Convex Optimization: Reading Notes 2

GKxx

May 6, 2022

1 Convexity-preserving functions

Definition 1.1 (Affine function). An affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ is of the form

$$f(x) = Ax + b$$

with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{n}$.

Proposition 1.2. The image of a convex set under an affine function is convex.

Proof. Suppose $S \subseteq \mathbb{R}^n$ is convex and f(x) = Ax + b is an affine function $f : \mathbb{R}^n \to \mathbb{R}^m$. For any $f(x), f(y) \in f(C)$ and any $\theta \in [0, 1]$, the convex combination is $\theta f(x) + (1 - \theta)f(y) = A(\theta x + (1 - \theta)y) + b = f(\theta x + (1 - \theta)y)$, while $\theta x + (1 - \theta)y \in C$ due to the convexity of C. Therefore, $\theta f(x) + (1 - \theta)f(y) \in f(C)$.

Proposition 1.3. The inverse image of a convex set under an affine function is convex.

Proof. Suppose C is a convex set and f(x) = Ax + b is an affine function. We will show that

$$f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\}$$

is convex. For any $x, y \in \mathbb{R}^n$ with $f(x), f(y) \in C$ and any $\theta \in [0, 1]$, we have that

$$f(\theta x + (1 - \theta)y) = A(\theta x + (1 - \theta y) + b = \theta(Ax + b) + (1 - \theta)(Ay + b)) = \theta f(x) + (1 - \theta)f(y).$$

This is in the set C because C is convex and both f(x) and f(y) are in C.

Example 1.4. The hyperbolic cone

$$\mathsf{H} = \left\{ x \in \mathbb{R}^n \mid x^\mathsf{T} \mathsf{P} x \leqslant \left(c^\mathsf{T} x \right)^2, c^\mathsf{T} x \geqslant 0 \right\},$$

where $P \in \mathbb{S}^n_+$ and $c \in \mathbb{R}^n$, is convex.

Proof. H is the inverse image of the second-order cone

$$K = \{(z, t) \mid z^{\mathsf{T}}z \leqslant t^2, t \geqslant 0\}$$

under the affine function $f: \mathbb{R}^n \to \mathbb{R}^{n+1}$ given by

$$f(x) = \begin{bmatrix} P^{1/2} \\ c^T \end{bmatrix} x.$$

Definition 1.5 (Perspective function). A perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is of the form

$$P(x, t) = x/t$$

where $x \in \mathbb{R}^n$ and t > 0. It can also be written as

$$P(x) = \frac{1}{x_{n+1}} \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T.$$

Proposition 1.6. The image of a convex set under a perspective function is convex.

Proof. Suppose $C \subseteq \mathbb{R}^n \times \mathbb{R}_{++}$ is a convex set and P is a perspective function. For every $x = (\tilde{x_n}, x_{n+1}), y = (\tilde{y_n}, y_{n+1}) \in C$ and every $\theta \in [0, 1]$, we have that

$$\begin{split} P(\theta x + (1-\theta)y) &= \frac{\theta \tilde{x_n} + (1-\theta)\tilde{y_n}}{\theta x_{n+1} + (1-\theta)y_{n+1}} \\ &= \frac{\tilde{x_n}}{x_{n+1}} \cdot \frac{\theta x_{n+1}}{\theta x_{n+1} + (1-\theta)y_{n+1}} + \frac{\tilde{y_n}}{y_{n+1}} \cdot \frac{(1-\theta)y_{n+1}}{\theta x_{n+1} + (1-\theta)y_{n+1}} \\ &= \mu P(x) + (1-\mu)P(y), \end{split}$$

where

$$\mu = \frac{\theta x_{n+1}}{\theta x_{n+1} + (1-\theta)y_{n+1}} \in [0,1].$$

It is obvious that μ is monotonic with respect to θ , so the image of the line segment [x,y] under P is [P(x), P(yy)]. Due to the convexity of C, we have $[x,y] \subseteq C$ and therefore $[P(x), P(y)] \subseteq P(C)$. Then for every $\theta \in [0,1]$ we have $\theta P(x) + (1-\theta)P(y) \in [P(x), P(y)] \subseteq P(C)$, so P(C) is convex.

