CS463/516

Lecture 8

Image registration

• Two images S and C. want transform T such that T(S) resembles C

Image registration applications

- a) Multi-modal analysis (medical imaging)
 - Align a CT and an MRI image
- b) Image stitching
 - Create large, high-resolution image by registering multiple smaller images together
- c) Panorama creation
 - Align images taken at different angles

c)

Application: atlas-based analysis

- Atlas-based analysis
 - Atlas of brain regions defined on a template brain
 - This type of atlas typically created by anatomy expert (Doctor or researcher)
 - How to use the atlas on other subjects, not just the template?
 - Solution: use image registration to align template with single subjects
 - Can then apply the transformation to atlas, aligning atlas with each subject

Subject N

Application: multi-modal alignment

- In MRI (and other methods), often acquire multiple images with different contrasts during same experiment
- Would like to align these images so can examine them all in 'same space'
- Example: T1 (a) and TOF (b), both acquired in same subject
 - However, subject may have moved between scans.
 - Also, resolution and slice positioning is different, TOF is higher resolution so we only acquire a thin 'slab' of slices
- Solution: register the T1 to the TOF (or vice versa) (c)
- Now, we can combine the modalities for more interesting and powerful analysis

a) T1

b) TOF

c) TOF (green/red)overlaid on T1

Application: inter-subject averaging

- Common to perform same experiment on multiple subjects then average the results across subjects, to check for a statistically significant effect
- Problem: different people have differently shaped brains!
- Need all subjects to be in same space when we average
 - Otherwise information is lost because signal gets cancelled out due to mis-alignment
- Example: fMRI task on 5 different subjects. Align all subjects with template and then average

Principles of image registration

- Need 3 things to successfully align two images:
- 1) similarity criterion
 - Measure of 'how different' are two images
 - Similar to cost function from machine learning
- 2) transformation method
 - Typically, linear (affine) transform is used, has 12 'degrees of freedom'
 - Methods for nonlinear transformation also exist
- 3) optimization method
 - Gradient descent

Similarity criterion

- How to know if two images are similar?
- Define some hypothetical function 'Similarity':

- Also, choose a family of transforms F
- Now, can write the image registration problem as:
- $argmin_{T \in F} \{ Similarity(T(I), J) \} = ?$
 - In other words, want to find the transformation T that, when applied to image I gives us the most similarity to image J

Similarity criteria

- Any ideas?
- Idea 1: joint histogram of the two images
- Joint histogram:
- Shows number of times that value x in T1 and value y in T2 occur in same place (overlap)
- $H_{I,J}(i,j) = Card\{(x,y) \mid I(x,y) = i \text{ and } J(x,y) = j\}$

Joint histogram

$$H_{I,J}(i,j) = Card\{(x,y) \mid I(x,y) = i \text{ and } J(x,y) = j\}$$

- More examples:
- Same image
 - n_bins = 25
- Inverted image
 - n_bins = 50
- zebra

Joint histogram quiz

• Match the image pairs (1-4) to their joint histogram (a-d)

Pair 4

Joint histogram, scatter plot

- can think of joint histogram as 'heat map' of scatter plot
- Example: swi and t1 joint histogram (a)
- Swi and t1 scatter plot (b)

plt.plot(np.ravel(swi[:,:,200]),np.ravel(t1[:,:,200]),'o');

Similarity criterion: correlation coefficient (ρ)

b)

- Can use correlation coefficient to quantify how similar are two images (a)
- Why is correlation coefficient so high (images don't look so similar)
- Another metric: sum-squared difference (b) (not used very often)
 - Can be used in some quantitative applications, intra-subject, or on binary images

$$\rho(I,J) = \frac{\sum_{x,y} (I(x,y) - \bar{I})(J(x,y) - \bar{J})}{\sqrt{\sum_{x,y} (I(x,y) - \bar{I})^2} \sqrt{\sum_{x,y} (J(x,y) - \bar{J})^2}}$$

Correlation coefficient ho

• ρ not a perfect measure of functional dependence (how y depends on x)

When correlation coefficient ho fails

- Reminder: want measure that tell us when T(I) is close to I
- Often, I and I are related in a way that ρ fails to quantify correctly
 - In these cases registration will fail
- Need a better, more flexible similarity criteria (neither ρ or ssd work well)

Mutual information

- similarity criterion based on statistical dependence instead of functional dependence
- Mutual information:
- Let X and Y be two random variables. We define mutual information as:
- $MI(X,Y) = \sum_{x,y} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)})$
- If X and Y are statistically independent: $-p(x,y) = p(x)p(y) \Rightarrow MI(X,Y) = 0$
- MI(X,Y) can be interpreted as 'distance' between p(x,y) and p(x)p(y)
 - Also known as Kullback-Leibler divergence
- Larger $MI(X,Y) \Rightarrow X$ and Y share information, or are statistically dependent

Mutual information

MI = 0.09

- normalized joint histogram: $H_{I,J}(i,j) = \frac{1}{n} Card\{(x,y) \mid I(x,y) = i \text{ and } J(x,y) = j\}$
 - $\sum_{i,j} H_{I,J}(i,j) = 1$

MI = 0.03

- Now, can interpret $H_{I,J}(i,j)$ as 'probability that given a randomly selected pixel from I with intensity i, the corresponding pixel in image J has intensity j
- can calculate mutual information directly from normalized joint histogram:

MI = 3.5

MI = 1.88

MI = 1.22

 $H_{I,I}$

MI = 2.7

Mutual information

- Mutual information decreases as the image is rotated out of alignment with the original
- Top row: rotated images
- Bottom row: joint histogram of rotated image and original image

