Eyes: Normal Mixture Model

Le ZHANG & Shijie XU

13 mars 2025

1 Introduction

Cette étude analyse les données fournies par Bowmaker et al. (1985), qui concernent les longueurs d'onde de sensibilité maximale des photorécepteurs d'un singe. L'ensemble de données contient 48 observations, et l'objectif est de modéliser et d'estimer les moyennes des deux groupes, leur proportion et leur variance à l'aide d'un modèle de mélange normal (Normal Mixture Model).

2 Modèle et Méthodologie

Nous supposons que chaque observation y_i provient de l'une des deux distributions normales :

$$y_i \sim \mathcal{N}(\lambda_{T_i}, \tau)$$

où:

- $T_i \sim \text{Categorical}(P)$ représente le groupe auquel appartient chaque observation $(T_i = 1 \text{ ou } 2)$.
- La moyenne du premier groupe est λ_1 , et celle du deuxième groupe est définie comme $\lambda_2 = \lambda_1 + \theta$, $\theta > 0$.
- Les deux groupes partagent une même variance contrôlée par le paramètre de précision τ .

 λ_1 , θ , τ , P sont dotés de prioris indépendants dits "non-informatifs", y compris un priori uniforme pour P sur (0,1). Ainsi, nous adoptons les lois a priori suivantes :

$$\theta \sim \mathcal{N}(0, \sigma_{\theta}^2) \cdot \mathbb{I}_{[0, +\infty]}$$

$$\tau \sim \text{Gamma}(\alpha, \beta)$$

$$\lambda_1 \sim \mathcal{N}(0, \sigma_1^2)$$

$$P \sim \text{Dirichlet}(1,1)$$

Voici les détails mathématiques de l'échantillonnage MCMC.

En introduisant les variables latentes T_i , la vraisemblance complète s'écrit :

$$\pi(\mathbf{y}, \mathbf{T} \mid \lambda_1, \theta, \tau, P) = \prod_{i=1}^{N} P_{T_i} \cdot \phi_{\tau}(y_i - \lambda_{T_i})$$

avec $\phi_{\tau}(y-\lambda)$ la densité d'une loi normale de précision τ :

$$\phi_{\tau}(y-\lambda) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(y-\lambda)^2\right)$$

L'expression de la loi a posteriori jointe est :

$$\pi(\lambda_1, \theta, \tau, P, \mathbf{T} \mid \mathbf{y}) \propto \pi(\mathbf{y}, \mathbf{T} \mid \lambda_1, \theta, \tau, P) \cdot \pi(\lambda_1) \cdot \pi(\theta) \cdot \pi(\tau) \cdot \pi(P)$$

1. Mettre à jour T_i via une loi de Bernoulli :

$$\mathbb{P}(T_i = 1 \mid y_i, \lambda_1, \theta, \tau, P) = \frac{P_1 \cdot \phi_{\tau}(y_i - \lambda_1)}{P_1 \cdot \phi_{\tau}(y_i - \lambda_1) + P_2 \cdot \phi_{\tau}(y_i - (\lambda_1 + \theta))}$$

On tire alors T_i selon une loi de Bernoulli avec ce paramètre.

2. Mettre à jour P via une loi Beta : Une fois tous les T_i mis à jour, on compte le nombre d'observations par groupe :

$$n_1 = \sum_{i=1}^{N} 1(T_i = 1), \quad n_2 = N - n_1$$

Puis, la loi conditionnelle de P est :

$$P \sim \text{Dirichlet}(1 + n_1, 1 + n_2)$$

Soit:

$$P_1 \sim \text{Beta}(1 + n_1, 1 + n_2), \quad P_2 = 1 - P_1.$$

3. Mettre à jour (λ_1, θ) via Metropolis-Hastings : Puisque $\lambda_2 = \lambda_1 + \theta$ et que $\theta > 0$, il n'existe pas de mise à jour conjuguée. On utilise donc un échantillonnage Metropolis-Hastings sur (λ_1, θ) :

$$\pi(\lambda_1, \theta \mid T, u_i, \tau) \propto \pi(u_i \mid \lambda_1, \theta, \tau, T) \cdot \pi(\lambda_1) \cdot \pi(\theta)$$

$$\log \pi(\lambda_1, \theta \mid T, y_i, \tau) \propto \underbrace{\log \pi(\lambda_1) + \log \pi(\theta)}_{\text{petit terme}} + \log \pi(y_i \mid \lambda_1, \theta, \tau, T)$$

$$\propto \sum_{i:T_i=1} \left[-\frac{\tau}{2} (y_i - \lambda_1)^2 \right] + \sum_{i:T_i=2} \left[-\frac{\tau}{2} (y_i - (\lambda_1 + \theta))^2 \right]$$

On échantillonne (λ_1, θ) conjointement via Metropolis-Hastings, en imposant $\theta > 0$.

