Introduction to Logic and Computer Design Final Exam

학번 : 이름 :

1. 3-bit input x 를 입력 받아 $2x^2$ 을 결과로 출력하는 combinational circuit 을 설계하시 오.[20]

	Input					Output			
а	b	С	d	е	f	g	h	i	J
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	0
0	1	0	0	0	0	1	0	0	0
0	1	1	0	0	1	0	0	1	0
1	0	0	0	1	0	0	0	0	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	0	0	1	0	0	0
1	1	1	1	1	0	0	0	1	0

D = ab

Α	bc	00	01	11	10
0		0	0	0	0
1		0	0	1	1

E = ab' + ac

Α	bc	00	01	11	10
0		0	0	0	0
1		1	1	1	0

F = ab'c + a'bc

Α	bc	00	01	11	10
0		0	0	1	0
1		0	1	0	0

G = bc'

Α	bc	00	01	11	10
0		0	0	0	1
1		0	0	0	1

H = 0

Α	bc	00	01	11	10
0		0	0	0	0
1		0	0	0	0

I = c

Α	bc	00	01	11	10
0		0	1	1	0
1		0	1	1	0

J = 0

Α	bc	00	01	11	10
0		0	0	0	0
1		0	0	0	0

2. 다음과 같은 시퀀스를 가지는 동기 카운터를 JK 플립플롭을 이용해 설계하시오. [20] (진리표, K-map)

1 3 5 7 4 2 0 6 and repeat

A	В	С	A*	B*	C*
0	0	0	1	1	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	1	0	0

 A^*

	A	
ВС	0	1
00	1	
01		1
11	1	1
10		

 B^*

	A	
ВС	0	1
00	1	1
01	1	1
11		
10		

 C^*

	A				
ВС	0	1			
00					
01	1	1			
11	1				
10		1			

 $D_A = A'B'C' + AC + A'BC$

 $D_B = B'$

 $D_C = B'C + ABC' + A'BC$

3. 다음의 문제에 대해 state table과 state diagram을 그리시오.[20]

네 개 이상의 연속적인 1 입력이 들어올 때나 두 개 이상의 연속적인 0입력이 들어올 때 1 출력을 내보내는 밀리 시스템

x 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 z ? 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1

q	x=0	q* x=1	x=0	Z x=1
A	A	В	1	0
В	A	C	0	0
C	A	D	0	0
D	A	D	0	1

A B	A*	В*		z	
	x=0	x=1	x=0	x=1	
0 0	1 0	1 1	0	0	
0 1	0 0	0 1	0	0	
1 0	0 1	1 1	1	0	
1 1	0 0	0 0	1	1	

설계에서는 AND, OR, NOT gate를 이용해서 Block diagram을 그리시오.[20]

- (i) 주어진 state table에 대해 JK Flip-flop을 사용하여 시스템을 설계하시오.
- (ii) K-map을 그리고 Equation을 보이시오.

The output is

$$z = x' A + A B$$

. To obtain the D and J K inputs, we map A^* and B^* (using the quick method for the JK flip flops).

The SR and T inputs can be obtained from maps of the truth table above.

$$S_A = A'B'$$
 $R_A = x'A + B$ $S_B = xA' + AB'$ $R_B = AB + \{x'B \text{ or } x'A'\}$ $T_A = A'B' + AB + \{x'A \text{ or } x'B'\}$ $T_B = A + x'B + xB'$

3

The circuit for the JK design is

5. 다음의 Logic 회로에 대해서[20]

(a) State table을 작성하시오

Table 5.9c Completed state table.

	A^{z}	A*B*	
A B	x = 0	x = 1	z
0.0	0 1	1.1	0
0 1	0 0	1 0	1
1 0	1 0	0 1	1
1 1	1 1	1 0	1

(b) State diagram을 그리시오.

