

Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention Yu Yang¹, Seungbae Kim², Jungseock Joo²

¹Department of Computer Science, ²Department of Communication, University of California, Los Angeles

WHY do we need to explain deep CNN?

LaViSE -- Latent Visual-Semantic Explainer for CNN

EXISTING APPROACHES

Only show important pixels...
No explicit semantic explanations!

Only use annotated concepts...
Cannot explain unseen concepts!

LaViSE

- Providesvisual+semanticexplanations!
- Finds the best explanation from annotated+zero-shot concepts!

Plus, the explanations are more acurate with the filter attention!

HOW does LaViSE work?

Key component #1: Latent Visual-Semantic Mapping

Key component #2: Filter-level Attention

Training LaViSE

WHAT can LaViSE do?

Explaining Trained Networks with Zero-shot Concepts

Explaining Unlabeled Datasets with Pretrained Networks LaViSE can provide insights of a dataset and help with bias analysis!

Summary/Conclusion

- ➤ We proposed **LaViSE**, a novel framework which can both visually and semantically explain latent representations of a trained CNN.
- LaViSE enables users to discover concepts that a CNN learned without being explicitly taught.