1 Definition of groups

Definition 1.0.1. A group is a groupoid with a single object. (Groupoids are categories in which every morphism is an isomorphism).

1.1 Exercises

- 1. (1.1) Consider a group G, we show that G is the group of isomorphisms of a groupoid. Such groupoid C will have a single obejet G. Morphisms in C will be $f_g: G \to gG$, which is a bijection. Hence, $\operatorname{Aut}_C(G)$ forms a group.
- 2. (1.4) For $g, h \in G$, we have $(gh)^{-1} = h^{-1}g^{-1} = hg$ since $h^2 = g^2 = e$. Therefore, gh = hg or G is commutative.
- 3. (1.8) Here G should be an finite abelian group, otherwise the problem is false. If G is abelian then for $g \in G$, $g \neq f$ we know $g^{-1} \neq g$ so we can group g with g^{-1} in the product $\prod_{g \in G} g$. What lefts is f, as desired.
- 4. (1.9) If $f^2 = e$ then f is equal to its own inverse. Therefore, excluding m elements in G that whose inverse is itself and excluding the identity e, we left with pairs (g, g^{-1}) . Therefore, number of such pairs is $\frac{1}{2}(n-m-1)$. This implies n-m is odd.
- 5. (1.10) Proposition 1.13 tells us that $|g^2| = \frac{|g|}{\gcd(|g|,2)} = |g|$.
- 6. (1.11) We first show $|aga^{-1}| = |g|$. Indeed, we have $(aga^{-1})^k = ag^ka^{-1}$. This follows $|aga^{-1}|$ divides |g| and that |g| divides $|aga^{-1}|$. Hence, $|aga^{-1}| = |g|$. Back to our problem, we have $|gh| = |g(hg)g^{-1}| = |hg|$ so we are done.
- 7. (1.12) Yes, verify it.
- 8. (1.13) We choose group $(\mathbb{Z}/6\mathbb{Z},+)$ where $g=[2]_6, h=[4]_6$ then |g|=|h|=3 so lcm(|g|,|h|)=3 and also g and h commutes. However, $|gh|=|[0]_6|=1$.
- 9. (1.14) Let |gh| = N then since g and h commutes, we have $(gh)^N = g^N h^N = e$ so $g^N = (h^{-1})^N$. This follows $|g^N| = |h^{-N}| = |h^N|$. According to proposition 1.13, we have

$$|g^N| = \frac{|g|}{\gcd(N, |g|)} = \frac{|h|}{\gcd(N, |h|)} = |h^N|.$$

Since gcd(|g|, |h|) = 1 so this implies |g| = gcd(N, |g|) so |g| divides N. Similarly, |h| divides N. Therefore, $lcm(|g|, |h|) = |g| \cdot |h|$ divides N. On the other hand, from proposition 1.14, we know N = |gh| divides $lcm(|g|, |h|) = |g| \cdot |h|$ so we conclude |gh| = |g||h|.

10. (1.15) We want to show that if $g \in G$ is an element of maximal finite order then for any $h \in G$, we have |h| divides |g|. Assume the contrary that |h| does not divide |g|, there exists a prime p such that $|h| = p^m r$ and $|g| = p^n s$ where $\gcd(r, p) = \gcd(r, s) = 1$ and m > n. From proposition 1.13, we have $|h^r| = \frac{|h|}{\gcd(|h|,r)} = p^m$ and similarly $|g^{p^n}| = s$. Therefore, $\gcd(|h^r|, |g^{p^n}|) = 1$ so from Exercise I.1.14, we have $|g^{p^n}h^s| = |g^{p^n}||h^s| = p^m s > |g| = p^n s$ since m > n. This causes a contradiction so we must have |h| divides |g|.

2 Examples of groups

Definition 2.0.1. Let A be a set. The *symmetry group* of A, denoted S_A , is the group $Aut_{Set}(A)$. The group of permutations of the set $\{1, 2, ..., n\}$ is denoted by S_n .

2.1 Exercises

1. (2.2) It suffices to show that for any n, S_n contains an element of order n. Indeed, if this is true then for $d \le n$, we can just fix n - d elements and let other d elements form a permutation of order d in S_d . This will create an element of order d in S_n .

Now, the following element has order n

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\ n & 1 & 2 & 3 & \cdots & n-2 & n-1 \end{pmatrix}$$

- 2. (2.3) See previous exercise II.2.2. Essentially we choose the 1, 2, ..., n to form an element in S_n of order n and then fix the rest of \mathbb{N} .
- 3. (2.5) The three relations are $x^2 = y^n = e$ and $yx = xy^{n-1}$.
- 4. (2.6) Choose g = x, h = xy then |g| = 2 and $h^2 = (xy)^2 = xyxy = x(xy^{-1})y = e$ so |h| = 2. However, |gh| = |y| = n.
- 5. (2.7) We want to find an element in D_{2n} for $n \ge 3$ that commutes with other element. We will use notation for D_{2n} given in Exercise II.2.5, i.e. $D_{2n} = \{e, y, \dots, y^{n-1}, x, xy, \dots, xy^{n-1}\}$. Such element cannot be x since $xy \ne yx$.

