Семинар №4 по курсу «Основы высшей алгебры и теории кодирования»

Репеев Роман, Шиманогов Игорь

Определение 1	Порожденная группа
Определение 2	Группа диэдра
Определение 3	Гомоморфизм
Теорема 1 Сво	эйства гомоморфизма
Определение 4	Образ, ядро
Определение 5	Факторгруппа
Теорема 3 Тео	рема о гомоморфизме групп

Порождающие соотношения

Определение 1 (Порожденная группа)

Группа G называется порожедённой множеством M, если она является наименьшей по включению группой, содержащей M, то есть пересечением всех таких групп. Обозначение: $G = \langle M \rangle$. Множество M называется множеством порожедающих.

Конструктивно это означает, что группа (или подгруппа), порожденная некоторым множеством, содержит единицу, обратные к элементам множества, а также всевозможные произведения этих элементов.

Идея задания группы в том, чтобы указать некоторое множество порождающих и указать дополнительные *порождающие соотношения*.

Пример 1 (Циклическая группа)

 Γ руппа C_n порождается множеством $\{a\}$ и соотношением $a^n=e$.

Задача 1

Группа G порождена множеством $\{a,b\}$ и задана соотношениями (в аддитивной записи):

$$ab = ba$$
, $12a + 7b = 0$, $10a + 9b = 0$

Доказать, что G конечна. Является ли она циклической?

Решение Из первого соотношения ясно, что G абелева. Тогда

$$(12a + 7b) - (10a + 9b) = (12a - 10a) + (7b - 9b) = 2a - 2b = 0 \Rightarrow 2a = 2b$$
$$12a + 7b = 6(2a) + 7b = 12b + 7b = 19b = 0$$

$$20a = 20b = 19b + b = 0 + b = b \Rightarrow b = 20a$$

Из последнего ясно, что группа является циклической с порождающим a. Также из 19b=0 получаем, что 38b=38a=0, то есть порядок a не больше 38, значит, группа конечна.

Диэдральная группа

Определение 2 (Группа диэдра)

Диэдральной группой (диэдр — «двугранник») D_n называют группу симметрий правильного n-угольника, то есть группу преобразований, переводящих многогранник в него же.

Группа диэдра содержит 2n элементов: тождественное преобразование, n-1 поворот вокруг оси C_n , проходящей через центр, и по одной симметрии (или же повороту на π) относительно n осей C_2 .

Рис. 1: Схемы для C_6 (четный случай) и C_5 (нечетный случай)

Задание диэдральной группы порождающими

Возьмем ось C_n и выберем ось C_2 . Обозначим поворот на $2\pi/n$ вокруг C_n за r, а симметрию относительно C_2 за p.

Из циклической структуры поворотов вокруг осей ясны два соотношения:

$$r^n = 1 \qquad p^2 = 1$$

При повороте r одна ось C_2 переходит в другую, поэтому

$$(pr)^2 = 1$$

Полученные три соотношения порождают D_n . Покажем это.

Из третьего соотношения имеем $prp = r^{-1}$. Поэтому:

$$pr^{k}p = pr^{k-1}pprp = pr^{k-1}pr^{-1} = \dots = r^{-k}$$

То есть если в выражении встречаются два элемента p, они уходят. Поэтому любое произведение элементов равно произведению, где p встречается не более одного раза.

Значит, все элементы выглядят так: $1 = p^0 = r^0, r^k, pr^k, r^kp$.

Учитывая первое соотношение, $0 \le k < n$

Вспомним третье соотношение: $(pr)^2 = 1 \Leftrightarrow rp = pr^{-1}$. Тогда

$$r^{k}p = r^{k-1}pr^{-1} = \dots = pr^{-k} = pr^{n-k}$$

Значит, остается три вида элементов. Всего их не более 1 + (n-1) + n = 2n. Поэтому группа совпадает с D_n .

Гомоморфизмы

Определение 3 (Гомоморфизм)

Говорят, что группа $\langle G', \circ \rangle$ гомоморфиа группе $\langle G, * \rangle$, если существует отображение $\varphi : G \mapsto G'$, называемое гомоморфизмом, такое, что $\varphi(a * b) = \varphi(a) \circ \varphi(b)$.

То есть определение то же, что для изоморфизма, но не требующее биективности. В этом смысле, изоморфизм — это биективный гомоморфизм.

Замечание 1

В общем случае говорят, что определён гомоморфизм из группы G в группу G'. Он не обязан быть биективным, а также полный образ группы G может быть собственным подмножеством G'.

Eсли гомоморфизм **сюръективный** (то есть G' совпадает c полным образом гомоморфизма), то иногда говорят, что это гомоморфизм G на G'.

Приведём некоторые свойства гомоморфизмов:

Теорема 1 (Свойства гомоморфизма)

- 1) $\varphi(e) = e'$
- 2) $\varphi(a^{-1}) = (\varphi(a))^{-1}$
- 3) Композиция гомоморфизмов гомоморфизм
- 4) $\varphi(G) = H' < G'$, то есть гомоморфный образ группы есть группа
- 5) Если H < G, то $\varphi(H) < \varphi(G)$, то есть гомоморфный образ подгруппы есть подгруппа образа группы

Определение 4 (Образ, ядро)

Полным образом отображения называется

$$\operatorname{Im}\varphi = \left\{ x \in G' \mid \exists y \in G : \ \varphi(y) = x \right\}$$

Ядром отображения называется

$$\operatorname{Ker}\varphi = \{ x \in G \mid \varphi(x) = e' \}$$

Пример 2

Рассмотрим группу $G = \mathbb{Z}$ по сложению. Отображение $\varphi : \mathbb{Z} \mapsto \mathbb{Z}_n^+$, заданное $\varphi(x) = x \mod n$, является сюръективным гомоморфизмом. $ImG = \mathbb{Z}_n$. $Ker \varphi = n \mathbb{Z}$.

Факторгруппы

Здесь разбирается частный случай более общего приема, называемого факторизацией. Факторизация — это разбиение множества на классы эквивалентности по некоторому отношению эквивалентности. Множество этих классов называется фактормножеством.

Мы будем рассматривать отношение «лежать в одном смежном классе». Из рассуждений, сделанных о смежных классах ранее, ясно, что это действительно отношение эквивалентности.

Определение 5 (Факторгруппа)

Пусть H — **нормальная** подгруппа G (обозначается $H \triangleleft G$). Φ *акторгруппой* G по H называется группа

$$G/H = \{xH = Hx \mid x \in G\}$$

с определенной на ней операцией

$$(xH) \circ (yH) = (xyH)$$

То есть мы как бы «делим» группу на подгруппу H. Исходя из этих соображений, нормальные подгруппы также называют *нормальными делителями*.

Замечание 2

Стоит обратить внимание, что факторгруппа берется исключительно по **нормальной** подгруппе.

Вдумчивый читатель может проверить, что определение операции на фактормножествах будет некорректной, если H не будет нормальной, на примере некоммутативной группы S_3 и ее подгруппы $H = \{e, (12)\}.$

Заметим, что если группа конечна, то

$$|G/H| = \frac{|G|}{|H|} = (G:H)$$

Пример 3

 $G=\mathbb{Z},\ H=n\mathbb{Z}\lhd G.$ Тогда $G/H=\mathbb{Z}/n\mathbb{Z}-$ группа смежных классов, они представляют множества чисел с различными остатками от деления на n.

Раньше мы уже использовали обозначение $\mathbb{Z}/n\mathbb{Z}$, теперь оно имеет смысл \odot .

Теорема о гомоморфизме групп

Вынесем следующее утверждение в отдельную теорему

Теорема 2

Ядро комоморфизма является нормальной подгруппой.

Это значит, что, имея гомоморфизм, по его ядру можно взять факторгруппу. Это приводит нас к важной теореме

Теорема 3 (Теорема о гомоморфизме групп)

Пусть $\varphi: G \mapsto G'$ — гомоморфизм. Тогда $G/\mathrm{Ker} \varphi \cong \varphi(G)$.

Обратно, пусть $K \lhd G$. Тогда существует группа G' (а именно G/K) и гомоморфизм $\pi: G \mapsto G'$ такие, что $\operatorname{Ker} \pi = K$.

То есть гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма.

Стоит обратить внимание, что теорема действует в две стороны.

Пример 4

Вернемся к нашему примеру с \mathbb{Z} . Вспомним, что $Ker\varphi = n\mathbb{Z}$, и убедимся, что $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n^+$.