计算机系统结构第三次作业

李雨田 2010012193 计14

April 5, 2014

3.8

如图所示, 可以先计算 $A_i \times B_i$, $i \in \{1,2,3\}$, 在计算 $A_4 \times B_4$ 之前先计算出 $A_1 \times B_1 + A_2 \times B_2$, 然后再算出剩下的值.

在 $18 \land \Delta t$ 时间中, 给出了 $7 \land$ 结果, 所以吞吐率为

$$TP = \frac{7}{18\Delta t}.$$

如果不适用流水线, 产生 7 个结果总共需要时间 $(4 \times 4 + 3 \times 4)\Delta t = 28\Delta t$, 所以加速比为

$$S = \frac{28\Delta t}{18\Delta t} = \frac{14}{9}.$$

流水线的效率可由阴影区的面积和总面积的比值求得

$$E = \frac{28}{5 \times 18} = \frac{14}{45}.$$

根据预约表,可以得到禁止表

$$F = \{1, 3, 4, 8\}.$$

写出初始冲突向量

$$C_0 = (10001101).$$

再根据初始冲突向量可以画出状态转换图.

可以看出 (2,5) 是最优的调度策略, 平均时间间隔是 $3.5\Delta t$, 即可得吞 吐率

$$TP = \frac{1}{3.5\Delta t} = \frac{2}{7\Delta t}.$$

如果连续输出 6 个任务, 分别相隔 $2\Delta t$, $5\Delta t$, $2\Delta t$, $5\Delta t$, $2\Delta t$, $5\Delta t$ 进入流水线, 最后一个任务执行还需要时间 $9\Delta t$, 总共时间为 $30\Delta t$. 实际吞吐率为

$$TP = \frac{6}{30\Delta t} = \frac{1}{5\Delta t}.$$

实际吞吐率总是小于理论上的最大吞吐率,这个结论得到验证.

3.10

使用相同的流程,首先根据预约表得到禁止表

$$F = \{1, 3, 6\}.$$

写出初始冲突向量

$$C_0 = (100101).$$

再根据初始冲突向量可以画出状态转换图.

可以看出允许不等时间间隔调度时,(2,2,5) 是最优的调度策略, 平均时间间隔是 $3\Delta t$, 可得到吞吐率

$$TF = \frac{1}{3\Delta t}.$$

等时间间隔调度时, 最优调度策略是 (5), 吞吐率

$$TF = \frac{1}{5\Delta t}.$$

连续输入 10 个任务时, 采用不等时间间隔调度耗时 $(2+2+5+2+2+5+2+2+5+2+5+2+7)\Delta t=36\Delta t$, 实际吞吐率

$$TF = \frac{10}{36\Delta t} = \frac{5}{18\Delta t},$$

加速比为

$$S = \frac{10 \times 7\Delta t}{36\Delta t} = \frac{35}{18}.$$

采用等时间间隔调度则耗时 $(10 \times 5 + 7)\Delta t = 57\Delta t$, 实际吞吐率

$$TF = \frac{10}{57\Delta t},$$

加速比为

$$S = \frac{10 \times 7\Delta t}{57\Delta t} = \frac{70}{57}.$$