Tarea 1

Paradigma Bayesiano

Sea x_1, \ldots, x_n una muestra de v.a.i.i.d. $Binomial - Negativa(r, \theta)$, donde $x_i = 0, 1, 2, \ldots$ para $i = 1, \ldots, n$, y los parámetros son tales que $\theta \in (0, 1)$ y $r \in \mathbb{N}^+$,

$$f(x) = \binom{r+x-1}{r-1} (1-\theta)^x \theta^r$$

(1) Calcule la distribución final (a posteriori) de θ , es decir $f(\theta|\underline{x})$.

Considerando la distribución inicial conjugada Gamma, es decir, $\theta \sim \text{Beta}(\alpha_0, \beta_0)$ donde α_0 y β_0 son los hiperparámetros (valores fijos), es decir,

$$f(\theta) \propto \theta^{\alpha_0 - 1} (1 - \theta)^{\beta_0 - 1}$$

- (2) Se requiere obtener la predicción de una 'nueva' observación Z. Calcule:
 - (a) La distribución predictiva inicial de Z, f(z).
 - (b) La distribución predictiva final de Z, $f(z|\underline{x})$.

[Las distribuciones predictivas pertenecen a la familia de distribuciones Beta-Binomial-Negativa.]

(3) Usando los resultados de (1) y (2), en R, especifique valores para los hiperparámetros de la verosimilitud y la distribución inicial, simule una muestra, y grafique las distribuciones: $f(\theta)$, $f(\theta|\underline{x})$, f(z) y $f(z|\underline{x})$.

Copiar código de R en la entrega o usar R Markdown.