GPU solvers for SLAE

1.0

Generated by Doxygen 1.8.11

Contents

1	Nam	espace Index	1
	1.1	Namespace List	1
2	Hiera	archical Index	3
	2.1	Class Hierarchy	3
3	Clas	s Index	5
	3.1	Class List	5
4	Nam	espace Documentation	7
	4.1	BlockOperations Namespace Reference	7
		4.1.1 Detailed Description	7
	4.2	GaussianElimination Namespace Reference	7
		4.2.1 Detailed Description	7
	4.3	GaussJordan Namespace Reference	7
		4.3.1 Detailed Description	7
	4.4	Jacobi Namespace Reference	8
		4.4.1 Detailed Description	8
	4.5	LuDecomposition Namespace Reference	8
		4.5.1 Detailed Description	8
	4.6	MatrixGenerator Namespace Reference	8
		4.6.1 Detailed Description	8
	4.7	SparseMatrices Namespace Reference	8
		4.7.1 Detailed Description	8

iv CONTENTS

5	Clas	s Docu	mentation	1	9
	5.1	block_	operations	_tab.BlockTab Class Reference	9
	5.2	gaussi	an_elimina	ation.GaussianElimination Class Reference	9
		5.2.1	Member	Function Documentation	10
			5.2.1.1	gaussian_elimination(Ab, size, i)	10
			5.2.1.2	start(self, A_matrix, b_matrix)	10
	5.3	gaussi	an_elimina	ation_tab.GaussianEliminationTab Class Reference	11
	5.4	gauss	_jordan.Ga	aussJordan Class Reference	12
		5.4.1	Member	Function Documentation	12
			5.4.1.1	gauss_jordan(A, size, i)	12
			5.4.1.2	normalize(A, size)	12
			5.4.1.3	start(self, A_matrix, b_vector)	13
	5.5	serial_	gauss_jor	dan.GaussJordanSerial Class Reference	13
		5.5.1	Member	Function Documentation	14
			5.5.1.1	elimination(self, A, b)	14
	5.6	gauss	_jordan_ta	b.GaussJordanTab Class Reference	14
	5.7	gaussi	an_lu_dec	composition.GuassianLUDecomposition Class Reference	15
		5.7.1	Member	Function Documentation	15
			5.7.1.1	gaussian_lu_decomposition(A, L, size, i)	15
			5.7.1.2	gen_identity_matrix(self, size)	15
			5.7.1.3	get_determinant(self, L, U)	16
			5.7.1.4	get_inverse(self, L, U)	16
			5.7.1.5	get_solution(self, L, U, b)	17
			5.7.1.6	start(self, A_matrix)	17
	5.8	jacobi_	_parallel_c	hunks.JacobiParallel Class Reference	18
		5.8.1	Member	Function Documentation	18
			5.8.1.1	get_error(x_current, x_next, x_error, rows)	18
			5.8.1.2	jacobi(A, b, x_current, x_next, rows, cols, first_row_block, rel)	19
			5.8.1.3	start(self, A, b, x_current, first_row_block, rel=1)	20
	5.9	jacobi_	_parallel.Ja	acobiParallel Class Reference	20

CONTENTS

	5.9.1	Member	Function Documentation	20
		5.9.1.1	get_error(x_current, x_next, x_error, rows)	20
		5.9.1.2	jacobi(A, b, x_current, x_next, n, rel)	21
		5.9.1.3	start(self, A, b, niter, tol, rel=1)	22
5.10	jacobi_	tab.Jacob	iTab Class Reference	22
5.11	lu_dec	ompositior	n_tab.LUDecompositionTab Class Reference	23
5.12	matrix_	_generator	MatrixGenerator Class Reference	24
	5.12.1	Member	Function Documentation	24
		5.12.1.1	gen_antisymmetric_matrix(size)	24
		5.12.1.2	gen_band_matrix(size, k1, k2)	24
		5.12.1.3	gen_diagonal_matrix(size)	25
		5.12.1.4	gen_dominant(size)	25
		5.12.1.5	gen_identity_matrix(size)	25
		5.12.1.6	gen_lower_matrix(size)	25
		5.12.1.7	gen_random_matrix(size)	26
		5.12.1.8	gen_scalar_matrix(size)	26
		5.12.1.9	gen_symmetric_matrix(size)	26
		5.12.1.10	gen_upper_matrix(size)	27
		5.12.1.11	gen_vector(size)	27
5.13	matrix_	_generator	_tab.MatrixGeneratorTab Class Reference	27
5.14	guiNun	n.PyApp C	Class Reference	28
5.15	serial_	gaussian_	elimination.SerialGaussianElimination Class Reference	29
	5.15.1	Member	Function Documentation	29
		5.15.1.1	elimination(self, A, b)	29
		5.15.1.2	partial_pivot(self, A, b, k)	29
5.16	jacobi_	serial.Seri	ialJacobi Class Reference	30
	5.16.1	Member	Function Documentation	30
		5.16.1.1	get_D_and_U(self, matrix)	30
		5.16.1.2	get_error(self, x_vector, xant_vector)	31
		5.16.1.3	get_inverse(self, matrixD)	31

