Parcial 2

Julián Andrés Guisao Fernández

Escuela de ingenierías, Universidad Pontificia Bolivariana

Tópicos Avanzados en Bases de datos

Juan Rodas

3 de abril de 2025

Etapa 1: Obtención colaborativa de datos faltantes. 20%

Para la normalización de los datos, se identificó que la columna "serie_hidrologica" representa embalses y fuentes hídricas. Se construyeron dos nuevas tablas: embalses y fuentes hidricas.

Creación de tabla de embalses y fuentes hídricas

```
CREATE TABLE IF NOT EXISTS corregido.fuentes_hidricas (
   "id" SERIAL PRIMARY KEY,
   "nombre" VARCHAR(4) NOT NULL
);

CREATE TABLE IF NOT EXISTS corregido.embalses (
   "id" SERIAL PRIMARY KEY,
   "nombre" VARCHAR(4) NOT NULL,
   "id_fuente" INT,
   "id_region" INT,
   FOREIGN KEY (id_fuente) REFERENCES corregido.fuentes_hidricas ("id"),
   FOREIGN KEY (id_region) REFERENCES corregido.regiones ("id")
);
```

Etapa 2: Diseño e implementación del modelo de datos – 20%

Para responder consultas de manera eficiente, se diseñó un modelo relacional en tercera forma normal (3FN). A continuación, se muestra la estructura de las tablas y su código de implementación.

Creación de tablas adicionales para completar el esquema base.

```
CREATE SCHEMA IF NOT EXISTS corregido;
CREATE TABLE IF NOT EXISTS corregido.regiones (
  "id" SERIAL PRIMARY KEY,
  "nombre" VARCHAR(20) NOT NULL UNIQUE
);
CREATE TABLE IF NOT EXISTS corregido.fuentes_hidricas (
  "id" SERIAL PRIMARY KEY,
  "nombre" VARCHAR(4) NOT NULL
);
CREATE TABLE IF NOT EXISTS corregido.embalses (
  "id" SERIAL PRIMARY KEY,
  "nombre" VARCHAR(4) NOT NULL,
  "id_fuente" INT,
  "id_region" INT,
  FOREIGN KEY (id_fuente) REFERENCES corregido.fuentes_hidricas ("id"),
  FOREIGN KEY (id_region) REFERENCES corregido.regiones ("id")
);
CREATE TABLE IF NOT EXISTS corregido.aportes_hidricos (
  "id" SERIAL PRIMARY KEY,
  "fecha" DATE,
  "id_embalse" INT,
  "aporte_hidrico" FLOAT,
  FOREIGN KEY (id_embalse) REFERENCES corregido.embalses ("id")
```

Creación de índices

```
CREATE INDEX IF NOT EXISTS idx_regiones_nombre ON corregido.regiones(nombre);
CREATE INDEX IF NOT EXISTS idx_regiones_id ON corregido.regiones(id);
CREATE INDEX IF NOT EXISTS idx_embalses_nombre ON corregido.embalses(nombre);
CREATE INDEX IF NOT EXISTS idx_embalses_id ON corregido.fuentes_hidricas(nombre);
CREATE INDEX IF NOT EXISTS idx_fuentes_nombre ON corregido.fuentes_hidricas(id);
CREATE INDEX IF NOT EXISTS idx_fuentes_id ON corregido.fuentes_hidricas(id);
CREATE INDEX IF NOT EXISTS idx_aportes_id ON corregido.aportes_hidricos(id);
CREATE INDEX IF NOT EXISTS idx_aportes_fecha ON corregido.aportes_hidricos(fecha);
```

