Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: CHTEW19070071 Report verification:

Project No.....: SHT1906035901EW

FCC ID.....: 2AB2FLS-H28Y

Applicant's name.....: Lisheng (Fujian) Communications Co., Ltd.

Address...... 5#, Chongxiang St., Econ. & Tech. Area, Quanzhou, China

Manufacturer...... Lisheng (Fujian) Communications Co., Ltd.

Address...... 5#, Chongxiang St., Econ. & Tech. Area, Quanzhou, China

Test item description: IP Walkie Talkie

Trade Mark Lisheng

Model/Type reference...... H-28Y

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample............ Jun 19, 2019

Date of testing...... Jun 20, 2019- Jul 16, 2019

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Silvia Li

Silviali

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang

Aaron.Fang

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 58

Report No.: CHTEW19070071 Page: 2 of 58 Issued: 2019-07-17

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	22
5.6.	Restricted band	28
5.7.	Band edge and Spurious Emissions (conducted)	33
5.8.	Spurious Emissions (radiated)	50
<u>6.</u>	TEST SETUP PHOTOS	57
7.	EXTERANAL AND INTERNAL PHOTOS	58

Report No.: CHTEW19070071 Page: 3 of 58 Issued: 2019-07-17

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB 558074 D01 15.247 Meas Guidance v05:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-07-17	Original

Report No.: CHTEW19070071 Page: 4 of 58 Issued: 2019-07-17

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Tony Duan
Line Conducted Emissions (AC Main)	15.207	PASS	Tony Duan
Conducted Peak Output Power	15.247(b)(3)	PASS	Bruce Wong
Power Spectral Density	15.247(e)	PASS	Bruce Wong
6dB Bandwidth	15.247(a)(2)	PASS	Bruce Wong
Restricted band	15.247(d)/15.205	PASS	Bruce Wong
Spurious Emissions	15.247(d)/15.209	PASS	Bruce Wong

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW19070071 Page: 5 of 58 Issued: 2019-07-17

3. **SUMMARY**

3.1. Client Information

Applicant:	Lisheng (Fujian) Communications Co., Ltd.		
Address:	5#, Chongxiang St., Econ. & Tech. Area, Quanzhou, China		
Manufacturer:	Lisheng (Fujian) Communications Co., Ltd.		
Address:	5#, Chongxiang St., Econ. & Tech. Area, Quanzhou, China		

3.2. Product Description

5.2. I Toduct Description				
Name of EUT:	IP Walkie Talkie			
Trade Mark:	Lisheng			
Model No.:	H-28Y			
Listed Model(s):	-			
Power supply:	DC 3.7V			
Adapter information:	Model:LD-0502C Input:100-240Va.c., 50/60Hz, 0.15A Output:5.0Vd.c., 2000mA			
Hardware version:	DJ026_MB_V4.0			
Software version: T53				
WIFI				
Supported type:	802.11b/802.11g/802.11n(HT20)/802.11n(HT40)			
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)/802.11n(HT40)			
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20) 2422MHz~2452MHz for 802.11n(HT40)			
Channel number:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)			
Channel separation:	5MHz			
Antenna type:	FPC Antenna			
Antenna gain:	0dBi			

Report No.: CHTEW19070071 Page: 6 of 58 Issued: 2019-07-17

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g	/n(HT20)	802.11n(HT40)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	01	-	
02	2417	02	-	
03	2422	03	2422	
04	2427	04	2427	
05	2432	05	2432	
06	2437	06	2437	
07	2442	07	2442	
08	2447	08	2447	
09	2452	09	2452	
10	2457	10	-	
11	2462	11	-	

> Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

supplied by the lab

0	/	Manufacturer:	/
		Model No.:	/
		Manufacturer:	/
		Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW19070071 Page: 7 of 58 Issued: 2019-07-17

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: CHTEW19070071 Page: 8 of 58 Issued: 2019-07-17

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.02 dB	(1)
Radiated Emissions below 1GHz	4.90 dB	(1)
Radiated Emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	70 Hz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW19070071 Page: 9 of 58 Issued: 2019-07-17

4.5. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27	
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26	
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26	
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26	
•	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14	
•	Test Software	R&S	ES-K1	N/A	N/A	N/A	
0	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27	
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27	
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27	
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26	
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26	
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26	

•	Radiated Emission-6th test site						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29	
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27	
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19	
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04	
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14	
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27	
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27	
•	Test Software	R&S	ES-K1	N/A	N/A	N/A	
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A	
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A	

•	Radiated emission-7th test site						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29	
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26	
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26	
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13	
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13	
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25	
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14	
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14	
•	Test Software	Audix	E3	N/A	N/A	N/A	

Report No.: CHTEW19070071 Page: 10 of 58 Issued: 2019-07-17

•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	RF Conducted Method											
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)						
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27						
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28						
•	OSP	R&S	OSP120	101317	N/A	N/A						
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28						
0	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A						

