ABO Blood Group System

Number of antigens 4

Polymorphic A, B, A,B, and A1

Terminology

ISBT symbol (number)

History

ABO (001)

In 1900, Landsteiner mixed sera and RBCs from his colleagues and observed agglutination. On the basis of the agglutination pattern, he named the first two blood groups A and B, using the first letters of the alphabet. RBCs not agglutinated by either sera were first called C, but became known as "ohne A" and "ohne B" (ohne is German for "without"), and finally O. In 1907, Jansky proposed using Roman numerals I, II, III, IV for O, A, B, and AB respectively, and in 1910, Moss proposed using I, II, III, and IV for AB, A, B, and O, respectively. These numerical terminologies were used respectively in Europe and America until 1927 when Landsteiner suggested, in order to avoid confusion, to use throughout the world the symbols A, B, O, and AB. When the ISBT nomenclature was first described in 1982, there were five ABO antigens, but ABO5 is now obsolete after the H antigen was removed to form the H system in 1990.

Expression

Soluble form Other blood cells Saliva and all body fluids except CSF (in secretors) Lymphocytes, but also other leucocytes express A/B antigens, most prominently in secretors (antigens adsorbed from plasma), platelets (very strongly in ~5% of individuals)

Tissues On most epithelial cells (particularly glandular

epithelia), and on endothelial cells. Broad tissue distribution (often termed "histo-blood group"

antigens)

Gene^{1,2}

Chromosome 9q34.1–q34.2

Name ABO

Organization 7 exons distributed over 19.5 kbp of gDNA Product 3- α -N-acetylgalactosaminyltransferase for A

3-α-galactosyltransferase for B

Database accession numbers

GenBank NG_006669.1 (gDNA reference used by the

NCBI website, http://www.ncbi.nlm.nih.gov/sites/varvu?gene=28); AF134412–AF134416 (represent

different A, B and O-mRNA)

Entrez Gene ID 28

Amino acid sequence

Residues differing between the highly homologous A and B transferases are shown in bold; the two residues most important for donor sugar specificity are underlined.

A transferase (encoded by ABO*A1.01, based on AF134412)[^]

1	MAEVLRTLAG	KPKCHALRPM	ILFLIMLVLV	LFGYGVLSPR	SLMPGSLERG	50
	FCMAVREPDH	LQRVSLPRMV	YPQPKVLTPC	RKDVLVVTPW	LAPIVWEGTF	100
1	NIDILNEQFR	LQNTTIGLTV	FAIKKYVAFL	KLFLETAEKH	FMVGHRVHYY	150
•	VFTDQPAAVP	RVTLGTGRQL	SVLEV r aykr	WQDVSMRRME	MISDFCERRF	200
	LSEVDYLVCV	DVDMEFRDHV	GVEILTPLFG	TLHP G FYGSS	REAFTYERRP	250
	QSQAYIPKDE	$\mathtt{GDFYY} \underline{\mathbf{L}} \mathtt{G} \underline{\mathbf{G}} \mathtt{FF}$	GGSVQEVQRL	TRACHQAMMV	DQANGIEAVW	300
	HDESHLNKYL	LRHKPTKVLS	PEYLWDQQLL	GWPAVLRKLR	FTAVPKNHQA	350
,	VRNP					354

[^]B transferase (encoded by *ABO*B.01*, based on AF134414) has G, S, M, and A instead of R, G, L, and G at the four positions that differ between A and B, in bold above.

Carrier molecule description³

A and B antigens are not the primary gene products.

Antigens are defined by immunodominant terminal sugars ($\alpha 3 GalNAc$ for A; $\alpha 3 Gal$ for B) attached to one of several different types of acceptor molecules (see below), which are oligosaccharide chains carried on either glycoproteins (~90%) or glycosphingolipids (~10%). On glycoproteins, ABO antigens are expressed mainly on N-glycans containing polylactosaminyl units predominantly on band 3 (DI), the glucose transporter, RhAG, and CHIP-1 (CO). Some precursor types (3 and 4) may only be expressed on glycolipids and not on glycoproteins. The precursor of A and B antigens is the H antigen (H1).

Peripheral core	Structure [^]	Predominantly found in		
Type 1	Galβ(1–3)GlcNAcβ(1–3)-R	Secretions, plasma, endodermal tissues (small amounts adsorbed onto RBCs)		
Type 2	$Gal\beta(1-4)GlcNAc\beta(1-3)-R$	Ecto- and mesodermal tissues (main structure on RBCs)		
Type 3	$Gal\beta(1-3)GalNAc\alpha(1-3)-R$	O-linked mucin type, repetitive A (also on RBCs)		
Type 4	Galβ(1–3)GalNAcβ(1–3)-R	Glycolipids in kidney (also on RBCs		

[^]Shown without the H-specific Fuc α 2-linked to Gal.

Molecular basis associated with the various ABO phenotypes^{4–6}

Close to 200 alleles at the ABO locus have been described (see dbRBC), and a selection of them is listed below. Some are associated with the common A_1 , A_2 , and B phenotypes, but most convey weak (A subgroups and B subgroups) or null (group O) phenotypes. Some alleles encode glycosyltransferases that have the ability to synthesize both A and B antigens and give rise to the cisAB or B(A) phenotypes. Even the normal A and B glycosyltransferases may be able to synthesize trace amounts of the "wrong" antigen (respectively, B and A), but the cisAB and B(A) alleles make more than normal amounts of the "wrong" antigen, to a degree that it may be detected serologically by routine reagents.

The ABO allele nomenclature listed here is under consideration by the ISBT, and must be considered provisional. Since various terminologies have been in use for several years⁴, previously used allele names are given in parallel with the provisional ISBT allele names. The new allele names follow the ISBT naming format (see www.isbt-web.org) and nucleotide differences from the reference allele, ABO*A1.01 (AF134412), and amino acids affected are given for all alleles

R = Inner core structure or linkage (towards protein or lipid anchor).

except the B and B^{weak} alleles for which ABO*B.01 (AF134414) is used as reference. Alleles that differ from consensus or other alleles only by silent mutations are not listed here due to space restrictions. For more alleles, finally approved names, and details including the original reference for each allele, see dbRBC and the ISBT website.

