总而言之来使用 booktabs 吧

东京大学 情报理工学系研究科 讲师 松井勇佑 初版 2022 年 9 月 5 日 / 更新日期 2023 年 1 月 23 日

• 本资料的 GitHub 仓库: https://github.com/matsui528/use_booktabs_anyway

• 作者的主页: http://yusukematsui.me

1 序言

在论文中插入表格时,来使用 booktabs 的宏包吧。booktabs 是在一般 Tex 表格基础上,可对线和宽度进行适当调整的宏包。仅 通过使用 booktabs 就能轻松让表格变得整洁美观。不仅如此,按照 booktabs 的思路(以行为本、不插入竖线等)来制作表格的话,会 使制成的表格更加清晰易懂。以下是两篇基础文献。

- 官方文档。细节的设定等请参照 CTAN 的官方文档。
- Markus Püschel, "Small Guide to Making Nice Tables". 与本资料同样是介绍 booktabs 的文章。

本文以上述文献和我的个人经验为基础,可能存在错误或更好的方法。如果有感想建议或者有想指出的错误的话,请务必在 issue 提出。

2 基本使用方法

请看下面两个表格。

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法·伊诺埃	178	69.5

表 1: 普通表格

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法·伊诺埃	178	69.5

表 2: 使用 booktabs 的表格

左边是使用 Tex 的一般功能制作出的表格,估计大家最开始做的表格都是这种感觉的吧。右边是使用 booktabs 对相同内容进行整理后的例子。是不是变得整洁又大方了呢? 左侧表格的 tex 代码如下所示。

```
| % "表 1 普通表格" | begin{tabular}{|c|c|c|} \hline | 姓名 & 身高 (cm) & 体重 (kg) \\ hline | 奥迪罗・汉宁古 & 173 & 62.2 \\ hline | 奥利法・伊诺埃 & 178 & 69.5 \\ hline | \end{tabular}
```

与之相对地,右侧使用 booktabs 的表格的代码如下所示。

```
1 % "表 2 使用 booktabs 的表格"
2 \begin{tabular}{@{}lll@{}} \toprule
3 姓名 & 身高 (cm) & 体重 (kg) \\ midrule
4 奥迪罗·汉宁古 & 173 & 62.2 \\
5 奥利法·伊诺埃 & 178 & 69.5 \\ \bottomrule
6 \end{tabular}
```

接下来将介绍将左边表格变换成右边表格的机械化规则。按照以下步骤来做就可以实现了。

- 1. 导入 booktabs 的宏包: 在代码起始位置添加\usepackage{booktabs}来导入宏包。忘记这一步的话肯定是无法顺利进行下去的。
- 2. 去除竖线:表??里的列的设定为 { | c | c | c | c | }。要通过修改这个地方来把竖线去掉,也就是说,将它改为 { ccc }。表格里基本上是不需要竖线的。无论如何都需要竖线时,大多数情况下把表格进行分割会更好。
- 3. 设置为左对齐: 也就是把 {ccc} 改为 {111}。推荐首先全部进行左对齐,如果觉得不够美观的话再考虑居中或者右对齐。
- 4. 添加神奇的间隔符: 把神奇的间隔符 **@**{} 添加到列的设置的两端。即把 {111} 改成 {**@**{}111**@**{}}。很多人容易忘记这一步。添加了这个间隔符的话,可以去掉表格两端多余的空白,使表格看上去更加美观。未添加间隔符的不够整洁的表格如表**??**所示,添加了间隔符后变美观的表格如表**??**所示。
- 5. 删除横线并改成 rule 符号: 把横线\hline全部删除, "上框线"用\toprule、"表头后"用\midrule、"下框线"用\bottomrule。

这样就完成了。只是通过增加或删除操作就能带来截然不同的视觉效果。到这里本资料所要传达的内容已经实现了八成。接下来是扩展内容的介绍。

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法 · 伊诺埃	178	69.5

表 3: 未使用 @{} 的不够整洁的表格

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法·伊诺埃	178	69.5

表 4: 使用 0{} 后变美观的表格

3 扩展篇

扩展篇将介绍制作优秀表格的方针和各种技术。

3.1 以行为本

建议时刻谨记**以行为一个单位**,表格是**行的集合**这件事。某次测量或某条数据就是一行,各行之间是独立的。其次,每一行在概念上都是"同一级别的东西"。用编程语言来形容的话就是"同一类型的实例"。如果一个表格能够只由"表头(类型定义)"和"行的集合(实例的集合)"构成,那它就是一个易于理解的表格。

