Exercise II.13 (Cooling of a copper rod $\star\star$):

A long copper rod is initially at a uniform temperature T_0 . It is now exposed to an air stream at T_{∞} with a heat transfer coefficient α .

Given parameters:

- Diameter of the copper rod: d = 2 cm
- Initial temperature: $T_0 = 100$ °C
- Air stream temperature: $T_{\infty} = 20$ °C
- Heat transfer coefficient: $\alpha = 200 \text{ W/m}^2\text{K}$
- Thermal conductivity of copper: $\lambda = 399 \text{ W/mK}$
- Specific heat capacity of copper: $c_{\rm p} = 382~{\rm J/kgK}$
- Density of copper: $\rho = 8930 \text{ kg/m}^3$

Hints:

- Heat radiation can be neglected.
- Setup an energy balance.

Tasks:

- a) Determine how long will it take for the copper rod to cool to a temperature of T_1 = 25 °C.
- b) Sketch the temperature profile over the course of time.

Exercise II.14 (The temperature delay $\star\star$):

A body with a temperature of T_b is located within an environment with the linearly rising temperature T_e and heats up accordingly to the diagram below. As $t \to \infty$, the temperature of the body follows that of the environment with a constant time delay Δt .

Given parameters:

_	Heat transfer	coofficient	of the body	
•	rreat transfer	соепистепи	or the body.	()

• Mass of the body:
$$m$$

• Heat capacity of the body:
$$c_{
m p}$$

• Temperature of the environment:
$$T_{\rm e}\left(t\right)$$

Hints:

- The temperature is uniform within the body
- The environment, and its temperature, are not affected by the body.
- Heat radiation can be neglected.
- Setup an energy balance.

Tasks:

a) Determine this delay Δt .

