Analisis Variansi (ANOVA)

Analisis Variansi

- 1. Tujuan Analisis Variansi
- 2. Asumsi-asumsi dalam Analisis Variansi
- 3. Hipotesis yang diuji dalam analisis variansi
- 4. Tabel Analisis Variansi
- 5. Contoh Kasus

Ilustrasi

Angkatan 1	Angkatan 2	Gabungan angkatan 1 & 2
хх		хх
x x x x		x x x x
x x x x x x		x x x x x x
x x x x x x x x	уу	x x x x x x x x y y
x x x x x x x x x x x	уууу	x x x x x x x x x x y y y y
x x x x x x x x x x x	y y y y y y	* * * * * * * * * * * * * * * * * * * *
x x x x x x x x x x x x x	y y y y y y y y	****************
x x x x x x x x x x x x x	, , , , , , , , , , , , , , , , , , ,	****************
x x x x x x x x x x x	y y y y y y y y y y y y y	x x x x x x x x x x x y y y y y y y y y
x x x x x x x x x	y y y y y y y y y y y y y y	x x x x x x x x x y y y y y y y y y y y
x x x x x x x	y	x x x x x x x y y y y y y y y y y y y y
	y y y y y y y y y y y y	x x x x x y y y y y y y y y y y
x x x x x	y	x x x y y y y y y y y y y
X X X	y y y y y y y	ххууууууу
x x	y y y y y y	хууууу
x	уууу	y y y y y
	ууу	ууу
	уу	уу
	у	у

Bila rata-rata setiap angkatan/kelompok hampir sama, maka variansi distribusi hasil penggabungan semua angkatan hampir minimal.

Ilustrasi

Gabungan angkatan 1 & 2

นุวเาสวา		х х
xxxx		x x x x
xxxxx		x x x x x x
x		x x x x x x x x
x	Angkatan 2	x x x x x x x x x x x
x x x x x x x x x x x x		x x x x x x x x x x x x
* * * * * * * * * * * * * * *		x x x x x x x x x x x x x x x
* * * * * * * * * * * * * *		x x x x x x x x x x x x x x
x		x x x x x x x x x x x
x		x x x x x x x x
x	уу	x x x x x x y y
x x x x x	, , y y y y	x x x x y y y y
ххх	, , , , , , , , , , , , , , , , , , ,	x x x y y y y y y y
x x	y y y y y y y	x x y y y y y y y y y
x	y y y y y y y y y y y	x y y y y y y y y y y y y
	y y y y y y y y y y y y	y y y y y y y y y y y y y
	y y y y y y y y y y y y y	y y y y y y y y y y y y y y
	y y y y y y y y y y y y	y y y y y y y y y y y y y
Angleston 1	y y y y y y y y y y y	y y y y y y y y y y y
Angkatan 1	y y y y y y y y y	y y y y y y y y y
	y	y
	y y y y y y	y y y y y y
	уууу	уууу
	ууу	ууу
	уу	у у
	У	у

Bila rata-rata setiap angkatan/kelompok jauh berbeda, maka variansi distribusi hasil penggabungan semua angkatan jauh lebih besar dibanding variansi setiap angkatan.

Membandingkan beberapa angkatan /kelompok yang terkait dapat dilakukan

dengan membandingkan masing-masing rataannya.

Tujuan Analisis Variansi

menguji apakah terdapat perbedaan yang signifikan antara rata-rata beberapa kelompok populasi (lebih dari dua), melalui ukuran-ukuran penyebaran (variansi) dari masing-masing kelompok populasi tersebut.

