Линейное программирование. Приемы моделирования

- Импликация логическая связка условия и следствия из него: «Если ..., то ...»
- Пусть I конечное множество индексов, x_i булева переменная, i
 ∈ I и y непрерывная переменная, такая, что 0 ≤ y ≤ 1. Тогда импликация

«если $x_i = 0$ для всех $i \in I$; **то** y = 0»

моделируется неравенством:

$$y \leq \sum_{i \in I} x_i$$

- Убедимся, что связка действительно реализуется
 - Если антецедент импликации выполняется
- Убедимся, что неравенство не накладывает дополнительных ограничений
 - Если антецедент не выполнен у может принимать любое значение [0; 1]

Пусть I – конечное множество индексов, x_i — булева переменная, i
 ∈ I и y — непрерывная переменная, такая, что 0 ≤ y ≤ c. Тогда импликация

«если $x_i = 0$ для всех $i \in I$; **то** y = 0»

моделируется неравенством:

$$y \le c \sum_{i \in I} x_i$$

Моделирование импликации. Вариант 1. Пример

Задано конечное множество возможных мест производства *I* некоторой однородной продукции и конечное множество клиентов *J*.

Известны затраты c_i на организацию производства в пункте i. Продукция доставляется клиентам, стоимость доставки клиенту j из пункта i равна d_{ij} . Каждый клиент может обслуживаться только из одного пункта.

Необходимо определить, в каких пунктах следует разместить производство, чтобы обслужить всех клиентов с наименьшими суммарными затратами.

Моделирование импликации. Вариант 1. Пример

Переменные: $x_i \in \{0,1\}$ – в пункте і размещено производство, $y_{ii} \in$ $\{0,1\}$ — клиент *j* обслуживается из пункта производства *i*.

Ограничения:

- 1) Каждый клиент обслуживается ровно одним предприятием;
- 2) «Если в пункте i производство не размещено, то клиент j из него

Моделирование импликации. Вариант 1. Пример 2

Задано конечное множество возможных мест производства *I* некоторой однородной продукции и конечное множество клиентов *J*.

Пусть производственная мощность предприятия i составляет u_i единиц, а величина b_j задает спрос клиента j. Величины d_{ij} задают затраты на доставку единицы продукции от клиента j до пункта i.

Необходимо определить, в каких пунктах следует разместить производство, чтобы обслужить всех клиентов с наименьшими суммарными затратами.

Моделирование импликации. Вариант 1. Пример 2

Переменные: $x_i \in \{0,1\}$ — в пункте i размещено производство, y_{ij} — количество продукции клиенту j из пункта производства i.

$$\min \sum_{i \in I} c_i x_i + \sum_{i \in I} \sum_{j \in J} d_{ij} y_{ij}$$

$$\sum_{i \in I} y_{ij} = b_j, \quad j \in J$$

$$\sum_{i \in I} y_{ij} \le u_i x_i, \quad i \in I$$

$$x_i \in \{0,1\}, \quad i \in I$$

$$y_{ij} \ge 0, \quad i \in I, j \in J$$

Моделирование импликации. Вариант 1. Пример 2

Переменные: $x_i \in \{0,1\}$ — в пункте i размещено производство, y_{ii} количество продукции клиенту j из пункта производства i.

Переменные:
$$x_{j} \in \{0,1\}$$
 — в пункте i размещено произколичество продукции клиенту j из пункта производо $\min \sum_{i \in I} c_{i}x_{i} + \sum_{i \in I} \sum_{j \in J} d_{ij}y_{ij}$ $\sum_{i \in I} y_{ij} = b_{j}, \quad j \in J$ 1) Сумма $y_{ij} <= u_{i}$ $x_{i} \in \{0,1\}, \quad i \in I$ $x_{i} \in \{0,1\}, \quad i \in I$ $y_{ij} \geq 0, \quad i \in I, j \in J$ то каждый y_{ij} (и их сумма) равны 0

2) Импликация: Если $x_i = 0$, сумма) равны 0

Пусть x_i — булева переменная, $i \in I$, где I — конечное множество индексов; I_0 и I_1 — непересекающиеся подмножества множества I и y — целочисленная или непрерывная, переменная, удовлетворяющая неравенству $0 \le y \le 1$.

