Syntax natürlicher Sprachen

3: X-Bar-Struktur, Rekursion und Ambiguität

A. Wisiorek

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

29.10.2024

1. Rekursion

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- 4 Treebanks

Rekursiver Aufbau natürlicher Sprachen

Rekursive syntaktische Kategorien

- Erklärung für Nicht-Endlichkeit natürlicher Sprachen
- endliche Anzahl an syntaktischen Regeln, aber unbegrenzte Anzahl an bildbaren Sätzen (z. B.: durch Hinzufügung von Adjunkten)
- modellierbar mit rekursiven Phrasenstrukturregeln
- Erzeugung verschachtelter Strukturen

Beispiele rekursiver Kategorien

- nominale Adjunkte (ADJ- oder PP-Attribute, Genitiv-NP-Attribute)
- verbale Adjunkte (PP-Adverbiale)
- Komplementsätze (z.B. ich glaube, dass ich glaube, dass ...)
- Relativsätze, z.B.:
 Die Katze, (die der Hund, (der dem Mann entlaufen war), biss), lief weg.

Rekursion

Rekursive Grammatik-Regel

- das Nichtterminalsymbol der linken Regelseite (LHS) ist ableitbar auf das selbe Nichtterminalsymbol
- d.h. (bei einer direkt rekursiven Regel): das Symbol auf der linke
 Regelseite (LHS) erscheint auch auf der rechten Regelseite (RHS)

rekursive Regel

 ${\tt X} \ \to \ {\tt X} \ {\tt Y}$

Rekursionstypen

Rekursionstypen

 je nach Position der rekursiven Kategorie auf der rechten Regelseite lassen sich 3 Typen unterscheiden

linksrekursive Regel

 $X \rightarrow X Y$

oder

 $ext{NP} o ext{NP} ext{PP}$

rechtsrekursive Regel

 ${ t X} \; o \; { t Y} \; { t X} \qquad { t oder}$

 $ext{NP}
ightarrow ext{ADJ NP}$

center-embedding-Rekursion (z.B. Relativsatz)

 $X \rightarrow Y X Z$ oder

 $ext{NP}
ightarrow ext{PROPN} ext{ RELPRO} ext{ NP V}$

Verarbeitungsprobleme

Verarbeitung linksrekursiver Regeln

- linksrekursive Regel nicht mit einfachem top-down-Parser verarbeitbar (Recursive-Descent-Parser)
- führt zu Endlosschleife

Verarbeitung center-embedding-Regeln

- center-embedding benötigt mindestens kontextfreie Grammatik
- nicht mit regulärer Grammatik modellierbar

Direkte vs. Indirekte Rekursion

 im Gegensatz zur direkten Rekursion ist bei indirekter die Kategorie der LHS über mehr als eine Regelanwendung auf sich selbst ableitbar

Direkte Rekursion

$${\tt X} \ \rightarrow \ {\tt X} \qquad {\tt oder}$$

$exttt{NP} ightarrow exttt{DET} exttt{N} exttt{NP}$

Indirekte Rekursion

$$exttt{X}
ightarrow exttt{Y} exttt{oder}$$

$$exttt{NP}
ightarrow exttt{DET} exttt{N} exttt{PP}$$

$$\mathtt{Y} \; o \; \mathtt{X}$$

$$\mathtt{PP} \ o \ \mathtt{P} \ \mathtt{NH}$$

Beispiele

Beispiel direkte Rekursion

ullet NP o DET N NP

der Schlüssel des Autos der Firma des Chefs ...

Beispiel indirekte Rekursion

- ullet NP o DET N PP
- \bullet PP \rightarrow P **NP**

in der Frage nach den Problemen in seinen Ausführungen über die Freiheit auf dem Gebiete der Kunst während der 30er Jahre (s. Dürscheid, Kap. 5, nach J. E. Schmidt, 1993:84)

Beispiel Objekt-Komplement-Satz

indirekte S-Rekursion

- \bullet S \rightarrow NP VP
- \bullet VP \rightarrow V S

2. X-Bar-Theorie

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

2. X-Bar-Theorie 10

2.1. Übergenerierung durch rekursives Phrasenstrukturschema

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

vorläufige NP-Strukturregeln (rekursiv)

Phrasenschema NP (vereinfacht)

DET

(ADJP)*

N

(PP)*

NP-Produktionsregeln mit Rekursion (vorläufig)

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

NLTK: Übergenerierung vorläufiger NP-Grammatik

```
grammar = nltk.CFG.fromstring("""
   NP -> DET NP
   NP -> ADJP NP
   NP -> N
   DET -> 'das'
   ADJP -> 'rote'
   N -> 'Auto'
   11 11 11 )
10
   for sentence in generate(grammar, depth=9):
       print(' '.join(sentence))
11
12
13
14
   #das das rote das rote Auto
15
```

