Computação Gráfica Unidade 2

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

Unidade 02

- Conceitos básicos de computação gráfica
 - Estruturas de dados para geometria
 - Sistemas de coordenadas no JOGL
 - Primitivas básicas (vértices, linhas, polígonos)

- Objetivos Específicos
 - Aplicar os conceitos básicos de sistemas de referências e modelagem geométrica em computação gráfica 2D
- Procedimentos Metodológicos
 - Aula expositiva dialogadaMaterial programado
 - Atividades em grupo (laboratório)
- Instrumentos e Critérios de Avaliação
 - Trabalhos práticos (avaliação 2)

Software de interface para o hardware gráfico

OpenGL - Open Graphics Library

- Interface: aplicações de "renderização" gráfica
 - imagens coloridas de alta qualidade
 - primitivas geométricas (2D e 3D) e
 - por imagens
 - independência de sistemas de janelas
 - independência de sistemas operacionais
 - compatível com quase todas as arquiteturas
 - interface gráfica dominante

OpenGL - Open Graphics Library

- renderização
 - primitivas geométricas (2D e 3D) e
 - por imagens

OpenGL – "Renderizador"

- Primitivas geométricas
 - pontos, linhas e polígonos
- Primitivas de imagens
 - imagens e bitmaps
 - canais independentes: geometria e imagem
 - ligação via mapeamento de textura
- "Renderização" dependente do estado
 - cores, materiais, fontes de luz, etc.

OpenGL - Sistema de Janelas

- Trata apenas de "renderização"
 - independente do sistema de janelas
 - X, Win32, Mac O/S
 - não possui funções de entrada
- Necessita interagir com o sistema operacional e o sistema de janelas
 - interface dependente do sistema é mínima
 - realizada através de bibliotecas adicionais : GLX, AGL, WGL

OpenGL - GLU, OpenGL Utility Library

- Funções para auxiliar a tarefa de produzir imagens complexas
 - manipulação de imagens
 - polígonos não-convexos
 - curvas
 - superfícies
 - esferas
 - etc.

OpenGL - GLUT, OpenGL Utility Toolkit

- API de janelas para o OpenGL
 - independente do sistema de janelas
 - indicado para programas:
 - pequeno e médio porte
 - processamento orientado à chamada de eventos (callbacks)
 - dispositivos de entrada

API: Interface para Programação de Aplicações

OpenGL - Prefixos

- OpenGL
 - gl, GL, GL_
 - para comandos, tipos e constantes, respectivamente
- GLU
 - glu, GLU, GLU_
- GLUT
 - glut, GLUT, GLUT_

OpenGL -, Passos Básicos

- Configurar e abrir janela (canvas)
- Inicializar o estado do OpenGL
- Registrar funções de entrada de callback
 - desenho ("renderização")
 - redimensionamento do canvas
 - entrada : mouse, teclado, etc.

Programação Convencional

Programação por Eventos

Aplicação

Gerenciador de Callbacks

OpenGL - Primitivas Geométricas

OpenGL - Formato, Especificação do Vértice

- Splines (ou curva polinomial)
 - origem:

- desenvolvida: De Casteljau em 1957 (P. De Casteljau, Citröen)
- formalizado: Bézier 1960 (Pierre Bézier)
- aplicações CAD/CAM
- pontos de controle
- bastante utilizada em modelagem tridimensional

178379
005.1, Z91em, MO (Anote para localizar o material)
Zoz, Jeverson
Estudo de metodos e algoritmos de Splines Bezier, Casteljau e B-Spline /Jeverson Zoz 1999. xii, 64p. :il.
Orientador: Dalton Solano dos Reis.

195268 Onc. Solano dos Reis. Onc. Solano dos Reis. Onc. Solano dos Reis. Diva, Fernanda Andrade Bordallo da Prototipo de um ambiente para geração de superficies 3D com uso de Spline Bezier /Fernanda Andrade Bordallo da Silva. - 2000. ix, 51p. :il.

Tudo pode ser modelado por fórmulas, o problema é o custo envolvido Batman Equation $\left(\frac{x}{7}\right)^{3} \sqrt{\frac{||x|-3|}{|x|-3|}} + \left(\frac{y}{3}\right)^{2} \frac{\left|y + \frac{3\sqrt{33}}{7}\right|}{y + \frac{3\sqrt{33}}{9}} - 1 \cdot \left(\left|\frac{x}{2}\right| - \left(\frac{3\sqrt{33} - 7}{112}\right)x^{2} - 3 + \sqrt{1 - \left(\left||x| - 2\right| - 1\right)^{2}} - y\right)$ $\left(9\sqrt{\frac{|(|x|-1)(|x|-.75)|}{(1-|x|)(|x|-.75)}}-8|x|-y\right)\cdot\left(3|x|+.75\sqrt{\frac{|(|x|-.75)(|x|-.5)|}{(.75-|x|)(|x|-.5)}}-y\right)$ $\left(2.25 \frac{|(x-5)(x+5)|}{(.5-x)(.5+x)} - y\right) \cdot \left(\frac{6\sqrt{10}}{7} + (1.5-5|x|) \frac{||x|-1|}{|x|-1} - \frac{6\sqrt{10}}{14} \sqrt{4 - (|x|-1)^2} - y\right) = 0$ 2.8 4.2 5.6 -2.8

http://blog.wolframalpha.com/data/uploads/2013/07/Batman_lamina - Wolfram Alpha.png

Unidade 02 - Conceitos Básicos

Prof. Dalton Reis

Cita

```
function SPLINE_Inter(A,B,t,desenha)
     R = vec2(0,0)
     R.x = A.x + (B.x - A.x) * t/qtdPontos
     R.y = A.y + (B.y - A.y) * t/qtdPontos
     if desenha == 1 then
         stroke(0, 0, 255)
         rect(R.x-2,R.y-2,4,4)
     end
     return R
end
 function SPLINE_Desenha()
     if CurrentTouch.state == MOVING then
         ListaPtos[Ponto].x = CurrentTouch.x
         ListaPtos[Ponto].v = CurrentTouch.v
     end
     Pant = ListaPtos[1]
     for t = 0, qtdPontos do
         P1P2 = SPLINE_Inter(ListaPtos[1],ListaPtos[2],t,1)
         P2P3 = SPLINE_Inter(ListaPtos[2],ListaPtos[3],t,1)
         P3P4 = SPLINE_Inter(ListaPtos[3],ListaPtos[4],t,1)
         P1P2P3 = SPLINE_Inter(P1P2, P2P3, t, 1)
         P2P3P4 = SPLINE_Inter(P2P3, P3P4, t, 1)
         stroke(0,255,255)
         P1P2P3P4 = SPLINE_Inter(P1P2P3, P2P3P4, t, 0)
         line(Pant.x, Pant.y, P1P2P3P4.x, P1P2P3P4.y)
         Pant = P1P2P3P4
     end
```

end

Splines (Bezier)

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \ t \in [0,1].$$

$$B_x(0,5) = 0.125 * 30 + 0.375 * 30 + 0.375 * 130 + 0.125 * 130 = 80$$

 $B_y(0,5) = 0.125 * 20 + 0.375 * 100 + 0.375 * 130 + 0.125 * 20 = 100$

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
Р3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
Р3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Ver exemplo: http://www.ibiblio.org/e-notes/Splines/http://www.ibiblio.org/e-notes/Splines/animation.html

WireFrame bordas ocultas

WireFrame uv isolinhas

Face WireFrame

Face Shaded

Shaded

Linhas de reflexão

Imagem refletida

Box

Box

Box

Tabela senos/cosenos e Teorema de Pitágoras

SEN	COS	grau
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	30°
$\frac{\sqrt{2}}{2}$	$\sqrt{2}/2$	45°
$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	60°
SEN	COS	grau
1	0	90°
0	1	0°

radiano:=grau * PI / 180;

```
public double RetornaX(double a){
          return (5 * Math.cos(Math.PI * a / 180.0));
}

public double RetornaY(double a){
          return (5 * Math.sin(Math.PI * a / 180.0));
}
```


CA

Computational Geometry Algorithms Library - CGAL http://www.cgal.org/

	Theoretical Computer Science Cheat Sheet						
	Definitions	Series					
f(n) = O(g(n))	iff 3 positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge c_0(n) \ge 0 \ \forall n \ge n_0$.	In general:					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$					
$\lim_{n\to\infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:					
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{m} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{m} c^{i} = \frac{c}{1-c}, c < 1,$					
inf S	greatest $b \in \mathbb{R}$ such that $b \le x$, $\forall x \in S$.	$\sum_{c=0}^{n} ic^{c} = \frac{nc^{\alpha+2} - (n+1)c^{\alpha+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{c=0}^{m} ic^{c} = \frac{c}{(1-c)^{2}}, c < 1.$					
lim inf a.	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $n(n+1) \dots n(n-1)$					
lim sup a,	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	$H_n = \sum_{i=1}^{n} \frac{1}{i}, \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
(1)	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_{i} = (n+1)H_{n} - n, \sum_{i=1}^{n} {i \choose m} H_{i} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
[h]	Stirling numbers (1st kind): Arrangements of an n ele- ment set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^k$, 3. $\binom{n}{k} = \binom{n}{n-k}$,					
{2}	Stirling numbers (2nd kind): Partitions of an n element	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, $\binom{n}{k} \binom{n}{k} \binom{n-k}{k-1} = \binom{n-1}{k-1} \binom{n-k}{k-1}$					
(-)	set into & non-empty sets.	$g \cdot \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, 7 \cdot \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$					
(2)	1st order Eulerian numbers: Permutations $\pi_1\pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}, \qquad 9. \sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$ $10. {n \choose k} = (-1)^k {k-n-1 \choose k}, \qquad 11. {n \choose 1} = {n \choose n} = 1,$					
(%)	2nd order Eulerian numbers.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ $11. \binom{n}{1} = \binom{n}{n} = 1,$					
C_n	Catalan Numbers: Binary tress with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,					
14. $ \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1) $	i)l, is. $\begin{bmatrix} n \\ 2 \end{bmatrix} = \{n - 1\}$	$-1)lH_{n-1}$, 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,					
		$\begin{Bmatrix} n \\ -1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$					
22. $\binom{n}{0} = \binom{n}{n}$	$\binom{n}{-1} = 1$, 23 , $\binom{n}{k} = ($	$\binom{n}{n-1-k}$, $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,					
$25. \binom{0}{k} - \binom{1}{0}$	otherwise 26.	$\binom{n}{1} = 2^n - n - 1,$ $27.$ $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+2}{2},$					
28. $x^n = \sum_{k=0}^{n} {n \choose k}$	$\binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=1}^{n}$	$\sum_{j=0}^{n} {n+1 \choose k} (m+1-k)^n (-1)^k, 30. m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} {n \choose k} {k \choose n-m},$					
31. $\binom{n}{m} = \sum_{k=0}^{n}$	$\binom{n}{k}\binom{n-k}{m}(-1)^{n-k-m}H$	92. $\binom{n}{0} = 1$, 93. $\binom{n}{n} = 0$ for $n \neq 0$,					
34. $\binom{n}{k} = (k \cdot k)$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n}{k}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $95. \sum_{k=0}^{n} \left\langle $					
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \binom{n}{k} \binom{x+n-1-k}{2n},$	S7. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}$,					

Theoretical Computer Science Cheat Sheet	
Identities Cont.	Trees
$\begin{array}{ll} 38. {n+1 \brack m+1} = \sum\limits_{k} {n \brack k} {k \brack m} = \sum\limits_{k=0}^{n} {k \brack m} n^{n-k} = n! \sum\limits_{k=0}^{n} {1 \brack k}, & 39. {x \brack x-n} = \sum\limits_{k=0}^{n} {n \brack k} {x+k \brack 2n}, \\ 40. {n \brack m} = \sum\limits_{k} {n \brack k+1} {k+1 \brack m} = \sum\limits_{k=0}^{n} {n+1 \brack k+1} {k \brack m} = \sum\limits_{k} {n+1 \brack k+1} {k \brack m} = \sum\limits_{k=0}^{n} {n+1 \brack k+1} = \sum\limits_{k=0}^{n} {n+1 \brack k+1}$	Every tree with n vertices has n - 1 edges. Kraft inequal-
$42. \ {m+n+1 \brace m} = \sum_{k=0}^m k {n+k \brace k}, \qquad \qquad 43. \ {m+n+1 \brack m} = \sum_{k=0}^m k(n+k) {n+k \brack k},$	ky: If the depths of the leaves of a binary tree are
$ \begin{vmatrix} 44. \binom{n}{m} = \sum\limits_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, & 45. (n-m)! \binom{n}{m} = \sum\limits_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, & \text{for } n \ge m, \\ 46. \binom{n}{n-m} = \sum\limits_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, & 47. \binom{n}{n-m} = \sum\limits_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, $	d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and equality holds only if every in- ternal node has 2
Recurrences	ioni.

Master method: $T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$ If $\exists \epsilon > 0$ such that $f(\mathbf{n}) = O(\mathbf{n}^{\log_2 \mathbf{n} - \epsilon})$

$$T(n) = \Theta(n^{\log_2 n}).$$

If
$$f(n) = \Theta(n^{\log_2 n})$$
 then
 $T(n) = \Theta(n^{\log_2 n} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_k n + \epsilon})$. and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{c+1} = 2^{2^k} \cdot T_c^2$$
, $T_1 = 2$.

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i$, $t_1 = 1$.

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2ⁿ⁺¹ we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find $a_{i+1} = \frac{1}{2} + a_i, \quad a_1 = \frac{1}{2},$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{G^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 2T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 2T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side 'telescupe?

1(T(n) - 3T(n/2) = n)3(T(n/2) - 2T(n/4) = n/2): : : $3^{\log_2 n - 1} (T(2) - 2\Gamma(1) = 2)$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^mT(1) = T(n) - 3^m =$ $T(n) = n^k$ where $k = \log_1 2 \approx 1.88496$. Summing the right side we get

$$\sum_{i=1}^{m-1} \frac{n}{2^i} J^i = n \sum_{i=0}^{m-1} {2 \choose 2}^i$$

Let $c = \frac{9}{8}$. Then we have

$$n \sum_{n=0}^{m-1} c^{n} = n \left(\frac{c^{m} - 1}{c - 1} \right)$$

 $= 2n(c^{\log_2 n} - 1)$
 $= 2n(c^{(k-1)\log_2 n} - 1)$
 $= 2n^k - 2n,$

and so $T(n) = 2n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j$$
, $T_0 = 1$

Note that

$$T_{i+1} = 1 + \sum_{j=1}^{i} T_{j}$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j = 1$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^4 .
- 2. Sum both sides over all i for which the equation is wald.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{m} x^{i}g_{i}$. 3. Rewrite the equation in terms of
- the generating function G(x). Solve for G(x).
- The coefficient of x in G(x) is g_i. Example

$$g_{k+1} = 2g_k + 1$$
, $g_0 = 0$.

Multiply and sum:

$$\sum_{i \ge 0} g_{i+1} x^i = \sum_{i \ge 0} 2g_i x^i + \sum_{i \ge 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x}\right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i\right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^{\epsilon} - 1$$
.

			Theoretical Computer Science Cheat	Sheet
	$\pi \approx 3.14159$,	e ≈ 2.7	1828, $\gamma \approx 0.87721$, $\phi = \frac{1+\sqrt{3}}{2} \approx$	1.61803, $\dot{\phi} = \frac{1-\sqrt{3}}{2} \approx61803$
i	2*	Pr	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{4}$, $B_4 = -\frac{1}{20}$,	$Pr[a < X < b] = \int_{a}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}$, $B_8 = -\frac{1}{20}$, $B_{10} = \frac{1}{44}$.	
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X. If
8	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Pr[X < a] = P(a),
- 6	64	13		then P is the distribution function of X . If
7	125	17	Euler's number e:	P and p both exist then
8	216	19	$c = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-\pi}^{\pi} p(x) dx.$
9	512	23	$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x.$	/
10	1,024	29	$(1 + \frac{1}{4})^n < \epsilon < (1 + \frac{1}{4})^{n+4}$.	Expectation: If X is discrete
11	2,048	31		$E[g(X)] = \sum g(x) Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = \epsilon - \frac{\epsilon}{2n} + \frac{11\epsilon}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	
14	16,384	43	1, 2, 11, 28, 127, 49, 963, 761, 7129	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
18	32,768	47	-7 27 4 7 127 4H 7 207 14H7 2807 21207 · · ·	Variance, standard deviation:
16	65,536	13	$\ln n < H_n < \ln n + 1$,	$VAR[X] = E[X^2] - E[X]^2$,
17	131,072	19	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.	$\sigma = \sqrt{VAR[X]}$.
18	262,144	61	\n/	For events A and B :
19	524,288	67	Factorial, Stirling's approximation:	$Pr[A \vee B] = Pr[A] + Pr[B] - Pr[A \wedge B]$
20	1,048,576	71	1, 2, 4, 24, 120, 720, 1840, 48928, 94988,	$Pr[A \wedge B] = Pr[A] \cdot Pr[B],$
21	2,097,182	73	(n)*/a/1))	iff A and B are independent.
22	4,194,394	79	$nl = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$Pr[A B] = \frac{Pr[A \wedge B]}{Pr[B]}$
23	8,288,608	83	Adarmann's function and inverse	Pr[B] For random variables X and Y:
24	16,777,216	89	$ \begin{pmatrix} 2^{j} & i = 1 \\ i = 1 \end{pmatrix} $	$E[X \cdot Y] = E[X] \cdot E[Y],$
28	33,564,432	97	$a(i, j) = \begin{cases} a(i-1, 2) & j=1\\ a(i-1, a(i, j-1)) & i, j \geq 2 \end{cases}$	# X and Y are independent.
26	67,108,864	101	$\alpha(i) = \min\{j \mid \alpha(j, j) \ge i\}.$	$\mathbf{E}[X + Y] = \mathbf{E}[X] + \mathbf{E}[Y],$
27	134,217,728	103	Binomial distribution:	$\mathbf{E}[cX] = c \mathbf{E}[X].$
28 29	268,435,456	107		Bayes' theorems
30	538,870,912	109	$Pr[X = k] = {n \choose k} p^k q^{n-k}, q = 1 - p,$	$p_{e(A \cup D)} = Pr[B A_i]Pr[A_i]$
31	1,073,741,824 2,147,483,648	127	n (n)	$Pr[A_i B] = \frac{Pr[B A_i]Pr[A_i]}{\sum_{i=1}^{n} Pr[A_j]Pr[B A_j]}.$
32	4,294,967,296	131	$E[X] = \sum_{i=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	Inclusion-exclusion:
32	Pascal's Triangl		Poisson distribution:	$Pr\left[\bigvee_{i}X_{i}\right] = \sum_{i}Pr[X_{i}] +$
	1		$Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}, E[X] = \lambda.$	14 H
	11		2.	
	121		Normal (Gaussian) distribution:	$\sum_{k=1}^{n} (-1)^{k+1} \sum_{\alpha < \cdots < \alpha} \Pr \left[\bigwedge_{j=1}^{n} X_{\alpha_j} \right].$
1331			$p(x) = \frac{1}{\sqrt{2\pi x}}e^{-(x-\mu)^2/2x^2}, E[X] = \mu.$	Moment inequalities:
14641			The "coupon collector": We are given a	$Pr[X \ge \lambda E[X]] \le \frac{1}{3}$
1 5 10 10 5 1			random coupon each day, and there are n	- A
1 6 15 20 15 6 1			different types of coupons. The distribu-	$\Pr \left[X - \mathbf{E}[X] \ge \lambda \cdot \sigma \right] \le \frac{1}{\lambda^2}$.
1 7 21 35 35 21 7 1			tion of coupons is uniform. The expected number of days to pass before we to col-	Geometric distribution:
1 8 28 56 70 56 28 8 1			lect all n types is	$Pr[X = k] = pq^{k-1}$, $q = 1 - p$,
1 9 36 84 126 126 84 36 9 1			nH _n .	$E[X] = \sum_{i=1}^{m} kpq^{k-1} = \frac{1}{p}$
1 10 46 120 210 2x2 210 120 46 10 1				

