EFREI – L1 2010 Fonctions et variations

CONTRÔLE ÉCRIT n°1

Le sujet comporte deux pages.

La calculatrice et les documents sont interdits.

INDIQUER VOTRE GROUPE DE TD SUR VOTRE PREMIÈRE COPIE

EXERCICE N°1: (3 points)

On rappelle la définition de l'équivalence de deux fonctions :

Définition : Soit f et g deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On dit que f est équivalente à g en a et on note $f \underset{a}{\approx} g$ si en a, f - g = o(g).

- 1. Rappeler la définition de la négligeabilité.
- 2. Démontrer que si $f \underset{a}{\approx} g$ et si $g \underset{a}{\approx} h$, alors $f \underset{a}{\approx} h$.

EXERCICE N°2:(2 points)

Déterminer le développement limité de la fonction arctangente à l'ordre 5 en 0.

EXERCICE N°3: (2 points)

Déterminer
$$\lim_{x \to +\infty} \frac{\tan\left(\frac{2x+1}{x^2-1}\right)}{\cos\left(\frac{2}{x}\right)-1}$$

EXERCICE N°4: (4 points)

- 1. Déterminer le développement limité à l'ordre 2 en 0 de $f(x) = \frac{\sin 2x}{x + x^2}$.
- 2. En déduire l'étude locale de f au voisinage de 0 (limite, tangente à C_f , position relative par rapport à C_f). Tracer l'allure de C_f au voisinage de 0.

EXERCICE N°5: (3 points)

Etudier la branche infinie en $+\infty$ la fonction f définie par :

$$f(x) = (x+2)\left(1 + \frac{2}{x^2}\right)^x$$

Vous déterminerez la limite de f en $+\infty$, l'asymptote éventuelle à la courbe de f ainsi que la position relative de la courbe par rapport à l'asymptote.

EFREI – L1 2010 Fonctions et variations

EXERCICE N°6:(6 points)

On considère la fonction f définie sur \mathbb{R} par :

$$\begin{cases} si \ x \in]-\infty; 0[, f(x) = x \arctan\left(\frac{1}{x}\right) \\ si \ x \in [0; +\infty[, f(x) = \sqrt{\frac{x^2}{x+4}} \end{cases}$$

On rappelle quelques propriétés de la fonction arctan, résumées dans son tableau de variations :

- 1. Etudier la continuité et la dérivabilité de la fonction *f*.
- 2. Déterminer les limites de la fonction f en $+\infty$ et en $-\infty$. On admettra que arctan $x \approx x$ en 0.
- 3. Etudier les variations de *f*.
- 4. Tracer une ébauche de la courbe de *f*. On fera apparaître en particulier les asymptotes éventuelles à la courbe de *f* ainsi que les tangentes ou demi-tangentes intéressantes.