PROJEKT

STEROWNIKI ROBOTÓW

Dokumentacja

Rozbudowana wersja Prymitywnego Animowanego Wyświetlacza w języku C

PAW 3.14

Skład grupy: Jakub Cebulski, 235773 Miłosz Chlebowski, 235427

Termin: srTP15

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów	5
3	Opis działania programu 3.1 Opis działania podwójnego buforowania 3.2 Teksturowanie 3.3 Biblioteka matematyczna 3.4 Opis działania aplikacji pokazowej	6
4	Zarządzanie projektem	11
5	Podsumowanie	6 inforowania
Bi	Sibilografia	13

1 Opis projektu

Projekt jest kontynuacją projektu PAW, jest to otwartoźródłowa biblioteka graficzna dla mikrokontrolerów STM32, stworzona i rozwijana w ramach projektów studenckich w poprzednich latach.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
8	PC14/OSC32_IN*	RCC_OSC32_IN	PC14-OSC32_IN
9	PC15/OSC32_OUT*	RCC_OSC32_OUT	PC15-OSC32_OUT
10	PF0	FMC_A0	A0
11	PF1	FMC_A1	A1
12	PF2	FMC_A2	A2
13	PF3	FMC A3	A3
14	PF4	FMC_A4	A4
15	PF5	FMC A5	A5
19	PF7	SPI5 SCK	SPI5 SCK [L3GD20 SCL/SPC]
20	PF8	SPI5 MISO	SPI5 MISO [L3GD20 SDO]
21	PF9	SPI5 MOSI	SPI5 MOSI [L3GD20 SDA/SDI/SDO]
22	PF10	$ \text{LTD}\overline{\text{C}} \text{DE}$	ENABLE[LCD-RGB ENABLE]
23	PH0/OSC IN	RCC OSC IN	PH0-OSC IN
24	PH1/OSC OUT	RCC OSC OUT	PH1-OSC OUT
26	PC0 –	FMC SDNWE	SDNWE
27	PC1	GPIO Output	NCS MEMS SPI[L3GD20 CS I2C/SPI]
28	PC2	GPIO Output	CSX [LCD-RGB CSX]
34	PA0/WKUP	GPIO EXTI0	B1 [Blue PushButton]
35	PA1	GPIO EXTI1	MEMS INT1 [L3GD20 INT1]
36	PA2	GPIO EXTI2	MEMS INT2 [L3GD20 INT2]
37	PA3	LTDC B5	B5
40	PA4	LTDC_USYNC	VSYNC
42	PA6	LTDC_G2	G2
43	PA7	GPIO Output	ACP RST
44	PC4	GPIO Output	OTG FS PSO [OTG FS PowerSwitchOn]
45	PC5	GPIO EXTI5	OTG FS OC [OTG FS OverCurrent]
46	PB0	LTDC R3	R3
47	PB1	_	R6
		LTDC_R6	BOOT1
48	PB2/BOOT1	GPIO_Input	
49	PF11	FMC_SDNRAS	SDNRAS
50	PF12	FMC_A6	A6
53	PF13	FMC_A7	A7
54	PF14	FMC_A8	A8
55	PF15	FMC_A9	A9
56	PG0	FMC_A10	A10
57	PG1	FMC_A11	A11
58	PE7	FMC_D4	D4
59	PE8	FMC_D5	D5
60	PE9	FMC_D6	D6
63	PE10	FMC_D7	D7
64	PE11	FMC_D8	D8
65	PE12	FMC_D9	D9
66	PE13	FMC_D10	D10
67	PE14	FMC_D11	D11
68	PE15	FMC_D12	D12
69	PB10	LTDC_G4	G4
70	PB11	LTDC_G5	G5
73	PB12*	USB OTG HS ID	OTG FS ID
74	PB13*	USB OTG HS VBUS	VBUS FS
75	PB14*	USB OTG HS DM	OTG FS DM
76	PB15*	USB OTG HS DP	OTG FS DP
77	PD8	FMC_D13	D13
78	PD9	FMC D14	D14
79	PD10	FMC D15	D15
80	PD11	GPIO Input	TE [LCD-RGB TE]
81	PD12	GPIO Output	RDX [LDC-RGB RDX]
82	PD13	GPIO Output	WRX DCX [LCD-RGB WRX DCX]
85	PD14	FMC D0	D0
86	PD15	FMC_D0	D1
89	PG4	FMC_BA0	BA0
OB	1 04	TMIO_DAU	שלים

