Polynomial Relations among Principal Minors of a Matrix

Shaowei Lin (joint work with Bernd Sturmfels)

19 Mar 2009, UCSD

shaowei@math.berkeley.edu

University of California, Berkeley

Problem Description

Let $A=(a_{ij})\in\mathbb{C}^{n^2}$ be a complex $n\times n$ matrix.

Let $A = (a_{ij}) \in \mathbb{C}^{n^2}$ be a complex $n \times n$ matrix.

Principal minor – a minor with rows and columns indexed by same subset $I \subseteq [n] := \{1, \dots, n\}$.

 $A_I \in \mathbb{C}$ – principal minor of A indexed by I, with $A_{\emptyset} = 1$.

 $A_* \in \mathbb{C}^{2^n}$ – vector whose entries are the principal minors of A.

Let $A = (a_{ij}) \in \mathbb{C}^{n^2}$ be a complex $n \times n$ matrix.

▶ Principal minor – a minor with rows and columns indexed by same subset $I \subseteq [n] := \{1, ..., n\}$.

 $A_I \in \mathbb{C}$ – principal minor of A indexed by I, with $A_{\emptyset} = 1$.

 $A_* \in \mathbb{C}^{2^n}$ – vector whose entries are the principal minors of A.

$$I = 124 \qquad \begin{pmatrix} a_{11} & a_{12} & \cdot & a_{14} \\ a_{21} & a_{22} & \cdot & a_{24} \\ \cdot & \cdot & \cdot & \cdot \\ a_{41} & a_{42} & \cdot & a_{44} \end{pmatrix} \qquad A_{124} = \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{21} & a_{22} & a_{24} \\ a_{41} & a_{42} & \cdot & a_{44} \end{vmatrix}$$

Let $A = (a_{ij}) \in \mathbb{C}^{n^2}$ be a complex $n \times n$ matrix.

Affine Principal minor map

$$\phi_a: \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, A \mapsto A_*$$

Dimension of $\operatorname{Im} \phi_a$ is $n^2 - n + 1$.

Let $A = (a_{ij}) \in \mathbb{C}^{n^2}$ be a complex $n \times n$ matrix.

Affine Principal minor map

$$\phi_a: \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, A \mapsto A_*$$

Dimension of Im ϕ_a is $n^2 - n + 1$.

• $\mathcal{I}_n \in \mathbb{C}[A_*]$ – prime ideal of all polynomial relations among the principal minors.

$$\mathcal{I}_n = \mathcal{I}(\operatorname{Im} \phi_a)$$

Let $A = (a_{ij}) \in \mathbb{C}^{n^2}$ be a complex $n \times n$ matrix.

Affine Principal minor map

$$\phi_a: \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, A \mapsto A_*$$

Dimension of Im ϕ_a is $n^2 - n + 1$.

• $\mathcal{I}_n \in \mathbb{C}[A_*]$ – prime ideal of all polynomial relations among the principal minors.

$$\mathcal{I}_n = \mathcal{I}(\operatorname{Im} \phi_a)$$

Problem – Find a finite generating set for \mathcal{I}_n .

Consider *projective* version of problem.

Consider projective version of problem.

• Let $A, B \in \mathbb{C}^{n^2}$ be complex $n \times n$ matrices. Given a subset $I \subseteq [n]$, define

$$(A,B)_I = \det A_I B_{[n]\setminus I}$$

where $A_IB_{[n]\setminus I}$ is the $n\times n$ matrix formed by columns of A indexed by I and columns of B indexed by $[n]\setminus I$.

Consider projective version of problem.

• Let $A, B \in \mathbb{C}^{n^2}$ be complex $n \times n$ matrices. Given a subset $I \subseteq [n]$, define

$$(A,B)_I = \det A_I B_{[n]\setminus I}$$

where $A_IB_{[n]\setminus I}$ is the $n\times n$ matrix formed by columns of A indexed by I and columns of B indexed by $[n]\setminus I$.

$$I = 124 (A,B)_I = \det \begin{pmatrix} a_{11} & a_{12} & \cdot & a_{14} & \cdot & \cdot & b_{13} & \cdot \\ a_{21} & a_{22} & \cdot & a_{24} & \cdot & \cdot & b_{23} & \cdot \\ a_{31} & a_{32} & \cdot & a_{34} & \cdot & \cdot & b_{33} & \cdot \\ a_{41} & a_{42} & \cdot & a_{44} & \cdot & \cdot & b_{43} & \cdot \end{pmatrix}$$

Consider projective version of problem.

• Let $A, B \in \mathbb{C}^{n^2}$ be complex $n \times n$ matrices. Given a subset $I \subseteq [n]$, define

$$(A,B)_I = \det A_I B_{[n]\setminus I}$$

where $A_IB_{[n]\setminus I}$ is the $n\times n$ matrix formed by columns of A indexed by I and columns of B indexed by $[n]\setminus I$.

$$I = 124 (A,B)_I = \det \begin{pmatrix} a_{11} & a_{12} & \cdot & a_{14} & \cdot & \cdot & b_{13} & \cdot \\ a_{21} & a_{22} & \cdot & a_{24} & \cdot & \cdot & b_{23} & \cdot \\ a_{31} & a_{32} & \cdot & a_{34} & \cdot & \cdot & b_{33} & \cdot \\ a_{41} & a_{42} & \cdot & a_{44} & \cdot & \cdot & b_{43} & \cdot \end{pmatrix}$$

Note that $(A, \mathrm{Id}_n)_I = A_I$. Define vector $(A, B)_* \in \mathbb{C}^{2^n}$.

Consider *projective* version of problem.

Projective principal minor map

$$\phi: \mathbb{C}^{n^2} \times \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, (A, B) \mapsto (A, B)_*$$

 $\operatorname{Im} \phi$ is the projective closure of $\operatorname{Im} \phi_a$.

Consider projective version of problem.

Projective principal minor map

$$\phi: \mathbb{C}^{n^2} \times \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, (A, B) \mapsto (A, B)_*$$

 $\operatorname{Im} \phi$ is the projective closure of $\operatorname{Im} \phi_a$.

• $\mathcal{J}_n \in \mathbb{C}[A_*]$ – prime ideal of all *homogeneous* polynomial relations among the principal minors.

$$\mathcal{J}_n = \mathcal{I}(\operatorname{Im} \phi)$$

Consider projective version of problem.

Projective principal minor map

$$\phi: \mathbb{C}^{n^2} \times \mathbb{C}^{n^2} \to \mathbb{C}^{2^n}, (A, B) \mapsto (A, B)_*$$

 $\operatorname{Im} \phi$ is the projective closure of $\operatorname{Im} \phi_a$.

• $\mathcal{J}_n \in \mathbb{C}[A_*]$ – prime ideal of all *homogeneous* polynomial relations among the principal minors.

$$\mathcal{J}_n = \mathcal{I}(\operatorname{Im} \phi)$$

Problem – Find a finite generating set for \mathcal{J}_n .

Motivation

Important problem in Matrix and Probability Theory

Motivation

- Important problem in Matrix and Probability Theory
- Principal Minor Assignment Problem (PMAP)
 - Determine if the entries of a vector of length 2^n are realizable as the principal minors of some $n \times n$ matrix.
 - Formulated as open problem by Holtz & Schneider [2], 2001.
 - Gröbner basis methods infeasible.

Motivation

- Important problem in Matrix and Probability Theory
- Principal Minor Assignment Problem (PMAP)
 - Determine if the entries of a vector of length 2^n are realizable as the principal minors of some $n \times n$ matrix.
 - Formulated as open problem by Holtz & Schneider [2], 2001.
 - Gröbner basis methods infeasible.
- Principal Minors of Symmetric Matrix
 - Holtz & Sturmfels [3], 2007: studied relations among principal minors of a *symmetric* 4×4 matrix.
 - Found links to hyperdeterminant.
 - ullet Oeding [6], 2008: found set-theoretic defining equations for all n.

Cycles and Cycle-sums

Cycles and Cycle-sums

Let $A = (a_{ij})$ be a complex $n \times n$ matrix.

• Given a cyclic permutation $\pi = (i_1 \dots i_k) \in \mathfrak{S}_n$, define *cycle*

$$c_{\pi} = a_{i_1\pi(i_1)}a_{i_2\pi(i_2)}\cdots a_{i_k\pi(i_k)}$$

Cycles and Cycle-sums

Let $A = (a_{ij})$ be a complex $n \times n$ matrix.

• Given a cyclic permutation $\pi = (i_1 \dots i_k) \in \mathfrak{S}_n$, define *cycle*

$$c_{\pi} = a_{i_1\pi(i_1)}a_{i_2\pi(i_2)}\cdots a_{i_k\pi(i_k)}$$

• Given a subset $I \subseteq [n]$, $|I| \ge 2$, define *cycle-sum*

$$C_I = \sum_{\pi \in \mathfrak{C}_I} c_{\pi}$$

over the set \mathfrak{C}_I of cyclic permutations with support I. Also define $C_{\emptyset} = 1$, $C_{\{i\}} = a_{ii}$, giving 2^n cycle-sums.

Principal Minors and Cycle-sums

Prop 1. The principal minors and cycle-sums satisfy

$$A_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} C_{I_{1}} \cdots C_{I_{k}}$$

$$C_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} (k-1)! A_{I_{1}} \cdots A_{I_{k}}$$

where $I \subset [n]$, |I| = d and $I_1 \sqcup \ldots \sqcup I_k$ are partitions of I.

Principal Minors and Cycle-sums

Prop 1. The principal minors and cycle-sums satisfy

$$A_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} C_{I_{1}} \cdots C_{I_{k}}$$

$$C_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} (k-1)! A_{I_{1}} \cdots A_{I_{k}}$$

where $I \subset [n]$, |I| = d and $I_1 \sqcup \ldots \sqcup I_k$ are partitions of I.

Cor 2. Let $\psi: \mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$, $A_* \mapsto C_*$. Then $u \in \mathbb{C}^{2^n}$ is realizable as principal minors iff $\psi(u)$ is realizable as cycle-sums.

Principal Minors and Cycle-sums

Prop 1. The principal minors and cycle-sums satisfy

$$A_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} C_{I_{1}} \cdots C_{I_{k}}$$

$$C_{I} = \sum_{I=I_{1} \sqcup ... \sqcup I_{k}} (-1)^{k+d} (k-1)! A_{I_{1}} \cdots A_{I_{k}}$$

where $I \subset [n]$, |I| = d and $I_1 \sqcup \ldots \sqcup I_k$ are partitions of I.

Cor 2. Let $\psi: \mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$, $A_* \mapsto C_*$. Then $u \in \mathbb{C}^{2^n}$ is realizable as principal minors iff $\psi(u)$ is realizable as cycle-sums.

Cor 3. The subrings $\mathbb{C}[A_*]$ and $\mathbb{C}[C_*]$ of $\mathbb{C}[(a_{ij})]$ are equal.

Closure Theorem

Thm 4. Im ϕ_a is closed in \mathbb{C}^{2^n} .

Closure Theorem

Thm 4. Im ϕ_a is closed in \mathbb{C}^{2^n} .

Proof Idea.

- 1. $\mathbb{C}[c_*]$ is integral over $\mathbb{C}[C_*] = \mathbb{C}[A_*]$.
- 2. The toric map $\gamma: \mathbb{C}^{n^2} \to \mathbb{C}^M, A \mapsto c_*$ is closed.

Closure Theorem

Thm 4. Im ϕ_a is closed in \mathbb{C}^{2^n} .

Proof Idea.

- 1. $\mathbb{C}[c_*]$ is integral over $\mathbb{C}[C_*] = \mathbb{C}[A_*]$.
- 2. The toric map $\gamma: \mathbb{C}^{n^2} \to \mathbb{C}^M, A \mapsto c_*$ is closed.

Cor 5. A vector $u \in \mathbb{C}^{2^n}$ is realizable as principal minors iff it satisfies the relations in \mathcal{I}_n .

i.e. PMAP is solved if we find finite generating sets for \mathcal{I}_n .

Finding Affine Relations in \mathcal{I}_4

Small Cases

• For $n \le 3$, all vectors of length 2^n are realizable as principal minors.

$$\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}_3 = \{0\}$$

Small Cases

• For $n \le 3$, all vectors of length 2^n are realizable as principal minors.

$$\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}_3 = \{0\}$$

• For n=4, this vector is not realizable:

$$A_{123} = A_{124} = A_{134} = A_{234} = 1$$

 $A_1 = A_2 = \dots = A_{1234} = 0$

By the Closure Theorem,

$$\mathcal{I}_4 \neq \{0\}$$

Some relations were found by Nanson [4,5] in 1897.

