

DEEP LEARNING

MODAL DECOMPOSITION

Pattern detection Reconstruction

Prediction

HOSVD

Data Repairing

HODMD

Pattern detection

Autoencoders

Reconstruction

Superresolution

Full DL

Prediction

Hybrid

HODMD

ModelFLOWs

Superresolution

Motivation

Extraction and analysis of flow features in planar synthetic jets using different machine learning techniques

Eva Muñoz^{a,b,c,*}, Himanshu Dave^{b,c}, Giuseppe D'Alessio^{b,c}, Gianluca Bontempi^d, Alessandro Parente^{b,c}, Soledad Le Clainche^a

^aE.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain

^bAero-Thermo-Mechanics (ATM) Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium

^cBrussels Institute for Thermal-fluid systems and clean Energy (BRITE), Université Libre de Bruxelles (ULB) and Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

^dMachine Learning Group (MLG), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium

https://dx.doi.org/10.2139/ssrn.4429450

Two planar synthetic jets

Membrane or piston

(Muñoz & Le Clainche, 2022)

Periodical movement:

- Injection phase
- Suction phase

Methodology

Encoder Decoder

Autoencoder is a Deep Neural Network (DNN) that provides unsupervised feature extraction

X = Input

Z = Compressed data

 \widetilde{X} = Reconstructed input

Autoencoders

Database & Data preparation

 $Matrix = \{N_v N_x N_y | N_t\}$ **Temporal Spatial Dimensionality**

Variables

Temporal dimensions

$$N_v = 2$$
 $N_x = 45$
 $N_y = 22$
 $N_t = 4369$

Spatial dimensionality = 1980

Temporal dimensionality = 4369

Calibration

Autoencoders

Encoder Decoder

Hyperparameters		Restrictions	Recommendations
Training size	p_{train}	≤ 80 % <i>p</i>	≤ 80 %
Number of modes	M	$< p_{train}$	~10
Batch size	N _{batch}	$< p_{train}$	32, 64, 128,
Epochs number	N _{epoch}	_	100, 200, 500,

Epochs number

 p_{train}

Results

Autoencoders

Also compared with local PCA clustering technique (VQPCA)

Thanks for watching! Visit us on: https://modelflows.github.io/mod elflowsapp/