Cascade Engineering Services, Inc.

WILDR-MIU

Report No. CSCE0011

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Testing: September 15, 2008
Cascade Engineering Services, Inc.
Model: WILDR-MIU

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Occupied Bandwidth	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Output Power	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Band Edge Compliance	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Spurious Conducted Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Power Spectral Density	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2007	ANSI C63.4:2003	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal

Communications Commission) and Industry Canada(Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

NVLAP

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	Cascade Engineering Services, Inc.		
Address:	2515 140th Ave NE, Suite E		
City, State, Zip:	Bellevue, WA 98005		
Test Requested By:	Albert Mungin		
Model:	WILDR-MIU		
First Date of Test:	August 27, 2008		
Last Date of Test:	September 15, 2008		
Receipt Date of Samples:	August 27, 2008		
Equipment Design Stage:	Prototype		
Equipment Condition:	No Damage		

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
Zigbee radio

Testing Objective:	
Seeking TCB Certification under FCC 15.247 requirements.	

Configurations

Revision 9/21/05

CONFIGURATION 1 CSCE0011

Software/Firmware Running during test		
Description Version		
WILDR	V5.5	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Cascade Engineering	WILDR-MIU	5 3

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
AC Adapter	CINCON Electronics Co, LTD	TR1512	None	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	IBM	A21M	IS108	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.5m	PA	AC Mains	EUT
Serial	No	1.6m	No	EUT	Remote PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 CSCE0011

Software/Firmware Running during test		
Description Version		
WILDR	V5.5	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT	Cascade Engineering	WILDR-MIU	53	
Antenna	Nearson	171	None	

Peripherals in test setup boundary					
Description	Description Manufacturer Model/Part Number Serial Number				
AC Adapter	CINCON Electronics Co, LTD	TR1512	None		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Remote PC	IBM	A21M	IS108		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.5m	PA	AC Mains	EUT
Serial	No	1.6m	No	EUT	Remote PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

CONFIGURATION 4 CSCE0011

Software/Firmware Running during test	
Description	Version
WILDR	V5.5

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT	Cascade Engineering	WILDR-MIU	53	
Antenna	Nearson	171	None	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
AC Adapter	CINCON Electronics Co, LTD	TR1512	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.5m	PA	AC Mains	EUT
Serial	No	1.0m	No	EUT	Unterminated
Data	No	1.0m	No	EUT	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	8/27/2008	Radiated Spurious Emissions	Modified from delivered configuration. Initial or No Modification	The power setting in the software for mid channel, 7, 2440 MHz was lowered to 1,6 to obtain passing data for radiated spurious emissions harmonics. Modification done by Software.	EUT remained at Northwest EMC following the test.	
2	9/10/2008	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	9/12/2008	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	9/15/2008	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	9/15/2008	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	9/15/2008	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	9/15/2008	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting low channel, channel 0, 2405 MHz, power setting 2,6

Transmitting mid channel, channel 7, 2440 MHz, power level 1,6

Transmitting high channel, channel E, 2475 MHz, power setting 2,6

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INV	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	25 GHz

CLOCKS AND OSCILLATORS

Not provided

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	5/21/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	5/19/2008	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	5/19/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	5/19/2008	13
EV01 Cables		Double Ridge Horn Cables	EVB	5/19/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/30/2008	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/30/2008	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	7/25/2007	16
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cables		18-26GHz Standard Gain Horn Cable	EVD	7/25/2007	16

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made u	sing the bandwidths and dete	ectors specified. No video filter	was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT							
Description	Manufacturer	Model	ID	Last Cal.	Interval		
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13		
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13		

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The following settings were used on the customer provided control software:

