

OIPE

RAW SEQUENCE LISTING

DATE: 05/14/2002

PATENT APPLICATION: US/09/982,667

TIME: 15:01:09

Input Set : N:\paola\09982667.txt

Output Set: N:\CRF3\05142002\I982667.raw

SEQUENCE LISTING

(1) GENERAL INFORMATION:

```
6
             (i) APPLICANT: Prudent, James R.
      7
                            Hall, Jeff G.
                            Lyamichev, Victor I.
      8
            (ii) TITLE OF INVENTION: Invasive Cleavge Of Nucleic Acids
     10
           (iii) NUMBER OF SEQUENCES: 69
     12
            (iv) CORRESPONDENCE ADDRESS:
     14
                  (A) ADDRESSEE: Medlen & Carroll, LLP
     15
                  (B) STREET: 220 Montgomery Street, Suite 2200
     16
                  (C) CITY: San Francisco
                                                              ENTERED
     17
                  (D) STATE: California
     18
                  (E) COUNTRY: United States Of America
     19
     20
                  (F) ZIP: 94104
     22
             (V) COMPUTER READABLE FORM:
     23
                  (A) MEDIUM TYPE: Floppy disk
                  ('B) COMPUTER: IBM PC compatible
     24
                  (C) OPERATING SYSTEM: PC-DOS/MS-DOS
     25
                  (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
     26
            (vi) CURRENT APPLICATION DATA:
     28
                  (A) APPLICATION NUMBER: US/09/982,667
C--> 29
C--> 30
                  (B) FILING DATE: 18-Oct-2001
     31
                  (C) CLASSIFICATION:
           (vii) PRIOR APPLICATION DATA:
     42
                  (A) APPLICATION NUMBER: 08/756,386
     34
     35
                  (B) FILING DATE:
                  (A) APPLICATION NUMBER: US 08/682,853
     39
                  (B) FILING DATE: 12-JUL-1996
     40
                  (A) APPLICATION NUMBER: US 08/599,491
     43
                  (B) FILING DATE: 24-JAN-1996
     44
          (viii) ATTORNEY/AGENT INFORMATION:
     46
     47
                  (A) NAME: Ingolia, Diane E.
                  (B) REGISTRATION NUMBER: 40,027
     48
                  (C) REFERENCE/DOCKET NUMBER: FORS-02564
     49
     51
            (ix) TELECOMMUNICATION INFORMATION:
                  (A) TELEPHONE: (415) 705-8410
     52
                  (B) TELEFAX: (415) 397-8338
     53
        (2) INFORMATION FOR SEQ ID NO: 1:
     56
             (i) SEQUENCE CHARACTERISTICS:
     58
                  (A) LENGTH: 2506 base pairs
     59
                  (B) TYPE: nucleic acid
     60
     61
                  (C) STRANDEDNESS: double
     62
                  (D) TOPOLOGY: linear
```

