Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

Computation-Tree Logic

Equivalences and Abstraction

extend propositional or predicate logic by temporal modalities, e.g.

 $\Box \varphi$ " φ holds always", i.e., now and forever in the future

 $\Diamond \varphi$ " φ holds now or eventually in the future"

here: two propositional temporal logics:

LTL: linear temporal logic

CTL: computation tree logic

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

syntax and semantics of LTL automata-based LTL model checking complexity of LTL model checking

Computation-Tree Logic

Equivalences and Abstraction

$$\varphi ::= \mathit{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2$$

$$\Diamond \varphi \stackrel{\mathsf{def}}{=} \mathit{true} \, \mathsf{U} \, \varphi \qquad \qquad \Box \varphi \stackrel{\mathsf{def}}{=} \neg \Diamond \neg \varphi$$

Examples for LTL formulas:

mutual exclusion:
$$\Box(\neg crit_1 \lor \neg crit_2)$$

railroad-crossing:
$$\Box$$
(train_is_near \rightarrow gate_is_closed)

progress property:
$$\Box$$
 (request $\rightarrow \Diamond$ response)

traffic light:
$$\Box$$
 (yellow $\lor \bigcirc \neg red$)

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

$$\sigma \models true$$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$
 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
 $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 $\sigma \models \bigcirc \varphi$ iff $suffix(\sigma, 1) = A_1 A_2 A_3 \dots \models \varphi$
 $\sigma \models \varphi_1 \cup \varphi_2$ iff there exists $j \geq 0$ such that $suffix(\sigma, j) = A_j A_{j+1} A_{j+2} \dots \models \varphi_2$ and $suffix(\sigma, i) = A_i A_{i+1} A_{i+2} \dots \models \varphi_1$ for $0 \leq i < j$

```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```


For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

- $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$
- $size(A) = \mathcal{O}(\exp(|\varphi|))$

proof: ... later ...

Example: LTL model checking

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$\mathcal{T} \not\models \varphi$$

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$T \not\models \varphi$$

reachable fragment of the product-TS

set of atomic propositions $AP' = \{q_0, q_1, q_F\}$

Example: LTL model checking

LTLMC3.2-9

Example: LTL model checking

LTLMC3.2-9

