Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

09.04.2024

Лабораторная работа №5 Методы оптимизации Вариант 9

Раевский Григорий, группа Р3221

Содержание

Задания	3
Задание 1. Графический метод.	3
Дано	3
Решение	3
Задание 2. Симплекс метод.	4
Дано	4

Решение	4
Задание 3. Симплекс-метод двойственной задачи.	5
Дано	5
Решение	6
Выводы	7

Задания

Задание 1. Решить задачу линейного программирования графическим методом.

Задание 2. Даны матрицы A и векторы c и b. Решить каноническую задачу линейного программирования $f(x) = cx \longrightarrow max \text{ при ограничениях } Ax = b, x \geq 0 \text{ с помощью симплекс-метода.}$

Задание 3. Даны матрица A и векторы с и b. Решить каноническую задачу линейного программирования $f(x) = cx \longrightarrow max$ при ограничениях $Ax = b, x \ge 0$ с помощью симплекс-метода для двойственной задачи.

Задание 1. Графический метод.

Дано

$$\begin{cases}
-x_1 - 2x_2 \longrightarrow \min \\
-x_1 + x_2 \ge -1 \\
x_1 - 2x_2 \le 1 \\
x_1, x_2 \ge 0
\end{cases}$$

Решение

На плоскости (x_1, x_2) изображено допустимое множество X. Оно представляет собой неограниченное многоугольное множество. Так же изобразим одну из линий уровня $-x_1-2x_2=C$ целевой функции. Антиградиент $ec{e}$ изображает направление убывания функции. При параллельном переносе линии уровня $-x_1-2x_2=C$ вдоль направления \vec{e} она всегда пересекает множество X, а целевая функция неограниченно убывает \Rightarrow задача решения не имеет.

Задание 2. Симплекс метод.

Дано

$$c = (-8, -1, -1, 1, 0); b = (5,9,3), A = \begin{pmatrix} -2 & 0 & 3 & 1 & 1 \\ 3 & 1 & 1 & 6 & 2 \\ -1 & 0 & 2 & -1 & 2 \end{pmatrix}$$

Решение

$$f(x)=-8x_1-x_2-x_3+x_4. \text{ Система:} \begin{cases} -2x_1+3x_3+x_4+x_5=5\\ 3x_1+x_2+x_3+6x_4+2x_5=9\\ -x_1+2x_3-x_4+2x_5=3 \end{cases}$$
 Исходная симплекс-таблица:

Исходная симплекс-таблица:

-	x_4	x_5	b
x_1	5	-4	-1
x_2	-24	13	11
x_3	3	-3	1
f	-18	22	-4

В столбце в имеется отрицательный элемент в 1 строке. В 1 строке максимальный элемент по модулю - 5. Значит меняем x_4 и x_1 .

Новая симплекс-таблица:

-	x_1	x_5	b
x_4	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
x_2	$-\frac{24}{5}$	$-\frac{31}{5}$	31 5
x_3	<u>3</u> 5	$-\frac{3}{5}$	<u>8</u> 5
f	$-\frac{18}{5}$	38 5	38 5

Так как в строке f не все элементы отрицательные, то план не оптимален. Выбираем 2 столбец (он идентичен 3, но идет раньше). Для выбора элемента для замены $\{-1;1;\frac{8}{3}\}$. Выбираем минимальный положительный элемент и меняем x_5 и x_2 . Новая симплекс-таблица:

_	x_1	x_2	b
x_4	$-\frac{13}{31}$	$-\frac{4}{31}$	1
x_5	$-\frac{24}{31}$	$-\frac{5}{31}$	1
x_3	33 5	$\frac{3}{31}$	1
f	$-\frac{294}{31}$	$-\frac{38}{31}$	0

Все значения f отрицательны, то есть план оптимален.

План $(x_1,x_2,x_3,x_4,x_5)=(0,0,1,1,1)$ и максимальное значение f=0.

Задание 3. Симплекс-метод двойственной задачи.

Дано

$$c = (-1, 0, -\frac{1}{4}, 0, 0), b = (-1, -7, -39), A = \begin{pmatrix} 4 & 4 & -4 & 0 & 0 \\ -4 & 0 & -4 & 4 & 0 \\ -64 & 0 & 4 & 0 & 4 \end{pmatrix}$$

базиса:
$$\begin{cases} y_4 = -4y_1 + 4y_2 + 64y_3 - 1 \\ y_5 = -4y_1 \\ y_6 = 4y_1 + 4y_2 - 4y_3 - 0.25 \\ y_7 = -4y_2 \\ y_8 = -4y_3 \end{cases}$$

-	У1	у2	уз	b
У4	-4	4	64	-1
У5	-4	0	0	0
У6	4	4	-4	-0.25
У7	0	-4	0	0
у8	0	0	-4	0
g	-1	-7	-39	0

План не оптимален, так как в строке g имеются отрицательные элементы. Наименьший из них -39. Выбираем по формуле $-\frac{x_l^0}{ik}$ из $\{\frac{1}{64},\infty,-\frac{1}{16},\infty,0\}$. Выбираем наименьший положительный элемент $\frac{1}{64}$ и меняем y_3 с y_4 .

Новая симплекс-таблица:

-	y_1	y_2	y_4	b
y_3	$\frac{1}{16}$	$-\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{64}$
y_5	4	0	0	0
y_6	$-\frac{15}{4}$	$-\frac{17}{4}$	$-\frac{1}{16}$	$\frac{5}{16}$
y_7	0	4	0	0
y_8	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{16}$	$\frac{1}{16}$
g	$-\frac{55}{1}$	$-\frac{73}{16}$	$\frac{39}{64}$	$\frac{39}{64}$

План не оптимален, так как в строке g имеются отрицательные элементы. Наименьший из них $-\frac{73}{16}$. Выбираем по формуле $-\frac{x_l^0}{ik}$ из $\{\frac{1}{4}, \infty, \frac{5}{68}, \infty, \frac{1}{4}\}$. Выбираем наименьший положительный элемент $\frac{5}{68}$ и меняем y_2 с y_6 .

Новая симплекс-таблица:

-	y_1	y_6	y_4	b
y_3	$\frac{2}{17}$	$\frac{1}{68}$	$-\frac{1}{68}$	$\frac{3}{272}$
y_5	4	0	0	0
y_2	$-\frac{15}{17}$	$-\frac{4}{17}$	$-\frac{1}{68}$	$\frac{5}{68}$
y_7	$-\frac{60}{17}$	$-\frac{16}{17}$	$-\frac{1}{17}$	$\frac{5}{17}$
y_8	$\frac{8}{17}$	$\frac{1}{17}$	$-\frac{1}{17}$	$\frac{3}{68}$
g	$\frac{10}{17}$	$\frac{23}{34}$	$\frac{73}{68}$	$-\frac{257}{272}$

Все значения g положительны, то есть план оптимален.

План $(y_1,y_2,y_3,y_4,y_5,y_6,y_7,y_8)=(0,\frac{5}{68},\frac{3}{272},0,0,0,\frac{5}{17},\frac{3}{68})$ и минимальное значение $g=-\frac{257}{272}$.

Выводы

В процессе выполнения работы я познакомился с различными методами решения задач линейного программирования и узнал, как использовать симплекс-метод и симплекс-таблицу.