1. (a) $(\exists x)(F(x) \land (\forall y)G(x,y)) \vdash (\forall y)(\exists x)(F(x) \land G(x,y))$

1	(1)	$(\exists x)(F(x) \land (\forall y)G(x,y))$	A	
2	(2)	$F(a) \wedge (\forall y)G(a,y)$	$\mid A \mid$	
3	(2)	F(a)	2	$\wedge - E$
4	(2)	$(\forall y)G(b,y)$	2	$\wedge - E$
5	(2)	G(a,b)	4	$\forall -E$
6	(2)	$F(a) \wedge G(a,b)$	3,5	$\wedge - I$
7	(2)	$\exists x (F(x) \land G(x,b))$	6	$\exists -I$
8	(1)	$(\exists x)(F(x) \land G(x,b))$	1, 2, 6	$\exists -E$
9	(1)	$(\forall y)(\exists x)(F(x) \land G(x,y))$	8	$\forall -I$

(b) $(\forall a)((F(x) \lor G(x)) \Rightarrow H(x)) \vdash (\exists x) \sim F(x)$

$$\begin{array}{|c|c|c|c|c|}\hline 1 & (1) & (\forall a)((F(x) \lor G(x)) \Rightarrow H(x)) & A \\ 2 & (2) & (\exists x) \sim H(x) & A \\ 3 & (3) & \sim H(a) & A \\ 4 & (1) & (F(a) \lor G(a)) \Rightarrow H(a) & 1 & \exists -E \\ 5 & (1,3) & \sim (F(a) \lor G(a)) & 3,4 & MT \\ 6 & (6) & F(a) & A \\ 7 & (6) & F(a) \lor G(a) & 6 & \lor -I \\ 8 & (1,3,6) & \sim (F(a) \lor G(a)) \land (F(a) \lor G(a)) & 5,7 & \land -I \\ 9 & (1,3) & \sim F(a) & 1,3,6,8 & AA \\ 10 & (1,3) & (\exists x) \sim F(x) & 9 & \exists -I \\ 11 & (1,2) & (\exists x) \sim F(x) & 2,3,10 & \exists -E \\ \hline \end{array}$$

(c) $(\forall a)(\forall y)(H(y,y) \Rightarrow \sim H(y,y)) \vdash (\forall a) \sim H(x,x)$

1	(1)	$(\forall a)(\forall y)(H(y,y) \Rightarrow \sim H(y,y))$	A	
2	(1)	$(\forall y)(H(y,y) \Rightarrow \sim H(y,y)$	1	$\forall -E$
3	(1)	$H(a,a) \Rightarrow \sim H(a,a)$	2	$\forall -E$
4	(4)	H(a,a)	A	
5	(1,4)	$\sim H(a,a)$	3,4	MP
6	(1,4)	$H(a,a) \wedge \sim H(a,a)$	5,6	$\wedge - I$
8	(1)	$\sim H(a,a)$	1, 4, 6	AA
9	(1)	$(\forall a) \sim H(x,x)$	8	$\forall -I$

2. (a) i. The theorem that this is attempting to prove is correct however:

$$\sim \forall a \sim G(x) \vdash \sim \sim G(a)$$

is not a valid instance of universal instantiation because $\forall x$ does not appear in the front of the WFF.

(b) Consider $U = \{a, b\}$ let:

$$F = \{a\}$$

$$G = \{b\}$$

We can see that $(\exists x)F(x) = T$ and $(\exists x)G(x) = T$, so the antecedent of or sequent is true. However $\sim G(a) \Rightarrow \sim F(a) = F$ so the consequent must be false.

3. (a) Note that in a model with only one element for any WFF involving letters a,b, a = b. Meaning:

$$W_1 \to (\exists x) H(x, x)$$

 $W_2 \to (\forall a) (H(x, x) \Rightarrow \sim H(x, x))$

So if our model has only one element, a, by W_1 we know H(a, a) but H(a, a), implies $\sim H(a, a)$ by W_2 so we have a contradiction.

- (b) If $a = (x_1, x_2) \in \mathcal{U} \times \mathcal{U}$ if $x \notin K$ then $x \in H$ by W_3 so $x \in H \cup K$. If $x \in H \cup K$ then $x \in \mathcal{U} \times \mathcal{U}$ by definition. So $\mathcal{U} \times \mathcal{U} = H \cup K$. H and K are disjoint as any member of K cannot be a member of H again by W_3 .
- (c) W_2 implies that no elements of the diagonal relation are in H (see part a). W_3 implies that every element not in H must be in K.
- (d) \mathcal{U} cannot have 0 elements by definition, it can't have 1 element by part a. Suppose \mathcal{U} has 2 elements a,b than by W_1 without loss of generality H(a,b), so by W_3 , $\sim K(a,b)$. Meaning that by the second disjunct of W_4 either $H(b,a) \wedge H(a,a)$ or $H(b,b) \wedge H(b,y)$. However because we have H(a,b) W_2 gives us $\sim H(b,a)$ so neither of these can be true, giving us a contradiction.
- (e) Consider $U = \{a, b, c\}$:

$$H = \{(a, b), (b, c), (c, a)\}$$
$$K = (\mathcal{U} \times \mathcal{U}) \setminus H$$

