TDT4171 Artificial Intelligence Methods Lecture 5 – Rational Agents

Norwegian University of Science and Technology

Helge Langseth IT-VEST 310 helgel@ntnu.no

Outline

- Summary from last time
- 2 Chapter 16: Rational Agents
 - Rational preferences
 - Utilities
 - Money
 - Multiattribute utilities
 - Decision networks
 - Dominance
 - Value of information
- Summary

Summary from last time

- Temporal models variables replicated over time
- Markov assumptions and stationarity assumption, so we need
 - Transition model $P(X_t|X_{t-1})$
 - Sensor model $P(\mathbf{E}_t|\mathbf{X}_t)$
- Tasks are filtering, prediction, smoothing, most likely sequence;
 all done recursively with constant cost per time step
- Classes of models we consider:
 - Hidden Markov models have a single discrete state variable; used for speech recognition
 - Dynamic Bayes nets subsume HMMs exact update intractable; approximations exist

Remember:

No lecture next week.

Chapter 16 – Learning goals

Understanding the relationship between

- Rational behaviour "doing what is expected to maximize goal achievement, given the available information"
- Preference structures
- Utilities

Being familiar with:

- Utility functions Their foundation and definition
- Utility elicitation
- Influence diagrams

The utility-based agent

An agent chooses among prizes (A, B, etc.)

Notation:

- $A \succ B$ A preferred to B
- $A \sim B$ indifference between A and B
- $A \gtrsim B$ A preferred to B or indifference between A and B

Assumption:

An agent will always be able to compare to prizes A and B.

⇒ No indecisiveness.

Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes.

Notation:

- $L_A \succ L_B$ L_A preferred to L_B
- ullet $L_A \sim L_B$ indifference between L_A and L_B
- ullet $L_A \gtrsim L_B$ L_A preferred to L_B or indifference

Lotteries:
$$L_A = [p, A_1; (1-p), A_2]$$

 $L_B = [p, B_1; (1-p), B_2]$

Again:

It is **not** an **option** to "chicken out"; a relation between L_A and L_B can always be established.

Which of the following two lotteries would you prefer?

- Lottery A: [1, \$10mill],
- Lottery B: [0.1, \$50mill; 0.89, \$10mill; 0.01, \$0].

What about these two:

- Lottery C: [0.11, \$10mill; 0.89, \$0],
- Lottery D: [0.1, \$50mill; 0.9, \$0].

Do you make rational choices if you "follow your heart"?

... and what does that even mean?

Discuss with your neighbour for a couple of minutes.

Rational preferences

Idea: Preferences of a rational agent must obey constraints.

Constraints:

- Orderability: $(A \succ B) \lor (B \succ A) \lor (A \sim B)$
- Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- Continuity: $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$
- Substitutability: $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$
- Monotonicity:

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

We hope:

Rational preferences follow some "rules"

- ⇒ Behavior can be described using a mathematical formulation.
- ⇒ Behavior can be implemented in an intelligent agent.

Rational preferences contd.

Violating the constraints leads to self-evident irrationality

Example: An agent with intransitive preferences can be induced to give away all its money!

Assume he has preferences $A \succ B \succ C \succ A$ and see what happens.

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing expected utility

Theorem – The foundation for the *Utility function*

Given preferences satisfying the constraints there exists a real-valued function ${\cal U}$ such that

- **2** $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i \cdot U(S_i) = \mathbb{E}_S[U(S)]$

This gives rise to the MEU principle:

To be rational, the agent must choose the action that maximizes expected utility!

Action selection:

$$\mathbb{E}U(A|\mathbf{e}) = \sum_{i} P\left(\mathtt{Result}_i(A)|\mathbf{do}(A),\mathbf{e}\right) \cdot U\left(\mathtt{Result}_i(A)\right)$$

Maximizing expected utility

Theorem – The foundation for the *Utility function*

Given preferences satisfying the constraints there exists a real-valued function ${\cal U}$ such that

- **2** $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i \cdot U(S_i) = \mathbb{E}_S[U(S)]$

This gives rise to the MEU principle:

To be rational, the agent must choose the action that maximizes expected utility!

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities! (For example, a lookup table for perfect tic-tac-toe)

Rational decision making?

Play movie at ./../poker.mp4

Utilities – and how to quantify them...

Utilities map states to real numbers – but which numbers?

Standard approach to assessment of human utilities:

- Compare a given state A to a standard lottery L_n that has
 - "best possible prize" u_{\top} with probability p
 - "worst possible catastrophe" u_{\perp} with probability (1-p)
- Adjust lottery probability p until $A \sim L_p$; $U(A) \leftarrow p \cdot u_{\top} + (1-p) \cdot u_{\perp}$

(This makes sense, as we already think of probabilities in terms of accepting bets...)

