

ОСНОВЫ ТЕОРИИ РАДИОСИСТЕМ И КОМПЛЕКСОВ РАДИОУПРАВЛЕНИЯ

Пр3. Структурные схемы следящих угломеров

1. Анализ линейных динамических непрерывных систем

1. Построение структурной схемы системы

2. Анализ устойчивости

2.1 Алгебраический критерий устойчивости (анализ коэффициентов характеристического уравнения)

характеристического уравнения)
$$A(s) = a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0 = 0 \qquad n \le 2, \quad a_i > 0, \quad i = 0, 1, 2. \qquad n = 3, \quad a_i > 0, \quad i = 0, 1, 2, 3 \qquad a_1 a_2 > a_0 a_3$$

2.2 Частотный критерий устойчивости (анализ годографа разомкнутой системы)

3. Анализ детерминированных процессов

$$v(t) = K_{\lambda v}(p)\lambda(t)$$

Метод преобразования Лапласа

$$U(s) = L\{u(t)\} = \int_{0}^{\infty} u(t) e^{-st} dt \qquad u(t) = L^{-1}\{U(s)\} = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} U(s) e^{st} ds$$

Ненулевые начальные условия

$$L\left\{\frac{d^{n}u(t)}{dt^{n}}\right\} = s^{n}U(s) - \sum_{k=0}^{n-1} \frac{d^{k}u(0)}{dt^{k}} s^{n-k-1}$$

Нулевые начальные условия

$$V(s) = K_{\lambda \nu}(s) \Lambda(s)$$

$$K_{\lambda v}(s) = K_{\lambda v}(p)\Big|_{p \to s}$$

Установившееся значение

$$v_{\text{yct}} = \lim_{t \to \infty} v(t) = \lim_{s \to 0} s K_{\lambda v}(s) \Lambda(s)$$

Понятие астатизма системы

$$x_{\text{уст}} = \begin{cases} 0 &, & \text{при } l < v \;, \\ const = v \,! \, C_{\nu} \alpha_{\nu} \;, & \text{при } l = v \;, \\ \infty &, & \text{при } l > v \;. \end{cases}$$

l - порядок входного воздействия

 ν - порядок астатизма системы $C_0 = K_{\lambda x}(0), \quad C_i = \frac{1}{i!} \cdot \frac{d K_{\lambda x}(s)}{ds} \Big|_{s=0}$

 $C_{\scriptscriptstyle
u}$ - коэффициент ошибки

$$a_{n} \cdot \frac{d^{n}v(t)}{dt^{n}} + a_{n-1} \cdot \frac{d^{n-1}v(t)}{dt^{n-1}} + \dots + a_{1} \cdot \frac{dv(t)}{dt} + a_{0} \cdot v(t) =$$

$$= b_{m} \cdot \frac{d^{m}\lambda(t)}{dt^{m}} + b_{m-1} \cdot \frac{d^{m-1}\lambda(t)}{dt^{m-1}} + \dots + b_{1} \cdot \frac{d^{m}\lambda(t)}{dt} + b_{0} \cdot \lambda(t)$$

$$\downarrow \downarrow$$

$$A(p)v(t) = B(p)\lambda(t)$$

$$v(t) = \frac{B(p)}{A(p)}\lambda(t) = K_{\lambda \nu}(p)\lambda(t)$$

$$K_{\lambda\nu}(p) = \frac{B(p)}{A(p)} = \frac{b_m p^m + b_{m-1} p^{m-1} + \dots + b_1 p + b_0}{a_n p^n + a_{n-1} p^{n-1} + \dots + a_1 p + a_0}$$

 $\lambda(t) = 1(t) \sum_{k=0}^{t} \alpha_k t^k$

4. Анализ случайных процессов

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{j\omega\tau} d\omega \qquad S(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j\omega\tau} d\tau$$

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j\omega\tau} d\tau$$

$$v(t) = K_{uv}(p)u(t)$$

$$S_{v}(\omega) = |K_{uv}(j\omega)|^{2} S_{u}(\omega)$$

$$K(j\omega) = K(p)$$
 $p \to j\omega$

$$R_{v}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| K_{uv} (j\omega) \right|^{2} S_{u}(\omega) e^{j\omega \tau} d\omega$$

$$\sigma_{v}^{2} = R_{v}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |K_{uv}(j\omega)|^{2} S_{u}(\omega) d\omega$$

$$\sigma_{v}^{2} = \frac{S_{u}(0)}{2\pi} \int_{-\infty}^{\infty} |K_{uv}(j\omega)|^{2} d\omega$$

$$\Delta F_{3} = \frac{1}{2|K(0)|^{2}} \frac{1}{2\pi} \int_{-\infty}^{\infty} |K(j\omega)|^{2} d\omega = \frac{1}{|K(0)|^{2}} \frac{1}{2\pi} \int_{0}^{\infty} |K(j\omega)|^{2} d\omega$$

