### **XGBoost: A Scalable Tree Boosting System**

by Tianqi Chen and Carlos Guestrin, presented by Scott Sievert and Zhenyu Zhang

2016-11-15, ECE 901, UW-Madison

#### **Boosted trees**



Figure 1: A boosted tree

- Can be used for regression and prediction with different losses
- Invariant to feature scaling
- Scales well as number of examples and feature dimension grow
- ► Performs well in practice (in 17/29 winning Kaggle solutions and in industry)

#### **Boosted trees**

 Given k decision trees evaluated on example i, the estimate of yi is

$$\widehat{y}_i = \phi(\mathbf{x}_i) = \sum_{k=1}^K f_k(\mathbf{x}_i)$$

where  $f_k$  is an independent tree structure with T leaves and weights w.  $\mathbf{x}_i$  is one feature vector.

- ► One possible  $f_k$  would be  $f_k(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x}_{i,0} > 5 \\ 0 & \text{o.w.} \end{cases}$ .
- ▶ In this, there are T = 2 leaves and the leaf weights  $\mathbf{w} = [1, 0]^T$ .

### **Optimization**

We have elements to optimize over; we want to minimize the error  $\ell$  for each example and the complexity of each tree with  $\Omega(f_k)$ 

$$\mathcal{L}(\phi) = \sum_{i} \ell(\widehat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{k})$$
  
where  $\Omega(f) = \gamma T + \frac{\lambda}{2} \left\| w \right\|^{2}$ 

- $\blacktriangleright$   $\ell$  is differentiable convex loss function
- $ightharpoonup \Omega$  measures the number of leaves  $\mathcal T$  and the L2 norm of the weights w for each tree
- $ightharpoonup \gamma$  and  $\lambda$  are two regularization parameters

We can use other techniques (shrinkage method and feature subsampling) to prevent overfitting (Breiman 2001, Friedman 2002)

#### **Global minimization**

This is a challenging optimization problem.

- ▶ We are minimizing over *function* values, not parameters. Each function we're regularizing over has parameters associated with it.
- ▶ To find a global optimum, we have to list all possible trees.
  - Given discrete data this scales poorly
  - Given continuous data this is consuming to calculate even for small n

#### **Local minimization**

On the t-th iteration, we want to find the tree that minimizes the losses and has a low complexity.

Formally, at iteration t we want to minimize

$$\mathcal{L}^{(t)} = \sum_{i} \ell(\mathbf{y}_{i}, \widehat{\mathbf{y}}_{i}^{t-1} + f_{t}(\mathbf{x}_{i})) + \Omega(f_{t})$$

This is a greedy approach; it will converge to a local minima.

# **Expanding** $\mathcal{L}$

When we define

$$h_i = \partial_{\widehat{y}_i^{t-1}}^2 \ell(y_i, \widehat{y}^{t-1}) \in \mathbb{R}$$

we can use Taylor's thm to expand  ${\mathcal L}$  as

$$\mathcal{L}^{(t)} = \sum_{i} \ell(y_i, \widehat{y}_i^{t-1} + f_t(\mathbf{x}_i)) + \Omega(f_t)$$

$$\approx \left(\sum_{i} \ell(y_i, \widehat{y}_i^{t-1}) + g_i f_t(\mathbf{x}_i) + \frac{1}{2} h_i f_t^2(\mathbf{x}_i)\right) + \gamma T + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

If we remove the constant terms  $\ell(y_i, \hat{y}_i)$ , we can say that

$$\mathcal{L}^{(t)} = \left(\sum_{i} g_{i} f_{t}(\mathbf{x}_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(\mathbf{x}_{i})\right) + \gamma T + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

# **Expanding** $\mathcal{L}$

- If we define  $I_j$  as the examples that "fall" to leaf j with  $I_j = \{i \mid q(\mathbf{x}_i) = j\}.$
- ▶ Using this we can write  $f_t(\mathbf{x}_i) = \sum_{k \in I_j} w_k$  because one example may fall to different leaves

Then we can rewrite the loss as

$$\mathcal{L}^{t-1} = \left(\sum_{i} g_{i} f_{t}(\mathbf{x}_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(\mathbf{x}_{i})\right) + \gamma T + \frac{\lambda}{2} \sum_{j} w_{j}^{2}$$

$$= \left(\sum_{j=1}^{T} \left(\sum_{i \in I_{j}} g_{i}\right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda\right) w_{j}^{2}\right) + \gamma T$$

## **Optimal values for given tree structure**

When  $x \in \mathbb{R}$ ,  $\operatorname{argmin}_x Gx + \frac{1}{2}Hx^2 = -\frac{G}{H}$  when H > 0. We can use this fact when defining

- $G_j = \sum_{i \in I_j} g_i$   $H_j = \sum_{i \in I_i} h_i$

Then given a fixed tree structure  $q(\mathbf{x})$ , we can compute the optimal weight  $w_i^*$  for leaf j by

$$w_j^{\star} = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda}$$

Then the loss on this structure q is given by

$$\mathcal{L}^{t}(q) = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{i \in I_{j}} g_{i}\right)^{2}}{\sum_{i \in I_{j}} h_{i} + \lambda} + \gamma T$$

## **Splitting**

- We can only find the optimal weights for a given tree structure and can't compute all possible tree structures.
- Instead we start with one seed leaf and evaluate the cost of splitting that leaf into two leaves.
- ▶ If we denote the instances sets that are effected by the binary decision of splitting as  $I_L$  and  $I_R$  for left and right respectively, we can say that

$$\mathcal{L}_{\mathsf{split}} = \frac{1}{2} \left( \frac{(\sum_{i \in I_L} g_i)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{(\sum_{i \in I_R} g_i)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{(\sum_{i \in I} g_i)^2}{\sum_{i \in I} + \lambda} \right) - \gamma$$

# **Split finding**

- ▶ Now we go over split finding given a set of starting leaves, how can we find the best leave to make a decision at?
- ▶ There are an exact and approximate algorithm for this.
- ► The exact algorithm is used by many ML packages (scikit-learn, R's gdm). This isn't too bad with a discrete set of features.
- However very computationally inefficient when using these boosted trees with continuous features or the dataset doesn't fit into memory.

## Approximate algorithm

#### Main idea:

- 1. Propose candidate splitting points based on the distribution of the features
- 2. Map these continuous features into buckets
- Aggregate the statistics and find the best solution based on the aggregated statistics

There are two variants of this, either "global" or "local".

- The global method is less refined (and hence needs to generate more split candidates).
- ► The local proposal refines the candidates after each split/level (which may be appropriate for deeper trees).

### **Proposing split candidates**

- We'd like to split candidates to distribute evenly on the data: given any split, we want to have about half the examples go to each side.
- ▶ Formally, if we have a set of features k for example i as  $\mathbf{x}_{ik} \in \mathbb{R}$  and second-order gradients as  $h_i \in \mathbb{R}$ , then the rank function  $r_k : \mathbb{R} \to [0, \infty)$

$$r_k(z) = \frac{1}{\sum_i h} \sum_{i=0, \mathbf{x}_{ik} < z}^n h_i$$

► The rank function is scaled by the second gradients *h* because the loss can be rewritten as

$$\mathcal{L}^t = rac{1}{2} \sum_i h_i (f_t(\mathbf{x}_i) - g_i/h_i)^2 + \Omega(f_t)$$

which means that as  $h_i$  gets larger the loss also gets larger.

### Rank function objective

For some  $\epsilon$ , we want to find a set of splitting points  $\{s_{k,1},s_{k,2},\ldots,s_{k,l}\}$  such that

$$|r_k(s_{k,j})-r_k(s_{k,j+1})|<\epsilon$$

where  $s_{k,i} \in [\min_i \mathbf{x}_{i,k}, \max_i \mathbf{x}_{i,k}]$  and the  $s_{k,i}$ 's are ordered.

- ▶ We want bins  $s_{k,i}$  and  $s_{k,i+1}$  to have approximately the same number of items in them
- ▶ This means there are approximately  $1/\epsilon$  buckets to bin the continuous features into.

## Rank function objective

For some  $\epsilon$ , we want to find a set of splitting points  $\{s_{k,1},s_{k,2},\ldots,s_{k,l}\}$  such that

$$|r_k(s_{k,j})-r_k(s_{k,j+1})|<\epsilon$$

where  $s_{k,i} \in [\min_i \mathbf{x}_{i,k}, \max_i \mathbf{x}_{i,k}]$  and the  $s_{k,i}$ 's are ordered.

