Aperçu de l'étude des nombres premiers

Bodart Corentin Jonathan Dauwe Azalais Davin Thomas Lemaire Robin Petit Alex Ternes

Université Libre de Bruxelles

4 mai 2016

Plan de la présentation

- 1 Existence d'une infinité de nombres premiers
- Nombres de Wilson
- Théorèmes de Fermat et Euler
- Nombres de Carmichaël
- Les racines primitives
 - Lemmes préliminaires et démonstrations
- Test de Lucas-Lehmer

Existence d'une infinité de nombres premiers

Euclide

Nombres de Wilson

les nbres de Wilson

Objectif

Prouver le théorème suivant grâce à la théorie des groupes :

Théorème (Petit théorème de Fermat (1640))

Soient $a, p \in \mathbb{Z}$ tels que p est premier et a n'est pas divisible par p. Alors $a^{p-1}-1$ est un multiple de p, c'est-à-dire :

$$a^{p-1} - 1 \equiv 0 \pmod{p}$$
.

Préliminaires à la preuve

Définition

Soient G un groupe et $a \in G$. L'ordre de a est :

- le plus petit $m \in \mathbb{N}^*$ tel que $a^m = e$, où e est le neutre de G;
- le cardinal du sous-groupe engendré par a, c-à-d : $\langle a \rangle := \{e = a^0, a^1, \dots, a^{m-1}\}.$

L'ordre de a est noté ord(a).

Théorème (Thorème de Lagrange)

Si G est un groupe fini et $H \subseteq G$ un sous-groupe, alors |H| divise |G|.

Rappel (Petit théorème de Fermat)

$$\forall a, p \in \mathbb{Z} : (p \text{ premier } \land p \not| a) \Rightarrow (a^{p-1} - 1 \equiv 0 \pmod{p})$$

Preuve du petit théorème de Fermat - partie 1/2

On considère le groupe $(\mathbb{Z}/p\mathbb{Z}^*,\cdot,1)$. En effet,

 $\mathbb{Z}/p\mathbb{Z}^* = \{[1], [2], \dots, [p-1]\}$ car p est premier.

Soit maintenant $[a] \in \mathbb{Z}/p\mathbb{Z}^*$. a n'est pas divisible par p car

 $[0] = [p] = [kp] \not\in \mathbb{Z}/p\mathbb{Z}^*$ pour $k \in \mathbb{Z}$.

Prenons $m := \operatorname{ord}([a])$. Alors on sait :

- $[a]^m = [1]$;
- $\bullet |\langle a \rangle| = m.$

Puisque $\langle a \rangle$ est un sous-groupe de $\mathbb{Z}/p\mathbb{Z}^*$, on sait par Lagrange que $m=\left|\langle a \rangle\right|$ divise $\left|\mathbb{Z}/p\mathbb{Z}^*\right|=p-1$.

Rappel (Petit théorème de Fermat)

 $\forall a, p \in \mathbb{Z} : (p \text{ premier } \land p \not | a) \Rightarrow (a^{p-1} - 1 \equiv 0 \pmod{p})$

Preuve du petit théorème de fermat - partie 2/2.

On sait m|p-1, que l'on peut réécrire comme suit :

$$\exists k \in \mathbb{N} \text{ t.q. } m \cdot k = p-1.$$

Finalement, on a:

$$\left[a^{p-1}\right] = [a]^{p-1} = [a]^{mk} = \left([a]^m\right)^k = [1]^k = [1].$$

On a effectivement $\left[a^{p-1}\right]=[1]$, ce qui signifie :

$$a^{p-1} \equiv 1 \pmod{p}$$
.

╧

Généralisation du petit théorème de Fermat

Théorème (Théorème d'Euler (1761))

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{N}$ tels que a, n soient premiers entre eux. Alors :

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Preuve.

La démonstration est assez similaire à celle du théorème de Fermat : on prend le groupe $(\mathbb{Z}/n\mathbb{Z}^*,\cdot,1)$ qui correspond aux classes d'entiers inversibles mod n et dont le cardinal vaut $\phi(n)$.

Nombres de Carmichaël

Carmichaël

Lemme 1

Lemme (1)

Soit n, un entier naturel. $\sum_{d|n} \varphi(d) = n$.

Preuve du lemme (1) - partie 1/2

On effectue un double comptage :

$$n = \# \{1, 2, \dots, n\} = \# \bigcup_{d \mid n} \{1 \le x \le n \mid \gcd(n, x) = d\}$$

$$= \sum_{d \mid n} \# \{1 \le x \le n \mid \gcd(n, x) = d\}$$

$$= \sum_{d \mid n} \# \left\{1 \le \frac{x}{d} \le \frac{n}{d} \mid \gcd\left(\frac{n}{d}, \frac{x}{d}\right) = 1\right\}$$

$$= \sum_{d \mid n} \varphi\left(\frac{n}{d}\right) = \sum_{d' \mid n} \varphi(d')$$

Preuve du lemme (1) - partie 2/2.