If such element is y^i for some $1 \le i \le n-1$ then we need $y^i x = xy^i$. On the other hand, we have $yx = xy^{-1}$ from Exer II.2.5 or $y = xy^{-1}x$ so $y^i x = (xy^{-1}x)^i x = xy^{-i}$. This means $xy^{-i} = xy^i (= y^i x)$ or $y^{2i} = e$. This happens when $2 \mid n$. We should check that $y^{n/2}$ commutes with other elements of D_{2n} , i.e. elements of the form xy^i , which is true.

Such element cannot be xy^i where $1 \le i \le n-1$ since we need $(xy^i)y = y(xy^i)$ but $y(xy^i) = (yx)y^i = (xy^{-1})y^i = xy^{i-1}$ while $(xy^i)y = xy^{i+1}$. Since $n \ge 3$ and |y| = n so $xy^{i-1} \ne xy^{i+1}$.

Thus, for *n* odd, our answer is $\{e\}$. For *n* even, our answer is $\{e, y^{n/2}\}$.

6. (2.8)

3 The category Grp

3.1 Group homomorphisms

Remark 3.1.1. Note how the author motivates the definition of group homomorphims. One needs to define a group homomorphism $\varphi : (G, m_G) \to (H, m_H)$ that somehow connects operations m_G on G with m_H on H. This suggests to find a function $(\varphi \times \varphi) : G \times G \to H \times H$ such that the diagram commutes.

$$\begin{array}{ccc}
G \times G & \xrightarrow{\varphi \times \varphi} & H \times H \\
\downarrow^{m_G} & & \downarrow^{m_H} \\
G & \xrightarrow{\varphi} & H
\end{array}$$

The choice of $\varphi \times \varphi$ is explained naturally from the universal property of products, as in Exercise II.3.1.

3.2 Exercises

1. (3.1) Consider the category $C_{H,H}$ where $H \times H$ is the final object with two morphisms $\pi_H, \pi'_H : H \times H \to H$ where π_H sends $(h_1, h_2) \mapsto h_1$ while π'_H sends $(h_1, h_2) \mapsto h_2$. Consider object $G \times G$ in C with two morphisms $\pi_G, \pi'_G : G \times G \to H$ where the first one sends $(g_1, g_2) \mapsto g_1 \mapsto \varphi(g_1)$ while the second one sends $(g_1, g_2) \mapsto g_2 \mapsto \varphi(g_2)$. According to the universal property of products, there exists a unique morphism $(\varphi \times \varphi) : G \times G \to H \times H$ such that the following diagram commutes

This implies $\varphi(g_1,g_2)=(\varphi(g_1),\varphi(g_2))$ for all $g_1,g_2\in G$, as desired.

- 2. (3.2) Because $(\psi \times \psi)(\varphi \times \varphi)$ makes the large rectangle in the diagram in §II.3.2 commutes and from previous exercise I.3.1, we know there exists exactly one such morphism $(\psi \varphi) \times (\psi \varphi)$ so $(\psi \varphi) \times (\psi \varphi) = (\psi \times \psi)(\varphi \times \varphi)$.
- 3. (3.3) Not hard.
- 4. (3.4) No. Choose $G = \mathbb{Z}[x]$ to be a group under addition, $H = \mathbb{Z}$ then $G \times Z \cong G$. Indeed, consider the group isomorphism sending $(f(x), n) \mapsto x \cdot f(x) + n$.

- 5. (3.5) If $\mathbb{Q} \cong G \times H$ where G, H are nontrivial group. Let g, h be nontrivial elements in G, H, respectively. Suppose the isomorphism $\varphi : G \times H \to \mathbb{Q}$ send (g, h) and (g, e_H) to two nonzero rational numbers x, y. Since $x, y \in \mathbb{Q}$ and $xy \neq 0$, there exists integers m, n such that mx = ny. This follows $m\varphi(g, h) = n\varphi(g, e_H)$ so $(mg, mh) = (ng, e_H)$. Two elements of $G \times H$ are the same iff mg = ng and $mh = e_H$. This implies h has finite order in H. Similarly, g has finite order in G. Thus, (g, h) has finite order in $G \times H$. However, any nonzero element in $(\mathbb{Q}, +)$ does not have finite order. Thus, \mathbb{Q} cannot be the direct product of two nontrivial groups.
- 6. (3.6) From §II.2.1, we can write group S_3 as $S_3 = \{e, x, y, xy, y^2, xy^2\}$ where $x^2 = e, y^3 = e, yx = xy^2$. We construct injective homomorphisms $f_2 : C_2 \to S_3$ as $[1]_2 \mapsto x, [0]_2 \mapsto e$ and $f_3 : C_3 \to S_3$ as $[0]_3 \mapsto e, [1]_3 \mapsto y, [2]_3 \mapsto y^2$.

