

N-Channel Enhancement Mode MOSFET

Feature

• 100V/47A

 $R_{DS(ON)} = 11.3 \text{ m}\Omega(typ.) @V_{GS} = 10V$

 $R_{DS(ON)} = 16.0 \text{ m}\Omega(\text{typ.}) \text{ @V}_{GS} = 4.5 \text{V}$

- 100% Avalanche Tested
- 100% DVDS
- Reliable and Rugged
- Halogen Free and Green Devices Available (RoHS Compliant)

Pin Description

PDFN8L(3.3×3.3)

Applications

- Server power supply
- Li-battery protection
- DC-DC Converters

Single N-Channel MOSFET

Ordering and Marking Information

Note: HUAYI halogen free products contain molding compounds and 100% matte tin plate Termi-Nation finish; which are fully compliant with RoHS. HUAYI halogen free products meet or exceed the halogen free requirements of IPC/JEDEC J-STD-020 for MSL classification at halogen free peak reflow temperature. HUAYI defines "Green" to mean halogen free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

HUAYI reserves the right to make changes, corrections, enhancements, modifications, and improvements to this product and/or to this document at any time without notice.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit		
Common Rat	Common Ratings (T _C =25°C Unless Otherwise Noted)				
V_{DSS}	Drain-Source Voltage		100	V	
V_{GSS}	Gate-Source Voltage		±20	V	
T _J	Junction Temperature Range		-55 to 175	°C	
T _{STG}	Storage Temperature Range		-55 10 175	°C	
Is	Source Current-Continuous(Body Diode)	T _C =25°C	47	Α	
Mounted on L	arge Heat Sink				
I _{DM}	Pulsed Drain Current *	T _C =25°C	140	Α	
	Continuous Drain Current		47	Α	
l _D			33	Α	
P _D	T _C =25°C		60	W	
r _D	Maximum Power Dissipation T _c =100°C		30	W	
R _{θJC}	Thermal Resistance, Junction-to-Case		2.47	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient **		100	°C/W	
E _{AS}	Single Pulsed-Avalanche Energy *** L=0.3mH		78	mJ	

Note: * Repetitive rating; pulse width limited by max.junction temperature.

Electrical Characteristics (T_C =25°C Unless Otherwise Noted)

Symbol Parameter		Test Conditions	HYG110N10LS2			Unit
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Offic
Static C	haracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =250μA	100	-	-	V
1	Drain to Source Leakage Current	V _{DS} =100V, V _{GS} =0V	-	-	1	μA
I _{DSS}	Drain-to-Source Leakage Current	T _J =125°C	-	-	50	μA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$	1.5	2.0	2.5	V
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
P	Drain-Source On-State Resistance	V _{GS} =10V, I _{DS} =20A	-	11.3	13.8	mΩ
$R_{DS(ON)}$	Diain-Source On-State Resistance	V _{GS} =4.5V, I _{DS} =20A	-	16.0	20	mΩ
Diode C	Diode Characteristics					
V_{SD}	Diode Forward Voltage	I _{SD} =20A, V _{GS} =0V	-	0.90	1.2	V
t _{rr}	Reverse Recovery Time	I _{SD} =20A, dI _{SD} /dt=100A/μs	-	36	-	ns
Q_{rr}	Reverse Recovery Charge	1SD-20Λ, αι _{SD} /αι-100Α/μ5	-	39	-	nC

^{**} Surface mounted on 1in2 FR-4 board.

^{***} Limited by TJmax, starting $T_J=25^{\circ}C$, L=0.3mH, $R_G=25\Omega$, $V_{GS}=10V$.

Electrical Characteristics (Cont.) (T_C =25°C Unless Otherwise Noted)

Symbol	Parameter	Test Conditions	HYG110N10LS2			Unit
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Offic
Dynamic	Characteristics					
R_G	Gate Resistance	V _{GS} =0V,V _{DS} =0V,f=1MHz	-	0.8	-	Ω
C _{iss}	Input Capacitance	V _{GS} =0V,	-	1311	-	
C _{oss}	Output Capacitance	V _{DS} =50V,	-	346	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1MHz	-	13	-	
$t_{d(ON)}$	Turn-on Delay Time		-	11	-	
t _r	Turn-on Rise Time	V _{DD} =50V, R _G =2.5Ω, I _{DS} =20A, V _{GS} =10V	-	24	-	ns
$t_{d(OFF)}$	Turn-off Delay Time		-	22	-	115
t _f	Turn-off Fall Time		-	29	-	
Gate Ch	Gate Charge Characteristics					
	Total Gate Charge(V _{GS} =10V)		-	26	-	
Q_g	Total Gate Charge(V _{GS} =4.5V)	V _{DS} =80V, I _{DS} =20A	-	13	-	nC
Q_{gs}	Gate-Source Charge		-	5.7	-	IIC
Q_{gd}	Gate-Drain Charge		-	5.7	-	
V _{plateau}	Gate plateau voltage		-	3.8	-	V

Note: *Pulse test, pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$

Typical Operating Characteristics

Figure 1: Power Dissipation

Figure 2: Drain Current

Figure 3: Safe Operation Area

Figure 4: Thermal Transient Impedance

Figure 5: Output Characteristics

Figure 6: Drain-Source On Resistance

Typical Operating Characteristics(Cont.)

Figure 7: On-Resistance vs. Temperature

Figure 8: Source-Drain Diode Forward

Figure 9: Capacitance Characteristics

Figure 10: Gate Charge Characteristics

Avalanche Test Circuit

Switching Time Test Circuit

Gate Charge Test Circuit

Device Per Unit

Package Type	Unit	Quantity
PDFN8L(3.3×3.3)	Reel	6500

Package Information

PDFN8L(3.3×3.3)

COMMON DIMENSIONS				
SYMBOL	mm			
	MIN	NOM	MAX	
А	0.70	0.75	0.80	
b	0.25	0.30	0.35	
С	0.10	0.15	0.25	
D	3.25	3.35	3.45	
D1	3.00	3.10	3.20	
D2	1.78	1.88	1.98	
E1	3.10	3.20	3.30	
E2	2.44	2.54	2.64	
е	0.65BSC			
Н	0.30	0.39	0.50	
L	0.30	0.40	0.50	
М	\	\	0.10	

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly			
Preheat & Soak					
Temperature min (T _{smin})	100 °C	150 °C			
Temperature max (T _{smax})	150 °C	200 °C			
Time (T _{smin} to T _{smax}) (t _S)	60-120 seconds	60-120 seconds			
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3°C/second max.			
Liquidous temperature (T _L)	183 °C	217 °C			
Time at liquidous (t _L)	60-150 seconds	60-150 seconds			
Peak package body Temperature (T _P)*	See Classification Temp in table1	See Classification Tempin table2			
Time $(t_P)^{**}$ within 5°C of the specified classification temperature (T_C)	20** seconds	30** seconds			
Average ramp-down rate (T _P to T _{smax})	6 °C/second max.	6 °C/second max.			
Time 25°C to peak temperature	6 minutes max.	8 minutes max.			
* Tolerance for peak profile Temperature (T _P) is defined as a supplier minimum and a user maximum.					

^{**} Tolerance for time at peak profile temperature (t_P) is defined as a supplier minimum and a user maximum.

Table 1.SnPb Eutectic Process – Classification Temperatures (T_C)

Package	Volume mm³	Volume mm³
Thickness	<350	≥350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2.Pb-free Process – Classification Temperatures (T_C)

Package	Volume mm³	Volume mm³	Volume mm³
Thickness	<350	350-2000	≥2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HTRB	JESD-22, A108	168/500 Hrs, Bias @ 150°C
HTGB	JESD-22, A108	168/500 Hrs, V _{GS} 100% @ 150°C
PCT	JESD-22, A102	96 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	250/500 Cycles, -55°C~150°C

Customer Service

Worldwide Sales and Service: sales@hymexa.com Technical Support:Technology@hymexa.com

Huayi Microelectronics Co., Ltd.

No.8928, Shangji Road, Economic and Technological Development Zone, Xi'an, China

TEL: (86-029) 86685706 FAX: (86-029) 86685705 E-mail: sales@hymexa.com Web net: http://www.hymexa.com/