ディープラーニングの仕組みを知ろう!

第2回 人工知能勉強会

Shion MORISHITA

June 24, 2024

目次

はじめに 勾配降下法

勾配降下法の基本概念

はじめに

勾配降下法

勾配降下法

勾配降下法の基本概念

勾配降下法とその目的

- 機械学習や最適化の分野で広く用いられる最適化アルゴリズム
- 目的:最小化(または最大化)したい関数の最適なパラメータを見つけること

勾配降下法のアイデア

どのように関数が最小となるパラメータを見つけるか?

- ■【重要】多変数関数の最小条件を利用(第1回)
- 斜面を転がるボールのイメージ

【重要】多変数関数の最小条件(第1回)

関数
$$z=f(x,y)$$
 が最小になる必要条件は、 $\frac{\partial f}{\partial x}=0$ かつ $\frac{\partial f}{\partial y}=0$

ポイント

どの成分から見ても傾きが () なら、最小値の可能性あり!

多変数関数の最小条件のイメージ

斜面を転がるボールのイメージ

斜面を転がるボール(多変数関数 ver.)

• 最速で転がる (Δz が最小になる) には Δx , Δy をどう決める?

勾配降下法の基本式

$$egin{bmatrix} \Delta x \ \Delta y \end{bmatrix} = -\eta egin{bmatrix} rac{\partial z}{\partial x} \ rac{\partial z}{\partial y} \end{bmatrix}$$
(η :正の小さな定数)

勾配降下法の基本式の導出 i

「関数の近似公式 簡潔 ver.」(第1回)より、

$$\Delta z \simeq \left\langle \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix}, \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right\rangle.$$

「ベクトルの基本公式」(第1回)の内積の式

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle \triangleq \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

および、コーシー・シュワルツの不等式

$$-\|a\|\|b\| \le \langle a,b \rangle \le \|a\|\|b\|$$

勾配降下法の基本式の導出 ii

より、内積が最小となるのは $\cos\theta=-1$ のとき、すなわち、ベクトルの向きが反対 のとき($\theta=180^\circ$)。

ベクトルの向きが反対というのは、ベクトルの符号が異なるという意味なので、

$$a = -kb$$
 (k :正の定数)

と表せる。今回の表記に合わせれば、

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\eta \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix} \quad (\eta: \mathbf{E}$$
の定数)

と導かれる。

結局どういうこと??

(勾配降下法の基本式の図的なイメージをここに載せる)

【参考】ギリシャ文字一覧

文字	名称	文字	名称
α	アルファ	ν	ニュー
β	ベータ	ξ	グザイ
γ	ガンマ	0	オミクロン
δ	デルタ	π	パイ
ϵ	イプシロン	ρ	\Box
ζ	ゼータ	σ	シグマ
η	イータ	τ	タウ
θ	シータ	v	ウプシロン
ι	イオタ	ϕ	ファイ
κ	カッパ	χ	カイ
λ	ラムダ	ψ	プサイ
μ	ミュー	ω	オメガ