Završni ispit iz Kvantnih računala (6. veljače 2019.)

Ime, prezime i JMBAG:

Uputa:

- Ispit se sastoji od 10 zadataka najčešće u obliku pitanja s ponuđenim odgovorima.
- Odgovore koje smatrate točnima označite (zacrnite) na posebnom obrascu. Mogu se pojaviti zadaci u kojima je potrebno označiti više od jednog ponuđenog odgovora.
- U praznom prostoru pored zadatka ili na dodatnim papirima napišite obrazloženje ili računski postupak koji vas je doveo do rješenja koje smatrate točnim.
- Točno riješeni zadatak donosi 4 boda. Kazneni (negativni) bodovi se ne obračunavaju.

Notacija i terminologija:

- Vektori $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ i $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$.
- Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle = |x\rangle$ i $|1\rangle = |y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle, |y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle \pm |y\rangle)\}$ obilježavamo simbolom \bigotimes .
- Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$.
- Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle = |i\rangle \otimes |j\rangle$; $i, j = 0, 1\}$.

1 Operator $S=R[\pi/2]$ u računalnoj bazi ima matrični prikaz: // In the computational basis, the matrix representation of the operator $S=R[\pi/2]$ is:

$$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

Koje od navedenih tvrdnji su istinite? // Which of the following statements are true?

- (a) S je unitaran operator. //S is a unitary operator. **točno**
- (b) S je hermitski operator. // S is a Hermitean operator.
- (c) Na Blochovoj sferi, S rotira stanje kvantnog bita za π oko x-osi. // On the Bloch sphere, S rotates the state of a qubit by π about the x-axis
- (d) S rotira stanje za $\pi/2$ oko z-osi. //S rotates the state by $\pi/2$ about z-axis. **točno**
- (e) S rotira stanje za $\pi/2$ oko x-osi. // S rotates the state by $\pi/2$ about x-axis.
- 2 Razmatramo kvantni logički krug // Consider the following quantum logical circuit

Kolika je vjerojatnost da u mjerenju dobijemo vrijednost 1 (tj. da qubit bude izmjeren u stanju $|1\rangle$)? // What is the probability that in the measurement we get the value 1 (ie. that the qubit is in the state $|1\rangle$)?

- (a) 0
- (b) $\frac{1}{2}(1+\cos\phi)$
- (c) $\frac{1}{2}(1 \cos \phi)$ **točno**
- (d) $\cos \phi$
- (e) $\cos^2 \phi$

3 Ako na izlazu iz kvantnog logičkog kruga // If at the output of the quantum logical circuit

$$|0\rangle$$
 H $?$ Z

dobivamo stanje // the state is

$$\frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle),$$

operator označen upitnikom je // the operator indicated with the question mark is

- (a) X
- (b) Y
- (c) Z
- (d) S točno
- (e) T

4 Stanje sustava na izlaznoj strani kvantnog logičkog kruga // The state of the system at the output of the quantum logical circuit

je // *is*

- (a) $|01\rangle$ točno
- (b) $|10\rangle$
- (c) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$
- (e) |11>

5 Shvatimo li kvantni logički krug // If we consider the quantum logical circuit

kao jedan operator, njegov matrični prikaz je: // as a single operator, its matrix representation is:

- (a) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$
- (b) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & -1\\ 0 & 1 & -1 & 0 \end{pmatrix}$
- (c) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$
- (d) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$

6 Kolika je vjerojatnost da na izlazu iz kvantnog logičkog kruga // What is the probability that at the output of the quantum logical circuit

sustav izmjerimo u stanju $|01\rangle$? // the system is measured in the state $|01\rangle$?

- (a) 0 **točno**
- (b) $\frac{1}{4}$
- (c) $\frac{1}{2}$
- (d) $\frac{1}{\sqrt{2}}$
- (e) 1

7 Funkciju jednog bita $f:\{0,1\} \to \{0,1\}$ implementiramo unitarnim operatorom // One-bit function $f:\{0,1\} \to \{0,1\}$ is implemented by the unitary operator

Ako je f[x]=x, operator U možemo odabrati kao: // If f[x]=x, the operator U can be chosen as:

- (a) *I*
- (b) $I \otimes X$
- (c) cNOT točno
- (d) $(I \otimes X) \cdot \text{cNOT}$
- (e) Ništa od navedenog. // None of the above.

8 Kvantni logički krug prikazan slikom // The quantum logical circuit shown below

jest implementacija operatora // implements the operator

$$U_f |x\rangle = e^{i\phi} (-1)^{f[x]} |x\rangle, \qquad \phi \in \mathbb{R}, \qquad x = 00, 01, 10, 11,$$

gdje je f[x]=0 za svaki x osim za x=w, za koji vrijedi f[w]=1. Odredi w. // where f[x]=0 for all x except for x=w for which f[w]=1. Find w.

- (a) w = 00
- (b) w = 01
- (c) w = 10 točno
- (d) w = 11
- (e) Ništa od navedenog (nema rješenja). // None of the above (no solution).

9 Na izlazu iz kvantnog logičkog kruga // At the output of the quantum logical circuit

stanje sustava je: // the state of the system is:

- (a) $|000\rangle$
- (b) $|111\rangle$
- (c) $\frac{1}{\sqrt{2}} (|000\rangle + |100\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|000\rangle + |110\rangle)$
- (e) $\frac{1}{\sqrt{2}} (|000\rangle + |111\rangle)$ **točno**
- 10 Pretražujemo li bazu veličine 10^6 Groverovim algoritmom, Groverov operator mora djelovati približno // If a database of size 10^6 is searched using Grover's algorithm, the Grover's operator must operate approximately
 - (a) 10 puta. // 10 times.
 - (b) 100 puta. // 100 times.
 - (c) 1000 puta. // 1000 times. **točno**
 - (d) 10^6 puta. // 10^6 puta.
 - (e) 2^6 puta. $// 2^6$ puta.