I

 Π

:11:

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-234715

(43)Date of publication of application: 23.08.1994

(51)Int.CI.

C07C237/22 C07C309/70 C07C309/72

(21)Application number: 05-266972

(71)Applicant: KYOWA HAKKO KOGYO CO LTD

(22)Date of filing:

26.10.1993 (72)Inventor: INOUE KUNIMI

YAMADA YOSHIYUKI AMATSU KAZUMI MIMURA YUKITERU **NAKAGUCHI YASUNORI** NIIMURA HIROYUKI ONO YASUYUKI OSAWA YUTAKA **MIZUTAKI SHIYOUICHI**

KASAI MASAJI TOMIOKA SHINJI

(30)Priority

Priority number: 04291139

Priority date: 29.10.1992

Priority country: JP

(54) PRODUCTION OF ALANYLGLUTAMINE

(57)Abstract:

PURPOSE: To obtain alanylglutamine in high purity at a low cost by reacting a partially new N-(2-substituted)propionylglutamine derivative with ammonia at a prescribed temperature or below.

CONSTITUTION: A partially new N-(2-substituted)propionylglutamine derivative expressed by formula I [X is halogen, alkylsulfonyloxy or (substituted) arylsulfonyloxy] [e.g. new N-(2-D-chloro)propionyl-Lglutamine] is made to react with ammonia at ≤60° C to afford the objective alanylglutamine. A compound expressed by formula III (X1 is Cl, I or X other than halogen) in the compound expressed by formula I is new. This compound expressed by formula I is obtained by reacting a 2-substituted-propionyl halide expressed by formula II (Hal is halogen) with an alkaline aqueous solution of glutamine in the presence of a waterimmiscible organic solvent and recovering the resultant compound expressed by formula I from the prepared reactional solution. L-Alanyl-L- glutamine is useful as a pharmaceutical bulk, etc., for infusion.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-234715

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

C 0 7 C 237/22

7106-4H

309/70

7419-4H

309/72

7419-4H

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

特願平5-266972

(22)出願日

平成5年(1993)10月26日

(31)優先権主張番号 特顯平4-291139

(32)優先日

平 4 (1992)10月29日

(33)優先権主張国

日本(JP)

(71)出願人 000001029

協和醱酵工業株式会社

東京都千代田区大手町1丁目6番1号

(72)発明者 井上 国見

大阪府堺市今池町1-2-3

(72)発明者 山田 義之

大阪府堺市草尾420-3

(72)発明者 天津 和美

大阪府堺市新在家町西2-2-9

(72)発明者 三村 幸輝

静岡県駿東郡長泉町東野692-304

(72)発明者 中口 康範

大阪府堺市今池町1-2-3

最終頁に続く

(54)【発明の名称】 アラニルグルタミンの製造法

(57) 【要約】

【構成】 式(I)

〔式中、Xはハロゲン原子、アルキルスルホニルオキシ または置換もしくは非置換のアリールスルホニルオキシ 基を表す〕で表されるN-(2-置換)ープロピオニル グルタミン誘導体を、アンモニアと60℃以下で反応せ しめることを特徴とするアラニルグルタミンの製造法。 【効果】 本発明によりLーグルタミンの安定誘導体と して輸液用原末等に用いられるL-アラニルーL-グル タミンが効率よく安価に製造される。

【特許請求の範囲】

【請求項1】 式(1)

【化1】

〔式中、Xはハロゲン原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-プロピオニル 10 グルタミン誘導体を、アンモニアと60℃以下で反応せしめることを特徴とするアラニルグルタミンの製造法。

【請求項2】 式(II)

[化2]

[式中、Xは前記と同義であり、Halはハロゲン原子を表す]で表される2-置換-プロピオニルハライドをグルタミンのアルカリ水溶液と、水と混和しない有機溶媒存在下に反応させ、得られた反応液から式(I)

【化3】

[式中、Xは前記と同義である]で表されるN-(2-置換)ープロピオニルグルタミン誘導体を回収することを特徴とするN-(2-置換)ープロピオニルグルタミン誘導体の製造法。

