Risk and Portfolio Management Spring 2011

Econometric models & stochastic processes for prices, volatilities, spreads...

Number of factors explaining 55% of the variance versus VIX volatility index (2002-2008)

Number of EVs versus VIX (1/2006-2/2010)

Dynamics are important

The previous slides show that the structure of the market is far from static.

This is obvious if we consider innovations in the market (new issues, new industries, the economic cycle, bubbles).

Equilibrium theories (e.g. APT, CAPM) are insufficient to explain prices, volatilities and correlations of financial assets.

Hence the need to model the evolution of financial variables using stochastic processes based on time-series analysis.

What can time-series analysis do for us?

- -- Understand serial correlations in the data
- -- Construct predictive models over suitable time-windows.
- -- Discrete-time processes: important for data analysis.
- -- Continuous-time processes: useful for theoretical purposes and to model high-dimensional data.

Stationarity/ Non Stationarity

Definition: a stochastic process is stationary if

$$\forall m, \ \forall (t_1, ..., t_m), \ \forall E \in \mathbf{R}^n$$

$$\Pr\{(X_{t_1}, X_{t_2}, ..., X_{t_m}) \in A\} = \Pr\{(X_{t_1+h}, X_{t_2+h}, ..., X_{t_m+h}) \in A\}$$

A stationary process is a process that is <u>statistically invariant under</u> <u>translations</u>

Examples: the <u>Ornstein-Uhlembeck process</u> is stationary, Brownian motion is not.

The Ornstein-Uhlenbeck process

$$dX_{t} = \kappa (m - X_{t})dt + \sigma dW_{t}, \quad \kappa > 0$$

$$X_{t} = e^{-\kappa(t-s)}X_{s} + \left(1 - e^{-\kappa(t-s)}\right)m + \sigma \int_{s}^{t} e^{-\kappa(t-u)}dW_{u}$$

$$X_t = m + \sigma \int_{-\infty}^{t} e^{-\kappa(t-s)} \eta(s) ds$$
, $\eta(s) = \text{Gaussian white noise}$

Exponentially-weighted moving average of uncorrelated Gaussian random variables.

Serial correlations of the OU process

$$\langle X_t X_{t+h} \rangle = \sigma^2 \left\langle \int_{-\infty}^t e^{-k(t-s)} \eta(s) ds \cdot \int_{-\infty}^{t+h} e^{-k(t+h-s')} \eta(s') ds' \right\rangle$$

$$= \sigma^2 \int_{-\infty}^t \int_{-\infty}^{t+h} e^{-k(t-s)} e^{-k(t+h-s')} \delta(s-s') ds ds'$$

$$= \sigma^2 \int_{-\infty}^t e^{-k(t-s)} e^{-k(t+h-s)} ds$$

$$= \sigma^2 e^{-kh} \int_{-\infty}^t e^{-2k(t-s)} ds$$

$$= \frac{\sigma^2 e^{-kh}}{2k}$$

$$\left\langle \left| X_{t+h} - X_{t} \right|^{2} \right\rangle = \frac{\sigma^{2}}{k} \left(1 - e^{-kh} \right)$$

Structure Function

Mean-reversion: a ``quantitative'' form of stationarity

t

AR(1) model

$$X_n = a + bX_{n-1} + \varepsilon_n \quad \varepsilon_n \sim N(0, \sigma^2)$$

$$X_{n} = b^{n} X_{0} + a \sum_{k=1}^{n} b^{n-k} + \sum_{k=1}^{n} b^{n-k} \varepsilon_{k}$$

$$=b^{n}X_{0}+a\frac{b^{n}-1}{b-1}+N\left(0,\sigma^{2}\frac{b^{2n}-1}{b^{2}-1}\right)$$

Stationarity:
$$|b| < 1$$
, $\therefore \qquad \mu_{eq} = \frac{a}{1-b}$, $\sigma_{eq}^2 = \frac{\sigma^2}{1-b^2}$

