ECOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2024

MARDI 16 AVRIL 2024 08h00 - 12h00 FILIERES MP-MPI - Epreuve n° 3

MATHEMATIQUES B (X)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Le sujet comporte quatre parties. La première partie est indépendante des trois autres.

Notations

On note $\mathbb N$ l'ensemble des entiers naturels, $\mathbb N^*$ l'ensemble des entiers naturels non nuls, $\mathbb Z$ l'ensemble des entiers relatifs, $\mathbb R$ l'ensemble des nombres réels et $\mathbb C$ l'ensemble des nombres complexes. On note également $\mathbb C^*$ l'ensemble des nombres complexes non nuls.

Si E désigne un \mathbb{R} -espace vectoriel et si v_1, \ldots, v_k sont des éléments de E, on note $\text{Vect}(v_1, \ldots, v_k)$ le sous-espace vectoriel de E engendré par les vecteurs v_1, \ldots, v_k .

Si $k \geqslant 1$ est un entier et si E désigne un \mathbb{R} -espace vectoriel de dimension finie, on note $\mathscr{C}^k(\mathbb{R}, E)$ l'ensemble des fonctions de classe \mathscr{C}^k de \mathbb{R} dans E.

Soit $(E,\|\cdot\|)$ un \mathbb{R} -espace vectoriel normé de dimension finie. Si U est un ouvert de E et $f:U\to E$ une fonction différentiable, pour tout $x\in U$ on note df(x) la différentielle de f en x. On rappelle que df(x) est alors un endomorphisme \mathbb{R} -linéaire de E. Si g est un endomorphisme \mathbb{R} -linéaire de E, on note $\|g\|$ sa norme d'opérateur, c'est-à-dire

$$||g|| = \sup\{||g(v)|| \mid v \in E, ||v|| \le 1\}.$$

Pour $a \in E$ et r > 0 un nombre réel positif, on note B(a, r) la boule ouverte de centre a et rayon r et $\overline{B(a, r)}$ la boule fermée de centre a et rayon r.

On note Id_E l'application identité de E dans E.

Si p et q désignent deux entiers naturels non nuls, on note $\mathscr{M}_{p,q}(\mathbb{C})$ l'ensemble des matrices à p lignes et q colonnes à coefficients dans \mathbb{C} . Si p=q, on note $\mathscr{M}_p(\mathbb{C})$ pour $\mathscr{M}_{p,p}(\mathbb{C})$ et $\mathrm{GL}_p(\mathbb{C})$ l'ensemble des matrices inversibles de $\mathscr{M}_p(\mathbb{C})$. On identifie également le \mathbb{C} -espace vectoriel \mathbb{C}^p avec le \mathbb{C} -espace vectoriel des vecteurs colonnes $\mathscr{M}_{p,1}(\mathbb{C})$.

Si $A \in \mathcal{M}_p(\mathbb{C})$, on note $\exp(A) \in \mathcal{M}_p(\mathbb{C})$ l'exponentielle de la matrice A.

Première partie

Soit $q: \mathbb{R} \to \mathbb{R}$ une application continue, périodique de période T>0. On considère l'équation différentielle

$$y'' + qy = 0. (1)$$

1a. Justifier l'existence de deux solutions y_1 et y_2 dans $\mathscr{C}^2(\mathbb{R},\mathbb{C})$ à (1) telles que :

$$\begin{cases} y_1(0) &= 1 \\ y'_1(0) &= 0 \end{cases} \text{ et } \begin{cases} y_2(0) &= 0 \\ y'_2(0) &= 1. \end{cases}$$

Justifier que Vect (y_1, y_2) est l'ensemble des solutions de (1) dans $\mathscr{C}^2(\mathbb{R}, \mathbb{C})$.