vi

5.16	1.4 jacobi(self, A_matrix, b_vector, max_iterations, tolerance, relaxation=1) 3	32
5.16	1.5 multiply_matrix_matrix(self, matrix1, matrix2)	33
5.16	1.6 multiply_matrix_vector(self, A_matrix, b_vector)	34
5.16	1.7 relaxation(self, x_vector, xant_vector, relaxation)	34
5.16	1.8 sum_vectors(self, vector1, vector2)	35
5.17 serial_decon	position_LU.SerialLUDecomposition Class Reference	35
5.17.1 Mem	ber Function Documentation	36
5.17	1.1 decomposition_LU(self, A)	36
5.17	1.2 solve_system(self, L, U, b)	36
5.18 sparse_matr	x.SparseMatrix Class Reference	36
5.18.1 Mem	ber Function Documentation	37
5.18	1.1 create_sparse_matrix(self, filename, matrix_length, density)	37
5.18	1.2 gen_vector(size)	37
5.18	1.3 load_sparse_matrix(self, filename)	37
5.18	1.4 multiply(self, filename_matrix, vector)	88
5.19 sm_testCSR	SparseMatrix Class Reference	88
5.20 sm_test.Spa	seMatrix Class Reference	88
5.21 sparse_matr	x_tab.SparseMatrixTab Class Reference	88

Index

41

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

BiockOperations	
Provides tools to solve large systems of linear algebraic equations by loading submatrices from a coefficient matrices	7
GaussianElimination	
Solve a system of linear algebraic equations by using the Gaussian Elimination method	7
GaussJordan	
Solve a system of linear algebraic equations by using the Gauss Jordan Elimination method	7
Jacobi	
Solve a system of linear algebraic equations by using the Jacobi Iterative method	8
LuDecomposition	
Decompuses a matrix A into two matrices L and U	8
MatrixGenerator	
Generate different types of matrices	8
SparseMatrices	
Represents a matrix with CSR format	8

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

block_operations_tab.BlockTab
gaussian_elimination.GaussianElimination
gaussian_elimination_tab.GaussianEliminationTab
gauss_jordan.GaussJordan
serial_gauss_jordan.GaussJordanSerial
gauss_jordan_tab.GaussJordanTab
gaussian_lu_decomposition.GuassianLUDecomposition
jacobi_parallel_chunks.JacobiParallel
jacobi_parallel.JacobiParallel
jacobi_tab.JacobiTab
lu_decomposition_tab.LUDecompositionTab 23
matrix_generator.MatrixGenerator
matrix_generator_tab.MatrixGeneratorTab
serial_gaussian_elimination.SerialGaussianElimination
jacobi_serial.SerialJacobi
serial_decomposition_LU.SerialLUDecomposition
sparse_matrix.SparseMatrix
sm_testCSR.SparseMatrix
sm_test.SparseMatrix
sparse_matrix_tab.SparseMatrixTab
Window
quiNum.PvApp

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

block_operations_tab.BlockTab
gaussian_elimination.GaussianElimination
gaussian_elimination_tab.GaussianEliminationTab1
gauss_jordan.GaussJordan
serial_gauss_jordan.GaussJordanSerial
gauss_jordan_tab.GaussJordanTab
gaussian_lu_decomposition.GuassianLUDecomposition
jacobi_parallel_chunks.JacobiParallel18
jacobi_parallel.JacobiParallel
jacobi_tab.JacobiTab
lu_decomposition_tab.LUDecompositionTab 23
matrix_generator.MatrixGenerator
matrix_generator_tab.MatrixGeneratorTab
guiNum.PyApp
serial_gaussian_elimination.SerialGaussianElimination
jacobi_serial.SerialJacobi
serial_decomposition_LU.SerialLUDecomposition
sparse_matrix.SparseMatrix
sm_testCSR.SparseMatrix
sm_test.SparseMatrix
sparse matrix tab.SparseMatrixTab

6 Class Index

Chapter 4

Namespace Documentation

4.1 BlockOperations Namespace Reference

Provides tools to solve large systems of linear algebraic equations by loading submatrices from a coefficient matrices

4.1.1 Detailed Description

Provides tools to solve large systems of linear algebraic equations by loading submatrices from a coefficient matrices.

4.2 Gaussian Elimination Namespace Reference

Solve a system of linear algebraic equations by using the Gaussian Elimination method.

4.2.1 Detailed Description

Solve a system of linear algebraic equations by using the Gaussian Elimination method.

4.3 GaussJordan Namespace Reference

Solve a system of linear algebraic equations by using the Gauss Jordan Elimination method.

4.3.1 Detailed Description

Solve a system of linear algebraic equations by using the Gauss Jordan Elimination method.

4.4 Jacobi Namespace Reference

Solve a system of linear algebraic equations by using the Jacobi Iterative method.

4.4.1 Detailed Description

Solve a system of linear algebraic equations by using the Jacobi Iterative method.

4.5 LuDecomposition Namespace Reference

Decompuses a matrix A into two matrices L and U.

4.5.1 Detailed Description

Decompuses a matrix A into two matrices L and U.

4.6 MatrixGenerator Namespace Reference

Generate different types of matrices.

4.6.1 Detailed Description

Generate different types of matrices.

4.7 SparseMatrices Namespace Reference

Represents a matrix with CSR format.

4.7.1 Detailed Description

Represents a matrix with CSR format.

Chapter 5

Class Documentation

5.1 block_operations_tab.BlockTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_tab (self)
- def load_matrix (self, widget, data=None)
- def load_vector (self, widget, data=None)
- def jacobi_by_blocks (self, widget, data=None)
- def **save** (self, widget, data=None)

Public Attributes

- niter_entry
- A_matrix
- b_vector
- x_vector
- size_entryrows_entry
- tol_entry

The documentation for this class was generated from the following file:

block_operations/block_operations_tab.py

5.2 gaussian_elimination.GaussianElimination Class Reference

Public Member Functions

• def gaussian_elimination (Ab, size, i)

Performs Gaussian elimination for each row of a column.

def start (self, A_matrix, b_matrix)

Launches parallel Gaussian elimination for a SLAE and returns its answer.

