Cálculo Numérico de 1 variable. Curso 2019-2020.

PRÁCTICA 5: INTEGRACIÓN

1. Introducción El objetivo de esta quinta práctica es trabajar la integración numérica. Los ficheros que podeis utilizar son trapecios.m, simpson.m.

2. Ejercicios

1. Queremos obtener una tabla de valores para la función

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

(distribución normal de media cero y desviación típica uno) para los valores de x comprendidos entre 0 y 4 con incrementos de 0.1 utilizando la regla compuesta de Simpson.

(a) Calcula en primer lugar, mediante un programa Matlab, la integral

$$\frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{t^2}{2}} dt$$

con un error menor que 10^{-6} . Se puede controlar experimentalmente el error por medio de la diferencia $\frac{1}{10}|S_{2n}-S_n|$. El fichero simpson.m contiene información para calcular la integral mediante la regla compuesta de Simpson pero no esta completo. Lo tenéis que terminar vosotros.

- (b) Utiliza las ideas del apartado anterior para construir la tabla deseada.
- 2. Escribe programas en Matlab para las fórmulas de cuadratura de Gauss-Legendre, Gauss-Chebyshev de tres y cuatro puntos (n=2, n=3) y utilizalos para aproximar las integrales

$$\int_{-1}^{1} \frac{\sin x}{x} dx, \quad \int_{-1}^{1} \frac{e^{x}}{\sqrt{1-x^{2}}} dx, \quad \int_{0}^{2} \frac{1}{1+x^{2}} dx, \quad \int_{0}^{\pi/4} x^{2} \sin x dx, \quad \int_{1}^{1.5} x^{2} \log x dx.$$

Compara los resultados obtenidos con los que saldrían si aplicas el método de los trapecios o el de Simpson. Utiliza los comandos de Matlab/Octave quad, quadl y trapz y compara los resultados. Mira en la ayuda de Matlab/Octave la información sobre estos comandos.

3. Fecha de entrega y presentación de la práctica La fecha de entrega será el lunes 9 de diciembre.

1