

Capstone Project - The Battle of Neighborhoods (Week 2)

Introduction

New York City comprises 5 boroughs sitting where the Hudson River meets the Atlantic Ocean. At its core is Manhattan, a densely populated borough that's among the world's major commercial, financial and cultural centers. Its iconic sites include skyscrapers such as the Empire State Building and sprawling Central Park. Broadway theater is staged in neon-lit Times Square.

London, the capital of England and the United Kingdom, is a 21st-century city with history stretching back to Roman times. At its centre stand the imposing Houses of Parliament, the iconic 'Big Ben' clock tower and Westminster Abbey, site of British monarch coronations. Across the Thames River, the London Eye observation wheel provides panoramic views of the South Bank cultural complex, and the entire city.

Description of the problem

We will explored New York City and London and segmented and clustered their neighborhoods. Both cities are very diverse and are very similar. Both cities are a densely populated boroughs that's among the world's major commercial, financial and cultural centers. We will to compare the neighborhoods of the two cities and determine how similar or dissimilar they are. We will define that people like to do more in the cities, which places are often visited. Knowing this information we can think of how to use this. For exemple, open a new restaurant or supermarket, entertainment center or gift shop. As we can see in the next task that although there are Mexican restaurants in London, but they are not popular, entertainment is centrally located and almost none in areas farther from the center. We may also use this information for advertising purposes, etc

Description of Data.

This project will rely on public data from Wikipedia and Foursquare.

London is the capital of and largest city in England and the United Kingdom. It is administered by the City of London and 32 London boroughs.

We will get information about the areas of London https://en.wikipedia.org/wiki/List of areas of London (https://en.wikipedia.org/wiki/List of areas of London)

I will use dataset https://geo.nyu.edu/catalog/nyu 2451 34572 (https://geo.nyu.edu/catalog/nyu 2451 34572) (https://geo.nyu.edu/catalog/nyu 2451 34572

```
In [2]: # library for BeautifulSoup
        from bs4 import BeautifulSoup
        import numpy as np
        import pandas as pd
        pd.set_option('display.max_columns', None)
        pd.set_option('display.max_rows', None)
        # library to handle JSON files
        import json
        !pip -q install geopy
        # conda install -c conda-forge geopy --yes # uncomment this line if you
         haven't completed the Foursquare API lab
        # convert an address into latitude and longitude values
        from geopy.geocoders import Nominatim
        # library to handle requests
        import requests
        # tranform JSON file into a pandas dataframe
        from pandas.io.json import json_normalize
        # Matplotlib and associated plotting modules
        import matplotlib.cm as cm
        import matplotlib.colors as colors
        # import k-means from clustering stage
        from sklearn.cluster import KMeans
        # install the Geocoder
        !pip -q install geocoder
        import geocoder
        # import time
        import time
        # !conda install -c conda-forge folium=0.5.0 --yes # uncomment this line
        if you haven't completed the Foursquare API lab
        !pip -q install folium
        import folium # map rendering library
        from PIL import Image # converting images into arrays
        %matplotlib inline
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        mpl.style.use('ggplot') # optional: for ggplot-like style
        # check for latest version of Matplotlib
        #print ('Matplotlib version: ', mpl. version ) # >= 2.0.0
```

```
# install wordcloud
!conda install -c conda-forge wordcloud==1.4.1 --yes
from wordcloud import WordCloud, STOPWORDS

print ('...Done')
Solving environment: done

==> WARNING: A newer version of conda exists. <==
    current version: 4.5.12
    latest version: 4.7.10

Please update conda by running
    $ conda update -n base conda

# All requested packages already installed.
...Done</pre>
```

London

```
In [3]: # download data and parse it:
        r = requests.get('https://en.wikipedia.org/wiki/List of areas of London'
        soup = BeautifulSoup(r.text, 'html.parser')
        table=soup.find('table', attrs={'class':'wikitable sortable'})
In [4]: #get headers:
        headers=table.findAll('th')
        for i, head in enumerate(headers): headers[i]=str(headers[i]).replace("<</pre>
        th>","").replace("","").replace("\n","")
        #headers
In [5]: #Find all items and skip first one:
        rows=table.findAll('tr')
        rows=rows[1:len(rows)]
        #rows
In [6]: # skip all meta symbols and line feeds between rows:
        for i, row in enumerate(rows): rows[i] = str(rows[i]).replace("\n<//r>
        tr>","").replace("\n","")
        #rows
```

```
In [7]: # make dataframe, expand rows and drop the old one:
    df=pd.DataFrame(rows)
    df[headers] = df[0].str.split("\n", n = 7, expand = True)
    df.drop(columns=[0],inplace=True)#

    df.rename(columns={'Location': 'neighborhoods', 'London\xa0borough': 'bo
    rough', 'Post town': 'posttown', 'Postcode\xa0district': 'postcode'}, in
    place=True )
    df.drop(columns={'OS grid ref'},inplace=True)
    df.head(3)
```

Out[7]:

	neighborhoods	borough	posttown	postcode	Dial code
0	<a <br="" href="/wiki/Abbey_Wood">title="Abbey Wood">	Bexley, Greenwich <sup class="reference" id="</sup 	LONDON	SE2	020
1	<a href="/wiki/Acton,_London" refe<="" th="" title="Acton, Lo</th><th>Ealing, Hammersmith and Fulham<sup class="><th>LONDON</th><th>W3, W4</th><th>020</th>	LONDON	W3, W4	020	
2	<a href="/wiki/Addington,_London" title="Addin</a 	Croydon <sup class="reference" id="cite_ref-mil</sup 	CROYDON	CR0	020

In [10]: | df.head()

Out[10]:

	neighborhoods	Dial code	borough	posttown	postcode
0	Abbey Wood	020	Bexley	LONDON	SE2
0	Abbey Wood	020	Bexley	LONDON	SE2
0	Abbey Wood	020	Bexley	LONDON	SE2
0	Abbey Wood	020	Bexley	LONDON	SE2
0	Abbey Wood	020	Bexley	LONDON	SE2

```
In [11]: df.shape
```

Out[11]: (2856, 5)

In [13]: df.head()

Out[13]:

	neighborhoods	Dial code	borough	posttown	postcode
2	Addington	020	Croydon	CROYDON	CR0
3	Addiscombe	020	Croydon	CROYDON	CR0
5	Aldborough Hatch	020	Redbridge	ILFORD	IG2
6	Aldgate	020	City	LONDON	EC3
7	Aldwych	020	Westminster	LONDON	WC2

```
In [14]: df.shape
Out[14]: (578, 5)
```

Now, only the Boroughs with London Post-town will be used for our search of location. Therefore, all the non-post-town are dropped.

```
In [15]: df_london = df
    df_london = df_london[df_london['posttown'].str.contains('LONDON')]
    df_london.drop_duplicates(keep = False, inplace = True)
```

/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:4: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy after removing the cwd from sys.path.

In [16]: df_london.head()

Out[16]:

	neighborhoods	Dial code	borough	posttown	postcode
6	Aldgate	020	City	LONDON	EC3
7	Aldwych	020	Westminster	LONDON	WC2
9	Anerley	020	Bromley	LONDON	SE20
10	Angel	020	Islington	LONDON	EC1
10	Angel	020	Islington	LONDON	N1

Geocoder dont read my whole data, and i divide my dataset on smaller parts

```
In [17]: # Defining a function to use --> get_latlng()'''
def get_latlng(arcgis_geocoder):

    # Initialize the Location (lat. and long.) to "None"
    lat_lng_coords = None

    # While loop helps to create a continous run until all the location coordinates are geocoded
    while(lat_lng_coords is None):
        g = geocoder.arcgis('{}, London, United Kingdom'.format(arcgis_g eocoder))
        lat_lng_coords = g.latlng
    return lat_lng_coords
# Geocoder ends here
```

In [19]: df_w.head()

Out[19]:

	neighborhoods	Dial code	borough	posttown	postcode
0	Aldwych	020	Westminster	LONDON	WC2
1	Bayswater	020	Westminster	LONDON	W2
2	Bedford Park	020	Ealing	LONDON	W4
3	Bloomsbury	020	Camden	LONDON	WC1
4	Charing Cross	020	Westminster	LONDON	WC2

```
In [20]: postcode = df_w['postcode']
    postcode
    coordinates = [get_latlng(postcode) for postcode in postcode.tolist()]
```

```
In [21]: df_with_coordinates = df_w

# The obtained coordinates (latitude and longitude) are joined with the dataframe as shown

df_with_coordinates = pd.DataFrame(coordinates, columns = ['Latitude', 'Longitude'])

df_w['Latitude'] = df_with_coordinates['Latitude']

df_w['Longitude'] = df_with_coordinates['Longitude']
```

In [22]: df_w.head()

