Chapitre 17:

La cellule musculaire et la contraction

Introduction

Le mouvement de l'organisme repose sur la **contraction musculaire**, elle-même déclenchée par des signaux nerveux. Les muscles, composés de **fibres musculaires**, se raccourcissent et s'épaississent pour exercer une force sur les tendons, qui transmettent cette force au squelette. Cependant, cette contraction nécessite de l'**énergie**, principalement sous forme d'**ATP**, produite par la dégradation du glucose présent dans le sang.

Problématique:

Comment les cellules musculaires utilisent-elles le glucose pour produire l'énergie nécessaire à leur contraction ?

I. L'organisation du muscle et des fibres musculaires

1. Organisation générale du muscle

Un muscle est un organe composé de **fibres musculaires**, des cellules allongées et plurinucléées. Ces fibres sont regroupées en **faisceaux**, entourés par un tissu conjonctif protecteur (endomysium, périmysium et épimysium). Les muscles sont fixés au squelette par les **tendons**, qui transmettent la force générée par la contraction des fibres.

2. Organisation des cellules musculaires

Les fibres musculaires contiennent des **myofibrilles**, composées de protéines contractiles : l'**actine** et la **myosine**. Observées au microscope électronique, les myofibrilles présentent une structure striée, formée de **sarcomères**. Chaque sarcomère est délimité par des **stries Z** et se compose de :

- Bandes A (sombres): riches en myosine.
- Bandes I (claires): riches en actine.

Un sarcomère est l'unité fonctionnelle de la contraction musculaire.

Raccourcissement des sarcomères et des cellules musculaires.

Lors de la contraction, les **bandes I** se raccourcissent, tandis que les **bandes A** restent de longueur constante. Ce phénomène suggère que l'actine et la myosine **glissent l'une sur l'autre**, provoquant le raccourcissement des sarcomères. Ainsi, une fibre musculaire, composée de milliers de sarcomères, peut se raccourcir de plusieurs centimètres, permettant le mouvement.

II. Le fonctionnement du complexe acto-myosine

1. Le complexe acto-myosine

- L'actine est une protéine globulaire qui se polymérise pour former des filaments fins.
- La myosine est composée d'une longue queue et de deux têtes globulaires. Les têtes de myosine peuvent se lier à l'actine et pivoter, ce qui permet le déplacement des filaments d'actine.

2. Déclenchement de la contraction par le calcium

La contraction est initiée par l'arrivée d'un **potentiel d'action** au niveau de la plaque motrice, ce qui provoque la libération d'**acétylcholine**. Cette dernière déclenche l'entrée d'**ions calcium (Ca²+)** dans la cellule musculaire. Le calcium active les protéines régulatrices (comme la **troponine**), permettant à la myosine de se lier à l'actine.

Le calcium provient à la fois de l'extérieur de la cellule et des réserves internes, stockées dans le **réticulum sarcoplasmique**.

3. Mobilisation du complexe acto-myosine et rôle de l'ATP

La contraction repose sur un cycle de mouvements des têtes de myosine :

- 1. **Fixation de la myosine** sur l'actine en présence de calcium.
- 2. **Hydrolyse de l'ATP** : La myosine pivote (« coup de force »), tirant le filament d'actine vers le centre du sarcomère.
- 3. **Détachement de la myosine** : Une nouvelle molécule d'ATP se fixe à la myosine, permettant son détachement et son retour à sa position initiale.

L'ATP est donc essentiel pour **relâcher la myosine** de l'actine. Un manque d'ATP entraîne une rigidité musculaire, comme dans les **crampes** ou la **rigidité cadavérique**.

III. Cellules musculaires et santé

1. Crampes et courbatures

- Les crampes surviennent lorsque l'apport en ATP est insuffisant, bloquant la myosine en position contractée.
- Les courbatures sont liées à des microlésions des fibres musculaires, souvent aggravées par un manque d'oxygène et l'accumulation d'acide lactique lors d'efforts intenses.

2. Les myopathies

Certaines maladies génétiques, comme la **myopathie de Duchenne**, affectent les protéines musculaires. Cette maladie est causée par une mutation du gène codant pour la **dystrophine**, une protéine qui ancré le complexe acto-myosine à la membrane cellulaire. Son absence ou son dysfonctionnement empêche la transmission efficace de la contraction, entraînant une dégénérescence progressive des muscles.

Conclusion

Les cellules musculaires sont des structures hautement spécialisées, capables de se contracter grâce au **glissement des filaments d'actine et de myosine**. Ce mécanisme est déclenché par le **calcium** et dépend de l'**ATP** pour assurer le cycle de contraction et de relâchement. Un apport suffisant en énergie et en nutriments est donc crucial pour le bon fonctionnement musculaire.