Incidenza obliqua

Consideriamo un'onda piana uniforme che si propaghi nella direzione positiva dell'asse z_i e che incontri una discontinuità nel dielettrico in z=0 formando un angolo di incidenza θ_i .

Si creano un'onda riflessa che viaggia nella direzione negativa dell'asse z_r ed un'onda trasmessa nel secondo mezzo, che si propaga nella direzione z_t . θ_r e θ_t sono gli angoli di riflessione e di trasmissione delle onde.

Ciò è dovuto al fatto che i campi e.m. devono soddisfare le <u>condizioni al contorno</u> in z=0.

Incidenza obliqua

Diversamente da quanto avviene nell'incidenza normale, bisogna distinguere due casi in funzione della posizione del campo elettrico:

- 1) polarizzazione (lineare) TE, oppure "perpendicolare"
- 2) polarizzazione (lineare) TM, oppure "parallela"
- I termini "perpendicolare" o "parallela" si riferiscono alla definizione del piano di incidenza, inteso come il piano che contiene la normale alla superficie di separazione (asse z in figura) e la direzione di propagazione dell'onda.

Incidenza obliqua TE 1/12

$$\overline{\boldsymbol{\mathsf{E}}}^{i} = E_{y}^{+} e^{-j\beta_{l} z_{i}} \hat{\boldsymbol{\mathsf{y}}}_{i} \quad \overline{\boldsymbol{\mathsf{H}}}^{i} = -\frac{E_{y}^{+}}{\eta_{1}} e^{-j\beta_{l} z_{i}} \hat{\boldsymbol{\mathsf{x}}}_{i}$$

$$\overline{\mathbf{E}}^{r} = E_{y}^{-} e^{j\beta_{1}z_{r}} \hat{\mathbf{y}}_{r} \quad \overline{\mathbf{H}}^{r} = \frac{E_{y}^{-}}{\eta_{1}} e^{j\beta_{1}z_{r}} \hat{\mathbf{x}}_{r}$$

$$\mathbf{\bar{E}}^{t} = E_{y}^{t} e^{-j\beta_{2}z_{t}} \hat{\mathbf{y}}_{t} \quad \mathbf{\bar{H}}^{t} = -\frac{E_{y}^{t}}{\eta_{2}} e^{-j\beta_{2}z_{t}} \hat{\mathbf{x}}_{t}$$

$$\begin{split} & \bar{\boldsymbol{E}}^{i} = E_{y}^{+} e^{-j\beta_{l}z_{i}} \hat{\boldsymbol{y}}_{i} \quad \bar{\boldsymbol{H}}^{i} = -\frac{E_{y}}{\eta_{l}} e^{-j\beta_{l}z_{i}} \hat{\boldsymbol{x}}_{i} \\ & \bar{\boldsymbol{g}}_{l} = \omega \sqrt{\mu_{0}\epsilon_{0}\epsilon_{r1}} = k_{0} \sqrt{\epsilon_{r1}} \quad \beta_{2} = k_{0} \sqrt{\epsilon_{r2}} \\ & \bar{\boldsymbol{E}}^{r} = E_{y}^{-} e^{j\beta_{l}z_{r}} \hat{\boldsymbol{y}}_{r} \quad \bar{\boldsymbol{H}}^{r} = \frac{E_{y}^{-}}{\eta_{1}} e^{j\beta_{l}z_{r}} \hat{\boldsymbol{x}}_{r} \\ \end{split} \qquad \begin{split} & \eta_{l} = \sqrt{\frac{\mu_{0}}{\epsilon_{0}\epsilon_{r1}}} = \frac{\eta_{0}}{\sqrt{\epsilon_{r1}}} \quad \eta_{2} = \frac{\eta_{0}}{\sqrt{\epsilon_{r2}}} \end{split}$$

Incidenza obliqua TE 2/12

Innanzitutto, bisogna esprimere le coordinate "locali" in funzione del sistema di riferimento dell'interfaccia dielettrica (x,y,z). Analogamente per i versori.

 $\hat{\mathbf{y}}_{i} = \hat{\mathbf{y}}_{r} = \hat{\mathbf{y}}_{t} = \hat{\mathbf{y}}_{t}$

