# אנליזה פונקציונלית — סיכום

2025 במאי 7



תוכן העניינים

# תוכן העניינים

| 3  | 26.3.2025 - 1 שיעור        | 1 |
|----|----------------------------|---|
| 3  | רקע 1.1                    |   |
| 6  | 2.4.2025-2 שיעור           | 2 |
| 6  | חסימות לחלוטין 2.1         |   |
| 6  | 2.2 מרחבים מטריים חשובים   |   |
| 7  | 9.4.2025-3 שיעור           | 3 |
| 7  | 3.1 תכונות מרחבי פונקציות  |   |
| 10 | 23.4.2025-4 שיעור          | 4 |
| 10 | תכונות מרחבי סדרות 4.1     |   |
| 11 | 4.2 קירובים                |   |
| 13 | 7.5.2025 — 5 שיעור         | 5 |
| 13 | 5.1 קירובים במרחבים מטריים |   |

## 26.3.2025 - 1 שיעור 1

#### 1.1

אנליזה פונקציונלית היא כמו אלגברה לינארית. בקורס זה נחקור מרחבים וקטוריים והעתקות עליהם, אבל על מרחבים מורכבים יותר והעתקות מורכבות יותר. נתחיל בשאלה,

 $(a_n)_{n=1}^\infty\subseteq A$ יש בניח נניח ה' נניח ש' מטרי כלשהו, ונניח מטרי מטרי מרחב (X,
ho) יהי היגיל 1.1 מרחב מטרי כלשהו

פושי? על תת־סדרת תכלול כך ש־ $(a_n)$  כך על אל ההכרחיים התנאים התנאים מהם

נעבור לדוגמה וטענות מאינפי 1 לרענן את זכרוננו.

.
ho(x,y)=|x-y|ור אינטואיטיבי הכי המטרי המטרי המחב 1.1 המרחב דוגמה 1.1 המרחב

טענה 1.1 תה־סדרת  $(a_n)^\infty_{n=1}\subseteq A$  יותה חסומה, ותהי  $A\subseteq\mathbb{R}$  יש ל־ $(a_n)^\infty_{n=1}$ 

הסדרה, וכן אינסוף לחדרה בקטע  $\Delta_0$  אינסוף נקודות של הסדרה, וכן  $\Delta_0=A$  ולכן יש אינסוף, ולכן יש בקטע  $\Delta_0$  אינסוף נקודות של הסדרה, וכן  $\Delta_0=A$  ולכן המשיך אינסוף נקודות של  $\Delta_0$ , וכך נמשיך במשיך אינסוף נקודות הקטעים החוצים את  $\Delta_0$ , הם  $\Delta_0$ , הם  $\Delta_0$ , ובחר את זה מביניהם שמכיל אינסוף נקודות של  $\Delta_0$  החוצים את הקטעים החוצים את ובכל ובע שהסדרה הנתונה היא סדרה יורדת, במובן ש־ $\Delta_0 = \Delta_1 = \Delta_2 = \Delta_1$  מתקיים גם  $\Delta_0 = \Delta_1 = \Delta_1$  לכל  $\Delta_0 = \Delta_1 = \Delta_1$  ובע שאכן ובע אינסוף נקודות של  $\Delta_1 = \Delta_1 = \Delta_1$  וכך באופן כללי גם  $\Delta_1 = \Delta_1 = \Delta_1$  לכן נובע שאכן יש בסדרה קושי בסדרה ( $\Delta_0 = \Delta_1 = \Delta_1 = \Delta_1$ ).

 $ho(x,y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}
ight)^{2}}$  עבור על מרחב על מסתכלים אם מסתכלים נכונה זו נכונה אם טענה זו נכונה אם מסתכלים אל מרחב

, המקיימת,  $\|\cdot\|:V o\mathbb{R}_{\geq 0}$  ותהי פונקציה " $\mathbb{F}\in\{\mathbb{R},\mathbb{C}\}$  עבור מעל  $\mathbb{F}$  עבור מרחב ורמי) אמקיימת, מרחב ווימי

$$x = 0_V \iff ||x|| = 0$$
 .1

$$\forall \alpha \in \mathbb{F}, \|\alpha x\| = |\alpha| \cdot \|x\|$$
 .2

$$\forall x, y \in V, ||x + y|| < ||x|| + ||y||$$
 .3

. ||· || יקרא מרחב נורמי עם נורמה (V, ||·||) אז

, נגדיר גם,  $l_2=\{x=(x_1,\dots)\mid \forall k\in\mathbb{N}, x_k\in\mathbb{R}, \sum_{i=1}^\infty x_i^2<\infty\}$  נגדיר את נגדיר (וויר מרחב 1.3 נגדיר גם, נגדיר גם, אדרה 1.3 נגדיר את הקבוצה נגדיר את הקבוצה אויר גם, וויר גם, אדרה גם, וויר את הקבוצה אויר את הקבוצה אויר גם, וויר את הקבוצה אויר גם, וויר את הקבוצה אויר גם, וויר גם, וויר את הקבוצה אויר את הקבוצה אויר את הקבוצה אויר גם, וויר את הקבוצה אויר את הקבוצה אויר את הקבוצה אויר את הקבוצה את הקבו

$$||x|| = \left(\sum_{i=1}^{\infty} x_i^2\right)^{\frac{1}{2}}$$

. אז המרחב הנורמי  $l_2$  הוא הקבוצה והנורמה אלו.

נבחין כי עלינו להוכיח שזהו אכן מרחב נורמי לפי ההגדרה.

משפט 1.4 (אי־שוויון קושי־שווארץ) מתקיים,

$$\sum_{i=1}^{n} |x_i| \cdot |y_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}$$

 $.\langle x,y
angle = \sum_{i=1}^n x_i y_i$  נסמן 1.5 סימון

, אבור עבור  $t \in \mathbb{F}$  סקלר כלשהו,

$$0 \le \langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + \langle y, y \rangle t^2$$

עובדה ידועה היא  $At^2+Bt+C\geq 0 \implies B^2-4AC\leq 0$  ולכן,

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \cdot \left(\sum_{i=1}^{n} y_i^2\right)$$

26.3.2025 - 1 שיעור 1 שיעור 1

ולכן,

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left( \sum_{i=1}^{n} x_i^2 \right)^{1/2} \cdot \left( \sum_{i=1}^{n} y_i^2 \right)^{1/2}$$

,וכן וכן אז מאי־השוויון הנתון נובע  $x_i' = |y_i|$  אז איי־השוויון הנתון נובע

$$\sum_{i=1}^{n} |x_i'| \cdot |y_i'| \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}$$

נעבור להוכחת ההגדרה של  $l_2$ , כלומר ההוכחה שהנורמה שהגדרנו היא אכן נורמה.

