# Рубежный контроль №2

# Рысьева Елизавета Антоновна ИУ5-61Б

#### Вариант 15

```
In [1]:
          import pandas as pd
          import warnings
          warnings.filterwarnings("ignore")
          import matplotlib.pyplot as plt
          import seaborn as sns
          import numpy as np
          from sklearn.metrics import mean_absolute_error, mean_squared_error, median_
          from sklearn.preprocessing import MinMaxScaler
          from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
          from sklearn.model_selection import train_test_split, GridSearchCV
          from sklearn.impute import SimpleImputer, MissingIndicator
          from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler,
          from sklearn.model selection import StratifiedKFold
          from sklearn.model selection import cross val score
 In [9]:
         df = pd.read_csv('bank_dataset.csv')
In [10]:
         df.head()
Out[10]:
                                      Gender Age Objects
                                                            Balance Products CreditCard Lo
               userid score
                                 City
          0 15677338
                       619 Ярославль
                                          Ж
                                               42
                                                        2
                                                               NaN
                                                                           1
                                                                                     1
          1 15690047
                                                           83807.86
                       608
                             Рыбинск
                                          Ж
                                               41
          2 15662040
                                                          159660.80
                       502 Ярославль
                                               42
                                                                          3
                                          Ж
          3 15744090
                       699
                            Ярославль
                                          Ж
                                               39
                                                               NaN
                                                                          2
          4 15780624
                       850
                             Рыбинск
                                          Ж
                                               43
                                                          125510.82
                                                                           1
In [11]:
         df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 12 columns):
                                Non-Null Count Dtype
          #
              Column
         ___
             _____
                                _____
                                10000 non-null int64
          0
              userid
          1
             score
                                10000 non-null int64
          2
             City
                                10000 non-null object
          3
             Gender
                               10000 non-null object
          4
             Age
                               10000 non-null int64
                               10000 non-null int64
          5
             Objects
                                6383 non-null
          6
              Balance
                                                float64
          7
             Products
                                10000 non-null int64
             CreditCard
                               10000 non-null int64
          8
          9
             Loyalty
                                10000 non-null int64
          10 estimated_salary 10000 non-null float64
                                10000 non-null int64
          11 Churn
         dtypes: float64(2), int64(8), object(2)
         memory usage: 937.6+ KB
In [13]: #Кодирование категориальных признаков
         df["City"] = df["City"].astype('category')
         df["Gender"] = df["Gender"].astype('category')
         #Назначить закодированную переменную новосу столбцу с помощью метода доступа
         df["City_cat"] = df["City"].cat.codes
         df["Gender_cat"] = df["Gender"].cat.codes
In [12]: df.isnull().sum()
         userid
                                0
Out[12]:
         score
                                0
                                0
         City
                                0
         Gender
         Age
                                0
         Objects
                                0
         Balance
                             3617
         Products
                                0
                                0
         CreditCard
         Loyalty
                                0
         estimated_salary
                                0
                                0
         Churn
         dtype: int64
In [14]: df = df.drop(['City', 'Gender'], axis=1)
In [15]: df = df \cdot dropna()
In [16]: corr = df.corr()
         sns.heatmap(corr, linewidths=.5, annot=True, fmt=".2f")
         plt.show()
```



1) С целевым признаком "Churn" наиболее коррелируют признаки "age". При построении модели машинного обучения перечисленные признаки будут наиболее информативными.

### Разделение данных

Разделим данные на целевой столбец и признаки При построении предсказательных моделей исходные данные обычно разбиваются на обучающую ("training set") и контрольную ("test set") выборки. Обучающая выборка используется для построения математических отношений между некоторой переменной-откликом и предикторами, тогда как контрольная (= "проверочная") выборка служит для получения оценки прогнозных свойств модели на новых данных, т.е. данных, которые не были использованы для обучения модели.

```
In [17]: X = df.drop(['Churn'], axis=1) #Наименования признаков
y = df['Churn'] # Значения признаков

In [18]: # кодируем категориальные данные из строк в числа
le = LabelEncoder()
y = le.fit_transform(y)

In [19]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.20, sh
```

```
In [20]: # Размер обучающей выборки
X_train.shape, y_train.shape

Out[20]: ((5106, 11), (5106,))

In [21]: # Размер тестовой выборки
X_test.shape, y_test.shape

Out[21]: ((1277, 11), (1277,))
```

