Kaustabh Paul

kaustabp@andrew.cmu.edu | (412) 320-3885 | www.linkedin.com/in/kaustabh-paul | redtorus.github.io

Education

Carnegie Mellon University

Pittsburgh, PA

Master's of Science in Electrical and Computer Engineering (Advanced Study)

May 2025

Technical University Munich

Munich, Germany

Bachelor's of Science in Electrical Engineering and Information Technology

May 2023

Research Experience

Carnegie Mellon University, Robomechanics Lab

Pittsburgh PA

Design of PRM-Based Global Body Planner for Quadruped Ghost Robotics Spirit 40

September 2024 - ongoing

• Implemented lazy PRM based global planner using weighted A* for dynamic obstacle avoidance and sample efficiency inside of the Quad SDK framework in ROS Noetic using C++ with <30ms planning time

Technical University Munich, Chair of Information-oriented Control (ITR)

Munich, Germany

Bachelor thesis: Grasp Optimization from Learning-Based Initial Guess

September 2022-April 2023

- Developed optimization algorithms for robotic grasp based on initial guess from reinforcement learning framework in simulation environment MuJoCo
- Divided into contact position optimization (via force and moment residual control) and force optimization (minimizing grasping wrench while satisfying friction cone and external force constraints)
- Successfully reduced average required force for optimized grasp by 60%

Internship Experience

Boardwalk Robotics Inc.

Pensacola, FL

June 2024- August 2024

- Designed reinforcement learning pipeline using PPO for autonomous bi-manipulation tasks for upper body of humanoid robot Alex
- Conducted simulation testing in Isaac Sim to explore and optimize control strategies for manipulation
- Analyzed and interpreted simulation data to refine machine learning models for robust performance
- Achieved successful object handling for pick and push tasks in simulation

Siemens Healthineers Forchheim, Germany

R&D Intern in Department: Diagnostic Imaging (DI) X-Ray Products (XP)

September 2021-October 2021, March 2022

Research and Development Hardware (HW) Mechatronics (MEC)

- Analyzed damage on electromechanical components of X-Ray machines through automated testing procedures
- Programmed hardware controller on BeagleBoneBlack microPC for automated testing of prototype

Projects

Al Intern

Carnegie Mellon University Optimizing and testing diffusion based RL

Pittsburgh, PA

Spring 2025

- Tuned & benchmarked model free diffusion-based RL algorithms (DIPO & QVPO) using seven SDE/ODE samplers (DDPM, Heun, PC, DDIM, k-LMS,RK4, DPM-solver), achieving 13% higher return compared to baseline DDPM for HalfCheetah environment and lower variance in other cases
- Designed unified evaluation framework on MuJoCo and D4RL benchmarks to quantify sampler effects on various environments, showed supervised warm-start pretraining cuts actor MSE by ~15%

Parallelized Convolutional Neural Network Architecture for faster Inference

Spring 2025

- Implemented hand-tuned CUDA kernels for the game checkers in AlphaZero in team of 2
- Replaced libtorch calls for input, torso and output layers resulting in inference latency reduction of up to 4.9 on NVIDIA Tesla T4 GPUs and 12.7 on CPU
- Designed conflict-free shared-memory tiling & padding schemes unlocking near-peak hardware utilization

RTAB-MAP SLAM Pipeline Optimization & Evaluation

Spring 2025

- Developed end-to-end SLAM evaluation pipeline for RTAB-Map in team of 4 using Turtlbot with Intel Realsense RGB-D camera, wheel odometry and IMU in ROS Noetic
- Built ground truth alignment pipeline to validate mapping accuracy (<0.5 mm mean error, 10% RMSE improvement)
- Parallelized RTAB-Maps's Ceres pose-graph solver with OpenMP, reducing average solve time by 17% boosting throughput in large scale mapping scenarios

Drone Controller for Wind Robustness

Fall 2024

- Implemented various onboard controllers (PID, SMC and LQR) for wind rejection for drone crazyflie 2.0 in group of 4
- Designed dynamics model for cascaded SMC and PID controller and simulation environment in ROS2 + Gazebo
- Achieved stable hovering for three controllers and acceptable performance for wind rejection and trajectory tracking

Imitation Learning for Bipedal Walker Control

Fall 2024

- Successfully implemented and compared imitation learning methods (Behavior Cloning, DAgger and Diffusion Policies)
 for training a bipedal walker (BipedalWalker-v3) in OpenAl Gym and achieved training loss less than 0.04
- Leveraged expert trajectories supplied by PPO

Sampling-Based Planners for multi DoF Robotic Arm

Fall 2024

- Implemented and evaluated sampling-based planners (RRT, RRT-Connect, RRT* and PRM) to plan motion of a high degree of freedom robotic arm in an 2D environment with static obstacles in C++
- Achieved planning times under 80ms and success rates up to 100% for 4 DoF arm

Sketch to Image Latent Diffusion Model

Spring 2024

- Designed text conditioned latent diffusion model framework using DDIM with PyTorch in group of 3
- Designed edge-map based dataset augmentation for sketch-image dataset and various training pipelines using

different results to achieve image generation

• Generated high-quality images with potential for significant improvement given more compute resources

Implementation of Decision Transformer for Existing RL Environment

Spring 2024

- Incorporated online decision transformer into TDMPC2 algorithm of RL framework of humanoid robot unitree H1
- Achieved 54% reduction in training time with randomly initialized weights and 27% reduction in training time with pretraining, along with smoother and more natural joint movements in MuJoCo

Autonomous Vehicle Controller Design

Fall 2023

- Implemented PID and LQR controller with EKF SLAM and A* planning for autonomous vehicle in Webots
- Achieved 20% faster track speed over PID with < 3.5 meter average distance from road median

Design of Reaction Time Game on Embedded System

Fall 2023

- · Designed reaction time game on STM32 that communicates with mechatronic system to read player signals
- Implemented sensor circuit on KiCAD and low level BDC motor control

Technical University Munich

Munich, Germany

SLAM for Sound-Source Localization

Spring 2023

- Simulated search and rescue mission in ROS2 on unknown map in goroup of 3
- Attempted to reach signal source points while creating map of the environment using SLAM toolbox and avoiding collisions using real-time collision monitoring

Self-balancing and Trajectory Following Robot

Spring 2022

- Implemented digital controller on ATmega8 microcontroller for balancing and trajectory following
- Utilized various sensors and components (e.g. accelerometer, gyroscope, ADC, encoder)
- Tasks: robot modelling, sensor communication via SPI, sensor data fusion, designed flatness based controller for trajectory following, designed interrupts for special cases

Self-balancing and Trajectory Following Robot

Spring 2022

- Implemented digital controller on ATmega8 microcontroller for balancing and trajectory following
- Utilized various sensors and components (e.g. accelerometer, gyroscope, ADC, encoder)
- Tasks: robot modelling, sensor communication via SPI, sensor data fusion, designed flatness based controller for trajectory following, designed interrupts for special cases

Design of Controller for Buck-Boost Converter

Winter 2021

- Designed digital and analog controller for buck-boost converter to ensure stable and regulated output voltage during load change
- Implemented analog controller using OpAmp circuits and digital controller on microcontroller
- Simulated and designed buck-boost converter, modulator and noise filter circuits using LT Spice

Skills

Programming Languages: MATLAB, C/C++(OpenMP, CUDA, ROS, embedded), Python (PyTorch, Tensorflow, Keras, Jax), Julia Software: LT-Spice, SolidWorks, MSC Adams, KiCad, Linux, Git, Simulation (ROS, MuJoCo, Isaac Sim, Gazebo), AWS (E2C), Docker Hardware: ATmega5, STM32, Raspberry Pi, BeagleBoard

Languages: German, English, Hindi