1 Blok kodovi

- Udaljenost koda: $d(K) = \min_{x,y \in K} (d(x,y) \mid x \neq y)$
- Otkrivanje s pogrešaka: $d(K) \ge s+1$; vrijedi za princip dekodiranja najbližim susjedom
- Ispravljanje t pogrešaka: $d(K) \geqslant 2t+1 \Rightarrow \left\lfloor \frac{d(K)-1}{2} \right\rfloor$; vrijedi za princip dekodiranja najbližim susjedom
- Kugla kodne riječi: $S(x,r) = \{y \in V(n) \mid d(x,y) \leqslant r\}$
- broj vektora koji su od x udaljeni točno za r je $\binom{n}{r}$
- $\bullet\,$ najveći br. kodnih riječi: $M=2^n$
- Hammingova gornja međa: $M \leqslant \frac{2^n}{\sum_{i=0}^t \binom{n}{i}}$
- perfektan kod ako $M = \frac{2^n}{\sum_{i=0}^t \binom{n}{i}}$
- dobivanje ekvivalentnih kodova: (1) zamjena dviju pozicija koda, (2) na jednoj ili više istih pozicija u kodnim riječima primjenimo preslikavanja: $0\mapsto 1$ i $1\mapsto 0$

2 Paritet - vertikalna i horizontalna provjera

- $x_{i, j}$ oznaka za j-ti simbol i-te poruke (ima m poruka duljine k)
- $R_i = x_{i, 1} \oplus \cdots \oplus x_{i, k}$, po retcima tablice
- $C_i = x_{1, i} \oplus \cdots \oplus x_{m, i}$, po stupcima tablice
- $R = R_1 \oplus \cdots \oplus R_m = C_1 \oplus \cdots \oplus C_k$
- $\bullet \ R=1 \implies$ dogodila se greška, sjecište retka i stupca

3 Linearno binarni blok kodovi

- ako je za $K \subseteq V(n)$ ispunjeno da $\forall x, y \in K$ vrijedi: $x+y \in K$ te ujedno i $a \cdot x \in K$, gdje $a \in F_2$, zove se **linearni binarni blok kod**; svako se zbrajanje provodi modulo 2 (xor \oplus)
- Težina kodne riječi: w(x) = br. jedinica u riječi
- Udaljenost LBBK-a: $d(K)=w(K)=\min_{x\in K}(w(x)\,|\,x\ne 0)=\min$. br. stupaca u matrici **H** koji zbrajanjem modulo 2 daju 0
- Oznaka: [n, k, d], n duljina riječi, k dimenzija vekt. prostora, d udaljenost koda
- Genarijrajuća matrica G retci su vektori baze koda K, dimenzije $G = [\cdot]_{k \times n}$; Standardni oblik gen. matrice: $G = [I_k \mid A]$
- ekvivalentni LBBK: (1) zbrajanje redaka, (2) zamjena redaka; (3) zamjena stupaca → dobije se gen. matrica **novog** koda za razliku od (1) i (2)
- Kodiranje gen. matricom: $\mathbf{x} = \mathbf{d} \cdot \mathbf{G} \rightarrow$ matrično množenje; \mathbf{x} je dobivena koda riječ; ako je \mathbf{G} u standardnom obliku, prvih k bitova je sama poruka \mathbf{d} , a ostali su zalihosni
- \bullet vektor pofreške: $\mathbf{e} = \mathbf{y} \oplus \mathbf{x}$; \mathbf{y} je primljeni, a \mathbf{x} poslani vektor
- Standardni niz je tablica prvi redak načinjen od kodnih riječi koda K, a prvi stupac od jednostrukih vekt. pogreške, ostale ćelije su \oplus vektora pogrešaka i kodnih riječi
- Dualni kod: $K^{\perp}=\{y\in V(n)\mid \forall x\in K,\ \mathbf{x}\cdot\mathbf{y}=0\},$ skalarno množenje komponenata vektora; ovo je LBBK
- Generirajuća matrica dualnog koda, H, tj. matrica provjere pariteta: neka je $G = [I_k \mid A]$ gen. matrica koda K, tada je gen. matrica njemu dualnog koda K^{\perp} u oznaci $H = [-A^{\top} \mid I_{n-k}]$; uz činjenice: $-1 \equiv 1 \pmod{2}$ i $-1 \equiv 2 \pmod{3}$
- provjera ispravnosti poslane kodne riječi \mathbf{x} : mora vrijediti $\mathbf{x} \cdot \mathbf{H}^{\top} = \mathbf{0}$ (općenito: $\mathbf{G} \cdot \mathbf{H}^{\top} = \mathbf{0}$)

