CONDENSÉ MATHÉMATIQUES PSI

TABLE DES MATIÈRES

2
2
9
15
22
28
28
31
35
39
44
47
50
51
51

Première partie

ALGÈBRE

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

CHAPITRE 1: RAPPELS ET COMPLÉMENTS D'ALGÈBRE

I. Espaces vectoriels et sev

- 1. Espace vectoriel $(E, +, \cdot)$
- 2. Sous-espace vectoriel : stable par combinaison linéaire et contient le vecteur nul.
- 3. L'intersection de plusieurs sev est un sev.
- 4. $Vect(x_1, ..., x_n) = \{\lambda_1 x_1 + ... + \lambda_n x_n\}_{\lambda_i \in \mathbb{K}}$
- 5. $F + G = \{y + z\}_{(y,z) \in F \times G}$ est un sev.
- 6. Somme directe de deux sous-espaces vectoriels Les trois assertions sont équivalentes :
 - (a) F et G sont en somme directe (noté $F \oplus G$)
 - (b) $\forall x \in F + G$, $\exists ! (y, z) \in F \times G$, x = y + z
 - (c) $F \cap G = \{0_E\}$ (dem)
- 7. Supplémentaires F et G supplémentaires dans E: $E = F \oplus G \iff E = F + G$ et $F \cap G = \{0_E\}$
- 8. La somme de plus de deux sev : $F_1 + ... + F_m = \{x_1 + ... + x_m\}_{(x_1,...,x_m) \in F_1 \times ... \times F_m}$ est un sev (dem)
- 9. Somme directe de plusieurs sous-espaces vectoriels Les trois assertions sont équivalentes :
 - (a) $F_1, ..., F_m$ sont en somme directe (somme notée alors $\bigoplus_{j=1}^m F_j$)
 - (b) $\forall x \in F_1 + ... + F_m, \exists ! (y_1, ..., y_m) \in F_1 \times ... \times F_m, x = y_1 + ... + y_m$
 - (c) $\forall y_1 \in F_1, ..., \forall y_m \in F_m, [y_1 + ... + y_m = 0_E \Rightarrow y_1 = ... = y_m = 0_E]$ (dem)

II. Applications linéaires

- 1. L'application u est linéaire $(u \in \mathcal{L}(E, F))$ si $\forall \lambda \in \mathbb{K}, \ \forall x, y \in E, \ u(\lambda x + y) = \lambda u(x) + u(y)$
- 2. Endomorphisme : $u \in \mathcal{L}(E)$
- 3. Forme linéaire : $u \in \mathcal{L}(E, \mathbb{K})$. $E^* = \mathcal{L}(E, \mathbb{K})$ est le dual de E.
- 4. La composée de deux applications linéaires est linéaire.

5. Si u et v commutent :

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k v^{n-k}$$

$$u^{n} - v^{n} = (u - v) \sum_{k=0}^{n-1} u^{k} v^{n-k-1}$$

6. Propriétés Soit $u \in \mathcal{L}(E, F)$

- (a) $u(\text{Vect}(x_1, ..., x_n)) = \text{Vect}(u(x_1), ..., u(x_n))$
- (b) Noyau $\ker(u) = \{x \in E \mid u(x) = 0_E\}.$
- (c) Image $Im(u) = \{ y \in F \mid \exists x \in E, \ u(x) = y \}.$
- (d) $\ker(u)$ sev de E et $\operatorname{Im}(u)$ sev de F.
- (e) Injectivité u est dite injective si $ker(u) = \{0_E\}$.
- (f) Surjectivité u est dite surjective si Im(u) = F.
- 7. Projecteurs $p \in \mathcal{L}(E)$. p est un projecteur $\iff p^2 = p$
 - (a) $E = \operatorname{Im}(p) \oplus \ker(p)$
 - (b) p est la projection sur Im(p) parallèlement à ker(p).
 - (c) $Im(p) = ker(p id_E)$: l'image d'un projecteur est l'ensemble de ses points fixes.
- 8. Famille de projecteurs associés à une somme directe Soit $E = F_1 \oplus ... \oplus F_m$. On associe à cette décomposition les endomorphismes $p_1, ..., p_m$ tels que :

$$\begin{cases} E = F_1 \oplus \dots \oplus F_m \\ x = p_1(x) + \dots + p_m(x) \\ \forall j \in [1; m], \ p_j(x) \in F_j \end{cases}$$

Ce sont des projecteurs de E (dem). On a : $p_1 + ... + p_m = id_E$

- 9. $u \in \mathcal{L}(E, F)$ et $E = E_1 \oplus ... \oplus E_m$. u peut être décomposée de façon unique telle que : $u(x) = u_1(p(x)) + ... + u_m(p_m(x))$ (dem).
- 10. Symétries $s \in \mathcal{L}(E)$. s est une symétrie $\iff s^2 = \mathrm{id}_E$.
 - (a) $E = \ker(s \mathrm{id}_E) \oplus \ker(s + \mathrm{id}_E)$
 - (b) s est la symétrie par rapport à $ker(s id_E)$ parallèlement à $ker(s + id_E)$.
- 11. **Isomorphismes** On dit que $\varphi \in \mathcal{L}(E, F)$ est un isomorphisme si φ est une bijection. E et F sont alors dits isomorphes.
 - (a) La composée de deux isomorphismes est un isomorphisme.
 - (b) La bijection réciproque d'un isomorphisme est un isomorphisme.
 - (c) Un isomorphisme de E dans E est un automorphisme.
 - (d) Soient φ et ψ deux isomorphismes. Alors : $(\varphi \circ \psi)^{-1} = \psi^{-1} \circ \varphi^{-1}$.

III. Familles libres et génératrices, bases

1. Familles libres On dit que la famille $\mathcal{L}=(x_1,...,x_p)$ de E est libre si

$$\forall \lambda_1, ..., \lambda_n \in \mathbb{K}, \ \lambda_1 x_1 + ... + \lambda_n x_n = 0_E \Rightarrow (\lambda_1, ..., \lambda_n) = (0, ..., 0).$$

- (a) Une famille non libre est dite liée.
- (b) Une famille est liée ssi un de ses vecteurs est combinaison linéaire de ses autres vecteurs.
- (c) Soit $x_{p+1} \in E$. $(x_1, ..., x_{p+1})$ est libre $\iff x_{p+1} \notin \text{Vect}(\mathcal{L})$.
- 2. Familles génératrices On dit que la famille $G = (x_1, ..., x_p)$ de E est génératrice si E = Vect(G).
 - (a) Soit $\mathcal{F} = (y_1, ..., y_p)$ une famille quelconque de E. \mathcal{F} est génératrice de $E \iff \forall j \in [1; m], \ y_j \in \text{Vect}(\mathcal{G})$.
- 3. Bases La famille $\mathcal{B} = (x_1, ..., x_p)$ de E est une base si \mathcal{B} est libre et génératrice de E.
 - (a) \mathscr{B} est une base $\iff \forall x \in E, \exists !(\lambda_1,...,\lambda_p) \in \mathbb{K}^p, x = \lambda_1 x_1 + ... + \lambda_p x_p.$

4. Soit $\mathcal F$ une famille de E et φ définie par :

$$\varphi: \begin{array}{ccc} \mathbb{K}^p & \longrightarrow & E \\ (\lambda_1, ..., \lambda_p) & \longmapsto & \lambda_1 x_1 + ... \lambda_p x_p \end{array}$$

- (a) \mathcal{F} est libre $\iff \varphi$ est injective.
- (b) \mathcal{F} est génératrice de $E \Longleftrightarrow \varphi$ est surjective.
- (c) \mathcal{F} est une base de $E \Longleftrightarrow \varphi$ est un isomorphisme.
- 5. Théorème de la base incomplète
 - (a) Soit $\mathcal{L} = (x_1, ..., x_p)$ une famille libre de E. Alors on peut la compléter pour en faire une base $\mathcal{B} = (x_1, ..., x_p, ..., x_n)$ de E.
 - (b) Soit $G = (x_1, ..., x_m)$ une famille génératrice de E. Alors on peut en extraire une base $\mathcal{B} = (x_{i_1}, ..., x_{i_n})$ de E.
- 6. Image d'une famille par une application linéaire Soient $u \in \mathcal{L}(E, F)$ et \mathcal{F} une famille de E.
 - (a) Si $\mathcal F$ est libre et u est injective, alors $u(\mathcal F)$ est libre.
 - (b) Si \mathcal{F} est génératrice et u est surjective de E, alors $u(\mathcal{F})$ est génératrice de F.
 - (c) Si \mathcal{F} est une base de E et u est bijective, alors $u(\mathcal{F})$ est une base de F.
- 7. Application linéaire définie par l'image d'une base Soient E et F deux espaces vectoriels (E de dimension finie), \mathcal{B} une base de E et $(y_1,...,y_p)$ une famille d'éléments de F. Alors : $\exists! u \in \mathcal{L}(E,F), \ \forall j \in [1;p], \ u(e_j) = y_j$.

IV. Dimension

- 1. **Dimension finie** Soit E un \mathbb{K} -ev. E admet une famille génératrice (finie) si E admet une base (finie). On dit alors que E est de dimension finie.
- 2. Soit \mathcal{L} une famille libre de p vecteurs de E et \mathcal{C} une famille génératrice de m vecteurs de E. Alors $p \leqslant m$.
- 3. **Dimension** Soit E un \mathbb{K} -ev de dimension finie. Toutes les bases de E ont le même nombre d'éléments, appelé dimension de E et noté dim E.
 - (a) Si dim E = 0 alors $E = \{0_E\}$.
 - (b) Si dim E = 1 alors E est une droite vectorielle. E = Vect(x), où x est un vecteur non nul.
 - (c) Si dim E=2 alors E est un plan vectoriel. $E=\operatorname{Vect}(x,y)$, où x et y sont deux vecteurs non nuls.
 - (d) Si E est de dimension finie, on pose : $\dim E < +\infty$. Si E est de dimension non finie, on pose $\dim E = +\infty$.
 - (e) Soit $n \in \mathbb{N}$. On a : dim $\mathbb{K}^n = n$, dim $\mathbb{R}_n[X] = n + 1$, dim $M_n(\mathbb{K}) = n^2$.
- 4. Familles libres et génératrices en dimension finie Soit E un \mathbb{K} -ev de dimension n.
 - (a) Une famille libre de E possède au plus n vecteurs.
 - (b) Une famille génératrice de E possède au moins n vecteurs.
 - (c) $\mathcal{F} = (e_1, ..., e_p)$ est une base de $E \iff \mathcal{F}$ est une famille libre et $n = p \iff \mathcal{F}$ est une famille génératrice de E et n = p.
- 5. Soit E un \mathbb{K} -ev de dimension finie et F un sev de E. Alors $\dim F \leqslant \dim E$.
- 6. Rang d'une famille de vecteurs Soit $\mathcal{F} = (x_1, ..., x_p)$ une famille de E.
 - (a) $rg\mathcal{F} = \dim Vect(\mathcal{F})$
 - (b) $rg\mathcal{F} \leq p$ avec égalité ssi \mathcal{F} est libre.
 - (c) $\operatorname{rg} \mathcal{F} \leqslant \dim E$ avec égalité ssi \mathcal{F} est génératrice.

V. Sommes directes en dimension finie

- 1. Soient E un \mathbb{K} -ev de dimension finie, $F_1, ... F_m$ des sev de dimensions finies de E et $\mathcal{B}_1, ..., \mathcal{B}_m$ des bases respectivement de $F_1, ..., F_m$. On pose \mathcal{F} la famille obtenue en juxtaposant ces bases.
 - (a) $E = F_1 \oplus ... \oplus F_m \iff \mathcal{F}$ est une base de E (dem).
 - (b) Si \mathcal{F} est une base de E, elle est dite adaptée à la décomposition de E en somme directe.

- 2. $\dim(F_1 + ... + F_m) \leq \dim F_1 + ... + \dim F_m$ avec égalité ssi $F_1, ..., F_m$ sont en somme directe.
- 3. Conditions pratiques $E = F_1 \oplus ... \oplus F_m$ si deux des trois conditions sont satisfaites (dem) :
 - (a) $F_1, ..., F_m$ sont en somme directe.
 - (b) $E = F_1 + ... + F_m$.
 - (c) $\dim E = \dim F_1 + ... + \dim F_m$.
- Supplémentaire en dimension finie Soit E un K-ev de dimension finie. Alors tout sev de E admet un supplémentaire dans E.
- 5. Dans un espace vectoriel de dimension 3, l'intersection de deux plans vectoriels est une droite vectorielle.

VI. Rang d'une application linéaire

- 1. Rang d'une application linéaire Soit $u \in \mathcal{L}(E, F)$.
 - (a) $rg(u) = \dim Im(u)$.
 - (b) Soit $(e_1, ..., e_p)$ une famille génératrice de E. On a : $rg(u) = rg(u(e_1), ..., u(e_p))$
- 2. **Théorème** Soit S un sev tel que : $E = \ker(u) \oplus S$. Alors S est isomorphe à $\operatorname{Im}(u)$.
- 3. Corollaire: Théorème du rang Soient E et F deux \mathbb{K} -ev et $u \in \mathcal{L}(E,F)$ avec $\dim E < +\infty$. On a :

$$\dim E = rg(u) + \dim \ker(u)$$

4. Soient E et F deux \mathbb{K} -ev de même dimension finie et $u \in \mathcal{L}(E, F)$. On a (dem) :

u est injective $\iff u$ est surjective $\iff u$ est bijective

5. **Formule de Grassmann** Soient *E* un K-ev de dimension finie et *F* et *G* deux sev de *E*. On a (dem) :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

VII. Matrices

1. **Produit matriciel** Soient $A \in M_{mn}(\mathbb{K})$ et $B \in M_{np}(\mathbb{K})$. Les coefficients de la matrices $C = AB \in M_{mp}(\mathbb{K})$ sont donnés par :

$$\forall (i,k) \in [1;m] \times [1;p], \ c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}.$$

- 2. $M_n(\mathbb{K})$ est stable par le produit.
- 3. Si $A, B \in M_n(\mathbb{K})$ commutent alors on peut appliquer les formules du binôme et de factorisation (cf. II.5.).
- 4. Matrice inverse $A \in M_n(\mathbb{K})$ est inversible si : $\exists B \in M_n(\mathbb{K})$ tq $AB = I_n$ ou $BA = I_n$.
 - (a) B est notée A^{-1} .
 - (b) $A \in GL_n(\mathbb{K})$, ensemble des matrices inversibles (appelé Groupe linéaire) de $M_n(\mathbb{K})$ stable par le produit.
 - (c) $\forall P, Q \in GL_n(\mathbb{K}), (PQ)^{-1} = Q^{-1}P^{-1}.$
- 5. Transposition ${}^t\!A = A^T$
 - (a) La transposition est linéaire.
 - (b) ${}^{t}(AB) = {}^{t}B {}^{t}A$
 - (c) $A \in GL_n(\mathbb{K}) \iff {}^tA \in GL_n(\mathbb{K})$
- 6. Matrices symétriques et antisymétriques Soit $S_n(\mathbb{K})$ l'ensemble des matrices symétriques et $A_n(\mathbb{K})$ l'ensemble des matrices antisymétriques.
 - (a) $A \in S_n(\mathbb{K}) \iff {}^t A = A$.
 - (b) $A \in A_n(\mathbb{K}) \iff {}^t A = -A$.
 - (c) $M_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K})$.
 - (d) $\dim S_n(\mathbb{K}) = \frac{n(n+1)}{2}$ et $\dim A_n(\mathbb{K}) = \frac{n(n-1)}{2}$.

- 7. **Matrices diagonales, matrices triangulaires** Les ensembles des matrices diagonales, triangulaires supérieures et inférieures sont des K-ev.
 - (a) L'ensemble des matrices diagonales est stable par le produit et est de dimension n.
 - (b) Les ensembles des matrices triangulaires supérieures et inférieures sont stables par le produit et de dimension $\frac{n(n+1)}{2}$.
- 8. Matrice d'une famille de vecteurs : $Mat_{\mathcal{B}}(x_1,...,x_n)$ Ce sont les vecteurs (en colonnes) écrits dans la base \mathcal{B} .
- 9. Matrice d'une application linéaire Soient E de dimension p, F de dimension n et $u \in \mathcal{L}(E, F)$.
 - (a) $\operatorname{Mat}_{\mathcal{B},C}(u) = \operatorname{Mat}_{\mathcal{C}}[u(e_1),...,u(e_p)]$, où $\mathcal{B} = (e_1,...,e_p)$ est une base de E et C une base de F.
 - (b) $\mathcal{L}(E, F)$ et $M_{np}(\mathbb{K})$ sont isomorphes.
 - (c) $\mathcal{L}(E)$ et $M_p(\mathbb{K})$ sont isomorphes.
- 10. Matrice de passage et changement de base
 - (a) $\mathcal{P}_{\mathcal{B}\to\mathcal{B}'} = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}')$
 - (b) Cette matrice est inversible et : $\mathcal{P}_{\mathcal{B} \to \mathcal{B}'}^{-1} = \mathcal{P}_{\mathcal{B}' \to \mathcal{B}}$
 - (c) Formule de changement de base pour un vecteur x:

$$\operatorname{Mat}_{\mathcal{B}}(x) = \mathcal{P}_{\mathcal{B} \to \mathcal{B}'} \operatorname{Mat}_{\mathcal{B}'}(x)$$

(d) Formule de changement de base pour un endomorphisme :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \mathscr{P}_{\mathscr{B} \to \mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(u) \mathscr{P}_{\mathscr{B}' \to \mathscr{B}}$$

(e) Formule de changement de base pour une application de linéaire de E dans F:

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) = \mathcal{P}_{\mathcal{C} \to \mathcal{C}'} \operatorname{Mat}_{\mathcal{B}'\mathcal{C}'}(u) \mathcal{P}_{\mathcal{B}' \to \mathcal{B}}$$

- 11. Rang d'une matrice Le rang d'une matrice est le rang de la famille de ses vecteurs-colonne.
 - (a) $u \in \mathcal{L}(E, F)$ avec $\dim E = p$ et $\dim F = n$. $\operatorname{rg}(A) = \operatorname{rg}(u) = \operatorname{rg}(\mathcal{F})$, où \mathcal{F} est la famille des vecteurs-colonne de A.
 - (b) $rg(A) = p \iff u$ est injective $\iff \mathcal{F}$ est libre.
 - (c) $\operatorname{rg}(A) = n \iff u$ est surjective $\iff \mathcal{F}$ est génératrice de F.
 - (d) $\operatorname{rg}(A) = r, r \leqslant \min(n, p)$. Alors $\exists P \in \operatorname{GL}_n(\mathbb{K}), \ \exists Q \in \operatorname{GL}_p(\mathbb{K}), \ A = PJ_rQ$.
 - (e) $\operatorname{rg}({}^tA) = \operatorname{rg}(A)$ et les opérations sur les lignes et colonnes, ainsi que l'ajout d'un vecteur combinaison linéaire des autres ne changent pas le rang.
 - (f) $\operatorname{rg}(A) = n \iff A \in \operatorname{GL}_n(\mathbb{K}).$
 - (g) $\operatorname{rg}(A) = 0 \iff A = 0_n$.
- 12. Matrices semblables $A, B \in GL_n(\mathbb{K})$ sont semblables si $\exists P \in GL_n(\mathbb{K})$ tq : $B = PAP^{-1}$.
 - (a) La relation « être semblables » est une relation d'équivalence sur $M_n(\mathbb{K})$ (réflexivité, transitivité, symétrie) (dem).
 - (b) Deux matrices semblables ont le même rang.
 - (c) Si parmi deux matrices semblables, l'une est inversible, alors l'autre l'est aussi.
 - (d) Deux matrices sont semblables ssi elles sont les matrices d'un même endomorphisme dans deux bases différentes.
- 13. Matrices par blocs
 - (a) On peut faire des opérations (addition, multiplication) de matrices par blocs en prenant directement les matrices au lieu de chaque coefficient :

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

- (b) $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^T = \begin{pmatrix} A^T & C^T \\ B^T & D^T \end{pmatrix}$ (généralisation pour 6 blocs, 9 blocs, etc.)
- (c) Soient $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ et $M' = \begin{pmatrix} A' & 0 \\ 0 & B' \end{pmatrix}$ avec A, A' semblables et B, B' semblables. Alors M et M' sont semblables

VIII. Trace

- 1. **Trace** La trace d'une matrice est la somme des ses coefficients diagonaux. C'est une forme linéaire de $M_n(\mathbb{K})$.
 - (a) $\operatorname{tr}({}^{t}A) = \operatorname{tr}(A)$
 - (b) tr(AB) = tr(BA) (valable avec deux matrices uniquement)
 - (c) Deux matrices semblables ont la même trace.
- 2. Trace d'un endomorphisme $tr(u) = tr(Mat_{\mathcal{B}}(u))$
- 3. **Trace d'un projecteur** La trace d'un projecteur est égale à son rang.

IX. Sous-espaces stables

- 1. Sous-espace stable Soient E un \mathbb{K} -ev, F un sev de E, $u \in \mathcal{L}(E)$.
 - (a) u stabilise F / F est stable par u / F est u-stable si $u(F) \subset F$.
 - (b) $\forall x \in F, \ u(x) \in F.$
 - (c) On définit alors l'endomorphisme $v \in \mathcal{L}(F)$ induit par $u. v : x \mapsto u(x)$.
 - (d) Sev stables évidents : E, 0_E , $\ker(u)$, $\operatorname{Im}(u)$.
- 2. Soient u et v deux endomorphismes de E tels que uv = vu. Alors $\ker(u)$ et $\operatorname{Im}(u)$ sont v-stables (dem).
- 3. **Dimension finie** E \mathbb{K} -ev de dimension n, F sev de E de dimension r, $u \in \mathcal{L}(E)$. Soit $(e_1, ..., e_r)$ une base de F qu'on complète avec (n-r) vecteurs pour en faire une base de E. On a :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \text{ où } \left\{\begin{array}{cc} A \in M_r(\mathbb{K}) \\ B \in \operatorname{M}_{r,n-r}(\mathbb{K}) \\ C \in \operatorname{M}_{n-r,r}(\mathbb{K}) \\ D \in \operatorname{M}_{n-r}(\mathbb{K}) \end{array}\right.$$

- (a) F est u-stable ssi $C = 0_{n-r,r}$ (dem).
- (b) Si F est u-stable, $A = \operatorname{Mat}_{(e_1, \dots, e_r)}(v)$ où $v \in \mathcal{L}(F)$ est l'endomorphisme induit par u.
- 4. **Somme directe** Soit E un \mathbb{K} -ev de dimension finie. Soient $F_1, ..., F_r$ de dimensions $n_1, ..., n_r$. $\mathsf{tq} : E = F_1 \oplus ... \oplus F_r$. On considère \mathcal{B} une base adaptée à cette somme directe. Soit $u \in \mathcal{L}(E)$. On a :

$$\left[\forall i \in [1, r] : u(F_i) \subset F_i\right] \Longleftrightarrow \exists A_1 \in \mathcal{M}_{n_1}(\mathbb{K}), ..., \exists A_r \in \mathcal{M}_{n_r}(\mathbb{K}), \, \operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} A_1 & (0) \\ & \ddots \\ & (0) & A_r \end{pmatrix}$$

X. Hyperplans

- 1. **Hyperplan** Soit E de dimension n. Un hyperplan de E est un sev de E de dimension n-1.
- 2. Théorème Les hyperplans de E sont les noyaux de ses formes linéaires non nulles.
- 3. Les hyperplans de E sont les sev de E qui admettent une droite vectorielle comme supplémentaire.
- 4. Équation d'un hyperplan dans une base de E Soient E de dimension finie n et \mathcal{B} une base de E.
 - (a) Les hyperplans de E sont les parties H qui admettent dans \mathcal{B} une équation de la forme : $a_1x_1 + ... + a_nx_n = 0$ où a_1, \dots, a_n sont des scalaires non tous nuls.
 - (b) C'est à dire : $x = (x_1, ..., x_n)_{\mathcal{B}} \in H \iff a_1 x_1 + ... + a_n x_n = 0$.
 - (c) L'équation cartésienne d'un hyperplan de E est unique (à un facteur multiplicatif non nul près).

XI. Déterminants

- 1. Rappels et propriétés Soit E de dimension finie. Soit $\mathcal B$ une base de E.
 - (a) $\forall A \in M_n(\mathbb{K}), A \in GL_n(\mathbb{K}) \iff \det A \neq 0.$
 - (b) $\forall u \in \mathcal{L}(E), u \in \operatorname{GL}_n(\mathbb{K}) \iff \det u \neq 0.$
 - (c) $\forall \mathcal{F} \in E^n$, \mathcal{F} est une base de $E \Longleftrightarrow \det_{\mathcal{B}} \mathcal{F} \neq 0$.
 - (d) $\det(AB) = \det(A) \det(B)$. $\det(A^{-1}) = \frac{1}{\det(A)}$.
 - (e) $\det A = \det {}^t A$.
 - (f) Soit $\lambda \in \mathbb{K}$. $\forall A \in GL_n(\mathbb{K})$, $\det \lambda A = \lambda^n \det A$.
 - (g) Une permutation de deux colonnes ou de deux lignes change le signe du déterminant.

