ASSIGNMENT 2

Xinhao Luo

Tuesday $12^{\rm th}$ May, 2020

1 Problem 3.53

- (a) $x \in \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- (b) $x \in \mathbb{R}$
- (c) $x \in \mathbb{N}, y \in \mathbb{N}$
 - $x \in \mathbb{Z}, y \in \mathbb{Z}$
 - $\bullet \ x \in \mathbb{Q}, y \in \mathbb{Q}$
 - $x \in \mathbb{R}, y \in \mathbb{R}$
- (d) $x \in \mathbb{R}; y \in \mathbb{N}$

2 Problem 4.9

- (a) set " $n^3 + 5$ is odd" as p, "n is even" as q
 - Direct Prove
 - i) set p as true
 - ii) $n^3 + 5 = 2k + 1$, while k is integer
 - iii) n^3 is even
 - iv) $n^3 = n \times n \times n$, since an even result can only come from even number times an even number, and a number can only either be even or odd, so n is even
 - v) $p \to q$ is true
 - Contraposition
 - i) set q as false
 - ii) n is odd
 - iii) $n^3 = n \times n \times n$. Since odd number times an odd number will end in odd result, n^3 is odd
 - iv) an odd number add an odd number will end in even result, so $n^3 + 5$ is even
 - \mathbf{v}) p is false
 - vi) $p \to q$ is true
- (b) set "3 does not divide n" as p, "3 divides $n^2 + 2$ " as q
 - Direct Prove

 - $\begin{cases} \mathbf{n} = 3\mathbf{k} + 1 \\ \mathbf{n} = 3\mathbf{k} + 2 \end{cases}, \text{ k is integer}$ $\begin{aligned} \mathbf{n} &= 3\mathbf{k} + 1 \\ \mathbf{n} &= 3\mathbf{k} + 2 \end{cases}, \text{ k is integer}$ $\end{aligned} \Rightarrow \begin{cases} 3(3k^2 + 2k + 1) \\ 3(3k^2 + 2k + 2) \end{cases}, \text{ under both conditions, } n^2 + 2 \text{ is a multiple of } 3 \end{aligned}$

 - v) $p \to q$ is true
 - Contraposition
 - i) set q as false
 - ii) for n, k as integer, there are three condition: $\begin{cases} n=3k\\ n=3k+1\\ n=3k+2 \end{cases}$
 - iii) $n^2 + 2 \Rightarrow \begin{cases} 9k^2 + 2\\ 9k^2 + 6k + 3 = 3(3k^2 + 2k + 1)\\ 9k^2 + 6k + 6 = 3(3k^2 + 2k + 2) \end{cases}$
 - iv) Only $9k^2 + 2$ match $\neg a$
 - v) n = 3k, n divides 3, p is false
 - vi) $p \to q$ is true

3 Problem 4.15

(e) Direct Prove; set $k \in \mathbb{Z}$, p as " $n^2 + 3n + 4$ is even"

$$1. \ n = \begin{cases} 2k \\ 2k+1 \end{cases}$$

2.
$$n^2 + 3n + 4 = \begin{cases} 4k^2 + 6k + 4 \\ 4k^2 + 10k + 8 \end{cases} \Rightarrow \begin{cases} 2(2k^2 + 3k + 2) \\ 2(2k^2 + 5k + 4) \end{cases}$$

- 3. under all conditions, the result of $n^2 + 3n + 4$ can be divided by 2
- 4. p is true
- (w) Contraposition; set p as "a and b are positive real numbers with ab < 10000, q as "min(a, b) < 100"
 - 1. set q as false
 - 2. $min(a, b) \ge 100$
 - 3. the minimum value of a, b is 100
 - 4. $ab = 100 \times 100 = 10000, 10000 \not< 10000$
 - 5. p is false
 - 6. $p \rightarrow q$ must be true

4 Problem 4.26

 $\begin{array}{c|cccc} \textbf{Truth table} \\ \hline p & q & p \rightarrow q & \neg (p \rightarrow q) \\ \hline T & T & T & F \\ T & F & F & T \\ \end{array}$

