Тема II: Линейные операторы

S3. Линейные функционалы

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Линейные функционалы на векторных пространствах

Пусть V – векторное пространство над произвольным полем F.

Линейный функционал на V – это линейный оператор $\Phi \colon V \to F.$

Пример 1: Пусть $V=F^n$ – пространство строк длины n над F. Отображение $\Phi\colon V\to F$, определенное правилом $\Phi(x_1,\dots,x_n):=x_1+\dots+x_n$, является линейным функционалом.

Пример 2: Пусть V — пространство всех функций из $\mathbb R$ в $\mathbb R$. Отображение $\Phi\colon V\to F$, которое сопоставляет функции f(x) число f(0), является линейным функционалом. (Это — так называемая δ -функция Дирака.)

Пример 3: На пространстве многочленов $\mathbb{R}[x]$ отображение, сопоставляющее многочлену $f\in\mathbb{R}[x]$ число $\int\limits_0^1 f(t)dt$, — линейный функционал.

Пример 4: На любом пространстве V отображение, сопоставляющее каждому вектору из V элемент $0 \in F$, – линейный функционал.

Recap: пространства со скалярным произведением

Определение

Пусть F — одно из полей $\mathbb R$ и $\mathbb C$, а V — векторное пространство над F. Отображение $V \times V \to F$, результат применения которого к паре векторов $\mathbf x, \mathbf y \in V$ обозначается $\mathbf x \mathbf y$, называется скалярным произведением, если:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V \quad \mathbf{x}\mathbf{y} = \overline{\mathbf{y}}\overline{\mathbf{x}};$
- 2) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \ (\alpha \mathbf{x}) \mathbf{y} = \alpha(\mathbf{x} \mathbf{y});$
- 3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$ (скалярное произведение дистрибутивно относительно сложения векторов);
- 4) $\forall \mathbf{x} \in V \quad \mathbf{x}\mathbf{x} \geqslant 0$, причем $\mathbf{x}\mathbf{x} = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Пространство со скалярным произведением над $\mathbb R$ называется *евклидовым*; пространство со скалярным произведением над $\mathbb C$ называется *унитарным*.

Определение

Длина вектора \mathbf{x} – это неотрицательное действительное число $|\mathbf{x}| := \sqrt{\mathbf{x}\mathbf{x}}.$

Линейные функционалы на пространствах со скалярным произведением

Пусть V – пространство со скалярным произведением, ${\bf a}$ – фиксированный вектор из V. В силу свойств скалярного произведения отображение ${\bf x}\mapsto {\bf x}{\bf a}$ является линейным функционалом на V.

Оказывается, что в конечномерном пространстве со скалярным произведением любой линейный функционал устроен именно так.

Теорема (строение линейного функционала)

Пусть V – конечномерное пространство со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}$, а $\Phi\colon V\to F$ – линейный функционал. Тогда существует единственный вектор $\mathbf{a}\in V$ такой, что $\Phi(\mathbf{x})=\mathbf{x}\mathbf{a}$ для каждого вектора $\mathbf{x}\in V$.

Доказательство. Единственность вектора, определяющего функционал, сразу следует из ослабленного закона сокращения: если вектора $\mathbf{a}, \mathbf{b} \in V$ таковы, что для любого вектора $\mathbf{x} \in V$ выполняется равенство $\mathbf{xa} = \mathbf{xb}$, то $\mathbf{a} = \mathbf{b}$. Докажем *существование*.

Если $\Phi(\mathbf{x})=0$ для всех $\mathbf{x}\in V$, то в роли \mathbf{a} со свойством $\Phi(\mathbf{x})=\mathbf{x}\mathbf{a}$ годится вектор $\mathbf{0}$. Поэтому будем считать, что Φ принимает не только значение $\mathbf{0}$.

Строение линейного функционала

Тогда по теореме о сумме ранга и дефекта $\mathrm{Ker}(\Phi)$ – подпространство размерности $\dim V-1$, а его ортогональное дополнение $(\mathrm{Ker}(\Phi))^\perp$ – одномерное подпространство в V. Фиксируем ненулевой вектор $\mathbf{b} \in (\mathrm{Ker}(\Phi))^\perp$ и пусть $\beta := \Phi(\mathbf{b})$. Положим $\mathbf{a} := \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b}$ и проверим, что $\Phi(\mathbf{x}) = \mathbf{x} \mathbf{a}$ для каждого $\mathbf{x} \in V$. Для этого представим \mathbf{x} в виде $\mathbf{x} = \mathbf{c} + \gamma \mathbf{b}$ для некоторого $\mathbf{c} \in \mathrm{Ker}(\Phi)$ и $\gamma \in F$. Такое представление возможно, так как $V = \mathrm{Ker}(\Phi) \oplus (\mathrm{Ker}(\Phi))^\perp$, а одномерное подпространство $(\mathrm{Ker}(\Phi))^\perp$ порождается вектором \mathbf{b} . Тогда

$$\Phi(\mathbf{x}) = \Phi(\mathbf{c} + \gamma \mathbf{b}) = \Phi(\mathbf{c}) + \Phi(\gamma \mathbf{b}) = \gamma \Phi(\mathbf{b}) = \gamma \beta,$$

поскольку $\Phi(\mathbf{c}) = 0$. С другой стороны,

$$\mathbf{x}\mathbf{a} = (\mathbf{c} + \gamma \mathbf{b}) \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} = \mathbf{c} \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} + \gamma \mathbf{b} \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} = \gamma \beta,$$

поскольку $\mathbf{cb} = 0$.

Заключительные замечания

В бесконечномерных пространствах со скалярным произведением некоторые линейные функционалы представимы в виде скалярного произведения с подходящим вектором, а некоторые нет.

Например, в евклидовом пространстве $\mathbb{R}[x]$ всех многочленов над полем \mathbb{R} со скалярным произведением $(f,g):=\int\limits_0^1f(t)g(t)dt$ функционал, сопоставляющий многочлену $f\in\mathbb{R}[x]$ число $\int\limits_0^1f(t)dt$, представим как скалярное произведение многочлена f с многочленом 1. А вот функционал, сопоставляющий многочлену f его свободный член, в виде скалярного произведения представить нельзя; другими словами, нет такого многочлена g, что для любого многочлена f выполняется равенство $\int\limits_0^1f(t)g(t)dt=f(0)$. Попробуйте обосновать это утверждение!