(h) Bilinéarité :
$$\begin{vmatrix} \lambda L_1 \\ L_2 \\ L_3 \end{vmatrix} = \lambda \begin{vmatrix} L_1 \\ L_2 \\ L_3 \end{vmatrix}$$
 et $\begin{vmatrix} \lambda C_1 & C_2 & C_3 \\ -1 & C_2 & C_3 \end{vmatrix} = \lambda \begin{vmatrix} C_1 & C_2 & C_3 \\ -1 & C_2 & C_3 \end{vmatrix}$

- 2. Le déterminant d'une matrice triangulaire est le produit de ses coefficients diagonaux.
- 3. Le déterminant d'une matrice triangulaire par blocs est le produits des déterminants de ses blocs diagonaux.
- 4. **Déterminant de Van der Monde** Soient $a_1, ..., a_n \in \mathbb{K}$. On a (dem) :

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ a_1^3 & a_2^3 & \cdots & a_n^3 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \leqslant i < j \leqslant n} (a_j - a_i)$$

XII. Polynômes

- 1. Polynômes irréductibles
 - (a) $P \in \mathbb{R}[X]$. P est irréductible ssi P est de degré 1 ou P est de degré 2 avec deux racines non réelles.
 - (b) $P \in \mathbb{C}[X]$. P est irréductible ssi P est de degré 1.
 - (c) Tout polynôme non constant de $\mathbb{K}[X]$ est le produit de polynômes irréductibles.
 - (d) Si $\mathbb{K} = \mathbb{C} : P(X) = \mu(X \lambda_1)^{\alpha_1} ... (X \lambda_r)^{\alpha_r}$.
 - Les λ_i , 2 à 2 distincts, sont les racines de P de multiplicité α_i .
 - μ est le coefficient dominant.
 - P admet r racines comptées sans multiplicité et $\alpha_1 + ... + \alpha_r$ racines comptées avec multiplicité.
 - (e) Si $\mathbb{K} = \mathbb{R} : P(X) = \mu(X \lambda_1)^{\alpha_1} ... (X \lambda_r)^{\alpha_r} \times (X^2 + b_1 X + x_1)^{\beta_1} ... (X^2 + b_s X + c_s)^{\beta_s}$.
 - Les facteurs de degré deux sont irréductibles sur \mathbb{R} (ils n'admettent pas de racines réelles) et les (b_i, c_i) sont 2 à 2 distincts.
 - Les λ_i , 2 à 2 distincts, sont les racines réelles de P de multiplicité α_i .
 - μ est le coefficient dominant.
 - P admet r racines comptées sans multiplicité et $\alpha_1 + ... + \alpha_r$ racines réelles comptées avec multiplicité.
- 2. Polynômes scindés Un polynôme est scindé s'il peut s'écrire sous forme de produit de polynômes de degré 1.
 - (a) Tout polynôme est scindé sur C.
 - (b) Un polynôme est scindé sur $\mathbb{R} \iff$ il n'admet que des racines réelles.
 - (c) Un polynôme est scindé à racines simples s'il est scindé et toutes ses racines sont de multiplicité 1.
- 3. Soit $P(X) \in \mathbb{K}[X]$ un polynôme non constant. Alors :
 - (a) nb de racines de P comptées sans multiplicité \leqslant nb de racines de P comptées avec multiplicité \leqslant deg P
 - (b) (1) est une égalité $\iff P$ est à racines simples

- (c) (2) est une égalité $\iff P$ est est scindé
- (d) (1) et (2) sont des égalités \iff P est scindé à racines simples.
- 4. Caractérisation des multiplicités des racines de P
 - (a) λ est racine de multiplicité α ssi $(X \lambda)^{\alpha}$ divise P et $(X \lambda)^{\alpha+1}$ ne divise pas P.
 - (b) λ est racine de multiplicité α ssi $P(\lambda) = P'(\lambda) = ... = P^{(\alpha-1)}(\lambda) = 0$ et $P^{(\alpha)}(\lambda) \neq 0$.
 - (c) P admet une racine multiple si P et P' admettent une racine commune.
- 5. Relations coefficients-racines $P(X) = a_n X^n + ... + a_0 X^0 \in \mathbb{K}[X]$ de degré n. On le suppose scindé : P(X) = $\mu(X-\lambda_1)...(X-\lambda_n)$
 - (a) $a_n = \mu$

 - (b) $\lambda_1 + \dots + \lambda_n = \frac{-a_{n-1}}{a_n}$ (c) $\lambda_1 \times \dots \times \lambda_n = (-1)^n \frac{a_0}{a_n}$

CHAPITRE 2: RÉDUCTION (DIAGONALISATION ET TRIGONALISATION) DES ENDO-**MORPHISMES**

I. Valeurs propres (vap) et Vecteurs propres (vep)

1) Dimension quelconque

Soit E un \mathbb{K} -ev.

- 1. **Définition** Soient, $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$.
 - (a) On dit que λ est vap si $\exists x \in E \setminus \{0_E\}$ tq : $u(x) = \lambda x$. On a donc : u(x) et x « colinéaires ».
 - (b) Un tel vecteur non nul x est appelé vep de u de vap λ .
 - (c) $E_{\lambda}(u) = \ker(u \lambda \mathrm{id}_E)$ est le sous-espace propre de u de valeur propre λ . C'est un sev de E.
- 2. **Injectivité** λ est une vap de $E \iff u \lambda id_E$ n'est pas injective. En particulier, 0 est vap de $u \iff u$ n'est pas injective.
- 3. Stabilité et commutation Soient u et v deux endomorphismes de E qui commutent. Alors : $E_{\lambda}(u)$ est v-stable (dem).
- 4. Somme directe et famille de vep Soient $u \in \mathcal{L}(E)$ et $\lambda_1, ..., \lambda_n \in \mathbb{K}$ distincts 2 à 2.
 - (a) $E_{\lambda_1}(u), ..., E_{\lambda_n}(u)$ sont en somme directe (dem).
 - (b) Soit $(x_1, ..., x_n)$ une famille de vep de u de vap resp $\lambda_1, ..., \lambda_n$. Cette famille est libre (dem).

2) Dimension finie

Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit $u \in \mathcal{L}(E)$. Le scalaire λ est une vap de $u \iff \det(\lambda i d_E u) = 0$ (dem).
- 2. Polynôme caractéristique et spectre d'un endomorphisme Soit $u \in \mathcal{L}(E)$.
 - (a) $\chi_u(X) = \det(X \operatorname{id}_E u)$ est le polynôme caractéristique de u.
 - (b) $\forall \lambda \in \mathbb{K}$, λ est vap de $u \iff \chi_u(\lambda) = 0$.
 - (c) Sp(u), l'ensemble des vap de u, est appelé spectre de u.
 - (d) La multiplicité d'une vap est sa multiplicité en tant que racine de $\chi_u(X)$.
- 3. Propriétés de $\chi_u(X)$.
 - (a) C'est un polynôme unitaire de degré $n = \dim E$.
 - (b) -tr(u) est son coefficient de degré n-1
 - (c) $(-1)^n \det(u)$ est son coefficient de degré 0.
- 4. Soit $u \in \mathcal{L}(E)$. u admet au plus n vap comptées avec multiplicité.
- 5. Soit $\chi_u(X)$ scindé
 - (a) La somme des vap de u comptées avec multiplicité est tr(u).
 - (b) Le produit des vap de u comptées avec leur multiplicité est det(u).

3) Cas des matrices

Soit $n \in \mathbb{N}^*$.

- 1. **Définition** Soit $A \in M_n(\mathbb{K})$. On note $u \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme canoniquement associé à A. On appelle :
 - (a) vap de A les vap de u.
 - (b) vep de A les vep de u.
 - (c) le spectre de A le spectre de u. Il est noté $\mathrm{Sp}_{\mathbb{K}}(A)$.
 - (d) polynôme caractéristique de A le polynôme caractéristique de $u: \chi_A(X) = \chi_u(X)$.
 - (e) sous-espace propre de A les sous-espaces propres de $u: \forall \lambda \in \mathbb{K}, \ E_{\lambda}(A) = E_{\lambda}(u)$.
- 2. Inversibilité Soit $A \in M_n(\mathbb{K})$. 0 est vap de $A \iff A \notin GL_n(\mathbb{K})$.
- 3. **Matrice triangulaire** Si *A* est triangulaire, alors les vap sont ses coefficients diagonaux. De plus, la multiplicité de chaque vap de *A* est le nombre de fois qu'elle apparait sur la diagonale.
- 4. Soit $A \in M_n(\mathbb{K})$. On a : $\chi_{t_A}(X) = \chi_A(X)$. A et sa transposée ont les mêmes vap avec les mêmes multiplicités.
- 5. Soient $A, B \in M_n(\mathbb{K})$. A et B sont semblables $\Longrightarrow \chi_A(X) = \chi_B(X)$.
- 6. Soit E un \mathbb{K} -ev de dimension n, une base \mathcal{B} de E, $u \in \mathcal{L}(E)$. On pose $A = \operatorname{Mat}_{\mathcal{B}}(u)$. Alors : $\chi_u(X) = \chi_A(X) = \det(X \mathbf{I}_n A)$.

4) Endomorphismes induits

Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit $u \in \mathcal{L}(E)$ et F de sev de E stable par u. On note v l'endomorphisme de F induit par u.
 - (a) $\chi_v(X)$ divise $\chi_u(X)$.
 - (b) $\operatorname{Sp}(v) \subset \operatorname{Sp}(u)$.
 - (c) Pour toute vap de v, sa multiplicité comme vap de v est inférieure ou égale à sa multiplicité comme vap de u.
 - (d) $\forall \lambda \in \mathbb{K}, E_{\lambda}(v) = F \cap E_{\lambda}(u).$
- 2. Inégalité entre dimension de sous-espace propre et multiplicité d'une vap Soit $u \in \mathcal{L}(E)$. Pour toute vap λ de u, on note m_{λ} sa multiplicité d_{λ} et la dimension du sous-espace propre $E_{\lambda}(u)$. On a :
 - (a) $\forall \lambda \in \mathrm{Sp}(u), \ 1 \leqslant d_{\lambda} \leqslant m_{\lambda}.$
 - (b) $\forall A \in \mathcal{M}_n(\mathbb{K}), \ \forall \lambda \in \mathrm{Sp}_{\mathbb{K}}(A), \ 1 \leqslant d_{\lambda} \leqslant m_{\lambda}.$

II. Polynôme en un endomorphisme ou une matrice

- 1. Polynôme en un endomorphisme et polynôme en une matrice Soit $P(X) = a_d X^d + ... + a_0 X^0 \in \mathbb{K}[X]$ où $a_0, ..., a_d \in \mathbb{K}$.
 - (a) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On pose : $P(A) = a_d A^d + \ldots + a_0 A^0$ où $\left\{ \begin{array}{l} A^0 = \mathcal{I}_n \\ \forall k \in \mathbb{N}, \ A^{k+1} = A^k \times A \end{array} \right.$
 - (b) Soient E un \mathbb{K} -ev de dimension quelconque et $u \in \mathcal{L}(E)$. On pose $P(u) = a_d u^d + \ldots + a_0 u^0$ où $\left\{ \begin{array}{l} u^0 = \mathrm{id}_E \\ \forall k \in \mathbb{N}, \ u^{k+1} = u^k \circ u \end{array} \right. .$
- 2. Soient $A, B \in M_n(\mathbb{K}), u, v \in \mathcal{L}(E), P, Q \in \mathbb{K}[X]$ et $\lambda, \mu \in \mathbb{K}$. On a :
 - (a) $(\lambda P + \mu Q)(A) = \lambda P(A) + \mu Q(A) \in M_n(\mathbb{K}).$
 - (b) $(\lambda P + \mu Q)(u) = \lambda P(u) + \mu Q(u) \in \mathcal{L}(E)$.
 - (c) $(PQ)(A) = P(A) \times Q(A)$ est un produit matriciel.
 - (d) $(PQ)(u) = P(u) \circ Q(u)$ est une composée d'endomorphismes.
 - (e) Si A et B commutent : P(A)Q(B) = Q(B)P(A). En particulier , P(A) et Q(A) commutent toujours.
 - (f) Si u et v commutent : P(u)Q(v) = Q(v)P(u). En particulier, P(u) et Q(v) commutent toujours.
- 3. Polynôme annulateur d'une matrice et polynôme annulateur d'un endomorphisme Soit $P \in \mathbb{K}[X]$.
 - (a) Soit $A \in M_n(\mathbb{K})$. On dit que P annule A / P est un polynôme annulateur de A si P(A) = 0.
 - (b) Soit E un \mathbb{K} -ev, $u \in \mathcal{L}(E)$. On dit que P annule u / P est un polynôme annulateur de u si P(u) = 0.

4. Théorème de Cayley-Hamilton (admis)

- (a) Cas des endomorphismes : Soient E de dimension finie et $u \in \mathcal{L}(E)$. Alors : $\chi_u(X)$ annule u.
- (b) Cas des matrices : $\forall A \in M_n(\mathbb{K}), \chi_A(X)$ annule A.
- 5. Soient E un \mathbb{K} -ev, $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$, $P \in \mathbb{K}[X]$. Alors:
 - (a) $\forall x \in E_{\lambda}(u) : [P(u)](x) = P(\lambda) \cdot x$.
 - (b) C'est à dire : $E_{\lambda}(u) \subset E_{P(\lambda)}[P(u)]$.
 - (c) Cas des matrices : $\forall A \in \mathcal{M}_n(\mathbb{K}), \ \forall \lambda \in \mathbb{K}, \ \forall P \in \mathbb{K}[X], E_{\lambda}(A) \subset E_{P(\lambda)}[P(A)].$
- 6. Soient E un \mathbb{K} -ev , $u \in \mathcal{L}(E)$, $P \in \mathbb{K}[X]$ un polynôme annulateur de u. Alors : toute vap de u est racine de P.
 - (a) En dimension finie : $\operatorname{Sp}(u) \subset \{\lambda \in \mathbb{K} \mid P(\lambda) = 0\}$. Inclusion réciproque fausse a priori!
 - (b) Cas des matrices : $\forall A \in M_n(\mathbb{K}), \ \operatorname{Sp}_{\mathbb{K}}(A) \subset \{\lambda \in \mathbb{K} \mid P(\lambda) = 0\}$. Inclusion réciproque fausse a priori!
- 7. Soient $A, B \in M_n(\mathbb{K})$ semblables et $P \in \mathbb{K}[X]$. Alors : P(A) et P(B) sont semblables (ex).

8. Soit
$$D = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$
 diagonale. Alors : $P(D) = \begin{pmatrix} P(\lambda_1) & (0) \\ & \ddots & \\ (0) & & P(\lambda_n) \end{pmatrix}$ (ex).

III. Diagonalisation

- 1. Diagonalisation d'un endomorphisme Soit E un \mathbb{K} -ev de dimension finie et $u \in \mathcal{L}(E)$.
 - (a) u est diagonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est diagonale. \mathcal{B} est formée des vep de u.
 - (b) Diagonaliser u, c'est trouver une telle base \mathcal{B} et calculer la matrice de u dans cette base.
- 2. Théorème : Conditions nécessaires et suffisantes pour qu'un endomorphisme soit diagonalisable Soient E un L-ev de dimension finie et $u \in \mathcal{L}(E)$. On a les CNS suivantes :

 $\begin{array}{lll} u \text{ est diagonalisable} &\iff& (1) & \text{Il existe une base } \mathcal{B} \text{ de } E \text{ formée de vep de } u. \\ &\iff& (2) & \text{Il existe une base } \mathcal{B} \text{ de } E \text{ où la matrice } \operatorname{Mat}_{\mathcal{B}}(u) \text{ est diagonale.} \\ &\iff& (3) & E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u). \\ &\iff& (4) & E = \sum_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u). \\ &\iff& (5) & \dim E = \sum_{\lambda \in \operatorname{Sp}(u)} \dim E_{\lambda}(u). \\ &\iff& (6) & \chi_u(X) \text{ est scind\'e, et } \forall \lambda \in \operatorname{Sp}(u), \ d_{\lambda} = m_{\lambda}. \\ &\iff& (7) & \text{Il existe un polynôme annulateur de } u \text{ scind\'e à racines simples.} \\ &\iff& (8) & \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda) \text{ annule } u. \end{array}$

- (1) et (2) par définition. (7) admis.
- 3. Diagonalisation d'une matrice Soit $A \in M_n(\mathbb{K})$.
 - (a) A est diagonalisable si A est semblable à une matrice diagonale.
 - (b) Diagonaliser A, c'est trouver deux matrices $P \in GL_n(\mathbb{K})$ et $D \in M_n(\mathbb{K})$ diagonale telles que : $A = PDP^{-1}$.
- 4. Soit $A \in M_n(\mathbb{K})$ et $u_A \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme canoniquement associé à A.

 u_A diagonalisable \iff A est diagnonalisable

- 5. Méthode pour diagonaliser une matrice ou un endomorphisme Soit $A \in M_n(\mathbb{K})$ et $u \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme canoniquement associé à A.
 - (a) On calcule $\chi_A(X)$. S'il est non scindé alors A non diagonalisable. Sinon on en déduit $\mathrm{Sp}_{\mathbb{K}}(A)$ et les multiplicités des vap.
 - (b) Pour chaque vap λ , on détermine une base de $E_{\lambda}(A)$. Si $\exists \lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$, $\dim E_{\lambda}(A) < m_{\lambda}$, alors A non diagonalisable.
 - (c) Sinon, en juxtaposant les bases des espaces propres $E_{\lambda}(A)$, on obtient une base \mathcal{B} de \mathbb{K}^n formée de vep de A, càd de vep de u. On a $A = PAP^{-1}$ avec, en notant C la base canonique :

 $\begin{cases} P = \mathcal{P}_{\mathcal{C} \to \mathcal{B}} \text{ matrice des vecteurs-colonne des vep de } A \\ D = \operatorname{Mat}_{\mathcal{B}}(u) \text{ diagonale avec les vap comme coefficients diagonaux, dans le même ordre que les vep de } P \end{cases}$

- 6. Condition suffisante de diagonalisibilité
 - (a) Soient E un \mathbb{K} -ev de dimension n et $u \in \mathcal{L}(E)$. $\chi_u(X)$ scindé et à racines simples sur $\mathbb{K} \Longrightarrow u$ diagonalisable.
 - (b) Soit $A \in M_n(\mathbb{K})$. $\chi_A(X)$ scindé et à racines simples sur $\mathbb{K} \Longrightarrow A$ diagonalisable.
- 7. Applications de la diagonalisation
 - (a) Calcul de puissances d'une matrice : Si A est diagonalisable, on a : $A^k = PD^kP^{-1}$.
 - (b) Calcul des « racines carrées » d'une matrice
 - B est une racine de A si $B^2 = A \iff B^2 = PDP^{-1} \iff \exists E \text{ tq} : E^2 = D \text{ et } B = PEP^{-1}$.
 - Analyse-synthèse : on utilise le fait que $ED = EE^2 = E^2 = DE$.
 - Cette méthode peut être utilisée pour des équations autres que $B^2 = A$ (ex : $M^3 2M = A$).

IV. Trigonalisation

- 1. Trigonalisation d'un endomorphisme Soit E un \mathbb{K} -ev de dimension finie et $u \in \mathcal{L}(E)$.
 - (a) u est trigonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est triangulaire supérieure.
 - (b) Trigonaliser u, c'est trouver une telle base \mathcal{B} et calculer la matrice de u dans cette base.
- 2. Trigonalisation d'une matrice Soit $A \in M_n(\mathbb{K})$.
 - (a) A est trigonalisable si A est semblable à une matrice triangulaire supérieure.
 - (b) Trigonaliser A, c'est trouver deux matrices $P \in GL_n(\mathbb{K})$ et $T \in M_n(\mathbb{K})$ triangulaire supérieure telles que : $A = PTP^{-1}$.
- 3. Soient E un \mathbb{K} -ev de dimension $n, U \in \mathcal{L}(E)$, et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. On a $\mathrm{Mat}_{\mathcal{B}}(u)$ triangulaire supérieure $\iff \forall j \in [1, n], \ \mathrm{Vect}(e_1, ..., e_j)$ est u-stable.
- 4. Soit $A \in M_n(\mathbb{K})$. [A diagonale] \Longrightarrow [A diagonalisable, A triangulaire] \Longrightarrow [A trigonalisable].

V. Applications des polynômes d'endomorphismes à la réduction des endomorphismes

- 1. Théorème : CNS de diagonalisibilité en utilisant les polynômes d'endomorphismes cf. assertions (7) et (8) du III.2. (idem pour les matrices)
- 2. Théorème : Stabilité d'un sev et diagonalisibilité Soient E un \mathbb{K} -ev de dimension finie, $u \in \mathcal{L}(E)$ et F un sev de E stable par u. On note $v \in \mathcal{L}(F)$ l'endomorphisme induit par u. Si u est diagonalisable, alors v est diagonalisable.
- 3. Théorème : CNS de trigonalisibilité en utilisant les polynômes d'endomorphismes Soient E un L-ev de dimension finie et $u \in \mathcal{L}(E)$.

u est trigonalisable \iff (1) u admet un polynôme scindé sur \mathbb{K} .

 \iff (2) $\chi_u(X)$ est scindé sur \mathbb{K} .

(idem pour les matrices)

- 4. Comparaison entre la trigonalisabilité et diagonalisabilité Soit $A \in M_n(\mathbb{K})$.
 - (a) A est trigonalisable $\iff \chi_A(X)$ est scindé.
 - (b) $\chi_A(X)$ est scindé à racines simples $\Longrightarrow A$ est diagonalisable $\Longrightarrow \chi_A(X)$ est scindé.
- 5. Résolution de systèmes : (S) $\begin{cases} P(A) = 0 \\ \det(A) = x \\ \operatorname{tr}(A) = y \end{cases}$

Les solutions sont toutes les matrices semblables à *D* diagonale (ou *T* triangulaire).

VI. Application : récurrences linéaires à coefficients constants

- 1. Soient $a_0, ..., a_{n-1} \in \mathbb{K}$
- 2. Soit $(u_k)_k \in \mathbb{K}^{\mathbb{N}}$ une suite telle que :

$$\forall k \in \mathbb{N}, \ u_{k+n} + a_{n-1}u_{k+n-1} + \dots + a_0u_k = 0$$

3. On pose:

$$\forall k \in \mathbb{N}, \ X_k = \begin{pmatrix} u_k \\ u_{k+1} \\ \vdots \\ u_{k+n-1} \end{pmatrix} \in \mathbb{K}^n$$

4. Puis on remarque:

$$\forall k \in \mathbb{N} : X_{k+1} = \begin{pmatrix} u_{k+1} \\ u_{k+2} \\ \vdots \\ u_{k+n} \end{pmatrix} = AX_k \text{ en posant} : A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$$

- 5. Par relation de récurrence immédiate, on a : $\forall k \in \mathbb{N}, X_k = A^k X_0$.
- 6. Pour obtenir u_k , il suffit de calculer X_k , car u_k est la première coordonnée de X_k . On calcule donc les puissance de A; pour cela on diagonalise A si c'est possible, ou on trigonalise (toujours possible sur \mathbb{C}). On commence par calculer $\chi_A(X) = X^n + a_{n-1}X^{n-1} + ... + a_0X^0$.

VII. Compléments

- 1. Matrices nilpotentes Soit $A \in M_n(\mathbb{K})$.
 - (a) On dit que A est nilpotente si : $\exists N \in \mathbb{N}, A^N = 0$.
 - (b) Si A est nilpotente, alors $A^n = 0$ (dem : polynôme caractéristique et Cayley-Hamilton).
 - (c) A est nilpotente \iff $\operatorname{Sp}_{\mathbb{C}}(A) = 0$.
- 2. **Théorème spectral** Toute matrice symétrique *réelle* est diagonalisable.
- 3. Matrices dont toutes les lignes ou colonnes ont la même somme Soit $A \in M_n(\mathbb{K})$.
 - (a) Si toutes les lignes de A ont la même somme égale à $\lambda \in \mathbb{K}$, alors $A \times \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ donc $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$ et

$$\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in E_{\lambda}(A).$$

- (b) De la même manière, si toutes les colonnes ont la même somme μ alors $\mu \in \operatorname{Sp}_{\mathbb{K}}({}^tA) = \operatorname{Sp}_{\mathbb{K}}(A)$.
- 4. **Diagonaliser** $A + \lambda \mathbf{I}_n$ Supposons qu'on ait diagonalisé $A : A = PDP^{-1}$. Alors la diagonalisation de $A + \lambda \mathbf{I}_n$ est immédiate :
 - (a) $A + \lambda I_n = PDP^{-1} + \lambda PI_n P^{-1} = P(D + \lambda I_n)P^{-1}$ avec $D + \lambda I_n$ diagonale.
 - (b) Plus généralement : $\mu A + \lambda I_n = P(\mu D + \lambda I_n)P^{-1}$.
- 5. $E_0(u) = \ker(u)$
 - (a) On a: $E_0(u) \neq \{0\} \iff \ker(u) \neq \{0\}$. C'est à dire en dimension finie: $0 \in \operatorname{Sp}(u) \iff u \notin GL(E)$
 - (b) De même : $\forall A \in M_n(\mathbb{K}), \ 0 \in \operatorname{Sp}_{\mathbb{K}}(A) \iff A \notin \operatorname{GL}_n(\mathbb{K}).$
 - (c) De plus, on peut calculer $\dim E_0(u)$ grâce au théorème du rang. Plus généralement : $\dim E_\lambda(u) = \dim E \operatorname{rg}(u \lambda \operatorname{id}_E)$.
- 6. Cas d'une unique vap Rappel : λI_n commute avec toutes les matrices. Soit $A \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Si $\mathrm{Sp}_{\mathbb{K}}(A) = \{\lambda\}$, c'est-à-dire A n'a qu'une seule vap, alors : A diagonalisable $\iff A = \lambda I_n$.
- 7. **Diagonalisation de J**_n Rappel : J_n est la matrice remplie de 1. Elle est diagonalisable car elle est symétrique réelle. Son rang vaut 1 donc X^{n-1} divise $\chi_{J_n}(X)$, car dim $E_0(J_n) = n \operatorname{rg}(J_n)$. De plus, toutes les lignes ont la même somme

n. Donc
$$\chi_{J_n}(X) = X^{n-1}(X-n)$$
. Ainsi, J_n est diagonalisable et semblable à
$$\begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}.$$

- 8. Matrices de rang 1 Soit $A \in M_n(\mathbb{K})$ une matrice de rang 1. A est diagonalisable \iff $\operatorname{tr} A \neq 0$ (ex).
- 9. **Réduction de Jordan** Soit $A \in M_n(\mathbb{K})$ une matrice trigonalisable. Alors A est semblable à une matrice de la forme :

$$\begin{pmatrix} B_1 & & & (0) \\ & \ddots & \\ & (0) & & B_r \end{pmatrix} \text{ où } \forall i \in [1, t], \ \exists \lambda_i \in \mathbb{K}, \ B_i = \begin{pmatrix} \lambda_i & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{pmatrix}$$

- 10. Méthode pour trigonaliser une matrice
 - (a) Comme pour une diagonalisation, on détermine les vap. Si il existe une vap λ tq : dim $E_{\lambda}(A) < m_{\lambda}$, la matrice n'est pas diagonalisable.

