20、21全程考研资料请加群712760929

同在一片蓝天下, 我们用心浇灌, 你用心辩我, 同心协力, 尝创心底的那份辉煌 ……

2013 考研数学

成功数学模拟 5套 数学三

合工大(共创)亳州

www. hfutky.cn

- 名牌名校的超强辅导专家阵容
- 十八年考研辅导工作的结晶
- 五大顶尖数学名师亲临预测
- 每年最成功最负感名模拟试券
- 全国录取过线率最高的辅导团队

合肥共刨 (原合工大) 考研辅导中心

18755102168 Tel: 0551-2905018

成就梦想 共创军煌

20、21全程考研资料请加群712760929

Tel: 0551-2905018

2013年全国硕士研究生入学统一考试

数学三(模拟1)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

一、选择题: (1) ~ (8) 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个选项符合要求, 将所选项 母填在题后的括号里.	前的字
(1) 设 $x \to 0$ 时, $e^{x^3} - e^{\sin^3 x}$ 与 x^m 是同阶无穷小,则 $m = ($). (A) 4 (B) 5 (C) 6 (D)7	
(2) 若 $f(x,y)$ 在点 (x_0,y_0) 处的偏导数 $f'_x(x_0,y_0), f'_y(x_0,y_0)$ 均存在,则().	
(A) $\lim_{x \to x_0} f(x, y_0)$, $\lim_{y \to y_0} f(x_0, y)$ 均存在 (B) $f(x, y)$ 在点 (x_0, y_0) 处可微	À.
(C) $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在 (D) $f(x, y)$ 在点 (x_0, y_0) 处连续	
(3) 设 $f(x)$ 在 $(0,+\infty)$ 内为单调可导函数,它的反函数为 $f^{-1}(x)$,且 $f(x)$ 满足等式	I
$\int_{1}^{f(x)} f^{-1}(t) dt = x^{\frac{4}{3}} - 16, \text{if } f(x) = (1)$	
(A) $x^{\frac{1}{3}}-1$ (B) $2x^{\frac{1}{3}}-3$ (C) $3x^{\frac{1}{3}}-5$ (D) $4x^{\frac{1}{3}}-7$ (4) 下列结论中正确的是().	
(A) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则级数 $\sum_{n=1}^{\infty} u_n^2$ 必收敛	
(B) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则 u_n 必为 $\frac{1}{n}$ 的高阶无穷小($n \to \infty$) (C) 若 $\sum_{n=1}^{\infty} u_n$ 收敛和 $\sum_{n=1}^{\infty} v_n$ 绝对收敛,则 $\sum_{n=1}^{\infty} u_n v_n$ 必为绝对收敛	
(D) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且 $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$,则级数 $\sum_{n=1}^{\infty} v_n$ 必收敛	
(5) 设 n 阶矩阵 A 经第一行与第二行对调得矩阵 B ,矩阵 B 再经第一列与第二列对证阵 C ,则矩阵 A 与 C 为(
(A) 相似、合同且等价 (B) 相似但不合同 (C) 合同但不相似 (D) 等价但不 (6) 已知 3 阶矩阵 A 与 3 维列向量 α ,若向量组 α , $A\alpha$, $A^2\alpha$ 线性无关,且	泪似
$A^3\alpha = 3A\alpha - 2A^2\alpha$,则矩阵 A 属于特征值 $\lambda = 1$ 的特征向量是 () . (7) 设 X 与 Y 相互独立, $f_1(x)$, $f_2(y)$ 及 $F_1(x)$, $F_2(y)$ 分别是概率密度与分布函数,	则
$Z = \max(X, Y)$ 的概率密度函数为 ()	
(A) $f_1(x)f_2(x)$ (B) $f_1(x)F_1(x) + f_2(x)F_2(x)$	
(C) $f_1(x) + f_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$ (8) 设二维随机变量 (X,Y) 服从二维正态分布,则随机变量 $X+Y$ 与 $X-Y$ 不相关的	內充要
条件是(). $(A) F(Y) - F(Y) $ (B) $F(Y^2) - F(Y^2)$	
(A) $E(X) = E(Y)$ (B) $E(X^2) = E(Y^2)$ (C) $D(X) = D(Y)$ (D) $E(X^2) + [E(X)]^2 = E(Y^2) + [E(Y)]^2$	
(D, D(X, f), D(X, f), D(X, f), D(X, f)	

2013 数学模拟试卷

0551-2905018

评卷人 得分

二、填空题 : (9) \sim (14) 小题, 每小题 4 分, 共 24 分. 把答案填在题中的 横线上.

(9) 设函数
$$f(x)$$
 在 $x = 0$ 处可导,且 $\lim_{x \to 0} \frac{\sqrt[3]{1 - f(x) \ln(1 + x) - 1}}{\tan x (e^x - 1)} = 1$,

则 f'(0) =

(10) 设
$$f(x) = x(x+1)(x+2)\cdots(x+n-1)(x+n), n$$
 为正整数,则 $f^{(n)}(0) =$ ______.

