Variance Functions:

Constant: 1 Power: X^2

Binomial: np(1-p) where $p = \frac{\mu}{n}$; $V(\mu) = np(1-p)$

Links: initialization of base class returns μ ; p in the logit and subclasses; x elsewhere.

	Link $g(p)$	Inverse $g^{-1}(p)$	Analytic Derivative $g'(p)$			
Logit	$z = \log \frac{p}{1-p}$	$p = \frac{e^z}{1 + e^z}$	$g'(p) = \frac{1}{p(1-p)}$			
Power	$z = x^{p ow}$	$x = z^{\frac{1}{\text{pow}}}$	$g'(x) = pow \cdot x^{power-1}$			
Inverse	same as above with pow = -1					
Square Root	pow = 0.5					
Identity	pow = 1					
Log	$z = \log x$	$g^{-1}(z) = e^z$	$g'(x) = \frac{1}{x}$			
CDFLink/Probit	$z = \Phi^{-1}(p)$	$p = \Phi(z)$	$g'(x) = \frac{1}{\int_{-\infty}^{p} f(t)dt}$			
Cauchy	same as the above with the Cauchy distribution					
$\operatorname{CLogLog}$	$z = \log(-\log p)$	$p = e^{-e^z}$	$g'(p) = -\frac{1}{p \log p}$			

Table 1: Link Functions

Initializing the family sets a link property and a variance based on the link(?)

Family	Weights	Deviance	DevResid	Fitted	Predict
Base Class	$\frac{1}{(g'(\mu))^2 \cdot V(\mu)}$	$\frac{\sum_{i} \text{DevResid}^2}{\text{scale}}$	$(Y - \mu) \cdot \sqrt{\text{weights}}$	$\mu = g^{-1}(\eta)^*$	$\eta = g(\mu)$
Poisson			$sign(Y - \mu)\sqrt{2Y\log\frac{Y}{\mu} - 2(Y - \mu)}$		
Gaussian			$\frac{(Y-\mu)}{\sqrt{\operatorname{scale} \cdot V(\mu)}}$		
Gamma			Bug?		
Binomial			$sign(Y - \mu) \sqrt{-2Y \log \frac{\mu}{n} + (n - Y) \log \left(1 - \frac{\mu}{n}\right)}$		
Inverse Gaussian			?		

Table 2: Families

^{*} η is the linear predictor ie., $X\beta$ in the generalized linear model