Ingeniería de Software – Sesión 13 - Calidad de Software

Calidad de Software

Ingeniería de Software

Hernán Astudillo & Cristian Orellana Departamento de Informática Universidad Técnica Federico Santa María

Aseguramiento de Calidad de Software Aseguramiento de Calidad de Software S

- Objetivo de Ingeniería de Software
 - Producir consistentemente software de calidad
- Calidad engloba todo el proceso, y está determinada por factores directos e indirectos
- Calidad
 - Concepto complejo y multifacético
 - Diversas perspectivas

Visiones de Calidad

- Visión trascendental
 - puede ser reconocida pero no definida
- Visión del usuario
 - grado de adecuación al propósito
- Visión del productor
 - conformidad con la especificación
- Visión del producto
 - ligada a características inherentes del mismo
- Visión basada en valor
 - ¿cuánto el cliente está dispuesto a pagar?

Modelos de calidad de software

- Modelo de calidad
 - taxonomía de atributos de calidad y sus relaciones
- Atributo de calidad
 - caracterización específica o propiedad de un proceso o producto
 - puede ser medido u observado
 - incluyen las tradicionalmente llamadas "ilities"
 - Cada atributo de calidad puede tener varias métricas
- Cada métrica define
 - una medida o escala (cuantitativa o cualitativa)
 - un método o técnica para observar o medir el atributo

Modelo de calidad – nota • Métricas internas

- - Medición de atributos del software por sí mismo
 - Aplicadas durante la construcción del sistema
 - Ej: desempeño de un subsistema, complejidad del código, tamaño

Métricas externas

- Medición de atributos visibles externamente
- Requieren evaluar al software en su contexto
 - Aplicadas a un producto de software en ejecución
- Ej: funcionalidad, confiabilidad, desempeño

Métricas comunes

- Tamaño
 - de módulos, del diseño mismo, del código
- Complejidad
- Modularidad
 - Cohesión

Modelo de Calidad de McCall

Modelo de Calidad de McCall

Traceability Completeness Consistency Accuracy **Error tolerance** Correctness **Execution efficiency** Storage efficiency Reliability **Access control Efficiency** Access audit **Operability** Integrity **Training** Communicativeness **Usability** Simplicity **Maintainability** Conciseness Instrumentation **Testability** Self-descriptiveness **Expandability Flexibility** Generality **Portability Modularity** Software system independence Reusability Machine independence **Interoperability Communications** commonality **Data commonality**

UTFSM – DI – 2017

Modelo de Calidad de Boehm

ISO 9126 (1991 & 2001)

ISO 9126 (1991 & 2001)

- 6 Características
 - p.ej. "portabilidad"
- 22 Sub-características
 - p.ej. "adaptabilidad"
- Atributos
 - entidad que se puede verificar o medir en producto de software
 - no definidos por el estándar: dependen del producto
 - p.ej. "plataformas"

ISO 25010 (2011)

- 8 Características
- 31 Sub-características

ISO 25010

- Sub-característica Conformidad ("conformance")
 - se aplica a todas las características
 - P.ej. conformidad a la legislación referente a usabilidad y fiabilidad

Atributos de Calidad (Microsoft)

- Availability
- Conceptual Integrity
- Interoperability
- Maintainability
- Manageability
- Performance
- Reliability

- Reusability
- Scalability
- Security
- Supportability
- Testability
- User Experience / Usability

Problema: ¡A nadie le importa!

- A nadie le importa confiabilidad, eficiencia, portabilidad y mantenibilidad
 - A nadie le importan TODOS ellos
- Las personas (stakeholders, lectores) sólo se preocupan de algunas categorías
 - Tendría más sentido definir calidad basada en el lector

Ingeniería de Software – Sesión 13 - Calidad de Software

Ejercicio

Modelo de calidad para SIGA

Modelo de Calidad "5 nivel (Functionality)

Ingeniería de Software – Sesión 13 - Calidad de Software

Atributos de calidad en la práctica

- [Tumyrkin et al., 2016]
- Diseño experimental-> Encuesta a profesionales
- Encuesta compuesta por 19 preguntas
- 103 personas de 37 países respondieron la encuesta

Atributos de calidad en la práctica

 Nivel de satisfacción de los clientes en sus proyectos de software en función de atributos de calidad

Atributos de calidad en la práctica

 Nivel de satisfacción de los clientes con respecto a atributos de calidad para diferentes tipos de industrias

Aseguramiento de Calidad de Software

Aseguramiento de Calidad de Software Aseguramiento de Calidad de Software Software Software Software

- Software Quality Assurance (SQA)
 - Acciones sistemáticas y planificadas requeridas para asegurar la calidad de software
- Grupo de SQA
 - Objetivos: planificar, desarrollar y controlar el proceso de verificación y validación
 - Actividades: aplicación de métodos, revisiones e inspecciones, testing, estándares, control de cambios, mediciones, registro

Verificación y Validación

- Verificación -- ¿estamos construyendo el producto correctamente?
- Validación -- ¿estamos construyendo el producto correcto?

Revisiones de Software [1/3]

- Idea clave: someter a chequeo uno o más productos de trabajo
 - Actúan como filtro
- Descubrimiento temprano de defectos
 - Gran impacto en los costos de testing y mantención
 - Defectos de software tienen efecto de amplificación
 - Permiten evitar "microcascadas"
- Tres tipos (D. Galin):
 - Revisiones formales de diseño
 - Formal: sólo producto de trabajo aprobado puede continuar a siguientes fases o tareas del desarrollo
 - Revisiones por pares
 - Inspecciones
 - Caminatas de código/texto
 - Revisiones por expertos UTFSM DI 2017

Revisiones de Software [2/3]

- Objetivos
 - Detectar errores en la lógica, función o implementación
 - Verificar satisfacción de requerimientos
 - Asegurar cumplimiento de estándares
 - Fomentar uniformidad
 - Hacer proyectos más manejables
- Herramientas relacionadas
 - Issue trackers (ej: Jira, Mantis Bug Tracker, Taiga,...)
 - Code reviewers (ej: Upsource,...)
 - Discusión colaborativa (ej: Confluence, Taiga...)

Revisiones de Software [3/3]

- Guía de Acción
 - Definir tamaño, conformación y duración
 - Revisar producto, no productor
 - Establecer agenda
 - Limitar debates y rebates
 - Enunciar problemas, no resolverlos

- Llevar registro
- Limitar tamaño del grupo
- Exigir preparación previa
- Definir checklists
- Asignar recursos
- Entrenar a los revisores
- Revisar las revisiones

Inspecciones Fagan

- Desarrolladas en 1972, por Michael Fagan
- Beneficios: prevención y reducción de defectos, y por ende de costos
- Proceso de inspección en 6 etapas

Inspecciones Fagan

Etapas

- Planeación: preparación logística (materiales, disponibilidades, fechas)
- Overview: conocimiento general, asignación de roles (autor, lector, tester, moderador)
- Preparación: estudio del material a ser inspeccionado
- Inspección: búsqueda de defectos
- Retrabajo: hacer las correcciones
- Iteración: verificación de lo realizado, y de la no introducción de efectos secundarios

Otras formas de revisión

- Talleres de patrones de diseño
- Lectura dirigida de casos de uso

Ingeniería de Software – Sesión 13 - Calidad de Software

Calidad de Software

Ingeniería de Software

Hernán Astudillo & Cristian Orellana Departamento de Informática Universidad Técnica Federico Santa María