Utilities – and how to quantify them...

Utilities map states to real numbers – but which numbers?

Standard approach to assessment of human utilities:

- Compare a given state A to a standard lottery L_n that has
 - "best possible prize" u_{\top} with probability p
 - "worst possible catastrophe" u_{\perp} with probability (1-p)
- Adjust lottery probability p until $A \sim L_p$; $U(A) \leftarrow p \cdot u_{\top} + (1-p) \cdot u_{\perp}$

Note: Behavior is invariant w.r.t. linear transformation

$$U^*(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

Therefore, it is natural use normalized utilities; $u_{\top} = 1.0$, $u_{\perp} = 0.0$, and we get U(A) = p in the procedure above.

Are you rational? – Example continued

Recall:

- Lottery A: [1, \$10mill],
- Lottery B: [0.1, \$50mill; 0.89, \$10mill; 0.01, \$0].
- Lottery C: [0.11, \$10mill; 0.89, \$0],
- Lottery D: [0.1, \$50mill; 0.9, \$0].

Are you rational? - Example continued

Recall:

- Lottery A: [1, \$10mill],
- Lottery B: [0.1, \$50mill; 0.89, \$10mill; 0.01, \$0].
- Lottery C: [0.11, \$10mill; 0.89, \$0],
- Lottery D: [0.1, \$50mill; 0.9, \$0].

Let U(\$50mill) = 1, U(\$0) = 0, U(\$10mill) = u. If you prefer Lottery A over Lottery B we get

$$u > 0.1 + 0.89u$$
 \Leftrightarrow $u > \frac{10}{11}$.

Are you rational? – Example continued

Recall:

- Lottery A: [1, \$10mill],
- Lottery B: [0.1, \$50mill; 0.89, \$10mill; 0.01, \$0].
- Lottery C: [0.11, \$10mill; 0.89, \$0],
- Lottery D: [0.1, \$50mill; 0.9, \$0].

Let U(\$50mill) = 1, U(\$0) = 0, U(\$10mill) = u. If you prefer Lottery A over Lottery B we get

$$u > 0.1 + 0.89u \qquad \Leftrightarrow \qquad u > \frac{10}{11}.$$

Hence,
$$\mathbb{E}U(C) = 0.11u > 0.11\frac{10}{11} = 0.1 = \mathbb{E}U(D),$$

and Lottery C \succ Lottery D for a rational agent when $L_A \succ L_B$.

Are you rational? - New example

- 60 balls in an urn
- 20 are RED, 40 are BLUE or YELLOW
- We don't know how many are BLUE or YELLOW

- A: You receive \$100 if you draw a RED ball,
- B: You receive \$100 if you draw a BLUE ball
- C: You receive \$100 if you draw a RED or YELLOW ball
- D: You receive \$100 if you draw a BLUE or YELLOW ball

Which is better?

- Lottery A or Lottery B?
- Lottery C or Lottery D?

Are you rational? – New example

- 60 balls in an urn
- 20 are RED, 40 are BLUE or YELLOW
- We don't know how many are BLUE or YELLOW
- A: You receive \$100 if you draw a RED ball,
- B: You receive \$100 if you draw a BLUE ball

Let
$$R=P(\text{Red ball})$$
, $B=P(\text{Blue ball})$ $Y=P(\text{Yellow ball})$. Let $U(\$0)\equiv 0$ and $U(\$100)\equiv 1$.

If Lottery A
$$\succ$$
 Lottery B, it means that $R\cdot 1 + (B+Y)\cdot 0 > B\cdot 1 + (R+Y)\cdot 0 \ \Rightarrow \ R>B$

Are you rational? – New example

- 60 balls in an urn
- 20 are RED, 40 are BLUE or YELLOW
- We don't know how many are BLUE or YELLOW
- C: You receive \$100 if you draw a RED or YELLOW ball
- D: You receive \$100 if you draw a BLUE or YELLOW ball

Let
$$R=P(\text{Red ball})$$
, $B=P(\text{Blue ball})$ $Y=P(\text{Yellow ball})$. Let $U(\$0)\equiv 0$ and $U(\$100)\equiv 1$.

If Lottery A \succ Lottery B, it means that

$$R \cdot 1 + (B+Y) \cdot 0 > B \cdot 1 + (R+Y) \cdot 0 \implies R > B$$

If Lottery D \succ Lottery C, it means that

$$R \cdot 0 + (B+Y) \cdot 1 > B \cdot 0 + (R+Y) \cdot 1 \Rightarrow B > R$$

Human are sometimes irrational – Consequences?

