Software Quality Measurement

Gruppe H

4. Januar 2018

Inhaltsverzeichnis

1	Soft	ware Quality Measurement	3
	1.1	CBO - Kopplung ziwschen Objektklassen	3
	1.2	LCOM - Mangel an Abgeschlossenheit	4
	1.3	Weitere Kenngrößen und graphische Darstellung	6
	1.4	Vergleich mit einer abgeänderten Version von mallet	8

1 Software Quality Measurement

Für mallet¹, eine Verarbeitungssoftware für natürliche Sprache, sollen beispielhaft Kenngrößen für Softwarequalität ermittelt und ausgewertet werden. Zur Berechnung der Kenngrößen wird ckjm² verwendet, das alle sechs Kenngrößen (Metriken zum Messen von Softwarequalität) nach Chidamber and Kemerer sowie zwei zusätzliche ermittelt. Die Ausgaben von ckjm werden mit Hilfe eines zur Verfügung gestellten, auf matplotlib basierenden Pythonskripts aufbereitet und in Form von Histogrammen dargestellt.

Listing 1.1: Beispiele für den Output von mallet

1.1 CBO - Kopplung ziwschen Objektklassen

CBO CBO: Coupling between object classes

CBO: schlechteste Klassen					
cc.mallet.optimize.OptimizerEvaluator					
cc.mallet.util.tests.TestAStar\$1					
$\verb cc.mallet.pipe.CharSequenceRemoveHTML\$1 $					
CBO: beste Klassen					
cc.mallet.topics.ParallelTopicModel 2					
cc.mallet.fst.tests.TestCRF					
cc.mallet.topics.LDAHyper 196	_				

Ein hoher Wert des CBO ist erwünscht. Das bedeutet, dass Methoden mit vielen Instanzvariablen eng gekoppelt sind, was sich wiederum positiv auf die Softwarequalität auswirkt.

¹Mallet af github

²ckjm auf github, Manual

Abbildung 1.1: Coupling of Object Classes

Ein kleiner Wert ist unerwünscht, da dies bedeutet, dass alle Methoden der Klasse eigene unabhängige Instanzvariablen benutzen. Dies wirkt sich negativ auf die Softwarequalität aus.

Das Histogramm zeigt die CBO-Werte aller getesteten Klassen. Die meisten CBO-Werte liegen im Bereich von 0 bis 50.

1.2 LCOM - Mangel an Abgeschlossenheit

LCOM: Lack of cohesion in methods

LCOM: beste Klassen	
cc.mallet.extract.test.TestDocumentExtraction	0
cc.mallet.fst.LabelDistributionEvaluator	0
${\tt cc.mallet.optimize.OptimizerEvaluator\$ByBatchGradient}$	0

LCOM: schlechteste Klassen					
cc.mallet.pipe.Pipe	229				
cc.mallet.types.InstanceList	241				
cc.mallet.types.Instance	339				

Abbildung 1.2: Lack of Cohesion

Im Vergleich zum CBO-Wert verhält sich der LCOM-Wert komplementär. Ein hoher Wert steht für den Mangel an Kohäsion (Zusammenhang zwischen den Methoden) und wirkt sich somit negativ auf die Softwarequalität aus. Ein niedriger Wert bedeutet keinen Mangel und ist somit positiv für die Softwarequalität.

1.3 Weitere Kenngrößen und graphische Darstellung

Die Kenngrößen werden als normierte Histogramme dargestellt, auf der x-Achse sind Bereiche möglicher Werte der Kenngröße aufgetragen. Auf der y-Achse der Anteil der Klassen, die diesem Wertebereich zugeordnet sind.

Als weitere Kenngrößen wurden von ckim ermittelt:

- WMC: Weighted methods per class
 - WMC betrachtet die Komplexität (Erweiterbarkeit und Verständlichkeit) der Klassen. Größere Werte sind negativ. Kleinere Werte sind positiv.
- DIT: Depth of Inheritance Tree
 - DIT misst die Tiefe des Vererbungsbaums. Je tiefer dieser Baum ist, desto negativer wirkt sich das auf die Softwarequalität aus, weil es dann schwieriger ist, die Vererbungsstruktur bis in die Blätter nachzuvollziehen. D.h. in unserem Histogramm sind solche Klassen gut, die den Wert 0 haben, weil die Tiefe des Baums
- NOC: Number of Children
 - NOC misst die Anzahl der Subklassen, die direkt unter der gemessenen Klasse existieren. Ein hoher Wert bedeutet, dass diese Klasse oft wiederverwendet wird und somit Code gesapart wird. Das bedeutet aber auch, dass eine Klasse mit hohem Wert gut getestet muss, um die Softwarequalität zu steigern. Im Vergleich zu DIT misst NOC die Breite des Baums, statt der Tiefe.
- RFC: Response for a Class
 - Der RFC Wert steht für die Anzahl aller möglichen auszuführenden Methoden innerhalb der Klasse. Je höher der Wert, desto höher die Komplexität der Klasse. Also ist ein hoher Wert nicht erwünscht.
- Ca: Afferent coupling (not a C&K metric)
 - Der Ca Wert bestimmt die Anzahl der Packages, die von der Package dieser Klasse abhängen. Ein hoher Wert bedeutet eine hohe Verantwortung für diese Package und ist somit negativ behaftet. Da unsere Klassen größtenteils niedrigere Werte besitzen, ist dies positiv für die Softwarequalität.
- NPM: Number of Public Methods for a class (not a C&K metric)
 - Der NPM Wert bestimmt die Anzahl der public methods innerhalb der Klasse.
 Ein hoher Wert bedeutet eine große Verantwortung und hohe Komplexität und ist daher für die Softwarequalität nicht von Vorteil.

Abbildung 1.3: WMC und DIT

Abbildung 1.4: NOC und RFC

Abbildung 1.5: Ca und NPM

1.4 Vergleich mit einer abgeänderten Version von mallet

Dem Programm mallet werden zwei weitere Klassen NewParallelTopicModel.java und TopicInferencerInterface.java hinzugefügt. Nach dem Kompilieren wird die Analyse von mallet wiederholt und es werden die Kennzahlen der Klassen NewParallelTopicModel und ParallelTopicModel verglichen:

Klasse	WMC	DIT	NOC	СВО	RFC	LCOM	Се	NPM
NewParallelTopicModel	68	1	0	22	233	800	0	61
ParallelTopicModel	63	1	2	21	227	627	11	58