1 Basic Coupling

In this section we construct the East-process and the 1-sided contact process on the same probability space using the graphical method.

1.1 Construction

Let $\mathcal{C} = (E_{x,k}, B_{x,k})_{x \in \mathbb{Z}, k \in \mathbb{N}^+}$ be a collection of independent random variables with $E_{x,k} \sim \operatorname{Exp}(1)$ and $B_{x,k} \sim \operatorname{Ber}(p = 1 - q)$. We construct the East-process $\sigma := (\sigma_t)_{t \geq 0}$ and the 1-sided contact process $\eta := (\eta_t)_{t \geq 0}$ using \mathcal{C} as follows:

For each site $x \in \mathbb{Z}$ at each time $T_{x,n} := \sum_{k=1}^{n} E_{x,k}$:

- If $B_{x,n} = 1$:
 - 1. If $\sigma_{T_{x,n}}(x-1)=1$ update σ to 1 at site x
 - 2. If $\eta_{T_{x,\eta}}(x-1)=1$ update η to 1 at site x
- Else:
 - 1. If $\sigma_{T_{x,n}}(x-1)=1$ update σ to 0 at site x
 - 2. Update η to 0 at site x

Remark 1.1 (Time change). In what follows we only consider contact processes with $\frac{p}{q} > \lambda_c$ where λ_c is the critical parameter for the 1-sided contact process on \mathbb{Z} . If $\tau^A := \tau(\eta_c^A) := \inf\{t \geq 0 \mid \eta_t^A = \varnothing\}$, then this implies that $\mathbb{P}\left(\tau^{\{0\}} = \infty\right) > 0$. If p satisfies this constraint, we call the correspoding East and contact processes supercritical. (I'm not sure about this remark - might need to use higher value to get access to results from [2])

Suppose we start the processes σ and η from the initial configurations $A, B \in \Omega := \{0,1\}^{\mathbb{Z}}$ respectively. The resulting processes are denoted $(\sigma_t^A)_{t\geq 0}$ and $(\eta_t^B)_{t\geq 0}$. Note that because of the natural bijection between the power set of \mathbb{Z} and Ω , we will consider the values σ_t and η_t as subsets of \mathbb{Z} and elements of Ω interchangeably.

1.2 Monotonicity

Suppose at some time $t \geq 0$ $\eta_t \leq \sigma_t$. Then $\eta_{t+s} \leq \sigma_{t+s} \ \forall s \geq 0$. To see this note that η updates a particular site to 1 only if σ does too, and σ updates a particular site to 0 only if η does too. In particular, if $X(\xi)$ denotes the position of the rightmost one - also known as the front - of $\xi \in \Omega$ then $X(\eta_{t+s}) \leq X(\sigma_{t+s}) \ \forall s \geq 0$.

2 Front Propagation of the East-Process

In this section we prove at least linear speed for the front of the East-process by comparing it to the 1-sided contact process, closely following the arguments of [1].

We use the following result without proof:

LEMMA 2.1 ([2] Section 4 Theorems 4 & 5) — If $(\eta_t)_{t\geq 0}$ is a supercritical, 1-sided contact process and τ is as in Remark 1.1 then $\exists \ \alpha > 0$ such that $\forall a < \alpha \ \exists \ \gamma, C > 0$ satisfying

$$\mathbb{P}\left(X(\eta_t^{\{0\}}) < at \middle| \tau^{\{0\}} = \infty\right) \le Ce^{-\gamma t} \qquad \forall t \ge 0$$
 (2.1)

Furthermore, if $A \subset \mathbb{Z}$ with $|A| < \infty$ then $\exists \gamma, C > 0$ such that

$$\mathbb{P}\left(t < \tau(\eta^A) < \infty\right) \le Ce^{-\gamma t} \qquad \forall t \ge 0 \tag{2.2}$$

2.1 Restart argument

THEOREM 2.2 (Coupling East and surviving contact processes) — There exists a process $(\sigma_t, \eta_t)_{t\geq 0}$ taking values in Ω^2 and a random variable T taking values in $[0, \infty)$ such that

- (i) (σ_t) is an East-process started from $\{0\}$
- (ii) $\forall t \geq 0 \& \forall x \in \mathbb{Z}, \ \eta_t(x) \leq \sigma_t(x)$
- (iii) $(\eta_{T+t})_{t\geq 0}$ is a surviving 1-sided contact process started from $\{0\}$

Furthermore T has exponentially decaying tail probabilities.

Proof. Let $\{C^{(i)}\}_{i\in\mathbb{N}^+}$ be independent copies of C. Denote by $\eta^{(i)}$ the 1-sided contact process started from $\{0\}$, constructed using $C^{(i)}$. Furthermore let $U_i = \tau(\eta^{(i)})$ be the extinction time of $\eta^{(i)}$.

The U_i are iid, and $\mu := \mathbb{P}(U_1 = \infty) > 0$ by Remark 1.1. Define $L = \min\{i : U_i = \infty\}$ and note that L has geometric distribution. Finally, let $T = \sum_{i=1}^{L-1} U_i$ with T = 0 if L = 1.

First we show that T has exponentially decaying tail probabilities. Note that this is equivalent to both 1) finiteness of $\mathbb{E}\left[e^{sT}\right]$ for all s in a neighbourhood of zero 2) finiteness of $\mathbb{E}\left[e^{s_iT}\right]$ i=1,2 for some $s_1>0$ and $s_2<0$. To see the latter holds for T observe that conditional on $L,\,U_1,...,U_{L-1}$ are iid with distribution equal to that of U_1 given $U_1<\infty$. From 2.1 it follows that $U_1|U_1<\infty$ has exponentially decaying tail probabilities:

$$\mathbb{P}\left(U_1 > t | U_1 < \infty\right) = \frac{\mathbb{P}\left(t < U_1 < \infty\right)}{\mathbb{P}\left(U_1 < \infty\right)} \le \frac{Ce^{-\gamma t}}{1 - \mu}$$

Thus for s>0 small enough such that $\mathbb{E}\left[e^{sU_1} \mid U_1<\infty\right]<\infty$, we have

$$\mathbb{E}\left[e^{sT}\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(s\sum_{i=1}^{L-1}U_i\right)\middle|L\right]\right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[e^{sU_1}\middle|U_1 < \infty\right]^{L-1}\right] < \infty$$

Where finiteseness follows as L has geometric distribution. Since $T \geq 0$ the moment generating function is finite for all s < 0.

Now we construct the process $(\sigma_t, \eta_t)_{t>0}$:

- 1. Let $(\sigma_t^{[1]}, \eta_t^{[1]})_{t\geq 0}$ be the basic coupling started from $(\{0\}, \{0\})$, constructed using $\mathcal{C}^{(1)}$.
- 2. Assuming $(\sigma_t^{[i]}, \eta_t^{[i]})_{t \geq 0}$ has been constructed, define $(\sigma_t^{[i+1]}, \eta_t^{[i+1]})_{t \geq 0}$ as :
 - If $T_i := \sum_{j=1}^i U_j = \infty$ then $(\sigma_t^{[i+1]}, \eta_t^{[i+1]})_{t \ge 0} := (\sigma_t^{[i]}, \eta_t^{[i]})_{t \ge 0}$
 - Else, set $(\sigma_t^{[i+1]}, \eta_t^{[i+1]})_{T_i > t \geq 0} := (\sigma_t^{[i]}, \eta_t^{[i]})_{T_i > t \geq 0}$ and let $(\sigma_t^{[i+1]}, \eta_t^{[i+1]})_{t \geq T_i}$ be the basic coupling started from $(\sigma_{T_i}^{[i]}, \{0\})$, constructed using $\mathcal{C}^{(i+1)}$.

Since L has a geometric distribution, $L < \infty$ a.s. and we may define $(\sigma_t, \eta_t)t \ge 0 := (\sigma_t^{[L]}, \eta_t^{[L]})_{t\ge 0}$. As the U_i are stopping times, $(\sigma_t)_{t\ge 0}$ is an East-process started from $\{0\}$. It also follows that $(\eta_{T+t})_{t\ge 0}$ is a surviving 1-sided contact process started from $\{0\}$. Noting that an East-process started from $\{0\}$ always has a 1 at the origin, it follows that $\eta_t \le \sigma_t \ \forall t \ge 0$.

2.2 Linear lower bound on front propagation

COROLLARY 2.2.1 — Let $(\sigma_t)_{t\geq 0}$ be a supercritical East-process. Then $\exists \ \alpha > 0$ such that $\forall \ a < \alpha \ \exists \ \gamma, C > 0$ satisfying

$$\mathbb{P}\left(X(\sigma_t) < at\right) \le Ce^{-\gamma t} \qquad \forall t \ge 0 \tag{2.3}$$

Remark 2.1. In the following proof the values of the constants $\gamma \& C$ change from line to line, without explicit mention.

Proof. Let $(\sigma_t)_{t\geq 0}$, $(\eta_t)_{t\geq 0}$ and T be as in Theorem 2.2. Since η_{T+} survives, by Lemma 2.1 (i) $\exists \alpha > 0$ such that $\forall \alpha < \alpha \exists \gamma, C > 0$ satisfying

$$\mathbb{P}\left(X(\eta_{T+t}) < at\right) \le Ce^{-\gamma t} \qquad \forall t \ge 0 \tag{2.4}$$

By Theorem 2.2 (ii) we know that $\eta_t \leq \sigma_t$ for all $t \geq 0$, so that for $c \in (0,1)$ we have

$$\mathbb{P}\left(X(\sigma_t) < at, \ 0 \le T \le ct\right) \le \mathbb{P}\left(X(\eta_t) < at, \ (1-c)t \le t - T \le t\right)$$

$$= \mathbb{P}\left(X(\eta_{T+(t-T)}) < at, \ t \le \frac{t-T}{1-c} \le \frac{t}{1-c}\right)$$

$$\le \mathbb{P}\left(X(\eta_{T+(t-T)}) < \frac{a(t-T)}{1-c}, \ t \le \frac{t-T}{1-c} \le \frac{t}{1-c}\right)$$

$$\le \sup_{u \in [(1-c)t,t]} \mathbb{P}\left(X(\eta_{T+u}) < \frac{au}{1-c}\right)$$

For c small enough such that $\frac{a}{1-c} < \alpha$ it follows by (2.4) that

$$\leq \sup_{u \in [(1-c)t,t]} Ce^{-\gamma u}$$
$$= Ce^{-\gamma(1-c)t}$$
$$= Ce^{-\gamma t}$$

To get the conclusion observe that

$$\mathbb{P}\left(X(\sigma_t) < at\right) \le \mathbb{P}\left(X(\sigma_t) < at, \ 0 \le T \le ct\right) + \mathbb{P}\left(T > ct\right)$$
$$\le C_1 e^{-\gamma_1 t} + C_2 e^{-\gamma_2 t} \le C e^{-\gamma t}$$

3 Mixing of the East-process

In this section we prove that the mixing time of the supercritical East-process on [0, L] with a 1 fixed at the origin is $\mathcal{O}(L)$

PROCESS

3.1 A PROPERTY OF BASIC COUPLING

As before, let $(\sigma_t^{\xi})_{t\geq 0}$ denote the East-process on \mathbb{Z} started from initial configuration $\xi \in \Omega$, constructed using $\mathcal{C} = (E_{x,k}, B_{x,k})_{x \in \mathbb{Z}, k \in \mathbb{N}^+}$. For $l \in \mathbb{N}$, let $\rho_l := \min\{t \geq 0 \mid \sigma^{\{0\}}(l) = 1\}$ be the hitting time of l by the East-process started from $\{0\}$. Note that $0 = \rho_0 \leq \rho_1 \leq \rho_2 \leq \ldots < \infty$ with finiteness following from at least linear propagation of the front. Finally, let $A_l := \{0, 1, \ldots l\}$.

