Capítulo 12

DISTÂNCIAS

Neste capítulo, considere fixado um sistema ortogonal de coordenadas cartesianas.

12.1 Distância de Ponto a Ponto

Sejam $A=(x_1,\,y_1,\,z_1)$ e $B=(x_2,\,y_2,\,z_2)$. A distância entre A e B é dada por:

$$d(A, B) = \|\overrightarrow{BA}\| = \|(\mathbf{x}_1 - \mathbf{x}_2, \mathbf{y}_1 - \mathbf{y}_2, \mathbf{z}_1 - \mathbf{z}_2)\|$$
 e, portanto:

$$d(A, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

12.2 Distância de Ponto a Reta

Dados uma reta \mathbf{r} e um ponto $P \notin \mathbf{r}$, para calcular a distância $d(P, \mathbf{r})$ de P a \mathbf{r} , podemos achar o ponto M que $\acute{\mathbf{e}}$ a projeção ortogonal de P sobre \mathbf{r} e daí calcular $\|\overline{PM}\|$, que $\acute{\mathbf{e}}$ a distância procurada. Optaremos, entretanto, por um outro procedimento, que evita o cálculo de M. Sejam $A \neq B$ dois pontos **quaisquer** da reta \mathbf{r} . A área \mathbf{S} do triângulo ABP $\acute{\mathbf{e}}$, então, dada por:

$$S = \tfrac{1}{2} \: \| \overrightarrow{AP} \: \wedge \: \overrightarrow{AB} \|$$

Por outro lado, a área S é dada por:

$$S = \frac{\|\overrightarrow{AB}\| \ h}{2} \implies \|\overrightarrow{AP} \wedge \overrightarrow{AB}\| = \|\overrightarrow{AB}\| \ h \implies d(P, \, r) = h = \frac{\|\overrightarrow{AP} \wedge \overrightarrow{AB}\|}{\|\overrightarrow{AB}\|}$$

Como A e B são pontos arbitrários da reta ${f r}$, segue que \overrightarrow{AB} é um vetor diretor arbitrário de ${f r}$. Ou seja:

$$d(P, r) = \frac{\|\overrightarrow{AP} \wedge \overrightarrow{r}\|}{\|\overrightarrow{r}\|}, \text{ para } A \in r$$
 (12.1)

12.3 Problemas Resolvidos

1. Calcule a distância do ponto P = (1, 1, -1) à reta x - y = 1 x + y - z = 0

Solução: É fácil encontrar $A = (-1, -2, -3) \in r \ e \ \vec{r} = (1, 1, 2)$. Assim, $\overrightarrow{AP} = (2, 3, 2) \ e \ portanto$

$$d(P, r) = \frac{\|(2,3,2) \wedge (1,1,2)\|}{\|(1,1,2)\|} = \frac{\|(4,-2,-1)\|}{\sqrt{6}} = \frac{\sqrt{14}}{2} uc$$

2. Obtenha uma equação vetorial da reta ${\bf r}$ paralela à reta ${\bf s}$: ${\bf X}=(1,\,1,\,0)+\lambda(2,\,1,\,2),$ contida no plano Π : ${\bf x}$ - 4 ${\bf y}$ + ${\bf z}$ = 0 e que dista $\frac{\sqrt{20}}{3}$ uc do ponto ${\bf P}=(1,\,0,\,1).$

Solução: Seja X=(x, y, z) um ponto genérico da reta \mathbf{r} . Como $\mathbf{r}\subset\Pi$, temos que $X\in\Pi$ e portanto as coordenadas de X satisfazem a equação de Π , isto é:

$$x - 4y + z = 0$$
 $\Longrightarrow z = -x + 4y$

Como r // s, qualquer vetor diretor de s também é vetor diretor de r e, portanto, $\vec{r} = (2, 1, 2)$ é um vetor diretor da reta r. Além disso, como d(P, r) = $\frac{\sqrt{20}}{3}$, segue que:

$$\frac{\|\overrightarrow{XP} \wedge (2,1,2)\|}{\|(2,1,2)\|} = \frac{\sqrt{20}}{3} = \frac{\|(1-x,-y,x-4y+1)\wedge (2,1,2)\|}{\|(2,1,2)\|} = \frac{\|(-x+2y-1,4x-8y,-x+2y+1)\|}{\|(2,1,2)\|} = \frac{\|(-x+2y-1,4x-8y,-x+2y+1)\|}{3} = \frac{\sqrt{18x^2+72y^2-72xy+2}}{3}$$

