Задача 10.

Дан четырёхугольник ABCD. Найти такую точку M, чтобы $\vec{MA} + \vec{MB} + \vec{MC} + \vec{MD} = \vec{0}$.

Дата: XX.YY.2021

Решение:

Задача 13.

Дан тетраэдр ABCD. Найти точку M для которой $\vec{MA} + \vec{MB} + \vec{MC} + \vec{MD} = \vec{0}$.

Решение:

Задача 35.

Даны радиус-векторы $\vec{r_1}$, $\vec{r_2}$, $\vec{r_3}$ вершин треугольника ABC. Найти радиус-вектор \vec{r} точки пересечения его медиан.

Решение:

Задача 24.

В трапеции ABCD отношение основания BC к основанию AD равно λ . Принимая за базис векторы \vec{AD} и \vec{AB} , найти координаты векторов \vec{AB} , \vec{BC} , \vec{CD} , \vec{DA} , \vec{AC} и \vec{BD} .

Решение:

Задача 17.

Доказать, что сумма векторов, идущих из центра правильного многоугольника к его вершинам, равна нулю.

Решение:

Задача 29.

Показать, что каковы бы ни были три вектора \vec{a} , \vec{b} и \vec{c} и три числа α , β , γ векторы $\alpha \vec{a} - \beta \vec{b}$, $\gamma \vec{b} - \alpha \vec{c}$, $\beta \vec{c} - \gamma \vec{a}$ компланарны.

Решение:

Задача 31.

Даны вектора $\vec{a}=\{1,2,3\},\ \vec{b}=\{2,-2,1\},\ \vec{c}=\{4,0,3\},\ \vec{d}=\{16,10,18\}.$ Найти вектор, являющийся проекцией вектора \vec{d} на плоскость, определяемую векторами \vec{a} и \vec{b} при направлении проектирования, параллельном вектору \vec{c} .

Решение: