Machine Learning 520 Advanced Machine Learning

Lesson 9: Forecasting

Today's Agenda

- What is forecasting?
- Autocorrelation, seasonality and noise
- Auto regression
- Moving average
- Autoregressive Integrated Moving Average

Learning Objectives

- Decompose time series into autocorrelation, seasonality, trend, and noise.
- Explain the effects of exponential smoothing models and differentiate them from other models.
- Apply and evaluate the results of an autoregressive model.
- Apply and evaluate the results of a moving average model.
- Apply and evaluate the results of an autoregressive integrated moving average model.
- Apply and evaluate the results of ARIMA model for forecasting (time series prediction).

Prediction is very difficult, especially about the future.
- Niels Bohr

Types of Forecasting Methods

- Decide what needs to be forecast
 - Level of detail, units of analysis & time horizon required
- Evaluate and analyze appropriate data
 - Identify needed data & whether it's available
- Select and test the forecasting model
 - Cost, ease of use & accuracy
- Generate the forecast
- Monitor forecast accuracy over time

Forecasting In Practice

Time Series Data

- > Series of data observed over time
- > E.g.: Daily Amazon stock prices, Annual population data, Quarterly sales figures, ...

> Forecasting is estimating how the sequence of observations will continue into the future.

Time Series Data

> Order matters

There is a dependency on time and changing the order could change the meaning of the data.

Quiz

- > A time series is a sequence of data points with the follow characteristics (choose all that apply):
- 1- Random intervals of time between each data point
- 2- Covers a continuous time interval
- 3- Equal spacing between every two consecutive measurements
- 4- Each time unit within the time interval has at most one data point.

Quiz

- > We would use time series forecasting to predict values for which following business situations (select all that apply):
- 1- Monthly Seattle bike rentals
- 2- A stock's daily closing value
- 3- Amount of time to close a sales cycle
- 4- Retail trade area analysis and demographic profiling
- 5- Annual Orca population

Time Series Pattern

- > Trend:
 - Long-term movement in data
- > Seasonality:
 - Short-term regular variations in data
- > Cycles:
 - Wavelike variations of long-term
- > Irregular variations:
 - Caused by unusual circumstances
- > Random variations
 - Caused by chance

Time Series Components

- Secular Trend the smooth long term direction of a time series
- Cyclical Variation the rise and fall of a time series over periods longer than one year
- Seasonal Variation Patterns of change in a time series within a year which tends to repeat each year
- Irregular Variation classified into:
 Episodic unpredictable but identifiable
 Residual also called chance fluctuation and unidentifiable

Quiz

> Mark each time series plots as seasonal, cyclical, both or neither.

Quiz

Seasonal - Peak electricity in summer and winter months repeats every year

Cyclical - shows pattern of downtrend every few years. The years are not fixed though.

Both - Seasonal patterns each year with cyclical pattern showing about every 9 years

Time Series Decomposition Plot

- > The first plot shows the actual time series.
- > The trend line indicates the general tendency of the time series
- > The seasonal portion shows that there's a seasonal pattern
- > The residual is the error in the model that calculates the difference between the observed value and the trendline estimate

Simple Forecasting Methods

- > Average method: Forecast of all future values is equal to the mean of historical data
- > Naïve method: Forecasts equal to last observed value
- Seasonal naïve method: Forecasts equal to last value from same season
- > **Drift method**: Forecasts equal to last value plus average change

Moving Average: Naïve Approach

MONTH	ORDERS PER MONTH	FORECAST
Jan	120	-
Feb	90	120
Mar	100	90
Apr	75	100
May	110	75
June	50	110
July	75	50
Aug	130	75
Sept	110	130
Oct	90 🗨	110
Nov	-	

Moving Average

- Simple moving average
 - uses average demand for a fixed sequence of periods
 - stable demand with no pronounced behavioral patterns
- Weighted moving average
 - weights are assigned to most recent data

Simple Moving Average

$$MA_n = \frac{\sum_{i=1}^{n} D_i}{n}$$

where

3-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	3
Jan	120		$\sum D_i$
Feb	90	_	$MA_3 = \frac{r}{r}$
Mar	100	_	3
Apr	75	103.3	
May	110	88.3	90 + 110 + 130
June	50	95.0	= 3
July	75	78.3	
Aug	130	78.3	= 110 orders for Nov
Sept	110	85.0	- 110 01 del3 101 110V
Oct	90	105.0	
Nov	-	110.0	

