Question (1) [10 + 10]

(a) Consider the following LPP

$$Minimize Z = c_1 x_1 + x_2$$

Subject to: $-x_1 + x_2 \le 1$, x_1 unrestricted, $x_2 \ge 0$.

For all possible values of $c_1 \in (-\infty, \infty)$, use graphical analysis to find the optimal solution of the problem.

(b) Consider the LP feasible region defined by the constraints

$$x_1 + x_2 \le 6$$
; $x_2 \le 3$; $x_1 \ge 0$ $x_2 \ge 0$.

Find all basic solutions and the basic feasible solutions.

Question (2) [3+3+2+2]

Suppose the following system of equations was obtained in the course of applying Simplex method to solve a linear program with nonnegative variables x_1 , x_2 , x_3 and two inequalities. The objective function (Z) is to maximize and slack variables s_1 and s_2 were added.

$$Z + ax_2 + bx_3 + 4s_2 = 82$$

$$-2x_2 + 2x_3 + s_1 + 3s_2 = c$$

$$x_1 - x_2 + 3x_3 - 5s_2 = 3$$

Give conditions on a, b and c that are required for the following statements to be true

(i) The current basic solution is a feasible basic solution.

Assume that the condition found in (i) holds for the following:

- (ii) The current basic solution is optimal.
- (iii) The linear program is unbounded (for this question, assume that b > 0).

Question (3) Consider the following LP:

Max.
$$Z = 3x_1 + 2 x_2 + 3x_3$$

s.t. $2x_1 + x_2 + x_3 \le 2$
 $3x_1 + 4x_2 + 2x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$

Find a basic feasible solution at the end of phase I of the 2-phase method. Show that all variable columns except x_2 can be dropped from the corresponding table before we start phase II. Solve the reduced problem and write down the optimal solution in terms of x_1 , x_2 and x_3 .

[10+5+5]

[10]

Question (4) Consider the following LP:

Max.
$$Z = x_1 + 2 x_2 + 3x_3 + 4x_4$$

s.t. $x_1 + 2x_2 + 2x_3 + 3x_4 \le 20$
 $2x_1 + x_2 + 3x_3 + 2x_4 \le 20$
 $x_1, x_2, x_3, x_4 \ge 0$

Using the principle of the revised simplex method, prove that an optimal solution exists with x_3 and x_4 as basic variables.