Ejercicio 1

Considera un proceso estacionario AR(1) dado por

$$Y_t = \frac{1}{2}Y_{t-1} + e_t$$

donde e_t son no-correlacionados $(0, \sigma^2)$. Define

$$v_t = Y_t - 2Y_{t-1}.$$

- 1. Demuestra que el residual v_t es una sucesión de v.a. no -correlacionadas $(0, \sigma_v^2)$. ¿ Cuál es la varianza de v_t ? ¿ Quién tiene más varainza e_t o v_t ?
- 2. Demuestra que e_t no está correlacionado con Y_{t-1} y que v_t está correlacionado con Y_{t-1} .
- 3. Expresa Y_t como una media móvil $MA(\infty)$.

La raíz de la ecuación característica de la ecuación en diferencias sociada a $Y_t = 2Y_{t-1} + v_t$ es 2 (i.e. es mayor que uno). Entonces, para $Y_t = \alpha_1 Y_{t-1} + v_t$, las condiciones v_t no-correlacionadas $(0, \sigma_v^2)$ y $|a_1| > 1$ no implican que Y_t es no-estacionario.

En este ejemplo preferimos la representación $Y_t = \frac{1}{2}Y_{t-1} + v_t$ pues, como demostrarás en a) - c), el error tiene menor varianza y no está correlacionado con

Ejercicio 2

Sea Y_t una serie de tiempo definida como

$$Y_t = \beta_0 + \beta_1 t + X_t$$
 $t = 1, 2, \cdots$

donde

$$X_t = e_t + 0.6e_{t-1}$$

con β_0 , β_1 fijos y $\{e_t : t \in \mathbb{N} \cup \{0\}\}$ distribuidas $N(0, sigma^2)$ Construye la media y la función de covarianza para Y_t .

Ejercicio S

ean $X_i \sim N(0, \sigma^2)$ $i = 1, 2, \cdots$ independientes y sea $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

- 1. Se sabe que $\mu \neq 0$. ¿ Cómo aproximarías la distribución de \bar{X}_n^2 en muestras grandes?
- 2. Se sabe que $\mu=0$. ¿ Cómo aproximarías la distibución de \bar{X}_n^2 en muestras grandes ?
- 3. Comenta qué pasa si quitamos el supuesto de independencia en los incisos anteriores.

Explica con detalle los procedimientos y asegúrate de que no se den distribuciones límites degenerads. Este ejercicio es para recordar los procedimientos más básicos para variables aleatorias.

Ejercicio 4

Monstrar que si $m^p + a_1 m^{p-1} + \cdots + a_p = 0$ tiene todas sus raíces menores que uno en módulo, entonces $1 + a_1 q + \cdots + a_p q^p = 0$ tiene todas sus raíces mayoures que uno en módulo. *Hint: si r es una raíz del primer polinomio, es ¿ es 1/r una raíz del segundo?*

Ejercicio 5

Si m_1, \dots, m_p son las raíces de $m^p - \sum_{i=1}^p \alpha_i m^{p-i} = 0$, entonces

- 1. $\sum_{i=1}^{p} \alpha_i = 1$ si y sólo si al menos una raíz es igual a 1.
- 2. Si todas las raíces en módulo son menores que 1, entonces $\sum_{i=1}^{p} \alpha_i < 1$.

Ejercicio 6

Mostrar que, si $\lambda > 0\beta \ge 0$ y p es un entero no negativo, entonces $\exists M$ tal que

$$(t+1)^p \beta^t < M \lambda^t \quad \forall t \ge 0.$$

Ejercicio 7

Sea Y_t un proceso autoregresivo de orden p

$$Y_t = \theta + \sum_{i=1}^{p} \alpha_i Y_{t-i} + e_t = \mu + \sum_{i=0}^{\infty} w_i e_{t-i}$$

donde $\mu = \mathbb{E}[Y_t]$, $\omega_0 = 1$; $\omega_i = 0i < 0$ y $\omega_j = \sum_{i=1}^p \alpha_i \omega_{j-i}$, $j = 1, 2, \cdots$. Supongamos que $\sum_{i=1}^\infty |\omega_j| < \infty$ (en este caso se puede mostrar que $|\omega_i| < M\lambda^j$, $\lambda < 1$).

Ejercicio 9

En este ejercicio volveremos a emplear los datos de temperatura de la Tarea 1.

- 1. Ajusta un modelo AR(4) a la serie del promedio de la temperatira golbal anual y usando el modelo ajustado crea una serie de valores estimados por el modelo de t=2 al último valor en la serie. Crea una serie residual de la diferencia entre el valor estimado y el valor observado.
- 2. Grafica el correlograma para la serie del promedio de la temperatura global anual. Comenta.