- ▶ We want bins  $s_{k,i}$  and  $s_{k,i+1}$  to have approximately the same number of items in them
- ▶ This means there are approximately  $1/\epsilon$  buckets to bin the continuous features into.

### Sparsity aware splits

- ► This ranking can be sparsity aware: they define default directions when a feature isn't present.
- They choose default directions by training the model with different candidate directions and choosing then one with the highest empirical accuracy

14

### Solving this ranking problem

- ► They want *approximate* answer to "quantile" questions (e.g., "what are the best *k* items in the list?")
- ► They solve this problem with a weighted quantile sketch with provable theoretic guarantees.
- ► This relies on a data structure that supports the "merge" and "prune" operations. In the appendix they show that
  - A merge operation that combines two summaries with approximation error  $\epsilon_1$  and  $\epsilon_2$  together to create a merged summary with approximation error max  $\{\epsilon_1, \epsilon_2\}$
  - A prune operation that reduces the number of elements in the summary to b+1 and changes the approximation error  $\epsilon$  to  $\epsilon+\frac{1}{b}$
- ▶ They show the data structure they propose has the same bounds as existing work (Zhang 2007), allowing it to be used as a modular block

## System design

- ► This ranking problem involves binning the features into different buckets based on magnitude.
- ▶ If done without any optimization, this involves sorting the features every time
- ... but we could also sort the features once and then do a binary search
- ▶ Binary searching n elements happens in  $\mathcal{O}(\log n)$  time and the initial sorting only has to be done once

#### Which means that

The most time consuming part of tree learning is to get the data into sorted order

### **Column Block for Parallel Learning**

- In order to reduce the time of sorting, data is stored in in-memory units.
- ▶ d is the maximum depth of the tree and K be the total number of trees.
- ▶ n examples and  $||x||_0$  represents the number of non-missing enteries in the data
- ▶ Original time complexity is  $\mathcal{O}(Kd \|x\|_0 \log n)$
- ▶ Tree boosting on the block structure cost  $\mathcal{O}(\|x\|_0 (Kd + \log n))$  (sorting can parallelized)

#### **Cache-aware Access**

- Allocate an internal buffer in each thread, fetch gradient, then accumulate in a mini-batch manner.
- ▶ Balance the cache property and parallelization



(b) Higgs 10M

#### **Blocks**

Utilize disk space to handle data that does not fit into main memory.

#### **Block Compression**

- The block is compressed by columns.
- Subtract the row index by the beginning index of the block and use 16bit int to store each offset.

#### **Block Sharding**

- Shard the data onto multiple disks.
- One thread is assigned to each disk and fetch data into an in-memory buffer.
- ► The training thread alternatively reads the data from each buffer.

### **Evaluation**

XGBoost is fast. A task is to classify whether an event correspond to Higgs boson

Table 3: Comparison of Exact Greedy Methods with 500 trees on Higgs-1M data.

| Method                  | Time per Tree (sec) | Test AUC |
|-------------------------|---------------------|----------|
| XGBoost                 | 0.6841              | 0.8304   |
| XGBoost (colsample=0.5) | 0.6401              | 0.8245   |
| scikit-learn            | 28.51               | 0.8302   |
| R.gbm                   | 1.032               | 0.6224   |

Figure 3:

#### **Evaluation**

XGBoost is Scalable. Criteo terabyte click log dataset (1.7 billion) is used in distributed settings to evaluate the scaling property.





Figure 13: Scaling of XGBoost with different number of machines on criteo full 1.7 billion dataset.

### **Summary**

- 1. They have a global optimization problem
- 2. This is difficult so they only consider converging to a local minimum
- 3. At each iteration they only consider splitting a leaf instead of adding the true minimizing leaf
- Exact splitting is still computationally difficult so they consider approximate splitting
- 5. This is still a challenging problem that requires system design.

#### References

- (Zhang 2007): Zhang, Qi, and Wei Wang. "A fast algorithm for approximate quantiles in high speed data streams." Scientific and Statistical Database Management, 2007. SSBDM'07, 2007.
- ▶ (Breiman 2001): Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.
- (Friedman 2002): Friedman, Jerome H. "Stochastic gradient boosting." Computational Statistics & Data Analysis 38.4 (2002): 367-378.