Design and Economic Analysis of a Standalone Hybrid Renewable Energy System using Grey Wolf Optimizer

A PROJECT REPORT

Submitted in partial fulfilment of the requirements for the degree of

BACHELOR OF TECHNOLOGY

In

ELECTRICAL AND ELECTRONICS ENGINEERING

By

Yandra Mohith Sai (18BEE0255)

Kunal Chandra (18BEE0246)

Under the Guidance of

Prof. Jayabarathi T

SCHOOL OF ELECTRICAL ENGINEERING VIT Vellore

VELLORE – 632014, Tamil Nadu, India MAY 2022

DECLARATION

I hereby declare that the thesis entitled "Design and Economic Analysis of a standalone Hybrid Renewable Energy System using Grey Wolf Optimizer" submitted by me, for the award of the degree of Bachelor of Technology to VIT, Vellore is a record of Bonafede work done under the supervision of Prof. Jayabarathi T.

I further declare that the work reported in this thesis has not been submitted and will not be submitted, either in part or in full, for the award of any other degree or diploma in this institution or any other institution or university.

t t	the	Can	dic	late
)	t	f the	of the Can	of the Candid

Date:

CERTIFICATE

This is to certify that the thesis entitled "Design and Economic Analysis of a standalone Hybrid Renewable Energy System using Grey Wolf Optimizer" submitted by Yandra Mohith Sai (18BEE0255) and Kunal Chandra (18BEE0246), School of Electrical Engineering, VIT, Vellore, for the award of the degree of Bachelor of Technology in Electrical and Electronics Engineering, in a record of Bonafede work carried out by him under my supervision, as per the VIT code of academic and research ethics.

The contents of this report have not been submitted and will not be submitted either in part or in full, for the award of any other degree or diploma in this institution or any other institution or university. The thesis fulfils the requirements and regulations of the University and in my opinion meets the necessary standards for submission.

Place: Vellore	Signature of the Guide
Date:	

The thesis is satisfactory / unsatisfactory

Approved by

Head of the Department (EEE) Dean

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my guide Prof. Jayabarathi T for her constant support and invaluable insight throughout the project. I've gained tremendous knowledge and experience and I'm grateful to her.

Last but not the least I extend my gratitude to the Chancellor Dr. G Viswanathan, Dean of SELECT Dr. Mathew M. Noel and the management at VIT university for having me this opportunity to study at a world-class University.

Yandra Mohith Sai Kunal Chandra

Executive Summary

Connecting to the grid to generate electricity in isolated, distant rural places is typically too expensive. Renewable energy sources (RESs) present a great potential for meeting the basic electricity demands of remote and isolated places. Microgrids based on renewable energy (RE) are the most suited and cost-effective solution for electrifying off-grid areas.

Main challenges for hybrid renewable energy system (HRES) are planning and optimal design of such system from a technical and economic stand point. The proper scaling of a HRES is a crucial stage in its design. As long as the cost of capital equipment is a significant factor in the price of renewable energy an efficient framework is required for the use of offgrid hybrid systems (PV-WT-DG-Battery).

This Project aims on the application of latest naturally – inspired metaheuristic optimization algorithm named Grey Wolf optimizer (GWO) which is inspired from grey wolfs. The GWO algorithm is modelled after the natural leadership structure and hunting mechanism of grey wolves. The proposed algorithm is applied to determine the optimal system configuration and minimize the cost of power generation system in remote area. Further, GWO's effectiveness in solving the optimization problem is evaluated, and its performance is compared to that of other meta-heuristic algorithms (PSO, CS and GOA). The simulation results show that GWO is able to optimally size the system easily with fast convergence and lower system capital cost as compared to other meta-heuristic algorithms and HOMER.

Contents

Ackn	owledg	ement	4
Execu	utive Su	ımmary	5
Table	e Of Co	ontents	6
List (Of Tabl	les	8
List (Of Figu	res	9
List (Of Abb	reviations	11
1	Intro	duction and Literature Survey	13
2	Mode	elling of the hybrid system	19
	2.1	Photovoltaic system	19
	2.2	Wind turbine	20
	2.3	Battery	21
	2.4	Diesel generator	22
3	Grey	Wolf Optimizer	23
4	Obje	ctive Function	27
	4.1	Levelized cost of Energy	27
	4.2	Loss of Power Supply Probability	29
	4.3	Design Variables	29
5	Load	Following strategy	30
6	Simu	lation Results	33
	6.1	Technical and Economic specifications of system components	33
	6.2	Climate consideration and load profile for system design	34
	6.3	Grey wolf optimizer vs other meta-heuristic algorithms	36

	6.4	MATLAB Simulation Output	37
	6.5	HOMER SIMULATION RESULTS	41
7	Conc	lusion & Future Scope	50
8	Refer	rences	51
Appe	ndix A		

List Of Tables

Table 1	Specifications and load profile for system design	33
Table 2	Optimal sizing results obtained	36
Table 3	WT HOMER Specifications	42
Table 4	PV HOMER Specifications	42
Table 5	DG HOMER Specifications	42
Table 6	Battery HOMER Specifications	43
Table 7	Comparison of the technical and economic characteristics of the substitute of the su	tand-alone

List Of Figures

Fig.1.	Architecture of microgrid system	19
Fig.2.	Hierarchy of grey wolves	23
Fig.3.	Pseudo code of the GWO	26
Fig.4.	Power management strategy	30
Fig.5.	Operation during battery charging	31
Fig.6.	Operation during battery discharging	32
Fig.7.	Operation of diesel generator	32
Fig.8.	Temperature at Vellore	34
Fig.9.	Irradiance at Vellore	35
Fig.10.	Wind speed	35
Fig.11.	Residential load profile	36
Fig.12.	COE convergence graph	37
Fig.13.	LPSP convergence graph	38
Fig.14.	Battery backup power supply	38
Fig.15.	Annual contribution of system components	39
Fig.16.	Hourly power generated by PV array	39
Fig.17.	Power generated by wind turbine	40
Fig.18.	Diesel output power	40
Fig.19.	Electricity generation mix for a period of one year	41
Fig.20.	Schematic of microgrid system	41
Fig.21.	Techno-economic optimized results of feasible configurations for	Quetta
		44