If $C_2 \times C_3$ is a coproduct of C_3 then there exists a group homomorphism $\sigma: C_2 \times C_3 \to S_3$ making following diagram commutes

where $\pi_2: C_2 \to C_2 \times C_3$ and $\pi_3: C_3 \to C_2 \times C_3$ be any group homomorphisms This means $(\sigma \pi_2)([1]_2) = f_2([1]_2) = x$ and $(\sigma \pi_3)([1]_3) = f_3([1]_3) = y$. Since $C_2 \times C_3$ is a commutative group so

$$xy = \sigma(\pi_2([1]_2))\sigma(\pi_3([1]_3)),$$

= $\sigma(\pi_2([1]_2)\pi_3([1]_3)),$
= $\sigma(\pi_3([1]_3))\sigma(\pi_2([1]_2)),$
= $yx.$

This is not true so such group homomorphism σ does not exist.

- 7. (3.8) Define $\pi_2: C_2 \to G$ as $[0]_2 \mapsto e$, $[1]_2 \mapsto x$ and $\pi_3: C_3 \to G$ as $[0]_3 \mapsto e$, $[1]_3 \mapsto y$, $[2]_3 \mapsto y^2$. One can check that π_2 , π_3 are indeed group homomorphisms. Then we proceed to show $G = C_2 \star C_3$ is indeed coproduct of C_2 and C_3 in Grp.
- 8. (3.7) Why did Aluffi ask exercise II.3.7 before exercise II.3.8? From exercise II.3.8, we know about $C_2 \star C_3$ which is generated by x_2, y_2 subject to $x_2^2 = y_2^3 = e$. Say $\mathbb{Z} \star \mathbb{Z}$ is generated by x_1, y_2 subject to no relations. Consider functions $\varphi : \mathbb{Z} \star \mathbb{Z} \to C_2 \star C_3$ such that $\varphi(x_1) = x_2, \varphi(y_1) = y_2$ then generate φ from this so that it is a group homomorphism. We can see that φ is also surjective.
- 9. (3.9) From Exercise I.5.12, we know that fiber products in Set for two morphisms φ, β is $G = \{(a,b) : a \in A, b \in B, \varphi(a) = \beta_b\}$. One can show that this is also a fiber product in Grp from following steps:

- (a) Define operation on G so G is an abelian group. One can take a guess to see $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1,b_2)$ satisfies.
- (b) Define group homomorphisms π_A , π_B from A, B to G. Obviously $\pi_A(a,b) = a$ and $\pi_B(a,b) = b$ and they are indeed group homomorphisms.
- (c) Show D final object in $\mathsf{Ab}_{\alpha,\beta}$. Our unique morphism $\sigma:D\to Z$ given $f_A:A\to Z$ and $f_B:B\to Z$ is $\sigma(g)=(f_A(g),f_B(g))$.

So far, fibered product in Ab is "the same as" fibered product in Set. For fibered coproduct, the situation is a bit harder since from Exercise I.5.12, fibered coproduct in Set is $(C/\sim)\coprod(A\setminus\alpha(C))\coprod(B\setminus\beta(C))$ which we don't know how to construct a group from this set. TRY THIS again after learning §II.8.

4 Group homomorphisms

4.1 Exercises

- 1. (4.1) $\pi_m^n : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ with $m \mid n$ defined as $\pi_m^n([a]_n] = [a]_m$. It is well-defined since if $[a]_n = [b]_n$ then $n \mid (a b)$ then $m \mid n \mid (a b)$ so $[a]_m = [b]_m$ or $\pi_m^n([a]_n) = \pi_m^n([b]_n)$.
- 2. (4.2) $\pi_2^4 \times \pi_2^4([2]_4) = \pi_2^4 \times \pi_2^4([0]_4) = ([0]_2, [0]_2)$ so $\pi_2^4 \times \pi_2^4$ not a bijection, so not an isomorphism.

No isomorphism $C_4 \to C_2 \times C_2$ since every element of $C_2 \times C_2$ has order at most 2 but $[1]_4 \in C_4$ has order 4.

