CS4031 Compiler Construction Lecture 5

Mahzaib Younas

Lecturer, Department of Computer Science

FAST NUCES CFD

Ambiguity Removal

- The ambiguity removal is important in the grammar which consist of
- 1. Logical Operators
- 2. Arithmetic Operators
- 3. If else statement
- 4. Regular expressions operators

Arithmetic Operators

- The two basic Properties of ambiguity removals are
- 1. Precedence
- 2. Associativity

Precedence			
+, -			
*,/	3		
^	2		
Id/terminals	1		

Associativity				
+, -	Left to right	Keep left recursion		
*,/	Left to right	Keep left recursion		
^	Right to left	Keep right recursion		
id/terminal	-			

Logical Operators

- The two basic Properties of ambiguity removals are
- 1. Precedence
- 2. Associativity

Precedence			
V	4		
٨	3		
~	2		
Id/terminals	1		

Associativity				
V	Left to right	Keep left recursion		
٨	Left to right	Keep left recursion		
~	Right to left	Keep right recursion		
id/terminal	-	-		

Example

Ambiguous Grammar

$$E \rightarrow E \land E \mid E \lor E \mid \sim E \mid (E) \mid id$$

Unambiguous Grammar

$$E
ightharpoonup E ee E_1 | E_1$$
 $E_1
ightharpoonup E_1 \wedge E_2 | E_2$
 $E_2
ightharpoonup \sim E_2 | E_3$
 $E_3
ightharpoonup (E) | id$

Regular Expression Operators

- The two basic Properties of ambiguity removals are
- 1. Precedence
- 2. Associativity

Precedence			
Union 4			
Concatenation	3		
Kleene star	2		
Id/terminals	1		

Associativity				
Union	Left to right	Keep left recursion		
Concatenation	Left to right	Keep left recursion		
Kleene star	-	-		
id/terminal	-	_		

Regular Expression Operators Example

Ambiguous Grammar

$$E \rightarrow E + E \mid EE \mid E^* \mid id$$

Unambiguous Grammar

$$E
ightharpoonup E + E_1|E_1$$
 $E_1
ightharpoonup E_1|E_2|E_2$
 $E_2
ightharpoonup E_2^*|E_3$
 $E_3
ightharpoonup id$

If- else Problem

• Consider the following Grammar

 $S \rightarrow if E$ then $S \mid if E$ then $S \mid else S \mid other$

Where

E represent the Expression

S represent the Statement

Parse Tree

If else Statements

Matched statements

It is either a non-if statement, or a complete if-then-else statement.

Open statements

It is either a if-then statement (without else), or it is a if-then-else statement but the else-statement is an open statement.

Unambiguous grammar

```
\begin{array}{c} \operatorname{stmt}: \operatorname{matchedStmt} \\ | \operatorname{openStmt} \\ \operatorname{matchedStmt}: \mathbf{if} \ E \ \mathbf{then} \ \operatorname{matchedStmt} \ \mathbf{else} \ \operatorname{matchedStmt} \\ | \ others \dots \\ \operatorname{openStmt}: \mathbf{if} \ E \ \mathbf{then} \ \operatorname{stmt} \\ | \ \mathbf{if} \ E \ \mathbf{then} \ \operatorname{matchedStmt} \ \mathbf{else} \ \operatorname{openStmt} \\ \end{array}
```

Example

- if E1 then if E2 then S1 else S2
- Can you construct two distinct parse tree for it?

Parsing Technique

Parser

Top-Down Parser

Top- Down parser starts constructing the parse tree from the start symbol and then tries to transform the start symbol to the input, it is called top-down parsing.

Bottom-Up Parser

bottom-up parsing starts with the input symbols and tries to construct the parse tree up to the start symbol.

Top-Down Parser

Recursive Descent Parser

- Recursive Descent Parsing is a top-down method of syntax analysis in which s set of recursive procedures to process the input is executed.
- A procedure is a associated with each nonterminal of a grammar.
- Top-down parsing can be viewed as an attempt to find a leftmost derivations for an input string.
- Recursive descent parsing involves backtracking.

