UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2017

IS51002E / IS51002D Mathematical Modelling for Problem Solving

Duration: 3 hours

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and THREE questions from part B. Part A carries 40 marks, and each question from part B carries 20 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

> THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A Multiple choice

Question 1 Multiple choice question

- (a) Which one of the following sets is a subset of $\{2, 4, 6, 8, 10, 12\}$?
 - i. {14}
 - ii. $\{2, 3, 4\}$
 - iii. $\{4, 8, 12\}$
 - iv. $\{1, 3, 5\}$

[2]

- (b) Let A,B be two subsets of a universal set U. Which of of the following describes A-B
 - i. the set of elements contained in A and in B.
 - ii. the set of elements contained in A or in B.
 - iii. the set of elements contained in A but not in B.
 - iv. the set of elements contained in A or in B but not in both.

[2]

- (c) Let A be a set of some elements. Which of the following are correct. More than one answer may apply.
 - i. $\emptyset \in \mathcal{P}(A)$
 - ii. $A \in \mathcal{P}(A)$
 - iii. $A \subseteq \mathcal{P}(A)$
 - iv. None of the above

[2]

- (d) Let p be a proposition. Which one of the following is a tautology:
 - i. $p \wedge F$
 - ii. $p \wedge T$
 - iii. $p \vee T$
 - iv. $p \vee F$

(e) The following sequence $1, 3, 5, 7, 9, \cdots$ is

- i. arithmetic
- ii. geometric

iii. neither geometric nor arithmetic

[2]

(f) Let p and q be two propositions. Which one of the following compound statements is equivalent to $\neg (p \lor q)$?

- i. $\neg p \land \neg q$
- ii. $\neg p \lor \neg q$
- iii. $p \wedge q$
- iv. $p \oplus q$

[2]

(g) Find the range of the function graphed below:

- i. $[-4, \infty[$
- ii.] $-\infty,\infty$ [
- iii. $]-\infty,2]$
- iv. $[2, \infty[$

(h) Which one of the following correctly describes a simple graph G ?	
i. G has no cycles	
ii. G has not parallel edges	
iii. G has no loops	
iv. G has neither loops nor parallel edges	[0]
	[2]
(i) it is possible to draw a 3-regular graph with 5 vertices. True or False ?	
i. $True$	
ii. $False$	
	[2]
(j) A tree is a connected graph with no cycles. True or False ?	
i. $True$	
ii. False	
(k) What is the decimal value of binary sequence 1111111112?	[2]
i. 255	
ii. 127	
iii. 511	
iv. none of the above	
	[2
(l) What is the smallest positive number that is congruent to 8095×471 in modulo 256 ?	
i. 3,812,745	
ii. 14,893	
iii. 137	
iv. 32	
	[2]
IS51002E / IS51002D 2017 page 5 of 15 TURN OVER	

- (m) Convert 9^o to radians
 - i. $\frac{\pi}{2}$
 - ii. $\frac{\pi}{20}$
 - iii. $\frac{\pi}{4}$
 - iv. $\frac{\pi}{10}$

(n) Convert (5, 0) to polar coordinates

- i. (5,0)
- ii. $(5, \pi)$
- iii. (-5,0)
- iv. none of the above

(o) The period of $f(x) = 3\cos(x)$ is

- i. 6π
- ii. 3π
- iii. 2π
- iv. π

(p) Given $y = x^5 + 4x^3 - 2x^2$

- i. $\frac{dy}{dx} = 5x + 12x 4x$ ii. $\frac{dy}{dx} = 5x^4 + 12x^2 4x$
- iii. $\frac{dy}{dx} = 13x$
- iv. $\frac{dy}{dx} = x^4 + 4x^2 2x^1$

(q) Given $y = \sin 5x$

- i. $\frac{dy}{dx} = 5\sin 5x$
- ii. $\frac{dy}{dx} = 5\cos 4x$ iii. $\frac{dy}{dx} = \cos 5x$
- iv. $\frac{dy}{dx} = 5\cos 5x$

IS51002E / IS51002D2017 page 6 of 15 [2]

[2]

[2]

[2]

- (r) Rewrite the following vector in terms of standard unit vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
 - i. $2\vec{i}-\vec{j}+\vec{k}$

ii.
$$\begin{pmatrix} 2\vec{i} \\ -1\vec{j} \\ 1\vec{k} \end{pmatrix}$$

iii. 2 - 1 + 1

iv. none of the above

[2]

