

/

Congratulations! You passed!

Next Item

1/1 point

1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\bigcirc \quad x^{< i > (j)}$
- () $x^{(j) < i >}$
- $igcap x^{< j > (i)}$

2.

Consider this RNN:

This specific type of architecture is appropriate when:

Correct

It is appropriate when every input should be matched to an output.

- $\bigcap T_x < T_y$
- $igcap T_x > T_y$

$\operatorname{RecuTr}_{x} = 1$ Neural Networks

1/1 point

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

←	Recurrent Neural Networks Quiz, 10 Sentine ht classification (input a piece of text and output a 0/1 to denote positive or negative	10/10 points (100%) sentiment)
	Correct Correct!	
	Image classification (input an image and output a label) Un-selected is correct	
	Gender recognition from speech (input an audio clip and output a label indicating the speake	r's gender)
	Correct!	

1/1 point

4.

You are training this RNN language model. Recurrent Neural Networks

Quiz, 10 questions

 \leftarrow

10/10 points (100%)

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Estimating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

1/1 point

5

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Corre Yes!	ect
	1/1
	point
	e training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number") of these is the most likely cause of this problem? Vanishing gradient problem.
0	Exploding gradient problem.
Corre	ect
	ReLU activation function g(.) used to compute g(z), where z is too large.

Singly support the integral LN of two fixes a 10000 word vocabulary, and are using an LSTM with 100-fine points (100%) are wasterns what is the dimension of Γ_u at each time step?
100
Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.
300
10000

8.

(

Quiz, 10 questions

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

	Yes.	For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$. Current $Neural\ Networks$		
\leftarrow	Rec	current Neural Networks	10/10 points (100%)	
	Quiz, 10 questions		10/ 10 points (100/0)	
		Betty's model (removing Γ_r), because if $\Gamma_upprox 1$ for a timestep, the gradient can propagate l	back through that	
		timestep without much decay.		

1/1 point

9.

Recurrent Neural Networks

Quiz, 10 questions

GRU

10/10 points (100%) LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$a^{< t>} = c^{< t>} \qquad \qquad c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Yes, correct!

- Γ_u and Γ_r
- $1-\Gamma_u$ and Γ_u

/

1/1 point

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.			
	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.			
0	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$			
Correct Yes!				

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

