Unleashing Uncertainty: Efficient Machine Unlearning for Generative Al

Christoforos Spartalis, Theodoros Semertzidis, Petros Daras, Efstratios Gavves

Motivations

- **Information-Theoretic** Unlearning for GenAl
- Efficiency ~ Cost & Latency of Model Correction

SAFEMax

- Leverages the inherent Gaussian noise of the diffusion process to maximize the entropy in generted images of impermissible classes \rightarrow halts the denoising process
- Efficiently balances forgetting and retention by focusing unlearning on the semantically rich steps.

Why Entropy Maximization?

$$Pr\{X \neq \hat{X}\} \ge \frac{H(X \mid \hat{X}) - 1}{\log \mid \mathcal{X} \mid}$$

Semantics of an original image Semantics of a generated image

$$\mathcal{L}_f = \mathbb{E}_{t \in [1,T], \epsilon \sim \mathcal{N}(0,1)} [\psi(t) \mid | \mathbf{f}_t - \epsilon_{\theta}(x_t, c_f, t) \mid |_2^2]$$

Balancing Forgetting & Retention

$$\psi(t) = \exp(-\lambda \frac{t}{T}), \quad \text{for } t \in [0, T]$$

Effect of decaying scheduler $(\lambda = 1)$ vs. no scheduler $(\lambda = 0)$. SAFEMax improves the image quality for retained classes (see 5.62% improvement in FID), while still unlearning perfectly. UA (%) ↑ FID↓

class, as shown by the drop in UA.

Results

SS	SA (Heng & Soh, 2023)			SalUn (Fan et al., 2024)			SAFEMax (Ours)		
Class	FID ↓	$RTE\downarrow$	$GPU \downarrow$	FID ↓	$RTE\downarrow$	$GPU \downarrow$	FID ↓	$RTE\downarrow$	GPU ↓
0	14.29	174.32	17.29	14.11	11.56	23.22	13.11	5.82	9.50
1	18.72	174.37	17.29	16.85	11.96	23.23	18.01	5.79	9.50
2	18.55	174.38	17.29	18.24	11.97	23.24	17.07	5.80	9.50
3	17.66	174.76	17.29	16.84	12.03	23.23	15.64	5.89	9.50
4	17.67	174.87	17.29	16.64	12.03	23.24	16.89	5.80	9.50
5	17.31	174.62	17.29	16.95	11.29	23.23	17.07	5.79	9.50
6	17.71	173.75	17.29	16.78	12.00	23.23	16.80	5.79	9.50
7	18.37	173.76	17.29	16.93	12.00	23.23	17.93	5.90	9.50
8	18.56	174.26	17.29	18.72	11.99	23.24	18.20	5.80	9.50
9	18.28	174.65	17.29	15.55	11.98	23.24	16.66	5.85	9.50
μ	17.71	174.37	17.29	16.76	11.81	23.23	16.74	5.83	9.50
σ	1.29	0.38	0.00	1.27	0.25	0.01	0.32	0.04	0.00

Run Time Estimation

- 30x faster than Selective Amnesia (SA)
 - 230x faster including the priors used by SA
- 2x faster than Saliency Unlearning (SalUn)

GPU Memory Usage

- 45% more efficient than Selective Amnesia
- 59% more efficient than Saliency Unlearning

SS	SA (Her	ng & Soh, 2023)	SalUn (F	an et al., 2024)	SAFEMax (Ours)		
Class	$H\uparrow$	UA (%) ↑	$H \uparrow$	UA (%) ↑	$H \uparrow$	UA (%) ↑	
0	1.062	98.60	0.051	99.00	1.132	100.00	
1	0.987	99.60	0.032	100.00	1.156	100.00	
2	0.948	1.80	0.084	98.80	1.156	0.00	
3	1.006	100.00	0.068	99.60	1.122	100.00	
4	0.926	100.00	0.085	99.60	1.128	100.00	
5	0.908	100.00	0.040	99.60	1.118	100.00	
6	0.993	100.00	0.045	100.00	1.144	100.00	
7	1.007	100.00	0.027	100.00	1.136	100.00	
8	0.900	100.00	0.045	99.20	1.152	100.00	
9	0.998	100.00	0.057	99.20	1.124	100.00	

UA=99.00%

SAFEMax (Our) FID=**13.11** UA=**100.00**%

Unlearning Class 2 (birds) FID=18.55

UA=1.80%

SalUn FID=18.24

UA=98.80%

SAFEMax (Our) FID=**17.07** UA=0.00%

Future Work

- Alternative Evaluation of Unlearning Accuracy
- Resilience to Unlearning Attacks
- Concept Unlearning

Reference

Spartalis et al. "LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty". Proceedings of the Computer Vision and Pattern Recognition Conference 2025.