在表??的例子中,第一行的表头部分是"姓名"等对列的说明,第二行以后的主体部分满足"一个人的数据为一行"原则。在这个例子中,即使改变每行的排列顺序也没有问题(交换奥迪罗和奥利法的顺序也没关系)。虽然在实际制作表格时,以身高为基准进行了排序,但从含义上来讲,交换各行的顺序也没有关系。我们的目标就是能够制作出这样的表格。如果改变表格主体部分的排列顺序会感到不自然的话,重新考虑表格的构成或者考虑能否用图表来表示会比较好。

booktabs 的三种横线(\toprule, \midrule, \bottomrule)与这种以行为单位的表格的构成是相匹配的。最上面一条线是\toprule,最下面一条线是\bottomrule,然后就是在"表头"和"行的集合"之间插入\midrule。这种是基本的格式。

当然上述只是原则上的格式,也存在例外情况。比如将"合计"或"平均"那行放到最初或最后(表??)。由于合计或平均与其他行相关,所以它们不是独立于其他行的。很多情况下,会将合计或平均放到表格的最初或最后。在这个例子中为了便于理解,也可以像表??那样在"平均"之上画一条横线。只不过需要注意不要画太多的横线。

在制作表格时,除了遵守"以行为本"的原则外,还要在制作过程中逐渐摸索怎样才能更加便于读者理解,以及怎样才能充分利用 有限的纸面空间。

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法·伊诺埃	178	69.5
奥伊·宁格	167	52.1
平均	172.7	61.3

表 5: 把平均放在最后的例子

姓名	身高 (cm)	体重 (kg)
奥迪罗·汉宁古	173	62.2
奥利法·伊诺埃	178	69.5
奥伊·宁格	167	52.1
平均	172.7	61.3

表 6: 把平均放在最后并在其上面加了横线的例子

3.2 行的分组

让表格变得直观的方法之一就是行的分组。表??是原本的表格,分别展示了 Hoge 的方法和我们的方法下的速度和精度。此外,每 个方法还有一个参数 k,表中也展示了 k 的值的变化。这个表格是符合"一行是一个对象"原则的以行为本的表格。

另一方面,最左列的 Hoge 和 Ours 并列在一起,对于读者来说存在信息冗余。这种情况下,像表??这样,将冗余的项目删除,对 行进行分组会更好。这种方式可以在保证表格信息量的前提下达到缩减字数的效果。

实现表??这种形式就已经可以了。此外,还可以在 Hoge 和 Ours 中间用\multirow将它们区分开,如表??所示。在这个例子里, 由于没有横线的话会比较难懂,所以用\midrule添加了一条横线。表??和表??哪个更好,主要取决于实际情况。如果一个表格不加很 多横线就会变得很难懂的话,把它分割成几个表格可能会更加便于理解。

方法	k	速度 (ms)	精度 (Recall)
Hoge	16	0.32	0.21
Hoge	32	0.61	0.44
Ours	9	0.47	0.26
Ours	18	0.99	0.77

方法	k	速度 (ms)	精度 (Recall)
Hoge	16	0.32	0.21
	32	0.61	0.44
Ours	9	0.47	0.26
	18	0.99	0.77

方法	k	速度 (ms)	精度 (Recall)
IIomo	16	0.32	0.21
Hoge	32	0.61	0.44
Ours	9	0.47	0.26
Ours	18	0.99	0.77

表 7: 原本的表格

表 8: 将行进行分组后的表格。这样就可以。 表 9: 为了更加集中额外加了一条横线。这 样也可以。要注意不要加太多横线。

此外,可以进行多次行的分组和合并,如表??所示。这是大学附近拉面店的整合信息。整体思路是先对第一列的项目进行排序然 后去除冗余,再对第二列项目进行排序然后去除冗余,如此反复。请注意如果过度合并的话可能会变得难以阅读。

最近的车站	店铺名称	菜品	价格 (元)
本乡三丁目	海手	natsu 拉面	700
		拌面 X	850
	IBASA	拉面	700
		冷面	650
東大前	用心面	拉面	700
		蘸面	800
			-

