Topology

Author: David Oniani Instructor: Dr. Eric Westlund

January 22, 2019

Assignment №5

Section 31

1. Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.

Since X is regular, by the definition, $\forall x, y \in X \; \exists U, V$ with $x \in U, y \in V$ and $U \cap V = \emptyset$ (with U and V being open sets). Now, recall that X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\bar{V} \subset U$ (**Lemma 31.1 (a)**). Then, according to **Lemma 31.1 (a)**, $\exists U', V'$ such that $U' \subset U$ and $V' \subset V$. Now, because $U \cap V = \emptyset$, it follows that $\bar{U} \cap \bar{V} = \emptyset$. \square

2. Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

Let A and B be disjoint closed sets. Then by the definition of normality, $\exists U, V$ such that $U \cap V = \emptyset$, $A \subset U$, and $B \subset V$ (with U and V being open sets). Now, recall that X normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\bar{V} \subset U$ (**Lemma 31.1** (b)). Then it follows from **Lemma 31.1** (b) that $\exists U', V'$ with $A \subset U'$ and $B \subset V'$ such that $\bar{U}' \subset U$ and $\bar{V}' \subset V$. Now, since $U \cap V = \emptyset$, we get $\bar{U}' \cap \bar{V}' = \emptyset$. \Box

3. Show that every order topology is regular.

Suppose that X is an ordered set. Let $x \in X$ and let U = (a, b) be the neighborhood of x. Also, let A = (a, x) and B = (x, b). Now, according to the **Lemma 31.1** (a), X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of X such that $\overline{V} \subset U$. Then it follows that we have the following four cases:

- 1. If $u \in A$ and $v \in B$, then $x \in (u, v) \subset \overline{(u, v)} \subset [u, v] \subset (a, b)$.
- 2. If $A = B = \emptyset$, then $(a, b) = \{x\}$ is both open and closed (since every order topology is Hausdorff)
- 3. If $A = \emptyset$ and $v \in B$, then $x \in (a, v) \subset [x, v) \subset \overline{[x, v]} \subset [x, v] \subset (a, b)$.
- 4. If $B = \emptyset$ and $u \in A$, then $x \in (u, b) \subset (u, x] \subset \overline{(u, x]} \subset [u, x] \subset (a, b)$.

Finally, we have considered all the cases and have exhaustively shown that a closed subspace of a normal space is normal. \Box

Section 31

1. Show that a closed subspace of a normal space is normal.

Suppose that Y is a closed subspace of the normal space X. Now, recall that every simply ordered set is a Hausdorff space in the order topology; The product of two Hausdorff spaces is a Hausdorff space; A subspace of a Hausdorff space is a Hausdorff space. (**Theorem 17.11**). Then according to the **Theorem 17.11**, Y is Hausdorff. Now let A and B be disjoint closed subspaces of Y. Since A and B are closed in X, they can be separated in X by open sets U and V (with $U \cap V = \emptyset$). Then $U \cap Y$ and $V \cap Y$ are open sets in Y separating A and B. Therefore, Y is normal. \square