

Instituto Politécnico do Cávado e do Ave

Projeto Aplicado

Relatório de Projeto Aplicado

Licenciatura em Engenharia de Sistemas Informáticos

Diogo Oliveira Nº 21111 Joshua Jones Nº 21116 Leandro Matos Nº 21124

Conteúdo

Lista de	e Figuras	3	
1. Int	rodução	5	
1.1.	Enquadramento	5	
1.2.	Objetivos	5	
1.3.	Estrutura do documento	5	
2. Co	ntextualização	6	
3. Estado de Arte			
3.1.	Mapsted	7	
3.2.	Nearmotion	7	
3.3.	indoo.rs	8	
3.4.	what3words	8	
4. Pro	oposta do Sistema	9	
5. Pro	ototipagem	10	
6. Dia	agramas	12	
6.1.	Diagrama Casos de Uso	12	

Lista de Figuras

Figura 1 - Mapsted	7
Figura 2 - Nearmotion	
Figura 3 - indoo.rs	
Figura 4 - what3words	
Figura 5 - Ecrã Mapa	
Figura 6 - Ecra Login	
Figura 7 - Ecrã Horario	
Figura 8 - Ecrã Rota	11
Figura 9 - Diagrama Casos de Uso	12
Figura 10 - Comportamento Normal Diagrama Casos de Uso	12

Lista de Acronimos:

- API: Application Programming Interface;
- UI: User Interface;
- IPCA: Instituto Politécnico do Cávado e do Ave;
- IPS: Indoor Positioning System;
- SiGES: Sistema de Gestão de Ensino Superior;
- SIG: Sistema de Informação Geográfica.

1. Introdução

Este projeto consiste num IPS com localização exata dos utilizadores dentro das infraestruturas do Instituto Politécnico do Cávado e do Ave. Esta aplicação permitirá, com acesso a dados facultados pelos Serviços Administrativos, saber o horário do utilizador e fazer a rota otimizada de modo que este chegue ao seu destino.

1.1. Enquadramento

A ideia deste projeto surgiu no primeiro dia de aulas onde foi proposto a dois elementos deste grupo guiar os alunos novos dentro do IPCA. Tendo as cadeiras de Projeto aplicado e também Programação de Dispositivos Móveis decidimos que seria uma mais-valia, tanto para o nosso percurso académico, como também para o IPCA criarmos uma aplicação que conseguisse certificar que nenhum aluno ou docente teria algum problema a encontrar o seu destino no IPCA.

1.2. Objetivos

O objetivo deste projeto é conseguirmos ter as capacidades para criarmos uma aplicação que satisfaça os objetivos que temos para a mesma. Ao concretizarmos esses objetivos iremos ganhar vários conhecimentos, tanto a nível da programação, como competências para o nosso futuro profissional. Estas competências a nível profissional serão adquiridas trabalhando em grupo, e desempenhado papeis associados ao mundo do trabalho e trocando papeis entre elementos do grupo para cada um sair deste projeto com as competências desse papel.

1.3. Estrutura do documento

O documento encontra-se organizado em 5 capítulos sendo estes a Introdução, Estado de Arte, Conteúdo dos Ficheiros, Realização do Trabalho, Conclusão e Referencias.

2. Contextualização

Quanto à contextualização será abordado o cliente, utilizadores, melhorias no dia a dia dos utilizadores e as partes interessadas e não interessadas neste projeto.

- a) Cliente:
 - O cliente do projeto é o IPCA.
- b) Utilizadores:
 - Os utilizadores do projeto são os alunos, docentes e visitantes do IPCA.
- c) Melhorias no dia a dia dos utilizadores:
 - O utilizador desta aplicação nunca terá problemas em encontrar a sala onde pretende estar e consoante o tipo de utilizador poderá saber exatamente onde tem de estar em especificas horas.
- d) Partes interessadas:

As partes interessadas deste projeto é o IPCA, financiador do mesmo e único cliente visto que o projeto é feito para o Campus de Barcelos.

3. Estado de Arte

No presente capítulo será apresentado o estado da arte, relativo a tecnologias, aplicações e recursos que atualmente se encontram disponíveis para a realização/implementação de metodologias colaborativas.

3.1. Mapsted

A Mapsted é uma empresa inovadora de tecnologia Figura 1 - Mapsted baseada no Canadá que tem clientes em várias indústrias tais como centros comerciais, universidades, hospitais, estações de comboio, resorts, etc., que usam uma tecnologia avançada para a localização dentro e fora de edifícios e que não necessita de hardware sendo so necessário um smartphone sem custos acrescentados.