Theo	retical Compo	uter Science Cheat Sheet
Number Theory		Graph Th
The Chinese remainder theorem: There ex-	Definitions:	
ists a number C such that:	Leop	An edge connecting a ver- tex to itself.
$C \equiv r_1 \mod m_4$	Directed	Each edge has a direction.
111	Simple	Graph with no loops or multi-edges.
$C \equiv r_n \mod m_n$	Walk	A sequence society ereg.
fm_i and m_j are relatively prime for $i \neq j$.	Trail	A walk with distinct edges.
Suler's function: $\phi(x)$ is the number of ositive integers less than x relatively	Path	A trail with distinct writers.
ositive integers less than x relatively	Connected	A graph where there exists
eims to x . If $\prod_{i=1}^{n} p_i^{ni}$ is the prime fac- orization of x then	COMMESSA	a path between any two vertices.
$\phi(x) = \prod_{i=1}^{n} p_i^{r_i-1}(p_i - 1).$	Component	A maximal connected
4-1		subgraph.
Suler's theorem: If a and b are relatively	Thee	A connected acyclic graph.
cime then $1 = a^{\phi(k)} \mod b.$	Free tree	A tree with no root.
I = u-++ mod o.	DAG Eulerian	Directed scyclic graph.
ermet's theorem:	Eukhan	Graph with a trail visiting each edge exactly once.
$1 \equiv a^{p-1} \mod p$.	Hamiltonian	Graph with a cycle visiting
The Euclidean algorithm: if $a > b$ are in-		each vertex exactly once.
egers then	Cut	A set of edges whose re-
$gcd(a,b) = gcd(a \mod b, b).$		noval increases the num-
$\prod_{i=1}^{n} p_i^{n_i}$ is the prime factorization of x		ber of components.
NETA	Cut-set	A minimal cut.
$S(x) = \sum_{i=1}^{n} d = \prod_{i=1}^{n} \frac{p_i^{n_i+1} - 1}{p_i - 1}.$	Cut edge	A size 1 cut. A graph connected with
4	a-connent	the removal of any $k-1$ vertices.
Perfect Numbers: x is an even perfect num- er iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have
Vilson's theorem: n is a prime iff		$k \cdot c(G - S) \le S $.
$(n-1)! \equiv -1 \mod n$.	k-Regular	A graph where all vertices
döhins inversion:		have degree k.
distinct inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-five.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$	k-Factor	A k-regular spanning subgraph.
$\mu(i) = \begin{cases} 0 & \text{if i is not square-tree.} \\ (-1)^{\tau} & \text{if i is the product of.} \end{cases}$	Matching	A set of edges, no two of
r distinct primes.	1 -	which are adjacent.
If	Clique	A set of vertices, all of
		which are adjacent.
$G(a) = \sum_{\mathbf{d} \mathbf{a}} F(\mathbf{d}),$	Ind. set	A set of vertices, none of
ben	Wt	which are adjacent.
$F(a) = \sum_{d \in a} \mu(d)G(\frac{a}{d}).$	Versez couer	A set of vertices which cover all edges.
4 (a) - 2 (a) - (a).	Planar crapk	A graph which can be em-
rine numbers:	3.4	beded in the plane.
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a planar
		graph
$+O\left(\frac{n}{\ln n}\right)$	Σ	$\deg(v) = 2m$.
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2\ln}{(\ln n)^3}$		r then $n - m + f = 2$, so
lnn (lnn)2 (lnn)1	n o n pona	San 1 - 11 + 1 - 2, 10

 $+ O\bigg(\frac{n}{(\ln n)^4}\bigg).$

Definitions: Leep An edge connecting a vertex to itself. Directed Each edge has a direction. Simple Graph with no loops or multi-edges. Walk A sequence upoplyequ. First A walk with distinct edges. Park A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. First A connected acyclic graph. First A connected sevelle graph. First Graph with a trail visiting each edge exceptly once. Bavillonian Graph with a vertex exactly once. Cut A set of edges where remaral increases the number of components. Cut edge A minimal cut. Cut edge A minimal cut. Cut edge A minimal cut. Cut edge A size 1 cut. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $. k-Regular A graph where all vertices which cover all edges. Matching A set of edges, no two of which are adjacent. Chipse A set of vertices which cover all edges. Plant graph A membedding of a plant graph. $\sum_{n \in V} \deg(v) = 2m$. $\sum_{n \in V} \deg(v) = 2m$. $\sum_{n \in V} \deg(v) = 2m$. Any plantar graph has a vertex with degree $\leq b$. If G is planter than $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any plantar graph has a vertex with degree $\leq b$. If G is planter than $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any plantar graph has a vertex with degree $\leq b$.	Graph Theory						
tex to itself. Directed Each edge has a direction. Simple Graph with no loops or nulli-edges. Walk A sequence upcpyequ. Had A walk with distinct edge. A trail with distinct edge. Path A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. The A connected acyclic graph. First training each edge exactly once. A graph with a trail visiting each edge exactly once. Hamiltonian Graph with a trail visiting each write exactly once. A size 1 cut. A set of edges where removal increases the number of components. Cut-set A minimal cut. Cut-edge A size 1 cut. &-Connected A graph connected with the removal of any $k-1$ vertices. A set of edges, no two dwich are adjacent. Chique A set of vertices have degree k . Factor A set of vertices which are adjacent. Vertex cover A set of vertices which are adjacent. Vertex cover A set of vertices which are adjacent. Vertex cover A set of vertices which cover all edges. Planes graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded in the plane. Plane graph A graph which can be embedding of a planar graph. $\sum_{i=1}^{i} \deg_i = (i, 0, -c)$ $\sum_{i=1}^{i} (i, 0, -c)$ $\sum_{i=1}^{$	Definitions:		Notation:				
tex to itself. Directed Each edge has a direction. Graph with no loops or rauliti-edges. Walk A sequence upsign or ergo. First A trail with distinct edges. Path A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. Free Each A tree with no root. Each Complete graph Ealerian Graph with a trail witting each edge exactly once. Hamiltonian Graph with a vertex exactly once. Cut A set of edge where removal increases the number of components. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A graph where the number of components. A tree with no root. A set of edge where removal increases the number of components. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A size 1 cut. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \subseteq S $. k-Regular A graph where there so its a which are adjacent. Cut-set A set of vertices, all of which are adja	Loop	An edge connecting a ver-	E(G) Edge set				
Directed Each edge has a direction. Simple Graph with no loops or multi-edges. A sequence $v_0 \in v_1 \dots v_{12}$. However, and the distinct vertices. A trail with distinct vertices. Connected a graph where there exists a path between any two vertices. Component A maximal connected subgraph. First tree A tree with no root. DAG Directed acyclic graph. First tree A tree with no root. DAG Directed acyclic graph. First tree A tree with no root. DAG Graph with a trail withing each edge exactly once. Cut A set of edges whose removal increases the rumber of components. Cut-edge A wise 1 cut. &-Connected A graph connected with the removal of any $k-1$ vertices. A seried cut. &-Connected A graph connected with the removal of any $k-1$ vertices. A seried cut. &-Connected A graph connected with the removal of any $k-1$ vertices. A seried vertices, have degree k . &-Factor A k-regular spanning subgraph. Motching A set of vertices which are adjacent. Gique A set of vertices which are adjacent. Vertex cover A set of vertices which cover all edges. Planer graph A graph which can be embedding of a planar graph. $\sum_{e \in V} \deg(v) = 2m$. $\sum_{e \in V} deg(v) = 2m$. $\sum_{e \in V}$			V(G) Vertex set				
Simple Graph with no loops or multi-edges. Walk A sequence uper (v_1, \dots, v_M) . Thus A walk with distinct edges. A trail with clistinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. The A connected acyclic graph. Free tree A true with no root. DAG Directed acyclic graph. Ealerian Graph with a trail visiting each edge exactly once. Hamiltonian Graph with a trail visiting each edge exactly once. Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut-	Directed		c(G) Number of components				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	G[S] Induced subgraph				
Walk A sequence uper $v_1 \dots v_{12}$. Having A walk with distinct edges. A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. Free tree A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Ealerian Graph with a voil visiting each edge exactly once. Hamiltonian Graph with a voil visiting each edge exactly once. Cat A set of edges whose removal increases the number of components. Cut edge A size 1 cut. k-Connected A graph connected with the removal increases the number of components. k-Tough $VS \subseteq V, S \neq \emptyset$ we have $k \in (G-S) \leq S $. k-Tough $VS \subseteq V, S \neq \emptyset$ we have $k \in (G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Flacter A k-cryplar spanning subgraph. Motching A set of vertices, all of which are adjacent. Codes at A set of vertices, all of which are adjacent. Lower graph A connected acyclic graph. Free tree A tree with no root. Codes at A set of vertices which cover all edges. Planer graph A a embedding of a planar graph $\sum_{e \in V} \deg(v) = 2m$. $\sum_{e \in V} deg(v) = 2m$. $\sum_{e \in V} deg(v) = 2m$. $\sum_{e \in V} deg(v) = 2m$. A planar graph has a vertex with design of giants.	- Lupa						
 Final A walk with distinct edges. Path A trial with distinct various. Connected A graph where there exists a path between any two various. Component A maximal connected subgraph. Free Ex A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Ealerian Graph with a trial witting each edge exactly croes. Homiltonien Graph with a cycle visiting each writex exactly croes. Cut-set A minimal cut. Cut-set A minimal cut. Cut-dige A size 1 cut. k-Connected A graph curracted with the removal of any k − 1 vartices. k-Regular A graph where all vartices have degree k. k-Factor A k-cogular spanning subgraph. Motching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, none of which are adjacent. Chique A set of vertices which cover all edges. Planar graph A graph which can be embeded in the planar graph. ∑ deg(v) = 2m. ∑ deg(v) = 2m. ∑ deg(v) = 2m. J deg (v) = 2m. J deg	Walk		$\Delta(G)$ Maximum degree				
Path A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Enterian Graph with a trail writing each exples exactly cnoe. Hamiltonian Graph with a trail writing each writex exactly cnoe. Cut A set of edges whose removal increases the number of components. Cut as a size 1 cut. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \subseteq S $. k-Regular A graph where all vertices have degree k . k-Flacter A k-cagular spanning subgraph. Matching A set of edges. Planer graph A graph which can be embedded in the plane. Planer graph An embedding of a planar graph $\sum_{e \in V} \deg(v) = 2m.$ $\sum_{e \in V} deg(v) = 2m.$ $\sum_{e \in V} deg$	Trad		$\delta(G)$ Minimum degree				
Component A graph where there exists a path between any two various. Component A maximal connected subgraph. The A connected acyclic graph. Free tree A tree with no root. Directed acyclic graph. Ealerian Graph with a trail visiting each edge exactly cnow. Hemiltonian Graph with a visiting each writex exactly cnow. Cut A set of edges whose removed increases the rumber of components. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A graph whose all vertices have degree k . k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \in (G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Factor A k-togular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover A set of vertices which cover all edges. Planer graph A graph which can be embedd in the plane. Planer graph A membedding of a planar graph $\sum_{x \in V} deg(v) = 2m$. $\sum_{x \in V} deg(v) = 2m$. $\sum_{x \in V} deg(v) = 2m$. $\int deg(v) = 2m$	Path		$\chi(G)$ Chromatic number				
Component A maximal connected subgraph. The A connected acyclic graph. From the A tree with no root. DAG Directed acyclic graph. Enterian Graph with a trail witting each edge exactly once. Hamiltonian Graph with a trail witting each edge exactly once. Cut A set of edges whose removal increases the number of components. Cut as $x = 1$ cut. $x = 1$		vertices.	AC- 5 2 W				
Gomponent A maximal connected subgraph. The A connected acyclic graph. First tree A tree with no root. DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly cnoe. Gut A set of edges whose removal increases the number of components. Cut edge A size 1 cnt. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Flactor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, none of which are adjacent. Vertex cover A set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Plane graph A graph which can be embedded and the plane graph A graph which can be embedded and the plane graph A graph which can be embedded and the plane graph A graph which can be embedded and the pl	Connected	A graph where there exists					
The A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly once. Hamiltonian Graph with a cycle visiting each wriese exactly once. A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A graph connected with the removal of any $k-1$ vertices. $k \cdot Connected$ A graph connected with the removal of any $k-1$ vertices. $k \cdot Connected$ A graph where all vertices have degree k . $k \cdot Connected$ A graph where all vertices have degree k . $k \cdot Connected$ A set of vertices properly and $(x_1, y_1) = (x_2, y_1) = (x_1, y_2) = (x_2, y_2) = (x_2, y_1) = (x_2, y_2) = (x_2,$							
The abgraph X is a subgraph X . The subgraph X is a subgraph X is a subgraph X . The subgraph X is a subgraph X is a subgraph X . The subgraph X is a subgraph X is a subgraph X . The subgraph X is a subgraph X is a subgraph X is a subgraph X is a subgraph X . The subgraph X is a subgraph			K_{n_0,n_0} Complete bipartite graph				
From the A connected acyclic graph. From the A tree with no root. DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly cnee. Hamiltonian Graph with a cycle visiting each vertex exactly cnee. Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut-set A graph connected with the removal of any $k-1$ vertices. $k \cdot Cornected A$ graph connected with the removal of any $k-1$ vertices. $k \cdot C(G-S) \leq S $. k -Regular A graph where all vertices have degree k . k -Fluctor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Plane graph A membedding of a planar graph. $\sum_{x \in V} \deg(v) = 2m$. $\sum_{x \in V} \deg(v) = 2m$. If G is planar then $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any planar graph has a vertex with desired in the shoulders of giants.	Component	A maximal connected	$r(k, \ell)$ Ramsey number				
Free tree A connected acyclic graph. Free tree A tree with no root. Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly once. Hamiltonian Graph with a cycle visiting each edge exactly once. Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut-set A size 1 cut. A connected A graph connected with the removal of any $k-1$ vertices. A graph connected with the removal of any $k-1$ vertices. A graph where all vertices A color A graph where all vertices have degree A . A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. A set of vertices which cover all edges. A set of vertices which A set of vertices A set of vertice	-	subgraph.	Geometry				
Free tree DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly cross. Homiltonian Graph with a cycle visiting each writes exactly cross. Cut A set of edger where removal increases the number of components. Cut edge A size 1 cmt. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Regular A graph where all vertices have degree k . k-Factor A k-regular spanning subgraph. Matching A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Plane graph A membedding of a planar graph $\sum_{x \in V} \deg(v) = 2m.$ If G is planar than $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description of the plane and form of the shoulders of giants.	Thee	A connected acyclic graph.					