Estimation of
$$b$$
:
$$\hat{b} = \frac{\sum_{t=1}^{T} \left(X_{n-t} - \bar{X} \right) \left(X_{n-t-1} - \bar{X} \right)}{\sum_{t=1}^{T} \left(X_{n-t} - \bar{X} \right)^{2}} \qquad (T = \text{time window})$$

Estimation of AR(1) model

$$\varepsilon_n = X_n - a - bX_{n-1}$$
 i.i.d. normals, $n = 0,...,T$

$$\ln P = -\frac{1}{2\sigma^2} \sum_{n=1}^{T} \left(X_n - a - b X_{n-1} \right)^2 - \frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln(2\pi)$$

$$(a_{ml}, b_{ml}, \sigma_{ml}^2) = \underset{a,b,\sigma^2}{\operatorname{arg max}} \ln P$$

Maximum likelihood ~ minimum least squares

$$a_{ml} = \frac{\langle X_{n+1} \rangle \langle X_n^2 \rangle - \langle X_n X_{n+1} \rangle}{\langle X_n^2 \rangle - (\langle X_n \rangle)^2}, \qquad b_{ml} = \frac{\langle X_n X_{n+1} \rangle - \langle X_n \rangle \langle X_{n+1} \rangle}{\langle X_n^2 \rangle - (\langle X_n \rangle)^2}$$

$$\sigma_{ml}^{2} = \left\langle \left(X_{n+1} - a_{ml} - b_{ml} X_{n} \right)^{2} \right\rangle$$

where
$$\langle X_n \rangle = \frac{1}{T} \sum_{t=0}^{T-1} X_t$$
, $\langle X_n \rangle = \frac{1}{T} \sum_{t=0}^{T-1} X_{t+1}$

Estimation of Ornstein-Uhlenbeck models

$$X_{t+\Delta t} = e^{-k\Delta t}X_t + m(1 - e^{-k\Delta t}) + \sigma \int_{t}^{t+\Delta t} e^{-k(t-s)}dW_s$$

$$X_{n+1} = a + bX_n + \varepsilon_{n+1} \qquad \{\varepsilon_n\} \quad \text{i.i.d.} \quad N\left(0, \sigma^2\left(\frac{1 - e^{-2k\Delta t}}{2k}\right)\right)$$

$$b = \text{SLOPE}((X_{n-l},...,X_n); (X_{n-l-1},...,X_{n-1})),$$

$$a = \text{INTERCEPT}((X_{n-l},...,X_n); (X_{n-l-1},...,X_{n-1}))$$

$$k = \frac{1}{\Delta t} \ln\left(\frac{1}{b}\right), \quad m = \frac{a}{1-b}, \quad \sigma = \frac{\text{STDEV}(X_{n+1} - bX_n - a)}{\sqrt{1-b^2}} \sqrt{2\frac{1}{\Delta t} \ln\left(\frac{1}{b}\right)}$$

Auto-regressive Models AR(m)

 $X_1, X_2, \dots, X_n, \dots$ Time-series data to be modeled

$$X_n = a + \sum_{k=1}^m b_k X_{n-k} + \varepsilon_n$$
 $\varepsilon_n \sim N(0, \sigma^2)$, i.i.d.

$$Y_n^T = \left(X_{n-m+1}, \dots, X_n\right)$$

$$B = \begin{pmatrix} b_1 & b_2 & \dots & b_m \\ 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ & & 1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} a \\ 0 \\ \dots \\ 0 \end{pmatrix}, \quad E_n = \begin{pmatrix} \varepsilon_n \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

$$Y_n = A + BY_{n-1} + E_n$$

$$Y_n = B^n Y_0 + \sum_{k=1}^n B^{n-k} A + \sum_{k=1}^n B^{n-k} E_k$$

AR(m) is a ``vector'' AR(1) model

Stationarity of AR(m)

$$\mu := E(X_n)$$

$$E(X_n) = a + \sum_{k=1}^{m} b_k E(X_{n-k})$$
 : $\mu = a + \mu \sum_{k=1}^{m} b_k$

$$\mu = \frac{a}{1 - \sum_{k=1}^{m} b_k}$$
 necessary condition for stationarity:
$$\sum_{k=1}^{m} b_k < 1$$

$$Z_n := X_n - \mu$$
 $Z_n \sim AR(m)$ with $a = 0$

B is a contraction iff all of its eigenvalues are less than 1

$$\det(B - \lambda I) = (-1)^m \left(\lambda^m - \sum_{k=1}^m \lambda^{m-k} b_k\right) = (-1)^m P(\lambda)$$

All the roots of $P(\lambda)$ must satisfy $|\lambda| < 1$

Auto-regressive Models

ARCH(p), GARCH(p,q)

Following R. Engle and T. Bollerslev

Conditional Mean and Conditional Variance

$$y_t$$
, $t = 1,2,3,...,T$

Given time series

$$p(y_t | y_{t-1}, y_{t-2},...) = p(y_t | \Phi_{t-1})$$

Model the conditional distributions

$$y_t = \mu(\Phi_{t-1}) + \sigma(\Phi_{t-1})\varepsilon_t, \quad E(\varepsilon_t) = 0, \ E(\varepsilon_t^2) = 1$$

Example:
$$y_t \mid \Phi_{t-1} \sim N(\mu(\Phi_{t-1}), \sigma^2(\Phi_{t-1}))$$

Returns of S&P 500 Index 12/1/2000-2/26/2010

ARCH(p) (Engle, 1982)

$$y_t = \alpha + \beta x_t + u_t$$

Uncorrelated residuals does not necessarily imply independent residuals

$$u_t = h_t^{1/2} \varepsilon_t$$

$$E(\varepsilon_t) = 0, \quad E(\varepsilon_t^2) = 1$$

$$h_{t} = a_0 + a_1 u_{t-1}^2$$

Unlike in AR, the error is not assumed to have constant variance.

More generally,

$$h_{t} = a_{0} + \sum_{k=1}^{p} a_{k} u_{t-k}^{2}$$

Conditional variance is a lagged sum of squared residuals, eg.

$$h_{t} = \frac{1}{T} \sum_{k=1}^{T} u_{t-k}^{2}$$

GARCH(p,q) (Bollerslev, 1986)

$$u_t = h_t^{1/2} \varepsilon_t$$
 $E(\varepsilon_t) = 0, \quad E(\varepsilon_t^2) = 1$

$$h_{t} = \omega + \sum_{i=1}^{p} \alpha_{i} u_{i}^{2} + \sum_{j=1}^{q} \beta_{j} h_{t-j}$$

Dependence on previous squared returns and previous conditional variances.

Most famous versions in practice: GARCH(1,1) or GARCH (1,p) which are basically AR(p) processes on the conditional variance driven by the squared-returns process

GARCH(1,1)

$$h_{t} = \omega + \alpha u_{t-1}^{2} + \beta h_{t-1}$$

1-lag dependence

$$h_{t} = \omega + \alpha u_{t-1}^{2} + \beta \left(\omega + \alpha u_{t-2}^{2} + \beta h_{t-2}\right)$$

$$= \omega + \beta \omega + \alpha \left(\beta u_{t-2}^{2} + u_{t-1}^{2}\right) + \beta^{2} h_{t-2}$$
.

•

$$h_{t} = \frac{\omega}{1 - \beta} + \alpha \sum_{k=1}^{\infty} \beta^{k} u_{t-k}^{2}$$

GARCH(1,1) is an exponentially weighted moving average of squared-errors. Beta determines the effective ``window size' for estimation of conditional variance.

