Superfície com bordo

Seja σ uma superfície orientada cujo bordo é uma curva \mathcal{C} .

Há duas relações possíveis entre as orientações de σ e \mathcal{C} .

Orientação positiva de bordo

A pessoa está a andar no sentido positivo de \mathcal{C} relativo à orientação de σ se a superfície estiver à sua esquerda.

O sentido positivo de \mathcal{C} estabelece uma relação de mão direita: se os dedos da mão direita estiverem curvados na direção positiva de \mathcal{C} , então o polegar apontará na direção da orientação de σ .

Orientação negativa de bordo

A pessoa está a andar no sentido negativo de $\mathcal C$ relativo à orientação de σ se a superfície estiver à sua direita.

Teorema de Stokes

Teorema

Seja σ uma superfície orientada, de bordo $\mathcal C$ orientado positivamente de acordo com σ . Então, para todo campo vectorial \vec{F} de classe $\mathcal C^1$ definido num conjunto aberto que contenha σ ,

$$\iint\limits_{\sigma} \mathrm{rot} \vec{F} \cdot \vec{n} \, dS = \oint\limits_{\mathcal{C}} \vec{F} \cdot d\vec{r}.$$

Exemplo

Exemplo

Considere o campo vetorial $\vec{F}(x,y,z) = -yz\vec{i} + xz\vec{j} + xy\vec{k}$. Seja σ a parte da superfície de equação $z = \sqrt{4 - (x^2 + y^2)}$ que está dentro do cilindro $x^2 + y^2 = 1$ (isto é, os pontos de σ verificam $x^2 + y^2 \le 1$), orientada pela normal dirigida para cima \vec{n} . Usando o teorema de Stokes determine

$$\iint_{\sigma} \operatorname{rot} \vec{F} \cdot \vec{n} dS.$$

Resolução:

Teorema da divergência - Gauss

Teorema.

Seja G um sólido simples cuja fronteira σ é uma superfície fechada orientada com a normal exterior. Se

 $\vec{F}(x,y,z) = F_1(x,y,z)\vec{i} + F_2(x,y,z)\vec{j} + F_3(x,y,z)\vec{k}$ for um campo vetorial de classe C^1 num conjunto aberto contendo G e se \vec{n} for o vetor normal unitário exterior em cada ponto de σ , então

$$\iint_{\sigma} \vec{F} \cdot \vec{n} \, dS = \iiint_{G} \operatorname{div} \vec{F}(x, y, z) \, dx dy dz,$$

onde

$$\operatorname{div} \vec{F}(x, y, z) = \frac{\partial F_1}{\partial x}(x, y, z) + \frac{\partial F_2}{\partial y}(x, y, z) + \frac{\partial F_3}{\partial z}(x, y, z)$$

é a divergência de \vec{F} .

Exemplo

Exemplo

Considere o sólido em \mathbb{R}^3 definido por

$$E = \{(x, y, z) \in \mathbb{R}^3 \ : \ x^2 + y^2 - z \le 0 \land x^2 + y^2 + z^2 \le 2 \land x \ge 0 \land y \ge 0\}$$

e o campo vetorial

 $\vec{F}(x,y,z) = zx^2 \cos^2(z) \vec{i} + 2xzy \sin^2(z) \vec{j} + xy \cos(y) \vec{k}$. Designe por σ a fronteira de E orientada pela nornal exterior \vec{n} . Usando o teorema da divergência, determine

$$\iint_{-} \vec{F} \cdot \vec{n} dS$$

Exemplo - Resolução

Resolução: