Stochastic Modeling Compendium

Torbjørn Baadsvik

November 24, 2020

Contents

1	Cor	nditional probability
2	Dis	crete-Time Markov Chains (DTMCs)
	2.1	Definition of the DTMC
	2.2	Transition Probability Matrices (TPMs)
		2.2.1 General TPMs
		2.2.2 Doubly Stochastic TPMs
		2.2.3 Regular TPMs
	2.3	Classification of States
	_	
	2.4	First Step Analysis
		2.4.1 Expected Time Until Absorption
		2.4.2 Probability of Absorption into Specific State
	2.5	Long Run Behaviour
		2.5.1 Limiting Distribution
		2.5.2 Stationary Distribution
		2.5.3 The Basic Limit Theorem of Markov Chains
	2.6	Chapman-Kolmogorov Equation
		-
3	Poi	sson Processes
	3.1	The Poisson Distribution
	-	3.1.1 Probability Density Function (PDF)
		3.1.2 Properties
	3.2	The Poisson Process
	3.∠	
		3.2.1 Properties
		3.2.2 Postulates
		3.2.3 Nonhomogeneous Processes
	3.3	The Law of Rare Events
		3.3.1 Approximation using the Poisson Distribution
	3.4	Distributions Associated with the Poisson Process
	3.5	The Uniform Distribution and Poisson Processes
4	Bir	th and Death Processes (BDPs)
	4.1	Postulates
	4.2	Sojourn Times
	4.3	Transition Probabilities
	4.4	Differential Equations
	4.5	Limiting Behaviour
	4.6	Probability of Absorption into State 0
	4.7	Mean Time Until Absorption
	4.8	Finite-State Continuous Time Markov Chains
5	Que	eueing Systems
	5.1	Queueing Processes
		5.1.1 The Queueing Formula (Little's Law)
	5.2	Poisson Arrivals, Exponential Service Times
		5.2.1 Limiting Distribution
		5.2.2 Applying Little's law
		5.2.3 Waiting Times
		U.4.U YYGHUHG IIIICO

6	\mathbf{Bro}	wnian Motion	15			
	6.1	Introduction	15			
	6.2	Properties	16			
	6.3	Covariance Function	16			
	6.4	The Central Limit Theorem and The Invariance Principle	16			
	6.5	The Reflection Principle				
	6.6	Hitting Times				
7	Intr	roduction to Gaussian Processes (GPs)	17			
	7.1	Definition	17			
	7.2	Univariate GP	17			
	7.3	Multivariate GP	17			
	7.4	Linear Transformations	18			
	7.5	Conditioning	18			
	7.6	Sampling				
8	Sta	Stationary Gaussian Processes				
	8.1	Correlation Function	18			
	8.2	Sampling				
	8.3					

1 Conditional probability

if X and Y are random variables on the same probability space, and the variance of Y is finite, then

$$Var[Y] = E[Var[Y \mid x]] + Var[E[Y \mid x]]$$

2 Discrete-Time Markov Chains (DTMCs)

2.1 Definition of the DTMC

A DTMC $\{X_n\}$ is a stohastic process with the following properties:

• Markov property

$$\Pr \{X_{n+1} = j \mid X_n = i_n, X_{n-1} = i_{n-1} \dots, X_0 = i_0\}$$

=\Pr\{X_{n+1} = j \mid X_n = i\}

• Stationary transition probabilities

$$\Pr \{X_{n+1} = j \mid X_n = i_n, n = m\}$$
$$= \Pr \{X_{n+1} = j \mid X_n = i_n\}$$

• Countable state space S is countable

2.2 Transition Probability Matrices (TPMs)

2.2.1 General TPMs

Let the state space $\mathcal S$ of a DTMC be represented by the set

$$S = \{0, 1, 2, \ldots\}$$

We introduce the notation

$$P_{ij} = \Pr \left\{ X_{n+1} = j \mid X_n = i \right\}, \quad i, j \in \mathcal{S}$$

The transition probability matrix(TPM) of a DTMC is

$$\mathbf{P} = \begin{bmatrix} P_{00} & P_{01} & P_{02} & \dots \\ P_{10} & P_{11} & P_{12} & \dots \\ P_{20} & P_{21} & P_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

All TPMs satisfy

$$\sum_{j \in \mathcal{S}} \mathbf{P}_{ij} = 1, \quad \forall i \in \mathcal{S}$$

2.2.2 Doubly Stochastic TPMs

A TPM \mathbf{P} is called *doubly stochastic* if

$$\mathbf{P}_{ij} \ge 0, \quad \sum_{k \in \mathcal{S}} \mathbf{P}_{ik} = \sum_{k \in \mathcal{S}} \mathbf{P}_{kj} = 1 \quad \forall i, j \in \mathcal{S}$$

2.2.3 Regular TPMs

A TPM \mathbf{P} is regular if

$$(\mathbf{P}^k)_{ij} > 0 \quad \forall i, j \in \mathcal{S}, \quad \forall k \in \mathbb{N}^+$$

2.3 Classification of States

- **Period of a State** The *period* of a state i is the greatest common divisor(gcd) of the set $\{n\}_{n\in\mathbb{N}^+}$ for which $P_{ii}^{(n)} > 0$.
- Aperiodic A state with period 1 is called aperiodic.
- Recurrent State A state i is recurrent if the probability of returning to i at some point in time is 1. Let $X_0 = i$. Let N_i be the time until the process first returns to state i. Then the probability distribution of N_i is

$$\Pr\{N_i = n\} = \Pr\{X_n = i \mid X_v \neq i, \quad \forall i \in \{1, 2, \dots, n-1\}\}\$$

If a state i is recurrent, then by the law of total probability we have

$$\sum_{n=1}^{\infty} \Pr\left\{ N_i = n \right\} = 1$$

• Transient State A state is transient if it is not recurrent. Then

$$\sum_{n=1}^{\infty} \Pr\left\{ N_i = n \right\} < 1$$

• Accessible State A state j is said to be accessible from state i if there exists some $n \in \mathbb{N}$ such that

$$P_{ij}^{(n)} > 0$$

- Communicating States If two states i and j are both accessible from each other they are said to communicate and we write $i \leftrightarrow j$. We have the following properties
 - Reflexivity

$$i \leftrightarrow i$$

- Symmetry

$$i \leftrightarrow j \iff j \leftrightarrow i$$

- Transitivity

$$i \leftrightarrow j \text{ and } j \leftrightarrow k \implies i \leftrightarrow k$$

• Equivalence Class Let $S_1 \subseteq S$ be a subset of S satisfying the property

$$i \leftrightarrow j, \quad \forall i, j \in \mathcal{S}_1$$

If adding any additional state $j \in \mathcal{S} \setminus \mathcal{S}_1$ to S_1 would break this property, then \mathcal{S}_1 is an *equivalence class* of the Markov chain. Just as with states, classes are either recurrent or transient. They can also be assigned a period.

- Irreducible Markov Chain A Markov chain is *irreducible* if it has only a single equivalence class S_1 such that $S_1 = S$
- Reducible Markov Chain A Markov chain is reducible if it contains more than one equivalence class.

2.4 First Step Analysis

Assume that a TPM for a DTMC is given.

