ERIKSON

An experimental study of friction of water in pipes

Civil Engineering

B. S.

1910

UNIVERSITY OF ILLINOIS LIBRARY

Volume

Class Book
1910 Er4

Mr10-20M

PICTUON

AN EXPERIMENTAL STUDY OF FRICTION OF WATER IN PIPES

BY

CLIFFORD ERIK JOSEPH ERIKSON

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

PRESENTED JUNE, 1910 m

1310 ET4

UNIVERSITY OF ILLINOIS
COLLEGE OF ENGINEERING.

June 1, 1910

This is to certify that the thesis prepared in the Department of Theoretical and Applied Mechanics by CLIFFORD ERIK JOSEPH ERIKSON entitled An Experimental Study of Friction of Water in Pipes is approved by me as fulfilling this part of the requirements for the degree of Bachelor of Science in Civil Engineering.

UR Flenning
Instructor in Charge.

Approved:

Professor of Municipal and Sanitary Engineering In Charge of Theoretical and Applied Mechanics.

Approved:

Professor of Civil Engineering.

EXPERIMENTAL STUDY

OF

FRICTION OF WATER IN PIPES.

CONTENTS.

		Pa	g e	<u>}</u>
I.	INTRODUCTION.	3	,	
II.	THEORY.	4		
III.	DESCRIPTION OF APPARATUS AND METHOD OF OPERATION.	. 5	25	7
IV.	EXPERIMENTAL DATA AND DISCUSSION.	11	දීර	21
V.	CONCLUSIONS.	2	25	

Digitized by the Internet Archive in 2013

I. INTRODUCTION.

The importance of loss of head due to the friction of water in pipes and the limited amount of available data on tests for loss of head upon which formulas and tables are based, seem to justify a study along this line.

Information in regard to the friction loss of water in the pipe upon which the experiments for this thesis were made is not reliable on account of several bends and poor methods for measuring the loss of head.

This study embodied the design of apparatus, whereby these variables might be eliminated or reduced to a minimum, as well as the taking of data to verify previous experiments. Lack of time prevented taking up many interesting phases of the work and no attempt was made to find the effect of change of length or diameter of the pipe, or the change of temperature or the effect of the roughness of the inner surface. The work covered, primarily deals with the effect of the velocity upon friction loss, with special attention paid to the losses near the critical velocity.

II. THEORY.

Friction loss is the most important factor affecting the discharging capacity of pipe lines, since other losses are commonly small in comparison with it.

Several attempts have been made to express friction loss of head by means of a simple and accurate formula, but due to the great variations in several of the terms which it depends upon, this formula seems almost impossible. For a straight pipe of a given kind and loss in a given length, the friction loss of head varies chiefly with the diameter and velocity of flow. But there are also other factors which enter in, and most careful experiments made with pipes, show that the so-called friction loss is materially influenced by factors which cannot be controlled by the experimenter, and which in the practical use of pipes are sure to vary. One of these factors is temperature. Another is the character of the pipe surface which may vary from month to month or even from day to day, enough to appreciably change the loss of head due to a given velocity. It therefore seems futile to seek a single general formula by which the friction loss in any proposed pipe line can be predicted with great accuracy.

Considering a fluid flowing over the surface of a solid body, the frictional force per unit area is found to be independent of the pressure and to vary approximately as the square of the velocity of flow, except for quite small velocities. It also varies nearly in direct ratio with the velocity of flow if this is very small. Applying these principals to a pipe,

 $F = a' v_{,+} b' v_{,-}^{2}$, where

F = total sum of friction losses.

v, = surface velocity.

a'-74 b' = coeficients.

Assuming v, to vary directly with v, and substituting the above value of F, in the equation for lost head,

where H^1 = lost head due to length 1 of pipe

and r = radius of pipe.

Using formula (1) Darcy found by experimenting that the coeficients a & b varied greatly with the character of the pipe surface and also with the diameter. Then for pipes in practical use, he recommends the following formula as sufficiently correct for the range of velocities which ordinarily exist.

Another way of expressing Darcy's formula is as follows:

$$H^{1} = f \frac{1}{d} \frac{v^{2}}{2g}$$

where d = diameter of pipe

From this formula Chezy developed his formula which is considered good, but is mostly used in the discussion of flow in open channels, and is as following:-

Solving for v in (3) writing s = 1, and introducing a new coefficient c such that

$$c = \sqrt{\frac{8g}{f}}$$

we have

$$v = c \sqrt{rs}$$

These formulas given are the simplest, and are also the most reliable formulas in use at the present 'time.

