NASA -CR- 174,705

DOE/NASA-0303-1 NASA CR-174705

NASA-CR-174705 19840020892

CREEP-RUPTURE BEHAVIOR OF CANDIDATE STIRLING ENGINE IRON SUPERALLOYS IN HIGH-PRESSURE HYDROGEN

VOLUME II - HYDROGEN CREEP-RUPTURE BEHAVIOR

S. Bhattacharyya, W. Peterman and C. Hales IIT RESEARCH INSTITUTE 10 West 35th Street Chicago, Illinois 60616

JUNE 1984

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contract DEN 3-303

APS 1.3 1984

for

U.S. DEPARTMENT OF ENERGY
Office of Transportation Programs

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

			^
			^
			^
			•
			٠,
			^
			^
			^
			•

8 1 RN/NASA-CR-174705 DISPLAY 08/2/1

PAGE 2992 CATEGORY 26 RPT#: NASA-CR-174705 NAS 84N28961*# ISSUE 19 1.26:174705 IITRI-M06116-15 CNT#: DEN3-303 DE-AI01-77CS-51040 84/06/00 UNCLASSIFIED DOCUMENT 105 PAGES

UTTL: Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior TLSP: Final Report

AUTH: A/BHATTACHARYYA, S.; B/PETERMAN, W.; C/HALES, C. CORP: IIT Research Inst., Chicago, III. AVAIL.NTIS SAP: HC A06/MF A01

MAJS: /*COBALT ALLOYS/*CREEP PROPERTIES/*HIGH PRESSURE/*HYDROGEN/*IRON ALLOYS/* PISTON ENGINES/*RUPTURING/*STIRLING CYCLE

MINS: / ANNEALING/ FRACTOGRAPHY/ FRACTURE MECHANICS/ PROBLEM SOLVING/ SERVICE LIFE/ STRESS ANALYSIS

AEA: M.A.C.

CHITCO:

ABS: The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

	• .		
 and the second seco			

CREEP-RUPTURE BEHAVIOR OF CANDIDATE STIRLING ENGINE IRON SUPERALLOYS IN HIGH-PRESSURE HYDROGEN

VOLUME II: HYDROGEN CREEP-RUPTURE BEHAVIOR

S. Bhattacharyya, W. Peterman, and C. Hales IIT Research Institute 10 West 35 Street Chicago, Illinois 60616

June 1984

Prepared for

National Aeronautics and Space Administration Lewis Research Center Under Contract DEN3-303

for

U.S. Department of Energy Office of Transportation Programs Under Interagency Agreement DE-A-101-77CS51040

N84-28961#

		_
		-
		۔
		-
		_
		^
		-

1. Report No.	2. Government Accession No).	3. Recipient's Catalo	og No.
NASA CR-174705				
4. Title and Subtitle Creep-Rupture Behavior of Ca	ndidata Ctiplina [-naina Tuan	5. Report Date	
Superalloys in High-Pressure	Hydrogen Volume	ingine iron i	June 1984	
Hydrogen Creep-Rupture Behav	ior	11.	6. Performing Organ	ization Code
7. Author(s)			8. Performing Organi	ration Banas No
S. Bhattacharyya, W. Peterma	n, and C. Hales		I ITRI - M06116-	
			10. Work Unit No.	
9. Performing Organization Name and Address			TO. TOOK OTHER	
IIT Research Institute			11. Contract or Gran	. No
10 West 35 Street			DEN3-303	. 140.
Chicago, Illinois 60616		}	13. Type of Report a	and Parind Coursed
12. Sponsoring Agency Name and Address			Contractor Re	
U.S. Department of Energy		-		·
Office of Transportation Pro Washington, DC 20545	grams		14. Sponsoring Agenc	y Code
15. Supplementary Notes		l		
Final Report, prepared under	Interagency Agree	ment DE-A-10	01-77CS51040	
Program Manager, R. H. Titra	n, MS 49-1, NAŠA-L	ewis Researc	ch Center, Cle	veland, Ohio.
44135			·	
16. Abstract	-			
The creep-rupture behav	ior of nine iron-b	ase and one	cobalt-base c	andidate
Stirling engine alloys was e	valuated at 650° t	o 925°C in 1	$5 \text{ MPa H}_2 \text{ and}$	air. The test
alloys included six wrought 12RN72, INCOLOY Alloy 800H,	alloys for tube apand Λ_{-} 296) and four	pilcation (C	G-2/, N-155,	19-9DL,
erator housing (SA-F11, HS-3	l. CRM-6D, and XF-	RIS) Two h	eats of CRM_6	rs and regen- D and YF-818
were tested in two different	heat treated cond	itionsCRM-	6D (aged vs.	braze-cvcled)
and XF-818 (as-cast vs. braze	e-cycled), and SA-	Fll and HS-3	31 with braze-	cycle treat-
ment only.				•
Rupture life, minimum c	reen rate and tim	o to 1% stm	in data wana	
ing Orowan-Sherby-Dorn temper	rature-compensated	e to 1% stra technique	and the 3500-	analyzea us-
life stress and stress to ob-	tain 1% strain in	3500 h were	estimated. T	he analysis
indicated that tube alloys C	G-27, N-155, and 1	9-9DL meet t	he design str	ess level of
28 MPa for 3500-h rupture li	fe at 870°C in 15	$MPa H_2$, and	cast allovs H	S-31 (braze-
cycled), CRM-6D (aged), and	SA-Fll (braze-cvcl	ed) also ade	quately meet	the design
stress of 119 MPa for 3500-h engine design criteria.	rupture life at /	/5°C in 15 M	IPa H ₂ for MOD	1A Stirling
chighie design criteria.				
The hydrogen environmen	had no significa	ntadverse ei	ffect, compare	d to air, on
3500-h rupture life stress ar	nd stress to obtain	n 1% creep s	train in 3500	-h or on
minimum creep rates, and in a	few cases, a pos	itive effect	was noted.	However,
ductility was adversely affer than for the cast materials.	ctea in nyarogen e	nvironment,	more for the	tube alloys
Key Words (Suggested by Author(s))		stribution Statement		
		assified - ι		
Creep-rupture Hydroge Minimum creep rate Activat		Category -		
Stress exponent Ductili		Category - L	JC 90	
- 1. 300 Onponent Ductil	~			
19. Security Classif. (of this report)	20. Security Classif. (of this page	age)	21. No. of Pages	22 Price
Unclassified	Unclassified		97	22, 11,00

		_
		_
		•-
		~
		_
		- .
		-
		_
		~
		~

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
MATERIALS, EQUIPMENT, AND EXPERIMENTAL PROCEDURE	2
Test Materials and Analysis	2
Specimen Design and Preparation	3
Heat Treatment and Microstructure	3
High Pressure Hydrogen Multispecimen Creep-Rupture Test Equipment	3
High Pressure Hydrogen Creep-Rupture Tests	4
Air Creep-Rupture Tests	5
EXPERIMENTAL RESULTS AND ANALYSES	6
Basic Data	6
Creep Curves	6
Temperature-Compensated Analyses of Rupture Life, Minimum Creep Rate, and Time to 1% Creep Strain	7
Climax Cast Alloys CRM-6D (Aged) and XF-818 (As-Cast) Tested in air and 15 MPa H ₂	8
United Stirling AB, Cast Alloys CRM-6D, XF-818, HS-31, and SA-F11 (All Braze-Cycled) Tested in 15 MPa H ₂	10
Wrought Alloys N-155, 19-9DL, INCOLOY Alloy 800H, and A-286 Tested in Air and 15 MPa $\rm H_2$, and CG-27 and 12RN72 Tested in 15 MPa $\rm H_2$.	12
Predicted Stresses for Rupture and 1% Creep in 3500 Hours	16
Effect of Environment on Rupture Elongation	18
FRACTOGRAPHY AND MICROSTRUCTURAL ANALYSIS	19
Fracture Location and Appearance	19
Fractographs	20
Cross-Section Examination	21
SUMMARY OF RESULTS	22
REFERENCES	24

LIST OF TABLES

Table		Page
1	Superalloy Compositions	25
2	Heat Treatment, Hardness, and Grain Size of Tested Alloys	26
3	High-Pressure (15 MPa) Hydrogen Creep-Rupture Data	27
4	Statistical Data on Temperature-Compensated Analysis of Cast Alloys CRM-6D and XF-818 in Air and 15 MPa $\rm H_2$	30
5	Statistical Data on Temperature-Compensated Analysis of Braze-Cycled Cast Alloys HS-31, SA-F11, CRM-6D, and XF-818 in 15 MPa $\rm H_2$. 31
6	Statistical Data on Temperature-Compensated Analysis of Wrought Alloys A-286, INCOLOY Alloy 800H, N-155, 19-9DL, 12RN72, and CG-27	. 32
7	Range of Values of Stress Exponent (n) and Apparent Activation Energy (Q)	. 33
8	Predicted Stresses for 3500-h Rupture Life in Air and 15 MPa Hydrogen	. 34
9	Predicted Stress to 1% Creep in 3500 Hours in Air and 15 MPa $\rm H_2$. 36
10	Elongation Data	. 37

LIST OF FIGURES

Figure		<u>Page</u>
1	Creep-rupture specimen design	40
2	Microstructures of wrought alloys	41
3	Microstructures of cast alloys	43
4	High-pressure multispecimen test facility for creep-rupture evaluation of materials in controlled environments	46
5	Creep elongation curves for two heats of XF-818 in 15 MPa $\rm H_2$ at 760°C	47
6	Creep elongation curves for XF-818 (Climax, as-cast) tested in air and 15 MPa $\rm H_2$ at 760°C	48
7	Creep elongation curves for SA-F11 (US/AB, braze-cycled) tested in 15 MPa H ₂	49
8	Creep elongation curves for CG-27 tested in 15 MPa $\rm H_2$ at 815°C	50
9	Creep elongation curves for 12RN72 and CG-27 tested in 15 MPa H ₂	51
10	Creep elongation curves for HS-31, XF-818, CRM-6D, and SA-F11 (US/AB, braze-cycled) tested in a single test (H14) in 15 MPa $\rm H_2$ at 760°C.	52
11	Temperature-compensated rupture life vs. stress for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa H ₂ and air	53
12	Temperature-compensated minimum creep rate vs. stress for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa $\rm H_2$ and air	54
13	Temperature-compensated rupture life vs. stress for United Stirling AB braze-cycled HS-31, SA-F11, CRM-6D, and XF-818 tested in 15 MPa H ₂	55
14	Temperature-compensated minimum creep rate vs. stress for United Stirling AB braze-cycled HS-31, SA-F11, CRM-6D, and XF-818 tested in 15 MPa $\rm H_2$	56
15	Temperature-compensated rupture life vs. stress for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa $\rm H_2$	57

LIST OF FIGURES (cont.)

<u>Figure</u>		<u>Page</u>
16	Temperature-compensated minimum creep rate vs. stress for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa H ₂	58
17	Temperature-compensated time to 1% creep strain vs. stress for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa $\rm H_2$ and air	59
18	Temperature-compensated time to 1% creep strain vs. stress for United Stirling braze-cycled HS-31, SA-F11, CRM-6D and XF-818 tested in 15 MPa $\rm H_2$	60
19	Temperature-compensated time to 1% creep strain vs. stress for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa $\rm H_2$	61
20	Estimated 3500-h rupture stress for tube alloys tested at 870°C in air and 15 MPa hydrogen	62
21	Estimated 3500-h rupture stress for cast alloys tested at 775°C in air and 15 MPa hydrogen	63
22	Estimated 3500-h rupture stress of six tube alloys as a function of temperature tested in 15 MPa hydrogen	64
23	Estimated 3500-h rupture stress of United Stirling AB braze-cycled cast alloys as a function of temperature, tested in 15 MPa hydrogen	65
24	Estimated 3500-h rupture stress of Climax cast alloys as a function of temperature, tested in 15 MPa hydrogen	66
25	Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen	67
26	Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen	68
27	Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen	69
28	SEM microfractographs of A-286 tested in 15 MPa $\rm H_2$ at 705°C	70
29	SEM microfractographs of wrought alloys tested in 15 MPa $\rm H_2$	71
30	SEM microfractographs of 12RN72 tested in 15 MPa $\rm H_2$ at 760°C	72
31	SEM microfractographs of CG-27 tested in 15 MPa $\rm H_2$ at 815°C	74

LIST OF FIGURES (cont.)

<u>Figure</u>		Page
32	SEM macro- and microfractographs of CRM-6D tested in 15 MPa $\rm H_2$	75
33	SEM macro- and microfractographs of XF-818 tested in 15 MPa $\rm H_2$ at 760°C	77
34	SEM macro- and microfractographs of HS-31 (US/AB, braze-cycled), tested in 15 Mpa $\rm H_2$	78
35	SEM macro- and microfractographs of SA-F11 (US/AB, braze-cycled), tested in 15 MPa $\rm H_2$	80
36	Photomicrographs of cross-sections of wrought alloys tested in in 15 MPa $\rm H_2$	83
37	Photomicrographs of cross-sections of wrought alloys tested in 15 MPa $\rm H_2$ at 815°C showing resultant creep cavities between grains	85
38	Photomicrographs of cross-sections of cast alloys tested in 15 MPa $\rm H_2$ at 815°C	86
39	Photomicrographs of cross-sections of cast alloys tested in 15 MPa H ₂ at 760°C	88

		_
		_
		~
		~
		-
		. ^
		^

SUMMARY

The creep-rupture behavior of nine iron-base and one cobalt-base candidate Stirling engine alloys was evaluated at 650° to 925°C in 15 MPa H and air. The test alloys included six wrought alloys for tube application (CG-27, N-155, 19-9DL, 12RN72, INCOLOY Alloy 800H, and A-286) and four cast alloys for cylinders and regenerator housing (SA-F11, HS-31, CRM-6D, and XF-818). Two heats of CRM-6D and XF-818 were tested in two different heat treated conditions—CRM-6D (aged vs. braze-cycled) and XF-818 (as-cast vs. braze-cycled), and SA-F11 and HS-31 with braze-cycle treatment only.

Rupture life, minimum creep rate, and time to 1% strain data were analyzed using the Orowan-Sherby-Dorn temperature-compensated technique, and 3500-h rupture life stress and stress to obtain 1% strain in 3500 h were estimated. The analysis indicated that tube alloys CG-27, N-155, and 19-9DL meet the design stress level of 28 MPa for 3500-h rupture life in 15 MPa H₂, and cast alloys HS-31 (braze-cycled), CRM-6D (aged), and SA-F11 (braze-cycled) also adequately meet the design stress of 119 MPa for 3500-h rupture life at 775°C in 15 MPa H₂ for MOD 1A Stirling engine design criteria.

The hydrogen environment had no significant adverse effect, compared to air, on 3500-h rupture life stress and stress to obtain 1% creep strain in 3500-h or on minimum creep rate, and in a few cases, a positive effect was noted. However, ductility was adversely affected in hydrogen environment, more for the tube alloys than for the cast materials.

INTRODUCTION

The Department of Energy and NASA-Lewis Research Center have a joint program under way to develop the Stirling engine as an alternative to the automotive internal combustion engine. Advantages of the Stirling engine include the potential for high fuel efficiency, multiple fuel capability, low pollution, and low noise. To achieve these operating characteristics, the Stirling engine will operate near 820°C and use high-pressure hydrogen as the working fluid.

