

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقني رياضي

المدة: **04** سا و **30** د

دورة: 2020

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 01 من 08 إلى الصفحة 04 من 08)

التمرين الأول: (04 نقاط)

تُزَوَّدُ محركات بعض السيارات بأحدث تقنيات التحكم في حقن البنزين وتُعتبر الوشيعة من بَيْنِ أهم العناصر الكهربائية التي تدخل في تركيب جهاز التحكم هذا.

يهدف هذا التمرين إلى تحديد مميزات وشيعة جهاز التحكم في حقن البنزين

لتطوير جهاز التحكم في حقن البنزين، قام الغريق التقني في مخبر المصنع بدراسة مميزات الوشيعة المستعملة فيه وذلك بتحقيق دارة كهربائية عناصرها مربوطة على التسلسل، تتكون من مولد مثالي لتوتر مستمر قوته المُحركة الكهربائية $E = 6.3 \, \mathrm{V}$ ، قاطعة $E = 6.3 \, \mathrm{V}$ ومن إحدى الوشائع التالية:

$$\underbrace{L,r}_{L=1,2\text{H}\cdot r=20\Omega}$$

$$\underbrace{\begin{array}{c} L, r \\ L = 1.8 \text{H} \cdot r = 30 \Omega \end{array}}$$

 u_b يسمح جهاز حاسوب مع واجهة دخول (ExAO) بمشاهدة أحد التوترين u_R (بين طرفي الناقل الأومي) أو ربين طرفي الوشيعة) بدلالة الزمن.

- 1. عند غلق القاطعة K يَظْهَرُ على شاشة جهاز الحاسوب المنحنى الممثل في الشكل 1.
- الدارة الكهربائية المُحققة وبيِّن عليها جهة التيار الكهربائي وجهة التوترين $u_{\scriptscriptstyle R}$ و $u_{\scriptscriptstyle B}$.
 - 2.1. استعمل قانون أوم وقانون جمع التوترات لكتابة المعادلة التفاضلية التي يحققها التوتر الكهربائي بين طرفي الناقل الأومي $u_R(t)$.
 - 3.1. حل المعادلة التفاضلية السابقة من الشكل:

$$A$$
. B عبارة کل من A عبارة کل من A عبارة کل من A عبارة کل من A

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقني رياضي \بكالوريا 2020

- $u_R(t)$ يمثل 1 يمثل أنَّ منحنى الشكل 1 يمثل 4.1.
 - $I_0 = 35 m \, \mathrm{A}$ عند بلوغ النظام الدائم كانت شدة التيار المار في الدارة 2
 - 1.2. أكمل الجدول التالى:

حيث: ٢ ثابت الزمن للدارة الكهريائية.

t(s)	0	τ	5τ
$u_b(V)$			

- رسم المنحنى البياني (الشكل 1)، ارسم منحنى تطور التوتر الكهربائي بين طرفي الوشيعة $u_b(t)$. الوشيعة
 - 3.2. عيّن قيمة المقاومة r للوشيعة المستعملة.
- 4.2. حَدِّدُ اختيار الفريق التقنى للوشيعة المستعملة في جهاز التحكم من بَيْن الوشائع السَّابقة مبررا إجابتك.

التمرين الثانى: (04 نقاط)

من تحديات هذا القرن، محاولة إرسال بعثة استكشافية إلى سطح المريخ، حيث دأبت وكالة الطيران والفضاء الأمريكية (NASA) على إعداد الأسس اللوجيستية والعلمية لإرسال البشر في حدود سنة 2030.

يهدف التمرين إلى دراسة بعض خصائص المريخ وكواكب المجموعة الشمسية المجاورة له

- 1. ما هو المرجع المناسب لدراسة حركة كواكب المجموعة الشمسية؟
 - 2. ذكِر بنص قانون كِبلر الأول.
- 3. إن مراقبة حركة بعض كواكب المجموعة الشمسية مكنتنا من جدول القياسات التالي:

الكوكب	الأرض	المريخ	المشتري
T(ans)	1,00		11,86
r(U.A)	1,00	1,53	

U.A حيث: T دور الكوكب حول الشمس بالسنة الأرضية، r البعد بين مركزي الكوكب والشمس بالوحدة الفلكية T دادر T دادر الكوكب حول الشمس بالسنة الأرضية، T البعد بين مركزي الكوكب والشمس بالوحدة الفلكية T دادر T دادر الكوكب حول الشمس بالسنة الأرضية، T

باستعمال القانون الثاني لنيوتن في المرجع سالف الذكر وباعتبار مسارات الكواكب دائرية حول الشمس:

. G و M_s ، r عبارة السرعة المدارية v لكوكب من المجموعة الشمسية بدلالة M_s ، r عبارة السرعة المدارية v

- حيث M_S ثابت الجذب العام $G=6,67\times 10^{-11} S.I$ ديث M_S

- $\frac{T^2}{r^3} = \frac{4\pi^2}{G \cdot M_S}$: ييّن أن قانون كبلر الثالث يعطى بالعلاقة: 2.3
 - .3.3 احسب كتلة الشمس $M_{\scriptscriptstyle S}$ بالكيلوغرام
 - 4.3. أكمل الجدول أعلاه.
- $km \cdot s^{-1}$ لكوكبي الأرض والمريخ بـ 5.3.
 - 6.3. فسر لماذا تكون السنة الأرضية أقل من السنة المربخية.

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقني رياضي \بكالوريا 2020

التمرين الثالث: (06 نقاط)

يعتبر الطب من أهم المجالات التي عرفت استعمال النشاط الإشعاعي في تشخيص وعلاج الأمراض وذلك بحقن أنوية مشعة معينة في جسم الإنسان، من بين تلك الأنوية التكنيسيوم $^{99}_{43}$ Tc الذي يستعمل في التصوير الإشعاعي للعظام وذلك لمدة حياته القصيرة وقلة خطورته.

معطيات:

النظير	⁹⁹ ₄₃ Tc	⁹⁷ ₄₃ Tc
$E_{\ell}(MeV)$ طاقة الربط	852,53	836,28
$t_{\frac{1}{2}}$ نصف العمر	6 heures	90,1 <i>jours</i>

- 1. للتكنيسيوم عدة نظائر منها النظيران المبينان في الجدول أعلاه.
 - 1.1. عرّف النظائر وأعط تركيب نواة التكنيسيوم 99.
- 2.1. يُفضّل طبيا استعمال نظير التكنيسيوم 99 بدلا من نظير التكنيسيوم 97 في التصوير الإشعاعي، برّر.
 - 3.1. حدِّد النظير الأكثر استقرارا مع التعليل.
 - $^{99}_{42}{
 m Mo}$ التكنيسيوم 99 عن الموليبدان 4.1
 - 1.4.1. اكتب معادلة التحول النووي محدِّدا نوع التفكك.
 - 2.4.1. مثِّل هذا الإشعاع على المخطط (Z,N) المقابل.