The pipe experimented upon is located at a distance of about three ft. from the upper part of the North wall in the Hydraulics Laboratory at the University of Illinois. Valves are so arranged on it that the water can be shut off near the stand pipe or at the free end of the pipe. The total length of this pipe is about 230 ft. The pipe is divided into about three and one half lengths, each length dropped one foot below the other, and connected by a piece of straight pipe and two 900 bends. To avoid these bends, a length of straight pipe 56 ft. 3 in. long was tapped off, this allowing a distance of a little more than 10 ft. from the bends to the end of the length of pipe considered. On this length there was contained on flange joint. This steel pipe has an inside diameter of exactly 2-3/32 inches. Its diameter was obtained by the following method: - Along the pipe at intervals of unequal distances have been bored in, small holes for the purpose of obtaining pressures at different intervals along the line of pipe. These holes have been bored directly opposite each other and are tightly closed by means of small screw plugs. Removing two of the directly opposite screws, a semi-cylindrical stick was inserted and wedges driven in on each side until a very deep impression was made. From this impression the inside diameter could very readily be measured. This proved very satisfactorily as in three consecutive measurements the results were the same.

The quantity of water was measured by allowing it to be discharged into a tank upon a platform scale, the weight and time being recorded simultaneously. This tank having a utilized

capacity of 17000 lh.

The method of measuring pressures was by an inverted U-tube, which was about one-half filled with air. The loss of head being measured directly by the difference in the water columns. This pressure gauge is shown with all its dimensions and connections to the pipe in Fig. (1)

A view of the connection is given above A in Fig. (1). This small pipe was carried parallel to the large pipe, sloping slightly downward as it approached the pressure gauge, so as to eliminate all possible chances of allowing air to remain in the pipe. From B a 3/4 npipe was connected to the pressure gauge. By this means it was possible for one man to read to lost head directly, this advantage being that the difference in heads were read at the same time, eliminating as many errors in the determining of lost head as possible.

At the beginning of the experiment all valves were opened wide, except the ones at E and D on the pressure gauge, these being closed to allow the water to force its way through the gauge and out at the valve F, carrying with it all the air that was in the pipe. After allowing the water to discharge freely from three to five minutes, the valves at C and F were closed, while those at D and E were opened, thus permitting the air to be driven from the pipe BD. Both valves at E and F were then opened and those at C and D closed, allowing the water to be drained from the gauge. Closing the valves at E and F and opening those at C and D, the water rose in the glass tubes to their respective heights. Setting the pointers G and H at the levels of the water column and swinging G to G', the difference of the water levels measured in feet gave the lost head for that length of pipe directly.

In order to guard against repetition of the same velocity of flow through the pipe the valve at the free end of the pipe was so manipulated as to give a definite lost head each time as read from the pressure gauge. The lowest possible reading of lost head was taken and varied to as high values as was possible for

the pressure gauge to be read. Several repetitions were made, however, where indefinite or inaccurate results seem to prevail.

When the lost head had been fixed, the valve on the measuring tank was closed and weights placed on the beam of the scale to over balance the water remaining in the tank, which could not be removed. As the beam raised the initial time was taken and a certain known weight then placed upon the beam of the scale. The lost head was then checked, and the final time caught as the water balanced the known weight.

Having experimentally obtained the weight of the water, time and lost head; the friction factor was obtained substituting the required values in the formula given in the Theory.

Six readings were taken before the velocity of flow was changed. This giving the average of six readings to determine one point on the curves.

.0376 .0376 .0376 .0382 .0382 .0376

0.0.0.0.0.0.0.

DATA

in Factor Fipersec. (f)

Velocity Friction

.0672

.0672 .0650 .0650 .0650

0.724 0.724 0.726 0.727 0.727 0.727

Time in Sec's. F	7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Wt. of Water in 16.	50 50 60 70 70 700 700 700 700 700
Lost Head Wt. of Time in Water in Feet in 16 Sec's.	0052 0052 0052 0052 0052 0052 00052 00052 00052 00052
Мо	- N w 4 2 0 4 1 N w 4 2 0 5.
Friction Factor (f)	0718 .0685 .0685 .0713 .0713 .0713 .0672 .0672 .0672 .0672
Velocity, in Ft. persec.	.085 .085 .085 .085 .085 .086 .085 .086 .086 .086
Time in Sec's.	159 159 159 158 158 158 158 159 159 1563 1563 1563
Wt of Water in 1b.	200 200 200 200 500 500 500 500
ost Head in Feet	.0026 .0026 .0026 .0026 .0026 .0052 .0052 .0052 .0052
No	- N w 4 2 0 5 - N w 4 2 0 5

