ЛАБОРАТОРНАЯ РАБОТА 7

Содержание

Модули	2
Стандартный модуль math	4
Стандартный модуль random	5
Стандартный модуль csv Чтение csv-файлов	6 6 7
Требования к программам	9
Базовый шаблон для всех лабораторных	9
Пример программы	9
Индивидуальные задания	10
Источник данных	12
Полезные ссылки	12

Модули

Содержимое файла "lines.py" для задания 0.1:

```
def print_line(element="-", repeats=20):
    print(element * repeats)

def print_in_frame(word, symbol="#", width=20):
    print_line(symbol, width)
    print(f"{symbol}{word.center(width-2)}{symbol}")
    print_line(symbol, width)
```

Задание № 0.1. Определить результат выполнения следующего кода:

```
(a) import lines
  lines.print_line()
```

- (b) lines.print_line(".", 3)
- (c) lines.print_in_frame("center")
- (d) lines.print_in_frame("module", symbol="/", width=10)

Содержимое файла "lines_with_defaults.py" для задания 0.2:

```
default_symbol = "-"
default_width = 20

def print_line(element=None, repeats=None):
    if element == None:
        element = default_symbol
    if repeats == None:
        repeats = default_width
    print(element * repeats)
```

Задание № 0.2. Определить результат выполнения следующего кода:

```
(a) import lines_with_defaults as lines
  lines.print_line()
```

```
(b) lines.default_symbol = "x"
  lines.default_width = 10
  lines.print_line()
```

Содержимое файла "verbose.py" для задания 0.3:

```
print("Module: ", __name__)
```

Задание № 0.3. Определить результат выполнения следующего кода:

- (a) import verbose
- (b) import this
- (c) print("Module: ", __name__)

Содержимое файла "digits.py" для задания 0.4:

```
def to str(d):
    digits = [
        "ноль", "один", "два", "три", "четыре",
        "пять", "шесть", "семь", "восемь", "девять"
    ]
    if d in range(10):
        return digits[d]
    else:
        return None
def main():
    numbers = [8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
    for d in numbers:
        print(to_str(d), end=" ")
   print()
if __name__ == "__main__":
   main()
```

Задание № 0.4. Определить результат выполнения

- (a) кода, записанного в файле "digits.py", как программы;
- (b) кода, импортирующего файл "digits.py", например:

```
import digits

year = 2023

for d in str(year):
    print(digits.to_str(int(d)))
```

Стандартный модуль math

Функция	Возвращаемое значение	
fabs(x)	x	
factorial(n)	n!	
fsum(numbers)	Сумма чисел в списке numbers	
gcd(a, b)	Наибольший общий делитель чисел a , b	
$\exp(x)$	e^x	
log(x[, base])	$\log_{base} x$. Если base не задано, то $\ln x$.	
pow(x, y)	x^y	
$\operatorname{sqrt}(x)$	\sqrt{x}	
acos(x)	$\arccos x$	
atan(x)	$\arctan x$	
acos(x)	$\arccos x$	
sin(x)	$\sin x$	
tan(x)	$\operatorname{tg} x$	
$ ext{degrees}(x)$	Угол в градусах. \boldsymbol{x} — угол в радианах	
$\mathtt{radians}(x)$	Угол в радианах. x — угол в градусах	

Константа	Значение
pi	Число π
е	Число е

Задание № 0.5. Определить следующие функции, и вычислить их значения при указанных значениях параметров и аргументов:

(a)
$$\varphi(t)=a\cos(\omega t)+b\sin(\omega t),$$
 при $a=5,\,b=3,\,\omega=0.5;$ $t=2.0$

(b)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right],$$
 при $\mu = -2, \, \sigma = 0.5;$ $x = -1$

(c)
$$p(k) = \frac{\lambda^k}{k!}e^{-\lambda}$$
, при $\lambda = 4$; $k = 4$

Стандартный модуль random

Функция	Возвращаемое значение	
randint(a, b)	Случайное целое число N такое, что $a\leqslant N\leqslant b$	
<pre>choice(somelist)</pre>	Случайный элемент из списка somelist	
<pre>shuffle(somelist)</pre>	None. Перемешивает порядок элементов в списке $somelist$	
sample(seq, k)	Список из k случайно выбранных элементов из seq	
random()	Случайное вещественное число X такое, что $0.0 \leqslant X < 1.0$	
uniform(a, b)	Случайное вещественное число X такое, что $a\leqslant X\leqslant b$	
gauss(mu, sigma)	Случайное вещественное число X , подчиняющееся распределению Гаусса с математическим ожиданием mu и среднеквадратичным отклонением sigma	

