is a trancendental

t is a trancendental exponent

exponent t is algebraic

Corollarie

Corollaries

The main corollary
Some special cases
On elliptic integrals

Bibliography

Lemma

Let F be a differential field, t is trancendental over F, and t is a logarithm or an exponent of some element from F. And let $f \in F[x]$ be a polynomial, $\deg f = k \geqslant 1$

- ▶ If t is a logarithm then the degree of (f(t))' is k if the leading coefficient of is not a constant, and it has degree k - 1 if the leading coefficient is a constant.
- ▶ If t is an exponent then the degree of (f(t))' is k and it's multiple of f if and only if f is a monomial.

Proof.

It's a quite simple technical exercise.

Liouville's Theorem (proof)

Let x be the solution of differential equation mentioned above. And $x \in F(t_1, \dots, t_n)$.

We will use induction on n (we don't fix the field F).

For short we denote $t = t_1$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

> iouville's heorem (proof

t is a trancendental

t is a trancendental exponent

t is algebraic

Corollaries

The main core

n elliptic integ

Liouville's Theorem (proof)

Let x be the solution of differential equation mentioned above. And $x \in F(t_1, \ldots, t_n).$

We will use induction on n (we don't fix the field F).

For short we denote $t = t_1$.

Using the inductive assumption, we get

$$\alpha = \sum_{i=1}^{m} c_i \frac{u_i'}{u_i} + v'$$

for some $c_1, \ldots c_m \in K$, $u_1, \ldots, u_m, v \in F(t)$. Here we use that the subfield of constants of F(t) is K. Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary Some special cases

Theorem (statement)

Lemma

Theorem (proof)

t is a trancendenta logarithm

t is a trancendental exponent

t is algebraic

Corollaries

The main corollary Some special cases

on elliptic inte

Bibliography

Let x be the solution of differential equation mentioned above. And $x \in F(t_1, ..., t_n)$.

We will use induction on n (we don't fix the field F).

For short we denote $t = t_1$.

Using the inductive assumption, we get

$$\alpha = \sum_{i=1}^m c_i \frac{u_i'}{u_i} + v'$$

for some $c_1, \ldots c_m \in K$, $u_1, \ldots, u_m, v \in F(t)$. Here we use that the subfield of constants of F(t) is K.

Now we consider 3 cases

- ▶ t is trancendental over F and it is a logarithm;
- ▶ t is trancendental over F and it is an exponent;
- t is algebraic over F.

Firstly let us consider the basic properties of logarithmical derivatives:
$$\\$$

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent t is algebraic

Corollaries

The main corollary Some special cases

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent t is algebraic

Corollaries

The main corollary Some special cases

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Now suppose that some $u_i \notin F$. It's clear that $\frac{u_i'}{u_i}$ is already in lowest terms (because $\deg u_i > \deg u_i'$).

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

> Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendenta logarithm

t is a trancendental exponent t is algebraic

Corollaries

Corollaries

The main corollary Some special cases On elliptic integrals

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Now suppose that some $u_i \notin F$. It's clear that $\frac{u_i'}{u_i}$ is already in lowest terms (because $\deg u_i > \deg u_i'$).

▶ If there's not u_i in the denominator of v, then there's not u_i in the denominator of v'. But then $\alpha \notin F$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

> Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

 ${f t}$ is a trancendental exponent

t is algebraic

Corollaries

The main corollary Some special cases

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Now suppose that some $u_i \notin F$. It's clear that $\frac{u_i'}{u_i}$ is already in lowest terms (because $\deg u_i > \deg u_i'$).

- ▶ If there's not u_i in the denominator of v, then there's not u_i in the denominator of v'. But then $\alpha \notin F$.
- ▶ If there's u_i in the denominator of v, then the demominator of v' is divisible by u_i^2 and it still cannot be reduced in the general sum and $\alpha \notin F$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

> Liouville's Theorem (statement)

The Main

Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

The main corollary Some special cases

Bibliography

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Now suppose that some $u_i \notin F$. It's clear that $\frac{u_i'}{u_i}$ is already in lowest terms (because $\deg u_i > \deg u_i'$).

- ▶ If there's not u_i in the denominator of v, then there's not u_i in the denominator of v'. But then $\alpha \notin F$.
- ▶ If there's u_i in the denominator of v, then the demominator of v' is divisible by u_i^2 and it still cannot be reduced in the general sum and $\alpha \notin F$.

