16. Random Walks

Markov Chain

A generalized random walk on a directed graph.

$$G = (V, E)$$

$$|V| = n, |E| = m$$

We have a transition probability matrix $P_{n \times n}$

 P_{ij} : Probability that j is the next state given i is the current state.

 X_t : State of the markov chain at time t.

 $p_i(t)$: Probability of being at state s_i at time t Using this, we can define a probability vector

$$p_t = (p_1(t), p_2(t), \dots, p_n(t))$$

Memory-Less

$$\mathbb{P}[X_t = a_t | X_{t-1} = a_{t-1}, \dots, X_0 = a_0] = \mathbb{P}[X_t = a_t | X_{t-1} = a_{t-1}] = P_{a_{t-1}, a_t}$$

Hence, the future behaviour of the Markov Chain is only dependent upon the current state.

we know that

$$p_{t+1} = p_t P$$
 $\implies p_{t+m} = p_t \cdot P^m$

Irreducible Markov Chain

A markov chain is irreducible if G is strongly connected, $\forall s_i \neq s_j$, \exists a directed path from $s_i \to s_j$.

$$orall i
eq j \ \mathbb{P}[\exists m>0, X_{t+m}=s_j|X_t=s_i]>0$$

Period of a State

We define the period of a state s_i in a markov chain as

$$d(s_i) = \gcd(\{t \in N | (P^t)_{ii} > 0, t > 0\})$$

Essentially, we find the time periods at which the probability of being at position i is non-zero, and find the gcd of the time periods to get the period of the state.

Say we get the period as $d(s_i)=T$ for some state, and at time t, we get $p_t(i)>0$, then t belongs to the AP

$$\{a+i\cdot T|i\geq 0\}$$

Aperiodic -

A markov chain is aperiodic if $d(s_i) = 1 \ orall s_i \in \{s_1, s_2, \dots, s_n\}$

Other Properties

 $p_t(i,j)=\mathbb{P}[X_t=s_j|X_0=s_i]$ (Probability of being at s_j at time t given you start at s_i) $r_t(i,j)=\mathbb{P}[X_t=s_j ext{ and } orall i\leq u\leq t-1, X_u\neq s_j|X_0=s_i]$ (First visit to s_i from s_j)

Starting from s_i probability of a transition into state s_i is given by

$$f_{ij} = \sum_{t>0} r_t(i,j)$$

Expected number of time steps to reach s_i starting from s_i .

$$h_{ij} = \sum_{t>0} t \cdot r_t(i,j)$$

Theorem - If a markov chain is finite, irreducible and aperiodic, then $\exists T<\infty$ such that $(P^t)_{ij}>0, \forall t\geq T, \forall i,j\in V, P_{t+1}=P_t.$

Stationary Distribution - A probability distribution π for a markov chain such that

$$\pi = \pi P$$

Fundamental Theorem of Markov Chains

For any finite, irreducible and aperiodic markov chain,

- 1. There exists a unique stationary distribution π such that $orall 1 \leq i \leq n$, $\pi_i > 0$
- 2. $orall 1 \leq i \leq n$, $f_{ii}=1$, $h_{ii}=rac{1}{\pi_i}$
- 3. Let N(i,t) be the number of time the markov chain visits state i in t steps, then $\lim_{t o\infty} rac{N(i,t)}{t} = \pi_i$

Random Walks

We define the transition probability matrix as

$$P_{u,v} = egin{cases} rac{1}{deg(u)} & ext{if } (u,v) \in E \ 0 & ext{otherwise} \end{cases}$$

Given the graph G=(V,E), we work with a non-bipartite, undirected & connected graph.

Claim - G is aperiodic

Proof -

We know cycles of length 2 exist already for every state. To ensure the period of every state is 1, we just need to prove every state has an odd cycle as well.

What non-bipartiteness ensures is that there exists a cycle in the graph with an odd number of nodes. Any state, whether inside the cycle or outside, can use this to create a cycle which is of odd length.

Going and coming back to the cycle for a state have the same length, hence making it even as we do it twice, and taking the cycle once gives us an odd length path.

Lemma -
$$orall v \in V, \pi_v = rac{deg(v)}{2m}$$

Proof -

 π is stationary if $\pi=\pi P.$ Therefore, $orall v\in V$

$$\pi_v = (\pi P)_v = \sum_u \pi_u P_{uv}$$

We are claiming that $\pi_u = \frac{deg(u)}{2m}$ is a solution.

$$\sum_{u}\pi_{u}P_{uv}=\sum_{u,(u,v)\in E}rac{deg(u)}{2m}\cdotrac{1}{deg(u)}=rac{deg(v)}{2m}=\pi_{v}$$

Hence proved.

And from the fundamental theorem, we know this stationary distribution is unique.

Pagerank Algorithm

- 1. Each node in the graph is assigned a pagerank value of $\frac{1}{n}$.
- 2. Each node divides their page rank value by their out-degree, and send it to each neighbour.

3. Pagerank of each node is updated to sum of all values received in the previous iteration.

Can be modelled as a markov chain, with the transition probability matrix

$$P_{ij} = egin{cases} rac{1}{d_{ ext{out}}(i)} & ext{if page i links to j} \ 0 & ext{otherwise} \end{cases}$$

$$ext{pagerank}^t(j) = \sum_{i, (i, j) \in E} rac{ ext{pagerank}^{t-1}(i)}{d_{ ext{out}}(i)}$$

If the web is finite, irreducible and aperiodic, we can apply the fundamental theorem to reach a unique stationary distribution.