15. ХАРАКТЕРИСТИЧЕСКИЕ ФУНКЦИИ И МОМЕНТЫ

15.1. Характеристические функции

До сих пор мы задавали случайные величины законом распределения. Характеристическая функция - ещё один способ представления случайных величин.

Пусть X - случайная величина. Её характеристической функцией w(t) назовём математическое ожидание случайной величины e^{itX} :

$$W(t)=Me^{itX}$$
,

где под комплексной случайной величиной e^{itX} мы понимаем комплексное число $e^{itX} = \cos(tX) + i\sin(tX)$, а

$$M[e^{itX}] = M[\cos(tX) + i\sin(tX)];$$

независимая переменная t имеет размерность X^{-1} .

Характеристическая функция - преобразование Фурье-Стилтьеса функции распределения:

$$w(t) = \int_{-\infty}^{\infty} e^{itx} dF(x).$$

В непрерывном случае w(t) - преобразование Фурье плотности вероятности:

$$w(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

Если w(t) абсолютно интегрируема, то обратное преобразование Фурье позволяет восстановить плотность f(x) по характеристической функции:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} w(t)e^{-ixt}dt.$$

В дискретном случае:

$$w(t) = \sum_{k} e^{itx} P\{X = x_k\}.$$

Особо отметим дискретные случайные величины с целочисленными значениями, например, при $x_k = k$:

$$w(t) = \sum_{k} e^{itk} p_{k}$$

здесь w(t) - ряд Фурье в комплексной форме, вероятности p_k играют роль коэффициентов Фурье и легко восстанавливаются по w(t):

$$p_k = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-itx} w(t) dt$$

В общем случае восстановление закона распределения по характеристической функции тоже возможно, но более сложно.

15.2. Свойства характеристических функций

Важнейшим свойством характеристической функции, сделавшим её одним из главных инструментов современной теории вероятностей, оказалось то, что *при суммировании независимых случайных величин их характеристические функции перемножаются:* если X и Y независимы, то для случайной величины $Z=X+Y: w_Z(t)=w_X(t)\cdot w_Y(t)$.

Действительно,

$$w_Z(t) = M(e^{itZ}) = M(e^{it(X+Y)}) = M(e^{itX} \cdot e^{itY}) = M(e^{itX}) \cdot M(e^{itY}) = w_X(t) \cdot w_Y(t).$$

Законы распределения при суммировании независимых слагаемых ведут себя гораздо сложнее (см. Л12, закон распределения суммы случайных величин).

Если Y=aX+b, то

$$w_Y(t)=M(e^{it(aX+b)})=e^{itb}\cdot M(e^{itaX})=e^{itb}\cdot w_X(at).$$

Другим важным свойством характеристических функций является их простая связь с *моментами*.

Предполагая возможность дифференцирования под знаком математического ожидания в равенстве $w(t)=Me^{itX}$, получим:

$$w^{(k)}(t)=i^kM(X^k\cdot e^{itX}).$$

При *t*=0:

$$w^{(k)}(0) = i^k M(X^k) = i^k \alpha_k[X] \Rightarrow \alpha_k[X] = \frac{1}{i^k} w^{(k)}(0).$$

Таким образом, характеристическая функция позволяет заменить интегрирование при вычислении моментов дифференцированием.

В частности,

$$M[X] = \alpha_1[X] = \frac{1}{i}w'(0); \quad D[X] = M[X^2] - (M[X])^2 = -w'(0) + (w'(0))^2.$$

Характеристическую функцию определяют также и для n-мерной случайной величины (X_1, X_2, \dots, X_n) :

$$w(t_1, t_2, \dots, t_n) = M(\exp i(t_1X_1 + t_2X_2 + \dots + t_nX_n)).$$

15.3. Примеры применения характеристических функций

15.3.1. . **Биноминальное распределение.** Пусть дискретная случайная величина имеет биноминальное распределение X:B(n,p).

$$w(t) = \sum_{k=0}^{n} e^{ikt} C_n^k p^k q^{n-k} = (pe^{it} + q)^n.$$

Дифференцирование даёт:

$$M[X] = \frac{1}{i}w'(0) = np;$$
 $D[X] = -w''(0) + (w'(0))^2 = npq.$

15.3.2. Пуассоновское распределение. Пусть дискретная случайная величина имеет пуассоновское распределение X: $\Pi(\lambda)$.

$$w(t) = \sum_{k=1}^{\infty} e^{ikt} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{1}{k!} (\lambda e^{it})^k = \exp\{\lambda (e^{it} - 1)\}.$$

Отсюда сразу найдём: $M[X]=\lambda$, $D[X]=\lambda$.

