Making Sense of Extended Kalman Filters

Tianshu Huang

Fall 2018

1 Background

1.1 Background: Kalman Filters

An agent asynchronously receive observations \mathbf{z}_k at various times. The agent maintains a current state prediction $\hat{\mathbf{x}}_{k|k}$. After receiving an observation \mathbf{z}_k , which can be a processed camera input, one-dimensional sensor input such as a distance sensor, or an observation transmitted by another agent, the agent should update its current state estimate:

$$\begin{array}{ccc} \text{Previous state prediction} & \hat{\mathbf{x}}_{k-1|k-1} \\ \text{Previous state covariance} & P_{k-1|k-1} \\ & \text{Input data} & \hat{\mathbf{z}}_k \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{Updated state prediction} & \hat{\mathbf{x}}_{k|k} \\ \text{Update covariance} & P_{k|k} \end{array} \right.$$

1.2 Background: SLAM

SLAM stands for Simultaneous Localization and Mapping. SLAM has been described as a "chicken and egg" problem: if an agent has a map of its location, it can find out where it is, and if the agent knows where it is, it can draw a map of the things it sees. However, if an agent knows neither, how can it draw a map as it goes along to figure out where it is?

The agent maintains a map M. The agent continuously observes its surroundings, and identifies distinct landmarks \mathbf{m}_k . Once a landmark is identified, it must be added to the map if not already in the map; otherwise, the landmark can be used to locate the agent.

2 Kalman Filters

2.1 Notation

Definition 1 The current state at step k is a vector $\mathbf{x}_k \in \mathbb{R}^n$.

Definition 2 The state transition matrix is denoted by F_k . Without any control inputs or noise, this describes \mathbf{x}_k in terms of \mathbf{x}_{k-1} :

$$\mathbf{x}_k = F_k \mathbf{x}_{k-1}$$

Definition 3 The observation process matrix is denoted by H_k . This is a matrix mapping the current state to an observed vector. Therefore, without any noise, any observations \mathbf{z}_k can be described as

$$\mathbf{z}_k = H_k \mathbf{x}_k$$

Definition 4 The control input model is denoted by a matrix B_k for some control vector \mathbf{u}_k that maps \mathbf{u}_k to $\Delta \mathbf{x}_k$.

Definition 5 The additive process noise covariance is denoted by Q_k . Additive noise is modeled as a multivariate Gaussian. Denote noise sampled from this noise as a random variable $\mathbf{w}_k \sim N(0, Q_k)$. Therefore, state evolution with control input is modelled as

$$\mathbf{x}_k = F_k \mathbf{x}_{k-1} + B_k \mathbf{u}_k + \mathbf{w}_k$$

Definition 6 The observation covariance matrix is denoted by R_k . Like the state evolution noise, this is modelled by a multivariate gaussian; denote a random variable drawn from this distribution by $\mathbf{v}_k \sim N(0, R_k)$.

Therefore, observations are modelled by

$$\mathbf{z}_k = H_k \mathbf{x}_k + \mathbf{v}_k$$

Definition 7 The state prediction for time a given observations up to time b is denoted by $\hat{\mathbf{x}}_{a|b}$.

Definition 8 The covariance matrix of the state prediction is

$$P_{a|b} = cov(\mathbf{x}_a - \hat{\mathbf{x}}_{a|b})$$

2.2 A Priori Update

Lemma 1 The a priori updated covariance for a discrete sample space is given by

$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T$$

Proof For a centered $m \times n$ data matrix D, the covariance is given by $\frac{1}{n}D^TD$. Also, since $D_k^T = F_k D_{k-1}^T$ the post-transition data matrix is given by $D_k = D_{k-1} F_k^T$. Therefore,

$$P_{k|k-1} = \frac{1}{n} D_k^T D_k$$

$$= \frac{1}{n} (D_{k-1} F_k^T)^T (D_{k-1} F_k^T)$$

$$= F_k \frac{1}{n} D_{k-1}^T D_{k-1} F_k^T$$

$$= F_k P_{k-1} F_k^T$$

Theorem 1 The a priori update covariance for an arbitrary space is

$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T$$

Proof By the definition of covariance, we have $P_{k|k-1} = cov(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k-1})$. Therefore,

$$\begin{split} P_{k|k-1} &= cov(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k-1}) \\ &= cov\left(F_k\mathbf{x}_{k-1} + B_ku_k + \mathbf{w}_k - \left(F_k\hat{\mathbf{x}}_{k-1|k-1} + B_ku_k\right)\right) \\ &= cov\left(F_k(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1}) + \mathbf{w}_k\right) \\ &= E\left[\left(F_k(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1}) + \mathbf{w}_k\right)\left(F_k(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1}) + \mathbf{w}_k\right)^T\right] \\ &= E[F_k(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1})(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1})^TF_k^T] \\ &+ 2E[\mathbf{w}_k(\mathbf{x}_k - \hat{\mathbf{x}}_{k-1|k-1})^TF_k^T + E[\mathbf{w}_k\mathbf{w}_k^T] \end{split}$$

Since the random variable \mathbf{x} is assumed to be symmetric, $E[\mathbf{x} - \hat{\mathbf{x}}_{k-1|k-1}] = 0$. Also, since \mathbf{w}_k is pulled from a random variable with covariance Q_k , $E[\mathbf{w}_k \mathbf{w}_k^T] = Q_k$. Using the linearity of expectation,

$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k$$

as desired.

2.3 Innovation

Definition 9 The innovation, denoted $\tilde{\mathbf{y}}_k$ is the difference between the measurement and the predicted measurement:

$$\tilde{\mathbf{y}}_k = \mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k-1}$$

Definition 10 The covariance of the innovation is denoted by S_k .

Theorem 2 The covariance matrix of the innovation is given by

$$S_k = R_k + H_k P_{k|k-1} H_k^T$$

Proof See Lemma 1. Instead of $cov(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k-1})$, we evaluate $cov(\tilde{\mathbf{y}}_k) = cov(\mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k-1})$.

2.4 A Posteriori Update and Kalman Gain

Definition 11 The a posteriori state estimate is written as $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + K_k \tilde{\mathbf{y}}_k$ for some matrix K_k , called the optimal Kalman gain.

The optimal Kalman gain should be the solution of

$$\arg\min_{K_k} E\left[||\mathbf{x}_k - \hat{\mathbf{x}}_{k|k}||_2^2\right]$$

Lemma 2 The posteriori covariance matrix estimate is given by

$$P_{k|k} = (I - K_k H_k) P_{k|k-1} (I - K_k H_k)^T + K_k R_k K_k^T$$

Proof Starting with the definition of $P_{k|k}$, and substituting $\hat{\mathbf{x}}_{k|k}$, $\tilde{\mathbf{y}}_k$, and finally \mathbf{z}_k ,

$$\begin{split} P_{k|k} &= cov(\mathbf{x} - \hat{\mathbf{x}}_{k|k}) \\ &= cov(\mathbf{x} - (\hat{\mathbf{x}}_{k|k-1} + K_k \tilde{\mathbf{y}}_k)) \\ &= cov(\mathbf{x} - (\hat{\mathbf{x}}_{k|k-1} + K_k (\mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k-1}))) \\ &= cov(\mathbf{x} - (\hat{\mathbf{x}}_{k|k-1} + K_k (\mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k-1}))) \\ &= cov(\mathbf{x} - (\hat{\mathbf{x}}_{k|k-1} + K_k (H_k \mathbf{x}_k + \mathbf{v}_k - H_k \hat{\mathbf{x}}_{k|k-1}))) \\ &= cov(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1} - K_k H_k \mathbf{x}_k - K_k v_k + K_k H_k \hat{\mathbf{x}}_{k|k-1}) \\ &= cov((I - K_k H_k)(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1}) - K_k \mathbf{v}_k) \\ &= E[(I - K_k H_k)(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})^T (I - K_k H_k)^T] \\ &- 2E[(I - K_k H_k)(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})\mathbf{v}_k^T K_k^T] + E[K_k \mathbf{v}_k \mathbf{v}_k^T K_k)] \end{split}$$