Molecular bases associated with the A₁ and A₂ phenotypes

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity (prevalence)
A ₁	ABO*A1.01	A101	$A^{1}, A^{1}-1,$ $A(Pro)$	-	-	-	All (Common)
A ₁	ABO*A1.02	A102	$A1^{v}, A^{1}$ –2, A(Leu)	7	467C>T	Pro156Leu	Mainly Asians (Common)
A ₂	ABO*A2.01	A201	A^2 , A^2-1	7 7	467C>T 1061delC	Pro156Leu 354fs^	Non-Asians (Common)
A ₂	ABO*A2.02	A202	A106	7	1054C>T	Arg352Trp	Japanese (Few)
A ₂	ABO*A2.03	A203	A107	7	1054C>G	Arg352Gly	Japanese (Few)
A ₂	ABO*A2.04#	A204	R101	6 7 7 7 7	297A>G 526C>G 657C>T 703G>A 771C>T 829G>A	- Arg176Gly - Gly235Ser - Val277Met	Japanese (Rare)
A ₂	ABO*A2.05	A205	A111	7 7	467C>T 1009G>A	Pro156Leu Arg337Gly	Japanese (Few)
A ₂	ABO*A2.06	A206	A^{1} – A^{2} , $A^{2(467C)}$	7	1061delC	354fs^	All (Rare)
A ₂	ABO*A2.07	A207	-	7	539G>C	Arg180Pro	Taiwanese (Rare)
A ₂	ABO*A2.08	A208	-	7 7	467C>T 539G>C	Pro156Leu Arg180Pro	Chinese (Rare)
A ₂	ABO*A2.09	A209	Avar, A207	7 7 7	467C>T 527G>A 1061delC	Pro156Leu Arg176His 354fs^	Taiwanese, Kuwaitis (Rare)
A ₂	ABO*A2.10	A210	-	6 7	268T>C 467C>T	Trp90Arg Pro156Leu	Chinese (Rare)
							(Continued

(Continue	(Continued)											
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity (prevalence)					
A ₂	ABO*A2.11	A211	-	6 7	266C>T 467C>T	Pro89Leu Pro156Leu	Chinese (Rare)					
A ₂	ABO*A2.12	A212	-	4 7 7	190G>A 527G>A 1061delC	Val64lle Arg176His 354fs^	American (Rare)					
A ₂	ABO*A2.13	A213	-	7 7	467C>T 742C>T	Pro156Leu Arg248Cys	Chinese (Rare)					
A ₂	ABO*A2.16	A216	A2.16.01.1	3 4 4 7 7	106G>T 188G>A 189C>T 467C>T 1061delC	Val36Phe Arg63His - Pro156Leu 354fs^	Austrian (Rare)					
A ₂	ABO*A2.17	A217	-	7 7	407C>T 467C>T	Thr136Met Pro156Leu	Chinese (Rare)					
A ₂	ABO*A2.18	A218	-	7 7	467C>T 722G>A	Pro156Leu Arg241Gln	Chinese (Rare)					
A ₂	ABO*A2.19	A219	-	7 7	467C>T 778G>A	Pro156Leu Glu260Lys	Chinese (Rare)					
A ₂	ABO*A2.20	A220	-	7 7	467C>T 829G>A	Pro156Leu Val277Met	Chinese (Rare)					

[§]For instance, those introduced by the authors of the original publications.

Comments

The A103–A107 alleles in dbRBC do not give rise to an altered amino acid sequence compared to other alleles, and so are not included here. A108 and A109 are listed as unpublished, and had no phenotype registered in dbRBC. A214 and A215 represent the same coding sequence as ABO*A2.01, but have been registered under other names due to intron polymorphisms. Also, their phenotypes are not given in dbRBC. Some alleles listed above are unpublished, but have been submitted to GenBank/dbRBC.

It is also notable that many of the alleles registered as associated with the rare A_2 phenotype in Asia (e.g., A2.08, A2.13, A2.17, A2.18, and A2.20) cause amino acid substitutions that have been associated with weaker A subgroups in other studies. In the case of A2.18 and A2.19, the phenotype was given as A, not A_2 .

[^]A frame-shift extends the glycosyltransferase by 21 amino acids.

^{*}May be a hybrid between a B and an O allele.

Molecular bases associated with weak A subgroup phenotypes (most of them are rare)

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
A ₃	ABO*A3.01	A301	$A3, A^3-1$	7	871G>A	Asp291Asn	French, American
A ₃	ABO*A3.02	A302	A_3	7 7	829G>A 1061delC	Val277Met 354fs^	Brazilian
A_3	ABO*A3.03	A303	A^3	7	838C>T	Leu280Phe	Taiwanese
A ₃	ABO*A3.04	A304	A^3 , $A^{2(539G>A)}$	7	539G>A#	Arg180His	Swedish
A_3	ABO*A3.05	A305	-	7	820G>A	Val274Met	Taiwanese
A ₃	ABO*A3.06	A306	-	7 7	467C>T 820G>A	Pro156Leu Val274Met	Taiwanese
A_3	ABO*A3.07	A307	-	7 7	467C>T 745C>T	Pro156Leu Arg249Trp	Taiwanese
A _{weak}	ABO*AW.01	Aw01	A ^w -1	7	407C>T#	Thr136Met	English
A _{weak}	ABO*AW.02	Aw02	A^w –2	6	350G>C#	Gly117Ala	Caucasian
A _{weak}	ABO*AW.03	Aw03	Aw-3	4	203G>C#	Arg68Thr	Scandinavian
A _{weak}	ABO*AW.04	Aw04	A ^w -4	7	721C>T	Arg241Trp	German
A _{weak}	ABO*AW.05	Aw05	A ^w -5	7	965A>G	Glu322Gly	Finnish
A _{weak}	ABO*AW.06	Aw06	-	7	502C>G	Arg168Gly	Caucasian
A _{weak}	ABO*AW.07	Aw07	-	7	592C>T#	Arg198Trp	German
A _{weak}	ABO*AW.08	Aw08	O ² -4	5 6 7 7 7	220C>T 297A>G 488C>T 526C>G 802G>A	Pro74Ser - Thr163Met Arg176Gly Gly268Arg	Caucasian
A _{weak}	ABO*AW.09	Aw09	O ^{1v} –A ² hybrid	2 3 4 5	46G>A* 106G>T 188G>A 220C>T	Ala16Thr Val36Phe Arg63His Pro74Ser	African
A _{weak}	ABO*AW.10	Aw10	Avar	7	784G>A	Asp262Asn	Korean
A _{weak}	ABO*AW.11	Aw11	-	7 7	523G>A 721C>T	Val175Met Arg241Trp	German
A _{weak}	ABO*AW.12	Aw12	-	7 7	467C>T 556A>G	Pro156Leu Met186Val	Chinese