- (b) On montre alors que la matrice est semblable à sa réduite de Jordan (les vap sur la diagonale, des 0 et des 1 juste au dessus, des 0 ailleurs).
- (c) Pour cela on prend l'endomorphisme u canoniquement associé à A et on pose \mathcal{B} une base dans laquelle la matrice u est la réduction de Jordan. On obtient ainsi un système. On déduit donc $P = \mathcal{G}_{C \to \mathcal{B}}$ telle que $A = PTP^{-1}$.
- $\text{(d) Exemple de système pour une matrice } 3\times 3\,T = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right) : \text{on a } \mathrm{Mat}_{(v_1,v_2,v_3)}(u) = T \Longleftrightarrow \left\{ \begin{array}{ccc} u(v_1) = v_1 \\ u(v_2) = v_1 + v_2 \\ u(v_3) = -v_3 \end{array} \right. .$

CHAPITRE 3: ESPACES VECTORIELS NORMÉS (EVN)

I. Normes

1) Définitions

1. **Norme** On appelle norme sur E toute application : $N: E \longrightarrow \mathbb{R}_+$ telle que

$$\begin{cases} \forall x \in E, N(x) = 0 \Rightarrow x = 0_E \\ \forall \lambda \in \mathbb{R}_+, \ \forall x \in E, \ N(\lambda x) = |\lambda| \times N(x) \\ \forall x, y \in E, \ N(x+y) \leqslant N(x) + N(y) \ (\text{inégalité triangulaire}) \end{cases}$$

- (a) La norme est notée N ou $\|\cdot\|$.
- (b) Si le \mathbb{K} -ev E est muni d'une norme, on parle de l'evn E (ou de l'evn (E, N) si on veut préciser la norme).
- 2. Norme induite sous un sev Soit $(E, \|\cdot\|_E)$ un evn et F un sev de E. On obtient $(F, \|\cdot\|_F)$ en posant : $\forall x \in F, \|x\|_F = \|x\|_E$.
- 3. Soit $(E, \|\cdot\|)$ un evn. On a les inégalités suivantes (dem) :

$$\left\{ \begin{array}{l} | \|x\| - \|y\| \| \leq \|x + y\| \leq \|x\| + \|y\| \\ | \|x\| - \|y\| \| \leq \|x - y\| \leq \|x\| + \|y\| \end{array} \right.$$

4. **Distance** Soit $(E, \|\cdot\|)$ un evn. On appelle distance associée à la norme $\|\cdot\|$ l'application :

$$d: \begin{array}{ccc} E \times E & \longrightarrow & \mathbb{R}_+ \\ (x,y) & \longmapsto & \|y-x\| \end{array}. \text{ Elle v\'erifie (dem)}: \left\{ \begin{array}{ccc} \forall x,y \in E, \ d(x,y) = 0 \Leftrightarrow x = y \\ \forall x,y \in E, \ d(x,y) = d(y,x) \\ \forall x,y,z \in E, \ d(x,z) \leqslant d(x,y) + d(y,z) \end{array} \right.$$

- 5. **Boules et sphère** Soit $(E, \|\cdot\|)$ un evn, $a \in E$ un vecteur et $r \in \mathbb{R}_+$ un réel positif. On définit :
 - (a) La boule ouverte de centre a et de rayon $r: B(a,r) = \{x \in E \mid d(a,x) < r\}$.
 - (b) La boule fermée de centre a et de rayon $r: B'(a,r) = \{x \in E \mid d(a,x) \le r\}$.
 - (c) La sphère de centre a et de rayon $r: S(a,r) = \{x \in E \mid d(a,x) = r\}$.

2) Exemples

- 1. Normes sur \mathbb{R} et \mathbb{C}
 - (a) La valeur absolue $|\cdot|$ est une norme de \mathbb{R} .
 - (b) Le module est une norme de \mathbb{C} .
- 2. Normes sur \mathbb{R}^n Pour tout $X = (x_1, ..., x_n) \in \mathbb{R}^n$, on définit les normes (dem):
 - (a) $||X||_1 = |x_1| + \dots + |x_n|$.
 - (b) $||X||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
 - (c) $||X||_{\infty} = \max\{ |x_1|, ..., |x_n| \}.$
- 3. Normes sur $C^0([a, b], \mathbb{K})$ Soient a, b deux réels tels que a < b. Pour toute $f \in C^0([a, b], \mathbb{K})$, on définit les normes (dem):

(a)
$$||f||_1 = \int_a^b |f(t)| dt$$
.

(b)
$$||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt}$$
.

(c)
$$||f||_{\infty} = \max_{t \in [a,b]} |f(t)|$$
.

- 3) Norme associée à un produit scalaire
 - 1. **Produit scalaire** Soit E un \mathbb{R} -ev. On appelle produit scalaire sur E toute application $\langle \cdot | \cdot \rangle : E \times E \longrightarrow \mathbb{R}$ qui est :

(a) bilinéaire :
$$\begin{cases} \forall \lambda, \mu \in \mathbb{R}, \ \forall x_1, x_2, y \in E, \ \langle \lambda x_1 + \mu x_2 | y \rangle = \lambda \langle x_1 | y \rangle + \mu \langle x_2 | y \rangle \\ \forall \lambda, \mu \in \mathbb{R}, \ \forall x, y_1, y_2 \in E, \ \langle x | \lambda y_1 + \mu y_2 \rangle = \lambda \langle x | y_1 \rangle + \mu \langle x | y_2 \rangle \end{cases}$$

- (b) symétrique : $\forall x, y \in E, \langle x|y \rangle = \langle y|x \rangle$
- (c) définie positive : $\forall x \in E, \ \langle x|x \rangle \geqslant 0 \text{ et } [\langle x|x \rangle = 0 \Rightarrow x = 0_E].$
- 2. Notation : le produit scalaire de deux vecteurs x et y est traditionnellement noté $\langle x|y\rangle$ ou $\langle x,y\rangle$ ou $\langle x,y\rangle$ ou $x\cdot y$.
- 3. Espace préhilbertien et espace euclidien
 - (a) On appelle espace préhilbertien (réel) tout ℝ-ev muni d'un produit scalaire.
 - (b) On appelle espace euclidien tout espace préhilbertien de dimension finie.
- 4. Exemples de produits scalaires
 - (a) Soit $x=(x_1,...,x_n)$ et $y=(y_1,...,y_n)$ deux vecteurs de \mathbb{R}^n . L'application $(x,y)\longmapsto x_1y_1+...+x_ny_n$ est un produit scalaire appelé produit scalaire canonique.
 - (b) Soient $f, g \in C^0([a, b], \mathbb{R})$. L'application $(f, g) \longmapsto \int_a^b f(t)g(t)dt$ est un produit scalaire sur $C^0([a, b], \mathbb{R})$.
- 5. **Notation** Soit *E* un espace préhilbertien de produit scalaire $\langle \cdot | \cdot \rangle$. On pose : $||x|| = \sqrt{\langle x | x \rangle}$.
- 6. **Théorème : Inégalité de Cauchy-Schwarz** Soit E un espace préhilbertien de produit scalaire $\langle \cdot | \cdot \rangle$ et on note $\| \cdot \| = \sqrt{\langle \cdot | \cdot \rangle}$. Soient $x, y \in E$. On a (dem : on considère pour tout réel t et y non nul : $\|x + ty\|^2$) :

$$|\langle x|y\rangle| \leqslant ||x|| \times ||y||.$$

Cas de l'égalité:

$$|\langle x|y\rangle| = ||x|| \times ||y|| \iff x \text{ et } y \text{ sont colinéaires.}$$

On a enfin:

$$\langle x|y\rangle = ||x|| \times ||y|| \iff \exists \lambda \in \mathbb{R}_+, \ x = \lambda y \text{ ou } y = \lambda x.$$

7. Inégalité de Cauchy-Schwarz avec des intégrales Soient $a < b \in \mathbb{R}$ et $f, g \in C^0([a, b], \mathbb{R})$. On a :

$$\left| \sqrt{\int_a^b f(t)g(t)dt} \right| \leqslant \sqrt{\int_a^b f^2(t)dt} \sqrt{\int_a^b g^2(t)dt}.$$

8. Théorème : Inégalité de Minkowski ou inégalité triangulaire pour la norme Soit E un espace préhilibertien de produit scalaire $\langle \cdot | \cdot \rangle$. Soient $x, y \in E$. On a (dem) :

$$||x + y|| \le ||x|| + ||y||.$$

Cas de l'égalité:

$$||x+y|| = ||x|| + ||y|| \iff \exists \lambda \in \mathbb{R}_+, \ x = \lambda y \text{ ou } y = \lambda x.$$

9. Inégalité de Minkowski avec des intégrales Soient $a < b \in \mathbb{R}$ et $f, g \in C^0([a, b], \mathbb{R})$. On a :

$$\sqrt{\int_a^b (f(t) + g(t))^2 dt} \leqslant \sqrt{\int_a^b f^2(t) dt} + \sqrt{\int_a^b g^2(t) dt}.$$

10. Corollaire de l'inégalité de Minkowski Soit E un espace de produit scalaire $\langle \cdot | \cdot \rangle$. Alors $\| \cdot \|$ est une norme de E, appelée norme canonique de E ou norme associée au produit scalaire de E.

4) Parties, fonctions et suites bornées

- 1. **Définitions** Soit $(E, \|\cdot\|)$ un evn.
 - (a) Soit A une partie de E. A est bornée ssi : $\exists M \in \mathbb{R}_+, \ \forall x \in A, \ \|x\| \leqslant M$.
 - (b) Soit X un ensemble et $f: X \longmapsto E$ une fonction. f est bornée ssi Im(f) est bornée : $\exists M \in \mathbb{R}_+, \ \forall x \in X, \ \|f(x)\| \leq M$.
 - (c) La suite $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ est bornée ssi : $\exists M\in\mathbb{R}_+,\ \forall n\in\mathbb{N},\ \|x_n\|\leqslant M.$
- 2. Norme de $\mathcal{B}(X, E)$ Soit X non vide et $(E, \|\cdot\|)$ un evn. On note $\mathcal{B}(X, E)$ l'ensemble des fonctions bornées de X vers E.
 - (a) $\mathcal{B}(X, E)$ est un \mathbb{K} -ev.
 - (b) On définit une nouvelle norme de $\mathcal{B}(X,E)$ dans $\mathbb{R}_+:\|f\|_{\infty}=\sup_{x\in X}\|f(x)\|_E.$
 - (c) Si X est un segment de $\mathbb R$ et si $(E,\|\cdot\|_E)=(\mathbb R,|\cdot|)$, alors $C^0([a,b],\mathbb R)\subset \mathcal B(X,E)$. Dans ce cas : $\|f\|_\infty=\max_{x\in [a,b]}|f(x)|$.

5) Parties convexes

1. **Définition** Soient E un \mathbb{R} -ev et $A \subset E$. On dit que A est une partie convexe de E si :

$$\forall x, y \in A, \ \forall t \in [0, 1], \ (1 - t)x + ty \in A.$$

Cela signifie de géométriquement que le segment $[a,b] = \{x + t(y-x)\}_{t \in [0,1]}$ reliant x et y est inclus dans A.

- (a) Soit E un \mathbb{R} -ev. Les sev de E sont des parties convexes de E.
- (b) Soit $(E, \|\cdot\|)$ un evn. Les boules ouvertes et les boules fermées de E sont des parties convexes de E.
- 2. Barycentre Soient E un ev, des vecteurs $v_1,...,v_r \in E$ et des réels $\lambda_1,...,\lambda_r \in [0,1]$ tq : $\lambda_1+...+\lambda_r=1$.
 - (a) On appelle, pour tout $j \in [1, r]$, (v_j, λ_j) le point v_j de poids λ_j .
 - (b) On appelle barycentre à points pondérés le vecteur $w = \lambda_1 v_1 + ... + \lambda_r v_r$.
 - (c) Si $A \subset E$ est une partie convexe de E, alors elle est stable par barycentre à poids positifs : $v_1, ..., v_r \in A \Longrightarrow w \in A$. (dem : récurrence sur r)

II. Suites convergentes de vecteurs

1) Définition

Soit $(E, \|\cdot\|)$ un evn sur \mathbb{K} .

1. Suite convergente Soit $(x_k)_{k\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite de vecteurs de E. Cette suite est convergente ssi :

$$\exists \ell \in E, \ \forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists k_0 \in \mathbb{N}, \ \forall k > k_0 : \|x_k - \ell\| \leqslant \varepsilon.$$

- (a) Le vecteur ℓ est alors unique, appelé **limite** de la suite $(x_k)_k$ et noté : $\lim_{k \to +\infty} x_k$ ou $\lim_k x_k$.
- (b) On dit alors que la suite $(x_k)_k$ converge ou tend vers ℓ .
- (c) Une suite non convergente est dite divergente.
- 2. Formulation équivalente Soient $(x_k)_{k\in\mathbb{N}}\in E^{\mathbb{N}}$ et $\ell\in E$. On a : $\lim_k x_k=\ell\Longleftrightarrow\lim_k \|x_k-\ell\|=0$.

2) Premières propriétés

Soit $(E, \|\cdot\|)$ un evn sur \mathbb{K} .

- 1. Toute suite convergente est bornée.
- 2. Une combinaison linéaire de suites convergentes est convergente.
- 3. La limite est linéaire.
- 4. Soient $(x_k)_k, (y_k)_k \in E^{\mathbb{N}}$ deux suites convergentes de vecteurs de E et $(\lambda_k)_k, (\mu_k)_k \in \mathbb{K}^{\mathbb{N}}$ deux suites convergentes de scalaires. Alors :
 - (a) la suite $(\lambda_k x_k + \mu_k y_k)_k$ est convergente.

- (b) $\lim_{k} (\lambda_k x_k + \mu_k y_k) = \left(\lim_{k} \lambda_k\right) \left(\lim_{k} x_k\right) + \left(\lim_{k} \mu_k\right) \left(\lim_{k} y_k\right).$
- 5. Convergence d'une suite extraite Soit $(x_k)_k \in E^{\mathbb{N}}$ une suite convergente de vecteurs de E et de limite l. Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une fonction strictement croissante. Alors la suite extraite $(x_{\varphi(k)})_k$ est également convergente de même limite l.

3) Théorème fondamental

- 1. Théorème : Équivalence des normes en dimension finie (admis) Soient E un \mathbb{K} -ev de dimension finie, $\|\cdot\|_1$ et $\|\cdot\|_2$ deux normes de E et $(x_k)_k \in E^{\mathbb{N}}$ une suite de vecteurs de E. Alors :
 - (a) La suite $(x_k)_k$ converge pour la norme $\|\cdot\|_1 \iff$ elle converge pour la norme $\|\cdot\|_2$.
 - (b) Si $(x_k)_k$ converge, sa limite pour la norme $\|\cdot\|_1$ est égale à sa limite pour la norme $\|\cdot\|_2$.
- 2. Corollaire Soient E un \mathbb{K} -ev de dimension finie $n \in N^*$, $\mathcal{B} = (e_1, ..., e_n)$ une base de E et $(x_k)_k \in E^{\mathbb{N}}$ une suite de vecteurs de E. On note, pour tout k, $(x_{1k}, ..., x_{nk})$ les coordonnées de x_k dans la base \mathcal{B} . Alors :
 - (a) La suite de vecteurs $(x_k)_k$ converge \iff les suites de scalaires $(x_{1k})_k,...,(x_{nk})_k$ convergent.
 - (b) Dans ce cas : $\lim_k x_k = \lim_k x_{1k} e_1 + \dots + \lim_k x_{nk} e_n$.

4) Topologie d'un espace vectoriel normé

Soit $(E, \|\cdot\|)$ un evn sur \mathbb{K} . On étudie en pratique uniquement la topologie d'ev de dimension finie.

- 1. Point intérieur à une partie, point adhérent à une partie Soit $x \in E$ un vecteur de E
 - (a) On appelle l'intérieur de A l'ensemble $\mathring{A} = \{x \in E \mid \exists \varepsilon \in \mathbb{R}_+^*, \ B(x,\varepsilon) \subset A\}.$
 - (b) On appelle l'adhérence de A l'ensemble $\overline{A} = \{x \in E \mid \forall \varepsilon \in \mathbb{R}_+^*, B(x, \varepsilon) \cap A \neq \varnothing\}.$
 - (c) On a : $\mathring{A} \subset A \subset \overline{A}$.
 - (d) On appelle frontière de A l'ensemble $\partial A = \overline{A} \setminus \mathring{A}$. La frontière de A est parfois notée Fr A.
- 2. Soit $A \subset E$.
 - (a) On a : $E \setminus \mathring{A} = \overline{E \setminus A}$.
 - (b) Donc : $\partial A = \overline{A} \cap \overline{E \setminus A}$.
- 3. Caractérisation séquentielle de l'adhérence Soient $x \in E$ et $A \subset E$. On a :

$$x \in \overline{A} \iff \exists (a_k)_k \in A^{\mathbb{N}}, \lim_k a_k = x.$$

- 4. Partie ouverte Soit $A \subset E$.
 - (a) A est un ouvert ou une partie ouverte de E ssi : $A = \mathring{A}$.
 - (b) C'est-à-dire : A est un ouvert de $E \iff \forall x \in A, \exists \varepsilon \in \mathbb{R}_+^*, B(x,\varepsilon) \subset A$.
- 5. Partie fermée Soit $A \subset E$.
 - (a) A est un fermé ou une partie fermée de E ssi : $A = \overline{A}$.
 - (b) Caractérisation séquentielle des fermés A est un fermé ssi : pour toute suite convergente $(a_k)_k \in A^{\mathbb{N}}$, $\lim_k a_k \in A$.
- 6. Complémentaire d'un fermé ou d'un ouvert Soit $A \subset E$.
 - (a) Les complémentaires des ouverts sont les fermés de E: A ouvert $\iff E \setminus A$ fermé.
 - (b) Les complémentaires des fermés sont les ouverts de E: A fermé $\iff E \setminus A$ ouvert.
- 7. Exemples
 - (a) \varnothing et E sont des parties à la fois ouvertes et fermées de E.
 - (b) En prenant $(E, \|\cdot\|) = (\mathbb{R}, |\cdot|)$, les « intervalles fermés » sont des fermés; les « intervalles ouverts » sont des ouverts.
 - (c) Les boules ouvertes de E sont des ouverts de E (dem).
 - (d) Les boules fermées et les sphères de *E* sont des fermés de *E* (dem).
- 8. **Théorème** Soient *E* un ev de *dimension finie* et *A* une partie de *E*. Alors (dem) :
 - (a) l'intérieur de A
 - (b) l'adhérence de A
 - (c) la frontière de A
 - (d) le fait que A soit ouvert
 - (e) le fait que A soit fermé

ne dépendent pas de la norme de E.

III. Limites de fonctions et continuité

1) Définition

Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux \mathbb{K} -evn.

Soit $A \subset E$.

Soit $f: A \longrightarrow F$ une fonction.

1. Limite d'une fonction Soit $a \subset \overline{A}$. On dit que f admet une limite en a ssi :

$$\exists \ell \in E, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^*, \ \forall x \in A: \|x - a\|_E \leqslant \delta \Rightarrow \|f(x) - \ell\|_F \leqslant \varepsilon.$$

Formulation avec les boules fermées :

$$\exists \ell \in E, \ \forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists \delta \in \mathbb{R}_{+}^{*}: f(A \cap B'(a, \delta)) \subset B'(\ell, \varepsilon).$$

- (a) Un tel vecteur ℓ est unique, appelé **limite** de f en a et noté $\lim_{x\to a} f(x)$ ou $\lim_a f$.
- (b) On dit que f tend vers ℓ en a.
- 2. Formulation équivalente Soit $a \in \overline{A}$. Soit $\ell \in E$. On a : $\lim_{a} f(x) = \ell \iff \lim_{a} ||f(x) \ell||_F = 0$.
- 3. Continuité d'une fonction Soit $a \in A$.
 - (a) On dit que f est continue en a ssi : $\lim_{a} f(x) = f(a)$.
 - (b) On dit que f est continue sur A ssi : f est continue en tout point $a \in A$.

2) Opérations sur les limites et sur les fonctions continues

1. Composée de limites Soient E, F et G trois evn; $A \subset E$ et $B \subset F$; $f: A \longrightarrow F$ et $g: B \longrightarrow G$ deux fonctions. On suppose $\mathrm{Im}(f) \subset B$. Soient $a \in \overline{A}$, $b \in \overline{B}$ et $c \in G$. On a :

Si
$$\begin{cases} \lim_{x \to a} f(x) = b \\ \lim_{y \to b} g(y) = c \end{cases}$$
 alors
$$\lim_{x \to a} g \circ f(x) = c$$

- 2. Composée de fonctions continues (même notation)
 - (a) Soit $a \in A$. Si f est continue en a et g est continue en f(a), alors $g \circ f$ est continue en a.
 - (b) Si f est continue sur A et g est continue sur B, alors $g \circ f$ est continue sur A.
- 3. **Opérations algébriques sur les limites** Soient E et F deux evn. Soit $A \in E$. Soient λ_1 et λ_2 deux formes linéaires de A dans \mathbb{K} . Soient f_1 et f_2 deux fonctions de A dans F. Soient $a \in \overline{A}$, μ_1 , μ_2 deux scalaires et f_2 deux vecteurs.
 - $(a) \ \mathrm{Si}: \quad \lim_{x \to a} \lambda_1(x) = \mu_1 \quad \text{ et } \quad \lim_{x \to a} \lambda_2(x) = \mu_2 \quad \text{ et } \quad \lim_{x \to a} f_1(x) = l_1 \quad \text{ et } \quad \lim_{x \to a} f_2(x) = l_2$
 - (b) Alors: $\lim_{x \to a} (\lambda_1(x) f_1(x) + \lambda_2(x) f_2(x)) = \mu_1 l_1 + \mu_2 l_2.$
- 4. Opérations algébriques sur les fonctions continues (même notation)
 - (a) Soit $a \in A$. Si $\lambda_1, \lambda_2, f_1$ et f_2 sont continues en a, alors $x \mapsto \lambda_1(x)f_1(x) + \lambda_2(x)f_2(x)$ est continue en a.
 - (b) Si λ_1 , λ_2 , f_1 et f_2 sont continues sur A, alors $x \mapsto \lambda_1(x)f_1(x) + \lambda_2(x)f_2(x)$ est continue sur A.

3) Caractérisations séquentielles de la limite et de la continuité

Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux \mathbb{K} -evn.

Soit $A \subset E$.

Soit $f: A \longrightarrow F$ une fonction.

1. Caractérisation séquentielle de la limite Soient $a \in \overline{A}$ et $l \in F$. On a :

$$\lim_{x \to a} f(x) = l \Longleftrightarrow \forall (a_k)_k \in A^{\mathbb{N}}, \ \left(\lim_k a_k = a \Rightarrow \lim_k f(a_k) = l\right)$$

La caractérisation séquentielle de la limite s'applique aussi dans les cas où a ou l sont « infinies ».

2. Caractérisation séquentielle de la continuité

- (a) Soit $a \in A$. f est continue en $a \iff \forall (a_k)_k \in A^{\mathbb{N}}, \ \left(\lim_k a_k = a \Rightarrow \lim_k f(a_k) = f(a)\right)$
- (b) f est continue sur $A \iff$ pour toute suite convergente $(a_k)_k \in A^{\mathbb{N}}$ dont la limite appartient à A, $\lim_k f(a_k) = f(\lim_k a_k)$
- 3. **Dimension finie** On suppose F de dimension finie n non nulle. Soit $\mathcal{B}=(e_1,...,e_n)$ une base de F. Soient $f_1,...,f_n$ des formes linéaires telles que : $\forall x \in A, f(x) = f_1(x)e_1 + ... + f_n(x)e_n$.
 - (a) Soient $a \in \overline{A}$ et $l \in F$. f tend vers l en $a \iff$ toutes les fonctions f_j tendent vers un scalaire λ_j en a. On a alors $l = \lambda_1 e_1 + ... + \lambda_n e_n$.
 - (b) Soit $a \in A$. f est continue en $a \iff$ toutes les f_j sont continues en a.
 - (c) f est continue sur $A \iff$ toutes les f_j sont continues sur A.

4) Continuité et topologie

- 1. **Images réciproques** Soit $(E, \|\cdot\|_E)$ un evn et $f: E \longrightarrow \mathbb{R}$ une fonction continue.
 - (a) L'ensemble $\{x \in E \mid f(x) > 0\} = f^{-1}(\mathbb{R}_+^*)$ est un ouvert de E.
 - (b) L'ensemble $\{x \in E \mid f(x) = 0\} = f^{-1}(\{0\})$ est un fermé de E.
 - (c) L'ensemble $\{x \in E \mid f(x) \ge 0\} = f^{-1}(\mathbb{R}_+)$ est un fermé de E.
- 2. Plus généralement, soient E et F deux evn, et $f: E \longrightarrow F$ une fonction continue et définie sur E.
 - (a) Pour tout $B \in F$ ouvert, $f^{-1}(B)$ est un ouvert de E.
 - (b) Pour tout $B \in F$ fermé, $f^{-1}(B)$ est un fermé de E.
- 3. **Théorème** Soit $(E, \|\cdot\|)$ un evn de dimension finie. Soit $A \subset E$ une partie non vide et bornée de E. Soit $f: A \longmapsto \mathbb{R}$.
 - (a) Alors : f est bornée et atteint ses bornes.
 - (b) Càd : f admet un maximum et un minimum.
- 4. Compact Soit E un \mathbb{K} -ev de dimension finie. Toute partie de E fermée et bornée est appelée *compact* de E.

