

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** 1 (1988).

π^0 MASS

The value is calculated from m_{π^\pm} and $(m_{\pi^\pm}-m_{\pi^0})$. See also the notes under the π^\pm Mass Listings.

VALUE (MeV)

DOCUMENT ID

134.9770 \pm **0.0005 OUR FIT** Error includes scale factor of 1.1.

HTTP://PDG.LBL.GOV

$$m_{\pi^{\pm}}-m_{\pi^0}$$

Measurements with an error > 0.01 MeV have been omitted.

VALUE (MeV)	DOCUMENT ID		TECN_ COMMENT
4.5936 ±0.0005 OUR FIT			
4.5936 ±0.0005 OUR AVERAGE			
4.59364 ± 0.00048			CNTR $\pi^- p \rightarrow \pi^0 n$, n TOF
4.5930 ± 0.0013	CRAWFORD	86	CNTR $\pi^- p \rightarrow \pi^0 n$, n TOF
• • • We do not use the following of	lata for averages	s, fits,	limits, etc. • • •
4.59366 ± 0.00048	CRAWFORD	88 B	CNTR See CRAWFORD 91
4.6034 ± 0.0052	VASILEVSKY	66	CNTR
4.6056 ± 0.0055	CZIRR	63	CNTR

π^0 MEAN LIFE

Most experiments measure the π^0 width which we convert to a lifetime. ATHERTON 85 is the only direct measurement of the π^0 lifetime. Our average based only on indirect measurement yields $(8.30\pm0.19)\times10^{-17}$ s. The two Primakoff measurements from 1970 have been excluded from our average because they suffered model-related systematics unknown at the time. More information on the π^0 lifetime can be found in BERN-STEIN 13.

<u>VALUE</u> (10^{-17} s)	EVTS	DOCUMENT ID		TECN	COMMENT
8.52±0.18 OUR AV	ERAGE	Error includes scal	e fact	or of 1.2	•
$8.32\!\pm\!0.15\!\pm\!0.18$		¹ LARIN	11	PRMX	Primakoff effect
8.5 ± 1.1		² BYCHKOV	09	PIBE	$\pi^+ ightarrow \ e^+ u \gamma$ at rest
$8.4 \pm 0.5 \pm 0.5$	1182	³ WILLIAMS	88	CBAL	$e^+e^- ightarrow e^+e^-\pi^0$
$8.97\!\pm\!0.22\!\pm\!0.17$		ATHERTON	85	CNTR	Direct measurement
8.2 ± 0.4		⁴ BROWMAN	74	CNTR	Primakoff effect
● ● We do not us	e the foll	owing data for aver	ages,	fits, limit	ts, etc. ● ●
5.6 ±0.6		BELLETTINI	70	CNTR	Primakoff effect
9 ± 0.68		KRYSHKIN	70	CNTR	Primakoff effect
7.3 ± 1.1		BELLETTINI	65 B	CNTR	Primakoff effect

Page 1

π^0 DECAY MODES

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

	Mode	Fraction (Γ_i/Γ)		le factor/ ence level
$\overline{\Gamma_1}$	2γ	(98.823 ± 0.034)	%	S=1.5
Γ_2	$e^+e^-\gamma$	(1.174 ± 0.035)	%	S=1.5
Γ_3	γ positronium	(1.82 ± 0.29)	$\times 10^{-9}$	
Γ_4	$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.16)	$\times 10^{-5}$	
Γ_5	e^+e^-	(6.46 ± 0.33)	$\times 10^{-8}$	
Γ_6	4 γ	< 2	$\times 10^{-8}$	CL=90%
Γ ₇	$ u \overline{ u}$	[a] < 2.7	$\times 10^{-7}$	CL=90%
Γ ₈	$ u_{e}\overline{ u}_{e}$	< 1.7	\times 10 ⁻⁶	CL=90%
Γ_9	$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$	CL=90%
Γ_{10}	$ u_{\tau} \overline{\nu}_{\tau}$	< 2.1	$\times 10^{-6}$	CL=90%
Γ_{11}	$\gamma \overline{\nu}$	< 6	$\times 10^{-4}$	CL=90%

