Clustering in Block Markov Chains

Fundamental limits and algorithms

Se-Young Yun

KAIST (Graduate School of AI) with Alexandre Proutiere (KTH), Jaron Sanders (TU/e)

Table of contents

- 1. Introduction
- 2. SBM Analysis
- 3. Block Markov Chain
- 4. Conclusion

Introduction

Community Detection

Social networks

- · facebook, twitter,
- · Social graph

· How to find hidden community from the given graph

Stochastic Block Model

Objective

What is the minimum number of misclassified nodes when detecting communities from a graph? [Holland et al, 83],...,[Abbe 18]

Random Graph Model All edges are independent.

Stochastic Block Model with Sampling [COLT2014]

- At round t, sample node pair (i, j), and observe a random independent outcome
- Outcome follows Bernoulli with mean p if nodes are in the same cluster, q otherwise with q < p
- Budget: T observations
- Different sampling strategies: Random sampling and Adaptive sampling
- Remark: talks so far are for random sampling w/o replacement, and $T = \frac{n(n-1)}{2}$

4

Block Markov Chain [AoS2020]

Objective

What is the minimum number of misclassified states when detecting communities from a sample path?

Problem

SBM Analysis

SBM: Assumptions and Notations

Assumptions:

- $\bar{p} = o(1)$ and $\bar{p}n = \omega(1)$
- Homogeneity: $\exists \eta > 0 : \forall i, j, k, \frac{p_{ij}}{p_{ik}} \leq \eta$
- Separation: $\exists \epsilon > 0 : \forall i \neq j, \sum_k (p_{ik} p_{jk})^2 \geq \epsilon \bar{p}^2$

Notations:

• Divergence between p(i) and p(j):

$$D_{L^{+}}(\alpha, p(i), p(j)) = \min_{y \in \mathcal{P}^{K}} \max_{a \in \{i, j\}} \sum_{k} \alpha_{k} KL(y_{k}, p_{ak})$$

• Divergence of the model: $D(\alpha, p) = \min_{i,j:i \neq j} D_{L^+}(\alpha, p(i), p(j))$

7

Random Sampling

Spectral Algorithm+ [NeurIPS 2016]

Step 1. Input: matrices A ($A_{vw} = 1$ iff (v, w) is connected)

- 1. Trimming + Spectral method (PI+SV thresholding)
- 2. Output $S_1, \ldots, S_{\hat{k}}$

Step 2. Input: A, and $S_1, \ldots, S_{\hat{K}}$

- 1. Estimate $p: \hat{p}_{ij} \leftarrow \frac{\sum_{u \in S_i} \sum_{v \in S_j} A_{uv}}{|S_i||S_i|}$
- 2. $\lceil \log(n) \rceil$ improvement iterations: in each iteration, for all v, assign v to

$$\arg\max_{k} \sum_{i} \sum_{w \in S_{i}} A_{vw} \log \hat{p}_{ki}$$

Eigen values of adjacent matrix A

Example: 2 clusters with equal sizes, np = a, nq = b.

- Eigen values of A and two separated eigen values
 - $z_1 = \frac{1}{2}(a-b) + \frac{a+b}{a-b}$ and $z_2 = \frac{1}{2}(a+b) + 1$
 - z_1 appears only if $(a-b)^2 > 2(a+b)$
 - Eigen vector of z_1 : $\frac{\theta}{\sqrt{n}}u + \frac{1-\theta^2}{\sqrt{n}}\mathcal{N}(0,1)$ where $\theta^2 = \frac{(a-b)^2 2(a+b)}{(a-b)^2}$

Noise on eigenvalues

- The case of $d < \log n$ is more challenging
 - · The graph becomes less regular
 - Even if a and b are constants, there exists $\Omega\left(\frac{\log n}{\log\log n}\right)$ degree vertex
 - The largest eigenvalue becomes $\Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right)$ (the largest eigenvalue of n-star graph $\approx \sqrt{n}$)
 - · Impossible to pick λ_1 and λ_2

Trimming

Pre-process (trimming)

- Trimming of Erdös-Rényi graph
 - · Consider a ER graph with average degree d
 - \cdot Trimming : remove all the vertices of degree greater than (1+arepsilon)d
 - \cdot Let A' be the adjacent matrix after trimming

Theorem (Feige, Ofek '05)

The second largest singular value of A' is less than $c\sqrt{d}$

Achievability (cont'd)

Theorem 1 Let s = o(n). If $\liminf_{n \to \infty} \frac{nD(\alpha, p)}{\log(n/s)} \ge 1$, then the SP algorithm misclassifies at most s nodes with high probability.

Remark 1: This result covers exact detection (s = 1). **Remark 2:** SP runs in $O(\bar{p}n^2\log(n))$, and does not need to know K nor (α, p)

Proof: Key ingredients

- · The spectral norm of the random observation matrix
- Chernoff-Hoeffding's inequality to understand the number of connections to each cluster
- i.i.d observations

Proofs

Spectral Analysis

It is very important to understand the spectral norm of A $-\mathbb{E}[A]$

Some works study $\sup_{x \in \mathbb{R}^n: \|x\|_2 = 1} \|(A - \mathbb{E}[A])x\|_{\infty}$

Greedy Improvement

Concentration inequalities are very important!