(11) 微分方程
$$y'' - 4y' + 4y = \sin x + 3e^{2x}$$
 的通解为______

(12)
$$\[rac{\partial}{\partial t} f'(\ln x) = 1 + x \]$$
, $\[\[\] \] \int_{0}^{1/2} f'(2x) \, dx = \underline{\qquad}$
(13) $\[\] \[\] \[\] A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$, $\[\] \[\] M \mid A^* + 2A^{-1} + E \mid = \underline{\qquad}$

(14) 设 A,B 为相互对立的随机事件, $P(A)=0.6,\ 0< P(B)<1$,则 $P(\overline{A}\mid \overline{B})=$ ____.

三、解答题: (15)~(23)小题, 共 94 分. 解答应写出必要的文字说明、证明过程或演算步 蝘.

评卷人 得分

(15)(本**题满分 10 分**)设函数 y = y(x) 由参数方程 $\begin{cases} x = t - \lambda \sin t, \\ y = 1 - \lambda \cos t \end{cases}$ 定,其中 $\lambda \in (0,1)$ 为常数, $t \in (0,2\pi)$.(1)求函数 y(x) 的极值;(II) 求曲线 y = y(x) 的拐点.

评卷人 得分

(16) (本题满分 10 分) 设u = f(xy)满足 $\frac{\partial^2 u}{\partial x \partial y} = (xy+1)e^{xy}$, 其中 f(t), 当 $t \neq 0$ 时, 二阶导数连续, 且f'(1) = f(1) = e + 1,求f(xy).

评卷人 得分

(17) (本题满分 10 分) 计算 $I = \iint \sqrt{|y - x|} dxdy$, $D = \{(x, y) \mid |x| \le 1, 0 \le y \le 2 \}$

评卷人 得分

(18) (本题满分 10 分) 设函数 f(x) 在[0,1] 上连续, f(0)=0,且 $\int_{0}^{1} f(x) dx = 0$, 证明: $\exists \xi \in (0,1)$, 使得 $\int_{0}^{\xi} f(x) dx = \xi f(\xi)$.

得分 评卷人

(19) (**本題满分 10 分**) 设 $S(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$.(I) 确定微分方程 S'(x) + S(x) = f(x); (II) 求级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ 的和函数. (III) 求级

数 $\sum_{1}^{\infty} \frac{1}{4^{n-1}(2n-1)!}$ 的和.

评卷人 得分

(20) (本题满分 11 分)设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta$ 为 4 维列向量组,且 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 已知线性方程组 $Ax = \beta$ 的通解为:

 $\vec{\xi}_0 + k\vec{\xi}_1 = (-1,1,0,2)^T + k(1,-1,2,0)^T$, (I) 考察 β 是否可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出?可以时, 写出表达式;不可以时,写出理由;(II)求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta$ 的一个极大无关组

得分

(21)(**本题满分 11 分**)设A为三阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是其三个线性无 关的特征向量,且 $A\alpha_1 = \alpha_1 + 3\alpha_2$, $A\alpha_2 = 5\alpha_1 - \alpha_2$, $A\alpha_3 = \alpha_1 - \alpha_2 + 4\alpha_3.$

(I) 求矩阵 A 的特征值;(II) 求可逆 O.使得 $O^{-1}AO$ 为对角阵.

评卷人 得分

(22) (本题满分 11 分)设二维随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} kx^2, & |x| < y < 1, \\ 0, & 其他, \end{cases}$$

(I) 确定常数 k; (II) 求条件密度函数 $f_{Y/X}(y/x)$; (III) 求 Z=X+Y 的概率密度 $f_Z(z)$

得分	评卷人

(23) (本题满分 11 分) 设 X 与 Y 相互独立,且对应的概率密度分

$$X \square f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{\frac{-1}{\theta}x}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad Y \square f(y;\theta) = \begin{cases} \frac{2}{\theta} e^{\frac{-2}{\theta}y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

其中参数 $\theta > 0$,若 $Z = \min\{X,Y\}$,试求: (I) $Z = \min\{X,Y\}$ 的概率密度 $f(z,\theta)$; (II) Z_1, \dots, Z_n 为来自Z 的样本,求 θ 的极大似然估计 $\hat{\theta}_L$,(III) 求 $D(\hat{\theta}_L)$.

考生注意:本试卷共二十三题,满分150分,考试时间为3小时。

一、选择题: (1) ~ (8) 小题, 每小题 4分, 共 32分. 在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填

在题后的括号里. (1) 设函数 f(x) 在x=0 处可导,则 f(|x|) 在x=0 处可导的充分必要条件是().

(A) f(0) = 0, f'(0) = 0

- (B) f(0) = 0 与 f'(0) 的取值无关
- (C) f'(0) = 0 与 f(0) 的取值无关
- (D)与 f(0)及 f'(0) 取值均无关

- (A) -3 (B) $-\frac{3}{2}$ (C) $\frac{3}{2}$ (D) 0

(3)
$$\forall F(x) = \int_{e^{-x^2}}^1 dv \int_{-\ln v}^{x^2} f(v) du$$
, $\bigcup xF''(x) - F'(x) = ($

- (A) $f(e^{-x^2})$ (B) $-2x^2e^{-x^2}f(e^{-x^2})$ (C) $-4x^3e^{-x^2}f(e^{-x^2})$ (D) $4x^3e^{-x^2}f(e^{-x^2})$

(4) 设
$$0 \le a_n < \frac{1}{n}$$
, $(n = 1, 2, \dots)$,则下列级数中肯定收敛的是()

$$(A) \sum_{n=1}^{\infty} a_n$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n a_n^2$$

