Partiel 1

Durée : trois heures

Documents et calculatrices non autorisés

Nom:	Prénom:	Classe:
Entourer votre professeur de TI	D: Mme Boudin / Mme Daadaa / M. Ghanem / M. Go	oron / Mme Trémoulet
Consignes :		
- aucune autre feuille, que ce	lles agrafées fournies pour répondre, ne sera corr	rigée.
– aucune réponse au crayon de pa	pier ne sera corrigée.	
Exercice 1 (2 points)		
Écrire la négation des phrases suiv	vantes:	
1. « La racine carrée d'un entie	er pair est paire ».	
2. « Dans n'importe quel triang	gle du plan, la somme des angles vaut 180° en géométrie e	euclidienne ».
3. « Certains étudiants n'auron	nt pas vécu l'expérience internationale dès le S4 ».	
4. « Certains étudiants auront	vécu l'expérience internationale dès le S4 ».	
Exercice 2 (2 points) Montrer par récurrence que pour	Sout $n \geqslant 4$, $n! > 2^n$.	
		[suito du cadre page suivante]

Exercice 3 (2 points)	
Soit f une fonction de $\mathbb R$ vers $\mathbb R$. Écrire en langage mathématique (avec les quantificateurs) les phrases suivantes :	
1. « la fonction f s'annule au moins une fois ».	
2. « f n'est pas la fonction nulle ».	
3. « f est la fonction nulle ».	
4. « f présente un minimum sur $\mathbb R$ ».	
Exercice 4 (2 points)	
Soient E un ensemble, $f: E \longrightarrow E$ et $g: E \longrightarrow E$.	
1. On suppose que f et g sont injectives. Montrer que $f \circ g$ est injective.	
	/
2. On suppose que f et g sont surjectives. Montrer que $f \circ g$ est surjective.	
)

ontrer que $g\circ f$ surjective $\Longrightarrow g$ surjective. Cice 5 (3 points) 1 utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.	Montrer que g	$g \circ f$ injective $\Longrightarrow f$ injective.		
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.	***			
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.				
cice 5 (3 points) a utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x + 124y = 4$.		MVM+1		
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.	Montrer que g	$\circ f$ surjective $\Longrightarrow g$ surjective.		
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
n utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation $732x+124y=4$.				
	(
[suite du cadre page s				

	,
	/
) = 772 () = 700 () 104
En utilisant obligatoirement le théorème de Gauss, déterminer l'ensemble des couples (x, x)	$(y) \in \mathbb{Z}^2$ tels que $732x + 124y = 4$
	`
4	
1	
	[suito du cadre pago suivante]

Exercice 6 (3 points)	_
Soit $(a,b) \in \mathbb{N}^2$. Montrer que : $(a+b)$ et ab premiers entre eux \iff a et b premiers entre eux.	
	[suite du cadre page suivante]

Exercice 7 (2 points)	
uel est le reste de la division euclidienne de 12^{1527} par 5 ?	
Exercice 8 (2 points)	
éterminer l'ordre de multiplicité de la racine 1 du polynôme $P(X)=$	$X^4 - 2X^3 + 2X - 1.$

Exercice 9 (3 points)

Soit $n \in \mathbb{N}^*$.

1. Montrer que $X^2 + 2X$ divise $(X+1)^{2n} - 1$.

2. Montrer que X^2 divise $(X+1)^n - nX - 1$.

3. Montrer que $(X-1)^2$ divise $nX^{n+1} - (n+1)X^n + 1$.