# W1

Which of the two graphs is suitable to describe the variable created from the question

How many times do you go to the gym? a) once, b) twice, c) three or more

### Select one:





Based on the below frequency table for 'gender' which of the following interpretations is correct?

|         |            | 9         | gender  |                  |                       |
|---------|------------|-----------|---------|------------------|-----------------------|
|         |            | Frequency | Percent | Valid<br>Percent | Cumulative<br>Percent |
| Valid   | male       | 48        | 40.0    | 40.7             | 40.7                  |
|         | female     | 64        | 53.3    | 54.2             | 94.9                  |
|         | non-binary | 6         | 5.0     | 5.1              | 100.0                 |
|         | Total      | 118       | 98.3    | 100.0            |                       |
| Missing | System     | 2         | 1.7     |                  |                       |
| Total   |            | 120       | 100.0   |                  |                       |

- a. 54.2% of the people who responded identified themselves as female
- $\bigcirc$  b. 59.3% of people who responded identified themselves as female
- $\circ$  c. 94.9% of the people in the sample identified themselves as female
- $^{\odot}$  d. 54.2% of the people in the sample identified themselves as female  $\times$

Even though we cannot see the histogram for the 'age' variable, we may expect 'age' to be normally distributed because?



Select one:

a.

The mean, median and mode are close together.

- O b. The minimum value is less than 10 units smaller than the maximum value.
- O C. The standard deviation is small.
- d. The inter-quartile range is narrow



Select one:

- $\odot$  a. The people in the sample consumed on average 1 units of alcohol per week (SD= 4.77)
- b. Half the people in the sample consumed less than 2.48 units of alcohol per week.
- C. Half the people in the sample consumed less than 1 unit of alcohol per week (min=0, max = 30).
- d. The people in the sample consumed on average 2.5 units of alcohol per week (min=0, max = 30).

Which of the following lists all parts of the summary for a box plot?

- a. Smallest, Largest, Mean, Standard Deviation and Variance
- b. Mean, Median, Mode, Range, and Standard Deviation
- C. Minimum, Quartile 1, Median, Quartile 3, and Maximum
- Od. Minimum, Maximum, Range, Mean, and Median



- $\bigcirc$  a. Both box plots are normally distributed.
- b. The unpleasant category has a high value outlier
- © C. The dispersion of recall times is larger for the 'unpleasant' sample than the 'pleasant' sample.
- $\, \bigcirc \,$  d. Recall times for 'unpleasant' memories are shorter than those for 'pleasant' memories.

| Which of the below statements is the correct definition of the sampling distribution?                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select one:                                                                                                                                                                                                                                                                                                                                                             |
| a. The distribution of the estimated values for a parameter, based on random samples of the same size from a population 🗸                                                                                                                                                                                                                                               |
| O b. The distribution of data in one sample                                                                                                                                                                                                                                                                                                                             |
| C. The distribution of the parameter in a population                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>d. The distribution of the values of the statistic for all individuals in one sample</li> </ul>                                                                                                                                                                                                                                                                |
| Which of the statements below is correct?                                                                                                                                                                                                                                                                                                                               |
| Select one:                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>a. The mean of the sampling distribution is equal to the mean of the population divided by the sample size.</li> </ul>                                                                                                                                                                                                                                         |
| • b. The mean of the sampling distribution is equal to the mean of the population divided by the square root of the sample size.                                                                                                                                                                                                                                        |
| © C. The SD of the sampling distribution is equal to the SD of the population divided by the square root of the sample size                                                                                                                                                                                                                                             |
| <ul> <li>d. The SD of the sampling distribution is equal to the SD of the population divided by the sample size.</li> </ul>                                                                                                                                                                                                                                             |
| Which of the statements below is correct?                                                                                                                                                                                                                                                                                                                               |
| Select one:                                                                                                                                                                                                                                                                                                                                                             |
| a. The 'statistic' sample mean provides the point estimate of the population 'parameter' mean.                                                                                                                                                                                                                                                                          |
| O b. The 'parameter' sample mean is the estimated value of the population 'statistic' mean.                                                                                                                                                                                                                                                                             |
| C. The 'parameter' sample mean is a point estimate of the population 'statistic' mean.                                                                                                                                                                                                                                                                                  |
| Od. The 'statistic' sample mean is always equal to the population 'parameter' mean.                                                                                                                                                                                                                                                                                     |
| A researcher estimated a 95% CI to be [17.8, 22.2]. If the researcher calculated the 99% CI, this would be:                                                                                                                                                                                                                                                             |
| Select one:                                                                                                                                                                                                                                                                                                                                                             |
| a. Wider [17.1, 22.9].                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>b. Narrower [18.2, 21.8].</li></ul>                                                                                                                                                                                                                                                                                                                             |
| Two researchers used two different samples and studied the expected hours of sleep in the population. Both samples had the same mean 8.5 and standard deviation of 2 hours. The 95% confidence interval for Researcher A was [7, 9] and the 95% confidence interval for Researcher B was [6, 11]. Which of the two researchers had the larger sample size?  Select one: |
| Defect Office                                                                                                                                                                                                                                                                                                                                                           |