Proposition 1.7. The inverse image of a convex set under a perspective function is convex.

Proof. Suppose $C \subseteq \mathbb{R}^n$ is a convex set and P is a perspective function. Take any $x,y \in P^{-1}(C)$ so that $P(x), P(y) \in C$. For any $\theta \in [0,1]$, let $x_0 = \theta x + (1-\theta)y \in [x,y]$ be the convex combination induced by θ, x, y . We have shown that P([x,y]) = [P(x), P(y)], so

$$P(x_0) \in P([x,y]) = [P(x), P(y)].$$

Since C is convex and $P(x), P(y) \in C$, the line segment [P(x), P(y)] is a subset of C. Hence $P(x_0) \in C \Rightarrow x_0 \in P^{-1}(C)$.

Definition 1.8 (Linear-fractional function). A linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$ is of the form

$$f(x) = \frac{Ax + b}{c^Tx + d}, \quad \text{dom}\, f = \left\{x \mid c^Tx + d > 0\right\}.$$

It is the composition of an affine function q and the perspective function P, where

$$g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}.$$

The following two propositions are easy to see by viewing a linear-fractional function as the composition of an affine function and a preserving function.

Proposition 1.9. The image of a convex set under a linear-fractional function is convex.

Proposition 1.10. The inverse image of a convex set a linear-fractional function is convex.

2 Generalized inequalities

Definition 2.1 (Proper cone). A cone $K \subseteq \mathbb{R}^n$ is said to be a proper cone if

- K is convex.
- K is closed (contains its boundary).
- K is solid (has nonempty interior).
- K is pointed (contains no line, or equivalently, $\pm x \in K \Rightarrow x = 0$).

Definition 2.2 (Generalized inequalities). The generalized inequalities on \mathbb{R}^n can be defined by a proper cone $K \subseteq \mathbb{R}^n$ as:

$$x \leq_K y \iff y - x \in K.$$

 $x \prec_K y \iff y - x \in \text{int } K.$

Example 2.3. The componentwise inequality is the generalized inequality defined by $K = \mathbb{R}^n_+$, which is the nonnegative orthant.

Example 2.4. The generalized inequality defined by the positive semi-definite cone $K = \mathbb{S}^n_+$ is

$$X \leq_{\mathbb{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \in \mathbb{S}^n_+.$$

Proposition 2.5. The generalized inequality \leq_K defined by a proper cone K is an ordering relation.

Proof. 1. Reflectivity: For any $x \in \mathbb{R}^n$, $x \leq_K x$ because $x - x = 0 \in K$.

- 2. Transitivity: If $x \leq_K y$ and $y \leq_K z$, then $z x = (z y) + (y x) \in K$ because K is a convex cone.
- $\text{3. Antisymmetry: If } x \preceq_K y \text{ and } y \preceq_K x \text{, then } \pm (x-y) \in K \Rightarrow x-y = 0 \Rightarrow x = y.$

Proposition 2.6. The generalized inequality \leq_{K} defined by a proper cone K is preserved under addition, nonnegative scaling and limits.

Proof. • If $x \leq_K y$ and $u \leq_K v$, then $(y+v)-(x+u)=(y-x)+(v-u) \in K$ because K is a convex cone.