En effet,

- le plus grand diviseur commun de n et x est un diviseur de n;
- puisque gcd(n,x) est bien défini, ces ensembles sont disjoints ;
- $\gcd(n,x) = d \iff \gcd\left(\frac{n}{d}, \frac{x}{d}\right) = 1$;
- par définition, $\varphi(d) = \#\{1 \le x \le d \mid \gcd(d, x) = 1\}$;
- en prenant $d \cdot d' = n$.

Lemme 2

Lemme (2)

Soit p, un nombre premier et d, un diviseur de p-1. On prouve que

$$X^d - 1 = 0 \pmod{p}$$

a exactement d racines (distinctes) dans $\mathbb{Z}/p\mathbb{Z}$.

Preuve du lemme (2) - partie 1/2

On travaille sur le corps $\mathbb{Z}/p\mathbb{Z}$. On rappelle que

$$A \cdot B = 0 \iff A = 0 \lor B = 0.$$

De plus, par le théorème fondamental de l'algèbre, on sait qu'un polynôme de degré n a au plus n racines.

Par le Petit Théorème de Fermat, on sait que :

$$X^{p-1} - 1 = 0$$

a exactement p-1 racines (les résidus inversibles/premier avec p). De plus,

$$X^{p-1} - 1 = \left(X^d - 1\right) \cdot \left(X^{\frac{p-1}{d} \cdot (d-1)} + X^{\frac{p-1}{d} \cdot (d-2)} + \dots + X^{\frac{p-1}{d}} + 1\right).$$

Ainsi, pour tout $x \neq 0$,

$$p(x) = x^d - 1 = 0 \lor q(x) = x^{\frac{p-1}{d} \cdot (d-1)} + \dots + 1 = 0.$$

Preuve du lemme (2) - partie 2/2.

On a donc:

$$\begin{split} p-1 & \leq \#\{x \text{ t.q. } p(x)=0\} + \#\{x \text{ t.q. } q(x)=0\} \\ & \leq d + \frac{p-1}{d} \cdot (d-1) \\ & = p-1. \end{split}$$

Finalement, les inégalités sont des égalités : $\#\{x \text{ t.q. } p(x)=0\}=d$. On a donc exactement d solutions distinctes à l'équation $X^d-1=0$.

_

Théorème (Existence d'une racine primitive)

Soit p, un nombre premier. Alors il existe un élément g de $\mathbb{Z}/p\mathbb{Z}$ tel que l'ordre de g est égal à p-1 c'est-à-dire :

$$g^{p-1} - 1 \equiv 0 \land g^d - 1 \not\equiv 0 \quad \forall d \mid p - 1.$$

Preuve du théorème - partie 1/2

On démontre un résultat plus général : si $d \mid p-1$, il existe $\varphi(d)$ éléments de $\mathbb{Z}/p\mathbb{Z}$ dont l'ordre est égal à d. On résonne par « récurrence forte » sur les diviseurs de p-1.

 $\underline{\mbox{Initiation}:d=1}.$ On a bien $\varphi(1)=1$ élément d'ordre 1 :

$$x^1 - 1 \equiv 0 \iff x \equiv 1.$$

Récurrence : soit d, un diviseur de p-1. Supposons que le résultat soit vrai pour tout d' < d, diviseur de p-1.

Preuve du théorème - partie 2/2.

Par le second lemme, il existe d solutions à l'équation $X^d-1\equiv 0$. De plus, comme vu dans la preuve du théorème de Euler/Fermat, si $x^d-1\equiv 0$, alors l'ordre de x modulo p divise d. Ainsi :

$$d = \sum_{d' \mid d} (\text{nombre de solution d'ordre d'}) \,.$$

Par hypothèse de récurrence, le nombre de solutions d'ordre d' est égal à $\varphi(d')$ pour d' < d. Dès lors,

nombre de solutions d'ordre
$$\mathbf{d} = d - \sum_{d' \mid d \wedge d' < d} \varphi(d').$$

Enfin, puisque $\sum_{d'|d} \varphi(d') = d$, le nombre de solutions d'ordre d est bien $\varphi(d)$.

Finalement, en prenant d=p-1, on a bien $\varphi(p-1)\geq 1$ racines primitives dans $\mathbb{Z}/p\mathbb{Z}$.

Nombres de Mersenne

Définition

Un nombre de Mersenne (nommé selon Marin Mersenne, 16-17e siècle) est nombre sous la forme $M_n=2^n-1$.

Lemme

Soit $p \in \mathbb{N}^*$. Si p est divisible par $m \in \mathbb{N}$, alors le nombre de Mersenne M_m divise M_p .

Remarque

Ce lemme veut dire qu'il n'est pas nécessaire de tester la primalité de M_n pour n non premier car si n n'est pas premier, alors M_n ne l'est pas non plus. La réciproque n'est pas vraie. Exemple : p=11 est premier, or $M_p=2^{11}-1=2047=23\times 89$.