Elevando-se ao quadrado:

$$18(x^{2} + 4y^{2} - 4xy) + 2 = 20 \implies (x - 2y)^{2} = 1 \implies \begin{cases} x - 2y = 1 \\ x - 2y = -1 \end{cases}$$

e assim obtivemos duas soluções:

$$r_1: \begin{cases} x-4y+z=0 \\ x-2y-1=0 \end{cases}$$
 ou $r_2: \begin{cases} x-4y+z=0 \\ x-2y+1=0 \end{cases}$

12.4 Distância de Ponto a Plano

Dados um ponto P e um plano Π , para encontrar a distância $d(P, \Pi)$ de P a Π , basta achar a projeção ortogonal M de P sobre Π e daí $d(P, \Pi) = \|\overrightarrow{PM}\|$.

Para evitar o cálculo de M, procede-se da seguinte forma: escolha um ponto A de II e projete ortogonalmente \overrightarrow{AP} sobre um vetor \overrightarrow{n} normal a II. A norma dessa projeção é a distância d(P, II). Como

$$\|\mathrm{proj}_{\vec{n}}\overrightarrow{AP}\| \ = \ \|\frac{\overrightarrow{AP}_{\bullet \, \vec{n}}}{\|\vec{n}\|^2} \, \vec{n}\| \ = \ \frac{|\overrightarrow{AP}_{\bullet \, \vec{n}}| \, \|\vec{n}\|}{\|\vec{n}\|^2}$$

segue que:

$$d(P, \Pi) = \frac{|\overrightarrow{AP} \bullet \overrightarrow{n}|}{\|\overrightarrow{n}\|}$$
 (12.2)

Vamos, a partir de agora, procurar a versão dessa fórmula **em coordenadas**. Para isso, suponhamos que $P=(x_0, y_0, z_0)$ e Π : ax + by + cz + d = 0. Então $\vec{n}=(a, b, c)$ é um vetor normal a Π . Seja ainda $A=(x_1, y_1, z_1)$ o ponto escolhido em Π . Então $\overrightarrow{AP}=P-A=(x_0-x_1, y_0-y_1, z_0-z_1)$ e, portanto:

$$\overrightarrow{AP} \bullet \vec{n} = a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1) = ax_0 + by_0 + cz_0 - (ax_1 + by_1 + cz_1)$$

Como $A \in \Pi$, temos que $ax_1 + by_1 + cz_1 + d = 0$ e daí $\overrightarrow{AP} \bullet \overrightarrow{n} = ax_0 + by_0 + cz_0 + d$ Finalmente, como $\|\overrightarrow{n}\| = \sqrt{a^2 + b^2 + c^2}$ obtemos:

$$d(P, \Pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
(12.3)

12.5 Problemas Resolvidos

1. Calcule a distância do ponto P = (1, 2, -1) ao plano Π : 3x - 4y - 5z + 1 = 0.

Solução: A solução deste problema é a aplicação direta da fórmula (12.3):

$$d(P, \Pi) = \frac{|3.1 - 4.2 - 5.(-1) + 1|}{\sqrt{9 + 16 + 25}} = \frac{1}{\sqrt{50}} = \frac{\sqrt{50}}{50} = \frac{\sqrt{2}}{10} uc$$

2. Calcule a distância de P = (1, 3, 4) ao plano Π : X = $(1, 0, 0) + \lambda(1, 0, 0) + \mu(-1, 0, 3)$.

Solução: Para resolver este problema, vamos utilizar a fórmula (12.2). Para isso, precisamos conhecer:

 \diamond um vetor normal a Π

$$\vec{n} = (1, 0, 0) \land (-1, 0, 3) = (0, -3, 0)$$

- \diamond um ponto $A \in \Pi$: A = (1, 0, 0)
- \diamond e daí segue que $\overrightarrow{AP} = (0, 3, 4)$

Portanto, por (12.2), temos:

$$d(P, \Pi) = \frac{|(0,3,4) \bullet (0,-3,0)|}{\|(0,-3,0\|} = \frac{|-9|}{3} = 3$$
 uc