Report No.: CHTEW19070071 Page: 11 of 58 Issued: 2019-07-17

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

REQUIREMENT:

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

□ Passed	☐ Not Applicable
----------	------------------

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: CHTEW19070071 Page: 12 of 58 Issued: 2019-07-17

5.2. Conducted Emissions (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- Margin= Limit -Level

Report No.: CHTEW19070071 Page: 13 of 58 Issued: 2019-07-17

ne:			L				
Level [dBµV]							
80							
70			 +			 	
			į	<u> </u>		i	
60		+-+- -+				i	
50							
40	<u>-</u>	<u> </u>	 				
30 7	4/ ₄ / ₄		A PROPERTY AND PRO		+-+		
20	~~ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T =/0)= - ====	' X ' X ' X			X	elen-
10		M	Tanahahahahahan				A Property
150k 300k	400k 600k	800k 1M	2M		1 6M 8M 10M	20	M 30N
			Frequency [Hz]			
_							
Frequency	Level	Transd	Limit.	Margin	Detector	Line	PE
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
				_	Detector	Line L1	PE GND
MHz	dΒμV	dB	dΒμV	dB			
MHz 0.154500	dВµV 45.50	dB 10.0	dBµV 66	dB 20.3	QP	L1	GND GND
MHZ 0.154500 0.429000	dBμV 45.50 33.10	dB 10.0 9.9	dΒμV 66 57	dB 20.3 24.2	QP QP	L1 L1	GND GND GND
MHz 0.154500 0.429000 1.716000	dВµV 45.50 33.10 24.60	dB 10.0 9.9 10.1	dBμV 66 57 56	dB 20.3 24.2 31.4	QP QP QP	L1 L1 L1	GND
MHZ 0.154500 0.429000 1.716000 2.364000	dBμV 45.50 33.10 24.60 25.20	dB 10.0 9.9 10.1 10.1	dBμV 66 57 56 56	dB 20.3 24.2 31.4 30.8	QP QP QP QP	L1 L1 L1 L1	GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500	dBμV 45.50 33.10 24.60 25.20 19.80 25.60	dB 10.0 9.9 10.1 10.1 10.4 10.5	dBμV 66 57 56 56 60	dB 20.3 24.2 31.4 30.8 40.2 34.4	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level	dB 10.0 9.9 10.1 10.1 10.4 10.5	dBμV 66 57 56 56 60 60	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin	QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500	dBμV 45.50 33.10 24.60 25.20 19.80 25.60	dB 10.0 9.9 10.1 10.1 10.4 10.5	dBμV 66 57 56 56 60	dB 20.3 24.2 31.4 30.8 40.2 34.4	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV	dB 10.0 9.9 10.1 10.4 10.5 Transd dB	dBμV 66 57 56 56 60 60 Limit dBμV	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz 0.159000	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV	dB 10.0 9.9 10.1 10.4 10.5 Transd dB 10.0	dBμV 66 57 56 56 60 60 Limit dBμV	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1 Line	GND GND GND GND GND FE
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz 0.159000 0.442500	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV 33.40 27.50	dB 10.0 9.9 10.1 10.1 10.4 10.5 Transd dB 10.0 9.9	dBμV 66 57 56 56 60 60 Limit dBμV	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB 22.1 19.5	QP QP QP QP QP QP AV	L1 L1 L1 L1 L1 Line Line	GND GND GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz 0.159000 0.442500 1.023000	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV 33.40 27.50 19.00	dB 10.0 9.9 10.1 10.4 10.5 Transd dB 10.0 9.9 10.1	dBμV 66 57 56 56 60 60 Limit dBμV 56 47 46	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB 22.1 19.5 27.0	QP QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 L1 Line Line	GND GND GND GND GND GND GND
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz 0.159000 0.442500 1.023000 2.458500	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV 33.40 27.50 19.00 18.00	dB 10.0 9.9 10.1 10.4 10.5 Transd dB 10.0 9.9 10.1 10.1	dBμV 66 57 56 56 60 60 Limit dBμV 56 47 46 46	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB 22.1 19.5 27.0 28.0	QP QP QP QP QP QP Detector AV AV AV	L1 L1 L1 L1 L1 L1 Line L1 L1 L1	GND GND GND GND GND GND GNI GNI GNI
MHz 0.154500 0.429000 1.716000 2.364000 10.783500 15.031500 Frequency MHz 0.159000 0.442500 1.023000	dBμV 45.50 33.10 24.60 25.20 19.80 25.60 Level dBμV 33.40 27.50 19.00	dB 10.0 9.9 10.1 10.4 10.5 Transd dB 10.0 9.9 10.1	dBμV 66 57 56 56 60 60 Limit dBμV 56 47 46	dB 20.3 24.2 31.4 30.8 40.2 34.4 Margin dB 22.1 19.5 27.0	QP QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 L1 Line Line	GND GND GND GND GND GND GND

