UNSUPERVISED AND SELF-SUPERVISED LEARNING

MICHELLE KUCHERA DAVIDSON COLLEGE

JOINT ICTP-IAEA SCHOOL ON AI FOR NUCLEAR, PLASMA, AND FUSION SCIENCE

1CTP 23 MAY 2023

Input	Output
1000000	1000000
0100000	0100000
0010000	0010000
0001000	0001000
00001000	00001000
0000100	0000100

Input	Output
1000000	1000000
0100000	0100000
0010000	0010000
0001000	0001000
00001000	00001000
0000100	0000100

Input	A1	A2	A3	Output
1000000	0.9911	0.9869	0.0093	1000000
0100000	0.9892	0.0095	0.0124	0100000
0010000	0.0094	0.0283	0.0122	0010000
00010000	0.9840	0.9836	0.9900	0001000
00001000	0.0139	0.9904	0.0186	00001000
0000100	0.0128	0.9805	0.9868	0000100

CLUSTERING — KMEANS

Goal: minimize pairwise distances between points in same cluster

$$\min \sum_{i=1}^{k} \frac{1}{2N} \sum_{x,y,x \neq y}^{N} (\vec{x} - \vec{y})^2$$

Goal: maximize pairwise distances between points in different clusters

CLUSTERING — KMEANS

GENERATIVE MODELS

MICHELLE KUCHERA DAVIDSON COLLEGE

JOINT ICTP-IAEA SCHOOL ON AI FOR NUCLEAR, PLASMA, AND FUSION SCIENCE

ICTP
23 MAY 2023

DECODER

DECODER

How do we know that we are providing a latent vector that represents those seen in training?

Variational Autoencoder

Encode to two outputs for each latent dimension: mean and stdev

Sample similar points in latent space, decode, and compare with regularization

https://blog.keras.io/building-autoencoders-in-keras.html

POINT CLOUDS

Classification Network

Segmentation Network

EXAMPLE WORKFLOW

EXAMPLE WORKFLOW