Therefore $u_1, \ldots, u_m \in F$ and $v' \in F$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary Some special cases

n elliptic integr

$$\frac{(ab)'}{ab} = \frac{a'}{a} + \frac{b'}{b}, \quad \frac{(1/a)'}{1/a} = -\frac{a'}{a}$$

Now suppose that some $u_i \notin F$. It's clear that $\frac{u_i'}{u_i}$ is already in lowest terms (because $\deg u_i > \deg u_i'$).

- ▶ If there's not u_i in the denominator of v, then there's not u_i in the denominator of v'. But then $\alpha \notin F$.
- ▶ If there's u_i in the denominator of v, then the demominator of v' is divisible by u_i^2 and it still cannot be reduced in the general sum and $\alpha \notin F$.

Therefore $u_1, \ldots, u_m \in F$ and $v' \in F$ Then

$$v' = (ct + s)' = ct' + s' = c\frac{z'}{z} + s'$$
$$\alpha = \sum_i c_i \frac{u_i'}{u_i} + c\frac{z'}{z} + s'$$

QED.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

exponent t is algebraic

Corollaries

The main corollary

Some special cases

On alliptic integrals

t is a trancendental exponent

Let u_1, \ldots, u_m be distinct monic irreducible again.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is algebraic

Corollaries

t is a trancendental exponent

Let u_1, \ldots, u_m be distinct monic irreducible again. It's clear that $u_i = t$ is only u that can be not in F because t is an only irreducible monomial, and we would get the same contradiction otherwise.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

logarithm

Liouville's Theorem (proof) t is a trancendental

t is algebraic

Corollaries

t is a trancendental exponent

Let u_1, \ldots, u_m be distinct monic irreducible again. It's clear that $u_i = t$ is only u that can be not in F because t is an only irreducible monomial, and we would get the same contradiction otherwise. By the main lemma $v' \in F$ iff $v \in F$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

logarithm

Liouville's Theorem (proof) t is a trancendental

t is algebraic

Corollaries

By the main lemma $v' \in F$ iff $v \in F$.

Then

Let u_1, \ldots, u_m be distinct monic irreducible again.

It's clear that $u_i = t$ is only u that can be not in F because t is an only

irreducible monomial, and we would get the same contradiction otherwise.

 $\alpha = c_1 \frac{t'}{t} + \sum_{i=2}^{m} \frac{u_i'}{u_i} + v' = \sum_{i=2}^{m} \frac{u_i'}{u_i} + (v + c_1 z)'$

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental

t is algebraic

Corollaries

t is algebraic

Consider all congurent elements of t:

$$\tau_1=t,\tau_2,\dots,\tau_k$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

Corollaries

$$\tau_1 = t, \tau_2, \dots, \tau_k$$

Then it's clear that for all j:

$$\alpha = \sum_i \frac{u_i'(\tau_j)}{u_i(\tau_j)} + v'(\tau_j)$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

Corollaries

$$\tau_1 = t, \tau_2, \dots, \tau_k$$

Then it's clear that for all j:

$$\alpha = \sum_i \frac{u_i'(\tau_j)}{u_i(\tau_j)} + v'(\tau_j)$$

$$lpha = rac{1}{\mathrm{k}} \left(\sum_{\mathrm{i}} \sum_{\mathrm{j}} rac{\mathrm{u}_{\mathrm{i}}'(au_{\mathrm{j}})}{\mathrm{u}_{\mathrm{i}}(au_{\mathrm{j}})} + \sum_{\mathrm{j}} \mathrm{v}'(au_{\mathrm{j}})
ight)$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

Corollaries

The main corollary Some special cases

Then it's clear that for all i:

$$\alpha = \sum_i \frac{u_i'(\tau_j)}{u_i(\tau_j)} + v'(\tau_j)$$

$$lpha = rac{1}{\mathrm{k}} \left(\sum_{\mathrm{i}} \sum_{\mathrm{j}} rac{\mathrm{u}_{\mathrm{i}}'(au_{\mathrm{j}})}{\mathrm{u}_{\mathrm{i}}(au_{\mathrm{j}})} + \sum_{\mathrm{j}} \mathrm{v}'(au_{\mathrm{j}})
ight)$$

$$\alpha = \frac{1}{k} \left(\sum_{i} \frac{\left(\prod_{j} u_{i}(\tau_{j})\right)'}{\prod_{j} u_{i}(\tau_{j})} + \left(\sum_{j} v(\tau_{j})\right)' \right)$$

Since all rational functions of polynomial's roots are belongs to the basic field, proof is completed.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

