Package 'TraceQC'

October 4, 2021

,	
Type Package	
Title Quality Control of CRISPR Lineage Tracing Sequence Data	
Version 1.0.1	
Date 2020-06-18	
Description Provides a generalized quantify control functions and data processing pipeline across several CRISPR-based lineage tracing platforms that can be directly used in data analysis.	7-
Depends R (>= $3.5.0$)	
Imports circlize, tidyr, RColorBrewer, ggplot2, readr, purrr, fastqcr, tictoc, magrittr, dplyr, stringr, grid, rmarkdown, tibble	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.1	
R topics documented:	
– E	2 3 4

2 circular_chordgram

	filter_mutations_per_UMI	4
	find_position	5
	format_mutation_df	5
		6
	get_read_count_per_UB	6
	get_UMI_count_per_CB	7
	mutation_type_donut	7
		8
	parse_ref_file	8
	plot_alignment_permutation	9
	plot_construct	9
	plot_deletion_hotspot	0
	plot_insertion_hotspot	10
	plot_lorenz_curve	11
	plot_point_substitution_hotspot	12
	plot_score_distribution	12
	sequence_alignment	13
	sequence_alignment_for_10x	14
	sequence_permutation	15
	seq_split	16
	seq_to_character	17
Index	1	18
muex		LO

circular_chordgram

Display a circos plot with links for a given data frame.

Description

Display a circos plot with links for a given data frame.

Usage

```
circular_chordgram(df, title, ref, use_log_count = TRUE, count_cutoff = 1)
```

Arguments

df a data frame that contains data to be visualized on the plot

title The main title of the plot

ref A reference object.

use_log_count Color links use log(count + 1).

count_cutoff A cutoff to remove link whose log10-count are less than the value.

Value

It doesn't generate any specific output.

circular_histogram 3

circular_histogram

Display a circos plot with a histgoram for a given data frame.

Description

Display a circos plot with a histgoram for a given data frame.

Usage

```
circular_histogram(df, title, ref)
```

Arguments

df a data frame that contains data to be visualized on the plot.

title The main title of the plot.

ref A reference object

Value

It doesn't generate any specific output.

filter_mutations

Filter mutations based on read count per UMI

Description

Filter mutations based on read count per UMI

Usage

```
filter_mutations(data, include_max = TRUE, freq_threshold)
```

Arguments

data A data frame.

include_max include the mutations with maximum read count.

freq_threshold threshold of mutation frequency.

Value

A filtered data frame.

filter_mutations_per_cell

Filter mutations based on read count per cell

Description

Filter mutations based on read count per cell

Usage

```
filter_mutations_per_cell(data, freq_threshold)
```

Arguments

data A data frame.

freq_threshold threshold of mutation frequency.

Value

A filtered data frame.

```
filter_mutations_per_UMI
```

Filter mutations based on read count per UMI

Description

Filter mutations based on read count per UMI

Usage

```
filter_mutations_per_UMI(data, include_max = TRUE, freq_threshold)
```

Arguments

data A data frame.

include_max include the mutations with maximum read count.

freq_threshold threshold of mutation frequency.

Value

A filtered data frame.

find_position 5

find_position	Creating a data frame of mutation events.	

Description

Creating a data frame of mutation events.

Usage

```
find_position(insertions, deletions, mutations, target_seq, score, read_count)
```

Arguments

insertions	A list that contains insertion events.
deletions	A list that contains deletion events.
mutations	A list that contains mutation (substitution) events.
target_seq	A list that contains the alignment for each event.
score	A list that contains the alignment score for each event.
read_count	A vector that contains counts for each event.

Value

A data frame that contains the event information.

```
format_mutation_df format a mutation data frame for output.
```

Description

format a mutation data frame for output.

Usage

```
format_mutation_df(mutation_df, is_singlecell)
```

Arguments

mutations A data frame of mutations. The output of seq_to_character.

Value

A formatted data frame of mutations.

get_abspath

Get absolute path of a file.

Description

Get absolute path of a file.

Usage

```
get_abspath(f)
```

Arguments

f

A relative or absolute file path.

Value

It returns an absolute path for a file.

```
get_read_count_per_UB Get read count per UMI.
```

Description

Get read count per UMI.

Usage

```
get_read_count_per_UB(df)
```

Arguments

df

aligned reads

Value

A data frame of UMI

```
get_UMI_count_per_CB Get UMI count per cell.
```

Description

Get UMI count per cell.

Usage

```
get_UMI_count_per_CB(df)
```

Arguments

df

aligned reads

Value

A data frame of Cells.

mutation_type_donut

A pie chart that shows a summary of mutation types.

Description

A pie chart that shows a summary of mutation types.

