1. (a) If $a \cdot b = 0$, then either a = 0 or b = 0.

This statement is known as the **Zero Product Property** for real numbers.

- Proof:
 - o Assume $a \cdot b = 0$.
 - \circ Case 1: $a \neq 0$.
 - Since $a \neq 0$, 1/a exists as a real number.
 - Multiply both sides of $a \cdot b = 0$ by 1/a: $(1/a) \cdot (a \cdot b) = (1/a) \cdot 0$
 - Using associativity of multiplication: $((1/a) \cdot a) \cdot b = 0$
 - Since $(1/a) \cdot a = 1$: $1 \cdot b = 0$
 - Therefore, b = 0.
 - \circ Case 2: $b \neq 0$.
 - The proof is analogous to Case 1. Since $b \neq 0$, 1/b exists.
 - Multiply both sides of $a \cdot b = 0$ by 1/b: $(a \cdot b) \cdot (1/b) = 0 \cdot (1/b)$
 - Using associativity of multiplication: $a \cdot (b \cdot (1/b)) = 0$
 - Since $b \cdot (1/b) = 1$: $a \cdot 1 = 0$
 - Therefore, a = 0.
 - \circ From both cases, we conclude that if $a \cdot b = 0$, then either a = 0 or b = 0.
- 1. (b) State the order properties of \mathbb{R} . Using it prove that if a, b, c are real numbers such that a > b, then a + c > b + c.
 - Order Properties of \mathbb{R} (Axioms of Order):

- o **Trichotomy Property:** For any two real numbers a and b, exactly one of the following is true: a < b, a = b, or a > b.
- o **Transitivity Property:** If a < b and b < c, then a < c.
- o **Addition Property:** If a < b, then a + c < b + c for any real number c.
- Multiplication Property: If a < b and c > 0, then ac < bc. If a < b and c < 0, then ac > bc.
- Proof that if a > b, then a + c > b + c:
 - o Given a > b.
 - o By definition of >, this means b < a.
 - According to the **Addition Property** of order, if b < a, then b + c < a + c for any real number c.
 - o By definition of <, b + c < a + c is equivalent to a + c > b + c.
 - o Therefore, if a > b, then a + c > b + c.

1. (c) Find all values of x satisfying $|x - 2| \le x + 1$.

- We need to solve the inequality $|x-2| \le x+1$.
- Case 1: $x 2 \ge 0$, i.e., $x \ge 2$.
 - In this case, |x 2| = x 2.
 - The inequality becomes: $x 2 \le x + 1$
 - Subtract x from both sides: $-2 \le 1$.
 - o This statement is always true.
 - So, for $x \ge 2$, all values of x satisfy the inequality.
- Case 2: x 2 < 0, i.e., x < 2.
 - o In this case, |x-2| = -(x-2) = 2 x.

- The inequality becomes: $2 x \le x + 1$
- o Add x to both sides: $2 \le 2x + 1$
- Subtract 1 from both sides: $1 \le 2x$
- o Divide by 2: $x \ge 1/2$.
- Combining this with the condition x < 2, we get $1/2 \le x < 2$.

Combining both cases:

- From Case 1, we have $x \in [2, \infty)$.
- From Case 2, we have $x \in [1/2,2)$.
- The union of these two intervals is $[1/2, \infty)$.
- Also, for $|x-2| \le x+1$ to be defined, we must have $x+1 \ge 0$, which means $x \ge -1$. Since our solution $x \ge 1/2$ already satisfies $x \ge -1$, this condition is met.
- Therefore, the values of x satisfying the inequality are $x \ge 1/2$.
- 1. (d) Write the definition of Supremum and Infimum of a set. Give an example of a set having supremum and infimum, where the set: (i) contains its supremum and infimum (ii) does not contain its supremum and infimum
 - Definition of Supremum (Least Upper Bound):
 - Let S be a non-empty subset of \mathbb{R} . A real number M is called the **supremum** (or least upper bound) of S, denoted as $\sup S$, if:
 - i. M is an upper bound of S (i.e., for all $x \in S$, $x \leq M$).
 - ii. M is the least among all upper bounds of S (i.e., if M' is any other upper bound of S, then $M \leq M'$).
 - Definition of Infimum (Greatest Lower Bound):

- o Let S be a non-empty subset of \mathbb{R} . A real number m is called the **infimum** (or greatest lower bound) of S, denoted as infS, if:
 - iii. m is a lower bound of S (i.e., for all $x \in S$, $x \ge m$).
 - iv. m is the greatest among all lower bounds of S (i.e., if m' is any other lower bound of S, then $m' \leq m$).
- Example of a set having supremum and infimum:
 - o (i) Set contains its supremum and infimum:
 - Let $A = [0,5] = \{x \in \mathbb{R} \mid 0 \le x \le 5\}.$
 - Supremum of A, $\sup A = 5$. Since $5 \in A$, the set contains its supremum.
 - Infimum of A, $\inf A = 0$. Since $0 \in A$, the set contains its infimum.
 - o (ii) Set does not contain its supremum and infimum:
 - Let $B = (0,5) = \{x \in \mathbb{R} \mid 0 < x < 5\}.$
 - Supremum of B, supB = 5. However, $5 \notin B$.
 - Infimum of B, $\inf B = 0$. However, $0 \notin B$.
- 2. (a) State and prove Archimedean property.
 - Archimedean Property (of Real Numbers):
 - o For any two positive real numbers a and b, there exists a positive integer n such that na > b.
 - Equivalent forms:
 - For any real number x, there exists an integer n such that n > x.
 - For any $\epsilon > 0$, there exists a positive integer n such that $1/n < \epsilon$.

