The maximum number of cliques in disjoint copies of graphs

Zhipeng Gao^a, Ping Li^b, Changhong Lu^c, Rui Sun^{c,*}, Long-Tu Yuan^c

^aSchool of Mathematics and Statistics, Xidian University, Xi'an, 710071, China.
^bSchool of Mathematics and Statistics, Shaanxi Normal University, Xi'an, Shaanxi, China.
^cSchool of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.

Abstract

The problem of determining the maximum number of copies of T in an H-free graph, for any graphs T and H, was considered by Alon and Shikhelman. This is a variant of Turán's classical extremal problem. We show lower and upper bounds for the maximum number of s-cliques in a graph with no disjoint copies of arbitrary graph. We also determine the maximum number of s-cliques in an n-vertex graph that does not contain a disjoint union of k paths of length two when k=2,3, or $s\geqslant k+2,$ or n is sufficiently large, this partly confirms a conjecture posed by Chen, Yang, Yuan, and Zhang [1].

1. Introduction

A graph G is said to be H-free if it does not contain any subgraph isomorphic to H. The classical extremal function $\operatorname{ex}(n,H)$ denoted as $\operatorname{ex}(n,H)$, is formally defined as the maximum number of edges on an n-vertex H-free graph. This function extends naturally to a scenario where the objective is not merely to maximize the number of edges, but rather to maximize the number of copies of a specified graph T within an n-vertex graph that is H-free. In accordance with the notation introduced by Alon and Shikhelman [2], the more general function is denoted as $\operatorname{ex}(n,T,H)$, which is commonly referred to the generalized Turán number of H. Let P_k be the path with k vertices. Obviously, $\operatorname{ex}(n,P_2,H)=\operatorname{ex}(n,H)$. We denote the cycle with ℓ vertices by C_ℓ and the complete graph with s vertices by K_s .

The exploration of such problems dates back to the foundational work of Erdős [3], who established the values of $ex(n, K_s, K_t)$ for any two cliques. After these seminal discoveries, a series of related findings were made, with one of the most notable being the resolution of $ex(n, C_5, C_3)$ by Hatami et al. [4], and Grzesik [5], each working independently. A wealth of additional research has further expanded our understanding of generalized extremal numbers, as evidenced by various studies referenced in the literature [6, 7, 8, 9].

Scholars have studied the generalized Turán numbers for the vertex-disjoint union of graphs. Let kH represent the collection of k disjoint copies of the graph H. Gerbner, Methuku, and Vizer [10] delved into the function ex(n, T, kH), where H

^{*}Corresponding author.

Email addresses: gaozhipeng@xidian.edu.cn (Zhipeng Gao), lp-math@snnu.edu.cn (Ping Li), chlu@math.ecnu.edu.cn (Changhong Lu), sunruicaicai@163.com (Rui Sun), ltyuan@math.ecnu.edu.cn (Long-Tu Yuan)