【請求項3】 式(I')

【化4】

[式中、X¹ は塩素原子、ヨウ素原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す]で表されるN-(2-置換)-プロピオニルグルタミン誘導体またはその塩。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はアラニルグルタミンの製造法およびその中間体であるN-(2-置換)ープロピオニルグルタミン誘導体の製造法並びに該方法により製造される新規N-(2-置換)ープロピオニルグルタミン誘導体に関する。L-アラニル-L-グルタミンは、L-グルタミンに比べて安定であり、且つ水に対する溶解度が高いことから、L-グルタミンの安定誘導体として輸液用原末等に用いられる。

[0002]

【従来の技術】アラニルグルタミンの製造法としては、 ①保護基を用いる方法、例えば、N-ベンジルオキシカ ルポニルアラニン(以下、 Z-アラニンと称する)と保 護グルタミンをジシクロヘキシルカルボジイミド (DC C) で縮合し、脱保護して合成する方法 [Bull. Chem. So c. Jpn., 34, 739 (1961) Bull. Chem. Soc. Jpn., 35, 1966 (1962) 〕、 スーアラニンと保護グルタミン酸ーγーメ チルエステルをDCCで縮合し、脱保護後、アンモニア と反応させて合成する方法 [Bull. Chem. Soc. Jpn., 37, 20 0(1964)] 、 Zーアラニンの活性エステルと無保護のグ ルタミンを反応させ、脱保護して合成する方法〔欧州特 許第311057号] 等、②N-カルボキシ無水物を経由する 方法 [ドイツ特許第3206784 号]、 ③2 - ブロモプロピ オニルクロリドを原料とし、2-ブロモプロピオニルグ ルタミンを中間体として合成する方法 [Hoppe-Seyler's Z. Physiol. Chem., 105, 58 (1919) 〕 等が知られてい る。

2

【0003】①の保護基を用いる方法は脱保護が必要で あり、操作が煩雑で安価にアラニルグルタミンを製造す ることができない。②の方法は、アラニンのN-カルボ キシ無水物を用いる方法で保護基を必要としないが、ト リペプチド等の副生物が多く生成するため収率が低く、 また精製が困難である。③の方法は、2-ブロモプロピ オニルクロリドとグルタミンとの反応において、水との 反応性の高い酸クロリドをグルタミンの水溶液に添加し ているため、目的の反応以外に酸クロリドの加水分解反 応が進行し、副生物が生成して収率が低い。また、当該 方法においては、生成した2-ブロモプロピオニルグル 30 タミンを有機溶媒を用いた抽出法で精製しているため収 率が低く、かつ光学純度も低い。さらに、当該方法にお いては、2-プロモプロピオニルグルタミンのアンモノ リシスを高温で行っているため、副生成物が多くかつ生 成するアラニルグルタミンの光学純度も低下する傾向が ある。

[0004]

【発明が解決しようとする課題】本発明の目的は、工業上、安価かつ高純度なアラニルグルタミンの製造法およびその中間体であるN-(2-置換)ープロピオニルグ40 ルタミン誘導体の製造法並びに該方法により製造される新規N-(2-置換)ープロピオニルグルタミン誘導体を提供することにある。

[0005]

【課題を解決するための手段】本発明は、式 (II) 【0006】

【化5】

50 【0007】 [式中、Xはハロゲン原子、アルキルスル

3

ホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表し、Halはハロゲン原子を表す〕で表される2-置換ープロピオニルハライド〔以下、化合物(II)と称する〕とグルタミンのアルカリ水溶液とを、水と混和しない有機溶媒存在下に反応させることを特徴とする式(I)

[0008]

