Proof by Contradiction Example

- \square Proposition : $\sqrt{2}$ is irrational
- \Box Proof : Proof is by contraction. Assume $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{p}{q},$

such that p and q are integers that have no common factors.

Proof by Contradiction Example

- Given $\sqrt{2} = \frac{p}{q}$, $p^2 = 2q^2$, and p is even. Then q is odd.
- Since p is even, p=2k. So $p^2=4k^2=2q^2$ and $q^2=2k^2$. Then q is even.
- \square q cannot be both odd and even, therefore $\sqrt{2}$ cannot be rational