TD 08: COURBURE DES COURBES ET SURFACES DE L'ESPACE EUCLIDIEN

► Cette feuille de TDo8 nous occupera une semaine.

Exercices fondamentaux

1. THÉORÈME DE LANCRET

Montrer que les courbes gauches birégulières paramétrées par longueur d'arc de torsion ne s'annulant pas de classe \mathcal{C}^3 vérifiant l'une des conditions suivantes :

- ses vecteurs tangents font un angle constant avec une direction donnée;
- ses vecteurs normaux sont orthogonaux à un vecteur non nul constant;
- ullet ses vecteurs binormaux font un angle constant avec une direction donnée; sont les courbes gauches birégulières dont le rapport $\frac{T}{K}$ de la torsion T par la courbure K est constant. Ces courbes sont appelées des hélices.

2. SURFACE D'ENNEPER

On définit la surface d'Enneper comme la surface S paramétrée par l'application $\varphi:\mathbb{R}^2 o S$ définie par

$$\varphi(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right).$$

Pour tout $(u,v)\in\mathbb{R}^2$, si $x=\varphi(u,v)$, calculer les coefficients de la première forme fondamentale I_x et de la seconde forme fondamentale (scalaire) II_x dans la base $\left(\frac{\partial \varphi}{\partial u},\frac{\partial \varphi}{\partial v}\right)$ de T_xS , ainsi que les courbures principales λ_1 et λ_2 de S en x. Qu'en concluez-vous?

Exercices complémentaires

3. FORMULE DE MEUSNIER

Soit lpha une courbe lisse tracée sur une surface lisse S de \mathbb{R}^3 , passant par $p \in S$ avec vecteur tangent unitaire v. Montrer que

$$II_p(v,v) = K\cos(\theta)$$

où θ est l'angle entre le vecteur normal de la courbe gauche α en p et l'espace normal à S en p et K la courbure de la courbe gauche α en p.

4. COURBURE DE GAUSS

- (a) Soit Σ une surface lisse de \mathbb{R}^3 à courbure de Gauss strictement positive. Soit γ une courbe lisse régulière tracée sur Σ , k la courbure de γ au temps 0 et k_1, k_2 les courbures principales de Σ au point $\gamma(0)$. Montrer que $k \geqslant \min(|k_1|, |k_2|)$.
- (b) Que se passe-t-il si on remplace courbure de Gauss strictement positive par courbure de Gauss strictement négative?

5. POINTS OMBILICS

- (a) Quelles sont les surfaces dont tous les points sont des ombilics?
- (b) Étudier les points ombilics d'un ellipsoïde et d'un tore de révolution.