Mes objectifs:

- → Je dois comprendre l'effet d'une translation, d'une symétrie (axiale et centrale), d'une rotation, d'une homothétie sur une figure,
- ← Je dois savoir mettre en œuvre ou écrire un protocole de construction d'une figure géométrique,
- → Je dois savoir utiliser un logiciel de géométrie dynamique, notamment pour transformer une figure par translation, symétrie, rotation, homothétie.

Activité d'introduction

→ Quels types de transformation connaissez-vous? Quelles sont les transformations présentes ci-dessous?

Fig<u>ure 1</u>:.....

I. Symétries, Translations et rotations

1. La symétrie axiale

<u>Définition</u>:

Par symétrie axiale, une figure et son symétrique se superposent par pliage le long de l'axe de symétrie.

2. La symétrie centrale

<u>Définition</u>:

Deux figures symétriques par symétrie centrale se superposent par un demi-tour autour du centre de symétrie.

3. La translation

<u>Définition</u>:

Par translation, une figure et sa translatée se superposent en glissant le long de la direction.

4 La rotation

<u>Définition</u>:

L'image d'un point E par la rotation de centre $\mathbf O$ et d'angle α est le point E' tel que :

Ci-contre, la figure F_1 et la figure F_2 , que l'on obtient après une rotation de centre et d'angle dans le sens direct, **sont superposables**.

Par convention, le « sens direct » en mathématique signifie « sens inverse des aiguilles d'une montre ». Remarque : Une symétrie centrale est une rotation particulière pour laquelle l'angle est

Activités sur les transformations

Exercice 1 Vrai ou faux.

Exercice 2

- 1. Construire en vert l'image du rectangle ABCD par la symétrie d'axe (AC).
- 2. Construire en noir l'image du rectangle ABCD par la symétrie de centre B.

(a) Le symétrique de N par rapport à Q est V.

- (b) Le symétrique de L par rapport à (MR) est Q.
- (c) L'image de H par la rotation de centre l et d'angle 45 ° dans le sens anti-horaire est C.
- (d) L'image de M par la translation qui transforme ${\sf Q}$ en P est L.
- (e) L'image de H par la rotation de centre B et d'angle 90 ° dans le sens horaire est J.
- (f) La translation qui transforme M en D transforme L en C.

Exercice 3

- 1. Tracer un triangle ABC.
- 2. Par la translation qui transforme A en B, placer le point D, image de B.
- 3. Par la translation qui transforme A en B, placer le point E qui a pour image A.
- 4. Placer le points F tel que C soit le milieu du segment [BF].
- 5. Placer le point G, image de A par la symétrie de centre C.
- 6. Quelle est l'image de F par la translation qui transforme A en B? Justifier.

Que peut-on en déduire pour les droites (AB) et (GF)?

7. Démontrer que les droites (BF) et (DG) sont parallèles.

Exercice 4

1. Tracer en rouge l'image de cette figure par la translation qui transforme A en B.

2. Tracer en bleu l'image de la figure par la rotation de centre O et d'angle 45° dans le sens inverse des aiguilles d'une montre.

Exemple 1 : k > 1

On veut transformer la figure F_1 par l'homothétie de rapport k=2.

Exemple 2 : 0 < k < 1

On veut transformer la figure J_1 par l'homothétie de rapport k=0.5.

Exemple 1: k = -1On veut transformer la figure F_1 par l'homothétie de rapport k = -1.

Exemple 2: k < 0On veut transformer la figure J_1 par l'homothétie de rapport k = -2.

