MERCURE Problem 1

HOTEL

t= t1

* dost has $e = (p - 3 \times 10^3 \text{ kg/m}^3)$ * folly absorbing

* spherical dost partile

Q1 I what is Rp for a straight line?

- radially outward radiation Front = Frank er Frank = Frat IA

2 forces

partile cross saching particle then A = T Rp sun

I = Read L A HATT & radios of irradiance rad pressure orbit efficiency

Fgrar = 4TGHs BRB3

Straight line = ap = 0 => Frad = Fgrav 4cg ST

MERCURE

HOTEL
BUDAPEST CASTLE HILL

QE) How is the trajectory draying with Rp?
if Rp is larger Tyrow > Frod because Fyrav \times Rp3 and Frank \times Rp
=> the particle falls into the sun.
Q3 Prove the motion is Keplerian.
map = Frad + Fgrav
= Fgar (1+ x)
d= LQrad Rp 4c G Ms Mp

MERCURE BUDAPEST CASTLE HILL | 1013 BUDAPEST, HUNGARY | KRISZTINA KÖRÜT 41-43. | TEL + 36 1 488 8100 | E-MAIL h1688@accor.com | MERCURE.COM | ALL ACCOR.COM

