History [edit]

Main article: History of PDF

Adobe Systems made the PDF specification available free of charge in 1993. In the early years PDF was popular mainly in desktop publishing workflows, and competed with a variety of formats such as DjVu, Envoy, Common Ground Digital Paper, Farallon Replica and even Adobe's own PostScript format.

PDF was a proprietary format controlled by Adobe until it was released as an open standard on July 1, 2008, and published by the International Organization for Standardization as ISO 32000-1;2008, [6][7] at which time control of the specification passed to an ISO Committee of volunteer industry experts. In 2008, Adobe published a Public Patent License to ISO 32000-1 granting royalty-free rights for all patents owned by Adobe that are necessary to make, use, sell, and distribute PDF-compliant implementations. [8]

PDF 1.7, the sixth edition of the PDF specification that became ISO 32000-1, includes some proprietary technologies defined only by Adobe, such as Adobe XML Forms Architecture (XFA) and JavaScript extension for Acrobat, which are referenced by ISO 32000-1 as normative and indispensable for the full implementation of the ISO 32000-1 specification. [9] These proprietary technologies are not standardized and their specification is published only on Adobe's website. [10][11][12] Many of them are also not supported by popular third-party implementations of PDF.

In December 2020, the second edition of PDF 2.0, ISO 32000-2:2020, was published, including clarifications, corrections and critical updates to normative references.^[13] ISO 32000-2 does not include any proprietary technologies as normative references.^[14]

Technical details [edit]

A PDF file is often a combination of vector graphics, text, and bitmap graphics. The basic types of content in a PDF are

- . Typeset text stored as content streams (i.e., not encoded in plain text);
- Vector graphics for illustrations and designs that consist of shapes and lines;
- Raster graphics for photographs and other types of images
- · Multimedia objects in the document.

In later PDF revisions, a PDF document can also support links (inside document or web page), forms, JavaScript (initially available as a plugin for Acrobat 3.0), or any other types of embedded contents that can be handled using plug-ins.

PDF combines three technologies:

- . An equivalent subset of the PostScript page description programming language but in declarative form, for generating the layout and graphics.
- · A font-embedding/replacement system to allow fonts to travel with the documents.
- · A structured storage system to bundle these elements and any associated content into a single file, with data compression where appropriate.

PostScript language [edit]

PostScript is a page description language run in an interpreter to generate an image, a process requiring many resources. It can handle graphics and standard features

Text [edit]

Text in PDF is represented by text elements in page content streams. A text element specifies that characters should be drawn at certain positions. The characters are specified using the encoding of a selected font resource.

A font object in PDF is a description of a digital typeface. It may either describe the characteristics of a typeface, or it may include an embedded font file. The latter case is called an embedded font while the former is called an unembedded font. The font files that may be embedded are based on widely used standard digital font formats: Type 1 (and its compressed variant CFF), TrueType, and (beginning with PDF 1.6) OpenType. Additionally PDF supports the Type 3 variant in which the components of the font are described by PDF graphic operators.

Fourteen typefaces, known as the standard 14 fonts, have a special significance in PDF documents:

- . Times (v3) (in regular, italic, bold, and bold italic)
- . Courier (in regular, oblique, bold and bold oblique)
- · Helvetica (v3) (in regular, oblique, bold and bold oblique)
- Symbol
- · Zapf Dingbats

These fonts are sometimes called the *base fourteen fonts*. These fonts, or suitable substitute fonts with the same metrics, should be available in most PDF readers, but they are not *guaranteed* to be available in the reader, and may only display correctly if the system has them installed. Fonts may be substituted if they are not embedded in a PDF.

Within text strings, characters are shown using *character codes* (integers) that map to glyphs in the current font using an *encoding*. There are several predefined encodings, including *WinAnsi*, *MacRoman*, and many encodings for East Asian languages and a font can have its own built-in encoding. (Although the WinAnsi and MacRoman encodings are derived from the historical properties of the Windows and Macintosh operating systems, fonts using these encodings work equally well on any platform.) PDF can specify a predefined encoding to use, the font's built-in encoding or provide a lookup table of differences to a predefined or built-in encoding (not recommended with TrueType fonts).^[24] The encoding mechanisms in PDF were designed for Type 1 fonts, and the rules for applying them to TrueType fonts are complex.

For large fonts or fonts with non-standard glyphs, the special encodings *Identity-H* (for horizontal writing) and *Identity-V* (for vertical) are used. With such fonts, it is necessary to provide a *ToUnicode* table if semantic information about the characters is to be preserved.

Transparency [edit]

The original imaging model of PDF was, like PostScript's, opaque: each object drawn on the page completely replaced anything previously marked in the same location. In PDF 1.4 the imaging model was extended to allow transparency. When transparency is used, new objects interact with previously marked objects to produce blending effects. The addition of transparency to PDF was done by means of new extensions that were designed to be ignored in products written to PDF 1.3 and earlier specifications. As a result, files that use a small amount of transparency might view acceptably by older viewers, but files making extensive use of transparency could be viewed incorrectly by an older viewer.

The transnarency extensions are based on the key concents of transnarency arruins, blending modes, shape, and alpha. The model is closely aligned with the features