

INDIAN INSTITUTE OF TECHNOLOGY PATNA

DEPARTMENT OF PHYSICS

End Semester Examination PH201: OPTICS AND LASERS

	Attempt all questions	
S.I No		Marks
1	Inside the laser cavity which of the following phenomenon leads to longitudinal modes? a. Refraction b. Dispersion c. Diffraction d. Interference	2
2	Tunable External Cavity Laser (ECL) has a. Transmission grating b. Reflection grating c. Prism d. glass plate	2
3	Laser diode is very good for digital modulation because	2
	a. $\frac{\Delta P}{\Delta I}$ is large b. $\frac{\Delta P}{\Delta I}$ is small c. frequency band width is small	
	d. frequency band width is large	
	note: P is output laser power and I is pump current	
4	Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of wave length 550nm. Calculate the fringe width on a screen at a distance of	2
	1 m from the slits.	
	a. 1.75 mm b. 1.75 cm c. 2.75mm d. 2.75 cm	
5	Two coherent sources of intensity 10 W/m² and 25 W/m² interfere to from fringes.	2
	Find the ratio of maximum intensity to minimum intensity.	
	a. 0.4 b. 2.5 c. 20.73 d. 19.73	
6	In Young's double slit experiment, a viewing screen is separated from the double slit	2
	by 1.2 m. The distance between the two slits is 0.030 mm. The 2nd order bright fringe	
	(m=2) is 4.5 cm from the central maximum. Determine the wavelength of light.	
	a. 5.62 X 10 ⁻⁵ m b. 5.62 X 10 ⁻⁶ m c. 5.62 X 10 ⁻⁷ m d. 5.62X 10 ⁻⁹ m	
7	A ray of light is incident on a glass surface of refractive index 1.732 at polarizing	2
	angle. The angle of refraction of the ray will be	
	a. 30 degrees b. 60 degrees c. 45 degrees d. 90 degrees	
8	A material having a refractive index of 4.5 at 1300nm is used for making a laser which	3

	has a cavity of length 400 micrometre long. The refractive index varies linearly as a	
	function of wavelength at a rate of 10^{-3} / nm around 1300nm wavelength. Find the	
	separation between the adjacent cavity modes?	
9	A GaAs laser has a 400 micrometer long cavity with a refractive index of 3.6. The	3
	material gain function is Gaussian with its peak (G_{peak}) at 800nm (λ_{center}) and its	
	Gaussian width σ is 2nm. The maximum gain at 800nm is 50 cm ⁻¹ (G_{peak}). If the loss	
	in the cavity is 30 cm ⁻¹ and is independent of the wavelength. Find the number of	
	modes which will exist in the laser?	
	Gain is given as $G(\lambda) = G_{peak}e^{-\frac{[\lambda - \lambda_{center}]^2}{2\sigma^2}}$	
10	In a two level atomic system electron density in the excited state E_2 at a time $t=0$ s is	3
	given as $N_2(0)$. If a spontaneous emission event occurs what will be the electron	
	density N ₂ (t) after a time 't' seconds?	
11	A semiconductor laser diode operating at a wavelength of 1.3 micrometer has a cavity	3
	length of 300 micrometre. If one of the laser facets is coated to produce Reflectivity	
	(R_1) 0.9 and another facet assume R_2 to be 0.99, what should be the minimum gain	
	for lasing, if the absorption loss of the material is of the form $e^{-\alpha}$, where α to be 10	
	Explain how light amplification occurs inside the gain medium of Laser in the	4
12	presence of an optical pump?	
13	What is the principle behind wavelength division multiplexing (WDM) in fiber	4
	optical communication? Draw a neat diagram for explaining WDM?	
14	Explain how a grating is used to get a single mode (frequency) operation? Use a neat	4
	diagram to explain its operation.	
15	Explain the working mechanism of Ruby Laser? Sketch a neat diagram and label all	4
	the components.	
16	Explain how absorption spectroscopy is done using External Cavity Laser? Sketch the	4
	schematic and label all the components.	
17	Explain an experimental technique (show the schematic diagram) for stabilizing the	4
	laser intensity?.	