Verteilte Systeme im Sommersemester 2022

Patrick Felschen, Matr. Nr. 932056 Julian Voß, Matr. Nr. 934505

Osnabrück, 25.03.2022

Aufgabenblatt 1

Aufgabe 1 – Beispiele für verteilte Anwendungen

Beispiel: GIT

Indikator	Bewertung
Gemeinsame Nutzung von Ressourcen	Jeder Benutzer besitzt eine lokale Kopie des
	gesamten Repositorys, inklusive der
	Versionsgeschichte. Über bestimmte Befehle
	kann das Repository rechnerübergreifend
	verteilt werden (clone, pull, merge, push).
Anbieten von offenen Schnittstellen	GIT bietet verschiedene Zugriffmöglichkeiten
	(Integrierung in IDE, Terminal, Browser)
Parallele / nebenläufige	Über verschiedene Entwicklungszweige
Ausführung von Aktivitäten	(branches) lässt sich ein Projekt parallel
	bearbeiten und anschließend zusammenführen
	(merge).
Dynamische Skalierung des	Je nachdem wie groß Projekte sind, ist mehr
Rechenbedarfs	oder weniger Rechenleistung nötig
Erhöhte Fehlertoleranz	Im Falle eines Fehlers kann immer auf eine
	funktionierende Version zurückgesetzt werden
	(rollback).
Erhöhte Entwicklungskosten	Durch Aufgabenteilung in Projekten verringern
	sich die Entwicklungskosten.
Gefordertes Sicherheitsniveau ist	Zugriffsrechte können verwaltet werden,
schwerer zu erfüllen	sodass Projekte von Fremdzugriffe geschützt
	sind.
Höhere Wartungsaufwände	Code-Zusammenführung beansprucht Zeit
Verhalten nicht vorhersehbar	Dadurch, dass viele Entwickler gleichzeitig auf
	ein Projekt zugreifen, ist das Verhalten durch
	Zusammenführung vorhersehbar

Beispiele für ein verteiltes System:

- Struktur des Internets
- Telekommunikationsnetze

Beispiele für ein zentralisiertes System:

- Zeitserver

Aufgabe 2 - Plattform-Unterstützung für Verteilte Systeme

1. Unix/Linux-Befehle

a. Erreichbarkeit: ping 131.173.110.26

pfelsche@id.hsos.de@si0024-025-lin:~\$ ping 131.173.110.26
PING 131.173.110.26 (131.173.110.26) 56(84) Bytes Daten.
64 Bytes von 131.173.110.26: icmp_seq=1 ttl=64 Zeit=0.205 ms
64 Bytes von 131.173.110.26: icmp_seq=2 ttl=64 Zeit=0.239 ms
64 Bytes von 131.173.110.26: icmp_seq=3 ttl=64 Zeit=0.229 ms
64 Bytes von 131.173.110.26: icmp_seq=4 ttl=64 Zeit=0.267 ms
64 Bytes von 131.173.110.26: icmp_seq=5 ttl=64 Zeit=0.232 ms
64 Bytes von 131.173.110.26: icmp_seq=6 ttl=64 Zeit=0.233 ms

b. Sockets: ss -tu

Netid	State	Recv-Q	Send-Q	Local Address:Port	Peer Address:Port	Process
udp	ESTAB	0	0	127.0.0.1:34003	127.0.0.1:34003	
tcp	ESTAB	0	0	131.173.110.25:53340	131.173.251.210:3268	
tcp	FIN-WAIT-2	0	0	131.173.110.25:51598	131.173.251.210:kerberos	
tcp	ESTAB	0	0	131.173.110.25:ssh	131.173.88.37:1082	
tcp	ESTAB	0	0	131.173.110.25:ssh	131.173.62.169:52213	
tcp	ESTAB	0	0	131.173.110.25:48410	131.173.251.202:ldap	
tcp	ESTAB	0	36	131.173.110.25:ssh	131.173.88.37:51774	
tcp	ESTAB	0	0	131.173.110.25:ssh	131.173.62.169:55493	
tcp	ESTAB	0	0	131.173.110.25:54042	131.173.251.210:ldap	
tcp	ESTAB	0	0	131.173.110.25:1002	131.173.241.14:nfs	
tcp	ESTAB	0	0	131.173.110.25:46910	131.173.241.13:microsoft-ds	

c. Netzwerk-Adapter: arp -a

d. Hostname zu IP: nslookup si0024-025-lin

pfelsche@id.hsos.de@si0024-025-lin:~\$ nslookup si0024-025-lin Server: 127.0.0.53

Address: 127.0.0.53#53

Non-authoritative answer:
Name: si0024-025-lin.res.hsos.de

Address: 131.173.110.25 Name: si0024-025-lin.res.hsos.de

2. IP-Ports zu Diensten

Dienst	Port	Port-IANA	Funktion	
sftp	2431 / 2433	115	Dateiübertragung über ssh	
ftps	990	990	Dateiübertragung über TLS	
ntp	123	123	Zeitsynchronisierung	
https	443	443	Sicheres Internetkommunikationsprotokoll	
echo	o 7 7 Empfangene Da		Empfangene Daten zum Client zurücksenden	
ssh	22	22	Sicherer Verbindungsaufbau zwischen Rechnern	
kerberos	88	88	Authentifizierungsdienst	
rsync	873	873	Synchronisation von Dateien	

Aufgabe 3 - Entwicklungsumgebung für Verteilte Systeme

1.,2.,3.

Aufruf	Funktion
g++ -o daytime daytime.c	Kompilieren des Skripts
./daytime	Ausführung des Skripts
CTRL + Z	Prozess im Hintergrund ausführen
bg	
telnet 127.0.0.1 9013	Aufbau einer Telnet-Verbindung
Trying 127.0.0.1	Server Antwort
Connected to 127.0.0.1.	
Escape character is '^]'.	
Tuesday Mar 29 19:02:57 2022	
Connection closed by foreign	
host.	

4.

Zeit Server 1:

Aufruf: telnet time-a-g.nist.gov 13

Ausgabe: 59667 22-03-29 17:05:07 50 0 0 403.3 UTC(NIST) *

Zeit Server 2:

Aufruf: telnet time-b-g.nist.gov 13

Ausgabe: 59667 22-03-29 17:09:39 50 0 0 514.0 UTC(NIST) *

5.

Bei Aufgabe 3. sind die Latenzzeiten kaum bemerkbar und somit nicht relevant, da sich Client und Server im Gleichen Netzwerk befinden.

Bei Aufgabe 4. müssen Zeiten der Anfrage, Antwort und der Bearbeitung des Servers in die korrekte Zeitberechnung mit einbezogen werden.