DATE: 05/14/2002

TIME: 15:01:09

PATENT APPLICATION: US/09/982,667

Input Set : N:\paola\09982667.txt
Output Set: N:\CRF3\05142002\1982667.raw

64 (ii) MOLECULE TYPE: DNA (genomic)	
68 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: 70 ATGAGGGGGA TGCTGCCCCT CTTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC	60
	120
72 CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG 74 GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC	180
76 GCGGTGATCG TGGTCTTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG	240
78 TACAAGGCGG GCCGGGCCCC CACGCCGGAG GACTTTCCCC GGCAACTCGC CCTCATCAAG	300
80 GAGCTGGTGG ACCTCCTGGG GCTGGCGCGC CTCGAGGTCC CGGGCTACGA GGCGGACGAC	360
82 GTCCTGGCCA GCCTGGCCAA GAAGGCGGAA AAGGAGGGCT ACGAGGTCCG CATCCTCACC	420
84 GCCGACAAAG ACCTTTACCA GCTCCTTTCC GACCGCATCC ACGTCCTCCA CCCCGAGGGG	480
86 TACCTCATCA CCCCGGCCTG GCTTTGGGAA AAGTACGGCC TGAGGCCCGA CCAGTGGGCC	540
88 GACTACCGGG CCCTGACCGG GGACGAGTCC GACAACCTTC CCGGGGTCAA GGGCATCGGG	600
90 GAGAAGACGG CGAGGAAGCT TCTGGAGGAG TGGGGGGAGCC TGGAAGCCCT CCTCAAGAAC	660
92 CTGGACCGGC TGAAGCCCGC CATCCGGGAG AAGATCCTGG CCCACATGGA CGATCTGAAG	720
94 CTCTCCTGGG ACCTGGCCAA GGTGCGCACC GACCTGCCCC TGGAGGTGGA CTTCGCCAAA	780
96 AGGCGGGAGC CCGACCGGGA GAGGCTTAGG GCCTTTCTGG AGAGGCTTGA GTTTGGCAGC	840
98 CTCCTCCACG AGTTCGGCCT TCTGGAAAGC CCCAAGGCCC TGGAGGAGGC CCCCTGGCCC	900
100 CCGCCGGAAG GGGCCTTCGT GGGCTTTGTG CTTTCCCGCA AGGAGCCCAT GTGGGCCGAT	960
102 CTTCTGGCCC TGGCCGCCGC CAGGGGGGGC CGGGTCCACC GGGCCCCCGA GCCTTATAAA	1020
104 GCCCTCAGGG ACCTGAAGGA GGCGCGGGGG CTTCTCGCCA AAGACCTGAG CGTTCTGGCC	1080
106 CTGAGGGAAG GCCTTGGCCT CCCGCCCGGC GACGACCCCA TGCTCCTCGC CTACCTCCTG	1140
108 GACCCTTCCA ACACCACCCC CGAGGGGGTG GCCCGGCGCT ACGGCGGGGA GTGGACGGAG ·	1200
110 GAGGCGGGG AGCGGGCCGC CCTTTCCGAG AGGCTCTTCG CCAACCTGTG GGGGAGGCTT	1260
112 GAGGGGGAGG AGAGGCTCCT TTGGCTTTAC CGGGAGGTGG AGAGGCCCCT TTCCGCTGTC	1320
114 CTGGCCCACA TGGAGGCCAC GGGGGTGCGC CTGGACGTGG CCTATCTCAG GGCCTTGTCC	1380
116 CTGGAGGTGG CCGAGGAGAT CGCCCGCCTC GAGGCCGAGG TCTTCCGCCT GGCCGGCCAC	1440
118 CCCTTCAACC TCAACTCCCG GGACCAGCTG GAAAGGGTCC TCTTTGACGA GCTAGGGCTT	1500
120 CCCGCCATCG GCAAGACGGA GAAGACCGGC AAGCGCTCCA CCAGCGCCGC CGTCCTGGAG	1560
122 GCCCTCCGCG AGGCCCACCC CATCGTGGAG AAGATCCTGC AGTACCGGGA GCTCACCAAG	1620
124 CTGAAGAGCA CCTACATTGA CCCCTTGCCG GACCTCATCC ACCCCAGGAC GGGCCGCCTC	1680
126 CACACCCGCT TCAACCAGAC GGCCACGGCC ACGGGCAGGC TAAGTAGCTC CGATCCCAAC	1740
128 CTCCAGAACA TCCCCGTCCG CACCCCGCTT GGGCAGAGGA TCCGCCGGGC CTTCATCGCC	1800
130 GAGGAGGGGT GGCTATTGGT GGCCCTGGAC TATAGCCAGA TAGAGCTCAG GGTGCTGGCC	1860
132 CACCTCTCCG GCGACGAGAA CCTGATCCGG GTCTTCCAGG AGGGGCGGGA CATCCACACG	1920
134 GAGACCGCCA GCTGGATGTT CGGCGTCCCC CGGGAGGCCG TGGACCCCCT GATGCGCCGG	1980
136 GCGGCCAAGA CCATCAACTT CGGGGTCCTC TACGGCATGT CGGCCCACCG CCTCTCCCAG	2040
138 GAGCTAGCCA TCCCTTACGA GGAGGCCCAG GCCTTCATTG AGCGCTACTT TCAGAGCTTC	2100
140 CCCAAGGTGC GGGCCTGGAT TGAGAAGACC CTGGAGGAGG GCAGGAGGCG GGGGTACGTG	2160
142 GAGACCCTCT TCGGCCGCCG CCGCTACGTG CCAGACCTAG AGGCCCGGGT GAAGAGCGTG	2220
144 CGGGAGGCGG CCGAGCGCAT GGCCTTCAAC ATGCCCGTCC AGGGCACCGC CGCCGACCTC	2280 2340
146 ATGAAGCTGG CTATGGTGAA GCTCTTCCCC AGGCTGGAGG AAATGGGGGC CAGGATGCTC	
148 CTTCAGGTCC ACGACGAGCT GGTCCTCGAG GCCCCAAAAG AGAGGGCGGA GGCCGTGGCC	2400 2460
150 CGGCTGGCCA AGGAGGTCAT GGAGGGGGTG TATCCCCTGG CCGTGCCCCT GGAGGTGGAG	2506
152 GTGGGGATAG GGGAGGACTG GCTCTCCGCC AAGGAGTGAT ACCACC	2300
154 (2) INFORMATION FOR SEQ ID NO: 2:	
156 (i) SEQUENCE CHARACTERISTICS: 157 (A) LENGTH: 2496 base pairs	
157 (A) LENGTH: 2496 base pairs 158 (B) TYPE: nucleic acid	
158 (B) TYPE: NUCLEIC ACID 159 (C) STRANDEDNESS: double	
113 (C) SIKMMDDNESS: GORDIE	

