Boosting Algorithm
Represented 1 Classification

Ciradient Boosting Algorithm									
Regression & Classification									
Dataset Step2									
Darland x, x ₂ y (4-9) Step 2									
Exp Degree Salary R. Ayg salary = 75 K									
2 B€ 50K -25K									
3 Marters 70K - 5K									
5 Masters 80k SK									
6 P.UD (OOK 25K									
Step: 1 Create a base model									
$I/P \longrightarrow O/P$ Aug Sal = 75k = \hat{y}									
Step: 2 Compade residuals, Error									
$y = y - \hat{y}$									
Step:3 Construct a decision tree, consider inputs									
Ii and owpub as RI									
Decision tree 1 geves									
Base DT, {x,,R,} Predicted R2									
- 75									
final out put is calculated									
Exp Deg Sal R. Predicted Rz ŷ prediction									
2 BE 50 -25 -23 74.77 & base model									
3 Master 70 -5 -3 74.97 and result of									
5 Mas 80 5 3 decision tree									
6 P.ho (00 25 23									

predicted output calculation:

75 + (-23) = 75-23 = 52 (over fitting)

Because S2 is much closer to cectual off so

thus,

 $= 75 + \times (-23)$

- 75+-0.23

= 74.77

d = learning rate = {0 toily =0.

record -2 = 75 + x(-3)

= 75 + - 0.03

= 74.97

	Exp	Degree	Salary	R	Predicted	Ŷ	R3		
	2	B-E	50	-25	-23	74.77	-24.77		
	3	Master	70	-5	-3	74.97	-4.97		
-	5	Mas	80	5	3				
	6	P.hD	00)	25	20	-		3.7	

Next decision tree

on hour b

decision tree

Modhematical representation [X0=1 $F(x) = \alpha_0 h_0(x) + \alpha_1 h_1(x) + \alpha_2 h_2(x) + \cdots + \alpha_n h_n(x)$ Lao, di -- , dn } - lewning rate ho(x) = Base model h.(x) = Decision tree $\alpha = [0 + 01]$ Xgboost Classification Algorithm Stepi Dataset Steps Error (y-0.5) χ_2 R_1 1 Construct a base model Credit Salary Approval a Construct a decision (=50 K 0 B -0.5 G C= 50K tree with root node 0.5 Calculate similarity C= 50k 61 0.5 750K -0.5 weight $S \cdot \omega = \left(\sum Residual \right)$ 0.5 7 50K 750K N 0.5 > Prob(1-Prob) 0 <=SOK N -0.5 (a) Calculate gain Step: 1 - Constructing base model <xi, Riz -17 SW = 0.14 Salary Base Model <50 750 11 defaul -0.5. .5 0/0=0 5-0-5

SW=0.333

Prob = 0.5

SW=0

Similarity weight (left child)

$$S.W (LC) = \frac{\left[\sum residual \right]^2}{\sum Pr(Pr+Pr)} = \frac{\left[-0.5 + 0.5 + 0.5 + 0.5 + 0.5 (0.5) \right]}{0.5(0.5) + 0.5(0.5) + 0.5(0.5) + 0.5(0.5)}$$

S.W of Right child

$$SW(RC) = \frac{\sum residual}{\sum P_r(1-P_r)} = \frac{[-0.5 + 0.5 + 0.5]^2}{0.5(0.5) + 0.5(0.5) + 0.5(0.5)}$$

$$= 0-25 = 0-333$$

$$0-75$$

$$5.\omega (\text{root}) = 0.25 = 0.14$$

(LC) (B() Credit (redit GIN -0.5 0-5,0-5,-0.5 S.W=1 S.W= Final output for classification problem Salary 2:50K Base 750K Model 5.00=0 s.w = 033 Pr=0-5 Credil Credit 0 (p=0 GIN B B,61/ Sw=0.33 5W=1 log odds formula log(1)=0 $\log (odds) = \log \left(\frac{P}{1-P}\right) = \log \left(\frac{G.S}{0.S}\right) = 0$ X -> learning rate X = [0 toi] Base model - Test data ofp = 0 +0 x(1) □ (0+ \(\alpha(1)\) — > Sigmoid activation function (0+0.1) o (0.1) $G = \frac{1}{4 + e^{-Z}}$ # threshold olp = 0,52 => Selling is set by threshold = 0.6 Domain expert 10.52 < 0.6] = 70

X9 boost Summary

0/p = 5 (Base learner + x, (DT,) + x2 (DT2) + -- + xn (DTn))