VOLKAN KURSUN **Bilkent University**

Counters Revisited

VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

Outline

- Counter Design as FSM
- A Different Counter
- Self Correcting Ring Counter
- Self Correcting Johnson Counter

EEE 102 Introduction to Digital Circuit Design

Bilkent University

Counter Design as an FSM

- □ The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1...
- □ An input signal w: if w = 0, maintain state (pause counting). If w = 1, increment the counter
- □ **Design** the counter as a synchronous sequential circuit using the formal fsm design methodology

VOLKAN KURSUN Counter State Table The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 7

		<u> </u>	
Present	Next	Output	
state	w = 0	w = 1	•
A	A	В	0
В	В	C	1
C	C	D	2
D	D	E	3
Е	Е	F	4
F	F	G	5
G	G	Н	6
Н	Н	A	7

EEE 102 Introduction to Digital Circuit Design

Counter State Assigned Table

□ The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1...

	Present	Next		
	state	_		Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	$Y_2 Y_1 Y_0$	Z ₂ Z ₁ Z ₀
A	000	000	001	000
В	001	001	010	001
\mathbf{C}	010	010	011	010
D	011	011	100	011
\mathbf{E}	100	100	101	100
\mathbf{F}	101	101	110	101
G	110	110	111	110
\mathbf{H}	111	111	000	111
EEE 102 Intro	duction to Digital Circuit Desi	gn		VOLKAN KURSUN

VOLKAN KURSUN

Counter Implementation with D

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN Counter Implementation with D

□ The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1...

 $Y_2 = \overline{wy_2} + \overline{y_0y_2} + \overline{y_1y_2} + \overline{wy_0y_1y_2}$ **EEE 102 Introduction to Digital Circuit Design**

 $Y_1 = \bar{w}y_1 + y_1\bar{y}_0 + wy_0\bar{y}_0$

VOLKAN KURSUN

Counter Implementation with JK

□ The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1...

	Present Flip-flop inputs									
	state		w =	0			w =	1		Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2Y_1Y_0$	J_2K_2	J_1K_1	J_0K_0	Z2Z1Z0
A		UUD	0d	0d	0d		0d	0d	1d	000
В			0d	0d	d0		0d	1d	d1	001
C			0d	d0	0d		0d	d0	1d	010
D	UII		0d	d0	d0	10D	ld	d1	d1	011
E		1 <mark>0</mark> 0	d0	0d	0d	101	d0	0d	1d	100
F			d0	0d	d0	11D	d0	1d	d1	101
G			d0	d0	0d	111	d0	d0	1d	110
Н			d0	d0	d0		dl	d1	d1	111

JK Flip-Flop Excitation Table							
q(t)	Q(t+1)	J	K				
0	0	0	X				
0	1	1	X				
1	0	X	1				
1	1	Х	0				

EEE 102 Introduction to Digital Circuit Design

Counter Implementation with JK

	Present	Flip-flop inputs								
	state		w = 0			w = 1				Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	Z2Z1Z0
A	000	000	0d	0d	0d	001	0d	0d	1d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
\mathbf{C}	010	010	0d	d0	0d	011	0d	d0	1d	010
D	011	011	0d	d0	d0	100	1d	d1	d1	011
Е	100	100	d0	0d	0d	101	d0	0d	1d	100
F	101	101	d0	0d	d0	110	d0	1d	d1	101
G	110	110	d0	d0	0d	111	d0	d0	1d	110
Η	111	111	d0	d0	d0	000	d1	d1	d1	111

$$J_2 = w_{\mathcal{Y}_0 \mathcal{Y}_1}$$
 EEE 102 Introduction to Digital Circuit Design

$$K_2 = wy_0y_1$$
VOLKAN KURSUI

VOLKAN KURSUN Counter Implementation with JK

	Present	Flip-flop inputs								Count
	state		w = 0				w = 1			
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	z ₂ z ₁ z ₀
Α	000	000	0d	0d	0d	001	0d	0d	1d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
\mathbf{C}	010	010	0d	d0	0d	011	0d	d0	1d	010
D	011	011	0d	d0	d0	100	1d	d1	d1	011
Е	100	100	d0	0d	0d	101	d0	0d	1d	100
F	101	101	d0	0d	d0	110	d0	1d	d1	101
G	110	110	d0	d0	0d	111	d0	d0	1d	110
Η	111	111	d0	d0	d0	000	d1	d1	d1	111

y_1y_0									
v_2	\	00	01	11	10				
C	00	d	О	О	d				
O	1	d	О	О	d				
1	1	d	1	1	d				
1	0	d	1	1	d				

