LUCRAREA DE LABORATOR nr. 9

Sumatorul

Scopul lucrării:

- 1. Construirea și studierea semisumatorului în regim static și dinamic.
- 2. Construirea și studierea sumatorului complet.
- 3. Construirea și studierea sumatorului paralel cu transfer consecutiv al depășirilor.
- 4. Construirea și studierea sumatorului paralel cu transfer paralel al depășirilor.

Experimentul nr. 1. Semisumatorul

Regim static.

1. Completați tabelul de adevăr al semisumatorului.

Tabelul 1. Tabelul de adevăr al semisumatorului

A	В	С	S
0	0		
0	1		
1	0		
1	1		

- 2. Scrieți funcțiile logice ale semisumatorului, exprimate prin elementele logice SAU-NU.
- 3. Conform formulelor logice obținute, construiți, folosind programul EWB, schema electrică a semisumatorului (fig. 1).
- 4. Conectați prin comutatoare, la intrările semisumatorului, sursa de tensiune $+V_{cc}$ (fig. 1).
- 5. Conectați la ieșirile semisumatorului indicatoare luminiscente (fig. 1).

Fig. 1. Schema electrică a semisumatorului (regim static).

6. Aplicați la intrările semisumatorului semnale pentru toate combinațiile posibile și comparați cu stările din tabelul de adevăr, completat de dumneavoastră.

Regim dinamic.

- 7. Deconectați sursa de tensiune $+V_{cc}$. Conectați la intrările și ieșirile semisumatorului convertorul logic LOGIC CONVERTER (fig. 2).
- 8. Conectați la intrările și ieșirile semisumatorului analizatorul logic LOGIC ANALYZER (fig. 2).

Fig. 2. Schema electrică a semisumatorului (regim dinamic).

9. Obțineți cu ajutorul convertorul logic tabelele de adevăr (stările pentru C și S pot fi obținute pe ecranul convertorului logic prin schimbarea poziției comutatorului [Space]), iar cu ajutorul analizatorului logic diagramele temporare.

10. Comparați diagramele temporale cu tabelul de adevăr, completat de dumneavoastră, și cu tabelele de adevăr, obținute cu ajutorul convertorului logic. Formulați concluzii.

Experimentul nr. 2. Sumator complet

- Construiți schema electrică a sumatorului complet din 2 semisumatore (fig. 3).
- 2. Aplicați la intrările C_i , A_i , B_i toate combinațiile posibile de semnale și completați tabelul de adevăr (vezi tabelul 2).

Fig. 3. Schema electrică a sumatorului complet (regim static).

Tabelul 2. Tabelul de adevăr al sumatorului complet

C_{i}	A_{i}	B_{i}	C_{i+1}	S_{i}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- 3. Deconectați sursa de tensiune $+V_{cc}$. Conectați la intrările și ieșirile sumatorului complet convertorul logic LOGIC CONVERTER (fig. 4).
- 4. Conectați la intrările și ieșirile sumatorului complet analizatorul logic LOGIC ANALYZER (fig. 4).

Fig. 4. Schema electrică a sumatorului complet (regim dinamic).

- 5. Obțineți cu ajutorul convertorul logic tabelele de adevăr (stările pentru C_{i+1} și S_i pot fi obținute pe ecranul convertorului logic prin schimbarea poziției comutatorului [Space]), iar cu ajutorul analizatorului logic diagramele temporare.
- 6. Comparați diagramele temporale cu tabelul de adevăr, completat de dumneavoastră, și cu tabelele de adevăr, obținute cu ajutorul convertorului logic. Formulați concluzii.

Experimentul nr. 3. Sumator consecutiv

1. Construiți schema electrică a sumatorului consecutiv de ordinul cinci (vezi paragraful 3.10 al cursului de prelegeri).

2. Demonstrați, că schema sumatorului consecutiv este funcțională, efectuînd sumarea pentru două numere din tabelul 3 (folosiți numerele conform variantei prestabilite).

Tabelul 3. Variante de numere binare

Varianta	Numărul A	Numărul B	Varianta	Numărul A	Numărul B
1	00110	10111	13	11010	01000
2	00011	10101	14	11011	00111
3	00100	10100	15	11100	00110
4	00101	10011	16	11101	00101
5	00111	10001	17	10111	01111
6	01001	01111	18	10101	01110
7	01011	01110	19	10100	01101
8	01111	01101	20	10011	01100
9	10101	01100	21	10001	01011
10	10111	01011	22	01111	01001
11	11000	01001	23	01110	00111
12	11001	00111	24	01101	01011

Experimentul nr. 4. Sumator paralel cu transfer consecutiv al depășirilor

- 1. Construiți schema electrică a sumatorului paralel cu transfer consecutiv al depășirilor de ordinul cinci (vezi paragraful 3.11 al cursului de prelegeri).
- 2. Demonstrați, că schema sumatorului paralel cu transfer consecutiv al depășirilor este funcțională, efectuînd sumarea pentru două numere din tabelul 3 (folosiți numerele conform variantei prestabilite).

Experimentul nr. 5. Sumator paralel cu transfer paralel al depășirilor

1. Prezentați algoritmul de calcul al depășirilor pentru un sumator paralel cu transfer paralel al depășirilor de ordinul cinci.

- 2. Construiți schema electrică a sumatorului paralel cu transfer paralel al depășirilor de ordinul cinci (vezi paragraful 3.12 al cursului de prelegeri).
- 3. Demonstrați, că schema sumatorului paralel cu transfer paralel al depășirilor este funcțională, efectuînd sumarea pentru două numere din tabelul 3 (folosiți numerele conform variantei prestabilite).

Întrebări de control

La prezentarea raportului trebuie să fiți capabili să răspundeți la următoarele întrebări de control:

- 1. Care este diferența dintre operația logică de sumare și operația aritmetică de sumare?
- 2. Ce numim semisumator, sumator complet și sumator?
- 3. Desenați schema semisumatorului din elementele SAU NU (ȘI NU) și verificați corectitudinea schemei.
- 4. Prezentați deosebirile dintre sumatorul consecutiv, sumatorul paralel cu transfer consecutiv al depășirilor și sumatorul paralel cu transfer paralel al depășirilor.
- 5. Ce modificări trebuie efectuate în schema electrică a sumatorului pentru a obține unitatea de scădere pentru D > 0 și D < 0?
- 6. Ce dispozitiv numeric poate fi utilizat pentru determinarea semnului numerelor.
- 7. Numiți unele aplicații ale sumatorului.
- 8. Prezentați algoritmul de lucru al unității de înmulțire.

Bibliografie

- 1. KAF-Internet. Сумматоры // Справочное руководство по Electronics Workbench, 2001 // http://workbench.host.net.kg/show.php?chapter=3.2.2.
- 2. Valachi, A. şi al. Analiza, sinteza şi testarea dispozitivelor numerice. Buc.: Ed. Nord Est, 1993, p. 120-154.