Краткий курс геометрии если все совсем плохо

Иван Попов

21 апреля 2022 г.

Оглавление

1	Векторная алгебра					
	1.1	Дейст	вия над векторами и их свойства(Аксиомпатика Вейля)			
		1.1.1	Сложение векторов			
		1.1.2	Свойства сложения векторов			
		1.1.3	Умножение вектора на число			
		1.1.4	Свойства умножения вектора на число			
		1.1.5	Скалярное произведение двух векторов			
		1.1.6	Свойства скалярного произведения двух векторов			
		1.1.7	Векторое произведение двух векторов для пространства размерности 3			
		1.1.8	Свойства векторного произведения двух векторов			
		1.1.9	Псевдоскалярное произведение двух векторов			
		1.1.10	Свойства псевдоскалярного произведение двух векторов			
		1.1.11	Смешаное произведение трех векторов			
		1.1.12	Свойства смешаного произведения трех векторов			
	1.2	Взаим	ное расположение векторов, линейная зависимость и базис			
		1.2.1	Взаимное расположение векторов			
		1.2.2	Линейная зависимость			
		1.2.3	Базис			
		1.2.4	Взаимосвязь между базисами			
2	Дей	ействия над векторами в координатной форме				
		2.0.1	Сложение векторов в координатной форме			
		2.0.2	Умножение вектора на число			
		2.0.3	Скалярное произведение векторов			
	2.1	Псевд	оскалярное произведение векторов в координатной форме в двухмерном			
		простр	ранстве			
	2.2	Векто	рное произведение двух векторов в координатной форме в трехмерном			
		вектор	оном простанстве			
	2.3		аное произведение трех векторов в координатной форме в трехмерном			
			оном простанстве			
	2.4		рное произведение n-1 векторов в координатной форме в n-мерном век-			
		_	м простанстве			
	2.5		оскалярное произведение n векторов в координатной форме в n-мерном			
		вектор	рном простанстве			

OГЛAВЛЕНИЕ

3	Opt	гогонализация и нормизация системы векторов	11			
	3.1	Для двух двухмерных векторов	11			
	3.2	Для двух трехмерных векторов	12			
	3.3	Для трех трехмерных векторов	13			
4	Kop	Кординатные системы				
	Вид	Виды и связь между ними				
	4.1	Декартова прямоугольная координатная система	15			
	4.2	Афинная координатная система	15			
5	Деление отрезка в заданном соотношении					
	5.1	На две равные части	17			
	5.2	На две произвольные части	17			
6	Ура	Уравнение прямой на плоскости				
	6.1	Параметрическое уравнение	19			
	6.2	Каноническое	19			
	6.3	Общего вида	19			
	6.4	Уравнение в отрезках	20			
7	Спо	Способы задания прямой на плоскости				
	7.1	7.1 По точке и направляющему вектору или по двум точкам				
		7.1.1 Каноническое	21			
		7.1.2 Параметрическое	21			
		7.1.3 Общего вида	21			
	7.2	По точке принадлежащей и вектору нормали	22			
		7.2.1 Общего вида	22			
		7.2.2 Параметрическое уравнение	22			
		7.2.3 Каноническое уравнение	22			
8	Пря	ямая на плоскости	23			
	8.1	Взаимное расположение двух прямых на плоскости				
	8.2	Угол между прямыми на плоскости				
	8.3	Расстояние от точки до прямой	24			
	8.4	Расстояние от прямой до прямой	24			
		8.4.1 Переход к расстоянию от точки до прямой	24			
		8.4.2 Частная формула для параллельных прямых	25			
		8.4.3 Примечания	25			
9	Гео	метрическое место точек на плоскости	27			
	9.1	Кривые второго порядка	27			
	9.2	Определение типа прямой	27			
		$9.2.1$ Первый (a_{12}) - простой	27			
		$9.2.2$ Второй $(a_{12} \neq 0)$ Всё плохо	28			

Векторная алгебра

Направленный отрезок - отрезок с указаным направлением. Направление задается при помощи точки начала и точки конца.

 $\overline{AB} \in \overrightarrow{d}$ - направленный отрезок является представителем вектора \overrightarrow{d}

Рис. 1.1: Направленный отрезок \overline{AB}

Внимание Направленный отрезок равен только себе

Совокупность напраленых отрезков является вектором.

1.1 Действия над векторами и их свойства (Аксиомпатика Вейля)

1.1.1 Сложение векторов

Правило треугольника

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Правило параллелограма

$$\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{AC}$$

Правило замкнутой ломаной многоугольника

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$

1.1.2 Свойства сложения векторов

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$$

$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{a}$$

$$\overrightarrow{a} (\overrightarrow{a} + \overrightarrow{b}) = \alpha * \overrightarrow{a} + \alpha * \overrightarrow{b}$$

1.1.3 Умножение вектора на число

$$k*\overrightarrow{a}=\overrightarrow{b}$$
 $k>0=>\overrightarrow{a}\uparrow\uparrow\overrightarrow{b}$
 $k<0=>\overrightarrow{a}\uparrow\downarrow\overrightarrow{b}$
 $|k|>1=>|\overrightarrow{a}|<|\overrightarrow{b}|$
 $0<|k|<1=>|\overrightarrow{a}|>|\overrightarrow{b}|$
 $k=0=>|k\overrightarrow{a}|=\overrightarrow{0}$ - нуль вектор
 $k=1=>|\overrightarrow{a}|=|\overrightarrow{b}|$