EEE 102 Introduction to Digital Circuit Design **VOLKAN KURSUN** **VOLKAN KURSUN**

Counter Implementation with JK

	Present Flip-flop inputs									
	state		w =	0			w =	1		Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2 Y_1 Y_0$	J_2K_2	J_1K_1	J_0K_0	Z2Z1Z0
Α	000	000	0d	0d	0d	001	0d	0d	1d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
С	010	010	0d	d0	0d	011	0d	d0	1d	010
D	011	011	0d	d0	d0	100	1d	d1	d 1	011
E	100	100	d0	0d	0d	101	d0	0d	1d	100
F	101	101	d0	0d	d0	110	d0	1d	d 1	101
G	110	110	d0	d0	0d	111	d0	d0	1d	110
Н	111	111	d0	d0	d0	000	d1	d1	d1	111

0

d

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Counter Implementation with JK

Outline

Bilkent University

- Counter Design as FSM
- A Different Counter
- Self Correcting Ring Counter
- Self Correcting Johnson Counter

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University **Counter Implementation**

y_1y_0	00	01	11	10
0	1	1	1	1
1	0	0	0	0

$$Y_2 = y_2'$$

$y_1 y_0$	00	01	11	10
0	0	0	1	1
1	1	1	0	0

$$Y_1 = y_2'y_1 + y_2y_1'$$

= $y_2 \oplus y_1$

	HILL	
Present	Next	Output
state	state	
<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	$z_{2}z_{1}z_{0}$
000	100	000
100	010	100
010	110	010
110	001	110
001	101	001
101	011	101
011	1 1 1	011
111	000	111
V.V.		10

y_1y_0	00	01	11	10
0	0 [1	1	0
1	0	1	0	1

 $Y_0 = y_2'y_0 + y_1'y_0 + y_2y_1y_0'$ $= y_0(y_1'' + y_2'') + y_0''y_2y_1 = y_0 \oplus (y_2y_1)$ VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN A Different Counter Sequence

- □ The counting sequence is 0, 4, 2, 6, 1, 5, 3, 7, 0, 4...
- □ Assume the counter is always enabled

State Table Next Output Present state state $z_{2}z_{1}z_{0}$ 000 В 100 D 010 110 001 101 011 H 111

State Assigned Table							
Present	Next	Output					
state	state						
<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2 Y_1 Y_0$	$z_2z_1z_0$					
000	100	000					
100	010	100					
010	110	010					
110	001	110					
001	101	001					
101	011	101					
011	111	011					
111	000	111					

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN Counter Implementation

VOLKAN KURSUN Bilkent University

Outline

- Counter Design as FSM
- A Different Counter
- Self Correcting RingCounter
- Self Correcting JohnsonCounter

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUI

Shift Left Ring Counter

 $\square 0001 \rightarrow 0010 \rightarrow 0100 \rightarrow 1000 \rightarrow 0001...$

□**Start = 0**: count (shift left) with the positive edges of the clock

$$Q(N-1) \le Q(N-2), Q(N-2) \le Q(N-3),...,$$

 $Q(1) \le Q(0), Q(0) \le Q(N-1)$

Shift Left Ring Counter

0001-0010-0100-1000-0001...

- □Can be implemented with a shiftregister with the following connections
- □**Start = 1**: inject 1 into the LSB while clearing the other bit positions

4-Bit Shift Left Ring Counter

4-Bit Ring Counter State Table

	Presen	t State			Next	State	
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	d	d	d	d
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	d	d	d	d
0	1	0	0	1	0	0	0
0	1	0	1	d	d	d	d
0	1	1	0	d	d	d	d
0	1	1	1	d	d	d	d
1	0	0	0	0	0	0	1
1	0	0	1	d	d	d	d
1	0	1	0	d	d	d	d
1	0	1	1	d	d	d	d
1	1	0	0	d	d	d	d
1	1	0	1	d	d	d	d
1	1	1	0	d	d	d	d
1	1	1	1	d	d	d	d
EEE 102 In	troduction	to Digital C	ircuit Desig	ın			

