MAE0514 - Prova 1 - Parte 2

Rubens Santos Andrade Filho 1

Junho de 2021

Sumário

Questão 2	2
a) Análise descritiva, tempo de recuperação das plaquetas como desfecho	4
b) Testes de log-rank, tempo de recuperação das plaquetas como desfecho	8
c) Análise descritiva, tempo livre da doença como desfecho	(
d) Testes de log-rank, tempo livre da doença como desfecho	(
e) Modelo Weibull, tempo livre da doença como desfecho	(
f) Interpretação do modelo final em (e)	10
g) Modelo log-logístico, tempo livre da doença como desfecho	10
h) Interpretação do modelo final em (f)	10
Código Completo	10

 $^{^1\}mathrm{N\'umero}$ USP: 10370336

Questão 2

Foram considerados os dados provenientes do EBMT (*European Resgistry for Blood and Marrow Transplatation*), discutido em Putter, Fiocco Geskus (2007). Os dados são referentes a 2204 pacientes que receberam transplante de medula óssea entre 1995 e 1998 reportados ao EBMT. Os dados estão disponíveis no arquivo **bmt3.csv** e a descrição em **bmt3.des**. As variáveis nos dados são:

- Tempo, em dias, após o transplante até recuperaço das plaquetas ou perda de acompanhamento
- Indicador de recuperação das plaquetas: 1, se recuperado; 0, se perda de acompanhamento
- Tempo livre de doença: tempo, em dias, após o transplante até óbito ou reincidência do câncer;
- Indicador de evento: 1, se óbito ou reincidência; 0 se censura
- Classificação da doença: leucemia linfoblástica aguda (ALL), leucemia mielóide aguda (AML) c leucemia mielóide crônica (CML)
- Idade, em categorias
- Correspondência de gênero doador-receptor
- Esgotamento de células T

Os itens a seguir foram respondidos utilizando esses dados.

a) Análise descritiva, tempo de recuperação das plaquetas como desfecho

Nesse item, fazemos uma análise descritiva dos dados considerando como desfecho ou variável resposta o tempo até recuperação das plaquetas, prtime. Começamos fazendo o gráfico com a estimativa de Kaplan-Meier para a curva de sobrevivência do tempo até recuperação das plaquetas.

Vemos no gráfico que a estivativa da curva de sobrevivência decai rapídamente nos primeiros 300 dias para pouco menos de 50%. De fato, observando os dados, vemos que o maior tempo observado de recuperação das plaquetas ocorre no dia 385, com isso estimaviva da curva de sobrevivência não decai mais a partir desse dia. Com isso, para observar melhor o que acontece no início da curva, fazemos novamente o mesmo gráfico, porém, apenas até pouco após o dia 385.

Agora, podemos ver claramente, seguindo a linha pontilhada, que o tempo de sobrevivência mediano é de 75 dias. Isto é, 75 dias é a estimativa do tempo decorrido após o transplante em que a probabilidade de recuperação é 50%.

Time

Ö

Além disso, o número de observações é igual a 2204, número de recuperações observadas é 1169, e uma intervalar de 95% para o tempo mediano é [56,112] dias.

A seguir, iremos análisar comparar o tempo de recuperação das plaquetas entre os níveis de cada fator age, dissub, drmatch e tcd. É interessante também análisar o tempo mediano de recuperação das plaquetas para cada nível dos fatores. A tabela a seguir mostra as estimativas pontual e intervalar dos tempos medianos geral e em cada nível de cada fator.

Variável	Tempo mediano
Geral	75 (56, 112)
Idade	
<=20	49(42,71)
20-40	112 (64, 274)
>40	86 (48, -)
Subclassificação da doença	

Variável	Tempo mediano
\overline{AML}	48 (40, 61)
ALL	59 (42, 105)
CML	- (144, -)
Correspondência de gênero	
No gender mismatch	86 (55, 142)
Gender mismatch	64 (47, 118)
Depleção de células T	
No TCD	112 (76, 223)
TCD	36 (33, 43)

Começando pela idade, **age**, construimos o gráfico com as estimativas de Kaplan-Meier para a curva de sobrevivência para cada categoria ("<=20", "20-40" e ">40"). Novamente, para melhor visualizar as curvas, iremos mostrar até o dia 400, uma vez que as estimaivas das curvas são constantes depois disso.

```
## Call: survfit(formula = s_plaq ~ age, data = dados_raw)
##
##
                   events median 0.95LCL 0.95UCL
## age=<=20
                      253
                               49
                                       42
                                                71
               419
## age=20-40 1057
                      540
                              112
                                       64
                                               274
## age=>40
               728
                      376
                               86
                                       48
                                                NA
```


O gráfico mostra que os pacientes na faixa etária menor ou igual a 20 anos tem uma aparente menor estimativa da curva de sobrevivencia em relação às outras faixas etárias e em especial após o seu

tempo mediano. Antes do tempo mediano, é dificil ver indícios de diferenças entre as curvas. Além disso, as estimativas intervalares (com confiança de 95%) para o tempo mediano se sobrepõem, com isso, não podemos dizer que existe diferença significativa entre os tempos medianos a um nível de 5%. entretanto, mais a frente, testaremos formalmente isso.

Agora, fazemos a mesma análise com a covariável de Classificação da doença, dissub.

```
Call: survfit(formula = s_plaq ~ dissub, data = dados)
##
                 n events median 0.95LCL 0.95UCL
##
                      490
                               48
                                       40
## dissub=AML 853
                                                61
## dissub=ALL 447
                      260
                               59
                                       42
                                               105
## dissub=CML 904
                      419
                              NA
                                      144
                                               NA
```


Não parece haver indícios de diferença entre as curvas de sobrevivência para as classificações de leucemia linfoblástica aguda (ALL) e leucemia mielóide aguda (AML). Entretanto, a curva para os pacientes com leucemia mielóide crônica (CML) apresentam uma aparente maior probabilidade de sobrevivência ao longo do tempo. Inclusive nem foi possível estimar o tempo mediano de sobrevivência para esse grupo. Já as estimativas do tempo mediano de sobrevivência, isto é, o tempo no qual metade dos pacientes já recuperaram as plaquetas, são bem próximas para os pacientes com leucemia linfoblástica aguda (ALL) e leucemia mielóide aguda (AML), 48 e 59 respecitamente. O resumo acima também mostra as estimativas intervalares com 955 de confiança.

Já para a covariável de Correspondência de gênero, drmatch, não parece haver diferenças entre as curvas de sobrevivência estimadas por Kaplan-Meier. As estimativas pontuais do tempo de sobrevivência

mediano também ficaram bem próximas, 86 e 64 dias para pacientes sem e com incompatibilidade de gênero, respectivamente. E com as estimativas intervalares se sobrepondo.

Por fim, quanto a Depleção de células T, tcd, observamos que existem indícios de diferença entre as curvas de sobrevivência estimadas. O pacietes com depleção de células T apresentam, ao longo do tempo, uma menor sobrevivência, iso é, um menor tempo de recuperação das plaquetas. Isso também é evidenciado pelo tempo mediano de sobrevivência: a estimativa do tempo até metade dos paciente sem depleção de células T recuperarem as plaquetas é de 112 dias, enquanto que nos pacientes com depleção, essa estimativa é de 36 dias.

b) Testes de log-rank, tempo de recuperação das plaquetas como desfecho

Fizemos os testes de log-rank comparando as categorias das covariáveis no estudo. No teste de log rank, a hipótese nula é que as funções de sobrevivência em cada nível de um fator são iguais em todos os tempos. A hipótese alternativa é de que pelo menos uma função é diferente para algum tempo dentro de um intervalo de zero a um tempo razoável estabelecido.

```
## Call:
## survdiff(formula = s_plaq ~ age, data = dados_raw)
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
## age=<=20
              419
                        253
                                 221
                                         4.5047
                                                   5.6627
  age=20-40 1057
                        540
                                 569
                                         1.4323
                                                   2.8400
##
                        376
## age=>40
              728
                                 379
                                         0.0245
                                                   0.0369
##
##
    Chisq= 6.1 on 2 degrees of freedom, p= 0.05
##
   valor p exato
      0.04797336
## survdiff(formula = s_plaq ~ dissub, data = dados_raw)
##
```

```
##
                 N Observed Expected (O-E)^2/E (O-E)^2/V
                                           9.10
                        490
                                 428
## dissub=AML 853
                                                     14.62
  dissub=ALL 447
                        260
                                  235
                                           2.64
                                                      3.37
  dissub=CML 904
                        419
                                 506
                                          15.05
                                                     27.08
##
##
    Chisq= 27.3 on 2 degrees of freedom, p= 1e-06
##
##
##
   survdiff(formula = s_plaq ~ drmatch, data = dados_raw)
##
##
                                   N Observed Expected (O-E)^2/E (O-E)^2/V
  drmatch=No gender mismatch 1648
                                          860
                                                    870
                                                            0.120
                                                                        0.48
   drmatch=Gender mismatch
                                          309
                                                    299
                                                            0.351
                                                                        0.48
##
    Chisq= 0.5 on 1 degrees of freedom, p= 0.5
##
## Call:
   survdiff(formula = s_plaq ~ tcd, data = dados_raw)
##
##
##
                 N Observed Expected (O-E)^2/E (O-E)^2/V
## tcd=No TCD 1928
                         978
                                  1037
                                            3.32
                                                       29.9
##
  t.cd=TCD
               276
                         191
                                   132
                                           25.97
                                                       29.9
##
                 on 1 degrees of freedom, p= 5e-08
##
    Chisq= 29.9
```

A um nível de significância de 5%, rejeitamos a hipótese de nula que as curvas de sobrevivência são iguais em todos os tempos, isto é, existe diferença entre os tempos até a recuperação das plaquetas entre os níveis das covariáveis Idade (valor p = 0.048), Classificação da doença (valor p = 1e-06) e Depleção de células T (valor p = 5e-08). Observamos que para a idade essa diferença é discutível e ainda mais se notarmos que as curvas para as diferentes faixas etárias aparentam se cruzarem. Além disso, não rejeitamos a hipótese nula para os níveis da covariável de Correspondência de gênero, com os valores observados bem próximos dos esperados.

c) Análise descritiva, tempo livre da doença como desfecho

De maneira similar ao item a), fazemos os gráficos com as estimativas de Kaplan-Meier e estimativas pontuais e intervalares do tempo de sobrevivencia mediano geral e para os diferentes níveis de cada covariável.

d) Testes de log-rank, tempo livre da doença como desfecho

(d) Faça testes de log-rank comparando as categorias das covariáveis no estudo. Considere também a inclusão de ponderações nesse caso. Discuta os resultados.

e) Modelo Weibull, tempo livre da doença como desfecho

(e) Considerando o tempo livre da doença, ajuste um modelo Weibull aos dados. Apresente os resultados do modelo completo, com todas as covariáveis incluídas. Faça um processo de seleça de variáveis utilizando o teste da razão de verossimilhanças e apresente o resultado do modelo final obtido. Você

precisa descrever claramente o processo de seleção das variáveis adotado, mas deve apresentar apenas as estimativas e resultados de dois modelos: modelo completo e modelo final. Você pode apresentar os resultados do modelo na parametrização de locação-escala.

f) Interpretação do modelo final em (e).

(f) Interprete os parâmetros do modelo final obtido em (e).

g) Modelo log-logístico, tempo livre da doença como desfecho

(g) De forma semelhante ao item (e), ajuste um modelo log-logístico aos dados. Faça da mesma forma (porém utilizando a distribuição log-logística) e apresente os resultados do modelo completo e do modelo final.

h) Interpretação do modelo final em (f).

(h) Interprete os parâmetros do modelo final obtido em (g).

Importante: Em todos os itens, os resultados apresentados devem ser interpretados. A redação será também avaliada. Não se esqueça de apresentar códigos dos programas utilizados.

