

Agenda

- *Brief* overview of ggplot2 + extensions
- Resources for extensions
- Some existing extensions
- Writing your own extension

What is ggplot2?

G G

You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

What is ggplot2?

```
library(ggplot2)
library(dplyr)
library(gapminder)

pop_by_year <- gapminder %>%
  filter(country == "United States") %>%
  ggplot(aes(x = year, y = pop, group = country)) +
  geom_line()

pop_by_year
```


Advantages of using ggplot

Advantages of using ggplot: continued

```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(x = year, y = pop, group = country)) +
  geom_line() +
  facet_wrap(~country, nrow = 3) +
  scale_y_log10()
```


Resources for learning ggplot2

- https://ggplot2.tidyverse.org/
- http://r4ds.had.co.nz/data-visualisation.html
- http://www.cookbook-r.com/Graphs/
- https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf

ggplot2 extensions

- What if ggplot2 doesn't have the geom you want?
- extensions allow you to write your own geom
 - share with others in an R package
- http://www.ggplot2-exts.org/

ggplot2 extensions: example

ggplot2 extensions: dumbell

```
life_exp_8707 %>%
  ggplot(aes(y = country, x = year_1987, xend = year_2007)) +
  ggalt::geom_dumbbell(colour_x = "red", colour_xend = "blue", size_x = 2,
  size_xend = 2)
```


Popular extensions

- patchwork
- gganimate
- ggridges
- ggrepel
- ggExtra
- gghighlight
- ggthemes
- ggiraph

patchwork

The goal of patchwork is to make it ridiculously simple to combine separate ggplots into the same graphic. As such it tries to solve the same problem as <code>gridExtra::grid.arrange()</code> and <code>cowplot::plot_grid</code> but using an API that incites exploration and iteration.

https://github.com/thomasp85/patchwork

patchwork: Motivating Example

patchwork: Continued

gdp_plot + pop_plot

patchwork: Continued

```
# gdp_plot + pop_plot - life_dist_plot + plot_layout(ncol = 1)
(gdp_plot | pop_plot) / life_dist_plot
```


patchwork: Continued

```
gdp_plot + pop_plot - life_dist_plot + plot_layout(ncol = 1, heights = c(2,
1)) & theme_bw()
```


gganimate

The core of the approach is to treat "frame" (as in, the time point within an animation) as another aesthetic, just like x, y, size, color, or so on. Thus, a variable in your data can be mapped to frame just as others are mapped to x or y.

https://github.com/dgrtwo/gganimate

gganimate: example

```
library(gganimate)
year_plot <- gapminder %>%
    ggplot(aes(gdpPercap, lifeExp, size = pop, color = continent, frame = year))
+
    geom_point() +
    scale_x_log10() +
    theme_bw()

gganimate(year_plot, filename =
"~/Documents/Presentations/r_users/year_plot.gif")
```


gganimate: House Keeping

- No longer a single ggplot image
 - doesn't play nice with markdown
- To make smooth transitions between your data use the tweenr package
- package is undergoing a total rewrite
 - aes(frame = ...) is going away at some point

ggridges

https://blogs.scientificamerican.com/sa-visual/pop-culture-pulsar-origin-story-of-joy-division-s-unknown-pleasures-album-cover-video/

ggridges

Ridgeline plots are partially overlapping line plots that create the impression of a mountain range. They can be quite useful for visualizing changes in distributions over time or space.

https://github.com/clauswilke/ggridges

ggridges: example

```
library(ggridges)
gapminder %>%
   ggplot(aes(x = gdpPercap, y = continent)) +
   ggridges::geom_density_ridges2() +
   scale_x_log10()
```


ggridges: Continued

```
gapminder %>%
  ggplot(aes(x = gdpPercap, y = continent, fill = ..x..)) +
  ggridges::geom_density_ridges_gradient(scale = 3, rel_min_height = .01) +
  scale_fill_viridis_c() +
  scale_x_log10()
```


ggridges: raincloud plots

```
gapminder %>%
  ggplot(aes(x = gdpPercap, y = continent, fill = ..x..)) +
  ggridges::geom_density_ridges_gradient(scale = .9, rel_min_height = .01,
position = position_raincloud(), jittered_points = T) +
  scale_fill_viridis_c() +
  scale_x_log10()
```


ggrepel

ggrepel provides geoms for ggplot2 to repel overlapping text labels:

https://github.com/slowkow/ggrepel

ggrepel: example

```
library(ggrepel)

gapminder %>%
  filter(year == 2007, continent == "Americas") %>%
  ggplot(aes(x = gdpPercap, y = lifeExp)) +
  geom_point() +
  geom_text(aes(label = country))
```


ggrepel: example

```
library(ggrepel)

gapminder %>%
  filter(year == 2007, continent == "Americas") %>%
  ggplot(aes(x = gdpPercap, y = lifeExp)) +
  geom_point() +
  geom_text_repel(aes(label = country))
```


ggextra

https://github.com/daattali/ggExtra

ggExtra: example

```
p <- ggExtra::ggMarginal(life_vs_gdp_plot)
grid::grid.newpage()
grid::grid.draw(p)</pre>
```


ggExtra: Continued

```
p2 <- gapminder %>%
  ggplot(aes(x = gdpPercap, y = lifeExp, color = continent)) +
  geom_point() +
  scale_x_log10()

p2 <- ggExtra::ggMarginal(p2, groupFill = T)

grid::grid.newpage()
grid::grid.draw(p2)</pre>
```


gghighlight

https://github.com/yutannihilation/gghighlight

• The package on cran is old

```
gapminder %>%
  ggplot(aes(x = year, y = gdpPercap, group = country)) +
  geom_line() +
  scale_y_log10()
```


gghighlight: example

```
library(gghighlight)

gapminder %>%
  ggplot(aes(x = year, y = gdpPercap, group = country, color = country)) +
  geom_line() +
  scale_y_log10() +
  gghighlight(country %in% c("United States", "Canada", "Mexico"),
  use_group_by = F)
```


gghighlight: continued

```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(x = year, y = gdpPercap, group = country, color = country)) +
  geom_line() +
  scale_y_log10() +
  facet_wrap(~country, nrow = 3) +
  gghighlight(T, use_group_by = F, use_direct_label = F) +
  scale_color_discrete(guide = F)
```


ggthemes

https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html

ggiraph

http://davidgohel.github.io/ggiraph/articles/offcran/using_ggiraph.html

Writing your own extension

https://ggplot2.tidyverse.org/articles/extending-ggplot2.html

0

gdp_plot

class(gdp_plot)

[1] "gg" "ggplot"

Geoms and Stats

?ggplot2::Geom

All geom_functions (like geom_point) return a layer that contains a Geom object (like GeomPoint).

The Geom* object is responsible for rendering the data in the plot.

- geom_point => GeomPoint object
- calling the function tells ggplot what data to use to create the object

ggproto

- ggproto is the sytem of OO that ggplot uses.
- Different object types for different parts
 - Geom
 - Stat
 - Position
 - Scale
 - Coord
 - Facets
- Each type has its own methods you must customize (override)

Custom Stat

• We need to tell ggplot what calculation to run and what geom to plot once we get the results

```
?Stat
```

```
StatMiddle <- ggproto("StatMiddle", Stat,
  compute_group = function(data, scales) {
    xmed <- median(data$x)
    ymed <- median(data$y)

    data.frame(x = xmed, y = ymed)
},

required_aes = c("x", "y")
)</pre>
```

Custom Stat: Continued

Custom Stat: example

```
gapminder %>%
  ggplot(aes(x = lifeExp, y = gdpPercap)) +
  geom_point() +
  scale_y_log10() +
  stat_middle(color = "red", size = 2)
```


Custom Stat: example

```
gapminder %>%
  ggplot(aes(x = lifeExp, y = gdpPercap)) +
  geom_point() +
  scale_y_log10() +
  stat_middle(aes(color = continent), size = 2)
```


Questions?

https://github.com/AtlantaRUsers/Meetups