1.1.4 Свойства умножения вектора на число

$$\begin{array}{l} \mathbf{k}(\mathbf{m}^*\overrightarrow{a})\!=\!\overrightarrow{a}^*(\mathbf{k}^*\mathbf{m})\!=\!\mathbf{m}(\mathbf{k}^*\overrightarrow{a})\\ (\mathbf{k}\!+\!\mathbf{m})^*\overrightarrow{a}\!=\!\mathbf{k}^{\overrightarrow{a}}\!+\!\mathbf{m}^{\overrightarrow{a}} \end{array}$$

1.1. ДЕЙСТВИЯ НАД ВЕКТОРАМИ И ИХ СВОЙСТВА (АКСИОМПАТИКА ВЕЙЛЯ) 5

1.1.5 Скалярное произведение двух векторов

Результат: скаляр

угол между двумя векторами

$$\overrightarrow{a} * \overrightarrow{b} = (\overrightarrow{a}, \overrightarrow{b})$$

$$\overrightarrow{a} * \overrightarrow{b} = k$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in [0^{\circ}..90^{\circ})$$

$$k < 0 => \overrightarrow{a} \uparrow \downarrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in (90^{\circ}..180^{\circ}]$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$$

$$k = 0 => \overrightarrow{a} || \overrightarrow{b} \in \overrightarrow{a}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} * \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$$

1.1.6 Свойства скалярного произведения двух векторов

1.1.7 Векторое произведение двух векторов для пространства размерности 3

Результат: вектор модуль результата(\overrightarrow{c}) равен площади параллелограма натянутого на векторы \overrightarrow{d} и \overrightarrow{b} $\overrightarrow{d} \times \overrightarrow{b} = [\overrightarrow{d} * \overrightarrow{b}]$ $\overrightarrow{d} \times \overrightarrow{b} = \overrightarrow{c} \overrightarrow{c} \perp \overrightarrow{d}, \overrightarrow{b}$

1.1.8 Свойства векторного произведения двух векторов

$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a} \\ (\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$$

$$(k*\overrightarrow{a}) \times \overrightarrow{b} = k*(\overrightarrow{a} \times \overrightarrow{b})$$

Псевдоскалярное произведение двух векторов

Результат: скаляр

характеризует ориентацию угла между векторами при помощи знака

$$\overrightarrow{a} \vee \overrightarrow{b} = m$$

$$\overrightarrow{a} \vee \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\sin \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a} \vee \overrightarrow{b}}{|\overrightarrow{a}| * |\overrightarrow{b}|}$$

$$m = 0 => \angle (\overrightarrow{a}, \overrightarrow{b}) = (0^{\circ}||180^{\circ}) => \overrightarrow{a}||\overrightarrow{b}|$$

1.1.10 Свойства псевдоскалярного произведение двух векторов

$$\overrightarrow{a} \vee \overrightarrow{b} = -\overrightarrow{b} \vee \overrightarrow{a} (\overrightarrow{a} + \overrightarrow{b}) \vee \overrightarrow{c} = \overrightarrow{a} \vee \overrightarrow{c} + \overrightarrow{a} \vee \overrightarrow{b} \\ (k * \overrightarrow{a}) \vee \overrightarrow{b} = k * (\overrightarrow{a} \vee \overrightarrow{b})$$

Смешаное произведение трех векторов

Результат: скаляр

результат смешаного произведения представляет собой объем паралелепипеда натянутого на данные векторы

$$(\overrightarrow{a}*\overrightarrow{b}*\overrightarrow{c}) = \overrightarrow{a}*(\overrightarrow{b}\times\overrightarrow{c}) = (\overrightarrow{a}\times\overrightarrow{b})*\overrightarrow{c}$$

Порядок операций: Сначала выполняется векторное умножение (×), а только затем скалярное (*)

$$n = 0 \Longrightarrow \overrightarrow{a} = \overrightarrow{0} || \overrightarrow{b} = \overrightarrow{0} || \overrightarrow{c} = \overrightarrow{0}$$

n>0 =>Ориентация векторов такая же как в базисе \overrightarrow{i} \overrightarrow{j} \overrightarrow{k} n<0 =>Ориентация векторов не такая как в базисе \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}

Свойства смешаного произведения трех векторов

1.2Взаимное расположение векторов, линейная зависимость и базис

1.2.1 Взаимное расположение векторов

Коллениарность - расположение двух векторов когда они параллельны: $\overrightarrow{a}||\overrightarrow{b}$ а также

Ортогональность - расположение двух векторов когда они перпендикулярны: $\overrightarrow{d} \perp \overrightarrow{b}$ Компланарность - расположение двух и более векторов когда они коллениарны (паралельны)

1.2. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ВЕКТОРОВ, ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И БАЗИСТ

одной плоскости или лежат в ней: $\overrightarrow{c} = k * \overrightarrow{a} + m * \overrightarrow{b}$

1.2.2 Линейная зависимость

Линейная комбинация — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов $\lambda_1 \overrightarrow{a_1} + \lambda \overrightarrow{a_2} + \lambda \overrightarrow{a_3} + \dots + \lambda \overrightarrow{a_n} = \overrightarrow{0}$

Линейная комбинация(Система) является линейно зависимой если хотябы 1 $\lambda \neq 0$ и/или если имеется хотябы один $\overrightarrow{0}$.

Если система имеет линейно зависимую подсистему, то она линейно зависима.

Если мы не имеется ни одного 0, то система линейно не зависима и мы имеем размер векторного пространства n = div(M)

1.2.3 Базис

Базис - это упорядоченная СЛНВ (система линейно независимых векторов) в векторном пространстве.

Виды базисов:

- Ортогональный
- Ортонормированый например $(\overrightarrow{i} \overrightarrow{j} \overrightarrow{k})$
- Произвольный (Афинный)

Базис позволяет определить координаты вектора

1.2.4 Взаимосвязь между базисами

Пусть дан базис $\beta = \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}'$ и базис $\beta' = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$, где $n = \dim(V)$ Тогда координаты векторов базиса β в базисе β' будут представлять собой линейную ком-

$$\overrightarrow{e_1'}=\overrightarrow{a_1}*\overrightarrow{e_1}+a_1^2*\overrightarrow{e_2}+...a_1^n*\overrightarrow{e_n}$$
 из чего мы получим: $\overrightarrow{e_1'}\{a_1^1,a_1^2,...,a_1^n\}_{\beta}$

где a_i^j - координаты

Формула перехода:
$$\overrightarrow{e_j'} = a_j^i * \overrightarrow{e_i} = \sum_{j=1}^n a_1^j * \overrightarrow{e} \ j = \overline{1,n}$$

Пример: $\overrightarrow{x} \in V^n$

$$\overrightarrow{x}\{x_1, x_2, ..., x_n\}_{\beta} \text{ и } \{y_1, y_2, ..., y_n\}_{\beta'}$$

$$\overrightarrow{x} = y^1 \overrightarrow{e_1'} + y^2 \overrightarrow{e_2'} + ... + y^n \overrightarrow{e_n'} = y^j \overrightarrow{e_i'} = y^1 (a_1^i \overrightarrow{e_j}) + y^2 (a_2^i \overrightarrow{e_j}) + ... + y^n (a_n^i \overrightarrow{e_j} = (y^1 a_1^1 + y^2 a_2^1 + ... + y^n a_n^1) \overrightarrow{e_1'} + (y^1 a_1^2 + y^2 a_2^2 + ... + y^n a_n^2) \overrightarrow{e_2'} + ... + (y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n) \overrightarrow{e_n'}$$
Из этого можно сделать вывод:
$$\overrightarrow{x} = x^1 \overrightarrow{e_1'} + x^2 \overrightarrow{e_2'} + ... + x^n \overrightarrow{e_n'}, \text{ где } x^n = y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n$$

$$x^i = y^j a_i^i - \text{формула перехода}$$

Действия над векторами в координатной форме

Пусть даны векторы $\overrightarrow{x}\{x^1, x^2, ..., x^n\}$ и $\overrightarrow{y}\{y^1, y^2, ..., y^n\}$

2.0.1 Сложение векторов в координатной форме

$$\overrightarrow{x} + \overrightarrow{y} = x^1 \overrightarrow{x_1} + x^2 \overrightarrow{x_2} + \ldots + x^n \overrightarrow{x_n} + y^1 \overrightarrow{y_1} + y^2 \overrightarrow{y_2} + \ldots + y^n \overrightarrow{y_n} = (x^1 + y^1) \overrightarrow{e_1} + (x^2 + y^2) \overrightarrow{e_2} + \ldots + (x^n + y^n) \overrightarrow{e_n} = z^1 \overrightarrow{e_1} + z^2 \overrightarrow{e_2} + \ldots + z^n \overrightarrow{e_n} = z^n$$

2.0.2 Умножение вектора на число

$$\overrightarrow{p}=k\overrightarrow{x}=k(x^{1}\overrightarrow{e_{1}}+x^{2}\overrightarrow{e_{2}}+\ldots+x^{n}\overrightarrow{e_{n}})=kx^{1}\overrightarrow{e_{1}}+kx^{2}\overrightarrow{e_{2}}+\ldots+kx^{n}\overrightarrow{e_{n}}$$

2.0.3 Скалярное произведение векторов

 $\overrightarrow{x}*\overrightarrow{y}=(x^1\overrightarrow{e_1}+x^2\overrightarrow{e_2}+\ldots+x^n\overrightarrow{e_n})*(y^1\overrightarrow{e_1}+y^2\overrightarrow{e_2}+\ldots+y^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}-x^1y^1\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}-x^1y^1\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}-x^1y^1\overrightarrow{e_1}+x^1y^1\overrightarrow$

2.1 Псевдоскалярное произведение векторов в координатной форме в двухмерном пространстве

$$\overrightarrow{x} \{x^1, x^2\} \overrightarrow{y} \{y^1, y^2\}$$

$$\overrightarrow{x}, \overrightarrow{y} \in \beta \{\overrightarrow{i}, \overrightarrow{j}\}$$

$$\overrightarrow{x} \vee \overrightarrow{y} = x^1 y^2 - x^2 y^1$$

$$\overrightarrow{x}^2 = \overrightarrow{x} * \overrightarrow{x} = (x^1)^2 + (x^2)^2$$

Данный вариант подходит только для пространтства размерности 2!