Corollaries

The main corollary Some special cases

$$\tau_1 = t, \tau_2, \dots, \tau_k$$

Then it's clear that for all i:

$$\alpha = \sum_{i} \frac{u_i'(\tau_j)}{u_i(\tau_j)} + v'(\tau_j)$$

$$\alpha = \frac{1}{k} \left(\sum_{i} \sum_{j} \frac{u_i'(\tau_j)}{u_i(\tau_j)} + \sum_{j} v'(\tau_j) \right)$$

$$\alpha = \frac{1}{k} \left(\sum_{i} \frac{\left(\prod_{j} u_{i}(\tau_{j})\right)'}{\prod_{j} u_{i}(\tau_{j})} + \left(\sum_{j} v(\tau_{j})\right)' \right)$$

Since all rational functions of polynomial's roots are belongs to the basic field, proof is completed.

Remark

Here we used that algebraic extension can be equipped with the unique differentiation, but it's trivial for the case of meromorphic functions.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

Corollaries

The main corollary Some special cases

The main corollary

Corollary

Let $f, g \in \mathbb{C}(x), f \neq 0$ and g is not constant. If the integral of $f(x)\exp(g(x))$ can be expressed in elementary terms, then there's $r \in \mathbb{C}(x)$ such that f = r' + rg'.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

The main corollary

Corollary

Let $f, g \in \mathbb{C}(x), f \neq 0$ and g is not constant. If the integral of $f(x)\exp(g(x))$ can be expressed in elementary terms, then there's $r \in \mathbb{C}(x)$ such that f = r' + rg'.

Proof.

Denoting $F = \mathbb{C}(x)$, $t = \exp(g)$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary

Corollary

Let $f, g \in \mathbb{C}(x), f \neq 0$ and g is not constant. If the integral of $f(x)\exp(g(x))$ can be expressed in elementary terms, then there's $r \in \mathbb{C}(x)$ such that f = r' + rg'.

Proof.

Denoting $F = \mathbb{C}(x)$, $t = \exp(g)$. Using Liouville's theorem

$$ft = \sum c_i \frac{u_i'}{u_i} + v'$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main

Liouville's Theorem (proof)

t is a trancendental

t is a trancendental

exponent t is algebraic

Corollaries

Jorollaries The main corollar

Some special cases
On elliptic integrals

Bibliography

Bibliograpl

Lemma Liouville's

Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollary

Let $f, g \in \mathbb{C}(x), f \neq 0$ and g is not constant. If the integral of $f(x)\exp(g(x))$ can be expressed in elementary terms, then there's $r \in \mathbb{C}(x)$ such that f = r' + rg'.

Proof.

Denoting $F = \mathbb{C}(x)$, $t = \exp(g)$. Using Liouville's theorem

$$ft = \sum c_i \frac{u_i'}{u_i} + v'$$

One can use the main lemma and get:

$$c_i \frac{u_i'}{u_i} \in F, \quad v = \sum_{i \in I\mathbb{Z}} b_i t^i$$

The rest of the proof is trivial.

Corollary

Functions

$$\int e^{\pm x^2} \, dx, \quad \int \frac{dx}{\ln x}, \quad \int \frac{e^x}{x} \, dx, \quad \int \log \log x \, dx$$

are not elementary.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Proof.

All of these cases can be simply proven with the main corollary and some basic asymptotical investigations.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental

t is a trancendental exponent

t is algebraic

Corollaries

Jorollaries

The main corollary

ome special cases

n emptic integr

Proof.

All of these cases can be simply proven with the main corollary and some basic asymptotical investigations.

Corollary

Functions

$$\int \frac{\sin x}{x} dx$$
, $\int \frac{\sinh x}{x} dx$

are not elementary.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental

logarithm t is a trancendental

xponent

t is algebraic

Corollaries

he main corollary

me special cases

On elliptic integrals

$$\int e^{\pm x^2} \, dx, \quad \int \frac{dx}{\ln x}, \quad \int \frac{e^x}{x} \, dx, \quad \int \log \log x \, dx$$

Proof.

All of these cases can be simply proven with the main corollary and some basic asymptotical investigations.

Corollary

Functions

$$\int \frac{\sin x}{x} dx, \quad \int \frac{\sinh x}{x} dx$$

are not elementary.

Proof.

This case is slightly more complicated.

