

AD-A072 929

GEORGE WASHINGTON UNIV WASHINGTON D C PROGRAM IN LOG--ETC F/6 15/5
SASPRO II. SPARE AND SERVER PROVISIONING PROGRAM. (U)

MAY 79 D GROSS, M WONG

N00014-75-C-0729

UNCLASSIFIED

SERIAL-T-391

NL

| OF |
AD
A072929

END
DATE
FILED
9 - 79
DDC

P2
f

THE
GEORGE
WASHINGTON
UNIVERSITY

ADA072929

LEVEL

A056013

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECH
NOLOGY FRONTIERS DESIGN
ENGINEERING APPRENTICESC
GEORGE WASHIN UNIV

DDC FILE COPY

INSTITUTE FOR MANAGEMENT
SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

79 08 21 017

(12)

SASPRO II--SPARE AND SERVER PROVISIONING PROGRAM

by

Donald Gross
Man-Yuen Wong

[REDACTED]

Serial T-391
2 May 1979

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public
sale and release; its distribution is unlimited.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER T-391	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SASPRO II → SPARE AND SERVER PROVISIONING PROGRAM		5. TYPE OF REPORT & PERIOD COVERED SCIENTIFIC Rept'd
6. AUTHOR(s) DONALD GROSS MAN-YUEN WONG		7. PERFORMING ORG. REPORT NUMBER T-391
8. CONTRACT OR GRANT NUMBER(s) N00014-75-C-0729		9. PERFORMING ORGANIZATION NAME AND ADDRESS THE GEORGE WASHINGTON UNIVERSITY PROGRAM IN LOGISTICS WASHINGTON, D.C. 20037
10. CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON, VA 22217		11. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 42 P		13. REPORT DATE 2 MAY 1979
		14. NUMBER OF PAGES 37
15. SECURITY CLASS. (of this report) NONE		16. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION IS UNLIMITED; APPROVED FOR PUBLIC SALE AND RELEASE.		
18. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 14 SERIAL-T-391		
19. SUPPLEMENTARY NOTES		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) FINITE SOURCE QUEUES SPARES PROVISIONING REPAIRABLE ITEM INVENTORY CONTROL		
21. ABSTRACT (Continue on reverse side if necessary and identify by block number) SASPRO II is a versatile FORTRAN package designed to determine the level of spares inventory and number of repair channels necessary to provide a guaranteed service level at minimum cost for a population of stochastically failing, but completely repairable, items. The problem environment is first discussed, the program options are explained, and sample runs are provided.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

NONE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

405 337

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

Abstract
of
Serial T-391
2 May 1979

SASPRO II--SPARE AND SERVER PROVISIONING PROGRAM

by

Donald Gross
Man-Yuen Wong

SASPRO II is a versatile FORTRAN package designed to determine the level of spares inventory and number of repair channels necessary to provide a guaranteed service level at minimum cost for a population of stochastically failing, but completely repairable, items. The problem environment is first discussed, the program options are explained, and sample runs are provided.

Research Supported by
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

Accession For	
NRIS	Grant
DOC TAB	<input checked="" type="checkbox"/>
Unannounced	
Justification _____	
By _____	
Distribution _____	
Availability Codes _____	
Dist	Available/or special

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

SASPRO II--SPARE AND SERVER PROVISIONING PROGRAM

by

Donald Gross
Man-Yuen Wong

1. Introduction

SASPRO II, an acronym for *Spare and Server Provisioning* (model two), is a versatile FORTRAN package that gives provisioning levels of spares inventory and repair capacity required to support a population of randomly failing items which, upon failure, are (1) dispatched to the repair facility, and (2) replaced by a spare if one is available. This paper describes in detail the problem environment, the program options, the input required to run the program, and the output provided by the program. Sample runs are also shown for each of the program options.

2. Problem Environment

Consider a population of items containing certain significant parts; for example, a fleet of aircraft containing key avionics gear, a fleet of ships with modular engine components, or a group of milling machines, where the entire machine itself is the key "part." These "parts" randomly fail and require repair. Spare parts are also needed so that upon failure, the spare can be utilized to replace the failed part and the item put back into service. It is desired to determine how many spares and how

many repair channels are required to support the system at a desired service level while minimizing costs.

The system is shown schematically in Figure 1. We consider only a single part-type at a time, which has its own spares pool and dedicated repair channels. For example, for a fleet of gas turbine propelled ships, the gas turbine engine has two components--a gas generator and a power turbine. Each must have dedicated repair channels and its own spares pool. Thus SASPRO II would treat each component in turn, being utilized to provision first for a population of gas generators and then for a population of power turbines.

When a unit in the operating population fails, a spare is requested at the same time the unit is dispatched for repair. If a spare is not available, the request is backlogged and units coming out of repair are used in removing the backlog. When there is no backlog of requests for spares, units coming out of repair go into the spares inventory. Repair times as well as failure times are treated as random variables and with the proper assumptions (to be mentioned below), this stochastic process can be readily modeled as a finite source queueing system, often referred to as "the machine repair problem with spares," which, in addition, also fits a two-stage cyclic queueing model. Thus SASPRO II uses a standard queueing model for the stochastic process [see GROSS, KAHN, and MARSH (1977)].

The assumptions required for using SASPRO II are that times to failure and repair times are exponentially distributed random variables. These assumptions allow the employment of the standard finite source

Figure 1.--Problem environment.

queueing theory to determine probabilities of various numbers of units in repair at any given time. From this, system service levels (number of units operating, availability of spares, etc.) can readily be computed. In order to achieve a specified service level, certain combinations of spares and servers (repair channels) are required. Using costs associated with purchasing and holding spares, and costs associated with building and operating repair channels, SASPRO II, through a heuristic optimization routine, finds the "best" combination of spares and servers that meets the service level constraint. While the optimization algorithm is heuristic, it does guarantee a feasible solution and also calculates the exact cost of the solution so that the user can "manually" perturb the heuristic solution to find better ones if they exist.

3. Modes of Operation

The program has two modes of operation, dynamic and static. The former is advised for initial year provisioning when population sizes, failure rates, and repair times may be changing significantly. Population size changes may occur because units are put into operation gradually, thus building up to a full strength population over a period of several years. For example, it was anticipated to build a fleet of 256 gas turbine powered ships, starting in the first year with ten ships and building up to full strength over a ten-year period. Because of new technology, engines on ships introduced in the later years were expected to have smaller failure rates (be more reliable) while due to learning, repair times were also expected to be smaller in the later years.

In designing support systems for which it is necessary to determine the number and location of depots the static mode is useful [see GROSS and PINKUS (1978)]. In this situation the population is at full strength, technological advances and learning are complete, and conditions are very close to static. Running times and input requirements are greatly reduced when operating in the static mode.

The dynamic mode allows for changing population sizes, failure rates, and repair times, as well as for changing costs on a year by year

basis. A set of input information is required for each year in the planning horizon. An item repaired and placed back into spares inventory (or operation) in year i is assumed to have the same failure rate as a new item introduced in year i .

All costs are turned into an equivalent beginning of year payment and then discounted according to where the year is in the planning horizon, so that at any year i the program gives the present worth of the cumulative sum of the discounted costs up to and including year i . The final value for the last year is then the present worth of the sum of discounted costs over the entire planning horizon.

The costs that are considered in SASPRO II are purchase costs; salvage values; and annual holding and operating costs associated with spares and repair channels, respectively; unit transportation and repair costs; and component improvement program (CIP) investment costs. Purchase costs and salvage values are in dollars per spare or repair channel. Operating costs of each channel and holding costs for spares are in dollars per year per spare or repair channel. Transportation and repair costs are in dollars per unit per repaired item and component improvement program costs are in dollars per year.

In determining the discounted algorithm costs, salvage values are not realizable until the end of the planning horizon, even though spares or repair channels are retired prior to that; also, operating costs and holding costs are assumed to be incurred every year until the end of the planning horizon, even if spares or channels are retired earlier. Transportation repair and CIP costs are not explicitly considered by the algorithm.

The assumptions that salvage values are not received until the end of the planning horizon and that operating or holding costs are not reduced when spares or repair channels are retired early are necessitated by the heuristic optimization algorithm employed. Further, if a spare or repair channel is retired during the planning horizon and is required again a few years later, it must be repurchased. Again, this assumption is required because of the nature of the heuristic optimization algorithm.

Once the heuristic optimal values of spares and repair channels are obtained, the true cost and true present worth can then be determined. The true costs are the actual annual costs. In calculating these, the assumptions on salvage values, and operating and holding costs are no longer required; that is, the salvage values are received whenever spares or repair channels are retired, and the operating or holding costs are being incurred only for those spares or repair channels actually present each year. Transportation, repair, and CIP costs are also included. The true present worth at any year i is the cumulative sum of the discounted true costs up to and including year i . The final value for the last year is then the true present worth of the sum of discounted true costs over the entire planning horizon.

In the static mode fewer problems arise since spares and channels are not added or retired. Costs for this mode of operation are converted to expected equivalent end-of-year payments over the planned life of the system.

