15. Проводники в электрическом поле.

(Индуцированные заряды, поле внутри и снаружи проводника, теорема Фарадея)

При внесении любого вещества во внешнее электрическое поле происходит частичное разделение положительных и отрицательных зарядов. В отдельных местах появляется нескомпенсированные макроскопические заряды различного знака. Это называется электростатической индукцией, а также заряды - наведенными (индуцированными) зарядами. Они создают собственное поле.

Проводники - вещества, в которых много свободных зарядов (зарядов способных перемещаться в пределах вещества на значительные расстояния).

В металлах - электроны не связанные с решеткой.

Также электролиты - в них отрицательные и положительные ионы.

$$ec{F}_+ = qec{E}_0 \ ec{F}_- = -qec{E}_0$$

Т.е. положителные пойдут вверх по $\uparrow \vec{E}_0$

A отрицательные $\uparrow \downarrow \acute{E_0}$

Так до тех пор, пока поле внутри не обратится в 0.

 $ec{E}^\prime$ - поле индукционных зарядов

$$ec{E} = ec{E}_0 + ec{E}'; \ ec{E}' \uparrow \downarrow ec{E}_0 \Rightarrow \|ec{E}_0\| = \|ec{E}'\|$$

Получается, что проводник "вытесняет" из себя электрическое поле.

Т.е.
$$E_{\it внуm}=0\Rightarrow div\vec{E}=0\Rightarrow \rho=0\Rightarrow$$
 плотность индукционных зарядов внутри проводника $=0\Rightarrow$ нет индукционных зарядов.

$$\vec{F}_+ = q\vec{E}_0$$

$$ec{F}_{-}=-aec{E}_{0}$$

T.e. положителные пойдут вверх по $\uparrow ec{E}_0$

A отрицательные $\uparrow \downarrow ec{E}_0$

Так до тех пор, пока поле внутри не обратится в 0.

Все заряды на тонком слое на краю плотностью

$$+\sigma u - \sigma$$

 $ec{E}=-gradarphi=
ablaarphi$ в проводнике $\mathrm{const}\Rightarrow \mathtt{B}$ проводнике область эквипотенциальна \Rightarrow плоскость эквипотенциальна $\Rightarrow ec{E}$ направлен только параллельно нормали.

Проанализируем поле вне проводника используя:

$$egin{cases} Th.\, \Gamma aycca: &\oint ec{E}dec{S}=rac{q^{\scriptscriptstyle ext{ iny BH}}}{arepsilon_0} \ Th.\, o \$$
циркуляции $: \oint ec{E}dec{S}=0 \end{cases}$

Th. о циркуляции:

1.
$$\Gamma$$
 - прямоугольник, $l_{41}, l_{23} o 0$ (Ищем у поверхности)

2.
$$\oint \vec{E}d\vec{l} = \int_{1}^{2} \vec{E}d\vec{l}_{12} + \int_{2}^{3} \vec{E}d\vec{l}_{23} + \int_{3}^{4} \vec{E}d\vec{l}_{34} + \int_{4}^{1} \vec{E}d\vec{l}_{41} = \int_{1}^{2} \vec{E}d\vec{l}_{12}
= \int_{1}^{2} \vec{E}_{\tau}\vec{\tau} + E_{n}\vec{n}dl\vec{\tau} = \int_{1}^{2} \vec{E}_{\tau}dl = E_{\tau}l_{12}
3.0$$

$$+$$
 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ проводник $\vec{E} = 0$ $-$

$$4.~E_z l_{12} = 0 \Rightarrow E_ au = 0 \Rightarrow \,$$
 только $E_n;~ec{E} = E_n ec{n}$

Th.Гаусса:

2.
$$\oint ec{E} dec{S} = \int ec{E} dec{S}_{T_1} + \int ec{E} dec{S}_6 + \int ec{E} dec{S}_{T_2} = ES_T$$

3.
$$q^{\it в}$$
н $=\sigma' S_T$

4.
$$ES_T = rac{\sigma S_T}{arepsilon_0}$$
 - электрическое поле вблизи проводнике вне его.

$$E = egin{cases} rac{\sigma}{arepsilon_0} & - \ \mathit{снаружu} \ 0 & - \ \mathit{внутрu} \end{cases}$$

Теорема Фарадея - замкнутая проводящая оболочка разделяет всё пространство на внутреннюю и внешнюю части в электрическом соотношении никак не зависящие друг от друга.