1	REM SLEEP STAGE IDENTIFICATION WITH WAVELET DECOMPOSITION AND ARTIFICIAL NEURAL NETWORK USING A SINGLE CHANNEL EEG
	Gabriel Toban
2	 Why Use Sleep Stages? Separate Wakefulness from Sleep state Identify physiologic and pathologic events Paralysis in REM Arousals and pathology (Apnea) K-complexes and pathology (Epilepsy) Required for some sleep studies with EEG
3	 What is an EEG? Electroencephalogram Difference in electric potentials Produces "brain waves"
4	 How to Identify Sleep Stages? American Academy of Sleep Medicine Polysomnography or Polysomnographic Record (PSG) Home Study Identify Sleep Stages?
5	 What is a PSG? Sleep study Collection of parameters Includes EEG Electroencephalogram (brain) EOG Electrooculogram (eyes) EMG Electromyogram (muscles)
6	 What is a Home Study? Typically for sleep apnea (HSAT) Home Sleep Apnea Testing Sleep staging required for some Much fewer parameters and equipment
7	 Automated Sleep Staging Manual Sleep Staging Requires Tech Scoring Guides from AASM Some use many parameters Some use very few parameters
8	Presentation Outline • Background

– The Single Channel EEG

	Signal Processing
	Categorization
	 Methods and Results
	Conclusion and Future
9	
10	The EEG
	Electrodes on the head
	Two Electrodes make a channel
	• The 10/20 System
	The R&K Standard
	• The AASM
	Brain Waves, Activities, and Events (Markers) Anaplitude, Francisco and Other Footoge
	Amplitude, Frequency, and Other Factors
11 🔲	5 EEG Frequencies
12	The 10/20 System
13	Brain Lobes/Regions
14	EEG Channels
15	Markers to Lobes/Channels
	Warkers to Lobes/ Chamiers
16	Sleep Stages
16 17	
	Sleep Stages
17	Sleep Stages Stages to Markers
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal
17 18 19 19	Sleep Stages Stages to Markers This Study • A Single Channel • Channel Fpz-Cz • 30 Second Epochs • REM Sleep Stage Signal Processing • A brainwave is a signal • Fourier Series
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves Time-Frequency Signal Analysis
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves Time-Frequency Signal Analysis
17 18 19 19	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves Time-Frequency Signal Analysis
17	Sleep Stages Stages to Markers This Study A Single Channel Channel Fpz-Cz 30 Second Epochs REM Sleep Stage Signal Processing A brainwave is a signal Fourier Series EEG Waves Time-Frequency Signal Analysis Wavelets Wavelets

Wavelet TransformChoi-Williams Distribution		
Wigner-Ville Distributions		
24 Wavelet Transforms		
25 Mother Wavelets		
 Wavelet Transform Modifications Continuous Wavelet Transform Discrete Wavelet Transform Wavelet Packet Tree Multilevel Discrete Wavelet Many More 		
27 This Study		
Multilevel Discrete Wavelet Transform with Daubechies Order 2 Mother Wavelet		
28		
 Classification Classification Algorithms Artificial Neural Networks (ANNs) • 		
30 Classification Algorithms		
Support Vector MachineHidden Markov ModelANN		
31 Artificial Neural Networks		
 Feedforward Backward Propagation Deep Feedforward Networks Deep Belief Networks Multilayer Perceptrons 		
32 Linear Regression		
33 Gradient Descent		
34 Linear Regression Nodes		
35 Sigmoid Function		
36 Logistic Regression Nodes		
37 SoftMax		
38 Artificial Neural Network		
39		

• Short-Time Fourier Transform

40 Methods

- Dataset
- EDFbrowser
- epochs.py
- softANN.py
- 41 Dataset
- 42 Epochs.py
- 43 softAnn.py
- 44 Results: Train
- 45 Results: Predict
- 46

47 Conclusion

- Untested Factors
- · Categorizing REM is not possible yet
- · Testing more nights
- Categorizing Not REM is possible

•

48 Future

- EEG Channel
- Sleep Stage
- Epoch length
- Wavelet Transforms
- Neural Networks

49 References

- [1]"10/20 system | Polysomnography Study Guide." .
- [2]10/20 System Positioning Manual. Trans Cranial Technologies.
- [3]R. B. Berry, MD (Chair) et al., AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, vol. 2.4. American Academy of Sleep Medicine.
- [4] van S. B, K. B, K. Ha, and V. der V. Ea, "Alternative electrode placement in (automatic) sleep scoring (Fpz-Cz/Pz-Oz versus C4-A1).," Sleep, vol. 13, no. 3, pp. 279–283, Jun. 1990.
- [5]A. Rechtschaffen and A. Kales, A manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. .
- [6]E. A. Wolpert, "A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects.," Archives of General Psychiatry, vol. 20, no. 2, p. 246, Feb. 1969.
- [7]F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, "A review of classification algorithms for EEG-based brain–computer interfaces," J. Neural Eng., vol. 4, no. 2, p. R1, 2007.
- [8]J. Heaton, Artificial Intelligence for Humans Volume 3: Deep Learning and Neural Networks. 2015.
- [9]R. K. Sinha, "Artificial Neural Network and Wavelet Based Automated Detection of Sleep Spindles, REM Sleep and Wake States," J Med Syst, vol. 32, no. 4, pp. 291–299, Aug. 2008.

