PYTHON II: INTRODUCTION TO DATA ANALYSIS WITH PYTHON

Dartmouth College | Research Computing

OVERVIEW

- What is Python?
- Why Python for data analysis?
- Development Environments
- Hands-on: Basic Data Structures in Python, Looping
- Defining a function in Python
- Importing a dataset in to a Python data structure, using modules
- Python scripts and parameters
- Questions, Resources & Links

Have you attended a Research Computing / ITC training event or workshop in the past?

Yes, more than one A Yes, just one B Nope, this is my first C I'm not quite sure D

I'm not quite sure

Yes, more than one

Nope, this is my first

Yes, just one

RC.DARTMOUTH.EDU

Software

Hardware

Consulting

Training

WHAT IS PYTHON?

- Python is an open-source programming language
- It is relatively easy to learn
- It is a powerful tool with many modules (libraries) that can be imported in to extend its functionality
- Python can be used to automate tasks and process large amounts of data
- Python can be used on Mac's, PC's, Linux, as well as in a highperformance computing environment (Polaris, Andes, Discovery machines here at Dartmouth)

WHY PYTHON FOR DATA ANALYSIS?

- Python can be used to import datasets quickly
- Python's importable libraries make it an attractive language for data analysis
 - NumPy
 - SciPy
 - Statsmodels
 - Pandas
 - Matplotlib
 - Natural Language Toolkit (NLTK)
- Python can import and export common data formats such as CSV files

Reference: Python for Data Analytics, Wes McKinney, 2012, O'Reilly Publishing

DEVELOPMENT ENVIRONMENTS(I)

- Python can be run in a variety of environments with various tools
 - From the command line (most Mac's have Python installed by default)
 - From a windows terminal
 - From a Linux terminal
 - Using an Integrated Development Environment such as Eclipse or PyCharm IDE
 - Using a web-hosted "sandbox" environment

DEVELOPMENT ENVIRONMENTS (II)

Browser-based sandbox

DEVELOPMENT ENVIRONMENTS (III)

Mac Terminal

DEVELOPMENT ENVIRONMENTS (IV)

Entering Python code:
Command line or Optional IDE

PYTHON SOFTWARE FOUNDATION AND MATERIALS FOR THIS TUTORIAL

- Materials download: www.dartgo.org/pyii
- Material reference and basis, Python Software Foundation at Python.org: https://docs.python.org/3/tutorial/
- Note about Python 2.x and Python 3.x:
 - There are a variety of differences between the versions.
 - Some include:
 - Print "hi world" in 2.x is now print("hi world") in 3.x
 - Division with integers can now yield a floating point number
 - In 2.x, 11/2=5, whereas in 3.x, 11/2=5.5
 - More at https://wiki.python.org/moin/Python2orPython3

HANDS ON PRACTICE:

GETTING STARTED

- Preliminary Steps
 - Download data from Dartgo link (<u>www.dartgo.org/pyii</u>)
 - Get the dataset to either:
 - A familiar location on your desktop (e.g.g desktop/python-novice-inflammation/data)
 - Or uploaded in to the sandstorm sandbox web environment
- Opening Python
 - Open your browser to https://oasis.sandstorm.io/ (Create an account or sign in with existing account
 - Or, open a terminal on your Mac or PC

HANDS ON PRACTICE:

GETTING STARTED

- Open a web browser
- Navigate to oasis.sandstorm.io

HANDS ON: DIVING IN

Using a Python interpreter or IDE:

```
In [1]: textvar = "hello world!"
In [2]: print(textvar)
```

this a comment #Using a Python sandbox, interpreter or IDE:

```
textvar = 'hello world!'
print(textvar)
```

This creates our first variable. It is a string or text variable.

