МЕТОД КОРНЕВОГО ГОДОГРАФА

1. Методические указания

Корневым годографом (КГ) называется совокупность траекторий перемещения всех корней характеристического уравнения замкнутой системы при изменении какого-либо параметра этой системы.

Обычно метод КГ позволяет находить полюса и нули $\Pi\Phi$ замкнутой системы, располагая полюсами и нулями разомкнутой системы при изменении коэффициента усиления разомкнутой системы K.

 $\Pi\Phi$ разомкнутой системы $W_{\mathbf{p}}(s)$ представим в следующем виде:

$$W_{p}(s) = \frac{KC \prod_{j=1}^{m} (s - s_{j}^{0})}{\prod_{i=1}^{n} (s - s_{i}^{*})},$$
(1)

где s_j^0 — нули $\Pi\Phi \, W_p(s)$, ($j=\overline{1,m}$); s_i^* — полюса $\Pi\Phi \, W_p(s)$, ($i=\overline{1,n}$); n и m — порядки знаменателя и числителя; C — коэффициент представления (отношение коэффициентов при старших членах числителя и знаменателя).

При замыкании системы с $\Pi\Phi\ W_{
m p}(s)$ единичной отрицательной обратной связью $\Pi\Phi$ замкнутой системы $W_{
m a}(s)$ принимает вид

$$W_{3}(s) = \frac{W_{p}(s)}{1 + W_{p}(s)}.$$
 (2)

Из выражения (2) следует, что нули $\Pi\Phi$ замкнутой системы равны нулям $\Pi\Phi$ разомкнутой системы.

Для нахождения полюсов рассмотрим выражение

$$1+W_{p}(s)=0,$$
 (3)

в соответствии с выражением (1) имеем

$$\frac{KC\prod_{j=1}^{m}(s-s_{j}^{0})}{\prod_{i=1}^{n}(s-s_{i}^{*})}+1=0 \implies \prod_{i=1}^{n}(s-s_{i}^{*})+KC\prod_{j=1}^{m}(s-s_{j}^{0}).$$
(4)

На основании выражения (4) можно сказать, что при K=0 корни характеристического уравнения совпадают с полюсами, а при $K=\infty-$ с нулями. При изменении K от 0 до ∞ траектории корней начинаются в полюсах и заканчиваются в нулях. Обычно полюсов больше, чем нулей. В этом случае n-m ветвей корневого годографа стремятся к ∞ .

Для определения полюсов замкнутой системы с отрицательной обратной связью необходимо решить уравнение (его называют основным уравнением метода $K\Gamma$):

$$W_{\mathbf{n}}(s) = -1. \tag{5}$$

Так как $W_{\rm p}(s)$ является функцией комплексного переменного s, то уравнение (5) распадается на два уравнения: уравнение модулей

$$|W_{\mathbf{D}}(s)| = 1 \tag{6}$$

и уравнение аргументов (фаза вектора –1 есть нечетное число π):

$$\arg W_{\rm p}(s) = \pm (2u+1)\pi, v = 0, 1, 2, \dots$$
 (7)

Как известно, при умножении комплексных чисел их аргументы складываются, а при делении – вычитаются. Поэтому, исходя из выражения (1), уравнение (7) имеет наглядный геометрический смысл.

Пусть точка s – полюс замкнутой системы. Если провести в s вектора из всех нулей $W_p(s)$ (обозначим аргументы этих векторов θ_j^0) и вектора из всех полюсов $W_p(s)$ (обозначим аргументы этих векторов θ_i^*), то уравнение (7) можно записать в следующем виде:

$$\sum_{i=1}^{m} \theta_{j}^{0} - \sum_{i=1}^{n} \theta_{i}^{*} = \pm (2\nu + 1)\pi, \ \upsilon = 0, 1, 2, \dots$$
 (8)

Углы q отсчитываются от положительного направления действительной оси. Знак угла «+» соответствует повороту против часовой стрелки, знак угла «-» соответствует повороту по часовой стрелке.

Таким образом, любая точка КГ должна удовлетворять уравнению (8), из которого следует, что конфигурация КГ не зависит от коэффициента усиления K, но каждому конкретному значению K однозначно соответствуют точки на КГ.

При умножении комплексных чисел их модули перемножаются, а при делении – делятся. Поэтому на основании уравнения (6) можно записать

$$\frac{KC \prod_{j=1}^{m} l_{j}^{0}}{\prod_{i=1}^{n} l_{i}^{*}} = 1,$$
(9)

где l_j^0 — модуль (длина) вектора, проведенного из j-нуля в точку s КГ; l_i^* — модуль вектора, проведенного из i-полюса в ту же точку s.

Таким образом, траектории корней строятся только по уравнениям фаз, а уравнение модулей используется затем для нахождения K.

Сущность метода К Γ заключается в том, чтобы узнать, каким должен быть коэффициент усиления разомкнутой системы, чтобы было обеспечено желаемое положение корней замкнутой системы.