2.2 Векторное произведение двух векторов в координатной форме в трехмерном векторном простанстве

$$\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$$

$$\overrightarrow{x}\times\overrightarrow{y}=\begin{vmatrix}x^1 & x^2 & x^3\\y^1 & y^2 & y^3\\\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\end{vmatrix}=(x^2y^3-x^3y^2)*\overrightarrow{i}+(x^3y^1-x^1y^3)*\overrightarrow{j}+(x^1y^2-x^2y^1)*\overrightarrow{k}=\{x^2y^3-x^3y^2,x^3y^1-x^1y^3,x^1y^2-x^2y^1\}$$

2.3 Смешаное произведение трех векторов в координатной форме в трехмерном векторном простанстве

$$\overrightarrow{x}\{x^1, x^2, x^3\} \overrightarrow{y}\{y^1, y^2, y^3\} \overrightarrow{z}\{z^1, z^2, z^3\}$$

$$(\overrightarrow{x} \overrightarrow{y} \overrightarrow{z}) = (\overrightarrow{x} \times \overrightarrow{y}) * \overrightarrow{z} = \begin{vmatrix} x^1 & x^2 & x^3 \\ y^1 & y^2 & y^3 \\ z^1 & z^2 & z^3 \end{vmatrix} = (x^2y^3 - x^3y^2) * z^1 + (x^3y^1 - x^1y^3) * z^2 + (x^1y^2 - x^2y^1) * z^3 = \dots$$

2.4 Векторное произведение n-1 векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{i^1, i^2, \dots, i^n\}, \dim(V) = n \\ |i^k| &= 1, i^k \perp i^e (e \neq k) \\ \overrightarrow{y} &= \overrightarrow{x_1} \times \overrightarrow{x_2} \times \dots \times \overrightarrow{x_{n-1}} = \begin{vmatrix} x_1^1 & x_1^2 & \dots & x_1^n \\ x_2^1 & x_2^2 & \dots & x_2^n \\ \dots & \dots & \dots & \dots \\ x_{n-1}^1 & x_{n-1}^2 & \dots & x_{n-1}^n \\ i^1 & i^2 & \dots & i^n \end{vmatrix} \text{ где } \overrightarrow{x_1} \{x_1^j\}, \overrightarrow{x_2} \{x_2^j\}, \dots, \overrightarrow{x_{n-1}} \{x_{n-1}^j\}; j = \overline{1, n} \end{split}$$

2.5 Псевдоскалярное произведение n векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{i^1, i^2, ..., i^n\}, \dim(V) = n \\ |i^k| &= 1, i^k \perp i^e (e \neq k) \\ \overrightarrow{y} &= \overrightarrow{x_1} \vee \overrightarrow{x_2} \vee ... \vee \overrightarrow{x_{n-1}} = \begin{vmatrix} x_1^1 & x_1^2 & ... & x_1^n \\ x_2^1 & x_2^2 & ... & x_2^n \\ ... & ... & ... & ... \\ x_n^1 & x_n^2 & ... & x_n^n \end{vmatrix} \text{ где } \overrightarrow{x_1} \{x_1^j\}, \overrightarrow{x_2} \{x_2^j\}, ..., \overrightarrow{x_{n-1}} \{x_{n-1}^j\}; j = \overline{1, n} \end{split}$$

Ортогонализация и нормизация системы векторов

Дано:

Цель: найти векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$, такие что их модули равны и векторы перпендикулярны. $\overrightarrow{a'}$, $\overrightarrow{b'}$: $|\overrightarrow{a'}| = |\overrightarrow{b'}| = 1$; $\overrightarrow{a'} \perp \overrightarrow{b'} \leftrightarrow \overrightarrow{a'} * \overrightarrow{b'} = 0$

Для двух двухмерных векторов

$$\overrightarrow{a}\{a^1, a^2\}, \overrightarrow{b}\{b^1, b^2\}$$

Щаг первый Определим вектор $\overrightarrow{a'}$: $\overrightarrow{a'} = \overrightarrow{a} = a^1, a^2$

Шаг второй Определим вектор $\overrightarrow{b'}$: Мы знаем что $\overrightarrow{a'} \perp \overrightarrow{b'}$, а значит мы можем воспользоваться формулой: $a'^1b'^1 + a'^2b'^2 = 0$ $a'^1 \neq 0 \Rightarrow b'^1 = -\frac{a'^2}{a'^1}b'^2$ В итоге: $\overrightarrow{b'} = \{-\frac{a^2}{a^1}b', b'\}$

$$a'^{1}b'^{1} + a'^{2}b'^{2} = 0$$

 $a'^{1} \neq 0 \Rightarrow b'^{1} = a'^{2}b'^{2}$

В итоге:
$$\overrightarrow{b'} = \{-\frac{a^2}{1}b', b'\}$$

Как частный случай можно использовать формулу: $\overrightarrow{b'} = \{-a'^2, a'^1\}$ или $\{a'^2, -a'^1\}$

Шаг третий Проверка ориентации:

Если $\det\begin{pmatrix} a^1 & a^2 \\ b^1 & b^2 \end{pmatrix}$ и $\det\begin{pmatrix} a'^1 & a'^2 \\ b'^1 & b'^2 \end{pmatrix}$ имеют одинаковый знак, то ориентация совпала и можно переходить к нормированию. Иначе требуется вернуться на шаг 2 и выбрать другой вариант из частного случая.

