第五次数电实验

郝裕玮 18329015 2019 级教务四班

一、实验目的

- 1. 熟悉数据选择器的功能与使用方法。
- 2. 掌握用中规模集成电路(MSI) 设计的组合逻辑电路的方法

二、实验原理

1.74LS151(八选一数据选择器)

数据选择器的功能是从一组输入数据中选出某一个信号输出,因此也被称为多路开关。如下图 3-10 所示为八选一数据选择器 74LS151 的逻辑符号,其中 Z 和 $^{\overline{L}}$ 为 74LS151 的输出端, $^{\overline{L}}$ 是 Z 的反相输出。 $^{\overline{L}}$ 为 74LS151 的使能端,低电平有效,可用于控制电路工作状和扩展功能。 $^{\overline{L}}$ 10-17、C、B、A 为 74LS151 的输入引脚,与输出引脚 Z 满足真值表所列八选一数据选择逻辑关系。

图 3-10 八选一数据选择器 74LS151 逻辑符号

如下表 3-7 所示为八选一数据选择器 74LS151 的真值表,此时^正接低电平,10-17 接输入(数据)信号。

输入			输出
С	В	A	Z
0	0	0	10
0	0	1	I1
0	1	0	I 2
0	1	1	I3
1	0	0	I 4
1	0	1	I 5
1	1	0	I 6
1	1	1	17

表 3-7 74LS151 的真值表

从表 3-7 可以看出,当 \overline{E} 接低电平时,即芯片的使能端接有效选通信号时,74LS151 根据 $C \times B \times A$ 输入(地址)信号,从 10-17 送来的 8 个输入(数据)信号中选出一个送至输出端 Z。

2. 利用 74LS151 实现组合逻辑电路的设计方法

根据 74LS151 的真值表, 当 \overline{E} 接低电平时,74LS151 输出端 Z 的输出表达式如下。

$$Z = \overline{C} \, \overline{B} \, \overline{A} \, I0 + \overline{C} \, \overline{B} \, A \, I1 + \overline{C} \, B \, \overline{A} \, I2 + \overline{C} \, B \, A \, I3 + C \, \overline{B} \, \overline{A} \, I4 + C \, \overline{B} \, A \, I5 + C \, B \, \overline{A} \, I6 + C \, B \, A \, I7$$

从上式可知,如果将 $C \times B \times A$ 作为三个输入变量,同时令 10-17 为第四个输入变量的适当状态(包括原变量、反变量、0 和 1),就可以在数据选择器的输出端 Z 产生任何形式的四变量组合逻辑电路。

以使用八选一数据选择器 74LS151 实现全减器为例,介绍利用 74LS151 实现组合逻辑 电路的设计方法。

(1) 列出如下表 3-8 所示全减器真值表。A 和 B 为被减数与减数, Bn 为低位向本位的借位, D 为本位差, Bn-1 为向高位的借位。

表 3-8 全加器的真值表

输入			输	出
A	В	B _n	D	B _{n-1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(2) 由上述真值表可分别得到全减器输出 D 和 Bn-1 关于输入 A、 B、 Bn 的最小项之和表达式,并进一步将其化简为四变量与或形式的输出表达式。

$$D = \overline{A} \, \overline{B} \, \overline{B_n} \cdot \mathbf{0} + \overline{A} \, \overline{B} \, B_n \cdot \mathbf{1} + \overline{A} \, B \, \overline{B_n} \cdot \mathbf{1} + \overline{A} \, B B_n \cdot \mathbf{0} + A \, \overline{B} \, \overline{B_n} \cdot \mathbf{1} + A \, \overline{B} \, B_n \cdot \mathbf{0}$$

$$+ A \, B \, \overline{B_n} \cdot \mathbf{0} + A \, B \, B_n \cdot \mathbf{1}$$

$$\begin{split} \mathbf{B}_{\mathbf{n-1}} &= \overline{\mathbf{A}} \; \overline{\mathbf{B}} \; \overline{\mathbf{B}_{\mathbf{n}}} \cdot \mathbf{0} + \overline{\mathbf{A}} \; \overline{\mathbf{B}} \; \mathbf{B}_{\mathbf{n}} \cdot \mathbf{1} + \overline{\mathbf{A}} \; \mathbf{B} \; \overline{\mathbf{B}_{\mathbf{n}}} \cdot \mathbf{1} + \overline{\mathbf{A}} \; \mathbf{B} \mathbf{B}_{\mathbf{n}} \cdot \mathbf{1} \; + \mathbf{A} \; \overline{\mathbf{B}} \; \overline{\mathbf{B}_{\mathbf{n}}} \cdot \mathbf{0} + \mathbf{A} \; \overline{\mathbf{B}} \; \mathbf{B}_{\mathbf{n}} \cdot \mathbf{0} \\ &\quad + \mathbf{A} \; \mathbf{B} \; \overline{\mathbf{B}_{\mathbf{n}}} \cdot \mathbf{0} + \mathbf{A} \; \mathbf{B} \; \mathbf{B}_{\mathbf{n}} \cdot \mathbf{1} \end{split}$$

(3) 令 74LS151 的输入 $C \times B \times A$ 作为全减器的输入 $A \times B \times Bn$,通过对比 74LS151 的 Z 输出表达式与全减器的 D 输出表达式,可见只需将 IO-I7 中 $IO \times I3 \times I5 \times I6$ 接低电平, $I1 \times I2 \times I4 \times I7$ 接高电平,即可在 74LS151 的 Z 端实现全减器的输出 D。同理可再使用一片 74LS151 实现全减器的输出 D0 与 D1 所示。

三、实验内容与电路设计

对于实验 1: 使用 74LS151 实现 AU(Arithmetic Unit, 算术单元)设计。设计一个带控制端的半加半减器,输入为 S、A、B,其中 S 为功能选择口。

- S=0, 输出加法计算结果
- S=1, 输出减法计算机结果

表 3-9 带控制端的半加半减器功能表

S	输入1	输入2	输出 Y	进/借位 C _n
0	A	В	A+B	进位
1	A	В	A-B	借位

所以我们可由题目要求首先列出 S、A、B、Y、Cn 的真值表如下表 1 所示:

S	А	В	Y	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

表 1

由真值表易得:

 $Y = m1 \cdot 1 + m2 \cdot 1 + m5 \cdot 1 + m6 \cdot 1$

 $Cn = m3 \cdot 1 + m5 \cdot 1$

所以将 74LS197 的输出 Q0-Q2 分别对应连接到两片 74151 的输入 A、B、C 上。并将第一片 74151 的输入 X1、X2、X5、X6 接高电平,其余输入均接低电平。同时将第二片 74151 的输入 X3、X5 接高电平,其余输入均接低电平。逻辑分析仪的 A0-A5 分别对应 CP(时钟)、S、A、B、Y、Cn.

所以动态测试的电路图如下图 1 所示:

图 1

其中对两片 74151 芯片的输出 Y 分别并联上 10nF 的电容以排除电路中的竞争冒险。

对于实验 1 的静态测试,将 74LS197 去除,换成三个激励源 A、B、C 即可。其中激励源 A、B、C 分别对应连接两片 74151 中输入的 C、B、A。并将两片 74151 的输出接到两个电压表上。

所以实验 1 的静态测试电路图如下图 2 所示:

对于实验 2: 使用 74LS151 实现 $LU(Logic\ Unit,\ 逻辑单元)$ 设计。设计一个函数发生器电路它的功能如下表 3-10 所示。输入为 S0、S1、A、B, 其中 S0、S1 为功能选择口。当 S0、S1 取 S1 不同组合时,S1 从 S2 从 S3 以 S4 从 S5 以 S5 以

输入		输出
S_1	S_0	Y
0	0	A · B
0	1	A+B
1	0	А⊕В
1	1	Ā

所以我们可由题目要求首先列出 S1、S0、A、B、Y、Cn 的直值表如下表 2 所示:

///&3XII1-3E	新以我们可由越日安水自元列山 31、30、A、B、T、GT 的具直表如下 輸入					
S1	S0	Α	В	输出 Y		
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	1		
0	1	0	0	0		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	1		
1	0	1	1	0		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	0		
1	1	1	1	0		

表 2

由真值表易得:

 $Y = m3 \cdot 1 + m5 \cdot 1 + m6 \cdot 1 + m7 \cdot 1 + m9 \cdot 1 + m10 \cdot 1 + m12 \cdot 1 + m13 \cdot 1$ 所以将 74LS197 的输出 Q0-Q3 分别对应连接到两片 74151 的输入 A、B、C、E 上。并将第一片 74151 的输入 X3、X5、X6、X7 接高电平,其余输入均接低电平。同时将第二片 74151 的输入 X1、X2、X4、X5 接高电平,其余输入均接低电平。同时,在第二片 74151 的输入 E 的电路上加上反相器。逻辑分析仪的 A0-A5 分别对应 CP(时钟)、S1、S0、A、B、Y.

所以动态测试的电路图如下图 3 所示:

图 3

其中对两片 74151 芯片的输出 Y 分别并联上 10nF 的电容以排除电路中的竞争冒险。

对于实验 2 的静态测试,将 74LS197 去除,换成四个激励源 S1、S0、A、B 即可。其中激励源 S1、S0、A、B 分别对应连接两片 74151 中输入的 E、C、B、A。并将或门的输出接到电压表上。

所以实验 2 的静态测试电路图如下图 2 所示:

四、实验结果

对于实验 1 的静态测试,我们随机选取 110,011,101 作为测试的三组输入,结果如下 图所示

经对比验证,符合表1(如下图所示)真值表的逻辑关系。

S	Α	В	Y	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

表 1씓

对于实验 1 的动态测试,波形图如下所示:

经对比验证, 波形图的逻辑关系符合表 1 (如下图所示) 真值表的逻辑关系, 所以电路构建正确。

S	Α	В	Υ	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

 \leftarrow

对于实验 2 的静态测试,我们随机选取 0100, 1001, 1111 作为测试的三组输入,结果如下图所示:

经对比验证,符合表2(如下图所示)真值表的逻辑关系。

	输	ὶλ⇔		输出↩	←
\$1↩	\$0←	A←	B←□	Υ←	←
0←	0←	0←	0←	0←	←
0←	0←	0←	1←	0←	÷
0←	0←	1←	0←	0←	←
0←	0←	1←	1←	1←	÷
0←	1←	0←	0←	0←	←
0←	1←	0←	1←	1←	÷
0←	1←	1←	0←	1←	÷
0←	1←	1←	1←	1←	←
1←	0←	0←	0←	0←	÷
1←	0←	0←	1←	1←	÷
1←	0←	1←	0←	1←	←
1←	0←	1←	1←	0←	←
1←	1←	0←	0←	1←	←
1←	1←	0←	1←	1←	÷
1←	1←	1←	0←	0←	÷
1←	1←	1←	1←	0←	←

表 2↩

对于实验 2 的动态测试,波形图如下所示:

经对比验证, 波形图的逻辑关系符合表 2 (如下图所示) 真值表的逻辑关系, 所以电路构建正确。

	· · · · · · · · · · · · · · · · · · ·	ì 入 ↩		输出↩	-
\$1←	\$0↩	A←	B←	Υ←	←
0←	0←	0←	0←	0←	←
0←	0←	0←	1←	0←	←
0←	0←	1←	0←	0←	←
0←	0←	1←	1←	1←	←.
0←	1←	0←	0←	0←	←.
0←	1←	0←	1←	1←	←
0←	1←	1←	0←	1←	←
0←	1←	1←	1←	1←	←
1←	0←	0←	0←	0←	←
1←	0←	0←	1←	1←	←.
1←	0←	1←	0←	1←	←
1←	0←	1←	1←	0←	←
1←	1←	0←	0←	1←	←
1←	1←	0←	1←	1←	←
1←	1←	1←	0←	0←	←
1←	1←	1←	1←	0←	←.

表 2↩

五、实验总结与心得

- 1. 对于处理电路中的竞争冒险更加熟练,懂得采取并联电容来去除"毛刺"。
- 2. 掌握了数据选择器的使用方法,并且能够总结出数据选择器和 3-8 译码器的优缺点对比:数据选择器连线简单,但最小项不能复用;3-8 译码器的最小项可以复用,但连线较为繁琐(如使用3-8 译码器实现7端数码管编码器)。
- 3. 设计组合逻辑电路的关键步骤是根据逻辑功能列出电路的真值表,之后根据真值表来使用多种方法进行化简,从而得出电路的最简表达式。最后使用不同的电子元件即可完成电路的设计。