הוכחה.

$$||x + y||^2 = \sum_{i=1}^{\infty} (x_i + y_i)^2$$

$$= \sum_{i=1}^{\infty} x_i^2 + 2 \sum_{i=1}^{\infty} x_i y_i + \sum_{i=1}^{\infty} y_i^2$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$$

$$= (||x|| + ||y||)^2$$

$$\Rightarrow ||x + y|| \leq ||x|| + ||y||$$

. עתה משקיבלנו ש־ $l_2$  הוא אכן מרחב נורמי, נוכל לדון בתכונותיו

, במרחב במרחב כדור שפת שפת נגדיר ( $l_2, \|\cdot\|$ ) במרחב במרחב 1.2 דוגמה 1.2

$$S = \{ x \in l_2 \mid ||x|| = 1 \}$$

נבחין כי  $l_n=1, l_n^m=0$  לכל  $l_n=1, l_n^m=0$  כאשר כי  $l_n=(0,\dots,1,\dots)$  המוגדרת על־ידי ( $l_n)_{n=1}^\infty$  לכל  $l_n=1, l_n^m=0$  לכל  $l_n=1, l_n^m=0$ 

טענה 1.6 מענה  $(l_n)_{n=1}^\infty\subseteq l_2$  איינה כוללת תת־סדרת קושי.

$$n 
eq m$$
 לכל  $\|l_n - l_m\| = \sqrt{2}$  הוכחה. נבחין כי

 $.B_r(x) = \{x \in X \mid \rho(x,x_0) < r\}$ נסמן (X,  $\rho)$ מטרי מטרי עבור עבור (כדור) 1.7 סימון סימון סימון מטרי

מיד נראה שימוש בהגדרה זו במשפט, ובכך ניתן הצדקה להגדרה הלכאורה משונה הזאת.

משפט 1.9 (שקילות לחסימות לחלוטין) יהי מרחב מטרי יהי מטרי  $(X, \rho)$  יהי הבאים שקולים, אז התנאים הבאים שקולים,

- חסומה לחלוטין. A
- . בכל סדרה של A ניתן לבחור תת־סדרת קושי.

משפט זה הוא משפט חשוב ומרכזי, ועל הקורא לשנן את הוכחתו. את ההוכחה אומנם נראה בהרצאות הבאות, אך נראה עתה שימושים למשפט זה. נעבור למשפט פחות חשוב ומרכזי,

משפט 1.10 (שקילות חסימות במרחבים האוקלידיים) נניח ש $X=\mathbb{R}^m$ , וכן ש $X=\mathbb{R}^m$ , וכן ש $X=\mathbb{R}^m$ , אז אם  $A\subseteq\mathbb{R}^m$ , אז אם  $A\subseteq\mathbb{R}^m$  הסומה לחלוטין.

26.3.2025 - 1 שיעור 1 רקע 1.1

הוכל לחסום מאינפי 3), ונוכל מאינפי (ההצדקה מגיעה מספיק קטנות מספיק את הקובייה לתת-קוביות מספיק קטנות (ההצדקה מאינפי 3), ונוכל לחסום כל , קובייה כזו בכדור. נסמן  $\{x_i\}\subseteq \mathbb{R}^m$  את מרכזי הקוביות ונקבל  $A\subseteq igcup_{j=1}^N B_\epsilon(x_j)$  מהגדרת החלוקה של הקובייה החוסמת. 

טענה 1.11 ב־ $(l_2,\|\cdot\|)$  נגדיר את הקבוצה,

$$\Pi = \{x = (x_1, \dots) \in l_2 \mid \forall i \in \mathbb{N}, |x_i| \le \frac{1}{2^{i-1}}\}$$

 $.\Pi\subseteq l_2$  אז בהכרח , $\sum_{n=1}^{\infty}x_n^2<\infty$  אז  $x\in\Pi$  אם

הקבוצה  $\Pi$  חסומה לחלוטין.

 $\Pi_n^*=\{x=(x_1,\dots,x_n,0,\dots)\mid |x_n|\leq rac{1}{2^{n-1}}\}$  נגדיר גם  $x_n^*=(x_1,\dots,x_n,\dots,0,0,\dots)$ , ונגדיר ( $x_1,\dots,x_n,\dots,0,0,\dots$ ), וונגדיר ( $x_1,\dots,x_n,\dots,0,0,\dots$ )  $\Pi_n^*$  בהתאם עודנה עודנה עודנה שראינו ולכן היוסומה, ולכן כי היא הקבוצה ב- $\mathbb{R}^n$ , ונבחין כי הקבוצה שראינו קודם עודנה שכן הקבוצה שקולה לקבוצה ב- $\mathbb{R}^n$ , ונבחין כי היא חסומה לחלוטין, זאת שכן הקבוצה שקולה לקבוצה ב- $\mathbb{R}^n$ , ונבחין כי היא חסומה שראינו קודם עודנה תקפה ובהתאם חסומה לחלוטין.

נבחין כי

$$\|x - x_n^*\|^2 = \sum_{i=n+1}^{\infty} x_i^2 \le \sum_{i=n+1}^{\infty} \frac{1}{2^{2i-2}} = \sum_{i=n+1}^{\infty} \frac{4}{4^i} = \frac{1}{4^n} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{3 \cdot 4^{n-1}}$$

, כך שמתקיים,  $y^1,\dots,y^n\in l_2$ קיימים ולכן החלוטין חסומה ח $\Pi^*_n$  אז הל $\epsilon>0$ יהי . $\|x-x^*_n\|\leq \frac{1}{2^{n-1}}$ ולכן ולכן

$$\Pi_n^* \subseteq \bigcup_{i=1}^N B_{\epsilon}(y^i)$$

 $\Pi_n^*\subseteq igcup_{i=1}^N B_\epsilon(y^i)$  נניח ש־ $\|x-x_n^*\|<\epsilon$  שמתקיים  $x_n^*\in B_\epsilon(y^i)$  אז  $x_n^*\in B_\epsilon(y^i)$  נניח ש־כי בובע ש־כי  $x_n^*\in B_\epsilon(y^i)$  נובע ש־כי בובע ש

$$||x - y^i|| \le ||x - x_n^*|| + ||x_n^* - y^i|| < 2\epsilon$$

 $\Pi \subseteq \bigcup_{i=1}^N B_{2\epsilon}(y^i)$ נובע ש

. נבחין אכן אכן זהו אכן הסומות, של קבוצות נורמי במרחב וורמי שב־ב $l_2$  במרחב כי עתה כי נבחין כי עתה במרחב וורמי

#### 2.4.2025 - 2 שיעור 2

## 2.1 חסימות לחלוטין

נראה את הוכחתם של שני משפטים שמומלץ לזכור. המשפט הראשון הוא משפט 1.9, בקורס זה נקרא לו משפט האוסדורף, זאת למרות שזהו רק משפט חלקי למשפט המוכר כמשפט בשם זה. נעבור להוכחה.

