WHAT IS CLAIMED IS:

- 1. An arithmetic performance attribution method for determining portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, comprising the steps of:
- (a) determining coefficients $(A + \alpha_i)$, where the values α_i are defined as

$$\alpha_{t} = \left[\frac{R - \overline{R} - A \sum_{k=1}^{T} (R_{k} - \overline{R}_{k})}{\sum_{k=1}^{T} (R_{k} - \overline{R}_{k})^{2}}\right] (R_{t} - \overline{R}_{t}),$$

where A has any predetermined value, R_i is a portfolio return for period t, \overline{R}_i is a benchmark return for period t, R is determined by

$$R = \left[\prod_{t=1}^{T} (1 + R_t)\right] - 1,$$

10 and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_{i})\right] - 1;$$

and

(b) determining the portfolio performance as

$$R - \overline{R} = \sum_{i=1}^{T} (A + \alpha_i)(R_i - \overline{R}_i) .$$

15

5

2. The method of claim 1, wherein A is

$$A = \frac{1}{T} \left[\frac{(R - \overline{R})}{(1 + R)^{1/T} - (1 + \overline{R})^{1/T}} \right], \text{ where } R \neq \overline{R},$$

or for the special case $R = \overline{R}$:

$$A = (1 + R)^{(T-1)/T}.$$

- 3. The method of claim 1, wherein A = 1.
- 4. The method of claim 1, wherein step (b) is performed by determining the portfolio performance as

25
$$R - \overline{R} = \sum_{i=1}^{T} \sum_{i=1}^{N} (A + \alpha_i) (I_{ii}^A + S_{ii}^A) ,$$

where I_{ii}^{A} is an issue selection for sector i and period t, and S_{ii}^{A} is a sector selection for sector i and period t.

5. A computer system, comprising:

a processor programmed to perform an arithmetic performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining coefficients $(A + \alpha_t)$, where the values α_t are defined as

10
$$\alpha_{t} = \left[\frac{R - \overline{R} - A \sum_{k=1}^{T} (R_{k} - \overline{R}_{k})}{\sum_{k=1}^{T} (R_{k} - \overline{R}_{k})^{2}}\right] (R_{t} - \overline{R}_{t}),$$

where A has any predetermined value, R_i is a portfolio return for period t, \overline{R}_i is a benchmark return for period t, R is determined by

$$R = \left[\prod_{i=1}^{T} (1 + R_i)\right] - 1,$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_i)\right] - 1;$$

and determining the portfolio relative performance as

$$R - \overline{R} = \sum_{i=1}^{T} (A + \alpha_i)(R_i - \overline{R}_i)$$
; and

a display device coupled to the processor for displaying a result of the arithmetic performance attribution computation.

6. A computer readable medium which stores code for programming a processor to perform an arithmetic performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining coefficients $(A + \alpha_t)$, where the values α_t are defined as

25
$$\alpha_{t} = \left[\frac{R - \overline{R} - A \sum_{k=1}^{T} (R_{k} - \overline{R}_{k})}{\sum_{k=1}^{T} (R_{k} - \overline{R}_{k})^{2}}\right] (R_{t} - \overline{R}_{t}),$$

20

where A has any predetermined value, R_i is a portfolio return for period t, \overline{R}_i is a benchmark return for period t, R is determined by

$$R = \left[\prod_{i=1}^{T} (1 + R_i)\right] - 1,$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{t=1}^{T} (1 + \overline{R}_{t})\right] - 1;$$

and determining the portfolio relative performance as $R - \overline{R} = \sum_{i=1}^{T} (A + \alpha_i)(R_i - \overline{R}_i)$.

7. A geometric performance attribution method for determining portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, comprising the steps of:

determining attribution effects for issue selection $(1 + I_u^G)$ given by

$$1 + I_{ii}^G = \frac{1 + w_{ii} r_{ii}}{1 + w_{ii} \overline{r}_{ii}} \Gamma_i^I \ ,$$

and determining attribution effects for sector selection $(1 + S_{ii}^G)$ given by

$$1 + S_{ii}^G = \left(\frac{1 + w_{ii}\overline{r}_{ii}}{1 + \overline{w}_{ii}\overline{r}_{ii}}\right) \left(\frac{1 + \overline{w}_{ii}\overline{R}_{i}}{1 + w_{ii}\overline{R}_{i}}\right) \Gamma_{i}^{S} ,$$

15

10

where r_{ji} is a portfolio return for sector j for period t, \overline{r}_{ji} is a benchmark return for sector j for period t, w_{ji} is a weight for r_{ji} , \overline{w}_{ji} is a weight for \overline{r}_{ji} , R is determined by

$$R = \left[\prod_{i=1}^{T} (1 + R_i)\right] - 1$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_i)\right] - 1;$$

and determining the portfolio performance as

$$\frac{1+R}{1+\overline{R}} = \prod_{i=1}^{T} \prod_{i=1}^{N} (1+I_{ii}^{G})(1+S_{ii}^{G}).$$

8. The method of claim 7, wherein the values of Γ_t^{I} are

$$\Gamma_{i}^{I} = \left[\frac{1 + R_{i}}{1 + \widetilde{R}_{i}} \prod_{j=1}^{N} \left(\frac{1 + w_{ji} \overline{r}_{ji}}{1 + w_{ji} r_{ji}} \right) \right]^{1/N} \text{ and the values of } \Gamma_{i}^{S} \text{ are}$$

$$\Gamma_{t}^{S} = \left[\frac{1 + \widetilde{R}_{t}}{1 + \overline{R}_{t}} \prod_{j=1}^{N} \left(\frac{1 + \overline{w}_{jt} \overline{r}_{jt}}{1 + w_{jt} \overline{r}_{jt}} \right) \left(\frac{1 + w_{jt} \overline{R}_{t}}{1 + \overline{w}_{jt} \overline{R}_{t}} \right) \right]^{1/N} .$$

9. The method of claim 7, wherein the values of $\Gamma_t^{\ \ I}$ and $\Gamma_t^{\ \ S}$ are

$$\Gamma_{t}^{I} = \Gamma_{t}^{S} = \Gamma_{t} = \left[\left(\frac{1 + R_{t}}{1 + \overline{R}_{t}} \right) \prod_{j=1}^{N} \frac{(1 + \overline{w}_{jt} \overline{r}_{jt})(1 + w_{jt} \overline{R}_{t})}{(1 + w_{jt} r_{jt})(1 + \overline{w}_{jt} \overline{R}_{t})} \right]^{\frac{1}{2N}}.$$

10. A computer system, comprising:

10 a processor programmed to perform a geometric performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining attribution effects for issue selection $(1 + I_{ii}^G)$ given by

$$1 + I_{ii}^G = \frac{1 + w_{ii} r_{ii}}{1 + w_{ii} \bar{r}_{ii}} \Gamma_i^I ,$$

and determining attribution effects for sector selection $(1 + S_{ii}^G)$ given by

$$1 + S_{ii}^G = \left(\frac{1 + w_{ii}\overline{r}_{ii}}{1 + \overline{w}_{ii}\overline{r}_{ii}}\right) \left(\frac{1 + \overline{w}_{ii}\overline{R}_{i}}{1 + w_{ii}\overline{R}_{i}}\right) \Gamma_{i}^{S} ,$$

where r_{ji} is a portfolio return for sector j for period t, \bar{r}_{ji} is a benchmark return for sector

j for period t, w_{ji} is a weight for r_{ji} , \overline{w}_{ji} is a weight for \overline{r}_{ji} , R is determined by

$$R = \prod_{t=1}^{T} (1 + R_t) - 1$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_i)\right] - 1,$$

20

and determining the portfolio performance as

$$\frac{1+R}{1+\overline{R}} = \prod_{i=1}^{T} \prod_{i=1}^{N} (1+I_{ii}^{G})(1+S_{ii}^{G});$$

and

- a display device coupled to the processor for displaying a result of the geometric performance attribution computation.
 - 11. The system of claim 10, wherein the values of Γ_t^{-1} are

$$\Gamma_{t}^{I} = \left[\frac{1 + R_{t}}{1 + \widetilde{R}_{t}} \prod_{j=1}^{N} \left(\frac{1 + w_{ji} \overline{r}_{ji}}{1 + w_{ji} r_{ji}} \right) \right]^{1/N} \text{ and the values of } \Gamma_{t}^{S} \text{ are}$$