$$\begin{split} & \mathbf{x}_i = \mathbf{x} \cos \theta_i - \mathbf{z} \sin \theta_i \\ & \mathbf{z}_i = \mathbf{x} \sin \theta_i + \mathbf{z} \cos \theta_i \\ & \mathbf{z}_i = \mathbf{x} \sin \theta_i + \mathbf{z} \cos \theta_i \\ & \mathbf{x}_r = \mathbf{x} \cos \theta_r + \mathbf{z} \sin \theta_r \\ & \mathbf{x}_r = \mathbf{x} \cos \theta_r + \mathbf{z} \sin \theta_r \\ & \mathbf{z}_r = -\mathbf{x} \sin \theta_r + \mathbf{z} \cos \theta_r \\ & \mathbf{z}_r = -\mathbf{\hat{x}} \sin \theta_r + \mathbf{\hat{z}} \cos \theta_r \\ & \mathbf{x}_t = \mathbf{x} \cos \theta_t - \mathbf{z} \sin \theta_t \\ & \mathbf{x}_t = \mathbf{\hat{x}} \cos \theta_t - \mathbf{\hat{z}} \sin \theta_t \\ & \mathbf{z}_t = \mathbf{\hat{x}} \sin \theta_t + \mathbf{\hat{z}} \cos \theta_t \\ & \mathbf{z}_t = \mathbf{\hat{x}} \sin \theta_t + \mathbf{\hat{z}} \cos \theta_t \\ \end{split}$$

Incidenza obliqua TE 3/12

$$\begin{split} & \overline{\boldsymbol{E}}^i = E_y^+ e^{-j\beta_1 z_i} \boldsymbol{\hat{y}}_i = E_y^+ e^{-j\beta_1 (x\sin\theta_i + z\cos\theta_i)} \boldsymbol{\hat{y}} \\ & \overline{\boldsymbol{E}}^r = E_y^- e^{j\beta_1 z_r} \boldsymbol{\hat{y}}_r = E_y^- e^{j\beta_1 (-x\sin\theta_r + z\cos\theta_r)} \boldsymbol{\hat{y}} \\ & \overline{\boldsymbol{E}}^t = E_y^t e^{-j\beta_2 z_t} \boldsymbol{\hat{y}}_t = E_y^t e^{-j\beta_2 (x\sin\theta_t + z\cos\theta_t)} \boldsymbol{\hat{y}} \end{split}$$

Incidenza obliqua TE 4/12

$$\begin{split} & \overline{\boldsymbol{H}}^{i} = -\frac{E_{y}^{+}}{\eta_{1}} e^{-j\beta_{1}z_{i}} \hat{\boldsymbol{x}}_{i} = -\frac{E_{y}^{+}}{\eta_{1}} e^{-j\beta_{1}(x\sin\theta_{i}+z\cos\theta_{i})} \big(\hat{\boldsymbol{x}}\cos\theta_{i} - \hat{\boldsymbol{z}}\sin\theta_{i} \big) \\ & \overline{\boldsymbol{H}}^{r} = \frac{E_{y}^{-}}{\eta_{1}} e^{j\beta_{1}z_{r}} \hat{\boldsymbol{x}}_{r} = \frac{E_{y}^{-}}{\eta_{1}} e^{j\beta_{1}(-x\sin\theta_{r}+z\cos\theta_{r})} \big(\hat{\boldsymbol{x}}\cos\theta_{r} + \hat{\boldsymbol{z}}\sin\theta_{r} \big) \\ & \overline{\boldsymbol{H}}^{t} = -\frac{E_{y}^{t}}{\eta_{2}} e^{-j\beta_{2}z_{t}} \hat{\boldsymbol{x}}_{t} = -\frac{E_{y}^{t}}{\eta_{2}} e^{-j\beta_{2}(x\sin\theta_{t}+z\cos\theta_{t})} \big(\hat{\boldsymbol{x}}\cos\theta_{t} - \hat{\boldsymbol{z}}\sin\theta_{t} \big) \end{split}$$

Incidenza obliqua TE 5/12

A questo punto dobbiamo applicare le condizioni al contorno in z=0

$$E_{tg}\big|_{z=0^{-}} = E_{tg}\big|_{z=0^{+}} \quad \Box \quad E_{y}\big|_{z=0^{-}} = E_{y}\big|_{z=0^{+}}$$

$$H_{tg}\Big|_{z=0^{-}} = H_{tg}\Big|_{z=0^{+}} \quad \Box \quad H_{x}\Big|_{z=0^{-}} = H_{x}\Big|_{z=0^{+}}$$

Incidenza obliqua TE 6/12

Consideriamo la condizione sul campo elettrico

$$\begin{split} E_y\Big|_{z=0^-} &= E_y\Big|_{z=0^+} \\ &= E_y^\dagger e^{-j\beta_1(x\sin\theta_i + z\cos\theta_i)} + E_y^- e^{j\beta_1(-x\sin\theta_r + z\cos\theta_r)} \Big|_{z=0^-} = E_y^t e^{-j\beta_2(x\sin\theta_t + z\cos\theta_t)} \Big|_{z=0^+} \\ &= E_y^\dagger e^{-j\beta_1x\sin\theta_i} + E_y^- e^{-j\beta_1x\sin\theta_r} = E_y^t e^{-j\beta_2x\sin\theta_t} \quad \forall x \end{split}$$

Questa equazione deve essere soddisfatta per ogni valore di x.