表 10: 进行了两次行的分组合并的例子

3.3 行的分级

接下来介绍行的分级技巧。表??中总结了店里售卖的商品信息。每行之间相互独立,是一个优秀的表格。由于这里存在类别信息 的冗余, 所以使用"行的分组"会变得更加整洁, 像表??这样就可以。

在此基础上,利用类别信息对商品进行分级的例子如表??所示。在这里删掉了类别那一列,把它放到了各个商品的上一级。像这 样通过删除列来减少字数,以达成行的分级。这里只通过插入空白就实现了字符的缩进,具体请看 Tex 的代码。

商品	类别	价格 (元)	位置(层)
猪肉	肉	300	2
牛肉	肉	500	2
番茄	蔬菜	100	3
黄瓜	蔬菜	200	3
卷心菜	蔬菜	30	4

表 11: 原本的表格

类别	价格 (元)	位置 (层)
肉	300	2
	500	2
蔬菜	100	3
	200	3
	30	4
	肉	肉 300 500 蔬菜 100 200

表 12: 根据类别分组后的例子

商	品	价格	(元)	位置	(层)
肉					
猜	者肉	300		2	
4	上肉	500		2	
蔬	菜				
耆	昏茄	100		3	
貢	貞瓜	200		3	
老	多心菜	30		4	

表 13: 进一步分级后的例子

接下来介绍一个分级可以带来显著效果的例子。假设我们想要调查神奈川县各个市的经济规模。表??展示了神奈川县的统计信息和其中三个行政市的信息。为了比较,还列出了石川县和富山县的信息。这个表格每行都能独立表示各个地域的信息,也是一个优秀的表格。与此同时,表格中既有表示县整体情况的"总计",也有"横滨市"这样单独表示一个市的情况。由于各行所表示的级别不同,所以直观上可能难以理解。

因此将行进行分级后的例子如表??所示。这种方式使理解变得容易了许多。比方说,很容易能看出,即使横滨市是"市",它的人口也是面积是它 10 倍的石川"县"的 3 倍多。

需要注意的是,进行行的分组和分级都只是为了便于观看。也就是说,制作出的表格要能随时都能恢复成"每行是一条数据"的 "原本的表格"。

县	市	面积 (km^2)	人口(人)
神奈川县	总计	2,416	9,237,000
神奈川县	横滨市	437	3,774,000
神奈川县	川崎市	143	1,542,000
神奈川县	相模原市	328	726,000
石川县	总计	4,186	1,119,000
富山县	总计	4,247	1,018,000

表 14: 原本的表格

地区	面积 (km ²)	人口 (人)
神奈川县		
总计	2,416	9,237,000
横滨市	437	3,774,000
川崎市	143	$1,\!542,\!000$
相模原市	328	726,000
石川县	4,186	1,119,000
富山县	4,247	1,018,000

表 15: 将行进行分级后的例子

3.4 列的分级

接下来介绍"列的分级"。由于每列表示的都是完全不同的东西,所以无法进行列的分组。不过可以进行列的分级,其中一个例子如表??所示。在这个表中展示了不同方法的最小误差、平均误差和最大误差。虽然就这样也没有问题,但每次都要写上"误差"很繁琐。像这种情况,可以对表头的项目进行分级。

分级之后的例子如表??所示。在这里通过添加了一条横线,实现了对原本独立各列的整合。这里写着"误差"的部分跨越了多个列,可用\multicolumn命令来实现。此外,"局部横线"可以通过\cmidrule命令来实现。

方法	最小误差	平均误差	最大误差
Isomap	0.23	0.44	0.92
LLE	0.10	0.73	1.82

表 16: 原本的表格

		误差						
方法	最小	平均	最大					
Isomap	0.23	0.44	0.92					
LLE	0.10	0.73	1.82					

表 17: 将列进行分级后的例子

"列的分级"同样也可以进行多次,其例子如表??所示。这里表示了各个县的各种信息。将气温和降水量进行分级后,可以使表格变得更加易于观看。同时,由于将单位的声明都写到了上面,所以使表格在横向上缩短了很多,使得没有分级的项目(县名和人口密度)也能被放到同一个表格里了。

