Методика измерения:

Ну тут всё понятно. Прикрепляется к двум штативам для надёжности грузик на палке. Затем проводятся измерения.

Методика обработки данных.

Тут всё сложно. Был, например, придуман алгоритм сглаживания на основе бегущего окна, только вместо среднего арифметического используется взвешенное с коэффициентами, пропорциональными расстоянию по индексам до рассматриваемой точке в некой степени, в данном случае подошла степень 0.3

Первая вещь, которую нужно сделать – отрезать лишнее (начало). Там функция по модулю не отклонялась более, чем на 1/20 от максимума.

Для нахождения периода сначала надо понять, где равновесное положение. Для этого:

Сначала считается производная (со сглаживанием), затем обрезать функцию по целому числу периодов, посчитать интеграл разделить на длину.

В результате получится <u>ФАНТОСМОГОРИЧЕСКАЯ</u> точность. (это график зависимости времени данного равняния нулю от индекса нуля. (На самом деле, это не совсем прямая, но этого может быть не видно)

Далее – анализируем все файлы для одного эксперимента. Разброс минимален:

```
Path: D:\Projects\Experiments\Pendulum_signal_processing\res\input\Less_than_30\First\1.txt; Period: 1.19611
Path: D:\Projects\Experiments\Pendulum_signal_processing\res\input\Less_than_30\First\2.txt; Period: 1.20642
Path: D:\Projects\Experiments\Pendulum_signal_processing\res\input\Less_than_30\First\3.txt; Period: 1.17502
Path: D:\Projects\Experiments\Pendulum_signal_processing\res\input\Less_than_30\First\4.txt; Period: 1.17123
```

Итого:

- 1) period = 1.2
- 2) period = 1.3
- 3) period = 1.5

<u>Теперь зависимость от угла.</u>

Получаем для каждого эксперимента угол и период, сортируем, строим график. Логарифмируем. Аппроксимируем методом наименьших квадратов. Находим угловой коэффициент полученной прямой. Возыодим е в его степень, получаем е^ 0.317902, то есть 1.4