Нормирование Вектор считается нормированным, если его модуль равен 1.

Формула нормирования на примере вектора $\overrightarrow{a}\{a^1,a^2\}$: $\overrightarrow{a}=\{\frac{a^1}{\sqrt{(a^1)^2+(a^2)^2}},\frac{a^2}{\sqrt{(a^1)^2+(a^2)^2}}\}$

3.2Для двух трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{a}, \overrightarrow{b} \in V^3$$

$$egin{aligned} \mathbf{H}\mathbf{ar} \ \mathbf{1} & \text{Получим вектор } \overrightarrow{a'} \\ \overrightarrow{a'} &= \overrightarrow{a} &= \{a^1, a^2, a^3\} \\ \overrightarrow{a'} \perp \overrightarrow{b'} & \end{aligned}$$

Шаг 2 Получим вектор $\overrightarrow{b'}$

Вектор $\overrightarrow{b'}$ является линейно зависимым для векторов \overrightarrow{a} и \overrightarrow{b} , а значит его можно получить следующим способом:

$$\overrightarrow{b'}=m\overrightarrow{a}+k\overrightarrow{b}=ka^1,ka^2,ka^3+mb^1,mb^2,mb^3=ka^1+mb^1,ka^2+mb^2,ka^3+mb^3$$
 Так как $\overrightarrow{a}\perp \overrightarrow{b'}$, то косинус угла между ними равен нулю, а значит $\overrightarrow{a}*\overrightarrow{b'}=0$

Следовательно: $a^{1}(ka^{1}+mb^{1})+a^{2}(ka^{2}+mb^{2})+a^{3}(ka^{3}+mb^{3})=0$

Спустя несколько преобразований мы получим $k((a^1)^2+(a^2)^2+(a^3)^2)+m(a^1b^1+a^2b^2+a^3b^3)=$

РЕШИМ УРАВНЕНИЕ

Вариант 1

$$m = (a^{1})^{2} + (a^{2})^{2} + (a^{3})^{2}$$

$$k = -(a^{1}b^{1} + a^{2}b^{2} + a^{3}b^{3})$$

Вариант 2

$$m = -((a^1)^2 + (a^2)^2 + (a^3)^2)$$

$$k = (a^1b^1 + a^2b^2 + a^3b^3)$$

Заменим m и n в формуле вектора $\overrightarrow{b'}$ на полученые значения.

ighthar 3 проверим ориентацию: Получим векторы $ightharpoonup \overrightarrow{c} = \overrightarrow{a} imes \overrightarrow{b}$

Проверим их коллениарность при помощи векторного произведения:

Если
$$\overrightarrow{c} \times \overrightarrow{c'} = 0$$

, то переходим далее, иначе ищем ошибку в вычислениях. Проверим соонаправленность векторов: $\lambda = \frac{\overrightarrow{c}}{c'} = \frac{c^1}{c'^1} = \frac{c^2}{c'^2} = \frac{c^3}{c'^3}$ Если $\lambda > 0$, тогда переходим к нормированию, иначе повторим попытку используя другой вариант из шага 2.

13

Нормирование Формула нормирования на примере вектора $\overrightarrow{a}\{a^1, a^2, a^3\}$:

$$\overrightarrow{a} = \left\{ \frac{a^1}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^2}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}} \right\}$$

Для трех трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{c} \{c^1, c^2, c^3\}$$

$$\overrightarrow{a} \perp \overrightarrow{b} \perp \overrightarrow{c}$$

$$\overrightarrow{b'} \perp \overrightarrow{c'}$$

Получим векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$

$$\overrightarrow{a'} = \overline{a}$$

 $\overrightarrow{a'} = \overrightarrow{a}$ $\overrightarrow{b'}$ получаем из варианта для двух трехмерных векторов. $\overrightarrow{c'} = \overrightarrow{a'} \times \overrightarrow{b'}$

$$\overrightarrow{c'} = \overrightarrow{a'} \times \overrightarrow{b'}$$

Проверим ориентацию:

$$\Delta 1 = \begin{vmatrix} a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \\ c^1 & c^2 & c^3 \end{vmatrix} \Delta 2 = \begin{vmatrix} a'^1 & a'^2 & a'^3 \\ b'^1 & b'^2 & b'^3 \\ c'^1 & c'^2 & c'^3 \end{vmatrix}$$

Если $\Delta 1$ и $\Delta 2$ имеют одинаковый знак, то с ориентацией все хорошо и стоит переходить к нормированию.

Кординатные системы Виды и связь между ними

4.1 Декартова прямоугольная координатная система

$$V^2 \qquad \beta = \{\overrightarrow{e^1}, \overrightarrow{e^2}\}$$

Координаты в декартовой системе - произведение числа на базисный вектор. К примеру координаты некоторого вектора $\overrightarrow{d} \in \beta$ будут выглядеть как:

$$\overrightarrow{a} = \{a^1 * \overrightarrow{e^1}, a^2 * \overrightarrow{e^2}\}$$

Обычно мы не замечаем $\overrightarrow{e^i}$, так как мы в большинстве случаев работаем в ортонормированном базисе где они равны единице.

