

Tartalom

- Programozási tételek alkalmazása
- Sorozatszámítás − rekordok: jövedelem
- ➤ <u>Maximum-kiválasztás</u> rekordok: legkorábbi születésnap
- Függvény a feltételben
- ➤ <u>Mátrixok</u>
- Rekordok vektora
- ➤ Vektorok rekordja

Tartalom

- Programozási tételek alkalmazása
- Sorozatszámítás –

rekordok: jövedelem

> Maximum-kiválasz

- rekordok: lækorábbi Suletésnap

 > Függvény a feltételben

 > Mátrixok

 > Rekordok vektora

 - > Vektorok rekordja

Tartalom

- Programozási tételek alkalmazása
- Sorozatszámítás − rekordok: jövedelem
- ➤ <u>Maximum-kiválasztás</u> rekordok: legkorábbi születésnap
- Függvény a feltételben
- ➤ <u>Mátrixok</u>
- Rekordok vektora
- ➤ Vektorok rekordja

Feladat:

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvízvédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Programozási tételek alkalmazása

kú készültségű.
Adjuk meg, hogy hány folyószakaszon volt árvíz! Adjuk meg, hogy hány folyószakaszon volt
árvíz!

A feladat szöveg alapján ez egy **megszámolás** programozási tétel.

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

➤ Kimenet: Db∈N

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \rightarrow Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: —

Egy folyón N helven mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: —

> Utófeltétel:Db=

 $F_i \le 800 \text{ és } F_{i+1} > 800 \text{ vagy } i=1 \text{ és } F_i > 800$

Azaz annyi szakaszon volt árvíz, ahány helyen árvíz kezdődött vagy már az elején is árvíz volt.

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

> Kimenet: Db∈N

➤ Előfeltétel: —

Egy folyón N helven mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Elsőfokú árvívédelmi készültséget kell elrendelni, ha a magasság meghaladja a 800 centimétert, másodfokút, ha meghaladja a 900 centimétert és harmadfokút, ha meghaladja az 10 métert. Folyószakasznak nevezzük a leghosszabb egymás mellett levő egyforma tulajdonságú mérésekből álló sorozatokat. Árvíznek nevezzük azt a folyószakaszt, ahol minden hely legalább elsőfokú készültségű.

Adjuk meg, hogy hány folyószakaszon volt árvíz!

Programozási tételek alkalmazása

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: —

> Utófeltétel:Db=

 $F_i \le 800 \text{ és } F_{i-1} > 800 \text{ vagy } i=N \text{ és } F_i > 800$

Azaz annyi szakaszon volt árvíz, ahány helyen árvíz végződött vagy már a végén is árvíz volt.

Algoritmus₁:

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}$, $F \in \mathbb{N}^{\mathbb{N}}$

➤ Kimenet: Db∈N

Előfeltétel: –

Utófeltétel:Db=

 $F_i \le 800 \text{ és } F_{i+1} > 800 \text{ vagy } i=1 \text{ és } F_i > 800$

Különválasztva a csak egyszer (i=1-nél) teljesülőt a többitől. (Optimizálás.)

Algoritmus₂:

Specifikáció2:

- Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$
- ➤ Kimenet: Db∈N
- > Előfeltétel: —
- > Utófeltétel:Db= $\sum_{i=2}^{N}$

 $F_i \le 800 \text{ és } F_{i-1} > 800 \text{ vagy } i=N \text{ és } F_i > 800$

F[N]>800			
Db:=1	Db:=0		
i=2N			
$F[i] \le 800 \text{ és } F[i-1] > 800$			
Db:=Db+1			

Különválasztva a csak egyszer (i=N-nél) teljesülőt a többitől. (Optimizálás.)

Változó

Feladat:

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. ... Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Programozási tételek alkalmazása

Specifikáció: (kiválogatás+másolás)

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Programozási tételek alkalmazása

Specifikáció: (kiválogatás+másolás)

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, H \in \mathbb{N}^{Db}$

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Programozási tételek alkalmazása

Specifikáció: (kiválogatás+másolás)

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, H \in \mathbb{N}^{Db}$

> Előfeltétel: N≥1 és F₁≤800 és F_N≤800

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Programozási tételek alkalmazása

Specifikáció: (kiválogatás+másolás)

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, H \in \mathbb{N}^{Db}$

► Előfeltétel: N≥1 és $F_1 \le 800$ és $F_N \le 800$

Vtófeltétel:Db= $\sum_{\substack{i=1\\F_i \le 800 \text{ és } F_{i+1} > 800}}^{N-1} 1$ és

∀i (1≤i≤Db): H_i=árvízvég_i–árvízkezdet_i–1

Egy folyón N helyen mérik a vízállást, amit egy referenciamagassághoz képest centiméterben adnak meg. Adjuk meg az árvizek hosszát! Feltehetjük, hogy az első és az utolsó mérésnél nem volt árvíz.

Programozási tételek alkalmazása

Specifikáció: (kiválogatás+másolás)

 \triangleright Bemenet: $N \in \mathbb{N}, F \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, H \in \mathbb{N}^{Db}$

► Előfeltétel: N≥1 és F_1 ≤800 és F_N ≤800

$$Utófeltétel:Db = \sum_{\substack{i=1 \ F_i \le 800 \text{ és } F_{i+1} > 800}}^{N-1} 1 \text{ és }$$

 $\forall i (1 \le i \le Db): H_i = \underbrace{\text{arvizvég}_i - \text{arvizkezdet}_i - 1}$

> Definíció:

Algoritmus: (kiválogatás⊃megszámolás)

Egyszerűsítő ötlet: a megfelelő számlálót árvízkezdetnél nullázzuk, árvíznél pedig növeljük.

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $F \in \mathbb{N}^{\mathbb{N}}$
- \gt Kimenet: $Db \in N, H \in N^{Db}$
- > Előfeltétel: N≥1 és F₁≤800 és F_N≤800

> Utófeltétel: Db= $\sum_{i=1}^{1} 1$

∀i (1≤i≤Db): H_i=árvízvég;–árvízkezdet;–1

Változó

i:Egész

Algoritmus: (kiválogatás > megszámolás)

Egyszerűsítő ötlet: a megfelelő számlálót árvízkezdetnél nullázzuk, árvíznél pedig növeljük.

