UNIVERSITY OF BRISTOL

August/September 2019 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30009R Types and Lambda Calculus

TIME ALLOWED: 2 Hours

This paper contains *two* questions, answer *both*.

Credit will be given for partial or partially correct answers.

The maximum for this paper is *50 marks*.

Other Instructions:

You may use any result that you can recall from the lecture notes, as long as it is labelled clearly in your answer.

YOU MAY START IMMEDIATELY

Page 1 of 3

Q1. (a) State the grammar of the syntax of PCF.

[3 marks]

- (b) Write each of the following terms with all λ and parentheses made explicit.
 - i. $\lambda xyz.xz(yz)$
 - ii. $(\lambda xy.x)(\lambda x.xx)$
 - iii. $x(\lambda xy. x(\lambda z. z))y$

[3 marks]

- (c) For each of the following, give an example of a closed term M that satisfies the equation.
 - i. $M(\lambda x. xz) \approx zz$.
 - ii. $M \approx MM$
 - iii. $\lambda x. M \approx M$
 - iv. $Mx \approx x Mx Mx$

[4 marks]

(d) Prove, by induction on M, that: if $M[P/x] \neq M[Q/x]$ then $x \in FV(M)$.

[6 marks]

(e) Prove that there cannot be a term M with the property, for all terms N and P:

$$MNP \approx \begin{cases} \underline{0} & \text{if } N = P \\ \underline{1} & \text{otherwise} \end{cases}$$

[3 marks]

(f) Let us say that a *pure* term M is *solvable* just if for all terms $P \in \Lambda$, one can find a sequence of terms N_1, \ldots, N_k such that $(\lambda x_1 \ldots x_m, M) N_1 \cdots N_k \approx P$, where $FV(M) = \{x_1, \ldots, x_m\}$. Prove that every pure term with a normal form is solvable.

[6 marks]

Q2. (a) State the rules of the type system (the rule names are not important).

[3 marks]

- (b) For each of the following terms, state whether or not it is typable. No justification is necessary.
 - i. $\lambda x. yz$
 - ii. $\lambda x. xx$
 - iii. $\lambda x. x(\lambda y. y)x$

[3 marks]

(c) The subterm relation $M \sqsubseteq N$, "M is a subterm of N", holds exactly when one can construct a proof tree/derivation rooted at $M \sqsubseteq N$, using the following rules:

$$\frac{}{M \sqsubseteq M} (SubRefl) \qquad \frac{P \sqsubseteq M}{P \sqsubseteq (\lambda x. M)} (SubAbs)$$

$$\frac{P \sqsubseteq M}{P \sqsubset (MN)} (SubAppL) \qquad \frac{P \sqsubseteq N}{P \sqsubset (MN)} (SubAppR)$$

Prove, by induction on *M*:

For all Γ , A: if $\Gamma \vdash M$: A and $N \sqsubseteq M$, then there is some Γ' and A' such that $\Gamma' \vdash N : A'$.

[6 marks]

- (d) For each of the following, find a closed, pure term that inhabits the type:
 - i. $(a \rightarrow b) \rightarrow a \rightarrow b$
 - ii. $(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a) \rightarrow b \rightarrow c$
 - iii. $(a \rightarrow c) \rightarrow ((c \rightarrow c \rightarrow c) \rightarrow a) \rightarrow c$

[6 marks]

(e) Suppose $M \approx xM$. Show that M cannot have a β -normal form.

[3 marks]

(f) Recall that the **Church numeral** for the number n, abbreviated $\lceil n \rceil$, is:

$$\lambda f x. \underbrace{f(\cdots(f \times) \cdots)}_{n-\text{times}}$$

Define exp_k as a tower of 2nd-power exponentials of height k:

$$exp_1 = 2$$
 $exp_{i+1} = 2^{exp_i}$

So, for example, $\exp_3 = 2^{2^2} = 16$. Define a term M such that the k-fold application

$$\underbrace{M \cdots M}_{k\text{-times}}$$

is typable and β -convertible with $\lceil \exp_k \rceil$. Justify your answer.

[4 marks]