Ejercicio 4: Lloyd-Max

Introducción:

El algoritmo de Lloyd-Max es un algoritmo cuantificador óptimo.

El concepto de cuantificación se refiere a la discretización del valor de la señal, esto se traduce en hallar una correspondencia entre los valores u de la señal y los valores u' de la señal cuantificada.

Dicha correspondencia se realiza definiendo unos intervalos mediante una serie de niveles de transición t_k , k=1,...,N+1, de forma que a cada intervalo (t_k, t_{k+1}) se le asocia un valor r_k , *k*=1,...,*N* denominado *nivel de reconstrucción*.

El algoritmo Lloyd-Max plantea el cálculo de los niveles de transición y de reconstrucción de forma que se minimice el error medio cuadrático al sustituir u por u, mediante las siguientes funciones:

$$r_{k} = \frac{\int_{t_{k}}^{t_{k+1}} up(u) du}{\int_{t_{k}}^{t_{k+1}} p(u) du}$$

 $r_k = \frac{\int_{t_k}^{t_k} up(u)du}{\int_{t_k}^{t_{k+1}} p(u)du}$ significa que el nivel de reconstrucción r_k en un intervalo coincide con el centro de gravedad del área de la función densidad de probabilidad comprendida entre los niveles de transición t_k y t_{k+1} .

La expresión:

$$t_k = \frac{r_{k-1} + r_k}{2}$$

 $t_k = \frac{r_{k-1} + r_k}{2}$ indica que los niveles de transición son equidistantes de los niveles de reconstrucción anterior y posterior.

Caso práctico:

Demostrar la convergencia del algoritmo Lloyd-Max para una señal continua de la forma x = y, con 5 intervalos de cuantificación.

Utilizaremos una simple tabla Excel para esto, con la siguiente forma:

iteracion	T1	T2	Т3	T4	Т5	R1	R2	R3	R4	
0	0	0,25	0,5	0,75	1					
n	0				1		•••			

Los valores iniciales de los Tk los fijamos a mano y hacemos que T1 y T5 sean constantes e iguales a 0 y 1 respectivamente.

El cálculo de los centros de gravedad Rk sigue las siguientes fórmulas:

$$r_k = T_k + \frac{\frac{2}{3}Area_{iriangulo} + \frac{1}{2}Area_{rectangulo}}{Area_{iotal}} (T_{k-1} - T_k)$$

$$Area_{cuadrado} = (T_k - T_{k-1})T_{k-1}$$

$$Area_{total} = Area_{triangulo} + Area_{cuadrado}$$

$$Area_{triangulo} = \frac{1}{2} (T_k - T_{k-1})^2$$

y para los Tk:

$$T_k = r_{k-1} + \frac{r_k - r_{k-1}}{2}$$

Aplicando estas fórmulas rellenamos nuestra tabla:

	T1	T2	Т3	T4	Т5	R1	R2	R3	R4
0	0	0,250000	0,500000	0,750000	1	0,166667	0,388889	0,633333	0,880952
1	0	0,277778	0,511111	0,757143	1	0,185185	0,405947	0,642082	0,884166
2	0	0,295566	0,524014	0,763124	1	0,197044	0,420403	0,650972	0,886866
3	0	0,308723	0,535688	0,768919	1	0,205816	0,432373	0,659253	0,889491
4	0	0,319094	0,545813	0,774372	1	0,212730	0,442358	0,666687	0,891968
5	0	0,327544	0,554523	0,779327	1	0,218363	0,450768	0,673240	0,894225
6	0	0,334565	0,562004	0,783732	1	0,223044	0,457901	0,678957	0,896236
7	0	0,340472	0,568429	0,787597	1	0,226981	0,463979	0,683917	0,898005
8	0	0,345480	0,573948	0,790961	1	0,230320	0,469176	0,688205	0,899547
9	0	0,349748	0,578690	0,793876	1	0,233165	0,473628	0,691906	0,900885
10	0	0,353397	0,582767	0,796396	1	0,235598	0,477448	0,695096	0,902044
11	0	0,356523	0,586272	0,798570	1	0,237682	0,480729	0,697846	0,903045
12	0	0,359206	0,589287	0,800445	1	0,239470	0,483548	0,700214	0,903909
13	0	0,361509	0,591881	0,802061	1	0,241006	0,485973	0,702253	0,904654
14	0	0,363490	0,594113	0,803454	1	0,242326	0,488058	0,704009	0,905297
15	0	0,365192	0,596034	0,804653	1	0,243462	0,489853	0,705522	0,905851
16	0	0,366657	0,597687	0,805686	1	0,244438	0,491397	0,706825	0,906328
17	0	0,367917	0,599111	0,806577	1	0,245278	0,492726	0,707947	0,906740
18	0	0,369002	0,600337	0,807343	1	0,246002	0,493871	0,708914	0,907094
19	0	0,369936	0,601392	0,808004	1	0,246624	0,494856	0,709746	0,907400
20	0	0,370740	0,602301	0,808573	1	0,247160	0,495705	0,710463	0,907663
21	0	0,371433	0,603084	0,809063	1	0,247622	0,496436	0,711081	0,907890
22	0	0,372029	0,603759	0,809486	1	0,248019	0,497066	0,711614	0,908086
23	0	0,372543	0,604340	0,809850	1	0,248362	0,497608	0,712072	0,908255
24	0	0,372985	0,604840	0,810163	1	0,248657	0,498075	0,712467	0,908400
25	0	0,373366	0,605271	0,810434	1	0,248911	0,498478	0,712808	0,908525
26	0	0,373694	0,605643	0,810666	1	0,249129	0,498824	0,713101	0,908633
27	0	0,373977	0,605963	0,810867	1	0,249318	0,499123	0,713354	0,908726
28	0	0,374220	0,606238	0,811040	1	0,249480	0,499380	0,713571	0,908806
29	0	0,374430	0,606476	0,811189	1	0,249620	0,499602	0,713759	0,908875
30	0	0,374611	0,606680	0,811317	1	0,249741	0,499793	0,713921	0,908934
31	0	0,374767	0,606857	0,811427	1	0,249845	0,499957	0,714060	0,908986
32	0	0,374901	0,607009	0,811523	1	0,249934	0,500099	0,714180	0,909030
33	0	0,375017	0,607140	0,811605	1	0,250011	0,500221	0,714283	0,909068
34	0	0,375116	0,607252	0,811676	1	0,250078	0,500327	0,714372	0,909101
35	0	0,375202	0,607350	0,811736	1	0,250135	0,500417	0,714449	0,909129
36	0	0,375276	0,607433	0,811789	1	0,250184	0,500496	0,714515	0,909153

Podemos observar que a partir de la iteración 24, más o menos, los valores de los Tk se van haciendo más y más estables, en cada iteración varían menos, puesto que el algoritmo es convergente.