O a. Researcher B

b. Researcher A

A researcher wishes to test if the mean hours of work in a population is 40h per week. She samples N=100 individuals and finds a sample mean of 45h per week. Which of the below is the correct null hypothesis.

### Select one:

- $\circ$  a. H<sub>0</sub>: The population mean is different than  $\mu_0$ = 45 hours/week
- b. H<sub>0</sub>: The population mean is equal to  $\mu_0$ = 40 hours/week ✓
- $\circ$  c. H<sub>0</sub>: The population mean is equal to  $\mu_0$ = 45 hours/week
- $\circ$  d. H<sub>0</sub>: The population mean is different than  $\mu_0$ = 40 hours/week

A researcher tests if the mean hours of work in a population is  $\mu_0$ =40 hours per week. He samples N=100 individuals and finds a sample mean of 45h/week and a standard deviation of 5 hours per week. The estimated sample error is therefore 0.5 hours per week.

Which of the following normal curves represents the sampling distribution under the null hypothesis?



### Select one:

1. Curve 1

A researcher uses a one sample t-test to test the null hypothesis: 'the population mean equals 40h per week'.

The result shows that the p-value = 0.089. What does the researcher need to state in his report?

- a. We reject the null hypothesis that the population mean is 40h/week
- b. We do not reject the null hypothesis that the population mean is 40h/week
- © c. We accept the null hypothesis that the population mean is 40h/week
- d. We accept the alternative hypothesis that the population mean is different to 40h/week

| The p-value is:                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select one:                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>1. the probability of observing a value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>2. the probability of observing a value equal to our sampled value</li> </ul>                                                                                                                                                                                                                                                                                                                                           |
| 3. the probability of observing a value equal or more extreme than our sampled value                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>4. the probability of observing a value equal or more extreme than our sampled value, under the null hypothesis</li> </ul>                                                                                                                                                                                                                                                                                              |
| Probability of rejecting a false null hypothesis is:                                                                                                                                                                                                                                                                                                                                                                             |
| Select one:                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a. the effect size                                                                                                                                                                                                                                                                                                                                                                                                               |
| o b. the Type II error                                                                                                                                                                                                                                                                                                                                                                                                           |
| © c. the Power ✓                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O d. the Type I error                                                                                                                                                                                                                                                                                                                                                                                                            |
| A researcher in the field of educational psychology is interested in the effects of 'flipped learning' on intellectual development. Flipped learning is less structured than a traditional lecture, and she believes that this may improve problem-solving skills. A department in her university switched all teaching to a flipped design format last year, and she is interested to see how this has impacted on the students |

problem-solving skills.

She obtains a random sample of 49 postgraduate students and administers a conceptual problem-solving test to them. It is known that post graduate students in traditional lecture have a mean score of 82 on the test. The students in this study score a mean of 86 with a standard deviation of 5. Compute the 95% CI under the null hypothesis to be able to choose the correct statement below.

- a. Do not reject the null hypothesis and claim that flipped sessions affect problem-solving skills.
- b. Reject the null hypothesis and claim that flipped sessions affect problem-solving skills.
- C. There wasn't enough statistical power for you to find an effect.