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
A _{weak}	ABO*AW.13	Aw13	-	1	2T>C	Start codon disrupted	Caucasian
A _{weak}	ABO*AW.14	Aw14	-	7 7	467C>T 699C>A	Pro156Leu His233Gln	Korean
A _{weak}	ABO*AW.15	Aw15	-	6–7	IVS6:+4a>t	Altered splicing	Turkish
A _{weak}	ABO*AW.16	Aw16	-	1	1A>G*	Start codon disrupted	Swiss
A _{weak}	ABO*AW.17	Aw17	-	5	236C>T#	Pro79Leu	Caucasian
A _{weak}	ABO*AW.18	Aw18	-	6	347T>C#	Ile116Thr	Swedish
A _{weak}	ABO*AW.19	Aw19	-	7	434A>G#	His145Arg	Swiss
A _{weak}	ABO*AW.20	Aw20	-	7	607G>A#	Glu203Lys	Canadian
A _{weak}	ABO*AW.21	Aw21	-	7	607G>C#	Glu203Gln	Portuguese
A _{weak}	ABO*AW.22	Aw22	-	7	634G>A#	Val212Met	Swiss
A _{weak}	ABO*AW.23	Aw23	-	7	722G>A#	Arg241Gln	French
A _{weak}	ABO*AW.24	Aw24	-	7	742C>T#	Arg248Cys	American
A _{weak}	ABO*AW.25	Aw25	-	7	829G>A#	Val277Met	African
A _{weak}	ABO*AW.26	Aw26	O ¹ –A ² hybrid	7	527G>A#	Arg176His	Turkish
A _{weak}	ABO*AW.27	Aw27	-	7 7	527G>A 1061delC	Arg176His 354fs^	Syrian
A _{weak}	ABO*AW.28	Aw28	-	1–2	IVS2:+2t>c	Altered splicing	German
A _{weak}	ABO*AW.29	Aw29	-	6	311T>A	Ile104Asn	Caucasian
A _x /A _{weak}	ABO*AW.30.01	Ax01	$A^{x}, A^{x}-1,$ $A108$	7	646T>A	Phe216Ile	Caucasian
A _x /A _{weak}	ABO*AW.30.02	Ax04	-	7 7	646T>A 681G>A	Phe216Ile	Japanese
A _x /A _{weak}	ABO*AW.31.01	Ax02	A*-3	6 7 7 7 7	297A>G 646T>A 681G>A 771C>T 829G>A	- Phe216lle - - Val277Met	Swedish
A _x /A _{weak}	ABO*AW.31.02	Ax03	A ^x -2	7 7 7	646T>A 681G>A 771C>T 829G>A	Phe216Ile Val277Met	Swedish [†]

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
A _x /A _{weak}	ABO*AW.31.03	Ax05	A ^x -4	7 7 7 7	646T>A 681G>A 771C>T 829G>A	Phe216lle Val277Met	Polish [†]
A _x /A _{weak}	ABO*AW.31.04	Ax06	A*-5	7 7 7 7	646T>A 681G>A 771C>T 829G>A	Phe216lle Val277Met	American [†]
A _x /A _{weak}	ABO*AW.31.05	Ax08	-	7 7 7 7	646T>A 681G>A 771C>T 829G>A	Phe216lle Val277Met	German [†]
A _x /A _{weak}	ABO*AW.32	Ax07	A*-6	7	996G>A	Trp332Stop	New Zealan
A _x /A _{weak}	ABO*AW.33	Ax09	A ^x -4	7 7	467C>T 543G>T	Pro156Leu Trp181Cys	Chinese
A _x /A _{weak}	ABO*AW.34	Ax10	-	7 7 7	467C>T 829G>A 1009A>G	Pro156Leu Val277Met Arg337Gly	Chinese
A _x /A _{weak}	ABO*AW.35	Ax11	-	7 7	467C>T 860C>T	Pro156Leu Ala287Val	Taiwanese
A _x /A _{weak}	ABO*AW.36	Ax12	-	7	607G>A	Glu203Lys	Chinese
A _x /A _{weak}	ABO*AW.37	Ax13	-	7	940A>G	Lys314Glu	Chinese
A _x /A _{weak}	ABO*AW.38	Ax14	-	7	426G>C	Met142Ile	Chinese
A _x /A _{weak}	ABO*AW.39	Ax15	-	7	385T>C	Phe129Leu	Chinese
A _x /A _{weak}	ABO*AW.40	Ax16	-	7	499G>T	Gly167Cys	Chinese
A _x /A _{weak}	ABO*AW.41	Ax17	-	6	370A>G	Lys124Glu	Chinese
A _x /A _{weak}	ABO*AW.42	Ax18	-	7 7	467C>T 905A>G	Pro156Leu Asp302Gly	Chinese
A _x /A _{weak}	ABO*AW.43	Ax19	-	7 7	467C>T 721C>T	Pro156Leu Arg241Trp	Chinese
A _{finn} /A _{weak}	ABO*AW.44	-	A ^{finn}	6–7	IVS6:+4a>g	Altered splicing	Finns

(Continued)

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
A _{bantu} /A _{weak}	ABO*AW.45	Abantu 01	A ^{bantu} , O ^{1bantu} _A ²	4–5	IVS4:+1delG#	Altered splicing	Bantu
A _m	ABO*AM.01	Am.01	A112	7	467C>T 761C>T	Pro156Leu Ala254Val	Japanese
A _m	ABO*AM.02	Am.02	-	7	664G>A	Val222Met	Taiwanese
A _{el}	ABO*AEL.01	Ael01	A ^{el} –1, A109	7	804insG	269fs°	Caucasians
A _{el}	ABO*AEL.02	Ael02	A110	7 7 7	467C>T 646T>A 681G>A	Pro156Leu Phe216lle	Japanese
A _{el}	ABO*AEL.03	Ael03	Aelvar	7	804delG	269fs288Stop	African
A _{el}	ABO*AEL.04	Ael04		6–7	IVS6:+5g>a	Altered splicing	Taiwanese
A _{el}	ABO*AEL.05	Ael05		7 7	467C>T 767T>C	Pro156Leu Ile256Thr	Chinese
A _{el}	ABO*AEL.06	Ael06		7 7	425T>C 467C>T	Met142Thr Pro156Leu	Chinese
A _{el}	ABO*AEL.07	Ael07	A ^{1v} –O ^{1v} hybrid	7 7 7 7	467C>T 681G>A 771C>T 829G>A	Pro156Leu - - Val277Met	Taiwanese
A _{el}	ABO*AEL.08	Ael08		7 7	467C>T 804insG	Pro156Leu 269fs ^o	Chinese

[§]For instance, those introduced by the authors of the original publications.

[^]A frame-shift extends the glycosyltransferase by 21 amino acids.

^{*}This allele also carries the two ABO*A2.01-related SNPs 467C > T and 1061delC which result in

Pro156Leu and 354fs and extension of the protein by 21 amino acids.
^oThis frame-shifting mutation theoretically extends the protein by 37 amino acids.
[†]These alleles differ in their intron 6 sequence, and are probable hybrid alleles with different crossing-over points between common ABO alleles.

Molecular bases associated with B phenotype[^]

(The seven B-associated polymorphisms are only shown for the first allele but are present in the others.)

Phenotype	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
В	ABO*B.01	B101	В	6 7 7 7 7 7	297A>G 526C>G 657C>T 703G>A 796C>A 803G>C 930G>A	- Arg176Gly - Gly235Ser Leu266Met Gly268Ala	All (Common)
В	ABO*B.02	B108	Bvar	7	892G>T	Ala298Ser	Taiwanese (Rare)
В	ABO*B.03	B112	-	7	559C>T	Arg187Cy	Chinese (Rare)

Other variants of B alleles exist, but the ones listed in dbRBC are either based on: (1) lack of one of the silent A vs. B SNPs (e.g., B102 has 930G, B103 has 657C); (2) silent mutations (B109 has 498C > T); (3) intron SNPs (e.g., B107, B113, B114, B116); (4) a sequence identical to a proven

Molecular bases associated with weak B subgroup phenotypes (all rare)

Differences compared to ABO*B.01 are given.

Bweak (B110); (5) unpublished (B113-B116).

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
B_3	ABO*B3.01	B301	B^3	7	1054C>T	Arg352Trp	Japanese
B_3	ABO*B3.02	B302	-	7	646T>A	Phe216lle	Japanese
B ₃	ABO*B3.03	B303	-	3–4	IVS3:+5g>a	Altered splicing	Asians
B_3	ABO*B3.04	B304	-	6	247G>T	Asp83Tyr	Taiwanese
B_3	ABO*B3.05	B305	-	7	425T>C	Met142Thr	Chinese
B_3	ABO*B3.06	B306	Bvar	7	547G>A	Asp183Asn	Koreans
B_3	ABO*B3.07	B307	-	7	410T>C	Ala137Val	Chinese
							(Continue

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
B_3	ABO*B3.08	B308	-	7	938A>C	His313Pro	Koreans
B _{x/} B _{weak}	ABO*BW.01	Bx01	Bw-1	7	871G>A	Asp291Asn	Japanese
B _{weak}	ABO*BW.02	Bw02	Bw-2	7	873G>C	Asp291Glu	French
B _{weak}	ABO*BW.03	Bw03	Bw-3	7	721C>T	Arg241Trp	Swedish
B _{weak}	ABO*BW.04	Bw04	B ^w -4	7	548A>G	Asp183Gly	Swedish
B _{weak}	ABO*BW.05	Bw05	B ^w -5	7	539G>A	Arg180His	America
B _{weak}	ABO*BW.06	Bw06	Bw-6	7	1036A>G	Lys346Glu	Finnish
B _{weak}	ABO*BW.07	Bw07	B ^w -7	7	1055G>A	Arg352Gln	Indian, America
B _{weak}	ABO*BW.08	Bw08	Bw-8	7	863T>G	Met288Arg	Turkish
B _{weak}	ABO*BW.09	Bw09	Bw08	7	1037A>T	Lys346Glu	German
B _{weak}	ABO*BW.10	Bw10	-	7	556A>G	Met186Val	Braziliar
B _{weak}	ABO*BW.11	Bw11	Bw-11	7	695T>C	Leu232Pro	Chinese, Thai
B _{weak}	ABO*BW.12	Bw12	-	6	278C>T	Leu93Pro	Chinese
B _{weak}	ABO*BW.14	Bw14	B ^w -14	7	523G>A	Val175Met	Caucasia Chinese
B _{weak}	ABO*BW.15	Bw15	B ^w -15	7	565A>G	Met189Val	Turkish
B _{weak}	ABO*BW.16	Bw16	B ^w -16	7	575T>C	Ile192Thr	Hindusta
B _{weak}	ABO*BW.17	Bw17	Bw-17	7	784G>A	Asp262Asn	Indian
B _{weak}	ABO*BW.18	Bw18	B ^w -18	7	802G>A	Ala268Thr	French
B _{weak}	ABO*BW.19	Bw19	B ^w −19	7 7	646T>A 681G>A	Phe216Ile	Chinese
B _{weak} #	ABO*BW.20	Bw20	-	7	816insG	272fs392Stop	German
B _{weak}	ABO*BW.21	Bw21	-	7	688G>C	Gly230Arg	Turkish
B _{weak}	ABO*BW.22	Bw22	-	7	503G>T	Arg168Leu	Chinese
B _{weak}	ABO*BW.23	Bw23	-	7	743G>C	Arg248Pro	Chinese
B _{weak}	ABO*BW.24	Bw24	-	7	558G>T	Met186Ile	Chinese
B _{weak}	ABO*BW.25	Bw25	-	3 7	103G>A 619C>G	Gly35Arg Leu207Val	German
B _{weak}	ABO*BW.26	Bw26	O²−B hybrid¤	2	53G>T	Arg18Leu	Swiss
B _{weak}	ABO*BW.27	Bx02	Bel06	7	905A>G	Asp302Gly	Chinese
B _{weak}	ABO*BW.28	Bx03	-	7	541T>C	Trp181Arg	Chinese

(Continue	(Continued)											
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity					
B _{weak}	ABO*BW.29	Bx04	-	7	588C>G	Cys196Trp	Chinese					
B _{weak}	ABO*BW.30	Bx05	-	7	976G>T	Asp326Tyr	Chinese					
B _{weak}	ABO*BW.31	Bx06	-	7	900G>C	Trp300Cys	Chinese					
B _{weak}	ABO*BW.32	Bx07	-	7	808T>A	Phe270Ile	Chinese					
B _{weak}	ABO*BW.33	Bx08	-	7	550G>A	Val184Met	Chinese					
B _{weak}	ABO*BW.34	Bx09	-	7	889G>A	Glu297Lys	Chinese					
B _{el}	ABO*BEL.01	Bel01	B105	7	641T>G	Met214Arg	Japanese					
B _{el}	ABO*BEL.02	Bel02	B106	7	669G>T	Glu223Asp	Japanese					
B _{el}	ABO*BEL.03	Bel03	-	7	502C>T	Arg168Trp	Taiwanese					
B _{el}	ABO*BEL.04	Bel04	-	7	t	†	Brazilian Japanese					
B _{el}	ABO*BEL.05	Bel05	-	7	952G>A	Val318Met	Chinese					

[§]For instance, by the authors of the original publication.

Molecular bases associated with cisAB and B(A) phenotypes (all rare except ABO*cisAB.01, which is infrequent in Asians)

Differences compared to ABO*A1.01 are given.

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names	Exon	Nucleotide	Amino acid change	Ethnicity
cisAB	ABO*cisAB.01	cis–AB01	cisAB–1	7 7	467C>T 803G>C	Pro156Leu Gly268Ala	Asian
cisAB	ABO*cisAB.02	cis–AB02	cisAB-2	7 7 7 7	526C>G 657C>T 703G>A 803G>C	Arg176Gly - Gly235Ser Gly268Ala	Australian

(Continued)

[^]Apparently normal B phenotype in two Chinese donors.

^{*}According to the original publication, adsorption/elution was negative so allele designation questionable.

 $^{^{\}circ}$ A hybrid between an O allele (exons 1–4) and B (exons 5–7).

 $^{^{\}dagger}$ 467C > T;646T > A;681G > A;771C > T;796C > A;803G > C;829G > A, resulting in Pro156Leu;Phe216lle; Met266Leu;Gly268Ala;Met277Val, i.e., an unusual combination of allelic markers from ABO*A1.02, *B.01 and a common O allele. Possibly a hybrid allele.

(Continued)							
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names	Exon	Nucleotide	Amino acid change	Ethnicity
cisAB	ABO*cisAB.03	cis–AB03	cis AB. tlse(*)01, cisAB-3	6 7 7 7 7 7 7	297A>G 526C>G 657C>T 700C>T 703G>A 796C>A 803G>C 930G>A	- Arg176Gly - Pro234Ser Gly235Ser Leu266Met Gly268Ala	French
cisAB	ABO*cisAB.04	cis–AB04	cisAB-4	7 7	467C>T 796C>A	Pro156Leu Leu266Met	Chinese
cisAB	ABO*cisAB.05	cis–AB05	cisAB–5	6 7 7 7 7	297A>G 526C>G 657C>T 703G>A 796C>A 930G>A	- Arg176Gly - Gly235Ser Leu266Met -	Chinese [^]
cisAB	ABO*cisAB.06	cis–AB06	_	6 7 7 7 7 7	297A>G 657C>T 703G>A 796C>A 803G>C 930G>A	- Gly235Ser Leu266Met Gly268Ala	Chinese
B(A)	ABO*BA.01	B(A)01	B(A)-1	6 7 7 7 7	297A>G 526C>G 796C>A 803G>C 930G>A	- Arg176Gly Leu266Met Gly268Ala	
B(A)	ABO*BA.02	B(A)02	B(A)-2	6 7 7 7 7 7 7	297A>G 526C>G 657C>T 700C>G 703G>A 796C>A 803G>C 930G>A	Arg176Gly Pro234Ala Gly235Ser Leu266Met Gly268Ala -	Taiwanese
B(A)	ABO*BA.03	B(A)03	B(A)-3	6 7 7 7 7 7	297A>G 526C>G 657C>T 796C>A 803G>C 930G>A	- Arg176Gly - Leu266Met Gly268Ala -	Caucasian
B(A)	ABO*BA.04	B(A)04	B(A)-4	6 7 7 7 7	297A>G 526C>G 640A>G 657C>T 703G>A	- Arg176Gly Met214Val - Gly235Ser	Chinese
							(Continued)

(Continue	ed)						
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names	Exon	Nucleotide	Amino acid change	Ethnicity
				7 7 7	796C>A 803G>C 930G>A	Leu266Met Gly268Ala -	
B(A)	ABO*BA.05	B(A)05	B(A)-5	6 7 7 7 7 7 7	297A>G 526C>G 641T>C 657C>T 703G>A 796C>A 803G>C 930G>A	- Arg176Gly Met214Thr - Gly235Ser Leu266Met Gly268Ala	Chinese
B(A)	ABO*BA.06	B(A)06	B(A)-6, B(A) ^v	6 7 7 7 7 7	297A>G 526C>G 657C>T 703G>A 796C>A 930G>A	- Arg176Gly - Gly235Ser Leu266Met -	Chinese

[^]This allele may be identical to ABO*BA.06. The polymorphisms and amino acids reported for both alleles are the same according to dbRBC, and the cis-AB05 entry has been accepted in dbRBC without publication or GenBank submission so difficult to compare.