- $\bullet \ \ \mathrm{If} \ x \preceq_K y, \ \mathrm{then} \ \alpha x \preceq_K \alpha y \ \mathrm{for \ any \ scalar} \ \alpha \geqslant 0 \ \mathrm{because} \ \alpha y \alpha x = \alpha (y-x) \in K.$
- We first show that if $x_n \in K$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n$ exists, then $x = \lim_{n \to \infty} x_n \in K$. Assume that $x \notin K$. Since K is closed, there exists $u \in K$ such that $\|x u\|_2 = \min_{v \in K} \|x v\|_2$. Take $\varepsilon = \frac{1}{2} \|x u\|_2$, then there exists $N \in \mathbb{N}$ such that for every n > N we have $\|x_n x\|_2 < \frac{1}{2} \|x u\|_2$. This shows that $\|x x_n\|_2 < \|x v\|_2$ for every $v \in K$, so $x_n \notin K$ for n > N, a contradiction.

Then we are done by definition of generalized inequality and noting that $\lim_{n\to\infty} y_n - \lim_{n\to\infty} x_n = \lim_{n\to\infty} (y_n - x_n)$.

Definition 2.7 (Minimum element). $x \in S$ is the minimum element of S with respect to \preceq_K if $x \preceq_K y$ holds for every $y \in S$.

Definition 2.8 (Minimal element). $x \in S$ is the minimal element of S with respect to \leq_K if for every $y \in S$ with $y \leq_K x$, we have y = x.

Remark 2.9. The minimum element of a set with respect to a generalized inequality is unique, and it is also a minimal element.

3 Separating and supporting hyperplanes

Theorem 3.1 (Separating hyperplane). Suppose C and D are nonempty disjoint convex sets. Then there exist $a \neq 0$ and b such that $a^Tx \geqslant b$ for all $x \in C$ and $a^Tx \leqslant b$ for all $x \in D$. The hyperplane $\{x \mid a^Tx = b\}$ is called the separating hyperplane for the sets C and D.

Proposition 3.2. For nonempty disjoint convex sets C and D, the set $F = \{x - y \mid x \in C, y \in D\}$ is a convex set that does not contain 0. There exist $a \neq 0$ such that $a^Tx \geqslant 0$ holds for every $x \in F$. This is equivalent to the separating hyperplane theorem.

Theorem 3.3 (Supporting hyperplane). For any nonempty convex set C and any $x_0 \in \mathbf{bd} C$, there exists a supporting hyperplane $\{x \mid a^T x = a^T x_0\}$, for some $a \neq 0$, to C at the point x_0 .

Proof. If the interior of C is nonempty, then the result follows immediately from applying the separating hyperplane theorem to $\{x_0\}$ and **int** C. If the interior of C is empty, then C must be contained in an affine set with dimension strictly less than n. Then any hyperplane containing this affine set contains C, which is a trivial supporting hyperplane.

Now we prove the separating hyperplane theorem expressed in 3.2.

Lemma 3.4. The closure of a convex set is convex.

Proof. Suppose C is a convex set. We will show that for any $x,y \in cl C$ and $\theta \in [0,1]$, $x_0 = \theta x + (1-\theta)y \in cl C$, or equivalently any neighborhood of x_0 intersects C. Let O be an open neighborhood of x_0 . Consider the function $g(u,v) = \theta u + (1-\theta)v$. Since $g(x,y) = x_0 \in O$ and that $g(\cdot)$ is continuous, there exist open sets U and V such that $g(U,V) \subseteq O$ and that $x \in U,y \in V$. Since $x,y \in cl C$, we can take $x_0 \in U \cap C$ and $y_0 \in V \cap C$ so that $g(x_0,y_0) \in C$. Since $g(x_0,y_0) \in O$, we can see that $O \cap C \neq \emptyset$, so cl C is convex.

