Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική

Βασίλης Διονύσης Μουστάκας Πανεπιστήμιο Κρήτης

Στην παράγραφο 7, λίγο αργότερα, θα αποδείξουμε τα εξής:

- Δυο αναπαραστάσεις είναι ισόμορφες αν και μόνο αν έχουν τον ίδιο χαρακτήρα.
- Το πλήθος των ανάγωγων χαρακτήρων μιας ομάδας ισούται με το πλήθος των κλάσεων συζυγίας της.

Ας υπολογίσουμε τον πίνακα χαρακτήρων της \mathfrak{S}_5 , χρησιμοποιώντας τα εργαλεία που έχουμε αναπτύξει έως τώρα.

Παράδειγμα. (Πίνακας χαρακτήρων της \mathfrak{S}_5)

Η \mathfrak{S}_5 έχει επτά κλάσεις συζυγίας

	K_{11111}	K_{2111}	K_{221}	K_{311}	K_{32}	K_{41}	K_5
αντιπρόσωπος	ϵ	(12)	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3)(4\ 5)$	$(1\ 2\ 3\ 4)$	$(1\ 2\ 3\ 4\ 5)$.
πληθάριθμος	1	10	15	20	20	30	24

Στην Παράγραφο 9, θα βρούμε έναν τύπο για το πληθάριθμο μιας αυθαίρετης κλάσης συζυγίας της \mathfrak{S}_n .

Έχουμε συναντήσει τρεις ανάγωγους χαρακτήρες της \mathfrak{S}_5 , τους χαρακτήρες της τετριμμένης αναπαράστασης, της αναπαράστασης προσήμου και της συνήθους αναπαράστασης. Στον υπολογισμό του πίνακα χαρακτήρων της \mathfrak{S}_4 , είδαμε ότι και το γινόμενο των δυο τελευταίων χαρακτήρων είναι και αυτός ανάγωγος χαρακτήρας. Οπότε

	K_{11111}	K_{2111}	K_{221}	K_{311}	K_{32}	K_{41}	K_5	
χ^{triv}	1	1	1	1	1	1	1	
$\chi^{ m sign}$	1	-1	1	1	-1	-1	1	
$\chi^{ m std}$	4	2	0	1	-1	0	-1	
$\chi^{\text{std}}\chi^{\text{sign}}$	4	-2	0	1	1	0	-1	

Ψάχνουμε τρεις ακόμα, έστω χ_5, χ_6 και χ_7 . Αν a,b και c είναι οι διαστάσεις τους, ο τύπος διάστασης

$$120 = 1^{2} + 1^{2} + 4^{2} + 4^{2} + a^{2} + b^{2} + c^{2} \implies a^{2} + b^{2} + c^{2} = 86.$$

μας πληροφορεί ότι υπάρχουν τρεις επιλογές (1,2,9),(1,6,7) και (5,5,6). Μπορεί η \mathfrak{S}_5 να έχει και άλλη ανάγωγη αναπαράσταση διάστασης 1;

Ημερομηνία: 29 Οκτωβρίου 2025.

Για να απαντήσουμε σε αυτό το ερώτημα σκεφτόμαστε ως εξής. Ένας χαρακτήρας διάστασης 1 είναι ουσιαστικά ίδιος με την αντίστοιχη αναπαράσταση, καθώς $\mathrm{GL}_1(\mathbb{C}) \cong \mathbb{C} \setminus \{0\}$. Αν χ είναι ένα χαρακτήρας διάστασης 1, τότε

$$\chi(gx) = \chi(g)\chi(x) = \chi(x)\chi(g) = \chi(xg),$$

για κάθε $x,g\in G$, όπου η δεύτερη ισότητα έπεται από την μεταθετικότητα στον $\mathbb C$. Με άλλα λόγια, ο χ δεν "βλέπει" την μη μεταθετικότητα στην G. Αν λοιπόν G^{ab} ήταν η ομάδα που προκύπτει από την G εξαναγκάζοντας όλα τα στοιχεία της να μετατίθενται, δηλαδή

$$gx \equiv xg$$

για κάθε $x,g\in G$, τότε έχουμε μια αμφιμονοσήμαντη απεικόνιση

 $\{χαρακτήρες διάστασης 1 της <math>G^{ab}\} \longrightarrow \{χαρακτήρες διάστασης 1 της <math>G\}.$

Παρέκβαση Θεωρίας Ομάδων. Πιο συγκεκριμένα, έστω [G,G] η υποομάδα της G που παράγεται από όλα τα στοιχεία της μορφής

$$gxg^{-1}x^{-1},$$

για κάθε $g,x\in G$. Η [G,G] ονομάζεται υποομάδα μεταθετών (commutator subgroup) της G και είναι παράδειγμα κανονικής υποομάδας της G. Η ομάδα G^{ab} ορίζεται να είναι η ομάδα πηλίκο G^{ab} G^{ab} και ονομάζεται αβελιανοποίηση (abelianization) της G. Η ζητούμενη αμφιμονοσήμαντη αντιστοιχία δίνεται από

$$\operatorname{Hom}(G/[G,G],\mathbb{C}\setminus\{0\}) \to \operatorname{Hom}(G,\mathbb{C}\setminus\{0\})$$

 $f \mapsto f \circ \operatorname{proj}.$

όπου $\operatorname{proj}: G \to G/[G,G]$ είναι η (κανονική) προβολή³ της G στο G/[G,G].

Παράδειγμα. (Πίνακας χαρακτήρων της \mathfrak{S}_5 , συνέχεια)

Σύμφωνα με τη παραπάνω συζήτηση, για να βρούμε το πλήθος των αναπαραστάσεων διάστασης 1 της \mathfrak{S}_5 αρκεί να καθορίσουμε την \mathfrak{S}^{ab} . Στην Παράγραφο 9, θα δούμε ότι κάθε μετάθεση της \mathfrak{S}_n μπορεί να γραφεί ως γινόμενο αντιμεταθέσεων της μορφής

$$(1\ 2),\ (2\ 3),\ \ldots,\ (n-1\ n).$$

Αρκεί λοιπόν να καταλάβουμε τι συμβαίνει αν απαιτήσουμε αυτές να μετατίθενται.

Στην \mathfrak{S}_5 , οι (1 2) και (2 3) ικανοποιούν την σχέση

$$(1\ 2)(2\ 3)(1\ 2) = (2\ 3)(1\ 2)(2\ 3).$$

 $Aν (1 2)(2 3) \equiv (2 3)(1 2)$, τότε η παραπάνω σχέση γίνεται

$$(1\ 2)^2(2\ 3) \equiv (1\ 2)(2\ 3)^2 \implies (1\ 2) \equiv (2\ 3).$$

 $^{^1}$ Μεταξύ διάφορων ισοδύναμων διατυπώσεων, μια υποομάδα της G ονομάζεται κανονική αν προκύπτει ως ο πυρήνας κάποιου ομομορφισμού.

 $^{^2}$ Αν N είναι μια κανονική υποομάδα της G, τότε το σύνολο G/N των αριστερών κλάσεων της N στην G με πράξη xN*yN=xyN αποτελεί ομάδα, η οποία ονομάζεται ομάδα πηλίκο.

 $^{^3}$ Αν N είναι μια κανονική υποομάδα της G, τότε η απεικόνιση $\operatorname{proj}: G \to G/N$ με $\operatorname{proj}(g) = gN$ έχει πυρήνα ακριβώς το N.

Ομοίως, βλέπουμε ότι

$$(1\ 2) \equiv (2\ 3) \equiv (3\ 4) \equiv (4\ 5)$$

στην \mathfrak{S}^{ab} . Με άλλα λόγια, παιρνόντας από την \mathfrak{S}_5 στην \mathfrak{S}_5^{ab} από τους τέσσερις γεννήτορες μένει μόνο ένας, έστω t, ο οποίος ικανοποιεί τη συνθήκη $t^2=\epsilon$. Άρα,

$$\mathfrak{S}_5 \cong \mathcal{C}_2$$

Όμως, η κυκλική ομάδα τάξης 2 έχει δύο διαφορετικές ανάγωγες αναπαραστάσεις διάστασης 1 και κατά συνέπεια, η μοναδική τριάδα που μπορεί να υπάρξει για τις διαστάσεις των χ_5,χ_6 και χ_7 είναι η (5,5,6).

Παρέκβαση Θεωρίας Ομάδων. (Συνέχεια) Το ίδιο επιχείρημα δουλεύει για κάθε n και για αυτό η αβελιανοποίηση της συμμετρικής ομάδας είναι ισόμορφη με την κυκλική ομάδα τάξης 2. Αν αντί για t χρησιμοποιούσαμε το σύμβολο -1 και κατά συνέπεια κάθε αντιμετάθεση ήταν ισοδύναμη με το -1 στην $\mathfrak{S}_n^{\rm ab}$, τότε η προβολή $\mathfrak{S}_n \to \mathfrak{S}_n^{\rm ab}$ της προηγούμενης συζήτησης δεν είναι άλλη από τον ομομορφισμό πρόσημο

$$\operatorname{sign}: \mathfrak{S}_n \to \{\pm 1\}$$

$$\pi \mapsto \operatorname{sign}(\pi).$$

Ο πυρήνας αυτού του ομομορφισμού

$$\ker(\operatorname{sign}) = \{\pi \in \mathfrak{S}_n : \operatorname{sign}(\pi) = 1\} := A_n$$

αποτελείται από όλες τις άρτιες μεταθέσεις⁴, δηλαδή τις μεταθέσεις που γράφονται ως γινόμενο άρτιου πλήθους δυο αντιμεταθέσεων, ονομάζεται εναλλάσσουσα (alternating) υποομάδα της \mathfrak{S}_n .

