

Digital Electronics

Chapter 3(part - 1) Combinational Logic

Outline of Chapter 3(part - 1)

- 4.1 Introduction
- 4.2 Design Procedure
- 4.3 Adders
- 4.4 Subtractors
- 4.5 Analysis Procedure

INTRODUCTION

- A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs.
- \blacksquare For *n* input variables, there are 2^n possible binary input combinations.
- For each binary combination of the input variables, there is one possible output.

INTRODUCTION

- Hence, a combinational circuit can be described by:
 - 1. A truth table that lists the output values for each combination of the input variables, or
 - 2. *m* Boolean functions, one for each output variable.

INTRODUCTION

DESIGN PROCEDURE

- The procedure involves the following steps:
- 1. State the problem.
- 2. Determine no. of available input variables and required output variables.
- 3. Assign letter symbols to the input and output variables.
- 4. Derive the truth table that defines the required relationship between inputs and outputs.
- 5. Obtain simplified Boolean function for each output.
- 6. Draw the logic diagram.

ADDERS(HALF ADDER)

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:

Table 4-3 Half Adder

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy'$$

$$C = xy$$

S: Sum C: Carry

ADDERS(HALF ADDER)

Implementation of HALF ADDER

Fig. 4-5 Implementation of Half-Adder

■ One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

Table 4-4 Full Adder

x	У	z	С	5
0	0	0	0	0
O	O	1	0	1
0	1	0	0	1
0	1	1	1	O
1	0	0	0	1
1	0	1	1	O
1	1	O	1	O
1	1	1	1	1

Simplified Expression

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz = xy + xy'z + x'yz$$

Fig. 4-6 Maps for Full Adder

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

Full Adder Implementation in SOP

Fig. 4-7 Implementation of Full Adder in Sum of Products

■ Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder).

$$S = z \bigoplus (x \bigoplus y)$$
= z'(xy' + x'y) + z(xy' + x'y)'
= xy'z' + x'yz' + xyz + x'y'z
$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

- A combinational circuit that performs the subtraction of two bits is called a half subtractor.
- The truth table for the half subtractor is listed below:

Ing	out	Output		
А	В	Difference	Borrow	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Difference = A'B+AB' Borrow = A'B

UBTRACTORS(HALF SUBTRACTOR)

Implementation of HALF SUBTRACTOR

$$D = A'B + AB'$$

 $B = A'B$

$$D = A'B + AB'$$

 $B = A'B$

■ One that performs the subtraction of three bits is a full subtractor.

	Input		Output	
Α	В	С	Difference	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

<u>Truth table of full subtractor</u>

UBTRACTORS(FULL SUBTRACTOR)

Simplified Expression

For Borrow

B C A	00	01	11	10
0	0	1	0	1
1	1	0	1	0

For Difference

Full Subtractor Implementation in SOP

Logic Diagram A B B In B I

UBTRACTORS(FULL SUBTRACTOR)

■ Logic diagram of Full Subtractor has been shown in the figure below:

