CSDS 433 Database Systems Spring 2022

Assignment 1

The following axioms of functional dependencies are provided for your reference.

[Reflexivity]: If $Y \subseteq X$, then $X \rightarrow Y$

[Augmentation]: If $X \rightarrow Y$, then $XW \rightarrow YW$

[Transitivity]: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

[Union]: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

[Decomposition]: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

[Pesudotransitivity]: if $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$

[Set accumulation]: if $X \rightarrow YZ$ and $Z \rightarrow W$, then $X \rightarrow YZW$.

1. [Candidate Keys & FDs] (30) Consider the following schema and FDs that hold on the schema.

(a) R (A, B, C, D):

FD1: $A \rightarrow BCD$,

FD2: $C \rightarrow AB$

List all the candidate keys of R.

A/C

(b) R (A, B, C, D, E):

FD3: $A \rightarrow BC$

FD4: CD \rightarrow E

FD5: $B \rightarrow D$

FD6: $E \rightarrow A$

Give a candidate key of R.

A/BC/CD/E

2. [FDs] (30) Given the following set of four FDs (FD1 – FD4), derive FD5 and FD6. Label each step with the rules from the above axioms.

FD1: $C \rightarrow B$,

FD2: $A \rightarrow B$,

FD3: AC \rightarrow D,

FD4: $D \rightarrow ABC$

FD5: $D \rightarrow ABCD$

FD6: $AC \rightarrow BD$

CSDS 433 Database Systems Spring 2022

Assignment 1

Example: Derive FD7: AC \rightarrow BCD:	
1.	$A \rightarrow B \text{ (FD2)}$
2.	$AC \rightarrow BC$ (Augmentation)
3.	$AC \rightarrow D \text{ (FD3)}$
4.	$AC \rightarrow BCD$ (Union, 2, 3)
Derive FD5: D \rightarrow ABCD	
	1. $D \rightarrow ABC (FD4)$
	2. D → ABCD (Augmentation)
De	rive FD6: AC → BD
	1. $A \rightarrow B$ (FD2)
	2. AC → BC (Augmentation)
	3. $AC \rightarrow D$ (FD3)
	4. AC \rightarrow BCD (Union, 2, 3)
	5. AC \rightarrow BD (Decomposition, 4)
[Relational Algebra] (40)	
(a) Consider the following database schema:	
	Movies (<u>Title</u> , <u>Director</u> , Actor);
	Location (Theater, Address, Phone number);
_	Schedule (<u>Theater</u> , Title, <u>Time</u>).
-	press the following queries in relational algebra (select σ , project Π , Cartesian product X, join (theta-
joir	1))
Q1: Who is the director of the movie "The Matrix Resurrections"?	
π_{Dir}	rector (OTitle='The Matrix Resurrections' (Movies))
Q2: List the theaters showing movies directed by "Polanski".	
π_{Th}	eater(σ _{Director='Polanski'} (Movies) ⋈ Schedule))

3.

CSDS 433 Database Systems Spring 2022

Assignment 1

Q3: What is the address and phone number of theaters that feature "Frozen 2"?

 $\pi_{Address, Phone number}(\sigma_{Title='Frozen 2'}(Schedule) \bowtie Location))$

Q4: List the pairs of persons such that the first directed the second in a movie and vice versa.

 $\pi_{\text{M1.Director}, \text{M2.Director}}(\sigma_{\text{M1.Director}=\text{M2.Actor}^{\text{M1.Actor}=\text{M2.Director}^{\text{M1.Director}}}(\rho(\text{M1, Movies}) \times \rho(\text{M2, Movies})))$

(Using M1.Director>M1.Actor here to eliminate duplicate pairs such as (A, B) and (B, A).)

(b) Consider the following schema:

Books(bid, title, year) Students(sid, sname, age, major) Authors(aname, address) borrows(bid, sid, data) writtenBy(bid, aname), content(bid, keyword)

Give natural language description for the following relational algebra.

Q5: π_{sname} ($\sigma_{\text{age}>35}$ (Students)) – π_{sname} ($\sigma_{\text{Major}='\text{CS}'}$ (Students))

Selecting names of students who are older than 35 years old and not major in CS.

Q6: $\pi_{sname}(\sigma_{Students.sid=borrows.sid}(\sigma_{major='CS'}(Students) \times borrows))$

Selecting the names of all students with CS majors who have borrowed a book.

Q7: $\pi_{\text{sname}}(\text{Students}) - \pi_{\text{S1.sname}}(\sigma_{\text{S1.Age}>\text{S2.Age}}(\rho(\text{S1, Students})) \times \rho(\text{S2, Students})))$

Selecting the youngest students' names.

Q8: Books $\bowtie (\pi_{bld}(\sigma_{Keyword='database'}(content))) \cap \pi_{bld}(\sigma_{Keyword='programming'}(content)))$

Selecting the books which have both keywords "database" and "programming".