Calculus on Manifolds

Thomas Brosnan

Notes taken in Professor Florian Naef's class, Hilary Term $2024\,$

" "

-

Contents

1	Top	\mathbf{pology} on \mathbb{R}^n
	1.1	Metric space
		Open/Closed
	1.3	Continuity
		Compact
	1.5	Heine Boral theorem
	1.6	Differentiation
		Chain rule
		Diffeomorphism
	1.9	Inverse function Theorem
2		nifolds
	2.1	Manifolds
		2.1.1 Parameterised manifold
	2.2	Alternate definitions

Calculus on Manifolds 1 Topology on \mathbb{R}^n

1 Topology on \mathbb{R}^n

1.1 Metric space

• Let X be a set, A *metric* on a set is a function that measures distances $d: X \times X \to \mathbb{R}$. It has the following properties:

$$d(x,y) = d(y,x)$$

$$d(x,y) \ge 0$$

$$d(x,y) = 0 \text{ iff } x = y$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$(1.1)$$

(X,d) together make a metric space.

• Any subset $Y \subset X$ is itself a metric space with $d(x,y)\Big|_{Y\times Y}$ (restricted to Y).

1.2 Open/Closed

- Let (X, d) be a metric space $U \subset X$ is open if $\forall p \in U, \exists \epsilon > 0$ st. $B_{\epsilon}(p) := \{x \in X | d(x, y) \leq \epsilon\}$ and closed if X U (the compliment set) is open.
- If we have $U \subset Y \subset X$, (X, d) a metric space, for us in all applications $X = \mathbb{R}^n$. U is open/closed in $(Y, d|_{Y \times Y}) \iff \exists \ V \subset X$ open/closed st. $U = V \cap Y$.

1.3 Continuity

• If we have $f: X \to Y$, with X and Y metric spaces, is *continuous* if, $f^{-1}(U)$ is open with $U \subset Y$ is open.

If $f: X \to Y$ is a bijection, continuous and f^{-1} continuous we call f a homomorphism.

1.4 Compact

• X is compact if every open cover has a finite subcover, i.e. $\forall \{U_{\alpha}\}_{{\alpha}\in I}, U_{\alpha}\subset X (U_{\alpha} \text{ open}) \text{ st. } X\subset \bigcup_{{\alpha}\in I}U_{\alpha}, \text{ then }\exists \alpha_1,...,\alpha_k\in I \text{ st. } X\subset U_{\alpha_1}\cup...\cup U_{\alpha_k}.$

1.5 Heine Boral theorem

• $X \subset \mathbb{R}^n$ is compact if bounded $(\exists R \in \mathbb{R} \text{ st } X \subset B_R(0))$ and closed in \mathbb{R}^n .

1.6 Differentiation

• $f: U \to V$, $(U \subset \mathbb{R}^n, V \subset \mathbb{R}^m)$ is differentiable at $p \in U$ with derivative $Df(p) \in Mat(m,n)$ if:

$$\lim_{x \to p} \frac{f(x) - f(p) - Df(p)(x - p)}{\|x - p\|} = 0$$
 (1.2)

Calculus on Manifolds 1 Topology on \mathbb{R}^n

• f is (of class) C^1 if it is differentiable at all $p \in U$ and $Df: U \to Mat(m,n) \cong \mathbb{R}^{mn}$ is continuous.

- f is C^r if Df is C^{r-1} , f is smooth or C^{∞} if it is $C^t \forall t > 0$.
- If we have $f: U \to \mathbb{R}^m$, $(U \in \mathbb{R}^n)$. Then $x \mapsto (f_1(x), ..., f_n(x))$ is C^r , if:

$$\frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial}{\partial x_{i_k}} f_j : U \to \mathbb{R}$$
(1.3)

Exists, and is continuous for all $k \in \{1, ..., m\}, i_1, ..., i_k \in [1, ..., n]$ and $j \in [1, ..., m]$. In which case the derivative can then be expressed as:

$$Df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$(1.4)$$

1.7 Chain rule

• Consider $U \xrightarrow{g} V \xrightarrow{f} W$, where f and g are differentiable (or C^r), then so is $f \circ g$ and:

$$D(f \circ g)(x) = Df(g(x)) \cdot Dg(x)$$
(1.5)

This is the chain rule and the \cdot here refers to matrix multiplication.

1.8 Diffeomorphism

• If we have $f: U \to V$, smooth and U, V open (in \mathbb{R}^n and \mathbb{R}^m respectively) st. $f^{-1}V \to U$ exists and is also smooth. Then we call f a diffeomorphism.

1.9 Inverse function Theorem

• Let $f: V \to \mathbb{R}^n$ be C^r $(1 \le r \le \infty)$ and $V \subset \mathbb{R}^m$. For $p \in V$, suppose Df(p) is non-singular (i.e an invertible $m \times n$ matrix $\iff det(Df) \ne 0$). Then $\exists p \in U \subset V$, U open, st,

$$-\left.f\right|_{U}:U\to f(U)$$
 , is a $C^{r}\text{-diffeomorphism.}$ i.e. $\left.f\right|_{U}:U\to f(U)$ is a bijection

-f(U) is open

$$- f^{-1}\Big|_{U}: U \to f(U) \text{ is } C^r.$$

Calculus on Manifolds 2 Manifolds

2 Manifolds

• "Slogan" (informal definition) $M \subset \mathbb{R}^n$ is a manifold if it is "smooth" without corners/intersections

2.1 Manifolds

- Let d > 0 $M \subset \mathbb{R}^n$ is a smooth/ C^r manifold of dimension d if $\forall p \in M$, $\exists p \in V \subset M$, $U \subset \mathbb{R}^d$ (V and U open) and $\alpha: U \to V$, st:
 - $-\alpha$ is smooth/ C^r
 - $-\alpha$ is a bijection with a continuous inverse (\iff is a homomorphism)
 - $-D\alpha(x)$ has Rank d.

We will see this means α is a diffeomorphism.

2.1.1 Parameterised manifold

• Sometimes a only a single function $\alpha: U \to M$ is needed in the definition of a manifold. In this case we call (M, α) a parameterized manifold.

From now on we will only discuss smooth/ C^{∞} manifolds

2.2 Alternate definitions

- If we have a set $M \subset \mathbb{R}^n$, d > 0, $p \in M$. Then the following are equivalent:
 - $-\exists p \in V \subset M, \ U \subset \mathbb{R}^d, \ (V \text{ and } U \text{ open}), \ \alpha : U \to V \text{ a smooth homomorphism, st, } D\alpha(x) \text{ has }$ rank $d, \ \forall \ x \in U.$
 - $-\exists p \in V \subset \mathbb{R}^n$, $U \subset \mathbb{R}^n$ (V and U open), $\beta: U \to V$ a diffeomorphism and $\beta(U \cap (\mathbb{R}^d \times \{0\})) = V \cap M$.
- This second definition is new and the set $U \cap (\mathbb{R}^d \times \{0\})$ is just the intersection of $U \subset \mathbb{R}^n$ and the space \mathbb{R}^d extended into \mathbb{R}^n by adding 0 to the d dimensional tuples n-d times until they become \mathbb{R}^n . This is effectively saying we want to be able to straighten out manifold neighbourhoods.

Calculus on Manifolds 2 Manifolds