AMENDED SPECIFICATION

Reprinted as amened in accordance with the Decision of the Superintending Examiner acting for the Comptroller-General dated the twenty-fourth day of March 1961, under Section 14, of the Patents Act, 1949.

PATENT SPECIFICATION

NO DRAWINGS

Inventors: JOHAN GUNTHER COHN, HUGH ALBERT SHIELDS and ALFRED J. HALEY

811.820

Date of Application and filing Complete Specification: April 30, 1957.

No. 13750/57.

Complete Specification Published: April 15, 1959.

Index at acceptance:—Classes 1(1), A3B1; and 2(3), B1(A:I). International Classification:—B01i. C07c.

COMPLETE SPECIFICATION

Catalytic Hydrogenation of Acetylene

BRECIFICATION NO. 811-820

By a direction given under Section i7 (1) of the Patents Act 1949 this application proceeded in the name of Engelhand Industries, Inc., a corporation organised and existing under the laws of the State of Delawara, United States of America, of 113. Astor Street, Newark 2, New Jersey, United States of America.

THE PATENT OFFICE. 12th May, 1961

DS 92187/1(1)/R.158 200 5/61 PL

syste hydrogenation or accetyrate wherein are accetylene is present in a mixture with other gases, and is more particularly concerned with the purification of gaseous mixtures from small amounts of accetylene.

Palladium has been used as a catalyst in the direct hydrogenation of acetylene to ethylene by adding an excess of hydrogen. In one such process of direct hydrogenation acetylene together with an excess of hydrogen and steam was passed over a catalyst of palladium on silica gel at temperatures of about 200° C. to 300° C. and under normal pressures. The palladium in such a catalyst is usually present in great dispersion on the silica gel, e.g. 200 mg per liter. Such catalysts however, have been found to become poisoned quickly due to the presence of organic compounds of P, As, Sb and the hydrides of P, As, and Sb, organic compounds of S, H₂S, HCN, and polymerizing compounds such as vinyl acetylene. Such a catalyst shows a tendency to over-hydrogenate and produces tars, cuprene, polymers and other undesirable by-products. As high as 30 to 40% of organic matter has been found in such catalysts. Thus, repeated regeneration is [Price 3s. 6d.]

of selectively hydrogenating acetylene in the presence of other gases, particularly olefines, wherein the acetylene content must be effectively eliminated or reduced to only my amounts, and not more than 1% of any

amounts, and not more than 1% of any ethylene present is converted to ethane.

It is therefore one object of the present invention to provide a catalytic process for the hydrogenation of the triple bond of acetylene. It is a further object of the invention to provide a catalytic process for the selective hydrogenation of even traces of the exception in a mixture with saturated and unsaturated gases. A still further object is to provide a simple and economical catalytic process for the selective hydrogenation of acetylene to ethylene when the acetylene is present in traces in a mixture with olefines. Other objects and advantages of the invention will become readily apparent from the following description.

will become readily apparent from the following description.

We, have now determined that selective
hydrogenation of acetylene, wherein the
acetylene is present in a mixture with other

المنات الله الما المائة

AMENDED SPECIFICATION

Reprinted as amened in accordance with the Decision of the Superintending Examiner acting for the Comptroller-General dated the twenty-fourth day of March 1961, under Section 14, of the Patents Act, 1949.

PATENT SPECIFICATION

NO DRAWINGS

Inventors: JOHAN GUNTHER COHN, HUGH ALBERT SHIELDS and ALFRED J. HALEY

811820

Date of Application and filing Complete Specification: April 30, 1957.

No. 13750/57.

Complete Specification Published: April 15, 1959.

Index at acceptance:—Classes 1(1), A3B1; and 2(3), B1(A:I). International Classification:—B01j. C07c.

COMPLETE SPECIFICATION

Catalytic Hydrogenation of Acetylene

We, ENGLEHARD INDUSTRIES, INC., formerly Baker & Company Incorporated, of 113 Astor Street, Newark, New Jersey, United States of America, a corporation organized under the 1sws of the State of New Jersey, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to the selective camlytic hydrogenation of acetylene wherein the acetylene is present in a mixture with other gases, and is more paracularly concerned with the purification of gaseous mixtures from small

amounts of acetylene.

Palladium has been used as a caralyst in the direct hydrogenation of acetylene to ethylene by adding an excess of hydrogen. In one such 20 process of direct hydrogenation acetylene together with an excess of hydrogen and steam was passed over a catalyst of palladium on silica gel at temperatures of about 200° C. to 300° C, and under normal pressures. The palladium in such a catalyst is usually present in great dispersion on the silica gel, e.g. 200 mg per liter. Such catalysts however, have been found to become poisoned quickly due to the presence of organic compounds of P, As, 30 Sb and the hydrides of P, As, and Sb, organic compounds of S, H₂S, HCN, and pnlymerizing compounds such as winyl acceptene. Such a catalyst shows a tendency to over-hydrogenate and produces tars, cuprene, polymers and other undesirable by-products. As high as 30 to 40% of organic matter has been found in such caralysts. Thus, repeated regeneration is Price 3s.6d.7

necessary, with resultant catalyst loss and the rendency of the silica gel to glaze and lose its active surface. It has also been suggested to use catalyst of palladium containing other metals, e.g. 10% cobalt or nickel; or to use platinum instead of palladium. In addition, catalysts of nickel-silver have been tried, but a really good commercially feasible selective catalyst for this purpose has not previously been suggested. In every case there is a considerable tar formation in addition to ethylene.

There is thus a need for a caralyst capable of selectively hydrogenating acetylene in the presence of other gases, particularly olefines, wherein the acetylene content must be effectively eliminated or reduced to only tiny amounts, and not more than 1% of any

ethylene present is converted to ethane.

It is therefore one object of the present invention to provide a catalytic process for the hydrogenation of the triple bond of acetylene. It is a further object of the invention to provide a catalytic process for the selective hydrogenation of even traces of acetylene to ethylene when the acetylene is present in a mixture with saturated and unsaturated gases. A still further object is to provide a simple and economical catalytic process for the selective hydrogenation of acetylene to ethylene when the acetylene is present in praces in a mixture with olefines. Other objects and advantages of the invention will become readily apparent from the following description.

We, have now determined that selective hydrogenation of acetylene, wherein the acetylene is present in a mixture with other

Kaica - La Lagie

gases, both saturated and unsaturated can be effectively brought about with a Pd carrlyst on an activated alumina carrier, and without materially changing the other unsaturated hydrocarbons present in such gaseous mixtures. Thus the Pd catalyst used in the process of the invention has been found to be practically inactive for the double band while being still active for the triple bond. To accomplish this desired object, we have found that the Pd content is very critical. The Pd-alumina catalyst used has proved to be superior to other known Pd carelysts and operates on higher space velocities and lower temperatures and is selective over a wide range of temperatures. Because of its selectivity and operability at low temperatures the cetalyst of this invention does not promote the "run-away" exothermic reaction occurring where the C-H₄ constitutes 20%-30% of the gas and a large amount of hydrogen is present (i.e. the formation of ethane from ethylene evolving sufficient heat to increase the rate of ethane formation). We have found that the more He present in the gas to be hydrogenated, the lower the Pd content should be. The Pd content of the cutalyst should be within the range of 0.001-0.035%. As stated above, the catalyst is Pd on acti-

vated alumina with a specific small range of
30 Pd content. However, the catalysts also contain
other catalytic metals which do not interfere
with the selective catalytic effect of the palladium. The presence of small amounts of these
other metals acting as promoters, as specified
hereinafter, greatly improves the effectiveness
of the catalyst. The catalysts have been found
to be operable at elevated pressures.

Maintaining a certain temperature range is

advantageous.

As to the above mentioned presence of promoter metal in the activated aluminapalladium catalyst, it has been found that certain metals, when used in certain critical ratios, are useful as prunoters for the catalyst metal palladium in the selective hydrogenation of acetylene in hydrocarbon gaseous mixtures when palladium and the promoter metal in specific proportions are supported on the activated alumina support. As a result, maximum selectivity of palladium results at higher proportions by weight of palladium without increasing the relative rate of polymeric buildiup. As a consequence, estalyst regeneration can be accomplished without affecting the palladium content of the catalyst to the extent of interfering with its high selectivity.

More specifically, it has been found that the metals Rh, Ag and Fe, when used in certain proportions by weight, improve the selectivity of the palladium in the hydrogenation of hydrocarbon mixtures containing acceptene in amounts up to about 2 per cent by weight. The palladium content of the catalyst of the present invention ranges as 65 said above from 0.001 per cent to 0.035 per

cent by weight of the total catalyst. Preferably for the purpose of improved regeneration without loss of activity the range is from about 0.007 per cent to about 0.035 per cent. The promoter metals should be present in amounts ranging from 0.001 per cent to 5 per cent by weight of the catalyst i.e. of the total weight of palladium, activated alumina and promoter metal.

The catalysts are conveniently prepared by forming an aqueous solution of a salt of palladium and an aqueous solution of a salt of the promoter metal and contacting the carrier in the form of a dehydrated solid, e.g. anhydrous oxide of aluminum which is insoluble in water, with the solutions to permit the salts to form a firm and adherent deposit of oxide or hydroxide on the surface of the carrier. The resulting material is subsequently reduced to obtain the active catalyst. If desired, a combined solution of salts of palladium and the promoter metal may be used in place of separate solutions.

In accordance with certain preferred embodiments, certain of the promoter metals are found to be particularly efficient in aiding in the catalytic hydrogenation of certain gaseous hydrocarbon mixtures by the catalyst according to the invention. It is well recognised that a particular gaseous hydrocarbon mixture necessitates a specific catalyst in order to obtain optimum results. Stated differently, a catalyst of unusually high selectivity for the hydrogenation of a given hydrocarbon mixture may not be as effective as another catalyst of slightly different proportions by weight or differing composition for catalyzing the hydrogenation of another given hydrocarbon mixture.

In general, it may be stated that a small accetylene content of a hydrocarbon mixture containing up to about 2 per cent by weight of acetylene together with a balance consisting substantially of ethylene and ethane is most effectively hydrogenated in accordance with the present invention when the catalyst consists of palladium and as promoter thedium, supported on the activated alumina carrier. A highly effective caralyst contains about 0.01 per cent by weight of palladium and about 0.01 per cent by weight of rhodium. Hydrocarbon mixtures consisting essentially of up to 2 per cent by weight of acetylene and a balance consisting substantially of ethylene and erhane are commonly referred to as "commercial ethylene". Typical analyses of commercial ethylene are as follows:

ethylene are as follows:

A. C.H.—0.005—2 per cent
C.H.—90—99.9 per cent
C.H.—0.005—2 per cent
C.H.—0.1—4 per cent
C.H.—20—80 per cent
C.H.—20—80 per cent
C.H.—balance

In the green that the greene had

In the event that the gaseous hydrocarbon mixture consists essentially of up to about 2 130

125

10

811,820

per cent by weight of acetylene and a mixture of hydrocarbons including hydrocarbons of higher molecular weight than ediane, for example, a mixture of the following composition:

C₂H₂-0.05-1 per cent C.H.—15—35 per cent C.H.—5—15 per cent H.—10—35 per cent C.H., C.H., C.H., C.H., C.H.

a preferred catalyst has been found, in accordance with the present invention, to be one consisting essentially of palladium and silver as promoter metal, supported on activated 15 alumina. For this type of mixture, a highly effective caralyst contains about 0.01 per cent palladium and about 0.01 per cent silver based on the weight of the catalyst.

In accordance with the process of the present invention selective hydrogenation of hydrocarbon mixtures containing up to about 2 per cent of acetylene is accomplished as described in the beginning of the specification, by passing the gaseous mixture together with hydrogen in a quantity at least stoichiometrically equivalent to the acetylene content of the gaseous mixture over the catalyst at elevated temperatures and pressure conditions, To control temperature and pressure conditions, per se was known in the process of selectively hydrogenating acetylene in gaseous mixtures using other catalysis. The preferred conditions in a method applying the catalysts according to the present invention include a temperature within the range from 85 to 165° C, and a pressure of from 250—450 psig. Space velocities of from about 3,000 to 7,000 volumes of gaseous mixture at normal pressure and temperature conditions per volume of catalyst per hour are found to be suitable to obtain an effluent containing not more than 10 ppm. of acetylene, Regeneration of the catalyst upon accumulation of polymeric deposit may be accomplished by hearing the catalyst in air at a temperature of, for example, 500° C. without substantial effect on the selectivity of the CRIZIVSU

