

Ecosystème microbien du tube digestif

Plan de cours

- Système digestif
- Condition physico-chimiques
- Diversité microbienne
- Rôle des micro-organismes dans la digestion
- Facteurs influencent l'écosystème digestif

Système digestif

Colon: <u>exclusivement anaérobie</u>

flore dominante

(N>109 UFC/g)

- Bifidobacterium,
- Eubacterium,
- Peptostreptococcus,
- Ruminococcus,
- · Clostridium,
- Propionibacterium,

- □ flore sous dominante (106>N>108 UFC/q):
- Lactobacillus,
- Enterobacteriaceae (surtout E.coli)
- Streptococcus ,
- Enterococcus,
- Fusobacterium,
- Methanobrevibacter
- □ flore résiduelle (N<10⁶ UFC/g) :
- □ flore fécale

Rôles de la flore intestinale humaine

- ✓ Effets digestifs
- ✓ Effets nutritionnels
- ✓ Effets protecteur

La flore microbienne intestinale joue un rôle fondamental dans la santé humaine et pourtant cet écosystème extraordinairement dense reste peu connu.

Ecosystème microbien du tube digestif

Rumen

Appareil digestif du rumen

- Estomac (70-75%)
 - 1. Rumen (panse)- 90%
 - 2. Réseau (réticulum)
 - 3. Feuillet (omasum)
 - 4. Caillette (abomasum)
- Intestin grêle
- Gros intestin

Appareil digestif du rumen et Conditions du milieu

Anaérobiose :

CO₂: 60% de la poche des gaz,

• CH4: 27%,

• N2:7%

• H₂: 0.2%

> pH : entre 5,5 et 7,3 (Importance de la salive : Tampon)

> T°: 39,5℃ et 40℃

> Humidité : 85% et non homogène

> Pression osmotique : 200 à 400 mosm/l.

> Potentiel d'oxydoréduction : réducteur

Ecosystème microbien digestif des ruminants

<u>Les bactéries</u>: environ 10¹² cellules bactériennes /ml extrême diversité, **Anaérobies**: 98%

Les protozoaires : 10⁴ à 10⁶ cellules /ml, elle est distribuée entre les particules solides et la phase liquide

Les champignons: 10³ et 10⁵ cellules /ml soit environ 10 % de la biomasse microbienne

Les virus : 125 types morphologiques de bactériophages ont été observés dans le rumen.

Rôle des micro-organismes dans la digestion

Digestion des glucides

Glucides = 75% de la masse du tissu végétal

Glucides % Herbe Maïs Luzerne Cellulose 25 **30** 0 **Glucides** Hémicellulose **26 22** 6 structuraux **Pectine** 6 Glucides de **Amidon** 2 **72** réserve Glucides 5 2 Sucres simples solubles

Bactéries - Digestion des glucides

1. Bactéries fibrolytiques

1.1 Bactéries cellulolytiques

Fibrobacter succinogenes

(Bacteriodes succinogenes)

Butyrivibrio fibrisolvens

Ruminococcus flavefaciens

Ruminococcus albus

Bacilles

Coques

1.2 Bactéries hémicellulolytiques

Butyrivibrio fibrisolvens

Prevotella ruminicola,

Ruminococci

1.3 Bactéries pectinolytiques

Butyrivibrio fibrisolvens,

Prevotella ruminicola,

Lachnospira multiparus,

2. Bactéries amylolytiques

3. Bactéries utilisatrices de glucides simples

Glucides structuraux

Glucides de réserve

13

Bactéries - Digestion des glucides

2. Les bactéries amylolytiques

Les espèces cellulolytiques :

Fibrobacter succinogenes

Butyrivibrio fibrisolvens

Les espèces non cellulolytiques :

Streptococcus bovis,

Ruminobacter amylophilus,

Prevotella ruminicola,

Succinimonas amylolytica

elenomonas ruminantium

3. Bactéries utilisatrices de glucides simples

Lactobacillus ruminis

Lactobacillus vitulinus

Digestion des glucides

Les Acides Gras Volatils : AGV

Fourrage : Grain	Acetate	Propionate	Butyrate
100:0	71	16	8
75:25	69	18	8
50:50	65	20	10
40:60	60	26	10
20:80	54	31	11

Digestion des glucides

Risque acidose

Nocek, jds 80:1005

Activité microbienne en fonction du pH

Digestion des glucides

Formation de gaz : CO₂ et méthane (CH₄)

- Production totale pouvant atteindre 600 L/J
- CO₂ vient majoritairement de la décarboxylation de l'acide pyruvique en acétate
- CH₄:
 4H₂ + CO₂ = CH₄ + 2H₂O
 Methanobacterium formicum,
 Methanobacter ruminantium

Digestion des protéines ou matières en azotes

Ruminobacter amylophilus Prevotella ruminicola

Digestion des lipides

Anaerovibrio lipolytica Butyrivibrio fibrisolvens,

. . . .

Diversité et variation de la flore du rumen

- > Diversité de la flore ruminale des ruminants domestiques et sauvages
- > Age
- > Régime alimentaire
- > Relations entre les microorganismes
- >Utilisation des antibiotiques et des additifs alimentaires

Appareil digestif du lapin

Digestion chez lapin

Fermenteurs pré-gastriques Fermenteurs post-gastriques

Appareil digestif du lapin : Conditions de milieux

La bouche

L'estomac

L'intestin grêle

Le caecum

Le côlon

Écosystème caecal

- > Bactéries anaérobies strictes : Bacteroides
- Bactéries sous dominant :
 - Bifidobacterium,
 - Clostridium,
 - Lactobacillus,
 - Streptococcus
 - Enterobacter
- > Bactéries fibrolytique :
 - Fibrobacter succinogenes,
 - Ruminococcus albus
 - Ruminococcus flavefasciens,
 - Flavefasciens intestinalis
- > 40% reste non identifié

Absence de protozoaire

Présente des bactéries pathogènes

Rôle des micro-organismes dans la digestion

Activité enzymatique fibrolytique des bactéries du caecum

Les facteurs majeurs influençant la microflore gastrointestinale

- >Age
- **≻**Régime alimentaire
- > Relations écologiques entre les microorganismes
- >Utilisation des antibiotiques et des additifs alimentaires

Implantation des bactéries dans le caecum du lapin en fonction de l'âge

(Gouet et Fonty, 1979; Boulharouf et al., 1991; Zomborsky-Kovacs et al., 2000; Gidenne et Licois, 2005)

Conclusion

Très complexe, et seule la flore cultivable est partiellement connue. Les nouveaux outils moléculaires sont de plus en plus appliqués

La recherche sur la flore digestif permet de comprendre la maturation de la flore commensale, en relation avec la nutrition et les techniques d'élevage, pour améliorer la prévention des désordres digestifs, en particulier chez le jeune en croissance.