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $F \in \mathbb{N}^{\mathbb{N}}$
- \gt Kimenet: $Db \in N, H \in N^{Db}$
- ► Előfeltétel: N≥1 és $F_1 \le 800$ és $F_N \le 800$

▶ Utófeltétel: Db=
$$\sum_{i=1}^{1}$$
 és

 $F_i {\leq} 800 \quad \text{\'es} \quad F_{i+1} {>} 800$

∀i (1≤i≤Db): H_i=árvízvég_i–árvízkezdet_i–1

			•
Db	:=0]
i=1N-1			
1	\ F[i]≤800 és F[i+	1]>800 / _N	
	Db:=Db+1		
	H[Db]:=0		
	F[i] > 800	N	
	H[Db]:=H[Db]+1		

Feladat:

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Összegzés és keresés programozási tétel!

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Programozási tételek alkalmazása

Specifikáció: (keresés+összegzés)

 \triangleright Bemenet: N,X \in N, P \in Z^N

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Programozási tételek alkalmazása

Specifikáció: (keresés+összegzés)

 \triangleright Bemenet: N,X \in N, P \in Z^N

 \triangleright Kimenet: Van \in L, Nap \in N

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Programozási tételek alkalmazása

Specifikáció: (keresés+összegzés)

 \triangleright Bemenet: N,X \in N, P \in Z^N

 \triangleright Kimenet: Van \in L, Nap \in N

➤ Előfeltétel: X>0

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Programozási tételek alkalmazása

Specifikáció: (keresés+összegzés)

 \triangleright Bemenet: N,X \in N, P \in Z^N

 \triangleright Kimenet: Van \in L, Nap \in N

➤ Előfeltétel: X>0

Van→ $Van = \exists i(1 \le i \le N): X + \sum_{j=1}^{1} P_{j} \le 0 \text{ és}$

$$(1 \le \text{Nap} \le \text{N \'es } X + \sum_{j=1}^{\text{Nap}} P_j \le 0 \text{ \'es}$$

 $\forall i (1 \le i < \text{Nap}) \text{ \'es } X + \sum_{j=1}^{i} P_j > 0)$

Lóversenyre járunk. N napon át naponta feljegyeztük, hogy mennyit nyertünk (≥0) vagy vesztettünk (<0). Ha kezdetben X forintunk volt, akkor mely napon kellett először kölcsön kérnünk?

Programozási tételek alkalmazása

Specifikáció: (keresés+összegzés)

 \triangleright Bemenet: N,X \in N, P \in Z^N

 \triangleright Kimenet: Van \in L, Nap \in N

➤ Előfeltétel: X>0

Van→ $Van = \exists i(1 \le i \le N): X + \sum_{j=1}^{1} P_{j} \le 0 \text{ és}$

(
$$1 \le \text{Nap} \le N$$
 és $X + \sum_{j=1}^{\text{Nap}} P_j \le 0$ és $\forall i (1 \le i \le \text{Nap})$ és $X + \sum_{j=1}^{i} P_j > 0$)

Rövidebben: \bigvee an, Nap $\stackrel{N}{=}$ Keres i

Algoritmus: (keresés+összegzés)

Változó i,S:Egész

```
Specifikáció:
```

- > Bemenet: $N,X \in \mathbb{N}, P \in \mathbb{Z}^{\mathbb{N}}$
- > Kimenet: Van∈L, Nap∈N
- Előfeltétel: X>0
- > Utófeltétel: Van=∃i(1≤i≤N): $X + \sum_{j=0}^{\infty} P_{j} \le 0$ és Van→

($1 \le \text{Nap} \le N$ és $X + \sum_{j=1}^{\text{Nap}} P_j \le 0$ és $\forall i (1 \le i \le \text{Nap})$ és $X + \sum_{i=1}^{i} P_j > 0$)

S:=X			
i:=1			
i≤N és S+P[i]>0			
	S:=S+P[i]		
	i:=i+1		
Van:=i≤N			
I	Van /N		
N	ap:=i		

rekordok: jövedelem

Feladat:

Mennyi a jövedelmünk, ha ismertek a bevételeink és a vele szemben elszámolt kiadásaink? Így specifikáltuk ezt a 4. előadásban.

Specifikáció:

Bemenet: $N \in \mathbb{N}$,

Be, $Ki \in \mathbb{Z}^N$

Kimenet: $S \in \mathbb{Z}$

Előfeltétel: $\forall i \ (1 \le i \le N)$: $Be_i, Ki_i \ge 0$ Utófeltétel: $S = \sum_{i=1}^{N} Be_i - Ki_i$

rekordok: jövedelem

Így specifikálhatjuk a 6. előadás után.

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Jöv∈Nyer^N, Nyer=Be×Ki, Be,Ki=N

rekordok: jövedelem

Így specifikálhatjuk a 6. előadás után.

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Jöv∈Nyer^N, Nyer=Be×Ki, Be,Ki=N

 \triangleright Kimenet: $S \in \mathbb{N}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} J \ddot{o} v_{i}.be-J \ddot{o} v_{i}.ki$

rekordok: jövedelem

Így specifikálhatjuk a 6. előadás után.

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Jöv∈Nyer^N, Nyer=Be×Ki, Be,Ki=N

 \triangleright Kimenet: $S \in \mathbb{N}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} J \ddot{o} v_{i}.be-J \ddot{o} v_{i}.ki$

Megjegyzés: értelmezhetjük úgy, hogy

$$\Sigma$$
($J\ddot{o}v_{1..N}$):= Σ ($J\ddot{o}v_{1..N-1}$) \oplus $J\ddot{o}v_N$,

ahol \oplus :N×Nyer→N; S \oplus F:=S+F.be-F.ki \Rightarrow

rekordok: jövedelem

Így specifikálhatjuk a 6. előadás után.

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Jöv∈Nyer^N, Nyer=Be×Ki, Be,Ki=N

- \triangleright Kimenet: $S \in \mathbb{N}$
- ➤ Előfeltétel: –

Megjegyzés: értelmezhetjük úgy, hogy

$$\Sigma$$
($J\ddot{o}v_{1..N}$):= Σ ($J\ddot{o}v_{1..N-1}$) \oplus $J\ddot{o}v_N$,

ahol \oplus :N×Nyer→N; S \oplus F:=S+F.be-F.ki \Rightarrow

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} J \ddot{o} v_{i}$

rekordok: jövedelem

Így specifikálhatjuk a 6. előadás után.

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Jöv∈Nyer^N, Nyer=Be×Ki, Be,Ki=N

 \gt Kimenet: $S \in \mathbb{N}$

➤ Előfeltétel: –

➤ Utófeltétel: $S = \sum_{i=1}^{N} J \ddot{o} v_i$

> Definíció:

$$\Sigma(J\ddot{o}v_{1..N}):=\Sigma(J\ddot{o}v_{1..N-1}) \oplus J\ddot{o}v_N;$$

 $\oplus: \mathbb{N} \times \mathbb{N} \text{ yer} \rightarrow \mathbb{N}; \ S \oplus F:= S + F. \text{be} - F. \text{ki}$

rekordok: jövedelem

Algoritmus₁ – "régi" változat:

S:=0 i=1..N S:=S+Be[i]-Ki[i]

Változó i:Egész

Sorozatszámítás

rekordok: jövedelem

Algoritmus₁ – "régi" változat:

S:=0 i=1..N S:=S+Be[i]-Ki[i]

Változó i:Egész

Algoritmus₂ – "új" változat:

S:=0 i=1..N $S:=S\bigoplus J\ddot{o}v[i]$

Változó i:Egész

Megírandó a ⊕ operátor! S⊕F:=S+F.be-F.ki

Sorozatszámítás rekordok: jövedelem

Kód – operátor (egy "minimum program"):

```
//TNyer típus definiálása:
typedef struct {int be. ki; } TNyer://reprezentáció
    operator +(int s, TNyer x);//TNyer típusú hozzáadás operátor fejsora
🔭 a lényegi számitás függvénye:
int sum(int n, const TNyer t[]);//n TNyer 'összege' függvény fejsora
//Billentyűre várás:
void billreVar();
int main()
  //bemenet -csak most: konstansok, így nem kell beolvasni!-:
  const TNyer Jov[]=\{\{10,5\},\{5,10\},\{100,50\}\};//jövedelem tömb értékei
  int N=sizeof Jov / sizeof(TNyer); //aktuális elemszám
  //kimenet -mindiárt számítással-:
  int S=sum(N, Jov);
  //eredménymegjelenítés:
  cout << "Ossz jovedelem:" << S << endl;</pre>
  billreVar();
  return 0;
://TNyer típusú hozzáadás operátor definíciója:
int operator + (int s, TNyer x)
  return s + x.be - x.ki;
//n TNyer 'összege' függvény definíciója:
int sum(int n, const TNyer t[])
  int sum=0;
  for (int i=0; i<n; i++)</pre>
    sum=sum+t[i];
  return sum;
```


Sorozatszámítás rekordok: jövedelem

Kód – operátor (egy "minimum program"):

```
//TNyer típus definiálása:
typedef struct {int be. ki; } TNyer://reprezentáció
    operator +(int s, TNyer x);//TNyer típusú hozzáadás operátor fejsora
🔭 a lényegi számitás függvénye:
int sum(int n, const TNyer t[]);//n TNyer 'összege' függvény fejsora
//Billentvűre várás:
void billreVar();
int main()
  //bemenet -csak most: konstansok, így nem kell beolvasni!-:
  const TNyer Jov[]=\{\{10,5\},\{5,10\},\{100,50\}\};//jövedelem tömb értékei
  int N=sizeof Jov / sizeof(TNyer); //aktuális elemszám
  //kimenet -mindiárt számítással-:
  int S=sum(N, Jov);
  //eredménymegjelenítés:
  cout << "Ossz jovedelem:" << S << endl;</pre>
  billreVar();
  return 0;
://TNyer típusú hozzáadás operátor definíciója:
int operator + (int s, TNyer x)
  return s + x.be - x.ki;
//n TNyer 'összege' függvény definíciója:
int sum(int n, const TNyer t[])
  int sum=0;
  for (int i=0; i<n; i++)</pre>
    sum=sum+t[i];
  return sum;
```


Sorozatszámítás rekordok: jövedelem

Kód – operátor (egy "minimum program"):

```
//TNyer típus definiálása:
typedef struct (int be. ki; ) TNyer://reprezentáció
    operator +(int s, TNyer x);//TNyer típusú hozzáadás operátor fejsora
Xa lényegi számitás függvénye:
int sum(int n, const TNyer t[]);//n TNyer 'összege' függvény fejsora
//Billentvűre várás:
void billreVar();
int main()
  //bemenet -csak most: konstansok, így nem kell beolvasni!-:
  const TNyer Jov[]=\{\{10,5\},\{5,10\},\{100,50\}\};//jövedelem tömb értékei
  int N=sizeof Jov / sizeof(TNyer); //aktuális elemszám
  //kimenet -mindiárt számítással-:
  int S=sum(N, Jov);
  //eredménymegjelenítés:
  cout << "Ossz jovedelem:" << S << endl;</pre>
  billreVar();
  return 0;
://TNyer típusú hozzáadás operátor definíciója:
int operator + (int s, TNyer x)
  return s + x.be - x.ki;
//n TNyer 'összege' függvény defin
int sum(int n, const TNyer t[])
  int sum=0;
  for (int i=0; i<n; i++)</pre>
    sum=sum+t[i];
  return sum;
```

De jó lenne, ha nem kellene újraírni a sum függvényt csak amiatt, h. más típusú elemeket kell összeadni!

Feladat:

Melyik a legkorábbi a születésnap?

 $X \in H^N$

 $\forall i \ (1 \leq i \leq N): X_{Max} \geq X_i$

> Utófeltétel: 1≤Max≤N és

> Kimenet: Max∈N > Előfeltétel: N>0

Maximum

rekordok: legkorábbi születésnap

Feladat:

Melyik a legkorábbi a születésnap?

Specifikáció₁:

rekordok: legkorábbi születésnap

Feladat:

Melyik a legkorábbi a születésnap?

Specifikáció₁:

 \triangleright Bemenet: $N \in \mathbb{N}$, $H \circ Nap \in \mathbb{Z}^N$

 \triangleright Kimenet: Min \in **N**

> Előfeltétel: N>0 ...

> Utófeltétel: 1≤Min≤N és

 $\forall i(1 \le i \le N)$: $H\acute{o}_{Min} < H\acute{o}_{i}$ vagy

Hó_{Min}=Hó; és

Nap_{Min}≤Nap;

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$ > Kimenet: $Max \in \mathbb{N}$

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

rekordok: legkorábbi születésnap

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Szül∈Dátum^N,

Dátum=Hó×Nap, Hó, Nap=N

➤ Kimenet: Max ∈ N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

rekordok: legkorábbi születésnap

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Szül∈Dátum^N,

Dátum=Hó×Nap, Hó, Nap=N

➤ Kimenet: Min ∈ N

➤ Előfeltétel: N>0 ...

➤ Utófeltétel: 1≤Min≤N és

∀i(1≤i≤N): Szül_{Min}≤Szül_i

 $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

rekordok: legkorábbi születésnap

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Szül∈Dátum^N,

Dátum=Hó \times Nap, Hó, Nap= \mathbb{N}

➤ Kimenet: Min ∈ N

➤ Előfeltétel: N>0 ...

> Utófeltétel: 1≤Min≤N és

∀i(1≤i≤N): Szül_{Min}≤Szül_i

> Definíció:

≤:Dátum×Dátum→L

d1≤d2:=d1.hó<d2.hó vagy

d1.hó=d2.hó és d1.nap≤d2.nap

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

rekordok: legkorábbi születésnap

Specifikáció₂:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Szül∈Dátum^N,

Dátum=Hó \times Nap, Hó, Nap= \mathbb{N}

➤ Kimenet: Min ∈ **N**

> Előfeltétel: N>0 ...

N

➤ Utófeltétel:Min=MinInd Szül[i]

i=1

> Definíció:

≤:Dátum×Dátum→L

d1≤d2:=d1.hó<d2.hó vagy

d1.hó=d2.hó és d1.nap≤d2.nap

rekordok: legkorábbi születésnap

i:Egész

Természetesen meg kell még írni az TDátum típusra a < relációt megvalósító függvényt (operátort).

Az világos, hogy a specifikációban felbukkanó ≤ és az algoritmusbeli < a relációk egymással kifejezhetők.

rekordok: legkorábbi születésnap

i:Egész

jegyzet ként

Természetesen meg kell még írni az TDátum típusra a < relációt megvalósító függvényt (operátort).

Az világos, hogy a specifikációban felbukkanó ≤ és az algoritmusbeli < a relációk egymással kifejezhetők. Kóddarab

Yáltozá.

Maximum

rekordok: legkorábbi születésnap

jegyzet ként

Változó i:Egész

Természetesen meg kell még írni az **TDátum** típusra a < relációt megvalósító függvényt (operátort).

Az világos, hogy a specifikációban felbukkanó ≤ és az algoritmusbeli < a relációk egymással kifejezhetők.

Feladat:

Adjunk meg egy magánhangzót egy magyar szóban!

Feladat:

Adjunk meg egy magánhangzót egy magyar szóban!

Specifikáció: (kiválasztás)

► Bemenet: $N \in \mathbb{N}$, $Sz\acute{o} \in \mathbb{K}^{\mathbb{N}}$

➤ Kimenet: Mh∈N

Előfeltétel: N>0 és

∃i(1≤i≤N): MagánhangzóE(Szó;)

> Utófeltétel: 1≤Mh≤N és MagánhangzóE(Szó_{Mh})

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$

➤ Kimenet: Ind∈N

> Előfeltétel: N>0 és ∃i (1≤i≤N): $T(X_i)$

► Utófeltétel: $1 \le \text{Ind} \le N$ és $T(X_{\text{Ind}})$

Feladat:

Adjunk meg egy magánhangzót egy magyar szóban!

Specifikáció: (kiválasztás)

► Bemenet: $N \in \mathbb{N}$, $Sz\acute{o} \in \mathbb{K}^{\mathbb{N}}$

➤ Kimenet: Mh∈N

Előfeltétel: N>0 és

∃i(1≤i≤N): MagánhangzóE(Szó_i)

> Utófeltétel: 1≤Mh≤N és MagánhangzóE(Szó_{Mh})

Másképpen: Mh = Kiválaszt i

i=1 MagánhangzóE **€**zó_i ⊃

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$

7. 1. 37

> Kimenet: Ind∈N

> Előfeltétel: N>0 és ∃i (1≤i≤N): T(X_i)

► Utófeltétel: $1 \le Ind \le N$ és $T(X_{Ind})$

Feladat:

Adjunk meg egy magánhangzót egy magyar szóban!

Specifikáció: (kiválasztás)

Lehetne: Szó∈S

Eldöntés tétel.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$

➤ Kimenet: Ind∈N

► Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

▶ Utófeltétel: $1 \le Ind \le N$ és $T(X_{Ind})$

 $N \in \mathbb{N}$, $Szo \in K^{\mathbb{N}}$ Bemenet:

 \triangleright Kimenet: Mh \in N

Előfeltétel: N>0 és

 $\exists i(1 \le i \le N)$: MagánhangzóE(Szó;)

➤ Utófeltétel: 1≤Mh≤N és MagánhangzóE(Szó_{Mb})

Másképpen: Mh = Kiválaszt i

MagánhangzóE 6zó;

> Definíció:

MagánhangzóE:K→L

MagánhangzóE(B)= $\exists i(1 \le i \le 14)$: B=Mag;

Mag \in K¹⁴=("a","á",...,"ű")

Algoritmus:

Mh:=1

nem MagánhangzóE(Szó[i])

Mh = Mh + 1

Algoritmus:

Mh:=1nem MagánhangzóE(Szó[i]) Mh = Mh + 1

➤ Utófeltétel: 1≤Mh≤N és MagánhangzóE(Szó_{Mh})

Definíció:

MagánhangzóE:K→L

MagánhangzóE(B) → ∃i (1≤i≤14): B=Mag;

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 $T:H\rightarrow L$

> Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

Feladat:

Egy N*M-es raszterképet nagyítsunk a kétszeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

Problémák/válaszok:

- Hogyan ábrázoljunk egy képet? A kép rendezett pontokból áll, azaz biztosan valamilyen sorozatként adható meg.
- Nehézkes lenne azonban a pontokra egy sorszámozást adni.

