Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason's Gain Formula 1		1	2 Bode Plot
2	Bode Plot		1	2.1 Introduction
_		Introduction	1	2.2 Example
		Example	1	3 Second order System
3	Second o	rder System	1	3.1 Damping
		Damping	1 1	3.2 Example
		_		4 Routh Hurwitz Criterion
4			1	4.1 Routh Array
		Routh Array	1	·
		Marginal Stability	1	4.2 Marginal Stability
	4.5	Stability	1	4.3 Stability
5	_	nce Model Second Order System	2 2	4.1. Unit Step response of a linear time invariant (LTI) system is given by
6	Nyquist 1	Plot	2	$y(t) = (1 - e^{-2t})u(t) $ (4.1.1)
7	Phase Margin		2	Assuming zero initial condition, the transfer function of the system is
8	Gain Margin		2	Solution: We can convert this step response into s-domain using the Laplace Transform
9	Compens 9.1	ators Phase Lead	2 2	$Y(s) = \mathcal{L}(y(t)) \tag{4.1.2}$
	<i>)</i> ,1 1	nase Lead	4	c^{∞}
10	Oscillator	r	3	where $\mathcal{L}(y(t)) = \int_{-\infty}^{\infty} y(t)e^{-st}dt$ (4.1.3)
11	Controlle	ers	3	
Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.			$Y(s) = \mathcal{L}(y(t)) \tag{4.1.4}$	
			$\implies Y(s) = \mathcal{L}(u(t) - e^{-2t}u(t)) \tag{4.1.5}$	
Download python codes using			2,	
			$\Rightarrow Y(s) = \mathcal{L}(u(t)) - \mathcal{L}(e^{-2t}u(t)) (4.1.6)$	

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

 $\implies Y(s) = \frac{1}{s} - \frac{1}{s+2}$ (4.1.7)

$$\implies Y(s) = \frac{2}{s(s+2)} \tag{4.1.8}$$

$X(s) = \frac{1}{s} {(4.1.9)}$

The Transfer Function H(s) is given by

$$H(s) = \frac{Y(s)}{X(s)}$$
 (4.1.10)

$$H(s) = \frac{2}{s+2} \tag{4.1.11}$$

Hence the Transfer Function H(s) is $\frac{2}{s+2}$

4.2. Plotting the input, output and impulse response using Python **Solution:**

codes/EE18BTECH11021.py

4.3. Comment on the stabilty of the system from the obtained transfer function

Solution: The Transfer Function is

$$H(s) = \frac{2}{s+2} \tag{4.3.1}$$

which has only 1 pole at s = -2, which is on the left half of s-plane therefore the system is stable

We can see that the output function attains a steady state of y = 1 as t tends to infinity, this is the verification that the system is stable

5 STATE-SPACE MODEL

5.1 Second Order System

6 Nyquist Plot

7 Phase Margin

8 Gain Margin

9 Compensators

9.1 Phase Lead

9.1. What is the purpose of a phase lead compensator?

Solution:

- Phase lead compensators are used to produce an output having a phase lead when an input is applied
- The major application is to help improve the Phase Margin (P.M) of the system.
- 9.2. Through an example show how the compensator in Problem 7.1 can be used in a control system

Consider a control system with the Transfer Function

$$G(s) = \frac{1}{s(3s+1)} \tag{9.2.1}$$

$$G(j\omega) = \frac{1}{(j\omega)(3j\omega + 1)}$$
 (9.2.2)

$$\implies$$
 $|G(j\omega)| = \frac{1}{\omega(\sqrt{9\omega^2 + 1})}$ (9.2.3)

$$\angle G(\omega) = -\tan^{-1}(3\omega) - 90^{\circ} \qquad (9.2.4)$$

At Gain Crossover,

$$|G(\omega)| = 1 \tag{9.2.5}$$

$$\implies \frac{1}{\omega(\sqrt{9\omega^2 + 1})} = 1 \tag{9.2.6}$$

$$\implies \omega_{gc} = 0.531 \tag{9.2.7}$$

$$\angle G(j\omega) = -147.88^{\circ} \implies PM = 32.12^{\circ}$$
(9.2.8)

Phase Margin is only 32.12° which is below the acceptable range of Phase Margin i.e 45°. Now we will apply Lead Compensator

$$D(s) = \frac{3(s + \frac{1}{3T})}{(s + \frac{1}{T})}$$
(9.2.9)

Choose T = 1 for this compensator We have,

$$D(s) = \frac{3(s + \frac{1}{3})}{(s+1)}$$
 (9.2.10)

By cascading the Compensator and the Open Loop Transfer Function, we get

$$D(s)G(s) = \frac{1}{s(3s+1)} \frac{3(s+\frac{1}{3})}{(s+1)}$$
(9.2.11)

$$LetG_1(s) = D(s)G(s)$$
 (9.2.12)

$$\implies G_1(s) = \frac{1}{s(s+1)}$$
 (9.2.13)

Calculating Phase Margin for cascaded Transfer Function

$$G_1(s) = \frac{1}{s(s+1)} \tag{9.2.14}$$

$$G_1(j\omega) = \frac{1}{(j\omega)(j\omega+1)}$$
(9.2.15)

$$\Longrightarrow |G_1(j\omega)| = \frac{1}{\omega(\sqrt{\omega^2 + 1})}$$
 (9.2.16)

$$\angle G_1(\jmath\omega) = -\tan^{-1}(\omega) - 90^{\circ} \qquad (9.2.17)$$

At Gain Crossover,

$$\left|G_1(j\omega)\right| = 1 \tag{9.2.18}$$

$$\implies \frac{1}{\omega(\sqrt{\omega^2 + 1})} = 1 \tag{9.2.19}$$

$$\implies \omega_{gc} = 0.786 \tag{9.2.20}$$

$$\angle G(j\omega) = -128.167^{\circ} \implies PM = 51.83^{\circ}$$
(9.2.21)

As we can see, the Phase Margin has gone above 45° which is the acceptable range of Phase Margin.