Proof of Archimedean Property (using Completeness Axiom):

- We will prove the equivalent form: For any $x \in \mathbb{R}$, there exists an integer n such that n > x.
- Assume, for contradiction, that the property does not hold.
- This means there exists some real number x such that for all integers n, $n \le x$.
- Consider the set of natural numbers $\mathbb{N} = \{1,2,3,...\}$.
- o If $n \le x$ for all $n \in \mathbb{N}$, then x is an upper bound for the set \mathbb{N} .
- o Since \mathbb{N} is a non-empty set and is bounded above (by x), by the Completeness Axiom (or Supremum Property) of Real Numbers, \mathbb{N} must have a supremum in \mathbb{R} .
- \circ Let $s = \sup \mathbb{N}$.
- Since s is the supremum, s-1 is not an upper bound for \mathbb{N} (because s is the *least* upper bound).
- o Therefore, there must exist some natural number $m \in \mathbb{N}$ such that m > s 1.
- o Adding 1 to both sides of the inequality, we get m + 1 > s.
- o However, m + 1 is also a natural number, i.e., $m + 1 \in \mathbb{N}$.
- \circ This contradicts the fact that s is an upper bound for \mathbb{N} (since s must be greater than or equal to all elements in \mathbb{N}).
- This contradiction arises from our initial assumption that the Archimedean Property does not hold.
- o Therefore, the Archimedean Property must be true.

2. (b) Let S be a non-empty subset of \mathbb{R} and a > 0, then show that $\sup(aS) = a \sup S$.

Given:

- o S is a non-empty subset of \mathbb{R} .
- o a > 0 is a real number.
- $\circ \ aS = \{ax \mid x \in S\}.$
- To prove: sup(aS) = asupS.

Proof:

- Since S is a non-empty subset of \mathbb{R} and we are talking about its supremum, we assume S is bounded above. Let $M = \sup S$.
- o By definition of supremum, for all $x \in S$, we have $x \leq M$.
- Since a > 0, we can multiply the inequality by a without changing its direction: $ax \le aM$ for all $x \in S$.
- \circ This implies that aM is an upper bound for the set aS.
- \circ Now, we need to show that aM is the *least* upper bound for aS.
- \circ Let M' be any upper bound for aS.
- Then, for all $y \in aS$, we have $y \leq M'$.
- Since any $y \in aS$ can be written as ax for some $x \in S$, we have $ax \leq M'$ for all $x \in S$.
- Since a > 0, we can divide the inequality by a without changing its direction: $x \le M'/a$ for all $x \in S$.
- o This means M'/a is an upper bound for S.
- Since $M = \sup S$ is the least upper bound for S, we must have $M \le M'/\alpha$.
- Multiplying by a (which is positive), we get $aM \leq M'$.
- \circ This shows that aM is indeed the least upper bound for aS.
- Therefore, $\sup(aS) = a\sup S$.

2. (c) Let (x_n) be a sequence in \mathbb{R} and let $x \in \mathbb{R}$. If (a_n) is a sequence of positive real numbers with $\lim(a_n)=0$ and for some constant K>0 and some $m \in \mathbb{N}$ we have $|x_n - x| \le Ka_n$ for all $n \ge m$, then prove that $\lim(x_n) = x$.

Given:

- o (x_n) is a sequence in \mathbb{R} .
- $\circ x \in \mathbb{R}$.
- o (a_n) is a sequence of positive real numbers (i.e., $a_n > 0$ for all n).
- $\circ \lim_{n\to\infty}a_n=0.$
- There exists a constant K > 0 and an integer $m \in \mathbb{N}$ such that $|x_n x| \le Ka_n$ for all $n \ge m$.
- To prove: $\lim_{n\to\infty} x_n = x$.

Proof:

- o Let $\epsilon > 0$ be given.
- o Since $\lim_{n\to\infty}a_n=0$, by the definition of a limit, for the given $\epsilon/K>0$, there exists an integer $N_1\in\mathbb{N}$ such that for all $n\geq N_1$, we have: $|a_n-0|<\epsilon/K|a_n|<\epsilon/K$
- o Since a_n is a sequence of positive real numbers, $|a_n| = a_n$.
- So, $a_n < \epsilon/K$ for all $n \ge N_1$.
- $\circ \ \text{Let } N = \max(m, N_1).$
- o Now, for any $n \ge N$, we know that $n \ge m$ and $n \ge N_1$.
- From the given condition, for $n \ge m$, we have $|x_n x| \le Ka_n$.
- Since $n \ge N_1$, we also have $a_n < \epsilon/K$.

- Substituting this into the inequality: $|x_n x| \le K(\epsilon/K) |x_n x| \le \epsilon$
- Thus, for every $\epsilon > 0$, there exists an integer N (namely $N = \max(m, N_1)$) such that for all $n \geq N$, $|x_n x| \leq \epsilon$.
- This is precisely the definition of the limit of a sequence.
- Therefore, $\lim_{n\to\infty} x_n = x$.

2. (d) Using the definition of limit, show that $\lim (4n+5)/(3n+4) = 4/3$.

- To prove: $\lim_{n\to\infty} \frac{4n+5}{3n+4} = \frac{4}{3}$ using the $\epsilon-N$ definition of a limit.
- **Definition of Limit:** For every $\epsilon > 0$, there exists a natural number N such that for all $n \ge N$, we have $\left|\frac{4n+5}{3n+4} \frac{4}{3}\right| < \epsilon$.
- Proof:
 - O Consider the expression $\left| \frac{4n+5}{3n+4} \frac{4}{3} \right|$.
 - o Combine the fractions: $\left| \frac{3(4n+5)-4(3n+4)}{3(3n+4)} \right| = \left| \frac{12n+15-12n-16}{3(3n+4)} \right| = \left| \frac{-1}{3(3n+4)} \right| = \frac{1}{3(3n+4)}$ (since 3(3n+4) is positive for $n \ge 1$).
 - We want to find N such that $\frac{1}{3(3n+4)} < \epsilon$ for all $n \ge N$.
 - O Rearrange the inequality: $1 < 3\epsilon(3n+4)\frac{1}{3\epsilon} < 3n+4\frac{1}{3\epsilon}-4 < 3n\frac{1}{3}(\frac{1}{3\epsilon}-4) < n \ n > \frac{1}{9\epsilon}-\frac{4}{3}$
 - Let *N* be a natural number such that $N > \frac{1}{9\epsilon} \frac{4}{3}$. (By the Archimedean property, such an *N* always exists).
 - o Then for all $n \ge N$, we have: $n > \frac{1}{9\epsilon} \frac{4}{3} 3n > \frac{1}{3\epsilon} 4 3n + 4 > \frac{1}{3\epsilon}$ $\frac{1}{3n+4} < 3\epsilon \frac{1}{3(3n+4)} < \epsilon$

- Thus, for every $\epsilon > 0$, there exists an N such that for all $n \ge N$, $\left| \frac{4n+5}{3n+4} \frac{4}{3} \right| < \epsilon$.
- Therefore, $\lim_{n\to\infty} \frac{4n+5}{3n+4} = \frac{4}{3}$.

3. (a) Let (x_n) and (y_n) be sequences of real number such that $\lim(x_n)=x$ and $\lim(y_n)=y$, then show that $\lim(x_n+y_n)=x+y$.

• Given:

- o (x_n) and (y_n) are sequences of real numbers.
- $\circ \lim_{n\to\infty} x_n = x.$
- \circ $\lim_{n\to\infty} y_n = y$.
- To prove: $\lim_{n\to\infty}(x_n+y_n)=x+y$.

Proof:

- o Let $\epsilon > 0$ be given.
- Since $\lim_{n\to\infty} x_n = x$, by definition, for $\epsilon/2 > 0$, there exists an integer $N_1 \in \mathbb{N}$ such that for all $n \ge N_1$: $|x_n x| < \epsilon/2$.
- Since $\lim_{n\to\infty} y_n = y$, by definition, for $\epsilon/2 > 0$, there exists an integer $N_2 \in \mathbb{N}$ such that for all $n \ge N_2$: $|y_n y| < \epsilon/2$.
- $\circ \ \text{Let} \ N = \max(N_1, N_2).$
- o Then, for all $n \ge N$, both conditions hold: $|x_n x| < \epsilon/2$ and $|y_n y| < \epsilon/2$.
- o Consider the expression $|(x_n + y_n) (x + y)|$: $|(x_n + y_n) (x + y)| = |(x_n x) + (y_n y)|$.
- o By the Triangle Inequality, $|(x_n x) + (y_n y)| \le |x_n x| + |y_n y|$.
- Substituting the inequalities for $n \ge N$: $|(x_n + y_n) (x + y)| < \epsilon/2 + \epsilon/2 |(x_n + y_n) (x + y)| < \epsilon$.

- Thus, for every $\epsilon > 0$, there exists an integer N such that for all $n \ge N$, $|(x_n + y_n) (x + y)| < \epsilon$.
- Therefore, $\lim_{n\to\infty} (x_n + y_n) = x + y$.

3. (b) Let (x_n) be a sequence of positive real numbers such that $L = \lim_{n \to \infty} (x_{n+1})/x_n$ exists. Show that if L < 1, then (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$.

• Given:

- o (x_n) is a sequence of positive real numbers $(x_n > 0 \text{ for all } n)$.
- $\circ \ L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \text{ exists.}$
- \circ L < 1.
- To prove: (x_n) converges and $\lim_{n\to\infty} x_n = 0$.

• Proof:

- Since L < 1, we can choose a real number r such that L < r < 1. For example, r = (L + 1)/2.
- O Since $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=L$, by the definition of a limit, for $\epsilon=r-L>0$, there exists a natural number N such that for all $n\geq N$: $\left|\frac{x_{n+1}}{x_n}-L\right|< r-L$.
- This implies $-(r-L) < \frac{x_{n+1}}{x_n} L < r L$.
- Adding *L* to all parts: $L (r L) < \frac{x_{n+1}}{x_n} < L + (r L)$.
- $\circ 2L r < \frac{x_{n+1}}{x_n} < r.$
- Since we are interested in the upper bound, we have $\frac{x_{n+1}}{x_n} < r$ for all $n \ge N$.
- o Since $x_n > 0$, we can write $x_{n+1} < rx_n$ for all $n \ge N$.

- o Let's write out the terms starting from n = N: $x_{N+1} < rx_N x_{N+2} < rx_{N+1} < r(rx_N) = r^2x_N x_{N+3} < rx_{N+2} < r(r^2x_N) = r^3x_N \dots$ In general, for $k \ge 1$: $x_{N+k} < r^kx_N$.
- \circ Let n = N + k. Then k = n N.
- o So, $x_n < r^{n-N}x_N = (r^{-N}x_N)r^n$ for all n > N.
- Let $C = r^{-N}x_N$. Since r > 0 and $x_N > 0$, C is a positive constant.
- o Thus, we have $0 < x_n < Cr^n$ for all n > N.
- o We know that 0 < r < 1. Therefore, $\lim_{n \to \infty} r^n = 0$.
- o By the Squeeze Theorem (or a direct result of limit properties), since $\lim_{n\to\infty}0=0$ and $\lim_{n\to\infty}\mathcal{C}r^n=\mathcal{C}\cdot 0=0$, it follows that $\lim_{n\to\infty}x_n=0$.
- Since the limit exists and is a finite value (0), the sequence (x_n) converges.

3. (c) State Squeeze theorem and show that if $z_n = (2^n + 3^n)^{1/n}$ then $\lim z_n = 3$.

- Squeeze Theorem (or Sandwich Theorem):
 - o Let (x_n) , (y_n) , and (z_n) be sequences of real numbers.
 - o If there exists a natural number N such that $x_n \le y_n \le z_n$ for all $n \ge N$,
 - o And if $\lim_{n\to\infty} x_n = L$ and $\lim_{n\to\infty} z_n = L$,
 - $\quad \quad \circ \quad \mathsf{Then} \ \mathsf{lim}_{n \to \infty} y_n = L.$
- Show that if $z_n = (2^n + 3^n)^{1/n}$ then $\lim z_n = 3$.
- Proof:
 - o We have $z_n = (2^n + 3^n)^{1/n}$.

