# Part IB — Statistics Example Sheet 2

Supervised by Mr. Higson
Examples worked through by Christopher Turnbull
Lent 2018

Given  $f(x;\theta)$ , we calculate the likelihood ratio as

$$\begin{split} \Lambda_{\mathbf{x}}(H_0, H_1) &= \frac{L_{\mathbf{x}}(H_1)}{L_{\mathbf{x}}(H_0)} \\ &= \frac{2/(x+2)^2}{1/(x+1)^2} \\ &= 2\left(\frac{x+1}{x+2}\right)^2 \end{split}$$

For x>0 this is increasing as a function of x, so for any  $k, \Lambda_x>k \iff x>c,$  for some c.

Hence we reject  $H_0$  if x > c, where c is chosen such that  $\mathbb{P}(X > c \mid H_0) = \alpha = 0.05$ .

Under  $H_0, f_X(x|\theta) = \frac{1}{(x+1)^2}, x > 0$ , so

$$\mathbb{P}(X > c \mid H_0) = \int_c^{\infty} \frac{1}{(x+1)^2} dx$$
$$= \frac{1}{c+1}$$

So for the size 0.05 test, this gives c=19, hence the test rejects  $H_0$  if x>19. Then

$$\mathbb{P}(\text{Type II error}) = \mathbb{P}(X \notin C \mid H_1)$$

$$= \int_0^{19} \frac{2}{(x+2)^2} \, \mathrm{d}x$$

$$= \left[ -2(x+2)^{-1} \right]_0^{19}$$

$$= \frac{19}{21}$$

We wish to test  $H_0: \theta_1 = \theta_2$  against  $H_1: \theta_1 \neq \theta_2$ . Then

$$\begin{split} \Lambda_{\mathbf{x}}(H_0; H_1) &= \frac{L_{\mathbf{x}}(H_1)}{L_{\mathbf{x}}(H_0)} \\ &= \frac{\sup_{\theta_x, \theta_y} \theta_x^n e^{-\theta_x \sum x_i} \theta_y^n e^{-\theta_y \sum y_i}}{\sup_{\theta} \theta^n e^{-\theta \sum x_i} \theta^n e^{-\theta \sum y_i}} \end{split}$$

Under  $H_1$  the MLEs of  $\theta_x$  and  $\theta_y$  are  $\theta_x = \frac{n}{\sum x_i}$  and  $\theta_y = \frac{n}{\sum y_i}$ . Under  $H_0$  the MLE of  $\theta$  is  $\hat{\theta} = \frac{2n}{\sum x_i + \sum y_i}$ . So

$$\Lambda_{\mathbf{x}}(H_0; H_1) = \frac{L_{\mathbf{x}}(H_1)}{L_{\mathbf{x}}(H_0)} 
= \frac{\theta_x^n \theta_y^n e^{-2n}}{\hat{\theta}^{2n} e^{-2n}} 
= \left(\frac{n^2}{\sum x_i \sum y_i}\right)^n \left(\frac{\sum x_i + \sum y_i}{2n}\right)^{2n} 
= 2^{-2n} \left(\frac{\left(\sum x_i + \sum y_i\right)^2}{\sum x_i \sum y_i}\right)^n$$

Given

$$T = \frac{\sum X_i}{\sum X_i + \sum Y_i}$$

We see that

$$\Lambda_{\mathbf{x}}(H_0; H_1) = 2^{-2n} (T(1-T))^{-n}$$
$$= 2^{-2n} (-(T-1/2)^2 + 1/4)^{-n}$$

this is an increasing function of  $\left|T-\frac{1}{2}\right|$ , so for any  $k,\Lambda_x>k\iff \left|T-\frac{1}{2}\right|>c.$  for some c

We know that under  $H_0$ ,  $\sum X_i \sim \Gamma(n,\theta)$ ,  $\sum Y_i \sim \Gamma(n,\theta)$  so  $X/(X+Y) \sim \text{Beta}(n,n)$  (cf. Example Sheet 1, Question 2, ) ie.

$$T \sim \text{Beta}(n, n)$$

So the size  $\alpha$  generalised likelihood test rejects  $H_0$  if

$$\left| T - \frac{1}{2} \right| > \beta_{\alpha/2} - 1/2$$

Question: Does  $2 \log \Lambda_x(H_0; H_1)$  obviously have a  $\chi_1^2$  distribution under  $H_0$  here?