4. Mettre à jour τ via une loi Gamma :

$$\pi(\tau \mid \lambda, \theta, T, y) \propto \pi(y \mid \tau, \lambda, \theta, T) \cdot \pi(\tau)$$

$$\propto \prod_{i=1}^{N} \left[\tau^{\frac{1}{2}} \exp\left(-\frac{\tau}{2}(y_i - \lambda_{T_i})^2\right) \right] \cdot \tau^{\alpha - 1} e^{-\beta \tau}$$

$$\propto \tau^{\alpha + \frac{N}{2} - 1} \exp\left[-\tau \left(\beta + \frac{1}{2} \sum_{i=1}^{N} (y_i - \lambda_{T_i})^2\right)\right]$$

$$\tau \sim \text{Gamma}\left(\alpha + \frac{N}{2}, \beta + \frac{1}{2} \sum_{i=1}^{N} (y_i - \lambda_{T_i})^2\right)$$

5. Mettre à jour σ via $\sigma = 1/\sqrt{\tau}$.

3 Résultats et Analyse

Après $10\ 000$ itérations avec $1\ 000$ de burn-in, nous obtenons les estimations postérieures suivantes :

Parameter	Mean	SD	MC_error	2.5%	Median	97.5%	Start	Sample
P[1] P[2] lambda[1] lambda[2] sigma	0.6018 0.3982 536.7021 548.9633 3.7330	0.0826 0.0826 0.9058 1.1541 0.5412	0.012165		0.3964 536.6955 548.9466		1001 1001 1001 1001 1001	10000 10000 10000 10000

Figure 1 – Estimations postérieures après 10 000 itérations

Ces résultats sont cohérents avec le document fourni. Les incertitudes sont faibles, indiquant une convergence satisfaisante du MCMC.

Ce modèle de mélange normal permet donc d'identifier deux sous-groupes distincts dans les données, et les estimations obtenues sont robustes et fiables. 请再写一点,我有点累。

Annexe

A1 DAG

Voici la DAG correspondant :

