

Sebastian Wölk / Hochschule der Medien / 18.11.2021

Willkommen

Prognose des Füllgrads eines Distributionslagers im automatischen Kleinteilelager der Phoenix Contact GmbH & Co. KG

Agenda

- 1. Einleitung
 - Problem & Ziel
 - Lösungsansatz
- 2. Umsetzung
 - Daten & Tools
 - Zeitreihenanalyse
 - Feature Engineering & Modellierung
- 3. Interpretation der Ergebnisse:
 - Evaluation der Modelle
 - Prognoseprozess mit bestem Modell
- 4. Zusammenfassung

Problem

Volatile & schwer planbare Geschäftsentwicklung

Global und mehrstufiges Vertriebs- und Distributionsnetzwerk

- · Logistikstandort (am Headquarter) fungiert als zentrales HUB
- 75% der monetären Warenströme fließen durch das Distributionslager am zentralen HUB

Notwendigkeit der ausgewogenen Abstimmung dynamischer und statischer Kapazitäten

- · Aufrechterhaltung und Stabilisierung der Supply Chain-Prozesse
- Termingetreue Belieferung der globalen Kunden & Tochtergesellschaften innerhalb der Vertriebsstruktur

Füllgrad des Distributionslagers

Problem

- Überschreitung von kritischen Grenzwerten im Lagerfüllgrad
 - Überforderung der statischen Kapazitäten
 - Negative Auswirkungen auf die Performance der Maschinen & Anlagen

• Unvorhergesehene Überschreitung der kritischen Grenzlinie

Ad-hoc-Maßnahmen als einziges Mittel:

- Kurzfristiges Aussetzen der Einlagerung
 - >2.000 Paletten im Rückhang
- Mehrfach bewegt sich der Füllgrad an seiner Kritischen Grenze und überschreitet diese sogar

Entspannung durch Erweiterung der max. möglichen Lagerkapazität

ABER:

Solche Entwicklungen können jederzeit wieder eintreten

Vorbereitung & Einleitung von Maßnahmen

Lösungsansatz

Entwicklung verschiedener potentieller Prognosemodelle & Vorgehensweisen zur Ableitung einer Vorhersage des tagesbasierten, zukünftigen Lagerfüllgrads

Auswahl des besten Modells zur Ableitung einer Vorhersage

Erweiterung, **Optimierung** & **Deployment** des Modells

Folgende Modelle werden betrachtet:

ARIMA

XGBoost

Monte Carlo Simulation

Daten & Tools

- Datengrundlage: Zeitreihendaten des Lagerfüllgrads im Distributionslager
 - Zeitraum: 01.01.2019 31.10.2021

Trainingsdaten

vom 01.01.2019 - 31.07.2021

Testdaten

vom 01.08.2021 - 31.10.2021

Datensatz	Füllgrad	File_Date	Anzahl Stellplätze	Freie Plätze	Belegte Plätze
1	86.6	2019-01-02	196636	26349	170287
2	86	2019-01-03	196636	27529	169107
3	84.9	2019-01-04	196636	29692	166944
4	83.92	2019-01-07	196636	31619	165017
5	82.54	2019-01-08	196636	34333	162303

- Tool: Alteryx (Low-Code Data Science Tool)
 - Low-Code-Tool für den gesamten Data Science Prozess
 - Bereits im Unternehmen im Einsatz
 - Bisher keinen geeigneten Use-Case zur Verprobung
 - Lizenzen sehr teuer (5.000 EUR p.a.)
 - Verwendung der Studenten-Lizenz

Zeitreihenanalyse

- Identifikation wichtiger Eigenschaften der Zeitreihe
 - Saisonalität
 - Trend

Zeitreihenanalyse

- Identifikation wichtiger Eigenschaften der Zeitreihe
 - Korrelationen innerhalb der Zeitreihe
 - Autokorrelation
 - Partielle Autokorrelation

Feature Engineering

Simple Moving Average

- Verschiedene Ausprägungen
- Ermöglicht das Erkennen von Trends im Datensatz
- Glättet den Verlauf der Zeitreihe

Weighted Moving Averages

- Verschiedene Ausprägungen
- Ermöglicht das Erkennen von Trends im Datensatz
- Höhere zeitliche Gewichtung der jüngsten Vergangenheit

