Introduction to Bayesian Data Analysis Tutorial 3

- (1) Problem 3.13 (Hoff)
 - Improper Jefferys' prior: Let $Y \sim \text{Poisson}(\theta)$.
 - (a) Apply Jeffrey's procedure to this model, and compare the result to the family of gamma densities. Does Jeffreys' procedure produce an actual probability density for θ ? In other words, can $\sqrt{I(\theta)}$ be proportional to an actual probability density for $\theta \in (0, \infty)$?
 - (b) Obtain the form of the function $f(\theta, y) = \sqrt{I(\theta)} \times p(y|\theta)$. What probability density for θ is $f(\theta, y)$ proportional to? Can we think of $f(\theta, y) / \int f(\theta, y) d\theta$ as a posterior density of θ given Y=y?
- (2) Show that the posterior predictive distribution $p(\tilde{y}|y)$ is the posterior expectation of $p(\tilde{y}|\theta)$.
- (3) Problem 4.2 (Hoff) Reconsider the tumor count data in Tutorial 2.
 - (a) For the prior distribution given in part a) of that exercise, obtain $Pr(\theta_B < \theta_A | \mathbf{y_A}, \mathbf{y_B})$ via Monte Carlo Sampling
 - (b) For a range of values of n_0 , obtain $Pr(\theta_B < \theta_A | \mathbf{y_A}, \mathbf{y_B})$ for $\theta_A \sim \text{Gamma}(120, 10)$ and $\theta_b \sim \text{Gamma}(12 \times n_0, n_0)$. Describe how sensitive the conclusions about the event $\{\theta_B < \theta_A\}$ are to the prior distribution on θ_B .
 - (c) Repeat parts a) and b) replacing the event $\{\theta_B < \theta_A\}$ with the event $\{\tilde{Y}_B < \tilde{Y}_A\}$ where \tilde{Y}_A and \tilde{Y}_B are samples from the posterior predictive distribution. Describe how sensitive the conclusions about the event $\{\tilde{Y}_B < \tilde{Y}_A\}$ are to the prior distribution on θ_B , and compare to your observations in part (b).

- (4) Problem 4.3 (Hoff) Let's investigate the adequacy of the Poisson model for the tumor count data. Generate posterior predictive data sets $\mathbf{y}_A^{(1)},...,\mathbf{y}_A^{(1000)}$. Each $\mathbf{y}_A^{(s)}$ is a sample of size $n_A = 10$ from the Poisson distribution with parameter $\theta_A^{(s)}$, $\theta_A^{(s)}$ is itself a sample from the posterior distribution $p(\theta_A|\mathbf{y}_A)$, and \mathbf{y}_A is the observed data.
 - (a) For each s, let $t^{(s)}$ be the sample average of the 10 values of $\mathbf{y}_A^{(s)}$, divided by the sample standard deviation of $\mathbf{y}_A^{(s)}$. Make a histogram of $t^{(s)}$, and compare it to the observed value of this statistic. Based on this statistic, assess the fit of the Poisson model for these data.
 - (b) Repeat the above goodness of fit evaluation for the data in population B.
- (5) Problem 4.4 (Hoff) From the posterior density from Problem (3) in Tutorial 2
 - (a) Make a plot of $p(\theta|y)$ or $p(y|\theta)p(\theta)$ using the mixture prior distribution and a dense sequence of θ -values. Can you think of a way to obtain a 95% quantile-based posterior confidence interval for θ ? You might want to try some sort of discrete approximation.
 - (b) To sample a random variable z from the mixture distribution $wp_1(z) + (1-w)p_0(z)$, first toss a w-coin and let x be the outcome (this can be done in R with x < -rbinom(1,1,w)). Then if x = 1 sample z from p_1 and if x = 0 sample z from p_0 . Using this technique, obtain a Monte Carlo approximation of the posterior distribution $p(\theta|y)$ and a 95% quantile-based confidence interval, and compare them to the results in part (a).