

30V Complementary MOSFET

General Description

The AO4606 uses advanced trench technology MOSFETs to provide excellent $R_{\text{DS}(\text{ON})}$ and low gate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

Product Summary

 I_{D} = 6A (V_{GS} =10V) -6.5A (V_{GS} =-10V)

 $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})} \qquad \qquad \mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$

 $< 30 m\Omega \ (V_{GS} = 10 V) \\ < 42 m\Omega \ (V_{GS} = 4.5 V) \\ < 44 m\Omega \ (V_{GS} = 4.5 V)$

100% UIS Tested 100% UIS Tested 100% R_g Tested 100% R_g Tested

Absolute Maximum	Ratings	T _A =25℃ unless	otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage		V_{DS}	30	-30	V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous Drain	T _A =25℃	I_	6	-6.5		
Current	T _A =70℃	'D	5	-5.3	Α	
Pulsed Drain Current ^Ċ		I _{DM}	30	-30		
Avalanche Current ^C		I _{AS} , I _{AR}	10	23	Α	
Avalanche energy L=	0.1mH ^C	E _{AS} , E _{AR}	5	26	mJ	
	T _A =25℃	P _D	2	2	W	
Power Dissipation ^B	T _A =70℃	l D	1.3	1.3	v v	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150		C	

Thermal Characteristics							
Parameter		Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s	D	48	62.5	℃/W		
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	74	90	℃/W		
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	32	40	C/W		

N-Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	I _D =250μA, V _{GS} =0V				V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1	μΑ	
idss	Zero Gate Voltage Drain Current					5		
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V	•			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.2	1.8	2.4	V	
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		30			Α	
		V_{GS} =10V, I_D =6A			25	30	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		40	48	11122	
		V_{GS} =4.5V, I_D =5A			33.5	42	mΩ	
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=6A$			15		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.76	1	V	
Is	Maximum Body-Diode Continuous Cur	rent				2.5	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance			200	255	310	pF	
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=	V_{GS} =0V, V_{DS} =15V, f=1MHz		45	60	рF	
C _{rss}	Reverse Transfer Capacitance]		20	35	50	pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.6	3.25	4.9	Ω	
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge		V _{GS} =10V, V _{DS} =15V, I _D =6A		5.2	6	nC	
Q _g (4.5V)	Total Gate Charge	\/10\/_\/15\/_I			2.55	3	nC	
Q_{gs}	Gate Source Charge	VGS=10V, VDS=13V, 1			0.85		nC	
Q_{gd}	Gate Drain Charge				1.3		nC	
t _{D(on)}	Turn-On DelayTime				4.5		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =2.5 Ω ,			2.5		ns	
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$	$R_{GEN}=3\Omega$		14.5		ns	
t _f	Turn-Off Fall Time]			3.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A, dI/dt=100A/μs			8.5	12	ns	
Q_{rr}	Body Diode Reverse Recovery Charge	e I _F =6A, dI/dt=100A/μs	-		2.2	3	nC	

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The A. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using $\le 10s$ junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initialT_J=25° C.

D. The R_{0JA} is the sum of the thermal impedence from junction to lead R_{0JL} and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

1000

10

100

0.0001

0.0001

0.001

N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.01 0.1 Pulse Width (s)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

P-Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V		
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-30V, V_{GS} =0V			-1			
DSS	Zero Gate Voltage Drain Current	T _J =55℃			-5	μΑ		
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-1.3	-1.85	-2.4	V		
I _{D(ON)}	On state drain current	V_{GS} =-10V, V_{DS} =-5V	-30			Α		
		V_{GS} =-10V, I_D =-6.5A		22	28	mΩ		
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125℃		32	40	11152		
		V_{GS} =-4.5V, I_D =-5A		34	44	mΩ		
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-6.5A		18		S		
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.8	-1	V		
Is	Maximum Body-Diode Continuous Current				-2.5	Α		
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance			760		pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		140		pF		
C _{rss}	Reverse Transfer Capacitance			95		pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	1.5	3.2	5	Ω		
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge			13.6	16	nC		
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =-15V, I _D =-6.5A		6.7	8	nC		
Q_{gs}	Gate Source Charge	- VGS-10V, VDS-13V, ID-0.3A		2.5		nC		
Q_{gd}	Gate Drain Charge			3.2		nC		
t _{D(on)}	Turn-On DelayTime			8		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =-15V, R_L =2.3 Ω ,		6		ns		
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		17		ns		
t _f	Turn-Off Fall Time			5		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =-6.5A, dI/dt=100A/μs		15		ns		
Q_{rr}	Body Diode Reverse Recovery Charge	_F I _F =-6.5A, dI/dt=100A/μs		9.7		nC		

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The A. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using $\le 10s$ junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initialT_{.l}=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

0.01

0.001 0.00001

0.0001

0.001

P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

0.01

 P_{D}

10

100

1000

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