Details of the algorithm cost calculations and the true cost calculations are provided in Section 10.

4. Service Level Constraint Options

There are two options available for specifying service performance. The first, referred to as *spares availability*, sets a limit on the percentage of requests for spares that are met from on-shelf spares inventory (also called fill rate); that is,

$$\frac{\text{Number of Requests for Spares per Year Honored Immediately}}{\text{Number of Requests for Spares per Year}} \geq A , \quad (1)$$

where A is specified by the user and $0 < A < 1$.

The second criterion for service performance, called "*fleet availability*", sets a level for the percentage of time a certain portion of the population desired to be in operation is actually operating; that is,

$$\Pr\{> \beta M \text{ units are up}\} \geq A . \quad (2)$$

Both β and A are specified by the user where $0 < \beta \leq 1$, and M is the population (fleet) size excluding spares.

Suppose, for example, we wish to have 100 machines in operation ($M=100$). When a machine fails, a spare machine is "plugged in" if one is available. We might specify that a service level constraint be (1) the percentage of requests for spare machines filled immediately from on-hand spares is at least 90% (option 1: $A=.9$), or (2) at least 95% of the machines are operating 85% of the time (option 2: $\beta=.95$, $A=.85$).

5. Population Average Failure Rate Options

Using the average failure rate for each year allows for the incorporation of changing component reliability as the years progress. There are two options available for specifying population average failure rate: averaging the failure rates and averaging the mean time between failures (or removals, denoted by MTBR).

Population average failure rate computed by averaging the failure rates is calculated by the formulae (we refer to this as rate averaging):

$$\bar{\lambda}_1 = \lambda_1$$

$$\bar{\lambda}_i = \begin{cases} \{(M_i - M_{i-1})\lambda_i + \bar{R}_{i-1}\lambda_{i-1} + (M_{i-1} - \bar{R}_{i-1})\bar{\lambda}_{i-1}\} / M_i, & M_i > M_{i-1} \\ \{\bar{R}_{i-1}\lambda_{i-1} + (M_{i-1} - \bar{R}_{i-1})\bar{\lambda}_{i-1}\} / M_{i-1}, & M_i \leq M_{i-1} \end{cases} \quad i=2,3,\dots \quad (3)$$

For averaging the MTBRs, the population average failure rate is given by (we refer to this as time averaging):

$$\bar{\lambda}_1 = \lambda_1$$

(4)

$$\bar{\lambda}_i^{-1} = \begin{cases} \{(M_i - M_{i-1})/\lambda_i + \bar{R}_{i-1}/\lambda_{i-1} + (M_{i-1} - \bar{R}_{i-1})/\bar{\lambda}_{i-1}\} / M_i, & M_i > M_{i-1} \\ \{\bar{R}_{i-1}/\lambda_{i-1} + (M_{i-1} - \bar{R}_{i-1})/\bar{\lambda}_{i-1}\} / M_{i-1}, & M_i \leq M_{i-1} \end{cases} \quad i=2,3,\dots,$$

where

M_i = component population size, year i

λ_i = component failure rate, year i

\bar{R}_i = expected number of components repaired, year i.

Which is the better averaging method to use depends on whether there are many or few machines operating simultaneously. For the many machine case, rate averaging yields more accurate results while for the few machine case, time averaging is more appropriate [see GROSS and INCE (1978)]. Note that both Equations (3) and (4) assume that the likelihood of a given item failing more than once in a time period is negligible.

6. Perturbation Options

The heuristic algorithm operates on a year-by-year basis and hence has the limitation that it does not "look ahead." Further, it treats operating costs and salvage values in a very approximate way and does not explicitly consider repair, transportation, or CIP costs at all. But it does yield a *feasible* solution; that is, one that will meet the service level constraint. When considering the entire planning horizon, the heuristic algorithm may (and probably does) not prove optimal. Therefore, after obtaining the heuristic optimal solution it may be advisable to make some perturbations by visually selecting other values. By exercising the perturbation option the program will use the perturbed solution values as if they were the optimal solution (without going through the heuristic algorithm) and will print out the availabilities and true costs, allowing comparison to those given by the heuristic optimal solution.

7. Input Data

Table I shows the data that are required as input for SASPRO II.

Most input parameters are self-explanatory but a few require further comment. The A shown in Equations (1) and (2) is AVL, while BETA is the β shown in Equation (2).

When using the algorithm ($KTC = 1$), initial values CO and YO must be read in for number of servers and spares, respectively. In the dynamic mode, after the first year the program uses the previous year's values for CO and YO as initial values, thus the CO and YO fields can be left

TABLE I
INPUT REQUIREMENTS

Variable Name	Description	Symbol on Printout
AVL	Desired Availability	AVL
BETA	Desired Percent of Population Up	BETA
C	Initial Value--Number of Repair Channels	CO
CIC	Carrying Cost per Spare (\$/yr/spare)	CIC
CIPC	Component Improvement Cost (\$/yr)	CIPC
CPSER	Repair Channel (Server) Purchase Cost (\$/channel)	CPSER
CPSP	Spare Purchase Cost (\$/spare)	CPSP
H	Operating Hours per Year per Item (hrs)	H
JD	Averaging Rate Option Indicator $\begin{cases} =1: \text{Rate Average} \\ =2: \text{Time Average} \end{cases}$	
KEYWD	Mode Option Indicator $\begin{cases} =1: \text{Dynamic} \\ =0: \text{Static} \end{cases}$	
KTC	Perturbation Indicator $\begin{cases} =1: \text{Heuristic Opt. Algorithm} \\ =2: \text{Perturbation Option} \end{cases}$	
KWRITE	Intermediate Output Option Indicator $\begin{cases} =0: \text{Not Print} \\ =1: \text{Print} \end{cases}$	
KZ	Service Criterion Option Indicator $\begin{cases} =0: \text{Spare Avail} \\ =1: \text{Fleet Avail} \end{cases}$	
NYEARS	Planning Horizon Length (yrs)	YRS
OCPSER	Operating Cost of a Channel (\$/yr/channel)	OCPSER
R	Yearly Interest Rate	RATE
RM	Population Size	M
RMTBR	Mean Time Between Removals (hrs)	MTBR
ST	Average Turn Around Time (days)	1/MU
SVPSER	Salvage Value of a Channel (\$/channel)	SVPSER
SVPSP	Salvage Value of a Spare (\$/spare)	SVPSP
URC	Unit Repair Cost (\$/unit)	URC
UTC	Unit Transportation Cost (\$/unit)	UTC
Y	Initial Value--Number of Spares	YO

blank on the card sets for every year in the planning horizon after the first. The closer the initial values are to the final values (determined by SASPRO II), the fewer iterations of the heuristic optimization algorithm are required. However, one may use $CO = Y_0 = 1$ if so desired.

A set of cost inputs (CIC, CIPC, CPSER, CPSP, OCPSER, SVPSER, SVPSP, URC, UTC) is required for each year in the horizon in the dynamic mode. This allows one to account for inflation and technological innovations. The Component Improvement Program Cost (CIPC) is the annual expenditure required to achieve a given MTBR schedule (the MTBR which must be inputted for each year in the horizon) for the dynamic mode of operation, or to maintain the MTBR achieved when operating in the static mode.

The MTBR value is the actual mean time to failure of each unit when operating continuously. If items do not operate continuously but are required for, say, only H hours per year on the average, the mean failure rate actually used in the queueing model portion of SASPRO II is lowered accordingly. If items do operate around the clock, $H = 365 \times 24 = 8760$. If, for example, each unit in a population of items has an MTBR of 1000 hours but is called upon to operate, on the average, only half the time ($H = 4380$ hours), the effective MTBR used in the program is raised to 2000 hours (failure rate cut in half). The user specifies H and MTBR and SASPRO II automatically makes the adjustment. The reader is referred to BARZILY, GROSS, and KAHN (1977) for a discussion of the adequacy of this procedure to account for noncontinuous operation. The above reference also discusses the SASPRO II assumptions, when operating in the dynamic mode, that (1) the population attains instantaneous steady-state each year at average values, and (2) the population consists of non-identical units (with respect to mean time to failure), which are treated as identical by weighted averaging according either to Equation (3) or (4). Gross and Ince (1978) further discuss this latter problem.

The parameters KEYWD, KZ, JD, KTC, and KWRITE are the option flags. Setting KTC = 2 puts SASPRO II in the perturbation mode; setting KTC = 1 causes SASPRO II to operate with the heuristic optimization algorithm. Putting KEYWD = 1 sets SASPRO II in the dynamic mode; setting KEYWD = 0 allows SASPRO II to operate in the static mode. Designating KZ = 1 puts the service level constraint on fleet availability; KZ = 0

sets the service level constraint on spares availability. A β must be specified when KZ = 1. Putting JD = 2 sets the population average failure rate calculation to averaging MTBRs; putting JD = 1 averages failure rates. For KWRITE = 0, intermediate output will also be printed; for KWRITE = 1 only final output is printed.

Table II and Figure 2 give the card layout required for the input information. There are eleven cards needed for the static mode and nine plus two cards for each year in the planning horizon required for dynamic mode operation. The input requirements for static mode operation are similar to those required for a one-year planning horizon dynamic run. However, the output cost values given in the static mode are the expected end of year payments adjusted over an NYEARS life, while the costs of a single year dynamic mode run are the present worth of expenditures for that year.

8. Output from SASPRO II

SASPRO II gives the heuristic optimum combination of spares and repair channels needed to meet the service level constraint (or the actual service level for an inputted set of spares and repair channels) and also provides the costs associated with this solution. For the static operation mode there is a single line of output with all cost values being the expected equivalent annual expenditure over the NYEAR system life. For the dynamic mode of operation there is a line of output for each year, the costs outputted being the expected present worth of the cumulative sum of discounted costs up to and including that year as well as the costs for that particular year, as given by both the algorithm and exact calculation. Also given as output are the heuristic optimum combinations of servers and spares (when operating in the optimization mode); the average system failure rate, which in the static mode is the same as the inputted failure rate calculated from the MTBR and H values read in, and in the dynamic mode is a weighted average [according either to Equation (3) or (4)] of the units in the population which were introduced and repaired in various years at different values; the average number of units repaired; and the actual availability achieved (always \geq AVL when using the heuristic algorithm). Another output quantity shown is ASTAR, the percentage of time the population is called upon to operate ($ASTAR = H/8760$); this serves as a check on the H value put in. The output quantities with definitions are shown in Table III.

TABLE II
CARD LAYOUT FOR INPUT

Card Number	Input Data Parameter(s)	Format	Columns
1	Title (any desired by user)	--	1-80
2	NYEARS	I2	1-2
3	R	F8.5	1-8
4 ^a	AVL, BETA	F8.5, F8.5	1-8, 9-16
5 ^b	KZ	I2	1-2
6 ^c	KEYWD	I2	1-2
7 ^d	JD	I2	1-2
8 ^e	KTC	I2	1-2
9 ^f	KWRITE	I2	1-2
10	See Figure 2: One set required for each year in dynamic planning horizon; one set only for static mode.		
11			

^aFor Spares Avail Option, BETA may be set at any value.

^b $KZ = \begin{cases} 0 & \rightarrow \text{Spares Availability} \\ 1 & \rightarrow \text{Fleet Availability} \end{cases}$

^c $KEYWD = \begin{cases} 0 & \rightarrow \text{Static Mode} \\ 1 & \rightarrow \text{Dynamic Mode} \end{cases}$

^d $JD = \begin{cases} 1 & \rightarrow \text{Averaging Failure Rates} \\ 2 & \rightarrow \text{Averaging MTBRs} \end{cases}$

^e $KTC = \begin{cases} 1 & \rightarrow \text{Heuristic Algorithm} \\ 2 & \rightarrow \text{Perturbation Option} \end{cases}$

^f $KWRITE = \begin{cases} 0 & \rightarrow \text{Not Print Intermediate Output} \\ 1 & \rightarrow \text{Print Intermediate Output} \end{cases}$

M	CO	YO	MTBR	1/MU	H	CIPC	CPSER	CPSP	URC	UTC
1	89	1617	2425	3233	4041	5051	5859	6364	7071	7576
										80

F8.0 F8.0 F8.0 F10.0 F8.0 F5.0 F7.0 F5.0 F5.0

SVPSER	SVPSP	OCPSER	CIC
1	56	1213	1718
			26

F5.0 F7.0 F5.0 F5.0

Figure 2.--Format for card set 10,11.

TABLE III
OUTPUT QUANTITIES

Name	Description
YR	Actual year represented
M	Population size year i (from input)
FR	Failure rate of a unit purchased or repaired in year i [failures/day = $(1/MTBR) \cdot (H/8760) \cdot 24$]
FRBAR	Average failure rate of a typical unit (failures/day = weighted average of various units purchased or repaired in all years up to and including i)
ASTAR	Average percent of time population is called upon to operate ($H/8760$)
C	Heuristic optimum number of repair channels required in year i
Y	Heuristic optimum number of spares required in year i
AVAIL	Availability achieved
RBAR	Average number of units repaired in year i
COST	Costs, as considered by the heuristic algorithm, expended in year i dynamic mode or equivalent yearly average expenditure in static mode
PR-WORTH	Present worth of sum of discounted algorithm costs up to and including year i, dynamic mode; same as COST for static mode
TRUE-COST	True costs expended in year i dynamic mode or true equivalent yearly average expenditure in static mode
TRUE-PW	True present worth of sum of discounted costs up to and including year i, dynamic mode; same as TRUE-COST for static mode

9. Sample Runs

We illustrate the model options by presenting eight sample runs as given below in Table IV.

TABLE IV

SAMPLE RUNS

Sample Run No	Options			
	Planning Horizon	Mode	Failure Rate Computation	Service Level Constraint
1	Dynamic	Heur. Opt.	Rate Avg.	Fleet Avail.
2	Dynamic	Heur. Opt.	Rate Avg.	Spares Avail.
3	Dynamic	Heur. Opt.	Time Avg.	Fleet Avail.
4	Dynamic	Heur. Opt.	Time Avg.	Spares Avail.
5	Static	Heur. Opt.	--	Fleet Avail.
6	Static	Heur. Opt.	--	Spares Avail.
7	Dynamic	Heur. Opt.	Rate Avg.	Fleet Avail.
8	Dynamic	Perturb.	Rate Avg.	Fleet Avail.

A listing of the input cards for these runs is given in Figure 3. For the eight cases, there is a total of 196 data input cards (6[9 + (2 x 10)] + 2[11]).

The associated output for the first six cases (Sample Runs 1 to 6) is given in Figure 4. In Figure 5, output for the last two cases (Sample Runs 7 and 8) is shown. Run 7 is similar to Run 1 but the spare purchase cost in the initial year is reduced from 617 to 400. The heuristic algorithm solution does not change. However, by inspection it seems that perturbing the 1979 and 1980 Y values from 3 and 4, respectively, to 6 should give a better solution since the initial spare purchase cost is relatively cheap. Exercising the perturbation mode (KTC=2) in Sample Run 8 shows this to be true by comparing the TRUE-PW values for the final year. The input requirements for Sample Run 8 would be identical to those for

SAMPLE RUN 1									
10									
0.10									
0.95									
0.95									
1									
1									
1									
1									
1									
10.	10.	1.	1.	3500.	65.	1880.30	0.	90.	616.5
32.	123.3	10.	82.2	3500.	62.5	1947.61	0.	90.	708.8
28.									49.
32.	141.8	10.	94.5	4250.	60.	2121.60	0.	90.	815.3
50.									37.8
32.	163.1	10.	108.7	5500.	57.5	1989.45	0.	90.	880.5
82.									40.
32.	176.1	10.	117.4	6500.	55.	1958.95	0.	90.	951.
121.									42.
32.	190.2	10.	126.8	7500.	55.	1966.37	0.	90.	1026.8
158.									44.
32.	205.35	10.	136.9	8500.	55.	1976.27	0.	90.	1026.8
182.									44.
32.	205.35	10.	136.9	9000.	55.	2001.90	0.	90.	1026.8
208.									44.
32.	205.35	10.	136.9	9000.	55.	2027.65	0.	90.	1026.8
229.									44.
32.	205.35	10.	136.9	9000.	55.	2046.44	0.	90.	1026.8
251.									44.
32.	205.35	10.	136.9						

Figure 3.--Input card listing for sample runs.

SAMPLE RUN 2							
10							
0.10							
0.90							
0							
1							
1							
0	10.	1.	1.	3500.	65.	1880.30	0.
32.	123.3	10.	82.2	3500.	62.5	1947.61	0.
28.							
32.	141.8	10.	94.5				
50.							
32.	163.1	10.	108.7	4250.	60.	2121.60	0.
82.							
32.	176.1	10.	117.4	5500.	57.5	1989.45	0.
121.							
32.	190.2	10.	126.8	6500.	55.	1958.95	0.
158.							
32.	205.35	10.	136.9	7500.	55.	1966.37	0.
182.							
32.	205.35	10.	136.9	8500.	55.	1976.27	0.
208.							
32.	205.35	10.	136.9	9000.	55.	2001.90	0.
229.							
32.	205.35	10.	136.9	9000.	55.	2027.65	0.
251.							
				9000.	55.	2046.44	0.

