Risk-averse design under uncertainty

Michael U. Gutmann

michael.gutmann@ed.ac.uk

School of Informatics, University of Edinburgh

28 March 2025

Acknowledgements

Presentation is based on the pre-print:

Risk-averse optimization of genetic circuits under uncertainty Michal Kobiela, Diego A. Oyarzún, Michael U. Gutmann https://doi.org/10.1101/2024.11.13.623219

Coding and simulations done by Michal. Most figures shown here were produced by him.

Contents

Problem statement

Proposed methodology

Example: design of a repressilator

Program

Problem statement

Proposed methodology

Example: design of a repressilator

Motivation

- Designing systems such that they have some prescribed properties is a ubiquitous problem.
- ► Mathematical/computer models of the system are often used to accelerate the design, e.g.
 - Hospitals: models are used to predict patient flow and optimise staffing.
 - Traffic management: models are used to optimise road networks and reduce congestion.
 - ▶ Synthetic biology: models are used to design genetic circuits.
- Design is framed as an optimisation problem.
- ► Issue: Models are not perfect and model-based designs may not achieve the predicted performance in reality.

Example: Design of a genetic circuit

- ► Genes form circuits that can be modelled as dynamical systems. Similar to circuits in electrical engineering.
- ► A network of three genes that inhibit (suppress) each other defines an oscillator, called "repressilator".
- Issue in genetic circuit design: performance on the computer may not be indicative of performance in-vivo.

A case for design under uncertainty

- Hypothesis: gap between designed and actual performance is due to uncertainty (limited knowledge) about the real system.
- Two sources of uncertainty:
 - 1. Irreducible (aleatoric) uncertainty: modelled as system noise ω with distribution $p(\omega)$.
 - 2. Reducible (epistemic) uncertainty: modelled as system parameters η with prior distribution $p(\eta)$.
- Both types of uncertainty need to be considered in the design; otherwise we design the system under wrong assumptions.

A case for design under uncertainty

- ▶ Reconsider the example of the design of a repressilator.
- Assuming wrong values for the model parameters results in a design that works on the computer but not in reality.

Problem statement

- We assume we are given:
 - 1. a stochastic generative model of the system:

$$\mathbf{x} = g(\boldsymbol{\omega}, \boldsymbol{\eta}, \boldsymbol{\phi}), \quad \boldsymbol{\omega} \sim p(\boldsymbol{\omega})$$
 (1)

where **x** describes the system, η are unknown system parameters not under our control, and ϕ are design parameters that we can control.

- 2. a prior belief $p(\eta)$
- 3. data $\mathcal{D}_o = (\mathbf{x}_o, \phi_o)$ on the system from previous design attempts with ϕ_o
- 4. a loss function $\hat{L}(\mathbf{x}) = L(\omega, \eta, \phi)$ that measures how good \mathbf{x} is.
- \triangleright Goal: Find designs η that are expected to work well even in unfavourable conditions.

Michael II. Gutmann

9/27

Program

Problem statement

Proposed methodology

Example: design of a repressilator

Overview of our approach

Our approach consists of three steps:

- 1. Bayesian inference to update our belief about η given \mathcal{D}_o
- 2. Thompson sampling to obtain a set of promising designs.
- 3. Risk-management to select suitable designs.

Step 1: Bayesian inference

- ► Failed designs are oftentimes written off.
- We instead learn from them using Bayesian inference, updating prior to posterior belief $p(\eta|\mathcal{D}_o)$.
- Depending on the model, we can compute the posterior with MCMC, variational inference, or simulation-based (likelihood-free) inference.
- Won't go further into this part of the pipeline.

Step 2: Thompson sampling

- ▶ The loss $\tilde{L}(\mathbf{x}) = L(\omega, \eta, \phi)$ measures how good a specific \mathbf{x} is.
- ▶ It is random due to the randomness of ω and η .
- Let us average over the system noise ω but pushforward the randomness of η .
- ▶ This results in a stochastic process with realisations

$$L_i(\phi) = \mathbb{E}_{\omega} \left[L(\omega, \eta_i, \phi) \right], \qquad \eta_i \sim p(\eta | \mathcal{D}_o)$$
 (2)

- lacktriangle Thompson samples ϕ_i are defined as $\phi_i = \operatorname{argmin}_\phi L_i(\phi)$
- ► They are random variables: Uncertainty about the system translates into uncertainty about the design.
- Named after William R Thompson (1887-1972). (On the Likelihood That One Unknown Probability Exceeds Another in View of the Evidence of Two Samples. Biometrika (1933))