	Æ	〔温(°€	C)	降水量	(mm)	交通	方式	
县名	最高	平均	最低	8月	12 月	新干线	飞机	人口密度 $($ 人 $/km^2)$
石川县	32	20	-1	179.8	304.7	✓	✓	267
静冈县	27	23	5	250.9	63.0	✓	\checkmark	461
冲绳县	33	28	15	175.4	104.4		\checkmark	643

表 18: 对列进行多次分级的表格

3.5 局部横线: cmidrule

在这里来介绍一下在"列的分级"里提过的\cmidrule吧。表??的代码如下所示。

\cmidrule(1){2-4}中的"1"指的是是否删掉横线的两端。1 表示去掉左侧, r 表示去掉右侧, lr 表示将两端都去掉。通过这种细微的删减,来调整表格的外观。具体例子如表??到表??所示。虽然只有细小的差别,但知道的话会很方便。{2-4}指的是对应的列数。通过不断改变设置,来对表格进行调整就可以。

		误差				误差				误差				误差	
方法	最小	平均	最大	方法	最小	平均	最大	方法	最小	平均	最大	方法	最小	平均	最大
Isomap	0.23	0.44	0.92	Isomap	0.23	0.44	0.92	Isomap	0.23	0.44	0.92	Isomap	0.23	0.44	0.92
LLE	0.10	0.73	1.82	LLE	0.10	0.73	1.82	LLE	0.10	0.73	1.82	LLE	0.10	0.73	1.82
表 19	: cmidr	ule(){2	2-4}	表 20:	cmidru	ıle(<u>l</u>){	2-4}	表 21:	cmidru	ıle(r){	2-4}	表 22:	cmidru	le(<mark>lr</mark>)-	 {2-4}

顺便一提,表??是将\cmidurle设置成了"\cmidrule(lr){2-4} \cmidrule(lr){5-6} \cmidrule(lr){7-8}",加了"lr"去掉了线的两端。如果不去掉两端的话就如表??所示。这里删除了所有的"lr",设置成了\cmidrule(){2-4}的形式。这样导致"气温""降水量""交通方式"之间的线都连到了一起,因此这里加入适当的空白会使表格更加便于理解。

	Æ	〔温(°C	C)	降水量	(mm)	交通	方式	
县名	最高	平均	最低	8月	12 月	新干线	飞机	人口密度 (人/km ²)
石川县	32	20	-1	179.8	304.7	\checkmark	\checkmark	267
静冈县	27	23	5	250.9	63.0	\checkmark	\checkmark	461
冲绳县	33	28	15	175.4	104.4		\checkmark	643

表 23: 没在表??中设定 cmidrule 删减的结果

3.6 将列移到行

有时将列的内容移到行会使表格变得更简洁。虽然我**不推荐**这种技巧,但是在实际中经常会遇到这种情况所以还是来介绍一下。举个例子,表**??**是原本的表格。这里在 3 个数据集上对 2 种方法进行了评价,并列出了运行时间。每行都有一个相应的结果,是一个优秀的表格。对每个方法进行了行的分组。本来这样就可以,但是可能会有以下两个需求。

- 想在同一个 Dataset 里比较不同方法, 但是数值不在一起。比如 MNIST 的 k-means (10.2) 和 Ours (8.3) 离得较远。
- 继续增加 Method 或 Dataset 的话,会使表格变得过于竖长。想在横向上增加长度。

遇到这种情况时该怎么办才好呢?

可以考虑**将某一列(在这里是 Dataset)移到行**。"一条数据(一行)"不再是"方法·数据集·运行时间",而是变成"方法·数据集1的运行时间·数据集2的运行时间·数据集3的运行时间"。这样转换之后的表格就如表??所示。这种方式同时满足了"将同一个数据集的数值放到相近位置""增加横向长度"的两个要求。但相应地,表头的部分明显变得冗长了。

面对这种情况,使用"列的分级"后就变成了表??。明显变得好多了,就这样结束也没有问题。只不过这里"Dataset="在表头出现了 3 次,显得冗余。表??和表??是将表格变得更加简洁的 2 个方法。

表??去掉了表??中"Dataset="的部分,使表格变得更加容易观看了。在这个例子里,就这样也能让人明白表格的含义。然而,由于完全没写"Dataset="的说明,所以读者可能会不明白"MNIST"的部分是什么意思。因此,不另外说明 Runtime 下面项目的含义的话,这种写法是行不通的。