- 2. من أجل تشخيص حالة عظام مريض يستعمل التكنيسيوم 99 في التصوير بالإشعاع النووي، يحقن المريض بحرعة من التكنيسيوم 99 نشاطها الإشعاعي $A_0=5\times 10^8$ Bq في اللحظة t=0 وتؤخذ صورة للعظام المفحوصة في اللحظة t_1 عندما يصبح النشاط الإشعاعي للجرعة $A_1=0,6A_0$.
 - . $\lambda = 3.2 \times 10^{-5} \ s^{-1}$ هي أن قيمة ثابت النشاط الإشعاعي للتكنيسيوم 99 هي أن قيمة ثابت النشاط الإشعاعي .1.2
 - t=0 التي تم حقنها في اللحظة N_0 عدد الأنوية .4
 - .3.2 حدِّد اللحظة t_1 التي أُخِذت عندها صورة العظام.
 - .4.2 جد المدة الزمنية t_2 التي من أجلها يختفي النشاط الإشعاعي للجرعة المحقونة في جسم المربض.

التمرين التجريبي: (06 نقاط)

يستعمل النشادر NH_3 في عدة مجالات منها تصنيع الأسمدة الآزوتية وكذلك في صناعة الأدوية والبلاستيك وغيرها من المنتجات.

معطيات:

- ◄ تمت القياسات عند درجة الحرارة 25°C
 - $K_e = 10^{-14}$ الجداء الشاردي للماء -

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقنى رياضي \بكالوريا 2020

- . pH=10,75 فو $c_{\scriptscriptstyle B}=2\times 10^{-2} mol\cdot L^{-1}$ تركيزه المولي ، NH تركيزه النشادر ($S_{\scriptscriptstyle B}$) للنشادر .1
 - 1.1. اكتب معادلة انحلال النشادر في الماء.
 - .2.1 احسب نسبة التقدم النهائية $au_{\scriptscriptstyle f}$ لهذا التفاعل، ماذا تستنتج?
 - .3.1 عبِّر عن ثابت التوازن K لهذا التفاعل بدلالة و $c_{\scriptscriptstyle B}$ و تم احسب قيمته.
 - . بيِّن أنّ $pKa = log \frac{K}{K_e}$ يحقق العلاقة $pKa = NH_4^+(aq) / NH_3(aq)$ ثم احسبه. 4.1
- 2. نقوم بمعايرة pH مترية لحجم $V_B = 30mL$ من المحلول (S_B) وذلك بواسطة محلول (S_A) لحمض كلور . C_A تركيزه المولي C_A تركيزه المولي (C_A) تركيزه المولي المولي C_A

اكتب معادلة التفاعل الكيميائي المنمذج للتحول الحادث أثناء المعايرة.

- V_A المزيج بدلالة حجم الحمض المضاف PH المزيج بدلالة حجم الحمض المضاف V_A
 - 1.3. عرّف نقطة التكافؤ ثم عيّن إحداثيتيها.
 - $.c_A$ التركيز المولي .2.3
 - 3.3. في غياب جهاز الـ pH متر نستعمل الكاشف الملون أحمر الكلوروفينول مجال تغيره اللوني [4,8-6,4].
 - 1.3.3. عرِّف الكاشف الملون.
 - 2.3.3. هل الكاشف أحمر الكلوروفينول مناسب في هذه المعايرة؟ علّل.
 - كي مرّد حجم الحمض المضاف لكي .3.3.3 $. \left[NH_4^+ \right]_f = 5 \left[NH_3 \right]_f$ تتحقق النسبة

4. تأكّد بيانيا من قيمة pKa الثنائية pKa الثنائية $NH_4^+(aq)/NH_3(aq)$ الثنائية pKa

pH

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 05 من 08 إلى الصفحة 08 من 08) التمرين الأوّل: (04 نقاط)

تستعمل المكثفات في عدة أجهزة كهربائية منها آلة التصوير الفوتوغرافي، والتي تساهم أساسا في إعطاء مصباح الفلاش ومضة ساطعة والذي يحتاج لتوتر أكبر من 250V لحدوث توهج كافي يسمح بأخذ صورة جيدة.

يهدف هذا التمرين إلى دراسة مبدأ عمل وماض (فلاش) آلة تصوير.

من أجل ذلك يُستعمل عمود كهربائي قوته المحركة الكهربائية $U_{\scriptscriptstyle I}=1,5\,\mathrm{V}$ ، والذي يُضخم بدارة كهربائية مناسبة إلى توتر مستمر $U_{\scriptscriptstyle 2}=300\,\mathrm{V}$ لتغذية دارة المكثفة كما في الشكل 1.

 $R = 1k\Omega$ معطيات: سعة المكثفة $C = 150 \,\mu$ F مقاومة الناقل الأومى

- 1. نضع البادلة K في الوضع 1
- 1.1. فسِّر ماذا يحدث على مستوى لبوسى المكثفة.
 - au2.1 عطى عبارة ثابت الزمن 2.1

بيِّن بالتحليل البعدي أنه متجانس مع الزمن ثم احسب قيمته.

- .3.1 لحسب قيمة الطاقة الأعظمية $E_{C_{max}}$ التي تخزنها المكثفة.
 - 4.1. في حالة شحن المكثفة باستعمال عمود كهربائي قوته $.U_{I} = 1.5\,\mathrm{V}$ المحركة الكهربائية

- $.U_{\,2}$ مع $E_{\,C_{max}}^{\,\prime}$ مبينا الفائدة من شحن المكثفة بالتوتر .2.4.1
- .2 بعد شحن المكثفة كليا تحت التوتر U_2 وعند اللحظة وt=0 نغير وضع البادلة K إلى الوضع 2.
 - 1.2. مثِّل الدارة الكهربائية في هذه الحالة مبيِّنا الجهة الحقيقية للتيار وأسهم التوترات الكهربائية.
 - .2.2 جِد المعادلة التفاضلية التي يحققها التوتر $u_{c}\left(t\right)$ بين طرفى المكثفة.
 - $u_{C}\left(t\right)=U_{2}e^{-\frac{t}{\tau'}}$ هو أنّ حل المعادلة التفاضلية السابقة هو 3.2. إذا علمت أنّ حل
 - 1.3.2. بيِّن أنّ هذا الحل يتوافق مع المنحنى البياني

.2 الشكل $ln u_C = f(t)$

- 2.3.2. باستغلال البيان جِد قيمة كل من ثابت الزمن τ ومقاومة مصباح الفلاش r.
- وماض عمل عمل وماض عمل عمل وماض عمل وماض عمل وماض (فلاش) آلة التصوير τ

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقنى رياضي \بكالوريا 2020

التمرين الثاني: (04 نقاط)

معطيات:

 $1u = 931,5 \text{MeV}/C^2, \ N_{\text{A}} = 6,023 \times 10^{23} \, \text{mol}^{-1}, \ m(^{235}_{92}\text{U}) = 234,99345 u \ , \ m(^{97}_{39}\text{Y}) = 96,91813 u \\ m(^{137}_{7}\text{I}) = 136,91787 u \ , \ m(^{1}_{0}n) = 1,00866 u$

1. تعتبر الشمس مركزا لتفاعلات اندماج عدة وهي تحتوي على عدة نظائر للهيدروجين والهيليوم.

إن تفاعل الاندماج الأكثر توقعا مستقبلا في المفاعلات النووية موضح بالمعادلة:

$$_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + _{0}^{1}n$$
(1)

- 1.1. عرّف تفاعل الاندماج.
- 2.1. يمثل الشكل 3 مخطط الحصيلة الكتابية للتفاعل (1).
 - Δm_2 ماذا يمثل كل من Δm و Δm ?
 - $\cdot \Delta m_2$ و Δm_1 ، کل من Δm و Δm_2 و .2.2.1
 - 3.1. علما أنّ طاقة الربط لنواة الديتريوم $E_\ell({}^2_1{\rm H})=2,226\,{
 m MeV}$ الربط لنواة التربتيوم $E_\ell({}^3_1{\rm H})$
 - الربط لنواة التريتيوم $E_{\ell}({}_{1}^{4}\mathrm{He})$. الربط لنواة الربط لنواة الهيليوم $E_{\ell}({}_{2}^{4}\mathrm{He})$ والطاقة المحررة E_{llib} من التفاعل (1) واستنتج الطاقة

 $^{3}_{1}$ المحررة $^{2}_{1lib}$ عند اندماج $^{2}_{1}$ من الهيدروجين $^{2}_{1}$ $^{3}_{1}$ يحتوي على نفس كمية المادة من $^{1}_{1}$ و $^{1}_{1}$

2. يستعمل اليورانيوم 235 كوقود نووي في المفاعلات النووية لغرض انتاج الطاقة الكهربائية حيث تحدث

له عدة تفاعلات نووية من بينها التفاعل التالى:

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{Z}^{137}I + {}_{39}^{97}Y + x_{0}^{1}n \dots (2)$$

- 1.2. أعط تركيب نواة اليورانيوم 235.
- z و z من x و z . يتطبيق قانوني الإنحفاظ، حدد كل من
 - 3.2. ما اسم التفاعل (2)؟
- .4.2 من اليورانيوم E_{2lib} من اليورانيوم (2) واستنتج الطاقة المحررة E_{2lib} عند استعمال E_{2lib} من اليورانيوم E_{2lib}
 - 9.2. قارن بين قيمتى الطاقتين المحررتين E'_{1lib} و ماذا تستنج. عاداً تستنج

التمرين الثالث: (06 نقاط)

ندرس حركية التفاعل الحادث بين نوع كيميائي ${\rm HCOOCH_2CH_2}$ ومحلول الصودا $({\rm Na^+ + HO^-})$ عن طريق قياس ناقلية المزيج التفاعلي بدلالة الزمن.

معطیات:

- . $25^{\circ}C$: الناقليات النوعية المولية الشاردية عند درجة الحرارة:
- ightharpoonup يهمل التركيز المولي لشوارد الهيدرونيوم $ightharpoonup H_3O^+$ أمام التركيز المولي لشوارد الهيدروكسيد

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقنى رياضي \بكالوريا 2020

نحقّق عند اللحظة c_0 مزيجا من محلول الصودا حجمه $V_0=200\,m$ تركيزه المولي و $v_0=2mmol$ من النوع الكيميائي $V_0=200m$ ، نعتبر حجم المزيج التفاعلي هو $V_0=200m$ ، نعتبر حجم المزيج التفاعلي التفاعلي هو $V_0=200m$

معادلة التفاعل التام المنمذج للتحول الحاصل هي:

$$HCOOCH_2CH_3(\ell) + HO^{-}(aq) = HCOO^{-}(aq) + CH_3CH_2OH(aq)$$

باستعمال برمجية مناسبة تحصلنا على المنحنيين الموضحين في الشكل 4 (تطور الناقلية بدلالة تقدم التفاعل) والشكل 5 (تطور الناقلية بدلالة الزمن).

- 1. هل التفاعل الكيميائي الحادث سريع أم بطيء؟ علّل.
- 2. اذكر الأنواع الكيميائية المسؤولة عن ناقلية المزيج التفاعلي.
 - 3. أنشئ جدولا لتقدم التفاعل.
- $G = \frac{K}{V} (\lambda_{\text{HCOO}^-} \lambda_{\text{HO}^-}) x + K \cdot c_0 (\lambda_{\text{HO}^-} + \lambda_{\text{Na}^+})$: د. بيّن أنّ ناقلية المزيج التفاعلي في لحظة t تكتب بالشكل : 4. بيّن أنّ ناقلية المزيج التفاعلي في لحظة t تكتب بالشكل : t ثابت خلية قياس الناقلية .
 - . c_0 الشكل 4)، جِد قيمة كل من ثابت الخلية K والتركيز المولي الابتدائي 6.
 - t=15min عند اللحظة من المنحنيين السابقين، جِد التركيب المولي للمزيج التفاعلي عند اللحظة t=15min
- بيّن أن عبارة السرعة الحجمية للتفاعل عند لحظة t تكتب بالشكل: $\frac{1}{K(\lambda_{ ext{HCOO}^-}-\lambda_{ ext{HO}^-})}$ ثم احسب قيمة 7.

t=15min السرعة الحجمية للتفاعل عند اللحظة

التمرين التجريبي: (06 نقاط)

بعد دراسته لموضوع السقوط الشاقولي للأجسام الصلبة في الهواء، أراد محمد تطبيق ما درسه.

 $ho=88,5\,kg\cdot m^{-3}$ وكتلتها الحجمية $V=1,13\times 10^{-4}\,m^3$ وكتلتها الحجمية صغيرة متجانسة حجمها t=0 التسقط شاقوليا في الهواء عند اللحظة t=0 دون سرعة ابتدائية من النقطة t=0 مبدأ الفواصل الواقعة على ارتفاع t=0 عن سطح الأرض.

اختبار في مادة: العلوم الفيزيائية \ الشعبة: رياضيات، تقني رياضي \بكالوريا 2020

 $g = 9.8 \, m \cdot s^{-2}$ الكتلة الحجمية للهواء $ho_0 = 1.3 \, kg \cdot m^{-3}$ ، شدة الجاذبية الأرضية

ولدراسة حركة الكرة اختار معلما خطيا (\overrightarrow{Oz}) محوره شاقولي موجه نحو الأسفل مرتبط بمرجع سطح أرضي الذي نعتبره عطاليا، أنظر الشكل δ .

k حيث $\overrightarrow{f} = -k \overrightarrow{v}$ الكرة أثناء سقوطها لدافعة أرخميدس $\overrightarrow{\Pi}$ وكذلك لقوة إحتكاك \overrightarrow{v} حيث ثابت موجب، و v سرعة مركز عطالة الكرة.