LEMMA 3.1 — For each $l \in \mathbb{N}$, and $\{0\} \subseteq \xi \subseteq \mathbb{N}$, it holds that

$$\sigma_{\varrho_l+t}^{\{0\}} \cap A_l = \sigma_{\varrho_l+t}^{\xi} \cap A_l \qquad \forall t \ge 0 \tag{3.1}$$

Proof. We proceed by induction. The claim clearly holds for l=0 since every such ξ has a 1 at the origin forever. For the induction step suppose that the claim holds up to $l=n\geq 1$. Let K be such that $T_{n+1,K}:=\sum_{i=1}^K E_{n+1,i}=\rho_{n+1}$. Then $B_{n+1,K}=1$, and since the ring is legal, $\sigma_{\rho_{n+1}}^{\{0\}}(n)=1$, furthermore by the induction hypothesis also $\sigma_{\rho_{n+1}}^{\xi}(n)=1$ i.e. the ring is also legal for $\sigma_{\rho_{n+1}}^{\xi}$. Thus both processes update to 1 at time ρ_{n+1} . Now, since the ρ_i are stopping times, $(\sigma_{\rho_{n+1}+t}^{\{0\}})_{t\geq 0}$ & $(\sigma_{\rho_{n+1}+t}^{\xi})_{t\geq 0}$ are two East-processes with $\sigma_{\rho_{n+1}}^{\{0\}}\cap A_{n+1}=\sigma_{\rho_{n+1}}^{\xi}\cap A_{n+1}$. The conclusion follows by basic coupling.

3.2 Linear bound on mixing

THEOREM 3.2 — For each supercritical East-process with a 1 fixed at the origin, there exists a constant K > 0 such that for all $L \in \mathbb{N}$, the mixing time T_{mix}^L on $\{1, 2, ... L\}$ satisfies $T_{mix}^L \leq KL$.

Proof. By [3] Corollary 5.3, for any coupling of the East-process it holds that

$$d(t) \le \max_{\nu, \xi \in \Omega} \mathbb{P}_{\nu, \xi}(\tau_{couple} > t)$$
(3.2)

Lemma 3.1 gives $\max_{\nu,\xi\in\Omega} \mathbb{P}_{\nu,\xi}(\tau_{couple} > t) \leq \mathbb{P}(\rho_L > t)$. Borrowing notation from Corollary 2.2.1 we get

$$\begin{split} \mathbb{P}\left(\rho_{L} > KL\right) &\leq \mathbb{P}\left(X\left(\sigma_{KL}^{\{0\}}\right) < L\right) \\ &= \mathbb{P}\left(X\left(\sigma_{KL}^{\{0\}}\right) < \frac{KL}{K}\right) \end{split}$$

Fix K large enough such that $1/K < \alpha$ to get

$$\leq Ce^{-\gamma KL}$$

Thus for say $L \geq L'$, $\mathbb{P}\left(X\left(\sigma_{KL}^{\{0\}}\right) < L\right) \leq 1/4$. This implies $d(KL) \leq 1/4$ i.e. $T_{mix}^L \leq KL \ \forall L \geq L'$. Take $K' = \max\{K, T_{mix}^1, T_{mix}^2, ... T_{mix}^{L'-1}\}$. Then $T_{mix}^L \leq K'L$ holds for all $L \in \mathbb{N}$ as required.

References

[1] Oriane Blondel, Aurelia Deshayes, and Cristina Toninelli. Front evolution of the fredrickson-andersen one spin facilitated model. arXiv preprint arXiv:1803.08761, 2018.

- [2] Richard Durrett and David Griffeath. Supercritical contact processes on z. The Annals of Probability, pages 1–15, 1983.
- [3] David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American Mathematical Soc., 2017.