Problem mit direkt rekursiver DET-Regel

rekursive DET-Regel: $NP \rightarrow DET NP$

Mit der Regel können zwar NPs gemäß des Phrasenschemas abgeleitet werden

Problem: Übergenerierung

- die Grammatik ist aber stark übergenerierend und damit kein adäquates Modell des NP-internen Strukturaufbaus
- Übergenerierung 1: DET rekursiv wiederholbar an erster Position (richtige Strukturposition aber falsche Anzahl)
- Übergenerierung 2: DET wiederholbar an falscher Strukturposition (z. B.: ADJP DET N)

Lösung: X-Bar-Struktur

- Strukturbegrenzung notwendig!
- möglich durch X-Bar-Theorie (Chomsky)

2.2. X-Bar-Phrasenstrukturschema

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

X-Bar-Theorie

- Entwicklung durch Chomsky im Rahmen der Government& Binding-Theorie
- ursprüngliches Symbol: Balken (*bar*): \bar{X} , meist als X' geschrieben

Beschränkung der Struktur von Phrasen

- **1 binäre** Verzweigung ($A \rightarrow BC$)
- Einführung phrasaler Zwischenebene X' (im NLTK NOM bzw. VERBAL)
- **3 gleicher Strukturaufbau für alle Phrasenarten** (*X* als Wortart-Variable)

Motivation für X-Bar-Schema

bisher: Anzahl und Art unmittelbarer Konstituenten einer Phrase nicht beschränkt

- Mischung aus nicht festgelegter Anzahl aus lexikalischen und phrasalen Kategorien
- keine festgelegte Ordnung zwischen Kopf und Erweiterungen

Problem: Übergenerierung

führt zu Problemen bei rekursiver Strukturdefinition

X-Bar-Ebene

Lösung: phrasale Zwischenebene: X'

- Einführung phrasaler Zwischenebene (X') zwischen Gesamtphrase
 (XP, maximale Projektion) und Kopf (X)
- Erlaubt die Differenzierung verschiedener Arten von Dependenten in Phrase durch Strukturposition

DET als Spezifizierer: $NP \rightarrow DET N'$

Spezifizierer

phrasenabschließende nicht-obligatorische Erweiterung, Anzahl begrenzt (nur ein Element)

- Verbindung mit X', bilden zusammen den Abschluß der XP-Phrase
- Deutsche NP: Determinierer, Possessivpronomen, Quantifizierer, sächsicher Genitiv (seines Glückes Schmied)
- ullet verallgemeinert: als Strukturposition (XP o SPEC X') im Schema für Elemente mit entsprechenden Eigenschaften
- z. B. AUX als VP-Spezifizierer (s. unten)

Beispiel: vollständige X-Bar-Analyse

zum Vergleich: flache Phrasenstrukturanalyse

Verallgemeinerung verbaler Komplement-Adjunkt-Distinktion

Komplement

obligatorische (valenzgeforderte) **Erweiterung**, Anzahl abhängig von Valenz/Subkategorisierungsrahmen

- ightarrow direkte Verbindung mit Phrasenkopf X, bilden zusammen X'-Phrase
- ightarrow Modellierung der engen Verbindung Komplement mit Kopf
- ightarrow Deutsche NP: Genitiv-NP-Erweiterung oder von-PP

Adjunkt

nicht-obligatorische Erweiterung, Anzahl nicht begrenzt

- ightarrow Verbindung mit X'-Konstituente, bilden zusammen wieder X'
- \rightarrow Deutsche NP: Adjektiv-Attribut, PP-Attribut

Allgemeines X-Bar-Schema (wortstellungsunabhängig)

Spezifizierer-Regel (Phrasenabschluss)

$$XP \rightarrow SPEC$$
, X'

rekursive Adjunkt-Regel (rechtsrekursiv)

 $X' \rightarrow ADJUNCT, X'$

Komplement-Regel

 $X' \rightarrow COMPL, X$

Links- vs. Rechtsverzweigung

- X-Bar-Schema: ohne implizierte lineare Struktur (Wortstellung)
- Einzelsprachliche Regeln!
- Deutsche NP: links- und rechtsverzweigend

left-vs. rightbranching

- Linksverzweigung: head-final (OV-Sprachen)
- Rechtsverzweigung: head-initial (VO-Sprachen)

Beispiel

Beispiel für Links- und Rechtsverzweigung im Deutschen

die wiederholte Entdeckung Amerikas auf dem Seeweg

Strukturpositionen im X-Bar-PSG-Schema

	X (Kopf)	X'	XP
Komplement	Schwester	Tochter	
Adjunkt		Schwester und Tochter	
Spezifizierer		Schwester	Tochter

2.3. NP-Regeln im X-Bar-Schema

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

X-Bar-NP-Regeln

Spezifizierer-Regel (Phrasenabschluss)

 $NP \rightarrow DET N'$

Adjektiv-Adjunkt-Regel (rechtsrekursiv)

 $N' \rightarrow ADJP \ N'$

PP-Adjunkt-Regel (linksrekursiv)

 $N' \rightarrow N' PP$

Genitiv-NP-Komplement-Regel (Ko-Konstituente/Schwester Kopf)