The probabilities for a bunch have *i* defective articles, i = 0, 1, 2, 3 are  $(1 - \theta)^3, 3\theta(1 - \theta)^2, 3\theta^2(1 - \theta)$  and  $\theta^3$  respectively. We wish to test  $H_0: p_i = p_i(\theta)$ .

We observe  $N_i = n_i$ , N = (213, 228, 57, 14). Under  $H_0$ , the mle  $\hat{\theta}$  is found by maximizing

$$\sum n_i \log p_i(\theta) = 3n_1 \log (1-\theta) + 2n_2 \log (3\theta(1-\theta)) + 2n_3 \log (3(1-\theta)\theta) + 3n_4 \log \theta$$

Differentiating the RHS gives

$$0 = \frac{-3n_1}{1-\theta} + \frac{(2n_2 + 2n_3)(3(1-\theta) - 3\theta)}{3\theta(1-\theta)} + \frac{3n_4}{\theta}$$
$$= \frac{-9n_1\theta}{3\theta(1-\theta)} + \frac{(2n_2 + 2n_3)(3(1-\theta) - 3\theta)}{3\theta(1-\theta)} + \frac{9n_4(1-\theta)}{3\theta(1-\theta)}$$

which gives  $\hat{\theta} = \frac{2n_2+2n_3+3n_4}{3n_1+4n_2+4n_3+3n_4}$ . Pearson's chi-squared statistic is

$$T := \sum_{j=1}^{4} \frac{(o_j - e_j)^2}{e_j}$$

$$= \frac{(213 - 512(1 - \theta)^3)^2}{512(1 - \theta)^3} + \frac{(228 - 15363\theta(1 - \theta)^2)^2}{1536\theta(1 - \theta)^2} + \frac{(57 - 1536\theta^2(1 - \theta))^2}{1536\theta^2(1 - \theta)} + \frac{(14 - 512\theta^3)^2}{512\theta^3}$$

Also,  $|\Theta_0| = 1$  and  $|\Theta_1| = 3$ , so we refer to  $\chi^2_2$ .

**Lemma** (Neyman-Pearson lemma for discrete distributions). Suppose  $H_0: f = f_0, H_1: f = f_1$ , where  $f_0$  and  $f_1$  are probability mass functions on a countable set  $\mathcal{X}$ . Then among all tests of size less than or equal to  $\alpha$ , the test with the largest power is the likelihood ratio test of size  $\alpha$ .

*Proof.* Under the likelihood ratio test, our critical region is

$$C = \left\{ \mathbf{x} : \frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} > k \right\},\,$$

where k is chosen such that  $\alpha = \mathbb{P}(\text{reject } H_0 \mid H_0) = \mathbb{P}(\mathbf{X} \in C \mid H_0) = \sum_{\mathbf{x}_i \in C} f_0(\mathbf{x}_i)$ . The probability of Type II error is given by

$$\beta = \mathbb{P}(\mathbf{X} \notin C \mid f_1) = \sum_{\mathbf{x}_i \in \bar{C}} f_1(\mathbf{x}_i).$$

Let  $C^*$  be the critical region of any other test with size less than or equal to  $\alpha$ . Let  $\alpha^* = \mathbb{P}(X \in C^* \mid f_0)$  and  $\beta^* = \mathbb{P}(\mathbf{X} \notin C^* \mid f_1)$ . We want to show  $\beta \leq \beta^*$ . We know  $\alpha^* \leq \alpha$ , ie

$$\sum_{\mathbf{x}_i \in C^*} f_0(\mathbf{x}_i) \le \sum_{\mathbf{x}_i \in C} f_0(\mathbf{x}_i).$$

Also, on C, we have  $f_1(\mathbf{x}) > kf_0(\mathbf{x})$ , while on  $\bar{C}$  we have  $f_1(\mathbf{x}) \leq kf_0(\mathbf{x})$ . So

$$\sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_1(\mathbf{x}_i) \ge k \sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_0(\mathbf{x}_i)$$
$$\sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_1(\mathbf{x}_i) \le k \sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_0(\mathbf{x}_i).$$

Hence

$$\beta - \beta^* = \sum_{\mathbf{x}_i \in \bar{C}} f_1(\mathbf{x}_i) - \sum_{\mathbf{x}_i \in \bar{C}^*} f_1(\mathbf{x}_i)$$

$$= \sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_1(\mathbf{x}_i) + \sum_{\mathbf{x}_i \in \bar{C} \cap \bar{C}^*} f_1(\mathbf{x}_i)$$

$$- \sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_1(\mathbf{x}_i) - \sum_{\mathbf{x}_i \in \bar{C} \cap \bar{C}^*} f_1(\mathbf{x}_i)$$

$$= \sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_1(\mathbf{x}_i) - \sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_1(\mathbf{x}_i)$$

$$\leq k \sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_0(\mathbf{x}_i) - k \sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_0(\mathbf{x}_i)$$

$$= k \left\{ \sum_{\mathbf{x}_i \in \bar{C} \cap C^*} f_0(\mathbf{x}_i) + \sum_{\mathbf{x}_i \in C \cap C^*} f_0(\mathbf{x}_i) \right\}$$

$$- k \left\{ \sum_{\mathbf{x}_i \in \bar{C}^* \cap C} f_0(\mathbf{x}) + \sum_{\mathbf{x}_i \in C \cap C^*} f_0(\mathbf{x}_i) \right\}$$

$$= k(\alpha^* - \alpha)$$

$$\leq 0.$$



So even with non-continuous distributions, the likelihood ratio test is still a good idea; for a discrete distribution, as long as a likelihood ratio test of exactly size  $\alpha$  exists, the same result holds.

We wish to test  $H_0$ : sex and eye colour independent. The actual data is:

|     |        |      | Eye-colour |       |
|-----|--------|------|------------|-------|
|     |        | Blue | Brown      | Total |
|     | Male   | 19   | 10         | 29    |
| Sex | Female | 9    | 21         | 30    |
|     | Total  | 28   | 31         | 59    |

while the expected values given by  $H_0$  is

|     |        |                  | Eye-colour                        |       |
|-----|--------|------------------|-----------------------------------|-------|
|     |        | Blue             | Brown                             | Total |
|     | Male   | 812<br>59        | <u>812</u><br>59                  | 29    |
| Sex | Female | $\frac{840}{59}$ | $\frac{812}{59}$ $\frac{930}{59}$ | 30    |
|     | Total  | 28               | 31                                | 59    |

It is not quite clear that they do not match well, so we can find the p value to

sure. 
$$\sum \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 7.46$$
, and the degrees of freedom is  $(2-1)(2-1) = 1$ .

From the tables,  $\chi_1^2(0.05) = 3.841$  and  $\chi_4^2(0.01) = 6.63$ .

So our observed value of 7.46 is significant at the 1% level, i.e. there is strong evidence against  $H_0$ .

Next we wish to test 
$$H_0'$$
: all cell probabilities are equal to  $1/4$ . 
$$\sum \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 7.64, \text{ also } |\Theta_0| = 0, |\Theta_0| = 4 - 1 = 3. \text{ From the tables},$$
$$\chi_3^2(0.05) = 7.82. \text{ Hence we do not reject } H_0.$$

In general, we have independent observations from r multinomial distributions, each of which has c categories, i.e. we observe an  $r \times c$  table  $(n_{ij})$ , for  $i = 1, \dots, r$ and  $j = 1, \dots, c$ , where

$$(N_{i1}, \dots, N_{ic}) \sim \text{multinomial}(n_{i+}, p_{i1}, \dots, p_{ic})$$

independently for each  $i = 1, \dots, r$ . We want to test

$$H_0: p_{1j} = p_{2j} = \dots = p_{rj} = p_j,$$

for  $j = 1, \dots, c$  (ie. homogeneity down the rows), and

 $H_1: p_{ij}$  are unrestricted.

Using  $H_1$ ,

like
$$(p_{ij}) = \prod_{i=1}^{r} \frac{n_{i+}!}{n_{i1}! \cdots n_{ic}!} p_{i1}^{n_{i1}} \cdots p_{ic}^{n_{ic}},$$

and

$$\log like = constant + \sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} \log p_{ij}.$$

Using Lagrangian methods, we find that  $\hat{p}_{ij} = \frac{n_{ij}}{n_{i+}}$ . Under  $H_0$ ,

$$\log like = constant + \sum_{j=1}^{c} n_{+j} \log p_j.$$

By Lagrangian methods, we have  $\hat{p}_j = \frac{n_{+j}}{n_{++}}$ . Hence

$$2\log \Lambda = \sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} \log \left( \frac{\hat{p}_{ij}}{\hat{p}_{j}} \right) = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} n_{ij} \log \left( \frac{n_{ij}}{n_{i+} n_{+j} / n_{++}} \right),$$

which is the same as what we had last time, when the row totals are unrestricted! We have  $|\Theta_1| = r(c-1)$  and  $|\Theta_0| = c-1$ . So the degrees of freedom is r(c-1)-(c-1)=(r-1)(c-1), and under  $H_0$ ,  $2\log\Lambda$  is approximately  $\chi^2_{(r-1)(c-1)}$ . Again, it is exactly the same as what we had last time!

