

SiI9034/9134 HDMI Transmitter

Programmer's Reference

Document # SiI-PR-0039-H01

This document was watermarked on 27-04-2011 at 16:38:07 local time.

August 2010

Copyright Notice

Copyright © 2009-2010 Silicon Image, Inc. All rights reserved. These materials contain proprietary and confidential information (including trade secrets, copyright and other interests) of Silicon Image, Inc. You may not use these materials except only for your bona fide non-commercial evaluation of your potential purchase of products and/or services from Silicon Image or its affiliates, and/or only in connection with your purchase of products and/or services from Silicon Image or its affiliates, and only in accordance with the terms and conditions herein. You have no right to copy, modify, transfer, sublicense, publicly display, create derivative works of or distribute these materials, or otherwise make these materials available, in whole or in part, to any third party.

Patents

The subject matter described herein contains one or more inventions claimed in patents and/or patents pending owned by Silicon Image, Inc., including but not limited to the inventions claimed in US patents #6,914,637, #6,151,334, #6,026,124, #5,974,464 and #5,825,824.

Trademark Acknowledgment

Silicon ImageTM, VastLaneTM, SteelVineTM, PinnaClearTM, SimplayTM, Simplay HDTM, SatalinkTM, InstaPortTM, and TMDSTM are trademarks or registered trademarks of Silicon Image, Inc. in the United States and other countries. HDMI[®], the HDMI logo and High-Definition Multimedia InterfaceTM are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC. x.v.ColorTM is a trademark of Sony Corporation.

Export Controlled Document

This document contains information subject to the Export Administration Regulations (EAR) and has a classification of EAR99 or is controlled for Anti-Terrorism (AT) purposes. Transfer of this information by any means to an EAR Country Group E:1 or foreign national thereof (whether in the U.S. or abroad) may require an export license or other approval from the U.S. Department of Commerce. For more information, contact the Silicon Image Director of Global Trade Compliance.

Further Information

To request other materials, documentation, and information, contact your local Silicon Image, Inc. sales office or visit the Silicon Image, Inc. web site at www.siliconimage.com.

Revision History

Revision	Date	Comment
A	12/2006	First production draft
В	03/2007	Updated Data Control and HDMI Control Registers
C	04/2007	Updated DDC I ² C Status Register Information
D	08/2007	Updated Device Revision and Ri Command registers
Е	12/2007	Clarified and corrected content throughout, multi-word tables broken up, editorial cleanup
F	5/2008	Added appendix for PLL set up
G	2/2009	Clarified use of 0x7A:0x1E registers for HBRA; corrected FFBCOUNT in Tables 12 and 13; minor content corrections.
Н	8/2009	Add information for HDMI 1.4 3D support; fix cross-references.
H01	8/2010	Inserted Export Control statement

© 2009-2010 Silicon Image. Inc.

Table of Contents

Introduction		
Register Maps		
Document Conventions		
Base Register Set		
Vendor ID Register		
Device ID Register		
Device Revision Register		
Software Reset Register		
System Control Register #1		
System Status Register		
Legacy Registers		
System Control Register #4		
Data Control Register	Q_1	
HDCP Register Set		
HDCP Control Register		
HDCP BKSV Register	\sim	
HDCP Control Register HDCP BKSV Register HDCP AN Register HDCP AKSV Register	-'()	
HDCP AKSV Register		
HDCP Ri Register		
HDCP Ri 128 Compare Register		
HDCP Ri 128 Compare RegisterHDCP I Counter Register		
Automatic Ri Check		
Di Ctatus Danistan	. 1 / 1	
Ri Status Register Ri Command Register Ri Line Start Register Ri From RX Registers Ri Debug Registers DE Generator Register Set. Video DE Delay Register Video DE Control Register Video DE Top Register		
Ri Line Start Register		10
Ri From RX Registers		10
Ri Debug Registers		7
DF Generator Register Set		1
Video DE Delay Register		1′
Video DE Control Register		17
Video DE Ton Register		12
Video DE Count Register		12
Wide DE Line Design		17
Video H Resolution Register		
Video V Refresh Register	111 00	
Video Embedded Syno Decoding Degisters		
Video Interlace Adjustment Register		
Video SVNC Polarity Detection Register		
Video DE Line Register		
Video Field2 HSYNC Offset Register		
Video HSYNC Length Register		
Video Vbit to VSYNC Register	···	
Video VSYNC Length Register		
Video Control Register		
Video Action Enable Register		
Video Mode Register (SiI9034)		
• , , , , , , , , , , , , , , , , , , ,		
Video Mode Register (SiI9134)		
Video VSVNC Longth Pogister (SiJ0124)		
Video VSYNC Length Register (SiI9134).		
Interrupt Registers		
Interrupt State Register		
Interrupt Source Registers		
Register INTR1		
Register INTR2		
Register INTR3		24

Interrupt Unmask Register	24
Interrupt Control Register	
TMDS Control Registers	
TMDS C Control Register	
TMDS Control Register #1	
TMDS Control Register #2	
TMDS Control Register #3	
TMDS Control Register #4	
Repeater Authentication Enable Register	
DDC Master Registers	
DDC I ² C Manual Register	
DDC I ² C Target Slave Address Register	30
DDC I ² C Target Segment Address Register	30
DDC I ² C Target Offset Address Register	
DDC I ² C Data Count Register	31
DDC I ² C Data Count Register DDC I ² C Status Register	31
DDC I ² C Command Register	32
DDC I ² C Data Register	32
DDC PC FIFO Count Pagistar	27
ROM Registers ROM Command Register Audio Registers	33
ROM Status Register	33
ROM Command Register	33
Audio Registers	34
ACR Control Register	34
ACD A 11 F D 1 A	2.4
ACR N Software Value Register	34
ACR CTS Software Value Register	35
ACR CTS Hardware Value Register	35
ACR Audio Frequency Register ACR N Software Value Register ACR CTS Software Value Register ACR CTS Hardware Value Register Audio In Mode Register Audio In S/PDIF Control Register Audio In S/PDIF Extracted Fs and Length Register Audio In I²S Channel Swap Register Audio Error Threshold Register Audio In I²S Data In Map Register Audio In I²S Control Register (SiJ9034)	35
Audio In S/PDIF Control Register	36
Audio In S/PDIF Extracted Fs and Length Register	36
Audio In I ² S Channel Swan Register	37
Audio Frror Threshold Register	37
Audio In I ² S Data In Man Register	37
Audio In I ² S Control Register (Si19034)	38
Audio In I ² S Control Register (Si19134)	39
Audio In I ² S Channel Status Register Word 1	39
Audio In I ² S Channel Status Register Word 1 (SiI9134–HBR A Mode)	40
Audio In I ² S Channel Status Register Word 2	40
Audio In I ² S Channel Status Register Word 3	40
Audio In I ² S Channel Status Register Word 2	40
Audio In I ² S Channel Status Register Word 4 (Si19134)	40
Audio In I ² S Channel Status Register Word 5 (Si19034)	
Audio In I ² S Channel Status Register Word 5 (SiI9134)	
Audio Sample Rate Conversion Register (SiI9034)	
Audio Sample Rate Conversion Register (SiI9134)	
Audio I ² S Input Length Register (SiI9034)	
Audio I ² S Input Length Register (SiI9134)	
Audio Mode Switching Sequence	
HDMI Control Register (SiI9034)	
HDMI Control Register (SiI9134)	
Audio Path Status Register	
Diagnostic Power Down Register	
InfoFrame Registers	
CEA-861-D InfoFrame Control #1 Register	
CEA-861-D InfoFrame Control #2 Register	49

Silicon Image, Inc. —

SPD InfoFrame Registers	51
Audio InfoFrame Registers	
MPEG InfoFrame Registers	
Generic Packet Registers	54
General Control Packet Register	55
Generic Packet #2 Registers	56
BD Support (SiI9134 Only)	57
General	57
3D Formats Supported by the SiI9134	57
HDMI Vendor Specific InfoFrame as Implemented in the SiI9134 Transmitter	57
Sink EDID HDMI Vendor Specific Data Block	58
Pixel Clock	58
Implementing 3D Support on the SiI9134 Transmitter	58
Limitations	58
Appendices	59
Handling Audio	60
Enabling Audio Inputs	60
Encoding Audio on HDMI	61
Handling DVD Audio	62
Handling Video	64
Programming Video Input Mode and Video Output Mode	64
Deep-Color Video Data (SiI9134 Transmitter Only)	64
Handling Interlaced Video	65
Summary of Video Processing Path Options	66
Video Input Tables	67
480i Input	68
480i Multiplexed YCbCr 4:2:2 Embedded Sync Input	68
480i Multiplexed YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	69
480i YCbCr 4:2:2 Multiplexed YC Separate Sync Input	70
480i YCbCr 4:2:2 Multiplexed YC Separate Sync Input	71
576i YCbCr 4:2:2 Embedded Sync Input	71
576i YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	72
576i YCbCr 4:2:2 Multiplexed YC Separate Sync Input	73
480p Input	74
480p RGB Input	74
480p YCbCr 4:4:4 Separate Sync Input	75
480p YCbCr 4:2:2 Separate Sync Input	76
480p YCbCr 4:2:2 Embedded Sync Input	77
480p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	78
480p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	79
576p RGB Input	79
576p YCbCr 4:4:4 Separate Sync Input	80
576p YCbCr 4:2:2 Separate Sync Input	81
576p YCbCr 4:2:2 Embedded Sync Input	82
576p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	83
720p Input	84
720p RGB Input	84
720p YCbCr 4:4:4 Separate Sync Input	85
720p YCbCr 4:2:2 Separate Sync Input	86
720p YCbCr 4:2:2 Embedded Sync Input	87
720p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	88
1080i Input	
1080i RGB Input	
1080i YCbCr 4:4:4 Separate Sync Input	
1080i YCbCr 4:2:2 Separate Sync Input	
1080i YCbCr 4:2:2 Embedded Sync Input	
1080i VCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	93

1080p Input	94
1080p RGB Input	94
1080p YCbCr 4:4:4 Separate Sync Input	95
1080p YCbCr 4:2:2 Separate Sync Input	
1080p YCbCr 4:2:2 Embedded Sync Input	97
1080p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D	98
Handling InfoFrames and General Control Packets.	99
AVI InfoFrames	99
General Control Packets	100
Initiating HDMI Video after Hardware Reset and Successful HDCP Authentication	101
Controlling HDMI Video through an HDCP Link Failure and Re-Authentication	102
Handling Audio Content Protection (ACP) Packets	103
Operating DDC Master	103
Device Addresses	104
Write Command	105
Abort Command	105
Setting up the PLL Control Registers	
General	106
PLL Setup Tables.	106
Basic Requirements and Assumptions PLL Setup Procedure – Overview	107
PLL Setup Procedure – Overview	107
PLL Setup Firmware Implementation.	107
A Numerical Example	
SiI9134 Register Setting Implementation	109
Muting Video and Audio in HDCP Applications	119
Power Down Control	120
Logic Blocks Affected by Power Down	120
Registers Affected by Power Down References	120
References	121
Standards Documents	
Silicon Image Documents	121

O E PRINCIPAL O

List of Figures

Figure 1. Transmitter Video Data Processing Path	
Figure 2. DE Generator Measurements	11
Figure 3. Interrupt Pin Control	2
Figure 4: Input Bus Diagram for Different Formats	2
Figure 5. HDMI Vendor Specific InfoFrame Packet Header	
Figure 6. HDMI Vendor Specific InfoFrame Packet Contents	5
Figure 7. Audio Input Control	60
Figure 8. Overview of HDMI Operating Modes in 480p Stream	
Figure 9. ACP Packet Control Flowchart	
Figure 10. Transmitter Video Data Processing Path	64
Figure 11. 480i Example for Handling Syncs	6
Figure 12. Video Input to Video Output Data Flow	6
Figure 13. Muting Video and Audio from Reset to Authentication	10
Figure 14. Muting Video and Audio from Link Failure to Authentication	102
Figure 15. Supported Master I ² C Transactions	103
Figure 16. Master I ² C Read Command Flowchart	104
Figure 17. Master I ² C Write Command Flowchart	10:

List of Tables

Table 1. Control of I ² C Address with CI2CA Pin.	
Table 2. Register Address Groups	
Table 3. Audio/Video Mute Settings	
Table 4. TMDS Control Register Example	
Table 5. Encoded Audio Sampling Frequency	43
Table 6. Registers Used to Handle Interlaced Video	6
Table 7. AVI InfoFrame Layout	
Table 8. Mute Actions for Setting or Clearing SET AVMUTE and CLR AVMUTE Bits	
Table 9. HDCP DDC Standard Device Addresses.	104
Table 10. IFPLL Setting: 8-bit to 8-bit, 1x	114
Table 11. IFPLL Setting: 10-bit to 8-bit, 1x	11:
Table 12. IFPLL Setting: 12-bit to 8-bit, 1x	110
Table 12. IFPLL Setting: 12-bit to 8-bit, 1x	11′
Table 14 MPLL Setting #1	118
Table 15. MPLL Setting #2 Table 16. Power Down Control Bit Effects	119
Table 16. Power Down Control Bit Effects	120
Table 17 Registers Affected by PD Rits	120
Table 18. Referenced Documents	12
Table 19. Standards Groups Contact Information	12
Table 20. Silicon Image Documents	12

Introduction

This document provides information about the SiI9034/9134 HDMI Transmitter so that system designers and programmers can implement the firmware and software necessary to control the device's features in a system environment.

The SiI9134 transmitter has capabilities that the SiI9034 device does not, including deep color, 14-to-8/10/12-dither, and high bit-rate audio support. Therefore, the SiI9134 register set is a superset of the SiI9034 register set. Where differences occur, the registers are explicitly called out for each of the parts.

Figure 1 shows the path along which the transmitter processes outgoing video data.

Register Maps

The registers in this document are described in groups according to function. Certain registers in each address range are reserved for future use. Detailed definitions about the reserved registers are not provided in this document.

Register addresses range from 0x00 to 0xFF on each page in the I²C protocol. Because there are more than 255 bytes of registers in the transmitter, the device is accessible at one of two I²C device addresses. The device address may be altered with the CI2CA pin. The level on the CI2CA pin is not latched internally and must *not* be changed during any active I²C operations. All references to device address in this document use the default values of 0x72 and 0x7A.

Table 1 shows how the CI2CA pin state corresponds to device addresses. Table 2 provides an overview of the register address groups.

Figure 1. Transmitter Video Data Processing Path

Table 1. Control of I²C Address with CI2CA Pin

Device Address	CI2CA = HIGH	CI2CA = LOW		
First Device Addr	0x76	0x72		
Second Device Addr	0x7E	0x7A		

Table 2. Register Address Groups

I ² C Address	Address Range	Group Name	Purpose	Page		
0x72	0x00-0x0E	Base	Device identification and general programming	3		
	0x0F-0x2B	HDCP	HDCP authentication and other processes	6		
	0x32-0x4D	0x4D Video DE, sync decoder and encoder				
	0x70-0x7F	Interrupt	Interrupt processing	21		
	0x80-0xB2	TMDS	TMDS control	26		
	0xEC-0xFF	DDC	Mastering DDC bus	30		
	0xF8-0xFF	ROM	Status of HDCP keys in ROM	33		
0x7A	0x00-0x3D	Audio	Audio features and translations	34		
	0x3E-0xFE	CEA-861-D	Support for InfoFrame packets	47		

Important: Do not use I²C to write to register addresses that are not described in this document. Modifications to undocumented registers can cause unintended errors in the chip function.

Document Conventions

Document	Conventions
Bit N	Bits are numbered in little-endian format: the least-significant bit of a byte or word is referred to as bit 0.
0xNN	Hexadecimal representation of base-16 numbers is represented using C language notation, preceded by 0x.
0bNN	Binary (base-2) numbers are represented using C language notation, preceded by 0b.
NN	Decimal (base-10) numbers are represented using no additional prefixes or suffixes.
	Reserved register bits are shaded in the register description.
RSVD0	A bit in a register that is reserved and read-only, and returns a zero value.
RSVD1	A bit in a register that is reserved and read-only, and returns a one value.
RSVD	A bit in a register that is reserved and read-only, and returns an indeterminate value.
RSVDRW	A bit in a register that is reserved and read-write, returning the value written to it.
	RSVDRW0 implies a default of 0 and RSVDRW1 implies a default of 1.
	RSVDRW implies a default of 0 unless other specified.
X	A register bit defaulting to X has no defined state after hardware reset.

Base Register Set

Vendor ID Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x00	VND_IDL	Vendor II	Vendor ID Low Byte						
0x72	0x01	VND_IDH	Vendor II	Vendor ID High Byte						
Bit	Label	R/W	Descripti	Description Default						
			Low byte High byte							

Device ID Register

Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x02	DEV_IDL	Device ID Low Byte									
0x72	0x03	DEV_IDH	Device II	Device ID High Byte								
Bit	Label	R/W	Description					Default				
								Low byt	e H	ligh byte		
15:0	DEV_ID	R	Provides unique device type identification through 1 ² C.					0x34		iI9034: 0x90 iI9134: 0x91		

Device Revision Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x04	DEV_REV	Device Rev	vision Byte						
Bit	Label	R/W	Description	n						Default

Software Reset Register

Solvitale Register												
Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x05	SRST	RSVD0	SVD0 FIFORST								
Bit	Label	R/W	Descript	escription								
1	FIFORST	RW	0 = Norn	FO reset: nal operation t (flush) au						0		
0	SWRST	R/W	0 = Norn 1 = Rese	oftware reset: = Normal operation = Reset all sections, including the audio FIFO, except registers that are ser configurable.								

System Control Register #1

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x08	SYS_C	TRL1	RSVD0	VSYNC	VEN	HE N	RSVDRW0	BSEL	EDGE	PD#
Bit	Label	R/W	Desci	ription						Default	
6	VSYNC	R	(0x72)	eurrent status 2:0x72), desc e edge.		X					
5	VEN	R/W	0 = F	NC enable: ixed LOW ollow VSYN	C input					1	
4	HEN	R/W	0 = F	NC enable: ixed LOW ollow HSYN	C input					1	
2	BSEL	R/W	Input 0 = 12 1 = 24),			1	2
1	EDGE	R/W	$0 = \Gamma$	select: atch input on atch input on			0			0	
0	PD#	R/W	Powe HIGH When powe Most	r down mode I is normal on LOW, the Tr-down mode	e: peration. TMDS core i e. r values are	is powere		and interrupts a		0	

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x09	SYS_S	TAT	VLOW	RSVD0				RSEN	HPD	P_STABLE
Bit	Label	R/W	Description							Default	
7	VLOW	R	VREF mode. Always HIGH.							1	
2	RSEN	R	Recei	ver Sense (works in E	OC-coupled	systems or	nly):			X
				receiver c		nd powered	lon				
1	HPD	R	Hot P	lug Detect.	Provides t	he state of	the Hot Plu	ıg Detect p	in.		X
0	P_STABLE	R								0	

RSEN is active when the TMDS link is terminated, usually into a powered-on TMDS receiver chip. An active RSEN implies an active HPD, because the link must also be physically connected.

The HDCP Specification defines a Repeater device and a protocol for such a device to notify the source of any change in the connection status of any downstream HDCP link. Part of this protocol toggles the Hot Plug signal whenever a downstream device is attached or detached.

Legacy Registers

	J8-211											
Dev	Addr	Name	7 6 5 4 3 2 1							0		
0x72	0x0A	SYS_CTRL3	RSVD0		RSVD0							
0x72	0x0B	LEGACY1	RSVD0									
0x72	0x0E	LEGACY3	RSVD0									
Bit	Label	R/W	Description	on						Default		
2:1	CTL	R/W	The states during bla	C (0b00							

System Control Register #4

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x0C	SYS_CTRL	RSVDRW1	RSVD0		PLLF				PFEN
Bit	Label	R/W	Description	• • • • • • • • • • • • • • • • • • • •						
4:1	PLLF	R/W	Specifies the 0b0000 = 5 µ 0b0001 = 10 0b0010 = 15 0b0100 = 25 0b0111 = 40 0b1000 = 45 0b1111 = 80	ιΑ μΑ μΑ μΑ μΑ μΑ μΑ	charge pum	p current:	×(50	3	0ь0001
0	PFEN	R/W		0 = Disable PLL filter 1 = Enable PLL filter						1

Data Control Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x0D	DCTL	RSVD0			RSVD0)	VID_BLANK	AUD_MUTE	RSVD0
Bit	Label	R/W	Descrip	tion		Default				
2	VID_BLANK	R/W	1 = Vide	eo output	tion (vide is blanked , describe	d and the	colors sen	nked) t are those specifi	ed in registers	0
1	AUD_MUTE	R/W		0 = Do not send zeros in aud 1 = Send zeros in audio pac			t			0

Table 3. Audio/Video Mute Settings

Tubic contaction			
VID_BLANK	AUD_MUTE	SET_AVMUTE*	HDMI Transmitter Sends
X	х	1	All zeros in audio packets and blank-level data in all video packets
0	1	0	All zeros in audio packets and real video in video packets
1	0	0	Blank-level data in all video packets and real audio in audio packets
0	0	0	Real video in video packet and real audio in audio packets

^{*}Note: Described in register 0x7A:0xDF, bit [0], on page 55.

HDCP Register Set

All multi-byte registers (such as AKSV) should be written to hardware in order from the least-significant byte to the most-significant byte. For AKSV and BKSV, the action of writing a value to the most-significant byte triggers an HDCP operation

Important: An active link clock is required to read back valid data from the HDCP registers on the E-DDC bus.

HDCP Control Register

Dev	Addr	Name		7 6 5 4 3 2 1 0 RSVDRW0 ENC BKSV RX TX CP RI ED								
0x72	0x0F	HDCP_	CTRL	RSVDRW0	ENC_ ON	BKSV_ ERR	RX_ RPTR	TX_ ANSTOP	CP_ RESTN	RI_ RDY	ENC_ EN	
Bit	Label		R/W	Description							Default	
6	ENC_ON		R	Encryption statu 0 = Encryption of 1 = Encryption e	disabled or						0	
5	BKSV_EF	RR	R	1 = Error in BKS To clear this bit,	0 = No error in BKSV format 1 = Error in BKSV format To clear this bit, the firmware must first set the TX_ANSTOP bit, and then perform an authentication twice with a valid BKSV value.							
4	RX_RPTR	8	R/W	1 = HDMI receiv If the HDMI rec authentication pr Note : This bit is repeater. This sto								
3	TX_ANST	ГОР	R/W	AN Control. When cleared, the pseudo-random when set, the cip and initialize the Important: To sconsecutively. To clear this bit, hardware is reserved.	ne cipher er values. pher engine AN registe set this bit t	e stops and er. o 1, a 1 mu RX_RPTR	ree and the HDCP st be writt bit. This l	e AN register-capable received to this bit	eiver can r	read	0	
2	CP_REST	'N	R/W	Content protection $0 = \text{Reset}$ $1 = \text{Normal oper}$							0	
1	RI_RDY		R	1 = R _i first value is ready in the HDMI transmitter A hardware reset clears this bit. This bit is also cleared when the first byte of BKSV is written into the HDMI transmitter (performed at the beginning of the next authentication process).						0		
0	ENC_EN		R/W	W 0 = Encryption disabled 1 = Encryption enabled This bit can be written to 0 or 1. A 1-to-0 transition of this bit triggers the HDCP encryption logic and sets an interrupt bit. See register 0x72:0x72[5] on page 23.					0			

HDCP BKSV Register

	DIE	8-211								
Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x10	BKSV1	BKSV1							
0x72	0x11	BKSV2	BKSV2							
0x72	0x12	BKSV3	BKSV3							
0x72	0x13	BKSV4	BKSV4							
0x72	0x14	BKSV5	BKSV5							
Bit	Label	R/W	Description							Default
39:0	BKSV	W	Written with byte 5 trigger last.			-			_	0
		R	Value of the	BKSV regis	ter.					1

HDCP AN Register

Dev	Addr	Naı	ne	7	6	5	4	3	2	1	0
0x72	0x15	AN	1	AN1	~'0						
0x72	0x16	AN	2	AN2	-(//	10	*		_ ()		
0x72	0x17	AN	3	AN3		<u> </u>		(1	
0x72	0x18	AN	4	AN4						7	
0x72	0x19	AN	5	AN5				X			
0x72	0x1A	AN	6	AN6	71						
0x72	0x1B	AN	7	AN7							
0x72	0x1C	AN	8	AN8	,		(/)				
Bit	Label		R/W	Descripti	on						Default
63:0	AN		R/W	AN is an	HDCP 64-b	oit pseudo-r	andom valu	ie.			0

HDCP AKSV Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x72	0x1D	AK	SV1	AKSV1							
0x72	0x1E	AK	SV2	AKSV2		10					
0x72	0x1F	AK	SV3	AKSV3							
0x72	0x20	AK	SV4	AKSV4							
0x72	0x21	AK	SV5	AKSV5	7						
Bit	Label		R/W	Descripti	on						Default
39:0	AKSV		R					Vector. Byt this byte las		the	0

HDCP Ri Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x72	0x22	RI1		RI1							
0x72	0x23	RI2		RI2	RI2						
Bit	Label		R/W	Descripti	Description						
15:0	RI		R	R_i Register. The value of this register must be read and compared with the R_i value from the HDMI receiver.						0	

HDCP Ri 128 Compare Register

	111 120 0		3 3	9									
Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0		
0x72	0x24	Ri_1	28_COMP	RSVDRW0	RI_128_	COMP							
Bit	Label		R/W	Description		14_125_00M							
6:0	RI_128_COM	P	R/W	Limit counter f	r for R _i comparison.								
				When the frame counter (I_CNT) reaches the index set in this register,									
				the transmitter generates an RI_128 interrupt.									

The HDCP R_i value is updated during the vertical blanking interval for frame[j] when $j \mod 128 = 0$. Refer to the HDCP Specification. The interrupt RI_128 in INTR1 is generated in the frame with the index that matches RI_128_COMP. RI_128_COMP defaults to generate the interrupt when j = 0. For example, setting RI_128_COMP to 0x7F creates the interrupt one frame before R_i is updated in the HDMI transmitter and receiver.

HDCP I Counter Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x25	I_CNT	RSVDR0	I_CNT						
Bit	Label	R/W	Description							Default
	Laber	14/ 11	Description							Delauit

RIVERIO

Automatic Ri Check

The auto-synchronous R_i check compares the R_i value of the transmitter to the R_i' value of the receiver on the 0^{th} and 127^{th} frame. When reading the R_i' value of the receiver, the automatic R_i check uses the DDC output port. Use bit 0 in the RI_STAT register (0x72:0x26), described in the following table, for proper handshaking between the automatic R_i check and the master DDC functionality. The automatic R_i check is disabled by default. To enable automatic R_i check, set the R_i _EN bit to 1 in the RI_CMD register (0x72:0x27). Interrupts can be configured to trigger on an HDMI transmitter R_i and receiver R_i' mismatch condition.

Using the R_i 128 method is not required if the automatic R_i check is enabled.

Important: Enable the automatic R_i check only after the first stage of HDCP authentication is complete.

Ri Status Register

Dev	Addr	Name	7	6	5	4	3	2	1	0						
0x72	0x26	RI_STAT	RSVD0													
Bit	Label	R/W	Description Default						Description							
0	Ri_STARTEI) R	This sign: After the finish the firmware	R _i check is current tran	or handshak enabled, the nsaction befoility to use	e hardware fore taking	waits for the	e DDC mas er this bit is	ster to s set, the	0						

Ri Command Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x27	RI_CMD	RSVD0						BCAP_EN	Ri_EN
Bit	Label	R/W	Descrip	tion						Default
1	BCAP_EN	R/W	0 = Disa 1 = Enal Note : To	nable polling of the BCAP_DONE bit (0x72:0x72[7]). = Disable = Enable (ote: To poll the BCAP_DONE bit, the ENC_EN (0x72:0x0F[0]) bit and the ti_EN bit must be enabled on the HDMI transmitter.						
0	Ri_EN	R/W	Enable a Check b DDC co 0 = Disa 1 = Enal Note: A page 55 that the	nutomatic F it 0 of the l ntrol hands able ble utomatic R). The HDM	R _i Check. Ri_STAT shaking. Ai check is a more of the control	register (0) not affected tter R _i cour e AVMUT	(72:0x26) I by SET_ nter does r E state, ar	for firmware and AVMUTE (descripted advance during addess not resure	ribed on ng the time	0

Ri Line Start Register

Dev	Addr	Name	e	7	6	5	4	3	2	1	0		
0x72	0x28	RI_S	TART	Ri_LINE_START									
Bit	Label		R/W	Descripti	Description						Default		
7:0	Ri_LINE_ST.	ART	R/W	Indicates	Indicates at what line within frame 127 or 0 to start the R _i check.						0x04		
				Note : The value for this register bit represents the power of 2; 2 LSB is 0.						3 is 0.			

Ri From RX Registers

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x29	RI_I	RX_L	Ri_RX[7:	0]						
0x72	0x2A	RI_I	RX_H	Ri_RX[15:8]							
Bit	Label		R/W	Description Default							
15:0	Ri_RX		R	This value represents the HDMI receiver $R_i{}'$ value if any of the R_i check errors occurred.						0	2

Ri Debug Registers

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x2B	RI_DEBUG	RI_DBG_ TRASH	TRASH HOLD						
Bit	Label	R/W	Description	Description						ault
7	RI_DBG_TRA	SH R/W		0 = Continue with regular updates to R _i 1 = Force a corruption of the R _i values						
6	RI_DBG_HOL	D R/W	0 = Continue with regular updates to R _i 1 = Hold the R _i value steady, stop updating						0	

DE Generator Register Set

The HDMI transmitter provides an internal Data Enable (DE) generator for use when the attached video source does not provide a DE signal with the other video signals. The DE signal is needed for encoding the TMDS output of the HDMI transmitter. A DE signal is generated based on the values in the DE generator registers and the arrival times of the HSYNC and VSYNC pulses from the video source. This DE signal is included in the control data sent to the HDMI receiver across the link. Refer to the associated data sheet for more details (see Table 20on page 121).

The DE generator registers are used only for DE generation. Figure 2 shows the registers diagrammatically. The vertical sync pulse (VSYNC) occurs in the top area of the frame, before the active video area. The active (leading) edge is shown with an arrow. The horizontal sync pulse (HSYNC) occurs in every line before the active video area during the DE_DLY time. The active (leading) edge of HSYNC is shown with an arrow.

Note: The VSYNC and HSYNC widths are not shown to scale.

Figure 2. DE Generator Measurements

In the following definitions, *pixels* mean unique pixels. The counts in the DE generator registers, if expressed in pixels, are counted according to the original input clock even if that original input clock is multiplied within the chip. For example, a 480i field contains 720 unique pixels per line in the active video area, even when the clock is multiplied to 1440 clock cycles per active video time.

Register 0x72:0x3F records the detected polarity of VSYNC and HSYNC. The output polarities are set by register 0x72:0x33.

Note: When using the Sync Decoding module (see page 14), the DE input signal should be tied LOW.

Video DE Delay Register

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x72	0x32	DE_E	DLY	DE_DLY	[7:0]						
Bit	Label]	R/W	Descripti	Description Width of the area to the left of the active display. The unit of measure is						
7:0	DE_DLY[7:0]		R/W	pixels. The (horizontal generation Note: This	nis register s al back porc n. s 12-bit val	should be se ch) + (horize	et to the sur ontal left be four bits fi	n of (HSYN order), and i	NC width) + is used only	for DE	0x00

Video DE Control Register

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x72	0x33	DE_CTRL	RSVD0	DE_GEN	VS_POL#	HS_POL#	DE_DL`	Y[11:8]			
Bit	Label	R/W	Description	on						Default	
6	DE_GEN	R/W	Generate I 0 = Disabl 1 = Enable	e		9,		~\C		0	
5	VS_POL#	R/W	0 = Positiv 1 = Negati Set this bit VSYNC. I	YNC polarity. Positive polarity (leading edge rises) Negative polarity (leading edge falls) this bit to the input VSYNC polarity for the source that provides YNC. For embedded syncs, set this bit to the desired VSYNC polarity t is generated from the embedded sync codes.							
4	HS_POL#	R/W	0 = Positiv 1 = Negati Set this bit HSYNC. I	SYNC polarity. = Positive polarity (leading edge rises) = Negative polarity (leading edge falls) et this bit to the input HSYNC polarity for the source that provides SYNC. For embedded syncs, set this bit to the desired HSYNC polarity nat is generated from the embedded sync codes.							
3:0	DE_DLY[11:8]	R/W	Bits 11:8 of the DE_DLY value (refer to the Video DE Delay Register section).						0b0000		

Note: If both DE signal generation and sync decoding are enabled, VS_POL# and HS_POL# define the polarities of VSYNC and HSYNC from the sync decoder. The DE generator can be used in combination with sync decoding because the encoded syncs do not carry polarity information. To set the transmitted HSYNC and VSYNC to states required by the HDMI Specification, the DE generator may be needed. Refer to register 0x72:0x4A (in the Video Mode Register (Si19034) or the Video Mode Register (Si19134) sections).

Video DE Top Register

		910001								
Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x34	DE_TOP	RSVD0	DE_TOP						
Bit	Label	R/W	Description Default							
6:0	DE_TOP	R/W	measure is sum of (V	s lines (HSY SYNC widt	the area abo YNC pulses) th) + (vertical 127. 0 is an	. This registal back porc	ter should b ch) + (vertic		0b000	00000

Video DE Count Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x36	DE_CNTL	DE_CNT	[7:0]						
0x72	0x37	DE_CNTH	RSVD0							
Bit	Label	R/W	Descript	Description						
11:0	DE_CNT	R/W	this regis	Defines the width of the active display. The unit of measure is pixels. Set this register to the desired horizontal resolution. The valid range is 1–4095. 0 is an invalid value.						0

Note: Values measured in pixels (DE_CNT, and so on) count the total number of unique pixels on a line. If the input clock is a multiple of the pixel rate (see the DEMUX bit, described on page 18 or 19 and the ICLK bit, described on page 16), the registers indicate pixel count, which is not the same as clock count.

Video DE Line Register

		8-333									
Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x38	DE_LINI	_	DE_LIN[7:0]				•.		
0x72	0x39	DE_LINI	I	RSVD0 DE_LIN[10:8]							
Bit	Label	R/V	7	Description							Default
10:0	DE_LIN	R/W		(HSYNC interlaced half the o	pulses). Se modes, set verall vertice	t this regist t this registe cal resolution	er to the de er to the nu	sired vertica mber of line	easure is line al resolution es per field,	ı. For	0

Video H Resolution Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x3A	HRI	ES_L H_RES[7:0]				10)			
0x72	0x3B	HRI	ES_H	RSVD0			H_RES[1	2:8]			
Bit	Label		R/W	Descripti	on						Default
12:0	H_RES		R	Measures the time between two HSYNC active edges. The unit of measuris pixels.							0

Video V Refresh Register

	Table Filter Filter												
Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0		
0x72	0x3C	VR	ES_L	V_RES[7	V_KL5[7.0]								
0x72	0x3D	VR	ES_H	RSVD0	RSVD0 V_RES[10:8]								
Bit	Label		R/W	Descripti	Description								
10:0	V_RES		R	Measures the time between two VSYNC active edges. The unit of measure is lines.						0			

The values in the DE generator read-only registers are maintained until input HSYNC and VSYNC pulses are stopped. If an input IDCK continues, the DE generator counters overflow and the registers store zero until HSYNC and VSYNC are active again. The values in these registers are accurate only when there are active HSYNC and VSYNC inputs, or in the case of embedded sync input, active SAV/EAV sequences.

Video Embedded Sync Decoding Registers

When decoding syncs from the embedded sync stream (refer to register 0x72:0x4A in the Video Mode Register (Sil9034) or Video Mode Register (Sil9134) sections), disable the DE generator block (refer to register 0x72:0x33 in the Video DE Control Register section). Also, the DE input signal should be tied LOW (refer to the Handling Interlaced Video section).

Video Interlace Adjustment Register

Dev	Addr	Name								0	
0x72	0x3E	IADJUS	Т	RSVD0					DE_ADJ#	F2VADJ	F2VOFST
Bit	Label	R/W	Des	cription							Default
2	DE_ADJ#	R/W	1 = Sett be n dete	Disable V ing this binore comp ction circu	atible with uits to loca IC edges th	ustment sables VSY existing to te the posit	ansmitters ion of VS	s. Clearing YNC relativ	sets the DE gr this bit enable ve to HSYNC VSYNC in th	s and only	5
1	F2VADJ	R/W						always be (register 0		adjusted	0
			If this bit is set, the VBIT_TO_VSYNC value (register 0x72:0x46) is adjusted during field 2 of an interlace frame according to the setting of the F2VOFST bit. This bit defaults to 0.)
0	F2VOFST	R/W	0x72	2:0x46) is 2VADJ an	decrement d this bit a	ted by one are both set	during fiel, VBIT_T	\overline{d} 2 of an ir	NC (register aterlace frame (register 0x72)		0

Video SYNC Polarity Detection Register

Viuco	BINC.	UIU	Tity De	teeth	ع ۱۸۰ الر	515101					
Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x72	0x3F	POL	DETECT	RSVD	0				I_DET	VPOL_DET#	HPOL_DET#
Bit	Label		R/W	Descri	ption						Default
2	I_DET		R	Interlaction of the second of	0						
1	VPOL_DE	T#	R	interlaced modes. Detected input VSYNC polarity, using internal circuit. 0 = Active HIGH (leading edge rises) 1 = Active LOW (leading edge falls)							0
0	HPOL_DE	R	Detected input HSYNC polarity, using internal circuit. 0 = Active HIGH (leading edge rises) 1 = Active LOW (leading edge falls)							0	

Video Hbit to HSYNC Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0x40	HBIT	2HSYNC	THBIT_T	O_HSYN	C[7:0]						
0x72	0x41	HBIT	2HSYNC	22 RSVD0						HBIT_TO_	TO_HSYNC[9:8]	
Bit	Label		R/W	Description		Default						
9:0	HBIT_TO_HSY	Creates HS of an EAV HSYNC. The The valid ra	sequence (I	H bit chang neasure is	ge from 1 t pixels.	to 0) to the			0			

Note: Registers 0x72:0x40 and 0x72:0x41 are useful only when the input video uses 656 encoded syncs.

Video Field2 HSYNC Offset Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x42	FLD2_HS_C	DFSTL	FIELD2	OFST[7:0	0]					
0x72	0x43	FLD2_HS_C	FSTH	RSVD0 FIELD2_OFST[11:							
Bit	Label	R/W	Descr	iption		Default					
11:0	FIELD2_OFS	Set the			NC pixel to half the is 1–4095.	number of	pixels/lin		terlaced so	ource.	0

Video HSYNC Length Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0		
0x72	0x44	HWIDTH1			H[7:0]								
0x72	0x45				RSVD0 HW								
Bit	Label		R/W	Descrip		Default							
9:0	HWIDTH				Sets the width of the HSYNC pulses. Set this register to the desired HSYNC pulse width. The unit of measure is pixels. The valid range is 1–1023. 0 is an invalid value.								

Video Vbit to VSYNC Register

Dev	Addr	Name		7	6	5	4	3	2	1	0			
0x72	0x46	0x46 VBIT_TO_VSYNC				VBIT_T	O_VSYNC							
Bit	Label					Description								
5:0	VBIT_TO_VS	VBIT_TO_VSYNC R/W					ting edge	of VSYNC	from 1 to C. The unit	-	0b000000			

Note: Registers 0x72:0x42 through 0x46 are useful only when the input video uses 656 encoded syncs.

Video VSYNC Length Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0	
0x72	0x47	VWIDTH		RSVD0 VWIDTH								
Bit	Label	Label R/W			Description							
5:0	VWIDTH R/W			Sets the valid ran	Γhe	06000000						

Figure 2 on page 11 shows the HWIDTH and VWIDTH dimensions relative to the complete frame time.

Video Control Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x48	VID_CTRL	IFPOL	RSVDRW	EXTN	CSCSEL	RSVD0		ICLK	
Bit	Label	R/W	Descript	ion						Default
7	IFPOL	R/W	0 = Do n 1 = Inver This bit i Field1 ar format H mode, the based on	eld polarity. ot invert field be the field bit is used when the field f	e 656 Flag rting the fi YNC prop nitter does the F bit. V	peld polarity overly based of not detect e With explicit	causes the on the F bit ven from o syncs, the	sync extract. In embedd dd field, extract. HDMI trans	tion to led sync cept smitter	0
6	RSVDRW	R/W	Do not w	rite this bit to	1.	. ()	1			0
5	EXTN	R/W	Do not write this bit to 1. Extended Bit mode. 0 = All 8-bit input modes 1 = All 12-bit 4:2:2 input modes For 4:2:2 inputs wider than 8 bits but less than 12 bits, the unused bits should be set to 0.							
4	CSCSEL	R/W	0 = BT.6	ace Conversion 01 conversion 09 conversion		l select.				0
1:0	ICLK	R/W	0b01 = E 0b10 = R 0b11 = E Note : If to 0, set 1 the same of the AV example, AVI v2 of Refer to	ixel data is not ach pixel is ser	nt twice Int four time It in the Voixel replicate EMUX bit 5 to the n 1 and ICL b11. The summary of the	nes ID_MODE r cation field o it is set to 1, ext higher pi K = 0b01, se programmin	of the AVI set the pixel exel replica et the pixel	v2 data byte el replication tion rate. For replication	e 5 to n field or field of	0600

Video Action Enable Register

Dev	Addr	Nam	e	7 6 5 4 3 2 1 N WIDE_BUS RSVD0 CLIP_ RANGE_ RGB_2_ RANGE_									
0x72	0x49	VID_	ACEN	WIDE_	BUS	RSVD0	CLIP_ CS_ID	RANGE_ CLIP	RGB_2_ YCBCR	RANGE_ CMPS	DOWN_ SMPL		
Bit	Label		R/W	Descrip	tion						Default		
7:6	WIDE_BUS	S	R/W	0b00 = 0b01 = 0b10 =	8 bits per 10 bits pe	channel or er channel or er channel or	24-bit bus m 30-bit bus	mode			0b00		
4	CLIP_CS_I		R/W	determine 0 = Out	ne which put color	put color sp way to clip space is RG space is YG	B	nk - used by	the clipper blo	ock to	0		
3	RANGE_C	LIP	R/W	0 = Disa 1 = Ena When ra to 235, a	ble ange clip and for C	is enabled, bCr the rang	ge of values	is 16 to 240.	es for RGB a Actual values r upper (235 o	outside of	0		
2	RGB_2_YC	CBCR	R/W	Enable 1 0 = Disa 1 = Ena	able	CbCr color	-space conv	erter.		13	0		
1	RANGE_C	MPS	R/W	0 = Disa 1 = Ena When ra Y is 16 values f represer (more th	able ble ange com to 235, a from 0 to nted with	nd for CbCr 255 are com in the compi ctual value i	the range of apressed (rer ressed range s represente	f values is 16 napped) so th . There may l	sible values for to 240. All pot at they are all be some duplified compressed	ossible l cation	0		
0	DOWN_SN	1PL	R/W		downsam able	npler 4:4:4 to		3			0		
				2	X								

Video Mode Register (SiI9034)

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x4A	VID	_MODE	DITHER	MODE	DITHER	RANGE	CSC	UPSMP	DEMUX	SYNCEXT
Bit	Label		R/W	Descript	ion						Default
7:6	DITHER_MC	DDE	R/W		oither to 8 eserved eserved	per of bits pe bits	r output vid	eo chann	el:		0ь00
5	DITHER		R/W	specified 1 = Dithe	in DITHI er enabled	ER_MODE [7:6] utput is dith		the output w		0
4	RANGE		R/W	0 = Disab 1 = Enab When thi values for suitable f modes th non-CEA 1.3 of the RGB. It r on), or a Type B F HDMI trange for	ole le s bit is set om 16–23 or translat at use the a-861-D m e sink. Thi may be a s specific m ansmitter delivering	5 into the futing input YO complete randode in the first is is the native trandard PC active resolut nector, which receives YC g RGB full-random to the first incomplete the first incomplete receives YC g RGB full-random to the first incomplete receives YC g RGB full-random to the first incomplete receives YC g RGB full-random to the first incomplete random to the first	transmitter all 8-bit rang CbCr data in range. The HI rst and only re resolution (2 ion. In these h allows mubCr data, thange modes	e of 0–25 nto output OMI Spect 18-byte n of the si XGA, SX e cases (outliple PC e data mu	the range of 5. This feature RGB data in ification allowed descriptor of the results of the resu	ore is n PC ows one of the EDID ay be and so with the ten the ded to full	9
3	CSC		R/W	YCbCr to 0 = Disab 1 = Enab	ole	or space cor	iversion.		71		0
2	UPSMP	2	R/W	Up samp $0 = Disat$ $1 = Enab$		to 4:4:4.	4	5			0
1	DEMUX		R/W	One- to two-data-channel demultiplexing. 0 = Disable 1 = Enable							0
0	SYNCEXT		R/W	0 = Disal			0				0
				1 ≠ Enab	X						

Video Mode Register (SiI9134)

Dev	Addr	Name	7	E DITHER_MODE DITHER RANGE CSC UPSMP DEMUX								
0x72	0x4A	VID MO	DE DITHEI	R MODE	DITHER	RANGE	CSC	UPSMP	DEMUX	SYNCEXT		
Bit	Label	R/W	Descrip	tion						Default		
7:6	DITHER_MC	DDE R/W	0b00 = 1 0b01 = 1 0b10 = 1	es the numb Dither to 8 Dither to 1 Dither to 1 Reserved	0 bits	r output vid	eo channe	1:		0ь00		
5	DITHER	R/W	specified 1 = Dith	d in DITHI er enabled	l; the video o ER_MODE [; the video o ER_MODE [7:6] utput is dith		•		0		
4	RANGE	R/W	0 = Disa 1 = Enal When the values fit suitable modes to non-CE, EDID 1 may be specific HDMI of transmit	ible ble ble is bit is second 16–23 for transla that use the A-861-D m. 3. This is a standard native resconnector, ter receive	t, the HDMI 5 into the ful ting input Y0 complete ran node in the fil the native res PC resolutio blution. In the which allows s YCbCr dat 6 full-range r	transmitter Il 8-bit rang CbCr data ir nge. The HI rst and only solution of t n (XGA, SX ese cases (o s multiple Po a, the data r	expands the of 0–255 nto output om Specify 18-byte dhe sink, w (GA, WX) or for a sink C modes), nust be expands the of the control of the con	This feature RGB data in the fication allowed lescriptor of the high may be GA, and so could the Twhen the Twhen the Fanded to find the RGB when the Fanded to find RGB data.	ore is n PC ows one of the sink e RGB. It on), or a sype B HDMI ull range			
3	CSC	R/W	V YCbCr $0 = Disa$	for delivering RGB full-range modes. See the <i>HDMI Specification</i> . YCbCr to RGB color space conversion. 0 = Disable 1 = Enable								
2	UPSMP	R/W	0 = Disa 1 = Enal	Up sampling 4:2:2 to 4:4:4. 0 = Disable 1 = Enable								
1	DEMUX	R/W	One- to 0 = Disa 1 = Ena	ble	hannel demu	ıltiplexing.				0		
0	SYNCEXT	R/W	0 = Disa	Embedded sync extraction. 0 = Disable 1 = Enable								

Video Blanking Registers

	Diamini	-9	9-21-2									
Dev	Addr	Name	:	7	6	5	4	3	2	1	0	
0x72	0x4B	VID_I	BLANK1	VID_BLA	NK1							
0x72	0x4C	VID_I	BLANK2	VID_BLA	NK2							
0x72	0x4D	VID_I	BLANK3	VID_BLANK3								
Bit	Label		R/W	Description Default								
7:0	VID_BLAN	JK1	R/W	Defines th	e video bla	nking value	for Channel	l 1 (Blue).			0x00	
7:0	VID_BLAN	IK2	R/W	Defines the video blanking value for Channel 2 (Green). 0x00								
7:0	VID_BLAN	IK3	R/W	Defines the video blanking value for Channel 3 (Red). 0x00								

Note: The VID BLANK bit in the DCTL register (0x72:0x0D[2]) enables video blanking. Refer to page 5.

These registers are not affected by the SET_AVMUTE flag.

Video VSYNC Length Register (SiI9134)

Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x4E	DC_HEADER	DC_HE	DC_HEADER								
Bit	Label	R/W	Descrip	Description								
7:0	DC_HEADER	. R/W	This is t	ends	0x03							

Interrupt Registers

The interrupt registers coordinate enabling and recognizing the interrupts generated by the HDMI transmitter.

Figure 3 shows the control of the INT output pin. Each interrupt source has a bit (shown as INTa_bit in the figure) and a mask (shown as MASKa_bit), where a is the label of the interrupt bit and its corresponding mask bit. Each of these pairs is logically ANDed. The AND result of each pair is then ORed and latched with the active output clock and appears in the INTR bit (0x72:0x70[0]). This bit, along with the POLARITY# and OUTPUT_TYPE bits (0x72:0x79[2:1]; refer to page 25) affect INT in all modes. When RESET# goes LOW, POLARITY# defaults to 1 and OUTPUT_TYPE defaults to 0 (push-pull).

When the device is powered down by setting PD# (0x72:0x08[0] shown on page 4) to 0, RSEN (0x72:0x71[5]) is the only interrupt that affects the INT output pin. No other condition generates an interrupt when the transmitter is powered-down with PD#. If necessary, the host device must use other means to monitor the hot plug state, such as polling the System Status Register. Note that when RESET# is LOW, PD# is reset to zero.

Figure 3. Interrupt Pin Control

Interrupt State Register

	apt State											
Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0x70	INTR_	STATE	RSVD0								
Bit	Label		R/W	Descripti	on						Default	
0	INTR	<u> </u>	R	polarity o bit in the	f the INT o INT_CTRI ts with mat	utput signa . register (0	l is set usin 0x72:0x79).	g this bit ar Only INTI	s set to 1. The result of the POLAR1, INTR2, contribute to	ARITY# and	0	

Interrupt Source Registers

When reading any interrupt bit in the following three tables, a 1 indicates that the interrupt is asserted, and a 0 indicates no interrupt occurred.

Register INTR1

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x71	INTR1	SOFT	HPD	RSEN	DROP_ SAMPLE	BI_PHASE _ERR	RI_128	OVER_ RUN	UNDER _RUN
Bit	Label		R/W	Description	on					Default
7	SOFT		R		Induced Inte Vrite a 1 to o		s the firmware t	o generate an in	iterrupt	0
6	HPD		R	The HDM unplug or sink EDII	II transmitte plug. HDM I is ready to	r signals a cl I specifies th be read and	nange in the cor at Hot Plug mu that Hot Plug is	tect has changed nectivity to a si st be active only s toggled any tir I repeater. Write	ink, either y when the me there is a	0
5	RSEN		R	Receiver S	Sense Interr	upt, asserted	if RSEN has cl	nanged. Write a	1 to clear.	X
4	DROP	SAMPLE	ER	If the HDI before the that stops	MI transmitt subframe h	ter detects ar as been capt a flat-line c	ured, this interr	out only). in the S/PDIF in the S/PDIF in the S/PDIF in the such a premark of the such as the such	PDIF input	0
3	BI_PH	IASE_ERR	R	Input S/PI	OIF stream l	nas a bi-phas		n occur when the		0
2	RI_12	8	R	This interior by the VS firmware	rupt occurs YNC (frame	when the cou e) counter in link integrit	int written to re the HDMI tran	I_128_COMP register 0x72:0x2 smitter. It should match occurs of	4 is matched d trigger the	0
1	OVER	_RUN	R	This intermediate written in	to it than are	f the audio I drawn out a	cross the HDM	when more san II link. Such a coock rate. Write	ondition can	0
0	UNDE	ER_RUN	R			_	rrupt occurs wh	en the audio FII	FO empties.	0
				PR	XO					

Register INTR2

Dev	Addr	Name	7		6	5	4	3	2	1	0	
0x72	0x72	INTR2		CAP_ ONE	SPDIF_ PAR	ENC_ DIS	PREAM _ERR	CTS_CHG	ACR_OVR	TCLK_ STBL	VSYNC_ REC	
Bit	Label			R/W	Description	on					Default	
7	BCAP	DONE		R	in the HD To enable	MI receiver. this interrup	ot, ENC_EN	(0x72:0x0F[0]	it (0x74:0x40[5]), BCAP_EN all be set to 1. V		0	
6	SPDIF	_PAR		R	The S/PD	occurs if the			end of each sub natch the state o		0	
5	ENC_I	DIS		R	_	upt occurs i		hanged from 1 t is turned off (0	to 0. 0x72:0x0F[0] is	set to 0).	0	
4	PREA	M_ERR		R	(0x72:0x7) when the	1[4]). This i S/PDIF strea	nterrupt occ m is being o		t causes DROP le is expected be a 1 to clear.		0	
3	CTS_C	CHG		R	This intern	hould be ex	when the cha		expected magni pixel clock fre		0	
2	ACR_0	OVR		R	This interr queue befoling activ	ore the previ	f the HDMI ous NCTS p do not allow	backet has been of for sufficient	s an NCTS pack sent. This can o NCTS packet ba hould occur. Wh	occur if very andwidth. For	0	
1	TCLK	STBL		R								
0	VSYNC_REC R Asserted when VSYNC active edge is recognized. It is useful for triggering firmware actions that occur during vertical blanking. Write a 1 to clear.								0			

PERMIC

Register INTR3

Dev	Addr	Name	7		6	5	4	3	2	1	0			
0x72	0x73	INTR3	REG INTR STAT	<u>-</u>	RSVD	REG_ INTR3_ STAT5	REG_ INTR3_ STAT4	REG_ INTR3_ STAT3	REG_ INTR3_ STAT2	REG_ INTR3_ STAT1	REG_ INTR3_ STAT0			
Bit	Label		R/	W	Description	on					Default			
7	REG_I STAT	INTR3_ 7	R/	W	R _i not reac	R_i not read within one frame; to clear, write a 1. Reserved R_i and R_i do not match during 2nd frame (default during frame #0 = reg.								
6	Ri_ER	R#2	R/	W	Reserved	k_i and R_i do not match during 2nd frame (default during frame #0 = reg.								
5	REG_I STAT:	INTR3_ 5	R/	W		R _i not read within one frame; to clear, write a 1. Reserved								
4	REG_I STAT	INTR3_ 4	R/	W		x_i and x_i' do not match during 2nd frame (default during frame #0 = reg. x25); to clear, write a 1. x_i and x_i' do not match during 1st frame (default during frame #127 = reg. x25 - 1); to clear, write a 1.								
3	REG_I STAT3	_	R/	W	DDC com	mand is con	nplete. Asser	rted if set to 1. V	Write a 1 to clea	ır.	0			
2	REG_I STAT	INTR3_ 2	R/	W	DDC FIFO) is half-full	interrupt. A	Asserted if set to	1. Write a 1 to	clear.	0			
1	REG_I STAT	INTR3_ 1	R/	W	DDC FIFO is full interrupt. Asserted if set to 1. Write a 1 to clear.									
0	REG_I STAT0		R/	W	DDC FIFO	is empty.	bin one frame; to clear, write a 1. 0 ot match during 2nd frame (default during frame #0 = reg. write a 1. ot match during 1st frame (default during frame #127 = reg. ear, write a 1. lis complete. Asserted if set to 1. Write a 1 to clear. 0 alf-full interrupt. Asserted if set to 1. Write a 1 to clear.							

