Réactions acido-basiques

Table des matières

1	Gér	néralités
	1.1	Définitions
	1.2	Constante d'équilibre $k^0(T)$
	1.3	Prévision du sens d'évolution d'une réaction
2	Cou	iple acide-base
		Définitions
	2.2	Produit ionique de l'eau
	2.3	pH d'une solution
3	Con	astante d'acidité k_a d'un couple acide-base
4	Cla	ssement des acides et des bases
	4.1	Acide fort-base forte
	4.2	Acide faible-base faible
	4.3	Constante d'équilibre d'une réaction acide-base
5	Dor	naines de prédominance
	5.1	Critère de négligence
	5.2	Domaine de prédominance et de majorité
	5.3	Diagramme de distribution
6	Cal	cul de pH : Méthode de la réaction prépondérante R.P
•	6.1	Principe de la méthode
	6.2	pH des acides forts ou des bases fortes
	0.2	6.2.1 Monoacide fort
		6.2.2 Monobase forte
	6.3	pH des acides faibles et des bases faibles
	0.5	6.3.1 monoacide faible
		6.3.2 Monobase faible

1 Généralités

Définitions 1.1

ightharpoonup Activité d'un constituant X : a(X)

L'activité chimique d'un constituant X notée a(X) est une grandeur intensive (ne dépend pas de la quantité de matière) sans dimension qui dépend de la nature et de l'état d'un constituant X .

- Cas d'un solvant : $a(H_2O) = 1$
- Cas d'un soluté :

$$a(X) = \frac{C(X)}{C_0}$$

C(X): concentration de X avec $C(X) \leq 0$, $1 \text{mol.} l^{-1}$: hypothèse des solutions dilués.

 $C_0 = 1 \text{mol.} l^{-1}$ concentration de référence

- Cas d'un solide ou d'un liquide : a = 1
- cas d'un mélange gazeux :

$$a_i = \frac{P_i}{P^0}$$

 P_i : pression partielle de X_i dans le mélange gazeux

 P_0 : pression de référence $P^0 = 1bar = 10^5 Pa$

- Exemples
- système homogène gazeux : $2H_2O(g) + O_2(g) \rightleftharpoons 2H_2O(g)$

$$a(H_2) = \frac{P(H_2)}{P^0}; a(O_2) = \frac{P(O_2)}{P^0}; a(H_2O) = \frac{P(H_2O)}{P^0}$$

• Système homogène aqueux : $CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) +$ $H_3O^+(aq)$

$$a(H_2O)=1 \ ; a(CH_3COOH)=\frac{[CH_3COOH]}{C^0} \ ; a(CH_3COO^-)=\frac{[CH_3COO^-]}{C^0} \ ; a(H_3O^+)=\frac{[H_3O^+]}{C^0}$$
 • Système hétérogène : $NH_3(g)\rightleftharpoons NH_3(aq)$

$$a(NH_3(g)) = \frac{P(NH_3)}{P^0}; a(NH_3(aq)) = \frac{[NH_3]}{C^0}$$

► Quotient de réaction chimique Q

l'équation de réaction chimique s'écrit sous la forme

$$0 = \sum_{i} \nu_{i} A_{i}$$

 $\nu_i = -1$ pour un réactif

 $\nu_i = +1$ pour un produit

$$Q = \prod_{i} (a(A_i))^{\nu_i}$$

• Exemple

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightleftharpoons 2Fe^{2+} + I_{2}(aq)$$

$$Q = \frac{(a(Fe^{2+})^{2}.a(I_{2})}{(a(Fe^{3+}))^{2}.(a(I^{-}))^{2}} = \frac{(\frac{[Fe^{2+}]}{C^{0}})^{2}.\frac{[I_{2}]}{C^{0}}}{(\frac{[Fe^{3+}]}{C^{0}})^{2}.(\frac{[I^{-}]}{C^{0}})^{2}} = \frac{[Fe^{2+}]^{2}.[I_{2}].C_{0}}{[Fe^{3+}]^{2}.[I^{-}]^{2}}$$

