September 1, 2014 -- Computer Sciences

NAME		,		SURNAME	,		
ID. Number	S						A/1
□Poli@Home	□5 Crediti		B/English	□LIC-ZZZ/	English	□other: <u></u>	
<u></u>					,		
QUESTION 1		NO NO			Resultant		
Given the follow complement 8-bit	-				Greater:		
Complement o-on	., IIIUICALE Wiii	Cli is idigei ai	10 Justily the	e stehs	NI 1	NO N	NIA
N1= 11110001	11	N1	N2 N	3 N4			
N2= 11111101	N4= 111001	11					
Steps							
<u></u>							
QUESTION 2				1.15			
						oolean functio	ns are equivalent:
$f1(A,B) = (A \cdot A)$	1) · N Z + (D ·	B) · K 1, J 2((A,B)=(A	'A)'KI+ (D	. p). v7		
Response							
Response							
QUESTION 3							
QUESTION 3 Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			
Explain the function	on of the linke	r inside a pro	gramming e	nvironment			

QUESTION 4 (PROGRAMMING)

Write a program in C that performs the decoding of a series of codewords stored in a text file in ASCII format. The encoding in question is called COD32 and uses the symbols: **digits** 0 through 9, and the **letters** of the alphabet from A to Z (except I and O):

Then, the string of symbols is: 0123456789ABCDEFGHJKLMNPQRSTUVWXYZ.

The decoding is done by transforming every one of the symbols taken in COD32 to a decimal value DEC. In particular, each symbol is decoded into a decimal number associated with its position in the string of symbols, previously reported by COD32 encoding (the first symbol position is equal to 0). For example a COD32 2 symbol is decoded into the number 2, A is decoded into the number 10, and Z in the number 33. An example of a complete decoding is:

 $(9AJ4D)_{COD32} \rightarrow (91018413)_{DEC}$

The file with the encoded words in COD32 called "COD32.txt" is of **unknown length** and consists of one word for each line:

<codeword1> <codeword2>

. . .

Where <codeword> is a **string of maximum 30 characters**. The program must perform the decoding from COD32 to DEC, producing a file named "**decimal.txt**". In the new file, each row contains a word decoded in DEC corresponding to the decode process, and separated by a space, a string that represents the decryption key. This description key is a sequence of characters "L" and "N", where N means that the decimal number is derived from a COD32 digit, while L indicates that the decimal number is derived from a COD32 letter. In this way, the lines of the file decoding result to be:

```
<decimalword> <key1> <decimalword> <key2 >
```

...

where <decimalword> is a string of 60 characters maximum, and <key> is a string composed of the two possible characters L and N. The program must produce in the console output the shortest length codeword and the average length (with two digits decimal places) of the codewords. Assume that the files are always in the correct format.

Example of files COD32 and decimal.txt:

COD32.txt	decimal.txt
9AJ4D	91018413 NLLNL
456F	45615 NNNL
FFD34	15151334 LLLNN

In the example, the produced key NLLNL in the first line of decimal.txt indicates that the first symbol represents a number (9) in the first line of the COD32.txt file, and therefore should be considered as a single digit, while the second is a letter (A) and therefore should be considered as two consecutive digits corresponding (10) and so on.

Example of a sequence coding for (COD32.txt is the input file and the output file is decimal.txt) $C: \$ codec32

