4. Projekt

im Fach

Numerische Optimierung

Juli 2020

Maximilian Gaul

Aufgabe 1

Siehe GlobNewton.m.

Aufgabe 2

Siehe auch Projekt_4.m. Für die Himmelblau-Funktion

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

gelten folgende Ableitungen

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2(x_1^2 + x_2 - 11) \cdot 2x_1 + 2(x_1 + x_2^2 - 7) \\ 2(x_1^2 + x_2 - 11) + 2(x_1 + x_2^2 - 7) \cdot 2x_2 \end{bmatrix}$$

$$H_f(x_1, x_2) = \begin{bmatrix} 4(x_1^2 + x_2 - 11) + 8x_1^2 & 4x_1 + 4x_2 \\ 4x_1 + 4x_2 & 4(x_1 + x_2^2 - 7) + 8x_2^2 \end{bmatrix}$$

Schritt	x	f(x)			
1	$[0.00, 0.00]^T$	170.0			
2	$[1.75, 2.75]^T$	32.26			
3	$[3.76, 2.22]^T$	31.69			
4	$[3.19, 1.96]^T$	1.31			
5	$[3.02, 1.99]^T$	0.01			
:	:	:			
15	$[3.00, 2.00]^T$	$1.10 \cdot 10^{-26}$			

Abbildung 1: Verlauf von GlobNewton für f bei einer Genauigkeit von 10^{-12}

Schritt	x	f(x)
1	$[-1.20, 1.00]^T$	125.11
2	$[-2.87, 3.87]^T$	27.30
3	$[-2.80, 3.29]^T$	1.05
4	$[-2.80, 3.14]^T$	0.00
5	$[-2.81, 3.13]^T$	$9.83 \cdot 10^{-7}$
:	:	:
12	$[-2.81, 3.13]^T$	$4.10 \cdot 10^{-29}$

Abbildung 2: Verlauf von GlobNewton für f bei einer Genauigkeit von 10^{-12}

Für die 2D Rosenbrock-Funktion

$$q(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

gelten die Ableitungen

$$\nabla g(x_1, x_2) = \begin{bmatrix} 400x_1^3 - 400x_1x_2 + 2x_1 - 2\\ 200(x_2 - x_1^2) \end{bmatrix}$$

$$H_g(x_1, x_2) = \begin{bmatrix} 800x_1^2 - 400(x_2 - x_1^2) + 2 & -400x_1\\ -400x_1 & 200 \end{bmatrix}$$

Schritt	x	g(x)
1	$[0.00, 0.00]^T$	1.00
2	$[0.25, 0.00]^T$	0.95
3	$[0.31, 0.09]^T$	0.48
4	$[0.52, 0.22]^T$	0.46
5	$[0.57, 0.32]^T$	0.19
:	:	:
15	$[1.00, 1.00]^T$	$8.21 \cdot 10^{-28}$

Abbildung 3: Verlauf von GlobNewton für g bei einer Genauigkeit von 10^{-12}

Schritt	x	g(x)		
1	$[-1.20, 1.00]^T$	24.20		
2	$[-1.18, 1.38]^T$	4.73		
3	$[-0.93, 0.81]^T$	4.09		
4	$[-0.78, 0.59]^T$	3.23		
5	$[-0.46, 0.11]^T$	3.21		
:	:	:		
12	$[1.00, 1.00]^T$	$4.93 \cdot 10^{-28}$		

Abbildung 4: Verlauf von GlobNewton für g bei einer Genauigkeit von 10^{-12}

Aufgabe 3

Die Hesse-Matrizen der beiden Funktionen f und g ist stetig und kontinuierlich, d.h. es kann in beiden Fällen vom Zutreffen der Lipschitz-Bedingung

$$||H(x) - H(y)|| < L||x - y|| \, \forall x, y \in \mathbb{R}^n$$

ausgegangen werden. Weiterhin enthalten beide Funktionen keine mehrfachen Nullstellen durch die das Newton-Verfahren gebremst werden könnte. Aufgrundessen konvergieren beide Funktionen lokal-quadratisch (sollte die

Hesse-Matrix eine Abstiegsrichtung liefern). Global gesehen konvergiert das Newton-Verfahren je nach Schrittweitenstrategie (ob effizient oder nicht) und Startwert entweder gar nicht aufgrund zu kleiner Schrittweiten (z.B. normales Armijo-Verfahren) oder zumindest nur superlinearer. Die lokale quadratische Konvergenz der Himmelblau-Funktion kann man in (1) und (2) zwischen Schritt 3 und 4 bzw. 2 und 3 gut erkennen. Da beide Funktionen nicht quadratisch sind, konvergiert das Verfahren nicht in einem einzigen Schritt.

