7. DUALITY.

G IS A LOCALLY COMPACT ABELIAN GROUP, Γ (ALSO CALLED \hat{G}) ITS DUAL. ON G AND Γ HAAR MEASURES ARE CHOSEN THAT BELONG TO EACH OTHER AS INDICATED IN THE INVERSION THEOREM.

In Exercise 5.A we have discovered a natural continuous homomorphism $\alpha\colon G\longrightarrow \widehat{\Gamma}$. In the present section we prove α to be injective, surjective and a homeomorphism.

7.1. LEMMA. For every neighborhood V of 1 ϵ G there exists a compact $C \subset \Gamma$ and a $\epsilon > 0$ such that $\{x \in G : |\chi(x)-1| < \epsilon\}$ for all $\{x \in G\}$ is contained in V.

Proof. The map $(x,y) \longmapsto xy^{-1}$ being continuous there exists a compact neighborhood W of $1 \in G$ such that $WW^{-1} \subset V$. Then $0 < m_G(W) < \infty$, m_G being the Haar measure we have selected on G. Set $f := \frac{\epsilon_W}{\sqrt{m_G(W)}}$. Then $f \in L^2(G)$, so $g := f * \tilde{f}$ is continuous and positive definite (Lemma 6.7 and Theorem 6.8). We have g = 0 off WW^{-1} ; this WW^{-1} is compact; and g is bounded. Therefore, $g \in L^1(G)$. By the Inversion Theorem 6.11, $1 = g(1) = \int \hat{g}(\chi) \chi(1) d\chi = \int \hat{g}(\chi) d\chi$. Choose a compact $C \subset \Gamma$ so that $\int |\hat{g}| < \frac{1}{3}$. We claim that $\{x \in G : |\chi(x) - 1| < \frac{1}{3} \text{ for all } \chi \in C\}$ is a subset of V.

In fact, let $a \in G$ be so that $|\gamma(a)-1| < \frac{1}{3}$ for every $\gamma \in C$. Then, as $\hat{g}=\hat{f}\hat{f}=\hat{f}\hat{f} \geq 0$, $|g(a)-1|=|\hat{g}(\gamma)\gamma(a)d\gamma-|\hat{g}(\gamma)d\gamma| \leq |\hat{g}(\gamma)|\gamma(a)-1|d\gamma+|\hat{g}(\gamma)|\gamma(a)-1|d\gamma\leq |\hat{g}(\gamma)|\hat{g}(\gamma)|\hat{g}(\gamma)|\gamma(a)-1|d\gamma\leq |\hat{g}(\gamma)|\hat{g}(\gamma)|\hat{g}(\gamma)|\hat{g}(\gamma)|\gamma(a)-1|d\gamma\leq |\hat{g}(\gamma)$

- 7.2. COROLLARY. (a) If x,y $\in G$ are distinct there exists a $\chi \in \Gamma$ such that $\chi(x) \neq \chi(y)$.
- (b) If H is a closed subgroup of G and if $x \in G$, $x \notin H$, then there exists a $y \in \Gamma$ for which $y(x) \neq 1$ while y = 1 on H.

- Proof. (a) By Lemma 7.1 there exist a compact $C \subset \Gamma$ and a $\xi > 0$ such that $|\chi(xy^{-1}) 1| \ge \varrho$ for some $\chi \in C$. For this χ we find $\chi(xy^{-1}) \ne 1$ and $\chi(x) \ne \chi(y)$.
- (b) Let π be the natural surjection $G \longrightarrow G/H$. By (a) there exists a $\beta \in (G/H)^{\hat{}}$ such that $\beta(\pi(x)) \neq 1$. Put $\beta = \beta \circ \pi$.
- 7.3. COROLLARY. Let G be compact. By definition, the linear span of the continuous characters of G is Trig(G), the set of all trigonometric polynomials on G. This Trig(G) is a dense subalgebra of C(G).

Proof. If $\chi \in \Gamma$, then $\overline{\chi} \in \Gamma$. Hence, if $f \in Trig(G)$ then $\overline{f} \in Trig(G)$. Now apply Corollary 7.2 to show that Trig(G) separates the points of G, and use the Stone-Weierstrass Theorem.