Figure 3.--continued

SAMPLE RUN 3						
10	0.10	0.95	0.95	1	2	1
1	10.	1.	1.	3500.	65.	1880.30
32.	123.3	10.	82.2	3500.	62.5	1947.61
28.					60.	2121.60
32.	141.8	10.	94.5	4250.	57.5	1989.45
50.					55.	1958.95
32.	163.1	10.	108.7	5500.	55.	1966.37
82.					55.	1976.27
32.	176.1	10.	117.4	6500.	55.	2001.90
121.					55.	2027.65
32.	190.2	10.	126.8	7500.	55.	2046.44
153.					55.	
32.	205.35	10.	136.9	8500.	55.	
182.					55.	
32.	205.35	10.	136.9	9000.	55.	
208.					55.	
32.	205.35	10.	136.9	9000.	55.	
229.					55.	
32.	205.35	10.	136.9	9000.	55.	
251.					55.	
32.	205.35	10.	136.9			

SAMPLE RUN 4						
10	10.	10.	10.	10.	10.	10.
0.10	123.3	10.	82.2	3500.	65.	1880.30
0.90	141.6	10.	94.5	3500.	62.5	1947.61
0	163.1	10.	108.7	4250.	60.	2121.00
1	176.1	10.	117.4	5500.	57.5	1987.45
2	190.2	10.	126.8	6500.	55.	1958.95
0	205.35	10.	136.9	7500.	55.	1966.37
1	205.35	10.	136.9	8500.	55.	1976.27
2	205.35	10.	136.9	9000.	55.	2001.90
0	229.	10.	136.9	9000.	55.	2027.55
1	205.35	10.	136.9	9000.	55.	2046.44
2	205.35	10.	136.9	9000.	55.	2046.44

Figure 3.--continued

SAMPLE RUN 5

20	
0.10	
0.95	0.95
1	
0	
1	1
0	256.
32.	205.35
	9.
	10.
	136.9
	11.
	9000.
	55.
	2046.44
	0.
	90.
	1026.8
	44.
	0.

- 19 -

SAMPLE RUN 6

20	
0.10	
0.90	1.00
0	
1	1
0	256.
32.	205.35
	8.
	10.
	136.9
	11.
	9000.
	55.
	2046.44
	0.
	90.
	1026.8
	44.
	0.

Figure 3.--continued

SCANNING 7

Figure 3.--continued

SAMPLE RUN 8						
10	0.10	0.95	1	1	2	
32.	123.3	10.	3.	6.	3500.	65.
28.	28.	7.	32.2	6.	3500.	62.5
32.	141.8	10.	94.5	6.	4250.	60.
50.	50.	3.	6.	108.7	5500.	57.5
32.	163.1	10.	117.4	6.	6500.	55.
82.	82.	10.	126.8	6.	6500.	55.
32.	176.1	10.	136.9	4.	3500.	55.
121.	121.	10.	136.9	4.	3500.	55.
32.	199.2	10.	14.	5.	7500.	55.
153.	153.	13.	136.9	4.	3500.	55.
32.	205.35	10.	136.9	4.	3500.	55.
182.	182.	10.	136.9	4.	3500.	55.
32.	205.35	10.	136.9	4.	9000.	55.
208.	208.	13.	136.9	4.	9000.	55.
32.	205.35	10.	136.9	3.	9000.	55.
229.	229.	13.	136.9	3.	9000.	55.
32.	205.35	10.	136.9	3.	9000.	55.
251.	251.	13.	136.9	3.	2046.44	55.
32.	205.35	10.	136.9	3.	2046.44	55.

Figure 3.--continued

SAMPLE RUN 1
OPTIONS : DYNAMIC, HEURISTIC OPT., RATE AVG. FLEET AVAIL

INPUT DATA	TRS RATE	M	Avg	BETA	CO	YO	MTRB	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC
OUTPUT DATA	10.	.950	0.95	1.	1.	3500.	65.000	1660.	H	CPSP	49.	0.	0.0	123.	82.
TRS M	.100	0.00147100	FR	FRBMR	ASTAR	5	Y	0.97532	RBAR	CO91	3609.42	PRMORTH	TRUE-COST	2656.47	
INPUT DATA	10.	.950	0.95	0.	0.00149100	0.214646	5	Y	0.97532	RBAR	49.	0.	0.0	122.	82.
TRS RATE	10.	.950	0.95	0.	0.	3500.	62.500	1946.	H	CPSP	49.	0.	0.0	142.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	3500.	60.000	2122.	H	CPSP	36.	0.	0.0	163.	10.
TRS M	.00	0.00152455	FR	FRBMR	ASTAR	5	Y	0.95045	RBAR	CO91	1806.43	PRMORTH	TRUE-COST	4717.98	
INPUT DATA	10.	.950	0.95	0.	0.00152455	0.223350	5	Y	0.95045	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	4250.	60.000	1989.	H	CPSP	49.	0.	0.0	163.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	4250.	60.000	2122.	H	CPSP	36.	0.	0.0	163.	10.
TRS M	.01	0.00153767	FR	FRBMR	ASTAR	5	Y	0.95815	RBAR	CO91	2887.98	PRMORTH	TRUE-COST	7566.66	
INPUT DATA	10.	.950	0.95	0.	0.00153767	0.24192	6	Y	0.95815	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	5500.	57.500	1989.	H	CPSP	49.	0.	0.0	163.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	5500.	55.000	1959.	H	CPSP	42.	0.	0.0	32.	10.
TRS M	.02	0.00069101	FR	FRPSP	ASTAR	5	Y	0.95116	RBAR	CO91	254.26	PRMORTH	TRUE-COST	9415.49	
INPUT DATA	10.	.950	0.95	0.	0.00069101	0.22106	10	Y	0.95116	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	6500.	55.000	1959.	H	CPSP	42.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	6500.	55.000	1959.	H	CPSP	42.	0.	0.0	32.	10.
TRS M	.03	0.0006825669	FR	FRBMR	ASTAR	5	Y	0.95060	RBAR	CO91	8029.42	PRMORTH	TRUE-COST	11296.86	
INPUT DATA	10.	.950	0.95	0.	0.0006825669	0.223024	10	Y	0.95060	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	7500.	55.000	1966.	H	CPSP	49.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	7500.	55.000	1966.	H	CPSP	44.	0.	0.0	32.	10.
TRS M	.04	0.00071631	FR	FRBMR	ASTAR	5	Y	0.95176	RBAR	CO91	2748.82	PRMORTH	TRUE-COST	13296.99	
INPUT DATA	10.	.950	0.95	0.	0.00071631	0.224071	14	Y	0.95176	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	8500.	55.000	1976.	H	CPSP	44.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	8500.	55.000	1976.	H	CPSP	44.	0.	0.0	32.	10.
TRS M	.05	0.0006363699	FR	FRBMR	ASTAR	5	Y	0.95973	RBAR	CO91	8307.16	PRMORTH	TRUE-COST	14832.83	
INPUT DATA	10.	.950	0.95	0.	0.0006363699	0.223602	13	Y	0.95973	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	9000.	55.000	2002.	H	CPSP	44.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	9000.	55.000	2002.	H	CPSP	44.	0.	0.0	32.	10.
TRS M	.06	0.00060941	FR	FRBMR	ASTAR	5	Y	0.96088	RBAR	CO91	8307.16	PRMORTH	TRUE-COST	14832.83	
INPUT DATA	10.	.950	0.95	0.	0.00060941	0.223527	13	Y	0.96088	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	9000.	55.000	2046.	H	CPSP	44.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	9000.	55.000	2046.	H	CPSP	44.	0.	0.0	32.	10.
TRS M	.07	0.00061725	FR	FRBMR	ASTAR	5	Y	0.95377	RBAR	CO91	8307.16	PRMORTH	TRUE-COST	14832.83	
INPUT DATA	10.	.950	0.95	0.	0.00061725	0.231467	13	Y	0.95377	RBAR	49.	0.	0.0	32.	10.
TRS RATE	10.	.950	0.95	0.	0.	9000.	55.000	2046.	H	CPSP	44.	0.	0.0	32.	10.
OUTPUT DATA	10.	.950	0.95	0.	0.	9000.	55.000	2046.	H	CPSP	44.	0.	0.0	32.	10.
TRS M	.08	0.00062296	FR	FRBMR	ASTAR	5	Y	0.95299	RBAR	CO91	8307.16	PRMORTH	TRUE-COST	14832.83	

Figure 4.--Sample run output.