Etapa 3: Diagnóstico de completitud de datos - 30%

Antes de índices

```
EXPLAIN ANALYZE
WITH dias_por_anio AS (
    SELECT 2023 AS anio, 365 AS total_dias UNION ALL SELECT 2024 AS anio, 366 AS total_dias
conteo_aportes AS (
    SELECT
         e.id AS id_embalse,
          e.id_region,
         EXTRACT(YEAR FROM ah.fecha) AS anio,
         COUNT(ah.id) AS dias_con_aporte
     FROM corregido.aportes_hidricos ah
     JOIN corregido.embalses e ON ah.id_embalse = e.id
     GROUP BY e.id, e.id_region, anio
SELECT
     r.nombre AS region,
     e.nombre AS embalse,
     c.dias_con_aporte,
    d.total_dias,
     ROUND((c.dias_con_aporte::NUMERIC / d.total_dias) * 100, 2) AS porcentaje_completitud
FROM conteo_aportes c
JOIN dias_por_anio d ON c.anio = d.anio
JOIN corregido.embalses e ON c.id_embalse = e.id
JOIN corregido regiones r ON e id_region = r id
ORDER BY r.nombre, e.nombre, c.anio;
OUERY PLAN
Sort (cost=3459.39..3460.87 rows=590 width=154) (actual time=29.630..29.638 rows=88 loops=1)
 Sort Key: r.nombre, e.nombre, (EXTRACT(year FROM ah.fecha))
 Sort Method: quicksort Memory: 30kB
 -> Hash Join (cost=1793.63..3432.24 rows=590 width=154) (actual time=29.305..29.537 rows=88 loops=1)
    Hash Cond: (e.id_region = r.id)
    -> Hash Join (cost=1763.38..3393.06 rows=590 width=68) (actual time=29.264..29.463 rows=88 loops=1)
      Hash Cond: (e_1.id = e.id)
      -> Hash Join (cost=1722.78..3350.91 rows=590 width=48) (actual time=29.173..29.356 rows=88 loops=1)
```

Después de índices

```
WITH dias_por_anio AS (
    SELECT 2023 AS anio, 365 AS total_dias UNION ALL
    SELECT 2024 AS anio, 366 AS total_dias
conteo_aportes AS (
         e.id AS id_embalse,
         e.id_region,
         EXTRACT(YEAR FROM ah.fecha) AS anio,
         COUNT(ah.id) AS dias_con_aporte
    FROM corregido.aportes_hidricos ah
    JOIN corregido.embalses e ON ah.id_embalse = e.id
    GROUP BY e.id, e.id_region, anio
SELECT
    r.nombre AS region,
e.nombre AS embalse,
    c.dias_con_aporte,
    d.total_dias,
    ROUND((c.dias_con_aporte::NUMERIC / d.total_dias) * 100, 2) AS porcentaje_completitud
FROM conteo_aportes c
JOIN dias_por_anio d ON c.anio = d.anio
JOIN corregido.embalses e ON c.id_embalse = e.id
JOIN corregido.regiones r ON e.id_region = r.id
ORDER BY r.nombre, e.nombre, c.anio;
QUERY PLAN
Incremental Sort (cost=1740.28..2463.63 rows=71 width=154) (actual time=27.537..27.674 rows=88 loops=1)
 Sort Key: r.nombre, e.nombre, (EXTRACT(year FROM ah.fecha))
 Presorted Key: r.nombre
 Full-sort Groups: 3 Sort Method: quicksort Average Memory: 27kB Peak Memory: 27kB
 -> Nested Loop (cost=1595.81..2461.36 rows=71 width=154) (actual time=27.009..27.516 rows=88 loops=1)
   Join Filter: (r.id = e.id_region)
   Rows Removed by Join Filter: 440
   -> Index Scan using idx_regiones_nombre on regiones r (cost=0.13..12.22 rows=6 width=62) (actual time=0.058..0.06...
```

SALIDA DE CONSULTA

Antioquia	BOCA 2023	365	365	100.00
Antioquia	BOCA 2024	366	366	100.00
Antioquia	CLLR 2023	365	365	100.00
Antioquia	CLLR 2024	366	366	100.00

Antioquia	DESV	2023	1978	365	541.92
Antioquia	DESV	2024	1909	366	521.58
Antioquia	ESCM	2023	122	365	33.42
Antioquia	ESCM	2024	366	366	100.00
Antioquia	ITUA	2023	365	365	100.00
Antioquia	ITUA	2024	366	366	100.00
Antioquia	MIRF	2023	365	365	100.00
Antioquia	MIRF	2024	366	366	100.00
Antioquia	PENO	2023	365	365	100.00
Antioquia	PENO	2024	366	366	100.00
Antioquia	PLAY	2023	365	365	100.00
Antioquia	PLAY	2024	366	366	100.00
Antioquia	PP-2	2023	365	365	100.00
Antioquia	PP-2	2024	366	366	100.00
Antioquia	PP-3	2023	365	365	100.00
Antioquia	PP-3	2024	366	366	100.00
Antioquia	PUNC	2023	365	365	100.00
Antioquia	PUNC	2024	366	366	100.00
Antioquia	QUBR	2023	365	365	100.00
Antioquia	QUBR	2024	366	366	100.00
Antioquia	RGR2	2023	365	365	100.00
Antioquia	RGR2	2024	366	366	100.00
Antioquia	SLOR	2023	365	365	100.00
Antioquia	SLOR	2024	366	366	100.00
Antioquia	SMIG	2023	364	365	99.73
Antioquia	SMIG	2024	366	366	100.00

