Eletrônica Digital Notas de aula

Prof. Yago Pessanha Corrêa

Laboratório de Mecatrônica e Processamento de Sinais (MSP) Instituto Federal de Educação, Ciência e Tecnologia Fluminense (IFFluminense) Curso Técnico em Automação

yago.correa@iff.edu.br

20 de maio de 2021

Sumário

- Conceitos iniciais e sistemas de numeração
- Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- Circuitos aritméticos
- 8 Circuitos integrados

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- (5) Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- 7 Circuitos aritméticos
- Circuitos integrados

Analógico x digital

Analógico x digital

Analógico x digital

Vantagens e desvantagens

Vantagens

- Sistemas digitais são mais simples de serem projetados.
- Maior facilidade em manter precisão e exatidão.
- Operações podem ser programadas.
- Menos afetados por ruídos.
- CI's (Circuitos Integrados) podem ser fabricados com mais dispositivos.

Vantagens e desvantagens

Desvantagens

- O mundo é quase todo analógico.
- Processar sinais digitais demanda tempo.

E no mundo real?

Importante

Como converter?

As quatro bases numéricas

- Decimal
- Binário
- Octal
- Hexadecimal

Sistema decimal

- Caracteres 0 a 9.
- Notação posicional base 10.
- MSB x LSB.
- Exemplos de representação.

Sistema binário

- 2 dígitos.
- Notação posicional base 2.
- MSB x LSB.
- Quantidade de dígitos para representar como?.

Γipos de dados binários			
Tipo de dado	Tamanho (em bits)		
bit	1		
nibble	4		
byte	8		
word	16		
double word	32		

Aritmética binária

Aritmética binária

Subtração

$$\begin{array}{r}
1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-0 & 1 & 1 & 0 \\
\hline
0 & 1 & 1 & 1 & 0
\end{array}$$

Aritmética binária

Multiplicação

Conversão binário-decimal

Procedimento

 \bullet Se dá pela soma das multiplicações de cada termo por sua potência de base 2 equivalente.

Conversão decimal-binário

Procedimento

• Método das divisões sucessivas

Conversão fração decimal-binário

Procedimento

• Método das multiplicações sucessivas

Número para converter para a base 2: 3,75.

$$2 \times 3.75 = 7 + 0.5$$

$$2 \times 0.5 = \boxed{1} + 0$$

$$\longrightarrow 7$$

$$\longrightarrow 1$$

$$3,75 = [0,71]_2$$

Exercícios

- 01. Converter os seguintes números binários para decimais:
 - 11 111₂
 - 1001100₂
 - 1011,11₂
 - 1100,0011₂
- 02. Converter os seguintes números decimais para binários:
 - 215
 - **•** 102
 - 9,92
 - 7,47

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 36 - 1.6.1 até 1.6.5, 1.6.17 até 1.6.19

Sistema octal

- Caracteres 0 a 7.
- CLP gerenciamento de memórias.
- Novamente... notação posicional.
- Quantidade de dígitos para representar um número.

Sistema hexadecimal

- 16 caracteres... e agora, como representar?
- Novamente... notação posicional.
- Quantidade de dígitos para representar um número.
- Aplicações computacionais.

Conversão octal-decimal

Procedimento

 Se dá pela soma das multiplicações de cada termo por sua potência de base 8 equivalente.

$$\begin{array}{c}
458 \\
5 \cdot 8^0 = 5 \\
4 \cdot 8^1 = 32 \\
\hline
37
\end{array}$$

Campus

Macaé

Conversão decimal-octal

Procedimento

Método das divisões sucessivas

Conversão hexadecimal-decimal

Procedimento

 Se dá pela soma das multiplicações de cada termo por sua potência de base 16 equivalente.

$$\begin{array}{c} \text{A3}_{16} \\ \text{3} \cdot 16^0 = 3 \\ \text{A} \cdot 16^1 = \frac{160}{163} \end{array}$$

Conversão decimal-hexadecimal

Procedimento

• Método das divisões sucessivas

O que vimos até agora?

Até agora o "centro das atenções" era o sistema DECIMAL

- decimal-binário-decimal
- decimal-octal-decimal
- decimal-hexadecimal-decimal

E como converter entre as outras bases?

Conversão binário-octal

Procedimento

• Basta separar em grupos de 3 bits a partir da direita

Conversão binário-hexadecimal

Procedimento

• Basta separar em grupos de 4 bits a partir da direita

Conversão octal-binário

Procedimento • Observe cada dígito e transforme para binário Octal 4 5 3 6 Binário 100 101 011 110 Final 100 101 011 110

Conversão hexadecimal-binário

E as outras duas conversões?

Para completar só faltaram os métodos de conversão:

- Octal para hexadecimal
- Hexadecimal para octal

São métodos complicados, portanto, é melhor utilizar conversões intermediárias.

Exercícios

01. Complete a tabela de conversão abaixo:

Decimal	Binário	Octal	Hexadecimal
33			
	1110101		
		703	
			$\overline{1AF}$

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 37 - 1.6.6 até 1.6.16

Sumário

- Conceitos iniciais e sistemas de numeração
- Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- 5 Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- 7 Circuitos aritméticos
- Circuitos integrados

Álgebra booleana

Notação

- "1" representa a classe de todos os objetos (o universo).
- "0" representa a classe a que nenhum objeto pertença (a classe vazia).