- Sindrom primljene kodne riječi \mathbf{y} : $\mathbf{S}(\mathbf{y}) = \mathbf{y} \cdot \mathbf{H}^{\top}$; ako je poslana riječ \mathbf{x} , tada vrijedi: $\mathbf{S}(\mathbf{y}) = (\mathbf{x} + \mathbf{e}) \cdot \mathbf{H}^{\top} = \mathbf{e} \cdot \mathbf{H}^{\top}$; isti je za vektore istog razreda
- Sindromsko dekodiranje: (1) izračunati sindrom S(y) primljene kodne riječi y, (2) odrediti vektor pogreške e, (3) poslana kodna riječ je $x = y \oplus e$

Alternativno: nakon računanja sindroma, odrediti na kojoj se poziciji on nalazi u matrici \mathbf{H}^{\top} (gledajući \downarrow) te zamijeniti taj bit u primljenoj poruci \mathbf{y} (gledajući \rightarrow)

- Vjerojatnost ispravnog dekodiranja u BSK s vjerojatnošću krivog prijenosa $p_g\colon \mathbb{P}(K) = \sum_{i=0}^n N_i \cdot p_g^i \cdot (1-p_g)^{n-i}, N_i \to \text{br.}$ vektora pogreške s točno i jedinica; ako je kod perfektan: $\mathbb{P}(K) = \sum_{i=0}^t \binom{n}{i} \cdot p_g^i \cdot (1-p_g)^{n-i}$
- Kodna brzina zaštitnog koda: $R(K) = \frac{k}{n} \leqslant 1$
- iz matrice G se uvijek može doći do H, ali obratno samo kada nije zadano točno preslikavanje poruka u kodnu riječ
- Formiranje H iz G: ako je G: u standardnom obliku, onda samo $\mathbf{H} = [-A^{\top} \mid I]$; inače napraviti iz G standardni oblik zamjenom stupaca (zapisati redoslijed zamjene sa strane), formirati $\mathbf{H} = [-A^{\top} \mid I]$, provesti istu zamjenu stupaca

4 Hammingovi kodovi

• Neka je $r \in \mathbb{N}$, $r \geq 2$ te neka je \mathbf{H} matrica dimenzija $r \times (2^r - 1)$ čiji su stupci r-dimenzionalni vektori različiti od $\mathbf{0}$, tada je \mathbf{H} matrica provjere pariteta Hammingovog koda u oznaci $\operatorname{Ham}(r)$; t = 1, s = 2; to je LBBK $[2^r - 1, 2^r - 1 - r]$; $d(\operatorname{Hammingov} \operatorname{kod}) = 3$

$$\mathbf{H} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

• Kodiranje, paritetni (kontrolni) bitovi postavljaju se na pozicije $2^i,\ i\in\mathbb{N}\cup\{0\}$, računaju se zbrajanjem modulo 2 bitova koje kontroliraju, na ostale se stavljaju bitovi poruke; moguće kodirati i pomoću generirajuće matrice, ista formula: $\mathbf{x}=\mathbf{d}\cdot\mathbf{G}$

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	
c_0	c_1	d_1	c_2	d_2	d_3	d_4	c_3	d_5	d_6	
×		X		X		X		×		
	×	X			×	×			×	
			X	X	×	X				
							X	×	×	

