Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Even) Examination May-2022 BC3CO16 Physics -IV

Programme: B. Sc. (CS)

Branch/Specialisation: Computer

Science

P.T.O.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

).1 (M	(ICQs)	should be writt	en in full inst	ead of only a, b	o, c or d.		
Q.1	i.	The electric p	-	point at distance	ce r from an electric dipole	1	
		(a) 1/r		(c) $1/r^3$	(d) $1/r^4$		
	ii.	The total electric flux emanating in air from a unit positive charge is:			1		
		(a) ε_0	(b) $1/\epsilon_0$	(c) $1/4\pi\epsilon_0$	(d) $4\pi\epsilon_0$		
	iii.	The current which can be measured by an ammeter, are called:			1		
		(a) Free curre	ents	(b) Bound o	currents		
		(c) Both (a) a	nd (b)	(d) None of	these		
	iv.	The ratio of in	ntensities of n	nagnetic field a	at the center and at external	1	
	end of a current carrying solenoid is:						
		(a) 2:1	(b) 1:2	(c) 4:1	(d) 1:4		
	v.	Kirchhoff's law are applicable in:			1		
		(a) Only the I	OC circuits	(b) Only the	e AC circuits		
		(c) Both (a) a	nd (b)	(d) None of	Ethese		
	vi. For more Q value of a resonant LCR circuit					1	
		(a) Reactance of inductance should be low					
		(b) Ohmic res	sistance should	d be low			
		` ′	-	e should be lo	W		
		• •	e should be hi	gh			
	vii.	Accelerator is	s used:			1	
		` '	se the velocity				
		` '		izing particles			
		(c) To obtain electrons of energy 1000 MeV					
		(d) To increase the energy of charged particles					

	viii. The simplest mass spectrograph was given by:						
		(a) J.J. Thomsan (b) Newton (c) Einstein (d) Chadwick					
	ix.	Varying current can induce voltage because the magnetic field	1				
	produced by it is:						
		(a) Varying with time					
		(b) Constant					
		(c) Stronger than DC					
		(d) Of closed loop nature					
	х.	The following is not the electromagnetic wave:					
		(a) X-rays (b) Infrared rays					
		(c) Ultraviolet rays (d) Cathode rays					
Q.2	i.	Define intensity of electric field and electric potential. Write the	2				
		relationship between them.					
	ii.	Derive Poisson's and Laplace's equations in electrostatics.	3				
	iii.	Define the displacement vector D and deduce the relation between	5				
		D and E.					
OR	iv.	Three charges +q, +2q and -4q coulomb are placed at the corners	5				
		A, B and C respectively of an isosceles triangle of side a meter.					
		Calculate the electrostatic potential energy of the system.					
Q.3	i.	A charge q is uniformly distributed in the volume of a sphere of	2				
		ratio r. If the sphere is rotating with a uniform angular velocity ω					
		about its diameter, find the magnetic moment of charge distribution.					
	ii.	Show that the magnetic field does not change the kinetic energy of	3				
		the particle.					
	iii.	What is Lorentz force? On its basis deduce the expression for the	5				
		force acting on a current carrying conductor in a magnetic field.					
OR	iv.	Explain the meaning of the terms B, H and M establish a	5				
		relationship between them.					
Q.4	i.	What are steady and non- steady currents? Derive equations of	2				
		continuity for them.					
	ii.	Explain the growth and decay of current in L-R circuit.	3				
	iii.	Give the mathematical treatment of charging of a condenser in LCR	5				
		circuit connected to DC source.					