DATA

			50	50		20	20	20	20	20	20	N	
.0365	0365	.0365	.0365	.0365		0833	.0729	0729	.0521	0469	.0500	.0630	
- 0	w 4	トり	9	A 7.		\	N	6	4	2	9	A 7.	
.0480	.0480	.0595	.0595	.0533		.0432	.0432	.0430	.0434	.0406	.0350	.0411	
	0.325	0.306	0.306	0.318		0.660	0.618	0.538	0.513	0.505	0.517	0.588	
8 8 8	60 4	0 0	88	10		204	218	251	262	402	392	290	
40	04	0 4	40	38		200	200	200	200	300	300	233	
.0260	.0260	.0208	.0208	.0234		1041	.0833	.0625	.0573	.0521	.0469	.0675	
~ ~	w 4	6	9	A 7.		\	2	3	4	5	0	7.	
	.0260 40 82 0.329 .0480 1 .0260 40 83 0.325 .0490 2	.0260 40 82 0.329 .0480 1 .0260 40 83 0.325 .0490 2 .0260 40 83 0.325 .0480 3	.0260 40 82 0.329 .0480 1 .0260 40 83 0.325 .0490 2 .0260 40 83 0.325 .0480 3 .0208 30 64 0.315 .0562 4 .0208 40 88 0.306 .0595 5	.0260 40 82 0.329 0.480 1 .0260 40 83 0.325 0.0490 2 .0260 40 83 0.325 0.0480 3 .0208 30 64 0.315 0.562 4 .0208 40 88 0.306 0.595 5 .0208 40 88 0.306 0.595 6	.0260 40 82 0.329 0.480 1 .0260 40 83 0.325 0.490 2 .0260 40 83 0.325 0.480 3 .0208 30 64 0.315 0.0562 4 .0208 40 88 0.306 0.595 5 .0208 40 88 0.306 0.0595 6 .0234 38 81 0.318 0.533 AV.	.0260 40 82 0.329 0.480 1 .0260 40 83 0.325 0.0480 2 .0260 40 83 0.325 0.0480 2 .0208 30 64 0.315 0.0562 4 .0208 40 88 0.306 0.0595 5 .0208 40 88 0.306 0.0595 6 .0234 38 81 0.318 0.0533 AV.	0260 40 82 0.329 0.480 1 0260 40 83 0.325 0.0480 2 0260 40 83 0.325 0.0480 3 0208 30 64 0.315 0.562 4 0208 40 88 0.306 0.595 6 0234 38 01 0.535 0 0234 38 01 0.533 4	.0260 40 82 0.329 0.480 1 .0260 40 83 0.325 0.480 2 .0260 40 83 0.325 0.480 3 .0208 40 83 0.315 0.562 4 .0208 40 88 0.306 0.595 5 .0234 38 81 0.538 0.533 4 .1041 200 204 0.660 .0432 2 .0833 200 218 0.618 .0432 2	0260 40 82 0.329 0.480 1 0260 40 83 0.325 0.490 2 0260 40 83 0.325 0.480 3 0208 30 64 0.315 0.562 4 0208 40 88 0.306 0.595 5 0208 40 88 0.306 0.595 5 0234 38 61 0.316 0.535 4V. 1041 200 204 0.660 0.432 1 0833 200 218 0.618 0.432 2 0625 200 251 0.536 0.430 3	0260 40 82 0.329 0.480 1 0260 40 83 0.325 0.490 2 0260 40 83 0.325 0.480 3 0208 30 64 0.315 0.562 4 0208 40 88 0.306 0.595 6 0234 38 61 0.318 0.535 4V. 1041 200 204 0.660 0.0432 1 0833 200 218 0.618 0.0432 2 0625 200 251 0.538 0.0430 3 0625 200 251 0.538 0.0430 3 0573 200 262 0.513 0.0430 3	0260 40 82 0.329 0480	0260 40 82 0.329 0.480 1 0260 40 83 0.325 0.480 2 0260 40 83 0.325 0.480 2 0208 30 64 0.315 0.562 4 0208 40 88 0.306 0.595 5 0208 40 88 0.306 0.595 6 0234 38 61 0.318 0.535 4 0234 38 61 0.318 0.533 4 0833 200 218 0.618 0.432 2 0833 200 218 0.618 0.432 2 0625 200 251 0.538 0.434 4 0573 200 262 0.513 0.436 5 0521 300 402 0.505 0.4406 5 0469 300 392 0.517 0.3550 6	0260 40 82 0.329 0480

	Lost Head Wt. of	Wt. of	Time	Time Velocity Friction	Frietion
γ°	<u>-</u> 2	Water	<u>.</u>	.u	Factor
	Feet	in 1b.	Sec's.	开	(<i>f</i>)
_	.0365	50	18	0.416	.0420
8	.0365	20	80	0.420	.0412
n	.0365	50	82	0.411	.0430
4	.0365	50	82	0.411	.0430
6	.0365	50	8	0.405	.04 42
9	.0365	50	82	0.411	.0430
A 7.	.0365	20	82	0.412	.0427
_	0833	200	190	0.710	.0328
N	0729	200	200	0.673	.0318
60	0.729	200	213	0.662	.0330
4	.0521	200	230	0.584	.0302
2	0469	200	253	0.534	.0328
9	.0500	200	218	0.618	.0261
A 7.	.0630	200	217	0.630	.0311