5) Fonctions lipschitziennes

- 1. Fonction lipschitzienne Soient E et F deux evn sur \mathbb{K} . Soit $A \subset E$. Soit $f : A \longmapsto F$. Soit $K \in \mathbb{R}_+$.
 - (a) On dit que f est une fonction lipschitzienne si on a : $\forall x, y \in A$, $||f(y) f(x)||_F \leq K||y x||_E$.
 - (b) f est alors dite K-lipschitzienne.
 - (c) Si I est un intervalle de \mathbb{R} et f est dérivable sur I alors : f est K-lipschitzienne \iff $|f'| \leqslant K$.
- 2. Toute fonction lipschitzienne est continue.
- 3. La norme de E est 1-lipschitzienne.
- 4. Soient E et F deux evn. Soit $u \in \mathcal{L}(E, F)$. Soit $K \in \mathbb{R}_+$. u est K-lipschitzienne ssi: $\forall x \in E, \|u(x)\|_F \leqslant K\|x\|_E$.
- 5. Théorème Soient E, F deux evn. Soit $u \in \mathcal{L}(E,F)$. Si E est de dimension finie, alors u est lipschitzienne, donc continue.

6) Autres exemples

1. Continuité du déterminant

- (a) Si $n \in \mathbb{N}^*$ alors det : $M_n(\mathbb{K}) \longrightarrow \mathbb{K}$ est continu.
- (b) Si E est un ev de dimension finie alors $\det : \mathcal{L}(E) \longrightarrow \mathbb{K}$ est continu.
- (c) Si E est un ev de dimension finie n et $\mathcal B$ est une base de E, alors $\det_{\mathcal B}:\mathbb K^n\longrightarrow\mathbb K$ est continu.
- (d) Ainsi, $GL_n(\mathbb{K})$ est un ouvert de $M_n(\mathbb{K})$ car $M_n(\mathbb{K}) \setminus GL_n(\mathbb{K}) = \{M \in M_n(\mathbb{K}) \mid \det M = 0\}$ est un fermé.
- 2. Fonction polynomiale Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. Soit $f : E \longmapsto \mathbb{K}$.
 - (a) On dit que f est polynomiale s'il existe une partie finie $I \subset \mathbb{N}^n$ et une famille $(\lambda_\alpha)_{\alpha \in I} \in \mathbb{K}^I$ telle que, pour tout vecteur $x = x_1e_1 + ... + x_ne_n \in E$, on ait :

$$f(x) = \sum_{(\alpha_1, \dots, \alpha_n) \in I} \lambda_{(\alpha_1, \dots, \alpha_n)} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

- (b) Toute application polynomiale en dimension finie est continue.
- 3. Fonction multilinéaire Soient $E_1, ..., E_r$ et F des \mathbb{K} -ev. Soit f une fonction de $E_1 \times ... \times E_r$ dans F qui à $(x_1, ..., x_r)$ associe $f(x_1, ..., x_r)$. On dit que f est multilinéaire (en particulier r-linéaire) si :

$$\forall j \in [1; r], \forall \lambda, \mu, \forall y_i \in E_i, f(x_1, ..., \lambda x_i + \mu y_i, ..., x_r) = \lambda f(x_1, ..., x_i, ..., x_r) + \mu f(x_1, ..., y_i, ..., x_r).$$

- (a) Toute application linéaire est 1-linéaire.
- (b) Tout produit scalaire est 2-linéaire (bilinéaire).
- (c) Le produit matriciel et la composition des applications linéaires sont des applications bilinéaires.
- (d) L'application : $(A, B, C) \in M_n(\mathbb{K})^3 \longmapsto ABC \in M_n(\mathbb{K})$ est trilinéaire.
- (e) Soit E un \mathbb{K} -ev de dimension n, et \mathcal{B} une base de E. La fonction $\det_{\mathcal{B}}: E^n \longmapsto K$ est n-linéaire.
- (f) Toute fonction multilinéaire en dimension finie est continue.

CHAPITRE 4: ESPACES PRÉHILBERTIENS

I. Produit scalaire

1. **Produit scalaire** Soit E un \mathbb{R} -ev. On appelle produit scalaire sur E toute application $\langle \cdot | \cdot \rangle : E \times E \longrightarrow \mathbb{R}$ qui est :

(a) bilinéaire :
$$\left\{ \begin{array}{l} \forall \lambda, \mu \in \mathbb{R}, \ \forall x_1, x_2, y \in E, \ \langle \lambda x_1 + \mu x_2 | y \rangle = \lambda \langle x_1 | y \rangle + \mu \langle x_2 | y \rangle \\ \forall \lambda, \mu \in \mathbb{R}, \ \forall x, y_1, y_2 \in E, \ \langle x | \lambda y_1 + \mu y_2 \rangle = \lambda \langle x | y_1 \rangle + \mu \langle x | y_2 \rangle \end{array} \right. .$$

- (b) symétrique : $\forall x, y \in E, \langle x|y \rangle = \langle y|x \rangle$
- (c) définie positive : $\forall x \in E, \ \langle x|x \rangle \geqslant 0 \text{ et } [\langle x|x \rangle = 0 \Rightarrow x = 0_E].$
- 2. Espace préhilbertien et espace euclidien
 - (a) Un R-ev muni d'un produit scalaire est appelé espace préhilbertien réel.
 - (b) Un espace préhilbertien de dimension finie est dit espace euclidien.
- 3. Exemples de référence

(a) Soient x et y deux vecteurs de coordonnées $(x_1,...,x_n)$ et $(y_1,...,y_n)$ qui peuvent être écrites dans les matrices colonnes X et Y de $M_{n1}(\mathbb{R})$. On appelle **produit scalaire canonique de** \mathbb{R}^n l'application :

$$\begin{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{bmatrix} \xrightarrow{} \longrightarrow \mathbb{R}$$

$$\begin{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \end{bmatrix} \xrightarrow{} \longrightarrow x_1y_1 + \dots + x_ny_n \quad \text{qui s'écrit également} \quad \begin{matrix} \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ (X,Y) & \longmapsto & {}^t\!XY \end{matrix}$$

(b) L'application suivante est un produit scalaire :

$$E \times E \longrightarrow \mathbb{R}$$

$$(f,g) \longmapsto \int_{a}^{b} f(t)g(t)dt$$

- Sur $E = C^0([a, b], \mathbb{R})$ où $a < b \in \mathbb{R}$.
- Sur E l'ensemble des fonctions continues et de carré intégrable sur I de bornes $-\infty \leqslant a < b \leqslant +\infty$.
- (c) L'application suivante est un produit scalaire sur $\mathrm{M}_n(\mathbb{R})$:

$$M_n(\mathbb{R}) \times M_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$(A, B) \longrightarrow \operatorname{tr}({}^tA \times B) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$$

- 4. Norme associée à un produit scalaire
 - (a) Norme Soit E un espace préhilbertien de produit scalaire noté $\langle \cdot | \cdot \rangle$. L'application $x \mapsto \|x\| = \sqrt{\langle x | x \rangle}$ à valeurs dans $\mathbb R$ est une norme sur E.
 - (b) **Théorème de Cauchy-Schwarz** (rappel) $|\langle x|y\rangle| \leq ||x|| \times ||y||$. Égalité ssi x et y colinéaires. Égalité sans la valeur absolue ssi x et y colinéaires et de même sens.
 - (c) Inégalité de Minkowski (rappel) $||x + y|| \le ||x|| + ||y||$. Égalité ssi x et y colinéaires et de même sens.
- 5. **Propriétés calculatoires** Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien. Soient $x, y \in E$. On note $\| \cdot \|$ la norme.

(a) Identités remarquables
$$\left\{ \begin{array}{l} \|x+y\|^2 = \|x\|^2 + 2\langle x|y\rangle + \|y\|^2 \\ \|x-y\|^2 = \|x\|^2 - 2\langle x|y\rangle + \|y\|^2 \end{array} \right.$$

(b) Identité du parallélogramme $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

$$\text{(c) Identit\'es de polarisation} \left\{ \begin{array}{l} \langle x|y\rangle = \frac{1}{2} \left(\|x+y\|^2 - \|x\|^2 - \|y\|^2\right) \\ \langle x|y\rangle = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2\right) \end{array} \right.$$

II. Orthogonalité, base orthonormale (BON)

On considère $(E, \langle \cdot | \cdot \rangle)$ et la norme canonique $\| \cdot \|$.

1) Vecteurs orthogonaux, vecteurs unitaires, BON

1. Définitions

- (a) Un vecteur x de E est **unitaire** si ||x|| = 1.
- (b) Deux vecteurs x, y de E sont **orthogonaux** si $\langle x|y\rangle = 0$. On note $x \perp y$.
- (c) Une famille de $(x_1, ..., x_n) \in E^n$ est une famille orthogonale si $\forall i, j \in [1, n], i \neq j \Rightarrow \langle x_i | x_j \rangle = 0$.
- (d) Une famille de $(x_1,...,x_n) \in E^n$ est une famille orthonormale si $\forall i,j \in [1,n], \ \langle x_i|x_j \rangle = \delta_{ij}.$
- (e) Une famille de vecteurs de E^n est une base orthonormale si c'est une famille orthonormale et une base de E.
- 2. Les bases canoniques de \mathbb{R}^n et de $M_n(\mathbb{R})$, pour les produits scalaires canoniques, sont des BON.
- 3. Théorème de Pythagore Soit $(x_1,...,x_n)$ une famille orthogonale de vecteurs de E. On a :

$$\left\| \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=1}^{n} \|x_k\|^2.$$

- 4. Orthogonalité et famille libre Soit $\mathcal F$ une famille orthogonale de vecteurs de E tous non nuls. Alors $\mathcal F$ est libre.
- 5. Dimension finie On suppose que dim $E = n \in \mathbb{N}^*$. Si $\mathcal{G} \in E^n$ est une famille orthogonale, alors \mathcal{G} est une BON.
- 6. Théorème Tout espace euclidien admet une BON.

2) Calculs dans une BON

On suppose dim E = n et que $\mathcal{B} = (e_1, ..., e_n)$ est une **BON** de E.

- 1. Soient x et y deux vecteurs de E de coordonnées X et Y dans \mathcal{B} .
 - (a) $\forall i \in [1, n], x_i = \langle x | e_i \rangle$.

(b)
$$\langle x|y\rangle = \sum_{i=1}^{n} x_i y_i = {}^{t}XY.$$

(c)
$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{tXX}$$
.

(d)
$$\forall x \in E, \ x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i.$$

2. Matrice d'une application linéaire dans une BON Soit $u \in \mathcal{L}(E)$. La matrice de u dans \mathcal{B} est :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{ccc} \langle u(e_1)|e_1 \rangle & \cdots & \langle u(e_n)|e_1 \rangle \\ \vdots & & \vdots \\ \langle u(e_1)|e_n \rangle & \cdots & \langle u(e_n)|e_n \rangle \end{array} \right)$$

3) Sous-espaces vectoriels orthogonaux

- 1. Sev orthogonaux Soient F et G deux sev de E. F et G sont orthogonaux si : $\forall x \in F, \forall y \in G, \ x \perp y$. On note $F \perp G$.
- 2. Si $x \perp y$, alors $Vect(x) \perp Vect(y)$.
- 3. $\{0_E\}$ est ortogonal à tous les sev de E.
- 4. **Orthogonal d'un sev** Soit F un sev de E. On appelle orthogonal de F l'ensemble : $F^{\perp} = \{x \in E \mid \forall y \in F, x \perp y\}$.
- 5. Propriétés
 - (a) F^{\perp} est un sev de E.
 - (b) $F \perp F^{\perp}$.

- (c) $F \cap F^{\perp} = \{0_E\}.$
- (d) $F \subset (F^{\perp})^{\perp}$.
- (e) $F \perp G \iff F \subset G^{\perp} \iff G \subset F^{\perp}$.
- 6. Propriétés en dimension finie On suppose E de dimension finie.
 - (a) $(F^{\perp})^{\perp} = F$.
 - (b) $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.
 - (c) $F \subset G \iff G^{\perp} \subset F^{\perp}$

4) Projection orthogonale sur un sev de dimension finie

1. **Supplémentaire orthogonal** Soit *F* un sev de *dimension finie* dans *E* (de dimension quelconque). On a (dem) :

$$E = F \oplus F^{\perp}$$
.

2. **Projection orthogonale** La projection sur F parallèlement à F^{\perp} est appelée projection orthogonale sur F. Si $(e_1, ..., e_r)$ est une BON de F, elle est donnée par (dem) :

$$\forall x \in E, \ p_F(x) = \sum_{k=1}^r \langle x | e_k \rangle e_k.$$

- 3. **Distance à un sev** Soient $x \in E$ et F un sev de E. On appelle la distance de x à F est : $d(x,F) = \inf_{z \in F} ||x-z|| \ge 0$.
- 4. Distance en dimension finie Soit F un sev de dimension finie de E. On a :
 - (a) $d(x, F) = ||x p_F(x)||$.
 - (b) $||x||^2 = ||p_F(x)||^2 + ||x p_F(x)||^2$. (dem)
- 5. **Inégalité de Bessel** Si F est de dimension finie, alors $\forall x \in E, \|p_F(x)\| \leq \|x\|$.

5) Procédé d'orthonormalisation de Gram-Schmidt

Théorème

On suppose que E est de dimension finie.

Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E, que l'on ne suppose pas orthonormale.

Alors il existe une BON $\mathcal{B}' = (e'_1, ..., e'_n)$ de E telle que :

- 1. $\forall j \in [1, n], e'_j \in \text{Vect}(e_1, ..., e_j)$
- 2. C'est-à-dire : la matrice de passage $\mathcal{P}_{\mathcal{B} \to \mathcal{B}'}$ est triangulaire supérieure.

Démonstration : procédé d'orthonormalisation de Gram-Schmidt.

On pose:

$$\begin{cases} e'_1 & = & \frac{e_1}{\|e_1\|} \\ e'_2 & = & \frac{e_2 - \langle e_2|e'_1\rangle e'_1}{\|e_2 - \langle e_2|e'_1\rangle e'_1\|} \\ e'_3 & = & \frac{e_3 - \langle e_3|e'_1\rangle e'_1 - \langle e_3|e'_2\rangle e'_2}{\|e_3 - \langle e_3|e'_1\rangle e'_1 - \langle e_3|e'_2\rangle e'_2\|} \\ & \vdots \\ e'_k & = & \frac{e_k - \sum_{j=1}^{k-1} \langle e_k|e'_j\rangle e'_j}{\|e_k - \sum_{j=1}^{k-1} \langle e_k|e'_j\rangle e'_j\|} \end{cases}$$

Dans ce cas:

- 1. $\forall k \in [1, n], e'_k \in \text{Vect}(e_1, ..., e_k)$
- 2. $\forall k \in [1, n], e'_k$ est unitaire.
- 3. les e_k sont deux à deux orthogonaux.

Donc $\forall k \in [1, n], (e'_1, ..., e'_k)$ est une BON de $Vect(e_k, ..., e_k)$.

6) Formes linéaires sur un espace euclidien

On considère un espace euclidien E de dimension n.

1. **Théorème** Soit $\ell \in E^*$ une forme linéaire sur E. On a (dem) :

$$\exists ! \ v \in E, \ \forall x \in E, \ \ell(x) = \langle v | x \rangle.$$

- 2. Il existe alors un isomorphisme canonique entre E et E^* .
- 3. Vecteur normal à un hyperplan Soit H un hyperplan de E.
 - (a) On appelle vecteur normal à H tout vecteur non nul $v \in E$ tel que $\forall x \in E, \ x \in H \iff v \perp x$.
 - (b) Un tel vecteur caractérise H. En effet, en notant $(v_1, ..., v_n)$ les coordonnées de v dans une BON \mathcal{B} de E, alors v est normal à H ssi H admet l'équation cartésienne dans $\mathcal{B}: v_1x_1 + \cdots + v_nx_n = 0$.

III. Automorphismes ortogonaux

On considère $(E, \langle \cdot | \cdot \rangle)$ de dimension n et la norme canonique $\| \cdot \|$.

1) Groupe orthogonal

1. Conservation de la norme, conservation du produit scalaire Soit $u \in \mathcal{L}(E)$. On a :

$$\forall x, y \in E, \ \langle u(x)|u(y)\rangle = \langle x|y\rangle \iff \forall x \in E, \|u(x)\| = \|x\|.$$

- 2. Définitions Soit $u \in \mathcal{L}(E)$.
 - (a) Si *u* conserve le produit scalaire (ou la norme), on dit que *u* est un **automorphisme orthogonal**, ou une **isométrie vectorielle** de *E*.
 - (b) L'ensemble des automorphismes orthogonaux de E est le **groupe orthogonal** de E, noté $\mathrm{O}(E)$.
 - (c) On a : $O(E) \subset GL(E)$.
- 3. Symétrie orthogonale, réflexion Soit $E = F \oplus G$. On note s la symétrie par rapport à F parallèlement à G. On a :
 - (a) $s \in O(E) \iff F \perp G$ (dem).
 - (b) On dit dans ce cas que s est une symétrie orthogonale.
 - (c) Si de plus F est un hyperplan de E, alors on dit que s est une réflexion.
- 4. Cas des matrices
 - (a) $M \in M_n(\mathbb{R})$ est une **matrice orthogonale** si l'endomorphisme de \mathbb{R}^n canoniquement associé à M est un automorphisme orthogonal de \mathbb{R}^n pour le produit scalaire canonique de \mathbb{R}^n .
 - (b) On note alors $M \in \mathcal{O}_n(\mathbb{R})$, ou $M \in \mathcal{O}(n)$.
 - (c) On a : $O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$.
- 5. Conservation de la BON Soient $u \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une BON de E. On a : $u \in O(E) \iff (u(e_1), ..., u(e_n))$ est une BON de E (càd l'image d'une BON par u est une BON).
- 6. Corollaire $M \in M_n(\mathbb{R})$ est orthogonale si la famille de ses vecteurs-colonne forme une BON de \mathbb{R}^n .
- 7. Lemme Soient $\mathcal{B} = (e_1, ..., e_n)$ une BON de E et $\mathcal{F} = (x_1, ..., x_n)$ une famille de vecteurs de E. On note M la matrice de \mathcal{F} dans \mathcal{B} . On a :

(a)
$${}^tMM = \begin{pmatrix} \langle x_1 | x_1 \rangle & \cdots & \langle x_1 | x_n \rangle \\ \vdots & & \vdots \\ \langle x_n | x_1 \rangle & \cdots & \langle x_n | x_n \rangle \end{pmatrix}$$

- (b) Ainsi, \mathcal{F} est une BON de $E \iff {}^tMM = I_n$.
- 8. Théorème Soit $M \in M_n(\mathbb{R})$. On a :

$$M \in \mathcal{O}(E) \iff {}^{t}MM = I_{n}.$$

- 9. Les matrices orthogonales sont les matrices de passage d'une BON à une autre BON.
- 10. Matrices des automorphismes orthogonaux dans une BON Soit $u \in \mathcal{L}(E)$. Soit \mathcal{B} une BON de E. On a :

$$u \in \mathcal{O}(E) \iff \operatorname{Mat}_{\mathcal{B}}(u) \in \mathcal{O}_n(\mathbb{R}).$$

11. Soit $u \in O(E)$. Soit F un sev de E. On a : F est u-stable $\Longrightarrow F^{\perp}$ est u-stable.

2) Groupe spécial orthogonal

1. Déterminant d'un automorphisme orthogonal

- (a) $\forall u \in O(E)$, det(u) = 1 ou -1.
- (b) $\forall M \in \mathcal{O}_n(\mathbb{R}), \ \det(M) = 1 \text{ ou } -1.$

2. Groupe spécial orthogonal

- (a) On appelle groupe spécial orthogonal l'ensemble : $SO(E) = O^+(E) = \{u \in O(E) \mid det(u) = 1\}.$
- (b) On note aussi $O^{-}(E) = \{u \in O(E) \mid \det(u) = -1\}.$

3. Groupe spécial orthogonal d'ordre n

- (a) On appelle groupe spécial orthogonal d'ordre n l'ensemble : $SO_n(\mathbb{R}) = O_n^+(\mathbb{R}) = O^+(n) = \{M \in O_n(\mathbb{R}) \mid \det(M) = 1\}.$
- (b) On note aussi $O_n^-(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) \mid \det(M) = -1 \}.$
- 4. On dit parfois que les éléments de SO(E) et de $O^+(n)$ sont positifs et que ceux de $O^-(E)$ et de $O^-(n)$ sont négatifs.

IV. Automorphismes en dimension 2 ou 3

1) Espaces euclidiens orientés de dimension 2 ou 3

Soit E un espace euclidien de dimension n = 2 ou 3.

- 1. On appelle **orientation** de E le choix d'une base orthonormale \mathcal{B}_0 de E. Si \mathcal{B} est une autre base orthonormale, on dit que :
 - (a) \mathcal{B} est une base orthonormale directe si $\det \mathcal{P}_{\mathcal{B}_0 \to \mathcal{B}} = 1$.
 - (b) \mathcal{B} est une base orthonormale indirecte si det $\mathcal{P}_{\mathcal{B}_0 \to \mathcal{B}} = -1$.
- 2. Soit \mathcal{B}_1 une BOND et \mathcal{B} une BON. Alors \mathcal{B} est une BOND $\iff \det \mathcal{P}_{\mathcal{B}_1 \to \mathcal{B}} = 1$.
- 3. Soit $\mathcal{B} = (e_1, ..., e_n)$ une famille de n vecteurs de E. Soit \mathcal{B}_1 une BOND de E. On pose $M = \det \mathcal{P}_{\mathcal{B}_1 \to \mathcal{B}}$. ON a :

$$\mathcal{B}$$
 est une BOND $\iff \left\{ \begin{array}{l} {}^t\!MM = I_n \\ \det M = 1 \end{array} \right.$

- 4. **Produit mixte** Soit \mathcal{B}_1 une BOND de E. Soit $(x_1,...,x_n)$ une famille de n vecteurs de E. Le produit mixte de cette famille est : $\det_{\mathcal{B}_1}(x_1,...,x_n) = [x_1,...,x_n]$. Ce déterminant ne dépend pas du choix de \mathcal{B}_1 .
- 5. **Produit vectoriel** On suppose que E est un espace euclidien orienté de dimension 3. Soient $x, y \in E$. L'application :

$$\ell: \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ z & \longmapsto & [x,y,z] \end{array}$$

- (a) ℓ est une forme linéaire. Il existe donc un unique vecteur v tel que $\forall z \in E, [x, y, z] = \langle v | z \rangle$.
- (b) Cet unique vecteur v est appelé produit vectoriel de x et y, noté $x \wedge y$.
- (c) On note (x_1, x_2, x_3) et (y_1, y_2, y_3) les coordonnées de x et y dans une BOND de E. Alors les coordonnées (v_1, v_2, v_3) de $v = x \land y$ sont :

$$v_1 = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}$$
 $v_2 = \begin{vmatrix} x_3 & y_3 \\ x_1 & y_1 \end{vmatrix}$ $v_3 = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$

2) Automorphismes orthogonaux du plan

On considère un plan euclidien orienté E.

- 1. Théorème : formes des matrices orthogonales de O(2)
 - (a) Les éléments de SO(2) sont les matrices de la forme : $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
 - (b) Les éléments de $O^-(2)$ sont les matrices de la forme : $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

- 2. Automorphismes positifs du plan euclidien : les rotations Soit $u \in SO(E)$.
 - (a) $\exists \theta \in \mathbb{R}, \forall \mathcal{B} \text{ BOND de } E, \operatorname{Mat}_{\mathcal{B}}(u) = R(\theta)$. On dit que u est la rotation d'angle θ .
 - (b) L'application $R: \theta \longmapsto R(\theta)$ est une surjection.
 - (c) $R(\theta_1) \times R(\theta_2) = R(\theta_1 + \theta_2)$. En particulier, les matrices de SO(2) commutent 2 à 2.
 - (d) Soit e un vecteur unitaire de E. On a : $\begin{cases} \cos \theta = \langle e | u(e) \rangle \\ \sin \theta = [e, u(e)] \end{cases}$.
- 3. Automorphismes négatifs du plan euclidien : les réflexions Les éléments de $O^-(E)$ sont les réflexions de E.

3) Automorphismes orthogonaux de l'espace

On considère un espace euclidien orienté E de dimension 3.

- 1. Rotation d'axe orienté Soit e un vecteur unitaire de E. On pose $\Delta = \text{Vect}(e)$. Soit $\theta \in \mathbb{R}$.
 - (a) Il existe un unique endomorphisme de E dont la matrice dans toute BOND (e_1, e_2, e) de E est : $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - (b) Cet endomorphisme est appelé rotation d'axe Δ orienté par e et d'angle θ .
- 2. **Propriétés** Soit u la rotation d'axe $\Delta = \text{Vect}(e)$ orienté par e et d'angle θ . Alors :
 - (a) $\theta \not\equiv 0 \ [2\pi] \Longrightarrow \Delta = \ker(u \mathrm{id}) = E_1(u)$.
 - (b) $tr(u) = 2\cos\theta + 1$.
 - (c) $\forall x \in \Delta^{\perp}$, $u(x) = \cos(\theta)x + \sin(\theta)e \wedge x$.
 - (d) $\forall x \in \Delta^{\perp}$, $||x|| = 1 \Longrightarrow [e, x, u(x)] = \sin \theta$.
- 3. Théorème : réduction en BON d'une isométrie Soit $u \in O(E)$.

