Déterminant d'un endomorphisme en dimension finie

Soit E un \mathbb{K} - espace vectoriel de dimension finie non nulle n.

Si u est un endomorphisme de E et si \mathcal{B} et \mathcal{B} ' sont deux bases de E alors

$$\det_{\mathcal{B}'} (u(\mathcal{B}')) = \det_{\mathcal{B}} (u(\mathcal{B})).$$

Ce scalaire est appelé déterminant de u et noté det u.

Preuve:

On considère l'application $g: E^n \to \mathbb{K}$ définie par

$$\forall (x_1, \dots, x_n) \in E^n, g(x_1, \dots, x_n) = \det_{\mathcal{B}'} (u(x_1), \dots, u(x_n)).$$

Montrons que $g(\mathcal{B}') = \det_{\mathcal{B}}(u(\mathcal{B}))$ ce qui donnera le résultat souhaité.

Comme $\det_{\mathcal{B}'}$ est une forme n-linéaire alternée sur E et que u est un endomorphisme de E, on vérifie aisément que g est une forme n-linéaire alternée sur E.

Par théorème, on a donc :

$$g = g(\mathcal{B}) \det_{\mathcal{B}}$$
.

En particulier:

$$g(\mathcal{B}') = g(\mathcal{B}) \det_{\mathcal{B}} (\mathcal{B}')$$
.

Or $g(\mathcal{B}) = \det_{\mathcal{B}'}(u(\mathcal{B}))$ (par définition de g) et $\det_{\mathcal{B}'}(u(\mathcal{B})) = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(u(\mathcal{B}))$ (par formule de changement de bases) donc :

$$g(\mathcal{B}') = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(\mathcal{B}') \det_{\mathcal{B}}(u(\mathcal{B})).$$

Comme $\det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(\mathcal{B}') = \det_{\mathcal{B}'}(\mathcal{B}')$ (par formule de changement de bases) et $\det_{\mathcal{B}'}(\mathcal{B}') = 1$ (car \mathcal{B}' est une base), on en déduit que :

$$g(\mathcal{B}') = \det_{\mathcal{B}} (u(\mathcal{B}))$$

autrement dit

$$\det_{\mathcal{B}'} (u(\mathcal{B}')) = \det_{\mathcal{B}} (u(\mathcal{B})).$$

Développement du déterminant d'une matrice carrée suivant une colonne

Soit $A \in \mathcal{M}_n(\mathbb{K})$ notée $A = (a_{ij})_{(i,j) \in \mathbb{I}_{1,n}\mathbb{I}^2}$.

La formule de calcul du déterminant de A par développement suivant la j^{e} colonne est

$$\det(A) = a_{1j}A_{1j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$

où A_{ij} est le cofacteur associé au coefficient a_{ij} défini par :

$$A_{ij} = (-1)^{i+j} M_{ij}$$

où M_{ij} est le déterminant de la matrice extraite de A obtenue en supprimant L_i et C_j .

Preuve:

On note C_1, \ldots, C_n les colonnes (resp L_1, \ldots, L_n les lignes) de A et $\mathcal{B} = (e_1, \ldots, e_n)$ la base usuelle de \mathbb{K}^n .

Soit $j \in [1, n]$.

Par définition du déterminant de A, on a :

$$\det(A) = \det_{\mathcal{B}}(C_1, \dots, C_j, \dots, C_n) = \det_{\mathcal{B}}\left(C_1, \dots, \sum_{i=1}^n a_{ij}e_j, \dots, C_n\right).$$

Par linéarité du déterminant d'une matrice par rapport à chacune des ses colonnes, on trouve :

$$\det(A) = \sum_{i=1}^{n} a_{ij} \det_{\mathcal{B}} (C_1, \dots, e_j, \dots, C_n) (*)$$

On note

$$A_{ij} = \det_{\mathcal{B}} \left(C_1, \dots C_{j-1}, e_j, C_{j+1}, \dots, C_n \right)$$

Comme l'échange de deux colonnes multiplie le déterminant par -1, en intervertissant successivement les colonnes j et j+1, puis j+1 et j+2 jusqu'aux colonnes n-1 et n (ce qui fait n-j interversions), on trouve :

$$A_{ij} = (-1)^{n-j} \det_{\mathcal{B}} (C_1, \dots C_{j-1}, C_{j+1}, C_{j+2}, \dots, C_n, e_j).$$