Out[22]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude
0	Aldwych	020	Westminster	LONDON	WC2	51.51651	-0.11968
1	Bayswater	020	Westminster	LONDON	W2	51.51494	-0.18048
2	Bedford Park	020	Ealing	LONDON	W4	51.48944	-0.26194
3	Bloomsbury	020	Camden	LONDON	WC1	51.52450	-0.12273
4	Charing Cross	020	Westminster	LONDON	WC2	51.51651	-0.11968

```
In [23]: # # New dataframe for postcodes started with "S"
    df_s = df_london[df_london['postcode'].str.startswith(('S'))].reset_inde
    x(drop=True)
```

In [24]: df_s.head()

Out[24]:

	neighborhoods	Dial code	borough	posttown	postcode
0	Anerley	020	Bromley	LONDON	SE20
1	Balham	020	Wandsworth	LONDON	SW12
2	Bankside	020	Southwark	LONDON	SE1
3	Barnes	020	Richmond upon Thames	LONDON	SW13
4	Battersea	020	Wandsworth	LONDON	SW11

```
In [25]: postcode = df_s['postcode']
    postcode
    coordinates = [get_latlng(postcode) for postcode in postcode.tolist()]
```

In [27]: df_s.head()

Out[27]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude
0	Anerley	020	Bromley	LONDON	SE20	51.41009	-0.05683
1	Balham	020	Wandsworth	LONDON	SW12	51.44822	-0.14839
2	Bankside	020	Southwark	LONDON	SE1	51.49960	-0.09613
3	Barnes	020	Richmond upon Thames	LONDON	SW13	51.47457	-0.24212
4	Battersea	020	Wandsworth	LONDON	SW11	51.46760	-0.16290

```
In [28]: # df_london_allpart = df_s and df_w
df_london_allpart = df_s.append(df_w, ignore_index=True)
```

In [29]: df london allpart.shape

Out[29]: (129, 7)

In [30]: # New dataframe for postcodes started with "E"
 df_e = df_london[df_london['postcode'].str.startswith(('E'))].reset_inde
 x(drop=True)

```
In [31]: postcode = df_e['postcode']
         postcode
         coordinates = [get latlng(postcode) for postcode in postcode.tolist()]
In [32]: f_with_coordinates_e = df_e
         # The obtained coordinates (latitude and longitude) are joined with the
          dataframe as shown
         df with coordinates e = pd.DataFrame(coordinates, columns = ['Latitude',
         'Longitude'])
         df_e['Latitude'] = df_with_coordinates_e['Latitude']
         df e['Longitude'] = df with coordinates e['Longitude']
In [33]: df_london_allpart = df_london_allpart.append(df_e, ignore_index=True)
In [34]: # New dataframe for postcodes started with "N"
         df n = df_london[df_london['postcode'].str.startswith(('N'))].reset_inde
         x(drop=True)
         postcode = df_n['postcode']
In [35]:
         postcode
         coordinates = [get_latlng(postcode) for postcode in postcode.tolist()]
In [36]: df with coordinates s = df n
         # The obtained coordinates (latitude and longitude) are joined with the
          dataframe as shown
         df with coordinates n = pd.DataFrame(coordinates, columns = ['Latitude',
         'Longitude'])
         df n['Latitude'] = df with coordinates n['Latitude']
         df n['Longitude'] = df with coordinates n['Longitude']
In [37]: df london allpart = df london allpart.append(df n, ignore index=True)
In [38]: #df london allpart.head(10)
In [39]: # New dataframe for postcodes started with "d"
         df d = df london[df london['postcode'].str.startswith(('D'))].reset inde
         x(drop=True)
In [40]: postcode = df d['postcode']
         coordinates = [get latlng(postcode) for postcode in postcode.tolist()]
```

```
In [42]: df_london_allpart = df_london_allpart.append(df_d, ignore_index=True)
```

```
In [43]: # New dataframe for postcodes started with "I"/ same =E18
    df_i = df_london[df_london['postcode'].str.startswith(('I'))].reset_inde
    x(drop=True)
```

```
In [44]: postcode = df_i['postcode']
    postcode
    coordinates = [get_latlng(postcode) for postcode in postcode.tolist()]
```

```
In [46]: df_london_allpart = df_london_allpart.append(df_i, ignore_index=True)
```

In [47]: df_london_allpart.head()

Out[47]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude
0	Anerley	020	Bromley	LONDON	SE20	51.41009	-0.05683
1	Balham	020	Wandsworth	LONDON	SW12	51.44822	-0.14839
2	Bankside	020	Southwark	LONDON	SE1	51.49960	-0.09613
3	Barnes	020	Richmond upon Thames	LONDON	SW13	51.47457	-0.24212
4	Battersea	020	Wandsworth	LONDON	SW11	51.46760	-0.16290

The dataframe has 32 boroughs and 285 neighborhoods.

Use geopy library to get the latitude and longitude values of London. In order to define an instance of the geocoder, we need to define a user_agent. We will name our agent ny_explorer, as shown below.

```
In [50]: address = 'London, uk'

geolocator = Nominatim(user_agent="uk_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of London, uk {}, {}.'.format(latitude, longitude))
```

The geograpical coordinate of London, uk 51.4893335, -0.14405508452768 7.

Create a map of London with borough superimposed on top.

```
In [51]: # create map of London using latitude and longitude values
         map london = folium.Map(location=[latitude, longitude], zoom start=10)
         # add markers to map
         for lat, lng, label in zip(df_london_allpart['Latitude'], df_london_allp
         art['Longitude'], df london allpart['borough']):
             label = '{}.format(borough)'
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                  [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.7,
                 parse_html=False).add_to(map_london)
         #map london
```

New York

Download and Explore Dataset Neighborhood has a total of 5 boroughs and 306 neighborhoods. In order to segement the neighborhoods and explore them, we will essentially need a dataset that contains the 5 boroughs and the neighborhoods that exist in each borough as well as the the latitude and logitude coordinates of each neighborhood.

The link to the dataset: https://geo.nyu.edu/catalog/nyu 2451 34572 (https://geo.nyu.edu/catalog/nyu 2451 34572)

In [56]: neighborhoods

Out[56]:

```
Borough Neighborhood Latitude Longitude
```

In [58]: neighborhoods.head()

Out[58]:

	Borough	Neighborhood	Latitude	Longitude	
0	Bronx	Wakefield	40.894705	-73.847201	
1	Bronx	Co-op City	40.874294	-73.829939	
2	Bronx Eastchester		40.887556	-73.827806	
3	Bronx	Fieldston	40.895437	-73.905643	
4	Bronx	Riverdale	40.890834	-73.912585	

The dataframe has 5 boroughs and 306 neighborhoods.

Use geopy library to get the latitude and longitude values of New York City. In order to define an instance of the geocoder, we need to define a user agent. We will name our agent ny explorer, as shown below.

```
In [60]: address = 'New York City, NY'

geolocator = Nominatim(user_agent="ny_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of New York City are {}, {}.'.format(latitude, longitude))
The geograpical coordinate of New York City are 40.7127281, -74.006015
```

Create a map of New York with neighborhoods superimposed on top.

```
In [61]: # create map of New York using latitude and longitude values
         map newyork = folium.Map(location=[latitude, longitude], zoom_start=10)
         # add markers to map
         for lat, lng, borough, neighborhood in zip(neighborhoods['Latitude'], ne
         ighborhoods['Longitude'], neighborhoods['Borough'], neighborhoods['Neigh
         borhood']):
             label = '{}, {}'.format(neighborhood, borough)
             label = folium.Popup(label, parse_html=True)
             folium.CircleMarker(
                  [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill opacity=0.7,
                 parse html=False).add to(map newyork)
         #map newyork
```

Methodology

2.

Data Exploration

Create a new dataframe of the borough Kensington and Chelsea.

Out[62]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude
0	Brompton	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248
1	Chelsea	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248
2	Earls Court	020	Kensington and Chelsea	LONDON	SW5	51.49004	-0.18971
3	Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404
4	South Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404

```
In [63]: address = 'Kensington and Chelsea, uk'
#address = 'City of London, uk'
#address = 'Islington, uk'

geolocator = Nominatim(user_agent="uk_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of London, uk {}, {}.'.format(latitude, longitude))
```

The geograpical coordinate of London, uk 51.4989948, -0.1991229.

