Tema 5

Proyecto preliminar

Piston Hidraulico Gujas Pisador Poérta

Proyecto preliminar

Concepto de solución óptimo

Diseño integrador

- •Modelo 3D general
- •Diagrama de operaciones
- Diagrama de bloques (Arquitectura de hardware)
- •Selección de materiales

- •Diagrama de flujo
- Variables por monitorear
- •Estrategia de control
- Software
- •Selección de controlador

	TRABA	Área de Diseño								
Proyec	to: DISEÑO DE DISPOSITIVO DE	SEGURID	AD PARA I	BICICLETA	AS DE US	O COMPA	RTIDO			
	taje de 0 a 4 (Escala de valores : 0 = No satisface, 1 = A I peso ponderado y se da en fun	ceptable	a las justa					bien (ideal	9	
	Variantes de Concepto / Proyec	tos	Solu	ción 1	Solu	ción 2	Solu	ición 3	Soluci	on Ideal
Nr.	Criterios de Evaluación	8	p	gp	p.	gp	p	gp	p	gp
1	Seguridad	4	3	12	3	12	2	8	4	16
2	Energia	4	4	16	4	16	3	12	4	16
3	Rigidez	4	3	12	3	12	2	8	4	16
4	Montaje	3	3	9	3	9	4	12	4	12
5	Ergonomia	3	3	9	3	9	3	9	4	12
6	Transportabilidad	3	4	12	4	12	3	9	4	12
7	Mantenimiento	2	3	6	2	4	4	8	4	8
8	Cumplimineto de lista de exigencias	3	3	9	3	9	3	9	4	12
	PUNTAJE MÁXIMO	26	26	85	25	83	24	75	32	104
	Valor Técnico Xi	1	0.8125	0.8173	0.7813	0.7981	0.75	0.7212	1	1

- 2	Valor Técnico Xi	0.8125	0.8173	0.7813	0.7981	0.75	0.7212	1	1	
	TRABAJ				Ár	ea de Dis	eño			
Proy	ecto: DISEÑO DE DISPOSITIVO DE S	EGURIDA	D PARA	BICICLETA	AS DE USO	COMPA	ARTIDO	_		
	intaje de 0 a 4 (Escala de valores si 0 = No satisface, 1 = Ac el peso ponderado y se da en funi	eptable a	las justa					ien (idea	ŋ	
	Variantes de Concepto / Proyect	OS.	Solu	ción 1	Solut	ión 2	Soluc	ión 3	Solucio	ón Ideal
Nr.	Criterios de Evaluación	8	P	gp	p	gp	P	gp.	p	gp
1	Numero de piezas	3	3	9	3	9	4	12	4	12
2	Facil adquision de materiales	4	3	12	2	8	1	4	4	16
3	Costo de la tecnologia	4	3	12	2	8	2	8	4	16
4	Costo de fabricacion y montaje	3	3	9	3	9	3	9	4	12
5	Facilidad de mantenimiento	3	3	9	3	9	3	9	4	12
6	Costo de energia vs tiempo	2	3	6	2	4	3	6	4	8
7	Costos de operacion	1	4	4	3	3	2	2	4	4
	PUNTAJE MÁXIMO	20	22	61	18	50	18	50	28	80
						0.625		0.625		

Proyecto preliminar

Interfaz de usuario

- •Selección de interfaz
- •Visualización de interfaz

Subsistema "N"

- Modelo 3D detallado del subsistema
- •Cálculos mecánicos
- •Selección de sensores
- •Selección de actuadores

Selección de fuente de energía

- •Cálculos de potencia
- •Justificación de selección

Circuitos eléctricos y electrónicos

- •Diagrama de circuitos de potencia
- Diagrama de circuitos eléctricos y electrónicos para automatización y control

Debe incluir

- 1. Modelo 3D general
- 2. Diagrama de operaciones
- 3. Diagrama de bloques (Estructura de hardware)
- 4. Selección de materiales

1- Modelo 3D general

Consideraciones

- Se deberá presentar el modelo 3D del sistema integral.
- Se debe detallar los subsistemas que conforman al sistema integral.
- Se deberá acompañar las figuras con párrafos descriptivos de la información presentada.
- Agregar las vistas que sean necesarias para la mejor comprensión.

2021-1

2- Diagrama de operaciones

- El diagrama de operaciones debe presentar las ACCIONES que el operario/usuario debe realizar para el funcionamiento del sistema.
- Se puede dividir como acciones para el encendido, apagado de emergencia o algún otro estado de operación del sistema.
- Se deberá acompañar los esquemas con párrafos descriptivos de la información presentada.

3- Diagrama de bloques (estructura de hardware)

- La estructura de hardware o diagrama de bloques busca representar la interacción entre los diferentes dispositivos.
- Se incluyen los sensores, actuadores, drivers, controladores, componentes de interfaz/panel, fuentes de energía y otros.
- Se deberá acompañar las figuras con párrafos descriptivos de la información presentada.
- Se recomienza usar una leyenda para representar el tipo de señal/energía.

3- Diagrama de bloques (estructura de hardware)

Ejemplos Línea de alimentación Motor a pasos Motor a pasos Comunicación alámbrica Comunicación inalámbrica Smartphone Driver de motor a Driver de motor a pasos pasos Fuente 220VAC 12VDC Switching Interruptor de Módulo Bluetooth posicion Microcontrolador Driver de pantalla Interruptor de posición Interruptor de Pantalla LCD Pad numérico posición

4- Selección de materiales

- Se deberá detallar los materiales que se usarán en el proyecto.
- Se deberá justificar la selección de los materiales mediante tablas comparativas en donde se detallen las características más relevantes relacionadas al proyecto.
- · Se deberá acompañar las tablas con párrafos descriptivos de la información presentada.
- De emplearse más de un tipo de material se debe detallar los subsistemas en donde se utilizarán cada uno de estos.

Debe incluir

- 1. Diagrama de flujo general y específicos
- 2. Variables por monitorear
- 3. Estrategia de control (en caso sea necesario)
- 4. Software
- 5. Selección del controlador

1- Diagrama de flujo general y específicos

- Se deberá un diagrama de flujo principal para el control del sistema (breve y conciso).
- Se presentarán diagramas de flujos específicos con mayores detalles de las funciones presentadas en el diagrama de flujo principal.
- En caso utilice una pantalla LCD o HMI para la interacción con usuario también deberá presentar su diagrama de flujo.

2- Variables por monitorear

- Se deberá identificar todas las variables que serán monitoreadas y controladas por el sistema.
- Se presentará una tabla con el tipo de variable indicando la acción a ejercer sobre esta.
- Se deberá acompañar la tabla con párrafos descriptivos de la información presentada.

Variable	Monitorear o Controlar
Nivel	Monitorear
Presión	Controlar
Humedad	Monitorear
•••	•••

3- Estrategia de control

Entrada, Elemento de Elemento de Proceso control corrección Salida, Señal que se espera produzca la variable salida requerida controlada

- Se deberá presentar la(s) estrategia(s) de control necesaria(s) para el sistema (en caso sea necesario).
- Indicar tipo de control: lazo cerrado, lazo abierto, predictivo, etc.
- Se deberá indicar las partes que conforman su sistema de control (variables, planta, sensor, controlador, etc.)
- Se deberá acompañar las figuras párrafos descriptivos de la información presentada.

4- Software

- Se deberá seleccionar el software que se usará para el programación del algoritmo de control y de la automatización.
- En caso se use interfaz HMI o LCD u otra similar se deberá indicar el software necesario para su desarrollo.
- Se deberá presentar tres propuestas de software e indicar los requisitos del tomados en cuenta para la selección.
- Se deberá acompañar la selección con párrafos descriptivos de la información presentada.

5- Selección del controlador

- Se deberá presentar una tabla que detalle todas las entradas y salidas necesarias para el control del sistema.
- Se deberán presentar tres opciones de controlador e indicar las características tomadas en cuenta para su selección.
- Se deberá acompañar las tablas con párrafos descriptivos de la información presentada.

Entrada	Variable	Salida	Variable	
1	Nivel (Continua)	1	Lámpara	
			(Discreta)	
	•••	•••	•••	

Aspecto	raspberry 3B+	Xilinx Spartan 6	Intel Stratix 10
System on a chip	Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit @ 1.4GHz	Single-Core ARM® Cortex™_A9 MPCore™ Up to 766MHz	Quad-core 64-bit ARM Cortex-A53 (SoC only) 1GHz
GPU	Broadcom Videocore-IV	no	no
RAM	1GB LPDDR2 SDRAM	1355 kb	20 kbit
Networking	Gigabit Ethernet (via USB channel), 2.4GHz and 5GHz 802.11b/g/n/ac Wi-Fi	no	no
Bluetooth	Bluetooth 4.2, Bluetooth Low Energy (BLE)	no	no
Memoria	Micro-SD	En el chip 256KB Externo DDR3, DDR3L, DDR2, LPDDR2	DDR4 2666Mbps

Interfaz de usuario o Panel de usuario

Debe incluir

- 1. Selección del tipo de interfaz/panel de usuario
- 2. Visualización de la interfaz/panel de usuario

Interfaz de usuario o Panel de usuario

1- Selección del tipo de interfaz/panel de usuario

- Se deberán colocar los componentes que permitirán la interacción con el usuario, como pulsadores, interruptores, lámparas, leds, pantallas LCD, pantallas HMI, entre otros.
- Para cada componente, deberá sugerir tres modelos en base al principio de funcionamiento escogido en su proyecto conceptual y a los requisitos del sistema.
- Se deberá acompañar la selección con párrafos descriptivos de la información presentada.

Interfaz de usuario o Panel de usuario

2- Visualización de la interfaz/panel de usuario

- Se deberá presentar las imágenes necesarias para representar la interfaz del sistema (HMI, móvil, web, panel, etc..
- Se deberá detallar con flechas las características de la interfaz.
- Se deberá acompañar las imágenes con párrafos descriptivos de la información presentada.

