ECE 223 Digital Circuits and Systems

Registers & Counters

Registers

- Register is a group of flip-flops
 - □ *n*-bit register has *n* flip-flops
 - □ Can hold *n* bits of binary data
 - Register may also contain combinational logic

Fig. 6-1 4-Bit Register

Register with Parallel Load

- Specific control signal to load n-bit data
 - Load =0, register retains the data
 - Load = 1, register accepts new data

Fig. 6-2 4-Bit Register with Parallel Load

Shift Register

- Capable of shifting data in one or both directions
 - Clock controls the shift operation
- Figure shows a simple shift register with left to right data shifting capability

Fig. 6-3 4-Bit Shift Register

Serial Data Transfer

Serial mode -> Data is transferred one bit at a time

Fig. 6-4 Serial Transfer from Register A to register B

P/A

Serial Addition

- Parallel adders
 - Faster,
 - cost more logic
- Serial adders
 - Slower
 - n-bit addition
 n clock cycles
 - Less hardware

Fig. 6-5 Serial Adder

Universal Shift Register

Mode (Control	
S1	S0	Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Para load

Fig. 6-7 4-Bit Universal Shift Register

Ripple (Asynchronous) Counter

- Counts the binary sequence
 - Negative edge triggered
 - □ Output of one flipflop → Clock to the next
 - Clock skew adds up

Fig. 6-8 4-Bit Binary Ripple Counter

BCD Ripple Counter

 Counter must reset itself after counting the terminal count

Fig. 6-9 State Diagram of a Decimal BCD-Counter

Fig. 6-10 BCD Ripple Counter

Synchronous Counters

Count enable

- A common clock is applied to all flip-flops
 - Clock skew does not add up
 - Faster than ripple counters
- Synchronous counters can be designed using sequential circuit procedure
- Synchronous binary counter

Fig. 6-12 4-Bit Synchronous Binary Counter

Up-Down Binary Counter

Can count up (0000
 → 1111) or down
 (1111 → 0000)
 binary sequence

Fig. 6-13 4-Bit Up-Down Binary Counter

Synchronous BCD Counter

Design a synchronous BCD counter with T flip-flops

	Prese	nt State			Next	State		Out	F	lip-flop inputs			
Q8	Q4	Q2	Q1	Q8	Q4	Q2	Q1	у	TQ8	TQ4	TQ2	TQ1	
0	0	0	0	0	0	0	1	0	0	0	0	1	
0	0	0	1	0	0	1	0	0	0	0	1	1	
0	0	1	0	0	0	1	1	0	0	0	0	1	
0	0	1	1	0	1	0	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	0	1	
0	1	0	1	0	1	1	0	0	0	0	1	1	
0	1	1	0	0	1	1	1	0	0	0	0	1	
0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	0	0	1	0	0	0	0	1	
1	0	0	1	0	0	0	0	1	1	0	0	1	

Binary Counter with Parallel Load

13

BCD Counter & Modulo-N Counter

Fig. 6-15 Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

Home work - Suppose we want to design a counter with 1,2,3,4,5,6,7,8,9 sequence (mod-9 counter)?

Counter with Unused States

- A circuit with n flip-flops has 2ⁿ states
 - We may have to design a counter with a given sequence (unused states)
 - Unused states may be treated as don't care or assigned specific next state
 - Outside noise may cause the counter to enter unused state
 - Must ensure counter eventually goes to the valid state

Pre	esent S	tate	Ne	ext Sta	te	Flip-flop Inputs					
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	Х	1	Х	Х	1
0	1	0	1	0	0	1	Х	Х	1	0	Х
1	0	0	1	0	1	Х	0	0	Х	1	Х
1	0	1	1	1	0	Х	0	1	Х	Х	1
1	1	0	0	0	0	Х	1	Х	1	0	Х

Counter with Unused States

Fig. 6-16 Counter with Unused States

Ring Counter

Capable of generating different timing signals

Fig. 6-17 Generation of Timing Signals

Johnson Counter

Number of states of a ring counter can be doubled

(a) Four-stage switch-tail ring counter

Sequence number	Fli	p-flop	outp	uts	AND gate required	
	mber \overline{A} \overline{B} \overline{C} \overline{E}				for output	
1	0	0	0	0	A'E'	
2	1	0	0	0	AB'	
3	1	1	0	0	BC'	
4	1	1	1	0	CE'	
5	1	1	1	1	AE	
6	0	1	1	1	A'B	
7	0	0	1	1	B'C	
8	0	0	0	1	C'E	

(b) Count sequence and required decoding

18

Fig. 6-18 Construction of a Johnson Counter

Book Sections – Registers & Counters

■ Material is covered in Sections 6.1 – 6.5