In [64]: new_data.head()

Out[64]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude
0	Brompton	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248
1	Chelsea	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248
2	Earls Court	020	Kensington and Chelsea	LONDON	SW5	51.49004	-0.18971
3	Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404
4	South Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404

```
In [65]:
          #create map of North York using latitude and longitude values #new dat
         a['neighborhoods']
         map london borough = folium.Map(location=[latitude, longitude], zoom_sta
         rt=12)
         # add markers to map
         for lat, lng, label in zip(new_data['Latitude'], new_data['Longitude'],
         new data['borough']):
             label = folium.Popup(label, parse_html=True)
             folium.CircleMarker(
                  [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill_color='#3186cc',
                 fill opacity=0.7,
                 parse html=False).add_to(map_london_borough)
         #map london borough
```

Use geopy library to get the latitude and longitude values borough Manhattan.

```
In [66]: address = 'Manhattan, usa'

geolocator = Nominatim(user_agent="ny_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of Manhattan are {}, {}.'.format(latit ude, longitude))
```

The geograpical coordinate of Manhattan are 40.7900869, -73.9598295.

```
In [67]: ny_data = neighborhoods[neighborhoods['Borough'] == 'Manhattan'].reset_i
    ndex(drop=True)
    ny_data.head()
```

Out[67]:

	Borough	Neighborhood	Latitude	Longitude
0	Manhattan	Marble Hill	40.876551	-73.910660
1	Manhattan	Chinatown	40.715618	-73.994279
2	Manhattan	Washington Heights	40.851903	-73.936900
3	Manhattan	Inwood	40.867684	-73.921210
4	Manhattan	Hamilton Heights	40.823604	-73.949688

Let's visualizat Manhattan

```
In [68]: # create map of Manhattan using latitude and longitude values
         map nyc m = folium.Map(location=[latitude, longitude], zoom start=11)
         # add markers to map
         for lat, lng, label in zip(ny data['Latitude'], ny data['Longitude'], ny
         data['Neighborhood']):
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                  [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill opacity=0.7,
                 parse html=False).add to(map nyc m)
         #map_nyc_m
```

Next, we are going to start utilizing the Foursquare API to explore the neighborhoods and segment them.

```
In [69]: CLIENT ID = 'B3D1FREXU3FMFKG0XFFFWLZH1UBNQKQGVTG4XWBI3N32354V' # your Fo
         ursquare ID
         CLIENT SECRET = 'UAFKLDYGA1SQEBZYO4P5DYUAS4DBRF5QA53DURWY03FTRQP3' # you
         r Foursquare Secret
         VERSION = '20180604'
         T_1TMTT = 30
         print('Your credentails:')
         print('CLIENT ID: ' + CLIENT ID)
         print('CLIENT_SECRET:' + CLIENT_SECRET)
         Your credentails:
         CLIENT ID: B3D1FREXU3FMFKG0XFFFWLZH1UBNQKQGVTG4XWBI3N32354V
         CLIENT SECRET: UAFKLDYGA1SQEBZYO4P5DYUAS4DBRF5QA53DURWY03FTRQP3
In [70]: address = 'Manhattan, usa'
         geolocator = Nominatim(user agent="ny explorer")
         location = geolocator.geocode(address)
         latitude = location.latitude
         longitude = location.longitude
         print('The geograpical coordinate of Manhattan, usa are {}, {}.'.format(
         latitude, longitude))
         The geograpical coordinate of Manhattan, usa are 40.7900869, -73.959829
```

Get the neighborhood's latitude and longitude values.

5.

Now, let's get the top 200 venues that are in Manhattan within a radius of 1000 meters. First, let's create the GET request URL. Name your URL url.

```
In [71]: LIMIT = 200 # limit of number of venues returned by Foursquare API
    radius = 1000 # define radius
    url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client
    _secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
        CLIENT_ID,
        CLIENT_SECRET,
        VERSION,
        latitude,
        longitude,
        radius,
        LIMIT)
    url # display URL
```

Out[71]: 'https://api.foursquare.com/v2/venues/explore?&client_id=B3D1FREXU3FMFK G0XFFFWLZH1UBNQKQGVTG4XWBI3N32354V&client_secret=UAFKLDYGA1SQEBZYO4P5DY UAS4DBRF5QA53DURWY03FTRQP3&v=20180604&ll=40.7900869,-73.9598295&radius= 1000&limit=200'

Send the GET request and examine the resutls

```
In [72]: results = requests.get(url).json()
#results

In [73]: # function that extracts the category of the venue
def get_category_type(row):
    try:
        categories_list = row['categories']
    except:
        categories_list = row['venue.categories']

    if len(categories_list) == 0:
        return None
    else:
        return categories_list[0]['name']
```

Now we are ready to clean the json and structure it into a pandas dataframe.

Out[74]:

	name	categories	lat	Ing
0	North Meadow	Park	40.792027	-73.959853
1	Central Park Tennis Center	Tennis Court	40.789313	-73.961862
2	East Meadow	Field	40.790160	-73.955498
3	Central Park - Gate Of All Saints	Park	40.791591	-73.964795
4	The Jewish Museum	Museum	40.785276	-73.957411

And how many venues were returned by Foursquare?

100 venues were returned by Foursquare.

Let's create a function to repeat the same process to all the neighborhoods.

```
In [76]: def getNearbyVenues(names, latitudes, longitudes, radius=500):
             venues_list=[]
             for name, lat, lng in zip(names, latitudes, longitudes):
                 print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id=
         {}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                      CLIENT_ID,
                      CLIENT SECRET,
                      VERSION,
                      lat,
                      lng,
                      radius,
                      LIMIT)
                 # make the GET request
                 results = requests.get(url).json()["response"]['groups'][0]['ite
         ms']
                 # return only relevant information for each nearby venue
                 venues_list.append([(
                      name,
                      lat,
                      lng,
                      v['venue']['name'],
                      v['venue']['location']['lat'],
                      v['venue']['location']['lng'],
                      v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list for
         item in venue list])
             nearby venues.columns = ['Neighborhood',
                            'Neighborhood Latitude',
                            'Neighborhood Longitude',
                            'Venue',
                            'Venue Latitude',
                            'Venue Longitude',
                            'Venue Category']
             return(nearby venues)
```

Create a new dataframe called ny_venues.

```
In [77]: ny_venues = getNearbyVenues(names=ny_data['Neighborhood'],
                                             latitudes=ny data['Latitude'],
                                             longitudes=ny_data['Longitude']
                                            )
         Marble Hill
         Chinatown
         Washington Heights
         Inwood
         Hamilton Heights
         Manhattanville
         Central Harlem
         East Harlem
         Upper East Side
         Yorkville
         Lenox Hill
         Roosevelt Island
         Upper West Side
         Lincoln Square
         Clinton
         Midtown
         Murray Hill
         Chelsea
         Greenwich Village
         East Village
         Lower East Side
         Tribeca
         Little Italy
         Soho
         West Village
         Manhattan Valley
         Morningside Heights
         Gramercy
         Battery Park City
         Financial District
         Carnegie Hill
         Noho
         Civic Center
         Midtown South
         Sutton Place
         Turtle Bay
         Tudor City
         Stuyvesant Town
         Flatiron
         Hudson Yards
```

```
In [78]: print(ny venues.shape)
```

(3327, 7)

In [79]: ny_venues.head(5)

Out[79]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	V enue	Venue Latitude	Venue Longitude	Vei Categ
0	Marble Hill	40.876551	-73.91066	Arturo's	40.874412	-73.910271	Pizza Place
1	Marble Hill	40.876551	-73.91066	Bikram Yoga	40.876844	-73.906204	Yoga Studio
2	Marble Hill	40.876551	-73.91066	Tibbett Diner	40.880404	-73.908937	Diner
3	Marble Hill	40.876551	-73.91066	Starbucks	40.877531	-73.905582	Coffee Shop
4	Marble Hill	40.876551	-73.91066	Dunkin'	40.877136	-73.906666	Donut Shop

Let's check how many venues were returned for each neighborhood

In [80]: ny_venues.groupby('Neighborhood').count()

Out[80]:

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Battery Park City	100	100	100	100	100	100
Carnegie Hill	100	100	100	100	100	100
Central Harlem	42	42	42	42	42	42
Chelsea	100	100	100	100	100	100
Chinatown	100	100	100	100	100	100
Civic Center	100	100	100	100	100	100
Clinton	100	100	100	100	100	100
East Harlem	43	43	43	43	43	43
East Village	100	100	100	100	100	100
Financial District	100	100	100	100	100	100
Flatiron	100	100	100	100	100	100
Gramercy	100	100	100	100	100	100
Greenwich Village	100	100	100	100	100	100
Hamilton Heights	62	62	62	62	62	62
Hudson Yards	76	76	76	76	76	76
Inwood	57	57	57	57	57	57
Lenox Hill	100	100	100	100	100	100
Lincoln Square	100	100	100	100	100	100
Little Italy	100	100	100	100	100	100
Lower East Side	59	59	59	59	59	59
Manhattan Valley	56	56	56	56	56	56
Manhattanville	41	41	41	41	41	41
Marble Hill	26	26	26	26	26	26
Midtown	100	100	100	100	100	100
			_			

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Midtown South	100	100	100	100	100	100
Morningside Heights	41	41	41	41	41	41
Murray Hill	100	100	100	100	100	100
Noho	100	100	100	100	100	100
Roosevelt Island	30	30	30	30	30	30
Soho	100	100	100	100	100	100
Stuyvesant Town	18	18	18	18	18	18
Sutton Place	100	100	100	100	100	100
Tribeca	100	100	100	100	100	100
Tudor City	85	85	85	85	85	85
Turtle Bay	100	100	100	100	100	100
Upper East Side	100	100	100	100	100	100
Upper West Side	100	100	100	100	100	100
Washington Heights	91	91	91	91	91	91
West Village	100	100	100	100	100	100
Yorkville	100	100	100	100	100	100

Let's find out how many unique categories can be curated from all the returned venues

There are 339 uniques categories.