Report No.: CHTEW19070071 Page: 14 of 58 Issued: 2019-07-17

ne:			N				
Level [dBµV]							
80							
70		+-+- -+	+	+	+-+-+-		 4
60			1		1 1 1 1 1	 	1
						į	
50 x		† - † - - † ·	 			İ	Ï
40		<u> </u>					
30 /	WWWWWWWWWWWW	+ - + - i- + Whateler is a second	ــ ــ ــ ـــــــــــــــــــــــ	أدحان حصاب		- 	j
20	1.70 - MI	#1_ # _ #	TIC THE THE COLUMN	The best of the last of the last		عادكان	MALE.
10	. IL. D. J. J. J. J. W.	KOPAT-NON-NAHAHAMANA	The state of the s	Carried Control Control			
0 4504	1001- 0001-	0001: 484	2014	204 404 50	4 014 014 4014	201	4 0014
150k 300k	400k 600k	800k 1M	2M Frequency [/I 6M 8M 10M	20N	1 30M
x x x MES GM180720)5070 fin			<u> </u>			
P	T 1	m 1	- 1 - 1 - 1				
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
rrequency MHz	dBhA	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
				_	Detector QP	Line N	PE GNE
MHZ	dΒμV	dB	dΒμV	dB			
MHz 0.154500	dBμV 45.40	dB 10.0	dBµV 66	dB 20.4	QP	N	GNE
MHZ 0.154500 0.438000	dBμV 45.40 29.20	dB 10.0 9.9	dBμV 66 57	dB 20.4 27.9	QP QP	N N	GNE GNE
MHz 0.154500 0.438000 0.541500	dBμV 45.40 29.20 25.20	dB 10.0 9.9 10.0 10.0	dBμV 66 57 56	dB 20.4 27.9 30.8	QP QP QP	N N N	GNE GNE GNE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500	dBμV 45.40 29.20 25.20 21.40	dB 10.0 9.9 10.0 10.0	dВµV 66 57 56 56	dB 20.4 27.9 30.8 34.6	QP QP QP QP	N N N	GNE GNE GNE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500 14.509500	dBμV 45.40 29.20 25.20 21.40 21.00 26.40	dB 10.0 9.9 10.0 10.1 10.1	dBμV 66 57 56 56 56	dB 20.4 27.9 30.8 34.6 35.0 33.6	QP QP QP QP QP QP	N N N N N	GNE GNE GNE GNE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500	dBμV 45.40 29.20 25.20 21.40 21.00	dB 10.0 9.9 10.0 10.0	dВµV 66 57 56 56	dB 20.4 27.9 30.8 34.6 35.0	QP QP QP QP QP QP	N N N N	GNE GNE GNE GNE GNE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500 14.509500 Frequency	dBμV 45.40 29.20 25.20 21.40 21.00 26.40 Level dBμV	dB 10.0 9.9 10.0 10.0 10.1 10.5 Transd dB	dBμV 66 57 56 56 60 Limit dBμV	dB 20.4 27.9 30.8 34.6 35.0 33.6 Margin dB	QP QP QP QP QP QP QP	N N N N N	GNE GNE GNE GNE GNE
MHz 0.154500 0.438000 0.541500 0.798000 2.386500 14.509500 Frequency MHz 0.195000	dBμV 45.40 29.20 25.20 21.40 21.00 26.40 Level dBμV 26.20	dB 10.0 9.9 10.0 10.0 10.1 10.5 Transd dB	dBμV 66 57 56 56 60 Limit dBμV	dB 20.4 27.9 30.8 34.6 35.0 33.6 Margin dB 27.6	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE PE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500 14.509500 Frequency MHZ 0.195000 0.438000	dBμV 45.40 29.20 25.20 21.40 21.00 26.40 Level dBμV 26.20 17.90	dB 10.0 9.9 10.0 10.0 10.1 10.5 Transd dB 10.0 9.9	dBμV 66 57 56 56 60 Limit dBμV	dB 20.4 27.9 30.8 34.6 35.0 33.6 Margin dB 27.6 29.2	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE FE
MHZ 0.154500 0.438000 0.541500 0.798000 2.386500 14.509500 Frequency MHZ 0.195000 0.438000 2.454000	dBμV 45.40 29.20 25.20 21.40 21.00 26.40 Level dBμV 26.20 17.90 11.00	dB 10.0 9.9 10.0 10.1 10.5 Transd dB 10.0 9.9 10.1	dBμV 66 57 56 56 60 Limit dBμV 54 47	dB 20.4 27.9 30.8 34.6 35.0 33.6 Margin dB 27.6 29.2 35.0	QP QP QP QP QP QP Detector AV AV	N N N N N Line	GNE GNE GNE GNE GNE GNE GND GND
0.154500 0.438000 0.541500 0.798000 2.386500 14.509500 Frequency MHz 0.195000 0.438000	dBμV 45.40 29.20 25.20 21.40 21.00 26.40 Level dBμV 26.20 17.90	dB 10.0 9.9 10.0 10.0 10.1 10.5 Transd dB 10.0 9.9	dBμV 66 57 56 56 60 Limit dBμV	dB 20.4 27.9 30.8 34.6 35.0 33.6 Margin dB 27.6 29.2	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE FE

