SO FAR...

$$\hat{y}_i = b_0 + b_1 x_i$$

SO FAR...

$$\hat{y}_i = b_0 + b_1 x_i$$

$$\uparrow$$
dependent single regressor

Education

Household Education income

Tenure

country you are living in Languages you speak

600d models require multiple regressions, in order to address the higher complexity of problems

POPULATION MODEL

$$\gamma = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

POPULATION MODEL

$$\gamma = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

$$\gamma = \beta_0 + \beta_1 x_1 + \epsilon$$

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 inferred intercept value

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$
 $\uparrow \qquad \uparrow \qquad \uparrow$

coefficient coefficient coefficient

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_k$

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

After 3 dimensions, there is no visual way to represent the data

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

IT'S ABOUT THE BEST FITTING

After 3 dimensions, there is no visual way to represent the data

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

IT'S ABOUT THE BEST FITTING MODEL

After 3 dimensions, there is no visual way to represent the data

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

min SSE

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

min SSE

SSE

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

min SSE

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\min \mathbf{SSE}$$