

AD-A092 650

OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY
TEMPERATURE MICROSTRUCTURE PROFILES FROM THE SUB-TROPICAL FRONT--ETC(U)
SEP 80 T M DILLON, D R CALDWELL
N00014-79-C-0004
NL

UNCLASSIFIED

DATA-84

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

School of

LEVEL II

(12)
B.S.

OCEANOGRAPHY

AD A092650

DDC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

OREGON STATE UNIVERSITY

80 11 28 026

Temperature Microstructure Profiles
From the Sub-Tropical Front

by
T. M. Dillon
and
D. R. Caldwell

Data Report 34 Reference 88-18
September 1988

Reproduction in whole or in part is
permitted for any purpose of the
United States Government

(14) DATA-84, REF-80-16

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 80-16	2. GOVT ACCESSION NO. AD-A092650	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) 6 TEMPERATURE MICROSTRUCTURE PROFILES FROM THE SUB-TROPICAL FRONT.	5. TYPE OF REPORT & PERIOD COVERED 9 Technical rept.		
7. AUTHOR(S) T.M. Dillon D.R. Caldwell	6. PERFORMING ORG. REPORT NUMBER 15 N00014-79-C-0004		
8. PERFORMING ORGANIZATION NAME AND ADDRESS School of Oceanography Oregon State University Corvallis, OR 97331	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR083-102		
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Ocean Science & Technology Division Arlington, Virginia 22217	12. REPORT DATE 11 September 1980		
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 121		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution Unlimited	15. SECURITY CLASS. (of this report) Unclassified		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Approved for public release, distribution unlimited	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Sub-tropical front, microstructure, temperature profiles, kinetic energy dissipation rates			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Preliminary temperature microstructure profiles resulting from the FRONTS experiment in January 1980 are presented. Also included are selected profiles of the kinetic energy dissipation rate estimated by the Batchelor scale technique.	11 28 126		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 63 OBSOLETE
S/N 0102-014-6601

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

272268

g/m

TEMPERATURE MICROSTRUCTURE PROFILES
FROM THE SUB-TROPICAL FRONT

by

T.M. Dillon and D.R. Caldwell

School of Oceanography
Oregon State University
Corvallis, Oregon 97331

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Airland/or Special
A	

Approved for public release, distribution unlimited

Reference 80-16
DATA REPORT 84

September, 1980

G. Ross Heath
Dean

ACKNOWLEDGEMENTS

The MSP instruments were constructed by S. Wilcox and J. Cantey. Participating in the cruise were J. Cantey, S. Blood, and R. Moore. S. Blood prepared the analysis software. Special thanks must be given to the officers and crew of the R/V OCEANOGRAPHER. This experiment was funded by the Office of Naval Research.

Table of Contents

	<u>Page</u>
Acknowledgments	
Introduction	1
References	2
Table of Station Locations	3
Map of Frontal Area	4
Weather Observations	5
Temperature Profiles	6
Optical Transmissivity	119
Kinetic Energy Dissipation Estimates	121

INTRODUCTION

This report is a preliminary presentation of temperature microstructure data resulting from the FRONTS experiment in January 1980. During the experiment, four stations were occupied in the sub-tropical front area northeast of Hawaii; in addition, a transect of five stations was run across an active frontal area, and stations far north and far south of the frontal zone were occupied for comparison with the fronts area.

The Microstructure Profiler (MSP) has been described in the literature (Caldwell, Wilcox, and Matsler, 1975; Dillon and Caldwell, 1980a; Caldwell and Dillon, 1980; Dillon and Caldwell, 1980b). Pre- and Post-cruise calibrations of the thermistors agreed within 0.02°C . Two independent thermistors were used on each instrument, and the temperature measured by each agreed to within 0.02°C .

Temperatures were recorded with both a low gain and a high gain in the amplifiers. The low-gain thermistors had a resolution of 4 millidegrees, while the high-gain resolution was variable, and usually set at 0.16 millidegrees. The bulk of this report consists of plots of temperature depth-derivative, low-gain temperature, and high-gain temperature. Often, the high-gain temperature plots reveal much more structure, including small-scale inversions and instabilities, than is apparent in the low-gain temperatures.

Kinetic energy dissipation rates were estimated using the Batchelor scale or cut-off wavenumber technique (Dillon and Caldwell, 1980a; Caldwell and Dillon, 1980; Caldwell, Chriss, Newberger and Dillon, 1981). Selected profiles of the dissipation rate have been plotted in the last section of this report.

