CHAPITRE ECT4 – DOCUMENTS Changements de phase

FIGURE 1 : Différents temps de cuisson selon l'altitude

FIGURE 2: Formation des glaçons

FIGURE 3 : Nomenclature des transitions de phase

FIGURE 4 : Diagramme de phases d'un corps pur

H ₂ O	P (bar)	T(K)
Triple T_r	6,11.10-3	273,16
Critique C	221	647,3

FIGURE 5 : Diagramme d'état de l'eau (échelle logarithmique à gauche ; échelle linéaire au centre)

> Exercice d'application 1

Certains corps existent sous plusieurs états solides. Par exemple, le soufre existe sous la forme α et β . Sous pression atmosphérique, le passage $S_{\alpha} \to S_{\beta}$ a lieu à 95 °C, le passage $S_{\beta} \to S_{\beta}$ (liquide) à 119 °C et le passage $S_{\beta} \to S_{\beta}$ (gaz) à 444 °C.

- 1. Comment appelle-t-on les formes S_{α} et S_{β} ?
- 2. Attribuer les domaines du diagramme ci-contre.
- 3. Combien de points triples y a-t-il?

Exercice d'application 2

On introduit dans une enceinte de volume V une masse $m=100~{\rm g}$ d'eau liquide. L'enceinte est maintenue à la température $T=423~{\rm K}$, température à laquelle la pression de vapeur saturante de l'eau est $P_{sat}=4,76~{\rm bar}$. La vapeur d'eau est assimilée à un gaz parfait. Déterminer l'état d'équilibre atteint par l'eau pour $V=V_1=50~{\rm L}$. Que dire de l'état d'équilibre si $V_2=1~{\rm L}$?

FIGURE 6 : Réseau des isothermes d'Andrews

Exercice d'application 3

Les isothermes d'Andrews de l'hexafluorure de soufre (SF₆) ont été tracées expérimentalement pour $T_1=26$ °C, $T_2=30$ °C, $T_3=40$ °C et $T_4=50$ °C sur un système de masse m=172 mg de SF₆.

- a. Placer sur le graphe ci-contre le point critique caractérisé par $\,p_{\rm C}=37,7\,$ bar et $\,V_{\rm C}=0,45\,$ mL . Tracer la courbe de saturation.
- b. Quel est l'état physique du SF₆ pour :
 - $p_1 = 30$ bar à la température T_1 ?
 - $p_2 = 29$ bar à la température T_2 ?
 - $p_3 = 20$ bar à la température T_3 ?
 - $p_4 = 32$ bar à la température T_4 ?

- c. À la température T_1 , quels sont les volumiques massiques du liquide saturant et de la vapeur saturante?
- d. Visionner la vidéo 5. Quelle est la température critique T_C du SF_6 ?

FIGURE 7 : Composition d'un système diphasé liquide – vapeur dans le diagramme de Clapeyron

FIGURE 8 : Stockage d'un fluide

Exercice d'application 4

On considère de l'eau liquide en équilibre avec sa vapeur à la température $T_0 = 394 \; \mathrm{K}$. La masse d'eau est $m = 10,0 \; \mathrm{g}$ et le volume total du système est $V_0 = 4,0 \; \mathrm{L}$. À la température T_0 , les volumes massiques de l'eau sous forme de liquide saturant et de vapeur saturante sont respectivement $v_L = 1,06 \; \mathrm{L.kg^{-1}}$ et $v_V = 858 \; \mathrm{L.kg^{-1}}$.

- a. Déterminer le volume V_L occupé par le système sous forme de liquide saturant (état L) puis le volume V_V occupé par le système sous forme de vapeur saturante (état V).
- b. Dans le diagramme de Clapeyron, représenter l'isotherme à T_0 , la courbe de saturation ainsi que les points L, V et M (état du système).
- c. Déterminer le titre en vapeur du mélange à T_0 . En déduire les masses et les volumes de chaque phase.

Exercice d'application 5

Reprendre l'exercice d'application 2 et déterminer l'état d'équilibre atteint par l'eau pour $V=V_2=1$ L, sachant que pour T=423 K, $v_L=1,1$ L.kg $^{-1}$.

Hypothèse	Grandeur connue	Grandeur à déterminer	Condition de validité

FIGURE 10 : Hypothèses à formuler en présence de changement d'état

Changement	Chaleur la	Nature de la	
d'état 1→2	Nom	Expression et signe	transfor- mation
solide → liquide			
liquide→ gaz			
solide → gaz			
liquide → solide			
gaz → liquide			
gaz → solide			

FIGURE 9 : Enthalpies massiques de changements d'états

> Exercice d'application 6

On remplit un bac à glaçons d'eau et on le place dans un congélateur. Le bac à glaçons permet de faire N=12 glaçons cubiques ayant chacun une masse m=15 g. Le congélateur est maintenu à la température $T_2=-18$ °C et l'eau liquide mise dans le bac à glaçons est initialement à la température $T_1=25$ °C. On attend suffisamment longtemps pour que l'équilibre thermique soit atteint.

On donne la capacité thermique massique de l'eau liquide $c_l=4,2~{\rm kJ.K^{-1}.kg^{-1}}$, la capacité thermique de la glace $c_g=2,1~{\rm kJ.K^{-1}.kg^{-1}}$, l'enthalpie massique de fusion de la glace à $T_0=0~{\rm ^{\circ}C}$ qui vaut $\Delta h_{\rm fus}=3,3.10^2~{\rm kJ.kg^{-1}}$. On rappelle que pour une phase condensée de capacité thermique C, l'entropie s'écrit, avec T^0 une température de référence choisie arbitrairement :

$$S(T) = C \ln \left(\frac{T}{T^0}\right) + S(T^0)$$

- 1. Déterminer la variation d'enthalpie ΔH de l'eau entre son état initial à la température T_1 et son état final à la température T_2 .
- 2. Déterminer l'énergie reçue sous forme de transfert thermique Q par l'eau de la part du congélateur en supposant que l'évolution se fasse à pression constante $p^0 = 1$ bar.
- 3. Déterminer la variation d'entropie ΔS au cours de la transformation.