Hydrology of the New Oxford Formation in Lancaster County, Pennsylvania

Herbert E. Johnston

PENNSYLVANIA STATE L BAR DOCUMENTS SECTION DE 29

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF INTERNAL AFFAIRS
Genevieve Blatt, Secretary

BUREAU OF
TOPOGRAPHIC AND GEOLOGIC SURVEY
Arthur A. Socolow, State Geologist

PY6 345/43

Hydrology of the New Oxford Formation in Lancaster County, Pennsylvania

by Herbert E. Johnston

U. S. Geological Survey

Prepared by the United States Geological Survey, Ground Water Branch, in cooperation with the Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY FOURTH SERIES HARRISBURG

ADDITIONAL COPIES
OF THIS PUBLICATION MAY BE PURCHASED FROM
CAPITOL BOOK STORE, ROOM 54, MAIN CAPITOL BUILDING
HARRISBURG, PENNSYLVANIA 17125

CONTENTS

	Page
Abstract	1
Introduction	2
Purpose of this investigation	2
Methods of investigation	4
Previous investigations	5
Climate	5
Well-numbering system	6
Acknowledgments	7
Geology	8
Triassic System	8
New Oxford Formation	9
Distribution and topographic expression	9
Lithology	9
Stratigraphic relations	10
Thickness	11
Structure	11
Weathering characteristics	12
Diabase	13
Hydrology of the New Oxford Formation	14
General principles	14
Occurrence of ground water	16
Movement of water	19
Recharge	20
Effect of droughts on water levels	
Effect of heavy pumping on water levels	
Discharge	26
Wells	27
Construction methods	27
Depths	28
Yields	28
Relation of well yield to stratigraphy	29
Relation of well yield to topography	30
Yields of wells near diabase dikes	30
Yields of wells near faults	30
Relation of well yield to depth	31
Specific capacity	33
Effect of well loss on specific capacity	35
Quality of water	38
Conclusions	. 46
References	49

ILLUSTRATIONS

FIGURES

Figure	1.	Map showing area of this investigation and area under-	
		lain by rocks of Triassic age	3
	2.	Graph showing average monthly precipitation and	
		temperature	6
	3.	Sketch showing well-numbering system	7
	4.	Geologic section showing stratigraphic positions of	
		water-yielding zones	18
	5.	Hydrograph of well Yo-180 and bar graph showing	
		precipitation at York Haven, Pa.	22
	6.	Hydrograph of a well affected by pumping from a	
		nearby public supply well	23
	7.	Cumulative-frequency graph of well yields within a	
		given range in depth	32
	8.	Graph showing relation of specific capacity to discharge	37
	9.	Water-analysis diagram showing variations in chemical	
		composition of ground water	40
	10.	Cumulative-frequency curve of hardness of ground	
		water	45
	11.	Cumulative-frequency curve of dissolved-solids content	
		of ground water	46

PLATE

(POCKET)

PLATE 1. Geologic map of the New Oxford Formation in Lancaster County, showing the locations of wells and springs.

TABLES

ABLE	1.	Departure from average precipitation at York Haven during periods corresponding approximately to the growing and non growing seasons, 1961-64	25
	2.	Summary of chemical quality of ground water from the New Oxford Formation together with recommended limits for certain constituents in drinking water	42
	3.	Summary of specific-capacity data of wells in the New Oxford Formation in Lancaster County	50
	4.	Records of wells and springs and field determinations of water quality in the New Oxford Formation and adjacent rocks in Lancaster County	52
	5.	Summary of chemical analyses of ground water in the New Oxford Formation	77
	6.	Sample logs of wells in the New Oxford Formation, Lancaster County	78

HYDROLOGY OF THE NEW OXFORD FORMATION IN LANCASTER COUNTY, PENNSYLVANIA

Ву

Herbert E. Johnston

ABSTRACT

The New Oxford Formation, of Late Triassic age, extends across the northern part of Lancaster County. It consists of a complexity interbedded sequence of stream-deposited sedimentary rocks consisting of conglomerate, sandstone, siltstone, and shale. The sandstone is commonly subarkosic (10 to 25 percent feldspar content) and is the most abundant rock type. The beds have a steep homoclinal dip to the north or northwest that ranges from 25° to 60°.

In the consolidated bedrock of the New Oxford Formation, water occurs chiefly in joints and in intergranular openings in weathered rock bordering the joints. Sandstones and conglomerates are the principal water-yielding rocks, and yielding zones generally occur in beds that have been more thoroughly fractured or weathered than others. Drilled wells obtain most of their water from thin lens-shaped zones that are oriented parallel to bedding planes and generally are of small areal extent. These zones commonly are only a few inches thick and are separated vertically by several feet or several tens of fect of rock that yields little or no water directly to the wells. In the mantle of loosely consolidated weathered material that overlies the bedrock, ground water occurs largely in intergranular openings.

Recharge to the ground-water reservoir comes from the approximately 40 inches of precipitation received by the area annually. Most recharge occurs during the nongrowing season (November to March) even though more than 50 percent of the total annual precipitation occurs during the growing season (April to October). Recharge from precipitation is greatly reduced during the growing season because a very large fraction of the precipitation is consumed by evapotranspiration.

The transmissibility of the northern half of the formation between the Susquehanna River and Denver is greater than that of the southern half, but the difference appears to be small. The median yield of 123 wells 300 feet or less in depth in the upper half is about 14 gpm (gallons per minute), and the median yield of 86 wells in the same depth range in the lower half is about 10 gpm. Several high yielding wells on or near faults in the eastern part of Lancaster County indicate that the transmissibility of the formation is high near these faults.

Depths of 377 drilled wells investigated range from 27 to 705 feet, but 80 percent of the wells are between 50 to 150 feet deep. The reported yields of 319 wells range from less than 1 to 330 gpm, and the median yield is 12 gpm. No well-defined relationship exists between yield and well depth. Some deep wells are highly yielding, others are failures; however, the highest yields generally are obtained from 8-inch or larger wells drilled to depths of more than 300 feet. Of 14 wells deeper than 300 feet, 7 yield more than 100 gpm, but of 146 wells between 100 and 300 feet deep, only 6 yield more than 100 gpm.

Specific capacities of wells in the New Oxford Formation are relatively low, indicating that the transmissibility of the formation also is rather low. Specific capacities of 27 wells pumped for 1 hour at discharges of 4 to 27 gpm range from 0.2 to 57.6 gpm (gallons per minute) per foot of drawdown, and the median value is 0.7 gpm per foot of drawdown. Specific capacities of 13 wells pumped for 7 to 72

hours at rates of 50 to 450 gpm range from 0.2 to 13.9, and the median value is 1.2. Most of the latter group of wells are large-diameter (8 to 10 inches) production wells more than 200 feet deep.

A considerable part of the drawdown (at moderate rates of discharge) in most 6-inch wells is believed to be caused by well loss (drawdown caused by resistance to the flow of water into and within the well to the pump intake). About one-quarter of the drawdown in a 6-inch test well, at a discharge of about 50 gpm, is attributed to well loss. A significant fraction of the drawdown in large-diameter wells is probably caused by well loss when these wells are pumped at high rates of discharge. The specific capacities of many wells might be improved substantially by increasing the effective diameter of the well either by drilling or by well-stimulation techniques such as surging.

Ground water from the New Oxford Formation is of the calcium-bicarbonate type and, with the exception of some water that may require treatment for hardness is generally satisfactory for most purposes. More than 80 percent of 349 wells sampled yielded water having a total disolved-solids content of less than 250 ppm (parts per million), and fewer than 1 percent yielded water containing more than 500 ppm. More than 60 percent of the wells and springs yield water that is soft (0 to 6 ppm as CaCO₃) to moderately hard (61 to 120 ppm) and fewer than 10 percent of them yield water that is very hard (more than 180 ppm).

Locally, the ground water is contaminated as a result of human activities. In most instances the source of contamination is within a few hundred feet of the well or spring affected. The contaminants include bacteria, nitrate, iron, manganese, juices from silos, gasoline, and fuel oil.

INTRODUCTION

PURPOSE OF THIS INVESTIGATION

The purpose of the ground-water investigation on which this report is based was to evaluate the New Oxford Formation in Lancaster County, as a source of ground water, and to evaluate also the factors that affect the performance of wells in the formation. The investigation was begun in September 1962 as a part of the continuing study of ground-water resources of Pennsylvania being made by the U.S. Geological Survey in cooperation with the Pennsylvania Topographic and Geologic Survey. This report, the second of two hydrologic studies of the New Oxford Formation, is concerned with the part of the formation that is east of the Susquehanna River. (See Fig. 1.)

Local variations in the transmissibility of the bedrock are common. Consequently, the yield of closely spaced wells that penctrate the same sequence of beds may differ considerably. Although there appear to be no marked areal differences in the transmissibility of the formation, a comparison of the yields of wells 300 fcet deep or less in depth — in the area between the Susquehanna River and Denver — indicates that the transmissibility of the northern half of the formation is slightly greater than that of the southern half. The median yield of 123 wells in the northern half is about 14 gpm; the median yield of 86 wells in the south-

Figure 1. Map of Pennsylvania showing area of this investigation and area underlain by Triassic rocks.

crn half is about 10 gpm. Moreover, 10 of the wells in the upper half yield more than 50 gpm and 4 yield more than 100 gpm, whereas only 3 wells in the lower half yield more than 50 gpm and none yield as much as 100 gpm.

No clear cut relationship exists between the yield and the topographic position of a well, but valleys drained by perennially flowing streams are more favorable as sites for production wells than are ridges and slopes. A production well near a perennial stream may induce recharge from it and thereby experience smaller declines in yield during periods when recharge from precipitation is low. Fault zones also appear to be favorable sites for production wells. A few high-yielding wells have been drilled on or near faults in the eastern part of the area, indicating that the permeability of the rock is relatively high in the immediate vicinity of these structures.

Specific capacities of wells in the New Oxford Formation are generally low, indicating that the transmissibility of the formation as a whole is also rather low.

Specific capacities of 26 wells pumped for 1 hour at low rates of discharge (4 to 27 gpm) range from 0.2 to 57.6 gpm per foot of drawdown, and the median value is 0.7. Only 5 of these wells have specific capacities greater than 3.0. Specific capacities of 13 wells pumped for several

hours at discharges ranging from 50 to 450 gpm range from 0.2 to 13.9 and the median value is 1.2. The maximum specific capacity is 3.4, if data from 4 wells on or near faults are excluded. Because specific capacities of wells in the New Oxford Formation commonly decrease substantially as the time or rate of discharge increases, the data from the group of wells pumped for several hours are more indicative of specific capacities to be expected from production wells. The specific capacities of most wells drilled in the formation probably will not exceed 3.0 if determined from wells pumped at high rates of discharge for periods of several hours.

Ground water from the New Oxford Formation is of the calcium bicarbonate type and is generally of good chemical quality. Water from most wells and springs sampled has a dissolved-solids content of less than 250 ppm, and nearly two-thirds of the wells and springs sampled yield water that is soft to moderately hard (0 to 120 ppm as CaCO₃). The water from a few wells is very hard (more than 180 ppm).

The ground water is contaminated locally as a result of human activities. In most cases, however, the source of contamination is within a few hundred feet of the well or spring affected. Septic tank drain fields, cesspools, and barnyards are the most common sources of contaminants. In many instances, contamination may have resulted because the well was not cased deep enough or because the annular opening around the casing was inadequately sealed. The contaminants found by chemical analysis or reported by the owner include bacteria, nitrate, iron, manganese, juices from silos, gasoline, and fuel oil.

METHODS USED IN THIS INVESTIGATION

The data used in this investigation were obtained largely from an inventory of about 450 wells and springs. All public supply and industrial wells in the project area are included in the inventory. Most of the information was obtained from the owners or from drillers' files. The well and spring records are given in Table 4, and the locations of all wells and springs inventoried are shown on Plate 1.

Field measurements of specific conductance and hardness were made on water samples from about 350 wells and springs; pH was determined for 170 samples, and the temperature was recorded for 85 samples. These field determinations are listed in Table 4, and complete chemical analyses of water samples from 27 wells and 1 spring are given in Table 5.

Pumping-test data are available for 37 wells. Twenty-nine of these wells were pumped by the author for periods of 1 hour or more to determine their specific capacities. Two 6-inch test wells (Ln-88 and Ln-242) were drilled to obtain detailed information about the depth, thickness, spacing, and yielding capacity of individual water-bearing zones.

Test well Ln-88 was pumped at several rates of discharge for periods of 1 hour to determine the effect of the discharge rate on the specific capacity of the well.

Automatic water-level recorders were placed on selected wells to obtain continuous records of water-level fluctuations. Records were obtained from wells in which fluctuations resulted from natural causes and also from wells in which the fluctuations were caused partly by the pumping of nearby wells.

Detailed geologic observations were made at numerous bedrock outcrops and at well-drilling sites to obtain information about jointing, weathering, and other factors that might affect the occurrence and movement of ground water.

PREVIOUS INVESTIGATIONS

The geology of the Triassic rocks in Lancaster County is described in reports on the geology and mineral resources of the New Holland, Lancaster, and Middletown 15½-minute quadrangles by Jonas and Stose (1926, 1930) and Stose and Jonas (1933). The geologic map accompanying this report was compiled from the work of Dean B. McLaughlin. Most of the descriptive geologic data included in this report were obtained from two unpublished manuscripts by McLaughlin (1953, 1964) on file with the Pennsylvania Topographic and Geologic Survey, and from a report on the stratigraphy and origin of the Triassic rocks in Lebanon and Lancaster Counties by McLaughlin and Gerhard (1953).

Previous information concerning the water-bearing properties of the New Oxford Formation in Lancaster County is limited to a few brief statements in a reconnaissance report on the occurrence of ground water in southeastern Pennsylvania by Hall (1934). However, a recent study of the hydrology of the New Oxford Formation west of the Susquehanna River by Wood and Johnston (1964) includes much information pertinent to the formation in Lancaster County.

CLIMATE

The climate of Lancaster County is humid and is characterized by warm summers and mild winters. The average annual precipitation ranges from about 40 inches near the western end of the project area, at York Haven, in York County, to about 43 inches near the eastern end of the area, at Ephrata. The precipitation is distributed fairly evenly throughout the year (Fig. 2) but is generally greater during the 6-month period from May through October than during the 6-month period from November through April. At York Haven, for example, precipitation averages about 22 inches from May through October and about 18 inches from November through April. These periods correspond ap-

Figure 2. Graph showing average monthly precipitation and temperature at Ephrata, Pa., 1931-60. Data from U. S. Weather Bureau.

proximately with the growing and nongrowing seasons. Snowfall averages about 30 inches a year, and the fields are snow covered about one-third of the time during the winter months.

The average annual air temperature is about 53° F, and ranges from an average low of about 32° F in January to an average high of about 75° F in July. The average frost-free period in Lancaster County is 160 days. The average date of the last frost in the spring is April 30, and that of the first frost in autumn is October 7.

WELL-NUMBERING SYSTEM

The well-numbering system used in this report consists of a county well number and a location number. The county numbers are listed in consecutive order in Table 4 and appear beside the well symbol on the well-location map (Pl. 1). The location number consists of a two-segment number that locates the well within a rectangular area bounded by 1-minute parallels of latitude and 1-minute meridians of longitude. The first segment of the location number refers to the latitude on the *south* side of the 1-minute quadrangle; the second segment refers to the longitude in the *east* side of this quadrangle. The first digit of the degree of latitude and the first digit of the degree of longitude are the same for all location numbers and, therefore, have been dropped for the sake of brevity. For example, well Ln-242, for which the location number is

009-633, is in the 1-minute quadrangle bounded on the south by latitude $40^{\circ}09'$ and on the east by longitude $76^{\circ}33'$. This example is illustrated in Figure 3.

Well Number - Ln 242

Figure 3. Sketch showing well-numbering system.

ACKNOWLEDGEMENTS

The author expresses his appreciation to the drillers, industrial concerns, private water companies, municipal water authorities, and many homeowners who supplied information or permitted the use of their wells for hydrologic measurements. Particular thanks are due to Mr. Paul Wolgemuth and Mr. Benjamin Burkholder for permitting test wells to be drilled on their properties. The author is indebted also to Mr. Preston Ney of the Elizabethtown Water Co. and to Mr. Roland Forwood of the Masonic Homes for assistance rendered in collecting hydrologic data.

GEOLOGY

TRIASSIC SYSTEM

Sedimentary rocks of Triassic age exposed in the east coast region of the United States and Canada are referred to collectively as the Newark Group. These rocks are exposed in a series of disconnected, downfaulted troughs extending from South Carolina to Nova Scotia. The largest of these troughs, in which the project area is located, extends from the Hudson River across New Jersey, southeastern Pennsylvania, and central Maryland, into Virginia. The trough is elongated mainly in a northeast-southwest direction and is bounded on one side by steeply dipping faults.

The sediments of the Newark Group were deposited by streams and rivers that discharged into these troughs from nearby uplands. Variations in topography and climate resulted in irregular deposition of lenticular beds consisting largely of poorly sorted material. The rocks are commonly red, exhibit similar lithologic, paleontologic, stratigraphic, and structural relationships, and are of continental origin. Conglomerate, sandstone, siltstone, shale, and argillite make up the bulk of the deposits. Associated with these sedimentary rocks are igneous rocks of basaltic composition that occur both as extrusive flows interbedded with the sedimentary strata and as intrusive dikes and sills. Igneous activity occurred during the late stages of deposition, and some of the dikes were intruded after deposition had ceased.

The rocks of the Newark Group are commonly subdivided into two major units, and in some troughs a third major unit is present locally. These units have been given formation names but it has not been possible to correlate formations from one trough to another. The oldest deposits in each trough are predominantly arkosic in composition. The youngest deposits in most troughs consist of red beds in which arkosic sediments are subordinate or lacking. Stratigraphically intermediate units, where present, consist of fine-grained, dark-colored sediments that are believed to have been deposited in lakes and swamps in the central parts of the troughs. These major units interfinger to some extent and thus are partly contemporaneous.

The Newark Group is believed to be of Late Triassic age, partly on the basis of correlation with Triassic rocks of Europe (McLaughlin, 1957, p. 1492-1493), and partly on the basis of structural and stratigraphic evidence. Rocks of the Newark Group lie unconformably on strongly folded and deeply eroded Paleozoic rocks and hence were not involved in the tectonic activity near the end of the Paleozoic Era. At several areas in New Jersey the deeply eroded sedimentary rocks of the Newark Group are unconformably overlain by sediments of Cretaceous age.

GEOLOGY 9

In the segment of the trough in which the project area is located, the Newark Group has been divided into a basal unit known as the New Oxford Formation and into an overlying and partly contemporaneous unit known as the Gettysburg Formation. The New Oxford and Gettysburg Formations are the approximate stratigraphic equivalents of the Stockton and Brunswick Formations, respectively, of eastern Pennsylvania and New Jersey.

New Oxford Formation

The following description of the New Oxford Formation is summarized largely from work by D. B. McLaughlin (1953, 1964) and by McLaughlin and Gerhard (1953). The geologic contacts and structure of the New Oxford Formation shown on the map accompanying this report (Pl. 1) were mapped by McLaughlin. Comments on jointing and weathering are the author's.

Distribution and topographic expression. — In Lancaster County, the principal segment of the New Oxford Formation occupies a narrow area approximately 31 miles in length extending from the Susquehanna River near Bainbridge to Denver. In the western one-third of this area the formation trends northeastward and has a maximum width of about 3 miles. Near Mastersonville the trend changes slightly toward the east. At the flexure the area begins to narrow eastward until, at Denver, it is less than one-half mile wide.

Arkosic rocks of the New Oxford Formation are exposed in three separate areas south and southeast of Denver. One of these, 2½ miles long and one-quarter mile wide, is just northeast of Reamstown. A larger area, about 8 miles long and ranging from 1 to less than one-quarter of a mile in width, lies between Akron and Terre Hill. Another very small segment, about three-quarters of a mile long and less than a tenth of a mile wide, underlies the village of Martindalc.

The area underlain by the New Oxford Formation is a gently rolling lowland in which elevations range generally between 400 and 500 feet above mean sea level. Several low ridges parallel to the strike of the bedding formed largely by conglomerate, which is more resistant to weathering and erosion than the sandstone and shale. Many small streams flow parallel to the strike of the bedding, but the larger streams traverse the formation almost perpendicular to the strike or at an angle to it.

Lithology. — The New Oxford Formation consists of an intricately interbedded sequence of highly compacted and tightly cemented conglomerates, sandstones, siltstones, and shales. Bedding is characteristically lenticular, and individual beds grade rapidly (both laterally and downdip) into rocks of different textures. The sandstones are character-

istically subarkosic (10-25 percent feldspar content) and are the predominant rock type. Most conglomcrates are in the lower two-thirds of the formation. Siltstones and shales are present throughout the formation, and most wells 100 feet or more in depth will penetrate some shale or siltstone. The sandstones and conglomerates are most commonly light gray to greenish gray where fresh, and yellowish or buff colored where weathered; a few of the sandstones are red or reddish brown. The siltstones and shales are generally red, but gray, greenish gray, and tan are not uncommon.

Beds of true arkose are present but are not abundant in the New Oxford Formation. The sandstones and conglomerates of the overlying Gettysburg Formation are distinguished from those of the New Oxford Formation by their deficiency in feldspar. In addition, the very fine-grained sandstones, siltstones, and shales of the New Oxford Formation are commonly micaceous, whereas those of the Gettysburg Formation are not.

The conglomerates of the New Oxford Formation are composed largely of angular to subrounded, sand-size grains of quartz and feldspar in which are embedded widely scattered pebbles of vein quartz and quartz-ite together with a few fragments of schist and other rock types. The cement is chiefly silica. At several localities near the base of the formation, limestone conglomerate is exposed or has been penetrated by wells.

The sandstones range in texture from very fine-grained to very coarse-grained, but fine- to medium-grained rocks are the most abundant. The fine-grained sandstones commouly grade vertically into siltstones. Sorting is generally poor, but some of the fine-grained rocks display fair to good sorting. Some of the fine-grained sandstones are very micaceous and display closely spaced partings parallel to the bedding planes. The sandstones are composed mainly of angular to subrounded grains of glassy quartz and white feldspar, and of minor amounts of mica. The matrix is composed of a mixture of very fine grains of quartz and feldspar together with particles of silt and clay. A few sandstones contain calcium carbonate as a cementing material, but in most sandstones this type of cement is either absent or is present in very small amounts.

Siltstones and shales are considerably softer than most of the coarse-grained rocks, and most of them are rather compact and structureless. Many of the siltstones and shales are very micaceous and many are calcareous.

Stratigraphic relations. — The New Oxford Formation is stratigraphically the lower, and therefore the older, of the two major subdivisions of the Newark Group in Lancaster County and the area to the north. However, beds of the overlying Gettysburg Formation are interbedded

GEOLOGY 11

with those of the New Oxford Formation so that the two units are partly contemporaneous. The upper (or northern) contact of the New Oxford is drawn rather arbitrarily where the quartzose, almost nonfeldspathic sandstones of the Gettysburg Formation predominate over the feldspathic sandstones of the New Oxford Formation. The lower (or southern) contact with pre-Triassic rocks is not exposed, but in most places it can be determined rather closely on the basis of abrupt changes in float (residual rock fragments in the soil), soil color, and topography.

Individual beds seldom can be traced along strike for any appreciable distance, but sequences of beds of distinctive lithology may persist for several miles. Several rather prominent ridge-forming conglomerate units have been mapped and are shown on the accompanying geologic map (Pl. 1).

The lithologic differences between the New Oxford Formation and Gettysburg Formation appear to have been the result of a change in source areas from which the sediments were derived. Petrologic and structural evidence indicates that the New Oxford sediments were derived principally from feldpathic igneous and metamorphic rocks to the south, whereas the sediments of the Gettysburg Formation apparently were derived principally from the relatively nonfeldspathic sedimentary rocks of Paleozoic age to the north and northeast.

Thickness. — The thickness of the New Oxford Formation in the area between the Susquehanna River and Denver ranges from about 4,800 feet near the western end to about 900 feet at the eastern end (Mc-Laughlin 1953, 1964). South and southeast of Denver, faulting makes thickness determination difficult. However, south of Terre Hill the New Oxford Formation is estimated to have an average thickness of 500 feet (Jonas and Stose, 1926).

Structure. — The sediments of the New Oxford Formation were deposited on surfaces of relatively low to moderate gradient, but settling of the floor of the trough during deposition, and downward movement along northern border faults, tilted the beds steeply to the north or northwest. Postdepositional stresses also produced an extensive network of joints in the rocks.

In the area west of Denver, the northward-dipping beds strike north-eastward in the western half of the area and eastward in the eastern half of the area. The dip of the bedding steepens from west to east, averaging between 25° and 35° west of Elstonville and between 40° and 60° east of Elstonville. A few steeper dips (70° to 80°) have been measured, but it is possible that these were measured on large-scale cross-bedding and that postdepositional tilting has caused them to become anomalously high. Bedding in the New Oxford Formation south and

southeast of Denver has a general east-west trend and a northward dip. Dips are generally greater than 20°, and in the vicinity of faults — where strikes and dips are commonly at variance with the regional trend — they may be considerably greater.

Only a few faults have been mapped in the New Oxford Formation west of Denver, but others may be present. The sparsity of bedrock exposures and the general lack of distinctive mappable lithologic units make it difficult to confirm the presence or absence of faults. The known faults are high-angle structures oriented perpendicular or diagonal to the strike and generally involve displacements of only a few hundred feet.

South and southcast of Denver the New Oxford Formation has been extensively faulted into blocks and wedges by high-angle faults that traverse the rocks both in a north-south and in an east-west direction. At several places, the New Oxford Formation is in fault contact with Paleozoic limestones and shales.

Rocks of the New Oxford Formation are jointed extensively, but the degree of development of these joints may differ considerably from bed to bed, even in rocks of similar texture and composition. Some sand-stones and conglomerates are well jointed, others are rather massive and contain only widely spaced irregular joints. Shales and siltstones generally are compact and unfractured, or contain only irregular, hairline fractures. The openings formed by joints seldom exceed 1 or 2 inches in width and generally are only a fraction of an inch. The distance between joints of the same set varies from a few inches to several feet. The closest joints generally occur in micaceous sandstones in which platy partings have developed parallel to the bedding.

Joints in the New Oxford Formation between the Susquehanna River and Denver have three principal orientations. In general the best-developed set is the nearly vertical set that strikes east-northeast. Joints that parallel the bedding also are strongly developed in some beds, particularly in those containing substantial amounts of mica. A third poorly developed set of nearly vertical joints strikes approximately north-south. Because only a few joints were measured in the area south and southeast of Denver, the general orientation of joints in this area cannot be given. However, the jointing characteristics of the rocks are essentially the same as in the area west of Denver.

Weathering characteristics. — Weathering consists of a group of processes that cause the disintegration and decomposition of rocks and minerals near the earth's surface. Of all these processes, chemical weathering is generally the most effective in promoting rock decay. The principal zone of weathering occurs above the water table and within the zone of water-table fluctuations, where chemical alteration caused

GEOLOGY 13

by such agents as air, water, and water solutions is most intense. The intensity of weathering decreases markedly below the zone of water-table fluctuation, but its effects may extend for considerable distances below this zone.

In the area underlain by the New Oxford Formation, weathering processes have produced a thick mantle of strongly altered, loosely consolidated material. This material ranges in thickness from a few inches to as much as 50 feet. On the basis of the depths of hand-dug wells (which commonly bottom in solid bedrock) and the depths of casings in drilled wells (which generally are seated 3 or 4 feet into solid bedrock) the average thickness of the weathered mantle is estimated to be about 23 feet. The mantle is generally thinnest beneath draws and valleys and thickest beneath moderate slopes and low flat-topped ridges.

Weathering of the underlying bedrock has occurred chiefly along the walls of joints and along bedding planes, and it has been most intense in arkosic and subarkosic sandstones and conglomerates. Some highly quartzose sandstones and conglomerates, and the siltstones and shales, have been affected only slightly by weathering processes. The thickness of the weathered zones along joint surfaces in the bedrock is commonly no more than a few inches; however, some highly feldspathic beds and beds with closely spaced bedding-plane joints have been thoroughly weathered throughout their entire thickness.

The maximum depth to which chemical weathering occurs in the bedrock is not known, but data from a test well (Ln-242) drilled to a depth of 300 feet in a conglomerate sequence west of Milton Grove indicate that alteration occurs at least to depths of 155 feet. Relatively soft beds of sandstone and conglomerate containing partially altered feldspar grains were encountered at several depths between land surface and a depth of 155 feet during drilling of this well. Several large pieces of white clay, residual from the alteration of feldspars, apparently were flushed from the principal yielding zone at 155 feet during drilling.

Diabase

Diabase, an igneous rock of basaltic composition, has intruded the New Oxford and Gettysburg Formations of Lancaster County chiefly in the form of long, narrow dikes. A thick, massive sill of this rock was intruded near the upper boundary of the New Oxford Formation between the Susquehanna River and Mount Hope. The dikes dip steeply, have a north or northeast trend, and range in thickness from about 50 to 250 feet. The longest continuous dike in the New Oxford Formation is about 7 miles long. It cuts diagonally across the strike of the beds from a point north of Milton Grove to a point southwest of Elizabethtown. This dike and several others extend into the pre-Triassic rocks. In most places the

dikes have little distinct topographic expression and, because they are deeply weathered, are exposed in only a few deep road and railroad cuts. Rounded rust-covered cobbles and boulders of diabase show up rather distinctly in the soils overlying these dikes, and therefore they are fairly easily mapped on the basis of float.

Diabase in the central part of sills is medium to coarse grained, but at contacts with the country rock and in the narrow dikes — where cooling was more rapid — the texture is fine grained.

Heat emanating from the cooling diabase baked the adjacent sedimentary rocks causing them to become hard and brittle. In addition, the original red or brown color of some sediments has been changed to bluish black by reduction of the iron oxide. These effects are most pronounced in sediments near the large masses of diabase, but similar color changes and induration also have occurred adjacent to the narrow dikes. In a railroad cut at the south edge of Elizabethtown, a shale in contact with a vertical dike about 50 feet thick grades from bluish black to red about 100 feet away from the dike. A medium-grained arkosic sand-stone beneath the shale was hardened for a distance of about 8 feet from the dike. The hardened rocks on either side of the dike are strongly shattered, and it is possible that these narrow baked zones are also zones of high permeability.

HYDROLOGY OF THE NEW OXFORD FORMATION

GENERAL PRINCIPLES

Ground water is the subsurface water in the zone of saturation —the zone where all the voids are filled with water under pressure equal to or greater than atmospheric. The upper surface of this zone is the water table. Above the water table is the zone of aeration, where voids are filled partly with water and partly with air.

Ground water may occur under either water-table (unconfined) or artesian (confined) conditions. Water-table conditions exist where the upper surface of the zonc of saturation is not confined and is free to fluctuate in response to recharge to or discharge from the aquifer. The water table is a modified replica of the surface topography, and is therefore at higher altitudes beneath hills and ridges than beneath valleys. Artesian conditions exist where ground water is confined under hydrostatic pressure beneath a relatively impermeable bed or layer of rock. In wells cased to a confined aquifer, water levels rise above the confining layer to a level called the piezometric surface of the aquifer. Flowing wells occur where the piezometric surface is above the land surface.

Where artesian aquifers or zones extend to or near the land surface they are generally recharged by water moving downward from the water table. In such places the water undergoes a change from unconfined to confined conditions. Recharge to a confined aquifer may also be derived from an overlying or underlying aquifer in which the water is under greater hydraulic head. The rate of interaquifer flow through a relatively impermeable confining layer may be extremely slow, but when this flow occurs over large areas it may contribute a substantial part of the total recharge to an aquifer or zone. The rate of interaquifer flow may be increased if the artesian pressure in the receiving aquifer is lowered further by pumping from a well or wells.

The capacity of an aquifer to store water is a function of its porosity, which is the percentage of open space in the total volume of the aquifer. If the porosity originated at the time the aquifer was formed, it is termed primary porosity; if formed later, by such processes as jointing or weathering, it is termed secondary porosity. Unconsolidated sediments commonly have rather high primary porosity, but as consolidation takes place by compaction and cementation, primary porosity is reduced and may be eliminated completely. In highly consolidated rocks the porosity is largely of secondary origin.

The capacity of an aquifer to transmit water under hydraulic gradient is determined by its permeability. The permeability is determined by the size, shape, and number of the primary and secondary openings and by the degree to which these openings are interconnected.

In order to evaluate the capacity of aquifers to store and transmit water it is necessary to determine their hydraulic properties. These properties are generally determined from mathematical analysis of measured water-level fluctuations produced in or in the vicinity of a well during a period when it is pumped at a known rate of discharge. The following paragraphs define these hydraulic properties.

The coefficient of permeability of an aquifer is a measure of the aquifer's ability to transmit water and is defined as the rate of flow of water, in gallons per day, through a cross-sectional area of 1 square foot under a unit hydraulic gradient at a temperature of 60° F.