Charge conjugation (C) or Lepton Family number (LF) violating modes

Γ_{12}	3γ	С	<	3.1	$\times 10^{-8}$	CL=90%
Γ ₁₃	μ^+e^-	LF	<	3.8	$\times 10^{-10}$	CL=90%
Γ_{14}	$\mu^ e^+$	LF	<	3.4	$\times 10^{-9}$	CL=90%
Γ_{15}	$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	<	3.6	$\times 10^{-10}$	CL=90%

[a] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the Particle Listings below.

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 =$ 4.6 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

¹LARIN 11 reported $\Gamma(\pi^0 \to \gamma \gamma) = 7.82 \pm 0.14 \pm 0.17$ eV which we converted to mean life $\tau = \hbar/\Gamma(\text{total})$.

² BYCHKOV 09 obtains this using the conserved-vector-current relation between the vector form factor F_V and the π^0 lifetime.

 $^{^3}$ WILLIAMS 88 gives $\Gamma(\gamma\gamma)=7.7\pm0.5\pm0.5$ eV. We give here $\tau=\hbar/\Gamma(\text{total}).$ 4 BROWMAN 74 gives a π^0 width $\Gamma=8.02\pm0.42$ eV. The mean life is $\hbar/\Gamma.$

π^0 BRANCHING RATIOS

 $\Gamma(e^+e^-\gamma)/\Gamma(2\gamma)$ Γ_2/Γ_1

EVTS DOCUMENT ID TECN COMMENT **1.188±0.035 OUR FIT** Error includes scale factor of 1.5. 1.188 ± 0.034 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. ⁵ BEDDALL ALEP $e^+e^- \rightarrow Z \rightarrow \text{hadrons}$ $1.140 \pm 0.024 \pm 0.033$ 12.5k $\pi^- p \rightarrow n \pi^0$ 1.25 ± 0.04 **SCHARDT** 81 SPEC ⁶ SAMIOS **HBC** 1.166 ± 0.047 3071 27 **BUDAGOV** 60 **HBC** 1.17 ± 0.15 • • • We do not use the following data for averages, fits, limits, etc. • • •

1.196 JOSEPH 60 THEO QED calculation

⁵ This BEDDALL 08 value is obtained from ALEPH archived data.

 6 SAMIOS 61 value uses a Panofsky ratio = 1.62.

WEIGHTED AVERAGE 1.188±0.034 (Error scaled by 1.4)

$\Gamma(\gamma \text{ positronium})/\Gamma(2\gamma)$

 Γ_3/Γ_1

Created: 5/30/2017 17:22

<u>VALUE (units 10⁻⁹)</u> <u>EVTS</u> **1.84 ± 0.29** 277

DOCUMENT ID TECN COMMENT

AFANASYEV 90 CNTR pC 70 GeV

 $\Gamma(e^+e^+e^-e^-)/\Gamma(2\gamma)$

 Γ_4/Γ_1

VALUE (units 10⁻⁵) EVTS DOCUMENT ID TECN COMMENT

3.38±0.16 OUR FIT 3.38±0.16 OUR AVERAGE

3.46 \pm 0.19 30.5k ⁷ ABOUZAID 08D KTEV $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0_{DD}$ 3.18 \pm 0.30 146 ⁸ SAMIOS 62B HBC

$\Gamma(e^+e^-)/\Gamma_{\text{total}}$

 Γ_5/Γ

Experimental results are listed; branching ratios corrected for radiative effects are given in the footnotes. BERMAN 60 found B($\pi^0 \rightarrow e^+e^-$) $\geq 4.69 \times 10^{-8}$ via an exact QED calculation.

$VALUE$ (units 10^{-8})	EVTS	DOCUMENT ID	DOCUMENT ID		CHG	COMMENT
6.46±0.33 OUR A	/ERAG	Ε				
$6.44\!\pm\!0.25\!\pm\!0.22$	794	⁹ ABOUZAID	07	KTEV		$K_I^0 ightarrow 3\pi^0$ in flight
$6.9 \pm 2.3 \pm 0.6$	21	¹⁰ DESHPANDE	93	SPEC		$\kappa^{\perp}_{+} \rightarrow \pi^{+}\pi^{0}$
$7.6 \begin{array}{c} +2.9 \\ -2.8 \end{array} \pm 0.5$	8	¹¹ MCFARLAND	93	SPEC		$\mathcal{K}_L^0 ightarrow 3\pi^0$ in flight

^{• •} We do not use the following data for averages, fits, limits, etc. • •

 $6.09\pm0.40\pm0.24$ 275 ¹² ALAVI-HARATI99C SPEC 0 Repl. by ABOUZAID 07

$\Gamma(e^+e^-)/\Gamma(2\gamma)$

 Γ_5/Γ_1

VALUE (units 10^{-7})	CL%	<i>EVTS</i>	DOCUMENT ID	1	TECN	COMMENT
• • • We do not us	e the fol	lowing da	ta for averages, f	fits, lim	its, etc.	• • •
<1.3	90		NIEBUHR	89	SPEC	$\pi^- ho ightarrow \pi^0 n$ at
<5.3	90		ZEPHAT			$\pi^{-} \stackrel{rest}{p \to \pi^0} {}_n \\ 0.3 \; GeV/c$
$1.7\ \pm0.6\ \pm0.3$		59	FRANK	83	SPEC	$\pi^- p \rightarrow n \pi^0$
1.8 ± 0.6		58	MISCHKE	82	SPEC	See FRANK 83
$2.23 ^{+ 2.40}_{- 1.10}$	90	8	FISCHER	78 B	SPRK	$K^+ \rightarrow \pi^+ \pi^0$

 $^{^7}$ This ABOUZAID 08D value includes all radiative final states. The error includes both statistical and systematic errors. The correlation between the Dalitz-pair planes gives a direct measurement of the π^0 parity. The $\pi^0\,2\gamma^*$ form factor is measured and limits are placed on a scalar contribution to the decay.

 $^{^{8}}$ SAMIOS 62B value uses a Panofsky ratio = 1.62.

 $^{^9}$ ABOUZAID 07 result is for $m_{e^+\,e^-}/m_{\pi^0}>$ 0.95. With radiative corrections the result becomes (7.48 \pm 0.29 \pm 0.25) \times 10 $^{-8}$.

 $^{^{10}}$ The DESHPANDE 93 result with bremsstrahlung radiative corrections is (8.0 \pm 2.6 \pm 0.6) \times 10 $^{-8}$.

¹¹ The MCFARLAND 93 result is for B[$\pi^0 \rightarrow e^+e^-$, $(m_{e^+e^-}/m_{\pi^0})^2 > 0.95$]. With radiative corrections it becomes $(8.8^{+4.5}_{-3.2} \pm 0.6) \times 10^{-8}$.

 $^{^{12}}$ ALAVI-HARATI 99C quote result for B[$\pi^0 \to e^+e^-$, $(m_{e^+e^-}/m_{\pi^0})^2 > 0.95$] to minimize radiative contributions from $\pi^0 \to e^+e^-\gamma$. After radiative corrections they obtain $(7.04 \pm 0.46 \pm 0.28) \times 10^{-8}$.