Alors il existe une BON \mathcal{B} de E où la matrice de u est

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & \pm 1 \end{pmatrix} \quad \text{où } a, b, c \in \mathbb{R} \text{ et } a^2 + b^2 = 1$$

4. **Théorème** Les éléments de SO(E) sont les rotations.

V. Endomorphismes symétriques

1) Définition

1. Soit $u \in \mathcal{L}(E)$. On dit que u est un **endomorphisme symétrique** si :

$$\forall x, y \in E, \ \langle u(x)|y\rangle = \langle x|u(y)\rangle.$$

- 2. Exemples
 - (a) Les homothéties de E sont des endomorphismes symétriques.
 - (b) Si $E = F \oplus G$ et $F \perp G$, alors le projecteur sur F parallèlement à G et la symétrie par rapport à F parallèlement à G sont des endomorphismes symétriques.
- 3. Notons $\mathcal{S}(E)$ l'ensemble des endomorphismes symétriques (non officielle). On a : $\mathcal{S}(E)$ est un sev de $\mathcal{L}(E)$.
- 4. Matrices des endomorphismes symétriques dans une BON Soient $u \in \mathcal{L}(E)$ et \mathcal{B} une BON de E. On a (dem):

$$u \in \mathcal{S}(E) \iff \operatorname{Mat}_{\mathcal{B}}(u)$$
 est une matrice symétrique.

2) Théorème spectral

- 1. Théorème spectral Soit u un endomorphisme de E.
 - $u \in \mathcal{S}(E) \iff$ Il existe une BON de E formée de vep de u, càd u est diagonalisable dans une BON.
- 2. Corollaire : cas des matrices Soit $S \in M_n(\mathbb{R})$ une matrice symétrique réelle.

Alors il existe une matrice orthogonale $P \in \mathcal{O}_n(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_n(\mathbb{R})$ telles que (dem) :

$$S = PDP^{-1} = PD^{t}P$$

Deuxième partie

ANALYSE

CHAPITRE 5: SÉRIES NUMÉRIQUES

I. Généralités

1) Définitions et notations

1. Soit $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$ une suite d'éléments de \mathbb{K} . On note la série de terme général $u_n : \sum_{n} u_n$.

2. On définit alors la suite des somme partielles de la série : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k$.

3. Convergence On dit que $\sum_{n} u_n$ est convergente si $(S_n)_n$ est convergente.

4. On définit alors la somme de la série : $\sum_{n=0}^{+\infty} u_n = \lim_n \sum_{k=0}^n u_k$, et la suite des restes : $\forall n \in \mathbb{N}, R_n = \sum_{k=n+1}^{+\infty} u_k$.

2) Divergence grossière

1. Condition nécessaire de convergence de la série Soit $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$. On a : $\sum_n u_n$ convergente $\Longrightarrow \lim_n u_n = 0$.

2. Si $(u_n)_n$ ne tend pas vers 0, alors $\sum_n u_n$ est dite **grossièrement divergente**.

3) Exemples de référence

1. Série géométrique $\sum_n u_n$ est une série géométrique si $\exists \ q \in \mathbb{C}, \forall n \in \mathbb{N}, u_n = q^n$.

(a) Cette série est convergente $\iff |q| < 1$.

(b) Dans ce cas, sa somme vaut $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

(c) Si $|q| \geqslant 1$, la série est grossièrement divergente.

2. Série de Riemann $\sum_n u_n$ est une série de Riemann si pour tout entier n, $u_n = \frac{1}{n^{\alpha}}$ avec α un réel.

28

- (a) Cette série est convergente $\iff \alpha > 1$.
- (b) Cette série est grossièrement divergente $\iff \alpha \leqslant 0$.
- (c) Si $\alpha = 1$ alors la série est divergente. Elle est appelée série harmonique.

II. Séries à termes positifs

- 1. Série à terme positifs La série $\sum_n u_n$ est à termes positifs si $\forall n \in \mathbb{N}, u_n \geqslant 0$.
- 2. **Théorème** Une série à termes positifs est convergente si et seulement si la suite de ses sommes partielles est majorée.
- 3. Théorème de comparaison des séries à termes positifs Soient $\sum_n u_n$ et $\sum_n v_n$ deux séries à termes positifs.
 - (a) Si $\begin{cases} u_n = \mathcal{O}(v_n) \text{ quand } n \text{ tend vers } + \infty \\ \sum_n v_n \text{ est convergente} \end{cases}$ Alors: $\sum_n u_n \text{ est convergente.}$
 - (b) Si $u_n \sim v_n$ quand n tend vers $+\infty$, alors : $\sum_n u_n$ et $\sum_n v_n$ sont de même nature.

III. Séries absolument convergentes

- 1. Convergence absolue On dit que la série $\sum_n u_n$ est absolument convergente si la série $\sum_n |u_n|$ est convergente.
- 2. Si $\sum_{n} u_n$ est absolument convergente, alors elle est convergente. De plus : $\left|\sum_{n=0}^{+\infty} u_n\right| \leqslant \sum_{n=0}^{+\infty} |u_n|$.
- 3. Semi-convergence Une série qui est convergente mais pas absolument convergente est dite semi-convergente.
- 4. Théorème Soient $\sum_n u_n$ une série à termes réels ou complexes et $\sum_n v_n$ une série à termes positifs.

Si
$$\begin{cases} u_n = \mathcal{O}(v_n) \text{ quand } n \text{ tend vers } + \infty \\ \sum_{n=0}^{\infty} v_n \text{ est convergente} \end{cases}$$
 Alors:
$$\sum_{n=0}^{\infty} u_n \text{ est absolument convergente, donc convergente.}$$

IV. Compléments

1) Règle de Stirling

Théorème (admis) Quand n tend vers l'infini, on a : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

2) Règle de d'Alembert

- 1. Théorème : Règle de d'Alembert (admis) Soit $\sum_n u_n$ une série à termes strictement positifs. Soit $l \in [0, +\infty]$.
 - On suppose : $\lim_{n} \frac{u_{n+1}}{u_n} = \ell$.
 - Alors :
 - (a) Si ℓ < 1 alors la série converge.
 - (b) Si $\ell = 1$ alors on ne peut pas conclure.
 - (c) Si $\ell > 1$ alors la est grossièrement divergente.
- 2. Exponentielle Soit $z \in \mathbb{C}$. La série $\sum_{n} \frac{z^n}{n!}$ est absolument convergente. Sa somme est appelée exponentielle de z et est notée $\exp(z)$ ou e^z .

(a) On définit ainsi la fonction exp:
$$z \longmapsto e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

(b) On a :
$$e = \sum_{n=0}^{+\infty} \frac{1}{n!}$$
.

3) Produits de Cauchy

1. Rappels calculatoires

(a)
$$\left(\sum_{i=1}^{n} a_i\right) \times \left(\sum_{i=1}^{n} a_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j$$
.

(b)
$$\left(\sum_{k=1}^n a_k X^k\right) \times \left(\sum_{k=1}^n b_k X^k\right) = \sum_{k=0}^{2n} \left(\sum_{j+i=k} a_i b_j\right) X^k.$$

2. Produit de Cauchy Soient $\sum_n u_n$ et $\sum_n v_n$ deux séries. On appelle produit de Cauchy de ces deux séries la série

$$\sum_{n} w_n \text{ définie par } : \forall n \in \mathbb{N}, w_n = \sum_{k=0}^{n} u_k v_{n-k}.$$

3. **Théorème** (admis) Soient $\sum_{n} u_n$ et $\sum_{n} v_n$ deux séries.

- On suppose : $\sum_{n} u_n$ et $\sum_{n} v_n$ sont absolument convergentes.
- Alors:
 - (a) Leur produit de Cauchy $\sum_n w_n$ est absolument convergent.

(b) On a:
$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

4. Propriétés de la fonction exp Avec le produit de Cauchy, on montre :

- (a) $e^0 = 1$
- (b) $\forall z_1, z_2 \in \mathbb{C}, e^{z_1+z_2} = e^{z_1}e^{z_2}$
- (c) $\forall z \in \mathbb{C}, \ e^z \neq 0 \text{ et } \frac{1}{e^z} = e^{-z}.$

4) Séries alternées

1. Série alternée Une série alternée est une série de la forme $\sum_{n} (-1)^n \alpha_n$ où $(\alpha_n)_n$ est une suite de réels de signe constant.

2. Théorème : Critère spécial des séries alternées (CSSA) Soit $(\alpha_n)_n \in \mathbb{R}^{\mathbb{N}}$. (dem : suites adjacentes, suites extraites).

- On suppose:
 - (a) $\forall n \in \mathbb{N}, \alpha_n \geqslant 0$.
 - (b) $(\alpha_n)_n$ décroissante.
 - (c) $\lim_{n} \alpha_n = 0$.
- Alors:
 - (a) $\sum_{n} (-1)^n \alpha_n$ est convergente.
 - (b) Majoration du reste : $\forall n \in \mathbb{N}, |R_n| \leq \alpha_{n+1}$.

5) Rappels

- 1. Théorème : Convergence de deux suites adjacentes Soient $(a_n)_n$ et $(b_n)_n$ deux suites de réels.
 - On suppose que $(a_n)_n$ et $(b_n)_n$ sont adjacentes, c'est-à-dire :
 - (a) $(a_n)_n$ est croissante.
 - (b) $(b_n)_n$ est décroissante.
 - (c) $\lim_{n \to \infty} (b_n a_n) = 0$.
 - Alors:
 - (a) $(a_n)_n$ et $(b_n)_n$ sont convergentes.
 - (b) $\lim_{n} a_n = \lim_{n} b_n.$
- 2. Séries téléscopiques Soit $(v_n)_n \in \mathbb{K}^{\mathbb{N}}$. On pose : $\forall n \in \mathbb{N}, \ u_n = v_{n+1} v_n$. On a :
 - (a) $\sum_{n} u_n$ est convergente \iff $(v_n)_n$ est convergente.
 - (b) $\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} v_n v_0.$
 - (à redémontrer lors de l'exercice)

CHAPITRE 6 : SUITES ET SÉRIES DE FONCTIONS

I. Suites et séries de fonctions

Soit I un intervalle de \mathbb{R} .

- 1. Suite de fonctions On appelle suite de fonctions de I dans \mathbb{K} une suite $(f_n)_{n\in\mathbb{N}}$ telle que : $\forall n\in\mathbb{N},\ f_n:I\longrightarrow\mathbb{K}$.
- 2. **Série de fonctions** Si $(f_n)_n$ est une suite de fonctions, on lui associe la série de fonctions $\sum_n f_n$.
- 3. Convergence simple Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{K})^{\mathbb{N}}$. Soient $f: I \longrightarrow \mathbb{K}$ et $S: I \longrightarrow \mathbb{K}$.
 - Cas des suites de fonctions :
 - (a) On dit que $(f_n)_n$ converge simplement vers f si : $\forall x \in I, \lim_{n \to +\infty} f_n(x) = f(x)$.
 - (b) On dit alors que f est la limite simple de $(f_n)_n$.
 - Cas des séries de fonctions :
 - (a) On dit que $\sum_{n} f_n$ converge simplement vers S si : $\forall x \in I, \sum_{n=0}^{+\infty} f_n(x) = S(x)$.
 - (b) On dit alors que S est la somme de $\sum_{n} f_n$.
- 4. On a : $\sum_{n} f_n$ est simplement convergente sur $I \Longrightarrow (f_n)_n$ converge simplement sur I vers la fonction nulle.
- 5. Convergence uniforme d'une suite de fonction Soit $(f_n)_n \in \mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$. Soit $f:I \longrightarrow \mathbb{K}$ une fonction.
 - (a) On dit que $(f_n)_n$ converge uniformément vers f si on a : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \forall x \in I, \ |f_n(x) f(x)| \leqslant \varepsilon$.
 - (b) On dit que f est la **limite uniforme** de $(f_n)_n$.
- 6. Différence entre covergence simple et convergence uniforme On a :
 - (a) $f_n \xrightarrow{\text{CS}} f \iff \forall x \in I, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists N_x \in \mathbb{N}, \ \forall n \geqslant N_x, \ |f_n(x) f(x)| \leqslant \varepsilon.$ Dans ce cas, l'entier N_x dépend de x.
 - (b) Pour la convergence uniforme, x n'est pas fixé.
- 7. Formulation équivalente de la convergence uniforme Soit $(f_n)_n \in \mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$. Soit $f: I \longrightarrow \mathbb{K}$.
 - On suppose :
 - (a) $\forall n \in \mathbb{N}, f_n \in \mathcal{B}(I, \mathbb{K})$ (ensemble des fonctions bornées).

- (b) $f \in \mathcal{B}(I, \mathbb{K})$.
- Alors:

(a)
$$f_n \xrightarrow{CU} f \iff \lim_n ||f_n - f||_{\infty} = 0.$$

(b) Si on est dans l'evn
$$(\mathcal{B}(I,\mathbb{K}),\|\cdot\|_{\infty})$$
, on a : $f_n \xrightarrow{CU} f \iff \lim_n \|f_n - f\|_{\infty} = 0 \iff \lim_n f_n = f$.

- 8. Convergence uniforme sur tout segment d'une suite de fonctions Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{K})^{\mathbb{N}}$. Soit $f: I \longrightarrow \mathbb{K}$. On dit que $(f_n)_n$ converge uniformément vers f sur tout segment de I si on a : pour tout segment de $S \subset I$, $(f_n)_n$ converge uniformément vers f.
- 9. On a: $f_n \xrightarrow{CU} f \Longrightarrow f_n \xrightarrow{CUS} f \Longrightarrow f_n \xrightarrow{CS} f$.
- 10. Cas des séries de fonctions Soit $(f_n)_n \in \mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$. Soit $S:I \longrightarrow \mathbb{K}$. On pose : $\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k$. On a :

(a)
$$\sum_{n} f_n \xrightarrow{\text{CU}} S \iff S_n \xrightarrow{\text{CU}} S$$
.

(b)
$$\sum_{n} f_n \xrightarrow{\text{CUS}} S \iff S_n \xrightarrow{\text{CUS}} S$$
.

- (c) On dit que $\sum_n f_n$ converge normalement si la série $\sum_n \|f_n\|_{\infty}$ est convergente.
- 11. On a

(a)
$$\sum_{n} f_n \xrightarrow{\text{CS}} S \Longrightarrow f_n \xrightarrow{\text{CS}} 0.$$

(b)
$$\sum_{n} f_n \xrightarrow{\mathrm{CU}} S \Longrightarrow f_n \xrightarrow{\mathrm{CU}} 0.$$

(c)
$$\sum_{n} f_n \xrightarrow{\text{CUS}} S \Longrightarrow f_n \xrightarrow{\text{CUS}} 0.$$

12. On a:
$$\sum_{n} f_n \xrightarrow{\text{CN}} S \Longrightarrow \sum_{n} f_n \xrightarrow{\text{CU}} S \Longrightarrow \sum_{n} f_n \xrightarrow{\text{CUS}} S \Longrightarrow \sum_{n} f_n \xrightarrow{\text{CS}} S$$
.

- 13. En pratique, pour montrer une convergence uniforme, on utilise :
 - (a) La convergence normale.
 - (b) $\lim_{n} ||S_n S||_{\infty} = 0.$
 - (c) La majoration du reste du CSSA.
- 14. Pour montrer qu'une série de fonctions ne converge pas uniformément, on peut utiliser la contraposée du théorème de la double limite (cf. Théorèmes).

II. Théorèmes

1) Limite et continuité

Soit I un intervalle de \mathbb{R} . Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{R})^{\mathbb{N}}$.

- 1. Théorème de la continuité de la limite uniforme
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$

(b)
$$f_n \xrightarrow{CU} f$$
, où $f: I \longrightarrow \mathbb{K}$.

- Alors : *f* est continue.
- « Une limite uniforme de fonctions continues est continue. »
- 2. Corollaire: Généralisation
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$

(b)
$$f_n \xrightarrow{\text{CUS}} f$$
, où $f: I \longrightarrow \mathbb{K}$.

- Alors : *f* est continue.
- 3. Corollaire : Cas des séries de fonctions
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$

(b)
$$\sum_{n} f_n \xrightarrow{\text{CUS}} S$$
, où $S: I \longrightarrow \mathbb{K}$.

- Alors : S est continue.
- 4. Théorème de la double limite Soit $a \in [-\infty, +\infty]$, avec $a \in \overline{I}$ si $a \in \mathbb{R}$ ou I non majoré (minoré) si $a = +\infty$ $(-\infty)$.
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n$ admet une limite finie en a.
 - (b) $f_n \xrightarrow{CU} f$
 - Alors:
 - (a) f admet une limite finie en a.

(b)
$$\lim_{x \to a} f(x) = \lim_{n \to +\infty} \left[\lim_{x \to a} f_n(x) \right].$$

— Ainsi:

(c)
$$\lim_{x \to a} \left[\lim_{n \to +\infty} f_n(x) \right] = \lim_{n \to +\infty} \left[\lim_{x \to +a} f_n(x) \right]$$

- 5. Corollaire : Théorème de la double limite pour les séries de fonctions Mêmes notations. Soit $S:I\longrightarrow \mathbb{K}$.
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n$ admet une limite finie en a.

(b)
$$\sum_{n} f_n \xrightarrow{CU} S$$

- Alors:
 - (a) S admet une limite finie en a.

(b)
$$\lim_{x \to a} S(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x).$$

— Ainsi:

(c)
$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x)$$

2) Interversion limite-intégrale

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit
$$(f_n)_n \in \mathcal{F}([a,b],\mathbb{K})^{\mathbb{N}}$$
.

Soit
$$f:[a,b] \longrightarrow \mathbb{K}$$
 une fonction.

Soit
$$S : [a, b] \longrightarrow \mathbb{K}$$
 une fonction.

- 1. Théorème : Interversion limite-intégrale
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } [a, b].$

(b)
$$f_n \xrightarrow[[a,b]]{\text{CU}} f$$

- Alors:
 - (a) f est continue sur [a, b] et donc intégrable sur [a, b].

(b)
$$\int_{a}^{b} f(t)dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t)dt.$$

— Ainsi:

(c)
$$\int_{a}^{b} \lim_{n \to +\infty} f_n(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt.$$

- 2. Corollaire: Interversion somme infinie-intégrale
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } [a, b].$
 - (b) $\sum_{n} f_n \xrightarrow[[a,b]]{\text{CU}} S$
 - Alors:
 - (a) S est continue sur [a, b] et donc intégrable sur [a, b].

(b)
$$\int_{a}^{b} S(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt.$$

— Ainsi:

(c)
$$\int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$
.

3) Dérivation

Soit I un intervalle de \mathbb{R} .

Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{K})^{\mathbb{N}}$.

- 1. Théorème Soient $f:I\longrightarrow \mathbb{K}$ et $g:I\longrightarrow \mathbb{K}$ deux fonctions. (dem)
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^1.$
 - (b) $f_n \xrightarrow{CS} f$
 - (c) $f'_n \xrightarrow{\text{CUS}} g$
 - Alors:
 - (a) f est de classe C^1 .
 - (b) f' = g.
- 2. Corollaire Soit $k \in \mathbb{N}^*$. Soient $g_0, ..., g_k \in \mathcal{F}(I, \mathbb{K})$.
 - On suppose :
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^k$.
 - (b) $\forall j \in [0, k-1], \ f_n^{(j)} \xrightarrow{\text{CS}} g_j$
 - (c) $f_n^{(k)} \xrightarrow{\text{CUS}} g_k$
 - Alors:
 - (a) g_0 est de classe C^k .
 - (b) $\forall j \in [0, k], \ g_0^{(j)} = g_j.$
- 3. Théorème : Dérivation terme à terme de la somme d'une série de fonctions $\mathrm{Soit}\:S:I\longrightarrow\mathbb{K}.$
 - On suppose :
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^1.$
 - (b) $\sum_{n} f_n \xrightarrow{\text{CS}} S$
 - (c) $\sum_{n} f'_n$ CUS de I.
 - Alors:
 - (a) S est de classe C^1 .

(b)
$$\forall x \in I, \ S'(x) = \sum_{n=0}^{+\infty} f'_n(x).$$

- 4. Théorème Soit $k \in \mathbb{N}$.
 - On suppose:
 - (a) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^k$.
 - (b) $\forall j \in [0, k-1], \ \sum_n f_n^{(j)} \ \mathrm{CS} \ \mathrm{sur} \ I.$
 - (c) $\sum_{n} f_n^{(k)}$ CUS de I.
 - - (a) La somme S de la série de fonctions $\sum f_n$ est de classe C^k .
 - (b) $\forall j \in [0, k], \ \forall x \in I, \ S^{(j)}(x) = \sum_{n=0}^{+\infty} f_n^{(j)}(x).$

Chapitre 7 : Séries entières

On pose : $\forall R \in \mathbb{R}_+, \quad \left\{ \begin{array}{ll} D(O,R) = \{z \in \mathbb{C} \mid |z| < R\} & \text{le disque ouvert de rayon } R. \\ D'(O,R) = \{z \in \mathbb{C} \mid |z| \leqslant R\} & \text{le disque fermé de rayon } R. \end{array} \right.$

I. Rayon et convergence

- 1. Série entière Soit $(a_n)_n \in \mathbb{C}^{\mathbb{N}}$.
 - (a) On note (abusivement) $\sum_n a_n z^n$ la série de fonction $\sum_n f_n$ où $\forall n \in \mathbb{N}, \ \forall z \in \mathbb{C}, \ f_n(z) = a_n z^n$.
 - (b) Cette série de fonction est appelée série entière associée à la suite $(a_n)_n$.
 - (c) On dit que $(a_n)_n$ est son coefficient de degré n.
- 2. Lemme d'Abel (dem) Soit $\sum a_n z^n$ une série entière. Soit $z_0 \in \mathbb{C}$.
- 3. Rayon de convergence Soit $\sum a_n z^n$ une série entière.
 - (a) Si $\{r \in \mathbb{R}_+ * \mid (a_n r^n)_n \text{ est born\'ee}\}$ est non majoré, on pose $R = +\infty$.
 - (b) Sinon on pose $R = \sup\{r \in \mathbb{R}_+ \mid (a_n r^n)_n \text{ est born\'ee}\}.$
 - (c) On dit que R est le rayon de convergence de $\sum_{n} a_n z^n$. On a : $R \in [0, +\infty]$.
 - - $\begin{array}{ll} -R = 0 & \iff \forall r \in \mathbb{R}_+^*, \ (a_n r^n)_n \ \text{non born\'ee}. \\ -R = +\infty & \iff \forall r \in \mathbb{R}_+, \ (a_n r^n)_n \ \text{est born\'ee}. \end{array}$
- 4. Théorème (dem) Soit $\sum a_n z^n$ une série entière. On note R son RdC. Soit $z_0 \in \mathbb{C}$.
 - (a) Si $|z_0| < R$, alors $\sum_n a_n z_0^n$ AC.
 - (b) Si $|z_0| = R$, alors on ne peut pas conclure.
 - (c) Si $|z_0| > R$, alors $\sum a_n z_0^n$ GRD.
 - (d) Le disque ouvert D(O, R) est appelé disque ouvert de convergence.
 - (e) Si $R \neq +\infty$, le cercle $S(O,R) = \{z \in \mathbb{C} \mid |z| = R\}$ est appelé cercle d'incertitude.
- 5. Implications à retenir

(a)
$$\sum_{n} a_n z^n \text{ DV} \Longrightarrow |z| \geqslant R.$$

(e)
$$\sum_{n=1}^{\infty} a_n z^n$$
 non GRD $\Longrightarrow |z| \leqslant R$.

(b)
$$\sum_{n} a_n z^n \text{ GRD} \Longrightarrow |z| \geqslant R.$$

(f)
$$\sum_{n} a_n z^n AC \Longrightarrow |z| \leqslant R.$$

(c)
$$(a_n z^n)_n$$
 non bornée $\Longrightarrow |z| \geqslant R$.

(g)
$$\sum_{n} a_n z^n \text{ CV} \Longrightarrow |z| \leqslant R.$$

(d)
$$\sum_{n} a_n z^n \text{ non AC} \Longrightarrow |z| \geqslant R.$$

(h)
$$(a_n z^n)_n$$
 bornée $\Longrightarrow |z| \leqslant R$.

- 6. Comparaison de RdC Soient $\sum_{n} a_n z^n$ et $\sum_{n} b_n z^n$ deux séries entières de RdC respectifs R_a et R_b .
 - (a) Si $a_n = O(b_n)$ quand $n \to +\infty$ alors $R_a \geqslant R_b$.
 - (b) Si $a_n \sim b_n$ quand $n \to +\infty$ alors $R_a = R_b$. (dem)
- 7. Somme et produit de séries entières Soient $\sum_{n} a_n z^n$ et $\sum_{n} b_n z^n$ deux séries entières de RdC respectifs R_a et R_b .
 - La somme de ces deux séries entières est $\sum_{n=0}^{n} c_n z^n$ telle que :
 - (a) $\forall n \in \mathbb{N}, c_n = a_n + b_n$,
 - (b) Si $R_a \neq R_b$, alors $R_c = \min\{R_a, R_b\}$. Sinon $R_c \geqslant R_a = R_b$. (dem)
 - Le produit de Cauchy de ces deux séries entières est $\sum_{n} d_n z^n$ telle que :

(a)
$$\forall n \in \mathbb{N}, \ d_n = \sum_{k=0}^n a_k b_{n-k}$$
,

- (b) $R_d \geqslant \min\{R_a, R_b\}$. (dem)
- On a, pour tout complexe z tel que $|z| < \min\{R_a, R_b\}$ (dem):

(a)
$$\sum_{n=0}^{+\infty} c_n z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

(b)
$$\sum_{n=0}^{+\infty} d_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

- 8. Dérivée et primitive d'une série entière Soit $\sum_n a_n z^n$ une série entière.
 - (a) La dérivée de cette série entière est $\sum_{n\geqslant 1}a_nnz^{n-1}=\sum_{n\geqslant 0}a_{n+1}(n+1)z^n.$
 - (b) Les primitives de cette série entière sont les séries entières de la forme $\lambda + \sum_n a_n \frac{z^{n+1}}{n+1}$ où $\lambda \in \mathbb{C}$.
 - (c) Dériver ou primitiver une série entière ne change pas son RdC (dem).

