

Plantilla de prueba UNAL

Sebastián Echavarría sechavarriam@unal.edu.co

May 18, 2021

Prueba de fuentes regulares

Prueba de fuentes regulares

Prueba de nuevas familias de fuente Ancizar

Familias de texto normales Ancizar

Texto normal
TEXTO NORMAL MAYÚSCULAS
Texto en negrilla
TEXTO NEGRILLA MAYÚSCULAS
Texto en cursiva
TEXTO EN CURSIVA MAYÚSCULAS
TEXTO EN VERSALITAS
TEXTO EN VERSALITAS MAYÚSCULAS

Nuevas Familias de Texto Sans y Serif FUENTE SEPARADA

SansBlackItalic
SansBlack
SansBlack
SansExtraboldItalic
SansExtrabold
SansLightItalic
SansLight

SerifExtraboldItalic SerifExtrabold SerifLightItalic SerifLight

Titulo

Subtitulo

Texto de prueba

$$\int_{\Omega}^{\infty} f(x) d\mu \tag{1}$$

$$\dot{\phi}^{h} = \min_{\dot{\phi} \in \mathbb{R}^{n_{l}}} \left\{ \left\| \mathbf{r}(\mathbf{w}, \mathbf{b}, \dot{\phi}) \right\|_{2} \right\}
= \min_{\dot{\phi} \in \mathbb{R}^{n_{l}}} \left\{ \sum_{i=1}^{n_{s}} \sqrt{w_{i} \mathbf{r}_{i}^{2}} \right\} = \min_{\dot{\phi} \in \mathbb{R}^{n_{l}}} \left\{ \sum_{i=1}^{n_{s}} w_{i} \mathbf{r}_{i}^{2} \right\}.$$
(2)

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

1. Suppose *p* were the largest prime number.

4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.