1b. Montrer que :

$$\forall t \in \mathbb{R}, \quad y_1(t)y_2'(t) - y_1'(t)y_2(t) = 1.$$

2. Montrer que si $y \in \mathscr{C}^2(\mathbb{R}, \mathbb{C})$ est une solution de (1), alors la fonction $t \mapsto y(t+T)$ l'est aussi. En déduire que pour tout $t \in \mathbb{R}$:

$$y(t+T) = y(T)y_1(t) + y'(T)y_2(t).$$

- 3. Soit $\mu \in \mathbb{C}^*$, et soit $\lambda \in \mathbb{C}$ tel que $\mu = e^{\lambda T}$. Montrer que les trois assertions suivantes sont équivalentes.
 - (a) L'équation (1) possède une solution $y \in \mathscr{C}^2(\mathbb{R}, \mathbb{C})$ non nulle qui vérifie :

$$\forall t \in \mathbb{R}, \quad y(t+T) = \mu y(t).$$

(b) Le nombre complexe μ est solution de l'équation d'inconnue x:

$$x^{2} - (y_{1}(T) + y_{2}'(T))x + 1 = 0.$$

(c) L'équation différentielle (1) possède une solution $y \in \mathscr{C}^2(\mathbb{R}, \mathbb{C})$ non nulle telle que :

$$\forall t \in \mathbb{R}, \quad y(t) = e^{\lambda t} u(t),$$

où $u \in \mathcal{C}^2(\mathbb{R}, \mathbb{C})$ est une fonction T-périodique.

4. Soient μ_1, μ_2 les racines complexes de l'équation d'inconnue x:

$$x^{2} - (y_{1}(T) + y_{2}'(T))x + 1 = 0.$$

4a. Montrer que si $\mu_1 \neq \mu_2$ et si λ est un nombre complexe tel que $\mu_1 = e^{\lambda T}$, alors pour toute solution y de (1), il existe deux fonctions T-périodiques w_1 et w_2 , ainsi que deux nombres complexes α et β tels que

$$\forall t \in \mathbb{R}, \quad y(t) = \alpha e^{\lambda t} w_1(t) + \beta e^{-\lambda t} w_2(t).$$

4b. Supposons que $\mu_1 = \mu_2$. Montrer que $\mu_1 = \mu_2 = \pm 1$ et que l'équation (1) admet une solution périodique dans $\mathscr{C}^2(\mathbb{R},\mathbb{C})$.

Deuxième partie

Soit $a \in E$ et soit U un ouvert de E contenant a. Soit $f: U \to E$ une application de classe \mathscr{C}^1 sur U telle que $df(a) = \mathrm{Id}_E$.

- **5a.** Soient V un ouvert convexe de E et h une fonction de classe \mathscr{C}^1 de V dans E. On suppose qu'il existe un réel $C \ge 0$ tel que pour tout $x \in V$, $||dh(x)|| \le C$. Montrer que pour tous x_1 et x_2 dans V, on a $||h(x_2) h(x_1)|| \le C||x_2 x_1||$.
- **5b.** Montrer qu'il existe un nombre réel r>0 tel que $\overline{B(a,r)}\subset U$ et

$$\forall x_1, x_2 \in \overline{B(a,r)}, \quad ||f(x_1) - f(x_2)|| \geqslant \frac{1}{2} ||x_1 - x_2||.$$

Nous fixons désormais un réel r > 0 vérifiant ces conditions dont la valeur sera utilisée dans la suite des questions de cette deuxième partie.

2

5c. Montrer que pour tout $x \in B(a,r)$, l'application linéaire df(x) est injective.

6. Soit $y_0 \in E$ tel que $||y_0 - f(a)|| \le \frac{r}{4}$.

6a. Montrer que l'application

$$g: \begin{array}{ccc} \overline{B(a,r)} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \|y_0 - f(x)\|^2 \end{array}$$

admet un minimum atteint en un point x_0 de B(a, r).

6b. Montrer que $f(x_0) = y_0$.

7. On note $W = \{y \in E \mid ||y - f(a)|| < \frac{r}{4}\} \text{ et } V = f^{-1}(W) \cap B(a, r).$

7a. Justifier que V et W sont des ouverts de E.

7b. Montrer que

$$f_{|V}: \begin{array}{ccc} V & \longrightarrow & W \\ x & \longmapsto & f(x) \end{array}$$

est une bijection continue de V sur W dont la réciproque est une fonction continue sur W.

Troisième partie

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $\mathbb{C}[A]$ l'ensemble des éléments de $\mathcal{M}_n(\mathbb{C})$ de la forme P(A) où $P \in \mathbb{C}[X]$ est un polynôme. On note

$$(\mathbb{C}[A])^* = \{ B \in \mathbb{C}[A] \cap \operatorname{GL}_n(\mathbb{C}) \mid B^{-1} \in \mathbb{C}[A] \}.$$

8a. Justifier que $\mathbb{C}[A]^*$ est un sous-groupe abélien de $\mathrm{GL}_n(\mathbb{C})$.