Simple example of Thompson sampling

- Let $x = g(\omega, \eta, \phi) = \eta_1 \exp(-\phi \eta_2) + \omega$, with $\eta = (\eta_1, \eta_2)$, $\phi \ge 0$, and the loss is the squared distance between x and 1.0.
- ▶ Gamma distributions for η_1 and η_2 , standard normal for ω .
- Left: Loss as a function of ϕ for different realisations of η_1 and η_2 .
- ▶ Right: Distribution of the Thompson samples

Step 3: Risk management

Each Thompson sample ϕ_i has an associated predictive distribution of the loss,

$$L(\omega, \eta, \phi_i), \quad \omega \sim p(\omega), \eta \sim p(\eta | \mathcal{D}_o)$$
 (3)

- Distribution reflects system noise and our uncertainty about the system.
- The distribution can be used to rank the Thompson samples.
- ▶ We reduce the distribution to two statistics:
 - Median as a robust, risk-neutral, measure of expected performance
 - ▶ 0.75 quantile as a measure of risk, measuring how much worse the performance is when performing worse than the median.
- ▶ Pick design that achieves desired trade-off.
- ▶ Other choices possible, e.g. for optimistic design.

Back to the example

- Left: Predictive loss for two Thompson samples
- ▶ Right: Mapping out expected performance vs risk for different values of ϕ .
- ▶ No trade-off between performance and risk in this example.

Summary of our approach

Program

Problem statement

Proposed methodology

Example: design of a repressilator

Model

The model $\mathbf{x} = g(\omega, \eta, \phi)$ is implicitly defined via the solution to a stochastic differential equation for the protein expressions p_1, p_2, p_3 .

$$dp_i = \left(\underbrace{\frac{\alpha}{1 + \left(\frac{p_{i-1}}{K}\right)^n} - \underbrace{\gamma \cdot p_i}_{\text{Degradation}}}\right) dt + \underbrace{\sqrt{\frac{\alpha}{1 + \left(\frac{p_{i-1}}{K}\right)^n}} dW_{i1} + \sqrt{\gamma \cdot p_i} dW_{i2}}_{\text{Noise}},$$

- Uncertain parameters $\eta = (\gamma, n)$: degradation rate, Hill coefficient
- ▶ Design (controllable) parameters $\phi = (\alpha, K)$: production rate and dissociation constant

Design goal and data

- Design goal: 4 oscillations during 100 minutes (left).
- ▶ Failed attempt: $\phi = (334, 10)$. Used as data \mathcal{D}_o to update our belief about η (right)

Step 1: Bayesian inference

- Prior on η : Uniform on (0, 10).
- Posterior obtained with SMC-ABC.
- For invariance to temporal shifts of the trajectories, we matched the absolute value of the Fourier spectrum of simulated and observed data.

Step 2: Thompson sampling

For each Thompson sample ϕ_i , we minimise the L_2 distance between the spectrum of the simulated and target trajectory.

$$L_i(\phi) = \mathbb{E}_{\omega} \left[\frac{1}{N} \sum_{n=0}^{N} (|F_{(\eta_i,\phi)}[n]| - |F_{target}[n]|)^2 \right], \quad \eta_i \sim p(\boldsymbol{\eta}|\mathcal{D}_o)$$

Distribution of Thompson samples.

Step 3: Risk management

ightharpoonup To assess the Thompson samples ϕ_i , we evaluate their predictive loss distribution, using

$$L(\omega, \eta, \phi_i), \quad \omega \sim p(\omega), \eta \sim p(\eta | \mathcal{D}_o)$$
 (4)

Examples

Step 3: Risk management

- We summarise each predictive loss distribution in terms of their median (expected performance) and 75% quantile (risk).
- Enables informed decision about suitable designs.
- Cluster marked in orange are most promising designs. Centroid as single best one.

Evaluation

- Is there a benefit in using the failed design attempts to learn more about the systems?
- Comparison between Thompson samples for $\eta \sim p(\eta | \mathcal{D}_o)$ and $\eta \sim p(\eta)$ indicates large predicted performance difference.

Evaluation

- ► The centroid design point is *predicted* to be best. How good is it when deployed?
- Left fig: Design achieves four oscillations in the specified time-interval under ground truth η parameters.
- ▶ Right fig: This is not the case for best design under the prior.

Conclusions

- Talk was on designing systems with the help of models.
- Models are not perfect and model-based designs may not achieve the predicted performance in reality.
- Considered the case where the gap between designed and actual performance is due to uncertainty (limited knowledge) about the real system.
- Proposed an uncertainty-aware design methodology by combining:
 - Bayesian inference
 - Thompson sampling
 - ► Risk management
- Application in synthetic biology.
- Preprint with more results: https://www.biorxiv.org/node/4220646