Nanson Relations

We express the Nanson relations in terms of cycle-sums. They are the 4×4 minors of this 5×4 matrix.

$$\begin{pmatrix} C_{123}C_{14} & C_{124}C_{13} & C_{134}C_{12} & 2C_{234}C_{12}C_{13}C_{14} + C_{134}C_{124}C_{123} \\ C_{124}C_{23} & C_{123}C_{24} & C_{234}C_{21} & 2C_{134}C_{21}C_{23}C_{24} + C_{234}C_{124}C_{123} \\ C_{134}C_{32} & C_{234}C_{31} & C_{123}C_{34} & 2C_{124}C_{31}C_{32}C_{34} + C_{234}C_{134}C_{123} \\ C_{234}C_{41} & C_{134}C_{42} & C_{124}C_{43} & 2C_{123}C_{41}C_{42}C_{43} + C_{234}C_{134}C_{124} \\ 1 & 1 & 1 & C_{1234} \end{pmatrix}$$

Nanson Relations

We express the Nanson relations in terms of cycle-sums. They are the 4×4 minors of this 5×4 matrix.

$$\begin{pmatrix} C_{123}C_{14} & C_{124}C_{13} & C_{134}C_{12} & 2C_{234}C_{12}C_{13}C_{14} + C_{134}C_{124}C_{123} \\ C_{124}C_{23} & C_{123}C_{24} & C_{234}C_{21} & 2C_{134}C_{21}C_{23}C_{24} + C_{234}C_{124}C_{123} \\ C_{134}C_{32} & C_{234}C_{31} & C_{123}C_{34} & 2C_{124}C_{31}C_{32}C_{34} + C_{234}C_{134}C_{123} \\ C_{234}C_{41} & C_{134}C_{42} & C_{124}C_{43} & 2C_{123}C_{41}C_{42}C_{43} + C_{234}C_{134}C_{124} \\ 1 & 1 & 1 & C_{1234} \end{pmatrix}$$

In cycle-sums:

4 poly (deg 8 and 32 terms), 1 poly (deg 10 and 19 terms)

In principal minors:

4 poly (deg 12 and 5234 terms), 1 poly (deg 16 and 19012 terms)

Nanson Relations

We express the Nanson relations in terms of cycle-sums. They are the 4×4 minors of this 5×4 matrix.

$$\begin{pmatrix} C_{123}C_{14} & C_{124}C_{13} & C_{134}C_{12} & 2C_{234}C_{12}C_{13}C_{14} + C_{134}C_{124}C_{123} \\ C_{124}C_{23} & C_{123}C_{24} & C_{234}C_{21} & 2C_{134}C_{21}C_{23}C_{24} + C_{234}C_{124}C_{123} \\ C_{134}C_{32} & C_{234}C_{31} & C_{123}C_{34} & 2C_{124}C_{31}C_{32}C_{34} + C_{234}C_{134}C_{123} \\ C_{234}C_{41} & C_{134}C_{42} & C_{124}C_{43} & 2C_{123}C_{41}C_{42}C_{43} + C_{234}C_{134}C_{124} \\ 1 & 1 & 1 & C_{1234} \end{pmatrix}$$

Let *I* be the ideal generated by these maximal minors.

The vector
$$C_{123}=C_{124}=C_{134}=C_{234}=1$$
, $C_1=C_2=\ldots=C_{1234}=0$ is not realizable, but satisfies the Nanson relations. Thus, $I\neq\mathcal{I}_4$.

Affine Relations \mathcal{I}_4

Define
$$g = \left| \begin{array}{cccc} C_{123}C_{14} & C_{124}C_{13} & C_{134}C_{12} \\ C_{124}C_{23} & C_{123}C_{24} & C_{234}C_{21} \\ C_{134}C_{32} & C_{234}C_{31} & C_{123}C_{34} \end{array} \right|$$

Thm 6. The ideal \mathcal{I}_4 is the ideal quotient (I:g). It is minimally generated by 65 polynomials of deg 12.