1.2 Constante d'équilibre $k^0(T)$

• Loi d'action des masses LAM

Lorsque l'équilibre est atteint et si tous les constituants de la réaction sont présents ,le quotient de la réaction Q_{eq} prend une valeur dite constante thérmodynamique d'équilibre $k^0(T)$ ne dépend que de la température .

$$Q_{eq} = k^0(T) = \prod_i (a_{ieq})^{\nu_i}$$

 $\bullet\ k^0(T)$ est indépendant de l'état initiale

1.3 Prévision du sens d'évolution d'une réaction

Considérons la réaction suivante $aA + bB \rightleftharpoons cC + dD$, $k^0(T)$

- $Q < k^0(T)$: évolution de la réaction dans le sens 1 $(\stackrel{\smile}{\rightharpoonup})$
- $Q > k^0(T)$: évolution de la réaction dans le sens 2 (\leftharpoonup)
- $Q = k^0(T)$: équilibre

2 Couple acide-base

2.1 Définitions

Selon Brönsted

- lacktriangle acide : une éspèce chimique capable de libérer un proton H^+
- \blacktriangleright base : une éspèce chimique capable de capter un proton H^+
- ▶ réaction acido-basique : réaction où on a échange des protons entre l'acide et la base
- \blacktriangleright à tout acide AH correspond une base conjuguée A^- , on parle du couple AH/A^-
- ▶ Dans une solution aqueuse,un acide ne peut libérer un proton que s'il est en présence d'une base qui va le capter .
 - Exemples

 NH_4^+/NH_3 : $NH_4^+ \rightleftharpoons NH_3 + H^+$ HNO_2/NO_2^- : $HNO_2 \rightleftharpoons NO_2^- + H^+$

- \blacktriangleright Certaines espèces peuvent libérer plusieurs protons H^+ , on parle des polyacides D'autres peuvent capter plus d'un proton : polybase
 - Exemple

 $H_2SO_4^{-}/HSO_4^{-}$: $H_2SO_4 \rightleftharpoons HSO_4^{-} + H^+$ HSO_4^{-}/SO_4^{2-} : $HSO_4^{-} \rightleftharpoons SO_4^{2-} + H^+$

- ▶ Il existe des espèces chimiques qui peuvent jouer à la fois le rôle d'un acide et d'une base : ampholytes,une telle propriété définit un caractère amphotère
 - Exemples HSO_4^- ; H_2O

