V702

Aktivierung mit Neutronen

Fritz Agildere fritz.agildere@udo.edu

Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 13. Juni 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie 2.1 Kernreaktionen mit Neutronen	2 2
3	Durchführung	2
4	Auswertung4.1Nulleffekt4.2Vanadium4.3Rhodium	
5	Diskussion	10
Ar	nhang	11

1 Zielsetzung

Ziel des Versuches ist es, die Halbwertszeiten von und die Zerfallskurven Rhodium und Vanadium zu bestimmen.

2 Theorie

Ein Atom wird als stabil bezeichnet, wenn ein stabiles festgelegtes Verhältnis zwischen Neutronen und Protonen besteht. Außerhalb dieser engen Grenze wandelt sich der Kern in einen stabilen oder instabilen Kern um. Um die Zerfallswahrscheinlichkeit zu beschreiben wird die Halbwertszeit T eines Nuklids bestimmt. Diese gibt bei einer großen Anzahl instabiler Kerne an, wann die Hälfte dieser zerfallen ist. Wenn die gesamte Nuklidkarte betrachtet wird, fällt auf, dass die verschiedenen Halbewertszeiten T über 23 Zehnerpotenzen variieren können. Im Folgenden Experiment werden Halbwertszeiten bestimmt. Um Nuklide mit Halbwertszeiten im Sekunden bis Stunden Bereich hezustellen, werden stabile Kernen mit Neutronen beschossen.

2.1 Kernreaktionen mit Neutronen

Der Begriff Kernreaktion beschreibt allgemein die Wechselwirkungen von Teilchen mit Atom Kernen. Um die Halbwertszeiten bestimmen zu können, müssen zunächst Kernreaktionen bei denen ein Neutron in ein Teilchen eindringt, untersucht werden. Wird ein Atomkern mit einem Neutron beschossen, so wird der Kern in ein angeregten Zustand überführt. Diese Kernen werden als Zwischenkern oder Compoundkern bezeichnet. Die Energie des Compoundkerns ist um die kinetische Energie und die Bindungsenergie des Neutrons höher als vorher. Durch die zusätzliche Enrgie entsteht die Anregung der Nukleonen. Der Kern ist in den meisten Fällen ,wegen der Verteilung der zusätzlichen Energie auf viele Nukleonen,nicht in der Lage, das Neutron oder ein Nukleon abzustoßen. In diesem Falle wird ein γ -Quant emitiert, sodass der Zwischenkern wieder in den Grundzustand übergeht. Für diese Reaktion gilt

3 Durchführung

4 Auswertung

4.1 Nulleffekt

Tabelle 1

t/s	$N/\mathrm{s^{-1}}$	t/s	N/s^{-1}	t/s	$N/\mathrm{s^{-1}}$	t/s	N/s^{-1}
10	0,3	160	0,3	310	0,4	460	0,3
20	0,9	170	0,8	320	0,3	470	0,3
30	0,5	180	0,5	330	0,2	480	0,5
40	0,1	190	0,4	340	0,3	490	0,3
50	0,5	200	0,3	350	0,4	500	0,4
60	0,4	210	0,4	360	0,2	510	0,7
70	0,1	220	0,6	370	0,5	520	0,2
80	0,6	230	0,3	380	0,4	530	0,2
90	0,2	240	0,3	390	0,5	540	0,3
100	0,3	250	0,2	400	0,2	550	0,5
110	0,5	260	0,2	410	0,6	560	0,4
120	0,3	270	0,6	420	0,8	570	0,2
130	0,4	280	0,2	430	0,7	580	0,3
140	0,2	290	0,3	440	0,6	590	0,1
150	0,7	300	0,5	450	0,6	600	0,2

Abbildung 1

4.2 Vanadium

Tabelle $\bf 2$

t/s	N / s^{-1}	t/s	N / s^{-1}	t / s	N / s^{-1}
30	$5,9 \pm 0,2$	330	$1,9 \pm 0,2$	630	$1,0 \pm 0,2$
60	$5,3 \pm 0,2$	360	$1,9 \pm 0,2$	660	0.3 ± 0.2
90	4.5 ± 0.2	390	$1{,}7\pm0{,}2$	690	0.9 ± 0.2
120	$3,5 \pm 0,2$	420	$1{,}5\pm0{,}2$	720	0.9 ± 0.2
150	3.8 ± 0.2	450	$1{,}3\pm0{,}2$	750	0.6 ± 0.2
180	2.8 ± 0.2	480	$1{,}7\pm0{,}2$	780	0.7 ± 0.2
210	$3,4 \pm 0,2$	510	$1{,}2\pm0{,}2$	810	0.3 ± 0.2
240	$2,4 \pm 0,2$	540	$1{,}2\pm0{,}2$	840	0.5 ± 0.2
270	$2,0 \pm 0,2$	570	$1,\!0\pm0,\!2$	870	$0,\!4 \pm 0,\!2$
300	$1{,}8\pm0{,}2$	600	$0,9\pm0,2$	900	0.3 ± 0.2