	Lost Head Wt. of Time	Wt. of	1	Velocity Friction	Friction		Lost Head	Lost Head Wt of	Time	Time Velocity Friction	Friction
×°	Feet	Water in b.	Sec. 7.	in Ftpersec	Factor (f)	χ	in Feet	Water in 16.	in Sec's	in Ftpersec	Factor (f)
_	.0033	001	38	0.689	.0352		0.125	100	47	0.9/2	03//
7	.0833	100	96	0.701	.0338	N		200	152	0.887	03/6
B	.0781	200	195	0.689	.0352		0.125	100	74	0.912	.0311
4	.0781	100	97	0.693	.0324	4	0.125	200	154	0.874	.0326
6	1070.	100	98	0.689	.0352	5	0.125	200	152	0.887	.0316
9	.078/	100	38	0.689	.0352	9	0.125	100	76	0.087	.0316
A 7.	9620.	1117	114		.0345	A V.	1.0.125	150	130	0893	.0316
\	1042	001	85	0.794	0380		0.146	200	139	0.971	.0306
N	1042	100	18	0.832	.0300	N	0.146	200	140	0.962	.0312
60	1042	100	98	0.786	.0332	w	0.146	200	139	0.971	.0306
4	1042	001	85	0.794	.0329	4	0.146	200	140	0.962	.0312
7	.1042	100	85	0.794	.0329	5	0.146	200	140	0.962	.0312
<u> </u>	1042	001	90	0.786	.0332	9	0.146	200	138	0.975	.03/6
A //	1042	100	85	0.798	.0325	AV	0.146	200	141	0.969	1180.

.0284 .0282 .0396 .0316

1.958 1.976 1.945 1.966 1.937 1.927

.0282

DATA

Yelocity Friction in Factor Ftpersec (f)

Time in Secs.	27 7 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 6 7 6 7 6 7 6 9 9 9 9 9 9 9 9 9 9 9 9	077 077 477 747
	200	200	500 500 500 500 500 500
Lost Head Wt of in Water Feet in 16.	714.0	0.422	0.547 0.548 0.548 0.548 0.548 0.548
γ°	- N w 4 h		- M W 4 N O 7.
Friction Factor (f)	.0302 .0302 .0300 .0300	0300	0293 0293 0293 0297 0297 0293 02930
Wt. of Time Velocity Friction Water in in Factor in 16. Sec's. Fipersec. (f)	1.076	•	1.570 1.530 1.530 1.570 1.520 1.520
Time in Sec's.	/25 /25 /26	92/	4 4 4 4 00 0 P w 4 4 w v v v
	200	200	100 100 100 200 200 133
Lost Head in Feet	0.177	0.173	0.00 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
No		,	- M W 4 N 0 >
		/	

1.680.0300 1730.0284 1.710.0290 1.710.0288

1.710.0284 1.710.0284 1.710.0284

in factor No 1.78 .0291 1.76 .0297 1.80 .0283 1.80 .0284 1.76 .0284 1.76 .0285 1.87 .0285 1.85 .0291 1.85 .0287 1.85 .0287 1.85 .0288 1.86 .0288 4 .0	ad)	of J	O	VelocityFriction	Friction		Lost Head	Wt. o
78 .0291	in Water ii Feet in 16. Se) e = .	ر د د	in F£persec	Factor (f)	<u></u>	He = = +	Wate in I
1.76 .0297 2 0.542 1.80 .0283 4 0.552 1.80 .0294 5 0.552 1.76 .0294 6 0.552 1.76 .0294 6 0.552 1.76 .0294 6 0.552 1.87 .0291 2 0.547 1.85 .0294 4 0.547 1.85 .0282 5 0.547 1.86 .0282 6 0.547 1.86 .0288 4V. 0.547	0.464 100	'	38	1.78	.0291	_	0.542	200
1.80 .0285 3 0.542 1.80 .0284 4 0.552 1.76 .0294 5 0.552 1.76 .0294 6 0.552 1.76 .0294 6 0.552 1.87 .0291 AV. 0.547 1.85 .0294 4 0.547 1.85 .0287 5 0.547 1.86 .0282 6 0.547 1.86 .0288 AV. 0.547	0.464 300 1	_	114	1.76	.0297	2	0.542	20
1.80 .0283 4 0.552 1.76 .0294 5 0.552 1.76 .0294 6 0.552 1.76 .0294 6 0.552 1.87 .0291 4V. 0.547 1.85 .0294 4 0.547 1.85 .0287 5 0.547 1.89 .0282 6 0.547 1.86 .0282 6 0.547 1.86 .0282 6 0.547	0.464 200		75	1.80	.0285	<i>w</i>	0.542	202
1.76 .0294 5 0.552 2 2 1.76 .0294 6 0.552 2 2 1.78 .0291 AV. 0.547 2 1.0547 2 1.0597 2 0.547 2 1.0547 2 1.0547 2 1.0547 2 1.0597 2 0.547 2 1.0597 2 1.0597 2 1.0597 2 1.0597 2 1.0597 2 1.0597 2 1.0597 2 1.0597 2 1.0598 1.0597 2 1.0597 2 1.0598 1.0597 2 1.0598 1.0597 2 1.059	0.458 200		75	1.80	.0283	4	0.552	20
1.76 .0294 6 0.552 1.78 .0291 AV. 0.547 1.87 .0291 2 0.547 1.85 .0291 3 0.547 1.85 .0294 4 0.547 1.87 .0287 5 0.547 1.86 .0282 6 0.547 1.86 .0288 AV. 0.547	0.458 200		91	1	.0294	6	0.552	200
1.78 .0291 AV. 0.547 1.87 .0285 1 0.547 1.85 .0291 2 0.547 1.85 .0294 4 0.547 1.85 .0287 5 0.547 1.89 .0282 6 0.547 1.86 .0288 AV. 0.547	0.458 200		92	1.76	0	9		200
2	0.461 200		76		N	A 7.	0.547	200
2 1.87 .0285 1 0.547 3 1.85 .0291 2 0.547 3 1.85 .0294 4 0.547 2 1.85 .0287 5 0.547 1 1.89 .0282 6 0.547 2 1.86 .0288 4V. 0.547								
3 1.85 .0291 2 0.547 3 1.85 .0294 4 0.547 2 1.87 .0287 5 0.547 1 1.89 .0282 6 0.547 2 1.86 .0288 AV. 0.547	0.500 200		72	1.87	.0285	_	0.547	20
3 1.85 .0291 3 0.547 3 1.85 .0294 4 0.547 2 1.87 .0287 5 0.547 1 1.89 .0282 6 0.547 2 1.86 .0288 AV. 0.547	0.500 200		73	1.05	1620.	2	0.547	20
3 1.85 .0294 4 0.547 2 1.87 .0287 5 0.547 1 1.89 .0282 6 0.547 2 1.86 .0288 AV. 0.547	0.500 200		73	1.85	1620.	n	0.547	20
2 1.87 .0287 5 0.547 1 1.89 .0282 6 0.547 2 1.86 .0288 AV 0.547	0.505 200		73	1.85	.0294	4	0.547	20
1 1.89 .0282 6 0.547 2 2 1.86 .0288 AV 0.547 2	0.505 200		72	1.87	.0287	4)	54	20
2 1.86 .0288 AV. 0.547 2	0.505 200		1/	1.89		9	54	20
	0.503 200		72		28	A V.	54	20
		3						

	Lost Head Wt. of	Wt of	Time	Velocity Friction	Friction
\mathcal{N}_{o}	<u>2</u>	Water	<u>.</u>	u	Factor
	Feet	in 1b.	Sec's.	Ft. persec	(f)
\	0.542	200	69	1.98	.0275
2	0.542	200	69	1.95	.0284
3	0.542	200	89	6	.0275
4	0.552	200	69	1.95	.0284
5	0.552	200	69	0	.0284
0		200	69	6)	.0284
A 7.	0.547	200	69	1.96	.0281
_	0.547	200	69	1.95	.0287
0	4	200	69	1.95	.0287
n	4	200	6 8	1.98	.0273
4	0.547	200		0	.0287
6	4	200	89	1.98	0279
9	0.547	200	6 8	1.98	.0279
AV.	0.547	200	69	1.97	.0285

(tof)	in Water Feet in 1b.	200	200	500	200	200	500	500	700	1000	700	800	700	700	767	
Time	in Secis 1	69	99	99	99	99	99	99	961	253	161	214	961	197	209	
Lost Head Wtof Time Velocity Friction	in Fact Frpersec (f)	1.98	2.04	2.04	2.04	2.04	2.04	2.03	2.341.0295	2.663.	2.395	2.403.0273	2.341	2.395	2.423	
riction	Factor (f)	.0296	.0279	.0279	. 0279	0279	. 0279	0282	. 0295	6220	395.0273	.0273	341.0295	395.0273	0268	
	×°	_	N	m	4	5	0	A 7.	`	2	3	4	5	9	<u>Z</u> ,	
Lost Head Wt. of	in Feet	0.823	0.823	0.823	0.013	0. 791	0.823	0.816	0.802	0.791	0.791	0.791	0.791	0.791	0.793	
Wt. o	Water in 1b.	500	700	500	800	1000	009	685	200	400	009	200	200	500	300	

	Lost Head	IWt of	Time	Lost Head Wt of Time Velocity Friction	riction
γ°	'n	Water	2.		Factor
	Feet	in 1b.	Sec's.	ď	(£)
\	0.823	500	138	2.441	0275
N	0.823	700	194	2.433	0310
n	0.823	500	143		.0294
4	0.013	800	212	2.429	.0274
5	0. 791	1000	280	2.403.	.0237
0	0.823	009	167	2.420	.0280
A 7.	0.816	685	189	2.414.	.0278
	-				
`	0.802	200	55	2.45	.0267
2	0.791	400	134	2.01	0380
3	0.791	009	139	2.91	0186
4	0.791	200	55	2.45	0263
5	0.791	200	55	45	0263
0	0.791	500	55	•	0263
<u>Z</u>	0.793	300	20	45.	0274

