ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Дисциплина: Операционные системы

Обрезкова Анастасия Владимировна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Создание виртуальной машины	10 10 16
5	Домашнее задание	23
6	Выводы	27
Сп	Список литературы	

Список иллюстраций

4.1	Окно «Имя машины и тип ОС»	10
4.2	Окно «Размер основной памяти»	11
4.3	Окно подключения или создания жёсткого диска на виртуальной	
	машине	11
4.4	Окно определения типа подключения виртуального жёсткого диска.	12
4.5	Окно определения формата виртуального жёсткого диска	12
4.6	Определения размера виртуального динамического жёсткого диска	13
4.7	Окно «Носители» виртуальной машины: выбор образа оптического	
	диска	14
4.8	Локальные диски	15
4.9	Установка пароля	15
4.10	Обновление пакетов	16
	Результат	16
	Программы для удобства работы в консоли	17
	Установка ПО	17
	Результат установки	18
	Запуск таймера	18
4.16	Отключение SELinux	18
4.17	Установка пакетов	19
4.18	Редактированный файл	19
	Установка имени пользователя	20
	Установка pandoc	21
4.21	Результат установки	21
	Установка расширения	22
	Установка TeXlive	22
5.1	Анализ команды	23
5.2	Версия ядра, частота и модель процессора	24
5.3	Объем доступной памяти	24
5.4	Типы гипервизора, системы корн раздела и последовательность	
	монтирования файлов	25

Список таблиц

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину, настройка минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Приобрести практические навыки установки ОС.
- 2. Настроить необходимые сервисы для дальнейшей работы.

3 Теоретическое введение

Введение в GNU Linux Операционная система (ОС) — это комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем. Сегодня наиболее известными операционными системами являются ОС семейства Microsoft Windows и UNIX-подобные системы.

GNU Linux — многопользовательских семействопереносимых, операционных-систем, намногозадачных базе ядра и Linux, включающих тот или иной набор утилит и программ проекта GNU, и, возможно, другие компоненты. Как и ядро Linux, системы на его основе, как правило, создаются и распространяются в соответствии с моделью разработки свободного и открытого программного обеспечения (Open-Source Software). Linux-системы распространяются в основном бесплатно в виде различных дистрибутивов.

Дистрибутив GNU Linux — общее определение ОС, использующих ядро Linux и набор библиотек и утилит, выпускаемых в рамках проекта GNU, а также графическую оконную подсистему X Window System. Дистрибутив готов для конечной установки на пользовательское оборудование. Кроме ядра и, собственно, операционной системы дистрибутивы обычно содержат широкий набор приложений, таких как редакторы документов и таблиц, мультимедийные проигрыватели, системы для работы с базами данных и т.д.

Существуют дистрибутивы, разрабатываемые как при коммерческой поддержке (Red Hat / Fedora, SLED / OpenSUSE, Ubuntu), так и исключительно усилиями добровольцев (Debian, Slackware, Gentoo, ArchLinux).

##Введение в командную строку GNU Linux

Работу ОС GNU Linux можно представить в виде функционирования множества взаимосвязанных процессов. При загрузке системы сначала запускается ядро, которое, в свою очередь, запускает оболочку ОС (от англ. shell «оболочка»). Взаимодействие пользователя с системой Linux (работа с данными и управление работающими в системе процессами) происходит в интерактивном режиме посредством командного языка. Оболочка операционной системы (или командная оболочка, интерпретатор команд) — интерпретирует (т.е. переводит на машинный язык) вводимые пользователем команды, запускает соответствующие программы (процессы), формирует и выводит ответные сообщения. Кроме того, на языке командной оболочки можно писать небольшие программы для выполнения ряда последовательных операций с файлами и содержащимися в них данными — сценарии (скрипты).

Из командных оболочек GNU Linux наиболее популярны bash, csh, ksh, zsh. Команда есhо \$SHELL позволяет проверить, какая оболочка используется. В качестве предустановленной командной оболочки GNU Linux используется одна из наиболее распространённых разновидностей командной оболочки — bash (Bourne again shell).