#Next, we'll define a variable that contains a numerical value:

```
numbervar = 5
print(numbervar)
```


BASIC DATA STRUCTURES IN PYTHON: LISTS

```
In [7]: listofsquares = [1,4,9,16,25]
  # Create a list
                In [12]: print(listofsquares)
# A list in Python a basic sequence type
squares = [1, 4, 9, 16, 25]
print(squares[2])
# Basic list functions: retrieve a value, append, insert
print(squares[1])
squares.append(35) # add a value to end of list
print(squares)
squares[5] = 36 \# \ldots and then fix our error, 6*6=36!
print(squares)
```

BASIC DATA STRUCTURES IN PYTHON: LISTS WITH CONDITIONALS

This is where the sandbox environment, or an IDE, becomes very useful # a basic conditional structure

squares[:] = [] # clear out the list

```
if 0 == 0:
    print("true")

# used with a list element
if squares[1] == (2*2):
    print('correct!')
else:
    print('wrong!')
In [11]: if listofsquares[1] == (2*2):
    print('correct!')
else:
    print('wrong!')
```

LOOPING OVER A BASIC DATA STRUCTURE

```
#Loop over a data structure
berries = ['raspberry','blueberry','strawberry']
#Loop over a data structure
berries = ['raspberry','blueberry','strawberry']
for i in berries:
    print("Today's pies: " + i)
# sort the structure and then loop over it
for i in sorted(berries):
     print("Today's pies(alphabetical): " + i)
```

BASIC DATA STRUCTURES: TUPLES AND SETS

A "Tuple" is a type of *sequence* that can contain a variety of data types

Create a tuple

```
mytuple = ('Bill', 'Jackson', 'id', 5)
Print(mytuple)
```

Use indexing to access a tuple element. Note: tuple elements start counting at 0, not 1

```
mytuple[3]
```

BASIC DATA STRUCTURES: DICTIONARIES

```
# Create a Dictionary or look-up table
# The leading elements are known as "keys" and the
 trailing elements are known as "values"
lookuptable = {'Dave': 4076, 'Jen': 4327, 'Joanne':
 4211}
lookuptable['Dave']
# show the keys
lookuptable.keys()
lookuptable.values()
# check to see if an element exists
'Jen' in lookuptable
# output: true
```

BASIC DATA STRUCTURES: DICTIONARIES

```
Create a Dictionary or look-up table

Use the key for error-checking to see if a value exists

leading elements are known as "keys" and the trailing # check to see if an element exists

if 'Jen' in lookuptable:
    print("Jen's extension is: " + str(lookuptable['Jen']))

else:
    print("No telephone number listed")
```

How is the speed of the workshop?

Too Fast

Too Slow

About the right pace

DATA STRUCTURES: LOOPING

```
# Loop over a dictionary data structure
# print the whole dictionary
for i,j in lookuptable.iteritems():
    print i,j
```

WHILE LOOPS AND LOOP COUNTERS

• Use a "while" loop to generate a Fibonacci series

```
a, b = 0, 1
i = 0
fibonacci = '1'
while i < 7:
    print(b)
    fibonacci = fibonacci + ', ' + str(b)
    a=b
    b=a+b
    i=i+1 # increment the loop counter
print(fibonacci)
```

IMPORTING AND USING MODULES

```
Modules greatly extend the power and functionality of Python,
  much like libraries in R, JavaScript and other languages
import sys
# check the version of Python that is installed
sys.version
'3.4.2 (default, Oct 8 2014, 10:45:20) \n[GCC 4.9.1]' in this
  sandbox!
# check the working directory
import os
os.getcwd()
'/var/home' - this is less applicable in the sandbox - on
  laptop or a linux server it is essential to know the working
  directory
```

IMPORTING AND USING MODULES

```
# multiply some consecutive numbers
1*2*3*4*5*6*7
5040

# save time and labor by using modules effectively
import math
math.factorial(7)
```

MODULES

```
# Modules
from math import pi
print(pi)
round(pi)
round(pi,5)
```

DEFINING A FUNCTION IN PYTHON

```
Functions save time by storing repeatable processes
Defining a function is easy:
  use the 'def' function in Python
def xsquared( x ):
     # find the square of x
     x2 = x * x;
     # the 'return' statement returns the function
value
      return x2
# call the function
y = xsquared(5)
  print str(y)
# Output: 25
```

