CECS 346 - Spring 2021

Project 1 - Traffic Light Controller (Advanced)

Nicholas Bishop, Darren Cobian

State Diagrams

State Table

State	Input							
	000	001	010	011	100	101	110	111
goN (0x02, 0x19, 600)	goN	waitN	goN	waitN	Rturn	waitN	Rturn	waitN
waitN (0x02, 0x1A, 200)	goE	goE	goE	goE	goE	goE	goE	goE
goE (0x02, 0x34, 800)	goE	goE	waitE	waitE	RwaitE	RwaitE	RwaitE	RwaitE
waitE (0x02, 0x2C, 200)	goN	goN	goN	goN	goN	goN	goN	goN
Rturn (0x08, 0x19, 600)	goN	waitN	goN	waitN	Rturn	waitN	Rturn	waitN
RwaitE (0x02, 0x2C, 200	Rturn	Rturn	Rturn	Rturn	Rturn	Rturn	Rturn	Rturn

State Graph

<u>Microprocessor + Project 1 Implementation on Breadboard</u>

Diagram of Hardware System

Software Source Code

Project1.c

```
// ***** 0. Documentation Section *****
// Project 1 - Table Traffic Light (Advanced)
// Runs on LM4F120/TM4C123
// Index implementation of a Moore finite state machine to operate a traffic light.
// Darren Cobian, Nicholas Bishop
// Feb 28, 2021
// east/west red LED connected to PB5
// east/west yellow LED connected to PB4
// east/west green LED connected to PB3
// north/south red LED connected to PB2
// north/south yellow LED connected to PB1
// north/south green LED connected to PBO
// Right turn to PE2
// north/south switch connected to PE1
// east/west switch connected to PE0
// Go connected to PF3 (built-in green LED)
// Stop connected to PF1 (built-in red LED)
```

```
// **** 1. Pre-processor Directives Section ****
#include "TExaS.h"
#include "tm4c123gh6pm.h"
#include "SysTick.h"
// Port E
#define GPIO PORTE AMSEL R
                                (*((volatile unsigned long *)0x40024528))
#define GPIO PORTE PCTL R
                                (*((volatile unsigned long *)0x4002452C))
#define GPIO_PORTE_DIR_R
                                (*((volatile unsigned long *)0x40024400))
#define GPIO PORTE AFSEL R
                                (*((volatile unsigned long *)0x40024420))
#define GPIO PORTE DEN R
                                (*((volatile unsigned long *)0x4002451C))
#define GPIO PORTE DATA R
                                (*((volatile unsigned long *)0x400243FC))
#define GPIO PORTE CR R
                                (*((volatile unsigned long *)0x40024524))
// Port B
#define GPIO PORTB AMSEL R
                                (*((volatile unsigned long *)0x40005528))
#define GPIO PORTB PCTL R
                                (*((volatile unsigned long *)0x4000552C))
#define GPIO PORTB DIR R
                                (*((volatile unsigned long *)0x40005400))
                                (*((volatile unsigned long *)0x40005420))
#define GPIO_PORTB_AFSEL_R
#define GPIO PORTB DEN R
                                (*((volatile unsigned long *)0x4000551C))
#define GPIO PORTB DATA R
                                (*((volatile unsigned long *)0x400053FC))
#define GPIO PORTB CR R
                                (*((volatile unsigned long *)0x40005524))
// Port F
#define GPIO PORTF LOCK R
                                (*((volatile unsigned long *)0x40025520))
#define GPIO LOCK KEY
                                0x4C4F434B
#define GPIO PORTF AMSEL R
                                (*((volatile unsigned long *)0x40025528))
#define GPIO PORTF PCTL R
                                (*((volatile unsigned long *)0x4002552C))
#define GPIO_PORTF_DIR_R
                                (*((volatile unsigned long *)0x40025400))
#define GPIO PORTF AFSEL R
                                (*((volatile unsigned long *)0x40025420))
#define GPIO PORTF PUR R
                                (*((volatile unsigned long *)0x40025510))
#define GPIO PORTF DEN R
                                (*((volatile unsigned long *)0x4002551C))
#define GPIO PORTF DATA R
                                (*((volatile unsigned long *)0x400253FC))
// FUNCTION PROTOTYPES: Each subroutine defined
void PortB Init(void);
void PortE_Init(void);
void PortF Init(void);
void SysTick Wait10ms (unsigned long delay);
```

```
// defines uses for access to LED ports B5-0 and F3, F1.
// SENSOR used to read input from PE2-0
#define LIGHT PORTB (*((volatile unsigned long *)0x400053FC))
#define SENSOR (*((volatile unsigned long *)0x4002401C))
#define LIGHT_PORTF (*((volatile unsigned long *)0x40025038))