В GNU Linux доступ пользователя к командной оболочке обеспечивается через терминал (или консоль). Запуск терминала можно осуществить через главное меню «Приложения» «Стандартные» «Терминал (или Консоль)» или нажав Ctrl + Alt + t . Интерфейс командной оболочки очень прост. Обычно он состоит из приглашения командной строки (строки, оканчивающейся символом), iivanova@dk4n31:

Это приглашение командной оболочки, которое несёт в себе информацию об имени пользователя iivanova, имени компьютера dk4n31 и текущем каталоге, в котором находится пользователь, в данном случае это домашний каталог пользователя, обозначенный как ~).

Команды могут быть использованы с ключами (или опциями) указаниями, мо-

дифицирующими поведение команды. Ключи обычно начинаются с символа (-) или (-) и часто состоят из одной буквы. Кроме ключей после команды могут быть использованы аргументы (параметры) — названия объектов, для которых нужно выполнить команду (например, имена файлов и каталогов). Например, для подробного просмотра содержимого каталога documents может быть использована команда ls с ключом -l: iivanova@dk4n31:~\$ ls -l documents

В данном случае ls – это имя команды, l – ключ, documents – аргумент. Команды, ключи и аргументы должны быть отделены друг от друга пробелом. Ввод команды завершается нажатием клавиши «Enter», после чего команда передаётся оболочке на исполнение. Результатом выполнения команды могут являться сообщения о ходе выполнения команды или об ошибках. Появление приглашения командной строки говорит о том, что выполнение команды завершено.

4 Выполнение лабораторной работы

4.1 Создание виртуальной машины

1. Я установила Oracle VM VirtualBox на свой персональный компьютер еще в прошлом семестре. Создаю новую виртуальную машину с операционной системой Linux. Вводим имя пользователь, папку для будущего хранения виртуальной машины, тип операционной системы и нужную нам версию. (рис. [4.1])

Рис. 4.1: Окно «Имя машины и тип ОС»

2. Я установила объем памяти равный 1024 МБ. (рис. [4.2])

Рис. 4.2: Окно «Размер основной памяти»

3. Создала новый виртуальный жесткий диск и выбрала тип VDI (VirtualBox Disk Image) нового виртуального жесткого диска. (рис. [4.3], рис. [4.4])

Рис. 4.3: Окно подключения или создания жёсткого диска на виртуальной машине

Рис. 4.4: Окно определения типа подключения виртуального жёсткого диска.

4. Указываю формат хранения (динамический виртуальный жесткий диск). (рис. [4.5])

Рис. 4.5: Окно определения формата виртуального жёсткого диска.

5. Указываю имя файла, в котором будет располагаться виртуальный жесткий диска и размер этого файла и после основной настройки подключила скаченный файл Fedora-Workstation-live в контроллер Ide. (рис. [4.6], рис. [4.7])

Рис. 4.6: Определения размера виртуального динамического жёсткого диска

Рис. 4.7: Окно «Носители» виртуальной машины: выбор образа оптического диска.

6. Открыла виртуальную машину, настроила язык, время, локальные диски, установила пароль. (рис. [4.8]; рис. [4.9])

Рис. 4.8: Локальные диски

Рис. 4.9: Установка пароля

4.2 После установки

1. Переключилась на роль супер-пользователя и обновила все пакеты (рис. [4.10]; рис. [4.11])

Рис. 4.10: Обновление пакетов

```
root@fedora:~
qemu-user-static-nios2-2:6.2.0-17.fc36.x86_64
qemu-user-static-or1k-2:6.2.0-17.fc36.x86_64
qemu-user-static-ppc-2:6.2.0-17.fc36.x86_64
qemu-user-static-riscv-2:6.2.0-17.fc36.x86_64
gemu-user-static-s390x-2:6.2.0-17.fc36.x86_64
qemu-user-static-sh4-2:6.2.0-17.fc36.x86_64
qemu-user-static-sparc-2:6.2.0-17.fc36.x86_64
qemu-user-static-x86-2:6.2.0-17.fc36.x86_64
qemu-user-static-xtensa-2:6.2.0-17.fc36.x86_64
qemu-virtiofsd-2:6.2.0-17.fc36.x86_64
qgnomeplatform-qt6-0.9.0-6.fc36.x86_64
qt6-qtbase-6.3.1-3.fc36.x86_64
qt6-qtbase-common-6.3.1-3.fc36.noarch
qt6-qtbase-gui-6.3.1-3.fc36.x86_64
qt6-qtdeclarative-6.3.1-2.fc36.x86_64
qt6-qtsvg-6.3.1-2.fc36.x86_64
qt6-qtwayland-6.3.1-5.fc36.x86_64
tpm2-tools-5.4-1.fc36.x86_64
tslib-1.22-5.fc36.x86_64
unbound-anchor-1.17.1-1.fc36.x86_64
ыполнено!
```