2.4.1 Expected Time Until Absorption

We say that a state is absorbing if, once the process has reached the state, it can never leave. We wish to find the expected time(number of steps) until absorption given $X_0 = j$. Let $\{X_n\}$ be one particular realization of the process. We introduce the following notation

- $t_i(n)$: time until absorption from time n given that the process is in state i.
- $T_i(n)$: $\mathrm{E}\left[t_i(n)\right]$

From the Markov property we have

$$T_i(n) = T_i(m), \quad \forall m, n \in \mathbb{N}$$

Hence, we replace $T_i(n)$ by

$$T_i(n) = T_i$$

Let N+1 be the number of states in the state space (assuming it is finite). Assume the process is not already in an absorbing state at time n. Let \mathcal{A} denote the set of absorbing states. Then $T_r = 0 \quad \forall r \in \mathcal{A}$. Now consider the outcome after a single step. We have from the law of total expectation

$$T_i = 1 + \sum_{k=0}^{N} P_{ik} T_k$$

$$T_i = 1 + P_{ii} T_i + \sum_{k \neq i} P_{ik} T_k$$

$$T_i = \frac{1 + \sum_{k \neq i} P_{ik} T_k}{1 - P_{ii}}$$

On the other hand, we have

$$T_k = \frac{1 + \sum_{j \neq k} P_{kj} T_j}{1 - P_{kk}}, \quad \forall k \in \mathcal{S}$$

Writing out this equation for every $k \in \mathcal{S}$ gives rise to a system of N+1 equations which may be solved to find T_i and $T_k \quad \forall k \in \mathcal{S}$.

2.4.2 Probability of Absorption into Specific State

We shall maintain the notation from section (2.4.1). Let j be an absorbing state and i be a state that is not absorbing. We wish to find

$$a_{ij} = \Pr\left\{X_{n+t_i(n)} = j \mid X_n = i\right\}$$

By the law of total probability we get

$$a_{ij} = \sum_{k=0}^{N} P_{ik} a_{kj}$$

where $a_{jj} = 1$ and $a_{rj} = 0$, $\forall r \in \mathcal{A} \setminus \{j\}$. Hence, we again arrive at a system of N + 1 equations.

2.5 Long Run Behaviour

2.5.1 Limiting Distribution

Any set $\{\pi_j\}_{j\in\mathcal{S}}$ satisfying

$$\pi_j = \sum_{k \in \mathcal{S}} \pi_k P_{kj}, \quad \sum_{k \in \mathcal{S}} \pi_k = 1, \quad \lim_{n \to \infty} P_{ij}^{(n)} = \pi_j > 0, \quad \forall i \in \mathcal{S}$$
 (1)

is a *limiting distribution* of the Markov chain.

2.5.2 Stationary Distribution

Any set $\{\pi_i\}_{i\in\mathcal{S}}$ satisfying

$$\pi_j = \sum_{i \in \mathcal{S}} \pi_i P_{ij}, \quad \sum_{i \in \mathcal{S}} \pi_i = 1, \quad \pi_j \ge 0, \quad \forall j \in \mathcal{S}$$
 (2)

is a stationary distribution of the Markov chain.

Note: Not every stationary distribution is a limiting distribution. As an example, consider the Markov chain with TPM

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

This process has the stationary distribution $\pi = \left[\frac{1}{2}, \frac{1}{2}\right]$. However, the limit in (1) doesn't exist since $P_{01}^{(n)} = P_{10}^{(n)}$ is 1 for odd n and 0 for even n, $\forall n \in \mathbb{N}$. Hence, we can't find any limiting distribution for the process.

2.5.3 The Basic Limit Theorem of Markov Chains

Theorem 1 (The Basic Limit Theorem of Markov Chains). Let i be a recurrent state of a MC. Then

$$\lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\sum_{n=1}^{\infty} n Pr\{N_i = n\}} = \frac{1}{E[N_i]}$$

Proof. Since i is recurrent by definition we have

$$\sum_{n=1}^{\infty} \Pr\left\{ N_i = n \right\} = 1$$

Then

$$E[N_i] = \sum_{n=1}^{\infty} n \Pr\{N_i = n\}$$

and $E[N_i]$ is the expected time between two successive visits to state i. Then

$$\lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\sum_{n=1}^{\infty} n \operatorname{Pr}\left\{N_i = n\right\}} = \frac{1}{\operatorname{E}\left[N_i\right]}$$

2.6 Chapman-Kolmogorov Equation

Let S denote the state space of a DTMC, and let $P_{ij}^{(n)}$ denote the probability of transitioning from state i to state j in n steps. Then

$$P_{ij}^{(n+m)} = \sum_{k \in \mathcal{S}} P_{ik}^{(n)} P_{kj}^{(m)}, \quad \forall m, n \in \mathbb{N}$$

$$\tag{3}$$

3 Poisson Processes

3.1 The Poisson Distribution

3.1.1 Probability Density Function (PDF)

The *Poisson distribution* is given by

$$p(x) = \frac{e^{-\mu}\mu^x}{x!}, \quad \forall x \in \mathbb{N}$$

With $E[x] = Var[x] = \mu$.

3.1.2 Properties

The Poission distribution has the following properties

•

Theorem 2 (PDF of Sum of Independent Poisson Random Variables). Let $\{X_i\}_{i\in\{1,...,N\}}$ be a set of N independent Poisson random variables with respective rate parameters $\{\mu_i\}_{i\in\{1,...,N\}}$. Then the random variable

$$Z = \sum_{i=1}^{N} X_i$$

is a Poisson random variable with rate parameter

$$\mu_Z = \sum_{i=1}^N \mu_i$$

• Binomial Variable Conditional on Poisson Variable Let N be a Poisson variable with rate parameter μ . Let M be a binomial variable with parameters N and p. Then the unconditional distribution of M is Poisson with rate parameter μp .

Proof.

$$\Pr\{M = m\} = \sum_{n=m}^{\infty} \Pr\{M = m \mid N = n\} \Pr\{N = n\}$$

$$= \sum_{n=m}^{\infty} \left\{ \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m} \right\} \left\{ \frac{\mu^n e^{-\mu}}{n!} \right\}$$

$$= \frac{e^{-\mu} (\mu p)^m}{m!} \sum_{n=m}^{\infty} \frac{(\mu (1-p))^{n-m}}{(n-m)!}$$

Noting that the sum is the series expansion of $e^{\mu(1-p)}$ we arrive at

$$\Pr\{M = m\} = \frac{e^{-\mu}(\mu p)^m}{m!} e^{\mu(1-p)} = \frac{e^{-\mu p}(\mu p)^m}{m!}, \quad \forall k \in \mathbb{N}$$

3.2 The Poisson Process

3.2.1 Properties

A Poisson process $\{X(t)\}_{t\geq 0}$ with rate parameter $\lambda>0$ is a stochastic process with the following properties

• Independent process increments Let h > 0 be a fixed time increment. For all t_0 and t_1 satisfying $0 < t_0 < t_1 - h$ we have

$$\Pr\{X(t_0+h) - X(t_0) = k\} = \Pr\{X(t_1+h) - X(t_1) = k\}$$

• Process increments are Poisson For h > 0 and t > 0 we have

$$\Pr\left\{X(t+h) - X(t) = k\right\} = \frac{e^{-\lambda h}(\lambda h)^k}{(k)!}$$

3.2.2 Postulates

The Poisson process has the following postulates

1. X(0) = 0

2.
$$\Pr\{X(t+h) - X(t) = 1\} = \lambda h + o(h)$$
 as $h \downarrow 0$

Therefore

$$\lim_{h \rightarrow 0^+} \frac{\Pr\left\{X(t+h) - X(t) = 1 \mid X(t) = x\right\}}{h} = \lambda$$

3. $\Pr\{X(t+h) - X(t) = 0\} = 1 - \lambda h + o(h)$ as $h \downarrow 0$

Therefore

$$\lim_{h \to 0^+} \frac{\Pr\{X(t+h) - X(t) = 0 \mid X(t) = x\}}{h} = 1 - \lambda$$

Proof. We prove (2).

$$\Pr \{X(t+h) - X(t) = 1\} = \frac{(\lambda h)e^{-\lambda h}}{1!}$$
$$= (\lambda h) \left(1 - \lambda h + \frac{1}{2}(\lambda h)^2 - \dots\right)$$
$$= \lambda h + o(h) \quad \text{as } h \downarrow 0$$

where we used the series expansion of $e^{-\lambda h}$.

The postulate (3) follows readily by employing the same procedure.

3.2.3 Nonhomogeneous Processes

A Poisson process is nonhomogeneous if it's rate parameter varies with time, i.e. $\lambda = \lambda(t)$

3.3 The Law of Rare Events

Consider a binomial distribution

$$\Pr\{X = k; N, p\} = \frac{N!}{k!(N-k)!} p^k (1-p)^{N-k}$$

Now let $N \to \infty$ and $p \to 0$. Then the distribution becomes the Poisson distribution, i.e.

$$\Pr\{X = k; \mu\} = \frac{e^{-\mu}\mu^k}{k!}$$

3.3.1 Approximation using the Poisson Distribution

Let $\{\epsilon_i\}$ be a set of independent Bernoulli random variables, where

$$\Pr \{\mathcal{E}_i = 1\} = p_i, \quad \Pr \{\epsilon_i = 0\} = 1 - p_i$$

Let $S_n = \sum_{i=1}^n \epsilon_i$ and set $\mu = \sum_{i=1}^n p_i$. Then

$$\left| \Pr \left\{ S_n = k \right\} - \frac{\mu^k e^{-\mu}}{k!} \right| \le \sum_{i=1}^n p_i^2$$

3.4 Distributions Associated with the Poisson Process

We introduce the following terms:

• Waiting Time The waiting time W_n is the time of occurrence of the nth event, and is gamma distributed

$$f_{W_n}(t) = \frac{\lambda^n t^{n-1}}{(n-1)!} e^{-\lambda t}, \quad \forall n \in \mathbb{N}$$

• Sojourn Time The differences $S_n = W_{n+1} - W_n$ are called the sojourn times of the process and are exponentially distributed

$$f_{S_k}(s) = \lambda e^{-\lambda s}, \quad s \ge 0$$

Let $\{X(t)\}\$ be a Poisson process with rate $\lambda > 0$. Then for $0 < \mu < t$ and $0 \le k \le n$

$$\Pr\left\{X(u) = k \mid X(t) = n\right\} = \frac{n!}{k!(n-k)!} \left(\frac{u}{t}\right)^k \left(1 - \frac{u}{t}\right)^{n-k}$$

3.5 The Uniform Distribution and Poisson Processes

Theorem 3 (PDF of Waiting Times). Let $\{W_i\}_{i\in N^+}$ be the occurrence times in a Poisson process of rate $\lambda > 0$. Conditioned on N(t) = n the random variables $\{W_i\}_{i\in N^+}$ have the joint PDF

$$f_{\{W_i\}|X(t)=n}(\{W_i\}) = n!t^{-n}$$

4 Birth and Death Processes (BDPs)

4.1 Postulates

A birth and death process is a generalization of the Poisson process. BDPs constitute a class of continuous time Markov chains (CTMCs). By analogy to the development of a population over time, we let the BDP X(t) denote the population, or state, at time t and define two types of events: births and deaths. A birth corresponds to an increase in the population by 1, and a death corresponds to a decrease in the population by 1. Let i be the current state of the process and define

$$P_{i,k}(h) = \Pr \{X(t+h) - X(t) = k\}$$

which is the probability that the population changes by k during the time interval h. We define λ_i and μ_i to be the birth rate and death rate respectively of the process in state i. A BDP is defined by the following postulates

$$P_{i,i+1}(h) = \lambda_i h + o(h) \text{ as } h \downarrow 0, \quad i \ge 0$$
(4a)

$$P_{i,i-1}(h) = \mu_i h + o(h) \text{ as } h \downarrow 0, \quad i \ge 1$$
 (4b)

$$P_{i,i}(h) = 1 - (\lambda_i + \mu_i)h + o(h) \text{ as } h \downarrow 0, \quad i \ge 1$$
 (4c)

$$P_{ij}(0) = \delta_{ij} \tag{4d}$$

$$\mu_0 = 0, \quad \lambda_0 > 0, \quad \mu_i, \lambda_i > 0, \quad \forall i \in \mathbb{N}^+$$
 (4e)

4.2 Sojourn Times

The sojourn times $\{S_i\}$ of a BDP are exponentially distributed with parameter $(\lambda_i + \mu_i)$ and PDF

$$f_{S_i}(t) = (\lambda_i + \mu_i) \exp\left[-(\lambda_i + \mu_i)\right] \tag{5}$$

Proof. Define $G_i(t) = \Pr\{S_i > t\}$ and let $h \downarrow 0$. By the Markov property and the postulates (4) we have

$$G_i(t+h) = G_i(t)G_i(h) = G_i(P_{i,i}(h) + o(h))$$

= $G_i(t)(1 - (\lambda_i + \mu_i)h) + o(h)$

Rearranging yields

$$\frac{G_i(t+h) - G_i(t)}{h} = -(\lambda_i + \mu_i)G_i(t) + o(1)$$
$$G'_i(t) = -(\lambda_i + \mu_i)G_i(t)$$

which is a differential equation with solution

$$G_i(t) = \exp\left[-(\lambda_i + \mu_i)\right]$$

Then

$$\Pr\left\{S_i \le t\right\} = 1 - \exp\left[-(\lambda_i + \mu_i)\right]$$

Taking the derivative we get the pfd of the sojourn time in state i

$$f_{S_i}(t) = (\lambda_i + \mu_i) \exp\left[-(\lambda_i + \mu_i)\right]$$

4.3 Transition Probabilities

Let W_n and W_{n+1} be any two subsequent waiting times of the process as defined in (3.4). We state without proof that the *transition probabilities* are given by:

$$\Pr \{X(W_{n+1}) - X(W_n) = 1\} = \frac{\lambda_i}{\lambda_i + \mu_i}$$
$$\Pr \{X(W_{n+1}) - X(W_n) = -1\} = \frac{\mu_i}{\lambda_i + \mu_i}$$

