Week 2: Group homomorphisms and the category of groups

Practice Problems

- 1. (a) Determine which of the groups $(\mathbb{R}, +)$, $(\mathbb{R}^{>0}, \times)$, $(\mathbb{R} \setminus \{0\}, \times)$ are isomorphic.
 - (b) Determine which of the groups $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{Q}^{>0}, \times), (\mathbb{Q} \setminus \{0\}, \times)$ are isomorphic.
 - (c) Are any of the groups in part (a) isomorphic to any of the groups in part (b)?
- 2. Show that $\operatorname{Aut}(C_2 \times C_2) \cong S_3$. Show that $\operatorname{Aut}(C_2 \times C_2) \ncong \operatorname{Aut}(C_2) \times \operatorname{Aut}(C_2)$.
- 3. Let G be a group. Show that the function $g \mapsto (h \mapsto ghg^{-1})$ is a homomorphism $G \to \operatorname{Aut}(G)$.

More precisely, for each $g \in G$, define the function $\theta_g \colon G \to G$ by $\theta_g(h) = ghg^{-1}$. Show that for each $g \in G$, θ_g is an automorphism of G. Define the function $\varphi \colon G \to \operatorname{Aut}(G)$ by $\varphi(g) = \theta_g$. Show that φ is a homomorphism.

This is known as the conjugation action. In the case where A is an invertible matrix, θ_A is the change of basis by A.

Presentation Problems

- 1. Let G be a group. Show that the following are equivalent:
 - \bullet G is abelian.
 - The function $g \mapsto g^2$ is a homomorphism from $G \to G$.
 - The function $q \mapsto q^{-1}$ is an automorphism of G.
 - The function $g \mapsto (h \mapsto ghg^{-1})$ is the trivial homomorphism from $G \to \operatorname{Aut}(G)$.
- 2. Show that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 3. Let G and H be finite groups of coprime order.
 - (a) Let φ be an automorphism of $G \times H$. Let $\widetilde{G} = G \times \{e_H\}$ be the copy of G in $G \times H$. Let $\widetilde{H} = \{e_G\} \times H$ be the copy of H in $G \times H$. Show that φ takes \widetilde{G} to \widetilde{G} and that φ takes \widetilde{H} to \widetilde{H} .
 - (b) Show that $\operatorname{Aut}(G \times H) \cong \operatorname{Aut}(G) \times \operatorname{Aut}(H)$.

Compare this to practice problem 2.

4. An automorphism φ of a group G is said to be *fixed-point-free* if $\varphi(g) \neq g$ for all $g \in G \setminus \{1\}$. Find a group G of order 12 and a fixed-point-free automorphism φ of G of order 6 (as an element of $\operatorname{Aut}(G)$).

Bonus: Chinese Remainder Theorem

Let n be a positive integer and let $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ be the prime factorization of n.

- 1. Construct an injective homomorphism $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/p_1^{a_1}\mathbb{Z} \times \mathbb{Z}/p_2^{a_2}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k^{a_k}$.
- 2. Show that $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{a_1}\mathbb{Z} \times \mathbb{Z}/p_2^{a_2}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k^{a_k}\mathbb{Z}$.
- 3. Show that $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{a_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{a_2}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{a_k}\mathbb{Z})^{\times}$.

This is known as the Chinese remainder theorem (1/2).

Tricky Problems

- 1. Let φ be a fixed-point-free automorphism of a finite group G.
 - (a) Show that every element of G is of the form $g^{-1}\varphi(g)$ for some $g \in G$ and that every element of G is of the form $\varphi(g)g^{-1}$ for some $g \in G$.
 - (b) Suppose that $|\varphi| = k$ and let $g \in G$. Show that

$$g\varphi(g)\dots\varphi^{k-1}(g)=\varphi^{k-1}(g)\dots\varphi(g)g=1.$$

- (c) Show that if $|\varphi| = 2$ then G is abelian and $\varphi(g) = g^{-1}$ for all $g \in G$.
- 2. Let G be a group. For each integer k, G is called k-abelian if $g^k h^k = (gh)^k$ for all $g, h \in G$.
 - (a) Show that if G is abelian then G is k-abelian for all integers k.
 - (b) Show that G is k-abelian if and only if G is (1-k)-abelian.
 - (c) Show that if G is k-abelian and (k+1)-abelian and (k+2)-abelian, then G is abelian.
 - (d) Suppose that gcd(k-1,|G|) = gcd(k,|G|) = 1. Show that if G is k-abelian then G is abelian.