Dynamic Structural Models

2. Bus Engine CCP

Aaron Barkley Department of Economics July 2025

Static: McFadden's Random Utility Model

• Binary choice model of random utility:

$$U_j(x, \epsilon_j) = u_j(x) + \epsilon_j, \quad j \in \{0, 1\}$$

where

- $\circ x$ is an observed state variable,
- $\circ u_j$ is the deterministic component of utility,
- $\circ \epsilon_j$ is an iid random utility shock for each choice j=0,1. Observed to the agent but not by the econometrician.
- Agent's goal: choose the option with the highest utility, i.e., take action 1 iff $U_1(x,\epsilon_1)>U_0(x,\epsilon_0)$.
- Econometrician's goal: estimate u_j given data on choices d and states: $\{d_n, x_n\}_{n=1}^N$.

Random utility model estimation

- Normalize one of the choices: set $u_0(x) = 0$ for all x.
- Parameterize utility for the other choice: $u_1(x) = \theta_0 + \theta_1 x$.
- Assume that $\epsilon_j \stackrel{iid}{\sim}$ Type I EV for all j.
- Choice one is made (d = 1) in state x iff

$$\theta_0 + \theta_1 x + \epsilon_1 > \epsilon_0$$

$$\Rightarrow \Pr(d = 1|x) = \Pr(\epsilon_0 - \epsilon_1 < \theta_0 + \theta_1 x)$$

$$= \frac{\exp(\theta_0 + \theta_1 x)}{1 + \exp(\theta_0 + \theta_1 x)}$$

because $\epsilon_1 - \epsilon_0 \sim \text{Logistic}(0,1)$ when both $\epsilon \sim \text{Type I EV}$.

• Estimate θ_0, θ_1 with a logistic regression.

From static to dynamic

- Now we move to a dynamic environment: discount factor β and state transition probabilities F_j . Consumer chooses action j to maximize expected discounted future utility.
- ullet Binary choice. Take action j=1 iff

$$v_1(x_t) + \epsilon_{1t} > v_0(x_t) + \epsilon_{0t}$$

• Maintain the assumption that $\epsilon_{jt} \sim \text{Type I EV}$ for all j,t. Probability that decision in time t is choice one, or $\Pr(d_t = 1)$, is

$$\Pr(d_t = 1) = \frac{\exp(v_1(x_t) - v_0(x_t))}{1 + \exp(v_1(x_t) - v_0(x_t))}$$

Introduction

- Problem: we cannot simply parameterize v_j and estimate directly with a logit. That would give us parameters that are not related to the theory.
- Recall that

$$v_j(x_t) = u_j(x_t) + \beta \sum_{x=1}^{\overline{x}} V(x_{t+1}) f_1(x_{t+1} | x_t)$$

and

$$V_t(x_t) \equiv E\left\{\sum_{\tau=t}^{\overline{T}} \sum_{j=0}^{1} \beta^{\tau-t-1} d_{jt}^o(x_\tau \epsilon_\tau) (u_{j\tau}(x_\tau) + \epsilon_{j\tau}^*)\right\}$$

where d_{jt}^0 represents that choice j was optimal in time t, and ϵ_{jt}^* is the value of ϵ conditional on j being optimal.

The CCP solution

- If we knew ϵ_{jt}^* , then we could express $V_t(x_t)$ in terms of utility parameters and things that we already know or can estimate.
- The insight of Hotz and Miller (1993) is that we can estimate ϵ_{jt}^* using the conditional choice probabilities!
- ullet Specifically, if $\epsilon_{jt}\sim$ Type I EV, then

$$\epsilon_{jt}^* = \gamma - \ln(p_j(x_t))$$

Now the value function can be expressed as

$$V(x_t) = \sum_{\tau=t}^{\overline{T}} \sum_{x_{t+1} \in \mathcal{X}} \sum_{j=0}^{1} \beta^{\tau-t-1} f_j(x_{\tau+1}|x_{\tau}) \left[p_j(x_{\tau}) (u_j(x_{\tau}) + \gamma - \ln(p_j(x_{\tau}))) \right]$$

The CCP solution

• With some matrix algebra and setting $\overline{T}=\infty$ and assuming $U_1(X)=X\theta$ and and $U_0(X)=0$, the ex-ante value function is:

$$\mathbf{V} = \underbrace{\left(I - \beta \sum_{j} (\mathbf{p}_{j} \lambda) * F_{j}\right)^{-1}}_{\equiv A} \left(\underbrace{\mathbf{p}_{1} * (\gamma - \ln(\mathbf{p}_{1})) + \mathbf{p}_{0} * (\gamma - \ln(\mathbf{p}_{0}))}_{\equiv B} + \underbrace{\mathbf{p}_{1} * X}_{\equiv C} \theta\right)$$

where * is element-wise multiplication and λ is a vector of ones.

• Recall that we want $v_1(x) - v_0(x)$ to compute the logit likelihood:

$$\mathbf{v}_1 - \mathbf{v}_0 = \mathbf{u}_1 - \mathbf{u}_0 + \beta (F_1 - F_0) \mathbf{V}$$

Everything on the right-hand side is a known function of θ and the data.

Estimation steps with linear utility:

- 1. Estimate the CCPs $p_j(x_{jt})$ and state transitions f_1, f_0 .
- 2. Calculate three matrices/vectors:

$$\circ A = \operatorname{inv}(I - \beta \sum_{j} (\mathbf{p}_{j} \lambda) * F_{j})$$

$$\circ B = \mathbf{p}_1 * (\gamma - \ln(\mathbf{p}_1)) + \mathbf{p}_0 * (\gamma - \ln(\mathbf{p}_0))$$

$$\circ C = \mathbf{p}_1 * X$$

3. Specify logistic likelihood function Q that takes as inputs θ, A, B, C :

$$\Delta \mathbf{v} \equiv \mathbf{v}_1 - \mathbf{v}_0 = A(B + C\theta)$$

$$Q(\theta) = \sum_{t=1}^{T} \left(\frac{\exp(\Delta v(x_t))}{1 + \exp(\Delta v(x_t))} \right)^{d_t} \times \left(\frac{1}{1 + \exp(\Delta v(x_t))} \right)^{1 - d_t}$$

4. Maximize ln(Q) over θ .