The low-gain temperature plots contain the vertical temperature derivative to the left in units of $^{\circ}\text{C}/\text{M}$. The temperature scale is at bottom and the depth in M is on the left. High-gain temperature profiles are limited to water above the seasonal thermocline (usually ~120m) because of dynamic range limitations. The points plotted are not averages, but instantaneous realizations which have been decimated so that the density of plotted points is of order 200 points per inch regardless of the vertical scale.

At the southernmost location, Station F8, the optical transmissivity over a 30cm horizontal path length was measured. Examples of the transmissivity profiles here have been plotted on an arbitrary scale, with "dirty" water to the left, and "clean" water to the right. Much less vertical variation was noted for this Station than has been observed at Ocean Station P or off the Oregon coast.

REFERENCES

- Caldwell, D.R., S.D. Wilcox, and M. Matsler (1975). A relatively simple freely-falling probe for small-scale temperature gradients. Limnology and Oceanography, 20, pp 1035-1047.
- Caldwell, D.R. and T.M. Dillon (1980). The scaling of temperature gradient spectra. J. Geophys. Res., 85, (C4), pp 1917-1924.
- Caldwell, D.R., T.M. Chriss, P.A. Newberger, T.M. Dillon (1981). The thinness of oceanic temperature gradients. Accepted by J. Geophys. Res.
- Dillon, T.M. and D.R. Caldwell (1980a). The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85 (C4), pp 1910-1916.
- Dillon, T.M. and D.R. Caldwell (1980b). High-frequency internal waves at Ocean Station P. J. Geophys. Res., 85 (C6), pp 3277-3284 (1980b).

TABLE 1

**Latitude and Longitude of Microstructure Stations
Occupied by the NOAA Ship OCEANGORAPHER**

<u>Station No.</u>	<u>Latitude-Longitude</u>	<u>Date (Jan 80)/Time (CMT)</u>
F1	33°56'N-150°2'W	15/01:56-15/13:37
F2	31°00'N-153°00'W	23/18:13-24/04:12
F3	30°20.4'N-153°37.3'W	24/18:25-24/23:52
F5 (transect)	30°20.9'N-153°36.2'W	25/18:35-25/19:30
	30°16.1'N-153°42.6'W	25/20:40-25/21:01
	30°10.1'N-152°49.8'W	25/23:00-26/00:02
	30°01.6'N-153°57.2'W	26/00:54-26/02:58
	29°59.5'N-154°00.6'W	26/03:51-26/05:18
F6	29°58.5'N-154°00.3'W	26/18:35-27/00:21
F7	29°52.5'N-154°06.9'W	27/02:12-27/08:13
F8	26°05.8'N-155°45.1 W	28/19:58-29/02:45

Map of the most intensively studied region, along a line extending to the southwest from 31°N-153°W, overlayed on a preliminary map of sea-surface temperature kindly supplied by Gunnar Roden. Large dark circles are stations occupied for many casts, and large dark squares are transect stations occupied only briefly.

Wind speed and direction as measured aboard the R/V OCEANOGRAPHER during the FRONTS experiment; correction for ship motion has been included. (Plot courtesy of C. Paulson.)

