

Systemy Analagowe i Cyfrowe

LAB nr 2

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ różniczkujący.

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495	
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka	
Termin zajęć:	pon 13:15-15:30	
Prowadzący:	dr inż. Marek Kukawczyński	
Data:	27.03.2024	

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie układu różniczkującego ze wzmacniaczem odwracającym. Do realizacji projektu wykorzystano wzmacniacz TKL061, do którego dobrano odpowiednie rezystory i kondensator w taki sposób, aby otrzymać układ różniczkujący, który na pobudzenie sygnałem trójkątnym o amplitudzie peak-to-peak $V_{pp}=2\,[V]$ odpowiada sygnałem prostokątnym o amplitudzie peak-to-peak $V_{pp}=1\,[V]$.

Następnie przeprowadzono badania na zaprojektowanym układzie, aby uzyskać następujące charakterystyki:

- przebieg czasowy trójkąt na wejściu, prostokąt na wyjściu
- charakterystyki częstotliwościowe $\left|K_{U}\right|=f(f)$ oraz $\phi=f(f)$

Charakterystyki zostały wyznaczone na podstawie:

- symulacji w programie LTSpice
- pomiarów na fizycznie zbudowanym układzie

1.1 Dobór elementów RC

Założyliśmy, że $R_2=10\,[k\Omega].$ Dobieramy wartość C_1 :

$$C = \frac{U_{wy}}{4 \cdot U_{we} \cdot R} \cdot T = \frac{1}{4 \cdot 2 \cdot 10000} \cdot \frac{1}{2000} = 6,25 [nF]$$

Dobraliśmy więc najbliższą wartość z szeregu:

$$C = 6,8 [nF] \tag{1}$$

Dobieramy wartość R_1 :

$$R_1 \ll \frac{T}{2 \cdot \pi \cdot C} = \frac{1}{2 \cdot 3,14 \cdot 6,8 \cdot 10^{-9} \cdot 2000} = 11,7 [k\Omega]$$
 (2)

Przyjęliśmy więc, że $R_1 = 1 [k\Omega]$

1.2 Rzeczywiste wartości elementów RC

Rzeczywiste wartości elementów RC zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- $R_2 = 9,732 [k\Omega]$
- $R_3 \approx R_2 = 9,762 [k\Omega]$
- $R_1 = 984, 7 [\Omega]$
- $C_1 = 6,73 [nF]$

1.3 Schemat w LTSpice

Rysunek 1: Schemat układu w LTSpice

2 Symulacje w LTSpice

Rysunek 2: Charakterystyka czasowa

Rysunek 3: Wykres zależności modułu wzmocnienia i fazy od częstotliwości sygnału

3 Badanie układu rzeczywistego

3.1 Charakterystyka czasowa

Rysunek 4: Przebiegi czasowe na wejściu (niebieski) i wejściu(żółty)

Rysunek 5: Przebieg czasowy przy zwartym rezystorze R_1

Potencjalna częstotliwość wystąpienia ekstremum:

$$f = 2 \cdot \frac{1}{(158 - 122) \cdot 10^{-6}} = 55,55 [kHz]$$

3.2 Tabela pomiarowa

Rysunek 6: Tabela pomiarowa do wyznaczenia charakterystyk częstotliwościowych

F	Uwe	Uwy	ф	K
[Hz]	[V]	[V]	[°]	[V/V]
10	20,00	0,09	89	0,00
20	20,20	0,17	90	0,01
30	20,40	0,25	89,7	0,01
40	20,20	0,34	88	0,02
70	20,40	0,59	91,2	0,03
100	20,40	0,84	90,7	0,04
200	20,40	1,70	91,9	0,08
300	20,20	2,52	91,9	0,12
400	20,20	3,34	90,7	0,17
700	20,20	5,88	92,7	0,29
1000	5,20	2,08	95,7	0,40
2000	5,04	4,16	95	0,83
3000	5,12	6,16	98,5	1,20
4000	1,01	1,64	99,9	1,62
7000	1,00	2,78	107	2,78
10000	1,00	3,88	115	3,88
20000	0,99	6,56	133	6,61
30000	0,504	4,20	151	8,33
40000	0,496	4,60	164	9,27
50000	0,496	4,80	176	9,68
51000	0,504	4,80	176	9,52
52000	0,504	4,84	177	9,60
53000	0,496	4,84	-180	9,76
54000	0,504	4,88	179	9,68
55000	0,504	4,84	-178	9,60
56000	0,504	4,84	-177	9,60
57000	0,504	4,84	-175	9,60
58000	0,504	4,84	-176	9,60
59000	0,504	4,84	-176	9,60
60000	0,496	4,88	-175	9,84
61000	0,504	4,84	-172	9,60
62000	0,504	4,84	-172	9,60
63000	0,504	4,84	-170	9,60
64000	0,504	4,84	-170	9,60
67000	0,504	4,84	-167	9,60
69000	0,504	4,80	-167	9,52
70000	0,504	4,76	-166	9,44
80000	0,51	4,68	-159	9,14
90000	0,51	4,56	-154	8,91
100000	0,51	4,40	-149	8,59
110000	0,53	4,36	-142	8,26

3.3 Wykresy

4 Wnioski

- Zarówno w symulacji, jak i podczas badania rzeczywistego ukladu, na wejściu uzyskaliśmy sygnał trójkątny a na wyjściu sygnal prostokatny o zadanym wzmocnieniu. Świadczy to o poprawnym zaprojektowaniu i zmontowaniu układu różniczkującego.
- Zwarcie rezystora R_1 spodowowało pojawienie się oscylacji w przebiegu czasowym. Rezystor ten jest odpowiedzialny za tłumienie zakłóceń.
- Przebiegi czasowe uzyskane symulacyjnie oraz te uzyskane przy pomocy oscyloskopu są niemal identyczne
- Charakterystyka fazowa wygenerowana symulacyjnie jest podobna kształtem do charakterystyki wyznaczonej w wyniku pomiarów, jednak.
- Charakterystyki częstotliwościowe uzyskane symulacyjnie, oraz te wyznaczone na rzeczywistym układzie, istotnie się od siebie różnią. Może to być spowodowane modelem wzmacniacza wykorzystanym w symulacji - program LTSpice nie posiada w swojej bibliotece modelu TKL061, na którym były przeprowadzane rzeczywiste pomiary.