WITH AND FOR COMMANDS

We'll use the WITH and FOR commands to help us read in and loop over the rows in a CSV file; here's some pseudo-code of what we'd like to do:

WITH open (file.extension) as fileobject:

{get data in file}

FOR rows in file:

{do something with data elements in the rows}

UPLOAD DATA

- To upload data in to the hosted python instance, click the "jupyter" title to go back to upload screen
- Use the "Files" tab to upload
- Upload > Browse
- The hosted environment supports the upload of reasonably-sized csv files

• Next, let's examine a dataset of patients (rows) and forty days of inflammation values (columns)

```
import os
os.listdir()

f = open('inflammation-01.csv')

filecontent = f.read()

print(filecontent)
```

```
# load with numpy
import numpy
numpy.loadtxt(fname='inflammation-01.csv',
delimiter=',') # load csv
# load in to a variable
data = numpy.loadtxt(fname='inflammation-
01.csv', delimiter=',') # load csv to variable
print(data)
print(type(data))
print(data.dtype)
print(data.shape)
```

View data elements with matrix addressing

```
print('first value in data:', data [0,0])
print(data[30,20])

maxval = numpy.max(data)
print('maximum inflammation: ', maxval)

stdval = numpy.std(data)
print( 'standard deviation: ', stdval)
```

 Next, let's examine a dataset of patients (rows) and forty days of inflammation values

import matplotlib.pyplot
%matplotlib inline
image = matplotlib.pyplot.imshow(data)

 Next, let's examine a dataset of patients (rows) and forty days of inflammation values

ave_inflammation = numpy.mean(data, axis=0)

ave_plot = matplotlib.pyplot.plot(ave_inflammation)

matplotlib.pyplot.show()

SCRIPTS AND PARAMETERS

Use an IDE or friendly text-editor

READING MULTIPLE FILES

- Programming for speed, reusability
- Data analysis over many files

```
strfiles = ['inflammation-01.csv','inflammation-02.csv']
for f in strfiles:
    print(f)
    #data = numpy.loadtxt(fname=f, delimiter=',')
    #print('mean ',f, numpy.mean(data, axis=0))
```

Got lots of files?
This is where RC systems like Polaris or Discovery can be very useful

WRITE TO CSV!


```
import csv
with open('names.csv', 'w', newline='') as csvfile:
    fieldnames = ['first_name', 'last_name']
    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
    writer.writeheader()
    writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})
    writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})
    writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})
```

CSV HEADER ROW AND FIRST DATA ROW

Read first rows:

```
with open('inflammation-01.csv') as f:
    reader2=csv.reader(f)
    row1 = next(reader2) # gets the first line
    row2 = next(reader2)
    print ("CSV column headers:" + str(row1))
    print ("CSV first line: " + str(row2))
```

SCRIPTS AND PARAMETERS

Use an IDE or friendly text-editor

```
#!/usr/bin/python
# program name: python_add_parameters.py
import sys
i=0
total = 0
while i < len(sys.argv):</pre>
    total = total + int(sys.argv[1])
    i = i + 1
print('sum: ' + str(total))
print('Number of arguments:',
len(sys.argv), 'arguments.')
print('Argument List:', str(sys.argv))
```

```
C:\Users\f002d69\Documents\Workshops\ProgrammingWithR20180123\paramet...
<u>File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?</u>
 🕽 🛃 🖫 📭 🗟 😘 🚵 | 🕹 😘 🖺 | D C | M 🛬 🔍 🤜 ⋤ ⋤ 🖺 🖺 🖺 💇
 links_pythonprogramming2.txt 🗵 📙 python_session2_code_export.py 🗵 님 parameters.py 🗵
       #!/usr/bin/python
       # program name: python add parameters.py
       import sys
       total =0
      pwhile i < len(sys.argv):
            total = total + int(sys.argv[1])
 10
            i = i + 1
       print('sum: ' + str(total))
 14
       print('Number of arguments:', len(sys.argv), 'arguments.')
       print('Argument List:', str(sys.argv))
 17
length: 381 Ln: 9 Col: 5 Sel: 0 | 0
                                           Windows (CR LF) UTF-8
```