Abbildung 2

4.3 Rhodium

Tabelle 3

t/s	$N/\mathrm{s^{-1}}$								
8	37.7 ± 0.2	152	$6,0 \pm 0,2$	296	$2,7 \pm 0,2$	440	$2,0 \pm 0,2$	584	$1,5 \pm 0,2$
16	$28{,}1\pm0{,}2$	160	$3,6 \pm 0,2$	304	$2,\!0\pm0,\!2$	448	$1,6 \pm 0,2$	592	$1,\!0\pm0,\!2$
24	$26,5\pm0,2$	168	6.7 ± 0.2	312	$1{,}1\pm0{,}2$	456	0.5 ± 0.2	600	$1,6 \pm 0,2$
32	$21{,}5\pm0{,}2$	176	$5{,}5\pm0{,}2$	320	$1,6 \pm 0,2$	464	$1{,}1\pm0{,}2$	608	0.7 ± 0.2
40	$19{,}7\pm0{,}2$	184	$3,9 \pm 0,2$	328	$1{,}7\pm0{,}2$	472	$1,4 \pm 0,2$	616	0.9 ± 0.2
48	$18{,}5\pm0{,}2$	192	$5,5 \pm 0,2$	336	$1,9 \pm 0,2$	480	$1,0 \pm 0,2$	624	0.7 ± 0.2
56	$17{,}4\pm0{,}2$	200	$3,2 \pm 0,2$	344	$1{,}7\pm0{,}2$	488	$1{,}1\pm0{,}2$	632	0.2 ± 0.2
64	$13{,}0\pm0{,}2$	208	$2,\!0\pm0,\!2$	352	$1,5 \pm 0,2$	496	$1,9 \pm 0,2$	640	0.7 ± 0.2
72	$13{,}2\pm0{,}2$	216	$3,7 \pm 0,2$	360	$2,0 \pm 0,2$	504	$1,0 \pm 0,2$	648	0.7 ± 0.2
80	$13{,}5\pm0{,}2$	224	$3,4 \pm 0,2$	368	$2{,}5\pm0{,}2$	512	0.5 ± 0.2	656	0.4 ± 0.2
88	$13,6 \pm 0,2$	232	$3{,}1\pm0{,}2$	376	$1,9 \pm 0,2$	520	$1,6 \pm 0,2$	664	$1,2 \pm 0,2$
96	7.7 ± 0.2	240	$4,\!0\pm0,\!2$	384	$2,6 \pm 0,2$	528	$1,7 \pm 0,2$	672	0.4 ± 0.2
104	$10{,}4\pm0{,}2$	248	$2,\!0\pm0,\!2$	392	$1,9 \pm 0,2$	536	$1,7 \pm 0,2$	680	0.7 ± 0.2
112	$8,5 \pm 0,2$	256	$3,4 \pm 0,2$	400	$1,9 \pm 0,2$	544	0.9 ± 0.2	688	0.9 ± 0.2
120	$9,1 \pm 0,2$	264	$2,\!6\pm0,\!2$	408	$1,\!6\pm0,\!2$	552	$1{,}1\pm0{,}2$	696	$1,\!0\pm0,\!2$
128	$8,4 \pm 0,2$	272	$2{,}9\pm0{,}2$	416	$1{,}2\pm0{,}2$	560	$1{,}2\pm0{,}2$	704	0.9 ± 0.2
136	$6,1 \pm 0,2$	280	$2,4\pm0,2$	424	0.9 ± 0.2	568	0.7 ± 0.2	712	0.6 ± 0.2
144	$6,7 \pm 0,2$	288	$1,7 \pm 0,2$	432	$2,4 \pm 0,2$	576	0.6 ± 0.2	720	0.6 ± 0.2

Abbildung 3

Abbildung 4

Abbildung 5

Tabelle 4

t/s	$N/\mathrm{s^{-1}}$	t/s	N / s^{-1}	t/s	N / s^{-1}	t/s	N / s^{-1}
15	49.7 ± 0.2	210	$4,3 \pm 0,2$	405	$1,4 \pm 0,2$	600	$1,2 \pm 0,2$
30	$35{,}1\pm0{,}2$	225	$3,9 \pm 0,2$	420	$1,7 \pm 0,2$	615	0.9 ± 0.2
45	27.9 ± 0.2	240	$3,4\pm0,2$	435	$1,5 \pm 0,2$	630	0.9 ± 0.2
60	$25{,}9\pm0{,}2$	255	$2,7 \pm 0,2$	450	$1{,}1\pm0{,}2$	645	0.5 ± 0.2
75	17.9 ± 0.2	270	$2,7 \pm 0,2$	465	$1{,}7\pm0{,}2$	660	0.7 ± 0.2
90	$17{,}2\pm0{,}2$	285	$2{,}7\pm0{,}2$	480	$1,9 \pm 0,2$	675	0.7 ± 0.2
105	$12{,}4\pm0{,}2$	300	$2{,}7\pm0{,}2$	495	0.9 ± 0.2	690	$1{,}3\pm0{,}2$
120	9.5 ± 0.2	315	$2,3 \pm 0,2$	510	$1{,}1\pm0{,}2$	705	$1,\!0\pm0,\!2$
135	7.8 ± 0.2	330	$2,0 \pm 0,2$	525	$1,3 \pm 0,2$	720	0.5 ± 0.2
150	7.5 ± 0.2	345	$2{,}1\pm0{,}2$	540	0.7 ± 0.2	735	0.9 ± 0.2
165	5.8 ± 0.2	360	0.7 ± 0.2	555	$1{,}1\pm0{,}2$	750	0.5 ± 0.2
180	$5{,}3\pm0{,}2$	375	$1{,}6\pm0{,}2$	570	$1,3 \pm 0,2$		
195	$5{,}1\pm0{,}2$	390	$1,\!8\pm0,\!2$	585	$1{,}1\pm0{,}2$		

Abbildung 6

Abbildung 7

Abbildung 8

5 Diskussion

Anhang

Abbildung 9: Ausgehängte Liste.

tins	N	
10	3	
20	3	
30	5	
40	1	
20	5	
60	4	
70	Λ	
80	6	
90	2	
dar	3	
ANO	5	
750	3	
130	Ч	
140	2	
120	67	
160	3	
OFA	8	
180	5	
190	4	

500 F	N 3	390	V 5
210	q	400	2
220	6	410	6
230	3	420	8
240	3	430	7
250	2	440	6
260	2	456	6
240	6	460	3
280	2	476	3
290	3	480	5
300	5	490	3
310	4	400	4
320	3	510	7
330	2	520	2
340	3	530	2
350	ч	540	3
360	2	550	5
370	5	560	4
380	4	5#0 580 3	2
		020 3	590 A

600 Z	(zu longsam)	
2 nodium	At = 8 FT/ 12m	in
N	tins Nz	
305	8 57	
228	. 51	
215	. 32	
175	57	
161	47	
151	34	
142	47	
107	29	
109	19	
111	33	
112	30	27
65	28	90
86	35	NA.
71	LS LS	304
76	30	
70	24	
52	26	

N ₃	+ à0	c 85	Ny
22		6	10
			22
Add 17			19
25			16
19	10 6		7
12			
16	6		12
17	+ 2		14
78			11
17			12
15			12
19			11
23			7
V8			16
			17
24			7
18		10	
18	P.A.	12	
16	103	13	
1/3	PF		
	135	9	

N5		E	
8		,	
15		-	
$\Lambda\Lambda$			
16			
0			
10			
9			
5			
3			
3			
6			
13			
6			
3			
10			
11			
10			
8			
8			
0			

Vandi	um	15 min
At	=305	
N	N ₂	tins
188	47	30
171	47	
148	43	4
116	40	
127	41	
96	22	
115	39	
83	40	
71	30	
66	32	
68	21	
70	26	
62	25	
57	21	
52		
63		

Unodium	2	in 12 win
		1t=155
NA	NZ	Eins
751	46	15
5 32	47	
425	46	
395	40	
274	36	
264	37	
192	17	
148	36	
123	33	
118	27	
93	31	
85	25	
85	23	
70	31	
64	34	
57	19	
46	22	

