Special topics: Radioactivity

Radioactive decay is a classic examples on use of Monte Carlo simulation.

First consider the radioactive decay $A \rightarrow B$.

Assume at time t = 0 there are $N_A(0)$ nuclei of radioactive atom A of half-life τ_A . Initially $N_B(0) = 0$.

At time t > 0 there are $N_A(t)$ nuclei of A remain, while $N_B(t)$ daughter nuclei have risen.

$$A \rightarrow B$$
: $\frac{dN_A}{N_A} = -\lambda_A dt \Rightarrow N_A(t) = N_A(0) \exp(-\lambda_A t)$ where $\lambda_A = \frac{\ln(2)}{\tau_A}$

The probability that dN_A nuclei decay over time dt at any instant of time t obviously is dN_A/N_A i.e. $\lambda_A dt$.

Such radioactive decay process of nuclei can be simulated through Monte Carlo sampling. The process, at its most basic level, is downright simple –

Over a duration of dt, whether a given nuclei of A has decayed or not is determined by

$$myrand() \le \lambda_A dt$$
 if true $n_A = n_A - 1$, $n_B = n_B + 1$

Next consider the radioactive decay $A \rightarrow B \rightarrow C$

Radioactive nuclei A and B have half-life τ_A and τ_B respectively.

At t = 0 the number of nuclei are $N_A(0)$, $N_B(0) = N_C(0) = 0$. The process is described by coupled equations

$$rac{dN_A(t)}{dt} = -\lambda_A \, N_A(t), \; \; ext{and} \; \; rac{dN_B(t)}{dt} = -\lambda_B \, N_B(t) + \lambda_A \, N_A(t)$$

Monte Carlo procedure is similar to the previous case. In the duration *dt*, whether nuclei have decayed or not is determined by

$$A o B$$
 : myrand() $<= \lambda_A \, dt$ if true $n_A = n_A - 1, \; n_B = n_B + 1$ $B o C$: myrand() $<= \lambda_B \, dt$ if true $n_B = n_B - 1, \; n_C = n_C + 1$

Hence, the algorithm in both cases involve testing each surviving nuclei is decaying or not in the time interval dt.

In both the cases, myrand() returns pseudo-random numbers between 0 and 1.

The probability of observing R decays follow Poisson distribution

$$\mathcal{P}(R) = \frac{\mu^R \, \mathrm{e}^{-\mu}}{R!}$$

where $\mu = Np$ is the mean number of decays. In experiments, however, the knowledge of N and p are never known.

In experiments, the count rate *i.e.* number of decays in a time interval is what can be measured. Hence, $\mu = \lambda \, dt$