A researcher wants to study the difference in 'weight' (in kg) across males and females (sex assigned at birth SAAB). Which is th appropriate test to use?

### Select one:

- a. One sample t-test
- b. Independent samples t-test
- Oc. McNemar test
- od. Paired samples t-test

Based on the output, the correct interpretation for the difference in 'weight after' across males and females, is:



### Select one:

- a. Non significant (F=1.04, df=298, p=0.677)
- b. Non significant (F=1.04, df=297.9, p=0.676)
- © C. Non significant (t=0.418, df=297.9, p=0.676)
- d. Non significant (t=0.417, df=298, p=0.677)

Based on the table, which percentages should be compared?

|   |           |     |             | SA            | AB    |               |       |               |
|---|-----------|-----|-------------|---------------|-------|---------------|-------|---------------|
|   |           |     | Female Male |               |       | Total         |       |               |
| • |           |     | Count       | % within SAAB | Count | % within SAAB | Count | % within SAAB |
|   | Exercised | No  | 119         | 83.2%         | 103   | 65.6%         | 222   | 74.0%         |
|   | before    | Yes | 24          | 16.8%         | 54    | 34.4%         | 78    | 26.0%         |
|   | Total     |     | 143         | 100.0%        | 157   | 100.0%        | 300   | 100.0%        |

### Select one or more:

- a. 83.2% versus 65.6% V
- ☐ b. 83.2% versus 16.8%
- ☐ c. 65.6% versus 34.4%
- ☐ d. 26% versus 100%

|                  |     |        | Exercis    | ed after |            |          |            |
|------------------|-----|--------|------------|----------|------------|----------|------------|
|                  |     | No Yes |            |          | Yes        | es Total |            |
|                  |     | Count  | % of Total | Count    | % of Total | Count    | % of Total |
| Exercised before | No  | 119    | 39.7%      | 103      | 34.3%      | 222      | 74.0%      |
|                  | Yes | 48     | 16.0%      | 30       | 10.0%      | 78       | 26.0%      |
| Total            |     | 167    | 55.7%      | 133      | 44.3%      | 300      | 100.0%     |

|                                                                                      | Value              | df     | Asymptotic<br>Significance<br>(2-sided) | Exact Sig.<br>(2-sided) | Exact Sig.<br>(1-sided) |
|--------------------------------------------------------------------------------------|--------------------|--------|-----------------------------------------|-------------------------|-------------------------|
| Pearson Chi-Square                                                                   | 1.473 <sup>a</sup> | 1      | .225                                    |                         |                         |
| Continuity Correction <sup>b</sup>                                                   | 1.169              | 1      | .280                                    |                         |                         |
| Likelihood Ratio                                                                     | 1.484              | 1      | .223                                    |                         |                         |
| Fisher's Exact Test                                                                  |                    |        |                                         | .236                    | .140                    |
| Linear-by-Linear Association                                                         | 1.468              | 1      | .226                                    |                         |                         |
| McNemar Test                                                                         |                    |        |                                         | .000°                   |                         |
| N of Valid Cases                                                                     | 300                |        |                                         |                         |                         |
| . 0 cells (0.0%) have expect<br>34.58.                                               | ed count less t    | han 5. | he minimum                              | expected co             | ount is                 |
| <ul> <li>b. Computed only for a 2x2 to<br/>c. Binomial distribution used.</li> </ul> | able               |        |                                         |                         |                         |

### Select one:

- 🏿 a. The percentage of those exercising 'before' is not different than that of those exercising 'after' (39.7% vs 16%, Pearson Chi 🔀 Square=1.473, df=1, p=0.225)
- b. The percentage of those exercising 'before' is different than that of those exercising 'after' (26% vs 44.3%, McNemar p<0.001)
- C. The percentage of those exercising 'before' is not different than that of those exercising 'after' (16.0% vs 34.3%, Fisher's exact p=0.236)
- od. The percentage of those exercising 'before' is different than that of those exercising 'after' (26% vs 44.3%, Pearson Chi Square=1.473, df=1, p=0.225)