The coefficient of transmissibility, T, of an aquifer is defined as the rate of flow of water, in gallons per day, through a vertical strip of the aquifer 1 foot wide extending the full saturated height of the aquifer under a unit hydraulic gradient.

The storage coefficient, S, of an aquifer is defined as the volume of water the aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface.

Specific capacity is defined as the yield of a well per unit decline of water level. It is expressed generally in gallons per minute per foot of drawdown.

Specific capacity is in part a function of the hydraulic properties of an aquifer, and because of this relationship it can be used as a tool for comparing different aquifers. High specific capacities generally indicate high coefficients of transmissibility, and low specific capacities indicate low coefficients of transmissibility. It is not a precise tool, however, because specific capacity is also related to the radius and efficiency of the well, the rate and duration of pumping, and the depth of penetration of the aquifer.

Where a well penetrates more than one aquifer, the specific capacity will increase as each new aquifer is intercepted, and the increase will be approximately equal to the specific capacity of a well tapping the new aquifer alone. In other words, the specific capacity of a multiaquifer well is equal to the sum of the specific capacities of the individual aquifers (Bennett and Patten, 1960).

OCCURRENCE OF GROUND WATER

Ground water in the New Oxford Formation occurs chiefly in openings developed along joints and in intergranular openings formed where weathering processes have resulted in decomposition and disintegration of the consolidated rock. Porosity of primary origin appears to have been largely obliterated by compaction and cementation. Fresh rocks observed in surface exposures and in cuttings from numerous drilled wells were invariably tightly cemented and highly compacted.

In the weathered mantle overlying the bedrock, water occurs largely in intergranular openings. The mantle is highly porous and therefore constitutes an important ground-water storage reservoir that supplies large amounts of recharge to the bedrock. In areas where recharge from streams is not available, much of the water pumped from drilled wells is derived from storage in the overlying mantle. The saturated portion of the mantle is a direct source of water to most hand-dug wells, but most of these wells were reported to yield only small to moderate supplies. Apparently the clay minerals produced by the intense alteration of feldspars have partially clogged the pore spaces of the weathered mantle, causing it to have a low permeability.

The saturated thickness of the weathered mantle varies considerably from season to season, being greatest in the winter and spring months and least in the summer and autumn months. Measurements made in 58 hand-dug wells at different times of the year, at different topographic positions, indicate that the saturated thickness of the weathered mantle ranges from 0 to 24 feet and averages approximately 6 feet. During late

HYDROLOGY 17

summer droughts, the mantle overlying some ridges and steep slopes becomes nearly or completely dewatered as ground water drains to points of lower clevation. In this way, many hand-dug wells in the New Oxford Formation become dry, or nearly so, during droughts. Dewatering of the mantle may also occur in the vicinity of heavily pumped drilled wells.

In the bedrock, water is contained in both fracture-induced and weathering-induced porosity. Sandstones and conglomerates, which have been more strongly fractured and weathered than siltstones and shales, are the principal water-yielding rocks. Siltstones and shales, which have been relatively unaffected by weathering processes, generally contain only poorly developed fractures; therefore, they yield little or no water to wells.

Wells drilled into the bedrock generally obtain the bulk of their water from thin, widely spaced zones of relatively high permeability. These zones are commonly only a few inches thick and seldom are more than 2 or 3 feet thick. They are generally separated, vertically, by several feet or several tens of feet of rock that yield little or no water directly to the well. The principal water-yielding zones have developed in beds, or zones within beds, that apparently have been more thoroughly fractured and weathered than overlying and underlying rocks. These zones are oriented parallel to the bedding planes and, like the beds, are of small areal extent. Moreover, observations made during drilling of a few closely spaced wells indicate that the permeability of individual water-yielding zones may differ considerably over distances as short as 100 feet. The occurrence of water-yielding zones is erratic, and their presence generally can be determined only by drilling.

An example of the erratic occurrence of water-yielding zones is provided by information from three wells owned by the Bainbridge Water Authority. A geologic cross section constructed from driller's logs of these three wells, which shows the depths at which water was encountered, is shown in Figure 4. The fractures that connect these zones are not shown. The altitude of the water table was determined from a nearby dug well, a nearby spring, and a stream.

The openings along fractures and the intergranular openings produced by weathering along fractures and bedding planes compose but a very small fraction of the total volume of rock; hence, the porosity of the bedrock is very low. These openings serve primarily as conduits through which water it transmitted from points of recharge to points of discharge.

Weathering processes have produced a minor increase in the porosity of the bedrock, but in some highly weathered arkosic or subarkosic sandstones and conglomerates, clays produced by the alteration of feldspars appear either to have reduced the permeability of the rock or to have

prevented any significant increase in permeability. Some wells penetrate several beds or zones of soft weathered rock that yield little or no water. In other weathered feldspathic rocks, relatively high-yielding zones occur, and the permeability of these zones appear to be related partly to weathering.

A few sandstones contain significant amounts of calcium carbonate as cementing material. Calcium carbonate is highly soluble, and its removal by circulating ground water makes the sandstones both more porous and more permeable. A log of well Ln-265, which is given in Table 6, shows that several fine-grained sandstones penetrated by the well are cemented with calcium carbonate, and it is possible that some of the yielding zones owe their permeability to the removal of this cementing material.

Ground water occurs under water-table (unconfined) conditions in the mantle and generally under artesian (confined) conditions in the bedrock. However, the unconfined and confined zones are intimately interconnected in one continuous hydraulic system. The major conduits are connected to each other and to the water table by the extensive system of joints that cut the rocks.

MOVEMENT OF WATER

Ground water moves in the direction of decreasing hydraulic gradient from areas where the water table or artesian head is high to areas where it is low. In the New Oxford Formation the flow pattern is essentially local and is controlled largely by the configuration of the land surface. Thus, most of the water moves from high topographic areas to nearby streams, where it is discharged. Some of the water entering the ground from precipitation may flow from points of recharge to streams completely within the weathered mantle, but much of the water moves downward and flows to streams through the complex network of fractures and weathered zones in the bedrock. The proportion of flow through the mantle is determined by the relative transmissibilities of this material and the underlying bedrock. Where the transmissibility of the bedrock is higher than that of the mantle, a greater portion of flow will move to points of discharge through the bedrock.

Most of the beds contain fractures through which some water can move, but some beds of sandstone and conglomerate contain much better developed fractures and weathered zones than others. The permeability of the bedrock as a whole is generally highest parallel to the plane of the bedding and lowest perpendicular to the plane of the bedding. The least permeable rocks are the beds of siltstones and shale, which are generally lenticular, and although some water may move across these beds, the bulk of water is believed to flow around them to areas where they grade into more permeable sandstones. Numerous permeable zones

encountered in wells at contacts with siltstones or shale may be zones where flow is being shunted around these beds.

Water-level data from wells indicate that, in most areas, ground water discharges into streams that traverse the area. In a few areas, however, water levels in drilled wells near a stream are substantially below the level of the stream, indicating that water in the bedrock is not being discharged into the stream at these localities. The discharge is occurring either into a downstream reach of the stream or into a larger stream of the surface-drainage system.

Near Bainbridge, for instance, water levels in three drilled wells (Ln-55, 56, and 57) near a small intermittent stream are below stream level (Fig. 4) but above the level of the nearby Susquehanna River. Ground water in the bedrock is apparently being discharged directly into the river.

Movement of ground water through the loosely consolidated weathered mantle is probably less complex than it is in the consolidated bedrock. However, since the texture and composition of the mantle are determined partly by the texture and composition of the underlying bedrock, directional variations in permeability probably occur in the weathered mantle also. Where the mantle is derived from shale or silt-stone, its permeability may be much lower than where it is derived from sandstone. Hence, water that cannot enter the bedrock would tend to flow around or over the less permeable material. In some places, movement of ground water over mantle material derived from siltstone or shale may result in the formation of a spring. Springs occur also where the thickness of the weathered mantle decreases sharply.

RECHARGE

The capacity of the New Oxford Formation to store water is small; consequently water levels decline rapidly under pumping conditions and the formation must be replenished frequently by recharge or the decline soon becomes excessive — even though much of the water pumped is diverted from natural discharge. Most of the recharge is derived from precipitation that falls directly on the formation, but a small amount is derived from subsurface inflow from adjacent formations that are topographically higher. Recharge also may be obtained from streamflow in areas where pumping from a well or wells reverse the hydraulic gradient and causes water to flow from the stream into the ground. Under natural conditions, however, streams generally serve as lines of discharge from the ground-water reservoir.

Approximately 40 inches of precipitation falls on the project area annually. Of this amount, part runs off directly to streams, part is returned to the atmosphere by evaporation and transpiration, and part infiltrates

HYDROLOGY 21

to the water table. The amount of precipitation that reaches the water table is affected greatly by evapotranspiration rates, but such factors as the moisture-holding capacity of the soil, the infiltration capacity of the soil, the rate and duration of precipitation, the rate of snowmelt, and the slope of the land surface also exert important controls on the amount that becomes recharge.

During the growing season (April to October), evaporation and transpiration processes may return to the atmosphere most of the precipitation that does not run off directly to streams. As a result, recharge to the ground-water reservoir during growing seasons is sharply reduced. During the nongrowing season (November to March), when evapotranspiration rates are low, most of the rainfall or snowmelt that does not become surface runoff may percolate to the water table.

The effect of evapotranspiration on the recharge-discharge regime of the ground-water reservoir is demonstrated by the hydrograph shown in Figure 5. This hydrograph is of well Yo-180, in the New Oxford Formation in York County, approximately 5 miles southwest of the western end of the project area. Although the magnitude of the fluctuations may differ, the seasonal pattern of water-level fluctuations in this well is typical of those occurring in drilled wells throughout the New Oxford Formation in Pennsylvania. Declining water levels indicate that discharge from the ground-water reservoir exceeds recharge to it; rising water levels indicate the reverse — that recharge exceeds discharge. The hydrograph shows that the bulk of ground-water recharge occurred during the nongrowing seasons, and that recharge during the growing seasons was infrequent and generally small — despite the fact that precipitation was fairly evenly distributed throughout the period of record.

The soil zone acts as a major barrier to ground-water recharge during the growing season. The soil has the ability to retain several inches of water in the form of soil moisture, and until the soil becomes saturated no water percolates through it to the water table. The water-holding capacity of the predominantly sandy soils of the New Oxford Formation has been estimated to be 2 to 6 inches, depending on the type and thickness of the soil (Carey, 1959, p. 120-121).

During the growing season this soil moisture is removed at such a high rate by plant transpiration that the soil is unsaturated much of the time. Saturation of the soil and subsequent infiltration of water to the water table occur generally after periods of intense or frequent rainfall. The hydrograph in Figure 6 shows, for example, that most of the recharge during the 1961 growing season followed a 2-week period in July when rainfall totaled more than 3 inches. Recharge occurred also after a similar 2-week period in September and October of 1962, during which rainfall totaled more than 4 inches, but because of a greater

Let at many by 100 and her and a housing an accompanies of Valley

23

Figure 6. Hydrograph of well affected by pumping from a nearby public-supply well.

soil-moisture deficiency in September and October 1962 than existed in July 1961, a much smaller fraction of the precipitation passed through the soil zone. The rise in water level in 1962 was therefore only about half as much as it was in 1961.

At the end of many growing seasons soil moisture is so depleted that several inches of rain must fall before any ground-water recharge can occur. As a result, water levels may continue to decline after the end of the growing season even though there has been some precipitation. Similarly, the rising trend of water levels during the nongrowing season many continue into the early part of the growing season if rainfall is above average or if evapotranspiration rates are held in check by cool air temperatures.

Effects of droughts on water levels — Ground-water levels may decline below normal growing-season droughts because of the complete or nearly complete cessation of recharge from precipitation. However, since recharge is low during the growing season anyway, such droughts generally cause water levels to be only slightly lower than normal. Some shallow dug wells and low-yielding springs may go dry near the end of a growing season having below-average precipitation, but drilled wells used for domestic and other low-requirement purposes are seldom adversely affected.

The yields and pumping levels of heavily pumped wells generally decline more during growing seasons when drought conditions prevail than during growing seasons when precipitation is normal. Lower ground-water levels caused by lack of recharge are partly the cause of these declines, but in many places the declines are caused chiefly by the increased pumping required to meet increased demands for water.

The effect of successive growing-season droughts on ground-water levels is shown by the hydrograph of well Yo-180 in Figure 5. Table 1 shows that precipitation at York Haven, Pa., during the growing seasons of 1961 through 1964 ranged from 4.90 to 13.52 inches (19 to 54 percent) below normal. The hydrograph in Figure 5, however, shows that only a small net decline in the water level occurred between 1961 and 1964. The maximum depth to water in 1964 was less than 1 foot greater than the maximum depth recorded in 1961. Moreover, the highest level in this well during the period of record occurred near the beginning of the 1964 growing season.

A comparison of the hydrograph in Figure 5 with the precipitation summary in Table 1 indicates that relatively large variations in water levels may occur during the winter and spring months as a result of rather small variations in total precipitation during those months.

Effect of heavy pumping on water levels — The principal artesian zones in the New Oxford Formation are discontinuous, limited in areal extent, and poorly interconnected hydraulically. As a result, the effects of pumping a well are transmitted rapidly in the area adjacent to the well, but the cone of influence expands very slowly away from this area.

25

Table 1. Departure from average precipitation at York Haven, Pa., during periods corresponding approximately to the growing and nongrowing seasons, 1961-64.

	Average precipi- tation 1931-55		Depart	ure fro	m average (inches)	e precip	itation	
Period	(inches)	1961	1961-62	1962	1962-63	1963	1963-64	1964
April to October	25.27	-6.87		-4.90		-13.52		-10.32
November to March	14.62		+0.25		-0.41		+2.04	
January to December	39.89	-5.76		-4.65		-13.87		-9.89

Water levels in some wells only a few hundred feet from a heavily pumped well may be affected only slightly, or not at all, even after several years. Because of this inability of wells to draw from storage for any appreciable distance, large withdrawals during periods of low recharge, as during most growing seasons, generally result in considerable dewatering of the bedrock and weathered mantle near the well.

Although the yields of production wells decrease and increase with seasonal ground-water depletion and replenishment, none of the existing production wells are reported to be continuously decreasing in yield, and there is no evidence of steadily declining water levels in the vicinities of these wells. The fact that most of the existing production wells are located near streams, from which they induce recharge, is probably the reason that continuous depletion of ground-water storage has not occurred. Nevertheless, annual recharge is apparently about in balance with combined artificial and natural discharge in the vicinity of the few production wells that are relatively distant from streams, as they had shown no persistent declining trends at the end of 1964.

The magnitude of aquifer dewatering during the growing season and subsequent replenishment during the nongrowing season in the vicinity of a heavily pumped production well is illustrated by the hydrograph of well Ln-266 shown in Figure 6. This well is 205 feet deep and is affected by pumping from well Ln-265, which is 705 feet deep and approximately 400 feet to the west. Both wells are owned by the Elizabethtown Water Company and are near a small stream, at the western edge of Elizabethtown. During the summer and fall, upstream diversion from the stream to a nearby reservoir often reduces the streamflow to a trickle. Well Ln-265 is pumped about 9 hours daily throughout the year, the discharge varying from an average of about 200 gpm during the winter and spring

to an average of about 170 gpm during late summer and fall. The hydrograph shows that the water level in the observation well declined more than 70 feet, to approximately 115 feet below land surface, during the growing season of 1963. However, natural recharge from precipitation and induced recharge from the stream during the winter and spring of 1963-64 was so far in excess of the combined natural and artificial discharge that the water level rose to within 16 feet of the surface in the spring of 1964, indicating that nearly complete refilling of the surrounding rocks had occurred.

A comparison of this hydrograph with that of well Yo-180 in Figure 5 for the same period of time shows that the pattern of seasonal fluctuations of water levels in both wells is almost identical — the principal difference being the greater magnitude of the water-level decline in well Ln-266, which was caused by the pumping from well Ln-265.

DISCHARGE

Ground water is discharged from the New Oxford Formation both naturally and artificially, although artificial discharge, which consists chiefly of withdrawal through wells, constitutes only a small fraction of the total volume discharged annually. Most of the natural discharge occurs by movement of ground water into streams, and springs. In addition, some ground water is discharged into adjacent formations, and some is discharged to the atmosphere by evaporation and transpiration.

The flow of all percnnial streams contains a component of ground-water inflow, and during extended periods of dry weather the flow of unregulated streams is sustained almost entirely by ground-water inflow. The rate at which ground water is discharged into a stream is directly proportional to the hydraulic gradient between points of recharge and points of discharge along the stream. Consequently, during the winter and spring, when rising water levels cause an increase in the hydraulic gradient, the discharge of ground water to streams is greatest.

Ground-water diseharge by evaporation may occur where the capillary fringe above the water table extends to the surface, but in most areas underlain by the New Oxford Formation, the water table is far enough below land surface that discharge by this means is small or nonexistent.

Discharge from the ground-water reservoir by plant transpiration occurs in areas where plant roots extend to the water table or to the capillary fringe overlying the water table. Throughout most of the area underlain by the New Oxford Formation, the vegetation consists of shallow-rooted crops and plants whose roots do not extend to the water table or to the capillary fringe. Most of the ground-water discharge by transpiration occurs in the few wooded areas where tree roots extend to the zone of saturation.

WELLS 27

Very few records are available from which to estimate the volume of ground-water discharge by wells. However, on the basis of the data available, it seems unlikely that pumpage from the New Oxford Formation in Lancaster County exceeds 1 million gpd (gallons per day). Records of water sales by three public distribution systems, which supply the communities of Akron, Elizabethtown, and Rheems, indicate that their combined pumpage from wells in the New Oxford Formation in 1962 averaged about 300,000 gpd. Pumpage from domestic wells and the small number of industrial, institutional, and commercial wells in the New Oxford Formation probably did not exceed 700,000 gpd.

Much of the water pumped in areas not serviced by a public sewer system is returned to the ground by way of septic tanks or cesspools. A large part of the water discharged into septic-tank drain fields is consumed by evaporation and transpiration, but some of it infiltrates to the water table. During the winter and spring, when evapotranspiration losses are low, most or all of this water may infiltrate to the water table.

WELLS

CONSTRUCTION METHODS

Almost all the drilled wells in the New Oxford Formation have been drilled either by the cable-tool method (also referred to as "percussion" or "churn-drill" method) or by the air-rotary method. Prior to 1958, wells were drilled almost exclusively by the cable-tool method.

In the cable-tool method a string of heavy drilling tools with a cutting bit at the bottom end is suspended on the end of a cable from a derrick. This string of tools is lifted and dropped to produce a cutting or drilling action at the bottom of the hole. The drill cuttings are removed periodically from the bottom of the hole by a long cylindrical tube known as a bailer. The yield of the well is measured periodically during drilling by determining the number of gallons that can be bailed from the well in a given period of time. Yields determined in this manner are imprecise, but it is possible to obtain approximate measurements of the drawdown by the method — thus providing a rough measure of the specific capacity of the well. The maximum rate at which a well can be bailed depends on the size of the bailer, the depth to water, and the skill of the driller. The maximum rates at which wells in the project area have been bailed are on the order of 25 to 30 gpm.

Drilling by the air-rotary method is accomplished by the rotation of a string of drilling pipe to which is attached a cutting bit. As the bit is rotated, compressed air is forced down the inside of the drill stem, out through the bit, and back up the hole between the drill stem and the borehole wall. As the air rises from the bottom of the hole, drill cuttings and water are forced upward and are expelled onto the ground near the well. The rate at which water is discharged from the well can be determined fairly accurately, but since the borehole is completely filled with water, the drawdown cannot be measured. The depth of water-yielding zones penetrated during drilling can be determined by noting the depth at which abrupt changes in discharge occur.

Steel casing is commonly installed in drilled wells as soon as the hole has penetrated the first few feet of solid bedrock, unless additional casing has been requested or more casing is needed to prevent caving at some greater depth. The borehole below the casing is then drilled to a slightly smaller diameter. Casing depths in 225 drilled wells for which casing data are available range from 4 to 180 feet, but only 19 percent of the wells are eased to depths of more than 50 feet; the median depth of the easings is 27 feet. In a few wells the annular space between the easing and the borehole has been filled with cement, or with finely ground limestone, but in most wells this space has been filled with drill euttings from the well. Generally, the material used to fill the annular opening has been added at the top and allowed to settle around the casing. The most common practice is to allow drill cuttings to wash into the annular openings as the well is being drilled.

DEPTHS

The depths of 377 drilled wells for which depth data are available range from 27 to 705 fect. Eighty percent of these wells are between 50 and 150 feet in depth, and only 10 percent exceed 200 feet. Most of the depths were reported by the well owner or were obtained from the driller's record.

The dcpths of 65 dug wells for which depth data are available range from 7 to 70 feet. The median depth is 24 feet. Dug wells generally penetrate the entire thickness of the weathered mantle and commonly bottom on the bedrock surface.

YIELDS

The reported yields (Table 4) for most domestic, stock, and commercial wells are based on brief tests made by the driller at the time the well was completed. These tests commonly were no more than one-half hour long, and the drawdown during most tests either could not be determined or was not recorded. Drawdowns for a few wells tested by bailing are given in the remarks column of Table 4. The yields reported for public-supply wells and for some industrial and institutional wells are either average long-term yields or are based on pumping tests of several hours' duration; they are therefore considered to be representative of the maximum yields obtainable from drilled wells in the New Oxford Formation.

WELLS 29

Yields of wells in Triassic sedimentary rocks decrease considerably during extended periods of pumping. Most of the wells listed in Table 4 would probably decrease in yield by as much as 50 percent or more under conditions of sustained pumping over a period of several weeks. Data from production wells in the New Oxford Formation west of the project area and from wells in other Triassic formations to the east indicate that the average long-term yields of these wells are commonly no more than one-half to one-third of the initial yields (Rima, 1955; Barksdale and others, 1958; Wood and Johnston, 1964). Two wells (Ln-151 and Ln-265) owned by the Elizabethtown Water Co., for example, were initially tested at 450 gpm. The yield of well Ln-151 now averages 300 gpm, and that of well Ln-265 averages about 180 gpm.

More than 80 percent of the wells in Table 4 are domestic wells or wells used for purposes for which a yield of about 10 gpm is generally adequate. Few of these wells were drilled below depths at which 10 or 15 gpm was obtained; as a result, these data do not necessarily indicate the maximum capacity of the formation to yield water to wells. The yields of 319 wells for which yield data were available range from less than 1 gpm to 330 gpm, and the median yield is 12 gpm. Only about 8 percent of these wells yield more than 50 gpm, and only 4 to 5 percent yield more than 100 gpm.

Relation of well yields to stratigraphy — A eomparison of the yields of wells less than 300 feet deep in the New Oxford Formation west of Denver indicates that wells in the upper (northern) part of the formation yield, on the average, slightly more than those in the lower (southern) part of the formation. The formation is divided roughly into an upper and a lower half by a conglomerate unit that occupies a central position in the formation throughout most of the area west of Denver. The median yield of 123 wells in and north of this conglomerate unit is about 14 gpm, and the median yield of 86 wells south of the conglomerate unit is about 10 gpm. Moreover, 10 of 123 wells in the upper half of the formation yield more than 50 gpm, and 4 of these wells yield more than 100 gpm, whereas only 3 wells in the lower half yield more than 50 gpm, and none yields as much as 100 gpm. A few other wells that yield 50 gpm or more are in the upper part of the formation, but these wells are more than 300 feet deep. As only one well in the lower part of the formation is more than 300 feet deep, wells deeper than this were not used in the comparison.

Field examination of several outerops in the lower and upper parts of the formation revealed no marked lithologie or structural difference that would explain the somewhat higher permeability of the upper part. Relation of well yields to topography — No well-defined relationship was found between well yield and topographic position of wells. Most of the few high-yielding wells are near streams, but some are on ridges and slopes. The ratios of yield to depth of wells in the same depth ranges (27 to 100, 101 to 200, and 201 to 300 feet) were compared to determine if the yield per foot of well depth was higher near streams than in other topographic positions, but no significant differences were found. Nevertheless, stream valleys are generally more favorable sites for production wells than are hills and ridges, because a well near a perennial stream may obtain significant quantities of induced recharge from streamflow. If the hydraulic connection between the well and the stream is good, the recharge induced during periods when ground-water levels are low will result in smaller declines in yields and pumping levels than commonly occur during these periods.

Yields of wells near diabase dikes — A few higher-than-average yielding wells are near the long, narrow diabase dikes that cut the New Oxford Formation. Although evidence is meager, there are indications that a narrow zone of permeable rock may exist in some places along the margins of these dikes. At one of the rare exposures of a dike, in a railroad cut at the south edge of Elizabethtown, a baked zone a few feet wide is strongly shattered and weathered. The persistence of such zones along the margins of these dikes, some of which are several miles long, may give rise to nearly vertical zones of considerable linear extent that are eapable of storing and transmitting relatively large volumes of water. A high-yielding (up to 300,000 gpd) well (Ln-151) owned by the Elizabethtown Water Co. is just north of the above-mentioned dike. The high productivity of this well may be related in part to the presence of a highly permeable zone along the dike, as the beds penetrated by the well are intercepted by the dike a short distance updip from the well.

Yields of wells near faults — Movement of rock masses along a fault plane may produce a zone of intensely fractured rock along the fault, thereby giving rise to a linear zone of high permeability. Data on a few wells near faults in the New Oxford Formation south of Denver indicate that highly permeable zones do exist near some faults. Several high-yielding wells are on or near faults in the New Oxford Formation at the edge of the borough of Akron. Three of these wells (Ln-219, 221, and 222), are 82, 126, and 135 feet deep and yield 185, 250, and 250 gpm. Two other wells (Ln-214 and 215), drilled about 50 feet apart at a fault contact with shale of Ordovician age, also have high yields. Ln-214, which is 571 feet deep, yields 50 gpm; Ln-215, which is 339 feet deep, yields 150 gpm. Driller's logs indicate that both wells yield water at several depths, and both apparently penetrate the Ordovician shale. A

WELLS 31

driller's log of Ln-214 indicates that this well penetrates about 250 feet of Ordovician shale but that no water enters in the lower 217 feet.

The importance of fault zones as potential sites for wells in the New Oxford Formation west of Denver is not known, because relatively few faults have been mapped in that area.

Relation of well yield to depth — Although the yield of dcep wells in the New Oxford Formation is generally greater than that of shallow wells, no consistent relationship exists between yield and depth. Some wells as deep as 300 feet may yield less than 5 gpm; others drilled to depths of less than 100 feet may yield 50 gpm or more. Moroeover, considerable variation in yield may occur in closely spaced wells of similar depth that penetrate the same sequence of beds. For example, well Ln-55, which is 182 feet deep, yields 100 gpm, whereas well Ln-56, drilled 90 feet away to a depth of 222 feet, yields only 35 gpm. Both wells are 6 inches in diameter and penetrate nearly the same strata (see Fig. 4).

The frequency of yields that can be expected from wells drilled to a given range of depth is indicated by Figure 7. The frequency curve for wells 100 feet or less in depth shows, for example, that 47 percent of the wells drilled within this depth range can be expected to yield 10 gpm or less, and that 90 percent can be expected to yield 30 gpm or less.

The lower three curves on Figure 7, which are probably more representative of the formation as a whole than the uppermost curve, show that yields generally will increase slightly to moderately as the depth increases within the ranges shown. For example, 10 percent of the wells 27 to 100 feet deep yield more than 30 gpm, whereas 25 percent of the wells 201 to 300 feet deep yield more than 30 gpm.

The frequency curve showing the percentage distribution of yields in wells deeper than 300 feet is based on a rather small sample of wells, most of which are large-diameter wells in the upper (northern) half of the New Oxford Formation in or near Elizabethtown. The locations of a few of these deep wells were established on the basis of recommendations made by professional geologists. The curve may be used as an indication of the probability of yields that can be expected from properly located large-diameter wells drilled to depths of more than 300 feet, but whether the curve should apply to the entire formation is uncertain. Few wells deeper than 300 feet have been drilled in many parts of the formation. However, since there appears to be no significant areal differences in permeability at shallow depths, the percentage distribution of yields of wells deeper than 300 feet probably would be about the same throughout the formation.

gallons per

Reported yield,

The graph indicates that about 50 percent of the wells drilled deeper than 300 feet can be expected to yield 100 gpm or more. This percentage is probably much too high for wells located at random within the

Percent of wells that yield as much as or less than that shown

Figure 7. Cumulative-frequency graph of well yields within a given range in depth.

WELLS 33

formation, and it may be a little high even for wells located with the aid of professional advice. Nevertheless, the chances of obtaining good wells in the New Oxford appear to be best if the wells are drilled deeper than 300 feet.

The specific depth at which wells can be expected to obtain significant quantities of water is not known. Water is reported to enter three wells at depths below 300 feet, and in the deepest known well (Ln-265) in the formation one or more high-yielding zones were penetrated between depths of 500 and 705 feet. After this well was drilled to a depth of 500 feet, it was pumped for 8 hours at 187 gpm; the drawdown was about 190 feet. After being deepened to 705 feet, the well was tested for 8 hours at 450 gpm, and the drawdown was about 155 feet. Hence, the specific capacity of this well was nearly tripled by deepening the well from 500 to 705 feet. Although it is possible to obtain water below 500 feet elsewhere in the formation, it may be advisable to drill another well into a different sequence of rock rather than to continue drilling a well below 500 feet.

SPECIFIC CAPACITY

Specific capacity, the yield per unit of drawdown in a well, is useful for comparing the relative yielding abilities of wells of different depths or diameters and of wells in different topographic or geological settings. Specific capacities of wells pumped at the same rates for the same lengths of time — especially if the wells are of similar depth and diameter — may be used also to detect differences in transmissibility of different parts of an aquifer or between different aquifers.

The specific capacities of 36 wells in the New Oxford Formation are listed in Table 3. Analysis of these data shows no significant relationships between specific capacity and the topographic and stratigraphic positions of wells. The specific capacity of a well generally increases as the well is deepened, but there is no well-defined relationship between specific capacity and well depth. Significantly different specific capacities were determined for closely spaced wells of about the same depth and diameter, and some of the lowest specific capacities were those of deep wells. Some of the highest specific capacities given in Table 3 are of wells located on faults east of Akron (see wells Ln-215, 219, 221, and 222). The data from these wells indicate that the transmissibility of the formation near these structures is high relative to other parts of the formation. Measurements made in a few wells at different rates and durations of pumping indicate that specific capacities may decrease significantly if the rate and time of pumping are increased.

Specific capacities of wells in the New Oxford Formation are generally low, indicating that the transmissibility of the formation as a whole

is also low. The specific capacities of 26 of the wells listed in Table 3 were determined from 1-hour tests at rates of 4 to 27 gpm, in order to minimize the effects of time and rate of pumping. All but 4 of these wells are 6 inches in diameter. The specific capacities determined from these tests range from 0.2 to 57.6 — but the median value is only 0.7, and only 5 wells had specific capacities greater than 3.0. At higher rates of discharge, or after longer periods of pumping, the specific capacities of most of these wells would be considerably lower. Well Ln-222, for example, had a specific capacity of 57.6 at the end of 1 hour of pumping at 24.2 gpm, but at the end of 72 hours of pumping at 250 gpm the specific capacity was only 13.9.

The specific capacities of 13 of the wells in Table 3 were determined from tests of several hours' duration, at rates ranging from 50 to 450 gpm. They range from 0.2 to 13.9, and the median is 1.2. However, if data from 4 wells (Ln-214, 215, 219, and 222) on faults are excluded, the range is from 0.6 to 3.4, and the median is the same. If the specific capacities of most wells in the New Oxford Formation were determined from tests of several hours' duration and at high pumping rates, they probably would not exceed 3 gpm per foot of drawdown.

would not exceed 3 gpm per foot of drawdown.

The specific capacity of a well drilled in the New Oxford Formation increases as each new water-yielding zone is penetrated. It is possible, therefore, to confirm the presence or absence of water-yielding zones, and to determine the relative increases in yield supplied by different zones, by measuring the specific capacity of a well at different times as it is being deepened. In most instances satisfactory results may be obtained with a submersible pump powered by a small portable generator and capable of discharging 20 to 50 gpm. Tests at each depth should be made at approximately the same rate of discharge for the same period of time (preferably 1 hour or more), and the water level should be at or near static level prior to the start of each test. Measurements of the drawdown and discharge rate should be made as precisely as possible.

Pumping levels commonly drop below yielding zones in wells in the New Oxford Formation, even at moderate rates of discharge. When this occurs, the specific capacity of the well decreases. Once the pumping level goes below a yielding zone, the zone becomes free flowing, and any further increase in the drawdown causes an increase in yield from lower zones only. Because of this relationship, the specific capacity of a well determined at a single rate of discharge generally cannot be used to evaluate the performance of a well at different rates of discharge. The specific capacity of well Ln-88, as determined from a 1-hour test at 52 gpm, was 1.4 when the pumping level was above the two principal yielding zones. The specific capacity of the well determined from a 1-hour test at 78 gpm was 0.9 when the pumping level was below the upper

WELLS 35

yielding zone. The lower specific capacity at the deeper pumping level can be attributed partly to the fact that the pumping level was below a yielding zone, but it may also be partly due to greater well loss at the higher pumping rate.