Usage

```
mutation_type_donut(mutations)
```

Arguments

mutations

A mutation dataframe

Value

A ggplot2 object that shows the pie chart

Examples

```
data(example_obj)
mutation_type(example_obj)
```

8 parse_ref_file

num_mutation_histogram

A barplot to show distribution of the number of mutations per barcode

Description

A barplot to show distribution of the number of mutations per barcode

Usage

```
num_mutation_histogram(mutations)
```

Arguments

mutations

A mutation dataframe

Value

A ggplot2 object that shows the barplot

Examples

```
data(example_obj)
num_mutation_histogram(example_obj)
```

parse_ref_file

Parsing reference sequence file

Description

Parsing reference sequence file

Usage

```
parse_ref_file(ref_file)
```

Arguments

ref_file

A path of a reference sequence file.

Value

A list with those four elements.

- 'refseq': The reference sequence.
- 'regions': Detailed information about the reference sequence.

```
plot_alignment_permutation
```

Visualization of alignment permutation.

Description

Visualization of alignment permutation.

Usage

```
plot_alignment_permutation(alignment_permutation)
```

Arguments

```
alignment_permutation
```

an data frame of permutation sequence, output of 'sequence_permutation'

Value

it returns A ggplot2 object that shows the permutation.

plot_construct

Visualization of the construct (reference sequence) information.

Description

Visualization of the construct (reference sequence) information.

Usage

```
plot_construct(ref, chr_per_row = 50, chr_size = 10)
```

Arguments

ref an reference object, output of 'parse_ref_file'

chr_per_row number of characters per row. chr_size the text size of character.

Value

it returns A ggplot2 object that shows the construct information.

Description

Display a circos plot that shows overall deletion pattern across the barcodes.

Usage

```
plot_deletion_hotspot(mutations, ref, use_log_count = TRUE, count_cutoff = 1)
```

Arguments

mutations A mutations dataframe.
ref A reference object.

use_log_count Color links use log(count + 1).

count_cutoff A cutoff to remove link whose log10-count are less than the value.

Value

It doesn't generate any specific output.

Examples

```
data(example_obj)
plot_deletion_hotspot(example_obj)
```

plot_insertion_hotspot

Display a circos plot that shows overall insertion pattern across the barcodes.

Description

Display a circos plot that shows overall insertion pattern across the barcodes.

Usage

```
plot_insertion_hotspot(mutations, ref, use_log_count = TRUE, count_cutoff = 1)
```

plot_lorenz_curve 11

Arguments

mutations A mutations dataframe.
ref A reference object.

 use_log_count Color links use log(count + 1).

count_cutoff A cutoff to remove link whose log10-count are less than the value.

Value

It won't return any specific object.

Examples

```
data(example_obj)
plot_insertion_hotspot(example_obj)
```

plot_lorenz_curve

Drawing Lorenz Curve

Description

The Lorenz curve shows an inequality of barcode distribution of the sample.

Usage

```
plot_lorenz_curve(aligned_reads)
```

Arguments

aligned_reads A aligned_reads dataframe.

Value

A ggplot2 object that shows Lorenz Curve

Examples

```
data(example_obj)
plot_lorenz_curve(example_obj)
```

plot_score_distribution

```
plot_point_substitution_hotspot
```

Display a mutation hotspot circos plot.

Description

The circos plot shows the frequency of mutation events for each nucleotide.

Usage

```
plot_point_substitution_hotspot(mutations, ref)
```

Arguments

mutations A mutations dataframe ref A reference object

Value

It won't return any specific object.

Examples

```
data(example_obj)
plot_point_mutation_hotspot(example_obj)
```

```
plot_score_distribution
```

Drawing a score distribution plot

Description

Drawing a score distribution plot

Usage

```
plot_score_distribution(aligned_reads)
```

Arguments

```
aligned_reads A aligned_reads dataframe.
```

Value

A ggplot2 object that shows alignment score distribution.

sequence_alignment 13

Examples

```
data(example_obj)
plot_score_distribution(example_obj)
```

sequence_alignment

Function for a sequence alignment between the reference file and sample.

Description

The function is an wrapper of a python function which performs a global pairwise sequence alignment by biopython package.

Usage

```
sequence_alignment(
  input_file,
  ref_file,
  output_file = "aligned_reads.txt",
  python_path = "python3",
  match = 2,
  mismatch = -2,
  gapopen = -6,
  gapextension = -0.1,
  ncores = 4,
  penalize_end_gaps = 1,
  return_df = FALSE
)
```

Arguments

```
input_file
                  A FASTQ file path
ref_file
                  A path of a reference sequence file.
output_file
                  The output path. An output of the alignment will be stored at the path.
                  The path to Python interpreter.
python_path
match
                  The score for a correct basepair matching.
                  The penalty score for a basepair mismatching.
mismatch
                  The gap opening score for the alignment.
gapopen
gapextension
                  The gap extension score for the alignment.
                  The number of cores for the parallel processing
ncores
penalize_end_gaps
                  If penalizing the end gap when performing alignment (0 or 1).
```

Value

It returns a data frame of the alignment result if 'return_df' is 'T' and 'NULL' otherwise.