The long-term effects of high-pressure hydrogen at high temperature on the physical and mechanical properties of high-temperature alloys are unknown. The most critical component in the engine is the heater head which consists of the cylinders, tubings, and regenerator housing. Candidate alloys for these applications must not only meet all the property requirements in air as well as in high-pressure hydrogen, but must also be of low cost to be compatible with automotive application. With these considerations in mind, the creep-rupture properties of the candidate alloys were evaluated over the temperature range of 650°-925°C in air as well as in 15 MPa H₂. The air test results of six alloys were published earlier in NASA CR-168071. This report analyzes the 15 MPa H₂ data and compares them with the air data for ten different alloys.

MATERIALS, EQUIPMENT, AND EXPERIMENTAL PROCEDURES

Test Materials and Analysis

In all, ten different superalloys were evaluated. Nine of them were iron base and one was cobalt base, and their nominal compositions are given in Table 1.

Of these ten alloys, HS-31, SA-F11, CRM-6D, and XF-818 are casting alloys, and the other six are sheet alloys in the thickness range of 0.79 to 0.99 mm (0.031 to 0.039 in.)--comparable to the wall thickness of the tubes used in the Stirling engine. Five of the sheet alloys--A-286, INCOLOY Alloy 800H (or 800H),* N-155, 19-9DL, and CG-27--were purchased from U.S. commercial suppliers; 12RN72, a Sandvik alloy, is specially rolled into sheet form for United Stirling AB, Sweden (US/AB), the supplier who provided the material.

^{*}INCOLOY Alloy 800H is a registered trademark of Huntington Alloys, Inc. In the text, tables, and figures, the alloy is either identified fully or as 800H.

The CRM-6D and XF-818 investment cast specimens were obtained from two sources: Climax Molybdenum Co., Research Laboratory, Ann Arbor, Michigan, USA, and United Stirling AB, Sweden. The HS-31 and SA-F11 investment cast specimens were obtained from United Stirling AB, Sweden.

Specimen Design and Preparation

The specimen drawings and dimensions are shown in Fig. 1. They conform to ASTM E-8. All specimen surfaces were finished to $0.8~\mu m$ ($32~\mu in.$) rms or better. The CG-27 and 12RN72 sheet specimens were supplied by NASA fully machined with a 9.53 mm (3/8~in.) wide gage section—in CG-27 only, the gage section was remachined to the standard width of 6.25 mm (1/4~in.).

All investment cast specimens were radiographed either by IITRI or United Stirling AB, Sweden, and those with no detectable flaws were selected for testing.

Heat Treatment and Microstructure

The alloys were given their recommended heat treatments as outlined in Table 2. The heat treated hardness values and average grain diameters are also indicated in Table 2.

All the wrought alloys have solid solution-strengthened single-phase austenitic structures with fine second phase and inclusions indicating the rolling direction. N-155, 12RN72, and CG-27 show some twinning in austenite. Undissolved micron size carbides and nitrides may be seen in 12RN72. Fine precipitates in CG-27 relate to its high Al and Ti contents. Of the six sheet alloys, CG-27 is significantly stronger than all the rest, and 12RN72 and 800H are the softest while A-286, N-155, and 19-9DL have similar hardnesses. Selected microstructures are shown in Fig. 2.

Typical dendritic structures of all the cast alloys are shown in Fig. 3. With the exception of braze-cycle heat treated HS-31, the interdendritic arm spacings are very similar in the other alloys. In HS-31, the structural continuity at the boundaries is much less in evidence and only traces of lamellar structure are noted. The boron content of XF-818 is reflected in the distribution of lamellar $\rm M_3B_2$ in the eutectic structure of the dendrite walls. At higher magnifications, the structures clearly indicate discrete precipitates constituting the dendrite walls, and some coring effect is noted in CRM-6D.

High-Pressure Hydrogen Multispecimen Creep-Rupture Test Equipment

All high-pressure creep-rupture tests were carried out in a specially designed pressure vessel rated at 20.7 MPa at a maximum temperature of 925°C.

The following features are central to the overall satisfactory performance of the tests:

- Six specimens tested simultaneously within a single vessel
- Continuous direct measurement of creep extension within the vessel
- Specimen loading by dead weight with 10:1 lever ratio
- All specimens mounted on a central support column which may be assembled outside the vessel
- All temperature and strain data recorded for computer analysis
- Double-wall vessel design with balanced pressure across the inner wall
- Double-studded pressure vessel to avoid all welding
- Vessel, trunion-mounted for low headroom operation
- Vessel mounted on vibration dampening frame.

The schematic of the high-pressure vessel assembly is shown in Fig. 4.

High-Pressure Hydrogen Creep-Rupture Tests

Six specimens were tested simultaneously in the specially designed high-pressure test equipment shown in Fig. 4. Specimens were deadweight loaded to their initial stress levels and adjustments were made for both internal pressure effect and friction between the Teflon seal and stainless steel pullwire; the overall accuracy of the initial stress was better than 1% at stress levels exceeding 100 MPa and between 1 and 2% at stresses less than 100 MPa.

Two Chromel-Alumel thermocouples were mounted on each specimen just outside the gage length and monitored continuously. Temperatures were uniform between the specimens as well as between the two thermocouples on the same specimen with the standard deviation not exceeding 1.1°C. New thermocouples were used in each test.

The specimens were heated by a resistance-wound elements of 4 kW capacity controlled by a Barber-Colman Model 560 temperature controller. The two halves of the furnace elements could be controlled separately, and furnace element temperatures were monitored and controlled.

Capacitance-type transducers with a sensitivity of 0.25 μ m (10 μ in.), connected to specially designed concentric tube extensometers, are located in the upper cooler region of the reactor, and creep extension signals were recorded at any desired intervals. During loading, signals were recorded at 3

second intervals which were later increased to $10\,\mathrm{min}$ invervals during the first $2\,\mathrm{h}$ and further changed to $4\,\mathrm{h}$ intervals for long-term tests.

Automatic timers recorded test duration. A mercury cut-off switch mounted on the loading arm indicated rupture when the arm dropped from the horizontal position.

Hydrogen pressure inside the inner reactor vessel was balanced against nitrogen pressure outside it using a differential pressure gage. When the pressure between the inner vessel and the outer chamber exceeded $\pm 70~\mathrm{kPa}$, automatic demand-operated solenoid valves fed the desired gas (either H $_2$ to inside or N $_2$ to outside) to keep the pressure balanced across the hot wall of the reactor inner vessel.

Before start, the vessel interior was flushed with nitrogen (obtained from liquid $\rm N_2$); nitrogen was pressurized to 3.5 MPa and cycled to ambient pressure three times. Research grade test hydrogen (<1 ppm 0 $_{\rm l}$) from 41.4 MPa tanks were introduced to 3.5 MPa pressure and cycled twice to ambient pressure, and then the test hydrogen was introduced to a pressure somewhat lower than the final test pressure of 15 MPa. The reactor was heated until the desired temperature level was obtained and stabilized (about 4 h), and the H $_{\rm l}$ pressure was adjusted to 15 MPa.

Before each test, specimen dimensions were measured to $\pm 25.4~\mu m$, and the cross-sectional areas were calculated to three significant digits. Extensometers were attached to the specimen shoulders. The fractured specimens were fitted, and the extensometer position marks were remeasured to obtain the total extension. To calculate elongation (as percent), the divisor was taken as the adjusted length of the reduced sections, as defined in ASTM E-139.

Incremental loading was used, and extension on loading was noted. Extensometer readings on full loading were taken as the zero base for all subsequent creep strain measurements as a function of time recorded from the conclusion of full load.

In several tests, one or more specimens did not rupture before the tests were discontinued. While no definite rupture life data were obtained in these tests, other valuable information on minimum creep rate and time to 1% creep strain were documented and used in the analysis.

The internal transducers gave excellent results most of the time. One or two transducers, however, malfunctioned in a few tests. To avoid a total loss of creep strain information, externally mounted dial gages, reading to the nearest 25 μm (0.001 in.), were attached to the horizontal loading arms and these data were documented. Later, these dial gages were replaced by LYDTs for automatic recording.

Air Creep-Rupture Tests

Tests in air conducted by IITRI were reported in NASA-CR-168071. $^{
m l}$ Additional air tests conducted on several alloys by NASA-Lewis Research Center will be published separately. $^{
m l}$

EXPERIMENTAL RESULTS AND ANALYSES

Basic Data

The complete set of high-pressure hydrogen creep-rupture data are given in Table 3. The corresponding air creep-rupture data for A-286, 800H, N-155, 19-9DL, CMR-6D (Climax, aged), and XF-818 (Climax, as-cast) are given in NASA-CR-168071. Air creep-rupture data for wrought alloys 12RN72 and CG-27, and cast US/AB alloys HS-31,SA-F11, CRM-6D, and XF-818 (braze-cycle treated) were evaluated by NASA-LeRC and will be published separately. ²

The data can be broadly grouped into two categories, namely, independent (controlled) and dependent (derived). The independent category covers the data from columns (2) to (5): environment--15 MPa $\rm H_2$, alloy type--any one of the ten alloys, temperature--705° to 870°C, and applied initial stress--50 to 275 MPa; column 1 identifies the test number.

The values in columns (6) to (11) are the observed data, i.e., rupture life (t_r), minimum creep rate ($\varepsilon_{\rm m}$), time to reach 1% creep strain (t_{0.01}), time to reach tertiary stage (t_{ter}), and total elongation (ε), and for the cast alloys, the reduction in area is given in column (11).

Creep Curves

The creep elongation vs. time curves for tests in 15 MPa $\rm H_2$ were computer plotted at different temperatures and stress levels. Several typical curves shown in Figs. 5 to 10 illustrate the creep behavior of casting alloys XF-818, CRM-6D, HS-31, and SA-F11, and the wrought alloys, 12RN72 and CG-27.

In Fig. 5, seven XF-818 specimen creep curves from both Climax and US/AB heats/heat treatments are shown on one plot with the longest test discontinued without rupture after 1492 h. Essentially, both the (Climax, as-cast and US/AB, braze-cycled) XF-818 specimens behaved in a similar manner exhibiting the three stages of creep, namely, primary, secondary or steady state, and tertiary. These curves were obtained from data transmitted from the transducers located inside the pressure chamber.

From the same Climax heat of XF-818 (as-cast) specimens, five air creep curves are compared with four 15 MPa $\rm H_2$ creep curves in Fig. 6. The essential equivalence in creep performance in the two environments is evident from these curves. The only significant difference appears to be in the shorter time to rupture (from the onset of tertiary stage) in 15 MPa $\rm H_2$, and the consequent lower elongation ductility. For the two longer duration tests, only the first 500 h portions of the curves are shown.

The SA-F11 (US/AB braze-cycled) results for 760° and 815° C tests in 15 MPa H₂ (Fig. 7) indicate the essential similarity with the 15 MPa H₂ XF-818 (Climax, as-cast) results (Fig. 6) except that the total elongations were lower than those of XF-818. The almost identical behavior of Fig. 7 creep

curves at 257 MPa/760°C and 160 MPa/815°C is to be noted--the 815°C specimen, however, exhibited higher ductility and elongation in the tertiary stage.

Figure 8 shows the creep behavior of four CG-27 specimens tested in 15 MPa $\rm H_2$ at 815°C. In two tests, the internal transducer had malfunctioned and the dial gage data (at 24 h intervals) were plotted. The somewhat uneven nature of the curve reflects the dial gage division marks of 25.4 μm (1 x 10 $^{-3}$ in.). The longest test shown in Fig. 8 (140 MPa/819 h) indicates an initial low creep rate, which increased after about 50 h and then decreased to a steady state creep condition for about 300 h before entering the tertiary stage; this behavior may be due to transducer malfunction at the initial period.

Wrought alloys 12RN72 and CG-27 creep strains plotted in Fig. 9 show that 12RN72 has a relatively shorter secondary stage, a longer tertiary stage, and higher ductility when compared with CG-27. The uneven nature of one curve reflects readings from dial gages.

The creep behavior of four cast alloys from one single test is plotted in Fig. 10. The smoothness of the curves indicates that when specimens broke successively at different time periods, no permanent disturbing effect was noted on the creep-elongation behavior of the remaining specimens. This reflects the special design feature of the massive A-286 central column around which the six specimens are grouped in their isolated cells. The adequacy of this unique design feature points to the development of high-pressure test apparatuses which can simultaneously test 12, 24, or an even larger number of specimens under a single high-temperature high-pressure environment.

Temperature-Compensated Analyses of Rupture Life, Minimum Creep Rate, and Time to 1% Creep Strain

The Orowan-Sherby-Dorn (0-S-D) method was selected by NASA-Lewis as the method of analysis combining stress and temperature. $^{3-8}$ The O-S-D relationship is given by:

$$ln Y = ln k + n ln \sigma + Q/RT$$
 (1)

where

 $Y = t_r, t_{0.01}, \text{ or } \epsilon_m$

Q = the apparent activation energy, J/mol

 σ = the initial stress, MPa

T = the test temperature, K

R = the universal gas constant, 8.314 J/K mol

n = stress exponent

k = a constant.

A linear regression analysis of Eq. 1 determines the apparent activation energy, Q, and the slope of the fitted line, n, which is the stress exponent based on the power-law creep relationship. Equation 1 can be rearranged in the following manner:

$$(\ln Y - Q/RT) = \ln k + n \ln \sigma \tag{2}$$

The rupture life, time to reach 1% creep strain, and minimum creep rate data for the different alloys tested in 15 MPa H₂ and given in Table 3 were analyzed using the 0-S-D relationship according to Eq. 2. The results of this analysis are compared, where available, with the results of a similar analysis for tests in air reported in NASA CR-168071. Finally, based on this analysis, stresses for 3500-h rupture lives in air and 15 MPa H₂ were estimated and compared with the design criteria stresses for the automotive Stirling engine.

The comparative analysis of air and 15 MPa $\rm H_2$ creep-rupture data of the four casting and six wrought alloys are grouped in the following manner:

- Cast alloys CRM-6D (aged) and XF-818 (as-cast): Climax Molybdenum Co., Michigan
- Cast alloys HS-31, SA-F11, CRM-6D, and XF-818 (braze-cycled): United Stirling AB, Sweden
- Wrought alloys A-286, 800H, N-155, 19-9DL, 12RN72, and CG-27.

Climax Cast Alloys CRM-6D (Aged) and XF-818 (As-cast) Tested in Air and 15 MPa H₂

The regression analysis results for rupture life (t_r), time to reach 1% creep strain ($t_{0.01}$), and the minimum creep rate (ϵ_m) are given in Table 4. Table 4 includes both air and 15 MPa H₂ data analysis. Based on the regression analysis parameters, temperature-compensated rupture life, minimum creep rate, and time to 1% creep strain values were plotted against stress in air and 15 MPa H₂ tests. The 15 MPa H₂ figures are compared with air data where available; the air curves and analyses were given in reference 1.