Inference Limits in the SBM

Theorem 2 Let s = o(n). If there exists a clustering algorithm π such that $\limsup_{n\to\infty} \mathbb{E}[\varepsilon^{\pi}(n)]/s \le 1$, then:

$$\lim\inf_{n\to\infty}\frac{nD(\alpha,p)}{\log(n/s)}\geq 1$$

Hence, the average number of misclassified nodes should scale at least as $n \exp(-nD(\alpha, p)(1 + o(1)))$

Theorem 3 If there exists a clustering algorithm classifying each node correctly with high probability, then:

$$\lim\inf_{n\to\infty}\frac{nD(\alpha,p)}{\log(n)}\geq 1$$

Adaptive Sampling

Adaptive Spectral Algorithm [NeurIPS 2019]

Step 1. Randomly sample δT edges with a small $\delta > 0$ and run the spectral clustering algorithm to extract the first guess S_1, \ldots, S_K .

Step 2. Estimate SBM parameters lpha and \emph{p}

Step 3. Solve the LP $D^{A}(p, \alpha) = \max_{\mathbf{x} \in \mathcal{X}(\alpha)} D(\mathbf{x}, p)$

Step 4. Sample edges between $v \in S_i$ and S_j using $2(1 - 2\delta)x_{ij}\frac{T}{n}$ budget and classify nodes

Step 5. Use the remaining budgets to classify unclear nodes

New Divergence for Adaptive Sampling

We can control the sampling sequence.

New Divergence:

$$D^{A}(p, \alpha)$$
 is defined as: $D^{A}(p, \alpha) = \max_{x \in \mathcal{X}(\alpha)} D(x, p)$,

with
$$D(\mathbf{x}, \mathbf{p}) = \min_{i,j:i \neq j} \sum_{k=1}^{K} x_{ik} K L(p_{ik}, p_{jk})$$
 and
$$\mathcal{X}(\boldsymbol{\alpha}) = \left\{ \mathbf{x} = [x_{ij}] : \alpha_i x_{ij} = \alpha_j x_{ji}, \sum_{i=1}^{K} \alpha_i \sum_{j=1}^{K} x_{ij} = 1, \text{ and } x_{ij} \geq 0, \ \forall i, j \right\},$$

Inference Limits in the SBM with Adaptive Sampling

Theorem 4 Let s = o(n). If there exists a clustering algorithm π such that $\varepsilon^{\pi}(n) \leq s$ with high probability, then:

$$\lim \inf_{n \to \infty} \frac{2TD^A(p, \alpha)}{n \log(n/s)} \ge 1.$$

Theorem 5 Let s = o(n). Adaptive Spectral Algorithm guarantee that $\varepsilon^{\pi}(n) \leq s$ with high probability, when

$$\lim \inf_{n \to \infty} \frac{2TD^A(p, \alpha)}{n \log(n/s)} \ge 1.$$

Block Markov Chain

Mixing time

Analyzing and bounding the mixing time of a BMC is crucial.

Without mixing within *T* time steps, we would not expect to be able to cluster.

We define
$$d(t) \triangleq \sup_{\mathbf{x} \in \mathcal{V}} \left\{ d_{\mathrm{TV}}(P_{\mathbf{x},\cdot}^t, \mathbf{\Pi}) \right\}$$
 and $t_{\mathrm{mix}}(\varepsilon) \triangleq \min\{t \geq 0 : d(t) \leq \varepsilon\}$, where
$$d_{\mathrm{TV}}(\mu, \nu) \triangleq \tfrac{1}{2} \sum_{\mathbf{x} \in \mathcal{V}} |\mu_{\mathbf{x}} - \nu_{\mathbf{x}}|. \tag{1}$$

Proposition 1 There exists a strictly positive absolute constant c_{mix} such that $t_{\text{mix}}(\varepsilon) \leq -c_{\text{mix}} \ln \varepsilon$, for every BMC of finite size $n \geq K$.

Mixing Time for Block Markov Chain

Let $\alpha_i n$ is the number of nodes in \mathcal{V}_i . The transition matrix is

$$P_{x,y} = rac{p_{\sigma(x),\sigma(y)}}{|V_{\sigma(y)}|}$$
 for all $x,y \in \mathcal{V}$.

Let $\alpha_{\min} = \min_k \alpha_k$ and $\eta = \max_{a,b,c} \{p_{b,a}/p_{c,a}, p_{a,b}/p_{a,c}\}.$

Proposition 1 For any BMC with $n \ge 4/\alpha_{\min}$, $t_{mix}(\epsilon) \le -c_{mix} \log \epsilon$, where $c_{mix} = -1/\log(1-1/2\eta)$.

