МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут»

Факультет систем управління літальних апаратів Кафедра систем управління літальних апаратів

Лабораторна робота № 7

з дисципліни «Алгоритмізація та програмування» на тему « " Реалізація алгоритмів обробки двовимірних масивів на мові С ++"»

ХАІ.301. Спеціальність: АВТОМАТИЗАЦІЯ, КОМП'ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ ТА РОБОТОТЕХНІКА, група 319, номер у списку:28 ЛР

Виконав студент гр. 319 Калашник О.С.

Перевірив к.т.н., доц. Олена ГАВРИЛЕНКО

МЕТА РОБОТИ

Вивчити теоретичний матеріал з основ представлення двовимірних масивів

(матриць) на мові C ++ i реалізувати оголошення, введення з консолі, обробку i

виведення в консоль матриць на мові С ++ в середовищі Visual Studio.

ПОСТАНОВКА ЗАДАЧІ

Завдання 1. Вирішити завдання на аналіз і виведення елементів матриці.

Введення і виведення даних здійснити в командному вікні.

Завдання знаходиться у таблиці під номером Matrix20.

Завдання 2. Перетворити матрицю відповідно до свого варіанту завдання

Matrix53, розмір матриці і його елементи ввести з консолі. Вивести результати у консоль.

ВИКОНАННЯ РОБОТИ

Завдання 1.

Вирішення задачі Matrix20

Вхідні дані: 1) максимальний розмір M = N = 20, ціле, константа; 2) кількість рядків row, ціле, 2..20 3) кількість стовпців col, ціле, 2..20 4) цілочисельний двовимірний масив matr1.

Вихідні дані: 1) елементи матриці; 2) сума елементів діагоналі sm, ціле.

Малюнок 1

Завдання 2.

Вирішення задачі Matrix53

Вхідні дані: 1) максимальний розмір M = N = 20, ціле, константа; 2) кількість рядків row, ціле, 2..20 3) кількість стовпців col, ціле, 2..20 4) цілочисельний двовимірний масив matr1.

Вихідні дані: 1) елементи матриці; 2) сума елементів діагоналі sm, ціле.

ВИСНОВКИ

Ціль цієї лабораторної роботи - показати можливість використання матриць в мові c++

ДОДАТОК А Лістинг коду програми

/*	**	**	**	**	**	**	*:	**	*	*:	**	*	*:	* *	*	*	**	k *	*	*	*:	* *	k >	k >	k *	*	*	*	*	*	*	*	*	*:	**	k ×	**	*	*:	* *	*	*	**	k *	*	**	* *	*	*	*:	* *	**	*:	* *	* *	*	**	**	*	* *	k
							(٦c	٦li	in	e	C.	+-	- (Cc	or	ոլ	oi	e	r.																																									
			С	oc	le,	, C	ò	m	ıp	ile	≘,	R	u	n	aı	าด	1	De	eb	υ	ıg	C	<u></u>		۱ ۱	pı	rc	9	ŗ	a	m	۱ (OI	nl	lir	٦e	٤.																								
Wri	te	yc	ou	r	Ю	de	į	n	tł	ni:	s e	20	lit	0	r	ar	าด	۱ ا	r	e	SS	, "	'F	łι	ır	า"	k	วเ	ιt	t	0	n	t	o	С	o	m	р	ile	e	aı	าด	le	ex	e	Cι	ıt	e	it												
***	**	**	**	**	*	**	*	*:	**	*	**	**	*	*:	**	*	*	*:	* *	*	*	*:	*	*	*:	*:	k ×	k >	k >	k >	* *	*	*	*	*	*	**	* *	*	*	**	* *	*	*:	**	*	*	**	* *	*	*:	**	* *	*	*:	**	*	**	**	*	,

```
Завдання 1
#include <iostream>
#include <vector>
using namespace std;
const int M = 20;
const int N = 20;
int main() {
  // Введення кількості рядків та стовпців
  int row, col;
  cout << "Введіть кількість рядків (від 2 до 20): ";
  cin >> row;
  cout << "Введіть кількість стовпців (від 2 до 20): ";
  cin >> col;
  // Перевірка на допустимість розмірів матриці
  if (row < 2 | | row > M | | col < 2 | | col > N) {
    cout << "Неправильні розміри матриці!" << endl;
    return 1;
  }
  // Ініціалізація матриці та суми елементів діагоналі
  int matr1[M][N];
  int sm = 0;
  // Введення елементів матриці та обчислення діагональних елементів
  cout << "Введіть елементи матриці через пробіл:" << endl;
  for (int i = 0; i < row; ++i) {
    cout << "Рядок " << i + 1 << ": ";
    for (int j = 0; j < col; ++j) {
```

```
cin >> matr1[i][j];
      // Обчислення суми елементів діагоналі
      if (i == j)
        sm += matr1[i][j];
    }
  }
  // Виведення елементів матриці
  cout << "Елементи матриці:" << endl;
  for (int i = 0; i < row; ++i) {
    for (int j = 0; j < col; ++j) {
      cout << matr1[i][j] << " ";
    }
    cout << endl;
  }
  // Виведення суми елементів діагоналі
  cout << "Сума елементів діагоналі: " << sm << endl;
  return 0;
Завдання 2
#include <iostream>
#include <vector>
using namespace std;
const int M = 20;
const int N = 20;
int main() {
  // Введення розмірів матриці
```

}

```
int row, col;
cout << "Введіть кількість рядків (від 2 до 20): ";
cin >> row;
cout << "Введіть кількість стовпців (від 2 до 20): ";
cin >> col;
// Перевірка на допустимість розмірів матриці
if (row < 2 | | row > M | | col < 2 | | col > N) {
  cout << "Неправильні розміри матриці!" << endl;
  return 1;
}
// Ініціалізація матриці
vector<vector<int>> matr(row, vector<int>(col));
// Введення елементів матриці
cout << "Введіть елементи матриці:" << endl;
for (int i = 0; i < row; ++i) {
  cout << "Рядок " << i + 1 << ": ";
  for (int j = 0; j < col; ++j) {
    cin >> matr[i][j];
  }
}
// Пошук індексу стовпця з першим додатнім елементом
int first_positive_col = -1;
for (int j = 0; j < col; ++j) {
  bool has_positive = false;
  for (int i = 0; i < row; ++i) {
    if (matr[i][j] > 0) {
      has_positive = true;
```

```
break;
    }
  }
  if (has_positive) {
    first_positive_col = j;
    break;
  }
}
// Пошук останнього стовпця з додатніми елементами
int last_positive_col = -1;
for (int j = col - 1; j >= 0; --j) {
  bool has_positive = false;
  for (int i = 0; i < row; ++i) {
    if (matr[i][j] > 0) {
      has_positive = true;
      break;
    }
  }
  if (has_positive) {
    last_positive_col = j;
    break;
  }
}
// Обмін стовпців, якщо знайдено відповідні стовпці
if (first_positive_col != -1 && last_positive_col != -1 && first_positive_col != last_positive_col) {
  for (int i = 0; i < row; ++i) {
    swap(matr[i][first_positive_col], matr[i][last_positive_col]);
  }
}
```

```
// Виведення матриці

cout << "Матриця після обміну стовпців:" << endl;

for (int i = 0; i < row; ++i) {

   for (int j = 0; j < col; ++j) {

      cout << matr[i][j] << " ";

   }

   cout << endl;
}

return 0;
```