OR	iv.	Write a short note on: (a) Wattless current (b) Resonance (c) Quality factor (d) Choke coil	5
Q.5	i. ii. iii.	What is velocity selector? Draw its neat diagram. Explain the principles of mass spectrograph. Describe the construction and working of a cathode ray oscilloscope? Deduce its expression and state the factors on which it depends.	2 3 5
OR	iv.	Explain the construction and working of cyclotron with the help of a labelled diagram. Obtain expression for the maximum kinetic energy acquired by the particle.	5
Q.6	i.	Attempt any two: A dielectric medium is kept in a variable electric field. Show that the displacement current is equal to the conduction (or free) current and also Prove that div $B=0$.	5
	ii. iii.	What is Poynting's theorem? State and prove it. Write down the Maxwell's equations in an isotropic medium and deduce them.	5 5

Marking Scheme BC3CO16 Physics -IV

		BC3CO16 Physics -IV		
1	i.	The electric potential at a point at distance r from is proportional to:	an electric dipole	1
		(b) $1/r^2$		
	ii.	The total electric flux emanating in air from a unit	nositive charge is:	1
	11.	(b) $1/\epsilon_0$	positive charge is.	-
	iii.	The current which can be measured by an ammeter	are called:	1
	111,	(a) Free currents	, are carred.	•
	iv.	The ratio of intensities of magnetic field at the cent	er and at external	1
		end of a current carrying solenoid is:		
		(a) 2:1		
	v.	Kirchhoff's law are applicable in:		1
		(c) Both (a) and (b)		_
	vi.	For more Q value of a resonant LCR circuit		1
	, 1.	(a) Reactance of inductance should be low		_
	vii.	Accelerator is used:		1
	V 11.	(d) To increase the energy of charged particles		1
	viii.	The simplest mass spectrograph was given by:		1
	V 1111.	(a) J.J. Thomsan		•
	ix.	Varying current can induce voltage because the magnetic field		
	17.	produced by it is:	e magnetic neid	1
		(a) Varying with time		
	х.	The following is not the electromagnetic wave:		1
	Λ.	(d) Cathode rays		1
		(d) Cathode Tays		
Q.2	i.	Electric field and Electric potential	1 Mark	2
Q.2	1.	Relationship between Electric field and Electric po		_
		Relationship between Electric field and Electric po	1 Mark	
	ii.	Poisson's equations	1.5 Marks	3
	11.	Laplace's equations	1.5 Marks	J
	iii.	Displacement vector D	2 Marks	5
	111.	Relation between D and E.	3 Marks	3
OR	iv.	Students has to write all derivative steps and final r		5
OK	IV.	- $(1/4\pi C_0)$ x $(10q^{2/a})$ Joule	esuit is—	3
	i.	As per the explanation	3 Marks	3
	1. ii.	•		
	11.	Lorentz force Derivation	2 Marks 3 Marks	5
OD	:::			F
OR	iii.	Terms B, H and M	2.5 Marks	5
0.4	•	Relationship	2.5 Marks	2
Q.4	i.	Steady and non- steady currents	0.5 Mark	2

		Equations of continuity	1.5 Marks	
	ii.	As per the explanation	3 Marks	3
	iii.	As per the explanation	5 Marks	5
OR	iv.	(a) Wattless current		5
		Statement	1 Mark	
		(b) Resonance		
		Statement	0.5 Mark	
		Expression	0.5 Mark	
		(c) Quality factor		
		Statement	0.5 Mark	
		Expression	0.5 Mark	
		(d) Choke coil		
		Statement	1 Mark	
		Diagram	1 Mark	
Q.5	i.	Velocity selector	1 Mark	2
		Diagram.	1 Mark	
	ii.	As per the explanation	3 Marks	3
	iii.	Construction	1 Mark	5
		Working	1.5 Marks	
		Expression	1.5 Marks	
		Factors	1 Mark	
OR	iv.	Construction	1 Mark	5
		Working	1 Marks	
		Diagram	1 Marks	
		Expression	2 Mark	
Q.6		Attempt any two:		
	i.	Displacement current	0.5 Mark	5
		Conduction current	0.5 mark	
		Displacement current is equal to the conduction	2 Marks	
		Div B = 0.	2 Marks	
	ii.	Poynting's theorem		5
		Statement	1 Mark	
		Theorem	4 Marks	
	iii.	Maxwell's equations	1 Mark	5
		Derivation of I equation	1 Mark	
		Derivation of II equation	1 Mark	
		Derivation of III equation	1 Mark	
		Derivation of IV equation	1 Mark	
		-		
