Kolokwium domowe z Analizy 2

Gracjan Barski, album: 448189

May 25, 2024

Zad 1:

Wiemy, że Dq(0) istnieje wtw dla każdego $\vec{v} \in \mathbb{R}^2$ zachodzi:

$$g(\vec{v}) - g(0) = Dg(0)(\vec{v}) + h_0(\vec{v})$$

Gdzie $\lim_{||v||\to 0} \frac{h_0(\vec{v})}{||v||} \to 0$. Wystarczy wyznaczyć α dla których ta granica jest równa 0. Oznaczmy $\vec{v} = [u, v]$.

$$g(\vec{v}) - g(0) = 7u + 11v + d(u)(|u|^2 + |v|^2)^{\alpha}$$

Teraz mamy dwie opcje:

(a) d(u) = 0

Otrzymujemy $Dg(0)(\vec{v}) = 7u + 11v$ oraz $h_0(\vec{v}) = 0$, które spełnia żądany warunek.

(b) d(u) = 1

Z jedyności różniczki otrzymujemy $Dg(0)(\vec{v}) = 7u + 11v$ oraz $h_0(\vec{v}) = (|u|^2 + |v|^2)^{\alpha}$. Rozważmy poszukiwaną granicę:

$$L = \lim_{\|v\| \to 0} \frac{h_0(\vec{v})}{\|v\|} = \lim_{\|v\| \to 0} \frac{(|u|^2 + |v|^2)^{\alpha}}{\sqrt{|u|^2 + |v|^2}} = \lim_{\|v\| \to 0} (|u|^2 + |v|^2)^{\alpha - \frac{1}{2}}$$

Rozważmy różne przedziały dla α :

 $1^\circ \ \alpha \in (0; \tfrac{1}{2})$

$$L = \left(\frac{1}{|u|^2 + |v|^2}\right)^{\beta}$$

Dla pewnego $\beta \in (0; \frac{1}{2})$, co daje nam $L = \infty$. Wnioskujemy, że dla tych wartości α Dg(0) nie istnieje.

 2° $\alpha = \frac{1}{2}$

Wtedy $L = \lim_{||v|| \to 0} (|u|^2 + |v|^2)^0 = 1$. Więc tutaj Dg(0) też nie istnieje.

 $3^{\circ} \ \alpha > \frac{1}{2}$

Wtedy $L = \lim_{||v|| \to 0} (|u|^2 + |v|^2)^{\beta}$ dla pewnego $\beta \in (0, \infty)$. Oczywiście L = 0, więc Dg(0) istnieje i $Dg(0)(\vec{v}) = 7u + 11v$

 $Dg(0)(\vec{v})$ ma istnieć dla dowolnego \vec{v} , zwłaszcza dla takiego gdy d(u)=1, więc przedział z podpunktu (b) jest ostateczną odpowiedzią.

Zad 2:

M jest zbiorem zwartym, więc f osiąga swoje kresy z twierdzenia Weierstrassa. Przekształćmy warunki na M:

$$y = -x - y$$
$$z^2 + zx + x^2 = \frac{1}{2}$$

Traktujemy x jako parametr i obliczamy Δ :

$$\Delta = -3x^2 + 2$$

Wnioskujemy $x \in \left[-\sqrt{\frac{2}{3}}; \sqrt{\frac{2}{3}}\right]$ oraz $z = \frac{-x \pm \sqrt{-3x^2 + 2}}{2}$.

Teraz możemy potraktować f jako funkcję jednej zmiennej x. Mamy dwa przypadki:

(a) $f(x,y,z) = 2x + z = \frac{3x + \sqrt{-3x^2 + 2}}{2} = g(x)$. Szukamy przedziałów monotoniczności pochodnej:

$$g'(x) \ge 0$$

$$\frac{3}{2} - \frac{3x}{2\sqrt{-3x^2 + 2}} \ge 0$$

$$\frac{x}{\sqrt{-3x^2 + 2}} \le 1$$

$$x \le \sqrt{-3x^2 + 2}$$

Dla $x \leq 0$ nierówność jest spełniona, teraz zakładamy x > 0 i podnosimy do kwadratu i otrzymujemy:

$$x \le \frac{1}{\sqrt{2}}$$

Otrzymujemy maksimum lokalne dla $x_0 = \frac{1}{\sqrt{2}}$, $g(x_0) = \sqrt{2}$. Z warunku $x \ge y$ otrzymujemy $2x + z \ge 0$. Minimum lokalne będzie na skraju dziedziny, który trzeba będzie wyznaczyć z warunku $x \ge y$, czyli $2x + z \ge 0$:

$$3x + \sqrt{-3x^2 + 2} \ge 0$$

Dla $x \ge 0$ nierówność zachodzi, więc załóżmy x < 0.

$$\sqrt{3x^2 + 2} \ge -3x$$

Podnosimy do kwadratu:

$$x^2 \le \frac{1}{6}$$

Więc $x \in \left[-\frac{1}{\sqrt{6}}; \sqrt{\frac{2}{3}} \right]$. Szukamy najmniejszej wartości, którą jest $g\left(-\frac{1}{\sqrt{6}} \right) = 0$.

(b)
$$f(x, y, z) = 2x + z = \frac{3x - \sqrt{-3x^2 + 2}}{2} = g(x)$$

Analogiczne przekształcenia jak wyżej prowadzą do minimum lokalnego dla $x_0 = \frac{1}{\sqrt{6}}, f(x_0) = 0$ i maksimum lokalnego dla $x_1 = \sqrt{\frac{2}{3}}, f(x_1) = \sqrt{\frac{3}{2}}.$

Wnioskujemy, że $\sup_{M}(f) = \sqrt{2}$ oraz $\inf_{M}(f) = 0$, te kresy są osiągalne.