

Threat Hunting at scale with Spark Notebooks

Ashwin Patil, MSTIC RnD Team @ashwinpatil

About me

- Senior PM,
- Microsoft Threat Intelligence Center (MSTIC) RnD Team
- Blue Teamer over 10 years in #SecurityMonitoring #IncidentResponse #DFIR
- Spoken at Conferences –
 SecureWorld, JupyterThon,
 Gray Hat 2020 (Blue Team Village), Purple Team Summit
- Published multiple blogs on
 #MicrosoftSentinel #ThreatHunting #JupyterNotebook

Agenda

- Introduction to Spark
- Why Spark notebooks for Threat hunting?
- Spark notebook solutions
- Distributed Processing Example: Broadcast Joins
- Spark use cases in Threat hunting
- Threat Hunting use case: C2 Network beaconing
- Conclusion

Introduction to Spark

- Apache Spark
 - Parallel processing framework
 - Supports in memory processing (faster than disk-based)
 - Supports multiple languages (C#, Scala, PySpark, Spark SQL)
 - Manipulate distributed datasets like local collections
- ☐ Typical Use-cases
 - Data Engineering/Data Preparation
 - Machine learning
 - Graph processing
 - Spark streaming

Why Spark Notebooks for Threat Hunting?

Modern SIEM with powerful query language.

- Complex workflows and data analysis can be done with Jupyter notebooks
- Do not scale well against query, complex processing on large volume of data/ data frames.
- Generally, less retention on historical data available for querying.

Alternative Python libraries for distributed processing of dataframe

- Scaling Pandas: Dask, RAPIDS, Vaex and more
- Supports only Python.
- Great for data exploration, visualization.
- Since 2014- still new, less mature or features, lack of adoption and enterprise support

Apache Spark

- Since 2010, mature and great adoption and enterprise support
- Natively integrate with other Apache projects.
- Multiple language and rich library features natively

Spark Notebook Solutions

Distributed Processing Example: Broadcast Join

Broadcast Join

- · Apache Spark feature that lets us send a read-only copy of a variable to every worker node in the Spark cluster.
- · Use case Joining Huge dataframe with relatively tiny dataframe.
- Sends a copy of broadcasted dataframe to every worker node.
- Faster than Shuffle joins as it avoids reshuffling both dataframes to partition them by join key.

```
from pyspark.sql.functions import broadcast
huge_dateframe.join(
    broadcast(lookup_data_frame),
    lookup_data_frame.key_column==huge_dateframe.key_column
)
```

Spark Threat Hunting Use cases

Use cases

- ✓ Exploratory analysis on voluminous log data sources (e.g., Network logs, Windows events logs from very large networks)
- ✓ Entity prevalence or rarity based on Historical trend analysis
- ✓ DGA domain, malicious URLs identification with multiple feature extraction which requires historical data.
- ✓ C2 Beaconing activities
- ✓ Detections resulting from machine learning models trained on historical logs.

Threat Hunting use case: C2 Network beaconing

Network Beaconing

- Infected/compromised hosts reach out to Command and Control(C2)
 Server on periodic basis.
 - Time difference is same between each connection
 - Attacker may add jitter/randomness to the pattern.
- Data Source : Network Firewall Connection Logs
 - Identify regular time delta patterns of potential beaconing between connections

Use Case Workflow – KQL Implementation

- Network Beaconing via Intra-request Time Deltas
- · Reference/Previous Work:
 - Threat hunting Project
 - Flare by Austin Taylor
- · Blog:

Detect Network beaconing via Intra-Request time delta patterns in Microsoft Sentinel - Microsoft Tech Community

KQL Detection :

- · No Jitter: Azure-Sentinel/PaloAlto-NetworkBeaconing.yaml at master · Azure/Azure-Sentinel (github.com)
- · With Jitter: Azure-Sentinel/Fortinet-NetworkBeaconPattern.yaml at master · Azure/Azure-Sentinel (github.com)

Data Source

CommonSecurityLog:

- · Firewall Vendors: Palo Alto , Fortinet, Checkpoint etc
- · Calculate thresholds based on initial exploratory analysis:
 - · TotalEventsThreshold 30
 - · DegreeofSourcelps 25
 - TimeDeltaThreshold 60
 - · PercentBeaconThreshold 75
 - · BinWindow 3

TimeGenerated -	SourceIP -	SourcePort 🔽	DestinationIP 🔽	DestinationPort 🔽	ReceivedBytes 🔽	SentBytes 🔽	DeviceVendor 🔽
2020-05-23T08:00:11	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:00:41	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:01:11	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:01:41	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:02:11	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:02:41	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:03:11	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks
2020-05-23T08:03:41	192.168.10.10	50423	67.217.69.224	80	433	390	Palo Alto Networks

PySpark Implementation

Load Data: Raw Traffic Connection Logs

· Filter Data:

- Filter Internal to External traffic.
- Apply event-based thresholds and remove potential benign Source Ips.
 - E.g. Source Ips with at least 10 events in 24 hours (remove high cardinality not eligible for data analysis)
- · Find benign destinations based on DegreeOfSourceIPs in historical dataset. (2-4 weeks avg)
 - · E.g. Destination lps with Less than 25 Source lps connected in last 24 hours/ avg in last 2-4 weeks.
 - · (Removes common FPs Windows update, common agent beaconing behavior etc)

Data Wrangling

- · Windowing Data Serialization
 - · Calculate Time Delta: Datetime difference between Previous and Next Timestamp
 - Same SourcelP, DestinationIP , DestinationPort
- · TimeDeltaThreshold: Assumption beaconing under 10 seconds/thresholds is too noisy for attacker so not eligible for analysis
- · BinWindow: Cumulative sum for all Time Delta within Window (SourcelP, DestinationIP, DestinationPort) bin specified
- · PercentBeaconThreshold: Cumulative Sum/ Total Events * 100. Anything above 75 can indicate potential beaconing.

Conclusion

- Provide new detection ideas which are not scalable with your SIEM to transform into PySpark notebooks and feed results with rich context back to SIEM.
- Spark provides capability to hunt on historical data with complex analysis for analysts to get more insightful and contextual results.

Resources:

- <u>Is Spark still relevant</u> PyData NYC 2019
- Notebook: <u>Detect potential network beaconing using Apache Spark via Azure Synapse</u>
- Blog: <u>Hunting for potential network beaconing patterns using Apache Spark via Azure Synapse Part 1</u>
- Apache PySpark SQL: https://spark.apache.org/docs/3.1.1/api/python/reference/pyspark.sql.html
- Introducing Window Functions in Spark SQL The Databricks Blog

Thank you