= - Linear Cebir -OLEV-2: DETERMINANT Soru 1-) (A) 0 B) 3 C) 6 $A = \begin{bmatrix} 2020 & 2019 & 2018 & R_1 \\ 2017 & 2016 & 2015 & R_2 \\ 2014 & 2013 & 2012 & R_3 \\ 3x3 & 3x3 & 3x3 \end{bmatrix}$ Soru 2-)BJA SX3bir Kare matris almak Ozere ve KER almak Szere det A = 15, det B = 120 olduguna gore A matris B'nin Kas Kaldir & A) 2 (B) 1/2 () 3 D) 1/3 E) 5 $V_{B} = k.A$ } Bana (A = k.B) y's sorryor (A.k = B) degil [B = k.A } $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ N = 3 = 0 $K^{0} | B | = |A| = 0$ $K^{0} | B | = |A| = 0$

6201210101 Yunus Emire Akinci

Sorv 3-)
$$a_1b_1c_1 \in \mathbb{Z}^+$$
 olmak \overline{v}_2 ere $a^2+b^2=e^2$ d^2r .

 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & c & 1 \end{bmatrix}$

A sagidaktlerdon hangis? A matris? d^2r ?

 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & c & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & c & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} a & 1 & b \\ 2 & 0 & 2 \\ 1 & 1 & 5 \end{bmatrix}$

6201210101 Yunus Emre Akinci

Son 4-)
$R_{1} = 0 = 0 = 0 = 0$ $R_{2} = 0 = 0 = 0 = 0$ $R_{3} = 0 = 0 = 0$ $R_{4} = 0 = 0 = 0$ $R_{3} = 0 = 0 = 0$ $R_{4} = 0 = 0 = 0$ $R_{5} = 0 = 0 = 0$ $R_{5} = 0 = 0 = 0$ $R_{5} = 0 = 0 = 0$
Gozomo Herhangi 2 satir veya 2 sotun ardarında yer değistirine determinantın değeri -1 ile çarpılır. IAI= x olsun Ry ile Ry s Rz ile R3 yer değistirsin. [9000] -11 . x = x A= 0300 0020 Köşegen matriste determinant, Koşegen [0001] üzerindeki elemanların garpımına eşittir. IAI= 4.3.2.1= 41=24
Soru 5-) A sazi dakilerden Kac taneri dogrudur? • MXn tipinde bir matrisin determinanti olmasi isin m≠n olmalidir. • B=K.A olmak üzere IBI=K°. IAI dir. • A= [alx1 det A= a² dir. • Bir matrite herhansi 2 sotun veya 2 satir yer degisirse determinati degismez con A) 0 B)1 ②2 D)3 E)4 1-) Sadece nxn tipindeki matrislem determinati vadir. X 2-) Kuraldir. Dogradur V 3-> 1x1 tipindeki matrislede determinant matris teindeki elemana esittir X 4-> 11 21
43 12 = 1.4 - 2.3 = 4 - 6 = -2 $ 34 = 3.2 - 1.4 = 2$ $ 27 = 2$ $ 27 = 2$ $ 27 = 2$

Yunus Emre Akinci