30 octobre 2020 version 1

Série 07: Energie, moment cinétique, gravitation

Question conceptuelle

a) Pourquoi la Lune ne tombe pas sur la Terre comme le fait une pomme qui se détache d'un arbre?

1 La table à trou

Soit une table horizontale percée d'un trou dans lequel peut circuler sans frottement un fil sans masse de longueur L. Ce fil relie deux blocs : 1) le bloc de masse m qui glisse sans frottement sur la table et possède une vitesse initiale qui n'est pas dans la direction du fil et 2) le bloc de masse M qui pend verticalement sous la table. Le fil reste tendu en tout temps.

- a) Ecrire l'énergie mécanique totale des deux blocs en tenant compte de la longueur constante du fil.
- b) Quelles sont les grandeurs conservées, c'est-à-dire les intégrales premières du mouvement?
- c) Ecrire les équations du mouvement des deux blocs
 - à partir des intégrales premières du mouvement;
 - à partir de la deuxième loi de Newton.

2 Le pendule asymétrique

Un pendule consiste en une bille de masse m reliée à un point fixe O par un fil sans masse de longueur constante. Un clou est placé à une distance d à la verticale sous le point O, de sorte que le pendule a une longueur L quand il oscille d'un côté de la verticale et une longueur d+L de l'autre côté (voir dessin). On place la bille afin que le fil soit incliné d'un angle α ($\alpha < \pi/2$) avec la verticale du côté court du pendule (position 1), et on la lance avec une vitesse v_0 . Au cours de son mouvement, considéré sans frottements, le fil reste toujours tendu. L'angle du pendule par rapport à la verticale atteint la valeur maximale β du côté long (position 2).

- a) Quelle doit être la vitesse v_0 pour que l'angle β soit égal à l'angle α ?
- b) Quelle est alors la vitesse maximale atteinte par la bille?

3 Chute libre près de la Terre

(Exercice non traité pendant la séance)

Sur la Terre, de rayon R_T et de masse M_T , une bille de masse m est lâchée sans vitesse initiale depuis une hauteur z(t=0) = H au-dessus du niveau du sol. La force gravitationnelle qui s'exerce sur la bille est donnée par la loi de la gravitation universelle. On néglige les frottements de l'air.

- a) Ecrire l'équation du mouvement de la bille.
- b) Intégrer l'équation du mouvement pour obtenir l'expression de l'énergie mécanique. Utiliser les conditions initiales pour déterminer la constante d'intégration.
- c) Quelle est la vitesse de la bille quand elle arrive au niveau du sol?
- d) (facultatif) Calculer la différence relative $(\Delta v/v)$ de cette vitesse avec la vitesse que vous auriez obtenue en utilisant une accélération gravitationnelle constante $g = GM_T/R_T^2$.

Indication: $(1 + \epsilon)^{\alpha} \approx 1 + \alpha \epsilon$, pour $\epsilon \ll 1$. Application numérique: h = 1000 m, $R_T = 6371$ km, $G = 6.67 \cdot 10^{-11}$ m³kg⁻¹s⁻², masse terrestre: $M_T = 5.9 \cdot 10^{24}$ kg.