(C)
$$\sum_{n=1}^{\infty} \sqrt{a_n}$$

$$(D) \sum_{n=1}^{\infty} (-1)^n a_n$$

(5) 设矩阵 $A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$,则下列矩阵中与矩阵 A 等阶、合同但不相似的是

$$\begin{array}{cccc}
(A) & \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

$$(B)\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
 (D)
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$(D) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(6) 设A、B是n阶方阵,齐次方程式组AX=0与BX=0有相同的基础解系 ξ_1 下列方程组中以 51,52,53 为基础解系的方程组是(

(A)
$$\binom{A}{B}X = 0$$

(B)
$$ABX = 0$$
 (C) $BAX = 0$

(C)
$$BAX = 0$$

- (7) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, K , $X_n \in X$ 的简单随机样本,且

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 是样本方差,则方差 $D(S^2) = ($)

A.
$$\frac{\sigma^4}{n}$$
 ;

A.
$$\frac{\sigma^4}{n}$$
; B. $\frac{2\sigma^4}{n}$: C. $\frac{\sigma^4}{n-1}$

$$C. \frac{\sigma^4}{n-1}$$

- (8) 设随机变量 X 和 Y 独立同分布,记U=X-Y, V=X+Y,则随机变量U与V(
 - (A) 不独立:

(B) 独立;

(C) 相关系数为零

(D) 相关系数不为零;

、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

- (9) 设函数 y = y(x) 由方程式 $\int_{\frac{\sqrt{x}}{2}}^{y} \left| \sin t^2 \right| dt + \int_{0}^{\sin x} \sqrt{1 + t^3} dt = 0$ 确定,那么曲线 y = y(x) 在 x = 0 处的法线方程是
- (10) 二元函数 f(u,v) 由关系式 f(x,y+g(x)) = xy+g(y) 确定,其中 g(y) 可微,则

$$\frac{\partial^2 f}{\partial u \partial v} =$$

(11) 微分方程 $\sin^2 x \cdot y' + y = \cot x$ 的通解为_____

(12) 累次积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ (a>0) 化为直角坐标先积 y 后积 x 的

二次积分为_____

(13) 设向量组

 $a_1 = \begin{pmatrix} 1, & -1, & 0 \end{pmatrix}^T, a_2 = \begin{pmatrix} 4, & 2, & a+2 \end{pmatrix}^T, a_3 = \begin{pmatrix} 2, & 4, & 3 \end{pmatrix}^T, a_4 = \begin{pmatrix} 1, & a, & 1 \end{pmatrix}^T$,中任何两个向量都可由向量组中另外两个向量线性表出,则 $a = \begin{pmatrix} 1, & a, & 1 \end{pmatrix}^T$

(14). 设两随机变量 X与Y相互独立,均服从0-1分布

且方差 $D(X) = \frac{2}{9}$,	$Z = \begin{vmatrix} X & Y \\ Y & X \end{vmatrix},$	则 $E(Z^4) =$	
----------------------------	---	--------------	--

12 <u>11</u>		AND THE PERSON	ida.
X	. ()	
P	1.	-p	

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

得分	评卷人

(15) (本小题满分 10 分) 选择常数 a,b,c 的值, 使得当 $x \to 0$ 时函数 $a+bx-(1+c\sin x)e^x$ 是 x^3 的高阶无穷小。

评卷人

(16) (本小题满分 10 分) 设 $x \in (0, \frac{\pi}{4})$, 证明 $(\sin x)^{\cos x} < (\cos x)^{\sin x}$.

得分	评卷人

(17) (本小题满分 10 分) 设 $f(x) = \begin{cases} x+1 & 1 \le x \le 3 \\ 0 &$ 其他

求 $I = \iint_D f(y+1)f(x+y^2)dxdy$, 其中 D 为全平面区域。

得分	评卷人
Proved C	

(18) (本小题满分 10 分) 设甲、乙、丙三种产品的产量分别为x、y、z (吨)时,这三种产品总成本函数为 C(x,y,z)=2x+y+2z+30 (万元),

出售这三种产品的价格分别为 $p_1 = 18 - x$ (万元/吨) $p_2 = 25 - 2y$ (万元/吨) $p_3 = 12 - z$ (万元/吨)

- (1)厂家各生产这三种产品多少吨利润最大?
- (2)若限制这三种产品总量为 16 吨时各生产这三种产品多少吨利润最大?

得分(评卷人

(19) (本小题满分 **10** 分)设 f'''(x) 在某领域 $N(0,\delta)$ 内有界,且 f(0) = f'(0) = 0, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$,问 α 取何值时级数 $\sum_{n=1}^{\infty} f(n^{\alpha})$ 必收敛。

得分(评卷人

(20) (本小题满分 11 分). 设 A 是 3 阶实对称矩阵 秩 (A) =1 $\lambda_1 = 2$ 是 A 的一个特征值。对应的一个特征向量 $\xi_1 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$ (I) 求 Ax = 0 通解; (II)

求矩阵A。

Tel: 0551-2905018 2013 数学模拟试卷

得分 评卷人

(21)(本小题满分11分)已知二次型

 $f(x_1 x_2 x_3) = x^T A x = 5x_1^2 + 5x_2^2 + ax_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为

