STAT440 Project Appendix

Ian & Rosie
April 20, 2018

Visual Tests

Here, we'll perform some visual tests allowing the user to ensure that stat440pkg is returning sane results.

gen.imp.resp

Let's make sure gen.imp.resp is returning somewhat normally-distributed data.

```
library(stat440pkg)
library(tidyr)
library(ggplot2)

imp.resp <- gen.imp.resp(data = multiis, num.iter = 5)
gathered.data <- gather(imp.resp)
p <- ggplot(gathered.data) +
    geom_histogram(aes(x = value), binwidth = 0.25) +
    facet_wrap(~ key)

plot(p)</pre>
```


value

gen.latent.vars

Let's make sure gen.latent.vars is returning somewhat normally-distributed data. First we'll do so for Bartlett scores, then Thompson regression scores.

Bartlett factor scores

Thompson factor scores

```
lv <- gen.latent.vars(data = multiis, grp.indicator = grp.indicator, num.iter = 5, scores = "regression
gathered.data <- gather(lv)
p <- ggplot(gathered.data) +
    geom_histogram(aes(x = value), binwidth = 0.2) +
    facet_wrap(~ key)
plot(p)</pre>
```


Results using Thompson scores for latent variables

Here, we'll create the similar plots to those that appear in the Results section of the report, but using Thompson scores.

```
##
                    Estimate Std. Error
                                             p value
## (Intercept) -3.378923e-18 0.00569294 1.000000000
               1.459822e-02 0.01501253 0.330850476
## int
               -6.702097e-02 0.01928956 0.000511867
pooled.add3 <- pool.analyses(latent.datasets, int~comp + cat, lm)</pre>
##
                    Estimate Std. Error
                                               p value
## (Intercept) 4.443759e-18 0.005975258 1.0000000000
               -6.054266e-02 0.016651567 0.0002770617
## comp
               -1.130570e-02 0.016675224 0.4977753971
## cat
signif(pooled.add1$hypothesis.test, digits = 3)
                Estimate Std. Error p value
                            0.00625 1.000
## (Intercept) 4.21e-19
                1.73e-02
                            0.01770
                                     0.329
## comp
               -1.45e-02
                                      0.371
## int
                            0.01630
signif(pooled.add2$hypothesis.test, digits = 3)
                Estimate Std. Error p value
                            0.00569 1.000000
## (Intercept) -3.38e-18
## cat
                1.46e-02
                            0.01500 0.331000
                            0.01930 0.000512
## int
               -6.70e-02
signif(pooled.add3$hypothesis.test, digits = 3)
                Estimate Std. Error p value
                            0.00598 1.000000
## (Intercept) 4.44e-18
               -6.05e-02
                            0.01670 0.000277
## comp
                            0.01670 0.498000
## cat
               -1.13e-02
library(scatterplot3d)
add <- function(x) Reduce("+", x)</pre>
averaged <- add(latent.datasets)/M</pre>
fit <- lm(int~comp + cat, data = averaged)</pre>
scplot <- scatterplot3d(averaged$comp, averaged$cat, averaged$int,</pre>
              main="3D Scatterplot of Latent Variables\n with Regression Plane for Int ~ Comp + Cat",
              xlab = "compartmentalization", ylab = "categorization", zlab = "integration",
              col.grid = "lightgrey", pch = 19, color = "lightblue")
scplot$plane3d(fit, lty = "dotted")
orig <- scplot$xyz.convert(averaged$comp, averaged$cat, averaged$int)</pre>
plane <- scplot$xyz.convert(averaged$comp, averaged$cat, fitted(fit))</pre>
i.negpos \leftarrow 1 + (resid(fit) > 0)
segments(orig$x, orig$y, plane$x, plane$y,
         col = c("blue", "red")[i.negpos], lty = (2:1)[i.negpos])
```

3D Scatterplot of Latent Variables with Regression Plane for Int ~ Comp + Cat

ggplot2 pairs plot
library(ggplot2)
library(GGally)

ggpairs(averaged)

