Principle of neon tube using a capacitor

A neon discharging tube is an electric dipole that lights up if the voltage across its terminals is greater than a specific voltage U_a and puts off when the voltage across its terminals becomes less than a certain voltage U_e (U_e < U_a) called cut off voltage.

This lamp behaves as an open switch when it is off and as a resistor of resistance **R**' when it is on.

To study the functioning of this dipole we consider the following circuit (**Doc.1**) K is an automatic switch that connects and disconnect the generator at specific time intervals.

1– The tube is turned off . (R = 100 k Ω ; C = 10 μ F).

- **1.1**-What is the phenomenon observed across the terminals of the capacitor?
- **1.2-** Establish the differential equation describing the variations of the voltage $u_C = u_{MN}$ across the terminals of the capacitor.

1.3.1-Determine the expressions of the constants A and τ .

1.3.2- Name the constant τ , give its significance and calculate its value.

1.4-

- **1. 4.1-** Verify that if the tube is not connected to the circuit, the maximum voltage \mathbf{u}_{C} can attain is \mathbf{E}
- **1.4.2** Indicate the time interval during which the maximum voltage is attained practically
- **1.4.3**-The **document (2)** represents u_C as a function of time during charging and discharging the capacitor. Determine the value of **E** graphically.

2- The tube is turned on

- 2.1-Determine, graphically the value U_a at which the tube is on.
- 2.2-Determine, graphically the voltage Ue
- **2.3** Deduce the duration of lightening of the tube.
- **2.4-** Calculate the average power received by the tube during this lighting phase.
- **2.5** Let $u_c = U_a e^{-\frac{t}{\tau'}}$ the voltage across the terminals of the capacitor during its discharging starting from the instant t=0 taken as origin of time.
 - **2.5.1**-Calculate the value of τ' .
 - 2.5.2-Deduce the value of R'.

Part		Principle of neon tube using a capacitor	Score 6.5
	1.1.	Charging of capacitor	0.25
	1.2	law of addition of voltages \Rightarrow E= u _R + u _C leads to $\frac{du_C}{dt} + \left(\frac{1}{RC}\right)u_C = \frac{E}{RC}$	0.75
	1.3.1	$\frac{du_C}{dt} = \frac{A}{\tau}e^{-\frac{t}{\tau}} \Rightarrow \frac{A}{\tau}e^{-\frac{t}{\tau}} + \frac{1}{RC}A\left(1 - e^{-\frac{t}{\tau}}\right) - \frac{E}{RC} = 0$	
1		$Ae^{-\frac{t}{\tau}}\left(\frac{1}{\tau} - \frac{1}{RC}\right) + \frac{1}{RC}(A - E) = 0 \Longrightarrow \begin{cases} \tau = RC \\ A = E \end{cases}$	0.75
			0.5
	1.3.2	τ : is the time constant of RC circuit . duration of a neutral capacitor during charging for u_C to attain 0.63E $\tau = 1s$	
	1.4.1	if the tube is not connected to the circuit , the steady state attained (i=0 and u_R =0 $\Rightarrow u_{C(max)}$ = E.	0.25
	1.4.2	The state is practically attained after 5τ ($t > 5\tau$)	0.25
	1.4.3.	from (Doc.2) 0.63 E=63 V \Rightarrow E=100V	0.5
	2.1	(Doc.2) functioning of the tube at $t = 2s \implies U_a = 85V$	0.25
	2.2	(Doc.2) cut of voltage at t=3s during its discharge U _e =54V,	0.5
	2.3	The tube lights for $\Delta t = 1s$ during which the capacitor is discharged in the tube of resistance R'	0.5
2	2.4	$E_e = \frac{1}{2}Cu^2$ $p_{av} = \frac{\Delta E_e}{\Delta t} = \frac{C}{2\Delta t} \left[(U_e)^2 - (U_a)^2 \right]$	1
		$P_a = -2.15 \times 10^{-2} J$	
		$U_{e} = U_{a}e^{-\frac{1}{R'C}} \Rightarrow \frac{U_{e}}{U_{a}} = e^{-\frac{1}{\tau'}} \Rightarrow \frac{1}{\tau'} = \ln\left(\frac{U_{a}}{U_{e}}\right)$	1
		$\tau' = \frac{1}{\ln\left(\frac{U_a}{U_e}\right)} = 2.2s$	
	2.5.2	$R' = \tau'/C = 2.2 \times 10^5 \Omega$	0.5