Network Layer Security Protocol IPsec

2019. 5. 13

Internet Key Exchange (IKE)

- Establish a secure session between two endpoints by doing:
 - Authentication
 - Key Establishment
- IKEv2
 - Greatly simplified IKEv1
 - IKEv1 is unnecessarily(?) complex (2 phases, 9 protocols)
 - IKEv2 is still complex

The First exchange of IKEv2

The initial exchanges authenticate each other and set up a special security association (SA).

A little bit detailed procedure of IKEv2

Create Child SA

 CREAT_CHILD_SA exchange can be used to establish further SAs.

After IKE

- After IKE, two end points establishes a secure logical connection called security association(SA).
- SA identifies the identity number (SPI), the identities of two ends, and all security profiles.
- Below, one example is shown.

SPI: 12345

Source IP: 200.168.1.100

Dest IP: 193.68.2.23

Protocol: ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MD5 Encryption key: 0x7aeaca... HMAC key:0xc0291f...

SPI: 12345

Source IP: 193.68.2.23 Dest IP: 200.168.1.100

Protocol: ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MD5 Encryption key: 0x7aeaca... HMAC key:0xc0291f...

Two headers

- Authentication Header (AH)
 - Sender authentication and data integrity
 - But not confidentiality
- Encapsulation Security Payload (ESP)
 - Sender authentication and data integrity
 - And also confidentiality
 - Commonly used in real deployment

Two modes: Transport mode

Transport mode

- Provide the protection of the payload of an IP packet
- Used for end-to-end communication

Two modes: Tunnel mode

- Tunnel mode
 - Provide the protection to the entire IP packet

Tunnel mode with ESP

- ESP trailer: appended to align with the length of block ciphers
- ESP header:
 - SPI (Security parameter index): identify a security association (SA)
 - Sequence number: prevent replay attacks
- ESP auth : MAC (eg, HMAC)

IPsec vs. TLS

- IPsec philosophy
 - Only change OS, don't change applications or API
- TLS philosophy
 - Don't change OS
 - Deploy as user process, so work on top of TCP
- Pros and Cons
 - •

IPsec application: VPN

- IPsec envisioned to replace TLS and be a standard way of protecting all communications, but the reality is not.
- One typical application of IPsec is VPN.
- VPN(virtual Private Network)
 - A private network is owned and administered by a private owner(ex, a company), and is allowed to be used by only members.
 - VPN is a way of constructing private networks on top of public networks.
 - Two essential requirements of VPN are the security and QoS.

