Ethics & Bias (10 points)

Impact of Biased Training Data

- Biased training data such as underrepresentation of certain ethnic groups or missing social determinants — can lead to systematic underestimation or overestimation of risk.
- This might cause high-risk patients to be overlooked, or unnecessary interventions for low-risk patients, reducing care quality and potentially reinforcing existing health disparities.

Mitigation Strategy

- Bias Auditing with Fairness Toolkits (e.g., IBM AI Fairness 360):
 - Evaluate performance across subgroups (race, gender, income).
 - Implement reweighting techniques or adversarial debiasing to balance predictions.
 - Engage clinicians to interpret fairness metrics and co-develop ethical thresholds.

Trade-Offs (10 points)

Interpretability vs Accuracy

- **Highly accurate models** like deep neural nets may find complex patterns but are often opaque making it hard for clinicians to trust or act on predictions.
- Interpretable models (e.g., decision trees, logistic regression) offer clear reasoning, which is critical in healthcare where accountability and clinical judgment matter.
- Trade-off: Prioritize interpretability when decisions impact health, regulation, and liability even if it costs a bit in predictive power.

Model Choice with Limited Resources

• Lightweight Models Preferred:

- Logistic regression, Naive Bayes, or shallow decision trees are computationally efficient.
- o They require fewer resources for training and real-time inference.

Alternative:

 Use pre-trained models or cloud-based APIs to offload computation while maintaining scalability and accuracy.