90	PG5	FMC BA1	BA1	
91	PG6	LTDC R7	R7	
92	PG7	LTDC CLK	DOTCLK [LCT-RGB DOTCLK]	
93	PG8	FMC SDCLK	SDCLK	
96	PC6	LTDC HSYNC	HSYNC	
97	PC7	LTDC G6	G6	
99	PC9	\overline{I} 2C3 \overline{S} DA	I2C3 SDA [ACP/RF SDA]	
100	PA8	I2C3 SCL	I2C3 SCL [ACP/RF SCL]	
103	PA11	$LTD\overline{C}$ R4	R4	
104	PA12	LTDC R5	R5	
105	PA13*	SYS JTMS-SWDIO	SWDIO	
109	PA14*	SYS_JTCK-SWCLK	SWCLK	
110	PA15	GPIO_EXTI15	TP_INT1 [Touch Panel]	
111	PC10	LTDC_R2	R2	
114	PD0	FMC_D2	D2	
115	PD1	FMC_D3	D3	
117	PD3	LTDC_G7	G7	
122	PD6	LTDC_B2	B2	
125	PG10	LTDC_G3	G3	
126	PG11	LTDC_B3	B3	
127	PG12	LTDC_B4	B4	
128	PG13	GPIO_Output	LD3 [Green Led]	
129	PG14	GPIO_Output	LD4 [Red Led]	
132	PG15	FMC_SDNCAS	SDNCAS	
135	PB5	FMC_SDCKE1	SDCKE1	
136	PB6	FMC_SDNE1	SDNE1 [SDRAM_CS]	
139	PB8	LTDC_B6	B6	
140	PB9	LTDC_B7	B7	
141	PE0	FMC_NBL0	NBL0 [SDRAM_LDQM]	
142	PE1	FMC_NBL1	NBL1 [SDRAM_UDQM]	

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 DMA2D

DMA2D mode and configuration				
Basic Parameters:				
Transfer Mode	Memory to memory			
Color Mode	RGB565			
Output Offset	0			
Foreground layer Configuration:				
DMA2D Input Color Mode	RGB565			
DMA2D ALPHA MODE	No modification of the alpha channel value			

2.3 LTDC

LTDC mode and configuration					
Display Type	RGB565 (16bits)				
Synchronization for Width					
Horizontal Synchronization Width	8				
Horizontal Back Porch	7				
Active Width	320				
Horizontal Front Porch	6				
HSync Width	7				
Accumulated Horizontal Back Porch Width	14				
Accumulated Active Width	334				
Total Width	340				
Synchronization for Heig	ht				
Vertical Synchronization Height	4				
Vertical Back Porch	2				
Active Height	480				
Vertical Front Porch	2				
VSync Height	3				
Accumulated Vertical Back Porch Height	5				
Accumulated Active Height	485				
Total Height	487				
Signal Polarity					
Horizontal Synchronization Polarity	Active Low				
Vertical Synchronization Polarity	Active Low				
Data Enable Polarity	Active Low				
Pixel Clock Polarity	Normal Input				
BackGround Color					
Red	0				
Green	0				
Blue	0				

3 Opis działania programu

Przyjęte konwencje

Program napisano zgodnie z paradygmatem programowania obiektowego. W związku z tym tworzone struktury posiadały swoje metody oznaczone nazwą struktury jako przedrostkiem nazwy funkcji. Ponadto niektóre złożone struktory posiadają konstruktor i destruktor. W związku z brakiem bezpośredniego wsparcia w języku C były to zwykłe funkcje.

3.1 Opis działania podwójnego buforowania

Podwójne buforowanie zostało zrealizowane dzięki podmianie adresu bufora po każdym zakończonym rysowaniu klatki. Na początku funkcji PAW_Scene_display, ustalany jest adres aktualnego bufora. Po narysowaniu klatki do pamięci, DMA2D jest informowane o zmianie adresu, z którego ma przesyłać dane do wyświetlacza. Podwójny bufor można wyłączyć zmieniając działanie funkcji PAW_Buffer_Switch tak aby zwracała za każdym razem ten sam adres pamięci SDRAM.

3.2 Teksturowanie

Biblioteka umożliwia nakładanie nakładanie tekstur na kwadraty. Tekstury są tworzone poprzez umieszczanie figur 2D na określonym obszarze. Umieszczając kwadraty z teksturami w przestrzeni 3D pozwala tworzyć barwne bryły. Dzięki sortowaniu kwadratów przed wyświetleniem otrzymano realistyczny efekt przesłaniania się ich nawzajem.