Задание № 0.6. Определить результат выполнения следующего кода:

```
(a) import random
   random.randint(1,10)
(b) color = ["Красный", "Зеленый", "Желтый", "Синий"]
   random.choice(color)
(c) numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
   random.shuffle(numbers)
(d) probability = 0.6
   total = 100
   count = 0
   for i in range(total):
       x = random.random()
       if x < probability:</pre>
           count += 1
   print(count)
(e) random.uniform(-10.0, 10.0)
(f) random.gauss(0.0, 1.0)
```

Стандартный модуль csv

Чтение csv-файлов

Содержимое файла "months.csv" для задания 0.7(a):

```
Зима, Декабрь, Январь, Февраль
Весна, Март, Апрель, Май
Лето, Июнь, Июль, Август
Осень, Сентябрь, Октябрь, Ноябрь
```

Содержимое файла "ages.csv" для заданий 0.7(b-c):

```
"Adam",20
"Bob",21
"Caron",21
"Dan",20
"Eva",22
```

Содержимое файла "headers.csv" для задания 0.7(d):

```
"name", "age"
"Adam", 20
"Bob", 21
"Caron", 21
"Dan", 20
"Eva", 22
```

Содержимое, отображаемое в табличном процессоре:

таоли том процессоре.				
Зима	Декабрь	Январь	Февраль	
Весна	Март	Апрель	Май	
Лето	Июнь	Июль	Август	
Осень	Сентябрь	Октябрь	Ноябрь	

Содержимое, отображаемое в табличном процессоре:

Adam	20
Bob	21
Caron	21
Dan	20
Eva	22

Содержимое, отображаемое в табличном процессоре:

age
20
21
21
20
22

Задание № 0.7. Определить результат выполнения следующего кода:

```
(a) import csv
with open("months.csv", newline="") as csvfile:
    datareader = csv.reader(csvfile)
    for line in datareader:
        print(line)
```

```
(b) import csv
  with open("ages.csv", newline="") as csvfile:
    datareader = csv.reader(csvfile)
    for row in datareader:
        if int(row[1]) > 20:
            print(row[0])
```

```
(c) import csv
   with open("ages.csv", newline="") as csvfile:
       datareader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC)
       for row in datareader:
           if row[1] > 20:
               print(row[0])
(d) import csv
   with open("headers.csv", newline="") as csvfile:
       datareader = csv.DictReader(csvfile, quoting=csv.QUOTE_NONNUMERIC)
       for record in datareader:
           if record["age"] > 20:
               print(record["name"])
Запись сѕу-файлов
Задание № 0.8. Определить результат выполнения следующего кода:
(a) import csv
   row1 = ["Winter", "December", "January", "February"]
   row2 = ["Spring", "March", "April", "May"]
   row3 = ["Summer", "June", "July", "August"]
   row4 = ["Autumn", "September", "October", "November"]
   with open("out_months.csv", "w", newline="") as csvfile:
       datawriter = csv.writer(csvfile)
       datawriter.writerow(row1)
       datawriter.writerow(row2)
       datawriter.writerow(row3)
       datawriter.writerow(row4)
(b) import random
   import csv
   names = ["Adam", "Bob", "Caron", "Dan", "Eva"]
   with open("out_ages.csv", "w", newline="") as csvfile:
       datawriter = csv.writer(csvfile, quoting=csv.QUOTE_NONNUMERIC)
       for name in names:
           datawriter.writerow([name, random.randint(18,22)])
```

```
(c) import csv
   headers = ["name", "language"]
   names = ["Adam", "Bob", "Caron", "Dan", "Eva"]
   langs = ["English", "German", "French"]
   row1 = {"name": "Adam", "language": "English"}
   row2 = {"name": "Bob", "language": "French"}
   row3 = {"name": "Caron", "language": "English"}
   row4 = {"name": "Dan", "language": "English"}
   row5 = {"name": "Eva", "language": "German"}
   with open("out_languages.csv", "w", newline="") as csvfile:
       datawriter = csv.DictWriter(csvfile, headers)
       datawriter.writeheader()
       datawriter.writerow(row1)
       datawriter.writerow(row2)
       datawriter.writerow(row3)
       datawriter.writerow(row4)
       datawriter.writerow(row5)
(d) import random
   import csv
   fname = "out_rand_languages.csv"
   headers = ["name", "language"]
   names = ["Adam", "Bob", "Caron", "Dan", "Eva"]
   languages = ["English", "German", "French"]
   with open(fname, "w", newline="") as csvfile:
       datawriter = csv.DictWriter(csvfile, headers)
       datawriter.writeheader()
       for name in names:
           datawriter.writerow({"name":
                                            name,
                                "language": random.choice(languages)})
```