- We know that $3^n < 2^n + 3^n$.
- \circ Also, $2^n + 3^n < 3^n + 3^n = 2 \cdot 3^n$.
- \circ So, we have the inequality: $3^n < 2^n + 3^n < 2 \cdot 3^n$.
- O Now, take the n-th root of each part (since all terms are positive, the inequality direction is preserved): $(3^n)^{1/n} < (2^n + 3^n)^{1/n} < (2 \cdot 3^n)^{1/n} \ 3 < (2^n + 3^n)^{1/n} < 2^{1/n} \cdot (3^n)^{1/n} \ 3 < z_n < 3 \cdot 2^{1/n}$
- o Let $x_n = 3$ and $y_n = 3 \cdot 2^{1/n}$.
- We know that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} 3 = 3$.
- o For $y_n = 3 \cdot 2^{1/n}$, we know that $\lim_{n \to \infty} 2^{1/n} = 2^0 = 1$ (since $\lim_{n \to \infty} 1/n = 0$ and the exponential function $f(x) = a^x$ is continuous).
- o So, $\lim_{n\to\infty} y_n = \lim_{n\to\infty} (3 \cdot 2^{1/n}) = 3 \cdot \lim_{n\to\infty} 2^{1/n} = 3 \cdot 1 = 3$.
- o Since $3 < z_n < 3 \cdot 2^{1/n}$ for all $n \ge 1$, and $\lim_{n \to \infty} 3 = 3$ and $\lim_{n \to \infty} (3 \cdot 2^{1/n}) = 3$,
- o By the Squeeze Theorem, $\lim_{n\to\infty}z_n=3$.
- 3. (d) Let X = (x_n) be a sequence of real numbers defined by x_1 = 1 and $x_{n+1} = \sqrt{(2+x_n)}$ for $n \in \mathbb{R}$. Show that the sequence (x_n) is convergent and find its limit.
 - **Given:** The sequence (x_n) is defined by $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$.
 - To show convergence, we need to show that the sequence is monotone and bounded.
 - Step 1: Check Monotonicity (Is it increasing or decreasing?)

$$x_1 = 1$$
.

o
$$x_2 = \sqrt{2 + x_1} = \sqrt{2 + 1} = \sqrt{3} \approx 1.732.$$

- Since $x_2 > x_1$, the sequence appears to be increasing. Let's prove by induction that $x_{n+1} > x_n$.
- o **Base Case:** n=1, $x_2=\sqrt{3}>1=x_1$. The base case holds.
- o **Inductive Hypothesis:** Assume $x_k > x_{k-1}$ for some $k \ge 2$.
- o **Inductive Step:** We want to show $x_{k+1} > x_k$.

$$x_{k+1} = \sqrt{2 + x_k}$$

$$x_k = \sqrt{2 + x_{k-1}}$$

- Since $x_k > x_{k-1}$ (by inductive hypothesis),
- $-2 + x_k > 2 + x_{k-1}$
- $\sqrt{2 + x_k} > \sqrt{2 + x_{k-1}}$ (since the square root function is strictly increasing for non-negative values).
- \circ Thus, by induction, the sequence (x_n) is strictly increasing.

• Step 2: Check Boundedness

- o Since $x_1 = 1$, and the sequence is increasing, it is bounded below by 1.
- o Let's hypothesize an upper bound. If the sequence converges to a limit L, then $L = \sqrt{2 + L}$.

•
$$L^2 = 2 + L$$

■
$$L^2 - L - 2 = 0$$

•
$$(L-2)(L+1)=0$$

- So, L=2 or L=-1. Since $x_n=\sqrt{2+x_{n-1}}$ must be positive (as $x_1=1$ and square roots are non-negative), the limit must be non-negative. Thus, L=2.
- Let's prove by induction that $x_n < 2$ for all n.
- o **Base Case:** $x_1 = 1 < 2$. The base case holds.
- o **Inductive Hypothesis:** Assume $x_k < 2$ for some $k \ge 1$.
- o **Inductive Step:** We want to show $x_{k+1} < 2$.
 - Since $x_k < 2$,
 - $2 + x_k < 2 + 2 = 4.$

 - $x_{k+1} < 2$.
- o Thus, by induction, the sequence (x_n) is bounded above by 2.

• Step 3: Conclusion on Convergence

- \circ Since the sequence (x_n) is monotone increasing and bounded above, by the **Monotone Convergence Theorem**, the sequence is convergent.
- Step 4: Find the Limit
 - $\circ \ \ \mathsf{Let} \ \mathsf{lim}_{n \to \infty} x_n = L.$
 - o Since $x_{n+1}=\sqrt{2+x_n}$, taking the limit of both sides: $\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}\sqrt{2+x_n}$
 - o Since the square root function is continuous, we can pass the limit inside: $L=\sqrt{2+\lim_{n\to\infty}x_n}\;L=\sqrt{2+L}$
 - o Squaring both sides: $L^2 = 2 + L L^2 L 2 = 0 (L 2)(L + 1) = 0$

- This gives two possible values for L: L = 2 or L = -1.
- o Since $x_n > 0$ for all n (as $x_1 = 1$ and subsequent terms are square roots of positive numbers), the limit L must be nonnegative.
- Therefore, the limit of the sequence is L=2.

4. (a) Prove that if a sequence (x_n) is a monotone decreasing and bounded below sequence of real numbers, then it is convergent.

• Given:

- o (x_n) is a sequence of real numbers.
- o (x_n) is monotone decreasing, meaning $x_{n+1} \le x_n$ for all n.
- o (x_n) is bounded below, meaning there exists a real number m such that $x_n \ge m$ for all n.
- **To prove:** (x_n) is convergent (i.e., $\lim_{n\to\infty}x_n$ exists and is a finite real number).

Proof:

- Consider the set $S = \{x_n \mid n \in \mathbb{N}\}$ which contains all terms of the sequence.
- O Since the sequence (x_n) is bounded below, the set S is bounded below.
- Since $x_1 \in S$, S is a non-empty set.
- \circ By the Completeness Axiom (or Supremum Property) of Real Numbers, every non-empty set of real numbers that is bounded below has a greatest lower bound (infimum) in \mathbb{R} .
- Let $L = \inf S$. We will show that $\lim_{n\to\infty} x_n = L$.
- o Let $\epsilon > 0$ be given.

- Since $L = \inf S$, L is a lower bound for S. This means $x_n \ge L$ for all $n \in \mathbb{N}$.
- \circ Also, since *L* is the *greatest* lower bound, $L + \epsilon$ is no longer a lower bound for *S*.
- o Therefore, there must exist some term x_N in the sequence such that $x_N < L + \epsilon$.
- Since the sequence (x_n) is monotone decreasing, for all $n \ge N$, we have $x_n \le x_N$.
- Combining these inequalities: $L \le x_n \le x_N < L + \epsilon$ for all $n \ge N$.
- o From $L \le x_n$ and $x_n < L + \epsilon$, we have: $L \le x_n < L + \epsilon$
- This can be written as: $0 \le x_n L < \epsilon |x_n L| < \epsilon$ (since $x_n L \ge 0$).
- Thus, for every $\epsilon > 0$, there exists an integer N such that for all $n \ge N$, $|x_n L| < \epsilon$.
- This is the definition of the limit of a sequence. Therefore, the sequence (x_n) is convergent, and $\lim_{n\to\infty}x_n=L=\inf\{x_n\}$.

