

NEW GENERATION DOPAMINERGIC AGENTS. 2. DISCOVERY OF 3-OH-PHENOXYETHYLAMINE AND 3-OH-N'-PHENYLPIPERAZINE DOPAMINERGIC TEMPLATES

Richard E. Mewshaw*, Morris Husbands, Elizabeth S. Gildersleeve, Michael B. Webb, Xiaojie Shi, Hossein Mazandarani, Mark I. Cockett, Rafal Ochalski, Julie A. Brennan, Magid Abou-Gharbia, Karen Marquis, Georgia B. McGaughey, Joseph Coupet, and Terrance H. Andree

Global Chemical Sciences and CNS Disorders Departments, Wyeth-Ayerst Research Laboratories, CN 8000, Princeton, New Jersey 08543-8000

Received 2 September 1997; accepted 23 December 1997

Abstract: Described in this report is a systematic study which led to the identification of two new dopamine D_2 partial agonists (5 and 17). Phenols 5 and 17 represent prototypes of two new classes of D_2 partial agonists as well as templates for the future design of novel dopaminergic agents.

© 1998 Elsevier Science Ltd. All rights reserved.

The endogenous neurotransmitter dopamine (DA, 1) has been extensively exploited in drug design strategies resulting in a large number of novel dopaminergic agents.¹⁻³ Traditionally dopamine agonists and partial agonists have been designed to access the D₂ agonist pharmacophore by tethering the vital 3-OH group and basic nitrogen, in an almost coplanar arrangement, by means of the phenethyl scaffold (i.e. 2). Previous reports from our laboratories have revealed a novel approach to access the D₂ agonist pharmacophore using the chroman and benzodioxan ring systems as part of a scaffold to tether the pendant 7-OH and 2-aminomethyl groups.⁴ Excellent selectivity was achieved by attaching the benzyl side chain, which led to the discovery of the potent D₂ partial agonists, 3 and 4. Since our efforts were directed at

discovering new agents for the treatment of schizophrenia, we wanted to further expand upon our understanding of the roles of the chroman and benzodioxan rings by preparing phenol 5.

Additionally, modeling studies suggested the D_2 agonist pharmacophore could also be accessed by the 3-OH- N^I -phenylpiperazine framework (Figure 1). Surprisingly, the use of a N^I -phenylpiperazine moiety as part of a scaffold for the D_2 pharmacophoric groups (i.e. 17) appeared to be an unexploited dopaminergic D_2 drug design strategy. In this report, we describe our preliminary structure-activity relationship studies which led to the discovery of two novel prototypical D_2 templates (i.e. 5 and 17).

CHEMISTRY

Phenols 5-7 were prepared as depicted in Scheme 1 by first protecting *N*-benzylaminoethanol (19) with the Boc group to afford 20 in quantitative yield. Coupling of the 2-, 3-, or 4-methoxyphenols with 20 under Mitsunobu conditions, 5 using diisopropyl azodicarboxylate (DIAD), gave the desired products 21-23. Deprotection and demethylation could be achieved in one-pot using 48 % HBr to afford 5, or as in the cases of 6 and 7, in a two-step sequence using trifluoroacetic acid followed by 48 % HBr. Compounds 9-14 were

^aReagents and conditions: (a) Boc₂O, THF; (b) DIAD, PPh₃, THF; (c) 48 % aq. HBr (d) (i) TFA (ii) c

prepared according to the general synthetic route depicted in Scheme 2. Nitrophenols 24 and 25 were alkylated with 1,2-bromochloroethane followed by reduction with Raney nickel to give the anilines 28 and 29. Aniline 9 (Table 2) was prepared by treatment of 29 with benzylamine. Reaction with methanesulfonyl chloride, followed by treatment with either benzylamine or 2-thienylmethylamine, afforded target sulfonamides 10-12. 4-Fluorosulfonamides 13 and 14 were prepared in 6 steps beginning with 4-fluorophenol (32). Bromination of 32 gave phenol 33 which was alkylated with 1,2-bromochloroethane and sequentially mononitrated and hydrogenated to afford aniline 36. Mesylation, followed by treatment with benzylamine or 2-thienylmethylamine, gave the desired target sulfonamides 13 and 14. The N^4 -benzyl- N^1 -phenylpiperazines were prepared as shown in Scheme 3 starting with the commercially available N^1 -phenylpiperazines (38-41) to produce piperazines 15-18.

Scheme 2^a

^aReagents and conditions: (a) Br(CH₂)₂Cl, K₂CO₃, 2-butanone; (b) Raney Nickel, H₄N₂, EtOH (c) MeSO₂Cl (d) ArCH₂NH₂, DMSO (e) Br₂ (f) HNO₃/H₂SO₄ (g) Pd/C H₂, EtOH

Scheme 3^a

RESULTS AND DISCUSSION

Shown in Tables 1-3 are the affinities of the target compounds 5-18 for the D_2 , D_3 , and D_4 receptors. The affinities of compounds for the DA D_2 receptors in rat striatal membranes were determined for both the

^aReagents and conditions: (a) BnBr, DMSO; (b) 48 % aq. HBr

agonist state (high affinity state, D_2^{High}) and the antagonist state (low affinity state, D_2^{Low}). The D_2^{High} state was labeled with [3 H]quinpirole (in the absence of GTP and sodium) and the D_2^{Low} state was labeled with [3 H]spiperone (using ketanserin to exclude 5-HT $_2$ receptor binding) in the presence of GTP. The ratio $K_i(D_2^{Low})/K_i(D_2^{High})$ was used as a preliminary assessment of the compounds' intrinsic activity as described by Lahti 6 and Wasik. 7 The D_2 partial agonist, (S)-3-PPP [($K_i(D_2^{Low})/K_i(D_2^{High})$ =33], was used as a benchmark from which a compound's estimated intrinsic activity was compared. Affinity for the human cloned receptors was determined using membranes from CHO cells labeled with [3 H]spiperone.

As shown in Table 1, the 3-hydroxy isomer (5) had higher affinity for the D_2^{High} receptor than the 2-or 4-isomeric phenols (i.e. 6 and 7). A 19- and 7- fold increase in affinity, attributed to the hydrogen bond donating effect, was observed when 5 and 6 were compared to 8, respectively. Comparison of the D_2^{High} affinities of the more conformationally promiscuous phenoxyethyamine 5 (K_i =3.6 nM) with its constrained analogs 3 (K_i =0.16 nM) and 4 (K_i =0.35 nM), revealed that the dihydropyran and dioxan rings were playing a beneficial role towards accessing the D_2 agonist pharmacophore. Phenol 5 was observed to have good affinity for cloned human dopamine receptors (hD_{2s} , hD_3 , $hD_{4.4}$), especially for the D_3 receptor, believed to exist predominantly in its high affinity state.⁸

Table 1. Affinity of Phenoxyethylamines 5-8 for D₂-D₄ Receptors

K _i (nM) ⁹									
No.	X	$D_2^{\ High}$	$D_2^{\ Low}$	$D_2^{\ Low}/D_2^{\ High}$	hD_{2s}	hD_3	$hD_{4.4}$		
5	3-OH	3.6	101	28	75.8	11.0	80.6		
6	2-OH	9.6	191	20	456.0	281.5	297.00		
7	4-OH	113	nd	-	> 10,000	> 5000	277.0		
8	Н	68.4	241	4	>300	>400	94.00		
3 ⁴		0.16	3.3	21	10.4	2.4	116		
44		0.35	4.8	14	7.2	1.1	16.6		

Though the sulfonamido analogs (10-14) of 5 were observed to have good affinity for the D_2^{High} receptor, their intrinsic activities were predicted to be much lower $[(K_i(D_2^{Low})/K_i(D_2^{High})<10].$

Table 2. Affinity of Phenoxyethylamine Analogs of 5 for D₂-D₄ Receptors

$K_i (nM)^9$									
No.	X	Y	Ar	$D_2^{\; High}$	$D_2^{\ Low}$	$D_2^{\ Low}\!/D_2^{\ High}$	hD_{2s}	hD_3	$hD_{4.4}$
9	NH ₂	Cl	Ph	237	nd	-	>1000	>1000	27.2
10	NHSO ₂ Me	Н	Ph	4.4	29.3	7	37.6	42.5	500.0
11	NHSO ₂ Me	CI	Ph	1.6	3.0	2	75.8	11.0	nd
12	NHSO ₂ Me	Cl	2-Thienyl	2.6	6.0	2	9.00	27.8	137.0
13	NHSO ₂ Me	F	Ph	7.9	24.1	3	>10,000	>5000	nd
14	NHSO ₂ Me	F	2-Thienyl	19.7	11.7	1	>300	>400	>400

