Announcements

* HW10

- Due on Dec 9 11:59pm
- Project 5
 - Due on Dec 11 11:59pm
- Final Exam
 - * Same rules as for mid-term exam
 - Covers Logic to today
- Course evaluation
 - Deadline Dec 6

Ve492: Introduction to Artificial Intelligence

Discriminative Learning

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM

Error-Driven Classification

Linear Classifiers

Feature Vectors

 χ

 $\varphi(x)$

Hello,

Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

Some (Simplified) Biology

* Very loose inspiration: human neurons

Linear Classifiers

- * Inputs are feature values
- * Each feature has a weight
- * Sum is the activation

$$activation_{\mathbf{w}}(\mathbf{x}) = \sum_{i} w_{i} \varphi_{i}(\mathbf{x}) = \mathbf{w} \cdot \phi(\mathbf{x})$$

- * If the activation is:
 - * Positive, output +1
 - * Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- * In the space of feature vectors
 - * Examples are points
 - Any weight vector is a hyperplane
 - * One side corresponds to Y=+1
 - * Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

Weight Updates

Learning: Binary Perceptron

- * Start with weights = 0
- * For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$\hat{y} = \begin{cases} +1 & \text{if } \mathbf{w} \cdot \varphi(\mathbf{x}) \ge 0 \\ -1 & \text{if } \mathbf{w} \cdot \varphi(\mathbf{x}) < 0 \end{cases}$$

- * If correct (i.e., $\hat{y} = y^*$), no change!
- * If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if *y** is -1.

$$\mathbf{w} = \mathbf{w} + y^* \cdot \varphi(\mathbf{x})$$

Examples: Perceptron

* Separable Case

Multiclass Decision Rule

- * If we have multiple classes:
 - * A weight vector for each class:

$$\mathbf{W}_y$$

* Score (activation) of a class y:

$$\mathbf{w}_{y} \cdot \varphi(\mathbf{x})$$

Prediction highest score wins

$$\hat{y} = \operatorname{argmax}_{y} \mathbf{w}_{y} \cdot \varphi(\mathbf{x})$$

Quiz: Binary Classif. As Multiclass Decision Rule

* Multiclass decision rule

$$\hat{y} = \operatorname{argmax}_{y} \mathbf{w}_{y} \cdot \varphi(\mathbf{x})$$

- Denote w the weight vector of the positive class.
- * What could be the weight vector of the negative class?

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$\hat{y} = \operatorname{argmax}_{y} \mathbf{w}_{y} \cdot \varphi(\mathbf{x})$$

- If correct, no change!
- * If wrong: lower score of wrong answer, raise score of right answer

$$\mathbf{w}_{\hat{\mathbf{y}}} = \mathbf{w}_{\hat{\mathbf{y}}} - \varphi(\mathbf{x})$$

$$\mathbf{w}_{y^*} = \mathbf{w}_{y^*} + \varphi(\mathbf{x})$$

Example: Multiclass Perceptron

```
"win the vote"

"win the election"

"win the game"
```

w_{SPORTS}

BIAS	•	1
win	•	0
game	•	0
vote	•	0
the	•	0
• •	•	

$w_{POLITICS}$

BIAS	•	0
win	•	0
game	•	0
vote	•	0
the	•	0
• •	•	

w_{TECH}

```
BIAS : 0
win : 0
game : 0
vote : 0
the : 0
```

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- * Convergence: if the training set is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test/validation accuracy usually rises, then falls
 - * Overtraining is a kind of overfitting

Improving the Perceptron

Probabilistic Classification

Naïve Bayes provides probabilistic classification

Answers the query: $P(Y = y_i | x_1, \dots, x_n)$

1: 0.001 2: 0.001

0: 0.991

1: 0.001

2: 0.703

• •

6: 0.264

•

0: 0.001

- Perceptron just gives us a class prediction
 - * Can we get it to give us probabilities?
 - * Turns out it also makes it easier to train!

Note: To simplify notations, "x" denotes " $\varphi(\mathbf{x})$ " from now on

A Probabilistic Perceptron

As $w_y \cdot x$ gets bigger, P(y|x) gets bigger

A 1D Example

The Soft Max

$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

How to Learn?

Maximum likelihood estimation

$$\theta_{ML} = \arg \max_{\theta} P(\mathbf{X}|\theta)$$
$$= \arg \max_{\theta} \prod_{i} P_{\theta}(X_{i})$$

Maximum conditional likelihood estimation

$$\theta^* = \arg \max_{\theta} P(\mathbf{Y}|\mathbf{X}, \theta)$$

$$= \arg \max_{\theta} \prod_{i} P_{\theta}(y_i|x_i)$$

$$\ell(w) = \prod_{i} \frac{e^{w_{y_i} \cdot x_i}}{\sum_{y} e^{w_{y} \cdot x_i}}$$

$$\ell\ell(w) = \sum_{i} \log P_w(y_i|x_i)$$
$$= \sum_{i} w_{y_i} \cdot x_i - \log \sum_{y} e^{w_y \cdot x_i}$$

Local Search

* Simple, general idea:

Start wherever

Repeat: move to the best neighboring state

* If no neighbors better than current, quit

* Neighbors = small perturbations of w

Our Status

* Our objective ll(w)

* Challenge: how to find a good w?

$$\max_{w} ll(w)$$

* Equivalently:

$$\min_{w} -ll(w)$$

1D optimization

- * Could evaluate $g(w_0 + h)$ and $g(w_0 h)$
- * Then step in best direction
- * Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h\to 0} \frac{g(w_0+h) g(w_0-h)}{2h}$
- Which tells which direction to step into

2-D Optimization

Source: Thomas Jungblut's Blog

Steepest Descent

* Idea:

- Start somewhere
- * Repeat: Take a step in the steepest descent direction

Figure source: Mathworks

Steepest Direction

Steepest Direction = direction of the gradient

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \dots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

How to Learn?

$$\ell\ell(w) = \sum_{i} \log P_w(y_i|x_i)$$
$$= \sum_{i} w_{y_i} \cdot x_i - \log \sum_{y} e^{w_y \cdot x_i}$$

$$\frac{d}{dw_y} \log P_w(y_i|x_i) = \begin{cases} x_i - x_i \frac{e^{w_y \cdot x_i}}{\sum_{y'} e^{w_{y'} \cdot x_i}} & \text{if } y = y_i \\ -x_i \frac{e^{w_y \cdot x_i}}{\sum_{y'} e^{w_{y'} \cdot x_i}} & \text{otherwise} \end{cases}$$

$$= x_i(I(y = y_i) - P(y|x_i))$$

Optimization Procedure: Gradient Descent

```
initialize w (e.g., randomly)
repeat for K iterations:

for each example (x_i, y_i):

compute gradient \Delta_i = -\nabla_w \log P_w(y_i|x_i)

compute gradient \nabla_w \mathcal{L} = \sum_i \Delta_i

w \leftarrow w - \alpha \nabla_w \mathcal{L}
```

$$\frac{d}{dw_y}\log P_w(y_i|x_i) = x_i(I(y=y_i) - P(y|x_i))$$

- * α : learning rate —- hyperparameter that needs to be chosen carefully
- * How? Try multiple choices
 - * Crude rule of thumb: update should change *w* by about 0.1-1%

Stochastic Gradient Descent

```
initialize w (e.g., randomly)
repeat for K iterations:
for each example (x_i, y_i):
compute gradient \Delta_i = -\nabla_w \log P_w(y_i|x_i)
w \leftarrow w - \alpha \Delta_i
```

$$\frac{d}{dw_y}\log P_w(y_i|x_i) = x_i(I(y=y_i) - P(y|x_i))$$

if $y_i = y$, move w_y toward x_i if $y_i \neq y$, move w_y away from x_i with weight $1 - P(y_i|x_i)$ with weight $P(y|x_i)$ probability of *incorrect* answer probability of *incorrect* answer

compare this to the multiclass perceptron: probabilistic weighting!

Logistic Regression Demo!

https://playground.tensorflow.org/