RAW SEQUENCE LISTING

DATE: 05/14/2002 TIME: 15:01:09 PATENT APPLICATION: US/09/982,667

Input Set : N:\paola\09982667.txt
Output Set: N:\CRF3\05142002\I982667.raw

160											
162 166			CRIPTION: SI								
	ATGGCGATGC					CGGCCACCAC	60				
	CTGGCCTACC						120				
	CAGGCGGTCT						180				
	GTGGTGGTGG						240				
	AAGGCGGGCC						300				
	TTGGTGGACC						360				
	CTGGCCACCC						420				
	GACCGCGACC						480				
	CTGATCACCC						540				
	TACCGGGCCC						600				
	AAGACCGCCC						660				
	GACCAGGTGA						720				
	TCCCGGAAGC						780				
	CGCACACCCA						840				
	CTCCACGAGT						900				
	CCGGAAGGGG						960				
	CTGGCCCTGG						1020				
	CTGAGGGACC						1080				
	CGGGAGGCC						1140				
	CCCTCCAACA						1200				
	GCGGGGGAGA						1260				
	GGAGAAGAAC						1320				
	GCCCGGATGG						1380				
	GAGGTGGAGG						1440				
	TTCAACCTCA						1500				
218	GCCATCGGCA	AGACGGAGAA	GACGGGGAAA	CGCTCCACCA	GCGCTGCCGT	GCTGGAGGCC	1560				
220	CTGCGAGAGG	CCCACCCCAT	CGTGGACCGC	ATCCTGCAGT	ACCGGGAGCT	CACCAAGCTC	1620				
222	AAGAACACCT	ACATAGACCC	CCTGCCCGCC	CTGGTCCACC	CCAAGACCGG	CCGGCTCCAC.	1680				
224	ACCCGCTTCA	ACCAGACGGC	CACCGCCACG	GGCAGGCTTT	CCAGCTCCGA	CCCCAACCTG	1740				
226	CAGAACATCC	CCGTGCGCAC	CCCTCTGGGC	CAGCGCATCC	GCCGAGCCTT	CGTGGCCGAG	1800				
228	GAGGGCTGGG	TGCTGGTGGT	CTTGGACTAC	AGCCAGATTG	AGCTTCGGGT	CCTGGCCCAC	1860				
230	CTCTCCGGGG	ACGAGAACCT	GATCCGGGTC	TTTCAGGAGG	GGAGGGACAT	CCACACCCAG	1920				
232	ACCGCCAGCT	GGATGTTCGG	CGTTTCCCCC	GAAGGGGTAG	ACCCTCTGAT	GCGCCGGGCG	1980				
234	GCCAAGACCA	TCAACTTCGG	GGTGCTCTAC	GGCATGTCCG	CCCACCGCCT	CTCCGGGGAG	2040				
236	CTTTCCATCC	CCTACGAGGA	GGCGGTGGCC	TTCATTGAGC	GCTACTTCCA	GAGCTACCCC	2100				
	AAGGTGCGGG						2160				
	ACCCTCTTCG						2220				
	GAGGCGGCGG						2280				
	AAGCTGGCCA						2340				
	CAGGTGCACG						2400				
	TTGGCCAAGG				TGCCCCTGGA	GGTGGAGGTG	2460				
	GGCCTGGGGG						2496				
	52 (2) INFORMATION FOR SEQ ID NO: 3:										
254											
255	• • • • • • • • • • • • • • • • • • • •										
256	(B) TYPE: nu	icleic acid								

