On Embeddings for Numerical Features in Tabular Deep Learning

Рецензент: Петров Михаил НИС МОП, 18.01.2023

Авторы статьи

Yury Gorishniy, Yandex Research, MIPT 115 citations h-index: 2

Ivan Rubachev, Yandex Research, HSE 142 citations h-index: 3

Artem Babenko, Yandex Research, HSE 4146 citations h-index: 18

Revisiting Deep Learning Models for Tabular Data

- Сравнительный анализ девяти разных DL-моделей в применении к табличным данным на 11 датасетах
- Показано, что transformer-based модели хорошо конкурируют с бустингами, а простые модели можно очень хорошо затюнить
- 103 цитирования

Figure 1: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embeddings. The embeddings are then processed by the Transformer module and the final representation of the [CLS] token is used for prediction.

Figure 2: (a) Feature Tokenizer; in the example, there are three numerical and two categorical features; (b) One Transformer layer.

Подходы к эмбеддингам

- **Feature binning:** Dougherty et al. (1995). Supervised and unsupervised discretization of continuous features.
- Periodic activations:
 - MLP: Tancik et al. (2020). Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains.
 - Transformers: Vaswani et al. (2017). Attention is all you need.
 - ResNet: Li et al. (2021). Learnable fourier features for multi-dimensional spatial positional encoding.

Revisiting Pretraining Objectives for Tabular Deep Learning

Разработанные модели используются дальше для исследования влияния предобучения на tabular DL-модели

	GE ↑	СН↑	CA↓	НО↓	OT ↓	HI ↑	FB ↓	AD↑	WE↓	CO↑	MI↓
,					MLP						
no pretraining	0.635	0.849	0.506	3.156	0.479	0.801	5.737	0.908	1.909	0.963	0.749
contrastive	0.672	0.855	0.455	3.056	0.469	0.813	5.697	0.910	1.881	0.960	0.748
rec	0.662	0.853	0.445	3.044	0.466	0.805	5.641	0.910	1.875	0.965	0.746
mask	0.691	0.857	0.454	3.113	0.472	0.814	5.681	0.912	1.883	0.964	0.748
MLP-PLR											
no pretraining	0.668	0.858	0.469	3.008	0.483	0.809	5.608	0.926	1.890	0.969	0.746
rec	0.667	0.852	0.439	3.031	0.472	0.808	5.571	0.926	1.877	0.971	0.745
mask	0.685	0.863	0.434	3.007	0.477	0.818	5.586	0.927	1.911	0.970	0.748
MLP-T-LR											
no pretraining	0.634	0.866	0.444	3.113	0.482	0.805	5.520	0.925	1.897	0.968	0.749
rec	0.652	0.857	0.424	3.109	0.472	0.808	5.363	0.924	1.861	0.969	0.746
mask	0.654	0.868	0.424	3.045	0.472	0.818	5.544	0.926	1.916	0.969	0.748

Сильные стороны

- "Простая" тема
- Обилие экспериментов
- Есть код

Слабые стороны (слабые ли?)

- Почему бы не применить periodic препроцессинг к бустингам?
- Не хватает анализа