-	-		(1 1/
Τ	Τ	Τ	F
T F	F	F	Γ
F	Т	${ m T}$	\mathbf{F}
F	F	${ m T}$	F

- (b) **Prove.** (Direct Prove) From the truth table above, in order to prove $\neg(p \to q)$ true, we need to prove p as true and q as false
 - **Disprove.** (show a counterexample) From the truth table above, in order to prove $p \to q$, for example, we can make p as true, and q as true, so $\neg(p \to q)$ will always be false
- (d) $\forall x : ((\forall n : P(n)) \rightarrow Q(x))$
 - **Prove.** (Show for general object) Showing that P(n) is false for all n, then based on the truth table, the claim will always be true.
 - **Disprove.** (show a counterexample) Given an pair of n, x that makes P(n) as true while Q(x) is false.
- (f) $\exists x : ((\exists n : P(n)) \to Q(x))$
 - **Prove.** (Show an example) Given an pair of x, n that makes P(n) as true while Q(x) is true.
 - **Disprove.** (show an counterexample) Given an n that makes P(n) as true while there is no corresponded x which makes Q(x) is false.

5 Problem 4.36(j)

Set P_1, P_2, P_3 to the corresponded areas shown below.

$$|A| \Rightarrow P_1 + P_2$$

 $A \cup B \Rightarrow P_1 + P_2 + P_3$

 $|B| \Rightarrow P_2 + P_3$

 $A \cap B \Rightarrow P_2$

(3) From the graph above, $(P_1 + P_2) + (P_2 + P_3) = (P_1 + P_2 + P_3) + (P_2) = P_1 + 2P_2 + P_3$.

The equation is true.

6 Problem 4.45(b)

- i) Set a = 1; set Definition (2) as p
 - (1) a function can either approach ∞ or a
 - (2) from (ii), $f(n) \to 1$
 - (3) f(n) will not approach ∞
 - (4) p is false
- ii) Set a = 1; set Definition (2) as p
 - (1) Assume $\neg p$ (contradiction)
 - (2) $f(n) \to a$ if for any $\epsilon > 0$, there is n_{ϵ} such that for all $n \ge n_{\epsilon}$, $|f(n) a| > \epsilon$.
 - (3) $\frac{n+3}{n+1} > \epsilon \Rightarrow \frac{2}{\epsilon} 1 > n$
 - (4) set $\epsilon = 2$, 2/2 1 = 0
 - (5) $0 \le 1$, which is a **fishy** conclusion
 - (6) p has to be true when a=1
- iii) Set a = 2, $\epsilon = 0.1$, n = 2; set Definition (2) as p
 - (1) when n = 2, $f(n) = \frac{5}{3}$
 - (2) $|f(n) 2| = \frac{1}{3}$
 - (3) $|f(n) a| > \epsilon$
 - (4) p is false when a=2

7 Problem 5.7(f)

Define the claim P(n): $(1 - \frac{1}{2})(1 - \frac{1}{3})...(1 - \frac{1}{n}) = \frac{1}{n}$

- i) Base case $P(1) = 1 \frac{1}{2} = \frac{1}{2}$
- ii) Induction Step Showing $P(n) \to P(n+1)$ for all $n \ge 2$, using a direct proof
 - (1) Assume P(n) is $T: (1 \frac{1}{2})(1 \frac{1}{3})...(1 \frac{1}{n}) = \frac{1}{n}$
 - (2) Show P(n+1) is $T: (1-\frac{1}{2})(1-\frac{1}{3})...(1-\frac{1}{n})(1-\frac{1}{n+1}) = \frac{1}{n+1}$
 - (3)

$$(1 - \frac{1}{2})(1 - \frac{1}{3})...(1 - \frac{1}{n})(1 - \frac{1}{n+1}) = [(1 - \frac{1}{2})(1 - \frac{1}{3})...(1 - \frac{1}{n})](1 - \frac{1}{n+1})$$

$$= (\frac{1}{n})(1 - \frac{1}{n+1})$$

$$= \frac{n+1-1}{n(n+1)}$$

$$= \frac{1}{n+1}$$
(1)

(4) This is exactly what was to be shown. So, P(n+1) is T

8