Predicting Heart Disease

Implementations of Logistic Regression Models

Motivation

- One of the leading causes of death (World Health Organization, 2021)
- Understanding risk factors to help research

Dataset

- 300.000+ rows
- ~20 variables
- Heart disease as dependent variable

Dataset

Limitations

- Processing:
 - Loss of variability through grouping certain categories as binary
- Biases:
 - USA based dataset
 - Relatively uneven distribution of age among participants

Health_Good_or_Better -	1	-0.045	0.25	-0.22	-0.032	-0.12	-0.18	-0.23	-0.21	0.017	-0.12	0.053	-0.11	-0.16	-0.13
Recent_Checkup -		1	-0.021	0.067	0.071	0.074		0.11	0.13	-0.1	0.2	-0.089			-0.019
Exercise -	0.25	-0.021	1	-0.096			-0.085	-0.14	-0.12		-0.12	0.092	-0.09	-0.16	-0.093
Heart_Disease -	-0.22	0.067	-0.096		0.091	0.092		0.17	0.15	0.073	0.23				0.11
Skin_Cancer -		0.071		0.091	1	0.15			0.14		0.27				0.033
Other_Cancer -	-0.12	0.074	-0.054	0.092	0.15	1		0.066	0.13		0.24				0.053
Depression -	-0.18		-0.085			0.016	1	0.053	0.12	-0.14	-0.1	-0.091		0.11	0.1
Diabetic -	-0.23	0.11	-0.14	0.17		0.066	0.053	1	0.14		0.2		0.17	0.21	0.056
Arthritis -	-0.21	0.13	-0.12	0.15	0.14	0.13	0.12	0.14	1	-0.1	0.37	-0.098	0.074	0.14	0.12
Sex_Male -	0.017	-0.1	0.059	0.073			-0.14	-0.0028	-0.1	1	-0.061	0.7	0.35		0.073
Age_Normalised -	-0.12	0.2	-0.12	0.23	0.27	0.24	-0.1	0.2	0.37	-0.061		-0.12	-0.065		0.13
Height_norm -		-0.089	0.092		0.0068	-0.043	-0.091		-0.098	0.7	-0.12		0.47		0.052
Weight_norm -	-0.11		-0.09					0.17	0.074	0.35	-0.065	0.47	1	0.86	0.048
BMI_norm -	-0.16		-0.16				0.11	0.21	0.14				0.86	1	0.025
Smoking_History -	-0.13		-0.093	0.11			0.1		0.12	0.073	0.13			0.025	1
	Health_Good_or_Better -	Recent_Checkup -	Exercise -	Heart_Disease -	Skin_Cancer -	Other_Cancer -	Depression -	Diabetic -	Arthritis -	Sex_Male -	Age_Normalised -	Height_norm -	Weight_norm -	BMI_norm -	Smoking_History -

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Research Questions and Hypothesis

- **RQ1**: Which features are the most predictive of heart disease when implementing a logistic regression model?
- **RQ2**: Does a logistic regression model based on PCA-generated components predict with higher accuracy than a logistic regression model fit on the 'clean' data?
 - H²-⁰: A logistic regression model using PCA-generated components does not achieve significantly higher accuracy compared to a logistic regression model using the original 'clean' data.
 - RQ2^{sub}_1: What implications do these components have on the interpretation of the predictive capacity of the features?
 - RQ2^{sub_2}: Does the usage of PCA components introduce any bias into the model?
- **RQ3**: Can we extract how many variables and which contribute to a high model accuracy?

Methods

- Logistic Regression
- Principal Component Analysis
- K-Fold Cross-Validation
 - Comparing PCA to Fully Fitted Model
 - Comparing Models With Select Variables

Methods: Coefficient Predictability

- RQ1: Which features are the most predictive of heart disease when implementing a logistic regression model?
 - Logistic regression predicts a binary outcome: heart disease (yes/no).

Use training set (75%) for regression model

Test regression model $\rightarrow 0.75$ accuracy

Calculate odds

Results: coefficient predictability

- < 1: low risk
- 1 -3 moderate risk
- > 3: high risk

Limitations: coefficient predictability

- Interaction effects
- Multicollinearity
 - Weight, BMI, height
- Interpretation:
 - Recent checkups, exercise

Principal Component Analysis

- 'Summary' of the dataset
- 3 Components for retainment of 95% of the variance

- PC 1: BMI, weight, height
- PC 2: Height, weight
- PC 3: Age

Results: Cross-Validation I

- We fail to reject our null-hypothesis
- Can we answer **RQ2**?
- Product of overfitting?
- AIC suggests this is not the case

Results: Cross-Validation II

- RQ3: Can we extract how many variables – and which – contribute to a high model accuracy?
- Variable selection based on literature
 - Age
 - Gender
 - Smoking
 - Exercise
 - Diabetes
- Arbitrary order

Results: Cross-Validation II

Reversed order of variables

Results: Cross-Validation II

- Is exercise that predictive?
- It seems like it, but we cannot say for certain.

Conclusion and Limitations

- Some insights into variable predictability
- PCA did not yield better results

Conclusion and Limitations

- Potential overfit
- No analysis of potential collinearity
- Correlation ≠ causation

Predicting Heart Disease

Implementations of Logistic Regression Models

Thank you for listening

Any questions?