Why are people irrational (sometimes)?

Are we . . .

- not obeying the MEU principle (but which constraints are unreasonable?)
- lacking computational power?
- focusing on "the lottery itself", e.g. regret?

Consequences for AI:

- The choices a rational agent can make are only as good as the preferences they are based on.
- If the agent is given conflicting preference judgements, it is **not** possible for the rational agent to understand (or mimic) them.
- Acting rationally (the point of the agents this course) is not the same as acting like a human!

Money and utilities – An example

- ullet You pay a fixed fee M to enter a game.
- A fair coin is tossed repeatedly until a "tail" appears, ending the game. You win 2^k , where k is the number of "heads" you have seen prior to the "tail".

What would be a fair price to pay for entering the game?

- How can a fair price be found?
- What is it in this case?
 - Discuss with your neighbour for a couple of minutes.

Money and utilities - An example

- You pay a fixed fee M to enter a game.
- A fair coin is tossed repeatedly until a "tail" appears, ending the game. You win 2^k, where k is the number of "heads" you have seen prior to the "tail".

$$\begin{split} \mathbb{E}[\mathsf{Payout}] &= -M + \sum_{i=0}^{\infty} P(k=i) \cdot \mathsf{Payout}(i) \\ &= -M + \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} \cdot 2^i \\ &= -M + \sum_{i=0}^{\infty} \frac{1}{2} = \infty \end{split}$$

Any finite entry cost is fair!

• You pay a fixed fee M to enter a game.

• A fair coin is tossed repeatedly until a "tail" appears, ending the game. You win 2^k , where k is the number of "heads" you have seen prior to the "tail".

Example: Pay 25 to take part

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse.

Typical empirical data:

Multiattribute utility theory

Add action nodes and utility nodes to belief networks to enable rational decision making

Algorithm:

- For each value of action node:
 - Compute expected value of utility node given action, evidence
- Return MEU action

Must define the utility of each combination of consequences

- Deaths
- Noise
- Cost

GeNle-demo: airport.xdsl

Multiattribute utility theory

How can we handle utility functions of many variables $X_1 \dots X_n$, e.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from preference behaviour?

- Idea 1: Identify various types of independence in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$
- **Idea 2:** Identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$

Preference structure: Dependence

 X_1 and X_2 preferentially independent of X_3 iff preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x_1', x_2', x_3 \rangle$ does not depend on x_3

E.g., \(\text{Noise}, Cost, Safety\):

- ⟨20,000 suffer, \$4.6 billion, x deaths/mpm⟩ >
- (70,000 suffer, \$4.2 billion, x deaths/mpm)

for any number of deaths \Rightarrow Safety P.I. of Noise and Cost

$\mathsf{Theorem}$

If every pair of attributes is P.I. then there is an **additive** value function:

$$U(x_1, \dots, x_n) = \sum_{i=1}^n U_i(x_i)$$

Hence assess n single-attribute functions; often a good approximation

Decision networks – in GeNIe

Must define the utility of each of the consequences separately

- Deaths
- Noise
- Cost

GeNIe-demo: airportAdditive.xdsl

Typically define attributes such that U is monotonic in each

Strict dominance: We say that choice B strictly dominates choice A iff $\forall i \ X_i(B) \geq X_i(A)$ (and now $U(B) \geq U(A)$)

Strict dominance seldom holds in practice

Consider the two lotteries where I flip a coin:

- Lottery A: You get \$1 if I get heads and \$2 if I get tails
- Lottery B: You get \$3 if I get heads and \$1 if I get tails

It is obvious which lottery is the better one for you...

Consider the two lotteries where I flip a coin:

- Lottery A: You get \$1 if I get heads and \$2 if I get tails
- Lottery B: You get \$3 if I get heads and \$1 if I get tails

It is obvious which lottery is the better one for you...

- Independent of lottery, there is a 50% probability you are unlucky (get heads in Lottery A, tails in Lottery B). Outcome is worth \$1 in either case
- Independent of lottery, there is a 50% probability you are lucky (get tails in Lottery A, heads in Lottery B). Outcome is worth \$2 and \$3 respectively.
- Seems appropriate to say that Lottery B is better...

Consider the two lotteries where I flip a coin:

- Lottery A: You get \$1 if I get heads and \$2 if I get tails
- Lottery B: You get \$3 if I get heads and \$1 if I get tails

It is obvious which lottery is the better one for you...

Cumulative distribution over winnings:

Whether lucky or unlucky, it is never silly to choose Lottery B.

