

Centro Tecnológico Departamento de Engenharia Elétrica

Sistemas Embarcados I ELE08575 – 2023/2

camilo.diaz@ufes.br

Projeto Final **Robô para labirintos**

1. OBJETIVOS

 Aplicar os conceitos adquiridos ao longo do curso como modulação por largura do pulso (PWM, do inglês, *Pulse Width Modulation*) para controle de motores CC e servomotores, conversão analógica digital (ADC, do inglês, *Analog-to-Digital Conversion*) para coleta de sinais de sensores analógicos, controle de portas (GPIO, do inglês, *General-Purpose Input/Output*), Timers, LCD, entre outros.

2. INTRODUÇÃO

A robótica é uma área multidisciplinar que permite explorar diversas aplicações associadas a sistemas embarcados, como por exemplo, instrumentação, monitoramento/processamento de sinais, e controle, entre outras. Este projeto final tem como objetivo a implementação de um robô para resolver um labirinto. A Figura 1 apresenta a estrutura principal do robô. Ele conta com uma tração diferencial (motor esquerdo e direito, ME e MD, respetivamente), uma roda boba de suporte, e de 3 a 5 sensores de linha (sensores de linha esquerdo, direito e de cruzamento esquerdo, SLE, SLD e SCE, respetivamente, podendo acrescentar sensor de linha central e de cruzamento direito).

Figura 1. Estrutura do robô.

O processo de seguimento de linha é apresentado na Figura 2. Dependendo de qual sensor está na linha, uma ação de controle tem que ser tomada para o robô não fugir da linha. Várias estratégias podem ser adotadas: a mais simples é usar controle on/off, onde a entrada dos sensores pode ser configurada como GPIO, mas o sensor tem que dar um sinal digital, por exemplo, fora da linha 0 e dentro da linha 1 (essa configuração não será usada no projeto, mas é sugerida para os primeiros testes). Uma segunda alternativa é usar o controle proporcional (P), onde

dependendo de quanto o sensor estiver sob a linha (sinal analógico) vai ser associado um valor proporcional ao PWM para o controle dos motores (proposta mínima a ser implementada!). Existe ainda uma abordagens mais adequadas para setar o valor de velocidade, por exemplo um controlador PI (Proporcional-Integral), ou a melhor opção, um controlador PID (Proporcional-Integral-Derivativo). Nesta abordagem pode-se ter além dos sensores de linha, sensores (encoders) para monitorar as rotações dos motores para setar a velocidade correta. Quanto mais complexo o controlador, o erro de seguir a linha será minimizado. Outras abordagens podem também implementar visão computacional para o seguimento da linha.

Figura 2. Ação de controle para seguir a linha.

Na Figura 2 é apresentada a resposta de controle dependendo de qual sensor de linha está sobre a linha. No lado direito é representada uma relação linear de tensão e transição de branco para preto. Com o valor da inclinação é possível aplicar o controlador proporcional, ou seja, se os sensores SLE e SLD estão sob superfície branca, o robô pode avançar com máxima velocidade. Dependendo da proporção do sensor sob a linha preta, a velocidade tem que ir diminuindo.

2.1. **Sensor de Ultrassom:** A operação básica desses dispositivos para medir distâncias é apresentada na Figura 3. Um transmissor envia um pulso de ultrassom que é refletido pelo objeto e é percebido por um receptor no sensor. Se for medido o tempo decorrido entre a emissão do som e a recepção do eco, é possível saber a distância em que o objeto está localizado. Uma desvantagem destes sensores é a baixa precisão e a dependência do formato da superfície que reflete a onda.

Figura 3. Sensor de ultrassom.

2.2. Sensor infravermelho: São compostos basicamente por um LED infravermelho com comprimento de onda em torno de ~940 nm, que atua como emissor e um fototransistor como receptor. A Figura 4 apresenta um sensor infravermelho TCRT5000 que é utilizado para seguir a linha. Já que sua distância é muito limitada, 3 mm, não é utilizado para detectar obstáculos ou

Experiência Nº 06 - Sistemas Embarcados I

objetos que estejam no ambiente. A operação de todos os sensores infravermelhos é baseada no princípio da reflexão da luz. O feixe infravermelho é emitido através de uma lente convergente, que o faz chegar paralelo ao objeto. Quando a luz atinge o objeto, uma certa quantidade de luz é refletida, em maior ou menor grau, dependendo da cor e do tipo de superfície. Essa luz refletida é percebida pelo receptor (fotodiodo ou fototransistor).

Figura 4. Sensor infravermelho para seguir a linha TCRT5000.

3. Implementação do labirinto

O labirinto é uma matriz 5x5 como mostrado na Figura 5. Os muros do labirinto podem ser alterados de forma aleatória mudando a complexidade para o robô sair.

Figura 5. Labirinto variável de 5x5.

As possíveis combinações que o robô tem que analisar em cada cruzamento (nodo) são apresentadas na Figura 6. Para detectar o cruzamento é usado o sensor de cruzamento SCE ou SCD. No caso, a nossa implementação pode usar 3 sensores para determinar o estado do entorno, ou seja, se tem ou não parede. Uma alternativa é usar um único sensor de ultrassom (HC-SR04) para determinar a condição do entorno. O HC-SR04 tem que estar ancorado num servomotor o qual vai rodar assim: 0 graus para coletar a distância da esquerda, 90 graus para coletar a informação da frente e 180 graus para coletar a informação do lado direto. O valor de distância tem que ser visualizado no LCD integrado ao robô. Para cada caso uma ação de controle tem que ser tomada, como apresentado na Figura 6.

Experiência Nº 06 - Sistemas Embarcados I

Figura 6. Possíveis combinações de ações de controle do robô.

O projeto estará constituído por:

- 4 grupos de 4 alunos
- 3 grupos de 3 alunos

Os pontos para avaliação do projeto são:

Atividade	Pontuação
Segue a linha (Controle proporcional)	1.5
Realizar cruzamentos (90 direita, esquerda e 180 graus)	1.5
Ler distância de obstáculos com o ultrasom e realizar filtragem - Sugestão, média móvel!	1.5
Visualizar parâmetros do Robô no LCD (Distância do Ultrassom, sensores de linha, e estado da bateria)	1.5
Visualizar todos os sensores do Robô em dasboard Grafana ou similar	2
Sair do labirinto	2