Static Public Attributes

- target
- · nopython

5.2.1 Member Function Documentation

5.2.1.1 def gaussian_elimination.GaussianElimination.gaussian_elimination (Ab, size, i)

Performs Gaussian elimination for each row of a column.

Parameters

Α		Augmented matrix representing a SLAE.
siz	ze	Size of coefficiente matrix.
i		Integer representing the current column in which all threads are performing row operations.

Returns

None

Here is the caller graph for this function:

5.2.1.2 def gaussian_elimination.GaussianElimination.start (self, A_matrix, b_matrix)

Launches parallel Gaussian elimination for a SLAE and returns its answer.

Parameters

A_matrix	Coefficient matrix of a SLAE.
b_matrix	Linearly independent vector of a SLAE.

Returns

None

Here is the call graph for this function:

The documentation for this class was generated from the following file:

• gaussian_elimination/gaussian_elimination.py

5.3 gaussian_elimination_tab.GaussianEliminationTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_tab (self)
- def load_matrix (self, widget, data=None)
- def load_vector (self, widget, data=None)
- def gaussParallel (self, widget, data=None)
- def gaussSerial (self, widget, data=None)
- def save (self, widget, data=None)

Public Attributes

- · gaussian_elimination
- serial_gaussian_elimination
- A_matrix
- b_vector
- x_vector

The documentation for this class was generated from the following file:

gaussian_elimination/gaussian_elimination_tab.py

5.4 gauss_jordan.GaussJordan Class Reference

Public Member Functions

• def gauss_jordan (A, size, i)

Performs Gauss Jordan elimination for each row of a column.

• def normalize (A, size)

Ensures every diagonal element of the augmented matrix A is set to one.

def start (self, A_matrix, b_vector)

Launches parallel Gauss Jordan elimination for a SLAE and returns its answer.

5.4.1 Member Function Documentation

5.4.1.1 def gauss_jordan.GaussJordan.gauss_jordan (A, size, i)

Performs Gauss Jordan elimination for each row of a column.

Parameters

Α		Augmented matrix representing a SLAE.
si	ze	Size of coefficiente matrix.
i		Integer representing the current column in which all threads are performing row operations.

Returns

None

Here is the caller graph for this function:

5.4.1.2 def gauss_jordan.GaussJordan.normalize (A, size)

Ensures every diagonal element of the augmented matrix A is set to one.

Parameters

Α	Augmented matrix representing a SLAE.
size	Size of coefficiente matrix.

Returns

None

Here is the caller graph for this function:

5.4.1.3 def gauss_jordan.GaussJordan.start (self, A_matrix, b_vector)

Launches parallel Gauss Jordan elimination for a SLAE and returns its answer.

Parameters

A_matrix	Coefficient matrix of a SLAE.
b_vector	Linearly independent vector of a SLAE.

Returns

float64[:]

Here is the call graph for this function:

The documentation for this class was generated from the following file:

• gauss_jordan/gauss_jordan.py

5.5 serial_gauss_jordan.GaussJordanSerial Class Reference

Public Member Functions

def elimination (self, A, b)

Takes a system of linear equations represented by a matrix and a vector and returns the answer applying Gauss
Jordan method.

5.5.1 Member Function Documentation

5.5.1.1 def serial_gauss_jordan.GaussJordanSerial.elimination (self, A, b)

Returns

```
A The coefficient matrix of the system. b The linearly independent vector. float128[:]
```

The documentation for this class was generated from the following file:

• gauss_jordan/serial_gauss_jordan.py

5.6 gauss_jordan_tab.GaussJordanTab Class Reference

Public Member Functions

- · def __init__ (self)
- def get_tab (self)
- def load_matrix (self, widget, data=None)
- def load_vector (self, widget, data=None)
- def gaussParallel (self, widget, data=None)
- def gaussSerial (self, widget, data=None)
- def save (self, widget, data=None)

Public Attributes

- · gauss_jordan
- · gauss_jordan_serial
- A_matrix
- · b_vector
- · x_vector

The documentation for this class was generated from the following file:

gauss_jordan/gauss_jordan_tab.py

5.7 gaussian_lu_decomposition.GuassianLUDecomposition Class Reference

Public Member Functions

• def gaussian_lu_decomposition (A, L, size, i)

Performs Gaussian LU elimination.

· def start (self, A matrix)

Decomposes A_matrix into two matrices L and U.

def get_solution (self, L, U, b)

Solves a LU system.

def gen_identity_matrix (self, size)

Creates an identity matrix given a size.

• def get_inverse (self, L, U)

Returns the inverse of a given matrix by means of LU decomposition.

• def get_determinant (self, L, U)

Returns the determinant of a given matrix by means of LU decomposition.

5.7.1 Member Function Documentation

5.7.1.1 def gaussian_lu_decomposition.GuassianLUDecomposition.gaussian_lu_decomposition (A, L, size, i)

Performs Gaussian LU elimination.

Parameters

Α	Coefficient matrix A.	
L	Matrix in which to store the multipliers.	
size	Size of coefficiente matrix.	
i	Integer representing the current column in which all threads are performing row operations.	

Returns

None

Here is the caller graph for this function:

5.7.1.2 def gaussian_lu_decomposition.GuassianLUDecomposition.gen_identity_matrix (self, size)

Creates an identity matrix given a size.

Parameters

size Number of rows and columns that the matrix will have.
--

Returns

float64[:,:]

Here is the caller graph for this function:

5.7.1.3 def gaussian_lu_decomposition.GuassianLUDecomposition.get_determinant (self, L, U)

Returns the determinant of a given matrix by means of LU decomposition.

keyword arguments:

Parameters

	The lower triangular matrix of the system.
U	The upper triangular matrix of the system.

Returns

float64

Here is the caller graph for this function:

5.7.1.4 def gaussian_lu_decomposition.GuassianLUDecomposition.get_inverse (self, L, U)

Returns the inverse of a given matrix by means of LU decomposition.

Parameters

L	The lower triangular matrix of the system.
U	The upper triangular matrix of the system.

Returns

float64[:,:]

Here is the call graph for this function:

5.7.1.5 def gaussian_lu_decomposition.GuassianLUDecomposition.get_solution (self, L, U, b)

Solves a LU system.

Parameters

L	The lower triangular matrix of the system.
U	The upper triangular matrix of the system.
b	Linearly independent vector.

Returns

float64[:]

5.7.1.6 def gaussian_lu_decomposition.GuassianLUDecomposition.start (self, A_matrix)

Decomposes A_matrix into two matrices L and U.

Parameters

A matrix	Coefficient matrix.

Returns

float64[:,:], float64[:,:]

Here is the call graph for this function:

The documentation for this class was generated from the following file:

• lu_decomposition/gaussian_lu_decomposition.py

5.8 jacobi_parallel_chunks.JacobiParallel Class Reference

Public Member Functions

- def jacobi (A, b, x_current, x_next, rows, cols, first_row_block, rel)

 Performs jacobi for every thread in matrix A boundaries.
- def get_error (x_current, x_next, x_error, rows)

Calculates jacobi's maximum error.

• def start (self, A, b, x_current, first_row_block, rel=1)

Launches parallel jacobi solver for a SLAE and returns its answer.

Static Public Attributes

- target
- · nopython

5.8.1 Member Function Documentation

 $5.8.1.1 \quad \text{def jacobi_parallel_chunks.JacobiParallel.get_error} \left(\begin{array}{ccc} x_\textit{current}, & x_\textit{next}, & x_\textit{error}, & rows \end{array} \right)$

Calculates jacobi's maximum error.

Parameters

x_current	Pointer to list representing current approximation for vector x in a system $Ax = b$.	
x_next	Pointer to list representing new approximation for vector x in a system $Ax = b$.	
x_error	<i>x_error</i> Pointer to list in which an error for each approximation will be stored.	
rows	Coefficient matrix A number of rows.	

Returns

None

Here is the caller graph for this function:

5.8.1.2 def jacobi_parallel_chunks.JacobiParallel.jacobi (A, b, x_current, x_next, rows, cols, first_row_block, rel)

Performs jacobi for every thread in matrix A boundaries.

Parameters

Α	Matrix extracted from the coefficient matrix A.
b	Vector extracted from Linearly independent vector b.
x_current	Current answer's approximation.
x_next	vector in which to store new answer.
rows	Number of rows read (i.e. number of rows in the block).
cols	Number of columns from the original matrix.
first_row_block	Integer indicating the first row of the block by using an index from the coefficient matrix A (i.e. What is the correspondence between the first block's row and A).
rel	Relaxation coefficient.

Returns

None

Here is the caller graph for this function:

5.8.1.3 def jacobi_parallel_chunks.JacobiParallel.start (self, A, b, x_current, first_row_block, rel = 1)

Launches parallel jacobi solver for a SLAE and returns its answer.

Parameters

Α	Coefficient matrix of a SLAE.
b	Linearly independent vector of a SLAE.
x_current	Pointer to list representing current approximation for vector x in a system $Ax = b$.
first_row_block	Absolute position of the block's row in the complete matrix.
rel	Relaxation coefficient.

Returns

float64[:]

Here is the call graph for this function:

The documentation for this class was generated from the following file:

block_operations/jacobi_parallel_chunks.py

5.9 jacobi_parallel.JacobiParallel Class Reference

Public Member Functions

• def jacobi (A, b, x_current, x_next, n, rel)

Runs jacobi for every thread in matrix A boundaries.

• def get_error (x_current, x_next, x_error, rows)

Calculates jacobi's maximum error.

• def start (self, A, b, niter, tol, rel=1)

Launches parallel jacobi solver for a SLAE and returns its answer.

Static Public Attributes

- target
- · nopython

5.9.1 Member Function Documentation

5.9.1.1 def jacobi_parallel.JacobiParallel.get_error (x_current, x_next, x_error, rows)

Calculates jacobi's maximum error.

Parameters

x_current	Pointer to list representing current approximation for vector x in a system $Ax = b$.	
x_next	Pointer to list representing new approximation for vector x in a system $Ax = b$.	
x_error	x_error Pointer to list in which an error for each approximation will be stored.	
rows Coefficient matrix A number of rows.		

Returns

None

Here is the caller graph for this function:

5.9.1.2 def jacobi_parallel.JacobiParallel.jacobi (A, b, x_current, x_next, n, rel)

Runs jacobi for every thread in matrix A boundaries.

Parameters

Α	Coefficient matrix.
b	Linearly independent vector.
x_current	Current answer's approximation.
x_next	vector in which to store new answer.
n	Coefficient matrix' size.
rel	Relaxation coefficient.

Returns

None

Here is the caller graph for this function:

5.9.1.3 def jacobi_parallel.JacobiParallel.start (self, A, b, niter, tol, rel = 1)

Launches parallel jacobi solver for a SLAE and returns its answer.

Parameters

Α	Coefficient matrix of a SLAE.
b	Linearly independent vector of a SLAE.
niter	Maximum number of iterations before jacobi stops.
tol	Maximum error reached by jacobi when solving the system
rel	Relaxation coefficient.

Returns

float64[:]

Here is the call graph for this function:

The documentation for this class was generated from the following file:

· jacobi/jacobi_parallel.py

5.10 jacobi_tab.JacobiTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_tab (self)
- def load_matrix (self, widget, data=None)
- def load_vector (self, widget, data=None)
- def jacobi_parallel (self, widget, data=None)
- def jacobi_serial (self, widget, data=None)
- def save (self, widget, data=None)

Public Attributes

- jacobiParallel
- · jacobiSerial
- · niter_entry
- A matrix
- b_vector
- x_vector
- error_entry
- · rel_entry

The documentation for this class was generated from the following file:

jacobi/jacobi_tab.py

5.11 lu_decomposition_tab.LUDecompositionTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_tab (self)
- def load_matrix (self, widget, data=None)
- def load_vector (self, widget, data=None)
- def lu_decomposition (self, widget, data=None)
- def **serial_lu** (self, widget, data=None)
- def **substitution** (self, widget, data=None)
- def get_determinant (self, widget, data=None)
- def **get_inverse** (self, widget, data=None)
- def save_lu (self, widget, data=None)
- def save inverse (self, widget, data=None)
- def save_x (self, widget, data=None)

Public Attributes

- · gaussian_lu_decomposition
- · serial_lu_decomposition
- A_matrix
- · b_vector
- L_matrix
- U_matrix
- inverse
- · x vector
- U

The documentation for this class was generated from the following file:

• lu_decomposition/lu_decomposition_tab.py

5.12 matrix_generator.MatrixGenerator Class Reference

Static Public Member Functions

• def gen_vector (size)

Creates a random vector given a size.

• def gen_dominant (size)

Creates a diagonally dominant matrix given a size.

def gen_symmetric_matrix (size)

Creates a symmetric matrix given a size.

• def gen_random_matrix (size)

Creates a random matrix given a size.

def gen_band_matrix (size, k1, k2)

Creates a band matrix given a size.

def gen_identity_matrix (size)

Creates an identity matrix given a size.

def gen_diagonal_matrix (size)

Creates a diagonal matrix given a size.

def gen_scalar_matrix (size)

Creates a scalar matrix given a size.

• def gen_antisymmetric_matrix (size)

Creates an anti-symmetric matrix given a size.

• def gen_lower_matrix (size)

Creates a lower triangular matrix given a size.

def gen_upper_matrix (size)

Creates an upper triangular matrix given a size.

5.12.1 Member Function Documentation

5.12.1.1 def matrix_generator.MatrixGenerator.gen_antisymmetric_matrix(size) [static]

Creates an anti-symmetric matrix given a size.

Parameters

size	Number of rows and columns that the matrix will have.

Returns

float128[:,:], float128[:], float128[:]

5.12.1.2 def matrix_generator.MatrixGenerator.gen_band_matrix(size, k1, k2) [static]

Creates a band matrix given a size.

Parameters

size	Number of rows and columns that the matrix will have.
k1	Number of diagonals with non-zero elements below the main diagonal (Inclusive).
k2	Number of diagonals with non-zero elements above the main diagonal (Inclusive).

```
Returns
```

```
float128[:,:], float128[:], float128[:]
```

5.12.1.3 def matrix_generator.MatrixGenerator.gen_diagonal_matrix(size) [static]

Creates a diagonal matrix given a size.

Parameters

size Number of rows and colum	ns that the matrix will have.
-------------------------------	-------------------------------

Returns

```
float128[:,:], float128[:], float128[:]
```

5.12.1.4 def matrix_generator.MatrixGenerator.gen_dominant(size) [static]

Creates a diagonally dominant matrix given a size.

Parameters

size	Number of rows and columns that the matrix will have.
------	---

Returns

```
float128[:,:], float128[:], float128[:]
```

5.12.1.5 def matrix_generator.MatrixGenerator.gen_identity_matrix(*size*) [static]

Creates an identity matrix given a size.

Parameters

Returns

```
float128[:,:], float128[:], float128[:]
```

5.12.1.6 def matrix_generator.MatrixGenerator.gen_lower_matrix(size) [static]

Creates a lower triangular matrix given a size.

Parameters

size Number of rows and columns that the matrix will have.

Returns

float128[:,:], float128[:], float128[:]

5.12.1.7 def matrix_generator.MatrixGenerator.gen_random_matrix(*size***)** [static]

Creates a random matrix given a size.

Parameters

size Number of rows and columns that the matrix will have.

Returns

float128[:,:], float128[:], float128[:]

5.12.1.8 def matrix_generator.MatrixGenerator.gen_scalar_matrix(size) [static]

Creates a scalar matrix given a size.

Parameters

size Number of rows and columns that the matrix will have.

Returns

float128[:,:], float128[:], float128[:]

5.12.1.9 def matrix_generator.MatrixGenerator.gen_symmetric_matrix(size) [static]

Creates a symmetric matrix given a size.

Parameters

size Number of rows and columns that the matrix will have.

Returns

float128[:,:], float128[:], float128[:]

5.12.1.10 def matrix_generator.MatrixGenerator.gen_upper_matrix(size) [static]

Creates an upper triangular matrix given a size.

Parameters

```
size Number of rows and columns that the matrix will have.
```

Returns

```
float128[:,:], float128[:], float128[:]
```

5.12.1.11 def matrix_generator.MatrixGenerator.gen_vector(size) [static]

Creates a random vector given a size.

Parameters

size L	ength of the vector that will be created.
--------	---

Returns

float128[:]

The documentation for this class was generated from the following file:

· matrix_generator/matrix_generator.py

5.13 matrix_generator_tab.MatrixGeneratorTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_tab (self)
- def set_generator (self, button, name)
- def **gen_matrix** (self, widget, data=None)

Public Attributes

- matrix_filename_entry
- vector_filename_entry
- · length entry
- selected_generator

The documentation for this class was generated from the following file:

matrix_generator/matrix_generator_tab.py

5.14 guiNum.PyApp Class Reference

Inheritance diagram for guiNum.PyApp:

Collaboration diagram for guiNum.PyApp:

Public Member Functions

• def __init__ (self)

Public Attributes

- sparse_matrix_tab
- matrix_generator_tab
- · jacobi_tab
- · gauss_jordan_tab
- · gaussian_elimination_tab
- lu_decomposition_tab
- · blocks_tab

The documentation for this class was generated from the following file:

guiNum.py

5.15 serial_gaussian_elimination.SerialGaussianElimination Class Reference

Public Member Functions

• def elimination (self, A, b)

Takes a system of linear equations represented by a matrix and a vector and returns the answer applying Gaussian elimination method.

• def partial_pivot (self, A, b, k)

Applies the partial pivot strategy to a system of linear equations.

5.15.1 Member Function Documentation

5.15.1.1 def serial_gaussian_elimination.SerialGaussianElimination.elimination (self, A, b)

Takes a system of linear equations represented by a matrix and a vector and returns the answer applying Gaussian elimination method.

Parameters

Α	The coefficient matrix of the system.
b	The linearly independent vector.

Returns

float128[:]

Here is the call graph for this function:

5.15.1.2 def serial_qaussian_elimination.SerialGaussianElimination.partial_pivot (self, A, b, k)

Applies the partial pivot strategy to a system of linear equations.

Parameters

Λ	The coefficient matrix of the avetem
Α	The coefficient matrix of the system.
b	The linearly independent vector.
	,,
k	The current elimination stage.

Returns

float128[:,:], float128[:]

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

· gaussian_elimination/serial_gaussian_elimination.py

5.16 jacobi_serial.SerialJacobi Class Reference

Public Member Functions

def multiply_matrix_vector (self, A_matrix, b_vector)

Returns the dot product between a matrix and a vector.

def multiply_matrix_matrix (self, matrix1, matrix2)

Returns the dot product between two matrices.

def get D and U (self, matrix)

Split a given matrix into two matrices D and U (lower and upper triangular matrices)

def get_inverse (self, matrixD)

Returns the inverse of a LOWER TRIANGULAR MATRIX.

• def sum_vectors (self, vector1, vector2)

Takes two vector and sum them.

• def get_error (self, x_vector, xant_vector)

Returns the norm of two given vectors, which represents the error of the current method.

def relaxation (self, x_vector, xant_vector, relaxation)

Applies the relaxation method to Jacobi.

• def jacobi (self, A_matrix, b_vector, max_iterations, tolerance, relaxation=1)

Applies Jacobi method to a system of linear equations and returns its answer (except if it was not found), number of iterations executed and the maximum error.

5.16.1 Member Function Documentation

5.16.1.1 def jacobi_serial.SerialJacobi.get_D_and_U(self, matrix)

Split a given matrix into two matrices D and U (lower and upper triangular matrices)

Parameters

matrix	The matrix to be splitted.
--------	----------------------------

Returns

float128[:,:],float128[:,:]

Here is the caller graph for this function:

5.16.1.2 def jacobi_serial.SerialJacobi.get_error (self, x_vector, xant_vector)

Returns the norm of two given vectors, which represents the error of the current method.

Parameters

x_vector	The vector of the current stage of the method.
xant_vector	The vector of the previous stage of the method.

Returns

float128

Here is the caller graph for this function:

5.16.1.3 def jacobi_serial.SerialJacobi.get_inverse (self, matrixD)

Returns the inverse of a LOWER TRIANGULAR MATRIX.

Parameters

matrixD	The matrix base to calculate the inverse.
---------	---

Returns

float128[:,:]

Here is the caller graph for this function:

5.16.1.4 def jacobi_serial.SerialJacobi.jacobi (self, A_matrix , b_vector , $max_iterations$, tolerance, relaxation = 1)

Applies Jacobi method to a system of linear equations and returns its answer (except if it was not found), number of iterations executed and the maximum error.

Parameters

A_matrix	The coefficient matrix of the system.
b_vector	The linearly independent vector.
max_iterations	Maximum number of iterations of the method.
tolerance	The tolerance of the method
relaxation	The number that will be used in the relaxation of the method.

Returns

float128[:] or None, int32, float128

Here is the call graph for this function:

5.16.1.5 def jacobi_serial.SerialJacobi.multiply_matrix_matrix (self, matrix1, matrix2)

Returns the dot product between two matrices.

Parameters

matrix1	The first matrix to be multiplied.
matrix2	The second matrix to be multiplied.