Рис. 4.11: Результат

2. Установила программы для удобства работы в консоли. (рис. [4.12])

```
[root@fedora ~]# dnf install tmux mc
Последняя проверка окончания срока действия метаданных: 0:36:48 назад, Пт 17 фев
2023 22:56:58.
Пакет tmux-3.3a-1.fc36.x86_64 уже установлен.
Пакет mc-1:4.8.28-2.fc36.x86_64 уже установлен.
Зависимости разрешены.
Отсутствуют действия для выполнения.
Выполнено!
[root@fedora ~]#
```

Рис. 4.12: Программы для удобства работы в консоли

3. Установка програмного обеспечения и запуск таймера. (рис. [4.13]; рис. [4.14]; рис. [4.15])

Рис. 4.13: Установка ПО

Рис. 4.14: Результат установки

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr/lib/systemd/sys
tem/dnf-automatic.timer.
[root@fedora ~]#
```

Рис. 4.15: Запуск таймера

4. В файле /etc/selinux/config заменила значение SELINUX=enforcing на значение SELINUX=permissive и перезагрузила виртуальную машину. (рис. [4.16])

Рис. 4.16: Отключение SELinux

5. Запустила терминальный мультиплексор tmux, переключилась нроль суперпользователя и установила пакет DKMS. (рис. [4.17])

Рис. 4.17: Установка пакетов

6. Запустила терминальный мультиплексор tmux, переключилась на роль супер-пользователя и отредактировала конфигурационный файл /etc/X11/xorg.conf.d/00-keyboard.conf:. (рис. [4.18])

Рис. 4.18: Редактированный файл

7. Запустила терминальный мультиплексор tmux, переключилась на роль супер-пользователя, создала пользователя, задала пароль для пользователя, установила имя хоста и проверила, что имя хоста установлено верно. (рис. [4.19])

Рис. 4.19: Установка имени пользователя

8. Запустила терминальный мультиплексор tmux, переключилась на роль супер-пользователя, установила pandoc и необходимые разрешения. (рис. [4.20], рис. [4.21]; рис. [4.22])

Рис. 4.20: Установка pandoc

```
О63ор
            Терминал
  ⊕
                            avobrezkova@fedora:~ — tmux
                                                                                  ×
Загрузка пакетов:
(1/2): pandoc-common-2.14.0.3-16.fc36.noarch.rp 809 kB/s | 435 kB
(2/2): pandoc-2.14.0.3-16.fc36.x86_64.rpm 6.5 MB/s | 21 MB
                                                                         00:00
                                                                         00:03
Общий размер
                                                  4.9 MB/s | 21 MB
                                                                         00:04
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
  Подготовка
                 pandoc-common-2.14.0.3-16.fc36.noarch
                                                                                1/2
  Установка
                   : pandoc-2.14.0.3-16.fc36.x86_64
  Установка
  Запуск скриптлета: pandoc-2.14.0.3-16.fc36.x86_64
  Проверка : pandoc-2.14.0.3-16.fc36.x86_64
  Проверка
                   : pandoc-common-2.14.0.3-16.fc36.noarch
 pandoc-2.14.0.3-16.fc36.x86_64
                                       pandoc-common-2.14.0.3-16.fc36.noarch
[root@avobrezkova ~]# pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pan
doc-secnos --user
```

Рис. 4.21: Результат установки