SAMPLE RUN 2 OPTIONS : DYNAMIC, HEURISTIC OPT: RATE AVG. SPARES AVAIL

INPUT DATA		M	AVL	BETA	CO	YO	MTBR	1/MU	CPSER	CPSP	URC	CIPC	UTC	SUPSER	SYPSP	OCPSER	TRUE-COST
10	.100	10.	.900	1.00	1.	3500.	65.000	1000.	1000.	90.	617.	49.	0.	0.	32.	123.	62.
OUTPUT DATA		FR		FRBAR		ASTAR		3		0.92369		RBAR		COST		PRE-NORTH	
79	.100	10.	0.00147100	0.0018746		0.21464		5		0.92369		5.4		300.42		3009.42	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSER	
10	.100	28.	.900	1.00	6.	3500.	62.500	1000.	1000.	90.	509.	49.	0.	0.	32.	142.	63.
OUTPUT DATA		FR		FRBAR		0.00152455		0.00156973		0.22380		5		0.92369		RBAR	
80	.100	28.	0.00152455	0.00156973		0.22380		5		0.92369		5.3		402.50		7465.35	
INPUT DATA		FR		FRBAR		BETA		CC		YC		MTBR		1/MU		CPSP	
10	.100	50.	.900	1.00	6.	4250.	60.000	2122.	2122.	90.	615.	38.	0.	0.	32.	163.	10.
OUTPUT DATA		FR		FRBAR		FR		50		0.001536767		ASTAR		6		0.91466	
81	.100	50.	0.001536767	0.00145076		0.242192		6		0.91466		6		0.91466		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSER	
10	.100	82.	.900	1.00	6.	5500.	57.500	1969.	1969.	90.	681.	40.	0.	0.	32.	176.	10.
OUTPUT DATA		FR		FRBAR		FR		82.		0.00099101		ASTAR		6		0.91325	
82	.00099101	0.00124557		0.227106		10		10		0.91325		10		0.91325		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	121.	.900	1.00	6.	6500.	55.000	1959.	1959.	90.	951.	42.	0.	0.	32.	12306.19	12306.19
OUTPUT DATA		FR		FRBAR		FR		83.		0.000982569		ASTAR		12		0.90616	
83	.000982569	0.00103161		0.223624		12		11		0.90616		12		0.90616		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSER	
10	.100	121.	.900	1.00	6.	7500.	55.000	1966.	1966.	90.	1027.	44.	0.	0.	32.	190.	10.
OUTPUT DATA		FR		FRBAR		FR		84.		0.000982569		ASTAR		12		0.90113	
84	.000982569	0.0008992		0.224071		12		11		0.90113		12		0.90113		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	182.	.900	1.00	6.	6500.	55.000	1976.	1976.	90.	1027.	44.	0.	0.	32.	13551.03	13551.03
OUTPUT DATA		FR		FRBAR		FR		85.		0.000636369		ASTAR		12		0.90167	
85	.000636369	0.000612497		0.225622		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	208.	.900	1.00	6.	9000.	55.000	1670.	2002.	90.	1027.	44.	0.	0.	32.	15422.07	15422.07
OUTPUT DATA		FR		FRBAR		FR		86.		0.00060941		ASTAR		12		0.90167	
86	.00060941	0.00074167		0.226527		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	229.	.900	1.00	6.	9000.	55.000	2028.	2028.	90.	1027.	44.	0.	0.	32.	15495.95	15495.95
OUTPUT DATA		FR		FRBAR		FR		87.		0.00060941		ASTAR		12		0.90167	
87	.00060941	0.00064798		0.231497		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	251.	.900	1.00	6.	9000.	55.000	2046.	2046.	90.	1027.	44.	0.	0.	32.	1548.44	1548.44
OUTPUT DATA		FR		FRBAR		FR		88.		0.00060941		ASTAR		12		0.90167	
88	.00060941	0.00062299		0.231497		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	251.	.900	1.00	6.	9000.	55.000	2053.	2053.	90.	1027.	44.	0.	0.	32.	1546.01	1546.01
OUTPUT DATA		FR		FRBAR		FR		89.		0.00060941		ASTAR		12		0.90167	
89	.00060941	0.00062299		0.231497		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	251.	.900	1.00	6.	9000.	55.000	2053.	2053.	90.	1027.	44.	0.	0.	32.	1546.01	1546.01
OUTPUT DATA		FR		FRBAR		FR		90.		0.00060941		ASTAR		12		0.90167	
90	.00060941	0.00062299		0.231497		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	251.	.900	1.00	6.	9000.	55.000	2053.	2053.	90.	1027.	44.	0.	0.	32.	1546.01	1546.01
OUTPUT DATA		FR		FRBAR		FR		91.		0.00060941		ASTAR		12		0.90167	
91	.00060941	0.00062299		0.231497		12		13		0.90167		12		0.90167		RBAR	
INPUT DATA		FR		FRBAR		BETA		CO		YO		MTBR		1/MU		CPSP	
10	.100	251.	.900	1.00	6.	9000.	55.000	2053.	2053.	90.	1027.	44.	0.	0.	32.	1546.01	1546.01
OUTPUT DATA		FR		FRBAR		FR		92.		0.00060941		ASTAR		12		0.90167	
92	.00060941	0.00062299		0.231497		12		13		0.90167		12		0.90167		RBAR	

Figure 4.--continued

SAMPLE RUN 3
OPTIONS : DYNAMIC, HEURISTIC OPT, TIME AVG, FLEET AVAIL

INPUT DATA	VRS	HATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1860.	CPSP	UHC	CIPC	UTC	SVPS	OCPSER	CIC
10	.100	10.	.950	0.45	1.	1.	1.	3500.	65.000	0.	0.214646	5	3	0.97552	RBAR	617.	49.
OUTPUT DATA															CUST	3609.42	PR-MORTH
10	79	10	0.00147186	0.00147186	FR	FBAR	ASIA									3800.42	TRUE-COST
INPUT DATA															2658.47	2651.47	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1946.	62.500	0.222330	5	4	0.95103	RBAR	709.	49.
10	.100	28.	.950	0.45	0.	0.	3500.								1806.43	PR-MORTH	
OUTPUT DATA															5451.63	TRUE-COST	
10	80	28	0.00152455	0.00152455	FR	FBAR	ASIA								2269.27	2711.80	
INPUT DATA																	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	2122.	60.000	0.222330	5	4	0.95103	RBAR	615.	38.
10	.100	50.	.950	0.45	0.	0.	4250.								0.	0.	
OUTPUT DATA															PR-MORTH	TRUE-COST	
10	81	50	0.00136767	0.00136767	FR	FBAR	ASIA								7830.38	7500.55	
INPUT DATA																	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1989.	57.500	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	82	.950	0.45	0.	0.	5500.								2887.96	2844.56	
OUTPUT DATA																	
10	82	82	0.00099101	0.00099101	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															7830.38	7500.55	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1989.	57.500	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	121.	.950	0.45	0.	0.	6500.								PR-MORTH	TRUE-COST	
OUTPUT DATA															7830.38	7500.55	
10	83	121	0.00082569	0.00082569	FR	FBAR	ASIA								7933.90	7314.06	
INPUT DATA																	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1959.	55.000	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	150.	.950	0.45	0.	0.	7500.								1809.13	1776.11	
OUTPUT DATA																	
10	84	150	0.00071031	0.00071031	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															7933.90	7314.06	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1966.	55.000	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	182.	.950	0.45	0.	0.	6500.								1809.13	1776.11	
OUTPUT DATA																	
10	85	182	0.00063699	0.00063699	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															8007.61	7314.06	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	1976.	55.000	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	206.	.950	0.45	0.	0.	6500.								1809.13	1776.11	
OUTPUT DATA																	
10	86	206	0.00060941	0.00060941	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															8167.05	7314.06	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	2028.	55.000	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	226.	.950	0.45	0.	0.	9000.								1809.13	1776.11	
OUTPUT DATA																	
10	87	226	0.00061725	0.00061725	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															8167.05	7314.06	
VRS	RATE	M	AVL	BETA	CO	VO	MTBR	1/MU	2046.	55.000	0.222192	6	4	0.95878	RBAR	620.	60.
10	.100	251.	.950	0.45	0.	0.	9000.								1809.13	1776.11	
OUTPUT DATA																	
10	88	251	0.00062296	0.00062296	FR	FBAR	ASIA								PR-MORTH	TRUE-COST	
INPUT DATA															8167.05	7314.06	

Figure 4. --continued

SAMPLE RUN 4
OPTIONS : DYNAMIC, HEURISTIC OPT., TIME AVG. SPARES AVAIL

VRS RATE	M.	AVL	BETA	CO	YU	MTBH	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	.000	1.00			3500.	65/600	1680.	49.	0.	0.0	32.	123.	10.	62.
OUTPUT DATA															
TR	M	10	0.001471186	FRAIR	ASTAR	5	3	0.92299	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	2658.47	
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	.28.	.000	1.00	0.	3500.	62/500	1948.	49.	0.	0.0	32.	142.	10.	95.
OUTPUT DATA															
TR	M	86	0.00152455	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	5996.52	
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	.50.	.000	1.00	0.	4250.	60/600	2122.	38.	0.	0.0	32.	163.	10.	165.
OUTPUT DATA															
TR	M	81	50	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	3675.16	
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	.82.	.000	1.00	0.	5900.	57/500	1989.	46.	0.	0.0	32.	176.	10.	176.
OUTPUT DATA															
TR	M	82	0.000699101	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	9178.41	
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	121.	.000	1.00	0.	6500.	55/600	1959.	46.	0.	0.0	32.	190.	10.	111.
OUTPUT DATA															
TR	M	83	121	0.000682569	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	12603.02
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	158.	.000	1.00	0.	7500.	55/600	1966.	46.	0.	0.0	32.	205.	10.	127.
OUTPUT DATA															
TR	M	84	158	0.000671831	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	15662.02
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	182.	.000	1.00	0.	6500.	55/600	1976.	46.	0.	0.0	32.	205.	10.	135.
OUTPUT DATA															
TR	M	85	182	0.000663699	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	16615.61
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	205.	.000	1.00	0.	9000.	55/600	2002.	46.	0.	0.0	32.	205.	10.	137.
OUTPUT DATA															
TR	M	86	206	0.000660941	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	21761.24
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	229.	.000	1.00	0.	9000.	55/600	2028.	46.	0.	0.0	32.	205.	10.	137.
OUTPUT DATA															
TR	M	87	229	0.000661725	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	24016.42
INPUT DATA															
VRS RATE	M.	AVL	BETA	CO	YU	MTBR	1/MU	CPSP	URC	CIPC	UTC	SPSER	SVPSP	OCPSER	CIC
10	.100	251.	.000	1.00	0.	9000.	55/600	2046.	46.	0.	0.0	32.	205.	10.	137.
OUTPUT DATA															
TR	M	88	251	0.000662296	FRAIR	ASTAR	5	3	0.92353	RBAR	CUST	PR-NORTH	PR-NORTH	TRUE-COST	28583.98

Figure 4.--continued

SAMPLE RUN 5

OPTIONS : STATIC, NEUMISTIC UPT, FLFTI AVAIL

INPUT DATA						OUTPUT DATA					
YRS	RATE	M	AVL	BETA	CU	YU	MTHK	1/MU	M	CPSH	UKC
20	.100	250.	.950	0.95	6.	11.	9000.	55,000	2046.	90.	1027.
											44.
										0.	0.0
										32.	205.
										10.	137.