□ Counter

without self
correction:
assume the
counter will
always go
through the
valid states.
Invalid states
are don't care

 $\begin{array}{c} \square \ 0001 \longrightarrow 0010 \longrightarrow \\ 0100 \longrightarrow 1000 \longrightarrow \\ 0001 \dots \end{array}$

VOLKAN KURSUN

y_3y_2	У _О 00	01	11	10
00	d	O	d	O
01	1	d	d	d
11	d	d	d	d
10	О	d	d	d

$Y_3 = y_2$									
y_3y_2	У _О	01	11	10					
00	d	1	d	O					
01	O	d	d	d					
11	d	d	d	d					
10	О	d	d	d					
\ /									

EEE 102 Introduction to Digital Circuit Design

y_3y_2	90 00	01	11	10				
00	d	О	d	1				
01	О	d	d	d				
11	d	d	d	d				
10	О	d	d	d				
$Y_2 = y_1$ $y_1 y_0$ $y_2 y_2$ $y_3 y_2$ $y_4 y_0$ $y_5 y_5$ $y_5 y_5$ $y_7 y_0$ $y_$								
\mathbf{y}_1	\mathbf{y}_0							
y ₃ y ₂	00	01	11	10				
y_3y_2 00	\mathbf{d}	01 O	11 d	10 O				
2 32 2				_				
00	d	О	d	О				
00 01	d 0	0 d	d d	0 d				

4-Bit Ring Counter State Table
Present State
Next State

The state table

	Presen	t State			Next	State		
/3	y2	y1	y0	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	1	0	
0	0	1	0	0	1	0	0	
0	0	1	1	0	1	1	0	
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	0	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	0	
1	0	0	0	0	0	0	1	
1	0	0	1	0	0	1	1	
1	0	1	0	0	1	0	1	
1	0	1	1	0	1	1	1	
1	1	0	0	1	0	0	1	
1	1	0	1	1	0	1	1	
1	1	1	0	1	1	0	1	
1	1	1 to Digital C	1	1	1	1	1	

The state table
after the don't
care outputs
are assigned
values for logic
minimization for
the ring counter
without error
correction

□0001→**001**

0→**0**10**0**→

1000→000

VOLKAN KURSUN

VOLKAN KURSUN EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

Bilkent University

Self Correcting Ring Counter Cycles

Corrects abnormal state (moves to a valid state)

after at most 3 active clock edges

VOLKAN KURSUN Ring Counter State Table Without Error Correction

	Preser	nt State					
y3	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
_1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1
1	0	1	0	0	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	1
1	1	0	1	1	0	1	1
1	1	1	0	1	1	0	1
1	1	1	1	1	1	1	1
EEE 102 In	troduction	to Digital C	ircuit Desig	jn			

Injection point-1: Invalid state 0000

 Without error correction, the next state is 0000

Injection point-2: Invalid state 1001

 Without error correction, the next state is 0011

Injection point-3: Invalid state 1010

 Without error correction, the next state is 0101

Injection point-4: Invalid state 1011

 Without error correction, the next state is 0111 VOLKAN KURSUN

VOLKAN KURSUN Ring Counter State Table Without Error Correction Bilkent University

	Presen	t State		Next State			
у3	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1
1	0	1	0	0	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	1
1	1	0	1	1	0	1	1
1	1	1	0	1	1	0	1
1	1 troduction	1	1	1	1	1	1

Injection point-5: Invalid state 1100

 Without error correction, the next state is 1001

Injection point-6: Invalid state 1101

 Without error correction, the next state is 1011

Injection point-7: Invalid state 1110

 Without error correction, the next state is 1101

Injection point-8: Invalid state 1111

 Without error correction, the next state is 1111 VOLKAN KURSUN

volkan kursun Self Correctin		
Present State	Next State	Injection point-1:

<u>36</u>		OIIE	Cui	ly r	11119	CO	unte
	Preser	ıt State			Next	State	
у3	y2	y1	y0	Y3	Y2	Y1	Y0
1 0	0	0	0	0	0	0	(1)
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
2 1	0	0	1	0	0	1	(0)
3 1	0	1	0	0	1	0	(0)
41	0	1	1	0	1	1	(0)
1	1	0	0	1	0	0	1
1	1	0	1	1	0	1	1
1	1	1	0	1	1	0	1
1	1	1	1	1	1	1	1
EE 102 In	troduction	to Digital C	ircuit Desig	gn			

