A Matheuristic for the Generalized Order Acceptance and Scheduling Problem

Ceyda Oğuz

(joint work with İstenç Tarhan)

Koç University

Scheduling Seminar Series February 7, 2024

Agenda

- Problem definition
- Literature review
- MILP model
- Matheuristic algorithm
- Computational study
- Conclusion

Problem definition

Order acceptance and scheduling problem

- Make-to-order systems
- Limitations: Capacity and time
- Customer preferences: Acceptable date and deadline

- Integration of two decision:
 - Order Acceptance : Which orders to be accepted?
 - Scheduling Problem : How to schedule them?

Literature review

- Wester et al. (1992), Slotnick and Morton (1996), Rom and Slotnick (2009), Lewis and Slotnick (2002): No deadline
- Charnsirisakskul et al. (2004): Due date and deadline distinction
- Oguz et al. (2010): Extension by sequence dependent setup time and release time (GOAS)
 - MILP model formulation
 - Simulated annealing based heuristic and two constructive heuristics
- Studies following Oguz et al. (2010):
 - Cesaret et al. (2012): Tabu search
 - Park et al. (2013): Genetic algorithm
 - Lin and Ying (2013): Artificial bee colony
 - Chaurasia and Singh (2016):Two hybrid metaheuristics
 - Nguyen (2016): Hyper-heuristic using genetic algorithm
 - Silva et al. (2018): Branch & price and iterated local search algorithm
 - He et al. (2019): Memetic algorithm
 - de Weerdt et al. (2021): Heuristic algorithms based on dynamic programming
- Exact algorithms for similar problems: Slotnick and Morton (2007), Mestry et al. (2009), Nobibon and Leus (2011), Geramipour et al. (2017), Cordone et al. (2017) and de Weerdt et al. (2021)

MII P Model **GOAS**

Indices, sets and parameters

```
n: the number of orders
```

$$O = \{1, ..., n\}$$
: the set of orders

$$O' = O \cup \{0, n+1\}$$
: the set of orders including dummies

$$i,j \in O'$$

$$s_{i,j}$$
: Setup time between order i and order j

 p_i : Processing time of order i

ei: Revenue of order i

 r_i : Release time of order i

 d_i : Due date of order i

d: Deadline of order i

w_i: Unit tardiness cost of order i

MILP Model GOAS

Decision variables

 I_i : 1 if order i is accepted, 0 otherwise, $\forall i \in O'$

 $y_{i,j}$: 1 if order j is processed immediately after order i, 0 otherwise, $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

 $g_{i,j}$: Completion time of order j if order i immediately precedes it, 0 otherwise, $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

 $T_{i,j}$: Tardiness of order j if order i immediately precedes it, 0 otherwise, $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

MII P Model **GOAS** Problem

Maximize
$$\sum_{i \in O} e_i l_i - \sum_{i,j \in O'} T_{i,j} w_j \tag{1}$$

$$\sum_{j=1, j\neq i}^{n+1} y_{i,j} = l_i \quad \forall i \in O' \setminus \{n+1\}$$

$$(2)$$

$$\sum_{j=0, j\neq i}^{n} y_{j,i} = l_i \quad \forall i \in O' \setminus \{0\}$$

$$\tag{3}$$

$$\sum_{j=1}^{n+1} g_{i,j} - \sum_{j=0}^{n} g_{j,i} \ge \sum_{j=1}^{n+1} (s_{i,j} + p_j) y_{i,j} + \sum_{j=1, \bar{d}_i < r_j}^{n+1} (r_j - \bar{d}_i) y_{i,j} \quad \forall i \in O$$

$$(4)$$

$$g_{i,j} \ge g_{i,j}^{lb} y_{i,j}$$
 $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

$$g_{i,j} \leq g_{i,j}^{ub} y_{i,j}$$
 $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

$$T_{i,j} \ge g_{i,j} - d_i y_{i,j}$$
 $\forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

$$T_{i,j} \ge g_{i,j} - d_j \gamma_{i,j} \qquad \forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$$

$$T_{i,i}, g_{i,j} \in R^+, l_i, \gamma_{i,j} \in \{0,1\} \qquad \forall i \in O', j \in O'$$

