试题整理 (回忆版) Nicolas-Keng

数分三期中

- 1(44) (1) 设 f(x,y) 是 \mathbb{R}^2 上的函数, 叙述 f 在原点 (0,0) 可微的定义.
- (2) 探究如下函数在点 (0,0) 处的可微性:

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

- (3) 证明 $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \exp\left(-\frac{x^2}{4a^2t}\right)$ 在 \mathbb{R}^2 上半平面上满足 $\frac{\partial u}{\partial t} a^2 \frac{\partial^2 u}{\partial x^2} = 0$.
- (4) 若 f(x,y) 在 \mathbb{R}^2 上连续可偏导, 且 $y \frac{\partial f}{\partial x} x \frac{\partial f}{\partial y} = 0$, 证明 $\exists \phi$, 使得 $f(x,y) = \phi \left(\sqrt{x^2 + y^2} \right)$.
- (5) 设 f 在 \mathbb{R}^3 上可微, $\vec{l_1}$, $\vec{l_2}$, $\vec{l_3}$ 是 \mathbb{R}^3 中的三个线性无关的向量, 且 $\frac{\partial f}{\partial \vec{l_i}} = 0$, (i = 1, 2, 3), 证明 f(x, y, z) 在 \mathbb{R}^3 中恒为常数.
 - 2(12) 设 $B\subseteq\mathbb{R}^n$, $(n\geq 2)$ 是单位开球, 函数 u,v 在 \bar{B} 上连续, 在 B 内二阶连续可导且满足

$$\begin{cases}
-\Delta u - (1 - u^2 - v^2) u = 0, & x \in B \\
-\Delta v - (1 - u^2 - v^2) v = 0, & x \in B \\
u(x) = v(x) = 0, & x \in \partial B.
\end{cases}$$

证明: $u^2(x) + v^2(x) \le 1$, $(\forall x \in \bar{B})$, 其中 Δ 代表 Laplace 算子.

3(16) 求椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 在第一卦限中的切平面与三个坐标平面所围成的四面体的最小体积, 其中 a>0, b>0, c>0.

4(13) (1) 令

$$F(t) = \iint_{x^2 + y^2 \le t^2} f(x^2 + y^2) dx dy, t > 0$$

其中 f 是 \mathbb{R}^2 上的连续函数且 f(1) = 1, 计算 F'(1) 的值.

(2) 设函数 f(x,y), $f_y(x,y)$ 在区域 $D=\{(x,y)\big|a\leq x\leq b, \varphi(x)\leq y\leq \psi(x)\}$ 上连续, 其中 $\varphi(x)$, $\psi(x)$ 在 [a,b] 上连续. 若 $\forall x\in [a,b]$, $f(x,\varphi(x))=0$, 则 $\exists K\in\mathbb{R}$, 使得

$$\iint\limits_{D} f^{2}(x,y) \, \mathrm{d}x \, \mathrm{d}y \leq K \iint\limits_{D} \left(\frac{\partial f}{\partial y}\right)^{2}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

- 5(15) (1) 设方程 $e^z xyz = 0$ 确定 z = f(x,y) 的隐函数, 计算 $\frac{\partial^2 z}{\partial x^2}$.
- (2) 设函数 f(x,y), g(x,y) 在平面开区域 G 上连续可偏导, 且

$$\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x} \neq 0, (\forall (x,y) \in G),$$

又设有界闭区域 $D \subset G$. 证明: 在 D 中满足方程组 f(x,y) = 0, g(x,y) = 0 的点至多有有限个.