### Crosstabulation

|           |       |        | SAA                   | AΒ    |                       |       |                       |
|-----------|-------|--------|-----------------------|-------|-----------------------|-------|-----------------------|
|           |       | Female |                       | Male  |                       | Total |                       |
|           |       | Count  | % within<br>Ethnicity | Count | % within<br>Ethnicity | Count | % within<br>Ethnicity |
| Ethnicity | White | 53     | 42.7%                 | 71    | 57.3%                 | 124   | 100.0%                |
|           | Black | 44     | 49.4%                 | 45    | 50.6%                 | 89    | 100.0%                |
|           | Asian | 46     | 58.2%                 | 33    | 41.8%                 | 79    | 100.0%                |
|           | Other | 0      | 0.0%                  | 8     | 100.0%                | 8     | 100.0%                |
| Total     |       | 143    | 47.7%                 | 157   | 52.3%                 | 300   | 100.0%                |

### **Chi-Square Tests**

|                              | Value               | df | Asymptotic<br>Significance<br>(2-sided) |
|------------------------------|---------------------|----|-----------------------------------------|
| Pearson Chi-Square           | 12.136 <sup>a</sup> | 3  | .007                                    |
| Likelihood Ratio             | 15.219              | 3  | .002                                    |
| Linear-by-Linear Association | .801                | 1  | .371                                    |
| N of Valid Cases             | 300                 |    |                                         |

a. 2 cells (25.0%) have expected count less than 5. The minimum expected count is 3.81.

The ethnicity with the highest percentage of women was Asian (58.2%; Pearson chi-square=12.136, df=3, p=0.007)

All of the above

None of the above V

Among Asian people, the percentage of women was significantly higher than men (58.2% vs 41.8%, Pearson chisquare=12.136, df=3, p=0.007)

To study the differences between 'males' and 'females' in 'weight after', the appropriate test is



# Select one:

- a. Independent samples t-test
- O b. Paired samples Wilcoxon sign rank test
- oc. Independent samples Mann-Whitney test
- od. Paired samples t-test

To study the differences in the alcohol consumption, 'before' and 'after' the programme, the appropriate test is

More than 2 units of alcohol on a weekend

|        |           |       |                 | A         | After           |        |                 |       |                 |
|--------|-----------|-------|-----------------|-----------|-----------------|--------|-----------------|-------|-----------------|
|        |           | Never |                 | Sometimes |                 | Always |                 | Total |                 |
|        |           | Count | % within Before | Count     | % within Before | Count  | % within Before | Count | % within Before |
| Before | Never     | 65    | 95.6%           | 3         | 4.4%            | 0      | 0.0%            | 68    | 100.0%          |
|        | Sometimes | 9     | 5.7%            | 148       | 94.3%           | 0      | 0.0%            | 157   | 100.0%          |
|        | Always    | 0     | 0.0%            | 13        | 17.3%           | 62     | 82.7%           | 75    | 100.0%          |
| Total  |           | 74    | 24.7%           | 164       | 54.7%           | 62     | 20.7%           | 300   | 100.0%          |

**Chi-Square Tests** 

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) | Exact Sig.<br>(2-sided) | Exact Sig.<br>(1-sided) | Point<br>Probability |
|---------------------------------|--------------------|----|-----------------------------------------|-------------------------|-------------------------|----------------------|
| Pearson Chi-Square              | 461.6ª             | 4  | .000                                    | .000                    |                         |                      |
| Likelihood Ratio                | 438.05             | 4  | .000                                    | .000                    |                         |                      |
| Fisher's Exact Test             | 421.74             |    |                                         | .000                    |                         |                      |
| Linear-by-Linear<br>Association | 250.2 <sup>b</sup> | 1  | .000                                    | .000                    | .000                    | .000                 |
| McNemar-Bowker Test             | 16.000             | 2  | .000                                    |                         |                         |                      |
| N of Valid Cases                | 300                |    |                                         |                         |                         |                      |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 14.05.

### Select one:

a. McNemar-Bowker test

b. The standardized statistic is 15.819.