Portas lógicas - Introdução

Portas lógicas - Introdução

O que são portas lógicas?

- Blocos básicos.
- No mínimo: 1 entrada e 1 saída.
- Não possuem memória.
- Representação gráfica.
- Tabela verdade.

Nas funções lógicas há 2 valores:

- 0 = Falso, sem tensão, baixo.
- 1 = Verdadeiro, com tensão, alto.

Portas lógicas - E (AND)

Notação

$$Y = A \cdot B$$

\overline{A}	B	\overline{Y}
0	0	0
0	1	0
1	0	0
1	1	1

Portas lógicas - E (AND) - Circuito

Portas lógicas - OU (OR)

Notação

$$Y = A + B$$

\overline{A}	B	\overline{Y}
0	0	0
0	1	1
1	0	1
1	1	1

Portas lógicas - OU (OR) - Circuito

Portas lógicas - NÃO (NOT)

Notação

$$Y=\overline{A}$$

\overline{A}	\overline{Y}
1	0
0	1

Portas lógicas - NÃO (NOT) - Circuito

Portas lógicas - NÃO E (NAND)

Notação

$$Y = \overline{A \cdot B}$$

\overline{A}	B	\overline{Y}
0	0	1
0	1	1
1	0	1
1	1	0

Campus

Macaé

Portas lógicas - NÃO E (NAND) - Circuito

Portas lógicas - NÃO OU (NOR)

Notação

$$Y = \overline{A \cdot B}$$

\overline{A}	В	\overline{Y}
0	0	1
0	1	0
1	0	0
1	1	0

Portas lógicas - NÃO OU (NOR) - Circuito

Portas lógicas - OU EXCLUSIVO (XOR)

Notação

$$Y = A \oplus B$$

\overline{A}	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Campus

Macaé

Portas lógicas - COINCIDÊNCIA (XNOR)

Notação

$$Y = \overline{A \oplus B} = A \odot B$$

\overline{A}	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Campus

Macaé

Portas universais

NAND e NOR são portas universais

É possível obter a partir delas as portas:

- NOT
- AND
- OR

APOSTILA!

Exercícios

- 01. Desenhe a forma de onda de saída para uma porta NOR.
 - Repita para a entrada C mantida sempre em nível baixo.
 - Repita para a entrada C mantida sempre em nível alto.
- 02. Repita o problema para uma porta NAND.

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 82 - 2.9.1, 2.9.14, 2.9.18 até 2.9.22

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- 7 Circuitos aritméticos
- Circuitos integrados

O que vimos até agora?

- Circuitos Lógicos.
- Expressões booleanas.
- Tabela verdade.

Como projetar um circuito digital?

Resolução de projetos lógicos

Exemplo com duas variáveis

Caso tenha carro na(s)...

- Rua B
- Rua A
- Ruas A e B

Resolução de projetos lógicos

Exemplo com três variáveis

Conexão de 3 aparelhos a um amplificador, obedecendo às prioridades:

- CD player
- Tape playback
- Radio receptor

Resolução de projetos lógicos

Exemplo com quatro variáveis

Conexão de 4 setores, via intercomunicadores, a central da Secretária, obedecendo às prioridades:

- Presidente
- Vice Presidente
- Engenharia
- Chefes de Seção

Obtendo a expressão a partir do circuito - Exemplo #01

Obtendo a expressão a partir do circuito - Exemplo #02

Obtendo a expressão a partir do circuito - Exemplo #03

Obtendo o circuito a partir da expressão

Hierarquia

- Parênteses.
- Bloco AND.
- Bloco OR.
- Negação.

Obtendo o circuito a partir da expressão

Exercícios

•
$$S = (A+B) \cdot C \cdot (B+D)$$

•
$$Z = (\overline{A \cdot B} \oplus A) + (\overline{A} + B)$$

•
$$Y = (A \cdot B) + \overline{C} \cdot D$$

•
$$X = (A + B + C) \cdot \overline{(\overline{A} + C) \cdot (A + \overline{B})}$$

Obtendo a tabela verdade a partir da expressão

Tabela verdade

A tabela verdade deve registrar todas as possibilidades de um dada expressão booleana, e pode ser obtida através dos seguintes passos:

- Monte o quadro de possibilidades.
- 2 n colunas para as variáveis.
- 3 Use colunas auxiliares para os membros.
- Monte uma coluna para o resultado final.

Obtendo a tabela verdade a partir da expressão

Exemplo #01

$$Z = (\overline{A \cdot B} \oplus A) + (\overline{A} + B)$$

\overline{A}	B	$A \cdot B$	$A \cdot B \oplus A$	\overline{A}	$\overline{A} + B$	S
0	0	1	1	1	1	1
0	1	1	1	1	1	1
1	0	1	0	0	0	0
_ 1	1	0	1	0	1	1

Obtendo a tabela verdade a partir da expressão

Exercícios

•
$$S = (A \cdot \overline{B} \cdot C) + (A \cdot \overline{D}) + (\overline{A} \cdot B \cdot D)$$

•
$$Z = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$$

$$\bullet \ Y = C \oplus (\overline{A.B})$$

•
$$X = A \cdot \overline{B} + \overline{A} \cdot B$$

Obtendo a expressão a partir da tabela verdade

Situação mais utilizada

Lembre-se do problema inicial

- Situação.
- Tabela verdade.
- Expressão booleana.
- Circuito lógico.