The temperature-compensated rupture life data of Climax heats of CRM-6D (aged) and XF-818 (as-cast) in 15 MPa H $_2$ and air environments are graphically compared in Fig. 11. Similarly, Fig. 12 compares the minimum creep rate behavior in two environments for Climax CRM-6D (aged) and XF-818 (as-cast). The stress exponent and activation energies of these alloys for rupture life and minimum creep rate are summarized below:

Rupture Life (t_r):

Alloy	Environment	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D (aged)	Air	-9.12	461
	15 MPa H ₂	-13.3	72 0
XF-818 (as-cast)	Air	-7.52	505
	15 MPa H ₂	-7.93	436
Minimum Creep Rate	e (Ē _m):		
Alloy	Environment	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D (aged)	Air	11.8	- 551
	15 MPa H ₂	11.8	- 574
XF-818 (as-cast)	Air	7.47	-545
	15 MPa H.	7.55	-450

Rupture Life Analysis

For the Climax alloy CRM-6D (aged), testing in 15 MPa $\rm H_2$ results in the rupture life stress exponent (n) being more negative than that tested in air. Increases in the apparent activation energy in $\rm H_2$ over the air environment also were noted. These two trends oppose each other. The larger sensitivity to small changes in stress in $\rm H_2$ as revealed in the large negative exponent (n) makes CRM-6D (Climax, aged) more susceptible to rupture due to smaller stress fluctuations. On the other hand, a significantly large apparent activation energy (Q) makes the alloy less susceptible to deterioration due to sudden large changes in temperature. The opposing trend effects of n and Q on rupture life in CRM-6D (Climax, aged) tend to compensate each other, and the overall effect on 3500-h rupture life stress in $\rm H_2$ may not be significantly different from that in air, as discussed in a later section. The combined effect of n and Q on $\rm t_r$ is further strongly influenced by the constant term, $\rm ln~k$, which itself is observed to be strongly affected by $\rm H_2$.

In Climax XF-818 (as-cast) alloys, the rupture life stress exponent (n) is slightly more negative in $\rm H_2$ than that in air, and the Q is also about 15% less. The very similar n values indicate that the alloy does not become more stress-sensitive in $\rm H_2$ than in air, while the slightly different Q will not make it more sensitive to temperature fluctuations.

In Fig. 11, rupture life is combined (compensated) with the quotient (\mathbb{Q}/\mathbb{T}) obtained from test temperature (T) and the apparent activation energy (Q). The slopes (n) indicate the differences in the stress exponents while the near-parallel shift is due to the combined effect of rupture life and Q values.

Minimum Creep Rate Analysis

While H₂ environment effect has some influence on rupture lives of both Climax CRM-6D (aged) and XF-818 (as-cast) when compared to air environment, the effect of H₂ on minimum creep rate appears to be negligible. The stress exponent (n) remained unaffected by environment, and Q was only affected in XF-818 (Climax, as-cast). A less negative Q in H₂, by itself, will tend to increase the minimum creep rate in H₂ over air, and the more positive n for H₂ environment will also have a positive effect; however, the differences in Q and n are small, and the total effect in increasing ε is likely to be small. The parallel lines in Fig. 12 indicate that the stress exponents are similar and the shifts between air and H₂ lines are due to the combined effect of ε and Q values.

United Stirling AB, Cast Alloys CRM-6D, XF-818, HS-31, and SA-F11 (All Braze-Cycled) Tested in 15 MPa $\rm H_2$

The temperature-compensated analysis data of the four cast alloys in the braze-cycle heat treated condition, tested in the 15 MPa $\rm H_2$ environment are summarized in Table 5. Based on this analysis, temperature-compensated rupture life and minimum creep rate parameters vs. stress in 15 MPa $\rm H_2$ were plotted in Figs. 13 and 14, respectively. The stress exponent and activation energies for rupture life and minimum creep rate are summarized below:

Rupture Life (t_r) in 15 MPa H₂:

Alloy	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D	-6.94	273
XF-818	-8.43	591
HS-31	-10.2	551
SA-F11	-6.85	508

Minimum Creep Rate (&m) in 15 MPa H₂:

Alloy	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D	6.76	-239
XF-818	9.74	-7 08
HS-31	12.6	-600
SA-F11	6.58	-505

Rupture Life Analysis

The similarity and difference in n and Q between the four cast alloys (US/AB, braze cycled) tested in 15 MPa $\rm H_2$ are reflected in the line slopes and the degree of shift between the lines as shown in Fig. 13. The n values range from -6.85 to -10.2, with CRM-6D and SA-F11 having very similar values of about -7. XF-818 with -8.43 and HS-31 with -10.2 (n) values indicate a more sensitive rupture life dependency on stress.

The CRM-6D and XF-818 (US/AB, braze-cycled) alloys belong to different heats than CRM-6D (Climax, aged) and XF-818 (Climax, as-cast). Their n and Q values in 15 MPa $\rm H_2$ are compared below:

Alloy	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D (Climax, aged)	-13.3	720
CRM-6D (US/AB, braze-cycled)	-6.94	273
XF-818 (Climax, as-cast)	-7. 93	436
XF-818 (US/AB, braze-cycled)	-8.43	591

The large difference between the n and Q values in CRM-6D from the two suppliers may also be due to the two different casting procedures followed in this very high C-Mn alloy-namely, Climax castings were made by feeding the molten alloy from the side while the US/AB alloys were fed from one end. In XF-818, the values do not indicate the sensitivity shown by CRM-6D due to different cast/heat treatment/casting procedures between Climax and US/AB castings.

Minimum Creep Rate Analysis

The slopes of lines and the shift in the lines between the four cast alloys shown in Fig. 14 indicate the relative behavior of these four braze-cycled US/AB cast alloys. The n values range from 6.58 to 12.6 with SA-F11 and CRM-6D having very similar values near 7. XF-818 with 9.74 and HS-31 with 12.6 (n) values indicate a more sensitive minimum creep rate dependency on stress. Thus, rupture life vs. stress and minimum creep rate vs. stress dependencies in these four alloys show a significant parallelism.

The CRM-6D and XF-818 9 (US/AB, braze-cycled) alloys belong to different cast/heat treatment/casting procedures than CRM-6D (Climax, aged) and XF-818 (Climax, as-cast), and their n and Q values in 15 MPa $\rm H_2$ are compared below:

Alloy	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
CRM-6D (Climax, aged)	11.8	-574
CRM-6D (US/AB, braze-cycled)	6.76	- 239
XF-818 (Climax, as-cast)	7.55	- 450
XF-818 (US/AB, braze-cycled)	9.74	-7 08

There are significant differences in both n and Q values between the different heats and heat treatments of alloys of the same nominal composition when tested in 15 MPa H₂ with the possibility that the different casting procedures had also contributed to these differences, particularly in the high Mn alloy, CRM-6D.

Wrought Alloys N-155, 19-9DL, 800H, and A-286 Tested in Air and 15 MPa $\rm H_2$, and CG-27 and 12RN72 Tested in 15 MPa $\rm H_2$

The temperature-compensated data analysis for rupture life and minimum creep rate of the six wrought alloys in 15 MPa $\rm H_2$ is summarized in Table 6; the air data analysis for A-286, 800H, N-155, and 19-9DL was published earlier. In Figs. 15 and 16, respectively, the temperature-compensated rupture life and minimum creep rate in 15 MPa $\rm H_2$ are compared for the six alloys.

Rupture Life Analysis

The stress slope (n) in 15 MPa $\rm H_2$ (Table 6) varies from -4.67 to -7.92 and the apparent activation energy from 359 to 530 kJ/mol. 800H, N-155, and 19-9DL with n very near to minus 8 (-8) have the largest stress sensitivity, and CG-27 and A-286 with n about -4.5 to -5, the smallest.

In alloys A-286, 800H, N-155, and 19-9DL, the n values for tests in air (Table 6) were in all cases slightly less negative, i.e., the sensitivity to stress is slightly less in air than in 15 MPa $\rm H_2$.

Minimum Creep Rate Analysis

Except for A-286 and CG-27, the stress slope (n) for the other four wrought alloys in 15 MPa $\rm H_2$ (Table 6) ranged from 7.63 to 9.83. The A-286 and CG-27 values are 4.09 and 3.31, respectively, indicating their lesser sensitivity to stress. The four alloys (A-286, 800H, N-155, and 19-9DL) had the n values uniformly smaller in air (Table 6), indicating a lesser dependence on stress compared to 15 MPa $\rm H_2$ environment.

Analysis of Time to 1% Creep Strain Data

Tables 4, 5, and 6 summarize the temperature-compensated analysis data for time to 1% creep strain. Based on these data, regression lines were fitted as shown in Figs. 17, 18, and 19 for the following alloys:

- Fig. 17 Two Climax cast alloys, CRM-6D (aged) and XF-818 (as-cast)
- Fig. 18 Four United Stirling AB cast alloys, HS-31, SA-F11, CRM-6D, and XF-818; all braze-cycled.
- Fig. 19 Six wrought alloys, A-286, 800H, N-155, 19-9DL, 12RN72, and CG-27.

These plots show significant scatter around the fitted lines indicating low regression coefficients (resulting from a small data set) as well as due to the derived nature of the data from the observed elongation vs. time curves. The n and Q values, however, have similar ranges comparable to those observed for rupture life. Only in the case of US/AB HS-31 was a large difference noted between $t_{\rm r}$ and $t_{0.01}$ (n) and (Q) values in 15 MPa H₂ tests, as indicated below:

Analysis	Stress Exponent (n)	Apparent Activation Energy (Q), kJ/mol
Rupture life (t _r)	-10.2	551
Time to 1% creep strain (t _{0.01})	-4.54	256

In other words, in HS-31 (braze cycled), $t_{0.01}$ is significantly less sensitive to stress changes than $t_{\rm r}$.

Analysis of Stress Exponent (n) and Apparent Activation Energy (Q) in the Ten Different Alloys

All the n and Q values are summarized in Table 7. For rupture life and minimum creep rate, the alloys with different n values are arranged in increasing order of sensitivity to stress and temperature changes, as given below:

Stress-Life Exponent (n):

Rupture Life		_Minimum_C	
Air	15 MPa H ₂	Air	15 MPa H ₂
A-286	CG-27	A-286	CG-27
N-155	A-286	19-9DL	A-286
19-9DL	12RN72	N-155	SA-F11 ^a
800H	SA-F11 ^a	XF-818 ^b	CRM-6D ^a
XF-818 ^b	CRM-6D ^a	H008	XF-818 ^b
CRM-6D ^b	19-9DL	CRM-6D ^b	800H
	N-155		19-9DL
	H008		12RN72
	xF-818 ^b		XF-818 ^a
	XF-818 ^a		N-155
	HS-31 ^a		CRM-6D ^b
	CRM-6D ^b		HS-31 ^a

^aUnited Stirling AB. These alloys were braze-cycle heat treated.

The above tabulation indicates that for rupture life the stress-life exponents (n) of the cast alloys generally make them relatively more sensitive to stress fluctuations than the wrought alloys, in both air and high pressure hydrogen environments. For minimum creep rate, no such trend is noted.

Under O-S-D analysis of the form

$$ln Y = ln k + n ln \sigma + Q/RT$$
 (1)

for Y = rupture life, n is negative and Q is positive; and for Y = minimum creep rate, n is positive and Q is negative.

Thus, with constant ln k and Q, for rupture life (t_r), when $n_{air} > n_{H_2}$ (for example, $n_{air} = -7$ and $n_{H_2} = -8$), then

at the same stress (σ) level, and rupture life will also vary more significantly in H₂ environment with smaller stress changes. For example, when stress increases, say, by 5%, with other Eq. 1 quantities remaining constant, rupture lives in air (n=-7) and hydrogen (n=-8) are decreased by the following factors:

^bClimax castings, CRM-6D (aged), XF-818 (as-cast).

Air:
$$(1.05)^{-7} = 0.71$$

15 MPa H₂: $(1.05)^{-8} = 0.68$

and it is readily seen that stress sensitivity on rupture life is higher under H_2 (n = -8) than under air (n = -7) environment.

In minimum creep rate, n is positive, and when $\rm n_{air} > n_{\rm H_2}$ --for example, $\rm n_{air} = 8$, and $\rm n_{\rm H_2} = 7--$ then

$$(\epsilon_{\rm m})_{\rm air} > (\epsilon_{\rm m})_{\rm H_2}$$

at the same stress (σ) level, and in air the minimum creep rate will vary more significantly with smaller stress changes. For example, when stress increases, say, by 5%, with other Eq. 1 quantities remaining constant, the minimum creep rates in air (n = 8) and hydrogen (n = 7) are increased by the following factors:

Air:
$$(1.05)^8 = 1.48$$

15 MPa H₂: $(1.05)^7 = 1.41$

The form of Eq. 1, with the temperature parameter (T) expressed as a ratio to the apparent activation energy (Q), indicates that as Q becomes more positive, Q/T will increase and affect both t_r and $\tilde{\epsilon}_m$ positively. For example, in rupture life where Q has a negative value, with other quantities remaining constant in Eq. 1, if $Q_{air} > Q_{H}$ (for example, $Q_{air} = 600$ kJ/mol and $Q_{H_2} = 500$ kJ/mol), $(t_r)_{air} > (t_r)_{H_2}$.

If T is decreased by 10%, say, from 1100K (827°C) to 990K (717°C) in both air and $\rm H_2$ environment, Q/RT will change to Q/0.9 RT, i.e., an increase of 11% from the energy term, and a larger more positive Q for rupture life in air will mean a more significant increase in rupture life. And, of course, the reverse will be true if $\rm (Q)_{air} < \rm (Q)_{H_2}$.

In the case of the minimum creep rate, Q is negative, and with $(Q)_{H_2}$ --for example, $Q_{air} = -500$ kJ/mol and $(Q)_{H_2} = -600$ kJ/mol--then

with other quantities in Eq. 1 remaining unchanged. Also, following the analysis of Q for t_{r} , a more positive Q will thus have less effect in decreasing the minimum creep rate.

The above analysis presupposes that only either n or Q is varying with the other quantities in Eq. 1 remaining constant. However, both n and Q vary, and the environment also appears to significantly affect the fitting constant, k, and the total effect shows up as the overall change in t_r and $\dot{\epsilon}_m$ in the two environments. In the next section, the combined effect of these changes is reflected in the estimation of 3500 h rupture life stress and stress to reach 1% creep strain in 3500 h for each alloy.

Predicted Stresses for Rupture and 1% Creep in 3500 Hours

Based on the temperature-compensated analytical data given in Tables 4, 5, and 6, mean stresses for 3500-h rupture lives in air and and 15 MPa $\rm H_2$ were estimated and are summarized in Table 8. Similar estimates of mean stresses to obtain 1% creep strain in 3500 h in air and 15 MPa $\rm H_2$ were made and are given in Table 9. By statistical methodology, the 90% confidence limits on these estimated stresses were calculated and are summarized in Tables 8 and 9 along with the mean stresses.

3500-Hour Rupture Stress

The wrought and cast alloys are ranked below in terms of decreasing stresses for 3500-h rupture life both in air and 15 MPa $\rm H_2$:

Wrought alloys (Temp. = 870°C)		Cast Alloys (Temp. = 775°C)	
Air	15 MPa H ₂ _	Air	15 MPa H ₂
N-155	CG-27	CRM-6D ^a	HS-31 ^b
19-9DL	N-155	XF-818 ^a	CRM-6D ^a
H008	19-9DL	с	SA-F11 ^b
с	A-286		XF-818 ^a
A-286	12RN72		XF-818 ^b
	H008		c
	с		CRM-6D ^a

aClimax cast alloys, CRM-6D (aged) and XF-818 (as-cast).

The MOD 1A design criteria stress for 3500-h rupture life for wrought tube material is 28 MPa at 870° C, and although in air the A-286 alloy did not meet the requirements, in 15 MPa H₂ all the alloys appear to meet the criteria. In 15 MPa H₂, out of the different cast alloys, only CRM-6D (US/AB, braze-cycled) failed to meet the 119 MPa at 775° C criteria.

