ANÁLISIS II - ANÁLISIS MATEMÁTICO II - MATEMÁTICA 3

Queirolo, Iván (Ay. 2da) queiroloivan@gmail.com*

Clase del 09/09/2020: Integrales curvilíneas

Enunciados

- Ejercicio 19 : Considerar la fuerza $\mathbf{F}(x,y,z)=(x,y,z)$. Calcular el trabajo realizado al mover una partícula a lo largo de la parábola $y=x^2, z=0$, de x=-1 a x=2.
- Ejercicio 21 ¿Cuál es el valor de la integral curvilínea de un campo gradiente sobre una curva cerrada C?
- **Ejercicio 23** Considerar el campo de fuerza gravitacional (con G = m = M = 1) definido (para $(x, y, z) \neq (0, 0, 0)$) por:

$$\mathbf{F}(x,y,z) = -\frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x,y,z).$$

Mostrar que el trabajo realizado por la fuerza gravitacional conforme una partícula se mueve de (x_1, y_1, z_1) a (x_2, y_2, z_2) , a lo largo de cualquier trayectoria, depende solamente de los radios $R_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$ y $R_2 = \sqrt{x_2^2 + y_2^2 + z_2^2}$.

■ Ejercicio tipo parcial ¹ Hallar el trabajo realizado por la fuerza $\mathbf{F}(x,y,z) = (x,y,e^{x^2+y^2})$ sobre una partícula que se mueve por la curva dada por:

$$\sigma(t) = (\sqrt{t}\cos(t), \sqrt{t}\sin(t), t)$$
; Con $t \in [0, 2\pi]$

Si se recorre desde el punto $(\sqrt{2\pi}, 0, 2\pi)$ al (0, 0, 0)

^{*}Si hay alguna duda en la resolución, no hay problema en que consulten.

 $^{^{1}}$ Lo saqué de fdexmaths.com, es un ejercicio un poco modificado del primer parcial del 24/10/2009, por si les interesa chusmearlo en algún momento

$$\int_{\mathcal{C}} \mathbf{F}(x, y, z) \cdot \mathbf{ds} = \int_{a}^{b} \mathbf{F}(\sigma(t)) \cdot \sigma'(t) dt$$
(1)

Solución ejercicio 19

Nos pide hallar el trabajo del campo ${\bf F}$ sobre la curva dada por la parábola $y=x^2,\,z=0,$ de x=-1 a x=2.

Figura 1: Curva donde la fuerza \mathbf{F} realiza trabajo. Obviando el eje \hat{z} , ya que z=0 siempre.

Con
$$\mathbf{F}(x, y, z) = (x, y, z)$$

Figura 2: Campo $\mathbf{F}(x, y, z) = (x, y, z)$

La parametrización de esta curva sale bastante directa como

$$\sigma(t) = (t, t^2, 0); \text{ con } t \in [-1, 2] \Rightarrow \sigma'(t) = (1, 2t, 0)$$

Luego podemos calcular el trabajo.

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{ds} = \int_{-1}^{2} \mathbf{F}(\sigma(t)) \cdot \sigma'(t) dt = \int_{-1}^{2} (t, t^{2}, 0) \cdot (1, 2t, 0) dt$$

$$\int_{-1}^{2} (t + 2t^{3}) dt = \left(\frac{t^{2}}{2} + \frac{t^{4}}{2}\right) \Big|_{-1}^{2} = \frac{1}{2} ((4 + 16) - (1 + 1)) = \frac{1}{2} (20 - 2) = \boxed{9}$$

Solución ejercicio 21

El enunciado nos pide suponer un campo \mathbf{F} , tal que $\mathbf{F} = \nabla f$, con f una función escalar dependiente de (x, y, z). Queremos resolver cuanto vale la integral sobre una cierta curva cerrada \mathcal{C} . Por lo tanto

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{ds} = \oint_{\mathcal{C}} \nabla f \cdot \mathbf{ds}$$

Supongamos entonces que la curva está parametrizada regularmente por $\sigma(t):[a,b]\longrightarrow \mathcal{C},$ con $\sigma(a)=\sigma(b),$ por lo tanto

$$\oint_{\mathcal{C}} \nabla f \cdot \mathbf{ds} = \int_{a}^{b} \nabla f(\sigma(t)) \cdot \sigma'(t) dt$$

Ahora bien, tomemos la función auxiliar definida como $g(t) \equiv f(\sigma(t))$, por regla de la cadena puede verse que $g'(t) = \nabla f(\sigma(t)) \cdot \sigma'(t)$. Puedo entonces reemplazar y resolver

$$\oint_{\mathcal{C}} \nabla f \cdot \mathbf{ds} = \int_{a}^{b} \nabla f(\sigma(t)) \cdot \sigma'(t) dt = \int_{a}^{b} g'(t) dt = g(b) - g(a) = 0$$

Se anula ya que para t = a o t = b los valores de $\sigma(t)$ son iguales, por lo que g(a) = g(b).

