2022/241
RAAFIA SHAIKH
BATCH 6

M	T	W	T	F	S S	
Page No.:				Value		
Date:					YOUVA	

PH1213 PRESENTATION

An infinite plane slab of thickness 2d carries a uniform volume charge density 8. We will find electric field as a function of y, where y=0 at centre. We will also call the electric field positive in +y direction and negative is when it is in -y direction.

Imagine a gaussian surface from the origin, inside the slab.

Gaus' law $\oint \bar{E} \cdot d\bar{a} = \underbrace{\text{Qenc}}_{E_0}$

Uniform charge density: Genc = STr2y

For any distance y horizontally away from centre of slab, it should be a constant electric field along x-z plane. Which means E can be pulled out of integral.

Also, the electric field lines are coming just horizontally out in y and -y direction away from slab. So basically, electric field lines are not going through surface of cylinder, but just through surface of cylinder, but just through surface of our cylinder.

E Tr2 = 8 Tr2y

INSIDE THE SLAB

if not are considing in +y direction