If one considers the lower value of the 90% confidence limits, then for the tube alloys in 15 MPa H₂ both 800H and A-286 will fail to meet the 28 MPa (870°C) design stress requirements, and 12RN72 barely exceeds it at 30.7 MPa. Similarly, for the cast alloys, both CRM-6D (US/AB, braze-cycled) and XF-818 (Climax, as-cast) will fail to meet the level of 119 MPa (775°C) while XF-818 (US/AB, braze-cycled) barely exceeds it at 122 MPa.

^bUnited Stirling AB cast alloys, braze cycle heat treated.

^CDesign stress levels of 28 MPa at 870°C and 119 MPa at 775°C for wrought and cast alloys, respectively.

Several graphical presentations of 3500-h rupture stress levels of the different alloys over the temperature range of 775° to 870°C (with estimated graphical extensions to 705°C and 925°C) for both air and 15 MPa $\rm H_2$ environments are given in Figs. 20 to 24. These figures not only illustrate the relative strength levels at the different temperatures, but their extrapolations indicate (on the assumption that the creep mode does not change) what the effect of small but expected temperature fluctuations (due to different Q values) will be on their strength levels.

H₂ vs. Air Effect on 3500-h Rupture Stress

As indicated earlier, Fig. 20 shows that A-286 performance improves in 15 MPa $\rm H_2$ to exceed the 28 MPa design stress level though, the 90% confidence range being large, its lower 90% limit does not meet the specification. 800H, 12RN72, and 19-9DL mean stress levels in 15 MPa $\rm H_2$ meet the requirements barely. Only N-155 and CG-27 are significantly stronger to fully meet the design stress level. N-155 performance appears to improve in 15 MPa $\rm H_2$ while 800H decreases marginally.

Among the cast alloys, Fig. 21 shows that CRM-6D (Climax, aged) and HS-31 and SA-F11 (US/AB, braze-cycled) are adequate to meet the 119 MPa (775°C) design criteria, and CRM-6D (US/AB, braze-cycled) is inadequate. CRM-6D (Climax, aged) indicates a performance improvement in 15 MPa H $_2$ over air. In both the XF-818 heats, the mean stress values barely satisfy the design stress criteria, and in XF-818 (Climax, as-cast), 15 MPa H $_2$ environment tends to decrease rupture stress level and exhibits a larger scatter than that noted in air environment.

Operating Temperature Fluctuation Effect on 3500-h Rupture Stress in 15 MPa H₂

If these predicted mean stresses in the range of 775° and 870°C for tube alloys tested in 15 MPa $\rm H_2$ are extrapolated to a higher temperature of, say 925°C, then except for N-I55 and CG-27, none of the other alloys will meet the 28 MPa criteria level, as shown in Fig. 22. Figure 23 shows that with four US/AB cast alloys, the mean stress levels when extrapolated to a higher temperature indicate that at about 825°C ($10^4/T = 9.1$), alloy SA-F11 (US/AB, braze-cycled) barely meets the 119 MPa design stress requirement in 15 MPa $\rm H_2$, and its lower 90% confidence value is below the specification. Similarly, Fig. 24 shows that Climax cast alloy XF-818 (as-cast) fail to meet the 119 MPa stress criterion when a temperature excursion to 825°C takes place; CRM-6D (Climax, aged), however, remains strong in 15 MPa $\rm H_2$.

Stress to 1% Creep Strain in 3500 Hours

The predicted stresses for reaching 1% creep strain in 3500 h were analyzed in a manner similar to that for stress to 3500 h rupture and the alloys are ranked below in order of decreasing stress levels.

Wrought Alloys (Temp. = 870°C)		Cast Alloys (Temp. = 775°C)		
Air	15 MPa H ₂		Air	15 MPa H ₂
N-155	CG-27		CRM-6D ^a	CRM-6D ^a
800H	N-155		XF-818 ^a	SA-F11 ^b
19-9DL	12RN72			XF-818 ^a
A-286	19-9DL			XF-818 ^b
	800H			CRM-6D ^b
		_		HS-31 ^b

aclimax, CRM-6D (aged), XF-818 (as-cast).

The above analysis indicates that CG-27 and N-155 are the strongest tube alloys in 15 MPa $\rm H_2$, and the mean stress to reach 1% creep strain in 3500 h follows the ranking for 3500-h rupture life stress. Within the cast alloys, CRM-6D (Climax, aged), SA-F11 (US/AB, braze-cycled), and XF-818 (Climax, ascast) are the strongest in terms of stress to 1% creep strain in 3500 h and rank differently in 3500-h rupture life stress, where HS-31 (US/AB, braze cycled) was the strongest.

Effect of Environment on Rupture Elongation

The complete rupture elongation data of the ten alloys in both air and 15 MPa $\rm H_2$ are summarized in Table 10. As expected, the total elongation on rupture was strongly dependent on temperature and stress in both the environments. Elongation increased with increasing stress and temperature but tended to decrease at the highest temperatures. Total elongation on rupture in 15 MPa $\rm H_2$ environment in tube and cast alloys is summarized below.

Maximum Total Elongation on Rupture in 15 MPa H₂, %

Tube Alloys (815°C)		oys)	Cast Alloys (760°C)
N-155	_	35.3	HS-31 ^a - 28.1
12RN72	-	24.7	$CRM-6D^a - 21.1$
800H	-	21.4	XF-818 ^a - 14.7
A-286	-	8.1	$XF-818^{b} - 10.7$
19-9DL	-	11.7	CRM-6D ^b - 7.4
CG-27		7.3	SA-F11 ^a - 6.3

^aUnited Stirling AB, braze-cycled.

bUnited Stirling, AB, braze-cycled.

bClimax, CRM-6D (aged), XF-818 (as-cast).

Only a few tube alloys were tested at 815°C and 870°C in both air and 15 MPa H₂ and these elongation (%) data show some serious deteriorating effect of H₂ as indicated below, along with reduction indicated as a percent of air value.

	Elong	x Total gation on e (815°C), %	Change from		
<u>Alloy</u>	Air	15 MPa H ₂	Air, %		
N-155	58.3	35.3	-39		
19-9DL	44.8	9.4	- 79		
800H	59.6	21.4	-64		
A-286	44.6	8.1	-82		

In the case of Climax cast alloys at 760° C, this deteriorating effect of H₂ on elongation was not as greatly pronounced as in the tube alloys.

	Maz Elong Rupture	Change from		
Alloy	Air	15 MPa H ₂	Air, %	
CRM-6D (aged)	8.7	7.4	- 15	
XF-818 (as-cast)	13.6	10.4	-16	

When the creep-rupture elongation air test data on tube alloy 12RN72 and CG-27 and US/AB braze-cycled XF-818, CRM-6D, HS-31, and SA-F11 become available, 2 it will be possible to compare the selective effect of hydrogen on the ductility of these alloys.

Without extensive microstructural analysis using transmission electron microscopy, the reason for loss of ductility due to high pressure H₂ will be speculative. The hydrogen environment diffusion through the structure might activate and promote cavity nucleation at grain boundaries and may also act in cavity enlargement—the total effect evident as a reduction in total elongation on rupture.

FRACTOGRAPHY AND MICROSTRUCTURAL ANALYSIS

Fracture Location and Appearance

Typical fractured specimens tested in 15 MPa $\rm H_2$ are shown in Figs. 25 to 27. Figure 25 shows 19-9DL and XF-818 (Climax, as-cast) specimens tested in the temperature range of 705° to 815°C. The largest elongations for 19-9DL and XF-818 (Climax, as-cast) specimens were 28.5% and 10.4%, respectively.

In Fig. 26, all six alloy specimens from two different tests are compared with elongations indicating the higher ductility of the wrought alloys. Multiple fracture initiation occasionally resulted in fracture pieces almost detaching, as shown for A-286 and 19-9DL.

Fractured specimens from two tests are shown in Fig. 27. In both tests, 12RN72 appears to have fractured, with pieces almost detaching from the specimen. The low ductility of CG-27 and SA-F11 is evident in these figures.

Several fracture surfaces were evaluated by SEM, and a few of the specimens were polished through the midsection parallel to their longitudinal direction to observe the nature of grain-boundary movement and crack distribution in the specimen interior.

Fractographs

Fracture analysis was done on a selected number of specimens of various alloys tested in 15 MPa $\rm H_2$. Analyses of air test specimens were published earlier. $\rm ^1$

Wrought Alloys

In A-286, the fracture mode was essentially intergranular (Fig. 28a), while in some areas a transgranular dimple rupture mode was observed (Fig. 28b); in Fig. 28c, the intergranular fracture showed second-phase particles which need additional studies for identification.

Figure 29a shows a typical dimple rupture in alloy 800H which is very similar to those shown in Figs. 29b and c, respectively, for N-155 and 19-9DL. Multiple crack sites near specimen edges, more numerous near the final fracture, are typical in all these highly ductile wrought alloys.

12RN72 fracture surfaces (760° and 815°C) are shown in Fig. 30. Earlier, in Fig. 27, multiple cracking in 12RN72 leading almost to separation of pieces indicated low strength and significant ductility at these temperatures. However, in different areas on the same fracture surface one observed very ductile dimple rupture with adjoining areas showing intergranular decohesive rupture with particles decorating the grain surfaces, as seen earlier for A-286 (Fig. 28c). For example, Figs. 30a and b show low-magnification fractographs showing dimple rupture and decohesive mode; whereas at higher magnifications, Figs. 30c and d clearly reveal the details of dimples and intergranular modes. In contrast to 12RN72, CG-27, which had the lowest ductility among the wrought alloys, showed quasi-cleavage type fracture (Fig. 31a) that revealed only very few dimples at higher magnifications (Fig. 31b).

Cast Alloys

In 15 MPa $\rm H_2$, difference in fracture appearance between CRM-6D (aged) and CRM-6D (braze-cycled) is not significant, as shown in Fig. 32. Figures 32a, b, and c compare the fractographs at different temperatures, and Figs. 32d, e, and f compare these structures at higher magnifications; the similarity is evident. The fracture surfaces are jagged, and the region marked A in Fig. 32a

is crescent-shaped and very rough. Region B covers more than 60% of the area and shows interdendritic pullout, and region C is narrow and rough. Similar features are discerned in varying degrees on Figs. 32b and c. At higher magnifications, a mixture of interdendritic and transdendritic fracture of similar nature is noted on Figs. 32d, e, and f.

The braze-cycled vs. as-cast XF-818 fractographs are shown in Fig. 33. Figures 33a and b compare macrofractographs, and Figs. 33c and d present the same fractures at higher magnification. Area A in Fig. 33a is smooth and shiny with a significant shear angle following a dendritic colony. Area B, covering 40% of the area, appeared less shiny and rougher while area C, considerably more rugged, appeared to be the overload area for rupture; similar features were noted on Fig. 33b. At higher magnification, some fine dimples were noted on both fracture surfaces, as shown in Figs. 33c and d.

The significant ductility shown by HS-31 (braze-cycled) specimens is clearly evident in Fig. 34. Figures 34a and b show that the fracture path had followed a dendritic pattern over certain regions. Very fine dimples are present on the entire fracture surface, and dendritic spines are clearly outlined in Figs. 34c and d.

The low ductility of SA-F11 (braze-cycled) is evident in Figs. 35a and b where the fracture paths are seen to follow the dendritic pattern of the cast structure. At higher magnifications, a dimple network may be seen on several areas including dendrite spines and arms.

Cross-Section Examination

One-half of several fractured specimens were metallurgically polished in their longitudinal cross-section approximately halfway through the thickness. All the specimens were electrolytically etched with 10% oxalic acid to reveal various constituents and their microstructures.

Figures 36a to d show typical creep cavities due to grain boundary movement in A-286, 800H, N-155, and 19-9DL, respectively. Determining whether hydrogen had assisted in the growth of these cavities at the initial stages will require detailed TEM examination of thin sections near the cracks. Although A-286 and 800H did not show any substructure, a fine second phase appears to be present in Figs. 36c and d.

Similarly, grain boundary cavity formation due to creep is seen in Figs. 37a and b for 12RN72 and CG-27. The cavities are not significantly different in size in the two alloys, and CG-27 shows some twinned structure.

Fracture surfaces of CRM-6D and XF-818 specimens for the different heats are shown in Figs. 38a to d. No obvious differences were noted between the differently heat treated structures at 50X as well as at 200X and higher magnifications. The higher ductility of the lower strength braze-cycle treated alloys are evident in extensive reduction in area seen in Figs. 38b and d.

Specimen fracture surfaces of the two high-strength alloys HS-31 (cobalt-base) and SA-F11 (iron-base) are shown in Figs. 39a and b, respectively. The

high ductility of HS-31 is readily contrasted with the low ductility of SA-F11. Adjacent to the fracture, significant grain boundary movements have created cavities in HS-31, as seen in Fig. 39a. At higher magnifications, for both HS-31 and SA-F11, a significant number of creep voids are seen, Figs. 39c and d, respectively; in the case of SA-F11, however, the presence of some casting cavities is suspected along the dendrite orientation.

SUMMARY OF RESULTS

Nine iron-base and one cobalt-base alloys were tested in air and 15 MPa $\rm H_2$ for creep rupture at 650° to 925°C. The rupture life ($\rm t_r$), minimum creep rate ($\rm t_m$), and time to 1% creep strain ($\rm t_0$ 01) were analyzed using Orowan-Sherby-Dorn temperature-compensated analysis, and rupture ductility and microstructures were evaluated. The analyses indicate the following:

- At the MOD 1A engine operating temperature of 870°C and design stress level of 28 MPa for a 3500 h rupture life in 15 MPa H₂, tube alloys CG-27, N-155, and 19-9DL adequately meet the design stress criterion. In air, N-155, and 19-9DL (in that order) met the design stress requirements and 15 MPa H₂ did not change the order. In terms of elongation at rupture in 15 MPa H₂, N-155 is significantly better than 19-9DL, and CG-27 showed the least ductility.
- At the MOD 1A engine operating temperature of 775°C for cylinders and regenerator housing, and with 119 MPa design stress level for a 3500-h rupture in 15 MPa H₂, the cast alloys HS-31 (US/AB, braze-cycled), CRM-6D (Climax, aged), and SA-F11 (US/AB, braze-cycled) adequately meet the design stress criterion, with XF-818 (Climax, as-cast) also satisfying the criterion but less adequately.
- The analysis of stress to reach 1% creep strain in 3500 h in 15 MPa H₂, however, indicates a different ranking in which HS-31 (US/AB, braze-cycled) has the lowest value of 46.2 MPa while the top three alloys, CRM-6D (Climax, aged), SA-F11 (US/AB, braze-cycled), and XF-818 (Climax, cast) had values of 130, 126, and 105 MPa, respectively. Thus, in combination with the high predicted stress for rupture in 3500 h, it appears that CRM-6D (Climax, aged) and SA-F11 (US/AB, brazecycled) will be the best selections. However, when rupture ductility is taken into consideration, HS-31 (US/AB, braze-cycled) with 28% elongation is the highest and exceeds significantly CRM-6D (Climax, aged) which had 7.4%, and SA-F11 (US/AB, braze-cycled), which had 6.3%. XF-818 (Climax, as-cast) with elongation at 10.7% and meeting the design stress criterion may then be considered a suitable candidate engine material.