Molecular bases associated with O (null) phenotype[^]

Differences compared to ABO*A1.01 are given, and the genetic alteration inducing the null phenotype is noted in bold (if known).

Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity
Ο	ABO*O.01.01	O01	O^1	6	261delG	88fs118Stop	All (Common)
O	ABO*O.01.02	O02	O¹v	3 4 4 5 6 6 7 7 7	106G>T 188G>A 189C>T 220C>T 261delG 297A>G 646T>A 681G>A 771C>T 829G>A	Val36Phe Arg63His - Pro74Ser 88fs118Stop - - -	All (Common)

(Continued)								
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity	
O?	ABO*O.02.01	O03	O ² -1	2 5 6 7 7	53G>T 220C>T 297A>G 526C>G 802G>A	Arg18Leu Pro74Ser - Arg176Gly Gly268Arg	All but Asians (Many)	
O?	ABO*O.02.02	O48	O ² -2	2 5 6 7 7 7	53G>T 220C>T 297A>G 526C>G 649C>T 689G>A 802G>A	Arg18Leu Pro74Ser - Arg176Gly Arg217Cys Gly229Asp Gly268Arg	Israeli (Rare)	
O?	ABO*O.02.03	O49	O ² -3	2 5 6 7 7	53G>T 220C>T 297A>G 526C>G 689G>A 802G>A	Arg18Leu Pro74Ser - Arg176Gly Gly229Asp Gly268Arg	Caucasians (Many)	
O?	ABO*O.02.04	O50	O ² -4	2 5 6 7 7	53G>T 220C>T 297A>G 488C>T 526C>G 802G>A	Arg18Leu Pro74Ser - Thr163Met Arg176Gly Gly268Arg	Caucasians (Several)	
O?	ABO*O.03	O08	O^3	7 7 7	467C>T 804insG 1061delC	Pro156Leu 269fs# 354fs#	Caucasians (Rare)	
O?	ABO*O.04	O51	O ⁴ , O41	2	87_88insG	29fs56Stop	Caucasians (Rare)	
O?	ABO*O.05	O52	O^5	6	322C>T	Gln108Stop	Caucasians (Rare)	
O?	ABO*O.06	O53	O^6	7	542G>A	Trp181Stop	Caucasians (Rare)	
О	ABO*O.07	O14	O301	7 7	467C>T 893C>T	Pro156Leu Ala298Val	Japanese (Rare)	
О	ABO*O.08	O15	O302	7	927C>A	Tyr309Stop	Japanese (Rare)	
O?	ABO*O.09.01	O19	R102	7 7 7 7	646T>A 681G>A 771C>T 829G>A	Phe216lle - - Val277Met	Japanese ^o (Rare)	
							(Continued	

(Continued)								
Pheno- type	Provisional ISBT allele name	dbRBC allele name	Other allele names§	Exon	Nucleotide	Amino acid change	Ethnicity	
O?	ABO*O.09.02	O20	R103	6 7 7 7 7	297A>G 646T>A 681G>A 771C>T 829G>A	- Phe216lle - - Val277Met	Japanese [©] (Rare)	
O?	ABO*O10	O72	-	2	67insG	23fs		

§For instance, by the authors of the original publication.

Comments

Hybrid ABO alleles are not uncommon. Null alleles including exon 6 from one of the common O alleles containing 261delG but with exon 7 elements from A^2 or B may interfere with ABO genotyping and cause risk for erroneous reporting of A^2 and B alleles, respectively. Since the products of these O alleles are truncated in the same way as ABO*O.01.01 and ABO*O.01.02, they have not been included in the above table, as is also the case for other allelic variants featuring 261delG. If only position 261 has been tested to determine O allele status, ABO*O.01 can be used for reporting.

Most of the *O* alleles lacking 261delG have been involved in serological ABO typing discrepancies. Despite the presence of premature stop codons in various exons, the phenotype produced varies from group O to weak expression of A antigen, but weakening of anti-A and anti-A1 is often observed. It can therefore be debated if they should be classified as *O* alleles or not. The mechanisms behind these phenomena have not yet been clarified.

Function

The A and B glycosyltransferase use, respectively, UDP-GalNAc and UDP-Gal as their donor substrates, and the various forms of H precursor structures as their acceptor substrates. There have been many speculative arguments as to the general function of ABO structures but it is clear that human "knock-outs," i.e., individuals with the null phenotype (group O), are not seriously affected. Instead, this phenotype is actually beneficial in many situations, perhaps best exemplified by its protective role in decreasing rosetting in severe malaria. In an evolutionary perspective, glycan diversity (including ABO differences) is thought to have been

^{*}These two frame-shifts neutralize each other and the protein product has normal size (354 amino acids). *These hybrid alleles involve exon 7 of *ABO*O.01.02*, and are similar or identical to so-called *A*^x hybrids (*ABO*AW.31.01* to *ABO*AW.31.05*). The allele *in trans* may determine the resulting phenotype.

 $^{^{\}wedge}$ Multiple variants of these alleles exist with numerous silent SNPs, but >95% of all O alleles depend on 261delG for their inactivation. The major alleles inactivated by principally different mechanisms are listed.

a key survival factor, serving as a primitive immune system via the herd immunity concept⁸. Accordingly, it was important that members of a certain population had different carbohydrate epitopes serving as involuntary receptors for pathogen lectins, and also different naturally-occurring antibodies neutralizing pathogens with ABO-mimicking sugar coats on their surfaces. Only in this way would the population be likely to survive over time despite lethal pandemics. In addition to this fundamental function, other potential functions of ABO antigens have been proposed, including roles in embryogenesis, cell–cell interaction in carcinogenesis⁹, and modulation of sialic acid recognition¹⁰.