6

TAPE F1A FILE 1
UNIT 5.79

10.0 DEG/M

DATE 1/15/80
TIME 0444 GMT

REF ID: A14-112-1
DATE 7-9-75

7

14.0 14.8 15.6 16.2
DATE 17/07/82
TIME 2444 GMT

TAPE F1A FILE 2
UNIT 5.79

10.0 DEG/M

DATE 10.0
TIME 1/15/80
0516 GMT

TAPE F1A FILE 2
UNIT 5.79

9

14.6 14.8 15.0 15.2
DATE 1/15/80
TIME 2516 GMT

10

TAPE F1B FILE 1
UNIT 5.79

3.0 DEG/M

DATE 1/15/80

TIME 0559 GMT

DATE FEB FILE 1
UNIT 5/79

11

DATE 1/15/80
TIME 0553 GMT

12

TAPE F1B FILE 2
UNIT 2 79

3.0 DEG/M

DATE 1/15/83
TIME 06+8 GMT

TAPE #1B FILE 2
UNIT 279

13

20 2

-3 2

62 2

82 2

102 3

112 3

14 6 14 8 15 2 15 2

DATE 1715/82

TIME 2648 GMT

14

TAPE FILE FILE 1
UNIT 2 79

DATE 1/15/80

TIME 0736 GMT

TAPE F1C FILE 2
UNIT 5.79

15

10.0 DEG/M

DATE 1/15/80
TIME 0803 GMT

16

TYPE F10 - 1000
UNIT 500

14.6 14.8 15.0 15.2
DATE 1/15/80
TIME 0823 GMT

TAPE F1C FILE 3
UNIT 2.79

3.0 DEG/M

DATE 1/15/80
TIME 0840 GMT

18

TAPE F1C FILE 3
UNIT 2.79

DATE 1/15/80
TIME 2840 GMT

TAPE F1D FILE 1
UNIT 2.79

3.0 DEG/M

DATE 1/15/80
TIME 0909 GMT

20

TAPE F10 FILE 1
UNIT 2 79

DATE 1/15/80

TIME 0909 GMT

TAPE F1F FILE 2
UNIT 2.79

3.0 DEG/M

DATE 1/15/80
TIME 1421 GMT

22

TAPE F1F FILE 2
UNIT 2.79

DATE 1/15/80
TIME 1421 GMT

TAPE FIG FILE 1
UNIT 2 79

23

3.0 DEG/M

DATE 1/15/80
TIME 1522 GMT

24

TAPE FIG FILE 1
UNIT 2.79

TAPE F1H FILE 1
UNIT 2.79

25

3.0 DEG/M

DATE 1/15/80
TIME 1605 GMT

26

TAPE F1H FILE 1
UNIT 2.79

DATE 1/15/80
TIME 1625 GMT

TAPE F11 FILE 1
UNIT 2.79

10.0 DEG/M

DATE 1/15/80
TIME 1645 GMT

28

TAPE FILE FILE 1
UNIT 278

14.6 14.8 15.0 15.2
DATE 1/15/82
TIME 1645 GMT

TAPE F1J FILE 1
UNIT 2.79

10.0 DEG/M

DATE 1/15/80
TIME 1723 GMT

DATE 15/8/82
TIME 1723 GMT

DATE 15/8/82
TIME 1723 GMT

TAPE F1J FILE 3
UNIT 2.79

31

10.0 DEG/M

DATE 1/15/80
TIME 1948 GMT

TAPE F2A FILE 1
UNIT 1.79

3.0 DEG/M

DATE 1/23/80
TIME 1914 GMT

TAPE F2A FILE 2
UNIT 1.79

3.0 DEG/M

DATE 1/23/80
TIME 1932 GMT

TAPE F2A FILE 2
UNIT 1.79

DATE 1/23/80
TIME 1932 GMT

TAPE F2A FILE 4
UNIT 1 79

35

30.0 DEG/M

DATE 1/23/80
TIME 2024 GMT

36

TAPE F2A FILE 4
UNIT 1.79

DATE 1/23/80
TIME 2024 GMT

TAPE F2B FILE 1
UNIT 1.79

37

3.0 DEG/M

DATE 1/23/80
TIME 2053 GMT

38

TAPE F2B FILE 2
UNIT 1.79

3.0 DEG/M

DATE 1/23/80
TIME 2118 GMT

TAPE F2B FILE 2
UNIT 1.79

39

DATE 1/23/80
TIME 2118 GMT

40

TAPE F2C FILE 2
UNIT 2.79

32 0 DEG. M

DATE 1/23/80
TIME 2227 GMT

TAPE F2C FILE 2
UNIT 2.79

41

DATE 1/23/80
TIME 2227 GMT

42

TAPE F2C FILE 3
UNIT 2.79

3.0 DEG/M

DATE 1/28/80
TIME 2253 GMT

TAPE F2C FILE 3
UNIT 2.79

43

DATE 1/23/80
TIME 2253 GMT

44

TAPE F20 FILE 1
UNIT 2.79

DATE 1/23/80
TIME 2340 GMT

TAPE F20 FILE 1
UNIT 2 /9

45

30 DEG/M

DATE 1/23/80
TIME 2340 GMT

46

TAPE F2D FILE 2
UNIT 2.79

'0 0 DEG/M

DATE 1/24/80
TIME 0045 GMT

TAPE F2E FILE 2
UNIT 2 79

12 0 DEG/M

DATE 1/24/80
TIME 0215 GMT

TAPE F2F FILE 2
UNIT 2.79

3.0 DEG/M

DATE 1/24/80
TIME 0255 GMT

TAPE F2F FILE 2
UNIT 2.79

49

DATE 1/24/80
TIME 0255 GMT

50

TAPE F2F FILE 3
UNIT 2.79

10.0 DEG/M

DATE 1/24/80
TIME 0327 GMT

TAPE F2F FILE 3
UNIT 2.79

51

DATE 1/24/80

TIME 0327 GMT

52

TAPE F3A FILE 1
UNIT 2 79

10.0 DEG/M

DATE 1/24/80
TIME 1903 GMT

TAPE F39 FILE 1
UNIT 2 79

53

DATE 1/24/80
TIME 1903 GMT

54

TAPE F3B FILE 1
UNIT 5.79

10.0 DEG/M

DATE 1/24/80
TIME 1949 GMT

TAPE F3B FILE 1
UNIT 5 79

55

DATE 1/24/80
TIME 1949 GMT

56

TAPE F3C FILE 1
UNIT 2.79

DATE 1/24/80
TIME 2059 GMT

TAPE F3C FILE 2
UNIT 5 79

57

100 0 DEG/M

DATE 1/24/80
TIME 2136 GMT

58

TAPE F3D FILE 2
UNIT 2.79

3.0 DEG/M

DATE 1/24/80

TIME 2251 GMT

TAPE F3D FILE 2
UNIT 2 79

59

60

TAPE F3E FILE 1
UNIT 2.79

DATE 1/24/80

TIME 2317 GMT

1947-34 FILE 2
UN. T. S. 3

DATE 1/24/80
TIME 2352 GMT

62

TAPE F3E FILE 2
UNIT 2.79

DATE 1/24/80
TIME 2352 GMT

TAPE F5A FILE 1
UNIT 2 /9

63

30 DEG/M

DATE 1/25/80
TIME 1825 GMT

64

TAPE F5A FILE 1
UNIT 2.79

DATE 1/25/80
TIME 1825 GMT

TAPE FSA FILE 2
UNIT 2.79

IC 8 DEC/M

DATE 1725/80

TIME 1925 GMT

66

TAPE F5A FILE 2
UNIT 2.79

DATE 1/25/60
TIME 1905 GMT

TAPE F5B FILE 1
UNIT 2 79

10.0 DEG/M

DATE 1/25/80
TIME 2240 GMT

68

TAPE F5B FILE 1
UNIT 2.79

DATE 1/25/80

TIME 2040 GMT

TAPE F5B FILE 2
UNIT 2.79

69

10.0 DEG/M

DATE 1/25/80
TIME 2110 GMT

70

TAPE F5B FILE 2
UNIT 2 79

DATE 1/25/80
TIME 2110 GMT

TAPE F5L FILE 1
UNIT 2 /9

100 DEG/M

DATE 1/25/80
TIME 2247 GMT

72

TAPE F5C FILE 1
UNIT 2.79

DATE 1/25/80
TIME 2247 GMT

TAPE F5C FILE 3
UNIT 2.79

73

DATE 1/26/80
TIME 0054 GMT

74

TAPE F5E FILE 2
UNIT 2.79

DATE 1/26/80
TIME 0551 GMT

TAPE FGR FILE 4
UNIT 2.29

75

3.0 DEG/M

DATE 1/26/80
TIME 2035 GMT

76

TAPE F6B FILE 1
UNIT 2.79

DATE 1/26/80

TIME 2102 GMT

TAPE F6C FILE 1
UNIT 2 79

77

30 0 DEG/M

DATE 1/26/80
TIME 2140 GMT

78

TAPE F6C FILE 1
UNIT 2.79

DATE 1/26/80
TIME 2140 GMT

TAPE F6C FILE 3
UNIT 2.79

79

DATE 1/26/80
TIME 2303 GMT

80

TAPE F6C FILE 3
UNIT 2.79

10.0 DEG/M

DATE 1/26/80
TIME 2303 GMT

TAPE F6D FILE 1
UNIT 2.79

81

10.0 DEG/M

DATE 1/26/80
TIME 2334 GMT

82

TAPE F6D FILE 1
UNIT 2.79

DATE 1/26/80
TIME 2334 GMT

TAPE F6D FILE 2
UNIT 2 /9

30 DEG/M

DATE 1/27/80
TIME 0021 GMT

84

TAPE F6D FILE 2
UNIT 2.79

DATE 1/27/80
TIME 0021 GMT

TAPE F7A FILE 1
UNIT 2 /9

30.0 DEG/M

DATE 1/27/80
TIME 0212 GMT

86

TAPE F7A FILE 1
UNIT 2.79

DATE 1/27/80
TIME 0212 GMT

TAPE F7A FILE 2
UNIT 279

30 DEG/M

DATE 1/27/80
TIME 0239 GMT

88

TAPE F7A FILE 2
UNIT 2.79

DATE 1/27/80
TIME 0239 GMT

TAPE FVB FILE 1
UNIT 2 79

89

10 0 DEG/M

DATE 1/27/80
TIME 0403 GMT

90

TAPE F7B FILE 1
UNIT 2.79

DATE 1/27/80
TIME 0403 GMT

TOPAZ 2 FILE 2
UNIT P 79

10 DEG/M

DATE 1/27/80
TIME 0-55 GMT

AD-A092 650 OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/6 8/10
TEMPERATURE MICROSTRUCTURE PROFILES FROM THE SUB-TROPICAL FRONT--ETC(U)
SEP 80 T M DILLON, D R CALDWELL N00014-79-C-0004
UNCLASSIFIED DATA-84 NL

