

L 5 ResNet

- 1. ResNet 结构
- 2. 批量归一化和残差结构
- 3. ResNet 代码实现

遥感图像数据集

包含31500张遥感图像(45类*700张), 256x256像素的彩色图。

本次使用其中的5类,划分每类630张为训练集,70张为测试集。

载入数据

1.按路径读取

```
2.预处理
a.归一化
b.水平翻转
c.批大小
d.随机
e.尺寸
f.独热编码
```

```
train dir = 'sat2/train'
test dir = 'sat2/val'
im size = 224
batch size = 32
train images = ImageDataGenerator(rescale = 1/255, horizontal flip=True)
test images = ImageDataGenerator(rescale = 1/255)
#归一化
train gen = train images.flow from directory(directory=train dir,
                                           batch size=batch size,
                                           shuffle=True,
                                           target size=(im size, im size),
                                           class mode='categorical')
#按路径载入图片、批处理大小、随机、尺寸、读热编码
Found 3150 images belonging to 5 classes.
val gen = test images.flow from directory(directory=test dir,
                                        batch size=batch size,
                                        shuffle=False,
                                        target size=(im_size, im_size),
                                        class mode='categorical')
#按路径载入图片、批处理大小、随机、尺寸、读热编码
```

Found 350 images belonging to 5 classes.

ResNet由微软研究院的何恺明、张祥雨、任少卿、孙剑等提出的。

该网络发现了通过**残差结构**避免网络退化现象,神经网络的"深度"首次突破了100层。 在2015年的ILSVRC中取得了冠军。

ResNet 结构

Batch Normalization 批量归一化

每一层输入的时候,先做一个归一化处理,然后再进入网络的下一层。

这个输入值的分布强行拉回到均值为0方差为1。

避免梯度消失和爆炸,训练更稳定。

x = tf.keras.layers.BatchNormalization()(x)

退化现象

网络层数的增多,训练集loss逐渐下降,然后趋于饱和。 当你再增加网络深度的话,训练集loss反而增大。

捷径分支

输出为 H (x) = F (x) + x, 权重层实际上是学习一种残差映射: F (x) = H (x) - x

模型搭建

```
model.add(tf.keras.layers.Conv2D(filters = 6,kernel_size = (5,5),input_shape=(28,28,1),padding = 'same',activation
model.add(tf.keras.layers.AveragePooling2D(pool_size = (2, 2)))
model.add(tf.keras.layers.Conv2D(filters = 16,kernel_size = (5,5),activation = "sigmoid"))
model.add(tf.keras.layers.AveragePooling2D(pool_size = (2, 2)))
model.add(tf.keras.layers.Conv2D(filters = 120,kernel_size = (5,5),activation = "sigmoid"))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(84, activation='sigmoid'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
```

为满足多分支的模型,使用x = tf.keras.layers.XXX()(X)搭建模型

```
def LeNet():
       input image = tf.keras.layers.Input(shape=(28, 28, 1))
       x = tf.keras.layers.Conv2D(6, kernel size=5, padding="same", activation="sigmoid")(input image)
       x = tf.keras.layers.AveragePooling2D(pool size=2)(x)
       x = tf.keras.layers.Conv2D(16, kernel size=5, activation="sigmoid")(x)
       x = tf.keras.layers.AveragePooling2D(pool size=2)(x)
       x = tf.keras.layers.Conv2D(120, kernel size=5, activation="sigmoid")(x)
       x = tf.keras.layers.Flatten()(x)
       x = tf.keras.layers.Dense(84, activation="sigmoid")(x)
 9
       x = tf.keras.layers.Dense(10, activation="sigmoid")(x)
10
11
       model = tf.keras.models.Model(inputs=input image, outputs=x)
13
       return model
```

残差模块

BasicBlock 模块

```
x = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=3, strides=strides, padding='same')(_inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filter_num, kernel_size=3, strides=1, padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)

y = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=1, strides=strides)(_inputs)
y = tf.keras.layers.BatchNormalization()(y)
```

残差模块

1×1的卷积将输入降到64维,然后通过1×1恢复。

减少参数量和计算量

BottleNeck 模块

y = tf.keras.layers.BatchNormalization()(y)

```
x = tf.keras.layers.Conv2D(filters=filter_num,kernel_size=1,strides=1,padding='same')(_inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters=filter_num,kernel_size=3,strides=strides,padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters=filter_num * 4,kernel_size=1,strides=1,padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
```

y = tf.keras.layers.Conv2D(filters=filter num* 4,kernel size=1,strides=strides)(inputs)


```
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters=filter_num,kernel_size=3,strides=strides,padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters=filter_num * 4,kernel_size=1,strides=1,padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)

if strides != 1 or down==True:
    y = tf.keras.layers.Conv2D(filters=filter_num* 4,kernel_size=1,strides=strides)(_inputs)
    y = tf.keras.layers.BatchNormalization()(y)
else:
    y = _inputs
```

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	1×1, 128 3×3, 128 1×1, 512	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times6$	[1×1, 256 3×3, 256 1×1, 1024]×6	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36$
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	1×1, 512 3×3, 512 1×1, 2048	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^9	7.6×10 ⁹	11.3×10 ⁹

Downsampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2

图片读取&预处理

```
In [3]: img = cv2.imread('1.jpg',1)
        #读取图片
In [4]: plt.imshow(img)
Out[4]: <matplotlib.image.AxesImage at 0x7fdb782b0ac0>
          50
         100
         200
```

- 1.图片读取: cv2.imread
- 2.图片大小调整: cv2.resize
- 3.图片维度调整: reshape
- 4.归—化: /255

```
In [5]: img.shape
Out[5]: (256, 256, 3)

In [6]: img = cv2.resize(img,(224,224))
img = img.reshape(1,224,224,3)
img = img/255
#图片预处理

In [7]: img.shape
Out[7]: (1, 224, 224, 3)
```

模型预测

```
In [7]: 1 img.shape
 Out[7]: (1, 224, 224, 3)
In [8]: 1 predict = model.predict(img)
In [9]:
         1 predict
 Out[9]: array([[9.8531371e-01, 6.8616024e-03, 1.4397403e-06, 6.1821360e-03,
                 1.6411012e-03]], dtype=float32)
In [10]: 1 label = ['airplane', 'bridge', 'palace', 'ship', 'stadium']
```

参考资料:

- 1.Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385
- 2.残差网络 ResNet【动手学深度学习v2】 https://www.bilibili.com/video/BV1bV41177ap
- 3. ResNet网络结构,BN以及迁移学习详解 https://www.bilibili.com/video/BV1T7411T7wa
- 4. resnet18 50网络结构 (SVG图) https://www.jianshu.com/p/085f4c8256f1
- 5.什么是 Batch Normalization 批标准化 https://www.bilibili.com/video/av16000304?zw
- 6. ResNet深度残差网络 https://www.bilibili.com/video/BV1vb4y1k7BV