הוכחה. נניח של ספר סופי מטרי מספר על־ידי את לכסות לכסות לכסות  $A\subseteq X$  חסומה מטרי וש־ $A\subseteq X$  מרחב מטרי של כדורים. נניח ונסיק  $V^1=A\cap B^1_{\epsilon=1}$  ונסיק נסיק אינסוף נקודות כדור  $B^1_{\epsilon=1}$  הכולל מכאן נסיק שקיים מכאן מכאן אינסוף נקודות בסדרה. נגדיר  $\{x_n\}_{n=1}^\infty\subseteq A$ באופן באופן עכשיו נפעל עכשיו פעל לחלוטין. אין ספק ש $V^1$  אין ספק ש $V^1$  מספר אינסופי של כשיו כולל מספר אינסופי אינסופי על מספר אינסופי אין אין כולל מספר אינסופי על מספר אינסופי של מינסופי של מספר אינסופי של מספר אינסופי של מספר אינסופי ינסופי וכוללת מספר אינסופי לחלוטין וכוללת אינסופי אינסופי ולב $V^2$  הפעם אינסופי וכוללת אינסופי ונגדיר גם אינסופי ול $V^2=V^1\cap B^2_{\epsilon=\frac{1}{8}}$  ונגדיר גם ווגדיר אונגדיר אפעם ווארטיין אינסופי ולכו . בחזות של  $\{x_n\}$  נחזור על תהליך האינסוף פעמים.

בחר (גבחר אינסוף נקודות של  $V^k$  אינסוף (אינסוף נקודות של  $V^k$  אינסוף (אינסוף נקודות של  $V^k$  וכחר אוכן אינסוף (גבחר אינסוף נקודות של אינסוף נקודות של אינסוף נכחר אוכן אינסוף נקודות של אינסוף נכחר אוכן אינסוף נפחר אינסוף נפחר אוכן אינסוף נפחר אינסוף נפחר אוכן אינסוף אי קיבלנו אם  $x_{n_k},x_{n_{k+l}}\in V^k$  זאת שכן , $ho(x_{n_k},x_{n_{k+l}})\leq rac{2}{k} o 0$ כך שי $\{x_{n_k}\}_{k=1}^\infty\subseteq A$  זות ונקבל תת-סדרה ונקבל תת-סדרה אם ונקבל תת-סדרה אונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדרה אונקבל תת-סדרה ונקבל תת-סדר

נעבור לכיוון השני, נניח שלכל סדרה יש תת־סדרת קושי ב-A. נניח בשלילה כי A אינה אין כיסוי עבורו אין כיסוי אין כיסוי סופי  $x_2 \in A$  שקיימת להסיק שקיימת להוכיח כבחר  $x_1 \in A$  מספיק שקיימת אינה כוללת תת־סדרת שאינה כוללת עת־סדרת אינה כוללת עת־סדרת שקיימת להוכיח כי ישנה סדרה  $\{x_n\}_{n=1}^\infty \subseteq A$ לכל  $ho(x_n,x_m)\geq\epsilon$  נמשיך כך להשתמש באי־החסימות עבור  $\epsilon$  כדי לבנות סדרה של אינסוף נקודות כאלה, כלומר  $ho(x_n,x_m)\geq\epsilon$  לכל הנחה. להנחה בסתירה קושי, בסתירה להנחה.  $n \neq m$ כך ש־ $n, m \in \mathbb{N}$ 

#### מרחבים מטריים חשובים 2.2

 $C[a,b]=\{f:[a,b] o\mathbb{R}\mid f ext{ is continuous}\}$  עבור ( $C[a,b],\|\cdot\|_{\infty}$ ) נגדיר את המרחב נגדיר עבור (מרחב הפונקציות הרציפות) נגדיר את המרחב המטרי נורמי.  $\|f\|=\max_{x\in[a,b]}|f(x)|$ ו־מרחב נורמי.

. ממרה במידה חסומה  $\Phi$ רש אונו במקרה במקרה  $x, \varphi$ ר במקרה אינו אינו K

. הסומה  $\Phi$  אז  $|\sin(nx)| \leq 1$ כי בי חדוע החסומה לחלוטין, גדיר  $\Phi = \{\sin(nx)\}_{n=1}^\infty$  גדיר בגדיר בוגמה 2.1

, אז, 
$$n\in\mathbb{N}$$
 עבור  $f_n(x)=rac{x^2}{x^2+(1-nx)^2}$  נגדיר 2.2 דוגמה 2.2

$$\forall x \in [0, 1], n \in \mathbb{N}, |f_n(x)| < 1$$

. החידה אחידה במידה אחידה  $\{f_n\}$ רט נאמר ולכן נאמר

 $\delta=\delta(\epsilon)$  קיים  $\epsilon>0$  עבור כל  $\Phi\subseteq C[a,b]$ . Eqicontinuous family of functions באנגלית במידה במידה במידה במידה במידה במידה באנגלית (כלומר ערך  $\delta$  תלוי רק ב־ $\delta$ ), כך שמתקיים,

$$\forall x_1, x_2 \in [a, b], \varphi \in \Phi |x_1 - x_2| \le \delta(\epsilon) \implies |\varphi(x_1) - \varphi(x_2)| \le \epsilon$$

במקרה זה  $\Phi$  נקראת רציפה במידה אחידה.

, אחידה, במידה רציפה איז אם שלנו, ונבדוק שלנו, האחרונה לדוגמה מוזור 2.3 דוגמה לדוגמה וונבדוק אחידה וונבדוק ל $|f_n(\frac{1}{n})-f_n(0)|=1$ 

$$|f_n(\frac{1}{n}) - f_n(0)| = 1$$

הידה אחידה במידה אולכן  $\{f_n\}$  ולכן

 $|f_n'(x)| \leq K$ טענה  $|f_n(x)| \leq K$  נניח שקיים  $|f_n(x)| \leq K$  כך עבור כל  $|f_n(x)| \leq K$  נניח שקיים  $|f_n(x)| \leq K$  נניח שקיים  $|f_n(x)| \leq K$  נניח שקיים  $|f_n(x)| \leq K$  טענה פאר נניח שי אז הקבוצה במידה אחידה וגם רציפה במידה אחידה.  $\{f_n\}$ 

$$|f_n(x_1)-f_n(x_2)| \leq |f'(y)|\cdot |x_1-x_2| \leq K|x_1-x_2|$$
, הוקיים, נבחוץ כי מתקיים, נבחוץ לא תלוי בפונקציות או בערכי  $\delta(\epsilon)=rac{\epsilon}{K}$ .