Analyze Each Neighborhood

```
In [82]: # one hot encoding
    ny_onehot = pd.get_dummies(ny_venues[['Venue Category']], prefix="", pre
    fix_sep="")

# add neighborhood column back to dataframe
    ny_onehot['Neighborhood'] = ny_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [ny_onehot.columns[-1]] + list(ny_onehot.columns[:-1])
    ny_onehot = ny_onehot[fixed_columns]

ny_onehot.head()
```

Out[82]:

	Neighborhood	Accessories Store	Adult Boutique	Afghan Restaurant			-	IΑ
0	Marble Hill	0	0	0	0	0	0	0
1	Marble Hill	0	0	0	0	0	0	0
2	Marble Hill	0	0	0	0	0	0	0
3	Marble Hill	0	0	0	0	0	0	0
4	Marble Hill	0	0	0	0	0	0	0

```
In [83]: ny_onehot.shape
Out[83]: (3327, 340)
```

Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category

Out[84]:

	Neighborhood	Accessories Store	Adult Boutique	Afghan Restaurant	African Restaurant	American Restaurant	Antique Shop	ΙД
0	Battery Park City	0.00	0.0	0.0	0.000000	0.010000	0.00	0
1	Carnegie Hill	0.00	0.0	0.0	0.000000	0.010000	0.00	0.
2	Central Harlem	0.00	0.0	0.0	0.071429	0.047619	0.00	0
3	Chelsea	0.00	0.0	0.0	0.000000	0.030000	0.01	0
4	Chinatown	0.00	0.0	0.0	0.000000	0.040000	0.00	0
5	Civic Center	0.00	0.0	0.0	0.000000	0.030000	0.01	0
6	Clinton	0.00	0.0	0.0	0.000000	0.040000	0.00	0
7	East Harlem	0.00	0.0	0.0	0.000000	0.000000	0.00	0
8	East Village	0.00	0.0	0.0	0.000000	0.020000	0.01	0
9	Financial District	0.01	0.0	0.0	0.000000	0.030000	0.00	0

Let's confirm the new size

```
In [85]: ny_grouped.shape
```

Out[85]: (40, 340)

Let's print each neighborhood along with the top 5 most common venues¶

```
In [86]: num_top_venues = 5

for hood in ny_grouped['Neighborhood']:
    print("----"+hood+"----")
    temp = ny_grouped[ny_grouped['Neighborhood'] == hood].T.reset_index
()
    temp.columns = ['venue','freq']
    temp = temp.iloc[1:]
    temp['freq'] = temp['freq'].astype(float)
    temp = temp.round({'freq': 2})
    print(temp.sort_values('freq', ascending=False).reset_index(drop=Tru
e).head(num_top_venues))
    print('\n')
```

1

```
----Battery Park City----
           venue freq
0
            Park 0.08
1
     Coffee Shop 0.06
2
           Hotel
                  0.05
3
  Memorial Site 0.04
4
             Gym 0.04
----Carnegie Hill----
         venue
               freq
  Coffee Shop
               0.06
1
  Pizza Place
               0.06
           Bar 0.04
3
          Café 0.04
4
           Gym 0.03
----Central Harlem----
                 venue
                        freq
   African Restaurant
                        0.07
1
  Fried Chicken Joint
                        0.05
2
   Chinese Restaurant
                        0.05
                   Bar
                        0.05
  American Restaurant
                        0.05
----Chelsea----
                venue freq
          Coffee Shop 0.06
  Italian Restaurant 0.05
2
       Ice Cream Shop 0.05
3
            Nightclub 0.04
4
               Bakery 0.04
----Chinatown----
                   venue freq
0
      Chinese Restaurant 0.09
            Cocktail Bar 0.05
1
2
  Vietnamese Restaurant
                         0.04
3
     Salon / Barbershop 0.04
    American Restaurant
4
                          0.04
----Civic Center----
                  venue
                         freq
  Gym / Fitness Center
                         0.05
1
    Italian Restaurant
                         0.04
2
         Sandwich Place
                         0.04
3
                  Hotel
                        0.04
     French Restaurant 0.04
----Clinton----
                         freq
                  venue
                Theater 0.12
```

```
Gym / Fitness Center
1
2
     Italian Restaurant
                         0.04
3
    American Restaurant
                         0.04
4
                  Hotel
                         0.04
----East Harlem----
                              freq
                       venue
0
                              0.12
          Mexican Restaurant
1
                      Bakery
                              0.09
2
                              0.07
               Deli / Bodega
3
                         Spa
                              0.05
  Latin American Restaurant
                              0.05
----East Village----
                venue
                       freq
0
                      0.06
                  Bar
1
             Wine Bar
                      0.05
2
  Mexican Restaurant
                       0.04
3
  Chinese Restaurant 0.04
4
          Pizza Place 0.04
----Financial District----
         venue freq
0
  Coffee Shop
                0.08
1
    Steakhouse 0.04
2
         Hotel 0.04
3
     Wine Shop
                0.04
           Gym 0.04
----Flatiron----
                     venue freq
                       Gym 0.05
0
1
               Yoga Studio
                            0.04
2
 New American Restaurant
                           0.04
3
       American Restaurant
                            0.04
4
       Japanese Restaurant
                           0.04
----Gramercy----
                 venue
                        freq
0
                   Bar
                        0.07
1
    Italian Restaurant
                        0.04
2
 American Restaurant
                       0.04
3
           Pizza Place 0.04
            Bagel Shop 0.04
----Greenwich Village----
                venue freq
0
  Italian Restaurant 0.13
1
       Clothing Store 0.04
2
     Sushi Restaurant 0.04
  Seafood Restaurant 0.03
```

```
----Hamilton Heights----
               venue freq
0
                 Café 0.06
1
  Mexican Restaurant 0.06
2
         Pizza Place 0.06
          Coffee Shop 0.05
3
4
                Park 0.03
----Hudson Yards----
                 venue freq
0
   American Restaurant
                        0.07
1
    Italian Restaurant
                        0.05
2
  Gym / Fitness Center
                         0.05
3
                        0.05
                  Café
                  Hotel
                        0.04
----Inwood----
               venue freq
  Mexican Restaurant 0.09
1
                Café 0.07
2
               Bakery 0.05
3
       Deli / Bodega
                      0.05
          Pizza Place 0.05
----Lenox Hill----
                 venue freq
0
            Coffee Shop 0.07
1
    Italian Restaurant
                        0.05
2
      Sushi Restaurant 0.05
3
           Pizza Place 0.05
  Gym / Fitness Center 0.03
```

----Lincoln Square----

	venue	freq
0	Gym / Fitness Center	0.06
1	Theater	0.06
2	Concert Hall	0.05
3	Plaza	0.05
4	Café	0.05

----Little Italy----

	venue	ireq
0	Bakery	0.05
1	Café	0.04
2	Italian Restaurant	0.03
3	Salon / Barbershop	0.03
4	Clothing Store	0.03

```
----Lower East Side----
                venue freq
0
          Coffee Shop 0.07
1
                 Café
                      0.05
2
  Chinese Restaurant 0.05
3
          Pizza Place 0.05
    Ramen Restaurant 0.05
----Manhattan Valley----
               venue freq
0
         Pizza Place 0.05
1
         Coffee Shop
                     0.05
2
  Indian Restaurant
                      0.05
3
         Yoga Studio
                     0.04
4
                Café 0.04
----Manhattanville----
                venue freq
  Italian Restaurant 0.05
1
  Seafood Restaurant 0.05
2
 Mexican Restaurant 0.05
3
         Coffee Shop 0.05
        Liquor Store 0.05
----Marble Hill----
             venue freq
0
   Sandwich Place 0.12
1
       Coffee Shop
                   0.08
2
                   0.08
   Discount Store
3
       Yoga Studio
                   0.04
   Supplement Shop
                    0.04
----Midtown----
            venue freq
0
            Hotel
                  0.07
1
  Clothing Store
                  0.04
2
    Cocktail Bar
                  0.04
3
     Coffee Shop 0.04
          Theater 0.04
----Midtown South----
                 venue freq
0
    Korean Restaurant
                      0.14
1
                 Hotel
                        0.07
  Japanese Restaurant
                        0.04
3
             Hotel Bar
                       0.04
4
        Cosmetics Shop
                       0.04
----Morningside Heights----
                 venue freq
0
             Bookstore 0.07
```

```
1
                        0.07
   American Restaurant
                        0.07
3
           Coffee Shop
                        0.07
4
        Sandwich Place
                        0.05
----Murray Hill----
                 venue
                        freq
0
           Coffee Shop
                        0.05
1
   Japanese Restaurant
                        0.04
2
        Sandwich Place
                        0.04
3
                 Hotel
                        0.04
    Italian Restaurant
                       0.03
----Noho----
                venue freq
   Italian Restaurant 0.06
0
1
   French Restaurant
                       0.05
2
    Sushi Restaurant 0.04
         Cocktail Bar 0.04
3
4
            Gift Shop
                      0.03
----Roosevelt Island----
              venue freq
0
        Coffee Shop
                     0.07
1
    Sandwich Place
                    0.07
2
           Bus Line 0.03
3
                Gym 0.03
   Greek Restaurant 0.03
----Soho----
            venue freq
0
  Clothing Store 0.10
        Boutique 0.06
1
2
     Art Gallery
                   0.04
3
   Women's Store
                  0.04
      Shoe Store 0.04
4
----Stuyvesant Town----
            venue
                  freq
0
       Playground
                  0.11
1
              Bar
                  0.11
2
             Park 0.11
3
 Baseball Field 0.06
    Cocktail Bar 0.06
----Sutton Place----
                    venue freq
0
    Gym / Fitness Center 0.06
1
       Italian Restaurant
                           0.04
        Indian Restaurant 0.04
2
  Furniture / Home Store 0.04
```