Low Channel, High power 2,6 Mid Channel: power 1,6 High Channel: High power 2,6

NORTHWEST		OCCUPIED	RANDV	WIDTH				XMit 2007.06.1
EMC		OCCOI ILD	DAND	ווו שוי				
EUT: WIL	DR-MIU				W	ork Order:	CSCE0011	
Serial Number: 5 3						Date:	09/15/08	
Customer: Cas	scade Engineering Ser	vices, Inc.			Ter	nperature:	22°C	
Attendees: Non	ne					Humidity:	42%	
Project: Non					Barome	etric Pres.:		
Tested by: Rod			Power:	120VAC/60Hz		Job Site:	EV06	
TEST SPECIFICATIONS	S			Test Method				
CC 15.247 (DTS):2007				ANSI C63.4:2003 KDB I	No. 558074			
	external antenna tran	smit nort at highest nower for eac	h channel					
COMMENTS Measurement taken on DEVIATIONS FROM TE		smit port at highest power for eac	h channel					
Measurement taken on		smit port at highest power for eac	h channel					
Measurement taken on			h channel					
Measurement taken on DEVIATIONS FROM TE		Rocky		· · · · · · · · · · · · · · · · · · ·	/alue	Lin	nit	Results
Measurement taken on DEVIATIONS FROM TE		Rocky			/alue 92 MHz	Lin > 500		Results Pass
Measurement taken on DEVIATIONS FROM TE		Rocky		1.5) kHz	

Low Channel

Result: Pass Value: 1.592 MHz Limit: > 500 kHz

Mid Channel

Result: Pass Value: 1.587 MHz Limit: > 500 kHz

High Channel

Result: Pass Value: 1.586 MHz Limit: > 500 kHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13			
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13			
Power Meter	Gigatronics	8651A	SPM	12/7/2007	13			
Power Sensor	Gigatronics	80701A	SPL	12/7/2007	13			
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13			

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was operated at low, mid, and high power settings. The following settings were used on the customer provided control software:

Low Channel: Low power 0,1; Mid power 0,4; High power 2,6 Mid Channel: Low power 0,1; Mid power 0,6; High power 1,6 High Channel: Low power 0,1; Mid power 0,2; High power 2,6

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

The maximum antenna gain of the antenna for this product is +7.0 dBi.

NORTHWEST					XMit 2007.06.13
EMC		PEAK OUT	PUT POWER		
EUT:	WILDR-MIU			Work Order:	CSCE0011
Serial Number:	5 3			Date:	09/15/08
Customer:	Cascade Engineering Serv	ices, Inc.		Temperature:	22°C
Attendees:	None			Humidity:	42%
Project:	None			Barometric Pres.:	30.04 in
	Rod Peloquin		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICAT	IONS		Test Method		
FCC 15.247 (DTS)::	2007		ANSI C63.4:2003 KDB No	o. 558074	
COMMENTS					
Measurement take	n on external antenna trans	mit port.			
DEVIATIONS FROM	I TEST STANDARD				
No deviations					
		101	D.C		
Configuration #	1	rocking le	- Reling		
		Signature	ν		
			Va	ilue Li	mit Results
High Power					
	Low Channel		15.4		dBm Pass
	Mid Channel		20.8	9 dBm 29 d	dBm Pass
	High Channel		6.95	6 dBM 29	dBm Pass
Mid Power					
	Low Channel		11.3	2 dBm 29	dBm Pass
	Mid Channel		13.4	9 dBm 29	dBm Pass
	High Channel		4.01	dBm 29	dBm Pass
Low Power					
	Low Channel		4.45	dBm 29	dBm Pass
	Mid Channel		4.92	dBm 29	dBm Pass
	High Channel		3.35	dBm 29	dBm Pass

High Power, Low Channel

Result: Pass Value: 15.48 dBm Limit: 29 dBm

High Power, Mid Channel

Result: Pass Value: 20.89 dBm Limit: 29 dBm

High Power, High Channel

Result: Pass Value: 6.95 dBM Limit: 29 dBm

Mid Power, Low Channel

Result: Pass Value: 11.32 dBm Limit: 29 dBm

Mid Power, Mid Channel

Result: Pass Value: 13.49 dBm Limit: 29 dBm

Mid Power, High Channel

Result: Pass Value: 4.01 dBm Limit: 29 dBm

Low Power, Low Channel

Result: Pass Value: 4.45 dBm Limit: 29 dBm

Low Power, Mid Channel

Result: Pass Value: 4.92 dBm Limit: 29 dBm

Low Power, High Channel						
Result: Pass	Value: 3.35 dBm	Limit:	29 dBm			

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13			
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13			

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate and maximum output power. The channels closest to the band edges were selected.