Bei Quasi-Newton-Verfahren mit approximierter Hesse-Matrix und effizienter Schrittweitenstrategie kann man global gesehen von einer superlinearen Konvergenz für beide Funktionen f und g ausgehen. Im gegensatz zum reinen Newton-Verfahren kann man die Update-Formeln der Hesse-Matrix so wählen, dass eine Abstiegsrichtung entsteht. Broyden et al. haben 1973 in On the Local and Superlinear Convergence of Quasi-Newton Methods gezeigt, dass die Fehler in der Approximation von H_k begrenzt sind und sich nicht unbeschränkt erhöhen und daraus die superlineare Konvergenz abgeleitet werden kann.

Weiterhin sind beide Funktionen nicht quadratischer Natur ansonsten könnte die Schrittweite ggf. exakt berechnet werden.

Aufgabe 4

Das Optimierungsproblem

$$\min -2x_1 - 3x_2 - 4x_3$$

unter den Nebenbedingungen

$$\begin{array}{c} x_1+x_2+x_3 \leq 4 \\ 3x_2+x_3 \leq 6 \\ x_1 \leq 2 \\ x_3 \leq 3 \\ x_i \geq 0 \text{, } i \in \{1,2,3\} \end{array}$$

hat folgende Normalform

$$\min -2x_1 - 3x_2 - 4x_3$$

$$x_1 + x_2 + x_3 + x_4 = 4 (I)$$

$$3x_2 + x_3 + x_5 = 6 (II)$$

$$x_1 + x_6 = 2 (III)$$

$$x_3 + x_7 = 3 (IV)$$

$$x_i \ge 0, i \in \{1, 2, 3, 4, 5, 6, 7\} (V)$$

Aufgabe 5

		$\lceil 1 \rceil$	$\lceil 1 \rceil$	$\lceil 2 \rceil$	$\lceil 2 \rceil$
		0	0	2	1
		3	3	0	
	-3	0	0	0	0
			3	0	2
		0		0	0
		[0]	[0]	[3]	$\lfloor 2 \rfloor$
(I)	×	✓	✓	✓	✓
(II)	✓	X	✓	✓	✓
(III)	✓	X	✓	✓	✓
(IV)	✓	✓	✓	✓	✓
(V)	×	✓	✓	✓	✓

Die Vektoren $x^{(3)}$, $x^{(4)}$ und $x^{(5)}$ sind gültige Basisvektoren während $x^{(1)}$ einen negativen Eintrag enthält sowie nicht alle Nebenbedingungen erfüllt. $x^{(2)}$ erfüllt ebenfalls nicht alle Nebenbedingungen.

Aufgabe 6

Das Optimierungsproblem lässt sich in Matrixschreibweise als lineares Gleichungssystem der Form Ax=b schreiben

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot x = \begin{bmatrix} 4 \\ 6 \\ 2 \\ 3 \end{bmatrix}$$

Aus dem angegebenen Basisvektor $x=\begin{bmatrix} 2\\0\\2\\0\\4\\0\\1 \end{bmatrix}$ kann man die Indexmengen

 $B=\{1,3,5,7\}$ und $N=\{2,4,6\}$ ablesen. B enthält die Indizes bei denen $x_i\neq 0$ sind während N gerade die Einträge enthält, bei denen $x_i=0$ sind. Daraus wiederum kann man A_B und A_N bilden

$$A_B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} A_N = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

die gerade die Spalten aus A enthalten, die in der jeweiligen Indexmenge angegeben sind.

Mit

$$A_B^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 0 & 1 & 1 \end{bmatrix}$$

kann man nun Γ berechnen

$$\Gamma = A_B^{-1} \cdot A_N = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & -1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

und
$$\beta_B=A_B^{-1}\cdot b=\begin{bmatrix}2\\2\\4\\1\end{bmatrix}$$
. Mit zusätzlichem $c=\begin{bmatrix}-2\\-3\\-4\\0\\0\\0\end{bmatrix}$ und $c_B=\begin{bmatrix}-2\\-4\\0\\0\\0\end{bmatrix}$,

 $c_N = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$ lässt sich $\xi = \Gamma^T c_B - c_N = \begin{bmatrix} -1 \\ -4 \\ 2 \end{bmatrix}$ berechnen und das Tableau aufstellen (Pivot-Element farbig hinterlegt):

Es werden also die Elemente x_7 und x_6 getauscht. Daraus entstehen die neuen Index-Mengen $B=\{1,3,5,6\}$ und $N=\{2,4,7\}$

Daraus lässt sich wieder bestimmen

$$A_{B} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} A_{N} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A_{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 1 \end{bmatrix}$$

und draus wiederum

$$\Gamma = A_B^{-1} A_N = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \beta_B = A_B^{-1} b = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$$

$$\mathsf{Mit}\,c_B = \begin{bmatrix} -2 \\ -4 \\ 0 \\ 0 \end{bmatrix}, c_N = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} \,\mathsf{kann}\,\mathsf{man}\,\mathsf{bestimmen}\,\xi = \Gamma^T c_B - c_N = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

und daraus das neue Tableau aufstellen

Aktuell ist
$$x=\begin{bmatrix}1\\0\\3\\0\\3\\1\\0\end{bmatrix}$$
 mit $f(x)=-14$.