Math 341: Linear Alegbra

Daniel Ko

Spring 2020

1 Propositional Logic

System of figuring out if something is true or false.

 $\mathbf{Proposition} \to \mathbf{Statement} \to \mathbf{True} \ \mathbf{or} \ \mathbf{False}$

Examples:

- P: Today is sunny
- P: I'm 5'11

1.1 We can compose them

P: Today is sunny

Q: Today is rainy

 $P \lor Q \implies$ Today is sunny or Today is cloudy

1.2 Connectors (functions on propositions)

1.2.1 Negation (\neg)

P: Today is sunny

 $\neg P$: Today is not sunny

Truth Table

P	$\neg Q$
T	F
F	T

1.2.2 Or (∨)

P	Q	$P \lor Q$
T	T	T
T	F	T
F	T	T
F	F	F

1.2.3 And (∧)

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	T

1.3 Implication

 $P \implies Q$ means P implies Q

In other words: if P, then Q is true.

False can imply anything.

We will come back to this.

P	Q	$P \implies Q$
T	T	T
T	F	F
F	T	T
F	F	T
		_

1.4 Equivalence

 $P \Leftrightarrow Q$

Means they have same truth value on a truth table.

If you break this down to implications you get:

$$[(P \implies Q) \land (Q \implies P)] \Leftrightarrow [P \Leftrightarrow Q]$$

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

$$(P \implies Q) \Leftrightarrow (\neg P \vee Q)$$

P	$\neg P$	Q	$P \implies Q$	$\neg P \vee Q$
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T

1.5 Rules for Computing

1.5.1 Distibutive Laws

$$[P \land (Q \lor R)] \Leftrightarrow [(P \land Q) \lor (P \land R)]$$

$$[P \lor (Q \land R)] \Leftrightarrow [(P \lor Q) \land (P \lor R)]$$

1.5.2 Associative Laws

$$X\vee (Y\vee Z)\Leftrightarrow (X\vee Y)\vee Z$$

$$X \wedge (Y \wedge Z) \Leftrightarrow (X \wedge Y) \wedge Z$$

1.5.3 De Morgan's Laws

$$\neg(P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q)$$

The rules can be expressed in English as:

- \bullet the negation of a disjunction is the conjunction of the negations
- the negation of a conjunction is the disjunction of the negations

Proof of De Morgan's law using proof table

P	Q	$\neg(P\vee Q)$	$\neg P \land \neg Q$	$\neg P$	$\neg Q$
T	T	F	F	F	F
T	F	F	F	F	T
F	T	F	F	T	F
F	F	T	T	T	T

1.5.4 Transitivity

$$[(P \implies R) \land (R \implies Q)] \implies (P \implies Q)$$

P	Q	R	$P \implies R$	$R \implies P$	$P \implies R \wedge R \implies P$	$P \implies Q$
T	T	T	T	T	T	
T	T	F	F	T	F	
$\mid T \mid$	F	T	T	T	T	
$\mid T \mid$	F	F	F	T	F	
F	T	T	T	F	F	
F	T	F	T	F	F	
F	F	T	T	F	F	
F	F	F	T	F	F	

I'll do this later lol

1.6 Notation

 \forall

 $\exists \setminus \exists$

1.7 Logical Concepts

1.7.1 Logical Truth

Logical truth, sometimes called tautology, means a proposition is true in all possible cases.

For example: $A \vee \neg A$ is always true.

A	$\neg A$	$A \vee \neg A$
T	F	T
F	T	T

1.7.2 Logical Contradiction

Similar to a logical truth, a logical condtradiction means a proposition is false in all possible cases For example: $A \land \neg A$ is always true.

A	$\neg A$	$A \wedge \neg A$
T	F	F
F	T	F

1.7.3 Law of Logically True Conjunct

If Y is a logical truth, then $X \wedge Y \Leftrightarrow X$

1.7.4 Law of Contradictory Disjunct

If Y is a contradiction, then $X \vee Y \Leftrightarrow X$

1.8 Proof Techniques (basic ones)

$$\mathsf{i} \ (P \Leftrightarrow Q) \Leftrightarrow (P \implies Q) \land (Q \implies P)$$

ii
$$(P \Longrightarrow R) \land (R \Longrightarrow Q) \Longrightarrow (P \Longrightarrow Q)$$

iii finish this

2 Vector space

2.1 Field

Def: A field F is a set with two operations $(+, \cdot)$ satisfying

$$\forall \ x,y \in F$$

$$\exists ! \ z \in F \ s.t. \ z = x + y$$

$$\exists ! \ w \in F \ s.t. \ w = x \cdot y$$

This is called closure. Other properties:

$$\forall~a,b,c\in F$$

1.
$$a + b = b + a$$

2.
$$(a + b) + c = a + (b + c)$$

3.
$$\exists \ 0 \in F, \ \exists \ 1 \in F$$

 $0+a=a, \ 1 \cdot a=a$

$$\forall \ a \in F, \ \forall \ b \in F \setminus \{0\}$$

$$\exists \ c, d \in F \ s.t. \ a+b=0, \ bd=1$$

$$5. \ a \cdot (b+c) = ab + ac$$

Examples of fields: \mathbb{R} , \mathbb{C}

2.2 Vector space

Def: A vector space V over a field F is a set with two operations

- addition
- scalar multiplication

which satisfies

1.
$$\forall x, y \in V$$

 $x + y = y + x$

2.
$$\forall x, y, z \in V$$

$$(x+y) + z = x + (y+x)$$

3.
$$\exists \ 0 \in Vs.t. \ x + 0 = x$$

4.
$$\forall x \in V \exists y \in V \text{ s.t. } x + y = 0$$

5.
$$\forall x \in V \text{ s.t. } 1 \cdot x = x \text{ (1 from field F)}$$

6.
$$\forall a, b \in F, \ \forall \ x \in V$$

$$(a \cdot b) \cdot x = a \cdot (b \cdot x)$$

7.
$$\forall a \in F, \exists x, y \in V$$

$$a(x+y) = ax + ay$$

8.
$$\forall a, b \in F, \ \forall \ x \in V$$
$$(a+b)x = ax + bx$$

9.
$$\forall x, y \in V \exists ! z \in V \text{ s.t. } x + y = z$$

10.
$$\forall x \in F, \ \forall x \in V \ \exists! \ w \ s.t. \ w = x + y$$

 \implies Elements of F are are called scalars

2.3 Tuples of scalars

An n-tuple is a sequence (or ordered list of n elements, aka order matters), where n is a non-negative integer. The set of all n-tuples with entries from a field F is denoted by F^n

$$F^n = \{(a_1, a_2, a_3, \dots, a_n) \ a_1 \in F\}$$

2.3.1 Adding n-tuples

$$u = (a_1, a_2, \dots, a_n)$$
 $v = (b_1, b_2, \dots, b_n)$
 $u + v = (a_1 + b_1, a_2 + b_2, a_3 + b_3, \dots, a_n + b_n)$

2.3.2 Multiplying n-tuples with a scalar

$$c \in F$$

 $c \cdot u = (ca_1, ca_2, \dots, ca_n)$

2.3.3 other stuff