GARCH(1,2)

$$\begin{pmatrix} h_t \\ h_{t-1} \end{pmatrix} = \begin{pmatrix} \omega \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_{t-1}^2 \\ 0 \end{pmatrix} + \begin{pmatrix} \beta_1 & \beta_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h_{t-1} \\ h_{t-2} \end{pmatrix}$$
 Vector AR(1)

Stability condition: $\lambda^2 - \beta_1 \lambda - \beta_2 = 0 \Rightarrow |\lambda| < 1$

$$h_t = \overset{-}{h} + A \sum_{k=1}^{\infty} \lambda_1^k u_{t-k}^2 + B \sum_{k=1}^{\infty} \lambda_2^k u_{t-k}^2$$
 Steady-state solution

Intuitively, GARCH(1,2) is the sum of two EWMA with different time-scales (decay rates).

Notice however that the right-hand side depends on *h* as well, so the PDF of the conditional variance is not a chi-squared.

GARCH(1,p) is the sum of (at most) p EWMAs.

Returns of S&P 500 Index 12/1/2000-2/26/2010

Fitting to GARCH(1,p)

We know that the tails of SPY are heavy and behave like Student t with df~3.5

This heavy-tailed behavior of stock prices can be modeled by assuming a static distribution (Student) or a time-dependent distribution with a GARCH-type stochastic conditional variance.

The latter approach (GARCH) has the advantage that it incorporates dynamics so it may capture "persistence" of volatility across time.

From a portfolio risk-management perspective, the situation is ``cured'' by assuming a Student-t distribution with 3.5 degrees of freedom for returns (to capture tail behavior) and an EWMA variance which is adjusted daily to capture volatility clustering effects.

The question that remains is: what is the correct estimation window?

GARCH(1,1) estimation of SPY returns

Method: ML - BFGS with analytical gradient

date: 03-02-10

time: 18:10

Included observations: 2320

Convergence achieved after 56 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	2.85989E-06	3.9342E-07	7.269290633	3.61489E-13
alpha_1	0.698241421	0.020073908	34.78353205	0
beta_1	0.508888808	0.050794297	10.01862092	o
Log				
Likelihood	7053.473574			
Jarque				
Bera	12844.90612	F	Prob	q
Ljung-Box	65535	F	Prob	65535

GARCH(2,1) estimation

Method: ML - BFGS with analytical gradient

date: 03-03-10

time: 13:25

Included observations: 2320

Convergence achieved after 45 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	2.69557E-05	2.4E-06	11.25236	0
alpha_1	0.541398855	0.073788	7.337198	2.1805E-13
alpha_2	0.355438292	0.035892	9.90302	0
beta_1	0.268210539	0.045356	5.913404	3.3511E-09
Log Likelihood	7060.668319			
Jarque Bera	12844.90612	P	Prob	0
Ljung-Box	65535	P	rob	65535

Garch(1,2)

Method: ML - BFGS with analytical gradient

date: 03-03-10

time: 13:34

Included observations: 2320

Convergence achieved after 54 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	1.93253E-06	3.45079E-07	5.600257981	2.14033E-08
alpha_1	0.347594236	0.053959618	6.441747563	1.18106E-10
beta_1	0.417978993	0.040988575	10.19745117	0
beta_2	0.329591408	0.064169394	5.136271201	2.80243E-07
Log Likelihood	7119.174476			
Jarque Bera	12844.90612	P	rob	0
Ljung-Box	65535	Р	rob	65535

Which model should we use?

All three GARCH models fit the data very well, with high z-statistics.

Preference should be given to the model with smallest number of parameters, so GARCH(1,1) should be suitable.

Cointegration and Pairs Trading

 $X_t = \text{return on XLK}$

 $Y_t = \text{return on } EBAY$

Perform m – day regression to construct residuals

In the previous lecture we saw some examples of pairs trading with ETFs

$$Y_t = \beta X_t + \varepsilon_t$$

$$\beta = \text{SLOPE}((Y_{t-m},...,Y_{t-1}),(X_{t-m},...,X_{t-1}))$$

$$\varepsilon_t = Y_t - \beta X_t$$

P&L=100*
$$\prod_{k=1}^{t} (1+\varepsilon_k)$$
 $y_t = y_0 + \sum_{k=1}^{t} \ln(1+\varepsilon_k)$

Question of interest : is y_t stationary? Does y_t have a `unit root'?

