Elettronica T - Lanzoni

Multivibratori

Si definiscono multivibratori i circuiti in grado di generare transizioni di alcune grandezze (tensioni o correnti) con tempi di commutazione di durata breve rispetto al periodo.

Per questa ragione vengono anche denominati "circuiti a scatto".

Si suddividono in:

- ·Bistabili
- ·Astabili (oscillatori a rilassamento)
- · Monostabili

Analizziamo il circuito di figura. In esso, la retroazione è portata all' ingresso non invertente dell' operazionale.

Otteniamo che (ipotizzando che la FDT dell' operazionale ad anello aperto sia una funzione a singolo polo), la FDT del circuito in retroazione è ancora a singolo polo ma reale positivo.

Quando l' operazionale si trova a lavorare nella zona ad alto guadagno si ha quindi un innesco esponenziale che perdura finchè l' uscita non raggiunge la saturazione positiva o negativa. Questo significa che, se esiste intersezione tra la retta corrispondente alla rete di retroazione e la caratteristica dell' operazionale nel tratto ad alto guadagno, il punto di lavoro è instabile.

A seconda del valore di v_l esistono altre una o due intersezioni fra queste curve, che risultano stabili in quanto le intersezioni avvengono nel tratto della caratteristica dell' operazionale a guadagno nullo.

E' chiaro quindi che il circuito lavorerà sempre con l' uscita dell' operazionale satura a valore positivo e negativo.

Vediamo come cambia il valore dell' uscita al variare di v₁.

1) ipotizziamo che v_1 sia compresa fra βL_2 e βL_2 .

In questo caso, l' uscita non sappiamo se sia a L_+ o L_- , ma possiamo certo dire che il segnale in ingresso è ininfluente sullo stato del circuito. Infatti variando v_l entro questi limiti, la tensione differenziale di ingresso v_D risulta comunque dello stesso segno dell' uscita v_O e quindi il circuito rimane nello stato in cui si trova.

- 2) ipotizziamo ora che v_1 aumenti e superi il valore βL_+ : in questo caso ci sono due possibilità a seconda del valore di v_0 prima di tale evento:
 - a) il circuito si trovava a $v_O=L$ -. In questo caso un aumento di v_I non fa altro che diminuire ulteriormente v_D e quindi l' uscita rimane al valore L_- .
 - b) Il circuito si trovava a $v_O=L+$. in questo caso invece, una volta superato il valore βL_+ , la tensione v_D passa da positiva a negativa e quindi l' uscita scatta a $v_O=L_-$ e vi permane anche se la v_I continua a crescere o se diminuisce al di sotto di βL_+ (rimanendo > $\beta L-$).
- 3) Il meccanismo risulta simmetrico per v_i negative inferiori a βL-

In pratica questo circuito si comporta come un comparatore con isteresi, con intervallo di isteresi pari a $[\beta L_{\perp}, \beta L_{\perp}]$.

N.B. Lo stato di un multivibratore bistabile dipende dalla storia passata del segnale in ingresso. Il bistabile può quindi essere visto anche come un elemento di memoria.

Un circuito con funzionamento del tutto simile al precedente ma con caratteristica non invertente è quello riportato in figura.

In questo caso il confronto fra le tensioni deve essere fatto confrontando la tensione al morsetto non invertente e la massa.

La prima risulta:

$$v_{+} = \frac{R_{1}}{R_{1} + R_{2}} (v_{O} - v_{I}) + v_{I}$$

Come nel caso precedente, per ottenere le soglie di scatto dobbiamo imporre $v_D=0$ (in questo caso equivale a $v_+=0$) in corrispondenza delle situazioni $v_O=L_-$ e $v_O=L_+$.

Per esempio nel primo caso otteniamo:

$$v_{+} = \frac{R_{1}}{R_{1} + R_{2}} (L_{-} - V_{_{TH}}) + V_{TH} = 0 \implies V_{TH} = -\frac{R_{1}}{R_{2}} L_{-}$$

In questo caso, se l' uscita è bassa, lo scatto avverrà quando la tensione di ingresso supera il valore $-(R_1/R_2)L_1$ (positivo). Lo scatto porterà l' uscita a L_1 .

