4

5

2

ghilly spirit spirit cours push with shirty ours, and the spirit cours, push with shirty ours, and

1. An integrated circuit, comprising:

functional circuitry;

a region devoid of the functional circuitry; and

a transistor disposed in the region.

The integrated circuit of claim 1 wherein:

the functional circuitry comprises functional-circuit blocks that are spaced

3 apant from one another; and

the devoid region comprises a region that is disposed between the

functional-circuit blocks.

3. The integrated circuit of claim 1 wherein:

the functional circuitry comprises a functional-circuit block having a portion devoid of functional-circuit elements; and

the devoid region comprises the devoid portion of the functional-circuit block.

4. The integrated circuit of claim 1 wherein the transistor comprises an FET transistor.

5. The integrated circuit of claim 1 wherein the transistor is automatically placed in the devoid region.

- 6. The integrated circuit of claim 1 wherein the transistor is manually placed in the devoid region.
- 7. An integrated circuit, comprising:
- 2 functional circuitry;
- a region devoid of the functional circuitry; and
- 4 a buffer disposed in the region.
- 8. An integrated circuit, comprising:
- 2 functional circuitry;
- a region devoid of the functional circuitry; and
- a logic circuit disposed in the region.

- 9. The integrated circuit of claim 8 wherein the logic circuit comprises a logic
- 10. The integrated circuit of claim 8 wherein the logic circuit comprises an inverter.

Sub2A37

5

6

11. An integrated circuit, comprising:

first and second supply nodes;

functional circuitry;

a region devoid of the functional circuitry; and

a transistor disposed in the region and having a pair of input-output terminals coupled to the first supply node and having a control terminal coupled to the second supply node.

12. The integrated circuit of claim 11 wherein:

the transistor comprises an FET transistor;

the pair of input-output terminals comprises a pair of source-drain terminals;

the control terminal comprises a gate terminal.

13. An integrated circuit, comprising:

a conductive path;

functional dircuitry;

a region devoid of the functional circuitry; and

a transistor disposed in the region and having a pair of input-output terminals coupled to the conductive path and having a control terminal.

14. The integrated circuit of claim 13, further comprising:

a supply node and

wherein the control terminal is coupled to the supply node.

- 1 15. The integrated circuit of claim 13 wherein the control terminal is coupled 2 to one of the input-output terminals.
- 1 16. The integrated circuit of claim 13 wherein the control terminal is short-circuited to one of the input-output terminals.

1	17. An integrated circuit, comprising:
$- n^2 A$	first and second regions;
Sul 3"	functional circuitry disposed in the first and second regions;
4	a third region devoid of the functional circuitry;
5	a buffer disposed in the third region and having an input terminal and an
6	output terminal;
7	a first conductive path having a first terminal coupled to the functional circuitry
8	in the first region and having a second terminal coupled to the input
9	terminal of the buffer; and
10	a second conductive path having a first terminal coupled to the output terminal
11	of the buffer and having a second terminal coupled to the functional
12	circuitry in the second location.
1	18. The integrated circuit of claim 17 wherein the functional circuitry in the first
2	and second regions respectively comprises first and second blocks of the functional
3	circuitry, the first and second blocks being spaced apart from one another.
1	19. The integrated circuit of claim 17, further comprising:
2	a supply node; and
3	wherein the buffer comprises a transistor disposed in the devoid region and
4	having a control terminal coupled to the input terminal of the buffer, a
5	first terminal coupled to the output terminal of the buffer, and a second
6	terminal coupled to the supply node.
1	20. An integrated circuit, comprising:
2	first and second regions;
3	functional circuitry disposed in the first and second regions;
4	a third region devoid of the functional circuitry;
5	a logic circuit disposed in the third region and having an input terminal and an
6	output terminal;
7	a first conductive path having a first terminal coupled to the functional circuitry
8	in the first region and having a second terminal coupled to the input
9	terminal of the logic circuit; and

3

connecting the transistor to the path.

