Data Structure and Algorithm Analysis(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Work Sheet 6

Mengxuan Wu

Question 6.1

1.

Loop Invariant: At the end of each iteration, A[j-1] is the smallest element in A[j-1..A.length].

Initialization: Before the first iteration, we can assume a j = A.length + 1, so the array A[j-1..A.length] contains one element A[A.length], which is the smallest element in the array.

Maintenance: Assume that A[j] is the smallest element in A[j..A.length] before iteration. Then, in the iteration, if A[j-1] < A[j], then A[j-1] is the smallest element in A[j-1..A.length]. Otherwise, A[j] is the smallest element in A[j-1..A.length], and we swap A[j] and A[j-1].

Termination: When the loop terminates, j = i + 1, so A[i] is the smallest element in A[i..A.length].

2.

Loop Invariant: At the end of the *i*-th iteration, A[1..i] contains the first *i* smallest elements in A[1..A.length] in sorted order.

Initialization: After the first inner loop, A[1] is the smallest element in A[1..A.length], so A[1..1] contains the first 1 smallest elements in A[1..A.length] in sorted order.

Maintenance: Assume that A[1..i-1] contains the first i-1 smallest elements in A[1..A.length] in sorted order before the i-th iteration. Then, in the i-th iteration, we find the smallest element in A[i..A.length], which is the i-th smallest element in A[1..A.length]. We put it in A[i], then A[1..i] contains the first i smallest elements in A[1..A.length] in sorted order.

Termination: When the loop terminates, i = A.length, so A[1..A.length] contains the first A.length smallest elements in A[1..A.length] in sorted order.

3.

Bu	UBBLE-SORT (A)	Runtime (in one iteration)		
1.	for $i = 1$ to A .length -1 do	$\Theta(n-1)$		
2.	for $j = A$.length downto $i + 1$ do	$\Theta(n-i)$		
3.	if $A[j] < A[j-1]$ then	$\Theta(1)$		
4.	exchange $A[j]$ with $A[j-1]$	$\Theta(1)$		

$$T(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (\Theta(1) + \Theta(1))$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Theta(1)$$

$$= \frac{n(n-1)}{2} \Theta(1)$$

$$= \Theta(n^{2})$$

Hence, the asymptotic runtime of Bubble-Sort is $\Theta(n^2)$.

Question 6.2

First, we sort the array:

	A[4]	A[3]	A[7]	A[6]	A[9]	A[5]	A[2]	A[1]	A[8]
	z_1	z_2			z_5	z_6	z_7	z_8	z_9
Ì	2	4	5	6	8	9	10	12	25

1.

The probability that $A[2] = 10 = z_7$ and $A[3] = 4 = z_2$ are compared is:

$$Pr(z_2 \text{ is compared to } z_7) = \frac{2}{7 - 2 + 1}$$
$$= \frac{1}{3}$$

2.

Likewise, we have the probability that z_8 is compared to z_9 is 1.

3.

Likewise, we have the probability that z_1 is compared to z_9 is $\frac{2}{9}$.

4.

Likewise, we have the probability that z_3 is compared to z_7 is $\frac{2}{5}$.

Question 6.3

Proof.

First, we proof this inequality $\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} \ge \sum_{i=1}^{\frac{n}{2}} \sum_{k=1}^{n-1} \frac{1}{k}$. We can write the two sums by each term as follows:

$$\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} = (n-1) \cdot \frac{1}{1} + (n-2) \cdot \frac{1}{2} + \dots + \frac{n}{2} \cdot \frac{1}{\frac{n}{2}} + \dots + 1 \cdot \frac{1}{n-1}$$

$$\sum_{i=1}^{\frac{n}{2}} \sum_{k=1}^{n-1} \frac{1}{k} = \frac{n}{2} \cdot \frac{1}{1} + \frac{n}{2} \cdot \frac{1}{2} + \dots + \frac{n}{2} \cdot \frac{1}{\frac{n}{2}} + \dots + \frac{n}{2} \cdot \frac{1}{n-1}$$

And both sums have $\frac{n^2-n}{2}$ elements. The inequality holds because we remove some elements that are bigger than $\frac{1}{2}$ from the first sum and add the same number of elements that are smaller than $\frac{1}{n}$ to the second

Then, we have:

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$\geq \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+k}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k}$$

$$\geq \sum_{i=1}^{\frac{n}{2}} \sum_{k=1}^{n-1} \frac{1}{k}$$

$$= \frac{n}{2} \sum_{k=1}^{n-1} \frac{1}{k}$$

$$\geq \frac{n}{2} \ln(n-1)$$

$$= \Theta(n \log n)$$

Therefore, $E(X) \geq \Theta(n \log n)$. Equally, we have $E(X) = \Omega(n \log n)$.

Question 6.4

Note: The notation i:j means to compare a_i and a_j , where a_n is the n-th element in the original array.

Question 6.5

The smallest possible depth of a leaf in a decision tree for a comparison sort is n-1.

Proof.

For each comparison, we can concatenate at most one element to the sorted sequence. Hence, for a result of n elements, we need at least n-1 comparisons and this cannot be optimized. By definition of decision tree, we know all leaves of comparison sort have depth at least n-1.