$$(8)$$

$$T_{i,j}, g_{i,j} \in \mathbb{R}^+, \ l_i, y_{i,j} \in \{0, 1\} \qquad \forall i \in O', j \in O'$$
 where $g_{i,j}^{lb} = \max(r_i + \min_{k:k \le n, k \ne i} s_{k,i} + p_i + s_{i,j} + p_j, r_j + s_{i,j} + p_j) \quad \forall i \in O' \setminus \{n+1\}, j \in O' \setminus \{0\}$

$$g_{i,j}^{ub} = \min(\bar{d}_j, \max(\bar{d}_i, r_j) + s_{i,j} + \rho_j) \quad \forall i \in \textit{O}' \setminus \{\textit{n} + 1\}, \textit{j} \in \textit{O}' \setminus \{0\}$$

(5)

(6)

Matheuristic algorithm GOAS_I2PM

- The GOAS problem is NP-hard
- Performance of the commercial solvers significantly deteriorates as the number of orders increases
- Motivation: Decompose the original problem into subproblems having manageable number of orders
- Proposed algorithm is a matheuristic comprising of two different MILP models (ASSIGN and SCHEDULE) running in an iterative manner
 - ASSIGN: Assign orders to particular segments of the planning horizon by excluding sequence dependent setup times
 - SCHEDULE: Solve the GOAS problem under the restrictions provided by ASSIGN

Matheuristic algorithm GOAS_I2PM General scheme

Figure 1: Flow chart of the matheuristic algorithm

Matheuristic algorithm GOAS_I2PM ASSIGN — A Relaxed Time-Bucket Model

- ullet ASSIGN is based on a time index set $T'=\{t_0,t_1,...,t_{|T'|}\}$
- Intervals between adjacent two indices are denoted by index k such that kth interval starts from $t_{k-1}+1$ and ends at t_k where $k \in K = \{1, ..., |T'|\}$ and $t_0 = 0$ w.l.o.g.
- Time indices are generated such that if an order is started in kth interval, it must be completed in k+1st interval at the latest for any $k \in K$

Figure 2: Planning horizon T with time indices

Matheuristic algorithm GOAS_I2PM ASSIGN — A Relaxed Time-Bucket Model

- ullet Original planning horizon ${\mathcal T}$ is decomposed into a set of segments ${\mathcal S}$
- The end points of the segments, $\varsigma_1, \varsigma_2, ..., \varsigma_{|S|}$, in set S is chosen from the set of time indices T'
- Time segments are denoted by index s such that sth segment spans the time period from ς_{s-1} to ς_s where $s \in S = \{1, 2, .., |S|\}$.

Figure 3: Decomposing the planning horizon T into time segments

Matheuristic algorithm GOAS_I2PM ASSIGN: Model GOAS_RTBM

Decision variables

 $u_{i,k}$: 1 if order i has started and completed in interval k, 0 otherwise, $\forall i \in O, k \in K$

 $u'_{i,k}$: 1 if order i has started in interval k-1 and completed in interval k, 0 otherwise, $\forall i \in O, k \in K \setminus \{0\}$

 $a_{i,s}$: 1 if the completion time of order i lies in time segment s, 0 otherwise, $\forall i \in O, s \in S$

 $q_{i,k}$: Amount of order i processed in interval k if $u'_{i,k}=1$, 0 otherwise, $\forall i \in O, k \in K \setminus \{0\}$

 T_i : Tardiness of order i, $\forall i \in O$

Matheuristic algorithm GOAS_I2PM ASSIGN: Model GOAS_RTBM

Maximize
$$\sum_{i \in O, k \in K} (u_{i,k} + u'_{i,k})e_i - \sum_{i \in O} T_i w_i$$
 (9)

s.t.

$$\sum_{i \in O, k \in K} ((u_{i,k} + u'_{i,k+1})p'_i + q_{i,k} - q_{i,k+1}) \le t_k - t_{k-1} \qquad \forall k \in K$$
(10)

$$\sum_{i \in O} u'_{i,k} \le 1 \qquad \forall k \in K \tag{11}$$

$$\sum_{i \in O} q_{i,k} \le u'_{i,k} p'_i \qquad \forall k \in K \tag{12}$$

$$\sum_{k \in K: \varsigma_{s-1} < t_k < = \varsigma_s} (u_{i,k} + u'_{i,k}) = a_{i,s} \qquad \forall i \in O, s \in S \setminus \{0\}$$
 (13)