Based on the table below, the correct comparison of percentages is:

Ethnicity \* Exercised after Crosstabulation

|           |       |       | Exercis                         |       |                                 |       |                                 |  |
|-----------|-------|-------|---------------------------------|-------|---------------------------------|-------|---------------------------------|--|
|           |       |       | No                              | ,     | Yes                             | Total |                                 |  |
|           |       | Count | % within<br>Exercise<br>d after | Count | % within<br>Exercise<br>d after | Count | % within<br>Exercise<br>d after |  |
| Ethnicity | White | 73    | 43.7%                           | 51    | 38.3%                           | 124   | 41.3%                           |  |
|           | Black | 48    | 28.7%                           | 41    | 30.8%                           | 89    | 29.7%                           |  |
|           | Asian | 43    | 25.7%                           | 36    | 27.1%                           | 79    | 26.3%                           |  |
|           | Other | 3     | 1.8%                            | 5     | 3.8%                            | 8     | 2.7%                            |  |
| Total     |       | 167   | 100.0%                          | 133   | 100.0%                          | 300   | 100.0%                          |  |

### Select one:

- a. 43.7% vs 38.3%
- o b. 43.7 vs 1.8%
- o c. 41.3% vs 100%
- Od. 3.8% vs 2.7%

To study the association between 'ethnicity' and 'exercise after', the appropriate test is

Ethnicity \* Exercised after Crosstabulation

|           |       |       | Exercis                         | Total |                                 |       |                                 |
|-----------|-------|-------|---------------------------------|-------|---------------------------------|-------|---------------------------------|
|           |       | No    |                                 |       |                                 |       | Yes                             |
|           |       | Count | % within<br>Exercise<br>d after | Count | % within<br>Exercise<br>d after | Count | % within<br>Exercise<br>d after |
| Ethnicity | White | 73    | 43.7%                           | 51    | 38.3%                           | 124   | 41.3%                           |
|           | Black | 48    | 28.7%                           | 41    | 30.8%                           | 89    | 29.7%                           |
|           | Asian | 43    | 25.7%                           | 36    | 27.1%                           | 79    | 26.3%                           |
|           | Other | 3     | 1.8%                            | 5     | 3.8%                            | 8     | 2.7%                            |
| Total     |       | 167   | 100.0%                          | 133   | 100.0%                          | 300   | 100.0%                          |

|                                 | Value              | df   | Asymptotic<br>Significance<br>(2-sided) | Exact Sig.<br>(2-sided) | Exact Sig.<br>(1-sided) | Point<br>Probability |
|---------------------------------|--------------------|------|-----------------------------------------|-------------------------|-------------------------|----------------------|
| Pearson Chi-Square              | 1.743 <sup>a</sup> | 3    | .627                                    | .628                    |                         |                      |
| Likelihood Ratio                | 1.740              | 3    | .628                                    | .633                    |                         |                      |
| Fisher's Exact Test             | 1.763              |      |                                         | .621                    |                         |                      |
| Linear-by-Linear<br>Association | 1.074 <sup>c</sup> | 1    | .300                                    | .323                    | .166                    | .031                 |
| McNemar-Bowker Test             |                    | 0.50 | ,b                                      |                         |                         |                      |
| N of Valid Cases                | 300                |      |                                         |                         |                         |                      |

- Not value uses 300 a. 2 cells (25.0%) have expected count less than 5. The minimum expected count is 3.55. b. Computed only for a PxP table, where P must be greater than 1.

- a. Pearson's chi-square
- b. McNemar-Bowker test
- Oc. Linear by Linear Association