II. Séries entières d'une variable complexe

- 1. Théorème Soit $\sum_n a_n z^n$ une série entière de RdC R. On pose : $\forall z \in D(O,R), \ f(z) = \sum_{n=0}^{+\infty} a_n z^n$. Alors : f est continue.
- 2. Exemples
 - (a) $\exp: z \longmapsto \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ est continue sur \mathbb{C} .
 - (b) $z \longmapsto \sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$ est continue sur D(0,1).

III. Séries entières d'une variable réelle

1. Théorème (dem) Soit $\sum a_n x^n$ une série entière de RdC $R \in [0, +\infty]$.

Cette série de fonctions converge normalement sur tout segment de l'intervalle] -R, R[(« intervalle ouvert de convergence »).

En particulier elle converge uniformément sur tout segment de]-R;R[.

- 2. Théorème (dem) Soit $\sum_n a_n x^n$ une série entière de RdC $R \in [0, +\infty]$. On note S sa somme sur]-R, R[.
 - (a) S est de classe C^{∞} et on peut « dériver terme à terme S(x) » : $\forall x \in]-R, R[, S'(x) = \sum_{n=1}^{+\infty} a_n n x^{n-1}.$
 - (b) Plus généralement : $\forall k \in \mathbb{N}, \ \forall x \in]-R, R[, \ S^{(k)}(x) = \sum_{n=k}^{+\infty} a_n \frac{n!}{(n-k)!} x^{n-k}.$
- 3. Primitive d'une série entière d'une variable réelle Pour tout $x \in]-R, R[$, les primitives de $S: x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$ sont les fonctions de la forme $x \longmapsto \lambda + \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$ où $\lambda \in \mathbb{R}$.

IV. Développement en série entière d'une fonction d'une variable réelle

1. Fonction DSE Soit $r \in]0, +\infty]$. Soit $f \in]-r, r[\longrightarrow \mathbb{C}$. On dit que **f est développable en série entière** sur]-r, r[s'il existe une série entière telle que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- 2. Remarques
 - (a) Le RdC R de $\sum_n a_n x^n$ est au moins égal à r, càd : $R \geqslant r$.
 - (b) Une fonction est DSE implique : elle est de classe C^{∞} .
 - (c) On dit que f est DSE en 0 s'il existe $\varepsilon \in \mathbb{R}_+^*$ tel que f soit DSE sur] $-\varepsilon, \varepsilon$ [.
 - (d) Le DSE de f est la série entière $\sum_n a_n x^n$.
 - (e) Le produit de deux fonctions DSE est DSE.
 - (f) La somme de deux fonctions DSE est DSE.
- 3. Unicité Soit $f:]-r,r[\longrightarrow \mathbb{C}$ une fonction DSE sur]-r,r[. La DSE de f est unique. (dem)
- 4. Développement limité Soit $f:]-r,r[\longrightarrow \mathbb{C}.$
 - On suppose : f est DSE sur]-r,r[et on note $\sum a_nx^n$ le DSE de f.
 - Alors : f admet un DL à tous les ordres N en 0, obtenus en « tronquant » le DSE de f. Pour tout entier N, quand $x \to 0$:

$$f(x) = \sum_{n=0}^{N} a_n x^n + \begin{vmatrix} o(x^N) \\ O(x^{N+1}) \end{vmatrix}$$

- 5. Développements en séries entières des fonctions usuelles
 - (a) De exp on déduit ch (partie paire), sh (partie impaire), cos (DSE de ch avec signes alternés) et sin (DSE de sh avec signes alternés).

37

(b)
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$
 et $\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-x)^n = \sum_{n=0}^{+\infty} (-1)^n x^n$.

(c) En primitivant $x \mapsto \frac{1}{1+x}$ on obtient : $\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$.

(d) En primitivant
$$x \mapsto \frac{1}{1-x}$$
 on obtient : $\ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$.

(e) En primitivant
$$x \mapsto \frac{1}{1+x^2}$$
 on obtient : $\operatorname{Arctan}(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$.

(f)
$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \binom{\alpha}{n} x^n$$
 en posant $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)...(\alpha-(n-1))}{n!}$, où $\alpha \in \mathbb{R}$. (admis)

V. Application des séries entières à la recherche de solutions particulières d'équations différentielles linéaires : cf. exemple dans le cahier

- 1. On note $\sum_n a_n x^n$ une série entière de RdC non nul et on note y sa somme.
- 2. On remplace y, y' et y'' dans l'équation et on factorise par x^n en utilisant des changements d'indices.
- 3. On en déduit une relation de récurrence pour (a_n) et on exprime pour tout a_n en fonction de n.
- 4. On en déduit y.

CHAPITRE 8 : INTÉGRALES GÉNÉRALISÉES

I. Fonctions continues par morceaux

- 1. Fonction continue par morceaux Soit I un intervalle de \mathbb{R} Soit $f: I \longrightarrow \mathbb{K}$. Soient a, b tels que a < b.
 - (a) On dit que f est continue par morceaux sur [a,b] s'il existe une subdivision $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$ telle que : $\forall k \in [0,n-1]$, $f_{||x_k,x_{k+1}|}$ se prolonge par continuité sur $[x_k,x_{k+1}]$.
 - (b) On dit que f est continue par morceaux sur I si pour tout segment J de I, $f|_{J}$ est continue par morceaux.
- 2. Intégrale d'une fonction continue par morceaux sur un segment Soit $f \in C^0_m([a,b],\mathbb{K})$. Soit $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ une subdivision telle que $\forall k \in [0,n-1], \ f|_{]x_k,x_{k+1}[}$ admet un prolongement continu $g_k:[x_k,x_{k+1}] \longrightarrow \mathbb{K}$. Alors :

$$\int_{a}^{b} f(t)dt = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} g_{k}(t)dt.$$

- 3. Propriétés de l'intégrale d'une fonction continue par morceaux sur un segment Soit $f \in C_m^0([a,b],\mathbb{K})$.
 - (a) Linéarité
 - (b) Positivité : $f \geqslant 0 \Longrightarrow \int_a^b f(t) dt \geqslant 0$.
 - (c) Croissance : $f \leqslant g \Longrightarrow \int_a^b f(t) dt \leqslant \int_a^b g(t) dt$.
 - $(\mathrm{d}) \ \ \mathbf{Inégalité} \ \ \mathbf{de} \ \mathbf{la} \ \ \mathbf{moyenne} : \left| \int_a^b f(t) \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \mathrm{d}t.$
 - (e) Sommes de Riemann:

$$\lim_{n \to +\infty} \frac{b-a}{n} \times \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \int_a^b f(t) dt.$$

4. Toute fonction continue par morceaux sur un segment est bornée.

II. Intégrales convergentes

1) Définition

- 1. Intégrale généralisée Soit $a \in \mathbb{R}$. Soit $b \in]a, +\infty]$. Soit $f \in C_m^0([a, b[, \mathbb{K}).$
 - (a) On dit que l'intégrale $\int_a^b f(t) dt$ converge si $\lim_{x \to b} \int_a^x f(t) dt$ existe et est finie.
 - (b) Cette intégrale est appelée intégrale généralisée ou intégrale impropre.
 - (c) Si elle converge, on pose : $\int_a^b f(t) dt = \lim_{x \to b} \int_a^x f(t) dt.$
- 2. Généralisation Si $-\infty \leqslant a < b \leqslant +\infty$, on considère $c \in]a,b[$.
 - (a) $\int_a^b f(t) dt$ converge $\iff \lim_{x \to a} \int_x^c f(t) dt$ et $\lim_{y \to b} \int_c^y f(t) dt$ existent et sont finies.
 - (b) $\int_a^b f(t)dt = \lim_{x \to a} \int_a^c f(t)dt + \lim_{y \to b} \int_a^y f(t)dt.$
- 3. Exemples de référence
 - (a) Fonction exponentielle

$$\int_0^{+\infty} e^{-\alpha t} \mathrm{d}t \text{ converge } \iff \alpha > 0 \quad \text{ et dans ce cas : } \int_0^{+\infty} e^{-\alpha t} \mathrm{d}t = \frac{1}{\alpha}$$

(b) Intégrales de Riemann

$$\int_0^1 \frac{1}{t^\alpha} \mathrm{d}t \text{ converge } \iff \alpha < 1 \quad \text{ et dans ce cas : } \int_0^1 \frac{\mathrm{d}t}{t^\alpha} = \frac{1}{1-\alpha}$$

— De 1 à $+\infty$:

$$\int_1^{+\infty} \frac{1}{t^{\alpha}} \mathrm{d}t \text{ converge } \iff \alpha > 1 \quad \text{ et dans ce cas : } \int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{1-\alpha}$$

(c) Fonction logarithme

$$\int_0^1 \ln(t) \mathrm{d}t \text{ converge absolument et } \int_0^1 \ln(t) \mathrm{d}t = -1.$$

4. Soit
$$f \in C_m^0([a,b],\mathbb{K})$$
. Alors $\int_{[a,b]} f = \int_{[a,b[} f = \int_{]a,b[} f = \int_{]a,b[} f$.

5. Prolongement par continuité et convergence

- (a) Si $f \in C_m^0([a, b[, \mathbb{K})])$ et f se prolonge par continuité en b, alors $\int_a^b f(t) dt$ converge.
- (b) Si $f \in C^0_m(]a,b],\mathbb{K})$ et f se prolonge par continuité en a, alors $\int_a^b f(t)\mathrm{d}t$ converge.
- (c) Si $f \in C_m^0(]a, b[, \mathbb{K})$ et f se prolonge par continuité en a et en b, alors $\int_a^b f(t) dt$ converge.

2) Propriétés

- 1. Linéarité
- 2. Positivité
- 3. Croissance
- 4. Relation de Chasles Soit $f \in C^0_m(I, \mathbb{K})$. Soient $a, b, c \in \overline{I}$. Alors :

$$\int_a^b f(t) \mathrm{d}t = \int_a^c f(t) \mathrm{d}t + \int_c^b f(t) \mathrm{d}t \quad \text{si 2 de ces 3 intégrales au moins sont convergentes}.$$

5. Soit
$$f: I \longrightarrow \mathbb{K}$$
 continue, où $I = [a, b]$ ou $[a, b[$ ou $]a, b[$ ou $]a, b[$ avec $a < b$. Alors :
$$\begin{cases} f \geqslant 0 \\ \int_a^b f(t) dt = 0 \end{cases} \implies f = 0.$$

3) Changement de variable

Théorème: Changement de variable

Soient $a, b, \alpha, \beta \in [-\infty, +\infty]$ tels que a < b et $\alpha < \beta$. Soit φ une bijection de classe C^1 de $]\alpha, \beta[$ vers]a, b[. Soit $f \in C_m^0(]a, b[, \mathbb{K})$.

— Alors:

- 1. $\int_a^b f(t) dt$ et $\int_\alpha^\beta f(\varphi(u)) \varphi'(u) du$ sont de même nature.
- 2. Si elles sont convergentes alors elles sont égales.

4) Intégration par parties

Théorème: Intégration par parties

Soient $a, b \in [-\infty, +\infty]$ tels que a < b. Soient $f, g \in C^1(]a, b[, \mathbb{K})$.

- On suppose : fg admet une limite finie en a et en b.
- Alors:
 - 1. Les intégrales $\int_a^b f'(t)g(t)dt$ et $\int_a^b f(t)g'(t)dt$ sont de même nature.

2. Si elles sont convergentes, alors :
$$\int_a^b f'(t)g(t)dt = \underbrace{\lim_{t \to b} f(t)g(t) - \lim_{t \to a} f(t)g(t)}_{\left[fg\right]_a^b} - \int_a^b f(t)g'(t)dt.$$

III. Intégrales absolument convergentes

- 1. Fonction intégrable Soit $a, b \in [-\infty, +\infty]$ tels que a < b. Soit I un intervalle de bornes a et b. Soit $f \in C_m^0(I, \mathbb{K})$.
 - (a) On dit que $\int_a^b f(t) dt$ est **absolument convergente**, ou que f est **intégrable** si $\int_a^b |f(t)| dt$ converge.
 - $\text{(b) Dans ce cas, } \int_a^b f(t) \mathrm{d}t \text{ converge et : } \left| \int_a^b f(t) \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \, \mathrm{d}t.$
 - (c) On a ainsi « $AC \Longrightarrow CV$ ».
- 2. Lemme Soit $a \in \mathbb{R}$. Soit $b \in]a, +\infty]$. Soit $f \in C_m^0([a, b[, \mathbb{R})$.
 - On suppose : $f \ge 0$
 - $-\text{ Alors}: \int_a^b f(t) \mathrm{d}t \, \mathrm{CV} \iff \varphi: \begin{array}{ccc} [a,b[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_a^x f(t) \mathrm{d}t \end{array} \text{ est majorée.}$ (dem)
- 3. Théorème : Comparaison d'intégrales absolument convergentes Soit $a \in \mathbb{R}$. Soit $b \in]a, +\infty[$. Soient $f, g \in C_m^0([a, b[, \mathbb{K})$.
 - On suppose l'une des propositions suivantes :
 - (a) Quand $t \to b$, $f(t) = \mathcal{O}(g(t))$.
 - (b) Quand $t \to b$, f(t) = o(g(t)).
 - (c) Quand $t \to b$, $f(t) \sim g(t)$.
 - (d) $\forall t \in [a, b[, |f(t)| \leq |g(t)|.$
 - Alors : g est intégrable sur $[a,b] \Longrightarrow f$ est intégrable sur [a,b[. (dem)
- 4. Contraposée Si, quand $t \to b$, $f(t) = \mathcal{O}(g(t))$, alors f n'est pas intégrable sur $[a, b] \Longrightarrow g$ n'est pas intégrable sur [a, b].

IV. Premiers théorèmes

- 1. Théorème : Comparaison série-intégrale Soit $f \in C_m^0([0, +\infty], \mathbb{R})$.
 - On suppose : *f* est décroissante et positive.
 - Alors:

$$\sum_{n} f(n) \text{ converge } \iff \int_{0}^{+\infty} f(t) dt \text{ converge.}$$

(dem : utiliser l'inégalité $\forall n \in \mathbb{N}, \ \forall t \in [n, n+1], \ f(n) \geqslant f(t) \geqslant f(n+1).$)

2. Théorème de convergence dominée

Soit I un intervalle de \mathbb{R} .

Soit $(f_n)_n \in C_m^0(I, \mathbb{K})^{\mathbb{N}}$.

Soit $f: I \longrightarrow \mathbb{K}$ une fonction continue par morceaux.

- On suppose:
 - (a) $f_n \xrightarrow{CS} f$.
 - (b) l'hypothèse de domination : $\exists \varphi \in C_m^0(I, \mathbb{R}_+), \quad \left\{ \begin{array}{l} \forall n \in \mathbb{N}, \ \forall t \in I, \ |f_n(t)| \leqslant \varphi(t), \\ \varphi \ \text{est intégrable sur } I. \end{array} \right.$
- Alors:
 - (a) Les fonctions f et f_n sont intégrables sur I pour tout entier $n \in \mathbb{N}$.
 - (b) $\lim_{n \to +\infty} \int_I f_n = \int_I f$.

3. Théorème : intégration terme à terme de la somme d'une série de fonctions

Soit $(f_n)_n \in C_m^0(I, \mathbb{K})^{\mathbb{N}}$. Soit $S \in C_m^0(I, \mathbb{K})$.

- On suppose :
 - (a) $\sum_{n} f_n \xrightarrow{\text{CS}} S$.
 - (b) $\forall n \in \mathbb{N}, f_n \text{ est intégrable sur } I.$
 - (c) La série $\sum_{n} \int_{I} |f_{n}|$ converge.
- Alors:
 - (a) S est intégrable sur I.
 - (b) $\sum_{n=0}^{+\infty} \int_I f_n = \int_I S.$

V. Intégrales à paramètres

- 1) Continuité sous le signe \int
 - 1. Théorème : continuité sous le signe

Soient I (de bornes a et b) et A deux intervalles de \mathbb{R} .

Soit une fonction $f: \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{K} \\ (x,t) & \longmapsto & f(x,t) \end{array}$

- On suppose:
 - (a) f est continue par rapport à x.
 - (b) f est continue par morceaux par rapport à t.
 - $\text{(c) l'hypothèse de domination}: \exists \ \varphi \in C^0_m(I,\mathbb{R}_+), \quad \left\{ \begin{array}{l} \forall x \in A, \ \forall t \in I, \ |f(x,t)| \leqslant \varphi(t), \\ \varphi \ \text{est intégrable sur } I. \end{array} \right.$
- Alors:

$$g: \begin{array}{ccc} A & \longrightarrow & \mathbb{K} \\ x & \longmapsto & \int_a^b f(x,t) \mathrm{d}t \end{array}$$
 est contine.

- 2. CNS g est continue $\iff \forall S$ segment de A, $g_{|S}$ est continue.
- 3. Variante du théorème avec hypothèse de domination sur tout segment Mêmes notations.
 - On suppose:
 - (a) f est continue par rapport à x.
 - (b) f est continue par morceaux par rapport à t.
 - (c) l'hypothèse de domination sur tout segment S de A: $\exists \varphi_S \in C_m^0(I, \mathbb{R}_+)$, $\begin{cases} \forall x \in S, \ \forall t \in I, \ |f(x,t)| \leqslant \varphi_S(t), \\ \varphi_S \text{ est intégrable sur } I \end{cases}$
 - Alors:

$$g: \begin{array}{ccc} A & \longrightarrow & \mathbb{K} \\ x & \longmapsto & \int_a^b f(x,t) \mathrm{d}t \end{array}$$
 est contine.

2) Dérivation sous le signe ∫

1. Théorème : dérivation sous le signe

Soient I (de bornes a et b) et A deux intervalles de \mathbb{R} .

Soit une fonction
$$f: \begin{array}{ccc} A \times I & \longrightarrow & \mathbb{K} \\ (x,t) & \longmapsto & f(x,t) \end{array}$$

- On suppose:
 - (a) f est de classe C^1 par rapport à x.
 - (b) f est continue par morceaux et intégrable par rapport à t.
 - (c) $\frac{\partial f}{\partial x}$ est continue par morceaux par rapport à t.
 - $\text{(d) 1'hypothèse de domination}: \exists \ \varphi \in C^0_m(I,\mathbb{R}_+), \quad \left\{ \begin{array}{l} \forall x \in A, \ \forall t \in I, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \varphi(t), \\ \varphi \text{ est int\'egrable sur } I. \end{array} \right.$
- Alors:
 - (a) $g: A \longrightarrow \mathbb{K}$ est de classe C^1 .
 - (b) Formule de Leibniz : $\forall x \in A, \ g'(x) = \int_a^b \frac{\partial f}{\partial x}(x,t) dt.$
- Ainsi:

(c)
$$\forall x \in A$$
, $\frac{\mathrm{d}}{\mathrm{d}x} \int_a^b f(x,t) \mathrm{d}t = \int_a^b \frac{\partial f}{\partial x}(x,t) \mathrm{d}t$.

- 2. Il existe de même une variante du théorème avec hypothèse de domination sur tout segment (de A).
- 3. Théorème : extension aux classes C^k Mêmes notations. Soit $k \in \mathbb{N}^*$.
 - On suppose:
 - (a) f est de classe C^k par rapport à x.
 - (b) $\forall j \in [0, k-1], \ \frac{\partial^j f}{\partial x^j}$ est continue par morceaux et intégrable par rapport à t.
 - (c) $\frac{\partial^k f}{\partial x^k}$ est continue par morceaux par rapport à t.
 - (d) l'hypothèse de domination : $\exists \varphi \in C_m^0(I, \mathbb{R}_+), \quad \left\{ \begin{array}{l} \forall x \in A, \ \forall t \in I, \ \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant \varphi(t), \\ \varphi \ \text{est intégrable sur } I. \end{array} \right.$
 - Alors:

(a)
$$g: A \longrightarrow \mathbb{K}$$
 est de classe C^k .

- (b) Formule de Leibniz : $\forall x \in A, \ g^{(k)}(x) = \int_a^b \frac{\partial^k f}{\partial x^k}(x,t) dt$.
- Ainsi:

(c)
$$\forall x \in A$$
, $\frac{\mathrm{d}^k}{\mathrm{d}x^k} \int_a^b f(x,t) \mathrm{d}t = \int_a^b \frac{\partial^k f}{\partial x^k}(x,t) \mathrm{d}t$.

4. Il existe de même une variante du théorème avec hypothèse de domination sur tout segment (de A).

VI. Normes 1 et 2

Soit I un intervalle de \mathbb{R} contenant au moins 2 points.

Soit L_1 l'ensemble des fonctions continues, intégrables, de I dans \mathbb{K} .

Soit L_2 l'ensemble des fonctions continues, de carré intégrable, de I dans \mathbb{K} .

Alors:

- 1. L_1 est un \mathbb{K} -ev et $f \longmapsto \int_I |f|$ est une norme sur L_1 .
- 2. Si $\mathbb{K} = \mathbb{R}$, L_2 est un \mathbb{R} -ev et $(f,g) \longmapsto \int_I fg$ est un produit scalaire sur L_2 .
- 3. Si \mathbb{K} est quelconque, L_2 est un \mathbb{K} -ev et $(f,g) \longmapsto \sqrt{\int_I |fg|}$ est une norme sur L_2 .

CHAPITRE 9: ÉQUATIONS DIFFÉRENTIELLES

I. Équations linéaires du premier ordre

1. Soit I un intervalle de \mathbb{R} . Soient $a,b\in C^0(I,\mathbb{K})$. On considère :

$$(E): y' + a(t)y = b(t)$$

- (a) On considère l'équation homogène associée : $(E_0): y' + a(t)y = 0$.
- (b) Résoudre (E), c'est déterminer toutes les fonctions $y \in C^1(I, \mathbb{K})$ telles que : $\forall t \in I, y'(t) + a(t)y(t) = b(t)$.
- (c) Les solutions de (E) sont les fonctions de la forme $y = y_0 + y_1$ où y_0 est solution de (E_0) et y_1 est une solution particulière de (E).
- 2. **Résolution de l'équation homogène** Les solutions de (E_0) sont les fonctions de la forme $y_0: t \longmapsto \lambda e^{-A(t)}$ où A est une primitive de a et λ est un réel.
- 3. Recherche d'une solution particulière Deux possibilités
 - (a) La solution particulière est évidente
 - (b) On utilise la méthode de variation de la constante : On pose $y_1:t\longmapsto \lambda(t)\,\mathrm{e}^{-A(t)}$ où $\lambda\in C^1(I,\mathbb{K})$. On remplace y_1 dans l'équation et on trouve une CNS pour avoir l'expression de λ et ainsi trouver y_1 .

II. Équations différentielles linéaires du second ordre à coefficients constants

1. Soit *I* un intervalle de \mathbb{R} . Soient $a, b, c \in \mathbb{R}$. On considère :

$$(E): ay'' + by' + cy = P(t)e^{\gamma t}$$

- 2. **Résolution de l'équation homogène dans le cas réel** On associe à (E_0) l'équation caractéristique $ar^2 + br + c = 0$, de discriminant Δ et de solutions r_1 et r_2 .
 - (a) $\Delta < 0$ et $r_{1/2} = -\lambda \pm i\omega \Longrightarrow y_0 : t \longmapsto [A\cos(\omega t) + B\sin(\omega t)] e^{-\lambda t}$, où $A, B \in \mathbb{R}$.
 - (b) $\Delta = 0 \Longrightarrow y_0 : t \longmapsto (At + B) e^{rt}$, où $A, B \in \mathbb{R}$.
 - (c) $\Delta > 0 \Longrightarrow y_0 : t \longmapsto A e^{r_1 t} + B e^{r_2 t}$, où $A, B \in \mathbb{R}$.
- 3. Résolution de l'équation homogène dans le cas complexe
 - (a) $\Delta = 0 \Longrightarrow y_0 : t \longmapsto (At + B) e^{rt}$, où $A, B \in \mathbb{C}$.
 - (b) $\Delta \neq 0 \Longrightarrow y_0 : t \longmapsto A e^{r_1 t} + B e^{r_2 t}$, où $A, B \in \mathbb{C}$.
- 4. Recherche d'une solution particulière On recherche une solution particulière de la forme $y_1: t \longmapsto Q(t)e^{\gamma t}$ avec :
 - (a) $Q \in \mathbb{C}[X]$.
 - $(b) \ \deg Q = \begin{cases} \deg P \ \text{si} \ \gamma \ \text{n'est pas solution de l'équation caractéristique.} \\ \deg P + 1 \ \text{si} \ \gamma \ \text{est l'une des deux solutions de l'équation caractéristique.} \\ \deg P + 2 \ \text{si} \ \gamma \ \text{est l'unique solution de l'équation caractéristique.} \end{cases}$

III. Systèmes différentiels linéaires

 $1. \ \ \text{Système linéaire d'ordre 1} \ (S): \left\{ \begin{array}{l} y_1'=a_{11}y_1+\ldots+a_{1n}y_n+b_1\\ \vdots\\ y_n'=a_{n1}y_n+\ldots+a_{nn}y_n+b_n \end{array} \right.$

- (a) Les a_{ij} et les b_i sont des fonctions fixées de I dans \mathbb{K} .
- (b) $y_1, ..., y_n$ sont les inconnues de (S).
- 2. Écriture matricielle (S): Y' = AY + B
 - (a) $Y \in C^1(I, \mathbb{K}^n)$
 - (b) $B \in \mathcal{F}(I, \mathbb{K}^n)$
 - (c) $A \in \mathcal{F}(I, \mathcal{M}_n(\mathbb{K}))$.
- 3. Système homogène (S) est homogène $\iff B = 0_{n1}$. On associe à (S) le système homogène $(S_0): Y' = AY$.
- 4. Forme de Y, solution de (S) Soit Y_1 une solution particulière de (S). Les solution de (S) sont les fonctions de la forme $Y: t \longmapsto Y_0(t) + Y_1(t)$ où Y_0 est solution de (S_0) (dem).
- 5. Théorème de Cauchy-Lipschitz linéaire Soit $t_0 \in I$ et $V_0 \in \mathbb{K}^n$.
 - On suppose
 - (a) I est un intervalle de \mathbb{R} .
 - (b) $A \in C^0(I, M_n(\mathbb{K})).$
 - (c) $B \in C^0(I, \mathbb{K}^n)$.
 - Alors il existe une unique solution $Y \in C^1(I, \mathbb{K}^n)$ au problème de Cauchy :

$$\begin{cases} (S): Y' = AY + B \\ (CI): Y(t_0) = V_0 \end{cases}$$

(dem hp)

- 6. Corollaire Soit I un intervalle de \mathbb{R} . Soient $A \in C^0(I, \mathbb{M}_n(\mathbb{K}))$ et $B \in C^0(I, \mathbb{K}^n)$. On note \mathscr{S} l'ensemble des solutions de (S) et \mathscr{S}_0 l'ensemble des solutions de (S_0) . Soit $t_0 \in I$. On a :
 - (a) L'application $\Phi: \begin{array}{ccc} \mathscr{S} & \longrightarrow & \mathbb{K}^n \\ Y & \longmapsto & Y(t_0) \end{array}$ est une bijection.

