Exam #1

Instructions. This is a 120-minute test. You may use your notes. You may make use of anything that we proved in class or in the homework.

Question	Score	Points
1		10
2		10
3		10
4		10
5		10
6		10
Out Of		60

Name:	
$\mathrm{ed}\mathbf{X}$ username: _	
UT oid:	

(a) Recall that the misclassification error rate function for a decision tree is $C(a) = 1 - \max(a, 1 - a)$. Graph this function and its negation -C(a) for $a \in [0, 1]$. Is -C(a) a convex function? (You do not need to prove your answer.) Recall that a convex function $f: \mathbb{R} \to \mathbb{R}$ is one that satisfies

$$\forall x_1, x_2 \in \mathbb{R}, \forall \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

(b) Fix some training set with Boolean labels S. Recall the algorithm described in lecture for building a decision tree in class. Let T_0 be the empty tree. What is the misclassification error rate of T_0 in terms of the fraction of negative examples in S? Let T_1 be the tree obtained after executing one iteration of the algorithm described in lecture using the misclassification error rate function C(a) above. So, now T_1 has some variable at the root and two leaves. Prove that the misclassification error rate of T_1 is less than or equal to the misclassification error rate of T_0 . (Hint. Use part (a); the proof is short.)

2. Start with vector w=(1,0) and run the Perceptron algorithm using data points 1 through 5 below. What is the output after running the algorithm on points 1 through 5? Compute an estimate for its generalization error rate using held-out points 6 through 9 below. Show your work.

	Point	Label
1	(-1,1)	+1
2	(-0.5, 1.5)	+1
3	(1, 1)	-1
4	(-1,0)	+1
5	(-1, 2)	-1
6	(0.5, 0.5)	-1
7	(3, -1)	+1
8	(0.4, 0.6)	+1
9	(0, 1)	-1

In this problem we look at PAC-learning using a consistent learner. Recall that a *consistent learner* is one that, given a training data set, outputs a classifier that classifies the entire data set correctly. We work in the Boolean setting, where the domain is $\{0,1\}^n$, and the labels lie in $\{0,1\}$.

- (a) Let \mathcal{H} be the concept class of Boolean literals, i.e. functions of the form $h_i(x) = x_i$ or $h_{\neg i}(x) = \neg x_i$. How large is this class?
- (b) Describe a simple and efficient consistent learner for \mathcal{H} . That is, given any finite training set of labeled points $\{(x^1, h(x^1)), \dots, (x^m, h(x^m))\}$ for some $h \in \mathcal{H}$, describe a procedure to come up with a function $h \in \mathcal{H}$ such that h is consistent with all the points in the training set. (Is brute force enough?)
- (c) Write pseudocode describing a simple and efficient PAC-learner for \mathcal{H} that makes use of the consistent learner from part (b). State its sample complexity (i.e. how many training examples it needs) as a function of n, ϵ and δ . (No need for a proof; just use the right theorem from lecture.)
- (d) Let \mathcal{H}' be the concept class of majorities over literals, which are functions of the form $\text{MAJ}(\ell_1, \ell_2, \dots, \ell_n)$ where each literal ℓ_i is either x_i or $\neg x_i$. (Assume n is odd, so there are no ties.) How large is this class? Would the brute force approach yield an efficient consistent learner for \mathcal{H}' ?
- (e) Suppose that we had a consistent learner for \mathcal{H}' . Describe a PAC-learner for \mathcal{H}' , and state its sample complexity as a function of n, ϵ and δ (use the same theorem as for (c)). Compare your answer with the answer for \mathcal{H} in part (c).

- (a) Suppose we have a data set consisting of three points in \mathbb{R}^2 : (1,2),(2,4),(3,6). How many principal components does this data set have? Write down the first principal component.
- (b) Given the SVD of matrix

$$A = U\Sigma V^T = \begin{bmatrix} 3 & 7 & 11\\ 6 & -1 & -5\\ 3 & 10 & 18 \end{bmatrix}$$

$$= \begin{bmatrix} -0.531 & 0.215 & -0.819 \\ 0.162 & 0.975 & 0.150 \\ -0.832 & 0.053 & 0.553 \end{bmatrix} \cdot \begin{bmatrix} 25.0197 & 0 & 0 \\ 0 & 6.916 & 0 \\ 0 & 0 & 0.416 \end{bmatrix} \cdot \begin{bmatrix} -0.124 & -0.487 & -0.864 \\ 0.962 & 0.153 & -0.225 \\ 0.242 & -0.859 & 0.449 \end{bmatrix}.$$

Write down the matrix that is the best rank-2 approximation to A. You don't need to calculate the exact numbers, a formula or expression is enough.

- (a) In each of the following plots, a training set of data points X in \mathbb{R}^2 labeled either + or is given, where the original features are the coordinates (x,y). You can assume that the data is origin-centered (despite what the axes may suggest). For each of the two training sets below, answer the following questions:
 - (i) Draw all the principal components (eyeball it).
 - (ii) Can we correctly classify this dataset by using a halfspace after projecting onto one of the principal components? If so, which principal component should we project onto? If not, explain in 1–2 sentences why it is not possible.

Figure 1: Dataset 1

Figure 2: Dataset 2

(b) Is it possible to have a data set in \mathbb{R}^2 that is linearly separable by a halfspace in \mathbb{R}^2 but is not linearly separable after projecting onto *either* of the two principal components? If so, give a simple example along the lines of the above data sets. If not, explain in 1-2 sentences why it is not possible.

- **6.** Regression problems.
- (a) You are given a data set $S = (x_1, y_1), \ldots, (x_t, y_t)$ where each x_i and y_i are real numbers. You perform simple linear regression to obtain the line $\beta_0 + \beta_1 x$. Now re-scale the $x_i's$ so that $x_i' = \alpha x_i$ for some real number α . Perform simple linear regression again. How do the coefficients β_0 , β_1 change for the new line, quantitatively? You may reason by drawing a picture or using formulas for these coefficients from class.
- (b) For each of the following scenarios, state whether or not we can use linear regression, and give a short reason.
 - (i) We have training data (x, y) (where $x \in \mathbb{R}^2, y \in \mathbb{R}$) satisfying $y = \alpha x_1 + \beta x_2$, and we want to learn the model parameters (or weights) α, β . (That is, we have training data of the above form for various different x.)
 - (ii) We have training data (x, y) (where $x \in \mathbb{R}^2, y \in \mathbb{R}$) satisfying $y = \alpha x_1 x_2^3$, and we want to learn the model parameter (or weight) α .
 - (iii) We have training data (x, y) (where $x \in \mathbb{R}^2, y \in \mathbb{R}$) satisfying $y = 2^{\alpha} x_1^{\beta}$, and we want to learn the model parameters (or weights) α, β .