$$H_2O$$
 + H_2O \rightleftharpoons HO^- + H_3O^+
acide 1 acide 2 base 1 base 2

2.2 Produit ionique de l'eau

• L'eau joue le rôle d'un acide dans le couple H_2O/HO^-

$$H_2O \rightleftharpoons H^+ + HO^-$$

• L'eau joue le rôle d'une base dans le couple H_3O^+/H_2O

$$H_3O^+ \rightleftharpoons H_2O + H^+$$

• H_3O^+, HO^-, H_2O sont en équilibre dans une solution aqueuse

$$2H_2O \rightleftharpoons H_3O^+ + HO^-$$

cette réaction est caractérisée par une constante d'équilibre $k_e(T)$

$$k_e(T) = \frac{a(H_3O^+).a(HO^-)}{a(H_2O)^2}$$

dans une solution diluée $C \leq 0, 1 mol. l^{-1}$

$$k_e(T) = [H_3O^+].[HO^-]$$

 $k_e(T)$ représente le produit ionique de l'eau

à
$$T = 25^{\circ} c$$
; $k_e = 10^{-14}$

On définit

$$pk_e = -\log k_e = 14$$

la réaction est quasi-totale dans le sens $2(\angle)$

2.3 pH d'une solution

On définit le pH d'une solution par

$$pH = -\log a(H_3O^+) = -\log[H_3O^+]$$

- pH < 7 solution acide
- pH = 7 soltion neutre
- pH > 7 solution basique

3 Constante d'acidité k_a d'un couple acide-base

Considèrons la réaction acide-base

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

On définit la constante d'acidité du couple AH/A^-

$$k_a(T) = \frac{[A^-][H_3O^+]}{[AH]}$$

considèrons la réaction acide-base

$$A^- + H_2O \rightleftharpoons AH + HO^-$$

On définit la constante de basicité du couple AH/A^- par

$$k_b(T) = \frac{[HO^-][HA]}{[A^-]}$$

On vérifie que

$$k_a.k_b = k_e \Rightarrow pk_a + pk_b = pk_e$$

• Exemples

$$H_3O^+/H_2O$$
 : H_3O^+ + H_2O \rightleftharpoons H_2O + H_3O^+ $k_a=1$ $pk_a=0$ H_2O/HO^- : H_2O + H_2O \rightleftharpoons H_3O^+ + $HO^ k_a=k_e$ $pk_a=pk_e$

4 Classement des acides et des bases

4.1 Acide fort-base forte

• Un acide est fort si sa réaction de dissociation est totale dans une solution aqueuse .

$$AH + H_2O \to H_3O^+ + A^-$$

 A^- ne manifeste aucune caractère basique (base hyperfaible),elle n'a aucune aptitude à capter un proton ,on dit qu'elle s'agit d'une base indifférente

- *HCl*: acide chlorhydrique
- HNO_3 : acide nitrique

$$HCl + H_2O \rightarrow H_3O^+ + Cl^- \\ HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$$

- l'acide fort dans l'eau est converti totalement en H_3O^+ , on dit que H_3O^+ représente l'acide limite ou acide le plus fort pouvant exister dans l'eau.
- ulletRemarque : l'eau ne permet pas de comparer la force d'acides forts : leur comportement est identique ,on dit que leurs forces sont nivelées par l'eau .
- une base est forte si sa réaction de dissociation est totale dans une solution aqueuse.

$$A^- + H_2O \to AH + HO^-$$

AH ne manifeste aucune caractère basique ,on dit qu'il s'agit d'un acide indifférent

•Exemples

NaOH: hydroxyde de soudium

 NH_2^- : ion amidure RO^- : ion alcoolate

$$NaOH + H_2O \rightarrow Na^+ + HO^- + H_2O$$

 $NH_2^- + H_2O \rightarrow NH_3 + HO^-$
 $RO^- + H_2O \rightarrow ROH + HO^-$

- \bullet HO^- représente la base limite ou la base la plus forte pouvant exister dans l'eau .
- •Remarque : les forces des bases fortes sont nivelées par l'eau .

4.2 Acide faible-base faible

• Un acide est dit faible si sa réaction de dissociation dans l'eau est partielle

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

cette réaction est caractérisée par la constante d'acidité

$$k_a = \frac{[A^-][H_3O^+]}{[AH]} = \frac{h.[A^-]}{[AH]}$$

 $avec [H_3O^+] = h$

$$pk_a = -\log k_a$$

- Un acide est d'autant plus fort qu'il libère facilement le proton c.à.d que sa constante d'acidité k_a est plus grande où pk_a est plus petite .
- Une base est faible si sa réaction de dissociation dans l'eau est partielle .

$$A^- + H_2O \rightleftharpoons AH + HO^-$$

$$k_b = \frac{[HO^-][AH]}{[A^-]} = \frac{\omega.[AH]}{[A^-]}$$

avec $\omega = [HO^-]$

- Une base est d'autant plus forte qu'elle capte facilement un proton c.à.d que k_b est plus grande $(pk_b$ petite)
- Exemples

$$CH_3COOH/CH_3COO^-$$
 : $pk_a = 4.8$
 $HCOOH/HCOO^-$: $pk_a = 3.8$

 $HCOO^-$ est une base plus forte que CH_3COO^-

• Remarque : L'eau permet de différencier la force des acides ou des bases faibles

4.3 Constante d'équilibre d'une réaction acide-base

Toute réaction acide-base mettant en jeu deux couples, sa constante d'équilibre s'éxprime comme un rapport des deux constantes d'acidités k_a .

• Remarque : acide éthanoïque-ammoniaque deux couples CH_3COOH/CH_3COO^- et NH_4^+/NH_3

(1)
$$CH_3COOH + NH_3 \rightleftharpoons CH_3COO^- + NH_4^+$$

la constante d'équilibre de cette réaction

$$k = \frac{[NH_4^+][CH_3COO^-]}{[CH_3COOH][NH_3]}$$

$$(2) CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+ k_{ab}$$

$$(3) NH_4^+ + H_2O \approx NH_3 + H_3O^+ k_{a2}$$

(2)
$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+ k_{a1}$$

(3) $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+ k_{a2}$
 $k_{a1} = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} \text{ et } k_{a2} = \frac{[H_3O^+][NH_3]}{[NH_4^+]}$

$$(1) = (2) - (3) \Rightarrow pk = pk_{a1} - pk_{a2}$$

$$k = \frac{k_{a1}}{k_{a2}}$$

 $pk_{a1}=4,8$ et $pk_{a2}=9,2$ donc $pk=-4,4\Rightarrow k=10^{4,4}>>1$ donc la réaction est quasi-totale dans le sens 1 ()

• Remarque : on peut pévoir cette réaction à l'aide de la régle gamma une réaction est thermodynamiquement favorisée (k > 1) selon la régle de gamma

 $acide 1 + base 2 \rightleftharpoons acide 2 + base 1$

$$k = \frac{k_{a1}}{k_{a2}} = 10^{pk_{a2} - pk_{a1}}$$

5 Domaines de prédominance

Critère de négligence 5.1

En solution aqueuse, une espèce N est négligeable devant M si :

$$N < \frac{[M]}{10}$$

5.2 Domaine de prédominance et de majorité

Considèrons l'acide AH et sa base conjuguée dans une solution aqueuse .

$$k_{a} = \frac{AH + H_{2}O \rightleftharpoons A^{-} + H_{3}O^{+}}{[AH]} \Rightarrow h = [H_{3}O^{+}] = ka\frac{[AH]}{[A^{-}]}$$
$$pH = pk_{a} + \log\frac{[A^{-}]}{[AH]}$$

▶ AH prédomine sur A^- si $[AH] > [A^-]$ donc $\frac{[A^-]}{[AH]} < 1 \Rightarrow \log \frac{[A^-]}{[AH]} < 0$

$$pH < pk_a$$

On obtient un diagramme de prédominance

▶ AH est majoritaire devant A^- si $[AH] \ge 10[A^-]$ donc $\frac{[A^-]}{[AH]} \le \frac{1}{10} \Rightarrow \log \frac{[A^-]}{[AH]} \le -1$

$$pH \leqslant pk_a - 1$$

▶ A^- est majoritaire devant AH si $[A^-] \ge 10[AH]$ $pH \ge pk_a + 1$

on obtient le diagramme de majorité

$$AH$$
 majoritaire $[AH] >> [A^-]$ $[AH] > [A] > [AH]$ A^- majoritaire $[A^-] >> [AH]$ pH

5.3 Diagramme de distribution

Prenons l'exemple d'un diacide H_2A de concentration totale C_0

$$C_0 = [H_2A] + [HA^-] + [A^{2-}]$$

$$H_2A + H_2O \rightleftharpoons HA^- + H_3O^+ k_{a1} = \frac{h \cdot [HA^-]}{[H_2A]}$$

$$HA^- + H_2O \rightleftharpoons A^{2-} + H_3O^+ k_{a2} = \frac{h \cdot [A^{2-}]}{[HA^-]}$$

$$[HA^-] = \frac{K_{a1}}{h}[H_2A] \text{ et } [A^{2-}] = \frac{k_{a2}}{h}[HA^-] = \frac{k_{a1}k_{a2}}{h^2}[H_2A]$$