Корневой годограф системы с отрицательной обратной связью обладает следующими основными свойствами [1-5]:

- 1. Ветви К Γ непрерывны и расположены на комплексной плоскости симметрично относительно действительной оси.
- 2. Число ветвей КГ равно порядку системы n. Ветви начинаются в n полюсах разомкнутой системы при K=0. При возрастании K от 0 до ∞ полюса замкнутой системы двигаются по ветвям КГ.
- 3. m ветвей КГ при возрастании K от 0 до ∞ заканчиваются в m нулях $W_{\rm p}(s)$, а (n-m) ветвей при K, стремящемся ${\rm K} \infty$, удаляются от полюсов вдоль асимптот.
- 4. При расположении ветвей корневого годографа в левой полуплоскости s CAУ устойчива. При пересечении ветвей КГ мнимой оси слева направо CAУ становится неустойчивой. Пусть при $K=K^{\rm kp}$ пересечение КГ с мнимой осью произойдет в некоторой точке $i\omega^{\rm kp}$. Назовем это значение коэффициента усиления критическим $K^{\rm kp}$, а величину $\omega^{\rm kp}$ критической угловой частотой, на которой система становится неустойчивой.

2. Использование MatLab

В системе MatLab существует команда zpk для преобразования модели, заданной $\Pi\Phi$, в модель, заданную нулями, полюсами и обобщенным коэффициентом передачи (zpk-форма).

Пример:

```
>> w=tf([10],[2 2 3 1 0])
Transfer function:
10
_______
2 s^4 + 2 s^3 + 3 s^2 + s
>> w1=zpk(w)
Zero/pole/gain:
5
______
s (s+0.3966) (s^2 + 0.6034s + 1.261)
```

Для работы с корневым годографом удобно использовать графический интерфейс «SISO-Design Tool», предназначенный для анализа и синтеза одномерных линейных систем автоматического управления (SISO – Single Input/Single Output).

Запуск SISO-Design Tool осуществляется командой

>> sisotool

В появившемся окне графического интерфейса необходимо использовать команду «File/Import» для загрузки данных из рабочего пространства MatLab, в результате которой появляется диалоговое окно Import System Data (рис. 1).

Рис. 1. Диалог для ввода параметров модели

После импортирования данных можно исследовать изменение временных и частотных характеристик замкнутой системы при изменении K. Обычно при этом требуется определить условия неустойчивости замкнутой САУ. Определить $K^{\rm kp}$ и $\omega^{\rm kp}$.

На рис. 2 показано окно sisotool для описанной выше модели w1. Двигая красным курсором по КГ до пересечения ветвей с мнимой осью, можно определить значение $K^{\text{кp}}$. В данном случае $K^{\text{кp}} \approx 0,1$. Значение $\omega^{\text{кp}}$ соответствует мнимой координате пересечения КГ мнимой оси. Просмотреть это значение можно в нижней части интерфейса или выбрав меню «View/Closed-Loop Poles».

Рис. 2. Основное окно SISO Design tool

3. Задание на лабораторную работу

Построить К Γ в соответствии с вариантом из таблицы при помощи графического интерфейса sisotool.

Исследовать динамику замкнутой системы при различных значениях коэффициента усиления разомкнутой системы K, в том числе:

- запасы устойчивости в частотной области;

 Таблица

 Варианты передаточных функций

ı п/п	Значения параметров	Передаточная функция разомкнутой системы
1	$T=0,1,~\zeta=1$	
2	$T=0{,}05,\; \zeta=0{,}707$	K
3	$T=0,03,~\zeta=0,1$	$\overline{s(T^2s^2+2T\zeta s+1)}$
4	$T=0,08,~\zeta=0,5$	
5	$T=0{,}01,~\zeta=0{,}15$	

Окончание табл.

1 п/п	Значения параметров	Передаточная функция разомкнутой системы
6	$T_1 = 0.03, T_2 = 0.5, T_3 = 0.1, T_4 = 0.05$	
7	$T_{_{1}}=0{,}05,T_{_{2}}=0{,}4,T_{_{3}}=0{,}08,\ T_{_{4}}=0{,}033$	$K(T_1s+1)$
8	$T_1 = 0.2, T_2 = 0.45, T_3 = 0.1, T_4 = 0.05$	$s(T_2s+1)(T_3s+1)(T_4s+1)$
9	$T_1 = 0.5, T_2 = 0.25, T_3 = 0.1, T_4 = 0.02$	
10	$T_1 = 0.1, T_2 = 0.25, T_3 = 0.1, T_4 = 0.05$	
11	$T_1 = 0.2, \ T_2 = 0.1, \ T_3 = 0.05, \ T_4 = 0.07, \ = 0.5$	
12	$T_{1} = 0.07, \ T_{2} = 0.1, \ T_{3} = 0.05, \ T_{4} = 0.07, \ = 0.5$	
13	$T_1 = 0.3, \ T_2 = 0.1, \ T_3 = 0.05, \ T_4 = 0.07, \ = 0.5$	$\frac{K(T_1s+1)}{s(T_2s+1)(T_3s+1)(T_4^2s^2+2T_4\zeta s+1)}$
14	$T_1 = 0.01, T_2 = 0.1, T_3 = 0.1, T_4 = 0.07, = 0.5$	
15	$T_{_{1}}\!=0,\ T_{_{2}}\!=0,\!1,\ T_{_{3}}\!=0,\!1,\ T_{_{4}}\!=0,\!07,\ =0,\!5$	

[–] параметры переходного процесса во временной области.

Отчет должен содержать:

- краткие теоретические сведения;
- анализ результатов построения КГ;
- выводы.