Algoritmos Numéricos por Computadora

COM - 14105

Temario

1. Introducción

- Modelado de sistemas dinámicos.
- 2. Truncamiento y redondeo
- 3. Raíces de funciones y optimización

2. Sistemas lineales

- 1. Valores y vectores propios
- 2. Eliminación de Gauss
- 3. Factorizaciones
- 4. Métodos iterativos
- 5. Sistemas no lineales

3. Ecuaciones diferenciales ordinarias

- 1. Interpolación e integración
- 2. Soluciones analíticas sencillas
- 3. Problemas con valor inicial
- 4. Sistemas de ecuaciones lineales de primer orden
- 5. ODE de orden superior
- 6. Métodos de paso variable, multipasos e implícitos
- Problemas con valores en la frontera
- 4. Ecuaciones diferenciales parciales (lineales de segundo orden)*

Bibliografía

Steven Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill, Fourth edition, 2018.

Cleve Moler, Numerical Computing with MATLAB, SIAM, 2008.

Actually, a person does not really understand something until he can teach it to a computer.

Donald Knuth

Simplicity is a great virtue, but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better.

Edsger Wybe Dijkstra

Temario

1. Introducción

- Modelado de sistemas dinámicos.
- 2. Truncamiento y redondeo
- 3. Raíces de funciones y optimización

2. Sistemas lineales

- 1. Valores y vectores propios
- 2. Eliminación de Gauss
- 3. Factorizaciones
- 4. Métodos iterativos
- 5. Sistemas no lineales

3. Ecuaciones diferenciales ordinarias

- 1. Interpolación e integración
- 2. Soluciones analíticas sencillas
- 3. Problemas con valor inicial
- 4. Sistemas de ecuaciones lineales de primer orden
- 5. ODE de orden superior
- 6. Métodos de paso variable, multipasos e implícitos
- Problemas con valores en la frontera
- 4. Ecuaciones diferenciales parciales (lineales de segundo orden)*

Modelado de sistemas dinámicos

1. Salto en bungee - caída libre

Modelado de sistemas dinámicos

2. Un satélite orbitando la Tierra

Modelado de sistemas dinámicos

3. Modelo SIR de epidemias

Montecarlo

https://blogs.sas.com/content/iml/2016/03/14/monte-carlo-estimates-of-pi.html

Temario

1. Introducción

- Modelado de sistemas dinámicos.
- 2. Truncamiento y redondeo
- 3. Raíces de funciones y optimización

2. Sistemas lineales

- 1. Valores y vectores propios
- 2. Eliminación de Gauss
- 3. Factorizaciones
- 4. Métodos iterativos
- 5. Sistemas no lineales

3. Ecuaciones diferenciales ordinarias

- 1. Interpolación e integración
- 2. Soluciones analíticas sencillas
- 3. Problemas con valor inicial
- 4. Sistemas de ecuaciones lineales de primer orden
- 5. ODE de orden superior
- 6. Métodos de paso variable, multipasos e implícitos
- Problemas con valores en la frontera
- 4. Ecuaciones diferenciales parciales (lineales de segundo orden)*

Redondeo

Double-precision floating-point numbers ANSI/IEEE Standard 754

¿-173 en binario?

¿Números decimales?

Punto flotante

Normalización

Ejemplo

Base-10 floating-point computer with 5-digit word size $s_1d_1d_2 \times 10^{s0d0}$

IEEE double-precision format

1 2 3 12 13 6

$$x = \pm (1+f) \cdot 2^e$$

$$0 \le f < 1$$

$$f = (integer < 2^{52})/2^{52}$$

$$-1022 \le e \le 1023$$

$$e = be - 1023$$

Finite *f* implies finite *precision*.

Finite e implies finite range

Floating point numbers have discrete spacing, a maximum and a minimum.

Name	Binary	Decimal
eps	2^(-52)	2.2204e-16
realmin	2^(-1022)	2.2251e-308
realmax	(2-eps)*2^1023	1.7977e+308

Temario

1. Introducción

- Modelado de sistemas dinámicos.
- 2. Redondeo y truncamiento
- 3. Raíces de funciones y optimización

2. Sistemas lineales

- 1. Valores y vectores propios
- 2. Eliminación de Gauss
- 3. Factorizaciones
- 4. Métodos iterativos
- 5. Sistemas no lineales

3. Ecuaciones diferenciales ordinarias

- 1. Interpolación e integración
- 2. Soluciones analíticas sencillas
- 3. Problemas con valor inicial
- 4. Sistemas de ecuaciones lineales de primer orden
- 5. ODE de orden superior
- 6. Métodos de paso variable, multipasos e implícitos
- Problemas con valores en la frontera
- 4. Ecuaciones diferenciales parciales (lineales de segundo orden)*

Raíces y optimización

Raíces:

Métodos cerrados: bisección, interpolación lineal

Métodos abiertos: Newton-Raphson, secante

Bisección

Convergencia lineal

Rapidez de convergencia

La sucesión p_n converge a p con orden α y una constante de error asintótica λ si

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda.$$

Interpolación lineal

(falsa posición)

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Interpolación lineal

(falsa posición)

Estructuras algorítmicas de control iterativas

Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Newton-Raphson

(raíz cuadrada de M)

$$f(x) = x^2 - M$$

$$x_{n+1} = x_n - \frac{x_n^2 - M}{2x_n}$$
$$= \frac{1}{2} \left(x_n + \frac{M}{x_n} \right)$$

Divide y promedia

Newton-Raphson (convergencia cuadrática)

$$f(x_r) = f(x_n) + f'(x_n)(x_r - x_n) + \frac{f''(\xi)}{2}(x_r - x_n)^2 = 0$$

$$e_{n+1} = -\frac{1}{2} \frac{f''(\xi)}{f'(x_n)} e_n^2$$

$$e_{n+1} = O(e_n^2)$$

Secante

La derivada se aproxima con una diferencia finita hacia atrás:

$$s_n = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
 $x_{n+1} = x_n - \frac{f(x_n)}{s_n}$

Problema

6.22 You are designing a spherical tank (Fig. P6.22) to hold water for a small village in a developing country. The volume of liquid it can hold can be computed as

$$V = \pi h^2 \frac{[3R - h]}{3}$$

where $V = \text{volume } [m^3]$, h = depth of water in tank [m], and R = the tank radius [m].

FIGURE P6.22

If R=3 m, what depth must the tank be filled to so that it holds 30 m³? Use three iterations of the most efficient numerical method possible to determine your answer. Determine the approximate relative error after each iteration. Also, provide justification for your choice of method. Extra information: (a) For bracketing methods, initial guesses of 0 and R will bracket a single root for this example. (b) For open methods, an initial guess of R will always converge.

Diferenciación numérica

First Derivative
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \qquad O(h^2)$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h} \qquad O(h^4)$$
Second Derivative
$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} \qquad O(h^2)$$

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2} \qquad O(h^4)$$
Third Derivative
$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3} \qquad O(h^2)$$

$$f''''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3} \qquad O(h^4)$$
Fourth Derivative
$$f''''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 3f(x_{i+1}) + 5f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{h^4} \qquad O(h^2)$$

$$f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4} \qquad O(h^2)$$

Raíces y optimización

Optimización:

Proporción áurea (golden ratio) Interpolación parabólica

Proporción áurea

$$\frac{l_1 + l_2}{l_1} = \frac{l_1}{l_2} = \varphi$$

$$l_1 = (\varphi - 1)(l_1 + l_2)$$

$$d = (\emptyset - 1)(x_u - x_l)$$

$$d = g(x_u - x_l)$$

$$x_1 = x_l + d$$
$$x_2 = x_u - d$$

$$d_{i+1} = g di$$

$$x_1 < x_2 < x_1 < x_u$$

Problema

Elevación de un objeto proyectado inicialmente hacia arriba con una velocidad inicial (resistencia lineal)

$$z = z_0 + \frac{m}{c} \left(v_0 + \frac{mg}{c} \right) \left(1 - e^{-(c/m)t} \right) - \frac{mg}{c} t$$

$$g = 9.81 \text{ m/s}^2$$

 $z_0 = 100 \text{ m}$
 $v_0 = 55 \text{ m/s}$
 $m = 80 \text{ kg}$
 $c = 15 \text{ kg/s}$

Visor de bombardeo

https://en.wikipedia.org/wiki/Bombsight

Interpolación parabólica (sucesiva)

$$x = \frac{r+s}{2} - \frac{(f(s)-f(r))(t-r)(t-s)}{2[(s-r)(f(t)-f(s))-(f(s)-f(r))(t-s)]}$$

Interpolación

Piecewise linear interpolation

Full degree polynomial interpolation

Lagrange

$$P_n(x_k) = y_k, \ k = 1, \dots, n$$

$$P_n(x) = \sum_{k} \left(\prod_{j \neq k} \frac{x - x_j}{x_k - x_j} \right) y_k$$

$$P_2(x) = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

Interpolación

Newton

Diferencias divididas

$$P_2(x) = f[x_1] + f[x_1 \ x_2](x - x_1) + f[x_1 \ x_2 \ x_3](x - x_1)(x - x_2)$$

$$x_1$$
 | $f[x_1]$ | $f[x_1 | x_2]$ | x_2 | $f[x_2]$ | $f[x_2 | x_3]$ | $f[x_2 | x_3]$ | $f[x_3]$

$$f[x_k] = f(x_k)$$

$$f[x_k \ x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$$

$$f[x_k \ x_{k+1} \ x_{k+2}] = \frac{f[x_{k+1} \ x_{k+2}] - f[x_k \ x_{k+1}]}{x_{k+2} - x_k}$$

Interpolación

 $P_2(x)$?