(s) Given W=
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Which of the following is the inverse of W

i.
$$\left(\begin{array}{ccc} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

ii.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

ii.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
iii.
$$\begin{pmatrix} \frac{1}{2} & 0 & -1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

iv.
$$\begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

(t) Which of the following numbers is an irrational number:

- i. 2.00005
 - ii. π
 - iii. $\frac{1}{2}$
 - iv. $3.1212 \cdots$

[2]

Part B

Question 2 Set, Logic & Sequences

(a) i. Describe the set A by the listing method.

$$A = \{r^3 - 1 : r \in Z \ and \ -1 < r \le 3\}.$$

- ii. Describe the set B by the rule of inclusion method where $B = \{1, 2, 4, 8, 16, \dots, 128\}$
- iii. Let A and B and C be subsets of a universal set \mathcal{U} .
- 1. Draw a labelled Venn diagram depicting A,B,C in such a way that they divide $\mathcal U$ into 8 disjoint regions.
- 2. The subset $X \subseteq \mathcal{U}$ is defined by the following membership table:

A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Shade the region X on your diagram. Describe the region you have shaded in set notation as simply as you can.

[6]

(b) Let p and q be the following propositions:

p: 'this animal is a cat'

q: 'this animal is furry'.

i. Express each of the three following compound propositions concerning positive integers symbolically by using p, q and appropriate logical symbols.

"this animal is a furry cat"

"if this animal is cat then it is furry"

"this animal is not a furry cat".

- ii. Construct the truth table for the statement $q \to p$.
- iii. Write in words the contrapositive of the statement given symbolically by " $q \rightarrow p$ ".

(c) i. Express the following sum using the \sum notation

$$(2 \times 3) + (3 \times 4) + (4 \times 5) + \dots + (n+1)(n+2).$$

ii. Evaluate the following the following sum:

$$\sum_{k=11}^{100} 2k$$

Hint: you might want to use the formula: $\sum\limits_{k=1}^n k = \frac{n(n+1)}{2}$

iii. A sequence is determined by the recurrence relation

$$u_1 = 0$$
 and $u_{n+1} = u_n + n$, for $n \ge 1$.

- 1. Calculate u_2 , u_3 .
- 2. Prove by induction that: $u_n = \frac{n(n-1)}{2}, \forall n \ge 1.$

Question 3 Graphs, Trees & Relations

- (a) i. Draw the two graphs with adjacency lists
 - $a_1:a_2,a_5$
 - \bullet $a_2: a_1, a_3, a_4, a_5$
 - $a_3:a_2,a_4,a_5$
 - $a_4:a_2,a_3,a_5$
 - \bullet $a_5: a_1, a_2, a_3, a_4$

and

- $b_1:b_2,b_3,b_4,b_5$
- $b_2:b_1,b_5$
- $b_3:b_1,b_4,b_5$
- $b_4:b_1,b_3,b_5$
- $b_5:b_1,b_2,b_3,b_4$
- 1. Write down the degree sequence for each graph above.
- 2. Are these graphs isomorphic? If so, show the correspondence between them.
- ii. A simple connected graph has 7 vertices, all having the same degree d. Give the possible values of d and for each value of d give the number of edges of the graph.

[7]

(b) i. How many distinct spanning trees are contained in this graph?

- ii. Draw two non-isomorphic spanning trees of this graph.
- iii. Draw a binary search tree to hold 15 records and find it height.

[7]

(c) Given S be the set of integers $\{1, 2, 3, 4, 5, 6\}$. Let \mathcal{R} be a relation defined on S by the following condition such that,

for all $x, y \in S$, xRy if $x \mod 2 = y \mod 2$.

- i. Draw the digraph of \mathcal{R} .
- ii. Show that \mathcal{R} is an equivalence relation and find the equivalence classes.

[6]

Question 4 Functions, Probability & Trigonometry

(a) Let $X = \{a, b, c, d, e\}$ and $Y = \{1, 2, 3, 4, 5\}$ two sets. Let f be a function defined as follows:

$$f: X \to Y$$

- i. Draw the arrow diagram to represent the function f .
- ii. List the co-domain and the range of f.
- iii. Find the ancestor (pre-image) of 3.
- iv. Show that f is not a one to one function.
- v. Show that f is not an onto function.

