1 Langrange 插值

问题:用线性插值和抛物线插值方法求√115

解答: (线性插值) 取 $x_0 = 100$, $y_0 = 10$, $x_1 = 121$, $y_1 = 11$, 可得

$$L_1(xx) = \frac{x - 121}{100 - 121} \times 10 + \frac{x - 100}{121 - 100} \times 11$$

于是

$$\sqrt{115} \approx \frac{115 - 121}{100 - 121} \times 10 + \frac{115 - 100}{121 - 100} \times 11 = 10.7143$$

(抛物线插值) 如果对线性插值的精度有一定的质疑,可以增加一个插值节点 $x_2 = 144$, $y_2 = 12$, 可得

$$L_2(115) = \frac{(115 - 121)(115 - 114)}{(100 - 121)(100 - 144)} \times 10 + \frac{(115 - 100)(115 - 144)}{(121 - 100)(121 - 144)} \times 11 + \frac{(115 - 100)(115 - 121)}{(144 - 100)(144 - 121)} \times 12 = 10.7228$$

 $\sqrt{115}$ 的精确值是 10.723805, 可见线性插值有 3 位有效数字, 而抛物线插值有四位有效数字。

2 Newton 插值

已知函数 f(x) = shx 的函数值如表所示,构造 4 次 Newton 插值多项式并计算 f(0.596) = sh0.596 的值。

k		0			1		2		3		4		5		
x_k		0.40		0.	55	0.6	0.65		0.80		0.90		1.05		
$f(x_k)$		0.41075		0.57	7815	0.690	675	0.88811		1.02652		1.25386		_	
通过	通过 MATLAB 计算得到的结果为:														
k	x_k		$f[x_k]$		$f[x_{0k}]$	f[x_{01k}	f[x]	$f[x_{012k}]$		$f[x_{0123k}]$		$f[x_{01234k}]$		
0	0.40	000	0.410	08											
1	0.5	500	0.578	82	1.1160)									
2	0.6	500	0.690	67	1.1440	0.	2800								
3	0.80	000	0.888	81	1.1934	ł 0.	3096	0.1	.973						
4	0.90	000	1.020	65	1.2315	6 0.	3301	0.2	2005	0	.0312	?			
5	1.0	500	1.25	39	1.2971	0.	3622	0.2	2055	0	.0325	· •	0.00	85	

计算结果:

$$N_4(x) = 0.4108 + 1.116(x - 0.4) + 0.2800(x - 0.4)(x - 0.55)$$

$$+0.1973(x-0.4)(x-0.55)(x-0.65)+0.0312(x-0.4)(x-0.55)(x-0.65)(x-0.8)$$

$$sh0.596 = N_4(0.596) \approx 0.6319$$

3 Hermite 插值

问题: 设 $f(x)=x^{\frac{3}{2}}$, $x_0=\frac{1}{4},x_1=\frac{9}{4}$, 试求 f(x) 在 $\left[\frac{1}{4},\frac{9}{4}\right]$ 上的 3 次 Hermite 插值多项式 H(x)

解答: 通过 MATLAB 计算可得最终的插值多项式为:

$$H(x) = -\frac{x^3}{16} + \frac{39x^2}{64} + \frac{117x}{256} - \frac{27}{1024}$$

4 分段线性插值

问题: $f(x) = \frac{1}{1+x^2}, x \in [-5,5]$,取等距节点 $x_k = -5 + k(k=0,1,2,\dots,10)$,试构造分段线性插值函数。

解答:首先差值多项式的表达式应该为 $P(x) = I_n(x) = \sum_{i=0}^{10} f(x_i) l_i(x)$,下面我们画出函数 $f(x) = \frac{1}{1+x^2}$ 的图像以及插值函数的图像:

5 三次样条插值 3

从上图可以看出,分段线性插值函数的图像光滑性要差一点,但是逼近 函数的效果不错。

5 三次样条插值

问题: 已知 y = f(x) 在节点 x = -1, 0, 1 处的函数值 y = -1, 0, 1 及在端点的导数值 $y'_0 = f'(-1) = 0, y'_1 = f'(1) = -1$,求区间 [-1,1] 步长 0.25 的各点的函数值。

解答: 我们可以通过 spline 函数或 csape 函数执行,如图所示:

最终的结果图像为:

4