Effect of well loss on specific capacity — The drawdown in a pumped well includes drawdown due to well loss as well as drawdown due to aquifer loss, although the former may be negligible at low rates of discharge. Well loss is the loss in head that occurs as water enters a well and flows to the pump intake. Aquifer loss is the loss in head that results from the laminar flow of water through the formation toward the well. The sum of these two components of drawdown, s_w , in a well tapping a single, confined aquifer of uniform thickness and large areal extent, having constant coefficients of transmissibility and storage, may be represented by the following equation (Jacob, 1950, p. 372):

$$s_{w} = \frac{\text{(Aquifer loss)}}{4 \pi T} \log \frac{2.25 \text{Tt}}{\text{r}^{2}_{w} \text{ S}} + \text{CQ}^{n}$$
(1)

where

T and S are the coefficients of transmissibility and storage as previously defined;

Q is the rate of discharge;

t is the time since pumping began;

rw is the radius of the well;

C is a constant governed by the radius, construction, and condition of the well;

and

n is a constant greater than 1 with a theoretical upper limit of 2. Examination of equation 1, for determining specific gravity,

$$\frac{Q}{s_{w}} = \frac{1}{\frac{2.30}{4\pi T} \log \frac{2.25Tt}{r^{2}_{w} S} + CQ^{n-1}}$$
(2)

shows that specific capacity decreases as the discharge increases. However, since well loss may be very small at low rates of discharge, the change in specific capacity due to changes in low rates of discharge also may be very small. Further examination of equation 2 shows that specific capacity decreases as time increases (assuming constant discharge and no recharge), because that part of the drawdown due to aquifer loss increases as time increases. The importance of stating both the rate and the duration of discharge of a test for specific capacity is readily apparent.

Because well loss is related to well radius, the effect that enlarging the diameter of the well may have in reducing this loss is discussed in the following paragraphs.

The rate of discharge, Q, of a well may be shown as

$$Q = A V, (3)$$

where A is the cross-sectional area of the openings through which flow occurs and V is the velocity of flow. In a well of given size, therefore, the magnitude of well loss (CQⁿ) is determined by the velocity of the flow into and within the well, because so long as the water level remains above the yielding zones the area of entry into the well and the cross-sectional area of the well itself remain constant. Apparently, well loss may be reduced by reducing the velocity of flow into and within the well. This can be done by increasing the size of the well. Rewriting equation 3

$$V = \frac{Q}{A}$$

it can be seen that for any given discharge the velocity of flow is inversely proportional to the cross-sectional area of the opening through which flow occurs. Todd (1959, p. 109) discusses this relationship as follows: "It is apparent that well losses can be minimized by keeping velocities into and within wells to a minimum. In this connection the relation between well discharge and well size should be noted" ***. "Doubling the well radius doubles the intake area, reduces entrance velocities to about half, and (if n=2) cuts the frictional loss to less than a third. For axial flow within the well, the area increases four times, reducing this loss to an even greater extent."

Well loss is believed to cause a substantial part of the drawdown, at moderate rates of discharge, in some small (6-inch-diameter) wells in the New Oxford Formation. In addition, well loss probably is significant in larger wells at high rates of discharge.

An attempt was made to measure the well loss in a 6-inch well (Ln-88) by analyzing data from a step-drawdown pumping test according to methods outlined by Jacob (1947) and Rorabaugh (1953). Both methods gave anomalous results, apparently because the hydraulic characteristics of the New Oxford Formation differ so greatly from those of the assumed ideal aquifer to which the methods apply. Nevertheless, Figure 8 shows that a marked decrease in the specific capacity occurs as the rate of discharge from well Ln-88 increases, and a sizable part of the decrease appears to be caused by well loss.

All but one of the discharge-drawdown plots in Figure 8 were determined for pumping periods of 1 hour, starting at zero drawdown. The

WELLS 37

Figure 8. Graph showing the decrease in specific capacity (yield per foot of drawdown) of well Ln-88 as discharge increases.

specific capacity at 86 gpm was determined (after pumping had proceeded for 7 hours) from the second step of a step-drawdown pumping test. The pumping levels at discharges of 14, 23, and 52 gpm were above both yielding zones; at discharges of 78 and 88 gpm the pumping level dropped below the upper yielding zone. Although the decrease in specific capacity at the two higher rates of discharge can be explained partly by the fact that the pumping levels at these rates were below one of the yielding zones, the decrease in specific capacity between the discharges of 23 and 52 gpm cannot. It would appear that about one-fourth of the drawdown at 52 gpm was due to well loss, and very probably an even higher fraction of the drawdown at higher discharge rates is due to well loss.

A specific-capacity graph plotted from data obtained from tests of equal duration at different rates of discharge could be used to detect well loss in other wells in fractured rocks. If the data from three or more tests plot as a straight line (that is, if the decrease in specific capacity as the discharge increases is slight), well loss within that range of discharge may be considered negligible. However, if the data should plot as a curve that departs significantly from a straight line, well loss may be considered to cause a substantial part of the drawdown — provided that the pumping levels have not dropped below a yielding zone. If the data from several tests plot as a straight line at low discharges but depart from the straight-line trend at higher rates of discharge, the departure from the straight-line trend at any given discharge will be an approximate measure of drawdown caused by well loss.

If most of the well loss results from high entrance velocities, well-development techniques such as surging may cause the yielding zone or zones to become enlarged near the well, thus achieving the same effect as would be produced by increasing the diameter of the well by drilling. However, if the yielding zone is a thin fracture from which little or no material can be removed by well development, increasing the diameter of the well may be the only means of reducing well loss.

QUALITY OF WATER

Dissolved mineral matter in ground water is derived chiefly from the soils and rocks through which the water moves. The type and amount of dissolved material in the water are related to such factors as the mineral composition of the soils and rocks with which the water has been in contact, the length of time of contact, the solvent power of the water, and the temperature and pressure of the environment in which the water occurs. In addition, human activities such as the discharge of sewage into septic tanks or cesspools, the spreading of fertilizers and insecticides on croplands, and the burial of refuse in sanitary landfills may greatly affect the type and amount of dissolved matter that occurs in ground water.

The evaluation of the quality of ground water in the New Oxford Formation presented in the following pages is based on a study of chemical analyses of water from 25 drilled wells, 1 dug well, and 1 spring. An analysis was made also of ground water from 1 well in the Gettysburg Formation. Field measurements of specific conductance and hardness were made at approximately 350 wells and springs; the pH was determined at 170, and temperature measurements were made at 85. Results of the chemical analyses, which were made by the U. S. Geological Survey, are given in Table 5. Field determination of water quality

are given together with well data in Table 4. The chemical analyses include determinations of all the major ionic constituents that normally occur in ground water. Also included in 24 of the analyses are determinations of the content of alkyl benzene sulfonate (ABS), a principal ingredient in modern household detergents.

No attempt was made to evaluate the sanitary quality of the water. It should not be assumed, however, that water of satisfactory chemical quality is also of satisfactory bacterial quality. One well that yielded water of good chemical quality was later reported by the owner to have been tested and found bacterially contaminated.

Ground water from the New Oxford Formation is of good chemical quality except where locally contaminated. The water contains low to moderate amounts of dissolved mineral matter and, with the exception of some water that may require treatment for hardness, generally is satisfactory for most purposes. Several wells were reported to be contaminated as a result of human activities, but in most instances the source of contamination is within 100 to 200 feet of the well or spring affected. The contaminants include bacteria, nitrate, iron, manganese, juices from silos, gasoline, and fuel oil. The most common source of nitrate and bacterial contaminants are effluents from septic tanks, cesspools, or cattle pens. The only known instance of ground-water contamination by iron and manganese, as a result of man's activities, is in the vicinity of sanitary landfill where these two constituents were apparently leached from the buried refuse. Gasoline and fuel-oil contamination of ground water has occurred as a result of leaks in domestic, farm, and commercial storage tanks and, in one instance, from a leak in a fuel transmission line.

Ground water in the New Oxford Formation is chiefly of the calcium bicarbonate type. However, several samples collected from wells that are near septic tanks or cesspools have an anion composition dominated by sulfate, chloride, and nitrate. The chemical character of the water has probably been altered by the addition of nitrate, chloride, and possibly some sulfate derived from the decomposition of organic wastes. The chemical character of 27 ground-water samples may be compared on the water-analysis diagram in Figure 9. Each point in the diamond-shaped field of the figure represents a single chemical analysis. The position of these points was determined by first plotting the percent emp (equivalents per million) of the cations and anions of each sample in the small triangles in the lower part of the figure. The cation and anion plots were then extrapolated to the diamond-shaped field to form a single point representing the composition of the entire sample. The analyses are segregated into two groups — those obtained from wells

Figure 9. Water-analysis diagram showing variations in chemical composition of ground water from the New Oxford Formation.

that are within 150 feet of a known source of organic contamination and those that are at greater distances from a known source of organic contamination. Figure 9 shows that only the water from wells near a known source of organic contamination has an anion composition dominated by sulfate, chloride, and nitrate, and that all the wells distant from a source of organic contamination yield water of the calcium bicarbonate type. The several wells that are near septic tank drain fields or cesspools, and that also yield calcium bicarbonate water, are apparently so constructed or so situated that little or no waste water reaches the well.

One of the wells (Ln-114) that yielded water of the sulfate-chloridenitrate type was subsequently reported by the owner to be bacterially contaminated. Plot number 27 represents a sample from a drilled well in the unsewered community of Hopeland. This well is 100 feet deep and is cased to 76 feet. The owner reported that analysis had shown no evidence of bacterial contamination of the water. Nevertheless, the high-nitrate content of the water (85 ppm) indicates that the chemical character of the water is strongly affected by the large volume of sewage discharged into the ground from several nearby homes. The fact that the character of the water from some wells has been altered by the addition of chemical substances derived from sewage or some other source of contamination does not necessarily mean that the water has been rendered unfit for use so far as its chemical composition is concerned; the concentration of substances added to the water may be well under the limits established for its intended use. It is true that domination of the anion composition by sulfate, chloride, and nitrate may indicate bacterial contamination. However, chemical contaminants travel greater distances and persist for longer periods of time than do bacterial contaminants; hence, a well may yield water high in nitrate or some other sewage-derived chemical constituent without being bacterially contaminated.

The minimum, median, and maximum concentrations of constituents present in 26 ground-water samples from the New Oxford Formation are summarized in Table 2. Data from an analysis of water from a spring (Ln-115) contaminated by sanitary landfill were not used in this summary. Included in the table are the recommended maximum limits for selected constituents in drinking water. These limits, established by the U. S. Public Health Service (1962), should not be exceeded unless other more suitable supplies are not or cannot be made available.

Nitrate is a common but generally minor constituent in most ground water and usually occurs in concentrations of less than 10 ppm. The presence of nitrate in amounts greater than this is often related to human activities. Much of the nitrate contained in the samples analyzed for this investigation is believed to have come from sewage discharged into septic tanks or cesspools near the well sampled, from fertilizers spread on croplands, or from a combination of these sources. Only 7 of 27 samples analyzed contained less than 10 ppm nitrate; the median concentration of nitrate was 21 ppm. In areas where groundwater quality is unaffected by human activities, much of the nitrate is derived from the oxidation of nitrogen present in plant debris. Another common source of naturally occurring nitrate is a group of plants known as legumes which, through bacteria on nodules on their roots, are able to take nitrogen from the air and fix it in the soil. These plants return more nitrogen to the soil than they take from it.

Many wells in unsewered communities where homes are closely spaced almost certainly yield water containing nitrate derived from sewage discharged into the ground. Well Ln-492, for example, is in the small but congested and unsewered community of Hopeland. The sample from the well contained 84 ppm nitrate, an above-average chloride concentration of 32 ppm, and an ABS content of 0.18 ppm. The high content of nitrate and chloride, both of which are major components of sewage, together with significant amounts of ABS indicate rather clearly

Table 2. Summary of chemical quality of ground water from the New Oxford Formation together with recommended limits for certain constituents in drinking water.

Concentration in ppm except specific conductance and pH (26 samples)

Constituent	Minimum	Median	Maximum	Maximum concentration recommended for drinking water ^a
Silica (SiO ₂)	5.2	16	28	
Iron (Fe)	.00	.08	.39	0.3
Manganese (Mn)	.00	.01	.24	.05
Calcium (Ca)	6.0	45	90	,
Magnesium (Mg)	2.7	7.6	18	
Sodium (Na)	.8	9.5	16	
Potassium (K)	.0	1.1	5	
Bicarbonate (HCO ₃)	18	128	268	
Sulfate (SO ₄)	4.0	22	67	250
Chloride (Cl)	2.1	9.0	32	250
Nitrate (NO ₃)	1.6	22	84	45
Fluoride (F)	.0	.0	.1	(b)
Alkyl benzene sulfonate (ABS)c	0.00	0.02	0.28	0.5
Total dissolved solids (sum)	56	198	360	500
Ca-Mg hardness as CaCO ₃	26	139	274	
Noncarbonate hardness as CaCO ₃	1	41	124	
Specific conductance (micromhos/cm at				
25°C)	75	332	584	
pH	5.8	7.3	7.8	,,

a U. S. Public Health Service (1962).

that sewage is a principal source of the nitrate. A similar relationship can be shown for well Ln-342, a shallow, uncased, dug well in Mastersonville. The sample from this well contained 73 ppm nitrate, 18 ppm chloride, and 0.18 ppm ABS. The fact that several wells in the formation are bacterially contaminated is a further indication that sewage is a source of the nitrate in their water.

Inasmuch as the project area is mostly farmland, significant quantities of nitrate in the ground water probably come from the organic and in-

b Recommended limits for fluoride vary according to the annual average of maximum daily air temperatures. Recommended upper limits range from 1.7 ppm in areas where the average maximum air temperature ranges between 50° and 53.7°F to 0.8 ppm in areas where it ranges between 79.3° and 90.5°F.

c 23 samples.

organic fertilizers added to the intensively cultivated croplands. Most of the nitrate content of 26 ppm in the sample from well Ln-274, for example, may have come from fertilizers. This well is on a hilltop in the middle of a cultivated field northwest of Terre Hill and is about 600 feet upslope from the nearest source of sewage.

Serious and occasionally fatal poisonings of infants in the United States and in other countries have followed ingestion of well waters containing large quantities of nitrate. Nitrate poisoning is apparently confined to infants during their first few months of life, as adults drinking the same water are not affected. However, breast-fed infants of mothers drinking such water may be poisoned (U. S. Public Health Service, 1962, p. 48). The limit recommended by the U. S. Public Health Service for nitrate in drinking water is 45 ppm. Two of the samples analyzed for this study exceeded this limit, and both were from wells in areas of closely spaced homes serviced by septic tanks and cesspools. Many wells in such communities probably yield water containing excessive amounts of nitrate.

Alkyl benzene sulfonate (ABS) is a synthetic organic chemical used in household detergents. The presence of ABS in well water indicates that the water contains sewage-derived chemicals and may indicate that the supply is bacterially contaminated. The presence of small amounts of ABS in drinking water causes no toxic effects in humans, but concentrations of more than 0.5 ppm may cause an undesirable taste and foaming. Several of the wells sampled contained significant amounts of ABS, but none contained more than the 0.5 ppm limit recommended for drinking water.

Iron and manganese, which resemble each other in chemical behavior are generally present in ground water in small amounts. Even in trace amounts, however, these constituents have a considerable effect on the utility of the water. Individual or combined concentrations of iron and manganese in excess of 0.3 ppm cause stains on plumbing fixtures, cooking utensils, and laundry; concentrations greater than 1 ppm may cause clogging of pumps, water-distribution systems, and plumbing fixtures.

Naturally occurring iron and manganese do not appear to be present in objectionable amounts in ground water throughout most of the area underlain by the New Oxford Formation. Only one of the samples of well water contained more than 0.3 ppm. A sample of water obtained from a spring (Ln-115) contaminated by a refuse burial site, however, contained 12 ppm iron and 6.5 ppm manganese. The spring is in a draw that heads 1,000 feet upslope at the refuse burial site.

Hardness is a property of water generally associated with its effect on the lathering of soap and with incrustations formed on containers when water is heated or evaporated. Most hardness is caused by calcium and magnesium but minor constituents such as iron, manganese, aluminum, barium, and free acid also contribute to hardness. Hardness caused by cations in association with carbonate and bicarbonate is termed carbonate hardness; that resulting from cations in association with other anions is termed noncarbonate hardness. These terms approximate the terms "temporary hardness" and "permanent hardness," which are based on the fact that upon boiling hard water the bicarbonate is decomposed and most of the calcium corresponding to the bicarbonate is precipitated as calcium carbonate. The consumption of soap by water of a given hardness is normally the same whether the hardness is carbonate or noncarbonate. The total hardness of water is equivalent to that reported as calcium-magnesium hardness. Most of the hardness of natural ground water in the New Oxford Formation is carbonate hardness.