10
$$\Gamma_{i}^{S} = \left[\frac{1 + \widetilde{R}_{i}}{1 + \overline{R}_{i}} \prod_{j=1}^{N} \left(\frac{1 + \overline{w}_{ji} \overline{r}_{ji}}{1 + w_{ji} \overline{r}_{ji}} \right) \left(\frac{1 + w_{ji} \overline{R}_{i}}{1 + \overline{w}_{ji} \overline{R}_{i}} \right) \right]^{1/N}.$$

- 12. A computer readable medium which stores code for programming a processor to perform a geometric performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining attribution effects for issue selection $(1 + L^G)$ given by
- to T, by determining attribution effects for issue selection $(1 + I_{ii}^{G})$ given by

$$1 + I_{ii}^G = \frac{1 + w_{ii} r_{ii}}{1 + w_{ii} \bar{r}_{ii}} \Gamma_i^I ,$$

and determining attribution effects for sector selection $(1 + S_{ii}^G)$ given by

$$1 + S_{ii}^G = \left(\frac{1 + w_{ii}\overline{r}_{ii}}{1 + \overline{w}_{ii}\overline{r}_{ii}}\right) \left(\frac{1 + \overline{w}_{ii}\overline{R}_{i}}{1 + w_{ii}\overline{R}_{i}}\right) \Gamma_{i}^{S} ,$$

where r_{ji} is a portfolio return for sector j for period t, \bar{r}_{ji} is a benchmark return for sector

j for period t, w_{ij} is a weight for r_{ij} , \overline{w}_{ij} is a weight for \overline{r}_{ij} , R is determined by

$$R = \left[\prod_{i=1}^{T} (1 + R_i)\right] - 1$$

and \overline{R} is determined by

$$\overline{R} = [\prod_{i=1}^{T} (1 + \overline{R}_i)] - 1$$
; and determining the portfolio performance as

$$\frac{1+R}{1+\overline{R}} = \prod_{i=1}^{T} \prod_{i=1}^{N} (1+I_{ii}^{G})(1+S_{ii}^{G}).$$

13. The computer readable medium of claim 12, wherein the values of Γ_t^{-1} are

$$\Gamma_{i}^{I} = \left[\frac{1 + R_{i}}{1 + \widetilde{R}_{i}} \prod_{j=1}^{N} \left(\frac{1 + w_{ji} \overline{r}_{ji}}{1 + w_{ji} r_{ji}} \right) \right]^{1/N} \text{ and the values of } \Gamma_{i}^{S} \text{ are}$$

$$\Gamma_{t}^{S} = \left[\frac{1 + \widetilde{R}_{t}}{1 + \overline{R}_{t}} \prod_{j=1}^{N} \left(\frac{1 + \overline{w}_{jt} \overline{r}_{jt}}{1 + w_{jt} \overline{r}_{jt}} \right) \left(\frac{1 + w_{jt} \overline{R}_{t}}{1 + \overline{w}_{jt} \overline{R}_{t}} \right) \right]^{1/N} .$$

- 14. A geometric performance attribution method for determining portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, comprising the steps of:
- 10 determining attribution effects $1 + Q_{iji}^G$ given by

$$1 + Q_{iji}^G = \prod_k \left(\frac{1 + a_{iji}^k}{1 + b_{iii}^k} \right) \Gamma_{iji}^k ,$$

where Γ_{ijt}^k are corrective terms that satisfy the constraint $\prod_{ij} (1 + Q_{ijt}^G) = \frac{1 + R_t}{1 + \overline{R_t}}$, each of a^k_{ijt} and b^k_{ijt} is a coefficient for attribution effect j, sector i, and period t, the coefficients a^k_{ijt} and b^k_{ijt} are obtained from arithmetic attribution effects $Q_{ijt}^A = \sum_k a^k_{ijt} - \sum_k b^k_{ijt}$ which

15 correspond to the attribution effects $1 + Q_{ijt}^G$, R_i is a portfolio return for period t, \overline{R}_i is a benchmark return for period t, where R is determined by

$$R = \left[\prod_{t=1}^{T} (1 + R_t)\right] - 1$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_i)\right] - 1$$
; and

20 determining the portfolio performance as

$$\frac{1+R}{1+\overline{R}} = \prod_{i=1}^{T} \prod_{j=1}^{N} \prod_{i=1}^{M} (1+Q_{iji}^{G}).$$