CSV LIBRARY

• Csv library built-in to Python

```
import csv
with open('inflammation-01.csv') as f:
    reader2=csv.reader(f)
    row1=next(reader2)
    print(str(row1))
• Output: ['0', '0', '1', '3', '1', '2', '4', '7', '8', '3', '3', '3'....
```

IMPORTING A DATASET IN TO PYTHON: USING THE OS AND CSV MODULES

```
Find out where you are in the directory structure, import the operating system library (OS)
# Reference: <a href="https://docs.python.org/2/library/csv.html">https://docs.python.org/2/library/csv.html</a> section 13.1
import os
cwd = os.getcwd()
print "Working Directory is: " + cwd
Os.chdir('c:\\temp')
Os.getcwd()
Import the CSV file in to a reader function
# Download the CSV and copy it to the working directory
# Note: the CSV module's reader and writer objects read and write sequences
with open('HawaiiEmergencyShelters.csv') as csvfile:
     reader = csv.DictReader(csvfile)
     for row in reader:
          print(row['NAME'], row['ADDRESS'])
```

STATISTICS FROM CSV COLUMNS

Loop through column, find average

```
with open('HawaiiEmergencyShelters.csv') as csvfile:
  reader = csv.DictReader(csvfile)
  x_sum = 0
  x_length = 0
  for row in reader:
    try:
       x = row['NUMCOTS']
       x_sum += int(x)
       x_length += 1
     except ValueError:
       print("Error converting: {0:s}".format(x))
  x_average = x_sum / x_length
  print ('Average: ')
  print(x_average)
```

B1	.	\times \checkmark f_{x} NAME			
7	Α	В	С	D	
1	OBJECTID	NAME	ADDRESS	NUMCOTS	
2	1	Hilo High School	556 Waianuenue Avenue	80	
3	2	Holualoa Elementary School	76-5957 Mamalahoa High	80	
4	3	Honaunau Elementary School	83-5360 Mamalahoa High	80	
5	4	Hookena Elementary School	86-4355 Mamalahoa High	80	
6	5	Kau High and Pahala Element	96-3150 Pikake Street	80	
7	6	Kaumana Elementary School	1710 Kaumana Drive	80	
8	7	Kohala Elementary School	54-3609 Akoni Pule Highv	80	
9	8	Waiakeawaena Elementary So	2420 Kilauea Ave	100	
10	9	Hilo Intermediate School	587 Waianuenue Avenue	100	
11	10	Keaau Middle School	16-565 Keaau Pahoa Road	100	
12	11	Pahoa High and Intermediate	15-3038 Pahoa Village Ro	100	
13	12	Waiakea Elementary School	180 West Puainako Street	20	
14	13	Kealakehe Intermediate School	74-5062 Onipaa Street	20	
15	14	Kealakehe Elementary School	74-5118 Kealakaa Street	20	
16	15	Waimea Elementary and Inter	67-1225 Mamalahoa High	20	
17	16	Konawaena High School	81-1043 Konawaena Scho	20	
18	17	Kohala High School	54-3611 Akoni Pule Highv	20	
19	18	Honokaa High and Intermedia	45-527 Pakalana Street	60	
20	19	Ernest Bowen de Silva Elemer	278 Ainako Avenue	60	
21	20	Kahakai Elementary School	76-147 Royal Poinciana D	60	
22	21	Mountain View Elementary So	18-1235 Volcano Highway	60	
23	22	Waiakea High School	155 West Kawili Street	60	
24	23	Keonepoko Elementary School	15-890 Kahakai Boulevaro	50	
25	24	Kealakehe High School	74-5000 Puohulihuli Stree	50	
26	25	Keaau High School	16-725 Keaau-Pahoa Road	50	
27	26	Pahoa Elementary School	15-3030 Kuuhome Street	50	
28	27	Waimea District Court	67-5175 Kamamalu Street	50	
20					

