Session 8: Linear Algebra for Graphs (& SVD)

Optimization and Computational Linear Algebra for Data Science

```
SINGULAR VALUE DECOMPOSITION: STRANG CHAP?
SPECTRAL COUSTERING: ----
```

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Singular Value Decomposition
- 2. Graphs and Graph Laplacian
 - 2.1 Definitions
 - 2.2 Properties
- 3. Application: Spectral clustering

1. Singular Value Decomposition

PCA

- $lacksquare ext{Data matrix} \quad A \in \mathbb{R}^{n imes m} \qquad ext{n data points in } m ext{ dimensions}_{m} = 0$
- "Covariance matrix" $S = A^{\mathsf{T}}A \in \mathbb{R}^{m \times m}$.

S is symmetric (positive semi-definite).

Spectral Theorem: there exists an orthonormal basis v_1, \ldots, v_m of \mathbb{R}^m such that the v_i 's are eigenvectors of S associated with the eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m \geq 0$ (positive semi-definite).

Definitions: Singular values/vectors

For i = 1, ..., m:

- We define $\sigma_i = \sqrt{\lambda_i}$, called the i^{th} singular value of A.
- → eigenvalues of ATA.

Let $r = \operatorname{rank}(A) = \operatorname{number} \operatorname{of} \operatorname{non-zero} \lambda_i$'s (exercise!).

- For $i=1,\ldots,r$: eigenvectors v_i of A^TA
 - We call $u_i = \frac{1}{\sigma_i} A v_i$ the i^{th} left singular vector of A.
 - $u_1, \cdots u_r$ are orhonormal.
 - If r < n, we add $u_{r+1}, \cdots u_n$ such that $u_1, \cdots u_n$ is an orthonormal basis of \mathbb{R}^n .

For i = 1, ..., m:

- Observe that we have $Av_i = \sigma_i u_i$ and $A^T u_i = \sigma_i v_i$.
- We call v_i the i^{th} right singular vector of A.

AE Rnxm

Singular Value decomposition

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that

ATA =

$$\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$$
 and $\Sigma_{i,j} = 0$ for $i \neq j$, that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

Remark: While eigendecomposition is for some square matrices, singular value decomposition exists for all rectangular matrices.

Remarks

Right singular vectors v_i 's are eigenvectors of $A^{\top}A \in \mathbb{R}^{m \times m}$, with eigenvalues $\lambda_i = \sigma_i^2$.

$$A^{T}A = (V Z^{T}U^{T})(U Z V^{T}) = V Z^{T}Z V^{T} = V \begin{pmatrix} 6^{2} \\ 6^{2} \\ 0 \end{pmatrix} V^{T}$$

$$m \times m$$

Left singular vectors u_i 's are eigenvectors of $AA^{\top} \in \mathbb{R}^{n \times n}$, with eigenvalues $\lambda_i = \sigma_i^2$.

$$\Delta A^{T} = U \Sigma^{T} V \Sigma U^{T} = U Z^{T} \Sigma U^{T} = U \begin{pmatrix} 6_{1}^{2} & \\ & \ddots & \\ & & 6_{n}^{2} \end{pmatrix} U^{T}$$

Rh: ATA and AAT have same number of non zero nxn eigenvolves.

Low-rank approximation

How can we approximate a matrix A by a matrix of "small" rank?

COMPUTE THE SVD:
$$A = U \Sigma V^T = U \begin{pmatrix} 6_1 & 6_2 \\ & & \ddots \end{pmatrix} V^T$$

LOOK AT THE SINGULAR VAWES:

3 TAKE
$$A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$
TAKE $A = U \begin{pmatrix} 6162 \\ 000 \end{pmatrix}$

1. Singular Value Decomposition

Q	Questions?																	

7/19

1. Singular Value Decomposition

Q	Questions?																	

7/19

2. Graphs and Graph Laplacian

2.1 Definitions: Graphs

Consider a graph G made of n **nodes** with some **edges**:

Definition

The **adjacency matrix** A of G is the $n \times n$ matrix with entries

$$A_{i,j} = \begin{cases} 1 \text{ if edge between nodes } i \text{ and } j \\ 0 \text{ otherwise} \end{cases}$$

Definition

The **degree matrix** $D \in \mathbb{R}^{n \times n}$ of G is the diagonal matrix with

$$D_{i,i} = \#\{\text{neighbors of } i\} = \deg(i)$$

Graph Laplacian

The Laplacian matrix of ${\cal G}$ is defined as

$$L = D - A.$$

Re. L, D and A are Symmetric materico.

Graph Laplacian

Definition

2. Graphs and Graph Laplacian 2.1 Definitions

The Laplacian matrix of G is defined as

$$L = D - A$$
.

For all
$$x \in \mathbb{R}^n$$
, $x^T L x = \sum_{i \sim j} (x_i - x_j)^2$.

Proof.

N x n

Aust is all 0

For any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^n
 $x^T B^{(ij)} \times x = x_1^2 + x_2^2 - x_1 x_2 = x_1 + x_2^2 - x_2 = x_1 + x_2^2 - x_2 x_2 = x_1 + x_2^2 - x_2 = x_1 + x_2^2 - x_2 = x_1 + x_$

2.2 Properties of the Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^T L x = \sum_{i \sim j} (x_i - x_j)^2$. $\geqslant 0$
 $\Rightarrow L$ is positive semi-definite (PSD) (by definition)

 $\Rightarrow 0 \leqslant \lambda_1 \leqslant -\cdots \leqslant \lambda_n$ eigenvalues

Pacall: $\lambda_1 = \min_{\| v^T \| = 1} \frac{x^T L x}{\| x \|} \geqslant 0$
 $\Rightarrow \text{Toke } x^T L x \text{ for } x = \begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix} \text{ in } \mathbb{R}^n$
 $x^T L x = 0 \Rightarrow \lambda_1 = 0$ amounded with $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

2. Graphs and Graph Laplacian 2.2 Properties

2.2 Properties of the Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^T L x = \sum_{i \sim j} (x_i - x_j)^2$.

since L is PSD

2 connect components

 $x \in \text{Ker}(L)$
 $\Rightarrow x_1 = x_j \text{ for all i and } j \text{ in the same connected component}$.

Ex: For $G : n = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ are a ban's of Ker(L)

dim Ker(L) = 2.

Algebraic connectivity

0= h & /2 < -- < /m

Proposition

- The multiplicity of the eigenvalue 0 of L (i.e. the number of i such that $\lambda_i = 0$) is equal to the number of connected components of G.
- In particular, G is connected if and only if $\lambda_2 > 0$.

- λ_2 is sometimes called the «algebraic connectivity» of G and measures somehow how well G is connected.
- From now, we assume that G is connected, i.e. $\lambda_2 > 0$.

3. Application: Spectral graph clustering

3.1 Spectral clustering algorithm

Input: Graph Laplacian L, number of clusters k

1. Compute the first k orthonormal eigenvectors v_1,\ldots,v_k of the Laplacian matrix L.

の=んくかくく...

- 2. Associate to each node i the vector $x_i = (v_2(i), \ldots, v_k(i))$. $\in \mathbb{R}^n$
- 3. Cluster the points x_1, \ldots, x_n with (for instance) the k-means algorithm.¹
- 4. Deduce a clustering of the nodes of the graph.

Chap 13 - Elements of Statistical Learning (Hastie, Tibshirani, and Friedman

3.2 The case of two groups

For k=2 groups:

1. Compute the second eigenvector v_2 of the Laplacian matrix L.

 $S = \{i \mid v_2(i) \ge \delta\}$ and $S^c = \{i \mid v_2(i) < \delta\},$

- 2. Associate to each node i the number $x_i = v_2(i)$.
- 3. Cluster the nodes in:

How does this work?

Let $S \subset \{1, 2, \cdots n\}$.

Definition

The cut of S, denoted $\operatorname{cut}(S)$ is defined as the number of edges between S and S^C .

We encode
$$S$$
 by a vector $x \in \{+1, -1\}^n$ defined by

$$n = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 for nodes in S
$$x_i = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{if } i \in S \end{cases}$$
 for nodes in S

cur(s) =

5= 14,53

Minimal cut problem

Recall
$$x^{\top}Lx = \sum_{i \sim j} (x_i - x_j)^2$$
.

For
$$x \in \{+1, -1\}^n$$
 representing the subset of nodes S ,
$$\mathrm{cut}(S) = \frac{1}{4} x^\top L x$$

3. Application: Spectral graph clustering 3.2 Two groups

Minimal cut problem

Recall
$$x^{\top}Lx = \sum_{i \sim j} (x_i - x_j)^2$$
.

Proposition

For $x \in \{+1, -1\}^n$ representing the subset of nodes S,

$$\operatorname{cut}(S) = \frac{1}{4}x^{\top}Lx$$

Goal. Find
$$S$$
 (or equivalently $x \in \{+1, -1\}^n$) such that

- $\operatorname{cut}(S)$ is small $\langle = \rangle$ at \mathbb{Z} is small.
- \Rightarrow S and S^C have same number of nodes # S = # S

« Min-Cut » is NP-Hard

Goal:	minimize	$x^T L x$ subject to $\begin{cases} x \in \{-1,1\}^n \\ x \perp (1,\ldots,1). \end{cases}$
	Barically:	Have to try all the $x \in d-1,+1$ $\frac{1}{2}$
		How nany elements?
		2 "

3. Application: Spectral graph clustering 3.2 Two groups

18/19

Spectral clustering as a «relaxation»

Idea: We first solve the « relaxed » problem:

minimize
$$v^{\mathsf{T}} L v$$
 subject to $\begin{cases} \|v\| = \sqrt{n} \\ v \perp (1, \dots, 1). \end{cases}$

3. Application: Spectral graph clustering 3.2 Two groups

[In practice no often leads] small out]

Questions?											

20/19

Questions?											

20/19