4. (b) State Bolzano Weierstrass Theorem for Sequences. Show that the sequence $((-1)^n)$ is divergent.

- Bolzano-Weierstrass Theorem for Sequences:
 - Every bounded sequence of real numbers has a convergent subsequence.
- Show that the sequence $((-1)^n)$ is divergent.
- Proof by contradiction using the definition of convergence:
 - o The sequence is $x_n = (-1)^n$, which is $x_1 = -1$, $x_2 = 1$, $x_3 = -1$, $x_4 = 1$,

- Assume, for contradiction, that the sequence $((-1)^n)$ converges to some limit L.
- o By the definition of convergence, for every $\epsilon > 0$, there exists an integer N such that for all $n \ge N$, $|(-1)^n L| < \epsilon$.
- Let's choose $\epsilon = 1/2$.
- Then there must exist an N such that for all $n \ge N$: $|(-1)^n L| < 1/2$.
- Consider two cases for $n \ge N$:
 - If n is even, then $(-1)^n = 1$. So, |1 L| < 1/2. This implies -1/2 < 1 L < 1/2. Subtracting 1: -3/2 < -L < -1/2. Multiplying by -1 (and reversing inequalities): 1/2 < L < 3/2.
 - If n is odd, then $(-1)^n = -1$. So, |-1-L| < 1/2. This implies -1/2 < -1-L < 1/2. Adding 1: 1/2 < -L < 3/2. Multiplying by -1 (and reversing inequalities): -3/2 < L < -1/2.
- We have found that L must satisfy both (1/2 < L < 3/2) and (-3/2 < L < -1/2).
- These two intervals are disjoint. There is no real number L that can be in both intervals simultaneously.
- This is a contradiction.
- Therefore, our initial assumption that the sequence converges must be false. Hence, the sequence $((-1)^n)$ is divergent.
- Alternatively, using the Bolzano-Weierstrass Theorem:
 - The sequence $((-1)^n)$ is bounded (e.g., $-1 \le (-1)^n \le 1$ for all n).

- By Bolzano-Weierstrass, it must have a convergent subsequence.
- Consider the subsequence of even terms: $x_{2k} = (-1)^{2k} = 1$ for all $k \in \mathbb{N}$. This subsequence converges to 1.
- Consider the subsequence of odd terms: $x_{2k-1} = (-1)^{2k-1} = -1$ for all $k \in \mathbb{N}$. This subsequence converges to -1.
- A fundamental property of convergent sequences is that if a sequence converges, then every subsequence must converge to the *same* limit.
- o Since we found two subsequences that converge to different limits (1 and -1), the original sequence $((-1)^n)$ cannot converge.
- Therefore, the sequence $((-1)^n)$ is divergent.

4. (c) Find limit inferior and limit superior of the following sequences: (i) $sin(n\pi/4)$ (ii) $(3 + (-1)^n)$

- Definitions:
 - o **Limit Superior** ($\limsup_{n\to\infty} x_n$): The largest accumulation point of the sequence. It can also be defined as $\inf_{k\in\mathbb{N}} (\sup_{n\geq k} x_n)$.
 - o **Limit Inferior** ($\liminf_{n\to\infty} x_n$): The smallest accumulation point of the sequence. It can also be defined as $\sup_{k\in\mathbb{N}} (\inf_{n\geq k} x_n)$.
- (i) $x_n = \sin(n\pi/4)$
 - Let's list the values of $sin(n\pi/4)$ for different n:

•
$$n = 1: \sin(\pi/4) = 1/\sqrt{2}$$

•
$$n = 2$$
: $\sin(2\pi/4) = \sin(\pi/2) = 1$

•
$$n = 3: \sin(3\pi/4) = 1/\sqrt{2}$$

•
$$n = 4: \sin(4\pi/4) = \sin(\pi) = 0$$

•
$$n = 5$$
: $\sin(5\pi/4) = -1/\sqrt{2}$

•
$$n = 6$$
: $\sin(6\pi/4) = \sin(3\pi/2) = -1$

•
$$n = 7: \sin(7\pi/4) = -1/\sqrt{2}$$

•
$$n = 8: \sin(8\pi/4) = \sin(2\pi) = 0$$

- The values repeat in a cycle of 8. The set of all values is $\{0,1/\sqrt{2},1,-1/\sqrt{2},-1\}$.
- o The accumulation points of this sequence are the values it repeatedly takes: $\{-1, -1/\sqrt{2}, 0, 1/\sqrt{2}, 1\}$.
- Limit Superior: The largest accumulation point is 1.
 - $\limsup_{n\to\infty} \sin(n\pi/4) = 1$.
- \circ **Limit Inferior:** The smallest accumulation point is -1.
 - $\lim_{n\to\infty} \sin(n\pi/4) = -1$.

• (ii)
$$y_n = (3 + (-1)^n)$$

- \circ Let's list the values of y_n for different n:
 - If n is even, $(-1)^n = 1$. So $y_n = 3 + 1 = 4$.
 - If *n* is odd, $(-1)^n = -1$. So $y_n = 3 1 = 2$.
- o The sequence is 2,4,2,4,2,4,
- The accumulation points of this sequence are the values it repeatedly takes: {2,4}.
- Limit Superior: The largest accumulation point is 4.
 - $\limsup_{n\to\infty} (3+(-1)^n)=4.$
- Limit Inferior: The smallest accumulation point is 2.
 - $\liminf_{n\to\infty} (3+(-1)^n)=2.$

- 4. (d) Show that every Cauchy sequence of real numbers is bounded. Is the converse true? Justify your answer.
 - Show that every Cauchy sequence of real numbers is bounded.
 - Proof:
 - o Let (x_n) be a Cauchy sequence.
 - o By the definition of a Cauchy sequence, for every $\epsilon > 0$, there exists a natural number N such that for all $m, n \geq N$, $|x_n x_m| < \epsilon$.
 - \circ Let's choose $\epsilon = 1$.
 - Then there exists an integer N such that for all $n \ge N$, $|x_n x_N| < 1$.
 - This implies $-1 < x_n x_N < 1$.
 - o Adding x_N to all parts: $x_N 1 < x_n < x_N + 1$ for all $n \ge N$.
 - o This shows that all terms of the sequence from x_N onwards are bounded between $x_N 1$ and $x_N + 1$.
 - Now, consider the set of all terms of the sequence: $\{x_1, x_2, ..., x_{N-1}, x_N, x_{N+1}, ...\}$.
 - o Let $M = \max\{|x_1|, |x_2|, ..., |x_{N-1}|, |x_N 1|, |x_N + 1|\}.$
 - Then, for all $n \in \mathbb{N}$, we have $|x_n| \leq M$.
 - Specifically, for n < N, $|x_n|$ is bounded by $\max\{|x_1|, ..., |x_{N-1}|\}$.
 - For $n \ge N$, we have $x_N 1 < x_n < x_N + 1$. This implies $|x_n| < \max(|x_N 1|, |x_N + 1|)$.
 - o Thus, the sequence (x_n) is bounded.
 - Is the converse true? Justify your answer.
 - No, the converse is not true.