Example

• Consider the following grammar

 $S \rightarrow cAd$

 $A \rightarrow ab \mid a$

And the input string w = cad.

Solution

Top Down Parser

- In top down parser we have two types of parser
- 1. Recursive Descent
- 2. LL(1) Parser
 - 1. First L represent the direction of look a head pointer.
 - 2. L represent the type of derivation.
 - 3. 1 means how many symbol we read from the string.
 - 4. LL means we used left to right derivation and making the left most derivation tree.

Condition of LL(1) Parser

- To construct a working LL(1) parsing table, a grammar must satisfy these conditions:
 - No Left Recursion: Avoid recursive definitions like $A \rightarrow A + b$.
 - Unambiguous Grammar: Ensure each string can be derived in only one way.
 - Left Factoring: Make the grammar deterministic, so the parser can proceed without guessing.

LL(1) Parser

- The rules for LL(1) parsers are
- 1. Remove left Recursion
- 2. Remove Left Factoring
- 3. Find the first and follow of the grammar
- 4. Create Parse Table
- 5. Create Parse tree

Example: Check whether the grammar is LL(1) or not.

- $E \rightarrow TE'$
- E' \rightarrow +TE' | ϵ
- $T \rightarrow FT'$
- T' \rightarrow *FT' | ϵ
- $F \rightarrow id \mid (E)$

• *ε denotes epsilon

First of Grammar

- $E \rightarrow TE'$
- E' \rightarrow +TE' | ϵ
- $T \rightarrow FT'$
- T' \rightarrow *FT' | ϵ
- $F \rightarrow id \mid (E)$

Grammar Production Rule	Non-Terminals	First
$E \rightarrow TE'$	E	
$E' \rightarrow +TE' \mid \epsilon$	E`	
$T \rightarrow FT'$	Т	
$T' \rightarrow *FT' \mid \epsilon$	T`	
$F \rightarrow id \mid (E)$	F	

First of Grammar

Grammar Production Rule	Non-Terminals	First
$E \rightarrow TE'$	E	{id,(}
$E' \rightarrow +TE' \mid \epsilon$	E`	{+, ε}
$T \rightarrow FT'$	Т	{id, (}
$T' \rightarrow *FT' \mid \epsilon$	T`	{* , ε}
$\mathbf{F} \rightarrow \mathbf{id} \mid (\mathbf{E})$	F	{id, (}

Follow of the Grammar

Grammar Production Rule	Non-Terminals	Follow
$\mathbf{E} \to \mathbf{T}\mathbf{E'}$	Follow of (E)	(\$,)}
$E' \rightarrow +TE' \mid \epsilon$	E`	
$T \rightarrow FT'$	T	
$T' \rightarrow *FT' \mid \epsilon$	T`	
$\mathbf{F} \rightarrow \mathbf{id} \mid (\mathbf{E})$	F	

Must Remember the follow of first symbol must have \$

Follow of the Grammar

Grammar Production Rule	Non-Terminals	Follow
$E \rightarrow TE'$	Follow of (E)	{\$,)}
$\mathbf{E'} \rightarrow +\mathbf{TE'} \mid \mathbf{\epsilon}$	Follow of E`	{\$,)}
$T \rightarrow FT'$	Follow of T = First of E`	{+ , \$,)}
$T' \rightarrow *FT' \mid \epsilon$	Follow of T` = follow of T	{+ , \$,)}
$\mathbf{F} \rightarrow \mathbf{id} \mid (\mathbf{E})$	Follow of F = first of T`	{* , + , \$,)}

Parsing Table

Add all follow symbols in column Add the variable symbols in row

Grammar Production Rule	First	Follow	
$E \rightarrow TE'$	{id,(}	{\$,)}	
$E' \rightarrow +TE' \mid \epsilon$	{+, ε}	{\$,)}	
$T \rightarrow FT'$	{id, (}	{+, \$,)}	
$T' \rightarrow *FT' \mid \epsilon$	{*, ε}	{+, \$,)}	
$F \rightarrow id \mid (E)$	{id, (}	{*,+,\$,)}	

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E`		$\mathbf{E'} \to +\mathbf{TE'}$			$E' o \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

If the first any variable is ε then move towards the follow of that variable.