- Formiranje generirajuće matrice **G** iz **H** za Hammingov kod: (1) iz **H** maknuti stupce na pozicijama potencija broja 2, (2) transponirati dobivenu matricu, (3) stupce dobivene matrice staviti na pozicije potencije broja 2 u **G**, (4) ostale stupce u **G** redom napuniti stupcima jedinične matrice
- Sindromsko dekodiranje isto kao i za LBBK, ako ${\bf H}$ ima stupce slijednih brojeva u binarnom zapisu $(1,\ 2,\ ...,\ 2^r-1)$, tada je sindrom pozicija u primljenoj kodnoj riječi čiji bit treba invertirati

5 Ciklični kodovi

• Uvjeti za cikličan kod:

- (1) $\forall a(x), b(x) \in K \implies a(x) + b(x) \in K$;
- (2) $\forall a(x) \in K \ i \ \forall r(x) \in R_n \implies r(x) \cdot a(x) \ \mathrm{mod}(x^n 1) \in K$
- za kod duljine n vrijedi: $x^n-1=g(x)\cdot h(x)$ gdje je g(x) generirajući polinom stupnja r, a h(x) je polinom za provjeru pariteta stupnja k=n-r
- generirajući polinom g(x) uvijek mora biti stupnja r (najmanji stupanj cikličkog koda) i mora imati član $x^0 = 1$
- Faktorizacija polinoma:

n	aritmetika	faktorizacija mod 2
1	$x^{1} - 1$	x+1
2	$x^{2}-1$	$(x+1)^2$
3	$x^{3}-1$	$(x+1)(x^2+x+1)$
5	$x^{5} - 1$	$(x+1)(x^4+x^3+x^2+x+1)$
7	$x^7 - 1$	$(x+1)(x^3+x+1)(x^3+x^2+1)$
9	$x^9 - 1$	$(x+1)(x^2+x+1)(x^6+x^3+1)$
11	$x^{11} - 1$	$(x+1)(x^{10}+x^9+\cdots+x+1)$
13	$x^{13} - 1$	$(x+1)(x^{12}+x^{11}+\cdots+x+1)$
15	$x^{15} - 1$	$(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$
17	$x^{17} - 1$	$(x+1)(x^8+x^5+x^4+x^3+1)(x^8+x^7+x^6+x^4+x^2+x+1)$
19	$x^{19} - 1$	$(x+1)(x^{18}+x^{17}+\cdots+x+1)$

• Konstrukcija generijajuće matrice G: u zadnji redak G staviti koeficijente od g(x); svaki se gornji redak dobije roacijiom ulijevo za jedan; kako bi se dobila standardna gen. matrica, pribrajaju se prethodni retci kako bi nastala jedinična podmatrica

$$\mathbf{G} = \begin{bmatrix} \vdots \\ x^2 g(x) \\ xg(x) \\ g(x) \end{bmatrix}$$

- Kodiranje, može se koristiti formula $\mathbf{x} = \mathbf{d} \cdot \mathbf{G}$, ali bitovi poruke izmješani su sa zalihosnima; bolji postupak: nakon bitova poruke dodaju se redundantni bitovi (CRC) koji se iščitaju iz polinoma $r(x) = d(x) \cdot x^r \operatorname{mod}[g(x)] \rightarrow \operatorname{oblik}$:

 PORUKA|CRC
- **Dekodiranje**, pomoću polinoma **sindroma** S(y(x)); definira se: $S(y(x)) := x^r \cdot y(x) \mod[g(x)] = x^r \cdot e(x) \mod[g(x)] = S(e(x))$ gdje je y(x) polinom primljene kodne riječi, r, stupanj od g(x), dok je e(x) polinom pogreške; dobiva se na isti način kao i polinom zalihosnih bitova r(x); **postupak**: (1) izračunati sindrome za **sve** polinome pogreške, (2) izračunati sindrom posalne poruke y(x), (3) ispraviti bit na mjestu ukazanom prema polinomu pogreške uparenom sindromu koji se poklapa sa sindromom iz (2)

