A Study on Descriptive Patterns Based on Similarity Classes of Individual Constants

個体の類似クラスに基づく記述的類似性

Knowledge Base Lab.
M2
Ruipeng Wang

Descriptive similarity

One to one correspondence :
Nouns come with same verb-cases from different sentences

Previous research

X. Zhang, Feb. 2016, Master Thesis

Research target

- Regard group of event as patterns, and extract most specific frequency pattern as descriptive pattern.
- Consider multi-document situation, extract patterns supported by multi-document. (a kind of Data Mining instead of matching.)
- Phase 1: extract similarity class of Individual Constants.(Input of next phase)
- Phase 2: Re-construct descriptive patterns. (Depend on the result of Phase 1)

Least General Generalization

LGG process

- Time complexity will be very large will computing LGG.
- We propose to use neither pairs nor tuples: Similarity classes of individuals over domains: frequent closures (intent of formal concepts)

Maximal closures

role set with maximal roles is complete corresponding with DP

Pattern whose event has just one role description

descriptive pattern can be re-constructed from maximal closure

Inner Predicate composition

Any variable in DP has a closure: $A = \{v_0(l_1), v_1(l_1)\}$

Primitive pattern for closures

Conversely we make primitive patterns from them, and compose the primitive patterns to get predicates with more arguments

$$pp(A)=v_0(l_1=A), v_1(l_1=A)$$
 $v_3(l_1=D)$
$$v_1(l_2=B), v_2(l_1=B)$$

$$v_4(l_1=E), v_3(l_2=E)$$

$$v_2(l_2=C)$$
 Inner predicate composition

$$v_0(l_1=A), v_1(l_1=A, l_2=B), \qquad v_4(l_1=E), v_3(l_2=E, l_1=D) \ v_2(l_1=B, l_2=C)$$
 More specific pattern towards DP

Beam Search Algorithm to extract some main descriptive patterns.

Requirement: Minimal Support

- a pattern is supported by multi-document.
- We set τ donates the percentage of document that support a pattern.
- ex. For a Pattern P , au=1 means all documents support P.
- Our pattern is required to be supported by multi-document.

Requirement: KeyGraph

- Closures to be candidate include at least one High KeyScore noun.
- KeyScore reflects the importance of a noun in a document.
- Feasibility: connections between different events mainly generated by high KeyScore nouns.

black: high frequency words (hf) red: not hf but close contact to hf green: high KeyScore words

Data

- We can use KNP tool to extract events with verb-case information.
 - 困った百姓たちが夜に田畑を見張っている

```
困った——
百姓たちが——
夜に——
田畑を——
見張っている
EOS
```

- 見張る(百姓/ガ,夜/二,田畑/ヲ)
- We use 100 precedents and extract 84,550 events.
- Average length of the precedents is 45,000 Japanese words.

Experiment: Stories

data: two short Japanese stories, t = 1.

part of closures extracted

- * [荒らす/ヲ] [町001,八百屋001,田畑002]
- * [持つ/ヲ] [光001, 火縄銃002]
- *[困る/カ][若者001,村人002]
- * [現れる/カ] [化け物001, 鹿002, 牛001, 老人001]

original story 1

…ところがある夜から、金色の二つの光を持った化け物が現れ、町の八百屋を荒らして回るようになった。 困った若者たちが、夜の八百屋を見張っていると…

original story 2

…夜な夜な2頭のつがいの大鹿が現れ、田畑を荒らしまわるので、村人は 大層困っていた…

あやしい牛	あばれ鹿	
町	田畑	
若者	村人	
光	火縄銃	
牛	鹿	

Experiment: Precedents

data: three precedents include two similar ones and a very different one, t = 2/3

words(noun)	$\mathrm{Event}(s)$	$\operatorname{KeyGraph}(s)$	$\mathrm{MFC}(s)$
76083	0.15	10.31	8.27

105 maximal closures founded by these three document, and 98 closures are supported by the similar ones. Over 93%.

違反 ガ/被告068, 原告092 二/義務068 条092 規定 ガ/義務068 義務092 二/義務068 条092 履行 ガ/被告092 被告068 ヲ/義務068 義務092 主張 ガ/被告092 被告068 ヲ/原告068 ±092 受ける ガ/原告068 ±092 カラ/国068 原告092 開設 二/国068 原告092 ガ/県092 被告068

part of descriptive pattern re-constructed by extracted maximal closures

Summary and Future Work

- Give the exact definition of Descriptive Pattern.
- Validate the feasibility of KeyGraph.
- Extract similarity classes from multi-document.

- Realize the re-construct descriptive pattern from maximal closures.
- Adjust the output of KNP, fix the results.