#### 9.4.2025 - 3 שיעור 3

#### מכונות מרחבי פונקציות 3.1

, אז התנאים שקולים, עביה ש $\Phi\subseteq (C[a,b],\|\cdot\|_\infty)$  נניה ש $\Phi\subseteq C[a,b]$ , נניה שי

- $l\in\mathbb{N}$  עבור כל  $\|f_{n_k}-f_{n_{k+l}}\|_\infty \xrightarrow{k o\infty} 0$ כך ש־ $\{f_{n_k}\}$  כך כל סדרה  $\{f_n\}_{n=1}^\infty\subseteq \Phi$  עבור כל .1
  - $\Phi$  חסומה במידה אחידה ורציפה במידה אחידה.

$$\|\varphi\|_{\infty} = \|\varphi - f_i + f_i\|_{\infty} \le \|\varphi - f_i\|_{\infty} + \|f_i\|_{\infty} \le \epsilon + \|f_i\|_{\infty}$$

מסדרות קושי נוכל להסיק שקיימים,

$$\forall x \in [a, b], |f_1(x)| \le K_1, \dots, |f_N(x)| \le K_N$$

. אחידה אחידה ש־ $\Phi$  חסומה ש־ $\Phi$ , נובע ש־ $\Phi$ , לכן מתקיים אחידה, לכן מתקיים ארידה, ארידה אחידה, ארידה אחידה אחידה.

נעבור להוכחת רציפות במידה שווה.

$$\forall x, y \in [a, b], |x - y| \le \delta_i(\epsilon) \implies |f_i(x) - f_i(y)| \le \epsilon$$

, לכן,  $arphi\in B_\epsilon(f_i)$ כך ש־  $i\in\{1,\ldots,N\}$  קיים  $\delta=\min\{\delta_i\mid i\in\mathbb{N}\}$  גגדיר

$$|\varphi(x) - \varphi(y)| \le |\varphi - f_i||_{\infty} \le \frac{\varepsilon}{|\varphi(x) - f_i(x)|} + |f_i(x) - f_i(y)| + |f_i(y) - \varphi(y)|$$

(נניה גם ש־ $\delta(\epsilon)$  ולכן ולכן ולכן ולכן

$$\forall \epsilon > 0, \ \exists \delta = \delta(\epsilon), \ |x - y| \le \delta(\epsilon) \implies |\varphi(x) - \varphi(y)| \le 3\epsilon$$

כלומר, מצאנו רציפות במידה שווה.

, כך שמתקיים, הייס  $\delta(\epsilon)>0$  ו־ $\epsilon>0$  הייס במידה חסומה שרש הסומה שני, נניח שבי, נעבור עתה לכיוון השני, השני, נניח ש

$$|x - y| \le \delta(\epsilon) \implies \forall \varphi \in \Phi, \ |\varphi(x) - \varphi(y)| \le \epsilon$$

ברור  $y_m=K,y_0=-K$  וכן  $x_0=a,x_n=b$  ונגדיר אם ונגדיר על פר שר סדרה כך שי $y_{i+1}-y_i\leq \epsilon$  וכן פר ברות ברות מדרות כך של  $y_{i+1}-y_i\leq \epsilon$  וכן את הגרף של פר את הגרף של ווגדיר את הגרף של את הגדרנו. נגדיר את הפונקציה של כך שהיא עוברת דרך נקודות בתיבות הללו כך שהיא מקרבת את גרף של אך קטנה ממנה תמיד,  $x\in [a,b]$  את הנקודות  $y_i$  עבור את החיתוכים של עבור  $y_i$  עבור את הגדולות ביותר שמתחת לנקודות אלה. עתה נבדוק את  $y_i$  עבור  $y_i$  עבור שמתחת לנקודות אלה.

$$|\varphi(x) - \psi(x)| \le |\varphi(x) - \varphi(x_i)| + |\varphi(x_i) - \psi(x_i)| + |\psi(x_i) - \psi(x)| \le \epsilon + \epsilon + |\psi(x_i) - \psi(x_{i+1})| \le 2\epsilon + 3\epsilon$$

, עבור הנקודות ברשת שהגדרנו שברים שעוברים קיבלנו ש $\Gamma$  עבור  $\Psi\subseteq\bigcup_{\psi\in\Gamma}B_{5\epsilon}(\psi)$  לחסום ניתן לחסום ( $\psi-\psi\|_\infty\leq 5\epsilon$  עבור קבוצה המצולעים שעוברים ברשת שהגדרנו כלומר זוהי קבוצה סופית.

. מטרי שלם) מרחב מטרי שלם) מרחב מטרי הערא שלם אם כל סדרת קושי מתכנסת לנקודה במרחב המטרי. מגדרה 3.2 (מרחב מטרי שלם)

משפט 3.3 (שלמות מרחב הפונקציות הרציפות) המרחב המרחב מטרי שלם. משפט 3.3 (שלמות מרחב הפונקציות הרציפות)

הוכחה. חהי סדרת קושי. כלומר ( $\{f_n\}_{n=1}^\infty\subseteq C[a,b]$  היא סדרת הוכחה. תהי סדרה ( $\{f_n\}_{n=1}^\infty$ 

$$\forall \epsilon > 0 \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n, m \ge N(\epsilon) \| f_n - f_m \|_{\infty} \le \epsilon$$

נובע שלכל  $(a,b]_{n=1}^\infty\subseteq\mathbb{R}$  אז  $x\in[a,b]$  אז מקסימום. אם נבחר הנורמה על מקסימום, ואת מהגדרת הנורמה  $(a,b]_{n=1}^\infty$ , אז (a,b) אז אוהי סדרת ממשיים ומשלמות הממשיים והעובדה כי זוהי סדרת קושי נסיק שקיים (a,b) שקיים (a,b) לכל (a,b) גנדיר (a,b) כלומר נבנה ווהי סדרת ממשיים ומשלמות המשיים והעובדה כי זוהי סדרת הפונקציות. כאשר (a,b) מתקיים, פונקציה שמתקבלת מהנקודות הגבוליות של סדרת הפונקציות. כאשר (a,b) מקסימום.

$$\forall \epsilon > 0, \exists N = N(\epsilon), \ \forall x \in [a, b], \ |f_n(x) - f(x)| \le \epsilon$$

9.4.2025-3 שיעור 3 3 שיעור 3 3

ולכן,

$$\forall \epsilon > 0, \exists N = N(\epsilon), \forall n \geq N(\epsilon), \forall x \in [a, b], \max |f_n(x) - f(x)| \leq \epsilon$$

. אז נובע שר $\lim_{n \to \infty} \|f - f_n\|_{\infty} = 0$  אז נובע אז נובע

יזכר במשפט שאנו כבר יודעים

משפט 3.4 (משפט ויירשטראס להתכנסות במידה שווה) אז אם  $f_n 
ightharpoonup f_n 
ightharpoo$ 

, שלמות (וויר שמוגדר על-ידי, אנזכיר שמוגדר על-ידי (וויר שמוגדר שמוגדר על-ידי), משפט 3.5 שלמות אמונדר שמוגדר שמוגדר שמוגדר א

$$l_2 = \left\{ x \in \mathbb{R}^{\mathbb{N}} \middle| \sum_{i=1}^{\infty} x_i^2 < \infty \right\}, \qquad \|x\| = \left( \sum_{i=1}^{\infty} x_i^2 \right)^{\frac{1}{2}}$$

הוא מרחר ממרי שלח

, כי, אז אנו יודעים סדרת שזוהי ונניח ונניח אנו יודעים יודעים יודעים הוכחה. תהי סדרה  $\{x^n\}_{n=1}^\infty\subseteq l_2$ 

$$\forall \epsilon > 0, \exists N = N(\epsilon), \forall n, m \ge N(\epsilon), \|x^n - x^m\|^2 \le \epsilon \implies \sum_{i=1}^{\infty} (x_i^n - x_i^m)^2 \le \epsilon^2$$

$$\forall \epsilon > 0, \exists N(\epsilon), \ (x_i^n - x_i^m)^2 \le \epsilon^2$$

נקבל שמתקיים  $\{x_i\}_{i=1}^\infty\subseteq\mathbb{R}$  הסדרה אז נקבל  $x_i=\lim_{n\to\infty}x_i^n$  ונגדיר קושי, ונגדיר קושי, סדרת אז נקבל סדרה אז נקבל סדרה אז מתקיים, נבחר  $\{x_i\}_{i=1}^\infty\subseteq\mathbb{R}$  סדרת הסדרה אז מתקיים, ולכל  $(x_i^n-x_i)^2\leq\epsilon^2$ 

$$\sum_{i=1}^{M} (x_i^n - x_i^m)^2 \le \epsilon^2$$

ונובע,

$$\lim_{M \to \infty} \sum_{i=1}^{M} (x_i^n - x_i^m)^2 = \sum_{i=1}^{M} (x_i^n - x_i)^2 \le \epsilon^2$$

אז מתקיים,

$$\sum_{i=1}^{\infty} (x_i^n - x_i)^2 \le \epsilon^2$$

, נבדוק,  $\lim_{n\to\infty} \lVert x^n - x \rVert^2 = 0$ , נבדוק, נבדוק,

$$\sum_{i=1}^{\infty} x_i^2 = \sum_{i=1}^{\infty} (x_i - x_i^n + x_i^n)^2 = 2\sum_{i=1}^{\infty} (x_i - x_i^n)^2 + 2\sum_{i=1}^{\infty} (x_i^n)^2 < \infty$$

כלומר מצאנו סדרה גבולית והוכחנו שהיא במרחב שלנו.

שמתכנסת  $\{f_n\}_{k=1}^\infty\subseteq\{f_n\}$  בניח שר קיימת שווה, אז קיימת שווה במידה חסומה במידה חסומה במידה סדרה הווה עניח של  $\{f_n\}_{n=1}^\infty\subseteq C[a,b]$  שמתכנסת היימת שווה לפונקציה  $\{f_n\}_{n=1}^\infty\subseteq C[a,b]$  שמתכנסת במידה שווה לפונקציה

, אז החנאים הבאים הכאים (12) נניח ש $\Phi\subseteq l_2$ אז נניח ארצלה ל-12) משפט ארצלה למשפט ארצלה למשפט ארצלה ל

- חסומה לחלוטין  $\Phi$ .1
- הסומה  $\Phi$  הסומה  $\varphi\in\Phi$  לכל  $\|\varphi\|\leq K$  כך ע־ K>0 קיים (a) .2
  - $\lim_{M\to\infty} \left( \sup_{x\in\Phi} \sum_{i=M}^{\infty} x_i^2 \right) = 0 \ (b)$

ננסה להבין את התנאי שהרגע הגדרנו,

בלבד. בהתאם  $e_n=1$  כאשר  $e_n=(0,\dots,0,1,0,\dots)$  בלבד. בהתאם הסדרות  $S\subseteq l_2$  על־ידי בלבד. בהתאם איידיר את בארות הסדרות  $S=\{x\mid \|x\|=1\}$  בלבד. בהתאם גודיר את בארות העליים איידיר את בארות השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$  התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$  התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$  התנאי השני לא מתקיים ובהתאם לא יתכן ש־ $S=\{x\mid \|x\|=1\}$ 

9.4.2025 - 3 שיעור 3 3.1 תכונות מרחבי פונקציות

, הפעם נקבל, 
$$H=\{x\in l_2\mid \forall n\in\mathbb{N}, |x_n|\leq \frac{1}{2^{n-1}}\}$$
 הפעם נקבל, 
$$\sum_{i=M}^\infty x_i^2=\sum_{i=M}^\infty \frac{1}{4^{i-1}}=\frac{4}{4^M}\cdot\frac{1}{1-\frac{1}{4}}\xrightarrow{M\to\infty}0$$

ולכן התנאי השני עבור חסימות לחלוטין מתקיים.

## 23.4.2025 - 4 שיעור 4

#### 4.1 תכונות מרחבי סדרות

. בשיעורים הקודמים עליו דנו עליו ( $l_2,\|\cdot\|$ ) במרחב חשובות התכונות הפרק הזה את הפרק

(משפט ארצלה ל-באים הבאים אז התנאים, נניח ש- $l_2$  נניח נניח ארצלה ל-12 משפט א

- חסומה לחלוטין K .1
- ו , $(l_2,\|\cdot\|)$  הקבוצה K חסומה במרחב המטרי (a). .2

$$\lim_{M\to\infty} \sup_{x\in K} \sum_{j=M}^{\infty} x_j^2 = 0 \ (b)$$

לפני שניגש להוכחת המשפט, נוכיח טענה כללית שתעזור לנו.

(X,
ho)טענה Q בית אז Q היא חסומה לחלוטין. אז Q היא חסומה ב־לשהו ונניח ש־ל נניח ש

 $x_1,\dots,x_N\in X$ ו רי $N\in\mathbb{N}$  עבור  $Q\subseteq\bigcup_{i=1}^NB_\epsilon(x_i)$  ולכן ולכן חסומה לחלוטין ולכן Q, איז עבור Q עבור איזשהו Q, נובע שגם, Q און  $Q\in B_\epsilon(x_i)$  און  $Q\in Q$  און  $Q\in R=\max\{\rho(x_0,x_1),\dots,\rho(x_0,x_N)\}$  נגדיר

$$\rho(q, x_0) \le \rho(q, x_i) + \rho(x_i, x_0) \le \epsilon + R$$

 $ho(q,x_0) \leq R + \epsilon$  לכל ממתקיים,  $q \in Q$  לכל

, הוכחת המשפט.  $t_i$  ביבות מיד מהטענה שהוכחנו זה עתה. נעבור להוכחת  $t_i$ : יהי  $t_i$  ביבות מיד מהטענה מיד מהטענה שהוכחנו זה עתה. נעבור להוכחת  $t_i$ : יהי  $t_i$ 

$$K \subseteq \bigcup_{i=1}^{N} B_{\epsilon}(x^n)$$

נבחין כי,

נעבור להוכחת המשפט.

$$\sum_{j=1}^{\infty} (x_j^1)^2 < \infty, \dots, \sum_{j=1}^{\infty} (x_j^N)^2 < \infty$$