12.6 Distância entre Duas Retas

Dadas as retas \mathbf{r} e \mathbf{s} , sua distância $\mathbf{d}(\mathbf{r},\mathbf{s})$ é igual à distância entre os pontos \mathbf{A} e \mathbf{B} em que uma reta perpendicular comum a \mathbf{r} e a \mathbf{s} as intercepta. Teremos três casos a considerar:

<u>1º CASO:</u> r e s são concorrentes

Neste caso, A e B coincidem e portanto

$$d(r, s) = 0.$$

3º CASO: r e s são reversas 0

Neste caso, existem infinitas perpendiculares comuns a r e s e d(r, s) é igual à distância de qualquer ponto de uma reta à outra reta:

$$d(r, s) = d(P, s)$$
, sendo $P \in r$

Neste caso, utilizamos o seguinte método:

- 1. determinamos o plano II que contém r e é paralelo a s.
- 2. escolhemos um ponto Q qualquer de s e calculamos d(Q, П). Daí $d(r, s) = d(Q, \Pi)$

Problemas Resolvidos 12.7

1. Calcule a distância entre as retas paralelas ${\bf r}$ e s, sendo:

r:
$$X = (1, 0, 0) + \lambda(-2, \frac{1}{2}, 1)$$

s:
$$X = (0, 0, 2) + \mu(-2, \frac{1}{2}, 1)$$

Solução:

$$d(\mathbf{r}, \mathbf{s}) = d(A, \mathbf{s}) = \frac{\|\overrightarrow{AB} \wedge \overrightarrow{\mathbf{s}}\|}{\|\overrightarrow{\mathbf{s}}\|},$$
 sendo $A \in \mathbf{r} \in B \in \mathbf{s}.$

Consideremos $A=(1,\,0,\,0)\in \mathbf{r}$ e $B=(0,\,0,\,2)\in \mathbf{s}$. Então $\overrightarrow{AB}=(-1,\,0,\,2)$ e, efetuando-se os cálculos, \overrightarrow{AB} \wedge $\vec{s}=(-1,\,-3,\,-\frac{1}{2})$. Daí segue que $d(\mathbf{r},\,\mathbf{s})=\frac{41}{21}$ uc.

2. Calcule a distância entre as retas reversas r e s, sendo:

r:
$$X = (-1, 2, 0) + \lambda(1, 3, 1)$$
 s: $\begin{cases} 3x - 2z - 3 = 0 \\ y - z - 2 = 0 \end{cases}$

Solução: Começamos encontrando uma equação geral do plano Π que contém \mathbf{r} e é paralelo a s. Sejam $\vec{\mathbf{r}}=(1,3,1)$ e $\vec{\mathbf{s}}=(3,0,-2) \land (0,1,-1)=(2,3,3)$ vetores diretores de \mathbf{r} e de s, respectivamente. Como esses vetores são \mathbf{LI} (pois as retas \mathbf{r} e s são reversas), $\vec{\mathbf{r}}$ e $\vec{\mathbf{s}}$ são vetores diretores do plano Π . Além disso, como Π contém a reta \mathbf{r} , o ponto $\mathbf{A}=(-1,2,0)$ é um ponto de Π . Assim, se $\mathbf{X}=(\mathbf{x},\mathbf{y},\mathbf{z})$ é um ponto genérico de Π , os vetores \overrightarrow{AX} , $\overrightarrow{\mathbf{r}}$ e $\overrightarrow{\mathbf{s}}$ são coplanares; isto é, são \mathbf{LD} . Ou seja:

$$0 = \det \begin{pmatrix} x+1 & y-2 & z \\ 1 & 3 & 1 \\ 2 & 3 & 3 \end{pmatrix} = 6x - y - 3z + 8$$

E, portanto:

$$\Pi$$
: $6x - y - 3z + 8 = 0$ $\implies \vec{n} = (6, -1, 3)$ é um vetor normal a Π

A distância entre ${\bf r}$ e ${\bf s}$ é a distância de B a II, sendo B um ponto da reta ${\bf s}$. Para encontra B, fazendo, por exemplo, ${\bf z}=0$ no sistema que define a reta ${\bf s}$, obtemos ${\bf x}=1$ e ${\bf y}=2$ e, portanto, B = $(1,\,2,\,0)$ \in ${\bf s}$. Logo:

$$d(r, s) = d(B, \Pi) = \frac{|6.1-1.2-3.0+8|}{\sqrt{6^2+(-1)^2+3^2}} = \frac{12}{\sqrt{46}} = \frac{6\sqrt{46}}{23}uc$$