Kézenfekvőbb azt megmondani, hogy egy képpont a kép hányadik sorában, illetve oszlopában található, azaz alkalmazzunk **dupla indexelés**t!

A kétindexes tömböket hívjuk **mátrix**nak.

Egy N*M-es raszterképet nagyítsunk a kétszeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

 $:=(N^{M})^{N}$ N - a sorok,M – az oszlopok száma SVINU * ATAMIL

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

:=(N^M)^N
N – a sorok,
M – az oszlopok száma

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

> Kimenet: $NK \in \mathbb{N}^{2 \cdot N \times 2 \cdot M}$

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

 $:= (N^{M})^{N}$ N - a sorok, M - az oszlopok száma

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

ightharpoonup Kimenet: $NK \in \mathbb{N}^{2 \cdot N \times 2 \cdot M}$

➤ Előfeltétel: –

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

:=(N^M)^N
N – a sorok,
M – az oszlopok száma

Specifikáció:

➤ Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

 \triangleright Kimenet: $NK \in \mathbb{N}^{2 \cdot N \times 2 \cdot M}$

➤ Előfeltétel: –

ightharpoonup Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

$$NK_{2\cdot i,2\cdot j} = K_{i,j}$$
 és $NK_{2\cdot i-1,2\cdot j} = K_{i,j}$ és $NK_{2\cdot i,2\cdot j-1} = K_{i,j}$ és $NK_{2\cdot i,2\cdot j-1} = K_{i,j}$ és $NK_{2\cdot i-1,2\cdot j-1} = K_{i,j}$

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

:=(N^M)^N
N – a sorok,
M – az oszlopok száma

Specifikáció:

➤ Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

 \triangleright Kimenet: $NK \in \mathbb{N}^{2 \cdot N \times 2 \cdot M}$

➤ Előfeltétel: –

ightharpoonup Utófeltétel: \forall i(1≤i≤N): \forall j(1≤j≤M):

$$NK_{2\cdot i,2\cdot j}=K_{i,j}$$
 és
 $NK_{2\cdot i-1,2\cdot j}=K_{i,j}$ és
 $NK_{2\cdot i,2\cdot j-1}=K_{i,j}$ és

$$NK_{2\cdot i-1,2\cdot j-1}=K_{i,j}$$

Ez a **másolás** tétel egy variációja, csak egy elemből négy elem keletkezik.

Algoritmus:

Változó i,j:Egész

Specifikáció:

- \triangleright Bemenet: N,M \in N, K \in N^{N×M}
- \rightarrow Kimenet: $NK \in \mathbb{N}^{2 \cdot N \times 2 \cdot M}$
- Előfeltétel: –
- > Utófeltétel: ∀i (1≤i≤N): ∀j (1≤j≤M):

$$NK_{2\cdot i,2\cdot j}=K_{i,j}$$
 és

$$NK_{2\cdot i-1,2\cdot j}=K_{i,j}$$
 és

$$NK_{2\cdot i,2\cdot j-1}=K_{i,j}$$
 és

$$NK_{2\cdot i-1,2\cdot j-1}=K_{i,j}$$

i=1N	١
j=1M	
NK[2*i,2*j]:=K[i,j]	
NK[2*i-1,2*j]:=K[i,j]	
NK[2*i,2*j-1]:=K[i,j]	
NK[2*i-1,2*j-1]:=K[i,j]	

Megjegyzés: programozási nyelvekben a mátrix elemének elérésére más jelölés is lehet, pl.: C++ esetén K[i][j].

Egy mátrix kódolási példa:

Írjunk mátrix-beolvasó eljárást!


```
int_tomb_be("Matrix elemek?",...);
```

```
Matrix elemek?
Sorok sz¦íma: 2
Oszlopok sz¦íma: 3
K¦erem az elemeket!
(1,1) :11
(1,2) :12
(1,3) :13
(2,1) :21
(2,2) :21
(2,3) :huszonhárom
Hib¦ís az elem!
```


Egy mátrix kódolási példa:

Írjunk mátrix-beolvasó eljárást!

Megoldás:


```
int_tomb_be("Matrix elemek?",...);
```

```
Matrix elemek?
Sorok sz¦íma: 2
Oszlopok sz¦íma: 3
K¦erem az elemeket!
(1,1) :11
(1,2) :12
(1,3) :13
(2,1) :21
(2,2) :21
(2,3) :huszonhárom
Hib¦ís az elem!
23₌
```


Egy mátrix kódolási példa:

Írjunk mátrix-beolvasó eljárást!

Megoldás:


```
int_tomb_be("Matrix elemek?",...);
```

```
Matrix elemek?
Sorok sz¦íma: 2
Oszlopok sz¦íma: 3
K¦erem az elemeket!
(1,1) :11
(1,2) :12
(1,3) :13
(2,1) :21
(2,2) :21
(2,3) :huszonhárom
Hib¦ís az elem!
```


Egy mátrix kódolási példa:

Írjunk mátrix-beolvasó eljárást!

Megoldás:

De jó lenne, ha nem kellene új függvényt írni float vagy ... vagy string (?) elemű tömbhöz!

"átlag": színkódok

Mátrixok

Feladat:

Egy N*M-es raszterképet kicsinyítsünk a felére (N/2*M/2 méretűre) pontátlagolással: a kicsinyített kép minden pontja az eredeti kép 2*2 pontjának "átlaga" legyen!