| histogram scatter plot bar chart pie chart box plot                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------|
| A scatter plot is the appropriate plot to visualise the relationship between two continuous variables.                      |
|                                                                                                                             |
|                                                                                                                             |
| The Pearson coefficient is the appropriate measure to estimate the linear correlation between any two continuous variables. |
| Select one:                                                                                                                 |
| ○ True                                                                                                                      |
| ⊚ False ✓                                                                                                                   |
|                                                                                                                             |
| A simple linear regression model is useful for:                                                                             |
| Select one:                                                                                                                 |
| $\odot$ a. Estimating the association between a continuous outcome and a continuous explanatory variable. $\checkmark$      |
| O b. Predicting a value of an explanatory variable, given a value of the dependent variable.                                |
| o. Predicting a value for the independent variable, given a value for the dependent variable.                               |
| O d. Predicting the outcome of any dependent variable with continuous predictor variables.                                  |
|                                                                                                                             |
| The coefficients of the least squares regression line are determined by minimising the sum of the squares of the:           |
|                                                                                                                             |
| Select one:                                                                                                                 |
| O a. y-coordinates                                                                                                          |
|                                                                                                                             |
| ○ c. Differences                                                                                                            |
| O d. x-coordinates                                                                                                          |
|                                                                                                                             |

The equation of the regression line is Y=85 + (-5)\*X. Predict y when x=5.

Answer: 60



### What is a confounder?

### Select one:

- a. A confounder is any other variable that does not have an effect on your dependent variable.
- b. A confounder is a third variable that can influence both the independent variable of interest (exposure) and the dependent variable (outcome).
- C. A confounder is an extra independent variable.
- d. A confounder is a third variable on the pathway from the independent variable interest (exposure) to the dependent variable (outcome).

# $R^2$ is a coefficient for what?

- $^{ ext{@}}$  a. Measuring how well the regression line/hyperplane approximates the real data points.  $^{ ext{ iny }}$
- b. Checking that the most appropriate set of independent variables has been chosen.
- oc. Model Selection.
- O d. Measuring the validity of the model in simple and multiple linear regression.

| ne model y = $3 + 5x - 2z + \epsilon$ indicates?                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------|
| elect one:                                                                                                                         |
| a. A change of 5 units in x leads to a 2 unit decrease in y.                                                                       |
| b. x and z are significant predictors of y.                                                                                        |
| c. x, y and z are significantly associated.                                                                                        |
| $\odot$ d. For every one unit increase in $x$ , the predicted value for $y$ increases by 5 when $z$ is held constant. $\checkmark$ |
|                                                                                                                                    |

Model A showed an Adjusted  $R^2$  of 0.58. Model B showed an Adjusted  $R^2$  of 0.78 Select one:

• a. Both models are unsuitable.

- O b. The models are similar.
- ◎ c. Model B is better. ✓
- od. Model A is better.

# A mediator Select one: a. has an effect on both the dependent Y variable & independent X1 variable. b. influences the independent variable. c. is caused by the dependent variable. d. explains a portion of the total association between Y and X1.

### Under a mediated model

### Select one:

- a. A simple linear regression model can denote path b.
- b. The total effect of the independent variable X1 on the dependent variable Y is denoted by path c'.
- C. The causal effect can be split into an indirect and direct effects.
- Od. The total effect of the independent variable X1 on the dependant variable Y is denoted by the path a.

# Complete Mediation is determined when Select one: a. When the path c' is significantly different from 0. b. When the path c' is not significantly different from 0. c. When the path c is significantly different from 0. d. When the path c is not significantly different from 0.

| Which Baron and Kenny steps are essential to establish mediation? |
|-------------------------------------------------------------------|
| Select one:                                                       |
| a. All steps.                                                     |
|                                                                   |
| O c. Steps 1 and 4.                                               |
| O d. Steps 1 and 3.                                               |
|                                                                   |



### Mediation has occurred when:

- 1. The strength of the relationship between the predictor and the outcome is reduced by exactly half when the mediator is included in the model.
- 2. The relationship between the predictor and the outcome remains the same when the mediator is included in the model.
- The relationship between the predictor and the outcome is completely wiped out when the mediator is included in the model.

# **W9**

Which of the following examples is a case of effect modification?

### Select one:

- 1. If a man and a woman have the same amount of water per week, the effect on their weight is different. 

  ✓
- 2. A psychological treatment reduces anxiety and this has en effect on social interaction.
- 3. A training on driving increases the chances of a person aged 60 or older to renew their license.

