(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 August 2001 (16.08.2001)

PCT

(10) International Publication Number WO 01/59074 A1

(51) International Patent Classification7:

(21) International Application Number: PCT/KR00/00675

(22) International Filing Date: 28 June 2000 (28.06.2000)

(25) Filing Language:

English

C12N 5/06

(26) Publication Language:

English

(30) Priority Data:

2000/6888

14 February 2000 (14.02.2000) I

(71) Applicant (for all designated States except US): REPUB-LIC OF KOREA [KR/KR]; Management: Rural Development Administration, 250, Seodun-Dong, Kwunsun-Ku, Suwon-City, Kyonggi-Do 441-707 (KR). (72) Inventors; and

(75) Inventors/Applicants (for US only): CHANG, Won-Kyong [KR/KR]; 103-502, Dusan Dong-A Apt., Kwunsun-Dong, Kwunsun-Ku, Suwon-City, Kyonggi-Do 441-390 (KR). PARK, Jin-Gi [KR/KR]; 425-108, Jukong Apt., Maetan-Dong, Paldal-Ku, Suwon-City, Kyonggi-Do 442-370 (KR). SEONG, Hwan-Hoo [KR/KR]; 211, Domgbo 4Cha Apt., San 20, Kumkang 2-Dong, Jungwon-Ku, Seongnam-City, Kyonggi-Do 462-242 (KR). MIN, Kwan-Sik [KR/KR]; 102-107, Hyundae Apt., Cheongja 2-Dong, Changan-Ku, Suwon-City, Kyonggi-Do 440-302 (KR). YANG, Bo-Seok [KR/KR]; 101-911, Hankook Apt., Maetan 2-Dong, Paldal-Ku, Suwon-City, Kyonggi-Do 442-372 (KR). IM, Gi-Sun [KR/KR]; 103-208, Dongsin Apt., Cheongia 1-Dong, Changan-Ku, Suwon-City, Kyonggi-Do 440-301 (KR). LEE, Yun-Keun [KR/KR]; 102-606, Munhwachon Hyundae Apt., Hongje 3-Dong, Seodaemun-Ku, Seoul 120-093 (KR). LEE, Chang-Hyun [KR/KR]; 282, Banwol-Dong, Dukjin-Ju,

(57) Abstract: Disclosed are transgenic porcine capable of

secreting human erythropoietin (EPO) in their milk and the preparation thereof. For the preparation of the transgenic

porcine, a 2.6 kb WAP promoter from the mammary gland of a rat is first amplified by PCR. Along with this PCR product,

the human EPO genome DNA fragment and an SV40 poly A DNA fragment are used to construct an expression vector. Separately, PMSG and human chorionic gonadotrophic (hCG) hormone are administered into porcine by intramuscular

injection to induce porcine to ovulate excessively and the porcine were led to natural mating. From the porcine, the

fertilized eggs in the first cell differentiation period are collected. Next, the expression vector is injected into male pronuclei which are immediately transplanted in surrogate mother porcine. The surrogate mother porcine are allowed to give birth to litters. Therefore, the present invention can produce the expensive medicine human EPO at low costs on

a large scale, giving a contribution to the improving of human

[Continued on next page]

(54) Title: THE PRODUCTION METHOD OF TRANSGENIC PORCINE PRODUCING HUMAN ERYTHROPOLITIN AND THE TRANSGENIC PORCINE

health.

Preparation of Human Genomic EPO DNA

Û

Construction of EPO Expression Vector

2.6 kb	2.5 kb	2.6 kb
Rat WAP promoter	hEPO genome	SV40 Poly A

Û

DNA Microinjection

[microinjected fertilized eggs]

Û

Transplantation in Surrogate Mother Porcine and Parturition(Isolation of DNA from the Litters)

Û

WO 01/59074 A

PCR Check

Û

DNA Base Sequencing.

Chenju-City, Chenllabuk-Do 561-370 (KR). KIM, Jin-Hoei [KR/KR]; Kyungsang University, Kajwa-Dong, Jinju-City, Kyungsangnam-Do 660-300 (KR).

(74) Agent: YOUN, Kyu-Cheol; 10th floor, Teheran Building, 825-33, Yeoksam-dong, Kangnam-ku, Seoul 135-080 (KR).

(81) Designated States (national): AU, DE, GB, JP, US.

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

10

15

20

25

1

THE PRODUCTION METHOD OF TRANSGENIC PORCINE PRODUCING HUMAN ERYTHROPOIETIN AND THE TRANSGENIC PORCINE

TECHNICAL FIELD

The present invention relates to transgenic porcine that are able to produce human erythropoietin useful as a medicine. More particularly, the present invention relates to transgenic porcine that are able to secrete human erythropoietin in their milk, thereby producing the useful medicine at a low cost on a large scale with stability. Also, the present invention is concerned with a method for preparing such transgenic porcine.

BACKGROUD OF PRIOR ART

With an average life span of 120 days, human erythrocytes are generally destroyed at a level of one hundred-twentieth of their total number everyday in the reticuloendothelial system. However, they show homeostasis because they are newly produced equally every day (Guyton, Textbook of Medical Physiology, pp56-60, W. B. Saunders Co., Philadelphia (1976)).

Erythrocytes are produced in the bone marrow through maturation and differentiation of erythroblasts during which the hormone EPO serves as a factor to stimulate the differentiation of less-differentiated cells into erythrocytes (Guyton, supra).

In the 1950s, EPO was found by observing the fact that a large amount of ⁵⁹Fe was incorporated into newly forming erythrocytes when sera of anemic animals were introduced into normal animals (Borsook, et al., Blood, 9, 734(1954)). A lack of oxygen or a shortage of erythrocytes owing to, for example, hemorrhage, or an increase of the number of anemic cells stimulates cells in the kidney of adults to synthesize and secrete increased amounts of erythropoietin into the bloodstream. This hormonal glycoprotein plays an important role in the control of erythropoiesis and the maintenance of the number

2

of erythrocytes in blood (Carnot et al., Comot. Rend. 143, 384 (1906); Kranz. S. B., Blood 77, 419(1991); Goldwasser, E., et al., in Peptide Growth Factors and their Receptors I, Sporn, M. B. and A. B. Roberts, eds., Springer-Verlag, Berlin, p. 747 (1990)).

5

As well known in the art, natural type EPO, which is responsible for the control of erythropoiesis, is secreted from the liver in fetuses. The secretion function for the EPO begins to move into the kidney at 120-140 days after the conception and the transferring of the secretion function is completed 40 days after the parturition. In adults, the kidney produces most of EPO while the liver is responsible for the secretion of EPO at a level of 10% of the total amount secreted. In addition, a little amount of EPO is also known to be secreted in macrophages of

15

the bone marrow.

10

EPO is maintained at a level of 15-30 mU per ml of blood or at a level of 0.01 mM in blood (Garcia, J. F., Lab. Clin. Mde. 99, 624-635 (1982)). Higher levels of EPO in blood are measured from the patients suffering from aplastic anemia than from normal persons, so that the blood and/or urine of the patients are utilized to produce EPO (White, et al., Rec. Prog. Horm. Res. 16, 219 (196); Espada, et al., Biochem. Med. 3, 475 (1970); Fisher, pharmacol. Rev. 24, 459 (1972)).

20

As mentioned early, EPO is a glycoprotein with a molecular weight of about 30 kD, in which sugar chains are attached in N-glycosidic linkage to the 24th, the 38th and the 83rd amino acid residues and a sugar chain is attached in O-glycosidic linkage to the 126th amino acid residue (P. S. E. B. M. 216, 358-369 (1997)). Conventionally, EPO was produced in animal cells by a recombinant technique, but at low amounts. In addition, the recombinant EPO suffers from the problems of being not identical in physiological functions to and of being poorer than natural type EPO.

25

EPO is very useful for the clinical treatment of anemic diseases, especially renal anemia and it is preferable that this therapeutic is prepared from human-derived materials owing to antigenicity. As mentioned early, EPO can be obtained by taking advantage of the blood or urine from patients suffering from

30

3

aplastic anemia. However, the amount of obtainable EPO from the patients, although being blood rich in EPO, is extremely limited.

From sera of sheep, EPO can be recovered in a stable water soluble form with a satisfactory titer, but this animal EPO includes the problem that it might act as an antigen to the human body.

