

Curso: Desenvolvimento de Software Multiplataforma

Disciplina: Engenharia de Software II

Professor: André Olímpio

Engenharia de Software II

Loading...

QUALIDADE

Em Sistemas de Software

Fonte: Pinterest.com

Qualidade de Software

Software sem Qualidade	Software com Qualidade
Projetos de software difíceis de planejar e controlar; Custos e prazos não são mantidos.	Projetos, prazos e custos sob controle.
A funcionalidade dos programas nem sempre resulta conforme planejado.	Satisfação de usuários, com necessidades atendidas na execução de suas tarefas.
Existem muitos defeitos nos sistemas.	Diminuição de erros nos projetos de software.
A imagem da empresa é denegrida no mercado, como empresa tecnologicamente atrasada.	Melhoria da posição competitiva da empresa, como instituição capaz de acompanhar a evolução.

"Qualidade de software é a conformidade a requisitos funcionais e de desempenho que foram explicitamente declarados, a padrões de desenvolvimento claramente documentados, e a características implícitas que são esperadas de todo software desenvolvido por profissionais"

Roger Pressman

Fonte: RSPA.com

ENGENHARIA DE SOFTWARE UMA ABORDAGEM PROFISSIONAL

Livro mais vendido no mundo sobre o assunto Atualmente na 9ª edição

Fonte: RSPA.com

Qualidade de Software

Dividida em dois segmentos:

Métricas de Qualidade de Software

- Métrica é uma medida quantitativa referente ao grau de complexidade da funcionalidade de um software, componente ou processo (funcionalidade) apresentem um atributo específico.
- É um meio importante para entender, monitorar, controlar, prever e testar o desenvolvimento de software e os projetos de manutenção.

Gestão de Requisitos

- Requisitos incluídos: indica a proporção de recursos específicos que são adicionados aos já estabelecidos inicialmente.
- Requisitos cancelados: indica a proporção de itens que são anulados na análise dos mesmos.
- Requisitos aprovados: indica a proporção de recursos que são aprovados pelo solicitante do mesmo antes de finalizar a estruturação do software.
- Requisitos alterados: indica a proporção de itens que se modificam após o levantamento dos mesmos.

Garantia da Qualidade do Produto de Software

Testes de Validação

Testabilidade de Software

- Testes de Validação: Avaliam documentações e atividades com o objetivo de detectar erros no produto computacional.
- Cabe aos profissionais envolvidos na realização dos testes buscarem todos os meios e recursos possíveis para criar infraestrutura que possibilite identificar o maior número possível de erros, gerando assim menor esforço dos mesmos.

Fonte: PixaBay.com

Testabilidade de Software

- O sucesso da validação está apoiado diretamente em um forte planejamento de todas as atividades de testes.
- Foco:
 - ✓ Componentes mais complexos.
 - ✓ Requisitos críticos.

Testabilidade de Software

Verificação

Responde se o sistema foi construído corretamente

Validação

Responde se construímos o sistema correto

Fonte: PixaBay.com

Testabilidade de Software

• Estratégias:

- ✓ Testes de caixa branca
- ✓ Testes de caixa preta

Fonte: PixaBay.com

Estratégia de Caixa Branca

- Baseada na arquitetura interna do software.
- São técnicas de simulação que exercitam adequadamente todas as estruturas utilizadas na codificação do software.
- Exige a presença de profissionais de testes, que conheçam a tecnologia empregada no desenvolvimento deste software, que tenha conhecimento da arquitetura interna da aplicação e que entenda exatamente a situação-problema.
- O profissional de testes deverá ter acesso à todo código-fonte e à estrutura de bancos de dados.

Estratégia de Caixa Branca

- Utiliza técnicas para garantir que os requisitos do sistema são plenamente atendidos pelo software que foi construído.
- Vantagem do fato de não requerer conhecimento da tecnologia empregada ou dos complexos conceitos de implementação aplicados internamente no software.

Fonte: Pinterest.com

Estratégia da Caixa Preta

- Conhecimento requerido pelo profissional de teste é apenas o conhecimento dos requisitos, suas características e comportamentos esperados para os teste.
- Testes mais simples.

