Recuperación de información

Motores de búsqueda, clasificación de documentos

Índice

- Motivación
- Objetivo
- Introducción
- Representación de un documento
- TF-IDF
- Más cosas...

Motivación

Y esto, ¿para qué sirve? ¿Me interesa? Búsquedas en internet Clasificación de docs. ¿Cómo lo hacen?

Las búsquedas en internet

Las búsquedas en internet

• Búsqueda basada en **palabras clave** (keywords)

¡No sólo busca en los títulos! ¿Se lo lee todo!

Il Congreso Internacional de la Lengua Española. Nuevas ...
congresosdelalengua.es/...espanol/...traduccion...espanol/jansenson_e.ht... ▼
«El arte de la traducción», ponencia de Esther Jansenson en la sección «La
traducción ... jurídica), la incorporación de nuevas variantes (traducción automática,
... problemas a los que se enfrenta el traductor al español en México podemos ...

• Encuentra documentos con palabras parecidas/relacionadas

Clasificación de documentos

• Cada uno con sus similares: motores de recomendación, clasificación automática en tiempo real,...

¿Cómo lo hacen?

¿Tiene Google un ejército de voraces lectores que responden en tiempo real a las preguntas que hacemos en el navegador?

¿Cómo lo hacen?

¿Hay (muchísimas) preguntas preparadas?

Google	How many times		
	how many times		
	how many times chris brown		
	how many times dj khaled		
	how many times do i have to tell you		
	how many times do i have to tell you even when you're crying you're beautiful too		
	how many times can you drink your pee		
	how many times has kim k got married		
	how many times can you drink your own urine before it becomes toxic		
	how many times has kim kardashian been married		
	how many times can you drink your own urine		

Objetivo

Si ya estás motivado, ahora voy a plantearte un reto, ¿te atreves?

Objetivo

Hoy queremos lograr dos cosas:

 Entender la problemática común a los sistemas de recuperación de información

• Enseñar a construir un motor de búsqueda ;;!!

Introducción

Antes de entrar en harina, vamos a repasar algunos conceptos. Recuperación de info.

Métricas

¿Cuál es el mojo?

Recuperación de información

 La recuperación de información (information retrieval) trata de buscar documentos dentro de una colección o corpus.

 Su objetivo no es entender el documento ni extraer información del mismo. A eso se le llama extracción de información (information extraction), que está muy cerca del data mining.

Precisión

$$\label{eq:precision} \begin{aligned} \text{Precisión} &= \frac{|\{\text{documentos relevantes}\} \cap \{\text{documentos recuperados}\}|}{|\{\text{documentos recuperados}\}|} \end{aligned}$$

• Exhaustividad/Recall

$$Exhaustividad = \frac{|\{documentos \ relevantes\} \cap \{documentos \ recuperados\}|}{|\{documentos \ relevantes\}|}$$

• F-measure

$$F = \frac{2 \cdot \text{precision} \cdot \text{recall}}{(\text{precision} + \text{recall})}$$

Otras medidas que también me interesan:

El orden. Quiero los documentos más relevantes primero.

¿Cuál es el mojo?

• Definir las características del documento que son importantes para nosotros (las que van a utilizar los usuarios para buscar).

Color:

Palabras clave:

¿Cuál es el mojo?

Estas características deben ser:

• baratas de almacenar

• rápidas de comparar

• suficientes/adecuadas

Representación de un documento

La clave en cualquier sistema de recuperación de información es cómo se representan los documentos.

Documento

Palabras

Base de datos

Vectores

Distancia coseno

Análisis

Caracterizando un documento

• Un documento es un conjunto de palabras.

• Mis usuarios van a utilizar palabras para buscar.

• Es fácil leer las palabras de un documento

¡Tiene buena pinta!

Documento & Query → **Palabras**

• Puedo representar un documento (y la query del usuario) por las palabras que aparecen en él.

Isabel I de Castilla fue reina de Castilla desde 1474 hasta 1504, reina consorte de Sicilia desde 1469 y de Aragón desde 1479, por su matrimonio con Fernando de Aragón

Documento & Query \rightarrow Palabras \rightarrow Tabla

• ... y almacenarlo en una tabla en mi base de datos

	Isabel	de	Castilla	reina	
Doc #1	1	4	2	2	
Doc #2	0	10	1	4	
Doc #3	1	5	4	0	
Query	1	0	1	0	

Búsqueda – documentos como vectores

• Ya tengo números, a los ordenadores les gusta trabajar con ellos, ¡algo podré hacer!

	Isabel	Castilla
Doc #1	1	2
Doc #2	0	1
Doc #3	1	4
Query	1	1

Búsqueda - distancia/similaridad coseno

• Cuanto menor sea el **ángulo** de los vectores, más similares son los documentos

	Isabel	Castilla
Doc #1	1	2
Doc #2	0	1
Doc #3	1	4
Query	1	1

Análisis - Representación vectorial

• ¿Baratas? El conjunto de palabras es finito, pero aún así excesivamente grande y mucho más cuando tenemos un idioma desinencial.

• Objetivo: reducir el conjunto

- Ideas
 - \circ Lematizar: fue, es \Rightarrow ser
 - Eliminar palabras vacías: de, a, el,...
 - Almacenar sólo sustantivos
 - 0 :...?

¿Cuál es el mojo?

Estas características deben ser:

- baratas de almacenar
- rápidas de comparar
- suficientes/adecuadas

Análisis – Representación vectorial

¿Rápidas? Desde luego mucho más que leer todos los documentos cada vez que quiero buscar algo.

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}} \quad \text{Cuál es el mojo?}$$

Objetivo: simplificar la fórmula

- Ideas:
 - Normalizar vectores para eliminar denom.
 - Trabajar con frecuencias de palabras

Estas características deben ser:

- baratas de almacenar
- rápidas de comparar
- suficientes/adecuadas

Análisis - Representación vectorial

- ¿Adecuadas? Sí, pero mejorables.
- Objetivo: dar más importancia

Ideas:

- Identificar términos compuestos: mucho mejor "Isabel de Castilla" o "Real Madrid" que sus palabras por separado.
- Darle más valor a las palabras que aparecen en el título, en negrita,...
- Valorar más las palabras raras que definen muy específicamente un documento.

¿Cuál es el mojo?

Estas características deben ser:

- baratas de almacenar
- rápidas de comparar
- suficientes/adecuadas

TF-IDF

Una representación buena y realmente sencilla: Term frequency - Inverse document frequency

Term frequency

Inverse document frequency

Cálculo

Análisis

TF - Term frequency

• La frecuencia de una forma es el número de veces que aparece en el texto.

Isabel I de Castilla fue reina de Castilla desde 1474 hasta 1504, reina consorte de Sicilia desde 1469 y de Aragón desde 1479, por su matrimonio con Fernando de Aragón

Term	Count
Isabel	1
I	1
de	4
Castilla	2
fue	1
reina	2

IDF - Inverse document frequency

 Nos interesa reducir el peso de las palabras que son muy comunes en el conjunto de los documentos frente a las palabras específicas que caracterizan muy bien cada documento.

- Palabras que "elimina":
 - o palabras vacías: preposiciones, artículos,... esta métrica reduce su peso sin necesidad de hacernos una lista.
 - o palabras comunes: en un corpus sobre reyes, las palabras rey/reina no serán significativas.

TF-IDF – ¿Cuál es la fórmula?

• TF-IDF: se cálcula como el producto

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \times \operatorname{idf}(t,D)$$

- tf(t,d): frecuencia del término "t" en el documento "d".
- idf(t,D): inverse document frequency del término "t" en el corpus de documentos "D" que estamos analizando.

TF-IDF - Cálculo de tf(t,d)

 Para calcular la frecuencia se pueden utilizar algunas variantes:

Term	f _{t,d}	Binaria	log(1+f _{t,d})	$0.5 + \frac{0.5 \times f_{t,d}}{\max\{f_{t,d} : t \in d\}}$
Isabel	1	1	0,301	
I	1	1	0,301	
de	4	1	0,699	
Castilla	2	1	0,477	
fue	1	1	0,301	
reina	2	1	0,477	
Real Madrid	0	0		

TF-IDF – Cálculo de idf(t,D)

 Para calcular la frecuencia se pueden utilizar algunas variantes:

$$idf(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

- numerador: número de documentos que forman el corpus
- denominador: número de documentos en los que aparece el término "t".

Análisis

A favor:

- Cálculo sencillo
- Elimina palabras comunes sin necesidad de listas
- Ofrece un valor de similaridad continuo en [0, 1]

En contra:

- El factor idf(t,D) es dependiente del corpus, por lo que cada vez que se añade o elimina (o modifica) un documento hay que recalcular TODOS los números de la tabla.
- No tiene en cuenta la semántica, palabras sinónimas son consideradas distintas
- Los documentos muy largos quedan infrarrepresentados.
- No se presta ninguna atención a concordancia o colocación entre palabras

Y ahora...

¿Serías capaz de programar un motor de búsqueda?

En el tintero

Algunos temas relacionados que pueden resultar muy interesantes

Cosas para hablar

Expansión de queries: idealmente un tesauro.

SIRI cambiará la forma en que buscamos → ahora los buscadores empiezan a responder preguntas.

