DeepSeek LLM Scaling Open-Source Language Models with Longtermism

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

Damai Dai*^{1,2}, Chengqi Deng¹, Chenggang Zhao*^{1,3}, R.X. Xu¹, Huazuo Gao¹, Deli Chen¹, Jiashi Li¹, Wangding Zeng¹, Xingkai Yu*^{1,4}, Y. Wu¹, Zhenda Xie¹, Y.K. Li¹, Panpan Huang¹, Fuli Luo¹, Chong Ruan¹, Zhifang Sui², Wenfeng Liang¹

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

Daya Guo*¹, Qihao Zhu*^{1,2}, Dejian Yang¹, Zhenda Xie¹, Kai Dong¹, Wentao Zhang¹ Guanting Chen¹, Xiao Bi ¹, Y. Wu¹, Y.K. Li¹, Fuli Luo¹, Yingfei Xiong², Wenfeng Liang¹

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Zhihong Shao^{1,2*†}, Peiyi Wang^{1,3*†}, Qihao Zhu^{1,3*†}, Runxin Xu¹, Junxiao Song¹ Xiao Bi¹, Haowei Zhang¹, Mingchuan Zhang¹, Y.K. Li¹, Y. Wu¹, Daya Guo^{1*}

¹DeepSeek-AI, ²Tsinghua University, ³Peking University

Jun 2024

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

DeepSeek-AI

research@deepseek.com

ec 2024

DeepSeek-V3 Technical Report

DeepSeek-AI

research@deepseek.com

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI

 ${\tt research@deepseek.com}$

pril 2024

an 202

Mixture of Expert, MoE (Review)

- According to scaling law*, model performance depends on i) # model parameters, N, ii) size of the dataset, D, iii) amount of compute in training, C
- MoE is a way to train larger model with lower training compute budget. Also MoE model requires lower inference budget
- MoE create a *sparse* model. Only 1 out of 4 experts is used. It is computationally efficient due to sparsity.
- MoE helps to increase parameters while keeping the compute cost manageable.

Sparse model

Dense model Not activated Activated

^{*: &}lt;a href="https://arxiv.org/abs/2001.08361">https://arxiv.org/abs/2001.08361 Scaling Laws for Neural Language Models

Mixture of Expert, MoE (Review)

- FFN layer of Transformer block is substituted with MoE layer
- Each expert is an identical structure FFN
- Challenges in MoE architectures
 - Knowledge hybridity: expert learns diverse knowledge due to its limited numbers
 - Knowledge redundancy: multiple experts learn common knowledge due to no common expert(s)
 - Routing collapse: selects a few experts so other experts may not trained fully

Output hidden $\begin{aligned} \mathbf{h}_t^l &= \sum_{i=1}^N \left(g_{i,t} \operatorname{FFN}_i \left(\mathbf{u}_t^l \right) \right) + \mathbf{u}_t^l, \\ \operatorname{Gate, select} \\ \operatorname{expert} \end{aligned} \end{aligned} = \begin{cases} s_{i,t}, & s_{i,t} \in \operatorname{Topk}(\{s_{j,t}|1 \leqslant j \leqslant N\}, K) \\ 0, & \operatorname{otherwise}, \end{cases}$ $s_{i,t} = \operatorname{Softmax}_i \left(\mathbf{u}_t^{l^T} \mathbf{e}_i^l \right), \text{Input hidden}$ Router

Design to improve expert specialization

- Fine-grained expert segmentation: splitting experts into finer groups and activating more experts allows them to learn diverse knowledge. Achieving more accurate and targeted knowledge acquisition.
- Shared expert isolation: Dedicate shared experts that are always activated to capture common knowledge across contexts. Prevent other experts from learning redundant knowledge.

