ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Fifteenth Week

P1.

(a) Four states are used:

S0: idle

S1: G pushed, waiting for R

S2: G pushed, R pushed

S3: G pushed, R pushed and released (Z=1)

The four states are illustrated by the following figure:

The state transition diagram is as follows:

(b)

Clock edge	GR at clock edge	State after clock edge	Output Z after clock edge
1	00	S0	0
2	10	S1	0
3	11	S2	0
4	01	S0	0
5	00	S0	0
6	10	S1	0
7	10	S1	0
8	11	S2	0
9	10	S3	1
10	11	S3	1
11	10	S3	1
12	00	S0	0

Cpr E 281 HW12 SOLUTION ELECTRICAL AND COMPUTER ENGINEERING

IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Fifteenth Week

P2. An ASM chart for the FSM in the first figure is

An ASM chart for the FSM in the second figure is

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Fifteenth Week

P3. We can use the scheme given in Figure 6.39. However, instead of adding the vector B in its existing form, we need its 2's complement. This can be done by using the rule for finding 2's complements, in Section 3.3.1. Rather than generating the 2's complement of B explicitly, we can change the specification of the Adder FSM to deal with the bits of B using the rule. As a straightforward attempt, we can introduce an extra state to complement the incoming bits of B after the first 1 has been detected. This leads to the following state diagram:

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Fifteenth Week

P4A minimum state table is shown below. We assume that the 3-bit patterns do not overlap.

Present	Next state		Output
state	w = 0	w = 1	p
A	В	С	0
В	D	E	0
C	E	D	0
D	A	F	0
E	F	A	0
F	В	C	1

P5. Since we are using the minimum number of state bits, $k = log_2 n$, then there are n choices for the first state code, n - 1 for the second state code, and so on, leading to n! possible combinations of state codes.

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Fifteenth Week

P6.