3.2. Nearmotion

A Nearmotion é uma empresa baseada na Arabia Saudita que em parceria com a *Saudi Aramco Entrepeneurship Ventures* para providenciar soluções de confiança que capacitam organizações governamentais e setores empresariais com ferramentas pioneiras que levam o envolvimento e experiência dos clientes a um novo nível.

Edifícios inteligentes que interagem com os visitantes de acordo com a sua localização, dão-lhes as boas-vindas à chegada, orientam-nos passo a passo através da orientação digital até ao seu destino e recompensam-nos com ofertas e cupões de acordo com as suas preferências. É isso que o NEARMOTION oferece por meio de uma plataforma fácil de usar que permite que os locais ofereçam níveis avançados de experiência aos visitantes e tornem a sua visita uma viagem inesquecível.

3.3. indoo.rs

A indoo.rs foi fundada em 2010 com o nome de CustomLBS por 2 alunos, Bernd Gruber e Markus Krainz.

A ideia nasceu quando, numa escala extremamente longa num aeroporto, Bernd achou mais difícil do que deveria ser localizar os edifícios e salas certas.

Desde então, a empresa cresceu para 20 funcionários, com sede e um escritório de desenvolvimento em Viena e um escritório de vendas em San Francisco.

Em fevereiro de 2019, a empresa foi adquirida pela *Esri*, fornecedora líder internacional de *software* SIG (sistema de informação geográfica).

3.4. what3words

Endereços de ruas não são precisos o suficiente para especificar locais precisos, como entradas de prédios, e não existem para parques e muitas áreas rurais.

Figura 4 - what3words

Isso dificulta a localização de lugares e impede que as pessoas descrevam exatamente onde a ajuda é necessária em caso de emergência.

Para resolver esses problemas foi criado o what3words, que consiste em dividir o mundo em 3 metros quadrados e dá a cada quadrado uma combinação única de três palavras. É a maneira mais fácil de encontrar e partilhar localizações exatas.

4. Proposta do Sistema

1) Requisitos Funcionais:

- a. O utilizador devia de ser capaz de conseguir chegar ao seu destino, independentemente de onde se situar dentro do campus;
- b. O utilizador deve ser capaz de inserir as suas credenciais para aceder às funcionalidades da aplicação;
- c. O utilizador deve ser capaz de aceder ao seu horário de aulas;
- d. O sistema deve ser capaz de obter posição do utilizador;
- e. O sistema deve ser capaz de atualizar a posição atual do utilizador;
- f. O sistema deve ser capaz de obter os horários de todos os cursos e anos do IPCA;
- g. O sistema deve ser capaz de obter e reconhecer a planta do IPCA.

2) Requisitos Não Funcionais

- a. Usabilidade: Um utilizador deverá conseguir operar o sistema sem necessitar de um guia do mesmo;
- b. Eficiência: O programa deve ser capaz de conseguir atualizar as rotas sem perder o destino;
- c. Confiabilidade: O sistema terá de estar sempre operacional, tendo as exceções de raras pausas de manutenção;
- d. Portabilidade: O programa deverá conseguir correr em todos os dispositivos Android;
- e. Implementação: O programa deverá ser desenvolvido na linguagem *Kotlin*;
- f. Interoperabilidade: O sistema deverá obter as suas informações através do *Maps* da *Google* e com o *SiGES* (Sistema de Gestão de Ensino Superior) para obter os horários do docentes e alunos;
- g. Legais: O programa deverá atender às normas legais, tais como padrões,
 leis, etc.

5. Prototipagem

Figura 6 - Ecra Login

Figura 5 - Ecrã Mapa

Figura 8 - Ecrã Rota

Figura 7 - Ecrã Horario

6. Diagramas

6.1. Diagrama Casos de Uso

Figura 9 - Diagrama Casos de Uso

Caso de Uso: Gerir Usuário	os da Aplicação	
Descrição: Usuário utiliza a a	aplicação para obter direções	
Pré-Condição: Aplicação te	m mapas	
	Actor	Sistema
	1. Apresenta o horário	
		2. Valida as credenciais
		3. Apresenta a sala
Comportamento Normal	4. Indica a Sala	
		5. Indica o caminho até à sala
		6. Fornece gps dinâmico
	7. Desloca-se até à sala	

Figura 10 - Comportamento Normal Diagrama Casos de Uso