Create the Parser Tree of the following id+ id * id

• Given Expression

• Given Grammar

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow id \mid (E)$$

	id	+	*	()	\$
E	$\mathbf{E} \to \mathbf{TE'}$			$E \rightarrow TE'$		
E`		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
\mathbf{F}	$F \rightarrow id$			$F \rightarrow (E)$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E`		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	T' → *FT'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$\mathbf{E} \to \mathbf{TE'}$		
E `		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' o \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

id

	id	+	*	()	\$
E	$\mathbf{E} \to \mathbf{TE'}$			$\mathbf{E} \to \mathbf{TE'}$		
E `		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' o \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$\mathbf{F} \rightarrow (\mathbf{E})$		

	id	+	*	()	\$
$oldsymbol{\mathrm{E}}$	$E \rightarrow TE'$			$\mathbf{E} \to \mathbf{TE'}$		
E `		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' \to \epsilon$
$oldsymbol{T}$	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
\mathbf{F}	$F \rightarrow id$			$F \rightarrow (E)$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E `		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$\mathbf{E} \to \mathbf{TE'}$		
E`		$\mathbf{E'} \to +\mathbf{TE'}$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$\mathbf{F} \rightarrow (\mathbf{E})$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E`		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' \to \epsilon$
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
\mathbf{F}	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E`		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' \rightarrow \epsilon$
T	$T \to FT'$			$T \rightarrow FT'$		
T`		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$\mathbf{F} \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

Stack Implementation (Complete Table)

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	$E \rightarrow TE'$
	TE`\$	id + id * id\$	$T \rightarrow FT$
	FTE`\$	id + id * id\$	F→ id
	ididT`E\$	id + id * id\$	Match id
id	T`E\$	+ id * id\$	T` → epsilon
id	E`\$	+ id * id\$	E` → +TE `
id	+TE`\$	+ id * id\$	Match +
id+	TE`\$	id * id\$	$T \rightarrow FT$
id+	FT`E`\$	id * id\$	$F \rightarrow id$
id+	idT`E`\$	id * id\$	Match id
id+ id	T`E`\$	* id\$	T' → * FT `
id+ id	FT`E\$	* id\$	Match *
id+ id *	FT`E`\$	id\$	$F \rightarrow id$

MATCHED	STACK	INPUT	ACTION
id+ id *	Id T`E`\$	Id \$	$F \rightarrow id$
id+ id * id	T`E`\$	\$	Match id
id+ id * id	E`\$	\$	T` → epsilon
id+ id * id	\$	\$	E` → epsilon

Parse Tree

Example 2: Draw the LL(1) parsing table for the given grammar?

- $S \rightarrow iEtSS' \mid a$
- S' \rightarrow eS | ε
- $E \rightarrow b$

	First	Follow
S	{i, a}	{\$, e, ∈}
S`	{ e , ∈}	{\$, e, ∈}
E	{ b }	{t}

Solution:

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \mathcal{E}$
 $E \rightarrow b$

	First	Follow
S	{i, a}	{\$, e}
S`	{ e , ∈}	{\$, e}
E	{ b }	{ t }

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iEtSS$		
S`			$S' \to eS$ $S' \to \in$			S' → ∈
E		$\mathbf{E} o \mathbf{b}$				

This grammar is not feasible for LL(1) Parser.

Example 3: Draw the LL(1) parsing table for the given grammar?

- $S \rightarrow aABb$
- $A \rightarrow c \mid \epsilon$
- $B \rightarrow d \mid \epsilon$

Example 4: Draw the LL(1) parsing table for the given grammar?

- $S \rightarrow W$
- $W \rightarrow ZXY$
- $Y \rightarrow c \mid \epsilon$
- $\mathbb{Z} \rightarrow a \mid d$
- $X \rightarrow Xb \mid \epsilon$