Denoting $F = \mathbb{C}(x)$, $t = \exp(x)$ and using Liouville's theorem

$$\frac{t^2-1}{tz} = \sum c_i \frac{u_i'}{u_i} + v'$$

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary

$$\int e^{\pm x^2} \, dx, \quad \int \frac{dx}{\ln x}, \quad \int \frac{e^x}{x} \, dx, \quad \int \log \log x \, dx$$

Proof.

All of these cases can be simply proven with the main corollary and some basic asymptotical investigations.

Corollary

Functions

$$\int \frac{\sin x}{x} \, dx, \quad \int \frac{\sinh x}{x} \, dx$$

are not elementary.

Proof.

This case is slightly more complicated.

Denoting $F = \mathbb{C}(x)$, $t = \exp(x)$ and using Liouville's theorem

$$\frac{t^2-1}{tz} = \sum c_i \frac{u_i'}{u_i} + v'$$

After some considerations using the main lemma we will deduce an impossible equation

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary

On elliptic integrals

Corollary

Let P be a monic polynomial with degree ≥ 3 and no repeated roots. Then $\int \frac{dx}{\sqrt{P(x)}}$ is not elementary.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

On elliptic integrals

Corollary

Let P be a monic polynomial with degree ≥ 3 and no repeated roots. Then $\int \frac{dx}{\sqrt{P(x)}}$ is not elementary.

Proof.

Here we will use a bit more advanced stuff on Riemann surfaces. Liouville's theorem enable us to write

$$\frac{1}{\sqrt{P(x)}} = \sum c_i \frac{u_i'}{u_i} + v'$$

with $c_1, \ldots, c_m \in \mathbb{C}$ and $u_1, \ldots, u_m, v \in \mathbb{C}(x, \sqrt{P(x)})$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

On elliptic integrals

Corollary

Let P be a monic polynomial with degree ≥ 3 and no repeated roots. Then $\int \frac{dx}{\sqrt{P(x)}}$ is not elementary.

Proof.

Here we will use a bit more advanced stuff on Riemann surfaces. Liouville's theorem enable us to write

$$\frac{1}{\sqrt{P(x)}} = \sum c_i \frac{u_i'}{u_i} + v'$$

with $c_1, \ldots, c_m \in \mathbb{C}$ and $u_1, \ldots, u_m, v \in \mathbb{C}(x, \sqrt{P(x)})$.

Now we deduce an equation on the compact Riemann surface C associated to the equation $y^2 = P(x)$

$$\frac{\mathrm{d}x}{v} = \sum c_i \frac{\mathrm{d}u_i}{u_i} + \mathrm{d}v$$

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What is expression in elementary terms

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

The main corollary Some special cases

Lemma Liouville's

Theorem (proof)

t is a trancendental logarithm

t is a trancendental

exponent t is algebraic

t is algebra

Corollaries

The main corollary Some special cases

On elliptic ir

Bibliography

Corollary

Let P be a monic polynomial with degree $\geqslant 3$ and no repeated roots. Then $\int \frac{dx}{\sqrt{P(x)}}$ is not elementary.

Proof.

Here we will use a bit more advanced stuff on Riemann surfaces. Liouville's theorem enable us to write

$$\frac{1}{\sqrt{P(x)}} = \sum c_i \frac{u_i'}{u_i} + v'$$

with $c_1, \ldots, c_m \in \mathbb{C}$ and $u_1, \ldots, u_m, v \in \mathbb{C}(x, \sqrt{P(x)})$.

Now we deduce an equation on the compact Riemann surface C associated to the equation $y^2 = P(x)$

$$\frac{\mathrm{d}x}{y} = \sum c_i \frac{\mathrm{d}u_i}{u_i} + \mathrm{d}v$$

The left hand side is a nonzero holomorphic 1-form on C.

But such type of the forms cannot be expressed as a linear combination of a logarithmic meromorphic differentials du/u and exact meromorphic differentials dv.

What is expression in elementary terms

Liouville's Theorem (statement)

The Main

Liouville's Theorem (proof)

t is a trancendental

t is a trancendental

exponent t is algebraic

'orollorica

Corollaries

The main corollary
Some special cases

D11.11

Keith Conrad, Impossibility theorems for elementary integration, American Mathematical Monthly, vol. 110, no. 5, 2003, pp. 459–462.

Maxwell Rosenlicht, Integration in finite terms, American Mathematical Monthly, vol. 79, no. 9, 1972, pp. 963–972.

Joseph Liouville, Sur la détermination des intégrales dont la valeur est algébrique, Journal de l'École Polytechnique, vol. 14, 1833, pp. 93–123.