

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

TÍTULO DE LA TESIS

T E S I S

QUE PARA OBTENER EL TÍTULO DE: MATEMÁTICO

PRESENTA: ADRICA MERINO SÁNCHEZ

DIRECTOR DE TESIS: CÉSAR HERNÁNDEZ CRUZ

1.Datos del alumno

Apellido paterno Paterno Apellido materno Sánchez Nombre (s) Adrica

Teléfono XX XX XX XX XX

Universidad Universidad Nacional Autónoma de México

Facultad o escuela Facultad de Ciencias

Carrera Matemáticas Número de cuenta 41607030-7

2. Datos del tutor

Grado Dr.
Nombre (s) César
Apellido paterno Hernández
Apellido materno Cruz

3. Datos del sinodal 1

Grado Dra.
Nombre (s) Nombres
Apellido paterno Paterno
Apellido materno Materno

4. Datos del sinodal 2

Grado M. en C.
Nombre (s) Nombres
Apellido paterno Paterno
Apellido materno Materno

5. Datos del sinodal 3

Grado Mat.
Nombre (s) Nombres
Apellido paterno Paterno
Apellido materno Materno

6. Datos del sinodal 4

Grado Lic. en Ciencias de la Computación

Nombre (s) Nombres Apellido paterno Paterno Apellido materno Materno

7. Datos del trabajo escrito

 $\begin{array}{lll} \hbox{T\'{\sc itulo}} & \hbox{T\'{\sc itulo}} \\ \hbox{N\'{\sc umero} de p\'{\sc aginas}} & \hbox{XX p.} \\ \hbox{A\~{\sc no}} & \hbox{2022} \\ \end{array}$

Agradecimientos

Agradezco a mi director de tesis por haber hecho esta plantilla.

Contents

Agradecimientos		\mathbf{v}
1	Algunos Teoremas 1.1 Teoremas y demostraciones	1 1
Bi	ibliografía	3

VIII

Chapter 1

Algunos Teoremas

1.1 Teoremas y demostraciones

Todos los ambientes que se desee referir por número más adelante deben de tener una etiqueta. Consideremos por ejemplo el siguiente lema.

Teorema 1.1.1. Sea G una gráfica conexa con diámetro δ . Entonces, $F_k(G)$ es conexa con diámetro al menos $k(\delta - k + 1)$ y a lo más δk .

Proof. Sean A y B vértices de $F_k(G)$. Primero nos enfocamos en la cota superior. Por definición tenemos que $|A\triangle B| \leq |A\cup B|$, con igualdad cuando $A\cap B=\emptyset$.

Observamos que, al ser A y B vértices de $F_k(G)$, tenemos que |A| = k y |B| = k por lo que $|A \cup B| \le 2k$. Entonces, tenemos que $|A \triangle B| \le 2k$, por lo que $\frac{1}{2}|A \triangle B| \le k$.

Buscamos demostrar que el diámetro de $F_k(G)$ es a lo más δk , por que basta demostrar por inducción que para cualesquiera dos A y B vértices de $F_k(G)$ hay una AB-trayectoria de a lo más $\frac{\delta}{2}|A\triangle B|$. Observamos que esto también implica que $F_k(G)$ es conexa.

Si $A\triangle B=\emptyset$, entonces A=B por lo que no hay nada que probar. Ahora consideramos A y B tales que $A\triangle B\neq\emptyset$. Tomamos como hipótesis que para cualesquiera dos vértices de $F_k(G)$, C y D, tales que $|C\triangle D|<|A\triangle B|$, existe una CD-trayectoria con longitud a lo más $\frac{\delta}{2}|C\triangle D|$.

Al tomar $A \triangle B \neq \emptyset$ tenemos un vértice de G en $A \setminus B$ y un vértice en $B \setminus A$, que denotamos a y b respectivamente. Dado que el diámetro de G ed δ , entonces hay una ab-trayectoria de a lo más δ . Nombramos P a esta ab-trayectoria.

Definimos $A' := (A \setminus \{a\}) \cup \{b\}$ y la trayectoria $A \xrightarrow{P} A'$ en $F_k(G)$. Observamos que, por un lado tenemos que $b \in B \cap A'$ y $b \notin B \cap A$ pero $b \in A \cup B$. Por otro lado tenemos que $a \notin A'$ por lo que $a \notin A' \cup B$ y $a \notin A \cap B$, pero $a \in A \cup B$. Entonces,

tenemos que $a, b \in A \triangle B$ y $a, b \notin A' \triangle B$. Ahora Tomamos $v \in A$ tal que $v \neq a$. Entonces, tenemos que $v \in A \triangle B$ si y sólo si $v \in A' \triangle B$. Por lo tanto tenemos que $|A' \triangle B| = |A \triangle B| - 2$.