Un circuito come quello appena descritto è molto utile quando si debbano contare le transizioni per un soglia di un segnale con sovrapposto del rumore.

In questi casi, rilevando le transizioni con un normale comparatore, c' è la possibilità di contare più volte la stessa transizione.

Una soluzione a questo problema consiste appunto in un bistabile con isteresi pari ad almeno il valore picco-picco del rumore sovrapposto.

DI solito i comparatori con isteresi sono denominati Trigger di Schmitt.

Multivibratori astabili

Sono circuiti a scatto che in assenza di qualsiasi ingresso producono oscillazioni di rilassamento

A differenza del multivibratore bistable, l'astabile non ha nessun punto di riposo stabile.

Per ottenere un multivibratore astabile si retroaziona un bistabile invertente con una rete RC.

Il funzionamento del circuito risulta intuitivo seguendo le forme d' onda al morsetto invertente (ingresso del bistabile invertente) e dell' uscita.

Supponiamo inizialmente $v_{\underline{-}}=0V$ e $v_{\underline{O}}=L_{\underline{+}}$.

In questa situazione, il nodo v_{\cdot} si carica seguendo una curva esponenziale di carica della capacità C attraverso la resistenza R.

la carica perdura finchè la tensione su v_{-} non supera βL_{+} . A questo punto la tensione differenziale diviene negativa e quindi il bistabile scatta a $v_{-}=L_{-}$.

Il condensatore comincia a scaricarsi con un transitorio che ha per valore asintotico L.

Il transitorio dura finchè v_{\perp} non raggiunge βL_{\perp} . Quando v_{\perp} diviene minore di βL_{\perp} la tensione differenziale ritorna ad essere positiva, l'uscita scatta a L_{\perp} ed il ciclo ricomincia.

Il periodo del segnale di uscita può essere calcolato come somma delle due durate dei transitori di carica e scarica.

Astabili:calcolo del periodo

$$T_{1} \qquad v_{-} = L_{+} - (L_{+} - \beta L_{-})e^{-t/\tau} \quad con \ \tau = CR$$

$$\Rightarrow T_{1} = \tau \ln \left(\frac{1 - \beta (L_{-}/L_{+})}{1 - \beta} \right)$$

$$T_{2} \qquad v_{-} = L_{-} - (L_{-} - \beta L_{+}) e^{-t/\tau} \quad con \ \tau = CR$$

$$\Rightarrow T_{2} = \tau \ln \left(\frac{1 - \beta (L_{+}/L_{-})}{1 - \beta} \right)$$

Se L₊=-L₋

$$T = T_1 + T_2 = 2\tau \ln \frac{1+\beta}{1-\beta}$$

Per il calcolo del periodo di oscillazione faremo uso della ben nota formula che esprime il transitorio di carica o scarica di una capacità C attraverso una resistenza R da un valore iniziale di tensione V_{START} ad un valore finale V_{END} :

$$v_{-} = V_{END} - (V_{END} - V_{START})e^{-t/\tau}$$
 con $\tau = RC$

Semiperiodo T₁

Questo semiperiodo si apre con la tensione v. al valore \(\beta L \) corrispondente al valore della tensione sulla capacità C al momento dello scatto dell' uscita dell' operazionale da basso ad alto. Il valore finale, se null' altro succedesse sarebbe il valore di Vo durante questa fase ovvero L+.

$$v_{-}(t) = L_{+} - (L_{+} - \beta L_{-})e^{-t/\tau}$$
 con $\tau = RC$

La durata di guesto semiperiodo si calcola uguagliando v_(t) al valore di scatto dell' uscita da alto a basso, ovvero βL₊.

Otteniamo quindi:

$$\beta L_{+} = L_{+} - (L_{+} - \beta L_{-}) e^{-T_{1}/\tau} \quad \Rightarrow \quad T_{1} = \tau \cdot \ln \left(\frac{L_{+} - \beta L_{-}}{L_{+} - \beta L_{+}} \right)$$

Semiperiodo T₂

Con procedimento analogo si trova che:

$$T_2 = \tau \cdot \ln \left(\frac{L_- - \beta L_+}{L_- - \beta L_-} \right)$$

I multivibratori monostabili sono circuiti che permettono di generare un impulso di durata fissa a partire da un evento (trigger) che può essere rappresentato dal fronte di discesa (salita) di un segnale.