Incidenza obliqua TE 7/12

Affinché la condizione sia soddisfatta si devono avere due equazioni, una sulla fase dei numeri complessi ed una sulle ampiezze:

fasi: $\beta_1 \sin \theta_i = \beta_1 \sin \theta_r = \beta_2 \sin \theta_t$

ampiezze: $E_y^+ + E_y^- = E_y^t$

Incidenza obliqua TE 8/12

$$\beta_1 \sin \theta_i = \beta_1 \sin \theta_r = \beta_2 \sin \theta_t$$

$$\theta_{\rm i} = \theta_{\rm r}$$
 Legge di Snell della riflessione $\sqrt{\epsilon_{\rm r1}} \sin \theta_{\rm i} = \sqrt{\epsilon_{\rm r2}} \sin \theta_{\rm t}$ Legge di Snell della rifrazione

Con la legge di Snell della rifrazione determiniamo l'angolo di trasmissione.

Incidenza obliqua TE 9/12

Sostituendo tali leggi nell'equazioni di continuità della componente tangente del campo magnetico si ha:

$$\begin{aligned} H_{x}\big|_{z=0^{-}} &= H_{x}\big|_{z=0^{+}} \\ \left(-\frac{E_{y}^{+}\cos\theta_{i}}{\eta_{1}}e^{-j\beta_{1}z\cos\theta_{i}} + \frac{E_{y}^{-}\cos\theta_{i}}{\eta_{1}}e^{j\beta_{1}z\cos\theta_{i}}\right)_{z=0^{-}} e^{-j\beta_{1}x\sin\theta_{i}} &= -\frac{E_{y}^{t}\cos\theta_{t}}{\eta_{2}}e^{-j\beta_{2}(x\sin\theta_{t}+z\cos\theta_{t})}\Big|_{z=0^{+}} \\ \left(-\frac{E_{y}^{+}}{\eta_{1}}\cos\theta_{i} + \frac{E_{y}^{-}}{\eta_{1}}\cos\theta_{i}\right)e^{-j\beta_{1}x\sin\theta_{i}} &= -\frac{E_{y}^{t}}{\eta_{2}}\cos\theta_{t}e^{-j\beta_{2}(x\sin\theta_{t})} \end{aligned}$$

$$(applicando\ Snell) \quad -\frac{E_{y}^{+}}{\eta_{1}}\cos\theta_{i} + \frac{E_{y}^{-}}{\eta_{1}}\cos\theta_{i} = -\frac{E_{y}^{t}}{\eta_{2}}\cos\theta_{t}$$

Complessivamente:

$$E_{y}^{+} + E_{y}^{-} = E_{y}^{t}$$

$$-\frac{E_{y}^{+}}{\eta_{1}} \cos \theta_{i} + \frac{E_{y}^{-}}{\eta_{1}} \cos \theta_{i} = -\frac{E_{y}^{t}}{\eta_{2}} \cos \theta_{t}$$

Incidenza obliqua TE 10/12

$$\begin{cases} E_{y}^{+} + E_{y}^{-} = E_{y}^{t} \\ -\frac{E_{y}^{+}}{\eta_{1}} \cos \theta_{i} + \frac{E_{y}^{-}}{\eta_{1}} \cos \theta_{i} = -\frac{E_{y}^{t}}{\eta_{2}} \cos \theta_{t} \end{cases} \Rightarrow \begin{cases} E_{y}^{-} = \rho^{TE} E_{y}^{+} & \rho^{TE} = \frac{Z_{2}^{TE} - Z_{1}^{TE}}{Z_{2}^{TE} + Z_{1}^{TE}} \\ E_{y}^{t} = \tau^{TE} E_{y}^{+} & \tau^{TE} = 1 + \rho^{TE} = 2 \frac{Z_{2}^{TE}}{Z_{2}^{TE} + Z_{1}^{TE}} \end{cases}$$

Impedenze equivalenti per la polarizzazione TE

$$Z_2^{TE} = \frac{\eta_2}{\cos \theta_t} \quad Z_1^{TE} = \frac{\eta_1}{\cos \theta_i} \qquad \qquad Z^{TE} \triangleq -\frac{E_y^+}{H_x^+} = \frac{E_y^-}{H_x^-}$$

Le impedenze Z_1 e Z_2 si chiamano "trasverse" perché rappresentano il rapporto nei due mezzi tra il campo elettrico E_y ed il campo magnetico H_x , che sono tangenti all'interfaccia e "trasversali" rispetto alla direzione z. Ovviamente, Z_1 e Z_2 coincidono con η_1 e η_2 in caso di incidenza normale $(\theta_i = \theta_r = \theta_t = 0)$.

Incidenza obliqua TE 11/12

Le componenti del campo risultano dunque:

$$\begin{split} \vec{E}^I &= E_y^+ e^{-j\beta_1 x \sin \theta_i} \Big[e^{-j\beta_1 z \cos \theta_i} + \rho^{TE} e^{j\beta_1 z \cos \theta_i} \Big] \hat{y} \\ \vec{H}^I &= -\frac{E_y^+}{\eta_1} e^{-j\beta_1 x \sin \theta_i} \Big\{ \cos \theta_i \Big[e^{-j\beta_1 z \cos \theta_i} - \rho^{TE} e^{j\beta_1 z \cos \theta_i} \Big] \hat{x} \\ &- \sin \theta_i \Big[e^{-j\beta_1 z \cos \theta_i} + \rho^{TE} e^{j\beta_1 z \cos \theta_i} \Big] \hat{z} \Big\} \end{split}$$

$$\vec{E}^{II} = \tau^{TE} E_y^+ e^{-j\beta_2 x \sin \theta_t} e^{-j\beta_2 z \cos \theta_t} \hat{y}$$

$$\vec{H}^{II} = -\tau^{TE} \frac{E_y^+}{\eta_2} e^{-j\beta_2 x \sin \theta_t} e^{-j\beta_2 z \cos \theta_t} \left(\hat{x} \cos \theta_t - \hat{z} \sin \theta_t \right)$$

Incidenza obliqua TE 12/12

Le componenti normali del campo magnetico in z=0 sono:

$$\begin{split} H_z^I(z=0^-) &= \frac{E_y^+}{\eta_l} e^{-j\beta_l x \sin\theta_i} \sin\theta_i \boxminus + \rho^{TE} \biguplus \tau^{TE} \frac{E_y^+}{\eta_0} \sqrt{\epsilon_{r1}} e^{-j\beta_l x \sin\theta_i} \sin\theta_i = \\ &= \tau^{TE} \frac{E_y^+}{\eta_0} \sqrt{\epsilon_{r2}} e^{-j\beta_l x \sin\theta_i} \sin\theta_t = \tau^{TE} \frac{E_y^+}{\eta_2} e^{-j\beta_l x \sin\theta_i} \sin\theta_t \\ H_z^{II}(z=0^-) &= \tau^{TE} \frac{E_y^+}{\eta_2} e^{-j\beta_2 x \sin\theta_t} \sin\theta_t \end{split}$$

e risulta

$$H_z^I(z=0^-) = H_z^{II}(z=0^-)$$

come deve accadere dalle condizioni al contorno sulle componenti normali $B_{n1}=B_{n2}$. Infatti $\mu_1=\mu_2=\mu 0$.

Incidenza obliqua TM 1/11

$$\begin{split} & \overline{\boldsymbol{E}}^i = \boldsymbol{\eta}_1 \boldsymbol{H}_y^+ e^{-j\beta_1 z_i} \boldsymbol{\hat{x}}_i & \overline{\boldsymbol{H}}^i = \boldsymbol{H}_y^+ e^{-j\beta_1 z_i} \boldsymbol{\hat{y}}_i \\ & \overline{\boldsymbol{E}}^r = \boldsymbol{\eta}_1 \boldsymbol{H}_y^- e^{j\beta_1 z_r} \boldsymbol{\hat{x}}_r & \overline{\boldsymbol{H}}^r = -\boldsymbol{H}_y^- e^{j\beta_1 z_r} \boldsymbol{\hat{y}}_r \\ & \overline{\boldsymbol{E}}^t = \boldsymbol{\eta}_2 \boldsymbol{H}_y^t e^{-j\beta_2 z_t} \boldsymbol{\hat{x}}_t & \overline{\boldsymbol{H}}^t = \boldsymbol{H}_y^t e^{-j\beta_2 z_t} \boldsymbol{\hat{y}}_t \end{split}$$

Incidenza obliqua TM 2/11

$$\overline{\textbf{E}}^{i} = \eta_{1} H_{y}^{+} e^{-j\beta_{1} \left(x \sin \theta_{i} + z \cos \theta_{i}\right)} \hat{\textbf{x}}_{i}$$

$$\boldsymbol{\bar{\textbf{E}}}^{r} = \eta_{1} H_{v}^{-} e^{j\beta_{1} \left(-x \sin \theta_{r} + z \cos \theta_{r}\right)} \boldsymbol{\hat{\textbf{x}}}_{r} \quad \boldsymbol{\bar{\textbf{H}}}^{r} = -H_{v}^{-} e^{j\beta_{1} \left(-x \sin \theta_{r} + z \cos \theta_{r}\right)} \boldsymbol{\hat{\textbf{y}}}$$

$$\overline{\textbf{E}}^t = \eta_2 H_y^t e^{-j\beta_2 \left(x\sin\theta_t + z\cos\theta_t\right)} \hat{\textbf{x}}_t \quad \overline{\textbf{H}}^t = H_y^t e^{-j\beta_2 \left(x\sin\theta_t + z\cos\theta_t\right)} \hat{\textbf{y}}$$

$$\boldsymbol{\bar{\textbf{H}}}^{i} = H_{y}^{+} e^{-j\beta_{l}(x\sin\theta_{i} + z\cos\theta_{i})} \boldsymbol{\hat{\textbf{y}}}$$

$$\boldsymbol{\bar{\textbf{H}}}^{\,r} = \! - \! H_{v}^{-} e^{j\beta_{l} \left(-x\sin\theta_{r} + z\cos\theta_{r} \right)} \boldsymbol{\hat{\textbf{y}}}$$

$$\boldsymbol{\bar{\textbf{H}}}^t = \boldsymbol{H}_y^t e^{-j\beta_2 \left(x\sin\theta_t + z\cos\theta_t\right)} \boldsymbol{\hat{\textbf{y}}}$$