 $\Gamma(4\gamma)/\Gamma_{\text{total}}$

$VALUE$ (units 10^{-8})	CL% EVTS	DOCUMENT ID	TECN	COMMENT
< 2	90	MCDONOUGH 88	СВОХ	$\pi^- p$ at rest

• • • We do not use the following data for averages, fits, limits, etc. • • •

<160	90		BOLOTOV	86 C	CALO
<440	90	0	AUERBACH	80	CNTR

 $\Gamma(
u\overline{
u})/\Gamma_{
m total}$

The astrophysical and cosmological limits are many orders of magnitude lower, but we use the best laboratory limit for the Summary Tables.

<i>VALUE</i> (units 10 ⁻⁶)	CL% EVT.	<u>S</u> <u>L</u>	OOCUMENT ID		TECN	COMMENT
< 0.27	90	13 /	ARTAMONOV	05A	B949	$K^+ \rightarrow \pi^+ \pi^0$
\bullet \bullet We do not use	the followir	ng data fo	or averages, fits	s, limi	ts, etc.	• • •
< 0.83	90	13 /	ATIYA	91	B787	$K^+ \rightarrow \pi^+ \nu \nu'$
$< 2.9 \times 10^{-7}$		14 L	_AM	91		Cosmological limit
$< 3.2 \times 10^{-7}$		15 _[NATALE	91		SN 1987A
< 6.5	90	[OORENBOS	88	CHRM	Beam dump,
<24	90 (13 μ	HFRC7FG	81	RVUF	prompt ν $K^+ \rightarrow \pi^+ \nu \nu'$

¹³ This limit applies to all possible $\nu\nu'$ states as well as to other massless, weakly interacting states.

 $\Gamma(\nu_e \overline{\nu}_e)/\Gamma_{\text{total}}$ Γ_8/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<1.7	90	DORENBOS 88	CHRM	Beam dump, prompt ν
• • • We do not use the	e following	data for averages, fit	ts, limits, e	etc. • • •
<3.1	90	¹⁶ HOFFMAN 88	RVUE	Beam dump, prompt ν

 $^{^{16}\,\}mathrm{HOFFMAN}$ 88 analyzes data from a 400-GeV BEBC beam-dump experiment.

 $\Gamma(
u_{\mu}\overline{
u}_{\mu})/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{g}}/\Gamma$

$VALUE$ (units 10^{-6})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<1.6	90	8.7				800 MeV <i>p</i> on Cu
< 3.1	90		¹⁷ HOFFMAN	88	RVUE	Beam dump, prompt ν
ullet $ullet$ We do not	use the	e followi	ng data for averages	, fits,	limits, e	etc. • • •
<7.8	90		DORENBOS	88	CHRM	Beam dump, prompt ν

 $^{^{17}}$ HOFFMAN 88 analyzes data from a 400-GeV BEBC beam-dump experiment.

¹⁴ LAM 91 considers the production of right-handed neutrinos produced from the cosmic thermal background at the temperature of about the pion mass through the reaction $\gamma\gamma \to \pi^0 \to \nu\overline{\nu}$.

¹⁵ NATALE 91 considers the excess energy-loss rate from SN 1987A if the process $\gamma\gamma \to \pi^0 \to \nu\overline{\nu}$ occurs, permitted if the neutrinos have a right-handed component. As pointed out in LAM 91 (and confirmed by Natale), there is a factor 4 error in the NATALE 91 published result (0.8×10^{-7}) .