DATA

	LostHead	Lost Head Wt. of Time	Time	Velocity Friction	Friction		Lost Head	Lost Head Wt. of	Time	Time Velocity Friction	Friction
χ_{o}	Feet	Water in 1b.	in Sec's. F	in Ff persec	Factor (f)	No	o in Feet	Water in 1b	in Secs.	in Ff.persec.	Factor (f)
`	0.839	009	191	2.51	.0265		1.188	200	43	3.13	.0241
7	0.833	400	901	2.54	.0257	7	1198	700	153	3.09	.0251
B	0.833	200	53	2.55	.0255	8	1.203	500	011	3.06	.0257
4	0.828	400	107	2.52	.0260	4	- 1.208	500	43	3.13	.0250
5	0.828	200	53	2.55	.0254	5	1.214	500	011	3.06	.0260
0	0.828	500	134	2.51	.0262	0	1.203	400	87	3.10	.0250
7.	0.832	383	102	2.53	.0259	7.	1.1203	417	16	3.09	.0251
\	1.063	200	46	2.93	.0247	_	1.344	200	40	3.37	.0235
N	1.052	500	117	2.88	.0253	N	1.339	400	8	3.25	.0251
9	1.052	500	118	2.86	.0251	<i>w</i>	1.333	500	103	327	.0250
4	1.052	200	47	2.87	.0255	4	1.339	200	37	3.65	0200
5	1.037	200	47	2.87	.0251	5	1.339	400	98	3.13	.0273
0	1.037	400	96	281	.0261	9	1.339	500	104	3.24	.0255
<u>A</u>	1.049	333	7.9	2.87	.0254	AV	(1.339	367	76	3.32	.0244

Friction Factor (f)	0.00.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Velocity in Fipersec	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Time in Sec's.	38 38 38 60 60 60 60 60 60 60 60 60 60
Wt. of Water in 1b.	200 300 200 200 300 800 600 700 583
Lost Head Wt. of in Water Feet in 16.	1.745 1.766 1.797 1.707 1.902 1.880 1.875 1.902 1.876 1.886
× 0	- M W 4 N O Z - M W 4 N O Z
Factor (f)	0230 02450 02450 02450 02451 02451 02451 02451 02451
Velocity Friction in Factor Ft. persec. (f)	3.55 .0237 3.45 .0250 3.46 .0250 3.51 .0243 3.46 .0251 3.45 .0243 3.55 .0243 3.55 .0243 3.55 .0243 3.55 .0247
Velocity in Ft. persec.	0000000 0000000
Velocity in Ft. persec.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
Time Velocity in in Sec's. Ft. persec.	38 3.55 0 137 3.45 0 116 3.46 0 39 3.46 0 117 3.45 0 118 3.58 0 118 3.58 0 133 3.55 0 56 3.61 0

LostHead V No in P Feet	1 2.438	3 2.495	5 2.438	AV. 2.466	1 2.406		3 2.531		5 2.490	6 2.479	AV. 2.489
Friction Factor (f)	.0 250	.0240	.0243	.0 2 43	.0251	.0247	.0243	.0225	.0250	.0235	.0242
Lest Head Wt. of Time Yelocity Friction in Water in in Factor Feet in 16. Sec's. Ftpersec (f)	4.08	4.00	4.15	41.4	4.22	4.30	4.32	4.50	4.26	4.39	4.33
Time in Sec's.	32	76	130	87	30	94	125	30	35	35	78
Wt. of Water in 1b.	200	009	800 500	403	200	009	800	200	009	009	500
Lost Head in Feet	2.063	2.083	2.099	2.082	2.250	2.229	2.276	2.290	2.266	2.271	2.265
χ°	~ ~		60	7.	\	2	m	4	6	9	7.

Friction	Factor	(£)	.0257	.0247	.0247	W	.0257	.0247	.0252	.0253	.0250	.0243	.0237	.0245	.0237	.0244	
Time Velocity Friction		Ff. persec	4.35	4.58	4.58	4.35	4.35	4.58	4.47	4.35	4.62	4.55	4.60	4.49	4.57	4.53	
Time	<u></u>	Sec's.	31	221	221	3/	31	221	126	31	219	74	176	75	177	125	
Wt of	Water	in 1b.	200	1500	1500	200	200	1500	850	200	1500	500	1200	500	1200	850	
Lost Head Wt of	<u>2</u> .	Feet	2.438	2.495	2.495	2.438	2.438	2.495	2.466	2.406	2.510	2.531	2.516	2.490	2.479	2.489	
	γо		\	0	m	4	2	9	A Z	_	0	B	4	5	9	AV.	

