Trying to learn a function f

Trying to learn a function f

f can mean different things in different cultures

f(x) for prediction

$$Z_1, Z_2, ..., Z_{\Omega}$$

$$Y = nature(Z)$$

Some set of causally-connected variables

Data

$$X_1, X_2, ..., X_p$$

A set of potential predictor variables

$$Y = f(X) + \epsilon$$

Systematic component

Error

Prediction

$$\widehat{Y} = \widehat{f}(X)$$

Hats indicate predicted Y and estimated f

Goal of prediction

Use data to find a function \hat{f} that has good predictive performance given X

That is, \hat{f} is accurate on new observations

Goal of machine learning

To predict accurately!

- Species distribution
 - map
 - predict accurately for places we won't visit
- Climate change forecast
 - predict accurately for the future
- Antelopes in camera trap images
 - hand over the identification task to a machine so we don't have to look at images!
 - predict accurately for images that we'll never look at

Predictive skill

Basic idea: out-of-sample accuracy

 \hat{f} trained on a sample of data \hat{f} predicting new data У deviation = error $= e_i$ Χ Χ e.g. mean square error (MSE)

Machine learning workflow

Overall algorithm:

- 1. Create model algorithm(s) for $\hat{f}(x)$
- 2. Use a training algorithm to find parameter values of $\hat{f}(x)$
- 3. Use an inference algorithm to compare predictive skill among models (model families, tuning parameters, *x* sets, etc).

Inference algorithm

Basic idea: out-of-sample validation

Fit model to training dataset

Test model on validation dataset

e.g. mean square error (MSE)

k-fold cross validation (CV)

Divide dataset into k parts (preferably randomly)

... repeat with each test subset

k-fold CV inference algorithm

Algorithm divide dataset into k parts i = 1...k for each i test dataset = part i training dataset = remaining data find f using training dataset use f to predict for test dataset e_i = prediction error CV_error = mean(e)

Typical values for k: 5, 10, k

Regression & classification

Regression:

- numerical response variable
- predict a numerical value given x
- e.g. number of species given latitude

Classification:

- categorical response variable
- predict the category given x
- e.g. is it a bird, deer, tree, or mountain lion?
- e.g. is it dead or alive?; present or absent?

Ants data

```
> head(ants)
  site habitat latitude elevation richness
1 TPB forest
                 41.97
                             389
                                        6
  HBC forest
                 42.00
                                       16
                               8
  CKB forest
                 42.03
                             152
                                       18
  SKP forest
                42.05
                               1
                                       17
  CB forest
                 42.05
                             210
   RP forest
                 42.17
                             78
                                       15
```


Basic full ML setup

- Polynomial example, 3 algorithms:
 - model: flexible function $\hat{f}(x)$; polynomial linear model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_m x^m$$
 m=order

Ants (forest habitat)

Basic full ML setup

- Polynomial example, 3 algorithms:
 - model: flexible function $\hat{f}(x)$; polynomial linear model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_m x^m$$
 m=order

- training: optimize least squares objective function
- minimize $SSQ = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ for training data

```
lm(richness ~ poly(latitude, order), data=forest_ants)
```

Basic full ML setup

- Polynomial example, 3 algorithms:
 - model: flexible function $\hat{f}(x)$; polynomial linear model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_m x^m$$
 m=order

- training: optimize least squares objective function
- minimize $SSQ = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ for training data
- inference: tuning parameter (order of poly);
 k-fold cross validation

Leave-one-out cross validation

- LOOCV
- special case of k-fold CV: k = n

```
Algorithm
```

```
for each data point
fit model without point
predict for that point
measure prediction error (compare to observed)
CV_error = mean error across points
```

Leave one out CV (k-fold CV, k=n)

Basic model algorithms

- Ensemble methods
 - Bagging
 - Random forest
 - Boosting
- Neural networks

Regression tree base model

Ensemble methods

- Train many models
- Average the models to predict
- Averaging reduces variance

e.g.
$$Var(\bar{y}) = \frac{\sigma_y^2}{n}$$

Bagging

- Bootstrap
 - form new datasets by resampling from the data
- Aggregate
 - average over bootstrapped model fits

Bagging algorithm

for many repetitions
resample the data with replacement
train the base model
record prediction
final prediction = mean of predictions

Base model: can be any type of model

Bagging reduces prediction variance

Random forest

Algorithm

```
for many repetitions
```

```
randomly select m predictor variables
resample the data (rows) with replacement
train the tree model
record prediction
final prediction = mean of predictions
```


Boosting algorithm

- Too complex for this quick overview
- Basic idea: learn slowly by building up an ensemble iteratively from many models, each with small weight
- Key tuning parameter: learning rate
- Can include aspects of bagging and RF
- Training algorithm: gradient descent

Neural Networks in R

- Interfaces to:
 - keras google
 - torch facebook

Single layer NN

Input layer Hidden layer

Output layer

Single layer NN

Input Hidden Output layer layer layer **Activation function** A_1 X_1 generalized linear model A_2 X_2 A_3 f(X) X_3 A_4 X_4 A_5

Transform from X to A

Single layer NN

Output Hidden Input layer layer layer **Activation function Transform** $A_k = g\left(\omega_{k0} + \sum_{j=1}^p \omega_{kj} X_j\right)$ A_1 from X to A X_1 generalized linear model A_2 X_2 A_3 f(X) X_3 $f(X) = \beta_0 + \sum_{k=1}^{K} \beta_k A_k$ A_4 X_4

 A_5

multiple linear

regression

Training algorithm

- Stochastic gradient descent
 - with back propagation
- Model and training algorithms incorporate many previous strategies

Deep learning

- Multilayer neural networks
- Model algorithm
 - expressiveness
 - ability to approximate complex nonlinearity
 - architecture: width versus depth

Wide: 25 hidden units

Deep: 25 hidden units

Ants data: wide

Ants data: deep

Convolutional NNs

Transfer learning

Pretrained model on related big data

Retrain last 1-2 layers on specialized little data

and/or retrain dense layers

Rapid innovation

- Architectures
- Algorithms
- Recent example: transformer

Outlook

Automated data collection
+
machine learning
=
revolutionary