- **Ex 1** Déterminer les racines sixièmes de -27, les racines quatrièmes de $\frac{4\sqrt{2}}{1+i}$
- Ex 2 Déterminer les racines quatrièmes de -119 + 120i.
- **Ex 3** Résoudre dans \mathbb{C} l'équation $z^8 + z^4 + 1 = 0$
- **Ex 4** Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Résoudre dans $\mathbb C$ les équations

(E)
$$z^3 = \frac{1 + i \tan \alpha}{1 - i \tan \alpha}$$
 puis $(E') (1 + iz)^3 (1 - i \tan \alpha) = (1 - iz)^3 (1 + i \tan \alpha)$

- **Ex 5** A l'aide de \mathbb{U}_9 , calculer et simplifier $S = \cos^2\frac{\pi}{9} + \cos^2\frac{2\pi}{9} + \cos^2\frac{3\pi}{9} + \cos^2\frac{4\pi}{9}$.
- **Ex 6** Vérifier que $\cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11} = \frac{1}{2}$.
- Ex 7 Trouver un complexe non nul z admettant deux racines cubiques distinctes z_1 et z_2 vérifiant $z_1 + 2z_2 = z\sqrt{3}$

Ex 8 Soit
$$\omega=e^{2i\pi/n}$$
 et $p\in\mathbb{Z}$. Calculer $S_n=\sum_{k=0}^n\binom{n}{k}\omega^k$ et $T_n=\sum_{k=0}^{n-1}\omega^{kp}$.

- **Ex 9** Résoudre dans \mathbb{C}^3 le système $\left\{ \begin{array}{l} x=y^2 \\ y=z^2 \\ z=x^2 \end{array} \right. .$
- $\mbox{\bf Ex 10 } \mbox{ On pose } \omega = e^{\frac{2i\pi}{7}}, \ \alpha = \omega + \omega^2 + \omega^4 \quad , \quad \beta = \omega^3 + \omega^5 + \omega^6.$
 - a) Rappeler la définition de $\mathbb{U}_{7,}$ et sa description à l'aide d'exponentielles complexes puis de ω .
 - b) Montrer que α et β sont conjugués, et que $\operatorname{Im} \alpha \geqslant 0$ (on pourra utiliser le fait que $\sin \frac{2\pi}{7} > \sin \frac{\pi}{7}$).
 - c) Calculer $\alpha + \beta$ et $\alpha\beta$, et en déduire α et β .
- **Ex 11** Pour tout complexe z, on pose $P(z) = z^6 + z^5 + z^4 + z^3 + z^2 + z + 1$
 - a) Résoudre l'équation P(z) = 0. Factoriser P.
 - b) Calculer $P\left(1\right)$ de deux manières différentes et en déduire que $\prod_{k=1}^{6}\sin\frac{k\pi}{7}=\frac{7}{2^{6}}$
 - c) Montrer de manière analogue que pour $n \in \mathbb{N}^*$, $\prod_{k=1}^{2n} \sin \frac{k\pi}{2n+1} = \frac{2n+1}{2^{2n}}$.
- **Ex 12** Soient $n \in \mathbb{N}^*$ et $\omega = e^{2i\pi/n}$ et $p \in \mathbb{Z}$. Calculer $S_n = \sum_{k=0}^{n-1} (k+1) \omega^k$.
- **Ex 13** Soit $n \in \mathbb{N}^*$. Calculer le produit des racines n-ièmes de l'unité.
- **Ex 14** Soient $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation : $z^{2n} 2\cos(n\theta)z^n + 1 = 0$.
- **Ex 15** Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation $(z-1)^n = (z+1)^n$. Simplifier les solutions et les compter.

PCSI 1 Thiers 2019/2020