MINTERMOS: saídas iguais a 1 - SoP

MAXTERMOS: saídas iguais a 0 - PoS

Obtendo a expressão a partir da tabela verdade

MINTERMOS

• Saídas iguais a 1 - SoP

A	В	С	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
_1	1	1	1

Expressão final

$$S = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$$

Obtendo a expressão a partir da tabela verdade

MAXTERMOS

• Saídas iguais a **0** - PoS

A	В	С	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
_1	1	1	1

Expressão final

$$S = (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C)$$

Exercícios

01. A partir da tabela verdade abaixo encontre a expressão booleana por mintermos e maxtermos. Após isto, implemente ambos os circuitos digitais.

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 82 - 2.9.2 até 2.9.13, 2.9.15 até 2.9.17

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- 7 Circuitos aritméticos
- Circuitos integrados

Por que simplificar?

Vantagens

- Menor número de portas lógicas.
- Mais simples, menor.
- Mais barato.

Postulados

P1.	Identidade	A + 0 = A	$A \cdot 1 = A$
P2.	Elemento nulo	A + 1 = 1	$A \cdot 0 = 0$
P3.	Equivalência	A + A = A	$A \cdot A = A$
P4.	Complemento	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
P5.	Involução	$\overline{\overline{A}} = A$	$\overline{\overline{A}} = A$

Propriedades

PR1. Cumulativa
$$A + B = B + A$$

PR2. Associativa $(A + B) + C = A + (B + C)$
PR3. Distributiva $A + (B \cdot C) = (A + B) \cdot (A + C)$

PR1.	Cumulativa	$A \cdot B = B \cdot A$
PR2.	Associativa	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
PR3.	Distributiva	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$

Teoremas

T1. Absorção 1
$$A + (A \cdot B) = A$$

T2. Absorção 2
$$A + (\overline{A} \cdot B) = A + B$$

T3. De Morgan
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

T1. Absorção 1
$$A \cdot (A + B) = A$$

T2. Absorção 2
$$A \cdot (\overline{A} + B) = A \cdot B$$

T3. De Morgan
$$\overline{A.B} = \overline{A} + \overline{B}$$

Resolução

$$S = A \cdot B \cdot C + A \cdot \overline{C} + A \cdot \overline{B}$$

$$Distributiva$$

$$= A \cdot (B \cdot C + \overline{C} + \overline{B})$$

$$Comutativa$$

$$= A \cdot (B \cdot C + \overline{B} + \overline{C})$$

$$De \ Morgan$$

$$= A \cdot (B \cdot C + \overline{B} \cdot \overline{C})$$

$$Complemento$$

$$= A \cdot (1)$$

$$Identidade$$

$$= A$$

Resolução

TO FEDERAL

Resolução #01 - Parte 1

$$\begin{split} S = A \cdot B + A \cdot \overline{B} \cdot C \\ Identidade \\ = A \cdot B \cdot 1 + A \cdot \overline{B} \cdot C \\ Elemento \ Nulo \\ = A \cdot B \cdot (1 + C) + A \cdot \overline{B} \cdot C \\ Distributiva \\ = A \cdot B \cdot 1 + A \cdot B \cdot C + A \cdot \overline{B} \cdot C \\ Identidade \\ = A \cdot B + A \cdot B \cdot C + A \cdot \overline{B} \cdot C \end{split}$$

Resolução #01 - Parte 2

$$S = A \cdot B + A \cdot B \cdot C + A \cdot \overline{B} \cdot C$$

$$Distributiva$$

$$= A \cdot B + A \cdot C \cdot (B + \overline{B})$$

$$Complemento$$

$$= A \cdot B + A \cdot C \cdot (1)$$

$$Identidade$$

$$= A \cdot B + A \cdot C$$

TO FEDERAL

Resolução #02

 \bullet Alternativamente, podemos resolver a mesma questão em menos etapas usando a absorção.

$$S = A \cdot B + A \cdot \overline{B} \cdot C$$

$$Distributiva$$

$$= A \cdot (B + \overline{B} \cdot C)$$

$$Absorção \ 1$$

$$= A \cdot (B + C)$$

Exercícios

01. Simplifique as expressões booleanas a seguir:

$$\bullet$$
 $\overline{A + \overline{B} \cdot C}$

$$\bullet$$
 $\overline{(\overline{A}+C)\cdot(B+\overline{D})}$

•
$$(\overline{A} + B) \cdot (A + B + D) \cdot \overline{D}$$

$$\bullet \ A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C}$$

$$\bullet \ (\overline{A}+B)\cdot (A+B)$$

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 148 - 3.10.1 até 3.10.7

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- 7 Circuitos aritméticos
- Circuitos integrados

Mapa de Karnaugh

Mapeamento da tabela verdade

- Circuito mínimo.
- Fácil utilização.

K-map - Duas variáveis

K-map - Três variáveis

K-map - Quatro variáveis

Mapa de Karnaugh x Tabela verdade

Atenção à ORDEM

- Troca de 10 e 11.
- Em células adjacentes apenas uma variável pode mudar de valor.

Como montar?

Montagem do K-map

Podemos utilizar mintermos ou maxtermos.

