Recommender System

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)

RMSE =
$$\frac{1}{|R|} \sqrt{\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$$
0.9514 Predicted True rating of

rating

user **x** on item **i**

Netflix's system RMSE: 0.9514

Competition

- 2,700+ teams
- \$1 million prize for 10% improvement over Netflix
- Winner improve RMSE to 0.8563

Collaborative Filtering

• Consider user x

Find set N of other users whose ratings are "similar" to x's ratings

 Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

• Let r_x be the vector of user x's ratings

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Jaccard similarity measure
 - Problem: Ignores the value of the rating

$$r_x$$
, r_y as sets:
 r_x = {1, 4, 5}
 r_y = {1, 3, 4}

- Cosine similarity measure
 - $sim(\boldsymbol{x}, \boldsymbol{y}) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$
 - Problem: Treats missing ratings as "negative"

$$r_x$$
, r_y as points:
 $r_x = \{1, 0, 0, 1, 3\}$
 $r_y = \{1, 0, 2, 2, 0\}$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Is sim(A,B)>sim(A,C) true?

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	I			TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C:

Finding "Similar" Users

• Let r_x be the vector of user x's ratings

$$r_x$$
, r_y as points:
 r_x = {1, 0, 0, 1, 3}
 r_y = {1, 0, 2, 2, 0}

- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

sim(x,y) =
$$\frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

$$\overline{r_x}, \overline{r_y}$$
... avg. rating of x, y

Rating Predictions

- From similarity metric to recommendations:
- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

• $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$ Shorthand:
• $s_{xy} = sim(x, y)$

Item-Item Collaborative Filtering

- Another view: Item-item
 - For item *i*, find other similar items
 - $oldsymbol{\cdot}$ Estimate rating for item $oldsymbol{i}$ based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

 s_{ij} ··· similarity of items i and j r_{xj} ··· rating of user x on item j N(i; x) ··· set items rated by x similar to i

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
3	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
	'												

- rating between 1 to 5

- unknown rating

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
40	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

⁻ estimate rating of movie 1 by user 5

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		0.41
E	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		0.41
E	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

 $s_{1,3}$ =0.41, $s_{1,6}$ =0.59

ısers

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

 μ = overall mean movie rating

 $\boldsymbol{b}_{\boldsymbol{x}} = \text{ rating deviation of user } \boldsymbol{x}$

= $(avg. rating of user x) - \mu$

 b_i = rating deviation of movie i

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

• - Sparsity:

- If there is not enough users in the system, it is hard to find a match
- If the user/ratings matrix is sparse, it is hard to find users that have rated the same items
- Cannot recommend an item that has not been previously rated

• - Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Latent Factor Models (SVD)

Latent Factor Models

• "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

SVD: $A = U \sum V^T$

Notice R has missing entries

Latent Factor Models

				us	ers			
2	.3	.5	-2	5	.8	4	.3	
1	_	4.4		4	4.4			

_		_									
					5						
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
_					-						

 \mathbf{p}^T

• SVD isn't defined when entries are missing! Use specialized methods to find P, Q:

•
$$\min_{P,Q} \sum_{(i,x)\in \mathbb{R}} (r_{xi} - q_i \cdot p_x)^2$$

$$\hat{r}_{xi} = q_i \cdot p_x$$

Add regularizer to avoid overfitting:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

Stochastic Gradient decent to solve

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}$$
 $q_i = \text{row } i \text{ of } Q_i =$

Items	1		3			5			5		4	
			5	4	?		4			2	1	3
ems	2	4		1	2		3		4	3	5	
Iţ		2	4		5			4			2	
			4	3	4	2					2	5
	1		3		3			2			4	

.5 -2 2.1

_						use	ers					
Ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
facto	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

Ratings as Products of Factors

Compared to collaboration filtering, latent factor models are space efficient and extensible, achieving better performance

How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}$$
 q_i = row i of q_i = row q_i = row

