Assignment 3

Author: "LuchaoQi" Email: lqi9@jhu.edu

Q1a.

We need $5 * 10^4$ 100bp reads.

$$n*100bp = 1Mbp*5$$

$$n = \frac{5*10^6}{10^2}$$

$$n = 5*10^4$$

Q1b.

[1] 5

Use following R code to simulate 5x coverage of a 1Mbp genome:

```
set.seed(100)
s = 1000000
n = 5
a = sample(1:s, n*s,replace=TRUE)
coverage = rep(0,s)
for (i in a) {coverage[i] = coverage[i]+1}
hist(coverage,prob=T,col="light blue")
xfit<-seq(min(coverage),max(coverage))
yfit<-dpois(xfit,n)
lines(xfit,yfit,col="red",lwd=3)</pre>
```

Histogram of coverage


```
length(which(coverage==0))
## [1] 6871
mean(coverage)
```

Q1c.

Theoretically, the Poisson expecation should be the value of coverage:5, which equals to exactly the mean of our simulations.

Q1d.

Use following R code to simulate 15x coverage:

```
set.seed(100)
s = 1000000
n = 15
a = sample(1:s, n*s,replace=TRUE)
coverage = rep(0,s)
for (i in a) {coverage[i] = coverage[i]+1}
hist(coverage,prob=T,col="light blue")
xfit<-seq(min(coverage),max(coverage))
yfit<-dpois(xfit,n)
lines(xfit,yfit,col="red",lwd=3)</pre>
```

Histogram of coverage


```
length(which(coverage==0))
## [1] 1
mean(coverage)
```

[1] 15

Theoretically, the Poisson expecation should be the value of coverage: 15, which equals to exactly the mean of our simulations.

Q2a.

Q2b.

One possible genome sequence could be: $\operatorname{ATTCATTCTTATTG}$

Q2c.

The longest repeat should be: ATTCTTATT

Q3a.

Through following code, We could see the results ouputted at the end of code.

```
def computeBWT(s):
    s = s +'$'
    rows = sorted(s[i:] + s[:i] for i in range(len(s)))
    bwt = [row[-1:] for row in rows]
    print("".join(bwt))
    return "".join(bwt)

computeBWT('I_am_fully_convinced_that_species_are_not_immutable;_but_that_those_belonging_to_what t_are_called_the_same_genera_are_lineal_descendants_of_some_other_and_generally_extinct_species,
    _in_the_same_manner_as_the_acknowledged_varieties_of_any_one_species_are_the_descendants_of_that
    _species._Furthermore,_I_am_convinced_that_natural_selection_has_been_the_most_important,_but_not_the_exclusive,_means_of_modification.')
```

.etsense__\$.,eIIrftassrse,;emyleeymedntt,ee,fetetssssyeeelftttedfdtsetndntgdort_ercr__ss_metd
d___vh_hhhhhcn__a__innsseeeeax__neneeeenn__eorvlhsrhhmrmhrmhhnrnmpppplcclglbsbeccgghnnnhiiii
ddi__ooooi_nd__n_wtttttttttttttfcccctrd__vvtlgttscaabelw_auaecllaa_aao_i_r_imooei_iiiaeeoineeio
a_kaaaaooatm___sii_lccmphmnn_nssssmeeeueoaaaaaeoueeeeaentta__eeo_u___onaosaucaauoaur____
_or_exac_nnaftFlbbm_inn_oeelln

Q4.

Through following code, We could see the results ouputted at the end of code.

```
def decodeBWT(r):
    rows = [""] * len(r)
    for i in range(len(r)):
        rows = sorted(r[i] + rows[i] for i in range(len(r)))
    s = [row for row in rows if row.endswith("$")][0]
    print(s.rstrip("$").strip())
    return s.rstrip("$").strip()
decodeBWT('.uspe_gexr_____$..,e.orrs,sdddeedkdsuoden-tf,tyewtktttt,sewteb_ce__ww__h_PPsm_u_naseueeennnrrlmwwhWcrskkmHwhttv_no_nnwttzKt_l_ocoo_be___aaaooaAakiiooett_oooi_sslllfyyD__uouuueceetenagan___rru_aasanIiatt__c__saacooor_ootjeae____ir__a')
```

We_went_up,_saw_the_structure,_we_came_back_to_Kings_and_looked_at_our_Pattersons,_and_every_
section_of_our_Pattersons_we_looked_at_screamed_at_you,_Double_Helix._And_it_was_just_there._-_o
nce_you_knew_what_to_look_for._It_was_amazing.