Passo-a-passo:

- Preencher as células de acordo com a tabela verdade.
- 2 Agrupar os 1's (mintermos) ou 0's (maxtermos):
 - Unir na horizontal ou vertical.
 - NUNCA na diagonal.
 - ODE USAR os cantos.
 - ① Deve ser múltiplos da BASE 2.
 - MAIOR AGRUPAMENTO POSSÍVEL.

		AB				
		00	01	11	10	
C	0	0	0	1	1	
	1	1	1	0	0	

Como agrupar? - Linhas ou colunas

		AB				
		00	01	11	10	
CD	00	1	1	1	1	
	01	1	0	0	0	
	11	1	0	0	0	
	10	1	0	0	0	

Como agrupar? - Linhas ou colunas

Como agrupar? - Quadra

		AB				
		00	01	11	10	
CD	00	1	1	0	0	
	01	1	1	0	0	
	11	0	0	1	1	
	10	0	0	1	1	

Como agrupar?

		AB				
		00	01	11	10	
CD	00	1	0	0	1	
	01	0	0	0	0	
	11	0	0	0	0	
	10	1	0	0	1	

		AB				
		00	01	11	10	
CD	00	1	0	0	1	
	01	0	0	0	0	
	11	0	0	0	0	
	10	1	0	0	1	

		AB				
		00	01	11	10	
CD	00	0	1	1	0	
	01	1	0	0	1	
	11	1	0	0	1	
	10	0	1	1	0	

Como agrupar? - Oitava

		AB				
		00	01	11	10	
CD	00	0	1	1	0	
	01	1	1	1	1	
	11	1	1	1	1	
	10	0	1	1	0	

Como agrupar? - Oitava

Diagramas com condições irrelevantes

		AB				
		00	01	11	10	
CD	00	X	0	X	1	
	01	1	0	1	1	
	11	0	X	X	0	
	10	0	1	0	X	

Diagramas com condições irrelevantes

• A variável que muda de estado é retirada.

$$S = A \cdot \overline{B} + A \cdot B + \overline{A} \cdot B$$

1

 $\begin{array}{c|cccc}
0 & 0 & 1 \\
B & 1 & 1 & 1
\end{array}$

0

Expressão simplificada

$$S = A + B$$

JTO FEDERAL

$$S = A \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot B \cdot \overline{C} \cdot D + A \cdot B \cdot C \cdot D + A \cdot B \cdot C \cdot \overline{D}$$

		AB				
		00	01	11	10	
CD	00	0	0	0	0	
	01	0	0	0	0	
	11	1	1	1	1	
	10	0	0	0	0	

$$S = A \cdot B$$

$$S = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$$

$$S = \overline{B} \cdot \overline{D}$$

$$S = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$$

$$S = \overline{B} \cdot \overline{D}$$

A	В	С	D	S
0	0	0	0	X
0	0	0	1	0
0	0	1	0	1
0	0	1	1	X
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	X
1	0	1	1	0
1	1	0	0	0
1	1	0	1	X
1	1	1	0	0
1	1	1	1	X

$$S = \overline{A} \cdot C + A \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{D}$$

$$S = \overline{C} \cdot D + \overline{A} \cdot D + A \cdot B \cdot \overline{C}$$

Exercícios

01. Simplifique as expressões booleanas a seguir pelo Mapa de Karnaugh:

$$\bullet \ S = \overline{C} \cdot (\overline{A} \cdot \overline{B} \cdot \overline{D} + D) + A \cdot \overline{B} \cdot C + \overline{D}$$

$$\bullet \ S = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

$$\bullet \ S = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot C$$

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 149 - **3.10.9 até 3.10.15**

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- Simplificação de expressões booleanas por álgebra
- Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- Circuitos aritméticos
- Circuitos integrados

Relembrando...

Deseja-se instalar, no cruzamento, um sistema automático de semáforos, com as seguintes características:

- Quando houver carros transitando somente na rua B, o semáforo 2 deverá permanecer verde para os carros trafegarem livremente.
- \bullet Igualmente, quando houver carros transitando somente na rua A, o semáforo 1 deverá permanecer verde.
- Quando houver carros transitando em ambas as ruas, o semáforo da rua A deve ficar verde, pois é a rua preferencial.

A	В	G1	R1	G2	R2
0	0				
0	1				
1	0				
1	1				

A	В	G1	R1	G2	R2
0	0				
0	1				
1	0				
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1				
1	0				
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1				
1	0				
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0				
_1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0				
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0	1	0	0	1
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0	1	0	0	1
1	1				

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

A	В	G1	R1	G2	R2
0	0	X	X	X	X
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

$$G1 = A$$

$$R1 = \overline{A}$$

$$G2 = \overline{A}$$

$$R2 = A$$

Deseja-se instalar um amplificador para ligar três aparelhos, com as seguintes prioridades:

- Prioridade 1: CD player
- Prioridade 2: Tape playback
- Prioridade 3: Rádio receptor

A	В	С	SA	SB	SC
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			
			•		

A	В	С	SA	SB	SC
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	$_{\mathrm{SB}}$	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Α	В	С	SA	$_{\mathrm{SB}}$	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1			
1	1	0			
1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1			
1	1	0			
_1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0			
_1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0			
_1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
_1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
_1	1	1			

