2019 年度 卒業論文 単眼カメラ SLAM を完遂する環境要件

Environmental requirements to complete monocular camera SLAM

千葉工業大学 先進工学部 未来ロボティクス学科 学籍番号 16C1096 鳴海 和真

2020年2月7日

謝辞

本研究を進めるにあたり、ご指導を頂いた卒業論文指導教員の上田隆一准教授に感謝いたします。

目次

謝辞		iii
第1章	序論	1
1.1	背景	1
1.2	問題	1
1.3	目的	1
第2章	研究の目的	3
第3章	上田の研究をもっと引用してもらう手法の開発	5
3.1	手法の概要	5
第 4 章	結論	9
付録 A	Appendix is 何?	11

第1章

序論

1.1 背景

Simultaneous Localization and Mapping (以下、SLAM)は、自己位置推定と環境地図の生成を同時に行う技術であり、工場で稼働する無人運搬車や自動車の自動運転、ロボット掃除機といった自律行動をするロボットに活用されている。カメラ映像から SLAM を行うものを Visual SLAM という。中でも、単眼カメラ SLAM は Visual SLAM を単眼カメラのみで行う。単眼カメラ SLAM は Visual SLAM の中で最も安価かつ小型で消費電力を抑えられることが長所である。

1.2 問題

単眼カメラ SLAM の問題点として、空間把握をカメラ画像に依存するためにエッジや 模様のない壁面といった場所では特徴点検出が難しいことが挙げられる。

1.3 目的

本研究では、単眼カメラ SLAM を完遂することのできる環境要件を調査することを目的とする。これにより SLAM 導入のハードルが下がり、活用の幅が広がることを期待する。

第2章

研究の目的

そこで、上田の研究をもっと時代におもねった方法に変える手法の研究を行う。

第3章

上田の研究をもっと引用してもらう 手法の開発

ここに書いてある方法を使えば、秒速で秒速で1億円稼ぐ男になれます。なれません。

3.1 手法の概要

図に書くと図 3.1 っていう感じ。式で書くとだいたい以下のような感じになるんじゃないんかなー。式 (3.12) が肝。

$$s_0, a(t_0), s(t_1), a(t_1), s(t_2), a(t_2), \dots, a(t_{T-1}), s_f \quad (s_0 = s(t_0), s_f = s(t_T)).$$
 (3.1)

$$s_0, \pi(s_0), s(t_1), \pi(s(t_1)), s(t_2), \pi(s(t_2)), \dots, \pi(s(t_{T-1})), s_f$$
 (3.2)

$$\pi: \mathcal{S} \to \mathcal{A} \tag{3.3}$$

$$S = \{s_i | i = 0, 1, 2, \dots, N - 1\}, \text{ and}$$
 (3.4)

$$\mathcal{A} = \{a_i | j = 0, 1, 2, \dots, M - 1\}$$
(3.5)

$$\pi: \mathcal{S} - \mathcal{S}_{f} \to \mathcal{A}.$$
 (3.6)

$$\dot{x}(t) = f[x(t), u(t)], \quad x(0) = x_0, \quad t \in [0, t_f].$$
 (3.7)

$$g[\boldsymbol{x}(t), \boldsymbol{u}(t)] \in \Re \quad (t \in [0, t_{\mathrm{f}}]). \tag{3.8}$$

$$J[\boldsymbol{u}] = \int_0^{t_{\rm f}} g[\boldsymbol{x}(t), \boldsymbol{u}(t)] dt + V(\boldsymbol{x}_{\rm f}). \tag{3.9}$$

(black: $\tau=1[Nm]$, gray: $\tau=0[Nm]$, white: $\tau=-1[Nm]$)

 $\boxtimes 3.1$ Representative Vectors of the $N_c = 128$ Map

$$\max_{\boldsymbol{u}:[0,t_{\mathrm{f}})\to\Re^{m}}J[\boldsymbol{u};\boldsymbol{x}_{0}]. \tag{3.10}$$

$$\boldsymbol{\pi}^*: \mathfrak{R}^n \to \mathfrak{R}^m \tag{3.11}$$

$$\max_{\boldsymbol{u}:[0,t_{\mathrm{f}})\to\Re^{m}} J[\boldsymbol{u};\boldsymbol{x}_{0}] = \max_{\boldsymbol{u}:[0,t')\to\Re^{m}} \int_{0}^{t'} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt \\
+ \max_{\boldsymbol{u}:[t',t_{\mathrm{f}})\to\Re^{m}} \int_{t'}^{t_{\mathrm{f}}} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt + V(\boldsymbol{x}_{\mathrm{f}}) \\
= \max_{\boldsymbol{u}:[0,t')\to\Re^{m}} \int_{0}^{t'} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt + \max_{\boldsymbol{u}:[t',t_{\mathrm{f}})\to\Re^{m}} J[\boldsymbol{u};\boldsymbol{x}(t')]. \quad (3.12)$$

