A Temporal Logic Proof of Deadlock Freedom

 $\langle 3 \rangle 4. \ \Box T1 \ \leadsto \ \Box \neg x[1]$ PROOF: (pc[0] = ``e2'') implies x[0]; and the code, fairness, and $\Box \neg Success$

PROOF: x[1] equals FALSE when process 1 is at ncs.

DEFINE $T0 \stackrel{\triangle}{=} Trying(0)$

 $T1) \rightsquigarrow Success.$ $_{2}$ $\langle 1 \rangle 2$. $T0 \sim$ false

2.1 ⟨2⟩1. $T0 \rightsquigarrow \Box(pc[0] = \text{``e2"})$

e2 and stays there forever.

PROOF: By the $\square \rightsquigarrow \text{Rule}$.

 $\langle 3 \rangle 3. \ \Box (pc[1] = \text{"ncs"}) \Rightarrow \Box \neg x[1].$

 $\square T1$

 $T1 \triangleq Trying(1)$

1 $\langle 1 \rangle 1$. Suffices Assume: $\Box \neg Success$

 $Success \triangleq InCS(0) \vee InCS(1)$

Prove: $(T0 \lor T1) \rightsquigarrow \text{False}$

 $\langle 2 \rangle 2$. $\Box (pc[0] = \text{``e2''}) \rightsquigarrow \Box ((pc[0] = \text{``e2''}) \land \neg x[1])$. $\langle 3 \rangle 1$. Suffices Assume: $\Box(pc[0] = \text{``e2''})$

 $\langle 3 \rangle 2$. TRUE \rightsquigarrow ($\square(pc[1] = \text{"ncs"}) \vee \square T1$).

PROVE: TRUE $\rightsquigarrow \Box \neg x[1]$

PROOF: By standard temporal reasoning, since DeadlockFree equals ($T0 \vee$

PROOF: Process 0 is never at e3 or e4. Therefore, from the code and fairness, we see that if T0 is true and process 0 never reaches cs (which is implied by the assumption $\Box \neg Success$), then process 0 eventually reaches

with x[1] equal to FALSE.

imply that $\Box x[0]$ leads to process 1 reaching and remaining forever at e4

PROOF: By $\langle 3 \rangle 1 - \langle 3 \rangle 4$ and Leads-To Induction, with this proof graph:

 $\sum_{\Box \neg x[1]}$

Proof: The code and fairness imply that if process 1 never reaches cs(by the assumption $\Box \neg Success$), then eventually it must either reach and remain forever at ncs, or T1 must become true and remain true forever.

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

 $\langle 3 \rangle$ 5. Q.E.D.

TRUE

 $\langle 2 \rangle 3. \ \Box((pc[0] = \text{``e2''}) \land \neg x[1]) \rightsquigarrow \text{FALSE}$

PROOF: The code and fairness imply that (pc[0] = ``e2'') and $\Box \neg x[1]$ leads to process 0 reaching cs, contradicting $\Box \neg Success$.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: By $\langle 2 \rangle 1 - \langle 2 \rangle 3$ and Leads-To Induction, with this proof graph:

$$T0 \longrightarrow \Box(pc[0] = "e2") \longrightarrow \Box((pc[0] = "e2") \land \neg x[1]) \longrightarrow FALSE$$

$$4$$
 3 $\langle 1 \rangle 3$. $T1 \sim$ false

Ι

 \mathbf{S}

$$3.1 \quad \langle 2 \rangle 1. \quad T1 \Rightarrow \Box T1$$

?

3
$$\langle 1 \rangle$$
3. $T1 \sim \text{FALSE}$

3.1 $\langle 2 \rangle$ 1. $T1 \Rightarrow \Box T1$

PROOF: From the code, we see that if $T1$ is true and process 1 never reaches cs (which is implied by the assumption $\Box \neg Success$), then $T1$ remains for-

cs (which is implied by the assumption
$$\Box \neg Success$$
), then T1 remains forever true.

3.2
$$\langle 2 \rangle 2$$
. $\Box T1 \rightsquigarrow (T0 \lor \Box (T1 \land \neg T0))$
PROOF: By the tautologies $F \rightsquigarrow (G)$

PROOF: By the tautologies
$$F \leadsto (G \lor (F \land \Box \neg G))$$
 and $\Box F \land \Box G \equiv \Box (F \land G)$.

2.3
$$\langle 2 \rangle$$
3. $\Box (T1 \land \neg T0) \rightsquigarrow \Box (T1 \land \neg x[0])$
PROOF: By the code and fairness, $\Box \neg T0$ implies that eventually process 0 is always at ncs , which implies that $x[0]$ always equals FALSE.

3.4
$$\langle 2 \rangle 4$$
. $\Box (T1 \land \neg x[0]) \rightsquigarrow \text{FALSE}$
PROOF: The code, fairness, and $\Box \neg x[0]$ imply that process 1 eventually reaches $e2$. Fairness and $\Box \neg x[0]$ then imply that process 1 reaches cs , contradicting the assumption $\Box \neg Success$.

 $\langle 2 \rangle$ 5. Q.E.D. PROOF: By $\langle 2 \rangle 1 - \langle 2 \rangle 4$, step $\langle 1 \rangle 2$, and Leads-To Induction, with this proof graph:

4 $\langle 1 \rangle 4$. Q.E.D.

PROOF: By steps $\langle 1 \rangle 1 - \langle 1 \rangle 3$ and a trivial application of Leads-To Induction.