Interrupt Unmask Register

Interrupts are set in the INTR1, INTR2, and INTR3 registers as they occur, but only interrupts with a corresponding bit set in the INT_UNMASK1 through INT_UNMASK3 registers are logically ORed into the INT output pin signal. The state of any interrupt can be checked at any time by reading the INTR1, INTR2, and INTR3 registers directly. The INTR_STATE register 0x72:0x70, described on page 21, is also only set for matching INT_UNMASK bits.

All bits marked RSVD in the interrupt registers should have the corresponding bit in the INT_UNMASK register cleared to zero.

Dev	Addr	Name		7	6	5	4	3		2	1	0	
0x72	0x75	INT_U	UNMASK1	INT_UN	MASK[7:0	j ,							
0x72	0x76	INT_U	UNMASK2	INT_UN	MASK[15:	8]	-						
0x72	0x77			INT_UN	MASK[23:	16]							
Bit	Label	Label R/W			Description								
7:0 7:0 7:0	INT_UNMASK1 INT_UNMASK2 INT_UNMASK3			Enable or disable corresponding bit in INTR1. Enable or disable corresponding bit in INTR2. Enable or disable corresponding bit in INTR3.							0x00 0x00 0x00		
					0 = Disable corresponding interrupt to INT output 1 = Enable corresponding interrupt to INT output								

Interrupt Control Register

111101	Tupt Conti	01 11	510001								
Dev	Addr	Name	;	7	6	5	4	3	2	1	0
0x72	0x79	INT_0	CTRL	RSV	DRW			SOFT_INTR	OUTPUT_TYPE	POLARITY #	RSVDRW
Bit	Label		R/W	Desc	riptio	n					Default
3	SOFT_INTR		R/W			re inte	-				0
					0 = Clear interrupt 1 = Set interrupt INIT pin output type						
2	OUTPUT_TYP	E	R/W		INT pin output type.						
					Push/p Open o						
				Note : This bit must be set to 1 after reset to configure the INT pin as an open drain output.							
1	POLARITY#		R/W	INT pin assertion level.							1
				0 = Assert HIGH 1 = Assert LOW							7
				I = I	Assert	LUW					

TMDS Control Registers

The TMDS registers control Transition-Minimized Differential Signaling (TMDS). Please see the Setting up the PLL Control Registers section (p. 106) for details regarding the settings of the registers described in this section.

TMDS C Control Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x80	TMDS_CC	TRL	RSVDRW0	RSVDRW0	RSVD	VDRW0 RS		VDRW1		
Bit	Label		R/W	Description	ı		Default				
5	FAPOS	TCOUNT	R/W	Filter PLL p 0 = Divided 1 = Divided	l by 1	ting for the audio clo	ck.				0

TMDS Control Register #1

	Now Addr Nome 7 6 5 4 3 2 1 0										
Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x82	TMDS	CTRL	RSVDRW0	TCLK	SEL	RSVDRW	0	LVBIAS	RSVDRW0	STERM
Bit	Label		R/W	Description							Default
6:5	TCLKSEL		R/W	Selects FPLL 0b00 = FPLL 0b01 = FPLL 0b10 = FPLL 0b11 = FPLL	is 0.5 • is 1.0 • is 2.0 •	IDCK IDCK IDCK	IDCK:		, C		0b01
2	LVBIAS		R/W	This bit shoul	ld alway	s be set	to 1 after re	set.			0
0	STERM	5	R/W	Internal source termination. 0 = Disable 1 = Enable Note: Silicon Image recommends enabling source termination. Refer to the respective datasheet for more information.							1

For certain combinations of video input clock frequency and audio sampling rate, the HDMI transmitter must use a higher multiple of the input pixel clock when sampling the S/PDIF input.

Set ICLK to reflect the pixel replication factor of the input data stream so that it is properly decoded. TCLKSEL indicates the factor by which the input clock (IDCK) must be multiplied to yield the output clock frequency. These settings ensure that the output clock can provide sufficient bandwidth for multi-channel audio data on an HDMI link (25 MHz at a minimum). The pixel replication count bits in the AVI InfoFrame Packet must be accurate. Refer to Table 4 on the next page for examples.

Table 4. TMDS Control Register Example

480p mode (pixel clock = 27 MHz)										
Input Clock (IDCK) ¹	Audio Mode & max F _s	ICLK ² 0x72:0x48[1:0] Input Pixel Replication ⁴	DEMUX 0x72:0x4A[1]	TCLKSEL ³ 0x72:0x82[6:5]	Output (Link) Clock ¹	Output Pixel Replication ¹⁰	AVI InfoFrame Packet Byte 5 bits PR3:PR0 ¹⁰			
54 MHz	8 ch, 96 kHz	0b01 (2x)	0	0b01 (1.0)	54 MHz ⁶	$2x^7$	0b0001			
54 MHz	2 ch, 192 kHz	0b01 (2x)	0	0b00 (0.5)	27 MHz	1x	0b0000			
54 MHz	8 ch, 96 kHz	0b00 (1x)	15	0b01	54 MHz ⁶	$2x^7$	0b0001			
54 MHz	2 ch, 192 kHz	0b00 (1x)	15	0b00	27 MHz	1x	0b0000			
27 MHz	8 ch, 96 kHz	0b00 (1x)	0	0b10 (2.0)	54 MHz ⁶	$2x^7$	0b0001			
27 MHz	2 ch, 192 kHz	0b00 (1x)	0	0b11 (4.0)	108 MHz	4x ⁸	0b0011			
27 MHz	8 ch, 48 kHz	0b00 (1x)	0	0b01 (1.0)	27 MHz	$1x^9$	0b0000			

Notes:

- 1. Input Clock (IDCK) and Output Clock must be within the min/max range for the HDMI transmitter.
- 2. For proper decoding, set ICLK to reflect the pixel replication factor of the input data stream.
- 3. Factor by which input clock must be multiplied to give output clock frequency.
- 4. There is only one pixel per 27 MHz clock cycle, so each must be replicated.
- 5. When YCbCr 4:2:2 data is multiplexed onto a single channel, the input clock must be doubled.
- 54 MHz is necessary so that the blanking intervals have sufficient bandwidth to carry the 8-channel audio data sampled at frequencies up to 96 kHz.
- 7. Because the output clock has been doubled, pixels must be replicated.
- 8. Illustrates 4x pixel replication on output.
- 9. 27 MHz input clock provides sufficient bandwidth for 8-channel audio data sampled at frequencies 48 kHz and below. Refer to the HDMI Specification.
- 10. Bits PR0:PR3 of Byte 5 of the AVI InfoFrame packet indicate to the HDMI sink how many repetitions of each unique pixel are transmitted. Refer to Table 12 in the CEA-861-D Specification.

These settings ensure that the output clock provides sufficient bandwidth for multi-channel audio data on an HDMI link (25 MHz minimum).

Figure 4: Input Bus Diagram for Different Formats

Note: All three input bus formats can use 656 encoded syncs.

TMDS Control Register #2

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x83 TMDS_CTRL2			POST_C	POST_COUNT FFB_COUNT FFR_COUNT						
Bit	Label R/W			Descripti	Description						
7:6	POST_COUNT R/W			Sets the divider ratio for the HDMI transmitter PLL post counter: 0b00 = Divide by 1 0b01 = Divide by 2 0b10 = Divide by 4 0b11 = Invalid							0b00
5:3	FFB_COUNT R/W			Sets the divider ratio for the PLL filter feedback counter: 0b000 = Divide by 1 0b001 = Divide by 2 0b010 = Divide by 3 0b011 = Divide by 4 0b100 = Divide by 5 0b101 = Divide by 6 0b110 = Divide by 7						06011	
2:0	FFR_COUNT		R/W	0b000 = I $0b001 = I$ $0b011 = I$	Divide by 1 Divide by 2 Divide by 4 Divide by 8	0	filter fron	t counter:		110	0b011

TMDS Control Register #3

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x84 TMDS_CTRL3			RSVDRW0	RSVDRW0 ITPLL FPOST_COUNT						
Bit	Label R/W			Description	Description						Default
6:3	ITPLL		R/W	Controls the fit PLL: 0b0000 = 5 µA 0b0001 = 10 µ 0b0010 = 20 µ 0b0011 = 25 µ 0b0100 = 40 µ 0b0110 = 50 µ 0b1000 = 80 µ 0b1011 = 100 0b1111 = 135 The filter band using the defa operating temp adjust that val	mmends e, ay	0ь0011					
2:0	FPOST_COUN	VT	R/W	Sets the divide 0b000 = Divide 0b001 = Divide 0b011 = Divide 0b111 = Divide	le by 1 le by 2 le by 4	r the PLL f	ilter post	counter:			0ь000

TMDS Control Register #4

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x85	TMDS	CTRL4	RSVDRW0				RSVDR	CW0	TFR_C	OUNT
Bit	Label		R/W	Description	ı						Default
1:0	TFR_COUNT		R/W	HDMI trans 0b00 = Divi 0b01 = Divi 0b10 = Divi 0b11 = Inva	ide by 1 ide by 2 ide by 4	front count	er setting:				0b01

Repeater Authentication Enable Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0xCC	TMDS	_CTRL4	RSVD	RW0			Repeater Authentication Enable	RSVI	DRW0	W0	
Bit	Label		R/W	Descri	Description							
3	Repeater Authentication Enable	Authentication SiI9034/9134 transmitter is a repeater.						0				

DDC Master Registers

The following registers control the DDC output port, described on page 103. The speed of the Master DDC clock is determined by an internal oscillator in the HDMI transmitter, with a maximum of 100 kbps. There is no requirement for an active input pixel clock to the HDMI transmitter, and the DDC SCL speed is not affected by the pixel clock frequency.

The auto-synchronous R_i check also uses the DDC output port. For proper handshaking, refer to the $Ri_STARTED$ bit in the Ri_STAT register (0x72:0x26[0]), described on page 9.

Note: The DDC CMD, DDC DATA and DDC STATUS registers are not accessible if PDOSC = 0 or PDTOT# = 0.

DDC I²C Manual Register

Dev	Addr	Nam	ne	7	6	5	4	3	2	1	0	
0x72	0xEC	DDC	C_MAN	MAN_OVR	RSVDRW0	MAN_SDA	MAN_SCL	RSVI	DRW0	IO_SCL	IO_SDA	
Bit	Label		R/W	Description							Default	
7	MAN_OVI	R	R/W	0 = Normal op	anual Override of SCL and SDA output. = Normal operation = Override port with MAN_SCL and MAN_SDA states							
5	MAN_SDA	4	R/W	Manual SDA	output.	, , (<i>J</i>				0	
4	MAN_SCI	,	R/W	Manual SCL output.							0	
1	IO_SCL		R	DDC SCL input state.						0		
0	IO_SDA		R	DDC SDA input state.						0		

DDC I²C Target Slave Address Register

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x72	0xED	DDC	_ADDR	DDC_AD	DR		V/				RSVD0
Bit	Label		R/W	Description	Description					Default	
7:1	DDC_ADDR R/W			DDC device address.							00

DDC I²C Target Segment Address Register

Dev	Addr	Nam	ie	7	6	2	1	0					
0x72	0xEE	DDC	_SEGM	DDC_SEC	DDC_SEGM								
Bit	Label		R/W	Description Default									
7:0	DDC_SEC	ъ́М	R/W	DDC segment address. 0x00									

DDC I²C Target Offset Address Register

Dev	Addr	Name		7	2	1	0						
0x72	0xEF	DDC	OFFSET	DDC_OFF	DDC_OFFSET								
Bit	Label		R/W	Description Default									
7:0	DDC_OFF	SET	R/W	DDC offset address. 0x00					0x00				

DDC I²C Data Count Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0xF0	DDC_C	COUNT1	DDC_CO	UNT[7:0]						
0x72	0xF1	DDC_C	COUNT2	RSVDRW	⁷ 0		DDC_COUNT[9:8]				
Bit	Label		R/W	Description	on		Default				
7:0 1:0	DDC_COU		R/W	slave befo HDCP KS	re a <i>Stop</i> bi V FIFO len	ytes to be ret t is sent on t agth is 635 b ust be 0x271	he DDC bus ytes (127 de	s. For exam	ple, if the	0x00 0b00	

DDC I²C Status Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0xF2	DDC_S	STATUS	RSVDR0	BUS_ LOW	NO_ ACK	IN_ PROG	FIFO_ FULL	FIFO_ EMP	FRD_ USE	FWT_ USE
Bit	Label		R/W							Default	
6	BUS_LOW		R/W							y an	0
5	NO_ACK		R/W	external device. This bit must be cleared to 0 by the firmware. 1 = HDMI transmitter did not receive an ACK from slave device during address or data write. This bit must be cleared to 0 by the firmware.							0
4	IN_PROG		R	1 = DDC o	peration in	progress				7	0
3	FIFO_FULI		R	1 = DDC F	IFO full			- 1			0
2	FIFO_EMP		R	1 = DDC FIFO empty						0	
1	FRD_USE		R	1 = DDC FIFO read in use							0
0	FWT_USE		R	1 = DDC F	IFO write	in use	V		J		0

The DDC master feature recognizes and supports clock stretching by an I^2C slave device. Clock stretching is described in the I^2C Specification.

DDC I²C Command Register

5 DDC_FLT_EN R/W Enable the DDC delay. 0 = Enable 1 = Disable A DDC delay is inserted into the SDA line to create a 300-ns delay for the falling edge of the DDC SDA signal to prevent an erroneous I ² C START condition. The real start condition must have a setup time of 600 ns so that this delay of 300 ns does not remove the real START condition. Filtering is done using a ring oscillator. 4 SDA_DEL_EN R/W Enable 3 ns glitch filtering on the DDC clock and data line: 0 = Enable 1 = Disable Filtering is done using a ring oscillator.	Dev	Addr	Nam		7	6	5	4	3	2	1	0
5 DDC_FLT_EN R/W Enable the DDC delay. 0 = Enable 1 = Disable A DDC delay is inserted into the SDA line to create a 300-ns delay for the falling edge of the DDC SDA signal to prevent an erroneous I ² C START condition. The real start condition must have a setup time of 600 ns so that this delay of 300 ns does not remove the real START condition. Filtering is done using a ring oscillator. 4 SDA_DEL_EN R/W Enable 3 ns glitch filtering on the DDC clock and data line: 0 = Enable 1 = Disable Filtering is done using a ring oscillator. 3:0 DDC_CMD R/W DDC command. 0b1111 = Abort transaction 0b1001 = Clear FIFO 0b1010 = Clock SCL 0b0000 = Current address read with no ACK on last byte 0b0110 = Sequential read with no ACK on last byte 0b0110 = Sequential write ignoring ACK on last byte 0b0111 = Sequential write ignoring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte	0x72	0xF3	DDC	C_CMD	RSVD0		DDC_FLT_EN	SDA_DEL_EN	DDC_C	MD		
0 = Enable 1 = Disable A DDC delay is inserted into the SDA line to create a 300-ns delay for the falling edge of the DDC SDA signal to prevent an erroneous I ² C START condition. The real start condition must have a setup time of 600 ns so that this delay of 300 ns does not remove the real START condition. Filtering is done using a ring oscillator. 8 SDA_DEL_EN R/W Enable 3 ns glitch filtering on the DDC clock and data line: 0 = Enable 1 = Disable Filtering is done using a ring oscillator. 9 DDC_CMD R/W DDC command. 0b1111 = Abort transaction 0b1001 = Clear FIFO 0b1010 = Clock SCL 0b0000 = Current address read with no ACK on last byte 0b0100 = Enhanced DDC read with no ACK on last byte 0b0110 = Sequential write ignoring ACK on last byte 0b0111 = Sequential write ignoring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0112 = Sequential write requiring ACK on last byte 0b0114 = Sequential write requiring ACK on last byte 0b0115 = Sequential write requiring ACK on last byte 0b0116 = Sequential write requiring ACK on last byte 0b0117 = Sequential write requiring ACK on last byte 0b0118 = Sequential write requiring ACK on last byte 0b0119 = Sequential write requiring ACK on last byte 0b0110 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte 0b0112 = Sequential write requiring ACK on last byte 0b0113 = Sequential write requiring ACK on last byte	Bit	Label		R/W	Descript	tion						Default
0 = Enable 1 = Disable Filtering is done using a ring oscillator. 3:0 DDC_CMD R/W DDC command. 0b1111 = Abort transaction 0b1001 = Clear FIFO 0b1010 = Clock SCL 0b0000 = Current address read with no ACK on last byte 0b0100 = Sequential read with no ACK on last byte 0b0110 = Sequential write ignoring ACK on last byte 0b0110 = Sequential write requiring ACK on last byte 0b0111 = Sequential write requiring ACK on last byte Writing to this register immediately initiates the I²C transaction on the DDC bus. Note: The Clear FIFO command resets the FIFO read and write pointers to zero. Data formerly loaded into the FIFO cannot be read after a Clear FIFO, because the	5	_			0 = Enab 1 = Disal A DDC of edge of t real start does not oscillator	ble ble delay is ins he DDC SI condition remove the	serted into the SDA DA signal to preve must have a setup e real START cond	nt an erroneous I ² C time of 600 ns so the dition. Filtering is c	START hat this de	condition. clay of 300	The	0
Ob1111 = Abort transaction Ob1001 = Clear FIFO Ob1010 = Clock SCL Ob00000 = Current address read with no ACK on last byte Ob0010 = Sequential read with no ACK on last byte Ob0100 = Enhanced DDC read with no ACK on last byte Ob0110 = Sequential write ignoring ACK on last byte Ob0111 = Sequential write requiring ACK on last byte Writing to this register immediately initiates the I²C transaction on the DDC bus. Note: The Clear FIFO command resets the FIFO read and write pointers to zero. Data formerly loaded into the FIFO cannot be read after a Clear FIFO, because the	4	SDA_DEL	_EN	R/W	0 = Enab 1 = Disal	ole ble		(2)	ne:			0
bus to hang if used. The Clock SCL command resets any I ² C devices on the DDC lines. This reset	3:0	DDC_CM	D	R/W	0b1111 = 0b1001 = 0b1010 = 0b0010 = 0b0110 = 0b0111 = Writing to Note: The Data for FIFO is a bus to ha	= Abort tra: = Clear FIF = Clock SC = Current a = Sequentia = Enhancec = Sequentia = Sequentia to this regis active Clear FII merly loade now empty ung if used.	ddress read with no AC al read with no AC al DDC read with no AC al write ignoring A al write requiring A ster immediately in FO command reset a into the FIFO care. Other command of	K on last byte o ACK on last byte CK on last byte ACK on last byte hitiates the I ² C trans the FIFO read an annot be read after codes are reserved	saction on d write po a Clear FI and may o	ointers to z IFO, becau cause the I	ero. use the ODC	0b0000

DDC I²C Data Register

Dev	Addr	Name)	7	6	5	4	3	2	1	0	
0x72	0xF4	DDC	DATA	DDC_DA	DDC_DATA							
Bit	Label		R/W	Description	Description						Default	
7:0	DDC_DAT	ΓΑ	R/W	DDC data input.					0x00			

The FIFO supports multi-byte sequential read commands from the controller. Such a command is diagrammed in Figure 15 on page 103. Up to 16 bytes can be read in one local I^2C command. Data bytes continue to be loaded into the FIFO until it is full.

DDC I²C FIFO Count Register

Dev	Addr	Name		7	6	5	4	3	2	1	0		
0x72	0xF5	DDC_F	FIFOCNT	RSVDRW	RSVDRW0 DDC_FIFOCNT								
Bit	Label		R/W	Descripti		Default							
4:0	DDC_FIFO	CNT	R/W		2	•	per of bytes maximum v		*	NT is	0b00000		

ROM Registers

The following registers are used to determine the status of the HDCP keys stored in the HDMI transmitter ROM.

ROM Status Register

Write a bit in this register to 0 to clear the corresponding condition bit.

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0	
0x72	0xF9	KEY STA	TUS	RSVD	RSVD BIST2 BIST1 RSVDRW1 RSVD RSVD ERR ERR					CRC_ERR	CMD_DONE	
Bit	Label		R/W	Descri	ption		Default					
6	BIST2_EF	RR	R/W	1 = BI	= BIST self-authentication test 2 error							
5	BIST1_E	RR	R/W	1 = BI	ST self-aut	hentication	test 1 error				0	
1	CRC_ERI	R	R/W	1 = CF	1 = CRC error						0	
0	CMD_DC	NE	R/W	1 = Cc	1 = Command done (last operation completed successfully)						0	

ROM Command Register

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x72	0xFA	KEY_ COMMAND	RSVD0		LD_KSV	EPCM					
Bit	Label	R/W	Descript	tion						Default	
5	LD_KSV	R/W			om embedde	d keys:				N/A	
				0 = Disable 1 = Enable (write 0 before enabling again)							
4:0	EPCM	R/W		² C master command to the embedded keys: 0b00000 = Run no BIST tests							
	5		0b00011 0b00100 0b01000 verify en 0b10000 authentic HDCP co Do not u Before w	= Run all = Run only = Run only bedded ke = Run only cation that upher engin se any other criting a ne	BIST tests y CRC test y BIST self-a y contents) y BIST self-a uses an inver e) er values. w value into ete by checki	nuthenticat ted key sel	tion test 2 (a lection vector	2-pass or to verify t at the previo	the		

The BIST command can be performed according to this procedure:

- 1. Assert hardware reset and release it. (RESET# pin is HIGH).
- 2. IDCK is active and is 74 MHz.
- 3. Set SWRST = 1 (0x72:0x05=0x01).
- 4. Set up PLL:

0x72:0x80 = 0x23, 0x72:0x83 = 0x98, 0x72:0x84 = 0x63, 0x72:0x85 = 0x00.

- 5. Power up (0x72:0x08 = 0x01).
- 6. Release SWRST (0x72:0x05 = 0x00).
- 7. Wait until P STABLE = 1 (read 0x72:0x09[0]).
- 8. Write ANSTOP 2 times:
 - 0x72:0x0F = 0x0C
 - 0x72:0x0F = 0x0C
- 9. Wait until 0x72:0xF9[0] = 1.
- 10. Write 0x72:0xF9 = 0x00.
- 11. BIST start 0x72:0xFa = 0x03.
- 12. Wait until 0x72:0xF9[0] = 1.
- 13. Pass if 0x72.0xF9 = 0x03, fail for other values.

Audio Registers

The HDMI link does not transport an explicit audio master clock; instead, it encodes the frequency of that clock in N/CTS Packets sent during command times. The ratio of the current pixel clock frequency to the desired MCLK frequency is defined by a numerator, N, and a denominator, CTS. Whenever the pixel clock frequency changes (the video mode changes) or the audio clock changes (the audio sampling rate changes), the value of N must also be updated.

ACR Control Register

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x7A	0x01	ACR_CTRL	RSVD0						NCTSPKT_EN	CTS_SEL	
Bit	Label	R/W	Descrip	tion						Default	
1	NCTSPKT_E	N R/W	CTS req	CTS request enable:							
				0 = N/CTS packet disabled 1 = N/CTS packet enabled							
0	CTS_SEL	R/W	CTS sou	ırce select	:					0	
			0 = Send HW-updated CTS value in N/CTS packet (recommended))	
			1 = Send SW-updated CTS value in N/CTS packet (for diagnostic use)								
			Silicon Image recommends that this bit <i>not</i> be set to 1.								

ACR Audio Frequency Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x02	FREQ_SVAL	RSVD0					MCLK_C	CONF	
Bit	Label	R/W	Descripti	ion						Default
2:0	MCLK_CONF	R/W	0b000 = 1 0b001 = 1 0b010 = 1 0b010 = 1 0b100 = 1 0b101 = 1 0b110 = 1 0b111 = 1 The HDM produce C	CTS values or the input	28 • Fs 56 • Fs 84 • Fs 12 • Fs 68 • Fs 024 • Fs 152 • Fs	to the 128 • downsamp	Fs formula	. The ratio	MCLK	0b001

ACR N Software Value Register

Dev	Addr	Nar		7	6	5	4	3	2	1	0	
0x7A	0x03	N_S	SVAL1	N_SVAL	[7:0]							
0x7A	0x04	N_S	SVAL2	N_SVAL	[15:8]							
0x7A	0x05	N_S	SVAL3	RSVD0	SVD0 N_SVAL[19:16]							
Bit	Label		R/W	Descripti	escription							
7:0 7:0 3:0	N_SVAL1 N_SVAL2 N_SVAL3		R/W	registers t	N value for audio clock regeneration method. This must be written to the registers to create the correct divisor for audio clock regeneration. Only values greater than 0 are valid. This register must be written after a hardware reset.							