Требования к программам

- 1. Файл с исходным кодом называть по шаблону: «Фамилия_номер_задания» английским алфавитом (пример: Ivanov_7_42.py).
- 2. Файл с исходным кодом должен начинаться с многострочного описательного комментария (см. базовый шаблон ниже).
- 3. Все имена выбирать разумными.
- 4. Оформлять понятный ввод данных / вывод результата.
- 5. Использовать входные файлы в формате csv. Демонстрационные файлы размещены в каталоге "lab_7_data".
- 6. Чтение и запись файлов осуществлять с помощью функций и методов стандартного модуля csv.

Базовый шаблон для всех лабораторных

```
    '''Фамилия Имя. Номер задания
    Краткая формулировка задания
    '''
    Код программы
```

Пример программы

```
′′′Фамилия Имя. Задание № 7.0
1
3 Дан файл min\_level.csv с величиной прожиточного минимума на 2023 г.
4 по субъектам Сибирского федерального округа РФ в рублях в месяц.
5 Файл содежит 4 столбца: "Субъект РФ", "Трудоспособное население",
  "Пенсионеры", "Дети".
f 8 1. Вывести все субъекты P\Phi, величина прожиточного минимума
9 трудоспособного неселения которых превышает 15000 рублей в месяц.
10 2. Определить среднюю величину прожиточного минимума для детей.
11
12 import csv
13
14 infname = "lab_7_data/min_level.csv"
15
16 def task_example_1():
      with open(infname, newline="") as csvfile:
17
           datareader = csv.DictReader(csvfile, quoting=csv.QUOTE_NONNUMERIC)
18
           print("1. Субъекты с величиной прожиточного минимума > 15000:")
19
20
           for data in datareader:
               level = data['Трудоспособное население']
21
22
               if level > 15000:
23
                   print(f"\t{data['Cy6ъeκτ PΦ']:25} {level}")
```

```
24 def task_example_2():
      with open(infname, newline="") as csvfile:
25
           datareader = csv.DictReader(csvfile, quoting=csv.QUOTE_NONNUMERIC)
26
           children = []
27
           for data in datareader:
28
               children.append(data["Дети"])
29
      print("2. Средняя величина прожиточного минимума для детей:",
30
          sum(children)/len(children), "py6.")
31
33 task_example_1()
34 task_example_2()
```

Индивидуальные задания

Задание № 7.1. Дан файл cities_millionaires.csv с численностью населения городов-миллионеров РФ. Файл содержит 4 столбца: «Город», «Субъект РФ», «Численность на 01.01.2022», «Численность на 01.01.2021».

Вывести все города (вместе с субъектом $P\Phi$), численность населения в которых на 01.01.2022 составляла от $1\,100\,000$ до $1\,200\,000$ человек.

Задание № 7.2. Дан файл cities_millionaires.csv с численностью населения городов-миллионеров РФ. Файл содержит 4 столбца: «Город», «Субъект РФ», «Численность на 01.01.2022», «Численность на 01.01.2021».

Вывести города (вместе с субъектом $P\Phi$) и изменение численности населения с 01.01.2021 по 01.01.2022.

Задание № 7.3. Дан файл cities_millionaires.csv с численностью населения городов-миллионеров РФ. Файл содержит 4 столбца: «Город», «Субъект РФ», «Численность на 01.01.2022», «Численность на 01.01.2021».

Вывести среднюю численность населения городов, численность населения которых на 01.01.2022 не превышала $1\,500\,000$ человек.

Задание № 7.4. Дан файл Siberia.csv с численностью населения субъектов Сибирского федерального округа РФ на 1 января 2022 г. Файл содержит 4 столбца: «Субъект РФ», «Все население», «Городское население», «Сельское население».

Вывести список субъектов РФ вместе с долей городского населения.

