

Calcule
$$|A| = \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 2 & 1 & 9 & 6 \\ 3 & 2 & 4 & 8 \end{vmatrix}$$

SOLUCIÓN ► (Vea el ejemplo 3.1.7.)

Ya existe un cero en la primera columna, por lo que lo más sencillo es reducir otros elementos de la primera columna a cero. Se puede continuar la reducción buscando una matriz triangular.

Se multiplica el primer renglón por -2 y se suma al tercer renglón; se multiplica el primer renglón por -3 y se suma al cuarto.

$$|A| = \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & -5 & -1 & 2 \\ 0 & -7 & -11 & 2 \end{vmatrix}$$

Se multiplica el segundo renglón por -5 y -7 y se suma el tercer y cuarto renglones, respectivamente.

$$= \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & 0 & -16 & -18 \\ 0 & 0 & -32 & -26 \end{vmatrix}$$

Se factoriza –16 del tercer renglón (utilizando la propiedad 3.2.2).

$$=-16\begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & \frac{9}{8} \\ 0 & 0 & -32 & -26 \end{vmatrix}$$

Se multiplica el tercer renglón por 32 y se suma al cuarto.

$$= -16 \begin{vmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & \frac{9}{8} \\ 0 & 0 & 0 & 10 \end{vmatrix}$$

Ahora se tiene una matriz triangular superior y |A| = -16(1)(-1)(1)(10) = (-16)(-10) = 160.