ACR CTS Software Value Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0	
0x7A	0x06	CTS	S_SVAL1	CTS_SV	AL[7:0]							
0x7A	0x07	CTS	S_SVAL2	CTS_SV	AL[15:8]							
0x7A	0x08	CTS	S_SVAL3	RSVD0 CTS_SVAL[19:16]								
Bit	Label		R/W	Description								
7:0	CTS_SVAL1		R/W	CTS value for the audio clock regeneration method.							0x00	
7:0	CTS_SVAL2			For diagnostic use and applied only when the CTS_SEL bit							0x00	
3:0	CTS_SVAL3			(0x7A:0x01[0]) is set to 1. 0b0000								

ACR CTS Hardware Value Register

	5 = 10 = = 										
Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x7A	0x09	CTS	LHVAL1	CTS_HV	AL[7:0]	70				5)
0x7A	0x0A	CTS	S_HVAL2	CTS_HV	AL[15:8]						
0x7A	0x0B	CTS	S_HVAL3	RSVD0	RSVD0 CTS_HVAL[19:16]						
Bit	Label		R/W	Descripti	on						Default
7:0	CTS_HVAL1		R			dio clock re					X
7:0	CTS_HVAL2									X	
3:0	CTS_HVAL3			valid after 129 Eg/N avales of MCLV							X

Audio In Mode Register

Dev	Add	Nan	ne	7	6	5	4	3	2	1	0		
0x7 A	0x14	AUE	_MODE	SD3_EN	SD2_EN	SD1_EN	SD0_EN	DSD_EN	RSVDRW0	SPDIF_EN	AUD_EN		
Bit	Label		R/W	Descriptio	n						Default		
7	SD3_E	N	R/W	I^2S input cl 0 = Disable		1	2)			0		
				1 = Enable									
6	SD2_E	N	R/W	-	input channel #2.								
				0 = Disable 1 = Enable	Enable								
5	SD1_E	N	R/W		input channel #1.								
				0 = Disable 1 = Enable	Disable								
4	SD0_E	N	R/W	I ² S input cl							0		
				0 = Disable 1 = Enable									
3	DSD_E	EN	R/W	Direct Stre	am Digital A	Audio enab	le.				0		
				0 = Disable 1 = Enable	-								
1	SPDIF	EN	R/W	S/PDIF inp	S/PDIF input stream.								
				0 = Disable 1 = Enable	-								
0	AUD_I	EN	R/W	Audio inpu	ıt stream.						0		
				0 = Disable									
				1 = Enable									

Audio input data is selected from either the S/PDIF input or the I²S inputs. Audio input data can be disabled by clearing the AUD_EN bit (refer to Figure 7 on page 60). Bits 7:4 also apply to DSD and HBR (High Bit Rate) Audio when any of them are selected.

The Direct Stream Digital Audio (DSD) Enable bit has a lower priority than S/PDIF enable, but higher than the I²S stream. When it is set, most of the I²S configuration register bits become control for the DSD logic including SD3/2/1/0 enable, the I²S FIFO map, and the Channel Status registers.

See the top of page 38 about the limitation of the HDMI transmitter in assigning the I²S channels to audio FIFOs.

Audio In S/PDIF Control Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0x15	SPDIF	_CTRL	RSVI	DRW0			NOAUDIO	RSVDRW0	FS_OVERRIDE	RSVDRW0
Bit	Label		R/W	Descr	escription						Default
3	NOAUDI	O	R	No S/	o S/PDIF audio.						0
					= Detected change on the S/PDIF input = No change detected on the S/PDIF input						
1	FS_OVEF	RRIDE	R/W	S/PD	S/PDIF input stream override.						
		0 = Use input S/PDIF stream's detected FS 1 = Use software FS in I2S_CHST4 register (0x7A:0x21)						9			

Audio In S/PDIF Extracted Fs and Length Register

Audio	111 5/1 1/1	II LA	ii acicu i	's an	u Lei	igui	Register					
Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x7A	0x18	HW_S	PDIF_FS	HW_S	PDIF_L	EN	HW_MAXLEN	HW_SP	DIF_FS			
Bit	Label		R/W	Descr	iption						Default	
7:5	HW_SPDIF HW_MAXL		R R	Comb sample 0 = M. Audio setting bits [7 0b00 0b01 0b10 0b10 0b00 0b01 0b10	ines with e size: aximum aximum sample v	HW_S sample sample word ler (HW_M llows: availab	0	el status bi	t 32) to ind	he	0Ь0000	
3:0	HW_SPDIF_	_FS	R	Set to the Fs extracted from the S/PDIF input channel status bits 24–27.								

Audio In I²S Channel Swap Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x19	SWAP_I2S	SWCH3	SWCH2	SWCH1	SWCH0	RSVDR	W		
Bit	Label	R/W	Descriptio	n						Default
7	SWCH3	R/W	Swap left-r	right channels	s for I ² S Char	nnel 3.				0
				swap left and eft and right	d right					
6	SWCH2	R/W	Swap left-r	ight channels	s for I ² S Char	nnel 2.				0
				swap left and eft and right	d right					
5	SWCH1	R/W	Swap left-r	ight channels	s for I ² S Char	nnel 1.				0
				swap left and eft and right	d right					
4	SWCH0	R/W	Swap left-r	ight channels	s for I ² S Char	nnel 0.				0
				swap left and eft and right	1 right				-9	
3:0	RSVDRW	R/W	Reserved;	do not modif	у.			1		0x9

Note: Each SWCH[3:0] bit is active *only* when the corresponding I²S input channel is enabled with register 0x7A:0x14.

Audio Error Threshold Register

Dev	Addr	Nam	ie	7	6	5	4	3	2	1	0
0x7A	0x1B	SPD	IF_ERTH	RSVDRW0	RSVDRW1						
Bit	Label		R/W	Description						Default	
5:0	AUD_ERR_THR	ESH	R/W	number of bi-	error threshold l -phase mark enc hreshold level d	oding err	ors in the	audio stre		0b00100	0

Audio In I²S Data In Map Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x1C	I2S_IN_MAI	FIFO3_N	1 АР	FIFO2_	MAP	FIFO1_N	ИAР	FIFO0_N	1AP
Bit	Label	R/W	Descript	ion					Default	
7:6	FIFO3_MAP	R/W			IFO #3 (for I	HDMI Lay	out 1):		0b11	
					to FIFO #3					
					to FIFO #3					
		. \>	~		to FIFO #3					
- ·	EVECO MAD	D /W		-	to FIFO #3	ID) (I I	. 1)		01.10	
5:4	FIFO2_MAP	R/W		•	IFO #2 (for I	HDMI Lay	out 1):		0b10	
) \			to FIFO #2					
					to FIFO #2					
		·			to FIFO #2 to FIFO #2					
3:2	FIFO1 MAP	R/W		•	IFO #1 (for I	JDMI L ox	rout 1):		0b01	
3.2	FIFOI_MAF	IX/ W		•	`	iDivii Lay	out 1).		0001	
					to FIFO #1 to FIFO #1					
					to FIFO #1					
					to FIFO #1					
1:0	FIFO0_MAP	R/W		•	IFO #0 (for I	HDMI Lay	out 0 or 1):		0b00	
			0b00 = N	Iap SD0	to FIFO #0					
					to FIFO #0					
					to FIFO #0					
			0b11 = N	Iap SD3	to FIFO #0					

HDMI allows for up to eight channels of audio content. Two channels pass through each of the four FIFOs listed in the description for register 0x7A:0x1C. HDMI does not restrict the source to use any specific subset of the FIFOs. For example, 4-channel content can use many combinations of two FIFOs and two fields in the Audio InfoFrame packets (indicated by each packet's B.X and SP.X bits; see the *HDMI Specification*) limited only by the channel assignment choices in EIA/CEA-861-D. The HDMI transmitter logic sets the B and PR bits automatically in each Audio InfoFrame packet, using both the 0x1C register settings and the I²S channel enables in the 0x7A:0x14 register.

Some HDMI receiver chips do not make the arriving B and PR bit information accessible to the sink firmware. Therefore, the only indicator of *used audio channels* is in Data Byte 4 of the Audio InfoFrame packet.

Audio In I²S Control Register (SiI9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x1D	I2S_I	N_CTRL	RSVD0	SCK_ EDGE	RSVD0	RSVD0	I2S_ WS	I2S_ JUST	I2S_ DIR	I2S_ SHIFT
Bit	Label		R/W	Descripti	on						Default
6	SCK_EDGI	Ξ	R/W	on the rist 1 = Samp on the fal	le edge is faing edge of le clock is religious of ling edge of	rising; SD3-		·	`		
3	I2S_WS		R/W		olarity whe	en WS is LO en WS is HI		>			0
2	I2S_JUST		R/W		/: is left-justif is right-just			2			1
1	I2S_DIR	•	R/W		ion: shifted first shifted first			, (2,		0
0	I2S_SHIFT		R/W			ift: er to the <i>Ph</i>	ilips Specific	cation)			1
		<	2	APIO (O)							

Audio In I²S Control Register (SiI9134)

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x7A	0x1D	I2S_I	N_CTRL	HBRA_ ON	SCK_ EDGE	CBIT_ ORDER	VBit	I2S_ WS	I2S_ JUST	I2S_ DIR	I2S_ SHIFT
Bit	Label		R/W	Descripti	on						Default
7	HBRA_ON		R/W	_	Rate Audio	On. ot high bit ra	ate				0
				1 = Input	stream is h	igh bit rate. gh Bit Rate	All of the	I ² S control	bits will app	oly to	
6	SCK_EDGI	Ξ	R/W	SCK sam	ple edge:						1
				0 = Sample edge is falling; SD3-SD0 and WS source should change state on the rising edge of SCK 1 = Sample clock is rising; SD3-SD0 and WS source should change state on the falling edge of SCK							
5	CBIT_ORD	ER	R/W	This bit s	hould be se	t to 1 for Hi	gh Bit Rate	e Audio			0
4	VBit		R/W	V bit valu 0 = PCM 1 = Comp							0
3	I2S_WS		R/W		olarity who	en WS is LC en WS is HI			.0		0
2	I2S_JUST		R/W		/: is left-justif is right-just			X			1
1	I2S_DIR	•	R/W	SD direct 0 = MSB		ı (16		0,		0
0	I2S_SHIFT		R/W			ift: fer to the <i>Ph</i>	ilips Specij	fication)			1

Audio In I²S Channel Status Register Word 1

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x7A	0x1E	I2S_C	CHST1	I2S_CH	ST1						
Bit	Label		R/W	Descrip	tion						Default
7:0	I2S_CHST1		R/W	Channe	l Status By	yte #0					0x00

Note: This table is valid for the SiI9034 device. It is also valid for the SiI9134 transmitter except when it is set to HBRA mode (0x7A:0x1D[7] = 1).

Audio In I²S Channel Status Register Word 1 (SiI9134-HBRA Mode)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0			
0x7A	0x1E	I2S_0	CHST1	I2S_CH	IST1[7:3]				PCM_COMP	RSVD	CON_PROF			
Bit	Label		R/W	Descrip	tion						Default			
7:3	I2S_CHST1		R/W	Channel Status Byte #0[7:3]					Channel Status Byte #0[7:3] 0b00000					0b00000
2	PCM_COMP		R/W	Compre	ssion flag	g.					0			
				0 = PCN $1 = Con$	M npressed									
0	CON_PRPF		R/W	Select consumer or professional.					0					
				0 = Consumer 1 = Professional										

Note: This table is valid for the SiI9134 device when in the HBRA mode only (0x7A:0x1D[7] = 1). In that mode the *copyright-asserted* bit of the channel status is not accessible and is always forced to 0 (meaning that copyright protection is asserted).

Audio In I²S Channel Status Register Word 2

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x1F	I2S_0	CHST2	I2S_CH	ST2		. (/	^			•
Bit	Label		R/W	Descrip	tion						Default
7:0	I2S_CHST2		R/W	Channel	Status B	yte #1: Ca	tegory co	de		J , ,	0x00

Audio In I²S Channel Status Register Word 3

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x7A	0x20	I2S_0	CHST3	I2S_CH	AN_NUN	Л		I2S_SRC_	NUM		
Bit	Label		R/W	Descrip	tion						Default
7:4	I2S_CHAN_N	NUM	R/W	Channe	Status B	yte #2: Ch	annel nun	nber	7		0b0000
3:0	I2S_SRC_NU	JM)	R/W	Channel	Status B	yte #2: So	urce numb	per			0b0000

Audio In I²S Channel Status Register Word 4 (9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x21	I2S_0	CHST4	CLK_A	CCUR			SW_SPDI	F_FS		
Bit	Label		R/W	Descrip	tion						Default
7:4	CLK_ACCUI	₹	R/W	Clock a	ccuracy.	71					0b0000
3:0	SW_SPDIF_F	FS	R/W	Sampling frequency as set by software which is inserted into the S/PDIF stream if FS_OVERRIDE is enabled.					ne	0b1111	

Audio In I²S Channel Status Register Word 4 (SiI9134)

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x7A	0x21	I2S_0	CHST4	CLK_A	CCUR			SW_SPDI	F_FS		
Bit	Label		R/W	Descrip	tion						Default
7:4	CLK_ACCUI	2	R/W	Clock a	ccuracy.						0b0000
3:0	SW_SPDIF_F	FS	R/W	Sampling frequency as set by software that is inserted into the S/PDIF stream if FS_OVERRIDE is enabled. Refer to the note below.					0b1111		

Note: When the transmitter processes high bit rate audio, set this register to 0x09.

Audio In I²S Channel Status Register Word 5 (SiI9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x22	I2S_0	CHST5	FS_ORI	[G			I2S_LEN	•		I2S_MAXLEN
Bit	Label		R/W	Descrip	tion						Default
7:4	FS_ORIG		R/W	Original	l Fs.						0b0000
3:1	I2S_LEN I2S_MAXLE	N	R/W	Bit [0] s 0 = 20 b 1 = 24 b Audio s bit 0 (I2 follows: 0b000 0b011 0b100 0b101 0b100 0b001 0b001 0b001 0b001	sets the matrix ample wo S MAXI 0 = not av 0 = 16 0 = 18 0 = 19 0 = 20 0 = 17 1 = not av 1 = 20 1 = 22 1 = 23 1 = 24	rd length, EN). The vailable		oits [3:1], de	pends on the ing bits [3:0] a		0b0001

Notes:

- 1. The word length bits [3:0] should always match the word length of the audio samples coming into the HDMI transmitter, even if the transmitter downsamples the audio. The word length of the input I²S stream is set in the 0x7A:0x24 register, described on page 44. Audio stream down sampling is enabled in the 0x7A:0x23 register, described on page 43.
- 2. If an audio input whose sample length is less than or equal to 20 bits is downsampled, then the output sample length will always be 20 bits, and 0x7A:0x22[3:0] should be set to 0b0011. However, if the downsampled input sample length is larger than 20 bits, the output sample length is equal to the input sample length, and 0x7A:0x22[3:0] should be set accordingly.

Andio	In	I^2S	Channel	Status	Register	Word 5	5 (SiI9134)	
Luulu	T11	10	Chamici	Dialus	register	Wolu .) (DII) I J T J	

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x22	I2S_0	CHST5	FS_ORI	G			I2S_LEN			I2S_MAXLEN
Bit	Label		R/W	Descrip	tion						Default
7:4	FS_ORIG		R/W	Original	Fs.						0b0000
3:1	I2S_LEN I2S_MAXLE	N	R/W	Bit [0] s 0 = 20 b 1 = 24 b Audio s bit 0 (I2 follows: 0b000 0b011 0b100 0b101 0b100 0b001 0b001 0b001 0b001	ets the maits ample wo S MAXI 0 = not av 0 = 16 0 = 18 0 = 19 0 = 20	ord length, LEN). The vailable	set with b		gth: spends on the ing bits [3:0]	_	0ь0001

Notes:

- 1. When the transmitter processes high bit rate audio, set this register to 0xE2.
- 2. With the exception of high bit rate audio, the word length bits [3:0] must always match the word length of the audio samples coming into the HDMI transmitter, even if the transmitter downsamples the audio. The word length of the input I²S stream is set in the 0x7A:0x24 register, described on page 44. Audio stream down sampling is enabled in the 0x7A:0x23 register, described on page 43.
- 3. If an audio input whose sample length is less than or equal to 20 bits is downsampled, then the output sample length will always be 20 bits, and 0x7A:0x22[3:0] should be set to 0b0011. However, if the downsampled input sample length is larger than 20 bits, the output sample length is equal to the input sample length, and 0x7A:0x22[3:0] must be set accordingly.

The *HDMI Specification* requires that accurate channel status information be transmitted in the Audio InfoFrames. When the audio is supplied to the HDMI transmitter at the S/PDIF input, the channel status is extracted from the S/PDIF stream. When the audio is supplied by I²S inputs, the firmware must write accurate values into the channel status registers. Refer to IEC 60958-3 for detailed definitions of the channel status bits. The channel status information is used in the HDMI receiver to reconstruct the audio into I²S format.

When down-sampling the audio stream (see the ASRC register on page 43), both CHST5 and CHST4 should be loaded with the original (input) Fs rate. The chip sends the original Fs in the audio packet channel status bits corresponding to CHST5, divides the original Fs rate (according to register ASRC), and sends that slower Fs in the bits corresponding to CHST4. Always write the input Fs into CHST4 and CHST5 when connected to an I²S source. An S/PDIF source loads both bytes automatically.

If FS_OVERRIDE is set to 0 (0x7A:0x15[1]), the sampling frequency is extracted from the S/PDIF input stream. It is encoded in that stream's Channel Status bits as shown in Table 5 on the next page.

The value in FS_OVERRIDE assists source systems that do not provide correct Fs information in the raw S/PDIF stream. The *HDMI Specification* requires the transmitted Fs value to be correct in the channel status bits of the audio sample packets. By setting FS_OVERRIDE to 1, the HDMI transmitter can be programmed (in SW_SPDIF_FS) with the correct Fs value and can ignore the value in the input S/PDIF stream. *Values not listed in Table 5 are reserved*.

Table 5. Encoded Audio Sampling Frequency

CH_ST4 bi	it			Fs Sampling
3	2	1	0	Frequency
0	0	0	0	44.1 kHz
1	0	0	0	88.2 kHz
1	1	0	0	176.4 kHz
0	0	1	0	48 kHz
1	0	1	0	96 kHz
1	1	1	0	192 kHz
0	0	1	1	32 kHz
0	0	0	1	not indicated
1	0	0	1	768 kHz

Audio Sample Rate Conversion Register (SiI9034)

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0x23	ASRC		RSVD0			RSDV1	RSVDRV	VO	RATIO	SRC_EN
Bit	Label		R/W	Descript	Description						Default
7:5	RSVD0		R	These bit	These bits are reserved and read-only, and return a zero value.						
4	RSVD1		R	This bit i	This bit is reserved and read-only, and returns a one value.						
1	RATIO		R/W	Sample r	ate down-	conversion	ratio:				0
			₋ O				SRC_EN is SRC_EN is			· ·	
0	SRC_EN	. (R/W	Audio sample rate conversion:							0
	•			0 = Disable 1 = Enable							

Audio Sample Rate Conversion Register (SiI9134)

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0x23	ASRC		HBR_SP	R_MASK			RSVDRV	V0	RATIO	SRC_EN
Bit	Label		R/W	Descript	ion						Default
7:4	HBR_SPR_M	IASK	R/W	header. F 0 = Mask 1 = Unm	Mask for the sample present and flat bit of the High Bit Rate Audio header. Each bit masks one of the subpacket sample-present bits. 0 = Mask out 1 = Unmask Bits 7:4 must be programmed to 0b0000 when HBRA mode is selected.						
1	RATIO) X	R/W	Sample r 0 = Dow 1 = Dow		0					
0	SRC_EN		R/W	Audio sample rate conversion: 0 = Disable 1 = Enable						0	

Sample rate conversion is applied only to 2-channel audio, either from the S/PDIF input or from the I²S Channel 0 input. Setting register ASRC to 0x01 downsamples 96-kHz audio to 48 kHz and 88.2-kHz audio to 44.1 kHz. Setting ASRC to 0x02 downsamples 192 kHz-audio to 48K kHz and 176.4-kHz audio to 44.1 kHz. This conversion is performed after selecting S/PDIF or I²S input paths to the HDMI transmitter. The CHST5 bits written in register 0x7A:0x22 should always indicate the sample rate before any down sampling (refer to page 41 or page 42).

If an audio source is connected to both the HDMI transmitter and an audio DAC, the audio source may output 192-kHz (or 176.4-kHz) audio to drive the DAC and the transmitter. The DAC uses the higher sample rate, while the HDMI

transmitter simultaneously downsamples that stream to the 48 kHz (or 44.1 kHz) sample rate. 48 kHz and 44.1 kHz are the default audio rates for HDMI.

The N value and the I^2S channel status registers should be set according to the input audio configuration. The N value is affected by the down sampling so that the outgoing N value in the N/CTS packets represents the video-to-audio ratio for the downsampled audio stream. For example, to input 96 kHz audio with 74.25 MHz video input and to output 48kHz audio, the N register value should be set to 12288. This N will be divided by the downsample RATIO, so that the HDMI transmitter sends packets with N = 6144.

Note: Bits 7:4 must be programmed to 0b0000 when HBRA mode is selected.

Important: Sample rate conversion works only for 2-channel PCM audio; set LAYOUT to 0 in register 0x7A:0x2F.

Audio I²S Input Length Register (SiI9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x24	I2S_I	IN_LEN	RSVD				IN_LENC	TH		
Bit	Label		R/W	Description	on						Default
7:4	RSVD		R	These bits	are reserve	d and read-o	only, and ret	urn an inde	terminate va	ılue.	X
3:0	IN_LENGTH		R/W	1 ² S data fr 0b1111 - 0 0b1101 = 0b1100 = 0b1011 = 0b1010 = 0b1001 = 0b1001 = 0b0111 - 0b0100 = 0b0111 = 0b00101 = 0b0011 = 0b0010 = 0b0011 = 0b0010 = 0b00010 = 0b0010 = 0b00010 = 0b00000 = 0b00000 = 0b000000 = 0b0000000 = 0b00000000	om the inpu 0b1110 = N 21 bit 17 bit 24 bit 20 bit 23 bit 19 bit 0b0110 = N 22 bit 18 bit N/A	J/A	1 ² S stream.	Used for the	extraction	of the	0ь1011

Audio I²S Input Length Register (SiI9134)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0	
0x7A	0x24	I2S_	IN_LEN	HDR_PK	T_ID			IN_LENC	TH			
Bit	Label		R/W	Description	on						Default	
7:4	HDR_PKT_II	D	R/W	Four LS b	oits of the II	of the Higl	n Bit Rate A	udio packet	header.*		0b1001	
3:0	IN_LENGTH		R/W	1 ² S data fr 0b1111 - 0b1101 = 0b1100 = 0b1011 = 0b1001 = 0b1000 = 0b0111 - 0b0101 = 0b0010 = 0b0011 = 0b0010 =	om the inpu 0b1110 = N 21 bit 17 bit 24 bit 20 bit 23 bit 19 bit 0b0110 = N 22 bit 18 bit N/A	I/A I/A	I ² S stream.	Used for the	extraction	of the	0ь1011	

^{*}Note: Specified by the HDMI 1.4 Specification, Table 5-28.

Audio Mode Switching Sequence

When switching audio modes, the following procedure must be followed to ensure that the frame counter is properly reset.

- 1. Mute the audio sent to the receiver, as shown in Table 3.
- 2. (Set 0x72:0x0D[2] to 0, 0x72:0x0D[1] to 1, and 0x7A:0xDF[0] to 0).
- 3. Disable the audio input stream by setting 0x7A:0x14[0] to 0.
- 4. Set all audio mode registers to the new audio mode as needed.
- 5. Wait 6 ms.
- 6. Enable the audio input stream by setting 0x7A:0x14[0] to 1.
- 7. Unmute the audio sent to the receiver. (Set 0x72:0x0D[2] to 0, 0x72:0x0D[1] to 0, and 0x7A:0xDF[0] to 0).

HDMI Control Register (SiI9034)

			8-200-	\							
Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x7A	0x2F	HDN	MI_CTRL	RSVD0						LAYOUT	HDMI_MODE
Bit	Label		R/W	Description							Default
1	LAYOUT		R/W	Audio packet header layout indicator: 0 = Layout 0 (2-channel) 1 = Layout 1 (up to 8 channels)							0
0	HDMI_MOD	DЕ	R/W	HDMI m 0 = Disab 1 = Enabl	ole	X			, C		0

HDMI Control Register (SiI9134)

Dev	Addr	Nan	ne e	7	6	5	4	3	2	1	0
0x7A	0x2F	HDN	MI_CTRL	RSVD0	DC_EN	PACKI	ET_MODE	E	RSVD0	LAYOUT	HDMI_MODE
Bit	Label		R/W	Descript	ion						Default
6	DC_EN		R/W	0 = Do no HDMI re 1 = Send receiver. 7 = PP2 6 = PP2 5 = PP1 4 = PP0 3 = CD 2 = CD 1 = CD The CD to 5:3, CD3	deep-color The follow 3 2 3 2 1 0	related in ing data is deep-co	nformation s sent in d lor mode (in the parata byte # defined in the ph	cket to the l of the page the same in the	HDMI cket: register bits	0
5:3	PACKET_MO	ODE	R/W	Specifies 0b0xx = 1 0b100 = 2 0b101 = 3 0b110 = 3 0b111 = 1	0ь000						
1	LAYOUT		R/W	Audio packet header layout indicator: 0 = Layout 0 (2-channel) 1 = Layout 1 (up to 8 channels)							0
0	HDMI_MOD	E	R/W	HDMI m 0 = Disab 1 = Enab	ole						0

Audio Path Status Register

Dev	Addr	Name	-6	7	6	5	4	3	2	1	0
0x7A	0x30	AUDO_T	XSTAT	RSVE	00				MUTE	NULL_ PACKET_EN VS_HIGH	NULL_ PACKET_EN
Bit	Label		R/W	Descr	iption						Default
2	MUTE		R	0 = No 1 = A The M 0x7A: immed writter Contro SET_A of VS Contro mode, CLR_ Note: = {0,0 is not	o packet packet fute book ox DF, diately in . In HI ol Packet AVMU YNC . It ol Packet MUTE AVMU The cool and complia	with SE it is equidescribe when the DMI mode is trar TE to 1. In HDMI et with (2 is clear TE has mbination [1, 1] at	ET_AV T_AVM al to the d on pa e SET_ de, MU asmitted In DVI I mode, CLR_A red at th been wi ons {SE re not su more de	MUTE = e SET_A ge 55. N AVMU ITE is solution I mode, MUTE VMUTI e start (ritten to T_AVN upported	MUTE is a TE bit in a set after the er writing MUTE is is cleared E = 1 is seen of VSYNO 1. MUTE, Cl by HDM	on sent bit in register not set register 0xDF is e General g set at the start I when a General ent. In DVI	
1	NULL_PAG VS_HIGH	CKET_EN	Enables null packet flooding only when VSync is HIGH.							0	
0	NULL_PA	Enables null packet flooding all the time. Note: The HDMI compliance test will fail if this bit is set to 1 This bit should always remain 0.						0			

Diagnostic Power Down Register

		Wei Boili	1 -		Τ_				7 6 5 4 3 2 1 0							
Dev	Addr	Name	7	6	5	4	3	2	1	0						
0x7A	0x3D	DPD	RSVD0		1		RSVD	PDIDCK#	PDOSC	PDTOT#						
Bit	Label	R/W	Descrip	tion						Default						
3	RSVD	R	This bit	is reserv	ed	7.0	<i>J</i> -			1						
2	PDIDCK#	R/W	Power c	lown IDO	CK input:					1						
				0 = Power down; block IDCK signal to disable all IDCK-based logic 1 = Normal operation												
1	PDOSC	R/W					ator. The ring os r, the ROM, and		is required	1						
			0 = Pow	er down												
			1 = Nor	1 = Normal operation												
0	PDTOT#	R/W	Power down total:						1							
			0 = Power down everything													
			1 = Nor	1 = Normal operation												

Refer to page 120 for details on the restrictions for using these power-down bits.

InfoFrame Registers

For each of the seven packets described in the following registers, two bits control whether the packet is sent once or repeatedly. To send a packet one time, set the EN (enable) bit corresponding to that packet after the packet data has been written into the appropriate registers. Read the EN bit to determine if the packet has actually been transmitted across the link. When the EN bit is cleared to zero, the packet has been transmitted.

To send a packet repeatedly, write the corresponding RPT (repeat) bit to 1 at the same time as EN is set to 1. This sends the packet during every VBLANK period.

To disable repeated transmission, clear the corresponding RPT and EN bits simultaneously.

To guarantee that the HDMI receiver remains in HDMI mode, at least one HDMI packet must be transmitted every two VSYNC periods (refer to the *HDMI Specification*). This occurs automatically whenever audio is being transmitted. If audio is not yet enabled or if the HDMI transmitter is not sending audio for some other reason, transmit a null packet (all zeroes) during every VBLANK period. Set the contents of the Generic Control Packet buffer to all zeroes and then set both EN and RPT bits for that packet.

The ID, TYPE, checksum, and length fields in each HDMI InfoFrame must be loaded by the microcontroller. The SiI9034/9134 transmitter has no internal logic for calculating the checksum or any preset length value.

Note: The EN bits in registers 0x7A:0x3E and 0x7A:0x3F can be set or cleared only when IDCK is active and when the HDMI transmitter is *not* in a powered-down state. Refer to page 120 for more details on power-down bits. Data bytes can be written in each InfoFrame. The SET_AVMUTE and CLR_AVMUTE bits in the General Control Packet, along with the RPT bit for each packet type, can be set or cleared when the transmitter is powered down. Therefore, the firmware can write all necessary registers except the EN bits, de-assert any power-down bits, and then write any necessary EN bits.

Note: The EN and RPT bits for the various packet types are not affected by the state of the HDMI_MODE bit (register 0x7A:0x2F[0], described on page 45). Although packets cannot be transmitted in DVI mode (when HDMI_MODE is set to 0), and the HDMI transmitter ignores the states of registers 0x3E through 0x3F when HDMI_MODE is set to 0, the firmware should clear the packet EN and RPT bits whenever switching to DVI mode so that the status of packet sending, when read back from registers 0x3E and 0x3F, is consistent with the link mode. All packet enable and repeat bits are set to their default values after reset.

CEA-861-D InfoFrame Control #1 Register

Dev	Addr	Nan		7	6	5	4	3	2	1	0		
				-		· ·	•	_	_	=	*		
0x7A	0x3E	PB_	CTRL1	MPEG_ EN	MPEG_ RPT	AUD_EN	AUD_RPT	SPD_EN	SPD_RPT	AVI_EN	AVI_RPT		
Bit	Label		R/W	Descripti	on						Default		
7	MPEG_	EN	R/W	Enable M	PEG InfoFr	ame transmis	sion:				0		
				0 = Disab 1 = Enabl									
6	MPEG_	RPT	R/W	Repeat M	PEG InfoFr	ame transmis	sion:				0		
					= Disable (send once after EN bit is set) = Enable (send in every VBLANK period)								
5	AUD E	N	R/W		nable Audio InfoFrame transmission:								
	_			0 = Disab	=								
				1 = Enabl	=								
4	AUD_R	PT	R/W	_		ame transmiss					0		
						e after EN bi							
	ann n				`	very VBLAN				1	2		
3	SPD_EN	1	R/W			ne transmissio	on:				0		
				0 = Disab 1 = Enabl			1.0	7					
2	SPD RF	PT	R/W	Repeat SI	PD InfoFran	ne transmissio	on:)	0		
	_			0 = Disab	le (send one	e after EN bi	t is set)						
				1 = Enable (send in every VBLANK period))		
1	AVI_EN	1	R/W	Enable AVI InfoFrame transmission:									
				0 = Disab									
				1 = Enabl			4						
0	AVI_RP	T	R/W			ne transmissio					0		
					= Disable (send once after EN bit is set) = Enable (send in every VBLANK period)								
	l			- Enabl	e (sena in e	very volAi	K periou)						

Refer to the following sections of the CEA-861-D Specification:

- i. For AVI InfoFrames: Section 6.4.
- ii. For Source Product Description (SPD) InfoFrames: Section 6.5.
- iii. For Audio InfoFrames: Section 6.6.
- iv. For MPEG InfoFrames: Section 6.7.

CEA-861-D InfoFrame Control #2 Register

Dev	Addr	Nai	me	7	6	5	4	3	2	1	0	
0x7A	0x3F	PB	_CTRL2	RSVI) 0	GEN2_EN	GEN2_RPT	GCP_EN	GCP_RPT	GEN_EN	GEN_ RPT	
Bit	Label		R/W	Descr	iption						Default	
5	GEN2_E	N	R/W	Enabl	e gener	ric #2 packet tr	ansmission:				0	
				0 = D $1 = E$	isable nable							
4	GEN2_R	.PT	R/W	Repea	at gener	ric #2 packet tr	ansmission:				0	
				0 = Disable (send once after EN bit is set) 1 = Enable (send in every VBLANK period)								
3	GCP_EN	[R/W	Enabl	Enable General Control Packet transmission:							
				0 = D $1 = E$								
2	GCP_RP	Т	R/W	Repea	at Gene	ral Control Pac	cket transmissio	n:			0	
							r EN bit is set) /BLANK period	d)	•	.6		
1	GEN_EN	1	R/W	Enabl	e gener	ric packet trans	smission:				0	
				0 = Disable 1 = Enable								
0	GEN_RF	T	R/W	_	-				10		0	

Refer to the *HDMI 1.4 Specification*, section 5.3.6, for a detailed description of General Control Packets (GCP). Refer to pages 47 and 62 for more information regarding the usage of Generic Control Packets.

CEA-861-D InfoFrame Registers

Refer to the HDMI Specification and the CEA-861-D Specification for a detailed explanation of these register fields.

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x40	AVI_TYPE	AVI_HD	DR[7:0]		•	•	•	•	•
0x7A	0x41	AVI_VERS	AVI_HD	DR[15:8]						
0x7A	0x42	AVI_LEN	AVI_HD	DR[23:16]						
0x7A	0x43	AVI_CHSUM	AVI_HD	DR[31:24]						
0x7A	0x44	AVI_DBYTE1								
0x7A	0x45	AVI_DBYTE2								
0x7A	0x46	AVI_DBYTE3								
0x7A	0x47	AVI_DBYTE4								
0x7A	0x48	AVI_DBYTE5								
0x7A	0x49	AVI_DBYTE6	;							
0x7A	0x4A	AVI_DBYTE7	·		. (
0x7A	0x4B	AVI_DBYTE8	AVI_DA	ΛTA						
0x7A	0x4C	AVI_DBYTE9	,		$_{\lambda}$ \bigcirc $)$				•. (1
0x7A	0x4D	AVI_DBYTE1	0							
0x7A	0x4E	AVI_DBYTE1	1							
0x7A	0x4F	AVI_DBYTE1	2		~ \					
0x7A	0x50	AVI_DBYTE1	3						\	
0x7A	0x51	AVI_DBYTE1	4	` (X			
0x7A	0x52	AVI_DBYTE1	5					, ,		
Bit	Label	R/W	Descript	tion					Default	
7:0	AVI_TYPE	R/W	AVI Info	Frame type	code.	. (/	71		0x00	
7:0	AVI_VERS	R/W		Frame vers		1			0x00	
7:0	AVI_LEN	R/W	AVI Info	Frame leng	th.		7	1	0x00	
7:0	AVI_CHSUM	R/W	AVI Info	Frame chec	eksum.				0x00	
	AVI DATA	R/W	A V/I In Co	Frame data	1. 4	-			İ	

Refer to page 99 for more details on the fields and valid settings in the AVI InfoFrame.

SPD InfoFrame Registers

Refer to the CEA-861-D Specification for more information on these register fields.

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x60	SPD_TYPE	SPD_HD	R[7:0]					•	
0x7A	0x61	SPD_VERS	SPD_HD	R[15:8]						
0x7A	0x62	SPD_LEN	SPD_HD	R[23:16]						
0x7A	0x63	SPD_CHSUM	SPD_HD	R[31:24]						
0x7A	0x64	SPD_DBYTE1								
0x7A	0x65	SPD_DBYTE2								
0x7A	0x66	SPD_DBYTE3								
0x7A	0x67	SPD_DBYTE4								
0x7A	0x68	SPD_DBYTE5								
0x7A	0x69	SPD_DBYTE6								
0x7A	0x6A	SPD_DBYTE7								
0x7A	0x6B	SPD_DBYTE8						4		
0x7A	0x6C	SPD_DBYTE9			ツ) 🔪			• (
0x7A	0x6D	SPD_DBYTE10		_'()						
0x7A	0x6E	SPD_DBYTE11							•	
0x7A	0x6F	SPD_DBYTE12		\ <u>\</u>						
0x7A	0x70	SPD_DBYTE13						ノ、、		
0x7A	0x71	SPD_DBYTE14	SPD_DA	TA	·		X			
0x7A	0x72	SPD_DBYTE15								
0x7A	0x73	SPD_DBYTE16	1				1			
0x7A	0x74	SPD_DBYTE17	6. ()	• (0)		
0x7A	0x75	SPD_DBYTE18								
0x7A	0x76	SPD_DBYTE19					O_1			
0x7A	0x77	SPD_DBYTE20								
0x7A	0x78	SPD_DBYTE21			<u> </u>	1				
0x7A	0x79	SPD_DBYTE22		. [2					
0x7A	0x7A	SPD_DBYTE23								
0x7A	0x7B	SPD_DBYTE24	7							
0x7A	0x7C	SPD_DBYTE25	1							
0x7A	0x7D	SPD_DBYTE26								
0x7A	0x7E	SPD_DBYTE27	177							
Bit	Label	R/W	Descript						Default	
7:0	SPD_TYPE	R/W		Frame type					0x00	
7:0	SPD_VERS	R/W		Frame vers					0x00	
7:0	SPD_LEN	R/W		Frame leng					0x00	
7:0	SPD_CHSUM			Frame chec					0x00	
	SPD_DATA	R/W	SPD Info	Frame data	bytes.					

Audio InfoFrame Registers

Refer to the *HDMI Specification* and the *CEA-861-D Specification* for more information on these register fields.

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x7A	0x80	AUDI	O_TYPE	AUDIO_	AUDIO_HDR[7:0]							
0x7A	0x81	AUDI	O_VERS	AUDIO_HDR[15:8]								
0x7A	0x82	AUDI	O_LEN	AUDIO HDR[23:16]								
0x7A	0x83	AUDI	O_CHSUM	AUDIO_HDR[31:24]								
0x7A	0x84	AUDI	O_DBYTE1									
0x7A	0x85	AUDI	O_DBYTE2									
0x7A	0x86	AUDI	O_DBYTE3									
0x7A	0x87	AUDI	O_DBYTE4									
0x7A	0x88	AUDI	O_DBYTE5	ALIDIO	DATA							
0x7A	0x89	AUDI	O_DBYTE6	AUDIO_	DATA		•					
0x7A	0x8A	AUDI	O_DBYTE7				1					
0x7A	0x8B	AUDI	O_DBYTE8									
0x7A	0x8C	AUDI	O_DBYTE9							•. ()		
0x7A	0x8D	AUDI	O_DBYTE10		_'()						
Bit	Label		R/W	Descript	ion					Default		
7:0	AUDIO_TYP	Е	R/W	AUDIO I	nfoFrame	type code.				0x00		
7:0	AUDIO_VER	S			AUDIO InfoFrame version code.							
7:0	AUDIO_LEN		R/W		AUDIO InfoFrame length. 0x00							
7:0	AUDIO_CHS	UM	R/W	AUDIO InfoFrame checksum. 0x00								
	AUDIO_DAT	Ά	R/W	AUDIO InfoFrame data bytes.								

MPEG InfoFrame Registers

Refer to the CEA-861-D Specification for more information on these register fields.

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0xA0	MPE	G_TYPE	MPEG_H	IDR[7:0]	'					
0x7A	0xA1	MPE	G_VERS	MPEG_F	HDR[15:8]						
0x7A	0xA2	MPE	G_LEN	MPEG_I	HDR[23:16]]					
0x7A	0xA3	MPE	G_CHSUM	MPEG_I	HDR[31:24]]					
0x7A	0xA4	MPE	G_DBYTE1								
0x7A	0xA5	MPE	G_DBYTE2								
0x7A	0xA6	MPE	G_DBYTE3								
0x7A	0xA7	MPE	G_DBYTE4								
0x7A	0xA8	MPE	G_DBYTE5								
0x7A	0xA9	MPE	G_DBYTE6								
0x7A	0xAA	MPE	G_DBYTE7							6	
0x7A	0xAB	MPE	G_DBYTE8								
0x7A	0xAC	MPE	G_DBYTE9			クト			• (
0x7A	0xAD	MPE	G_DBYTE10		()						
0x7A	0xAE	MPE	G_DBYTE11	E11							
0x7A	0xAF	MPE	G_DBYTE12								
0x7A	0xB0	MPE	EG_DBYTE13								
0x7A	0xB1	MPE	MPEG_DBYTE14 MPEG_DATA								
0x7A	0xB2	MPE	G_DBYTE15	. (
0x7A	0xB3	MPE	G_DBYTE16	AU _U _\							
0x7A	0xB4	MPE	G_DBYTE17								
0x7A	0xB5		G_DBYTE18								
0x7A	0xB6		G_DBYTE19				• (71			
0x7A	0xB7	MPE	G_DBYTE20								
0x7A	0xB8		G_DBYTE21			, ×	19				
0x7A	0xB9	- //	G_DBYTE22			>					
0x7A	0xBA		G_DBYTE23								
0x7A	0xBB		G_DBYTE24								
0x7A	0xBC		G_DBYTE25	NY							
0x7A	0xBD		G_DBYTE26								
0x7A	0xBE	MPE	G_DBYTE27	7							
Bit	Label		R/W	Descript						Default	
7:0	MPEG_TYPE		R/W	MPEG InfoFrame type code. 0x00							
7:0	MPEG_VERS		R/W	MPEG InfoFrame version code. 0x00							
7:0	MPEG_LEN	</td <td>R/W</td> <td colspan="6">MPEG InfoFrame length. 0x00</td> <td></td>	R/W	MPEG InfoFrame length. 0x00							
7:0	MPEG_CHSU	_	R/W	MPEG I	nfoFrame cl	necksum.				0x00	
	MPEG_DATA R/W		MPEG In	nfoFrame d	ata bytes.						

Generic Packet Registers

These registers can transmit any type of packet.

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x7A	0xC0	GEI	N_DBYTE1								
0x7A	0xC1	GEI	N_DBYTE2								
0x7A	0xC2	GEI	N_DBYTE3								
0x7A	0xC3	GEI	N_DBYTE4								
0x7A	0xC4	GEI	N_DBYTE5								
0x7A	0xC5	GEI	N_DBYTE6								
0x7A	0xC6	GEI	N_DBYTE7								
0x7A	0xC7	GEI	N_DBYTE8								
0x7A	0xC8	GEI	N_DBYTE9								
0x7A	0xC9	GEI	N_DBYTE10				•				
0x7A	0xCA	GEI	N_DBYTE11				1				
0x7A	0xCB	GEI	N_DBYTE12								
0x7A	0xCC	GEI	N_DBYTE13	DBYTE13							
0x7A	0xCD	GEI	N_DBYTE14								
0x7A	0xCE	GEI	N_DBYTE15			1)				
0x7A	0xCF	GEI	N_DBYTE16	GEN_DATA							
0x7A	0xD0	GEI	N_DBYTE17								
0x7A	0xD1	GEI	N_DBYTE18					X			
0x7A	0xD2	GEI	N_DBYTE19		0						
0x7A	0xD3	GEI	N_DBYTE20	\ \						,	
0x7A	0xD4	GEI	N_DBYTE21	. ()		. 0				
0x7A	0xD5	GEI	N_DBYTE22								
0x7A	0xD6	GEI	N_DBYTE23		6) ()		01			
0x7A	0xD7	GEI	N_DBYTE24								
0x7A	0xD8		N_DBYTE25				10	7			
0x7A	0xD9	GEI	N_DBYTE26		7						
0x7A	0xDA		N_DBYTE27								
0x7A	0xDB		N_DBYTE28	1							
0x7A	0xDC		N_DBYTE29	1	Y						
0x7A	0xDD	_	N_DBYTE30	11	,						
0x7A	0xDE	0xDE GEN_DBYTE31									
Bit	Label		R/W	Descript	ion					Default	
	GEN DATA		R/W	Generic 1	oacket data	bytes.					

General Control Packet Register

Refer to the HDMI Specification and the HDCP Specification for more information on the 0xDF register bits.

Dev	Addr	Namo	e	7 6 5		5	4	3	2	1	0	
0x7A	0xDF	GCP	BYTE1	RSVD0 CLR_AVMUTE RSVD0						SET_AVMUTE		
Bit	Label		R/W	Description							Default	
4	CLR_AVM	UTE	R/W	Clear the AVMUTE flag. 0							0	
0	SET_AVM	UTE	R/W	When to General the data for When to is being	l Contro a may be r all vide he AVM g receive	IUTE flag I Packet of incorrect to packets IUTE flag d. Option	g is set, the HDMI tr on the TMDS link to t. The HDMI transm s and 0x00 for all au g is set, the sink assu hally, the sink can ap function to the vide	inform litter ser dio pack mes that ply a m	the sink nds blank ket data. at no vali	that c-level d data	0	

Note: Before enabling General Control Packet transmission (GCP_EN, GCP_RPT), the firmware must write 0x10 or 0x01 to this register. The default value of 0x00 is not valid in a transmitted General Control Packet.

Generic Packet #2 Registers

These registers can be used to transmit any type of packet.

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0	
0x7A	0xE0	GEI	N2_DBYTE1									
0x7A	0xE1	GEI	N2_DBYTE2									
0x7A	0xE2	GE	N2_DBYTE3									
0x7A	0xE3	GE	N2_DBYTE4									
0x7A	0xE4	GE	N2_DBYTE5									
0x7A	0xE5	GEI	N2_DBYTE6									
0x7A	0xE6	GEI	N2_DBYTE7									
0x7A	0xE7	GEI	N2_DBYTE8									
0x7A	0xE8	GE	N2_DBYTE9									
0x7A	0xE9	GEI	N2_DBYTE10				•					
0x7A	0xEA	GEI	N2_DBYTE11				1					
0x7A	0xEB	GEI	N2_DBYTE12									
0x7A	0xEC	GEI	12_DBYTE13									
0x7A	0xED	GEI	N2_DBYTE14	.14								
0x7A	0xEE	GEI	N2_DBYTE15			1)					
0x7A	0xEF	GEI	N2_DBYTE16	DBYTE16 GEN2_DATA								
0x7A	0xF0	GEI	GEN2_DBYTE17									
0x7A	0xF1	GEI	N2_DBYTE18					X				
0x7A	0xF2	GEI	N2_DBYTE19									
0x7A	0xF3	GEI	N2_DBYTE20	\ \ \								
0x7A	0xF4		N2_DBYTE21	()		. 0					
0x7A	0xF5		N2_DBYTE22									
0x7A	0xF6	GE	N2_DBYTE23		6) ()		01				
0x7A	0xF7		N2_DBYTE24									
0x7A	0xF8	_	N2_DBYTE25				10	7				
0x7A	0xF9		N2_DBYTE26		7	-						
0x7A	0xFA		N2_DBYTE27									
0x7A	0xFB		N2_DBYTE28	1								
0x7A	0xFC		N2_DBYTE29	-	Y							
0x7A	0xFD	+	N2_DBYTE30	~ 1)	,							
0x7A	0xFE	0xFE GEN2_DBYTE31										
Bit	Label		R/W	Descript	ion					Default		
	GEN2_DATA		R/W	Generic 1	oacket #2 o	lata bytes.						

3D Support (SiI9134 Only)

General

The HDMI 1.4 Specification defines 3D operation over HDMI. The SiI9134 transmitter supports several 3D video formats and makes special provisions to accommodate the extra InfoFrames needed.

A 3D video format is defined by the Video Identification Code (VIC) defined in the CEA-861-D standard, Table 2, in conjunction with one of the extended *3D_Structure* values defined in the HDMI 1.4 Specification, Table H-2. In addition to sending the VIC to the receiver using the standard AVI InfoFrame format, the transmitter needs to send the 3D_Structure value to the receiver using an HDMI Vendor Specific InfoFrame (HVSIF), defined in HDMI 1.4, Sections 8.2.3, H.1, and H.2.

3D Formats Supported by the SiI9134

The following 3D video formats are supported by the SiI9134 transmitter:

- 720p 50-Hz Frame Packing
- 720p 59.94/60-Hz Frame Packing
- 1080i 50-Hz Frame Packing
- 1080i 59.94/60-Hz Frame Packing
- 1080p 23.98/24-Hz Frame Packing
- 1080i 50-Hz Side-by-Side (Half)
- 1080i 59.94/60-Hz Side-by-Side (Half)
- 1080p 23.98/24-Hz Side-by-Side (Full)
- 720p 50-Hz Side-by-Side (Full)
- 720p 59.94/60 Hz Side-by-Side (Full)
- 720p 50-Hz L+depth
- 720p 59.94/60-Hz L+depth
- 1080p 23.98/24-Hz L+depth.

HDMI Vendor Specific InfoFrame as Implemented in the SiI9134 Transmitter

The HVSIF carries the 3D information to the receiver. It is defined in the HDMI 1.4 Specification, Sections 8.2.3, H.1, and H.2.

When the transmitter sends a 3D video signal, it must transmit an accurate HDMI Vendor Specific InfoFrame at least once every two Video Fields.

The HVSIF header is shown in Figure 5 and its content layout in Figure 6. The fields that need to be set by the SiI9134 transmitter are:

- 3D Structure (defined in the HDMI 1.4 Specification, Table H-2.)
- 3D_Ext_Data (for *Side-by-Side (Half)* only). It should be set to the required sampling method according to the HDMI 1.4 Specification, Table H-3 (for example, set to 0 for the *odd/left*, *odd/right horizontal sub-sampling method*).

Byte \ Bit #	7	6	5	4	3	2	1	0		
HB0	Packet type = $0x81$									
HB1		Version = 0x01								
HB2	0	0	0	Length = Nv						

Figure 5. HDMI Vendor Specific InfoFrame Packet Header

Packet Byte #	7	6	5	4	3	2	1	0			
PB0		Checksum									
PB1											
PB2		24-bit IEEE Registration Identifier (0x000C03) (least significant byte first)									
PB3											
PB4	HDI	MI_Video_Fo	ormat		RSVD0						
	HDMI_VIC										
(PB5)		3D_St	ructure		3D_Meta _present		RSVD0				
(PB6)		3D_Ex	kt_Data		RSVD0						
(PB7)	3E	_Metadata_t	ype		3D_Metadata_Length (=N)						
(PB8)	3D_Metadata_1										
	•••										
(PB[7+N])	3D_Metadata_N										
(PB[7+N]-[Nv])				RS	VD0						

Figure 6. HDMI Vendor Specific InfoFrame Packet Contents

Silicon Image recommends using the SiI9134 MPEG InfoFrame register set (0x72:0xA0...0x72:0xBE) for constructing and transmitting the HVSIF.

Sink EDID HDMI Vendor Specific Data Block

The HDMI 1.4 Specification extends the HDMI Vendor Specific Data Block (HDMI VSDB) of the sink EDID to include information about the sink 3D-support capabilities. The SiI9134 firmware needs to parse that information in order to limit the sending of 3D video to sinks that support that 3D format.

Detailed specifications of the EDID HDMI VSDB are listed in the HDMI 1.4 Specification, Section H.3.

Pixel Clock

Except for the *Side-by-Side* (*Half*) 3D modes, all 3D modes supported require doubling of the pixel clock frequency, compared to the pixel clock frequency used with 2D video modes that have the same VIC.

Implementing 3D Support on the SiI9134 Transmitter

This section is implementation-related and is given as an example only. The following additions were made to the SiI9134 reference firmware in order to support 3D video.

- Extend the transmitter list of supported video modes to include the 3D modes supported by the SiI9134 device
- Extend the input mode definitions to include the 3D Structure value for each 3D mode
- Parse and save the fields of the sink EDID HDMI VSDB that describe the sink 3D capabilities and use that information to block transmission of 3D formats that are not supported by that sink.
- Prepare and send the HDMI Vendor Specific InfoFrame as described in the HDMI 1.4 Specification, Section H-1, using the MPEG InfoFrame registers.

Limitations

Color space conversion is generally supported. However, support in Side-by-side format is limited, in that edge pixels (pixels on the border between left and right images) will not be converted correctly and must be discarded. No color space conversion support is provided in 3D L+depth modes.

The DE Generator function cannot be used; an external DE signal must be provided.

The V_{RES} count (0x72:0x3C-0x3D) lacks the most significant bit needed for the higher line counts, and will return the wrong count once it overflows.

Appendices

The following sections describe how to use the functional block of the HDMI transmitter.

