CHAPTER 2 ATOMS, MOLECULES, AND IONS

Dr. Yuan Dan

2.1 Atomic Theory of Matter

 all matter—whether element, compound, or mixture—is composed of small particles called atoms

Postulates of Dalton's Atomic Theory

1. All matter is composed of indivisible atoms. An atom is an extremely small particle of matter that retains its identity during chemical reactions.

2.1 Atomic Theory of Matter

Postulates of Dalton's Atomic Theory

- 2. An element is a type of matter composed of only one kind of atom, each atom of a given kind having the same properties. The atoms of a given element have a characteristic mass.
- 3. A compound is a type of matter composed of atoms of two or more elements chemically combined in fixed proportions. The relative numbers of any two kinds of atoms in a compound occur in simple ratios.

2.1 Atomic Theory of Matter

Postulates of Dalton's Atomic Theory

4. A chemical reaction consists of the rearrangement of the atoms present in the reacting substances to give new chemical combinations present in the substances formed by the reaction. Atoms are not created, destroyed, or broken into smaller particles by any chemical reaction.

2.2 The Structure of the Atom

The structure of the atom:

5

negatively charged

• Nuclear Structure atomic number (Z) = proton number

mass number (A) =proton number + neutron number

nuclide

Mass number
$$\longrightarrow$$
 ²³Na
Atomic number \longrightarrow ¹¹

 Element: a substance whose atoms all have the same atomic number

units of electron charge

TABLE 2.1		Properties of the Electron, Proton, and Neutron				
Particle	Mass (kg	g)	Charge (C)	Mass (amu)*	Charge (e)	
Electron Proton Neutron	1.6726	9×10^{-31} 2×10^{-27} 3×10^{-27}	-1.60218×10^{-19} $+1.60218 \times 10^{-19}$ 0	0.00055 1.00728 1.00866	-1 +1 0	

^{*}The atomic mass unit (amu) equals 1.66054×10^{-27} kg; it is defined in Section 2.4.

• Isotopes: atoms whose nuclei have the same atomic number but different mass

2.4 Atomic Masses

- atomic mass unit (amu): a mass unit equal to exactly one-twelfth the mass of a carbon-12 atom
- atomic mass: the average atomic mass for the naturally occurring element, expressed in atomic mass units

2.4 Atomic Masses

mass spectrometer

2.4 Atomic Masses

The mass spectrum of neon

fractional abundance:

the fraction of the total number of atoms that is composed of a particular isotope

P51 Example 2.2

Example 2.2

Determining Atomic Mass

Chromium, Cr, has the following isotopic masses and fractional abundances:

Mass Number	Isotopic Mass (amu)	Fractional Abundance
50	49.9461	0.0435
52	51.9405	0.8379
53	52.9407	0.0950
54	53.9389	0.0236

What is the atomic mass of chromium?

$$49.9461 \text{ amu} \times 0.0435 = 2.17 \text{ amu}$$

 $51.9405 \text{ amu} \times 0.8379 = 43.52 \text{ amu}$
 $52.9407 \text{ amu} \times 0.0950 = 5.03 \text{ amu}$
 $53.9389 \text{ amu} \times 0.0236 = 1.27 \text{ amu}$
 51.99 amu

The atomic mass of chromium is 51.99 amu.

 Periodic table: A tabular arrangement of elements in rows and columns, highlighting the regular repetition of properties of the elements

- Metal: a substance or mixture that has a characteristic luster, or shine, and is generally a good conductor of heat and electricity.
- Nonmetal: an element that does not exhibit the characteristics of a metal

 Metalloid, or semimetal: an element having both metallic and nonmetallic properties. *E.g.*, Si, Ge are good semiconductors.

- Periodic Table of the Elements
 - > H: hydrogen
 - > He: helium
 - > Li: lithium
 - ➤ B: boron
 - > C: carbon
 - ➤ N: nitrogen
 - ➤ O: oxygen
 - > F: fluorine

Na: sodium

Mg: magnesium

Al: aluminium

Cl: chlorine

K: potassium

Ca: calcium

Fe: iron

Au: gold

• Chemical formula: a notation that uses atomic symbols with numerical subscripts to convey the relative proportions of atoms of the different elements in the substance. *E.g.*, Al₂O₃.