, שמתקיים, שמתקיים בי- $\epsilon$ בלבד התלויים  $M_1,\dots,M_N$ שמתקיים, אז קיימים

$$\sum_{i=M_1}^{\infty} (x_i^1)^2 \le \epsilon, \dots, \sum_{i=M_N}^{\infty} (x_i^N)^2 \le \epsilon$$

עבור  $\|x-x^n\|^2 \leq \epsilon^2 \leq 2\epsilon$  וכן  $x \in B_\epsilon(x^n)$  מתקיים  $x = (x_1,\ldots) \in K$  עבור

$$\sum_{i=M}^{\infty} x_i^2 = \sum_{i=M}^{\infty} (x_i - x_i^n + x_i^n)^2 \le 2 \sum_{i=M}^{\infty} (x_i - x_i^n)^2 + 2 \sum_{i=M}^{\infty} (x_i^n)^2$$

Хĭ,

$$\forall \epsilon > 0, \exists M, \forall x \in K, \sum_{i=M}^{\infty} x_i^2 \le 2\epsilon^2 + 2\epsilon$$

ולכן למעשה מצאנו שמתקיים,

$$\lim_{M \to \infty} \sup_{x \in K} \sum_{i=M}^{\infty} x_i^2 = 0$$

, כך שמתקיים, מכך של הבחר (b). יהי הגבול שקיים הסומה וכן שמתקיים,  $\epsilon>0$ יהי הגבול שקיים של חסומה וכן  $\kappa>0$ 

$$\sup_{x \in K} \sum_{i=M}^{\infty} x_i^2 \le \epsilon^2$$

ולכן בפרט לכל  $\pi_M(x)=(x_1,\ldots,x_M,0,\ldots)$  מתקיים  $\pi_M:K\to\pi_M(K)\subseteq (\mathbb{R}^M)^\circ$  נגדיר נגדיר  $\sum_{i=M}^\infty x_i^2\le\epsilon^2$  מתקיים  $\pi_M(x)=(x_1,\ldots,x_M,0,\ldots)$  נגדיר שבמקרה זה  $\pi_M(K)$  חסומה ב־ $\pi_M(K)$  ולכן  $\pi_M(K)$  חסומה ב- $\pi_M(K)$ 

23.4.2025 - 4 שיעור 4

, כך שמתקיים, כך  $y^1,\dots,y^N\in\left(\mathbb{R}^M\right)^\circ$ כך שמתקיים,

$$\pi_M(K) \subseteq \bigcup_{n=1}^N B_{\epsilon}(y^n)$$

, נסיק, גסיק, אם א $\pi_M(x) \in B_\epsilon(y^n)$ מתקיים ג<br/>  $x \in K$ אז אם אז

$$||x - y^n||^2 = \sum_{i=1}^{M} (x - y_i^n)^2 + \sum_{i=M+1}^{\infty} x_i^2 \le ||\pi_M(x) - y^n||^2 + \epsilon^2 \le 2\epsilon^2$$

П

 $K\subseteq igcup_{n=1}^N B_{\sqrt{2}\epsilon}(y^n)$ בהתאם נובע ש

# 4.2 קירובים

בעולם של אנליזה פונקציונלית עלינו למצוא דרך לקרב פונקציות מורכבות על־ידי פונקציות פשוטות יותר, זאת כדי שנוכל לעבוד במרחבים ההרבה יותר מורכבים שבהם וקטור הוא פונקציה. עוד משהו שחשוב שנוכל לעשות הוא לקרב במידה שווה את הפונקציות, זאת שכן קירוב נקודתי לא מספר לנו מספיק על הפונקציות.

 $P_n 
ightharpoonup f = f$  כך שמתקיים ( $P_n$ ) כד משפט 4.3 משפט לכל ( $P_n$ ) כד שמתקיים לכל (לכל משפט הקירוב של ויירשטראס) לכל

f(x)=g(x)+f(0)+x(f(1)-f(0))אז נובע ש־g(x)=f(x)-f(0)-x(f(1)-f(0))ש" הוכחה. נתחיל ברידוד של הבעיה, נניח ש־g(x)=f(0)-x(f(1)-f(0))אך החלק המוסף הוא פולינום, ולכן נוכל לבחון את הקירוב ל־g בלבד. נקבל שנוכל להניח ללא הגבלת הכלליות ש־g(x)=f(0)=f(0). נגדיר פונקציה חדשה,

$$F(x) = \begin{cases} f(x) & x \in [0, 1] \\ 0 & x \in \mathbb{R} \setminus [0, 1] \end{cases}$$

. שעשינו ביש בשל בשל ב" $\mathbb{R}$ ב במידה שווה ביש והיא רציפה והיא מוגדרת על הממשיים והיא

, אס סדרת הפולינומים שלנו, בשלב בא גדיר את סדרת בשלב בא אס ולכל  $|F(x)-F(y)| \leq \epsilon$  אז או סדרת את סדרת אחכ $\delta>0$  קיים  $\delta>0$  קיים לכל

$$P_n(x) = \int_{-1}^{1} F(x+u)Q_n(u) du$$

 $\int_{-1}^1 Q_n(u) \ du = 1$  שיתקיים כך מנרמל קבוע כאשר כאשר  $Q_n(u) = C_n (1-u^2)^n$  כאשר

$$P_n(x) = \int_{-x}^{1-x} F(x+u)Q_n(u) \ du = \int_{0}^{1} F(t)Q_n(t-x) \ dt$$

,יכ נבחין (מדוע?). פולינום פולינום ונסיק שגם ונסיק פולינום  $Q_n$ 

$$\begin{split} &|P_n(x) - F(x)| \\ &= \left| \int_{-1}^1 F(x+u) Q_n(u) \ du - \int_{-1}^1 F(x) Q_n(u) \ du \right| \\ &\leq \int_{-1}^1 |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{-\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^1 |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^1 |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{-\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du \\ &\leq \int_{-1}^{\delta} |F(x+u) - F(x)| Q_n(u) \ du + \int_{\delta}^{\delta} |F(x+u) - F(x)| Q$$

$$I_2 \le \epsilon \int_{-\delta}^{\delta} Q_n \ du \le \epsilon \int_{-1}^{1} Q_n(u) \ du \le \epsilon$$

עבור  $\stackrel{ au}{N}>0$  עבור  $|F(x)|\leq M$  חסומה ונסמן הידעים ש־F אנו יודעים עבור אנו יודעים ש

$$I_3 \le 2M \int_{\delta}^{1} Q_n(u) \ du = 2MC_n \int_{\delta}^{1} (1 - u^2)^n \ du \le 2MC_n (1 - \delta^2)^n (1 - \delta) \le 2MC_n (1 - \delta^2)^n$$