Disease association^{5,7,11}

Expression of A and B antigens may be weakened in normal states such as during pregnancy, at young or old age, as well as due to disease. Weakening or even disappearance of A and B antigens can be the result of chromosome 9 translocations, development of (pre-) malignant hematological disease such as leukemia (especially in the acute and chronic myelogenous types) and myelodysplastic syndrome, and any disease inducing stress hematopoiesis, e.g., thalassemia and Diamond-Blackfan anemia. Stress hematopoiesis induces reduced branching of carbohydrate chains, and thus fewer A, B, H, and I antigens. Changes in sugar chains are often observed during carcinogenesis, and therefore altered ABH antigens can be considered tumor markers. Loss of A and B antigens have been described in various solid tumors. The acquired B antigen is a consequence of microbial infection in which the terminal GalNAc of the A antigen is deacetylated by bacterial enzymes, and thereby is made more similar to Gal. ABO phenotypes are associated with susceptibility to numerous diseases including cancer, thrombosis, and bleeding. There is also a strong correlation between susceptibility to certain infections and ABO status, most prominently severe forms of *Plasmodium falciparum* malaria.

Phenotypes (% occurrence)

	Caucasians [^]	Blacks [^]	Asian^	Mexican	
A ₁	33	19	27	22	
A_2	10	8	rare	6	
В	9	20	25	13	
О	44	49	43	55	
A_1B	3	3	5	4	
A_2B	1	1	rare	rare	
Null	O is the amorph; O _h (the Bombay phenotype) depends on the <i>FUT1/FUT2</i> loci, see H system [018]				
Unusual	Many subgroups of A and B (see phenotype tables in major text books)				

Comments

Aberrant ABO results created by modern medical practices (in addition to the mixed-field reactions seen after transfusion of ABO-non-identical RBCs) include: ABO-non-identical stem cell transplantation; ABO-incompatible solid organ transplantation; *in vitro* fertilization; artificial insemination; surrogate motherhood.

There is a vast literature on clinical, serological, microbiological, biochemical, enzymatic, structural, and molecular genetic aspects of the ABO system. The reader is recommended to search the databases for the numerous reviews written on various aspects of these different ABO-related topics.

References

- Yamamoto, F., et al., 1990. Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuca1—>2Gala1—>3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265, 1146–1151.
- ² Yamamoto, F., et al., 1990. Molecular genetic basis of the histo-blood group ABO system. Nature 345, 229–235.
- ³ Clausen, H., Hakomori, S., 1989. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 56, 1–20.
- ⁴ Chester, M.A., Olsson, M.L., 2001. The ABO blood group gene: a locus of considerable genetic diversity. Transfus Med Rev 15, 177–200.
- Storry, J.R., Olsson, M.L., 2009. The ABO blood group system revisited: a review and update. Immunohematology 25, 48–59.
- ⁶ Yamamoto, F., 2004. Review: ABO blood group system ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases and ABO genes. Immunohematology 20, 3–22.
- ⁷ Cserti, C.M., Dzik, W.H., 2007. The ABO blood group system and *Plasmodium falciparum* malaria. Blood 110, 2250–2258.
- ⁸ Gagneux, P., Varki, A., 1999. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755.
- ⁹ Ichikawa, D., et al., 1997. Histo-blood group A/B versus H status of human carcinoma cells as correlated with haptotactic cell motility: approach with A and B gene transfection. Cancer Res 57, 3092–3096.
- Ohen, M., et al., 2009. ABO blood group glycans modulate sialic acid recognition on erythrocytes. Blood 114, 3668–3676.
- ¹¹ Anstee, D.J., 2010. The relationship between blood groups and disease. Blood 115, 4635–4643.

A Antigen

Terminology

ISBT symbol (number) ABO1 (001001 or 1.1) Other names and history See System page

Occurrence

Caucasians 43% Blacks 27% Asians 28% Mexicans 28% South American Indians 0%

These numbers do not include group AB, which would increase the numbers (all except South American Indians) by approximately 4%.

Expression

Cord RBCs Weak

Altered Weak in A subgroup and other

variants; some diseases

Molecular basis associated with A antigen

See ABO Blood Group System page for genetic basis of A subgroups.

Effect of enzymes and chemicals on A antigen on intact RBCs

DTT 200 mM Resistant Acid Resistant

In vitro characteristics of alloanti-A

Immunoglobulin class IgM; IgG

Optimal technique RT or below; IAT for IgG component

Neutralization Saliva from A secretors Complement binding Yes; some hemolytic

[^]May be particularly relevant when testing or titrating the sera of platelet donors, pregnant women, and patients waiting for or having undergone ABO-incompatible organ transplantation or following ABO-non-identical stem cell transplantation complicated by pure red cell aplasia due to anti-A.

Clinical significance of alloanti-A

Transfusion reaction None to severe; immediate/delayed;

intravascular/extravascular

HDFN No to moderate (rarely severe)

Autoanti-A

Rare

Comments

Serum from group A individuals contains naturally-occurring anti-B (see B antigen section).

B Antigen

Terminology

ISBT symbol (number) ABO2 (001002 or 1.2) Other names and history See System page

Occurrence

Caucasians	9%
Blacks	20%
Asians	27%
Mexicans	13%
South American Indians	0%

These numbers do not include group AB, which would increase the numbers (all except South American Indians) by approximately 4%.

Expression

Cord RBCs Weak

Altered Weak in B subgroup and other variants; some diseases

Molecular basis associated with B antigen

See ABO system page for genetic basis of B subgroups.

Effect of enzymes and chemicals on B antigen on intact RBCs

DTT 200 mM Resistant
Acid Resistant

In vitro characteristics of alloanti-B

Immunoglobulin class IgM; IgG

Optimal technique RT or below; IAT for IgG component

Neutralization Saliva from B secretors Complement binding Yes; some hemolytic

^May be particularly relevant when testing or titrating the sera of platelet donors, pregnant women, and patients waiting for or having undergone ABO-incompatible organ transplantation or following ABO-non-identical stem cell transplantation complicated by pure red cell aplasia due to anti-B.

Clinical significance of alloanti-B

Transfusion reaction No to severe; immediate/delayed; intravascular/

extravascular

HDFN No to moderate (rarely severe)

Autoanti-B

Rare

Comments

Serum from group B individuals contains naturally-occurring anti-A and anti-A1 (see A and A1 antigen sections).

