デジタル信号処理の基礎 - 例題と Python による図で説く -

共立出版

正誤情報

最終更新: 2022 年 6 月 29 日

ページ	行数, 図・表・式番号	誤	正
9	下から1行目	$\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ とかける.	$\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$ とかける.
13	14 行目	$\sqrt{2}\cos\frac{\pi}{4} + i\sqrt{2}\sin\frac{\pi}{4} = \sqrt{2}e^{\frac{\pi}{4}i}.$	$\sqrt{2}\cos\left(\frac{\pi}{4}\right) + i\sqrt{2}\sin\left(\frac{\pi}{4}\right) = \sqrt{2}e^{\frac{\pi}{4}i}.$
14	図 1.15	$e^{\frac{2\pi}{8} \times 3i} = e^{\frac{2\pi}{8} \cdot 2i} = e^{\frac{\pi}{2}i}$ $e^{\frac{2\pi}{8} \times 3i} = e^{\pi i} = -1$ $e^{\frac{2\pi}{8} \times 3i} = e^{\pi i} = e^{\frac{2\pi}{4}i}$ $e^{\frac{2\pi}{8} \times 7i} = e^{\frac{2\pi}{8}i} = e^{\frac{\pi}{4}i}$	$e^{\frac{2\pi}{8} \times 4i} = e^{\pi i}$ $e^{\frac{2\pi}{8} \times 4i} = e^{\frac{2\pi}{8} \times 4i}$
15	下から1行目	また,離散信号時間は	また,離散時間信号は
17	1 行目	時刻 0 のときだけ値 1 をとり, そのほかのすべて時刻	時刻 0 のときだけ値 1 をとり, そのほかのすべての時刻
19	5 行目	$\Omega = 2\pi F$. すなわち $F = \frac{\Omega}{2\pi}$.	$\Omega = 2\pi F$, すなわち $F = \frac{\Omega}{2\pi}$.
23	下から4行目	$\cdots = x \left(k \frac{T}{N} \right) = x[n]$	$\cdots = x \left(k \frac{T}{N} \right) = x[k]$
		は因果系列(causal sequence)	は 因果系列 (causal sequence)
38	10 行目	とよぶことはすでに第 2 章で 紹介した	とよぶ
43	11 行目	再帰方程式 (3.3) はつぎのよ うに	再帰方程式 (3.4) はつぎのよ うに
		x[n] $x[n]$	$x[n] \xrightarrow{b_0} \xrightarrow{\Phi} y[n]$ $q^1 \xrightarrow{b} \xrightarrow{a} q^1$ $a_1 \xrightarrow{q^1}$
44	図 3.19 (c)	(c)	(e)

ページ	行数, 図・表・式番号	誤	正
45	下から7行目	入力を x[n] とし出力を y[n] と する	入力を x[n] とし出力を p[n] と する
47	17 行目	2) 時刻 <i>n</i> = <i>m</i> まで	2) 時刻 $n = m - 1 (m > 1)$ まで
47	下から 17 行目	$\cdots = b_0 x_0[m] + \cdots + b_M x_0[m - M]$	$\cdots = b_0 x[m] + \cdots + b_M x[m - M]$
		$y[m] = \alpha \left(\sum_{i=1}^{M} a_{i-1} x_1 [m-i] \right)$	$y[m] = \alpha \left(\sum_{i=0}^{M} b_i x_1 [m-i] \right)$
		$-\sum_{j=1}^{N} y_1[m-j]\bigg)$	$-\sum_{j=1}^{N}a_{j}y_{1}[m-j]\bigg)$
		$+\beta \left(\sum_{i=1}^{M} a_{i-1} x_2 [m-i]\right)$	$+\beta \left(\sum_{i=0}^{M} b_i x_2 [m-i]\right)$
47	下から 12 行目	$-\sum_{j=1}^{N} y_2[m-j]\bigg)$	$-\sum_{j=1}^{N} a_j y_2[m-j] \bigg)$
47	下から 7 行目	$y_1[n] + a_0y_1[n-1] + \cdots$	$y_1[n] + a_1y_1[n-1] + \cdots$
56	下から 5 行目	$\cdots + b_n \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx$	$\cdots + b_n \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx.$
		$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos k\Omega_0 t \right)$	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\Omega_0 t) \right)$
57	8 行目	$+b_k\sin k\Omega_0 t)$ である.	$+b_k\sin\left(k\Omega_0t ight)$ である.
62	7 行目	$\cdots = \frac{1}{N} \frac{\sin\left[\frac{2\pi k\left(N_1 + \frac{1}{2}\right)}{N}\right]}{\sin\frac{2\pi k}{2N}}.$	$\cdots = \frac{1}{N} \frac{\sin\left[\frac{2\pi k \left(N_1 + \frac{1}{2}\right)}{N}\right]}{\sin\left(\frac{2\pi k}{2N}\right)}.$
62	下から 7 行目	$c_k = \frac{1}{N} \frac{\sin\left[\frac{2\pi k \left(N_1 + \frac{1}{2}\right)}{N}\right]}{\sin\frac{2\pi k}{2N}}, \dots,$	$c_k = \frac{1}{N} \frac{\sin\left[\frac{2\pi k \left(N_1 + \frac{1}{2}\right)}{N}\right]}{\sin\left(\frac{2\pi k}{2N}\right)}, \dots,$

ページ	行数, 図・表・式番号	誤	正
63	下から 11 行目	$c_1 = \frac{1}{2j}, c_{-1} = -\frac{1}{2j}.$	$c_1 = \frac{1}{2j}, c_{-1} = -\frac{1}{2j}$
67	図 5.2	$x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$ \begin{array}{c} f(x_k) \Delta x \\ x_0 = a \\ x_k = a + k\Delta x \end{array} $
71	下から 9 行目	信号処理では、(5.5) とともに その補足条件も成り立つとして 話をすすめるのがふつうである. そのときには、フーリエ変換の 反転公式により、連続時間非周 期信号 x(t) とその逆フーリエ変 換が 1 対 1 に対応する.	ところが、信号処理でよく出てくるディリクレ関数 $\frac{\sin x}{x}$ は(5.5)を満たさない.しかし、 $\frac{\sin x}{x}$ のような 2 乗可積分 * とよばれる関数に対しても、適切な距離を導入し、区間が有限な積分の極限を考えることによりフーリエ変換を定義できることが知られている.さらに、それらの関数とフーリエ変換には 1:1 の対応がある.
71	脚注追加		$\int_{-\infty}^{\infty} f(x) ^2 dx < \infty \text{ obs } f(x) \text{ は}$ 2 乗可積分とよばれる.
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \cdots$
		$\tan\left(\frac{\frac{-a\sin\omega}{1-2a\cos\omega+a^2}}{\frac{1-a\cos\omega}{1-2a\cos\omega+a^2}}\right)$	$\tan^{-1}\left(\frac{\frac{-a\sin\omega}{1-2a\cos\omega+a^2}}{\frac{1-a\cos\omega}{1-2a\cos\omega+a^2}}\right)$
77	8 行目	$= \tan \frac{-a\sin\omega}{1 - a\cos\omega},$	$= \tan^{-1} \left(\frac{-a \sin \omega}{1 - a \cos \omega} \right),$
79	下から6行目	$\ldots, x(t) = \mathcal{F}^{-1} \Big\{ X(\omega) \Big\}$	$\ldots, x(t) = \mathcal{F}^{-1} \{ X(\omega) \}.$

ページ	行数, 図・表・式番号	誤	正
		$\angle X(\omega) = \tan^{-1} \frac{b(\omega)}{a(\omega)}$	$\angle X(\omega) = \tan^{-1}\left(\frac{b(\omega)}{a(\omega)}\right)$
		$= \tan^{-1} \frac{-b(-\omega)}{a(-\omega)} = -\tan^{-1} \frac{b(-\omega)}{a(-\omega)}$	$= \tan^{-1} \left(\frac{-b(-\omega)}{a(-\omega)} \right) = -\tan^{-1} \left(\frac{b(-\omega)}{a(-\omega)} \right)$
81	下から 14 行目	$= -\angle X(-\omega)$	$=-\angle X(-\omega)$
		$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left X(\omega) \right ^2 d\omega$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left X(\omega) \right ^2 d\omega$
		$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(-\omega)X(\omega)d\omega$	$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \overline{X(\omega)} d\omega$
		$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(t)e^{j\omega t} dt \right] X(\omega) d\omega$	$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \overline{x(t)e^{j\omega t}} dt \right] X(\omega) d\omega$
		$= \int_{-\infty}^{\infty} x(t) \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \right\} dt$	$= \int_{-\infty}^{\infty} \overline{x(t)} \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \right\} dt$
83	8 行目	$= \int_{-\infty}^{\infty} x(t)x(t)dt = \int_{-\infty}^{\infty} x(t) ^2 dt.$	$= \int_{-\infty}^{\infty} \overline{x(t)} x(t) d = \int_{-\infty}^{\infty} x(t) ^2 dt.$
83	下から9行目	(もちろん有限長の信号に 対しても適用できる.)	() 部分を削除.
85	下から2行目	$\cdots = \frac{1 - a^N e^{-j\omega N}}{1 - ae^{-j\omega}}$	$\cdots = \frac{1 - a^N e^{-j\omega N}}{1 - ae^{-j\omega}}.$
88	下から 5 行目	$= x[0] + x[1] + x[2]$ $\cdots + x[N-1],$	$= x[0] + x[1] + x[2] + \dots + x[N-1],$
89	下から 5 行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $\cdots + a_{N-2} u^{N-2} + \cdots$	$f(u) = a_0 + a_2 u^2 + a_4 u^4 + \dots + a_{N-2} u^{N-2} + \dots$
100	9 行目	$\sum_{n=-\infty}^{-1} \frac{a_n}{x^n} + \sum_{n=0}^{\infty} a_n x^n$	$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} \frac{b_n}{x^n}$
103	10 行目	第1章で紹介した	第3章で紹介した
108	表 6.1 9	$(\cos \omega_0 n) \cdot u_S[n]$	$(\cos(\omega_0 n)) \cdot u_S[n]$
108	表 6.1 10	$(\sin \omega_0 n) \cdot u_S[n]$	$\left(\sin\left(\omega_0 n\right)\right)\cdot u_S[n]$

