DATA ENGINEERING PLATFORMS (MSCA 31012)

ASSIGNMENT 1

Submissions (via Canvas)

- Submit solutions in PDF, PPT, Excel or MS Word document (as applicable). Do not submit zip files.
- Do not submit the cleaned up dataset for the OpenRefine project.

Part A: Software installations

- 1. Follow the installation guides uploaded (or search google for installation instructions) and install the following software on your local computer (submit a screenshot of your desktop with shortcuts and validations).
 { 20 Points }
 - 1) OpenRefine
 - 2) MySQL (server + workbench)
 - 3) Anaconda (Open Data Science Platform: Python)
 - 4) R-studio
 - 5) Tableau (https://www.tableau.com/academic/students)
 - 6) FileZilla Or CyberDuck
 - 7) MongoDB
 - 8) GCP (credits added to your account)

Part B: Relational data model and design principles

Data (Sakila dataset)

- ➤ We will use the Sakila database schema which can be found at: http://dev.mysql.com/doc/index-other.html
- Full documentation: http://dev.mysql.com/doc/sakila/en/
- Relational Data Modeling (show all Screen caps in Word docx format) { 20 Points }
 - a. Download Sakila dataset and unzip sakila-db.zip file from the URL listed above.
 - b. Execute sakila-schema.sql file in the SQL workbench
 - c. Reverse Engineer the database and generate the EER diagram using the MySQL workbench
 - d. Add a new lookup table: payment_type (1 to Many relationship with payment entity) with the following attributes:
 - payment_type_id (Primary Key) : SMALLINT(6)
 - > method varchar (10)
 - description varchar (45)

Add the foreign key payment_type_id in the Payment entity with the following attributes:

Payment_type_id (Foreign Key) : SMALLINT(6)

e. For the Payment table fill out the form below:

Table Name: Payment

Field (Attributes)	Primary Key (Y/N)	Foreign Key (Y/N)	Related Table(s) (only enter this for foreign key fields) & Type of relationship between tables

2. Normalization: For the table below:

- { 20 Points }

- a. Provide examples of insertion, deletion, and modification anomalies.
- b. Normalize this table to 3NF and list any assumptions.

Physic ian ID	Physician Name	Physician's Office	Patient ID	Patient Name	Patient Address	Appointment Date	Surgery
1	Helen Pearson	832 E Chicago Ave, Chicago 60648	1000	Joe Korn	821 W Randolph Street, Chicago, 60631	3/7/2017	Tendon Repair
1	Helen Pearson	832 E Chicago Ave, Chicago 60648	1001	Gillian White	4331 Illinois Street, Chicago, 60632	3/22/2017	Skin Graft
2	Olga Kay	3606 N. Clark Street, Chicago 60647	1000	Joe Korn	821 W Randolph Street, Chicago, 60631	6/13/2016	Sentinel Node Biopsy
3	Robert Smith	41 W. Madison Ave, Chicago 60606	1002	Jill Bell	162 E Huron Street, Chicago, 60613	6/13/2017	Tendon Repair
3	Robert Smith	41 W. Madison Ave, Chicago 60606	1003	Jill Bell	162 E Huron Street, Chicago, 60613	6/14/2017	Skin Graft
4	Wei Jing	3606 N. Clark Street, Chicago	1004	Mike Li	4531 W Lake Street, Chicago 60654	6/13/2017	Knee Arthroscopy
5	Jay Patel	41 W. Madison Ave, Chicago 60606	1001	Gillian White	4331 Illinois Street, Chicago, 60632	8/15/2017	Sentinel Node Biopsy
5	Jay Patel	41 W. Madison Ave, Chicago 60606	1006	Ian MacKay	41 N Dearborn Street, Chicago, 60652	1/4/2016	Hepatic Resection
5	Jay Patel	41 W. Madison Ave, Chicago 60606	1006	Ian MacKay	41 N Dearborn Street, Chicago, 60652	1/5/2018	Liver Transplant
2	Helen Pearson	832 E Chicago Ave, Chicago 60648	1007	Sheela Nupur	333 W Monroe Street, Chicago, 60606	1/4/2016	Knee Arthroscopy
4	Wei Jing	3606 N. Clark Street, Chicago 60647	1000	Joe Korn	821 W Randolph Street, Chicago, 60631	2/12/2016	Skin Graft
4	Wei Jing	3606 N. Clark Street, Chicago 60647	1004	Mike Li	4531 W Lake Street, Chicago 60654	4/15/2018	Skin Graft

3. Data Modeling Presentation in PPTX (presentation slide deck):

- { 20 Points }

Design a data model that can be used for property management and monitoring of single-family homes for investors and owners.

Consider data for the following entities/attributes that need to be captured by business:

- a. Home location
- b. Age of the house
- c. Construction material used
- d. Type of residence (apt, condo, etc.)
- e. Home layout (number of roomes, sq footage, etc.)
- f. Number and Types of Appliances (Heating, Fridge etc.)
- g. Name and other details of the renters/leasers/resident (s)
- h. Rental Payments made against the house
- i. Add other entities (and/or collection of attributes) that you think could add insights for the investors and business users

Please <u>submit a PPTX with 4 slides</u> that details the Entity Relationship Diagram (tables/relationships/cardinality/datatypes), short summary of Design considerations (which database, how many users, need for distributed databases, data security, privacy and integrity).

Part C: Data Collection & Preparation

- 1. This assignment is related to data collection and transformation. (Knit to PDF) { 20 Points}
 - a. **Using Public APIs**: Choose any data provider (such as Twitter/YouTube... etc). to collect data and transform it to a clean structured tabular data (sample size of 50 records) using Python
 - b. **WebScraping**: Choose a website you want to scrape. Collect some of the data from the website and transform it to a clean structured tabular data (sample size of 50 records) using Python

Note: <u>Must knit both examples to PDF for grading</u>. Please make sure to produce a clean output file that limits rows printouts for readability.

References:

- https://medium.com/pew-research-center-decoded/using-apis-to-collect-website-data-b7fc340d59e3
- https://towardsdatascience.com/getting-started-with-apis-in-python-to-gather-data-1185796b1ec3
- https://www.dataquest.io/blog/python-api-tutorial/
- https://www.dataquest.io/blog/web-scraping-tutorial-python/
- https://likegeeks.com/python-web-scraping/

Another useful site: https://lmgtfv.com/