 $N' \rightarrow N NP$

Kopf-Regel

 $N' \rightarrow N$

Beispiel 1: X-Bar-Analyse NP

Beispiel 2: X-Bar-Analyse NP

2.4. VP-Regeln im X-Bar-Schema

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

X-Bar-VP-Regeln

Phrasenabschluss (ohne Spezifizierer)

$$VP \rightarrow V'$$

PP-Adjunkt-Regel (ebenso: ADVP, ADJP)

$$V' \rightarrow V' PP$$

Komplement-Regel (di)transitives Verb

$$V' \rightarrow V NP (NP)$$

Komplement-Regel intransitives Verb (kein Komplement)

$$V' \rightarrow V$$

Beispiel 1: X-Bar-Analyse VP

Beispiel 2: X-Bar-Analyse VP (rekursive Adjunktion)

Auxiliar als Spezifizier

Auxiliare

- Hilfsverben
- begleiten Verb (Träger lexikalischer Bedeutung)
- Ausdruck von grammatischen Merkmalen des Verbs
 - Tempus
 - Modus
 - Diathese
 - Flexionsmerkmale

verschiedene Analysen

- Analyse ist stark theorieabhängig (welche Strukturposition)
- u. a. als Spezifizierer (s. o.)
- ebenso: Analyse als Verbgruppe (Verb + Auxiliare)
- ebenso: Eintrag in Subkategorisierungslexikon

Parallele X-Bar-Strukturanalyse für NP und VP: Auxiliar als Spezifizierer

2.5. Adäquatheit X-Bar als Syntaxmodell

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- Treebanks

X-Bar-Theorie

X-Bar-Phrasenstrukturgrammatiken

 schränken zwar durch ihre Strukturrestriktionen die Übergenerierung ein

Problem

• bestimmte Formen der Übergenerierung bleiben aber weiter bestehen

Gründe für Übergenerierung von CFGs (auch X-Bar)

Nichtberücksichtigung von Morphologie

- Rektion (Kasus):
- *der Mann sieht des Kindes
 - Kongruenz (Agreement in Merkmalen):
- *das Kinder

Nichtberücksichtigung von Subkategorisierung

- Art und/oder Anzahl von Komplementen
- *der Hund geht die Katze

Lösung

Modellierung von grammat. Merkmalen durch Feature-based grammars

3. Syntaktische Ambiguität

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- 4 Treebanks

Strukturelle Ambiguität

Problem

- mehr als eine Position im Syntaxbaum, d.h. mehr als eine Ableitung möglich (verschiedene syntaktische Interpretationen)
- im Gegensatz zur Übergenerierung ist hier die Modellierung mit CFG-Regeln grundsätzlich korrekt, aber eine **Disambiguierung** ist notwendig

Lösung

• in Parsingsystemen: Disambiguierung z.B. über probabil. lexikalisierte CFGs (**PCFGs**), d.h. Bestimmung der wahrsch. Ableitung im Kontext

Beispielsatz für PP-Attachment

One morning I shot an elephant in my pajamas.
 How he got into my pajamas I don't know.
 (Groucho Marx, Animal Crackers, 1930)

Attachment-Ambiguität

 Konstituente kann im Parsebaum an mehr als einer Stelle angebunden werden

Koordinierungsambiguität

Beispiel Koordinierungsambiguität

- [alte [Männer und Frauen]]
- [alte Männer] und [Frauen]]
- Skopus des Adjektivs unklar:

Temporale Ambiguität (Garden-Path-Sätze)

Beispiel Garden-Path-Satz

- The old man the boat.
- Teilfolge im Satz mit zwei Strukturanalysen:

 aber nur eine Analyse ermöglicht vollständige Analyse (Parse/Ableitung) für den gesamten Satz:

Parsingalgorithmus benötigt Backtracking!

4. Treebanks

- Rekursion
- 2 X-Bar-Theorie
 - Übergenerierung durch rekursives Phrasenstrukturschema
 - X-Bar-Phrasenstrukturschema
 - NP-Regeln im X-Bar-Schema
 - VP-Regeln im X-Bar-Schema
 - Adäquatheit X-Bar als Syntaxmodell
- Syntaktische Ambiguität
- 4 Treebanks

Treebanks

Treebank

Sammlung von per Hand annotierten Syntaxbäumen in bestimmtem Annotationsschema

grammar induction zur Erstellung von Syntaxmodellen

- Treebanks als implizite Grammatik
- CFG-Regeln können aus Treebank-Korpus gewonnen werden

Penn-Treebank

- englisches Zeitungskorpus (bekannteste Treebank)
- relativ flache Struktur (z.B. NP → DT JJ NN)
- Schema verwendet im englischen Stanford-Parser-Modell

Abbildung: Beispiel-Parse Stanford-Parser en. (trainiert auf Penn-Treebank)

TIGER/NEGRA-Korpus

- wichtigste deutsche Treebank
- noch flacher als Penn-Treebank (z.B PP → APPR ART NN)
- Grundlage deutsches Stanford-Parser-Modell

Abbildung: Beispiel-Parse Stanford-Parser dt. (trainiert auf TIGER-Korpus)