【化6】

【0009】〔式中、Xは前記と同義である〕で表され るN-(2-置換)ープロピオニルグルタミン誘導体 [以下、化合物(I)と称する]の製造法並びに化合物 (I) を60℃以下でアンモニアと反応せしめること特 徴とするアラニルグルタミンの製造法に関する。式 (I) および式(II) の定義中、アルキルスルホニル オキシ基のアルキル部分としては、炭素数1~6の直鎖 もしくは分岐状アルキル基、例えば、メチル、エチル、 プロピル、イソプロピル、ブチル、イソブチル、sec-ブ チル、tert-ブチル、ペンチル、ヘキシル等が包含さ れ、アリールスルホニルオキシのアリール部分として は、フェニル、ナフチル等が、置換アリールとしては、 トリル等がそれぞれ包含される。また、ハロゲン原子と しては、塩素、臭素、ヨウ素の各原子が包含される。 【0010】本発明の化合物(I)の製造法において、 水と混和しない有機溶媒としては、エーテル、トルエ ン、クロロホルム、塩化メチレン、ジクロロエタン、酢 酸エチル等が単独もしくは混合して用いられるが、トル 30 エン、クロロホルム、塩化メチレンが好適に用いられ る。用いられる有機溶媒の量は、グルタミンのアルカリ 水溶液に対して、0.1~5倍量、好ましくは0.3~ 1倍量用いられる。グルタミンのアルカリ水溶液として は反応を阻害しないものであればとくに制限はなく、例 えば、水酸化ナトリウム、水酸化カリウム、水酸化リチ ウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ 水溶液、トリメチルアミン、トリエチルアミン、ピリジ ン等の有機アルカリ水溶液があげられるが、水酸化ナト リウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウ 40 ム、トリエチルアミンが好適に用いられる。グルタミン は、化合物(II)に対して、0.5~2.0当量用い られるが、当量用いるのが好ましい。アルカリ水溶液に 含まれるグルタミンの量としては、0.01~3M、好

ましくは、0.1~1 Mである。反応は、-5~40℃、好ましくは、0~10℃で行われ、0.1~5時間、好ましくは、0.5~2時間で終了する。反応中、アルカリ水溶液のpHは7~11、好ましくは9~10.5である。反応の進行に伴い塩酸が生成するため、反応液のpHは低下する。従って、反応中、反応液に塩基を加えることにより、反応液のpHを上記の範囲に設定することが好ましい。用いられる塩基は、反応を阻害しない限りとくに制限はなく、例えば、水酸化ナトリウム等の無機塩基、トリエチルアミン等の有機塩基等が用いられる。

【0011】上記反応で使用した有機溶媒を分液等により除去後、アルカリ水溶液に塩を加え、塩酸、硫酸等の強酸でpH0.1~4、好ましくはpH0.5~2.5に調整し、塩析することにより化合物(I)の結晶を収率よく得ることができる。用いられる塩としては、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム等があげられるが、塩化ナトリウムが好適に用いられる。添加する塩の量はとくに制限はないが、アルカリ水溶液がその塩の飽和溶液になる量が好ましい。

【0012】本発明の化合物 (I) のうち、下記式 (I')

[0013]

【化7】

【0014】〔式中、X¹は塩素原子、ョウ素原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で示される化合物〔以下、化合物(I')と称する〕およびその塩は、新規化合物である。化合物(I')の塩としては、化合物(I')のナトリウム、カリウム等のアルカリ金属塩、アンモニウム、トリメチルアンモニウム、トリエチルアンモニウム等のアンモニウム塩、ピリジニウム塩等があげられる。

【0015】本発明のアラニルグルタミンの製造法において、化合物(I)またはその塩を60℃以下の温度でアンモニアと、溶媒中で反応させることにより、収率よくアラニルグルタミンを得ることができる。

[0016]

【化8】

5

【0017】〔式中、Xは前記と同義である。〕 【0018】上記反応で使用される溶媒としては、メタ ノール、エタノール、プロパノール等のアルコール類も しくは水または水酸化ナトリウム、水酸化カリウム等の アルカリ水溶液があげられるが、水が好適に用いられ る。酢酸アンモニウム、塩化アンモニウム、硫酸アンモ ニウム、臭化アンモニウム、炭酸アンモニウム等のアン モニウム塩を添加することにより反応性が向上すること がある。反応温度は通常0~60℃である。反応は常圧 または加圧下に1~100時間好ましくは4~50時間 で終了する。アンモニアは化合物 (I) に対し1~20 0 当量、好ましくは、10~50当量用いられる。反応 時の化合物 (I) の濃度は0.01~2M、好ましくは 0. 1~0. 6 Mである。 反応の進行は高速液体クロマ トグラフィー(HPLC)で追跡する。反応終了を確認 後、減圧濃縮等により、過剰のアンモニアと水を除きア ルコール類、好ましくはメタノール、エタノール、2-プロパノールを加えることにより高純度のアラニルグル タミンを収率よく得ることができる。化合物 (I) にお いてXが臭素原子である場合は、反応を20~30℃で 行うことにより、髙生成率でかつラセミ化をおこすこと なく、有利に高純度のアラニルグルタミンを収率よく得 ることができる。