Hubungan Beberapa Variansi Terkait

Konsep Dasar Analisis Variansi

Variansi hasil penggabungan semua angkatan data terdiri atas

rata-rata variansi setiap angkatan

dan

variansi dari semua rata-rata angkatan

Asumsi-asumsi dalam Analisis Variansi

Populasi ke-i berdistribusi normal;

$$i = 1, 2, ..., k$$

$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2 = \sigma_k^2$$

 Populasi-populasi tidak berhubungan satu dengan yang lainnya (saling bebas)

Į	Zet	era	ng	an:

Jumlah:

- y_{ij} : pengamatan ke-j dalam perlakuan (populasi) ke-i; i = 1,2,...,k; j =1, 2, ..., n_i

 $\sum_{j=1}^{n_2} y_{2j}$

 y_{knk}

 $\sum_{j=1}^{n_k} y_{2j}$

 $-N = (n_1 + n_2 + ... + n_i + ... + n_k)$: total banyak pengamatan

 y_{1n1}

 $\sum_{j=1}^{n_1} y_{1j}$

Beberapa Besaran Anova

$$a=rac{1}{N}\left(\sum_{i=1}^k\sum_{j=1}^{n_i}y_{ij}
ight)^2$$
 $JKT=b-a$

Jumlah Kuadrat Total
$$b=\sum_{i=1}^k\sum_{j=1}^{n_i}y_{ij}^2$$
 $JKP=c-a$

Jumlah Kuadrat Perlakuan
$$c=\sum_{i=1}^k\frac{\left(\sum_{j=1}^{n_i}y_{ij}\right)^2}{n_i}$$
 $JKG=JKT-JKP$

$$=b-c$$

Jumlah Kuadrat Galat

Tiap pengamatan dapat ditulis dalam bentuk:

$$y_{ij} = \mu_i + \varepsilon_{ij}$$

dengan

 y_{ii} : pengamatan ke-i dalam perlakuan ke-i

 μ_i : rata-rata populasi pada perlakuan ke-i

 $arepsilon_{ij}$: penyimpangan pengamatan ke-j pada perlakuan

ke-i dari rataan perlakuan padanannya.

Hipotesis yang diuji dalam Analisis Variansi

H₀: rata-rata seluruh *k* populasi/perlakuan adalah sama

H₁: paling sedikit terdapat dua populasi yang rata-ratanya tidak sama,

atau

 $H_0: \mu_1 = \mu_2 = ... = \mu_k$ $H_1: \mu_i \neq \mu_j$, untuk paling sedikit sepasang *i* dan *j*, dengan *i*, *j* = 1, 2, ..., *k*

Tabel Analisis Variansi

Sumber Variasi	Jumlah Kuadrat	dk (derajat kebebasan)	Rata-rata Kuadrat	F
Antar Angkatan	JKP	k – 1	RKP = JKP/(k-1)	F _{hitung} =
Dalam Angkatan	JKG	N – k	RKG = JKG/(N-k)	RKP/RKG
Total	JKT	<i>N</i> – 1		

Keputuşan

H₀ benar kebebasan k-1 dan N-k

$$F_{\text{(hitung)}} > F_{\alpha(k-1,N-k)}$$
 $H_0 \text{ ditolak}$

 $\text{Ket}: F_{\alpha(k-1,N-k)}$ nilai distribusi F dengan derajat kebebasan k-1 dan N-k

Contoh Kasus

Berikut adalah data rata-rata curah hujan bulanan yang diamati dari Stasiun Padaherang pada tahun 2001 – 2004.

Sumber: Modul 3 Praktikum Mekanika Medium Kontinu "Medan Gravitasi"

Tahun	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agust	Sep	Okt	Nop	Des
2001	278.59	279.78	355.29	241.34	115.9	176.9	55.32	29.08	43.82	313.68	508.49	267.82
2002	299.78	245.88	266.64	185.27	122.22	133.1	76.78	32.4	26.09	169.05	461.62	415.73
2003	425.21	370.8	300.23	157.43	184.96	69.93	23.28	14.39	17.86	275.23	433.23	456.02
2004	547.8	308.2	388	93	297	128	47	5	87	105	389	371.6

 Asumsikan bahwa data berasal dari populasi yang berdistribusi normal dan setiap tahunnya adalah saling bebas. Ujilah hipotesis yang menyatakan bahwa rata-rata curah hujan setiap tahun di daerah tersebut tidak berbeda (gunakan tingkat signifikansi 5%)

Solusi

RUMUSAN HIPOTESIS

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: Paling sedikit dua diantara rata-rata tersebut tidak sama

Akan digunakan ANOVA untk menguji hipotesis tersebut, dengan taraf signifikansi 5%.

