Relational algebra exercises #2

DBM1

September 22, 2015

Operator	Notation	Meaning
Union	$r \cup s$	$\{t \mid t \in r \lor t \in s\}$
Intersection	$r \cap s$	$\{t \mid t \in r \land t \in s\}$
Difference	$r \setminus s$	$\{t \mid t \in r \land t \notin s\}$
Projection	$\pi_{A_1,\ldots,A_n}(r)$	$\{t _{A_1,\dots,A_n} \mid t \in r\}$
Selection	$\sigma_C(r)$	$\{t \mid t \in r \land C(t)\}$
Renaming	$\rho_{\gamma}(r)$	$\{t.\gamma^{-1} \mid t \in r\}$
Cartesian product	$r \times s$	$\{t.\gamma_R \cup t'.\gamma_S \mid t \in r \land t' \in s\}$
Natural join	$r\bowtie s$	$\{t \cup t' \mid t \in r \land t' \in s\}$
Theta join	$r\bowtie_{\theta} s$	$\{t \mid t \in (r \times s) \land \theta(t)\}$
Division	$r \div s$	$\{t \mid \forall t' \in s, t \cup t' \in r\}$

Table 1: Relational algebra cheat sheet

Exercise 1

Consider the following database schema:

- Visits(Drinker, Bar)
- Likes(Drinker, Beer)
- Serves(Bar, Beer)

and the following set of constraints:

- $\pi_{Drinker}(Visits) = \pi_{Drinker}(Likes)$
- $\pi_{Bar}(Serves) = \pi_{Bar}(Visits)$
- $\pi_{Beer}(Likes) = \pi_{Beer}(Serves)$

Formulate the following queries in relational algebra. Give the inline and the tree representations of each resulting expression.

- 1. The drinkers that visit a bar that serves a beer that they like.
- 2. All the drinkers with the beers they do not like.
- 3. The drinkers that like all beers in all bars that they visit.

- 4. The pairs of beers that are not served in a common bar.
- 5. The pairs of beers that are served in two different bars.

Exercise 2

Let R and S be two relation schemas defined over the same set of attributes, i.e. $\Omega_R = \Omega_S$. Let $X \subseteq \Omega_R$, $A \in \Omega_R \setminus X$, $c \in dom(A)$ and F a formula over R.

Give 2 boundaries to each of the following expressions.

- 1. $|\sigma_F(R)|$
- 2. $|R \cup S|$
- 3. $|R \setminus S|$
- 4. $|\pi_A(R)|$
- 5. $|R \bowtie S|$

Exercise 3

Let R_1, R_2, S be three relation schemas with $\Omega_{R_1} = \Omega_{R_2} = \{A, B, C\}$ and $\Omega_S = \{C\}$, and F = (B = C) a formula.

For each of the following relation algebra equivalences, give a proof it holds.

- 1. $\pi_A(R_1 \cup R_2) = \pi_A(R_1) \cup \pi_A(R_2)$
- 2. $\sigma_F(R_1 \cup R_2) = \sigma_F(R_1) \cup \sigma_F(R_2)$
- 3. $\sigma_F(R_1 \setminus R_2) = \sigma_F(R_1) \setminus \sigma_F(R_2)$
- 4. $\sigma_F(R_2 \bowtie S) = \sigma_F(R_2) \bowtie \rho_{C \to B}(S)$

For each of the following relation algebra equivalences, give a a counter-example showing it does not hold.

- 5. $\pi_A(R_1 \setminus R_2) = \pi_A(R_1) \setminus \pi_A(R_2)$
- 6. $\pi_A(R_1 \cap R_2) = \pi_A(R_1) \cap \pi_A(R_2)$
- 7. $(R_1 \div S) \times S = R_1$
- 8. $(R_1 \cup R_2) \div S = (R_1 \div S) \cup (R_2 \div S)$