- 3. (4.3) Use the map $G \to \mathbb{Z}/n\mathbb{Z}$ defined as $g^i \mapsto [i]_n$.
- 4. (4.4) No isomorphism from \mathbb{Z} to \mathbb{Q} (or \mathbb{R}) since any $n \in \mathbb{Z}$ then $n = n \cdot 1$ but this properties does not occur in \mathbb{Q} or \mathbb{R} , i.e. not every $x \in \mathbb{Q}$ or \mathbb{R} satisfies $x = n \cdot 1$ for some $n \in \mathbb{Z}$. No isomorphism \mathbb{Q} to \mathbb{R} because no surjective function $\mathbb{Q} \to \mathbb{R}$.
- 5. (4.5) $(\mathbb{R} \setminus \{0\}, \cdot)$ and $(\mathbb{C} \setminus \{0\}, \cdot)$ not isomorphic since $i \in C$ has order 4 while $\mathbb{R} \setminus \{0\}$, except for ± 1 , no ohter elements has finite order.
- 6. (4.6) No, $(\mathbb{Q}, +0)$ has elements of finite order of form 1/m with $m \neq 0, m \in \mathbb{Z}_{>0}$. But $(\mathbb{Q}^{>0}, \cdot)$, except for ± 1 , no other element has finite order.
- 7. (4.7) Not hard.
- 8. (4.8) γ_g is a homomorphism with inverse is $\gamma_{g^{-1}}$. The function $\varphi: G \to \operatorname{Aut}(G)$ is homomorphism since $\gamma_{g_1g_2} = \gamma_{g_1}\gamma_{g_2}$.
- 9. (4.9) Define $\varphi: C_m \times C_n \to C_{mn}$ defined as $\varphi([a]_m, [b]_n) = [c]_{mn}$ such that $c \equiv a \pmod m$ and $c \equiv b \pmod n$. This c exists since $\gcd(m, n) = 1$ according to Chinese Remainder Theorem.
- 10. (4.10) From exercise 4.9, we know $(\mathbb{Z}/pq\mathbb{Z})^* \cong (\mathbb{Z}/p\mathbb{Z})^* \times (\mathbb{Z}/q\mathbb{Z})^*$ but every $(a,b) \in (\mathbb{Z}/p\mathbb{Z})^* \times (\mathbb{Z}/q\mathbb{Z})^*$ has order at most lcm (p-1,q-1) < (p-1)(q-1) so every element in $(\mathbb{Z}/pq\mathbb{Z})^*$ has order less than (p-1)(q-1), which implies it is not cyclic (exercise 4.3).
- 11. (4.11) Let $g \in G = (\mathbb{Z}/p\mathbb{Z})^*$ be element of maximal order. From exercise 1.15, for all $h \in G$, we must have |h| divides |g| so $h^{|g|} = 1$. From our assumed result, we know there are at most |g| solutions for $h^{|g|} = 1$. As $h^{|g|} = 1$ is true for any $h \in G$ so there are at least p 1 solutions for $h^{|g|} = 1$. This follows $|g| \ge p 1$ but also $|g| \le |G| = p 1$ so |g| = p 1 so |g| = p -
- 12. (4.12) Order of $[9]_{31}$ in $(\mathbb{Z}/31\mathbb{Z})^*$ is 15. $x^3-9=0$ does not have solution in $(\mathbb{Z}/31\mathbb{Z})^*$. This is because $9^{15} \equiv 1 \pmod{31}$ so $(x^3)^{15} \equiv 1 \pmod{31}$ or $x^{45} = 1$. We also know that $x^{30} = 1$ since $(\mathbb{Z}/31\mathbb{Z})^*$ is cyclic. This follows |x| divides $\gcd(30,45)=15$. But then $9^5=x^{15}=1$ implies $9^5=1$, a contradiction. Thus $x^3-9=0$ does not have solution in $(\mathbb{Z}/31\mathbb{Z})^*$.

- 13. (4.13) For $\varphi \in \operatorname{Aut}_{\operatorname{Grp}}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ then $\varphi(0,0) = (0,0)$ so φ essentially permutation of (0,1),(1,1),(1,0) of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Hence, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong S_3$.
- 14. (4.14) Each $\varphi_a \in G = \operatorname{Aut}_{\operatorname{Grp}}(C_n)$ can be generated by $\varphi_a([1]_n) = [a]_n$, which implies $\varphi_a([m]_n) = m \cdot [a]_n = [ma]_n$. Note that φ is an automorphism iff $a \in (\mathbb{Z}/n\mathbb{Z})^*$. Therefore, consider the function $\pi : G \to (\mathbb{Z}/n\mathbb{Z})^*$ defined as $\pi(\varphi_a) = [a]_n$. One can show this is an automorphism since it is bijective (as shown) and $\varphi_a \circ \varphi_b = \varphi_{ab}$.
- 15. (4.15)

References

algchap0 [1] Paolo Aluffi. Algebra: Chapter 0