On procède de même avec les lignes en intervertissant successivement les lignes i et i+1, puis i+1 et i+2 jusqu'aux lignes n-1 et n (ce qui fait n-i interversions) et on trouve :

$$A_{ij} = (-1)^{n-j} (-1)^{n-i} \det \begin{pmatrix} a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & & a_{i-1,n} \\ a_{i+1,1} & & a_{i+1,j-1} & a_{i+1,j+1} & & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} & 0 \\ a_{i,1} & \dots & a_{i,j-1} & a_{i,j+1} & \dots & a_{i,n} & 1 \end{pmatrix}.$$

Ainsi, $A_{ij} = (-1)^{i+j} \det B_{ij}$ (**) où B_{ij} est la matrice définie par blocs

$$B_{ij} = \left(\begin{array}{cc} C_{ij} & 0_{n-1,1} \\ D_{ij} & 1 \end{array}\right)$$

avec

- C_{ij} matrice extraite de A en otant L_i et C_j
- D_{ij} ligne extraite de L_i en otant sa colonne j.

Montrons que $\det B_{ij} = \det C_{ij}$

(cas particulier d'un résultat général qui sera montré en MPI : le déterminant d'une matrice triangulaire par blocs est égal au produit des déterminants de ses blocs diagonaux)

Pour simplifier, on note B (resp. C) et pas B_{ij} (resp. C_{ij}) avec $B = (b_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket^2}$ et $C = (c_{i,j})_{(i,j) \in \llbracket 1,n-1 \rrbracket^2}$.

On sait que

$$\det B = \sum_{\sigma \in S_n} \varepsilon(\sigma) b_{\sigma(1),1} b_{\sigma(2),2} \dots b_{\sigma(n),n}$$

avec, par définition de B, $b_{\sigma(n),n} = \begin{cases} 0 & \text{si } \sigma(n) \neq n \\ 1 & \text{si } \sigma(n) = n \end{cases}$.

Ainsi:

$$\det B = \sum_{\sigma \in T_n} \varepsilon(\sigma) b_{\sigma(1),1} b_{\sigma(2),2} \dots b_{\sigma(n-1),n-1}$$

avec $T_n = \{ \sigma \in S_n \mid \sigma(n) = n \}$ (i. e. l'ensemble des permutations de [1, n] qui laissent n invariant).

 $\psi: T_n \to S_{n-1}$ définie par $\forall \sigma \in T_n, \psi(\sigma) = \sigma'$ avec $\sigma \in S_{n-1}$ tel que $\forall i \in [1, n-1], \sigma'(i) = \sigma(i)$

- est bijective (de bijection réciproque $\phi: S_{n-1} \to T_n$ définie par $\forall \sigma' \in S_{n-1}, \phi(\sigma') = \sigma$ avec $\sigma \in S_n$ tel que $\forall i \in \llbracket 1, n-1 \rrbracket, \sigma(i) = \sigma'(i)$ et $\sigma(n) = n$)
- conserve la signature des permutations i. e. $\forall \sigma \in T_n, \varepsilon(\psi(\sigma)) = \varepsilon(\sigma)$ car, comme σ et $\sigma' = \psi(\sigma)$ coïncident sur [1, n-1] et que n est invariant par σ , les permutations σ et $\psi(\sigma)$ peuvent se décomposer en le même produit de transpositions donc ont même signature.

On en déduit, avec le changement d'indice bijectif $\sigma' = \psi(\sigma)$, que

$$\det B = \sum_{\sigma' \in S_{n-1}} \varepsilon(\sigma') b_{\sigma'(1),1} b_{\sigma'(2),2} \dots b_{\sigma'(n-1),n-1}$$

Vu le lien entre les coefficients de C et ceux de B, on en déduit que

$$\det B = \sum_{\sigma' \in S_{n-1}} \varepsilon(\sigma') c_{\sigma'(1),1} c_{\sigma'(2),2} \dots c_{\sigma'(n-1),n-1}$$

ce qui donne, par formule théorique du déterminant de C:

$$\det B = \det C$$
.

Conclusion : avec les résultats (*) et (**) trouvés, on en déduit que :

$$\det(A) = a_{1j}A_{1j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$

où $A_{ij} = (-1)^{i+j} M_{ij}$ où $M_{ij} = \det(C_{ij})$ avec C_{ij} , matrice extraite de A en otant L_i et C_j .