- Same quantity of electricity was passed through solutions of salts of elements A, B and C with atomic weights 7, 27 and 48 respectively. The masses of A, B and C deposited were 2.1 g, 2.7 g and 7-2 g respectively. The valencies of A, B and C respectively are
 - (a) 3, 2 and 1
- (b) 1, 2 and 3
- (c) 1, 3 and 2
- (d) 2, 3 and 2
- Al₂O₃ is reduced by electrolysis at low potentials and high currents. If 4.0 x 104 amperes of current is passed through molten Al2O3 for 6 hours, what mass of aluminium is produced ? (Assume 100% current efficiency. At. mass of Al = 27 g mol-1)

 - (a) 8.1×10^4 g (b) 2.4×10^5 g
 - (c) 1.3 x 104 g
- (d) 9.0×10^3 g
- 11. When 0.1 mol MnO₄²⁻ is oxidized, the quantity of electricity required to completely oxidize MnO₄²⁻ to MnO₄⁻ is
 - (a) 96500 C
- (b) 2 × 96500 C
- (c) 9650 C
- (d) 96-50 C

- 12. The weight of silver (at. wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O2 at STP will be
 - (a) 5.4 g
- (b) 10-8 g
- (c) 54-0 g
- (d) 108·0 g

(AIPMT 2014)

- 13. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
 - (a) 55 minutes
- (b) 110 minutes
- (c) 220 minutes
- (d) 330 minutes

(NEET Phase II 2016)

- 14. The number of electrons delivered at the cathode during electrolysis by a current of 1 amphere in 60 seconds is (charge on the electron = 1.60×10^{-19} C)
 - (a) 6×10^{23}
- (b) 6×10^{20}
- (c) 3.75×10^{20} (d) 7.48×10^{23}

(NEET Phase II 2016)

- Conductance and specific, equivalent and molar conductivities
- 15. The resistance of a 0-10 M weak acid HA in a conductivity cell is 2.0 × 103 ohm. The cell constant of the cell is 0.78 cm-1 and An of the acid is 390 S cm2 mol-1.

Consider the following statements:

- pH of the acid solution = 3
- 2. pK_a of the acid = 5
- Degree of dissociation of the acid = 0.01 Which of the statements given above correct?
- (a) 1 and 2 only
- (b) 1 and 3 only
- (c) 2 and 3 only
- (d) 1, 2 and 3

(IAS Prelim 2010)

- 16. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to
 - (a) Increase in number of ions
 - (b) Increase in ionic mobility of ions
 - (c) 100% ionisation of electrolyte at normal
 - (d) Increase in both, i.e., number of ions and ionic mobility of ions

(AIPMT Prelim 2010; AIIMS 2014)

- 17. The sequence of ionic mobility in the aqueous solution is
 - (a) K+> Na+> Rb+> Cs+
 - (b) Cs+> Rb+> K+> Na+
 - (c) Rb+> K+> Cs+> Na+
 - (d) Na+ > K+ > Rb+ > Cs+ (AIPMT 2008)
- 18. The equivalent conductance of NaCl at concentration C and at infinite dilution are \(\lambda_c \) and λ... respectively. The correct relationship between λ_c and λ_{∞} is given by (where the constant B is positive)
 - (a) $\lambda_c = \lambda_{\infty} + (B) \sqrt{C}$ (b) $\lambda_c = \lambda_{\infty} + (B) C$
- (c) $\lambda_c = \lambda_{\infty} (B) C$ (d) $\lambda_c = \lambda_{\infty} (B) \sqrt{C}$

(JEE Main 2014)

- 19. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1-4 S m⁻¹. The resistance of 0-5 M solution of the same electrolyte is 280 Ω. The molar conductivity of 0.5 M solution of the electrolyte in S m2 mol-1
 - (a) 5×10^2
- (b) 5×10^{-4}
- (c) 5×10^{-3}
- $(d) 5 \times 10^3$

(JEE Main 2014)

- 20. The molar conductivity of a 0.5 mol/dm3 solution of AgNO3 with electrolytic conductivity of 5.76 × 10⁻³ S cm⁻¹ at 298 K is
 - (a) 2.88 S cm²/mol
- (b) 11.52 S cm²/mol
- (c) 0.086 S cm²/mol
- (d) 28.8 S cm²/mol