Fig.22.	Cash flow by components	45
Fig.23.	Monthly electric production	45
Fig.24.	Cost summary by cost type	46
Fig.25.	Hourly time series plot	47
Fig.26.	Discounted cash flow results	48
Fig.27.	Comparison of base and proposed system economics	49

List of Abbreviations

α_t Temperature Coefficient

σ Self-Discharge rate of the battery

q fuel consumption

B_{cap} Battery Capacity

Energy stored in the battery

E_{bmin} Minimum energy stored in the battery

E_{bmax} Maximum energy stored in the battery

E_{ch} Battery charging

E_{dch} Battery discharging

 $E_{dump} \hspace{1.5cm} Dump \hspace{.1cm} energy \hspace{.1cm}$

η_B Battery efficiency

η_{inv} Inverter efficiency

G_t Solar irradiance

h Wind turbine hub height

h_{ref} Wind turbine reference height

 β Power law exponential

P_{dch} Battery power Discharge

T_{ref} Temperature at standard test condition

P₁ Energy demand

P_{pv} PV power

P_{wt} Wind-turbine output power

P_{ch} Excess power charging battery

P_r Wind turbine rated power

T_{amb} Ambient temperature

V Wind speed

V_{cut-in} Cut-in speed

V_{cut-out} Cut-out speed

V_{rated} Nominal wind speed

V^h Wind speed at hub height

V^{ref} Wind speed at reference height

F Fuel consumption

AD Autonomy Day

PV Photovoltaic panel

DG Diesel Generator

WT Wind turbine

DPSP Deficiency of power supply probability

COE Cost of energy

LPSP Loss of power supply probability

LCC Life cycle cost

CRF Capital recovery factor

ACS Annualized cost of a system

GWO Grey wolf optimizer

Introduction

Hybrid renewable energy system (HRES) are the most reliable and cost-effective way for electrifying the remote areas. However, from an economic and technical standpoint, the planning and optimal sizing of such a system is challenging due to various factors. For instance, the inconsistency of RE sources and their reliance on weather patterns. Generally, microgrids are either oversized or undersized to meet the load demand. Oversizing a system will result in high system cost and the production of the excess energy. Furthermore, an undersized microgrid system will result in power supply failure to the intended loads. In order to overcome the aforementioned challenges, proper scaling of a microgrid is crucial.

The latitude and longitude for the specified site are 12°54'59.46" N and 79°7'56.99" E. Because of its hot climate conditions, Vellore has a large potential for solar power generation. The solar radiation and wind speed for the chosen study location was taken from NASA's renewable energy resource website (Surface Meteorology and Solar Energy). **Fig.10** depicts the monthly average wind speed, which is 4 m/s. Based on a local load assessment, the normal electrical load of one family in Vellore city was determined in this study. Lighting, television, fans, and refrigeration are the most energy-intensive activities. The supplied load power in this case was 8.7kW (peak value), and the annual average energy usage was 11.13kWh/day. The load profile of one family in the study area is depicted in **Fig.11**.

In this project, grey wolf optimizer (GWO) technique is applied to minimize the COE (Cost of energy) and LPSP (Loss of power supply probability) to find the optimal sizing of stand-alone hybrid system (PV/DG/Battery/WT). The GWO algorithm is modelled after the natural leadership structure and hunting mechanism of grey wolves. The simulation results show that GWO is able to optimally size the system easily with fast convergence and lower system capital cost compared to other meta-heuristic algorithms i.e. (PSO, GA, etc.).

Literature Survey

S.No.	Journal Paper	Authors	Description	Outcome	Year
1.	[9]	Jamiu O.	Since grid	Hydro-Diesel-	2020
		Oladigbolu,	electrification is	PV-wind-	
		Makbul a. M.	not cost-	battery	
		Ramli, Yusuf a.	effective option	provided NPC	
		Al-turki	at such remote	\$1.01M and	
			rural areas.	COE	
			Authors tried to	\$0.106/kWh.	
			build an	hydro-wind-	
			economical RES	diesel-battery	
			system as well as	presented best	
			environmental	economical	
			less pollutant	design while	
			alternative by	selected hydro-	
			optimal solution	Diesel-PV-	
			that has less	wind-battery	
			emissions. They	design	
			used HOMER	presented more	
			software for	efficient and	
			different design	performance	
			options.	parameters as	
				well as	
				emissions	
				concerns. On	
				grounds reality	
				the initial	
				investments	
				and other costs	
				proposed by	
				HOMER were	
				not affordable	

				to the author's	
				case study.	
2.	[1]	Abba Lawan	This paper used	The proposed	2019
		Bukara, Chee Wei	a latest nature -	algorithm	
		Tana, Kwan Yiew	inspired	results confirm	
		Lau	metaheuristic	that GOA is	
			optimization	able to	
			algorithm named	optimally size	
			Grasshopper	the system as	
			Optimization	compared to its	
			Algorithm in	counterparts,	
			microgrid	CS and PSO. In	
			system sizing	which, a	
			design problem.	decrement of	
				14% and 19.3%	
				is achieved in	
				the system	
				capital cost,	
				respectively.	
3.	[7]	Habib ur Rahman	To serve the	Firstly, design	2019
		Habib, Shaorong	customers with	the most	
		Wang, Mahmoud	high power	feasible and	
		F. Elmorshedy,	quality and	cost-effective	
		M. R. Elkadeem	reliability,	solution with	
			design	least life-cycle	
			optimization	cost, keeping in	
			methodology	view the impact	
			and a possible	of carbon	
			power	emissions.	
			management	Secondly a	
			strategy (PMS)	suitable PMS	
			for wind diesel-	that targets to	
			battery-	maintain load	