```
Q =
 ⊕
                          avobrezkova@avobrezkova:~ — tmux
 Downloading pandoc_fignos-2.4.0-py3-none-any.whl (21 kB)
Collecting pandoc-eqnos
 Downloading pandoc_eqnos-2.5.0-py3-none-any.whl (20 kB)
Collecting pandoc-tablenos
 Downloading pandoc_tablenos-2.3.0-py3-none-any.whl (21 kB)
Collecting pandoc-secnos
 Downloading pandoc_secnos-2.2.2-py3-none-any.whl (18 kB)
Collecting pandoc-xnos<3.0,>=2.5.0
 Downloading pandoc_xnos-2.5.0-py3-none-any.whl (31 kB)
Collecting pandocfilters<2,>=1.4.2
 Downloading pandocfilters-1.5.0-py2.py3-none-any.whl (8.7 kB)
Collecting psutil<6,>=4.1.0
 Downloading psutil-5.9.4-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.
manyli<u>nux_2_17_x86_64.manylinux2014_x8</u>6_64.whl (280 kB)
                                      | 280 kB 2.3 MB/s
Installing collected packages: psutil, pandocfilters, pandoc-xnos, pandoc-tablen
os, pandoc-secnos, pandoc-fignos, pandoc-eqnos
Successfully installed pandoc-eqnos-2.5.0 pandoc-fignos-2.4.0 pandoc-secnos-2.2
2 pandoc-tablenos-2.3.0 pandoc-xnos-2.5.0 pandocfilters-1.5.0 psutil-5.9.4
 root@avobrezkova ~]# dnf -y install texlive texlive-\*
```

Рис. 4.22: Установка расширения

8. Установила дистрибутив TeXlive. (рис. [4.23])

Рис. 4.23: Установка TeXlive

5 Домашнее задание

1. Дождалась загрузки графического окружения и открыла терминал. В окне терминала проанализировала последовательность загрузки системы, выполнив команду dmesg. (рис. [5.1])

```
682.420420] 10:47:54.098493 main
                                       VBoxService 6.1.38 r153438 (verbosity:
 linux.amd64 (Sep 1 2022 15:42:08) release log
              10:47:54.0984
  682.421018] 10:47:54.100102 main
                                    OS Product: Linux
  682.421794] 10:47:54.100754 main
                                      OS Release: 6.1.11-100.fc36.x86_64
                                      OS Version: #1 SMP PREEMPT_DYNAMIC Thu F
  682.422471] 10:47:54.101222 main
  9 20:36:30 UTC 2023
 682.423705] 10:47:54.102216 main
                                      Executable: /opt/VBoxGuestAdditions-6.1.
38/sbin/VBoxService
             10:47:54.102218 main
                                      Process ID: 12639
  682.425572] 10:47:54.104490 main
                                      6.1.38 r153438 started. Verbose level =
  682.440270] 10:47:54.119054 main
                                      vbglR3GuestCtrlDetectPeekGetCancelSuppor
[ 682.442733] 10:47:54.121485 main
                                      Error: Failed to become guest control ma
ster: VERR_RESOURCE_BUSY
  682.443531] 10:47:54.122274 main
                                      Error: Service 'control' failed to initi
alize: VERR_RESOURCE_BUSY
  682.445456] 10:47:54.124442 main
                                      Session 0 is about to close ...
                                      Stopping all guest processes ...
  682.446702] 10:47:54.125668 main
                                      Closing all guest files ...
  682.449333] 10:47:54.128309 main
  682.449860] 10:47:54.129018 main
                                       Ended.
(END)
```

Рис. 5.1: Анализ команды

2. ПОлучила следующую информацию. (рис. [5.2], рис. [5.3]; рис. [5.4])

ВЕрсия ядра:

```
[avobrezkova@avobrezkova:~] dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.1.11-100.fc36.x86_64 (mockbuild@bkernel02.iad2.fe
doraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4), GNU ld version 2
.37-37.fc36) #1 SMP PREEMPT_DYNAMIC Thu Feb 9 20:36:30 UTC 2023
[avobrezkova@avobrezkova:~] dmesg | grep -i "Mhz"
[ 0.000009] tsc: Detected 2295.684 MHz processor
[ 3.104765] e1000 0000:00:03.0 etho: (PCI:33MHz:32-bit) 08:00:27:41:91:89
[avobrezkova@avobrezkova:~] dmesg | grep -i "CPUO"
[ 0.072273] CPUO: Hyper-Threading is disabled
[ 0.188119] smpboot: CPUO: AMD Ryzen 7 3700U with Radeon Vega Mobile Gfx (fam ily: 0x17, model: 0x18, stepping: 0x1)
```

Рис. 5.2: Версия ядра, частота и модель процессора