Тогда логическая импликация

«если $x_i = 0$ для всех $i \in I_0$ и $x_i = 1$ для всех $i \in I_1$; то y = 0»

моделируется неравенством:

$$y \le \sum_{i \in I_0} x_i + \sum_{i \in I_1} (1 - x_i)$$

Пусть x_i — булева переменная, $i \in I$, где I — конечное множество индексов; I_0 и I_1 — непересекающиеся подмножества множества I и y — целочисленная или непрерывная, переменная, удовлетворяющая неравенству $0 \le y \le 1$.

Тогда логическая импликация

«если $x_i = 0$ для всех $i \in I_0$ и $x_i = 1$ для всех $i \in I_1$; то y = 1»

моделируется неравенством:

$$(1 - y) \le \sum_{i \in I_0} x_i + \sum_{i \in I_1} (1 - x_i)$$

Моделирование импликации. Вариант 2. Пример

- **«Если** в пункте *s* размещено предприятие и другие открытые предприятия дальше, чем *s* по отношению к клиенту *i*, то клиент *i* должен обслуживаться из предприятия *s*»
- **Переменные** x_s размещено ли предприятие в пункте s, y_{is} назначен ли клиент i предприятию s. Пусть C_{is} множество всех предприятий, которые находятся к клиенту i ближе, чем s. Тогда:

«если
$$x_s = 1$$
 и $x_t = 0$ для всех $t \in C_{is}$, то $y_{is} = 1$ »

моделируется с помощью ограничения:

$$1 - y_{is} \le (1 - x_s) + \sum_{t \in C_{is}} x_t$$

Выбор минимального элемента

Необходимо, чтобы переменная у принимала значение $\min(u_1, u_2)$. Значит, должны выполняться следующие равенства:

$$y \le u_1$$
 u $y \le u_2$

и **одно из**:

$$y \ge u_1$$
 или $y \ge u_2$

Введем вспомогательные бинарные переменные x_1 и x_2 , означающие, что выполняется неравенство 1 или 2 соответственно.

Тогда:

$$y \le u_1 y \le u_2 x_1 + x_2 = 1 y \ge u_1 - W(1 - x_1) y \ge u_2 - W(1 - x_2)$$

Линеаризация в математических моделях

Линеаризация произведения

Если в задаче встречается квадратичное выражение вида $x_i x_j$, $(x_i, x_j \in \{0,1\})$, его можно преобразовать в линейный вид.

Введем новую булеву переменную y_{ij} , такую, что $y_{ij} = x_i x_j$, т.е.

$$y_{ij}$$
 = 1 **тогда и только тогда**, когда x_i = 1 и x_j = 1,

То есть,

если
$$y_{ij} = 1$$
, то $x_i = 1$
если $y_{ij} = 1$, то $x_j = 1$
если $x_i = 1$ и $x_j = 1$, то $y_{ij} = 1$

Таким образом,

$$1 - x_i \le 1 - y_{ij}$$

$$1 - x_j \le 1 - y_{ij}$$

$$1 - y_{ij} \le 1 - x_i + 1 - x_j$$

Линеаризация произведения. Пример. Задача о клике

Задан неориентированный граф G с множеством вершин V и множеством ребер E. Задача заключается в том, чтобы найти максимальный (по количеству вершин) полный подграф, т. е. клику.

Переменные: x_{ν} – входит ли вершина ν в подграф.

Подграф является кликой тогда и только тогда, когда он не содержит пару вершин, между которыми нет ребра в исходном графе, то есть

Если
$$x_w = 1$$
, **то** $x_v = 0$, для $(v, w) \notin E$.

Тогда:

$$\max \sum_{v \in V} x_v$$

$$x_v \le 1 - x_w, \quad (v, w) \notin E$$

$$x_v \in \{0,1\}, \quad v \in V$$

Линеаризация произведения. Пример. Задача о клике максимального веса

Переменные: x_v — входит ли вершина v в подграф. y_{vw} — входит ли в подграф ребро (v, w).