Antioquia	TRON	2023	365	365	100.00
Antioquia	TRON	2024	366	366	100.00
Caldas	CAME	2023	244	365	66.85
Caldas	CAME	2023	244	365	66.85
Caldas	CAME	2024	732	366	200.00
Caldas	CAME	2024	732	366	200.00
Caldas	DESV	2023	1978	365	541.92
Caldas	DESV	2023	1978	365	541.92
Caldas	DESV	2024	1909	366	521.58
Caldas	DESV	2024	1909	366	521.58
Caldas	ESME	2023	487	365	133.42
Caldas	ESME	2024	732	366	200.00
Caldas	ESTR	2023	122	365	33.42
Caldas	ESTR	2024	365	366	99.73
Caldas	PTEH	2023	365	365	100.00
Caldas	PTEH	2024	366	366	100.00
Caldas	SANF	2023	122	365	33.42
Caldas	SANF	2024	366	366	100.00
Caribe URR1	2023	365	365	100.00)
Caribe URR1	2024	366	366	100.00)
CentroALIC	2023	355	365	97.26	
CentroALIC	2024	322	366	87.98	
CentroAMOY	2023	365	365	100.00)
CentroAMOY	2024	366	366	100.00)
CentroBETA	2023	365	365	100.00)
CentroBETA	2024	366	366	100.00)

Centro	CUCU	2023	365	365	100.00)
Centro	CUCU	2024	366	366	100.00)
Centro	DESV	2023	1978	365	541.92	2
Centro	DESV	2024	1909	366	521.58	3
Centro	DEMBA	2023	968	365	265.21	I
Centro	DEMBA	2024	719	366	196.45	5
Centro	MIUQc	2023	365	365	100.00)
Centro	MIUQc	2024	366	366	100.00)
Centro	SOGA	2023	365	365	100.00)
Centro	oSOGA	2024	366	366	100.00)
Orient	e	DESV	2023	1978	365	541.92
Orient	e	DESV	2023	1978	365	541.92
Orient	e	DESV	2024	1909	366	521.58
Orient	e	DESV	2024	1909	366	521.58
Orient	e	EMBA	2023	968	365	265.21
Orient	e	EMBA	2023	968	365	265.21
Orient	:e	EMBA	2024	719	366	196.45
Orient	e	EMBA	2024	719	366	196.45
Orient	:e	ESME	2023	487	365	133.42
Orient	e	ESME	2024	732	366	200.00
Orient	e	GUAV	2023	122	365	33.42
Orient	e	GUAV	2024	366	366	100.00
Valle	ALTO	2023	365	365	100.00)
Valle	ALTO	2024	366	366	100.00)
Valle	BAJO	2023	365	365	100.00)
Valle	BAJO	2024	366	366	100.00)

Valle	CAL1	2023	365	365	100.00
Valle	CAL1	2024	366	366	100.00
Valle	FLR2	2023	364	365	99.73
Valle	FLR2	2024	365	366	99.73
Valle	SALV	2023	365	365	100.00
Valle	SALV	2024	366	366	100.00

Etapa 4: Diagnóstico de niveles mínimos de aporte hídrico-30%

Antes de índices

```
EXPLAIN ANALYZE
WITH aportes_2024 AS (
    SELECT
         ah.id_embalse,
         ah.aporte hidrico
    FROM corregido.aportes_hidricos ah
    WHERE EXTRACT(YEAR FROM ah.fecha) = 2024
valores_extremos AS (
    SELECT
         id_embalse,
         MIN(aporte_hidrico) AS valor_minimo,
         MAX(aporte_hidrico) AS valor_maximo
    FROM aportes_2024
    GROUP BY id_embalse
SELECT
    e.nombre AS embalse,
    v.valor_maximo,
    v.valor_minimo,
    CASE
         WHEN v.valor_maximo = 0 THEN NULL -- Para evitar división por cero
         ELSE ((v.valor_maximo - v.valor_minimo) / v.valor_maximo) * 100
    END AS porcentaje_reduccion
FROM valores_extremos v
JOIN corregido.embalses e ON v.id_embalse = e.id
ORDER BY porcentaje_reduccion DESC;
QUERY PLAN
Sort (cost=1195.35..1195.46 rows=44 width=44) (actual time=13.162..13.166 rows=44 loops=1)
 Sort Key: (CASE WHEN (v.valor_maximo = '0'::double precision) THEN NULL::double precision ELSE (((v.valor_maximo - v....
 Sort Method: quicksort Memory: 27kB
 -> Hash Join (cost=1166.53..1194.15 rows=44 width=44) (actual time=13.123..13.138 rows=44 loops=1)
   Hash Cond: (e.id = v.id_embalse)
```