Field determinations of hardness of water from 343 wells and springs in the New Oxford Formation are listed in Table 4. The measurements were determined in grains per gallon, but the approximate concentration in parts per million may be calculated by multiplying these values by 17.1. The hardness of the waters sampled ranged from 1 grain per gallon (17.1 ppm) to 30 grains per gallon (513 ppm), or from soft to very hard. Only 11 percent of the wells and springs sampled yielded water that could be classed as very hard. The frequency distribution of hardness values measured is shown in Figure 10. The figure also indicates concentrations of hardness that are described by the terms soft, moderately hard, hard, and very hard water.

In the area between the Susquehanna River and Denver, ground-water hardness decreases slightly from west to east. Water from wells and springs west of Mastersonville generally is moderately hard to hard; that east of Mastersonville generally is soft to moderately hard. Many of the harder waters in this area come from wells near the base of the formation, where limestone conglomerate occurs in many places. Locally, the hardness of water may be somewhat higher than normal as a result of the addition of hardness-forming constituents from septic tanks, cesspools, or other sources of contamination.

Substantial amounts of hardness-forming constituents in water cause increased consumption of soap and undesirable scale deposits on cooking utensils, hot water pipes, water heaters, and boilers. Water that is hard to very hard requires treatment before it can be used for many industrial and commercial purposes, and treatment generally is desirable when it is used for domestic purposes. Water that is moderately hard may be used for domestic purposes with little or no treatment.

The specific conductance of a material is a measure of its ability to conduct an electric current. It is the electrical conductance of a cube

Figure 10. Cumulative-frequency curve of hardness of ground water from the New Oxford Formation.

of material 1 centimeter on a side, and is reported in units of micromhos per centimeter at a temperature of 25°C. In relatively dilute solutions, such as ground water from the New Oxford Formation, specific conductance is proportional to dissolved solids and, therefore, gives an approximate measure of total dissolved-solids content. Because specific conductance may be easily and rapidly determined in the field, the approximate dissolved-solids content of a large number of samples may be determined conveniently and inexpensively. The approximate dissolved-solids content (in parts per million) of the water from 349 wells and springs in the New Oxford Formation for which specific conductance values were determined (see Table 4) may be calculated by multiplying the specific conductance by 0.60.

The dissolved-solids content (calculated from specific conductance) of 349 samples of ground water from wells and springs in the New Oxford Formation ranged from about 35 to 725 ppm. The frequency distribution of the dissolved-solids content of these samples is shown in Figure 11, and indicates that fewer than 1 percent of the samples contained more than 500 ppm, the recommended limit for drinking water.

The dissolved-solids content of the ground water is generally higher near the base of the formation — apparently because of the presence of

Figure 11. Cumulative-frequency curve of dissolved-solids content (calculated from specific conductance) of ground water from the New Oxford Formation.

limestone conglomerate and the many beds of limy siltstones and shale in the lower part of the formation. Locally the dissolved-solids content of ground water is high because of the addition of chemical constituents by human activities.

Ground-water temperatures in the New Oxford Formation vary over a narrow range and average about the same as the average annual air temperature. The temperature of water from 65 wells and 20 springs ranged from 49° to 60° (or 90 percent) of the measurements falling between 52° and 58° F. The average temperature of the ground water is 54.5° F; the average annual air temperature in the project area is 53° F. A comparison of ground-water temperatures from dug wells and springs with those from drilled wells showed no significant differences. The temperature from 51 drilled wells ranged from 49° to 59° F and averaged 54.4° F. The temperature of water from 34 dug wells and springs ranged from 49° to 60° F and averaged 54.6° F.

CONCLUSIONS

The New Oxford Formation is a complexly interbedded sequence of conglomerates, sandstones, siltstones, and shales that have a steep homoclinal dip (ranging from 25° to 60°) to the north or northwest. The rocks are highly indurated and generally contain water only in fractures and

in openings formed by weathering processes. The formation is deeply weathered, and contains many joints. In the eastern part of Lancaster County, it has been intensively faulted.

The bedrock is covered by a layer of loosely consolidated weathered material, which ranges in thickness from 0 to 50 feet and averages about 23 feet. The saturated thickness of the mantle, in which water occurs under water-table conditions, ranges from 0 to 24 feet and averages 6 feet. The porosity of the weathered mantle is high but its permeability is low. Consequently, it is capable of storing relatively large volumes of water but generally yields water very slowly to the large-diameter dug wells that tap it. The high storage capacity of the mantle makes it highly effective in contributing recharge to the underlying bedrock.

Within the bedrock, water occurs under confined conditions along joint surfaces and in intergranular openings formed where the walls of joints have been weathered. Sandstones (the most abundant rock type) and conglomerates, which have been more thoroughly jointed and weathered than siltstones and shales, are the principal water-yielding rocks. Some beds or parts of beds have been more intensively jointed and (or) weathered than others, and it is these beds or zones that form the main avenues for ground-water movement through the bedrock. The principal yielding zones penetrated by wells are commonly no more than a few inches thick and generally are separated by several feet or several tens of feet of rock that yields little or no water directly to the well. Individual yielding zones, like individual beds, are normally of small areal extent. The main yielding zones are hydraulically connected to each other and to the overlying water table through joints and associated weathered zones. The strike of the best developed joint sets is roughly parallel to the strike of the bedding. One prominent set dips in the direction of the bedding dip; another dips almost vertically. The intensity of weathering decreases rapidly below the bedrock surface, but thin weathered zones have been observed as deep as 150 feet. Weathering is most intense along joints in highly feldspathic rocks. some instances weathering appears to have increased the permeability of the bedrock.

Recharge to the ground-water reservoir is derived largely from the approximately 40 inches of precipitation received by the area annually. The precipitation is distributed fairly uniformly throughout the year, but most of that falling during the growing season (April to October) is consumed by evapotranspiration. Hence, ground-water replenishment occurs chiefly during the nongrowing season (November to March). As recharge is generally low during the growing season, droughts during these periods commonly cause ground-water levels to decline only slightly below normal levels. The water level in a drilled well in the New

Oxford Formation just west of the project area showed a net decline of less than 1 foot over a 4-year period, even though precipitation during the 4 successive growing seasons ranged from 19 to 54 percent below normal. Ground-water levels are likely to be affected more adversely by relatively small precipitation deficiencies during the nongrowing seasons than by large deficiencies during the growing season.

During the growing season, when natural discharge from the groundwater reservoir exceeds recharge to it, heavy pumping from production wells may result in extensive dewatering of the weathered mantle and bedrock near the well, even where water is being diverted from natural discharge. Pumping levels and yields will decline accordingly. yield of one municipal well, which has been pumped about 9 hours a day since 1955, declines from about 200 to 170 gpm during the growing season, and the water level in an observation well 400 feet away declines as much as 70 feet during the same period. During the winter and spring months, recharge greatly exceeds both natural and artificial discharge in the vicinity of this well. If precipitation during the winter and spring months is average or above average, the dewatered rock becomes nearly or completely refilled before the next growing season. Although yields and pumping levels of production wells commonly decline and rise with seasonal depletion and replenishment of the ground-water reservoir, none of the existing production wells are reported to be continuously decreasing in yield, and apparently ground-water levels are not persistently declining in the vicinity of these wells.

The New Oxford Formation is not everywhere a highly productive source of water, but yields of 100 to 300 gpm can be obtained from some carefully located, large-diameter wells drilled to depths of 300 to 500 feet. Yields adequate for domestic use are obtainable throughout most of the formation — usually from wells 150 feet or less in depth.

The yields of 319 wells, most of which are between 50 and 150 feet deep, range from less than 1 to 330 gpm, and the median is 12 gpm. The highest yields generally are obtained from deep wells, but there is no consistent relationship between yield and well depth. Some deep wells are failures. Yields of 14 wells deeper than 300 feet range from 7 to 330 gpm, but half of them yield 100 gpm or more. By comparison, only 6 of 146 wells between 100 and 300 feet deep yield 100 gpm or more. The maximum depth at which water occurs in the New Oxford Formation is not known, but a high-yielding zone, or zones, is known to occur between the depths of 500 and 705 feet in a municipal supply well in Elizabethtown. Water may be obtained at depths of more than 500 feet elsewhere in the formation, but it probably would be advisable to drill another well into a different sequence of rocks rather than to continue drilling an unsuccessful well to a depth greater than 500 feet.

REFERENCES

- Barksdale, H. C., Greenman, D. W., Lang, S. M., Milton, G. S., and Outlaw, D. E. (1958), Ground-water resources in the Tri-State region adjacent to the lower Delaware River, New Jersey Dept. Conserv. and Econ. Devel. Div. Water Policy and Supply Spec. Rept. 13, 190 p.
- Bennett, G. W., and Patten, E. P. (1960), Borehole geophysical methods for analyzing the specific capacity of multiaquifer wells, U. S. Geol. Survey Water-Supply Paper 1536-A.
- Carey, John B. (1959), Soil Survey, Lancaster County, Pennsylvania, U. S. Dept. Agriculture, Soil Conserv. Service, Soil Survey, scr. 1956, no. 4, 132 p.
- Hall, G. M. (1934), Ground Water in southeastern Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. W-2, 255 p.
- Jacob, C. E. (1947), Drawdown test to determine effective radius of artesian well, Trans. Am. Soc. Civil Engrs., v. 112, p. 1047-1070.
- Jonas, A. I., and Stose, G. W. (1926), Geology and mineral resources of the New Holland quadrangle, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Atlas 178, 40 p.
- rangle, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Atlas 168, 106 p.
- McLaughlin, D. B. (1953), Mesozoic rocks, Triassic system, Newark Group, Lebanon County, Pennsylvania, unpublished manuscript on file with Pennsylvania Geol. Survey.
- Triassic formations of North America exclusive of Canada, Geol. Soc. America Bull., v. 68, p. 1491-1494.
- bethtown, Manheim, Lititz, Ephrata and Terre Hill quadrangles, Pennsylvania, unpublished manuscripts on file with Pennsylvania Geol. Survey.
- and Gerhard, R. C. (1953), Stratigraphy and origin of Triassic fluviatile sediments, Lebanon and Lancaster Counties, Pennsylvania, Pa. Acad. Sci. Proc., v. 27, p. 136-142.
- Rima, D. R. (1955), Ground-water resources of the Lansdale area, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Prog. Rept. 146, 24 p.
- Rorabaugh, M. I. (1953), Graphical and theoretical analysis of step drawdown test of artesian well, Proc. Am. Soc. Civil Engrs., v. 79, sep. no. 362, p. 23.
- Stose, G. W., and Jonas, A. I. (1933), Geology and mineral resources of the Middle-town quadrangle, Pennsylvania, U. S. Geol. Survey Bull. 840, 86 p.
- Todd, D. K. (1959), Ground water hydrology, New York, John Wiley and Sons, Inc., 336 p.
- U. S. Dept. Health, Education, and Welfare, Public Health Service (1962), Drinking water standards, 61 p.
- Wood, P. R., and Johnston, H. E. (1964), Hydrology of the New Oxford Formation in Adams and York Counties, Pennsylvania, Pennsylvania Geol. Survey, 4th Ser., Bull. W-21, 66 p.

50	Date test began	11- 1-63 11-14-63 2-18-64 12-10-63 7-31-63 4- 8-63 6-17-63 6-18-64 6-17-63 6-18-63 6-17-63 10-11-62 10-11-62 10-11-62 10-11-62 10-11-62 10-11-63 10-1
	Length of test (hours)	191 25 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1
in the New	Specific capacity (gpm per foot of drawdown)	
data for wells aster County.	Drawdown (feet)	255 257 258 257 257 257 257 257 257 257 257
Summary of specific-capacity data for wells in the New Oxford Formation in Lancaster County.	Discharge (gallons per minute)	22.3 60.3 11.2 11.2 7.9 13.2 10.9 88 88 722.7 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 10.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
Summary of Oxford Fo	Depth to static water level (feet)	22244446 6774446 6777446 6777447 6777447 6777447 67774447 67774447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 6777447 67774 677747 67
Table 3.	Diameter of casing (inches)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Depth of well (feet)	182 182 182 183 190 190 193 193 193 193 193 193 193 193 193 193
	Well number	La-55 La-55 557 577 108 888 888 888 888 888 888 1125 1140 1181 1181 1183 1183 1183 1183 1183 118

5- 5-64	1963	10-19-63	7-18-63	6-21-63	6-25-63	5-28-63	1964	1964	1-15-42	7-30-63	7-30-63	7-30-63	8- 5-63	8- 2-63	8- 2-63	1950	1950
	72	_	_	-	_	_	∞	8	6	_	1	_	7	_	_	24	24
57.6	13.9	4.	ιij	2.0	2.0	ω	1.0	2.9	7:	7.1	ω	1.1	7.	۲:	ci	5:1	1.0
.42	18	23.3	31.1	12.6	11.5	17.9	193	155	161	76.	20.5	7.5	13.4	10.7	20.5	93	108
24.2	250	9.5	10.1	25.0	23.0	5.9	187	450	115	6.9	6.9	8.0	9.4	7.1	5.0	110	110
4.1	ъ	42.2	48.7	13.2	12.7	71.8	55	55	6	6.4	27.3	3.1	29.3	18.6	17.6	!	12
10	10	9	9	9	9	9	10	10	10	9	9	9	9	9	9	9	9
135	135	182	153	205	300	121	200	705	476	80	118	87	110	113	80	151	252
222	222	236	238	242	242	257	265	265	267	311	318	351	395	441	450	473	474

52	
and	
Formation	
Oxford	
New	
the	
.⊑	
quality	
water	
j o	
rminations	
dete	
field	
and	
springs	
and	
ord of wells and spri	
ord of	
brd	

Oxford Formation and	Static water level: Reported depths are given in feet: measured depths are given in feet and tenths. Reported yield: <, less than; >, greater than. Use: G, commercial; B, domestie; I, industrial: Irr, irrigation; It, institutional; P, public supply; R. recreational, S. stock; T, U.S. Geological Survey test wel; U, unused; X, destroyed. Remarks: Ca, chemical analysis of ground water in table 5; Dd, drawdown; L, lithologic log in table 6; P, pumping-test data in table 3. Comments are based on reported information.
springs and field determinations of water quality in the New Oxford Formation and caster County.	Static water level: Reported depths are given is and tenths. Reported yield: <, less than; >, greater than. Use: C, commercial; D, domosfice; I, industrial: Ipply, R. recreational, S. stock; T, U.S. Geologic Remarks: Ca, chemical analysis, of ground water in table 6; P, pumping-test data in table 3. C
Table 4. Record of wells and springs and field deter adjacent rocks in Lancaster County.	Well location number: See page 6 for description of well-numbering system. Well locations are shown on plate 1. Driller: Kohl Bros., Harrisburg, Pa. (H); Kohl Bros., Myerstown, Pa. (M). Method of construction: Dr. drilled; Du, dug; Sp. spring. Total depth: m, measured depth; other depths are reported. Depth to bottom of casing: Reported. Aquifer: Qt terrace deposits; Trd, diabase; Trg, Gettysburg Shale; Trn, New Oxford Formation; Oc. Cocalico Shale.

Table 4. Record of wells and springs and fleid deferminations of water quality in the New Oxford Formation and adjacent rocks in Lancaster County.	2
See page 6 for description of well-numbering system. Well locations ${ m e}$ 1.	Static water level: Reported depths are given in feet: measured depths are given in feet and tenths.
farrisburg, Pa. (1f); Kohl Bros, Myerstown, Pa. (M). Dr, drilled; Du, dug; Sp, spring. ured depth; other depths are reported. sing: Reported. Reported. Shale; Trd, diabase; Trg, Gettysburg Shale; Trn, New Oxford Formalistic.	Reported yield: <, less than; >, greater than. Use: C. commercial; D. domestie; I. industrial; Irr, irrigation; It, institutional; P. public supply; R. recreational, S. stock; T. U.S. Geological Survey test well; U, unus.d.; X. destroyed. Remarks: Ca, chemical analysis, of ground water in table 5; D.J. drawdown; L, lithologic log in table 6; P, pumping-test data in table 3. Comments are based on reported information.

