Physik für B-TI – 1. Semester

Dozentin: Dr. Barbara Sandow

Ort: BHT - Berliner Hochschule für Technik, C 215

Seminarischer Unterricht

2. Mechanik: ,Bewegung und Kraft'

Dynamik, ein Teilgebiet der Mechanik fragt nach der Ursache für Bewegungen.

Masse ist eine physikalische Grundgröße, die die Eigenschaft von Körpern beschreibt, sich gegen eine Bewegungsänderung zu wehren und ist direkt über eine Messmethode definiert(siehe dazu:

<u>https://de.wikihow.com/Masse-berechnen#Die-Masse-.C3.BCber-die-Dichte-und-das-Volumen-bestimmen</u>

Da jeder Körper mit einer Masse m auf eine Bewegungsänderung träge reagiert – spricht man auch von 'träger' Masse. Die Masse ist eine skalare Größe.

Kraft: ist eine Wirkung auf ein Objekt.

In der Mechanik ist die Kraft die Ursache für eine Beschleunigung oder Verformung eines Körpers.

Symbol: F; $[F] = N = kg*m*s^{-2}$

Allgemeine Einteilung in

Fundamentale Kräfte

Kernbindungskraft – wirkt	sehr stark, sehr kurze Reichweite
zwischen Nukleonen	
Coulombkraft – wirkt	mittelstark, lange Reichweite
zwischen elektrische Ladungen	
(magnetische Kraft) – wirkt	(relativistische Korrektur zur
zwischen bewegten Ladungen	Coulombkraft)
schwache Kraft – wirkt	sehr schwach, sehr kurze Reichweite
zwischen Nukleonen und	
Elektronen	
Gravitationskraft – wirkt	extrem schwach, sehr lange
zwischen Massen	Reichweite

Makroskopische Kräfte

Trägheitskraft	Gegenkraft der (trägen) Masse gegen
	Beschleunigung
Zwangskraft	Kräfte, die eine Bewegung
	einschränken
Reibungskraft	Widerstand der Materie gegen
	Bewegung
elastische Kräfte	Widerstand fester Materie gegen
	Verformung
Kohäsionskraft	Zusammenhalt der Materie
Adhäsionskraft	,Zusammenkleben' verschiedener
	Materialien

Beispiele für Kräfte:

<u>Kraft, mit der sich Massen anziehe</u>n - Gravitationskraft

$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$
 , mit G: Gravitationskonstante, r: Abstand der Massen m

Kraft zwischen elektrischen Ladungen - Coulomb Kraft

$$F_C = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2}, \qquad \text{$\pi: Zahl= 3,14$; ϵ_0: Dielektrizitätskonstante des}$$

Vakuums; Q: Ladung; r: Abstand der Ladungen

<u>Deformationskraft einer Feder</u> - Federkraft

$$F = -D \cdot (x - x_0)_{, \ \ \text{D: Federkonstante; x: Ausdehnung der Feder;}}$$
 - **Reibungskraft**

$$F = -\alpha \cdot v$$
, α : Reibungskoeffizient, v: Geschwindigkeit