$$\sum_{s \in S} a_{i,s} = 1 \qquad \forall i \in O \tag{14}$$

$$T_i \ge \sum_{k \in K} (u'_{i,k}(t_{k-1} - d_i) + q_{i,k})$$

$$+ u_{i,k} \max\{\max\{t_{k-1}, r_i\} + p'_i - d_i, 0\}\}$$

$$+ u_{i,k} \max\{\max\{t_{k-1}, r_i\} + p_i - u_i, 0\}$$

Cut set

$$u_{i,k}, u'_{i,k} \in [0,1], a_{i,s} \in \{0,1\}; q_{i,k}, T_i \in R^+$$

$$\forall i \in O$$

$$\forall i \in O, k \in K, s \in S$$

Matheuristic algorithm GOAS_I2PM ASSIGN

Algorithm 1 ASSIGN

Input: Model GOAS_RTBM, $p_i', i \in O$ if First iteration of the GOAS_RTBM then Solve model GOAS_RTBM (p')

else

Solve model GOAS_RTBM (p') with cuts derived by SCHEDULE

end if

Output: $a_{i,s}$, $i \in O, s \in S$

Matheuristic algorithm GOAS_I2PM SCHEDULE

- ASSIGN gives a new assignment of orders to time segments in each iteration
- SCHEDULE handles each time segment separately (i.e. |S| subproblems are solved sequentially by the MILP model)
- ullet O_s denotes the set of orders assigned to time segment s
- Each time segment $s \in S$ has a beginning and end point. Thus, release times and deadlines of the orders in set O_s are modified as:

$$r_i^s = \max\{\varsigma_{s-1}, r_i\}$$
 $\forall i \in O, s \in S$
 $\bar{d}_i^s = \min\{\varsigma_s, \bar{d}_i\}$ $\forall i \in O, s \in S$

• $MILP(O_s, r^s, \bar{d}^s)$: The MILP model considering the orders in set O_s with their modified r and \bar{d} parameters

Matheuristic algorithm GOAS_I2PM SCHEDULE

Algorithm 2 SCHEDULE

```
Input: O_s, r^s, \bar{d}^s, s \in S

Initialize: s = 1, x_0 = \emptyset

while s \le |S| do

\pi_s \leftarrow \mathit{MILP}(O_s, r^s, \bar{d}^s)

x_s \leftarrow x_{s-1} + \pi_s

if s < |S| then

Create x_s' by adding rejected orders so far to the partial solution x_s

x_s \leftarrow \mathit{VNS}(x_s')

end if

s + +

end while

Output: x_{|S|}
```

Matheuristic algorithm GOAS_I2PM

Local search algorithm: Multi-start granular tabu search (GOAS_MSGTS)

- Short term memory to avoid reversal of moves and cycling: Recency based tabu list
- Local search algorithm / Move: Variable neighborhood descent using swap and insertion moves
- Evaluation of a move: Objective value and makespan
- Tabu move: An order that is swapped or inserted is tabu
- Tabu Tenure: 5 iterations
- Aspiration criteria: Best objective value
- Generation of initial solution for the new start: Via path relinking

Matheuristic algorithm GOAS_I2PM ASSIGN and SCHEDULE communication

- ASSIGN sets assignment of orders to time segments
- SCHEDULE
 - generates cuts to avoid ASSIGN generating same assignment of orders
 - If there is at least one $s \in S: O_s \not\equiv A_s$ where A_s is the set of accepted orders in set O_s

$$\sum_{i \in A_s} a_{i,s} |O_s \setminus A_s| + \sum_{i \in O_s \setminus A_s} a_{i,s} \le |A_s| |O_s \setminus A_s| \qquad \forall s \in S : O_s \not\equiv A_s.$$

else

$$\sum_{s \in S, i \in O_s} a_{i,s} \le \sum_{s \in S} |O_s| - 1.$$

- modifies parameter p' (input of ASSIGN):
 - st_i' : Estimation of the setup time before order i in the optimal solution (initially, it is set to the minimum setup time that can be observed before order i, $\forall i \in O$)
 - $st_i' = 0.9st_i' + 0.1s_i^x$ where s_i^x denotes the setup time executed before order i in solution x
 - $p'_i = p_i + st'_i$, $\forall i \in O$.

Computational results Design

- Computational performance of GOAS_I2PM is compared with that of both the proposed mathematical model and the state-of-the-art algorithms SSP (Silva et al., 2018), SPARROW (He et al., 2019), FPTAS and BALAS (de Weerdt et al., 2021) for the GOAS problem.
- Instances generated by Cesaret et al. (2012) are used as previous studies.

• Gap =
$$\frac{UB_{instance} - LB_{instance}^{method}}{UB_{instance}}$$

Comparison of the proposed MILP and SSP for small size instances

	Gap (%)									NF			CPU time (s)		
n		SSP				MILP				SSP	MILP		SSP	MILP	
	Min	Avg	Max		Min	Avg	Max								
10	0.000	0.000	0.000		0.000	0.000	0.000		250	250	250		0.41	0.13	
15	0.000	0.001	0.007		0.000	0.000	0.000		250	249	250		98.84	0.73	
20	0.000	0.001	0.011		0.000	0.000	0.000		250	249	250		360.02	5.07	
25	0.000	0.004	0.043		0.000	0.000	0.000		250	248	250		762.91	158.84	

Comparison of GOAS_I2PM with the proposed MILP for n=50

						Gap) (%)			NO		NF	Soluti	on time (s)
	n	$\boldsymbol{\tau}$	R		MILP)		GO	AS_I2	PM		MILP	GOAS_I2PM	MILP	GOAS_I2PM
				Min	Avg	Max		Min	Avg	Max					
	50	0.1	0.1	0.00	0.00	0.00		0.00	0.02	0.19	10.00	10.00	9.00	145.04	900.00
			0.3	0.00	0.00	0.00		0.00	0.02	0.17	10.00	10.00	9.00	166.12	900.00
			0.5	0.00	0.36	2.03		0.00	0.00	0.00	10.00	5.00	10.00	2762.04	900.00
			0.7	0.00	0.14	0.56		0.00	0.00	0.00	10.00	7.00	10.00	2372.16	900.00
			0.9	0.00	1.21	4.13		0.00	0.00	0.00	10.00	2.00	10.00	3568.20	900.00
		0.5	0.1	0.00	2.89	5.84		0.00	0.48	1.03	2.00	1.00	2.00	3600.00	900.00
			0.3	0.56	2.67	4.73		0.00	0.69	1.27	2.00	0.00	2.00	3600.00	900.00
			0.5	1.47	5.02	10.08		0.00	1.05	2.26	1.00	0.00	1.00	3600.00	900.00
			0.7	2.46	4.06	7.46		0.00	0.79	1.87	2.00	0.00	2.00	3600.00	900.00
			0.9	3.68	5.87	8.00		0.00	1.01	2.45	2.00	0.00	2.00	3600.00	900.00
		0.9	0.1	0.00	0.00	0.00		0.00	0.00	0.00	10.00	10.00	10.00	541.82	900.00
			0.3	0.00	0.07	0.65		0.00	0.02	0.24	10.00	9.00	9.00	1682.76	900.00
			0.5	0.00	0.54	2.15		0.00	0.00	0.00	10.00	6.00	10.00	3346.96	900.00
			0.7	0.00	0.30	0.84		0.00	0.10	0.56	10.00	3.00	8.00	3600.00	900.00
			0.9	0.00	0.85	2.47		0.00	0.00	0.00	10.00	3.00	10.00	3600.00	900.00
A	Avg:			0.50	1.80	3.53		0.00	0.57	1.31	109.00	66.00	104.00	2869.91	900.00

