What Can Probabilistic Modeling Do For Me?

Arya Pourzanjani

Data is random, and randomness is described by probability distributions

 Example: In a study of 39 people who had heart attacks, 3 (8%) died within a year

Data is random, and randomness is described by probability distributions

 Random variables are described by distributions, functions that tell you the probability the random variable will take on some value

$$N \sim \text{Binomial}(39, \theta)$$

$$p(N = n \mid \theta) = {39 \choose n} \theta^n (1 - \theta)^{39 - n}$$

Data is random, and randomness is described by probability distributions

If we can accurately describe our data we can answer questions with our data

There are three steps to probabilistic modeling

- 1. Choosing a model for your data
- 2. Doing Bayesian inference
- 3 .Checking your model

$$B \sim \text{Poisson}(\lambda)$$
$$p(B = b \mid \lambda) = \frac{\lambda^b e^{-\lambda}}{b!}$$

There are three steps to probabilistic modeling

- 1. Choosing a model for your data
- 2. Doing Bayesian inference
 - -The old-fashioned way
 - -The computational way
- 3 .Checking your model

$$N \sim \text{Binomial}(39, \theta)$$

$$B \sim \text{Poisson}(\lambda)$$

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(B \mid A) \cdot p(A) = p(A, B) = p(A \mid B) \cdot p(B)$$

$$p(B \mid A) = \frac{p(A \mid B) \cdot p(B)}{p(A)}$$

Posterior
$$p(\theta \mid N = n) = \frac{p(N = n \mid \theta) p(\theta)}{p(N = n)}$$
Normalization Term

Normalization Term

Posterior
$$p(\theta \mid N = n) = \frac{p(N = n \mid \theta) p(\theta)}{p(N = n)}$$
Normalization Term

$$N \sim \text{Binomial}(39, \theta)$$

$$p(N = n | \theta) = {39 \choose n} \theta^n (1 - \theta)^{39 - n}$$

$$p(\theta \mid N = n) = \underbrace{\frac{p(N = n \mid \theta)}{p(N = n)} \underbrace{p(N = n)}_{\text{Normalization Term}}^{\text{Model}}$$

$$p(N = n) = \int_0^1 p(N = n \mid \theta) \cdot p(\theta) d\theta$$

$$p(N = n \mid \theta) = {39 \choose n} \theta^n (1 - \theta)^{39 - n}$$
$$\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

$$p(\theta \mid N = n) \propto \theta^{n+\alpha-1} (1-\theta)^{39-n+\beta-1}$$

Optimization is an approximation of full inference

$$p(\theta \mid N = n) = \underbrace{\frac{p(N = n \mid \theta)}{p(N = n)} \underbrace{p(N = n)}_{\text{Normalization Term}}^{\text{Model}}$$

$$p(N = n) = \int_0^1 p(N = n \mid \theta) \cdot p(\theta) d\theta$$

There are three steps to probabilistic modeling

- 1. Choosing a model for your data
- 2. Doing Bayesian inference
 - -The old-fashioned way
 - -The computational way
- 3 .Checking your model

Samples from the posterior distribution are just as good as the posterior distribution

$$p(\theta \mid N = n) = \underbrace{\frac{p(N = n \mid \theta)}{p(N = n)} \underbrace{p(N = n)}_{\text{Normalization Term}}^{\text{Model}}$$

Samples from the posterior distribution are just as good as the posterior distribution

$$p(\theta \mid N = n) = \frac{p(N = n \mid \theta) p(\theta)}{p(N = n)}$$
Normalization Term

$$p(\theta_1, \theta_2 \mid N = n)$$

Stan allows us to specify models and it gets the posterior distribution samples for us

http://mc-stan.org/

There are three steps to probabilistic modeling

- 1. Choosing a model for your data
- 2. Doing Bayesian inference
- 3 .Checking your model

We can generate fake data from fit models to check the plausibility of our models

We can generate fake data from fit models to check the plausibility of our models

We can generate fake data from fit models to check the plausibility of our models

$$p(y \mid \theta, \lambda) = \begin{cases} \theta + (1 - \theta) \cdot \text{Poisson}(0 \mid \lambda) & \text{if } y = 0\\ (1 - \theta) \cdot \text{Poisson}(y \mid \lambda) & \text{if } y > 0 \end{cases}$$

There are three steps to probabilistic modeling

- 1. Choosing a model for your data
- 2. Doing Bayesian inference
- 3 .Checking your model
- More complicated models

Hierarchical models are useful when there are different types of observational units

$$N_i \sim \text{Binomial}(39, \theta_i)$$

$$\theta_i \sim \text{Beta}(\alpha, \beta)$$

Regression is a powerful tool for learning functions

$$y_i \sim \mathcal{N}(x_i\beta_1 + \beta_0, \sigma^2)$$