Chapitre 10: Fonction exponentielle

1 Définition et première propriétés

1.1 Définition

Théorème 1 (admis)

Il existe une unique fonction f dérivable sur $\mathbb R$ telle que

$$f' = f$$
 et $f(0) = 1$.

Cette fonction est appelée fonction exponentielle et est notée exp.

Remarque

La fonction exponentielle est donc définie sur \mathbb{R} et on a $\exp(0) = 1$. Elle est aussi dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a $\exp'(x) = \exp(x)$.

1.2 Propriétés algébriques

Propriété 2

Pour tout réel $x \in \mathbb{R}$, on a

$$\exp(x) \times \exp(-x) = 1$$
 et $\exp(x) \neq 0$.

Propriété 3

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$ deux réels et $n \in \mathbb{Z}$ un entier relatif, on a alors

a.
$$\exp(x+y) = \exp(x) \times \exp(y)$$

b.
$$\exp(-x) = \frac{1}{\exp(x)}$$

$$\mathbf{c.} \ \exp(x-y) = \frac{\exp(x)}{\exp(y)}$$

$$\mathbf{d.} \, \exp(nx) = (\exp(x))^n$$

1.3 Notation e^x

Notation 1

Le nombre $\exp(1)$ est noté e. On a $e \approx 2{,}718$.

Propriété 4 (admise)

D'après les propriétés précédentes, pour tout $n \in \mathbb{Z}$, on a

$$\exp(n) = \exp(n \times 1) = (\exp(1))^n = e^n.$$

Par extension, on admet que pour tout nombre réel $x \in \mathbb{R}$, on a

$$\exp(x) = e^x$$
.

Propriété 5

On retrouve les propriétés algébriques précédentes :

a.
$$e^{x+y} = e^x \times e^y$$
 b. $e^{-x} = \frac{1}{e^x}$ **c.** $e^{x-y} = \frac{e^x}{e^y}$

b.
$$e^{-x} = \frac{1}{e^x}$$

$$\mathbf{c.}\ e^{x-y} = \frac{e^x}{e^y}$$

$$\mathbf{d.}\ e^{nx} = (e^x)^n$$

Application 1

Simplifier au maximum chacune des expressions suivantes, où $x \in \mathbb{R}$.

a)
$$A = \frac{e^2 \times e^{-3}}{e^{-7}}$$

b)
$$B = e^x (1 + 2e^{-x})$$

c)
$$C = \frac{e^{5x-2}}{e^{1-x}}$$

a)
$$A = \frac{e^2 \times e^{-3}}{e^{-7}}$$
 b) $B = e^x (1 + 2e^{-x})$ c) $C = \frac{e^{5x-2}}{e^{1-x}}$ d) $D = \frac{e^{2x+1}}{(e^{x-1})^4}$

Application 2

Démontrer chacune des deux égalités suivantes.

$$\mathbf{a)} \ \frac{4e^{2x}}{e^{2x} + 3} = \frac{4}{1 + 3e^{-2x}}$$

b)
$$(e^x + e^{-x})^2 - (e^x - e^{-x})^2 = 4$$

Propriété 6

Pour tout réel $x \in \mathbb{R}$, $e^x > 0$.

Démonstration. Pour tout réel $x \in \mathbb{R}$, $e^x \neq 0$, puis

$$e^x = \left(e^{\frac{x}{2}}\right)^2 \ge 0,$$

donc pour tout réel $x \in \mathbb{R}$, on a $e^x > 0$.

$\mathbf{2}$ Étude de la fonction exponentielle

Variations et représentation graphique 2.1

Propriété 7

La fonction exponentielle est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, on a

$$\exp'(x) = \exp(x).$$

Démonstration. Cela fait partie de la définition de la fonction exponentielle.

Propriété 8

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Démonstration. On sait que pour tout $x \in \mathbb{R}$, $\exp'(x) = \exp(x) > 0$, donc la fonction exp est strictement croissante, d'après les propriétés sur la dérivation.

Propriété 9

La courbe représentative de la fonction exponentielle est donnée ci-contre. On retrouve bien

- qu'elle est strictement positive;
- strictement croissante;
- $-\exp(0) = 1;$
- $-\exp(1) = e \approx 2,718.$

