Subcomplete Forcing, Trees, and Generic Absoluteness

Kaethe Minden (joint with Gunter Fuchs)

Marlboro College

Winter School in Abstract Analysis
January 2018

Generic Absoluteness

Definition

Let $\mathbb P$ be a forcing notion and κ be a cardinal. Then $\mathbb P$ -generic $\Sigma^1_1(\kappa)$ -absoluteness states that for any model M of size κ for a countable first order language and every Σ^1_1 -sentence φ over the language of M, for any finite list of finitary predicates \vec{A} ,

$$(\langle M, \vec{A} \rangle \models \varphi)^V \iff 1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\langle \check{M}, \check{\vec{A}} \rangle \models \varphi).$$

- For a class Γ of forcing notions, Γ -generic absoluteness is the statement that \mathbb{P} -generic absoluteness holds for every $\mathbb{P} \in \Gamma$.
- One might wish to work with canonical models such as H_{ω_1} in the above write $\Sigma_1^1(H_{\omega_1})$ instead.
- Γ -generic $\Sigma^1_1(H_{\omega_1})$ -absoluteness is equivalent to Γ -generic $\Sigma^1_1(2^\omega)$ -absoluteness, that is, as far as the classes of c.c.c, proper, semi-proper, stationary set preserving or subcomplete forcing are concerned.

Background on generic absoluteness

Observation

 \mathbb{P} -generic $\Sigma_1^1(\omega)$ -absoluteness holds for any poset \mathbb{P} .

Proof.

Upward \mathbb{P} -generic $\Sigma_1^1(\kappa)$ -absoluteness is true, for any κ .

To show downward, let M be a countable model and suppose $\mathbb P$ forces $M \models \varphi$ for some Σ_1^1 -sentence $\varphi = \exists X \ \psi(X)$. Let $M, \mathbb P \in X \preccurlyeq H_\theta$ for some large enough H_θ , and let $\overline{N} \cong X$ be transitive. \overline{N} sees that $\mathbb P$ forces $M \models \varphi$. We may build a generic for \overline{N} in V, and in $\overline{N}[\overline{G}]$, choosing a witness A for φ , we have that

$$\langle M, A \rangle \models \psi.$$

Again by upward absoluteness, this means $M \models \varphi$ in V.

Background on generic absoluteness

Observation

- **①** $Coll(\omega_1, \omega_2)$ -generic $\Sigma_1^1(\omega_2)$ -absoluteness fails.
- ② If $\mathbb P$ is a forcing that adds a real, then $\mathbb P$ -generic $\Sigma^1_1(H_{\omega_1})$ -absoluteness fails.

Theorem (Fuchs, 2008)

- Countably closed-generic $\Sigma_1^1(\omega_1)$ -absoluteness is provable in ZFC.
- The countably closed maximality principle implies countably closed-generic $\Sigma_2^1(H_{\omega_1})$ -absoluteness.

Dually to the situation with countably closed forcing, the underlying main question is whether subcomplete-generic $\Sigma_1^1(\omega_1)$ -absoluteness is provable in ZFC.

Generic absoluteness and trees

Lemma

Assume CH. Let Γ be a natural class of forcing notions. Then the following are equivalent.

- Every $\mathbb{P} \in \Gamma$ preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees and does not add reals.
- **②** Γ-generic $\Sigma_1^1(\omega_1)$ -absoluteness holds.

Thus we have a convenient rephrasing of our main question about whether subcomplete-generic $\Sigma_1^1(\omega_1)$ -absoluteness is provable in ZFC.

Main Question

Can subcomplete forcing add cofinal branches to $(\omega_1, \leq \omega_1)$ -Aronszajn trees?

Subcomplete forcing

Subcomplete forcing is a class of forcing notions defined by Ronald B. Jensen. Subcomplete forcing does not add reals, but may potentially alter cofinalities to ω .

Examples of subcomplete forcing

- (Jensen) Countably closed forcing.
- (Jensen) Namba forcing under CH.
- (Jensen) Prikry forcing.
- (M.) Generalized diagonal Prikry forcing.
- (Fuchs) Magidor Forcing.

Subcomplete forcing can be iterated without adding reals, and SCFA may be forced from a supercompact by the usual argument. Unlike other forcing axioms, however, SCFA is compatible with CH.

