CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 13 MAGGIO 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1.

- (i) Per ogni intero positivo k, dare un esempio di relazione di equivalenza in \mathbb{Z} che determini esattamente k classi di equivalenza.
- (ii) Scrivere tutte le partizioni dell'insieme $\{1, 2, 3\}$.
- (iii) Dare un esempio di anello di cardinalità 8 con esattamente 6 divisori dello zero non nulli.

Esercizio 2. Si consideri l'applicazione $f:(a,b)\in\mathbb{N}\times\mathbb{N}\longmapsto a+b\in\mathbb{N}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Indicato con \Re_f il nucleo di equivalenza di f, descrivere $[(1,4)]_{\Re_f}$. Più in generale, considerato un arbitrario $(a,b) \in \mathbb{N} \times \mathbb{N}$ e posto n=a+b, quanti e quali sono gli elementi di $[(a,b)]_{\Re_f}$? Sia Σ la relazione d'ordine definita in $\mathbb{N} \times \mathbb{N}$ ponendo, per ogni $a,b,c,d \in \mathbb{N}$,

$$(a,b) \Sigma (c,d) \iff ((a,b) = (c,d) \lor a+b < c+d).$$

- (iii) Σ è totale? Più in generale, se $(a,b) \in \mathbb{N} \times \mathbb{N}$, quali sono gli elementi di $\mathbb{N} \times \mathbb{N}$ con cui (a,b) è confrontabile?
- (iv) Determinare, se esistono, in $(\mathbb{N} \times \mathbb{N}, \Sigma)$, maggioranti, minoranti, estremo inferiore ed estremo superiore di $\{(1,3),(5,2)\}$ e di $\{(1,3),(2,2)\}$.
- (v) Verificare che, per ogni $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, esiste sup $\{(a, b), (c, d)\}$ (in $(\mathbb{N} \times \mathbb{N}, \Sigma)$) se e solo se (a, b) e (c, d) sono tra loro confrontabili.
- (vi) Determinare un sottoinsieme X di $\mathbb{N} \times \mathbb{N}$ tale che (X, Σ) abbia come diagramma di Hasse quello qui disegnato:

Esercizio 3. Si provi che $F := \{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in \mathbb{R} \}$ è una parte chiusa in $M_2(\mathbb{R})$ sia rispetto all'addizione tra matrici che rispetto al prodotto righe per colonne. Ricordando che le proprietà di associatività, commutatività e distributività si ereditano da un anello alle sue parti chiuse, dimostrare che F, munito delle operazioni di addizione e prodotto righe per colonne tra matrici, è un campo.

Esercizio 4. Costruire ove possibile:

- (i) un polinomio f_1 di grado 5 irriducibile in $\mathbb{Q}[x]$;
- (ii) un polinomio f_2 di grado 5 irriducibile in $\mathbb{Q}[x]$ che sia il prodotto di due polinomi in $\mathbb{Q}[x]$, uno di grado 2 ed uno di grado 3;
- (iii) un polinomio f_3 di grado 5 che sia il prodotto di due polinomi irriducibili in $\mathbb{Q}[x]$;
- (iv) un polinomio f_4 di grado 5 irriducibile in $\mathbb{R}[x]$;
- (v) un polinomio f_5 di grado 5 che sia il prodotto di tre polinomi irriducibili in $\mathbb{R}[x]$;
- (vi) un polinomio f_6 di grado 5 in $\mathbb{R}[x]$ che sia privo di radici in \mathbb{R} ;
- (vii) un polinomio f_7 di grado 5 che sia il prodotto di cinque polinomi irriducibili in $\mathbb{R}[x]$ e che abbia esattamente una radice in \mathbb{R} .