4.4 Differential Equations

Any BDP satisfies the backward Kolmogorov differential equations

$$P'_{0i}(t) = -\lambda_0 P_{0i}(t) + \lambda_0 P_{1i}(t) \tag{6a}$$

$$P'_{ij}(t) = \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t) + \lambda_i P_{i+1,j}(t)$$
(6b)

Proof. We begin by proving (6a). Let $h \downarrow 0$. By the Chapman-Kolmogorov equation (3) and the postulates (4) we have

$$P_{0j}(t+h) = \sum_{i=0}^{\infty} P_{0k}(h) P_{kj}(t) = \sum_{i=0}^{1} P_{0k}(h) P_{kj}(t) + \sum_{i=2}^{\infty} P_{0k}(h) P_{kj}(t)$$
$$= \lambda_0 h P_{1j}(t) + (1 - \lambda_0 h) P_{0j}(t) + o(h) + \sum_{k=2}^{\infty} P_{0k}(h) P_{kj}(t)$$

where for the last summation we have

$$\sum_{k=2}^{\infty} P_{0k}(h) P_{kj}(t) \le \sum_{k=2}^{\infty} P_{0k}(h)$$

$$= 1 - P_{00}(h) - P_{01}(h)$$

$$= 1 - (1 - \lambda_0 h) - \lambda_0 h + o(h)$$

$$= o(h)$$

Hence

$$P_{0j}(t+h) = \lambda_0 h P_{1j}(t) + (1 - \lambda_0 h) P_{0j}(t) + o(h)$$

Moving P_{0j} to the left hand side and dividing by h as $h\downarrow 0$ we obtain

$$P'_{0j}(t) = -\lambda_0 P_{0j}(t) + \lambda_0 P_{1j}(t)$$

We now derive the second equation (6b) in a similar manner

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(h) P_{kj}(t)$$

$$= P_{i,i-1}(h) P_{i-1,j}(t) + P_{i,i}(h) P_{ij}(t) + P_{i,i+1}(h) P_{i+1,j}(t) + \sum_{k=0}^{n} P_{ik}(h) P_{kj}(t)$$

where the last summation is over all $k \in \mathbb{N} \setminus \{i-1, i+1\}$. From (4) we get

$$\sum_{k}^{\prime} P_{ik}(h) P_{kj}(t) \leq \sum_{k}^{\prime} P_{ik}(h)$$

$$= 1 - [P_{i,i}(h) + P_{i,i-1}(h) + P_{i,i+1}(h)]$$

$$= 1 - [1 - (\lambda_i + \mu_i)h + o(h) + \mu_i h + o(h) + \lambda_i h + o(h)]$$

$$= o(h)$$

Hence

$$P_{ij}(t+h) = \mu_i h P_{i-1,j}(t) + \left[1 - (\lambda_i + \mu_i)h\right] P_{ij}(t) + \lambda_i h P_{i+1,j}(t) + o(h)$$

Moving $P_{ij}(t)$ to the left-hand side and dividing by h as $h \downarrow 0$ we obtain

$$P'_{ij}(t) = \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t) + \lambda_i P_{i+1,j}(t)$$

4.5 Limiting Behaviour

A BDP with no absorbing states has a stationary distribution that satisfies

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}(t)$$

In this case, the limiting distribution is also a limiting dstribution since it satisfies

$$\lim_{t \to \infty} P_{ij}(t) = \pi_j \ge 0 \tag{7}$$

which we will not prove.

Let $t \to \infty$. Inserting (7) into the backward Kolmogorov differential equations (6a) and (6b) we get

$$0 = -\lambda_0 \pi_0 + \mu_1 \pi_1 \tag{8a}$$

$$0 = \lambda_{j-1}\pi_{j-1} - (\lambda_j + \mu_j)\pi_j + \mu_{j+1}\pi_{j+1}$$
(8b)

where the left hand sides are zero by (7). The solution of this system is

$$\pi_k = \theta_k \pi_0, \quad \theta_k = \prod_{i=0}^{k-1} \frac{\lambda_k}{\mu_{k+1}}, \quad \theta_0 = 1$$
 (9)

Proof. We prove (9) by induction. Assume (9) holds. Then by (8a) we have

$$\pi_1 = \pi_0 \frac{\lambda_0}{\mu_1} = \theta_1 \pi_0$$

Inserting into (8b) yields

$$\mu_{j+1}\pi_{j+1} = (\lambda_j + \mu_j)\theta_j\pi_0 - \lambda_{j-1}\theta_{j-1}\pi_0$$
$$= \lambda_j\theta_j\pi_0 + (\mu_j\theta_j - \lambda_{j-1}\theta_{j-1})\pi_0$$
$$= \lambda_j\theta_j\pi_0$$

which, when rearranged, leads to

$$\pi_{j+1} = \theta_{j+1} \pi_0$$

which completes the induction part of the proof.

What remains is to find an expression for π_0 . Assuming the limiting distribution sums to one, we have

$$\sum_{k=0}^{\infty} \pi_k = \pi_0 \sum_{k=0}^{\infty} \theta_k = 1$$

Hence

$$\pi_0 = \frac{1}{\sum_{k=0}^{\infty} \theta_k}$$

4.6 Probability of Absorption into State 0

Just as for DTMCs, one may analyse problems that arrive from processes with absorbing states. Consider a process with $\lambda_0 = \mu_0 = 0$. One example of such a process is a linear-growth BDP without immigration for which $\lambda_n = n\lambda$ and $\mu_n = n\mu$. We introduce the following notation:

- a_i : probability of absorption into state 0 from the initial state i
- b_i : probability that the next jump of the process is to state i+1 (birth) given that the current state is i.
- d_i : probability that the next jump of the process is to state i-1 (death) given that the current state is i.

Absorption into state 0 is not a certain event, since the process may wander forever among the states \mathbb{N}^+ , or it may drift toward infinity. Hence, it isn't generally true that $a_i = 1, \forall i \in \mathbb{N}$. The probability of absorption into state 0 given initial state i is

$$a_i = \frac{\sum_{i=m}^{\infty} \rho_i}{1 + \sum_{i=1}^{\infty} \rho_i}, \quad \rho_i = \prod_{j=0}^i \frac{\mu_j}{\lambda_j}$$
 (10)

Proof. From (4.3) we have

$$b_i = \frac{\lambda_i}{\mu_i + \lambda_i}, \quad d_i = \frac{\mu_i}{\mu_i + \lambda_i}$$

Hence

$$a_{i} = \frac{\lambda_{i}}{\mu_{i} + \lambda_{i}} a_{i+1} + \frac{\mu_{i}}{\mu_{i} + \lambda_{i}} a_{i-1}$$
(11)

Rewriting (11) we get

$$(a_{i+1} - a_i) = \frac{\mu_i}{\lambda_i} (a_i - a_{i-1})$$

Let $v_i = a_{i+1} - a_i$. Then we obtain the recursive formula

$$v_i = \frac{\mu_i}{\lambda_i} v_{i-1}$$

Writing out this recursion we get

$$v_i = \rho_i v_0, \quad \rho_i = \prod_{j=0}^i \frac{\mu_j}{\lambda_j}$$

Then

$$v_i = \rho_i v_0 = \rho_i (a_1 - a_0) = \rho_i (a_i - 1), \quad \forall i \ge 1$$