уєшяцкг	own; 1., umologic tog reported information.
Temperature (°F)	sed on
Hq	re ba
Hardness as CaCO ₃ (grains per gallon)	ments :
Specific conductance D°52 is sodinoraim)	3. Com
Date sampled	sis of ground t data in table Field determ
əsU	g-te
Reported yield (gpin)	umpir
Depth below land surface (feet)	in table 6; P, p
Райс тезгиед	Static wa
19JiupA	
Depth to bottom of casing (feet)	
Total depth (feet)	Forma-
Diameter of casing (sodoni)	Trn, New Oxford Forms
oitsuntenes to bodts17.	New
Date completed	hale; Trn
Prillet	ported. rd, diabaxe; Trg, Gettysburg Shale;

Not flowing 10-3-62.

56

7.0

280

3-62

S

3-62

10-10-

Ω

9

40

160

9

9.69

10-3-62

ď.

53

220

11-15-63

Д

100 35 82 10

29.7 29.5 46.8

21 23 23

182m 222m 242m

9 9 9 9 9 9 9 9

1963 1963 1963 1933 1955

R. Myers' Sons, Inc.

Bainbridge Water Authority

do.

Pierre deVitry

5 55 26 27

8.7

10-5-62 11-21-63 11-21-63 11-22-63 7-31-63

15m

40

Д. Ca,

6.2

2-29-61

Ĭŧ

45.1 35

7.1

9-25-62

Ω Д

9- ?-62

20 38 24 63

115

R. Myers' Sons, Inc.

Bainbridge Elementary School

28 59 9

do.

do.

005-639 005-640 005-640

do.

H. K. Honberger Sons

C. Rhodes, Jr. Benjamin Myers

250

175

 ∞ 30 20

6.3

3 13

135 550

3-14-63 3-26-63

О

30.3

3-14-63

124

1954

Myers' Sons, Inc.

H. Holler

Isaac

005-640

61

93

1959

.do.

Lloyd A. Rapp

005-640

.62

Ę.

54 59

9 4

225 270 260

12-11-63

 \supset

No casing.

Owner

Location number

Well number

Q

0.1

Trn Tru Tru Tru Trn Trn Tru Trn Trn Trn EL Trn Tru

>100

9

ă Ü Ü Sp Du Ü Dr Dr Ü D. Dr Dr. Dr

Hoffman

Guy

005-639

50

4

1959 959

R. Myers' Sons, Inc.

do.

005-639

do.

do. do.

005-639 005-639 005-639 005-639

22

53

tion.	
r anny 22 or ground water in table 5, 20, thanknown, 2, informating-feet data in table 3. Comments are based on reported informa	Field determinations of water quality
in table 6; P, pump	Static water level
frg, Gettysburg Shale; Trn, New Oxford Forma-	

<, less cretals; D, reational, chemical P, pumpi	and tenths. Reported, c., less than; >, greater than. Use: C. commercial; D, domestie: I, industrial: Irr, irrigation; It, institutional; P, public s ply; R. recreational, S. stock; T, U.S. Geological Survey test well; U, unuxed, X, destroy Remarks: Ca, chemical analysis of ground water in table 5: Dd, drawdown; L, lithologic in table 6; P, pumping-test data in table 3. Comments are based on reported informati		up- od,	hog		
		and tenths. Reported yield: <, less than; >, greater than.	Use: C, commercial, D, domestie, I, industrial: Ir, irrigation; II, institutional; P, public s ply; R. recreational, S. stock; T, U.S. Geological Survey test well; U, unused; X, destroy	Remarks: Ca, chemical analysis of ground water in table 5; Dd, drawdown; L, lithologic in table 6: P numinalized data in table 3. Commonly are based on remorted informat	and the control of th	

53																			
						Ω		Dry	9-24-62 I	Tm		41m	48	Du			do.	006-640	83
		6.4	ы	285	9-24-62	D, S	5	23	9- ? -62	Tm		70	9	Dr	1945		Rufus S. Miller	006-640	85
P.	54	9.9	7	355	10- 8-62	s	5	17.5	10- 8-62	Tru	23	65m	9	Dr	1959	R. Myers' Sons, Inc.	Raymond Nissley	609-900	81
Well Ln-79 is 15 fect away at same altitude.						Ω	\ \ 3	36.4	10- 5-62	Tru		53m	9	Dr			do.	006-639	80
						Ω		32.6	10- 5-62	Trn		33m	09	Du			do.	669-900	80
	55	6.4	7	335	10- 5-62	Ω		36.7	10- 5-62	Trn	20	110m	9	Dr	1954	H. K. Honberger Sons	Alvin Nissley	006-639	79
						b		16.7	10- 3-62	Trn		2·Im	36	Du			do.	006-639	78
		7.4	12	450	10- 3-62	Ω				Trn		120	9	Dr			Med J. Miller	609-900	77
		6.0	4	235	9-28-62	\Box	>10	20	10- ? -55	Trn		22	9	Dr	1955	 K. Honberger Sons 	Abner Risser	006-639	76
Flow about 5 gpm, 9-28-62.	28	6.8	9	300	9-28-62	D, S				Trn				$_{ m Sb}$) Mervin R. Müller	669-900	75
Flow about 5 gpm, 9-28-62.	57	6.4	4	210	9-28-62	Q				Trn				Sp			John K. Risser	006-639	7.1
		6.5	70	250	9-28-62	Ω				Tru	55	06	9	Dr	19.12		Martin Good	669-900	73
						Ω	3	62.0	12- 4-63	Trn	09	285	9	1)r	1963	H. K. Hønberger Sons	8 Sylvester Walters	006-638	71
		6.5	1~	360	10-8-62	Ω	7.0			Tm		100	9	Dr	1930		3 do.	900-938	70
						U		20	3- ? -59	Trn		30	48	Dii			8 Baymond Nissley	006-638	70
		7.2	9	250	10-8-62	s	15	22	8- ? -62	Tm	3.4	167	9	Dr	1962	R. Myers' Sons, Inc.	J. L. Meckley	006-638	68
						Ω		24.8	10- 8-62	Tru		82	9	Dr			s do.	829-900	67
						Ω		16.7	10- 8-62	Tru		I7m	40	Du			8 B. L. Keener	006-638	67
		5.7	N	175	10-8-62	Ω				Tm		96	9	Dr	1953	R. Myers' Sons, Inc.	8 Elmer Walters	006-638	99
	09	5.7	4	202	10- 5-62	Ω		9.4	10- 5-62	Trn		14m	48	Du			3 James Meckley	006-638	65
		6.9	7	275	10- 5-62	Ω	33	45	6- ? -58	Trn		110	9	Ξ	1958	R. Myers' Sons, Inc.	3 David Shearer	006-638	64
		6.5	6	450	3-27-63	Q	2	41.9	3-27-63	Trn	20	137	9	Dr	9161	H. K. Honberger Sons) Marin Comp	005-640	63

54		Remarks
	6	
	qualit	Temperature ('F)
	water	(grains per gallon) Hq
	o sucritions of	Specific conductance (micromhos at 25°C) Hardness as CaCO ₃ (grains per gallon)
	Field determin	bəlqınss əts.U
	-	Reported yield (gpm) Use
Record of wells and springs—Continued	tatic water level	Depth below land surface (feet)
springs-	Static w	Date measured
pue s		Aquifer
of wells		Depth to bottom of casing (feet)
Record		Total depth (feet)
ble 4.		Diameter of casing (inches)
Table	u	Method of constructio
		Date completed
		Driller
		19пwО
		Location number
		19ell number

54	
pe	
rd of wells and springs—Continue	
Recor	

Flow about 5 gpm, 10-5-62

55

5.9

7.3

9

9-24-62 10-5-62

) V

49.7

9-24-62

Trn Tru Trn TH

7

185

9

Dr Sp Dr Dr Du Ö Dr ď Dr Dr Du Dr Dr

1961

R. Myers' Sons, Inc.

S

Ď, Ω

ď. Ü

55

6.3 6.3

4 ₹

8-63

4κh

>25 >10

28.2

4-63

318

00 9

1945 1957

(H)

Bros.

Kohl

Natural Development Co.

Shoop do.

Ä

006-640 006-640 019-900 006-640 006-640 006-640

83 84 85 86 87 87 88 68 96 91 92 93 94 92 96 97 86

180

3-63

Ω

24

9-57

4

30

100

Ca, L, P. Most water enters at 96 and 163 ft.

52

1

6-24-63 9-25-62 9-25-62 9-25-62 3-11-63

 \vdash

8 28 ~ 12

20.5

24 18 40 53

305m

H. Eichelberger

U.S. Ceological Survey

006-641

Henry Stauffer

do.

Lewis

Ä

Ъ.

Sons

H. K. Honberger 5

(H)

Kohl Bros.

Ruben O. Ebersole

Ebersole Bros.

006-641 006-641 006-641006-641

7

7- 9-62

Trn

162 75 95

7.4 6.9 9.9 7.6 9.9 6.9

9

265 310 500

4-25-63

D, S

29.1

Trn Tru

9 9 00 9 9

1930 1963 1962 1954 1960

Þ

19.8

4-25-63 4-25-63 6-24-63

Trn

29m 99m

5

Dd <140 feet after pumping 24 hours at 78 gpm.

9 10 3 9 Ca. Dd <45 fect after pumping 20 days at 40 gpm.

5

7.7 7.1 7.1

Ξ

425 470 360

7-62

11-

Ω

18

4- ?-61

33

100 120

ŭ Dr Ď

1961 1912 1962

do.

Rodney Fink

Ö

006-641 007-634 007-635 007-635

006-641 006-641

do.

H. K. Honberger Sons

Rheems Water Co.

10

10 - 17 - 6210-17-62

Ω Д

21.1

10-17-62

Trn Tru

23

102m

118

Ď

1955

R. Myers' Sons, Inc.

Ray E. Helwig

do.

Bros.

Heisey

Trn

 ∞

Ω

Д.

6.9

1

2-63

4

12.7

Trn Tm Trn

65m

9 9 9 10 9 9

R. Myers' Sons, Inc.

Benjamin Burkholder

do. do.

Ω Ω

19.6

3-11-63 4- 2-63

ŏ

23m

40

R. Myers' Sons, Inc.

Garber

Paul (

6.9

00

6-63

4

3 10 20 40

13.6

6-63

4

< 100

49 55 52

145 325 325 290

O

260

Ω

Trn Tru

			Most water enters at 95 feet.	:	Dd 60 feet after bailing 2 hours at 40 gpm.				P.		Most water enters at 130 feet.	Flow <5 gpm. on 10-16-62.		Flow about 5 gpm on 10-17-62.	Ca.	Ca. Flow about 15 gpm. on 4-30-63.						5
							50 51		54			52		52		49						
	6.7		7.5		7.3		6.9		9.9	6.1	7.2	5.9	6.9	6.4	6.1	6.5	6.3	9.9	6.3	5.6		
	9		9		10	۲-	10		9	c1	œ	10	10	8	4		9	10	70	4		
	280		270		415	285	360		230	125	315	260	510	125	202	535	285	220	215	230		
and an artist of the same of t	10-23-62		10-23-62		11- 2-62	11-30-62	5-31-63		10-11-62	10-15-62	10-16-62	10-16-62	10-17-62	10-17-62	10-17-62	4-30-63	10- 9-62	10- 9-62	10- 9-62	10-12-62		
	Ω	D	Ω	Ω	I	D	D	Q	D	D	D	D	D	Q	D	D	D	Q	Q	О	n	
	3		20	3	40	>10	4	9	15	8	70				20		7	15	3	10		
THE REAL PROPERTY.	20	14.6			69.5		23.1		14.8	40	22						9			15	17.3	
	7- 9-62	10-23-62			11- 2-62		5-31-63		10-11-62	6- 9 -52	9- ? -59						9- ? -46			2- ? -62	10-12-62	
	Trm	Trn	Trn	Trn	Tru	T	Trn	Trn	Tru	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trd	Trn	Trn	
	21		21		21		21	61	39								15		59	53		
004	123	18m	92	142	252	200	87	202	100	72	175		150		25		65	06	122	80	18m	
0	9	09	9	9	9	9	9	9	9	9	9		9		9		9	9	9	9	48	
177	Dr	Du	Dr	Dr	Dr	Dr	Ď	Dr	Dr	Dr	Dr	Sp	Dr	Sp	Dr	Sp	Dr	Dr	Dr	Dr	Du	
oner	1962		1962	1927	1957	1945	1950	1963	1962	1952	1959		1931		1956		1946	1948	1959	1960		
snoe raftamort	R. Myers' Sons, Inc.		R. Myers' Sons, Inc.		R. Myers' Sons, Inc.	H. K. Honberger Sons	do.	R. Myers' Sons, Inc.	do.	H. K. Honberger Sons	do.		R. Myers' Sons, Inc.		Sanuel R. Kaylor		Kohl Bros. (H)	do.	R. Myers' Sons, Inc.	do.		
Amos centz	Robert Tormo	do	Ruth Williams	Наггу Foreman	do.	Robert S. Mason	James S. Beamenderfer	John Wanger	R. E. Keller	Robert H. Chapman	Samuel Snyder	do.	Ammon Snyder	1. H. Ober	Warren D. Nauman	Masonic Homes	Richard Stone	Raymond Appley	Earl Kreider	Earl M. Heisey	Earl M. Heisey	
000-100	007-635	007-635	007-635	007-635	007-635	007-635	007-635	007-635	007-636	007-636	007-636	007-636	007-636	007-636	007-636	007-636	007-637	007-637	007-637	007-637	007-637	
20	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117 (118	119 (120 (

Table 4. Record of wells and springs-Continued

		Remarks	Flow about 10 gpm, 10-23-62.	P.		Ca. P. Casing grouted in 12- inch hole.			Flow averages <10 gpm.				Flow <5 gpm on 10-9-62.						
	uality	Temperature (°F)	57	228	55	26			58				55						
	water quality	Hq	6.4		9.9	7.5	6.9		5.6		9.9	0.0	5.9	5.2	6.1	6.0			
	of wa	Hardness as CaCO ₃ (grains per gallon)	61	7	7-	00	6		4			c1	8	10	9	4		61	4
	vinations	Specific conductance J°52 as solmorain)	125	285	350	380	425		202		425	125	155	260	155	300		155	220
	Field determinations	bəlqınsı əts.U	10-23-62	10- 4-63	5-31-63	5-17-63	10- 9-62		10-12-62		9-28-62	10-8-62	10- 9-62	10- 8-60	9-26-62	9-28-62		12-11-63	12-11-63
		Reported yield (mpg)	D, S	Ω	110 lt	330 It	D	Ω	D, S	Ω	D, S	D	Ω	Q	D	D	Ω	8 D	12 D
	Static water level	Depth below land surface (feet)				35		24.3		30.6	25.3	25			18.2		26.8		38.7
	Static w	Date measured				9- 7-54		10- 9-62		9-17-63	9-28-62	10- ? -52			9-26-62		9-28-62		12-11-63
5		Aquifer	Tm	TI	Trn	Tru	Trn	Trn	Trn	Tm	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn
		Depth to bottom of casing (feet)				33													
		Total depth (feet)		148m	200	200	125	30m		33m	70m	89		76	20m	114	28m	110	200
		Diameter of casing (inclus)		∞	10	10	9	48		40	9	9		9	09	9	48	9	9
	u	Method of construction	Sp	Dr	Dr	Dr	Dr	Du	Sp	Du	Dr	Dr	Sp	Dr	Du	Dr	Dr	Dr	Dr
		Date completed				1954						1952		1958				1963	1958
		7-JllhCI				Kohl Bros. (H)						E. Gerlach and Sons, Inc.		R. Myers' Sons, Inc.				R. Myers' Sons, Inc.	do.
		тэпжО	Mahlon H. Fry	Masonic Homes	do.	do.	Elvin H. Nolt	do.	Earl Heiscy	Leroy Martin	A. Retherford	Walter E. Ebersole	Norman L. Zeager	Walter Ebersole	Andrew Stoner	Samuel H. Retherford	do.	do.	Norman L. Zeagler, Jr.
		Location number	007-637	007-637	007-637	007-637	007-638	007-638	007-638	007-638	007-639	007-639	007-639	007-639	007-640	007-640	007-640	007-640	007-640
		Well number	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138

