ЛАБОРАТОРНАЯ РАБОТА №2 СЦИНТИЛЛЯЦИОННЫЙ ГАММА-СПЕКТРОМЕТР

Поляков Даниил, 19.Б23-фз

Цель работы: проградуировать спектрометр по спектрам излучения радионуклидов 60 Со и 137 Сs, определить энергию гамма-квантов 22 Na, 207 Bi, 133 Ba.

Схема установки

S — радиоактивное вещество;

γ — гамма-кванты;

1 — кристалл NaJ(Tl);

2 — фотоэлектронный умножитель;

3 — спектрометрический усилитель;

4 — источник питания ФЭУ;

5 — анализатор импульсов;

6 — компьютер.

Расчётные формулы

• Аппроксимация пиков полного поглощения суммой гауссовых функций:

Определим положения пиков полного поглощения, выделив из полученных спектров I(N) участки пиков и аппроксимировав их суммой гауссовых функций.

$$I = \sum_{i}^{n} a_{i} \exp \Biggl(- \biggl(rac{N - b_{i}}{c_{i}} \biggr)^{2} \Biggr)$$
 $I -$ интенсивность излучения; $N -$ номер канала; $a_{i}, b_{i}, c_{i} -$ коэффициенты аппроксимации.

Положение пика N_i определим как коэффициент b_i :

$$N_i \equiv b_i$$

• Разрешающая способность спектрометра:

• Фоточасть:

$$F = \frac{S}{S_0} = \frac{\sqrt{\pi}ac}{S_0}$$
 S — площадь под пиком, рассчитываемая как интеграл аппроксимирующего гауссиана по всей оси; a, c — коэффициенты аппроксимирующего гауссиана; S_0 — полная площадь под спектром.

• Энергия пика излучения по градуировочной прямой спектрометра:

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + \ldots} \\ & \circ & \Delta_{E_{\text{rpa} \phi}} = \sqrt{\left(\frac{\partial E_{\text{rpa} \phi}}{\partial N} \cdot \Delta_{N}\right)^2 + \left(\left(\frac{\partial E_{\text{rpa} \phi}}{\partial a} + \frac{\partial E_{\text{rpa} \phi}}{\partial b} \cdot \frac{\partial b}{\partial a}\right) \cdot \Delta_a\right)^2} = \\ & = \sqrt{\left(a \cdot \Delta_{N}\right)^2 + \left(\left(N - \langle N_{\text{rpa} A} \rangle\right) \cdot \Delta_a\right)^2} \end{split}$$

 $N_{
m rpag}$ — положения пиков, использованные для градуировки.

Порядок измерений

Устанавливаем поочерёдно образцы из 60 Co, 137 Cs, 22 Na, 207 Bi, 133 Ba в спектрометр и по 10 минут измеряем спектры их излучения. После этого ещё раз проводим измерение спектров для 60 Co, 137 Cs.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

1. Спектры гамма-излучения нуклидов

Представленные далее графики спектров излучения ⁶⁰Co и ¹³⁷Cs получены усреднением спектра по двум измерениям.

Обозначения на графиках пиков полного поглощения:

- точки экспериментальные данные, по которым проводилась аппроксимация;
- сплошная линия аппроксимирующая кривая (сумма гауссовых функций);
- пунктирная линия гауссовы функции по отдельности.

График 1. Измеренный спектр гамма-излучения ⁶⁰Co

График 2. Измеренные пики полного поглощения ⁶⁰Co

График 3. Измеренный спектр гамма-излучения $^{137}\mathrm{Cs}$

График 4. Измеренные пики полного поглощения $^{137}\mathrm{Cs}$

График 5. Измеренный спектр гамма-излучения $^{22}{
m Na}$

График 6. Измеренные пики полного поглощения $^{22}\mathrm{Na}$

График 7. Измеренный спектр гамма-излучения $^{207}{
m Bi}$

График 8. Измеренные пики полного поглощения $^{207}{
m Bi}$

График 9. Измеренный спектр гамма-излучения ¹³³Ba

График 10. *Измеренные пики полного поглощения* ¹³³Ba

Разрешающая способность спектрометра не позволяет определить положения пиков поглощения бария, которых в выделенном диапазоне должно быть 4. Хотя экспериментальные точки можно аппроксимировать суммой четырёх гауссианов, они не описывают действительный вид пиков поглощения.

2. Градуировка спектрометра и определение параметров пиков

Выполним градуировку спектрометра по трём пикам поглощения нуклидов 60 Со и 137 Сs. Аппроксимируем линейным уравнением зависимость табличных значений энергий пиков $E_{\text{табл}}$ от их положений по шкале спектрометра N:

$$E_{\text{табл}} = aN + b$$

График 11. Градуировочный график спектрометра

Коэффициенты аппроксимации:

$$a = 4.3 \pm 0.2$$
 кэВ

$$b = -10 \pm 30$$
 кэВ

По градуировочному графику определяем энергии пиков поглощения для остальных нуклидов.

Таблица. Параметры пиков полного поглощения

Нуклид	N	$E_{ m rpa\phi}$, кэ ${ m B}$	$E_{ ext{ iny Taбл}}$, кэ ${ m B}$	R, %	F, %
⁶⁰ Co	273.1(3)	1172(4)	1173.237(4)	8.8	9.3
	310.6(3)	1334(10)	1332.501(5)	6.7	6.2
¹³⁷ Cs	155.40(11)	662(15)	661.660(2)	8.9	22.0
²² Na	123.46(8)	520(20)	511.0034(14)	10.2	26.4
	297(2)	1275(11)	1274.53(2)	7.5	3.0
²⁰⁷ Bi	137.12(6)	580(20)	569.150(19)	10.2	12.0
	249.4(3)	1069.1(14)	1063.10(2)	7.7	3.8
	406(10)	1750(50)	1769.71(4)	8.0	0.2
¹³³ Ba	71(8)	300(50)	276.3989(12)	21.9	8.0
	75(2)	320(30)	302.8508(5)	11.1	3.3
	87.6(10)	370(30)	356.0129(7)	13.3	4.4
	90(30)	390(140)	383.8485(12)	9.6	13.4

Значения энергий, полученные экспериментально, совпадают с табличными.

Выводы

В ходе работы были измерены спектры гамма-излучения радионуклидов сцинтилляционным методом. Используя известные значения энергий гамма-излучения двух нуклидов была выполнена градуировка спектрометра и определены энергии излучения остальных нуклидов.