3.3 Biblioteka matematyczna

Biblioteka matematyczna składa się z trzech modułów. Moduł PAW_Math zawiera stałe i funkcje wykorzystywane przez resztę biblioteki. PAW_Vector jest reprezentają wektora o arbitralnej liczbie wy-

miarów. Pozwala na wykonywanie na nich operacji matematycznych takich jak dodawanie i odejmowanie ich od siebie a także mnożenie i dzielenie przez skalary. PAW_Matrix pozwala na operacje na macierzach kwadratowych o dowolnej wielkości, między innymi liczenie odwrotności, dodawanie ich do siebie oraz mnożenie przez wektor lub skalar.

3.4 Opis działania aplikacji pokazowej

Aplikacja testowa składa się z czterech przykładowych zastosowań biblioteki. Można je przełączać używając przycisku na płytce.

Pierwsze z nich to prosta animacja w 2D. Pokazuje płynność obrazu osiągniętą dzięki podwójnemu buforowi.

Drugie to kostka będąca elementem projektu PAW-2.0. Pokazuje ono udaną reimplementację grafiki 3D w języku C.

Kolejna widoczna kostka składa się już z nowo utowrzonych struktur - kwadratów oraz posiada nałożone tekstury. Dzięki sortowaniu obiektów od najdalszych do najbliższych osiągnięto efekt przysłaniania się ścian. Animacja nie jest płynna ze względu na to że do każdej klatki kostka jest generowana od nowa wraz z teksturami.

Ostatnie demo prezentuje to samo co poprzednie, tym razem z użyciem projekcji 3D do 2D do nowej figury. Dzięki temu zamiast tworzyć nowe kostki obracana jest wciąż ta sama a płynność animacji jest znacznie większa. Jest to funkcjonalność wykraczająca poza założenia projektu, ze względu na ograniczenia czasowe nie została dopracowana i powoduje wycieki pamięci.

Tworzenie i wyświetlanie kształtów w 2D

Biblioteka PAW pozwala na tworzenie kształtów takich jak okręgi czy odcinki wykorzystując wektory zaimplementowane w bibliotece matematycznej do określenia pozycji w trójwymiarowym układzie współrzędnych. Macierze pozwalają na dokonywanie translacji oraz rotacji.

Tworzenie i wyświetlanie kształtów w 3D

Poza figurami w 2D biblioteka pozwala na tworzenie brył. Składają się one z tych samych prymitywów co figury 2D, jednak posiadają własne metody translacji i rotacji. Dodatkowo pozwalają na projekcję do 2D przy pomocy jednej z 2 metod. Pierwsza z nich dokonuje tej operacji w miejscu, druga tworzy nową figurę.

Rysunek 3: Demo 2D

Rysunek 4: Demo 3D

Rysunek 5: Demo 3D z teksturami

Rysunek 6: Diagram modułów

4 Zarządzanie projektem

W celu organizacji pracy nad kodem zastosowano system kontroli wersji git. Repozytorium z kodem znajduje się pod adresem https://gitlab.com/mchlebowski/paw-3.14.

Poszczezególne zadania realizowano na przeznaczonych do tego gałęziach. Następnie po zaakceptowaniu zmian przez wszystkich członków grupy scalano je z gałęzią develop. W gałęzi master znalazł się kod ukończonego projektu.

5 Podsumowanie

Mimo trudności, osiągnięto wszystki postawione cele. Szczególne problemy sprawiła implementacja podwójnego buforowania, mimo że finalne rozwiązanie jest trywialne. Użyte narzędzia w postaci języka

C oraz biblioteki HAL okazały się wystarczające do realizacji założeń projektu. Wiele opracji, w szczególności zarządzanie pamięcią mogłoby się okazać znacznie prostszymi mająć do dyspozycji możliwości oferowane przez język C++. Dodatkowo uprościłoby to użycie biblioteki z perspektywy użytkownika końcowego.

Literatura

- $[1] \ {\it T. Francuz}. \ \textit{Mikrokontrolery AVR i ARM : sterowanie wyświetlaczami LCD}. \ 2017.$
- [2] M. A. Galewski. $\mathit{STM32}$: aplikacje i ćwiczenia w języku C. 2011.