```
orezkova@avobrezkova:~] dmesg | grep -i "Memory"
0.001702] ACPI: Reserving FACP table memory at [mem 0xce3f00f0-0xce3f01e3]
0.001704] ACPI: Reserving DSDT table memory at [mem 0xce3f0470-0xce3f2794]
         0.001705] ACPI: Reserving FACS table |
0.001706] ACPI: Reserving FACS table |
0.001707] ACPI: Reserving APIC table |
0.001708] ACPI: Reserving SSDT table |
                                                                                                                    at [mem 0xce3f0200-0xce3f023f]
                                                                                                                   at [mem 0xce3f0200-0xce3f023f]
                                                                                                                   at [mem 0xce3f0240-0xce3f0293]
                                                                                                                   at [mem 0xce3f02a0-0xce3f046b]
          0.015686] Early
                                                               node ranges
         0.026156] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff] 0.026159] PM: hibernation: Registered nosave memory: [mem 0x00009f000-0x00009ffff] 0.026160] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000effff] 0.026161] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000fffff] 0.026161] PM: hibernation: Registered nosave memory: [mem 0x0000f0000-0x000fffff]
0.044718] Memory: 3234604K/3378744K available (16393K kernel code, 3265K rwdata, 124

i8K rodata, 3032K init, 4596K bss, 143880K reserved, 0K cma-reserved)

0.084575] Freeing SMP alternatives memory: 44K

0.189153] x86/mm: Memory block size: 128MB
         0.084575; Freeing Nemory block size: 128m
0.189153] x86/mm: Memory block size: 128m
0.859342] Freeing initrd memory: 32096K
0.2523731 Non-volatile memory driver v1.3
                                                                  y block size: 128MB
          1.229346] Freeing unused decrypted memory: 2036K
1.230040] Freeing unused kernel image (initmem):
         1.230742] Freeing unused kernel image (text/rodata gap) memory: 2036K
1.231284] Freeing unused kernel image (rodata/data gap) memory: 1868K
2.714007] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO = 2
  18 kB, surface = 507904 kB
         2.714013] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 k
5.048354] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-M
                                                                                                                                                          size is 16384 kiB
                                                                                                                                                                                                            y (00
avobrezkova@a
                                              zkova:~]
```

Рис. 5.3: Объем доступной памяти

```
[avobrezkova@avobrezkova:~] dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[avobrezkova@avobrezkova:~] dmesg | grep -i "Mount"
[ 0.071067] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.071074] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 5.042152] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary
Executable File Formats File System Automount Point.
[ 5.055287] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
[ 5.052751] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File System...
[ 5.062757] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File System...
[ 5.070492] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File System...
[ 5.180793] systemd[1]: Starting systemd-remount-fs.service - Remount Root and Kernel File Systems...
[ 5.188484] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[ 5.195132] systemd[1]: Mounted dev-mugeue.mount - POSIX Message Queue File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 5.196560] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 6.755361] EXT4-fs (sdal): mounted filesystem with ordered data mode. Quota mode: non e.
[ avobrezkova@avobrezkova:~]
[ 1] 0:bash* "avobrezkova" 14:03 18-фes-23
```

Рис. 5.4: Типы гипервизора, системы корн раздела и последовательность монтирования файлов

Данные изменения можно проверить по ссылке: https://github.com/avobrezko va/study_2022-2023_os-intro/tree/master/labs/lab01

#Контрольные вопросы

1. Какую информацию содержит учетная запись пользователя?

Учетная запись пользователя содержит в себе:

Имя пользователя

Идентификационный номер пользователя

Идентификационный номер группы

Пароль

Полное имя

Домашний каталог

Начальную оболочку

2. Укажите команды терминала и приведите примеры:

Для получения справки по команде - help

Для перемещения по файловой системе - cd

Для просмотря содержимого каталога - ls

Для определения объема каталога - du

Для создания / удвления каталога или файла - mkdir - создание, rm -r - удаление

Для задания определенных прав на файл или каталог - touch/rm

Для просмотра истории команд - history

3. Что такое файловая система? ПРиведите примеры с краткой характеристикой.

Файловая система - это порядок, определяющий способ организации, хранения и наименования данных на носителях в ПК, а также в другом электронном оборудовании. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

DF - утилита, которая показывает список всех файловых систем по имени устройства, сообщает их размер, занятое и свободное пространство и точки монтирования.

5. Как удалить зависший процесс?

С помощью команды killall-killall ().

6 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настроила минимально необходимые сервисы для дальнейшей работы.

Список литературы

1. https://esystem.rudn.ru/mod/page/view.php?id=971073