 The converse would state: "Every bounded sequence of real numbers is a Cauchy sequence." This is false.

Justification (Counterexample):

- Consider the sequence $x_n = (-1)^n$.
- This sequence is bounded, as $-1 \le x_n \le 1$ for all n.
- However, we have already shown in part 4(b) that this sequence is divergent.
- \circ We also know that every convergent sequence is a Cauchy sequence (and conversely, in \mathbb{R} , every Cauchy sequence is convergent).
- o Since $x_n = (-1)^n$ is divergent, it cannot be a Cauchy sequence.
- o To demonstrate it's not Cauchy directly:
 - Take $\epsilon = 1$.
 - For any N, we can find $m, n \ge N$ such that x_n and x_m have different signs.
 - For instance, let n be an even integer $\geq N$ (so $x_n = 1$) and m be an odd integer $\geq N$ (so $x_m = -1$).
 - Then $|x_n x_m| = |1 (-1)| = |2| = 2$.
 - Since $2 \not< 1$ (our chosen ϵ), the condition for a Cauchy sequence is not met.
- o Thus, $x_n = (-1)^n$ is a bounded sequence that is not Cauchy.
- Therefore, the converse is false.

5. (a) State and prove Cauchy Criterion for convergence of a series Σ a_n .

• Cauchy Criterion for Convergence of a Series Σa_n :

o The infinite series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$, there exists a natural number N such that for all $m > n \geq N$, $|a_{n+1} + a_{n+2} + \dots + a_m| < \epsilon$.

Proof:

- Let $S_n = a_1 + a_2 + \cdots + a_n$ be the n-th partial sum of the series $\sum a_n$.
- o By definition, the series $\sum a_n$ converges if and only if the sequence of its partial sums (S_n) converges.
- \circ We know that a sequence of real numbers converges if and only if it is a Cauchy sequence (this is the Cauchy Convergence Criterion for sequences in \mathbb{R}).
- o Therefore, the series $\sum a_n$ converges if and only if the sequence of partial sums (S_n) is a Cauchy sequence.
- o By the definition of a Cauchy sequence, (S_n) is Cauchy if for every $\epsilon > 0$, there exists a natural number N such that for all $m > n \ge N$, we have $|S_m S_n| < \epsilon$.
- O Now, let's look at the expression S_m-S_n : $S_m-S_n=(a_1+\cdots+a_n+a_n+a_{n+1}+\cdots+a_m)-(a_1+\cdots+a_n)$ $S_m-S_n=a_{n+1}+a_{n+2}+\cdots+a_m$.
- O Substituting this into the Cauchy condition for sequences: For every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $m > n \ge N$, $|a_{n+1} + a_{n+2} + \dots + a_m| < \epsilon$.
- This proves the Cauchy Criterion for the convergence of a series.

5. (b) Test the convergence of the following series: (i) Σ n/eⁿ (ii) Σ ln n/n²

- (i) $\sum_{n=1}^{\infty} \frac{n}{e^n}$
 - o We can use the Ratio Test for convergence.

$$\circ$$
 Let $a_n = \frac{n}{e^n}$. Then $a_{n+1} = \frac{n+1}{e^{n+1}}$.

- $\quad \text{Consider the limit } L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \colon L = \lim_{n \to \infty} \left| \frac{(n+1)/e^{n+1}}{n/e^n} \right| L = \lim_{n \to \infty} \frac{n+1}{e^{n+1}} \cdot \frac{e^n}{n} L = \lim_{n \to \infty} \frac{n+1}{n} \cdot \frac{e^n}{e^{n+1}} L = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \cdot \frac{1}{e} L = (1+0) \cdot \frac{1}{e} = \frac{1}{e}.$
- Since $e \approx 2.718$, $L = 1/e \approx 1/2.718 < 1$.
- o By the Ratio Test, since L < 1, the series $\sum_{n=1}^{\infty} \frac{n}{e^n}$ converges.
- (ii) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$
 - o We can use the Comparison Test or Limit Comparison Test.
 - o For $n \ge 1$, we know that $\ln n < n$. (Actually, for $n \ge 1$, $\ln n < n^{\alpha}$ for any $\alpha > 0$).
 - Specifically, for sufficiently large n, $\ln n < n^{1/2} = \sqrt{n}$. (A stronger bound is useful here).
 - Let's compare with the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ (since p=3/2>1).
 - O Consider the terms $a_n = \frac{\ln n}{n^2}$ and $b_n = \frac{1}{n^{3/2}}$.
 - $\text{O We need to evaluate } \lim_{n \to \infty} \frac{a_n}{b_n} : \lim_{n \to \infty} \frac{\ln n/n^2}{1/n^{3/2}} = \lim_{n \to \infty} \frac{\ln n}{n^2} \cdot n^{3/2}$ $= \lim_{n \to \infty} \frac{\ln n}{n^{1/2}}.$
 - This limit is of the form ∞/∞ , so we can use L'Hopital's Rule (treating n as a continuous variable x): $\lim_{x\to\infty}\frac{\ln x}{x^{1/2}}=\lim_{x\to\infty}\frac{1/x}{(1/2)x^{-1/2}}=\lim_{x\to\infty}\frac{1}{x}\cdot\frac{2}{x^{-1/2}}=\lim_{x\to\infty}\frac{2}{x^{1/2}}=0.$
 - o Since the limit is 0, and $\sum b_n = \sum \frac{1}{n^{3/2}}$ is a convergent p-series (p=3/2>1), by the **Limit Comparison Test** (specifically, if

 $\lim_{n\to\infty} a_n/b_n = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges), the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ converges.