Un circuito di questo tipo è riportato in figura.

Per capirne il funzionamento cerchiamo di analizzarne il punto di riposo prima dell' evento di trigger. A questo scopo, per il momento ignoriamo la rete C_2 , R_4 , D_2 .

Il circuito assomiglia molto ad un astabile con la variante del diodo D_1 in parallelo a C_1 . Questo elemento blocca la carica del condensatore quando, durante il transitorio di salita, la tensione sul condensatore supera la soglia del diodo. Quando il diodo si accende, tutta la corrente che fluisce su R_3 circola sul diodo e quindi la carica del condensatore si arresta a $V_B = V_\gamma$.

La situazione di riposo vede quindi:

$$V_O = L_+$$
 , $V_B = V_\gamma$, $V_C = \beta L_+$, $V_E = \beta L_+ - V_\gamma$

Applichiamo ora un fronte di discesa al nodo di trigger.

Se l' impulso è tale da portare il nodo C ad un valore inferiore a quello del nodo B (che è a tensione V_{v}), l' operazionale scatta a $V_{O}=L_{c}$.

Incomincia ora il transitorio di scarica di V_B che perdura fino allo scatto di V_O che torna a L_{\perp} quando la tensione sul nodo B raggiunge βL_{\perp} .

La durata di questo periodo si calcola in modo analogo a quanto fatto per il semiperiodo T_2 dell' astabile, con l' unica differenza che la tensione V_{Start} è in questo caso V_{γ} .

N.B. durante il transitorio il diodo D₂ è spento e quindi V_C=βL₋

Il circuito integrato NE555 permette di realizzare tramite opportune connessioni esterne e qualche componente passivo, diverse funzioni fra cui la generazione di impulsi di durata fissa (monostabile) e la generazione di forme d' onda periodiche (astabile).

Monostabile

La configurazione monostabile riportata in figura permette di generare un impulso usando come trigger una transizione alto-basso sull ingresso invertente del comparatore 2.

Come nel caso precedente analizziamo qual è la configurazione di riposo.

I nodi V_{TH} e $V_{TL}\, sono$ rispettivamente a 2/3 V_{CC} e 1/3 $V_{CC}.$

Ipotizziamo inizialmente la $V_O=0V$ (Q=L). L' uscita /Q del flip-flop SR è quindi alta, il transistore Q_1 è acceso ed il nodo V_C è circa a massa.

L' uscita del comparatore 1 è quindi bassa, come anche quella del comparatore 2 il cui ingresso - (trigger) è alto.

Se quest' ultimo nodo ha una transizione alto-basso, l' uscita del comparatore 2 va alta e setta il flop-flop. V_O va alta mentre /Q va bassa, il transistore si spegne e il condensatore comincia a caricarsi attraverso R. La carica si interrompe quando V_C supera V_{TH} facendo scattare il comparatore 1 che resetta il flip-flop e ripristina le condizioni iniziali.

La durata dell' impulso sull' uscita si calcola con l' espressione del transitorio di carica assumendo $V_{START}=0V$, $V_{STOP}=V_{CC}$ ed imponendo la tensione di scatto pari a $V_{TH.}$

L' NE555 può essere configurato per generare un segnale onda rettangolare (astabile)

Assumiamo $V_O=V_{CC}$ ed inizialmente il condensatore scarico. L' uscita del comparatore 1 è bassa, mentre quella del comparatore 2 è alta. /Q risulta basso e quindi il transistore è spento e la capacità si carica attraverso la serie R_A+R_B verso il valore asintotico V_{CC} . Durante la carica V_C raggiunge prima V_{TL} , senza che questo faccia scattare il flip-flop (il set va basso) e poi V_{TH} . Quando questo accade, l' uscita del comparatore 1 va alta, il flip-flop scatta (reset) e Q_1 si accende. Il condensatore comincia ora a scaricarsi verso massa attraverso R_B .

La scarica perdura finchè V_C non raggiunge V_{TL} . Quando questo accade il flip-flop si setta, Q_1 si spegne e si torna alle condizioni iniziali tranne per il valore di V_C che ora è V_{TL} .