[5]

- (b) i. Find numerical values for the following
 - $(1) \log_2 1024$
 - $(2) \log_{1024} 2$
 - (3) $\log_2(\frac{1}{2})$
 - ii. Sketch the graphs of
 - (1) $f(x) = 2^x$
 - (2) $g(x) = 2^{x-1}$
 - iii. Find the inverse functions
 - $(1) f^{-1}(x)$
 - (2) $g^{-1}(x)$

[6]

- (c) Drawer A contains 7 black socks and 5 grey socks and drawer B contains 4 black socks and 8 grey socks. One sock is taken from drawer A and then one sock is taken from drawer B at random.
 - i. Draw a tree diagram to represent all the different outcomes of this process.
 - ii. What is the probability of getting 2 black socks?
 - iii. What is the probability of getting two socks of different colours?

[5]

- (d) i. Triangle ABC is an isosceles triangle (has 2 equal sides). Side a=6cm and angle $A=80^{o}$.
 - (1) Find all 3 possible values for angle B.
 - (2) Hence find all 3 possible values for the length of side b.
 - ii. Let $f(x) = 3\cos(x)$ and $g(x) = \sin(2x)$. By plotting the graphs of f(x) and g(x), or otherwise find all the values of x between $-\pi$ and π for which

$$3\cos(x) - \sin(2x) = 0$$

[4]

Question 5 Bases, Modular Arithmetic & Complex Numbers

- (a) i. Express the decimal number $(347)_{10}$ in base 2.
 - ii. Express the binary number $(1000111.011)_2$ as a decimal number.
 - iii. Express the decimal number $(281.75)_{10}$ as
 - (1) a binary number.
 - (2) a hexadecimal number.
 - iv. Express the octal number $(574.2)_8$ as a decimal number.
 - v. Working in base 16 and showing all your working, compute the following:

$$(AB2)_{16} + (161)_{16} - (FF)_{16}$$

[7]

- (b) i. Find the smallest positive integer modulo 13 that is congruent to
 - (1) 54
 - (2)271
 - ii. Find the remainder on division by 13 of
 - (1) 54 + 271
 - $(2)\ 54 \times 271$
 - $(3) 271^{19}$
 - iii. Find the following
 - (1) the additive inverse of 5 modulo 13
 - (2) the multiplicative inverse of 5 modulo 13

[6]

- (c) Given complex numbers $z_1 = 3 + 2i$ and $z_2 = 5 2i$
 - i. Find
 - $(1) z_1 + z_2$
 - (2) $z_1 \times z_2$
 - (3) $\frac{z_1}{z_2}$
 - ii. Convert z_1
 - (1) to polar form
 - (2) to exponential form
 - iii. Hence find
 - $(1) z_1^3$
 - (2) All solutions to $z_1^{\frac{1}{3}}$

- (a) i. Find the following limits:
 - (1) $\lim_{x\to 0} \frac{x-4}{x^2-16}$
 - (2) $\lim_{x\to+5} \frac{x-4}{x^2-16}$
 - (3) $\lim_{x\to\infty} \frac{x-4}{x^2-16}$
 - $(4)\lim_{x\to -5} \frac{x-4}{x^2-16}$
 - ii. Given the following function $f(x) = x^3 3x^2$.
 - (1) Find the values of x for which f(x) = 0.
 - (2) Differentiate f(x).
 - (3) Hence find any stationary points of f(x) and determine their nature.
 - (4) Sketch f(x).

[8]

- (b) Given $\vec{v}_1 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$
 - i. Find the magnitudes of \vec{v}_1 and \vec{v}_2 .
 - ii. Find the dot product of \vec{v}_1 and \vec{v}_2 .
 - iii. Hence find the angle between \vec{v}_1 and \vec{v}_2 .
 - iv. Find \vec{v}_3 and \vec{v}_2 the cross product (vector product) of \vec{v}_1 and \vec{v}_2 .
 - v. State the angle between \vec{v}_3 and \vec{v}_1 .

[5]

- (c) Let A be a 3x3 matrix corresponding to a translation of 3 units in the x direction and -1 unit in the y direction. Let B be a 3x3 matrix corresponding to a scaling of factor 2 in the x direction and factor 3 in the y direction. Let C be a 3x3 homogeneous matrix transformation corresponding to an anti-clockwise rotation about the z-axis by an angle $\frac{\pi}{2}$.
 - i. Write down A, B and C.
 - ii. Find the inverse matrices A^{-1} , B^{-1} and C^{-1} .
 - iii. Find the single matrix T which represents the transformation represented by matrix B followed by transformation represented by matrix A.