MATH 3100 – Homework #7

posted November 3, 2023; due Friday, November 10

Limits, like fears, are often just an illusion. - Michael Jordan

Required problems

1. For this problem, you may assume that $\sin x$ and $\cos x$ are defined and continuous on all of **R**. You may also assume that the function x^{π} , with domain $(0, \infty)$, is continuous on $(0, \infty)$. Let

 $f(x) = (\sin^2 x + \cos^6 x)^{\pi}.$

- (a) What is the domain of f(x)? Justify your answer.
- (b) Using theorems stated in class or in the textbook, explain why f(x) is continuous.
- 2. Let $f(x) = 2x \cos(1/x)$ for $x \neq 0$ and set f(0) = 0. Show that f is continuous at 0 by directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.
- 3. Prove that $f(x) = x^3$ is continuous at x = 2 by directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.
- 4. (Limits of constants, function version) Let f be a real-valued function defined on a set of real numbers S. Suppose that f is constant on S, say f(x) = c for all $x \in S$. Prove that for every $a \in \bar{S}$,

$$\lim_{x \to a^S} f(x) = c.$$

5. (Squeeze Lemma for sequences) Suppose $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are three sequences satisfying

$$a_n \le b_n \le c_n$$
 for all $n \in \mathbb{N}$.

Suppose there is a real number L such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$. Prove that $\lim_{n\to\infty} b_n = L$.

Remark. This problem could have been assigned in Chapter 1; no new theory is required.

6. (Squeeze Lemma for functions) Let f_1, f_2 , and f_3 be three functions defined on S, and let a be a real number belonging to the reach of S. Suppose that

$$f_1(x) \le f_2(x) \le f_3(x)$$
 for all $x \in S$.

Suppose also that there is a real number L for which

$$\lim_{x \to a^{S}} f_{1}(x) = \lim_{x \to a^{S}} f_{3}(x) = L.$$

Prove that

$$\lim_{x \to a^S} f_2(x) = L.$$

7. Let a and L be a real numbers. Suppose there is an open interval I containing a such that f is defined on $I \setminus \{a\}$ and, with $S = I \setminus \{a\}$,

$$\lim_{x \to a^S} f(x) = L.$$

Prove that if I' is any open interval containing a for which f is defined on $I' \setminus \{a\}$, then with $S' = I' \setminus \{a\}$,

$$\lim_{x \to a^{S'}} f(x) = L.$$

Remark. This shows our definition of " $\lim_{x\to a} f(x) = L$ " is independent of the choice of interval I, at least in the case when $L \in \mathbf{R}$. A similar argument could be given when $L = \pm \infty$.

Hint. We are told that $\lim_{x\to a^S} f(x) = L$. Thus, if the x_n are elements of $I\setminus\{a\}$ for which $x_n\to a$, then $f(x_n)\to L$. Now let y_n be elements of $I'\setminus\{a\}$ for which $y_n\to a$. We have to show that $f(y_n)\to L$. Start by showing that $y_n\in I$ eventually.

8. Let a be a real number. Suppose that f is a real-valued function defined on $I \setminus \{a\}$ for some open interval I containing a. Suppose that

$$\lim_{x \to a} f(x) = L,$$

where L is a real number. Give a careful proof that

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L.$$

[In the next problem, you will be asked to prove the converse!]

9. Let a be a real number. Suppose that f is a real-valued function defined on $I \setminus \{a\}$ for some open interval I containing a. Suppose that

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L,$$

where L is a real number. Prove that

$$\lim_{x \to a} f(x) = L.$$

Hint. With I as in the problem statement, let x_n be a sequence of elements of $I \setminus \{a\}$ for which $x_n \to L$. Suppose for a contradiction that $f(x_n) \not\to L$. Prove that for some $\epsilon > 0$, there are infinitely many n with $|f(x_n) - L| \ge \epsilon$. Now take two cases, according to whether infinitely many of those n have $x_n < a$ or infinitely many have $x_n > a$.

Recommended problems (from Ross)

 $\S17: 3(a,c,f,g,h), 8, 11, 15$

§20: 1, 9, 11, 13