(dem)

- 7. Méthode de résolution
 - (a) Étape 1 : Trigonaliser A. On a : $A = PTP^{-1}$.
 - (b) Étape 2 : Soit $X \in C^1(I, \mathbb{K}^n)$. On a :

$$X$$
 solution de (S) $\iff \forall t \in I, \ X'(t) = PTP^{-1}X(t) + B(t)$ $\iff \forall t \in I, \ P^{-1}X'(t) = TP^{-1}X(t) + P^{-1}B(t)$ $\iff \forall t \in I, \ Y'(t) = TY(t) + P^{-1}B(t)$ en posant $Y = P^{-1}X$ \iff on obtient Y en résolvant les équations du système une par une \iff on obtient $X(t) = PY(t)$

- (c) Si B = 0, il est inutile de calculer P^{-1} .
- (d) La méthode s'applique aussi si A dépend de t, à condition que l'on puisse écrire $A(t) = PT(t)P^{-1}$.

IV. Équations différentielles scalaires

1. Soient $a, b, c, d \in C^0(I, \mathbb{K})$. On considère :

$$(E): a(t)y'' + b(t)y' + c(t)y = d(t)$$

2. Méthode d'abaissement de l'ordre d'une équation différentielle Soit $y \in C^2(I, \mathbb{K})$. On suppose que a ne s'annule jamais.

$$y \text{ est solution de } (E) \iff \forall t \in I, \ a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t)$$

$$\iff \forall t \in I, \begin{cases} y'(t) = y'(t) \\ y''(t) = -\frac{b(t)}{a(t)}y'(t) - \frac{c(t)}{a(t)}y(t) + \frac{d(t)}{a(t)} \end{cases}$$

$$\iff Y'(t) = A(t)Y(t) + B(t) \text{ en posant } Y = \begin{pmatrix} y \\ y' \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 \\ \frac{-c}{a} & \frac{-b}{a} \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 \\ \frac{d}{a} \end{pmatrix}$$

On sait résoudre (E) à condition $\begin{cases} \text{ de pouvoir écrire } A(t) = PT(t)P^{-1} \\ \text{ de pouvoir primitiver les fonctions qui apparaissent} \end{cases}$

3. Théorème de Cauchy-Lipschitz linéaire Soit $t_0 \in I$. Soient $\alpha, \beta \in \mathbb{K}$. On rappelle que I un intervalle, a, b, c, d sont continues et a ne s'annule jamais. Alors il existe une unique solution $y \in C^2(I, \mathbb{K})$ au probème de Cauchy :

$$\begin{cases} (E): Y' = AY + B \\ (CI): y(t_0) = \alpha \text{ et } y'(t_0) = \beta \end{cases}$$

V. Méthode de la variation de la constante

1. On considère toujours

$$(E): a(t)y'' + b(t)y' + c(t)y = d(t)$$

On suppose que y_0 est une solution de (E_0) qui ne s'annule jamais (ex : DSE ou si a, b, c constants).

2. Méthode de la variation de la constante Soit $y \in C^2(I, \mathbb{K})$. On pose $\lambda = \frac{y}{y_0}$, de sorte que λ est de classe C^2 et $y = \lambda y_0$.

$$y \text{ solution de } (E) \iff \forall t \in I, \ a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t) \\ \iff a\lambda''y_0 + 2a\lambda'y_0' + a\lambda y_0'' + b\lambda'y_0 + \underline{b\lambda y_0'} + b\lambda y_0' + \underline{c\lambda y_0} = d \\ \iff \lambda' \text{ est solution de } (E') : ay_0z' + (2ay_0' + by_0)z = d \text{ car } y_0 \text{ est solution de } (E_0)$$

- 3. Cette méthode est utile pour :
 - (a) trouver toutes les solution de (E) ou (E_0) , connaissant une solution particulière de (E_0) qui ne s'annule jamais.
 - (b) trouver une solution particulière de (E), connaissant toutes les solutions de (E_0) .

CHAPITRE 10: FONCTIONS DE PLUSIEURS VARIABLES RÉELLES

Soit $p \in \mathbb{N}^*$.

Soit U un ouvert de \mathbb{R}^p .

I. Fonctions de classe C^1

1) Fonctions différentiables

- 1. Fonction négligeable devant une autre au voisinage d'un point Soient $f,g \in \mathcal{F}(U,\mathbb{R})$. Soit $a \in U$.
 - (a) On dit que f(x) est négligeable devant g(x) au voisinage de a si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^*, \ \|x - a\| \leqslant \delta \Rightarrow \|f(x)\| \leqslant \varepsilon \|g(x)\|.$$

- (b) On note : quand $x \to a$, f(x) = o(g(x)).
- (c) Dans le cas où $\forall x \in U \setminus \{a\}, \ g(x) \neq 0$, cela signifie :

$$\begin{cases} \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = 0 \\ f(a) = 0 \end{cases}$$

- 2. Fonction différentiable Soit $f: U \longrightarrow \mathbb{R}$. Soit $a \in U$.
 - (a) On dit que f est différentiable en a s'il existe une forme linéaire $\ell \in (\mathbb{R}^p)^*$ telle que quand $h \in \mathbb{R}^p$ tend vers 0:

$$f(a+h) = f(a) + \ell(h) + o(||h||)$$

 $(a + h \in U \text{ si } h \text{ est petit})$

- (b) ℓ est unique et est alors appelée la **différentielle de** f en a, notée df(a). On note ainsi $\ell(h) = df(a) \cdot h$.
- 3. **Analogie** Le caractère différentiable pour les fonctions sur U correspond au caractère dérivable des fonctions sur \mathbb{R} .

2) Fonctions de classe C^1

- 1. Dérivée partielle Soit $f: U \longrightarrow \mathbb{R}$. Soit $a = (a_1, ..., a_p) \in U$.
 - (a) On dit que f admet une dérivée partielle en a par rapport à sa k-ième variable si la fonction $x_k \longmapsto f(a_1, ..., x_k, ..., a_p)$ est dérivable en a_k .
 - (b) Sa dérivée est en a par rapport à x_k est alors notée $\frac{\partial f}{\partial x_k}$ ou $\partial_k f$.
- 2. On dit que f est de classe C^1 si toutes ses dérivées partielles sont définies et continues sur U.

3) Propriétés et théorèmes

- 1. Premières propriétés
 - (a) $C^1(U, \mathbb{R})$ est un \mathbb{R} -ev.
 - (b) $C^1(U,\mathbb{R})$ est stable par le produit.
 - (c) Si $f,g \in C^1(U,\mathbb{R})$, alors $V=g^{-1}(\mathbb{R}^*)$ est un ouvert de \mathbb{R}^p , et $\frac{f}{g} \in C^1(V,\mathbb{R})$.
- 2. Théorème $f \in C^1(U,\mathbb{R}) \Longrightarrow f$ est différentiable en tout point a de U, et quand $h = (h_1,...,h_p) \to (0,...,0)$:

$$f(a+h) = f(a) + \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \dots + \frac{\partial f}{\partial x_p}(a) \cdot h_p + o(\|h\|)$$

La différentielle de
$$f$$
 en a est $\mathrm{d} f(a): \begin{pmatrix} h_1 \\ \vdots \\ h_p \end{pmatrix} \longmapsto \left(\frac{\partial f}{\partial x_1}(a) & \cdots & \frac{\partial f}{\partial x_p}(a) \right) \begin{pmatrix} h_1 \\ \vdots \\ h_p \end{pmatrix}$ (admis)

- 3. **Gradient** Soit $f: U \longrightarrow \mathbb{R}$ une fonction de classe C^1 . Soit $a \in U$.
 - (a) On appelle gradient de f en a le vecteur : $\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a),...,\frac{\partial f}{\partial x_n}(a)\right)$.
 - (b) $\forall h \in \mathbb{R}^p$, $\mathrm{d}f(a) h = \langle \nabla f(a) | h \rangle$.
- 4. Théorème : règle de la chaîne Soit $f \in C^1(U, \mathbb{R})$. Soit $m \in \mathbb{N}^*$. Soit V un ouvert de \mathbb{R}^m et $g = (g_1, ..., g_p) \in C^1(V, \mathbb{R})$.
 - On suppose : $\forall v \in V, \ g(v) = (g_1(v), ..., g_p(v)) \in U.$
 - Alors:
 - (a) $\varphi: v \longmapsto f(g_1(v), ..., g_p(v)) = (f \circ g)(v)$ est de classe C^1 .
 - $\text{(b)} \ \forall k \in [1,m], \ \forall v \in V, \ \frac{\partial \varphi}{\partial v_k} = \frac{\partial g}{\partial v_k}(v) \times \frac{\partial f}{\partial x_1}(g(v)) \ + \ \dots \ + \ \frac{\partial g}{\partial v_k}(v) \times \frac{\partial f}{\partial x_p}(g(v)).$

(admis)

- 5. Théorème : caractérisation des fonctions constantes sur un ouvert convexe Soit $f \in C^1(U, \mathbb{R})$.
 - On suppose:
 - (a) U est convexe, càd : $\forall x, y \in U, \ \forall t \in [0, 1], \ tx + (1 t)y \in U$.
 - (b) $\forall x \in U, df(x) = 0.$
 - Alors : f est constante sur U.

4) Étude des extrema d'une fonction

- 1. Extremum (maximum ou minimum) global, local Soit $A \subset \mathbb{R}^p$. Soit $f: A \longrightarrow \mathbb{R}$. Soit $a \in A$. On dit que f admet un :
 - (a) maximum global en a si pour tout $x \in A$, $f(x) \leq f(a)$. On note : $\max_{x \in A} f(x) = f(a)$.
 - (b) minimum global en a si pour tout $x \in A$, $f(x) \geqslant f(a)$. On note : $\min_{x \in A} f(x) = f(a)$.
 - (c) maximum local en a si : $\exists \delta \in \mathbb{R}_+^*, \forall x \in B(a, \delta), f(x) \leq f(a)$.
 - (d) minimum local en a si : $\exists \delta \in \mathbb{R}_{+}^{*}, \forall x \in B(a, \delta), f(x) \geq f(a)$.
- 2. Théorème Soit $f \in C^1(U,\mathbb{R})$. Soit $a \in U$. f admet un maximum local en $a \Longrightarrow \nabla f(a) = (0,...,0)$ (càd $\mathrm{d} f(a) = 0$).
- 3. **Point critique** Un point $a \in U$ tel que $\nabla f(a) = 0$ est appelé point critique (ou point singulier) de f.
- 4. **Application** Soit $A \in \mathbb{R}^p$ un fermé borné non vide. Soit $f: A \longrightarrow \mathbb{R}$.
 - On suppose:
 - (a) f est continue sur A.
 - (b) f est de classe C^1 sur \mathring{A} .
 - Alors:
 - (a) f est bornée et atteint ses bornes sur A, car f est continue sur un fermé borné de dimension finie.
 - (b) Si f admet un extremum local en a, alors a est $\begin{vmatrix} un \text{ point critique de } f|_{\mathring{A}} \\ un \text{ point de la frontière } \partial A \end{vmatrix}$
- 5. Méthode de recherche d'extrema d'une fonction $f:A\longrightarrow \mathbb{R}$

Analyse Soit $x=(x_1,...,x_p)\in A$. On suppose que $x\in \mathring{A}$ et que f admet un extremum local en x. On a alors : $\frac{\partial f}{\partial x_1}(x)=\cdots=\frac{\partial f}{\partial x_n}(x)=0.$ On obtient ainsi les points critiques de $f|_{\mathring{A}}$.

Synthèse | On regarde en lesquels de ces points f admet un extremum. Il faut de plus étudier la frontière.

5) Lignes de niveaux

Soit $f: A \longrightarrow \text{où } A \subset \mathbb{R}^2$. Soit $\lambda \in \mathbb{R}$.

On appelle **ligne de niveau** de f un ensemble de points où f prend une valeur fixée $\lambda \in \mathbb{R} : \{(x,y) \in A \mid f(x,y) = \lambda\}$.

II. Fonctions de classe C^2

- 1. Fonction de classe C^2 Soit $f: U \longrightarrow \mathbb{R}$.
 - (a) On dit que f est de classe C^2 si $\forall j,k \in [1,p]$, les dérivées partielles $\frac{\partial^2 f}{\partial x_j \partial x_k}$ existent et sont continues.
 - (b) On a : $\frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_k} \right)$ donc f est de classe C^2 ssi toutes ses dérivées partielles sont de classe C^1 .
- 2. Théorème de Schwarz Soit $f: U \longrightarrow \mathbb{R}$. Soit $a \in U$. Soient $j, k \in [1, p]$.
 - On suppose : toutes les dérivées partielles $\frac{\partial^2 f}{\partial x_i \partial x_k}$ existent au voisinage de a et sont continues en a.
 - Alors:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} \right) (a) = \frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_j} \right) (a)$$

- 3. Corollaire f est de classe $C^2 \Longrightarrow \forall j, k \in [1, p], \ \frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_j}$.
- 4. Équations aux dérivées partielles
 - (a) Voir le cahier pour des exemples.
 - (b) Changement de variable courant : les coordonnées polaires.
- 5. Coordonnées polaires Soit M de coordonnées cartésiennes $(x,y) \in \mathbb{R}^2$ et de coordonnées polaires $(r,\theta) \in \mathbb{R}_+ \times \mathbb{R}$. On a :

(a)
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
 et $r = \sqrt{x^2 + y^2}$.

(b)
$$(x,y) \in \mathbb{R}_+^* \times \mathbb{R} \implies \theta \equiv \operatorname{Arctan}\left(\frac{x}{y}\right) \pmod{2\pi}$$

(c)
$$(x,y) \in \mathbb{R}^2 \setminus (\mathbb{R}_- \times \{0\}) \implies \theta \equiv 2 \operatorname{Arctan}\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \pmod{2\pi}$$

III. Géométrie différentielle élémentaire

- 1. Courbes du plans Soit $f \in C^1(\mathbb{R}^2, \mathbb{R})$. On note $\mathscr C$ la courbe d'équation cartésienne f(x,y)=0. Soit $M_0=(x_0,y_0)\in \mathscr C$.
 - (a) On dit que M_0 est un point régulier de \mathscr{C} si $\nabla f(M_0) \neq (0,0)$.
 - (b) La tangente à $\mathscr E$ en M_0 est alors la droite affine passant par M_0 de vecteur normal $\nabla f(M_0)$. On la note $\mathrm{T}_{M_0}\mathscr E$.
 - (c) On obtient ainsi l'équation cartésienne de cette tangente :

$$\begin{split} M \in \mathbf{T}_{M_0} \mathscr{C} &\iff \overline{M_0 M} \perp \overrightarrow{\nabla} f(M_0) \\ &\iff \overline{M_0 M} \cdot \overrightarrow{\nabla} f(M_0) = 0 \\ &\iff (E_T) : (x - x_0) \frac{\partial f}{\partial x} (x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y} (x_0, y_0) = 0 \end{split}$$

- 2. Surface de \mathbb{R}^3 Soit $f \in C^1(\mathbb{R}^3, \mathbb{R})$. On note \mathscr{S} la surface d'équation cartésienne f(x, y, z) = 0. Soit $M_0 = (x_0, y_0, z_0) \in \mathscr{S}$.
 - (a) On dit que M_0 est un point régulier de \mathscr{S} si $\nabla f(M_0) \neq (0,0,0)$.
 - (b) Le plan tangent à \mathscr{S} en M_0 est alors le plan affine passant par M_0 de vecteur normal $\nabla f(M_0)$. On le note $\mathrm{T}_{M_0}\mathscr{S}$.
 - (c) On obtient ainsi l'équation cartésienne de ce plan tangent :

$$M \in \mathcal{T}_{M_0} \mathscr{S} \iff \overline{M_0 M} \perp \overrightarrow{\nabla} f(M_0)$$

$$\iff \overline{M_0 M} \cdot \overrightarrow{\nabla} f(M_0) = 0$$

$$\iff (E_S) : (x - x_0) \frac{\partial f}{\partial x} (x_0, y_0, z_0) + (y - y_0) \frac{\partial f}{\partial y} (x_0, y_0, z_0) + (z - z_0) \frac{\partial f}{\partial z} (x_0, y_0, z_0) = 0$$

CHAPITRE 11: COURBES PARAMÉTRÉES

I. Courbe paramétrée

On note I un intervalle de \mathbb{R} .

On considère une fonction $f: \begin{array}{ccc} I & \longrightarrow & \mathbb{R}^2 \\ t & \longmapsto & (x(t), y(t)) \end{array}$

- 1. On dit que f est une courbe paramétrée (plane).
- 2. L'image de f: Im(f) est appelé le support de la courbe paramétrée f. On note $\text{Im} f = \Gamma$.
- 3. On dit que Γ admet le paramétrage :

$$\Gamma: \left\{ \begin{array}{l} x = x(t) \\ y = y(t) \end{array} \right. \quad t \in I$$

(notation abusive)

II. Point régulier, point singulier

- 1. Point régulier, point singulier Soit $t_0 \in I$.
 - (a) On dit que f admet un point régulier en t_0 si $f'(t_0) \neq (0,0)$, c'est-à-dire si $x'(t_0) \neq 0$ ou $y'(t_0) \neq 0$.
 - (b) Si $f'(t_0) = (0,0)$, alors on dit que f admet un point singulier en t_0 .
- 2. **Tangente en un point régulier** Si f admet en t_0 un point régulier, alors Γ admet en $f(t_0)$ une tangente qui est la droite passant par $f(t_0)$ et dirigée par $f'(t_0)$.
- 3. Cas général
 - On suppose
 - (a) $f \in C^k(I, \mathbb{R}^2)$ où $k \in \mathbb{N}^*$.
 - (b) $f'(t_0) = f''(t_0) = \dots = f^{(k-1)}(t_0) = (0,0).$
 - (c) $f^{(k)}(t_0) \neq (0,0)$.
 - Alors : Γ admet en $f(t_0)$ une tangente qui est la droite passant par $f(t_0)$ et dirigée par $f^{(k)}(t_0)$.

III. Plan d'étude d'une courbe paramétrée

- 1. **Réduction de l'intervalle d'étude** grâce aux symétries de f avec notamment :
 - la périodicité;
 - la parité.
- 2. Tableau de variation de x et y.
- 3. Étude de quelques points particuliers et de leur tangente. Typiquement :
 - les points réguliers;
 - les points où la tangente est verticale;
 - les points où la tangente est horizontale.
- 4. Étude des branches infinies (éventuelles asymptotes).

Troisième partie

PROBABILITÉS

CHAPITRE 12: PROBABILITÉS

I. Rappels et compléments sur les ensembles

1) Ensembles finis

- 1. Définition
 - (a) Un ensemble E est dit fini s'il contient un nombre fini d'éléments.
 - (b) Le nombre d'éléments de E est appelé cardinal et est noté $\operatorname{card} E$, |E|, ou #E.
- 2. **Théorème** Soit E un ensemble fini et A une partie de E.
 - (a) Alors A est un ensemble fini et $\#A \leqslant \#E$.
 - (b) $\#A = \#E \iff A = E$.
- 3. **Théorème** Soient E et F deux ensembles finis tels que #E = #F. Soit $f: E \longrightarrow F$. Alors:

f est une bijection \iff f est une surjection \iff f est une injection

2) Dénombrement

- 1. On note $\mathcal{P}(E)$ l'ensemble des parties de E. $A \subset E \iff A \in \mathcal{P}(E)$.
- 2. Soient $A, B \in \mathcal{P}(E)$.
 - (a) $\#(A \cup B) = \#A + \#B \#(A \cap B)$. Si A et B sont disjoints : $\#(A \cup B) = \#A + \#B$.
 - (b) $\#(E \setminus A) = \#E \#A$.
 - (c) $\#(A \times B) = \#A \times \#B$.
 - (d) $\#(B^A) = \#\mathcal{F}(A, B) = \#B^{\#A}$.
 - (e) $\#\mathcal{P}(E) = \#\mathcal{F}(E, \{0, 1\}) = 2^{\#E}$.
- 3. Arrangement, combinaison Soit E tel que #E = n. Soit $p \in [0, n]$. On appelle :
 - (a) p-arrangement de E tout p-uplet (ou p-liste) ordonné d'éléments distincts 2 à $2:(x_1,...,x_p)\in E^p$.
 - (b) p-combinaison de E toute partie (donc ensemble) de E contenant p éléments : $\{x_1, ..., x_p\} \in \mathcal{P}(E)$.
 - (c) Le nombre de *p*-arrangements de *E* est $A_n^p = \frac{n!}{(n-p)!}$
 - (d) Le nombre de p-combinaisons de E (ensemble des parties à p éléments) est $C_n^p = \binom{n}{p} = \# \mathcal{P}_p(E) = \frac{n!}{p!(n-p)!}$.
 - (e) A_n^p est aussi le nombre d'injections d'un ensemble de cardinal p vers E. Si p=n, alors le nombre bijections de E vers E est $\#\mathfrak{S}_E=A_n^n=n!$.

3) Ensembles dénombrables

- 1. Un ensemble est dit **dénombrable** s'il est en bijection avec \mathbb{N} .
 - (a) Plus concrètement un ensemble dénombrable est un ensemble qui s'écrit $\{x_n\}_{n\in\mathbb{N}}$ où les x_n sont 2 à 2 distincts.
 - (b) Si $E = \{x_n\}_n$ avec les x_n quelconques, E est fini ou dénombrable; il est dit au plus dénombrable.
- 2. \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} , etc. sont dénombrables.
- 3. Si E et F sont deux ensembles dénombrables, alors $E \times F$ aussi.
- 4. $\{0,1\}^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N})$, \mathbb{R} , [0,1] sont indénombrables (et de même taille).

II. Espaces probabilisés

1) Définition, cadre formel

- 1. Univers, tribu, événements Soit Ω un ensemble. Soit $\mathcal{A} \in \mathcal{P}(\Omega)$ telle que :
 - (a) $\Omega \in \mathcal{A}$.
 - (b) $\forall A \in \mathcal{A}, \ \overline{A} \in \mathcal{A}.$

(c)
$$\forall (A_n)_n \in \mathcal{A}^{\mathbb{N}}, \ \bigcup_{n=0}^{+\infty} A_n \in \mathcal{A}.$$

 Ω est appelé l'univers; $\mathcal A$ est appelée la tribu des événements.

2. Événements particuliers

- (a) Ω est appelé l'événement certain.
- (b) Ø est appelé l'événement impossible.
- (c) Un événement singleton est appelé un événement élémentaire.
- 3. Événements incompatibles Deux événements sont incompatibles si leur intersection est vide.
- 4. **Stabilité de** \mathcal{A} Soit Ω un univers et \mathcal{A} une tribu sur Ω . Alors \mathcal{A} est (dem):
 - (a) stable par réunion finie;
 - (b) stable par intersection finie ou dénombrable;
 - (c) stable par différence ensembliste : $\forall A, B \in \mathcal{A}, \ A \backslash B \in \mathcal{A}$.

5. Système complet d'événements Soit Ω un univers et \mathcal{A} une tribu sur Ω . On appelle :

(a) Système complet fini d'événements toute famille finie $(A_n)_{n\in[1,N]}\in\mathcal{A}^N$ d'événements 2 à 2 incompatibles tels que :

$$\bigcup_{n=1}^{N} A_n = \Omega$$

(b) Système complet dénombrable d'événements toute famille dénombrable $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^N$ d'événements 2 à 2 incompatibles tels que :

$$\bigcup_{n=1}^{+\infty} A_n = \Omega$$

- 6. **Probabilité** Soit Ω un univers et \mathcal{A} une tribu sur Ω . On appelle probabilité sur (Ω, \mathcal{A}) toute application $P : \mathcal{A} \longrightarrow [0,1]$ telle que :
 - (a) $P(\Omega) = 1$.
 - (b) $\forall (A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ suite dénombrable d'événements 2 à 2 incompatibles, $P\left(\bigcup_{n=0}^{+\infty}A_n\right)=\sum_{n=0}^{+\infty}P(A_n).$
- 7. $P(\emptyset) = 0$.
- 8. $\forall (A_n)_{n \in [1,N]} \in \mathcal{A}^N$ suite finie d'événements 2 à 2 incompatibles, $P\left(\bigcup_{n=0}^N A_n\right) = \sum_{n=0}^N P(A_n)$.
- 9. Soient Ω un univers, \mathcal{A} une tribu sur Ω et P une probabilité sur (Ω, \mathcal{A}) .