Information theoretical lower bound

For $\alpha \in \Delta^{K-1}$ and $p \in \Delta^{(K-1) \times K}$, let

$$I(\alpha, p) \triangleq \min_{a \neq b} \left\{ \sum_{k=1}^{K} \frac{1}{\alpha_a} \left(\pi_a p_{a,k} \ln \frac{p_{a,k}}{p_{b,k}} + \pi_k p_{k,a} \ln \frac{p_{k,a} \alpha_b}{p_{k,b} \alpha_a} \right) + \left(\frac{\pi_b}{\alpha_b} - \frac{\pi_a}{\alpha_a} \right) \right\}.$$
(2)

Here π denotes the solution to $\pi^{\mathrm{T}}p=\pi^{\mathrm{T}}$.

Theorem 6 Let s = o(n). If there exists a clustering algorithm π such that $\limsup_{n\to\infty} \mathbb{E}[\varepsilon^{\pi}(n)]/s \geq 1$, then:

$$\lim\inf_{n\to\infty}\frac{(T/n)I(\alpha,p)}{\log(n/s)}\geq 1$$

Achievability

The error lower bounds are tight! Spectral Algorithm+ [AOS 2020]

Step 1. Input: matrices A

- 1. Trimming + Spectral method (PI+SV thresholding)
- 2. Output $S_1, \ldots, S_{\hat{K}}$

Step 2. Input: A, and $S_1, \ldots, S_{\hat{K}}$

- 1. Estimate $p: \hat{p}(i,j) \leftarrow \frac{\sum_{u \in S_i} \sum_{v \in S_j} A_{uv}}{|S_i|}$
- 2. $\lceil \log(n) \rceil$ improvement iterations: in each iteration, for all v, assign v to

$$\arg\max_{c} \Big\{ \sum_{k=1}^{K} (\hat{N}_{x,\hat{\mathcal{V}}_{k}} \ln \hat{p}(c,k) + \hat{N}_{\hat{\mathcal{V}}_{k},X} \ln \frac{\hat{p}(k,c)}{\hat{\alpha}_{c}}) - \frac{T}{n} \cdot \frac{\hat{\pi}_{c}}{\hat{\alpha}_{c}} \Big\}$$

Achievability (cont'd)

Theorem 7 Let s = o(n). If $\liminf_{n \to \infty} \frac{(T/n)I(\alpha,p)}{\log(n/s)} \ge C$ with a constant C > 0, then the SP algorithm misclassifies at most s nodes with high probability.

Remark 1: This result is not tight. Here, C < 1.

Remark 2: We utilize concentration inequalities for Markov chains, but they are not enough to make the tight result.

$$\sum_{k=1}^{K} (\hat{N}_{X,\mathcal{V}_k} \ln p_{c,k} + \hat{N}_{\mathcal{V}_k}, x \ln \frac{p_{k,c}}{\alpha_c}) - \frac{T}{n} \cdot \frac{\pi_c}{\alpha_c}$$

Concentration Inequalities for Markov Chains

[D. Paulin, 2015] Let X_1, \ldots , be a Markov chain with transition matrix P. Let Π be the stationary distribution. Let $f \in L^2(\Pi)$ with $|f(x) - \mathbb{E}_{\Pi}(f)| < C$ for every $x \in \Omega$ and some constant C > 0. Let V_f be the variance of f(X) when X follows the stationary distribution Π . Then, for any z > 0,

$$\mathbb{P}_{\Pi}\left(|\sum_{t=1}^{T} f(X_t) - \mathbb{E}_{\Pi}[\sum_{t=1}^{T} f(X_t)]| \geq z\right) \leq 2 \exp\left(-\frac{z^2 \gamma_{ps}}{8(T+1/\gamma_{ps})V_f + 20zC}\right),$$

where

$$\gamma_{ps} = \max_{i \geq 1} \frac{1 - \lambda((P^*)^i P^i)}{i} \geq \frac{1 - \epsilon}{t_{mix}(\epsilon/2)} \quad \text{with} \quad P^*(x, y) = \frac{P(x, y)}{\Pi(x)} \Pi(y).$$

Concentrations for BMC

The block Markov chain has

$$\gamma_{ps} \ge \frac{1}{2(t_{mix}(1/4) + 1)} \ge \frac{1}{2(4\eta + 1)}.$$

Therefore, from the concentration inequality for Markov chains by Paulin,

$$\mathbb{P}\left(|\hat{N}_{\mathcal{A},\mathcal{B}} - N_{\mathcal{A},\mathcal{B}}| \ge c\sqrt{nT}\right) \le 2\exp\left(-\frac{c^2}{16(4\eta + 1)}n(1 + o(1))\right),$$

which can analyze the accuracy of parameter estimations.

Conclusion

Summary

- The stochastic block model (SBM) is a natural performance benchmark for community detection.
- We address the finer and more challenging question of determining, under the general LSBM, the minimal number of misclassified items given the parameters of the model.
- · We extend our results to the block Markov chain model.
- The results for the block Markov chain model is not tight. To obtain the tightness, it is necessary to derive a much better concentration inequality for the Markov chain sample path.

Thank you! Questions?