Due date: 2022-02-09, 23:59 IST.

1 point





NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Compiler Design (course)

Announcements (announcements) About the Course (preview) Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Review Assignment (assignment\_review)



Register for Certification exam

## Thank you for taking the Week 2: Assignment 2.

(https://examform.nptel.ac.in/2022\_01/exam\_form/dashboard

## Course outline

How does an NPTEL online course work?

Week 0:

Week 1

Week 2

- Lecture 07 : Lexical Analysis (unit?unit=26&lesson=27)
- Lecture 08 : Lexical Analysis (Contd.) (unit? unit=26&lesson=28)
- Lecture 09 : Lexical Analysis (Contd.) (unit? unit=26&lesson=29)

## Week 2: Assignment 2

Your last recorded submission was on 2022-02-09, 14:53 IST

- When the lexical analyzer reads the source code, it scans the code
  - (A) Line-by-line
  - (B) Word-by-word
  - (C) Letter-by-letter
  - (D) Whole at a time
  - (A)
  - (B)
  - (C)
  - (D)

| Ass<br>X | Lecture 10 : Lexical Analysis<br>ressment submitted.<br>(Contd.) (unit?<br>unit=26&lesson=30) |
|----------|-----------------------------------------------------------------------------------------------|
|          | <ul><li>Lecture 11: Lexical Analysis<br/>(Contd.) (unit?<br/>unit=26&amp;lesson=31)</li></ul> |
|          | Lecture Materials (unit?<br>unit=26&lesson=32)                                                |
|          | Quiz: Week 2 : Assignment 2<br>(assessment?name=140)                                          |
|          | <ul><li>Feedback Form (unit?<br/>unit=26&amp;lesson=33)</li></ul>                             |
|          | Week 3                                                                                        |
|          | DOWNLOAD VIDEOS                                                                               |
|          | Text Transcripts                                                                              |
|          | Books                                                                                         |

| <ul> <li>The regular expression for strings (over alphabet set {0,1}) in which a '0' is always follow by at least two 1's (that is "11") is</li> <li>(A) (1*(011)*)*</li> <li>(B) 1*(011)*</li> <li>(C) Not possible to create such a regular expression</li> <li>(D) None of the other options</li> </ul> | wed   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul><li>(A)</li><li>(B)</li><li>(C)</li><li>(D)</li></ul>                                                                                                                                                                                                                                                  |       |
| 3) According to the following diagram which one of the following strings is not accepted by<br>diagram?                                                                                                                                                                                                    | y the |
| 30 - 0 - 0°                                                                                                                                                                                                                                                                                                |       |
| (A) 110<br>(B) 1111<br>(C) 110000<br>(D) 1100                                                                                                                                                                                                                                                              |       |
| <ul><li>(A)</li><li>(B)</li><li>(C)</li><li>(D)</li></ul>                                                                                                                                                                                                                                                  |       |

1 point

1 point

| The number of possible epsilon transitions from a state in an NFA is  (A) Many (B) At most one (C) One (D) Zero                          | 1 point |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|
| (A)                                                                                                                                      |         |
| ○ (B)                                                                                                                                    |         |
| ○ (c)<br>○ (D)                                                                                                                           |         |
| 5) Between NFA and DFA which one is more powerful  (A) NFA  (B) DFA  (C) both are powerful  (D) Cannot be said definitely                | 1 point |
| ○(A)                                                                                                                                     |         |
| ○(B)                                                                                                                                     |         |
| (C)                                                                                                                                      |         |
| $\bigcirc$ (D)                                                                                                                           |         |
| (A) Cannot represent any language     (B) Part of a language     (C) Constituent strings of a language     (D) None of the other options | 1 point |
| ○(A)                                                                                                                                     |         |
| ○(B)                                                                                                                                     |         |
| (C)                                                                                                                                      |         |
| $\bigcirc$ (D)                                                                                                                           |         |
|                                                                                                                                          |         |
|                                                                                                                                          |         |

Assessment submitted.

Χ

| 7) Finite automata is an implementation of  (A) Part of a Regular expression  (B) Any grammar  (C) Regular expression  (D) None of the other options                               | 1 poin |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\bigcirc$ (A)                                                                                                                                                                     |        |
| ○(B)                                                                                                                                                                               |        |
| (c)                                                                                                                                                                                |        |
| $\bigcirc$ (D)                                                                                                                                                                     |        |
| 8) Which is easier to implement, the NFA or the DFA?  (A) DFA  (B) NFA  (C) Equal effort needed  (D) Cannot be said definitely                                                     | 1 poin |
| (A)                                                                                                                                                                                |        |
| ○(B)                                                                                                                                                                               |        |
| ○(c)                                                                                                                                                                               |        |
| $\bigcirc$ (D)                                                                                                                                                                     |        |
| 9) The regular expression (0 1)*00 will accept all strings (A) Divisible by 2 (B) Divisible by 4 with minimum length 2 (C) Divisible by 2 with minimum length 2 (D) Divisible by 4 | 1 poin |
| $\bigcirc$ (A)                                                                                                                                                                     |        |
| (B)                                                                                                                                                                                |        |
| ○(c)                                                                                                                                                                               |        |
| (D)                                                                                                                                                                                |        |
|                                                                                                                                                                                    |        |

Assessment submitted.

Χ

| Assessment submitted.<br>X | 10) What exactly is a lexeme?  (A) Any sequence of characters  (B) Sequence of characters defining a token  (C) Same as a token  (D) Not related to any token | 1 point |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                            | ○ (A)                                                                                                                                                         |         |
|                            | ○(c)                                                                                                                                                          |         |
|                            | $\bigcirc$ (D)                                                                                                                                                |         |
|                            | Output of the tool lex is  (A) A C program  (B) An executable code  (C) A parser  (D)None of the other options                                                | 1 point |
|                            | (A)                                                                                                                                                           |         |
|                            | ○(B)                                                                                                                                                          |         |
|                            | ○( <b>c</b> )                                                                                                                                                 |         |
|                            | ○ <sub>(D)</sub>                                                                                                                                              |         |
|                            | You may submit any number of times before the due date. The final submission will be considered for grading.  Submit Answers                                  |         |