5

10

15

20

25

Biotechnology Co. Ltd., Cuba, took advantage of human erythropoietin (hEPO) cDNA to create a transgenic rabbit from which hEPO is secreted through its mammary gland. Likewise, Kuopioeogkr, Finland, was reported to have created a transgenic mouse capable of secreting hEPO via its mammary gland. However, there have been found no reports which disclose transgenic porcine capable of secreting hEPO. Korean Pat. Publication No. 93-5917 describes that an hEPO gene is cloned and expressed in mammalian or insect cells. Not only is the EPO expressed only at a small amount in this process, but also glycosylation does not occur accurately so that the EPO is degraded rapidly in the body. In Korean Pat. Appl'n No. 94-12082, an expression vector carrying a modified recombinant hEPO (rhEPO) is used to transform the animal cell COS-7 (ATCC CRL 1651, African green monkey kidney cell) into one which is able to produce rhEPO. This method, however, is unsuitable for large-scale production because of requiring continual transformation.

Korean Pat. No. 184778 discloses a method of producing rhEPO with stability and efficiency, which takes advantage of a permanent strain cell transfected by an expression vector carrying an hEPO gene. This patent is quite different from the present invention pertaining to the production of rhEPO in porcine milk.

DISCLOSURE OF THE INVENTION

Leading to the present invention, the intensive and thorough research on the production of human EPO, repeated by the present invention, resulted in the finding that a WAP promoter, in combination with SV40 Poly A, is very useful to incorporate a human EPO gene into the genomic DNA of porcine and the

4

recombinant expression vector can be used to create transgenic porcine which can secrete human EPO in their milk with stability.

Therefore, it is an object of the present invention to overcome the above problems encountered in prior arts and to provide transgenic porcine that are able to secrete human EPO in their milk.

5

10

15

20

25

It is another object of the present invention to provide a method for preparing transgenic porcine capable of producing human EPO at low costs with stability.

In accordance with an embodiment of the present invention, there are provided transgenic porcine (named "Saerome") capable of secreting human EPO in their milk with stability.

In accordance with another embodiment of the present invention, there is provided a method for preparing transgenic porcine capable of secreting human EPO in their milk, comprising the steps of: amplifying a 2.6 kb WAP promoter from the mammary gland of a rat by a polymerase chain reaction; constructing an expression vector comprising a human erythropoietin genome DNA fragment and an SV40 poly A DNA fragment; administering PMSG and human chorionic gonadotrophic (hCG) hormone into porcine by intramuscular injection to induce porcine to ovulate excessively; determining the porcine as to their oestrus and leading them to natural mating; collecting the fertilized eggs in the first cell differentiation period from the porcine; injecting the expression vector into male pronuclei and immediately transplanting them in surrogate mother porcine; allowing the surrogate mother porcine to give birth to litters; and identifying the incorporation of the base sequence of the Sequence List 1 into the genomic DNA of the progeny.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

5

Fig. 1 is a schematic process flow showing the preparation of transgenic porcine which are able to secrete human EPO in their milk;

Fig. 2 shows the incorporation of human EPO gene into the genomic DNA of porcine through a polymerase chain reaction; and

Fig. 3 is a base sequence for a human EPO cDNA incorporated into the genomic DNA of porcine.

5

10

15

20

25

BEST MODES FOR CARRYING OUT THE INVENTION

A detail description will be given of a transgenic porcine capable of producing hEPO in its milk, below, in conjunction with the drawings. Before the present transgenic porcine capable of producing hEPO and preparation method thereof are disclosed or described, it is to be understood that explanation of well-known functions or structures might be eliminated if it is judged to make unclear the substance of the present invention. Also, it must be noted that the terminology used therein is defined with the purpose of describing particular embodiments only, but not limiting, and may be changed in its definition depending on the intention or usage of users. Therefore, it should be defined on the basis of the through-context of the present invention.

With reference to Fig. 1, there is schematically shown the entire procedure that allows the production of transgenic porcine capable of secreting hEPO in their milk. As a material to prepare a recombinant human EPO gene, we obtained a human genomic DNA fragment comprising an EPO gene from Prof. Kim. J. H., of the department of animal husbandry, Korean National KyoungSang University. Using a polymerase chain reaction (PCR), a 2.6 kb WAP promoter was amplified from a mammary gland gene of a rat, and the PCR product was cloned. Along with an SV40 poly A gene and an hEPO gene, this promoter was used to construct a recombinant expression vector, which would serve as a DNA donor, as shown in Table 1, below.

6

TABLE 1
EPO Expression Vector

DNAs	Rat WAP promoter	hEPO gene	SV40 Poly A
Size	2.6 kb	2.5 kb	2.6 kb

Porcine were allowed to ovulate excessively by the intramuscular injection of P.M.S.G (eCG) hormone, which is a superovulation-inducing hormone, and human chorionic gonadotrophic (hCG) hormone. After the porcine were determined as to their oestrus and led to natural mating, the fertilized eggs in the first cell differentiation period were collected. The above expression vector was injected into male pronuclei which were immediately transplanted in surrogate mother porcine. One of the litters delivered from the surrogate mother porcine was found to carry DNA fragments encoding human EPO as measured from its tail, blood and sperm by PCR. This result is given as shown in Fig. 2.

Given in the following Table 2 are the primer sequences which were used for the PCR for the determination as to whether the litters had the DNA fragments of interest.

TABLE 2

5

10

		Expected
Primers	Sequences	Sizes
	F 5'- CGA GAA TAT CAC GGT AGA ACC -3'	
Hepo-304	R 5'- CTC ATT CAA GCT GCA GTG TTC -3'	304 bp
	F 5'- AAG TGG TGC ATG GTG GTA GTC -3'	
Hepo-567	R 5'- TTA CAG AAA GGG CAA GCA GAA -3'	567 bp

Blood was taken from the EPO transgenic porcine and analyzed for erythrocyte properties. The results are given in Table 3, below.

5

20

7

TABLE 3

	No. of Erythrocytes (x10 ⁶ /ul)	Vol. Of Erythrocytes (%)
Control	4.63(100)	66.5(100)
Transformed	5.25(113)	78.3(118)

Electrophoresis of PCR products obtained from various copies of the genomic DNA of the litter delivered through the surrogate mother porcine gave information incorporated into the genomic DNA. Base sequencing analysis confirmed the incorporation, identifying the cDNA as having the base sequence shown in the following Base Sequence List. We named the resulting transgenic porcine "Saerome".

[SEQUENCE LIST]

Sequence No.: 1

Length of Sequence: 582

Type of Sequence: Nucleic Acids

Number of Strand: Double Strand

Topology: Linear

Type of Molecules: cDNA

15 Origin

EPO cDNA obtained from human liver DNA

Characteristics of Sequence

Mark representing a Characteristic: sig peptide

Position located: 1-81

Mark representing a Characteristic: mat peptide

Position located: 82-582

8

Mark representing a Characteristic: terminator

Position located: 580-582

[SEQUENCE 1]

	ATG	GGG	GTG	CAC	GAA	TGT	CCT	GCC	TGG	CTG	TGG	CTT	CTC	CTG	TCC	45
5	Met	Gly	Val	His	Glu	Cys	Pro	Ala	Trp	Leu	Trp	Leu	Leu	Leu	Ser	
	-27						-20							•		
	CTG	CTG	TCG	CTC	CCT	CTG	GGC	CTC	CCA	GTC	CTG	GGC	GCC	CCA	CCA	90
	Leu	Leu	Ser	Leu	Pro	Leu	Gly	Leu	Pro	Val	Leu	Gly	Ala	Prp	Pro	
			-10										+1			
10	CGC	CTC	ATC	TGT	GAC	AGC	CGA	GTC	CTG	GAG	AGG	TAC	CTC	TTG	GAG	135
	Arg	Leu	Ile	. Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	
							10									
	GCC	AAG	GAG	GCC	GAG	AAT	ATC	ACG	ACG	GGC	TGT	GCT	GAA	CAC	TGC	180
	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	
15		20										30				
	AGC	TTG	AAT	GAG	AAT	ATC	ACT	GTC	CCA	GAC	ACC	AAA	GTT	AAT	TTC	225
	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	
							40									
	TAT	GCC	TGG	AAG	AGG	ATG	GAG	GTC	GGG	CAG	CAG	GCC	GTA	GAA	GTC	270
20	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	
		50										60				
					GCC											315
	Trp	Gln	Gly	Leu	Ala	Leu		Ser	Glu	Ala	Val	Leu	Arg	Gly	Gln	
							70									
25					AAC											360
	Ala		Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu		Leu	Gln	Leu	
		80										90				
					GCC											405
20	Hls	Val	Asp	Lys	Ala	Val		GIÀ	Leu	Arg	ser	Leu	Thr	Thr	Ĺeu	
30							100									