We reject  $H_0$  if  $2 \log \Lambda > \chi^2_{(r-1)(c-1)}(\alpha)$  for an approximate size  $\alpha$  test. If we let  $o_{ij} = n_{ij}, e_{ij} = \frac{n_{i+}n_{+j}}{n_{++}}$ , and  $\delta_{ij} = o_{ij} - e_{ij}$ , using the same approximating steps as for Pearson's Chi-squared, we obtain

$$2\log\Lambda \approx \sum \frac{(o_{ij} - e_{ij})^2}{e_{ii}}$$
.

Continuing our previous example, our data is

|           | Improved | No difference | Worse | Total     |
|-----------|----------|---------------|-------|-----------|
| Placebo   | 18       | 17            | 15    | 50        |
| Half dose | 20       | 10            | 20    | <b>50</b> |
| Full dose | 25       | 13            | 12    | <b>50</b> |
| Total     | 63       | 40            | 47    | 150       |

The expected under  $H_0$  is

|           | Improved | No difference | Worse | Total     |
|-----------|----------|---------------|-------|-----------|
| Placebo   | 21       | 13.3          | 15.7  | 50        |
| Half dose | 21       | 13.3          | 15.7  | <b>50</b> |
| Full dose | 21       | 13.3          | 15.7  | <b>50</b> |
| Total     | 63       | 40            | 47    | 150       |

We find  $2 \log \Lambda = 5.129$ , and we refer this to  $\chi_4^2$ . Clearly this is not significant, as the mean of  $\chi_4^2$  is 4, and is something we would expect to happen solely by chance.

We can calculate the *p*-value: from tables,  $\chi_4^2(0.05) = 9.488$ , so our observed value is not significant at 5%, and the data are consistent with  $H_0$ .

We conclude that there is no evidence for a difference between the drug at the given doses and the placebo.

For interest,

$$\sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}} = 5.173,$$

giving the same conclusion.

Let  $X_1, \dots, X_n \sim \text{Exp}(\theta)$ . We want to find the best size  $\alpha$  test of  $H_0: \theta = \theta_0$  against  $H_1: \theta = \theta_1$ , where  $\theta_0$  and  $\theta_1$  are known fixed values with  $\theta_1 > \theta_0$ . Then

$$\begin{split} \Lambda_{\mathbf{x}}(H_0; H_1) &= \frac{\theta_0^n e^{-\theta_0 \sum x_i}}{\theta_1^n e^{-\theta_1 \sum x_i}} \\ &= \left(\frac{\theta_1}{\theta_0}\right)^n \exp\left[-\left(\theta_1 - \theta_0\right) \sum x_i\right] \end{split}$$

This is an increasing function of  $\sum x_i$ , so for any k,  $\Lambda_x > k \Leftrightarrow \sum x_i > c$  for some c. Hence we reject  $H_0$  if  $\sum x_i > c$ , where c is chosen such that  $\mathbb{P}(\sum X_i > c \mid H_0) = \alpha$ .

Under  $H_0$ ,  $\sum X_i \sim \Gamma(n, \theta_0)$ , Note that

$$C = \left\{ x : \sum x_i > c \right\}$$

For  $\theta \in \mathbb{R}$ , the power function is

$$W(\theta) = \mathbb{P}_{\theta}(\text{reject } H_0)$$
$$= \mathbb{P}_{\theta}\left(\sum_{i} X_i > c\right)$$
$$= 1 - G_{\theta}(c)$$

To show this is UMP, we know that  $W(\theta_0) = c$  (by plugging in).  $W(\mu)$  is an increasing function of  $\theta$ . So

$$\sup_{\theta \le \theta_0} W(\theta) = \alpha.$$

So the first condition is satisfied.