Subcomplete forcing

How subcompleteness fits in with other forcing classes which preserve stationary subsets of ω_1 :

Subcomplete forcing's effect on trees

Theorem

The following properties of an ω_1 -tree T are preserved by subcomplete forcing:

- T is Aronszajn
- T is not Kurepa
- T is Suslin
- T is Suslin and UBP
- **5** T is Suslin off the generic branch
- **6** T is n-fold Suslin off the generic branch (for $n \ge 2$)
- **②** T is (n-1)-fold Suslin off the generic branch and n-fold UBP (for $n \ge 2$)

Subcomplete forcing's effect on wider trees

Observation

- Subcomplete (or even countably closed) forcing may add a cofinal branch to an $(\omega_1, \leq 2^{\omega})$ -tree.
- ullet Subcomplete forcing cannot add (cofinal) branches to $(\omega_1,<2^\omega)$ -trees.

Again we turn to the question stated earlier:

Main Question

Can subcomplete forcing add cofinal branches to $(\omega_1, \leq \omega_1)$ -Aronszajn trees?

By the second point of the above observation, if *CH* fails, then the answer to the main question is no.

Generic absoluteness and bounded forcing axioms

Theorem (Bagaria, 2000)

Let Γ be a natural forcing class. Then the following are equivalent:

- **1** The bounded forcing axiom for Γ .
- **2** Γ -generic $\Sigma_1(\mathcal{H}_{\omega_2})$ -absoluteness: for all $\mathbb{P} \in \Gamma$ and $G \subseteq \mathbb{P}$ generic over V,

$$\langle H_{\omega_2}, \in \rangle \prec_{\Sigma_1} \langle H_{\omega_2}, \in \rangle^{V[G]}.$$

Using codes, Σ_1 -statements over H_{ω_2} can be translated into Σ_1^1 -statements over H_{ω_1} .

Lemma

Let \mathbb{P} be a forcing that does not add reals. Consider the following:

- **1** P-generic $\Sigma_1(H_{\omega_2})$ -absoluteness holds.
- **2** \mathbb{P} -generic $\Sigma_1^1(H_{\omega_1})$ -absoluteness holds.

We have that $2 \Longrightarrow 1$, and if CH holds, then $1 \Longrightarrow 2$.

Answer to the main question

Theorem

Assuming CH, the following are equivalent.

- BSCFA.
- **2** Subcomplete generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** Subcomplete forcing preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees.

This puts us in a position to answer the main question completely.

Theorem

Splitting in two cases, we have:

- If CH fails, then subcomplete forcing preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees.
- ② If CH holds, then subcomplete forcing preserves $(\omega_1, \leq \omega_1)$ -Aronszajn trees iff BSCFA holds.

Winter School

Other forcing classes

Observation

Let Γ be a natural class of forcing notions. Then $1. \Longrightarrow 2. \Longrightarrow 3.$:

- \bullet BFA $_{\Gamma}$.
- **2** Γ -generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** Forcing notions in Γ preserve $(ω_1, \le ω_1)$ -Aronszajn trees.

Theorem

Consider the following statements.

- MA.
- **2** ccc-generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** *ccc forcing preserves* $(\omega_1, \leq \omega_1)$ -*Aronszajn trees.*

Then $1 \iff 2 \implies 3$ but 3 does not imply 2. In fact, 3 is consistent with CH, while 1/2 imply the failure of CH.

Final questions

The general relationship between the pertinent properties is unclear.

Question

Let Γ be the class of proper, semi-proper, stationary set preserving or subcomplete forcings. Which implications hold between the following properties?

- lacktriangle BFA $_{\Gamma}$.
- **2** Γ -generic $\Sigma_1^1(\omega_1)$ -absoluteness.
- **3** Forcings in Γ preserve $(\omega_1, \leq \omega_1)$ -Aronszajn trees.

There are some interesting questions about subcomplete-generic absoluteness when CH fails. In this case, BSCFA may still hold.

Question

What is the consistency strength of $\neg CH$ together with subcomplete-generic $\Sigma_1^1(\omega_1)$ -absoluteness?

Bounded forcing axioms as principles of generic absoluteness. *Archive for Mathematical Logic*, 39:393–401, 2000.

G. Fuchs.

Closed maximality principles: implications, separations and combinations.

Journal of Symbolic Logic, 73(1):276-308, 2008.

R. B. Jensen.

Subcomplete forcing and \mathcal{L} -forcing.

In C. Chong, Q. Feng, T. A. Slaman, W. H. Woodin, and Y. Yang, editors, *E-recursion, forcing and C*-algebras*, volume 27 of *Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore*, pages 83–182, Singapore, 2014. World Scientific.