5-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	Σ ο
Jan	120	_	$\sum_{i=1}^{\sum} D_i$
Feb	90	_	$MA_5 =$
Mar	100	_	5
Apr	75	_	00 110 100 75 5
May	110	_	90 + 110 + 130+75+5
June	50	99.0	- 5
July	75	85.0	
Aug	130	82.0	= 91 orders for Nov
Sept	110	88.0	
Oct	90	95.0	
Nov	-	91.0	

Smoothing Effects

Weighted Moving Average

Adjusts moving average method to more closely reflect data

fluctuations

$$WMA_n = \sum_{i=1}^n W_i D_i$$

where

$$W_i$$
 = the weight for period i ,
between 0 and 100 percent

$$\sum W_i = 1.00$$

Weighted Moving Average Example

MONTH	WEIGHT	DATA			
August	17%	130			
September	33%	110			
October	50%	90			
November Forecast	WMA ₃	$= \sum_{i=1}^{3} W_i D_i$			
= (0.50)(90) + (0.33)(110) + (0.17)(130)					
= 103.4 orders					

Exponential Smoothing

- Averaging method
- Weights most recent data more strongly
- Reacts more to recent changes
- Widely used, accurate method

Exponential Smoothing

$$F_{t+1} = \alpha D_t + (1 - \alpha)F_t$$

where:

 F_{t+1} =forecast for next period

 D_t = actual demand for present period

 F_t = previously determined forecast for present period

 α = weighting factor, smoothing constant

Effect of Smoothing Constant

$$0.0 \le \alpha \le 1.0$$

If α = 0.20, then F_{t+1} = 0.20 D_t + 0.80 F_t

If $\alpha = 0$, then $F_{t+1} = 0$ $D_t + 1$ $F_t = F_t$

Forecast does not reflect recent data

If
$$\alpha = 1$$
, then $F_{t+1} = 1 D_t + 0 F_t = D_t$

Forecast based only on most recent data

Exponential Smoothing (α =0.30)

PERIOD 1 2 3 4 5	MONTH Jan Feb Mar Apr May	DEMAND 37 40 41 37 45	$F_2 = \alpha D_1 + (1 - \alpha)F_1$ $= (0.30)(37) + (0.70)(37)$ $= 37$ $F_3 = \alpha D_2 + (1 - \alpha)F_2$ $= (0.30)(40) + (0.70)(37)$
	•		$F_3 = \alpha D_2 + (1 - \alpha)F_2$ = (0.30)(40) + (0.70)(37)
7	Jul Aug	43 47	= 37.9
9	Sep	56	$F_{13} = \alpha D_{12} + (1 - \alpha) F_{12}$
10 11	Oct Nov	52 55	= (0.30)(54) + (0.70)(50.84) = 51.79
12	Dec	54	31.73

Exponential Smoothing (α =0.30)

PERIOD 1 2 3 4 5	MONTH Jan Feb Mar Apr May	DEMAND 37 40 41 37 45	$F_2 = \alpha D_1 + (1 - \alpha)F_1$ $= (0.30)(37) + (0.70)(37)$ $= 37$ $F_3 = \alpha D_2 + (1 - \alpha)F_2$ $= (0.30)(40) + (0.70)(37)$
	•		$F_3 = \alpha D_2 + (1 - \alpha)F_2$ = (0.30)(40) + (0.70)(37)
7	Jul Aug	43 47	= 37.9
9	Sep	56	$F_{13} = \alpha D_{12} + (1 - \alpha) F_{12}$
10 11	Oct Nov	52 55	= (0.30)(54) + (0.70)(50.84) = 51.79
12	Dec	54	31.73

Exponential Smoothing

			FORECA	AST, F_{t+1}
PERIOD	MONTH	DEMAND	$(\alpha = 0.3)$	$(\alpha = 0.5)$
1	Jan	37	-	_
2	Feb	40	37.00	37.00
3	Mar	41	37.90	38.50
4	Apr	37	38.83	39.75
5	May	45	38.28	38.37
6	Jun	50	40.29	41.68
7	Jul	43	43.20	45.84
8	Aug	47	43.14	44.42
9	Sep	56	44.30	45.71
10	Oct	52	47.81	50.85
11	Nov	55	49.06	51.42
12	Dec	54	50.84	53.21
13	Jan	-	51.79	53.61

