Q.6 Please calculate T(N) for the following three approaches of matrices multiplication

- Naïve Method
- Divide and Conquer
- Strassen's Method

Matrix 1									Matrix 2							
4	5	7	6	2	3	8	1		6	1	5	4	7	2	3	8
1	2	6	7	5	4	8	3		4	2	7	8	1	5	3	6
4	2	6	1	5	3	8	7		3	1	7	5	2	6	8	4
5	4	8	2	3	1	7	6		3	8	7	1	5	6	4	2
1	2	3	5	7	6	8	4		4	1	6	8	7	5	3	2
2	8	5	1	4	6	3	7		3	1	8	4	2	6	5	7
8	2	6	3	4	5	1	7		8	1	4	5	3	6	7	2
2	6	7	8	1	3	5	4		4	1	8	5	6	3	2	7

1. Naïve Method

T(n) = Subproblem * T (n/subproblem Size) + O(n)

For Naïve Method we have we have 8*8 matrix.

So, Multiplication = 8^3 = 512 and Addition = 8^2 = 64.

Addition of 2 matrix will take O(n²) time

So,
$$T(n) = 512*T(n/8) + O(n^2)$$

2. Divide and Conquer

For Divide and Conquer Method, We have Total Multiplication = 8^3 = 512 and Addition = 8^2 = 64.

Addition of 2 matrix will take O(n2) time

So,
$$T(n) = 512*T(n/8) + O(n^2)$$

3. Strassen's Method

For Strassen's Method, if we can multiply 2 by 2 matrices using only 7 multiplications instead of the usual 8, we can use that into multiplying 8 by 8 matrices using 7 multiplications of 2 by 2

matrices each of which requires 7 multiplications of numbers. So, the total number of multiplications require for 8 by 8 matrix using Strassen's method is 343. So, $T(n) = 343*T(n/8) + O(n^2)$