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
_1	1	1	1	0	0

A	В	С	SA	SB	SC
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
_1	1	1	1	0	0

		AB					
		00	01	11	10		
C	0	X	0	1	1		
C	1	0	0	1	1		

$$SA = A$$

		AB									
		00	01	11	10						
C	0	X	1	0	0						
C	1	0	1	0	0						

$$SB = \overline{A} \cdot B$$

		AB									
		00	01	11	10						
C	0	X	0	0	0						
C	1	1	0	0	0						

$$SC = \overline{A} \cdot \overline{B}$$

Exercícios

- 01. Quatro juízes participam de um programa de calouros e cada um tem a sua disposição, uma chave liga/desliga correspondendo ao julgamento do candidato: aprovado ou reprovado. Na saída existem três lâmpadas, correspondentes a três resultados: aprovado (pela maioria), reprovado (pela maioria) ou empate.
- 02. Um motor deve funcionar quando uma ou mais das seguintes condições forem satisfeitas: (1) Regime de carga ≥ 80% e Temperatura > 25 °C; (2) Regime de carga < 80%, Umidade relativa > 60% e Temperatura > 25 °C; (3) Regime de carga < 80%, no período de carga entre as 15 h e 16 h; (4) Temperatura > 25 °C, fora do período de carga entre as 15 h e 16 h.
- 03. Projete um circuito digital com 4 variáveis de entrada, que indique quando há um número primo presente na entrada.

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 174 - **4.3.1 até 4.3.8**

Códigos binários - BCD 8421

BCD 8241

- BCD: binary coded decimal.
- Técnica mais simples e normal de ser utilizada natural.
- Cada dígito binário é representado pelo seu correspondente binário de 4 dígitos.
- 8421 indica os "pesos" de cada algarismo no sistema binário.
- A grande vantagem do sistema BCD 8421 é a facilidade entre homem-máquina.
- O código BCD, no entanto, é menos eficiente que o código binário puro, pois são usados mais bits para se representar um determinado valor.

Códigos binários - BCD 8421

Decimal	BCD 8421							
Decimal	Α	В	С	D				
0	0	0	0	0				
1	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1				
8	1	0	0	0				
9	1	0	0	1				

- 10=00010000
- 11=00010001
- o ...
- **1**5=00010101

Códigos binários - BCD 7421

Decimal]	BCD	7421	L
Decimai	A	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	1	0	0	0
8	1	0	0	1
9	1	0	1	0

Códigos binários - Excesso 3

- Transformação do número decimal no binário correspondente somando-se 3 unidades.
- É obtido adiantando o código BCD três vezes.
- Neste modelo há apenas de zero a nove decimal.
- Apresenta algumas vantagens nas operações matemáticas utilizado em circuitos aritméticos.

Códigos binários - Excesso 3

Decimal		Exce	sso 3	}
Decimal	A	В	С	D
0	0	0	1	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

Códigos binários - Gray

- De um número para o outro apenas um bit varia.
- A cada linha o número binário é variado em um algarismo de forma que não se repita nenhum anterior.
- Utilizado no K-map.
- Sua estrutura facilita a detecção de erros.

Códigos binários - Gray

Decimal		Gı	ay	
Decimal	A	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
8	1	1	0	0
9	1	1	0	1
10	1	1	1	1
11	1	1	1	0
12	1	0	1	0
13	1	0	1	1
14	1	0	0	1
15	1	0	0	0

Códigos binários - Johnson

- Possui cinco dígitos binários.
- Cada código possui apenas um bit diferente do seu sucessor.
- Sua vantagem é a facilidade de gerar palavras código.

Códigos binários - Johnson

Decimal		Jo	ohnso	on	
Decillar	A	В	С	D	E
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	1
3	0	0	1	1	1
4	0	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0
7	1	1	1	0	0
8	1	1	0	0	0
9	1	0	0	0	0

Códigos binários - 9876543210

- Decodificação de "uma saída de 10".
- Um único bit será 1, enquanto os demais serão 0
- O valor 1 assume a posição correspondente ao número decimal

Códigos binários - 9876543210

Decimal				98	8765	4321	10			
Decimal	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	1	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0
6	0	0	0	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0	0	0	0

Codificadores e decodificadores

- Codificador é um circuito combinacional que torna possível a passagem de um código conhecido para um desconhecido.
- Por outro lado, decodificador faz a operação inversa: passa um código desconhecido para um conhecido.

Codificadores e decodificadores

Atenção:

- Depende do referencial.
- Para o usuário:
 - Sistema de entrada: codificador.
 - Sistema de saída: decodificador.
- Para a máquina:
 - Sistema de entrada: decodificador.
 - Sistema de saída: codificador.

Codificadores e decodificadores - Projeto #01 - calculadora

• Primeira parte: codificador decimal-binário

Codificador decimal-binário

- Entrada: chaves de 0 a 9
- Saída: 4 bits em BCD 8421
- Chave fechada equivale a nível 0 problema TTL.