Method	Dataset	Runtime (ms)
k-means	MNIST	10.2
	${\bf ImageNet}$	45.3
	Places	57.1
Ours	MNIST	8.3
	${\bf ImageNet}$	39.1
	Places	82.3

Method	()	Runtime (ms) for Dataset=ImageNet	` /
k-means	10.2	45.3	57.1
Ours	8.3	39.1	82.3

表 25: 将 Dataset 这一列移到行之后。表头变得冗余。

表 24: 原本的表格

	Runtime (ms)							
Method	Dataset=MNIST	Dataset=ImageNet	Dataset=Places					
k-means	10.2	45.3	57.1					
Ours	8.3	39.1	82.3					

表 26: 将列进行分级后的结果。虽然比之前变好了,但 "Dataset=" 的部分还是冗余。

表??把表??中的"Runtmie (ms)"改成了"Dataset",这是最简洁的写法。由于没有解释表格里数值的含义,所以有必要在注释里加上"这是 Runtime (ms)的表格"的说明。这就是"当表格由唯一一种数据构成时,有时可以通过把对数值的说明放到注释里的方式来减少表头信息量,使表格变得简洁"的方法。顺便一提,这种只含唯一一种数据的表格,与本资料的其他表格相比有一个特点。那就是,表头里不含对元素的说明。我个人不是很喜欢这种方式,我还是认为表头里包含元素说明比较好。不过也可能存在由于空间限制必须要这么写的情况。

	Runtime (ms)							
Method	MNIST	${\bf ImageNet}$	Places					
k-means	10.2	45.3	57.1					
Ours	8.3	39.1	82.3					

	Dataset		
Method	MNIST	ImageNet	Places
k-means	10.2	45.3	57.1
Ours	8.3	39.1	82.3

表 27: 省略了"Dataset="的情况。虽然变简洁了,但是哪里都没有关于"Dataset="的信息。

表 28: 省略了"Runtime (ms)"的情况。虽然最简洁,但是有必要在注释里加上"这是 Runtime (ms)的表格"的说明。

回归正题,这次讨论了很多种表格的写法,是因为我们既想从 Method 角度也想从 Dataset 角度进行分析。由于表格只由行和列构成,所以想要在横向和纵向上都进行分析的时候,就会变成表??和表??这样类似于矩阵的形式。因此,这样就逐渐远离了"一行是一次观测"的原则。这种情况下,可以考虑使用图表。将同样内容用图表形式来表现的话就如图??所示。这样既能实现"某个数据集下不同方法比较"也能实现"不同数据集下某个方法比较"。在这次的例子中,就算再增加数据集或方法,图表所占的空间也不会改变。此外,还可以增加误差条或者转换成箱线图的形式。另一方面,使用图表的缺点是无法显示具体的数值。比如当需要和既存方法的数值进行比较时,使用图表就会显得不够方便。建议通过考虑表格和图表的优缺点,来选择最有效的表示信息的方式。

3.7 对表格制作感到无从下手的话

如果你对于表格制作感到无从下手的话,可以试着按照以下顺序来做。

- 1. 根据"一行是一条数据"的原则来分解表格。就算横向上很短也没关系。
- 2. 对最重要的那一项反复进行"行的分组"。需要的话也可以进行"行的分级"。
- 3. 需要的话进行"列的分级"。
- 4. 如果还是感到不合适,可以进行"将列移到行"和"行的分级"。然后省略掉冗长的说明。
- 5. 如果还是感到不合适,可以考虑使用图表。

图 1: 把表??和表??转换成图表。

4 案例分析

接下来通过几个例子,来学习怎样能使表格变美观吧。首先请看表??、表??和表??。这里显示的是改变参数时各个方法的精度。看上去它们全都反映了同样的内容,但其实这里面包含了常见的错误。

首先来看表??。它表示的是当改变参数 T 时,ResNet50 和我们的方法的精度变化。这个表格第一眼看上去好像很工整,但是仔细看就会发现,本应是表头的第一行里,并不完全是表头信息。比如 ResNet50 的上面本来应该是"Method",然而这里却变成了 T。此外,"0.32"上面的"1"也不能成为对数据的说明。因此,这不是一个由"表头 + 行的集合"所构成的表格。另外,这个表格里也没有对要素的说明(即说明数据表示的是精度)。也就是说,不明白数字的含义,必须要添加注释才行。对于这种小表格而言,不用注释就能在表中把所有信息都展示出来的表格应该是最整洁的。