8b. Montrer que $(\mathbb{C}[A])^* = \mathbb{C}[A] \cap \mathrm{GL}_n(\mathbb{C})$.

9. Montrer que $\exp(\mathbb{C}[A]) \subset (\mathbb{C}[A])^*$.

10. Pour $a \in \mathbb{R}$, on définit l'application

$$Z_a: \begin{bmatrix} [0,1] & \longrightarrow & \mathbb{C} \\ t & \longmapsto & t+iat(1-t). \end{bmatrix}$$

10a. Montrer que l'application

$$\begin{array}{ccc}
]0,1[\times\mathbb{R} & \longrightarrow & \mathbb{C} \\
(t,a) & \longmapsto & Z_a(t)
\end{array}$$

est injective.

10b. Soient M_1 et M_2 deux éléments de $(\mathbb{C}[A])^*$. Montrer qu'il existe $a \in \mathbb{R}$ tel que

$$\forall t \in [0, 1], \quad M(t) = Z_a(t)M_1 + (1 - Z_a(t))M_2 \in (\mathbb{C}[A])^*.$$

- **10c.** En déduire que $(\mathbb{C}[A])^*$ est connexe par arcs.
- **11a.** Montrer qu'il existe un ouvert U de $\mathbb{C}[A]$ contenant 0 et un ouvert V de $\mathbb{C}[A]$ contenant la matrice identité I_n tels que la fonction exponentielle induit une bijection continue de $U \subset \mathbb{C}[A]$ sur V dont la réciproque est une fonction continue sur V.
- **11b.** En déduire que $\exp(\mathbb{C}[A])$ est un ouvert de $\mathbb{C}[A]$.
- **12.** Montrer que $\exp(\mathbb{C}[A])$ est un fermé de $(\mathbb{C}[A])^*$.
- **13.** On veut montrer que $\exp(\mathbb{C}[A]) = (\mathbb{C}[A])^*$. On suppose que $\exp(\mathbb{C}[A]) \neq (\mathbb{C}[A])^*$ et on fixe $M_1, M_2 \in (\mathbb{C}[A])^*$ telles que $M_1 \in \exp(\mathbb{C}[A])$ et $M_2 \notin \exp(\mathbb{C}[A])$.
- **13a.** Montrer qu'il existe une application continue f de $(\mathbb{C}[A])^*$ dans $\{0,1\}$ telle que $f(M_1) = 0$ et $f(M_2) = 1$.
- **13b.** Conclure.
- **14.** Conclure que $\exp(\mathcal{M}_n(\mathbb{C})) = \mathrm{GL}_n(\mathbb{C})$.

Quatrième partie

Soient T>0 un nombre réel et $n\in\mathbb{N}^*$ un entier naturel. Soit

$$A: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathscr{M}_n(\mathbb{C}) \\ t & \longmapsto & A(t) \end{array}$$

une application continue sur $\mathbb R$ et T-périodique. On considère le système différentiel

$$X'(t) = A(t)X(t) \tag{2}$$

où X est une fonction de \mathbb{R} dans \mathbb{C}^n , de classe \mathscr{C}^1 sur \mathbb{R} .

15. Montrer qu'il existe $\mu \in \mathbb{C}^*$ et une solution $Y \in \mathscr{C}^1(\mathbb{R}, \mathbb{C}^n)$ non nulle de (2) tels que

$$\forall t \in \mathbb{R}, \quad Y(t+T) = \mu Y(t).$$

Soit \mathscr{S} l'espace des solutions dans $\mathscr{C}^1(\mathbb{R},\mathbb{C}^n)$ de (2). Soit (Y_1,Y_2,\ldots,Y_n) une base de \mathscr{S} . Pour $t \in \mathbb{R}$, on note M(t) la matrice dont les colonnes sont $Y_1(t),\ldots,Y_n(t)$. On dispose ainsi d'une application M de \mathbb{R} dans $\mathscr{M}_n(\mathbb{C})$.

- **16a.** Montrer que pour tout nombre réel $t, M(t) \in \operatorname{GL}_n(\mathbb{C})$ et M'(t) = A(t)M(t).
- **16b.** Montrer que la matrice $(M(t))^{-1}M(t+T)$ est indépendante de $t \in \mathbb{R}$.