	1		3			5			5		4	
			L 5	4	2.4		4			2	1	3
	2	4		1	2		3		4	3	5	
-		2	4		5			4			2	
			4	3	4	2					2	5
	1		3		3			2			4	

	.1	4	.2		
ILEMS	5	.6	.5		
	2	.3	.5		
	1.1	2.1	.3		
	7	2.1	-2		
	-1	.7	.3		

						use	13					
Ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
. fact	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

HICARC

GNN for Recommender System

Recommender System as a Graph

- Recommender system can be naturally modeled as a bipartite graph
 - A graph with two node types: users and items.
 - Edges connect users and items
 - Indicates user-item interaction (e.g., click, purchase, review etc.)
 - Often associated with timestamp (timing of the interaction).

Recommendation Task

- Given
 - Past user-item interactions
- Task
 - Predict new items each user will interact in the future.
 - Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.
 - For $u \in U$, $v \in V$, we need to get a score f(u, v).

Modern Recommender System

• **Problem:** Cannot evaluate f(u, v) for every user u – item v pair. Example $f(u, v) : f(u, v) = z_u \cdot z_v$

Solution: 2-stage process:

Top-K Recommendation

- For each user, we recommend *K* items.
 - K is typically in the order of 10—100.
- The goal is to include as many positive items(user interacts in future) as possible in the top-K recommended items.
- Evaluation metric: Recall@K for user u is $|P_u \cap R_u|/|P_u|$.

Training Objective

- Embedding-based models have:
 - ullet An encoder to generate user embeddings u
 - An encoder to generate item embeddings v
 - Score function $f(\cdot, \cdot)$
- Objective: optimize the recall@K
- Two surrogate loss functions:
 - Binary loss
 - Bayesian Personalized Ranking (BPR) loss

Binary Loss in Recommender System

- Define positive/negative edges
 - A set of positive edges E
 - A set of negative edges $E_{neg} = \{ (u, v) | (u, v) \notin E, u \in U, v \in V \}$
- Binary loss: Binary classification of positive/negative edges using $\sigma(f_{\theta}(\boldsymbol{u},\boldsymbol{v}))$:

$$-rac{1}{|oldsymbol{E}|}\sum_{(u,v)\in E}\log(\sigma(f_{ heta}(oldsymbol{u},oldsymbol{v})))-rac{1}{|E_{ ext{neg}}|}\sum_{(u,v)\in E_{ ext{neg}}}\log(1-\sigma(f_{ heta}(oldsymbol{u},oldsymbol{v})))$$

 $\sigma(\cdot)$ is sigmoid function.

Issue with Binary Loss

- Let's consider the simplest case:
 - Two users, two items
 - Metric: Recall@1.
 - A model assigns the score for every user-item pair.
- Training Recall@1 is 1.0, because v_0 (resp. v_1) is correctly recommended to u_0 .
- However, the binary loss would still penalize the model prediction because the negative (u_1, v_0) edge gets the higher score than the positive edge (u_0, v_0) .

- In the binary loss, the scores of all positive edges are pushed higher than those of all negative edges.
- The recall metric is inherently personalized

Loss Function: BPR Loss

- Bayesian Personalized Ranking (BPR) loss is a personalized surrogate loss that aligns better with the recall@K metric.
- For each user $u^* \in U$, define the **rooted** positive/negative edges as
 - Positive edges rooted at u^*

$$E(u^*) \equiv \{ (u^*, v) \mid (u^*, v) \in E \}$$

• Negative edges rooted at u^*

$$E_{neg}(u *) \equiv \{(u *, v) | (u'', v) \in E_{neg}\}$$

Loss Function: BPR Loss (2)

- Training objective: For each user u^* , we want the scores of rooted positive edges $\boldsymbol{E}(u^*)$ to be higher than those of rooted negative edges $\boldsymbol{E}_{neg}(u^*)$.
- BPR Loss for user u*:

Positive is relatively higher than negative

$$\operatorname{Loss}(u^*) = \frac{1}{|\boldsymbol{E}(u^*)| \cdot |\boldsymbol{E}_{\operatorname{neg}}(u^*)|} \sum_{(u^*, v_{\operatorname{pos}}) \in \boldsymbol{E}(u^*) (u^*, v_{\operatorname{neg}}) \in \boldsymbol{E}_{\operatorname{neg}}(u^*)} - \log \left(\sigma \left(f_{\theta}(\boldsymbol{u}^*, \boldsymbol{v}_{\operatorname{pos}}) - f_{\theta}(\boldsymbol{u}^*, \boldsymbol{v}_{\operatorname{neg}}) \right) \right)$$

Final BPR Loss:

$$\frac{1}{|\boldsymbol{U}|} \sum_{u^* \in \boldsymbol{U}} \operatorname{Loss}(u^*)$$

Neural Graph Collaborative Filtering

Conventional Collaborative Filtering

- Conventional collaborative filtering model is based on shallow encoders:
 - No user/item features.
 - Use shallow encoders for users and items
 - Only first order structures are captured
- GNNs are natural approach to improve!

NGCF: Overview

- Neural Graph Collaborative Filtering (NGCF) explicitly
 incorporates high-order graph structure when generating user/item
 embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.

Initial Node Embeddings

- Set the shallow learnable embeddings as the initial node features:
 - For every user $u \in U$, set $h_{u}^{(0)}$ as the user's shallow embedding.
 - For every item $\boldsymbol{v} \in \boldsymbol{V}$, set $\boldsymbol{h}^{(0)}$ as the item's shallow embedding.
- Two kinds of learnable params are jointly learned:
 - Shallow user/item embeddings
 - GNN's parameters

user/item embeddings

Neighbor Aggregation

 Iteratively update node embeddings using neighboring embeddings.

$$\boldsymbol{h}_{v}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{v}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$$
$$\boldsymbol{h}_{u}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{u}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$$

High-order graph structure is captured through iterative neighbor aggregation.

Different architecture choices are possible for AGGR and COMBINE.

- AGGR(·) can be MEAN (·)
- COMBINE(x, y) can be ReLU (Linear(Concat(x, y)))

Final Embeddings and Score Function

- After K rounds of neighbor aggregation, we get the final user/item embeddings $h_{\mu}^{(K)}$, $h_{v}^{(K)}$
- For all $u \in U$, $v \in V$, we set $\mu \leftarrow h_u^{(0)} || \cdots || h_u^{(K)}$
- Score function is the inner product score $(u, v) = \boldsymbol{u}^T \boldsymbol{v}$

LightGCN

LightGCN

- Can we simplify the GNN used in NGCF (e.g., remove its learnable parameters)?
 - Answer: Yes!
 - Bonus: Simplification improves the recommendation performance!
 - Simplification of GCN by removing non-linearity

Simplifying GCN

Removing ReLU significantly simplifies GCN!

$$\boldsymbol{E}^{(K)} = \widetilde{\boldsymbol{A}}^{K} \boldsymbol{E} \boldsymbol{W}$$

$$\boldsymbol{W} = \boldsymbol{W}^{(0)} \cdots \boldsymbol{W}^{(K-1)}$$

- Algorithm: Apply $E \leftarrow \tilde{A}E$ for K times.
 - Each matrix multiplication diffuses the current embeddings to their one-hop neighbors.
 - Note: \widetilde{A}^K is dense and never gets materialized. Instead, the above iterative matrix-vector product is used to compute
 - $\widetilde{A}^K E$

LightGCN

Average the embedding matrices at different scales.

A Typical Modern Recommender System

- Data Processing
 - Streaming
 - Offline batch: MapReduce, Spark
 - Embedding of user, item, context
 - Machine learning models applied
- Model
 - Recall: e.g. LSH
 - Sort

Summary

- SVD
 - Dimension reduction
 - Find the latent factor
- Recommender system
 - Latent factor recommendation
 - GNN based approach