Area	Page	Topic
Audio	60	Handling Audio
	62	Handling DVD Audio
Video	65	Handling Interlaced Video
Control	99	Handling InfoFrames
	103	Operating DDC Master
	106	Setting up the PLL Control Registers
HDCP	119	Muting Video and Audio in HDCP Applications

Handling Audio

Enabling Audio Inputs

Audio input data is received from either the S/PDIF input or one or more I²S channels. The AUD_EN bit (register 0x7A:0x14) is logically ANDed with each channel enable bit (S/PDIF and I²S in register 0x7A:0x14). Stop audio processing by writing a 0 to the AUD_EN bit. This stops the decoding of input samples so no samples are written into the audio FIFOs. When the FIFOs are emptied by HDMI formatting, the HDMI transmitter stops sending audio packets on the HDMI link. NCTS packets continue to be sent as long as the transmitter is in HDMI mode.

Figure 7. Audio Input Control

Encoding Audio on HDMI

Figure 8. Overview of HDMI Operating Modes in 480p Stream

Handling DVD Audio

This section describes source support for audio content protection and ACP packet transmission.

Source Support for Audio Content Protection

The HDMI Specification describes three packet types to support content protection for various audio formats: ACP, ISRC1, and ISRC2. The source transmits these packets, like other packets, as data islands during the vertical blanking time. The source transmits these packets only if it recognizes that the attached sink or repeater is able to receive them, as indicated with the presence of an AI bit in the EDID HDMI VSDB. The formats for the ACP, ISRC1, and ISRC2 packets are defined in the *HDMI Specification*.

For more details on handling E-EDID and determining features of the sink based on its E-EDID, see the *HDMI Source Device Software Application Note* (SiI-AN-0117).

Transmitting ACP Packets

The HDMI transmitter allocates register space for four packets with a full-size payload of 31 data bytes. Each packet includes a 4-byte header with TYPE, VERSION, LENGTH, and CHECKSUM fields. The SPD and MPEG InfoFrames are defined in CEA-861-D, although their lengths are less than 31 bytes. The HDMI transmitter expands the register space for those InfoFrame packets to accommodate any type of packet with 31 total bytes. In addition, the HDMI transmitter provides for a *Generic Packet* and *Generic Packet* #2. With these four packets, the transmitter can set up and transmit any four of the five defined packet types: SPD, MPEG, ACP, ISRC1, and ISRC2.

ISRC packets are used together to transmit International Standard Recording Code (ISRC) data from the source to the sink. When this information extends beyond 16 bytes, the ISRC_CONT field in the ISRC1 packet is set in the header and the remaining bytes are sent in the ISRC2 packet. The requirements for handling ISRC data are defined in the *DVD Specifications for Read-Only Disc, Part 4 (Version 1.0, March 1999, Annex B)*.

The HDMI Specification requires a source device to transmit ACP packets within 300 milliseconds of changing to audio content, which requires transmission of content protection information and to repeat transmission of ACP packets at least every 300 milliseconds. If a sink does not detect ACP packets for 600 milliseconds, it assumes that no content protection information is needed. Details on transmission timing requirements for ACP and related packets are described in the *HDMI Specification*.

To control transmission of ACP and related packets with the transmitter, the packet registers must be loaded and enabled. If, in addition to ACP, ISRC1, and ISRC2, the source also needs to send MPEG and SPD InfoFrames, then one set of packet registers must alternate between one of those packet payloads and the ACP or related payload. One possible flowchart for this process is shown in Figure 9. If all five types are sent, the last register set alternates between sending SPD and MPEG InfoFrames. Refer to page 47 for register details on enabling and disabling packet transmission.

For a detailed description of the ACP, ISRC1, and ISRC2 packets, refer to the HDMI 1.4 Specification, sections 5.3.7 and 5.3.8.

Figure 9. ACP Packet Control Flowchart

Handling Video

Programming Video Input Mode and Video Output Mode

Specific registers must be programmed according to the selection of input video bus mode and output video format. Figure 10 shows video input data processing that leads to TMDS encoding.

Figure 10. Transmitter Video Data Processing Path

Deep-Color Video Data (SiI9134 Transmitter Only)

The SiI9134 transmitter provides support for deep-color video data. It supports both 30-bit (10 bits per pixel component) and 36-bit (12 bits per pixel component) video input formats, and assembles the data into 8-bit data packets for encryption and TMDS encoding for transfer across the link.

When the width of the input data is more than the data size to be sent, the transmitter can be programmed to dither or truncate the video data to the desired size. For example, if the input data width is 12-bits per pixel component but the sink can only support 10-bits per pixel component, the 12-bit input data can be dithered or truncated to the desired 10-bit output data. See the VID_MODE register (0x72:0x4A[5]) on page 18.

By default, the transmitter does not send deep-color related information to the HDMI receiver. To send deep-color information, set register 0x7A:0x2F[6] to 1 (refer to page 45).

For more information about deep-color, refer to the associated data sheet.

Handling Interlaced Video

In interlaced video mode, the timing from VSYNC to pixel data changes from even to odd fields. Also, many MPEG sources do not provide standard timing. The HDMI transmitter must correct this so that the video timing across the HDMI link is compliant with CEA-861-D.

Table 6 lists the registers involved in decoding embedded syncs and generating DE for interlaced modes.

Table 6. Registers Used to Handle Interlaced Video

Field	Register	Address	Use
DE_ADJ#	IADJUST	0x72:0x3E[2]	Video interface adjustment.
F2VADJ		0x72:0x3E[1]	VBIT_TO_VSYNC adjustment.
F2VOFST		0x72:0x3E[0]	Set VBIT_TO_VSYNC to increment or decrement.
I_DET	POL_DETECT	0x72:0x3F[2]	Video SYNC interlace detection.
VPOL_DET#		0x72:0x3F[1]	VSYNC polarity detection.
HPOL_DET#		0x72:0x3F[0]	HSYNC polarity detection.
HBIT_2H_SYNC	HBIT_2HSYNC	0x72:0x40-0x41	Video H bit to HSYNC.
FIELD2_OFST	FLD2_HS_OFST	0x72:0x42-0x43	Video Field to HSYNC offset.
HWIDTH	HWIDTH	0x72:0x44-0x45	Video HSYNC length.
VBIT_TO_VSYNC	VBIT_TO_VSYNC	0x72:0x46	Video V bit to VSYNC.
VWIDTH	VWIDTH	0x72:0x47	Video VSYNC length.

Figure 11. 480i Example for Handling Syncs

Note: Registers 0x72:0x40 through 0x46 are useful only when the input video uses 656 encoded syncs.

Summary of Video Processing Path Options YCbCr MUX 4:2:2 Embedded Syncs YCbCr 4:2:2 Figure 12A TMDS and **DEMUX HDMI SYNCS** Encoding YCbCr MUX 4:2:2 Embedded Syncs YCbCr 4:4:4 Figure 12B TMDS and Upsample DEMUX 4:2:2 Dither **HDMI SYNCS** Encoding to 4:4:4 YCbCr MUX 4:2:2 Embedded Syncs Figure 12C RGB 4:4:4 YCbCr to TMDS and Upsample DEMUX **RGB Color** 4:2:2 Dither HDMI **SYNCS** Space to 4:4:4 Encoding Converter YCbCr 4:2:2 Separate Syncs YCbCr 4:2:2 Figure 12D TMDS and DE HDMI Generator Encoding Separate Syncs YCbCr 4:2:2 YCbCr 4:4:4 Figure 12E Upsample TMDS and DE 4:2:2 HDMI Dither Generator to 4:4:4 Encoding Separate Syncs YCbCr 4:2:2 Figure 12F YCbCr to RGB 4:4:4 Upsample TMDS and DE RGB Color 4:2:2 Dither HDMI Generator Space to 4:4:4 Encoding Converter Separate Syncs RGB 4:4:4 RGB 4:4:4 Figure 12G TMDS and DE HDMI Generator Encoding

Figure 12. Video Input to Video Output Data Flow

Video Input Tables

These notes apply to the tables that follow:

- 1. Program the DE parameters only when the DE generator is enabled (register 0x72:0x33[6]).
- 2. The timings are based on the CEA-861-D Specification.
- 3. The parameters are application-dependent. Consult the timing requirements of the source.
- 4. Set this bit to 1 only when Y and C channels are each 12 bits wide. If these bus widths are less than 12 bits, set this bit to 0 and tie all unused pins to GND.
- 5. HBIT_TO_HSYNC, FIELD2_OFST, and VBIT_TO_VSYNC may differ depending on the porch timings in the input stream.
- 6. Set RANGE to 1 whenever converting YCbCr data and sending full-range (0–255) RGB (PC mode) data across HDMI. When sending limited-range (16–235) RGB (CE mode) data, clear RANGE to 0.
- 7. Set WIDE BUS to the number of bits per *input* video channel.
- 8. Set DITHER_MODE to the number of bits per *output* video channel supported by the sink. By default, the HDMI transmitter dithers the input (if DITHER 0x72:0x4A[5] is enabled) or truncates the input (if DITHER is disabled) to 8 bits.

480i Input

480i Multiplexed YCbCr 4:2:2 Embedded Sync Input

Input Mode			Multiplexed Embedded S).			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable		12
HBIT_TO_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x13	0x13	0x13			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2	15
	0x42	7:0	0xAD	0xAD	0xAD		\sim	
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E			
VBIT_TO_VSYNC	0x46	5:0	0x04	0x04	0x04	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	Ĩ	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	gure 12)		A	В	С		_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. Refer to page 69 for register settings that enable both the sync decoder and the DE generator.

480i Multiplexed YCbCr 4:2:2 Embedded Sync Input - Adjustment for CEA-861-D

Input Mode			Multiplexed Embedded S		,			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x77	0x77	0x77			
DE_TOP	0x34	6:0	0x12	0x12	0x12	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x0	0x0	0x0	DE Lines	1, 2	13
	0x38	7:0	0xF0	0xF0	0xF0			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1 AK	1	VSYNC Polarity	2,3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable		12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x13	0x13	0x13			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2, 5	15
	0x42	7:0	0xAD	0xAD	0xAD			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E	X		
VBIT_2_VSYNC	0x46	5:0	0x04	0x04	0x04	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1.		1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С		_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 68 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

Input Mode			YCbCr 4:2:2 Syncs	2 Mux YC Se	parate			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x77	0x77	0x77			
DE_TOP	0x34	6:0	0x12	0x12	0x12	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x0	0x0	0x0	DE Lines	1, 2	13
	0x38	7:0	0xF0	0xF0	0xF0			
HS_POL#	0x33	4	1	1	17	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	-1	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0					1	
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0				X		
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	1.5
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	Y	1/	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	-)	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6			>	Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	7	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F		_	66

576i Input

576i YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2	15
	0x42	7:0	0xB0	0xB0	0xB0			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3F	0x3F	0x3F)	
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С		_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source. Refer to page 72 for register settings that enable both the sync decoder and the DE generator.

576i YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D

Input Mode			YCbCr 4:2:2	2 Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x16	0x16	0x16	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0x20	0x20	0x20			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	-5	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2, 5	15
	0x42	7:0	0xB0	0xB0	0xB0			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3F	0x3F	0x3F		7	
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			0	Color Space Select		16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	X	1	Sync Extraction		18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1.	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 71 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

576i YCbCr 4:2:2 Multiplexed YC Separate Sync Input

Input Mode			YCbCr 4:2:2 Syncs	2 Mux YC Se	parate			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x16	0x16	0x16	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0x20	0x20	0x20			
HS_POL#	0x33	4	1	1	1,	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1 A	1	VSYNC Polarity	2,3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable		12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0				X)	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1.	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	7—	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	С	_	_	66

480p Input

480p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB	Ī		
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0x7A			
DE_TOP	0x34	6:0			0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x2	DE Count	1, 2	13
	0x36	7:0			0xD0			
DE_LIN	0x39	2:0			0x1	DE Lines	1, 2	13
	0x38	7:0			0xE0			
HS_POL#	0x33	4			1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			4	DE_GEN Enable		12
HBIT_TO_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	14
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0					\sim	
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0)_	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	gure 12)				G	_	_	66

480p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	6:0		0x7A	0x7A			
DE_TOP	0x34	7:0		0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x2	0x2	DE Count	1, 2	13
	0x36	7:0		0xD0	0xD0			
DE_LIN	0x39	2:0		0x1	0x1	DE Lines	1, 2	13
	0x38	7:0		0xE0	0xE0			
HS_POL#	0x33	4		1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	4	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				10		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0				(
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling		18
CSC	0x4A	3		0	1	Color Space Convert		18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

480n VChCr 4.2.2 Sanarata Sync Innut

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	6:0	0x7A	0x7A	0x7A			
DE_TOP	0x34	7:0	0x24	0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0xE0	0xE0	0xE0			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	17	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	i	DE_GEN Enable	-67	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0					\sim	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	(-0	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	-0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fi	gure 12)		D	Е	F	_		66

480p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	4)	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x10	0x10	0x10			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E	(
VBIT_2_VSYNC	0x46	5:0	0x09	0x09	0x09	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x06	0x06	0x06	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1		1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	_	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. Refer to page 78 for register settings that enable both the sync decoder and the DE generator.

480p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D

Input Mode			YCbCr 4:	2:2 Embedo	ded Syncs				
Output Mode			YCbCr	YCbCr	RGB	BTA-			
Register			4:2:2	4:4:4		T1004		Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x7A	0x7A	0x7A	0x7A			
DE_TOP	0x34	6:0	0x24	0x24	0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	0x02	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	0x01	DE Lines	1, 2	13
	0x38	7:0	0xE0	0xE0	0xE0	0xE0			
HS_POL#	0x33	4	1	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	171	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	1	DE_GEN Enable	-50	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x10	0x10	0x10	0x10			
FIELD2_OFST	0x43	3:0				011	Odd Field Offset	2, 5	15
	0x42	7:0				0x5A			
HWIDTH	0x45	1:0	0x0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E	0x3E	(0 1 -	4	
VBIT_2_VSYNC	0x46	5:0	0x09	0x09	0x09	0x09	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x06	0x06	0x06	0x06	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	0	Color Space Select	_	16
EXTN	0x48	5	1 X	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1 X		1//	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	1	Color Space Convert	_	18
RANGE	0x4A	4			1	1	Range Select	6	18
WIDE_BUS	0x49	7:6					Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6					Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	1	Dither Enable	_	18
Data Flow Diagram ((Figure 12)		A	В	С	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 77 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

576p Input

576p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0x84			
DE_TOP	0x34	6:0			0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x2	DE Count	1, 2	13
	0x36	7:0			0xD0			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0x40			
HS_POL#	0x33	4			1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction		18
DEMUX	0x4A	1			0	_	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	_	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)				G	_	_	66

576p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	4:4 Separate S	yncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0		0x84	0x84			
DE_TOP	0x34	6:0		0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x2	0x2	DE Count	1, 2	13
	0x36	7:0		0xD0	0xD0			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0x40	0x40			
HS_POL#	0x33	4		1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	-5	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0					-	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0	(-0)	_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (I	Figure 12)		D	Е	F	_	_	66

576p YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x2C	0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x40	0x40	0x40			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	21,	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	9	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				1		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	_	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

576p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	17	VSYNC Polarity	2, 3	12
DE GEN	0x33	6	0	0	0	DE GEN Enable	_60	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2 OFST	0x43	3:0		20		Odd Field Offset	2	15
	0x42	7:0			.0			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x40	0x40	0x40		4	
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	X	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	-0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Figure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. Refer to page 83 for register settings that enable both the sync decoder and the DE generator.

576p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x2C	0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x40	0x40	0x40			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	9	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x0C	0x0C	0x0C	10		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x40	0x40	0x40			
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	_	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 82 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

720p Input

720p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x1	DE Delay	1, 2, 3	12
	0x32	7:0			0x04			
DE_TOP	0x34	6:0			0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x5	DE Count	1, 2	13
	0x36	7:0			0x00			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0xD0			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	(- j	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0				()	1	
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0	-	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert		18
RANGE	0x4A	4				Range Select	_	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	gure 12)				G	_	_	66

720p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0		0x04	0x04			
DE_TOP	0x34	6:0		0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x5	0x5	DE Count	1, 2	13
	0x36	7:0		0x00	0x00			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0xD0	0xD0			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	2	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				1		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0				()		
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1 (/)	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0	_	_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

720p YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x1	0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0	0x04	0x04	0x04			
DE_TOP	0x34	6:0	0x19	0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x5	0x5	0x5	DE Count	1, 2	13
	0x36	7:0	0x00	0x00	0x00			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0xD0	0xD0	0xD0			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	-67	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0				(4	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling		18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_		66

720p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	9	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28			
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			1	Color Space Select		16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1		1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. Refer to page 88 for register settings that enable both the sync decoder and the DE generator.

720p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x1	0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0	0x04	0x04	0x04			
DE_TOP	0x34	6:0	0x19	0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x5	0x5	0x5	DE Count	1, 2	13
	0x36	7:0	0x00	0x00	0x00			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0xD0	0xD0	0xD0			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	-57	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28		\sim	
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	X	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	(-0)	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fi	gure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 87 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

1080i Input

1080i RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0xC0			
DE_TOP	0x34	6:0			0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x7	DE Count	1, 2	13
	0x36	7:0			0x80			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0x1C			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	F	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0				() \		
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0)	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0	/_	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)				G	_	_	66

1080i YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	4:4 Separate S	yncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0		0xC0	0xC0			
DE_TOP	0x34	6:0		0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x7	0x7	DE Count	1, 2	13
	0x36	7:0		0x80	0x80			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0x1C	0x1C			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	-9	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction		18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

1080i YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33 3:0		0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x14	0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x7	0x7	0x7	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x1C	0x1C	0x1C			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	2	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				1		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1 (/)	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	_	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

1080i YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	-60	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x58	0x58	0x58			
FIELD2_OFST	0x43	3:0	0x4	0x4	0x4	Odd Field Offset	2	15
	0x42	7:0	0x4C	0x4C	0x4C			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x2C	0x2C	0x2C			
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	X	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	(-2)	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	-0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. Refer to page 93 for register settings that enable both the sync decoder and the DE generator.

1080i YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861-D

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33 3:0		0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x14	0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x7	0x7	0x7	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x1C	0x1C	0x1C			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	9	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x58	0x58	0x58	10		
FIELD2_OFST	0x43	3:0	0x4	0x4	0x4	Odd Field Offset	2, 5	15
	0x42	7:0	0x4C	0x4C	0x4C			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x2C	0x2C	0x2C			
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1		1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	_	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable		18
Data Flow Diagram (Fig	ure 12)		A	В	С	_		66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 92 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

1080p Input

1080p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0			0	DE Delay	1, 2, 3	12
	0x32	7:0			0xC0			
DE_TOP	0x34	6:0			0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x07	DE Count	1, 2	13
	0x36	7:0			0x80			
DE_LIN	0x39	2:0			0x04	DE Lines	1, 2	13
	0x38	7:0			0x38			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	(-1	12
HBIT TO HSYNC	0x41	1:0				HBit to HSYNC Delay	2, 5	15
	0x40	7:0						
FIELD2 OFST	0x43	3:0				Odd Field Offset	2, 5	15
_	0x42	7:0				() `		
HWIDTH	0x45	1:0				HSYNC Pulse Width	2,	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0		_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Fig	gure 12)				G	_	_	66

1080p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	l:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0		0	0	DE Delay	1, 2, 3	12
	0x32	7:0		0xC0	0xC0			
DE_TOP	0x34	6:0		0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x07	0x07	DE Count	1, 2	13
	0x36	7:0		0x80	0x80			
DE_LIN	0x39	2:0		0x04	0x04	DE Lines	1, 2	13
	0x38	7:0		0x38	0x38			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	2	12
HBIT_TO_HSYNC	0x41	1:0				HBit to HSYNC Delay	2	15
	0x40	7:0				1		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1 /	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Fig	ure 12)		D	Е	F	_	_	66

1080n VChCr 4.2.2 Sanarata Sync Innut

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0	0	0	0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x29	0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x07	0x07	0x07	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x04	0x04	0x04	DE Lines	1, 2	13
	0x38	7:0	0x38	0x38	0x38			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	i	DE_GEN Enable	-67	12
HBIT_TO_HSYNC	0x41	1:0				HBit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0					4	
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			1	Color Space Select		16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	(=0)	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			4	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Figure 12)			D	Е	F	_	_	66

1080p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	4	12
HBIT_TO_HSYNC	0x41	1:0	00	00	.00	HBit to HSYNC Delay	2	14
	0x40	7:0	0x6E	0x6E	0x6E	10		
FIELD2_OFST	0x43	3:0		, , , , ,		Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28	()		
VBIT_TO_VSYNC	0x46	5:0	0x05	0x05	0x05	VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	15
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1 (/)	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	17
DEMUX	0x4A	1	0	0	0	_	_	17
UPSMP	0x4A	2	0	1	1	Up sampling	_	17
CSC	0x4A	3	0	0	1	Color Space Convert	_	17
RANGE	0x4A	4			1	Range Select	6	17
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	10-to-8 Bit Dithering	_	17
Data Flow Diagram (Fig	ure 12)		A	В	C	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source. Refer to page 98 for register settings that enable both the sync decoder and the DE generator.

1080p YCbCr 4:2:2 Embedded Sync Input - Adjustment for CEA-861-D

Input Mode			YCbCr 4:2:2	Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0	0	0	0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x29	0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x07	0x07	0x07	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x04	0x04	0x04	DE Lines	1, 2	13
	0x38	7:0	0x38	0x38	0x38			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	-57	12
HBIT_TO_HSYNC	0x41	1:0	00	00	00	HBit to HSYNC Delay	2, 5	14
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28		1	
VBIT_TO_VSYNC	0x46	5:0	0x05	0x05	0x05	VBit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	15
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	X	1	Sync Extraction	_	17
DEMUX	0x4A	1	0	0	0	(-0)	_	17
UPSMP	0x4A	2	0	1	1	Up sampling	_	17
CSC	-0x4A	3	0	0	1	Color Space Convert	_	17
RANGE	0x4A	4			1	Range Select	6	17
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	10-to-8 Bit Dithering	_	17
Data Flow Diagram (Fig	gure 12)		A	В	С	_	_	66

The video reconstructed by the transmitter may not be compliant with CEA-861-D timings, depending on the sync timings received from the source. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861-D compliant. Refer to page 97 for register settings that enable only the sync decoder when the source provides compliant SAV/EAV timings.

Handling InfoFrames and General Control Packets

AVI InfoFrames

The following descriptions are adapted from the *CEA-861-D Specification* and from the *HDMI Specification*. AVI InfoFrame packets are enabled by AVI_EN and AVI_RPT in the Packet Buffer Control #1 Register (0x7A:0x3E), described on page 48.

Table 7. AVI InfoFrame Layout

			Bit Numl	Bit Number								
Reg.			7	6	5	4	3	2	1	0	Notes	
0x40	0	Type Code	0x82	Ox82								
0x41	1	Version	0x02	x02								
0x42	2	Length	0x0D			>.					3	
0x43	3	Checksum			ملا	7				5	4	
0x44	4	Data Byte 1	0	Y1	Y0	A0	B1	В0	S1	S0	5, 6	
0x45	5	Data Byte 2	C1	C0	M1	M0	R3	R2	R1	R0		
0x46	6	Data Byte 3	ITC	EC2	EC1	EC0	Q1	Q0	SC1	SC0		
0x47	7	Data Byte 4	0	VIC6	VIC5	VIC4	VIC3	VIC2	VIC1	VIC0		
0x48	8	Data Byte 5	YQ1	YQ0	CN1	CN0	PR3	PR2	PR1	PR0		
0x49	9	Data Byte 6	5		7							
0x4A	10	Data Byte 7		76								
0x4B	11	Data Byte 8				. 0						
0x4C	12	Data Byte 9	Dor info t	Saw I. attawka	x and Pillarbox to	ron amilacio						
0x4D	13	Data Byte 10	Dai ililo i	of Letterbo	x and Pinaroox u	ansinissio	ils.					
0x4E	14	Data Byte 11				Y (7					
0x4F	15	Data Byte 12										
0x50	16	Data Byte 13										
0x51	17	Data Byte 14			×						7	
0x52	18	Data Byte 15										

Notes:

- 1. Although the CEA-861-D Specification defines TYPE as 0x02, the HDMI Specification defines TYPE as 0x82 with bit 7 set.
- 2. VERSION 0x02 defines this as a CEA-861-D AVI InfoFrame.
- 3. LENGTH should be set to 13 (0x0D). Additional data bytes are ignored. See the *HDMI Specification*.
- 4. CHECKSUM is calculated so that the modulo-256 sum of {TYPE + VERSION + LENGTH + CHECKSUM + Data Bytes 1 to LENGTH} is zero. See the *HDMI Specification*.
- 5. Shaded bits are RESERVED and are not to be set to other values.
- 6. Refer to CEA-861-D, Sections 6.4 and the HDMI 1.4 Specification, Section 8.2.1 for more details on the labeled fields in Data Bytes 1 through 13.
- 7. CEA-861-D defines only 13 data bytes. HDMI defines 27 data bytes. The HDMI transmitter has 15 data byte registers. Load data bytes 14 and 15 with 0x00.

General Control Packets

General Control Packets control the flow of video and audio data across the HDMI link. The General Control Packet is defined in the *HDMI Specification*. This data byte is controlled in the transmitter with the GCP_BYTE1 register (0x7A:0xDF), described on page 55. The General Control Packet is transmitted only during the vertical blanking period, after the active edge of VSYNC.

To change the content of the GCP_BYTE1 register, GCP_EN must be zero. The firmware should keep GCP_EN cleared until the desired value is written into SET_AVMUTE and CLR_AVMUTE. Then GCP_EN and GCP_RPT should be set to 1 (refer to page 47 more information about EN and RPT bits). The SET_AVMUTE bit and CLR_AVMUTE bit cannot both be set at the same time (refer to page 55). Because the General Control Packet is synchronized to VSYNC, the action from SET_AVMUTE and CLR_AVMUTE takes effect immediately after the next VSYNC pulse.

Table 8. Mute Actions for Setting or Clearing SET_AVMUTE and CLR_AVMUTE Bits

SET_AVMUTE	CLR_AVMUTE	Action
0	0	Default setting after RESET#. Same action as SET_AVMUTE = 0 with CLR_AVMUTE = 1.
0	1	Allow pixel data and audio sample data to pass across the link.
1	0	The transmitter sends a General Control Packet on the TMDS link to inform the sink that the data may be incorrect, and sends blank level data for all video packets and 0x00 for all audio packet data.
1	1	NOT ALLOWED BY HDMI SPECIFICATION.

When the HDCP link fails, the transmitter must carefully manage the video and audio content to minimize the disruption of video output from the receiver. The firmware should follow the process described in Figure 14 on page 102.