Después de índices

```
EXPLAIN ANALYZE
WITH aportes_2024 AS (
          ah.id_embalse,
          ah.aporte_hidrico
     FROM corregido.aportes_hidricos ah
     WHERE EXTRACT(YEAR FROM ah.fecha) = 2024
valores_extremos AS (
          id_embalse,
          MIN(aporte_hidrico) AS valor_minimo,
          MAX(aporte_hidrico) AS valor_maximo
     FROM aportes_2024
QUERY PLAN
Sort (cost=1169.74..1169.85 rows=44 width=44) (actual time=11.255..11.259 rows=44 loops=1)
 Sort Key: (CASE WHEN (v.valor_maximo = '0'::double precision) THEN NULL::double precision ELSE (((v.valor_maximo - v....
 Sort Method: quicksort Memory: 27kB
 -> Hash Join (cost=1166.53..1168.54 rows=44 width=44) (actual time=11.210..11.222 rows=44 loops=1)
    Hash Cond: (e.id = v.id_embalse)
    -> Seq Scan on embalses e (cost=0.00..1.44 rows=44 width=24) (actual time=0.004..0.007 rows=44 loops=1)
    -> Hash (cost=1165.98..1165.98 rows=44 width=20) (actual time=11.193..11.194 rows=44 loops=1)
```

SALIDA DE CONSULTA

EMBA 22	580100	1100	99.995	12845	38155	2
EMBA 22	580100	1100	99.995	12845	38155	2
EMBA 22	580100	1100	99.995	12845	38155	2
DESV 81	53600	500	99.993	86773	94034	6
DESV 81	53600	500	99.993	86773	94034	6
DESV 81	53600	500	99.993	86773	94034	6
DESV 81	53600	500	99.993	86773	94034	6
DESV 81	53600	500	99.993	86773	94034	6
DESV 81	53600	500	99.993	86773	94034	6
ALIC 652	239800	26900	99.958	76750	08200	6
ESME 21	7662600	397100)	99.81	756167	7573116
ESME 21	7662600	397100)	99.81	756167	7573116

CAL1	1650300	4900	99.703	308428770527
MIRF	5211300	19000	99.635	540767179015
SANF	12609000	72900	99.421	84154175588
воса	10983600	130200	0	98.81459630722168
PP-3	4772900	69400	98.545	595738439941
GUAV	88338600	158420	00	98.20667296063102
ESTR	1866100	42700	97.711	80536948717
SOGA	63621400	188690	00	97.03417403578042
BETA	7069700	218400	0	96.91076000396056
PLAY	26584800	909400	0	96.57924829225722
PP-2	15300100	530300	0	96.53400958163672
CLLR	25508400	108590	00	95.74297094290507
URR1	14302900	639700	0	95.52748044102944
ITUA	97578500	447540	00	95.4135388430853
RGR2	42937300	219990	00	94.87648268521774
QUBR	328700	16900	94.858	353361728019
CUCU	3303100	172700	0	94.77157821440466
SLOR	40150400	213780	00	94.67552004463218
TRON	25956600	144120	00	94.44765493169368
QUIM	43267100	244010	00	94.36038005782684
CAME	6137800	355200	0	94.21291016325067
CAME	6137800	355200	0	94.21291016325067
PTEH	14533700	986800	0	93.21026304382228
SALV	17111100	129540	00	92.42947560355559
ALTO	14692700	113880	00	92.24921219381054
PUNC	20078100	171930	00	91.43693875416498

BAJO	1134800	108500	90.4388438491364
FLR2	439000	42400 90.341	168564920273
PENO	16096800	1928700	88.018115401819
AMOY	6045200	735800	87.82835969033283
ESCM	28744800	3922300	86.35474938075757
SMIG	3909800	673900	82.76382423653384