Comparison of GOAS_I2PM with the proposed MILP for n=100

							Gap	(%)			NO		NF	Soluti	on time (s)
n	1	$\boldsymbol{\tau}$	R			MILP			GC	DAS_I2	PM		MILP	GOAS_I2PM	MILP	GOAS_I2PM
				- 1	Min	Avg	Max		Min	Avg	Max					
10	00	0.1	0.1		0.00	0.00	0.00		0.00	0.04	0.26	10.00	10.00	8.00	1817.58	900.00
			0.3		0.00	0.45	1.86		0.00	0.07	0.19	3.00	1.00	3.00	3561.59	900.00
			0.5		2.44	6.91	11.04		0.00	0.00	0.00	10.00	0.00	10.00	3600.00	900.00
			0.7		5.75	9.34	12.95		0.00	0.00	0.00	10.00	0.00	10.00	3600.00	900.00
			0.9		12.34	16.27	25.68		0.00	0.00	0.00	10.00	0.00	10.00	3600.00	900.00
		0.5	0.1		17.43	23.38	36.90		0.34	0.52	0.88	0.00	0.00	0.00	3600.00	900.00
			0.3		18.03	23.94	30.46		0.33	0.68	0.96	0.00	0.00	0.00	3600.00	900.00
			0.5		18.70	31.26	45.03		0.28	0.56	0.80	0.00	0.00	0.00	3600.00	900.00
			0.7	2	27.06	34.75	44.86		0.00	0.51	0.99	1.00	0.00	1.00	3600.00	900.00
			0.9	2	20.26	30.53	42.12		0.00	0.34	1.47	4.00	0.00	4.00	3600.00	900.00
		0.9	0.1		0.58	1.34	2.13		0.00	0.22	0.52	10.00	0.00	2.00	3600.00	900.00
			0.3		0.79	2.18	2.92		0.00	0.17	0.40	10.00	0.00	3.00	3600.00	900.00
			0.5		1.42	6.23	10.02		0.10	2.83	5.68	5.00	0.00	0.00	3600.00	900.00
			0.7		8.53	11.67	14.83		4.74	6.99	10.34	0.00	0.00	0.00	3600.00	900.00
			0.9		9.81	14.68	21.46		2.68	6.64	10.27	0.00	0.00	0.00	3600.00	900.00
Av	g:				10.70	16.22	23.03		0.53	1.23	2.08	73.00	11.00	51.00	3527.17	900.00

Comparison of the number of optimal solutions found in the literature and in this study

		n=25	i	n=50		n=10	0
au	R	Literature	This study	Literature	This study	Literature	This study
0.1	0.1	3	10	0	10	0	10
	0.3	4	10	0	10	0	3
	0.5	7	10	3	10	6	10
	0.7	10	10	10	10	10	10
	0.9	10	10	10	10	10	10
0.3	0.1	6	10	0	9	0	0
	0.3	3	10	0	9	0	0
	0.5	3	10	1	8	0	0
	0.7	9	10	6	9	5	7
	0.9	8	10	8	9	8	10
0.5	0.1	10	10	0	2	0	0
	0.3	8	10	1	2	0	0
	0.5	8	10	0	1	0	0
	0.7	9	10	0	2	0	1
	0.9	9	10	1	2	1	4
0.7	0.1	10	10	0	0	0	0
	0.3	10	10	1	0	0	0
	0.5	10	10	1	0	0	0
	0.7	10	10	7	3	0	0
	0.9	10	10	7	4	0	0
0.9	0.1	10	10	10	10	10	2
	0.3	10	10	10	10	10	4
	0.5	10	10	10	10	5	0
	0.7	10	10	10	10	0	0
	0.9	10	10	10	10	0	0
Sum:		207	250	106	160	65	71

Comparison of GOAS_I2PM and heuristic approaches by de Weerdt et al. (2021)

						Gap (%)		CPU time (s)								
	n	τ	R	FPTAS $(\epsilon = 0.1)$	FPTAS $(\epsilon = 0.05)$	Balas (5)	Balas (12)	GOAS_I2PM	FPTAS $(\epsilon = 0.1)$	FPTAS $(\epsilon = 0.05)$	BALAS (5)	BALAS (12)	GOAS_I2PM			
				Min Avg Max	Min Avg Max	Min Avg Max	Min Avg Max	Min Avg Max								
	50	0.9	0.1	0.42 2.40 4.21	0.40 1.12 1.95	0.00 0.85 2.22	0.00 0.00 0.00	0.00 0.00 0.00	0.96	1.09	0.27	0.48	900.00			
- 1			0.3	0.90 2.64 6.05	0.45 1.23 2.19	0.48 3.00 6.52	0.00 0.11 1.09	0.00 0.02 0.24	1.87	2.15	0.30	1.05	900.00			
- 1			0.5	0.92 2.39 3.61	0.23 1.29 3.04	0.60 5.76 9.37	0.00 0.56 1.49	0.00 0.00 0.00	9.04	11.00	0.59	5.91	900.00			
- 1			0.7	1.80 2.88 4.30	0.55 1.22 1.85	2.05 6.30 10.70	0.08 1.19 2.99	0.00 0.10 0.56	30.00	33.00	0.81	7.50	900.00			
- 1			0.9	0.35 2.44 4.10	0.90 1.33 2.11	3.33 6.28 12.30	0.00 1.33 3.50	0.00 0.00 0.00	269.00	325.00	1.20	29.30	900.00			
	.00	0.9	0.1	0.63 1.82 3.27	0.32 0.92 1.80	1.65 2.50 3.45	0.00 0.15 0.40	0.00 0.22 0.52	358.00	453.00	10.10	134.00	900.00			
			0.3	1.42 1.94 -	0.53 0.80 1.31	4.98 6.73 9.47	0.31 1.49 2.25	0.00 0.17 0.40	1230.00	1130.00	4.72	104.00	900.00			
			0.5	0.88 1.61 -	0.73 0.96 -	4.97 6.73 9.99	0.79 2.12 3.77	0.10 0.40 0.75	1690.00	2000.00	5.39	200.00	900.00			

Comparison of GOAS_I2PM with the state-of-the-art algorithms SSP and SPARROW for n = 50

									Gap (%	o)						CPU	J time (s)
n	τ	R			SSP			S	PARRO	N*		G	OAS_I2F	PM		SSP	GOAS_I2PM
				Min	Avg	Max		Min	Avg	Max		Min	Avg	Max			
50	0.1	0.1		1.20	2.24	3.00		0.51	0.79	1.27		0.00	0.29	0.60		3415.80	900
		0.3		1.39	2.44	3.92		0.60	1.00	1.53		0.30	0.53	0.78		3600.00	900
		0.5		1.12	1.61	2.10		0.00	0.42	0.96		0.00	0.04	0.42		3217.10	900
		0.7		0.00	2.45	16.39		0.00	1.66	16.38		0.00	1.64	16.39		2661.80	900
		0.9		0.00	0.54	1.90		0.00	0.00	0.00		0.00	0.00	0.00		2139.00	900
	0.3	0.1		0.52	2.35	3.48		0.63	1.59	2.86		0.41	1.02	1.72		3600.00	900
		0.3		2.66	3.54	5.05		1.40	1.81	2.69		0.77	1.28	2.15		3600.00	900
		0.5		1.33	3.49	11.87		0.18	1.44	3.64		0.00	1.01	3.10		3600.00	900
		0.7		0.00	1.40	3.44		0.00	0.39	1.16		0.00	0.07	0.35		3312.10	900
		0.9		0.40	1.35	2.85		0.00	0.27	1.32		0.00	0.06	0.61		3250.10	900
	0.5	0.1		0.57	4.32	13.76		1.11	2.01	2.64		0.56	1.42	2.15		3558.70	900
		0.3		2.37	4.83	7.80		1.97	3.30	5.44		1.64	2.68	4.77		3017.60	900
		0.5		1.55	3.84	8.01		1.03	3.00	6.49		0.34	2.41	5.52		3600.00	900
		0.7		1.51	2.91	5.16		0.37	1.97	4.14		0.00	1.43	3.31		3600.00	900
		0.9		0.35	2.25	4.20		0.00	1.94	4.04		0.00	1.31	3.64		3484.60	900
	0.7	0.1		2.42	3.93	5.20		2.24	3.88	4.74		1.67	3.44	4.45		3600.00	900
		0.3		2.50	4.27	7.60		2.75	4.82	8.40		2.48	4.17	7.42		3160.50	900
		0.5		4.55	6.16	10.32		4.74	6.46	10.91		4.55	6.07	10.32		3356.50	900
		0.7		1.03	6.55	14.31		1.73	7.13	15.50		1.19	6.56	14.31		1971.70	900
		0.9		2.52	7.16	13.00		3.26	7.63	13.02		2.52	7.16	13.00		1374.30	900
	0.9	0.1		6.55	10.88	16.77		6.55	10.98	16.77		6.55	10.88	16.77		304.60	900
		0.3		9.28	13.25	17.40		9.28	13.43	17.80		9.28	13.27	17.60		15.70	900
		0.5		2.63	12.15	16.52		3.05	12.31	16.78		2.63	12.15	16.52		76.10	900
		0.7		5.62	11.13	17.64		5.62	11.50	18.42		5.62	11.21	17.64		54.00	900
		0.9		9.26	12.09	15.85		9.74	12.49	16.30		9.26	12.09	15.85		238.00	900
Avg:				2.45	5.09	9.10		2.27	4.49	7.73		1.99	4.09	7.18		2552.33	900
* F	le et a	I. (201	19)	do not	share t	he run ti	ime	of SPA	ARROW	just sta	ite	that it	is under	a minut	e c	n average	for $n = 50$.

