Enunciado

Demostrar, usando la técnica de reducción al absurdo, que todo grafo no trivial tiene al menos dos vértices del mismo grado.

Ayuda: prestar atención a la secuencia ordenada de los grados de los vértices.

Solución

Hipótesis:

Dado
$$G = (V, E)$$
 con $|V| = n \ge 2$

Queremos ver que
$$\forall G :: \exists u, v \in G \mid d(u) = d(v)$$

Demostración por absurdo

Supongamos que $\exists G :: \nexists u, v \in G \mid d(u) = d(v)$, luego:

 $\forall u,v \in V:: 0 \leq d(v), d(u) \leq n-1$ ya que es G es grafo, y un nodo no puede estar conectado a si mismo.

Intentemos **construir** un grafo con todos los vértices de grado distinto con n nodos

$$d(v_1) = 1$$

$$d(v_2) = 2$$

$$d(v_3) = 3,$$

$$d(v_{n-2})=n-2 \\$$

Pero tenemos nnodos, nos quedan v_n y v_{n-1} al que por comodidad llamaré \boldsymbol{u}

Quiero ver que es imposible que $d(u)=0 \wedge d(v)=n-1$ (o viceversa):

Si $d(v)=n-1\Rightarrow v$ está conectado a todos los nodos del grafo (excepto si mismo), por lo tanto, $d(u)\neq 0$

Si $d(u)=0\Rightarrow$ ningún nodo está conectado a n-1 nodos, luego $d(v)\neq n-1$

Pero entonces $d(u) = d(v) = n - 1 \lor d(u) = d(v) = 0$ y esto es **absurdo!**

Por lo tanto, queda demostrado por reducción al absurdo que $\forall G :: \exists u,v \in G \mid d(u) = d(v)$