Shortest Paths in Weighted Graphs

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 5

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- $G = (V, E), W : E \rightarrow \mathbb{R}$

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Adjacency matrix
 Record weights along with edge information weight is always
 o if no edge

	0	1	2	3	4	5	6
0	(0,0)	(1,10)	(1,80)	(0,0)	(0,0)	(0,0)	(0,0)
1	(1,10)	(0,0)	(1,6)	(0,0)	(1,20)	(0,0)	(0,0)
2	(1,80)	(1,6)	(0,0)	(1,70)	(0,0)	(0,0)	(0,0)
3	(0,0)	(0,0)	(1,70)	(0,0)	(0,0)	(0,0)	(0,0)
4	(0,0)	(1,20)	(0,0)	(0,0)	(0,0)	(1,50)	(1,5)
5	(0,0)	(0,0)	(0,0)	(0,0)	(1,50)	(0,0)	(1,10)
6	(0,0)	(0,0)	(0,0)	(0,0)	(1,5)	(1,10)	(0,0)

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Adjacency list
 Record weights along with edge information

0	[(1,10),(2,80)]		
1	[(0,10),(2,6),(4,20)]		
2	[(0,80),(1,6),(3,70)]		
3	[(2,70)]		
4	[(1,20),(5,50),(6,5)]		
5	[(4,50),(6,10)]		
6	[(4,5),(5,10)]		

Shortest paths in weighted graphs

 BFS computes shortest path, in terms of number of edges, to every reachable vertex

Shortest paths in weighted graphs

- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- In a weighted graph, add up the weights along a path

Shortest paths in weighted graphs

- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- In a weighted graph, add up the weights along a path
- Weighted shortest path need not have minimum number of edges
 - Shortest path from 0 to 2 is via 1

Shortest path problems

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

Shortest path problems

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

All pairs shortest paths

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities

Negative edge weights

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

Negative edge weights

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

Negative cycles

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle
- By repeatedly traversing a negative cycle, total cost keeps decreasing
- If a graph has a negative cycle, shortest paths are not defined
- Without negative cycles, we can compute shortest paths even if some weights are negative

Summary

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights
- Length of a path is the sum of the weights
 - Shortest path in a weighted graph need not be minimum in terms of number of edges
- Different shortest path problems
 - Single source from one designated vertex to all others
 - All-pairs between every pair of vertices
- Negative edge weights
 - Should not have negative cycles
 - Without negative cycles, shortest paths still well defined

