

BLM 2425 ALGORİTMA ANALİZİ

ÖDEV 1

Asymptotic Analysis, Mathematical Analysis of Non-Recursive and Recursive Problems

Öğrenci Adı: Sinem SARAK Öğrenci Numarası: 22011647

Dersin Eğitmeni: M. Elif KARSLIGİL

1- Master Theorem

Master Teoreminin formülü aşağıdaki gibidir:

Verilmiş olan bir T(n) rekürans bağıntısında

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$
 ve $T(1) = c$

 $a \ge 1$, b > 1 ve c > 0 değerleri için $d \ge 0$ durumunda $f(n) \in \Theta(n^d)$ olmak üzere:

$$T(n) \in \begin{cases} \Theta(n^{4}) & \text{if } a < b^{4} \\ \Theta(n^{4} \log n) & \text{if } a = b^{4} \\ \Theta(n^{\log n}) & \text{if } a > b^{4} \end{cases}$$

şeklinde incelenir. Bu formül kullanılarak verilen sorular alt başlıklarda incelenecektir.

a. $T(n) = 9 T(n/4) + n^2$

Verilen sorudaki bağıntıda yer alan değerler formüldeki yerlerine konulduğunda a = 9, b = 4 ve d = 2 olduğu görülür. Buna göre b^d ile a arasındaki ilişki incelendiğinde:

$$b = 4 = 16$$
 Ve $a = 9$ olduziona göre $b > a$ dir.

Bu durumda case 1 geçerli olmaktadır.

$$T(n) \in \Theta(n^2)$$

b. $T(n) = 3 T(n/3) + \log(n)$

Verilen sorudaki bağıntıda yer alan değerler formüldeki yerlerine konulduğunda a = 3 ve b = 3 olduğu görülür. f(n) ifadesi log(n) olduğundan d değeri için tam sayı bir ifade kullanılamaz. Ancak d değerinin aralık değerleri kullanılarak master teoremi uygulanabilir:

 $n^d = \log(n) < n$ ifadesi yazılabilir. $n^d < n$ olduğuna göre d < 1 denilebilir. Buna göre: $b^d = 3^d < 3$ olduğu söylenebilir. a = 3 olduğuna göre $b^d < a$ olur ve case 3'e karşılık gelir.

c. T(n) = 3 T(n/2) + n

Verilen sorudaki bağıntıdaki değerler formüldeki yerlerine konulduğunda a = 3, b = 2 ve d = 1 olduğu görülür. Buna göre b^d ile a arasındaki ilişki incelendiğinde:

Bu durumda case 3 geçerli olmaktadır.

$$\log_{b} a = \log_{2}^{3} \longrightarrow T(n) \in \Theta(n^{\log_{2}^{3}})$$

2- Karmaşıklıkları Big-Oh Cinsinden İfade Etme

1. f1()

```
Veriler Fonksisonn bosic operation',
                                                          \begin{array}{lll} N) \ \{ & & \\ t \ x = 0; \\ \text{for (int } i = 0; \ i < N; \ i + +) \\ & & \\ x + +; \end{array} \\ \end{array} \qquad \begin{array}{lll} \text{$n$ defa} & \text{$d$ onex bir dongiths.} \\ & & \\ \hline FI() \in O(n) \\ \text{$olarak$ ifade edilir.} \end{array}
    int f1(int N) {
  return x;
    }
2. f2()
                                    \begin{array}{c} \text{int N) } \{ \\ 0; \\ \text{for (int } i=0; i<N; i++) \rightarrow n \text{ adat } islam \\ \text{for (int } j=0; j< i; j++) \rightarrow i \text{ odet } islam \\ x += fl(j); \rightarrow j \text{ odet } casr \\ x; \end{array} \right\} \\ \begin{array}{c} \text{T um } \text{ if ada } \text{ top landing in da} \\ \text{ is a } \text{ if } \text{ is a } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if } \text{ if
      int f2(int N) {
      return x;
                                                                                                                                                                                                                    islemi ger cele leşti. Buna göre toplam işlem seyisi \sum_{i=0}^{n} \sum_{b=0}^{i} \sum_{k=0}^{i} | = \frac{1}{6} \cdot (n+1) \cdot (n+2) \cdot (n+3) \text{ olarak hesaplamin.}
\boxed{ +2() \in O(n^3) \text{ olarak buluur.}}
3. f3()
         int f3(int N) {
                                                                                                                                                                           Recursive bir şekilde çalışan bu fonksiyon için rekürans bağıntısı şu
                                       if (N == 0) return 1;
                                                                                                                                                                         şekilde yazılır:
                                                                                                                                                                                                                                                                T(n) = n. T(n-1)
dongiden kownobli, fonksison kendini n kure casarir
                                        for (int i = 0; i < N; i++)
                                                 x += f3(N-1);
                    T(n) = n \cdot T(n-1) = n(n-1) \cdot T(n-2) = n \cdot (n-1) \cdot (n-2) \cdot T(n-3)
                        T(n-1) = (n-1). T(n-2)
                       T(n-2) =(n-2). T(n-3)
```