For the second condition, observe that for any  $\theta > \theta_0$ , the Neyman Pearson size  $\alpha$  test of  $H_0: \theta = \theta_0$  vs  $H_1: \theta = \theta_1$  has critical region C. Let  $C^*$  and  $W^*$  belong to any other test of  $H_0$  vs  $H_1$  of size  $\leq \alpha$ . Then  $C^*$  can be regarded as a test of  $H_0$  vs  $H_1$  of size  $\leq \alpha$ , and the Neyman-Pearson lemma says that  $W^*(\theta_1) \leq W(\theta_1)$ . This holds for all  $\theta_1 > \theta_0$ . So the condition is satisfied and it is UMP.

Not sure about last bit; I think not true, but need some explanation.

Suppose  $X \sim N(0,1), Y \sim \chi_n^2$ . We want to find the joint PDF of

$$X/\sqrt{Y/n}$$

Consider the map

$$S:(x,y)\mapsto (u,v), \text{ where } u=x,\ v=rac{x}{\sqrt{y/n}}$$

where  $x, y, u \ge 0, 0 \le v \le 1$  The inverse map  $T^{-1}$  acts by

$$S^{-1}: (u,v) \mapsto (x,y)$$
, where  $x = u, y = nu^2/v^2$ 

and has the Jacobian

$$J(u,v) = \det \begin{pmatrix} 1 & 0 \\ 2nu/v^2 & -2nu^2/v^3 \end{pmatrix}$$
$$= -2nu^2/v^3$$

Then the joint PDF, by independence, is

$$f_{U,V}(u,v) = f_{X,Y}(u,nu^2/v^2) \left| -2nu^2/v^3 \right|$$

Substituting in  $f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \cdot \frac{y^{n/2-1} e^{-y/2}}{2^{n/2} \Gamma(n/2)}$ , yields

$$f_{U,V}(u,v) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{2^{n/2}\Gamma(n/2)} e^{-u^2/2} (nu^2/v^2)^{n/2-1} e^{-nu^2/2v^2} 2nu^2/v^3$$

Here, we integrate over the u variables. The pdf of T is given by  $\int_{-\infty}^{\infty} f_{U,V}(u,v) du$ . Can't get the result out; this is gruesome.

Single sample: testing a given mean, known variance (z-test). Suppose that  $X_1, \dots, X_n$  are iid  $N(\mu, \sigma^2)$ , with  $\sigma^2$  unknown, and we wish to test  $H_0: \mu = \mu_0$ against  $H_1: \mu \neq \mu_0$  (for given constant  $\mu_0$ ).

Here  $\Theta_0 = \{\mu_0\}$  and  $\Theta = \mathbb{R}$ .

For the denominator, we have  $\sup_{\Theta} f(\mathbf{x} \mid \mu) = f(\mathbf{x} \mid \hat{\mu})$ , where  $\hat{\mu}$  is the mle. We know that  $\hat{\mu} = \bar{x}$ . Hence

$$\Lambda_{\mathbf{x}}(H_0; H_1) = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum (x_i - \bar{x})^2\right)}{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum (x_i - \mu_0)^2\right)}.$$

Then  $H_0$  is rejected if  $\Lambda_x$  is large.

To make our lives easier, we can use the logarithm instead:

$$2\log\Lambda(H_0; H_1) = \frac{1}{\sigma^2} \left[ \sum (x_i - \mu_0)^2 - \sum (x_i - \bar{x})^2 \right] = \frac{n}{\sigma^2} (\bar{x} - \mu_0)^2.$$

So we can reject  $H_0$  if we have

$$\left| \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \right| > c$$

for some c.

We know that under  $H_0$ ,  $Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma} \sim N(0, 1)$ . So the size  $\alpha$ generalised likelihood test rejects  $H_0$  if

$$\left| \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \right| > z_{\alpha/2}.$$

Alternatively, since  $\frac{n(\bar{X} - \mu_0)}{\sigma^2} \sim \chi_1^2$ , we reject  $H_0$  if

$$\frac{n(\bar{X}-\mu_0)^2}{\sigma^2} > \chi_1^2(\alpha),$$

(check that  $z_{\alpha/2}^2=\chi_1^2(\alpha)$ ). Note that this is a two-tailed test — i.e. we reject  $H_0$  both for high and low values of  $\bar{x}$ .

Also  $S_{XX}/\sigma^2 \sim \chi^2_{n-1}$  and is independent of  $\bar{X}$ , and hence Z. So, from the previous question, know that

$$\frac{\sqrt{n}(\bar{X}-\mu)/\sigma}{\sqrt{S_{XX}/((n-1)\sigma^2)}} \sim t_{n-1},$$

or

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{S_{XX}/(n-1)}} \sim t_{n-1}.$$