6 Konvolucijsko kodiranje

- $(n,k,L) \to n$ izlaz kodera; k ulaz kodera; L granična duljina kodera (računa se L=m+1, gdje je m br. memorijskih stanja posmačnog registra)
- Funkcijski generator $h_i^{(j)}$ ulaza i te j-tog izlaza kodera vektor je duljine m (po mem. stanjima posmačnog reg.), bitovi i-tog posmačnog reg. koji su preko xor spojeni na j izlaz kodera su u $h_i^{(j)}$ postavljeni u 1, ostali u 0
- Generirajuća matrica \mathbf{G} ima n stupaca; prvi redak izgleda ovako: $[\mathbf{G_1} \ \mathbf{G_2} \cdots \mathbf{G_m} \ 0 \cdots 0]$, nula ima po potrebi da se nadopune stupci, svaki sljedeći redak isti je kao prethodni, ali zarotiran udesno za 1, postupak se ponavlja sve dok $\mathbf{G_m}$ ne dođe do kraja matrice, \mathbf{G}_l je podmatrica dimenzija $k \times n$, a sastoji se od vekotr-redaka oblika $\left[h_{i,l}^{(1)} \ h_{i,l}^{(2)} \cdots h_{i,l}^{(n)}\right], i \in \{1,2,...,k\}$, tj. \mathbf{G}_l ima redaka koliko je ulaza u koder te su u i-tom retku nanizani l-ti bitovi prema rastućim izlazima funkcijskih generatora h_i ; kodiranje: množi se poruka s \mathbf{G}
- Prijenosna funkcija $T(D) = \frac{X_a'}{X_a}$ gdje je X_a' funkcija izlaza, a X_a funkcija ulaza, na dijagramu stanja se dodaju D^i gdje je i težina kodne riječi koja se dobije na prijelazu; potrebno napisati funkcije svih pojedinih stanja te algebarski izraziti X_a i X_a' preko D; razviti u red \rightarrow : potencija predstavlja duljinu puta, a koeficijent koliko je takvih puteva

7 Signali u kontinuiranom vremenu

- srednja energija signala: $\int_{-\infty}^{\infty} Ri^2(t) dt$ [Ws] $(R = 1\Omega)$
- \bullet srednja snaga signala: $\lim_{T\to\infty} \left(\int_{-T/2}^{T/2} \frac{u^2(t)}{RT} \mathrm{d}t \right)$ [W]

7.1 Periodični signali

- $x(t) \Longrightarrow \sum_{k=-\infty}^{\infty} c_k \delta(f kf_0) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$
- $c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t}$ (c_0 je istosmjerna komponenta)
- Diracova delta funkcija, svojstva: (1) $\delta(t) \neq 0, t = 0$; (2) $\delta(t) = 0, t \neq 0$; (3) $\int_{-\infty}^{\infty} \delta(t) dt = 1$; (4) $\int_{-\infty}^{\infty} \delta(t t_0) x(t) dt = x(t_0)$
- srednja snaga: $P = |c_0|^2 + 2\sum_{k=1}^{\infty} |c_k|^2$
- snaga istosmjerne komponente: $P_0 = |c_0|^2$
- trigonometrijske funkcije
 - sinsusni signal: $x(f) = -j\frac{A}{2}[\delta(f f_0) \delta(f + f_0)]$
 - kosinusni signal: $x(f) = \frac{A}{2} [\delta(f f_0) + \delta(f + f_0)]$
 - srednja snaga: $P = \frac{A^2}{2}$