Παράδειγμα. (Πίνακας χαρακτήρων της \mathfrak{S}_5 , συνέχεια)

Ψάχνουμε λοιπόν έναν ανάγωγο χαρακτήρα διάστασης 5. Ας θεωρήσουμε τη δράση της \mathfrak{S}_5 στο σύνολο

$$\binom{[5]}{2} := \{12, 13, 14, 15, 23, 24, 25, 34, 35, 45\}$$

όλων των υποσυνόλων του [5] με δυο στοιχεία, που επάγεται από τη δράση καθορισμού της \mathfrak{S}_5 στο [5]. Αν χ είναι ο χαρακτήρας της αντίστοιχης αναπαράστασης μεταθέσεων, τότε από την Άσκηση 2.3 (1) υπολογίζουμε

π	ϵ	(12)	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3)(4\ 5)$	$(1\ 2\ 3\ 4)$	$(1\ 2\ 3\ 4\ 5)$
$\binom{[5]}{2}^{\pi}$	$\binom{[5]}{2}$	{12, 34, 35, 45}	{12, 34}	{45}	{45}	Ø	Ø
χ	10	4	2	1	1	0	0

και γι αυτό

$$(\chi,\chi) = \frac{1}{120}(10^2 + 10 \cdot 4^2 + 15 \cdot 2^2 + 20 \cdot 1^2 + 20 \cdot 1^2 + 30 \cdot 0 + 24 \cdot 0) = 3.$$

 $^{^4}$ Στην $\mathfrak{S}_n^{\mathrm{ab}}$ οι άρτιες μεταθέσεις είναι *όλες* ισοδύναμες με το +1, ενώ οι περιττές με το -1. Αυτό είναι που "ξεχωρίζει" ο ομομορφισμός sign.

Άρα ο χ δεν είναι ανάγωγος, πράγμα το οποίο γνωρίζαμε ήδη (γιατί;), αλλά ο υπολογισμός αυτός σε συνδυασμό με το Πόρισμα 7.5 μας πληροφορεί ότι η ισοτυπική του διάσπαση περιέχει ακριβώς τρεις ανάγωγους χαρακτήρες με πολλαπλότητα ένα ο καθένας. Παρατηρούμε ότι

$$(\chi, \chi^{\text{triv}}) = (\chi, \chi^{\text{std}}) = 1.$$

Συνεπώς, αν ψ είναι ο τρίτος ανάγωγος, τότε

$$\chi = \chi^{\text{triv}} + \chi^{\text{std}} + \psi \implies \psi = \chi - \chi^{\text{triv}} - \chi^{\text{std}}$$

όπου η τελευταία ισότητα έπεται από την Πρόταση 6.6. Υπολογίζουμε

και γι αυτό

$$(\psi, \psi) = \frac{1}{120} (5^2 + 10 \cdot 1^2 + 15 \cdot 1^2 + 20 \cdot (-1)^2 + 20 \cdot 1^2 + 30 \cdot (-1)^2 + 24 \cdot 0) = 1.$$

Επομένως, ο ψ είναι ο ένας από τους δυο ανάγωγους χαρακτήρες διάστασης 5 που ψάχναμε. Ας υποθέσουμε, χωρίς βλάβη της γενικότητας, ότι είναι ο χ_5 . Τότε ο $\chi_5\chi^{\rm sign}$ είναι ο χ_6 (γιατί;) και κατά συνέπεια μπορούμε να προσθέσουμε δυο ακόμα γραμμές στον πίνακα χαρακτήρων

	K_{11111}	K_{2111}	K_{221}	K_{311}	K_{32}	K_{41}	K_5	
χ_5	5	1	1	-1	1	-1	0	
χ_6	5	-1	1	-1	-1	1	0	-

Τέλος, όπως και στην περίπτωση της \mathfrak{S}_4 , έτσι και εδώ για να βρούμε τον τελευταίο χαρακτήρα μπορούμε να κοιτάξουμε στον χαρακτήρα της κανονικής αναπαράστασης της \mathfrak{S}_5

Από το Πόρισμα 7.5, έπεται ότι

$$\chi^{\text{reg}} = \chi^{\text{triv}} + \chi^{\text{sign}} + 4\chi^{\text{std}} + 4\chi^{\text{std}}\chi^{\text{sign}} + 5\chi_5 + 5\chi_6 + 6\chi_7 \Rightarrow$$

$$\chi_7 = \left(\chi^{\text{reg}} - \chi^{\text{triv}} - \chi^{\text{sign}} - 4\chi^{\text{std}} - 4\chi^{\text{std}}\chi^{\text{sign}} - 5\chi_5 - 5\chi_6\right)/6$$

και γι αυτό

Συμπερασματικά, ο πίνακας χαρακτήρων της \mathfrak{S}_5 είναι

	K_{11111}	K_{2111}	K_{221}	K_{311}	K_{32}	K_{41}	K_5
χ^{triv}	1	1	1	1	1	1	1
χ^{sign}	1	-1	1	1	-1	-1	1
$\chi^{ m std}$	4	2	0	1	-1	0	-1
$\chi^{\rm std}\chi^{\rm sign}$	4	-2	0	1	1	0	-1
χ_5	5	1	1	-1	1	-1	0
χ_6	5	-1	1	-1	-1	1	0
χ_7	6	0	-2	0	0	0	1

Τι παρατηρείτε;