Instructions

The code for a simple collaborative filtering algorithm with state space integration has been provided. Below are the instructions and documentation:

Instructions for Running the Code

1. Environment Setup:

o Install Python (version 3.7 or higher recommended).

Install required libraries: numpy and scikit-learn. You can do this by running: pip install numpy scikit-learn

0

2. Save the Script:

- Save the provided code in a file named state_space_cf.py.
- 3. Execute the Script:

Run the script using Python: python state_space_cf.py

С

4. Expected Output:

- Initial state vectors for users and items.
- Updated state vectors after training on interactions.
- o Top recommended items for a sample user.

Code Documentation

Class: StateSpaceCollaborativeFilter

- Attributes:
 - 1. n users: Number of users.

- 2. n_items: Number of items.
- 3. user_states: Matrix of user state vectors, initialized randomly.
- 4. item_states: Matrix of item state vectors, initialized randomly.

Methods:

- 1. __init__(self, n_users, n_items):
 - Initializes user and item states.
- 2. update_states(self, interactions, learning_rate=0.01):
 - Updates user and item states based on interactions.
 - Parameters:
 - interactions: List of tuples (user_id, item_id, rating).
 - learning_rate: Step size for updates.
- 3. predict(self, user, item):
 - Predicts the rating for a user-item pair.
- 4. recommend(self, user, top_k=5):
 - Recommends the top-k items for a given user.
 - Parameters:
 - user: User ID.
 - top_k: Number of items to recommend.

Main Function:

- Sets up a small example with users, items, and interactions.
- Demonstrates training and recommendations.