Dimensionality Reduction

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

- Introduction and motivation
- Singular Value Decomposition (SVD)
 - Every matrix has a SVD
 - Intuition
 - Applications in dimensionality reduction
- Principal Component Analysis (PCA)
 - Visualization and exploration
 - Goal: find low-dimensional projection that represents data well
- Comments on Multi-Dimensonal Scaling (MDS) and non-linear embedding

What is dimensionality reduction?

- Goal: find "structure" in high-dimensional data
 - Structure means: patterns, dependencies, clusters,...
- Motivating example:
 - Stock price analysis: we want to understand the structure of the stock market
 - One data point X_i: stock quotes for one day
 - 1000 stocks: dimension of full space (m = 1000)
 - n data points
 - Is there structure, i.e., exact or approximate relationships?
 - In other words: does data "concentrate in" a subspace of \mathbb{R}^m ?

Example: 3d data with 2d structure

Case study: Smartvote dataset

- smartvote pre-electoral opinions of the 2011 parliamentary elections
 - 2,985 candidates (82.4% of all candidates)
 - 229,133 citizens (~9% of total turnout)
- Examples of questions:
 - "Should Switzerland embark on negotiations in the next four years to join the EU?"
 - "How much should the public transport budget be?"
- Possible answers
 - strongly disagree disagree agree strongly agree
 - less no change more

Case study: Smartvote dataset

Applications of dim reduction

- Visualization & interpretation
 - Useful first step in data analysis
- Discover hidden correlations, laws, mechanisms
- Noise reduction
 - For example, data could be truly low-dimensional, but noise is high-dimensional
- Efficiency: compression & processing
 - Many algorithms are hard in high dimensions ("the curse of dimensionality")
 - E.g., nearest neighbor

Spectral theorem

- Theorem:
 - A real symmetric matrix X can be factored as

$$X = QDQ^T,$$

where Q is orthogonal $(Q^{-1} = Q^T)$ and D is diagonal.

- Convention:
 - Write diagonal values in decreasing order
 - $D = diag(\lambda_1, \lambda_2, ... \lambda_n)$
- Def: positive definite:
 - All $\lambda_i > 0$
 - $x^T X x > 0$ for all nonzero vectors x
- Def: positive semidefinite (PSD):
 - All $\lambda_i \geq 0$
 - $x^T X x \ge 0$ for all vectors x

Singular Value Decomposition (SVD)

Theorem:

• Any real $n \times m$ matrix X can be factored as

$$X = U\Sigma V^T$$

where

U is $n \times n$ and orthogonal, V is $m \times m$ and orthogonal, and Σ is $n \times m$ diagonal

Proof:

- X^TX is symmetric and positive semidefinite
- Apply spectral theorem to X^TX
 - There exists orthogonal V such that $V^TX^TXV = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$
 - D is diagonal and positive

SVD: existence (cont.)

- Proof (cont):
 - $D = diag(\lambda_1, \lambda_2, ... \lambda_r), \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r > 0$
 - r = rank(X)
 - $\begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} X^T X \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$
 - This shows that $V_1^T X^T X V_1 = D$,

and that

 $V_2^T X^T X V_2 = 0$; this implies $X V_2 = 0$ (null space of X)

- Also: V orthogonal $\rightarrow VV^T = I = V_1V_1^T + V_2V_2^T$
- $v_i^T X^T X v_j = X v_i \circ X v_j = \begin{cases} \lambda_j & i = j \ (i, j \le r) \\ 0 & \text{otherwise} \end{cases}$

SVD: existence (cont.)

- Proof (cont.):
 - Let $\sigma_j = \sqrt{\lambda_j}$
 - Let $\Sigma = \begin{bmatrix} \sqrt{D} & 0 \\ 0 & 0 \end{bmatrix}$ the $n \times m$ matrix with σ_j on the diagonal (otherwise 0)
 - Set $U_1 = XV_1D^{-\frac{1}{2}}$
 - Note $u_j = \frac{1}{\sigma_j} X v_j$ are orthonormal
 - Complete remaining vectors $U_2 = [u_{r+1}, \dots, u_n]$ to have orthonormal basis of \mathbb{R}^n
 - $U\Sigma V^T = \begin{bmatrix} XV_1D^{-\frac{1}{2}} & U_2 \end{bmatrix} \begin{bmatrix} \sqrt{D} & 0 \\ 0 & 0 \end{bmatrix} [V_1 & V_2]^T = XV_1V_1^T = X(I V_2V_2^T) = X \text{ (because } XV_2 = 0)$

SVD $U\Sigma V^T$

SVD: geometric interpretation of $U\Sigma V^Ta$

Singular Value Decomposition (SVD)

• Alternative definition:

$$X = U\Sigma V^T$$

where:

- r = rank(X)
- U is column-orthonormal $(n \times r)$ ("tall")
 - $U^T U = I$
- V^T is row-orthonormal $(r \times m)$ ("fat")
 - $V^TV = I$
- Σ is diagonal $(r \times r)$
 - Singular values of X

SVD: low-rank approximation

Singular Value Decomposition (SVD)

- Goal:
 - Find low-dimensional latent space that "explains" data
- Motivating example: survey
 - We have n = 5 individuals and m = 4 questions
 - Each person answers questions in a range (e.g., -5 to 5)

• Represent as a matrix:
$$X = \begin{bmatrix} 5 & 0 & 0 & -4 \\ -4 & -1 & 0 & 4 \\ -5 & 5 & 5 & 5 \\ 0 & 4 & 5 & 0 \\ 5 & -5 & -5 & -5 \end{bmatrix}$$

- Latent space/concepts/hidden variables:
 - Some people are similar, and some questions are similar
 - Question: how many "degrees of freedom" or "dimensions" does the system have?

Singular Value Decomposition (SVD)

$$U = \begin{bmatrix} -0.30 & 0.54 & -0.12 & 0.78 & 0 \\ 0.24 & -0.54 & -0.72 & 0.35 & 0 \\ 0.62 & 0.11 & 0.23 & 0.21 & 0.71 \\ 0.26 & 0.63 & -0.60 & -0.43 & 0 \\ -0.62 & -0.11 & -0.23 & -0.21 & 0.71 \end{bmatrix}$$

$$V = \begin{bmatrix} -0.55 & 0.49 & -0.07 & 0.67 \\ 0.44 & 0.53 & 0.72 & 0.05 \\ 0.47 & 0.54 & -0.69 & -0.09 \\ 0.53 & -0.42 & -0.06 & 0.73 \end{bmatrix}$$

• $\Sigma = diag(16, 7, 7, 0.9, 0.5)$

SVD: Interpretation

Reformulation as sum of outer products:

$$X = \sum_{i=1}^{r} \sigma_i U_i V_i^T$$

- σ_i : strength of concept i
- U_i : influence of concept i on "people"
- V_i : influence of concept i on "questions"

SVD: Best rank(r)-approximation

• Frobenius norm:

$$||X||_F^2 = \sum_{i,j} X_{i,j}^2$$

- Theorem:
 - Let X be any matrix, and $X = U\Sigma V^T$ its SVD
 - Let $X' = \sum_{i=1}^{r} \sigma_i U_i V_i^T$ a rank(r)-approximation of X
 - Then $||X X'||_F^2$ is smallest possible for rank=r
- Intuition:
 - X' captures the most important dimensions of the linear map
- Criterion for *r*:
 - Often, try to capture ~ 80-90% of "energy" in X, i.e., of $\|X\|_F^2$

Best rank(r)-approx: example

$$X = \begin{bmatrix} 5 & 0 & 0 & -4 \\ -4 & -1 & 0 & 4 \\ -5 & 5 & 5 & 5 \\ 0 & 4 & 5 & 0 \\ 5 & -5 & -5 & -5 \end{bmatrix}$$

$$X'_1 = \sigma_1 U_1 V_1^T = \begin{bmatrix} 2.7 & -2.1 & -2.3 & -2.6 \\ -2.1 & 1.7 & 1.8 & 2.0 \\ -5.5 & 4.4 & 4.7 & 5.3 \\ -2.3 & 1.8 & 2.0 & 2.2 \\ 5.5 & -4.4 & -4.7 & -5.3 \end{bmatrix}$$

$$X'_2 = \sum_{i=1}^2 \sigma_i U_i V_i^T = \begin{bmatrix} 4.7 & 0.06 & -0.04 & -4.3 \\ -4.2 & -0.5 & -0.4 & 3.8 \\ -5.1 & 4.8 & 5.1 & 4.9 \\ 0.1 & 4.4 & 4.6 & 0.1 \\ 5.1 & -4.8 & -5.1 & -4.9 \end{bmatrix}$$

Principal Component Analysis (PCA)

- Data matrix X:
 - Row: data point (n)
 - Columns: dimensions (m)
- Goal:
 - Explain relationships between variables
- Approach:
 - Low-dimensional representation conserving "variability"

	Stock A	Stock B	Stock C	Stock D
$n \prec$				
		γ	'n	

PCA

hemos restado la media

- $\frac{1}{n}X^TX$: covariance matrix (X centered)
 - $(X^TX)_{ij}$: inner (scalar) product of variables i and j
 - Large value = strongly correlated dimensions
- Eigenpairs: (v_i, λ_i) of $X^T X = V \Lambda V^T$
 - v_i : ith eigenvector (unit)
 - λ_i : *i*th-largest eigenvalue
 - Choose a dimension d << m</p>
 - Define $V = [v_1, v_2, ..., v_d]$
 - Define $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_d]$
- Y = XV: points of X projected on new space
 - Note: $Y^TY = V^TX^TXV = V^TV\Lambda V^TV = \Lambda \rightarrow$ principal components are decorrelated

Example: 3d data with 2d structure

Case study: PCA on smartvote data

3 PCs capture60% of variance

Principal component v_1

1st axis

- Seriez-vous favorable à ce que le **droit de vote** au niveau communal soit instauré pour les **étrangers** qui vivent en Suisse depuis au moins dix ans et ce, dans toute la Suisse?
- Approuveriez-vous que la **concurrence fiscale** entre les **cantons** soit plus limitée?
- Soutenez-vous l'initiative populaire qui souhaite que le **salaire** le plus élevé au sein d'une **entreprise** ne puisse pas être plus de douze fois supérieur au salaire le plus bas versé par la même entreprise. (initiative 1:12)?
- Une initiative populaire souhaite instaurer une caisse maladie unique et publique pour l'assurance de base. Êtes-vous favorable à ce projet?

Social questions («égalité»)

Principal component v_2

2nd axis

- Approuvez-vous des engagements de soldats armés (pour l'autoprotection) de l'**armée** suisse à l'**étranger** dans le cadre de missions de maintien de la paix de l'ONU ou de l'OSCE?
- Êtes-vous en faveur d'un accord de libre-échange agricole avec l'UE?
- Êtes-vous favorable à l'accord sur la **libre circulation** des personnes existant avec l'UE?
- Une imposition centrale sur les quantités dans la production laitière doit-elle être réinstaurée en Suisse à la place du **libre marché** laitier?

Economics, globalisation («liberté»)

Principal component v_3

3rd axis

- Seriez-vous favorables à ce que l'euthanasie active directe soit légalement possible par le biais d'un médecin en Suisse?
- Les couples **homosexuels** sous le régime du partenariat enregistrés devraient-ils pouvoir adopter des enfants?
- La Suisse possède des règles relativement strictes concernant la **procréation** médicalement assistée. Celles-ci devrait-elles être assouplies?
- La consommation ainsi que la possession pour la consommation personnelle de **drogues** dures et douces doivent-elles être légalisées?

Society, ethics («fraternité»)

In other words: PCA produces the French flag;)

Observation:

 Principal components correspond to clearly interpretable political and ideological dimensions

PCA: Covariance vs correlation matrix

- Assume *X* centered, i.e., $1_n X = 0_m$
 - If not, do not forget to center it first!
- Covariance matrix: $\frac{1}{n}X^TX$
- Correlation matrix R:

$$R_{ij} = \frac{X_i^T X_j}{\sqrt{(X_i^T X_i)(X_j^T X_j)}}$$

- Normalized, $-1 \le R_{ij} \le 1$
- Advantage: unit/range independent
- Good when different dimensions are numerically very different, or even in different units
- Ultimately scenario-dependent
 - Considered a drawback of PCA

Multidimensional Scaling (MDS)

- PCA: two strong assumptions
 - Linear relationships among dimensions
 - Orthogonal principal components
- Often low-dimensional structure exists, but above assumptions are too strong
- Generalization: MDS
 - PCA: find structure in data $\{X_i\}$
 - MDS: Find structure in metric space (distance function): $d(X_i, X_i)$
 - Choice of distance function allows to generalize
 (Euclidean → PCA)
 In MDS you can choose the distance function, and allows MDS to makes sense of data when PCA fails

Non-linear embedding: motivation

Isomap: approximate geodesic distance

Isomap: example

Source: [Tenenbaum et al.]

Stochastic Neighborhood Embedding

- Key idea: try to preserve nearest-neighbor relationships as much as possible
 - Penalize solution where close points (x_i, x_j) is mapped to (y_i, y_i) not close
 - Do not care (very much) about how far (x_i, x_j) is mapped
- Definition: Kullback-Leibler divergence
 - Two probability distributions P and Q
 - $KL(P||Q) = \sum_{k} P_k \log \frac{P_k}{Q_k}$
 - Note: asymmetric (and no triangle equality)
- Intuition:
 - KL large if P is large where Q is small (or zero)
 - The opposite is not the case: where *P* is zero, *Q* can be anything

SNE

 Map high-dimensional vectors to "probabilities of similarity":

$$p_{j|i} = \frac{exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

- σ_i^2 : controls the size of the "local neighborhood"
- Make p_{ij} a symmetric joint distribution over all pairs:
 - $p_{ij} \propto p_{i|j} + p_{j|i}$
- Similar assumption in the low-dim space
- Minimize $KL(p_{ij}||q_{ij}) \rightarrow$ recall that this tries to avoid small q_{ij} (ie, image points far) where p_{ij} is large

MNIST dataset

t-SNE embedding of MNIST

Summary & lessons

- High-dimensional data often has structure, i.e., is exactly or approximately lower-dimensional
- Important for: visualizing; describing; modeling; compressing
- Simplest assumption: linear subspace
- SVD: exists for every matrix, describes relationships between two spaces
- PCA: projection of high-dimensional data onto "best" low-dimensional space

References

- [A. Rajaranam, J. D. Ullman: Mining of Massive Datasets (chapter 11), Cambridge, 2012]
- [J. B. Tenenbaum, V. de Silva, J. C. Langford: A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol 290, 2000]