- Molecular Substances
 - Molecule: a definite group of atoms that are chemically bonded together
 - Molecular formula: gives the exact number of different atoms of an element in a molecule

Molecular formula	Water H ₂ O	Ammonia NH ₃	Ethanol C ₂ H ₆ O
Structural formula	Н-О-Н	H–N–H 	H H H—C—C—O—H H H
Molecular model (ball-and- stick type)			

 Molecular models of some elementary substances

He, C_{60}

Ionic Substances

cation

NaCl Fe₂(SO₄)₃

P58 Example 2.3

Example 2.3

Writing an Ionic Formula, Given the Ions

- a. Chromium(III) oxide is used as a green paint pigment (Figure 2.22). It is a compound composed of Cr³⁺ and O²⁻ ions. What is the formula of chromium(III) oxide?
- b. Strontium oxide is a compound composed of Sr²⁺ and O²⁻ ions. Write the formula of this compound.

2.7 Organic Compounds

Must contain carbon and hydrogen

C₂H₆ Ethane

CH₃OH Methanol

Diethyl ether

C₃H₈ Propane

C₂H₂ Acetylene

Benzene

TABLE 2.2	Examples of	Examples of Organic Functional Groups			
Functional Group	Name of Functional Group	Example Molecule	Common Use		
—ОН	Alcohol	Methyl alcohol (CH ₃ OH)	Windshield washer		
-0-	Ether	Dimethyl ether (CH ₃ OCH ₃)	Solvent		
—СООН	Carboxylic acid	Acetic acid (CH ₃ COOH)	Acid in vinegar		

- Nomenclature: systematic naming
- Ionic compounds

Ionic compounds NaCl?

monoatomic cations: element name monoatomic anions: a stem name of the element followed by the suffix -ide

TABLE 2.3	Comn	Common Monatomic Ions of the Main-Group Elements*					
	IA	IIA	IIIA	IVA	VA	VIA	VIIA
Period 1							H^-
Period 2	Li ⁺	Be^{2+}	В	C	N^{3-}	O^{2-}	\mathbf{F}^{-}
Period 3	Na ⁺	Mg^{2+}	Al ³⁺	Si	P	S^{2-}	Cl ⁻
Period 4	K^+	Ca ²⁺	Ga ³⁺	Ge	As	Se ²⁻	Br^-
Period 5	Rb^+	Sr ²⁺	In ³⁺	Sn ²⁺	Sb	Te ²⁻	I ⁻
Period 6	Cs ⁺	Ba ²⁺	Tl^+, Tl^{3+}	Pb ²⁺	Bi ³⁺		

^{*}Elements shown in color do not normally form compounds having monatomic ions.

Ionic compounds

monoatomic cations: element name monoatomic anions: a stem name of the element followed by the suffix -ide

TABLE 2.4 Common Cations			of the Trans	sition Elements		
lon	Ion Name		lon	Ion Name	lon	Ion Name
Cr ³⁺	Chromiur	m(III) or chromic	Co ²⁺	Cobalt(II) or cobaltous	Zn^{2+}	Zinc
Mn ²⁺ Fe ²⁺	Mangane	se(H) or manganous	Ni ²⁺	Nickel(II) or nickel	Ag^+	Silver
Fe ²⁺	Iron(II) o	r ferrous	Cu ⁺	Copper(I) or cuprous	Cd^{2+}	Cadmium
Fe ³⁺	Iron(III)	or ferric	Cu ²⁺	Copper(II) or cupric	Hg ²⁺	Mercury(II) or mercuric

• Ionic compounds Potassium sulfate?

```
SO_3^{2-} sulfite ion SO_4^{2-} sulfate ion
```