5. (c) Prove that Σ 1/(n(ln n)p), p > 0 is convergent for p > 1 and divergent for p \leq 1.

- **Given:** The series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ for p > 0. (The sum starts from n = 2 because $\ln 1 = 0$).
- Proof using the Integral Test:

$$\circ \ \text{Let } f(x) = \frac{1}{x(\ln x)^p}.$$

- o For $x \ge 2$, f(x) is positive, continuous, and decreasing (since x and $\ln x$ are increasing, and p > 0).
- o Therefore, the Integral Test can be applied. The series converges if and only if the improper integral $\int_2^\infty \frac{1}{x(\ln x)^p} dx$ converges.
- $\circ \ \ \mathsf{Let} \ u = \mathsf{ln} x. \ \mathsf{Then} \ du = \tfrac{1}{x} dx.$
- o When x = 2, $u = \ln 2$.
- $\circ \quad \text{When } x \to \infty, \ u \to \infty.$
- o The integral becomes: $\int_{\ln 2}^{\infty} \frac{1}{u^p} du$.
- Case 1: p = 1

•
$$\int_{\ln 2}^{\infty} \frac{1}{u} du = [\ln |u|]_{\ln 2}^{\infty} = \lim_{b \to \infty} (\ln b - \ln(\ln 2)).$$

- This limit goes to ∞ . So, the integral **diverges** for p = 1.
- **Case 2:** $p \neq 1$

- If p > 1, then p 1 > 0. As $u \to \infty$, $u^{p-1} \to \infty$, so $\frac{1}{(1-p)u^{p-1}} \to 0.$
 - The integral evaluates to $0 \frac{1}{(1-p)(\ln 2)^{p-1}} = \frac{1}{(p-1)(\ln 2)^{p-1}}$.
 - This is a finite value, so the integral converges for p > 1.
- If 0 , then <math>p 1 < 0. Let -(p 1) = q > 0. So $u^{p-1} = u^{-q} = 1/u^q$.
 - The integral becomes $\left[\frac{u^{1-p}}{1-p}\right]_{\ln 2}^{\infty}$.
 - As $u \to \infty$, $u^{1-p} \to \infty$ (since 1-p > 0).
 - So the integral **diverges** for 0 .
- Conclusion:
 - o Based on the Integral Test, the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ is:
 - Convergent for p > 1.
 - Divergent for $p \leq 1$.
- 5. (d) Show that if the series Σ u_n converges, then $\lim u_n = 0$. Is the converse true? Justify your answer.
 - Show that if the series $\sum u_n$ converges, then $\lim u_n = 0$.
 - Proof:
 - o Let the series $\sum_{n=1}^{\infty} u_n$ converge to a sum S.
 - This means the sequence of partial sums $S_k = u_1 + u_2 + \cdots + u_k$ converges to S, i.e., $\lim_{k\to\infty} S_k = S$.

- We can write the n-th term u_n in terms of partial sums: $u_n = S_n S_{n-1}$ for $n \ge 2$.
- o Consider the limit of u_n as $n \to \infty$: $\lim_{n \to \infty} u_n = \lim_{n \to \infty} (S_n S_{n-1})$.
- o Since $\lim_{n\to\infty} S_n = S$, it also means $\lim_{n\to\infty} S_{n-1} = S$ (as (S_{n-1}) is just a shifted version of the convergent sequence (S_n)).
- o Using the property of limits of sequences (limit of a difference is the difference of limits): $\lim_{n\to\infty}u_n=\lim_{n\to\infty}S_n-\lim_{n\to\infty}S_{n-1}=S-S=0$.
- Therefore, if the series $\sum u_n$ converges, then $\lim_{n\to\infty}u_n=0$. This is often called the **n-th Term Test for Divergence**.
- Is the converse true? Justify your answer.
- No, the converse is not true.
 - o The converse would state: "If $\lim u_n = 0$, then the series $\sum u_n$ converges." This is false.
- Justification (Counterexample):
 - o Consider the **harmonic series** $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - o First, let's check the limit of the n-th term: $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{n}=0$. So the condition $\lim u_n=0$ is satisfied.
 - O However, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is a well-known **divergent** series (it's a p-series with $p=1 \le 1$).
 - We can prove its divergence by grouping terms (or using the integral test as in 5(c) with p=1): $1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots 1+\frac{1}{2}+\left(>\frac{1}{4}+\frac{1}{4}\right)+\left(>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\cdots 1+\frac{1}{4}$

 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$ The sum grows indefinitely, so the series diverges.

• Therefore, the converse is false. The condition $\lim u_n = 0$ is a necessary condition for convergence, but not a sufficient one.

6. (a) State the Alternating Series test. Show that the alternating series Σ (-1)ⁿ⁺¹/n² is convergent.

- Alternating Series Test (Leibniz Test):
 - o Consider an alternating series of the form $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ or $\sum_{n=1}^{\infty} (-1)^n b_n$, where $b_n > 0$.
 - o The series converges if the following two conditions are met:
 - v. The sequence (b_n) is decreasing (i.e., $b_{n+1} \leq b_n$ for all n).
 - vi. $\lim_{n\to\infty}b_n=0$.
- Show that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is convergent.
- Proof:
 - The given series is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.
 - $\circ \ \ \mathsf{Here}, \, b_n = \tfrac{1}{n^2}.$
 - We need to check the two conditions of the Alternating Series Test:
 - o Condition 1: Is (b_n) decreasing?
 - We need to check if $b_{n+1} \le b_n$, i.e., $\frac{1}{(n+1)^2} \le \frac{1}{n^2}$.
 - This is true because (n + 1)² > n² for all n ≥ 1, and since both are positive, taking reciprocals reverses the inequality.

- So, the sequence (b_n) is indeed decreasing.
- o Condition 2: Does $\lim_{n\to\infty}b_n=0$?
 - $\bullet \quad \lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{n^2}.$
 - As $n \to \infty$, $n^2 \to \infty$, so $\frac{1}{n^2} \to 0$.
 - So, $\lim_{n\to\infty}b_n=0$.
- o Since both conditions of the Alternating Series Test are satisfied, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges.