2, (I) 求参数 a 及 A 的特征值; (II) 求 $A^3 - 13A^2 + 36A + 2E$

得分	评卷人

(22) (本小题满分11分)设 X 与 Y 的分布律分别是

X	0	1	Y	-1	0	1
P	1/3	2/3	P	1/6	1/6	2/3

且 $P\{X-Y\neq 1\}=1$, 试求: (I) (X,Y) 的联合分布律; (II) $Z=X^2+Y^2$ 的分布律; (III)

Cov(X, 2X - Y)

得分·	评卷人

(23) (本小题满分11分)设X的概率密度为

$$f(x,\theta) = \begin{cases} cxe^{\frac{x^2}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

 X_1,\ldots,X_n 为 X 简单随机样本,试确定: (1) 常数 c; (II) 参数 θ 的极大似然估计 $\hat{\theta}_L$;

(Ⅲ) 参数 $b = P\{X \le 1\}$ 的极大似然估计

数学三(模拟3)

考牛注意: 本试卷共二十三题、满分 150 分、考试时间为 3 小时

得分	评卷人

、选择题: (1) ~ (8) 小题, 每小题 4分, 共 32分. 在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的 字母填在题后的括号里.

- (1) 已知 x = 0 是函数 $f(x) = \frac{\sqrt{a + x^2} 1}{e^x 1 x hx^2}$ 的可去间断点,则常数 a, b 的取值为().
 - (A) a=1,b 为任意实数 (B) a 为任意实数, $b=\frac{1}{2}$
- (C) $a \neq 1, b = \frac{1}{2}$ (D) $a=1, b \neq \frac{1}{2}$
- (2) 设有曲线 $y = \ln x = 5$ 与 $y = kx^2$, 当 $k > \frac{1}{2e}$ 时,它们之间().
- (A) 没有交点
- (B) 仅有一个交点 (C) 有两个交点 (D) 有三个交点
- (3) 积分 $I = \int_{1}^{a+\pi} \ln(3 + \sin 2x) \sin 2x \, dx$ 的值().
- (A) 是与 a 无关的负的常数
- (B) 是与 a 无关的正的常数

(C) 恒为零

- (D) 不为常数
- (4) 设函数 f(x,y) 在点 $P_0(x_0,y_0)$ 处的两个偏导数都存在,则().

- (A) f(x,y) 在点 $P_0(x_0,y_0)$ 处必连续 (B) f(x,y) 在点 $P_0(x_0,y_0)$ 处必可微
- (C) $\lim_{x \to x_0} f(x, y_0) = \lim_{y \to y_0} f(x_0, y)$ (D) $\lim_{x \to x_0} f(x, y)$ 存在
- (5) n 阶实矩阵 A 满足 $A^3 6A^2 + 11A 6E = 0$,则下列命题正确的是(
 - (A) 3E-A可逆,3E+A也可逆 (B) 2E-A可逆,2E+A也可逆

 - (C) E-A 可逆,E+A 也可逆 (D) 4E-A 可逆,4E+A 也可逆
- (6) 设n维向量 $\alpha_1, \alpha_2, \alpha_3$ 满足 $\alpha_1 2\alpha_2 + 3\alpha_3 = 0$,对任意的n维向量 β ,向量组
- $\alpha_1 + a\beta$, $\alpha_2 + b\beta$, α_3 线性相关,则参数 a,b 应满足条件(
- (B) a = b (C) a = -2b (D) a = 2b
- (7) 某人打靶的命中率为 $\frac{1}{2}$, 当他连射三次后检查目标,发现靶已命中,则他在第一次射击 时就已命中目标的概率为(
- (B) $\frac{4}{7}$ (C) $\frac{3}{8}$ (D) $\frac{1}{2}$
- (8) 设随机变量 X,Y 相互独立,且均服从参数为 λ 的指数分布, $P(X>1)=e^{-2}$,则 $P\{\min(X,Y) \le 1\} = ($
 - $(A)e^{-2}$
- (B) $1 e^{-1}$ (C) $1 e^{-4}$
- (D) e^{-4}

评卷人 得分

二、填空题: 9~14 小题,每小题 4 分,共 24 分,把答案填在题中横线

- (9) 设 y = y(x) 由 $\cos(x^2 + 2y) + e^y x^2y^3 = 0$ 确定,则 d y =
- (10) \(\psi \frac{\psi}{2} I = \int_{0}^{1} dx \int_{0}^{2-x} e^{(x+y)^{2}} dy + \int_{0}^{2} dx \int_{0}^{2-x} e^{(x+y)^{2}} dy = \frac{1}{2} \]
- (11) 差分方程 $y_{t+1} y_t = 2^t 1$ 的通解为_
- (12) 设 $z = \int_{1}^{x^2 y} f(t, e^t) dt$,其中 f 具有一阶连续偏导数,则 $\frac{\partial^2 z}{\partial r \partial y} = \int_{1}^{x^2 y} f(t, e^t) dt$,
- (13) 设A为三阶矩阵,其特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$,其对应的线性无关的特征向量为

 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \diamondsuit \boldsymbol{P} = (4\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3), 则 \boldsymbol{P}^{-1}(\boldsymbol{A}^* + 3\boldsymbol{E})\boldsymbol{P}$ 为

(14) 设二维随机变量(X,Y) 的概率密度函数为 f(x,y), 则随机变量(2X,Y+1) 的概率密

度函数 $f_1(x,y) =$

三、解答题: 15~23 小题, 共94 分.解答应写出文字说明、证明过程或演算步骤.

