Set cover, linear programming and randomized rounding

Linear programming relaxation

$$\min \sum_{\mathbf{S}} \mathbf{c_S} \mathbf{x_S} \\
\mathbf{such that} \\
\begin{cases} \sum_{S:e \in S} x_S \ge 1 & \forall e \\ 0 \le x_S \le 1 & \forall S \end{cases}$$

How do we round the LP solution?

Randomized Rounding: An algorithm

 $\mathbf{x_i} = .9$; should probably go to 1 $\mathbf{x_i} = .1$; should probably go to 0 Cannot fix a threshold

ldea: randomized rounding

 $\mathbf{x_i} = .8 \implies \text{round to 1}$ $\mathbf{w.p.} \ 80\%$

New rounding algorithm

For each set S with probability xs put S in the cover

Is it efficient?
Is the output a cover?
How good is it?

Is it efficient?
Yes

Is the output a cover? Maybe, maybe not

How good is it?
It depends...

Set cover, linear programming and randomized rounding

