《高等数学》单元自测题

第二章 导数与微分

专业	班级	姓名_	学号	
一、判断题:				
1 、 $f(x)$ 在 x_0 点页	「导,则 $f(x)$ 在 x_0 点连续	. ()		
2 、 $f(x)$ 在 x_0 点道	E续,则 $f(x)$ 在 x_0 点可导	。()		
3 、 $f(x)$ 在 x_0 点可	丁导,则 $\lim_{x \to x_0} f(x)$ 存在。()		
$4、 \lim_{x \to x_0} f(x)$ 存在	,则 <i>f</i> (x) 在 x ₀ 点可导。()		
5 、 $f(x)$ 在 x_0 点不	不可导,则 $f(x)$ 在 x_0 点不	连续。()		
6、 <i>f</i> (x) 在 x ₀ 点不	下连续,则 $f(x)$ 在 x_0 点不	可导。()		
二、单项选择题:				
$1, \stackrel{\text{in}}{\boxtimes} \lim_{h \to 0} \frac{f(x_0)}{}$	$\frac{-f(x_0+2h)}{h}=-3$, \mathbb{M} ()		
(A) $f'(x_0) = 2$; (B) f'($(x_0) = -3;$		
(C) $f'(x_0) = \frac{3}{2}$	(D) f'	'(x ₀)存在与否无法矿	角定.	
2、 设 f(0) = 0,	且 $\lim_{x\to 0} \frac{f(2x)}{x} = 2$,则()		
(A) $f'(0) = 1$;	(B)	f'(0) = 2;		
(C) $f'(0) = \frac{1}{2}$; (D)	f′(0)存在与否无法	确定.	
3、设函数 f(x)=	$= \begin{cases} a \sin x, & x < 0 \\ \ln(b+x), & x \ge 0 \end{cases}$ 在点	.x = 0 处可导,则()	
(A) $a = 0, b = 1$; (B) $a = 1, b = 1$;	(C) $a = 0, b = e$;	(D) $a = 1, b = e$.	
4、设φ(x)在点:	$x = 0$ 处连续,且 $\varphi(0) = 0$),若 $f(x) = x \varphi(x)$	(x),则 $f(x)$ 在 $x=0$ 点处()
(A) 不连续;	В) 连续但不可导;		
(C) 可导, 且 f	$f'(0) = \varphi'(0); \qquad (D)$) 可导, 且 f ′(0) = q	p(0).	

三、 计算下列各题:

1、设
$$y = x \arcsin \frac{x}{2} + \tan^{3}(2x+1)$$
,求 y' .

2、设
$$y = f^2(x^2)$$
, 其中函数 $f(x)$ 可导, 求 y' .

3、设
$$y = (1 + x^2)^x$$
, 求 y' .

$$4, \quad \overset{\sim}{\not \boxtimes} y = \sqrt{\frac{x-5}{\sqrt[3]{x^2+2}}}, \quad \overset{\sim}{\not \boxtimes} y'.$$

5、设
$$y = x^2 \ln x + \sin^2 2x$$
,求 y'' .

6、设
$$y = y(x)$$
 是由方程 $e^y = y + x$ 所确定的隐函数,(1) 求 $\frac{dy}{dx}$;(2) 求 $\frac{d^2y}{dx^2}$.

8、设
$$y = \ln \sqrt{1 + x^2}$$
,求 dy .

四、应用题:

1、已知曲线 y = f(x)过(1,0)点,且 $\lim_{x\to 0} \frac{f(1-2x)}{x} = 1$,求曲线在点(1,0)处的切线方程.

2、设水管壁的正截面是一个圆环, 其外直径为20 cm, 壁厚为0.4 cm, 试求此圆环面积的近似值.

五、证明题:

设 $y=f(e^x)$,且函数 f(x)具有二阶导数,证明: $y''-y'=e^{2x}f''(e^x)$ 。