第四章第二次作业

1. 使得文法的预测分析产生回溯的原因是什么?仅使用 FIRST 集合可以避免回溯吗?为什么?

Answer

引起回溯的原因是,当文法中关于某个非终结符的产生式有多个候选,且根据当前的输入符号无法确定选用唯一的产生式,就会引起回溯。

仅使用 FIRST 集合不可以避免回溯。因为引起回溯的原因除了①相同左部的产生式的右部的 FIRST 集合交际不为空之外,还包括②文法中含有左递归、和③相同非终结符产生式的右部都存在 ε,且该非终结符的 FOLLOW 集合中含有其他产生式右部 FIRST 集合中的元素。因此仅使用 FIRST 集合不可以避免回溯。

2. 考虑文法:

```
lexp→atom | list
atom→number | identifier
list→(lexp-seq)
lexp-seq→lexp-seq lexp | lexp
```

- 1) 消除左递归
- 2) 求得该文法的 FIRST 集合和 FOLLOW 集合
- 3) 说明所得的文法是 LL(1)文法
- 4) 为所得的文法构造 LL(1)分析表
- 5) 对输入串(a (b (2)) (c))给出相应得 LL(1)分析程序的动作

Answer

1) 对于最后一句产生式 lexp-seq→lexp-seq lexp | lexp, 消除这个产生式的直接左递归:

```
lexp-seq \rightarrow lexp A \qquad A \rightarrow lexp A \mid \varepsilon
```

故消除左递归后的文法如下:

```
lexp→atom | list
```

atom→number | identifier

 $list \rightarrow (lexp-seq)$

 $lexp-seq \rightarrow lexp A$

 $FIRST(list) = \{ (\}$

 $A \rightarrow lexp A \mid \varepsilon$

2) FIRST(A) = { number, identifier , (, ε } FIRST(lexp-seq) = { number, identifier , (, ε }

```
FIRST(atom) = { number, identifier }

FIRST(lexp) = { number, identifier, ( }

FOLLOW(lexp) = FIRST(A) \cup FOLLOW(A) \cup { $ } = { number, identifier , ( , ) , $ }

FOLLOW(atom) = FOLLOW(lexp) = { number, identifier , ( , ) , $ }

FOLLOW(list) = FOLLOW(lexp) = { number, identifier , ( , ) , $ }

FOLLOW(lexp-seq) = { ) }

FOLLOW(A) = FOLLOW(lexp-seq) = { ) }
```

3) 1)中得出的文法不存在左公因子或左递归;

对于产生式 $lexp\rightarrow atom \mid list$, $FIRST(atom) \cap FIRST(list) = \Phi$, ϵ 不属于 FIRST(atom), ϵ 不属于 FIRST(list); 对于产生式 $lexp-seq' \rightarrow number \ lexp-seq' \mid identifier \ lexp-seq' \mid (lexp-seq) \ lexp-seq' \mid \epsilon$, $FIRST((lexp-seq) \ lexp-seq') \cap FIRST(number \ lexp-seq') \cap FIRST(identifier \ lexp-seq') \cap FIRST(\epsilon) = \Phi$, $FIRST(lexp-seq') \cap FOLLOW(lexp-seq') = \Phi$, 因此该文法为 LL(1)文法。

非终 结符	输入符号				
	number	identifier	()	\$
lexp	lexp→atom	lexp→atom	lexp→list		
atom	atom→number	atom→identifier			
list			list→(lexp-seq)		
lexp-seq	lexp-seq→ lexp A	lexp-seq→lexp A	lexp-seq→ lexp A		
A	$A \rightarrow lexp A$	$A \rightarrow lexp A$	$A \rightarrow lexp A$	$A \rightarrow \epsilon$	

4)

·/	 栈	 输入	
	lexp\$	(a (b (2)) (c))\$	
	list \$	(a (b (2)) (c))\$	输出 lexp→list
	(lexp-seq)\$	(a (b (2)) (c))\$	输出 list→(lexp-seq)
(lexp-seq)\$	a (b (2)) (c))\$	匹配 (
(lexp A) \$	a (b (2)) (c))\$	输出 lexp-seq→lexp A
(atom A)\$	a (b (2)) (c))\$	输出 lexp→atom
(identifier A)\$	a (b (2)) (c))\$	输出 atom→identifier
(a	A)\$	(b (2)) (c))\$	匹配 a
(a	lexp A)\$	(b (2)) (c))\$	输出 A → lexp A
(a	list A)\$	(b (2)) (c))\$	输出 lexp→list

(a	(lexp-seq)A)\$	(b (2)) (c))\$	输出 list→(lexp-seq)
(a(lexp-seq)A)\$	b (2)) (c))\$	匹配 (
(a(lexp A)A)\$	b (2)) (c))\$	输出 lexp-seq→lexp A
(a(atom A)A)\$	b (2)) (c))\$	输出 lexp→atom
(a(identifier A)A)\$	b (2)) (c))\$	输出 atom→identifier
(a(b	A)A)\$	(2)) (c))\$	匹配 b
(a(b	lexp A)A)\$	(2)) (c))\$	输出 A → lexp A
(a(b	list A)A)\$	(2)) (c))\$	输出 lexp→list
(a(b	(lexp-seq) A)A)\$	(2)) (c))\$	输出 list→(lexp-seq)
(a(b(lexp-seq) A)A)\$	2)) (c))\$	匹配 (
(a(b(lexp A) A)A)\$	2)) (c))\$	输出 lexp-seq→ lexp A
(a(b(atom A) A)A)\$	2)) (c))\$	输出 lexp→atom
(a(b(number A) A)A)\$	2)) (c))\$	输出 atom→number
(a(b(2	A) A)A)\$)) (c))\$	匹配 2
(a(b(2) A)A)\$)) (c))\$	输出 A → ε
(a(b(2)	A)A)\$) (c))\$	匹配)
(a(b(2))A)\$) (c))\$	输出 A → ε
(a(b(2))	A)\$	(c))\$	匹配)
(a(b(2))	lexp A)\$	(c))\$	输出 A → lexp A
(a(b(2))	list A)\$	(c))\$	输出 lexp→list
(a(b(2))	(lexp-seq)A)\$	(c))\$	输出 list→(lexp-seq)
(a(b(2))(lexp-seq)A)\$	c))\$	匹配 (
(a(b(2))(lexp A)A)\$	c))\$	输出 lexp-seq→lexp A
(a(b(2))(atom A)A)\$	c))\$	输出 lexp→atom
(a(b(2))(identifier A)A)\$	c))\$	输出 atom→identifier
(a(b(2))(c	A)A)\$))\$	匹配 c
(a(b(2))(c)A)\$))\$	输出 A → ε
(a(b(2))(c)	A)\$)\$	匹配)
(a(b(2))(c))\$)\$	输出 A → ε
(a(b(2))(c))	\$	\$	匹配)