Math 55a, Fall 2004

7th Assignment, due November 11

- 1. This problem explores the notions of topological group and continuous group action. By definition, a topological group is a pair (G, \mathcal{T}_G) consisting of a group G and a topology \mathcal{T}_G which makes multiplication (as map from $G \times G$ to G) and inversion (as map from G to G) continuous. A continuous action of a topological group G on a topological space X is an action of G on X such that the action map $a: G \times X \to X$ is a continuous map.
- a) Show that every T_0 topological group has the T_2 property (Hint: you'll need to use the fact that multiplication and inversion are continuous at $(e, e) \in G \times G$ and at e, respectively).
- b) For this part of the problem, Y is a topological space, Z a set, and $F: Y \to Z$ a surjective map. Define a family of subsets \mathcal{T}_Z of Z as follows: $U \subset Z$ belongs to \mathcal{T}_Z precisely when $F^{-1}(U)$ is open in Y. Show that \mathcal{T}_Z is a topology for Z, that $F: Y \to Z$ is continuous, and that (Z, \mathcal{T}_Z) has the \mathcal{T}_1 property if and only if $F^{-1}\{z\}$ is closed for every $z \in Z$. The topology \mathcal{T}_Z is called the quotient toplogy induced by the topology of Y.
- c) Show: an open subgroup of a topological group is necessarily closed.
- d) Let G be a topological group and $H \subset G$ a closed subgroup. Equip G/H with the quotient topology. Show that G/H is a T_1 space, and that the natural action of G on G/H is continuous.
- e) With G and H as in c), show that the quotient topology on G/H is Hausdorff provided G is a Hausdorff group (Hint: given $g \in G$ and an open neighborhood U of the identity, there exists another open neighborhood V of e such that $qVq^{-1} \subset U$).
- f) Now suppose $H \subset G$ is a closed normal subgroup. Show that G/H, equipped with the quotient topology, is a topological group.
- g) Verify: the closure of $\{e\}$ in any topological group is a normal subgroup, and the quotient of G by this subgroup is a Hausdorff group.
- **h)** Let $GL(2,\mathbb{R})$ denote the set of invertible 2×2 matrices with real entries, and $SL(2,\mathbb{R})$ the set of 2×2 matrices with real entries and determinant 1. View both as subsets of $\mathbb{R}^4 \cong$ set of all real 2×2 matrices, and equip them with the restricted topology. Show that both are topological groups, with matrix multiplication as the law of composition.
- **2.** Exhibit an isomorphism between $SL(2, \mathbb{Z}/2\mathbb{Z}))$ i.e., the group of 2×2 matrices with entries in the field $\mathbb{Z}/2\mathbb{Z}$ and determinant 1 and S_3 , the permutation group on 3 letters.