NO₂ nitrite ion

NO₃ nitrate ion

• Ionic Compounds

TABLE 2.5 Some C	Common Polyatomic Ions		
Name	Formula	Name	Formula
Mercury(I) or mercurous	Hg_2^{2+}	Permanganate	$\mathrm{MnO_4}^-$
Ammonium	$\mathrm{NH_4}^+$	Nitrite	NO_2^-
Cyanide	CN ⁻	Nitrate	NO_3^-
Carbonate	CO ₃ ²⁻	Hydroxide	OH_
Hydrogen carbonate (or bicarl	bonate) HCO ₃ ⁻	Peroxide	O_2^{2-}
Acetate	${\rm C_2H_3O_2}^-$	Phosphate	PO_4^{3-}
Oxalate	C ₂ O ₄ ²⁻	Monohydrogen phosphate	HPO_4^{2-}
Hypochlorite	ClO ⁻	Dihydrogen phosphate	$\mathrm{H_2PO_4}^-$
Chlorite	ClO ₂	Sulfite	SO_3^{2-}
Chlorate	ClO ₃ ⁻	Sulfate	SO_4^{2-}
Perchlorate	ClO ₄	Hydrogen sulfite (or bisulfite)	HSO ₃
Chromate	CrO ₄ ²⁻	Hydrogen sulfate (or bisulfate)	HSO ₄
Dichromate	$\operatorname{Cr_2O_7}^{2-}$	Thiosulfate	$S_2O_3^{2-}$

P64 Example 2.4

chromium(II) sulfate

Name the following: a. Mg₃N₂, b. CrSO₄. magnesium nitride

Binary Molecular Compounds

Element B Si C Sb As P N H Te Se S I Br Cl O F Group IIIA IVA VA VIA VIIA

TABLE	TABLE 2.6				
Greek Prefixes for Naming Compounds					
Number	Prefix				
1	mono-				
2	di-				
3	tri-				
4	tetra-				
5	penta-				
6	hexa-				
7	hepta-				
8	octa-				
9	nona-				
10	deca-				

N₂O₃: dinitrogen trioxide

HCI: hydrogen chloride

CO: carbon monoxide

CO₂: carbon dioxide

P66 Example 2.6

tetraphosphorus hexoxide

Name the following compounds: a. N_2O_4 , b. P_4O_6 . dinitrogen tetroxide

- Acids and Corresponding Anions
- Oxoacid: an acid containing hydrogen, oxygen, and another element (often called the central atom)

```
Anion Suffix Acid Suffix
-ate -ic
-ite -ous
```

 Acids and Corresponding Anions (oxoacid)

Table 2.7

TABLE 2.7	Some Oxoanions and	Their Corresp	onding Oxoacids
Oxoanion		Oxoacid	
CO ₃ ²⁻	Carbonate ion	H_2CO_3	Carbonic acid
NO_2^-	Nitrite ion	HNO_2	Nitrous acid
NO_3^-	Nitrate ion	HNO_3	Nitric acid
PO ₄ ³⁻	Phosphate ion	H_3PO_4	Phosphoric acid
SO_3^{2-}	Sulfite ion	H_2SO_3	Sulfurous acid
SO ₄ ²⁻	Sulfate ion	H_2SO_4	Sulfuric acid
ClO ⁻	Hypochlorite ion	HClO	Hypochlorous acid
ClO ₂	Chlorite ion	HClO ₂	Chlorous acid
ClO ₃	Chlorate ion	HClO ₃	Chloric acid
ClO ₄	Perchlorate ion	HClO ₄	Perchloric acid

Acids and Corresponding Anions

 Hydrates: a compound that contains water molecules weakly bound in its crystals

Copper(II) sulfate
The hydrate CuSO₄·5H₂O is blue; the anhydrous compound, CuSO₄, is white.

2.9 Writing Chemical Equations

coefficient

a balanced equation

catalyst
$$2H_2O_2(aq) \xrightarrow{Pt} 2H_2O(l) + O_2(g)$$

2.10 Balancing Chemical Equations

$${
m CH_4}$$
 + $2{
m O_2}$ \longrightarrow ${
m CO_2}$ + $2{
m H_2O}$ one molecule + two molecules of methane of oxygen form of carbon dioxide of water

$$C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$$

P73 Example 2.12

Example 2.12

Balancing Simple Equations

Balance the following equations.

a.
$$H_3PO_3 \longrightarrow H_3PO_4 + PH_3$$

a.
$$H_3PO_3 \longrightarrow H_3PO_4 + PH_3$$
 b. $Ca + H_2O \longrightarrow Ca(OH)_2 + H_2$

c.
$$Fe_2(SO_4)_3 + NH_3 + H_2O \longrightarrow Fe(OH)_3 + (NH_4)_2SO_4$$

$$4H_3PO_3 \longrightarrow 3H_3PO_4 + PH_3$$

$$Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$$

$$Fe_2(SO_4)_3 + 6NH_3 + 6H_2O \longrightarrow 2Fe(OH)_3 + 3(NH_4)_2SO_4$$