Очевидно, $y_{vw} = x_v x_w$, т.е.

$$y_{vw}$$
 = 1 тогда и только тогда, когда x_v = 1 и x_w = 1,

Тогда:

$$\max \sum_{(v,w)\in E} c_{vw} y_{vw}$$

$$x_v \le 1 - x_w, \quad (v,w) \notin E$$

$$1 - y_{vw} \le 1 - x_v$$

$$1 - y_{vw} \le 1 - x_w$$

$$1 - y_{vw} \le 1 - x_w$$

$$1 - y_{vw} \le 1 - x_v$$

 a_0

 a_1

 a_2

Пусть на отрезке $[a_0, a_k]$ задана кусочно-линейная функция f(x). Требуется смоделировать поиск минимума функции.

Введем:

1) Булевы переменные:

$$y_i = \begin{cases} 1, \text{если } x > a_i \\ 0, \text{в противном случае} \end{cases}$$

2) Неотрицательные переменные z_i – какая часть (в абсолютных единицах) от числа x лежит на интервале $[a_i; a_{i+1}]$.

Задача минимизации сводится к следующей:

$$\min \sum_{i=0}^{k-1} (b_i y_i + c_i z_i)$$

При ограничениях:

$$y_{i+1} \le y_i$$

$$(a_1 - a_0)y_1 \le z_0 \le (a_1 - a_0)y_0$$

$$(a_2 - a_1)y_2 \le z_1 \le (a_2 - a_1)y_1$$

$$\vdots$$

$$0 \le z_{k-1} \le (a_k - a_{k-1})y_{k-1}$$

$$x = \sum_{i=0} z_i + a_0$$

$$x \ge 0, y_i \in \{0,1\}, z_i \ge 0, i = 0, ..., (k-1)$$

Пусть на отрезке $[a_0, a_k]$ задана кусочно-линейная функция f(x). Требуется смоделировать поиск минимума функции.

$$f(x) = \begin{cases} b_0, \text{если } x = a_0 \\ b_0 + c_0(x - a_0), \text{если } a_0 < x \leq a_1 \\ b_1 + c_1(x - a_1), \text{если } a_1 < x \leq a_2 \end{cases}$$
 ...
$$b_{k-1} + c_{k-1}(x - a_{k-1}), \text{если } a_{k-1} < x \leq a_k$$

Введем:

1) Булевы переменные:

$$y_i = \begin{cases} 1, \text{если } a_i \leq x < a_{i+1} \\ 0, \text{в противном случае} \end{cases}$$

2) Неотрицательные переменные z_i — коэффициент при a_i (или b_i) в значении x (или y).

Обратите внимание, что внутри интервала $[a_i; a_{i+1}] \times$ может быть представлен в виде:

$$x = z_i a_i + (1 - z_i) a_{i+1}$$

или:

$$x = z_i a_i + z_{i+1} a_{i+1}$$
$$z_i + z_{i+1} = 1$$

Задача минимизации сводится к следующей:

$$\min \sum_{i=0}^{\kappa} b_i z_i$$

При ограничениях:

$$\sum_{i=0}^{k-1} y_i = 1$$

$$\sum_{i=0}^{k-1} z_i = 1$$

$$z_0 \le y_0$$

$$z_1 \le y_0 + y_1$$
...
$$z_k \le y_{k-1} + y_k$$

$$x = \sum_{i=0}^{k-1} a_i z_i$$

$$y_i \in \{0,1\}, i \in \{0, ..., k-1\}$$

$$z_i \ge 0, i \in \{0, ..., k\}$$

Пусть на отрезке $[0, a_k]$ задана **выпуклая** кусочно-линейная функция f(x), значение которой используется в качестве правой части какоголибо ограничения.

Например, подобным образом часто может быть смоделирована зависимость убывающего эффекта от каких-либо вложений.

Функция (с учетом выпуклости) является нижней огибающей набора функций-фрагментов. Ее значение в каждой точке области определения равно минимуму значений функций, описывающих каждый из ее фрагментов.

Таким образом, значение функции может быть смоделировано переменной f и следующим набором ограничений:

$$f \le a_0 x + \beta_0$$

$$f \le a_1 x + \beta_1$$

...

$$f \le a_k x + \beta_k$$

Резюме

- Бинарные переменные можно использовать для моделирования ряда полезных условий и ограничений:
 - Импликация
 - Минимум-максимум
 - Альтернативные ограничения
 - Линеаризации
- Литература для дальнейшего углубления в тему:
 - Алексеева Е. В. Построение математических моделей целочисленного линейного программирования. Примеры и задачи: Учеб. пособие