$$C_0 = [H_2 A] \left(1 + \frac{k_{a1}}{h} + \frac{k_{a1} k_{a2}}{h^2} \right)$$

On appelle coefficients de distribution les paramètres intensifs suivants

$$\alpha_0 = \frac{[H_2 A]}{C_0}; \alpha_1 = \frac{[HA^-]}{C_0}; \alpha_2 = \frac{[A^{2-}]}{C_0}$$

$$\operatorname{donc} \alpha_0 = \frac{1}{1 + \frac{k_{a1}}{h} + \frac{k_{a1}k_{a2}}{h^2}}$$

donc $\alpha_0 = \frac{1}{1 + \frac{k_{a1}}{h} + \frac{k_{a1}k_{a2}}{h^2}}$ L'utilisation d'un logiciel de simulation permet de tracer les graphes α_i en fonction de pH, ce diagramma est appellé diagramme de distribution, il permet de voir comment est distribué l'élément H_2A entre ses divers formes H_2A , HA^- , A^{2-}

• Exemple: CH_3COOH

$$\alpha_0 = \frac{[CH_3COOH]}{C_0}; \alpha_1 = \frac{[CH_3COO^-]}{C_0}$$

$$pH = pk_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

$$= pk_a + \log \frac{\alpha_1}{\alpha_0}$$

$$\alpha_0 = \alpha_1 \Rightarrow pH = pk_a \text{ point d'intersection des deux courbes}$$

Calcul de pH: Méthode de la réaction prépondérante 6 R.P

Principe de la méthode 6.1

Pour calculer le pH d'une solution aqueuse il est nécessaire de passer par les étapes

- Faire une liste de toutes les éspèces présentes à l'état initial (E.I) et les placer sur une echelle d'acidité
- chercher les réactions prépondérantes quantitatives (R.P.Q) càd les réactions qui s'effectuent dans le sens de gamma $(k_{R.P.Q}^0 > 1)$
- Déterminer la réaction prépondérante principale (R.P.P) c.à.d la réaction qui fixe les concentrations des espèces majoritaires à l'équilibre $(k_{R,P,P}^0 \leq 1)$ et en déduire le pH.
- Vérifier que la réaction prépondérante secondire (R.P.S) c.à.d la réaction négligée,ne modifie pas l'équilibre précédente

6.2 pH des acides forts ou des bases fortes

6.2.1Monoacide fort

Considérons la réaction suivante :

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

avec $C_{HCl} = C$

 HCl est nivelé par l'eau ,donc HCl se trouve totalement sous forme de H_3O^+ dans l'eau donc $[H_3O^+]_i = C$

Pas de R.P.Q

les réactions possibles sont

(1)
$$H_3O^+ + H_2O \implies H_2O + H_3O^+$$
 $k^0 = 1$

(1)
$$H_3O^+ + H_2O \rightleftharpoons H_2O + H_3O^+ \quad k^0 = 1$$

(2) $H_2O + H_2O \rightleftharpoons H_3O^+ + HO^- \quad k_e = 10^{-14}$

Trois cas peuvent se présenter :

\triangleright Premier cas : (1) est la réaction prépondérante principale R.P.P

(2): autoprotolyse de l'eau est la réaction prépondérante secondaire R.P.S est négligeable

donc $[H_3O^+]=C$

$$pH = -\log C = pC$$

• vérification de l'approximation

On pose $x_2 = [H_3O^+]_{(2)}$ la concentration des ions de H_3O^+ qui provient de la réaction (2) càd l'autoprotolyse de l'eau.