23.4.2025 - 4 שיעור 4

 $,C_n$  נרצה להעריך את

$$C_n \int_{-1}^{1} (1 - u^2)^n du = 1$$

Х1,

$$\int_{-1}^{1} (1 - u^2)^n du \ge \int_{-\frac{1}{\sqrt{n}}}^{\frac{1}{\sqrt{n}}} (1 - u^2)^n du = 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1 - u^2)^n du \ge 2 \int_{0}^{\frac{1}{\sqrt{n}}} 1 - u^2 du = 2 \left[ \frac{1}{\sqrt{n}} - n \frac{u^3}{3} \right]_{0}^{\frac{1}{\sqrt{n}}}$$

, ממתקיים, ל $\delta>0$ קיים שלכל קיים שלכל להסיק גם ל-1, ומטעמי ומטעמי הסם ל-13 נקבל התאם בהתאם בהתאם התאם ל $\delta>0$  קיים שלכל החסם ל-13 ולכן נסיק שלכל החסם ל-13 ולכן החסם ל-13 ו

$$|F(x) - P_n(x)| \le \epsilon + 4M\sqrt{n}(1 - \delta^2)^n \xrightarrow{n \to \infty} 0$$

כפי שרצינו.  $P_n\stackrel{[0,1]}{\Rightarrow}f$  ובפרט  $P_n\stackrel{\mathbb{R}}{\Rightarrow}f$  ולכן  $x\in\mathbb{R},n>M_0$  לכל ולכל  $|F(x)-P_n(x)|\leq 2\epsilon$  כפי שרצינו.

## 7.5.2025 - 5 שיעור 5

## 5.1 קירובים במרחבים מטריים

 $X\subseteq X$ יש ונניח ש־ $(X,\rho)$  מרחב מעה ( $X,\rho$ ) נניח עתה ב-C([a,b]). נניח ב-קירוב פונקציות פונק את משפט ויירשטראס לקירוב פונקציות ב- $C(K)=\{f:K o\mathbb{R}\mid f \text{ is continuous}\}$  נבחן את

נגדיר את הנורמה שלנו היא למצוא גרסה כללית יותר של  $(C(K),\|\cdot\|_\infty)$  הוא כי יודעים כי  $\|f\|_\infty=\sup_{x\in K}|f(x)|$  הא הנורמה הנורמה את הנורמה שפט סטון-וויירשטראס, כך שתהי  $A\subseteq C(K)$  הצפופה ב- $A\subseteq C(K)$  את הקונספט של פולינומים.

, אם התנאים הבאים התנאים אם המטרי המטרי במרחב במרחב אבור עבור  $A\subseteq C(K)$  שבאים הניח הגדרה 5.1 (אלגברה) אברה הגדרה לביח שבאים אבור אבור אבור אבור אבור הבאים אבור הבאים אבור הגדרה המטרי הבאים אבור אבור הבאים הבאים הבאים אבור הבאים הבאים אבור הבאים הבאים אבור הבאים הבאים הבאים אבור הבאים אבור הבאים הבאים הבאים הבאים הבאים הבאים הבאים הביר הבאים הבאים הבאים הבאים הביר הבור הבאים הבאים הביר הבאים הביר הבאים

- $f+g\in A$  אז  $f,g\in A$  אם .1
  - $fg \in A$  אז  $f,g \in A$  אם .2
- $lpha f \in A$  אז  $lpha \in \mathbb{R}$ ו־  $f \in A$  אז .3

אז נאמר ש־A היא אלגברה.

f(x) 
eq f(y) כך ש־ $f \in A$  קיימת פונקציה x 
eq y כך ש־ $x, y \in K$  כל אברה, אם עבור כל  $A \subseteq C(K)$  נניח שניח נניח נניח אז נאמר ש־ $A \subseteq C(K)$  אז נאמר ש־ $A \subseteq C(K)$ 

אז נאמר  $f(x) \neq 0$  ש־ $f \in A$  קיימת פונקציה  $f \in A$  אינה מתאפסת באף נניח ש־ $A \subseteq C(K)$ , אם עבור כל  $f \in A$  קיימת פונקציה לברה מתאפסת באף נקודה.

עתה נראה מספר דוגמות להגדרות אלה.

. דוגמה A=C(K) מרחב הפונקציות לאלגברה, נבחין כי זוהי אכן אלגברה, נבחין עבור  $K\subseteq\mathbb{R}$  עבור A=C(K)

- f(x)=x את בחור לכל גוכל לכל שכל זאת זאת נקודות, מפרידה A .1
- . כלשהו. באף נקודה, ההוכחה לזה היא בחירת לזה ההוכחה נקודה, באף נקודה, באף נקודה, אינה מתאפסת ל $c \neq 0$

. באף נקודה אינה מתאפסת ואינה מפרידה בין נקודות הפעם א מרחב הפולינומים, הפולינומים, הפעם מרחב A=P את נגדיר את A=P

נעבור לדוגמה נגדית.

,כך שמתקיים,  $A\subseteq C[-1,1]$  נגדיר 5.3 דוגמה

$$A_{\mathrm{even}} = \{f \in C[-1,1] \mid f \text{ is continuous}, \forall x \in [-1,1], f(x) = f(-x)\}$$

, קבוצת הפונקציות הזוגיות. זוהי בבירור אלגברה, שכן מכפלת פונקציות זוגיות היא זוגית וכך גם חיבורן. אבל  $A_{
m even}$  לא מפרידה בין נקודות

הגדרה 5.4 (קבוצה קומפקטית) נניח ש־ $(X, \rho)$  מרחב מטרי, ותהי באמר ש־K קומפקטית אם לכל כיסוי פתוח של K יש תת־כיסוי סופי.  $K\subseteq K$  מרחב מטרי, ותהי בא מרחב מטרי, ותהי אינדקסים כלשהי  $K\subseteq K$  עבור קבוצת אינדקסים כלשהי  $K\subseteq K$  של קבוצות פתוחות במקרה  $K\subseteq K$  עבור קבוצת אינדקסים כלשהי  $K\subseteq K$  של קבוצות פתוחות מחוד מיימים K של קבוצת אינדקסים כלשהי ושל קבוצות פתוחות מחוד מיימים ווער בא מחוד מיימים ווער באור מיימים ווער של היימים ווער של היימים ווער של היימים ווער של היימים ווער מחוד מיימים ווער של היימים ו

משפט חשוב שמגיע אלינו מטופולוגיה ולא נוכיח במסגרת קורס זה הוא המשפט הבא.

משפט 5.5 (הגדרות שקולות של קומפקטיות) יהי  $(X, \rho)$  מרחב מטרי ויהי אז התנאים הבאים שקולים,

- קומפקטית K .1
- K מכילה בקבוצה לנקודה מתכנסת לנקודה ב-K מכילה כל סדרה כל סדרתית, כלומר כל מכילה תת-סדרה מכילה לנקודה בקבוצה ב-K
  - הסומה, דהינו חסומה לחלוטין וחסומה K .3

 $.C(K)=\{f:K o\mathbb{R}\mid f \text{ is continuous}\}$  משפט 5.6 סטון־ויירשטראס) נגיה ש־(X,
ho) מרחב מטרי,  $X\subseteq X$  מרחב מטרי, מרחב מטרי, נגדיר גם  $\|f\|_{\infty}=\sup_{x\in K}|f(x)|$  במרחב הנורמי  $\|f\|_{\infty}=\sup_{x\in K}|f(x)|$ 

 $A \subseteq C(K)$  נניח גם ש $A \subseteq C(K)$  אלגברה מפרידה בין נקודות ושאינה מתאפסת באף נקודה, אז

לפני שניגש להוכחת המשפט, נגדיר ונוכיח מספר למות.

