RISC-V Vector ISA Spec —

Keystone of RISC-V Based High Performance Computing

Stream Computing Inc.

Mark Zhan

OSDT2019

SIMD Instructions

- ➤ Parallelism Technology of Modern HPC Processor:
 - Instruction Stream: Instruction Level Parallelism (ILP) —— VLIW, Superscalar
 - Data Stream: Data Level Parallelism SIMD
- ➤ SIMD-based Data Parallelism: when you have a large mass of data of a uniform data-type that needs the same instruction performed on it.
 - Matrix Computing: Image Processing, Machine Learning, scientific computation etc.
- > SIMD Instruction Programming Model:
 - Pure SIMD machine (e.g. SIMD-only CPU)? NO!
 - As a part of a SISD host machine. Programs are written for a SISD machine, and include in their code SIMD instructions.

RISC-V SIMD ISA

- > RISC-V SIMD ISA: V-Extension (aka: V-Spec) vs. P-Extension
- ➤ V-Spec ISA:
 - Started at 2015 as a WG under RISC-V Foundation Org, lead by Krste Asanović from UC Berkeley
 - Current Status: version 0.7— stable enough proposal, to be submitted to RISC-V Foundation, base of toolchain support & functional simulators implementation.
 - Home Page: https://github.com/riscv/riscv-v-spec
 - Target Application Domains: Machine Learning, DSP, Crypto, Numerical Computation etc.
- > P-Extension:
 - Donated By Andes Technology
 - Coming from Andes DSP SIMD ISA

V-Spec ISA— Hart Implementation Independent Design

- ➤ Bit-width of Vector Register is up-to the hart implementation for silicon vendor.
 - **VLEN**: the max bit-width of vector register in a specific hart
- Dynamic Configurable Vector Element Width: 8、16、32···1024 bit vector element are supported —— max(XLEN, FLEN):
 - **ELEN**: The max element bit-width allowed in a specific hart implementation
 - **SEW**: Standard Element Width Define the current vector element width in current instruction context, dynamically configured by vsew[2:0] in vtype CSR.
- Dynamic Register Grouping
 - group 2/4/8 vector registers to a wider vector register, to allow a SIMD insn to operate larger vector.
 - *LMUL*: Define how many vector registers to form a register group
 - **VLMAX** = LMUL * (VLEN/SEW)

- ➤ Dynamic AVL (Application Vector Length): configured by ✓/ CSR
 - AVL define how many vector elements are operated by current SIMD Vector Instruction

V-Spec ISA— Hart Implementation Independent Design

➤ Bit-width of Vector Register is up-to the hart implementation for silicon vendor.

VLEN=256bit, ELEN=16b (default), VLMAX=16

- Dyna 32…1 max(
 - *EI* im
 - SE ele co

- Dyna
 - group 2/4/8 vector registers to a wider vector register, to allow a SIMD insn to operate larger vector.
 - **LMUL**: Define how many vector registers to form a register group
 - **VLMAX** = LMUL * (VLEN/SEW)

- Length): configured by **v/** CSR
 - AVL define how many vector elements are operated by current SIMD Vector Instruction

e0

Example — How is this executed?

Example: Add two Arrays

```
// Pseudo Codes
for (i = 0; i < 5; i++)
{
    v0[i] = v1[i] + v2[i];
}
for (i = 5; i < MAXVL; i++)
{
    v0[i] = 0;
}</pre>
```


VL=5, MAXVL=8
Assume GPR t0 = 5
vsetvli x0, t0, e16 # set v1 = 5
vadd.vv v0, v1, v2 # v0 = v1+v2

Parallel execute op to each vector element

SIMD Instruction Parallelism

Example — How is this executed?

- ➤ The # of Parallel lanes is up to silicon vendor implementation!
- > RISC-V Vector ISA: The # of Parallel lanes is transparent to software. Same code runs independent of # of lanes

V-Spec ISA Overview

Category	Vector Instruction	Major OPCODE	Function Desc
Vector Memory Inst	vl - vector load	LOAD-FP (0000111)	
	vs - vector store	STORE-FP (0100111)	Move data between vector registers and memory
Vector AMO Inst	vamoswap/vamoadd/vamoxor/vamoand/vamoor/vamomin/vamomax/vamominu/vamomaxu		Atomic Memory Operations. Performs an atomic read- modify-write to each vector element in memory. Usually supported by UNIX-Profile
Vector Arithmetic Inst	vector arithmetic Inst.	OP-V (1010111)	Various Vector Element Data Type:
	vector reduction inst.		- Integer:
	vector mask inst.		- Fixed-Point
	vector permutation inst.		- Floating-point
			Arithmetic Operations:
			- add/substract
			- mul/fused multiply-add
			- logical inst.
			- min/max inst.
			- vector merge
			- vector square root
Vector CSR R/W Inst.	vsetvl/vsetvli	OP-V (1010111)	read/write Vector CSR vtype & vl

Vector Load/Store Instructions Addressing Modes

- 1. Unit-stride Mode: read/write values in continuous memory specified by (rs1) base address.
- **2. Strided Mode**: vd[i] = base address (rs1) + byte offset (rs2) * (i-1)
- 3. Indexed Mode (scatter/gather): byte offset specified by the element value of vector offset operand "vs2"

V-Spec Vector Arithmetic Instruction Features

- Data Types:
 - Integer
 - Fixed-Point
 - Floating-Point
- Widening operations
 - Destination elements are 2*SEW wide
 - written with a vw* prefix on the opcode or vfw* for vector floatingpoint operations
- > Narrowing operations
 - written with a vn* prefix on the opcode or vfn* for vector floatingpoint operations

- ➤ Source Operands:
 - Vector-Vector
 - Vector-Scalar
 - Vector-Immediate
- Vector DataType Convert Instructions
 - E.g: Floating-Point ⇔ Integer
- Vector Mask Instructions are supported:
 - least-significant bit of vector element is used as mask bit
 - v0 register is always used as source mask register

V-Spec Vector Arithmetic Instruction Features

- > Arithmetic Instructions Categories:
 - Add/Substract, Multiply/Divide
 - FMA: Fused Multiply-Add
 - Logical Instructions: AND, OR, XOR, CMP, Shift etc
 - MIN/MAX Instructions
 - Merge Instruction
 - Integer/Floating-Point Reduction Instructions
 - Permutation Instructions: slideup, slidedown etc

V-Spec ISA vs Others

- RISC-V V-Spec is the best Mixed-Precision Vector ISA. Other Commercial Vector ISA (such as: X86 AVX, ARM Neon, etc) has certain architectural shortcomings:
 - Opcodes designate a fixed vector length. Exposing the hardware SIMD width in the ISA hinders portability. Code must be recompiled to benefit from longer SIMD widths
 - All vector registers are uniformly fixed in size. Consequently, the number of elements per vector register varies at different precisions, and it is not so straightforward to chain mixed- precision operations.
 - *The vector length is typically short*, currently at most 256 bits. These SIMD extensions, electing for the path of least re-sistance towards subword parallelism, re-use existing scalar datapaths and control. With shorter hardware vectors, more stripmine iterations are required.

V-Spec ISA S/W Community Status

- ➤ V-Spec ISA Software Support Status:
 - Spike Simulator is released
 - Binutils is released
- ➤ Call for Community Participation for:
 - GCC/LLVM Compiler support
 - BLAS Library support
 - Gem5 simulator support
 - etc.

Thanks.