Статистика и реальные данные, как быть и что делать?

Анатолий Карпов

Ненормальные распределения + выбросы

Почти всегда это:

- Деньги
- CTR, CPM
- Вовлеченность юзеров
- ...

Ненормальные распределения

- Удаление выбросов
- Логарифмирование
- Непараметрика
- Bootstrap

Ненормальные распределения

Оставим только объявления с CTR < 5 и посмотрим на реальное распределение.

Почему это вообще работает?

X	log(x)
1	0
2	0.69
3	1.10
100	4.61
1000	6.91

Параметрические тесты - не самая лучшая идея


```
Welch Two Sample t-test

data: CTR by group

t = 2.2992, df = 1013.3, p-value = 0.0217

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
    0.08942826 1.13131908

sample estimates:
mean in group Experiment 1 mean in group Experiment 2

    2.556309 1.945935
```

После логарифмирования сильно лучше

Welch Two Sample t-test

Не забываем про непараметрику

Wilcoxon rank sum test with continuity correction

data: CTR by group W = 274294, p-value = 0.8531

alternative hypothesis: true location shift is not equal to 0

- На удивление хорошо работает на реальных данных
- Не забываем про ноль в исходной переменной (однажды я все сломал)
- Теперь можно применять параметрические тесты

Помогает понять природу взаимосвязи между переменными, как минимум на графиках. Как связан СТР и размер аудитории?

Можно рассматривать как частный случай метода трансформации **Box–Cox transformation** - использовать не только логарифмирование, но и другие математические операции, например, возведение в степень.

- В большинстве случаев можно выправить распределение
- Помогает визуализировать зависимости
- Усложняет интерпретацию результатов

Сравнение групп - в целом, можно описать результаты, все что делает логарифм "схлопывает" экстремальные наблюдения

С анализом зависимостей ситуация сложнее, но есть статистические лайфхаки!

Рейтинг = -0.06 * Аудитория + 30

При единичном изменении размера аудитории рейтинг в среднем снижается на 0.06

Coefficients:

Очевидно, что нелинейный характер связи никак не учитывается в модели.

- 1. Использовать более сложные методы.
- 2. Трансформация переменных

Coefficients:

Корреляция качества рекламных объявлений с логарифмом размера аудитории - звучит не очень понятно(

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.640 6.004 12.098 4.55e-13 ***
log(Target_size) -10.764 1.224 -8.792 8.39e-10 ***

Рейтинг = -10 * log(Аудитория) + 72

Изменение на 10% по размеру аудитории в среднем приводит к понижению рейтинга на 1.

- Если мы увеличим аудиторию с 100 до 110, рейтинг упадет на 1
- Если мы увеличим аудиторию с 1000 до 1010, рейтинг упадет на 0.1

Это и есть нелинейная природа взаимосвязи, чем больше аудитория, с увеличением размера аудитории влияние на рейтинг снижается.

Оценка нормальности распределения

Нетривиальная задача для статистики, особенно на больших данных не стоит полагаться только на р - value соответствующих критериев.

Строго говоря, симметричное распределение - не значит нормальное распределение.

Peaльные данные по log(CTR) объявлений

Согласно критерию Shapiro test не можем говорить о нормальности (р < 0.001)

При этом корреляция между ожидаемыми и предсказанными квантилями распределения r = 0.98

Итого

Нормальное распределение - большая редкость

Логарифмирование - отлично работает с асимметричными распределениями

- Решает проблему выбросов
- Не гарантирует нормальности распределения

Непараметрика - это важно!

Трансформация данных это хорошо, но...

Мы уходим от исходного распределения:

• Зато можем сравнить средние значения

А если хотим работать с исходным распределением?

- Не всегда все так плохо с выбросами
- Не всегда поможет трансформация

Всякие хитрые распределения

Часто перед нами стоит вопрос не про среднее значение и уж тем более не про сумму рангов.

Всякие хитрые распределения

Изменение формы распределения - переход из одного бакета в другой, может многое значить для продукта.

Сравнение средних или рангов может пропустить такой результат.

Bootstrap и Метод Монте-Карло

Давайте сравнивать действительно то, что нам интересно:

- Медиана
- Максимум
- Минимум
- 13 процентиль

Средние значения тоже можем сравнить

Все самое важное в деталях

Есть новая супер фича, мега усилитель CTR. Выкатили на часть объявлений. Получили следующие результаты:

Группа	Объявления	Показы	Клики	CTR
Супер фича	140	190 488	1 727	0.9
Обычные	860	2 798 818	16 218	0.58

Все самое важное в деталях

А если сначала для каждого объявления посчитать CTR, а затем усреднить CTR объявлений в каждой группе?

Группа	Объявления	Медиана медиан CTR
Супер фича	140	1
Обычные	860	1

Как так?

Группа	Объявления	Показы	Клики	СТК в группе
Супер фича	140	190 488	1 727	0.9
Обычные	860	2 798 818	16 218	0.58

Группа	Объявления	Медиана медиан CTR
Супер фича	140	1
Обычные	860	1

Объявления	Показы	Клики	СТR в группе
17	36 417	209	0.57

Больше статистики на stepik.org