100

9

•	СТТ	CGG	ССТ	CTG	GGA	GCC	CAG	AAG	GAA	GCC	ATC	ፐሮሮ	CCT	CCA	GAT	450
	-		001	010	00,1											
	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	
		110	1										1	20		
	GCG	GCC	TCA	GCT	GCT	CCA	CTC	CGA	ACA	ATC	ACT	GCT	GAC	ACT	TTC	495
5	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	
		•					130								•	
	CGC	AAA	CTC	TTC	CGA	GTC	TAC	TCC	AAT	TTC	CTC	CGG	GGA	AAG	CTG	540
	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	
		140	•										1	.50		
10	AAG	CTG.	TAC	ACA	GGG	GAG	GCC	TGC	AGG	ACA	GGG	GAC	AGA	TGA		582
	Lys	Leu	Tyr	Thr	Gly	Gly	Ala	Cys	Arg	Thr	Gly	Asp	Arg			

160

15

20

As described hereinbefore, the present invention provides transgenic porcine capable of secreting human EPO in their milk, so that the expensive useful medicine can be produced at a low cost with stability on a large scale, thereby giving a contribution to the improving of human health.

The present invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

PCT/KR00/00675

5

10

15

25

10

CLAIMS

1. A method for preparing transgenic porcine capable of secreting human erythropoietin in their milk, comprising the steps of:

amplifying a 2.6 kb WAP promoter from the mammary gland of a rat by a polymerase chain reaction;

constructing an expression vector comprising a human erythropoietin gemome DNA fragment, and an SV40 poly A DNA fragment;

administering PMSG and human chorionic gonadotrophic (hCG) hormone into porcine by intramuscular injection to induce porcine to ovulate excessively;

determining the porcine as to their oestrus and leading them to natural mating;

collecting the fertilized eggs in the first cell differentiation period from the porcine;

injecting the expression vector into male pronuclei and immediately transplanting them in surrogate mother porcine;

allowing the surrogate mother porcine to give birth to litters; and identifying the incorporation of the base sequence of the Sequence List 1 into the genomic DNA of the progeny.

- 2. Transgenic porcine capable of producing human erythropoietin, prepared according to the method of claim 1.
 - 3. The method as set forth in claim 1, wherein the expression vector comprises a 2.6 kb rat WAP promoter, a 2.5 kb hEPO and a 2.6 kb SV40 Poly A.
 - 4. The method as set forth in claim 1, wherein the human erythropoietin cDNA comprises the base sequence shown in Fig. 3.
 - 5. The transgenic porcine as set forth in claim 2, wherein the sperm DNA of the porcine comprises a gene coding for WAP-EPO.

- 6. The transgenic porcine as set forth in claim 2, wherein the human erythropoietin is WAP-EPO.
- 6'. The transgenic porcine as set forth in claim 2, wherein the human erythropoietin is produced in a form of WAP-EPO.
- 7. The transgenic porcine as set forth in claim 2, wherein the transgenic porcine is "Saerome".
 - 8. The transgenic porcine as set forth in claim 2, wherein litters of the transgenic porcine have a WAP-EPO DNA.
- 9. The transgenic porcine as set forth in any of claims 1 to 8, wherein the produced erythropoietin can be readily used as a medicine.

1/3 [FIG. 1]

Preparation of Human Genomic EPO DNA

 $\hat{\mathbb{U}}$

Construction of EPO Expression Vector

2.6 kb	2.5 kb	2.6 kb
Rat WAP promoter	hEPO genome	SV40 Poly A

IJ

DNA Microinjection

[a scene of microinjection]

[microinjected fertilized eggs]

Û

Transplantation in Surrogate Mother Porcine and Parturition(Isolation of DNA from the Litters)

 \int

PCR Check

Û

DNA Base Sequencing.