$\Gamma(u_{ au}\overline{ u}_{ au})/\Gamma_{ ext{total}}$							Γ ₁₀ /Γ
$VALUE$ (units 10^{-6})		CL%		DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{\text{Beam dump, prompt }\nu}$
<2.1		90					
• • • We do not i	use the	followir	ng d	ata for averages	, fits,	limits, e	tc. • • •
<4.1		90		DORENBOS	88	CHRM	Beam dump, prompt ν
¹⁸ HOFFMAN 88	analyz	es data	fro	m a 400-GeV BE	BC Ł	eam-du	mp experiment.
$\Gamma(\gamma u \overline{ u})/\Gamma_{total}$				10			Γ ₁₁ /Γ
Standard Mo							
VALUE		<u>CL%</u>		DOCUMENT ID		<u>TECN</u>	COMMENT
$<6\times10^{-4}$		90		ATIYA	92	CNTR	$K^+ \rightarrow \gamma \nu \overline{\nu} \pi^+$
$\Gamma(3\gamma)/\Gamma_{\text{total}}$ Forbidden by	y C inv	ariance.					Γ ₁₂ /Γ
$VALUE$ (units 10^{-8})	CL%	<i>EVTS</i>		DOCUMENT ID		TECN	COMMENT
< 3.1	90			MCDONOUGH	88	СВОХ	$\pi^- p$ at rest
• • • We do not i	use the	followir	ng d	ata for averages	, fits,	limits, e	tc. • • •
< 38	90	0		HIGHLAND	80	CNTR	
<150	90	0		AUERBACH DUCLOS	78	CNTR	
<490		0	19	DUCLOS		CNTR	
<490	90			KUTIN		CNTR	
¹⁹ These experim	ents gi	ve B(3 γ	$/2\gamma$	(0.00000000000000000000000000000000000			
$\Gamma(\mu^+e^-)/\Gamma_{\text{tota}}$		n family	nui	mber conservatio	on.		Γ ₁₃ /Γ
$VALUE$ (units 10^{-9})		-		DOCUMENT ID		TECN	COMMENT
< 0.38	90						$K^+ \rightarrow \pi^+ \mu^+ e^-$
• • • We do not i	use the						,
<16	90			LEE	90	SPEC	$K^+ \rightarrow \pi^+ \mu^+ e^-$
<78	90			CAMPAGNARI			•
$\Gamma(\mu^-e^+)/\Gamma_{\rm tota}$							Γ ₁₄ /Γ
				mber conservation		TECN	COLUMENT
VALUE (units 10^{-9})				DOCUMENT ID			
<3.4	90	0		APPEL	00 B	B865	$K^+ \rightarrow \pi^+ e^+ \mu^-$
$[\Gamma(\mu^+e^-)+\Gamma(\mu^+e^-)]$				mber conservatio	on.		Γ ₁₅ /Γ
$VALUE$ (units 10^{-9})		CL%		DOCUMENT ID		TECN	COMMENT
< 0.36		90		ABOUZAID	08C	KTEV	$K_L^0 ightarrow 2\pi^0 \mu^\pm \mathrm{e}^\mp$
• • • We do not i	use the	followir	ng d				
< 17.2		90		KROLAK	94	E799	In $K_I^0 o 3\pi^0$
<140		-		HERCZEG			$K^+ \rightarrow \pi^+ \mu e$
$< 2 \times 10^{-6}$				HERCZEG			$\mu^- \rightarrow e^-$ conversion
< 70		90		BRYMAN			$K^+ \rightarrow \pi^+ \mu e$

π^0 ELECTROMAGNETIC FORM FACTOR

The amplitude for the process $\pi^0 \to e^+ e^- \gamma$ contains a form factor F(x) at the $\pi^0 \gamma \gamma$ vertex, where $x = [m_{e^+ e^-}/m_{\pi^0}]^2$. The parameter a in the linear expansion F(x) = 1 + ax is listed below.

All the measurements except that of BEHREND 91 are in the time-like region of momentum transfer.

