REAKCIE ORGANICKÝCH ZLÚČENÍN

- reakcie organických zlúčenín sú zvyčajne pomalé a počas dlhého reakčného času vzniká zmes zlúčenín; na urýchlenie organických reakcií sú často využívané katalyzátory (teplo, svetlo, žiarenie, ultrazvuk, chemické zlúčeniny)
- reakcie majú zložitejší priebeh než udáva stechiometrická rovnica; prebiehajú cez viac medzistupňov, v ktorých vznikajú rôzne medziprodukty
- > pre ich priebeh platia tie isté zákonitosti ako pre priebeh reakcií v anorganickej chémií

činidlo je látka (molekula, ión, radikál), ktorá s rôznymi zlúčeninami dáva ten istý typ reakcie **substrát** (východisková látka) je látka, na ktorej sa uskutočňuje zmena

KLASIFIKÁCIA REAKCIÍ ORGANICKÝCH LÁTOK

Reakcie OZ najčastejšie delíme podľa:

- ✓ Spôsobu zániku starej väzby
- ✓ Charakteru zmien na substráte

Spôsoby zániku starej väzby, činidlá

Väzba medzi atómami A a B v zlúčenine A-B môže zaniknúť:

- a) **HOMOLYTICKY** (*homolýza*) symetrické štiepenie väzby
 - > elektróny väzbového elektrónového páru sa rozdelia medzi atómy A a B
 - vznikajú *radikály* (častice s nespárovanými elektrónmi, preto sú tieto činidlá veľmi reaktívne)
 - radikálové štiepenie väzby A-B:
- $A B \rightarrow A \cdot + B \cdot$
- > je potrebné teplo, žiarenie, alebo vhodný katalyzátor
- > najčastejšie prebieha u nepolárnych alebo málopolárnych zlúčenín

- b) **HETEROLYTICKY** (*heterolýza*) nesymetrické štiepemie väzby
 - elektróny väzbového elektrónového páru sa presunú na jeden z viazaných atómov A alebo
 B na ten, ktorý má vyššiu hodnotu elektronegativity
 - iónové štiepenie väzby A-B:

$$A - B \rightarrow |A + B^+|$$

elektronegatívnejší atóm je A

- vznikajú elektricky nabité častice = *ióny* elektrofilné a nukleofilné činidlá
- > najčastejšie prebieha u polárnych zlúčenín

$$CH_3 - C \bigvee_{O = H}^O \longrightarrow CH_3COO \circ + H \circ$$

nukleofilné činidlo (-) = donor elektrónov

- majú voľný elektrónový pár
- napáda miesta s najväčším zriedením elektrónového náboja, tzn. miesto s najmenšou elektrónovou hustotou
- napr.: anióny R⁻, RO⁻, OH⁻, X⁻, CN⁻, RCOO⁻, ...
 neutrálne molekuly, kt. majú voľné elektrónové páry / násobnú väzbu

elektrofilné činidlo (+) = akceptor elektrónov

- má nedostatok elektrónov
- napadá miesta na substráte s najväčšou elektrónovou hustotou
- napr.: H^+ , H_3O^+ , NO_2^+ , CH_3^+ , X^+ , ...

Reakcie, pri ktorých dochádza k homolytickému štiepeniu = *radikálové reakcie*, pri ktorých dochádza k heterolytickému štiepeniu = *iónové reakcie* – delíme ich na:

reakcie elektrofilné – činidlom je elektrofil (S_E , A_E) reakcie nukleofilné – činidlom je nukleofil (S_N , A_E)

$$\Rightarrow$$
 karbkatión: $-C^+$ \Rightarrow karbanión: $-C^ \Rightarrow$ radikál: $-C^-$

Charakter zmeny na substráte

(podľa charakteru činidla, ktoré ju vyvolá – adície radikálové, nukleofilné, elektrofilné)

Podľa charakteru vonkajších zmien na substráte reakcie delíme na:

> Substitučné reakcie

o v substráte (východiskovej látke) sa nahrádza atóm (skupina atómu) iným atómom (skupinou atómov):

$$C \longrightarrow X + Y \longrightarrow Y \longrightarrow C + X$$

o t.j. dochádza k prerušeniu jednej väzby a vytvoreniu druhej väzby na tom istom atóme

$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

 $CH_3 - CH_3 + Br_2 \rightarrow CH_3 - CH_2 - Br + HBr$

> Eliminačné reakcie

o nastáva zvyšovanie násobnosti chemickej väzby, z organickej zlúčeniny s jednoduchou väzbou vznikne zlúčenina s dvojitou väzbou / z dvojitej s trojitou väzbou, pričom sa eliminuje (odštiepi) jednoduchá molekula (najčastejšie H₂, H₂O, HX):

$$-\stackrel{|}{C}-\stackrel{|}{C}-\stackrel{\cdot x_{i-1}}{\longrightarrow} \quad C=C$$

t.j. jedna látka sa štiepi na dve alebo viac jednoduchších látok

$$H_3C - CH_3 \rightarrow H_2C = CH_2 + H_2$$

 $H_2C = CH_2 \rightarrow HC \equiv CH + H_2$

> Adičné reakcie

o dochádza k znižovaniu násobnosti chemickej väzby (opak eliminačných reakcií):

 t.j. dochádza k zlučovaniu dvoch alebo viacerých látok do jednej, bez odštiepenia inej častice

$$H_2C = CH_2 + H_2 \rightarrow H_3C - CH_3$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$Rr Rr$$

> Molekulový prešmyk

 dochádza k preskupeniu (premiestneniu) atómov vo vnútri molekuly – t.j. skupina odštiepená z jedného miesta molekuly sa pripojí na inom mieste. Menej stabilná molekula prechádza na stabilnejšiu:

Y=A —B —Z
$$\rightarrow$$
 Z —Y —A=B

$$\begin{array}{c}
H \\
C = C \\
H
\end{array}$$
 CH_2 =CH-OH \rightarrow CH₃-C=O
$$H$$