Chapter 3: Video 3 - Supplemental Slides

Autocovariance and Autocorrelation

The function γ (gamma) is called the autocovariance function.

Note that
$$\gamma(h) = \gamma(-h)$$
. Why?

Assuming weak stationarity:

Correlation between Y_t and Y_{t+h} is denoted by $\rho(h)$.

The function ρ (rho) is called the autocorrelation function.

Note:

•
$$\gamma(0) = \sigma^2$$
 (variance)

•
$$\gamma(h) = \sigma^2 \rho(h)$$
 (autocovariance)

•
$$\rho(h) = \gamma(h)/\sigma^2 = \gamma(h)/\gamma(0)$$
 (autocorrelation)

Estimating Parameters of a Stationary Process

Suppose we observe Y_1, \ldots, Y_n from a weakly stationary process.

Estimate the mean μ and variance σ^2 using:

• the sample mean \overline{y} and sample variance s^2 .

Estimate the autocovariance function using

• the sample autocovariance function

$$\widehat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-h} (Y_{t+h} - \overline{y})(Y_t - \overline{y}) = n^{-1} \sum_{t=h+1}^{n} (Y_t - \overline{y})(Y_{t-h} - \overline{y}).$$

Some define $\widehat{\gamma}(h)$ with the factor n^{-1} replaced by $(n-h)^{-1}$

The difference is minor if n is large and h is small relative to n

Estimating Autocorrelations of a Stationary Process

To estimate $\rho(\cdot)$, we use the sample autocorrelation function (sample ACF) defined as

$$\widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)},$$

for each lag h.

R will plot a sample ACF with test bounds.

- Bounds test the null hypothesis that an autocorrelation coefficient is 0.
- The null hypothesis is rejected if the sample autocorrelation is outside the bounds.
- The usual level of the test is $\alpha=0.05$
- We expect 1 out of 20 sample autocorrelations outside the test bounds simply by chance.

Inflation rates and changes in the inflation rate—sample ACF plots

Figure: Sample ACF plots of the one-month inflation rate (a) and changes in the inflation rate (b).

```
data(Mishkin, package = "Ecdat")
y = as.vector(Mishkin[,1])
par(mfrow=c(1,2))
acf(y)
acf(diff(y))
```