Since $\mathbf{x} - \hat{\mathbf{x}}_{k|k-1}$ and \mathbf{v}_k are independent and centered at 0, $E[(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})^T \mathbf{v}_k] = 0$. Therefore,

$$P_{k|k} = (I - K_k H_k) E[(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})(\mathbf{x} - \hat{\mathbf{x}}_{k|k-1})^T] (I - K_k H_k)^T + K_k E[\mathbf{v}_k \mathbf{v}_k^T] K_k^T$$

$$= (I - K_k H_k) P_{k|k-1} (I - K_k H_k) + K_k R_k K_k^T$$

This can be further expanded as

$$\begin{split} P_{k|k} &= P_{k|k-1} - K_k H_k P_{k|k-1} - P_{k|k-1} H_k^T K_k^T + K_k H_k P_{k|k-1} H_k^T K_k^T + K_k R_k K_k^T \\ &= P_{k|k-1} - K_k H_k P_{k|k-1} - P_{k|k-1} K_k H_k + K_k (H_k P_{k|k-1} H_k^T + R_k) K_k^T + K_k R_k K_k^T \\ &= P_{k|k-1} - K_k H_k P_{k|k-1} - P_{k|k-1} K_k H_k + K_k S_k K_k^T \end{split}$$

Theorem 3 The Kalman gain is given by $K_k = P_{k|k-1}H_k^T S_k^{-1}$.

Proof As according to the definition above, we seek to minimize

$$E[||\mathbf{x}_k - \hat{\mathbf{x}}_{k|k}||_2^2] = E[Tr((\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})^T)]$$

$$= Tr(E[(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})^T])$$

$$= Tr(P_{k|k})$$

In order to minimize $tr(P_{k|k})$ over K_k , set $\frac{\partial}{\partial K_k} tr(P_{k|k}) = 0$. Note that covariance matrices are symmetric, so $S_k = S_k^T$.

$$\begin{split} \frac{\partial}{\partial K_k} tr(P_{k|k}) &= \frac{\partial}{\partial K_k} tr\left((I - K_k H_k) P_{k|k-1} (I - K_k H_k) + K_k R_k K_k^T\right) \\ &= \frac{\partial}{\partial K_k} tr\left(P_{k|k-1} - K_k H_k P_{k|k-1} - P_{k|k-1} K_k H_k + K_k S_k K_k^T\right) \\ &= -\frac{\partial}{\partial K_k} tr\left(K_k H_k P_{k|k-1}\right) - \frac{\partial}{\partial K_k} tr\left(P_{k|k-1} K_k H_k\right) + \frac{\partial}{\partial K_k} tr\left(K_k S_k K_k^T\right) \\ &= -2\frac{\partial}{\partial K_k} tr\left(K_k^T P_{k|k-1}^T H_k^T\right) + \frac{\partial}{\partial K_k} tr\left(K_k^T S_k K_k\right) \\ &= -2P_{k|k-1}^T H_k^T + (S_k + S_k^T) K_k \\ &= -2P_{k|k-1}^T H_k^T + 2S_k K_k \end{split}$$

Therefore, using $P_{k|k-1} = P_{k|k-1}^T$ (by the symmetry of covariance matrices),

$$-2P_{k|k-1}^{T}H_{k}^{T} + 2S_{k}K_{k} = 0$$

$$\Rightarrow K_{k}S_{k} = P_{k|k-1}^{T}H_{k}^{T}$$

$$\Rightarrow K_{k} = P_{k|k-1}^{T}H_{k}^{T}S_{k}^{-1} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}$$

Theorem 4 When K_k is the optimal kalman gain, $P_{k|k} = (I - K_k H_k) P_{k|k-1}$.