- [10]L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, and H. Dickhaus, "Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier," Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 10–19, Oct. 2012.
- [11]F. Ebrahimi, M. Mikaeili, E. Estrada, and H. Nazeran, "Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients," in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, pp. 1151–1154.
- [12]L. Parrino, R. Ferri, O. Bruni, and M. G. Terzano, "Cyclic alternating pattern (CAP): The marker of sleep instability," Sleep Medicine Reviews, vol. 16, no. 1, pp. 27–45, Feb. 2012.

• [13]LazyProgrammer.me, "Data Science: Deep Learning in Python."

- [14]LazyProgrammer.me, "Data Science: Linear Regression in Python."
- [15]LazyProgrammer.me, "Data Science: Logistic Regression in Python."
- [16]T. Rao and D. D. Vishwanath, "Detecting sleep disorders based on EEG signals by using discrete wavelet transform," in Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on, 2014, pp. 1–5.
- [17]D. Sundararajan, Discrete Wavelet Transform: A Signal Processing Approach. John Wiley & Sons, 2016.
- [18]P. Achermann, "EEG analysis applied to sleep," Epileptologie, vol. 26, pp. 28–33, 2009.
- [19]"European Data Format (EDF)." [Online]. Available: http://www.edfplus.info/. [Accessed: 19-Jun-2017].
- [20]G. Dietsch, "Fourier-Analyse von Elektrencephalogrammen des Menschen," Pflügers Arch., vol. 230, no. 1, pp. 106–112, Dec. 1932.

50 References

- [21]F. Hlawatsch and G. F. Boudreaux-Bartels, "Linear and quadratic time-frequency signal representations," IEEE Signal Processing Magazine, vol. 9, no. 2, pp. 21–67, Apr. 1992.
- [22] "Machine Learning FAQ," Sebastian Raschka's Website. [Online]. Available: sebastianraschka.com/faq/docs/closed-form-vs-gd. [Accessed: 10-Aug-2017].
- [23] "Methods EEGMeasurement.pdf." .
- [24]A. Baratloo, M. Hosseini, A. Negida, and G. El Ashal, "Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity," Emerg (Tehran), vol. 3, no. 2, pp. 48–49, 2015.
- [25]C. L. Byrne, Signal Processing, 2nd Edition, 2nd ed. CRC Press, 2014.
- [26]E. M. Ventouras et al., "Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: A feasibility study," Computer Methods and Programs in Biomedicine, vol. 78, no. 3, pp. 191–207, Jun. 2005.
- [27] "Spectral density," Wikipedia. 31-Jul-2017.
- [28]M. B. Kurt, N. Sezgin, M. Akin, G. Kirbas, and M. Bayram, "The ANN-based computing of drowsy level," Expert Systems with Applications, vol. 36, no. 2, pp. 2534–2542, Mar. 2009.
- [29]S. F. Quan et al., "The association between obstructive sleep apnea and neurocognitive performance—the Apnea Positive Pressure Long-term Efficacy Study (APPLES)," Sleep, vol. 34, no. 3, p. 303–314B, 2011.
- [30] "The CAP Sleep Database." [Online]. Available: https://physionet.org/pn6/capslpdb/. [Accessed: 24-May-2017].
- [31]M. G. Terzano, D. Mancia, M. R. Salati, G. Costani, A. Decembrino, and L. Parrino, "The Cyclic Alternating Pattern as a Physiologic Component of Normal NREM Sleep," Sleep, vol. 8, no. 2, pp.

137–145, Jun. 1985.

- [32]P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, Second Edition. CRC Press, 2017.
- [33]"The Sleep-EDF Database [Expanded]." [Online]. Available: https://www.physionet.org/physiobank/database/sleep-edfx/. [Accessed: 24-May-2017].
- [34]"Time-frequency Signal Analysis with Applications." [Online]. Available: http://eds.b.ebscohost.com.ezproxy.mtsu.edu/eds/ebookviewer/ebook/bmxlYmtfXzc1MzU4OF9fQ U41?sid=8234de8b-f2a6-417d-93de-597fe37750c7@sessionmgr102&vid=6&format=EB&rid=8. [Accessed: 21-Jun-2017].
- [35]D. Álvarez et al., "Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome," 2017.
- [36]J. R. Shambroom, S. E. Fábregas, and J. Johnstone, "Validation of an automated wireless system to monitor sleep in healthy adults," Journal of Sleep Research, vol. 21, no. 2, pp. 221–230, Apr. 2012.
- [37]N. Crasto and R. Upadhyay, "Wavelet Decomposition Based Automatic Sleep Stage Classification Using EEG," in Bioinformatics and Biomedical Engineering, 2017, pp. 508–516.
- [38]L. Debnath and F. Shah, Wavelet Transforms and Their Applications. Springer, 2014.

.