7.4. COROLLARY. \sim : $G \rightarrow \hat{\Gamma}$ is injective, and is a homeomorphism of G onto a closed subgroup of $\hat{\Gamma}$.

Proof. The injectivity follows immediately from Corollary 7.2. For compact $C \subset \Gamma$ and e>0 set $N(C:e):=\{\varphi \in \hat{\Gamma}: |\varphi-1| < e \}$ on C; then $\alpha^{-1}(N(C:e))=\{x \in G: |\chi(x)-1| < e \}$ for all $\chi \in C$. We know (Lemma 5.8) that the sets eqn(C:e) (eqn(C:e)) (eqn(C:e)) form a base for the topology of eqn(C:e). From Lemma 7.1 and the continuity of eqn(C:e) it follows that eqn(C:e) maps eqn(C:e) onto eqn(C:e). The closedness of eqn(C:e) now is a consequence of the following lemma.

7.5. LEMMA. Every locally compact subgroup of a Hausdorff topological group is closed.

Proof. Let H be a Hausdorff topological group, H_0 a subgroup that is locally compact under the relative topology. Take $a \in \overline{H_0}$. There exists an open neighborhood V of $1 \in H$ such that $V \cap H_0$ is contained in a (relatively) compact subset A of H_0 . Then A is compact in H, hence closed in H, so that $\overline{V \cap H_0} \subset H_0$. aV^{-1} is a neighborhood of a, so

 $aV^{-1} \cap H_o$ contains some point b. If U is any neighborhood of a, then U \cap bV is a neighborhood of a, hence intersects H_o . It follows that every neighborhood of a intersects $bV \cap H_o$, so that $a \in \overline{bV \cap H_o} = \overline{b(V \cap H_o)} =$

7.6. PLANCHEREL THEOREM. There is a unique linear isometry \mathfrak{F} of $L^2(G)$ onto $L^2(\Gamma)$ such that $\mathfrak{F}f=\widehat{f}$ for $f\in L^1(G) \cap L^2(G)$.

Proof. Let $f \in L^1(G) \cap L^2(G)$. Then $f * \tilde{f} \in L^1(G) \cap B(G)$ (see Theorem 6.8), so that we can apply the Inversion Theorem. Apparently $(f * \tilde{f}) \cap \epsilon L^1(\Gamma)$ and $\int (f * \tilde{f}) \cap (\gamma) d\zeta = (f * \tilde{f})(1)$. Now $(f * \tilde{f}) \cap \hat{f} = \hat{f}$

Thus, the restriction of the Fourier Transformation is a linear isometry of $L^1(G) \wedge L^2(G)$ (under the L^2 -norm) into $L^2(\Gamma)$. $L^1(G) \wedge L^2(G)$ is dense in $L^2(G)$: consequently, this restriction of the Fourier Transformation has a unique continuous extension $\mathcal{F}: L^2(G) \longrightarrow L^2(\Gamma)$, and this \mathcal{F} automatically is a linear isometry. The range of $\mathcal{F}, \mathcal{R}_{\mathcal{F}}$, is a linear subspace of $L^2(\Gamma)$. It is complete, hence closed, and we are done if we can prove $\mathcal{R}_{\mathcal{F}} = L^2(\Gamma)$. Let $\psi \in L^2(\Gamma)$, $\psi \perp \mathcal{R}_{\mathcal{F}}$: we prove $\psi = 0$. (Then $\mathcal{R}_{\mathcal{F}} = L^2(\Gamma)$ by the Projection Theorem.) If $f \in L^1(G) \wedge L^2(G)$ and $\mathbf{x} \in G$, then $\widehat{\mathbf{f}}_{\mathbf{x}} \in \mathcal{R}_{\mathcal{F}}$, so that

 $0 = \int \hat{f}_{x}(\gamma) \psi(\gamma) d\gamma = \int \hat{f}(\gamma) \psi(\gamma) \chi(x) d\gamma = (\hat{f}\psi)^{*}(x). \quad \text{Hence, if } f \in L^{1}(G) \wedge L^{2}(G),$ then $(\hat{f}\psi)^{*} = 0$. By the Uniqueness Theorem 6.4 $\hat{f}\psi = 0$ a.e. For every compact $C \subset \Gamma$ there exists an $f \in C_{00}(G)$ such that $\hat{f}>0$ everywhere on C. (See last paragraph of page 6.7.) Hence, for every compact $C \subset \Gamma$ we have $\psi = 0$ a.e. on C. By Exercise 3.F (e), $\psi = 0$ a.e. on Γ .

