Spectral Sequences

Braden Hoagland

Math 502: Algebraic Structures II

Homology

► Chain complex:

$$\cdots \xrightarrow{d_{n+2}} C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots$$

such that $d^2 = 0$.

▶ *n*-th homology: $H_n(A) = \ker d_n / \operatorname{im} d_{n+1}$.

Preliminaries

Make this about motivating SS's instead.

Filtered Complexes

$$\cdots \subset F_{p-1}C \subset F_pC \subset F_{p+1}C \subset \cdots$$

$$F_{p-1}C \qquad F_pC \qquad F_{p+1}C$$

Filtered Complexes

Induces filtration on each element of the complex.

$$F_{p+1}C_{n+1}$$
 $F_{p+1}C_n$ $F_{p+1}C_{n-1}$ F_pC_{n+1} F_pC_n F_pC_{n-1}

$$F_{p-1}C_{n+1}$$
 $F_{p-1}C_n$ $F_{p-1}C_{n-1}$

Filtered Complexes

Induces filtration on each element of the complex.

Filtered complex: $d(F_pC_n) \subset F_pC_{n-1}$.

- ▶ Suppose calculating $H_*(C)$ directly is diffiult.
- We can try a "divide and conquer" strategy to make the computation easier.

Idea 1: Calculate the homology row by row, then sum them.

$$F_{p+1}C_{n+1} \longrightarrow F_{p+1}C_n \longrightarrow F_{p+1}C_{n-1}$$

$$F_pC_{n+1} \longrightarrow F_pC_n \longrightarrow F_pC_{n-1}$$

$$F_{p-1}C_{n+1} \longrightarrow F_{p-1}C_n \longrightarrow F_{p-1}C_{n-1}$$

Fails because each row is a subset of the rows above it.

Idea 2: Quotient each row by the rows below it, then calculate homology row by row and sum them.

$$\frac{F_{p+1}C_{n+1}}{F_pC_{n+1}} \longrightarrow \frac{F_{p+1}C_n}{F_pC_n} \longrightarrow \frac{F_{p+1}C_{n-1}}{F_pC_{n-1}}$$

$$\frac{F_p\,C_{n+1}}{F_{p-1}\,C_{n+1}}\,\longrightarrow\,\frac{F_p\,C_n}{F_{p_1}\,C_n}\,\longrightarrow\,\frac{F_p\,C_{n-1}}{F_{p-1}\,C_{n-1}}$$

$$\frac{F_{p-1}C_{n+1}}{F_{p-2}C_{n+1}} \longrightarrow \frac{F_{p-1}C_n}{F_{p-2}C_n} \longrightarrow \frac{F_{p-1}C_{n-1}}{F_{p-2}C_{n-1}}$$

Idea 2: Quotient each row by the rows below it, then calculate homology row by row and sum them.

Still fails. The rows aren't subsets of each other anymore, but *d* still travels between rows.

Construct sequence and show intuition behind "convergence"

Convergence

Definition

A spectral sequence $\{E^r\}_{r\geq 0}$ converges to a graded module H if there is a filtration F on H such that

$$E_{n,p}^{\infty} \cong F_p H_n / F_{p-1} H_n.$$

Convergence

Theorem

The spectral sequence induced by a filtered complex C with bounded filtration converges to $H_*(C)$.

Since each column in our grid is finite, our earlier process eventually terminates.

Indexing Convention

Most authors use a different indexing notation. Instead of

$$E_{n,p}^0 = F_p C_n / F_{p-1} C_n,$$

we could use complimentary degrees instead:

$$E_{p,q}^0 = F_p C_{p+q} / F_{p-1} C_{p+q}.$$

Indexing Convention

So instead of

Indexing Convention

We have

Change color of the d^i .

Homological Spectral Sequences

Define Homological SS's based on this new bidegree.