Velocity of change in the environment in the delta-rule model of reinforcement.

Carlos Velázquez, Arturo Bouzas. School of Psychology.

National Autonomous University of Mexico.

Generation process.

 Consider the situation where the spaceship moves at a variable velocity and is corrupted with Gaussian noise.

Generation process.

 Consider the situation where the spaceship moves at a variable velocity and is corrupted with Gaussian noise.

$$\theta_{t+1} \sim N(x_{t+1}, \sigma_{\theta}^{2})$$

$$x_{t+1} = x_{t} + v_{t}$$

$$v_{t+1} \sim N(v_{t}, \sigma_{v}^{2})$$

Reinforcement learning model.

•Commonly used to model behavior in prediction tasks but provides an inaccurate description in changing environments.

$$V_{t+1} = V_t + \alpha \delta_t$$

Reinforcement learning model.

•Commonly used to model behavior in prediction tasks but provides an inaccurate description in changing environments.

$$V_{t+1} = V_t + \alpha \delta_t$$

• The prediction problem in our experiment can be solved by incorporating the estimation of the velocity component into the prediction.

Reinforcement learning model with a velocity term.

$$V_{t+1} = V_t + V'_{t+1} + \alpha \delta_t$$

$$V'_{t+1} = V'_t + \beta \delta_t$$

$$y_{t+1} \sim N(V_{t+1}, \eta)$$

where:

 δ : Prediction error.

α: Learning rate for position

 β : Learning rate for velocity

 η : Variance for decision noise.

Reinforcement learning model with a velocity term.

$$V_{t+1} = V_t + V'_{t+1} + \alpha \delta_t$$

$$V'_{t+1} = V'_t + \beta \delta_t$$

$$y_{t+1} \sim N(V_{t+1}, \eta)$$

 This model assumes the generation process (position and velocity) can be recovered by taking noisy samples from it. This work aims to answer two main questions:

 Is this a good model of people predictions in an environment that changes at a variable velocity?

 What is the relation between learning rates for position and velocity with the level of Gaussian noise?

Experimental design.

 72 subjects performed the prediction task in four conditions defined by the signal-tonoise ratio (S/N):

Experimental design.

 72 subjects performed the prediction task in four conditions defined by the signal-tonoise ratio (S/N):

$$\begin{aligned} \theta_{t+1} &\sim N(x_{t+1}, \underline{\sigma_{\theta}^2}) \\ x_{t+1} &= x_t + v_t \\ v_{t+1} &\sim N(v_t, \underline{\sigma_{v}^2}) \end{aligned} \qquad \begin{array}{c} \sigma_v^2 &\longleftarrow \text{ Fixed} \\ \overline{\sigma_{\theta}^2} &\longleftarrow \text{ Variable} \end{aligned}$$

Experimental design.

Condition	$\sigma_{v}^{2}/\sigma_{ heta}^{2}$	Trials
1	0.05	300
2	0.5	300
3	1	300
4	2	300

- Order of conditions was randomized.
- Training phase with minimum of 50 trials.
- Units of observations and responses are in radians.

Results.

Learning rates.

 MCMC sampling was used to approximate posterior distributions of parameters.

Learning rates.

 Maximum posteriors for position(α) and velocity (β) as a function of S/N.

Learning rates.

 Subjects took a value close to their last observation, and added the estimation for velocity, which was updated faster for less noisy conditions.

• Simulations with samples from the joint posterior distribution and observations of subjects.

• Simulations with samples from the joint posterior distribution and observations of subjects.

Standard delta-rule model.

Standard delta-rule model.

Delta-rule with a velocity term.

Summary.

 A reinforcement learning model incorporating the estimation of velocity describes data better than a model that ignores this variable.

 Learning rates for position remain high in all conditions.

 Learning rates for velocity increase gradually with the signal-to-noise ratio.

- Proportion of participants favoring:
- A reinforcement learning model incorporating a velocity term in comparison to the standard reinforcement model.
- 2. Gradual increase (hyperbolic) of learning rates for position as a function of S/N in comparison to a model that assumes no change.
- 3. Gradual increase (hyperbolic) of learning rates for velocity as a function of S/N in comparison to a model that assumes no change.

1. Estimated proportion of subjects favoring a model with a velocity term.

2. Estimated proportion of subjects favoring gradual increase of learning rates for position.

3. Estimated proportion of subjects favoring gradual increase of learning rates for velocity.

Conclusions.

 Incorporating the estimation of velocity to the standard reinforcement learning model allows to describe accurately participants' predictions in an environment that changes at a variable velocity.

Conclusions.

 Most participants (≈80%) favor a gradual increment of learning rates for velocity as a function of S/N, which allows faster updates for this variable in less noisy conditions.

Conclusions.

 For most participants (≈98%) learning rates for position are high and do not change as a function of S/N.

 In all conditions participants added the estimation of velocity to a value close to the last observation they had.

Acknowledgements.

Research thesis:

bouzaslab25.com

Contact:

carlos.unamLab25@gmail.com