

Automated and Early Detection of Disease Outbreaks

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
 - Shiga- and verotoxin producing E. coli.
- State-of-the-art
 - Farrington
 - Noufaily
- Hierarchical models
 - Hierachical Poisson-Normal model
 - Hierachical Poisson-Gamma model
- Comparison of methods
- References
- Appendix

DTU

Shiga- and verotoxin producing E. coli.

Date	ageGroup	y_{it}	x_{it}
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	635838
2022-12-01	5-14 years	5	634139
2022-12-01	15-24 years	1	721286
2022-12-01	25-64 years	10	3031374
2022-12-01	65+ years	12	1204892

Shiga- and verotoxin producing E. coli.

DTU

Shiga- and verotoxin producing E. coli.

Shiga- og veratoxin producerende E. coli.

Month

DTU

Shiga- and verotoxin producing E. coli.

State-of-the-art

State-of-the-art

State-of-the-art methods for aberration detection is presented in Salmon, Schumacher, and Höhle 2016 and implemented in the R package **surveillance**. The R package includes methods such as the Farrington method introduced by Farrington et al. 1996 together with the improvements proposed by Noufaily et al. 2013.

State-of-the-art

DTU

Farrington

State-of-the-art

DTU

Noufaily

Hierachical Poisson-Normal model

The conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution with intensities λ_{it} . Also, we shall assume that the count is proportional to the population size, x_{it} , within each age group, i, at a given time point, t. Hence, in terms of the canonical link for the Poisson distribution the model for the fixed effect is

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) \tag{1}$$

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. The random effects u_{it} are assumed to be Gaussian.

$$u_{it} = \epsilon_{it} \tag{2}$$

where $\epsilon_{it} \sim N(0, \sigma^2)$ is a white noise process, and σ is a model parameter.

Formulation

Henceforth, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}e^{u_{it}})$$
 (3a)

$$u_{it} \sim N(0, \sigma^2)$$
 (3b)

DTU

Results

DTU

Results

Threshold calculation

The critical value, C_{α} , is computed from the $1-\alpha$ -quantile of the Normal distribution with the maximum-likelihood estimate for the variance, $\hat{\sigma}$.

$$C_{\alpha} = \mathcal{N}(0, \hat{\sigma}^2)_{1-\alpha} \tag{4}$$

NOTE: For this presentation a default of $\alpha=0.05$ is used.

Results

Hierachical Poisson-Gamma model

Likewise, in the compound Poisson-Gamma model the conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution, but this time the intensities, λ_{it} , are defined as

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it})$$
 (5)

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. Additionally, the random effects u_{it} are assumed to follow a reparametrized Gamma distribution with a mean 1.

DTU

Formulation

Subsequently, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}u_{it})$$
 (6a)

$$u_{it} \sim \mathrm{G}(1/\phi, \phi)$$
 (6b)

Probability function for Y

$$P[Y = y_i] = g_Y(y; \lambda, \phi)$$

$$= \frac{\lambda^y}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y, \text{ for } y = 0, 1, 2, \dots$$

$$(7)$$

where we have used the convention

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB\left(1/\phi, 1/(\lambda\phi + 1)\right)$

Inference on individual group means

Consider the hierarchical Poisson-Gamma model in (6), and assume that a value Y=y has been observed. Then the conditional distribution of u for given Y=y is a Gamma distribution,

$$u|Y = y \sim G(y + 1/\phi, \phi/(\lambda\phi + 1))$$
(9)

with mean

$$E[u|Y=y] = \frac{y\phi + 1}{\lambda\phi + 1} \tag{10}$$

and variance

$$V[u|Y = y] = \frac{(y\phi^2 + \phi)}{(\lambda\phi + 1)^2}$$
 (11)

Results

Results

Threshold calculation

The critical value, C_{α} , is computed from the $1-\alpha$ -quantile of the reparametrized Gamma distribution with the maximum-likelihood estimate for the variance, $\hat{\phi}$.

$$C_{\alpha} = G(1/\hat{\phi}, \hat{\phi})_{1-\alpha} \tag{12}$$

DTU

Results

Comparison of methods

DTU

Comparison of methods

References

- Farrington, C. P. et al. (1996). "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease". In: *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 159.3, pp. 547–563. ISSN: 09641998, 1467985X. URL: http://www.jstor.org/stable/2983331 (visited on 01/27/2023).
- Noufaily, Angela et al. (2013). "An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems". en. In: *Online Journal of Public Health Informatics* 32.7, pp. 1206–1222.
- Salmon, Maëlle, Dirk Schumacher, and Michael Höhle (2016). "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance". In: *Journal of Statistical Software* 70.10, pp. 1–35. DOI: 10.18637/jss.v070.i10. URL:

https://www.jstatsoft.org/index.php/jss/article/view/v070i10.

Proof - Probability function for Y

The probability function for the conditional distribution of Y for given u

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(13)

and the probability density function for the distribution of u is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi)$$
 (14)

Proof - Probability function for Y

Given (13) and (14), the probability function for the marginal distribution of Y is determined from

$$g_{Y}(y;\lambda,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_{u}(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du$$

$$= \frac{\lambda^{y}}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$
(15)

Proof - Probability function for Y

In (15) it is noted that the integrand is the kernel in the probability density function for a Gamma distribution, G $(y+1/\phi,\phi/(\lambda\phi+1))$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/\left(\phi/(\lambda\phi+1)\right)\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$
(16)

and then (7) follows

Proof - Conditional distribution of Y

The conditional distribution is found using Bayes Theorem

$$g_{u}(u|Y=y) = \frac{f_{y,u}(y,u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{f_{y|u}(y;u)g_{u}(u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{1}{g_{Y}(y;\lambda,\phi)} \left(\frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi-1} \exp(-u/\phi)\right)$$

$$\propto u^{y+1/\phi-1} \exp\left(-u(\lambda\phi+1)/\phi\right)$$
(17)

We identify the *kernel* of the probability density function

$$u^{y+1/\phi-1}\exp(-u(\lambda\phi+1)/\phi) \tag{18}$$

as the kernel of a Gamma distribution, $G(y+1/\phi,\phi/(\lambda\phi+1))$