人脸口罩检测

郑家瀚 2019 医学院 生物医学工程 @mails.tsinghua.edu.cn 姚非凡 2019312571 医学院 生物医学工程 yff19@mails.tsinghua.edu.cn

摘要

Keywords—目标检测 SSD

I. 简介

在 2020 年即将到来之时,新冠肺炎的病毒入侵了中国的武汉,随之席卷了全中国乃至全球。在抗击疫情的过程中,人脸口罩检测 (Face Mask Detection) 是其中一项必要的工作,通过对口罩的检测,可以加快后续的人脸识别操作,也是对医疗卫生、公共安全的保障。

口罩的识别任务主要依据的是目标检测(Object Detection)技术。目标检测关注是在图片中特定的物体目标,要求同时获得单个目标或多个目标的类别信息和位置信息。目标检测给出的是对图片前景和背景的理解,需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。而我们则是需要在佩戴口罩的图片中识别出口罩是否存在;存在遮挡物的话,是否是口罩;存在的话,给出对应的位置。

A. 单阶段 (1-stage) 检测模型

单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为 Region-free 方法。

1) YOLO

YOLO[1] 是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。YOLO 将图片缩放,划分为等分的网格,每个网格按跟 Ground Truth 的 IoU 分配到所要预测的样本,其卷积网络由GoogLeNet 更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成 B 个 box,每个 box 预测五个回归值,四个表征位置,第五个表征这个 box 含有物体(注意不是某一类物体)的概率和位置的准确

程度(由 IoU 表示)。测试时,分数如下计算:

 $Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$

等式左边第一项由网格预测,后两项由每个 box 预测,以条件概率的方式得到每个 box 含有不同类别物体的分数。因而,卷积网络共输出的预测值个数为 S×S×(B×5+C),其中 S 为网格数,B 为每个网格生成box 个数,C 为类别数。在后处理上,YOLO 使用 NMS (Non-Maximum Suppression,非极大抑制) 过滤得到最后的预测框。损失函数被分为三部分: 坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。

YOLO 的主要优点是快;全局处理使得背景错误相对少,相比基于局部(区域)的方法,泛化性能好。

2) SSD: Single Shot Multibox Detector

SSD 算法 [2] 在传统的基础网络(比如 VGG)后添加了 5 个特征图尺寸依次减小的卷积层,对 5 个特征图的输入分别采用 2 个不同的 3*3 的卷积核进行卷积,一个输出分类用给的 confidence,每个 default box(default box,是指在 feature map 的每个小格 (cell)上都有一系列固定大小的 box)生成 21 个类别的 confidence;一个输出回归用的 localization,每个 default box 生成 4 个坐标值,最后将 5 个特征图上的结果合并(Contact),送人 loss 层。

SSD 在基础网络 (VGG) 后添加了辅助性的层进行多尺度卷积图的预测结果融合,提出了类似 Anchor 的 Default boxes,解决了输入图像目标大小尺寸不同的问题,同时提高了精度,可以理解为一种特征金字塔;SSD 提出了一个彻底的 end to end 的训练网络,保证了精度的同时大幅度提高了检测速度,且对低分辨率的输入图像的效果很好。

B. 两阶段 (2-stage) 检测模型

两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法。

1) R-CNN

R-CNN[3] 将检测抽象为两个过程, 一是基于图片 提出若干可能包含物体的区域(即图片的局部裁剪、被 称为 Region Proposal), 文中使用的是 Selective Search 算法 CNN 对输入图像的大小有限制, 所以在将候选 区域输入 CNN 网络之前,要将候选区域进行固定尺寸 的缩放,缩放分为两大类:各向同性缩放,长宽放缩 相同的倍数与各向异性缩放,长宽放缩的倍数不同;二 是在提出的这些区域上运行当时表现最好的分类网络 (AlexNet), 对 CNN 输出的特征用 SVM 进行打分, 得 到每个区域内物体的类别,针对每个类,通过计算 IoU 指标,采取非极大性抑制,以最高分的区域为基础,剔 除掉那些重叠位置的区域,并将 CNN 对候选区域提取 出的特征输入训练好的线形回归器中,得到更为精确的 位置定位,实现时加入了 log/exp 变换来使损失保持在 合理的量级上,可以看做一种标准化(Normalization) 操作。

R-CNN 将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。

2) Fast R-CNN

Fast R-CNN[4] 指出 R-CNN 耗时的原因是 CNN 是在每一个 Proposal 上单独进行的,没有共享计算, 便提出将基础网络在图片整体上运行完毕后,再传入 R-CNN 子网络,共享了大部分计算,故有 Fast 之名。

图片经过 feature extractor 得到 feature map,同时在原图上运行 Selective Search 算法并将 RoI (Region of Interset,实为坐标组,可与 Region Proposal 混用)映射到到 feature map 上,再对每个 RoI 进行 RoI Pooling 操作便得到等长的 feature vector,将这些得到的 feature vector 进行正负样本的整理(保持一定的正负样本比例),分 batch 传入并行的 R-CNN 子网络,同时进行分类和回归,并将两者的损失统一起来。Fast R-CNN将 Proposal,Feature Extractor,Object Classification和 Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率。

Faster R-CNN 是 2-stage 方法的奠基性工作, 提出

的 RPN 网络取代 Selective Search 算法使得检测任务可以由神经网络端到端地完成。RPN 网络将 Proposal 这一任务建模为二分类(是否为物体)的问题。第一步是在一个滑动窗口上生成不同大小和长宽比例的 anchor box (如上图右边部分),取定 IoU 的阈值,按 Ground Truth 标定这些 anchor box 的正负。于是,传入 RPN 网络的样本数据被整理为 anchor box (坐标)和每个 anchor box 是否有物体 (二分类标签)。RPN 网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个 anchor box 有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为 RPN 网络的目标训练。由 RPN 得到 Region Proposal 在根据概率值筛选后经过类似的标记过程,被传入 R-CNN 子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。

C. 深度学习目标检测的发展

深度学习对目标检测的在经典的研究上不断发展, 诞生了大量的工作。

图 1. 2013 至 2019 深度学习目标检测发展

在这个基础上,一系列技术也得到了进步 [5]:

D. 本文贡献

本文利目标检测深度学习技术检测对人脸口罩进行识别。本文构建了3种不同的模型分别是SSD、做口罩目标的检测,分别是SSD、

II. 数据整理

采用数据为公开数据集: AIZOO 的 FaceMaskDetection 和 Real-World Masked Face Dataset(RMFD)。

AIZOO 的 FaceMaskDetection 数据集 (https://github.com/AIZOOTech/FaceMaskDetection) 开源了人脸口罩检测的主流框架的相应模型,并提供了

图 2. Evolution of techniques in object detection from 2001 to 2019

相应的推理代码。该作者开源了如表格所示的 7,959 张 人脸标注图片,数据集来自于 WIDER Face 和 MAFA 数据集,并重新修改了标注和校验。

Real-World Masked Face Dataset(RMFD) 数据集 (https://github.com/X-zhangyang/Real-World-

Masked-Face-Dataset)为武汉大学国家多媒体软件工程技术研究中心收集和标注的口罩数据集 [7]。包含从网络爬取样本,经过整理、清洗和标注后,含 525 人的5 千张口罩人脸、9 万正常人脸。以及通过公开数据集中的人脸戴上口罩,得到1 万人、50 万张人脸的模拟口罩人脸数据集。

我们使用的 AIZOO 数据集,可以发现该数据集有两类的数据,分别为口罩和非口罩人像,且数据相对平衡,数据集包含对每张照片的注释,注释信息包含图片的类别、目标的位置,该数据集适合作为训练与测试,该数据分布如下:

图 3. 数据集分布可视化

III. 模型设计

A. SSD

使用了 SSD 类型的架构,本模型输入大小为 260x260,主干网络只有 8 个卷积层,加上定位和分类层,一共只有 24 层 (每层的通道数目基本都是 32、64、128),只有 101.5 万参数。八个卷积层是主干网络,也就是特征提取层,20 层是定位和分类层。训练目标检测模型,最重要的合理的设置 anchor 的大小和宽高比,笔通过统计数据集的目标物体的宽高比和大小来设置 anchor 的大小和宽高比,因为人脸的一般是长方形的,而很多图片是比较宽的,人脸的宽度和高度归一化后,有很多图片的高度是宽度的 2 倍甚至更大。从上图也可以看出,归一化后的人脸高宽比集中在 12.5 之间。根据数据的分布,我们将五个定位层的 anchor 的宽高

比统一设置为 1, 0.62, 0.42。(转换为高宽比, 也就是约 1, 1.6: 1, 2.4:1)。

为了避免使用手挡住嘴巴就会欺骗部分口罩检测系统的情况,在数据集中加入了部分嘴巴被手捂住的数据,另外在训练的过程中,随机的往嘴巴部分粘贴一些其他物体的图片,从而避免模型认为只要露出嘴巴的就是没戴口罩,没露出嘴巴的就是带口罩这个问题,通过这两个规避方法,解决了非口罩遮挡物被当作口罩的误判。后处理部分主要就是非最大抑制(NMS),我们使用了单类的 NMS,也就是戴口罩人脸和不戴口罩人脸两个类别一起做 NMS,从而提高速度。

迭代下模型 Loss 如下:

图 4. 数据集分布可视化

IV. 实验设计及结果

数据集将训练集分为训练样本和验证样本,并对测试集中的样本进行测试。

下表中展示各个模型每个类别的 mAP@.5, mAP@.7, mAP@.9, mAP@[.5:.95]。

表 I 不同模型下的 MAP

Model	Class	mAP@.5	mAP@.7	mAP@.9	mAP@[.5:.95]
SSD	Mask	0.86	0.79	0.21	0.61
	Face	0.81	0.79	0.30	0.64

V. 实验结果分析 VI. 小组成员贡献 VII. 参考代码 VIII. 结论 参考文献

- [1] Redmon, J. , Divvala, S. , Girshick, R. , & Farhadi, A. . (2015). You only look once: unified, real-time object detection.
- [2] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., & Fu, C. Y., et al. (2016). Ssd: single shot multibox detector.
- [3] Girshick, R. , Donahue, J. , Darrell, T. , & Malik, J. . (2013). Rich feature hierarchies for accurate object detection and semantic segmentation.
- [4] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- [5] Zou, Z., Shi, Z., Guo, Y., & Ye, J., (2019). Object detection in 20 years: a survey.