15.3.3. Экспоненциальный закон распределения. Пусть непрерывная случайная величина имеет экспоненциальное распределение X:Exp(µ).

$$w(t) = \mu \int_{0}^{\infty} e^{itx-\mu x} dx = \frac{\mu}{\mu - it}.$$

Из этого равенства следует:

$$M[X] = \frac{1}{\mu}; \quad D[X] = \frac{1}{\mu^2}.$$

15.3.4. **Нормальный закон распределения.** Пусть непрерывная случайная величина имеет нормальное распределение X:N(0,1).

$$w(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx - \frac{x^2}{2}} dx.$$

Примем во внимание, что $e^{itx} = \cos(tx) + i\sin(tx)$:

$$w(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} \cos(tx) dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \sin(tx) dx.$$

Второй из этих интегралов равен нулю, так как его подынтегральная функция нечётна. Ввиду чётности подынтегральной функции первого интеграла:

$$w(t) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\frac{x^2}{2}} \cos(tx) dx$$

Обозначим:

$$J(t) = \int_{0}^{\infty} e^{-\frac{x^2}{2}} \cos(tx) dx.$$

Очевидно,

$$J'(t) = -\int_{0}^{\infty} xe^{-\frac{x^{2}}{2}} \sin(tx)dx = \int_{0}^{\infty} \sin(tx)d\left(e^{-\frac{x^{2}}{2}}\right);$$

интегрируем по частям:

$$J'(t) = \sin(tx) \cdot e^{-\frac{x^2}{2} \Big|_{x=0}^{x=+\infty} - t \int_{0}^{\infty} e^{-\frac{x^2}{2}} \cos(tx) dx = -tJ(t).$$

Таким образом,

$$J'(t) = -tJ(t)$$
, и $J(0) = \sqrt{\frac{\pi}{2}}$

Решение этого дифференциального уравнения дает:

$$J(t) = \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} \cos(tx) dx = \sqrt{\frac{\pi}{2}} e^{-\frac{t^{2}}{2}}.$$

Окончательно:

$$w(t) = e^{-\frac{t^2}{2}}$$
.

Тогда для нормально распределенной случайной величины $X:N(a, \sigma)$:

$$w(t) = \exp\left\{iat - \frac{\sigma^2 t^2}{2}\right\}.$$

и сразу же находим: M[X]=a, $D[X]=\sigma^2$.

По поводу характеристической функции нормального закона можно заметить интересное его свойство:

сумма независимых нормально распределённых случайных величин распределена по нормальному закону.

Действительно. Пусть X и Y независимые случайные величины, причём,

$$X:N(a_1, \sigma_1), Y:N(a_2, \sigma_2), a Z=X+Y.$$

Характеристические функции X и Y:

$$w_X(t) = e^{ia_1t - \frac{\sigma_1^2t^2}{2}}, \quad w_Y(t) = e^{ia_2t - \frac{\sigma_2^2t^2}{2}}.$$

Для характеристической функции Z имеем:

$$w_Z(t) = w_X(t) \cdot w_Y(t) = \exp[i(a_1 + a_2)t - \frac{\sigma_1^2 + \sigma_2^2}{2}t^2],$$

но это означает, что $Z: N(a_1 + a_2; \sqrt{\sigma_1^2 + \sigma_2^2})$.

Аналогичным свойством обладают и *независимые пуассоновские* случайные величины: сумма независимых случайных величин, распределённых по закону Пуассона, распределена по закону Пуассона.

В самом деле, если $X:\Pi(\lambda_1), X:\Pi(\lambda_2)$, то

$$w_X(t) = \exp[\lambda_1(e^{it}-1)], w_Y(t) = \exp[\lambda_2(e^{it}-1)],$$

поэтому характеристическая функция случайной величины Z=X+Y:

$$w_Z(t)=w_X(t)\cdot w_Y(t)=\exp[(\lambda_1+\lambda_2)(e^{it}-1)],$$

но это значит, что $Z:\Pi(\lambda_1+\lambda_2)$.

Законы, сохраняющиеся при сложении независимых случайных величин, называются безгранично делимыми. Нормальный и пуассоновский - примеры таких законов.