Codificadores e decodificadores - Projeto #01 - calculadora

Decimal]	BCD	842	1
Decillar	A	В	С	D
Ch0	0	0	0	0
Ch1	0	0	0	1
Ch2	0	0	1	0
Ch3	0	0	1	1
Ch4	0	1	0	0
Ch5	0	1	0	1
Ch6	0	1	1	0
$\mathrm{Ch7}$	0	1	1	1
Ch8	1	0	0	0
Ch9	1	0	0	1

Codificadores e decodificadores - Projeto #01 - calculadora

Lembre-se:

- Chave fechada equivale a nível 0 problema TTL.
- Utilização de uma porta NAND em cada saída
- Fornece nível 1 quando qualquer entrada for 0 (chave fechada).

Codificadores e decodificadores - Projeto #01 - calculadora

• Segunda parte: decodificador binário-decimal

Decodificador decimal-binário

• Entrada: 4 bits em BCD 8421

• Saída: Código 9876543210

Codificadores e decodificadores - Projeto #01 - calculadora

	BCD	842	1		Código 9876543210								
\overline{A}	B	C	D	S_9	S_8	S_7	S_6	S_5	S_4	S_3	S_2	S_1	S_0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0

Codificadores e decodificadores - Projeto #01 - calculadora

Agora...

- Monta-se o Mapa de Karnaugh para cada uma das saídas da tabela.
- Codigo BCD 8421 só vai até o 9 demais casos: condição irrelevante

Codificadores e decodificadores - Projeto #01 - calculadora

		CD								
		00	01	11	10					
	00	0	0	0	0					
AB	01	0	0	0	0					
AD	11	X	X	X	X					
	10	0	1	X	X					

$$S_9 = A \cdot D$$

		CD			
		00	01	11	10
	00	0	0	0	0
A D	01	0	0	0	0
AB	11	X	X	X	X
	10	1	0	X	X

$$S_8 = A \cdot \overline{D}$$

		CD				
		00	01	11	10	
	00	0	0	0	0	
AB	01	0	0	1	0	
AB	11	X	X	X	X	
	10	0	0	X	X	

$$S_7 = B \cdot C \cdot D$$

		CD				
		00	01	11	10	
	00	0	0	0	0	
4 D	01	0	0	0	1	
AB	11	X	X	X	X	
	10	0	0	X	X	

$$S_6 = B \cdot C \cdot \overline{D}$$

		CD				
		00	01	11	10	
	00	0	0	0	0	
AB	01	0	1	0	0	
AB	11	X	X	X	X	
	10	0	0	X	X	

$$S_5 = B \cdot \overline{C} \cdot D$$

			CD				
		00	01	11	10		
	00	0	0	0	0		
AB	01	1	0	0	0		
AB	11	X	X	X	X		
	10	0	0	X	X		

$$S_4 = B \cdot \overline{C} \cdot \overline{D}$$

		CD				
		00	01	11	10	
	00	0	0	0 1		
AB	01	0	0	0	0	
AD	11	X	X	X	X	
	10	0	0	X	X	

$$S_3 = \overline{B} \cdot C \cdot D$$

		CD			
		00	01	11	10
	00	0	0	0	1
A D	01	0	0	0	0
AB	11	X	X	X	X
	10	0	0	X	X

$$S_2 = \overline{B} \cdot C \cdot \overline{D}$$

		CD				
		00	01	11	10	
	00	0	1	0	0	
AB	01	0	0	0	0	
AD	11	X	X	X	X	
	10	0	0	X	X	

$$S_1 = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D$$

		CD				
		00 01 11 10				
	00	1	0	0	0	
AB	01	0	0	0	0	
AD	11	X	X	X	X	
	10	0	0	X	X	

Expressão simplificada

$$S_0 = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Campus

Macaé

Codificadores e decodificadores - Projeto#02 - conversor BCD 8421 para Excesso 3

Situação

- 2 códigos.
- Construir a tabela verdade que os relaciona.
- Simplificar via K-Map.

Conversor BCD 8421 para Excesso 3

- Entrada: código BCD 8421.
- Saída: código Excesso 3.

Codificadores e decodificadores - Projeto#02- conversor BCD 8421 para Excesso 3

	BCD 8421				Exce	sso 3	
\overline{A}	В	C	D	S_3	S_2	S_1	S_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Codificadores e decodificadores - Projeto#02- conversor BCD 8421 para Excesso 3

$$S_3 = B \cdot D + B \cdot C + A$$

Codificadores e decodificadores - Projeto#02 - conversor BCD 8421 para Excesso 3

$$S_2 = B \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot C + \overline{B} \cdot D$$

Codificadores e decodificadores - Projeto#02- conversor BCD 8421 para Excesso 3

$$S_1 = \overline{C} \cdot \overline{D} + C \cdot D$$

Codificadores e decodificadores - Projeto#02 - conversor BCD 8421 para Excesso 3

$$S_0 = \overline{D}$$

Codificadores e decodificadores - Projeto#02 - conversor BCD 8421 para Excesso 3

Exercícios

01. Um Display de 7 segmentos pode ser visto a seguir.

Este dispositivo possibilita a escrita de números decimais de 0 a 9, além de outros caracteres. Cada segmento possui um LED.

Projete um decodificador BCD 8421 para um display 7 segmentos. Como entrada considere os dígitos 0 a 9; e como saída os segmentos "a" até "g". *Dica:* Verifique em cada caractere os segmentos que devem ser acesos e atribua o nível 1 em função da respectiva entrada no código binário.

