

Homework 04

NAME: Chelsea Yang

STUDENT ID: 3034392755

```
In [59]: # Load required modules
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
```

Pandas Introduction

Reading File

1.1) Read the CSV file called 'data3.csv' into a dataframe called df.

Data description

- Data source: http://www.fao.org/nr/water/aquastat/data/query/index.html lang=en
- Data, units:
- GDP, current USD (CPI adjusted)
- NRI, mm/yr
- Population density, inhab/km^2
- Total area of the country, 1000 ha = 10km²
- · Total Population, unit 1000 inhabitants

```
In [60]: !ls
%cd "/Users/chelseayang/Desktop/Data X"
df=pd.read_csv('data3.csv')

Class PDF Homework Icon? data3.csv
/Users/chelseayang/Desktop/Data X
```

2.1) Display the first 10 rows of the dataframe

```
In [61]: # your code here
df.head(10)
```

Out[61]:

	Area	Area Id	Variable Name	Variable Id	Year	Value	Symbol	Other
0	Argentina	9.0	Total area of the country	4100.0	1962.0	278040.0	Е	NaN
1	Argentina	9.0	Total area of the country	4100.0	1967.0	278040.0	Е	NaN
2	Argentina	9.0	Total area of the country	4100.0	1972.0	278040.0	Е	NaN
3	Argentina	9.0	Total area of the country	4100.0	1977.0	278040.0	Е	NaN
4	Argentina	9.0	Total area of the country	4100.0	1982.0	278040.0	Е	NaN
5	Argentina	9.0	Total area of the country	4100.0	1987.0	278040.0	Е	NaN
6	Argentina	9.0	Total area of the country	4100.0	1992.0	278040.0	Е	NaN
7	Argentina	9.0	Total area of the country	4100.0	1997.0	278040.0	Е	NaN
8	Argentina	9.0	Total area of the country	4100.0	2002.0	278040.0	Е	NaN
9	Argentina	9.0	Total area of the country	4100.0	2007.0	278040.0	Е	NaN

2.2) Display the column names.

2.3) Use iloc to display the first 3 rows and first 4 columns.

```
In [63]: # your code here
df.iloc[0:3,0:4]
```

Out[63]:

	Area	Area Id	Variable Name	Variable Id
0	Argentina	9.0	Total area of the country	4100.0
1	Argentina	9.0	Total area of the country	4100.0
2	Argentina	9.0	Total area of the country	4100.0

Data Preprocessing

3.1) Find all the rows that have 'NaN' in the 'Symbol' column. Display first 5 rows.

Hint: You might have to use a mask

```
In [64]: # your code here
          print(df[pd.isnull(df['Symbol'])].head(5))
                                         Area Id Variable Name
                                                                   Variable Id
                                  Area
                                                                                 Year
                                                                                        Val
          ue
          390
                                   NaN
                                             NaN
                                                             NaN
                                                                            NaN
                                                                                  NaN
                                                                                          Ν
          aN
          391
                    E - External data
                                             NaN
                                                             NaN
                                                                            NaN
                                                                                  NaN
                                                                                          Ν
          aN
                I - AQUASTAT estimate
          392
                                             NaN
                                                             NaN
                                                                            NaN
                                                                                  NaN
                                                                                          Ν
          aN
          393
                                             NaN
                                                             NaN
                                                                            NaN
                   K - Aggregate data
                                                                                  NaN
                                                                                          Ν
          aN
          394
                    L - Modelled data
                                             NaN
                                                             NaN
                                                                            NaN
                                                                                  NaN
                                                                                          Ν
          aN
              Symbol
                       Other
          390
                  NaN
                         NaN
          391
                  NaN
                         NaN
          392
                  NaN
                         NaN
          393
                  NaN
                         NaN
          394
                  NaN
                         NaN
```

3.2) Now, we will try to get rid of the NaN valued rows and columns. First, drop the column 'Other' which only has 'NaN' values. Then drop all other rows that have any column with a value 'NaN'. Then display the last 5 rows of the dataframe.

```
In [65]: # your code here
    df=df.drop(['Other'],axis=1)
    df=df.dropna()
    df.tail(5)
```

Out[65]:

	Area	Area Id	Variable Name	Variable Id	Year	Value	Symbol
385	United States of America	231.0	National Rainfall Index (NRI)	4472.0	1981.0	949.2	E
386	United States of America	231.0	National Rainfall Index (NRI)	4472.0	1984.0	974.6	Е
387	United States of America	231.0	National Rainfall Index (NRI)	4472.0	1992.0	1020.0	Е
388	United States of America	231.0	National Rainfall Index (NRI)	4472.0	1996.0	1005.0	Е
389	United States of America	231.0	National Rainfall Index (NRI)	4472.0	2002.0	938.7	E

4.1) For our analysis we do not want all the columns in our dataframe. Lets drop all the redundant columns/ features.

Drop columns: Area Id, Variable Id, Symbol. Save the new dataframe as df1. Display the first 5 rows of the new dataframe.

```
In [66]:
         # your code here
         df1=df.drop(['Area Id','Variable Id','Symbol'],axis=1)
         print(df1.head(5))
                                    Variable Name
                                                     Year
                                                              Value
                 Area
                                                   1962.0
                                                           278040.0
         0
           Argentina
                       Total area of the country
         1
            Argentina Total area of the country
                                                   1967.0
                                                           278040.0
         2
           Argentina
                       Total area of the country
                                                   1972.0
                                                           278040.0
         3
            Argentina
                       Total area of the country
                                                   1977.0
                                                           278040.0
            Argentina Total area of the country
                                                   1982.0
                                                           278040.0
```

4.2) Display all the unique values in your new dataframe for columns: Area, Variable Name, Year.

```
In [67]: # your code here
    a=df1['Area'].unique()
    b=df1['Variable Name'].unique()
    c=df1['Year'].unique()
    print(a,b,c)

['Argentina' 'Australia' 'Germany' 'Iceland' 'Ireland' 'Sweden'
        'United States of America'] ['Total area of the country' 'Total populati
    on' 'Population density'
        'Gross Domestic Product (GDP)' 'National Rainfall Index (NRI)'] [1962. 1
    967. 1972. 1977. 1982. 1987. 1992. 1997. 2002. 2007. 2012. 2014.
    2015. 1963. 1970. 1974. 1978. 1984. 1990. 1964. 1981. 1985. 1996. 2001.
    1969. 1973. 1979. 1993. 1971. 1975. 1986. 1991. 1998. 2000. 1965. 1983.
    1988. 1995.]
```

4.3) Convert the Year column to pandas datetime. Convert the 'Year' column float values to pandas datetime objects, where each year is represented as the first day of that year. Also display the first 5 values of column after conversion.

For eg: 1962.0 will be represented as 1962-01-01

```
In [68]: # your code here
df1['Year']=pd.to_datetime({'year':df1['Year'],'month':1,'day':1})
df1.head(5)
```

Out[68]:

	Area	Variable Name	Year	Value
0	Argentina	Total area of the country	1962-01-01	278040.0
1	Argentina	Total area of the country	1967-01-01	278040.0
2	Argentina	Total area of the country	1972-01-01	278040.0
3	Argentina	Total area of the country	1977-01-01	278040.0
4	Argentina	Total area of the country	1982-01-01	278040.0

Plot

5.1) Use pandas to plot a bar graph showing the count for each unique value in the column 'Area'. Give it a title.

```
In [88]: # your code here
numuni=df1['Area'].value_counts()
numuni.plot.bar(title='unique_num_count')
```

Out[88]: <matplotlib.axes._subplots.AxesSubplot at 0x11cd717b8>

Extract specific statistics from the preprocessed data:

6.1) Create a dataframe 'dftemp' to store rows where Area is 'Iceland'. Display the dataframe.

In [69]: # your code here
 dftemp=df1[df1['Area']=='Iceland']
 dftemp

Out[69]:

	Area	Variable Name	Year	Value
166	Iceland	Total area of the country	1962-01-01	1.030000e+04
167	Iceland	Total area of the country	1967-01-01	1.030000e+04
168	Iceland	Total area of the country	1972-01-01	1.030000e+04
169	Iceland	Total area of the country	1977-01-01	1.030000e+04
170	Iceland	Total area of the country	1982-01-01	1.030000e+04
171	Iceland	Total area of the country	1987-01-01	1.030000e+04
172	Iceland	Total area of the country	1992-01-01	1.030000e+04
173	Iceland	Total area of the country	1997-01-01	1.030000e+04
174	Iceland	Total area of the country	2002-01-01	1.030000e+04
175	Iceland	Total area of the country	2007-01-01	1.030000e+04
176	Iceland	Total area of the country	2012-01-01	1.030000e+04
177	Iceland	Total area of the country	2014-01-01	1.030000e+04
178	Iceland	Total population	1962-01-01	1.826000e+02
179	Iceland	Total population	1967-01-01	1.974000e+02
180	Iceland	Total population	1972-01-01	2.099000e+02
181	Iceland	Total population	1977-01-01	2.221000e+02
182	Iceland	Total population	1982-01-01	2.331000e+02
183	Iceland	Total population	1987-01-01	2.469000e+02
184	Iceland	Total population	1992-01-01	2.599000e+02
185	Iceland	Total population	1997-01-01	2.728000e+02
186	Iceland	Total population	2002-01-01	2.869000e+02
187	Iceland	Total population	2007-01-01	3.054000e+02
188	Iceland	Total population	2012-01-01	3.234000e+02
189	Iceland	Total population	2015-01-01	3.294000e+02
190	Iceland	Population density	1962-01-01	1.773000e+00
191	Iceland	Population density	1967-01-01	1.917000e+00
192	Iceland	Population density	1972-01-01	2.038000e+00
193	Iceland	Population density	1977-01-01	2.156000e+00
194	Iceland	Population density	1982-01-01	2.263000e+00
195	Iceland	Population density	1987-01-01	2.397000e+00
196	Iceland	Population density	1992-01-01	2.523000e+00
197	Iceland	Population density	1997-01-01	2.649000e+00

	Area	Variable Name	Year	Value
198	Iceland	Population density	2002-01-01	2.785000e+00
199	Iceland	Population density	2007-01-01	2.965000e+00
200	Iceland	Population density	2012-01-01	3.140000e+00
201	Iceland	Population density	2015-01-01	3.198000e+00
202	Iceland	Gross Domestic Product (GDP)	1962-01-01	2.849165e+08
203	Iceland	Gross Domestic Product (GDP)	1967-01-01	6.212260e+08
204	Iceland	Gross Domestic Product (GDP)	1972-01-01	8.465069e+08
205	Iceland	Gross Domestic Product (GDP)	1977-01-01	2.226539e+09
206	Iceland	Gross Domestic Product (GDP)	1982-01-01	3.232804e+09
207	Iceland	Gross Domestic Product (GDP)	1987-01-01	5.565384e+09
208	Iceland	Gross Domestic Product (GDP)	1992-01-01	7.138788e+09
209	Iceland	Gross Domestic Product (GDP)	1997-01-01	7.596126e+09
210	Iceland	Gross Domestic Product (GDP)	2002-01-01	9.161798e+09
211	Iceland	Gross Domestic Product (GDP)	2007-01-01	2.129384e+10
212	Iceland	Gross Domestic Product (GDP)	2012-01-01	1.419452e+10
213	Iceland	Gross Domestic Product (GDP)	2015-01-01	1.659849e+10
214	Iceland	National Rainfall Index (NRI)	1967-01-01	8.160000e+02
215	Iceland	National Rainfall Index (NRI)	1971-01-01	9.632000e+02
216	Iceland	National Rainfall Index (NRI)	1975-01-01	1.010000e+03
217	Iceland	National Rainfall Index (NRI)	1981-01-01	9.326000e+02
218	Iceland	National Rainfall Index (NRI)	1986-01-01	9.685000e+02
219	Iceland	National Rainfall Index (NRI)	1991-01-01	1.095000e+03
220	Iceland	National Rainfall Index (NRI)	1997-01-01	9.932000e+02
221	Iceland	National Rainfall Index (NRI)	1998-01-01	9.234000e+02

7.1) Print the years when the National Rainfall Index (NRI) was greater than 900 and less than 950 in Iceland. Use the dataframe you created in the previous question 'dftemp'.

```
In [70]: dftemp_new=dftemp[(dftemp['Variable Name']=='National Rainfall Index (NRI)'
    dftemp_new['Year']

Out[70]: 217    1981-01-01
        221    1998-01-01
        Name: Year, dtype: datetime64[ns]
```

US statistics:

8.1) Create a new DataFrame called df_{usa} that only contains values where 'Area' is equal to 'United States of America'. Set the indices to be the 'Year' column (Use .set_index()). Display the dataframe head.

```
In [76]: # your code here

df_usa_origin=df1[df1['Area']=='United States of America']

df_usa=df_usa_origin.set_index(df_usa_origin['Year'])

df_usa1=df_usa.drop(['Year'],axis=1)

df_usa1
```

Out[76]:

	Area	Variable Name	Value
Year			
1962-01-01	United States of America	Total area of the country	9.629090e+05
1967-01-01	United States of America	Total area of the country	9.629090e+05
1972-01-01	United States of America	Total area of the country	9.629090e+05
1977-01-01	United States of America	Total area of the country	9.629090e+05
1982-01-01	United States of America	Total area of the country	9.629090e+05
1987-01-01	United States of America	Total area of the country	9.629090e+05
1992-01-01	United States of America	Total area of the country	9.629090e+05
1997-01-01	United States of America	Total area of the country	9.629090e+05
2002-01-01	United States of America	Total area of the country	9.632030e+05
2007-01-01	United States of America	Total area of the country	9.632030e+05
2012-01-01	United States of America	Total area of the country	9.831510e+05
2014-01-01	United States of America	Total area of the country	9.831510e+05
1962-01-01	United States of America	Total population	1.918610e+05
1967-01-01	United States of America	Total population	2.037130e+05
1972-01-01	United States of America	Total population	2.132200e+05
1977-01-01	United States of America	Total population	2.230910e+05
1982-01-01	United States of America	Total population	2.339540e+05
1987-01-01	United States of America	Total population	2.454250e+05
1992-01-01	United States of America	Total population	2.579080e+05
1997-01-01	United States of America	Total population	2.728830e+05
2002-01-01	United States of America	Total population	2.884710e+05
2007-01-01	United States of America	Total population	3.016560e+05
2012-01-01	United States of America	Total population	3.147990e+05
2015-01-01	United States of America	Total population	3.217740e+05
1962-01-01	United States of America	Population density	1.993000e+01
1967-01-01	United States of America	Population density	2.116000e+01
1972-01-01	United States of America	Population density	2.214000e+01
1977-01-01	United States of America	Population density	2.317000e+01
1982-01-01	United States of America	Population density	2.430000e+01

	Area	Variable Name	Value
Year			
1987-01-01	United States of America	Population density	2.549000e+01
1992-01-01	United States of America	Population density	2.678000e+01
1997-01-01	United States of America	Population density	2.834000e+01
2002-01-01	United States of America	Population density	2.995000e+01
2007-01-01	United States of America	Population density	3.132000e+01
2012-01-01	United States of America	Population density	3.202000e+01
2015-01-01	United States of America	Population density	3.273000e+01
1962-01-01	United States of America	Gross Domestic Product (GDP)	6.050000e+11
1967-01-01	United States of America	Gross Domestic Product (GDP)	8.620000e+11
1972-01-01	United States of America	Gross Domestic Product (GDP)	1.280000e+12
1977-01-01	United States of America	Gross Domestic Product (GDP)	2.090000e+12
1982-01-01	United States of America	Gross Domestic Product (GDP)	3.340000e+12
1987-01-01	United States of America	Gross Domestic Product (GDP)	4.870000e+12
1992-01-01	United States of America	Gross Domestic Product (GDP)	6.540000e+12
1997-01-01	United States of America	Gross Domestic Product (GDP)	8.610000e+12
2002-01-01	United States of America	Gross Domestic Product (GDP)	1.100000e+13
2007-01-01	United States of America	Gross Domestic Product (GDP)	1.450000e+13
2012-01-01	United States of America	Gross Domestic Product (GDP)	1.620000e+13
2015-01-01	United States of America	Gross Domestic Product (GDP)	1.790000e+13
1965-01-01	United States of America	National Rainfall Index (NRI)	9.285000e+02
1969-01-01	United States of America	National Rainfall Index (NRI)	9.522000e+02
1974-01-01	United States of America	National Rainfall Index (NRI)	1.008000e+03
1981-01-01	United States of America	National Rainfall Index (NRI)	9.492000e+02
1984-01-01	United States of America	National Rainfall Index (NRI)	9.746000e+02
1992-01-01	United States of America	National Rainfall Index (NRI)	1.020000e+03
1996-01-01	United States of America	National Rainfall Index (NRI)	1.005000e+03
2002-01-01	United States of America	National Rainfall Index (NRI)	9.387000e+02

^{8.2)} Pivot the DataFrame so that the unique values in the column 'Variable Name' becomes the columns. The DataFrame values should be the ones in the the 'Value' column. Save it in df_usa. Display the dataframe head.

In [79]: # your code here
 df_usa=df_usal.pivot(columns='Variable Name', values='Value')
 df_usa

Out[79]:

Variable Gross Domestic Name Product (GDP)		National Rainfall Index (NRI)			Total population
Year					
1962-01- 01	6.050000e+11	NaN	19.93	962909.0	191861.0
1965-01- 01	NaN	928.5	NaN	NaN	NaN
1967-01- 01	8.620000e+11	NaN	21.16	962909.0	203713.0
1969-01- 01	NaN	952.2	NaN	NaN	NaN
1972-01- 01	1.280000e+12	NaN	22.14	962909.0	213220.0
1974-01- 01	NaN	1008.0	NaN	NaN	NaN
1977-01- 01	2.090000e+12	NaN	23.17	962909.0	223091.0
1981-01- 01	NaN	949.2	NaN	NaN	NaN
1982-01- 01	3.340000e+12	NaN	24.30	962909.0	233954.0
1984-01- 01	NaN	974.6	NaN	NaN	NaN
1987-01- 01	4.870000e+12	NaN	25.49	962909.0	245425.0
1992-01- 01	6.540000e+12	1020.0	26.78	962909.0	257908.0
1996-01- 01	NaN	1005.0	NaN	NaN	NaN
1997-01- 01	8.610000e+12	NaN	28.34	962909.0	272883.0
2002-01- 01	1.100000e+13	938.7	29.95	963203.0	288471.0
2007-01- 01	1.450000e+13	NaN	31.32	963203.0	301656.0
2012-01- 01	1.620000e+13	NaN	32.02	983151.0	314799.0
2014-01- 01	NaN	NaN	NaN	983151.0	NaN
2015-01- 01	1.790000e+13	NaN	32.73	NaN	321774.0

8.3) Rename new columns to ['GDP','NRI','PD','Area','Population'] and display the head.

```
In [81]: # your code here
df_usa.columns=['GDP','NRI','PD','Area','Population']
df_usa.head()
```

Out[81]:

	GDP	NRI	PD	Area	Population
Year					
1962-01-01	6.050000e+11	NaN	19.93	962909.0	191861.0
1965-01-01	NaN	928.5	NaN	NaN	NaN
1967-01-01	8.620000e+11	NaN	21.16	962909.0	203713.0
1969-01-01	NaN	952.2	NaN	NaN	NaN
1972-01-01	1.280000e+12	NaN	22.14	962909.0	213220.0

8.4) Replace all 'Nan' values in df_usa with 0. Display the head of the dataframe.

```
In [83]: # your code here
df_usa=df_usa.fillna(0)
df_usa.head()
```

Out[83]:

	GDP	NRI	PD	Area	Population
Year					
1962-01-01	6.050000e+11	0.0	19.93	962909.0	191861.0
1965-01-01	0.000000e+00	928.5	0.00	0.0	0.0
1967-01-01	8.620000e+11	0.0	21.16	962909.0	203713.0
1969-01-01	0.000000e+00	952.2	0.00	0.0	0.0
1972-01-01	1.280000e+12	0.0	22.14	962909.0	213220.0

Use df_usa:

9.1 Multiply the 'Area' column for all countries by 10 (so instead of 1000 ha, the unit becomes 100 ha = 1km^2). Display the dataframe head.

```
In [86]: # your code here
    df_usa['Area']=df_usa['Area']*10
    df_usa.head()
```

Out[86]:

	GDP	NKI	PD	Area	Population
Year					
1962-01-01	6.050000e+11	0.0	19.93	9629090.0	191861.0
1965-01-01	0.000000e+00	928.5	0.00	0.0	0.0
1967-01-01	8.620000e+11	0.0	21.16	9629090.0	203713.0
1969-01-01	0.000000e+00	952.2	0.00	0.0	0.0
1972-01-01	1.280000e+12	0.0	22.14	9629090.0	213220.0

9.2: Create a new column in df_usa called 'GDP/capita' and populate it with the calculated GDP per capita. Round the results to two decimal points. Display the dataframe head.

GDP per capita = (GDP / Population) * 1000

```
In [90]: # your code here
    df_usa['GDP/capita']=df_usa['GDP'][df_usa['GDP']>0]/df_usa['Population'][df_
    pd.set_option('display.float_format',lambda x: '%.2f' % x)
    df_usa.head()
```

Out[90]:

	GDP	NRI	PD	Area	Population	GDP/capita
Year						
1962-01-01	605000000000.00	0.00	19.93	9629090.00	191861.00	3153324542.25
1965-01-01	0.00	928.50	0.00	0.00	0.00	nan
1967-01-01	862000000000.00	0.00	21.16	9629090.00	203713.00	4231443255.95
1969-01-01	0.00	952.20	0.00	0.00	0.00	nan
1972-01-01	1280000000000.00	0.00	22.14	9629090.00	213220.00	6003189194.26

9.3: Find the maximum value of the 'NRI' column in the US (using pandas methods). What year does the max value occur? Display the values.

```
In [95]: # your code here
    df_sorted=df_usa.iloc[:,1].sort_values(ascending=False)
    print(df_sorted.iloc[0])
    print(df_sorted.index[0])

1020.0
    1992-01-01 00:00:00
In []:
```