10	a second conductive path having a rest terminal coupled to the output terminal
11	of the logic circuit and having a second terminal coupled to the
12	functional circuitry in the second location.
1	21. An integrated circuit, comprising:
2	functional circuitry;
3	a region devoid of the functional circuitry; and
4	a repair transistor disposed in the region and having a three terminals, one of
5	the terminals coupled to the functional circuitry.
1	22. The integrated circuit of claim 21 wherein two of the transistor terminals
2	are coupled to the functional circuitry.
1	23. The integrated circuit of claim 21 wherein the three transistor terminals
2	are coupled to the functional circuitry.
17	24. A method, comprising:
52/	identifying an integrated-circuit region that is devoid of a circuit; and
3	placing a transistor in the devoid integrated-circuit region.
1	25. The method of claim 24 wherein identifying the devoid integrated-circuit
2	region and placing the transistor comprise executing software that identifies and
3	places the transistor in the devoid integrated-circuit region.
1	26. The method of claim 24 wherein placing the transistor comprises
2	executing software that automatically places the transistor in the devoid
3	integrated-circuit region.
1	27. The method of claim 24 wherein placing the transistor comprises
2	executing software that allows one to manually place the transistor in the devoid
3	integrated-circuit region.
1	28. The method of claim 24, further comprising connecting the transistor to
2	a supply node.
1	29. The method of claim 24, further comprising:
2	identifying a conductive path; and

1	30. The method of claim 24, further comprising:
2	identifying a conductive path; and
3	buffering the path with the transistor.
1	31. The method of claim 24 wherein placing the transistor comprises placing a
2	logic circuit in the devoid integrated-circuit region.
1	32. A method, comprising:
2	forming a circuit in a first region of an integrated circuit; and
3	forming a transistor in a second region of the integrated circuit, the second region
4	being devoid of the circuit.
1	33. The method of claim 32, further comprising:
2	forming first and second supply nodes;
3	coupling a first terminal of the transistor to the first supply node; and
4	coupling second and third terminals of the transistor to the second supply node.
1	34. The method of claim 32, further comprising:
2	forming a conductive path; and
3	coupling first, second, and third terminals of the transistor to the conductive path.
1	35. The method of claim 32, further comprising:
2	forming a supply node;
3	forming a conductive path;
4	coupling first and second terminals of the transistor to the conductive path; and
5	coupling a third terminal of the transistor to the supply node.
1	36. The method of claim $3\frac{1}{2}$, further comprising:
2	forming first and second segments of a conductive path;
3	coupling an input terminal of the transistor to the first segment; and
4	coupling an output terminal of the transistor to the second segment.
1	37. The method of claim 32, further comprising:
2	forming first and second segments of a conductive path that is coupled to the circuit;
3	coupling an input terminal of the transistor to the first segment; and
4	coupling an output terminal of the transistor to the second segment.

2

43.

locations within the validity array.

The method of claim 32, further comprising coupling the transistor to 38. 2 the circuit to repair a defect in the circuit. 39. The method of claim 32, further comprising: 1 2 forming a conductive path; dividing the conductive path into first and second uncoupled segments; and 3 coupling the first segment to the second segment with the transistor. 4 40. 1 A method, comprising; 2 dividing an array into locations, the array/representing an integrated-circuit; identifying the locations in the array unoccupied by circuit blocks; and 3 placing transistors in the unoccupied locations. 4 1. The method of claim 40 wherein placing transistors comprises placing 41. 2 blocks of transistors in the unoccupied locations. 42. A method of integrating additional transistors into an integrated circuit, 2 the method comprising: 3 calculating the dimensions of an array to store validity data; 4 initializing the array as valid; 5 reading block information including location and dimensions; calculating the locations in the validity array corresponding to the block location and 6 7 dimensions; 8 marking the locations in the validity array as invalid: 9 checking for more blocks; 10 if more blocks are found, looping back to the step of reading block information; 11 if no more blocks are found, continuing: 12 for each location in the validity array, if valid, then place a transistor array block; 13 else, continue to next location.

The method of claim 42, further comprising allowing a user to invalidate