DATA TYPES

By: METIS

DATA TYPES

Numerical (Quantitative)		Categorical (Qualitative)	
Continuous	Discrete	Nominal	Ordinal
Infinite Options Example: Square Footage	Finite Options Example: Number of Bedrooms	Unordered Categories Example: Exterior Color of House	Ordered Categories Example: No / Partial / Full Garage

REGRESSION PROBLEM

Let's say I'd like to predict house prices. How would I structure my data for this problem?

House Price	Square Footage	Number of Bedrooms	Exterior Color of House	Garage
\$400,000	1700	2	Tan	Partial
\$600,000	2500	3	Blue	Full
\$350,000	1500	2	White	None
\$500,000	2000	3	Blue	Partial

REGRESSION PROBLEM

Let's say I'd like to predict house prices. How would I structure my data for this problem?

House Price	Square Footage	Number of Bedrooms	Exterior Color of House	Garage
\$400,000	1700	2	Tan	Partial
\$600,000	2500	3	Blue	Full
\$350,000	1500	2	White	None
\$500,000	2000	3	Blue	Partial

Can I input this data directly into a linear regression model?

REGRESSION PROBLEM

Let's say I'd like to predict house prices. How would I structure my data for this problem?

House Price	Square Footage	Number of Bedrooms	Exterior Color of House	Garage
\$400,000	1700	2	Tan	Partial
\$600,000	2500	3	Blue	Full
\$350,000	1500	2	White	None
\$500,000	2000	3	Blue	Partial

The numerical fields are okay, but we need to make the categorical fields numerical.

DUMMY VARIABLES

DUMMY VARIABLES

How can we make the categorical fields numerical?

Exterior Color of House	Tan	Blue	White
Tan	1	0	0
Blue	0	1	0
White	0	0	1
Blue	0	1	0

Pandas syntax: pd.get_dummies(my_series)

DUMMY VARIABLES

Do we really need all three new columns to describe the Exterior Color of the House?

Exterior Color of House	Blue	White
Tan	0	0
Blue	1	0
White	0	1
Blue	1	0

Pandas syntax: pd.get_dummies(my_series, drop_first=True)

THE DUMMY VARIABLE TRAP

Linear Regression Equation: $y = \beta_0 + \beta_1 x_1$

With Dummy Variables: $y = \beta_0 x_0 + \beta_1 d_1 + \beta_2 d_2 + \beta_3 d_3$

X ₀	Tan	Blue	White
1	1	0	0
1	1	0	0
1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0
1	0	0	1
1	0	0	1

Sum_Color
1
1
1
1
1
1
1
1

This is a case of perfect multicollinearity.

DUMMY VARIABLES

When creating dummy variables for linear regression, one column must be dropped.

Exterior Color of House	Blue	White
Tan	0	0
Blue	1	0
White	0	1
Blue	1	0

With two columns (blue and white), all three colors are represented and we avoid perfect multicollinearity.

Pandas syntax: pd.get_dummies(my_series, drop_first=True)

DUMMY VARIABLES: NAN VALUES

Dummy variables can also be used to capture NaN values in the data.

Last Sold Price	NaN
\$540,000	0
NaN	1
\$280,000	0
NaN	1

This NaN column contains additional information.

Possibility: when NaN = 1, it means it's a new house, so we could even rename the column as 'New'

Pandas syntax: pd.get_dummies(my_series, dummy_na=True)

DUMMY VARIABLES: NAN VALUES

Dummy variables can also be used to capture NaN values in the data.

Last Sold Price	NaN
\$540,000	0
NaN	1
\$280,000	0
NaN	1

Note: This works with <u>both</u> numerical and categorical features.

Pandas syntax: pd.get_dummies(my_series, dummy_na=True)

DUMMY VARIABLES: ORDINAL DATA

With ordinal data (order matters), there are multiple ways to turn it into a numeric value.

Garage	Partial	Full
Partial	1	0
Full	0	1
None	0	0
Partial	1	0

Garage	Garage_Num	
Partial	0.5	
Full	1	
None	0	
Partial	0.5	

This is a design choice.

DATA TYPES SUMMARY

Numerical (Quantitative)		Categorical (Qualitative)	
Continuous	Discrete	Nominal	Ordinal
Infinite Options Example: Square Footage	Finite Options Example: Number of Bedrooms	Unordered Categories Example: Exterior Color of House	Ordered Categories Example: No / Partial / Full Garage

Can use dummy variables to deal with categorical data and also NaN data.

QUESTIONS?