- . \overrightarrow{P} وبيِّن أنه يمكن إهمال الدافعة $\overrightarrow{\Pi}$ أمام ثقل الكرة 1
 - 2. مثِّل القوى المطبقة على الكرة خلال سقوطها.
- k ، g ، ρ ، V بدلالة: V بدلالة التي تحققها السرعة V بدلالة التفاضلية التي تحققها السرعة V
 - ν_{lim} عبارة السرعة الحدية للكرة 4.
- 5. بواسطة التصوير المتعاقب واستعمال برمجية مناسبة تمكن من الحصول على المنحنيين (1) و (2) الممثلين في الشكل 7 التطور الزمني لكل من الفاصلة y(t) وسرعة مركز عطالة الكرة v(t) أثناء السقوط.

- الشكل 7
- uانيًا قيمة السرعة الحدية u1.5
- 2.5. حدّد وحدة الثابت k في الجملة الدولية للوحدات. احسب قيمته.
- 3.5. احسب معامل توجيه المماس للمنحنى (1) في اللحظة t=0. وماذا يمثل فيزبائيا؟
 - 4.5. عين بيانيًا المدة الزمنية للسقوط.
 - 5.5. ما هي مدة كل من النظام الانتقالي والنظام الدائم؟
 - 6.5. تأكد من قيمة السرعة الحدية من المنحني (2).
- 6. مثِّل كيفيا منحنى تطور السرعة بدلالة الزمن عند إهمال الاحتكاك أمام ثقل الكرة، وما طبيعة حركة الكرة عندئذ؟

انتهى الموضوع الثاني

الشكل 6

العلامة		/ t "Ext
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25×2	التمرين الأول: (04 نقاط) .1 .1 .1 .1 .1 .1 .1 .1 .1 .
		$u_R(t)$ يجاد المعادلة التقاضلية التي يحققها التوتر الكهربائي بين طرفي النّاقل الأومي . $u_R(t)$
2	0,25	بتطبیق قانون جمع التّوترات وقانون أوم: $E = u_R(t) + u_b(t)$ $E = u_R(t) + r \cdot i(t) + L \cdot \frac{di}{dt}$ $E = u_R(t) + r \cdot \frac{u_R(t)}{R} + L \cdot \frac{1}{R} \cdot \frac{du_R}{dt}$
	0,25	$\frac{du_R}{dt} + \frac{(R+r)}{L} \cdot u_R(t) = \frac{E \cdot R}{L}$
	0,25 0,25	$u_R(t)=A\left(1-e^{-rac{t}{B}} ight)$; $\dfrac{du_R}{dt}=A\cdot \dfrac{1}{B}\cdot e^{-rac{t}{B}}:B$ وبالتّعويض في المعادلة التّقاضلية نجد: $\left\{A\cdot \dfrac{1}{B}\cdot e^{-rac{t}{B}}+\dfrac{\left(R+r\right)}{L}\cdot A\left(1-e^{-rac{t}{B}} ight)=\dfrac{RE}{L} ight\}$ $B=\dfrac{L}{\left(R+r\right)}$; $A=\dfrac{RE}{\left(R+r\right)}$
		$u_R(t)$ باستغلال حل المعادلة التّفاضلية نُبيِّن أن منحنى الشّكل 1 يمثّل 1 .4.1
	0,5	$u_R(t)+u_b(t)=E$ من أجل $u_R(0)=0$ ومن قانون جمع التّوترات $u_R(0)=0$ نجد: $u_R(0)=0$ ومن منحنى الشّكل $u_R(t)$ يمثّل $u_R(t)$ في اللّحظة $u_R(t)=E$ ومنه منحنى الشّكل $u_R(t)=E$ فإن $u_R(t)=E$ فإن $u_R(t)=E$
		$u_R = L \cup_{i} l + i $ 2.
2	0,25×3	$t(s)$ 0 $ au$ 5 $ au$ اكمال الجدول: $U_b({\sf V})$ 6,30 2,77 0,74
		ملاحظة: تمنح 0,5 في حالة كانت الطريقة دون الوصول للنتيجة.

العلامة		(t "\$t) a t() 7 1 Nt
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	$u_b({ m V})$ يبين طرفي $u_b({ m V})$. $u_b(t)$. u
	0,25	$rI_0 = E - RI_0 = 0.7V$
	0,25	$r = \frac{0.7}{I_0} = \frac{0.7}{0.035} = 20$ فيمة r مقاومة الوشيعة المستعملة المستعملة عملة عملة المستعملة ال
		4.2. اختيار الفريق التّقني والتّبرير: L لتحديد اختيار الفريق التّقني يجب حساب ذاتية الوشيعة $ au=0.01s$ حساب ثابت الزمن $ au$: من أحد البيانين نجد $ au=0.01s$
		$L = \tau(R+r) = 0.01 \times 180 = 1.8H$
	0,25 0,25	ومنه الوشيعة المستعملة هي رقم 3
	0,23	التّمرين الثّاني: (04 نقاط)
0,25	0,25	1. المرجع المناسب: المرجع الهيليومركزي
0,25	0,25	2. نص القانون الأول لكبلر: تدور الكواكب في مدارات اهليلجية حول الشّمس التي تمثل أحد محرقيه.
0	0,25	3. عبارة السّرعة المدارية: بتطبيق القانون الثّاني لنيوتن على أحد الكواكب في المرجع $\sum \overrightarrow{F}_{ext} = m \overrightarrow{a}$ الهيليومركزي الذي نعتبره عطاليا: $a_n = \frac{v^2_{orb}}{r}$ حيث $F = G \frac{M_s m}{r^2} = m \ a_n$ وبالإسقاط على المحور الناظمي نجد $F = G \frac{M_s m}{r^2} = m \ a_n$
3,5	0,25	$v_{orb} = \sqrt{\frac{GM_s}{r}}$ بالتّعویض نجد $\frac{M_s.m}{r^2} = m \; \frac{v_{orb}^2}{r} = m \; \frac{v_{orb}^2}{r}$ نخلص إلى $\frac{T^2}{r^3} = \frac{4\pi^2}{GM_s}$ بالعلاقة: 2.3.
	0, 25 0, 25	$T^2 = rac{4\pi^2}{GM_s}$ الدينا مما سبق: $V_{orb} = rac{2\pi . r}{v_{orb}}$ وكذلك $V_{orb} = \sqrt{rac{GM_s}{r}}$ الدينا مما سبق: الدينا مما سبق: $V_{orb} = \sqrt{rac{GM_s}{r}}$

العلامة		/ * "£** -
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	3.3. حساب كتلة الشّمس:
	-, -	$rac{T^2}{r^3}rac{4\pi^2}{GM_s}$ \Rightarrow $M_s=rac{4\pi^2r^3}{GT^2}$
	0,25	$M_{s} = 2,00 \times 10^{30} \ kg$ باستعمال المعطيات الخاصة بكوكب الأرض: نجد
	$0,5\times2$	$r = 5,20 \; U.A$: المشتري $T = 1,89 \; ans$ المشتري. $T = 1,89 \; ans$
		$v_{orb} = \sqrt{\frac{GM_s}{r}}$ السّرعة المدارية للأرض والمريخ: لدينا .5.3
	0,25	$v_{orb} = \sqrt{\frac{6,67 \times 10^{-11} \times 2,0 \times 10^{30}}{1,5 \times 10^{11}}} = 29,8 \ km \cdot s^{-1}$ النّسبة إلى الأرض لدينا –
	0,25	$v_{orb} = \sqrt{\frac{6,67 \times 10^{-11} \times 2,0 \times 10^{30}}{1,53 \times 1,5 \times 10^{11}}} = 24,1 \ km \cdot s^{-1}$ بالنّسبة إلى المريخ لدينا –
		6.3. تكون السنة الأرضية أقل من السنة المريخية لأن السّرعة المدارية للأرض أكبر من
	0,5	السّرعة المدارية للمريخ ونصف قطر دوران الأرض حول الشّمس أصغر من نصف قطر
		دوران المريخ حول الشّمس فالأرض تقطع المسار الدائري في زمن أقل.
		التّمرين الثّالث: (06 نقاط)
	0,5	1.1. النظائر: هي أنوية من نفس العنصر لها نفس العدد الشحني Z وتختلف في العدد
	0,5	الكتلي A
		 تتركب نواة التكنيسيوم 99 من: 43 بروتونا، و 56 نيترونا.
	0,25	يفضل استعمال النظير 99 لأن نصف عمره $t_{\frac{1}{2}}$ أصغر، وهذا يجعله يوفر الوقت.
	0,25	$\frac{E_{l}(^{99}Tc)}{A} = 8,61 \text{MeV} / nuc$
2.5	0,25	$\frac{E_l(^{97}Tc)}{A} = 8,62 \text{MeV} / nuc$
3,5	0,5	النظير الأكثر استقرارا هو التّكنيسيوم 97 لأن طاقة الرّبط لكل نوّية فيه أكبر من طاقة الرّبط
	0,3	لكل نوّية التّكنيسيوم 99.
	0,5	$4.1.$ معادلة التّحول النووي: $e o {}^{99}_{43} Tc + {}^{0}_{-1} e$
	0,25	نمط التّفكك eta^- نمط التّفكك المراب ال
		. التّمثيل على مخطط (Z,N) على مخطط (Z,N)
	0,5	58 57 56 55 41 42 43 44

رمة (العلا	/ * "\$p1 -
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	$\lambda = \frac{ln2}{t_{1/2}}$ دينا العلاقة: $\frac{ln2}{t_{1/2}}$ عند المراجعة: $\frac{ln2}{t_{1/2}}$ دينا العلاقة: $\frac{ln2}{t_{1/2}}$ دينا العلاقة: $\frac{ln2}{t_{1/2}}$
	0,25	. $\lambda = \frac{ln2}{6 \times 3600} = 3,2 \times 10^{-5} s^{-1}$ ت.ع:
	0,25	: $t=0$ النوية N_0 الني تم حقنها في اللّحظة $A_0=\lambda N_0\Rightarrow N_0=\frac{A_0}{\lambda}$ الدينا: $X_0=\lambda N_0$
	0,25	. $N_0 = \frac{5 \times 10^8}{3.2 \times 10^{-5}} = 1,56 \times 10^{13} $ noyaux
2,5		$:t_1$: تحدید اللّحظة 3.2.
	0,25	: من قانون التّناقص الإِشعاعي $A(t) = A_0.e^{-\lambda t}$ ، نكتب $\ln\left(A(t)\right) = \ln\left(A_0e^{-\lambda t}\right) \Rightarrow -\lambda t = \frac{\ln\left(A(t)\right)}{\ln A_0} \Rightarrow t = \frac{\ln\left(\frac{A_0}{A(t)}\right)}{\lambda} = -\frac{\ln\left(0.6\right)}{\lambda}$
	0,25	$ln(A(t)) = ln(A_0e^{-\lambda t}) \Rightarrow -\lambda t = \frac{ln(A(t))}{lnA_0} \Rightarrow t = \frac{(A(t))}{\lambda} = -\frac{ln(0,0)}{\lambda}$
	0,25	$t = -\frac{ln(0,6)}{3,2 \times 10^{-5}} = 15963 s = 4,43 h$ ت.ع:
	0,25	وهي الفترة التي يجب على المريض انتظارها من أجل أخذ صورة للعظام.
	0,25×2	د. مدة اختفاء النّشاط: $t_2 = 5\tau = 5\frac{1}{\lambda} = \frac{5}{3.2 \times 10^{-5}} = 156250s = 1,8 \ jours$
		التّمرين التّجريبي: (06 نقاط)
		1. 1.1. معادلة انحلال النّشادر في الماء:
	0,25	$NH_3(g) + H_2O(\ell) = NH_4^+(aq) + HO^-(aq)$
	0,25×2	ينسبة التّقدم النّهائية $ au_f$ لهذا التّفاعل $ au_f = rac{x_f}{x_{max}} = rac{\left[ext{HO}^{ au} ight]_f}{c_B} = rac{10^{pH-14}}{c_B}$
3	0,25	$\tau_f = \frac{10^{10,25-14}}{2 \times 10^{-2}}$
	0,25	$ au_f = 2.8 imes 10^{-2}$ نستنتج أن التّفاعل غير تام لأن $ au_f < 1$