Incidenza obliqua TM 3/11

$$\begin{split} & \bar{\textbf{E}}^i = \eta_l H_y^+ e^{-j\beta_l (x\sin\theta_i + z\cos\theta_i)} \big(\hat{\textbf{x}} \cos\theta_i - \hat{\textbf{z}} \sin\theta_i \big) & \bar{\textbf{H}}^i = H_y^+ e^{-j\beta_l (x\sin\theta_i + z\cos\theta_i)} \hat{\textbf{y}} \\ & \bar{\textbf{E}}^r = \eta_l H_y^- e^{j\beta_l (-x\sin\theta_r + z\cos\theta_r)} \big(\hat{\textbf{x}} \cos\theta_r + \hat{\textbf{z}} \sin\theta_r \big) & \bar{\textbf{H}}^r = -H_y^- e^{j\beta_l (-x\sin\theta_r + z\cos\theta_r)} \hat{\textbf{y}} \\ & \bar{\textbf{E}}^t = \eta_2 H_y^t e^{-j\beta_2 (x\sin\theta_t + z\cos\theta_t)} \big(\hat{\textbf{x}} \cos\theta_t - \hat{\textbf{z}} \sin\theta_t \big) & \bar{\textbf{H}}^t = H_y^t e^{-j\beta_2 (x\sin\theta_t + z\cos\theta_t)} \hat{\textbf{y}} \end{split}$$

Incidenza obliqua TM 4/11

questo punto dobbiamo applicare le condizioni al contorno in z=0

$$E_{tg}|_{z=0^{-}} = E_{tg}|_{z=0^{+}} \quad \Box \quad E_{x}|_{z=0^{-}} = E_{x}|_{z=0^{-}}$$

$$E_{tg}|_{z=0^{-}} = E_{tg}|_{z=0^{+}} \quad \Box \quad E_{x}|_{z=0^{-}} = E_{x}|_{z=0^{+}}$$
 $H_{tg}|_{z=0^{-}} = H_{tg}|_{z=0^{+}} \quad \Box \quad H_{y}|_{z=0^{-}} = H_{y}|_{z=0^{+}}$

Incidenza obliqua TM 5/11

$$\begin{split} E_x\big|_{z=0^-} &= E_x\big|_{z=0^+} \\ \eta_l H_y^+ cos\theta_i e^{-j\beta_l x sin\theta_i} &+ \eta_l H_y^- cos\theta_r e^{-j\beta_l x sin\theta_r} = \eta_2 H_y^t cos\theta_t e^{-j\beta_2 x sin\theta_t} \quad \forall x \in \mathbb{R} \end{split}$$

Questa equazione deve essere soddisfatta per ogni valore di x.

Incidenza obliqua TM 6/11

Affinché la condizione sia soddisfatta si devono avere due equazioni, una sulla fase dei numeri complessi ed una sulle ampiezze:

fasi: $\beta_1 \sin \theta_i = \beta_1 \sin \theta_r = \beta_2 \sin \theta_t$

ampiezze: $\eta_1 H_y^+ \cos \theta_i + \eta_1 H_y^- \cos \theta_r = \eta_2 H_y^t \cos \theta_t$

Incidenza obliqua TM 7/11

$$\beta_1 \sin \theta_i = \beta_1 \sin \theta_r = \beta_2 \sin \theta_t$$

 $\theta_i = \theta_r \qquad \text{Legge di Snell della riflessione}$ $\sqrt{\epsilon_{r1}} \sin \theta_i = \sqrt{\epsilon_{r2}} \sin \theta_t \quad \text{Legge di Snell della rifrazione}$

Con la legge di Snell della rifrazione determiniamo l'angolo di trasmissione.