Enterian Graph with a trail visiting each edge exactly once. Hemiltonian Graph with a cycle visiting each writex exactly once. Cut A set of edges whose removal increases the number of components. Cut edge A size 1 cm. k-Connected A minimal cut. Cut edge A size 1 cm. k-Connected A graph currented with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have k-c G-S $\leq S $. k-Regular A graph where all vertices have degree k. k-Floater A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover Al set of vertices which cover all edges. Planer graph A graph which can be embedding of a planar graph. $\sum_{v \in V} \deg(v) = 2m.$ $\sum_{v \in V} \deg(v) = 2m.$ $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any planar graph has a vertex with description.	Free tree		(repetive coordinates: triples				
asch edge exactly once. Homiltonian Graph with a cycle visiting each vertex exactly once. Cut A set of edges whose removal increases the number of components. Cut edge A size 1 cm. k-Connected A minimal cut. Cut edge A size 1 cm. k-Connected A graph currented with the removal of any $k-1$ vertices. k-Regular A graph where all vertices have degree k . k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover Al set of vertices, all of which are adjacent. Vertex cover A set of vertices, all of which are adjacent. Vertex cover A set of vertices which cover all edges. Planer graph A graph which can be embedding of a planar graph. $\sum_{x \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with desired in the shoulders of giants.	DAG	Directed acyclic graph.					
Hamiltonian Graph with a cycle visiting each vertex exactly once. Cut A set of edges whose remover of components. Cut set A minimal cut. Cut edge A size 1 cut. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Planer graph A graph which can be embedded in the planer. Plane graph A graph which can be embedded in the planer. Fig. 1 graph which can be embedded in the planer. Fig. 2 m. x + b (m, -1, b) $x = c$ (1, 0, -c) Distance formula, L_p and L_m metric: $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}, [x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p}, [x_1 - x_0 ^p +$	Eulerian	Graph with a trul visiting					
Solution A set of edges whose removal increases the ramber of components. Cut-set A minimal cut. Cu			Carbaian Projective				
Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut-set A minimal cut. Cut-set A graph currected with the removal of any $k-1$ vertices. k -Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k < c(G-S) \leq S $. k -Regular A graph where all vertices have degree k . k -Factor A k -regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Planer graph A graph which can be embedded in the planer graph. $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any planar graph has a vertex with description of the shoulders of giants. $ g = mx + b (1, 0, -c)$ Distances formula, L_p and L_m metric: $\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}, [x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p}, [x$	Hamiltonian		(x, y) $(x, y, 1)$				
The second increases the number of components. A minimal cut. Cut-set X a minimal cut. Cut edge X axis 1 cut. X in Fourhood of any X in the removal X in the removal of any X in the removal X							
ber of components. Cut-set A minimal cut. A size 1 cmt. k-Connected A graph currected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Flocter A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover Al set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Planer graph A an embedding of a planar graph $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description.	Cut		6-1-2 -2				
Cut-set A minimal cut. Cut edge A size 1 cut. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Chique A set of vertices, all of which are adjacent. Vertex cover Al set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Plane graph A membedding of a planar graph. $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description. A read of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) : $\begin{bmatrix} x_1 - x_0 ^2 + y_1 - y_0 ^2 ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_2 - x_0 ^p + y_1 - y_0 ^p ^{1/p}, \\ x_1 - x_0 ^p + y_1 - y_$							
Cut edge A size 1 cut. k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover A set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Plane graph A membedding of a planar graph. $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description.							
k-Connected A graph connected with the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Flocter A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover A set of vertices which cover all edges. Ploner graph A graph which can be embedded in the plane. Plone graph A membedding of a planar graph. $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description of the plane of the p			$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$,				
the removal of any $k-1$ vertices. k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G-S) \leq S $. k-Regular A graph where all vertices have degree k . k-Flactor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Planer graph A graph which can be embedded in the planer. Planer graph			$[x_1 - x_2 ^p + y_1 - y_2 ^p]^{1/p}$				
k-Tough $\forall S\subseteq V, S\neq\emptyset$ we have $k\cdot c(G-S)\leq S .$ k-Regular A graph where all vertices have degree $k.$ k-Flactor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Plane graph An embedding of a planar graph. $\sum_{v\in V} \deg(v) = 2m.$ $f \leq 2n-4, m \leq 2n-6.$ Any planar graph has a vertex with definition of the plane and the plane are subgraph. If I have seen further than others, it is because I have stood on the shoulders of giants.	A-Connected						
$k \cdot c G-S \leq S .$ $k \cdot Regular \text{A graph where all vertices} \\ \text{have degree } k.$ $k \cdot Flactor \text{A } k \cdot \text{crigular} \text{spanning} \\ \text{subgraph} \\ \text{Matching} \text{A set of edges, no two of} \\ \text{which are adjacent.} \\ \text{Clique} \text{A set of vertices, all of} \\ \text{which are adjacent.} \\ \text{Vertex cover A set of vertices which} \\ \text{cover all edges.} \\ \text{Ploner graph A graph which can be embedded in the plane.} \\ \text{Plone graph} \text{A nembedding of a planar} \\ \text{graph.} \\ \text{T} \text{f} \text{graph} \text{An embedding of a planar} \\ \text{graph.} \\ \text{If G is planar then $n-m+f=2$, so} \\ \text{f} \text{f} \text{2}n-4, m \leq 2n-6.} \\ \text{Any planar graph has a vertex with desired} \\ \text{If I have seen farther than others,} \\ \text{it is because I have stood on the shoulders of giants.} \\ \text{If I have seen figures.} \\ \text{If I have seen for the plane shoulders of giants.} \\ \text{If I have seen for the stood on the shoulders of giants.} \\ \text{If I have seen for the plane shoulders of giants.} \\ \text{If I have seen of giants} \\ \text{If I have seen for the plane shoulders of giants} \\ \text{If I have seen for the plane shoulders of giants} \\ \text{If I have seen for the plane shoulders of giants} \\ \text{If I have seen for the plane shoulders of giants} \\ \text{If I have seen for the plane shoulders of giants} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ \text{If I have seen for the plane shoulders} \\ If I have $		vertices.	F				
k-Regular A graph where all vertices have degree k. k-Factor A k-regular spanning subgraph Motching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embedded in the planar. Planar graph A graph which can be embedded in the planar graph $\sum_{x \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description of the planar graph has a vertex with described as $\frac{1}{2}$ and	k-Tough						
k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Planer graph A an embedding of a planar graph. $\sum_{x \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with described by three points (x_2, y_2) . Angle formed by three points (x_2, y_2) . (x_2, y_2) (x_2, y_2) (x_3, y_4) (x_4, y_4) (x_4, y_4) (x_6, y_6) $(x_6, y_$	b-Reguler						
k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Planer graph A an embedding of a planar graph. $\sum_{x \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with described by three points (x_2, y_2) . Angle formed by three points (x_2, y_2) . (x_2, y_2) (x_2, y_2) (x_3, y_4) (x_4, y_4) (x_4, y_4) (x_6, y_6) $(x_6, y_$	a linguis		g abs 21 - 25 31 - 30				
subgraph Matching A set of edges, no two of which are adjacent. Chique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover Al set of vertices which cover all edges. Planer graph A graph which can be embedded in the plane. Planer graph A membedding of a planar graph $\sum_{x \in Y} \deg(v) = 2m.$ If G is planar then $n - m + f = 2$, so $f \leq 2n - 4$, $m \leq 2n - 6$. Any planar graph has a vertex with described in the shoulders of giants.	k-Floctor	_					
which are adjacent. Chique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover All edges. Planer graph A graph which can be embedded in the plane. Planer graph An embedding of a planar graph $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description.			single formed by three police				
which are adjacent. Chique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Verter cover A set of vertices which cover all edges. Planar graph A graph which can be embedded in the planar graph $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with description of the shoulders of giants.	Matching	A set of edges, no two of	(m. m)				
which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embedded in the planar graph	_		(-2,82)				
which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embedded in the planar graph	Clique	A set of vertices, all of	/12				
which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embedded in the planar graph	-	which are adjacent.	A 0				
Vertex cover A set of vertices which cover all edges. Planar graph which can be embedded in the planar. Planar graph An embedding of a planar graph $ \frac{x}{\sum_{v \in V} \deg(v) = 2m}. $ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with described by the set of graphs. Line through two points $\{x_0, y_0\}$ and $\{x_1, y_1\}$: $\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_0 & 1 \end{vmatrix} = 0.$ Area of circle, volume of sphere: $A = \pi r^2$, $V = \frac{4}{3}\pi r^2$. If I have seen farther than others, it is because I have stood on the shoulders of giants.	Ind. set	A set of vertices, none of					
Vertex cover A set of vertices which cover all edges. Planar graph which can be embedded in the planar. Planar graph An embedding of a planar graph $ \frac{x}{\sum_{v \in V} \deg(v) = 2m}. $ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with described by the set of graphs. Line through two points $\{x_0, y_0\}$ and $\{x_1, y_1\}$: $\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_0 & 1 \end{vmatrix} = 0.$ Area of circle, volume of sphere: $A = \pi r^2$, $V = \frac{4}{3}\pi r^2$. If I have seen farther than others, it is because I have stood on the shoulders of giants.		which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\epsilon}$				
Ploner graph A graph which can be embedded in the plane. Plone graph An embedding of a planar graph $\sum_{v \in V} \deg(v) = 2m.$ If G is planar then $n-m+f=2$, so $f \leq 2n-4$, $m \leq 2n-6$. Any planar graph has a vertex with described as $f = (n-1)$. If I have seen further than others, it is because I have stood on the shoulders of giants.	Vertex cover	A set of vertices which	$\ell_1 \ell_2$				
bedded in the plane. Plane graph An embedding of a planar graph. $ \frac{1}{\sum_{v \in V} \deg(v) = 2m}. $ $ \frac{\sum_{v \in V} \deg(v) = 2m}{f \leq 2n - 4, m \leq 2n - 6}. $ Any planar graph has a vertex with design of graphs and the planar graph has a vertex with design of graphs. $ \frac{x + y + 1}{x_0 + y_0 + 1} = 0. $ Area of circle, volume of sphere: $ A = \pi r^2, V = \frac{4}{3}\pi r^3. $ If I have seen further than others, it is because I have stood on the shoulders of graphs.		cover all edges.					
Plane graph An embedding of a planar graph $ \frac{x_0 - y_0 - 1}{\sum_{v \in V} \deg(v) = 2m}. $ Area of circle, volume of sphere: $ A = \pi r^2, V = \frac{4}{3}\pi r^2. $ If G is planar than $n-m+f=2$, so $ f \leq 2n-4, m \leq 2n-6. $ Any planar graph has a vertex with deshoulders of giants.	Planar graps		and (x_1, y_1) :				
graph $ \frac{x_1 - y_1 - 1}{\sum_{v \in V} \deg(v) = 2m}. $ If G is planar then $n - m + f = 2$, so $f \le 2n - 4$, $m \le 2n - 6$. Any planar graph has a vertex with described by the shoulders of giants.		-					
$\sum_{v \in V} \deg(v) = 2m.$ Area of circle, volume of sphere: $A = \pi r^2, V = \frac{4}{3}\pi r^2.$ If G is planar then $n - m + f = 2$, so $f \le 2n - 4, m \le 2n - 6.$ Any planar graph has a vertex with deshoulders of giants.	Plane graph						
$\sum_{x \in V} aeg(v) = 2m.$ If G is planar then $n - m + f = 2$, so $f \le 2n - 4, m \le 2n - 6.$ Any planar graph has a vertex with descended in the shoulders of giants.		graph	1 - 2-				
If G is planar than $n-m+f=2$, so $f\leq 2n-4$, $m\leq 2n-6$. If I have seen further than others, it is because I have stood on the shoulders of giants.	7	$\nabla \operatorname{der}(v) = 2m$.	Area of circle, volume of sphere:				
If G is planar then $n-m+f=2$, so $f \le 2n-4$, $m \le 2n-6$. Any planar graph has a vertex with described in the shoulders of giants.		er -	$A = \pi r^2$, $V = \frac{4}{3}\pi r^3$.				
$f \le 2n-4$, $m \le 2n-6$. Any planar graph has a vertex with deschool described in the shoulders of giants.	If G is plane	r then $n-m+f=2$, so					
Any planar graph has a vertex with de-							
Russ ≥ or -1000c teamson		graph has a vertex with de-					
	Stee 7 or		- 4-Marc 14694 COLL				