Dickey-Fuller Test for Unit Roots (aka Augmented Dickey-Fuller test)

The Dickey-Fuller test is used to <u>test for unit roots</u> in statistical data.

Consider the following model for the differentiated time-series:

$$\Delta y_{t} = \alpha + \beta t + \delta_{0} y_{t-1} + \sum_{k=1}^{n} \delta_{k} \Delta y_{t-k} + \varepsilon_{t}, \quad \Delta y_{t} = y_{t} - y_{t-1}$$

Null hypothesis: there is a unit root, i.e. $\delta_0 = 0$. $DF = \frac{\delta_0}{\text{stdev}(\hat{\delta}_0)}$

n is determined dynamically as part of the test (Akaike Information Criterion)

ADF Critical Values:

Reject delta=0 if DF <

1% level -3.970385

5% level -3.415895

10% level -3.130187

EBAY vs. XLK residuals

 $Y_t = \text{daily return of EBAY}$

 $X_t = \text{daily return of XLK}$

Augmented DF test for EBAY/XLK

Variable	Coefficient	Std. Error	t-Statistic	Prob	Best lag fit: 9
tseries(-1)	-0.025582	0.009132	-2.801401	0.005222	Cannot reject UR
D(tseries(-1))	-0.104975	0.036984	-2.838362	0.004660	@ 90% level
D(tseries(-2))	0.032844	0.037145	0.884206	0.376875	
D(tseries(-3))	0.041696	0.036765	1.134124	0.257113	
D(tseries(-4))	-0.139433	0.036498	-3.820306	0.000145	
D(tseries(-5))	0.023322	0.036852	0.632844	0.527033	
D(tseries(-6))	-0.103297	0.036384	-2.839106	0.004649	
D(tseries(-7))	-0.123580	0.036566	-3.3 <mark>79630</mark>	0.000764	
D(tseries(-8))	0.062589	0.036842	1.698850	0.089771	
D(tseries(-9))	0.103669	0.036604	2.832135	0.004751	
С	0.120657	0.043010	2.805296	0.005160	
@trend	-0.000006	0.000003	-2.076142	0.038228	

EBAY vs. QQQQ residuals

ADF for EBAY/QQQQ

Null Hypothesis: tseries has a unit root

Exogenous: Constant and linear Trend

Lag Length: 4 (Automatic Based on AIC, MAXLAG=10)

Variable	Coefficient	Std. Error	t-Statistic	Prob
tseries(-1)	-0.023280	0.008338	-2.791940	0.005374
D(tseries(-1))	-0.078624	0.036419	-2.158873	0.031179
D(tseries(-2))	0.019488	0.036533	0.533428	0.593897
D(tseries(-3))	0.030306	0.036525	0.829726	0.406960
D(tseries(-4))	-0.114959	0.036359	-3.161785	0.001632
С	0.109870	0.039251	2.799187	0.005256
@trend	-0.000002	0.000002	-0.918302	0.358759

ARMA(p,q) process

$$y_{t} = a_{0} + \sum_{k=1}^{p} a_{k} y_{t-k} + \sum_{l=1}^{q} b_{k} u_{t-k} + u_{t}$$

Combines autorregressive models with moving average models

Simple linear time-series model

Fitting to an ARMA(1,1)

	•	,	,	
timeseries: y				
Method: Nonlinear Least Squares (Levenberg-Marquardt)				
date: 03-03-10 time: 18:52				
included observations: 755				
p = 1 - q = 1 - constant - manual selection				
		Std.		
	Coefficient E	rror	t-Statistic	Prob.
c	4.627335411	0	148.9024	Q
AR(1)	0.986154258	0	159.9401	d
MA(1)	-0.110605985	0	-2.998961	0.002798377
R-squared	0.965239	Mear var	n dependent	4.628068
Adjusted R-squared	0.965147	S.D. (dependent var	0.071188
S.E. of regression	0.013290	Akail	ke info criterion	-5.791955
Sum squared resid	0.132821	Schw	varz criterion	-5.773571
Log likelihood	2189.462984	Durb	oin-Watson stat	2.007356
Inverted AR-roots	0.99			
	• • •			