Examples

```
sequence_alignment_for_10x
```

Function for a sequence alignment between the reference file and sample for 10x data.

Description

The function is an wrapper of a python function which performs a global pairwise sequence alignment by biopython package.

Usage

```
sequence_alignment_for_10x(
  input_file,
  ref_file,
  output_file = "aligned_reads.txt",
  python_path = "python3",
  match = 2,
  mismatch = -2,
  gapopen = -6,
  gapextension = -0.1,
  penalize_end_gaps = 1,
  ncores = 4
)
```

sequence_permutation 15

Arguments

	input_file	A file path of possorted_genome_bam.bam out put by cellranger
	ref_file	A path of a reference sequence file.
	output_file	The output path. An output of the alignment will be stored at the path.
	python_path	The path to Python interpreter.
	match	The score for a correct basepair matching.
	mismatch	The penalty score for a basepair mismatching.
	gapopen	The gap opening score for the alignment.
	gapextension	The gap extension score for the alignment.
penalize_end_gaps		
		If penalizing the end gap when performing alignment (0 or 1).
	ncores	The number of cores for the parallel processing

Value

It returns a data frame of the alignment result if 'return_df' is 'T' and 'NULL' otherwise.

sequence_permutation

Function for finding threshold of sequence alignment. The function randomly permutate certain percentage reference sequence and perform global alignment with the original reference sequence. By use the permutated sequence alignment score, users can filter the TraceQC alignment result.

Description

Function for finding threshold of sequence alignment. The function randomly permutate certain percentage reference sequence and perform global alignment with the original reference sequence. By use the permutated sequence alignment score, users can filter the TraceQC alignment result.

Usage

```
sequence_permutation(
  ref_file,
  python_path = "python3",
  match = 2,
  mismatch = -2,
  gapopen = -6,
  gapextension = -0.1,
  penalize_end_gaps = 1,
  read_length = 0,
  permutate_percent = seq(0, 1, length.out = 101),
  n = 2,
  output_file = "alignment_threshold.txt"
)
```

seq_split

Arguments

ref_file A path of a reference sequence file.

python_path The path to Python interpreter.

match The score for a correct basepair matching.

mismatch The penalty score for a basepair mismatching.

gapopen The gap opening score for the alignment.

gapextension The gap extension score for the alignment.

penalize_end_gaps

If penalizing the end gap when performing alignment (0 or 1).

read_length The read length of each sequence. Use 0 if each read convers entire reference

sequence.

permutate_percent

The percentage of sequence to permutate.

n number of random permutation used for each percentage

output_file The output path. An output dataframe will be stored at the path.

Value

It returns a data frame of the alignment result

seq_split

Split a string by a fixed length and joined with
 HTML tag.

Description

Split a string by a fixed length and joined with
 HTML tag.

Usage

```
seq_split(s, len = 50)
```

Arguments

s The input string len The fixed length

Value

A string splited by the 'len' then joined by '
'

seq_to_character 17

seq_to_character

Identifying mutation events.

Description

Identifying mutation events.

Usage

```
seq_to_character(
  aligned_reads,
  use_CPM,
  alignment_score_cutoff = 0,
  abundance_cutoff = 0
)
```

Arguments

Value

A data frame that contains the columns:

- 'type': The type of mutation.
- 'start': The starting position of mutation event.
- 'length': The length of mutation.
- 'mutation_to': A string that shows what mutation is occurred.
- 'count': The total number of the mutation events from the sample.

Index

```
\verb|circular_chordgram|, 2
circular_histogram, 3
filter\_mutations, 3
filter_mutations_per_cell, 4
filter_mutations_per_UMI, 4
find_position, 5
format_mutation_df, 5
get_abspath, 6
get_read_count_per_UB, 6
get_UMI_count_per_CB, 7
{\tt mutation\_type\_donut}, {\tt 7}
\verb"num_mutation_histogram", 8
parse_ref_file, 8
\verb|plot_alignment_permutation|, 9
plot_construct, 9
plot_deletion_hotspot, 10
plot_insertion_hotspot, 10
plot_lorenz_curve, 11
plot_point_substitution_hotspot, 12
\verb|plot_score_distribution|, 12|
seq_split, 16
seq_to_character, 17
sequence_alignment, 13
sequence_alignment_for_10x, 14
sequence_permutation, 15
```