Proof Using $K_k S_k = P_{k|k-1} H_k^T \Rightarrow K_k S_k K_k^T = P_{k|k-1} H_k^T K_k^T$, we can substitute this back into the final result of Theorem 3:

$$P_{k|k} = P_{k|k-1} - K_k H_k P_{k|k-1} - P_{k|k-1} K_k H_k + K_k S_k K_k^T$$

$$= P_{k|k-1} - K_k H_k P_{k|k-1}$$

$$= (I - K_k H_k) P_{k|k-1}$$

2.5 Summary

Algorithm 1 Kalman Filter Algorithm

- 1: procedure KalmanFilter(
 - Previous state estimate $\hat{\mathbf{x}}_{k-1|k-1}$, state transition model F_k , observation model H_k , process covariance Q_k , observation noise covariance R_k , control input model B_k , control vector \mathbf{u}_K , measurement \mathbf{z}_k)
- 2: Prediction Phase:
- 3: Update the a priori state estimate: $\hat{\mathbf{x}}_{k|k-1} \leftarrow F_k \hat{\mathbf{x}}_{k-1|k-1} + \underline{B}_k \mathbf{u}_k$
- 4: Update the a priori error covariance: $P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k$
- 5: Update Phase:
- 6: Compute the innovation: $\tilde{\mathbf{y}} \leftarrow \mathbf{z}_k H_k \hat{\mathbf{x}}_{k|k-1}$
- 7: Compute the innovation covariance: $S_k \leftarrow R_k + H_k P_{k|k-1} H_k^T$
- 8: Compute the Optimal Kalman gain: $K_k \leftarrow P_{k|k-1}H_k^T S_k^{-1}$
- 9: Update the a posteriori state estimate: $\hat{\mathbf{x}}_{k|k} \leftarrow \hat{\mathbf{x}}_{k|k-1} + K_k \tilde{\mathbf{y}}_K$
- 10: Update the a posteriori estimate covariance: $P_{k|k} \leftarrow (I K_k H_k) P_{k|k-1}$
- 11: Obtain the measurement post-fit residual: $\tilde{\mathbf{y}}_{k|k} \leftarrow \mathbf{z}_k H_k \hat{\mathbf{x}}_{k|k}$
- 12: **return** $(\hat{\mathbf{x}}_{k|k}, P_{k|k}, \tilde{\mathbf{y}}_{k|k})$
- 13: end procedure

3 Extended Kalman Filter: SLAM Algorithm

3.1 Overview

To extend Kalman Filters to SLAM (EKF), after the *a priori* phase, the innovation should be used to extend the map, with landmarks below a certain confidence threshold rejected for ease of computation. If any changes are made, the innovation should be re-computed. Then, to deal with indistinguishable landmarks, an equivalence class is described, and the landmark set is chosen using the MLE (Maximum Likelihood Estimator).

3.2 Definitions

Definition 12 A map is a collection of landmarks with their associated covariance matrix and confidence value. However, when landmarks are indistinguishable, modifications are necessary in order to create an equivalence class of landmarks. Define a map as a collection $M = \{L_i\}_i$ of landmark classes. Then, define a landmark class as

$$L_i = \{\hat{\mathbf{p}}_i, \Sigma_i, c_i\}_i$$

where $\hat{\mathbf{p}}_i$ is the state estimate of the landmark \mathbf{p}_i , Σ_i is the covariance matrix of the landmark \mathbf{p}_i , and c_i is the obstacle confidence.

Definition 13 The Mahalanobis distance between a point \mathbf{p} and a distribution with center μ and covariance matrix Σ_{μ} is

$$D(\mathbf{p}, [\mu, \Sigma]) = \sqrt{(\mathbf{p} - \mu)^T \Sigma_{\mathbf{p}}^{-1} (\mathbf{p} - \mu)}$$

Definition 14 For observation $\hat{\mathbf{z}}$ with covariance $\Sigma_{\mathbf{z}}$ and landmark class L, we define the norm $d(\hat{\mathbf{z}}, L)$ from an observed landmark to a landmark class as the probability that the observed landmark is not a member of the landmark class.

