

21 de fevereiro de 2022 Duração: 2 h 30 min

Nome:	N° Mec.:
Classificação: Questão 1	Questão 2

<u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

1. (65 pts) Considere a função definida por

$$f(x) = \begin{cases} \frac{1}{2} + \arctan x & \text{se} \quad x \le 0 \\ e^{\frac{1}{x}} & \text{se} \quad x > 0 \end{cases}.$$

- (a) Justifique que o domínio de f é \mathbb{R} e determine o contradomínio de f.
- (b) Estude a função f quanto à continuidade.
- (c) Defina assíntota ao gráfico de uma função e determine as equações de $\underline{\text{todas}}$ as assíntotas ao gráfico de f.
- (d) Determine a função derivada de f, f', indicando o seu domínio.
- (e) Indique, justificando, o valor lógico da proposição:

$$\exists x \in]-\sqrt{3}, -1[: f'(x) = \frac{\pi}{-12 + 12\sqrt{3}}$$

- (f) Justifique que a função f é injetiva e determine a a expressão da sua inversa, indicando o domínio e o contradomínio.
- 2. (14 pts) Determine a família de primitivas $\int \frac{x^3+2}{x^2+1} dx$.

•			

21 de fevereiro de 2022 Duração: 2 h 30 min

Nome:	N° Mec.:
Classificação: Questão 3	QUESTÃO 4

<u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

3. (30 pts) Mostre que

(a)
$$\int_{6}^{9} \frac{3}{x^2 \sqrt{x^2 - 9}} dx = \frac{\sqrt{8}}{9} - \frac{\sqrt{3}}{6}$$
.

Ajuda: $sen(arccos(a)) = cos(arcsen(a)) = \sqrt{1 - a^2}, \forall a \in [-1, 1].$

(b)
$$\sum_{n=2}^{+\infty} \ln \left(1 - \frac{1}{n^2} \right) = -\ln 2.$$

Sugestão: Comece por verificar que se trata de uma série de Mengoli.

4. (15 pts) Estude a natureza do integral impróprio $\int_0^2 \frac{x}{(x^2-1)^2} dx$.

•			

21 de fevereiro de 2022 Duração: 2 h 30 min

Nome:	N° Mec.:
Classificação: Questão 5	Questão 6

<u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

5. (20 pts) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Considere a função H definida por

$$H(x) = \int_{2x}^{x+x^2} f(t) dt, \quad x \in \mathbb{R}.$$

Justifique que H é derivável em $\mathbb R$ e mostre que

$$H'(1) - H(1) = f(2).$$

- 6. (24 pts) Determine a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta.
 - (a) $\sum_{n=1}^{+\infty} \frac{\operatorname{sen}(n\alpha)}{2^n}$, $\alpha \in \mathbb{R} \setminus \{0\}$.
 - (b) $\sum_{n=1}^{+\infty} \frac{2 \times 4 \times \dots \times 2n}{n^n}.$

•			

21 de fevereiro de 2022 Duração: 2 h 30 min

 ${f (A)}$ Responda nesta folha e entregue-a juntamente com as restantes folhas de prova.

	Nome:	N° Mec.:
	Classificação Questão 7:	
7.	(32 pts) Para cada uma das questões seguintes, <u>assinale a opção correta</u> .	
	(a) Seja F a função definida em \mathbb{R} por $F(x)=\int_x^{x^2}e^{-t^2}dt$. O $\lim_{x\to 1}\frac{F(x)}{x-1}$ é):
	(A) e	
	(C) 1	
	(D) e^{-1}	
	(b) Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos positivos divergente. Pode afirmar-se	que
	(A) $\sum_{n=1}^{+\infty} \frac{1}{n+a_n}$ diverge	
	(B) $\sum_{n=1}^{+\infty} \frac{1}{n^2 + a_n}$ converge	
	(C) $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ converge	
	(D) $\sum_{n=1}^{+\infty} \frac{n}{a_n}$ diverge	
	(c) Seja f a função real de variável real definida por $f(x) = \arcsin\left(e^{\frac{1}{x}}\right)$.	
	(A) O domínio de f é $[-1,1]$ e o contradomínio é $\left[0,\frac{\pi}{2}\right[.$	
	(B) O domínio de $f \in]-\infty,0]$ e o contradomínio $\in \left[0,\frac{\pi}{2}\right[$	
	(C) O domínio de $f \in]-\infty, 0[$ e o contradomínio $\in]0, \frac{\pi}{2}]$	
	(D) O domínio de $f \in]-\infty, 0[$ e o contradomínio $\in]0, \frac{\pi}{2}[$	
	(d) Seja A a região plana definida por: $A=\{(x,y)\in\mathbb{R}^2:y\leq 2a\wedge x^2y\leq a^3\wedge x\geq 0\wedge y\geq 0\wedge x\leq 2a\}$	com a > 0
	A área da região A pode ser dada por:	, com <i>u</i> > 0.
	(A) $\int_0^{a/\sqrt{2}} 2a dx + \int_{a/\sqrt{2}}^{2a} \frac{a^3}{x^2} dx$	
	(B) $\int_0^{2a} \frac{a^3}{x^2} dx$	
	(C) $\int_0^{2a} \left(2a - \frac{a^3}{x^2}\right) dx$	
	(D) $\int_0^{a/\sqrt{2}} \left(\frac{a^3}{x^2} - 2a\right) dx + \int_{a/\sqrt{2}}^{2a} \frac{a^3}{x^2} dx$	

Fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$1 + \operatorname{tg}^2 u = \sec^2 u$	$\cos(u+v) = \cos u \cos v - \sin u \sin v$
$\csc u = \frac{1}{\sin u}$	$1 + \cot^2 u = \csc^2 u$	
$\cot g u = \frac{\cos u}{\sin u}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$	$\operatorname{sen}\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
$tg u = \frac{\sin u}{\cos u}$	$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\operatorname{sen}\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$

Formulário de Derivadas

Função	Derivada	Função	Derivada
$Ku\ (K\in\mathbb{R})$	K u'	$\ln u $	$\frac{u'}{u}$
u^r	$r u^{r-1} u'$	$\log_a u \ (a > 0 \ e \ a \neq 1)$	$\frac{u'}{u \ln a}$
e^u	$u'e^u$	$a^u(a>0 e a \neq 1)$	$a^u \ln a u'$
$\operatorname{sen} u$	$u'\cos u$	$\cos u$	$-u'\operatorname{sen} u$
$\operatorname{tg} u$	$u' \sec^2 u$	$\cot g u$	$-u'\csc^2 u$
$\sec u$	$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$
$\operatorname{arcsen} u$	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$
$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$
$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$

Duas primitivas

$$\int u' \sec u = \ln|\sec u + \operatorname{tg} u| \int u' \operatorname{cosec} u = -\ln|\operatorname{cosec} u + \operatorname{cotg} u|$$