

Computer Vision (3주차)

Young-Gon Kim DLI Instructor

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Week 2 Review
- Object Detection

WEEK 2 REVIEW

- Object detection in the natural image
 - History
 - 초기 object detection 기법은 handcraft feature를 기준으로 함
 - Sliding window classifier

- Object detection in the natural image
 - History
 - **Boosted classifier**
 - Haar-like features (Viola and Jones, 2001.)

- Object detection in the natural image
 - History
 - Sliding window classifier는 너무 많은 corrected detection을 만듬
 - → Non-Maximum Suppression (NMS)

Before NMS

After NMS

- Object detection in the natural image
 - History
 - Computes histogram of gradient orientation over sub-image blocks
 - Histograms of Oriented Gradients (HOG) (Dalal and Triggs, 2005.)

- Object detection in the natural image
 - History
 - Learn the relationships between HOG features of object parts via a latent SVM
 - Deformable Part Models (DPM) (Felzenszwalb et al., 2008.)

- Object detection in the natural image
 - History
 - Propose regions that have high "objectness"
 - Oversegment image and merge regions
 - Selective Search (Uijlings et al., 2013.)

- Object detection in the natural image
 - Competition
 - ImageNet Large Scale Visual Recognition Challenge (ILSVRC, ImageNet)

- Object detection in the natural image
 - Competition
 - Visual Object Classes Challenge 2012 (PASCAL VOC 2012)
 - Classification, Detection, Segmentation
 - # of classes : 20

- Object detection in the natural image
 - Competition
 - Microsoft Common Objects in COntest (MS COCO)
 - Detection, Keypoint, Panoptic, DensePose
 - # of images : 330K (>200K labeled)
 - # of classes : 80

- Object detection in the natural image
 - Competition
 - Cityscapes Dataset
 - Semantic, Instance, Panoptic Segmentation
 - # of images: 5,000 (fine annotations) / 20,000 (coarse annotations)

- Object detection using sliding window
 - Technique
 - Build a dog / 'not dog' classifier
 - Sliding window python application runs classifier on each 256x256 segment

- Architecture
 - Two-stage detector
 - R-CNN
 - SPPNet
 - Fast R-CNN
 - Faster R-CNN
 - Feature Pyramid Networks (FPN)
 - -

- One-stage detector
 - YOLO
 - Single Shot MultiBox Detector (SSD)
 - RetinaNet
 - -

- Architecture
 - Two-stage detector
 - Faster R-CNN (S. Ren et al., TPAMI 2017.)
 - 대표적인 two-stage region proposal network

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

- Architecture
 - Two-stage detector
 - Feature Pyramid Networks (T.-Y. Lin et al., CVPR 2017.)
 - Faster R-CNN 기반 Feature Pyramid Network 제안

Figure 2. Top: a top-down architecture with skip connections, where predictions are made on the finest level (e.g., [28]). Bottom: our model that has a similar structure but leverages it as a feature pyramid, with predictions made independently at all levels.

- Architecture
 - One-stage detector
 - You Only Look Once (YOLO) (J. Redmon et al., CVPR 2016.)
 - Grid + Sliding window

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

- Architecture
 - One-stage detector
 - RetinaNet (T.-Yi. Lin et al., ICCV 2018.)
 - Feature Pyramid Network를 one-stage detector로 변화

Reference

- https://www.slideshare.net/pfi/a-brief-history-of-object-detection-tommi-kerola
- http://image-net.org/index
- http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture01.pdf
- http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
- http://cocodataset.org/#home
- https://www.cityscapes-dataset.com/
- https://arxiv.org/pdf/1905.05055.pdf
- Faster R-CNN: https://arxiv.org/pdf/1506.01497.pdf
- Feature Pyramid Networks: https://arxiv.org/pdf/1612.03144.pdf
- YOLO: https://arxiv.org/pdf/1506.02640.pdf
- RetinaNet: https://arxiv.org/pdf/1708.02002.pdf

