minimize
$$\sum_{(i,j)\in A_1} c_{ij1} x_{ij} + \sum_{(i,j)\in A_1} c_{ij1} y_{ij} + \sum_{r\in K_2} \sum_{(i,j)\in A_2} c_{ij2} z_{ijr}$$

subject to

Constraints for FEV

Flow conservation for FEV at each parking node

$$\sum_{(i,j)\in A_1} x_{ij} = \sum_{(j,i)\in A_1} x_{ji}, \quad i \in N_p$$
 (1)

$$\sum_{(i,j)\in A_1} x_{ij} \le 1, \quad i \in N_p$$

$$(2)$$

$$\sum_{(j,i)\in A_1} y_{ji} + \sum_{(j,i)\in A_1} y_{ij} \le 1, \quad i \in N_p$$
(3)

$$y_{ij} \le x_{ij}, (i,j) \in A_1 \tag{4}$$

Flow conservation for FEV at depot

$$\sum_{(0,j)\in A_1} x_{0j} = \sum_{(j,0')\in A_1} x_{j0'} = 1 \tag{5}$$

$$\sum_{(0,j)\in A_1} y_{0j} = \sum_{(j,0')\in A_1} y_{j0'} = 0 \tag{6}$$

The capacity constraints for the FEV

$$\sum_{p \in N_p} w_p \le Q_0 \tag{7}$$

Constraints for Mobile Microhub

Constraints for initial parking place

$$\sum_{(i,j)\in A_1} y_{ij} \le p_i, \quad i \in N_p \tag{8}$$

$$\sum_{(i,j)\in A_1} y_{ij} \le 1 - p_j, \quad j \in N_p$$
 (9)

$$w_p \le Q_1(1 - \sum_{(p,j)\in A_1} y_{pj}), \quad p \in N_p$$
 (10)

Link the 1st and 2nd echelon and impose that the total flow from the depot to MM equals to total demand served from MM

$$w_p = \sum_{(p,j)\in A_2} f_{pj}, \quad p \in N_p$$
 (11)

Capacity constraints for MM (The freight flow from depot to MM can only be positive if parking node is used)

$$w_p \le Q_1 \sum_{(i,p)\in A_1} x_{ip}, \quad p \in N_p \tag{12}$$

$$w_p \le Q_1(\sum_{(i,p)\in A_1} y_{ip} + p_p), \quad p \in N_p$$
 (13)

Constraints for SEV(Multiple Robots, each one dispatched once)

Flow conservation at parking nodes and customer nodes

$$\sum_{(i,j)\in A_2} z_{ij}^r = \sum_{(j,i)\in A_2} z_{ji}^r, \quad i \in N_p \cup N_c, r \in K_2$$
(14)

$$\sum_{r \in K_2} \sum_{(p,j) \in A_2} z_{pj}^r \le |K_2|, \quad p \in N_p$$
 (15)

$$\sum_{(p,j)\in A_2} z_{pj}^r \le 1, \quad p \in N_p, r \in K_2$$
(16)

$$\sum_{r \in K_2} \sum_{(i,j) \in A_2} z_{ij}^r = 1, \quad i \in N_c$$
 (17)

The customer demands are met

$$\sum_{(j,i)\in A_2} f_{ji} - \sum_{(i,j)\in A_2} f_{ij} = d_i, \quad i \in N_c$$
(18)

Capacity constraints of SEV

$$f_{ij} \le Q_2 \sum_{r \in K_2} z_{ijr}, \quad (i,j) \in A_2$$
 (19)

Time constraints

Total working time does not exceed ζ

$$\sum_{(i,j)\in A_1} tt_{ij}^1 x_{ij} + \eta_1 \sum_{(i,p)\in A_1} p_p x_{ip} \le \zeta$$
 (20)

$$t_i + tt_{i0}^2 + \eta_2 \le \zeta + M(1 - z_{ijr}), \quad i \in N_c, j \in N_p, r \in K_2$$
 (21)

Subtour elimination constraints and synchronization constraints

$$t_i + \eta_1(1 - x_{ij}) + tt_{ij}^1 x_{ij} \le t_j + M(1 - x_{ij}), \quad (i, j) \in A_1$$
 (22)

$$t_i + \eta_2(1 - z_{ijr}) + tt_{ij}^2 z_{ijr} \le t_j + M(1 - z_{ijr}), \quad (i, j) \in A_2, r \in K_2$$
(23)

Time window constraint

$$a_i \le t_i \le b_i, \quad i \in N_c$$
 (24)

Arrival time initialization

$$t_p + tt_{pj}^2 z_{pjr} \le t_j, \quad p \in N_p, j \in N_c, r \in K_2$$
 (25)

$$tt_{0i}^1 x_{0i} \le t_i, \quad i \in N_p \tag{26}$$

4 Appendix: Notation table

\mathbf{Set}	
G = (N, A)	Directed graph
$N = \{0\} \cup N_p \cup N_c \cup \{0'\}$	Set of nodes
$N_p = \{1 \dots n_p\}$	Set of parking nodes
$N_c = \{n_p + 1 \dots n_p + n_c\}$	Set of customers nodes
$A = A_1 \cup A_2$	Set of arcs
A_1	The set of FEV arcs,
	$\{(i,j) i,j\in\{0\}\cup N_p\cup\{0'\},i\neq j\}$
A_2	The set of SEV arcs,
	$\{(i,j) i,j\in N_p\cup N_c, i\neq j\}\setminus \{(i,j) i,j\in N_p\}$
N_c	The set of customer nodes
N_p	The set of parking nodes
K_1	The set of MM
K_2	The set of SEV from one MM
.	
Parameter	
c_{ij1}	Travel cost of arc $(i,j) \in A_1$
c_{ij2}	Travel cost of arc $(i,j) \in A_2$
p_p	Parking node $p \in N_p$ is occupied by a MM or not
d_i	Demand of customer $i \in N_c$
$dist_{ij}$	Travel distance of robot in arc $(i, j) \in A_2$
Q_0	Capacity of FEV
Q_1	Capacity of MM
Q_2	Capacity of SEV, $Q_0 \gg Q_1 \gg Q_2$
n_1 n_2	Operation time of replenishment at parking node,
η_1,η_2	or service time at customer node. $\eta_1 > \eta_2$
ζ (zeta)	Length of planning horizon
$[a_i, b_i]$	Time window of customer $i \in N_c$
$e^{[a_i, b_i]}$	Max travel distance of robot
$tt1_{ij}$	Time to travel $arc(i, j) \in A_1$ for truck
$tt2_{ij}$	Time to travel $\operatorname{arc}(i,j) \in A_1$ for robot
00 2 13	Time to travel are $(0, j) \in \mathbb{N}_2$ for robot
Variable	
$x_{ij} \in \{0, 1\}$	= 1 if arc $(i, j) \in A_1$ is traveled by a FEV
$y_{ij} \in \{0,1\}$	= 1 if arc $(i, j) \in A_1$ is traveled by FEV with MM
$z_{ijr} \in \{0,1\}$	$= 1 \text{ if arc } (i,j) \in A_2 \text{ is used by SEV } r - th \in K_2$
	dispatched from a mobile microhub
$w_p \in \mathbb{R}^+$	Amount of freight transported from depot to MM
r	located in $p \in N_p$
$f_{ij} \in \mathbb{R}^+$	Freight flow of arc $(i,j) \in A_2$
t_i^{ij}	Arrival time of SEV at customer $i \in N_c$ or the
•	arrival time of FEV at parking node $i \in N_p$
	1 · · · · · · · · · · · · · · · · · · ·