An Introduction to Circular Regression Based on "Circular Regression" by T.D.Downs and K.V.Mardia

Hengrui Luo and Kori Khan

Department of Statistics The Ohio State University

November 25, 2018

A Motivating Example

• Consider the case in which you have observed the peak systolic blood pressure for two different time periods: S_1 and S_2

	Person 1	Person 2	 Person 10
$\mathcal{\pmb{S}}_1$	5:12 p.m.	10:52 p.m.	 9:04 p.m.
S_2	5:28 p.m.	11:04 p.m.	 9:52 p.m.

- You are interested in cyclic variations in this circadian process (i.e., are the peak times the same for the two time periods)
- Approaches in time series may make assumptions that are not actually met

A Motivating Example

- An alternative approach might be to represent S_1 and S_2 as circular variables or random angles on S^1
- \bullet We can treat each hour as 15° on \mathbb{S}^{1}
- In the GLM setting, we might then answer the question with $g(E(\mathbf{S}_1)) = \beta \mathbf{S}_2$

The von Mises Distribution

• We say that a random angle v has the von Mises distribution with mean μ and nonnegative concentration parameter κ when the density for u is:

$$f_{\mu,\kappa}(v) = \frac{1}{2\pi I_0(\kappa)} \exp(\kappa \cos(v - \mu))$$

- \bullet μ is the direction from the origin to the center of gravity.
- $\rho = \frac{l_1(\kappa)}{l_0(\kappa)}$ is the distance from the origin to the center of gravity.
- Expectation $E(\cos t, \sin t) = \rho(\cos \mu, \sin \mu)$.
- Rotational invariance $t \sim M(\mu, \kappa) \Rightarrow t + \theta \sim M(\mu + \theta, \kappa)$, for $\theta \in (-\pi, \pi]$

Circular Regression

• We assume that *u* is an angular variable

- α, β are angular location parameters
- $oldsymbol{\omega} \in [-1,1]$ is a slope parameter
- Angular Error: $v \mu \sim M(0, \kappa)$

Circular Regression

 \bullet To develop intuition, assume that $\omega \in \{-1,0,1\}$

Distribution
$$v \mid u \sim \mathsf{M}(\mu, \kappa)$$

Link Function $\tan \frac{1}{2}(\mu - \beta) = \omega \tan \frac{1}{2}(u - \alpha)$
 $\implies \mu = \omega u + (\beta - \omega \alpha)$

- $\omega = 0 \implies \mu = \beta$, (v and u are independent)
- $\omega = 1 \implies \mu$ is a rotation of u through $\beta \alpha$
- $\omega = -1 \implies \mu$ is a rotation of -u through $\beta + \alpha$
- Rotational Models are a special case of more general framework

Circular Regression

Classification of Models.

- Let $\Theta = (\alpha, \beta, \omega)$ be the parameter space, we can classify models based on the functional relationships between the parameters
 - Class A: Independent modeling
 - $\implies \alpha, \beta, \omega$ are functionally independent
 - Class B: Symmetry modeling

$$\implies \alpha \pm \beta = 0 \Leftrightarrow (\alpha, \beta, \omega) = (\alpha, \pm \alpha, \omega)$$

- ullet Class C: Special orientation $\omega=0,\pm 1$ and presumed known
 - $\Longrightarrow \beta \omega \alpha$ is parameter of interest
- Why this classification?
 - We need to perform testing, $\Theta_C \subset \Theta_B \subset \Theta_A$
 - Helps in development of methods to obtain estimates

Statistical Inference

• Assume that we want to test whether $\mathbf{v} = (v_1, \dots, v_n)$ and $\mathbf{u} = (u_1, \dots, u_n)$ are independent:

$$H_0: \omega = 0$$

$$H_1: \omega \neq 0$$

- Note the alternative hypothesis must contain the parameter space under the null
- When ρ and n are sufficiently large, then under the null hypothesis

$$\frac{(n-3)(\hat{\rho}_A - \hat{\rho}_{C,0})}{2(1-\hat{\rho}_A)} \sim F_{2,n-3}$$

• Where $\hat{\rho}_A$ is the MLE estimate for ρ under Class A models and $\hat{\rho}_{C,0}$ is the MLE estimate for ρ under Class C models with $\omega=0$

Statistical Inference

• Returning to blood pressure example, with S_1 and S_2 peak systolic blood pressure from two different time periods.

	Person 1	Person 2	 Person 10
\boldsymbol{S}_1	-102	-17	 -44
S_2	-98	-14	 -32

• Consider the set-up:

$$\begin{split} \textbf{Distribution } & \textbf{\textit{S}}_1 \mid \textbf{\textit{S}}_2 \sim \mathsf{M}\left(\mu,\kappa\right) \\ \textbf{Link Function } & \tan\frac{1}{2}(\mu-\beta) = \omega \ \tan\frac{1}{2}(u-\alpha) \\ & \Longrightarrow \mu = \beta + 2 \arctan\{\omega \ \tan\frac{1}{2}(\textbf{\textit{S}}_2 - \alpha)\} \end{split}$$

Statistical Inference

$$\mu = \beta + 2 \arctan\{\omega \tan \frac{1}{2}(S_2 - \alpha)\}$$

- Question 1: Is there any association between S_1 and S_2 ?
 - $H_0: \omega = 0$ vs $H_0: \omega \neq 0$
 - $\frac{(10-3)(\hat{\rho}_A \hat{\rho}_{C,0})}{(3-1)(1-\hat{\rho}_A)} = 30.5 \sim F_{3-1,10-3}$
- Question 2: Are the blood pressure peak times identical for S₁ and S₂?

$$H_0: \omega = 1 \& \beta - \alpha = 0 \text{ vs } H_1: \omega \neq 1 \text{ or } \beta - \alpha \neq 0$$

$$\frac{(10-3)(\hat{\rho}_A - \hat{\rho}_{C,1,0})}{3(1-\hat{\rho}_A)} = .724 \sim F_{3-0,10-3}$$

For Further Reading I

- Downs, Thomas D., and K. V. Mardia. "Circular regression." Biometrika 89.3 (2002): 683-698.
- Kato, Shogo, Kunio Shimizu, and Grace S. Shieh. "A circular-circular regression model." Statistica Sinica (2008): 633-645.
- Chernov, Nikolai. Circular and linear regression: Fitting circles and lines by least squares. CRC Press, 2010.