Incidenza obliqua TM 8/11

Sostituendo tali leggi nell'equazioni di continuità della componente tangente del campo magnetico si ha:

Continuità campo elettrico
$$\longrightarrow \eta_1 H_y^+ \cos \theta_i + \eta_1 H_y^- \cos \theta_i = \eta_2 H_y^t \cos \theta_t$$
Continuità campo magnetico $\longrightarrow H_y^+ - H_y^- = H_y^t$

Poiché il coefficiente di riflessione è definito sul campo elettrico, posto

$$E_x^+ = \eta_1 H_y^+ \cos \theta_i \quad E_x^- = \eta_1 H_y^- \cos \theta_i \quad E_x^t = \eta_2 H_y^t \cos \theta_t$$

si ottiene:

$$E_x^+ + E_x^- = E_x^t$$

$$\frac{E_x^+}{\eta_1 \cos \theta_i} - \frac{E_x^-}{\eta_1 \cos \theta_i} = \frac{E_x^t}{\eta_2 \cos \theta_t}$$

Incidenza obliqua TM 9/11

$$\frac{E_{x}^{+} + E_{x}^{-} = E_{x}^{t}}{\eta_{1} \cos \theta_{i}} - \frac{E_{x}^{-}}{\eta_{1} \cos \theta_{i}} = \frac{E_{x}^{t}}{\eta_{2} \cos \theta_{t}}$$

$$\Rightarrow E_{x}^{-} = \rho^{TM} E_{x}^{+}$$

$$E_{x}^{t} = \tau^{TM} E_{x}^{+}$$

$$\rho^{TM} = \frac{Z_{2}^{TM} - Z_{1}^{TM}}{Z_{2}^{TM} + Z_{1}^{TM}}$$

$$\tau^{TM} = 1 + \rho^{TM} = 2 \frac{Z_{2}^{TM}}{Z_{2}^{TM} + Z_{1}^{TM}}$$

Impedenze equivalenti per la polarizzazione TM

$$Z_2 = \eta_2 \cos \theta_t$$
 $Z_1 = \eta_1 \cos \theta_i$ $Z^{TM} \triangleq \frac{E_x^+}{H_y^+} = -\frac{E_x^-}{H_y^-}$

Le impedenze Z_1 e Z_2 si chiamano "trasverse" perché rappresentano il rapporto nei due mezzi tra il campo elettrico E_x ed il campo magnetico H_y , che sono tangenti all'interfaccia e "trasversali" rispetto alla direzione z. Ovviamente, Z_1 e Z_2 coincidono con η_1 e η_2 in caso di incidenza normale $(\theta_i = \theta_r = \theta_t = 0)$.

Incidenza obliqua TM 10/11

Le componenti del campo risultano dunque:

$$\begin{split} & \overline{H}^{I} = H_{y}^{+} e^{-j\beta_{1}x \sin\theta_{i}} \left[e^{-j\beta_{1}z \cos\theta_{i}} - \rho^{TM} e^{j\beta_{1}z \cos\theta_{i}} \right] \hat{y} \\ & \overline{H}^{II} = H_{y}^{+} \tau^{TM} \frac{\eta_{1} \cos\theta_{i}}{\eta_{2} \cos\theta_{i}} e^{-j\beta_{2}x \sin\theta_{t}} e^{-j\beta_{2}z \cos\theta_{t}} \hat{y} \\ & \overline{E}^{I} = H_{y}^{+} \eta_{1} e^{-j\beta_{1}x \sin\theta_{i}} \left\{ \cos\theta_{i} \left[e^{-j\beta_{1}z \cos\theta_{i}} + \rho^{TM} e^{j\beta_{1}z \cos\theta_{i}} \right] \hat{x} \right. \\ & \left. - \sin\theta_{i} \left[e^{-j\beta_{1}z \cos\theta_{i}} - \rho^{TM} e^{j\beta_{1}z \cos\theta_{i}} \right] \hat{z} \right\} \end{split}$$

$$& \overline{E}^{II} = H_{y}^{+} \eta_{1} \tau^{TM} \frac{\cos\theta_{i}}{\cos\theta_{t}} e^{-j\beta_{2}x \sin\theta_{t}} e^{-j\beta_{2}z \cos\theta_{t}} \left(\hat{x} \cos\theta_{t} - \hat{z} \sin\theta_{t} \right) \end{split}$$

Incidenza obliqua TM 11/11

Le componenti normali di E in z=0 sono (tralasciando $e^{-j\beta_1x\sin\theta_i}$ e $e^{-j\beta_2x\sin\theta_t}$):

