CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Lexical Analysis

 Also called scanning, take input program string and convert into tokens

```
• Example:
```

```
double f = sqrt(-1);
```

```
T_DOUBLE ("double")
T_IDENT ("f")
T_OP ("=")
T_IDENT ("sqrt")
T_LPAREN ("(")
T_OP ("-")
T_INTCONSTANT ("1")
T_RPAREN (")")
T_SEP (";")
```

Token Attributes

Some tokens have attributes

```
T_IDENT "sqrt"T_INTCONSTANT 1
```

- Other tokens do not
 - T_WHILE
- Token=T_IDENT, Lexeme="sqrt", Pattern
- Source code location for error reports

Lexical errors

- What if user omits the space in "doublef"?
 - No lexical error, single token
 T_IDENT("doublef") is produced instead of sequence T_DOUBLE, T_IDENT("f")!
- Typically few lexical error types
 - E.g., illegal chars, opened string constants or comments that are not closed

Lexical errors

- Lexical analysis should not disambiguate tokens,
 - e.g. unary op + versus binary op +
 - Use the same token T PLUS for both
 - It's the job of the parser to disambiguate based on the context
- Language definition should not permit crazy long distance effects (e.g. Fortran)

Ad-hoc Scanners

Implementing Lexers: Loop and switch scanners

- Ad hoc scanners
- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering; Sentinels for push-backs; streams
- Can be error-prone, use only if
 - Your language's lexical structure is very simple
 - The tools do not provide what you need for your token definitions
- Changing or adding a keyword is problematic
- Have a look at an actual implementation of an ad-hoc scanner

Implementing Lexers: Loop and switch scanners

- Another problem: how to show that the implementation actually captures all tokens specified by the language definition?
- How can we show correctness
- Key idea: separate the definition of tokens from the implementation
- Problem: we need to reason about patterns and how they can be used to define tokens (recognize strings).

8

Specification of Patterns using Regular Expressions

Formal Languages: Recap

- Symbols: a, b, c
- Alphabet: finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings

```
\{a^n b^n : n > 0\}
```

Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. { a<sup>m</sup> b<sup>n</sup>: m, n are +ve integers }
```

2012-11-01

Regular Languages

- Defining the set of all regular languages:
 - The empty set and {a} for all a in Σ^ϵ are regular languages
 - If L₁ and L₂ and L are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)

$$L_1 \cup L_2$$
 (union)

$$L^* = \bigcup_{i=0}^{\infty} L^i$$
 (Kleene closure)

are also regular languages

There are no other regular languages

Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a regular expression is a concise description of a regular language
 - (a|b)*abb: is the set of all strings over the alphabet {a, b} which end in abb
- We will use regular expressions (regexps) in order to define tokens in our compiler,
 - e.g. lexemes for string tokens are \" $(\Sigma \")$ * \"

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{ \epsilon \}$ is a regular expression
 - E.g. if $\Sigma = \{a,b\}$ then 'a', 'b' are regexps
- If r₁ and r₂ are regular expressions, then the core operators to combine two regexps are
 - Concatenation: r₁r₂, e.g. 'ab' or 'aba'
 - Alternation: $r_1|r_2$, e.g. 'a|b'
 - Repetition: r₁*, e.g. 'a*' or 'b*'
- No other core operators are defined
 - But other operators can be defined using the basic operators (as in lex regular expressions) e.g. a+ = aa*

Expression	Matches	Example	Using core operators
c	non-operator character c	a	
$\backslash c$	character c literally	*	
"s"	string s literally	"**"	
	any character but newline	a.*b	
Λ	beginning of line	^abc	used for matching
\$	end of line	abc\$	used for matching
[s]	any one of characters in string s	[abc]	(alblc)
[^s]	any one character not in string s	[^a]	(blc) where $\Sigma = \{a,b,c\}$
r*	zero or more strings matching r	a*	
r+	one or more strings matching r	a+	aa*
r?	zero or one r	a?	(ale)
<i>r</i> { <i>m</i> , <i>n</i> }	between m and n occurences of r	a{2,3}	(aalaaa)
$r_1 r_2$	an r ₁ followed by an r ₂	ab	
$r_1 r_2$	an r ₁ or an r ₂	a b	
(r)	same as r	(a b)	
r_1/r_2	r ₁ when followed by an r ₂	abc/123	used for matching

2012-11-01

Regular Expressions: Definition

- Note that operators apply recursively and these applications can be ambiguous
 - E.g. is aa|bc equal to a(a|b)c or ((aa)|b)c?
- Avoid such cases of ambiguity provide explicit arguments for each regexp operator
 - For convenience, for examples on this page, let us use the symbol '·' to denote the operator for concatenation
- Remove ambiguity with an explicit regexp tree
 - a(a|b)c is written as $(\cdot(\cdot a(|ab))c)$ or in postfix: $aab|\cdot c\cdot$
 - ((aa)|b)c is written as $(\cdot(|(\cdot aa)b)c)$ or in postfix: $aa \cdot b|c$

16

Regular Expressions: Definition

 Remove ambiguity with an explicit regexp tree
 a(a|b)c is written as
 (·(·a(|ab))c)
 or in postfix: aab|·c·

```
((aa)|b)c is written as (\cdot(|(\cdot aa)b)c) or in postfix: aa \cdot b|c
```

 Does the order of concatenation matter?

Equivalence of Regexps

- (R|S)|T == R|(S|T) ==R|S|T
- (RS)T == R(ST)
- (R|S) == (S|R)
- R*R* == (R*)* == R* == RR*| ε
- R** == R*
- (R|S)T = RT|ST

- R(S|T) == RS | RT
- (R|S)* == (R*S*)* ==(R*S)*R* == (R*|S*)*
- RR* == R*R
- (RS)*R == R(SR)*
- $R = R | R = R \epsilon$

Equivalence of Regexps

- 0(10)*1|(01)*
- (01)(01)*|(01)*
- (01)(01)*|(01)(01)*|ε
- (01)(01)*|E
- (01)*

- (RS)*R == R(SR)*
- RS == (RS)
- $R^* == RR^* | \varepsilon$
- R == R|R
- R* == RR* | ε

Regular Expressions

- To describe all lexemes that form a token as a pattern
 - -(0|1|2|3|4|5|6|7|8|9)+
- Need decision procedure: to which token does a given sequence of characters belong (if any)?
 - Finite State Automata
 - Can be deterministic (DFA) or nondeterministic (NFA)

Implementing Regular Expressions with Finite-state Automata

Deterministic Finite State Automata: DFA

- A set of states S
 - One start state q_0 , zero or more final states F
- An alphabet \sum of input symbols
- A transition function:
 - $-\delta: S \times \Sigma \Rightarrow S$
- Example: $\delta(1, a) = 2$

DFA: Example

 What regular expression does this automaton accept?

A: start state

C: final state

Answer: (011)*00

DFA simulation

Input string: 00100

DFA simulation takes at most n steps for input of length n to return accept or reject

Start state: A

1.
$$\delta(A,0) = B$$

2.
$$\delta(B,0) = C$$

3.
$$\delta(C,1) = A$$

4.
$$\delta(A,0) = B$$

5.
$$\delta(B,0) = C$$

no more input and C is final state: **accept**

Building a Lexical Analyzer

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression ⇒ NFA
- NFA \Rightarrow DFA
- DFAs or NFAs for all the tokens ⇒ Lexical
 Analyzer
- Two basic rules to deal with multiple matching:
 greedy match + regexp ordering

Lexical Analysis using Lex

```
용 {
#include <stdio.h>
#define NUMBER
                  256
#define IDENTIFIER 257
용}
/* regexp definitions */
num [0-9]+
용용
{num} { return NUMBER; }
[a-zA-Z0-9]+ { return IDENTIFIER; }
응응
int
main () {
 int token;
 while ((token = yylex())) {
    switch (token) {
      case NUMBER: printf("NUMBER: %s, LENGTH:%d\n", yytext, yyleng); break;
     case IDENTIFIER: printf("IDENTIFIER: %s, LENGTH:%d\n", yytext, yyleng); break;
      default: printf("Error: %s not recognized\n", yytext);
   }
```

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow 2^S$
 - One state is chosen non-deterministically
 - Transitions can be labeled with ϵ , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

Thompson's construction

Converts regexps to NFA

Build NFA recursively from regexp tree

Build NFA with left-to-right parse of postfix string using a stack

2012-11-01

Input = $aabl \cdot c \cdot$

- read a, push n1 = nfa(a)
- read a, push n2 = nfa(a)
- read b, push n3 = nfa(b)
- read I, n3=pop(); n2=pop(); push n4 = nfa(or, n2, n3)
- read ·, n4 = pop(); n1 = pop(); push n5 = nfa(cat, n1, n4)
- read c, push n6 = nfa(c)
- read ·, n6 = pop(); n5 = pop(); push n7 = nfa(cat, n5, n6)

Thompson's construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation $(r_1 \text{ followed by } r_2)$
 - Repetition (r_1^*)

Used by Ken
Thompson for
pattern-based
search in text editor
QED (1968)
To keep things
simple our version
is more verbose

For the empty language φ (optionally include a sinkhole state)

For each symbol x of the alphabet, there is a NFA that accepts it (include a sinkhole state)

• There is an NFA that accepts only ε

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

2012-11-01

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

2012-11-01

Thompson Rule 5

• Given a NFA for r_1 , there is an NFA that accepts r_1 *

Thompson Rule 5

• Given a NFA for r_1 , there is an NFA that accepts r_1 *

38

Example

- Set of all binary strings that are divisible by four (include o in this set)
- Defined by the regexp: ((0|1)*00) | 0
- Apply Thompson's Rules to create an NFA

Basic Blocks o and 1

(this version does not report errors: no sinkholes)

0|1

(0|1)*

(0|1)*00

((0|1)*00)|0

Simulating NFAs

- Similar to DFA simulation
- But have to deal with ε transitions and multiple transitions on the same input
- Instead of one state, we have to consider sets of states
- Simulating NFAs is a problem that is closely linked to converting a given NFA to a DFA

NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are equivalent and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε-transitions?

46

ε-Closure

- Start state: q_o
- ε-closure(S): S is a set of states

```
initialize: S \leftarrow \{q_0\}
T \leftarrow S
repeat T' \leftarrow T
T \leftarrow T' \cup [\cup_{s \in T'} \mathbf{move}(s, \epsilon)]
until T = T'
```

ε-Closure (T: set of states)

```
push all states in T onto stack
initialize \varepsilon-closure(T) to T
while stack is not empty do begin
     pop t off stack
     for each state u with u \in move(t, \varepsilon) do
        if u \notin \epsilon-closure(T) do begin
           add u to \varepsilon-closure(T)
           push u onto stack
        end
end
```

NFA Simulation

- After computing the ε-closure move, we get a set of states
- On some input extend all these states to get a new set of states

 $\mathbf{DFAedge}(T, c) = \epsilon\text{-}\mathbf{closure}\left(\cup_{q \in T}\mathbf{move}(q, c)\right)$

NFA Simulation

- Start state: q_o
- Input: c_1, \ldots, c_k

```
T \leftarrow \epsilon\text{-closure}(\{q_0\})
for i \leftarrow 1 to k
T \leftarrow \mathbf{DFAedge}(T, c_i)
```

Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

Example: subset construction

ε -closure(q_o)

move(ε -closure(q_0), 0)

ε -closure(move(ε -closure(q_o), o))

move(ε -closure(q_0), 1)

56

ε -closure(move(ε -closure(q_o), 1))

Subset Construction

```
add \epsilon-closure(q_0) to Dstates unmarked
while ∃ unmarked T ∈ Dstates do begin
    mark T;
    for each symbol c do begin
       U := \varepsilon-closure(move(T, c));
       if U ∉ Dstates then
          add U to Dstates unmarked
       Dtrans[d, c] := U;
    end
end
```

Subset Construction