П

Beberapa perhitungan

Tahun		Data as	sli (y _{ij})		Data kuadrat (y _{ij} ²)			
Tanun	2001	2002	2003	2004	2001	2002	2003	2004
Jan	278.59	299.78	425.21	547.8	77612.39	89868.05	180803.5	300084.8
Feb	279.78	245.88	370.8	308.2	78276.85	60456.97	137492.6	94987.24
Mar	355.29	266.64	300.23	388	126231	71096.89	90138.05	150544
Apr	241.34	185.27	157.43	93	58245	34324.97	24784.2	8649
Mei	115.9	122.22	184.96	297	13432.81	14937.73	34210.2	88209
Jun	176.9	133.1	69.93	128	31293.61	17715.61	4890.205	16384
Jul	55.32	76.78	23.28	47	3060.302	5895.168	541.9584	2209
Agust	29.08	32.4	14.39	5	845.6464	1049.76	207.0721	25
Sep	43.82	26.09	17.86	87	1920.192	680.6881	318.9796	7569
Okt	313.68	169.05	275.23	105	98395.14	28577.9	75751.55	11025
Nop	508.49	461.62	433.23	389	258562.1	213093	187688.2	151321
Des	267.82	415.73	456.02	371.6	71727.55	172831.4	207954.2	138086.6
Jumlah	2666.01	2434.56	2728.57	2766.6	819602.6	710528.2	944780.9	969093.6
Jumlah total	10595.74				3444005.27			

Beberapa Besaran Anova

$$a = \frac{1}{48} \left(\sum_{i=1}^{4} \sum_{j=1}^{n_i} y_{ij} \right)^2 = \frac{\left(10595, 74\right)^2}{48} = 2338952, 2$$

$$b = \sum_{i=1}^{4} \sum_{j=1}^{n_i} y_{ij}^2 = 3444005, 27$$

$$c = \sum_{i=1}^{4} \frac{\left(\sum_{j=1}^{n_i} y_{ij}\right)^2}{n_i} = \frac{\left(2666,01\right)^2}{12} + \frac{\left(2434,56\right)^2}{12} + \frac{\left(2758,57\right)^2}{12} + \frac{\left(2766,6\right)^2}{12} = 2344488,5$$

$$JKT = b - a = 1105053,1$$

$$JKP = c - a = 5536,2485$$

$$JKG = JKT - JKP = b - c = 1099516,8$$

TABEL ANOVA

 $f_{\text{hitung}} = RK_{P}/RK_{G}$

Sumber Variasi	Jumlah Kuadrat (JK)	derajat kebebasan (dk)	Rataan Kuadrat (RK)	f hitung	f tabel
Antar Angkatan (perlakuan)	5536.2485	3	1845.416	0.074	0.016
Dalam Angkatan (galat)	1099516.8	44	24989.02	0.074	2.816
Total	1105053.1	47	f_{t}	$_{ m abel}$ = $f_{0.05}$	5;3, 44

RK = JK/dk

PUTUSAN & SIMPULAN

Karena $f_{\rm hitung}$ = 0.074 < $f_{0.05(3, 44)}$ = 2,816, maka H_0 tidak ditolak.

Dapat disimpulkan bahwa untuk tingkat sifnifikansi 5% tidak ada perbedaan signifikan antara rata-rata curah hujan tahun 2001 – 2004 di lokasi tersebut.

Perhatikan bahwa untuk α = 1% diperoleh $f_{0.01(3,47)}$ = 4,261

Untuk α = 10% diperoleh $f_{0.1(3, 47)}$ = 2,213

Sehingga dapat disimpulkan bahwa rata-rata curah hujan tahun 2001 – 2004 di lokasi tersebut tidak berbeda signifikan untuk $1\% \le \alpha \le 10\%$

Referensi

- Walpole, Ronald E. Dan Myers, Raymond H., *Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan*, Edisi 4, Bandung: Penerbit ITB, 1995.
- Walpole, Ronald E., et.al, *Statistic for Scientist and Engineering*, 8th Ed., 2007.