12.8 Distância entre Reta e Plano

Dados um plano Π e uma reta \mathbf{r} não contida em Π , temos:

- (a) Se $\mathbf{r} \cap \Pi \neq \emptyset$, então d $(\mathbf{r}, \Pi) = 0$. Lembre que: $\mathbf{r} \cap \Pi \neq \emptyset$ se \mathbf{r} não é paralela a Π ; isto é, $\vec{\mathbf{r}} \bullet \vec{\mathbf{n}} \neq 0$, sendo $\vec{\mathbf{r}}$ um vetor direção da reta \mathbf{r} e $\vec{\mathbf{n}}$ um vetor normal ao plano Π .
- (b) Se $r \cap \Pi = \emptyset$, então d(r, Π) = d(P, Π), sendo P um ponto qualquer da reta r.

CUIDADO com o seguinte raciocínio errado: $\underline{\tilde{nao}}$ calcule a distância de um ponto qualquer de Π a \mathbf{r} , pois os pontos de \mathbf{r} estão todos a uma mesma distância de Π , porém os pontos de Π não estão todos a uma mesma distância de \mathbf{r} .

12.9 Distância entre Dois Planos

Sejam Π_1 e Π_2 dois planos. Então:

- (a) Se $\Pi_1 \cap \Pi_2 \neq \emptyset$, então $d(\Pi_1, \Pi_2) = 0$.
- (b) Se $\Pi_1 \cap \Pi_2 = \emptyset$, então d $(\Pi_1, \Pi_2) = d(P, \Pi_2)$, sendo $P \in \Pi_1$.

12.10 Problema Resolvido

1. Calcule a distância entre os planos
$$\Pi_1: \begin{cases} \mathbf{x} = 2 - \lambda - \mu \\ \mathbf{y} = \mu \\ \mathbf{z} = \lambda \end{cases}$$
 e $\Pi_2: \mathbf{x} + \mathbf{y} + \mathbf{z} = \frac{5}{2}.$

Solução: Sejam $\vec{n}_1 = (-1, 0, 1) \land (-1, 1, 0) = (-1, -1, -1)$ e $\vec{n}_2 = (1, 1, 1)$ vetores respectivamente normais aos planos Π_1 e Π_2 . Como \vec{n}_1 // \vec{n}_2 , segue que Π_1 // Π_2 . Resta analisarmos se estes planos são coincidentes. Para isso, tomamos um ponto de um deles e verificamos se pertence ao outro; por exemplo, considero o ponto $A = (2, 0, 0) \in \Pi_1$. Como $2 + 0 + 0 \neq \frac{5}{2}$, $A \notin \Pi_2$ e, portanto,

$$d(\Pi_1, \Pi_2) = d(A, \Pi_2) = \frac{|2+0+0-\frac{5}{2}|}{\sqrt{3}} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6} uc$$

12.11 Problemas Propostos

Considere fixado um sistema ortogonal de coordenadas cartesianas.

- 1. Calcule a distância entre os pontos P e Q nos casos
 - (a) P = (0, -1, 0)

$$Q = (-1, 1, 0)$$

(b)
$$P = (-1, -3, 4)$$

$$Q = (1, 2, -8)$$

2. Calcule a distância do ponto P à reta ${\bf r}$ nos casos

(a)
$$P = (0, -1, 0)$$
 r: $\begin{cases} x = 2z - 1 \\ y = z + 1 \end{cases}$

(b)
$$P = (1, 0, 1)$$

r:
$$X = (0, 0, 0) + \lambda(1, \frac{1}{2}, \frac{1}{3})$$

(c)
$$P = (1, -1, 4)$$

r:
$$\frac{x-2}{4} = \frac{y}{-3} = \frac{z-1}{-2}$$

r:
$$\begin{cases} x = 3\lambda + 1 \\ y = 2\lambda - 2 \\ z = \lambda \end{cases}$$