4.2 Афинная координатная система

Деление отрезка в заданном соотношении

5.1На две равные части

Дано:

 $N(\eta,\nu)$ M(x,y)

|MS| = |SN|

Цель: найти координаты точки S

цель: наити координаты точки S
$$\boxed{ \text{ Расстояние между точками: } \rho = \sqrt{(\eta - \lambda)^2 + (\nu - \mu)^2} \ \overline{MS} = \frac{1}{2} \overline{MN} }$$

$$\{s^1 - \lambda; s^2 - \mu\} = \frac{1}{2} \{\eta - \lambda, \nu - \mu\}$$

$$\begin{cases} s^1 = \lambda + \frac{1}{2}(\eta - \lambda) \\ s^2 = \mu + \frac{1}{2}(\nu - \mu) \end{cases} \Leftrightarrow \begin{cases} s^1 = \frac{1}{2}(\eta + \lambda) \\ s^2 = \frac{1}{2}(\nu + \mu) \end{cases}$$
 (5.1)

Итого координаты точки: $S(\frac{\eta+\lambda}{2},\frac{\nu+\mu}{2})$

5.2На две произвольные части

Дано:

M(x,y) $N(\eta, \nu)$

Цель: найти координаты точки S

 $\overline{MS}: \overline{MN} = \frac{m}{n}$

$$\begin{cases} s^1 = \lambda + \frac{m}{m+n}(\eta - \lambda) \\ s^2 = \mu + \frac{m}{m+n}(\nu - \mu) \end{cases}$$
 (5.2)

 $S(\frac{m\eta+n\lambda}{m+n}, \frac{m\nu+n\mu}{m+n})$

$$\overline{MS}: \overline{MN} = k$$

$$S(\frac{k\eta + \lambda}{k+1}, \frac{k\nu + \mu}{k+1})$$

Отрицательный результат означает что такая точка находится вне отрезка

Уравнение прямой на плоскости

 $M\in (AB)\longleftrightarrow \exists \lambda\in\mathbb{R}:AM=\lambda\overline{AB},$ где координаты точки $\mathrm{M}(\mathrm{x},\mathrm{y}).$ Отсюда: $\{x-a^1,y-a^2\}=$ $\lambda \{b^1 - a^1, b^2 - a^2\}$

6.1Параметрическое уравнение

$$\begin{cases} x - a^1 = \lambda(b^1 - a^1) \\ y - a^2 = \lambda(b^2 - a^2) \end{cases} \Leftrightarrow \begin{cases} x = a^1 + \lambda(b^1 - a^1) \\ y = b^1 + \lambda(b^2 - a^2) \end{cases}$$
(6.1)

 Γ де a^1 и b^1 - координаты точки принадлежащей, а (b^1-a^1) и (b^2-a^2) координаты на-

правляющего вектора.
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a^1 \\ b^1 \end{pmatrix} + \lambda \begin{pmatrix} b^1 & -a^1 \\ b^2 & -a^2 \end{pmatrix}$$

Каноническое

 $\frac{x-a^1}{b^1-a^1}=\frac{y-a^2}{b^2-a^2}=\lambda$ При условии того что a и b не дают 0

Общего вида 6.3

$$\begin{vmatrix} x-a^1 & b^1-a^2 \\ y-a^1 & b^2-a^2 \end{vmatrix} = 0 = (x-a^1)(b^2-a^2) - (b^1-a^1)(y-a^2) = xb^2 - xa^2 - a^1b^2 + a^1a^2 - b^1y + b^1a^2 + a^1y - a^1a^2 = (b^2-a^2)x + (a^1-b^1)y - (a^1b^2-a^2b^1)$$

Введем обозначения:

$$A = b^2 - a^2$$
$$B = a^1 - b^1$$

$$C = a^2 b^1 - a^1 b^2$$

Отсюда можно получить l:Ax+By+c=0<- линейное уравнение 2х неизвестных если $A\neq 0||B\neq 0$

6.4 Уравнение в отрезках

Получаемое из общего вида при условии что $C\neq 0$ $l: \frac{x}{a}+\frac{y}{b}=1$ или $\frac{x}{\frac{c}{a}}+\frac{y}{\frac{c}{b}}=\frac{-c}{c}$

Способы задания прямой на плоскости

7.1 По точке и направляющему вектору или по двум точкам

$$l^A\in l,$$
 $\overrightarrow{p}||l$ $A(a^1,a^2),B(b^1,b^2),$ $\overrightarrow{p}\{p^1,p^2\}$ или $p\{b^1-a^1,b^2-a^2\}$

7.1.1 Каноническое

$$l: \frac{x-a^1}{p^1} = \frac{y-a^2}{p^2}$$

7.1.2 Параметрическое

l:

$$\begin{cases} x = a^1 + \lambda * p^1 \\ y = b^1 + \lambda * p^2 \end{cases}$$

$$(7.1)$$

7.1.3 Общего вида

Пусть:
$$p^2=A$$

$$-p^1=B$$

$$p^1a^2-p^2a^1=C$$
 Тогда $Ax+By+C=0$
 Или $l:\begin{vmatrix}x-a^1&b^1-a^2\\y-a^1&b^2-a^2\end{vmatrix}=p^2x-p^2a^1-p^1y+p^1a^2=p^2x-p^1y+(-p^2a^1+p^1a^2)$

7.2 По точке принадлежащей и вектору нормали

$$\begin{array}{l} l^A \in l, \overrightarrow{n} \perp l \\ A(a^1, a^2), B(b^1, b^2), \overrightarrow{n}\{n^1, n^2\} \end{array}$$

7.2.1 Общего вида

$$\overrightarrow{AM}*\overrightarrow{n}=0->\{x-a^1;y-a^2\}*\{n^1;n^2\}=0$$
 Откуда
$$n^1(x-a^1)+n^2(y-a^2)=0$$

$$n^1x+n^2y-(n^1a^1+n^2a^2)=0$$

$$n^1x+n^2y+(-n^1a^1-n^2a^2)=0$$

$$A=n^1$$

$$B=n^2$$

$$C=-(n^1a^1+n^2a^2)$$

7.2.2 Параметрическое уравнение

$$\begin{cases} x - a^1 = \lambda(b^1 - a^1) \\ y - a^2 = \lambda(b^2 - a^2) \end{cases} \quad \lambda \in \mathbb{R}$$
 (7.2)

7.2.3 Каноническое уравнение

$$l: \frac{x-a^1}{-n^2} = \frac{y-a^2}{n^1}$$

Прямая на плоскости

$$l_1: A^1x + B^1y + C^1 = 0$$

$$l_2: A^2x + B^2y + C^2 = 0$$

8.1 Взаимное расположение двух прямых на плоскости

Существует три вида расположения двух прямых на плоскости:

- $l_1||l_2|$
- $l_1 \cap l_2$
- $l^1 \equiv l^2$

Определить взаимное расположение можно при помощи решения системы уравнений:

$$\begin{cases} A^{1}x + B^{1}y + C^{1} = 0\\ A^{2}x + B^{2}y + C^{2} = 0 \end{cases}$$
(8.1)

Если:

- одно решение прямые пересекаются (2)
- множество решений прямые совпадают (3)
- нет решений прямые параллельны (1)

Определить взаимное расположение можно при помощи пропорции: $\frac{A^1}{A^1} = \frac{B^1}{B^2} = \frac{C^1}{C^2}$ Если:

- $\frac{A^1}{A^1} \neq \frac{B^1}{B^2} \neq \frac{C^1}{C^2}$ прямые пересекаются (2)
- $\frac{A^1}{A^1} = \frac{B^1}{B^2} = \frac{C^1}{C^2}$ прямые совпадают (3)
- $\frac{A^1}{A^1} = \frac{B^1}{B^2} \neq \frac{C^1}{C^2}$ прямые параллельны (1)

Определить взаимное расположение можно при помощи векторов нормали:

- $\overrightarrow{n^1} \not | \overrightarrow{n^2}$ прямые пересекаются (2)
- $\overrightarrow{n^1}||\overrightarrow{n^2}$ прямые параллельны (1) или прямые совпадают (3)

8.2 Угол между прямыми на плоскости

$$\begin{array}{l} l_1:A_1x+B_1y+C_1=0 & \overrightarrow{n_1}\{a_1,b_1\} & \overrightarrow{p_1}\{-b_1,a_1\} \\ l_2:A_2x+B_2y+C_2=0 & \overrightarrow{n_2}\{a_2,b_2\} & \overrightarrow{p_2}\{-b_2,a_2\} \\ \hline \\ \text{Углом между двумя прямыми считают наименьший образовавшийся} \end{array} \\ \varphi\in[0^\circ,90^\circ]\cos\angle\left\langle\overrightarrow{p^1},\overrightarrow{p^2}\right\rangle = \\ |\overrightarrow{\overrightarrow{p^1}*\overrightarrow{p^2}}| = > \frac{|\overrightarrow{p^1}*\overrightarrow{p^2}|}{|\overrightarrow{p^1}|*|\overrightarrow{p^2}|} = > \frac{|a^1a^2+b^1b^2|}{\sqrt{a_1^2+b_1^2*\sqrt{a_2^2+b_2^2}}} = \frac{|\overrightarrow{n^1}*\overrightarrow{n^2}|}{|\overrightarrow{n^1}|*|\overrightarrow{n^2}|} \\ \cos\angle\left\langle l^1,l^2\right\rangle = |\cos\angle\left\langle\overrightarrow{p^1},\overrightarrow{p^2}\right\rangle| \\ l1:A_1x+B_1y+C_1=0->\overrightarrow{n_1}\{A_1,B_1\} \\ l2:A_2x+B_2y+C_2=0->\overrightarrow{n_2}\{A_2,B_2\} \\ \overrightarrow{n_1}\vee\overrightarrow{n_2} = \begin{vmatrix}A_1 & B_1\\A_2 & B_2\end{vmatrix} = |\overrightarrow{n_1}|*|\overrightarrow{n_2}|*sin(\varphi) \\ sin(\varphi) = \frac{|A_1B_2-A_2B_1|}{\sqrt{A_1^2+B_1^2*}\sqrt{A_2^2+B_2^2}} \\ |tg(\varphi)| = |\frac{A_2B_1-A_1B_2}{B_1B_2+A_1A_2}| \\ \end{array}$$

8.3 Расстояние от точки до прямой

$$l: Ax + By + C = 0$$

$$M(m_1, m_2) \rho(M; l) = \frac{|A_1 m_1 + B m_2 + C|}{\sqrt{A^2 + B^2}}$$

8.4 Расстояние от прямой до прямой

Существует два варианта:

- конкретное значение, если прямые параллельны
- неопределенное расстояние, если прямые пересекаются