'			`												
400	1100	400	1100	400	400	633		400	0011	400	1000.	400	1100	733	
3.109	3.099	3.120	3.146	3.245	3.208	3.154		3.344	3.406	3 458	3.495	3.495	3.438	3.439	
	7	B	4	5	9	A 7.		\	N	B	4	6	9	A 7.	
															•
0 235	.0233	.0240	.0237	.0230	.0 235	.0235		0230	0237	0237	.0235	0237	.0233	0235	
4. 74		4.68	4.72	4.81	4.75	4.81		5.03	4.90	4.88	4.93	4.95	4.99	4.95	
	128	29	157	10	142	105		19	165	69	164	89	135	///	
500	900	500	0011	200	1000	750		500	1200	500	1200	500	1000	817	
2.646	2.625	2.630	2.646	2.661	2.677	2.648		2.906	2.849	2.833	2.859	2.917	2.906	2.878	
	0	3	4	5	9	\(\times \)		,	N	3	4			A 7.	
	500 71 4.74 0235 1 3.109 400	2.646 500 71 4.74.0235 1 3.109 400 2.625 900 128 4.74.0233 2 3.099 1100	2.646 500 71 4.74.0235 1 3.109 400 2.625 900 128 4.74.0233 2 3.099 1100 2.630 500 62 4.68.0240 3 3.120 400	2.646 500 71 4.74 .0235 1 3.109 400 2.625 900 128 4.74 .0233 2 3.099 1100 2.630 500 62 4.68 .0240 3 3.120 400 2.646 1100 157 4.72 .0237 4 3.146 1100	2.646 500 71 4.74 .0235 1 3.109 400 2.625 900 128 4.74 .0233 2 3.099 1100 2.630 500 62 4.68 .0240 3 3.120 400 2.646 1100 157 4.72 .0237 4 3.146 1100 2.661 500 70 4.81 .0230 5 3.245 400	2.646 500 71 4.74 .0235 1 3.109 400 2.625 900 128 4.74 .0233 2 3.099 1100 2.630 500 62 4.68 .0240 3 3.120 400 2.646 1100 157 4.72 .0237 4 3.146 1100 2.677 1000 142 4.75 .0235 6 3.208 400	2. 646 500 71 4.74 .0233 1 3.109 400 2. 625 900 128 4.74 .0233 2 3.099 1100 2. 626 500 62 4.68 .0240 3 3.120 400 2. 646 1100 157 4.72 .0237 4 3.146 1100 2. 661 500 70 4.81 .0235 6 3.208 400 2. 648 750 105 4.81 .0235 4V. 3.154 6.33	2. 646 500 71 4.74 .0233 1 3.109 400 2. 625 900 128 4.74 .0233 2 3.039 1100 2. 646 1100 62 4. 68 .0240 3 3.120 400 2. 646 1100 157 4.72 .0237 4 3.146 1100 2. 647 1000 142 4.75 .0235 6 3.208 400 2. 648 750 105 4.81 .0235 4V. 3.154 6.33	2.646 500 71 4.74.0235 1 3.109 400 2.625 900 128 4.74.0233 2 3.099 1100 2.625 900 62 4.68.0240 3 3.120 400 2.646 1100 157 4.72.0237 4 3.146 1100 2.646 1700 142 4.75.0235 6 3.208 400 2.677 1000 142 4.75.0235 6 3.208 400 2.648 750 105 4.81.0235 1754 633	2.646 500 71 4.74.0235 1 3.109 400 2.625 900 128 4.74.0233 2 3.099 1100 2.625 900 62 4.68.0240 3 3.120 400 2.646 1100 157 4.72.0237 4 3.146 1100 2.646 1700 142 4.75.0233 6 3.208 400 2.647 1000 142 4.75.0235 6 3.208 400 2.648 750 105 4.81 .0235 1 3.344 400 2.906 500 67 5.03.0237 2 3.406 1100	2.646 500 71 4.74.0235 1 3.109 400 2.625 900 128 4.74.0233 2 3.039 1100 2.625 900 128 4.74.0233 2 3.039 1100 2.646 1100 157 4.72.0237 4 3.146 1100 2.646 1700 142 4.75.0237 5 3.245 400 2.647 1000 142 4.75.0235 6 3.208 400 2.648 750 105 4.81 .0235 1 3.344 400 2.906 500 67 5.03.0237 2 3.406 1100 2.849 1200 165 4.90.0237 2 3.406 1100	2. 646 500 71 4.74 .0235	2. 646 500 71 4.74 .0233	2. 646 500 71 4.74 .0233	2. 646 500 71 4.74 .0235 1 3109 400 2. 625 900 128 4.74 .0233 2 3.039 1100 2. 646 1100 157 4.72 .0237 4 3.146 1100 2. 646 1100 157 4.72 .0237 5 3.245 400 2. 646 1100 157 4.75 .0235 6 3.245 400 2. 647 1000 142 4.75 .0235 41. 3.154 633 2. 648 1200 67 5.03 .0237 2 3.406 1100 2. 849 1200 67 5.03 .0237 2 3.406 1100 2. 849 1200 68 4.95 .0237 5 3.495 1000 2. 878 817 111 4.95 .0233 6 3.439 1733

	Lost Head	Wt. of	Time	Lost Head Wt. of Time Velocity Friction	Friction
Xo	in	Water	2.	. <u>.</u> .	Factor
	Feet	in 1b.	Sec's.	Ft.persec.	(£)
/	3.109	400	52	5.18	.0231
7	3.099	0011	142	5.18	.0230
B	3.120	400	52	5.17	.0233
4	3.146	1100	143	5.18	.0233
6	3.245	400	50	5.38	.0223
9	3.208	400	53	4.57	.0306
A 7.	3.154	633	83	5.11	.0244
_	3.344	400	50	5.39	6220
N	3.406	0011	137	5.42	.0206
9	3 458	400	43	N	.0175
4	3.495	1000.	128	5.27	.0251
6	3.495	400	.50	5.39.	0239
9	3.438	1100	135	4	.0227
A 7.	3.439	.733	94.	5.54	.0221