FIG 2
A. D. Dillon

END
DATE FILMED
10/80
OTIC

92

TAPE F7B FILE 2
UNIT 2.79

DATE 1/27/80
TIME 0455 GMT

TAPE F7C FILE 1
UNIT 2.79

93

3.0 DEG/M

DATE 1/27/80
TIME 0529 GMT

94

TAPE F7C FILE 1
UNIT 2.79

DATE 1/27/80
TIME 0429 GMT

TAPE F7C FILE 2
UNIT 2.79

95

3.0 DEG/M

DATE 1/27/80
TIME 0549 GMT

96

TAPE F7C FILE 2
UNIT 2.79

DATE 1/27/80
TIME 0449 GMT

TAPE F7C FILE 5
UNIT 2.79

10.0 DEG/M

DATE 1/27/80
TIME 0616 GMT

98

TAPE F7C FILE 5
UNIT 2.79

DATE 1/27/80
TIME 0616 GMT

TAPE F7D FILE 1
UNIT 7 79

99

3.0 DEG/M

DATE 1/27/80
TIME 0743 GMT

100

TAPE F70 FILE 1
UNIT 7.79

DATE 1/27/80

TIME 0743 GMT

TAPE F7D FILE 2
UNIT 7.79

101

10.0 DEG/M

DATE 1/27/80
TIME 0758 GMT

102

TAPE F8A FILE 5
UNIT 7.79

3.0 DEG/M

DATE 1/28/80
TIME 2118 GMT

TAPE F8A FILE 5
UNIT 7.79

103

DATE 1/28/80
TIME 2118 GMT

104

TAPE F8A FILE 6
UNIT 7.79
30.0 DEG/M

DATE 1/28/80
TIME 2147 GMT

TAPE F8A FILE 6
UNIT 7.79

105

DATE 1/28/80
TIME 2147 GMT

106

TAPE F8B FILE 1
UNIT 7.79

3.0 DEG/M

DATE 1/28/80
TIME 2236 GMT

TAPE F8B FILE 2
UNIT 7.79

107

10.0 DEG. M

DATE 1/28/80
TIME 2312 GMT

108

TAPE F8B FILE 2
UNIT 7.79

DATE 1/28/80
TIME 2312 GMT

TAPE F8C FILE 1
UNIT 779

'0 0 DEG/M

DATE 1/28/80

TIME 2346 GMT

110

TAPE F8C FILE 1
UNIT 7.79

DATE 1/28/80
TIME 2346 GMT

TAPE F8C FILE 2
UNIT 7 79
30.0 DEG/M

111

DATE 1/28/80
TIME 0019 GMT

112

TAPE F8C FILE 2
UNIT 7.79

DATE 1/29/80
TIME 0019 GMT

TAPE F8D FILE 1
UNIT 7.79

10.0 DEG/M

DATE 1/29/80
TIME 0055 GMT

114

TAPE F8D FILE 1
UNIT 7.79

DATE 1/29/80
TIME 0055 GMT

TAPE F8D FILE 3
UNIT 7.79

115

DATE 1/29/80
TIME 0135 GMT

116

TAPE F8E FILE 1
UNIT 7.79

DATE 1/29/80
TIME 0209 GMT

TAPE F8E FILE 2
UNIT Z 29
S P DEG/M

DATE 1/29/60
TIME 0229 GMT

118

TAPE F8E FILE 2
UNIT 7.79

DATE 1/29/80
TIME 0229 GMT

TAPE F8E FILE 2
UNIT 7 79

119

DATE 1/29/80
TIME 0229 GMT

120

TAPE F8E FILE 1
UNIT 7.79

DATE 1/29/80
TIME 0209 GMT

TAPE F1D FILE 2
UNIT 2.79

DATE 1/15/80
TIME 0935 GMT

122

TAPE F2E FILE 1
UNIT 3.79

DATE 1/24/80
TIME 0124 GMT

TAPE F3E FILE 1
UNIT 2 79

DATE 1/24/80
TIME 2317 GMT

124

TAPE F5C FILE 3
UNIT 2 /79

DATE 1/26/80
TIME 0054 GMT

TAPE ESE FILE 2
UNIT 2 79

DATE 1/26/80
TIME 0851 GMT

126

TAPE F6B FILE 1
UNIT 2 79

DATE 1/26/80
TIME 2102 GMT