YR	M	FR	FKAH	ASIAH	C	Y	AVAIL	MBAH	CUST	MHEUH	IMUL-CUST
79	256	0.00062296	0.00062296	0.233612	17	1	0.95056	56.5	024.83	024.83	3354.43

YR	M	FR	FKAH	ASIAH	C	Y	AVAIL	MBAH	CUST	MHEUH	IMUL-CUST
----	---	----	------	-------	---	---	-------	------	------	-------	-----------

SAMPLE RUN 6

OPTIONS : STATIC, NEUMISTIC UPT, SPARES AVAIL

INPUT DATA						OUTPUT DATA					
YRS	RATE	M	AVL	BETA	CU	YU	MTHK	1/MU	M	CPSH	UKC
20	.100	250.	.900	1.00	6.	11.	9000.	55,000	2046.	90.	1027.
											44.
										0.	0.0
										32.	205.
										10.	137.

YR	M	FR	FKAH	ASIAH	C	Y	AVAIL	MBAH	CUST	MHEUH	IMUL-CUST
----	---	----	------	-------	---	---	-------	------	------	-------	-----------

YR	M	FR	FKAH	ASIAH	C	Y	AVAIL	MBAH	CUST	MHEUH	IMUL-CUST
----	---	----	------	-------	---	---	-------	------	------	-------	-----------

Figure 4. --continued

SAMPLE RUN 7
OPTIONS : DYNAMIC, HEURISTIC OPT, RATE AVG, FLEET AVAIL

INPUT DATA	M	AVL	BETA	CO	YO	MTBR	1/MU	CPSP	URC	CIPC	UTC	SUPSP	OCPSP	CIC
TNS RATE	10.	.950	0.95	1.	3500.	65.	1/MU	1880.	49.	0.	0.0	32.	123.	10.
10 .100	10.	.950	0.95	1.	3500.	65.	1/MU	1880.	49.	0.	0.0	32.	123.	10.
OUTPUT DATA	FR													
TR	10	0.00147186	0.00147186	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	3159.92				TRUE-COST
10 .100	10	0.00147186	0.00147186	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	3159.92				TRUE-COST
INPUT DATA	FR													
TNS RATE	M	AVL	BETA	CO	YO	MTBR	1/MU	CPSP	URC	CIPC	UTC	SUPSP	OCPSP	CIC
10 .100	28.	.950	0.95	0.	0.	3500.	62.500	1948.	49.	0.	0.0	32.	142.	10.
OUTPUT DATA	FR													
TR	M	FR												
86	28	0.00152255	0.00152255	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	1860.43				TRUE-COST
10 .100	50.	0.950	0.95	0.	0.	4250.	60.000	2122.	90.	38.	0.	0.0	32.	163.
OUTPUT DATA	FR													
TR	M	FR												
81	50	0.00136167	0.00136167	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	2867.98				TRUE-COST
10 .100	92.	0.950	0.95	0.	0.	5500.	57.500	1939.	90.	40.	0.	0.0	32.	176.
OUTPUT DATA	FR													
TR	M	FR												
82	82	0.00090101	0.00090101	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	258.26				TRUE-COST
10 .100	121.	0.950	0.95	0.	0.	6500.	55.000	1959.	90.	42.	0.	0.0	32.	190.
OUTPUT DATA	FR													
TR	M	FR												
83	121	0.00082269	0.00082269	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	0.0				TRUE-COST
10 .100	150.	0.950	0.95	0.	0.	7500.	55.000	1966.	CPSP	7379.92				TRUE-COST
OUTPUT DATA	FR													
TR	M	FR												
84	150	0.00071331	0.00071331	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	2748.65				TRUE-COST
10 .100	182.	0.950	0.95	0.	0.	8500.	55.000	1976.	CPSP	7379.92				TRUE-COST
OUTPUT DATA	FR													
TR	M	FR												
85	182	0.00063599	0.00063599	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	3221.92				TRUE-COST
10 .100	208.	0.950	0.95	0.	0.	9000.	55.000	2002.	CPSP	7657.66				TRUE-COST
OUTPUT DATA	FR													
TR	M	FR												
86	208	0.00066041	0.00066041	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	2766.49				TRUE-COST
10 .100	229.	0.950	0.95	0.	0.	925602	15.	4	0.95493	52.9				TRUE-COST
OUTPUT DATA	FR													
TR	M	FR												
87	229	0.00061125	0.00061125	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	7657.66				TRUE-COST
10 .100	251.	0.950	0.95	0.	0.	9000.	55.000	2046.	CPSP	7657.66				TRUE-COST
OUTPUT DATA	FR													
TR	M	FR												
88	251	0.00062296	0.00062296	FRBAR	ASTAR	\$	\$	Avail\$	PRBAR	7657.66				TRUE-COST

Figure 5.--Illustration of perturbation option.

SAMPLE RUN A												
OPTIONS 1: DYNAMIC, PERTURB MODEL, RATE AVG, FLEET AVAIL												
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	10.	.950	0.95	3.	6.	3500.	65.000	1860.	400.	49.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	10	0.00147166	0.00147166	0.214646	3	6	0.999421	94.	5686.06	PR-MORIH	5684.06	
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	26.	.950	0.95	70.	6.	3500.	62.500	1948.	709.	49.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	26	0.00152455	0.00150573	0.222330	7	6	0.999366	154.	559.11	PR-MORIH	53492.37	
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	50.	.950	0.95	6.	4250.	60.000	2122.	CPJER	615.	38.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	50	0.001536167	0.00145077	0.242192	6	3	0.95815	26.3	133.76	PR-MORIH	6502.91	
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	92.	.950	0.95	10.	6.	5500.	57.500	1989.	90.	40.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	92	0.000991011	0.00124469	0.227106	10	6	0.95716	36.8	254.26	PR-MORIH	6693.94	
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	121.	.950	0.95	16.	6.	6500.	55.000	1959.	90.	42.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	121	0.00092569	0.00103201	0.223624	10	6	0.95089	44.9	0.0	PR-MORIH	2457.83	
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	158.	.950	0.95	14.	5.	7500.	55.000	1966.	90.	1027.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	158	0.00071831	0.00063699	0.00060005	0.224071	14	5	0.95176	51.0	447.32	PR-MORIH	6693.94
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	182.	.950	0.95	160.	4.	8500.	55.000	1976.	CP3P	44.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	182	0.00063699	0.00063699	0.00060005	0.225602	13	4	0.95573	52.9	0.0	PR-MORIH	4971.69
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	206.	.950	0.95	150.	4.	9000.	55.000	2002.	CP3P	44.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	206	0.00063699	0.00063699	0.00060005	0.226527	13	4	0.96466	52.2	0.0	PR-MORIH	4971.69
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	229.	.950	0.95	150.	3.	9000.	55.000	2028.	CP3P	44.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	229	0.00063699	0.00063699	0.00060005	0.231467	13	3	0.95377	57.0	0.0	PR-MORIH	3166.07
INPUT DATA											TRUE-COST	
VRS	RATE	M	AVL	BETA	CU	YO	MTRR	1/MU	CPSER	CP3P	URC	
10	.100	251.	.950	0.95	150.	3.	9000.	55.000	2046.	CP3P	44.	
OUTPUT DATA					FRBAR	ASTAR	C	Y	AVAIL	RBAR	COST	
10	251	0.00063699	0.00063699	0.00060005	0.233612	13	3	0.95079	60.2	0.0	PR-MORIH	5166.07

Figure 5.--continued

Sample Run 7 except KTC is set to 2 and all CO,YO values *must be punched in* and would be equal to the C,Y values of Sample Run 7, except for changing the 1979 and 1980 YOs to 6.

Note that there is a large difference between the algorithm costs and the true costs. Much of this is due to $(URC + UTC)\bar{R}$, and while \bar{R} is affected by the choices of the decision variables C and Y, the effect on optimality is of a secondary nature since \bar{R} changes only very slightly for vast differences in C and Y when all else is constant (compare, for example, Sample Runs 5 and 6 or years 1979 and 1980 in Sample Runs 7 and 8). While CIPC could have a sizable effect on optimal costs because it is directly related to attainable failure rates, this can be studied via a sensitivity type of analysis; that is, rerunning with a variety of CIPC programs and their associated failure rate schedules. In the Sample Runs 1 through 8, CIPC (as well as UTC) was set to zero. In Sample Run 9, shown in Figure 6, we do a five-year dynamic horizon with conditions the same as for Run 1, except that CIPC is set at 400, 500, 600, 200, 200 and UTC is set at 5, 5, 10, 10, 10, respectively over the five-year period. Although the algorithm solution came out the same as for Run 1, the algorithm costs differ somewhat from Run 1 due to a five-year rather than a ten-year anticipated horizon. The true cost and true present worth differ to account for the added CIPC and UTC costs.

10. Intermediate Output, Cost Functions, and the Heuristic Optimization Algorithm

Also provided (if so desired by setting KWRITE=1) as output are intermediate values of Y and C which "step up" from Y0 and CO, showing the operation of the algorithm at each iteration. Briefly, the heuristic algorithm works as follows.

For the dynamic mode, the true present worth of the sum of discounted yearly costs over a dynamic horizon of K years is given by

SAMPLE RUN 9

OPTIONS : DYNAMIC, HEURISTIC OPT, RATE AVG, FILET AVAIL

INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	10.	.950	0.95	1.	1.	3500.	65,000	1880.	90.	617.	49.	400.	5.0	37.	123.	10.	82.
OUTPUT DATA	YR	M	FR	FRAAP		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	20.	.950	0.95	0.	0.	3500.	62,500	1968.	90.	709.	49.	500.	5.0	37.	142.	10.	95.
OUTPUT DATA	YR	M	FR	FRRAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	50.	.950	0.95	0.	0.	4250.	60,000	2127.	90.	915.	40.	600.	10.0	32.	163.	10.	109.
OUTPUT DATA	YR	M	FR	FRAAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	92.	.950	0.95	0.	0.	5500.	57,500	1989.	90.	AB1.	40.	200.	10.0	32.	176.	10.	117.
OUTPUT DATA	YR	M	FR	FRRAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	121.	.950	0.95	0.	0.	6500.	55,000	1959.	90.	951.	42.	200.	10.0	37.	190.	10.	127.
OUTPUT DATA	YR	M	FR	FRAAP		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
OUTPUT DATA	YR	M	FR	FRAAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
INPUT DATA	YRS	RATE	AVL	BFTA	CN	YO	MTRR	1/MU	H	CPSER	CPSP	URC	CIPC	UTC	SVPSP	OCPSER	CIC	
INPUT DATA	.100	121.	.950	0.95	0.	0.	6500.	55,000	1959.	90.	951.	42.	200.	10.0	37.	190.	10.	127.
OUTPUT DATA	YR	M	FR	FRAAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					
OUTPUT DATA	YR	M	FR	FRAAR		ASTAR	C	Y	AVAIL	RBAR	COST	PR-MORTH	TRUE-COST					

Figure 6.--Example showing component improvement and transportation costs.

$$\begin{aligned}
 \text{TRUE-PW} = & \sum_{J=1}^K \left(\frac{1}{1+R} \right)^{J-1} \left\{ \text{CPSER}(J) [C(J)-C(J-1)]^+ \right. \\
 & + \text{SVPSEN}(J) [C(J)-C(J-1)]^- + \text{OCPSEN}(J) \cdot C(J) \\
 & + \text{CPSP}(J) [Y(J)-Y(J-1)]^+ + \text{SVPSP}(J) [Y(J)-Y(J-1)]^- \\
 & \left. + \text{CIC}(J) \cdot Y(J) + \text{CIPC}(J) + [\text{URC}(J) + \text{UTC}(J)] \text{RBAR}(J) \right\}, \quad (5)
 \end{aligned}$$

where the symbols are as defined in Tables I and III, and the $[a-b]^+([a-b]^-)$ indicates the maximum (minimum) of $(a-b, 0)$.

Now the heuristic algorithm present worth is taken to be

$$\text{PR-WORTH} = \sum_{J=1}^K \left(\frac{1}{1+R} \right)^{J-1} \left\{ C_1(J) [C(J)-C(J-1)]^+ + C_2(J) [Y(J)-Y(J-1)]^+ \right\}, \quad (6)$$

where C_1 and C_2 are given by

$$\begin{aligned}
 C_1 &= \text{CPSEN} + \text{OCPSEN} \left[\frac{(1+R)[(1+R)^{K-i+1} - 1]}{R(1+R)^{K-i+1}} \right] - \text{SVPSEN} \left[\frac{1}{(1+R)^{K-i+1}} \right], \quad (7) \\
 C_2 &= \text{CPSP} + \text{CIC} \left[\frac{(1+R)[(1+R)^{K-i+1} - 1]}{R(1+R)^{K-i+1}} \right] - \text{SVPSP} \left[\frac{1}{(1+R)^{K-i+1}} \right].
 \end{aligned}$$

First, the C_1 and C_2 are computed, where C_1 is a function of the purchase cost, operating cost, and salvage value of a repair channel and C_2 is a function of the purchase cost, carrying cost, and salvage value of a spare as given by Equation (7) for the dynamic model. The first bracket term brings the annual costs, OCPSEN and CIC, to a beginning of year i equivalent cost, while the second bracket term brings the salvage value to a beginning of year i equivalent term; that is, the bracket terms are the present worth factors for a beginning of year series payment and end of horizon payment, respectively. Note that the algorithm assumes that if a spare or repair channel is purchased in year i , the annual costs at year i values are incurred through the end of the horizon, even if removal occurs sooner.

The algorithm forms a ratio (call Δ) of C_1/C_2 or C_2/C_1 , depending on the relative magnitudes in such a way that the ratio is ≥ 1 . Then given a pair of values C, Y (to start year i , C_{i-1} and Y_{i-1} are used) the availability is computed. If it is below the desired level and if, for example, $\Delta = C_1/C_2$, then for an equal dollar expenditure Δ repair channels or one spare can be added. Availability is calculated for both cases (adding Δ repair channels or one spare) and the case yielding the higher availability becomes the new C, Y pair. The algorithm repeats until the desired availability is met. Upon exceeding the desired availability, a backoff procedure is utilized. If feasibility was reached by adding Δ channels, the algorithm first attempts to remove a spare and then channels are removed one at a time to see if a cheaper solution exists near the boundary. If feasibility was reached by adding a spare, again one-at-a-time removal of channels is tried. Had $\Delta = C_2/C_1$, the words channel and spare would be reversed in describing the algorithm.

When the initial values of C and Y for year i exceed the availability desired, the algorithm immediately goes into a backoff mode, trying to remove spares and channels one at a time, starting with the more expensive (larger C_i value) first.

The algorithm uses only C_1 and C_2 . The other costs (URC, UTC, CIPC) are not used in the algorithm but are considered in the true cost calculations. The costs inside the braces in Equations (5) and (6) are what is given as TRUE-COST and COST, respectively, for each year in the output.

In the static mode the algorithm works in the same way, except the functions C_1 and C_2 are changed to reflect all costs as equivalent uniform series end of period expenditures over the system life. Thus, the purchase costs and salvage values are multiplied by sinking fund and capital recovery factors, and the yearly operating costs associated with spares and channels which are assumed beginning of period expenditures are multiplied by $(1+R)$. Hence,

$$C_1 = CPSER \left[\frac{R(1+R)^K}{(1+R)^K - 1} \right] + OCPSER[1+R] - SVPSER \left[\frac{R}{(1+R)^K - 1} \right] \quad (8)$$

$$C_2 = CPSP \left[\frac{R(1+R)^K}{(1+R)^K - 1} \right] + CIC[1+R] - SVPSP \left[\frac{R}{(1+R)^K - 1} \right].$$

The costs URC, UTC, and CIPC are also assumed year beginning costs and are multiplied by $(1+R)$ to bring them to year-end expenditures, and are incorporated into the TRUE-COST calculation by adding $(URC + UTC) \cdot (1+R)^{\bar{R}}$ and $CIPC \cdot (1+R)$ to $C_1 \times (C) + C_2 \times (Y)$. This is then the value which shows as both TRUE-COST and TRUE-PW on the output, TRUE-PW (as well as PR-WORTH, which equals COST) being redundant in the static mode.

A sample of intermediate output is shown in Figure 7 for the first year of Sample Run 1. Shown are the failure rate for year i (RLAM), average population failure rate for year i (AMTBR), average turn-around (repair) time (ST), availability for the particular combination of C and Y, average queue size at repair depot (LQ), and average number of units in repair (L).

11. Acknowledgment

The authors wish to thank Mr. Arturo Balana for his help in modifying the original SASPRO program that led to SASPRO II.

```

M3 10.0 C= 1.0 Y= 1.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.38615D 00 LU= 0.1610U 01 L= 2.4129
M3 10.0 C= 0.0 Y= 1.0 RLAM=0.147186U-02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.76002D 00 LU= 0.1538D-07 L= 0.9266
M3 10.0 C= 1.0 Y= 2.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.49112D 00 LU= 0.2000U 01 L= 2.8293
M3 10.0 C= 15.0 Y= 1.0 RLAM=0.147186U+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.76002D 00 LU= U.U L= 0.9266
M3 10.0 C= 0.0 Y= 2.0 RLAM=0.147186U+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.92963D 00 LU= 0.5208U-U7 L= 0.9484
M3 10.0 C= 15.0 Y= 2.0 RLAM=0.147186U-U2 AMTBK=0.0014719 ST= 65.000 AVAIL=0.92965D 00 LU= 0.0 L= 0.9484
M3 10.0 C= 0.0 Y= 3.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.98395D 00 LU= 0.1332D-06 L= 0.9549
M3 10.0 C= 7.0 Y= 3.0 RLAM=0.147186U+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.98395D 00 LU= 0.2655D-05 L= 0.9549
M3 10.0 C= 6.0 Y= 3.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.98394D 00 LU= 0.4001D-04 L= 0.9549
M3 10.0 C= 5.0 Y= 3.0 RLAM=0.147186U+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.98387D 00 LU= 0.4669D-03 L= 0.9555
M3 10.0 C= 4.0 Y= 3.0 RLAM=0.147186U+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.98305D 00 LU= 0.4328D-02 L= 0.9540
M3 10.0 C= 3.0 Y= 3.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.97552D 00 LU= 0.3333U-U1 L= 0.9868
M3 10.0 C= 2.0 Y= 3.0 RLAM=0.147186D+02 AMTBK=0.0014719 ST= 65.000 AVAIL=0.93769D 00 LU= 0.2403U 0U L= 1.1875

```

Figure 7.--Intermediate output, Sample Run 1, first year.

REFERENCES

- BARZILY, Z., D. GROSS, and H. D. KAHN (1977). Some practical considerations in the application of finite source queueing models. Technical Paper Serial T-360, Program in Logistics, The George Washington University.
- GROSS, D. and J. F. INCE (1978). Spares provisioning for a heterogeneous population. Technical Paper Serial T-376, Program in Logistics, The George Washington University.
- GROSS, D., H. D. KAHN, and J. D. MARSH (1977). Queueing models for spares provisioning. *Naval Res. Logist. Quart.* 24 521-536.
- GROSS, D. and C. E. PINKUS (1978). Designing a support system for repairable items. Technical Paper Serial T-367, Program in Logistics, The George Washington University. To appear in *Comput. and Operations Res.* (1979).

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University Office of Sponsored Research Library Vice President H. F. Bright Dean Harold Liebowitz Dean Henry Solomon	Army Logistics Mgt Center Fort Lee
ONR Chief of Naval Research (Codes 200, 434) Resident Representative	Commanding Officer, USALDSRA New Cumberland Army Depot
OPNAV OP-40 DCNO, Logistics Navy Dept Library NAVIDATA Automation Cmd OP-964	Army Inventory Res Ofc Philadelphia
Naval Aviation Integrated Log Support	Air Force Headquarters AFADS-3 LEXY SAF/ALG
NARDAC Tech Library	Griffiss Air Force Base Reliability Analysis Center
Naval Electronics Lab Library	Gunter Air Force Base AFLMC/XR
Naval Facilities Eng Cmd Tech Library	Maxwell Air Force Base Library
Naval Ordnance Station Louisville, Ky. Indian Head, Md.	Wright-Patterson Air Force Base Log Command Research Sch Log AFALD/XR
Naval Ordnance Sys Cmd Library	Defense Documentation Center
Naval Research Branch Office Boston Chicago New York Pasadena San Francisco	National Academy of Sciences Maritime Transportation Res Board Library
Naval Ship Eng Center Philadelphia, Pa. Washington, DC	National Bureau of Standards Dr B. H. Colvin Dr Joan Rosenblatt
Naval Ship Res & Dev Center	National Science Foundation
Naval Sea Systems Command PMS 30611 Tech Library Code 073	National Security Agency
Naval Supply Systems Command Library Operations and Inventory Analysis	Weapon Systems Evaluation Group
Naval War College Library Newport	British Navy Staff
RUPERS Tech Library	National Defense Hdqtrs, Ottawa Logistics, OR Analysis Establishment
FMSO	American Power Jet Co George Chernowitz
Integrated Sea Lift Study	General Dynamics, Pomona
USN Ammo Depot Earle	General Research Corp Dr Hugh Cole Library
USN Postgrad School Monterey Library Dr Jack R. Borsting Prof C. R. Jones	Logistics Management Institute Dr Murray A. Geisler
US Marine Corps Commandant Deputy Chief of Staff, R&D	MATHTEC Dr Eliot Feldman
Marine Corps School Quantico Landing Force Dev Ctr Logistics Officer Commanding Officer USS Francis Marion (LPA-249)	Rand Corporation Library
Armed Forces Industrial College	Carnegie-Mellon University Dean R. A. Simon Prof G. Thompson
Armed Forces Staff College	Case Western Reserve University Prof B. V. Dean Prof M. Mesarovic Prof S. Zacks
Army War College Library Carlisle Barracks	Cornell University Prof R. E. Beechhofer Prof R. W. Conway Prof Andrew Schultz, Jr.
Army Cmd & Gen Staff College	Cowles Foundation for Research in Economics Prof Herbert Scarf Prof Martin Shubik
	Florida State University Prof R. A. Bradley
	Harvard University Prof K. J. Arrow Prof W. G. Cochran Prof Arthur Schleifer, Jr.
	Princeton University Prof A. W. Tucker Prof J. W. Tukey Prof Geoffrey S. Watson

Purdue University
 Prof S. S. Gupta
 Prof H. Rubin
 Prof Andrew Winston
 Stanford University
 Prof T. W. Anderson
 Prof G. B. Dantzig
 Prof F. S. Hillier
 Prof D. L. Iglehart
 Prof Samuel Karlin
 Prof G. J. Lieberman
 Prof Herbert Solomon
 Prof A. F. Veinott, Jr.
 University of California, Berkeley
 Prof R. E. Barlow
 Prof D. Gale
 Prof Jack Kiefer
 Prof Rosedith Sitgreaves
 University of California, Los Angeles
 Prof J. R. Jackson
 Prof R. R. O'Neill
 University of North Carolina
 Prof W. L. Smith
 Prof M. R. Leadbetter
 University of Pennsylvania
 Prof Russell Ackoff
 Prof Thomas L. Saaty
 University of Texas
 Prof A. Charnes
 Yale University
 Prof F. J. Anscombe
 Prof T. R. Savage
 Prof Z. W. Birnbaum
 University of Washington
 Prof B. H. Bissinger
 The Pennsylvania State University
 Prof Seth Bonder
 University of Michigan
 Prof G. E. P. Box
 University of Wisconsin
 Dr Jerome Bracken
 Institute for Defense Analyses
 Prof H. Chernoff
 Mass. Institute of Technology
 Prof Arthur Cohen
 Rutgers - The State University
 Mr Wallace M. Cohen
 US General Accounting Office
 Prof C. Derman
 Columbia University
 Prof Masao Fukushima
 Kyoto University
 Prof Saul I. Gass
 University of Maryland
 Dr Donald P. Gaver
 Carmel, California
 Prof Amrit L. Goel
 Syracuse University
 Prof J. F. Hannan
 Michigan State University
 Prof H. O. Hartley
 Texas A & M Foundation
 Mr Gerald F. Hein
 NASA, Lewis Research Center
 Prof W. M. Hirsch
 Courant Institute
 Dr Alan T. Hoffman
 IBM, Yorktown Heights
 Prof John R. Isbell
 State University of New York, Albany
 Dr J. L. Jain
 University of Delhi
 Prof J. H. K. Kao
 Polytech Institute of New York
 Prof W. Kruskal
 University of Chicago
 Mr S. Kumar
 University of Madras
 Prof C. E. Lemke
 Rensselaer Polytech Institute
 Prof Loynes
 University of Sheffield, England
 Prof Steven Nahmias
 University of Pittsburgh
 Prof D. B. Owen
 Southern Methodist University
 Prof E. Parzen
 Texas A & M University
 Prof H. O. Posten
 University of Connecticut
 Prof R. Remage, Jr.
 University of Delaware
 Prof Hans Riedwyl
 University of Bern
 Dr Fred Rigby
 Texas Tech College
 Mr David Rosenblatt
 Washington, D. C.
 Prof M. Rosenblatt
 University of California, San Diego
 Prof Alan J. Rowe
 University of Southern California
 Prof A. H. Rubenstein
 Northwestern University
 Dr M. E. Salveson
 West Los Angeles
 Prof Edward A. Silver
 University of Waterloo, Canada
 Prof M. J. Sobel
 Georgia Inst of Technology
 Prof R. M. Thrall
 Rice University
 Dr S. Vajda
 University of Sussex, England
 Prof T. M. Whitin
 Wesleyan University
 Prof Jacob Wolfowitz
 University of South Florida
 Prof Max A. Woodbury
 Duke University