OF DATA. RESULTS AVERAGE

Friction	u	(£)	.0703	.0665	.0658	0378	.0533	1140.	.0427	.0311	.0345	.0325	9180.	1180.	1080.	
Lost Head Velocity Friction	. <u>-</u>	Ft.persec.	0.086	0.126	0.125	0.234	0.318	0.588	0.412	0.630	0.691	0.798	0.893	0.969	1.071	
Lost Head	L	Feet	.0026	.0052	.0052	.0104	.0234	.0675	.0365	.0630	.0798	1042	.1250	1460	1740	
	No		\	2	ന	4	6	9	^	Ø	ଚ	0/	1	12	8	

No in Feet F	28 / 339	29 1.495	30 1.577	31 1769 3	32 1.886	33 2.082	34 2.265	35 2.466	36 2.489	37 2.648	38 2.878	39 3.154	40 3.439		
lost Head Velocity Friction in in Factor Feet Ftpersec. (f)	0.344 1.540 .0289	0.422 1.710 .0288	0.544 1.941 .0291	0.461 1.780.0291	0.503 1.860.0288	0.547 1.960.0281	0.547 1.970.0283	0.583 2.030.0282	0.793 2.450.0274	0.802 2.423.0268	0.816 2.414.0278	0.832 2.530.0259	1.049 2.870.0254	1.203 3.090.0251	
γο	4/	15	91	17	18	61	20	12	22	N 60	24	25	56	27	

0.420. 6420. 8430.

7.0.0 67.0 60.0 47.4

0244 0246 0247

3.32

3.48

ost Head Velocity Friction

Factor

(f)

Frper sec.

.0252 .0244

4.47

4.53

0235 0235 0244

4.81 4.95 5.11 0221

.0242

4.33

Length of pipe, 56ft 3ins Inside diameter, $2\frac{3}{32}$ ins. $f = 0.199 \frac{H}{V^2}$

IV. DISCUSSION.

- - - : - - -

As was previously stated in the theory, the results obtained for the friction factor cannot be taken as a very high degree of accuracy. There being so many variations and chances for errors, that the experimenter finds himself at sea to overcome them all and make his results fit all cases.

In the present results errors being eliminated as far as possible, yet slight chances for such were present.

By allowing the water to flow freely for 3 to 5 minutes before taking data the errors due to air bubbles in the pipes can readily be neglected, but the constant vibrating of the water level in the pressure gauge allowed a slight chance for errors. Connecting the pressure gauge as was done, made it possible to read the lost head direct, and allowed very little chance for errors in setting the pointers at each water level before they had varied any appreciable amount.

It was tried to have the longest straight pipe possible on this line of pipe without being hindered by the bends, but very little is known or could be found out as to the effect the bends had in varying the lost head. But it was thought that ten feet of straight, 2 in pipe was sufficient to overcome any irregularity in the pressure due to bends in the pipe.

The temperature of the water varied from 71° F to 79° F keeping generally around 76° F as an average.

In changing the quantity of water from pounds to cubic feet, one pound was assumed equal to 62.35 cu. ft. at 62° F, allowing practically a constant variation in temperature from the assumed of 14° F.

The greatest chance for errors, however, was observed in catching the time it took a certain quantity of water to flow in to the measuring tank. The quantity divided by the product of the time and the cross-sectional area of the inside of the pipe gives the velocity of flow. This value when placed in the general formula for lost head has to be squared, which greatly increases the error.

Having varied the time one second in several cases, an error of 0.7% was calculated in the majority of cases tried, showing that the accuracy of the friction factor depended considerably upon the accuracy of the time.

As seen from the friction factor-velocity curve a marked peculiarity has occured around the velocity of 2.0 ft./sec.

Several check readings were taken, but all were about the same with very slight variations. Apparently the curve seems to take the form shown, but no reasons or proofs except the experimental data can be given in its favor. According to Merriman's values, the points plotted should lie on a very smooth curve, which would practically fall mid-way between the points plotted, but due to the strong and even positions, which the points desire to hold, it seemed impossible to allow the curve to follow any other direction. The curve with the exception of this irregularity agree very well with values plotted from Merriman as will be shown in Table 1.

Of the six values recorded the maximum and minimum values are plotted with red ink; the average curve being shown between these in a black colored ink.

The values obtained for lost head, when plotted in a Lost Head- Velocity curve, show comparatively good results and

form the path of a very regular and smooth curve, varying slight at the velocities around 3 ft./sec. and above.

V. CONCLUSION.

- -

The results of the tests seem to indicate that the loss of head varies closely as the square of the velocity, except for low velocities. At these low velocities the relation of loss of head seems to bear no definite relation to the velocity.

The critical velocity or the velocity at which the lost head ceased to vary as the square of the velocity does not seem to be exactly defined. However the tests show it to be at a velocity of about 1.4 ft./sec. as shown on the friction factor-velocity curve.

The tests show results which compare very well with values as given in Merriman's text book on Hydraulics and also Hoskin's; a comparison of these results is shown in Table I.

TABLE I.

Velocity ft./sec.	Experimental	Herriman	Hoskin
1	.030	• 034	.0298
2	.029	.029	
3	.026	.027	
A.	.025	.026	
5	.024	.025	

