

DTU Health Technology Bioinformatics

Mutations and Disease

Shyam Gopalakrishnan Associate Professor Section of Evolutionary Genomics, KU Section of Bioinformatics, DTU shyam.g@gmail.com

Biological relevance of mutations

Biological relevance of mutations

GWAS Catalog

As of May 2019

- 3,989 publications
- 138,312 variant-trait associations
- >6,000 full summary statistics files

Example of mutations affecting phenotype/disease

Example of mutations affecting phenotype/disease

Example of mutations affecting phenotype/disease

chr2:136608646 A/G

Part 1: What are mutations, and their types?

DNA: Purines and Pyrimidines

Base

Base

Variations: Mutations and Polymorphisms

- Permanent changes in DNA sequence

Single nucleotide variation (SNV)

- Change in the sequence at a single nucleotide - two alleles (states) in the population
- UV, replication error, chemicals ...

Polymorphism (SNP)

- SNV with a minimum frequency in the population (1% minor allele frequency)

Mutation

- Usually implies association to disease or particular phenotype

Transitions and Transversions

Transition: Same class of nucleotide base

Transversion: Different class of nucleotide base

Somatic vs Germline mutations

Germline Mutations

Present in all cells

Transmitted to offspring

Fixate in population (SNP)

Somatic Mutations

- -Present only in **some** cells
- -Not transmitted to offspring
- -Do **not fixate** in population

Central dogma of molecular biology

5. juni 2019 DTU Sundhedsteknologi Data basics

Parts of the genome

5. juni 2019 DTU Sundhedsteknologi Data basics

Coding vs Non-Coding mutation

Coding mutation: Located in regions of the genome that code for proteins [Exons]

Non-coding mutation: Located in regions of the genome that do not result in proteins [Everything but the exons]

15

- 1. Synonymous (slient) mutation
 - no change in the amino acid sequence

... CCA ... → ... CCC ... Proline Proline

- 2. Non-synonymous (mis-sense) mutation
 - change in the amino acid sequence

$$...$$
 AAC ... \rightarrow ... CAC ... Aspargine \rightarrow Histidine

- 3. Non-sense mutation (early stop codon):
- Early termination of a protein: replace an amino acid with a stop codon

... UGU ... → ... UGA ... Cystine → opal stop codon

- 4. Frame shift mutation:
- Alter the open reading frame change the grouping of the 3 bases that comprise a codon
 - Cause by an small insertion/deletion
 - Results in a different protein

Frameshift mutation - single nucleotide insertion

What about the non-coding mutations?

SO term	SO description	SO accession	Display term	IMPACT
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	SO:0001893@	Transcript ablation	HIGH
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	SO:0001574@	Splice acceptor variant	HIGH
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	SO:0001575@	Splice donor variant	HIGH
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	SO:0001587@	Stop gained	HIGH
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	SO:0001589₽	Frameshift variant	HIGH
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	SO:0001578@	Stop lost	HIGH
start_lost	A codon variant that changes at least one base of the canonical start codon	SO:0002012@	Start lost	HIGH
transcript_amplification	A feature amplification of a region containing a transcript	SO:0001889@	Transcript amplification	HIGH
inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequence	SO:0001821@	Inframe insertion	MODERATE
inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequence	SO:0001822#	Inframe deletion	MODERATE
missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	SO:0001583₽	Missense variant	MODERATE
protein_altering_variant	A sequence_variant which is predicted to change the protein encoded in the coding sequence	SO:0001818@	Protein altering variant	MODERATE
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	SO:0001630₽	Splice region variant	LOW
incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	SO:0001626@	Incomplete terminal codon variant	LOW
start_retained_variant	A sequence variant where at least one base in the start codon is changed, but the start remains	SO:0002019®	Start retained variant	LOW

5. juni 2019 DTU Sundhedsteknologi Data basics

More complex variations

Insertion

Deletion

Inversion

Duplication

Translocation

Part 2: Mutations and diseases

Mutations affect protein structure

Non-synonymous mutations

Non-sense mutations

Mutations affect protein structure

Sickle-Cell Anemia Normal red blood cell section Normal red blood cell (RBC) Normal hemoglobin Abnormal sickle red blood cell section RBCs flow freely whitin blood vessel Abormal hemoglobin form strands Sickle cells blocking blood flow that cause sickle shape Sticky sickle cells

RESEARCH Open Access

A novel lipoprotein lipase gene missense mutation in Chinese patients with severe hypertriglyceridemia and pancreatitis

Tan-Zhou Chen¹¹, Sai-Li Xie¹¹, Rong Jin² and Zhi-Ming Huang^{1*}

Novel missense mutations in exon 15 of desmoglein-2: Role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy?

Katja Gehmlich, PhD,* Angeliki Asimaki, PhD,† Thomas J. Cahill, MA, MRCP,* Elisabeth Ehler, PhD,‡ Petros Syrris, PhD,* Elisabetta Zachara, MD,§ Federica Re, MD,§ Andrea Avella, MD,† Lorenzo Monserrat, MD,¶ Jeffrey E. Saffitz, MD, PhD,† William J. McKenna, MD, FRCP*

25

Mutations and disease

etic architecture of common and mendelian diseases. At one end of the spectrum are mendelian diseases cause by few variants in few

5. juni 2019 DTU Sundhedsteknologi Data basics

Understanding mutations using genomics

Now (Bioinformatics)

5. juni 2019 DTU Sundhedsteknologi Data basics

Pathogenicity of mutations: Conservation

5. juni 2019 DTU Sundhedsteknologi Data basics

Pathogenicity of mutations: Beyond conservation

Where do we go from here?

5. juni 2019 DTU Sundhedsteknologi Data basics