## 7РЯП 6

## Ковалев Алексей

1. S = abcbc



| V | len(V) | link(V) |
|---|--------|---------|
| 0 | 0      | _       |

1: last = 0



| V | len(V) | link(V) |
|---|--------|---------|
| 0 | 0      | _       |
| 1 | 1      | 0       |

2: last = 1



| V | len(V) | link(V) |
|---|--------|---------|
| 0 | 0      | -       |
| 1 | 1      | 0       |
| 2 | 2      | 0       |

$$3: last = 2$$



| V | len(V) | link(V) |
|---|--------|---------|
| 0 | 0      | -       |
| 1 | 1      | 0       |
| 2 | 2      | 0       |
| 3 | 3      | 0       |

4: last = 3



| V | len(V) | link(V) |
|---|--------|---------|
| 0 | 0      | -       |
| 1 | 1      | 0       |
| 2 | 2      | 5       |
| 3 | 3      | 0       |
| 4 | 4      | 5       |
| 5 | 1      | 0       |

 $5{:}\; last = 4$ 



| V      | len(V) | link(V) |
|--------|--------|---------|
| 0      | 0      | -       |
| 1      | 1      | 0       |
| 2      | 2      | 5       |
| 2<br>3 | 3      | 7       |
| 4      | 4      | 5       |
| 5      | 1      | 0       |
| 6      | 5      | 7       |
| 7      | 2      | 0       |

6: last = 6

Отмечаем финальные состояния и окончательно получаем суффиксный автомат для S:



- **2.** Чтобы проверить, что w является подсловом S, достаточно проеврить, что это слово прочитывается суффиксным автоматом, то есть существует последовательность конфигураций  $(q_0, w) \vdash \ldots \vdash (q, \varepsilon)$ . Таким образом:
  - aba не является подсловом S
  - bc является подсловом S, так как  $(0, bc) \vdash (5, c) \vdash (7, \varepsilon)$
  - bcb является подсловом S, так как  $(0,\,bcb) \vdash (5,\,cb) \vdash (7,\,b) \vdash (4,\,\varepsilon)$
  - ullet abca не является подсловом S

**3.** Нет, неверно. Рассмотрим  $X = L(a^*)$  и  $Y = \Sigma^* \setminus X$ . Тогда

$$C(X) = \{X, \Sigma^* \setminus X\}$$

так как  $\forall u, v \in X$ ;  $\forall w \in \Sigma^*$  выполняется  $uw \in X$ ,  $vw \in X$ , если  $w \in X$ , и  $uw \notin X$ ,  $vw \notin X$ , если  $w \notin X$ . Также  $\forall u, v \notin X$ ;  $w \in \Sigma^*$  выполняется  $uw \notin X$ ,  $vw \notin X$ , то есть классы эквивалентности – сам язык и дополнение к нему. Аналогично

$$C(Y) = \{X, \Sigma^* \setminus X\}$$

Тогда

$$\{A \cap B : A \in C(X), B \in C(Y)\} \setminus \{\emptyset\} = \{X, \Sigma^* \setminus X\} = C(X) = C(Y)$$

При этом  $X \cap Y = \emptyset$ , а  $C(X \cap Y) = \{\Sigma^*\} \neq \{X, \Sigma^* \setminus X\} = \{A \cap B : A \in C(X), B \in C(Y)\} \setminus \{\emptyset\}$ . Ответ: неверно.