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 229 - **5.6.1 até 5.6.9**

Sumário

- Conceitos iniciais e sistemas de numeração
- 2 Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- ① Simplificação de expressões booleanas por álgebra
- 5 Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- Circuitos aritméticos
- Circuitos integrados

Circuitos aritméticos

- Circuitos que realizam operações aritméticas com números binários.
- \bullet São utilizados, principalmente, para construir a \mathbf{ULA} Unidade Lógico Aritmética.
- Geralmente realizam operações de soma e subtração.

Meio Somador

• Possibilita a soma de 2 números binários de 1 bit.

• Entradas: 2 bits.

• Saídas: Soma + Carry.

\overline{A}	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$

$$C = A \cdot B$$

Somador Completo

 \bullet Possibilita a soma de 2 números binários de 1 bit + o carry anterior.

• Entradas: 2 bits + Carry in.

• Saídas: Soma + Carry out.

\overline{A}	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = A \cdot B + B \cdot C_{in} + A \cdot C_{in}$$

${\it Circuitos\ somadores\ -\ Somador\ completo}$

Circuitos somadores - Somador de n bits

Ex.: Somador de 4 bits

- Utiliza-se 4 somadores completos, um para cada bit.
- Para o LSB pode ser utilizado um meio somador Por quê?
- Conecta-se cada C_{out} no C_{in} do próximo bit.

Circuitos somadores - Somador completo a partir de meio somadores

• Meio somador:

$$S = A \oplus B$$
$$C = A \cdot B$$

• Somador completo:

 $S = A \oplus B \oplus C_{in}$

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$
$$= C_{in}(A \oplus B) + A \cdot B$$

Circuitos Somadores - Somador completo a partir de meio somadores

Circuitos subtratores - Meio subtrator

Meio Subtrator

• Possibilita a subtração de 2 números binários de 1 bit.

• Entradas: 2 bits.

• Saídas: Diferença + Borrow.

\overline{A}	В	D	B_o
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Circuitos subtratores - Meio subtrator

Circuitos subtratores - Meio subtrator

Expressão simplificada

$$D = A \oplus B$$

Circuitos subtratores - Meio subtrator

Expressão simplificada

$$B_o = \overline{A} \cdot B$$

Circuitos subtratores - Meio subtrator

Subtrator Completo

ullet Possibilita a soma de 2 números binários de 1 bit + o borrow anterior.

• Entradas: 2 bits + Borrow anterior.

• Saídas: Diferença + Borrow.

A	B	B_{in}	D	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Campus

Macaé

Expressão simplificada

$$D = A \oplus B \oplus B_{in}$$

Expressão simplificada

$$B_{out} = \overline{A} \cdot B + \overline{A} \cdot B_{in} + B \cdot B_{in}$$

Circuitos subtratores - Subtrator de n bits

Ex.: Subtrator de 4 bits

- Utiliza-se 4 subtratores completos, um para cada bit.
- \bullet Conecta-se cada B_{out} no B_{in} do próximo bit.

Circuitos subtratores - Subtrator completo a partir de meio subtratores

• Meio subtrator:

$$D = A \oplus B_{in}$$
$$B_{out} = \overline{A} \cdot B$$

• Subtrator completo:

$$D = A \oplus B \oplus B_{in}$$

$$B_{out} = \overline{A} \cdot B \cdot \overline{B_{in}} + \overline{A} \cdot \overline{B} \cdot B_{in} + \overline{A} \cdot B \cdot B_{in} + A \cdot B \cdot B_{in}$$

$$= B_{in} \overline{(A \oplus B)} + \overline{A} \cdot B$$

Circuitos subtratores - Subtrator completo a partir de meio subtratores

Exercícios

- 01. Projete um circuito combinacional que realize as duas operações somador e subtrator. Para tal, acrescente uma variável de entrada ${\bf M}$ que faça este controle. Assuma que para M=0, o circuito realize uma soma completa.
- 02. Desenhe um sistema somador para dois números de dois bits apenas com blocos de somadores completos.

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 229 - **5.6.10 até 5.6.17**

Sumário

- Conceitos iniciais e sistemas de numeração
- Álgebra booleana e funções (portas lógicas)
- 3 Circuitos digitais, expressões booleanas e tabela verdade
- 4 Simplificação de expressões booleanas por álgebra
- 5 Simplificação de expressões booleanas por mapa de Karnaugh
- 6 Circuitos combinacionais
- Circuitos aritméticos
- 8 Circuitos integrados

Introdução

Definição

Os circuitos integrados são circuitos eletrônicos funcionais, constituídos por um conjunto de transistores, diodos, resistências e condensadores, fabricados num mesmo processo, sobre uma substância comum semicondutora de silício que se designa vulgarmente por chip.

Vantagens e limitações

Vantagens

- Redução de custos, peso e tamanho.
- Maior velocidade de trabalho.
- Menor consumo de energia.
- Redução dos erros de montagem.
- Melhoria das características técnicas do circuito.
- Simplifica ao máximo a produção industrial.

Vantagens e limitações

Limitações

- Limitação nos valores das resistências e condensadores.
- Reduzida potência de dissipação.
- Limitações nas tensões de funcionamento.
- Impossibilidade de integrar num chip bobinas ou indutâncias.