0.11

Inverted MA-roots

Fitting y to an AR(1) process

timeseries: y

Method: Nonlinear Least Squares (Levenberg-Marquardt)

date: 03-03-10 time: 18:49 Included observations: 755

p = 1 - q = 0 - constant - manual selection

	O ((; ; ,	Std.	. 6	5 . 1
	Coefficient	Error	t-Statistic	Prob.
С	4.627528	0.03	168.4630632	0
AR(1)	0.98229241	0.01	143.6624447	0
R-squared	0.964800	Me	ean dependent var	4.628068
Adjusted R-				
squared	0.964753	S.E). dependent var	0.071188
S.E. of				
regression	0.013365	Ak	aike info criterion	-5.782052
Sum squared				
resid	0.134501	Scl	nwarz criterion	-5.769796
Log likelihood	2184.724802	Du	rbin-Watson stat	2.225006

AR(1) coefficient for y estimated over a 60-day period

Red= upper bound for MR in 10 days, Green= upper bd for MR in 5 days

Dickey-Fuller over Sep 2008/March 2009

Augmented Dickey-Fuller t	-2.593218	0.284178			
Test critical values:	1% level		-4.027516		
	5% level		-3.443485		
	10% level		-3.146482	-3.146482	
Variable	Coefficient St	td. Error t-S	tatistic P	rob	
tseries(-1)	-0.113728	0.043856	-2.593218	0.010671	
D(tseries(-1))	-0.111532	0.090621	-1.230747	0.220785	
D(tseries(-2))	0.162647	0.087448	1.859935	0.065303	
D(tseries(-3))	0.040018	0.088750	0.450911	0.652854	
D(tseries(-4))	-0.267631	0.085738	-3.121501	0.002247	
D(tseries(-5))	0.076574	0.086639	0.883828	0.378528	
D(tseries(-6))	-0.139433	0.085911	-1.623007	0.107169	
D(tseries(-7))	-0.242743	0.082689	-2.935598	0.003980	
D(tseries(-8))	0.090026	0.085786	1.049428	0.296056	
D(tseries(-9))	0.189077	0.084225	2.244910	0.026575	
D(tseries(-10))	-0.106441	0.084083	-1.265896	0.207962	
С	0.511426	0.199365	2.565270	0.011521	
@trend	0.000090	0.000044	2.058864	0.041636	

AR-1 coefficient for the period Sep 2008/march 2009

timeseries: ebay/xlk

Method: Nonlinear Least Squares (Levenberg-Marquardt)

date: 03-03-10 time: 18:40 Included observations: 145

p = 1 - q = 0 - constant - manual selection

	Coefficient	Std. Error	t-Statistic	Prob
c	4.55489463	0.013841	329.0952386	0
AR(1)	0.88029659	0.035204	25.00582423	-2.2E-16
R-squared	0.813873		4.558974	
Adjusted R-squared	0.812571		0.045858	
S.E. of regression	0.019853		-4.952615	
Sum squared resid	0.056364		Schwarz criterion	-4.911557
Log likelihood	361.064616		Durbin-Watson stat	2.312544

Conclusions

ARCH, GARCH: models for volatility of financial series.

Volatility analysis via ARCH and GARCH lead to exponential moving averages of squared returns.

The advantage of GARCH over a fixed window is that GARCH is endogenous. However, fixed estimation windows for volatilities and correlations or exogenous EWMAs also make sense from a risk-management perspective.

Cointegration of stock prices via pairs is not easy to establish econometrically.