NORTHWEST		DANID EDGE	COMP	LIANOE		XMit 2007.06.13
EMC		BAND EDGE	COMP	LIANCE		
EUT:	WILDR-MIU				Work Order	CSCE0011
Serial Number:						09/10/08
Customer:	Cascade Engineering Se	rvices, Inc.			Temperature	22°C
Attendees:	None				Humidity	: 42%
Project:	None				Barometric Pres.	30.04 in
	Rod Peloquin		Power:	120VAC/60Hz	Job Site	EV06
TEST SPECIFICATION	ONS			Test Method		
FCC 15.247 (DTS):2	2007			ANSI C63.4:2003 KDB N	o. 558074	
COMMENTS						
Measurement taken	n on external antenna tran	smit port at highest power for each	channel			
		3,				
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
Configuration #	1	Rocky le Signature	Reling)		
						imit Results
Low Channel				- 43.24 dBc		Pass
High Channel				- 49.02 dBc	≤ - 20 dBc	Pass

BAND EDGE COMPLIANCE

 Low Channel

 Result: Pass
 Value: -43.24 dBc
 Limit: ≤ - 20 dBc

High Channel

Result: Pass Value: - 49.02 dBc Limit: ≤ - 20 dBc

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

The following settings were used on the customer provided control software:

Low Channel, High power 2,6 Mid Channel: power 1,6 High Channel: High power 2,6

NORTHWEST			NIBLIOTED EN	COLONIO		XMit 2007.06
EMC	Si	PURIOUS CO	NDUCTED EMI	SSIONS		
EUT	: WILDR-MIU				Work Order: CSCE001	1
Serial Number	: 5 3				Date: 09/15/08	
Custome	: Cascade Engineering Service	es, Inc.			Temperature: 22°C	
Attendees	: None				Humidity: 42%	
Project	:: None			Baro	metric Pres.: 30.04 in	
	Rod Peloquin		Power: 120VAC/6		Job Site: EV06	
EST SPECIFICAT	TIONS		Test Meth	od		
CC 15.247 (DTS)	:2007		ANSI C63	3.4:2003 KDB No. 558074		
OMMENTS						
easurement take	en on external antenna transmi	t port at highest power fo	r each channel			
neasurement tak		- p				
DEVIATIONS FRO	M TEST STANDARD					
			hy le Reley			
DEVIATIONS FRO No deviations	M TEST STANDARD	Roc		Value	Limit	Results
DEVIATIONS FRO No deviations	M TEST STANDARD	Roc				Results
DEVIATIONS FRO lo deviations Configuration #	1 30MHz - 12.5GHz	Roc		Value < - 50 dBc	Limit ≤ - 20 dBc	Results Pass
EVIATIONS FRO to deviations onfiguration #	M TEST STANDARD	Roc				
DEVIATIONS FRO lo deviations configuration #	1 30MHz - 12.5GHz	Roc		< - 50 dBc	≤ - 20 dBc	Pass
DEVIATIONS FRO to deviations configuration #	1 30MHz - 12.5GHz	Roc		< - 50 dBc	≤ - 20 dBc	Pass
DEVIATIONS FRO to deviations configuration #	1 30MHz - 12.5GHz 12.4GHz - 25GHz	Roc		< - 50 dBc < - 50 dBc	≤ - 20 dBc ≤ - 20 dBc	Pass Pass
DEVIATIONS FRO lo deviations Configuration #	1 30MHz - 12.5GHz 12.4GHz - 25GHz 30MHz - 12.5GHz	Roc		< - 50 dBc < - 50 dBc < - 50 dBc	≤ - 20 dBc ≤ - 20 dBc ≤ - 20 dBc	Pass Pass Pass
DEVIATIONS FRO Io deviations Configuration # ow Channel	1 30MHz - 12.5GHz 12.4GHz - 25GHz 30MHz - 12.5GHz	Roc		< - 50 dBc < - 50 dBc < - 50 dBc	≤ - 20 dBc ≤ - 20 dBc ≤ - 20 dBc	Pass Pass Pass

 Low Channel, 0MHz - 12.5GHz

 Result: Pass
 Value: < - 50 dBc</th>
 Limit: ≤ - 20 dBc

 Low Channel, 12.4GHz - 25GHz

 Result: Pass
 Value: < - 50 dBc</th>
 Limit: ≤ - 20 dBc

	Mid Channel, 0MHz - 12.5GHz			
Result: Pass	Value: < - 50 dBc	Limit:	≤ - 20 dBc	

 Mid Channel, 12.4GHz - 25GHz

 Result: Pass
 Value: < - 50 dBc</th>
 Limit: ≤ - 20 dBc

High Channel, 0MHz - 12.5GHz

Result: Pass Value: < - 50 dBc Limit: ≤ - 20 dBc

 High Channel, 12.4GHz - 25GHz

 Result:
 Pass
 Value:
 < - 50 dBc</th>
 Limit:
 ≤ - 20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/7/2007	13
Power Sensor	Gigatronics	80701A	SPL	12/7/2007	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data. The following settings were used on the customer provided control software:

Low Channel, High power 2,6 Mid Channel: power 1,6 High Channel: High power 2,6

Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

NORTHWEST EMC		POWER SPEC	TRAL DEN	ISITY		XMit 2007.06.13
	WILDR-MIU				Work Order:	CSCF0011
Serial Number:						09/15/08
	Cascade Engineering Service	ces, Inc.			Temperature:	
Attendees:		•			Humidity:	
Project:	None			E	Barometric Pres.:	30.04 in
Tested by:	Rod Peloquin		Power: 120VA	C/60Hz	Job Site:	EV06
TEST SPECIFICATI	IONS		Test M	ethod		
FCC 15.247 (DTS):2	2007		ANSI C	63.4:2003 KDB No. 558074		
COMMENTS						
		nit port at highest power for each	channel			
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
Configuration #	1	Rocky l Signature	e Releng			
				Value	Liı	mit Results
Low Channel	-	_		- 8.3 dBm / 3 kHz		/ 3 kHz Pass
Mid Channel				- 3.49 dBm / 3 kH		/ 3 kHz Pass
High Channel				- 16.93 dBm / 3 kF	lz 8 dBm	/ 3 kHz Pass

	Low Channel	
Result: Pass	Value: - 8.3 dBm / 3 kHz	Limit: 8 dBm / 3 kHz

Mid Channel

Result: Pass Value: - 3.49 dBm / 3 kHz Limit: 8 dBm / 3 kHz

	High Channel		
Result: Pass	Value: - 16.93 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting high channel.

Transmitting mid channel.

Transmitting low channel.

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

4

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARG	12/7/2007	13 mo
High Pass Filter	T.T.E.	7766	HFG	2/5/2008	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	6/30/2008	13 mo
EV07 Cables		Conducted Cables	EVG	5/2/2008	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	1/4/2008	13 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Quasi Peak Data - vs - Quasi Peak Limit

Average	Data - vs -	Average	Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.648	22.1	20.8	42.9	56.0	-13.1	0.616	17.8	20.8	38.6	46.0	-7.4
0.616	21.9	20.8	42.7	56.0	-13.3	0.648	17.4	20.8	38.2	46.0	-7.8
0.862	20.8	20.7	41.5	56.0	-14.5	0.585	16.6	20.8	37.4	46.0	-8.6
0.893	20.7	20.6	41.3	56.0	-14.7	0.893	16.4	20.6	37.0	46.0	-9.0
0.585	20.5	20.8	41.3	56.0	-14.7	0.862	15.9	20.7	36.6	46.0	-9.4
0.927	20.6	20.6	41.2	56.0	-14.8	0.927	15.2	20.6	35.8	46.0	-10.2

Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.585	21.1	20.8	41.9	56.0	-14.1	0.585	21.1	20.8	41.9	46.0	-4.1
1.416	21.1	20.6	41.7	56.0	-14.3	1.416	21.1	20.6	41.7	46.0	-4.3
0.614	20.6	20.8	41.4	56.0	-14.6	0.614	20.6	20.8	41.4	46.0	-4.6
0.867	20.7	20.7	41.4	56.0	-14.6	0.867	20.7	20.7	41.4	46.0	-4.6
1.656	20.5	20.6	41.1	56.0	-14.9	1.656	20.5	20.6	41.1	46.0	-4.9
1.384	20.2	20.6	40.8	56.0	-15.2	1.384	20.2	20.6	40.8	46.0	-5.2
1.448	20.0	20.6	40.6	56.0	-15.4	1.448	20.0	20.6	40.6	46.0	-5.4
0.677	19.8	20.8	40.6	56.0	-15.4	0.677	19.8	20.8	40.6	46.0	-5.4
0.645	19.6	20.8	40.4	56.0	-15.6	0.645	19.6	20.8	40.4	46.0	-5.6
1.112	19.8	20.6	40.4	56.0	-15.6	1.112	19.8	20.6	40.4	46.0	-5.6
23.380	23.4	20.8	44.2	60.0	-15.8	23.380	23.4	20.8	44.2	50.0	-5.8
1.632	19.5	20.6	40.1	56.0	-15.9	1.632	19.5	20.6	40.1	46.0	-5.9
0.402	20.9	20.9	41.8	57.8	-16.0	0.402	20.9	20.9	41.8	47.8	-6.0
1.160	19.4	20.6	40.0	56.0	-16.0	1.160	19.4	20.6	40.0	46.0	-6.0
0.922	19.3	20.6	39.9	56.0	-16.1	0.922	19.3	20.6	39.9	46.0	-6.1
1.128	19.3	20.6	39.9	56.0	-16.1	1.128	19.3	20.6	39.9	46.0	-6.1
0.893	19.2	20.6	39.8	56.0	-16.2	0.893	19.2	20.6	39.8	46.0	-6.2
23.530	23.0	20.8	43.8	60.0	-16.2	23.530	23.0	20.8	43.8	50.0	-6.2
1.608	19.2	20.6	39.8	56.0	-16.2	1.608	19.2	20.6	39.8	46.0	-6.2
23.500	22.8	20.8	43.6	60.0	-16.4	23.500	22.8	20.8	43.6	50.0	-6.4

AC POWERLINE CONDUCTED EMISSIONS CSCE0011 09/12/08 Work Order: Date: Project: None Temperature: 22°C Job Site: EV07 . Humidity: 42 Serial Number: Barometric Pres. 30.04 in Tested by: Rod Peloquin 53 **EUT:** WILDR-MIU Configuration: 4 - 15.207 AC Powerline Conducted Emissions Customer: Cascade Engineering Services, Inc. Attendees: None **EUT Power:** 120VAC/60Hz Transmitting mid channel. **Operating Mode:** No deviations. **Deviations**: Both serial ports populated with unterminated cables Comments Test Specifications Class B Test Method FCC 15.207:2007 ANSI C63.4:2003 Ext. Attenuation: Run# Line: High Line 20 Results Pass 14 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 90 80 70 70 60 60 dBuV 50 50 40 40 30 30 20 20 10 10 1.00 100.00 1.00 10.00 100.00 0.10 10.00 0.10 MHz MHz

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.806	22.1	20.7	42.8	56.0	-13.2	•	0.806	16.9	20.7	37.6	46.0	-8.4
0.837	21.8	20.7	42.5	56.0	-13.5		0.837	16.7	20.7	37.4	46.0	-8.6
0.403	22.3	20.9	43.2	57.8	-14.5		0.403	17.6	20.9	38.5	47.8	-9.2
1.520	20.8	20.6	41.4	56.0	-14.6		0.774	15.1	20.7	35.8	46.0	-10.2
1.548	20.0	20.6	40.6	56.0	-15.4		1.520	14.7	20.6	35.3	46.0	-10.7
0.774	19.7	20.7	40.4	56.0	-15.6		1.548	14.0	20.6	34.6	46.0	-11.4
1 304	19.8	20.6	40.4	56.0	-15.6		1 304	13.6	20.6	34.2	46.0	-11.8