$$V^{\boldsymbol{\pi}}(\boldsymbol{x}) = J[\boldsymbol{u}; \boldsymbol{x}],$$
 where $\boldsymbol{u}(t) = \boldsymbol{\pi}(\boldsymbol{x}(t)), \ 0 \le t \le t_{\mathrm{f}}.$ (3.13)

$$\mathcal{P}_{ss'}^{a} = P[s(t_{i+1}) = s' | s(t) = s, a(t) = a],$$

$$(\forall t \in \{t_0, t_1, \dots, t_{T-1}\}, \forall s \in \mathcal{S} - \mathcal{S}_f, \text{ and } \forall s' \in \mathcal{S}).$$
(3.14)

$$\mathcal{R}_{ss'}^a \in \Re \tag{3.15}$$

3.1 手法の概要 7

$$J[a; s(t_0)] = J[a(0), a(1), \dots, a(t_{T-1})] = \sum_{i=0}^{T-1} \mathcal{R}_{s(t_i)s(t_{i+1})}^{a(t_i)} + V(s(t_T)),$$
(3.16)

$$\max J[a; s(t_0)]. \tag{3.17}$$

$$J^{\pi} = \int_{\mathcal{X}} p(\boldsymbol{x}_0) J[\boldsymbol{u}; \boldsymbol{x}_0] d\boldsymbol{x}_0 \quad (\boldsymbol{u}(t) = \boldsymbol{\pi}(\boldsymbol{x}(t))), \tag{3.18}$$

$$\frac{\partial V(\boldsymbol{x})}{\partial t} = \max_{\boldsymbol{u} \in \mathcal{U}} \left[g[\boldsymbol{x}, \boldsymbol{u}] + \frac{\partial V(\boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}[\boldsymbol{x}, \boldsymbol{u}] \right]. \tag{3.19}$$

$$U_{\text{att}}(\boldsymbol{x}) = \frac{1}{2}\xi\rho^2(\boldsymbol{x}) \tag{3.20}$$

$$U_{\text{rep}}(\boldsymbol{x}) = \begin{cases} \frac{1}{2} \eta \left(\frac{1}{\rho(\boldsymbol{x})} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(\boldsymbol{x}) \le \rho_0, \\ 0 & \text{if } \rho(\boldsymbol{x}) > \rho_0, \end{cases}$$
(3.21)

$$U(\mathbf{x}) = U_{\text{att}}(\mathbf{x}) + U_{\text{rep}}(\mathbf{x})$$
(3.22)

$$\mathbf{F}(\mathbf{x}) = -(\partial U/\partial x_1, \partial U/\partial x_2, \dots, \partial U/\partial x_n)^T$$

= $-\nabla U(\mathbf{x}).$ (3.23)

$$V(\boldsymbol{x}; \theta_1, \theta_2, \dots, \theta_{N_{\theta}})$$

$$\phi_i(\boldsymbol{x}) = \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{c}_i)^t M_i(\boldsymbol{x} - \boldsymbol{c}_i)\right\},\tag{3.24}$$

$$b_i(\mathbf{x}) = \frac{\phi_i(\mathbf{x})}{\sum_{j=1}^{N_{\phi}} \phi_j(\mathbf{x})}, \ (N_{\phi} : \text{ number of RBFs in the space})$$
 (3.25)

$$V(\boldsymbol{x}) = \sum_{i=1}^{N_{\phi}} \nu_i b_i(\boldsymbol{x}). \tag{3.26}$$

$$\phi_i(x) = \exp\left\{-\frac{1}{2}(x-i)^2\right\}$$

$$V(\boldsymbol{x}) = \sum_{i=0}^{3} w_i V(\boldsymbol{x}_i)$$
(3.27)

表 3.1 謎のパラメータ

(a)				(b)		
parameter	7	alue	•	variable	domain	
ℓ_1, ℓ_2	1.0	[m]	_	θ_1	$(-\infty,\infty)$	
ℓ_{c1},ℓ_{c1}	0.50	[m]		$ heta_2$	$(-\infty,\infty)$	
m_1, m_2	1.0	[kg]		$\dot{\theta}_1$	[-720, 720][deg/s]	
I_1,I_2	1.0	$[{\rm kg}~{\rm m}^2]$		$\dot{\theta}_2$	[-1620, 1620][deg/s]	
g	9.8	$[m/s^2]$		$\overline{\tau}$	-1, 0, or 1[Nm]	

第4章

結論

得られた知見を定量的に述べましょう。予稿等では箇条書きにしたほうがよいのですが、卒論の場合はどうせ長くなるので箇条書きは不要です。

素敵な結果になった。

付録 A

Appendix is 何?

付録です。