NUMERICAL FUNCTIONS

```
# Float and Int
```

```
x = 3.453
```

$$xint = int(x)$$

Xround = round(x)

INSTALLING NUMPY FOR PYTHON 2.7

"Numpy" is a helper module in Python for numerical processing

To get the NUMPY installer

Mac -

https://sourceforge.net/projects/numpy/files/NumPy/1.8.0/numpy-1.8.0-py2.7-python.org-macosx10.6.dmg/download

Pc - https://sourceforge.net/projects/numpy/files/NumPy/1.8.0/

Click on the dmg file. You may need to change Mac security preference (Sys Pref > Security >) to allow the DMG installer to run

STATISTICAL OPERATIONS NUMPY FOR PYTHON 2.7

Reference: https://docs.scipy.org/doc/numpy/reference/routines.statistics.html

```
Numpy.median
     .average
     .std
     .var
     .corrcoef (Pearson product-moment correlation)
     .correlate
     .cov (estimate of covariance matrix)
     .histogram
     .amin
     . amax
     .percentile
```

SAVING PYTHON SCRIPTS

- Python files can be written in a simple text editor, or using an IDE editor.
- The file extension is .py

A MODULE FOR BASIC STATISTICAL ANALYSIS: USING THE NUMPY LIBRARY

```
# importing the library
# running basic functions

>>> import numpy
>>> numpy.mean(3,6,9)
6.0
>>> numpy.std([2,4,6,8])
2.2360679774997898
```

Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html and https://docs.scipy.org/doc/numpy/reference/routines.statistics.html

THE OS MODULE: SOME USEFUL OS COMMANDS

- More OS library tasks:
 - <u>os.path.realpath(path)</u> canonical path
 - os.path.dirname(path) directory
 - os.getcwd() get working directory (as string)
 - os.chdir(path) change the working directory

PYTHON ON DARTMOUTH RESEARCH COMPUTING MACHINES

- Research Computing shared Linux resources include Polaris and Andes, as well as the high-performance computing platform Discovery.
- These machines have several versions of Python installed, and commonlyused modules. Additional modules can be installed upon request
- Polaris currently has Python 2.6.6 as the default, and Numpy and Scipy libraries are installed.
- Andes currently has Python 2.7.5 as the default, with Numpy, Scipy and the Pandas modules installed. Pandas is another commonly used data analysis library.

PYTHON SOFTWARE FOUNDATION AND MATERIALS FOR THIS TUTORIAL

- Materials download: www.dartgo.org/workshopsg and download IntroDataAnalysisPython
- Material reference and basis, Python Software Foundation at Python.org: https://docs.python.org/2/tutorial/

RESOURCES & LINKS

- Research Computing
 - Research.computing@dartmouth.edu
 - http://rc.dartmouth.edu
- Python Foundation
- Online tutorials
- Web forums
 - Stack overflow:
 - http://stackoverflow.com/questions/tagged/python

LEARNING MORE...

- Python Tutorials
 - Python 2.7.13 https://docs.python.org/2/tutorial/
 - Python 3.6 https://docs.python.org/3.6/tutorial/
- Numpy, Scipy tutorials
 - https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
 - http://cs231n.github.io/python-numpy-tutorial/
- Python CSV library tutorial
 - https://docs.python.org/2/library/csv.html
- Lynda, Youtube Online tutorials
 - Lynda, log in with Dartmouth credentials: www.lynda.com/portal/dartmouth
 - Search for Python Programming, Numpy, Scipy

QUESTIONS?

Workshop feedback

When survey is active, respond at **PollEv.com/dartrc**

0 surveys done

O surveys underway.