A,B Antigen

Terminology

ISBT symbol (number) ABO3 (001003 or 1.3)

History Discussed since the 1950s and many hypotheses

about the molecular background of this antigen have been presented. At one point referred to as the C antigen of the ABO system. Acknowledged by the

ISBT in the first workshop report in 1982.

Occurrence

Found in all individuals expressing A and/or B antigens (e.g., 56% of Caucasians according to the phenotype table in the ABO system section above).

Expression

Cord RBCs Weak

Altered Weakened when A and B antigens are weak

Molecular basis associated with A,B antigen¹

Once the molecular differences between A and B antigens were revealed, it was hypothesized that the structures common to the oligosaccharide terminals ending with $\alpha 3GalNAc$ and $\alpha 3Gal$, respectively, would make up the epitope recognized by anti-A,B. The only difference between A and B antigens is situated at carbon position 2 of the terminal residue, i.e., A has a NHAc group, whereas B has an OH group. The A,B epitope was shown to depend on the surface common to the terminal sugars in A and B. Monoclonal anti-A,B and polyclonal anti-A,B from group O sera react with this epitope.

Effect of enzymes and chemicals on A,B antigen on intact RBCs

DTT 200 mM Resistant Acid Resistant

In vitro characteristics of alloanti-A,B

Immunoglobulin class IgM; IgG

Optimal technique RT or below; IAT for IgG component[^] Neutralization Saliva from A, B or AB secretors

Complement binding Rare

^May be particularly relevant when testing or titrating the sera of platelet donors, pregnant women, and patients waiting for or having undergone ABO-incompatible organ transplantation or following ABO-non-identical stem cell transplantation complicated by pure red cell aplasia due to anti-A and anti-B.

Clinical significance of anti-A,B

Transfusion reaction None to mild/delayed

HDFN No to severe

[^]No data to differentiate anti-A or anti-B from anti-A,B as the implicated antibody specificity in affected fetuses/infants to group O mothers in whom ABO-related HDFN is more common. However, group O individuals (who are the only anti-A,B makers) produce more IgG antibodies against ABO antigens compared to A and B individuals. Anti-A,B crosses the placenta more frequently than do anti-A and anti-B.

Autoantibody

Rare

Comments

Anti-A,B is an antibody specificity selectively found in the plasma of group O individuals and that cannot be separated into anti-A and anti-B.

Polyclonal anti-A,B from group O individuals reacts strongly with A_x subgroup RBCs, while anti-A may not react or react only weakly.

Reference

¹ Korchagina, E.Y., et al., 2005. Design of the blood group AB glycotope. Glycoconj J 22, 127–133.

A1 Antigen

Terminology

ISBT symbol (number) ABO4 (001004 or 1.4)

History The two major A subgroups, A_1 and A_2 , were

discovered already in 1911 by von Dungern and Hirszfeld, but remained unnamed until 1930 when the blood group A phenotype was subdivided by the presence or absence of (what later became known as) A1 antigen, recognized by antibodies in the serum of some individuals with the A2 phenotype

Occurrence

Caucasians 34% (approximately 80% of group A)

Blacks 19% Asians 27%

These numbers do not include group AB.

Expression

Cord RBCs Weak

Altered A_{int} (a subgroup with phenotype characteristics in

between A_1 and A_2)

Acquired B syndrome (almost exclusively found in A1-positive individuals following modification of the terminal GalNAc of the A antigen on their RBCs by a bacterial deacetylase during infection to cause crossreactivity with some anti-B reagents).

Molecular basis associated with A1 antigen¹⁻⁶

Even if the difference between the A1-positive A_1 phenotype and the A1-negative A_2 phenotype can easily be demonstrated by simple hemagglutination assays using lectin reagents diluted correctly (e.g., *Dolichos biflorus* positive with A_1 RBCs and negative with A_2 , whilst *Ulex europaeus* is negative with A_1 and positive with A_2), the molecular identity of the A1 antigen is still under debate. It is unequivocal that a quantitative difference exists so that A_1 RBCs possess approximately 4–5 times more A antigen than A_2 RBCs. In addition, the common A^2 allele has distinct features (mainly the 1061delC polymorphism) compared to A^1 alleles, and encodes a glycosyltransferase that is qualitatively different (e.g., regarding its pH optimum, enzymic activity, and molecular size) from the A_1 transferase.

 A_1 RBCs have higher amounts of A type 3 glycolipid (the repetitive A epitope) and A type 4 (globo-A). A_2 RBCs may have A type 3 at levels that are difficult to detect serologically on whole RBCs compared to A_1 , and may lack A type 4.

Effect of enzymes and chemicals on A1 antigen on intact RBCs

DTT 200 mM Resistant Acid Resistant

In vitro characteristics of alloanti-A1

Immunoglobulin class IgM more common than IgG

Optimal technique RT or below

Neutralization Saliva from $A(A_1)$ secretors

Complement binding Rare

Clinical significance of alloanti-A1

Transfusion reaction None to mild/delayed

HDFN No.

Autoantibody

Rare

Comments

Anti-A1 is found in serum from 1-2% of A_2 and 25% of A_2B individuals, and is a component of anti-A from group O and B people.

References

- ¹ Clausen, H., et al., 1984. Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem Biophys Res Commun 124, 523–529.
- ² Clausen, H., et al., 1985. Repetitive A epitope (type 3 chain A) defined by blood group A1-specific monoclonal antibody TH-1: chemical basis of qualitative A1 and A2 distinction. Proc Natl Acad Sci USA 82, 1199–1203.
- ³ Clausen, H., et al., 1986. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes, and type 3 chain H expression in relation to secretor status. J Biol Chem 261, 1388–1392.
- ⁴ Schachter, H., et al., 1973. Qualitative differences in the N-acetyl-D-galactosaminyltransferases produced by human A1 and A2 genes. Proc Natl Acad Sci USA 70, 220–224.
- Svensson, L., et al., 2009. Blood group A(1) and A(2) revisited: an immunochemical analysis. Vox Sang 96, 56–61.
- ⁶ Yamamoto, F., et al., 1992. Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun 187, 366–374.