Contingency Table - STAT110 Otago

Students also viewed

Terms in this set (14)

	Ratio of two probabilities
	LARGE SAMPLE SIZE
	Relative risk (RR) gives the risk of an outcome
relative risk definition	relative to "exposure".
	It is calculated as the ratio of the risk of an outcome
	for an exposed and an unexposed group
	RR = [a/(a+b)] / [c/(c+d)]
	RR = 1 there is no association between outcome and
	exposure (e.g. rugby position and injury).
Magning of the DD value	RR < 1 first row happens less likely than the second
Meaning of the RR value	row
	RR > 1 first row happens more likely than the second
	row
	Difference between two probabilities
	LARGE SAMPLE SIZE
Risk Difference definition	The risk difference (RD) is given by the difference in
	the risk for the two groups
	RD = a/(a + b) - c/(c + d)

	Ratio of two odds SMALL SAMPLE SIZE
	The odds ratio (OR) compares the odds of an outcome for two groups Ratio of the odds of the outcome for the exposed group to that for the unexposed group
Odds Ratio definition	OR = (a/b) / (c/d) = ad / bc OR = (a/b) / (c/d) = ad / bc
	There is no mathematical distinction between exposure and outcome variables -> makes it particularly useful for quantifying associations between binary variables where there is no "direction" e.g. alcohol consumption (Yes/No) and smoking (Yes/No)
Why OR not RR if the sample size is small	 it can leads to a similar conclusion as to when there were a larger number of controls The relative risk (RR) varies far more than the OR with changing the number of controls selected. This means RR is not an estimate of anything useful in a case-control study.
when will the OR and the RR be very similar?	if the outcome is rare
Confidence interval for difference between two proportions	p1 = a / r1 p2 = c / r2 $-\frac{\alpha}{2} \sqrt{\frac{p_1(1-p_1)}{n_1}}$
steps to calculate the Confidence interval for relative risk	 get the RR value get the ln(RR) calculate the SE of ln(RR) (with formula) calculate the CI for ln(RR) (with formula) calculate the CI for RR (exp() function)

standard error for Confidence interval for relative risk	$\sqrt{rac{1}{a}-rac{1}{r_1}}$
key formula for Confidence interval for relative risk	$\pm z_{\left(1-\frac{\alpha}{2}\right)}$
steps to calculate the Confidence interval for odds ratio	 get the OR value get the ln(OR) calculate the SE of ln(OR) (with formula) calculate the CI for ln(OR) (with formula) calculate the CI for OR (exp() function)
standard error for Confidence interval for Odds Ratio	$\sqrt{\frac{1}{a} + \frac{1}{b}}$
the meaning for range of	(photo in Chinese)
To get the risk difference in terms of the number of cases per x people, we need to multiply this answer by x	e.g., Express your answer in terms of the extra number of cases of cancer among 1000 people who eat red or processed meat four or more times per week.
	RD = 2341/191678-277/68601=0.008175 To get the risk difference in terms of the number of cases per 1000 people, we need to multiply this answer by 1000 RD = (2341/191678-277/68601)*1000=8.175