To test moderation:

### Select one:

- 1. The 4 steps of Kenny&Baron need to be checked.
- ② 2. A new variable needs to be considered. This new term is the cross-product between X1 and the modifier Z . It is denoted as X1 x Z.
- 3. A simple linear regression model is fitted.

Given the following model:  $Y=B_0+B_1X_1+B_2Z+B_3X_1 \times Z+E$ 

### Select one:

- $\bigcirc$  1. B<sub>1</sub> is interpreted as the effect of X<sub>1</sub> on Y.
- $\bigcirc$  3.  $B_3$  is interpreted as the difference of the effect of  $X_1$  by levels of Y.

Given the model: years\_married= 6 - 2.4 problems\_inlaw\_family -3.1 cheating\_with\_others -3.7 problems\_inlaw\_family \* cheating\_with\_others

- $\bigcirc$  1. The effect of problems\_inlaw\_family on years\_married is  $\beta_1 = -2.4$
- © 2. The effect of problems\_inlaw\_family on years\_married is =  $\beta_1$ + ( $\beta_3$  \* cheating\_with\_others) = -2.4 + (-3.7\*cheating\_with\_others)
- 3. The effect of problems\_inlaw\_family on years\_married is = 6 -2.4 -3.1+(-3.7\*cheating\_with\_others)

# W10

| Binary Logistic regression is used when you want to: |                                                                                                                                                   |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul><li>a.</li></ul>                                 | Predict a dichotomous variable from continuous or categorical variables. 🗸                                                                        |  |  |
| ○ b.                                                 | Predict a continuous variable from dichotomous variables.                                                                                         |  |  |
|                                                      | Predict any categorical variable from several other categorical variables  Predict a continuous variable from dichotomous or continuous variables |  |  |
|                                                      |                                                                                                                                                   |  |  |

| The odds ratio in Binary logistic regression is:                                                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--|--|
| a. The ratio of the probability of an event not happening to the probability of the event happening.                    |  |  |
| $^{\odot}$ b. The ratio of the probability of an event happening to the probability of the event not happening. $	imes$ |  |  |
| oc. The probability of an event occurring.                                                                              |  |  |
| Od. The ratio of the odds after a unit change in the predictor variable                                                 |  |  |

| Which                | of the following methods do we use to best fit the data in Logistic Regression? |
|----------------------|---------------------------------------------------------------------------------|
| <ul><li>a.</li></ul> | Chi squared Statistic                                                           |
| 0 b.                 | Pseudo R squared                                                                |
| ○ c.                 | Ordinary Least Squared Error                                                    |
| <ul><li>d.</li></ul> | Maximum Likelihood Estimation ✓                                                 |

In a study to determine whether anxiety is associated with subsequent development of depression, the estimated relative risk for those with prior anxiety compared to those who never had anxiety was found to be 1.9. From this we can conclude:

- a. The depression rate is higher among patients who have had prior anxiety.
- ob. Those with prior anxiety have a lower risk of developing depression than those who did not have prior anxiety.
- oc. The anxiety rate is higher among patients who have had depression.
- d. Those with prior anxiety have a higher risk of developing depression than those who did not have prior anxiety.

There were 5842 men and women surveyed regarding whether or not they experience dizziness and if they used anti-depression medication more than twice in the past two weeks. The data are presented below. Compare the effects of using anti-depression medication against not using anti-depression medication on dizziness using the odds ratio.

|              | Anti-depression medication used | Anti-depression medication not used | Total |
|--------------|---------------------------------|-------------------------------------|-------|
| Dizziness    | 443                             | 774                                 | 1217  |
| No Dizziness | 1530                            | 3095                                | 4625  |
| Total        | 1973                            | 3869                                | 5842  |

- a. Odds of having dizziness when anti depression medication is taken is about 0.89 times larger than the odds when anti depression
- b. Odds of having dizziness when anti depression medication is taken is about 1.16 times larger than the odds when anti depression medication is not taken
- Oc. Odds of having dizziness when anti depression medication is taken is about 1.12 times larger than the odds when anti depression medication is not taken
- d. Odds of having dizziness when anti depression medication is taken is about 0.86 times larger than the odds when anti depression medication is not taken