Egy N*M-es raszterképet kicsinyítsünk a felére (N/2*M/2 méretűre) *pontátlagolás*sal: a kicsinyített kép minden pontja az eredeti kép 2*2 pontjának "átlaga" legyen!

Mátrixok

Specifikáció: (másolás)

> Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

 \triangleright Kimenet: $KK \in \mathbb{N}^{N/2 \times M/2}$

➤ Előfeltétel: PárosE(N) és PárosE(M)

> Utófeltétel:

$$\forall i (1 \le i \le N/2): \forall j (1 \le j \le M/2): \\ KK_{i,j} = (K_{2*i,2*j} + K_{2*i-1,2*j} + \\ K_{2*i,2*j-1} + K_{2*i-1,2*j-1})/4$$

> Definíció:

PárosE:N→L

PárosE(x):=x Mod 2=0

Algoritmus:

5.

Változó i,j:Ego

Megjegyzés: a színes képeknél az átlagolással baj lehet! Milyen szín egy piros és egy kék színű pont átlaga? RGB esetén a szín: Rekord(piros,zöld,kék:**Egész**); és az átlag?

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Mátrixok

Specifikáció: (maximum-kiválasztás)

► Bemenet: $N,M \in \mathbb{N}, K \in \mathbb{N}^{N \times M}$

 \triangleright Kimenet: RK \in N^{N×M}

➤ Előfeltétel: –

 \gt Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

$$RK_{i,j} = \max_{p=i-1}^{i+1} \max_{q=j-1}^{j+1} K_{p,q}$$
 és

$$\forall j (1 \leq j \leq M)$$
:

$$RK_{1,j}=K_{1,j}$$
 és $RK_{N,j}=K_{N,j}$

$$\forall i (1 \leq i \leq N)$$
:

$$RK_{i,1}=K_{i,1}$$
 és $RK_{i,M}=K_{i,M}$

Algoritmus:

Változó i,j:Egész

```
> Utófeltétel: \forall i (1 < i < N): \forall j (1 < j < M):
RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} \quad \text{és}
\forall i \ (1 \le i \le N): \ \forall j \ (1 \le j \le M):
RK_{1,j} = K_{1,j} \quad \text{és} \quad RK_{N,j} = K_{N,j}
RK_{i,1} = K_{i,1} \quad \text{és} \quad RK_{i,M} = K_{i,M}
```


Algoritmus:

Változó i,j:Egész

Algoritmus (folytatás):

Változó i,j:Egész

```
➤ Utófeltétel: \forall i (1 \le i \le N): \forall j (1 \le j \le M):

RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} \text{ és}
\forall j (1 \le j \le M):
RK_{1,j} = K_{1,j} \text{ és } RK_{N,j} = K_{N,j}
\forall i (1 \le i \le N):
RK_{i,1} = K_{i,1} \text{ és } RK_{i,M} = K_{i,M}
```


•••
j=1M
RK[1,j]:=K[1,j]
RK[N,j]:=K[N,j]
i=1N
RK[i,1]:=K[i,1]
RK[i,M]:=K[i,M]

Feladat:

Egy kép egy adott (fehér színű) tartományát egy (A,B) belső pontjából kiindulva fessük be világoskékre!

Festendők a "**belső pontok**", ha Belső(i,j)=Igaz.

Ahol Belső:N×N→L

Specifikáció:

► Bemenet: N,M∈N, K∈N^{N×M}, A,B∈N

 \triangleright Kimenet: $KK \in \mathbb{N}^{N \times M}$

➤ Előfeltétel: –

 \triangleright Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

Belső(i,j) \rightarrow KK_{i,j}=világoskék és

nem Belső(i,j) $\rightarrow KK_{i,j}=K_{i,j}$

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}$, $K \in \mathbb{N}^{N \times M}$, $A,B \in \mathbb{N}$

 \triangleright Kimenet: $KK \in \mathbb{N}^{N \times M}$

➤ Előfeltétel: –

▶ Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

Belső(i,j) \rightarrow KK_{i,j}=világoskék és

nem Belső(i,j) $\rightarrow KK_{i,j}=K_{i,j}$

Algoritmus:

KK:=K

Festés(A,B)

Algoritmus:

Vtófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$: $Belső(i,j) \rightarrow KK_{i,j} = világoskék és$ $nem Belső(i,j) \rightarrow KK_{i,j} = K_{i,j}$

Definíció:
Belső(i,j)=(i=A és j=B vagy
Fehér(i,j) és
(Belső(i-1,j) vagy Belső(i+1,j) vagy
Belső(i,j-1) vagy Belső(i,j+1)))

Festés(i,j:**Egész**)

KK[i,j]:=világoskék						
I	KK[i–1,j]=fehér					
Festés(i–1,j)						
I	KK[i+1,	j]=fehér	/\			
Festés(i+1,j)						
I	KK[i,j-	l]=fehér	/1			
Festés(i,j–1)						
I	KK[i,j+	1]=fehér	$\sqrt{\mathbf{k}}$			
Festés(i,j+1)						

Algoritmus:

Vtófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$: $Belső(i,j) \rightarrow KK_{i,j} = világoskék és$ $nem Belső(i,j) \rightarrow KK_{i,j} = K_{i,j}$

Definíció:
Belső(i,j)=(i=A és j=B vagy
Fehér(i,j) és
(Belső(i-1,j) vagy Belső(i+1,j) vagy
Belső(i,j-1) vagy Belső(i,j+1)))

Festés(i,j:**Egész**)

KK[i,j]:=világoskék				
I	KK[i–1,	j]=fehér	és i>1	N
Festés(i–1,j)				
I	KK[i+1,	j]=fehér	és i <n< th=""><th>N</th></n<>	N
Festés(i+1,j)				
I	KK[i,j-1	l]=fehér	és j>1	N
Festés(i,j–1)				
I	KK[i,j+	1]=fehér	és j <m< th=""><th>N</th></m<>	N
Festés(i,j+1)				

Feladat:

Egy adott napon N-szer volt földrengés. Ismerjük az egyes rengések időpontját. Mondjuk meg, hogy hány másodpercenként volt földrengés!