【0019】光学活性なアラニルグルタミンを所望の場合は、光学活性な化合物 (II) およびグルタミンを使用して得ることもできるが、光学不活性な化合物 (II) および光学活性なグルタミンを用い、化合物 (I) あるいはアラニルグルタミンのジアステレオマー混合物を得、これを常法に従い、分離、精製すればよい。以下に、本発明の実施例を示す。

[0020]

【実施例】

実施例1 N-(2-D-クロロ) プロピオニルーL ーグルタミンの合成

水300mlとトルエン150mlに室温下、Lーグル タミン48.2g (Q.33モル)を加え0~5℃に冷 却し、5 規定水酸化ナトリウム 6 6 m l (0.33 モ ル)を添加しLーグルタミンを溶解させた。この溶液に 33モル、光学純度; 92.8% e e) を含むトルエン 90mlと5規定水酸化ナトリウム74mlを0~5℃ で、pH10に保ちながら2時間かけて加えた。0~5 ℃で1時間撹拌後、トルエンを分液して除去し、室温 下、水層に塩化ナトリウム60gを加えた。この溶液に 室温下、濃塩酸22mlを加えてpH2.5に調整後、 種晶し30分間撹拌した。さらに濃塩酸8m1を加えて pH1. 0に調整し、室温下1時間晶析した。得られた 結晶を瀘取し、減圧下乾燥することにより、N- (2-D-クロロ) プロピオニルーL-グルタミンを71.6 g [収率; 85.3% (純度; 92.9%)、光学純

度; 99.4% de、融点; 148℃ (分解)) 得た。 【0021】Nー (2-D-クロロ) プロピオニルーLーグルタミンの理化学的性質は以下の通りである。 ¹ H-NMR (300MHz, DMSO-ds) δ (ppm): 1.54 (3H, d, J=6.6Hz), 1.70 ~2.10 (2H, m), 2.14 (2H, t, J=7.1Hz), 4.13~4.23 (1H, m), 4.59 (1H, q, J=6.7Hz), 6.82 (1H, s), 7.37 (1H,

 13 C-NMR (75. 5MHz, DMSO-ds) δ (ppm): 21. 7, 26. 6, 31. 2, 51. 9, 54. 1, 168. 9, 172. 8, 173. 5

10 MS(Cl, m/e); 237(M + +1)

s), 8.60 (1H, d, J=7.7Hz)

IR(KBr, cm ⁻¹): 1738, 1662

【0022】実施例2 N-[2-D-(p-トルエンスルホニルオキシ)]プロピオニルーL-グルタミンの合成

水300mlとトルエン150mlに室温下、Lーグル タミン47. 4g(0. 32モル)を加え0~5℃に冷 却し、5規定水酸化ナトリウム66ml (0.32モ ル)を添加しLーグルタミンを溶解させた。この溶液に 2-D- (p-トルエンスルホニルオキシ) プロピオニ ルクロリド91.0g(0.32モル)を含むトルエン 90mlと5規定水酸化ナトリウム75mlを0~5℃ で、pH10に保ちながら2時間かけて加えた。0~5 ℃で1時間撹拌後、トルエンを分液して除去し、水層に 室温下、塩化ナトリウム59gを加えた。この溶液に室 温下、濃塩酸25mlを加えてpH2.5に調整後、種 晶し30分間撹拌した。さらに濃塩酸8mlを加えてp H1. 0に調整し、室温下1時間晶析した。得られた結 晶を瀘取し、減圧下乾燥することにより、N-[2-D - (p-トルエンスルホニルオキシ)〕プロピオニル-30 Lーグルタミンを76.9g [収率;63.8%、光学 純度;99.6%de、融点;102℃] 得た。N-〔2-D-(p-トルエンスルホニルオキシ)〕プロピ オニルーLーグルタミンの理化学的性質は以下の通りで ある。

