

Segementação de doeças

em plantas utilizando

Gabrielle Lira Dantas Wanderley Henrique Santana Diniz Joaquim de Moura Thomaz Neto Maria Eduarda Chrispim Santana Saulo Pereira Vasconcelos

Professor:

Leonardo Vilela Cardoso

SEGMENTAÇÃO DE DOENÇAS EM PLANTAS USANDO U-NET

Pontos a discutir:

- Descrição do problema
- Solução
- Resultados
- Conclusão
- Referências bibliográficas

Arquitetura U-Net

- Foi proposta com foco na segmentação de imagens biomédica
- 🕒 Sua estrutura é caracterizada por um formato em "U", com dois caminhos principais:
 - Um caminho de contração, que captura o contexto geral da imagem.
 - Um caminho de expansão, que permite a localização precisa das informações.
- As duas partes são conectadas por skip connections
- Essa arquitetura se destacou por sua alta precisão, tornando-se referência em tarefas que exigem segmentação pixel a pixel com riqueza de detalhes.

Uso da U-Net na Agricultura

- A U-Net também pode ser aplicada na identificação de doenças em plantas, especialmente em folhas.
- As doenças geralmente se manifestam por padrões visuais específicos, como:
 - Manchas,
 - Descoloração,
 - Alterações na textura.
- A segmentação realizada pela U-Net permite reconhecer não só se a folha está doente, mas também exatamente quais partes dela estão afetadas.

Figura 1. Folha com doença

Proposta

Este projeto propõe a utilização da U-Net para analisar imagens de folhas e identificar visualmente regiões afetadas por doenças.

O objetivo é desenvolver uma abordagem automatizada que forneça diagnósticos precisos, ajudando na prevenção e controle da disseminação de doenças nas plantas

Metodologia

1. Preparação dos dados

Conjunto de imagens simuladas inspirado no dataset PlantVillage

Imagens RGB (folhas sadias ou doentes)

Organização em duas pastas

Máscaras binárias (255 para área doente, 0 para saudável)

Redimensionamento de todas as imagens para 256×256 px

2. Pré-processamento e Dataset

Criação da classe personalizada LeafDiseaseDataset (PyTorch)

Associa imagens às máscaras

3. Avaliação de arquiteturas

U-Net

- Skip connections que conectam encoder e decoder
- Efetiva para detectar regiões pequenas e com bordas definidas
- Recupera detalhes perdidos na codificação

ResUNet

- Combina a U-Net com blocos residuais
- Blocos residuais facilitam o fluxo de gradiente
- Resulta em segmentações mais limpas, precisas e robusta

Autoencoder

- Usado como baseline para comparação
- Bom para reconstrução geral, mas pouca precisão nos contornos das áreas doentes
- Arquitetura simétrica e sem skip connections

4. Treinamento

Imagem e Máscara

Original

Máscara binária

Figura 2. Exemplo de par de dados utilizado: folha de tomateira afetada máscara binária indicando a região doente (em branco)

Métricas quantitativas

Modelo	BCE Loss (mín.)	Época	loU (média)
Autoencoder	0.190	44	0.65
U-Net	0.274	50	0.79
ResUNet	0.056	44	0.83

Tabela 1. Comparativo de desempenho entre as arquiteturas

Métricas quantitativas

Figura 3. Evolução da BCE Loss (à esquerda) e da IoU (à direita) ao longo das épocas de treinamento para os três modelos.

Análise qualitativa

Figura 4. Máscaras preditas pelos modelos Autoencoder, ResUNet e U-Net

SEGMENTAÇÃO DE DOENÇAS EM PLANTAS USANDO U-NET

O trabalho demonstrou que a arquitetura escolhida influencia diretamente a qualidade da segmentação, sendo que a ResUNet se destacou com os melhores resultados em métricas como loU e BCE Loss, mostrando-se a alternativa mais promissora para aplicações agrícolas que exigem precisão no diagnóstico.

Trabalhos futuros

- Pretende-se ampliar o conjunto de dados, adicionando mais imagens e anotações de qualidade
- Avaliar outras culturas e tipos de doenças permitirá testar a robustez dos modelos

Referências Bibliográficas

RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. **U-Net: Convolutional Networks for Biomedical Image Segmentation.** In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer, 2015. p. 234–241. DOI: 10.1007/978-3-319-24574-4_28.

SILVA NETO, Humberto da. **Segmentação de pragas e doenças em folhas de café utilizando redes convolucionais.** 2023. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Instituto Federal do Espírito Santo, Campus Serra, 2023.

DEMILIE, Wubetu Barud. **Plant disease detection and classification techniques: a comparative study of the performances.** Journal of Big Data, [S.I.], v. 11, n. 5, p. 1-24, 2024.

SANTOS FILHO, Hermes Peixoto; TAVARES, Selma Cavalcanti Cruz de Holanda; MATOS, Aristóteles Pires de; COSTA, Valéria Sandra de Oliveira; MOREIRA, Wellington Antônio; SANTOS, Cláudia Cristina Ferreira dos. **Doenças, monitoramento e controle.** Cruz das Almas: Embrapa Mandioca e Fruticultura, 2005.

Tópicos em Engenharia de Software - 2025/1

Obrigada!

Gabrielle Lira Dantas Wanderley Henrique Santana Diniz Joaquim de Moura Thomaz Neto Maria Eduarda Chrispim Santana Saulo Pereira Vasconcelos

Professor:

Leonardo Vilela Cardoso

