

Prof. Vandana M L

Department of Computer Science and Engineering

Multilist Representation

Prof. Vandana M L

Department of Computer Science and Engineering

Sparse Matrix

Matrix ??

Two Dimensional data 1 1 3 0 4

13510

90510

Sparse Matrix??

More zero elements than non zero elements

00300

00510

00000

Sparse Matrix Representation

- 2D Matrix results in lot of memory wastage as non zero elements are also stored
- Triple Notation
 Array representation
- Multilist Representation Linked representation hence size can be changed dynamically

Sparse Matrix Representation: Triple Notation

In triple notation sparse matrix is represented as an array of tuple values.

Each tuple consists of

<rowno columnno Value>

The first block in array block holds information regarding <total no of rows, total no of columns ,value>

Row No	Column	Value
	No	
5	4	6
0	0	2
1	0	4
1	3	3
3	0	8
3	3	1
4	2	6

Sparse Matrix Representation: Linked representation

Node Structure

Two types of nodes are used

Sparse Matrix Representation: Linked representation

PESUNIVERSITY

Node Structure Definition

```
#define MAX SIZE 50 /* size of
largest
matrix */
typedef enum {head, entry} tagfield;
typedef struct matrixNode *
matrixPointer; typedef struct entryNode {
int row;
int col;
int value; };
```

```
typedef struct matrixNode {
   matrixPointer down;
   matrixPointer right;
   tagfield tag;
   union
   matrixPointer
   next; entryNode
   entry;
   } u;
```

Sparse Matrix Representation: Linked representation

Example

Sparse Matrix Representation: Linked representation

Courtesy: "Fundamentals of Data Structures" By Ellis Horowitz and Sartaj Sahni

Sparse Matrix Representation Summary

Sparse matrix representation

- > Triple
- Linked Representation

Concepts can be applied to implement the following operations

- Create_SparseMatrix()
- Transpose_of_SparseMatrix()
- Add_SparseMatrices()
- Multiple_SparseMatrices()

Multiple-Choice-Questions (MCQ's)

1. Which of the following is a typical use-case of a multi-list data structure?

- a) Representing a polynomial equation with multiple variables.
- b) Maintaining a single linked list for multiple queues.
- c) Storing data where each node is linked to multiple independent lists, such as adjacency lists in graphs.
- d) Both (a) and (c).

Multiple-Choice-Questions (MCQ's)

- 1. Which of the following is a typical use-case of a multi-list data structure?
- a) Representing a polynomial equation with multiple variables.
- b) Maintaining a single linked list for multiple queues.
- c) Storing data where each node is linked to multiple independent lists, such as adjacency lists in graphs.
- d) Both (a) and (c).

Multiple-Choice-Questions (MCQ's)

2. Which of the following is a primary advantage of sparse matrix representation?

- a) It reduces the number of rows and columns.
- b) It stores only non-zero elements, reducing memory usage.
- c) It allows faster searching for zero elements.
- d) It increases redundancy.

Multiple-Choice-Questions (MCQ's)

2. Which of the following is a primary advantage of sparse matrix representation?

- a) It reduces the number of rows and columns.
- b) It stores only non-zero elements, reducing memory usage.
- c) It allows faster searching for zero elements.
- d) It increases redundancy.

Multiple-Choice-Questions (MCQ's)

3. For an m x n matrix with k non-zero elements, the 3-tuple representation requires how many rows in total?

- a) k rows.
- b) k + 1 rows.
- c) k + 2 rows.
- d) m + n + k rows.

Multiple-Choice-Questions (MCQ's)

3. For an m x n matrix with k non-zero elements, the 3-tuple representation requires how many rows in total?

- a) k rows.
- b) k + 1 rows.
- c) k + 2 rows.
- d) m + n + k rows.

Multiple-Choice-Questions (MCQ's)

4. To convert a regular matrix into a sparse matrix (3-tuple form), which of the following is correct?

- a) Traverse the matrix row-wise, and for each non-zero element, store (row, col, value) in the tuple.
- b) Traverse the matrix column-wise, ignoring zero elements.
- c) Only store diagonal elements.
- d) Store all elements in row-major order.

Multiple-Choice-Questions (MCQ's)

- 4. To convert a regular matrix into a sparse matrix (3-tuple form), which of the following is correct?
- a) Traverse the matrix row-wise, and for each non-zero element, store (row, col, value) in the tuple.
- b) Traverse the matrix column-wise, ignoring zero elements.
- c) Only store diagonal elements.
- d) Store all elements in row-major order.

Multiple-Choice-Questions (MCQ's)

5. In a linked list representation of a sparse matrix, each non-zero element is typically stored as:

- a) A node with (row, column, value) and pointers to the next non-zero element in the same row and column.
- b) A node with only the value and a single next pointer.
- c) A node with (row, column, value) but no pointers.
- d) An array of nodes representing each row.

Multiple-Choice-Questions (MCQ's)

- 5. In a linked list representation of a sparse matrix, each non-zero element is typically stored as:
- a) A node with (row, column, value) and pointers to the next non-zero element in the same row and column.
- b) A node with only the value and a single next pointer.
- c) A node with (row, column, value) but no pointers.
- d) An array of nodes representing each row.

Prof. Vandana M L

Department of Computer Science and Engineering

vandanamd@pes.edu