The following specific examples are for the purpose of illustrating the invention,

EXAMPLE I Commercial ethylene (99 per cent ethylene and 0.25 per cent acetylene by weight) with an addition of about 0.7 per cent by weight of hydrogen was passed over a 0.01 per cent palladium and 0.01 per cent rhodium-containing cambyst supported on cylindrical 1/8" activated alumina pellets at a temperature of 100—140° C. under 350 psig and a space velocity of 5000 volumes of gas mixture (NTP) per volume of caralyst per hour. The effluent contained from 1 to 10 ppm. C.H. and essentially no H. after 200 hours. The catalyst was then regenerated by heating with air at 500° C. Another gaseous mixture of the 65 same composition was passed over the regenerated catalyst for 800 hours, the effluent containing below 10 ppm C₂H₂,

EXAMPLE II A gaseous mixture containing 33 mol per cent ethane, 66 mol per cent ethylene, 0.35 mol per cent acetylene, and 1.1 mol per cent H_c was passed at a pressure of 350 psig. and a space velocity of 5000 volumes gas mixture (NTP) per volume of catalyst per hour over a 0.01 per cent palladium + 0.01 per cent rhodium-containing catalyst supported on 1/8" activated alumina pellets, which had been previously heated to 500° C in air at a temperature of 110° C. After 157 hours operation, the effluent still contained less than 5 80 ppm. C.H.

EXAMPLE III A gaseous mixture containing 34 per cent H₂, 33 per cent ethylene, 33 per cent ethane, 0.5 per cent acetylene by weight and traces of paraffinic compounds was passed at 90 liters per hour (NTP) over 20 grams of 0.005 per cent palladium and 1 per cent silver-containing catalyst supported on 1/8" activated alumina pellets at a remperature of 130—150° C. and a pressure of 35 psig. The effluent contained 31.8—33 per cent H₃. No acetylene was detected in the effluent gas.

EXAMPLE IV A gaseous mixture containing, by volume, 15 per cent hydrogen, 26 per cent ethylene, 14 per cent propylene and 0.5 per cent acetylene was passed over a catalyst consisting of 0.01 per cent palladium and 0.1 per cent silver on 1/8" activated alumina pellets. The 100 operating temperature was 180° C, and the space velocity used was 5,000 volumes of gas per catalyst volume per bour. The acetylene in the effluent gas was reduced to less than 10 ppm., and only a small amount of hydrogen 105 was lost after an initial catalyst seasoning period, which means that little ethylene was hydrogenated and the catalyst possessed good selectivity.

When the carelyst is spent, it can be re- 110 generated by treatment with a mixture of air and steam for a period of about 2 to 6 hours at a temperature of about 400 to 500° C., after which effective acctylenc removal from the gas stream can be resumed. WHAT WE CLAIM IS:-

1. A process for selectively hydrogenating acctylene in a gaseous hydrocarbon mixture containing up to about Z% by weight of acctylene, which process communes passing the gaseous mixture together with hydrogen in a quantity at least stoichiometrically equivalent to the acetylene content of the gaseous mixture over a catalyst at elevated temperature and pressure conditions, wherein the catalyst com-prises palladium, a promoter metal selected from rhodium, silver and iron, and, as a carrier for the palladium and promoter metal, acti-vated alumina, the palladium being present in the range of from 0.0011% to 0.035% by

4

811,820

weight of the total catalyst and the promoter metal being present in the range of from 0.001% to 5% by weight of the total catalyst,

2. A process according to claim 1, wherein the temperature is in the range of from 85° to 165° C, and the pressure is in the range of from 250 to 450 psig.

3. A process according to claim 1 or 2, in

which the promoter metal is rhodium or silver, and in which the palledium and the promoter 10 metal are each present in an amount equal to about 0.01% of the total weight of the catalyst.

HASELTINE, LAKE & CO., 28, Southampton Buildings, London, W.C.Z. Agents for the Applicants,

Learnington Spa: Frinted for Her Majesty's Stationery Office, by the Courier Press.—1961.

Published by The Parent Office, 25, Southumpton Buildings, Lendon, W.C.2, from which copies may be obtained.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.