

$$(z_1, \ldots, z_n)$$
 $\mathbb{D}_{x=e}$

Z = \[\frac{2}{1} \]

COP: Applying elementary row of, the solutions remain exactly same -

INVERTIBLE MATRIX !- A - nxn matrix /F = Q, R or C is said to be inv. if I nxn matrix B s.t. AB = BA = In REMARK: If B_1 & B_2 are matrices s.t. $AB_1 = B_1A = I_n$ Then $B_1 = B_2$. $AB_2 = B_2A = I_n$ EXERCISE $(AB)(B^{T}A^{-1})$ B is called the inverse of A. Lewsted by) \overline{A} . $= A(B(\overline{B}A^{-1}))$ $= A \left(\left(BB^{-1} \right) A^{-1} \right)$ Example: $= A \cdot (I_n \cdot A)$ 2. Elementary) matrices 8. A, B- nxn /F are in. \Rightarrow AB is in & (BA)(+6) = (AB)^{-1} = B^{-1}A^{-1} (Mare gen-any finite product of in. matrices)

(3) If $E_1, E_2, ..., E_K$ are elementary matrices then $E_1,..., E_K$ is inv. THEOREM! - Let A - mxn matrix / F. Then there exist elementary) matrices E, ... Fk
s.t. Fk... E, A is an RREF, i.e., A can be brought to an RREF by applying elementary row of STER L: - Choose the first a \$0 entry STEP 21 Now choose the first to entry in the j-th col. 8: Mare it 1 4. Elear out everything else 5. Bring it to the first row