• periodičan slijed pravokutnih impulsa

- amplituda A, trajanje τ , period ponavljanja T_0
- $\begin{array}{c} \ c_k = \frac{A \cdot \tau}{T_0} \cdot \frac{\sin\left(\frac{k\pi\tau}{T_0}\right)}{\frac{k\pi\tau}{T_0}} \to \text{komponente spektra na } kf_0, k \in \mathbb{Z} \end{array}$
- srednja snaga: $A^2 \cdot \frac{\tau}{T_0}$

7.2 Neperiodični signali

- srednja energija: $\int_{-\infty}^{\infty} |x(t)|^2 dt$
- spektar: $x(f)=\int_{-\infty}^\infty x(t)e^{-j2\pi ft}\mathrm{d}t;$ vremenska domena: $x(t)=\int_{-\infty}^\infty x(f)e^{-j2\pi ft}\mathrm{d}f$
- VRSTE SIGNALA: (1) signali energije konačna energija, P=0; (2) signali snage konačna srednja snaga (P>0) i $E=\infty$; (3) signali niti snage, niti energije $P=E=\infty$

• pravokutni impuls

- τ je trajanje impulsa, Aje amplituda
- $-~x(f)=A\tau\cdot\frac{\sin\left(\frac{2\pi f\tau}{2}\right)}{\frac{2\pi f\tau}{2}}\to\max$ vrijednost za f=0Hz
- srednja snaga: P=0, ukupna energija: $E=A^2\tau$

7.3 Slučajni signali

- srednja vrijednost: $\mu_X(t) = \mathbb{E}[X(t)] = \int_{-\infty}^{\infty} x f_X(x) dx$
- autokorelacijska funkcija: $R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)]$
- autokovarijanca: $C_X(t_1, t_2) = R_X(t_1, t_2) \mathbb{E}[X(t_1)]$ · $\mathbb{E}[X(t_2)]$
- X(t) stacionaran u širem smislu očekivanje mu je konst. u vremenu, a autokorelacija ovisi samo o razlici $\tau:=|t_1-t_2|$
- spektralna gustoća snage: $S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$ [W/Hz]
- autokorelacijska funkcija: $R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi ft} df$
- srednja snaga: $P = \mathbb{E}[X^2(t)] = \int_{-\infty}^{\infty} S_X(f) df = R_X(\tau = 0)$

• bijeli Gaussov šum W - vrijednosti u različitim trenutcima moraju biti nekorelirane $(C_X(t_i,t_j)=0, \forall i\neq j);$ ako su nezavisne, tada je **strogo** bijeli šum; vrijedi: $R_W(\tau)=\sigma^2\delta(\tau),$ tj. $S_W(f)=\sigma^2\int_{-\infty}^{\infty}\delta(t)e^{-j2\pi ft}\mathrm{d}\tau=\sigma^2$

• LTI kanali

- linearna kombinacija ulaznih signala $\alpha_i x_i(t)$ jednaka je linearnoj kombinaciji izlaznih signala $\alpha_i y_i(t)$; vremenski nepromjenjiv ako vrijedi: $x(t) \to y(t) \implies x(t-t_0) \to y(t-t_0)$
- prijenosna funkcija sustava: $H(f) = \int_{-\infty}^{\infty} h(t) e^{-j2\pi f t} \mathrm{d}t$
- amplitudni i fazni odziv: |H(-f)| = |H(f)| i $\theta(-f) = -\theta(f)$
- srednja vrijednost izlaza: $\mu_Y = \mu_X \cdot H(0)$
- spektralna gustoća snage izlaza: $S_Y(f) = S_X(f) \cdot |H(f)|^2$
- spektar izlaza: $|Y(f)| = |X(f)| \cdot |H(f)|$
- nisko propusni kanal: $h(t) = 2f_g \cdot \frac{\sin(2\pi f_g(t-\tau))}{2\pi f_g(t-\tau)}$
- širina prijenosnog pojasa kanala B za nisko propusni: $B=f_g;$ za pojasno propusni: $B=f_g-f_d$