			T	-	
			converter hybrid	balance and	
			renewable	extract	
			energy system	maximum wind	
			(HRES) is	power while	
			proposed in this	keeping the	
			paper.	battery SOC	
				within the safe	
				range	
4.	[14]	Nur Dalilah	Loss of power	A new method	2016
		Nordin, Hasimah	supply	for optimal	
		Abdul Rahman	probability	sizing of	
			analysis is set as	standalone	
			a benchmark to	system by	
			determine all	using amp-hour	
			possible PV	analysis.	
			array and battery	Components	
			capacity. The	sizing are	
			case study, with	optimally	
			reference to	selected based	
			Malaysia	on the lowest	
				LCOE, which	
				are able to fulfil	
				LPSP system	
				requirement.	
				This method is	
				not only	
				flexible to be	
				used at any	
				sites, but it also	
				allows	
				designers to	
				find optimum	

				design based on	
				a preselected	
5.	[13]	Y. V. Pavan	To promote use	The most	2015
		Kumar,	of non-	economic	
		Ravikumar	conventional	system	
		BHIMASINGU	sources of	configuration is	
			energy usage,	achieved for	
			authors try to	the	
			build a feasible	combination of	
			and optimal	600 kW utility	
			solution using	grid	
			PV-wind	contribution,	
			turbines.	180 kW PV	
			Sensitivity	contribution,	
			analysis is	and 3 units WT	
			performed to	,33 batteries (1	
			deal with	string) and a	
			uncertainties	160-kW	
			such as the	converter. The	
			increase in	levelized cost	
			electricity	of energy	
			consumption	achieved as	
			and grid tariff,	0.092 \$/kWh	
			environmental	which is less	
			changes by	than the grid	
			reducing CO2	only connected	
			emissions	system. priority	
				load variation	
				is more	
				influential to	
				TNPC than	
				deferred load.	
				Any critical	

	<u> </u>		T	1 1	
				and large	
				consumers of	
				urban buildings	
				can be	
				integrated to a	
				green and	
				hybrid power	
				system designs.	
6.	[15]	Nur Dalilah	Design a stand-	Economic	2015
		Nordin, Hasimah	alone	assessment was	
		Abdul Rahman	photovoltaic	employed by	
			system, the	life cycle cost	
			system to fulfil	and levelized	
			load demand,	cost of energy	
			close to its point	analysis. LCC	
			of utilization	for the	
			that include	proposed	
			sizing of PV	system in 25	
			modules, battery	years is RM	
			storages, charge	34,232. The	
			controller and	LCOE is RM	
			inverter.	1.76/kWh. The	
				method can be	
				improved using	
				hourly analysis.	
			l		

Modelling of the Hybrid system

The hybrid system consists of photovoltaic modules (PV), wind turbine, battery storage system and diesel generator (DG) as shown in **Fig.1**. The modelling of the system components is required prior to the proper sizing of the HRES. Therefore, a detailed modelling of the system components is follows.

Fig.1. Architecture of microgrid system

2.1. Photovoltaic system

The power output of PV (P_{pv_out}) is calculated based on the ambient temperature and solar irradiance, as shown in the equation [1] **Eq.1.**

$$P_{pv}(t) = P_{pv_rated} \times \frac{G_t(t)}{1000} \times \left[1 + \alpha_t \left(\left(T_{amb} + (0.0256 \times G_t) \right) - T_{CSTC} \right) \right] \dots (1)$$

Ppv is the Output power (W) of the PV module

Gt is the solar irradiance (W/m²)

Ppv_rated is the rated power (W) of the PV module at standard test condition (STC)

 α_t is the temperature coefficient defined by (-3.7 *10⁻³ (1/ \circ C))

Tc_stc is the cell temperature (°C) At STC

T_{amb} is the ambient temperature (°C)

2.2. Wind turbine

To calculate the wind turbine (WT) power output, the measured wind speed at an emometer height is initially converted to corresponding wind turbine hub height using the power law equation [1] **Eq.2**

$$V_2 = V_1 \times \left(\frac{h}{h_{ref}}\right)^{\beta} \dots (2)$$

Where,

 V_2 and V_1 denotes the wind speed (m/s)

h is the wind turbine hub height (m)

h_{ref} is the anemometer height (m)

 β is the power law exponential

The output power of wind turbine (P_{wt}) is calculated using the power curve equation [1] **Eq.3** as

$$P_{WT} = \begin{cases} 0 & V < V_{Cut_in}, V > V_{Cut_out} \\ V^3 \left(\frac{P_r}{V_{Rated}^3 - V_{Cut_in}^3} \right) - P_r \left(\frac{V_{Cut_in}^3}{V_{Rated}^3 - V_{Cut_in}^3} \right) & V_{Cut_in} \leq V < V_{Rated} \\ P_r & V_{Rated} \leq V < V_{Cut_out} \end{cases}$$

... (3)

V is the wind speed (m/s)

P_r is the rated power (kW)

V_{cut-in} is the cut-in speed of the WT (m/s)

V_{Rated} is the rated speed of the WT (m/s)

 $V_{\text{cut-out}}$ is the cut-out speed of the WT (m/s)

2.3. Battery

Battery is operated during periods of non-availability of renewable energy source to meet the energy demand and as energy storage where excess power is used for charging the battery. In this case, the capacity of the battery is calculated, taking into account the target autonomy day (AD) and load demand. Autonomy days refers to number of days a battery bank would be able to meet the energy demand of the load. The Battery capacity (B_{cap}) is calculated as show in the equation [1] **Eq. 4**.

$$B_{cap} = \frac{AD.P_l}{\eta_{inv}.\eta_B DOD}$$
... (4)

Where,

 η_{inv} is the efficiency of the inverter

 η_B is the efficiency of the battery

DOD denotes the depth of discharge of the battery

P₁ denotes the total load demand

2.4. Diesel generator

The fuel usage rate $(F_{(t)})$ of a diesel generator is expressed (5) as [1]

$$F_{(t)} = 0.246 P_{DG}(t) + 0.08415 P_r$$

... (5)

 P_{DG} is the power generated by diesel generator (kW)

 $F_{(t)}$ is the fuel consumption (L/hour)

 $P_{(r)}$ is the rated power of the diesel generator (kW)

The cost of the fuel usage is expressed (6) as [1]

$$C_F = P_{fuel}F_t$$

... (6)

Where P_{fuel} is the fuel cost (US\$/1)

Grey Wolf Optimizer (GWO)

Mirjalili and Lewis proposed the Grey Wolf Optimizer (GWO) algorithm in 2014. This algorithm was inspired primarily by the social leadership and hunting strategy of grey wolves. The grey wolf (Canis lupus) is a member of the Canidae family. Grey wolves are apex predators, which means they are at the top of the food chain.[11] They have a very tight social dominating hierarchy, which is of great relevance as shown in [2] **Fig.2**.

