CSC 320 - Tutorial 3

- 1. Regular expressions
- 2. NFA to regular expression conversion
- 3. Regular languages are closed under Kleene star proof

\sim		. •		
/ N=	100	4-14	\sim	0
	ıes			

Questions
1. Design a regular expression for the following languages over Σ = {0, 1}
a. $L_1 = \{ w \mid \text{ every odd position of } w \text{ is a 1 } \}$
b. $L_2 = \{ w \mid w \text{ is string of length } \mathbf{at most } 5 \}$
c. $L_3 = \{ w \mid w \text{ contains an even number of 0s } \mathbf{or} \text{ exactly two 1s } \}$

2.	Convert the following regular e	xpression to an NFA	$: \mathbf{R}_1 = (a \cup b^*) a$

3. Write the regular expression that describes the language of the DFA below

4. Prove that regular languages are closed under Kleene star