¹ H-NMR (300MHz, DMSO-dε) δ (ppm): 1. 35 (3H, d, J=6. 7H z). 1. 72 \sim 1. 98 (2H, m), 2. 03 (2H, t, J=6. 6Hz), 2. 43 (3H, s), 4. 07 \sim 4. 14 (1H, m), 4. 90 (1H, q, J=6. 7Hz), 6. 83 (1H, s), 7. 31 (1H, s), 7. 48 (2H, d, J=8. 1Hz), 7. 82 (2H, d, J=8. 1Hz), 8. 44 (1H, d, J=7. 8Hz)

40 13 C-NMR (75. 5MHz, DMSO-d₆-D₂0) δ (ppm); 19.8, 22.1, 2 7.4, 31.9, 52.3, 76.9, 128.6, 131.1, 133.4, 146.4, 169.4, 173.6, 175.2

MS(SIMS, m/e): 373(M + +1)

IR(KBr, cm ⁻¹); 1712, 1675

【0023】実施例3 N-(2-D-メタンスルホニルオキシ)プロピオニルーLーグルタミンの合成水185mlとトルエン92mlに室温下、Lーグルタミン29.2g(0.20モル)を加え0~5℃に冷却し、5規定水酸化ナトリウム40ml(0.20モル) を添加しLーグルタミンを溶解させた。この容液に2-

o 間かけて滴下し

Dーメタンスルホニルプロピオニルクロリド38.0g (0.20モル)を含むトルエン20mlと5規定水酸化ナトリウム50mlを0~5℃で、pH10に保ちながら2時間かけて加えた。0~5℃で1時間撹拌後、トルエンを分液して除去し、室温下、水層に塩化ナトリウム76gを加えた。この溶液に室温下、濃塩酸21mlを加えてpH0.9に調整後、150mlのクロロホルム/2-プロパノール(1:1)で2回抽出した。有機層を分取し、濃縮乾固させることにより、Nー(2-Dーメタンスルホニルオキシ)プロピオニルーLーグルタミンを27.2g[収率;45.8%、光学純度;95.8%de]得た。

【0024】Nー (2-D-メタンスルホニルオキシ) プロピオニルーL-グルタミンの理化学的性質は以下の 通りである。

 1 H-NMR (300MHz, DMSO-d₆) δ (ppm) : 1. 47 (3H, d, J=6. 6H z) , 1. 77 \sim 2. 12 (2H, m) , 2. 15 (2H, t, J=7. 5Hz) , 3. 23 (3H, s) , 4. 17 \sim 4. 24 (1H, m) , 5. 07 (1H, q, J=6. 6Hz) , 6. 84 (1H, s) , 7. 35 (1H, s) , 8. 60 (1H, d, J=7. 7Hz)

 $^{1\,3}$ C-NMR (75. 5MHz, DMSO-d₆) δ (ppm): 19. 4, 25. 6, 31. 5, 51. 9, 62. 6, 75. 9, 169. 2, 173. 2, 174. 4

MS(SIMS, m/e): 297(M + +1)

【0025】実施例4 N-(2-D-ブロモ)プロピオニル-L-グルタミンの合成

水300mlとトルエン75mlに室温下、Lーグルタミン21.9g(0.15モル)を加え、0~5℃に冷却し、5規定水酸化ナトリウム30ml(0.15モル)を添加し、Lーグルタミンを溶解させた。この溶液に2-D-ブロモプロピオニルクロリド25.7g

