PYL100: Electromagnetic Waves and Quantum Mechanics (II Semester, 2016-17)

Exercise Sheet No.7

Part 2: QM basics -- Operators, Commutator, Eigenfunctions & Eigenvalues, Postulates

- 1. The wave function at t=0 is given by: $\psi(x,0) = \frac{1}{\sqrt{2}}\phi_1 + \frac{1}{\sqrt{2}}\phi_2$, where ϕ_1 and ϕ_2 are normalized eigenstates of the Hamiltonian with energy eigenvalues $E_1, E_2 \left(E_2 > E_1 \right)$ respectively. Calculate the shortest time after which $\psi(x,0)$ will become orthogonal to $\psi(x,t)$? [Ans. $\frac{\pi\hbar}{E_2-E_1}$]
- 2. The wave function of a spinless particle moving under a one-dimensional potential $\psi(x) = Ae^{-\alpha^2x^2} \left(-\infty < x < \infty\right)$, where *A* is Normalization constant corresponding to the energy eigenvalue $E_0 = \frac{\alpha^2\hbar^2}{m}$. What will be the form of the one-dimensional potential? [Ans. $2E_0\alpha^2x^2$]
- 3. The wave function corresponding to a particle is given by: $\psi(x) = \frac{1}{\sqrt{a}} \exp\left(-\frac{|x|}{a}\right)$
 - (a) Calculate the probability of finding the particle in the region -a < x < a.
 - (b) Find the value of 'b' such that probability of finding the particle between -b < x < b is 0.5.

[**Ans.** (a)
$$1 - \frac{1}{e^2}$$
, (b) $\frac{a \ln 2}{2}$]

4. Consider two states Ψ_1 and Ψ_2 , defined as follows:

$$\Psi_1 = 2 \, \varphi_1 - 3 \, \varphi_2,
\Psi_2 = \varphi_1 + \alpha \, \varphi_2,$$

Where ϕ_1 and ϕ_2 are the orthonormal eigenfunctions in a 1D infinite potential. For what value of ' α ' is Ψ_1 orthogonal to Ψ_2 ?

- 5. Assume $\Psi(\mathbf{r}) = \frac{1}{r} e^{ikr}$, where $r = \sqrt{x^2 + y^2 + z^2}$. Calculate $J(\mathbf{r},t)$ and interpret the result physically.
- 6. Find out the probability current density J(x,t) for a plane wave given by: $\Psi(x,t) = Be^{i(kx-\omega t)}$.
- 7. Derive the Continuity equation for probability current density J(x,t) for a one-dimensional motion of a flux of electrons, considering their wave function as $\Psi(x,t)$.
- 8. Show that: $\mathbf{J} = Re\left(\Psi^* \frac{\hbar}{im} \nabla \Psi\right)$. Hence, show that $\mathbf{J} = Re\left(\Psi^* \frac{\widehat{p}}{m} \nabla \Psi\right) = Re\left(\Psi^* \widehat{v} \nabla \Psi\right)$ where $\widehat{v} = \frac{\widehat{p}}{m}$ is the velocity operator.
- 9. Show that the Energy Eigenfunctions are orthonormal.
- 10. Which of the following is an eigenfunction the kinetic energy operator?

(a)
$$Ae^{-x/a}$$
 (b) $Ae^{x/a}$

[Ans. None of them]

- 11. If a wave function $\psi(x)$ satisfies the following relation $\hat{x}\psi(x) = -\left(\frac{ia^2}{\hbar}\right)\hat{p}_x\psi(x)$ ('a' is real positive quantity), then what will be the form of $\psi(x)$?

 [Ans. $Ae^{-\frac{x^2}{2a^2}}$]
- 12. Calculate the value of the commutator brackets:
 - (a) $\left[\hat{x}^2, \hat{p}_x^2\right]$
 - (b) $\left[\hat{x}, \left[\hat{x}, \hat{H}\right]\right]$
 - (c) $\left[x, \frac{\partial^2}{\partial x^2} \right]$

- [Ans. (a) $2i\hbar(\hat{p}_x\hat{x} + \hat{x}\hat{p}_x)$, (b) $-\frac{\hbar^2}{m}$, (c) $-2\frac{\partial}{\partial x}$]
- 13. Discuss the hermiticity of the following operators:
 - (i) $\hat{B} = (\hat{A}^{\dagger} + \hat{A}),$
 - (ii) $\hat{C} = i(\hat{A}^{\dagger} \hat{A})$
- 14. Find the Hermitian conjugate of: $f(\hat{A}) = (1 + i\hat{A} + 3\hat{A}^2)(1 2i\hat{A} 9\hat{A}^2)$
- 15. Discuss the Hermiticity of the operators: (a) $\frac{d}{dx}$ and (b) $e^{i d/dx}$
- 16. Show that (a) $\left[\hat{L}_x, \hat{L}_y\right] = i\hbar \hat{L}_z$
 - (b) $\left[\hat{L}_{v},\hat{L}_{z}\right]=i\hbar\,\hat{L}_{x}$
 - (c) $\left[\hat{L}^2, \hat{L}_z\right] = 0$
 - (d) $\left[\hat{L}^2, \hat{L}\right] = 0$
- 17. Consider a Gaussian wave packet for a free particle with the normalized wave function:

$$\Psi(x,0) = \left(\frac{2}{\pi a^2}\right)^{1/4} e^{-\frac{x^2}{a^2}} e^{i k_0 x}$$

- i) Verify that the wave function is normalized.
- ii) Evaluate the expectation value for position: $\langle x \rangle$.
- iii) Evaluate the expectation value for momentum: $\langle k \rangle$
- iv) Given $\langle x^2 \rangle = \frac{a^2}{4}$ and $\langle k^2 \rangle = k_0^2 + \frac{1}{a^2}$. Show that the product of the uncertainties is <u>minimum</u> and equal to: $\Delta x \, \Delta k = \frac{1}{2}$.