Invalid state 0000

For error correction, the next state is 0001

Injection point-2: Invalid state 1001

- For error correction, the next state is 0010
- Injection point-3: Invalid state 1010
 - For error correction, the next state is **0100**

Injection point-4: Invalid state 1011

For error correction, the next state is **0110 VOLKAN KURSUN**

VOLKAN KURSUN Bilkent University Self Correcting Ring Counter State Table

	Preser	ıt State			Next	State	
у3	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
5 1	1	0	0	1	0	0	(0)
6 1	1	0	1	1	0	1	(0)
7 1	1	1	0	1	1	0	(0)
8 1	1	1	1	1	1	1	(0)
EEE 102 In	troduction	to Digital C	ircuit Desig	jn			

Injection point-5: **Invalid state 1100**

- For error correction, the next state is **1000**
- Injection point-6: Invalid state 1101
 - For error correction, the next state is **1010**
- Injection point-7: Invalid state 1110
 - For error correction, the next state is **1100**
- Injection point-8: Invalid state 1111
 - For error correction, the next state is **1110 VOLKAN KURSUN**

VOLKAN KURSUN **Bilkent University** Error Correcting Ring Counter Maps

 y_3y_2

01

11

10

 y_1y_0

 y_3y_2

01

VOLKAN KURSUN **Self Correcting Ring Counter** $1000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0100 \rightarrow 1000 \rightarrow 0001...$

 $\square Q_{N-2} = Q_{N-3} = \dots = Q_1 = Q_0 = 0$ is the only legitimate state after which a 1 should be injected into Q₀

- □From all other states, including the erroneous states, 0 should be injected into Q₀ to be able to return to the normal cycles
- To construct an n-bit self correcting ring counter: $D_0 = (Q_{n-2} + Q_{n-3} + ... Q_1 + Q_0)'$ EEE 102 Introduction to Digital Circuit Design

Self Correcting Ring Counter

1000→**0001**→**0**010→**0**100→**1000**→**0001**...

□ Assume an abnormal state with n bits:

 $X111....1111 \xrightarrow{1} 1111....1110 \xrightarrow{2} 1111....1100$ $\xrightarrow{3}$ 1111....100**0** $\xrightarrow{4}$... $\xrightarrow{n-2}$ 1100....000**0** $\xrightarrow{\text{n-1}} 1000 \dots 0000 \xrightarrow{\text{n}} 0000 \dots 0001$ \rightarrow 0000....0010 \rightarrow ...

□ To construct an n-bit self correcting ring counter:

$$D_0 = (Q_{n-2} + Q_{n-3} + \dots Q_1 + Q_0)'$$

NOR function of all the bits (all state variables) except the MSB

 $D_0 = 1$, iff $Q_0 = Q_1 = ... = Q_{N-2} = 0$

 $D_0 = 0$, for all other states \rightarrow corrects an abnormal state in at most n-1 clock cycles

EEE 102 Introduction to Digital Circuit Design

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

Bilkent University

Ring Counter State Table for Single Cycle Error Correction

	Preser	t State			Next	State		
у3	y2	y1	y0	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	(1)	
0	0	0	1	0	0	1	0	
0	0	1	0	0	1	0	0	
0	0	1	1	0	(0)	1	0	
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	(0)	0	
0	1	1	0	1	(0)	0	0	
0	1	1	1	1	(0)	(0)	0	
1	0	0	0	0	0	0	1	
1	0	0	1	0	0	(0)	1	L
1	0	1	0	0	(0)	0	1	-
1	0	1	1	0	0	1	0	
1	1	0	0	1	0	0	(<u>0</u>)	
1	1	0	1	1	0	(0)	0	Ļ
1	1	1	0	1	(0)	0	0	
1	1	1	1	1	(0)	(0)	(0)	

- For fastest recovery, design a circuit that can recover from any invalid state in only one clock cycle
- All the invalid states must transition to a valid state in the next clock cycle for one cycle recovery
- More complex circuit needed: logic expressions for Y₂, Y₁, and Y₀ change
- No change in Y₃:

 $Y_3 = y_2$

VOLKAN KURSUN

VOLKAN KURSUN Bilkent University Self Correcting 4-Bit Ring Counter

□ To construct an n-bit self correcting ring counter:

$$D_0 = (Q_2 + Q_1 + Q_0)$$

 $D_0 = (Q_2 + Q_1 + Q_0)'$ NOR function of all the bits (all state variables) except the MSB

