HADRON CALIBRATION

CHANGGI HUH, SEHWOOK LEE
KYUNGPOOK NATIONAL UNIVERSITY
JME@HLT MEETING
6, DECEMBER, 2021

Introduction

- PF hadron calibration on run3 120X single pion sample[1] with CMSSW_12_0_1.
 - Configuration wasn't changed compared to previous PFHC, sample was changed.
- I use π^- only.

Calibration Coefficients

Calibration Coefficients

For EH Hadrons (start their shower in ECAL):

- o Barrel: $E_{corr} = (1 + \alpha(E_t) + 1.3*\beta(E_t)*|\eta|^2) *E'_{ecal} + E'_{hcal}$
- EndCap(1.5 < $|\eta|$ < 2.5): $E_{corr} = (1 + \alpha(E_t)) * E'_{ecal} + E'_{hcal}$
- EndCap($|\eta| > 2.5$): $E_{corr} = (1 + \alpha(E_t) + 1.3*\beta(E_t)*((|\eta| 1.5)^2 + 0.6)) * E'_{ecal} + E'_{hcal}$

Calibration Coefficients

For H Hadrons (start their shower in HCAL):

- o Barrel: $E_{corr} = (1 + \alpha(E_t) + \beta(E_t)^* |\eta|^2) * E'_{hcal}$
- = EndCap (1.5 < |η| < 2.5): $E_{corr} = (1 + \alpha(E_t) + \beta(E_t)*0.05) * E'_{hcal}$
- o EndCap ($|\eta| > 2.5$): $E_{corr} = (1 + \alpha(E_t) + \beta(E_t)*((|\eta| 1.5)^4 1.1)) * E'_{hcal}$

EH Barrel

The response is improved after eta correction

EH Endcap

The Response is improved after eta correction.

H Barrel

H Endcap

Response vs eta, EH hadron

The response is improved after eta correction.

Response vs eta, H hadron

Summary

- PF hadron calibration on run3 120X single pion sample with CMSSW_12_0_1.
- The response is improved after energy and energy-eta correction.

BACKUP

Introduction to the calibration procedure

- We privately generate π sample in the energy range 0-200 GeV.
- Here, η and φ of the pions are the position at the ECAL entrance surface propagated through the tracker.
- Particles which do not start a nuclear interaction in ECAL, i.e., do not start a hadronic shower in ECAL are categorized as H hadrons.
- Those starting a shower in ECAL are called EH hadrons.
- Online(HLT) and offline(Reco) Jets use the same method.

Calibration method

- Check the raw response distribution in the various E_{true} bins.
 - Response = $(E_{measure}-E_{true})/E_{true}$, $E_{measure} = E_{rawEcal} + E_{rawHcal}$
- Fit a gaussian function.
 - Gaussian mean and sigma \Rightarrow response(mean) and resolution(sigma/mean)

Energy dependent correction

- Divide hadron into two categories:
 - EH: start their shower in ECAL
 - H: start their shower in HCAL
- For EH Hadrons:
 - $E_{corrected} = A(E_{true}) * E_{rawEcal} + B(E_{true}) * E_{rawHcal} + O_{EH};$ $O_{EH} = 3.5 \text{ GeV}$
- For H Hadrons:
 - $E_{corrected} = C(E_{true})* E_{rawHcal} + O_H; O_H = 2.5 GeV$
- These parameters are derived separately for Barrel region ($|\eta| < 1.5$), and EndCap region(1.5 < $|\eta| < 3.0$)
- Apply these corrections on the raw ECAL & HCAL energies

To get A and B parameters, minimize χ^2 : defined as, for EH hadrons

$$\chi_{EH}^{2} = \sum_{hadrons} \left[\frac{E_{true} - E_{corr}}{\sigma \left(E_{e} + E_{h} \right)} \right]^{2}$$

To get C parameters, minimize χ^2 : defined as, for H hadrons

$$\chi_H^2 = \sum_{hadrons} \left[\frac{E_{true} - E_{corr}}{\sigma(E_h)} \right]^2$$

Energy dependent calibration in a nutshell

- Check the Raw response ($E_{raw} = E_{rawEcal} + E_{rawHcal}$) in the various E_{true} bins.
- And then define "corrected response" for each E_{true} bins
 - EH hadrons: $E_{corrected} = A(E_{true}) * E_{rawEcal} + B(E_{true}) * E_{rawHcal} + O_{EH}$
 - H hadrons : $E_{corrected} = C(E_{true})* E_{rawHcal} + O_{H}$

Pseudorapidity dependent calibration in a nutshell

- After energy correction, look at the response as a function of η .
- Parametrize the η dependence.
- For EH hadrons in barrel, we use

$$E_{corr}^{\eta} = \left(1 + \alpha \left(E_{true}\right) + \beta \left(E_{true}\right) * \left|\eta\right|^{2}\right) * E_{ecal}^{Energy-corrected} + E_{hcal}^{Energy-corrected}$$

- Make eta dependent correction
 - using χ^2 minimization
 - Apply on top of Energy correction

After Energy dependent correction