- (a) On appelle le triplet (Ω, \mathcal{A}, P) espace probabilisé.
- (b) Un événement A tel que P(A) = 1 est dit **presque certain** (ou presque sûr).
- (c) Un événement A tel que P(A) = 0 est dit **presque impossible** (ou négligeable).
- 10. Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soient A et B deux événements.
 - (a) Si $A \subset B$, alors $P(A) \leq P(B)$ et on a : $P(B \setminus A) = P(B) P(A)$.
 - (b) On a : $P(\overline{A}) = 1 P(A)$.
 - (c) On a : $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
 - (dem)

2) Propriétés

1. Continuité croissante Si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante d'événements (càd $\forall n\in\mathbb{N},\ A_n\subset A_{n+1}$) alors (dem) :

$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$$

2. Continuité décroissante Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante d'événements (càd $\forall n\in\mathbb{N},\ A_{n+1}\subset A_n$), alors (dem) :

$$P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$$

3. Sous-additivité

- (a) Pour toute suite d'événements $(A_n)_{n\in\mathbb{N}}$, on a : $P\left(\bigcup_{n=0}^{+\infty}A_n\right)\leqslant\sum_{n=0}^{+\infty}P(A_n)$
- (b) Cas de l'égalité : $P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} P(A_n) \iff \forall i, j \in \mathbb{N}, i \neq j \Rightarrow P(A_i \cap A_j) = 0.$
- (c) Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements presque impossibles, alors : $P\left(\bigcup_{n=0}^{+\infty}A_n\right)=0$.
- (d) Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements presque certains, alors : $P\left(\bigcap_{n=0}^{+\infty}A_n\right)=1$.

3) Exemples

- 1. Probabilité uniforme sur un ensemble fini
 - (a) On suppose que Ω est fini et non vide.
 - (b) On considère $\mathcal{A} = \mathcal{P}(\Omega)$.
 - (c) On pose $\forall A \in \mathcal{A}, \ P(A) = \frac{\#A}{\#\Omega}$

Dans ce cas, tous les événements élémentaires sont équiprobables.

2. Cas où $(\Omega, \mathcal{A}) = (\mathbb{N}, \mathcal{P}(\mathbb{N}))$ Les probabilités P sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ sont les fonctions de la forme :

$$P: \begin{array}{ccc} \mathscr{P}(\mathbb{N}) & \longrightarrow & [0,1] \\ A & \longmapsto & \sum_n p_n \end{array}$$

où $(p_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ est une suite telle que la série $\sum_n p_n$ est convergente et de somme 1.

III. Conditionnement, indépendance

1) Définitions

On considère l'espace probabilisé : (Ω, \mathcal{A}, P) .

- 1. Probabilité conditionnelle Soient A et B deux événements de \mathcal{A} . On suppose $P(B) \neq 0$.
 - (a) La probabilité conditionnelle de A sachant B est : $P_B(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.
 - (b) En effet en faisant un arbre on remarque que $P(A \cap B) = P(B)P_B(A)$.
- 2. Soit $B \in \mathcal{A}$ tel que $P(B) \neq 0$. Alors l'application $P_B : \mathcal{A} \longrightarrow [0,1]$ est une probabilité sur (Ω, \mathcal{A}) .

2) Propriétés

1. Probabilités composées Soient $A_1,...,A_N$ des événements. On suppose $P(A_1\cap...\cap A_{N-1})\neq 0$. Alors :

$$P(A_1 \cap ... \cap A_N) = P(A_1)P_{A_1}(A_2)...P_{A_1 \cap ... \cap A_{N-1}}(A_N)$$

2. Probabilités totales

(a) Soit $(A_1,...,A_N)$ un système complet fini d'événements. Soit B un événement. Alors :

$$P(B) = \sum_{n=1}^{N} P(B \cap A_n) = \sum_{n=1}^{N} P(B|A_n)P(A_n)$$

- (b) Idem pour un système complet dénombrable d'événements (somme infinie).
- (c) Ces formules sont également valables pour une suite d'événements 2 à 2 incompatibles telle que la somme des probabilités de ses événements vaut 1.

3. Formule de Bayes

- (a) Si A et B sont 2 événements de probabilité non nulle, alors : $P(A \mid B) = \frac{P(A)P(B \mid A)}{P(A)P(B \mid A) + P(\overline{A})P(B \mid \overline{A})}$.
- (b) Soit $(A_1,...,A_N)$ un système complet fini d'événements de probabilité non nulle. Soit B un événement de probabilité non nulle. Alors :

$$P(A_k \mid B) = \frac{P(A_k)P(B \mid A)}{\sum_{n=1}^{N} P(A_n)P(B \mid A_n)}$$

(c) Idem pour un système complet dénombrable d'événements (somme infinie).

3) Événements indépendants

- 1. Deux événements A et B sont **indépendants** si $P(A \cap B) = P(A)P(B)$. C'est à dire : P(A|B) = P(A) et P(B|A) = P(B).
- 2. Soient $A_1, ..., A_N$ des événements.
 - (a) Ces événements sont dits 2 à 2 indépendants si : $\forall i, j \in [1, N], i \neq j \Rightarrow P(A_i \cap A_j) = P(A_i)P(A_j)$.
 - (b) Ces événements sont dits **mutuellement indépendants** si : $\forall J \subset [1, N], \ P\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} P(A_j).$

IV. Variables aléatoires discrètes

1) Définition

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

1. Variable aléatoire (discrète) On appelle variable aléatoire sur (Ω, \mathcal{A}) toute application $X : \Omega \longrightarrow E$ (où E est un ensemble) telle que :

$$\left\{ \begin{array}{l} \text{L'ensemble Im}(X) \text{ est fini ou dénombrable} \\ \forall F \subset E, \ X^{-1}(F) \in \mathcal{A} \end{array} \right.$$

- (a) Si $E = \mathbb{R}$, on dit que X est un variable aléatoire réelle.
- (b) Les v.a. discrètes sont les seules v.a. au programme.
- 2. CNS (dem) X est une variable aléatoire \iff $\begin{cases} \text{L'ensemble Im}(X) \text{ est fini ou dénombrable} \\ \forall x \in E, \ X^{-1}(\{x\}) \in \mathcal{A} \end{cases}$
- 3. Notation On note $X^{-1}(F) = (X \in F) = \{X \in F\}$. C'est un événement
- 4. Loi d'une variable aléatoire Soit $X:\Omega\longrightarrow E$ une v.a. On appelle loi de X l'application :

$$P_X: \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & [0,1] \\ F & \longmapsto & P(\{X \in F\}) \end{array}.$$

On note plus simplement $P_X(F)$ ou $P(X \in F)$ la probabilité $P(\{X \in F\})$ que X appartienne à F.

- 5. Le triplet $(E, \mathcal{P}(E), P_X)$ est un espace probabilisé.
- 6. **Proposition** Soit X une v.a. d'image dénombrable $\operatorname{Im}(X) = \{x_n\}_{n \in \mathbb{N}}$, où les x_n sont 2 à 2 distincts. Soit $(p_n)_{n \in \mathbb{N}}$ une suite de réels positifs telle que $\sum_{n=0}^{+\infty} p_n = 1$. Alors il existe une probabilité P sur (Ω, \mathcal{A}) telle que : $\forall n \in \mathbb{N}, \ P(X = x_n) = p_n$.
- 2) Exemples de lois de probabilité

Soit X une v.a.

1. Loi uniforme sur un ensemble fini Soit E un ensemble fini non vide. X suit une loi uniforme sur E si :

$$\forall A \subset E, \ P(X \in A) = \frac{\#A}{\#\Omega}$$

2. Loi de Bernoulli de paramètre $p \in [0,1] X : \Omega \longrightarrow \{0,1\}$ suit une loi de Bernoulli de paramètre p si :

$$\begin{cases} P(X=1) = p \\ P(X=0) = 1 - p \end{cases}$$

On note : $X \hookrightarrow \mathcal{B}(p)$.

3. Loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0, 1]$ $X : \Omega \longrightarrow [0, n]$ suit une loi binomiale de paramètres n et p si :

$$\forall k \in [0, n], \ P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Cela correspond à *n* répétitions d'une épreuve de Bernoulli.

On note : $X \hookrightarrow \mathcal{B}(n,p)$.

4. Loi géométrique de paramètre $p \in]0,1[X:\Omega \longrightarrow \mathbb{N}^*$ suit une loi géométrique de paramètre p si :

$$\forall k \in \mathbb{N}^*, \ P(X = k) = (1 - p)^{k - 1} p$$

Cela correspond au premier succès dans une suite illimitée d'épreuves de Bernoulli : k-1 échecs puis 1 succès. On note : $X \hookrightarrow G(p)$.

- 5. Caractérisation comme loi sans mémoire Soit $X:\Omega \longrightarrow \mathbb{N}^*$ une v.a. On suppose que X n'admet aucun majorant presque sûr, càd : $\forall N \in \mathbb{N}, \ P(X \leq N) \neq 1$.
 - (a) X suit une loi sans mémoire si : $\forall n, k \in \mathbb{N}^*$, $P(X > n + k \mid X > n) = P(X > k)$.
 - (b) On a : X suit une loi sans mémoire $\iff \exists p \in]0,1[, X \hookrightarrow \mathcal{G}(p).$
- 6. Loi de Poisson de paramètre $\lambda \in \mathbb{R}_+^* X : \Omega \longrightarrow \mathbb{N}$ suit une loi de Poisson de paramètre λ si :

$$\forall k \in \mathbb{N}, \ P(X = k) = \frac{\lambda^k}{e^{\lambda} k!}$$

On l'appelle "loi des événements rares" (voir VII.).

On note : $X \hookrightarrow \mathcal{P}(\lambda)$.

3) Couples de variables aléatoires

1. Loi conjointe, lois marginales Soient E et F deux ensembles. Soient $X:\Omega\longrightarrow F$ et $Y:\Omega\longrightarrow G$ deux v.a. On pose :

$$Z: \begin{array}{ccc} \Omega & \longrightarrow & E \times F \\ \omega & \longmapsto & (X(\omega), Y(\omega)) \end{array}$$

- (a) Z est une variable aléatoire (discrète). On note parfois Z=(X,Y).
- (b) La loi de Z est la loi conjointe de X et Y.
- (c) Les lois de X et Y sont les lois marginales de Z.
- 2. Probabilité conditionnelle Soit $y \in F$ tel que $P(Y = y) \neq 0$.
 - (a) On appelle loi conditionnelle de X sachant Y la loi de X pour la probabilité conditionnelle $P_{\{Y=y\}}$.

(b)
$$\forall A \subset E, \ P(X \in A \mid Y = y) = \frac{P(X \in A \text{ et } Y = y)}{P(Y = y)}$$

- 3. (a) Si on connait la loi de Z, on connait la loi de X et la loi de Y.
 - (b) Si on connait la loi de Y et la loi de X sachant Y = y pour tout $y \in F$ alors on connait la loi de Z.

4) Fonction de répartition d'une variable aléatoire

1. Fonction de répartition Soit $X:\Omega\longrightarrow\mathbb{R}$ une v.a. réelle. La fonction de répartition de X est :

$$F_X: \begin{array}{ccc} \mathbb{R} & \longrightarrow & [0,1] \\ x & \longmapsto & P(X \leqslant x) \end{array}$$

- 2. Propriétés (dem)
 - (a) Si $x, y \in \mathbb{R}$ tels que $x \leq y$, alors $F_X(y) F_X(x) = P(X \in]x, y]$).
 - (b) La fonction F_X est croissante.
 - (c) $\lim_{x \to -\infty} F_X(x) = 0.$
 - (d) $\lim_{x \to +\infty} F_X(x) = 1$.

5) Propriétés des variables aléatoires

- 1. Composée d'une v.a. Soit $X:\Omega\longrightarrow E$ une variable aléatoire et $f:E\longrightarrow F$ une fonction quelconque. Alors $f\circ X$ est une v.a., notée abusivement f(X).
- 2. Propriétés
 - (a) La valeur absolue d'une v.a. réelle est une v.a. réelle.
 - (b) La somme de v.a. réelles est une v.a. réelle.
 - (c) Un produit de v.a. réelles est une v.a. réelle.

6) Fonction génératrice d'une variable aléatoire à valeurs dans $\mathbb N$

- 1. Fonction génératrice Soit $X : \Omega \longrightarrow \mathbb{N}$ une v.a. à valeurs dans \mathbb{N} .
 - (a) La série génératrice de X est la série entière : $\sum_{n} P(X=n)t^{n}$.
 - (b) Le rayon de convergence de cette série est supérieur ou égal à 1.
 - (c) Cette série converge en -1 et 1.
 - (d) La somme de cette série entière sur [-1,1] est appelée fonction génératrice de X, notée G_X .
- 2. La fonction génératrice G_X caractérise la loi de la v.a. X.

V. Variables indépendantes

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soient $X: \Omega \longrightarrow E$ et $Y: \Omega \rightarrow F$ deux v.a.

- 1. Variables indépendantes Les v.a. X et Y sont indépendantes si : $\forall x \in E, \ \forall y \in Y, \ P(X = x \text{ et } Y = y) = P(X = x)P(Y = y).$
- 2. CNS X et Y sont indépendantes $\iff \forall A \subset E, \ \forall B \in F, \ P(X \in A \text{ et } Y \in B) = P(X \in A)P(Y \in B).$ (dem h-p)
- 3. Indépendance par composition On suppose X et Y indépendantes. Soient $f: E \longrightarrow E'$ et $g: F \longrightarrow F'$ deux fonctions. Alors f(X) et g(X) sont indépendantes. (dem)
- 4. Indépendance dans le cas d'une famille finie de variables aléatoires Soient $X_1,...,X_n$ des v.a.
 - (a) $X_1, ..., X_n$ sont 2 à 2 indépendantes si : $\forall i, j \in [1, n], i \neq j \Rightarrow X_i$ et Y_i sont indépendantes.
 - (b) $X_1,...,X_n$ sont mutuellement indépendantes si les conditions suivantes (équivalentes) sont vérifiées :

i.
$$\forall (x_1,...,x_n), \ P(X_1=x_1 \text{ et } ... \text{ et } X_n=x_n) = \prod_{k=1}^n P(X_k=x_k).$$

ii. $\forall (A_1,...,A_n), \ P(X_1\in A_1 \text{ et } ... \text{ et } X_n\in A_n) = \prod_{k=1}^n P(X_k\in A_k).$

ii.
$$\forall (A_1, ..., A_n), \ P(X_1 \in A_1 \text{ et } ... \text{ et } X_n \in A_n) = \prod_{k=1}^n P(X_k \in A_k).$$

- 5. Indépendance dans le cas d'une suite de variables aléatoires Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.
 - (a) Les v.a. X_n où $n \in \mathbb{N}$ sont 2 à 2 indépendantes si : $\forall i \neq j, X_i$ et Y_j sont indépendantes.
 - (b) Les v.a. X_n où $n \in \mathbb{N}$ sont mutuellement indépendantes si pour toute partie $J \subset \mathbb{N}$, les variables X_j où $j \in J$ sont mutuellement indépendantes.
- 6. Fonction génératrice d'une somme de variables aléatoires indépendantes On suppose X et Y indépendantes et à valeurs dans N. Alors : $G_{X+Y} = G_X G_Y$. (dem)
- 7. Exemples
 - (a) Si $X_1, ..., X_n$ sont des v.a. indépendantes suivant chacune une loi de Bernoulli $\mathcal{B}(p)$, alors $X_1 + ... + X_n \hookrightarrow \mathcal{B}(n, p)$.
 - (b) Si X et Y sont deux v.a. indépendantes telles que $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$, alors $X + Y \hookrightarrow \mathcal{P}(\lambda + \mu)$.

VI. Espérance, variance

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

1) Espérance

- 1. Espérance Soit $F = \{x_n\}_{n \in \mathbb{N}}$ un ensemble dénombrable de réels, où les réels x_n sont 2 à 2 distincts. Soit $X : \Omega \longrightarrow F$.
 - (a) On dit que X admet une espérance si la série $\sum P(X=x_n)x_n$ est absolument convergente.
 - (b) Dans ce cas on appelle espérance de X la somme de cette série :

$$E(X) = \sum_{n=0}^{+\infty} P(X = x_n) x_n.$$

- (c) Si *X* est d'image finie, alors *X* admet une espérance.
- (d) Si *X* est bornée, alors *X* admet une espérance.
- 2. Espérance et fonction génératrice Soit $X:\Omega\longrightarrow\mathbb{N}$ une v.a. à valeurs dans \mathbb{N} . On remarque que $G_X(t)=E(t^X)$
 - (a) X admet une espérance $\iff G_X$ est dérivable en 1.
 - (b) Dans ce cas, $E(X) = G'_{X}(1)$.

(dem non exigible)

- 3. **Propriétés** Soient X et Y deux v.a. réelles sur (Ω, \mathcal{A}) . Soient $a, b \in \mathbb{R}$. On suppose que X et Y admettent une espérance.
 - (a) L'espérance d'une constante est égale à cette constante : E(a) = a.

- (b) Linéarité : E(aX + bY) = aE(X) + bE(Y).
- (c) Positivité : $X \ge 0 \Longrightarrow E(X) \ge 0$.
- (d) Croissance : $X \leq Y \Longrightarrow E(X) \leq E(Y)$.
- 4. Espérance d'un produit Soient X et Y deux v.a. réelles indépendantes.
 - (a) X et Y admettent une espérance, alors XY aussi.
 - (b) Dans ce cas : E(XY) = E(X)E(Y).

(dem h-p)

- 5. Théorème du transfert pour une v.a. d'image finie Soit X une v.a. d'image finie $\text{Im}X = \{x_1, ..., x_N\}$ (où les x_n sont distincts 2 à 2). Soit $f: \text{Im}X \longrightarrow \mathbb{R}$ une application. Alors :
 - (a) f(X) admet une espérance.

(b)
$$E[f(X)] = \sum_{n=1}^{N} P(X = x_n) f(x_n).$$

- 6. Théorème du transfert pour une v.a. d'image dénombrable Soit X une v.a. d'image dénombrable $\text{Im}X = \{x_n\}_{n \in \mathbb{N}}$ (où les x_n sont distincts 2 à 2). Soit $f : \text{Im}X \longrightarrow \mathbb{R}$ une application. Alors :
 - (a) f(X) admet une espérance \iff la série $\sum_n P(X=x_n)f(x_n)$ est absolument convergente.

(b)
$$E[f(X)] = \sum_{n=1}^{+\infty} P(X = x_n) f(x_n).$$

(dem hors programme)

- 7. Une formule pour les v.a. à valeurs dans $\mathbb N$ Soit X une v.a. à valeurs dans $\mathbb N$. Alors :
 - (a) X admet une espérance \iff la série $\sum_{n} P(X > n)$ est convergente.

(b)
$$E(X) = \sum_{n=0}^{+\infty} P(X > n).$$

- 2) Variance, écart-type, covariance
 - 1. **Lemme** Soit X une v.a. réelle telle que X^2 admet une espérance. Alors :
 - (a) X admet une espérance.
 - (b) $\forall m \in \mathbb{R}, (X+m)^2$ admet une espérance.
 - 2. Variance, écart-type Soit X une v.a. réelle telle que X^2 admet une espérance.
 - (a) D'après le lemme précédent : $(X E(X))^2$ admet une espérance.
 - (b) On appelle variance de X le réel :

$$V(X) = E([X - E(X)]^2) = E(X^2) - E(X)^2.$$

- (c) L'écart-type de X est la racine carrée de la variance de X: $\sigma(X) = \sqrt{V(X)}$.
- 3. Covariance, coefficient de corrélation Soient X et Y deux v.a. réelles qui admettent une variance.
 - (a) On appelle covariance de *X* et *Y* le réel :

$$\mathrm{Cov}(X,Y) = E\big([E-E(X)][Y-E(Y)]\big) = E(XY) - E(X)E(Y).$$

- (b) On appelle coefficient de corrélation le réel : $\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$.
- 4. Indépendance et covariance X et Y indépendants $\Longrightarrow \text{Cov}(X,Y) = 0$.
- 5. Variance et fonction génératrice Soit $X:\Omega\longrightarrow\mathbb{N}$ une v.a. à valeurs dans \mathbb{N} .
 - (a) X admet une variance $\iff G_X$ est deux fois dérivable en 1.
 - (b) Dans ce cas, $V(X) = G_X''(1) + G_X'(1) G_X'(1)^2$. (égalité à savoir retrouver)

- 6. Variance de aX+b Soit X une v.a. réelle admettant une variance. Soient $a,b\in\mathbb{R}$. Alors :
 - (a) aX + b admet une variance.
 - (b) $V(aX + b) = a^2V(X)$. (dem)
- 7. Variance d'une somme de variables aléatoires Soient $X_1,...,X_n$ des v.a. réelles admettant une variance. Alors :

$$V(X_1 + \dots + X_n) = \sum_{j=1}^{n} V(X_j) + 2 \sum_{i < j} \text{Cov}(X_i, X_j).$$

- 3) Inégalités
 - 1. **Inégalité de Markov** Soit X une v.a. réelle admettant une espérance. Soit $a \in \mathbb{R}_+^*$. Alors (dem):

$$P(|X| \geqslant a) \leqslant \frac{E(|X|)}{a}.$$

2. Inégalité de Bienaymé-Tchebychev Soit X une v.a. réelle admettant une variance. Soit $a \in \mathbb{R}_+^*$. Alors (dem):

$$P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}.$$

3. **Inégalité de Cauchy-Schwarz** Soit *X* une v.a. réelle admettant une variance. Alors (dem) :

$$E(XY)^2 \leqslant E(X^2)E(Y^2).$$

- 4) Compléments
 - 1. Moment d'une variable aléatoire Soit X une v.a. réelle et $m \in \mathbb{N}^*$.
 - (a) On dit que X admet un moment d'ordre m si X^m admet une espérance.
 - (b) X admet un moment d'ordre $1 \iff X$ admet une espérance.
 - (c) X admet un moment d'ordre $2 \iff X$ admet une variance.
 - 2. Moment et fonction génératrice X admet un moment d'ordre $m \iff G_X$ est de classe C^m sur [-1,1].
 - 3. Variable centrée réduite Soit X une v.a. réelle admettant une variance non nulle.
 - (a) La variable centrée est obtenue en soustrayant l'espérance.
 - (b) La variable réduite est obtenue en divisant par l'écart-type.
 - (c) La variable centrée réduite est alors :

$$X^* = \frac{X - E(X)}{\sigma(X)}.$$

VII. Résultats asymptotiques

1. Théorème : Approximation de la loi binomiale par la loi de Poisson Soit $\lambda \in \mathbb{R}_+^*$. Soit une suite de réels strictement positifs $(p_n)_{n \in \mathbb{N}^*}$ telle que $\lim_{n \to +\infty} np_n = \lambda$. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de v.a. telle que $\forall n \in \mathbb{N}^*$, $X_n \hookrightarrow \mathcal{B}(n, p_n)$. Alors (dem) :

$$\forall k \in \mathbb{N}, \lim_{n \to +\infty} P(X_n = k) = \frac{\lambda^k}{k! \, e^{\lambda}}.$$

Cette loi est parfois appelée loi des événements rares. En effet elle correspond à un très grand nombre n d'épreuves de Bernoulli, toutes de même paramètre p très faible. Le nombre de succès suit une loi binomiale d'espérance $\lambda = np$, qui peut être approximée par une loi de Poisson de paramètre λ .

- 2. Théorème : Loi faible des grands nombres Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. 2 à 2 indépendantes et de même loi, admettant une variance. Soit $\varepsilon\in\mathbb{R}_+^*$. On pose $\mu=E(X_1)$ et $\sigma=\sigma(X_1)$.
 - (a) On définit la moyenne empirique : $\overline{X_n} = \frac{X_1 + ... + X_n}{n}$.
 - (b) On a:

$$\lim_{n \to +\infty} P\left(\left|\overline{X_n} - \mu\right| \geqslant \varepsilon\right) = 0.$$

(c) En effet:

$$\forall n \in \mathbb{N}^*, \ P\left(\left|\overline{X_n} - \mu\right| \geqslant \varepsilon\right) \leqslant \frac{\sigma^2}{n\varepsilon^2}.$$

(dem : inégalité de Bienaymé-Tchebychev)

Lycée Gay-Lussac PSI

Soit	On suppose :	Alors la loi de X est caractérisée par :	ou par : $\forall t \in [-1;1], \ G_X(t) =$	On a: $E(X) =$	et: $V(X) =$
$p \in [0, 1].$	$X \hookrightarrow \mathcal{B}(p)$ (loi de Bernoulli)	P(X = 0) = 1 - p et P(X = 1) = p	(1-p)+pt	d	p(1-p)
$n \in \mathbb{N}^*$ et $p \in [0,1]$.	$X \hookrightarrow \mathcal{B}(n,p)$ (loi binomiale)	$\forall k \in [0; n], P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$	$[(1-p)+pt]^n$	du	np(1-p)
$p\in]0;1[$	$X \hookrightarrow \mathcal{G}(p)$ (loi géométrique)	$\forall k \in \mathbb{N}^*, \ P(X = k) = p(1 - p)^{k - 1}$	$\frac{pt}{1-(1-p)t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\lambda \in \mathbb{R}^*_+$	$X \hookrightarrow \mathcal{P}(\lambda)$ (loi de Poisson)	$\forall k \in \mathbb{N}, \ P(X=k) = \frac{\lambda^k}{k! e^{\lambda}}$	$e^{\lambda(t-1)}$	~	~