ページ	行数, 図・表・式番号	誤	正
	四 次 八田 7	ш х	11.
108	表 6.1 11	$r^n(\cos\omega_0 n) \cdot u_S[n]$	$r^n(\cos(\omega_0 n)) \cdot u_S[n]$
108	表 6.1 12	$r^n(\sin\omega_0 n)\cdot u_S[n]$	$r^n\Big(\sin\big(\omega_0n\big)\Big)\cdot u_S[n]$
109	1 行目	$= \sum_{n=0}^{\infty} x[n]z^{-n} + \sum_{n=-\infty}^{-1} x[n]z^{-n}$	$= \sum_{n=0}^{\infty} x[n]z^{-n} + \sum_{n=-\infty}^{-1} x[n]z^{-n}.$
111	下から 3 行目	$\cdots + \frac{2z^{-1}}{(1-z^{-1})^2} - \frac{8}{1-z^{-1}}.$	$\cdots + \frac{2z^{-1}}{(1-z^{-1})^2} - \frac{6}{1-z^{-1}}.$
111	下から1行目	$x[n] = (4 \cdot 0.5^n + 2n - 8)u_S[n].$	$x[n] = (4 \cdot 0.5^n + 2n - 6)u_S[n].$
115	下から 3 行目	システムは因果であることから, z 変換の収束領域の特徴 3 より,	システムが因果であることの 定義から,
		$H(z) = \frac{Y(z)}{X(z)}$	$H(z) = \frac{Y(z)}{X(z)}$
116	5 行目	$= \frac{30 - 2z^{-1}}{6 - 5z^{-1} + z^{-2}} = \cdots$	$= \frac{30 - 12z^{-1}}{6 - 5z^{-1} + z^{-2}} = \cdots$
116	6 行目	インパルス応答は右側系列で なければない.	インパルス応答は右側系列で なければならない.
121	下から8行目	$H(\omega) = \frac{1}{1 - ae^{-j\omega}}.$	$H(\omega) = \frac{1}{1 - ae^{-j\omega}}$
		$H(\omega) = \sum_{k=0}^{2} \frac{1}{3} e^{-j\omega k}$	$H(\omega) = \sum_{k=0}^{2} \frac{1}{3} e^{-j\omega k}$
		$= \frac{1}{3} \left(e^{j\omega} + 1 + e^{-j\omega} \right) e^{-j\omega}$	$= \frac{1}{3} \left(e^{j\omega} + 1 + e^{-j\omega} \right) e^{-j\omega}$
		$=\frac{1}{3}(2\cos\omega+1)e^{-j\omega}$	$=\frac{1}{3}(1+2\cos\omega)e^{-j\omega}$
		$\left(\frac{1}{3}(2\cos\omega+1)e^{-j\omega},\right.$	$\left(\frac{1}{3}\left(1+2\cos\omega\right)e^{-j\omega},\right.$
123	6 行目	$= \begin{cases} 2\cos\omega + 1 \ge 0, \\ -\frac{1}{3}(2\cos\omega + 1)e^{-j(\omega - \pi)}, \end{cases}$	$= \begin{cases} \frac{1}{3} (1 + 2\cos\omega) e^{-j\omega}, \\ 1 + 2\cos\omega \ge 0, \\ -\frac{1}{3} (1 + 2\cos\omega) e^{-j(\omega - \pi)}, \end{cases}$
		$ \begin{cases} 3(2\cos\omega + 1) & , \\ 2\cos\omega + 1 < 0 \end{cases} $	$1 + 2\cos\omega < 0$

ページ	行数, 図・表・式番号	誤	正
		$ H(\omega) = \frac{1}{3} 2\cos\omega + 1 ,$	$ H(\omega) = \frac{1}{3} 1 + 2\cos\omega ,$
123	下から 10 行目	$\theta(\omega) = \begin{cases} -\omega, \\ 2\cos\omega + 1 \ge 0, \\ -\omega + \pi, \\ 2\cos\omega + 1 < 0 \end{cases}$	$\theta(\omega) = \begin{cases} -\omega, \\ 1 + 2\cos\omega \ge 0, \\ -\omega + \pi, \\ 1 + 2\cos\omega < 0 \end{cases}$
		$ H(\omega) = \frac{1}{3} 2\cos\omega + 1 ,$	$ H(\omega) = \frac{1}{3} 1 + 2\cos\omega ,$
124	下から 2 行目	$\theta(\omega) = \begin{cases} -\omega, \\ 2\cos\omega + 1 \ge 0, \\ -\omega + \pi, \\ 2\cos\omega + 1 < 0 \end{cases}$	$\theta(\omega) = \begin{cases} -\omega, \\ 1 + 2\cos\omega \ge 0, \\ -\omega + \pi, \\ 1 + 2\cos\omega < 0 \end{cases}$
125	1 行目	$2\cos\omega + 1 = 3 > 0 なので,$	$1 + 2\cos\omega = 3 > 0 なので,$
125	4 行目	$\theta(\omega) = \begin{cases} -\omega + 2\pi, \\ 2\cos\omega + 1 \ge 0, \\ -\omega - \pi, \\ 1 + 2\cos\omega < 0 \end{cases}$	$\theta(\omega) = \begin{cases} -\omega + 2\pi, \\ 2\cos\omega + 1 \ge 0, \\ -\omega - \pi, \\ 1 + 2\cos\omega < 0 \end{cases}$
			$x(t) = x(t) * \delta(t)$
131	下から2行目	$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau \qquad (7.4)$	$= \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau \qquad (7.4)$