Feladat:

Egy adott napon N-szer volt földrengés. Ismerjük az egyes rengések időpontját. Mondjuk meg, hogy hány másodpercenként volt földrengés!

Megoldás felé:

Definiálni kellene, mi az idő!
 Az időt megadhatjuk az (óra, perc, másodperc) hármassal, azaz az idő:

$$Idő=\acute{O}\times P\times Mp, \acute{O}, P, Mp=N$$

> Algoritmikus sablon: Másolás tétel!

Feladat:

Egy adott napon N-szer volt földrengés. Ismerjük az egyes rengések időpontját. Mondjuk meg, hogy hány másodpercenként volt földrengés!

Rekordok vektora

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, R \in Idő^N$

 $Idő=O\times P\times Mp, O,P,Mp=N$

 \gt Kimenet: $T \in \mathbb{N}^{N-1}$

 \gt Előfeltétel: $\forall i (1 \le i \le N)$: $0 \le R_i . \acute{o} \le 23$ és

 $0 \le R_i.p \le 59$ és $0 \le R_i.mp \le 59$ és

 $\forall i(1 \le i \le N): R_i \le R_{i+1}$

 \rightarrow Utófeltétel: $\forall i(1 \le i \le N-1)$: $T_i = R_{i+1} - R_i$

➤ Definíció: -:Idő×Idő→N

i1 − i2 := ... ??? ...

<:Idő×Idő→L

i1 < i2 := ... ??? ...

Idők különbsége

Idők különbsége

1. megoldási ötlet:

Felfoghatjuk úgy, mint két háromjegyű szám különbsége, ahol a három jegy nem azonos alapú. (Vegyes alapú számrendszer.) Majd másodpercekké konvertáljuk.

Idők különbsége

- 1. megoldási ötlet:
 - Felfoghatjuk úgy, mint két háromjegyű szám különbsége, ahol a három jegy nem azonos alapú. (Vegyes alapú számrendszer.) Majd másodpercekké konvertáljuk.
- 2. megoldási ötlet:
 - Kifejezzük az időket másodpercben, így már két egész szám különbségét kell kiszámolni.

Idők különbsége

1. megoldási ötlet:

Felfoghatjuk úgy, mint két háromjegyű szám különbsége, ahol a három jegy nem azonos alapú. (Vegyes alapú számrendszer.) Majd másodpercekké konvertáljuk.

2. megoldási ötlet:

Kifejezzük az időket másodpercben, így már két egész szám különbségét kell kiszámolni.

másodpercben(i):=i.ó*3600+i.p*60+i.mp

Meggondolandó, h. mekkora egész szám kell hozzá? (24*3600=86 400) Milyen típusú lehet? (>2 byte)

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, R \in Id\mathring{o}^{\mathbb{N}}$

Idő=Ó×P×Mp, Ó,P,Mp=N

 \gt Kimenet: $T \in \mathbb{N}^{N-1}$

 \gt Előfeltétel: $\forall i(1 \le i \le N)$: $0 \le R_i.\acute{o} \le 23$ és

 $0 \le R_i \cdot p \le 59$ és $0 \le R_i \cdot mp \le 59$ és

 $\forall i (1 \le i \le N): R_i \le R_{i+1}$

- \gt Utófeltétel: $\forall i(1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- > Definíció:

-:Idő×Idő→N

i1 - i2 := i1.6*3600+i1.p*60+i1.mp - (i2.6*3600+i2.p*60+i2.mp)

Algoritmus₁:

Változó i:Egész

S:Tömb[...]

$$\succ$$
 Utófeltétel: $\forall i (1 \le i \le N-1)$: $T_i = R_{i+1} - R_i$

➤ Definíció:

-:Idő×Idő→N

i1 - i2 := i1.0*3600+i1.p*60+i1.mp -(i2.o*3600+i2.p*60+i2.mp)

Megjegyzések:

- 1. Egy S segédtömböt használunk.
- 2. A TIdők közötti "-" operátor az S-en keresztül, közvetve kerül az algoritmusba.

Változó

i:Egész

S:Tömb[...]

Algoritmus₂:

 \succ Utófeltétel: $\forall i (1 \le i \le N-1)$: $T_i = R_{i+1} - R_i$

➤ Definíció:

másodpercben(i):=i.o*3600+i.p*60+i.mp

i=1N
S[i]:=másodpercben(R[i])
i=1N-1
T[i]:=S[i+1]-S[i]

Megjegyzések:

- 1. A másodpercben fv. megvalósítandó!
- 2. Ha a különbség (óra, perc, másodperc)-ben kell, akkor T[i]-ből vissza kell alakítani! **Újabb művelet.**

Ittéfaltéral, Vi (15is N. 1), T.-P. P.

Rekordok vektora

Algoritmus₃:

3•

Változó i:Egész

> Utófeltétel:
$$\forall i (1 \le i \le N-1): T_i = R_{i+1} - R_i$$

➤ Definíció:

másodpercben(i):=i.o*3600+i.p*60+i.mp

i=1..N-1

T[i]:=másodpercben(R[i+1])másodpercben(R[i])

Megjegyzés:

A másodpercben fv. segítségével (sőt anélkül is) megspórolható az S segédtömb; és így az előkészítő ciklus... de cserében majdnem minden R[i]-t kétszer számítunk át másodpercekre.

Algoritmus₄:

Változó i:Egész

- ➤ Utófeltétel: $\forall i (1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- ➤ Definíció:

másodpercben(i):=i.o*3600+i.p*60+i.mp

$$T[i]:=R[i+1]-R[i]$$

Megjegyzés:

A – operátort definiálni kell, amelyben a másodpercekben fv. (v. annak törzse) felhasználható!

Feladat:

Ismerjük egy ember összes telefonszámát és e-levél címét. Egy adott telefonszámról és elevél címről el kell döntenünk, hogy lehet-e az adott emberé!

Feladat:

Ismerjük egy ember összes telefonszámát és e-levél címét. Egy adott telefonszámról és elevél címről el kell döntenünk, hogy lehet-e az adott emberé!

Kérdések/válaszok:

Hogyan ábrázoljuk a specifikációban? Ember=Dbt×Dbe×Telefon×Elevél,

Dbt,Dbe=N, Telefon=SDbt, Elevél=SDbe

Feladat:

Ismerjük egy ember összes telefonszámát és e-levél címét. Egy adott telefonszámról és elevél címről el kell döntenünk, hogy lehet-e az adott emberé!

Kérdések/válaszok:

Hogyan ábrázoljuk a specifikációban? Ember=Dbt×Dbe×Telefon×Elevél, Dbt,Dbe=N, Telefon=SDbt, Elevél=SDbe

Hogyan ábrázoljuk az algoritmusban?

```
TEmber=Rekord(
dbt,dbe:Egész,
telefon:Tömb[1..MaxT:Szöveg],
elevél: Tömb[1..MaxE:Szöveg])
```

Feladat:

Ismerjük egy ember összes telefonszámát és e-levél címét. Egy adott telefonszámról és elevél címről el kell döntenünk, hogy lehet-e az adott emberé!

Specifikáció:

> Bemenet: $X \in Ember$, Tel, $Elev \in S$,

Ember=Dbt×Dbe×Telefon×Elevél,

Dbt,Dbe=N, Telefon=SDbt, Elevél=SDbe

Kimenet: Lehet∈**L**

> Előfeltétel: ...

➤ Utófeltétel:Lehet=Tel∈X.telefon és

Elev∈X.elevél

Feladat:

Ismerjük egy ember összes telefonszámát és e-levél címét. Egy adott telefonszámról és elevél címről el kell döntenünk, hogy lehet-e az adott emberé!

Vektorok rekordja

Specifikáció:

➤ Bemenet: $X \in Ember$, Tel, $Elev \in S$,

Ember=Dbt×Dbe×Telefon×Elevél,

Dbt,Dbe=N, Telefon=SDbt, Elevél=SDbe

Kimenet: Lehet∈**L**

> Előfeltétel: ...

➤ Utófeltétel:Lehet=Tel∈X.telefon és

Elev∈X.elevél

Specifikáció:

> Bemenet: N∈N,

 $X \in H^N$,

T:H→L

> Kimenet: Van∈L

➤ Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$

Megjegyzés:

$$s \in S \leftrightarrow s = S_1 \text{ vagy } s = S_2 \dots \rightarrow$$

→ Algoritmikus sablon: **eldöntés** tétel

Változó

i,j:Egész

Algoritmus:

Tigorium.

Specifikáció:

> Bemenet: X∈Ember, Tel, Elev∈**S**, Ember=Dbt×Dbe×Telefon×Elevél, Dbt,Dbe=N, Telefon=S^{Dbt}, Elevél=S^{Dbe}

Kimenet: Lehet∈L

> Előfeltétel: ...

> Utófeltétel: Lehet=Tel∈X.telefon és El√v∈X.elevél

i:=1				
i≤X.dbt és X.telefon[i]≠Tel				
i:=i+1				
i≤X.dbt	/N			
j:=1				
j≤X.dbe és X.elevél[j]≠Elev				
j:=j+1				
Lehet:= i≤X.dbt és j≤X.dbe				

Algoritmus:

Változó i,j:Egész

Specifikáció:

- ➤ Bemenet: X∈Ember, Tel, Elev∈S, Ember=Dbt×Dbe×Telefon×Elevél, Dbt,Dbe=N, Telefon=S^{Dbt}, Elevél=S^{Dbe}
- Kimenet: Lehet∈L
- > Előfeltétel: ...
- > Utófeltétel: Lehet=Tel∈X.telefon és ElveX.elevél

Specifikáció:

- > Bemenet: N ∈ N,
 - $X \in H^N$
 - $T:H\rightarrow L$
- > Kimenet: Van∈L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

```
i:=1
   i≤X.dbt és X.telefon[i]≠Tel
   i = i + 1
              i≤X.dbt
i = 1
 j≤X.dbe és X.elevél[j]≠Elev
    j := j + 1
Lehet:= i≤X.dbt és j≤X.dbe
```


Algoritmus:

Változó i,j:Egész

- Specifikáció:
- > Bemenet: X∈Ember, Tel, Elev∈S, Ember=Dbt×Dbe×Telefon×Elevél,
- Dbt,Dbe=N, Telefon=S^{Dbt}, Elevél=S^{Dbe}
- Kimenet: Lehet∈**L**
- Előfeltétel: ...
- > Utófeltétel: Lehet=Tel∈X.telefon és ElveX.elevél

Eldöntés tétel

> Bemenet: N∈N, X∈H^N.

T:H→L

- > Kimenet: Van∈L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$

Algoritmus:

Változó i,j:Egész

```
Specifikáció:
```

- > Bemenet: X∈Ember, Tel, Elev∈S, Ember=Dbt×Dbe×Telefon×Elevél, Dbt, Dbe=N, Telefon=SDbt, Elevél=SDbe
- Kimenet: Lehet∈L
- > Előfeltétel: ...
- > Utófeltétel: Lehet=Tel∈X.telefon és El∕v∈X.elevél

Eldöntés tétel

> Ber Eldöntés tétel $\Gamma: \Pi \rightarrow \Gamma$

- ➤ Kimenet: Van∈L
- ➤ Előfeltétel: –
- > Utófeltétel: Van= $\exists i(1 \le i \le N)$: T(X_i)

```
i:=1
   i≤X.dbt és X.telefon[i]≠Tel
   i = i + 1
             i≤X.dbt
   X.dbe és X.elevél[i]≠Elev
Lehet:= i≤X.dbt és i≤X.dbe
```


Vektor-rekord

További példák:

KÉP[i,j].piros – az (i,j) képpont RGB kódjának piros része

EMBER[j].telefon[i].körzetszám – a j-edik ember i-edik telefonszámának a körzetszáma

T.lap[i].él[j].pont[1].x –a T test i-edik lapja j-edik éle 1. végpontjának x-koordinátája

Programozási alapismeretek 8. előadás vége