Zeitverzögerte Variablen

Verzögerung der Zielvariable

Bollinger Bänder

- Bekannt aus der Analyse von Aktienkursen
- Können u.U. auf Trendveränderungen in der Zeitreihe hinweisen

Modellierung I - ARIMA

Ein für Zeitreihenprobleme optimiertes Modell

"Auto-Regressive Integrated Moving Average"

- AR: autoregressiver Teil
- I: Trendbeseitigung in der Zeitreihe (Herstellung einer Stationarität innerhalb der Zeitreihe)
- MA: gleitender Mittelwertbeitrag
- Hyperparametertuning mit Batch Makro:
 - P: Autoregressive Komponente (AR)
 - D: Grad der ersten Differenzierung (I)
 - Q: Komponente des gleitenden Mittelwerts (MA)

Datensatz	Model	ME	RMSE	MAE	MPE	MAPE	MASE	d
1	ARIMA	-2452.8765	6914.9652	6079.4437	-1.5384	3.5453	6.5017	0
2	ARIMA	-7639.9176	9528.4052	8021.3796	-4.5297	4.7382	8.5785	1
3	ARIMA	140750.799	167227.7094	140804.8228	80.3573	80.3885	150.5836	2
4	ARIMA	619973.373	810312.1444	620029.1354	351.5886	351.6207	663.0897	3
5	ARIMA	12854205.5792	19053940.9303	12854205.5792	7231.4293	7231.4293	13746.921	4
6	ARIMA	2782232097.0187	4590633625.0523	2782232097.0187	1555855.4076	1555855.4076	2975456.1265	5
7	ARIMA	62206635197.1921	110544088153.221	62206635197.1921	34662681.2698	34662681.2698	66526841.5258	6
-								

Modellierung II – XG Boost

- Entscheidungsbaummodell mit Gradient Boosting
- Kombination einfacher und komplexer Modelle
 - Erzeugung mehrerer Entscheidungsbäume
 - Unterschiedliche Bäume mit unterschiedlicher Komplexität
- Verwendung der selbst berechneten Features
- Hyperparametertuning mit Batch Makro:
 - Schrumpfungswert
 - Interaktionstiefe
 - Minimal erforderliche Anzahl Objekte pro Baumknoten

Datensatz	Model	Correlation	RMSE	MAE	MPE	MAPE	Beobachtungen	Interaktionstiefe	Schrumpfungswert
1	XGBoost	0.95843	1666.015064	1147.159455	0.204068	0.663364	5	4	0.004
2	XGBoost	0.958024	1666.517468	1138.775669	0.187981	0.658474	6	8	0.005
3	XGBoost	0.958276	1668.064763	1141.947871	0.203965	0.660511	5	8	0.005
4	XGBoost	0.958619	1671.886391	1160.886826	0.225389	0.670798	4	8	0.004
5	XGBoost	0.958934	1675.068609	1170.267077	0.250671	0.676838	4	6	0.004
6	XGBoost	0.956991	1677.489601	1143.354778	0.153965	0.661565	6	3	0.004
7	XGBoost	0.958975	1678.221421	1182.652997	0.256815	0.683758	4	5	0.004

Modellierung III – Monte Carlo Simulation

- Monte Carlo Simulation zur Prognose der belegten Lagerplätze
 - Simulation von 30 Durchläufen pro Ausführung (30 Tage)
- Stichprobenziehung aus benannter Variable der zugrundeliegenden Daten
 - Variable "PercentChange" (Belegte Plätze (t) / Belegte Plätze (t-1))
 - Relative Veränderung der Zielvariable zum Vortag (annähernd normalverteilt)
- Parameter, die das Batch-Makro beeinflussen:
 - Anzahl "Runs" (Ausführungshäufigkeit des Batch Makros)
 - Je "Run" werden 30 Durchläufe der Stichprobenziehung getätigt
 - Random Seed
 - Jeder "Run" erzeugt andere Vorhersagen/Stichprobenziehungen
 - Jeder "Run" hat einen anderen Wert als "Seed"

Beispiel:

Anzahl "Runs" = 50 Anzahl **Durchläufe** je Run = 30 (Tage) = **1500 Vorhersageergebnisse** (50 Vorhersagen je Tag)

Evaluation der Modelle

1. ARIMA-Modell

- Starkes Rauschen in der Zeitreihe
- Geringe Datenmenge
- Fehlende Saisonalität in der Zeitreihe

405000				
195000				
190000				
185000				
103000				
180000				\sim
175000				
170000	7			
170000		_ ~ ^	~~ /	
165000		/V ·		
100000	1			

Datensatz	Model	ME	RMSE	MAE	MPE	MAPE	MASE	d
1	ARIMA	-2452.8765	6914.9652	6079.4437	-1.5384	3.5453	6.5017	0

2. XGBoost

- Vollständigkeit aller Features im Datensatz notwendig
- Overfitting wird im XGBoost über Parameter vorgebeugt
- Validierung im praktischen Einsatz notwendig
 - Immer noch möglicher BIAS in den Testdaten

(z.B. bedingt durch Lag 1, Lag 2 etc. der Zielvariable)

Prediction	180h			Prodiction Actual
	165k			
	Aug 1 Aug 15 A 2021	ug 29 Sep 12 Sep 26 File_Date	Oct 10 Oct 24	

RMSE	MAE	
1666	1147	

Datensatz	RecordID	Model	Correlation	RMSE	MAE	MPE	MAPE	Beobachtungen	Interaktionstiefe	Schrumpfungswert
1	1	XGBoost	0.95843	1666.015064	1147.159455	0.204068	0.663364	5	4	0.004

Evaluation der Modelle

Monte-Carlo-Simulation

- Ermöglicht den Ausdruck von Wahrscheinlichkeiten über die Perzentile der Simulationsergebnisse
- Relativ lange Laufzeit bei hoher Anzahl an Ausführungen (i.d.R. mind. 10.000)
- Zufällige Stichprobenziehung vernachlässigt die in jüngster

Vergangenheit eingetretenen Trendbewegungen

- Vorhersageleistung der Simulationsergebnisse nicht brauchbar
 - Genauigkeit nimmt über einen größeren Vorhersagezeitraum stark ab

Datensatz	Mean_Forecast-Actual	Mean_ABS_Forecast-Actual (MAE)	Mean_ABS-Forecast-Actual^2	RMSE
1	11371.792	11557.558667	194829950.525333	13958

XGBoost

Das beste Modell - Iterativer Prognoseprozess

Ziel: Bei jeder Vorhersage liegt die komplette Zeitreihe inkl. aller berechneten Feature aktualisiert vor

- 1. Input = Zeitreihendaten bestehend aus Datum & Belegte Plätze
- 2. Durchführung der Data Preparation, Feature Enginering & Vorhersage für den Zeitpunkt t+1 (t = heute)
- 3. Loop-Back des Vorhersageergebnisses in den Input-Datensatz & erneute Ausführung ab Punkt 1 (max. Iterationen begrenzt)

Zusammenfassung

- Zeitreihenanalyse und Feature Engineering
- Trainieren und Testen verschiedener Modellvarianten
- Auswahl des besten Modells
- Aufbau eines iterativen Prognoseprozesses unter Verwendung der optimalen Hyperparameterkombination für das beste Modell
 - Anzahl "x" Tage werden iterativ prognostiziert
 - Vorhersagen von t+1 werden zur Neuberechnung aller Features verwendet, um t+2 vorherzusagen

- Deployment (Inbetriebnahme + Operationalisierung)
 - Automatisierung der Alteryx-Workflows
 - Training mit Hyperparametertuning
 - Final Training (mit besten Hyperparametern)
 - Iterative Prognose mit final trainiertem Modell
 - Definition geeigneter Retraining-Zyklen
 - Verarbeitung und Einbindung des Outputs in einem Reportingsystem
- Validierung des besten Modells im praktischen Einsatz
 - Vergleich der Vorhersage mit tats. Werten
- Weiterentwicklung des Modells
 - Einbindung weiterer domänenspezifischer Features

Danke

Prognose des Füllgrads eines Distributionslagers im automatischen Kleinteilelager der Phoenix Contact GmbH & Co. KG