8.4.1 Переход к расстоянию от точки до прямой

$$\begin{array}{l} l: A_1x + B_1y + C_1 = 0 - > \overrightarrow{n_1}\{A_1, B_1\} \\ m: A_2x + B_2y + C_2 = 0 - > \overrightarrow{n_2}\{A_2, B_2\} \\ M(m_1, m_2) \in m \end{array}$$

 Φ актически все сводится к поиску расстояния от точки, принадлежащей одной из прямых

до второй прямой.
$$\rho(l;m) = \frac{|C^1 - \frac{A^1}{A^2} * C^2}{\sqrt{A^2 + B^2}}$$

25

8.4.2 Частная формула для параллельных прямых

Если преобразовать уравнение прямой m с учетом пропорциональности первых двух коэфициентов в уравнениях прямых l и m,оно примет вид $A_1+B_1+C'=0$ и мы можем использовать данное уравнение:

$$\rho(l;m) = \frac{|C' - C_1|}{\sqrt{A^2 + B^2}}$$

8.4.3 Примечания

$$a*b*sin(\phi) = |\overrightarrow{a}|*|\overrightarrow{b}|*\sqrt{1-cos^2(\phi)}|$$

$$a*b*sin(\phi) = |\overrightarrow{a}|*|\overrightarrow{b}|*\sqrt{1-(\frac{\overrightarrow{a}*\overrightarrow{b}}{|\overrightarrow{a}|*|\overrightarrow{b}|})^2}$$

$$a*b*sin(\phi) = |\overrightarrow{a}|*|\overrightarrow{b}|*\frac{\sqrt{\overrightarrow{a^2}*\overrightarrow{b^2}-(a*b)^2}}{|\overrightarrow{a}|*|\overrightarrow{b}|}|$$

Геометрическое место точек на плоскости

9.1 Кривые второго порядка

Уравнение кривой второго порядка выглядит следующим образом:

$$\gamma : a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{10}x + 2a_{20}y + a_{00} = 0$$

Где

 $a_{11}x^2 + 2a_{12}xy + a_{22}y^2$ - коэфициенты квадратичной формы

 $2a_{10}x + 2a_{20}y$ - линейные компоненты

 a_{00} - свободный член.

ранее коэфициент квадратичной формы мы встерчали в подсчете модуля вектора в афинном пространстве, и фактически он является симметрической матрицей: $g(x;y) = a_{11}x^2 + a_{12}x^2 + a_{13}x^2 + a_{14}x^2 + a_{14}x^2 + a_{15}x^2 + a$

$$a_{12}xy + a_{22}y^2 = A \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

9.2 Определение типа прямой

Для определения прямой есть два варианта:

9.2.1 Первый (a_{12}) - простой

Стандартно

Все решается путем выделения полного квадрата: $a_{11}(x^2+2\frac{a_{10}}{a_{11}}x)+a_{22}(y^2+2\frac{a_{20}}{a_{22}}y)+a_{00}=0$. . . $(\frac{a_{10}}{a_{11}})^2+(\frac{a_{20}}{a_{22}})^2-a_{00}=0$

Но это сработает при условии что $a_{11}, a_{22} \neq 0$

$$a_1 1 = 0$$

$$a_{22}y^2 + a_{20}y + a_{00} = 0$$

$$2a_{10}x + a_{22}(y + \frac{a_{20}}{a_{22}})^2 = (\frac{a_{20}}{a_{22}})^2 - a_{00}$$

$$\begin{aligned} a_2 2 &= 0 \\ a_{22} y^2 + a_{20} y + a_{00} &= 0 \\ a_{11} \left(x + \frac{a_{10}}{a_{11}} \right)^2 + 2a_{20} y &= \left(\frac{a_{10}}{a_{11}} \right)^2 - a_{00} \end{aligned}$$

9.2.2 Второй $(a_{12} \neq 0)$ Всё плохо

Метод 1 алгебраический

Путем перехода
$$A\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \backsim B\begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}$$
 $det\left(A-\lambda E\right)<$ - характеристическое уравнение

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}^2 = a_{11}a_{22} - \lambda(a_{11} + a_{22}) + \lambda^2 - a_{12}^2 = \lambda^2 - a_{11}a_{22} - \lambda(a_{11} + a_{22} - a_{12}^2) = 0$$

Решив полученое уравнение мы получим λ_1 и λ_2

$$g'(x'; y') = \lambda_1(x')^2 + \lambda_2(y')^2$$

Собственные векторы:

$$\lambda_i = \begin{cases} (a_{11} - \lambda_i)x + a_{12}y = 0\\ a_{12}x + (a_{12} - \lambda_i)y = 0 \end{cases}$$

$$(9.1)$$

Решения данного уровнения дадут $\overrightarrow{n_1}\{\lambda,\mu\}$ для λ_1 и $\overrightarrow{n_2}\{\phi,\psi\}$ для λ_2

И это даст нам вектроры нового базиса, а значит получим формулу перехода:

$$\begin{cases} x = \lambda x' + \phi y' \\ y = \mu x' + \psi y' \end{cases}$$
 (9.2)

Итого:

 $\gamma:\lambda_1(x')^2+\lambda_2(y')^2+2(a_{10}\lambda+a_{20}\mu)x'+2(a_{10}\phi+a_{20}\psi)y'+a_{00}=0$ Отсюда мы уже можем перейти в способ I