Pizza Place 0.03

----Tribeca----

freq venue 0.05 0 Italian Restaurant 1 0.05 Spa 2 Café 0.05 3 Park 0.05 American Restaurant 0.04

----Tudor City----

venue freq 0 Mexican Restaurant 0.06 1 0.06 Greek Restaurant 2 Park 0.06 Pizza Place 0.05 3 Café 0.05

----Turtle Bay----

venue freq 0 Italian Restaurant 0.06 1 Coffee Shop 0.05 2 Sushi Restaurant 0.05 3 Steakhouse 0.05 4 Wine Bar 0.04

----Upper East Side----

venue freq Italian Restaurant 0.08 Exhibit 0.07 1 2 Art Gallery 0.05 Bakery 0.04 3 Coffee Shop 0.04

----Upper West Side----

venue freq Italian Restaurant 0.06 0 Wine Bar 0.04 1 2 Bar 0.04 3 Cosmetics Shop 0.03 Indian Restaurant 0.03

----Washington Heights----

venue freq 0 Café 0.05 1 Deli / Bodega 0.04 2 Grocery Store 0.04 3 Mobile Phone Shop 0.04 Bakery 0.04 ----West Village---venue freq 0 Italian Restaurant 0.09 1 Cosmetics Shop 0.05 2 New American Restaurant 0.05 3 Park 0.04 4 Wine Bar 0.04 ----Yorkville---venue freq Italian Restaurant 0.06 1 Gym 0.06 2 Coffee Shop 0.06 3 Bar 0.05

Sushi Restaurant 0.04

Let's put that into a pandas dataframe

4

```
In [87]: #a function to sort the venues in descending order

def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)

return row_categories_sorted.index.values[0:num_top_venues]
```

1

```
In [88]:
         #create the new dataframe and display the top 10 venues for each neighbo
         rhood.
         num_top_venues = 10
         word_string3 = ''
         indicators = ['st', 'nd', 'rd']
         # create columns according to number of top venues
         columns = ['Neighborhood']
         for ind in np.arange(num_top_venues):
             try:
                 columns.append('{}{} Most Common Venue'.format(ind+1, indicators
         [ind]))
             except:
                 columns.append('{}th Most Common Venue'.format(ind+1))
         # create a new dataframe
         neighborhoods_venues_sorted = pd.DataFrame(columns=columns)
         neighborhoods_venues_sorted['Neighborhood'] = ny_grouped['Neighborhood']
         for ind in np.arange(ny grouped.shape[0]):
             neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venue
         s(ny_grouped.iloc[ind, :], num_top_venues)
             word string3 = word_string3 + neighborhoods_venues_sorted.iloc[ind,
         1: | + ' '
         neighborhoods_venues_sorted.head()
```

Out[88]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	
0	Battery Park City	Park	Coffee Shop	Hotel	Gym	Memorial Site	Italian Restaurant	١
1	Carnegie Hill	Pizza Place	Coffee Shop	Bar	Café	Yoga Studio	Grocery Store	ŀ
2	Central Harlem	African Restaurant	Public Art	Cosmetics Shop	American Restaurant	Bar	Seafood Restaurant	(
3	Chelsea	Coffee Shop	Italian Restaurant	Ice Cream Shop	Nightclub	Bakery	Art Gallery	Ş
4	Chinatown	Chinese Restaurant	Cocktail Bar	American Restaurant	Vietnamese Restaurant	Salon / Barbershop	Ice Cream Shop	-

Vizualization with word cloud

```
In [89]: stopwords = set(STOPWORDS)
```

```
word_string4 = ''
In [90]:
         for i in range(0, num_top_venues ):
             word_string4 = word_string4 + word_string3[i]
In [92]: # create the word cloud
         stopwords.add('Restaurant')
         wordcloud = WordCloud(background_color='white', stopwords = stopwords).g
         enerate(word_string4)
         print('Word cloud created!')
         # display the cloud
         fig = plt.figure()
         fig.set_figwidth(12)
         fig.set_figheight(15)
         plt.imshow(wordcloud, interpolation='bilinear')
         plt.axis('off')
         plt.show()
```

Word cloud created!

4. Cluster Neighborhoods

Run k-means to cluster the neighborhood into 5 clusters.

```
In [93]: # set number of clusters
kclusters = 5

ny_grouped_clustering = ny_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(ny_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

```
Out[93]: array([2, 1, 1, 2, 1, 2, 2, 0, 1, 1], dtype=int32)
```

Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood.

```
In [94]: # add clustering labels
    neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)

    ny_merged = ny_data

# merge toronto_grouped with toronto_data to add latitude/longitude for
    each neighborhood
    ny_merged = ny_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')

    ny_merged.head() # check the last columns!
```

Out[94]:

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd I Com V∉
0	Manhattan	Marble Hill	40.876551	-73.910660	4	Sandwich Place	Discount Store	Coffee Shop
1	Manhattan	Chinatown	40.715618	-73.994279	1	Chinese Restaurant	Cocktail Bar	Americ Restau
2	Manhattan	Washington Heights	40.851903	-73.936900	0	Café	Grocery Store	Deli / Bodeg
3	Manhattan	Inwood	40.867684	-73.921210	0	Mexican Restaurant	Café	Loung
4	Manhattan	Hamilton Heights	40.823604	-73.949688	0	Mexican Restaurant	Café	Pizza Place

Finally, let's visualize the resulting clusters