Unit root test: tests for stationarity

ARMA, AR: models for mean-reversion

Mean-reversion & pairs trading

Systematic Approach for looking for meanreversion in Equities

Look for stock returns devoid of explanatory factors, and analyze the corresponding residuals as <u>stochastic processes</u>.

$$R_{t} = \sum_{k=1}^{m} \beta_{k} F_{kt} + \varepsilon_{t}$$

Econometric factor model

$$X_t = X_0 + \sum_{s=1}^t \mathcal{E}_s$$

View residuals as increments of a process that will be estimated

$$\frac{dS(t)}{S(t)} = \sum_{k=1}^{m} \beta_k \frac{dP_k(t)}{P_k(t)} + dX(t)$$

Continuous-time model for evolution of stock price

More on mean-reversion model

The factors are either

A. eigenportfolios corresponding to significant eigenvalues of the market

B. industry ETF, or portfolios of ETFs (we shall use these in light of last lecture and because it's easier)

Questions of interest:

Can residuals be fitted to (increments of) OU processes or other MR processes?

If so, what is the <u>typical correlation time-scale</u>?

Experiment: consider 39 stocks associated with XLK (SPDR Tech ETF)

CSCO vs. XLK

Regressing returns of XYZ vs. XLK: 60-day window Betas(1/09-2/10)

```
ACS ADBE AKAM APD
                                        APH
                                              BMC CA
         AAPL
                                                         CPWR CRM
            1.03 0.66 1.35 1.3256 1.0962
                                           1.28 0.72 1.04
average
stdev
          0.0959 0.16 0.14 0.2081 0.141
                                          0.137 0.08 0.16
          0.8859 0.41 1.11 0.9823 0.8528
                                          0.989 0.53
                                                     0.79
1pct q
          1.3376 1.02 1.66 1.7451 1.3665 1.571 0.89 1.34 1.14 1.94
99 pct q
       CSCO
              CTSH CTXS DELL
                                EBAY
                                       EMC
                                              ERTS FISV FLIR GLW
        1.1764
               1.08 1.13 1.2785 1.1911
                                           1.1 1.08
                                                      0.9
                                                          1.01 1.36
average
        0.0512 0.12
                    0.13
                         0.1515 0.2107 0.065
stdev
                                               0.11
                                                     0.11
        1.0743 0.84 0.84 1.0208 0.7202 0.944
1pct q
                                               0.88
                                                      0.7
                                                          0.67
        1.2752
               1.23
                    1.32
                         1.6897 1.5253 1.239
                                               1.29
99 pct a
                                                     1.11
```

```
GOOG HPQ HRB HRS
                                       INTU JDSU JNPR MFE
                                IBM
                                                              MSFT
        0.7985
               1.01 0.64 0.8516 0.7245 0.711
                                               1.68 1.39
                                                          0.89
                                                               0.93
average
stdev
        0.1069
                0.1
                    0.25
                         0.2352 0.0995 0.143
                                               0.13
                                                     0.09
        0.644
               0.86
                      0.2
                          0.4447 0.5158 0.472
                                                1.41
                                                     1.16
1pct q
                                                          0.59
99 pct a
        1.0359
                1.2
                     1.17
                          1.3077 0.9092 0.977
                                                1.96
                                                    1.56
                                                               1.15
```

Regressing returns of XYZ vs. XLK: 60-day window Betas

```
NTAP ORCL QCOM RHT
                                       SRCL
       NOVL
                                             SYMC YHOO
        1.0213
               0.66
                    1.34 1.3209
                                1.0915
                                        1.273
                                               0.72
                                                    1.05
average
stdev
        0.1471
               0.17 0.17
                          0.2288 0.1607 0.163
                                               0.1
                                                    0.16
              0.4 1.02
                          0.9302 0.7936 0.984 0.52 0.82
1pct q
        0.3472
99 pct q
        1.3399 1.02 1.66 1.7456 1.3667 1.572 0.89 1.34
```

Cross-sectional statistics for Beta variability

min stdev 0.0512 CSCO max stdev 0.3142 CRM min range 0.2009 CSCO max range 1.0766 CRM

