A numeric string, s, is *beautiful* if it can be split into a sequence of two or more positive integers, $a[1], a[2], \ldots, a[n]$, satisfying the following conditions:

- 1. a[i] a[i-1] = 1 for any $1 < i \le n$ (i.e., each element in the sequence is 1 more than the previous element).
- 2. No a[i] contains a leading zero. For example, we can split s = 10203 into the sequence $\{1,02,03\}$, but it is not beautiful because 02 and 03 have leading zeroes.
- 3. The contents of the sequence cannot be rearranged. For example, we can split s = 312 into the sequence $\{3, 1, 2\}$, but it is not beautiful because it breaks our first constraint (i.e., $1 3 \neq 1$).

The diagram below depicts some beautiful strings:

You must perform \boldsymbol{q} queries where each query consists of some integer string \boldsymbol{s} . For each query, print whether or not the string is beautiful on a new line. If it's beautiful, print YES \times , where \boldsymbol{x} is the first number of the increasing sequence. If there are multiple such values of \boldsymbol{x} , choose the smallest. Otherwise, print NO.

Function Description

Complete the *separateNumbers* function in the editor below. It should print a string as described above.

separateNumbers has the following parameter:

• s: an integer value represented as a string

Input Format

The first line contains an integer q, the number of strings to evaluate. Each of the next q lines contains an integer string s to query.

Constraints

- $1 \le q \le 10$
- $1 \leq |s| \leq 32$
- $s[i] \in [0-9]$

Output Format

For each query, print its answer on a new line (i.e., either YES \times where \boldsymbol{x} is the smallest first number of the increasing sequence, or NO).

Sample Input 0

Sample Output 0

YES 1

YES 9

YES 99 NO NO NO NO

Explanation 0

The first three numbers are beautiful (see the diagram above). The remaining numbers are not beautiful:

- ullet For $oldsymbol{s}=101103$, all possible splits violate the first and/or second conditions.
- For s = 010203, it starts with a zero so all possible splits violate the second condition.
- For s=13, the only possible split is $\{1,3\}$, which violates the first condition.
- For s = 1, there are no possible splits because s only has one digit.

Sample Input 1

4 99910001001 7891011 9899100 999100010001

Sample Output 1

YES 999 YES 7 YES 98 NO