LINEAR COEFFICIENT OF π^0 ELECTROMAGNETIC FORM FACTOR

VALUE			EVTS	DOCUMENT ID		TECN	COMMENT
0.032	±0.004	OUR AV	ERAGE				
+0.026	± 0.024	±0.048	7548	FARZANPAY	92	SPEC	$\pi^- p \rightarrow \pi^0 n$ at
+0.025	±0.014	±0.026	54k	MEIJERDREES	592 B	SPEC	$\pi^{-} \stackrel{rest}{p} \ {_{\sim}} \ \pi^0 n \; at$
+0.0326	5±0.0026	5±0.0026	127	²⁰ BEHREND	91	CELL	$e^{+}\stackrel{\text{rest}}{e^{-}} \rightarrow 0$
-0.11	±0.03	± 0.08	32k	FONVIEILLE	89	SPEC	Radiation corr.
 ◆ We do not use the following data for averages, fits, limits, etc. 							
0.12	$^{+0.05}_{-0.04}$			²¹ TUPPER	83	THEO	FISCHER 78 data
+0.10	± 0.03		31k	²² FISCHER	78	SPEC	Radiation corr.
+0.01	±0.11		2200	DEVONS	69	OSPK	No radiation corr.
-0.15	±0.10		7676	KOBRAK	61	HBC	No radiation corr.
-0.24	± 0.16		3071	SAMIOS	61	HBC	No radiation corr

²⁰ BEHREND 91 estimates that their systematic error is of the same order of magnitude as their statistical error, and so we have included a systematic error of this magnitude. The value of *a* is obtained by extrapolation from the region of large space-like momentum transfer assuming vector dominance.

π^0 REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters **B204** 1 (1988).

BERNSTEIN LARIN BYCHKOV ABOUZAID ABOUZAID BEDDALL ABOUZAID ARTAMONOV AUERBACH APPEL Also	13 11 09 08C 08D 08 07 05A 04 00	RMP 85 49 PRL 106 162303 PRL 103 051802 PRL 100 131803 PRL 100 182001 EPJ C54 365 PR D75 012004 PR D72 091102 PRL 92 091801 PRL 85 2450 Thesis, Yale Univ.	A. M. Bernstein, B. R. Holstell. Larin et al. M. Bychkov et al. E. Abouzaid et al. E. Abouzaid et al. A. Beddall A. Beddall E. Abouzaid et al. A.V. Artamonov et al. L.B. Auerbach et al. R. Appel et al. D.R. Bergman	ein (AMHT, MIT) (PrimEx Collab.) (PSI PIBETA Collab.) (FNAL KTEV Collab.) (FNAL KTEV Collab.) (UGAZ) (KTEV Collab.) (BNL E949 Collab.) (LSND Collab.) (BNL 865 Collab.)
Also APPEL ALAVI-HARAT KROLAK DESHPANDE MCFARLAND	00B 1 99C 94 93 93	Thesis, Univ. Zurich PRL 85 2877 PRL 83 922 PL B320 407 PRL 71 27 PRL 71 31	S. Pislak R. Appel <i>et al.</i> A. Alavi-Harati <i>et al.</i> P. Krolak <i>et al.</i> A. Deshpande <i>et al.</i> K.S. McFarland <i>et al.</i>	(BNL 865 Collab.) (FNAL KTEV Collab.) (EFI, UCLA, COLO, ELMT+) (BNL E851 Collab.) (EFI, UCLA, COLO+)

HTTP://PDG.LBL.GOV

Page 7 Created: 5/30/2017 17:22

²¹ TUPPER 83 is a theoretical analysis of FISCHER 78 including 2-photon exchange in the corrections.

The FISCHER 78 error is statistical only. The result without radiation corrections is $+0.05\pm0.03$.

