CONCEPTION DE BASES DE DONNÉES

Département informatique Chaire Informatique d'Entreprise *Licence Professionnelle*

SÉRIE 3

EXERCICE 1

Soit le schéma relationnel suivant :

CHAMBRE (NumChambre, Prix, NbLits, NbPers, Confort, Equipée)

CLIENT (NumClient, Nom, Prenom, Adresse)

RESERVATION (NumClient, NumChambre, DateArrivée, DateDépart)

La figure 1 donne une instance de ce schéma.

Donnez les résultats des requêtes suivantes :

- 1- $\sigma_{Prix \le 90}$ (CHAMBRE)
- 2- $\sigma_{Confort = 'DOUCHE' \lor Confort = 'BAIN'}$ (CHAMBRE)
- 3- $\prod_{NumChambre}$ (CHAMBRE) $\infty \sigma_{DateD\'epart < '27\text{-oct-}00'}$ (RESERVATION)
- 4- $\prod_{NumChambre}$ (CHAMBRE) $\prod_{NumChambre}$ ($\sigma_{DateD\acute{e}part <= '27\text{-oct-00'}}$ (RESERVATION))

CHAMBRE							
NumChambre	Prix	NbLits	NbPers	Confort	Equipée		
10	80	1	2	WC	Non		
11	90	1	1	WC	TV		
12	100	1	2	DOUCHE	Non		
20	120	1	2	BAIN	Non		
21	180	3	4	DOUCHE	TV		
30	190	2	4	DOUCHE	TV		
40	90	1	2	WC	TV		

CLIENT						
NumClient	Nom	Prénom	Adresse			
1000	Dumas	Albert	Paris			
1001	Becker	Patrick	Lyon			
1002	Gascon	Gaston	Marseille			
1005	Rose	Olivier	Paris			
1007	Romulus	Amélie	Nice			
1009	Agda	Bruno	Lyon			

RESERVATION						
NumClient	NumChambre	DateArrivée	DateDépart			
1000	11	11-jan-00	15-jan-00			
1000	10	06-mar-00	10-mar-00			
1001	21	10-oct-00	11-oct-00			
1002	30	20-oct-00	24-oct-00			
1007	10	18-jan-00	25-jan-00			
1007	21	11-sep-00	13-sep-00			
1007	12	22-oct-00	27-oct-00			

Figure 1 : Instance de la base réservation de chambre d'hôtel

CONCEPTION DE BASES DE DONNÉES

EXERCICE 2

Soit le schéma relationnel suivant :

IMMEUBLE (NomImmeuble, Adresse, NbEtages, AnnéeConstruction, NomGérant)

APPARTEMENT (NomImmeuble, NumAppart, Superficie, Etage)

OCCUPANT (NomImmeuble, NumAppart, NomOccupant, AnnéeArrivée)

PERSONNE (Nom, Age, Profession)

Pour chacune des requêtes suivantes, exprimez en français sa signification.

- 1- $\prod_{NomImmeuble, NumAppart}$ ($\sigma_{Superficie>150}$ (APPARTEMENT))
- 2- $\prod_{NomOccupant}$ ($\sigma_{NomImmeuble='Barbas' \land Ann\acute{e}Arriv\acute{e}>1994}$ (OCCUPANT))
- 3- ∏ NomGérant, Superficie (IMMEUBLE ∞ APPARTEMENT)
- 4- $\prod_{Profession}$ (IMMEUBLE $\infty_{NomG\acute{e}rant = Nom}$ PERSONNE)
- $5- \prod_{NomOccupant} (IMMEUBLE \qquad \infty \qquad \\ \text{NomG\'erant} = \text{NomOccupant} \land \text{NomImmeuble} = \text{NomImmeuble} \ OCCUPANT)$
- 7- $\prod_{NomImmeuble}$ (IMMEUBLE) $\prod_{NomImmeuble}$ ($\sigma_{NomOccupant = 'Doug'}$ (OCCUPANT))

Exprimez en algèbre relationnelle les requêtes suivantes

- 1- Qui gère l'appartement où habite Rachel?
- 2- Dans quel immeuble habite un acteur ?
- 3- Noms des personnes qui habitent au dernier étage de leur immeuble ?
- 4- Couples de personnes ayant emménagé dans le même immeuble la même année ?
- 5- Age et profession des occupants de l'immeuble géré par Ross ?
- 6- Qui n'habite pas un appartement géré par Ross?

EXERCICE 3

Soit le schéma de relations :

CLIENT (CodeClient, NomClient, CatégorieClient, VilleClient)

ARTICLE (CodeArticle, NomArticle, Couleur, QteStock)

COMMANDE (NumCommande, CodeClient, DateCommande)

DETAIL-COMMANDE (NumCommande, CodeArticle, Qté)

Ecrire les requêtes suivantes en algèbre relationnelle :

- 1. Donnez la liste des clients habitant la région parisienne.
- 2. Donnez les différentes catégories de clients.
- 3. Donnez la liste des clients habitant la région parisienne et dont la catégorie est 3.
- 4. Donnez la liste des noms des clients qui ont fait au moins une commande le 11 septembre 2000
- 5. Donnez la liste des noms des clients qui n'ont pas fait de commande le 11 septembre 2000.
- 6. Donnez la liste des noms des clients qui ont fait au moins une commande le 11 et le 12 septembre 2000.
- 7. Donnez la liste des noms des clients ayant commandé au moins un article rouge.

EXERCICE 4

Pour effectuer des analyses statistiques sur les données météorologiques, on a mis en place une base de données relationnelle ayant le schéma suivant :

PLUIE (Ville, Mois, Pluviométrie)

LOCALISATION (Ville, Pays, Nombre Habitants)

CONCEPTION DE BASES DE DONNÉES

TEMPERATURE (<u>Ville, Date</u>, TempératureMin, TempératureMax) PAYS (<u>Pays</u>, Continent)

Les clés primaires sont soulignées.

Les données météorologiques sont celles de l'année écoulée. La table PLUIE recense, pour chaque ville et <u>mois par mois</u> (donc les douze mois de l'année écoulée), la pluviométrie en millimètres. La table TEMPERATURE enregistre les températures minimales et maximales <u>quotidiennes</u> de chaque ville de la base.

Exprimez en algèbre relationnelle les requêtes suivantes :

- 1- La pluviométrie en janvier à Paris?
- 2- Pour chaque ville de France, les températures minimales et maximales du 18 avril 2001
- 3- Les villes françaises de moins de 500000 habitants répertoriées dans la base?
- 4- Les villes dans lesquelles, au moins un jour de l'année écoulée, la température a été constante toute la journée