Comparison of GOAS_I2PM with the state-of-the-art algorithms SSP and SPARROW for n=100

									Gap (%								J time (s)
n	τ	R			SSP			S	PARRO	W*		G	OAS_I2I	PM		SSP	GOAS_I2PM
				Min	Avg	Max		Min	Avg	Max		Min	Avg	Max			
100	0.1	0.1		1.18	2.44	3.28		0.39	0.57	0.80		0.09	0.24	0.43		3600.00	900
		0.3		1.51	2.10	3.06		0.34	0.61	0.88		0.09	0.26	0.53		3600.00	900
		0.5		0.36	1.39	2.74		0.00	0.13	0.28		0.00	0.00	0.00		3423.00	900
		0.7		0.00	0.43	0.80		0.00	0.00	0.00		0.00	0.00	0.00		2243.60	900
		0.9		0.00	0.22	0.89		0.00	0.00	0.00		0.00	0.00	0.00		2354.80	900
	0.3	0.1		1.47	2.65	3.96		0.53	0.99	1.44		0.20	0.58	1.26		3600.00	900
		0.3		1.94	2.94	5.39		0.57	1.24	2.49		0.37	0.77	1.93		3600.00	900
		0.5		1.14	2.21	3.81		0.65	1.07	1.75		0.36	0.62	1.02		3600.00	900
		0.7		0.37	1.65	2.75		0.00	0.30	0.79		0.00	0.08	0.36		3515.40	900
		0.9		0.19	0.91	2.41		0.00	0.11	0.42		0.00	0.00	0.00		2788.30	900
	0.5	0.1		2.49	3.96	5.27		1.07	1.79	2.71		0.49	1.23	2.12		3600.00	900
		0.3		2.68	3.95	5.99		1.49	2.16	2.63		0.86	1.57	2.09		3600.00	900
		0.5		2.57	3.54	4.53		1.31	2.33	3.35		0.70	1.69	2.66		3600.00	900
		0.7		1.61	2.71	4.04		0.35	1.49	2.38		0.00	0.82	1.80		3600.00	900
		0.9		0.67	2.10	4.65		0.19	0.92	2.40		0.00	0.41	1.79		3600.00	900
	0.7	0.1		2.70	4.98	6.42		1.69	2.47	3.21		1.27	1.95	2.74		3600.00	900
		0.3		3.93	6.66	10.83		1.35	3.66	5.80		0.97	3.04	5.17		3600.00	900
		0.5		4.04	6.45	12.85		2.23	4.34	10.65		1.60	3.78	10.03		3600.00	900
		0.7		3.36	7.36	13.20		1.92	4.81	7.33		1.60	4.28	6.72		3600.00	900
		0.9		5.30	8.40	12.95		2.97	5.07	6.55		2.62	4.52	6.05		3600.00	900
	0.9	0.1		4.59	8.70	11.95		3.44	5.46	8.47		3.45	5.27	8.29		3600.00	900
		0.3		5.68	12.45	17.41		4.90	8.65	11.20		4.53	8.25	10.77		3600.00	900
		0.5		10.80	15.15	18.38		7.90	10.76	15.67		7.48	10.58	15.52		3600.00	900
		0.7		10.70	14.97	19.95		7.38	10.73	13.02		7.03	10.53	12.57		3600.00	900
		0.9		11.23	14.95	20.47		3.32	10.67	16.53		3.36	10.54	16.32		3600.00	900
Avg:				3.22	5.33	7.92		1.76	3.21	4.83		1.48	2.84	4.41		3453.00	900
	e et al	. (201	9)				ne o				e t				e or		For $n = 100$.

Conclusion

- New MILP model for the GOAS problem
- A new relaxed time-bucket formulation
- A generic matheuristic approach based on parameter relaxation (relaxation of setup times in our problem)
- A multi-start granular tabu search algorithm with a new diversification approach
- Future research:
 - New relaxed models including setup times for ASSIGN
 - Branch and bound algorithm through assignment variables