```
states[0] = \varepsilon-closure(\{q_0\})
p = i = 0
while i \le p do begin
        for each symbol c do begin
                e = DFAedge(states[j], c)
                if e = states[i] for some i \le p
                then Dtrans[j, c] = i
                else p = p+1
                        states[p] = e
                        Dtrans[j, c] = p
        j = j + 1
        end
```


Minimization of DFAs

Minimization of DFAs

2012-11-01

63

- Subset construction converts NFA to DFA
- Complexity:
 - For FSAs, we measure complexity in terms of initial cost (creating the automaton) and per string cost
 - Let r be the length of the regexp and n be the length of the input string
 - NFA, Initial cost: O(r); Per string: O(rn)
 - DFA, Initial cost: $O(r^2s)$; Per string: O(n)
 - DFA, common case, s = r, but worst case $s = 2^r$

2012-11-01 64

- A regexp of size r can become a 2^r state DFA, an exponential increase in complexity
 - Try the subset construction on NFA built for the regexp A*aAⁿ⁻¹ where A is the regexp (a|b)
- Note that the NFA for regexp of size r will have r states
- Minimization can reduce the number of states
- But minimization requires determinization

2012-11-01 65

2012-11-01

67

NFA vs. DFA in the wild

Engine Type	Programs
DFA	awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA	GNU <i>Emacs</i> , Java, <i>grep</i> (most versions), <i>less</i> , <i>more</i> , .NET languages, PCRE library, Perl, PHP (pcre routines), Python, Ruby, <i>sed</i> (most versions), vi
POSIX NFA	mawk, MKS utilities, GNU Emacs (when requested)
Hybrid NFA/DFA	GNU awk, GNU grep/egrep, Tcl

Extensions to Regular Expressions

- Most modern regexp implementations provide extensions:
 - matching groups; \1 refers to the string matched by the first grouping (), \2 to the second match, etc.,
 - e.g. ([a-z]+)\1 which matches abab where \1=ab
 - match and replace operations,
 - e.g. s/([a-z]+)/1/g which changes ab into abab where 1=ab
- These extensions are no longer "regular". In fact, extended regexp matching is NP-hard
 - Extended regular expressions (including POSIX and Perl) are called REGEX to distinguish from regexp (which are regular)
- In order to capture these difficult cases, the algorithms used even for simple regexp matching run in time 2012- Exponential in the length of the input

Implementing a Lexical Analyzer

Lexical Analyzer using NFAs

- For each token convert its regexp into a DFA or NFA
- Create a new start state and create a transition on ϵ to the start state of the automaton for each token
- For input i_1 , i_2 , ..., i_n run NFA simulation which returns some final states (each final state indicates a token)
- If no final state is reached then raise an error
- Pick the final state (token) that has the longest match in the input,
 - e.g. prefer DFA #8 over all others because it read the input until i_{30} and none of the other DFAs reached i_{30}
 - If two DFAs reach the same input character then pick the one that is listed first in the ordered list

Lexical Analysis using NFAs

 $TOKEN_A = a$

 $TOKEN_B = abb$

$$TOKEN_C = a*b+$$

Lexical Analysis using NFAs

Lexical Analysis using NFAs

Lexical Analyzer using DFAs

- Each token is defined using a regexp r_i
- Merge all regexps into one big regexp

$$-R = (r_1 | r_2 | ... | r_n)$$

- Convert R to an NFA, then DFA, then minimize
 - remember orig NFA final states with each
 DFA state

76

Lexical Analyzer using DFAs

- The DFA recognizer has to find the longest leftmost match for a token
 - continue matching and report the last final state reached once DFA simulation cannot continue
 - e.g. longest match: <print> and not <pr>>, <int></pr>
 - e.g. leftmost match: for input string aabaaaaab the regexp a+b will match aab and not aaaaab
- If two patterns match the same token, pick the one that was listed earlier in R
 - e.g. prefer final state (in the original NFA) of r_2 over r_3

Lookahead operator

- Implementing r_1/r_2 : match r_1 when followed by r_2
- e.g. a*b+/a*c accepts a string bac but not abd
- The lexical analyzer matches r₁εr₂ up to position
 q in the input
- But remembers the position p in the input where r₁ matched but not r₂
- Reset to start state and start from position p

78

Summary

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression ⇒ NFA
 - Thompson's Rules
- NFA ⇒ DFA
 - Subset construction
- DFA ⇒ minimal DFA
 - Minimization

⇒ Lexical Analyzer (multiple patterns)

Extra Slides

Efficient data-structures for DFAs

- 2D array storing the transition table
- Adjacency list, more space efficient but slower
- Merge two ideas: array structures used for sparse tables like DFA transition tables
 - base & next arrays: Tarjan and Yao, 1979
 - Dragon book (default+base & next+check)

82

	a	b	c	d
0	-	1	-	2
1	1	_	1	_
2	1	2	1	ı

	a	b	c	d
0	-	1	ı	2
1	1	-	1	ı
2	1	2	1	-

		_	1	-	2		
				1	ı	1	-
1	2	1	_				
1	2	1	1	1	2	1	_
0	1	2	3	4	5	6	7
2	2	2	0	1	0	1	_

base 0 2 1 4 2 0

nextstate(s, x):

L := base[s] + x

return next[L] if check[L] eq s

next

check

	a	b	c	d
0	-	1	-	2
1	1	-	1	-
2	1	2	1	_

	_	1	_	2			
			1	_	1	_	
-	2	_	-				
_	2	1	1	2	1	_	
0	1	2	3	4	5	6	
-	2	0	1	0	1	_	

base

0	1	-
1	3	ı
2	0	1

nextstate(s, x):

$$L := base[s] + x$$

return next[L] if check[L] eq s
else return nextstate(default[s], x)

next

check

2012-11-01 default

Converting Regular Expressions directly into DFAs

This algorithm was first used by Al Aho in egrep, and used in awk, lex, flex

Regexp to DFA: ((ab) | (ba)) *#

Regexp to DFA: followpos

- followpos(p) tells us which positions can follow a position p
- There are two rules that use the firstpos {} and lastpos () information

$$followpos(i)+=k,l$$

$$followpos(j)+=k,l$$

Regexp to DFA: ((ab)|(ba))*#

 $root = \{1,3,5\}$ fp(1)=2fp(3)=4fp(2)=1,3,5fp(4)=1,3,5

Regexp to DFA: ((ab) | (ba)) *#

$$\{1,3,5\}$$
 A

$$A: fp(1), a \{2\}, a B, a$$

$$A: fp(3),b \{4\},b \ C,b$$

$$A: fp(5),\# \{\},\# E,\#$$

$$B: fp(2),b \{1,3,5\},b A,b$$

$$C: fp(4), a \{1,3,5\}, a A, a$$

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting

- Step 2: in each group, find a sub-group of states having property P
- P: The states have transitions on each symbol (in the alphabet) to the *same* group

A, 0: blue

A, 1: yellow

E, 0: blue

E, 1: yellow

D, 0: yellow

D, 1: yellow

B, 0: blue

B, 1: yellow

C, 0: blue

C, 1: yellow

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4

A, 0: blue

A, 1: green

E, 0: blue

E, 1: green

D, 0: yellow

D, 1: green

B, 0: blue

B, 1: green

C, 0: blue

C, 1: green

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states

Converting an NFA into a Regular Expression

What is the regular expression for this NFA?

- A = a B
- B = b D | b C

- D = a B $\mid \epsilon$
- C = a D

- Three steps in the algorithm (apply in any order):
- Substitution: for B = X pick every A = B | T and replace to get A = X | T
- Factoring: (R S) | (R T) = R (S | T) and (R T) |
 (S T) = (R | S) T
- 3. Arden's Rule: For any set of strings S and T, the equation X = (S X) | T has X = (S*) T as a solution.

• Substitute:

$$A = a B$$

$$B = b D | b a D$$

$$D = a B | \epsilon$$

• Factor:

• Substitute:

$$A = a (b | b a) D$$

$$D = a (b | b a) D | \varepsilon$$

$$A = a (b|ba) D$$

 $D = a (b|ba) D|\epsilon$

• Factor:

$$A = (ab | aba) D$$

 $D = (ab | aba) D | \varepsilon$

• Arden:

$$A = (ab | aba) D$$
$$D = (ab | aba)* \varepsilon$$

Remove epsilon:

Substitute:

$$A = (ab | aba)$$

 $(ab | aba)$ *

• Simplify:

$$A = (a b | a b a) +$$

NFA to Regexp using GNFAs

Generalized NFA: transition function takes state and regexp and returns a set of states

r2 Algorithm:

- 1. Add new start & accept state
- 2. For each state *s*: rip state *s* creating GNFA, consider each state *i* and *j* adjacent to *s*
- 3. Return regexp from start to accept state

NFA to Regexp using GNFAs

NFA to Regexp using GNFAs

Rip states 1, 2, 3 in that order, and we get: (a(aalb)*ablb) ((bala)(aalb)*ablbb)*((bala)(aalb)*lε)la(aalb)*