Syntax - Introduction

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 1

 Refers to the way words are arranged together, and the relationship between then.

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words
- More complex notions: constituency, grammatical relations, subcategorization etc.

- Refers to the way words are arranged together, and the relationship between then.
- Language Models: Importance of modeling word order
- POS categories: An equivalence class for words
- More complex notions: constituency, grammatical relations, subcategorization etc.

Syntax Tree: Example

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Part of Speech - "Substitution Test"

The {sad, intelligent, green, fat, ...} one is in the corner.

Defining the notions: Constituency

Constituent

A group of words acts as a single unit - phrases, clauses etc.

Part of Speech - "Substitution Test"

The {sad, intelligent, green, fat, ...} one is in the corner.

Constituency: Noun Phrase

- Kermit the frog
- they
- December twenty-sixth
- the reason he is running for president

killed the rabbit

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

is a Verb Phrase (VP) because the head killed is a verb

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river

is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Compare with: The man from Amherst grew beautiful russet potatoes.

Usually named based on the word that heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Words can also act as phrases

Joe grew potatoes

Joe and potatoes are both nouns and noun phrases

Compare with: The man from Amherst grew beautiful russet potatoes.

Joe appears in a place that a larger noun phrase could have been.

They appear in similar environments

They appear in similar environments

Kermit the frog comes on stage

They come to Massachusetts every summer

 \overline{Dece} mber twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

 $*\underline{The}\ comes\ our...\ *\underline{is}\ comes\ out...\ *for\ comes\ out...$

They appear in similar environments

Kermit the frog comes on stage

They come to Massachusetts every summer

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

 $*\underline{The}$ comes our... $*\underline{is}$ comes out... *for comes out...

Can be placed in a number of different locations

They appear in similar environments

Kermit the frog comes on stage

They come to Massachusetts every summer

December twenty-sixth comes after Christmas

The reason he is running for president comes out only now.

But not each individual word in the consituent

*<u>The</u> comes our... *<u>is</u> comes out... *for comes out...

Can be placed in a number of different locations

Consituent = Prepositional phrase: On December twenty-sixth

On December twenty-sixth I'd like to fly to Florida.

I'd like to fly on December twenty-sixth to Florida.

I'd like to fly to Florida on December twenty-sixth.

But not split apart

- * On December I'd like to fly twenty-sixth to Florida.
- *On I'd like to fly December twenty-sixth to Florida.

Modeling Constituency: what tool do we need?

Context-free grammar

The most common way of modeling constituency

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Example

Noun phrase can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal can be more than one nouns

Context-free grammar

The most common way of modeling constituency

Consists of production Rules

These rules express the ways in which the symbols of the language can be grouped and ordered together

Example

Noun phrase can be composed of either a ProperNoun or a determiner (Det) followed by a Nominal; a Nominal can be more than one nouns

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

CFG: G = (T, N, S, R)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

CFG: G = (T, N, S, R)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Terminals and pre-terminals

Terminals mainly correspond to words in the language while pre-terminals mainly correspond to POS categories

CFG: G = (T, N, S, R)

- T: set of terminals
- N: set of non-terminals
 - For NLP, we distinguish out a set $P \subset N$ of pre-terminals, which always rewrite as terminals
- S: start symbol
- *R*: Rules/productions of the form $X \to \gamma$, $X \in N$ and $\gamma \in (T \cup N)*$

Terminals and pre-terminals

Terminals mainly correspond to words in the language while pre-terminals mainly correspond to POS categories

Example

 $NP \rightarrow Det Nominal$

 $NP \rightarrow ProperNoun$

 $Nominal \rightarrow Noun \mid Noun Nominal$

Example

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

Example

 $NP \rightarrow Det Nominal$

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Example

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

Now, these can be combined with other rules, that express facts about a lexicon.

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Can you identify the terminal, non-terminals and preterminals?

CFG as a generator

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow \text{the}$

 $Noun \rightarrow flight$

CFG as a generator

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

 $NP \rightarrow Det Nominal$

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow \text{the}$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

→ Det Noun

 $NP \rightarrow \text{Det Nominal}$

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun

 $NP \rightarrow \text{Det Nominal}$

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

NP → Det Nominal

 $NP \rightarrow ProperNoun$

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

Thus a CFG can be used to randomly generate a series of strings

NP → Det Nominal

NP → ProperNoun

Nominal → Noun | Noun Nominal

 $Det \rightarrow a$

 $Det \rightarrow the$

 $Noun \rightarrow flight$

Generating 'a flight':

NP→ Det Nominal

 \rightarrow Det Noun \rightarrow a Noun \rightarrow a flight

- Thus a CFG can be used to randomly generate a series of strings
- This sequence of rule expansions is called a derivation of the string of words, usually represented as a tree

CFGs and Grammaticality

A CFG defines a formal language = set of all sentences (string of words) that can be derived by the grammar

CFGs and Grammaticality

A CFG defines a formal language = set of all sentences (string of words) that can be derived by the grammar

- Sentences in this set are said to be grammatical
- Sentences outside this set are said to be ungrammatical

CFGs and Recursion

Recursive Definition

- PP → Prep NP
- NP → Noun PP

CFGs and Recursion

Recursive Definition

- PP → Prep NP
- NP → Noun PP

Example Sentence

[$_S$ The mailman ate his [$_{NP}$ lunch [$_{PP}$ with his friend [$_{PP}$ from the cleaning staff [$_{PP}$ of the building [$_{PP}$ at the intersection [$_{PP}$ on the north end [$_{PP}$ of town]]]]]]].

 The notion of context has nothing to do with the ordinary meaning of word context in language

- The notion of context has nothing to do with the ordinary meaning of word context in language
- All it really means is that the non-terminal on the left-hand side of a rule is out there all by itself (free of context)

- The notion of context has nothing to do with the ordinary meaning of word context in language
- All it really means is that the non-terminal on the left-hand side of a rule is out there all by itself (free of context)

$A \rightarrow BC$

- I can rewrite A as B followed by C regardless of the context in which A is found
- Or when I see a B followed by a C, I can infer an A regardless of the surrounding context