Report Of Clustering and Fitting Analysis on Wine Dataset

Name: Alvin James

Student Number: 23111190

GitHub Repository: RoronoaJames/Clustering-and-Fitting

Introduction

This report analyzes a Wine dataset from Kaggle using clustering and fitting techniques to uncover patterns and relationships. The key objectives include:

- 1. **Relational Analysis:** Scatter plot for variable relationships.
- 2. Categorical Analysis: Bar plot for comparisons across categories.
- 3. **Statistical Analysis:** Heatmap for correlations and descriptive statistics.
- 4. **Clustering:** Identify groups using k-means with optimal clusters via the elbow method.
- 5. **Fitting:** Analyze and model trends using linear regression.

1. Relational Analysis

- Scatter Plot: Alcohol vs Malic_Acid
 - Weak positive correlation.
 - Higher alcohol content does not significantly predict malic acid levels.
 - Outliers may slightly affect the data distribution.

Graph Details:

2. Categorical Analysis

- Bar Plot: Alcohol and Proline
 - Proline levels tend to increase with higher alcohol content.
 - Highlights distinct variations among wines with different alcohol levels.

Graph Details:

3. Statistical Analysis

Heatmap:

- Key Correlations:
 - Alcohol positively correlates with Proline .
 - Malic_Acid negatively correlates with Hue.
- Key Moments (Selected Features):
 - Alcohol:
 - Mean: 13.00, Std Dev: 0.81, Skewness: -0.05, Kurtosis: -0.86.
 - Distribution is symmetric with moderate variation.
 - Malic_Acid:
 - Mean: 2.34, Std Dev: 1.12, Skewness: 1.03, Kurtosis: 0.26.
 - Positively skewed distribution with occasional extreme values.

4. Clustering Analysis

- Elbow Plot:
 - o Optimal clusters: k=3.

• Cluster Visualization:

- o Data normalized for clustering & clusters are well-defined.
- Centroids marked & silhouette score: 0.28.
- Clusters are distinguishable but moderately cohesive.

5. Fitting Analysis

- Linear Regression: Alcohol vs Malic_Acid
 - Regression Model:
 - Slope suggests a weak increase in malic acid with higher alcohol levels.
 - Residual Analysis:
 - Weak predictive capability due to low correlation.

Conclusion

- 1. Relational Trends: Weak correlation between Alcohol and Malic Acid indicates limited linear dependency.
- 2. Categorical Insights: Higher alcohol content is linked with increased proline levels, distinguishing wine types.
- 3. Statistical Observations:
 - Alcohol and Proline have strong relationships, while Malic_Acid negatively impacts Hue.
 - o Statistical moments highlight symmetric and skewed feature distributions.
- 4. Clustering: Optimal clustering (k=3), Clusters are distinguishable but moderately cohesive
- 5. Fitting: Linear regression demonstrates weak predictability.