العلامة		/ t "\$t - · · t()
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		$ au_f$ عبارة ثابت التّوازن K لهذا التّفاعل بدلالة روء c_B و c_B
		$\begin{bmatrix} HO^{-} \end{bmatrix}_{\epsilon} \begin{bmatrix} NH_{4}^{+} \end{bmatrix}_{\epsilon} \qquad \begin{bmatrix} HO^{-} \end{bmatrix}_{\epsilon}^{2} \qquad \qquad \tau_{\epsilon}^{2}$
	$0,25\times3$	$K = \frac{\left[\text{HO}^{-} \right]_{f} \left[\text{NH}_{4}^{+} \right]_{f}}{\left[\text{NH}_{3} \right]_{f}} = \frac{\left[\text{HO}^{-} \right]_{f}^{2}}{c_{B} - \left[\text{HO}^{-} \right]_{f}} \Rightarrow K = c_{B} \frac{\tau_{f}^{2}}{1 - \tau_{f}}$
	0,25	$K = 2 imes 10^{-2} rac{\left(2,8 imes 10^{-2} ight)^2}{1 - \left(2,8 imes 10^{-2} ight)} \Rightarrow K = 1,6 imes 10^{-5}$ حساب قیمته:
		$ ho Ka$ التّحقق من علاقة $ ho Ka$ الثنائية: $ ho NH_4^+$ / $ ho NH_3$ الثنائية: $ ho NH_4^+$
	0,25	$Ka = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+} \right]_{f} \left[\mathbf{N}\mathbf{H}_{3} \right]_{f}}{\left[\mathbf{N}\mathbf{H}_{4}^{+} \right]_{f}} = \frac{K_{e}}{K}$
	0,25	$-\log Ka = -\log \frac{K_e}{K} \Rightarrow pKa = \log \frac{K}{K_e}$
	0,25	$pKa = log \frac{1,6 \times 10^{-5}}{10^{-14}} \Rightarrow pKa = 9,2$ حساب قیمته:
0.25	0.25	2. معادلة التّفاعل الكيميائي المنمذج للتّحول الحادث أثناء المعايرة:
0,25	0,25	$NH_3 + H_3O^+ = NH_4^+ + H_2O$
		3.
	0,25	1.3. تعريف نقطة التكافؤ: هي النّقطة التي يكون فيها المزيج في شروط ستوكيومترية.
	0,25	$E\left(V_{AE}=30mL;pH_{E}=5,6 ight)$ إحداثيتا نقطة التّكافؤ: بطريقة المماسين نجد
		: عند التّكافؤ c_A عند: c_A عند التّكافؤ
2,25	$0,25\times2$	$c_A V_{AE} = c_B V_B \Rightarrow c_A = \frac{c_B V_B}{V_{AE}} \Rightarrow c_A = \frac{2 \cdot 10^{-2} \times 30}{30} \Rightarrow c_A = 2 \times 10^{-2} \text{mol} \cdot L^{-1}$
	0,25	3.3. كاشف ملون: مركب كيميائي يتميز بالثّنائية $In^- HIn / In^-$ يختلف عن 1.3.3.
		In^- لون
	0,25	2.3.3. الكاشف الملون أحمر الكلوروفينول مناسب في هذه المعايرة لأن مجال تغيره اللوني
	0,23	$\cdot pH_{\scriptscriptstyle E} = 5.6$ يحتوي على القيمة

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): رياضيات + تقني رياضي/ بكالوريا 2020

العلامة		/ 1 "\$1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		$\left[\mathrm{NH}_{4}^{+} \right]_{f} = 5 \left[\mathrm{NH}_{3} \right]_{f}$ حجم الحمض المضاف لكي تتحقق النسبة
	$0,25\times2$	$\left[\mathrm{NH}_{4}^{+}\right]_{f} = 5\left[\mathrm{NH}_{3}\right]_{f} \Rightarrow \frac{\left[\mathrm{NH}_{3}\right]_{f}}{\left[\mathrm{NH}_{4}^{+}\right]_{f}} = \frac{1}{5} = \frac{\mathscr{O}_{B} V_{B} - \mathscr{O}_{A} V_{A}}{\mathscr{O}_{A} V_{A}} \Rightarrow \frac{1}{5} = \frac{V_{B}}{V_{A}} - 1$
	0,25	$\frac{V_B}{V_A} = \frac{6}{5} \Rightarrow V_A = \frac{5}{6} \times 30 \Rightarrow V_A = 25 mL$
		$pH = 8.5$: ومنه $pH = pKa + log \frac{\left[NH_3\right]_f}{\left[NH_4^+\right]_f} = pKa + log \frac{1}{5}$
		$V_A = 25 mL$ وباستعمال المنحنى نجد
0,5	0,25	$pH=pKa$ يكون $V_{\scriptscriptstyle B}=rac{V_{\scriptscriptstyle BE}}{2}=15mL$ عند نقطة نصف التّكافؤ
0,5	0,25	pH = pKa = 9,2 :وباستعمال المنحنى نجد

العلامة		/ ***ti ~ * *ti\ 7 1 N*1 1*-
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)
	0,25	التمرين الأول: (04 نقاط) 1. 1.1. يحدث شحن للمكثفة حيث تتراكم الشحنات الكهربائية السّالبة على اللبوس المتصل بالقطب السّالب للمولد وبالتّالي تظهر شحنات كهربائية موجبة على اللبوس المتصل بالقطب الموجب للمولد.
	0,25	يالتّحليل البعدي: $[\tau] = [R][C] \Rightarrow [\tau] = \frac{[U] \cdot [I][T]}{[U]} \Rightarrow [\tau] = [T]$ ومنه τ متجانس مع الزمن
1,75	0,25	auحساب قيمته العددية: $ au=0.15 m s$ $ au=0.15 m s$
		3.1. حساب قيمة الطاقة العظمى E_{Cmax} التي تخزنها المكثفة:
	0,25	$E_{Cmax} = \frac{1}{2}CU_2^2 \Rightarrow E_{Cmax} = \frac{1}{2} \times 150 \times 10^{-6} \times (300)^2 \Rightarrow E_{Cmax} = 6,75 \text{ J}$
	0,25	$U_1 = 1,5\mathrm{V}$ المخزنة في المكثفة حالة استعمال مولد توتر $E'_{Cmax} = \frac{1}{2} \times 150 \times 10^{-6} \times \left(1,5\right)^2 \Rightarrow E'_{Cmax} = 168,75 \times 10^{-6}\mathrm{J}$
	0,25	$E_{Cmax} = 4 \times 10^4 E'_{Cmax}$ ومنه $\frac{E_{Cmax}}{E'_{Cmax}} = \frac{6,75}{168,75 \times 10^{-6}} = 4 \times 10^4$ ومنه .2.4.1
	0,25	الفائدة من شحن المكثفة بالتّوتر U_2 : الطاقة العالية التي تخزنها المكثفة تسمح بتوهج كافي للمصباح من أجل أخذ صورة واضحة.
2,25	0,25	ري تمثيل الدارة U_c U_c U_c U_r U_r U_r U_r
	0,25	2.2. المعادلة التّفاضلية التي يحققها التّوتر u_C بين طرفي المكثفة: $u_C - u_R = 0 \Rightarrow u_C - ri = 0 \Rightarrow u_C - r(-C\frac{du_C}{dt}) = 0$ حسب قانون جمع التّوترات $\Rightarrow \frac{du_C}{dt} + \frac{1}{rC}u_C = 0$

العلامة		/ *\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
	0,25	عادلة المنحنى: $Lnu_{C}\left(t\right)=f\left(t\right)$ البيان $u_{C}\left(t\right)=U_{2}e^{\frac{-t}{\tau}}\Rightarrow lnu_{C}\left(t\right)=\ln U_{2}e^{\frac{-t}{\tau}}\Rightarrow lnu_{C}\left(t\right)=-\frac{1}{\tau}t+lnU_{2}$ معادلة المنحنى: $lnu_{C}\left(t\right)=at+b$ بالمطابقة الحل يتوافق مع البيان.
	0,25	$-\frac{1}{\tau} = a$ $a = \frac{0-5.7}{(4.5-0)10^{-3}} = -1.27 \times 10^{3}$ حساب قیمة ثابت الزمن τ : تابت الزمن عنه ثابت الزمن الز
	0,25	$ au' = \frac{1}{1,27 \times 10^3}$ $ au' = 7,87 \times 10^{-4} s$ مقاومة مصباح الفلاش:
	0,25	$\tau' = rC \Rightarrow r = \frac{\tau'}{C}$
	0,25	$r=rac{7,87 imes10^{-4}}{150 imes10^{-6}}$ $r=5,2\Omega$ $rac{ au}{ au}=rac{0,15}{7,87 imes10^{-4}}=190,6: au$ و $ au$
	0,25	au=190,6 au' هذه القيمة تتوافق مع استعمال آلة التّصوير (مدة التّغريغ صغيرة جدا أمام مدة الشحن).
	0,25	التمرين الثّاني: (04 نقاط) 1. تعريف الاندماج: هو تفاعل نووي يحدث فيه اندماج نواتين خفيفتين لتشكيل نواة أثقل
		منهما مع تحرير طاقة عالية ونيترونات.
2,5	0,25 0,25	.2.1 Δm النقص الكتلي للتفاعل Δm .1.2.1 Δm النقص الكتلي لنواة الهيليوم Δm_2
	0,25	Δm , Δm_1 , Δm_2 حساب کل من $\Delta m_1 = 5,04054 - 5,02905 = 0,01149u$
	0,25 0,25	$\Delta m_2 = 5,01016 - 5,04054 = -0,03038u$ $\Delta m = 5,01016 - 5,02905 = -0,01889u$

العلامة		/ ***\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		3.1. استنتاج طاقة الربط النووي
	0,25	$E_{\ell}({}_{1}^{3}\mathrm{H}) + E_{\ell}({}_{1}^{2}\mathrm{H}) = \Delta m_{1} \times 931,5$
	0,23	$E_{\ell}({}^{3}_{1}\mathrm{H}) = \Delta m_{1} \times 931, 5 - E_{\ell}({}^{2}_{1}\mathrm{H})$
		$E_{\ell}(^{3}_{1}\text{H}) = 8,477\text{MeV}$
		4.1. حساب طاقة الربط النووي للهيليوم4 والطاقة المحررة من التّفاعل (1):
	0,25	$E_{\ell}({}_{2}^{4}\mathrm{He}) = \left \Delta m_{2} \right \times 931,5$
		$E_{\ell}({}_{2}^{4}\text{He}) = 28,3\text{MeV}$
	0,25	$E_{1lib} = \Delta m \times 931,5$
		$E_{llib} = -17,6 \text{MeV}$
	0,25	حساب E'_{1lib} المحررة من تفاعل اندماج lkg من الهيدروجين E'_{1lib}
	,	$\left E_{1lib}^{'} \right = \frac{m}{M(_{1}^{2}\text{H}) + M(_{1}^{3}\text{H})} \cdot N_{A} \cdot \left E_{1lib} \right = 2,12 \times 10^{27} \text{ MeV}$
		.2
		1.2. تركيب نواة اليورانيوم235:
	0,25	عدد البروتونات هو 92 ، عدد النيترونات هو 143
		تحدید x,z بتطبیق قانوني الانحفاظ:
	0,25	$235+1=137+97+x \Rightarrow x=2$ 92+0=z+39+0\Rightarrow z=53
	0,25	اسم التّفاعل (2) تفاعل الانشطار النووي.
	0,23	4.2. حساب الطاقة المحررة من التّفاعل (2):
		$\begin{vmatrix} E_{2lib} \end{vmatrix} = \Delta m \times 931,5$
1,5		$ E_{2lib} = 138,6 \text{MeV}$
	0,25	حساب E'_{2lib} المحررة من تفاعل انشطار $1kg$ من اليورانيوم 235
(0,25	$\left E_{2lib}^{'} \right = \frac{m}{M \binom{235}{92} \text{U}} \cdot N_{\text{A}} \cdot \left E_{2lib} \right = 3,55 \times 10^{26} \text{MeV}$
		5.2. المقارنة بين الطاقتين المحررتين:
	0,25	$\frac{\left E_{1lib}^{'}\right }{\left E_{2lib}^{'}\right } = 5,97 \Rightarrow \left E_{1lib}^{'}\right = 5,97 \left E_{2lib}^{'}\right $
	,	نستنتج أن الطاقة المحررة من تفاعل الاندماج أكبر من 5مرات من الطاقة المحررة من تفاعل
		الانشطار عند استعمال نفس كتلة الوقود.

العلامة		/ ***** * *** * **	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)	
0,25	0,25	التمرين الثّالث: (06 نقاط) 1. التّفاعل الحادث بطيء لأن مدته تقدر بعدة دقائق (الشّكل 5).	
0,75	0,25×3	2. الأفراد الكيميائية المسؤولة عن الناقلية:	
		3. جدول تقدم التّفاعل:	
		$HCOOCH_2CH_3 + HO^- = HCOO^- + CH_3CH_2OH$	
0,5	0,25	الحالة الابتدائية n_0 الحالة الابتدائية 0 الحالة الابتدائية	
		الحالة الانتقالية $n_0 - x$ $c_0 V - x$ x	
	0,25	الحالة النهائية n_0-x_f c_0V-x_f x_f x_f	
		4. عبارة الناقلية:	
	0,25	$G = K\sigma$; $\sigma = \lambda_{\text{HCOO}^-} \left[\text{HCOO}^- \right] + \lambda_{\text{HO}^-} \left[\text{HO}^- \right] + \lambda_{\text{Na}^+} \left[\text{Na}^+ \right]$	
1	0,25	$G = K(\lambda_{\text{HCOO}^{-}} \left[\text{HCOO}^{-} \right] + \lambda_{\text{HO}^{-}} \left[\text{HO}^{-} \right] + \lambda_{\text{Na}^{+}} \left[\text{Na}^{+} \right])$	
1	0,25	$G = K(\lambda_{\text{HCOO}} \frac{x}{V} + \lambda_{\text{HO}} \frac{c_0 V - x}{V} + \lambda_{\text{Na}^+} c_0)$	
	0,25	$G = \frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}}) x + K c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}})$	
	3,25	. <i>K</i> قيمة ثابت الخلية . <i>K</i>	
	0,25	G = a.x + b :4 من الشّكل 4:	
	0,25	$a=-0,75~\mathrm{S}\cdot mol^{-1}$ حيث a الميل a	
1.25	0,25	$b = 2.5 \times 10^{-3} \mathrm{S}$	
	0,25	$K = \frac{aV}{(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})}$ $a = \frac{K}{V}(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})$: بالمطابقة مع العلاقة النظرية	
	0,25	ncoo no	
		$c_0 = \frac{2,5 \times 10^{-3}}{K(\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})}$	
		t=15min التّركيب المولى للمزيج عند $t=15min$	
	0,25	G=1,6mS من الشّكل 5 عند $t=15min$ يكون	
		x=1,2mmol يكون $G=1,6mS$ عند 4 من الشّكل 4 عند	
1.25		$n_0=2mmol$ لدينا	
		$HCOOCH_2CH_3 + HO^- = HCOO^- + CH_3CH_2OH$	
	$0,25\times4$	t = 15min	

