Lecture 4 - Greedy algorithms

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

DDA 4230 Resources

Check our course page.

Please post your question on the discussion board in the BlackBoard (BB) system.

- Step 1: Search for existing questions.
- Step 2: Create a thread.
- Step 3: Post your question.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Greedy algorithms

Greedy Algorithm: 1) pull each arm once and then 2) always pull the arm with the best empirical mean reward.

Algorithm 1: The greedy algorithm

Output:
$$\pi(t), t \in \{0, 1, ..., T\}$$
 while $0 < t < m - 1$ do

$$\pi(t) = t + 1$$

while $m \le t \le T$ do

$$\pi(t) = rg \max_{i \in [m]} \left\{ rac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbb{1}\{a_{t'} = i\}
ight\}$$

z. Shenzhen

The Regret of Greedy algorithms

Consider a two-armed bandit instance where r(1) and r(2) follow Bernoulli distributions with mean p and q (with p > q) respectively.

- If the event $(r_1 = 0, r_2 = 1)$ (with probability q(1-p)) is true, the algorithm will pull arm 2 for the rest of the horizon.
- induce a regret of at least $q(1-p)\Delta_2 T + o(T)$.

The worst-case regret of the greedy algorithm is O(T) (Note O(T) is the worst).

The Regret of Greedy algorithms

• A function f(n) is said to be O(g(n)) if there exist positive constants C and n_0 such that for all $n \ge n_0$:

$$|f(n)| \leq C \cdot |g(n)|$$

• A function f(n) is said to be o(g(n)) if for every positive constant ε , there exists a constant n_0 such that for all $n \ge n_0$:

$$|f(n)| < \varepsilon \cdot |g(n)|$$

arepsilon Greedy algorithms

 ε -greedy algorithm: takes a non-deterministic policy that forces exploration on sub-optimal arms. which is built upon the philosophy of being optimistic is good.

Algorithm 2: The ε -greedy algorithm

Input: $\varepsilon_t, t \in \{0, 1, \dots, T\}$ the exploration parameters

Output: $\pi(t), t \in \{0, 1, ..., T\}$

while $0 \le t \le m-1$ do

$$\pi(t) = t + 1$$

while $m \le t \le T$ do

$$\pi(t) \sim \left\{ \begin{aligned} & \underset{i \in [m]}{\arg \max} \left\{ \frac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbb{1}\{a_{t'} = i\} \right\} & \text{with probability } 1 - \varepsilon_t \\ & i & \text{with probability } \varepsilon_t / m, \text{ for each } i \in [m] \end{aligned} \right.$$

深圳) Hong Kong, Shenzhen

The Regret of arepsilon Greedy algorithms

The algorithm amounts to the choice of the exploration parameters ε_t .

• ε_t does not diminish with t. In fact, if $\varepsilon_t > \varepsilon$ holds for some constant $\varepsilon > 0$, then for T-m rounds, the algorithm has a probability at least ε to pull a random arm. As pulling a random arm induces an expected regret of $\frac{1}{m}(\Delta_2 + \cdots + \Delta_m)$ per step (arm 1 is the best, so $\Delta_1 = 0$), the regret of the algorithm is at least:

$$\overline{R}_t \geq \frac{1}{m}(\Delta_2 + \cdots + \Delta_m)\varepsilon(T - m).$$

The worst-case regret of the greedy algorithm is O(T).

The Regret of arepsilon Greedy algorithms

The algorithm amounts to the choice of the exploration parameters ε_t .

• By carefully choosing ε_t as a decreasing function of t, we can obtain an algorithm with its regret at most $O(\log T)$.

Theorem

Assume that r(i) is 1-sub-Gaussian for each i. By choosing $\varepsilon_t = \min\{1, Ct^{-1}\Delta_{\min}^{-2}m\}$ for some sufficiently large constant C, the regret under the ε -greedy algorithm satisfies

$$\overline{R}_T \leq C' \sum_{i \geq 2} \left(\Delta_i + \frac{\Delta_i}{\Delta_{\min}^2} \log \max \left\{ e, \frac{T \Delta_{\min}^2}{m} \right\} \right),$$

where C' is an absolute constant.

Proof Schema

The proof of the theorem is two-fold.

- The cost of exploration, being $\overline{R}_t = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)\varepsilon$ for $\varepsilon_t = O(1)$, reduces to $\overline{R}_t = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)O(1 + \frac{1}{2} + \dots + \frac{1}{T}) = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)O(\log T)^1$ with the annealing of ε_t .
- Show that the probability of pulling a suboptimal arm in a round after $\log T$ explorations is very thin (as thin as at most $O(\log T/T)$).

$$H_n = 1 + 1/2 + 1/3 + ... + 1/n$$
, is approximately $\log(n)$

¹The nth partial sum of the harmonic series,

Some Remarks of arepsilon Greedy algorithms

Remarks of the Theorem:

- ε-greedy algorithm is the first algorithm we introduce to obtain a logarithmic regret (this is in fact the best regret).
- The choice for ε requires information on the gap of suboptimality.

Without prior knowledge, one has to pull each arm for a few times to get an estimation of this gap and plug in the estimation (known as bootstrap).

Question and Answering (Q&A)