FIGURE 2 – DAG correspondante

A2 code

```
```{r}
1
 N <- 48
 y \leftarrow c(529, 530, 532, 533.1, 533.4, 533.6, 533.7, 534.1, 534.8, 535.3,
 535.4, 535.9, 536.1, 536.3, 536.4, 536.6, 537, 537.4, 537.5, 538.3,
4
 538.5, 538.6, 539.4, 539.6, 540.4, 540.8, 542, 542.8, 543, 543.5,
 543.8, 543.9, 545.3, 546.2, 548.8, 548.7, 548.9, 549, 549.4, 549.9,
6
 550.6, 551.2, 551.4, 551.5, 551.6, 552.8, 552.9, 553.2)
8
 # Dirichlet(1,1)
 alpha \leftarrow c(1,1)
9
10
 ##MCMC
11
 n_iter <- 10000
12
 burn in <- 1000
13
 thin <- 1
14
 set.seed(123)
15
16
 ## initiation
17
 lambda1 <- 535
 theta
 <- 5
19
 tau
 <- 1/10 # sigmasq = 10 donc tau = 0.1
20
 \leftarrow c(0.5, 0.5)
21
22
 T_ <- sample(1:2, N, replace=TRUE)</pre>
23
24
 ##MCMC sampling
^{25}
 samples_lambda1 <- numeric(n_iter)</pre>
26
 samples_theta <- numeric(n_iter)</pre>
27
 samples_tau
 <- numeric(n_iter)</pre>
28
 samples_p1
 <- numeric(n_iter)</pre>
29
30
32
33
   ```{r}
34
   sigma_lambda <- 0.5
35
   sigma_theta <- 0.2
36
37
   accept_count <- 0</pre>
38
   adjust_interval <- 100
39
40
   for(iter in 1:n_iter) {
41
42
     ## update T[i]
43
     lam2 <- lambda1 + theta
```

```
for(i in 1:N) {
45
       prob1 <- p[1] * dnorm(y[i], lambda1, sqrt(1/tau))</pre>
46
       prob2 <- p[2] * dnorm(y[i], lam2, sqrt(1/tau))</pre>
47
       T_[i] \leftarrow sample(1:2, 1, prob=c(prob1, prob2))
48
     }
49
50
     ## update P
51
     n1 <- sum(T_ == 1)
52
     p1_new <- rbeta(1, 1 + n1, 1 + (N - n1))
53
     p <- c(p1_new, 1 - p1_new)</pre>
54
55
     ## update Metropolis (lambda1, theta)
56
     lam1_prop <- lambda1 + rnorm(1, mean=0, sd=sigma_lambda)</pre>
57
     theta_prop <- abs(theta + rnorm(1, mean=0, sd=sigma_theta))
58
59
     log_accept_ratio <- sum(dnorm(y[T_==1], mean=lam1_prop, sd=sqrt(1/tau),</pre>
60
         log=TRUE)) +
       sum(dnorm(y[T_==2], mean=lam1_prop + theta_prop, sd=sqrt(1/tau), log=
61
           TRUE)) -
       sum(dnorm(y[T_==1], mean=lambda1, sd=sqrt(1/tau), log=TRUE)) -
62
       sum(dnorm(y[T_==2], mean=lambda1 + theta, sd=sqrt(1/tau), log=TRUE))
63
64
     if(log(runif(1)) < log_accept_ratio) {</pre>
65
       lambda1 <- lam1_prop</pre>
66
       theta
              <- theta_prop</pre>
67
       accept_count <- accept_count + 1
68
     }
69
70
     ## (d) update tau
71
     ssq \leftarrow sum((y[T_==1] - lambda1)^2) + sum((y[T_==2] - (lambda1 + theta))
72
     tau \leftarrow rgamma(1, shape=0.001 + N/2, rate=0.001 + 0.5 * ssq)
73
74
     ## save the samples
75
     samples_lambda1[iter] <- lambda1</pre>
76
     samples theta[iter]
                             <- theta
77
     samples_tau[iter]
                              <- tau
78
     samples_p1[iter]
                              <- p[1]
79
80
     if(iter %% adjust_interval == 0) {
81
       accept_rate <- accept_count / adjust_interval # calculate accept rate
82
       if(accept_rate < 0.2) {</pre>
83
          sigma_lambda <- sigma_lambda * 0.9
          sigma_theta <- sigma_theta * 0.9
85
       } else if(accept_rate > 0.5) {
86
          sigma_lambda <- sigma_lambda * 1.1
87
```

```
sigma theta <- sigma theta * 1.1
88
        }
89
        accept_count <- 0</pre>
90
      }
91
    }
92
93
    ## analyse the result
94
    burned_samples <- (burn_in+1):n_iter</pre>
95
    cat("Posterior_Mean_Estimates:\n")
96
    cat("lambda1"=", mean(samples lambda1[burned samples]), "\n")
97
    cat("theta____=", mean(samples_theta[burned_samples]), "\n")
98
    cat("tau____=", mean(samples_tau[burned_samples]), "\n")
99
    cat("p1_____=", mean(samples_p1[burned_samples]), "\n")
100
101
102
    ```{r}
103
104
 posterior_summary <- function(samples, name) {</pre>
105
 mean_val <- mean(samples)</pre>
106
 sd_val <- sd(samples)</pre>
107
 mc_error <- sd_val / sqrt(length(samples))</pre>
108
 quantiles \leftarrow quantile(samples, probs = c(0.025, 0.5, 0.975))
109
110
 cat(sprintf("%-10s1,%8.4f1,%8.4f1,%10.6f1,%8.4f1,%8.4f1,%8.4f1,%8.4f1,%6d1,%6d\n",
111
 name, mean_val, sd_val, mc_error,
112
 quantiles[1], quantiles[2], quantiles[3], burn_in+1, n_iter))
113
 }
114
115
 cat(sprintf("\%-10s_{||}\%8s_{||}\%8s_{||}\%8s_{||}\%8s_{||}\%8s_{||}\%8s_{||}\%6s_{||}\%6s_{||},
116
 "Parameter", "Mean", "SD", "MC_error", "2.5%", "Median", "97.5%
117
 ", "Start", "Sample"))
 cat(rep("-", 70), "\n")
118
119
 posterior_summary(samples_p1[burned_samples], "P[1]")
120
 posterior_summary(1 - samples_p1[burned_samples], "P[2]")
121
 posterior summary(samples lambda1[burned samples], "lambda[1]")
122
 posterior_summary((samples_lambda1 + samples_theta)[burned_samples], "
123
 lambda[2]")
 posterior_summary((1 / sqrt(samples_tau))[burned_samples], "sigma")
124
 sigma = 1/sqrt(tau)
125
```