- Ductility was affected by hydrogen environment in both wrought and cast alloys with reductions from values in air up to 70% noted in wrought alloys and 30% in the cast alloys (excluding the braze-cycled alloys).
- No significant effect of hydrogen on fracture mechanism was noted. In wrought alloys, the main fracture mechanism was dimple rupture with fracture initiating at multiple locations. In cast alloys, interdendritic planar fractures along with transdendritic fracture modes were noted with occasional dimples noted in the areas last to rupture.

REFERENCES

- 1. S. Bhattacharyya, "Creep-Rupture Behavior of Six Candidate Stirling Engine Iron-Base Superalloys in High-Pressure Hydrogen, Vol. I Air Creep-Rupture Behavior," NASA CR-168701, December 1982.
- 2. R. H. Titran, unpublished data, NASA-Lewis Research Center, Cleveland, Ohio.
- 3. F. R. Larson, and J. Miller, Trans. ASME, Vol. 74, 1952, p. 765.
- 4. S. S. Manson and A. M. Haferd, "A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data," NACA Technical Note 2890, March 1952.
- 5. S. S. Manson and W. R. Brown, Proc. ASTM, ASTEA, Vol. 53, 1953, p. 693.
- 6. O. D. Sherby, "Factors Affecting the High Temperature Strength of Polycrystalline Solids," Acta Met., Vol. 10, No. 2, 1962, pp. 135-147.
- 7. J. E. Dorn, "The Spectrum of Activation Energies for Creep," in <u>Creep and Recovery</u>, ASM, Metals Park, Ohio, 1957, pp. 255-283.
- 8. R. M. Goldhoff, "The Evaluation of Elevated Temperature Creep and Rupture Strength Data: An Historical Perspective," in <u>Characterization of Materials for Service at Elevated Temperatures</u>, G. V. Smith, Ed., Publ. No. MPC-7, ASME, New York, 1978, pp. 247-265.

TABLE 1. SUPERALLOY COMPOSITIONS

						No	ninal	Composi	tion,	%				
Alloys	С	Mn	Si	Cr	Ni	Со	Мо	W	Nb	Ti	Al	В	Fe	Others_
A-286 ^a	0.05	1.40	0.40	15	26	-	1.25	-	-	2.15	0.2	0.003	Bal	0.03 V
INCOLOY Alloy 800H ^{a,b}	0.08	8.0	0.5	21	32.5	-	-	-	-	0.4	0.4	-	Bal	0.4 Cu
N-155 ^a	0.12	1.5	0.5	21	20	20	3.0	2.5	1.0 ^c	-	-	-	Bal	0.15 N, 0.5 Cu max
19-9DL ^a	0.30	1.10	0.60	19	9.0	-	1.25	1.20	0.40	0.30	-	-	Bal	-
12RN72 ^d	0.1	1.8	0.4	19	25	-	1.4	-	-	0.5	-	0.006	Bal	0.030 P, 0.015 S max
CG-27 ^a	0.05	0.1	0.1	13	38	-	5.5	-	0.6	2.5	1.5	0.01	Bal	
HS-31 ^e	0.5	0.75	0.75	25.5	10.5	Bal	-	7.5	-	-	-	-	_	-
SA-F11 ^f	0.63	0.5	0.6	23.0	16.0	-	-	12.0	-	-	-	0.4	Bal	-
CRM-6D ^a	1.05	5.00	0.50	22	5.0	_	1.0	1.0	1.0	_	-	0.003	Bal	_
XF-818 ^g	0.21	0.29	0.34	18.3	18.0	-	7.32		0.43	-	-	0.75	Bal	0.106 N, 0.007 P, 0.010 S

^a1983 Materials & Processing Databook, Metal Progress, Vol. 124, No. 1, p. 64.

bINCOLOY Alloy 800H is a registered trademark of Huntington Alloys, Inc. In all subsequent tables, figures, and in the text, the alloy is identified either fully or as 800H.

CIncludes tantalum.

^dSandvik Lecture No. 56-10E, Paper presented at the Mi Con 78 Symposium, Houston, Texas, April 1978, Steel Research Center, Sandvik, Sandviken, Sweden.

eASM Metals Handbook, Vol. 3, 9th Ed., p. 268.

^fComposition supplied by NASA-Lewis Research Laboratory, Cleveland, Ohio.

⁹Climax Molybdenum Co., Research Laboratory, Ann Arbor, Michigan.

TABLE 2. HEAT TREATMENT, HARDNESS, AND GRAIN SIZE OF TESTED ALLOYS

Alloy	Heat Treatment	Aver Hard HRA	age ness, (HV) ^å	Average Grain Dia., µm
A-286	Solution annealed at 1149°C, b, c aged at 718°C for 16 h and air cooled.	51.9	(163)	108
800H	Solution annealed at 1149°C ^{b,C}	40.0	(108)	64
N-155	Solution annealed at 1177°C ^{b,c}	51.5	(161)	42
19-9DL	Solution annealed at 1204°C-10 min ^C	50.5	(156)	33
12RN72	Solution annealed at 1150°C-15 min ^C	39.7	(107)	56
CG-27	Solution annealed at 1150°C in vacuum for 10 min, furnace cooled to room temperature, aged at 790°C in vacuum for 16 h, cooled to 650°C, held for 4 h, and furnace cooled.	69.7	(378)	194
HS-31 ^d SA-F11 ^d CRM-6D ^d XF-818 ^d	Simulative brazing cycle heat treatment, 1 h at $1150^{\circ}\mathrm{C}$ in 10^{-6} mm vacuum followed by furnace cooling	61.0 62.1 61.6 52.1	(256) (249)	- - - -
CRM-6D ^e	Aged at 650°C-100 h	62.4	(260)	-
XF-818 ^e	As-cast	50.5	(156)	-

^aVicker's hardness number (HV) converted from Rockwell hardness A scale (HRA).

bSolution annealing time 142 s/mm (1 hr/in.) thickness minimum.

^CRapidly cooled from solution temperature.

dCast by United Stirling AB, Sweden. The molten alloy was fed in the mold from one end. Simulative braze cycle heat treatment by NASA-LeRC, Cleveland, Ohio.

 $^{^{\}mathbf{e}}\mathsf{Cast}$ by Climax Molybdenum Co., Ann Arbor, Michigan. The molten alloy was fed in the mold from the side.

TABLE 3. HIGH-PRESSURE (15 MPa) HYDROGEN CREEP-RUPTURE DATA

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Test			Temp.,	Stress,	t _r ,	Min Creep	t _{0.01} ,	t _{ter} ,	El.,	R.A.,
No.	Env.	<u>Alloy</u> a	°C	<u>MPa</u>	<u>h</u>	Rate, s ⁻¹	<u>h</u>	<u>h</u>	%	%
H03	HYD	crmb	705	395	9.0	7.11E-07	1.0	5.0	5.6	19.6
H04	HYD	CRM	705	385	15.7	4.86E-07	0.9	8.0	6.0	12.2
H05	HYD	CRM	785	369	25.8	3.03E-07	4.0		7.8	17.6
H19	HYD	CRM	760	220	306	3.18E-08	17.2	233	7.0	22.6
H04	HYD	CRM	768	195	478+	1.04E-08	65.0	350	3.1+	2.14
H08	HYD	CRM	760	196	749	7.16E-09	99.0	579	7.4	37.2
H07	HYD	CRM	815	162	111	5.21E-08	16.5	70.0	8.1	58.3
H20	HYD	CRM	815	160	238	1.94E-08	61.9	150	8.5	45.0
H10	HYD ,	CRM	815	151	842	4.40E-09	131	500	7.0	21.5
H09	HYD	CRM	870	116	383+	5.90E-09	7.5		1.6+	
H13	HYD	CRMC	760	252	3.7	5.21E-06	0.4	1.0	20.1	35.0
H14	HYD	CRM	760	130	357	6.54E-08	27.0	150	14.8	43.3
H18	HYD	CRM	760	117	742	3.35E-08	75.0	300	21.1	55.6
H15	HYD	CRM	815	105	273	9.56E-08	12.5	140	27.3	50.4
H16	HYD	CRM	815	100	504	3.77E-08	43.5	148	20.8	39.3
H17	HYD	CRM	815	87	1210	1.34E-08	125	330	24.7	39.2
H05	HYD	XF8 d	705	396	6.4	7.46E-07	1.2	2.2	5.8	11.9
H03	HYD	XF8	705	395	15.0				6.0	6.2
H06	HYD	XF8	768	216	182	5.44E-08	27.5	47.0	10.4	36.6
H19	HYD	XF8	769	210	167	7.86E-08	23.5	80.0	8.5	24.7
H19	HYD	XF8	760	195	424	2.98E-08	44.4	150	10.7	23.9
H08	HYD	XF8	760	166	1492+	5.99E-09	198	750	6.6+	11.4
HØ 1	HYD	XF8	815	176	56.7	1.17E-07	7.8	41.8	10.3	30.6
H07	HYD	XF8	815	133	275	4.00E-08	41.8	75.0	14.2	57.3
H12	HYD	XF8	815	131	200	5.51E-08	14.0	80.0	10.1	47.3
H20	HYD	XF8	815	125	387	3.94E-08		200	11.0	47.8
H18	HYD	XF8	815	118	1091	8.78E-09	200	200	16.2	21.1
H09	HYD	XF8	870	93.6	221	5.90E-08	38.0		15.4	47.2
H13	HYD	XF8 C	760	192	258	6.32E-08	35.0	55.0	11.6	20.7
H14	HYD	XF8	760	185	325	5.72E-08	36.0	100	14.7	21.1
H18	HYD	XF8	768	158	1303	1.07E-08	90.6	628	12.9	22.6
H15	HYD	XF8	815	135	141	1.59E-07	10.2	47.6	19.7	40.6
H16	HYD	XF8	815	120	468	4.41E-08	25.8	147	19.8	34.7
H17	HYD	XF8	815	106	1082	1.46E-08	105	375	15.6	33.3
H13	HYD	HS3 ^C	760	242	193	2.04E-07	3.0	125	23.2	42.6
H14	HYD	HS3	760	235	245	1.73E-07	2.6	165	28.1	51.0
H18	HYD	HS3	769	220	895	3.02E-08	5.4	556	20.7	48.0
H15	HYD	HS3	815	180	209	1.13E-07	2.6	187	18.3	40.3
H16	HYD	HS3	815	165	551	3.71E-08	3.9	292	17.9	43.9
H17	HYD	HS3	815	157	500	3.87E-08	4.0	280	13.5	30.6
H13	HYD	SAF C	768	257	336	2.33E-08	62.0	150	6.1	8.4
H14	HYD	SAF	760	230	605	1.11E-08	113	210	5.0	6.3
H18	HYD	SAF	760	228	1023	7.57E-09	156	324	6.3	7.7
H15	HYD	SAF	815	180	198	3.63E-08	35.0	76.0	8.6	8.3
H16	HYD	SAF	815	160	364	2.50E-08	61.0	127	7.0	12.8
H17	HYD	SAF	815	145	886	9.12E-09	190	300	7.1	6.3

TABLE 3 (cont.)

									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Test No.	Env.	<u>Alloy</u> a	Temp.,	Stress, MPa	t _r , _h	Min Creep Rate, s ⁻¹	t _{0.01} , h	t _{ter} ,	El.,
но4 ноз но5	HYD HYD HYD	A28 A28 A28	705 705 70 5	446 365 359	0.5 15.0+ 26.4	1.50E-05 7.76E-08 1.32E-07	2.5 6.9	17.0	14.8 2.0+ 7.0
H02	HYD	A28	760	254	45.5	1.31E-08	36.2	21.0	4.7
H86	HYD	A28	768	160	437	4.60E-10	270 570	80.0 130	9.8 8.1
H08	HYD	A28	768	131	1202	7.25E-10	570 17.0	12.5	7.9
H0 1	HYD	A28	815	138	27.7	1.12E-09 9.17E-09	195	50.0	2.7+
H07	HYD	A28	815	70.2	571+	1.46E-10	163	20.0	8.1
H20	HYD	A28	815	70.0	533 1331+	1.95E-09	25.0	1100	4.8+
H10	HYD	A28	815 870	55.6 24.7	383+	1.17E-07	3.5		21.0+
H09	HYD	A28	0/0	27.7	000				
H04	HYD	IN8	705	230	3.8	8.00E-06	0.1	2.8 9.4	30.0 32.0
H03	HYD	1N8	705	193	14.3	3.40E-06	0.2 0.3	17.0	26.3
H02	HYD	INB	760	124	24.8	1.76E-06 2.04E-07	9.5	57.5	13.8
H19	HYD	IN8	760	95.0	96.7 470+	6.04E-08	23.0	100	13.8+
H06	HYD	INB	768	78.0	1391	2.82E-08	54.0	752	29.1
H08	HYD	IN8	760 815	74.9 107	2.7	1.22E-07	0.2	1.0	19.2
HØ 1	HYD	8MI 8MI	815	62.5	107	3.92E-07	0.5		21.4
H07	HYD HYD	IN8	815	60.7	240	1.27E-07	9.7	175	16.4
H12 H10	HYD	IN8	815	54.8	1331+	2.31E-08	11.8	1000	16.3+
H09	HYD	INB	870	41.0	383+	1.32E-07	10.0		22.8+
		=	705	240	11.2	1.19E-06	0.3	8.0	17.8
H84	HYD	N15	705	319 283	39.0	5.24E-07	0.7	17.0	24.8
H05	HYD	N15	705 760	193	30.4	9.28E-07	0.7	15.0	35.0
H02	HYD	N15	760	138	468	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	218		30.0
H84	HYD HYD	N15 N15	768	118	1193	1.18E-08	41.0	550	25.8
H08	HYD	N15	815	124	46.2+	8.81E-07	1.4	29.0	24.0+
H01 H12	HYD	N15	815	107	146	2.09E-07	4.7	30.0	35.3
H07	HYD	N15	815	97.0	349	8.15E-08	19.0	100	33.9
H12	HYD	N15	815	89.1	573	3.15E-08	25.0	175	24.6
H10	HYD	N15	815	80.0	1331+	5.50E-09	300	500	6.1+
110.4	нүр	199	705	306	1.7	1.68E-06			8.0
H04 H05	HYD	199	705	237	28.4	2.40E-07	4.7	8.0	15.0
H02	HYD	199	769	163	20.7	4.53E-07	1.6	2.0	28.5
H02	HYD	199	768	189	304	4.07E-08	29.4	125	9.3
H08	HYD	199	760	88.5	1195	4.71E-09	85.0	579	7.9 9.4
HØ 1	HYD	199	815	93.4	32.1	2.09E-07	7.8 31.1	12.5 200	9.3
H07	HYD	199	815	72.7	342	3.13E-08 1.86E-08	50.0	240	9.0
H12	HYD	199	815	71.3	508 439	2.64E-08	92.5	229	11.7
H20	HYD HYD	199 199	815 815	68.0 57.8	1331+	1.10E-09	1000	1080	2.9+
H10	HIU	177	015	37.10					0.01
H13	HYD	12R		97	450+	4 445 03	7.0 32.5	350 195	3.8+ 18.4
H14	HYD	12R			247	1.14E-07	71.7	81.7	
H19	HYD	12R		85	456+	2.64E-08	131	200	21.1
H18	HYD			75 40	891 350+	1.75E-08 5.26E-08	33.5	129	7.8+
H15	HYD					2.03E-08	104	67.6	
H16	HYD				650 1323	8.02E-09	225	80.0	
H17	HYD	12R	913	30					. .
H19	HYD	CG2	760		277	3.96E-09	275	85.5	2.6
H18		CG2	760		599		E 0	135	4.4+
Н13		CG2			450+	0 507 00	5.0 62.5	62.0	
H15	HYD				189	2.59E-08 2.23E-08	80.0	104	7.25
H16					313 499	1.36E-08	71.6	475	3.8
H20					499 819	8.64E-09		420	6.46
H17	HYD	CG2	. 812	, 170	047				

TABLE 3 (concl.)

Notes

aAlloy code: CRM = CRM-6D castings
XF8 = XF-818 castings
HS3 = HS31 castings
SAF = SA-F11 castings
A28 = A-286
IN8 = INCOLOY Alloy 800H
N15 = N-155
199 = 19-9DL
12R = 12RN72
CG2 = CG-27

bAged (Climax Molybdenum Co.).

 $^{^{\}rm c}$ Braze-cycled (United Stirling AB, Sweden).

 $^{^{\}rm d}$ As-cast (Climax Molybdenum Co.).

TABLE 4. STATISTICAL DATA ON TEMPERATURE-COMPENSATED ANALYSIS OF CAST ALLOYS CRM-6D AND XF-818
IN AIR AND 15 MPa H₂

Alloy ^a	Environment	No. of Data	R ²	ln k	<u> </u>	Q, kJ/mol
		Ruptur	e Life (t	<u>~)</u>		
CRM-6D	Air	26	0.843	0.829	-9.12	461
	15 MPa H ₂	8	0.962	-6.35	-13.3	720
XF-818	Air 15 MPa H ₂	14 10		-13.2 -3.51	-7.52 -7.93	505 436
	Time to	Reach 1%	Creep St	rain (t _{0.01}	<u>)</u>	
CRM-6D	Air	29	0.973	5.59	-10.6	468
	15 MPa H ₂	9	0.938	3.48	-11.1	512
XF-818	Air	14	0.988	-20.8	-6.86	522
	15 MPa H ₂	9	0.833	-10.1	-8.70	512
		Minimum C	reep Rate	<u>(&)</u>		
CRM-6D	Air	28	0.947	-16.9	11.8	-551
	15 MPa H ₂	9	0.948	-14.2	11.8	-574
XF-818	Air	14	0.990	6.85	7.47	-545
	15 MPa H ₂	10	0.825	-4.51	7.55	-450

 $^{^{\}rm a}$ Alloys cast by Climax Molybdenum Co., Ann Arbor, Michigan. CRM-6D and XF-818 were tested in aged and as-cast conditions, respectively.

TABLE 5. STATISTICAL DATA ON TEMPERATURE-COMPENSATED ANALYSIS OF BRAZE-CYCLED CAST ALLOYS HS-31, SA-F11, CRM-6D, AND XF-818 IN 15 MPa H₂

Alloya	No. of Data	R ²	<u>ln k</u>	n	Q, kJ/mol		
		Rupture	Life (t _r)				
HS-31	6	0.769	-2.91	-10.2	551		
SA-F11	6	0.972	-15.3	-6.85	508		
CRM-6D	6	0.998	7.89	-6.94	273		
XF-818	6	0.993	-18.9	-8.43	591		
Time to Reach 1% Creep Strain (t _{0.01})							
HS-31	6	0.710	-3.83	-4.54	256		
SA-F11	6	0.942	-16.2	-7.06	510		
CRM-6D	6	0.968	1.07	-6.90	309		
XF-818	6	0.919	-26.1	-7. 76	603		
	<u>1</u>	<u>linimum Cr</u>	eep Rate (Ě	<u>)</u>			
HS-31	6	0.793	-15.1	12.6	-600		
SA-F11	6	0.949	4.68	6.58	-505		
CRM-6D	6	0.987	-21.6	6.76	-239		
XF-818	6	0.991	14.8	9.74	-7 08		

^aAlloys cast and supplied by United Stirling AB, Sweden. Simulative braze cycle heat treatment was given by NASA-LeRC, Cleveland, Ohio.

TABLE 6. STATISTICAL DATA ON TEMPERATURE-COMPENSATED ANALYSIS OF WROUGHT ALLOYS A-286, INCOLOY ALLOY 800H, N-155, 19-9DL, 12RN72, AND CG-27

Alloy	Environment	No. of Data	R ²	ln k	n	Q, kJ/mol
		Rupture	Life (t	<u>~)</u>		
A-286	Air	15	0.858	-38.4	-3.82	544
	15 MPa H ₂	6	0.800	-18.2	-4.81	413
H008	Air	23	0.941	-10.8	-6.79	406
	15 MPa H ₂	8	0.977	-20.7	-7.92	530
N-155	Air	19	0.976	-13.9	-6.28	435
	15 MPa H ₂	8	0.994	-13.1	-7.85	496
19-9DL	Air	19	0.975	-17.6	-6.44	461
	15 MPa H ₂	9	0.975	-18.5	-7.84	523
12RN72	15 MPa H ₂	4	0.990	-7.09	-6.49	359
CG-27	15 MPa H ₂	6	0.917	-14.9	-4.67	403
	Time to	Reach 1%	Creep St	rain (t _{0.01}	<u>) </u>	
A-286	Air	12	0.946	-39.4	-3.54	535
	15 MPa H ₂	8	0.620	-0.429	-3.67	199
800Н	Air	14	0.886	-17.0	-8.86	515
	15 MPa H ₂	8	0.962	-29.5	-9.42	635
N-155	Air	17	0.988	-17.4	-7.04	467
	15 MPa H ₂	9	0.957	-16.6	-9.59	573
19-9DL	Air	16	0.955	-26.8	-7.38	559
	15 MPa H ₂	9	0.897	-16.2	-7.51	473
12RN72	15 MPa H ₂	7	0.898	-24.0	-10.5	639
CG-27	15 MPa H ₂	4	0.985	70.7	-4.98	-367
		Minimun C	reep Rate	(&		
A-286	Air	9	0.767	35.9	3.09	-613
	15 MPa H ₂	7	0.916	-43.0	4.09	18.9
800н	Air	22	0.849	-0.803	6.49	-384
	15 MPa H ₂	8	0.981	-0.279	7.63	-428
N-155	Air	17	0.980	8.85	7.39	-527
	15 MPa H ₂	9	0.979	15.1	9.83	-693
19-9DL	Air	19	0.948	15.2	7.38	-573
	15 MPa H ₂	10	0.941	11.8	8.12	-581
12RN72	15 MPa H ₂	6	0.858	4.45	9.41	-542
CG-27	15 MPa H ₂	5	0.951	25.8	3.31	- 548

TABLE 7. RANGE OF VALUES OF STRESS EXPONENT (n)
AND APPARENT ACTIVATION ENERGY (Q)

Alloy	n Air15 MPa H ₂		Q. _Air	, kJ/mol 15 MPa H ₂
	Rup	ture Life		
Cast Alloys				
HS-31 ^a		-10.2		551
SA-F11 ^a		-6.85		508
CRM-6D ^b	-9.12	-13.3	461	720
CRM-6D ^b		-6.94		273
XF-818 ^b	-7. 52	-7. 93	505	436
XF - 818 ^b		-8.43		591
Wrought Alloys				
CG-27		-4.67		403
12RN72		-6.49		359
19-9DL	-6.44	-7.84	461	523
N-155	-6.28	-7. 85	435	496
800H	-6.79	-7.9 2	406	530
A-286	-3.82	-4.81	544	413
	Minimur	n Creep Rate		
Cast Alloys				
HS-31 ^a		12.6		-600
SA-F11 ^a		6.58		- 505
CRM-6D ^b	11.8	11.8	-551	-574
CRM-6D ^a		6.76		-239
XF-818 ^b	7.47	7.55	-545	-450
XF-818 ^a		9.74		-7 08
Wrought Alloys				
CG-27		3.31		-548
12RN72		9.41		-542
19-9DL	7.38	8.12	-573	-581
N-155	7.39	9.83	-527	-693
Н008	7.63	6.49	-384	-428
A-286	3.09	1.40	-613	- 518

^aUnited Stirling AB castings, braze-cycle treated.

^bClimax Molybdenum Co. castings, CRM-6D (aged), XF-818 (as-cast).

TABLE 8. PREDICTED STRESSES FOR 3500-HOUR RUPTURE LIFE IN AIR AND 15 MPa HYDROGEN

			Estimated St	ress, MPa (k	si)
	-	Temp.,	14	90% Conf.	
Alloy	Environment	<u>°C (°F)</u>	Mean	Low	<u> High</u>
A-286	Air	775 (1427)	63.4 (9.20)	48.3	83.2
		870 (1600)	15.3 (2.36)	12.4	21.4
	15 MPa H ₂	775 (1427)	78.4 (11.4)	50.8	121
		870 (1600)	34.6 (5.02)	22.4	53.4
800H	Air	775 (1427)	58.5 (8.48)	52.4	65.3
		৪70 (1600)	33.1 (4.80)	29.6	36.9
	15 MPa H_2	775 (1427)	56.6 (8.21)	51.4	62.1
		870 (1600)	29.9 (4.34)	27.2	32.8
N-155	Air	755 (1427)	84.6 (12.3)	78.0	91.8
N 100	7	870 (1600)	43.7 (6.34)	40.3	47.4
	15 MPa H ₂	775 (1427)	93.7 (13.6)	90.2	97.4
	2	370 (1600)	51.3 (7.44)	49.4	53.3
19-9DL	Air	775 (1427)	67.2 (9.75)	61.3	73.8
15 502	AII	370 (1600)	34.0 (4.93)	31.0	37.3
	15 MPa H ₂	775 (1427)	71.0 (10.3)	64.ö	78.0
	2	870 (1600)	37.6 (5.45)	34.2	41.3
12RN72	15 MPa H ₂	775 (1427)	55.0 (7.98)	52.0	58.1
121(11/2	13 111 4 112	870 (1600)	32.4 (4.70)	30.7	34.2
		775 (1407)	140 /00 7)	121	1.57
CG-27	15 MPa H ₂	775 (1427) 870 (1600)	143 (20.7) 62.9 (9.12)	131 57.3	157 68.9
		870 (1000)	02.9 (9.12)	57.5	00.9
CRM-6D ^a	Air	775 (1472)	147 (21.3)	130	167
3		870 (1600)	91.1 (13.2)	80.5	103
CRM-60ª	15 MPa H ₂	775 (1427)	164 (23.8)	154	174
CRM-6D ^b	15 MDa H	870 (1600) 775 (1427)	97.9 (14.2) 87.7 (12.7)	92.3 84.7	104 90.9
CRM-0D	15 MPa H ₂	870 (1600)	60.3 (8.75)	58.2	62.5
.		777 (4407)	400 (10.0)	104	100
XF-818 ^a	Air	775 (1427)	130 (18.9) 68.4 (9.92)	124 65.3	136 71.6
XF-818 ^a	15 MPa H ₂	870 (1600) 775 (1427)	126 (18.3)	110	144
VI OIO	20 111 4 112	870 (1600)	74.5 (10.8)	64.9	85.4
XF-818 ^b	15 MPa H_2	775 (1427)	125 (18.1)	122	128
	2	870 (1600)	64.0 (9.28)	62.5	65.6

TABLE 8 (cont.)

			Estimated Stress MPa (ksi)				
Alloy	Environment	Temp., °C (°F)	Mean	90% Conf. Limits Low High			
HS-31 ^b	15 MPa H ₂	775 (1427) 870 (1600)	169 (24.5) 101 (14.6)	156 183 93.0 109			
SA-F11 ^b	15 MPa H ₂	775 (1427) 870 (1600)	160 (23.2) 79.1 (11.5)	154 167 75.8 82.5			

aClimax Molybdenum Co.; castings, CRM-6D (aged), XF-818 (as-cast).

 $^{^{\}mathrm{b}}$ United Stirling AB, Sweden; castings, braze-cycle treated.

TABLE 9. PREDICTED STRESS TO 1 PERCENT CREEP IN 3500 HOURS IN AIR AND 15 MPa $\rm H_2$

		Tamn	Estimated S	tress, MPa 90% Conf.	
Alloy	Environment	Temp., <u>°C (°F)</u>	Mean	Low	High
A-286	Air	775 (1427) 870 (1600)	49.8 (7.22) 11.8 (1.71)	41.2 9.74	60.1
	15 MPa H ₂	775 (1427) 870 (1600)	48.4 (7.02) 28.8 (4.18)	22.9 13.7	102 60.9
800H	Air	775 (1427) 870 (1600) 775 (1427)	46.4 (6.73) 26.6 (3.86) 37.7 (5.47)	40.8 23.4 31.9	52.7 30.3 44.5
	15 MPa H ₂	870 (1600)	21.9 (3.18)	18.5	25.9
N-155	Air	775 (1427) 870 (1600)	53.7 (7.79) 28.5 (4.13)	50.7 26.9	56.9 30.2
	15 MPa H ₂	775 (1427) 870 (1600)	71.5 (10.4) 40.5 (5.87)	64.1 36.3	79.7 45.1
19-9DL	Air	775 (1427) 870 (1600)	52.6 (7.63) 25.5 (3.70)	46.7 22.6	59.5 28.9
	15 MPa H ₂	775 (1427) 870 (1600)	54.0 (7.83) 29.6 (4.29)	45.2 24.8	64.5 35.4
12RN72	15 MPa H ₂	775 (1427) 870 (1600)	50.7 (7.35) 28.4 (4.12)	46.5 26.0	55.3 31.0
CG-27 ^a	15 MPa H ₂	775 (1427) 870 (1600)	60.1 (8.72) 121 (17.6)	48.6 98.1	74.4 150
CRM-6D ^b	Air	775 (1427) 870 (1600)	127 (18.4) 83.4 (12.1)	121 79.2	134 87.7
CRM-6D ^b	15 MPa H ₂	775 (1427) 870 (1600)	130 (18.9) 83.7 (12.1)	118 76.2	143 91.9
CRM-6D ^C	15 MPa H ₂	775 (1427) 870 (1600)	61.5 (8.92) 40.1 (5.82)	53.0 34.6	71.3 46.5
XF - 818 ^b	Air	775 (1427) 870 (1600)	90.8 (13.2) 43.9 (6.37)	85.6 41.4	96.3 46.6
XF-818 ^b	15 MPa H ₂	775 (1427) 870 (1600)	105 (15.2) 59.7 (8.66)	88.9 50.7	123 70.3
XF-818 ^C	15 MPa H ₂	775 (1427) 870 (1600)	90.0 (13.1) 42.9 (6.22)	82.5 39.3	98.1 46.8
HS-31 ^C	15 MPa H ₂	775 (1427) 870 (1600)	46.2 (6.70) 27.0 (3.92)	42.0 24.5	50.7 29.6
SA-F11 ^C	15 MPa H ₂	775 (1427) 870 (1600)	126 (18.3) 63.5 (7.97)	119 59.7	134 67.4

 $^{^{\}mathrm{a}}$ CG-27 data revealed an apparent anomaly, mentioned earlier.

^bClimax Molybdenum Co.; castings, CRM-6D (aged), XF-818 (as-cast).

^CUnited Stirling AB, Sweden; castings, braze-cycle treated.

TABLE 10. ELONGATION DATA

Environment	Temp.,	Stress Range, MPa	Elongation Range,
		Alloy A-286	
Air Air 15 MPa H ₂ Air 15 MPa H ₂ Air 15 MPa H ₂ Air 15 MPa H ₂	650 705 705 760 760 815 815 870 870	441, 483 179-379 359, 446 124-345 131-254 55-138 70, 138 21-55 24.7 17-28	8.4, 11.4 3.4-21.0 7.0, 14.0 8.7-26.3 4.7-9.8 10.7-44.6 12.5, 20.0 29.8-87.2 21.0 ^a 38.7-58.4
	11	COLOY Alloy 800H	
Air Air 15 MPa H ₂ Air Air	650 705 705 760 760 815 815 870 870 925	207-276 110-186 193-230 70-152 74.9-124 45-110 54.8-62.5 26-76 41.0 31-48	15.0-32.2 19.6-36.8 2.0-9.4 28.1-53.0 13.8-29.1 18.1-59.6 16.3 ^a -21.4 15.9-32.2 22.8 ^a 19.7-24.0
		N-155	
Air Air 15 MPa H ₂ Air 15 MPa H ₂ Air 15 MPa H ₂ Air	650 705 705 760 760 815 815 870 925	276-414 159-276 283, 319 97-241 118-193 63-165 80-124 47-110 41-69	19.9-26.2 28.3-46.0 17.0, 24.0 18.0-51.5 25.8-35.0 12.1-58.3 6.1 ^a -35.3 26.3-65.0 27.7-43.4
		19-9DL	
Air Air 15 MPa H ₂ Air 15 MPa H ₂ Air 15 MPa H ₂	650 705 705 760 760 815 815 870 925	276-414 131-276 237, 306 86-193 88.5-163 59-138 68-93.4 33-103 35-69	10.1-18.8 12.1-24.2 8.0, 15.0 12.1-37.4 7.9-28.5 10.1-44.8 9.0-11.7 20.8-61.6 27.5-47.6

TABLE 10 (cont.)

Environment	Temp.,	Stress Range, MPa	Elongation Range, %
		12DN72	
		12RN72	
15 MPa H ₂	760 815	75, 90 50, 57	18.4, 21.1 20.9, 24.7
15 MPa H ₂	015	50, 57	20.3, 24.7
		<u>CG-27</u>	
15 MPa H ₂	760	275	2.6
15 MPa H_2^2	815	140-190	6.5-7.3
		CRM-6D ^b	
Air	650	379, 393	4.2, 5.6
Air	705	276 - 345	7.8-8.4
15 MPa H ₂	705	369-395	5.6-7.8
Air	760	193-290	7.7-10.7
15 MPa H ₂	760 815	196, 220 131-241	7.0, 7.4 4.6-13.9
Air 15 Mpa H ₂	815	151-162	7.0-8.5
Air	870	97-172	2.8-21.7
15 MPa H ₂	870	116	1.6 ^a
Air	925	90-117	5.5-12.5
		CRM-6DC	
15 MPa H ₂	760	117-252	14.8-21.1
15 MPa H ₂	815	87-105	20.8-27.3
-		XF-818 ^b	
Air	650	393, 414	7.5, 8.0
Air	705	283-414	6.7-10.1
15 MPa H ₂	705	395, 396	5.0, 6.0
Air -	760	207-331	8.2-13.6
15 MPa H ₂	760	195-216	8.5-10.7
Air	815	103-241	14.1-23.8
15 MPa H ₂	815 870	118-176	10.1-16.2 12.9-20.6
Air 15 MPa H ₂	870 870	63-172 93.6	15.4
Air	925	55-103	18.4-25.2
		XF-818 ^C	
15 MPa H ₂	760	158-192	11.6-14.7
15 MPa H ₂	815	106-135	15.6-19.7
2			- -

TABLE 10 (cont.)

Environment	Temp.,	Stress Range, MPa	Elongation Range,
		HS-31 ^C	
15 MPa H ₂ 15 MPa H ₂	760 815	220-242 157-180	20.7-28.1 13.5-18.3
		SA-F11 ^C	
15 MPa H ₂ 15 MPa H ₂	760 815	220-257 145-180	5.0-6.3 7.0-8.6

^aTests discontinued without failure.

 $^{^{}m b}$ Climax Molybdenum Co.; castings, CRM-6D (aged), XF-818 (ascast).

^CUnited Stirling AB, Sweden; castings, braze-cycle treated.

Figure 1. Creep-rupture specimen design. (a) Wrought (sheet), (b) cast.

Figure 2. Microstructures of wrought alloys. (a) A-286, (b) 800H, (c) N-155, (d) 19-9DL, (e) 12RN72, (f) CG-27. Etchant: 10% oxalic acid, electrolytic.

Neg. No. 56112

(e)

Neg. No. 56113

(f)

Figure 2 (cont.)

SEM No. 5486
(a) CRM-6D (Climax), aged

SEM No. 5488

(b) CRM-6D (Climax), aged

SEM No. 5489

(c) XF-818 (Climax), as-cast

SEM No. 5491 (d) XF-818 (Climax), as-cast

Figure 3. Microstructures of cast alloys. (a-d) Climax heat, side gating, (e-1) United Stirling AB heat, end gating. Etchant: 10% oxalic acid, electrolytic.

Neg. No. 54966

(e) XF-818 (US/AB), braze-cycled

Neg. No. 45968

(f) CRM-6D (US/AB), braze-cycled

Neg. No. 54961

(g) HS-31 (US/AB), braze-cycled

Neg. No. 54970

(h) SA-F11 (US/AB), braze-cycled

Figure 3 (cont.)

Neg. No. 54967

(i) XF-818 (US/AB), braze-cycled

Neg. No. 54969

(j) CRM-6D (US/AB), braze-cycled

Neg. No. 54962

(k) HS-31 (US/AB), braze-cycled

Neg. No. 54971

(1) SA-F11 (US/AB), braze-cycled

Figure 3 (cont.)

Figure 4. High-pressure multispecimen test facility for creep-rupture evaluation of materials in controlled environments.

46

1

j

ŀ

<u>..</u>

Creep Elongation, 10^{-3}

Figure 5. Creep elongation curves for two heats of XF-818 (Climax and US/AB) tested in 15 MPa $_2$ at 760°C.

Figure 6. Creep elongation curves for XF-818 (Climax, as-cast) tested in air and 15 MPa ${\rm H_2}$ at 760°C.

)

)

)

)

Figure 7. Creep elongation curves for SA-F11 (US/AB, braze-cycled) tested in 15 MPa $^{\rm H}2$.

50

Figure 8. Creep elongation curves for CG-27 tested in 15 MPa $\rm H_2$ at 815°C.

Figure 9. Creep elongation curves for 12RN72 and CG-27 tested in 15 MPa H2.

Figure 10. Creep elongation curves for HS-31, XF-818, CRM-6D, and SA-F11 (US/AB, braze-cycled) tested in a single test (H14) in 15 MPa $_2$ at 760°C.

) · · ·) · · ·)

}

)

Figure 11. Temperature-compensated rupture life vs. stress for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa $\rm H_2$ and air.

Figure 12. Temperature-compensated minimum creep rate vs. stress for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa $\rm H_2$ and air.

)

)

Figure 13. Temperature-compensated rupture life vs. stress for United Stirling AB braze-cycled HS-31, SA-F11, CRM-6D, and XF-818 tested in 15 MPa $^{\rm H}_2$.

Figure 14. Temperature-compensated minimum creep rate vs. stress for United Stirling AB braze-cycled HS-31, SA-F11, CRM-6D, and XF-818 tested in 15 MPa H₂.

)

)

)

Figure 15. Temperature-compensated rupture life vs. stress for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa $\rm H_2$.

Figure 16. Temperature-compensated minimum creep rate vs. stress for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa $\rm H_2$.

ì

Figure 17. Temperature-compensated time to 1% creep strain vs. strain for Climax CRM-6D (aged) and XF-818 (as-cast) tested in 15 MPa $\rm H_2$ and air.

Figure 18. Temperature-compensated time to 1% creep strain vs. strain for United Stirling AB braze-cycled HS-31, SA-F11, CRM-6D, and XF-818 tested in 15 MPa H₂.

)

)

Figure 19. Temperature-compensated time to 1% creep strain vs. strain for A-286, 800H, 19-9DL, N-155, 12RN72, and CG-27 tested in 15 MPa H $_2$.

Figure 20. Estimated 3500-h rupture stress for tube alloys tested at 870°C in air and 15 MPa hydrogen.

Figure 21. Estimated 3500-h rupture stress for cast alloys tested at 775°C in air and 15 MPa hydrogen.

Figure 22. Estimated 3500-h rupture stress of six tube alloys as a function of temperature tested in 15 MPa hydrogen.

Figure 23. Estimated 3500-h rupture stress of United Stirling AB braze-cycled cast alloys as a function of temperature, tested in 15 MPa hydrogen.

Figure 24. Estimated 3500-h rupture stress of Climax cast alloys as a function of temperature, tested in 15 MPa hydrogen.

705 237 15.0 Temp., °C 815 760 705 760 163 28.5 306 8.0 109 9.3 93.4 Stress, MPa Elong., % 9.4 25 mm Neg. No. 53768 (a)

Temp., °C 705 705 395 440 815 705 760 Stress, MPa Elong, % R. A., % 176 396 216 6.0 8.4 5.0 10.4 10.3 30.6 6.2 9.0 11.9 36.6 25 mm Neg. No. 53769 (b)

Figure 25. Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen.

(a) 19-9DL, (b) XF-818 (Climax, as-cast).

Figure 26. Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen. (a) 815°C, A-286 specimen did not fail; (b) 760°C, XF-8]8 (Climax, as-cast) specimen did not fail.

5

Figure 27. Appearance of fractured wrought and cast alloy specimens tested in 15 MPa hydrogen.

(a) 815°C, (b) 760°C)

(Climax Molybdenum Co.)

SEM No. 8375A

(a)

SEM No. 8377B

(b)

SEM No. 8375B

(c)

Figure 28. SEM microfractographs of A-286 tested in 15 MPa H₂ at 705°C.

(a) Intergranular fracture; (b) ductile dimple fracture near the surface; (c) intergranular fracture with second phases on grain surfaces.

Figure 29. SEM microfractographs of wrought alloys tested in 15 MPa $^{\rm H}_2$. (a) 800H, 760°C; (b) N-155, 760°C; (c) 19-9DL, 705°C. Extensive dimple rupture on all surfaces.

SEM No. 1273

(a)

SEM No. 1274

(b)

Figure 30. SEM microfractographs of 12RN72 tested in 15 MPa H₂ at 760°C. (a) Dimple rupture; (b) decohesive separation of grains in an adjoining area; (c) details of dimples; (d) second-phase particles on decohesively ruptured grains.

SEM No. 1272

(c)

SEM No. 1275

(d)

Figure 30 (cont.)

SEM No. 1282

(a)

SEM No. 1283

(b)

Figure 31. SEM microfractographs of CG-27 tested in 15 MPa $_{\rm H_2}$ at 815°C. (a) Quasi-cleavage type fracture, (b) very few dimples in the structure.

SEM No. 8356

(a) Climax (aged),705°C, stress 395 MPa.

SEM No. 1255

(b) US/AB (braze-cycled), 760°C, stress 255 MPa.

SEM No. 1259

(c) US/AB (braze-cycled), 815°C, stress 105 MPa.

Figure 32. SEM macro- and microfractographs of CRM-6D tested in 15 MPa $^{\rm H}2$. Rough interdendritic and transdendritic fracture topographies are observed.

(d) Climax (aged), 705°C, stress 395 MPa

(e) US/AB (braze-cycled), 760°C, stress 255 MPa.

SEM No. 1261 (f) US/AB (braze-cycled), 815° C, stress 105 MPa.

Figure 32 (cont.)

SEM No. 8352

(a) Climax (as-cast), stress 216 MPa. (b) US/AB (braze-cycled), stress 185 MPa.

SEM No. 1284

SEM No. 8355

(c) Climax (as-cast), stress 216 MPa. (d) US/AB (braze-cycled), stress 185 MPa.

Figure 33. SEM macro- and microfractographs of XF-818 tested in 15 MPa H2 at at 760°C. Inter- and transdendritic fracture with some fine dimples are to be noted.

SEM No. 1264

(a)

SEM No. 1288

(b)

Figure 34. SEM macro- and microfractographs of HS-31 (US/AB, braze-cycled), tested in 15 MPa H₂ at 760°C, 245 MPa (a,c); 815°C, 165 MPa (b,d). Ductile dimple rupture associated with dendritic fracture.

SEM No. 1268

(c)

SEM No. 1291

(d)

Figure 34 (cont.)

SEM No. 1240

25KU 24 1247 1000 0U IITRI

SEM No. 1247

(b)

Figure 35. SEM macro- and microfractographs of SA-F11 (US/AB, braze-cycled), tested in 15 MPa H $_2$ at 760°C, 230 MPa (a,c,d); 815°C, 160 MPa (b,e,f).

SEM No. 1241

(c)

SEM No. 1239

(d)

Figure 35 (cont.)

SEM No. 1250

(e)

SEM No. 1249

(f)

Figure 35 (cont.)

Neg. No. 55520

(a) A-286, 760° C, 131 MPa, elong. 8.1%

Neg. No. 55518

(b) 800H, 815°C, 62.5 MPa, elong. 21.4%

Figure 36. Photomicrographs of cross-sections of wrought alloys tested in 15 MPa $\rm H_2$. Creep cavities and cracks between grains to be noted.

Neg. No. 55525 (c) N-155, 815°C, 97.0 MPa, elong. 33.9%

Neg. No. 55523

(d) 19-9DL, 760°C, 88.5 MPa, elong. 7.9% Figure 36 (cont.)

Neg. No. 55513 (a) 12RN72, 815°C, 57 MPa, elong. 24.7%

Neg. No.55505

(b) CG-27, 815°C, 190 MPa, elong. 5.8%

Figure 37. Photomicrographs of cross-sections of wrought alloys tested in 15 MPa ${\rm H_2}$ at ${\rm 815}^{\circ}{\rm C}$ showing resultant creep cavities between grains. (a) 12RN72, (b) CG-27.

(a) CRM-6D (Climax, aged), 815°C, 151 MPa, elong. 7.0%

Neg. No. 55503

(b) CRM-6D (US/AB, braze-cycled), 815° C, 105 MPa, elong. 27.3%

Photomicrographs of cross-sections of cast alloys tested in 15 MPa $\rm H_2$ at 815°C. Figure 38. Cast structures show little evidence of creep cavity development. Stress axis is vertical.

(c) XF-818 (Climax, as-cast), 875°C, 118 MPa, elong. 16.2%

Neg. No. 55509 (d) XF-818 (US/AB, braze-cycled), 815°C, 120 MPa, elong. 19.0%

Figure 38 (cont.)

Neg. No. 55491

(a) HS-31 (US/AB, braze-cycled), 760°C, 242 MPa, elong. 23.2%

Neg. No. 55495

(b) SA-F11 (US/AB, braze-cycled), 760°C, 230 MPa, elong. 5.0%

Figure 39. Photomicrographs of cross-sections of cast alloys tested in 15 MPa H2 at 760°C. (a) Significant cavities near fracture indicative of high rupture elongation; (b) very little cavity, indicating low ductility; (c,d) high magnifications reveal fine cavities. Stress axis is vertical.

Neg. No. 55492

(c) HS-31 (US/AB, braze-cycled), 760°C, 242 MPa, elong. 23.3%

Neg. No. 55502

(d) SA-F11 (US/AB, braze-cycled), 815°C, 180 MPa, elong. 8.6%

Figure 39 (cont.)

FINAL REPORT DISTRIBUTION LIST

```
NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attn:
```

```
R. H. Titran
                                 M. S. 49-1 (10 copies)
J. R. Stephens
                                 M. S. 49-1
Materials Division - CF
                                M. S. 49-1
                                 M. S. 49-1
S. R. Schuon
H. R. Gray
                                 M. S. 49-3
                                M. S. 49-3
H. B. Probst
C. M. Scheuermann
                                 M. S. 49-1
                                M. S. 3-19
TU Office
T. P. Burke
                                M. S. 501-11
                                 M. S. 500-211
W. E. B. Mason
D. G. Beremand
                                 M. S. 500-215
W. A. Tomazic
                                M. S. 500-215
F. J. Kutina, Jr.
                                M. S. 500-210
J. G. Slaby
                                M. S. 500-215
A. Long
                                M. S. 500-305
N. T. Musial
                                M. S. 500-113
R. J. Sovie
                                M. S. 500-203
W. K. Tabata
                                M. S. 500-215
                                M. S. 5-5
Report Control Office
Library
                                M. S. 60-3 (2 copies)
                                 M. S. 500-215
W. K. Tabata
```

NASA Headquarters Washington, DC 20546 Attn:

RJP J. F. Slomski

RJP E. E. Van Landingham

RTS-6 J. Mullin

NASA Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn:

F. W. Hoehn	M. S. 125-224
R. C. Heft	M. S. 510-250
G. W. Meisenholder	M. S. 502-307
V. Truscello	M. S. 502-419
H. E. Cotrill, Jr.	M. S. 157-208
J. F. Mondt	M. S. 169-515
G. Stapfer	M. S. 169-515

NASA Scientific & Technical Information Facility (50 copies)

Attn: Accessioning Dept.

P. O. Box 8757

Balt/Wash. International Airport, MD 21240

STIRLING ENGINE DISTRIBUTION LIST Department of Energy

Department of Energy Attn: R. T. Alpaugh MS CE-131 Forrestal Building Washington, DC 20585

Department of Energy Attn: Karl Bastress MS CE-142 1000 Independence Ave., S. W. Washington, DC 20585

Department of Energy Attn: John J. Brogan MS CE-14 Forrestal Building Washington, DC 20585

Department of Energy Attn: Dr. Robert J. Gottschall ER-151 GTN J-309 Washington, DC 20545

Department of Energy Attn: Marvin Gunn MS CE-142 1000 Independence Ave., S.W. Washington, DC 20585

STIRLING ENGINE DISTRIBUTION LIST Other Government Agencies

Argonne National Laboratory Attn: Dr. Kenneth Uherka Components Tech. Div., Bldg. 330 9700 South Cass Avenue Argonne, IL 60439

Kenneth Bradford P. O. Box 99909 Cleveland, OH 44199 Department of Energy Attn: E. Lister Div. of Coal Utilization GTN E-178 Washington, DC 20545

Department of Energy Attn: Robert B. Morrow GTN B-107 Washington, DC 20545

Department of Energy Attn: John W. Neal Division of Coal Utilization GTN E-178 Washington, DC 20545

Department of Energy Attn: Patrick L. Sutton MS 5-G030 Forrestal Building Washington, DC 20585

DOE Technical Information Center (198 copies)
Building 1916-T-1
Oak Ridge Turnpike at Athens Road
Oak Ridge, TN 37830
Attn: T. Laughlin

Argonne National Laboratory Attn: R. E. Holz Bldg. H330 9700 South Cass Avenue Argonne, IL 60439

Department of Transportation Attn: H. Miller Trans. Systems Center, Code TSC-404 Kendall Square Cambridge, MA 02142

DARPA Attn: Lt. Comdr. W. Wright 1400 Wilson Blvd. Arlington, VA 22209

Naval R&D Attn: R. Bloomquist Code 2724 Annapolis, MD 21402

Oak Ridge National Laboratory Attn: F. A. Creswick P. O. Box Y Oak Ridge, TN 37830

Solar Energy Research Institute Attn: Joseph Finegold 1617 Cole Boulevard Golden, CO 80401

U.S. Air Force Wright Aero. Labs Attn: Jerrell M. Turner Energy Conversion Branch Aero Propulsion Laboratory, POOC Wright Patterson AFB, OH 45433

U.S. Dept. of Army - Headquarters Attn: Dr. Charles H. Church DAMA-ARZ-E Pentagon Washington, DC 20310

U.S. Army Mobility Equipment R&D Command Attn: Paul Arnold DRDME-EM Fort Belvoir, VA 22060

U.S. Army Belvoir R&D Center Attn: STRBE-EMP D. Vaughn Fort Belvoir, VA 22060

U.S. Bureau of Mines Attn: J. Alton Burks Pittsburgh Research Center Cochrans Mills Road P.O. Box 18070 Pittsburgh, PA 15236 House of Representatives Attn: Honorable Mary Rose Oakar 107 Cannon House Office Building Washington, DC 20515

NUWES Attn: Charles R. Gundersen Code 7022 Keyport, WA 98345

Oak Ridge National Laboratory Attn: C. D. West P. O. Box Y Bldg. 9201-3, MS-5 Oak Ridge, TN 37830

U.S. Air Force Wright Aero. Labs. Attn: Lt. Richard Honneywell Energy Conversion Branch Aero Propulsion Laboratory, POOC Wright Patterson AFB, OH 45433

U.S. Air Force Wright Aero. Labs. Attn: Valerie J. VanGriethuysen Energy Conversion Branch Aero Propulsion Laboratory, POOC Wright Patterson AFB, OH 45433

U.S. Army Materials and Mechanics Research Center Attn: Dr. W. J. Croft Watertown, MA 02172

U.S. Army Mobility Equipment R&D Command Attn: Richard Belt DRDME-EC Fort Belvoir, VA 22060

E. E. Bailey
AFAPL/DO
Wright Patterson AFB, OH 45433

STIRLING ENGINE DISTRIBUTION LIST Universities

Bucknell University Attn: Dr. Barry Maxwell Mechanical Engineering Dept. Lewisburgh, PA 17837

California Polytechnic State Univ. Attn: Professor C. R. Russell Mechanical Engineering Dept. San Luis Obispo, CA 93407

Massachusetts Institute of Technology Attn: Dr. L. H. Linden Energy Laboratory Cambridge, MA 02139

Rensselaer Polytechnic Institute Attn: Prof. Fred Ling Dept. of Mechanical Engineering Troy, NY 12181

University of Virginia
Attn: Ira Dye
School of Engineering &
Applied Science
Thornton Hall
Charlottesville, VA 22901

University of Washington Attn: Maurice A. White Joint Center for Graduate Study 100 Sprout Road Richland, WA 99352

Virginia Technology Attn: Dr. R. Sisson Dept. of Materials Engineering Blacksburg, VA 24061

Western Michigan University Attn: Richard P. Heintz Dept. of Transportation Technology Kalamazoo, MI 49008 California Polytechnic State Univ. Attn: Raymond G. Gordon Mechanical Engineering Dept. San Luis Obispo, CA 93407

Case Western Research University Attn: Professor A. Dybbs Dept. of Mechanical & Aerospace Engg. Cleveland, OH 44106

Massachusetts Institute of Technology Attn: Prof. Josepth L. Smith, Jr. Mechanical Engineering Dept. San Luis Obispo, CA 93407

University of Calgary Attn: Prof. G. Walker Dept. of Mechanical Engineering Calgary, Alberta T2NIN4 Canada

University of Washington Attn: R. P. Johnston Joint Center for Graduate Study 100 Sprout Road Richland, WA 99352

University of Wisconsin - R. F. Attn: Dr. J. R. Senft River Falls, WI 54022

Western Michigan University Attn: Harley D. Behm Dept. of Transportation Techology Kalamazoo, MI 49008

STIRLING ENGINE DISTRIBUTION LIST Philips Licensees

Ford Aerospace & Communications Corp.
Attn: Robert L. Pons
Aeronutronic Division
Newport Beach, CA 92663

Stirling Thermal Motors, Inc. Attn: Dr. R. J. Meijer, Pres. 2841 Boardwalk Ann Arbor, MI 48104

United Stirling Attn: Worth Percival 211 The Strand Alexandria, VA 22314

STIRLING ENGINE DISTRIBUTION LIST Industrial Companies & Foundations

Advanced Mechanical Technology, Inc. Attn: Dr. Walter D. Syniuta, Pres. 141 California Street Newton, MA 02158

Aeroject Liquid Rocket Company Attn: Lawrence C. Hoffman Dept. 9860, Bldg. 2001 P. O. Box 13222 Sacremento, CA 95813

AiResearch Casting Company Attn: Michael Woulds 2525 West 190 Street Torrance, CA 90509

Arthur D. Little, Inc. Attn: Prafulla C. Mahata Acorn Park Cambridge, MA 02140

Chrysler Corporation Attn: J. D. Withrow Vice President, Engineering P. O. Box 1118 Detroit, MI 48281 Philips Laboratories Attn: Alex Daniels 345 Scarborough Road Briarcliff Manor, NY 10510

United Stirling Attn: Bengt Hallare 211 The Strand Alexandria, VA 22314

United Stirling Research Labs Attn: Erik Skog S-201-10 Malmo 1 SWEDEN

Aeroject Energy Conversion Company Attn: Mark I. Rudnicki P.O. Box 13222 Sacremento, CA 95813

Aerospace Corporation Attn: Wolfgang Roessler 2350 East El Segundo Blvd. El Segundo, CA 90245

Avco-Lycoming Corporation Attn: Frank Riddell Vice Pres., Advanced Prod. Planning 652 Oliver Street Williamsport, PA 17701

Climax Molybdenum Co. of Michigan Attn: Dr. William Hagel 3475 Plymouth Road Ann Arbor, MI 48106

Consultant
Paul Huber
500 S. Highland
Dearborn, MI 48124

Davy McKee Corporation Attn: David R. Cormier 6200 Oaktree Blvd. Cleveland, OH 44131

Detroit Diesel Allison Attn: H. E Barrett Industrial Gas Turbines, MS T-15 P. O. Box 894 Indianpolis, IN 46206

Dynasim Company Attn: Richard P Heintz 428 W. South Kalamazoo, MI 49007

Energy Research & Dev. Foundation Attn: R. T. Brinsmade 600 New Hampshire Ave., Suite 450 Washington, DC 20037

Fairchild Space & Electronic Co. Attn: A. Schock Germantown, MD 20767

Ford Motor Company Attn: Ernest Kitzner Rm. S-2100 Scientific Research Lab. P. O. Box 2053 Dearborn, MI 48121

Foster-Miller Associates Attn: Dr. William M. Toscano 350 Second Avenue Waltham, MA 02154

General Electric Company Attn: William Auxer Space Division P. O. Box 8661 Philadelphia, PA 19101

General Electric Company Attn: R. Meier P. O. Box 527 King of Prussia, PA 19406 Dayton T. Brown, Inc. Attn: John Herlihy, P.E. Engineering & Test Division Church Street Bohemia, L. I., NY 11716

Detroit Diesel Allison Attn: Harold E. Helms Division of G.M.C. P. O. Box 894-T15 Indianapolis, IN 46206

Eaton Corporation Attn: Dr. Lamont Eltinge Director of Research P. O. Box 766 Southfield, MI 48037

Energy Research & Generation, Inc. Attn: Dr. Glen Benson Director of R, D & E Lowell & 57 Street Oakland, CA 94608

Flow Industries, Inc. Attn: Dr. John H. Olsen P. O. Box 5040 21414-68th Avenue, South Kent, WA 98031

Foster-Miller Associates Attn: B. Poulin 350 Second Avenue Waltham, MA 02154

Gas Research Institute Attn: M. Klinch 8600 W. Bryn Mawr Ave. Chicago, IL 60631

General Electric Company Attn: B. J. Tharpe Space Division P. O. Box 8661 Philadelphia, PA 19101

General Motors Research Laboratory Attn: F. Earl Heffner Engine Research Department Warren, MI 48090

Grumman Aerospace Corporation Attn: Clifford A. Hoelzer Head, Propulsion Systems M.S. C32-05 Bethpage, NY 11714

Martini Engineering Attn: Dr. W. R. Martini 2303 Harris Richland, WA 99352

Mechanical Technology Inc. Attn: Bruce Goldwater 968 Albany-Shaker Road Latham, NY 12110

Mechanical Technology Inc. Attn: Dr. B. Sternlicht 968 Albany-Shaker Road Latham, NY 12110

METEX Corporation Attn: George Ward Industrial Products Division Thermal & Mechanical Group 970 New Durham Road Edison, NJ 08817

Rasor Associates, Inc. Attn: Dr. Edward J. Britt Direct Energy Conversion Dept. 253 Humboldt Court Sunnyvale, CA 94086

Space Conditioning Research Institute of Gas Technology Attn: Jaroslav Wurn 3424 South State Street Chicago, IL 60616

Sunpower, Inc. Attn: W. Beale 6 Byard Street Athens, OH 45701

Teledyne Continental Motors Attn: T. Schwallie General Products Division 76 Getty Street Muskegon, MI 49442 International Harvester Attn: Paul N. Blumberg Science & Technology Laboratory 16 W. 260 83rd Street Hinsdale, IL 60521

Mechanical Technology Inc. Attn: William Sumigray 968 Albany-Shaker Road Latham. NY 12110

Mechanical Technology Inc. Attn: Michael Cronin 968 Albany-Shaker Road Latham, NY 12110

Mechanical Technology Inc. Attn: George Dochat 968 Albany-Shaker Road Latham, NY 12110

Motor Vehicle Man. Assn. of the United States, Inc. Attn: Christian Van Schayk 300 New Center Bldg. Detroit, MI 48202

Sigma Research Incorporated Attn: E. D. Waters 2950 George Washington Way Richland, WA 99352

Stirling Power Systems Corp. Attn: William Houtman 7101 Jackson Road Ann Arbor, MI 48103

TCA Stirling Engine Research and Development Corporation Attn: Dr. Ted Finkelstein P. O. Box 643
Beverly Hills, CA 90213

Teledyne Energy Systems Attn: G. Linkous 110 W. Timonium Road Timonium, MD 21093

Thermal Electron Corporation Attn: Parinal S. Patel R & D Center 101 First Avenue Waltham, MA 02154

Vadetec Corporation Attn: Yves Kemper Chief Executive Officer 2681 Industrial Road Troy, MI 48084

Valmont Industries
Attn: William Eaton
Valley, NE 68064

Wasson Associates P. O. Box 26800 San Jose, CA 95159 United Aircraft Products, Inc. Attn: John F. Unger Manager, Advanced Technology Box 1335 Dayton, OH 45401

United Technologies Research Center Attn: Frank Lemkey East Hartford, CT 06108

Varian Associates Attn: Chris Flegel MS G-028 611 Hansen Way Palo Alto, CA 94303

Westinghouse Electric Corporation Attn: Library/R. Holman Advanced Energy Systems Division P. O. Box 10864 Pittsburgh, PA 15236

		^
		-
		~
		•
		^
		•
		-

			·
<i>C.</i>			
<i>~</i> .			

• •