Therefore, through this example we have shown that a Lead Compensator is helpful in improving the Phase Margin of the System.

9.3. Verify the above improvement in Phase Margin with the help of a Python Code **Solution:**

codes/EE18BTECH11021 2.py

10 Oscillator

11 Controllers

11.1. For a unity Feedback system

$$G(s) = \frac{K}{s(s+2)(s+4)(s+6)}$$
 (11.3.1)

Design a PD Controller with $K_{\nu} = 2$ and Phase Margin 30°

Solution: PD Controller is cascaded with the given G(s). The Transfer Function of the PD Controller is $K_p(1 + T_d s)$

$$G_c(s) = \frac{K_p(1 + T_d s)K}{s(s+2)(s+4)(s+6)}$$
 (11.3.2)

$$K_v = \lim_{s \to 0} sG_1(s) = 2$$
 (11.3.3)

If we choose $K_p = 1$

$$\implies K = 96 \tag{11.3.4}$$

For Phase Margin 30°, at Gain Crossover Frequency w

$$\tan^{-1}(T_d\omega) - \tan^{-1}(\frac{\omega}{2}) - \tan^{-1}(\frac{\omega}{4})\tan^{-1}(\frac{\omega}{6}) = -60$$
(11.3.5)

$$|G_1(j\omega)| = \frac{96\sqrt{T_d^2w^2 + 1}}{w\sqrt{(w^2 + 4)(w^2 + 16)(w^2 + 36)}} = 1$$
(11.3.6)

Solving these equations is really complicated, By Hit and Trial, one of the best combinations is

$$w = 4$$
 (11.3.7)

$$T_d = 1.884$$
 (11.3.8)

We get a Phase Margin of 30.31°

11.2. Verify using a Python Plot **Solution:**

11.3. Design a PI Controller with $K_v = \infty$ and Phase Margin 30°

Solution: PI Controller is cascaded with the given G(s). The Transfer Function of the PD Controller is $K_p(1 + \frac{1}{T_s s})$

$$G_1(s) = \frac{K_p(1 + \frac{1}{T_{is}})K}{s(s+2)(s+4)(s+6)}$$
 (11.3.9)

Choose $K_pK = 96$ This can be written as

$$G_1(s) = \frac{96(T_i s + 1)}{T_i s^2(s+2)(s+4)(s+6)}$$
 (11.3.10)

For Phase Margin 30°, at Gain Crossover Frequency w

$$\tan^{-1}(T_i\omega) - \tan^{-1}(\frac{\omega}{2}) - \tan^{-1}(\frac{\omega}{4})\tan^{-1}(\frac{\omega}{6}) = 30$$
(11.3.11)

$$\left|G_1(j\omega)\right| = \frac{96\sqrt{T_i^2w^2 + 1}}{T_i^2w^2\sqrt{(w^2 + 4)(w^2 + 16)(w^2 + 36)}} = 1$$

By Hit and Trial, one of the best combinations is

$$w = 0.75 \tag{11.3.13}$$

$$T_i = 2.713 \tag{11.3.14}$$

We get a Phase Margin of 25.53°

11.4. Verify using a Python Plot

Solution:

codes/EE18BTECH11021_4.py

11.5. Design a PID Controller with $K_{\nu} = \infty$ and Phase Margin 30°

Solution: PID Controller is cascaded with

the given G(s). The Transfer Function of the PD Controller is $K_p + K_d s + \frac{K_i}{s}$

$$G_1(s) = \frac{(K_p + K_d s + + \frac{K_i}{s})K}{s(s+2)(s+4)(s+6)}$$
 (11.3.15)

Choose $K_pK = 96$ This can be written as

$$G_1(s) = \frac{96(T_i T_d s^2 + T_i s + 1)}{T_i s^2 (s+2)(s+4)(s+6)}$$
(11.3.16)

For Phase Margin 30°, at Gain Crossover Frequency w

$$\tan^{-1}(\frac{T_i\omega}{1 - TiT_dw^2}) - \tan^{-1}(\frac{\omega}{2}) - \tan^{-1}(\frac{\omega}{4})\tan^{-1}(\frac{\omega}{6}) = 30$$
(11.3.17)

$$|G_1(j\omega)| = \frac{96\sqrt{(1 - TiT_d w^2)^2 + T_i^2}}{T_i^2 w^2 \sqrt{(w^2 + 4)(w^2 + 16)(w^2 + 36)}}$$
(11.3.18)

By Hit and Trial, one of the best combinations is

$$w = 1 (11.3.19)$$

$$T_i = 1.738 \tag{11.3.20}$$

$$T_d = 0.4 \tag{11.3.21}$$

We get a Phase Margin of 30°

11.6. Verify using a Python Plot

Solution:

codes/EE18BTECH11021 5.py