We usually write \hat{f} instead of $\mathcal{F}f$, also if $f \in L^2(G)$ and $f \notin L^1(G)$. An immediate consequence of the Plancherel Theorem is

7.7. PARSEVAL FORMULA. If $f,g \in L^2(G)$, then $\int f(x)\overline{g(x)}dx = \int \hat{f}(y)\overline{\hat{g}(y)}dy$

and

$$\int f(x)g(x^{-1})dx = \int \hat{f}(\chi)\hat{g}(\chi)d\chi$$
.

Proof. Use the Polarization Formula 0.14.

7.8. LEMMA. If $g \in L^2(G)$ and $g \in \Gamma$ then $g \in L^2(G)$ and $g \in \Gamma$ then $g \in L^2(G)$.

Proof. The announced formula is certainly valid for $g \in L^1(G) \wedge L^2(G)$ (see Theorem 5.6 (a)), hence, by continuity, for all $g \in L^2(G)$.

7.9. LEMMA. If $f,g \in L^2(G)$, then $fg \in L^1(G)$ and $\widehat{fg} = \widehat{f} * \widehat{g}$.

Proof. For $\beta \in \Gamma$, $(\hat{fg})(\beta) = \int f(x)(\overline{\beta g})(x) dx = \int \hat{f}(x)(\overline{\beta g})(x) dx = \int \hat{f}(x)(\overline{$

7.10. COROLLARY. A(Γ) = { $f_1 * f_2 : f_1, f_2 \in L^2(\Gamma)$ }.

Proof. The inclusion \supset follows from the Plancherel Theorem 7.6 and Lemma 7.9. For the converse inclusion, let $h \in A(\Gamma)$. Then $h=\hat{g}$ for some $g \in L^1(G)$. There exist $g_1, g_2 \in L^2(G)$ such that $g_1g_2=g$. Then $\hat{g}_1, \hat{g}_2 \in L^2(\Gamma)$ and $\hat{g}_1*\hat{g}_2=h$ (Lemma 7.9).

7.11. LEMMA. If $K \subset \Gamma$ is compact and $V \subset \Gamma$ is open, such that $K \subset V$, there exists an $h \in A(\Gamma)$, $0 \le h \le 1$, for which h = 1 on K, h = 0 outside V.

Proof. Assume $K\neq\emptyset$. One easily constructs an open set W containing K such that \overline{W} is compact and contained in V. By Lemmas 3.2 and 5.7, $\{\gamma \in \Gamma : K\chi^{-1} \subset W\}$ and $\{\chi \in \Gamma : \overline{W}\chi \subset V\}$ are open neighborhoods of $1 \in \Gamma$, so there exists a compact neighborhood A of $1 \in \Gamma$ with $KA^{-1} \subset W$ and $WA \subset V$. Both W and A have finite positive measure, so that ξ_W and ξ_A are elements of $L^2(\Gamma)$ and $\xi_W * \xi_A \in A(\Gamma)$. Now $(\xi_W * \xi_A)(\gamma) = m_{\Gamma}(W \cap \gamma A^{-1})$

($\chi \in \Gamma$), where m_{Γ} is the Haar measure on Γ . Then $h := m_{\Gamma} (A)^{-1} \xi_{W}^{*} \xi_{A}$ satisfies the conditions.

Now we are ready for the big theorem of this section.

7.12. PONTRYAGIN DUALITY THEOREM. $\alpha: G \longrightarrow \widehat{G}$ is an isomorphism of topological groups. (See also Exercise 7.G.)