 $D_0 = 1$ iff $Q_2 = Q_1 = Q_0 = 0$ (corrects an abnormal state in at most 3 clock cycles)

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Bilkent University

VOLKAN KURSUN

Outline

- Counter Design as FSM
- A Different Counter
- Self Correcting Ring Counter
- Self Correcting Johnson Counter

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Shift Left Johnson Counter
Instead of the Q output of the final stage as in a

ring counter, connect the Q' output of the final stage to the D input of the first stage flip-flop in a Johnson counter (AKA twisted ring, switched tail)

□ First initialize with Reset = 0 (clear all bit **positions to 0**): $Q_{n-1}Q_{n-2}...Q_1Q_0 = 0b00...00$

VOLKAN KURSUN **4-Bit Shift Left Johnson Counter** Q <u>Clear</u> Reset Clock Reset Q2 **VOLKAN KURSUN EEE 102 Introduction to Digital Circuit Design**

Shift Left Johnson Counter

- □ When Reset = 1, counter starts counting with the positive edges of the clock signal
- □ n-bit Johnson counter (shift left with Q_{n-1}' (MSB complement) injected to LSB from right): $00..00\xrightarrow{1}00..01\xrightarrow{2}00..11 \rightarrow ... \rightarrow 01..11\xrightarrow{n}11..11 \rightarrow 11.$

 $.10 \rightarrow 11..00 \rightarrow ... \rightarrow 10..00 \xrightarrow{2n} 00..00 \rightarrow 00..01 \rightarrow ...$

VOLKAN KURSUN Bilkent University Johnson Counter States

- ☐ An n-bit Johnson counter goes through 2n valid states
- □ There are 2ⁿ-2n invalid states

EEE 102 Introduction to Digital Circuit Design

□ Example: 4-bit Johnson counter goes through 8 valid states. There are also 8 invalid states.

		t State		on Counter Next State			
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	d	d	d	d
0	0	1	1	0	1	1	1
0	1	0	0	d	d	d	d
0	1	0	1	d	d	d	d
0	1	1	0	d	d	d	d
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	d	d	d	d
1	0	1	0	d	d	d	d
1	0	1	1	d	d	d	d
1	1	0	0	1	0	0	0
1	1	0	1	d	d	d	d
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0

State Table ☐ Counter without self correction: assume the counter will always go through the valid states. **Invalid states** are don't care **□** 0000→0001→0 **011**→**0111**→**11 11**→**1110**→

1100→**1000**→0

Bilkent University

000→0001... **VOLKAN KURSUN**

VOLKAN KURSUN **Bilkent University** 4-Bit Johnson Counter Maps y_3y_2 y_3y_2 0 0 0 0 d d d 1 d d 01 d 01 \mathbf{O} d 1 d 1 1 11 1 11 d d 0 10 0 d d d 10 $Y_2 = y_1$ $Y_3 = y_2$ 11 y_3y_2 01 11 10 y_3y_2 1 1 1 0 d d d 1 01 d d 1 d 01 0 d 0 11 d 1 0 \mathbf{O} 11 \mathbf{O} d d 10 \mathbf{O} d d d 10 $Y_0 = y_3'$ $Y_1 = \overline{y_0}$ EEE 102 Introduction to Digital Circuit Design **VOLKAN KURSUN**

d

d

d

10

d

d

0

d

Bilkent University 4-Bit Johnson Counter State Table

	Preser	it State		Next State				
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	1	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	
0	1	0	0	1	0	0	1	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	1	
0	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	
1	1	1	1	1	1	1	0	
EE 102 Ir	ntroduction	to Digital C	ircuit Desig	gn				

→ After the assignments of the don't cares for the next state logic minimization, the state table looks like this **□** 0000→0001→0 **011**→**0111**→**11 11**→**1110**→ **1100**→**1000**→0 000→0001... **VOLKAN KURSUN** **VOLKAN KURSUN Bilkent University Johnson Counter Cycles**

VOLKAN KURSUN Bilkent University

Error Correcting Johnson Counter Design

□ To design a self-correcting Johnson counter, examine the existing Karnaugh maps of the original design and identify don't care conditions that can be changed to recover from erroneous states with the minimum hardware overhead