(0.15モル)を含むトルエン30mlを、0~5℃で、5規定水酸化ナトリウム25mlを滴下することにより、pH10に保ちつつ2時間かけて加えた。0~5℃で1時間撹拌後、トルエンを分液して除去し、室温下、水層に塩化ナトリウム40gを加えた。この溶液に室温下、濃塩酸15mlを加えてpH1.0に調整し、室温下1時間晶析した。得られた結晶を濾取し、減圧下乾燥することにより、N-(2-D-ブロモ)プロピオニルーL-グルタミンを40.4g.(収率;95.8%、光学純度;97.9%de、融点;142℃)得た。

【0026】実施例5 N- (2-D-クロロ) プロ ピオニルーL-グルタミンを原料としたL-アラニルー L-グルタミンの合成

1リットルのガラスオートクレイブにN-(2-D-クロロ)プロピオニルーL-グルタミン60.0g(純度;92.9%、0.24モル)と28%アンモニア水600mlを加え室温下溶解させた。この溶液を60℃へ昇温し、内圧約2kg/cm²で8時間反応させた。室温へ冷却後、減圧下濃縮し、得られた残渣に水30mlを加え全量を150gとした。この溶液に室温下、メ

タノール450mlを1時間かけて滴下した。2時間晶析後、析出した結晶を瀘取し、減圧下乾燥することによりLーアラニルーLーグルタミンの粗成物を35.4g(収率;69.0%、光学純度;97.6%de)得た。

【0027】このL-アラニルーL-グルタミンの粗成物30gを、水50mlに溶解させ、活性炭0.6gを加え、室温下10分間撹拌した。活性炭を瀘別し、遮液に30℃でメタノール42mlを加えた後種晶し、2時間晶析した。さらにメタノール138mlを、30℃で1時間かけて添加した後2時間撹拌した。析出した結晶を瀘取し、減圧下乾燥することによりL-アラニルーLーグルタミンを26.38g [収率;88%、光学純度;99.9%de、融点;216℃(分解)、比旋光度; $[\alpha]^{20}$ D=-3.49°(c=10,1N-HC1)] 得た。

【0028】実施例5 N-(2-D-ブロモ)プロピオニルーL-グルタミンを原料としたL-アラニルー L-グルタミンの合成

0 N-(2-D-ブロモ)プロピオニルーLーグルタミン20.0g(0.07モル)に28%アンモニア水300mlを加え室温下溶解させ、室温下20時間反応させた。反応混合物を減圧濃縮し、得られた残渣に水約6mlを加え、全量を40gとした。その溶液に室温下、メタノール126mlを1時間かけて滴下した後、2時間晶析した。得られた結晶を瀘取後、減圧下乾燥し、LーアラニルーLーグルタミンの粗成物を12.1g(収率;78.1%、光学純度;98.9%de)得た。

【0029】このL-アラニル-L-グルタミンの粗成30 物11.0gを水18.3mlに溶解させ、活性炭0.22gを加え、室温下10分間撹拌した。活性炭を瀘別し、得られた瀘液に30℃でメタノール15.4mlを加えた後種晶し、2時間晶析した。さらにメタノール50.6mlを30℃で1時間かけて添加し、2時間撹拌した。得られた結晶を瀘取後、減圧下乾燥し、L-アラニル-L-グルタミンを9.84g(収率;89.5%、光学純度;99.8%de)得た。

【0030】実施例6 N-[2-D-(p-トルエンスルホニルオキシ)]プロピオニルーLーグルタミンのを原料としたLーアラニルーLーグルタミンの合成 N-[2-D-(p-トルエンスルホニルオキシ)]プロピオニルーLーグルタミン30.0g(0.08モル)に28%アンモニア水300mlを加え室温下溶解させ、室温下24時間反応させた。反応混合物を減圧下 濃縮し、得られた残渣に水約1mlを加え、全量を50gとした。その溶液に室温下、メタノール200mlを1時間かけて滴下した後、2時間晶析した。得られた結晶を瀘取後、減圧下乾燥し、LーアラニルーLーグルタミンの粗成物を8.6g(収率;49.1%、光学純