Report No.: CHTEW19070071 Page: 15 of 58 Issued: 2019-07-17

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	01	11.67	9.92		
802.11b	06	12.02	9.89	≤30.00	Pass
	11	12.12	9.99		
	01	13.00	8.67		
802.11g	06	13.15	8.52	≤30.00	Pass
	11	13.04	9.22		
	01	15.09	11.17		
802.11n(HT20)	06	15.25	11.18	≤30.00	Pass
	11	14.28	10.41		
	03	15.78	11.86		
802.11n(HT40)	06	16.05	12.10	≤30.00	Pass
	09	16.07	12.15		

Report No.: CHTEW19070071 Page: 16 of 58 Issued: 2019-07-17

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configure the spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW19070071 Page: 17 of 58 Issued: 2019-07-17

Туре	Channel	Power Spectral Density (dBm/30KHz)	Limit (dBm/3KHz)	Result
	01	-7.24		
802.11b	06	-7.27	≤8.00	Pass
	11	-7.14		
	01	-12.25		
802.11g	06	-12.66	≤8.00 Pass	
	11	-12.21		
	01	-9.72		
802.11n(HT20)	06	-9.75	≤8.00	Pass
	11	-9.90		
	03	-13.28		
802.11n(HT40)	06	-13.30	≤8.00	Pass
	09	-12.20		

Test plot as follows:

Report No.: CHTEW19070071 Page: 18 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 19 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 20 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 21 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 22 of 58 Issued: 2019-07-17

5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW19070071 Page: 23 of 58 Issued: 2019-07-17

Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
	01	9.78			
802.11b	06	10.08	≥500	Pass	
	11	9.75			
	01	16.62			
802.11g	06	16.65	≥500	Pass	
	11	16.65			
	01	17.88			
802.11n(HT20)	06	17.88	≥500	Pass	
	11	17.88			
	03	36.66			
802.11n(HT40)	06	36.60	≥500	Pass	
	09	36.60			

Test plot as follows:

Report No.: CHTEW19070071 Page: 24 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 25 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 26 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 27 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 28 of 58 Issued: 2019-07-17

5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5) The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

Report No.: CHTEW19070071 Page: 29 of 58 Issued: 2019-07-17

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	13.59	28.05	7.73	0.00	49.37	74.00	-24.63	Vertical	Peak
2390.01	13.51	27.65	7.84	0.00	49.00	74.00	-25.00	Vertical	Peak
2310.00	14.52	28.05	7.73	0.00	50.30	74.00	-23.70	Horizontal	Peak
2390.01	13.62	27.65	7.84	0.00	49.11	74.00	-24.89	Horizontal	Peak
2310.00	11.11	28.05	7.73	0.00	46.89	54.00	-7.11	Vertical	Average
2390.01	10.66	27.65	7.84	0.00	46.15	54.00	-7.85	Vertical	Average
2310.00	11.11	28.05	7.73	0.00	46.89	54.00	-7.11	Horizontal	Average
2390.01	10.72	27.65	7.84	0.00	46.21	54.00	-7.79	Horizontal	Average

802.11b	802.11b CH11									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.49	14.53	27.26	8.04	0.00	49.83	74.00	-24.17	Vertical	Peak	
2500.00	14.12	27.20	8.08	0.00	49.40	74.00	-24.60	Vertical	Peak	
2483.49	13.51	27.26	8.04	0.00	48.81	74.00	-25.19	Horizontal	Peak	
2500.00	14.69	27.20	8.08	0.00	49.97	74.00	-24.03	Horizontal	Peak	
2483.49	10.68	27.26	8.04	0.00	45.98	54.00	-8.02	Vertical	Average	
2500.00	10.65	27.20	8.08	0.00	45.93	54.00	-8.07	Vertical	Average	
2483.49	10.71	27.26	8.04	0.00	46.01	54.00	-7.99	Horizontal	Average	
2500.00	10.66	27.20	8.08	0.00	45.94	54.00	-8.06	Horizontal	Average	

Report No.: CHTEW19070071 Page: 30 of 58 Issued: 2019-07-17

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	13.96	28.05	7.73	0.00	49.74	74.00	-24.26	Vertical	Peak
2390.01	14.08	27.65	7.84	0.00	49.57	74.00	-24.43	Vertical	Peak
2310.00	13.61	28.05	7.73	0.00	49.39	74.00	-24.61	Horizontal	Peak
2390.01	13.76	27.65	7.84	0.00	49.25	74.00	-24.75	Horizontal	Peak
2310.00	11.10	28.05	7.73	0.00	46.88	54.00	-7.12	Vertical	Average
2390.01	10.80	27.65	7.84	0.00	46.29	54.00	-7.71	Vertical	Average
2310.00	11.07	28.05	7.73	0.00	46.85	54.00	-7.15	Horizontal	Average
2390.01	11.24	27.65	7.84	0.00	46.73	54.00	-7.27	Horizontal	Average

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	12.79	27.26	8.04	0.00	48.09	74.00	-25.91	Vertical	Peak
2500.00	14.31	27.20	8.08	0.00	49.59	74.00	-24.41	Vertical	Peak
2483.49	13.70	27.26	8.04	0.00	49.00	74.00	-25.00	Horizontal	Peak
2500.00	14.33	27.20	8.08	0.00	49.61	74.00	-24.39	Horizontal	Peak
2483.49	10.67	27.26	8.04	0.00	45.97	54.00	-8.03	Vertical	Average
2500.00	10.66	27.20	8.08	0.00	45.94	54.00	-8.06	Vertical	Average
2483.49	10.67	27.26	8.04	0.00	45.97	54.00	-8.03	Horizontal	Average
2500.00	10.65	27.20	8.08	0.00	45.93	54.00	-8.07	Horizontal	Average

Report No.: CHTEW19070071 Page: 31 of 58 Issued: 2019-07-17

802.11n(HT	20)				CH01	CH01					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value		
2310.00	13.52	28.05	7.73	0.00	49.30	74.00	-24.70	Vertical	Peak		
2390.00	13.84	27.65	7.84	0.00	49.33	74.00	-24.67	Vertical	Peak		
2310.00	14.27	28.05	7.73	0.00	50.05	74.00	-23.95	Horizontal	Peak		
2390.00	13.39	27.65	7.84	0.00	48.88	74.00	-25.12	Horizontal	Peak		
2310.00	11.07	28.05	7.73	0.00	46.85	54.00	-7.15	Vertical	Average		
2390.00	11.03	27.65	7.84	0.00	46.52	54.00	-7.48	Vertical	Average		
2310.00	11.06	28.05	7.73	0.00	46.84	54.00	-7.16	Horizontal	Average		
2390.00	11.40	27.65	7.84	0.00	46.89	54.00	-7.11	Horizontal	Average		

802.11n(HT20) CH11									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	14.02	27.26	8.04	0.00	49.32	74.00	-24.68	Vertical	Peak
2500.00	14.78	27.20	8.08	0.00	50.06	74.00	-23.94	Vertical	Peak
2483.50	14.05	27.26	8.04	0.00	49.35	74.00	-24.65	Horizontal	Peak
2500.00	13.27	27.20	8.08	0.00	48.55	74.00	-25.45	Horizontal	Peak
2483.50	10.65	27.26	8.04	0.00	45.95	54.00	-8.05	Vertical	Average
2500.00	10.61	27.20	8.08	0.00	45.89	54.00	-8.11	Vertical	Average
2483.50	10.63	27.26	8.04	0.00	45.93	54.00	-8.07	Horizontal	Average
2500.00	10.60	27.20	8.08	0.00	45.88	54.00	-8.12	Horizontal	Average

Report No.: CHTEW19070071 Page: 32 of 58 Issued: 2019-07-17

802.11n(HT	40)				CH03				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	14.26	28.05	7.73	0.00	50.04	74.00	-23.96	Vertical	Peak
2390.00	13.30	27.65	7.84	0.00	48.79	74.00	-25.21	Vertical	Peak
2310.00	12.00	28.05	7.73	0.00	47.78	74.00	-26.22	Horizontal	Peak
2390.00	13.18	27.65	7.84	0.00	48.67	74.00	-25.33	Horizontal	Peak
2310.00	10.95	28.05	7.73	0.00	46.73	54.00	-7.27	Vertical	Average
2390.00	10.96	27.65	7.84	0.00	46.45	54.00	-7.55	Vertical	Average
2310.00	10.94	28.05	7.73	0.00	46.72	54.00	-7.28	Horizontal	Average
2390.00	12.90	27.65	7.84	0.00	48.39	54.00	-5.61	Horizontal	Average

802.11n(HT	40)				CH09				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	16.49	27.26	8.04	0.00	51.79	74.00	-22.21	Vertical	Peak
2500.00	15.06	27.20	8.08	0.00	50.34	74.00	-23.66	Vertical	Peak
2483.50	18.30	27.26	8.04	0.00	53.60	74.00	-20.40	Horizontal	Peak
2500.00	15.80	27.20	8.08	0.00	51.08	74.00	-22.92	Horizontal	Peak
2483.50	13.92	27.26	8.04	0.00	49.22	54.00	-4.78	Vertical	Average
2500.00	12.87	27.20	8.08	0.00	48.15	54.00	-5.85	Vertical	Average
2483.50	15.53	27.26	8.04	0.00	50.83	54.00	-3.17	Horizontal	Average
2500.00	14.55	27.20	8.08	0.00	49.83	54.00	-4.17	Horizontal	Average

Report No.: CHTEW19070071 Page: 33 of 58 Issued: 2019-07-17

5.7. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 □ Passed ■ Not Applicable Report No.: CHTEW19070071 Page: 34 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 35 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 36 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 37 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 38 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 39 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 40 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 41 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 42 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 43 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 44 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 45 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 46 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 47 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 48 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 49 of 58 Issued: 2019-07-17

Report No.: CHTEW19070071 Page: 50 of 58 Issued: 2019-07-17

5.8. Spurious Emissions (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGIIZ	74.00	Peak

TEST CONFIGURATION

➤ 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

Report No.: CHTEW19070071 Page: 51 of 58 Issued: 2019-07-17

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

⊠ Passed	☐ Not Applicable
<u> </u>	not rippiioabio

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➤ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

Report No.: CHTEW19070071 Page: 52 of 58 Issued: 2019-07-17

30MHz ~ 1GHz

ation:				Ver	tical			
Level [dBµV/m]								
80								
	I I		I		I I	I I	I I	
70+	+	- + +	+		+	+	- + +	-+
60			- +		 		$-\stackrel{1}{+}\stackrel{1}{-}+$	- +
50					<u> </u>		_ ! !	
			-		<u>└</u>		1 1	
40		! ! ! -			!			
30		·	+		+		- + +	-+
20	=				, , ,	ME TANKE THE ME	many and the same	
-		سنرنبذ	A		the many		i i	
40				O 44	1	1	1 1	
10					<u> </u> 		$-\frac{1}{1}\frac{1}{1}$	
	50M 60M 7	70M	- 	20	OM	300M	400M 500M 6	
	50M 60M 7	70M 1	00M	20 Frequency [l	 	300M	400M 500M 6	600M 800M 1G
	50M 60M 7	70M 1	00M			300M	400M 500M 6	600M 800M 1G
	50M 60M	70M 1	00M			300M		
0 30M 40M	Level	Transd	Limit	Frequency [H		300M Height	Azimuth	600M 800M 1G Polarization
0 30M 40M				Frequency [l	Hz]			
0 30M 40M	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	
0 30M 40M Frequency MHz	Level dBµV/m 22.30	Transd	Limit	Frequency [H	Hz]	Height	Azimuth	Polarization
0 30M 40M Frequency MHz 30.000000	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization VERTICAL
0 30M 40M Frequency MHz 30.000000 61.040000	Level dBµV/m 22.30 18.20	Transd dB -13.3 -10.3	Limit dBµV/m 40.0 40.0	Margin dB	Det. QP QP	Height cm	Azimuth deg 180.00 351.00	Polarization VERTICAL VERTICAL
Frequency MHz 30.000000 61.040000 99.840000	Level dBµV/m 22.30 18.20 18.20	Transd dB -13.3 -10.3 -10.6	Limit dBµV/m 40.0 40.0 43.5	Margin dB 17.7 21.8 25.3	Det. QP QP QP QP	Height cm 100.0 100.0 100.0	Azimuth deg 180.00 351.00 27.00	Polarization VERTICAL VERTICAL VERTICAL

Report No.: CHTEW19070071 Page: 53 of 58 Issued: 2019-07-17

> 1 GHz ~ 25 GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3616.45	42.38	29.30	10.00	37.87	43.81	74.00	-30.19	Vertical	Peak
4821.76	34.49	31.56	11.73	36.25	41.53	74.00	-32.47	Vertical	Peak
7245.81	34.24	36.25	14.53	34.76	50.26	74.00	-23.74	Vertical	Peak
8703.29	31.63	37.89	15.95	34.64	50.83	74.00	-23.17	Vertical	Peak
3616.45	42.20	29.30	10.00	37.87	43.63	74.00	-30.37	Horizontal	Peak
4821.76	34.89	31.56	11.73	36.25	41.93	74.00	-32.07	Horizontal	Peak
7245.81	32.90	36.25	14.53	34.76	48.92	74.00	-25.08	Horizontal	Peak
8462.98	32.39	36.79	15.89	34.28	50.79	74.00	-23.21	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3653.46	41.17	29.30	9.99	37.93	42.53	74.00	-31.47	Vertical	Peak
4871.10	34.59	31.46	11.69	36.02	41.72	74.00	-32.28	Vertical	Peak
7319.96	33.17	36.30	14.58	34.77	49.28	74.00	-24.72	Vertical	Peak
8420.00	31.08	36.66	15.87	34.28	49.33	74.00	-24.67	Vertical	Peak
3653.46	41.58	29.30	9.99	37.93	42.94	74.00	-31.06	Horizontal	Peak
4871.10	36.42	31.46	11.69	36.02	43.55	74.00	-30.45	Horizontal	Peak
7319.96	33.40	36.30	14.58	34.77	49.51	74.00	-24.49	Horizontal	Peak
9088.19	31.72	38.16	16.00	35.47	50.41	74.00	-23.59	Horizontal	Peak

