

1

### Introduction

- ► Fine-tuning GPT refers to the process of adapting a pre-trained GPT model for a specific downstream NLP task.
- ▶ This is achieved by retraining the model on a smaller dataset that is specific to the target task. During this process, the weights of the model are adjusted to better fit the target data, allowing it to make more accurate predictions.
- ► Fine-tuning GPT can help data scientists leverage the pre-trained language model's knowledge to improve the accuracy of these tasks.

# Pretrained models and transformers

Are both tools used in deep learning for natural language processing tasks, but they serve different purposes.



3

### Pretrained models and transformers

| Feature       | Pretrained Model                                                                                                                            | Transformer                                                                                               |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Definition    | A machine learning model that has already been trained on large datasets and can be used as a starting point for new tasks                  | A type of neural network architecture that relies on self-attention mechanisms to process input sequences |  |
| Training      | Supervised learning on a specific task                                                                                                      | Can be used for a variety of natural language processing tasks                                            |  |
| Architecture  | Can be based on a variety of neural network architectures, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs) | A specific type of neural network architecture                                                            |  |
| Use Cases     | Text classification, sentiment analysis, named entity recognition                                                                           | Language modeling, text generation, machine translation                                                   |  |
| Preprocessing | Specific data preprocessing steps are often required                                                                                        | Tokenization techniques are often used to preprocess input sequences                                      |  |

These are generalizations and there can be overlap between the two approaches. For example, some pretrained models may be based on transformer architectures.

### Self-attention mechanisms

- ▶ Are a key component of transformer-based models used in natural language processing.
- Allows the model to attend to different parts of the input sequence when processing each individual element of the sequence.
- ▶ It works by computing attention weights between every pair of positions in the input sequence.
- ▶ The model learns to weigh each position in the input sequence based on how relevant it is to each other position in the sequence.
- Its advantages over traditional RNN.
  - > capture long-range dependencies between different parts of the input sequence.
  - ▶ it allows the model to process input sequences in parallel (more efficient)
  - it allows us to visualize which parts of the input sequence are most important for each output element (more interpretable).

5

### Popular transformer models used for NLP

| Model           | Year | Training Time | Storage Size    | Parameters  | Applications                            | Company              |
|-----------------|------|---------------|-----------------|-------------|-----------------------------------------|----------------------|
| GPT-2           | 2019 | Several days  | 1.5 GB - 6.7 GB | 1.5B        | Text generation, language models        | OpenAl               |
| GPT-3 (175B)    | 2020 | Several weeks | 700 GB - 1 TB   | 175B        | Text completion, language models        | OpenAl               |
| BERT (base)     | 2018 | Several hours | 418 MB          | 110M        | Text classification, question answering | Google               |
| BERT (large)    | 2018 | Several days  | 1.3 GB          | 340M        | Text classification, question answering | Google               |
| RoBERTa (base)  | 2019 | Several days  | 445 MB          | 125M        | Text classification, question answering | Facebook             |
| RoBERTa (large) | 2019 | Several days  | 1.5 GB          | 355M        | Text classification, question answering | Facebook             |
| ALBERT (base)   | 2019 | Several days  | 222 MB          | 12M         | Text classification, question answering | Google               |
| ALBERT (large)  | 2019 | Several days  | 785 MB          | 18M         | Text classification, question answering | Google               |
| T5              | 2019 | Several days  | 1.5 GB - 3.5 TB | 11B         | Text-to-text tasks                      | Google               |
| GShard          | 2020 | Several days  | 600 GB          | 600B        | Language models                         | Google               |
| CamemBERT       | 2019 | Several days  | 3.4 GB          | 110M        | French language processing              | Facebook AI Research |
| ELECTRA         | 2020 | Several days  | 420 MB - 1.5 GB | 110M - 340M | Text classification, question answering | Google               |
| DistilBERT      | 2019 | Several hours | 66 MB           | 66M         | Text classification, question answering | Hugging Face         |
| DeBERTa         | 2020 | Several days  | 524 MB          | 134M        | Text classification, question answering | Huawei               |

Language Models like Text generation, Language translation, Sentiment analysis, Text summarization, Question answering, Named entity recognition, and Speech recognition

# GPT (Generative Pre-trained Transformer)

- ▶ It was developed by OpenAl and has been trained on massive amounts of text data, making it capable of generating high-quality text in a variety of styles.
- ▶ GPT works by using a transformer architecture to process input sequences.
- ▶ GPT uses self-attention mechanisms to focus on the most relevant parts of the input sequence, allowing it to process long input sequences more efficiently.
- ▶ GPT can be fine-tuned on specific tasks using transfer learning, making it a versatile tool for a variety of natural language processing tasks.
- ▶ GPT can also be used in combination with images and text to perform joint learning tasks, such as image captioning, visual question answering (VQA), and multimodal machine translation.

7

### GPT-3 model

- ▶ The model containing 175 billion parameters that learned using huge datasets (400 billion byte-pair-encoded tokens).
- ▶ OpenAl ran the training on a Microsoft Azure supercomputer with 28,500 CPUs and 10,000 GPUs.
- ▶ The size of the architecture :
  - ▶ The number of layers of a model went from 6 layers in the original Transformer to 96 layers in the GPT-3 model
  - ▶ The number of heads of a layer went from 8 in the original Transformer model to 96 in the GPT-3 model
  - ▶ The context size went from 512 tokens in the original Transformer model to 12,288 in the GPT-3 model



9

# Preparing the dataset Step 1: Installing OpenAl & Wandb Step 2: Your API Key openai.api\_key=" | Step 3: Preparing the data lopenai tools fine\_tunes.prepare\_data -f "/content/drive/MyOrive/DLA/Lab7/kantgpt.csv"

## Fine-tuning ADA

▶ Step 4: Creating an OS environment for the API key

```
import os
os.environ['OPENAI_API_KEY'] ="
print(os.getenv('OPENAI_API_KEY'))
```

▶ Step 5: Fine-tuning GPT-3 with the ADA engine

```
!openai api fine_tunes.create -t "kantgpt_prepared.jsonl" -m "ada"
!openai api fine_tunes.follow -i [YOUR_FINE_TUNE]
```

▶ Step 6: Using the fine-tuned GPT-3 for a completion task

!openai api completions.create -m ada:[YOUR\_MODEL INFO] "Several concepts are a priori such as"

11

### GPT-4–100X More Powerful than GPT-3

- GPT-4 is the latest and most advanced version of the GPT (16<sup>th</sup> March 2023).
- GPT-4 is significantly larger and more powerful than GPT-3, with 170 trillion parameters compared to GPT-3's 175
   billion parameters.
- ▶ GPT-4 can use image inputs.



### Resources

- https://beta.openai.com/playground
- ► Fine-tuning OpenAl API
- ► The Rise of Suprahuman Transformers with GPT-3 Engines |

  Transformers for Natural Language Processing Second Edition

  (oreilly.com)
- ► Image generation OpenAl API
- ▶ <a href="https://github.com/openai/openai-cookbook/blob/main/examples">https://github.com/openai/openai-cookbook/blob/main/examples</a>