Graph Theory

The	and and a second				
Theoretical Computer Science Cheat Sheet					
-	Calcul	lus			
Wallis' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 2 \cdot $	Derivatives:				
1.2.2.0.0.1	1. $\frac{d(cu)}{dx} = c\frac{du}{dx}$, 2. $\frac{d(u+v)}{dx} = \frac{dv}{dx}$	$\frac{d}{dr} + \frac{dv}{dx}$, $3v \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$,			
Brounder's continued fraction expansion:	4. $\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$, 5. $\frac{d(u/v)}{dx} = \frac{v}{v}$	$\left(\frac{du}{ds}\right) = u\left(\frac{ds}{ds}\right)$ $a = d(e^{uu}) = -uu du$			
$\frac{\pi}{2} = 1 + \frac{1^2}{2 + \frac{2^2}{2 + \frac{2^2}}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}{2 + \frac{2^2}}{2 + \frac{2^2}{2 + \frac{2^2}}{2 + \frac{2^2}{2 + \frac$					
	7. $\frac{d(c^{\alpha})}{dx} = (\ln c)c^{\alpha}\frac{du}{dx},$	$8. \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$			
Gregory's series: $\frac{\pi}{2} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{7} + \frac{1}{9} - \cdots$	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$,	$10. \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$			
Newton's series:	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	12. $\frac{d(\cot u)}{dx} = \cot^2 u \frac{du}{dx},$			
$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^3} + \cdots$					
Sharp's series:	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$,	14. $\frac{d(\cos u)}{dx} = -\cot u \csc u \frac{du}{dx},$			
$\overline{g} = \frac{1}{\sqrt{3}} \Big(1 - \frac{1}{2^2 \cdot 2} + \frac{1}{2^2 \cdot 5} - \frac{1}{3^2 \cdot 7} + \cdots \Big)$	16. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$,			
Euler's series:	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 + u^2} \frac{du}{dx},$			
$\frac{a_0^2}{a_1^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \cdots$	19. $\frac{d(\arccos u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx},$	20. $\frac{d(\operatorname{arcose} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$			
$\frac{1}{2a} = \frac{1}{7} + \frac{3}{7} + \frac{3}{7} + \frac{3}{7} + \frac{3}{7} + \frac{3}{7} + \cdots$					
$\frac{s^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$,	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$,			
Partial Fractions	23. $\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$	$24. \frac{d(\coth u)}{dr} = - \cosh^2 u \frac{du}{dr},$			
Let $N(x)$ and $D(x)$ be polynomial func- tions of x . We can break down					
N(x)/D(x) using partial fraction expan- sion. First, if the degree of N is greater	28. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$	26. $\frac{d(\operatorname{esch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$,			
than or equal to the degree of D , divide N by D , obtaining	$27. \frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$	28. $\frac{d(\operatorname{arrcosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx},$			
$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	$29. \frac{d(\arctan u)}{dr} = \frac{1}{1-u^2} \frac{du}{dr},$	$90. \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$			
where the degree of N' is less than that of D. Second, factor $D(x)$. Use the follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$	32. $\frac{d(\operatorname{arcech} u)}{dx} = \frac{-1}{ u \sqrt{1+u^2}} \frac{du}{dx}$.			
ing rules: For a non-repeated factor:	$dx = u\sqrt{1-u^2} dx'$ Integrals:	$dx = u \sqrt{1 + u^2} dx$			
$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$	1. $\int cudx = c \int udx$,	2. $\int (u + v) dx = \int u dx + \int v dx,$			
where $A = \begin{bmatrix} N(x) \\ D(x) \end{bmatrix}_{x=x}$	3. $\int x^n dx = \frac{1}{n+1}x^{n+1}, n \neq -1,$	4. $\int \frac{1}{x} dx = \ln x$, 8. $\int e^{x} dx = e^{x}$,			
For a repeated factor: $N(x) \xrightarrow{m-1} A_k N^i(x)$	6. $\int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$			
$\frac{N(x)}{(x-a)^mD(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$	8. $\int \sin x dx = -\cos x$,	9. $\int \cos x dx = \sin x,$			
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=x}$.	10. $\int \tan x dx = -\ln \cos x ,$	11. $\int \cot z dz = \ln \cos z ,$			
The reasonable man adapts himself to the	12. $\int \sec x dx = \ln \sec x + \tan x $,	13. $\int \csc x dx = \ln \csc x + \cot x ,$			
world; the unreasonable persists in trying to adapt the world to himself. Therefore	14. $\int \arcsin \frac{\pi}{a} dx = \arcsin \frac{\pi}{a} + \sqrt{a^2 - x^2},$	·			
all progress depends on the unreasonable. – George Bernard Shaw	,	,1			

Theoretical Computer Science Chest Sheet	
Calmilus Cont.	
15. $\int \arccos \frac{\pi}{a} dx = \arccos \frac{\pi}{a} - \sqrt{a^2 - x^2}, a > 0,$ 16. $\int \arctan \frac{\pi}{a} dx = x \arctan \frac{\pi}{a} - \frac{\pi}{2} \ln(a^2 + x^2), a > 0$	0,
17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)).$	1),
19. $\int \sec^2 x dx = \tan x$, 20. $\int \csc^2 x dx = -\cot$	x,
$21. \int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-1} x dx, \qquad 22. \int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx$	ir,
$23. \int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$ $24. \int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx, n \neq 1,$	1,
25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-1} x dx, n \neq 1,$	
$28. \int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \cot^{n-2} x dx, n \neq 1, 27. \int \sinh x dx = \cosh x, 28. \int \cosh x dx = \sinh x $	
29. $\int \tanh x dx = \ln \cosh x $, 30. $\int \coth x dx = \ln \sinh x $, 31. $\int \operatorname{sech} x dx = \arctan \sinh x$, 32. $\int \operatorname{cech} x dx = \ln \tanh x $	
93. $\int \sinh^2 x dx = \frac{1}{2} \sinh(2\pi) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{2} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{soch}^2 x dx = \tanh(2\pi) - \frac{1}{2}x$	
98. $\int \operatorname{arcsinh} \frac{a}{a} dx = x \operatorname{arcsinh} \frac{a}{a} - \sqrt{x^2 + a^2}, a > 0,$ 97. $\int \operatorname{arctanh} \frac{a}{a} dx = x \operatorname{arctanh} \frac{a}{a} + \frac{a}{2} \ln a^2 - x^2 $	۹,
38. $\int \operatorname{arccosh} \frac{\pi}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{\pi}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} < 0 \text{ and } a > 0, \end{cases}$	
39. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left(x + \sqrt{a^2 + x^2}\right), a > 0,$	
40. $\int \frac{dx}{a^2 + x^2} = \frac{s}{a} \arctan \frac{s}{a}, a > 0,$ 41. $\int \sqrt{a^2 - x^2} dx = \frac{s}{2} \sqrt{a^2 - x^2} + \frac{s^2}{2} \arcsin \frac{s}{a}, a > 0.$	0,
42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{6} (\delta a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3\pi^4}{8} \arcsin \frac{\pi}{4}, a > 0,$	
$43. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, a > 0, \qquad 44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right , \qquad 48. \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$	
46. $\int \sqrt{a^2 \pm x^2} dx = \frac{\pi}{2} \sqrt{a^2 \pm x^2} \pm \frac{\pi^2}{2} \ln \left x + \sqrt{a^2 \pm x^2} \right , \qquad 47. \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left x + \sqrt{x^2 - a^2} \right , a > 0.$	-
$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$ $49. \int x\sqrt{a + bx} dx = \frac{2(3bx - 2a)(a + bx)^{3/2}}{16b^2}$	
80. $\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$ 81. $\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0$	
$82. \int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$ $83. \int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/3}$	
$84. \int x^2 \sqrt{a^2 - x^2} dx = \frac{\pi}{6} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{\pi^4}{6} \arcsin \frac{\pi}{4}, a > 0,$ $88. \int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right $	
88. $\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}$, 87. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi^2}{2} \arcsin \frac{\pi}{a}$, $a > a > a > a > a > a > a > a > a > a $	
$88. \int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right , \qquad 89. \int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > a$	
$60. \int x\sqrt{x^2 \pm a^2} dx = \frac{1}{2}(x^2 \pm a^2)^{3/2}, \qquad 61. \int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right $	ŀ