Debe incluir

- 1. Modelo 3D detallado del subsistema
- 2. Cálculos mecánicos
- 3. Selección de sensores
- 4. Selección de actuadores

1- Modelo 3D detallado del subsistema

- Se deberá presentar el modelo 3D del subsistema.
- Se debe detallar los componentes que conforman al subsistema.
- Se deberá acompañar las figuras con párrafos descriptivos de la información presentada.
- Agregar las vistas que sean necesarias para la mejor comprensión.

2- Cálculos mecánicos

- Se deberán presentar todos los cálculos para el diseño mecánico del proyecto por cada pieza principal.
- Se deberán determinar las dimensiones generales, la configuración de las piezas y las conexiones entre los diferentes elementos del sistema, así como los materiales para elementos mecánicos (acoples, ejes, engranajes, etc.)
- Todo cálculo debe de contener: Esquema de la estructura a calcular / Modelo con diagrama de cuerpo libre / Fórmulas con su nomenclatura. / Valores admisibles de los materiales (tensiones, deformaciones, fatiga, etc.) / Resultados comentados
- Para el caso de piezas que no necesitan cálculos porque no son muy solicitadas, se deberá justificar sus formas y tamaños por función y proceso de fabricación.

3- Selección de sensores

	Fabricante:	PEPPERL FUCHS	OMRON	PANASONIC
	Modelo:	3RG4148- 3CD00	E2B-M18LN10-WP- B1 2M	GX-M30A-U-Z
Característica	Requisitos			
Rango de detección mínimo	10 mm	35mm	10mm	2mm
Voltaje de alimentación	24 VDC	15 - 34 VDC	10 - 30 VDC	12 – 24 VDC
Corriente eléctrica máxima	10 mA	40 mA	10 mA	10 mA
Grado de protección	IP67	IP67	IP67	IP67
protección				

- Para cada tipo de sensor, se deberá sugerir tres modelos sobre la base del principio de funcionamiento escogido en su proyecto conceptual y a los requisitos del sistema
- Se presentará una tabla comparativa para la selección de cada sensor indicando las principales características técnicas.
- Se deberá acompañar las tablas con párrafos descriptivos de la información presentada.

4- Selección de actuadores

- Se deberá presentar los cálculos necesarios (torque, peso, temperatura, flujo, caudal, entre otros) para determinar la elección de cada actuador.
- Se deberá sugerir tres modelos de actuador sobre la base del principio de funcionamiento escogido en su proyecto conceptual y a los requisitos del sistema según los cálculos previos.
- Se presentará una tabla comparativa para la selección de cada actuador indicando las principales características técnicas
- · Se deberá acompañar la tabla con párrafos descriptivos de la información presentada.

Selección de Fuente de Energía

Debe incluir

1. Cálculos de potencia

2. Justificación de selección

Selección de Fuente de Energía

1- Cálculos de potencia

- Se deberá los cálculos electrónicos de potencia de consumo para cada fuente de energía del sistema.
- · Se deberá acompañar la tabla con párrafos descriptivos de la información presentada.

CALCULO DE POTENCIA											
Componente	modelo	Cantidad	Voltaje	und	Amperaje	und	Potencia	und	Potencia de consumo	und	
Arduino UNO		1	5	٧	40	mA	0.2	w	0.2	w	
Sensor de vibracion	SW-420	1	5	٧	15	mA	0.075	w	0.1	w	
Acelerometro	MPU6050	1	5	٧	3.9	mA	0.0195	w	0.0195	w	
Driver Motor	L293D	1	5	V	600	mA	3	w	3	w	
Shield LoRa	Shield LoRa GPS	1	5	V	10.3	mA	0.0515	w	0.0515	w	
Buzzer	Buzzer 22mm	1	5	V	20	mA	0.1	w	0.1	w	
Leds	Cinta LED WS2812B	6	5	٧	50	mA	1.5	w	1.5	w	
Regulador de voltaje	MP1584EN	1	5	>	3	Α					
Micro - motor DC		1	5	٧	300	mA	1.5	w	0.1875	w	
Total							6.446	W	5.1585	w	

Selección de Fuente de Energía

2- Justificación de selección

- Para cada fuente de energía, se deberá sugerir tres modelos en base al principio de funcionamiento escogido en su proyecto conceptual y a los requisitos del sistema según los cálculos realizados.
- Se presentará una tabla comparativa para la selección de cada batería indicando las principales características técnicas.
- Se deberá acompañar la tabla con párrafos descriptivos de la información presentada.

Circuitos eléctricos y electrónicos

Debe incluir

- 1. Diagramas de circuitos de potencia
- 2. Diagramas de circuitos eléctricos y electrónicos para automatización y control

Circuitos eléctricos y electrónicos

- 1- Diagramas de circuitos de potencia
- En caso aplique, se deberá presentar el diagrama de potencia.
- Se deberá acompañar el diagrama con párrafos descriptivos de la información presentada.
 - 2- Diagramas de circuitos eléctricos y electrónicos para automatización y control
- Se deberá presentar los diagramas esquemáticos de los circuitos eléctricos y electrónicos del sistema.
- Se deberá acompañar el diagrama con párrafos descriptivos de la información presentada.