ページ	行数, 図・表・式番号	誤	Œ
136	8 行目	第5章で述べたように、絶対積分可能でない関数 $x(t)$ はフーリエ変とでない関数 $x(t)$ はフー換は、アクリンのような $x(t)$ に、指数関数をついる。指数関数できないが、表別である。 $x(t)$ に、力でであり、 $x(t)$ を一のフーリエ変換! であり、 $x(t)$ をのける。 $x(t)$ をのり、 $x(t)$ をのう。 $x(t)$	第5章で述べたように、絶対積分に、すなわち(5.5)を満たさない関数 $x(t)$ 、すなわち(5.5)を満たさない関数は、一般にはフーリエ変換をもたる、 $ x $ が大きくなるにつれて急激に減衰し 0 に近づく指数関と $e^{-\sigma t}$ 、 $\sigma > 0$ 、をかけた $x(t)e^{-\sigma t}$ が絶対意のであれば、そのなりであることに注意)は、 $X(s) = \int_{-\infty}^{\infty} x(\tau)e^{-(\sigma + j\omega)\tau}d\tau$ = $\int_{-\infty}^{\infty} (x(\tau)e^{-\sigma \tau})e^{-j\omega\tau}d\tau$ であので、 $x(t)e^{-\sigma t}$ が絶対意ので、 $x(t)e^{-\sigma t}$ の意味であり、 $x(t)e^{-\sigma t}$ のの意味であり、可能であれば $x(t)$ のの意味で、力能であれば $x(t)$ のの意味で、力能であれば $x(t)$ の意味で、よりも適用能が広い.
142	下から 11 行目 式 (7.18)	$\cdots = \cos \Omega_0 t + j \sin \Omega_0 t$	$\cdots = \cos(\Omega_0 t) + j\sin(\Omega_0 t)$
142	下から 10 行目	が発散するので,フーリエ変 換の存在条件(5.5)が満たさ れず,本来の意味での	が発散するので(5.5)が満たさ れず,また,本来の意味での
145	ラプラス変換対表 11	$(\cos \omega_0 t) u_S(t)$	$(\cos(\omega_0 t))u_S(t)$
145	ラプラス変換対表 12	$(\sin \omega_0 t)u_S(t)$	$(\sin(\omega_0 t))u_S(t)$
145	ラプラス変換対表 13	$(e^{-\alpha t}\cos\omega_0 t)u_S(t)$	$(e^{-\alpha t}\cos(\omega_0 t))u_S(t)$
145	ラプラス変換対表 14	$(e^{-\alpha t}\sin\omega_0 t)u_S(t)$	$\left(e^{-\alpha t}\sin\left(\omega_0 t\right)\right)u_S(t)$

ページ	行数, 図・表・式番号	誤	正
151	下から4行目	$\Omega_s = rac{2\pi}{T_s} = rac{2\pi f_s}{f_s}$ であるので、	$\Omega_s = rac{2\pi}{T_s} = 2\pi f_s$ であるので,
162	図 9.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		(c) 上の式	
171	図 9.15	$x(t) = x_1(t) + x_2(t) \text{ and } y(t)$ $= y_1(t - 0.3) + y_2(t - 0.8)$	$x(t) = x_1(t) + x_2(t) \text{ and } y(t)$ $= x_1(t - 0.3) + x_2(t - 0.8)$
174	式 2 行目	$\cdots + 2\sum_{k=0}^{\frac{N}{2}-1} h \left[\frac{N-1}{2} - k \right]$ $e^{-j\frac{N-1}{2}\omega} \cos k\omega$	$\cdots + 2\sum_{k=0}^{\frac{N}{2}-1} h \left[\frac{N-1}{2} - k \right]$ $e^{-j\frac{N-1}{2}\omega} \cos(k\omega)$
176	12 行目 式 (9.19)	$\cdots = \begin{cases} \cdots, 2h[0] \cos \frac{3}{2}\omega \\ +2h[1] \cos \frac{\omega}{2} \ge 0, \\ \cdots, 2h[0] \cos \frac{3}{2}\omega \\ +2h[1] \cos \frac{\omega}{2} < 0 \end{cases}$	$\cdots = \begin{cases} \cdots, 2h[0] \cos\left(\frac{3}{2}\omega\right) \\ +2h[1] \cos\left(\frac{\omega}{2}\right) \ge 0, \\ \cdots, 2h[0] \cos\left(\frac{3}{2}\omega\right) \\ +2h[1] \cos\left(\frac{\omega}{2}\right) < 0 \end{cases}$
177	下から 12 行目	$= 2jh[0]\sin(\omega)e^{-j\omega}$ $= 2h[0]\sin(\omega)e^{-j(\omega-\pi/2)}$	$= 2jh[0]e^{-j\omega}\sin\omega$ $= 2h[0]e^{-j(\omega-\pi/2)}\sin\omega$
182	下から 10 行目	$H(z) = \sum_{n=0}^{N-1} h[n]z^{-n}$	$H(z) = \sum_{n=0}^{N-1} h[n]z^{-n}.$
186	3 行目	また, ω ₀ は	また、 ω_c は
		$\cdots = \frac{e^{-i\pi/2}(1+i)}{(1-i)(1+i)}$	$\cdots = \frac{e^{-i\pi/2}(1+i)}{(1-i)(1+i)}$
189	下から4行目	$=\frac{-i(1+1)}{1+1}=\cdots$	$=\frac{-i(1+i)}{1+1}=\cdots$

ページ	行数, 図・表・式番号	誤	Æ
190	図 Ex.1 (3)	$ \begin{array}{c c} 1 & & x[2n] \\ \hline & & \\ 0 & & n \end{array} $	$ \begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
191	図 Ex.7	0.250 0.125 0.000 -5 0 5 10 15	h[n] 1.00 0.50 0.25 0.00 0.25 0.00 0.00 0.00 0
193	図 Ex.12	$p[n-2] \xrightarrow{q^{-1}} p[n]$	$x[n] \xrightarrow{a_1} p[n-2] \xrightarrow{b_1} q^{-1} \xrightarrow{p} p[n]$ $b_2 \xrightarrow{b_3} y[n]$
193	⊠ Ex.13	$x[n] \xrightarrow{b} b \xrightarrow{q^{-1}} y[n]$ $q^{-1} \rightarrow b \xrightarrow{q^{-1}} a \leftarrow q^{-1}$ $\vdots \vdots $	$x[n] \xrightarrow{b} b y[n]$ $q^{-1} \xrightarrow{b} b a \xrightarrow{q^{-1}}$ $\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$ $q^{-1} \xrightarrow{b} b a_n \leftarrow q^{-1}$
		$(1) \ a_0 = \frac{1}{2} \cdot \frac{2}{2\pi} \int_0^{2\pi} t dt$	$(1) \ a_0 = \frac{2}{2\pi} \int_0^{2\pi} t dt$
193	下から1行目	$=\frac{1}{2\pi}\left[\frac{t^2}{2}\right]_0^{2\pi}=\pi.$	$= \frac{1}{\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = 2\pi.$
194	1 行目	k≠0のとき	$k \neq 0$ のとき.
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	$a_0 = \frac{2}{T} \int_0^T t dt = \frac{2}{T} \left[\frac{t^2}{2} \right]_0^T = T.$
194	9 行目	k≠0のとき	$k \neq 0$ のとき.

ページ	行数, 図・表・式番号	誤	正
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$
197	下から 14 行目	$\cdots = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{j\omega(n+1)} + e^{-j\omega(n-1)} \right) d\omega$	$\cdots = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{j\omega(n+1)} + e^{j\omega(n-1)} \right) d\omega$
		$\cdots = \frac{1}{2} \sum_{n=0}^{\infty} \left\{ \left(e^{j\omega_0} \cdot z^{-1} \right)^n \right\}$	$\cdots = \frac{1}{2} \sum_{n=0}^{\infty} \left\{ \left(e^{j\omega_0} \cdot z^{-1} \right)^n \right\}$
200	1 行目	$+\frac{1}{2}\left(e^{-j\omega_0}\cdot z^{-1}\right)^n\}.$	$+\left(e^{-j\omega_0}\cdot z^{-1}\right)^n$.