50 度;99.3%de)得た。

10

【0031】このL-PラニルーL-グルタミンの粗成物8gを水13.3 mlに溶解させ、活性炭0.16gを加え、室温下10分間撹拌した。活性炭を瀘別し、得られた瀘液に30℃でメタノール11.2 mlを加えた後種晶し、2時間晶析した。さらにメタノール36.8 mlを30℃で1時間かけて添加し、2時間撹拌した。得られた結晶を瀘取後、減圧下乾燥し、L-PラニルーL-グルタミンを7.41g(収率;92.6%、光学純度;99.9%de)得た。

【0032】実施例7 N-(2-D-メタンスルホ 10 ニルオキシ)プロピオニル-L-グルタミンを原料にしたL-アラニル-L-グルタミンの合成

N-(2-D-メタンスルホニルオキシ)プロピオニルーLーグルタミン15.6g(0.053モル)に28%アンモニア水156mlを加え室温下溶解させ、46時間反応させた。反応混合物を減圧下濃縮し、得られた残渣に水約7mlを加え全量を35gとした。これにメタノール100mlを室温下、1時間かけて滴下した後、2時間晶析した。得られた結晶を瀘取し、減圧下乾燥しLーアラニルーLーグルタミンの粗成物を5.78g(収率;50.5%、光学純度;96.4%de)得た。

【0033】このL-アラニル-L-グルタミンの粗成物5.0gを水8.3mlに溶解させ、活性炭0.1gを加え、室温下10分間撹拌した。活性炭を瀘別し、得られた濾液に30 $\mathbb C$ でメタノール7.0mlを加えた後種晶し、2時間晶析した。さらにメタノール23.0mlを30 $\mathbb C$ で1時間かけて添加し2時間撹拌した。得られた結晶を瀘取後、減圧下乾燥し、L-アラニル-L-グルタミンを4.30g(収率;86.0%、光学純度;99.0%de)得た。

【0034】実施例8 N-(2-D-ブロモ)プロ

ピオニルーレーグルタミンのアミノ化反応

実施例5と同様にN-(2-D-ブロモ)プロピオニルーLーグルタミン300mg(1.07ミリモル、光学純度;97.9%de)に28%アンモニア水3mlを加え室温下溶解させ、室温下20時間反応させた。反応混合物を減圧濃縮しアンモニアを留去し、以下の条件によるHPLCの分析を行い、L-アラニルーLーグルタミン202mg(収率;87.1%、光学純度;98.2%de)の生成を確認した。

10 【0035】HPLCの条件

カラム; YMC-pack ODS-AQ313

移動相; 0.01M KH2 PO4

検出 ; UV210nm

【0036】一方、N-(2-D-ブロモ)プロピオニルーLーグルタミンのアミノ化反応をHoppe-Seyler's Z. Physiol. Chem. 105 ,58(1919) に記載の方法に従って行った。すなわち、N-(2-D-ブロモ)プロピオニルーLーグルタミン300mg(1.07ミリモル、光学純度;97.9%de)に26.7%アンモニア水2mlを加え室温下溶解させた。この溶液を100℃の水浴中で1時間反応させた。反応混合物を減圧濃縮しアンモニアを留去した後に、上記と同様の条件によるHPLCによる分析を行い、L-アラニルーLーグルタミン147mg(収率;63.4%、光学純度;96.8%de)の生成を確認した。

[0037]

【発明の効果】本発明により、工業上、安価かつ高純度なアラニルグルタミンの製造法およびその中間体Nー(2-置換)ープロピオニルグルタミンの製造法並びに該方法により製造される新規N-(2-置換)ープロピオニルグルタミン誘導体が提供される。

フロントページの続き

(72) 発明者 新村 浩行

大阪府堺市北清水町1-2-13

(72) 発明者 小野 康幸

神奈川県伊勢原市高森1540白金山団地2-205

(72) 発明者 大澤 豊

千葉県市川市中山3-14-26

(72) 発明者 水滝 彰一

大阪府河内長野市美加ノ台1-37-1-

401

(72)発明者 河西 政次

神奈川県藤沢市鵠沼松ヶ岡3-12-15

(72) 発明者 富岡 新二

和歌山県橋本市隅田町下兵庫690-4