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
مجموعة	مجزأة 0,25 0,25 0,25	$v_V = \frac{1}{V} \frac{dx}{dt}$ $G = \frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}}) x + K c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})$ $x(t) = \frac{G(t) - K c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})}{\frac{K}{V} (\lambda_{\text{HCOO}^-} - \lambda_{\text{HO}^-})}$ $\frac{dx(t)}{dt} = \frac{1}{\frac{K}{V} (\lambda_{\text{HCOO}^-} - \lambda_{\text{HO}^-})} \cdot \frac{dG(t)}{dt}$ $v_V = \frac{1}{V} \frac{1}{\frac{K}{V} (\lambda_{\text{HCOO}^-} - \lambda_{\text{HO}^-})} \cdot \frac{dG(t)}{dt}$ $v_V = \frac{1}{K(\lambda_{\text{HCOO}^-} - \lambda_{\text{HO}^-})} \cdot \frac{dG(t)}{dt}$ $\left[\frac{dG(t)}{dt}\right]_{1\text{Smin}} = -0.035 \text{ms.} \text{min}^{-1}$
0,5	0,25	$v_V = -rac{1}{725V} \cdot rac{dG(t)}{dt}$ منه $x = rac{2.5 - G}{725}$ ومنه $x = rac{2.5 - G}{725}$ ومنه $v_V = -rac{1}{725.02} \cdot rac{0 - 2.15}{(61 - 0).60}$ ومنه $v_V = -rac{1}{725.02} \cdot rac{0 - 2.15}{(61 - 0).60}$ ومنه $v_V = 4.05.10^{-6} mol / L.s$ ($\frac{P}{\Pi} = rac{mg}{ ho_{air} V g} = rac{\rho}{ ho_{air}} = rac{88.5}{1.3} = 68$ $\frac{P}{\Pi}$ د حساب النّسية $\frac{P}{\Pi} = \frac{mg}{\rho_{air} V g} = \frac{\rho}{\rho_{air}} = rac{88.5}{1.3} = 68$ $\frac{P}{\Pi}$
	0,25	نعم، يمكن إهمال الدافعة أمام الثقل، لأن شدة \overrightarrow{P} أكبر من شدة $\overrightarrow{\Pi}$ بـ 68 مرة.
0,25	0,25	C تمثیل القوی المطبقة علی الکرة خلال سقوطها: C \overline{f} \overline{f} C \overline{f} \overline{f} C \overline{f} \overline{f} C \overline{f} C \overline{f} C \overline{f} C \overline{f} C \overline{f} \overline{f} C \overline{f} \overline{f} C \overline{f} \overline{f} \overline{f} C \overline{f}

العلامة		/ •1 to - • • • • • • • • • • • • • • • • • •
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
1	$0,25$ $0,25 \times 2$ $0,25$	3. المعادلة التّفاضلية التي تحققها سرعة مركز عطالة الكرة: \overline{F}_{ext} القانون الثّاني لنيوتن على الكرة في مرجع سطحي أرضي الذي نعتبره غاليليا: $\sum \overline{F}_{ext} = m \overline{a_G} \Leftrightarrow \overline{P} + \overline{f} = m \overline{a_G}$ $m g - k v = m \frac{dv}{dt} : P - f = m a_G : \frac{dv}{dt} + \frac{k}{\rho V} v = g : : \frac{dv}{dt} + \frac{k}{m} v = g : : : : : : : : : $
0,5	0, 25	dt ρV dt dt dt dt dt dt dt dt
	0,25	5
	0,25	$v_{lim} = 5 m \cdot s^{-1}$ نجد: (1) نجد: 1.5
	0,25×2	د. التّحليل البعدي: $k = \frac{f}{v} \Rightarrow [k] = \frac{[f]}{[v]} = \frac{[M] \cdot [L] \cdot [T]^{-2}}{[L] \cdot [T]^{-1}}$ $[k] = [M] \cdot [T]^{-1}$
	0,25	$[k] = [M] \cdot [I]$ وحدة k في الجملة الدولية هي: $kg \cdot s^{-1}$
3,25	0,25×2	$k = \frac{\rho V g}{v_{lim}} = \frac{88.5 \times 1.13 \times 10^{-4} \times 9.8}{5} = 1.96 \times 10^{-2} kg \cdot s^{-1}$: $k = \frac{\rho V g}{v_{lim}} = \frac{88.5 \times 1.13 \times 10^{-4} \times 9.8}{5} = 1.96 \times 10^{-2} kg \cdot s^{-1}$
		3.5. معامل توجيه المماس للمنحنى (1) في اللّحظة $t=0$
	0,25	$\left(\frac{\Delta v}{\Delta t}\right)_{t=0} = \frac{5}{0.5} = 10 \ m \cdot s^{-2}$
	0,25	ويمثل فيزيائيا تسارع حركة الكرة في اللّحظة $t=0$
	0,25	t=4s، $y=17,6m$ المدة الزّمنية للسقوط: من البيان (2)، لدينا من أجل .4.5
	0,25	$\Delta t_1 = 2,75s$ مدة النّظام الانتقالي: $\Delta t_1 = 2,75s$
	0,25	$\Delta t_2 = 1,25s$ مدة النّظام الدّائم: $\Delta t_2 = 1,25s$

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): رياضيات + تقني رياضي/ بكالوريا 2020

		6.5. التّأكد من قيمة السّرعة الحدّية باستعمال المنحنى (2)
		قيمة السّرعة الحدّية تمثل ميل المنحني (2) في لحظة من المجال الزّمني للنّظام الدّائم.
	0,25	
	0,25	$v_{lim} = \left(\frac{dy}{dt}\right)_{2,75s \le t \le 4s} = 5 m \cdot s^{-1}$
		مام $v\left(m.s^{-1}\right)$ أمام $v\left(m.s^{-1}\right)$ أمام
0,5	0,25 0,25	t(s) ويقل الكرة: $t(s)$ ويقل الكرة مستقيمة متسارعة بانتظام (سقوط حر).