```
In [95]: # create map
         map clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
         # set color scheme for the clusters
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2  for i in range(kclusters)]
         colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors_array]
         # add markers to the map
         markers_colors = []
         for lat, lon, poi, cluster in zip(ny merged['Latitude'], ny merged['Long
         itude'], ny_merged['Neighborhood'], ny_merged['Cluster Labels']):
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_ht
         ml=True)
             folium.CircleMarker(
                 [lat, lon],
                 radius=5,
                 popup=label,
                 color=rainbow[cluster-1],
                 fill=True,
                 fill_color=rainbow[cluster-1],
                 fill_opacity=0.7).add_to(map_clusters)
         #map_clusters
```

Examining the clusters

Let's try and see each cluster and the most common venue among each.

For cluster 0, the distribution of venues is as:

Mexican Restaurant 4
Café 1
Italian Restaurant 1
Coffee Shop 1

Name: 1st Most Common Venue, dtype: int64

Out[96]: _____

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	
2	Washington Heights	Café	Grocery Store	Deli / Bodega	Mobile Phone Shop	Bakery	Gym	Ta R
3	Inwood	Mexican Restaurant	Café	Lounge	Deli / Bodega	Bakery	Pizza Place	R
4	Hamilton Heights	Mexican Restaurant	Café	Pizza Place	Coffee Shop	Yoga Studio	Park	Si Pl
5	Manhattanville	Italian Restaurant	Park	Mexican Restaurant	Seafood Restaurant	Coffee Shop	Liquor Store	C R
7	East Harlem	Mexican Restaurant	Bakery	Deli / Bodega	Latin American Restaurant	American Spa		C
25	Manhattan Valley	Coffee Shop	Pizza Place	Indian Restaurant	Yoga Studio	Mexican Restaurant	Thai Restaurant	D B
36	Tudor City	Mexican Restaurant	Park	Greek Restaurant	Pizza Place	Café	Deli / Bodega	Н

For cluster 1, the distribution of venues is as: Coffee Shop Italian Restaurant 3 Bar 2 Gym / Fitness Center 1 Korean Restaurant 1 Pizza Place 1 Chinese Restaurant 1 African Restaurant 1 Sandwich Place 1

Out[97]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Mo Comm Ven
1	Chinatown	Chinese Restaurant	Cocktail Bar	American Restaurant	Vietnamese Restaurant	Salon / Barbershop	Ice Crea Shop
6	Central Harlem	African Restaurant	Public Art	Cosmetics Shop	American Restaurant	Bar	Seafood Restaura
9	Yorkville	Italian Restaurant	Coffee Shop	Gym	Bar	Pizza Place	Sushi Restaura
10	Lenox Hill	Coffee Shop	Italian Restaurant	Pizza Place	Sushi Restaurant	Burger Joint	Gym
11	Roosevelt Island	Sandwich Place	Coffee Shop	Dry Cleaner	Gym / Fitness Center	Gym	Greek Restaura
12	Upper West Side	Italian Restaurant	Wine Bar	Bar	Vegetarian / Vegan Restaurant	Mediterranean Restaurant	Bakery
16	Murray Hill	Coffee Shop	Sandwich Place	Hotel	Japanese Restaurant	French Restaurant	Bar
19	East Village	Bar	Wine Bar	Chinese Restaurant	Mexican Restaurant	Ice Cream Shop	Pizza Place
20	Lower East Side	Coffee Shop	Chinese Restaurant	Café	Ramen Restaurant	Pizza Place	Japanes Restaura
27	Gramercy	Bar	Italian Restaurant	American Restaurant	Pizza Place	Bagel Shop	Cocktail Bar
29	Financial District	Coffee Shop	Hotel	Gym	Wine Shop	Steakhouse	Cocktail Bar
30	Carnegie Hill	Pizza Place	Coffee Shop	Bar	Café	Yoga Studio	Grocery Store
33	Midtown South	Korean Restaurant	Hotel	Dessert Shop	Japanese Restaurant	Hotel Bar	Cosmeti Shop
34	Sutton Place	Gym / Fitness Center	Italian Restaurant	Furniture / Home Store	Indian Restaurant	Juice Bar	Gym

	Neighborhood	1st Most Common Venue	2nd Most Common Venue		4th Most Common Venue		Comm
35	Turtle Bay	Italian Restaurant	Coffee Shop	Steakhouse	Sushi Restaurant	Wine Bar	Ramen Restaura

For cluster 2, the distribution of venues is as: Italian Restaurant Park 2 2 Theater Bakery 1 Hotel 1 Coffee Shop 1 Clothing Store 1 Gym 1 Gym / Fitness Center 1 American Restaurant 1 Name: 1st Most Common Venue, dtype: int64

Out[98]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	
8	Upper East Side	Italian Restaurant	Exhibit	Art Gallery	Bakery	Coffee Shop	Gym / Fitness Center	F
13	Lincoln Square	Theater	Gym / Fitness Center	Café	Plaza	Concert Hall	Italian Restaurant	F
14	Clinton	Theater	Gym / Fitness Center	Italian Restaurant	American Restaurant	Hotel	Wine Shop	Ç
15	Midtown	Hotel	Coffee Shop	Cocktail Bar	Clothing Store	Theater	Sporting Goods Shop	E
17	Chelsea	Coffee Shop	Italian Restaurant	Ice Cream Shop	Nightclub	Bakery	Art Gallery	Ę F
18	Greenwich Village	Italian Restaurant	Sushi Restaurant	Clothing Store	Chinese Restaurant	Cosmetics Shop	Café	I F
21	Tribeca	Italian Restaurant	Spa	Park	Café	American Restaurant	Boutique	١
22	Little Italy	Bakery	Café	Italian Restaurant	Bubble Tea Shop	Clothing Store	Cocktail Bar	Ę F
23	Soho	Clothing Store	Boutique	Art Gallery	Shoe Store	Women's Store	Italian Restaurant	1
24	West Village	Italian Restaurant	Cosmetics Shop	New American Restaurant	Park	Jazz Club	Wine Bar	<i>ļ</i> F
26	Morningside Heights	Park	Coffee Shop	American Restaurant	Bookstore	Food Truck	Tennis Court	Ę
28	Battery Park City	Park	Coffee Shop	Hotel	Gym	Memorial Site	Italian Restaurant	\
31	Noho	Italian Restaurant	French Restaurant	Sushi Restaurant	Cocktail Bar	Bookstore	Grocery Store	r F
32	Civic Center	Gym / Fitness Center	Italian Restaurant	Coffee Shop	French Restaurant	Hotel	Sandwich Place	÷ (;

	Neighborhood	1st Most Common Venue	Common	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	
38	Flatiron	Gym	Yoga Studio	American Restaurant	Clothing Store	Gym / Fitness Center	Japanese Restaurant	1 <i>∤</i> F
39	Hudson Yards	American Restaurant	Italian Restaurant	Café	Gym / Fitness Center	Hotel	Spanish Restaurant	F

For cluster 3, the distribution of venues is as:
Bar 1
Name: 1st Most Common Venue, dtype: int64

Out[99]:

		Neighborhood	1st Most Common Venue	l Most	3rd Most		5th Most Common Venue		7th Con V
,	37	Stuyvesant Town	Bar	Park	Playground	Pet Service	Gas Station	Boat or Ferry	Germa Resta

```
In [100]: #For Cluster 4
    #result = ny_merged.loc[ny_merged['Cluster Labels'] == 4, ny_merged.colu
    mns[[1] + list(range(5, ny_merged.shape[1]))]]
    #print("For cluster {}, the distribution of venues is as:\n{}".format(4,
    result['1st Most Common Venue'].value_counts()))
    #result
```

Let's explore the Kensington and Chelsea, uk in our dataframe.

Get the neighborhood's name.

```
In [101]: address = 'Kensington and Chelsea, uk'
          geolocator = Nominatim(user_agent="uk_explorer")
          location = geolocator.geocode(address)
          latitude = location.latitude
          longitude = location.longitude
          print('The geograpical coordinate of Kensington and Chelsea, uk {}, {}.'
          .format(latitude, longitude))
          The geograpical coordinate of Kensington and Chelsea, uk 51.4989948, -
          0.1991229.
In [102]: LIMIT = 200 # limit of number of venues returned by Foursquare API
          radius = 1500 # define radius
          url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client
          _secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
              CLIENT ID,
              CLIENT_SECRET,
              VERSION,
              latitude,
              longitude,
              radius,
              LIMIT)
          url # display URL
Out[102]: 'https://api.foursquare.com/v2/venues/explore?&client id=B3D1FREXU3FMFK
          G0XFFFWLZH1UBNQKQGVTG4XWBI3N32354V&client secret=UAFKLDYGA1SQEBZYO4P5DY
          UAS4DBRF5QA53DURWY03FTRQP3&v=20180604&l1=51.4989948,-0.1991229&radius=1
          500&limit=200'
In [103]: results1 = requests.get(url).json()
          #results1
In [104]: # function that extracts the category of the venue
          def get_category_type(row):
              try:
                  categories list = row['categories']
              except:
                  categories_list = row['venue.categories']
              if len(categories list) == 0:
                  return None
              else:
                  return categories list[0]['name']
```

Out[105]:

	name	categories	lat	Ing
0	Core Collective	Gym / Fitness Center	51.499589	-0.198630
1	The Design Museum	Museum	51.499785	-0.199641
2	Café Phillies	Café	51.499726	-0.197747
3	Leighton House Museum	History Museum	51.498591	-0.203118
4	The Scarsdale Tavern	Pub	51.496975	-0.199024

In [106]: print('{} venues were returned by Foursquare.'.format(nearby_venues.shap
e[0]))

100 venues were returned by Foursquare.

