README

The goal of this repo is to design efficient abstractions to the SummarizedExperiment class such that using common dplyr functions feels as natural to operating on a data.frame or tibble. While the overall goal is for it to feel like a tibble operation, it would be smart to emphasize that certain data wrangling pipelines do not translate well to the structure of the SummarizedExperiment class.

Example Data

I will be using the following example data throughout this document:

Listing 1 reproducible example data

```
class: SummarizedExperiment
dim: 5 4
metadata(0):
assays(2): counts logcounts
rownames(5): row_a row_b row_c row_d row_e
rowData names(3): gene length direction
colnames(4): col_A col_B col_C col_D
colData names(2): sample condition
```

The abstraction

In order to access parts of the SummarizedExperiment as if it were a tibble, I propose we use some data masking concepts from the rlang package.

Figure 1: Figure created with BioRender.com

In Figure 1, we an abstract a SummarizedExperiment object (top portion) into three distinct data masks (the bottom portion) that represent different evaluation contexts for our object. We are either evaluating on the assay_mask, rowData_mask, or the colData_mask. Data will be lazily bound to the top level of each mask "as is" from the SummarizedExperiment object's data context.

For example, for se from Listing 1

data mask

To quote the documentation of ?rlang::new_data_mask:

A data mask is an environment (or possibly multiple environments forming an ancestry) containing user-supplied objects. Objects in the mask have precedence over objects in the environment (i.e. they mask those objects). Many R functions evaluate quoted expressions in a data mask so these expressions can refer to objects within the user data.

dplyr verbs

mutate

mutate is one of the more common dplyr verbs used and is likely the most compatible.

Syntax error in temermaid version 10.2.0-rc.2