Preuve.

La preuve est uniquement calculatoire. Supposons qu'il existe $m,t\in\mathbb{N}\setminus\{1,p\}$ tels que p=mt. On a alors :

$$M_n = 2^n - 1 = 2^{mt} - 1 = (2^m)^t - 1 = \sum_{i=0}^{t-1} (2^m)^i = \sum_{i=1}^t \left(2^{mi} - 2^{m(i-1)}\right)$$
$$= 2^m \sum_{i=1}^t 2^{m(i-1)} - \sum_{i=1}^t 2^{m(i-1)}$$
$$= (2^m - 1) \sum_{i=1}^t 2^{m(i-1)} = M_m \sum_{i=1}^t 2^{m(i-1)}.$$

19/2

Teste Lucas-Lehmer

Le test de Lucas-Lehmer permet de déterminer si un nombre de Mersenne est premier ou non. Il est basé sur la suite naturelle :

$$\begin{cases} L_0 &= 4 \\ L_n &= (L_{n-1})^2 - 2 \text{ si } n \geq 1 \end{cases}$$

dont les premiers termes sont les suivants :

$$4, 14, 194, 37634, 1416317954, \dots$$

Théorème (Test de Lucas-Lehmer)

Soit $p \in \mathbb{N}^*$. M_p est premier si et seulement si M_p divise L_{p-2} .

Remarque

Le théorème est une double implication. Il faut donc montrer les deux pour démontrer le théorème. Nous ne montrerons ici pas le fait que si M_p est premier, alors M_p divise L_{p-2} .

Lemme (Lemme préliminaire)

Soit G un groupe. Soit $a \in G$ un élément. Alors $\operatorname{ord}(a) \leq |G|$.

Preuve - partie 1/3

Montrons que $L_{p-2}=kM_p\Rightarrow M_p$ premier. Une manière d'exprimer la divisibilité de L_{p-2} par M_p est de dire que $L_{p-2}\equiv 0 \pmod{M_p}$. Premièrement, on remarque que l'on peut exprimer la suite (L_n) définie récursivement comme une suite directe. Posons $\omega=2+\sqrt{3}, \bar{\omega}=2-\sqrt{3}$. On trouve dès lors $L_n=\omega^{2^n}+\bar{\omega}^{2^n}$. On suppose qu'il existe $k\in\mathbb{N}$ tel que :

$$L_{p-2} = \omega^{2^{p-2}} + \bar{\omega}^{2^{p-2}} = kM_p.$$

En multipliant par $\omega^{2^{p-2}}$ des deux côtés et en réarrangeant les termes, on obtient :

$$\left(\omega^{2^{p-2}}\right)^2\omega^{2^{p-1}} = kM_p\omega^{2^{p-2}} - \bar{\omega}^{2^{p-2}}\omega^{2^{p-2}} = 1.$$

Preuve - partie 2/3

Supposons par l'absurde que M_p est composite (n'est pas premier). On prend donc $2 < q < M_p$ le plus petit diviseur premier de M_p . On prend alors $\mathbb{Z}_q \coloneqq \mathbb{Z}/q\mathbb{Z}$ l'ensemble des entiers modulo q, et on pose :

$$X := \{a + b\sqrt{3} \text{ t.q. } a, b \in \mathbb{Z}_q\},\$$

οù

 $\forall x=(a+b\sqrt{3}), y=(c+d\sqrt{3})\in X: x\cdot y=(ac+3bd)+(ac+bd)\sqrt{3}.$ On pose $X^*=\{x\in X \text{ t.q. } \exists x^{-1}\in X\}$ le groupe des éléments de X admettant un inverse (preuve que X^* est un groupe est omise). On sait que $0\not\in X^*$, donc $|X^*|\leq |X|-1=q_*^2-1$.

De plus, on sait q>2, donc $\omega,\bar{\omega}\in X^*$. Également, $M_p\equiv 0 \pmod{q}$, donc, dans X, on a :

$$kM_p\omega^{2^{p-2}}=0.$$

Preuve - partie 3/3

On a vu que $\omega^{2^{p-1}}=kM_p\omega^{2^{p-2}}-1=0-1=-1$ dans X. En mettant au carré l'équation, on obtient :

$$\left(\omega^{2^{p-1}}\right)^2 = \omega^{2^p} = 1.$$

Dès lors, on sait que $\omega \in X^*$ et est d'un ordre qui divise 2^p . Or, $\operatorname{ord}(\omega)$ ne divise pas $\omega^{2^{p-1}}$. Donc $\operatorname{ord}(\omega) = 2^p$. Par le lemme préliminaire, on a :

$$2^p \le |X^*| \le q^2 - 1.$$

Et comme q est un diviseur de M_p , on a $q^2 \leq M_p = 2^-1$. On a alors $2^p \leq 2^p - 2$, ce qui est une contradiction. Notre hypothèse disant que M_p est composite est donc fausse. M_p est bien premier.