Solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice: a calculation of selected gauge observables with gradient flow

Hans Mathias Mamen Vege April 24, 2019

Supervisor: Andrea Shindler
Co-supervisor: Morten Hjorth-

Jensen

University of Oslo

Introduction

• QCD. We will go through and explain what QCD as well as motivate its existence.

- Quantum Chromodynamics(QCD).
- · Lattice QCD.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- **Gradient flow.** We will quickly introduce gradient flow and explain its effects.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- Results.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.
- **Results.** We will present the results obtained from pure gauge calculations.

•

- Quantum Chromodynamics(QCD).
- · Lattice QCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- · Results.

Quantum Chromodynamics(QCD)

· The standard model.

- The standard model: Six quarks and eight gluons
- · Asymptotic freedom

- · The standard model.
- · Asymptotic freedom.

- The standard model: Six quarks and eight gluons
- · Asymptotic freedom
- Confinement

- · The standard model.
- · Asymptotic freedom.
- · Confinement.

- · Asymptotic freedom
- Confinement
- · Highly nonlinear due to gluon self-interactions

- · The standard model.
- · Asymptotic freedom.
- · Confinement.
- · Nonlinearity.

- · Asymptotic freedom
- Confinement
- · Highly nonlinear due to gluon self-interactions

- · The standard model.
- · Asymptotic freedom.
- · Confinement.
- · Nonlinearity.

Consists of the innermost square of the six quarks and the gluons.

- The coupling constant **decreases** as we **increase** the energy
- One of the experimental proofs of QCD along with triple γ decay and muon cross section ration R.

If we try to pull apart **two mesons**, more and more energy is required until we have enough energy to spontaneously create a **quark-antiquark** pair, forming thus **two new mesons**.

The non-linearity of QCD

$$\mathcal{L}_{\mathrm{QCD}} = \sum_{f=1}^{N_f} \bar{\psi}^{(f)} \left(i \not \!\!\!D - m^{(f)} \right) \psi^{(f)} - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu},$$

Measuring topological charge is a measure of the *Winding number* of the gauge field.

Figure 1: The figure is taken from [1, p. 32].

An illustration of how one can view the winding number given a function f that parametrizes a path around a circle S^1 . Given that it starts and ends at the same point, we have that the number of times it wraps around the circle gives us the winding number.

· A

Lattice Quantum Chromodynamics(LQCD)

Links

Recovering the continuum action action

Developing a code for solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice

The numerical challenge in lattice QCD

The path integral

The Metropolis algorithm

Link sharing

Scaling

Measuring observables on the lattice

How to measure

Topological charge

Energy

Gradient flow

The flow equation

Solving gradient flow on the lattice

Smearing the lattice

Results

Ensembles

Energy and the scale setting

Topological charge

Topological susceptibility

The fourth cumulant

The topological charge correlator

The effective glueball mass

Conclusion

Questions?

References

[1] Hilmar Forkel. A Primer on Instantons in QCD. arXiv:hep-ph/0009136, September 2000. URL http://arxiv.org/abs/hep-ph/0009136. arXiv: hep-ph/0009136.