Задание № 7.5. Дан файл **Siberia.csv** с численностью населения субъектов Сибирского федерального округа РФ на 1 января 2022 г. Файл содержит 4 столбца: «Субъект РФ», «Все население», «Городское население», «Сельское население».

Вывести список субъектов РФ, городское население в которых составляет от $1\,000\,000$ до $2\,000\,000$ человек.

Задание № 7.6. Дан файл Siberia.csv с численностью населения субъектов Сибирского федерального округа РФ на 1 января 2022 г. Файл содержит 4 столбца: «Субъект РФ», «Все население», «Городское население», «Сельское население».

Вывести субъект РФ с максимальной долей сельского населения.

Задание № 7.7. Дан файл labour.csv с численностью рабочей силы в возрасте 15 лет и старше по субъектам Сибирского федерального округа РФ за 2020—2022 гг. в тысячах человек. Файл содержит 4 столбца: «Субъект РФ», «2020», «2021», «2022».

Вывести субъекты $P\Phi$, в которых численность рабочей силы за 2022 г. превышает 1 000 тыс. человек.

Задание № 7.8. Дан файл labour.csv с численностью рабочей силы в возрасте 15 лет и старше по субъектам Сибирского федерального округа РФ за 2020—2022 гг. в тысячах человек. Файл содержит 4 столбца: «Субъект РФ», «2020», «2021», «2022».

Вывести субъекты РФ и изменение численности рабочей силы с 2020 по 2022 г.

Задание № 7.9. Дан файл labour.csv с численностью рабочей силы в возрасте 15 лет и старше по субъектам Сибирского федерального округа РФ за 2020—2022 гг. в тысячах человек. Файл содержит 4 столбца: «Субъект РФ», «2020», «2021», «2022».

Вывести субъекты РФ вместе с годом, в котором наблюдалась максимальная численность рабочей силы.

Задание № 7.10. Дан файл scientific_degrees.csv с численностью исследователей, имеющих ученую степень, по субъектам Сибирского федерального округа РФ за 2021 г. Файл содержит 4 столбца: «Субъект РФ», «Всего», «Доктор наук», «Кандидат наук».

Вывести субъекты Р Φ вместе с долей исследователей, имеющих ученую степень кандидата наук.

Задание № 7.11. Дан файл scientific_degrees.csv с численностью исследователей, имеющих ученую степень, по субъектам Сибирского федерального округа РФ за 2021 г. Файл содержит 4 столбца: «Субъект РФ», «Всего», «Доктор наук», «Кандидат наук».

Вывести субъекты Р Φ , в которых число исследователей, имеющих ученую степень, превышает 500 человек.

Задание № 7.12. Дан файл scientific_degrees.csv с численностью исследователей, имеющих ученую степень, по субъектам Сибирского федерального округа РФ за 2021 г. Файл содержит 4 столбца: «Субъект РФ», «Всего», «Доктор наук», «Кандидат наук».

Вывести субъекты РФ, в которых число исследователей, имеющих ученую степень доктора наук, превышает 100 человек.

Задание № 7.13. Дан файл census_2020.csv с данными Всероссийской переписи населения 2020 года по Омской области. Файл содержит 4 столбца: «Возрастная группа», «Мужчины и женщины», «Мужчины», «Женщины».

Вывести возрастные группы (вместе с количеством мужчин и женщин), численность которых превышает 100 000 человек.

Задание № 7.14. Дан файл census_2020.csv с данными Всероссийской переписи населения 2020 года по Омской области. Файл содержит 4 столбца: «Возрастная группа», «Мужчины и женщины», «Мужчины», «Женщины».

Вывести возрастные группы вместе с долей женщин.

Задание № 7.15. Дан файл census_2020.csv с данными Всероссийской переписи населения 2020 года по Омской области. Файл содержит 4 столбца: «Возрастная группа», «Мужчины и женщины», «Мужчины», «Женщины».

Вывести возрастные группы вместе с долей мужчин, в которых эта доля менее 50 %.

Источник данных

Источник данных для индивидуальных заданий — Росстат. Официальный сайт Федеральной службы государственной статистики:

```
https://rosstat.gov.ru/
```

Полезные ссылки

Официальный сайт по языку Python:

```
https://www.python.org/
```

Официальная документация по языку Python 3:

```
https://docs.python.org/3/
```

Онлайн-интерпретаторы языка Python:

```
https://www.onlinegdb.com/online_python_compiler
```

https://www.online-python.com/

https://www.programiz.com/python-programming/online-compiler/