${\rm IIC2343 \text{ - Arquitectura de Computadores (II/2019)}}$ ${\rm Entrega~1\text{-}C}$

Entrega: 9 de Septiembre de 2019 | 10:59:59 a.m.

Requisitos

- Esta entrega es estrictamente individual. Cualquier tipo de falta a la honestidad académica será sancionada con la reprobación del curso con la nota mínima.
- Los nombre de archivos y el cómo deben ser ejecutados son parte del formato, no respetarlo será penalizado.
- El programa de la placa deberá ser realizado en VHDL.
- La **documentación** deberá ser realizada en un archivo Markdown y subirlo junto a su tarea, de nombre README.md, en el mismo repositorio.
- Esta entrega deberá ser subida a su repositorio personal de *GitHub* correspondiente en la fecha y hora dada.
- La entrega de la placa debe ser realizada previa o al inicio de la hora de ayudantía del curso. El no cumplimiento, no solo perjudicará su nota, sino también a sus compañeros

Introducción

El full-adder es un circuito digital que permite sumar dos números de un bit, más el carry de un número anterior.

La representación decimal codificado en binario, o también conocida como **BCD**, es un estándar de representación de la base decimal mediante números binarios.

Misión

Deberá crear un módulo VHDL que represente la suma de dos números de 4 bits + carry in, en tal caso, debe **encender los leds representando la suma**, y en caso de que la suma requiera más de 4 bits, **encender el led** indicando un carry out. Finalmente, **encender los led del display 7-segmentos con el resultado en base decimal**

Se te entregará los módulos Display_Controller.vhd y binary_bcd_decoder.vhd que puedes utilizar de manera opcional.

Debe documentar con lo solicitado en el README.md.

Placa

Utilizarán la placa Digilent Basys3 presente en la imagen, de la cual, usando los **4 primeros switches** como input del número A, los **siguientes 4 switches** como input del número B, y el siguiente **switch** como el carry in.

El output será representado como los primeros 4 leds dando el resultado de la suma, y el siguiente led entregando el carry out. Además el resultado en base decimal debe quedar representado en los dos display de 7-segmentos.

Módulos entregados

Se le entrega dos módulos VHDL para facilitar su entrega, estos pueden ser utilizados de **manera** opcional

binary_bcd_decoder.vhd

Este módulo recibe como entrada un vector n[4:0] de 5 bits. y entrega como salida dos vectores dec[3:0] y uni[3:0], ambos de 4 bits.

Su función es decodificar la señal n[4:0], en su equivalente BCD, separando la decena de la unidad en las señales dec[3:0] y uni[3:0]

Puedes ver la sección Anexo con la tabla de verdad del módulo.

■ Display_Controller.vhd

Este módulo recibe 4 vectores y un valor lógico: dis_a[3:0], dis_b[3:0], dis_c[3:0], dis_d[3:0] y clk. Entrega como salida los vectores seg[7:0] y an[3:0].

Su función es decodificar los valores que quieres entregar en los display 7 segmentos correspondientes:

Para que este módulo funcione, debe conectar la señal de entrada de la Basys3 clk, a la señal de entrada clk de este módulo.

La salida de este módulo genera las señales de salida de la Basys3: seg[7:0] y an[3:0] para encender el display.

Requerimientos

Para implementar declaraciones condicionales solamente se permite hacer uso de bloques with/select. El uso de los statements process, case e if/else quedan absolutamente prohibidos. Esto porque se privilegia el uso de selectores y operaciones lógicas básicas para el desarrollo de esta tarea. Para esta entrega, queda estrictamente prohibido utilizar cualquier tipo de librería aritmética que simplifique la tarea de la suma

- Crear el proyecto
 - Seleccionar las opciones correctas para crear el proyecto en Vivado, que funcione con la placa correspondiente.
 - Importar correctamente el archivo Basys3.xdc .
 - Configurar correctamente las *constrains* del archivo Basys3.xdc. Descomentando las líneas correctas del archivo.
- (6 pts) Crear el módulo fulladder4.vhd
 - (4 pts) Crear una source llamada fulladder4, que contiene la arquitectura requerida para resolver el problema y entrega el resultado de la suma en los leds.
 - (2 pts) La arquitectura entrega el resultado de la suma en los display 7 segmentos.
 - Puede crear más sources para facilitar el problema
- Incluir el README.md con lo solicitado.
- Entregar inmediata de la placa la siguiente semana

Entrega

La entrega se realizará a través de GitHub. El repositorio debe contener una carpeta con su proyecto de Vivado y el archivo .bit. En el caso de la carpeta del proyecto, deben subir solo la carpeta .srcs, el archivo .xpr y el archivo Basys3.xdc

Anexo

$Tabla\ de\ verdad\ {\tt binary_bcd_decoder.vhd}$

n_{10}	$n_2[4:0]$					dec[3:0]				uni[3:0]			
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	1
2	0	0	0	1	0	0	0	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	0	0	0	1	0	1
6	0	0	1	1	0	0	0	0	0	0	1	1	0
7	0	0	1	1	1	0	0	0	0	0	1	1	1
8	0	1	0	0	0	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	0	0	0	1	0	0	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0
11	0	1	0	1	1	0	0	0	1	0	0	0	1
12	0	1	1	0	0	0	0	0	1	0	0	1	0
13	0	1	1	0	1	0	0	0	1	0	0	1	1
14	0	1	1	1	0	0	0	0	1	0	1	0	0
15	0	1	1	1	1	0	0	0	1	0	1	0	1
16	1	0	0	0	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	0	0	0	1	0	1	1	1
18	1	0	0	1	0	0	0	0	1	1	0	0	0
19	1	0	0	1	1	0	0	0	1	1	0	0	1
20	1	0	1	0	0	0	0	1	0	0	0	0	0
21	1	0	1	0	1	0	0	1	0	0	0	0	1
22	1	0	1	1	0	0	0	1	0	0	0	1	0
23	1	0	1	1	1	0	0	1	0	0	0	1	1
24	1	1	0	0	0	0	0	1	0	0	1	0	0
25	1	1	0	0	1	0	0	1	0	0	1	0	1
26	1	1	0	1	0	0	0	1	0	0	1	1	0
27	1	1	0	1	1	0	0	1	0	0	1	1	1
28	1	1	1	0	0	0	0	1	0	1	0	0	0
29	1	1	1	0	1	0	0	1	0	1	0	0	1
30	1	1	1	1	0	0	0	1	1	0	0	0	0
31	1	1	1	1	1	0	0	1	1	0	0	0	1