خلاصه فیزیک هالیدی - فصل دهم: چرخش

مکان زاویه ای : برای توصیف چرخش یک جسم صلب حول محوری ثابت به نام محور چرخش, یک خط مرجع ثابت را در جسم در نظر می گیریم که بر محور عمود است و با جسم می چرخد.مکان زاویه ای θ این خط را نسبت به یک راستای ثابت اندازه می گیریم . وقتی θ بر حسب رادیان اندازه گیری شود خواهیم داشت:

$$\theta = \frac{s}{r} (v(r))$$

که در آن Sطول کمان مسیر دایره ای به شعاع r و زاویهٔ θ است. میان مقیاس رادیان با مقیاس زاویه در جر خش این ر ابطه بر قر ار است:

$$1rev = 360^{\circ} = 2 \pi \, rad$$

 θ_2 جا به جایی زاویه ای: جسمی که حول یک محور چرخش می چرخد,مکان زاویه ای آن از θ_1 به θ_2 تغییر می کند و یک جا به جایی زاویه ای طی می شود:

$$\Delta\theta = \theta_2 - \theta_1$$

که در آن $\Delta \theta$ برای چرخش پادساعتگرد مثبت و برای چرخش پادساعتگرد منفی است.

سرعت و تندی زاویه ای: اگر جسمی با جا به جایی $\Delta \theta$ در بازهٔ زمانی Δt چرخش کند. سرعت زاویه ای میانگین آن ω_{avg} برابر است با:

$$\omega_{\rm avg} = \frac{\Delta \theta}{\Delta t}$$

 ω بر ابر است با : جسم ω , برابر است با :

$$\omega = \frac{d\theta}{dt}$$

هم ω_{avg} و هم ω بردارند. و جهت آنها از قاعده ی دست راست به دست می آید. این کمیتها اگر چرخش پادساعتگرد باشد مثبت, و اگر ساعتگرد باشد منفی اند . بزرگی سرعت زاویه ای جسم تندی زاویه ای نامیده می شود.

شتاب زاویه ای : اگر سرعت زاویه ای جسمی در بازهٔ زمانی $\Delta t = t_2 - t_1$ از ω_1 تغییر کند شتاب زاویه ای متوسط جسم α_{avg} برابر است با :

$$\alpha_{avg} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

شتاب زاویه ای (لحظه ای) : α یک جسم بر ابر است با :

$$\alpha = \frac{d\omega}{dt}$$

معادله های سینماتیکی برای شتاب زاویه ای ثابت: حرکت با شتاب زاویه ای ثابت ($\alpha = \text{constant}$) حالت خاص مهمی از حرکت چرخشی است. معادله های سینماتیکی مربوط به این حالت عبار تند از:

$$\omega = \omega_{\circ} + \alpha t$$

$$\theta - \theta_{\circ} = \omega_{\circ} t + \frac{1}{2} \alpha t^{2}$$

$$\omega^{2} = \omega_{\circ}^{2} + 2\alpha (\theta - \theta_{\circ})$$

$$\theta - \theta_{\circ} = \frac{1}{2} (\omega_{\circ} + \omega) t$$

$$\theta - \theta_{\circ} = \omega t_{-} \frac{1}{2} \alpha t^{2}$$

رابطهٔ میان متغییرهای خطی و زاویه ای: نقطه ای از جسم صلب در حال چرخش که در فاصلهٔ r از محور چرخش قرار دارد , روی دایره ای به شعاع r حرکت می کند . اگر جسم به اندازه r بچرخد, این نقطه کمانی به طول r را طی می کند که با معادلهٔ زیر داده می شود:

$$s = \theta r$$
(با مقیاس رادیان)

در این معادله θ بر حسب رادیان است.

سرعت خطی آویک نقطه بر دایرهٔ مسیر مماس است تندی خطی ۷ نقطه عبارت است از:

$$v = \omega r$$
(با مقیاس رادیان)

که در آن \mathbf{w} تندی زاویه ای جسم(بر حسب رادیان بر ثانیه) است. شتاب خطی $\mathbf{\pi}$ نقطهٔ ادارای دو مؤلفهٔ مماسی و شعاعی است برای مؤلفهٔ مماسی داریم:

$$a_{t} = \alpha r(ابا مقیاس رادیان)$$

که در آن α بزرگی شتاب زاویه ای جسم (بر حسب رادیان بر مجذور ثانیه)است . مؤلفه شعاعی α عبارت است از:

$$a_{\rm r}=rac{{
m v}^2}{{
m r}}=\omega^2{
m r}$$
 (با مقیاس رادیان)

اگر نقطه ای دارای حرکت دایره ای یکنواخت باشد.دورهٔ تناوب T حرکت نقطه و جسم عبارت است از:

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$
 (با مقیاس رادیان)

انرژی جنبشی چرخشی و لختی چرخشی: انرژی جنبشی K یک جسم صلب, که حول محور ثابتی می چرخد, با معادلهٔ زیر داده می شود:

$$K = \frac{1}{2}I\omega^2$$
(در مقیاس رادیان)

که در آن الختی چرخشی جسم است. لختی چرخشی برای دستگاهی که از ذره های مجزا تشکیل شده به صورت زیر تعریف می شود:

$$I = \sum m_i r_i^2$$

و برای جسمی که توزیع پیوسته داشته باشد عبارت است از:

$$I = \int r^2 dm$$

در این عبارت ها r_i فاصلهٔ عمودی از محور چرخش تا هر جزء جرم جسم است و انتگرال گیری روی کل جسم صورت می گیرد که شامل هر عنصر جرم است.

قضیهٔ محورهای موازی: قضیهٔ محورهای موازی لختی چرخشی جسم حول هر محور را به لختی چرخشی همان جسم حول محوری که از مرکز جرم می گذرد مربوط می کند:

$$I = I_{com} + Mh^2$$

در اینجا hفاصلهٔ عمودی میان دو محور است و I_{com} لختی چرخشی جسم حول محوری است که از مرکز جرم می گذرد . می توان فرض کرد که h فاصله ای است که محور چرخش واقعی از محور چرخشی که از مرکز جرم می گذرد, جا به جا شده است.

گشتاور نیرو: گشتاور نیرو اثر چرخشی یا پیچشی نیروی \vec{F} وارد به یک جسم حول محور چرخش را بیان می کند. اگر \vec{T} بر نقطه ای اثر کند که با بردار مکان \vec{r} نسبت به محور داده می شود, آنگاه , بزرگی گشتاور نیرو عبارت است از:

$$\tau = rF_t = rF = rF \sin \emptyset$$

که در آن F_t مؤلفهٔ \overline{f} در راستای عمود بر \overline{f} \emptyset زاویهٔ میان \overline{f} میان عمودی میان محور چرخش و امتداد بر دار \overline{f} است. این امتداد خط اثر \overline{f} بازوی گشتاور \overline{f} نامیده می شوند. به همین ترتیب \overline{f} بازوی گشتاور \overline{f} است.

یکای SIگشتاور نیرو نیوتون -متر (N-m) است. گشتاور نیروr ,اگر جسم ساکن را به طور پادساعتگرد بچرخاند مثبت و اگر آن را به طور ساعتگرد بچرخاند منفی است.

قانون دوم نیوتون در شکل زاویه ای : قانون دوم نیوتون در حرکت چرخشی به صورت زیر است:

$$\tau_{net} = I\alpha$$

که در آن au_{net} گشتاور نیروی خالص وارد بر یک ذره یا یک جسم صلب au_{net} الختی چرخشی ذره یا جسم حول محور چرخش, و lpha شتاب زاویه ای حاصل حول آن محور است.

کار و انرژی جنبشی چرخشی: معادله های مورد استفاده در محاسبهٔ کار و توان در حرکت چرخشی, با معادله های مورد استفاده در حرکت انتقالی متناظرند و عبارتند از:

$$w = \int_{\theta_i}^{\theta_f} \tau d\theta$$

و

$$P = \frac{dw}{dt} = \tau \omega$$

وقتی ۲ ثابت باشد, معادله ی بالا را به صورت زیر ساده می شود:

$$w = r(\theta_f - \theta_i)$$

معادلهٔ مربوط به قضیهٔ کار – انرژی جنبشی ,که برای جسم های در حال چرخش بکار می رود به

صورت زیر است:

$$\Delta k = k_f - k_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = w$$