Deep Learning-Demo

Lesson Objectives

On completion of this lesson, you will be able to understand:

- The key-steps of how to create an Artificial Neural Networks(ANN):
- Train the ANN
- Test the ANN

Getting the Dataset and Installing Tensorflow platform

- Our Dataset is in the folder "C:\BigData\MachineLearning\Machine Learning A-Z Template Folder\Part 8 - Deep Learning\Section 39 - Artificial Neural Networks (ANN)" in the file named as "Churn_Modelling.csv"
- The goal is to device a predictive customer-churn system
- Install "Tensorflow" for Anaconda by typing the following command at the Anaconda-terminal:
 conda install -c conda-forge keras
- Tensorflow is an open-source Machine-Learning Framework.

conda install -channel https://conda.anaconda.org/conda-forge keras

Importing the Libraries

- Import the basic libraries for any python application :
 - numpy
 - matplotlib
 - pandas
 - # Artificial Neural Network
 - # Part 1 Data Preprocessing
 - # Importing the libraries
 - import numpy as np
 - import matplotlib.pyplot as plt
 - import pandas as pd
- numpy: Contains a lot of mathematical tools or functionalities
- matplotlib.pyplot: To enable us to plot charts, graphs
- pandas: For importing and managing datasets into our code

Importing the Dataset

Change the directory to the path where our data-set lies "C:\BigData\MachineLearning\Machine Learning A-Z Template Folder\Part 8 - Deep Learning\Section 39 - Artificial Neural Networks (ANN)"

```
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
x = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
```

 Check the values of the matrix of Independent Variables(IV) and the vector of Dependent Variable(DV) at the IPyhton console

Encoding Categorical Data

Encoding of categorical data from the Matrix of IVs

```
# Encoding categorical data
```

##Label Encoding

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

```
labelencoder_x_1 = LabelEncoder()
```

```
x[:, 1] = labelencoder_x_1.fit_transform(x[:, 1])
```

labelencoder_x_2 = LabelEncoder()

```
x[:, 2] = labelencoder_x_2.fit_transform(x[:, 2])
```

##OneHot Encoding

```
onehotencoder = OneHotEncoder(categorical_features = [1])
```

x = onehotencoder.fit_transform(x).toarray()

##Taking care of Dummy-Variable Trap

```
x = x[:, 1:]
```

- Ensure that you remove 1 column from every set of onehot-encoded column-list
- Check the values of the matrix of Independent Variables(IV) "x" at the IPyhton console after doing the label-encoding, after doing the onehot-encoding and after avoiding the dummyvariable trap

Splitting the Data into Training-set and Test-set

Import the train_test_split class from the library sklearn.cross_validation :

```
# Splitting the Data into Training-set and Test-set from sklearn.cross_validation import train_test_split or from sklearn.model_selection import train_test_split
```

create 4 variables : x_train, x_test, y_train, y_test as follows :

```
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state= 0)
```

- Our training-sets: x_train(as training data from the matrix of features of independent variables) and y_train(as training data from the vector of dependent variables associated with x_train)
- Our test-sets: x_test(as test-data from the matrix of features of independent variables) and y_test(as test-data from the vector of dependent variables associated with x_test)

Feature Scaling

To prevent any IV from the matrix of IVs from dominating the entire ANN architecture, we need
to implement feature-scaling

```
#Feature scaling the Data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
```

Importing the "keras" library

- Using the "keras" library/framework on top of the "tensorflow" platform
- The Sequential class for initializing the Neural-Network
- The Dense class for building the layers of our Neural Network.
 - # Part 2 Creating the ANN# Importing the appropriate classes from kerasfrom keras.models import Sequentialfrom keras.layers import Dense

Initializing the ANN and Adding the Input and Hidden Layer

Create an object for the Deep-Learning Model

```
# Initializing the ANN
classifier = Sequential()
```

Adding the Input Layer and Hidden Layer to our ANN

```
# Adding the input layer and the first hidden layer
classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu', input_dim = 11))
You may get a warning
or
classifier.add(Dense(activation="relu", input_dim=11, units=6,
kernel initializer="uniform"))
```

- The add function adds the hidden-layers
- The arguments to "Dense" will be the number of nodes for the hidden-layer, how the weights are updated, the activation function to be used and the number of input-nodes

Presentation Title | Author | Date

Adding more Hidden Layer

Adding on more Hidden-Layer

```
# Adding the second hidden layer
classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu'))
or
classifier.add(Dense(activation="relu", units=6, kernel_initializer="uniform"))
```

 NO input_dim parameter of the Dense() function because we already have a layer before this layer

Adding the Output Layer

Adding the Output-Layer

```
# Adding the output layer
classifier.add(Dense(output_dim = 1, init = 'uniform', activation = 'sigmoid'))
or
classifier.add(Dense(activation="sigmoid", units=1, kernel_initializer="uniform"))
```

We will keep the activation-function as 'sigmoid' as we need an output from this output layer in a typical classifier-style(probabilities between 0 and 1)

Compiling the ANN

Using the Stochastic Gradient Descent algorithm to optimize the selection of weights

```
# Compiling the ANN classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

- optimizer = 'adam' is used to select the Gradient Descent algorithm
- loss = 'binary_crossentropy' is the ideal loss-function for classification type of problems
- The metric parameter or function is used to optionally judge the accuracy-performance of your model

Fitting the ANN to the Training-set

"fit" method is used to fit or train the model on the training-set

```
# Fitting the ANN to the Training set
classifier.fit(x_train, y_train, batch_size = 10, nb_epoch = 100)
OR to avoid warnings
classifier.fit(x_train, y_train, batch_size = 10, epochs = 100)
```

- The training-set(Matrix of IVs and Vector DVs) is passed as parameter
- batch_size = 10 indicates the number of observations to be passed in each iteration
- nb_epoch = 100 is the number of times the entire dataset should be passed through the model

Prediction on the Test-set

"predict" method is used to get the predictions on the test-set using our model

```
# Part 3 – Making the predictions to evaluate the model
```

Predicting the Test set results

$$y_pred = (y_pred > 0.5)$$

We can use a "Confusion-Matrix" to test the performance of predictions done on the test-data

N=200	Predicted FALSE	Predicted TRUE
Actual FALSE	100	12
Actual TRUE	13	75
Percentage of Accuracy (100+75)/200		0.875

Evaluation of predictions using Confusion-Matrix

 The actual-data and the predicted data from the test-set are used to calculate the confusionmatrix

```
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

Check the accuracy of our predictions against the actual-data from the test-set, at the i-python console just do the calculation: (1480+226)/2000 = 0.853

Thank You