למה 5.7 נניח שC(K) ונניח ש $A\subseteq C$  ונניח שA אלגברה מפרידה בין נקודות שאינה מתאפסת באף נקודה.

7.5.2025 - 5 שיעור שיעור 5 – 5.2025 שיעור 5 – 5.2025 – 5 שיעור 5

 $.c_1,c_2\in\mathbb{R}$ נניח ש־.x
eq y כך ש־.x, כך עד .x, כך עד .x, כך עד .x, כך אז קיימת .x

, כך שמתקיים,  $g,h_1,h_2\in A$  קיימות קיים,

$$g(x) \neq g(y), \quad h_1(x) \neq 0, \quad h_2(y) \neq 0$$

. נגדיר את השייכות ל-A נובעת מהיותה אלגברה. וכן  $u(t) = h(t)(g(t) - g(y)) \in A$  נגדיר את הפונקציות אלגברה וכן  $u(t) = h_2(t)(g(t) - g(y)) \in A$  נגדיר את הפונקציות מהייכות ל-a

$$u(x) = 0$$
,  $u(y) \neq 0$ ,  $v(x) \neq 0$ ,  $v(y) = 0$ 

נגדיר עתה,

$$f(t) = c_1 \frac{v(t)}{v(x)} + c_2 \frac{u(t)}{u(y)}$$

 $f(x)=c_1, f(y)=c_2$  אז מתקיים

נסמן למה זו ב־(\*).

- $g_x \in \overline{A}$  •
- $g_x(x) = f(x)$  •
- $t \in K$  לכל  $g_x(t) > f(t) \epsilon$

 $h_y(x)=f(x)$ עבור כל  $h_y(y)=f(y)$  כך ש־ $h_y\in A$  כך פונקציה פונקציה עבור כל א קיימת הקבוצה.

$$J_y = \{ t \in K \mid h_y(t) > f(t) - \epsilon \}$$

$$K = \bigcup_{y \in K} J_y$$

, נסמן, K אבל מקומפקטיות או האפיון השקול לקומפקטיות במרחבים מטריים נובע שיש תת־כיסוי סופי לK נסמן,

$$K = \bigcup_{i=1}^{n} J_{y_i}$$

 $n\in\mathbb{N}$  כאשר , $1\leq i\leq n$  לכל לכל אבור עבור

$$g_x(t) \ge h_{y_i}(t) > f(t) - \epsilon$$

. כאשר קיים מהעובדה שיש כיסוי סופי. כאשר קיים ו

בשלב השני נרצה למצוא  $arphi \in \overline{A}$  כך שיתקיים,

$$\|\varphi - f\|_{\infty} < \epsilon$$

נגדיר  $\hat{J}_x = \{t \in K \mid g_x(t) < f(t) + \epsilon\}$  נגדיר

$$g_x(x) = f(x) < f(x) + \epsilon$$

, כך שמתקיים, כד  $x_1,\dots,x_n$  קיימים קיימה ושוב כד הגדיר להגדיר להגדיר בוכל ישוב  $X=\bigcup_{x\in K}\hat{J}_x$ 

$$J = \bigcup_{i=1}^{n} \hat{J}_{x_i}$$

7.5.2025 - 5 שיעור 5 – 5.2025 שיעור 5 – 5.2025 שיעור 5

ונגדיר  $\hat{J}_{x_i}$ יים,  $\hat{J}_{x_i}$ יים לכל  $\hat{J}_{x_i}$ יים לכל  $\hat{J}_{x_i}$ יים לכל עיים  $\hat{J}_{x_i}$ יים, ונשים לב שמתקיים,  $g_{x_i}(t) < f(t) + \epsilon$   $g_{x_i}(t) < f(t) + \epsilon$  , וכן,  $\hat{J}_{x_i}(t) < f(t) + \epsilon$  , וכן,  $\hat{J}_{x_i}(t) < f(t) + \epsilon$  , נסיק שמתקיים,  $f(t) - \epsilon < \varphi(t) < f(t) + \epsilon$  , ולכן  $\hat{J}_{x_i}(t) < f(t) + \epsilon$  , ולכן גם  $\hat{J}_{x_i}(t) < f(t) + \epsilon$  , ולכן גם  $\hat{J}_{x_i}(t) < f(t) < \epsilon$ 

הגדרות ומשפטים

## הגדרות ומשפטים

| 3  | הגדרה 1.2 (מרחב נורמי)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | 1.3 הגדרה (מרחב 12) הגדרה הגדרה אורה בישור האורה בישור האורה בישור האורה בישור האורה האורה האורה בישור האורה האורח האורה ה   |
| 3  | משפט 1.4 (אי־שוויון קושי־שווארץ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4  | הגדרה 1.8 (קבוצה חסומה לחלוטין)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4  | משפט 1.9 (שקילות לחסימות לחלוטין)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4  | משפט 1.10 (שקילות חסימות במרחבים האוקלידיים)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6  | הגדרה 2.1 (מרחב הפונקציות הרציפות)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6  | הגדרה 2.2 (חסימות במידה אחידה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6  | הגדרה 2.3 (רציפות במידה אחידה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7  | משפט 3.1 (משפט ארצלה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7  | הגדרה 3.2 (מרחב מטרי שלם)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7  | משפט 3.3 (שלמות מרחב הפונקציות הרציפות)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  | משפט 3.4 (משפט ויירשטראס להתכנסות במידה שווה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  | משפט 3.5 (שלמות 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8  | משפט 3.7 (אנלוגי למשפט ארצלה ל־12) משפט הייע (12 אנלוגי למשפט ארצלה ל-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 | $(l2^-)$ משפט 4.1 משפט ארצלה ל-(l2 משפט 1.2 משפט ארצלה ל-(l2 משפט 1.3 משפ |
| 11 | משפט 4.3 (משפט הקירוב של ויירשטראס)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 | הגדרה 5.1 (אלגברה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13 | הגדרה 5.2 (הפרדת נקודות)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | הגדרה 5.3 (אלגברה שאינה מתאפסת באף נקודה)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | הגדרה 5.4 (קבוצה קומפקטית)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13 | משפט 5.5 (הגדרות שקולות של קומפקטיות)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 | משפט 5.6 (סטון־ויירשטראס) משפט 5.6 משפט בעוריירשטראס) משפט אויירשטראס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |