Montelanda I Daewon Ica

y= y

felondo Owisciedu dec 324 Owisciedu

Discussion 325

Problem 1. If 36 days are picked at rondom from a 2018 calendar, then at least 6 days must fall or the clay of the week. Prove by contradiction. Assumer 36 days are picked at random from a calendar Attis not true that 6 days fall on-sanic day of the week. Proof: (1) There are 7 days in one week. So there are 7 different cases when a day is (2) If the days picked are epread out evenly across the week, then the eighth days	17
If 36 days are picked at rondom from a 2018 colendar, then at least 6 days must fall or the clay of the week. Prove by contradiction. Ascume: 36 days are picked at random from a colendar Attis not true that 6 days fall on-same day of the week. Proof: (1) There are 7 days in one week. So there are 7 different cases when a day is (2) If the days picked are expressed out evenly across the week, then the eighth day is	
Proof: (1) There are 7 days in and week. So there are 7 different cases when a day is (2) If the days picked are spread out evenly across the week, then the eighth day is	oame
Proof: (1) There are 7 days in and week. So there are 7 different cases when a day is (2) If the days picked are spread out evenly across the week, then the eighth day is	the
(2) If the days picked are spread out evenly across the week, then the eighth day	\
tall on a day of the week that already has a pick. (3) Using this logic, strice 5 x 7 = 35, 35 days spread out everly will result in each day of the week howing 5 picks. (4) Now, once the 31th day is picked, all possible cases will result in at least day of the week howing 6 picks. (5) This is inconsistent with the second part of the assumption.	الس
i. by contradiction, if 36 days are picked at random from a 2018 calendar, then a least 6 days must fall on the same day of the week.	d
Prove: min(x,y) = x+y-1x-y1; x,y & P. Proof: Assume x and y are real numbers. Show min(x,y) = x+y-1x-y1 (onsider the following)	C18.00
Proof: Hissume x and g are real numbers. show military 2. consider the randowing	Lubes .
(ase, 1: X-y>0 This implies x>y	
$\min(x,y) = \frac{x+y-(x-y)}{2}$ $y = \frac{x+y-(x-y)}{2}$; definition of absolute value, $ x-y = x-y$ (since $ x-y > 2y$	0)

	Mo Felonda Chia	credu 325
-	Problem 3:	
-	Prom: Even $(n+3) \iff Odd (5n+8)$ Must show Even $(n+3) \implies Odd (5n+8)$	14c
	Odd (5n+8) -> Even(n	
100	Dan (sn- o) - crince	THE CONTRACT OF STREET
	Prove: Even(n+3) > Odol(5n+8)	Prove: Odd (5n+6) -> Even (n+3)
	n+3=2K, KEZ - by def. of Fice	Proof by Contrapositive: Odd(u+3) -> Bren(snt8)
	50, 5n+8 = 5n+15-7	N+3= 2K+1, KEZ-by def. of Odd
	=5(n+3)-7	50,5n+8=5n+15-7
9	=5(ak)-7	= 5(n+3) -7
	= 10k-7	=5(2k+1)-7
	= 10K-8+1	=108+5-7
	= 2(5k-4)+1	= 10k-2
	Since KEZ by closure 5K-4EZ	= 2(5k-1)
7	Su 2(5k-4)+1 is in 216+1 form	Since KEZ by closure 5K-1 = Z
1	which is def. of odd.	50 2(5)K-1) is in 21K form
	Therefore, Even(A+3) > Odd(5+4) holds	which is def. of Even
A separate A		Therefore, by contrapositive
1,700	BOOK ENGLISH WAS DESCRIBED AND THE SECOND	Odd(5ntk) > Fren(n+3) holds
1 mm	EURAPEAN ARMETIKAÇE'Ə	
1	. Gruce both Even(4+3) > Odd (5	n+6) and Odd(5n+8) > Even(u+3)

Problem 5:

Prove: (4n EN)(5 ("-1)

Pref by Induction: P(n): 5 6 -1 where 6-1 = 5a, at I

Par lace Plo): 5/6-1, 6-1=50

50 P(0) holds 1-1 =5q

0 = 50

U=a, OEZ

Inductive Hep: Prove: P(K) -> P(K+1)

Induction Hypothesis: P(x) holds, le, 5 6-1 where 6-1=5a a EZ

Want to Prove: P(K+2) holds, (c. 5/6"-1 where 6"-1=5b btZ

5/6"-1 = 1"-1=5b

= 6.6-1=55

= (6-1) (6+1)=55 Expanded out

= 5a (6+1)=56 Induction Hypothesis

= 35a = 56

Since a EZ by closure 35 a EZ and

BEZ by lower 55 EZ

Stner 6x+1-1=56 holds

Therefore 5/6 41 -1 holds

. . By induction 5/L"-1 for all n + N