Summing over v_i from i = 1 to i = m - 1 yields

$$\sum_{i=1}^{m-1} v_i = a_m - a_1 = (a_1 - 1) \sum_{i=1}^{m-1} \rho_i$$
(12)

Since $a_m < 1, \forall m \in \mathbb{N}^+$ we have

$$\sum_{i=1}^{\infty} \rho_i < \infty$$

Now let $m \to \infty$. Then, it can be shown that $a_m \to 0$. Therefore (12) gives

$$a_1 = \frac{\sum_{i=1}^{\infty} \rho_i}{1 + \sum_{i=1}^{\infty} \rho_i}$$
 (13)

Let $S_L^U = \sum_{i=L}^U \rho_i$. For general m we get from (12) and (13)

$$\begin{split} n_m &= (a_1 - 1)S_1^{m-1} + a_1 \\ &= \frac{S_1^{\infty} S_1^{m-1}}{1 + S_1^{\infty}} - S_1^{m-1} + \frac{S_1^{\infty}}{1 + S_1^{\infty}} \\ &= \frac{S_1^{\infty} S_1^{m-1} - (1 + S_1^{\infty}) S_1^{m-1} + S_1^{\infty}}{1 + S_1^{\infty}} \\ &= \frac{S_m^{\infty}}{1 + S_1^{\infty}} \\ &= \frac{\sum_{i=m}^{\infty} \rho_i}{1 + \sum_{i=1}^{\infty} \rho_i} \end{split}$$

4.7 Mean Time Until Absorption

Let w_i be the mean time until absorption starting from state i. Then

$$w_m = \sum_{i=1}^{\infty} \frac{1}{\lambda_i \rho_i} + \sum_{k=1}^{m-1} \rho_k \sum_{i=k+1}^{\infty} \frac{1}{\lambda_i \rho_i}, \quad \rho_k = \prod_{j=1}^{m} \frac{\mu_j}{\lambda_j}$$
 (14)

Proof. Since the sojourn times of the process are exponentially distributed with parameter $\lambda_i + \mu_i$ we have

$$w_{i} = \frac{1}{\lambda_{i} + \mu_{i}} + \frac{\lambda_{i}}{\lambda_{i} + \mu_{i}} w_{i+1} + \frac{\mu_{i}}{\lambda_{i} + \mu_{i}} w_{i-1}$$
(15)

Let $z_i = w_i - w_{i+1}$ then rearranging (15) leads to the recursive formula

$$z_i = \frac{1}{\lambda_i} + \frac{\mu_i}{\lambda_i} z_{i-1}, \quad i \ge 1$$

Writing out the recursion leads to

$$z_m = \sum_{i=1}^m \frac{1}{\lambda_i} \frac{\rho_m}{\rho_i} + \rho_m z_0, \quad \rho_k = \prod_{j=1}^m \frac{\mu_j}{\lambda_j}$$
 (16)

Since $z_m = w_m - w_{m+1}$ and $z_0 = w_0 - w_1 = -w_1$ we get

$$\frac{1}{\rho_m}(w_m - w_{m+1}) = \sum_{i=1}^m \frac{1}{\lambda_i \rho_i} - w_1 \tag{17}$$

If $\sum_{i=1}^m \frac{1}{\lambda_i \rho_i} = \infty$ then $w_1 = \infty$. Suppose $\sum_{i=1}^m \frac{1}{\lambda_i \rho_i} < \infty$ and let $m \to \infty$. Then

$$w_1 = \sum_{i=1}^{\infty} \frac{1}{\lambda_i \rho_i} - \lim_{m \to \infty} \frac{1}{\rho_m} (w_m - w_{m+1})$$

We state without proof that

$$\lim_{m \to \infty} \frac{1}{\rho_m} (w_m - w_{m+1}) = 0$$

Then

$$w_1 = \sum_{i=1}^{\infty} \frac{1}{\lambda_i \rho_i} \tag{18}$$

Hence, from (16) we have

$$w_m = \sum_{i=1}^m \frac{1}{\lambda_i} \frac{\rho_m}{\rho_i} - \rho_m w_1$$

Summing $(w_k - w_{k+1})$, from k = 1 to k = m - 1 yields a telescoping sum

$$\sum_{k=1}^{m-1} (w_k - w_{k+1}) = w_1 - w_m \tag{19}$$

This sum can be evaluated by (17)

$$w_{m} = w_{1} - \sum_{k=1}^{m-1} \rho_{k} \left(\sum_{i=1}^{k} \frac{1}{\lambda_{i} \rho_{i}} - \sum_{i=1}^{\infty} \frac{1}{\lambda_{i} \rho_{i}} \right)$$
$$= \sum_{i=1}^{\infty} \frac{1}{\lambda_{i} \rho_{i}} + \sum_{k=1}^{m-1} \rho_{k} \sum_{i=k+1}^{\infty} \frac{1}{\lambda_{i} \rho_{i}}$$

4.8 Finite-State Continuous Time Markov Chains

Assume we are given a CTMC (not necessarily BDP) with finite state space. Then we can represent the transition probabilities $P_{ij}(t)$ by the matrix $\mathbf{P}(t)$ such that

$$\mathbf{P}(t)_{ij} = P_{ij}(t)$$

From the Chapman-Kolmogorov equation we have

$$\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s), \quad \forall t, s \ge 0$$

We employ the postulate

$$\lim_{t \to 0^+} P_{ij}(t) = \begin{cases} 1, & i = 1 \\ 0, & i \neq 1 \end{cases}$$

Hence, if we approach t from the right we obtain

$$\lim_{h \to 0^+} \mathbf{P}(t+h) = \mathbf{P}(t) \lim_{h \to 0^+} \mathbf{P}(h) = \mathbf{P}(t)\mathbf{I} = \mathbf{P}(t)$$

If instead we approach t from the left we get

$$\lim_{h \to 0^+} \mathbf{P}(t-h) = \mathbf{P}(t) \lim_{h \to 0^+} \mathbf{P}(h) = \mathbf{P}(t)\mathbf{I} = \mathbf{P}(t)$$

By definition, this shows that P(t) is continuous. We will show that the matrix P(t) is also differentiable.

$$\lim_{h \to 0^+} \frac{\mathbf{P}(t+h) - \mathbf{P}(t)}{h} = \lim_{h \to 0^+} \frac{\mathbf{P}(h) - \mathbf{I}}{h} \mathbf{P}(t) = \mathbf{A} \mathbf{P}(t)$$
(20)

It remains to show that **A** exists. Let

$$q_i = \lim_{h \to 0^+} \frac{1 - P_{ii}(h)}{h}$$
$$q_{ij} = \lim_{h \to 0^+} \frac{P_{ij}(h)}{h}$$

Note the relation

$$1 - P_{ii}(h) = \sum_{j=0, j \neq i}^{N} P_{ij}(h)$$

Dividing by h and letting $h \to 0$ we obtain

$$q_i = \sum_{j=0, j \neq i}^{N} q_{ij}$$

Taylor expanding $P_{ij}(0)$ and letting $h \downarrow 0$ in the Taylor expansion we obtain

$$\Pr \{X(h) = j \mid X(0) = i\} = q_{ij}h + o(h)$$
$$\Pr \{X(h) = i \mid X(0) = i\} = 1 - q_ih + o(h)$$

These probabilites constitute the elements of the matrix $\lim_{h\to 0} \mathbf{P}(h)$. Subtracting I and dividing by h we obtain

$$\mathbf{A} = \begin{bmatrix} -q_0 & q_{01} & \dots & q_{0N} \\ q_{10} & -q_1 & \dots & q_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ q_{N0} & q_{N1} & \dots & -q_N \end{bmatrix}$$

By (20) we have the differential equation

$$\mathbf{P}'(t) = \mathbf{AP}(t)$$

with solution

$$\mathbf{P}(t) = e^{\mathbf{A}t} = \mathbf{I} + \sum_{n=1}^{\infty} \frac{\mathbf{A}^n t^n}{n!}$$

5 Queueing Systems

5.1 Queueing Processes

Queueing systems are classified according to the following terms

- Input Process The PDF of the pattern of customer arrivals in time
- Service Distribution The PDF of the random time to serve a customer
- Queue Discipline The number of servers and the order of customer service

5.1.1 The Queueing Formula (Little's Law)

Consider a queueing system that has been operating sufficiently long to have reached an appropriate steady state, or a position of statistical equilibrium. Let

- L = the average number of customers in the system (average load)
- λ = the rate of arrival of customers to the system
- W = the average time spent by a customer in the system

Then Little's law states that

$$L = \lambda W \tag{21}$$

5.2 Poisson Arrivals, Exponential Service Times

Let X(t) denote the number of customers in the system at time t. Let the *input process* be Poisson with rate parameter λ , and the *service distribution* be exponential with parameter μ . Series expanding both distributions as in (3.2.2) we obtain

$$\Pr \{X(t+h) - X(t) = 1\} = [\lambda h + o(h)] [1 - \mu h + o(h)]$$
$$= \lambda h + o(h)$$

and similarly

$$\Pr\{X(t+h) - X(t) = -1\} = \mu h + o(h) \tag{22}$$

which by the postulates (4) shows that X(t) is a BDP with birth rate $\lambda_k = \lambda$ and death rate $\mu_k = \mu$ for all $k \in \mathbb{N}^+$. From the definition of the process, we must have $\mu_0 = 0$.

5.2.1 Limiting Distribution

Since X(t) is a BDP we find it's limiting distribution $\{\pi_k\}$ using the same method and notation as in section (4.5). Assuming that the geometric series

$$\theta_k = \left(\frac{\lambda}{\mu}\right)^k, \quad k \ge 1$$

converges as $k \to \infty$, we have

$$\lim_{k \to \infty} \theta_k = \frac{1}{1 - \lambda/\mu}$$

Hence

$$\pi_0 = \frac{1}{\sum_{i=0}^{\infty} \theta_k} = 1 - \lambda/\mu$$

and finally

$$\pi_k = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^k, \quad k \in \mathbb{N}$$

5.2.2 Applying Little's law

Note that π_k has the same form as the PDF of the geometric distribution. If we let $p = 1 - \lambda/\mu$ then by the geometric distribution we have

$$L = E[X] = \frac{1 - (1 - \lambda/\mu)}{1 - \lambda/\mu} = \frac{\lambda}{\mu - \lambda}$$

The ratio $\rho = \lambda/\mu$ is called the traffic intensity. Note that $L \to \infty$ as $\rho \to 1$.

5.2.3 Waiting Times

The waiting time of a customer is defined as the time between a customer arrives to the server and the time it becomes served. Let T be the waiting time of a given customer. Then T is exponentially distributed with parameter $(\mu - \lambda)$

$$\Pr\left\{T = t\right\} = (\mu - \lambda) \exp\left[-t(\mu - \lambda)\right] \tag{23}$$

Proof. It must be the case that T is equal to the sum of the exponentially distributed serving times for all the N people in front of him in the queue. Therefore T has a gamma distribution of order N+1 with scale parameter μ

$$\Pr\{T \le t \mid N = n\} = \int_0^t \frac{\mu^{n+1} \tau^n e^{-\mu \tau}}{\Gamma(n+1)} d\tau \tag{24}$$

By the law of total probability we obtain

$$\Pr\left\{T \le t\right\} = \sum_{n=0}^{\infty} \left[\Pr\left\{T \le t \mid N = n\right\} \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right)\right] \tag{25}$$

Substituting (24) into (25) yields

$$\Pr\left\{T \le t\right\} = \sum_{n=0}^{\infty} \int_{0}^{t} \frac{\mu^{n+1} \tau^{n} e^{-\mu \tau}}{\Gamma(n+1)} \left(\frac{\lambda}{\mu}\right)^{n} \left(1 - \frac{\lambda}{\mu}\right) d\tau$$

$$= \int_{0}^{t} \mu e^{-\mu \tau} \left(1 - \frac{\lambda}{\mu}\right) \sum_{n=0}^{\infty} \frac{\tau^{n} \lambda^{n}}{\Gamma(n+1)} d\tau$$

$$= \int_{0}^{t} \left(1 - \frac{\lambda}{\mu}\right) \mu \exp\left\{-\tau \mu \left(1 - \frac{\lambda}{\mu}\right)\right\} d\tau = 1 - \exp\left[-t(\mu - \lambda)\right]$$

which shows that T is exponentially distributed with parameter $(\mu - \lambda)$.

6 Brownian Motion

6.1 Introduction

The Brownian motion stochastic process is a continuous-time and continuous-state process. In this introduction we shall let X(t) denote the position of a particle in 1 dimension at time t. We let the initial position of the particle at time t = 0 be x_0 . During a time period t, the particle wanders randomly to a position x. Intuitively, we would expect the particle to wander further from x_0 if we increase t. Let σ^2 be the variance of x given t = 1, and let $p(x, t \mid x_0, \sigma^2)$ be the PDF of the position x given an initial position x_0 , time period t and variance σ^2 . The PDF has the form

$$p(x,t \mid x_0, \sigma^2) = \frac{1}{\sqrt{2\pi t \sigma^2}} \exp\left(-\frac{1}{2t\sigma^2} (x - x_0)^2\right)$$
 (26)

The PDF satisfies

$$p(x, t \mid x_0, \sigma^2) \ge 0, \quad \int_{-\infty}^{\infty} p(x, t \mid x_0, \sigma^2) dx = 1, \quad \forall x \in \mathbb{R}$$

Additionally, we employ the postulate

$$\lim_{t \to 0} (x, t \mid x_0, \sigma^2) = 0, \quad x \neq x_0$$

Throughout most of this section we shall assume that $\sigma^2 = 1$. We introduce the notation

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$$

for the standard normal PDF ($\sigma^2 = t = 1$), and

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx$$

for the corresponding CDF. If we allow t to vary, the PDF becomes

$$\phi_t(z) = \frac{1}{\sqrt{t}}\phi(z/\sqrt{t})$$

and the CDF becomes

$$\Phi_t(z) = \Phi(z/\sqrt{t})$$

Hence

$$\Pr\left\{X(t) \le x \mid X(0) = x_0\right\} = \Phi\left(\frac{x - x_0}{\sqrt{t}}\right)$$

6.2 Properties

Brownian motion satisfies the following properties

- 1. Every increment X(s+t) X(s) is normally distributed with mean zero and variance $\sigma^2 t$
- 2. For every pair of disjoint time intervals $(t_1, t_2], (t_3, t_4]$, with $0 \le t_1 < t_2 \le t_3 < t_4$ the increments $X(t_4) X(t_3)$ and $X(t_2) X(t_1)$ are independent random variables. This applies for any number of disjoint time intervals.
- 3. X(0) = 0, and X(t) is continuous as a function of t

6.3 Covariance Function

Using the independent increments property, we will determine the covariance of the process. Let $0 \le s < t$. Since $E[X(t)] = \mu(t) = 0, \forall t \ge 0$ we have

$$\begin{aligned} \operatorname{Cov}\left[X(s), X(t)\right] &= \operatorname{E}\left[\left(X(s) - \mu(s)\right) \left(X(t) - \mu(t)\right)\right] = \operatorname{E}\left[X(s)X(t)\right] \\ &= \operatorname{E}\left[X(s)X(t) - X(s) + X(s)\right] \\ &= \operatorname{E}\left[X(s)^{2}\right] + \operatorname{E}\left[X(s)\left\{X(t) - X(s)\right\}\right] \\ &= \sigma^{2}s + \operatorname{E}\left[X(s)\right] \operatorname{E}\left[X(t) - X(s)\right] \\ &= \sigma^{2}s \end{aligned}$$

For $0 \le t < s$ we obtain $Cov[X(s), X(t)] = \sigma^2 t$. The general formula is

$$Cov[X(s), X(t)] = \sigma^2 min\{s, t\}, \quad s, t \ge 0$$

The correlation is

$$\operatorname{Corr}\left[X(s), X(t)\right] = \frac{\operatorname{Cov}\left[X(s), X(t)\right]}{\sqrt{s\sigma} \cdot \sqrt{t\sigma}} = \frac{\min\left\{s, t\right\}}{\sqrt{st}} = \sqrt{\frac{\min\left\{s, t\right\}}{\max\left\{s, t\right\}}}$$
(27)

6.4 The Central Limit Theorem and The Invariance Principle

Let $S_n = \sum_{i=1}^n \xi_i$ be the sum of n independent and identically distributed random variables having zero means and unit variances. The *central theorem* asserts that

$$\lim_{n \to \infty} \Pr\left\{ \frac{S_n}{\sqrt{n}} \le x \right\} = \Phi(x), \quad \forall x$$
 (28)

Consider a function $X_n(t)$ of the continuous variable t

$$X_n(t) = \frac{S_{[nt]}}{\sqrt{n}}, \quad t \ge 0$$

where [x] is the greatest integer less than or equal to x. Observe that

$$X_n(t) = \frac{S_k}{\sqrt{n}} = \frac{\sqrt{[nt]}}{\sqrt{n}} \frac{S_k}{\sqrt{k}}, \quad \frac{k}{n} \le t < \frac{k}{n} + \frac{1}{n}$$

Because S_k/\sqrt{k} has unit variance, the variance of $X_n(t)$ is $\{nt\}/n$, which converges to t as $n \to \infty$. When n is large, then k = [nt] is large, and S_k/\sqrt{k} is approximately normally distributed according to (28). It's therefore reasonable to believe that $X_n(t)$ should behave much like a standard Brownian motion when n is large. This is indeed true, although we shall not prove it here. The convergence of a sum of a sequence of stochastic processes (6.4) to a standard Brownian motion is termed the *invariance principle*.

6.5 The Reflection Principle

We refer to the book for a deeper and more illustrative look into the *reflection principle*. Here, we shall only present some important results.

Let X(t) be a Brownian motion process and define

$$M(t) = \max_{0 \le u \le t} X(u)$$

Then

$$\Pr \{M(t) > y\} = 2\Pr \{X(t) > y\}$$

= 2 [1 - \Phi_t(y)]

6.6 Hitting Times

The *hitting time* of a process is defined as

$$\tau_y = \min \left\{ u \ge 0 : X(u) = y \right\}$$

Logically, we must have

$$\Pr \{ \tau_y \le t \} = \Pr \{ M(t) \ge y \} = 2 [1 - \Phi_t(y)]$$
$$= \frac{2}{\sqrt{2\pi t}} \int_y^{\infty} e^{-\xi^2/(2t)} d\xi$$

The change of variable $\xi = \eta \sqrt{t}$ leads to

$$\Pr\left\{\tau_y \le t\right\} = \sqrt{\frac{2}{\pi}} \int_{y/\sqrt{t}}^{\infty} e^{-\eta^2/2} d\eta$$

Differentiating with respect to t we obtain the PDF

$$f_{\tau_y}(t) = \frac{yt^{-3/2}}{\sqrt{2\pi}}e^{-y^2/(2t)}$$

7 Introduction to Gaussian Processes (GPs)

7.1 Definition

Let X(t) be a continuous-time, continuous-state stochastic process with X(0) = 0 and $E[X(t)] = \mu(t)$. We sample the process at some finite set of n time-points $\{t_i\}$ to get the corresponding states $\{X(t_i)\}$. Then we may construct a linear combination of the n states $\{X(t_i)\}$ by setting

$$S = \sum_{i=1}^{n} \alpha_i X(t_i)$$

If S is normally distributed for any set of scalar coefficients $\{\alpha_i\}$, then X(t) is a Gaussian process (GP).

7.2 Univariate GP

Let X(t) be a univariate process. By (7.1) S is normally distributed for any pair of equally sized sets $\{\alpha_i\}$ and $\{t_i\}$. Therefore, it must also hold true when the sets contain only a single element, that is, when we sample only a single time-point. It inevitably follows that X(t) must be normally distributed for all t > 0 and we have

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2(t)}} \exp\left(-\frac{1}{2\sigma^2(t)}(x - \mu(t))^2\right), \quad x \in \mathbb{R}, t \ge 0$$

Note: We need not necessarily have $\mu(t) = 0$. Brownian motion is just a special type of GP where $\mu(t) = 0$ and $\sigma^2(t) = t\sigma^2$. Then, disjoint process increments are *independent* and we say that the process is *stationary*.

Throughout most of this section we let $\mu(t)$ and $\sigma^2(t)$ be constants, i.e. $\mu(t) = \mu$ (first order stationary) and $\sigma^2(t) = \sigma^2$ (second order stationary).

7.3 Multivariate GP

The multivariate Gaussian PDF for a random variable $\mathbf{x} = (x_1, \dots, x_n)^T$ viewed as an $n \times 1$ vector, is

$$p(\boldsymbol{x}) = rac{1}{(2\pi)^{n/2} \left| \boldsymbol{\Sigma}
ight|^{1/2}} \exp \left(-rac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})
ight), \quad \boldsymbol{x} \in \mathbb{R}^n$$

The size $n \times 1$ mean vector is $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$, $\operatorname{E}[x_i] = \mu_i$, and the covariance matrix is

$$\Sigma = \begin{bmatrix} \Sigma_{1,1} & \dots & \Sigma_{1,n} \\ \dots & \dots & \dots \\ \Sigma_{n,1} & \dots & \Sigma_{n,n} \end{bmatrix}$$

For short, the PDF of \boldsymbol{x} is denoted by

$$p(\boldsymbol{x}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

The *correlation* between x_i and x_j is then

$$Corr\left[x_i, x_j\right] = \frac{\Sigma_{i,j}}{\sigma_i \sigma_j}$$

If all $x_i, x_j \in \boldsymbol{x}$ are independent, then Σ and Σ^{-1} are diagonal.

7.4 Linear Transformations

Let \boldsymbol{x} be a $n \times 1$ random vector, \boldsymbol{F} be a fixed $m \times n$ matrix, and \boldsymbol{b} be a fixed $m \times 1$ vector. Then

$$y = Fx + b$$

defines a linear transformation of \boldsymbol{x} , and has Gaussian PDF

$$p(\mathbf{y}) = N\left(\mathbf{F}\boldsymbol{\mu} + \mathbf{b}, \mathbf{F}\boldsymbol{\Sigma}\mathbf{F}^{T}\right)$$

Hence, a linear transformation of a Gaussian variable is Gaussian itself. We will show that a Gaussian variable can be transformed to independent zero-mean and unit-variance variables $\mathbf{z} = (z_1, \dots, z_n)$. Define $\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^T$ where \mathbf{L} is the lower triangular Cholesky factor of $\mathbf{\Sigma}$. Set $\mathbf{F} = \mathbf{L}^{-1}$ and $\mathbf{b} = -\mathbf{L}^{-1}\boldsymbol{\mu}$. Let

$$z = y = L^{-1}(x - \mu), \quad x = \mu + Lz \tag{29}$$

7.5 Conditioning

We may split the random vector \boldsymbol{x} in two blocks of variables $\boldsymbol{x}_A = (x_{A,1}, \dots, x_{A,n_A})$ and $\boldsymbol{x}_B = (x_{B,1}, \dots, x_{B,n_B})$ where $n_A + n_B = n$. Then

 $oldsymbol{\mu} = (oldsymbol{\mu}_A, oldsymbol{\mu}_B), \quad oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_A & oldsymbol{\Sigma}_{A,B} \ oldsymbol{\Sigma}_{B,A} & oldsymbol{\Sigma}_B \end{bmatrix}$

where $\Sigma_{A,B} = \Sigma_{B,A}^T$ is the size $n_A \times n_B$ cross-covariance matrix between \boldsymbol{x}_A and \boldsymbol{x}_B . Assume the variables in \boldsymbol{x}_B are known. Let $\boldsymbol{\mu}_{A|B} = \mathrm{E}\left[\boldsymbol{x}_A \mid \boldsymbol{x}_B\right]$, and let $\Sigma_{A|B}$ be the covariance matrix of \boldsymbol{x}_A conditional on \boldsymbol{x}_B . Then the conditional PDF of \boldsymbol{x}_A is also Gaussian with

$$\boldsymbol{\mu}_{A|B} = \boldsymbol{\mu}_A + \boldsymbol{\Sigma}_{A,B} \boldsymbol{\Sigma}_B^{-1} (\boldsymbol{x}_B - \boldsymbol{\mu}_B)$$
(30a)

$$\Sigma_{A|B} = \Sigma_A - \Sigma_{A,B} \Sigma_B^{-1} \Sigma_{B,A} \tag{30b}$$

7.6 Sampling

In this section we provide two methods for generating random realizations from the multivariate Gaussian PDF. The first method uses sequential sampling

$$p(\mathbf{x}) = p(x_1)p(x_2 \mid x_1) \dots p(x_n \mid x_{n-1}, \dots x_1)$$

The second method uses (29)

$$\boldsymbol{x} = \boldsymbol{\mu} + \boldsymbol{L}\boldsymbol{z}, \quad p(\boldsymbol{z}) = N(\boldsymbol{0}_n, \boldsymbol{I}_n)$$

where $\mathbf{0}_n$ is a size $n \times 1$ vector of 0 entries and \mathbf{I}_n is the size n identity matrix.

8 Stationary Gaussian Processes

8.1 Correlation Function

Let a stationary GP X(t) be given. A correlation function describes the correlation between X(t) and X(s) as a function of the time-distance d = |t - s|. What follows is a list of some correlation functions

Exponential

$$\rho(d) = \exp(-\phi_E d)$$

• Matern Type

$$\rho(d) = (1 + \phi_M d) \exp(-\phi_M d)$$

• Squared Exponential

$$\rho(d) = \exp\left(-\phi_G d^2\right)$$

In the special case of the exponential correlation function, the GP satisfies the Markov property.

8.2 Sampling

Consider a GP X(t) with $\mu(t) = \mu$ and $\sigma^2(t) = \sigma^2$. Let $\mathbf{t} = (t_1, t_2, \dots, t_n)^T$ be a $n \times 1$ vector of n time-points. Then t forms a discretized grid of the time-domain. One can simulate the corresponding $n \times 1$ vector x = 0 $(X(t_0), X(t_1), \dots, X(t_n))^T$ using the $n \times n$ covariance matrix Σ which depends on the correlation function $\rho(d)$. We begin by computing Σ . Assume a correlation function $\rho(d)$ is given. The covariance between $X(t_i)$ and $X(t_j)$ depends on the time-distance $d_{ij} = |t_i - t_j|$ for all $i, j \in \{0, 1, \dots, n\}$. Therefore, the covariance matrix

$$\Sigma_{ij} = \sigma^2 \rho(d_{ij})$$

which may be computed by

$$\Sigma = \sigma^2 \rho(\mathbf{H}), \quad \mathbf{H} = |\mathbf{t} \otimes \mathbf{1}_n - \mathbf{1}_n \otimes \mathbf{t}|, \quad \rho(\mathbf{H})_{ij} = \rho(\mathbf{H}_{ij})$$
(31)

where $\mathbf{1}_n$ is an $n \times 1$ vector of ones and \otimes denotes the *outer product*.

8.3 Conditional Process

Assume the process is known for $\mathbf{t}_B = (t_{B,1}, \dots, t_{B,n_B})^T$ with corresponding variables $\mathbf{x}_B = (x_{B,1}, \dots, x_{B,n_B})^T$, and that the process is unknown for the time-domain of interest $\mathbf{t}_A = (t_{A,1}, \dots, t_{A,n_A})^T$ with corresponding variables $\mathbf{x}_A = (x_{A,1}, \dots, x_{A,n_A})^T$. Let $\boldsymbol{\mu}_{A|B} = \mathrm{E}\left[\mathbf{x}_A|\mathbf{x}_B\right]$ and $\boldsymbol{\Sigma}_{A|B}$ be the conditional covariance matrix of \mathbf{x}_A given \mathbf{x}_B . We want to compute $\boldsymbol{\mu}_{A|B}$ and $\boldsymbol{\Sigma}_{A|B}$.

The $n_A \times n_B$ covariance matrix $\Sigma_{A,B}$ is

$$\Sigma_{A,B} = \sigma^2 \rho(\mathbf{H}), \quad \mathbf{H} = |\mathbf{t}_A \otimes \mathbf{1}_{n_B} - \mathbf{1}_{n_A} \otimes \mathbf{t}_B|$$
 (32)

We then compute $\mu_{A|B}$ and $\Sigma_{A|B}$ according to (30).