PERMUTATION & COMBINATION

SELECTION & ARRANGEMENT SELECTION

- KOUSTAV

PRINCIPLE OF COUNTING

$$AND => X$$

CONCEPT

- 1. $n! = n (n 1)(n 2)(n 3)(.....) \times 3 \times 2 \times 1$ Note: 0! (factorial of zero) is 1.
- 2. ${}^{n}C_{r} = n! / [r! \times (n-r)!]$
- 3. ${}^{n}P_{r} = n! / (n-r)!$
- 4. Number of arrangements of n different objects in a line = n!
- 5. Number of arrangements of n different objects in a circle = (n 1)!
- 6. Number of arrangements of n different objects in a circle where clockwise and anti-clockwise are same = (n 1)! / 2
- 7. Number of arrangements of n objects in a line where p objects are alike of one kind, q are alike of another kind, r are alike of still another kind = n!p!q!r!
- 8. Number of arrangements when some objects are together = (Arrangement of all objects considering box as single object) × (Arrangement within box)

Formulae 7 and 8 are mostly applicable for rearrangement of letters of a word.

NOTE: For digit problems,

- I. Draw the dashes equal to number of digits.
- 2. Fill the dashes from left to right, except when some condition is given. For e.g. the condition could be that the units digit is prime or even.
- 3. If Zero is among the given digits, then it cannot occupy leftmost place unless otherwise clarified.

1. You have 3 pens and 2 markers. In how many ways:

i. Can you pick an item (pen or marker)?

Ans: 3+2=5

ii. Can you pick a pen and a marker?

Ans: 3x2=6

2. If you have 3 shirts and 2 pairs of pants, in how many different ways can you dress up?

Ans: $3\times1=6$

$$3 \times 2 = 6$$
 S_1
 S_2
 P_2
 S_3

3 Shirts 2 POP 1 Jacket
$$S_{1} \quad P_{1} \quad J$$

$$S_{2} \quad P_{2} \quad J$$

$$S_{3} \quad 2 \quad X \quad 2 \quad X \quad I = 6$$

3 sunts ~ 2 POP
$$1J$$
 ~ S_1 P_1 J S_2 P_2 J^{\times} S_3 S^{\times} S_4 S_4 S_5 S_5 S_7 S_7

3.A shopping mall has 3 distinct glass doors and 2 distinct metal doors for entry, and has 5 distinct glass doors and a wooden door for exit.

i. In how many ways can you enter and exit the mall?

Ans: <u>5 × 6 = 3</u>0

ii. In how many ways can you enter and exit the mall using only glass doors?

Ans: 3 × 5=15

iii. In how many ways can you enter and exit the mall without using glass doors?

Ans: $\frac{2 \times 1}{2} = \frac{1}{2}$

ENTRY	ExIT
G ₁	G
G2	GZ
G13	43
M,	Gy
M ₂	6 ₁₅
	W

COMBINATION

- Selection
- Order does not matter

PERMUTATION

- Selection & Arrangement
- Order matters

4. How many three-digit numbers can be formed using the digits 7, 8 and 9?

i. When repetition is allowed.

Ans: _____

ii. When repetition is not allowed.

Ans:

$$\frac{1}{1} \rightarrow \frac{3 \times 3}{(7,8,9)} = 27$$

$$\frac{11}{11} - \frac{3}{7,8,9} \times \frac{2}{1} = 6$$

5. How many three-digit numbers can be formed using the digits 0, 7, 8 and 9?

i. When repetition is allowed.

Ans: _____

ii. When repetition is not allowed.

$$\frac{3 \times 4 \times 4}{(7,8,9)} \rightarrow \frac{3 \times 4 \times 4}{(0,7,8,9)} = 48$$

$$\frac{3}{0^{x}} \times \frac{3}{0^{x}} \times \frac{2}{0} = 18$$

6. How many four-digit numbers can be formed using the first 6 natural numbers?

- i. When repetition is allowed.
- ii. When repetition is not allowed.

$$\frac{1}{1}$$
 $\rightarrow \frac{6 \times 6 \times 6 \times 6}{(1-6)}$ $= 6^{9} = 1296$

$$\frac{6 \times 5 \times 4 \times 3}{(1-6)} = 360$$

7. How many three-digit numbers can be formed so that the unit's place of the number is prime?

- i. When repetition is allowed.
- ii. When repetition is not allowed.

$$\frac{9 \times 10 \times 4}{(1-9)(0-9)(2,3,5,7)} = 360$$

$$(11) \rightarrow 8 \times 8 \times 4 = 256$$
 $0^{\times} \times (2,3,5,7) = 256$

8. How many four-digit even numbers can be formed using the first 7 whole numbers? (0-6)

- i. When repetition is allowed.
- ii. When repetition is not allowed.

$$\frac{1}{(1-6)} \rightarrow \frac{6}{(0-6)} \times \frac{7}{(0-6)} \times \frac{7}{(0-6)} \times \frac{4}{(0,2,4,6)} = 1176$$

9. In how many different ways can the letters of the word "LEADING" be arranged?

i. When repetition is not allowed.