相信很多人会把同样的内容用表??这种形式来表示。左上角的格子里包含"斜线"和"横向纵向的信息"。由于在小学和中学学过这种方法,所以相信很多人都会这么写。然而这种方式也不满足"表头 + 行的集合"的形式。此外,这种写法经常需要添加竖线。

可能还有人会写成表??的形式。它比表??稍好,也能让人明白"0.32"上面是"T=1"。然而还是不能让人明白数字的含义是什么。

\overline{T}	1	4	16
ResNet50	0.32	0.54	0.77
Ours	0.41	0.81	1.23

表 29: 常见例子 1

	1	4	16
ResNet50	0.32	0.54	0.77
Ours	0.41	0.81	1.23

表 30: 常见例子 2

	T = 1	T=4	T = 16
ResNet50	0.32	0.54	0.77
Ours	0.41	0.81	1.23

表 31: 常见例子 3

那么,怎样才能将这些表格变好看呢? 首先试着将表格分解至"一行是一条数据"。这里所谓的"一条数据"指的是"使用某个方法和某个参数T时,测量结果的精度(mAP)"。结果如表??所示。这里在表头注明了各个要素是"精度"。虽然这样就可以了,但还是再来进一步思考一下吧。实际上这个表格和表??的结构是相同的。因此进行"将T这一列移到行"和"列的分级",整合后得到表??。这就相当于把表??转换成表??的过程。由于这里T=1的描述已经很短了,所以这个表格已经可以最直观地展示信息了。与表??相比,"mAP"的信息出现在了表格里,并且也增加了"Method"的说明。

不过,能将表格进一步省略成表**??**或表**??**的形式吗?结果如表**??**和表**??**所示。表**??**里省略了"T="的部分。在这个例子中,这个省略是行不通的,因为会让人不明白 1, 4, 16 是什么。所以还是不要这么写比较好。表**??**里省略了"mAP"。这种情况下,需要在注释里加上对它的说明。在这个例子里似乎没有做这种省略的必要。

此外,这次的例子还可以用图表来表示,如图 \ref{Mathin} ,如图 \ref{Mathin} ,可以的例子还可以用图表来表示,如图 \ref{Mathin} ,可以的例子还可以用图表来表示,如图 \ref{Mathin} ,但是可连续变化的变量、因此使用了折线图而不是柱状图。请根据情况来决定图表和表格哪一个更好。

接下来,再来看一个例子吧。请看表??。这个例子与表??类似,看上去好像很工整,但第一行不能被称之为表头,因此不能被称为一个优秀的表格。并且不同于表??的第一列能用"Method"来概括,这个例子里找不到能够概括的单词。这要怎么办才好呢?其实仔细观察这个例子就会发现,把行和列进行交换后的表??更加整洁,符合"每一行是一条数据"的原则。因此,从以行为本的角度来说,表??是更加优秀的表格。然而,这里表头的项目太长,使得表格里存在较多空白。怎样才能有效利用空白就需要各自的技术了。比如可以把单位放到下一行等。

Method	T	mAP
ResNet50	1	0.32
	4	0.54
	16	0.77
Ours	1	0.41
	4	0.81
	16	1.23

表 32: 分解至"一行是一条数据"后的结果

	mAP		
Method	T=1	T = 4	T = 16
ResNet50	0.32	0.54	0.77
Ours	0.41	0.81	1.23

表 33: 把T那一列移到行并进行列的分级后的结果。在这个例子中这种形式是最直观的。

		mAP		
Method	1	4	16	
ResNet50	0.32	0.54	0.77	
Ours	0.41	0.81	1.23	

表 34: 省略了 "T=" 的情况。这里会让人不明白 1, 4, 16 的含义,不是一个优秀的表格。

		T		
Method	1	4	16	
ResNet50	0.32	0.54	0.77	
Ours	0.41	0.81	1.23	

表 35: 省略了"mAP"的情况。需要在注释里加上"这是 mAP的表格"。

图 2: 把表??转换成图表。

\overline{T}	1	4	16
Runtime (sec)	102	110	159
Memory (B)	100	200	300

表 36: 原本的表格

T	Runtime (sec)	Memory (B)
1	102	100
4	110	200
16	159	300

表 37: 把行和列进行交换后的表格