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.618	22.0	20.8	42.8	56.0	-13.2	•	0.618	22.0	20.8	42.8	46.0	-3.2
1.568	21.4	20.6	42.0	56.0	-14.0		1.568	21.4	20.6	42.0	46.0	-4.0
1.544	21.2	20.6	41.8	56.0	-14.2		1.544	21.2	20.6	41.8	46.0	-4.2
0.806	20.7	20.7	41.4	56.0	-14.6		0.806	20.7	20.7	41.4	46.0	-4.6
0.835	20.6	20.7	41.3	56.0	-14.7		0.835	20.6	20.7	41.3	46.0	-4.7
1.320	20.3	20.6	40.9	56.0	-15.1		1.320	20.3	20.6	40.9	46.0	-5.1
0.589	20.0	20.8	40.8	56.0	-15.2		0.589	20.0	20.8	40.8	46.0	-5.2
1.352	20.2	20.6	40.8	56.0	-15.2		1.352	20.2	20.6	40.8	46.0	-5.2
1.512	20.2	20.6	40.8	56.0	-15.2		1.512	20.2	20.6	40.8	46.0	-5.2
1.080	20.2	20.6	40.8	56.0	-15.2		1.080	20.2	20.6	40.8	46.0	-5.2
0.864	20.1	20.7	40.8	56.0	-15.2		0.864	20.1	20.7	40.8	46.0	-5.2
1.296	19.9	20.6	40.5	56.0	-15.5		1.296	19.9	20.6	40.5	46.0	-5.5
1.104	19.9	20.6	40.5	56.0	-15.5		1.104	19.9	20.6	40.5	46.0	-5.5
1.608	19.8	20.6	40.4	56.0	-15.6		1.608	19.8	20.6	40.4	46.0	-5.6
0.648	19.3	20.8	40.1	56.0	-15.9		0.648	19.3	20.8	40.1	46.0	-5.9
1.816	19.5	20.6	40.1	56.0	-15.9		1.816	19.5	20.6	40.1	46.0	-5.9
1.264	19.5	20.6	40.1	56.0	-15.9		1.264	19.5	20.6	40.1	46.0	-5.9
1.040	19.5	20.6	40.1	56.0	-15.9		1.040	19.5	20.6	40.1	46.0	-5.9
2.064	19.4	20.6	40.0	56.0	-16.0		2.064	19.4	20.6	40.0	46.0	-6.0
24.190	23.1	20.8	43.9	60.0	-16.1		24.190	23.1	20.8	43.9	50.0	-6.1

Quasi Peak Data - vs - Quasi Peak Limit

Average	Data - vs -	Average Limit

Freq (MHz	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.403	22.5	20.9	43.4	57.8	-14.3	•	0.403	18.5	20.9	39.4	47.8	-8.3
0.964	20.8	20.6	41.4	56.0	-14.6		0.964	16.0	20.6	36.6	46.0	-9.4
1.524	20.5	20.6	41.1	56.0	-14.9		0.932	15.8	20.6	36.4	46.0	-9.6
1.244	20.2	20.6	40.8	56.0	-15.2		0.434	16.6	20.9	37.5	47.2	-9.7
0.932	20.0	20.6	40.6	56.0	-15.4		1.524	15.2	20.6	35.8	46.0	-10.2
0.434	20.6	20.9	41.5	57.2	-15.7		1.244	14.7	20.6	35.3	46.0	-10.7

1.208

0.403

0.466

2.416

2.040

2.072

1.232

18.5

19.7

18.4

18.1

18.0

18.0

18.0

20.6

20.9

20.9

20.6

20.6

20.6

20.6

39.1

40.6

39.3

38.7

38.6

38.6

38.6

56.0

57.8

56.6

56.0

56.0

56.0

56.0

-16.9

-17.1

-17.3

-17.3

-17.4

-17.4

-17.4

1.208

0.403

0.466

2.416

2.040

2.072

1.232

18.5

19.7

18.4

18.1

18.0

18.0

18.0

20.6

20.9

20.9

20.6

20.6

20.6

20.6

39.1

40.6

39.3

38.7

38.6

38.6

38.6

46.0

47.8

46.6

46.0

46.0

46.0

46.0

-6.9

-7.1

-7.3

-7.3

-7.4

-7.4

-7.4

AC Powerline Conducted Emissions

AC Powerline Conducted Emissions

