Blood Cell Detection with YOLO

10801128 陳俊鴻

Implementation Details

PL	Python 3.8
API	Tensorflow 2.4.0
Packages	os, numpy, matplotlib, parser-libraries3.6, bs4 4.10.1, tf2_YOLO
GPU	M1
Github	None

Dataset

Name	BCCD Dataset
Content	Photos of red blood cell, white blood cell, and platelets
Source	https://public.roboflow.com/object-detection/bccd
Size	640x480 pixels, channel number=3
Classes	RBC, WBC, platelet
Distribution	Train: 50, valid: 50

Experimental Design

You only look once(YOLO) is a model for object detection. Different from traditional object detection, YOLO conducting recognition of class and box(classification and regression) simultaneously to improve efficiency but trade accuracy off, while compared to R-CNN.

YOLOv2 is improved from YOLO and trained by VOC, COCO, and ImageNet datasets; hence, number of predicted classes increased over 9000, the efficiency and accuracy also surged. Furthermore, YOLOv2 added pre-set anchor box avoiding unnecessary computation and increase recall significantly. Much more modification are shown in the following figures.

YOLOv3 is improved from YOLOv2 but only changed architecture to DarkNet-53 and added a full connection layer.

YOLO

YOLOv2

	Type	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 x 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 x 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Modified Parameters

To have an insight into the cross-effect of input size and loss function to U-Net, I implemented the following four trials altering input size and loss function. Otherwise, with the interest in the performance of DeepLabv3, it also be tried to compare with U-Net.

	YOLOv1	YOLOv2	YOLOv3
Epoch	100	100	100
Batch size	5	5	5
n_cluster	N/A	5	9
stop_dist	N/A	1E-05	1E-05
Optimizer	Adam	Adam	Adam
Learning rate	1E-04	1E-04	1E-04
binary_weight	0.27757511	0.6834027	[0.06834027], [0.01627721], [0.00402176]
ignore_thresh	N/A	N/A	0.7
loss_weight-xy	5	1	5
loss_weight-wh	5	1	5

loss_weight-conf	1	5	1	
loss_weight-prob 1		1	1	
conf_threshold	0.3	0.3	0.5	
nms_mode	N/A	N/A	2	
nms_threshold	0.5	0.5	0.5	
Anchor	N/A	[[0.19903696, 0.25725892], [0.18114652, 0.23104765], [0.16697793, 0.21561809], [0.1551797, 0.19698958], [0.13641098, 0.17319174]]	[[0.21696429, 0.2863095], [0.20478724, 0.2611259], [0.1937181, 0.25125426], [0.1853782, 0.23777226], [0.17648502, 0.22706038], [0.16771634, 0.2157492], [0.15889142, 0.20403494], [0.14906909, 0.18735233], [0.13243665, 0.16764748]]	
		0.35 - 0.20 - 0.15 - 0.100 0.125 0.150 0.175 0.200 0.275 0.250	0.35	

Results

Architecture	n_cluster	thread_num(train, valid)	Precision	Recall	F1-score
YOLOv1			0.0716845	0.830275	0.131975
YOLOv2	5	50, 50	0.709855	0.847737	0.772693
		50, 10	0.721783	0.826337	0.770530
	9	50, 50	0.644133	0.831276	0.725835
		50, 10	0.613897	0.705350	0.656453
YOLOv3	9	50, 50	0.447563	0.941756	0.606765
		50, 10	0.77038	0.930271	0.842809
	6	50, 50	0.761462	0.940115	0.841410
		50, 10	0.757655	0.954061	0.844590

Reference

- 1. https://github.com/samson6460/tf2_YOLO.git
- 2. YOLOv1: You Only Look Once: Unified, Real-Time Object Detection. https://arxiv.org/abs/1506.02640
- 3. YOLOv2(YOLO9000): Better, Faster, Stronger. https://arxiv.org/abs/1612.08242
- 4. YOLOv3: An Incremental Improvement. https://arxiv.org/abs/1804.02767