$$R.P.P$$
 : $2H_2O$ \rightleftharpoons H_3O^+ + HO^-
 $E.I$: excés C 0
 $E.F$: excés $C+x_2$ x_2

$$k_e = [H_3O^+]_{eq} \cdot [HO^-]_{eq} = (C + x_2) \cdot x_2$$

pour avoir
$$pH = pC$$
 càd $h = C$ il faut que $x_2 \leqslant \frac{C}{10}$

$$x_2 = \frac{k_e}{h} \text{ et } x_2 \leqslant \frac{C}{10} \Rightarrow \frac{k_e}{C} \leqslant \frac{C}{10} \Rightarrow C \geqslant \sqrt{10.k_e}$$

$$C\geqslant 10^{-6.5} mol. l^{-1}=3.10^{-7} mol. l^{-1}$$

Conclusion : Pour les acides pas trop dilués càd $C \ge 3.10^{-7} mol.l^{-1}$

$$pH = pC$$

▶ deuxième cas : (2) est la réaction prépondérante : cas de trés forte dilution On néglige la concentration de H_3O^+ provenant de la réaction (1) Donc $h = [H_3O^+] = h = \omega = 10^{-7}$

$$pH = 7$$

• Vérification de l'approximation

On néglige $[H_3O^+]_1 = C$ devant $[H_3O^+]_2 = 10^{-7} mol. l^{-1}$

donc
$$[H_3O^+]_1 \le \frac{[H_3O^+]_2}{10} = \frac{10^{-7}}{10} = 10^{-8}$$

$$pH = 7 \text{ si } C \le C_{lim} = 10^{-8} \text{mol.} l^{-1}$$

➤ Troisième cas : (1) et (2) en compétition : il n'y a plus de R.P Il faut tenir en compte les deux réactions

$$h = C + x_2$$
 et $\omega = x_2 = h - C$
 $k_e = h\omega = h(h - C)$

$$h^2 - h.C - k_e = 0$$

Conclusion : si $10^{-8} < C < 3.10^{-7} mol.l^{-1}$ le pH est la solution de l'équation

$$h^2 - hC - k_e = 0$$

Application

Calculer pH d'une solution d'acide chlorhydrique de concentration

- $ightharpoonup C = 10^{-1} mol. l^{-1}$
- $ightharpoonup C = 10^{-9} mol. l^{-1}$
- $ightharpoonup C = 10^{-7} mol. l^{-1}$
 - Réponse
- $\qquad \qquad \bullet \quad C = 10^{-1} mol. l^{-1} > 3.10^{-7} mol. l^{-1} \Rightarrow pH = pC = 1$
- $ightharpoonup C = 10^{-9} mol. l^{-1} < 10^{-8} mol. l^{-1} \Rightarrow pH = 7$
- ▶ $C = 10^{-7} mol.l^{-1} mol \Rightarrow 10^{-8} < C < 3.10^{-7} mol.l^{-1} \Rightarrow$ résoudre l'équation $h^2 C.h k_e = 0$ donc pH = 6, 8

6.2.2Monobase forte

La base forte est nivelée par l'eau : elle se trouve dans l'eau sous forme HO^-

$$NaOH \rightarrow Na^+ + HO^-$$

$$[HO^-]_i = C$$

deux réactions possibles

(1) :
$$HO^- + H_2O \rightleftharpoons H_2O + HO^- k = 1$$

(1) :
$$HO^- + H_2O \rightleftharpoons H_2O + HO^- k = 1$$

(2) : $2H_2O \rightleftharpoons H_3O^+ + HO^- k_e = 10^{-14}$

Il suffit de remplacer $h = [H_3O^+]$ par $[HO^-] = \omega$ et pH par $pOH = -\log[HO^-]$ trois cas possibles

• premier cas

$$C \geqslant 3.10^{-7} mol. l^{-1} \Rightarrow pOH = pC \Rightarrow \boxed{pH = 14 - pC}$$
 la réaction prépondérante est (1)

• deuxième cas

$$C \leq 10^{-8} mol. l^{-1} \Rightarrow pOH = 7$$
 donc $pH = 7$ la réaction prépondérante est (2)