Fig.2. Hierarchy of grey wolves (dominance decreases from top down)

Alphas are male and female leaders. They are responsible for decision making about hunting, sleeping, location, walking time and so on. The pack is dictated to by the alpha's decisions.

The grey wolf hierarchy's second level is beta. The betas are subordinate wolves who assist the alpha in pack decision-making and other duties. The beta reinforces the alpha's directives throughout the pack and provides feedback to the alpha.

The grey wolf with the lowest ranking is omega. The omega serves as a scapegoat. Omega wolves must always subordinate to all other dominant wolves. Although it may appear that the omega is not an important member of the pack, it has been found that when the omega is lost, the entire pack suffers from internal fighting and issues. The omega in some situations is also the pack's babysitters.[2]

A wolf is termed delta if he or she is not an alpha, beta, or omega. Delta wolves must subject to alpha and beta wolves, but they rule the omega. This group includes scouts, sentinels, elders, hunters, and caretakers.

To mathematical model the social hierarchy of wolves when designing Grey wolf optimizer (GWO), alpha (α) Wolf is thought to be the fittest solution.[11] Consequently, the second and third best solutions are considered as beta (β) And delta (∞) Wolves, respectively. The remaining possible solutions are presumed to be omega (∞) Wolves. The hunting (Optimization) in the GWO algorithm is directed by α , β , and δ . The ω wolves trail these three wolves in their pursuit of the global optimum.

The encircling behaviour of the grey wolves during the hunting process is mathematically modelled as shown in [11] **Eq. (7-8)**.

$$\vec{D} = |\vec{C}.\vec{X_p}(t) - \vec{X}(t)|$$

$$\dots (7)$$

$$\vec{X(t+1)} = \vec{X_p}(t) - \vec{A}.\vec{D}$$

$$\dots (8)$$

Where,

 \vec{X} is the position vector of the grey wolf

 $\overrightarrow{X_p}$ is the position vector of the prey

t is the current iteration

 \vec{A} , \vec{C} are the coefficients vectors obtained by [11] Eq. (7a-8a)

$$\vec{A} = 2\vec{a} \cdot \vec{r_1} - \vec{a}$$

$$\dots (7a)$$

$$\vec{C} = 2\vec{r_2}$$

$$\dots (8a)$$

r1 and r2 are the random vectors in [0,1]

 \vec{a} linearly decreased from 2 to 0 over the course iterations

Grey wolves can recognise their prey's location and encircle it with the help of the alpha. However, we have no idea where the optimal (prey) is in an abstract search space. In order to mathematically replicate grey wolf hunting behaviour, we assume that the alpha, beta, and delta have superior knowledge of the probable location of prey. Therefore, the first three best solutions produced thus far obligate the other search agents such as the omegas to update their locations in accordance with the position of the best search agents. The following update formulas [2,11] **Eq. (9-15)** can be used to numerically model this process:

$$\overrightarrow{D_{\alpha}} = |\overrightarrow{C_{1}}.\overrightarrow{X_{\alpha}} - \overrightarrow{X}| \\
... (9)$$

$$\overrightarrow{D_{\beta}} = |\overrightarrow{C_{2}}.\overrightarrow{X_{\beta}} - \overrightarrow{X}| \\
... (10)$$

$$\overrightarrow{D_{\delta}} = |\overrightarrow{C_{3}}.\overrightarrow{X_{\delta}} - \overrightarrow{X}| \\
... (11)$$

$$\overrightarrow{X_{1}} = \overrightarrow{X_{\alpha}} - \overrightarrow{A_{1}}.\overrightarrow{D_{\alpha}}$$

$$... (12)$$

$$\overrightarrow{X_{2}} = \overrightarrow{X_{\beta}} - \overrightarrow{A_{2}}.\overrightarrow{D_{\beta}}$$

$$... (13)$$

$$\overrightarrow{X_{3}} = \overrightarrow{X_{\delta}} - \overrightarrow{A_{3}}.\overrightarrow{D_{\delta}}$$

$$... (14)$$

$$\overrightarrow{X}(t+1) = \frac{\overrightarrow{X_{1}} + \overrightarrow{X_{2}} + \overrightarrow{X_{3}}}{3}$$

$$... (15)$$

When the prey stops moving, the hunting behaviours are completed by attacking it. This can be modelled mathematically by reducing the value of the \vec{a} from 2 to 0 which decreases the value \vec{A} . When the values of \vec{A} falls in the interval [-1, 1], grey wolves attack the prey. If $|\vec{A}| > 1$ candidate solutions will diverge from the prey and converge toward the prey when $|\vec{A}| < 1$. \vec{C} is yet another GWO component that encourages exploration. The \vec{C} vector generates random values in the range [0, 2], with random weights for prey provided to stochastically emphasize (C > 1) or deemphasize (C < 1) the effect of prey in defining the distance.[2] To emphasise exploration not just during first iterations but also during final iterations, the C parameter was necessary to supply random values at all times. This component is quite useful for dealing with local optima stagnation, particularly in the final iterations. The pseudo code of the grey wolf optimizer is illustrated in [11] **Fig. 3**.

Begin of algorithm					
Initialize the grey wolf population $X_i = 1,2,n$					
Initialize the parameters A, a and C					
Calculate the fitness of each search agent					
X_{α} the best search agent					
X_{β} the second best search agent					
X_{δ} the third best search agent					
While t < Max_number of iterations					
for each search agent					
Update the position of the current search agent					
End					
Update the parameters a, A and C					
Calculate the fitness of search agent					
Update the fitness of search agent					
Update the X_{α}, X_{β} and X_{δ}					
t = t+1					
End					
return X_{lpha}					

Fig.3. Pseudo code of the GWO

Objective function

Various evaluation criteria have been published to evaluate the optimal design of HRES. The majority of these indices were based on specific economic factors such as NPC (also known as life cycle cost), levelized energy cost, system total cost, system annualised cost, average generating cost, and so on. [7] The major goal of the optimization problem in this project is to minimise total LPSP and COE such that a stable power source might be provided at a low cost.

4.1 Levelized cost of Energy (LCOE)

The average cost per kWh of useable electrical energy produced by the system is known as the levelized cost of energy (COE). To calculate the COE, the annualized cost of producing electricity is divided by the total electric load served, using the following equation [12] **Eq.16**:

$$COE = \frac{C_{t,ann}}{E_{t,ann}}$$
... (16)

Where,

C_{t, ann} is the total system annualized cost (\$/yrs.)

E_{t, ann} is the total electrical load served (kWh/yrs.)

The annualised value of the total net present cost is annualised cost of the system. And it is calculated by the formula [12] **Eq.17**

$$C_{t,ann} = CRF \times NPC$$
 ... (17)

NPC is the net present cost (\$) of a system is the present value of all the costs the system incurs over its lifetime, minus the present value of all the revenue it earns over its lifetime.[12] Costs include capital costs, replacement costs, O&M costs, fuel costs, emissions penalties, and the costs of buying power from the grid. Revenues include salvage value and grid sales revenue.

$$NPC = C_{pv} + C_{battery} + C_{inv} + C_{WT} + C_{DG} + C_{batrep} + C_{DGrep} + C_{0\&M} - C_{salvage}$$

$$\dots (18)$$

CRF is the capital recovery factor (CRF) is a ratio that is used to assess an annuity's present value (a series of equal annual cash flows). The capital recovery factor is calculated as follows [12] **Eq.19**

$$CRF = \frac{i(i+1)^{N}}{i(i+1)^{N} + 1}$$
... (19)

Where,

i is the real discount rate used to convert between one-time costs and annualized costs. It calculates the annual real discount rate (also called the real interest rate or interest rate) from the "Nominal discount rate" and "Expected inflation rate".[12] It is calculated as **Eq.20**

$$i = \frac{i - f}{1 + f}$$
... (20)

i is nominal discount rate (the rate at which money is borrowed)

f is the expected inflation rate

N denotes the project lifetime is the period of time during which the system's expenditures are incurred.

Inflation is factored out of the economic study by defining the real discount rate in this way.[12] As a result, all costs become actual costs, which are measured in constant dollars. The assumption is that all costs will experience the same rate of inflation.

4.2. Loss of Power Supply Probability

The percentage times of a loss of power supply, which means the combined (PV and energy storage or whatever the energy sources the microgrid design supposed to fulfil the demand) system is unable to serve the load on demand, is known as the LPSP. It is an excellent indicator of the system's performance for an expected or known load distribution and other system factors.[3]

$$LPSP = \frac{\sum_{t=1}^{8640} LPS(t)}{\sum_{t=1}^{8640} LD(t)}$$
... (21)

Where,

LPS is the loss power supply

LD is the load demand

The value of LPSP ranges between (0-1). When the LPSP value is zero, the energy demand is completely met. Similarly, LPSP equal to unity indicates that the energy demand has not been met.[3]

4.3. Design Variables

The design variables considered for the optimal design of the system are the number of PV panels, number of wind turbines, number of DG and autonomy days (AD). The limits of the variables are shown in [1] **Eq.22**

$$Design \, Variables = \begin{cases} 0 \le N^{pv} \le 45 \\ 0 \le N^{wt} \le 10 \\ 0 \le N^{DG} \le 4 \\ 0 \le N^{AD} \le 3 \end{cases}$$

$$\dots (22)$$

Load Following strategy

A reliable energy management system (EMS) is one of the most important factors to consider while developing a microgrid. The EMS's goal is to coordinate power flow among the numerous components that comprise the microgrid. EMS also helps to reduce battery degradation, increase the efficiency of the renewable energy system (PV and WT), and reduce fuel usage. It also improves system efficiency, resulting in substantial cost and energy savings. The charging and discharging of battery are determined by the power generated by the renewable sources and load demand at hour t. [1] The DGs are linked to the AC bus system and immediately provide the load requirement without the use of any conversion devices. This system also employs the dump load, which has the role of discharging excess power once the renewable energy power exceeds the charge and the battery banks are fully charged. The power management strategy of microgrid is shown in [1] **Fig.4**. The modes of operation of EMS controller are as follows:

Fig.4. Power management Strategy

Mode-1: If power generated by the renewable energy system exceed the load demand the excess power is used to charge the battery banks, the charging operation process is show in **Fig.5**.

Fig.5. Operation during battery charging

Mode-2: If the value of energy generated by the RE system exceeds the load demand and battery is fully charged, then excess energy will be squandered in order to dump load.

Mode-3: If the value of power generated by RE system is insufficient to fulfil energy demand and battery banks have sufficient energy to handle the remaining power, then the battery banks begin to discharge. When the battery banks fail to deliver the remaining power, the diesel generator is activated. The discharge process is shown in the **Fig.6**.

Fig.6. Operation during battery discharging

Mode-4: Energy generated by the RE system is insufficient to fulfil load demand and battery banks have insufficient energy to support the demand, then DG is activated and supply the load as well as charge the battery. When the RE system begins to generate power, the DG stops charging the battery banks. The operation of diesel generator is shown in **Fig.7**.

Fig.7. Operation of diesel generator

Simulation Results

The developed GWO code technique is implemented in the MATLAB and applied to the design of an autonomous hybrid microgrid PV-WT-Battery-DG system problem, which is intended to meet the energy demand of residential housing in an off-grid situation. The simulation reaches LPSP value close to zero percent, implying that the energy demand is completely supplied.[6] The electric demand for various solar insolation, ambient temperature, and wind speed is provided in **Fig.8-11**. The specifications and price of different design component is given in the **Table 1**.

6.1. Technical and Economic specifications of system components

Table 1. Specifications of system components

	Description	Parameters	Values	Units
A	Battery	Lifespan	2	Years
		Efficiency	85%	%
		Rated capacity	40	kWh
		Initial cost	280	\$/kW
В	WT	Lifespan	24	Years
		Cut-in speed	2.5	m/s
		Cut-out speed	25	m/s
		Efficiency	95	%
		Wind turbine	1000	\$
		regulator cost		
		Rated power	1	kW
		Price	3	\$/W
С	PV	Lifespan	24	Years
		Efficiency	95	%
		Rated Power	275	W

		PV regulator cost	1500	\$
		Initial cost	2.15	\$/W
D	Diesel generator	Rated power	4	kW
		Initial cost	1000	\$/kW
		Life time	24000	Hours
Е	Inverter	Lifespan	24	years
		Efficiency	92	%
		Initial cost	2500	\$
F	Economic	Real interest	13%	%
	parameters			
		Fuel inflation rate	5	%
		Running cost +	20	%
		O&M		
		Project lifetime	24	Years
		Discount rate	8	%
G	GWO	Wolf pack size	5	
		Iterations	100	

6.2. Climate consideration and load profile for system design

Fig.8. Temperature at Vellore

Figure shows the monthly average temperature at Vellore.

Fig.9. Irradiance at Vellore

Fig.10. Wind Speed (m/s)

Fig.11. Residential load profile (kW)

6.3. Grey Wolf Optimizer (GWO) Vs Other Meta-Heuristic Algorithms

To ensure the reliability and validity of the proposed GWO in predicting the optimal size of the autonomous hybrid microgrid system, three other nature-based metaheuristic algorithms, PSO, CS and GOA, with reference to base journal [14,1] are used with the same components and expenses as in the journal [1] to provide the best solution. The collected results are compared to the proposed GWO's outcomes show in the **Table 2**.

Table 2. Optimal sizing results obtained

Optimal design parameters	GWO	GOA	CS	PSO
LPSP	0	0	0	0
AD	3	3	3	2
Number of PV panel	21	26	29	30
Number of WT	5	4	6	7
Diesel generator capacity (kW)	4	4	4	4
Battery Capacity (kW)	40	40	40	40

COE (\$/kWh)	0.31094	0.3656	0.3662	0.3674
NPC (\$)	39273.5	47572.5	55346.25	58937.5

6.4. MATLAB SIMULATION OUTPUT

Fig.12. COE convergence graph

Fig.12 depicts the convergence characteristics of GWO for the autonomous microgrid. The convergence plot's abscissa represents the iteration estimate, while the ordinate represents the COE. The value of the COE drops during the iteration process, as seen in **Fig. 12**. This suggests that the optimization process minimises the COE by aiming for the smallest possible system size.[4] Because the wolf packs are dispersed at first, they eventually converge to the lowest value possible depending on the optimal solution direction provided by beta and delta wolves. Therefore, any decrease in the objective function is significant since it leads to additional information regarding the optimal size.

Fig.13 illustrates the convergence characteristics of LPSP. Over the iteration the value of loss of power supply probability converges to the least possible value which was approximately 0.043446 which is close to zero. Zero LPSP signifies there is no unmet load demand.

Fig.13. LPSP convergence graph

Fig.14. Battery backup power supply

As seen in **Fig. 14**, the battery is heavily used and fragile throughout the hot season, as opposed to the rainy and cold seasons. This is because to the depreciation in insolation or sun hours during rainy –winter seasons. Since production from PV is not able to meet demand, it

needs to be channelled to storage unit to be used by load.[4] Else work parallel with battery. **Fig.15** depicts the percentage of energy produced by the various system components over the year.

Fig.15. Annual contribution of system components

Fig.16. Hourly power generated by PV array

By **Fig.16** it is seen more populated in the left part of the year axis and scarce in the right part. As PV resource is more exploited in summer season than others.[5] According to wind speed **Fig.10**. Vellore experiences high speed during the months of Jun - August which

is 3624 hrs to 5832 hrs. That explains the high energy output by wind turbines in the **Fig.17** during that part of the year.

Fig.17. Power generated by wind turbine

Fig.18. Diesel output power

Fig.19. Electricity generation mix for a period of one year

Fig.18-19 illustrates the power output of diesel generator and electricity contribution for a period of one year.

6.5. HOMER SIMULATION RESULTS

Fig.20. Schematic of microgrid system

Table.3. WT HOMER Specifications

Wind turbine parameters	Values	
Manufacturer	Generic	
Model	GENERIC G1	
Rated power	1 kW	
Peak power	1.2 kW	
Cut-in speed	2.5 m/s	
Cut-out speed	25 m/s	
Survival wind speed	8 m/s	
Hub height	25	
Capital cost of wind form	3000 \$/kW	
Replacement cost of wind	3000 \$/kW	
O&M	100	
Life time	24	

Table.4. PV HOMER Specifications

PV parameters	Values
Manufacturer	Generic
Model	GENERIC FLAT PLATE
Rated power	1 kW
Capital cost of PV	2150 \$/kW
Replacement cost of PV	2150 \$/kW
O&M	10 \$/y
Life time	24
Derating factor	98.6 %

Table.5. DG HOMER Specifications

DG parameters	Values
Manufacturer	Generic
Model	Generic 10
Capacity	10 kW
Initial Capital of DG	5000 \$
Replacement cost of DG	5000 \$

O&M	0.3 \$/hr
Life time	24000 hrs
Fuel price	1 \$/L

Table.6. Battery HOMER Specifications

Battery parameters	Values
Manufacturer	Gild Meister
Model	CELLQUBE FB 10-40
Nominal voltage	48 V
Nominal capacity	40 kWh
Nominal capacity	833 Ah
Round trip efficiency	64 %
Max. charge current	200 A
Max. Discharge current	313A
Initial Capital of Battery	280 \$/kW
Replacement cost of Battery	280 \$/kW
O&M	40 \$/y
Life time	2 yrs.
Throughput	876000

Only the design configuration ideas were taken into account in this project. The load and other input parameters necessary throughout the simulation were kept the same for a valid comparison.[13] The **Table 7** shows the details of the various energy systems studied for the comparative analysis.

Table.7. Comparison of the technical and economic characteristics of the stand-alone hybrid energy systems

Systems	DG-	PV-WT-	PV-BT-DG	PV-WT-BT	PV-BT
	BT	DG-BT			
NPC	49638	22057	17978	17361	13233
COE	0.710	0.316	0.257	0.254	0.194
Operating Cost (\$/y)	1879	190.36	118.31	309.02	211.59
Initial capital (\$)	17319	18783	15944	12047	9594

Renewable fraction	0	98.7	97.1	100	100
(%)					

The Optimization Results in **Fig.21** lists all the feasible simulations for the selected sensitivity case. The results are categorized and filtered by system type. The numbers under the Architecture section indicate the presence of each type of component under consideration. Here the icons indicate the presence of, from left to right: PV, wind turbines, diesel generator, batteries and the converter. To the right are several columns that indicate a few summary values drawn from the simulation results of the least-cost system, such as the initial capital cost, operating cost, and total net present cost.

Fig.21. Techno-economic optimized results of feasible configurations for Vellore

Fig.22 displays cash flow as a stacked bar by components, with a different colour representing each of the components in the system. Each bar in the graph represents either a total inflow or total outflow of cash for a single year. The first bar, for year zero, each stacked bar represents the volume of cash flow for that particular component. Negative bars represent an outflow, or expenditure for fuel, equipment replacements, or operation and maintenance (O&M). Positive bar represents an inflow, which is the income from the salvage value of Generator at \$4,895 at the end of the project lifetime.[10]

Fig.22. Cash flow by components

Fig.23. Monthly electric production

The **Fig.23** shows details about the annual production and consumption of electrical energy by the system on monthly basis.[5] The brown area imply the PV generated power, orange imply generator and green imply wind energy.

Fig.24. Cost summary by cost type

The Fig.24 displays cost summary by cashflow in annualised value categorised by cost Type. The replacement cost \$129.75 is incurred by battery only since lifetime of the high-capacity battery is 2 yrs. only. Note that less money \$12.33 was expended on fuel resources because of the consumption and operation of the 1 generator with annual fuel consumption 25.1L/yr. The large costs, according to Fig24. came from solar PV \$433.91/yr. Solar PV total cost was also high because of the initial investment cost, while the O&M annual cost is very low \$32.14. Maintenance cost is highest in case of wind turbines \$100 annually was simply due to the high cost incurred during the maintenance of the turbine's moving parts. The replacement costs were relatively small, as the wind turbine lifetime, PV panels lifetime and converter exceeded the system's lifetime; hence, no money was spent on replacing these components.[9] Since running hours of diesel generator is optimised to low value 21 hrs /year to keep renewable factor 98.7% high, there was no need to replace generator during project lifetime.

Fig.25. Hourly time series plot

The hourly time series plot is displayed in **Fig.25** views the power generation from each component, how it served the load, the resources that power the components, as well as a number of key operational characteristics from each component for an entire year of your simulation. **Fig.25** depicts the real-time energy scheduling of generation and consumption across four days (August 23-26) Initially, on August 23 at 2200, AC load demand is high and wind power generation fulfils it completely and extra demand is compensated by the battery. Until August 24 at 1000, load demand is continuously decreasing due to off-peak hours until morning. During this time the PV generates power to meet the load and excess production is used to charge the battery. Same is the case until Aug 25 at 2200.As it can be seen diesel generator is not used in this complete time series, all loads are met my renewable sources only. On August 26 at 1000, extra PV power is utilized to charge the battery packs and battery SOC is improved to a higher value.

Fig.26. Discounted cash flow results

Fig.26 depicts nominal cash flow for the basic case (diesel only) and optimal case over a 24-year period (wind-battery-PV-DG). Throughout the project's lifespan, the cash flow for the optimal case is kept at a minimum constant, while the value for the base case is steadily increasing.[8] The usage of a diesel plant for electricity generation is especially frequent in isolated rural locations where there is no grid power supply or when the utility grid's energy supply is inconsistent. [6,8]

According to the results of the analysis, this system was the most cost-effective system with the lowest initial cost \$5000 of all the configurations evaluated. Its cost-effectiveness was primarily determined by the price of diesel. Furthermore, no renewable energy resources with high installation costs were included in its configuration, making the system less expensive to deploy.

Fig.27. Comparison of base and proposed system economics

The **Fig.27** shows economic measures representing the value of the difference between the two systems. The difference between the net present costs of the base case system and the current system is the present worth. A positive score shows that the existing approach saves money over the course of the project as compared to the baseline.[8] The discount rate at which the base case and current system have the same net present cost is known as the internal rate of return (IRR). HOMER computes the IRR by computing the discount rate that equals the present value of the difference between the two cash flow sequences [12].

Payback is the length of years it takes for the cumulative cash flow of the difference between the current system and the base case system to turn positive.[12] The payback period reflects how long it will take to recoup the difference in investment expenses between the current and base case systems.[12] The Simple payback 1.83 yrs. is defined as the point at which the nominal cash flow differential line crosses zero. The discounted payback 1.91 yrs. are the point at which the discounted cash flow differential line intersects zero.

Chapter 7

Conclusion and Future scope

A method for optimal sizing of hybrid renewable energy system comprising of PV/Wind turbine/Battery/Diesel generator based on grey wolf optimizer (GWO) is presented. The primary goal of the optimization problem is to reduce the Cost of energy (COE) and LPSP of the system and to determine the number of PV panels, diesel generators, wind turbines, and autonomous days.[15] The simulation was based on wind speed, ambient temperature, and sun irradiance data gathered from the NASA prediction of world-wide energy resources over a oneyear period. Findings show that, GWO performance in find the optimal sizing of the renewable system outweighs other meta-heuristic algorithms in finding the optimal solution. The GWO approach can achieve global optimal with relatively modest calculation requirements. The optimal system configuration consists of 21 panels of 0.275 kW each, 5 wind turbines each of 1kW and 1 diesel generator of 4 kW. PV contributes 27 % of the load demand followed by wind energy, battery and diesel at 22%, 27% and 24% respectively. Furthermore, the cost of energy (COE) of the system design achieved was nearly 0.31094 (\$/kW) and LPSP (0.043446) which is approximately 0. It is possible to infer that the suggested algorithm has significant merit in solving the optimal design problems of hybrid renewable energy systems and can also be implemented in many other domains.

Since diesel generator is applied, we can implement emission penalties and limit on carbon emission in optimization problem. More efficient and updated cost analysis inputs of the components can be implemented in the simulation process.

References

- [1] Abba Lawan Bukar, Chee Wei Tan, Kwan Yiew Lau, Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm, Solar Energy, Volume 188, 2019, Pages 685-696, ISSN 0038-092X,
- [2] Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis, Grey Wolf Optimizer, Advances in Engineering Software, Volume 69, 2014, Pages 46-61, ISSN 0965-9978
- [3] Tamer Khatib, Ibrahim A. Ibrahim, Azah Mohamed, A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system, Energy Conversion and Management, Volume 120,2016, Pages 430-448, ISSN 0196-8904,
- [4] Wei Cai, Xing Li, Akbar Maleki, Fathollah Pourfayaz, Marc A. Rosen, Mohammad Alhuyi Nazari, Dieu Tien Bui, Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology, Energy, Volume 201,2020,117480,

ISSN 0360-5442,

- [5] Mahdi Gharibi, Alireza Askarzadeh, Size optimization of an off-grid hybrid system composed of photovoltaic and diesel generator subject to load variation factor, Journal of Energy Storage, Volume 25, 2019, 100814, ISSN 2352-152X,
- [6] W.X. Shen, optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia, Renewable Energy, Volume 34, Issue 1, 2009, Pages 348-352, ISSN 0960-1481,
- [7] H. U. R. Habib, S. Wang, M. R. Elkadeem and M. F. Elmorshedy, "Design Optimization and Model Predictive Control of a Standalone Hybrid Renewable Energy System: A Case Study on a Small Residential Load in Pakistan," in IEEE Access, vol. 7, pp. 117369-117390, 2019, doi: 10.1109/ACCESS.2019.2936789
- [8] M. Nurunnabi, N. K. Roy, E. Hossain and H. R. Pota, "Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh," in IEEE Access, vol. 7, pp. 150120-150140, 2019, doi: 10.1109/ACCESS.2019.2945937.
- [9] J. O. Oladigbolu, M. A. M. Ramli and Y. A. Al-Turki, "Feasibility Study and Comparative Analysis of Hybrid Renewable Power System for off-Grid Rural Electrification in a Typical

- Remote Village Located in Nigeria," in IEEE Access, vol. 8, pp. 171643-171663, 2020, doi: 10.1109/ACCESS.2020.3024676.
- [10] A. K. Bansal, R. Kumar and R. A. Gupta, "Economic Analysis and Power Management of a Small Autonomous Hybrid Power System (SAHPS) Using Biogeography Based Optimization (BBO) Algorithm," in IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 638-648, March 2013, doi: 10.1109/TSG.2012.2236112.
- [11] A. Yahiaoui, F. Fodhil, K. Benmansour, M. Tadjine, N. Cheggaga, Grey wolf optimizer for optimal design of hybrid renewable energy system PV-Diesel Generator-Battery: Application to the case of Djanet city of Algeria, Solar Energy, Volume 158, 2017, Pages 941-951, ISSN 0038-092X,
- [12] https://www.homerenergy.com/products/pro/docs/index.html
- [13] Y. V. Pavan Kumar and R. Bhimasingu, "Renewable energy based microgrid system sizing and energy management for green buildings," in Journal of Modern Power Systems and Clean Energy, vol. 3, no. 1, pp. 1-13, March 2015, doi: 10.1007/s40565-015-0101-7.
- [14] Nur Dalilah Nordin, Hasimah Abdul Rahman, A novel optimization method for designing stand-alone photovoltaic system, Renewable Energy, Volume 89, 2016, Pages 706-715, ISSN 0960-1481
- [15] N. D. Nordin and H. A. Rahman, "Design and economic analysis in stand-alone photovoltaic system," 2014 IEEE Conference on Energy Conversion (CENCON), 2014, pp. 152-157, doi: 10.1109/CENCON.2014.6967493.

Curriculum vitae

Name : KUNAL CHANDA

Father's name : SOUMITRA CHANDRA

Date of Birth : 12-06-2000

Nationality : INDIAN

Sex : MALE

Company placed : Wipro, RIL

Permanent Address : Burdwan, West Bengal

Phone Number : +91 7000-306-847

Email Id : kunal.chandra2018@vitstudent.ac.in

CGPA: 8.14

Examinations taken:

- 1. GRE: -----
- 2. TOEFL: -----
- 3. CAT: -----

Curriculum vitae

Name : YANDRA MOHITH SAI

Father's name : Y.V.P. KUMAR

Date of Birth : 07-07-2001

Nationality : INDIAN

Sex : MALE

Company placed : -

Permanent Address : Tirupati, Andhra

Phone Number : +91 6303-875-346

Email Id : yandramohithsai@gmail.com

CGPA: 7.82

Examinations taken:

- 1. GRE: -----
- 2. TOEFL: -----
- 3. CAT: -----

Capstone Project

Project Title	Design & Economic Analysis of a Standalone Hybrid Renewable Energy System using Grey Wolf Optimizer
Team Members	Yandra Mohith Sai – 18BEE0255
(Names and Reg Nos.)	Kunal Chandra - 18BEE0246
Faculty Guide	Prof. Jayabarathi T
Semester / Year	VIII / IV Year
Project Abstract	The GWO algorithm is applied to determine the optimal system configuration and minimize the cost of power generation system in remote area.
Project Title	Design & Economic Analysis of a Standalone Hybrid Renewable Energy System using Grey Wolf Optimizer
List codes and standards that significantly affect your project. (Must)	The specified standards for inverters are IS 16221 (Part 2): 2015 (Safety of Power Converters for use in Solar Photovoltaic Power Systems) IS 16169:2014(Test Procedure of Islanding Prevention Measures for Utility–Interconnected Photovoltaic Inverters). registration from Bureau of Indian Standards (BIS),
List at least two significant realistic design constraints that are applied to your project. (Must)	On a residential House: - Number of PV Panels: - 45 Number of Diesel Generators: - 4 Number of Wind Turbines: - 5
Briefly explain two significant trade-offs considered in your design, including options considered and the solution chosen (Must)	 We considered number of houses as variable in our designing so that though initial cost of renewable energy source component appears high but the net cost to individual family is low enough to afford and considerable for investment. We have reduced the iteration and search wolves to reduce MATLAB simulation run time but higher wolves and iteration may provide finer results than ours.
Describe the computing aspects, if any, of your project. Specifically identifying hardware-software	 For the GWO algorithm, there is need for production of random real values between the boundary limits. Random number generation is faster in MATLAB than others such as Python, JAVA, etc. HOMER Energy's HOMER Pro® microgrid software is the global standard for microgrid design optimization in all sectors,

trade-offs, interfaces,	from village electricity and island utilities to grid-connected
and/or interactions	campuses and military locations. HOMER (Hybrid Optimization
	of Multiple Electric Renewables) is a programme that makes
	evaluating designs for both off-grid and grid-connected power
	systems easier. These selections are complicated by the
	enormous number of technology options, cost variations, and
	energy resource availability. The optimization and sensitivity
	analysis techniques in HOMER make evaluating the many
	different system configurations a lot easier.