CYK algoritmus*

1 Chomsky-normálforma, ismétlés

Definíció 1.1. Chomsky-normálforma Egy G=(N,T,P,S) környezetfüggetlen grammatikát Chomsky-normálformájúnak nevezünk, ha minden szabálya a következő alakú: $A\to a$ vagy $A\to BC$, ahol $a\in T,B,C\in N$.

Tétel 1.1. Minden ε -mentes környezetfüggetlen grammatikához megkonstruálható egy vele ekvivalens Chomsky-normálformájú környezetfüggetlen grammatika.

1. feladat: Határozzuk meg a következő grammatika Chomsky-nomrálformáját! $G = (\{A,B,S\},\{a,+,*,(,)\},P,S),P$:

$$S \to A|A + S$$

$$A \to B|B * A$$

$$B \to a|(S)$$

Megoldás:

- ε -mentesítés: \checkmark
- Álterminálisok, hosszredukció:

$$S \to A|A\underline{X_1S}$$

$$A \to B|B\underline{X_2A}$$

$$B \to a|X_3\underline{SX_4}$$

$$X_1 \to +$$

$$X_2 \to *$$

^{*}A jegyzet Dr Csuhaj-Varjú Erzsébet, Dr Tichler Krisztián, Nagy Sára, Veszprémi Anna anyagai alapján készült

$$X_3 \to ($$

$$X_4 \rightarrow$$
)

$$S \to A|AZ_1$$

$$A \to B|BZ_2$$

$$B \to a | X_3 Z_3$$

$$Z_1 \to X_1 S$$

$$Z_2 \to X_2 A$$

$$Z_3 \to SX_4$$

$$X_1 \rightarrow +$$

$$X_2 \to *$$

$$X_3 \to ($$

$$X_4 \rightarrow$$
)

- Lánctalanítás: láncszabályok: $S \to A, A \to B$

$$S \to BZ_2|a|X_3Z_3|AZ_1$$

$$A \rightarrow a|X_3Z_3|BZ_2$$

$$B \to a | X_3 Z_3$$

$$Z_1 \to X_1 S$$

$$Z_2 \to X_2 A$$

$$Z_3 \to SX_4$$

$$X_1 \rightarrow +$$

$$X_2 \to *$$

$$X_3 \to ($$

$$X_4 \rightarrow$$
)

2 CYK algoritmus

A CYK algoritmus (Cocke–Younger–Kasami) egy alulról felfelé elemzést végrehajtó algoritmus, amellyel eldönthető a tartalmazás problémája adott környezetfüggetlen grammatika és szó esetén, azaz adott G grammatika és $u = (u_1 \cdots u_n) \in T^*$ szó esetén eldönti, hogy $u \in L(G)$. A grammatikának Chomsky-normálformában kell lennie. Az algoritmus

során egy alsóháromszög mátrixot töltünk ki. A mátrix celláit alulról felfelé, oszlopait balról jobbra számozzuk. Az egyes cellák nemterminális szimbólumokat tartalmaznak.

Az algoritmus lényegében részszavak levezethetőségét vizsgálja, első lépésben az egy szimbólumból álló résszszavakat, legutolsó lépésben a teljes szót. A mátrix (i,j)-dik cellájában egy olyan nemterminális szerepel, melyből levezethető az $u_{j,j+i-1}$ résszó, amennyiben ilyen van, egyéként nem szerepel semmi, azaz olyan A nemterminálisok kerülnek melyekre, $A \to BC \in P$ és B szerepel az (k,j) cellában, C a (i-k,j+k) cellában, valamely $k \in [1..i-1]$. Ez lényegében azt jelenti, hogy B levezeti $u_j \cdots u_k$ -t, C pedig $u_{j+k+1} \cdots u_{j+i-1}$ részszót. Ha a mátrix (n,1) indexű (bal felső) cellájában megjelenik a start szimbólum, akkor a szó eleme a grammatika által generált nyelvnek.

A CYK algoritmus futási ideje $O(n^3)$. Az első sor kitöltése n lépés, a második n-1 a harmadik $2*(n-2), \ldots$, az n. (n-1)*1.

2. feladat: Adott a következő CNF grammatika és az u = aabbcc szó, szemléltessük a CYK algoritmus működését!

 $S \to AB|BC$

 $A \to XA|a$

 $X \to a$

 $C \to YC|c$

 $Y \to c$

 $B \to UV|VW$

 $U \to XX$

 $W \to YY$

 $V \to ZZ$

 $Z \to b$

A bemenetként kapott szó hossza 6, így először készítünk egy 6×6 -os táblázatot. Az első sor kitöltésekor 1 hosszúságú résszavak levezetését vizsgáljuk, azaz olyan $A \to x$ alakú szabályokat keresünk, ahol $A \in N, x \in T$, tehát olyan szabályokat, melyek közvelenül terminális szimbólumot vezetnek le.