Since this model assumes that error follows a multivariate normal, the probability that an observation is not a landmark is modelled as^1

$$\mathbb{P}[\mathbf{z} \neq \mathbf{p}_i] = (1 - c_i) \int_{D_{\mathbf{p}}(\mathbf{t}) = 0}^{D_{\mathbf{p}}(\mathbf{t}) = D(\hat{\mathbf{z}})} N(0, I) d\mathbf{t}$$

where $D_{\mathbf{p}}(\mathbf{t})$ is used as shorthand for $D(\mathbf{t}, [\hat{\mathbf{p}}_i, \Sigma_i + \Sigma_{\mathbf{p}}])$ since the Mahalanobis distance in this application should always be taken in the context of \mathbf{p}_i and $\Sigma_i + \Sigma_{\mathbf{p}}$.

Assuming independence of landmarks,

$$d(\hat{\mathbf{z}}, L) = \mathbb{P}[\mathbf{z} \notin L]$$

$$= \prod_{\mathbf{p}_i \in L} \mathbb{P}[\mathbf{z} \neq \mathbf{p}_i]$$

$$= \prod_{\{\mathbf{p}_i, \Sigma_i, c_i\} \in L} \left((1 - c_i) \int_{D_{\mathbf{p}}(\mathbf{t}) = 0}^{D_{\mathbf{p}}(\mathbf{t}) = D(\hat{\mathbf{z}})} N(0, I) d\mathbf{t} \right)$$

¹ This integral can be interpreted as integrating over \mathbb{R}^n over $B_{D(\hat{\mathbf{z}})}(0)$ with the Mahalanobis distance to \mathbf{p} as the norm. This is also the integral of t along the level-set curves of $N(\hat{\mathbf{p}}_i, \Sigma_i + \Sigma_{\mathbf{z}})$ up to $\mathbf{y} - \hat{\mathbf{p}}_i$.

Since the minimum obstacle distance is 6", the integral should be close to 1 for at most all but one landmark. Therefore, we can approximate this as

$$\mathbb{P}[\mathbf{y} \notin L] = \min_{i} (1 - c_i) \int_{D_{\mathbf{p}}(\mathbf{t}) = 0}^{D_{\mathbf{p}}(\mathbf{t}) = D_{\mathbf{p}}(\hat{\mathbf{z}})} N(0, I) d\mathbf{t}$$

Denote the surface area of a d dimensional ball as v_d . Then, since N(0, I) is symmetric, the integral can be further simplified as

$$\mathbb{P}[\mathbf{y} \notin L] = \min_{i} (1 - c_i) \int_{t=0}^{D_{\mathbf{p}}(\hat{\mathbf{z}})} v_d t^d \frac{1}{\sqrt{(2\pi)^{d-1}}} e^{-t^2/2} dt$$

3.3 New Landmark Creation

After the a priori updates, the innovation should be computed, and used to generate new landmarks.

Suppose some $Z = \{\mathbf{z}_i\}_i$ landmarks are observed within a certain landmark equivalence class L. Then, for each observation \mathbf{z}_i , compute $\mathbb{P}[\mathbf{y} \notin L]$. This is the confidence that the observed landmark is not a current member of L; the element

$$\{\hat{\mathbf{p}}_i = \mathbf{z}_i, \Sigma_i = \Sigma_{\mathbf{z}}, c_i = \mathbb{P}[\mathbf{y} \notin L]\}$$

should therefore be added to L. These elements can then be appended to the a priori updated map $\hat{\mathbf{x}}_{k|k-1}$, and entries added to the covariance matrix $P_{k|k-1}$.