⇒ Lottery B stochastically dominates Lottery A

Stochastic dominance - Mathematics

Distribution p_1 stochastically dominates distribution p_2 iff

$$\forall t \int_{-\infty}^{t} p_1(x)dx \le \int_{-\infty}^{t} p_2(t)dt$$

If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

$$\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$$

Note! This is true for any monotonic U!

Multiattribute case: stoch.dom. on all attributes ⇒ optimal

Stochastic dominance contd.

Stochastic dominance can often be determined without exact distributions using qualitative reasoning

- Construction cost increases with distance from city:
 - S_1 is closer to the city than S_2 $\Rightarrow S_1$ stochastically dominates S_2 on cost
- Injury increases with collision speed

How about this plan for reasoning about dominance:

- Annotate BN with information about stochastic dominance
- $X \xrightarrow{+} Y$ (X positively influences Y) means that
 - For every value **z** of Y's other parents **Z** $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$
- Dramatically simplifies the BN building process; allows qualitative inferences like "Chances of cancer increases if you smoke" (without quantification of the increase)

Value of information

Idea: Compute value of acquiring each possible piece of evidence.

Example: Buying oil drilling rights:

- Two blocks A and B, exactly one has oil, worth k
- Prior probabilities 1/2 each, mutually exclusive.
- Current price of each block is k/2.
- A consultant offers accurate survey of A. Fair price?

Solution: compute expected value of information (VOI)

VOI = expected value of best action given the information

expected value of best action without information

Value of information

Idea: Compute value of acquiring each possible piece of evidence.

Example: Buying oil drilling rights:

- Two blocks A and B, exactly one has oil, worth k
- Prior probabilities 1/2 each, mutually exclusive.
- Current price of each block is k/2.
- A consultant offers accurate survey of A. Fair price?

Solution: compute expected value of information (VOI)

• Survey may say "oil in A" or "no oil in A", prob. 0.5 each

VOI =
$$[0.5 \times \text{value of "buy A" given "oil in A"}]$$

+ $0.5 \times \text{value of "buy B" given "no oil in A"}] - 0$
VOI = $(0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$

General formula for VPI: Value of Perfect Information

- Current evidence E = e, current best action α
- Possible action outcomes S_i , potential new evidence E_i

$$\mathbb{E}U(\alpha \mid \boldsymbol{e}) = \max_{a} \sum_{i} P(S_i \mid a, \boldsymbol{E} = \boldsymbol{e}) \cdot U(S_i)$$

• Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$\mathbb{E}U(\alpha_{e_{jk}} \mid \boldsymbol{e}, E_j = e_{jk}) = \max_{a} \sum_{i} P(S_i \mid a, \boldsymbol{e}, E_j = e_{jk}) \cdot U(S_i)$$

• E_i is a random variable whose value is currently unknown must compute expected gain over all possible values:

Expected utility over uncertain E_i .

$$\mathrm{VPI}_{\boldsymbol{E}}(E_j) = \underbrace{\sum_{k} P(E_j = e_{jk} \mid \boldsymbol{e})}_{\mathrm{Prob. \ for \ } E_j \ = \ e_{jk}} \cdot \underbrace{\mathbb{E}U(\alpha_{e_{jk}} \mid \boldsymbol{e}, E_j = e_{jk})}_{\mathrm{Expected \ utility \ when \ } E_j \ = \ e_{jk}} - \mathbb{E}U(\alpha|\boldsymbol{e})$$

Luckily, we can do this in GeNIe instead!

Value Of Information - in GeNIe

GeNIe-demo: oil.xdsl

GeNIe-demo: VOI.xdsl

Properties of VPI

Nonnegative in expectation:

$$\forall j, E \ \mathsf{VPI}_E(E_j) \geq 0$$

Order-independent

$$VPI_{E}(E_{j}, E_{k}) = VPI_{E}(E_{j}) + VPI_{E, E_{j}}(E_{k})$$
$$= VPI_{E}(E_{k}) + VPI_{E, E_{k}}(E_{j})$$

Nonadditive; consider, e.g., obtaining E_i twice

$$VPI_E(E_i, E_k) \neq VPI_E(E_i) + VPI_E(E_k)$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal ⇒ evidence-gathering becomes a sequential decision problem. It is NP-complete in general.

Summary

- Rational agents can always use utilities to make decisions
- The MEU principle tells us how to behave
- It can be quite laborious to elicit preference structures from domain experts
 - ⇒ **structured approaches** are available
- Value of Information helps focus information gathering for rational agents
- Influence diagrams are extensions to BNs that let us make rational decisions.

Remember:

No lecture next week.