CRM vs. XLK

Evolution of 60-day Betas versus XLK: AAPL, CSCO, CRM,GOOG

Computing the residuals in practice

$$X_1, \dots, X_T$$
 etf returns

 Y_1, \dots, Y_T stock returns

w =estimation window (in days)

$$\beta_{t-w,t} = SLOPE((X_{t-w},...,X_{t-1}),(Y_{t-w},...,Y_{t-1}))$$

$$\varepsilon_t = Y_t - \beta_{t-w,t} X_{t,}$$
 $t = w+1, w+2,...,T$

Use window of w days before current date

$$Z_t \coloneqq \sum_{k=w+1}^t \varepsilon_k$$

"Co-integrated" residual (CR)

AAPL Residuals (against 60-day Betas)

CSCO residuals against 60-day Betas

Computing Mean-reversion from 10/30/09 to 1/28/10

Slope b is computed using lagged regression of CR

```
Ticker
           AAPL ACS ADBE AKAMAPD APH BMC CA
                                                      CPWR CRM
b (slope)
            0.95 (0.98) 0.88 0.87 0.94 0.86 0.76 0.89
                                                        0.97 0.85
kappa
            11.9 4.43 30.9
                            35.3
                                  15.7
                                       36.9 67.7
                                                  28.3
                                                       8.89 41.7
tao(in days)
                 56.8
                      8.15
                            7.13
                                    16 6.83 3.72 8.91
            21.1
Ticker
                          DELL EBAY EMC ERTS FISV FLIR
b (slope)
            0.93 0.76 1.02
                            0.93
                                   0.8 0.82 0.89
                                                   0.9 0.92 0.97
                       -5.7
                            17.4
kappa
            17.3
                                  56.1 49.4 28.1 27.3
                                                              7.4
tao(in days)
            14.6
                            14.5 4.49
                                        5.1 8.98
                                                 9.22
                                                        11.7
                                                             34.1
```

```
Ticker
          GOOGHPQ HRB
                         HRS
                              IBM INTU JDSU JNPR MFE
b (slope)
            0.96 0.81 0.97 0.88
                                  0.7 0.87 0.91 0.88 0.93
kappa
            10.9
                 52.5
                      8.66
                           32.5
                                91.3 36.4
                                           25.1
                                                 31.3
                                                      17.8
                                                           73.2
tao(in days)
                      29.1
                                2.76 6.93
            23.1
                  4.8
                            7.75
                                             10
                                                8.04
                                                      14.2 3.44
```

Computing Mean-reversion from 10/30/09 to 1/28/10

Ticker	NOVL	ITAP	ORCL	QCOM	RHT :	SRCL	SYMC	YHOO
b (slope)	0.98	0.9	0.96	0.78	0.88	0.91	0.88	0.91
kappa	5.48	25.8	9.28	61.7	33.4	22.9	31.2	25
tao(in days)	46	9.78	27.2	4.08	7.55	11	8.08	10.1
tao(in days)		9.78	27.2	4.08	7.55	11	8.08	10.

Structure function log (SLB/OIH) Data: Apr 2006 to Feb 2009

OIH: Oil Services ETF, SLB: Schlumberger-Doll Research

Structure Function: long-short equal dollar weighted SLB-OIH

 $P_{n+1} = P_n \times (1 + R_{\text{slb}} - R_{\text{oih}}), X_n = \ln P_n$

Structure Function for Beta-Neutral long-short portfolio SLB-Beta*OIH

$$P_{n+1} = P_n \times (1 + R_{\text{slb}} - \beta_{60d} \cdot R_{\text{oih}}), \quad X_n = \ln P_n$$

Structure Function log (GENZ/IBB)

Structure function In (DNA/GENZ)

GENZ; Genzyme Corp.

curvature here.

Structure Fn for Beta-Neutral GENZ-DNA Spread

Poor reversion for the beta adjusted pair. Beta is low ~ 0.30