- 15. The method of claim 14, wherein M=2, $1+Q_{ili}^G$ are attribution effects for issue election given by $1+Q_{ili}^G=\frac{1+w_{ii}r_{ii}}{1+w_{ii}\bar{r}_{ii}}\Gamma_i^I$, and $1+Q_{i2i}^G$ are attribution effects for sector selection given by $1+Q_{i2i}^G=\left(\frac{1+w_{ii}\bar{r}_{ii}}{1+\overline{w}_{ii}\bar{r}_{ii}}\right)\left(\frac{1+\overline{w}_{ii}\bar{R}_i}{1+w_{ii}\bar{R}_i}\right)\Gamma_i^S$,
- where r_{ii} is a portfolio return for sector i for period t, \overline{r}_{ii} is a benchmark return for sector i for period t, w_{ii} is a weight for r_{ii} , \overline{w}_{ii} is a weight for \overline{r}_{ii} , the values of Γ_t^{-1} are $\Gamma_t^{I} = \left[\frac{1+R_i}{1+\widetilde{R}_i}\prod_{i=1}^N\left(\frac{1+w_{ii}\overline{r}_{ii}}{1+w_{ii}r_{ii}}\right)\right]^{1/N}, \text{ and}$ the values of Γ_t^{S} are $\Gamma_t^{S} = \left[\frac{1+\widetilde{R}_i}{1+R_i}\prod_{i=1}^N\left(\frac{1+\overline{w}_{ii}\overline{r}_{ii}}{1+\overline{w}_{ii}\overline{r}_{ii}}\right)\left(\frac{1+w_{ii}\overline{R}_i}{1+\overline{w}_{ii}\overline{R}_i}\right)\right]^{1/N}.$
- 10 16. A computer system, comprising:

a processor programmed to perform a geometric performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining attribution effects $1 + Q_{ij}^G$ given by

15
$$1 + Q_{iji}^G = \prod_{k} \left(\frac{1 + a_{iji}^k}{1 + b_{iji}^k} \right) \Gamma_{iji}^k ,$$

where Γ_{ijt}^k are corrective terms that satisfy the constraint $\prod_{ij} (1 + Q_{ijt}^G) = \frac{1 + R_t}{1 + \overline{R_t}}$, each of a^k_{ijt} and b^k_{ijt} is a coefficient for attribution effect j, sector i, and period t, the coefficients a^k_{ijt} and b^k_{ijt} are obtained from arithmetic attribution effects $Q^A_{ijt} = \sum_k a^k_{ijt} - \sum_k b^k_{ijt}$ which correspond to the attribution effects $1 + Q^G_{ijt}$, R_t is a portfolio return for period t, $\overline{R_t}$ is a

20 benchmark return for period t, R is determined by

$$R = \left[\prod_{i=1}^{T} (1 + R_i)\right] - 1$$

and \overline{R} is determined by

$$\overline{R} = \left[\prod_{i=1}^{T} (1 + \overline{R}_i)\right] - 1$$
, and

determining the portfolio performance as $\frac{1+R}{1+\overline{R}} = \prod_{i=1}^{T} \prod_{j=1}^{N} \prod_{i=1}^{M} (1+Q_{iji}^G)$; and

a display device coupled to the processor for displaying a result of the geometric performance attribution computation.

17. The system of claim 16, wherein M = 2, $1 + Q_{i1i}^G$ are attribution effects for issue election given by $1 + Q_{i1i}^G = \frac{1 + w_{ii}r_{ii}}{1 + w_{ii}\bar{r}_{ii}}\Gamma_i^I$, and $1 + Q_{i2i}^G$ are attribution effects for $(1 + w_{ii}\bar{r}_{ii})(1 + \overline{w}_{ii}\overline{R}_{ii}) = 0$

10 sector selection given by $1 + Q_{i2i}^G = \left(\frac{1 + w_{ii}\overline{r}_{ii}}{1 + \overline{w}_{ii}\overline{r}_{ii}}\right) \left(\frac{1 + \overline{w}_{ii}\overline{R}_{i}}{1 + w_{ii}\overline{R}_{i}}\right) \Gamma_i^S$,

where r_{ii} is a portfolio return for sector i for period t, \overline{r}_{ii} is a benchmark return for sector i for period t, w_{ii} is a weight for r_{ii} , \overline{w}_{ii} is a weight for \overline{r}_{ii} , the values of Γ_t^{-1} are $\Gamma_t^{-1} = \left[\frac{1+R_t}{1+\widetilde{R}_t}\prod_{i=1}^N\left(\frac{1+w_{ii}\overline{r}_{ii}}{1+w_{ii}r_{ii}}\right)\right]^{1/N}, \text{ and}$

the values of Γ_{i}^{S} are $\Gamma_{i}^{S} = \left[\frac{1 + \widetilde{R}_{i}}{1 + \overline{R}_{i}} \prod_{i=1}^{N} \left(\frac{1 + \overline{w}_{ii} \overline{r}_{ii}}{1 + w_{ii} \overline{r}_{ii}}\right) \left(\frac{1 + w_{ii} \overline{R}_{i}}{1 + \overline{w}_{ii} \overline{R}_{i}}\right)\right]^{1/N}$.

18. A computer readable medium which stores code for programming a processor to perform a geometric performance attribution computation to determine portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, by determining attribution effects $1 + Q_{ijt}^G$ given by

$$1 + Q_{iji}^G = \prod_k \left(\frac{1 + a_{iji}^k}{1 + b_{iji}^k} \right) \Gamma_{iji}^k ,$$

where Γ^k_{ijt} are corrective terms that satisfy the constraint $\prod_{ij} (1 + Q^G_{ijt}) = \frac{1 + R_t}{1 + \overline{R_t}}$, each of a^k_{ijt} and b^k_{ijt} is a coefficient for attribution effect j, sector i, and period t, R_t is a portfolio return for period t, the coefficients a^k_{ijt} and b^k_{ijt} are obtained from arithmetic attribution effects $Q^A_{ijt} = \sum_k a^k_{ijt} - \sum_k b^k_{ijt}$ which correspond to the attribution effects $1 + Q^G_{ijt}$, $\overline{R_t}$ is a

- benchmark return for period t, R is determined by $R = [\prod_{t=1}^{T} (1 + R_t)] 1$, and \overline{R} is determined by $\overline{R} = [\prod_{t=1}^{T} (1 + \overline{R_t})] 1$, and determining the portfolio performance as $\frac{1 + R}{1 + \overline{R}} = \prod_{t=1}^{T} \prod_{i=1}^{N} \prod_{t=1}^{M} (1 + Q_{ijt}^G).$
- attribution effects for issue election given by $1 + Q_{i1t}^G = \frac{1 + w_{it} r_{it}}{1 + w_{it} \overline{r}_{it}} \Gamma_t^I$, and $1 + Q_{i2t}^G$ are attribution effects for sector selection given by $1 + Q_{i2t}^G = \left(\frac{1 + w_{it} \overline{r}_{it}}{1 + \overline{w}_{it} \overline{r}_{it}}\right) \left(\frac{1 + \overline{w}_{it} \overline{R}_{it}}{1 + w_{it} \overline{R}_{it}}\right) \Gamma_t^S$, where r_{it} is a portfolio return for sector i for period t, \overline{r}_{it} is a benchmark return for sector i for period t, w_{it} is a weight for \overline{r}_{it} , the values of r_{it} are r_{it} are r_{it} and r_{it} are r_{it} are r_{it} and r_{it} are r_{it} and r_{it} are r_{it} are r_{it} and r_{it} are r_{it} are r_{it} are r_{it} and r_{it} are r_{it} and r_{it} are r_{it} and r_{it} are r_{it} are r_{it} and r_{it} and r_{it} are r_{it} and r_{it} are r_{it} and r_{it} and r_{it} are r_{it} and r_{it} are r_{it} are r_{it} and r_{it} are r_{it} are r_{it} and r_{i
- 15 the values of Γ_i^S are $\Gamma_i^S = \left[\frac{1 + \widetilde{R}_i}{1 + \overline{R}_i} \prod_{i=1}^N \left(\frac{1 + \overline{w}_{ii} \overline{r}_{ii}}{1 + w_{ii} \overline{r}_{ii}} \right) \left(\frac{1 + w_{ii} \overline{R}_i}{1 + \overline{w}_{ii} \overline{R}_i} \right) \right]^{1/N}$.