Proof. After Corollary 7.4 we only have to prove that α is surjective. Suppose $\widehat{\Gamma} \setminus \alpha(G) \neq \emptyset$. As $\widehat{\Gamma} \setminus \alpha(G)$ is an open subset of $\widehat{\Gamma}$, by Lemma 7.11 there exists an $f \in L^1(\Gamma)$ such that $f \neq 0$ but $\widehat{f} = 0$ on $\alpha(G)$, i.e. an $f \in L^1(\Gamma)$ with $f \neq 0$, $\widehat{f} = 0$. But now we have a contradiction with the Uniqueness Theorem 6.4.

The Duality Theorem has a number of interesting consequences.

7.13. COROLLARY. L¹(G) has an identity element if and only if G is discrete.

Proof. If G is discrete, then $L^1(G)$ is isomorphic to $\mathbb{M}(G)$, which has an identity element. Conversely, if $L^1(G)$ has an identity, then $\mathfrak{M}(L^1(G))$ is compact. Then Γ is compact, so G is discrete.

7.14. COROLLARY. If $\mu \in M(G)$ and $\hat{\mu} = 0$, then $\mu = 0$. Therefore, M(G) and $L^1(G)$ are semi-simple.

Proof. Use Duality Theorem and Uniqueness Theorem 6.4.

7.15. COROLLARY. Let $\mu \in M(G)$. If $\hat{\mu} \in L^1(\Gamma)$, then $\mu \in M_a(G)$ and $\mu = \text{fm for some } f \in L^1(G) \cap B(G)$.

Proof. We have $\hat{\mu} \in B(\Gamma)$, so (Inversion Theorem and Duality Theorem) $\hat{\mu} \in L^1(\hat{\Gamma})$ and $\hat{k} = \mu$. Set $f(x) := \hat{\mu}(a(x)^{-1})$ $(x \in G)$. Then $f \in L^1(G) \cap B(G)$ and $\hat{f} = \hat{\mu}$. By Corollary 7.14, fm = μ .

For a closed subgroup H of G, H := $\{ \chi \in \Gamma : \chi = 1 \text{ on H} \}$ is called the <u>annihilator</u> of H. It is a closed subgroup of Γ . Similarly, the <u>annihilator</u> of a closed subgroup Λ of Γ is the closed subgroup $\Lambda_{\perp} := \{ \chi \in G : \chi(\chi) = 1 \text{ for every } \chi \in \Lambda \}$. Trivially, $(H^{\perp})_{\perp} \supset H$. But Corollary 7.2 (b) now implies

$$(H^{\perp})_{\perp} = H.$$

By duality,

 $(\Lambda_1)^{\perp} = \Lambda_1$

for closed subgroups Λ of Γ . Thus, we have a one-to-one correspondence $H \longrightarrow H^{\perp}$ between the closed subgroups of G and those of Γ .

Let H be a closed subgroup of G and let π be the natural surjection $G \longrightarrow G/H$. This π induces a continuous homomorphism $\hat{\pi}: (G/H)^{\hat{}} \longrightarrow \hat{G}$ by

$$\hat{\pi}(\gamma) := \gamma \circ \pi \qquad (\gamma \in (G/H)^{\hat{}})$$

and it is easy to see that $\hat{\pi}$ maps (G/H) onto H^L. Further, if Y \subset G/H is compact there exists a compact X \subset G such that Y= $\pi(X)$ (Lemma 3.7). Then for every $\varphi>0$, $\pi(N(X:\varphi))=N(Y:\varphi)$. It follows from Lemma 5.8 that $\hat{\pi}$ is a homeomorphism (G/H) \rightarrow H^L.

This $\hat{\pi}$ yields a homeomorphism $G/H \longrightarrow (H^{\perp})^{\hat{}}$. Similarly, for a closed subgroup Λ of Γ we have a homeomorphism $\Gamma / \Lambda \longrightarrow (\Lambda_{\perp})^{\hat{}}$. Taking $\Lambda = H^{\perp}$ one obtains a homeomorphism $6: \Gamma / H^{\perp} \longrightarrow \hat{H}$. We also have the restriction map $\varrho: \Gamma \longrightarrow \hat{H}$, which is a continuous homomorphism whose kernel is H^{\perp} ; this ϱ induces $\varrho': \Gamma / H^{\perp} \longrightarrow \hat{H}$, and one easily proves $\varrho' = 6$.