• troisième cas

$$10^{-8} < C < 3.10^{-7} mol. l^{-1}$$
: résoudre l'équation $\omega^2 - C.\omega - k_e = 0$

•Application : pH de NaOH de concentration \overline{C} tq :

$$ightharpoonup C = 10^{-1} mol. l^{-1} \Rightarrow pH = 14 - pC = 13$$

$$C = 10^{-9} mol. l^{-1} \Rightarrow pH = 7$$

$$ightharpoonup C = 10^{-7} mol. l^{-1} \Rightarrow \omega^2 - C\omega - k_e = 0 \Rightarrow pH = 7, 2$$

6.3 pH des acides faibles et des bases faibles

6.3.1monoacide faible

Considérons l'acide faible HA de concentration C

deux réactions prépondérantes (1) et (2)

(1)
$$AH + H_2O \rightleftharpoons A^- + H_3O^+ k_a$$

(2) $2H_2O \rightleftharpoons H_3O^+ + HO^- k_e$

$$(2) 2H_2O \qquad \Rightarrow H_3O^+ + HO^- k_e$$

▶ L'autoprotolyse de l'eau est négligeable : $C \ge 3.10^{-7} mol.l^{-1}$ La R.P.P est (1) et la réaction (2) est négligeable On définit le coéfficient de dissociation de l'acide α comme étant le rapport entre la quantité dissociée de l'acide et la quantité initiale.

$$k_a = \frac{[A^-]_{eq} \cdot h}{[AH]_{eq}} = \frac{h^2}{C - h}$$

Selon l'avancement de cette réaction on peut distinguer les trois cas

• premier cas : l'acide est trés faiblement dissocié donc majoritaire : $\alpha < 0, 1 \Rightarrow$ $h < \frac{C}{10}$

On peut négliger h devant $C: k_a \approx \frac{h^2}{C} \Rightarrow h = \sqrt{k_a \cdot C}$

$$pH = \frac{1}{2}(pk_a + pC)$$

Cette approximation est vrai si $[AH] \ge 10[A^-]$

$$pH = pk_a + \log \frac{[A^-]}{[AH]} \operatorname{donc} pH \leq pk_a - 1$$

$$\frac{1}{2}(pk_a + pC) \leqslant pk_a - 1 \Rightarrow pk_a - pC \geqslant 2$$

Conclusion : Pour un acide faible de constante k_a et de concentration C et si $pk_a - pC \ge 2$ alors le pH est $pH = \frac{1}{2}(pk_a + pC)$

• deuxième cas : l'acide est fortement dissocié donc minoritaire : $\alpha > 0,9$ L'acide faible se comporte comme un acide fort donc

$$h = C \Rightarrow pH = pC$$

L'approximation est vrai si $[AH] \leqslant \frac{[A^-]}{10} \Rightarrow pH \geqslant pk_a + 1 \Rightarrow pk_a - pC \leqslant -1$

Conclusion : Pour un acide faible de constante k_a et de concentration C et si $pk_a-pC\leqslant -1$ alors le pH est pH = pC

 \bullet troisième cas : l'acide est partiellement dissocié : 0, 1 $\leqslant \alpha \leqslant 0, 9$ $k_a = \frac{h^2}{C - h} \Rightarrow h^2 + k_a \cdot h - k_a \cdot C = 0$

On déduit pH à partir de h

Conclusion:

- $pH = \frac{1}{2}(pk_a + pC \text{ si } pH \leqslant pk_a 1 \text{ où } pk_a pC \geqslant 2$ $pH = pC \text{ si } pH \geqslant pk_a + 1 \text{ où } pk_a pC \leqslant -1$ pH à partir de l'équation $h^2 + k_a \cdot h k_a \cdot C = 0$ si les autres cas