Proof of Proposition 3.2. First, we prove the separating hyperplane theorem for the case where the closure of the convex set F does not contain 0. We have shown in Lemma 3.4 that the closure $\mathbf{cl} \, \mathbf{F}$ is convex. Now take $\mathbf{a} = \arg\min_{\mathbf{u} \in \mathbf{cl} \, \mathbf{F}} \|\mathbf{u}\|_2 \neq 0$. Assume that there exists $\mathbf{x} \in \mathbf{cl} \, \mathbf{F}$ such that $\mathbf{x}^\mathsf{T} \, \mathbf{a} \leq 0$. Consider $\mathbf{f}(\theta) = \|\theta \, \mathbf{a} + (1 - \theta)\mathbf{x}\|_2^2$. We have that

$$\begin{split} f'(\theta) &= \frac{d}{d\theta} \left(\theta \alpha + (1 - \theta) x \right)^T \left(\theta \alpha + (1 - \theta) x \right) \\ &= 2\theta \left\| \alpha \right\|_2^2 + 2(1 - \theta) \left\| x \right\|_2^2 + 2(1 - 2\theta) \alpha^T x. \end{split}$$

When $\theta = 1$ we have $f'(1) = 2\alpha^T\alpha - 2\alpha^Tx > 0$. Therefore, there exists $\xi \in [0,1]$ such that $\|\xi\alpha + (1-\xi)x\|_2 < \|\alpha\|_2$, while $\xi\alpha + (1-\xi)x \in \mathbf{cl}\,F$ due to the convexity of $\mathbf{cl}\,F$. This contradicts the fact that $\alpha = \arg\min_{u \in \mathbf{cl}\,F} \|u\|_2$. From this we have in fact proved the strict separating hyperplane theorem for this case.

Now we consider the case where $\mathbf{cl}\,\mathsf{F}$ contains 0. Suppose the affine dimension of F is m . Take the maximum set of linearly independent vectors of F , which is $\{\nu_1,\cdots,\nu_m\}$. Let $w=-\nu_1-\cdots-\nu_m$. We claim that $\forall \alpha>0$ the point αw is not in $\mathbf{cl}\,\mathsf{F}$. Assume that there exists $\alpha>0$ such that $\alpha w\in\mathbf{cl}\,\mathsf{F}$. Take a sequence $\{w^{(n)}\}$ in C which converges to αw . Let $w^{(n)}=\lambda_1^{(n)}\nu_1+\cdots+\lambda_m^{(n)\nu_m}$ for some coefficients $\lambda_1^{(n)},\cdots,\lambda_m^{(n)}$. Since $\alpha>0$ and that $\{w^{(n)}\}$ converges to αw , there exists $n_0\in\mathbb{N}$ such that $\lambda_1^{(n_0)},\cdots,\lambda_m^{(n_0)}<0$. Then $w^{(n_0)}=\lambda_1^{(n_0)}\nu_1+\cdots+\lambda_m^{(n_0)}\nu_m$, which implies that

$$0 = \frac{1}{1 - \sum_{i=1}^{m} \lambda_i^{(n_0)}} \left(w^{(n_0)} - \lambda_1^{(n_0)} - \dots - \lambda_m^{(n_0)} \right).$$

The right-hand side of the equation above is an convex combination of $w^{(n_0)}, v_1, \dots, v_m$. Since $w^{(n_0)}, v_1, \dots, v_m$ are all in F, we obtain $0 \in F$.

Take $\alpha_n = 1/n$ and $F_n = F - \alpha_n w = \{x - \alpha_n w \mid x \in F\}$. Then F_n is a convex set whose closure does not contain 0. As what we have shown, there exist ξ_n such that $\forall x \in \mathbf{cl} F_n$, $\xi_n^T x > 0$. Without loss of generosity, we can assume that $\{\xi_n\}$ is bounded, so that there exists a convergent subsequence $\{\xi_{n_k}\}$ which converges to ξ for some $\xi \neq 0$, according to the Bolzano-Weierstrass' Theorem. Therefore, for every $x \in F$ we have

$$\xi^{\mathsf{T}} x = \left(\lim_{k \to \infty} \xi_{n_k}\right)^{\mathsf{T}} x = \lim_{k \to \infty} \xi_{n_k}^{\mathsf{T}} \left(x - \alpha_{n_k} w\right) \geqslant 0.$$