1. True or False?

The phase portrait of the system $\vec{x}' = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix} \vec{x}$ can never be a sink.

True or False?

The phase portrait of the system $\vec{x}' = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix} \vec{x}$ can never be a sink.

Follow-up. What does the phase portrait look like for various possiblities of *a*?

More interconnected salt-water tanks!

2. True or False?

$$\lim_{t \to \infty} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

3. If we rewrite the linear system of ODEs

$$\begin{cases} x'' = t^2x + y' + x' \\ y''' = tx' + \sin(t)y \end{cases}$$

as a first order system $\vec{x}' = A\vec{x}$ for a matrix A, what are the dimensions of the matrix A?

- (A) 2×2
- (B) 3×3
- (C) 4×4
- (D) 5×5

4. Consider the matrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Which of the following vectors is a generalized eigenvector of *A* but *not* an eigenvector?

(A)
$$\vec{e_1} = (1,0,0)$$

(B)
$$\vec{e}_2 = (0, 1, 0)$$

(C)
$$\vec{e}_3 = (0,0,1)$$

(D) None of the above

Consider the matrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Observe that $\lambda=2$ is the only eigenvalue, that $\vec{e_1}$ is an eigenvector, that $(A-2I)\vec{e_2}=\vec{e_1}$ and that $(A-2I)\vec{e_3}=\vec{e_2}$.

- 5. Which of the following is *not* a solution of the system $\vec{x}' = A\vec{x}$?
- (A) $\vec{x}(t) = e^{2t}(1,0,0)$
- (B) $\vec{x}(t) = e^{2t}(t, 1, 0)$
- (C) $\vec{x}(t) = e^{2t}(0, t, 1)$
- (D) $\vec{x}(t) = e^{2t}(t^2/2, t, 1)$