PCT/KR00/00675

2/3 [FIG. 2]

3/3

[FIG. 3]

ATG	GGG	GTG	CAC	GAA	TGT	CCT	GCC	TGG	CTG	TGG	CTT	CTC	CTG	TCC	45
Met	Gly	Val	His	Glu	Cys	Pro	Ala	Trp	Leu	Trp	Leu	Leu	Leu	Ser	
-27							-20								
													CCA		90
Leu	Leu		Leu	Pro	Leu	Gly	Leu	Pro	Val	Leu	Gly	Ala	Prp	Pro	
		-10										+1			
													TTG (135
						10							Leu		
													CAC		180
Ala	Lys 20	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala 30	Glu	His	Cys	
AGC	TTG	AAT	GAG	ΛAT	ATC	ACT	GTC	CCA	GAC	ACC		ĠTT	AAT	TTC	225
													Asn		
						40									
TAT	GCC	TGG	AAG	AGG	ATG	GAG	GTC	GGG	CAG	CAG	GCC	GTA	GAA	GTC	270
Tyr		Trp	Lys	Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	
	50										60				
													GGC		315
Trp	Gln	Gly	Leu	Ala	Leu	Leu 70	Ser	Glu	Ala	Val	Leu	Arg	Gly	Gln	
GCC	CTG	TTG	GTC	AAC	TCT	TCC	CAG	CCG	TGG	GAG	ccc	CTG	CAG	CTG	360
Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	
	80										90				
													ACT		405
His	Val	ASD.	Lys	Ala	Val	Ser 100	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	
CTT	CGG	GCT	CTG	GGA	GCC	CAG	AAG	GAA	GCC	ATC	TCC	CCT	CCA	GAT	450
Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	
	110										120				
													ACT		495
Ala	Ala	Ser	Ala	Ala	Pro	Leu 130	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	
CGC	AAA	CTC	TTC	CGA	GTC	TAC	TCC	TAA :	TIC	CTO	CGG	G GG	A AAG	G CTG	540
Arg			Phe	Arg	Val	Туг	Ser	Ásn	Phe	Leu	Arg	Gly	Lys	Leu	
	140			_							150				
													TGA		582
Lys	Leu	Tyr	Thr	Gly	Gly	Ala 160	Cys	Arg	Thr	Gly	Asp	Arg			

Sequence Listing

```
<110>
          Republic of Korea(Management:Rural Development Administration)
          CHANG, Won-Kyong
          PARK, Jin-Gi
          SEONG, Hwan-Hoo
         MIN, Kwan-Sik
         YANG, Bo-Seok
         IM, Gi-Sun
         LEE, Yun-Keun
         LEE, Chnag-Hyun
         KIM, Jin-Hoei
<120>
         THE PROCUCTION METHOD OF TRANSGENIC PORCINE PRODUCING HUMAN ERYTH
         ROPOIETIN AND THE TRANSGENIC PORCINE
<130>
         RDAY207
<140>
         10-2000-0006888
<141>
         2000-02-14
<150>
         KR 10-2000-0006888
<151>
         2000-02-14
<160>
<170>
         KopatentIn 1.55
<210>
<211>
         582
<212>
         DNA
<213>
         TRANSGENIC PORCINE
<220>
<221>
         CDS
<222>
         (1)..(579)
<220>
<221>
         sig_peptide
<222> '
         (1)..(81)
<223>
         Fix the number -1 for an amino acid of C end, give the decreasing
         number one by one to N end
```

<220>	•															
<221	>	mat	_pep	tide												
<2222	>	(82) (579)												
<220	>															
<221	>	ter	mina	tor												
<222	>	(58	10)	(582	.)											
		_														
<400 atg		1		~~~	+ ~+	cct i	acc	taa	cta	taa	ctt	ctc	ctg	tcc	ctg	48
Met	ggg	gtg	Cac	Clu	Cve	Pro	gcc Ala	Tro	Leu	Trp	Leu	Leu	Leu	Ser	Leu	
	СТА	vaı	nis	5	Суз	110			10					15		
1																-
cta	tca	ctc	cct	cta	aac	ctc	cca	gtc	ctg	ggc	gcc	cca	сса	cgc	ctc	96
Leu	Ser	Leu	Pro	Leu	Gly	Leu	Pro	Val	Leu	Gly	Ala	Pro	Pro	Arg	Leu	
			20		_			25					30			•
atc	tgt	gac	agc	cga	gtc	ctg	gag	agg	tac	ctc	ttg	gag	gcc	aag	gag	144
Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	
		35					40					45				
																102
gcc	gag	aat	atc	acg	acg	ggc	tgt	gct	gaa	cac	tgc	agc	ttg -	aat	gag	192
Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His			Leu	Asn	GIU	
	50					55					60					
												~	+ ~ ~		200	240
aat	atc	act	gto	сса	gac	acc	aaa	gtt	aat	. Etc	Tur	عام	Trr	T.V.S	agg Arg	
	Ile	Thi	· Val	. Pro			Lys	vaı	ASD	75		ДІС		, 2,0	Arg 80	
65					70					, 5						
							ata	даа	ato	taa	cag	ggc	cto	gco	ctg	288
atg	gag	gro	ggg	, cac	, cay	Δla	Val	Glu	Val	LTrp	Glr	. Gl	/ Lei	ı Ala	a Leu	•
Mec	GIU	va.	r Gr	85					90					9		
					-											
cto	tcc	r αa.	a gc	t ato	c cto	cad	ggo	cag	gco	c ctq	tte	gto	aa	c tc	t tcc	336
Leu	Ser	. G1	u Al	a Va	l Lei	ı Arç	G1	/ Glr	n Ala	a Leu	Le۱ ر	. Va	l Ası	n Se	r Ser	:
	-		10			•		105					11			
cag	cc	j tg	g ga	g cc	c ct	g caq	g ct	g cat	t gt	g ga	t aa	a gc	c gt	c ag	t ggc	384
Glr	n Pro	o Tr	p Gl	u Pr	o Le	u Gli	n Le	u Hi:	s Va	1 As	p Ly	s Al	a Va	l Se	r Gly	7

· 115	1:	20	125
Stt ogs are at			
			gga gcc cag aag gaa Gly Ala Gln Lys Glu
130	135	ed Alg Ala Led	140
	150		
gcc atc tcc cc	t cca gat gcg go	c tca gct gct	cca ctc cga aca atc
			Pro Leu Arg Thr Ile
145	150	155	160
			tac tcc aat ttc ctc
Thr Ala Asp Th			Tyr Ser Asn Phe Leu
	165	170	175
Coo ooa aan ctr	l aan otn tan an	2 999 929 555	tgc agg aca ggg gac
			Cys Arg Thr Gly Asp
180		185	190
			200
aga t ga			
Arg	•		
<210> 0			
<210> 2 <211> 193		-	
<212> PRT		•	
	IC PORCINE		
<400> 2			
Met Gly Val His	Glu Cys Pro Ala	Trp Leu Trp	Leu Leu Ser Leu
1	5	10	15
T 0			
	Leu Gly Leu Pro		Ala Pro Pro Arg Leu
20		25	30
Ile Cys Asp Ser	Arg Val Leu Glu	. Ara Tvr Ten T	Leu Glu Ala Lys Glu
35	40		45
Ala Glu Asn Ile	Thr Thr Gly Cys	Ala Glu His (Cys Ser Leu Asn Glu
50	55		60

WO 01/59074 PCT/KR00/00675 .

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
145 150 155 160

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp

Arg

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR00/00675

A.	CLASSIFICATION	OF	SUBJECT	MATTER

IPC7 C12N 5/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimun documentation scarched (classification system followed by classification symbols) C12N 5/00

Documentation searched other than minimun documentation to the extent that such documents are included in the fileds searched

Electronic data base consulted during the intertnational search (name or data base and, where practicable, search trerms used)

NCBI, pubmed, IBM patent database, USPTO patent database "Erythropoietin, transgenie"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5955422 A (Kirin-Amgen, Inc) 21 Sept, 1999 (21. 09.199)	1-9
A	Proc. Natl. Acad. Sci. USA, 1990, 87:5178-5182.	1-9
A	Mol. Biol. Med.,1989, 5:255-261.	1-9
A	Transgenic Res, 1997, 6(1):75-84	1-9
A	DNA Cell Biol, 1999, 18(11):845-	1-9
A	Transgenic Res, 1998, 7 (4):311-7	1-9
A	Eur J. Biochem 1997, 245(2):482-9	1-9
Α	Blood 1995, 85(10);2735-41	1-9
Α	Biol Res 1995, 28(2);141-53	1-9
		,

Further documents are listed in the continuation of Box C.	See patent family annex.
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevence earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevence; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevence; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
12 DECEMBER 2000 (12.12.2000)	13 DECEMBER 2000 (13.12.2000)
Name and mailing address of the ISA/KR	Authorized officer
Korean Industrial Property Office Government Complex-Taejon, Dunsan-dong, So-ku, Taejon Metropolitan City 302-701, Republic of Korea	LIM, Hea Joon
Facsimile No. 82-42-472-7140	Telephone No. 82-42-481-5590

This Page Blank (uspio)