We have proved

7.16. THEOREM. Let H be a closed subgroup of G; let π be the natural homomorphism $G \longrightarrow G/H$. Then $\chi \longmapsto \chi \circ \pi$ is a homeomorphism and an isomorphism of $(G/H)^{\bullet}$ onto H^{\bullet} . Further, the formula

$$\overline{\epsilon(\lambda_{H_T})} = \lambda |_{H} \qquad (\lambda \in \hat{G})$$

defines a homeomorphism and an isomorphism 6 of \hat{G}/H^{\perp} onto \hat{H} .

7.17. COROLLARY. Let H be a closed subgroup of G.

Then every continuous character of H can be extended to a continuous character of G.

The following is an example of the various theorems that connect properties of G with properties of Γ . (See also Exercises 7.C and 8.D.)

7.18. THEOREM. Let G be compact (and Γ discrete). G is connected if and only if Γ is torsion-free. (A group H is called torsion-free if there do not exist $n \in \mathbb{N}$ and $x \in \mathbb{H}$, $x \neq 1$ with $x^n = 1$.)

Proof. If G is not connected, it has a non-trivial closed open subset A. It follows from Lemma 3.1 (e) that $H := \{x : xA \subset A \text{ and } x^{-1}A \subset A\}$ is an open neighborhood of 1. But H is a group and $H \neq G$. Thus H is a proper open subgroup of G. Then G/H is finite, as G is compact. It follows that $(G/H)^{\wedge}$ is finite. Then Γ contains a finite subgroup, viz. H^{\perp} , and cannot be torsion-free.

Conversely, if Γ is not torsion-free, there exist $n \in \mathbb{N}$ and $\chi \in \Gamma$, $\chi \neq 1$ with $\chi^n = 1$. Then $\{1\} \neq \chi(G) \subset \{z \in \mathbf{T} : z^n = 1\}$, so $\chi(G)$ is not connected. As χ is continuous, G itself is not connected.

- 7.A. EXERCISE. Let p be a prime number. For $n \in \{0,1,\dots\}$ let $G_n := \{t \in \mathbf{T} : t^{p^n} = 1\}$. Then $G_0 \subset G_1 \subset G_2 \ldots$. Set $G_1 := \bigcup G_n$. This G is a group; each G_n is a finite subgroup of G. We view G under the discrete topology. In \widehat{G} we have $\widehat{G} = G_0^1 \supset G_1^1 \supset \dots$, $\bigcap G_n^1 = \{1\}$. Further, \widehat{G} is a compact group.
- (a) Every compact set $K \subset G$ is contained in some G_n ; then $N(K:\varrho) \supset N(G_n:\varrho) = G_n^{\perp}$ for $0 < \varrho < 1$. A set $W \subset \hat{G}$ is a neighborhood of 1 if and only if W contains a G_n^{\perp} .
- (b) For $\chi \in \hat{\mathbb{G}}$ define $D(\chi) := \inf \{p^{-n} : n \in \{0,1,2,\dots\}; \chi \in \mathbb{G}_n^{\perp}\}.$ Then $D(\chi^{-1}) = D(\chi)$, $D(\chi_1\chi_2) \leq \max(D(\chi_1), D(\chi_2)) \leq D(\chi_1) + D(\chi_2)$ and $\mathbb{G}_n^{\perp} = \{\chi : D(\chi) \leq p^{-n}\}.$ The formula

$$d(\chi_1,\chi_2) := D(\chi_1\chi_2^{-1})$$

defines a metric d on G which induces the topology of G.

- (c) Let $\beta \in \hat{G}$ be the identity map $G \longrightarrow T$. Then $n \longmapsto \beta^n$ is a one-to-one homomorphism of Z onto a dense subgroup of \hat{G} .
 - (d) For $k, l \in \mathbb{Z}$ set

 $\overline{d}(k,l) := \inf\{p^{-n} : n \in \{0,1,2,\ldots\}; k-l \text{ divisible by } p^n\}.$

Then \overline{d} is a metric on \mathbf{Z} . By \mathbf{Z}_p we denote the completion of \mathbf{Z} relative to this metric. By Exercise 3.B, \mathbf{Z}_p is a topological group, and, in fact, \mathbf{Z}_p is compact. $\hat{\mathbf{Z}}_p$ is isomorphic to the group $\{t \in \mathbf{T} : t^p = 1 \text{ for some } n \in \mathbf{N}\}$.

The elements of Z p are the p-adic integers.

7.B. EXERCISE. For k,l $\in \mathbb{Z}$ set $d(k,l) := \inf \{ \frac{1}{n!} : n \in \{0,1,2,\ldots\}; k-l \text{ divisible by n!} \}.$

Then d is a metric on \mathbf{Z} . Let P denote the completion of \mathbf{Z} relative to this metric. P is a compact group. Its dual group is isomorphic to \mathbb{Q}/\mathbb{Z} (or to $\{\mathbf{t} \in \mathbf{T} : \mathbf{t}^m = 1 \text{ for some } m \in \mathbb{N}\}$).

The elements of P are the Prüfer numbers. (Hint. Compare with Exercise 7.A.)

- 7.C. EXERCISE. F is metrizable if and only if G is 6-compact. (See Exercise 3.L.)
- 7.D. EXERCISE. Let Γ_d denote the group Γ under the discrete topology, \overline{G} the dual group of Γ_d . \overline{G} is a compact group. It is called the <u>Bohr</u> compactification of G. Every $x \in G$ determines a $b(x) \in \overline{G}$ by

$$b(x)(\chi) := \chi(x) \qquad (\chi \in \Gamma).$$

- (a) b is an injective continuous homomorphism of G onto a dense subgroup of \overline{G} . If G is compact, b is a homeomorphism $G \longrightarrow \overline{G}$ (in fact, b= α).
- (b) Every continuous homomorphism τ of G into a compact group H induces a continuous homomorphism $\overline{\tau}:\overline{G}\to H$ such that $\tau=\overline{\tau}\cdot b$:

7.E. EXERCISE. If $f \in L^1(G)$ and $\hat{f} \in L^2(\Gamma)$, then $f \in L^2(G)$.

Hint. Let \mathcal{F} denote the Fourier-Plancherel Transformation $L^2(G) \longrightarrow L^2(\Gamma)$. Use Lemma 6.3 and the Plancherel Theorem to prove that \mathcal{F} h= \check{h} for all $h \in L^1(\Gamma) \cap L^2(\Gamma)$, so that $\{\check{h}: h \in L^1(\Gamma) \cap L^2(\Gamma)\}$ is a dense set in $L^2(G)$. Use Lemma 6.3 again to show that $\|\{\check{f}\check{h}\| \leq \|\hat{f}\|_2 \|h\|_2$ for $h \in L^1(\Gamma) \cap L^2(\Gamma)$.

7.F. EXERCISE. The Fourier Transformation $L^1(\mathbb{R}) \to C_{\infty}(\mathbb{R})$ is not surjective. (Compare Exercise 9.B.) In fact, define

$$h(x) := \int_{|x|}^{\infty} \frac{\sin t}{t} dt \qquad (x \in \mathbb{R}),$$

where in the right hand member we have an improper Riemann integral. Then $h \in C_{\infty}(\mathbb{R})$ but h is not a Fourier transform.

Hint. Let $g(x) := x^{-1}$ for $|x| \ge 1$, g(x) := 0 for |x| < 1. Then $g \in L^2(\mathbb{R})$, $g \notin L^1(\mathbb{R})$ and up to a constant h is the Fourier-Plancherel transform of g. Apply the preceding exercise.

7.G. EXERCISE. In Theorem 7.12 if we choose the Haar measure on \hat{G} that belongs to the Haar measure of \hat{G} as indicated in the Inversion Theorem 6.11, then α is measure-preserving.