16c. En déduire qu'il existe $B \in \mathcal{M}_n(\mathbb{C})$ telle que :

$$\forall t \in \mathbb{R}, \quad M(t+T) = M(t) \exp(TB).$$

16d. En déduire qu'il existe une application $Q: \mathbb{R} \to \mathrm{GL}_n(\mathbb{C})$ continue sur \mathbb{R} et T-périodique telle que

$$\forall t \in \mathbb{R}, \quad M(t) = Q(t) \exp(tB).$$

(On appelle cette identité la forme normale de la matrice M).

On admet qu'il existe deux matrices D et N de $\mathcal{M}_n(\mathbb{C})$ telles que D est diagonalisable, N est nilpotente et

$$B = D + N$$
 et $DN = ND$.

Il existe donc une matrice $P \in GL_n(\mathbb{C})$ et une matrice diagonale Δ telles que $D = P\Delta P^{-1}$.

17a. Pour $t \in \mathbb{R}$, on note $Z_1(t), Z_2(t), \dots, Z_n(t) \in \mathbb{C}^n$ les colonnes de la matrice M(t)P. Montrer que (Z_1, Z_2, \dots, Z_n) est une base de l'espace \mathscr{S} .

17b. Soient $\lambda_1, \ldots, \lambda_n$ les nombres complexes tels que $\Delta = \text{Diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Pour tous $0 \le i \le n-1, 1 \le k \le n$ et $t \in \mathbb{R}$, on note $R_{i,k}(t)$ la k-ième colonne de la matrice $\frac{1}{i!}Q(t)N^iP$. Montrer que pour tout $k \in \{1, 2, \ldots, n\}$, on a

$$Z_k(t) = e^{\lambda_k t} \left(\sum_{i=0}^{n-1} t^i R_{i,k}(t) \right)$$

et vérifier que les applications $R_{i,k}$ sont continues sur \mathbb{R} et T-périodiques.

17c. En déduire que si les parties réelles des λ_i pour $1 \leq i \leq n$ sont strictement négatives et si Y est une solution quelconque de (2), alors

$$\lim_{t \to +\infty} Y(t) = 0.$$

18a. Montrer que si B a une valeur propre de la forme $\lambda = i \frac{2k\pi}{mT}$ avec $k \in \mathbb{Z}$ et $m \in \mathbb{N}^*$, alors (2) a une solution mT-périodique non nulle.

18b. On suppose qu'il existe $m \in \mathbb{N}^*$ tel que (2) possède une solution mT-périodique non nulle. Montrer que $\exp(TB)$ possède une valeur propre qui est une racine m-ième de l'unité.

19. Dans cette question, on suppose que (2) possède une solution T'-périodique X avec $T' \notin \mathbb{Q}T$.

Montrer que pour tous $t \in \mathbb{R}$ et $u \in \mathbb{R}$, on a

$$A(u)X(t) = A(t)X(t).$$

On pourra utiliser sans démonstration le fait que si G est un sous-groupe de $(\mathbb{R}, +)$ qui n'est pas de la forme $\mathbb{Z}a$ pour $a \in \mathbb{R}$, alors G est dense dans \mathbb{R} .

20. On suppose dans cette question qu'il n'existe pas de sous-espace vectoriel $V \subset \mathbb{C}^n$, différent de $\{0\}$ et \mathbb{C}^n , tel que, pour tout $t \in \mathbb{R}$, V est stable par A(t). Donner une condition nécessaire et suffisante sur A et sur B pour que (2) ait au moins une solution périodique non nulle.

21. Soit le système différentiel

$$X'(t) = A(t)X(t) + b(t), \tag{3}$$

où $b:\mathbb{R}\to\mathbb{C}^n$ est une fonction continue sur \mathbb{R} et T-p'eriodique.

On suppose que 1 n'est pas valeur propre de $\exp(TB)$. Montrer que (3) possède une unique solution T-périodique.

22. Résoudre le système différentiel

$$\begin{cases} x'(t) = x(t) - \cos(t)y(t) \\ y'(t) = \cos(t)x(t) + y(t) \end{cases}$$

et déterminer sa forme normale (voir la question 16d).