$$\begin{split} E_{z}^{I}(z=0^{-}) &= -H_{y}^{+}\eta_{1}\sin\theta_{i} \left[1-\rho^{TM}\right] = -H_{y}^{+}\frac{2\eta_{1}\eta_{0}\cos\theta_{i}}{\eta_{1}\cos\theta_{i}+\eta_{2}\cos\theta_{i}}\frac{\sin\theta_{i}}{\sqrt{\varepsilon_{r_{1}}}} \\ E_{z}^{II}(z=0^{-}) &= -H_{y}^{+}\eta_{1}\sin\theta_{t}\tau^{TM}\frac{\cos\theta_{i}}{\cos\theta_{i}} = -H_{y}^{+}\eta_{1}\sin\theta_{t}\frac{2\eta_{2}\cos\theta_{t}}{\eta_{1}\cos\theta_{i}+\eta_{2}\cos\theta_{t}}\frac{\cos\theta_{i}}{\cos\theta_{t}} \\ &= -H_{y}^{+}\eta_{1}\frac{2\eta_{2}\cos\theta_{i}\sin\theta_{t}}{\eta_{1}\cos\theta_{i}+\eta_{2}\cos\theta_{t}} = -H_{y}^{+}\frac{2\eta_{1}\eta_{0}\cos\theta_{i}+\eta_{2}\cos\theta_{t}}{\eta_{1}\cos\theta_{i}+\eta_{2}\cos\theta_{t}}\frac{\sin\theta_{t}}{\sqrt{\varepsilon_{r_{2}}}} \\ &= E_{z}^{I}(z=0^{-})\frac{\sqrt{\varepsilon_{r_{1}}}}{\sin\theta_{i}}\frac{\sin\theta_{t}}{\sqrt{\varepsilon_{r_{2}}}} = E_{z}^{I}(z=0^{-})\frac{\sqrt{\varepsilon_{r_{1}}}}{\sin\theta_{i}}\frac{\sqrt{\varepsilon_{r_{1}}}\sin\theta_{i}}{\sqrt{\varepsilon_{r_{2}}}\sqrt{\varepsilon_{r_{2}}}} \\ &= E_{z}^{I}(z=0^{-})\frac{\varepsilon_{r_{1}}}{\varepsilon_{r_{2}}} = \frac{D_{z}^{I}(z=0^{-})}{\varepsilon_{r_{2}}} \end{split}$$

Quindi

$$D_z^I(z=0^-) = D_z^{II}(z=0^-)$$

come deve accadere dalle condizioni al contorno sulle componenti normali $D_{n1}=D_{n2}$.

Incidenza di un'onda piana sul terreno

Angolo di Brewster

Esistono dei valori di angolo di incidenza per cui il coefficiente di riflessione vale zero?

Se tale angolo esiste, esso viene definito angolo di Brewster.

Per rispondere a questa domanda, bisogna analizzare separatamente le due polarizzazioni.

Angolo di Brewster: TM

$$\rho^{TM} = \frac{Z_2^{TM} - Z_1^{TM}}{Z_2^{TM} + Z_1^{TM}} = \frac{\eta_2 \cos\theta_t - \eta_1 \cos\theta_i}{\eta_2 \cos\theta_t + \eta_1 \cos\theta_i} = 0 \Leftrightarrow \eta_2 \cos\theta_t = \eta_1 \cos\theta_i$$

$$\eta_{2}\cos\theta_{t} = \eta_{2}\sqrt{1-\sin^{2}\theta_{t}} = \eta_{2}\sqrt{1-\frac{\varepsilon_{r1}\sin^{2}\theta_{i}}{\varepsilon_{r2}}} = \eta_{1}\cos\theta_{i}$$

$$1 - \frac{\varepsilon_{r1}\sin^{2}\theta_{i}}{\varepsilon_{r2}} = \frac{\eta_{1}^{2}}{\eta_{2}^{2}}\cos^{2}\theta_{i} = \frac{\eta_{1}^{2}}{\eta_{2}^{2}}(1-\sin^{2}\theta_{i}) = \frac{\varepsilon_{r2}}{\varepsilon_{r1}}(1-\sin^{2}\theta_{i})$$

$$1 - \frac{\varepsilon_{r1}\sin^{2}\theta_{i}}{\varepsilon_{r2}} = \frac{\varepsilon_{r2}}{\varepsilon_{r1}}(1-\sin^{2}\theta_{i})$$

$$\sin^2\theta_i \left(\frac{\varepsilon_{r1}}{\varepsilon_{r2}} - \frac{\varepsilon_{r2}}{\varepsilon_{r1}}\right) = 1 - \frac{\varepsilon_{r2}}{\varepsilon_{r1}} \implies \sin^2\theta_i \frac{(\varepsilon_{r1} - \varepsilon_{r2})(\varepsilon_{r1} + \varepsilon_{r2})}{\varepsilon_{r1}\varepsilon_{r2}} = \frac{\varepsilon_{r1} - \varepsilon_{r2}}{\varepsilon_{r1}}$$

Angolo di Brewster: TM

$$\sin^{2}\theta_{i} \frac{(\varepsilon_{r1} - \varepsilon_{r2})(\varepsilon_{r1} + \varepsilon_{r2})}{\varepsilon_{r1}\varepsilon_{r2}} = \frac{\varepsilon_{r1} - \varepsilon_{r2}}{\varepsilon_{r1}}$$

$$\sin^{2}\theta_{i} = \frac{\varepsilon_{r2}}{\varepsilon_{r1} + \varepsilon_{r2}} < 1$$
Esiste

$$\theta_B^{TM} = Arc\sin\sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1} + \varepsilon_{r2}}} = Arc\tan\sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} \quad \exists \quad \forall \varepsilon_{r1}, \varepsilon_{r2}$$

