Домашнее задание 22

Ткачев Андрей, группа 166

6 марта 2017 г.

Задача 1 Пусть \mathcal{F} — множество вычислимых функций $\mathbb{N} \to \mathbb{N}$, которые принимают значение 2017 при каком-то значение аргумента. $\mathcal{F} \neq \emptyset$ и $F \neq \mathcal{R}$ (\mathcal{R} — множество всех вычислимых функций). Тогда по теореме Успенского-Райса множество $\{p|U(p,x)\in\mathcal{F}\}$ неразрешимо, а значит бесконечно.

Задача 2 Пусть V(p,x) = px. V(p,x) — вычислима, значит т.к. U — главная нумерация, то \exists тотальная функция $s\colon \forall x: U(s(p),x) = V(p,x) = nx$. Но тогда по теореме о неподвижной точке $\exists n: U(s(n),x) = U(n,x) \forall x$. Значит $\exists n: \forall x U(n,x) = V(n,x) = nx$.

Задача 3 V(p,x) — вычислима, значит т.к. U — главная нумерация, то \exists тотальная функция $s\colon \forall x\colon U(s(p),x)=V(p,x)$. Но тогда по теореме о неподвижной точке $\exists n\colon U(s(n),x)=U(n,x) \forall x$. Значит $\exists n\colon \forall x U(n,x)=V(n,x)$.

Задача 4 Пусть \mathcal{F} — множество вычислимых функций $\mathbb{N} \to \mathbb{N}$, которые определены в 0. $\mathcal{F} \neq \emptyset$ и $F \neq \mathcal{R}$ (\mathcal{R} — множество всех вычислимых функций), т.к. очевидно есть функции, определенные в 0 и не все функции определены в 0. Тогда по теореме Успенского-Райса множество $\{p|U(p,x)\in\mathcal{F}\}$ неразрешимо. Т.е. множество программ для главной нумерации, вычисляющих определенные в 0 функции — неразрешимо, а значит, не может совпадать с множеством четных чисел.

Задача 5

Задача 6 Примем $M = \{p|U(p,x)$ — неопределено $\forall x\}$ (данное множество, как мы знаем, не разрешимо (по теореме Успенского-Райса), т.к. U — главная нумерация).

Предположим, что K — разрешимо. Пусть g(x) — нигде не определенная функция. g(x) — вычислима, значит $\exists p: \forall x \in \mathbb{N}U(p,x) = g(x)$. Т.е. $\exists p$ — номер функции нигде не определенной. Заметим, что если $(p,n) \in K$, то $h(x) = U_n(x)$ — нигде не определена (действительно, если $(p,n) \in K$, то U_p есть продолжение функции U_n ; Таким образом, если U_n определена в x_0 , то и U_p определена в x_0 ⇒ таких x_0 не существует, т.к. U_p нигде не определена). Верно и обратное, если $h(x) = U_n(x)$ — нигде не опреденная функция, то $(p,n) \in K$, т.к. неопределенная функция является своим собственным продолжением. Рассмотрим тогда функцию f, такую что

$$f(x) = \begin{cases} 1 & (p, x) \in K \\ 0 & (p, x) \notin K \end{cases}$$

Поймем, что f(x) вычислима, т.к. K по предположению разрешимо. Заметим также, что f — характеристическая функция множества M: действительно, если f(x) = 1, то x — номер нигде не определенной функции и 0, если функция U_x где-то определена. Но множество M не разрешимо, а значит его характерестическая функция не вычислима — противоречие $\Rightarrow K$ не разрешимо.