MINERÍA DE DATOS

Maximiliano Ojeda

muojeda@uc.cl

Aprendizaje de Máquinas

Darle a los computadores la habilidad de realizar una actividad, sin programarlos explícitamente.

La **minería de datos** y el **aprendizaje de máquina** se traslapan y no tienen límites claros

Programación Explícita

- El programador escribe **reglas explícitas** para que la máquina resuelva un problema.
- Es decir, se le dice exactamente qué hacer paso a paso
- No "aprende" más allá de lo que se le pide

Kasparov vs Deep Blue (1997)

Aprendizaje de Máquinas

- En lugar de darle reglas, se le entrega ejemplos (datos) y un algoritmo que aprende patrones a partir de ellos.
- La máquina crea su propio modelo de reglas internas
- El modelo aprende automáticamente qué palabras, estructuras o patrones indican spam, incluso cosas que un humano no pensó.

Lee Sedol vs AlphaGo (2016)

Aprendizaje Supervisado

- Clasificación: predecir clases o etiquetas
 - Ejemplo: detectar si un correo es spam o no spam.
- Regresión: predecir valores numéricos
 - Ejemplo: estimar el precio de una casa.

Aprendizaje No Supervisado

- Clustering: descubrir **grupos ocultos** en los datos.
 - o Ejemplo: segmentar clientes según hábitos de compra.

- Técnica estadística donde se trata de **ajustar parámetros de una función lineal** sobre un conjunto de datos
- Se busca **predecir el valor de una variable dependiente** cuantitativa (predicha) utilizando variables independientes (predictores)
- Finalmente, queremos determinar cómo afecta nuestra variable independiente a la dependiente

$$Y = \alpha + \beta X$$

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
1	-114.47	34.40	19.0	7650.0	1901.0	1129.0	463.0	1.8200	80100.0
2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
4	-114.57	33.57	20.0	1454.0	326.0	624.0	262.0	1.9250	65500.0
16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0
16997	-124.30	41.84	17.0	2677.0	531.0	1244.0	456.0	3.0313	103600.0
16998	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0
16999	-124.35	40.54	52.0	1820.0	300.0	806.0	270.0	3.0147	94600.0

- ullet Dada una tabla con un conjunto de atributos numéricos $\,x_1,x_2,\ldots,x_n\,$
- ullet Se busca predecir un atributo numérico y
- ullet Asumimos que esta tabla representa una función $f:\mathbb{R}^n o\mathbb{R}$
- Y que dicha función, es una función lineal, es decir:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n$$

Linear regression

Relación lineal

• La relación entre la variable dependiente y las independientes debe ser aprox lineal.

Independencia de los errores

• Los errores (residuos) deben ser independientes entre sí

Homoscedasticidad (varianza constante)

• La dispersión de los errores debe ser aproximadamente la misma a lo largo de todos los valores de X.

Normalidad de los errores

• Los residuos deben seguir aproximadamente una distribución normal.

No multicolinealidad (en regresión múltiple)

ullet Cuando hay varias variables $x_1, x_2, \ldots x_n$ estas no deben estar fuertemente correlacionadas entre sí.

La recta no pasará exactamente por todos los puntos

$$e_i=y_i-\hat{y}_i=y_i-(eta_0+eta_1x_i)$$

El método de mínimos cuadrados busca la recta que minimiza la suma de los errores al cuadrado

$$ext{SSE} = \min \sum_{i=1}^n e_i^2 \ = \ \min \sum_{i=1}^n \left(y_i - eta_0 - eta_1 x_i
ight)^2 \ egin{subarray}{c} z_0 \ > \end{array} \ egin{subarray}{c} z_0 \ > \\ \ egin{subarray}{c} z_0 \ > \end{array} \ egin{subarray}{c} z_0 \ > \\ \ egin{subarray}{c} z_0 \ > \end{array} \ egin{subarray}{c} z_0 \ > \\ \ egin{subarray}{c} z_0 \ > \\ \ eg$$

Queremos minimizar la suma de errores al cuadrado (SSE):

$$S(eta_0,eta_1) = \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2$$

Minimizando vamos a llegar a esto (en la siguiente diapositiva veremos derivarlo):

$$\hat{eta}_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2} \ \hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$

Derivada respecto a β_0

$$rac{\partial S}{\partial eta_0} = -2 \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i) = 0$$

$$\sum y_i = neta_0 + eta_1 \sum x_i$$

$$eta_0 = ar{y} - eta_1 ar{x}$$

Derivada respecto a β_1

$$rac{\partial S}{\partial eta_1} = -2 \sum_{i=1}^n x_i (y_i - eta_0 - eta_1 x_i) = 0$$

$$\sum x_i y_i = eta_0 \sum x_i + eta_1 \sum x_i^2$$

Sustituimos $eta_0 = ar{y} - eta_1 ar{x}$

$$\sum x_i y_i = (ar y - eta_1 ar x) \sum x_i + eta_1 \sum x_i^2$$

$$\hat{eta}_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$

Lo anterior se puede resumir algebráciamente en

$$\hat{eta} = (X^T X)^{-1} X^T \mathbf{y}$$

donde,

$$\hat{oldsymbol{eta}}=(\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_d)$$

$$\mathbf{y}=(y_1,y_2,\ldots,y_n)$$

Regresión Polinómica

Regresión Polinómica

$$y=eta_0+eta_1x+eta_2x^2+eta_3x^3+\cdots+eta_dx^d+arepsilon$$

$$X_{poly} = egin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^d \ 1 & x_2 & x_2^2 & \cdots & x_2^d \ dots & dots & dots & \ddots & dots \ 1 & x_n & x_n^2 & \cdots & x_n^d \end{bmatrix}$$

$$\hat{oldsymbol{eta}} = (X_{poly}^ op X_{poly}^{})^{-1} X_{poly}^ op y$$

- Crea una matriz con todas las potencias de X
- Luego aplica exactamente el mismo método de OLS que en la regresión lineal clásica
- El "secreto" es que el modelo sigue siendo lineal en los parámetros

Aprendizaje Automático: Clasificación

- La regresión lineal predice valores **numéricos continuos**, pero muchas veces queremos **predecir categorías** (spam/no spam, 0/1)
- No podemos usar una recta cualquiera porque podría dar valores fuera de [0,1]

$$Y = \alpha + \beta X$$

La regresión logística está pensada para variables categóricas binarias (0 o 1).

No podemos usar una recta cualquiera porque podría dar valores fuera de [0,1]. entonces usamos una función que "apriete" los valores a ese rango

La probabilidad de que *y=1* dado *x* se modela como:

$$P(y=1 \mid x) \ = \ \sigma(eta_0 + eta_1 x) \ = \ rac{1}{1 + e^{-(eta_0 + eta_1 x)}}$$

En general, con varias variables:

$$P(y=1 \mid x) \ = \ rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_p x_p)}}$$

En regresión lineal usamos mínimos cuadrados, en regresión logística usamos máxima verosimilitud

$$L(oldsymbol{eta}) \ = \ \prod_{i=1}^n P(y_i \mid \mathbf{x}_i)$$

o en su forma logarítmica

$$\ell(oldsymbol{eta}) \ = \ \sum_{i=1}^n \left[\, y_i \log(\hat{p}_i) \ + \ (1-y_i) \log(1-\hat{p}_i) \,
ight]$$

Una vez calculada la probabilidad, se decide:

$$\hat{y} \; = \; egin{cases} 1, & \sin P(y=1 \mid \mathbf{x}) \geq 0.5, \ 0, & \sin P(y=1 \mid \mathbf{x}) < 0.5. \end{cases}$$

