

# IMAGE DENOISING WITH DICTIONARIES

### K-SVD Dictionary Learning

- Algorithm that able to remove the noise to preserve as much the details in the image
- Interest on searching sparse representations of signals,  $y \cong Dx$
- D: dictionary matrix, y: sparse coefficient of k-atoms, x:

representation coefficient of signal y OMP VS FISTA

- K-SVD steps:
- 1. Initialise dictionary, D
- 2. Sparse coding (use Matching Pursuit)
- 3. Dictionary Update (column-by-column)

### Experiment

- OMP is an iterative algorithm that selects at each step of the column, which most correlate with current residuals
- FISTA
- Dictionary, D = 50, Sparsity, k = 5

AVERAGE SPARSITY OF TRAINING TIME TO OUTPUT SNR ERROR

COEFFICIENT TRAIN DICTIONARY OF THE SIGNAL (DB)

(SECONDS)

|          | (SECONDS) |           |        |           |        |           |        |
|----------|-----------|-----------|--------|-----------|--------|-----------|--------|
| MATCHING | λ         | Generated | Unseen | Generated | Unseen | Generated | Unseen |
| PURSUIT  |           | Data      | Data   | Data      | Data   | Data      | Data   |
| ОМР      | -         | 5         | 5      | 7.44      | 6.32   | 19.41     | 7.79   |
| FISTA    | 0.1       | 12.16     | 2.36   | 125.3     | 229.8  | 25.97     | 16.95  |
| FISTA    | 0.3       | 5.60      | 9.64   | 100.5     | 195.9  | 16.11     | 7.99   |
| FISTA    | 0.5       | 2.84      | 6.32   | 102.2     | 202.2  | 12.45     | 5.03   |
| FISTA    | 0.9       | 1.29      | 2.36   | 100.7     | 201.1  | 7.75      | 1.91   |

#### **Future Work**

- Trained dictionary with much more data to create denser dictionary
- Applied the image problem with FISTA

  Original Noisy Image, s = 25, F





(Github/brain tumor mri classification)

## Individual and Universal Dictionary

### Individual Dictionary

- Break down the image to 8x8 patches over 50 iterations
- Use the dictionary to denoise the same image





Noisy and denoised image with noise level  $\sigma$ =20

### **Universal Dictionary**

- Created one trained dictionary from 15 test images
- Use the trained dictionary to denoise an unseen image



### Conclusion

- K-SVD with OMP performs better than FISTA due to its simplicity and fast convergence to zero
- Universal dictionary is more powerful as it able denoise unseen data. The dictionary could be trained using larger dataset to make more useful for application

#### References

- L. Shao, R. Yan, X. Li and Y. Liu, "From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms," in IEEE Transactions on Cybernetics, vol. 44, no. 7, pp. 1001-1013, July 2014, doi: 10.1109/TCYB.2013.2278548.
- M. Elad and M. Aharon, "Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries," in IEEE Transactions on Image Processing, vol. 15, no. 12, pp. 3736-3745, Dec. 2006, doi: 10.1109/TIP.2006.881969.