Subject Name: Discrete Structure and Combinatorics Subject Code: TMC 104

Course Name: Master of Computer Applications (MCA)

1 Contact Hours: 45 L 3 T 0 P 0

2 Examination Duration(Hrs): Theory 0 3 Practical 0 0

3 Relative Weightage: CWE: 25 MTE: 25 ETE: 50

4 Credits 0 4

:

6 Pre-Requisite: Basic Set Theory and Elementary Algebra

7 **Subject Area:** Mathematics

8 Objective: To familiarize students with the concepts of Mathematics needed in

Computer Science.

9 Course Outcome:

- **CO 1** Be able to construct simple mathematical proofs and possess the ability to verify them
- **CO 2** Have substantial experience to comprehend formal logical arguments.
- **CO 3** Be skillful in expressing mathematical properties formally via the formal language of propositional logic and predicate logic.
- **CO 4** Be able to specify and manipulate basic mathematical objects such as sets, functions, and relations and will also be able to verify simple mathematical properties that these objects possess.
- **CO 5** Be able to apply basic counting techniques to solve combinatorial problems.
- **CO 6** Gain experience in using various techniques of mathematical induction (weak, strong and structural induction) to prove simple mathematical properties of a variety of discrete structures.

10 Details of the Course:

Unit	CONTENT	CONTACT
No.		HOURS
1	Sets, Relations and Functions: Countable and Uncountable sets,	7
	Relations and their types and compositions, Partial order relations and	
	Hasse's diagram; Composition of functions, Inverse of functions,	
	recursively defined functions.	
2	Propositional Logic and Mathematical Induction Basic logical	7
	operations, Tautologies, Contradictions, Algebra of proposition,	
	Logical implication, Logical equivalence and Validity; Normal forms,	

	Rules of Inference, Predicates and Quantifiers; Mathematical	
	Induction.	
3	Combinatorics and Discrete Numeric Functions Fundamental	10
	Principles, Factorial Notations, Permutations and Combinations;	
	Pigeonhole principle, Binomial Theoram and Multimonial coefficients;	
	Discrete Numeric Functions, Recurrence relations and Generating	
	Functions.	
4	Group Theory Semi group, monoid, Group, Abelian Group, Subgroup	11
	and their properties, Cyclic group, Cosets, Lagrange's theorem,	
	Permutation groups, Homomorphism, Isomorphism and	
	Automorphism of Groups; Ring, Integral Domain and Field.	
5	Graph Theory Defination and applications of Graph; types of graph;	10
	SubGraph, isomorphic graph, Eulerian and Hamiltonian graph;	
	Operation and representation of graphs; Planar graph and Coloring of	
	graphs;	
	TOTAL	45

11 Suggested Books:

11	buggesteu Dooks.	
Sl.	NAME OF AUTHERS/BOOKS/PUBLISHERS	YEAR OF
NO.		PUBLICATION
1	S Lipschutz and M. Lipson, Discrete Mathematics, TMH.	2009
2	J. P. Tremblay and R. Manohar, Discrete Mathematical Structure with	1997
	Application to Computer Science, TMH.	
3	K. H. Rosen, Discrete Mathematics and Its Applications, TMH.	2007
4	D. Alan & L. Kenneth, Applied Discrete Structures for Computer	2000
	Science, Galgotia Pub. Pvt. Ltd.	
5	J. L. Gersting, Mathematical Structure for Computer Science, W. H.	1993
	Freeman& Macmillan.	