Brain-Audio Internal Education for Consultant

Junhyeok Lee Brain-Audio

Objectives

Understanding domain knowledge

Reminding keywords

Increase Googleability

Audio

리뷰] '감성과 기술의 만남' 브리츠 BZ-TM9080 진...

it.donga.com

How to Update Your Audio Drivers in Windows 10, ...

aylast.com

Other tasks

Vision

• NLP

Today

Model

Audio Signal

소리: 공기를 매질로 하는 압력의 진동 (공기가 아닌 매질/상온/상압/이 아닌경우 전달이 다르게 됨 e.g. 헬륨 보이스)

방마다 반사가 다름 마이크 특성을 탈수도? Analog(시간, 값이 모두 연속) Signal
↓
ADC(Analog-Digital Converter)
↓
Digital(시간, 값이 모두 불연속) Signal

Analog → Digital (Sampling)

Analog → Digital (Sampling)

Sampling rate is important!

Sampling by sampling rate 100Hz = sampling period 10ms

44.1kHz

2kHz

400Hz

Sampling rate N Hz → 0~N/2 Hz에 해당하는 주파수 정보만 존재 (Nyquist frequency) 사람의 가청 주파수: ~20kHz → 44.1kHz/48kHz 가 효율적이면서 고음질 (이거-보다-높다? 사기)

해상도(사진)

Analog → Digital (Value Quantizing)

Quantizing with bit depth $2 = 4(2^2)$ levels

Analog → Digital (Sampling & Quantizing)

Clipping 방지를 위해선 적당한 볼륨으로 녹음/저장 필요

퀀타이제이션(사진)

채도 400% 에서의 artifact QD를 낮추면 비슷한 현상이 생김

Quantize depth: 1bit

클리핑(사진)

화이트밸런스 조정

턱 라인 실종→ 정보의 손실

Analog → Digital

Analog signal → Sampling & Quantizing → Digital signal

- Sampling rate: 8kHz, 16kHz, 44.1kHz, 48kHz
 - Sampling rate N Hz → Contain 0~N/2 Hz frequency

- Bit depth: 16bit, 24bit, 32bit
 - 16bit Int, 32bit Int
 - 16bit float, 32bit float
 - MP3 compress this!

실행 시간: 00:51

샘플률: 48 kHz

샘플당 비트: 16

• 51s x 48 kHz = 2448000 samples

Channel

- Mono
 - Only one channel
 - Most of speech data
- Stereo
 - Two channel [Left, Right]
 - Music
 - Game
 - Phone call [spk1, spk2]
 - Some time mono data saved as stereo

Or More

Recording

- 샘플링 레이트는 무조건 높거나 목표랑 같은게 좋다
 - 높은건 낮출 수 있음
- 샘플당 비트도 무조건 많을수록 좋다
 - 샘플링 레이트 보다는 덜 중요
 - 24bit 는 처리하기 힘드니 사용 X
- 클리핑이 없다는 가정하에 소리는 클수록 좋다
- 리버브가 없는 무향실에서 녹음하는게 좋다
 - 특정 방에서 실행되는게 목표인 경우 그 방에서 녹음해도 좋다
- 좋은 마이크 > 좋은 음질

마이크 종류

- 컨덴서 마이크
 - 싸구려 마이크도 컨덴서일 수 있다
- +
 - 더 민감함
 - 더 넓은 범위의 주파수에 반응함
 - 음질이 좋다
- -
- 추가 전원 필요
- 비쌈
- 자가 노이즈가 있다
- 약하다(물리)

- 다이내믹 마이크
 - a.k.a 노래방 마이크
- +
- 충격에 강하다
- 싸다
- 외부 전원이 필요 없다
- 노이즈에 민감하지 않다
- -
- 민감하지 않다
- 크다
- 반응이 느리다
- 음질이 안좋다

Input?

Feature Extraction

Raw Audio

- Fourier Transform
 - STFT
 - STFT Magnitude
 - Mel Spectrogram
 - MFCC
 - CQT

Wavelet Transform

Fourier Transform

- Continuous Fourier Transform
- $F(f) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i f t} dt$
- Inverse CFT
- $f(t) = \int_{-\infty}^{\infty} F(f)e^{2\pi i f t} df$
- Linearity $F\{a \cdot f(t)\} = a \cdot F(s), F\{f(t) + g(t)\} = F(s) + G(s)$
- Invertible
- Differentiable

- Decompose signal to sum of periodic signals(sine/cosine)
- Time → (Time bin, Frequency bin)