4. f4() int f4(int N) {

if (N == 0) return 0;
return
$$f4(N/2) + f1(N) + f1(N) + f1(N)$$

 $f4(N/2)$; $f(N/2)$

Recursive bir şekilde çalışan bu fonksiyon için rekürans bağıntısı şu şekilde yazılır:

$$T(n) = 2T(\frac{n}{2}) + 3n = 4T(\frac{1}{2}) + 6n = 8T(\frac{n}{8}) + 9n$$

$$T(\frac{n}{2}) = 2T(\frac{n}{n}) + 3\frac{n}{n}$$

$$T(n) = 2^{\frac{1}{2}}T(\frac{n}{2}) + 3in \xrightarrow{n=2^{\frac{1}{2}}} ikin$$

$$T(n) = 2^{\frac{1}{2}}T(\frac{n}{2}) + 3in \xrightarrow{n=2^{\frac{1}{2}}} ikin$$

$$T(n) = 2^{\frac{1}{2}}T(\frac{n}{2}) + 3in \xrightarrow{n=2^{\frac{1}{2}}} ikin$$

$$= n.T(1) + 3.n. \log_{2}n$$

3-Tablo

				1) f(n)e?(&(n))		2) f(n) e] (%(n))
Soru	Cenap	f(n)	g(n))	$g(n).c_1 \leq f(n) \leq g(n).c_1$
1	0	n ²	n ³	$g(n).c_2 \leq F(n) \leq g(n)$	c, 1	(n.c. ≤ nla ≥ n.c.)
2	7	n lg n	n	n³.c₂ ≤ n³ ≤ n'.c₁)	C2 \langle log n \le c,
3	θ	1	3 + sin n	nosore Coso o Olmor nos nos nos nos nos nos nos nos nos nos	e c,=2 idin saslamr	No-2 C2=1 N-500 Icin saglanic egittik saglanamaz
4	√	3 ⁿ	2 ⁿ	P(n) ∈ O(g	$\overline{}$	$f(v) \in \mathcal{V}(\theta(v))$
5	θ	4 ⁿ⁺⁴	2 ²ⁿ⁺²	3) F(n)&?(&(n))		(4) F(n) e ? (8(n))
6	0	n lg n	n ^{105/100}	3(n).c2 ≤ f(n) ≤ g(n).c1	;	$g(n).c_2 \leq F(n) \leq g(n).c_n$
7	θ	lg √10 <i>n</i>	lg n ³	$C_2(3+\sin(n)) \leq 1 \leq c, (3+\sin(n))$		2. C2 = 3 = 2. C1
8	0	n!	(n+1)!	$\frac{1}{3+\sin(n)} \leq \frac{1}{c_2} \qquad \frac{1}{c_1} \leq 3+$	Sin(n) Sin(na)	note oldification 2 < 3 oldification 2 < 3 oldification so glanguage
٠,	2, 42	< F(n) < g(n).c.)	$ Sin(n) \leq \frac{1}{c_2} - 3$	il ve vo=30	herhangs bir district $f(n) \in \mathcal{N}(3(n))$
8) F(1)		(n) ≤ c, d(n) ≤ c, (n+1)! ≤ c (n) ≤ c, d(n) ≤ c, (n+1)! ≤ c 1 ≤ c c c c c c c c	, c,=1 iq:n Saslaann))), (h+1), h!	los de l'action possession h	C2. C3. C4. C5. C6. C6. C6. C6. C7. C6. C7. C7	$(n) \in j (g(n))$ $\frac{1}{3}(n) \leq P(n) \leq C_1 \cdot 3(n)$ $\frac{1}{3}(n) \leq \frac{1}{3}(n) \leq C_1 \cdot 3(n)$ $\frac{1}{3}(n) \leq \frac{1}{3}(n) \leq C_1 \cdot 3(n)$ $\frac{1}{3}(n) \leq \frac{1}{3}(n) \leq \frac{1}{$

4- Big-Theta Çözümü ve İspatı

a.
$$\frac{1 \cdot \text{SOTU}}{n} \cdot F(n) = 2^{n+1} + 3^{n-1} = 2 \cdot 2^n + \frac{3^n}{3}$$
 $\int_{-\infty}^{\infty} n^n \sin sonsula = 3^n \cdot \frac{1}{3}$

b.
$$2. \underline{\text{soru}} : 2 \cap \log(n+2)^2 + (n+2)^2 \log(\frac{n}{2})$$

b.
$$2 \cdot \text{SORU}$$
: $2 \cap \log_1(n+2)^2 + (n+2)^2 \log_2(\frac{n}{2})$

$$= 4 \cap \log_1(n+2) + (n+2)^2 (\log_1(n+2)^2 + (n+2)^2 \log_2(n+2) + (n+2)^2 \log$$

İspot:

5- Big – Oh Asimptotik Notasyonu ile Yazma

$$\sum_{i=1}^{n} \left(\frac{1}{i+1} \right) \frac{1}{2} = \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{(i+1)^{2} \cdot \frac{1}{2}}{2}$$

6- Backward Substitution (Soruda base case verlindiginder T(0) = 0 olarale varsayılmıstır)

$$T(n) = T(n-2) + 2n = T(n-4) + 4n - 4 = T(n-6) + 6n - 12$$

$$T(n-2) = T(n-4) + 2n - 4$$

$$T(n-4) = T(n-6) + 2n - 8$$

$$T(n) = T(n-2i) + 2in - 2i(\frac{2i}{2} + 1)$$

$$= T(n-2i) + 2in - 2i^{2}$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i($$