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/982,667

DATE: 05/14/2002 TIME: 15:01:09

Input Set : N:\paola\09982667.txt
Output Set: N:\CRF3\05142002\I982667.raw

257												
258												
260	0 (ii) MOLECULE TYPE: DNA (genomic)											
264												
266	ATGGAGGCGA TGCTTCCGCT	CTTTGAACCC	AAAGGCCGGG	TCCTCCTGGT	GGACGGCCAC	60						
268	CACCTGGCCT ACCGCACCTT	CTTCGCCCTG	AAGGGCCTCA	CCACGAGCCG	GGGCGAACCG	120						
270	GTGCAGGCGG TCTACGGCTT	CGCCAAGAGC	CTCCTCAAGG	CCCTGAAGGA	GGACGGGTAC	180						
272	AAGGCCGTCT TCGTGGTCTT	TGACGCCAAG	GCCCCCTCCT	TCCGCCACGA	GGCCTACGAG	240						
274	GCCTACAAGG CGGGGAGGGC	CCCGACCCCC	GAGGACTTCC	CCCGGCAGCT	CGCCCTCATC	300						
276	AAGGAGCTGG TGGACCTCCT	GGGGTTTACC	CGCCTCGAGG	TCCCCGGCTA	CGAGGCGGAC	360						
	GACGTTCTCG CCACCCTGGC					420						
280	ACCGCCGACC GCGACCTCTA	CCAACTCGTC	TCCGACCGCG	TCGCCGTCCT	CCACCCGAG	480						
282	GGCCACCTCA TCACCCCGGA	GTGGCTTTGG	GAGAAGTACG	GCCTCAGGCC	GGAGCAGTGG	540						
284	GTGGACTTCC GCGCCCTCGT	GGGGGACCCC	TCCGACAACC	TCCCCGGGGT	CAAGGGCATC	600						
286	GGGGAGAAGA CCGCCCTCAA	GCTCCTCAAG	GAGTGGGGAA	GCCTGGAAAA	CCTCCTCAAG	660						
288	AACCTGGACC GGGTAAAGCC	AGAAAACGTC	CGGGAGAAGA	TCAAGGCCCA	CCTGGAAGAC	720						
	CTCAGGCTCT CCTTGGAGCT					780						
292	GCCCAGGGC GGGAGCCCGA	CCGGGAGGG	CTTAGGGCCT	TCCTGGAGAG	GCTGGAGTTC	840						
294	GGCAGCCTCC TCCACGAGTT	CGGCCTCCTG	GAGGCCCCCG	CCCCCTGGA	GGAGGCCCCC	900						
	TGGCCCCGC CGGAAGGGGC					960						
298	GCGGAGCTTA AAGCCCTGGC	CGCCTGCAGG	GACGGCCGGG	TGCACCGGGC	AGCAGACCCC	1020						
300	TTGGCGGGC TAAAGGACCT	CAAGGAGGTC	CGGGGCCTCC	TCGCCAAGGA	CCTCGCCGTC	1080						
302	TTGGCCTCGA GGGAGGGGCT	AGACCTCGTG	CCCGGGGACG	ACCCCATGCT	CCTCGCCTAC	1140						
	CTCCTGGACC CCTCCAACAC					1200						
304	ACGGAGGACG CCGCCCACCG	GGCCCTCCTC	TCGGAGAGGC	TCCATCGGAA	CCTCCTTAAG	1260						
308	CGCCTCGAGG GGGAGGAGAA	GCTCCTTTGG	CTCTACCACG	AGGTGGAAAA	GCCCCTCTCC	1320						
310	CGGGTCCTGG CCCACATGGA	GGCCACCGGG	GTACGGCTGG	ACGTGGCCTA	CCTTCAGGCC	1380						
	CTTTCCCTGG AGCTTGCGGA					1440						
	GGCCACCCCT TCAACCTCAA					1500						
	AGGCTTCCCG CCTTGGGGAA					1560						
318	CTGGAGGCCC TACGGGAGGC	CCACCCCATC	GTGGAGAAGA	TCCTCCAGCA	CCGGGAGCTC	1620						
320	ACCAAGCTCA AGAACACCTA	CGTGGACCCC	CTCCCAAGCC	TCGTCCACCC	GAGGACGGGC	1680						
	CGCCTCCACA CCCGCTTCAA					1740						
324	CCCAACCTGC AGAACATCCC	CCTCCGCACC	CCCTTGGGCC	AGAGGATCCG	CCGGGCCTTC	1800						
324	GTGGCCGAGG CGGGTTGGGC	CTTCCTCCCC	CTGGACTATA	GCCAGATAGA	GCTCCGCGTC	1860						
320	CTCGCCCACC TCTCCGGGGA	CCAAAACCTC	ATCAGGGTCT	TCCAGGAGGG	GAAGGACATC	1920						
220	CACACCCAGA CCGCAAGCTG	CATCTTCGCC	GTCCCCCCGG	AGGCCGTGGA	CCCCCTGATG	1980						
220	CGCCGGGCGG CCAAGACGGT	CAACTTCGGC	GTCCTCTACG	GCATGTCCGC	CCATAGGCTC	2040						
224	TCCCAGGAGC TTGCCATCCC	CTACGAGGAG	GCGGTGGCCT	TTATAGAGGC	TACTTCCAAA	2100						
224	GCTTCCCCAA GGTGCGGGCC	TCCATACAAA	ACACCCTGGA	GGAGGGGAGG	AAGCGGGGCT	2160						
220	ACGTGGAAAC CCTCTTCGGA	ACAACCCCCT	ACCTCCCCA	CCTCAACGCC	CGGGTGAAGA	2220						
330	GCGTCAGGGA GGCCGCGGAG	CCCATCCCCT	TCA A CA TGCC	CCTCCAGGGC	∆CCGCCGCCG	2280						
340	ACCTCATGAA GCTCGCCATG	CUCAIGGCCI	TCCCCCCCCCT	CCCCCAGATG	GGGGCCCGCA	2340						
342	TGCTCCTCCA GGTCCACGAC	CACCTCCTCC	TCCACCCCCC	CCAACCCCCC	CCCGAGGAGG	2400						
344	TGCCCCCCA GGTCCACGAC TGGCGGCTTT GGCCAAGGAG	CCCATCCACA	ACCCCTATCC	CCTCCCCCTC	CCCCTGGAGG	2460						
	TGGCGGCTTT GGCCAAGGAG TGGAGGTGGG GATGGGGGAG				CCCCIGGAGG	2504						
				IIAG		2304						
	350 (2) INFORMATION FOR SEQ ID NO: 4: 352 (i) SEQUENCE CHARACTERISTICS:											
352	, ,											
ろうろ	353 (A) LENGTH: 832 amino acids											