When transmitting in DVI mode, setting SET_AVMUTE to 1 changes the video content to 0x00. CTL3 pulses stop at the next frame, so the receiver stops decrypting and sends the 0x00 data as a blank screen. Although HDMI receivers reset their HDCP engines with a new authentication (at the writing of the last byte of AKSV), earlier DVI receivers may not do so. To guarantee interoperability with all DVI-HDCP sinks, the source firmware should stop the video signaling before beginning a new authentication. This causes the receiver to create an SCDT event, which resets the receiver HDCP engine. The new authentication can then complete normally, and video transmission and reception resumes with a decrypted picture.

When a Link Integrity check fails in DVI mode, the transmitter should stop the video signaling briefly before beginning a new authentication. This break in DE causes an SCDT event in the DVI-HDCP receiver, which resets its HDCP engine.

Initiating HDMI Video after Hardware Reset and Successful HDCP Authentication

Figure 13. Muting Video and Audio from Reset to Authentication

- A Transmitter comes out of hardware reset.
- B Assert SET_AVMUTE to blank video and audio when they become active.
- C Set up video path and audio path before powering on.
- Transmitter Actions
- D Set PD# = 1 to enable video and audio output, which is blanked.
- E Set GCP_EN and GCP_RPT bits for General Control Packets, which flow to receiver at next VSYNC.
- F Source begins authentication.
- G Authentication completes successfully.
- H Clear GCP_RPT, wait for GCP_EN = 0.
- I Set CLR AVMUTE = 1.
- J Set GCP_EN and GCP_RPT together. The transmitter enables video output and begins sending new General Control Packets with CLR AVMUTE.

Receiver Actions

- x The receiver chip senses the start of HDMI signaling and asserts its SCDT. The sink's firmware recognizes the SCDT = 1 state, and enables the receiver chip's video and audio output pins.
- y The receiver chip detects a General Control Packet with SET_AVMUTE = 1 and automatically blanks the video output.
- z The receiver chip detects a General Control Packet with CLR_AVMUTE = 1 and automatically begins decrypting and providing active content.

If the receiver chip senses that HDMI signaling has stopped (when the HDMI transmitter is reset), the receiver firmware blanks the video output. The receiver enables content at the video outputs only after it receives active video signaling, completes HDCP authentication, and receives a CLR_AVMUTE General Control Packet.

Link Authentication Check SET_AVMUTE GCP EN GCP_RPT General Control **Packets** Control Pulses Video and Audio Active Blanked Active RX_OUT Active Snow Blanked Active В С

Controlling HDMI Video through an HDCP Link Failure and Re-Authentication

Figure 14. Muting Video and Audio from Link Failure to Authentication

- X Extra or missing control pulse gets decryption out of step with encryption, and the receiver produces snow.
- A Transmitter firmware fails Link Integrity check of polling of R_i.
- B Clear GCP RPT and wait for the transmitter to reset GCP EN to 0.
- C Set SET_AVMUTE = 1, then set GCP_EN and GCP_RPT. New General Control Packets are sent.
- D Receiver senses SET_AVMUTE and sends BLANKLEVEL video.
- E Source firmware begins authentication. BKSV write resets the transmitter HDCP engine. AKSV write resets the receiver HDCP engine.
- F Successful authentication begins encryption and decryption on the next frame. Firmware clears GCP_RPT and waits for GCP_EN = 0.
- G Write SET_AVMUTE = 0, then set GCP_EN = 1 and GCP_RPT = 1 again.
- H Video content resumes from the transmitter on the next frame and is decrypted in the receiver.

During this process, the video from the transmitter is not interrupted. An SCDT event does not occur on the receiver side because sync information continues to arrive from the transmitter. Although snow may appear when the link fails (before the Link Integrity check, but for no longer than 2 seconds), a blank screen in the correct color space quickly replaces it. Live video content resumes smoothly after authentication.

Handling Audio Content Protection (ACP) Packets

The HDMI Specification defines packets for handling content protection for audio. Refer to the explanations beginning on page 62.

Operating DDC Master

The transmitter includes a logic block to drive the E-DDC bus, which supports a variety of I²C commands. The individual registers are described on page 30. The speed of the I²C clock is determined by an internal oscillator in the transmitter and is not dependent on or a function of any input pixel clock. The I²C frequency does not exceed 100 kHz.

Figure 15. Supported Master I²C Transactions

Current Address Read: Reads from the last offset address so that no offset needs to be written to the slave. Multiple bytes can be read from consecutive addresses, which increment in the slave with each ACK received from the master.

Sequential Read: Reads from a specific start address, which is sent as a write command to the slave. Multiple bytes may be read from consecutive addresses. Although the FIFO in the transmitter can hold only 16 bytes, the sequential read command can be of any length up to the 10-bit value in the DDC_COUNT register (0x72:0xF0 and 0xF1). A *Stop* bit is sent by the DDC master only when the entire DDC_COUNT is complete.

Enhanced DDC Read: A special command, defined by the *VESA E-DDC Specification*, that writes a segment address to a separate I²C device address, then sends an offset address to the slave device, and finally reads one or more data bytes beginning from address 256 • segment + offset. Multiple bytes within the same segment can be read, as the slave increments the offset with each ACK received from the master. The segment register in the slave is reset at the end of each command. A NACK or ACK is required from the slave device if the segment is not zero, but is ignored if the segment is zero. Refer to the *E-DDC Specification*.

Sequential Write: Similar to the sequential read, this command sends one or more bytes to the slave, beginning at the explicit offset address. Multiple bytes may be written, as the slave increments the address until the master sends a stop bit. Two command op codes are available that either wait for ACK/NACK or ignore ACK/NACK on the last byte.

Device Addresses

Table 9 lists the standardized device addresses for the E-DDC bus, as specified in the E-DDC and HDCP standards.

Table 9. HDCP DDC Standard Device Addresses

Device	Address		
EDID PROM	0xA0		
E-DDC Segment Address	0x60		
HDCP Receiver	0x74		

DDC Read Operation

The firmware sets up the read command when it loads values for the device address, the offset address, and the byte count. If the read command is an extended-DDC read, the segment address must also be loaded. After loading these values, the command register is loaded with the read command code.

The transmitter uses a FIFO to hold data read across the DDC bus. Up to 16 bytes can be held in the FIFO, but as many as 1023 bytes can be read in one master DDC operation by setting the overall count in DDC_COUNT. The IN_PROG bit (0x72:0xF2[4]) is cleared when the last byte has been read. Figure 16 illustrates how to perform a *short read* of 16 bytes or less. All *N* bytes can be read from the finished FIFO with one local I²C read command.

Figure 16. Master I²C Read Command Flowchart

To perform lengthy, multi-byte read operations that exceed the depth of the physical FIFO, the firmware should poll the status of the master DDC block FIFO by reading the value of the DDC_FIFOCNT register (0x72:0xF5). Each time the FIFO fills up to contain a certain number of bytes (up to 16), the firmware should read that number of bytes, wait for the FIFO to refill, and then repeat the process until the required total number of bytes is read. At that point, the master DDC issues a stop command. The source firmware can pull bytes from the FIFO continuously while the transmitter performs the actual read cycles on the DDC bus.

Silicon Image recommends that the designer add timeout protection in case the FIFO fails to fill up to the required number of bytes.

Note: During such a read, the DDC bus is busy. No other operation can take place on the DDC bus until the read is complete.

Write Command

Write commands are similar to read commands. The FIFO must be written by the firmware before initiating the command, after emptying the FIFO as described above. If fewer than 17 bytes will be written to the DDC channel, the firmware must only load the bytes to the FIFO and then write the DDC_CMD register with the write command code. If more than 16 bytes will be written, the firmware must fill the FIFO, wait for it to begin sending, and then write the remaining bytes into the FIFO without causing it to overflow. Because neither HDMI nor HDCP require a write of more than 16 bytes, such an operation is not described in this Programmer's Reference.

Each master I²C operation begins with writes to several registers in the transmitter. For a write command, the destination device address is followed by the offset address and the byte count. The firmware must also clear the FIFO before writing data to it. When the byte count is complete, the transmitter automatically sends the stop bit to the DDC bus.

Figure 17 shows how to write up to 16 bytes from the firmware to the DDC bus. All the data fits into the FIFO so that a multi-byte I²C write can be used from the firmware to the transmitter. The WRITE command is then issued to the DDC_CMD register and all data bytes are transferred across the DDC bus. Some type of timeout should be used when checking that the Master DDC module is available, either before starting a new command or before returning from the subroutine after beginning a command.

Figure 17. Master I²C Write Command Flowchart

Figure 17 includes a check before beginning the write command to be certain that the master DDC block is not already in use, and a check after triggering the write command to check for bus hangs. If the write command times out or fails to receive an ACK from the slave device, an abort command is issued.

Abort Command

A read or write command can be interrupted by the firmware at any time by writing an abort command to the DDC_CMD register (0x72:0xF3). The abort command issues a STOP, followed by nine SCK clock cycles, but only if a previous command is incomplete. If the abort command is issued when no other command is in progress, no action occurs on the DDC link. Firmware should allow for DDC bus hangs and include a timeout in the loop that waits for the completion of a write or read command. This can be done by setting up a watchdog timer with an interrupt service

routine and aborting the DDC command if the timer expires. It can also be done by polling the DDC_STATUS byte and deciding that the command is stalled, then issuing an abort command.

Setting up the PLL Control Registers

General

The following seven registers need to be set for a proper operation of the HDMI Transmitter's PLL (the register names in this section are the names used in this Programmer's Reference):

- 0x72:0x0C System Control Register #4 enables/disables the PLL filter and sets its Charge pump current.
- 0x72:0x49 Video Action Enable Register defines the input video bus width, and specifically the color depth of the HDMI Transmitter output.
- 0x72:0x80 TMDS C Control Register sets the Filter PLL post counter for the audio clock FAPOSTCOUNT.
- 0x72:0x82 TMDS Control Register #1 sets the multiplication ratio TCLKSEL between the FPLL frequency and the input pixel clock (IDCK) frequency.
- 0x72:0x83 TMDS Control Register #2 sets the divider ratio for the HDMI transmitter PLL post counter POST_COUNT, the divider ratio for the PLL filter feedback counter FFB_COUNT, and the divider ratio for the PLL filter front counter FFR COUNT.
- 0x72:0x84 TMDS Control Register #3 sets ITPLL, which controls the current of the low pass filter (LPF) of the PLL, and the divider ratio for the PLL post counter, FPOST_COUNT.
- 0x72:0x85 TMDS Control Register #4 sets the PLL front counter divide ratio TFR_COUNT.

The settings depend on the input pixel clock frequency, which varies with the input resolution and on the required color depth (24/30/36 bits).

PLL Setup Tables

To set the PLL control registers, Table 10 through Table 15 are used.

The **mpll settings** tables define the link (HDMI output) clock frequency as a function of **TPOSTCOUNT** (0x72:0x83[7:6]), **ITPLL** (0x72:0x84[6:3]) and **TFRCOUNT** (0x72:0x85[1:0]).

The **ifpll settings** tables define the following outputs:

- The outputs of the PLL's phase frequency detector (PFD)
- The PLL's VCO
- The output clock

Each of these outputs is a function of some or all of the following:

- The color depth (set in 0x72:0x49[7:6])
- The Link-frequency-to-input-IDCK-multiplication ratio (set in 0x72:0x82[6:5])
- IPLLF (set in 0x72:0x0C[4:1])
- FFRCOUNT (set in 0x72:0x83[2:0])
- FFBCOUNT (set in 0x72:0x83[5:3])
- FPOSTCOUNT (set in 0x72:0x84[1:0]
- FAPOSTCOUNT (set in 0x72:0x80[5]).

Note: The Programmer's Reference, Table 10 through Table 15, and the reference firmware use slightly different names for some of the variables, enumerations and macro definitions that represent similar register fields. This appendix explicitly re-defines these terms, using the register full address and bit-field.

Basic Requirements and Assumptions

The VCO frequency of the PLL (refer to the previous section) must always be between 100 MHz and 250 MHz for proper operation.

In the SiI9134 reference code, **TCLKSEL** (0x72:0x82[6:5]) is always set to 0b10, meaning that **FPLL** is the same as **IDCK** (the input pixel clock). Therefore, the firmware only uses the sections marked as '1x' in Table 10 through Table 13 for the PLL setup.

The reference firmware does not use Table 15, **Recommended Setting #2.** Refer to the next section.

Note: The user is free to use any another TCLKSEL and Recommended Setting #2 as needed.

PLL Setup Procedure – Overview

The following steps are implemented by Silicon Image reference firmware to set up the PLL control registers.

Table 14 and Table 15 contain the recommended settings for ITPLL (0x72:0x84[6:3]) which sets the PLL LPF frequency response; TPOSTCOUNT (0x72:0x83[7:6]) which sets the post count divider; and TFRCOUNT (0x72:0x85[1:0]) that sets the PLL front counter. These settings define, for each of the two groups, three frequency ranges for the link (output) clock frequency.

The SiI9034/9134 reference firmware uses Table 14, Recommended Setting #1, and does not use Table 15. Therefore, 0x72:0x84[6:3] (the **ITPLL** field) is set to 0b0110, which sets the charge pump current to 50 μ A.

Table 14 and Table 15 define three ranges for the link clock frequency, which is the clock that will be sent from the SiI9134 HDMI output. For 24-bit color depth the link frequency is the standard pixel clock frequency of the format sent from the HDMI transmitter. The link frequency must be multiplied by a factor of 30/24 for 30 bit depth and by 36/24 for 36 bit depth.

The three regions are named **Blue**, **Yellow** and **Orange**. In **Table 10** through **Table 15**, the left column is nicknamed **Orange**, the middle column is nicknamed **Yellow** and the right column is nicknamed **Blue**. The three regions are defined by their lowest and highest frequencies (corner points), which are the link frequencies of 25, 64, 126 and 270 MHz, respectively.

After a region (such as Yellow) is selected, based on the input pixel clock (**IDCK**) frequency and the input color depth, the function **SiI_Mpll_setup**() is called by the PLL setup function **SiI_TMDS_setup**. **SiI_Mpll_setup**() sets 0x72:0x83[7:6] (**tpostcount**) and 0x72:0x85[1:0] (**tfrcount**). It takes the values of these parameters from the header of the corresponding regions of Table 14.

PLL Setup Firmware Implementation

The function **SiI_TMDS_setup()** is the main function called to set the PLL. It takes as a parameter an index into the firmware table **VModeTables[]**, from which it extracts the proper input pixel clock frequency (**IDCK**). It first reads 0x72:0x82[6:5] to find the ratio between the link clock frequency and the input pixel clock. In the current SiI9134 reference firmware that ratio is set to 1 by setting 0x72:0x82[6:5] to 0b10. The local variable tclk is then set to **x1**, which is a macro definition for 0x20.

SiI_TMDS_setup() then reads 0x72:0x49[7:6] to determine the input bus width. This value must already have been set by the host. If using the Silicon Image starter kit, be sure that it is running only with **HDMIGear** 3.11.

SiI_TMDS_setup() sets local variable iLowRange to 25, which is lowest value of the link clock acceptable for HDMI. Based on the value of 0x72:0x49[7:6], the switch statement **switch (bRegVal)** sets the values of local variable **nFFBCOUNT** (that will eventually be written to 0x72:0x83[5:3]) and the values of corner points **iMidRange1**, **iMidRange2**, **iHghRange**.

For a color depth of 24 bits, **iMidRange1**, **iMidRange2**, and **iHghRange** are the corner points as defined in the previous section. However, for color depths of 30 and 36 bits the clock values must be multiplied by 30/24 and 36/24, respectively. The corner points for larger depths must be made lower to select higher PLL multipliers. Therefore, **iMidRange1** becomes 64.84•24/30 = 48.63, and 53 is selected from Table 14. For 36 bits, **iMidRange1** becomes 64•24/36 = 42.66, so 44 is selected. Similarly, **iMidRange2** is 126•24/30 = 93.75 (but 104, which is the first available value higher than 93.75 is selected) and 126•24/36 = 84 (86 which is the closest value above it is selected). Similarly **iHghRange** is set to 203 and 168, respectively.

The value for **nFFBCOUNT**, which needs to be written to 0x72:0x83[5:3], is taken from the header of the corresponding section of Table 10 through Table 13. In the reference firmware, 0x72:0x82[6:5] = 0b10. As a result, only the tables marked as **x1** are used (there are **three** such tables for each color depth, one for the **Orange**, one for the **Yellow** and one for the **Blue** region). If, for example, the frequency range matches the **Orange** region, then, for 24 bit

color depth, the **8bit to 8bit; 1x Orange** table should be used. That sets **nFFBCOUNT** to 0b011. For 30 bit color depth the **10bit to 8bit; 1x Orange** table should be used, which sets **nFFBCOUNT** to 0b100, and for 36 bit color depth the **12bit to 8bit; 1x Orange** table should be used, which sets **nFFBCOUNT** to 0b101.

nFPOSTCOUNT, which goes into 0x72:0x84[2:0], is first set to 0x03 which is the correct value for the Blue region, but is adjusted to 1 and 0 for the Yellow and Orange ranges, respectively, if needed, as specified in the headers of the **x1** tables (8-bit to 8-bit, 10-bit to 8-bit, 12-bit to 8-bit) of the three frequency regions.

After the adjusted frequency range (defined by its corner points) is determined, **nFFRCOUNT** (to be written to 0x72:0x83[2:0]) is selected from the header of the proper frequency range table. For each frequency range, **nFFRCOUNT** has the same value for all three possible color depths (0b011 for **Orange**, 0b001 for **Yellow** and 0b000 for **Blue**).

After **nFFRCOUNT** is set, **SiI_TMDS_setup()** calls function **SiI_Mpll_setup()** with the proper frequency range as an argument. That sets 0x72:0x83[7:6] (**tpostcount**) and 0x72:0x85[1:0] (**tfrcount**). Refer to the previous section.

SiI_TMDS_setup() then calls function **SiI_FApost_setup()**, which takes the frequency range, the input pixel clock frequency, and the color depth as parameters. Based on the input frequency range (Blue, for instance) and on the color depth, **SiI_FApost_setup()** takes the value of **nFAPOSTCOUNT** (0x72:0x80[5]) from the corresponding **x1** section of Table 10 through Table 13.

For example, if the input pixel clock is 74.25MHz, and the color depth is set to 36 bits, **SiI_TMDS_setup()** selects the **Yellow** range, because its **iMidRange1** is 44 and **iMidRange2** is 86. The **Yellow** frequency range will be passed as a parameter to **SiI_FApost_setup()**, together with **IDCK** of 74 and color depth of 36 bit (enumerated as 2). Because **IDCK** is more than 58, from the **Yellow** 12bit-to-8bit-1x columns of **Table 12**, **nFAPOSTCOUNT** is set to 1.

SiI FApost setup() then writes the selected value of **nFAPOSTCOUNT** to 0x72:0x80[5].

SiI_TMDS_setup() writes the recommended value of nIPLLF to 0x72:0x0C[4:1] to set the PLL filter charge pump current to 10uA; **nFFRCOUNT** to 0x72:0x83[2:0] and **nFPOSTCOUNT** to 0x72:0x84[2:0].

A Numerical Example

The following example follows the procedure described in the previous section for an input format of 1280 x 720p, and a color depth of 36 bits. Please refer to the listing of function **SiI_TMDS_setup()** below.

For 720p, the input parameter bVMode for the function **SiI_TMDS_setup()** is 2. The function uses it to access input mode table VModeTables[2], to extract the value of the pixel clock for 720p and divide it by 100, setting variable idclk_freq to 74.

Reading 0x82[6:5], the function finds that **FPLL** is the same as **IDCK**, setting tclk to **x1**. This value is later used to calculate **nFPOSTCOUNT**.

The input video bus width (color depth) is found by reading 0x49[7:6].

Based on the color depth found in 0x49[7:6], SiI TMDS setup() sets:

nFFBCOUNT = 0x05; iMidRange1 = 44; iMidRange2 = 86; iHghRange = 168;

The value of **nFFBCOUNT** is then written to 0x72:0x83[5:3].

IPLLF (0x72:0x0C[4:1]) is set to 1, which is the value listed in the tables.

Because tclk was set to 1, the function initially sets **nFPOSTCOUNT** to 0x03. This value is adjusted later.

SiI_TMDS_setup() then checks between what pair of values (defined in the TMDS setup) the input pixel clock falls. Because idclk_freq is 74 MHz, it is between 44 and 86 MHz, which is the **Yellow** color range for 36-bit color depth. This range dictates (from the **12 bits to 8 bits 1x Yellow** columns of Table 12) that **nFFRCOUNT** (0x72:0x83[2:0]) be 0x03 and **nFPOSTCOUNT** be 0.

SiI_TMDS_setup() calls **SiI_Mpll_setup(yellow)**. **SiI_Mpll_setup** handles the settings defined in Table 14 and Table 15. For Recommended Settings #1 (Table 14), the value of (0x72:0x84[6:3]) is always 6. It also sets both **tpostcount** (0x72:0x83[7:6] and **tfrcount** (0x72:0x85[1:0]) to 0b01, since these are the values defined at the top of the **Yellow** column of the **Table 14**. **SiI_Mpll_setup()** writes these values to 0x72:0x83[7:6], 0x72:0x84[6:3] and 0x72:0x85[1:0].

SiI_TMDS_setup() then calls SiI_FApost_setup(yellow, idclk_freq, bRegVal), where yellow is the second table column, idclk_freq is 74 and bRegVal is the color depth. In this example, the table region is Yellow and the color depth is 36.

SiI_FApost_setup() then checks if the input pixel clock frequency is higher than 58 MHz, because this is the value in the Yellow column of the **12bit to 8bit;1x** in Table 12 where **FAPOSTCOUNT** (0x72:0x80[5]) needs to be set to 1. For a 74-MHz pixel clock, that is the case, so **SiI_FApost_setup()** sets (0x72:0x80[5] to 1 and returns.

SiI_TMDS_setup() writes the values of **nIPLLF**, **nFFRCOUNT**, **nFPOSTCOUNT** to 0x72:0x80, 0x72:0x83 and 0x72:0x84 respectively. This step completes the settings of the PLL control registers.

SiI9134 Register Setting Implementation

```
// SiI_TMDS_setup
//----
byte SiI_TMDS_setup(byte bVMode)
    int idclk_freq, iLowRange, iMidRangel, iMidRange2, iHghRange;
    TCLK SEL tclk;
   byte bRegVal;
   byte bRegVal2;
   byte nIPLLF, nFFRCOUNT, nFFBCOUNT, nFPOSTCOUNT;
   printf ("[TXVIDP.C](SiI_TMDS_setup): Start...\n");
    idclk_freq = (int) VModeTables[bVMode].PixClk / 100;
bReqVal = ReadByteHDMITXP0 ( TX TMDS CTRL ADDR ) & 0x60;
                                                                  // get TCLSEL
value from 0x72:0x82[6:5]. In this prgram it is always x1
                                                         (==0b01)
switch (bReqVal)
                         x0_5; printf ("[TXVIDP.C](SiI_TMDS_setup): 0.5x
        case 0x00: tclk
tclk\n"); break;
       default:
        case 0x20:
                   tclk = x1;
                                printf ("[TXVIDP.C](SiI_TMDS_setup): 1.0x
tclk\n"); break;
        case 0x40: tclk = x2;
                                printf ("[TXVIDP.C](SiI_TMDS_setup): 2.0x
tclk\n"); break;
       case 0x60: tclk = x4;
                                printf ("[TXVIDP.C](SiI TMDS setup): 4.0x
tclk\n"); break;
   bRegVal = ReadByteHDMITXP0 ( VID_ACEN_ADDR );
   bReqVal = bReqVal & (~VID ACEN DEEP COLOR CLR);
                                                          // 0x72:0x49[7:6]
      (bus width => color depth - 24/30/36 bit)
   bRegVal = bRegVal >> 6;
    iLowRange = 25;
                                    // "Blue" range lower point
switch (bRegVal)
                                    //
        case SiI_DeepColor_24bit:
           nFFBCOUNT = 0x03;
                                          // 0x72:0x83[5:3]
            iMidRangel = 64;
                                // "Blue" upper freq and "Yellow" range lower
freq for 24 bit color depth
            iMidRange2 = 126;
                               // "Yellow" range upper freq and "Orange" range
lower freq for 24 bit
                                // color depth
```

```
iHghRange = 270; // "Orange" range highest freq for 24 bit color
depth
            break;
case SiI_DeepColor_30bit:
            nFFBCOUNT = 0x04; // 0x72:0x83[5:3]
            iMidRange1 = 53; // "Blue" range upper freq and "Yellow" range
lower freq for 30 bit
// color depth
iMidRange2 = 104; // "Yellow" range upper freq and and "Orange" range lower freq
for 30 // bit color depth
            iHghRange = 203; // "Orange" range highest freq for 30 bit color
depth
            break;
        case SiI_DeepColor_36bit:
                                    // 0x72:0x83[5:3]
            nFFBCOUNT = 0x05;
            iMidRangel = 44; // "Blue" range upper freq and "Yellow" range
                  // 36 bit color depth
lower freq for
iMidRange2 = 86; // "Yellow" range upper freq and "Orange" range lower freq
for 36 bit color depth
            iHghRange = 168;
                                       "Orange" range highest freq for 36 bit
color depth
            break;
    // Set FFBCount field in 0x72:0x83[5:3]:
    bRegVal2 = ReadByteHDMITXP0 ( TX_TMDS_CTRL2_ADDR
    bRegVal2 &= CLR BITS 5 4 3;
    bRegVal2 |= (nFFBCOUNT << 3);</pre>
    WriteByteHDMITXP0 ( TX_TMDS_CTRL2_ADDR,
                                            bRegVal2
                                                                   // 72:83
   nIPLLF = 0x01;
    switch (tclk) {
        case x0_5: nFPOSTCOUNT = 0x07; break;
                   nFPOSTCOUNT = 0x03; break;
        case x1:
                                                  // This is the value set in
0x72:0x84[2:0]
                   nFPOSTCOUNT = 0x01; break;
        case x2:
                   nFPOSTCOUNT = 0x00; break;
        case x4:
    // Out of Range
if ((idclk_freq < iLowRange) || (idclk_freq > iHghRange))
            // example: iLowRange == 25 (always) for DC 36bit - IHghRange == 168
        return TMDS_SETUP_FAILED;
    // Blue range
if ((idclk_freq >= iLowRange) && (idclk_freq <= iMidRange1))</pre>
        nFFRCOUNT = 0x00;
        SiI_Mpll_setup(blue);
        SiI_FApost_setup(blue, idclk_freq, bRegVal);
```

```
else
        // Yellow range
        if ((idclk_freq > iMidRange1) && (idclk_freq <= iMidRange2))</pre>
            if (tclk == x4)
                return TMDS_SETUP_FAILED;
            nFFRCOUNT = 0x01;
            nFPOSTCOUNT >>= 1;
            SiI Mpll setup(yellow);
            SiI_FApost_setup(yellow, idclk_freq, bRegVal);
        else
            // Orange range
            if ((idclk_freq > iMidRange2) && (idclk_freq <= iHghRange
     {
                if ((tclk == x4) | (tclk == x2)
                    return TMDS SETUP FAILED;
                nFFRCOUNT = 0x03;
                nFPOSTCOUNT >>= 2;
                SiI_Mpll_setup(orange);
                SiI_FApost_setup(orange, idclk_freq,
    // TX_SYS_CTRL4_ADDR
                                     72:0x0C
    // [7:5] reserved
// [4:1] IPLLF = 0x01*
                          - Set 72:0x0C[4:1] to
                                                     => set the PLL filter charge
                      // 10uA
pump current to
    // [0]
               reserved
                                         ((ReadByteHDMITXP0(TX_SYS_CTRL4_ADDR) &
WriteByteHDMITXPO (TX_SYS_CTRL4_ADDR,
0xE1 ) | (nIPLLF << 1))); // 72:0x0C
    // TX_TMDS_CTRL2_ADDR
                                     72:83
    // [7:6]
                TPOSTCOUNT
    // [5:3]
                FFBCOUNT
                         = 0 \times 03^{3}
    // [2:0]
                FFRCOUNT*
       WriteByteHDMITXP0 (TX TMDS CTRL2 ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL2_ADDR) & 0xF8) | (nFFRCOUNT)));
// Value set after the "switch (bRegVal)" statement in this function.
    // TX_TMDS_CTRL3_ADDR
    // [7]
                reserved
    // [6:3]
                ITPLL
    // [2:0]
                FPOSTCOUNT*
    WriteByteHDMITXP0 (TX TMDS CTRL3 ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL3_ADDR) & 0xF8) | (nFPOSTCOUNT)));
    return TMDS_SETUP_PASSED;
```

```
// SiI_Mpll_setup
// Use "Recommended Setting #1" (table 5)
//----
void SiI_Mpll_setup(byte MpllSet)
   byte itpll, tpostcount, tfrcount;
   itpll = 0x06;
                                            // always
   switch (MpllSet) {
       default:
       case blue:
          tpostcount = 0x02;
          tfrcount = 0x00;
          break;
       case yellow:
           tpostcount = 0x01;
                     = 0x01;
           tfrcount
          break;
       case orange:
          tpostcount = 0x00;
          tfrcount
                     = 0 \times 02
          break;
   // TX_TMDS_CTRL2_ADDR
   // [7:6]
              TPOSTCOUNT*
   // [5:3]
              FFBCOUNT
   // [2:0]
              FFRCOUNT
   WriteByteHDMITXP0 (TX_TMDS_CTRL2_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL2_ADDR) & 0x3F) | (tpostcount << 6)));
   // TX_TMDS_CTRL3_ADDR
   // [7]
              reserved
   // [6:3]
              ITPLL*
   // [2:0] FPOSTCOUNT
   WriteByteHDMITXPO (TX_TMDS_CTRL3_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL3_ADDR) & 0x87) | (itpl1 << 3))); // 72:84
   // TX TMDS CTRL4 ADDR
                                 72:85
   // [7:2]
              reserved
   // [1:0]
              TFRPOSTCOUNT*
   WriteByteHDMITXP0 (TX_TMDS_CTRL4_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL4_ADDR) & 0xFC) | (tfrcount))); // 72:85
// SiI_FApost_setup
//-----
void SiI FApost setup(byte RangeSet, int idclk freg, byte bpp)
   byte nFAPOSTCOUNT = 0;
   switch (RangeSet) {
```