Código Completo

```
library(knitr)
library(tidyverse)
library(dplyr)
library(readr)
library(ggplot2)
library(survival)
library(survminer)
library(gtsummary)
knitr::opts_chunk$set(warning=FALSE,
                       # fig.dim = c(5,5),
                       # out.height = '40\%',
                       # fig.align = 'center',
                       message=FALSE,
                       echo=FALSE
# QUESTAO 2 ----
dados_raw <- readr::read_csv(</pre>
  'ebmt3.csv',
  col_types = readr::cols_only(
   id = col_integer(),
```

```
prtime = col_double(),
    prstat = col_integer(),
    rfstime = col_double(),
    rfsstat = col_integer(),
    dissub = col_factor(c("AML", "ALL", "CML")),
    age = col_factor(levels = c("<=20", "20-40", ">40"), ordered = T),
    drmatch = col_factor(c("No gender mismatch", "Gender mismatch")),
    tcd = col_factor(c("No TCD", "TCD"))
  )
)
labels <- list(</pre>
  id="Identificação do paciente",
  prtime="Tempo de recuperação das plaquetas",
  prstat="Indicador de recuperação das plaquetas",
 rfstime="Tempo livre de doença",
  rfsstat="Indicador de evento",
  dissub="Subclassificação da doença",
  age="Idade",
  drmatch="Correspondência de gênero",
  tcd="Depleção de células T"
labelled::var_label(dados_raw) <- labels</pre>
dados_raw %>% str
# traduz fatores
dados <- dados_raw %>%
  mutate(
    #dissub = factor(dissub, c("AML", "ALL", "CML")),
    # age = forcats::fct_recode(
    # age, "Até 20"="<=20", "Entre 20 e 40"="20-40", "Mais que 40"=">40"),
    drmatch = forcats::fct_recode(
      drmatch, "Sem incomp."="No gender mismatch",
      "Incomp."="Gender mismatch"),
    tcd = forcats::fct_recode(tcd, "Sem depleção"="No TCD", "Depleção"="TCD")
  )
dados
# QUESTÃO 2.a) geral ----
# ajuste
s_plaq <- with(dados_raw,Surv(prtime, prstat))</pre>
fit <- survfit(s_plaq~1, dados_raw)</pre>
# grafico das estimativas
ggsurvplot(
  fit,
  surv.median.line = "hv",
  ggtheme = theme_bw(),
 risk.table = T, tables.height = 0.32,
  legend='none'
```

```
ggsurvplot(
  fit,
  surv.median.line = "hv",
  ggtheme = theme_bw(),
 xlim=c(0,400),
 risk.table = T, tables.height = 0.32,
 break.time.by = 50,
 legend='none'
print(fit)
fits <- list(</pre>
  survfit(s_plaq ~ 1, dados_raw),
  survfit(s_plaq ~ age, dados_raw),
  survfit(s_plaq ~ dissub, dados_raw),
  survfit(s_plaq ~ drmatch, dados_raw),
  survfit(s_plaq ~ tcd, dados_raw)
)
fits %>%
 tbl_survfit(
  probs = 0.5,
 label_header = "**Tempo mediano**",
 missing ="-",
  label = list(
   1 ~ "Geral"
  )
) %>%
  #bold_labels() %>%
  italicize_levels() %>%
  modify_header(
    update = list(
      label ~ "**Variável**"
  )
# QUESTÃO 2.a) age ----
# ajuste
fit <- survfit(s_plaq~age, dados_raw)</pre>
# tabela com medidas resumo
print(fit)
# grafico das estimativas
ggsurvplot(
  fit,
  surv.median.line = "hv",
  ggtheme = theme_bw(),
 xlim=c(0,400),
 risk.table = T, tables.height = 0.32,
```

```
break.time.by = 50,
 legend='top'
# QUESTÃO 2.a) dissub ----
# ajuste
fit <- survfit(s_plaq~dissub, dados)</pre>
# tabela com medidas resumo
print(fit)
# grafico das estimativas
ggsurvplot(
  fit,
 surv.median.line = "hv",
 ggtheme = theme_bw(),
 xlim=c(0,400),
 risk.table = T, tables.height = 0.32,
 break.time.by = 50,
 legend='top'
# QUESTÃO 2.a) drmatch ----
# ajuste
fit <- survfit(s_plaq~drmatch, dados)</pre>
# tabela com medidas resumo
print(fit)
# grafico das estimativas
ggsurvplot(
 fit,
  surv.median.line = "hv",
  ggtheme = theme_bw(),
 xlim=c(0,400),
 risk.table = T, tables.height = 0.32,
 break.time.by = 50,
 legend='top'
# QUESTÃO 2.a) tcd ----
# ajuste
fit <- survfit(s_plaq~tcd, dados)</pre>
# tabela com medidas resumo
print(fit)
# grafico das estimativas
ggsurvplot(
  fit,
  surv.median.line = "hv",
  ggtheme = theme_bw(),
 xlim=c(0,400),
 risk.table = T, tables.height = 0.32,
```

```
break.time.by = 50,
  legend='top'
)

(sdiff <- survdiff(s_plaq ~ age, dados_raw))
c("valor p exato" = pchisq(sdiff$chisq, df = 2, lower.tail = F))
survdiff(s_plaq ~ dissub, dados_raw)
survdiff(s_plaq ~ drmatch, dados_raw)
survdiff(s_plaq ~ tcd, dados_raw)</pre>
```