

Art of Problem Solving 2006 China National Olympiad

China National Olympiad 2006

Day 1	January 12th
1	Let a_1, a_2, \ldots, a_k be real numbers and $a_1 + a_2 + \ldots + a_k = 0$. Prove that
	$\max_{1 \le i \le k} a_i^2 \le \frac{k}{3} \left((a_1 - a_2)^2 + (a_2 - a_3)^2 + \dots + (a_{k-1} - a_k)^2 \right).$
2	For positive integers $a_1, a_2, \ldots, a_{2006}$ such that $\frac{a_1}{a_2}, \frac{a_2}{a_3}, \ldots, \frac{a_{2005}}{a_{2006}}$ are pairwise distinct, find the minimum possible amount of distinct positive integers in the set $\{a_1, a_2, \ldots, a_{2006}\}$.
3	Positive integers k, m, n satisfy $mn = k^2 + k + 3$, prove that at least one of the equations $x^2 + 11y^2 = 4m$ and $x^2 + 11y^2 = 4n$ has an odd solution.
Day 2	January 13th
4	In a right angled-triangle ABC , $\angle ACB = 90^{\circ}$. Its incircle O meets BC , AC , AB at D,E,F respectively. AD cuts O at P . If $\angle BPC = 90^{\circ}$, prove $AE + AP = PD$.
5	Let $\{a_n\}$ be a sequence such that: $a_1 = \frac{1}{2}$, $a_{k+1} = -a_k + \frac{1}{2-a_k}$ for all $k = 1, 2, \ldots$ Prove that
	$\left(\frac{n}{2(a_1+a_2+\cdots+a_n)}-1\right)^n \le \left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^n \left(\frac{1}{a_1}-1\right) \left(\frac{1}{a_2}-1\right) \cdots$
6	Suppose X is a set with $ X = 56$. Find the minimum value of n , so that for any 15 subsets of X , if the cardinality of the union of any 7 of them is greater or equal to n , then there exists 3 of them whose intersection is nonempty.