VOLKAN KURSUN Error Correcting Johnson Counter Design-1

- ☐ In design-1, we will explore having only one injection point
- □ Replace the highlighted don't care condition for Y1 from 1 to 0 to recover from erroneous state with minimum hardware overhead
- □ Form three new groups of 4 instead of one group of 8

Error Correcting Johnson Counter

With single injection point: worst case latency for error correction is 8 cycles

VOLKAN KURSUN

Original State Table Without Error Correction

U II	gilla	II Ot	att	Iabi	C 11		ut <u>L</u>	
	Preser	t State		Next State				
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	1	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	
0	1	0	0	1	0	0	1	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	1	
0	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	
1	1	1	1	1	1	1	0	
FF 102 In	troduction	to Digital C	ircuit Desi	an				

- □ Single injection point: Invalid state 1001
 - Without error correction, the next state is
 0010

1110	MIII	<i>,</i> u	LULU	,	NIC		
	Preser	t State			Next	State	
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	(0)	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0
EE 102 In	troduction	to Digital C	ircuit Desig	n			

- Single injection point: Invalid state 1001
 - With error correction, the next state is 0000

VOLKAN KURSUN

Self Correcting Johnson Counter Design-2

□ Multiple injection points reduce the latency for correction

□ <u>Two injection points for error correction</u>: worst case latency for correction is reduced to **5 cycles**

VOLKAN KURSUN

Error Correcting Johnson Counter-1 Maps

VOLKAN KURSUN
Error Correcting Johnson Counter Design-2

□ In design option-2, we will replace the highlighted don't care conditions for Y3 from 1 to 0 to recover from erroneous states with minimum hardware overhead

□ Form two new groups of 4 instead of one group of 8

Injection point-1: Invalid state 0100

Bilkent University

- Without error correction. the next state is 1001
- Injection point-2: Invalid state 0101
 - Without error correction, the next state is **1011**

VOLKAN KURSUN

VOLKAN<u>KU</u>RSUN Bilkent University Design-2 for Error Correction

_		<u> </u>		101			. •
	Presen	t State			Next	State	
у3	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
1 0	1	0	0	(0)	0	0	1
2 0	1	0	1	(0)	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0
EEE 102 In	troduction	to Digital C	ircuit Desig	jn			

- Injection point-1: Invalid state 0100
 - With error correction, the next state is 0001

□ Injection point-2: Invalid state 0101

- With error correction, the next state is 0011
- Y₃ logic function changes
- \square Y₂, Y₁, and Y₀ do NOT change

VOLKAN KURSUN

VOLKAN KURSUN Bilkent University Error Correcting Design-2 Maps

0

0

0

EEE 102 Introduction to Digital Circuit Design

\mathbf{y}_1	\mathbf{v}_{α}	_		
y_3y_2	00	01	11	10
00	O	O	1	1
01	О	О	1	1
11	O	О	1	1
10	О	О	1	1
_	_			

10	O	U	0	0	
Y ₃ =	= y ₃)	/2+	y ₂ y	₁ = y	/2
y_3y_2	00	01	11	10	
00	0	1	1	0	
01	O	1	1	О	
11	O	1	1	0	
10	0	1	1	0	

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN Error Correcting Johnson Counter Design-3

□ In design option-3, we will replace the highlighted don't care conditions for Y2 from 1 to 0 to recover from erroneous states with minimum hardware overhead

□ Form two new groups of 4 instead of one group of 8

 y_3y_2

EEE 102 Introduction to Digital Circuit Design

Y0 = y3'

0

0

2 1

 $^{\circ}$

0

0

0

0

■ Injection point-2: Invalid state 1010

- With error correction, the next state is 0000
- □ Y₂ logic function changes
- \square Y₃, Y₁, and Y₀ do NOT change

VOLKAN KURSUN

VOLKAN KURSUN Bilkent University 4-Bit Johnson Counter State Table

4-Bit Johnson Counter											
	Preser	t State			Next	State					
у3	y2	y1	y0	Y3	Y2	Y1	Y0				
0	0	0	0	0	0	0	1				
0	0	0	1	0	0	1	1				
0	0	1	0	0	1	0	1				
0	0	1	1	0	1	1	1				
0	1	0	0	1	0	0	1				
0	1	0	1	1	0	1	1				
0	1	1	0	1	1	0	1				
0	1	1	1	1	1	1	1				
1	0	0	0	0	0	0	0				
1	0	0	1	0	0	1	0				
1	0	1	0	0	1	0	0				
1	0	1	1	0	1	1	0				
1	1	0	0	1	0	0	0				
1	1	0	1	1	0	1	0				
1	1	1	0	1	1	0	0				
1	1	1	1	1	1	1	0				
EEE 102 In	troduction	to Digital C	ircuit Desig	ın							

- Injection point-1: Invalid state 0010
 - Without error correction. the next state is **0101**
- Injection point-2: Invalid state 1010
 - Without error correction. the next state is **0100**

VOLKAN KURSUN

VOLKAN KURSUN

Bilkent University Error Correcting Johnson Counter-3 Maps

 $Y_0 = y_3$ **VOLKAN KURSUN**

$$Y_3 = y_2$$
 $Y_2 = y_2y_1+y_1y_0 = y_1(y_2 + y_0)$
 $Y_1 = y_0$ $Y_0 = y_3$

VOLKAN KURSUN Bilkent University

Self Correcting Johnson Counter Alternative Design-4

□ Two injection points for error correction lower the latency for correction: maximum 5 cycles to a valid state

Note: Only a single bit changes its value during successive clock ticks. 8 states used in normal With correction operation. 8 states unused.

VOLKAN KURSUN Error Correcting Johnson Counter Design-4

□ In design option-4, we will replace the highlighted don't care conditions for Y1 from 1 to 0 to recover from erroneous states with minimum hardware overhead

□ Form two new groups of 4 instead of one group of 8

VOLKAN KURSUN

Bilkent University State Table Without Correction

	<i>-</i> 101		u				16 4
	Presen	t State			Next	State	
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0
EE 102 In	troduction	to Digital C	ircuit Desig	ın			

Injection point-1: Invalid state 1001

1

1

d

1

1

 \mathbf{O}

d

d

d

1

d

d

d

 \mathbf{O}

d

VOLKAN KURSUN

- Without error correction, the next state is **0010**
- Injection point-2: Invalid state 1101
 - Without error correction. the next state is **1010**

OLKAN K	Des Des	sigr	1-4	for	· Eı	rroi	r C
	Preser	t State				State	
уЗ	y2	y1	y0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
11	0	0	1	0	0	(0)	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
21	1	0	1	1	0	(0)	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0

- orrection Bilkent University □ Injection point-1: **Invalid state 1001**
 - With error correction, the next state is 0000
- Injection point-2: **Invalid state 1101**
 - With error correction, the next state is 10<u>0</u>0
- □ Y₁ logic function changes
- \square Y₃, Y₂, and Y₀ do NOT change

VOLKAN KURSUN

Bilkent University

10

0

Johnson Counter State Table for Single Cycle Error Correction

		Preser	it State		Next State					
	y3	y2	y1	y0	Y3	Y2	Y1	Y0		
	0	0	0	0	0	0	0	1		
	0	0	0	1	0	0	1	1		
	0	0	1	0	0	(0)	0	1		
	0	0	1	1	0	1	1	1		
	0	1	0	0	1	0	0	(0)		
	0	1	0	1	1	(1)	1	1		
	0	1	1	0	1	1	0	(0)		
	0	1	1	1	1	1	1	1		
	1	0	0	0	0	0	0	0		
	1	0	0	1	0	0	1	(1)		
	1	0	1	0	0	(0)	0	0		
	1	0	1	1	0	1	1	(1)		
	1	1	0	0	1	0	0	0		
	1	1	0	1	1	(1)	1	0		
	1	1	1	0	1	1	0	0		
	1	1	1	1	1	1	1	0		
Е	EE 102 In	troduction	to Digital C	ircuit Desig	ın					

- Modified design that can recover from any invalid state in one clock cycle
- All the invalid states must transition to a valid state in the next clock cycle
- More complex circuit needed for 1 cycle recovery
- \mathbf{Y}_2 and \mathbf{Y}_0 logic expressions change
- No change in Y₃:
 - $Y_3 = y_2$
- No change in Y1:

$$Y_1 = y_0$$

VOLKAN KURSUN

Bilkent University

1

1

10

0

0

11

0

0

 $Y_0 = y_3$, volkan kursun

0

0

10