MA 105 D1: Tutorial 13

Ravi Raghunathan

Department of Mathematics

Autumn 2014, IIT Bombay, Mumbai

Solutions to problems from Tutorial 13

These slides provide some solutions to the problems assigned in Tutorial 13. Sometimes, I have only indicated the methods to be used or the final answer. I have also commented on some issues that came up during the class.

Exercise 13.2: Verify the Divergence Theorem for

$$\mathbf{F}(x,y,z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$$

for the region in the first octant bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Solution: We denote by R the region bounded by the given plane. We first evaluate the volume integral in Gauss' Theorem.

The solution to Exercise 13.2

We have div $\mathbf{F} = (y + z + x)$.

$$\iiint_{R} (x+y+z)dV = \iiint_{R} xdV + \iiint_{R} ydV + \iiint_{R} zdV$$

$$= \int_{0}^{c} \int_{0}^{b(1-\frac{z}{c})} \int_{0}^{a(1-\frac{y}{b}-\frac{z}{c})} xdxdydz + (\cdots) + (\cdots)$$

$$= \frac{a^{2}bc}{24} + \frac{ab^{2}c}{24} + \frac{abc^{2}}{24}$$

$$= \frac{abc}{24}(a+b+c).$$

We now evaluate the other side of Gauss' Theorem.

The solution to Exercise 13.2, continued

The boundary of the region R consists of four triangular surfaces, three of which lie in the planes formed by the three coordinate planes. For each of these regions we can easily check that $\mathbf{F} \cdot \mathbf{n} = 0$.

For instance, we have

$$S_1: z=0; \frac{x}{a}+\frac{y}{b}\leq 1, x,y\geq 0$$

as one of the three boundary pieces, and along S_1

$$\mathbf{n} = -\mathbf{k}$$
, so $\mathbf{F} \cdot \mathbf{n} = -xz = 0$ (as $z = 0$ on S_1),

and the other two triangular surfaces are treated similarly. This leaves us only the the triangular surface S_4 defined by $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and $x, y, z \ge 0$.

The solution to Exercise 13.2, continued

Along S_4 , the outward normal (to $z=c(1-\frac{x}{a}-\frac{y}{b})\equiv f(x,y)$) is $(\frac{c}{a},\frac{c}{b},1)$ so that

$$\iint_{S_4} \mathbf{F} \cdot \mathbf{n} dS = \iint_{\frac{x}{a} + \frac{y}{b} \le 1; x, y \ge 0} \left(\frac{cxy}{a} + \frac{cyz}{b} + zx \right) dS$$

$$= \int_0^a \int_0^{b(1 - \frac{x}{a})} \frac{cxy}{a} dx dy + (\cdots) + (\cdots)$$

$$= \frac{ab^2c}{24} + \frac{abc^2}{24} + \frac{a^2bc}{24}$$

$$= \frac{abc}{24} (a + b + c).$$

This proves what we want.

Exercise 13.5

Exercise 13.5: Let V be the volume of a region bounded by a closed surface S and $\mathbf{n} = (n_x, n_y, n_z)$ be its outer unit normal. Prove that

$$V = \iint_{S} x \, n_{x} \, dS = \iint_{S} y \, n_{y} \, dS = \iint_{S} z \, n_{z} \, dS$$

Solution: Let $\mathbf{F} = x\mathbf{i}$, and apply the divergence theorem. Then

$$V = iiint_R 1 dV = \iint_S x n_x dS.$$

Similarly, taking $\mathbf{F} = y\mathbf{j}$ and $\mathbf{F} = z\mathbf{k}$, we get the other two integrals.

Exercise 13.7

Exercise 13.7: Compute

$$\iint_{S} yz \, dydz + zx \, dzdx + xy \, dxdy,$$

where S is the unit sphere.

Solution: In class I made things unnecessarily complicated. Here is the correct calculation. When the parametrisation is given by a graph $z = f(x, y) = \sqrt{1 - x^2 - y^2}$, we know that

$$\|\Phi_x \times \Phi_y\| = \sqrt{1 + f_x^2 + f_y^2}.$$

One sees easily that $f_x = x/z$ and $f_y = y/z$, from which it follows that

$$dS = \frac{(x^2 + y^2 + z^2)dxdy}{z} = \frac{dxdy}{z}.$$

It follows that $\mathbf{F} \cdot \mathbf{n} dS = yzdydz + zxdzdx + xydxdy$ when $\mathbf{F} = (yz, zx, xy)$ and $\mathbf{n} = (x, y, z)$

The solution to Exercise 13.7

Applying Gauss' Theorem to the volume enclosed by the sphere, and observing that $\nabla \cdot \mathbf{F} = 0$, we see that the given integral is identically zero.

Many students pointed out that one can use the ideas of Exercise 11.2 to do the same calculation as above a little more quickly.

Exercise 13.8

Exercise 13.8: Let $\mathbf{u} = -x^3\mathbf{i} + (y^3 + 3z^2\sin z)\mathbf{j} + (e^y\sin z + x^4)\mathbf{k}$ and S be the portion of the sphere $x^2 + y^2 + z^2 = 1$ with $z \ge \frac{1}{2}$ and \mathbf{n} is the unit normal with positive z-component. Use Divergence theorem to compute

$$\iint_{S} (\nabla \times \mathbf{u}) \cdot \mathbf{n} \, dS.$$

Solution: The basic idea is to use the divergence theorem to change the surface over which the surface integral is calculated. Let S denote the given surface and S_1 the disc $x^2+y^2+z^2=1$, z=1/2. Then $S\cup S_1$ is a closed surface (without a boundary!) to which we may apply Gauss's Theorem. Since $\nabla\cdot(\nabla\times u)=0$ we see that

$$\iint_{S} = -\int_{S_1} (\nabla \times u) dS.$$

However, it is easy to see that $(\nabla \times u) \cdot \mathbf{n} = 0$ on the surface S_1 , so the desired integral is 0.