#### Обучите:

- 1) одну из линейных моделей,
- 2) случайный лес

Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.

```
In [22]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error,accuracy_score
    from sklearn.svm import SVC, NuSVC, LinearSVC
    from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, expc
    from sklearn.model_selection import GridSearchCV
    from sklearn import tree
    from IPython.core.display import HTML
    from sklearn.tree import export_text
    from operator import itemgetter
```

1) Линейная модель: Допустим, у нас есть задача регрессии, и мы хотим обучить линейную модель на данных. Мы можем использовать, например, Ridge регрессию. Одним из гиперпараметров этой модели является alpha - коэффициент регуляризации. Мы можем использовать GridSearchCV для подбора оптимального значения alpha с помощью кросс-валидации.

```
In [26]: test_model(LinearRegression_model.fit(X_train,y_train))
    mean_absolute_error: 0.3203728237454674
    median_absolute_error: 0.2601717473067357
    r2_score: 0.1084185718701598
```

Средняя абсолютная ошибка (МАЕ) равна 0.32, что означает, что модель в среднем ошибается на 0.32 единицы при прогнозировании целевой переменной.

Медианная абсолютная ошибка (MedAE) равна 0.26, что означает, что половина ошибок модели меньше 0.26, а другая половина - больше 0.26. Коэффициент детерминации (R2) равен 0.11, что означает, что модель объясняет только 11% дисперсии целевой переменной. Это может быть не очень хорошим результатом, если требуется точное прогнозирование. Однако, если целью является просто получение общей тенденции, то такой результат может быть достаточным.

# Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кроссвалидации.

```
In [30]: model = LinearRegression()

param_grid = {'normalize': [True, False]}

grid_search = GridSearchCV(model, param_grid, cv=5)

grid_search.fit(X, y)

best_params = grid_search.best_params_

cv_score = cross_val_score(grid_search.best_estimator_, X, y, cv=5).mean()

y_pred = grid_search.best_estimator_.predict(X_test)

accuracy_LinearRegression = grid_search.best_estimator_.score(X_test,y_test)

print("Наилучшие параметры: {}".format(grid_search.best_params_))

print("Оценка точности на кросс-валидации: {:.2f}".format(grid_search.best_score_print(accuracy_LinearRegression)

Наилучшие параметры: {'normalize': False}

Оценка точности на кросс-валидации: 0.15

0.1134862039776614
```

# Сравните качество полученных моделей с качеством моделей

• Оба вывода получили одинаковую точность

## Виды ансамблевых методов

Сравнение выводов:

1) Бэггинг. В этом случае однородные модели обучают на разных наборах данных и объединяют. Получают прогноз путём усреднения. Если использовать в качестве слабого ученика деревья решений, то получится случайный лес RandomForestClassifier / RandomForestRegressor.

```
In [37]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassif
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import cross_val_predict
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import GradientBoostingClassifier
```

#### Модель бэггинга - случайный лес (Random Forest):

```
In [38]: # Создаем модель случайного леса с 100 деревьями
rf_model = RandomForestClassifier(n_estimators=100)

# Обучаем модель на тренировочных данных
rf_model.fit(X_train, y_train)

# Оцениваем качество модели на тестовых данных
accuracy = rf_model.score(X_test, y_test)
print('Accuracy: {:.2f}%'.format(accuracy*100))
```

Accuracy: 83.56%

Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

```
In [40]: model = RandomForestClassifier()

param_grid = {
    'n_estimators': [200, 700],
    'max_features': ['auto', 'sqrt', 'log2']
}

grid_search = GridSearchCV(model, param_grid=param_grid, cv=5)

grid_search.fit(X_train, y_train)

accuracy_RandomForestClassifier = grid_search.best_estimator_.score(X_test,y)

print("Наилучшие параметры: {} ", grid_search.best_params_)

print("Оценка точности на кросс-валидации: {:.2f}".format(grid_search.best_score_)

Наилучшие параметры: {} {'max_features': 'auto', 'n_estimators': 200}

Оценка точности на кросс-валидации: 0.84
```

Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.