得分 评卷人 (15)(本小题满分10分)

设 f(x) 为可导的偶函数,且在 x=0 的某个邻域内满足关系式 $f(\cos x) - ef(\ln(e + x^2)) = 2x^2 + o(x^2)$, 求曲线 v = f(x) 在 x = -1处的切线方程。

(16)(本小题满分 10 分)

评卷人 得分

求函数 $z = f(x, y) = \cos x + \cos y + \cos(x - y)$ 在闭区域

 $D: 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}$ 上的最大值与最小值

评卷人 得分

(17) (本小题满分 10 分) 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, f(a)=a, 且 $\int_{a}^{b} f(x) dx = \frac{1}{2} (b^{2} - a^{2}).证明: (I) \exists \xi \in (a,b) \, \text{内, } \, \notin \xi = f(\xi);$

(Π) 在(a,b)内存在与(I)中的 ξ 相异的点 η 使得 $f'(\eta)=f(\eta)-\eta+1$.

得分	评卷人
·	

(18) (本小题满分 10 分)

求 $f(x) = x \arctan x - \ln \sqrt{2 + x^2}$ 的 麦克劳林级数,并求级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n2^{n+1} - 2n - 1}{n(2n-1)2^{n+1}}$ 的和。

得分	评卷人

(19) (本小题满分 10 分)

计算积分 $I = \iint x^2 \max(x, |y|) d\sigma$,其中D:0 # x 1, -1 # y 1.

得分	评卷人

(20)(本小题满分 11 分)已知齐次方程组(
$$I$$
)
$$\begin{cases} x_1 + x_2 + x_4 = 0 \\ ax_1 + a^2 x_3 = 0 \\ ax_2 + a^2 x_4 = 0 \end{cases}$$

的解全是 4 元方程 (Π) $x_1+x_2+x_3=0$ 的解。(1) 求 a. (2) 求齐次

方程组(I)的解.

得分	评卷人

(21) (本小题满分 11 分)

设A是n阶矩阵,A的第i行,j列元素 $a_{ii} = i \cdot j$ $(i, j = 1, \dots, n)$

 $_{a}(1)$ 求 $_{r}(A)$; (2) 求 $_{A}$ 的特征值与特征向量,并问 $_{A}$ 能否相似于对 角阵, 若能, 求出相似对角阵, 若不能, 则说明理由.

评卷人 得分

(22) (本小题满分 11 分) 设随机变量 (ξ,η) 的联合分布律如表所

 $\diamondsuit X = \max\{\xi, \eta\}, Y = \min\{\xi, \eta\}$

试求: (I) (X,Y) 联合分布律; (II) 协方差 Cov(X,X+2Y); (III) Y = -1 时,X 的条件分布律.

	η ξ	-1	0	1
1	-1	0.1	0.2	0.1
	1	0.4	0.1	0.1

	Spigman and the spiritual state of the spirit	
91	/得分	评卷人
,		

(23) (本小题满分 11 分)

设总体 $X \square N(\mu, \sigma^2)$, X_1, \cdots, X_n 为 X 简单随机样本,且

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $Q^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$, 试求: (I) $E(X_1 Q^2)$ (II) 方

差 $D(\bar{X}-Q^2)$

Tel: 0551-2905018

数学三(模拟4)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

得分 评卷人

一、选择题: (1)~(8)小题,每小题 4分,共32分.

在每小题给出的四个选项中、只有一个选项符合要求、将所选项前的字母 填在题后的括号里,

- - (A) 处处可导

- (B) 仅有一个点处不可导
- (C) 有两个点处不可导
- (D) 至少有三个点外不可导
- (2) $\Im \sum_{n=0}^{+\infty} \frac{3^n \sin^n x}{n^2}$, $(|x-k\pi| \le \arcsin \frac{1}{3}, (k=0, \pm 1, \pm 2, \cdots))$ (C)
 - (A) 发散

(C) 绝对收敛

- (D) 敛散性不定
- (3) 设函数 f(x) 在 x=0 的某个邻域内有连续的导数, $\varphi(x)$ 在 x=0 的某个邻域内连续,且

$$\lim_{x\to 0} \frac{\varphi(x)}{x} = 1, \quad \forall f'(x) = \varphi(x) + \int_0^x (e^{t^2} - 1) dt, \quad \forall i \in [t].$$

- (A) x=0 是 f(x) 的极小值点 (B) x=0 是 f(x) 的极大值点
- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) x = 0 不是 f(x) 的极值点,点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- (4) 设 0 < a < 1, 平面区域 D 由 x + y = a, x + y = 1 及 x 轴 和 y 围成,

$$I_1 = \iint_D \sin^2(x+y) \,\mathrm{d}\,\sigma\,,$$

$$I_2 = \iint_D \ln^3(x+y) d\sigma, I_3 = \iint_D (x+y) d\sigma$$
 , 则 I_1, I_2, I_3 的大小关系是().