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3690.85	40.02	29.30	9.99	37.76	41.55	74.00	-32.45	Vertical	Peak
4920.96	34.64	31.42	11.72	35.82	41.96	74.00	-32.04	Vertical	Peak
8063.40	31.26	37.04	15.69	34.35	49.64	74.00	-24.36	Vertical	Peak
8747.72	31.57	37.80	15.97	34.72	50.62	74.00	-23.38	Vertical	Peak
3690.85	39.07	29.30	9.99	37.76	40.60	74.00	-33.40	Horizontal	Peak
4920.96	36.70	31.42	11.72	35.82	44.02	74.00	-29.98	Horizontal	Peak
7394.88	31.34	36.30	14.73	34.68	47.69	74.00	-26.31	Horizontal	Peak
8637.08	31.30	37.52	15.94	34.52	50.24	74.00	-23.76	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: CHTEW19070071 Page: 54 of 58 Issued: 2019-07-17

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1732.97	37.23	25.27	6.61	37.91	31.20	74.00	-42.80	Vertical	Peak
3616.45	39.90	29.30	10.00	37.87	41.33	74.00	-32.67	Vertical	Peak
5271.06	31.74	31.36	12.25	35.00	40.35	74.00	-33.65	Vertical	Peak
10860.83	31.25	40.46	16.38	37.03	51.06	74.00	-22.94	Vertical	Peak
3616.45	41.51	29.30	10.00	37.87	42.94	74.00	-31.06	Horizontal	Peak
5230.96	31.28	31.44	12.14	34.77	40.09	74.00	-33.91	Horizontal	Peak
7245.81	30.88	36.25	14.53	34.76	46.90	74.00	-27.10	Horizontal	Peak
8615.13	31.63	37.39	15.93	34.48	50.47	74.00	-23.53	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3653.46	39.78	29.30	9.99	37.93	41.14	74.00	-32.86	Vertical	Peak
5099.49	31.99	31.90	12.03	35.13	40.79	74.00	-33.21	Vertical	Peak
7045.74	30.89	35.44	14.50	34.65	46.18	74.00	-27.82	Vertical	Peak
8527.85	31.88	37.01	15.91	34.32	50.48	74.00	-23.52	Vertical	Peak
3216.84	34.76	28.70	9.48	37.38	35.56	74.00	-38.44	Horizontal	Peak
3653.46	40.21	29.30	9.99	37.93	41.57	74.00	-32.43	Horizontal	Peak
7227.39	31.00	36.23	14.53	34.75	47.01	74.00	-26.99	Horizontal	Peak
8104.56	31.41	36.99	15.67	34.33	49.74	74.00	-24.26	Horizontal	Peak

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3700.26	39.31	29.30	9.99	37.70	40.90	74.00	-33.10	Vertical	Peak
5086.52	31.67	31.85	12.03	35.19	40.36	74.00	-33.64	Vertical	Peak
8681.17	31.23	37.79	15.95	34.60	50.37	74.00	-23.63	Vertical	Peak
10888.51	30.92	40.56	16.37	37.03	50.82	74.00	-23.18	Vertical	Peak
2775.30	32.57	28.10	8.86	34.78	34.75	74.00	-39.25	Horizontal	Peak
3690.85	39.22	29.30	9.99	37.76	40.75	74.00	-33.25	Horizontal	Peak
5112.49	30.90	31.85	12.04	35.07	39.72	74.00	-34.28	Horizontal	Peak
8571.38	32.08	37.19	15.92	34.40	50.79	74.00	-23.21	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: CHTEW19070071 Page: 55 of 58 Issued: 2019-07-17

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3208.66	35.46	28.75	9.46	37.34	36.33	74.00	-37.67	Vertical	Peak
3616.45	40.18	29.30	10.00	37.87	41.61	74.00	-32.39	Vertical	Peak
7245.81	32.20	36.25	14.53	34.76	48.22	74.00	-25.78	Vertical	Peak
10348.05	32.00	39.47	16.44	37.17	50.74	74.00	-23.26	Vertical	Peak
3200.50	34.54	28.80	9.44	37.40	35.38	74.00	-38.62	Horizontal	Peak
3616.45	40.42	29.30	10.00	37.87	41.85	74.00	-32.15	Horizontal	Peak
7245.81	32.37	36.25	14.53	34.76	48.39	74.00	-25.61	Horizontal	Peak
9909.80	32.26	39.10	16.37	37.19	50.54	74.00	-23.46	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2846.85	34.65	28.29	8.90	36.09	35.75	74.00	-38.25	Vertical	Peak
3653.46	39.30	29.30	9.99	37.93	40.66	74.00	-33.34	Vertical	Peak
6833.77	31.50	34.24	13.96	34.78	44.92	74.00	-29.08	Vertical	Peak
9251.58	31.22	38.91	15.93	36.03	50.03	74.00	-23.97	Vertical	Peak
3653.46	40.13	29.30	9.99	37.93	41.49	74.00	-32.51	Horizontal	Peak
6094.14	31.82	32.50	13.48	35.28	42.52	74.00	-31.48	Horizontal	Peak
7190.69	30.91	36.14	14.52	34.73	46.84	74.00	-27.16	Horizontal	Peak
8615.13	31.89	37.39	15.93	34.48	50.73	74.00	-23.27	Horizontal	Peak