```
In [107]: def getNearbyVenues(names, latitudes, longitudes, radius=1500):
              venues_list=[]
              for name, lat, lng in zip(names, latitudes, longitudes):
                  print(name)
                  # create the API request URL
                  url = 'https://api.foursquare.com/v2/venues/explore?&client id=
          {}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                       CLIENT_ID,
                       CLIENT SECRET,
                       VERSION,
                       lat,
                       lng,
                       radius,
                      LIMIT)
                  # make the GET request
                  results = requests.get(url).json()["response"]['groups'][0]['ite
          ms']
                  # return only relevant information for each nearby venue
                  venues_list.append([(
                       name,
                       lat,
                       lng,
                       v['venue']['name'],
                       v['venue']['location']['lat'],
                       v['venue']['location']['lng'],
                       v['venue']['categories'][0]['name']) for v in results])
              nearby venues = pd.DataFrame([item for venue list in venues list for
          item in venue list])
              nearby_venues.columns = ['Neighborhood',
                             'Neighborhood Latitude',
                             'Neighborhood Longitude',
                             'Venue',
                             'Venue Latitude',
                             'Venue Longitude',
                             'Venue Category']
              return(nearby venues)
```

Brompton
Chelsea
Earls Court
Kensington
South Kensington
West Brompton
Holland Park
North Kensington
Notting Hill

In [109]: print(uk_venues.shape)

(900, 7)

In [110]: uk_venues.head()

Out[110]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Ven Catego
0	Brompton	51.49014	-0.16248	Venchi	51.489239	-0.164265	Ice Crea Shop
1	Brompton	51.49014	-0.16248	Saturday Farmers' Market	51.490917	-0.160329	Farmers Market
2	Brompton	51.49014	-0.16248	Duke of York Square	51.491272	-0.159827	Plaza
3	Brompton	51.49014	-0.16248	The Five Fields	51.491770	-0.161191	Restaura
4	Brompton	51.49014	-0.16248	Amorino	51.489455	-0.163803	Ice Crea Shop

In [111]: uk_venues.groupby('Neighborhood').count()

Out[111]:

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Brompton	100	100	100	100	100	100
Chelsea	100	100	100	100	100	100
Earls Court	100	100	100	100	100	100
Holland Park	100	100	100	100	100	100
Kensington	100	100	100	100	100	100
North Kensington	100	100	100	100	100	100
Notting Hill	100	100	100	100	100	100
South Kensington	100	100	100	100	100	100
West Brompton	100	100	100	100	100	100

In [112]: print('There are {} uniques categories.'.format(len(uk_venues['Venue Category'].unique())))

There are 135 uniques categories.

```
In [113]: # one hot encoding
    uk_onehot = pd.get_dummies(uk_venues[['Venue Category']], prefix="", pre
    fix_sep="")

# add neighborhood column back to dataframe
    uk_onehot['Neighborhood'] = uk_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [uk_onehot.columns[-1]] + list(uk_onehot.columns[:-1])
    uk_onehot = uk_onehot[fixed_columns]

uk_onehot.head()
```

Out[113]:

	Neighborhood	American Restaurant	•	_	Art Gallery	Art Museum	Asian Restaurant	Austra Restau
0	Brompton	0	0	0	0	0	0	0
1	Brompton	0	0	0	0	0	0	0
2	Brompton	0	0	0	0	0	0	0
3	Brompton	0	0	0	0	0	0	0
4	Brompton	0	0	0	0	0	0	0

In [114]: uk_onehot.shape

Out[114]: (900, 136)

Out[115]:

	Neighborhood	American Restaurant	Antique Shop	Argentinian Restaurant	Art Gallery		Asian Restaurant	Austra Restau
0	Brompton	0.01	0.00	0.01	0.02	0.01	0.00	0.00
1	Chelsea	0.01	0.00	0.01	0.02	0.01	0.00	0.00
2	Earls Court	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	Holland Park	0.00	0.00	0.00	0.01	0.00	0.00	0.00
4	Kensington	0.00	0.00	0.01	0.02	0.01	0.00	0.00
5	North Kensington	0.00	0.00	0.00	0.00	0.00	0.01	0.00
6	Notting Hill	0.00	0.01	0.00	0.02	0.00	0.01	0.01
7	South Kensington	0.00	0.00	0.01	0.02	0.01	0.00	0.00
8	West Brompton	0.01	0.00	0.00	0.00	0.00	0.00	0.00

```
In [116]: num_top_venues = 5

for hood in uk_grouped['Neighborhood']:
    print("----"+hood+"----")
    temp = uk_grouped[uk_grouped['Neighborhood'] == hood].T.reset_index
()
    temp.columns = ['venue','freq']
    temp = temp.iloc[1:]
    temp['freq'] = temp['freq'].astype(float)
    temp = temp.round({'freq': 2})
    print(temp.sort_values('freq', ascending=False).reset_index(drop=Tru
e).head(num_top_venues))
    print('\n')
```

1

1

```
----Brompton----
                     freq
               venue
0
                Café
                      0.07
1
  French Restaurant
                      0.05
2
      Ice Cream Shop
                      0.04
3
              Bakery
                      0.04
4
               Hotel
                      0.03
----Chelsea----
               venue freq
0
                Café 0.07
1
  French Restaurant 0.05
2
      Ice Cream Shop
                     0.04
3
              Bakery
                      0.04
4
               Hotel
                     0.03
----Earls Court----
                         freq
                  venue
0
                         0.08
                  Hotel
     Italian Restaurant
1
                         0.05
2
            Pizza Place
                         0.05
   Gym / Fitness Center
                         0.04
4
                    Pub
                         0.04
----Holland Park----
                venue freq
                  Pub 0.07
0
1
               Bakery
                       0.04
2
  Italian Restaurant
                       0.04
3
                Hotel 0.04
           Restaurant 0.04
4
----Kensington----
                       freq
                 venue
0
    Italian Restaurant
                        0.08
1
                       0.07
                  Café
2
                 Hotel
                       0.06
3
        Science Museum 0.04
   Japanese Restaurant
                       0.03
----North Kensington----
                  venue freq
0
                         0.10
                    Pub
  Gym / Fitness Center
                         0.06
2
    Italian Restaurant
                         0.06
3
                         0.05
                 Bakery
           Cocktail Bar 0.04
----Notting Hill----
                         freq
                  venue
```

Pub

0.08

0

```
1
    Italian Restaurant
                        0.06
  Gym / Fitness Center 0.05
3
                Bakery
                        0.04
4
                   Café
                        0.03
----South Kensington----
                venue freq
0
   Italian Restaurant 0.08
1
                 Café 0.07
2
                Hotel 0.06
        Science Museum 0.04
3
  Japanese Restaurant
                       0.03
----West Brompton----
                venue freq
  Italian Restaurant 0.07
1
                 Café 0.06
2
              Bakery 0.05
3
                  Pub 0.04
4
                Hotel 0.04
```

```
In [117]: #a function to sort the venues in descending order

def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)

return row_categories_sorted.index.values[0:num_top_venues]
```

```
In [118]:
          #create the new dataframe and display the top 10 venues for each neighbo
          rhood.
          num_top_venues = 10
          word_string1 = ''
          indicators = ['st', 'nd', 'rd']
          # create columns according to number of top venues
          columns = ['Neighborhood']
          for ind in np.arange(num_top_venues):
              try:
                  columns.append('{}{} Most Common Venue'.format(ind+1, indicators
          [ind]))
              except:
                  columns.append('{}th Most Common Venue'.format(ind+1))
          # create a new dataframe
          neighborhoods_venues_sorted_uk = pd.DataFrame(columns=columns)
          neighborhoods venues_sorted_uk['Neighborhood'] = uk_grouped['Neighborhoo
          d']
          for ind in np.arange(uk_grouped.shape[0]):
              neighborhoods_venues_sorted_uk.iloc[ind, 1:] = return_most_common_ve
          nues(uk_grouped.iloc[ind, :], num_top_venues)
              word string1 = word string1 + neighborhoods venues sorted uk.iloc[in
          d, 1:] + ' '
          neighborhoods venues sorted uk.head()
```

Out[118]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7. C
0	Brompton	Café	French Restaurant	Ice Cream Shop	Bakery	Japanese Restaurant	Italian Restaurant	Co Bai
1	Chelsea	Café	French Restaurant	Ice Cream Shop	Bakery	Japanese Restaurant	Italian Restaurant	Co Bai
2	Earls Court	Hotel	Pizza Place	Italian Restaurant	Pub	Gym / Fitness Center	Thai Restaurant	Bal
3	Holland Park	Pub	Bakery	Hotel	Café	Italian Restaurant	Restaurant	Enç Re:
4	Kensington	Italian Restaurant	Café	Hotel	Science Museum	Japanese Restaurant	Burger Joint	Ga

Word cloud created!


```
In [121]: # set number of clusters
kclusters = 4

uk_grouped_clustering = uk_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(uk_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Out[121]: array([2, 2, 3, 3, 1, 0, 0, 1, 3], dtype=int32)

In [122]: uk_merged = new_data
 # add clustering labels
 uk_merged['Cluster Labels'] = kmeans.labels_

 uk_merged = uk_merged.join(neighborhoods_venues_sorted_uk.set_index('Neighborhood'), on='neighborhoods')

 uk_merged.head() # check the last columns!