Theoretical Computer Science Chest Sheet						
Calculus Cont.	Finite Calculus					
	Difference, shift operators:					
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$	$\Delta f(x) = f(x + 1) - f(x),$					
64. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}$, 68. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^3}$,	Ef(x) = f(x + 1).					
$\frac{3a}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$ $\frac{3a^2x^3}{x^4}$	Fundamental Theorems					
$66. \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$					
$66. \int \frac{dx}{dx^2 + bx + c} = \begin{cases} \sqrt{b^2 - 4ac} & 2ax + b + \sqrt{b^2 - 4ac} \\ 2 & 2ax + b \end{cases}$	$\sum_{i=1}^{k} f(x)\delta x = \sum_{i=1}^{k-1} f(i).$					
$\frac{1}{\sqrt{4ac-b^2}} \arctan \frac{2ac-b^2}{\sqrt{4ac-b^2}}, \text{if } b^2 < 4ac,$						
	Differences: $\Delta(cu) = c\Delta u$, $\Delta(u + v) = \Delta u + \Delta v$,					
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$	$\Delta(w) = u\Delta v + Ev\Delta u$,					
$\frac{67. \int \sqrt{ax^2 + bx + c}}{\sqrt{ax^2 + bx + c}} \frac{1}{a} \operatorname{arcsin} \frac{-2ax - b}{a}, \text{if } a < 0,$	$\Delta(x^n) = nx^{n-1}$,					
$\sqrt{-a}$ $\sqrt{b^2-4ac}$	$\Delta(H_{\bullet}) = x^{-1}$, $\Delta(2^{\bullet}) = 2^{\bullet}$,					
68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$	$\Delta(c^*) = (c-1)c^*,$ $\Delta(c^*) = (c-1)c^*,$ $\Delta(c^*) = (c-1)c^*$					
4a 8a ∫ √ar²+br+c'	Sums:					
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$	$\sum cu \delta x = c \sum u \delta x$,					
$3x \int \sqrt{ax^2 + bx + c}$ $a = 2a \int \sqrt{ax^2 + bx + c}$	$\sum (u+v) \delta x = \sum u \delta x + \sum v \delta x,$					
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\sum \mathbf{u} \Delta \mathbf{v} \delta \mathbf{x} = \mathbf{u} \mathbf{v} - \sum \mathbf{E} \mathbf{v} \Delta \mathbf{u} \delta \mathbf{x},$					
70. $\int \frac{dx}{x\sqrt{-x^2+bx+a}} = \begin{cases} \sqrt{c} & x \\ 1 & bx+2a \end{cases}$	$\sum x^{\underline{n}} \delta x = \frac{x^{\underline{n+1}}}{x^{\underline{n+1}}}, \qquad \sum x^{-1} \delta x = H_x,$					
$\frac{1}{\sqrt{-c}} \arcsin \frac{6c + 2c}{ x \sqrt{b^2 - 4ac}}, \text{if } c < 0,$	$\sum c^{\bullet} \delta x = \frac{c^{\bullet}}{c-1}, \qquad \sum {n \choose n} \delta x = {n \choose n+1}.$					
N / -1/-3	Falling Factorial Powers:					
71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{2}x^2 - \frac{2}{16}a^2)(x^2 + a^2)^{3/2}$,	$x^n = x(x-1) \cdots (x-n+1), n > 0,$					
72. $\int x^n \sin(\alpha x) dx = -\frac{1}{a}x^n \cos(\alpha x) + \frac{a}{a} \int x^{n-1} \cos(\alpha x) dx,$	$x^{0} = 1$,					
50 / 2-1-14-14-14-14-14-14-14-14-14-14-14-14-1	$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+ n)}, n < 0,$					
73. $\int x^n \cos(\alpha x) dx = \frac{1}{\alpha} x^n \sin(\alpha x) - \frac{n}{\alpha} \int x^{n-1} \sin(\alpha x) dx,$	$x^{\underline{m+m}} = x^{\underline{m}}(x-m)^{\underline{m}}.$					
74. $\int x^n e^{xx} dx = \frac{x^n e^{xx}}{a} - \frac{n}{a} \int x^{n-1} e^{xx} dx$,	Rising Factorial Powers: $x^{n} = x(x + 1) \cdots (x + n - 1), n > 0,$					
	$x^{\sigma} = 1$.					
76. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$ 76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$						
$76. \int x^n (\ln ax)^m dx = \frac{x^{n+1}}{(\ln ax)^m} - \frac{m}{n} \int x^n (\ln ax)^{m-1} dx.$	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$					
n+1 /	$z^{\overline{m+m}} = z^{\overline{m}}(z+m)^{\overline{n}}.$					
	Conversions					
x ²	$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$					
$\begin{vmatrix} z^2 = & z^2 + z^4 & = & z^2 - z^7 \\ z^3 = & z^3 + 3z^2 + z^4 & = & z^3 - 3z^2 + z^7 \end{vmatrix}$	$= 1/(x+1)^{-n}$, $= (-1)^n (-1)^n = (-1)^n = 1)^n$					
$x^4 = x^4 + 6x^3 + 7x^2 + x^4 = x^7 - 6x^5 + 7x^7 - x^7$	$x^{n} = (-1)^{n}(-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$ = $1/(x - 1)^{-\underline{n}}$,					
$x^{3} = -x^{3} + 18x^{3} + 28x^{3} + 10x^{3} + x^{4} = -x^{3} - 18x^{2} + 28x^{3} - 10x^{2} + x^{2}$	20					
T 1 1	$x^n = \sum_{k=1}^{n} {n \choose k} x^k = \sum_{k=1}^{n} {n \choose k} (-1)^{n-k} x^k$					
$z^{2} = z^{2} + z^{1}$ $z^{2} = z^{2} - z^{1}$	$x^{\underline{n}} = \sum_{i}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^{k},$					
$x^3 = x^3 + 3x^2 + 2x^4$ $x^3 = x^3 - 3x^2 + 2x^4$	- [k](-1/ 2 ,					
$x^{2} = x^{4} + 6x^{3} + 11x^{2} + 6x^{4}$ $x^{4} = x^{4} - 6x^{3} + 11x^{2} - 6x^{4}$	$x^{K} = \sum_{i=1}^{n} {n \brack k} x^{k}$.					
$x^3 = x^3 + 10x^4 + 28x^2 + 80x^2 + 24x^4$ $x^3 = x^3 - 10x^4 + 38x^3 - 80x^2 + 24x^4$	- <u>←</u> [k]-					

Theoretical Computer Science Cheat Sheet						
	Series					
Taylor's series:		Ordinary pow				
f(x) = f(a) + (x - a)f'(a)	$(a) + \frac{(x-a)^2}{2}f^{(i)}(a) + \cdots = \sum_{a=0}^{\infty} \frac{(x-a)^a}{i!}f^{(i)}(a).$	A(x)				
Expansions:	_	Exponential p				
$\frac{1}{1-x}$	$=1+x+x^2+x^2+x^4+\cdots = \sum_{i=1}^{n} x^i,$	A(x)				
$\frac{1}{1-cx}$	$= 1 + cx + c^2x^2 + c^3x^3 + \cdots$ $= \sum_{i=1}^{m} c^ix^i,$	Dirichlet powe				
$\frac{1}{1-x^n}$	$=1+x^n+x^{2n}+x^{2n}+\cdots$ $=\sum_{i=1}^{m}x^{ni},$	A(x)				
$\frac{x}{(1-x)^2}$	$= x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=1}^{n-1} ix^i,$	Binomial theo				
		$(x + y)^n =$				
$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x} \right)$	$= x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \dots = \sum_{i=1}^{m} i^n x^i,$	Difference of l				
٠.	$=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots$ $=\sum_{i=1}^{\infty}\frac{x^i}{i!},$	$x^n - y^n = (x$				
ln(1+x)	$= x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{2}x^4 - \cdots = \sum_{i=1}^{m} (-1)^{i+1} \frac{x^i}{i},$	For ordinary p				
		$aA(x) + \beta B(x)$				
$\ln \frac{1}{1-x}$	$= x + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \cdots = \sum_{i=1}^{m} \frac{x^i}{i},$	x t- A(:				
win z	$= x - \frac{1}{2i}x^3 + \frac{1}{5i}x^5 - \frac{1}{7i}x^7 + \cdots = \sum_{i=1}^{m} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$					
conz	$=1-\frac{1}{2i}x^2+\frac{1}{2i}x^4-\frac{1}{6i}x^4+\cdots =\sum_{i=1}^{m}(-1)^i\frac{x^{2i}}{(2i)!},$	$\frac{A(x) - \sum_{i=1}^{n} x^{i}}{x^{i}}$				
$\tan^{-1}x$	$= x - \frac{1}{2}x^{2} + \frac{1}{4}x^{3} - \frac{1}{7}x^{7} + \cdots = \sum_{i=1}^{m} (-1)^{i} \frac{x^{2i+1}}{(2i+1)},$	A(c				
$(1+x)^n$	$=1+nx+\frac{n(n-1)}{2}x^2+\cdots = \sum_{i=1}^{m} \binom{n}{i}x^i,$	A' (:				
$\frac{1}{(1-x)^{n+1}}$	$=1+(n+1)x+\binom{n+2}{2}x^2+\cdots =\sum_{i=1}^m \binom{i+n}{i}x^i,$	xA'(x				
$\frac{x}{e^x-1}$	$=1-\frac{1}{2}x+\frac{1}{22}x^2-\frac{1}{120}x^4+\cdots =\sum_{i=0}^{m}\frac{B_ix^i}{i!},$	$\int A(x) dx$				
$\frac{1}{2\pi}(1-\sqrt{1-4\pi})$	$=1+x+2x^2+8x^3+\cdots$ $=\sum_{i=1}^{m}\frac{1}{i+1}\binom{2i}{i}x^i,$	$\frac{A(x) + A(-x)}{2}$				
$\frac{1}{\sqrt{1-4\pi}}$	$= 1 + x + 2x^2 + 6x^3 + \cdots$ $= \sum_{i=1}^{n} {2i \choose i} x^i,$	$\frac{A(x) - A(-x)}{2}$				
$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^n$	$=1+(2+n)x+{4+n\choose 2}x^2+\cdots =\sum_{i=1}^{n-1}{2i+n\choose i}x^i,$	Summation: 1				
$\frac{1}{1-x}\ln\frac{1}{1-x}$	$=x+\frac{3}{2}x^2+\frac{14}{6}x^3+\frac{29}{12}x^4+\cdots =\sum_{i=1}^{n-1}H_ix^i,$	B(x)				
$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2$	$=\frac{1}{2}x^{2}+\frac{3}{4}x^{3}+\frac{11}{24}x^{4}+\cdots$ $=\sum_{i=1}^{i-1}\frac{H_{i-1}x^{i}}{i},$	Convolution: $A(\pi)B(\pi) = \sqrt{2}$				
, , ,	1112	$A(x)B(x) = \sum_{x}$				
$\frac{x}{1-x-x^2}$	$= x + x^2 + 2x^2 + 3x^4 + \cdots$ $= \sum_{i=1}^{n} F_i x^i,$	God made the				

 $\frac{F_n x}{1 - (F_{n-1} + F_{n+1})x - (-1)^n x^2} = F_n x + F_{2n} x^2 + F_{3n} x^3 + \cdots = \sum_{i=1}^{m} F_{ni} x^i.$

Ordinary power series: Exponential power series: Dirichlet power series: Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

God made the natural numbers;

all the rest is the work of man.

- Leopold Kronecker

Theoretical Computer Science Cheat Sheet						
	Series			Eacher's Knot		
Expansions: $\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x}$	$= \sum_{i=1}^{m} (H_{n+i} - H_n) \binom{n+i}{i} x^i,$	$\left(\frac{1}{x}\right)^{\frac{1}{n}} = \sum_{i=0}^{n} {i \choose i} x^i$	4,			
± ⁴ / t *	$= \sum_{i=1}^{m} {n \brack i} x^i,$ $= \sum_{i=1}^{m} {i \brack i} x^i x^i$	$(\epsilon^n - 1)^n = \sum_{i=0}^{n} \left\{ \frac{i}{n} \right\} \frac{n}{2}$ $= (-4)^n \cdot 1$				
,/	$= \sum_{i=1}^{m} {i \brack n} \frac{n!x^i}{i!},$ $\sum_{n=1}^{m} \dots \sum_{n=1}^{m} 2^{2n}(2^{2n} - 1)B_{kn}x^{2n-1}$	$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i I}{(2i)^i}$	i)! ,			
tan x	$= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!},$ $\sum_{i=1}^{\infty} \mu(i)$	$\zeta(x) = \sum_{i=1}^{n} \frac{1}{i^x},$ $\zeta(x-1) = \sum_{i=1}^{n} \phi(i)$				
4(-)	$= \sum_{i=1}^{\infty} \frac{\mu(i)}{i^*},$ $= \prod_{i=1}^{\infty} \frac{1}{1-\nu^{-i}},$	$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$	F1: 11: T			
	,		Stieltjes I: se interval	regretion [a, b] and F is nondecreasing then		
$\zeta^2(x)$	$= \sum_{i=1}^{n} \frac{d(i)}{x^{i}} \text{ where } d(n) = \sum_{i \mid n} 1,$			x) dF(x)		
$\zeta(x)\zeta(x-1)$	$= \sum_{i=1}^{n} \frac{S(i)}{x^{i}} \text{ where } S(n) = \sum_{d n} d,$	exists. If $a \le b \le c$ then $\int_{-\infty}^{\infty} G(x) dF(x)$		$z) dF(x) + \int_{1}^{z} G(x) dF(x).$		
$\zeta(2n)$	$= \frac{2^{2n-1} B_{2n} }{(2n)!}\pi^{2n}, n \in \mathbb{N},$	If the integrals involved	exist			
sin z	$= \sum_{i=0}^{m} (-1)^{i-1} \frac{(4^{i} - 2)B_{2i}\pi^{2i}}{(2i)!},$	· •.		$G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$		
$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n$	$= \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^{i},$			$G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$		
e* sin x	$=\sum_{i=1}^{\infty}\frac{2^{i/2}\sin\frac{i\pi}{4}}{i!}x^{i},$	· .		$d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$ $-G(a)F(a) - \int_{a}^{b} F(x) dG(x).$		
$\sqrt{\frac{1-\sqrt{1-x}}{x}}$	$=\sum_{i=0}^{\infty}\frac{(4i)!}{16!\sqrt{2}(2i)!(2i+1)!}x^{i},$			F possesses a derivative F' at ever		
$\left(\frac{\arcsin x}{x}\right)^2$	$= \sum_{i=0}^{\infty} \frac{4^{i}i!^{2}}{(i+1)(2i+1)!} x^{2i}.$	$\int_{\bullet}^{L} G(x)$	x) dF (x) =	$= \int_{a}^{b} G(x)F'(x) dx.$		
	Cramer's Rule	00 47 LS 76 29 99 St 24	1 61 11	Fibonacci Numbers		
If we have equation		86 11 at 25 to 39 94 4s		1, 1, 2, 3, 5, 8, 13, 21, 34, to, 89,		
	$a_{1,2}x_{2} + \cdots + a_{1,n}x_{n} = b_{1}$ $a_{2,2}x_{2} + \cdots + a_{2,n}x_{n} = b_{2}$	91 80 22 67 35 71 45 16 19 96 81 23 07 45 72 61		Definitions:		
	: :	73 69 90 82 64 17 15 DI	35 36 I	$F_i = F_{i-1} + F_{i-2}, F_0 = F_1 = 1$		
:	: : :	68 54 09 91 89 as 25 12 37 08 5s 19 92 84 66 23		$F_{-i} = (-1)^{i-1}F_{i}$		
	$a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$	14 2s 30 40 s1 62 08 77		$F_i = \frac{1}{\sqrt{3}} \left(\phi^i - \hat{\phi}^i \right),$		
	B be the column matrix (b_i) . Then dution iff $\det A \neq 0$. Let A_i be A	21 22 40 54 65 06 10 60		Cassini's identity: for $i > 0$:		
with column i repla	ced by B. Then	42 a3 44 0a 16 20 31 98	19 87	$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$.		
with column i repla	$x_i = \frac{\operatorname{ort} A_i}{\operatorname{det} A}$.	The Fibonacci number of		Additive rule:		
		Every integer n has a representation	unique	$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$		
	s strait roads, but the crooked	$n = F_{k_1} + F_{k_2} + \cdots +$	F_{k_m}	Calculation by matrices:		
	oversent, are roads of Genius. he Marriage of Heaven and Hell)	where $k_i \ge k_{i+1} + 2$ for $1 \le i < m$ and $k_m \ge 2$.		$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$		

Computação Gráfica Unidade 02

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

