Name:

Homework 5 Due 1 Mar 2016

- 1. Plot the residual strength of the bolted lap joint shown. Compare the following cases
 - (a) Net Section Yield
 - (b) Brittle Fracture
 - (c) Linkup
 - (d) Modified Linkup

Where the MSD crack length c=0.05 in.. Compare Al 2024-T3, Al 2524-T3, and Al 7075-T6, using the data in Table 1. Although β will be a function of crack length, assume $\beta_a=0.934$ and $\beta_l=2.268$ for these calculations.

Table 1: Material properties for Problem 1

Material	$\sigma_{YS}($ ksi $)$	$K_C(\mathrm{ksi}\sqrt{\mathrm{in}})$
2024-T3	40	120
2524-T3	40	140
7075 - T6	63	60

- 2. For the following panel assume $K_{IC}=60~\mathrm{ksi}\sqrt{\mathrm{in}}$ and $a=0.5~\mathrm{in}.$
 - (a) Determine the critical values of σ and τ as well as the crack extension angle using the maximum circumferential stress criterion.
 - (b) Determine the critical values of σ and τ as well as the crack extension angle using the principal stress criterion.

Note: Assume $\beta = \beta' = 1$

3. An aluminum beam has a 0.3" crack in the upper flange as shown. Estimate the mixed-mode stress intensity factor.

Note: Assume $K_{II} = \tau \sqrt{\pi a}$.