3.4 Landmark Assignment

In order to match observed landmarks $\{\mathbf{p}_i, \Sigma_i, c_i\}_{i \in A}$ in $\hat{\mathbf{x}}_{k|k-1}$ with observed landmarks $Z = \{\hat{\mathbf{z}}_i\}_{i \in I}$ using a maximum likelihood configuration, we seek to solve the optimization problem

Examining the expansion

$$\mathbb{P}[\mathbf{z}_n = \mathbf{p}_{i_n}] = c_{i_n} \int_{t=D_{\mathbf{p}}(\mathbf{z})}^{\infty} v_d t^d \frac{1}{\sqrt{(2\pi)^{d-1}}} e^{-t^2/2} dt$$

we can see that this problem favors matching observed landmarks to landmarks with a high confidence, even if this results in a higher distance to landmark, as desired.

In order to implement a greedy solution to this problem, assign i_n in order of $P[\mathbf{z}_n = \mathbf{p}_{i_n}]$:

Algorithm 2 Greedy Landmark Matching

```
1: procedure MATCH(Map \{\mathbf{p}_i, \Sigma_i, c_i\}_{i \in A}, observed landmarks Z = \{\hat{\mathbf{z}}_i\}_{i \in I})
2: while Unassigned observations remain do
3: Find the closest \mathbf{z}_i to remaining each \mathbf{p}_j
4: Compute the corresponding \mathbb{P}[\mathbf{z}_i = \mathbf{p}_j]
5: Assign the pair with highest probability and remove the pair
6: end while
7: end procedure
```

3.5 Algorithm

Adding the previous elements to the base Kalman Filter algorithm, the full algorithm is as follows:

Algorithm 3 Extended Kalman Filter with indistinguishable landmark classes

```
1: procedure EKF(
                 Previous state estimate \hat{\mathbf{x}}_{k-1|k-1}, state transition model F_k,
                 observation model H_k, process covariance Q_k,
                 observation noise covariance R_k, control input model B_k,
                 control vector \mathbf{u}_K, measurement \mathbf{z}_k,
                 Map M (is a subset of \hat{\mathbf{x}}_{k-1|k-1}))
         Prediction Phase:
 2:
         Update the a priori state estimate: \hat{\mathbf{x}}_{k|k-1} \leftarrow F_k \hat{\mathbf{x}}_{k-1|k-1} + B_k \mathbf{u}_k
 3:
         Update the a priori error covariance: P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k
 4:
         Map Update Phase:
 5:
         For each observed obstacle in \mathbf{z}_k, update the map. Landmarks with a low confidence
 6:
     can be rejected.
         Reflect changes made in the map in \hat{\mathbf{x}}_{k|k-1}. Also extend R_k, Q_k, and H_k.
 7:
         Rearrange equivalence classes within R_k, H_k, and \mathbf{z}_k to the maximum-likelihood
     configuration
         Update Phase:
 9:
         Compute the innovation: \tilde{\mathbf{y}} \leftarrow \mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k-1}
10:
         Compute the innovation covariance: S_k \leftarrow R_k + H_k P_{k|k-1} H_k^T
11:
         Compute the Optimal Kalman gain: K_k \leftarrow P_{k|k-1}H_k^T S_k^{-1}
12:
         Update the a posteriori state estimate: \hat{\mathbf{x}}_{k|k} \leftarrow \hat{\mathbf{x}}_{k|k-1} + K_k \tilde{\mathbf{y}}_K
13:
         Update the a posteriori estimate covariance: P_{k|k} \leftarrow (I - K_k H_k) P_{k|k-1}
14:
         Obtain the measurement post-fit residual: \tilde{\mathbf{y}}_{k|k} \leftarrow \mathbf{z}_k - H_k \hat{\mathbf{x}}_{k|k}
15:
16:
         return (\hat{\mathbf{x}}_{k|k}, P_{k|k}, \tilde{\mathbf{y}}_{k|k})
17: end procedure
```