A második sor kitöltésekor a 2 hosszúságú résszavak levezethetőségét vizsgáljuk. Itt már $A \to BC$ alakú szabályokkal foglalkozunk. Nézzük meg például, hogyan kaphatjuk meg a 2. sor 3. cellájának értékét. A fenti képleteknek megfelelően a mátrix (2,3) cellájában olyan nemterminális(ok) szerepel(nek), melyekből levezethető az eredeti szavunk 3. karakterétől kezdődő 2 hosszúságú résszszava, azaz $u_{3,4}$. Ekkor tehát olyan $A \to BC$ szabályokat keresünk, melyre B a mátrix k. sorának j. C pedig a mátrix i-k. sorának j+k cellájában szerepel (a sorszám mindig a részszó hosszát, az oszlopszám a résszó első karakterének indexét adja meg). Konkrét értékeket behelyettesítve (figyelembe véve, hogy k most csak 1 lehet) a mátrix (1,2) és (2-1,2+1) celláit vesszük figyelembe. Mindkét cellában Z nemterminális szerepel, tehát olyan szabályt keresünk, melynek jobboldala ZZ, találhatunk is egy ilyen szabályt: $V \to ZZ$, ennek megfelelően a mátrix (2,3) cellájába V nemterminális kerül.

	1	2	3	4	5	6
6						
5						
4						
3						
2	A, U	Ø	V	Ø	C, W	
1	A, X	A, X	Z	\mathbf{Z}	С, Ү	C, Y
	a	a	b	b	c	c

A harmadik sor kitöltésekor 3 hosszúságú résszavakat vizsgálunk. Most nézzük meg, hogyan tölthetjük ki, a 3. sor 2. celláját! Ekkor tehát a 2. karaktertől kezdődő, 3 hosszúságú részszó levezethetőségét vizsgáljuk $(u_{2,4})$. A képletek alpján (k,j) és (i-k,j+k) cellákat kell figyelnünk, ahol $k \in [1..2]$. Ez azt jelenti, hogy a következő esetek lesznek:

• Ha k=1: (1,2) és (2,3) (zöld cellák), ekkor az (1,2) cellában lévő nemterminális levezeti $u_{2,2}$ -t (a 2. karaktert), a (2,3)-ban lévő pedig $u_{3,4}$ -et. Olyan szabályokat keresünk tehát, melynek jobboldala AV vagy XV, ilyet azonban nem találunk, úgyhogy egyelőre a (3,2) cella üresen marad.

• Ha k=2: (2,2) és (1,3) (sárga cellák), mivel (2,2) egy üres cella, biztosan nem lesz találtunk most sem.

A fenti két eset alapján a (3,2) cella üres marad.

	1	2	3	4	5	6
6						
5						
4						
3	Ø	Ø	Ø	Ø		
2	A, U	Ø	V	Ø	C, W	
1	A, X	A, X	Z	Z	С, Ү	С, Ү
	a	a	b	b	С	c

A többi sor kitöltése hasonlóan.

A (6,1) cella képviseli, az 1. karaktertől induló 6 hosszúságú részszót, ami maga az u szó. Mivel ebben a cellában végül megjelenik a startszimbólum $u \in L(G)$

3. feladat: Adott a 1. feladat CNF grammatikája és az (a + a) * a szó, szemléltessük a CYK algoritmus működését!

	1	2	3	4	5	6	7
7	S						
6	Ø	Ø					
5	S, A, B	Ø	Ø				
4	Ø	Z_3	Ø	Ø			
3	Ø	S	Ø	Ø	Ø		
2	Ø	Ø	Z_1	Z_3	Ø	Z_2	
1	X_3	S, A, B	X_1	S, A, B	X_4	X_2	S, A, B
	(a	+	a)	*	\mathbf{a}

2.1 CYK algoritmus - szintaxis fa

A CYK algoritmust szintaxis fa építésre is használhatjuk. Ehhez megszámozzuk a grammatika szabályait. Ha a mátrix (i, j) cellájában A nemterminális szerepel, amely az $A \to BC$ szabály baloldala, akkor mellé írjuk a szabály sorszámát, továbbá azt a k számot, amelyre B a mátrix j. oszlopának k. sorában, C pedig a (j + k). oszlop (i - k). sorában szerepel.

Az algoritmus futtatása után a mátrix (1,1) cellájából indulva az indexek segítségével rekurzívan lépkedve a szintaxis fa felépíthető. Amennyiben egy cellában több nemterminális található, úgy a fa többféleképp is felépíthető, a szó nem egyertéleműen áll elő a grammatikából.

Például a következő grammatika és az u = aaaab szó esetén:

Először lejátsszuk az algoritmust, kiegészítve a fentiekkel:

$$S \to AB^1$$

$$A \to AA^2 | a^3$$

$$B \to b^4$$

	1	2	3	4	5
5	$S^{4,1}$				
4	$A^{1,2}$	$S^{3,1}$			
3	$A^{1,2}$	$A^{1,2}$	$S^{2,1}$		
2	$A^{1,2}$	$A^{1,2}$	$A^{1,2}$	$S^{1,1}$	
1	$A^{0,3}$	$A^{0,3}$	$A^{0,3}$	$A^{0,3}$	$B^{0,4}$
	a	a	a	a	b

Induljunk ki az (5,1) cellából, itt azt láthatjuk, hogy az algorimtus futása során k=4 volt, továbbá az 1. szabályt alkalmaztuk $(S \to AB)$. Ez azt jelenti, hogy a fa gyökere nyílván S lesz, és ennek két gyereke A, valamint B. A kérdés az, hogy a két gyereket a mátrix mely celláiban keressük. Mivel tudjuk, hogy k=4 volt, ebből következik, hogy az első gyerek a mátrix (4,1) cellájában lesz, a második pedig (5-4=1,1+4=5) cellájában (zöld háttér) lesz. A fa építését ugyanígy ezeken a cellákon keresztül folytatjuk.

Az előálló szintaxisfa, a csúcsokat az adott nemterminális mátrixbeli pozíciója alapján (sor, oszlop) formában címkézzük.