This is a valid model. There must always be 3 elements of H when there are 3 elements in \mathcal{U} . W_1 tells us that there is at least one element of H. W_3 and W_4 tell us that if $\exists (a,b) \in H$ then there must also $\exists (b,c), (c,a) \in H$ so the number of elements in H must be a multiple for 3. If there were 6, or 9, elements in H then by W_2 there would have to be 12 or 18 elements in $\mathcal{U} \times \mathcal{U}$ which contradicts our assumption that there are 3 elements in \mathcal{U} , so there must be 3 elements in H.

4. (a) $x = \frac{2}{3}$ in \mathbb{Z}_{13} where $3x = 2 \mod 13$ meaning:

$$x = 2 * 3^{-1} \mod 13 = 2 * 9 \mod 13 = 5$$

(b) $x = \frac{2}{3} \text{ in } \mathbb{Z}_{12}$

$$3x = 2 \mod 12$$

Because gcd(3,12) = 3 > 2 this equation has no solution.

(c) $x = \frac{6}{9}$ in \mathbb{Z}_{12}

$$9x = 6 \mod 12 \rightarrow 3x = 2 \mod 4 \rightarrow x = 2 \mod 4$$

Meaning that 2, 6 and 10 all solve this equation.

(d) $x = \frac{6}{9} \text{ in } \mathbb{Z}_{16}$

$$x = 6 * 9^{-1} \mod 16 \to x = 6 * 9 \mod 16 \to x = 6 \mod 16$$

(a) Assume p(x) is reducible then for some a, b:

theory $\mathbb{R}[x]/(x^2-k)R[x] = \mathbb{R} \oplus \mathbb{R}$.

$$x^{2} + 1 = (x + a)(x + b) = x^{2} + (a + b)x + ab$$

However there are no two elements $a, b \in \mathbb{Z}_3$ such that a + b = 0 and ab = 1.

(b) x + 1 is a primitive root as:

$$\{(x+1)^n : n \in [1, 2...9]\} = R$$

That is to say x + 1 spans R x is not a primitive root as $x^5 = x$ so it does not span R.

- (c) in $R(2x+1)^2 = x$ and $(x+2)^2 = x$ so these are both square roots of x.
- (d) The only solutions of this equation are the square roots of x (2x + 1 and x + 2) as the equation can only be factored when $\alpha^2 = x$.
- 5. (a) Consider the homomorphism $\phi: \mathbb{R}[x] \to \mathbb{C}$ defined by $\phi(P) = P(\sqrt{k}i)$. For all elements $(a+bi) \in \mathbb{C}$ There exists an element $(\frac{b}{\sqrt{k}}x+a) \in \mathbb{R}[x]$ such that $\phi(\frac{b}{\sqrt{k}}x+a) = a+bi$ so ϕ is onto meaning $\operatorname{im}\phi = \mathbb{C}$. If $\phi(P) = 0$ then $\sqrt{k}i$ is a root of P so P must be divisible $x^2 + k$ meaning $\ker \phi = (x^2 + k)R[x]$. So by the first isomorphism theory $\mathbb{R}[x]/(x^2 + k)\mathbb{R}[x] = \mathbb{C}$. Consider the homomorphism $\phi: \mathbb{R}[x] \to \mathbb{R} \oplus \mathbb{R}$ defined by $\phi(P) = (P(\sqrt{k}), -P(\sqrt{k}))$. This homomorphism is onto and its kernel $(x^2 k)\mathbb{R}[x]$. So by the first isomorphism
 - (b) Because \mathbb{C} is not isomorphic to $\mathbb{R} \oplus \mathbb{R}$, by part a S_1 cannot be isomorphic to S_2 . Assume S_3 is isomorphic to S_2 by the first isomorphism theory there exists an isomorphism ϕ such that $\ker \phi = (x^2)\mathbb{R}[x]$ and $\operatorname{in}\phi = S_2$. Define ϕ' to be $\phi'(x) = \phi^{-1}(x) + 1$ meaning $\ker \phi' = (x^2)\mathbb{R}[x]$ and $\operatorname{in}\phi' = S_1$. So again by the first isomorphism theory S_1 must also be isomorphic to S_3 . Because S_3 are not isomorphic themselves S_3 cannot be isomorphic to both of them so S_3 must not be isomorphic to S_2 . S_3 cannot be isomorphic to S_1 by similar reasoning.