RAW SEQUENCE LISTING DATE: 05/14/2002 PATENT APPLICATION: US/09/982,667 TIME: 15:01:09

Input Set : N:\paola\09982667.txt
Output Set: N:\CRF3\05142002\I982667.raw

354 (B) TYPE: amino acid 355 (C) STRANDEDNESS: single																
356			(D) TOPOLOGY: linear													
358	(ii)	MOLECULE TYPE: protein														
362		SEQUENCE DESCRIPTION: SEQ ID NO: 4:														
364											Lys	Gly	Arg	Val	Leu	Leu
365	1	_	_		5					10		_	_		15	
367	Val	Asp	Gly	His	His	Leu	Ala	Tyr	Arg	Thr	Phe	His	Ala	Leu	Lys	Gly
368		-	_	20					25					30		
370	Leu	Thr	Thr	Ser	Arg	Gly	Glu	Pro	val	Gln	Ala	Val	Tyr	Gly	Phe	Ala
371			35					40					45			
373	Lys	Ser	Leu	Leu	Lys	Ala	Leu	Lys	Glu	Asp	Gly	Asp	Ala	Val	Ile	Val
374		50					55					60				
376	Val	Phe	Asp	Ala	Lys	Ala	Pro	Ser	Phe	Arg	His	Glu	Ala	Tyr	Gly	Gly
377	65					70					75					80
379	${ t Tyr}$	Lys	Ala	Gly	Arg	Ala	Pro	Thr	Pro	Glu	Asp	Phe	Pro	Arg	Gln	Leu
380					85					90					95	
382	Ala	Leu	Ile	Lys	Glu	Leu	Val	Asp	Leu	Leu	Gly	Leu	Ala	Arg	Leu	Glu
383				100					105					110		
385	Val	Pro	Gly	Tyr	Glu	Ala	Asp		Val	Leu	Ala	Ser	Leu	Ala	Lys	Lys
386			115					120					125			
388	Ala	Glu	Lys	Glu	Gly	Tyr	Glu	Val	Arg	Ile	Leu	Thr	Ala	Asp	Lys	Asp
389		130					135					140			_	
391	Leu	Tyr	Gln	Leu	Leu	Ser	Asp	Arg	Ile	His		Leu	His	Pro	Glu	
392	145		•			150					155					160
394	${ t Tyr}$	Leu	Ile	Thr		Ala	\mathtt{Trp}	Leu	\mathtt{Trp}		Lys	Tyr	Gly	Leu	Arg	Pro
395					165			_		170				_	175	
397	Asp	Gln	Trp		Asp	Tyr	Arg	Ala		Thr	Gly	Asp	Glu		Asp	Asņ
398				180					185	_			_	190	_	_
400	Leu	Pro	_	Val	Lys	GTA	Ile	_	GLu	Lys	Thr	Ala		Lys	Leu	Leu
401		a 1	195	a 1		. .	a 1.	200	T	T	T	3	205	7	3	T 0
403	GIU		Trp	GLY	ser	ren		Ald	reu	ьeu	гаг		ьeu	ASP	Arg	Leu
404	•	210	11-	T1.	3	a 1	215	T1.	T 0.11	310	111.0	220	N an	λan	Tou	T
406		PIO	Ald	TT6	Arg	230	гуу	TTE	ьеи	АІа	235	мес	MSP	изр	Leu	цуS 240
407	225	Cor	ш~~	N an	T 011		Tuc	17-1	λνα	Thr		T Au	Dro	Lau	Glu	
409 410	Leu	per	ттр	ASP	245	мта	пуъ	Val	Ary	250	wah	ьęи	FIQ	пеп	255	Vul
	A an	Dho	בות	Tvc		λκα	Glu	Dro	Aen		Glu	Δra	T.e.ii	Ara	Ala	Pho
412 413	ASP	Pile	нта	260	MIY	AIG	GIU	PIO	265	лту	GIU	AIG	nea	270	AIU	rne
415	Len	Glu	λκα	Z00	Glu	Dho	Glv	Cor		Leu	Hic	Glu	Phe		Leu	Len
416	пеа	GIU	275	пси	GIU	rne	GLY	280	Licu	ЦСИ	1115	014	285	011	LCu	
418	Glu	Sor		Luc	Δla	T.eu	Glu		Δla	Pro	Trn	Pro		Pro	Glu	Glv
419	GIU	290	110	ц	211U	пси	295	O.L.				300				V-1
421	Ala		Val	G1 v	Phe	Val		Ser	Ara	Lvs	Glu		Met	Trp	Ala	Asp
422	305	1110	, 41			310	Dou		9	-1-	315					320
424		Leu	Ala	Leu	Ala		Ala	Ara	Glv	Glv		Val	His	Arq	Ala	
425					325			5	1	330	- 9				335	
427	Glu	Pro	Tyr	Lys		Leu	Arq	Asp	Leu	Lys	Glu	Ala	Arg	Gly	Leu	Leu
428			_	340			-	-	345	•			-	350		

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/09/982,667

DATE: 05/14/2002 TIME: 15:01:10

Input Set : N:\paola\09982667.txt

Output Set: N:\CRF3\05142002\I982667.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos.2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos.329,336,340,368,414,417,418,431,551,605,773,794,798,823,833
Seq#:57; N Pos. 18

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/982,667 TIME: 15:01:10

DATE: 05/14/2002

Input Set : N:\paola\09982667.txt

Output Set: N:\CRF3\05142002\1982667.raw

```
L:29 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]
L:30 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]
L\colon\!976 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0
L:985 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48
L:994 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96
L:1009 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176
L:1012 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192
L:1015 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208
L:1018 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224 L:1021 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:240
L:1024 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256
L:1030 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288
L:1036 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320
L:1039 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336
L:1042 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352
L:1051 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400
L:1054 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416
L:1078 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544
L:1087 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592
L:1120 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768
L:1123 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784
L:1129 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816
L:1132 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832
L:2271 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=56
```