802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3690.85	39.43	29.30	9.99	37.76	40.96	74.00	-33.04	Vertical	Peak
5112.49	31.61	31.85	12.04	35.07	40.43	74.00	-33.57	Vertical	Peak
7027.82	30.89	35.38	14.49	34.64	46.12	74.00	-27.88	Vertical	Peak
9784.47	32.02	39.10	16.21	37.09	50.24	74.00	-23.76	Vertical	Peak
3700.26	39.65	29.30	9.99	37.70	41.24	74.00	-32.76	Horizontal	Peak
7190.69	30.67	36.14	14.52	34.73	46.60	74.00	-27.40	Horizontal	Peak
8593.22	31.25	37.27	15.92	34.44	50.00	74.00	-24.00	Horizontal	Peak
10860.83	30.89	40.46	16.38	37.03	50.70	74.00	-23.30	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: CHTEW19070071 Page: 56 of 58 Issued: 2019-07-17

802.11n(HT4		CH03							
Frequency (MHz)	Read Level (dBu V)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3184.25	36.00	28.80	9.39	37.50	36.69	74.00	-37.31	Vertical	Peak
3634.91	38.44	29.30	9.99	37.90	39.83	74.00	-34.17	Vertical	Peak
4617.55	33.94	30.95	11.41	36.49	39.81	74.00	-34.19	Vertical	Peak
8681.17	31.68	37.79	15.95	34.60	50.82	74.00	-23.18	Vertical	Peak
3625.67	38.93	29.30	9.99	37.88	40.34	74.00	-33.66	Horizontal	Peak
3883.62	36.77	29.68	10.35	37.45	39.35	74.00	-34.65	Horizontal	Peak
6628.18	31.17	34.20	14.10	35.06	44.41	74.00	-29.59	Horizontal	Peak
11399.03	30.50	40.30	16.59	36.43	50.96	74.00	-23.04	Horizontal	Peak

802.11n(HT		CH06							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3644.18	38.12	29.30	9.99	37.91	39.50	74.00	-34.50	Vertical	Peak
4617.55	32.85	30.95	11.41	36.49	38.72	74.00	-35.28	Vertical	Peak
7117.84	31.07	35.71	14.51	34.69	46.60	74.00	-27.40	Vertical	Peak
8615.13	31.51	37.39	15.93	34.48	50.35	74.00	-23.65	Vertical	Peak
3192.37	35.23	28.80	9.41	37.45	35.99	74.00	-38.01	Horizontal	Peak
3644.18	37.99	29.30	9.99	37.91	39.37	74.00	-34.63	Horizontal	Peak
7045.74	30.67	35.44	14.50	34.65	45.96	74.00	-28.04	Horizontal	Peak
8615.13	31.23	37.39	15.93	34.48	50.07	74.00	-23.93	Horizontal	Peak

802.11n(HT40) CH09									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3681.47	37.29	29.30	9.99	37.82	38.76	74.00	-35.24	Vertical	Peak
5164.81	31.60	31.64	12.05	34.79	40.50	74.00	-33.50	Vertical	Peak
6921.30	31.72	34.83	14.20	34.70	46.05	74.00	-27.95	Vertical	Peak
9065.08	32.22	38.10	16.00	35.40	50.92	74.00	-23.08	Vertical	Peak
3057.17	35.29	28.72	9.07	37.77	35.31	74.00	-38.69	Horizontal	Peak
3672.11	37.13	29.30	9.99	37.88	38.54	74.00	-35.46	Horizontal	Peak
5151.68	31.43	31.69	12.05	34.86	40.31	74.00	-33.69	Horizontal	Peak
8725.48	31.40	37.85	15.96	34.68	50.53	74.00	-23.47	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: CHTEW19070071 Page: 57 of 58 Issued: 2019-07-17

6. TEST SETUP PHOTOS

Conducted Emissions

Radiated Emissions

Report No.: CHTEW19070071 Page: 58 of 58 Issued: 2019-07-17

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No. CHTEW19070065

-----End of Report-----