Angolo di Brewster: TE

$$\rho^{TM} = \frac{Z_2^{TE} - Z_1^{TE}}{Z_2^{TE} + Z_1^{TE}} = \frac{\frac{\eta_2}{\cos \theta_t} - \frac{\eta_1}{\cos \theta_i}}{\frac{\eta_2}{\cos \theta_t} + \frac{\eta_1}{\cos \theta_i}} = 0 \Leftrightarrow \frac{\eta_2}{\cos \theta_t} = \frac{\eta_1}{\cos \theta_i}$$

$$\frac{\eta_2^2}{\eta_1^2}\cos^2\theta_i = \frac{\varepsilon_{r1}}{\varepsilon_{r2}}(1 - \sin^2\theta_i) = 1 - \frac{\varepsilon_{r1}\sin^2\theta_i}{\varepsilon_{r2}} \Rightarrow \frac{\varepsilon_{r1}}{\varepsilon_{r2}} = 1$$

Quindi l'angolo di Brewster per la polarizzazione TE esiste soltanto se i due mezzi dielettrici sono uguali. Questa risposta è ovvia e quindi possiamo asserire che per la polarizzazione TE non esiste l'angolo di Brewster.

Angolo di riflessione totale o angolo critico

Esistono dei valori di angolo di incidenza per cui il modulo del coefficiente di riflessione vale uno e quindi tutta la potenza incidente viene riflessa? Se tale angolo esiste, esso viene definito angolo critico o di riflessione totale.

$$\rho^{\text{TM}} = \frac{Z_2^{\text{TM}} - Z_1^{\text{TM}}}{Z_2^{\text{TM}} + Z_1^{\text{TM}}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i} \Rightarrow \left| \rho^{\text{TM}} \right| = 1 \Leftrightarrow \eta_2 \cos \theta_t = 0 \Rightarrow \theta_t = \pi / 2$$

$$\rho^{\text{TE}} = \frac{Z_2^{\text{TE}} - Z_1^{\text{TE}}}{Z_2^{\text{TE}} + Z_1^{\text{TE}}} = \frac{\frac{\eta_2}{\cos \theta_t} - \frac{\eta_1}{\cos \theta_i}}{\frac{\eta_2}{\cos \theta_t} + \frac{\eta_1}{\cos \theta_i}} \Rightarrow \left| \rho^{\text{TE}} \right| = 1 \Leftrightarrow \frac{\eta_2}{\cos \theta_t} \to \infty \Rightarrow \theta_t = \pi/2$$

Quindi dalla Legge di Snell otteniamo che

$$\sqrt{\varepsilon_{r1}} \sin \theta_{i} = \sqrt{\varepsilon_{r2}} \sin \theta_{t} = \sqrt{\varepsilon_{r2}} \Rightarrow \theta_{c} = Arc \sin \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} \quad \exists \Leftrightarrow \varepsilon_{r1} > \varepsilon_{r2}$$

Angolo di riflessione totale o angolo critico

Quindi, esiste un angolo critico soltanto se l'onda passa da un mezzo più denso a un mezzo meno denso.

E' possibile dimostrare che se l'angolo di incidenza supera questo valore il coefficiente di riflessione continua ad avere modulo unitario e quindi tutta la potenza viene riflessa.

Quindi per avere riflessione totale basta che sia

$$\theta_{\rm i} > \theta_{\rm c}$$

incidenza obliqua

http://www.amanogawa.com/archive/Oblique/Oblique.html

Applicazioni dell'angolo critico: fibre ottiche

 $n=\sqrt{\varepsilon_r}$: indice di rifrazione

(a) Fibra ottica

(b) Riflessioni interne successive

$$\theta_3 > \theta_c$$
 $\theta_c = Arc \sin \sqrt{\frac{\varepsilon_{rc}}{\varepsilon_{rf}}} = Arc \sin \frac{n_c}{n_f}$ $\theta_2 = \frac{\pi}{2} - \theta_3$

Snell: $n_i \sin \theta_i = n_f \sin \theta_2$ $(n_i = 1)$ $\sin \theta_i = n_f \sin(\pi/2 - \theta_3) = n_f \cos \theta_3$

$$\sin \theta_{i} = n_{f} \cos \theta_{3} = n_{f} \sqrt{1 - \sin^{2} \theta_{3}} = n_{f} \sqrt{1 - \sin^{2} \theta_{c}} = n_{f} \sqrt{1 - \frac{n_{c}^{2}}{n_{f}^{2}}} = \sqrt{n_{f}^{2} - n_{c}^{2}}$$

cono di accettazione: $\theta_i \le Arc \sin \sqrt{n_f^2 - n_c^2}$ es. $n_c = 1.49$ $n_f = 1.52$ $\theta_i \le 17.5$