7.4 Uzorkovanje i kvantizacija signala

- Teorem uzorkovanja (vremenska domena) pojasno ograničen signal koji nema komponenete na frekvencijama > B je potpuno i jednoznačno opisan vrijednostima signala u diskretnim trenutcima $T_n = \frac{n}{2B}$ [odnosi se na predajnik] te ga je moguće potpuno rekonstruirati potpuno rekonstruirati iz uzoraka ako su oni međusobno razmaknuti 1/2B sekundi, tj. $f_U \geqslant 2B$ [odnosi se na prijemnik]
- uzorkovani signal: $x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nT_U)\delta(t-nT_U); T_U;$ $x_{\delta}(f) = f_U \sum_{n=-\infty}^{\infty} x(f-nf_U) \rightarrow$ jednoliko uzorkovanje signala daje periodičan spektar, period spektra je frekvencija uzorkovanja
- rekonstrukcija propustiti kroz NPF čija je granična frekvencija max frekvencija u spektru uzorka; ako f_g pada na komponentu, tada i ona ulazi u spektar
- poduzorkovanje kada $f_U < 2B$, nije moguća rekonstrukcija
- r-broj bitova za kodiranje, L-broj kvantizacijskih stepenica $(L=2^r)$, $[-m_{\rm max},\,m_{\rm max}]$ interval amplitude ulaznog signala, Δ -korak kvantizacije ($\Delta=2\cdot m_{\rm max}/L$), srednja snaga kvantizacijskog šuma $N_q=\Delta^2/12$; omjer sinusnog signala i kvantizacijiskog šuma: $S/N_q=3/2\cdot L^2$
- srednja kvadratna pogreška kod kvantizacije: $\overline{N_q}^2 = \sum_{u_{q_i}} \int_{u_{q_i} \frac{\Delta}{2}}^{u_{q_i} + \frac{\Delta}{2}} (u u_{q_i})^2 p(u) du; u_{q_i}$ -sredina *i*-te kvantizacijske razine, p(u)-funkcija gustoće vjerojatnosti razine signala u(t)
- prijenosna brzina informacije: $R_b = f_U \cdot r;$ f_U -frekvencija uzorkovanja, r-broj bitova po uzorku

7.5 Kapacitet kanala u kontinuiranom vremenu

- entropija: $H(x) = -\int_{-\infty}^{\infty} f_X(x) \log_2(f_X(x)) dx$
- ako je $X \sim \mathcal{U}(a,b) \implies H_{\max}(X) = \ln(b-a) [\text{nat/simb}]$
- ako je $X \sim \mathcal{E}\left(\frac{1}{a}\right) \implies H_{\max}(X) = 1 + \ln(a) \left[\operatorname{nat/simb} \right]$
- ako je $X \sim \mathcal{N}(a, \sigma^2) \implies H_{\max}(X) = \ln(\sigma \sqrt{2\pi e})$ [nat/simb]
- ekvivokacija: $H(X|Y) = \iint_{\mathbb{R}^2} f(x,y) \log_2 \left(\frac{f(x,y)}{f_Y(y)} \right) \mathrm{d}x \, \mathrm{d}y$
- entrpoija šuma: $H(Y|X) = -\iint_{\mathbb{R}^2} f(x,y) \log_2\left(\frac{f(x,y)}{f_X(x)}\right) \mathrm{d}x\,\mathrm{d}y$
- združena: $H(X,Y) = -\iint_{\mathbb{R}^2} f(x,y) \log_2 (f(x,y)) dx dy$

7.5.1 Gaussov aditivni šum

- X—sluč. var. ulaznog signala $\mathbb{E}(X)=0$ i $\mathbb{D}(X)=\sigma_X^2$, Y—sluč. var. izlaznog signala, Z—sluč. var. šuma ($Z\sim\mathcal{N}(0,\sigma_Z^2)$); X,Z nezavisne
- zbog nezavisnosti $f(y|x)=f(x+z|x)=f_Z(z)$ i $H(Y|X)=H(Z) \leadsto \max$ je gore određen, $H_{\max}(Z)=\ln(\sigma\sqrt{2\pi e})$
- $\mathbb{E}(Y) = \mathbb{E}(X+Z) = 0$
- $\mathbb{D}(Y) = \mathbb{E}[(X+Z)^2] \mathbb{E}^2[X+Z] = \dots = \sigma_X^2 + \sigma_Y^2$
- funkcija gustoće za koju je H(Y) maksimalno je Gaussova, tj. $Y \sim \mathcal{N}(0, \sigma_X^2 + \sigma_Z^2) \leadsto H_{\max}(Y) = \frac{1}{2} \ln(2\pi e(\sigma_X^2 + \sigma_Z^2))$
- kapacitet: $C=\frac{1}{2}\ln\left(1+\frac{S}{N}\right)$ [nat/simb] gdje je $S:=\sigma_X^2$ srednja snaga signala na ulazu, a $N:=\sigma_Z^2$ srednja snaga šuma; za bitove: $C=\frac{1}{2}\log_2\left(1+\frac{S}{N}\right)$ [bit/simb]

7.5.2 Kapacitet pojasno ograničenog kanala (AWGN)

- uzorkovati kontinuirane signale u n-dimenzionalne diskretne vektore $\mathbf{X} = [X_1, \, ..., \, X_n]$ i $\mathbf{Y} = [Y_1, \, ..., \, Y_n]$, pretpostaviomo da su i disperzije svake komponente jednake $\sigma_{X,k}^2 = \sigma_X^2$ i $\sigma_{Y,k}^2 = \sigma_Y^2$ za $k=1, \, ..., \, n$
- $I_{\max}(\mathbf{X}; \mathbf{Y}) = \sum_{k=1}^{n} \log_2(\sigma_{Y,k} \sqrt{2\pi e}) \sum_{k=1}^{n} \log_2(\sigma_{Z,k} \sqrt{2\pi e})$ $I_{\max}(\mathbf{X}; \mathbf{Y}) = \frac{n}{2} \log_2\left(1 + \frac{S}{N}\right)$ [bit/simb], S je srednja snaga signala, a N srednja snaga šuma
- \bullet zbog pojasne ograničenosti $f_U\geqslant 2B\implies n=2B$
- kapacitet: $C = B \log_2 \left(1 + \frac{S}{N}\right) = 2BD$ [bit/s]
- dinamika: $D = \frac{1}{2} \log_2 \left(1 + \frac{S}{N}\right)$ [bit/uzorak]
- ako je spektralna gustoća snage šuma $S_N(f) = \frac{N_0}{2}$, tada je srednja snaga šuma $N = N_0 B$
- u stvarnom svijetu neoptimalni sustav smanji omjer srednje snage signala i srednje snage šuma $\Gamma = \frac{2^{2C}-1}{2^{2R}-1} = \frac{S}{N(2^{2R}-1)}$, tada je brzina prijenosa: $R_b = B \log_2 \left(1 + \frac{S}{\Gamma N} |H(f)|^2\right)$ [bit/s]
- \bullet srednja snaga signala $S=E_b\cdot R$, gdje je E_b srednja energija po svakom bitu, a R brzina prijenosa koja je u idealnom slučaju R=C
- učinkovitost prijenosnog pojasa je objer brzine i širine pojasa $\frac{C}{B}$
- \bullet gornja granična vrijednost kapaciteta je $\frac{S}{N_0}\log_2(e)$

8 Random matematičke fromule

- $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
- $\sin(A) \sin(B) = 2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)$
- $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
- $\cos(A) \cos(B) = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
- $\sin(A)\cos(B) = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$
- $\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$
- $\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) \cos(A+B)]$
- $\int x \ln(x) dx = \frac{x^2}{2} \ln(x) \frac{x^2}{4}$
- \bullet $\frac{\mathrm{d}}{\mathrm{d}x}[a^x] = a^x \ln(a)$