ATIYA FARZANPAY MEIJERDREES ATIYA BEHREND CRAWFORD LAM NATALE AFANASYEV Also	92 92 92B 91 91 91 91 91	PRL 69 733 PL B278 413 PR D45 1439 PRL 66 2189 ZPHY C49 401 PR D43 46 PR D44 3345 PL B258 227 PL B236 116 SJNP 51 664 Translated from	M.S. Atiya et al. F. Farzanpay et al. R. Meijer Drees et al. M.S. Atiya et al. H.J. Behrend et al. J.F. Crawford et al. W.P. Lam, K.W. Ng A.A. Natale L.G. Afanasyev et al.	(BNL, LANL, PRIN+) (ORST, TRIU, BRCO+) (PSI SINDRUM-I Collab.) (BNL, LANL, PRIN+) (CELLO Collab.) (VILL, UVA) (AST) (SPIFT) (JINR, MOSU, SERP)
LEE FONVIEILLE NIEBUHR CAMPAGNARI CRAWFORD DORENBOS HOFFMAN MCDONOUGH PDG WILLIAMS ZEPHAT BOLOTOV	88B 88 88	PRL 64 165 PL B233 65 PR D40 2796 PRL 61 2062 PL B213 391 ZPHY C40 497 PL B208 149 PR D38 2121 PL B204 1 PR D38 1365 JP G13 1375 JETPL 43 520 Translated from 2	A.M. Lee et al. H. Fonvieille et al. C. Niebuhr et al. C. Campagnari et al. J.F. Crawford et al. J. Dorenbosch et al. C.M. Hoffman J.M. McDonough et al. G.P. Yost et al. D.A. Williams et al. A.G. Zephat et al. V.N. Bolotov et al.	(BNL, FNAL, VILL, WASH+) (CLER, LYON, SACL) (SINDRUM Collab.) (BNL, FNAL, PSI+) (PSI, UVA) (CHARM Collab.) (LANL) (TEMP, LANL, CHIC) (LBL+) (Crystal Ball Collab.) (OMICRON Collab.)
CRAWFORD ATHERTON HERCZEG FRANK TUPPER BRYMAN MISCHKE HERCZEG SCHARDT AUERBACH HIGHLAND AUERBACH FISCHER FISCHER BROWMAN BELLETTINI KRYSHKIN	86 85 84 83 83 82 82 81 80 80 78 78 78 74 70	PRL 56 1043 PL 158B 81 PR D29 1954 PR D28 423 PR D28 2905 PR D26 2538 PRL 48 1153 PL 100B 347 PR D23 639 PL 90B 317 PRL 44 628 PRL 41 275 PL 73B 359 PL 73B 364 PRL 33 1400 NC 66A 243 JETP 30 1037	J.F. Crawford et al. H.W. Atherton et al. P. Herczeg, C.M. Hoffman J.S. Frank et al. G.B. Tupper, T.R. Grose, M. D.A. Bryman R.E. Mischke et al. P. Herczeg, C.M. Hoffman M.A. Schardt et al. L.B. Auerbach et al. V.L. Highland et al. L.B. Auerbach et al. J. Fischer et al. J. Fischer et al. A. Browman et al. G. Bellettini et al. V.I. Kryshkin, A.G. Sterligov	(TRIU) (LANL, ARZS) (LANL) (ARZS, LANL) (TEMP, LASL) (TEMP, LASL) (TEMP, LASL) (GEVA, SACL) (GEVA, SACL) (CORN, BING) (PISA, BONN)
DEVONS VASILEVSKY BELLETTINI DUCLOS KUTIN CZIRR SAMIOS KOBRAK SAMIOS BERMAN BUDAGOV JOSEPH	69 66 65B 65 65 63 62B 61 61 60 60	Translated from 2 PR 184 1356 PL 23 281 NC 40A 1139 PL 19 253 JETPL 2 243 Translated from 2 PR 130 341 PR 126 1844 NC 20 1115 PR 121 275 NC XVIII 1192 JETP 11 755 Translated from 2 NC 16 997	S. Devons et al. I.M. Vasilevsky et al. G. Bellettini et al. J. Duclos et al. V.M. Kutjin, V.I. Petrukhin, ZETFP 2 387. J.B. Czirr N.P. Samios et al. H. Kobrak N.P. Samios S. Berman, D. Geffen Y.A. Budagov et al.	(COLU, ROMA) (JINR) (PISA, FIRZ) (CERN, HEID) Y.D. Prokoshkin (JINR) (COLU, BNL) (COLU, BNL) (COLU, BNL) (JINR) (JINR) (EFI)