Encoded shorter string: 456F Average length codewords: 4.66

September 1, 2014 -- Computer Sciences

NAME					SURNAN	ΛE					
MATRICU	LATION	S								A	/2
□Poli@Hor	ne □5 C	rediti [□ AAA -LIB/En	nglish	□LIC-ZZ	Z/Er	nglish [□о	ther: <u></u>		<u></u>
QUESTION							Resultant				
	Given the following integers N1, N2, N3, N4, expressed in two's Greater:										
	complement 8-bit, indicate which is larger and justify the steps										
	N1= 10110001										
NZ= 11101	.101 N4=	10100111									
Steps											
QUESTION	2										
		of values o	f the binary co	onstants I	K1 and K2.	the f	following Bo	oole	ean function	ns are equivalen	nt:
f1(A,B) =											
	(D D) M	• I (A A)	' N I, / 4(A, D	$) = (D \cdot I$	B)·KI+($A \cdot A$	A)·KZ				
Response	(<i>D D</i>) 112	2 (A A)	' N 1,	$) = (D \cdot D)$	B)·K1+($A \cdot A$	A)·K2				
	(D D) N	2 + (A A)	K1, J2(A, B) = (B · I	B)·K1+($A \cdot A$	A)·K2				
	(<i>D D</i>) <i>R</i>	2 (A A)	K1, J2(A, B) = (B · I	B)·K1+(<u>A · 1</u>	A)·KZ				
	(D D) N.	2 (A A)	T) = (B · I	<u> 8) · K1 + (</u>	<u>A · .</u>	A)·KZ				
		2 (A A)	T) = (B · I	8) • KI + (<u>A · 1</u>	A)·KZ				
	(<i>D D</i>) 11.	2 (A - A)	TN 1, J 2(A, D) = (b · i	8) • KI + (<u>Α·</u>	а)·к2				
	(b b) m	2 + (A - A)	TN 1, J 2(A, D) = (<i>b</i> · <i>i</i>	8) • KI + (<i>Α</i> · Δ	A)·KZ				
	(b b) M	2 (A - A)	T) = (<i>b</i> · <i>i</i>	8) • K1 + (<u>Α·</u>	A)·KZ				
			TN 1, J 2(A, D) = (<i>b</i> · <i>i</i>	8) • KI + (<u>Α · ·</u>	A)·KZ				
Response			ΤΙ, ΤΖ(Α, Β) = (<i>b</i> · <i>i</i>	8) • KI + (<u>Α · .</u>	A)·KZ				
			TN 1, J 2(A, D) = (b · l	8) - KT + (A · .	A)·KZ				
Response QUESTION	3		are they used								
Response QUESTION	3										
Response QUESTION Explain wha	3										
Response QUESTION Explain wha	3										
Response QUESTION Explain wha	3										
Response QUESTION Explain wha	3										
Response QUESTION Explain wha	3										
Response QUESTION Explain wha	3										

QUESTION 4 (PROGRAMMING)

Write a program in C that performs the decoding of a series of code words stored in a text file in ASCII format. The encoding in question is called COD32 and uses symbols such as the digits 0 through 9 and the letters of the alphabet from A to Z (except I and O): 0123456789ABCDEFGHJKLMNPQRSTUVWXYZ. The decoding is done by transforming each of the symbols taken individually by a COD32 decimal. In particular, each symbol is translated into a decimal number associated with its position in the string of symbols, previously reported by COD32 encoding (the first symbol position is equal to 0). For example 2 is translated into the number 2, A is translated into the number 10, and Z in the number 33 An example of a complete decoding is: (9AJ4D)_{COD32} -> (91018413)_{DEC}

The file with the encoded words is passed as the first argument on the command line and is of unknown length and consists of one word for each line:

<codeword1> <codeword2>

...

Where <codeword> is a string of maximum 30 characters. The decoder must produce a file whose name is specified as the second argument on the command line in which each line contains a word decoded and separated by a space, a string that represents the decryption key. This key is a sequence of characters "L" and "N" where N is the decimal number is derived from a figure COD32 while L indicates that the decimal number is derived from a COD32 letter. In this way, the lines of the file decoding result to be:

```
<decimalword1> <key1> <decimalword2> <key2 >
```

...

where <decimalword> is a string of 60 characters maximum and <key> is a string composed of the two possible characters "L" and "N". The program must produce as output on the console (in coded format that is decoded) the codeword of the maximum value (in alphabetic sense) and the number of words decoded. In case there are more words than the maximum value will be enough to print one. Assume that the files are always in the correct format.

Example of file encoding(input) and decoding(output):

COD32.txt	decimal.txt				
(input)	(output)				
9AJ4D	91018413 NLLNL				
456F	45615 NNNL				
FFD34	15151334 LLLNN				

NOTE: In the example the sequence NLLNL in the first line indicates that the first symbol represents a number (9), while the second is a letter (A).

Execution example:

C:\> codec32 COD32.txt decimal.txt

Decoding 3 words.

String of maximum value: FFD34 - 15151334.