Distributed Stochastic Gradient Descent

Kevin Yang and Michael Farrell

April 26, 2016

Motivation - Deep Learning

- Deep-Learning
 - Objective: Learn a complicated, non-linear function that minimzes some loss function
- Why do we need deep models?
 - The class of linear functions is inadequate for many problems.

Deep neural network

http://www.rsipvision.com/exploring-deep-learning/

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - SGD

- ▶ How do we maximize our reward function?
 - One common technique is Stochastic Gradient Descent
 - **w** is the vector of parameters for the model
 - $\blacktriangleright \eta$ is the learning rate
 - $ightharpoonup f(\mathbf{w})$ is the loss function evaluated with the current parameters \mathbf{w}
 - $\mathbf{w} \leftarrow \mathbf{0}$ while $\mathbf{f}(\mathbf{w})$ is not minimized do for i = 1, n do $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f(\mathbf{w})$
 - ► As the number of training examples, *n*, and the number of parameters, |**w**|, increases, this algorithm quickly becomes very slow...

Motivation - Distributed SGD

Since some of these models take days/weeks/months to run, we would hope that we could use a distributed computing cluster parallelize this process.

DistBelief

TensorFlow

gRPC

Our Model

Extensions