II. Schéma de Bernoulli

1) <u>Définition</u>

Définition:

Une épreuve de Bernoulli de paramètre p est une expérience aléatoire à **deux issues** que l'on peut nommer « succès » et « échec ». Le paramètre p décrit la probabilité du succès.

Exemples:

- a) Un tennisman a un taux de réussite de 90% au premier service. Expérience : il fait un premier service. Il réussit (succès avec p=90%) ou il rate (échec avec =1-90%=10%).
- b) On tire une carte au hasard dans un jeu de 32 cartes. On considère comme succès : « tirer un as ». C'est une expérience aléatoire à deux issues. C'est donc une épreuve de Bernoulli de paramètre $p=\frac{4}{32}=\frac{1}{8}$.

Définition:

Un schéma de Bernoulli est la **répétition** de n épreuves de Bernoulli de façon **indépendante** (les épreuves ne dépendent pas l'une de l'autre).

Exemples:

a) On lance un dé 5 fois de suite et on note à chaque fois le résultat. On répète ainsi la même expérience (lancer un dé) et les expériences sont indépendantes l'une de l'autre (un lancer n'influence pas le résultat d'un autre lancer).

À chaque lancer, on considère comme succès « *obtenir un six »* et comme échec « *ne pas obtenir un six »*. Pour chaque expérience (i.e. lancer de dé), on peut représenter la situation comme ci-dessous :

On répète cette expérience 5 fois, la probabilité du succès est égale à $\frac{1}{6}$.

On dit que les paramètres du schéma de Bernoulli sont n=5 et $p=\frac{1}{6}$.

b) On lance une pièce de monnaie 20 fois de suite. Ces expériences sont identiques et indépendantes.

On considère comme succès « *obtenir Pile »* et comme échec « *obtenir Face* ». C'est encore un schéma de Bernoulli.

Dans ce cas, pour chaque expérience (le lancer d'une pièce), on peut faire l'arbre de probabilité ci-dessous :

On répète cette expérience 20 fois, la probabilité du succès est égale à 0,5. On dit que les **paramètres du schéma de Bernoulli** sont n=20 et $p=\frac{1}{2}$.

 c) Une rue comporte 5 feux tricolores. Je passe en scooter successivement devant ces feux tricolores.
Les expériences sont identiques et on considère « avoir un feu vert » comme un succès. Cependant, les 5 expériences ne sont pas indépendantes (phénomène de vague verte).

Ce n'est donc pas un schéma de Bernoulli car le résultat d'une expérience dépend du résultat des autres.

2) Représentation d'un schéma de Bernoulli: arbre pondéré

Méthode : Représenter un schéma de Bernoulli grâce à un arbre pondéré

On considère l'expérience suivante :

Une urne contient 3 boules blanches et 2 boules rouges. On tire au hasard une boule et on la remet dans l'urne. On répète l'expérience deux fois de suite.

- 1. Représenter l'ensemble des issues de ces expériences dans un arbre.
- 2. En utilisant l'arbre, déterminer les probabilités suivantes :
 - a) On tire deux boules blanches.
 - b) On tire une boule blanche et une boule rouge.
 - c) On tire au moins une boule blanche.
- 1. On va choisir de noter B l'événement : « On tire une boule blanche ». L'événement contraire, noté \bar{B} , se traduit par : « On tire une boule rouge ».

En tout, il y a cinq boules dans l'urne.

Trois de ces boules sont blanches donc : $p(B) = \frac{3}{5} = 0.6$.

De la même manière, on en déduit : $p(\bar{B}) = \frac{2}{5} = 0.4$ $\left(= 1 - \frac{3}{5} \right)$.

Tous les résultats de cette expérience peuvent être résumés dans un **arbre pondéré** :

- 2. À partir de l'arbre, on peut maintenant lire les réponses :
 - a) Obtenir deux boules blanches correspond à la première ligne (B;B) . Donc : $P_a=0,\!36.\,$
 - b) On peut obtenir une boule blanc et une boule rouge de deux manières : « Avoir Blanc puis Rouge » ou « Avoir Rouge puis Blanc ». On fait la somme des deux lignes $(B;\bar{B})$ et $(\bar{B};B)$.

Donc: $P_h = 0.24 + 0.24 = 0.48$.

c) On tire **au moins une** boule blanche signifie que l'on doit sélectionner toutes les branches de l'arbre contenant un événement B. On doit donc prendre toutes les branches sauf celle du bas.

Donc: $P_h = 0.24 + 0.24 + 0.36 = 0.84$.

Technique de calcul sur un arbre pondéré :

Les probabilités des feuilles s'additionnent.

$$P = 0.05 + 0.14 = 0.19$$