CS224 Computer Organization Preliminary Report

Lab 06 Section 2

Burak Ozturk 21901841

Part 1.1

No.	Cache Size KB	N way cache	Word Size in bits	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Word Block Offset Size in bits ¹	Byte Offset Size in bits ²	Block Replacement Policy Needed (Yes/No)
1	128	1	32	4	2^{13}	15	13	2	2	No
2	128	2	32	4	212	16	12	2	2	Yes
3	128	4	32	8	210	17	10	3	2	Yes
4	128	Full	32	8	20	27	0	3	2	Yes
9	256	1	16	4	2^{15}	19	15	2	1	No
10	256	2	16	4	214	15	14	2	1	Yes
11	256	4	16	16	211	16	11	4	1	Yes
12	256	Full	16	16	20	27	0	4	1	Yes

Part 1.2

Memory	Set	Hit
Address Accessed (hex)	No.	(yes/no)
00 00 00 24	00	no
00 00 00 42	00	no
00 00 00 68	01	no
00 00 00 04	00	no
00 00 00 OC	01	no
00 00 00 4C	01	no

Part 1.3

Memory	Set	Hit
Address Accessed (hex)	No.	(yes/no)
00 00 00 2C	01	no
00 00 00 48	01	no
00 00 00 44	00	no
00 00 00 0C	01	no
00 00 00 04	00	no
00 00 00 0C	01	yes

Part 1.4

L1

Hit rate: 80%, Miss rate: 20%

Access time: 1 cycle

L2

Effective hit rate: (L1 Effective Miss Rate) * (L2 Hit Rate) = 20% * 95% = 19%Effective miss rate: (L1 Effective Miss Rate) * (L2 Miss Rate) = 20% * 5% = 1%

Access time: 2 cycles

Effective Access time: L1 access time + 2 = 3 cycles

L3

Effective hit rate: (L2 Effective Miss Rate) = %1

Effective miss rate: 0

Access time: 20 cycles

Effective Access time: L2 effective access time + 20 = 23 cycles

AMAT = (20 * 1 + 19 * 3 + 1 * 23) / 100 = 1.6 cycles

Runtime = #instructions * #AMAT / Clock Rate (Hz) = $(1.6*10^{12})/(4*10^9)$ = 400 secs