- (A) $I_1 < I_2 < I_3$ (B) $I_3 < I_2 < I_1$ (C) $I_2 < I_1 < I_3$ (D) $I_3 < I_1 < I_2$
- (5) 设A是n阶可逆矩阵, A^* 是它的伴随矩阵,则行列式 $\left| -2\begin{pmatrix} A^* & \mathbf{0} \\ A+A^* & A \end{pmatrix} \right|$ 的值为().

- (A) $4^{n} |A|^{n}$ (B) $2^{n} |A|^{n}$ (C) $(-1)^{n} 4^{n} |A|^{n}$ (D) $(-1)^{n} 2^{n} |A|^{n}$
- (6) 设向量组(I): $\alpha_1, \alpha_2, \cdots, \alpha_s$ 和(II): $\beta_1, \beta_2, \cdots, \beta_s$ 为两个n 维列向量组,且它们的秩都等于 r,则下述结论成立的是().
 - (A)矩阵 $(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 与矩阵 $(\beta_1,\beta_2,\cdots,\beta_s)$ 等价
 - (B)向量组 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_s$ 的秩等于r
 - (C)当 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 可由 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示时,则(I)与(II)等价
 - (D) 当s = t 时(I)与(II)等价

- (7) 设概率 $P(A) = P(B) = \frac{3}{5}$,则条件概率 P(A|B) 最小可能取值是().

- (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{5}$ (D) $\frac{1}{6}$
- (8) 在长为 a 的线段上任意取两点 M_1, M_2 长度的数学期望为().
 - (A) a
- (B) $\frac{a}{2}$ (C) $\frac{a}{3}$ (D) 0

得分 评卷人

二、填空题:(9)~(14)小题,每小题 4 分,共 24 分.把答案填在题中的横线上.

- (9) $\lim_{x\to 0} \left(\frac{x}{\ln(1+x)}\right)^{\frac{1}{\sin x}} = \underline{\qquad}$
- (10) 微分方程 $y'' 4y' + 4y = 1 + xe^{2x}$ 的通解为__
- (11) 设 f(x) 在[0,1] 上有连续的导数, f(1) = 1, 且有 $xf'(x) f(x) = x\sqrt{1-x^2}$,则 $\int_0^1 f(x) \, \mathrm{d} x = -$
- (12)设 $z = f(\frac{\pi}{2} \arctan x, xy)$,则 $\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{2}$
- (13) 设矩阵 $B = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$, 矩阵 A 满足 $B^{-1} = B^*A + A$, 则 A = A
- (14) 设X与Y相互独立,且X的分布律为 $P(X=i)=\frac{1}{3}, i=-1,0,1$,Y服从参数 $\lambda=1$ 的 指数分布,则概率 $P(X+Y \ge 1) =$
- 三、解答题: (15)~(23)小题,共 94 分.解答应写出必要的文字说明、证明过程或演算步骤.

***	*256 PA 1757 SECTOR
得分	评卷人
1909 (

(15) (本題满分 10 分) 设 $\lim_{x \to +\infty} \left[\sqrt{x^4 + ax^2} - (x^2 + bx)e^{-\frac{2}{x}} \right] = 1$ 试确定 常数a,b的值。

得分 评卷人 (16)(本题满分10分)设某种商品的需求价格弹性为

 $\eta = \frac{1}{1} + \frac{p}{Q} e^{-p + \frac{1}{p}} (\eta > 0)$,其中 p 为价格, Q 为商品需求量. (I) 试在 $\lim_{p\to +\infty} Q(p) = 0$ 条件下求商品的需求量Q与价格p之间的函数关系;

(II)若企业生产该商品的成本函数为 $C(Q)=2+\frac{1}{2}Q$,试求该商品价格p为多少时获得的利 润最大?

数型模型设置 20、21全程 **考研资料请加群** 712760929

到(合工大)考研辅导中心 Tel: 0551-290501

得分	评卷人

(17) (本题满分 10 分) 计算 $\iint_{\mathcal{D}} \max \{\cos(x+y), \sin(x+y)\} dx dy$,

其中 $D = \{(x,y) \mid 0 \le x \le \frac{\pi}{2}; 0 \le y \le \frac{\pi}{2}\}.$

得分	评卷人

(18) (**本题满分 10 分**) 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导, f(a) = 0 , f(b) > 0 ,又它在 x = a 处的右导数且 $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} < 0$ 。证明: (I) $\exists \xi \in (a,b)$ 内,使 $f(\xi) = 0$; (II) $\exists \eta \in (a,b)$ 内使得

 $f''(\eta) > 0$.

得分	评卷人 .

(19) (**本题满分 10 分**) 求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{(n+1)!} x^n$ 的收敛区间及和函数.

得分	评卷人

(20) (本题满分 11 分) 已知矩阵 $A = \begin{pmatrix} 1 & 3 & 9 \\ 2 & 0 & 6 \\ -3 & 1 & -7 \end{pmatrix}$, B 为三阶非零

矩阵,向量 $\beta_1 = (0,1,-1)^T$, $\beta_2 = (a,2,1)^T$, $\beta_3 = (b,1,0)^T$ 是齐次次方程组 Bx = 0 的 3 个解向量,且方程组 $Ax = \beta_3$ 有解. (1) 求 a,b 的值; (II) 求 方程 Bx = 0 的通解.