•Application : pH de CH_3COOH selon la concentration

l'acide éthanoïque est un acide faible de $pk_a = 4,8$ et de concentration C

1. $C = 10^{-4} mol.l^{-1}$ donc $pk_a - pC = 4, 8 - 4 = 0, 8 \Rightarrow -1 < pk_a - pC < 2$ donc il faut résoudre l'équation $h^2 + k_a.h - k_a.C = 0 \Rightarrow h^2 + 10^{-4.8}h - 10^{-8.8} = 0$ $\Rightarrow h = 3,27.10^{-5} mol. l^{-1}$

$$pH = 4, 5; \alpha = \frac{h}{C} = 0, 33$$

2. $C = 10^{-2} mol.l^{-1}$; $pk_a - pC = 4, 8 - 4 = 2, 8 > 2$ donc il s'agit d'un acide trés faiblement dissocié : $pH = \frac{1}{2}(pk_a + pC) = 3,4$

$$k_a = \frac{C\alpha^2}{1-\alpha}$$
 avec $\alpha < 0, 1 \Rightarrow k_a \approx C\alpha^2 \Rightarrow \alpha = \sqrt{\frac{k_a}{C_2}} = 0,04$

- 3. $C = 10^{-6} \text{mol.} l^{-1}$; $pk_a pC = 4, 8 6 = -1, 2 < -1 \text{ donc } \alpha \to 1 \text{ et } pH = pC = 6$ $k_a = \frac{C\alpha^2}{1-\alpha} \approx \frac{C}{1-\alpha} \Rightarrow \alpha = 1 - \frac{C}{k_a} = 0,94$
- ► Autoprotolyse de l'eau n'est pas négligeable pH ne pourra être comprise qu'entre |6,5| (cas limite) et |7| (puisque est une solution acide). On peut prévoir le comportement de HA à partir de pk_a .
- •Exemple : $CH_3COOH : pk_a = 4, 8, C = 10^{-7} mol. l^{-1}$
- Diagramme de majorité

On déduit que $[CH_3COOH] \ll [CH_3COO^-]$

- (1) $CH_3COOH + H_2O \xrightarrow{quasi-totale} CH_3COO^- + H_3O^+$ (2) $H_2O + H_2O \rightleftharpoons H_3O^+ + HO^-$

 CH_3COOH est représenter par H_3O^+

$$2H_2O \rightleftharpoons H_3O^+ + HO^-$$

$$E.I$$
 excès C

E.F excès
$$C + x_2$$
 x_2
 $a = [H_2O^+] = C + x_2 \Rightarrow x_2 = h - C$

$$h = [H_3O^+] = C + x_2 \Rightarrow x_2 = h - C$$

$$k_e = h(h - C) \Rightarrow pH = 6, 8$$

$$k_a = \frac{[CH_3COO^-].h}{[CH_3COOH]} = \frac{C.\alpha.10^{-6.8}}{C(1-\alpha)} \Rightarrow \alpha = 0,99$$

• $pC \ge 8$: pH = 7: l'autoprotolyse de l'eau qui impose le pH

6.3.2 Monobase faible

Soit une solution contenant une base faible B de concentration C

- $B + H_2O \rightleftharpoons BH^+ + HO^- k_B$ Il suffit de remplacer dans les (2) $H_2O + H_2O \rightleftharpoons H_3O^+ + HO^-$
- équations précédentes pH par pOH et k_a par k_b •si $pH > 7,5 \ (pOH < 6,5)$
- (1) est la réaction prépondérante R.P: l'autoprotolyse de l'eau est négligeable

•
$$pk_b - pC \ge 2$$
: l'avancement de la base est faible $pOH = \frac{1}{2}(pk_b + pC)$

$$pH = 7 + \frac{1}{2}(pk_a - pC)$$

•
$$pk_b - pC \leq -1$$
: avancement fort $pOH = pC$

$$pH = 14 - pC$$

$$\bullet$$
 $-1 < pk_b - pC < 2$: résoudre l'équation $\omega^2 + k_B \omega - k_B C = 0$

• si pH < 7,5 où pOH > 6,5

Il faut tenir compte de l'autoprotolyse de l'eau .