Adjusted Exponential Smoothing

$$AF_{t+1} = F_{t+1} + T_{t+1}$$

where

T = an exponentially smoothed trend factor

$$T_{t+1} = \beta(F_{t+1} - F_t) + (1 - \beta) T_t$$

where

 T_t = the last period trend factor

 β = a smoothing constant for trend

$$0 \le \beta \le 1$$

Adjusted Exponential Smoothing (β =0.30)

PERIOD	MONTH	DEMAND	<i>T</i> ₃	$= \beta (F_3 - F_2) + (1 - \beta) T_2$
1	Jan	37		= (0.30)(38.5 - 37.0) + (0.70)(0)
2	Feb	40		= 0.45
3	Mar	41		
4	Apr	37	AF_3	$= F_3 + T_3 = 38.5 + 0.45$
5	May	45		= 38.95
6	Jun	50		
7	Jul	43	T_{13}	$= \beta(F_{13} - F_{12}) + (1 - \beta) T_{12}$
8	Aug	47		= (0.30)(53.61 - 53.21) + (0.70)(1.77)
9	Sep	56		= 1.36
10	Oct	52		- 1.50
11	Nov	55		
12	Dec	54	<i>AF</i> ₁₃	$= F_{13} + T_{13} = 53.61 + 1.36 = 54.97$

Adjusted Exponential Smoothing

PERIOD	MONTH	DEMAND	FORECAST F _{t+1}	TREND T _{t+1}	ADJUSTED FORECAST AF _{t+1}
1	Jan	37	37.00	-	-
2	Feb	40	37.00	0.00	37.00
3	Mar	41	38.50	0.45	38.95
4	Apr	37	39.75	0.69	40.44
5	May	45	38.37	0.07	38.44
6	Jun	50	38.37	0.07	38.44
7	Jul	43	45.84	1.97	47.82
8	Aug	47	44.42	0.95	45.37
9	Sep	56	45.71	1.05	46.76
10	Oct	52	50.85	2.28	58.13
11	Nov	55	51.42	1.76	53.19
12	Dec	54	53.21	1.77	54.98
13	Jan	-	53.61	1.36	54.96

Adjusted Exponential Smoothing Forecasts

Linear Trend Line

$$y = a + bx$$

where

a = intercept

b = slope of the line

x = time period

y =forecast for demand for period z

$$b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - nx^2}$$

$$a = \overline{y} - b \overline{x}$$

where

n = number of periods

$$\overline{x} = \frac{\sum x}{n}$$
 = mean of the x values

$$\overline{y} = \frac{\sum y}{n}$$
 = mean of the y values

Least Squares Example

x(PERIOD)	y(DEMAND) xy	x^2
1	73	37	1
2	40	80	4
3	41	123	9
4	37	148	16
5	45	225	25
6	50	300	36
7	43	301	49
8	47	376	64
9	56	504	81
10	52	520	100
11	55	605	121
12	54	648	144
78	557	3867	650

Least Squares Example

$$\pi = \frac{78}{12} = 6.5$$

$$y = \frac{557}{12} = 46.42$$

$$b = \frac{\sum xy - nx\overline{y}}{\sum x^2 - nx\overline{z}^2} = \frac{3867 - (12)(6.5)(46.42)}{650 - 12(6.5)^2} = 1.72$$

$$a = \overline{y} - b\overline{x}$$

$$= 46.42 - (1.72)(6.5) = 35.2$$

Adjusted Exponential Smoothing Forecasts

Linear trend line y = 35.2 + 1.72x

Forecast for period 13 y = 35.2 + 1.72(13) = 57.56 units

Seasonal Adjustments

- Repetitive increase/ decrease in demand
- Use seasonal factor to adjust forecast

Seasonal factor =
$$S_i = \frac{D_i}{\sum D}$$

Seasonal Adjustment

DEMAND (1000'S PER QUARTER)							
·	YEAR	1	2	3	4	Total	
_	2002	12.68.6	6.3	17.5	45.0		
	2003	14.110.3	7.5	18.2	50.1		
	2004	15.310.6	8.1	19.6	53.6		
	Total	42.029.5	21.9	55.3	148.7		
ć	$\sum D = \frac{1}{1}$ $D_2 = \frac{1}{2}$.48.7	0.28 0.20	S ₃ = S ₄ =	$\frac{\overline{\sum}D}{\sum}D$	21.9 148.7 55.3 148.7	= 0.15 = 0.37

Seasonal Adjustment

For 2005

$$y = 40.97 + 4.30x = 40.97 + 4.30(4) = 58.17$$

$$SF_1 = (S_1)(F_5) = (0.28)(58.17) = 16.28$$

$$SF_2 = (S_2)(F_5) = (0.20)(58.17) = 11.63$$

$$SF_3 = (S_3)(F_5) = (0.15)(58.17) = 8.73$$

$$SF_4 = (S_4)(F_5) = (0.37)(58.17) = 21.53$$

Forecast Accuracy

- Forecast error
 - difference between forecast and actual demand
- MAD
 - mean absolute deviation
- MAPD
 - mean absolute percent deviation
- Cumulative error
- Average error or bias

Mean Absolute Deviation (MAD)

$$\mathsf{MAD} = \frac{\sum |D_t - F_t|}{n}$$

where

t = period number

 D_t = demand in period t

 F_t = forecast for period t

n = total number of periods

MAD Example

PERIOD	DEMAND, D_t	F_t (α =0.3)	$(D_t - F_t)$	$ D_t - F_t $
1	37	37.00	_	_
2	40	37.00	3.00	3.00
3	41	37.90	3.10	3.10
4	37	38.83	-1.83	1.83
5	45	38.28	6.72	6.72
6	50	40.29	9.69	9.69
7	43	43.20	-0.20	0.20
8	47	43.14	3.86	3.86
9	56	44.30	11.70	11.70
10	52	47.81	4.19	4.19
11	55	49.06	5.94	5.94
12	54	50.84	3.15	3.15
	557		49.31	53.39

MAD Calculation

MAD =
$$\frac{\sum |D_t - F_t|}{n}$$

= $\frac{53.39}{11}$
= 4.85

Comparison of Forecasts

FORECAST	MAD	MAPD	Ε	(<i>E</i>)
Exponential smoothing (α = 0.30)	4.85	9.6%	49.31	4.48
Exponential smoothing (α = 0.50)	4.04	8.5%	33.21	3.02
Adjusted exponential smoothing	3.81	7.5%	21.14	1.92
$(\alpha = 0.50, \beta = 0.30)$				
Linear trend line	2.29	4.9%	_	_

Regression Methods

- Linear regression
 - mathematical technique that relates a dependent variable to an independent variable in the form of a linear equation
- Correlation
 - a measure of the strength of the relationship between independent and dependent variables

Linear Regression

$$y = a + bx$$

$$a = \overline{y} - b \, \overline{x}$$

$$b = \frac{\sum xy - n\overline{x}y}{\sum x^2 - n\overline{x}^2}$$
where
$$a = \text{intercept}$$

$$b = \text{slope of the line}$$

$$\overline{x} = \frac{\sum x}{n} = \text{mean of the } x \text{ data}$$

$$\overline{y} = \frac{\sum y}{n} = \text{mean of the } y \text{ data}$$

Linear Regression Example

x (WINS)	y (ATTENDANCE)	xy	x^2
4	36.3	145.2	16
6	40.1	240.6	36
6	41.2	247.2	36
8	53.0	424.0	64
6	44.0	264.0	36
7	45.6	319.2	49
5	39.0	195.0	25
7	47.5	332.5	49
49	346.7	2167.7	311

Linear Regression Example

$$\overline{x} = \frac{49}{8} = 6.125$$

$$\overline{y} = \frac{346.9}{8} = 43.36$$

$$b = \frac{\sum xy - nx\overline{y^2}}{\sum x^2 - nx\overline{z^2}}$$

$$= \frac{(2,167.7) - (8)(6.125)(43.36)}{(311) - (8)(6.125)^2}$$

$$= 4.06$$

$$a = \overline{y} - bx\overline{x}$$

$$= 43.36 - (4.06)(6.125)$$

$$= 18.46$$

Linear Regression Example

Correlation and Coefficient of Determination

- Correlation, r
 - Measure of strength of relationship
 - Varies between -1.00 and +1.00
- Coefficient of determination, r²
 - Percentage of variation in dependent variable resulting from changes in the independent variable

ARIMA Models and Forecasting

- If we can describe the way the points in the series are related to each other (the autocorrelations), then we can describe the series using the relationships that we've found
- AutoRegressive Integrated Moving Average Models (ARIMA) are mathematical models of the autocorrelation in a time series
- One way to describe time series

ARIMA METHOD OF FORECASTING

- The Autoregressive (AR) Model
 - The following is an **AR(p)** model:

$$Y_{t} = B_{0} + B_{1}Y_{t-1} + B_{2}Y_{t-2} + \dots, B_{p}Y_{t-p} + u_{t}$$

- where u_t is a white noise error term.
- The Moving Average (MA) Model
 - We can also model Y_t as an the MA(q) model, a weighted, or moving, average of the current and past white noise error terms:
- $Y_{t} = C_{0} + C_{1}u_{t} + C_{2}u_{t-1} + \dots, C_{j}u_{t-q}$

ARIMA METHOD OF FORECASTING (CONT.)

- The Autoregressive Moving Average (ARMA) Model
 - The ARMA (p,q) model is a combination of AR (autoregressive) and MA (moving average) terms.
- The Autoregressive Integrated Moving Average (ARIMA) Model
 - The BJ methodology is based on the assumption that the underlying time series is stationary or can be made stationary by differencing it one or more times.
 - This is known as the ARIMA (p, d, q) model, where d denotes the number of times a time series has to be differenced to make it stationary.

Autocorrelation

 The major statistical tool for ARIMA models is the sample autocorrelation coefficient

$$r_{k} = \frac{\sum_{t=k+1}^{n} (Y_{t} - Y^{-}) (Y_{t-k} - Y^{-})}{\sum_{t=1}^{n} (Y_{t} - Y^{-})^{2}}$$

Autocorrelations

- r_1 indicates how successive values of Y relate to each other,
- r_2 indicates how Y values two periods apart relate to each other, and so on.

ACF

- Together, the autocorrelations at lags 1, 2, 3, etc. make up the autocorrelation function or ACF and then we plot the autocorrelations by the lags
- The ACF values reflect how strongly the series is related to its past values over time.

Autocorrelation Function Plot

- > Autocorrelation refers to how correlated a time series is with its past values.
- > When data have a trend, the autocorrelations for small lags tend to be large and positive.
- > When data are seasonal, the autocorrelations will be larger at the seasonal lags
- > When data are trended and seasonal, you see a combination of these effects

Quiz

> Match the ACF to the time series

Quiz

> Match the ACF to the time series

Time Series Forecasting Process

Observations from the scatter Plot	Techniques to try	Ways to evaluate	
Data is reasonably stationary (no trend or seasonality)	Heuristics - Averaging methods • Naive • Moving Averages • Simple Exponential Smoothing	MADMAPEStandard ErrorBIAS	
Data shows a consistent trend	Regression • Linear • Non-linear Regressions (not covered in this course)	 MAD MAPE Standard Error BIAS R-Squared 	
Data shows both a trend and a seasonal pattern	Classical decomposition • Find Seasonal Index • Use regression analyses to find the trend component	 MAD MAPE Standard Error BIAS R-Squared 	

Evaluation of Forecasting Model

- BIAS
 - The arithmetic mean of the errors

- n is the number of forecast errors
- Mean Absolute Deviation MAD
 - Average of the absolute errors

Evaluation of Forecasting Model

Mean Square Error - MSE

- Standard error
 - Square Root of MSE
- Mean Absolute Percentage Error MAPE

Calculate the % error using the absolute error, then average the results

Controlling the quality of forecast

- Necessary to monitor forecast to ensure that the forecast is performing adequately
- This is accomplished by comparing forecast errors to predetermined values
- Errors that fall within the limits are considered acceptable
- Errors outside either limit indicates that corrective action is needed
- Tracking signal values are compared to predetermined limits (+4,-4) based on judgle each and experience

Choosing a Forecasting Technique

- Moving Averages and Exponential Smoothing are short range techniques. They produce forecast for the next period
- Trend equations are used for much longer time horizons.
- More than one forecasting techniques might be used to increase confidence
- The forecast horizon
- Forecasting frequency
 - Forecasting is not free
 - Consider cost and accuracy
 - Weigh cost-accuracy trade-offs carefully