得分	评卷人
	.ai)*

(21)(本题满分 11 分)(I)已知二次型

 $f(x_1,x_2,x_3) = x_1^2 + (a+4)x_2^2 + 3x_3^2 + 4x_1x_2 - 4x_2x_3$ 经正交变换

x = Uy 化为标准形 $by_1^2 + 5y_2^2 - y_3^2$ 求 a, b 的值以及所用的正交交换;

(II) 若(I) 中的二次型是正定的,求a的值。

700 454 54400 CLA-197					
得分					
in a	71]				

(22) (**本题满分 11 分**) 设X的密度函数为 $f(x) = \begin{cases} \frac{|x|}{2}, & |x| < 1 \\ \frac{1}{2}, 1 \le x < 2, \\ 0, & 其他 \end{cases}$

且 $Y = X^2 - 1$,试求: (I) 随机变量Y的密度函数 $f_Y(y)$; (II) Cov(X,Y)。

得分	评卷人				

(23)(本题满分11分)设总体的分布函数为

$$F(x) = \begin{cases} 1 - e^{-a(x-\theta)}, x > \theta \\ 0, & x \le \theta \end{cases}$$

,其中a为已知正的常数, $\theta > 0$ 为未知参数, X_1, X_2, \dots, X_n 是来自总

体X的简单随机样本。(I) 求 θ 的最大似然估计量 $\hat{\theta}_L$; (II) 求 $\hat{\theta}_L$ 的概率密度函数 $\varphi(x)$; (III) 求 $E(\hat{\theta}_L)$ 的值.

数学三(模拟5)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

得分 评卷人

一、选择题: (1) ~ (8) 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个选项符合要求, 将所选项前的字 母填在题后的括号里.

- (1) 设函数 f(x) 在 x = a 处可导,且 f(a) 是 f(x) 的极小值,则 $\exists \delta > 0$,当 $x \in (a-\delta,a) \cup (a,a+\delta)$ 时必有()。
- (A) $(x-a)[f(x)-f(a)] \ge 0$
- (B) $(x-a)[f(x)-f(a)] \le 0$
- (C) $\lim_{t \to a} \frac{f(t) \dot{f}(x)}{(t r)^2} \ge 0$
- (D) $\lim_{t \to a} \frac{f(t) f(x)}{(t x)^2} \le 0$
- (2) 设常系数微分方程 y'' + by' + cy = 0 的通解形式是 $y = c_1 e^x \cos 2x + c_2 e^x \sin 2x$, 则
 - (A) b=2, c=5; (C) b = -3, c = 2;

- (3) $.\int_{0}^{1} \arccos \frac{1}{\sqrt{1+x}} dx = ($ $)_{\circ}$ (A) π (B) $\frac{\pi}{2} 1$ (C) $\frac{\pi}{4}$

- (4) 设 $\sum_{n=1}^{\infty} a_n$ 绝对收敛,则下列各选项中正确的是(C)

 - (A) $\sum_{n=1}^{\infty} a_n^2$ 发散; (B) $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ 条件收敛;
 - (C) $\sum_{n=1}^{\infty} \frac{a_n^2}{1+a^2}$ 绝对收敛; (D) $\lim_{n\to\infty} na_n = \lambda (\neq 0)$
- (5) 设A为4阶实对称矩阵,且 $A^2 + 2A 3E = 0$.若r(A E) = 1,,则二次型 $x^T Ax$ 在 正交变换下的标准形是
 - $(A) y_1^2 + y_2^2 + y_3^2 3y_4^2$

(B) $y_1^2 - 3y_2^2 - y_3^2 - 3y_4^2$.

 $(C) y_1^2 + y_2^2 - 3y_3^2 - 3y_4^2$.

- (D) $y_1^2 + y_2^2 + y_3^2 y_4^2$.
- (6) 设A是 $m \times n$ 矩阵, r(A) = n,则下列结论不正确的是()
 - (A)岩AB = O,则B = O
- (B)对任意矩阵 B, 有 r(AB) = r(B)
- (C)存在 B, 使得 BA = E
- (D)对任意矩阵 B, 有 r(BA) = r(B)
- (7) $X \sim E(\lambda)$ (指数分布),且概率 $P(X > D(X)) = e^{-2}$,则参数 $\lambda = 0$) .
- В.

- (8) 独立的抛 n 次硬币, 用 Y 表示正面出现的次数, X 表示反面出现的次数, 则 X 与 Y 的相关系数为(
 - A. 2
- В.
- C. 0
- D. -1

*************2**0、21全程考研资料请加群712760929

共创(合工大)考研辅导中心

929 Tel: 0551-2905018

得分	评卷人			

.二、填空题: (9) \sim (14) 小题, 每小题 4 分, 共 24 分. 把答案填在题中的横线上.

(9) 设z=(x,y) 是由方程 $x^2+y^2-z=\varphi(x+y+z)$ 所确定的函数,其中 φ 具有二阶导数,

且
$$\varphi' \neq -1$$
, $u(x,y) = \frac{1}{x-y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right)$, 则 $\frac{\partial u}{\partial x} = \underline{\hspace{1cm}}$.