En conclusión, la integral sobre una curva cerrada de un campo gradiente es nula. Aún más, observemos que si \mathcal{C} no es cerrada se obtiene que

$$\int_{\mathcal{C}} \nabla f \cdot \mathbf{ds} = \int_{a}^{b} \nabla f(\sigma(t)) \cdot \sigma'(t) dt = \int_{a}^{b} g'(t) dt = g(b) - g(a) = f(\sigma(b)) - f(\sigma(a))$$

Es decir, el resultado sólo depende los extremos de la curva, y no de la curva en sí. Este es un resultado importante, que nos servirá más tarde en la materia. Guárdenlo.

Solución ejercicio 23

El enunciado nos pide demostrar que el trabajo realizado por el campo gravitatorio sólo depende de las distancias R_1 y R_2 , correspondientes a los radios iniciales y finales respecto al origen de coordenadas. O en otras palabras nos pide que demostremos que el trabajo del campo **no depende de la curva que usemos** para pasar de un punto al otro, sino sólo de sus extremos. En el ejercicio 21 vimos que si $\mathbf{F} = \nabla f$, con f un campo escalar, el resultado de la integral curvilínea cumple este requisito.

Veamos entonces si podemos expresar al campo gravitatorio \mathbf{F} como el gradiente de una función escalar G. Y en efecto, podemos, veamos que si tomamos

$$G = \frac{1}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}$$

Luego

$$\frac{\partial G}{\partial x_i} = \frac{-x_i}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

Siendo $x_i = x, y, z$. Entonces cumple que $\mathbf{F} = \nabla G$, por lo que el resultado del trabajo sobre cualquier curva, sólo depende de sus extremos.

Figura 3: Campo gravitatorio ${\bf F}$

Solución ejercicio tipo parcial

La forma de resolver este ejercicio es bastante directa. Con la dificultad agregada de que la curva y el campo no son de lo más comunes. Tenemos

$$\sigma(t) = (\sqrt{t}cos(t), \sqrt{t}sen(t), t) ; \text{Con } t \in [0, 2\pi] \Rightarrow \sigma'(t) = \left(\frac{cos(t)}{2\sqrt{t}} - \sqrt{t}sen(t), \frac{sen(t)}{2\sqrt{t}} + \sqrt{t}cos(t), 1\right)$$

Figura 4: Curva dada por $\sigma(t)$. El eje rojo es el eje \hat{x} , el verde en dirección \hat{y} , el azul en \hat{z}

Antes de aplicar la ec.1, notemos que la consigna nos pide que recorramos la curva desde el punto $(\sqrt{2\pi}, 0, 2\pi)$ al (0,0,0), correspondientes a los puntos $\sigma(2\pi)$ y $\sigma(0)$ respectivamente. La parametrización se recorre entonces desde el valor $t=2\pi$ a t=0.

$$\begin{split} \int_{\mathcal{C}} \mathbf{F}(x,y,z) \cdot \mathbf{ds} &= \int_{2\pi}^{0} \mathbf{F}(\sigma(t)) \cdot \sigma'(t) dt \\ &= \int_{2\pi}^{0} (\sqrt{t} cos(t), \sqrt{t} sen(t), e^{t}) \cdot \left(\frac{cos(t)}{2\sqrt{t}} - \sqrt{t} sen(t), \frac{sen(t)}{2\sqrt{t}} + \sqrt{t} cos(t), 1 \right) dt \\ &= \int_{2\pi}^{0} \left(\frac{cos^{2}(t)}{2} - \underline{t} sen(t) cos(t) + \frac{sen^{2}(t)}{2} + \underline{t} sen(t) cos(t) + e^{t} \right) dt \\ &= \int_{2\pi}^{0} \left(\frac{1}{2} + e^{t} \right) dt = \left(\frac{t}{2} + e^{t} \right) \Big|_{2\pi}^{0} = \boxed{-\pi + 1 - e^{2\pi}} \end{split}$$