$$\sigma^2 = 2S(0)|K(0)|^2 \Delta F_9 = N_0|K(0)|^2 \Delta F_9$$

$$J_{n} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{B(j\omega)}{A(j\omega)} \right|^{2} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{B(j\omega)}{A(j\omega)} \frac{B(-j\omega)}{A(-j\omega)} d\omega$$

$$A(j\omega) = a_n(j\omega)^n + a_{n-1}(j\omega)^{n-1} + \dots + a_1(j\omega) + a_0$$

$$B(j\omega) = b_{n-1}(j\omega)^{n-1} + b_{n-2}(j\omega)^{n-2} + \dots + b_1(j\omega) + b_0$$

$$J_1 = \frac{b_0^2}{2a_0 a_1}$$

$$J_2 = \frac{b_1^2 a_0 + b_0^2 a_2}{2a_0 a_0 a_2}$$

$$J_{1} = \frac{b_{0}^{2}}{2a_{0}a_{1}} \qquad J_{2} = \frac{b_{1}^{2}a_{0} + b_{0}^{2}a_{2}}{2a_{0}a_{1}a_{2}} \qquad J_{3} = \frac{b_{2}^{2}a_{0}a_{1} + \left(b_{1}^{2} - 2b_{0}b_{2}\right)a_{0}a_{3} + b_{0}^{2}a_{2}a_{3}}{2a_{0}a_{3}\left(a_{1}a_{2} - a_{0}a_{3}\right)}$$

2. Угломерное устройство с гироприводом

Функциональная схема

Задание: найти в установившемся режиме $\Delta arphi_{ycm}$, $u_{{\scriptscriptstyle bbx_ycm}}$

при
$$\varphi(t) = \omega_0 t$$
 ; $F(\Delta \varphi) = S_{\text{пел}} \Delta \varphi$, $K_{\text{пр}}(p) = k_{\text{гл}}$, $K_{\phi}(p) = \frac{k_{\phi}}{1 + pT_{\phi}}$

ТАБЛИЦА ПРЕОБРАЗОВАНИЙ ЛАПЛАСА И z-ПРЕОБРАЗОВАНИЙ $d = \mathrm{e}^{-a_T}$

x (t)	X (s)	X(z)
δ (t)	1	Не существует
1 (t)	<u>1</u> s	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$
$t^2/2$.	$\frac{1}{s^3}$	$\frac{T^{2}z(z+1)}{2(z-1)^{3}}$
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z-d}$
$1-e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1-d)z}{(z-1)(z-d)}$
$\frac{1}{a}\left(at-1+e^{-at}\right)$	$\frac{a}{s^2(s+a)}$	$\frac{zT}{(z-1)^2} - \frac{(1-d)z}{a(z-1)(z-d)}$
t e ^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tzd}{(z-d)^2}$

Угломер со скоростной коррекцией (следящая антенна с датчиком угловых скоростей)

Функциональная схема

ДУС – датчик угловых скоростей;

ДВ – двигатель привода антенны;

ВУ – вычислительное устройство;

АП – автопилот.

Угломер со скоростной коррекцией

<u>Структурная схема</u>

Входные воздействия: $\varphi(t) = \omega_0 t$

$$\theta(t) = \theta_0' t$$

Найти:

	ω_0	θ_0
$\Delta arphi_{ycm}$		
$u_{_{\it Bblx_ycm}}$		

Допущения:

$$K_{JB}(p) = \frac{K_{J}}{p}$$

$$K_{JVC}(p) = K_{JVC}p$$

$$F(\Delta \varphi) = S_{\text{пел}} \Delta \varphi , \quad K_{\phi}(p) = \frac{k_{\phi}}{1 + pT_{\phi}}$$

Угломер с позиционной коррекцией (позиционный гироскоп в индикаторном режиме)

Функциональная схема

ПГ – позиционный гироскоп;

ДУ – датчик углов;

ДВ – двигатель привода антенны;

ВУ – вычислительное устройство;

АП – автопилот.

Угломер с позиционной коррекцией (позиционный гироскоп в индикаторном режиме)

Структурная схема

Входные воздействия: $arphi(t) = \omega_0 t$ $\theta(t) = \theta_0' t$

Найти:

	ω_0	$ heta_0'$
$\Delta arphi_{ycm}$		
$u_{\text{вых}_\text{уст}}$		

Допущения: $K_{\mathrm{ДB}}(p)=rac{k_{\mathrm{Д}}}{p}$ $F(\Delta \varphi)=S_{\mathrm{пел}}\Delta \varphi$ $K_{\mathrm{П\Gamma}}(p)=k_{\Gamma}$ $K_{\mathrm{ДУ}}(p)=k_{\mathrm{ДУ}}$ $K_{\varphi}(p)=rac{k_{\varphi}}{1+pT_{1}}$

Спасибо за внимание!