Fonte: Pinterest.com

Caixa Branca

Caixa Preta

-	
-	
-	
-	
-	
-	
-	
_	
-	
	Testes baseados
	nos requisitos

- **Teste de carga:** é utilizado para verificar o limite de dados processados por um software até que este não consiga mais processá-los. Também conhecido como *teste de volume* ou *teste de stress*.
- Teste de desempenho: é similar ao teste de carga, mas com o intuito de testar um software para encontrar seu limite de processamento durante a melhor performance de desempenho do mesmo. É avaliada a capacidade de resposta deste software em situações e/ou configurações específicos.

- **Teste de usabilidade:** é utilizado para verificar a facilidade que um software possui para ser claramente compreendido e manipulado por seus respectivos usuários. Verifica se o sistema utiliza manuais, help e assistentes eletrônicos.
- Teste de confiabilidade: é uma validação das entradas, saídas e operações efetuadas em relação aos requisitos definidos previamente para a aplicação para assegurar que um software recebe dados corretos, realiza o processamento adequado e apresenta os resultados corretamente.

- **Teste de recuperação:** é uma verificação da robustez de um sistema de software e também a capacidade do mesmo para retornar a um estado operacional após apresentar um estado de falha.
- **Teste de unidade:** também chamado de *teste de I/O*, consiste em validar dados durante a entrada e saída dos mesmos no sistema. Uma unidade é a menor parte testável de um software, podendo ser uma função individual ou um procedimento, o que permite que cada módulo seja testado isoladamente.

- Teste de integração: é alimentado pelos módulos validados individualmente pelo teste de unidade, agrupando-os assim em componentes, resultando em um sistema integrado.
- Seu propósito é verificar os requisitos funcionais, de desempenho e de confiabilidade na modelagem do sistema, assim é possível descobrir erros de interface entre os componentes do sistema.

Fonte: Pinterest.com

- **Teste de sistema**: o objetivo é executar o software através do ponto de vista do usuário final, fazendo uma varredura de todas as funcionalidades em busca de falhas em relação aos requisitos deste sistema.
- Os testes são executados em condições similares às que um usuário utilizará no seu dia-a-dia de manipulação do sistema.
- Dependendo da situação, é possível utilizar as condições reais do sistema no ambiente de teste, sendo o mesmo testado por seus próprios usuários.

- Teste de aceitação: realizado antes de implantação do sistema. O objetivo é verificar o mesmo em relação aos seus requisitos e às necessidades atuais do usuário.
- **Teste de operação:** Essa fase é aplicável somente a sistemas próprios de uma organização, cujo acesso pode ser feito interna ou externamente a mesma. Engloba testes de instalação, simulações com backup de BD, suporte ao usuário, processamento de dados e apresentação de resultados.

Ferramentas de Testes de Software

Fonte: Pinterest.com

Ferramentas de Teste

- Selenium
- Apache JMeter
- Web Drive
- BadBoy
- Canoo Web Test
- Microsoft Test Manager

Fonte: PixaBay.com

Selenium

- É uma ferramenta opensource que possibilita a criação e execução de casos de testes, o reporte customizado de defeitos além de dar um feedback rápido aos desenvolvedores.
- Uma das grandes vantagens do Selenium é a possibilidade da realização de testes em qualquer navegador que tenha suporte ao JavaScript.

Fonte: Selenium.org

Selenium

- Este software captura, através de gravação, todas as ações feitas pelo testador e gera um script de teste, onde é possível reexecutar todas as ações que o testador desejar.
- Para efetuar esse teste mais complexo, o Selenium disponibiliza uma API e bibliotecas para cada linguagem de programação que ele suporta (C#, HTML, Java, Perl, PHP, Python e Ruby).

Selenium (Interface)

Apache JMeter

- É uma ferramenta utilizada para testes de carga (stress) em funcionalidades oferecidas por um sistema de software.
- Esta ferramenta é parte do projeto Jakarta da Apache Software Foundation.
- O JMeter opera especificamente com requisições e validações de requisições (*assertions*), além de controladores lógicos e controles condicionais, que são utilizados na construção de planos de teste (testes funcionais).

Fonte: Apache.org

Apache JMeter

Leitura Complementar

• Livro: Engenharia de Software – Uma Abordagem Profissional

https://github.com/free-educa/books/issues/58

https://www.academia.edu/42042370/Engenharia de Software Uma Abordagem Profi ssional

Guia Completo de Testes de Software

https://www.devmedia.com.br/guia/tecnicas-e-fundamentos-de-testes-de-software/34403

Código Fonte TV – O que faz um Analista de Testes?

https://www.youtube.com/watch?v=O7rB5XoakEc