// State data structure
struct State {
     unsigned long Turn;
  unsigned long Out;
unsigned long Time;
  unsigned long Next[8];
// defines var SType by using State
typedef const struct State STyp;
// each state of the Moore Machine is given a name and position
#define goN
#define waitN 1
#define goE
#define waitE 3
#define Rturn 4
#define RwaitE 5
// defines Moore Machine with Port F LED, Port B LEDs, Delay, and States
STyp FSM[6] = {
 \{0x02, 0x19, 600, \{goN, waitN, goN, waitN, Rturn, waitN, Rturn, waitN\}\},
                                                                                  //goN
 \{0x02, 0x1A, 200, \{goE, goE, goE, goE, goE, goE, goE, goE\}\},
                                                                                   //waitN
 {0x02, 0x34, 800, {goE, goE, waitE, waitE, RwaitE, RwaitE, RwaitE, RwaitE}}, //goE
 \{0x02, 0x2C, 200, \{goN, goN, goN, goN, goN, goN, goN, goN\}\},
                                                                                   //waitE
 {0x08, 0x19, 600, {qoN, waitN, qoN, waitN, Rturn, waitN, Rturn, waitN}},
 {0x02, 0x2C, 200, {Rturn, Rturn, Rturn, Rturn, Rturn, Rturn, Rturn, Rturn}}}; //RwaitE
  unsigned long S; // index to the current state
  unsigned long Input; // receives input from switches
  // TExaS_Init(SW_PIN_PE210, LED_PIN_PB543210,ScopeOff); // activate grader and set system clock to 80 MH
  PortB_Init();
  PortE_Init();
PortF Init();
  SysTick_Init();
  //EnableInterrupts();
  S = goE;
    LIGHT PORTF = FSM[S].Turn; // sets Right Turn LEDs LIGHT_PORTB = FSM[S].Out; // sets S/N and E/W LEDs
    SysTick_Wait10ms(FSM[S].Time);
   Input = SENSOR;  // read sensors
S = FSM[S].Next[Input];  // next input is read
```

```
lvoid PortB Init(void) { volatile unsigned long delay;
  SYSCTL_RCGC2_R |= 0x000000002;  // B clock delay = SYSCTL_RCGC2_R;  // delay
   delay = SYSCTL_RCGC2_R;
   GPIO PORTB CR R = 0x3F;
                                              // allow changes to PB5-0
                                             // disable analog function // GPIO clear bit PCTL
   GPIO PORTB AMSEL R = 0 \times 00;
   GPIO PORTB PCTL \overline{R} = 0 \times 000000000;
   GPIO PORTB DIR R = 0x3F;
                                              // PB5-PB0 output
                                             // no alternate function
// enable pullup resistors
// enable digital pins PB5-PB0
   GPIO PORTB AFSEL R = 0 \times 00;
   //GPIO_PORTB_PUR_R = 0x00;
  GPIO PORTB DEN R = 0x3F;
|void PortE Init(void) { volatile unsigned long delay;
                                             // E clock
   SYSCTL RCGC2 R \mid= 0x00000010;
   delay = SYSCTL RCGC2 R;
                                              // delay
                                             // allow changes to PE2-PE0
// disable analog function
   GPIO PORTE CR R = 0 \times \overline{07};
  GPIO PORTE AMSEL R = 0 \times 00;
  GPIO_PORTE_PCTL_R = 0x000000000; // GPIO clear bit PCTL
                                             // PE2-PE0 input
  GPIO PORTE DIR R = 0xF8;
GPIO PORTE AFSEL R = 0x00;
                                              // no alternate function
                                             // enable digital pins PE2-PE0
  GPIO PORTE DEN R = 0 \times 07;
// initialize Port F
|void PortF Init(void) {volatile unsigned long delay;
   SYSCTL RCGC2 R \mid = 0x00000020;
                                              // F clock
                                              // delay
   delay = SYSCTL RCGC2 R;
  GPIO_PORTF_LOCK_R = 0x4C4F434B;
GPIO_PORTF_CR_R = 0x0E;
                                             // unlock PF0
// allow changes to PF3-1
   GPIO PORTF AMSEL R = 0 \times 00;
                                              // disable analog function
   GPIO_PORTF_PCTL_\overline{R} = 0 \times 0000000000;
                                             // GPIO clear bit PCTL
                                             // PF3, PF2, PF1 output
// no alternate function
  GPIO_PORTF_DIR_R = 0x0E;
GPIO_PORTF_AFSEL_R = 0x00;
                                             // enable digital pins PF3-PF1, Red, Yellow, Green
// enable pull up resistors
  GPIO PORTF DEN R = 0 \times 0 E;
  GPIO PORTF PUR R = 0 \times 00;
```