Escala de integração e nanotecnologia

As portas não são vendidas individualmente, mas agrupadas em um circuito integrado (chip). Variam de acordo com seu tamanho:

- SSI (Small Scale Integration) 1 a 12 portas.
- MSI (Medium Scale Integration) 13 a 99 portas.
- LSI (Large Scale Integration) 100 a 9999 portas.
- VLSI (Very Large Scale Integration) 10 000 a 99 999 portas.
- ULSI (Ultra Large Scale Integration) Acima de 100 000 portas.

Os principais componentes de um CI

Capacitor

Peças com dois terminais (feitas com condutores e isoladores) que armazenam energia

Transistor

Dispositivos semicondutor com três terminais capazes de alternar e amplificar um sinal eletrônico

Resistor

Componentes de dois terminais que adicionam resistência à corrente, limitando o fuxo da corrente

Famílias: TTL x CMOS

Introdução

- Tipo de estrutura interna.
- Cada família utiliza determinados componentes em seus blocos.
- Diferentes características.

Conceitos - Níveis de tensão

• Níveis 1 e 0 dentro de faixas.

Conceitos - Níveis de corrente

De modo semelhante ao nível de tensão:

- \bullet $I_{IL}:$ valor de corrente máxima no terminal de entrada quando é aplicado nível 0
- \bullet $I_{OL}\colon$ valor de corrente máxima que a saída pode receber quando em nível 0
- \bullet $I_{IH}\colon$ valor de corrente máxima no terminal de entrada quando é aplicado nível 1
- I_{OH} : valor de corrente máxima que a saída pode receber quando em nível 1

Conceitos - Fan out

- A mesma saída pode ser usada para excitar diversas funções.
- A entrada de cada função precisa de certa corrente e a saída da função que vai excitar tem uma capacidade limitada de fornecimento de corrente.

Conceitos - Fan in

- Definido como o número de entradas de determinada porta lógica
- Quanto maior este número, mais lenta será a porta.

Conceitos - Tempo de atraso de propagação

- Tempo que o bloco lógico leva para mudar de estado após uma mudança de nível.
- t_{PLH} : low to high tempo para mudar de 0 para 1.
- t_{PHL} : high to low tempo para mudar de 1 para 0.

A família TTL

Conceitos

- TTL significa Transistor-Transistor-Logic.
- A família TTL foi originalmente desenvolvida pela Texas Instruments.
- Série 74xx comercial.
- Série 54xx militar.

A família TTL - Voltagem

- Alimentado com uma tensão de 5 V.
- Nível lógico 0 é sempre a ausência de tensão ou 0 V.
- \bullet Nível lógico 1 é sempre uma tensão de 5 V.
- Os níveis lógicos para serem reconhecidos devem estar dentro de faixas bem definidas.

A família TTL - Corrente

- I_{IL} : 1,6 mA.
- I_{OL} : 16 mA.
- I_{IH} : 40 μ A.
- I_{OH}: 400 μA.

A família TTL - Tempo de atraso

• Valor médio de aproximadamente 10 ns, na versão standard.

A família CMOS

Conceitos

- CMOS significa Complementary MOS.
- Transistores MOSFET.
- Série 4000A comercial.
- Série 4000B comercial.
- Série 54/74C comercial similar ao TTL.
- Série 74HC/74HCT comercial alta velocidade.

A família CMOS - Voltagem

- \bullet Série 4000/74C 3 a $15\,\mathrm{V}$
- \bullet Série 74HC 2 a 6 V
- \bullet Série 74HCT 4,5 a 5,5 V

Níveis de Tensão Elétrica CMOS

A família CMOS - Corrente

- *I*_{*IL*}: 1 μA.
- I_{OL} : 0,4 mA.
- I_{IH} : 1 μ A.
- I_{OH} : 0,4 mA.

A família CMOS - Tempo de atraso

 \bullet Valor médio de aproximadamente $90\,\mathrm{ns},$ nas séries mais comuns.

TTL x CMOS

Comparação entre as famílias

- A família CMOS possui maior imunidade a ruídos.
- A família CMOS possui um maior número de fan out.
- Ao contrário da família TTL, na CMOS não é aconselhável deixar terminais de entradas desconectados. Estes devem ser ligados na tensão positiva ou terra, dependendo do modelo.
- A família CMOS trabalha com uma faixa maior para alimentação.
- A família TTL não possui problemas com o manuseio dos CI eletricidade estática.
- A família TTL possui um tempo de atraso menor, se comparado com a CMOS.

Exercícios

01. No último slide, têm-se a seguinte afirmação: "A família CMOS possui um maior número de fan out". Através dos conceitos e cálculos estudados, mostre que esta afirmação é verdadeira.

Referências e exercícios complementares

• IDOETA, Ivan V. e CAPUANO, Francisco G. Elementos de Eletrônica Digital. São Paulo: Editora Érica, ed. 40. 2008.

Página 469 - 9.8.9 até 9.8.11

Encerramento

Tais notas de aula consistem em um compilado de diversas fontes, inclusive do livro texto indicado.

Estas não substituem a leitura do livro e a presença em sala de aula.

É expressamente proibido sua cópia, reprodução, difusão, transmissão, modificação, venda, publicação, distribuição ou qualquer outro uso, na totalidade ou em parte, sem prévia autorização por escrito.

Para quaisquer dúvidas e/ou informações:

yago.correa@iff.edu.br