Ans: _____

ii. Such that all the vowels are together.

Ans: _____

iii. Such that the vowels are together and the consonants are together. Ans: ___

Ans:

iv. All the vowels are not together.

$$|E,A,I|$$
 | $|E,A,I|$ | $|E,A$

10. How many 11-letter words can be formed using all the letters of the word "MATHEMATICS"?

i. (No condition.)

Ans: _____

ii. Such that all the vowels are together.

Ans:_____

MATHEMATICS

$$(i)$$
 A,E,A,I M,T,H,M,T,C,S => $\frac{8!}{2!\times 2!}\times \frac{4!}{2!}$

II. Loki has I red and 3 green identical marbles. In how many ways can he arrange them in a straight line?

$$\frac{4!}{3!} = \frac{4}{3!}$$

12. A committee of 10 people needs to be seated on 10 chairs in a straight line. In how many different ways can they be seated if 8 particular people never sit together?

$$n(\text{Total}) = 10!$$
 $n(\text{Togetter}) = 12345678910 => 31x8!$
 $n(\text{NOT Togetter}) = 10! - 3!x8!$
 $= 8!(9x10-6)$
 $= 8!x84$

13. In how many ways can we select a team of 4 men and 2 women from a group of 8 men and 5 women?

$$= \frac{8C_{4} \times \frac{5C_{2}}{4! \times 4!} \times \frac{5!}{2! \times 3!}$$

$$= \frac{81}{4! \times 4!} \times \frac{5!}{2! \times 3!}$$

$$= \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2} \times \frac{5 \times 4}{2}$$

$$= \frac{700}{100}$$

14. In how many ways can a team of 11 be selected from 5 men and 11 women such that the team must comprise of not more than 3 men?

A) 1565

$$3M \& \&W & \&C & 2M \& 9W & \&C & 1M \& & 10W & \&C & 11W \\ = {}^{5}C_{3}X''C_{8} + {}^{5}C_{2}X''C_{9} + {}^{5}C_{1}X''C_{10} + {}^{11}C_{11} \\ = \frac{5X4}{2}X \frac{11X10X9^{3}}{3X2} + \frac{5X4}{2}X \frac{11X10}{2} + 5X11 + 1 \\ = 1650 + 550 + 55 + 1 \\ = 2256$$

15. In how many ways can a team of 8 be selected from 10 men and 6 women such that the number of women is less than that of men and there is at least one woman?

$$|W \times 7M \text{ of } 2W \times 6M \text{ of } 3W \times 5M$$

$$|C_{1} \times |C_{7} + |C_{2} \times |C_{6} + |C_{3} \times |C_{5} - |C_{$$

16. There are 10 people in a meeting. Everybody shakes hand with everybody. What is the minimum number of handshakes possible?

$$\frac{10}{2} = \frac{10 \times 9}{2} = \frac{45}{2}$$

17. A circle has 10 points on its circumference. What is the ratio of the number of quadrilaterals to the number of hexagons that can be formed using these 10 points?

$$\frac{QUAD}{HEXA} = \frac{10C_{4}}{10C_{6}} = \frac{111}{10C_{6}}$$

$$\frac{M}{C_{M}} = \frac{M}{M} = \frac{M!}{M!(M-M)!}$$

18. In how many ways can 5 family members sit around a circle so that the parents always sit together?

$$(4-1)! \times 2!$$
= 3! × 2!
= 6 × 2
= 12

19. How many necklaces/garlands can be formed with 7 different beads/flowers?

$$\frac{(7-1)!}{2} = \frac{(7-1)!}{2} = \frac{6!}{2} = \frac{720}{2}$$

$$= 360$$

20. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?

A) 24400

B) 21300

C) 210

D) 25200

SELECTION =
$$\frac{7}{3} \times \frac{4}{5} = \frac{7 \times 6 \times 5}{3 \times 2} \times \frac{4 \times 3}{2}$$
= 210

$$3! = 4! = \frac{1}{4} \times 3 \times 2 \times 1$$

$$2! = \frac{3!}{3} \qquad \text{w}! = \frac{(n+1)!}{n+1}$$

$$1! = \frac{2!}{2}$$

$$0! = \frac{1!}{1} = 1$$

ANSWER KEY – PERMUTATION & COMBINATION

QUESTION	ANSWER	QUESTION	ANSWER
I	5, 6	Π	4
2	6	12	84×8!
3	30, 15, 2	13	700
4	27, 6	14	В
5	48, 18	15	В
6	6 ⁴ , 360	16	45
7	360, 256	17	1:1
8	1176, 420	18	12
9	5040,720,288,4320	19	360
10	11!/(2!) ³ , 3×8!	20	D