Output hidden
$$\mathbf{h}_t^l = \sum_{i=1}^{K_s} \mathrm{FFN}_i \left(\mathbf{u}_t^l \right) + \sum_{i=K_s+1}^{mN} \left(g_{i,t} \, \mathrm{FFN}_i \left(\mathbf{u}_t^l \right) \right) + \mathbf{u}_t^l,$$
 Gate, select expert
$$g_{i,t} = \begin{cases} s_{i,t}, & s_{i,t} \in \mathrm{Topk}(\{s_{j,t}|K_s+1 \leq j \leq \underline{mN}\}, mK - K_s), \\ 0, & \mathrm{otherwise}, \end{cases}$$
 Finer Shared experts
$$s_{i,t} = \mathrm{Softmax}_i \left(\mathbf{u}_t^{l^T} \mathbf{e}_i^l \right)$$
 Input hidden

- To validate their idea, they used a small model with 2B parameters, DeepSeekMoE
 2B
- DeepSeekMoE 2B outperform GShard 2.9B, which is large and x1.5 more activated experts.
- DeepSeekMoE 2B approaches close to DeepSeek 2B (dense model), which is a upper bound of MoE model

Metric	# Shot	Dense	Hash Layer	Switch	GShard	DeepSeekMoE
# Total Params	N/A	0.2B	2.0B	2.0B	2.0B	2.0B
# Activated Params	N/A	0.2B	0.2B	0.2B	0.3B	0.3B
FLOPs per 2K Tokens	N/A	2.9T	2.9T	2.9T	4.3T	4.3T
# Training Tokens	N/A	100B	100B	100B	100B	100B
Pile (Loss)	N/A	2.060	1.932	1.881	1.867	1.808
HellaSwag (Acc.)	0-shot	38.8	46.2	49.1	50.5	54.8
PIQA (Acc.)	0-shot	66.8	68.4	70.5	70.6	72.3
ARC-easy (Acc.)	0-shot	41.0	45.3	45.9	43.9	49.4
ARC-challenge (Acc.)	0-shot	26.0	28.2	30.2	31.6	34.3
RACE-middle (Acc.)	5-shot	38.8	38.8	43.6	42.1	44.0
RACE-high (Acc.)	5-shot	29.0	30.0	30.9	30.4	31.7
HumanEval (Pass@1)	0-shot	0.0	1.2	2.4	3.7	4.9
MBPP (Pass@1)	3-shot	0.2	0.6	0.4	0.2	2.2
TriviaQA (EM)	5-shot	4.9	6.5	8.9	10.2	16.6
NaturalQuestions (EM)	5-shot	1.4	1.4	2.5	3.2	5.7

Table 1 | Evaluation results for validation experiments. **Bold** font indicates the best. Compared with other MoE architectures, DeepSeekMoE exhibits a substantial performance advantage.

 DeepSeekMoE 16B achieves similar performance with DeepSeek 7B with only 40.5% computation!

Metric	# Shot	DeepSeek 7B (Dense)	DeepSeekMoE 16B
# Total Params	N/A	6.9B	16.4B
# Activated Params	N/A	6.9B	2.8B
FLOPs per 4K Tokens	N/A	183.5T	74.4T
# Training Tokens	N/A	2T	2T
Pile (BPB)	N/A	0.75	0.74
HellaSwag (Acc.)	0-shot	75.4	77.1
PIQA (Acc.)	0-shot	79.2	80.2
ARC-easy (Acc.)	0-shot	67.9	68.1
ARC-challenge (Acc.)	0-shot	48.1	49.8
RACE-middle (Acc.)	5-shot	63.2	61.9
RACE-high (Acc.)	5-shot	46.5	46.4
DROP (EM)	1-shot	34.9	32.9
GSM8K (EM)	8-shot	17.4	18.8
MATH (EM)	4-shot	3.3	4.3
HumanEval (Pass@1)	0-shot	26.2	26.8
MBPP (Pass@1)	3-shot	39.0	39.2
TriviaQA (EM)	5-shot	59.7	64.8
NaturalQuestions (EM)	5-shot	22.2	25.5
MMLU (Acc.)	5-shot	48.2	45.0
WinoGrande (Acc.)	0-shot	70.5	70.2
CLUEWSC (EM)	5-shot	73.1	72.1
CEval (Acc.)	5-shot	45.0	40.6
CMMLU (Acc.)	5-shot	47.2	42.5
CHID (Acc.)	0-shot	89.3	89.4