Linear Inequalities in Two Variables

Jonathan R. Bacolod

Sauyo High School

What is a Linear Inequality in Two Variables?

It is an inequality which can be written in any one of the following forms:

$$Ax + By < C$$
 $Ax + By \le C$ $Ax + By > C$ $Ax + By > C$

where A, B, and C are any real numbers.

1.
$$2x \le 4 + y$$

1.
$$2x \le 4 + y$$
 YES

- 1. $2x \le 4 + y$ **YES**
- 2. y > 5x

- 1. $2x \le 4 + y$ **YES**
- 2. y > 5x **YES**

- 1. $2x \le 4 + y$ **YES**
- 2. y > 5x **YES**
- 3. $2x 1 \ge y$

- 1. $2x \le 4 + y$ **YES**
- 2. y > 5x **YES**
- 3. $2x 1 \ge y$ **YES**

1.
$$2x \le 4 + y$$
 YES

2.
$$y > 5x$$
 YES

3.
$$2x - 1 \ge y$$
 YES

$$4. \ \frac{1}{4}x < y$$

1.
$$2x \le 4 + y$$
 YES

2.
$$y > 5x$$
 YES

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES

1.
$$2x \le 4 + y$$
 YES

2.
$$y > 5x$$
 YES

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES 5. $x = 2y$

5.
$$x = 2y$$

1.
$$2x \le 4 + y$$
 YES

2.
$$y > 5x$$
 YES

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES
5. $x = 2y$ NO

5.
$$x = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$

2.
$$y > 5x$$
 YES

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$x = 2y$$
 NO

- 1. $2x \le 4 + y$ **YES** 6. $x \ge 1$ **NO**
- 2. y > 5x **YES**
- 3. $2x 1 \ge y$ YES
- 4. $\frac{1}{4}x < y$ YES
- 5. x = 2y **NO**

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$\vec{x} = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$ YES

3.
$$2x - 1 \ge y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$\vec{x} = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$ YES

3.
$$2x - 1 \ge y$$
 YES 8. $9(x - 2) < 15$

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$\vec{x} = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ NO

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$ YES

3.
$$2x - 1 \ge y$$
 YES 8. $9(x - 2) < 15$ **NO**

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$\vec{x} = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES

7.
$$x < 2y + 5$$
 YES

3.
$$2x - 1 \ge y$$
 YES

8.
$$9(x-2) < 15$$
 NO

4.
$$\frac{1}{4}x < y$$
 YES

9.
$$y \le -6x - 4$$

5.
$$\dot{x} = 2y$$
 NO

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES

3.
$$2x - 1 > y$$
 YES

4.
$$\frac{1}{4}x < y$$
 YES

5.
$$\dot{x} = 2y$$
 NO

6.
$$x \ge 1$$
 NO

7.
$$x < 2y + 5$$
 YES

8.
$$9(x-2) < 15$$
 NO

9.
$$y \le -6x - 4$$
 YES

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$ YES

3.
$$2x-1 \ge y$$
 YES 8. $9(x-2) < 15$ **NO**

4.
$$\frac{1}{4}x < y$$
 YES 9. $y \le -6x - 4$ YES

5.
$$\vec{x} = 2y$$
 NO 10. $2x + y < 8$

1.
$$2x \le 4 + y$$
 YES 6. $x \ge 1$ **NO**

2.
$$y > 5x$$
 YES 7. $x < 2y + 5$ YES

3.
$$2x - 1 \ge y$$
 YES 8. $9(x - 2) < 15$ **NO**

4.
$$\frac{1}{4}x < y$$
 YES 9. $y \le -6x - 4$ YES

5.
$$x = 2y$$
 NO 10. $2x + y < 8$ YES

Write each statement as a linear inequality in two variables.

Write each statement as a linear inequality in two variables.

The price of the ticket of a movie (m) is more than the value of a rented DVD copy (c).

Write each statement as a linear inequality in two variables.

The price of the ticket of a movie (m) is more than the value of a rented DVD copy (c).

Write each statement as a linear inequality in two variables.

According to the survey, there are more Android (A) users than Apple (1) users.

Write each statement as a linear inequality in two variables.

According to the survey, there are more Android (A) users A > I than Apple (I) users.

Write each statement as a linear inequality in two variables.

The number of sunflowers (s) in the garden is one more than twice the number of roses (r).

Write each statement as a linear inequality in two variables.

The number of sunflowers (s) in the garden is one more than s > 2r + 1 twice the number of roses (r).

Write each statement as a linear inequality in two variables.

To be an honor student in school, a student must have a grade (g) of at least 90.

Write each statement as a linear inequality in two variables.

To be an honor student in school, a student must have a $g \ge 90$ grade (g) of at least 90.

Write each statement as a linear inequality in two variables.

The yearly budget of Jose (J) is less than the yearly budget of Gian (G).

Write each statement as a linear inequality in two variables.

The yearly budget of Jose (J) is less than the yearly budget of J < G Gian (G).

What are the Solutions of a Linear Inequality?

The solution of an inequality in two variables are the ordered pairs of numbers that make the inequality true.

How to Determine Whether an Ordered Pair is a Solution to a Linear Inequality?

1. Substitute the values for x and y.

How to Determine Whether an Ordered Pair is a Solution to a Linear Inequality?

- 1. Substitute the values for x and y.
- 2. Simplify the inequality.

How to Determine Whether an Ordered Pair is a Solution to a Linear Inequality?

- 1. Substitute the values for x and y.
- 2. Simplify the inequality.
- 3. Check whether the resulting inequality statement is true or false.

Is (1,1) a solution to $y \ge 2x - 1$?

Step 1: Substitute the values for x and y.

Is (1, 1) a solution to $y \ge 2x - 1$? Let: x = 1, y = 1

```
Is (1, 1) a solution to y \ge 2x - 1?
Let: x = 1, y = 1
y \ge 2x - 1
```

```
Is (1, 1) a solution to y \ge 2x - 1?

Let: x = 1, y = 1

y \ge 2x - 1

1 \ge 2(1) - 1
```

```
Is (1, 1) a solution to y \ge 2x - 1?

Let: x = 1, y = 1

y \ge 2x - 1

1 \ge 2(1) - 1 Substitution Property
```

```
Is (1, 1) a solution to y \ge 2x - 1?

Let: x = 1, y = 1

y \ge 2x - 1

1 \ge 2(1) - 1 Substitution Property

1 > 2 - 1
```

```
Is (1, 1) a solution to y \ge 2x - 1?

Let: x = 1, y = 1

y \ge 2x - 1

1 \ge 2(1) - 1 Substitution Property

1 \ge 2 - 1 Simplification
```

```
Is (1, 1) a solution to y \ge 2x - 1?

Let: x = 1, y = 1

y \ge 2x - 1

1 \ge 2(1) - 1 Substitution Property

1 \ge 2 - 1 Simplification

1 > 1
```

Step 3: Check whether the resulting inequality statement is true or false.

Is
$$(1,1)$$
 a solution to $y \ge 2x - 1$?
Let: $x = 1$, $y = 1$
 $y \ge 2x - 1$
 $1 \ge 2(1) - 1$ Substitution Property
 $1 \ge 2 - 1$ Simplification
 $1 \ge 1$ Simplification

```
Is (1, 1) a solution to y > 2x - 1?
Let: x = 1, v = 1
y > 2x - 1
1 > 2(1) - 1 Substitution Property
 1 > 2 - 1
          Simplification
 1 > 1
              Simplification
```

: since the resulting inequality is true, (1, 1) is a solution to $y \ge 2x - 1$.

Is (4,-1) a solution to $x+3y \le 8$?

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$

Is
$$(4, -1)$$
 a solution to $x + 3y \le 8$?
Let: $x = 4$, $y = -1$
 $x + 3y \le 8$
 $4 + 3(-1) \le 8$

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) < 8$ Substitution Property

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) \le 8$ Substitution Property
 $4-3 \le 8$

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) \le 8$ Substitution Property
 $4-3 < 8$ Simplification

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) \le 8$ Substitution Property
 $4-3 \le 8$ Simplification
 $1 < 8$

Step 3: Check whether the resulting inequality statement is true or false.

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) \le 8$ Substitution Property
 $4-3 \le 8$ Simplification
 $1 < 8$ Simplification

Is
$$(4,-1)$$
 a solution to $x+3y \le 8$?
Let: $x=4$, $y=-1$
 $x+3y \le 8$
 $4+3(-1) \le 8$ Substitution Property
 $4-3 \le 8$ Simplification
 $1 \le 8$ Simplification

 \therefore since the resulting inequality is true, (4, -1) is a solution to x + 3y < 8.

Is (0,0) a solution to y < 4x - 5?

Step 1: Substitute the values for x and y.

Is (0,0) a solution to y < 4x - 5? Let: x = 0, y = 0

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property
 $0 < 0 - 5$

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property
 $0 < 0 - 5$ Simplification

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property
 $0 < 0 - 5$ Simplification
 $0 < -5$

Step 3: Check whether the resulting inequality statement is true or false.

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property
 $0 < 0 - 5$ Simplification
 $0 < -5$ Simplification

Is
$$(0,0)$$
 a solution to $y < 4x - 5$?
Let: $x = 0$, $y = 0$
 $y < 4x - 5$
 $0 < 4(0) - 5$ Substitution Property
 $0 < 0 - 5$ Simplification
 $0 < -5$ Simplification

 \therefore since the resulting inequality is false, (0,0) is not a solution to y < 4x - 5.

Is $\left(4,\frac{1}{2}\right)$ a solution to $\frac{1}{2}x+y>5$?

Is
$$\left(4,\frac{1}{2}\right)$$
 a solution to $\frac{1}{2}x+y>5$?
Let: $x=4$, $y=\frac{1}{2}$

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$ Substitution Property

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$ Substitution Property $2 + \frac{1}{2} > 5$

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$ Substitution Property $2 + \frac{1}{2} > 5$ Simplification

Step 3: Check whether the resulting inequality statement is true or false.

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$ Substitution Property $2 + \frac{1}{2} > 5$ Simplification $2\frac{1}{2} > 5$ Simplification

Is
$$(4, \frac{1}{2})$$
 a solution to $\frac{1}{2}x + y > 5$?
Let: $x = 4$, $y = \frac{1}{2}$
 $\frac{1}{2}x + y > 5$
 $\frac{1}{2}(4) + \frac{1}{2} > 5$ Substitution Property
 $2 + \frac{1}{2} > 5$ Simplification
 $2\frac{1}{2} > 5$ Simplification
 \therefore since the resulting inequality is false, $(4, \frac{1}{2})$

is not a solution to $\frac{1}{2}x + y > 5$.

Thank you for watching.