6. (b) Test the convergence of the series $1/e + 4/e^2 + 27/e^3 + 256/e^4 + 3125/e^5 + ...$

- The terms of the series appear to be of the form n^n/e^n .
- Let the series be $\sum_{n=1}^{\infty} a_n$, where $a_n = \frac{n^n}{e^n} = \left(\frac{n}{e}\right)^n$.
- We can use the **Root Test** for convergence.
- Consider the limit $L = \lim_{n \to \infty} |a_n|^{1/n}$: $L = \lim_{n \to \infty} \left| \left(\frac{n}{e} \right)^n \right|^{1/n} L = \lim_{n \to \infty} \frac{n}{e} L = \frac{1}{e} \lim_{n \to \infty} n$.
- As $n \to \infty$, $\lim_{n \to \infty} n = \infty$.
- So, $L = \infty$.
- By the Root Test, since $L = \infty > 1$, the series $\sum_{n=1}^{\infty} \frac{n^n}{e^n}$ diverges.
- 6. (c) Define a conditionally convergent series and an absolutely convergent series. Test the series Σ (-1)ⁿ sin n/n^{3/2} for absolute or conditional convergence.
 - Definition of Absolutely Convergent Series:

- o A series $\sum a_n$ is said to be **absolutely convergent** if the series of the absolute values of its terms, $\sum |a_n|$, converges.
- o If a series is absolutely convergent, then it is also convergent.
- Definition of Conditionally Convergent Series:
 - A series $\sum a_n$ is said to be **conditionally convergent** if the series itself converges, but the series of the absolute values of its terms, $\sum |a_n|$, diverges.
- Test the series $\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n^{3/2}}$ for absolute or conditional convergence.
- Step 1: Test for Absolute Convergence.
 - O Consider the series of absolute values: $\sum_{n=1}^{\infty} \left| \frac{(-1)^n \sin n}{n^{3/2}} \right| = \sum_{n=1}^{\infty} \frac{|\sin n|}{n^{3/2}}$.
 - We know that $0 \le |\sin n| \le 1$ for all n.
 - O So, we have the inequality: $\frac{|\sin n|}{n^{3/2}} \le \frac{1}{n^{3/2}}$.
 - Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. This is a **p-series** with p=3/2.
 - O Since p = 3/2 > 1, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges.
 - o By the **Direct Comparison Test**, since $0 \le \frac{|\sin n|}{n^{3/2}} \le \frac{1}{n^{3/2}}$ and $\sum \frac{1}{n^{3/2}}$ converges, the series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{3/2}}$ also converges.
 - o Since the series of absolute values converges, the original series $\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n^{3/2}}$ is **absolutely convergent**.
- Step 2: Conclusion.

- Because the series is absolutely convergent, it is also convergent. We don't need to test for conditional convergence separately.
- Therefore, the series $\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n^{3/2}}$ is absolutely convergent.

6. (d) State D'Alembert's Ratio test for a series. Find if the series, $1/2 + (1\cdot2)/(3\cdot5) + (1\cdot2\cdot3)/(3\cdot5\cdot7) + (1\cdot2\cdot3\cdot4)/(3\cdot5\cdot7\cdot9) + ...$ is convergent.

- D'Alembert's Ratio Test:
 - Let $\sum a_n$ be a series with positive terms (or consider $|a_n|$ for general terms).
 - $\circ \ \ \mathsf{Let} \ L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$
 - o The test concludes:

vii. If L < 1, the series converges absolutely.

viii. If L > 1 (or $L = \infty$), the series diverges.

- ix. If L = 1, the test is inconclusive (the series may converge or diverge).
- Find if the series, $1/2 + (1 \cdot 2)/(3 \cdot 5) + (1 \cdot 2 \cdot 3)/(3 \cdot 5 \cdot 7) + (1 \cdot 2 \cdot 3 \cdot 4)/(3 \cdot 5 \cdot 7 \cdot 9) + ...$ is convergent.
- Step 1: Write the general term a_n .
 - The numerator is the product of integers from 1 to n, which is n!.
 - The denominator is the product of odd integers: $3 \cdot 5 \cdot 7 \cdot ...$ Let's find the n-th term in this sequence.
 - For n = 1, denominator is $2 \cdot 1 + 1 = 3$. Oh, no, it's just 2. Wait, the first term is 1/2.
 - For n = 1: Numerator is 1! = 1. Denominator is 2.

- For n = 2: Numerator is $2! = 1 \cdot 2$. Denominator is $3 \cdot 5$.
- For n = 3: Numerator is $3! = 1 \cdot 2 \cdot 3$. Denominator is $3 \cdot 5 \cdot 7$.
- For n=4: Numerator is $4!=1\cdot 2\cdot 3\cdot 4$. Denominator is $3\cdot 5\cdot 7\cdot 9$.
- o The denominator for a_n is the product of the first n terms of the arithmetic progression 3,5,7, The general term of this progression is 3 + (k-1)2 = 2k + 1.
- o So, the denominator for a_n is $3 \cdot 5 \cdot 7 \cdot ... \cdot (2n+1)$.
- Therefore, the general term $a_n = \frac{n!}{3 \cdot 5 \cdot 7 \cdot ... \cdot (2n+1)}$.
- Step 2: Find a_{n+1} .

$$a_{n+1} = \frac{(n+1)!}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1) \cdot (2(n+1)+1)}$$

$$a_{n+1} = \frac{(n+1)!}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1) \cdot (2n+3)}.$$

• Step 3: Calculate the ratio a_{n+1}/a_n .

$$\circ \ \frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3 \cdot 5 \cdot \dots \cdot (2n+1) \cdot (2n+3)} \cdot \frac{3 \cdot 5 \cdot \dots \cdot (2n+1)}{n!}$$

$$\circ \quad \frac{a_{n+1}}{a_n} = \frac{n+1}{2n+3}.$$

• Step 4: Find the limit $L = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$.

$$\circ L = \lim_{n \to \infty} \frac{n+1}{2n+3}$$

O Divide numerator and denominator by n: $L = \lim_{n \to \infty} \frac{1+1/n}{2+3/n} L = \frac{1+0}{2+0} = \frac{1}{2}$.

- Step 5: Apply the Ratio Test conclusion.
 - Since L = 1/2 < 1, by D'Alembert's Ratio Test, the series **converges**.

Duhive