K-Nearest Neighbors

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

Introduction

- K-Nearest Neighbors (k-NNs) have been used for statistical estimation and pattern recognition since the 1970s
- K-NN is a non-parametric technique (nonassumption on data distribution)
- It is still one of the top 10 data mining algorithms.
- It can be used for both classification and regression

An example problem

- Classification
- We consider the iris dataset
 - Include three types of iris plant:
 - iris setosa,
 - iris versicolour
 - iris virginica
 - 4 features:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm

Iris setosa

Iris versicolour

• 150 samples (50 in each of three classes) Iris virginica

ExampleTwo-parameter classification

Model Representation

Predictor Construction

Construct a predictor:

$$p_{\mathbf{c}}(\mathbf{x}) = ?$$

No explicit formulation for $p_c(x)$ and no parameters c

k-NN algorithm:

- k is a given positive number
- x is the feature vector of new sample associated with unknown label y
- find k entries in our dataset that are closest to the new sample x
- label of x decided by those k entries

K-NN predictions

- In classification, the *k*-NN prediction is based on the majority rule of the *k* nearest neighbors
- In regression, the *k*-NN prediction is the average of the *k* nearest neighbor labels (values)

Intuitive Algorithm Illustration

Intuitive Algorithm Illustration

Decision boundary

- Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point.
- These areas can be viewed as zones of control.

Graphic Depiction

Properties:

- 1) All possible points within a sample's Voronoi cell are the nearest neighboring points for that sample
- 2)For any sample, the nearest sample is determined by the closest Voronoi cell edge

- Decision boundaries are formed by a subset of the Voronoi diagram of the training data
- Each line segment is equidistant between two points of opposite class.
- The more examples that are stored, the more fragmented and complex the decision boundaries can become.

How To Define Closest Entries

- Distance metrics
 - Euclidean distance (L_2)

$$d(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{N} |x_i - z_i|^2\right)^{1/2}$$

• Manhattan distance (L_1)

$$d(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{N} |x_i - z_i|$$

• Minkowski distance (L_p)

$$d(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{N} |x_i - z_i|^p\right)^{1/p}$$

How To Define Closest Entries

- Distance metric
 - Chebyshev distance

$$d(\mathbf{x}, \mathbf{z}) = \max_{i} |x_i - z_i|$$

Natural log distance

$$d(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \ln(1 + |x_i - z_i|)$$

Generalized exponential distance

$$d(\mathbf{x},\mathbf{z}) = e^{-\left(\frac{\|\mathbf{x}-\mathbf{z}\|}{\eta}\right)^{\kappa}}$$

Generalized Lorentzian distance

$$d(\mathbf{x}, \mathbf{z}) = \frac{1}{1 + \left(\frac{\|\mathbf{x} - \mathbf{z}\|}{n}\right)^{\kappa}} \qquad (\kappa = 1, 2, ...)$$

• Camberra:

$$d(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{N} \frac{|x_i - z_i|}{|x_i + z_i|}$$

Quadratic: (with a problem specific Q matrix)

$$d^{2}(\mathbf{x}, \mathbf{z}) = (\mathbf{x} - \mathbf{z})^{T} \mathbf{Q}(\mathbf{x} - \mathbf{z})$$

$$= \sum_{j=1}^{N} \left(\sum_{i=1}^{N} (x_{i} - z_{i}) q_{ji} \right) (x_{j} - z_{j})$$

Mahalanobis:

$$d^{2}(\mathbf{x}, \mathbf{z}) = [\det \mathbf{V}]^{1/N} (\mathbf{x} - \mathbf{z})^{T} \mathbf{V}^{-1} (\mathbf{x} - \mathbf{z})$$

 \boldsymbol{V} is the covariance matrix of $\boldsymbol{A}_1, \dots, \boldsymbol{A}_N$, and \boldsymbol{A}_j is the vector of values for attribute j occurring in the training set instances $1, \dots, m$

Issues with Distance Metrics

- Most distance measures were designed for linear/real-valued attributes
- Two important questions in the context of machine learning:
 - How to best handle nominal attributes
 - What to do when attribute types are mixed (which ones carry heavier weights)

Use k –NN for Iris Dataset

Use k-NN for Iris Dataset

Use k –NN for Iris Dataset

Be Careful with Multi-magnitude Features

Consider the following dataset

Name	x_1	x_2	label
P1	1	100	Red
P2	1	120	Red
P3	4	200	Green
P4	4	250	Green

Name	x_1	x_2	label
P5	1	220	?

$$d(P5, P1) = \sqrt{(1-1)^2 + (220 - 100)^2} = 120, d(P5, P2) = 100$$

 $d(P5, P3) \approx 20.22, \quad d(P5, P4) \approx 30.0$

If we use 2-NN then label of P5 will be **Green!?** (misclassified)

- Purpose: all features will have relatively similar magnitude
- How?:
 - 1. Linearly scale features to range [0,1]

$$x_{\text{new}} = \frac{x_{\text{old}} - x_{\text{old}}^{\text{min}}}{x_{\text{old}}^{\text{max}} - x_{\text{old}}^{\text{min}}}$$

2. Linearly scale features to 0 mean and variance 1 (normal distribution)

$$x_{\text{new}} = \frac{x_{\text{old}} - \mu}{\sigma}$$

$$\mu: \text{mean, } \sigma^2: \text{variance}$$

Previous dataset

Name	x_1	x_2	Label
P1	1	100	Red
P2	1	120	Red
P3	4	200	Green
P4	4	250	Green

After normalizing features using normal distribution $(\mu(x_1) = 2.5, \sigma(x_1) = 1.5, \mu(x_2) = 167.5, \sigma(x_2) \approx 60.57)$

Name	x_1	x_2	label
P1	-1	-1.11	Red
P2	-1	-0.78	Red
P3	1	0.54	Green
P4	1	1.36	Green

Test set (before)

Name	x_1	x_2	label
P5	1	220	?

Test set (after normalization)

Name	x_1	x_2	label
P5	-1	0.87	?

Training set (normalized)

Name	x_1	x_2	label
P1	-1	-1.11	Red
P2	-1	-0.78	Red
P3	1	0.54	Green
P4	1	1.36	Green

Test set (normalized)

Name	x_1	x_2	label
P5	-1	0.87	?

$$d(P5, P1) = 1.98,$$
 $d(P5, P2) = 1.65,$ $d(P5, P3) = 2.03,$ $d(P5, P4) = 2.06$

If we use 2-NN then label of P5 will be red.

How to Choose k?

Do cross-validation

Fold 1

How to Choose k?

Do cross-validation

How to Choose k?

Do cross-validation

Pros and Cons

Pros

- Simple to understand and easy to implement
- Zero to little training time (lazy method)
- No parameters, no need to optimize loss function
- Quite good accuracy (but other supervised methods are better)

Cons

- Computationally expensive
- Not effective for high-dimension data (use PCA for dimension reduction first)
- Prediction procedure might be slow
- Sensitive to the noise (irrelevant data)
- Memory requirement can be a problem too (Use data structure, like kd-tree)

Challenges

Appropriate feature selections

Dimension reduction

Topological fingerprints of beta barrel

How to compare shapes and fingerprints?

Appropriate metrics

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005929

Mathematical foundation of data science

- Wasserstein metric
- Lévy metric
- Gromov–Wasserstein Distance
- WGAN
 (https://arxiv.org/pdf/1701.07
 875.pdf
- Kolmogorov-Smirnov distance
- https://arxiv.org/pdf/math/o 209021.pdf

Illustration of the Kolmogorov– Smirnov statistic. Red line is CDF, blue line is an <u>ECDF</u>, and the black arrow is the K–S statistic.

Mathematical foundation of data science

Hausdorff distance

(https://link.springer.com/ article/10.1007/s10208-011-9093-5)

Gromov–Hausdorff distance

How far and how near are some figures under the Gromov-Hausdorff distance.

Mathematical foundation of data science

Gromov-Wasserstein Averaging of Kernel and Distance Matrices

http://proceedings.mlr.press/v48/peyre16.pdf

Upper part: comparison between interpolation using L₂ loss and Kullback-Leibler loss. Lower part: comparison between interpolation using pairwise Euclidean and inner geodesic distances.

Mathematical foundation of data science

Gromov-Wasserstein Averaging of Kernel and Distance Matrices

http://proceedings.mlr.press/v48/peyre16.pdf

Mean-Absolute and Root Mean Squared errors for the atomization energy prediction in the QM7 database of 7165 molecules.

Algorithm	MAE	RMSE
k-nearest neighbors	71.54	95.97
Linear regression	20.72	27.22
Gaussian kernel ridge regression	8.57	12.26
Laplacian kernel ridge regression (8)	3.07	4.84
Multilayer Neural Network (1000)	3.51	5.96
GW 3-nearest neighbors	10.83	29.27