Por la observación anterior sabemos que hay una A'B – trayectoria en $F_k(G)$ de longitud a lo más $\frac{\delta}{2}|A'\Delta B| = \frac{\delta}{2}|A\Delta B| - \delta$.

Sabemos que $A \xrightarrow{P} A'$ tiene la misma longitud que P, que es a lo más δ . Entonces, tenemos una AB-trayectoria de la forma $A \to A' \to B$ que tiene longitud a lo más $\frac{\delta}{2}|A\triangle B|-\delta+\delta=\frac{\delta}{2}|A\triangle B|$.

Por lo tanto tenemos que $F_k(G)$ es conexa y tiene diámetro a lo más δk .

Ahora demostraremos la cota inferior. Sabemos que G es una gráfica conexa con diámetro δ , por lo que existen vertices que están a distancia δ , los nombramos x y y. Ahora construimos conjunto de vértices de G de acuerdo a la distancia que tienen esos vértices de x. Es decir, para cada $i \in [0, \delta]$, sea V_i el conjunto de vértices de G a distancia i de x. Entonces, tenemos que $V_0 = \{x\}$ y $y \in V_\delta$. Denotamos d(v) a la distancia entre x y el vértice v.

Sea a el mínimo índice par el cúal se tiene $k \leq |V_0 \cup V_1 \cup \cdots \cup V_a|$ y sea b el máximo índice para el cuál se tiene $k \leq |V_b \cup V_{b+1} \cup \cdots \cup V_\delta|$. Tomamos A un k-subconjunto de $V_0 \cup \cdots \cup V_a$ tal que $A \subseteq V_0$ o $V_0 \cup \ldots V_{a-1} \subseteq A$. Tomamos B un k-subconjunto de $V_b \cup \cdots \cup V_\delta$ tale que $B \subseteq V_\delta$ o $V_{b+1} \cup \cdots \cup V_\delta$.

Consideramos cualquier trayectoria entre A y B en $F_k(G)$. Cualquier ficha inicialmente en A, digamos en el vértice v de G, se mueve a algún vértice en B, digamos el vértice v' de G. Observamos que odas las aristas de G están dentro de algún V_i o a lo más entre algún V_i y V_{i+1} , con $i \in [0, \delta]$. Entonces, para la ficha en v se necesitan al menos d(v') - d(v) movimientos para llegar a v', ocupando sólo las aristas entre V_i y V_{i+1} , $i \in [0, \delta]$. Por lo tanto, el diámetro de $F_k(G)$ es al menos $\sum_{v \in A} (d(v') - d(v)) = \sum_{w \in B} d(w) - \sum_{v \in A} d(v)$ Observamos que al ser G conexa toda V_i tiene al menos un elemento y por construcción $V_i \cap V_{i+1} = \emptyset$, para toda $i \in [0, \delta]$. Tomamos el caso en el que $V_i = 1$ para toda $i \in [0, \delta]$. Entonces, tenemos que $k \leq |V_b \cup \cdots \cup V_\delta| = |V_b| + |V_{b+1}| + \cdots + |V_\delta| = \sum_b^\delta 1 = \delta - b + 1$ Análogamente tenemos que $k \leq |V_0 \cup V_1 \cup \ldots V_a| = |V_0| + |V_1| + \cdots + |V_a| = \sum_a^0 1 = a + 1$ En ambos casos la cota mínima se alcanza en la igualdad, por lo que tomamos a = k - 1 y $b = \delta - k + 1$. Por lo tanto tenemos que el diámetro de $F_k(G)$ es al menos $\sum_{j=\delta-k+1}^\delta j - \sum_{i=0}^{k-1} i = k(\delta-k+1)$

Y finalmente obtener el siguiente corolario.

Corolario 1.1.2. Corolario de ejemplo.

Bibliography

- [1] J. A. Bondy y U. S. R. Murty, **Graph Theory**, Springer, 2008.
- [2] D. Corneil, H. Lerchs y L. Stewart Burlingham, Complement reducible graphs, Discrete Applied Mathematics 3 (1981) 163–174.
- [3] R. Diestel, **Graph Theory**, **Fifth Edition**, Springer, 2017.
- [4] A. Jones, F. Protti y R. R. Del-Vecchio, Cograph generation with linear delay, Theoretical Computer Science 713 (2018) 1–10.
- [5] T. Oetiker, H. Partl, I. Hyna, and E. Schlegl, The Not So Short Introduction to LaTeX Version 6.4 (2021), https://tobi.oetiker.ch/lshort/lshort.pdf.