Out[122]:

	neighborhoods	Dial code	borough	posttown	postcode	Latitude	Longitude	Clust Labe
0	Brompton	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248	2
1	Chelsea	020	Kensington and Chelsea	LONDON	SW3	51.49014	-0.16248	2
2	Earls Court	020	Kensington and Chelsea	LONDON	SW5	51.49004	-0.18971	3
3	Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404	3
4	South Kensington	020	Kensington and Chelsea	LONDON	SW7	51.49807	-0.17404	1

```
In [124]: # create map
          map clusters = folium.Map(location=[latitude, longitude], zoom start=11)
          # set color scheme for the clusters
          x = np.arange(kclusters)
          ys = [i + x + (i*x)**2  for i in range(kclusters)]
          colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors array]
          # add markers to the map
          markers colors = []
          for lat, lon, poi, cluster in zip(uk_merged['Latitude'], uk_merged['Long
          itude'], uk_merged['neighborhoods'], uk_merged['Cluster Labels']):
              label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_ht
          ml=True)
              folium.CircleMarker(
                  [lat, lon],
                  radius=5,
                  popup=label,
                  color=rainbow[cluster-1],
                  fill=True,
                  fill_color=rainbow[cluster-1],
                  fill_opacity=0.7).add_to(map_clusters)
          #map clusters
```


For cluster 0, the distribution of venues is as:
Italian Restaurant 1
Pub 1
Name: 1st Most Common Venue, dtype: int64

Out[125]:

	Dial code	Latitude	Longitude	Cluster Most		3rd Most Common Venue		5 C	
5	020	51.48563	-0.18144	0	Italian Restaurant	Café	Bakery	Pub	Ho
6	020	51.50162	-0.19173	0	Pub	Bakery	Hotel	Café	Ital Re:

In [126]: # For Cluster 1

result = uk_merged.loc[uk_merged['Cluster Labels'] == 1, uk_merged.colum ns[[1] + list(range(5, uk_merged.shape[1]))]] print("For cluster $\{\}$, the distribution of venues is as: $\n{\}}$ ".format(1,

result['1st Most Common Venue'].value_counts()))

result

For cluster 1, the distribution of venues is as:

Italian Restaurant 1 Pub 1

Name: 1st Most Common Venue, dtype: int64

Out[126]:

	Dial code	Latitude	Longitude	Cluster Labels	Common	2nd Most Common Venue	3rd Most	4th Most Common Venue	;
4	020	51.49807	-0.17404	1	Italian Restaurant	Café	Hotel	Science Museum	Ja Re
7	020	51.52346	-0.21353	1	Pub	Gym / Fitness Center	Italian Restaurant	Bakery	Pi Pl

In [127]: # For Cluster 2

result = uk merged.loc[uk merged['Cluster Labels'] == 2, uk merged.colum ns[[1] + list(range(5, uk_merged.shape[1]))]]

print("For cluster $\{\}$, the distribution of venues is as: $\n{\}}$ ".format(2, result['1st Most Common Venue'].value counts()))

result

For cluster 2, the distribution of venues is as:

Name: 1st Most Common Venue, dtype: int64

Out[127]:

	Dial code	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5 C
0	020	51.49014	-0.16248	2	Café	French Restaurant	Ice Cream Shop	Bakery	Jar Re:
1	020	51.49014	-0.16248	2	Café	French Restaurant	Ice Cream Shop	Bakery	Jar Re:

For cluster 3, the distribution of venues is as:

Italian Restaurant 1
Hotel 1

Name: 1st Most Common Venue, dtype: int64

Out[128]:

	Dial code	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue		
2	020	51.49004	-0.18971	3	Hotel	Pizza Place	Italian Restaurant	Pub	(F (
3	020	51.49807	-0.17404	3	Italian Restaurant	Café	Hotel	Science Museum	J F
8	020	51.51244	-0.20639	3	Pub	Italian Restaurant	Gym / Fitness Center	Bakery	F

Entertainment in NYC

40.7563907 -73.9782057

In [130]: #let's define a query to search for entertainment that is within 2000 me
 tres in nyc.
 search_query = 'Escape Games'
 radius = 2000
 print(search_query + ' OK!')

Define the corresponding URL
 url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_s
 ecret={}&ll={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CL
 IENT_SECRET, latitude, longitude, VERSION, search_query, radius, LIMIT)
 url

Escape Games OK!

- Out[130]: 'https://api.foursquare.com/v2/venues/search?client_id=B3D1FREXU3FMFKG0 XFFFWLZH1UBNQKQGVTG4XWBI3N32354V&client_secret=UAFKLDYGA1SQEBZYO4P5DYUA S4DBRF5QA53DURWY03FTRQP3&11=40.7563907,-73.9782057&v=20180604&query=Esc ape Games&radius=2000&limit=200'
- In [131]: # Send the GET Request and examine the results
 results = requests.get(url).json()
 #results
- In [133]: # assign relevant part of JSON to venues
 venues = results['response']['venues']

 # tranform venues into a dataframe
 dataframe = json_normalize(venues)
 #dataframe.head()

In [134]: # keep only columns that include venue name, and anything that is associ ated with location filtered_columns = ['name', 'categories'] + [col for col in dataframe.co lumns if col.startswith('location.')] dataframe_filtered = dataframe.loc[:, filtered_columns] # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories list) == 0: return None else: return categories_list[0]['name'] # filter the category for each row dataframe_filtered['categories'] = dataframe_filtered.apply(get_category _type, axis=1) # clean column names by keeping only last term dataframe_filtered.columns = [column.split('.')[-1] for column in datafr ame_filtered.columns] dataframe filtered.head()

	name	categories	address	СС	city	country	crossStreet	distance	formattedAc
0	Mission Escape Games	General Entertainment	265 W 37th St	US	New York	United States	NaN	1172	[265 W 37th Shew York, N' 10018, United Sta
1	Riddle Me Out Escape Games NYC	General Entertainment	435 5th Avenue, 4th Floor	US	New York	United States	NaN	656	[435 5th Aver 4th Floor, Ne York, NY 100
2	Escape Day Spa & Skin Care	Spa	101 W 55th St	US	New York	United States	6th Ave, NW corner	767	[101 W 55th : Ave, NW corr New York,
3	Exit Escape Room NYC	General Entertainment	246 W 38th St FI 7	US	New York	United States	NaN	1058	[246 W 38th 17, New York, 10018, Unite.
4	BBDO NY - Escape Hatch	Office	1285 Avenue of the Americas	US	New York	United States	W 51st St	318	[1285 Avenue the Americas 51st St), New

Out[135]:

	name	categories	address	СС	city	country	crossStreet	distance	formati
0	Mission Escape Games	General Entertainment	265 W 37th St	US	New York	United States	NaN	1172	[265 W New Yo 10018, Sta
1	Riddle Me Out Escape Games NYC	General Entertainment	435 5th Avenue, 4th Floor	US	New York	United States	NaN	656	[435 5th 4th Floo York, N
3	Exit Escape Room NYC	General Entertainment	246 W 38th St FI 7	US	New York	United States	NaN	1058	[246 W 7, New 10018,
6	Escape Room Madness	General Entertainment	38 West 32nd Street, 5th Floor, Ste 500	US	New York	United States	32nd street & Broadway	1212	[38 Wes Street, ! Ste 500
7	Escape Entertainment	General Entertainment	4th Floor, 39 W 32nd St	US	New York	United States	NaN	1214	[4th Flo 32nd St NY 100

```
venues_ett_map = folium.Map(location=[latitude, longitude], zoom_start=1
3) # generate map centred around the Conrad Hotel
# add the Italian restaurants as blue circle markers
for lat, lng, label in zip(dataframe filtered.lat, dataframe filtered.ln
g, dataframe filtered.categories):
    folium.features.CircleMarker(
        [lat, lng],
        radius=3,
        color='blue',
        popup=label,
        fill = True,
        fill_color='blue',
        fill opacity=0.6
    ).add to(venues ett map)
# add the Italian restaurants as blue circle markers
for lat, lng, label in zip(dataframe filtered1.lat, dataframe filtered1.
lng, dataframe_filtered1.categories):
    folium.features.CircleMarker(
        [lat, lng],
        radius=3,
        color='red',
        popup=label,
        fill = True,
        fill_color='red',
        fill opacity=0.6
    ).add_to(venues_ett_map)
# display map
#venues ett map
```

Results

Analyzing the results we can see that people in different borough of London and NYC often visit identical places, such as Italian Restaurant, Coffee Shop, Park, Pizza Place, Hotel, Gym, Fitness Center, But there are also differences in preferences, such as French Restaurant, Pub, Japanese Restaurant, Cocktail Bar, Boutique for borough of London and for borough of NYC - American Restaurant, Wine Shop, Chinese Restaurant, Sushi Restaurant, Taco Place. Also using Foursquare API and visualization we can easily see the information that we need, for example, the placement of Escape room. They are popular now, and how we can see on map there are only a few in Manhattan.

Discussion

Based on our result, we can conclude that there are few Escape rooms and if we want to open a Escape room then the best place in Manhattan is near the center and above. If to analyze Brooklyn we can see only 2 of them. That is a good decision and we are independ from choose a place at this moment.

Also analyzing area of London and New York, we see that the British prefer French Restaurant, Pub, Japanese Restaurant while the American prefer Mexican Restaurant, Chinese Restaurant, Sushi Restaurant, Taco Place.

Conclusion

Using Foursquare API, we can captured data of common places all around the world. Using it, we refer back to our main objectives, which is to determine;

the similarity or dissimilarity of both cities classification of area located inside the city whether it is residential, tourism places, or others. Using visualization libraries we can do different graphs for easy understanding of the material.