Returns

float128[:]

Here is the caller graph for this function:

5.16.1.6 def jacobi_serial.SerialJacobi.multiply_matrix_vector (self, A_matrix , b_vector)

Returns the dot product between a matrix and a vector.

Parameters

A_matrix	The matrix to be multiplied.
b_vector	The vector to be multiplied.

Returns

float128[:]

Here is the caller graph for this function:

5.16.1.7 def jacobi_serial.SerialJacobi.relaxation (self, x_vector, xant_vector, relaxation)

Applies the relaxation method to Jacobi.

Parameters

x_vector	The vector of the current stage of the method.
xant_vector	The vector of the previous stage of the method.
relaxation	The number that will be used in the relaxation of the method.

Returns

float128[:]

Here is the caller graph for this function:

5.16.1.8 def jacobi_serial.SerialJacobi.sum_vectors (self, vector1, vector2)

Takes two vector and sum them.

Parameters

vector1	The first vector to be added.
vector2	The second vector to be added.

Returns

float128[:]

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

· jacobi/jacobi_serial.py

5.17 serial_decomposition_LU.SerialLUDecomposition Class Reference

Public Member Functions

• def decomposition_LU (self, A)

Splits a given matrix into two matrices (lower and upper triangular matrices).

• def solve_system (self, L, U, b)

Solves a LU system.

5.17.1 Member Function Documentation

5.17.1.1 def serial_decomposition_LU.SerialLUDecomposition.decomposition_LU (self, A)

Splits a given matrix into two matrices (lower and upper triangular matrices).

It is based on multiplication of matrices.

Parameters

```
A The coefficient matrix to be splited.
```

Returns

float128[:,:], float128[:,:]

5.17.1.2 def serial_decomposition_LU.SerialLUDecomposition.solve_system (self, L, U, b)

Solves a LU system.

Parameters

	L	The lower triangular matrix of the system.
	U	The upper triangular matrix of the system.
ĺ	b	Linearly independent vector.

Returns

float128[:]

The documentation for this class was generated from the following file:

· lu_decomposition/serial_decomposition_LU.py

5.18 sparse_matrix.SparseMatrix Class Reference

Public Member Functions

• def create_sparse_matrix (self, filename, matrix_length, density)

Creates a sparse matrix with CSR format (four arrays)

def load_sparse_matrix (self, filename)

Takes a file and get the values array of it.

• def multiply (self, filename_matrix, vector)

Takes a file with a sparse matrix in CSR format and multiply it with a vector.

Static Public Member Functions

• def gen_vector (size)

Creates a random vector given a size.

5.18.1 Member Function Documentation

5.18.1.1 def sparse_matrix.SparseMatrix.create_sparse_matrix (self, filename, matrix_length, density)

Creates a sparse matrix with CSR format (four arrays)

Parameters

filename	The file name where will be stored the final result.
matrix_length	The length of the matrix.
density	percentage of non-zeros elements

Returns

float128[:,:], str, float128[:], float128[:]

5.18.1.2 def sparse_matrix.SparseMatrix.gen_vector(size) [static]

Creates a random vector given a size.

Parameters

size	Length of the vector that will be created.
------	--

Returns

float128[:]

5.18.1.3 def sparse_matrix.SparseMatrix.load_sparse_matrix (self, filename)

Takes a file and get the values array of it.

Parameters

filename	The file name where arrayes are stored.

Returns

None

5.18.1.4 def sparse_matrix.SparseMatrix.multiply (self, filename_matrix, vector)

Takes a file with a sparse matrix in CSR format and multiply it with a vector.

Parameters

filename_matrix	The filename where the CSR matrix is located.
vector	The vector to multiply with the matrix

Returns

128[:]

The documentation for this class was generated from the following file:

· sparse_matrices/sparse_matrix.py

5.19 sm_testCSR.SparseMatrix Class Reference

Public Member Functions

def create_sparse_matrix (self, filename, matrix_length, density)

The documentation for this class was generated from the following file:

· sparse_matrices/sm_testCSR.py

5.20 sm_test.SparseMatrix Class Reference

Public Member Functions

• def create_sparse_matrix (self, filename, matrix_length, density)

The documentation for this class was generated from the following file:

sparse_matrices/sm_test.py

5.21 sparse_matrix_tab.SparseMatrixTab Class Reference

Public Member Functions

- def __init__ (self)
- def get_sparse_tab (self)
- def create_sparse_matrix (self, widget, data=None)
- def multiply (self, widget, data=None)
- def save_result (self, widget, data=None)

Public Attributes

- sparseMatrix
- filename_entry
- matrix_length_entry
- matrix_density_entry
- filename
- res

The documentation for this class was generated from the following file:

• sparse_matrices/sparse_matrix_tab.py

Index

block_operations_tab.BlockTab, 9	gen_dominant
BlockOperations, 7	matrix_generator::MatrixGenerator, 25
	gen_identity_matrix
create_sparse_matrix	gaussian_lu_decomposition::GuassianLU-
sparse_matrix::SparseMatrix, 37	Decomposition, 15
	matrix_generator::MatrixGenerator, 25
decomposition_LU	gen_lower_matrix
serial_decomposition_LU::SerialLUDecomposition,	matrix_generator::MatrixGenerator, 25
36	gen_random_matrix
	matrix_generator::MatrixGenerator, 26
elimination	gen_scalar_matrix
serial_gauss_jordan::GaussJordanSerial, 14	matrix_generator::MatrixGenerator, 26
serial_gaussian_elimination::SerialGaussian↔	gen_symmetric_matrix
Elimination, 29	
	matrix_generator::MatrixGenerator, 26
gauss_jordan	gen_upper_matrix
gauss_jordan::GaussJordan, 12	matrix_generator::MatrixGenerator, 26
gauss_jordan.GaussJordan, 12	gen_vector
gauss_jordan::GaussJordan	matrix_generator::MatrixGenerator, 27
gauss_jordan, 12	sparse_matrix::SparseMatrix, 37
normalize, 12	get_D_and_U
	jacobi_serial::SerialJacobi, 30
start, 13	get_determinant
gauss_jordan_tab.GaussJordanTab, 14	gaussian_lu_decomposition::GuassianLU←
GaussJordan, 7	Decomposition, 16
gaussian_elimination	get_error
gaussian_elimination::GaussianElimination, 10	jacobi_parallel::JacobiParallel, 20
gaussian_elimination.GaussianElimination, 9	jacobi_parallel_chunks::JacobiParallel, 18
gaussian_elimination::GaussianElimination	jacobi_serial::SerialJacobi, 31
gaussian_elimination, 10	get_inverse
start, 10	gaussian_lu_decomposition::GuassianLU←
gaussian_elimination_tab.GaussianEliminationTab, 11	Decomposition, 16
gaussian_lu_decomposition	jacobi_serial::SerialJacobi, 31
gaussian_lu_decomposition::GuassianLU⊷	get_solution
Decomposition, 15	gaussian_lu_decomposition::GuassianLU-
$gaussian_lu_decomposition. Guassian LUDecomposition,$	Decomposition, 17
15	guiNum.PyApp, 28
$gaussian_lu_decomposition :: Guassian LUDecomposition$	
gaussian_lu_decomposition, 15	Jacobi, 8
gen_identity_matrix, 15	jacobi
get_determinant, 16	jacobi_parallel::JacobiParallel, 21
get_inverse, 16	jacobi_parallel_chunks::JacobiParallel, 19
get_solution, 17	jacobi_serial::SerialJacobi, 32
start, 17	jacobi_parallel.JacobiParallel, 20
GaussianElimination, 7	jacobi_parallel::JacobiParallel
gen_antisymmetric_matrix	get_error, 20
matrix_generator::MatrixGenerator, 24	jacobi, 21
gen_band_matrix	start, 21
matrix_generator::MatrixGenerator, 24	jacobi_parallel_chunks.JacobiParallel, 18
gen_diagonal_matrix	jacobi_parallel_chunks::JacobiParallel
matrix_generator::MatrixGenerator, 25	get_error, 18
	- - ·

42 INDEX

jacobi, 19 start, 19	serial_gaussian_elimination::SerialGaussianElimination elimination, 29
jacobi_serial.SerialJacobi, 30	partial_pivot, 29
jacobi_serial::SerialJacobi	sm_test.SparseMatrix, 38
get_D_and_U, 30	sm_testCSR.SparseMatrix, 38
get_error, 31	solve_system
get_inverse, 31	serial_decomposition_LU::SerialLUDecomposition,
jacobi, 32	36
multiply_matrix_matrix, 33	sparse_matrix.SparseMatrix, 36
multiply matrix vector, 34	sparse_matrix::SparseMatrix
relaxation, 34	create_sparse_matrix, 37
sum_vectors, 35	gen_vector, 37
jacobi_tab.JacobiTab, 22	load_sparse_matrix, 37
	multiply, 37
load_sparse_matrix	sparse_matrix_tab.SparseMatrixTab, 38
sparse_matrix::SparseMatrix, 37	SparseMatrices, 8
lu_decomposition_tab.LUDecompositionTab, 23	start
LuDecomposition, 8	gauss_jordan::GaussJordan, 13
'	gaussian_elimination::GaussianElimination, 10
matrix_generator.MatrixGenerator, 24	-
matrix_generator::MatrixGenerator	gaussian_lu_decomposition::GuassianLU←
gen_antisymmetric_matrix, 24	Decomposition, 17
gen band matrix, 24	jacobi_parallel::JacobiParallel, 21
gen_diagonal_matrix, 25	jacobi_parallel_chunks::JacobiParallel, 19
gen_dominant, 25	sum_vectors
gen_identity_matrix, 25	jacobi_serial::SerialJacobi, 35
gen_lower_matrix, 25	
gen_random_matrix, 26	
gen_scalar_matrix, 26	
gen_symmetric_matrix, 26	
gen_upper_matrix, 26	
gen_vector, 27	
matrix_generator_tab.MatrixGeneratorTab, 27	
MatrixGenerator, 8	
multiply	
sparse_matrix::SparseMatrix, 37	
multiply_matrix_matrix	
jacobi serial::SerialJacobi, 33	
multiply_matrix_vector	
jacobi_serial::SerialJacobi, 34	
Jacobi_SerialSerialdacobi, 34	
normalize	
gauss_jordan::GaussJordan, 12	
,	
partial_pivot	
serial_gaussian_elimination::SerialGaussian←	
Elimination, 29	
relaxation	
jacobi_serial::SerialJacobi, 34	
aprial decomposition III Cariall IID composition OF	
serial_decomposition_LU.SerialLUDecomposition, 35	
serial_decomposition_LU::SerialLUDecomposition	
decomposition_LU, 36	
solve_system, 36	
serial_gauss_jordan.GaussJordanSerial, 13	
serial_gauss_jordan::GaussJordanSerial	
elimination, 14	
serial_gaussian_elimination.SerialGaussianElimination,	
29	