

Université Paul Sabatier

Analyse et commande des systèmes temps réel

- Synthèse d'une commande à retard -APPLICATION À UN PROCÉDÉ ÉLECTRO-MÉCANIQUE

Auteurs: Lucien RAKOTOMALALA David TOCAVEN

Encadrant : Carolina Albea-Sànchez

Table des matières

In	ntroduction	1
1	Identification-Modélisation du système	2
	1.1 Détermination de paramètres et du retard	. 2
	1.2 Autres méthode	
	1.3 Modèle fréquentiel	. 2
	1.4 Modèle espace d'état	. 2
	1.5 Commandabilité et observabilité	. 2
	1.6 Analyse de la boucle ouverte	. 2
	1.7 Stabilité de la boucle fermée	. 2
	1.7.1 Delay-Sweeping	. 2
	1.7.2 Stabilité 2D	
2	—	3
	2.1 Intérêt de ce correcteur	
	2.2 Équivalence avec retour d'état instantané	. 3
3	Placement du spectre Fini	4
4	Étude d'un prédicteur de Smith	5
_	Zeade a an produced as simon	
5	Implantation sur le procédé réel	6
٨	Annexes	8
A	Innexes	C
\mathbf{T}	TITRE	8
	TITRE	. 8
\mathbf{A}	annexe 2 - TITRE	9

Introduction

À partir de l'énoncé, nous avons définie le cahier des charges suivant :

- Il faut réaliser un asservissement en position angulaire.
- Il faut atteindre la consigne en moins de 8 secondes. $\Rightarrow T_m < 8s$
- Il ne doit pas y avoir d'oscillations.
- Il ne doit pas y avoir de dépassement de la consigne. $\Rightarrow \forall t \geq 0, V_g(t) \leq V_{ref}(t)$
- Il doit y avoir une erreur de position nulle. $t \to \infty, V_g(t) \to V_{ref}(t)$
- La commande doit rejeter Les perturbations de sortie de type échelon $(p(t) = p_0)$ en maximum 3 secondes.

1 Identification-Modélisation du système

- 1.1 Détermination de paramètres et du retard
- 1.2 Autres méthode
- 1.3 Modèle fréquentiel
- 1.4 Modèle espace d'état
- 1.5 Commandabilité et observabilité
- 1.6 Analyse de la boucle ouverte
- 1.7 Stabilité de la boucle fermée

Est-ce bien ces deux méthodes? (la troisième méthode supposée étant le pseudo-retard non traité en cours)

- 1.7.1 Delay-Sweeping
- 1.7.2 Stabilité 2D

2 | Étude d'une commande Proportionnelledérivateur

2.1 Intérêt de ce correcteur

Pour établir notre asservissement en position, nous devons faire en sorte de commander le transfert entre u_m et V_s . Ce transfert dispose d'un intégrateur pur et d'un pôle en $-\frac{1}{\tau_m}$, qui donnent l'instabilité de la position du moteur à une entrée échelon. Un premier correcteur nous est proposé sous la forme :

$$C(p) = k_0(1 + d_i p) (2.1)$$

avec k_0 le gain proportionnel et d_i le gain dérivateur. Avec une telle correction, nous allons diminué l'ordre du transfert de position/consigne et perdre le pôle en 0 menant à l'instabilité. Nous notons pour le procédé étudié le transfert $G(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{p(1+\tau_m p)}$, la boucle fermé avec le correcteur en cours d'étude qui intervient de cette manière :

$$G_{bf}(p) = \frac{Y(p)}{Y_{ref}} = \frac{C(p)G(p)}{1 + C(p)G(p)} = \frac{k_0(1 + d_i p)\frac{N(p)}{D(p)}}{1 + k_0(1 + d_i p)\frac{N(p)}{D(p)}}$$
$$= \frac{k_0(1 + d_i p)\frac{N(p)}{p(1 + \tau_m p)}}{1 + k_0(1 + d_i p)\frac{N(p)}{p(1 + \tau_m p)}}$$

si l'on prend : $d_i = \tau_m$, nous pouvons retomber sur une fonction de transfert plus simple qui est :

$$G_{bf} = \frac{k_0 N(p)}{p + k_0 N(p)} \tag{2.2}$$

En sachant que N(p) contient e^{-hp} , nous voyons qu'avec ce correcteur, nous allons pouvoir manipuler l'influence du retard dans le système à l'aide k_0 .

2.2 Équivalence avec retour d'état instantané

Pour une loi de commande PI avec comme polynôme $Q(p)=k_1+k_2p+...+k_np^n$ dans la boucle d'asservissement, nous pouvons écrire le développement suivant :

$$\begin{split} \frac{Y(p)}{E(p)} &= \frac{G(p)}{1 + Q(p)G(p)} \Leftrightarrow \frac{Y(p)}{E(p)} = \frac{Y(p)}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow \frac{1}{E(p)} = \frac{1}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow E(p) = U(p) + Q(p)Y(p) \\ &\Leftrightarrow U(p) = E(p) - Q(p)Y(p) \end{split}$$

Cette dernière ligne est la caractéristique d'un retour d'état, si et seulement si les états sont disponibles sur la sortie du système.

3 | Placement du spectre Fini

4 | Étude d'un prédicteur de Smith

5 | Implantation sur le procédé réel

Annexes

Annexe 1 - TITRE

Annexe 2 - TITRE