7 de mayo de 2011 Total: 29 puntos Tiempo: 2 h. 15 m.

SEGUNDO EXAMEN PARCIAL

Este es un examen de desarrollo, por tanto, debe aparecer todos los pasos, y sus respectivas justificaciones, que sean necesarios para obtener su respuesta.

1. Considere las dos relaciones \mathcal{R} y \mathcal{S} definidas sobre el conjunto $A = \{3, 4, 5, 6\}$, donde \mathcal{R} está definida por

$$a\mathcal{R}b \Leftrightarrow \left[b = 6 \lor (a - b)^2 = 1 \right]$$

y la matriz de S es $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$.

- (a) Determine el gráfico de \mathcal{R} y el gráfico de \mathcal{S} . (2 puntos)
- (b) Determine la matriz asociada a $\overline{S \circ R} \cap R$. (3 puntos)
- 2. En $\mathbb Z$ se define la relación $\mathcal R$ de la siguiente manera:

$$a\mathcal{R}b \Leftrightarrow [a=b \lor a+b=8]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia. (4 puntos)
- (b) Determine la clase de equivalencia de -10. (1 punto)
- 3. Sean \mathcal{R} y \mathcal{S} dos relaciones definidas sobre un conjunto A, con A no vacío. Demuestre que si $\mathcal{R} \cup \mathcal{S}$ es transitiva, entonces $G_{\mathcal{S} \circ \mathcal{R}} \subseteq G_{\mathcal{R} \cup \mathcal{S}}$.

(3 puntos)

- 4. Considere la función $f: \mathbb{R} \{1\} \longrightarrow \mathbb{R} \{k\}$ definida por $f(x) = \frac{2x+3}{x-1}$,
 - (a) Demuestre que f es inyectiva. (2 puntos)
 - (b) Determine el valor de k para que f sea sobreyectiva. (2 puntos)
- 5. Calcule el criterio de f^{-1} para la función biyectiva $f:]-\infty, 0] \longrightarrow]-\infty, 5]$ definida por $f(x) = -2x^2 + 5$. (4 puntos)

6. Sean $A=\{1,2,3\}$ y $B=\{1,2,3,4,5,6,7\}$. Considere la función $f\colon A\times A\to B$ definida por:

$$f((x,y)) = \begin{cases} x+y & \text{si } x < y \\ 2x & \text{si } x = y \\ x-y & \text{si } x > y \end{cases}$$

- (a) Determine si f es invectiva y si es sobrevectiva. (2 puntos)
- (b) Calcule $f^{-1}(\{2,7\})$. (1 punto)
- (c) Calcule $f^{-1}(f(\{(2,2)\}))$. (1 punto)
- 7. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y además, que g es una función de B en C.

Demuestre que si $g \circ f$ es inyectiva y f es sobreyectiva, entonces g es inyectiva.

(4 puntos)