Silicon Image, Inc.

```
default:
        case blue:
            switch (bpp)
                default:
                case SiI_DeepColor_Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 44) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 33) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 30) nFAPOSTCOUNT =
1; break;
            break;
case yellow:
            switch (bpp)
                default:
                case SiI DeepColor Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 86) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 71) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 58)
                                                                 nFAPOSTCOUNT =
1; break;
            break;
case orange:
            switch (bpp)
                default:
                case SiI_DeepColor_Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 168) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 139) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 114) nFAPOSTCOUNT =
1; break;
            break
           // TX_TMDS_CCTRL_ADDR
       [7:6]
                reserved
    //
    //
        [5]
                FAPOSTCOUNT*
       [4:0]
                reserved
    WriteByteHDMITXP0 (TX_TMDS_CCTRL_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CCTRL_ADDR) & 0xDF) | (nFAPOSTCOUNT << 5))); // 72:80
```

Table 10. IFPLL Setting: 8-bit to 8-bit, 1x

IDI I E[2.0]		Setting				0001					0001				
IPLLF[3:0]	0001					0001					0001				
FFRCOUNT [2:0]	011					001					000				
FFBCOUNT [2:0]	011					011					011				
FPOST COUNT[2:0]	000					001					011				
	D=	4				D=	2				D=	1			
	N=	4				N=	4				N=	4			
	P=	1				P=	2				P=	4			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	25.00	25.00	1.00		12.50	50.00	25.00	1.00		25.00	100.00	25.00	1.00	0
27.50	6.88	27.50	27.50	1.00		13.75	55.00	27.50	1.00		27.50	110.00	27.50	1.00	0
30.25	7.56	30.25	30.25	1.00		15.13	60.50	30.25	1.00		30.25	121.00	30.25	1.00	0
33.28	8.32	33.28	33.28	1.00		16.64	66.55	33.28	1.00		33.28	133.10	33.28	1.00	0
36.60	9.15	36.60	36.60	1.00		18.30	73.21	36.60	1.00		36.60	146.41	36.60	1.00	0
40.26	10.07	40.26	40.26	1.00		20.13	80.53	40.26	1.00		40.26	161.05	40.26	1.00	0
44.29	11.07	44.29	44.29	1.00		22.14	88.58	44.29	1.00		44.29	177.16	44.29	1.00	1
48.72	12.18	48.72	48.72	1.00		24.36	97.44	48.72	1.00		48.72	194.87	48.72	1.00	1
53.59	13.40	53.59	53.59	1.00		26.79	107.18	53.59	1.00	0	53.59	214.36	53.59	1.00	1
58.95	14.74	58.95	58.95	1.00		29.47	117.90	58.95	1.00	0	58.95	235.79	58.95	1.00	1
64.84	16.21	64.84	64.84	1.00		32.42	129.69	64.84	1.00	0	64.84	259.37	64.84	1.00	1
71.33	17.83	71.33	71.33	1.00		35.66	142.66	71.33	1.00	0	71.33	285.31	71.33	1.00	
78.46	19.62	78.46	78.46	1.00	X	39.23	156.92	78.46	1.00	0	78.46	313.84	78.46	1.00	
86.31	21.58	86.31	86.31	1.00		43.15	172.61	86.31	1.00	1	86.31	345.23	86.31	1.00	
94.94	23.73	94.94	94.94	1.00		47.47	189.87	94.94	1.00	1	94.94	379.75	94.94	1.00	
104.43	26.11	104.43	104.43	1.00	0	52.22	208.86	104.43	1.00	1	104.43	417.72	104.43	1.00	
114.87	28.72	114.87	114.87	1.00	0	57.44	229.75	114.87	1.00	1	114.87	459.50	114.87	1.00	
126.36	31.59	126.36	126.36	1.00	0	63.18	252.72	126.36	1.00	1	126.36	505.45	126.36	1.00	
139.00	34.75	139.00	139.00	1.00	0	69.50	278.00	139.00	1.00		139.00	555.99	139.00	1.00	
152.90	38.22	152.90	152.90	1.00	0	76.45	305.80	152.90	1.00		152.90	611.59	152.90	1.00	
168.19	42.05	168.19	168.19	1.00	0	84.09	336.37	168.19	1.00		168.19	672.75	168.19	1.00	
185.01	46.25	185.01	185.01	1.00	1	92.50	370.01	185.01	1.00		185.01	740.02	185.01	1.00	
203.51	50.88	203.51	203.51	1.00	1	101.75	407.01	203.51	1.00		203.51	814.03	203.51	1.00	
223.86	55.96	223.86	223.86	1.00	1	111.93	447.72	223.86	1.00		223.86	895.43	223.86	1.00	
246.24	61.56	246.24	246.24	1.00	1	123,12	492.49	246.24	1.00		246.24	984.97	246.24	1.00	
270.87	67.72	270.87	270.87	1.00	1	135.43	541.74	270.87	1.00		270.87	1083.47	270.87	1.00	
297.95															

Table 11. IFPLL Setting: 10-bit to 8-bit, 1x

I able 11. I	0001					0001					0001				
FFRCOUNT [2:0]	011					001					0001				
FFBCOUNT [2:0]	100					100					100				
FPOST															
COUNT[2:0]	000 D=	4				001 D=	2				011 D=	1			
	N=	5				N=	5				N=	5			
	P=	1				P=	2				P=	4			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	31.25	31.25	1.25		12.50	62.50	31.25	1.25		25.00	125.00	31.25	1.25	0
27.50	6.88	34.38	34.38	1.25		13.75	68.75	34.38	1.25		27.50	137.50	34.38	1.25	0
30.25	7.56	37.81	37.81	1.25		15.13	75.63	37.81	1.25		30.25	151.25	37.81	1.25	0
33.28	8.32	41.59	41.59	1.25		16.64	83.19	41.59	1.25		33.28	166.38	41.59	1.25	1
36.60	9.15	45.75	45.75	1.25		18.30	91.51	45.75	1.25		36.60	183.01	45.75	1.25	1
40.26	10.07	50.33	50.33	1.25		20.13	100.66	50.33	1.25	0	40.26	201.31	50.33	1.25	1
44.29	11.07	55.36	55.36	1.25		22.14	110.72	55.36	1.25	0	44.29	221.45	55.36	1.25	1
48.72	12.18	60.90	60.90	1.25		24.36	121.79	60.90	1.25	0	48.72	243.59	60.90	1.25	1
53.59	13.40	66.99	66.99	1.25		26.79	133.97	66.99	1.25	0	53.59	267.95	66.99	1.25	1
58.95	14.74	73.69	73.69	1.25		29.47	147.37	73.69	1.25	0	58.95	294.74	73.69	1.25	
64.84	16.21	81.05	81.05	1.25		32.42	162.11	81.05	1.25	0	64.84	324.22	81.05	1.25	
71.33	17.83	89.16	89.16	1.25		35.66	178.32	89.16	1.25	1	71.33	356.64	89.16	1.25	
78.46	19.62	98.08	98.08	1.25		39.23	196.15	98.08	1.25	1	78.46	392.30	98.08	1.25	
86.31	21.58	107.88	107.88	1.25	0	43.15	215.77	107.88	1.25	1	86.31	431.53	107.88	1.25	
94.94	23.73	118.67	118.67	1.25	0	47.47	237.34	118.67	1.25	1	94.94	474.69	118.67	1.25	
104.43	26.11	130.54	130.54	1.25	0	52.22	261.08	130.54	1.25	1	104.43	522.16	130.54	1.25	
114.87	28.72	143.59	143.59	1.25	0	57.44	287.19	143.59	1.25		114.87	574.37	143.59	1.25	
126.36	31.59	157.95	157.95	1.25	0	63.18	315.90	157.95	1.25		126.36	631.81	157.95	1.25	
139.00	34.75	173.75	173.75	1.25	1	69.50	347.49	173.75	1.25		139.00	694.99	173.75	1.25	
152.90	38.22	191.12	191.12	1.25	1	76.45	382.24	191.12	1.25		152.90	764.49	191.12	1.25	
168.19	42.05	210.23	210.23	1.25	1	84.09	420.47	210.23	1.25		168.19	840.94	210.23	1.25	
185.01	46.25	231.26	231.26	1.25	1	92.50	462.52	231.26	1.25		185.01	925.03	231.26	1.25	
203.51	50.88	254.38	254.38	1.25	1	101.75	508.77	254.38	1.25		203.51	1017.53	254.38	1.25	
223.86	55.96	279.82	279.82	1.25		111.93	559.64	279.82	1.25		223.86	1119.29	279.82	1.25	
246.24	61.56	307.80	307.80	1.25	X	123.12	615.61	307.80	1.25		246.24	1231.22	307.80	1.25	
270.87	67.72	338.58	338.58	1.25		135.43	677.17	338.58	1.25		270.87	1354.34	338.58	1.25	
297.95				,		•									

Table 12. IFPLL Setting: 12-bit to 8-bit, 1x

Table 12. I	FPLL	Setting	;: 12-DIL	เบ ง-ม	11, 1X										
IPLLF[3:0]	0001					0001					0001				
FFRCOUNT [2:0]	011					001					000				
FFBCOUNT [2:0]	101					101					101				
FPOST COUNT[2:0]	000					001					011				
	D=	4				D=	2				D=	1			
	N=	6				N=	6				N=	6			
	P=	1				P=	2				P=	4			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	37.50	37.50	1.50		12.50	75.00	37.50	1.50		25.00	150.00	37.50	1.50	0
27.50	6.88	41.25	41.25	1.50		13.75	82.50	41.25	1.50		27.50	165.00	41.25	1.50	0
30.25	7.56	45.38	45.38	1.50		15.13	90.75	45.38	1.50		30.25	181.50	45.38	1.50	1
33.28	8.32	49.91	49.91	1.50		16.64	99.83	49.91	1.50		33.28	199.65	49.91	1.50	1
36.60	9.15	54.90	54.90	1.50		18.30	109.81	54.90	1.50	0	36.60	219.62	54.90	1.50	1
40.26	10.07	60.39	60.39	1.50		20.13	120.79	60.39	1.50	0	40.26	241.58	60.39	1.50	1
44.29	11.07	66.43	66.43	1.50		22.14	132.87	66.43	1.50	0	44.29	265.73	66.43	1.50	1
48.72	12.18	73.08	73.08	1.50		24.36	146.15	73.08	1.50	0	48.72	292.31	73.08	1.50	
53.59	13.40	80.38	80.38	1.50		26.79	160.77	80.38	1.50	0	53.59	321.54	80,38	1.50	
58.95	14.74	88.42	88.42	1.50		29.47	176.85	88.42	1.50	1	58.95	353.69	88.42	1.50	
64.84	16.21	97.27	97.27	1.50		32.42	194.53	97.27	1.50	1	64.84	389.06	97.27	1.50	
71.33	17.83	106.99	106.99	1.50	0	35.66	213.98	106.99	1.50	1	71.33	427.97	106.99	1.50	
78.46	19.62	117.69	117.69	1.50	0	39.23	235.38	117.69	1.50	1	78.46	470.76	117.69	1.50	
86.31	21.58	129.46	129.46	1.50	0	43.15	258.92	129.46	1.50	1	86.31	517.84	129.46	1.50	
94.94	23.73	142.41	142.41	1.50	0	47.47	284.81	142.41	1.50		94.94	569.62	142.41	1.50	
104.43	26.11	156.65	156.65	1.50	0	52.22	313.29	156.65	1.50		104.43	626.59	156.65	1.50	
114.87	28.72	172.31	172.31	1.50	1	57.44	344.62	172.31	1.50		114.87	689.25	172.31	1.50	
126.36	31.59	189.54	189.54	1.50	1	63.18	379.09	189.54	1.50		126.36	758.17	189.54	1.50	
139.00	34.75	208.50	208.50	1.50	1	69.50	416.99	208.50	1.50		139.00	833.99	208.50	1.50	
152.90	38.22	229.35	229.35	1.50	1	76.45	458.69	229.35	1.50		152.90	917.39	229.35	1.50	
168.19	42.05	252.28	252.28	1.50	1	84.09	504.56	252.28	1.50		168.19	1009.12	252.28	1.50	
185.01	46.25	277.51	277.51	1.50		92.50	555.02	277.51	1.50		185.01	1110.04	277.51	1.50	
203.51	50.88	305.26	305.26	1.50		101.75	610.52	305.26	1.50		203.51	1221.04	305.26	1.50	
223.86	55.96	335.79	335.79	1.50	X	111.93	671.57	335.79	1.50		223.86	1343.15	335.79	1.50	
246.24	61.56	369.36	369.36	1.50		123.12	738.73	369.36	1.50		246.24	1477.46	369.36	1.50	
270.87	67.72	406.30	406.30	1.50		135.43	812.60	406.30	1.50		270.87	1625.21	406.30	1.50	
297.95	l	1]]					l		

Table 13. IFPLL Setting: 16-bit to 8-bit, 1x

IPLLF[3:0]	0001	U	ι το ο-μπ,			0001				
FFRCOUNT	0001					0001				
[2:0]	011					001				
FFBCOUNT [2:0]	011					011				
FPOST COUNT[2:0]	000					001				
	D=	2				D=	1			
	N=	4				N=	4			
	P=	1				P=	2			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAPOSTCOUNT[0]	PFD	vco	Out Clk	Ratio	FAPOSTCOUNT[0]
25.00	12.50	50.00	50.00	2.00		25.00	100.00	50.00	2.00	0
27.50	13.75	55.00	55.00	2.00		27.50	110.00	55.00	2.00	0
30.25	15.13	60.50	60.50	2.00		30.25	121.00	60.50	2.00	0
33.28	16.64	66.55	66.55	2.00	. (33.28	133.10	66.55	2.00	0
36.60	18.30	73.21	73.21	2.00		36.60	146.41	73.21	2.00	0
40.26	20.13	80.53	80.53	2.00		40.26	161.05	80.53	2.00	0
44.29	22.14	88.58	88.58	2.00		44.29	177.16	88.58	2.00	1
48.72	24.36	97.44	97.44	2.00		48.72	194.87	97.44	2.00	1
53.59	26.79	107.18	107.18	2.00	0	53.59	214.36	107.18	2.00	1
58.95	29.47	117.90	117.90	2.00	0	58.95	235.79	117.90	2.00	1
64.84	32.42	129.69	129.69	2.00	0	64.84	259.37	129.69	2.00	1
71.33	35.66	142.66	142.66	2.00	0	71.33	285.31	142.66	2.00	
78.46	39.23	156.92	156.92	2.00	0	78.46	313.84	156.92	2.00	
86.31	43.15	172.61	172.61	2.00	1	86.31	345.23	172.61	2.00	
94.94	47.47	189.87	189.87	2.00	1	94.94	379.75	189.87	2.00	
104.43	52.22	208.86	208.86	2.00	1	104.43	417.72	208.86	2.00	
114.87	57.44	229.75	229.75	2.00	1	114.87	459.50	229.75	2.00	
126.36	63.18	252.72	252.72	2.00	1	126.36	505.45	252.72	2.00	
139.00	69.50	278.00	278.00	2.00		139.00	555.99	278.00	2.00	
152.90	76.45	305.80	305.80	2.00		152.90	611.59	305.80	2.00	
168.19	84.09	336.37	336.37	2.00		168.19	672.75	336.37	2.00	
185.01	92.50	370.01	370.01	2.00	>	185.01	740.02	370.01	2.00	
203.51	101.75	407.01	407.01	2.00		203.51	814.03	407.01	2.00	
223.86	111.93	447.72	447.72	2.00		223.86	895.43	447.72	2.00	
246.24	123.12	492.49	492.49	2.00		246.24	984.97	492.49	2.00	
270.87	135.43	541.74	541.74	2.00		270.87	1083.47	541.74	2.00	
297.95					7,7					

Table 14. MPLL Setting #1

Table 14. WIF LL Sett			
ITPLL[3:0]	0110	0110	0110
TPOSTCOUNT[1:0]	00	01	10
TFRCOUNT[1:0]	10	01	00
Link Clock Frequency			
25.00			
27.50			
30.25			
33.28			
36.60			
40.26			
44.29			
48.72			
53.59			
58.95			
64.84			
71.33			
78.46			
86.31			
94.94			
104.43			
114.87			(/)
126.36			
139.00			
152.90		/ X	
168.19			X
185.01			
203.51			
223.86			
246.24			
270.87			
297.95			

Notes:

0x083[7:6]: TPOSTCOUNT[1:0]: TXPLL post counter 0x084[6:3]: ITPLL[3:0]: TXPLL charge pump current 0x085[1:0]: TPRCOUNT[1:0]: TXPLL pre-counter

Table 15. MPLL Setting #2

ITPLL[3:0]	0110	0110	0110
TPOSTCOUNT[1:0]	00	01	10
TFRCOUNT[1:0]	10	01	00
Link Clock Frequency			
25.00			
27.50			
30.25			
33.28			
36.60			
40.26			
44.29			
48.72			
53.59			
58.95			
64.84			
71.33			
78.46			
86.31			\
94.94			
104.43			
114.87			
126.36			
139.00			<i>J.</i> — (
152.90			
168.19			X
185.01			
203.51			
223.86			
246.24			
270.87			
297.95			(1)

Notes:

0x083[7:6]: TPOSTCOUNT[1:0]: TXPLL post counter 0x084[6:3]: ITPLL[3:0]: TXPLL charge pump current 0x085[1:0]: TPRCOUNT[1:0]: TXPLL pre-counter

Muting Video and Audio in HDCP Applications

Some HDCP applications may require that video and audio be muted until authentication is complete. Whenever the transmitter starts from a powered-down state (either after RESET or after assertion of one or more power-down register bits), the video and audio has to be suppressed until authentication is complete, because authentication cannot be performed when the transmitter is powered-down.

Muting video and audio with General Control Packets in HDMI mode is described on page 100. In DVI mode, there are no General Control Packets, but the SET_AVMUTE bit in register GCP_BYTE1 (refer to page 55) sets the output pixel values to 0x00 when set to 1. Because there is no audio in DVI mode, all content is muted as soon as SET_AVMUTE is set to 1.

Power Down Control

Logic Blocks Affected by Power Down

The transmitter provides four register bits to control power down of various sections of the chip. PD# is defined on page 4. PDIDCK#, PDOSC, and PDTOT# are defined on page 46.

Table 16. Power Down Control Bit Effects

PD#	PDIDCK#	PDOSC	PDTOT#	Function	Note
X	X	X	0	Powers down everything.	1
0	1	1	1	Powers down TMDS core and PLL. Digital logic is switching with an active IDCK. Registers are accessible via I ² C with the exceptions listed Table 17.	2
1	0	1	1	Powers down internal digital clock tree.	3
1	1	0	1	Powers down internal ring oscillator. Disables internal read of HDCP keys and KSV. Disables master DDC block.	4, 5

Notes:

- 1. This combination delivers the lowest power consumption if input signals are switching.
- 2. An attached HDMI receiver sees no switching clock or data and should react by disabling that HDMI input port until switching is detected again.
- 3. A quiet internal clock tree significantly reduces power consumption.
- 4. HDCP keys and KSV are read only at the rising edge of RESET#. PDOSC = 1 by default; therefore, after RESET#, the keys and KSV will be read completely before the firmware can write a 0 to PDIDCK#.
- 5. Set PDOSC = 1 and PDTOT# = 1 whenever Master DDC block is used to write or read across the DDC bus for HDCP. Master DDC can be used when PD# = 0 or PDIDCK# = 0, such as for reading EDID when the attached HDMI receiver is not powered on.

Registers Affected by Power Down

The registers shown in Table 17 require PD# = 1 AND PDIDCK# = 1 AND PDOSC = 1 AND PDTOT# = 1.

Table 17. Registers Affected by PD Bits

Device	Offset	Register
0x7A	0x3E	PB_CTRL1
0x7A	0x3F	PB_CTRL2
0x72	0x0F	HDCP_CTRL
0x72	0x10	BKSV1
0x72	0x11	BKSV2
0x72	0x12	BKSV3
0x72	0x13	BKSV4
0x72	0x14	BKSV5

	Device	Offset	Register
	0x72	0x15	AN1
•	0x72	0x16	AN2
	0x72	0x17	AN3
	0x72	0x18	AN4
	0x72	0x19	AN5
	0x72	0x1A	AN6
	0x72	0x1B	AN7
	0x72	0x1C	AN8

References

Standards Documents

Table 18 lists the abbreviations used in this document. Contact the responsible standards groups listed in Table 19 for more information on these specifications.

Table 18. Referenced Documents

Abbreviation	Specification
HDMI	High-bandwidth Digital Multimedia Interface, Revision 1.4, HDMI Consortium; June 2009
HDCP	High-bandwidth Digital Content Protection, Revision 1.3, Digital Content Protection, LLC; December 2006
DVI	Digital Visual Interface, Revision 1.0, Digital Display Working Group; April 1999
E-EDID	Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; February 2000
CEA-861-D	A DTV Profile For Uncompressed High Speed Digital Interfaces, EIA/CEA; July 2006
EDDC	Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004
DVD	DVD Specifications for Read-Only Disc, Part 4 (Version 1.0, March 1999, Annex B), DVD Forum

Table 19. Standards Groups Contact Information

Standards Group	Web URL	e-mail	phone
ANSI/EIA/CEA	http://global.ihs.com	global@ihs.com	800-854-7179
VESA	http://www.vesa.org		408-957-9270
HDCP	http://www.digital-cp.com	info@digital-cp.com	
DVI	http://www.ddwg.org	ddwg.if@intel.com	
HDMI	http://www.hdmi.org	admin@hdmi.org	

Silicon Image Documents

Table 20 lists the documents relevant to this programmer's reference available from your Silicon Image sales representative.

Table 20. Silicon Image Documents

Document Number	Document Name
SiI-DS-0193	SiI9134 HDMI Deep Color Transmitter Data Sheet
SiI-DS-0189	SiI9034 HDMI Transmitter Data Sheet

Disclaimers

These materials are provided on an "AS IS" basis. Silicon Image, Inc. and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Silicon Image, Inc. and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials.

Silicon Image, Inc. and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

Notwithstanding the foregoing, these materials shall not, in the absence of authorization under U.S. and local law and regulations, as required, be used by or exported or re-exported to (i) any U.S. sanctioned or embargoed country, or to nationals or residents of such countries; or (ii) any person, entity, organization or other party identified on the U.S. Department of Commerce's Denied Persons or Entity List, the U.S. Department of Treasury's Specially Designated Nationals or Blocked Persons List, or the Department of State's Debarred Parties List, as published and revised from time to time; (iii) any party engaged in nuclear, chemical/biological weapons or missile proliferation activities; or (iv) any party for use in the design, development, or production of rocket systems or unmanned air vehicles.

Products and Services

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Silicon Image, Inc. and/or its affiliates are provided on as "AS IS" basis, except to the extent that Silicon Image, Inc. and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, SILICON IMAGE, INC. AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY SILICON IMAGE, INC. AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD, NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW, DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com Sillonina (Control of the Control of

Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com