Short Time Fourier Transform

- STFT
- $X(\omega, m) = \sum_{n=-\infty}^{\infty} x[n]w[n-h \cdot m]e^{-j\omega n}$
- NFFT(n): 1024, 512, 256
- Hop length(h): usually quarter of NFFT or 10ms
- Window(w): Hanning window, usually same size w/ NFFT or 25ms

Short Time Fourier Transform

Short Time Fourier Transform (RMS)

Mel Spectrogram

- STFT's y-axis: linear scale Hz
- MelSpec's y-axis: log scale Hz
- N_mel: 40, 80(tacotron)

- Not invertible!
 - dim 256/512 \rightarrow 40/80 compressed
 - Why we use vocoder

Mel Spectrogram

CQT

- Constant Q Transform
- Fit to music tasks

Thank You

Brain-Audio Internal Education for Consultant

Junhyeok Lee Brain-Audio

Today

Data

Model

음성 생성

Speech Generation, Text-to-Speech

실제 그 사람의 목소리 그대로 자연스럽게, 세계 최고 수준의 음질과 실시간 합성 속도를 제공합니다.

Voice Filter

Voice Filter

내 목소리와 다른 사람의 목소리가 겹쳐 있는 파일을 입력하면 내 목소리를 분리해냅니다. 마인즈랩이 구글에 이어 세계 최초로 구현에 성공한 엔진입니다. (2019년 6월)

음성 인식

Speech Recognition, Speech-to-Text

음성을 텍스트로 변환하는 엔진으로, 다양한 학습모델을 활용할 수 있고 높은 인식률과 빠른 처리 속도를 제공합니다.

음성 정제

Denoise

음성에 섞여있는 배경음과 같이, 음성 내의 다양한 잡음을 제거합니다.

화자 인증

Voice Recognition

사람의 음성 데이터를 Vector화하고 그 값을 대조하여 목소리를 인식합니다.

언어

문장 교정

잘못된 한글 문장을 문맥에 맞게 교정해줍니다.

한글 변환

Konglish

영어 단어 또는 한글과 영어가 혼용된 문장에서 영어 단어들을 외래어 표기법에 가까운 한글로 변환시켜줍니다.

AI 독해

Machine Reading Comprehension

주어진 텍스트를 독해하여 문맥을 이해하고, 질문에 맞는 정답의 위치를 찾아내서 정답을 제공합니다.

텍스트 분류

eXplainable Document Classifier

뉴스 기사를 입력하면 기사의 주제를 정확하게 분류해 냅니다. 더불어 분류의 근거를 문장 단위와 단어 단위로 제공하는 '설명 가능한 AI'입니다.

자연어 이해

Natural Language Understanding

문장을 입력하면 형태소 분석과 개체명 인식 결과를 제공해 줍니다.

시각

Al Avatar

Face-to-Face Translation

동영상 내 인물의 얼굴 움직임을 포착하여, 사진 속 특정 인물이 이를 따라 움직이는 영상을 만드는 엔진입니다.

AI 스타일링

Text-to-Image for fashion

패션에 대한 설명 텍스트를 입력하면 이를 이미지로 생성해 냅니다.

텍스트 제거

이미지에 있는 텍스트를 찾아 내어 제거해줍니다.

도로상의 객체 인식

AI Vehicle Recognition (AVR)

도로 상에서 달리는 차량의 이미지를 입력하면 창문의 위치, 차안에 있는 사람의 위치 그리고 번호판의 위치를 표시해줍니다.

얼굴 인증

Face Recognition

사람의 얼굴 데이터를 Vector화하고 그 값을 대조하여 얼굴을 인식합니다.

Text To Speech

Data: Speech(clean) + Text
Text 를 인풋으로 Mel spectrogram

너무 짧거나 긴 음성은 잘 안되는 경향 텍스트 마사지 필요 (G2P 등등) 언어마다 전처리 상이

Vocoder (MelGAN, WaveGLOW, VocGAN) Data: only speech(clean) Mel에서 Raw audio를 생성하는 모델 별도 학습

Speech To Text/Automatic Speech Recognition

Wav2Letter

AM: Acoustic Model

LM: Language Model(한국어는 AM만으로도 잘된다)

IRM(Ideal Ratio Mask)

Only use magnitude of STFT spectrogram

Speech Enhancement

 Data: Clean Speech + Noise (Noisy speech + Noise is also possible)

Speech Separation

• Blind Source Separation: 진행 예정

- Non-Blind Source Separation:
 - Directional Separation(w/ SMI)

Set 22802 (Unseen)

Dir O		
∕lixed	Masked	Target

Dir 2	
Mixed	Masked

Speaker Verification/Recognition

Speech -> Speaker Vector

 Compare 2 speaker is identical or not

Data: speech + id

 (Speech w/o id could be used by self-supervised learning)

Speech Diarization