Finding Projective Relations in \mathcal{J}_4 using Lie Algebras

Lie Group Action

• Isomorphism between $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ and vector space generated by principal minors. e.g.

$$A_{123} \leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$aA_{23} + bA_{123} \leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• Isomorphism between $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ and vector space generated by principal minors. e.g.

$$A_{123} \leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$aA_{23} + bA_{123} \leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• Action of $GL_2(\mathbb{C}) \times GL_2(\mathbb{C}) \times GL_2(\mathbb{C}) \times GL_2(\mathbb{C})$ on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ induces action on $\mathbb{C}[A_*]$.

• Isomorphism between $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ and vector space generated by principal minors. e.g.

$$A_{123} \leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$aA_{23} + bA_{123} \leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- Action of $GL_2(\mathbb{C}) \times GL_2(\mathbb{C}) \times GL_2(\mathbb{C}) \times GL_2(\mathbb{C})$ on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ induces action on $\mathbb{C}[A_*]$.
- \mathcal{J}_4 is invariant under this Lie group action.

• Group action takes affine piece $\{A_{\emptyset} \neq 0\}$ of $\operatorname{Im} \phi$ to every other piece $\{A_I \neq 0\}, I \subseteq [4]$.

- Group action takes affine piece $\{A_{\emptyset} \neq 0\}$ of $\operatorname{Im} \phi$ to every other piece $\{A_I \neq 0\}, I \subseteq [4]$.
- ▶ Hence, $\text{Im } \phi$ is cut out scheme-theoretically by ideal $\mathcal K$ generated by orbit of homogenizations of 65 degree-12 affine generators.

- Group action takes affine piece $\{A_{\emptyset} \neq 0\}$ of $\operatorname{Im} \phi$ to every other piece $\{A_I \neq 0\}, I \subseteq [4]$.
- Hence, ${\rm Im}\,\phi$ is cut out scheme-theoretically by ideal ${\cal K}$ generated by orbit of homogenizations of 65 degree-12 affine generators.
- \mathcal{K} is generated by degree-12 component \mathcal{K}_{12} . We want to find the module structure of \mathcal{K}_{12} , e.g. what are the irreducible components?

Lie Algebra Action

• Lie group action of $GL_2(\mathbb{C})^4$ induces Lie algebra action of $\mathfrak{gl}_2(\mathbb{C})^4$ on $\mathbb{C}[A_*]$ by differential operators. e.g.

$$(\mathbf{0}, \mathbf{0}, \begin{pmatrix} w & x \\ y & z \end{pmatrix}, \mathbf{0}) \quad \text{acts as}$$

$$\sum_{3 \notin I} \left(wA_I \frac{\partial}{\partial A_I} + xA_{I \cup \{3\}} \frac{\partial}{\partial A_I} + yA_I \frac{\partial}{\partial A_{I \cup \{3\}}} + zA_{I \cup \{3\}} \frac{\partial}{\partial A_{I \cup \{3\}}} \right)$$

Lie Algebra Action

• Lie group action of $GL_2(\mathbb{C})^4$ induces Lie algebra action of $\mathfrak{gl}_2(\mathbb{C})^4$ on $\mathbb{C}[A_*]$ by differential operators. e.g.

$$(\mathbf{0}, \mathbf{0}, \begin{pmatrix} w & x \\ y & z \end{pmatrix}, \mathbf{0}) \quad \text{acts as}$$

$$\sum_{3 \notin I} \left(wA_I \frac{\partial}{\partial A_I} + xA_{I \cup \{3\}} \frac{\partial}{\partial A_I} + yA_I \frac{\partial}{\partial A_{I \cup \{3\}}} + zA_{I \cup \{3\}} \frac{\partial}{\partial A_{I \cup \{3\}}} \right)$$

• Applying the *raising operators* on the 65 homogenized affine generators, we find the *highest weight vectors* of the irreducible components of \mathcal{K}_{12} .

Thm 7. Im ϕ is cut out scheme-theoretically by 718 linearly independent homogeneous polynomials of degree 12.

Thm 7. Im ϕ is cut out scheme-theoretically by 718 linearly independent homogeneous polynomials of degree 12.

This space of polynomials is the direct sum of three irreducible $\mathfrak{S}_4 \times GL_2(\mathbb{C})^4$ -modules

$$M_D \oplus M_E \oplus M_F$$

which are orbits of polynomials D, E, F respectively.

D, E, F have 32, 42, 91 terms (in cycle-sums) respectively. D is the Nanson relation.

Thm 7. Im ϕ is cut out scheme-theoretically by 718 linearly independent homogeneous polynomials of degree 12.

Conj 8. \mathcal{J}_4 is generated by these 718 polynomials.

Thm 7. Im ϕ is cut out scheme-theoretically by 718 linearly independent homogeneous polynomials of degree 12.

Conj 8. \mathcal{J}_4 is generated by these 718 polynomials.

After-note:

Eric Rains points out to us that in his paper [1] with A. Borodin on determinantal point processes, they found 718 degree 12 generators for \mathcal{J}_4 . We were unable to replicate this computation.

Thm 7. Im ϕ is cut out scheme-theoretically by 718 linearly independent homogeneous polynomials of degree 12.

Conj 8. \mathcal{J}_4 is generated by these 718 polynomials.

After-note:

Eric Rains points out to us that in his paper [1] with A. Borodin on determinantal point processes, they found 718 degree 12 generators for \mathcal{J}_4 . We were unable to replicate this computation.

Conj 9. For n > 4, \mathcal{J}_n is generated by the $\mathfrak{S}_n \times \mathsf{GL}_2(\mathbb{C})^n$ -orbit of deg 12 polynomials D, E, F.

Hyperdeterminantal Relations

Hyperdeterminantal Relations

Define $F = A_{\emptyset} + A_1x + A_2y + A_3z + A_4w$ $+ A_{12}xy + A_{13}xz + A_{14}xw + A_{23}yz + A_{24}yw + A_{34}zw$ $+ A_{123}xyz + A_{124}xyw + A_{134}xzw + A_{234}yzw + A_{1234}xyzw.$

Def 10. The hyperdeterminant D_{2222} is the unique irreducible polynomial (up to sign) of content one in the unknowns A_* which vanishes whenever

$$F = \partial F/\partial x = \partial F/\partial y = \partial F/\partial z = \partial F/\partial w = 0$$

has a solution (x_0, y_0, z_0, w_0) in \mathbb{C}^4 .

Hyperdeterminantal Relations

The irreducible components of the singular locus ∇_{sing} of the hypersurface $D_{2222}=0$ were classified by Weyman and Zelevinsky [7] in 1996.

$$\nabla_{\text{sing}} = \nabla_{\text{node}}(\emptyset) \cup \bigcup_{1 \leq i < j \leq 4} \nabla_{\text{node}}(\{i, j\}) \cup \nabla_{\text{cusp}}$$

Thm 11. Im ϕ is the irreducible component $\nabla_{\text{node}}(\emptyset)$.

Summary

- Usefulness of cycles and cycle-sums for determinantal problems.
 - Closure of $\operatorname{Im} \phi_a$ and $\operatorname{Im} \phi$.
 - Nanson relations in \mathcal{I}_4 .
- Exploiting symmetries.
 - Using Lie group, Lie algebra action to find \mathcal{J}_4 .
- Relation to hyperdeterminants.

http://math.berkeley.edu/~shaowei/minors.html

References

- 1. A. Borodin and E. Rains: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, *Journal of Statistical Physics* **121** (2005) 291–317.
- 2. O. Holtz and H. Schneider: Open problems on GKK τ -matrices, *Linear Algebra Appl.* **345** (2002) 263–267.
- 3. O. Holtz and B. Sturmfels: Hyperdeterminantal relations among symmetric principal minors, *Journal of Algebra* **316** (2007) 634-648.
- 4. T. Muir: The relations between the coaxial minors of a determinant of the fourth order, *Trans. Roy. Soc. Edinburgh* **39** (1898) 323–339.
- 5. E. J. Nanson: On the relations between the coaxial minors of a determinant, *Philos. Magazine* (5) **44** (1897) 362–367.
- 6. L. Oeding: Set-theoretic defining equations of the variety of principal minors of symmetric matrices, arXiv:0809.4236.
- 7. J. Weyman and A. Zelevinsky: Singularities of hyperdeterminants, *Annales de l'Institut Fourier* **46** (1996) 591–644.