- (10) 微分方程 $xdy ydx = y^2 e^y dy$ 的通解为______
- (11) 交换积分次序: $\int_{1}^{2} dx \int_{\frac{1}{x}}^{\sqrt{x}} f(x, y) dy = _____.$
- (12) 设函数 y(x) 由方程 $x=t^2, y=3t+t^3$ 确定,其中 t>0,则曲线 y=y(x) 的拐点是______。
- (13) 设 $A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 1 & -1 & 2 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}$,则方程组Ax = 0解空间的一组规范正交基为_____。
- (14) 设X与Y相互独立,且 $X \sim U(0,1)$, $Y \sim E(\lambda)$ -且Y的数学期望为 1/2,则概率 $P(\max\{X,Y\} \leq \frac{1}{2}) = \underline{\hspace{1cm}}$ 。
- 三、解答题: (15) \sim (23) 小题,共 94 分. 解答应写出必要的文字说明、证明过程或演算步骤.

得分	评卷人	
		J-

(15)(本题满分9分)求椭圆 $5x^2+8xy+5y^2=9$ 所围平面区域面积。

8		200 4 1 1 1 1 1 1 1				
	得分	评卷人				

(16) (**本题满分 11 分**) 设 $f_0(x)$ 在 [0,a] 上连续 (a>0),且 $f_n(x) = \int_0^x f_{n-1}(t)dt, x \in [0,a]$,试证:无穷级数 $\sum_{n=0}^\infty f_n(x)$ 在区间[0,a]

上绝对收敛.

得分	评卷人			
	र्वे सुंद्री			

(17) (**本题满分 10 分**) 已知函数 $\varphi(x)$ 是以 T(T>0) 为周期的连续函数,且 $\varphi(0)=1$, $f(x)=\int_0^{2x} \left|x-t\right| \varphi(t) \,\mathrm{d}t$,求 f'(T) 的值。

得分	评卷人

(18) (**本题满分 10 分**) 设函数 f(x) 在 (a,b) 内可导,且 $x \in (a,b)$ 时, $f(x)+f'(x)\neq 0$,证明: f(x) 在 (a,b) 内最多只有一个零点。

20、21全程考研资料请加群712760929

中心 Tel: 0551-290501

得分 评卷人

(19) (本题满分 10 分)设f(x)是以T>0为周期的周期函数,试证

明 $\frac{dy}{dx} + ky = f(x)$ 有唯一的以 T 为周期的周期函数解,其中 k 为常数。

得分	评卷人				

(20) (本题满分 11 分) 已知矩阵 $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$ 能相似对角化,

(I) 求参数 a; (II) 求正交变换 $x = Q_y$ 化二次型 $f(x) = x^T A^2 x$ 化为标准形。

得分	评卷人				

(21)(**本题满分 11 分**)已知三阶实对称矩阵 A 的特征值为 0, 1, 1, $\vec{\alpha}_1$, $\vec{\alpha}_2$ 为 A 的两个互异特征向量,且 $A(\vec{\alpha}_1+\vec{\alpha}_2)=\vec{\alpha}_2$ 。

(I) 证明: 向量组 $\vec{\alpha}_1, \vec{\alpha}_2$ 线性无关; (II) 求 $\vec{A}\vec{x} = \vec{\alpha}_2$ 的通解。

得分评卷人

(22) (本题满分 11 分) 设 (X,Y) 在方形区域 $G = \{(x,y)/0 < x < 1, 0 < y < 1\} 上服从均匀分布,试求: (I) 概率 <math display="block">P\{\frac{1}{2} \le X + Y \le \frac{3}{2}\}; \ (II) \ Z = |X-Y| \ \text{的密度函数} \ f_z(z);$

(Ⅲ) Z = |X - Y| 均值与方差。

得分 评卷人

(23) (本题满分 11 分) 设某批产品的一等品率为 1/10,从这批产品中任取 n 件,求其中一等品所占比例与 1/10 之差的绝对值不超过 0.02 的概率,(I) n=400 时用切比契夫不等式估计;(II)

若要使得一等品所占比例与 1/10 之差的绝对值的概率不小于 0.95 时,至少需要取多少件产品(利用中心极限定理计算)($\Phi(1.96)=0.975$)

参考答案

2013 年全国硕士研究生入学统一考试

数学三(模拟1)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

一、选择题

	2	3	4	5	6	7	8
答案 B	A	D	С	A	В	D	С

(1) 【解】
$$\lim_{x \to 0} \frac{e^{x^3} - e^{\sin^3 x}}{x^m} = \lim_{x \to 0} \frac{e^{x^3} (1 - e^{\sin^3 x - x^3})}{x^m} = \lim_{x \to 0} \frac{1 - e^{\sin^3 x - x^3}}{x^m}$$

$$= -\lim_{x \to 0} \frac{\sin^3 x - x^3}{x^m} = -\lim_{x \to 0} \frac{\sin^3 x - x^3}{x^m} = \lim_{x \to 0} \frac{(x - \sin x)(x^2 + x \sin x + \sin^2 x)}{x^m}$$

$$=3\lim_{x\to 0}\frac{x-\sin x}{x^{m-2}}=3\lim_{x\to 0}\frac{1-\cos x}{(m-2)x^{m-3}}=3\lim_{x\to 0}\frac{-\frac{1}{2}x^2}{(m-2)x^{m-3}}, \text{ fill } m-3=2, m=5.$$

(2)【略】