Table 3. Affinity of N^4 -Benzyl- N^1 -Phenylpiperazines (15-18) for D_2 - D_4 Receptors

				$K_i(nM)^9$			
No.	X	$D_2^{\ High}$	$D_2^{\ Low}$	$D_2^{\ Low}/D_2^{\ High}$	hD_{2s}	hD_3	$hD_{4.4}$
15	Н	16.2	124	8	>300	>400	267.0
16	2-OH	64.7	1176	18	>300	>400	>400
17	3-OH	5.5	95.1	17	246.0	28.90	>400
18	4-OH	120	nd	-	>300	>400	91.8

As shown in Table 3, 3-OH- N^I -phenylpiperazine (17) resulted in higher affinity for the D_2^{High} receptor than its 2- and 4-OH analogs. Though 17 had only a 3-fold increase in affinity with respect to the deshydroxy analog (15), comparison of its predicted intrinsic activity level to that of 15, and its affinity for the D_3 receptor, suggests that 17 is accessing a similar D_2 agonist pharmacophore as that of 3 and 4, though not as effectively. In contrast to the 2-OH-phenoxyethylamine (6), the 2-OH- N^I -phenylpiperazine (16) was not as effective in binding to the D_2^{High} receptor. Shown in Figure 1 is an overlay of the putative bioactive conformers¹⁰ of 3 and 17 which adhere to the D_2 agonist pharmacophore criteria as represented by the McDermed model.¹¹ Phenols 5 and 17 were observed to have excellent selectivity over the α_1 -adrenergic (5; K_i =5291 nM: 17; K_i >1 μ M) and 5-HT_{1A} receptors (5; K_i =1782 nM; 17; K_i >1 μ M). In vivo, 5 and 17 inhibited locomotor activity with ED₅₀ values of 0.08 and 1.4 mg/kg sc in mice, respectively.

In conclusion, we have discovered that the phenoxyethylamino and N^I -phenylpiperazinyl moieties can be utilized as novel scaffolds to access the D_2 agonist pharmacophore. Phenols 5 and 17, devoid of the traditional 3-OH-phenethylamine backbone, represent novel prototypical D_2 agonist templates for the future design of a new generation of dopaminergic agents currently being investigated in our laboratories.

Figure 1. Overlay of 3 and 17 in Putative D₂ Agonist Pharmacophoric Conformations.

References and Notes

- 1. Kaiser, C.; Jain, T. Med. Res. Rev. 1985, 5, 145.
- 2. Seyfried, C. A.; Boettcher, H. Drugs Future 1990, 15, 819.
- 3. Wikstrom, H. Prog. in Med. Chem. 1992, 29, 185.
- For Part 1 see Mewshaw, R. E.; Kavanagh, J.; Stack, G.; Marquis, K.; Shi, X.; Kagan, M. Z.; Webb, M. B.; Katz, A. H.; Park, A.; Kang, Y. H.; Abou-Gharbia, M.; Scerni, R.; Wasik, T.; Cortes-Burgos, L.; Spangler, T.; Brennan, J. A.; Pielsa, M.; Mazandarani, H.; Cockett, M. I.; Ochalski, R.; Coupet, J.; Andree, T. J. Med. Chem. 1997, 40, 4235.
- 5. Mitsunobu, O. Synthesis, 1981, 1.
- 6. Lahti, R. A.; Figur, L. M.; Peircey, M. F.; Ruppel, P. L.; Evans, D. L. Mol. Pharm. 1992, 42, 432.
- 7. Wasik, T.; Cockett, M.; Andree, T. H. Soc. Neurosci. Abst. 22: 831, 1996.
- 8. Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz, J.-C. Nature 1990, 347, 146.
- 9. K_i values are the means of n = 2-3 experiments run at six different concentrations. Each experiment was carried out in triplicate. 95% confidence limits were generally $< \pm 15$ % of the mean value.
- 10. All computations were performed using Sybyl software package version 6.3. The basic phenylpiperazine framework of 17 was identified from the Cambridge database and used as a starting point; further computations were performed using Sybyl v6.3.
- McDermed, J. D.; Freeman, H.S. Catecholamines: Basic and Clinical Frontiers; Usdin, E., Kopin,
 I., Barchas, J., Eds.; Pergamon: New York, 1979; Vol. 1, p 568.