CSE 566 Spring 2023

Analysis of Skew Algorithm & Burrows-Wheeler Transform

Instructor: Mingfu Shao

Analysis of Skew Algorithm

- Let $\underline{T(n)}$ be the running time of skew(S) when |S| = n
- Recurrence: $\underline{T}(n) = T(2n/3) + O(n)$
- T(n) = O(n), using master's theorem

$$T(n) = T(a \cdot n) + O(n)$$

$$\Rightarrow$$
 T(n) = D(n), if $\alpha \leq 1$

$$T(n) = T(\underline{n-1}) + \underline{D(n)} \Rightarrow \underline{T(n)} = \underline{D(n^2)}$$

Burrows-Wheeler Transform (BWT)

S = banana\$
$$|S| = n$$
 $|S| = n$ $|S| = n$ banana\$\$banana\$aanana\$asbanannnana\$bananasbannna\$banabanana\$\$a\$banannasbanaaa\$banannasbanaaAll cyclic rotations $|S| = |S| = |$

Constructing BWT

- Trivial algorithm: $O(n^2 \log n)$, by definition
- In fact, can be done in linear time, using suffix array!

M(S)S = banana\$ **\$**banana banana\$ anana\$b a\$banan nana\$ba ana\$ban anana\$b ana\$ban na\$bana banana\$ na\$bana a\$banan \$banana nana\$ba

The substring of a cyclic rotation before \$ (including \$) is the suffix of \$!

• **Key**: sorting all suffixes is equivalent to sorting all cyclic rotations!

it there is a unique letter in the middle?

From Suffix Array To BWT

S = banana\$

	SA(S)	BWT[k] = S[SA[k] - 1]
1 banana\$	7 <u>\$</u> banan <u>a</u>	a
2 anana\$b	6 a\$banan	n
3 nana\$ba	4 ana\$ban	n
4 ana\$ban	2 <u>anana\$b</u>	b
5 na\$bana	1 banana\$	\$
6 a\$banan	5 na\$bana	a
7 \$banana	3 nana\$ba	a
	F L	
L'i is	the predecessor	of Fi in S

Recovering S from BWT

• An easy case: all letters in S are distinct

M(S)
S = bcdae\$
\$bcdae
ae\$bcd
bcdae\$
cdae\$b
dae\$bc
e\$bcda

But..

BWT(S) S = banana\$ a

LF Mapping

• LF Mapping Property: For every letter c, the j-th occurrence of c in L and the j-th occurrence of c in F correspond to the same letter in S.

\$banana a\$banan ana\$ban anana\$b banana\$ na\$bana nana\$ba

Proof of LF Mapping Property

```
$banana
a$banan
ana$bana
banana$b
banana$
na$bana
nana$bana
```

• **Key**: they are sorted by the <u>same thing!</u>

Algorithm to Recover S from BWT

S=banana\$