

Appliance Level Energy Disaggregation

Samir Sen, Fred Lu | {samirsen, fredlu}@stanford.edu

TETANORD JUNIOR THE LEGAND JUNIOR THE LEGAND JUNIOR THE LEGAND JUNIOR THE LEGAND THE LEG

Motivation

- o The way we think about energy is in need of reform!
- Even with the rise of smart meters, we have very limited information of the way we consume energy
- In Roble alone, utility bills have exceeded over \$4
 million over the past 10 years
- Every winter, Roble saves 1000 metric tons CO2
- How can we conserve our energy and save money?

Data / Problem Formulation

REDD Dataset

. . .

31566

31567

46.8

- 6 Homes (plugwise data from ~10 appliances)
- Sampling Frequency
- low_freq, high_freq

Location: Boston, MADuration: 12 months

TRAINING STRUCTURE

29.7

10.6

0.7

72.3

Experiments

Sparse Coding Network

Approach

- Train a separate models for each class of appliance into a dictionary. Use these models to separate aggregate signal.

Future Work

- Gather larger dataset representative of true population
- Utilize user metadata as predictive features
- Experiment with RNN to capture temporal dependence
- Experiment with ensembling

Analysis and Evaluation

Model Performance

 We monitor model loss for sparse coding, the frobenius norm between the sparse reconstruction of the electricity usage time series

Train / Test Accuracy

Model	Train Acc	Test Acc
KNN	56.94%	45.68%
Regression	73.72%	68.54%
SVM	82.18%	78.22%
Sparse Coding	92.89%	90.14%

Learned Appliance Signatures

- Sparse coding network predicts each appliances' time series. Through our base lines, we see that linear models perform poorly.
- Seeking to capture nonlinear relationships, we find that SVMs, Neural Networks and Sparse Coding are able to better identify each appliances' signature.
- We also find that adding more meaningful features (boston weather data) helps build a more powerful predictive network.

Conclusions

- Successfully implemented a variety of predictive networks for disaggregating home energy data
- Model can decipher appliance identity conditioned on aggregate energy over previous time steps
- Nonlinear models are able to capture more sophisticated dependencies, as hypothesized.
- Generalizability remains a challenge