3. Calcule a distância entre as retas paralelas dadas

(a) r:
$$\frac{x-1}{-2} = \frac{y}{\frac{1}{2}} = z$$

s:
$$X = (0, 0, 2) + \lambda(-2, \frac{1}{2}, 1)$$

(b) r:
$$x = \frac{y-3}{2} = z - 2$$

s:
$$x - 3 = \frac{y+1}{2} = z - 2$$

4. Calcule a distância do ponto P ao plano Π nos casos

(a)
$$P = (0, 0, -6)$$

$$\Pi$$
: $x - 2y - 2z - 6 = 0$

(b)
$$P = (1, 1, \frac{15}{6})$$

$$\Pi$$
: $4x - 6y + 12z + 21 = 0$

(c)
$$P = (9, 2, -2)$$

II:
$$X = (0, -5, 0) + \lambda(0, \frac{5}{12}, 1) + \mu(1, 0, 0)$$

(d)
$$P = (0, 0, 0)$$

$$\Pi$$
: $2x - y + 2z - 3 = 0$

5. Calcule a distância entre os planos paralelos:

(a)
$$\Pi_1$$
: $2x - y + 2z + 9 = 0$

$$\Pi_2$$
: $4x - 2y + 4z - 21 = 0$

(b)
$$\Pi_1$$
: $\begin{aligned} \mathbf{x} &= 2 - \lambda - \mu \\ \mathbf{y} &= \mu \\ \mathbf{z} &= \lambda \end{aligned}$

$$\Pi_2$$
: $x + y + z = \frac{5}{2}$

(c)
$$\Pi_1$$
: $x + y + z = 0$

$$\Pi_2$$
: $x + y + z + 2 = 0$

6. Calcule a distância entre as retas

(a) r:
$$\begin{cases} x = z - 1 \\ y = 3z - 2 \end{cases}$$

s:
$$\begin{cases} 3x - 2z + 3 = 0 \\ y - z - 2 = 0 \end{cases}$$

(b) r:
$$\frac{x+4}{3} = \frac{y}{4} = \frac{z+5}{-2}$$
 s: $\begin{cases} x = 21 + 6\lambda \\ y = -5 - 4\lambda \end{cases}$

- 7. Ache os pontos de r: $\begin{cases} x+y=2\\ x=y+z \end{cases}$ que distam 3 uc do ponto A=(0,2,1).
- 8. Ache os pontos de r: x 1 = 2y = z que equidistam dos pontos A = (1, 1, 0) e B = (0, 1, 1).
- 9. Ache os pontos de r: $\begin{cases} x+y=2\\ x=y+z \end{cases}$ que distam $\sqrt{\frac{14}{3}}$ de s: x=y=z+1.
- 10. Ache os pontos de r: x-1=2y=z que equidistam das retas s: $\begin{cases} x=2\\ z=0 \end{cases}$ e t: x=y=0.
- 11. Obtenha uma equação vetorial da reta ${\bf r}$ paralela a s: $\begin{cases} 2x-z=3\\ y=2 \end{cases}$, concorrente com a reta t: $X=(-1,1,1)+\lambda(0,-1,2)$ e que dista 1 uc do ponto P=(1,2,1).
- 12. Um quadrado ABCD tem a diagonal BD contida na reta x = x + y = z. Sabendo que x = (0, 0, 0), determine os vértices B, C e D.
- 13. Ache os pontos da reta $x: \begin{cases} x+y=2 \\ x=y+z \end{cases}$ que distam $\sqrt{6}$ uc de Π : x-2y-z=1.
- 14. Ache os pontos da reta x 1 = 2y = z que equidistam dos planos Π_1 : 2x 3y 4z 3 = 0 e Π_2 : 4x 3y 2z + 3 = 0.

- 15. Dê uma equação geral do plano Π que contém a reta r: $X = (1, 0, 1) + \lambda(1, 1, -1)$ e dista $\sqrt{2}$ uc do ponto P = (1, 1, -1).
- 16. Dê uma equação geral do plano Π que passa pelos pontos $P=(1,\,1,\,-1)$ e $Q=(2,\,1,\,1)$ e que dista 1 uc da reta r: $X=(1,\,0,\,2)+\lambda(1,\,0,\,2)$.
- 17. Dê uma equação geral do plano Π que passa pelos pontos $A=(1,\,1,\,1)$ e $B=(0,\,2,\,1)$ e equidista dos pontos $C=(2,\,3,\,0)$ e $D=(0,\,1,\,2)$.

