Empirical Distribution Function

Exercise 1. We first consider univariate quantitative data where x_1, \ldots, x_n are n real observed values. We consider in the following examples variables obtained from the dataset 'diamonds' from the package 'ggplot2' in R.

Example 1. The first following dataset gives the width of the twelve first diamonds. Width (mm): 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 4.28 3.90

Example 2. The following dataset gives the quality of the cut of the twelve first diamonds with the following correspondence: 1 meaning ideal, 2 premium, 3 very good, 4 good and 5 fair.

Quality of the cut: 1 2 4 2 4 3 3 3 5 3 4 1

- 1. Compute the empirical mean and the median of the data set of Example 1.
- 2. Draw the empirical cumulative distribution function of the datasets of Examples 1 and 2.

Solution

1. mean : $\bar{x}_n = 4.0442$; median : n = 12, $\lceil 1/2 \times 12 \rceil = \lceil 6 \rceil = 6$; the ordered values are

$$x_{(1)} = 3.78,$$
 $x_{(2)} = 3.84,$ $x_{(3)} = 3.90,$ $x_{(4)} = 3.96,$ $x_{(5)} = 3.98,$ $x_{(6)} = 3.98,$ $x_{(7)} = 4.05,$ $x_{(8)} = 4.07,$ $x_{(9)} = 4.11,$ $x_{(10)} = 4.23,$ $x_{(11)} = 4.28,$ $x_{(12)} = 4.35$

hence $x_{(6)} = 3.98$.

2. The empirical distribution function is a step function. For a n -sample, it jumps by 1/n at each point of the sample. For the two datasets we get the following figures :

FIGURE 1 – Empirical Distribution Function, Example 1 (width of the diamonds)

Exercise 2. Empirical cumulative distribution function Let X_i be i.i.d. observations with c.d.f. F and $X_{1:n} = (X_1, \dots, X_n)$.

FIGURE 2 – Empirical Distribution Function, Example 2 (quality of the cut)

1. Show that for all $\alpha \in (0,1)$

$$X_{\alpha}(n) = \inf\{t \in \mathbb{R}, \, \widehat{F}_{X_{1:n}}(t) \geqslant \alpha\} =: \widehat{F}_{X_{1:n}}^{-1}(\alpha),$$

where $\widehat{F}_{X_{1:n}}^{-1}$ is the generalized inverse of the empirical cumulative distribution function.

2. Fix $t \in \mathbb{R}$, what is the distribution of $n\widehat{F}_{X_{1:n}}(t)$? Can you complete the following limits:

$$\widehat{F}_{X_{1:n}}(t) \xrightarrow[n \to \infty]{F-\text{proba}} ?? \text{ and } \sqrt{n} \left(\widehat{F}_{X_{1:n}}(t) - ??\right) \xrightarrow[n \to \infty]{F-\text{dist.}} \mathcal{N}(0,??)?$$

Solution

1. By definition, the generalized inverse of the empirical cumulative distribution function $\widehat{F}_{X_{1:n}}$, denoted by $\widehat{F}_{X_{1:n}}^{-1}$ takes the following value at the point α :

$$\widehat{F}_{X_{1:n}}^{-1}(\alpha) = \inf\{t \in \mathbb{R}; \widehat{F}_{X_{1:n}}(t) \ge \alpha\} = X_{\alpha}(n).$$

2. For a fixed $t \in \mathbb{R}$ we have :

$$n\widehat{F}_{X_{1:n}}(t) = \sum_{i=1}^{n} I_{\{X_i \le t\}}.$$

Then, the random variable $n\widehat{F}_{X_{1:n}}(t)$ takes values at $\{0,\ldots,n\}$. For any $k\in\{0,\ldots,n\}$, we have:

$$\mathbb{P}(n\widehat{F}_{X_{1:n}}(t) = k) = \mathbb{P}(\{\cap_{i=1}^{k} \{X_{(i)} \le t\}\} \cap \{X_{(k+1)} > t\}),$$

where $X_{(i)}$ are the order statistics $X_{(1)} \leq \ldots \leq X_{(n)}$): the first k smaller data points are less than or equal to t, and the n-k following data points are greater than t. using the independence of X_i , we get:

$$\mathbb{P}(n\widehat{F}_{X_{1:n}}(t) = k) = \binom{n}{k} \mathbb{P}(\{X_1 \le t\})^k \mathbb{P}(\{X_1 > t\})^{n-k} = \binom{n}{k} F(t)^k (1 - F(t))^{n-k}.$$

Then, $n\widehat{F}_{X_{1:n}}(t)$ follows a binomial law of parameters n and F(t). Moreover, as seen in class, we have the following two convergences:

$$\widehat{F}_{X_{1:n}}(t) \xrightarrow[n \to \infty]{\text{proba}} F(t) \quad \text{et} \quad \sqrt{n} \left(\widehat{F}_{X_{1:n}}(t) - F(t)\right) \xrightarrow[n \to \infty]{\text{dist.}} \mathcal{N}(0, F(t)(1 - F(t))).$$

Exercise 3. Description of data and ecdf

- 1. Figure 3a represents the eddf of some sample of size 100. Deduce the characteristics of the distribution of the sample and propose a distribution that is likely to have generated the data.
- 2. Each sub-figure 3(b-d) represents the ecdfs of two samples. For each sub-figure, compare the characteristics of the distributions of each sample.

Solution

- (a) $X \sim \text{Bernoulli}(p)$, $1 p = \mathbb{P}(X = 0) \approx 0.65$, $p = \mathbb{P}(X = 1) \approx 0.35$. Range = 1.
- (b) (b) : Both are discrete, black is concentrated on fewer points $X \in \{0, 1, 2, 5\}$; alternatively gray is continuous on $\mathbb{R}_{>0}$. Range = 5.
 - (c): Both are coming from normal distribution, with zero mean, gray finer 'resolution' due to the larger number of samples. Range = 0.6.
 - (d): Both are uniform with the same support size, black is concentrated on smaller numbers (=pdf shifted to the left).
 - (e): Both are coming from the same distribution, but the black has bigger variance.

FIGURE 3 – ECDFs for some samples