																		4	
140	007-641	Vernon Zimmerman	R. Myers' Sons, Inc.	1963	Dr	9	179m	35	Trn	4-26-63	34.1	30	D, S	5- 2-63	250	9	7.3 55	r. Most water enters below 175 feet.	elow
141	008-633	R E. Garman	do.	1951	Dr	0	123	73 '	Trn	5-9-51	45	12	Ω	10-15-62	335	∞	7.6	Dd. about 70 feet after bailing ½ hour at 5 gpm.	illing
<u>÷</u>	008-633	Kenneth H. Eshleman			Dr	9	100		Trn			75	D, S 1	10-15-62	515	12 6	6.7		
143	008-633	do.			Du ,	48	31m		Tm	10-15-62	23.5		n n	10-15-62	009	13 7	7.2 57		
144	008-633	Reist R. Mummau	R. Myers' Sons, Inc.	1962	Dr	9	165	21	Trn			25	Ω	0-13-63	240	7 6	6.7		
1.45	008-634	Milton D. Sechrist	do.	1961	Dr	9	110	21	Trn			-	Ω	10-15-62	305	6	7.0		
146	008-634	Elizabeth Longenecker	do.	1959	Dr	9	103	61	Trn			10	Ω						
147	008-634	Charles W. Pfaummiller			Du .	40	20m		Trn 1	10-29-62	19.1		Ω Ω	10-29-62	1 10	61	0.9		
148	008-634	J. Pfaunmiller	R. Myers' Sons, Inc.	1962	Dr	9	92	121	Tru			9	D						
149	008-634	Norman S. Good			Du	36	24m		Trn	6-13-63	21.3		Q	6-13-63	202	+	5.9 52		
150	008-634	Gerald Sager	R. Myers' Sons, Inc.	1962	Dr	9	96	39	Tm			12	Q	6-13-63	360	8	6.1	,	
151	008-635	Elizabethtown Water Co.	Kohl Bros. (II)	1958	Dr	10	500	51	Trm	3- 3-58	47	300	2	7-19-63	270	∞	7.1	Ca, P. Pumping level varies between 150 and 180 feet.	aries t.
152	008-635	Robert H. Smith	R. Myers' Sons, Inc.	1956	Dr	9	112	<u>61</u>	Tm			50		10-26-62	410	10	7.1	Most water enters at 60 and 90 feet.	and
153	008-635	R. E. Hershey	II. K. Honberger Sons	1952	Dr	9	75	30	Trn	11- 7-62	59.0	\ \ -	D					Yield was 16 gpm, when well was drilled.	well
154	008-635	do.	R. Myers' Sons, Inc.	1957	Dr	9	2.10	98	Trn			5	0	10-29-62	290	9	8.9		
155	008-635	Paris Good	do.	1921	Dr	9	130		Trm	10-29-62	>55.0		Q	11-1-62	410	∞	7.5		
156	008-635	do.			Du ,	48	30m		Trn	10-29-62	29.8		Ω					•	
157	008-635	Charles II. Simon	Kohl Bros. (II)	19.12	Dr	×	505		Tm	3- ? -49	09	120	D	11-1-62	250	20	6.7 54	Dd about 100 feet after pumping 24 hours at 120 gpm.	-dun
158	008-635	do.	H. K. Honberger Sons	1941	Dr	9	108		Trn	11- 1-62	10.1	18	D	7-31-63	180		54	P.	
159	008-635	Sadic Risser	R. Myers' Sons, Inc.	1961	Dr	9	100	22	Tm	11- 2-62	39.1	20	Ω	11-2-62	300	9	7.1		
160	008-635	Rheems Water Co.			Dr	9	300		Tru			10	Ú						

Table 4. Record of wells and springs-Continued

у Тетлак											ed from 18 to 5					P. Most water enters below 60 feet.	
											Yield dropped gpm in 1955.					P. Most wat feet.	
(Resints per gallon) Hq (F. (F.)	54		54													54	
Hq	6.2													6.7		0.9	7.5
Hardness as CaCO ₃	ro.		œ		4									6		6	6
Specific conductance (D°52 ts codmoraim)	220		340		215									350		400	365
Date sampled Specific conductance (micromhos at 25°C)	12- 2-62		10-9-63		11-30-62									6-10-63		10-11-62	10-12-62
9sU	n	n	Д	Ω	D	Ω	Ω	U	D	D	D	s	S	Ω	Ω	Ω	Q
Reported yield (gpm)	10	10	10	10	7	40	22	25	10	c)	ro	30	30	20	10	20	10
Date measured Depth below land surface (feet)							61	61				49.9	20		70.2	45.8	61
Date measured							5- ? -63	5- ? -63				4-5-63	1- ? -60		6-10-63	10-10-62	6- ? -61
19liupA	Trn	Tru	Trn	Tru	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn
Depth to bottom of casing (feet)			20	20	37		20	50	20		25	53	22	22		23	21
(1991) digəb leioT	300	300	200	300	330	120	300	300	300	09	09	130	130	175	95m	86m	65
Diameter of easing (inches)	01	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Method of construction	Dr 10	Dr	Dr	Dr	Dr	Dr	Dr. (Dr	Dr (Dr (Dr (Dr (Dr (Dr (Dr	Dr (Dr
Date completed			1954		1959		1959	1959	1959	1910	1950		1960	1963	1954	1962	1960
Dillet					R. Myers' Sons, Inc.		R. Myers Sons, Inc.	do.	do.		R. Myers' Sons, Inc.	do.	R. Myers' Sons, Inc.	do.		R. Myers' Sons, Inc.	do.
тэпжО	do.		Rheems Water Co.	do.	J. M. Smith	Charles H. Simon	Acme Market	do.	do.	Longenecker Hatchery	do.	do.	Longenecker Hatchery	Harold Martin	do.	West Donegal Township	Philip P. Metzger
Location number	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	008-635	969-800	989-800
Well number	161	162 (163 0	164 0	165 0	166	167 0	168 (0 691	170 0	171 0	172 (173 0	174 0	175 0	178 (179 (

180	180 008-636	do.	CO.	7061	7	0	3	200					2					
181	008-636	Henry Decker	II, K. Honberger Sons	1962	Dr	9	99m	54 Trn		10-12-62	23.4	7	C	10-24-62	590	9	6.7 5	P. Water enters from sandstone 55 diabase contact at 88 feet.
182	008-636	Clyde Carter	do.	1961	Dr	9	75	59 Trn		9- ? -61	19	20	D	10-12-62	375	6	6.5	Water enters at 70 feet.
183	008-636	Willowood Swim Club	do.	1956	Dr	9	93	35 Trn		11- 1-62	18.8	30	В	5- 2-63	300	9	9.0	54 P.
184	008-636	Paul Moyer		:	Sp			Trn	ű				D, S	11-13-62	300	10	6.0	54 Flow <5 gpm on 10-13-63.
185	008-636	Daniel Reem	II. K. Honberger Sons		Dr	9	120	58 Trd	Þ		30	12	Ω					
186	989-800	Masonic Homes		1920	Dr	x	100	Tm		5-15-63	25.7		ū					
187	008-636	do.		1924	Dr	10	306	Tm	E			110	'n					
188	008-636	Klein Choeolate Co.	R. Myers' Sons, Inc.		Dr		200	Fra	8			0	_	5- 5-63			6.7	57 Yield was 70-100 gpm in 1935.
189	989-800	do,	do.		Dr		230	Tra	5			1 10	_					Yield was 200 gpm when drilled,
061	008-636	Ebersole lee and Coal Co.	do.	1945	Dr	8	379m	Trm		7-12-63	12.8	100	n	7-12-63	365	œ		Р.
191	008-636	Paul II, Kauffman			Dr	9	183m	Trn		5-27-63	1.7		Ω	5-27-63	320	œ	8.8	
192	009-601	Paul R. Weaver	R. Myers' Sons, Inc.	1955	Dr	9	20	Trn	g				\Box	4-20-64	01:0	70		
193	008-603	Isaae Zimmerman			Dr	9	108	Tm	ш				D, S	4-16-61	425	1-		
19.4	009-604	R. M. Weaver	Titus Sensenig	1960	Dr	9	09	Trh	Ę.	متا	Flows	55	O	4-16-61	450	01		22,00
195	009-604	Lester Martin	do.		Dr	9	65	Tm	E		10	12	Q	4-16-61	390	6		10
196	009-604	Susanna Herr			Du	99	20m	Trn		5-13-64	13.7			5-13-64	320	7		
197	009-602	Horace Styer	Norman Zimmerman	1949	Ür	9	93	20 Trn	E		35		\Box	4-15-64		ю		Most water enters between 90 and 93 feet.
198	009-602	Ivan Stauffer	R. Myers' Sons, Inc.		Dr	9	20	Trn	8			V 15	G	4-20-61	230	Ţ		
199	809-600	Irvin II. Nolt	do.	1957	Ür	9	86	Trn	rn		20	12	D, S	1-15-6-1	360	5.		
200	609-600	II, K. Ephrata Sand and Cravel Honberger Sons	II. K. Honberger Sons	1959	Dr	9	175m	20 Tr	Tra	4-10-61	17.2	32	_					Dd <100 feet after pumping 14 days at 55 gpm
201	609-600	do.	do.	1959	Dr	9	140m	Trn		4-10-61	20.8		Ω					
																		7

10-12-62

Table 4. Record of wells and springs-Continued

	Remarks	Most water enters at 110 feet.		Fuel oil in water 4-15-64.										P. Water enters at 30, 75, 90, 220 and 335 feet.	P.			
	Temperature (°F)	4		-			49							H (4	_			:
	da da						4.											
	Hardness as CaCO ₃ \$\\\\ (grains per gallon) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12	11		13	11	1-		11	∞	16	21	12	14				
	-	415	485		380	345	325		345	280	510	650	400	405		:		1
	boldmes obset boldmes of the first boldmes of the f	4-10-64	4-15-64		4-15-64	4-15-64	4-15-64		4-12-64	4-12-64	4- 7-64	4- 7-64	4- 7-64	4- 9-64				
l	Field		s ,	_			s,				_	S	_					
	(gpm)	0 P	10 D	Ω	4 D	1 D	0 D	12 D	10 D	13 D	0 D	D,	υ Ω	50 P	00 P	20 U	1 X	18 U
	Reported yield	>30	-			$\stackrel{\wedge}{\sim}$	>30	1		1	>10		>25	ľ	150	61	$\stackrel{\wedge}{\sim}$	7
	Date measured Depth below land Startage (feet)			10.3	4	55	18		7.6		12		30	72	45	76.1		:
	Static Date measured			4-15-64	8-?-61	1-?-51	1-?-51		4-12-64					9-18-56	7- 9-51	4- 9-64		
	Aquifer	Tm	Trn	Trn	Trn	Tr	Tm	Trn	Тш	Trn	Tm	Tru	Tm	Tm	Tru	Trn	Oc	00
ľ	Depth to bottom of casing (feet)	42			55	70	22	29		25		40	40	52	63	:		
	Total depth (feet)	128	30	26m	118	296	100	122	27 m	78	99	86	80	571	339	136m	>200	>100
	Diameter of casing (sedoni)	9	9	09	9	9	9	9	9	9	9	9	9	10	œ	10	:	∞
	Method of construction	Dr	Dr	Du	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr
	Date completed	1962			1961	1950	1921	1964		1959	1929	1957	1962	1956	1921	:	:	:
	19llirQ	, Titus Sensenig			R. Myers' Sons, Inc.	A. W. Martin	do.	E. Cerlach and Sons, Inc.		R. Myers' Sons, Inc.		Titus Sensenig	. do	Kohl Bros. (H)	Paul C. Myers			
	19пwО	David Oberholtzer	Aaron Burkholder	do.	Edgar H. Martin	D. B. Stauffer	do.	Justin Andrew	Harold Brossman	M. W. Brossman	Raymond C. Sweigert	Jonas Groff	Christian Sauder	Borough of Akron	do	do	do	do
	Location number	609-600	609-600	609-600	609-600	609-600	609-600	609-600	019-600	019-600	009-611	009-611	009-611	009-611	009-611	009-611	009-611	119-600

Well number

H. K. Honberger Sons

Charles Bitner

009-632 009-632

227

Ralph Ginder

228

James Ginder

do,

Blaine Gantz

009-632

230

do.

231

ф.

H. K. Honberger Sons

Lloyd S. Hummer

009-632

do.

236 237 238 Harry J. Beck

Loy Trostle

009-632 009-633 Arthur Koser

009-633

240

do. do.

William Thome

Ralph G. Herr

009-632 009-632

234

ф.

009-632

Victor Ginder

009-632

232

H K. Honberger Sons

do.

009-611 009-611

ф.

220

do. ф. ф,

do.

221

Raymond Knosp

009-611 009 - 630

ф.

009 - 611

222 223 224 225 226

Franklin Greiner

009-631009-631

Richard McCoy

Table 4. Record of wells and springs-Continued

	К етатк з		P.					Flow about 5 gpm on 10-29-62.					Cased off 12 gpm. All water enters below 165 feet.			:		
			Ca, 1					Flow					Cased				P.	
quality	Temperature (°F)	53	53					26									54	
water qu	Hq	5.9	5.8		6.0	5.7		5.8	6.5		6.4		7.3		8.9		6.4	6.9
of wa	Hardness as CaCO ₃ (grains per gallon)	ນ	c ₁		3			4	4		7		7		ro		φ	9
inations	Specific conductance (D°62 st 25°C)	220	06		170	120		260	195		355		325		330		270	270
Field determinations	Date sampled	6-13-63	6-25-63		6-20-63	6-27-63		10-29-62	11-13-62		11-13-62		11-14-62		11-16-62		5-28-63	10-29-62
	9sU	Q	H	D	D	¥	D	D, S	D, S	Þ	S	Ω	1	Þ	П	Ω	D	Q
	Reported yield (app.)		110	22			10		12		œ		09		15		10	>10
ter level	Depth below land surface (feet)	15	11.8	55.9	48.5	42.2	83.1		11.3	8.7	7.5	15.9	15	12.2	30.6	27.1	70.5	က
Static water level	Date measured		6-25-63	6-26-63	6-20-63	6-27-63	10-26-21		11-13-62	11-13-62	11-13-62	11-13-62	2- ? -61	11-14-62	11-15-62	11-16-62	5-21-63	9- 5-25
	19 liup A	T	Trn	Trn	Trn	Trn	Trd	Trn	Trn	Tru	Tm	Trn	Trn	Trn	Trn	Trn	Trn	Trn
	Depth to bottom of casing (feet)		39	20			23		80				80	20			24	
	Total depth (feet)	20	300m	170	103	47m	123m		106	19m	34m	40m	198	154	87	32m	121m	06
	Diameter of casing (inches)	36	9	9	9	40			9	36	9	36	9	9	9	48	9	9
ι	Method of construction	Du	Dr	Dr	Dr	Du	Dr	S	Dr	Du	Dr	Du	Dr	Dr	Dr	Du	Dr	Dr
-	Date completed		1963				1962		1956				1961				1963	1952
	Driller		C. H. Eichelberger	R. Myers' Sons, Inc.			R. Myers' Sons, Inc.		R. Myers' Sons, Inc.				H. K. Honberger Sons				R. Myers' Sons, Inc.	
	19имО	Irvin Ruhl	U.S. Geol. Survey	Raymond Newgard	Edward Snavely	West Creentree Church of the Brethren	Robert Zeigler	Willis H. Hackman	Guido Clauss	do.	Abram E. Musser	do.	Baum's Bologna Co.	do.	Moyer's Potato Chip Co.	do.	Russel Eisenbise	John D. Reinhold
	Location number	009-633	009-633	009-633	009-633	009-633	009-634	009-634	009-634	009-634	009-634	009-634	009-634	009-634	009-634	009-634	009-634	009-635
-	Well number	241	242	243	244	245	246	247	249	250	251	252	253	254	255	256	257	258

R. Myers' Sons, Inc.

Mumpers Dairy, Inc.

969-600

do.

Titus Sensenig

Aaron Hollinger

009-637 010-604 010-604

do.

009-636

Lloyd Martin

273

do. do.

Walter M. Martin E. S. Zimmerman

274

R. Myers' Sons, Inc. R. Myers' Sons, Inc.

Harvey O. Martin C. H. Zimmerman

Lemon Werntz

010 - 606010-607

M. Brubacker

280

A. W. Martin do.

Richard Kern

010-605 909-010 909-010

> 277 278 279

010-605

275 276

6.2

415

11-14-62

Д

18.7

11-14-62

Tru

24m

48

Ω

R. Myers' Sons, Ine,

do,

Chester Landis

009-635

261 262 263

do,

009-635

Paul K. Zook

Ray Swanger

009-635 009-635

259 260 R. Myers' Sons, Inc.

John Chapman

009-635

Lester Hess

009-635

264

Kohl Bros. (H)

Elizabethtown Water Co.

969-600

265 266 267 268 269 270 271 272

do. ф.

969-600 009-636 969-600 969-600

do.

Kohl Bros. (H)

do. do.

Table 4. Record of wells and springs-Continued

Well number

				U					Static water level	er level			Field determinations	inations	of wate	water quality	
Госяцов витрет	Очпет	Tolling	Date completed	Method of construction	Diameter of casing (inches)	Total depth (feet)	Depth to bottom of casing (feet)	19JiupA	Дабе теазитед	basi woled diqeCl (feet) santace	Heported yield (mgg)	95.0	bəlqmes əteU	Specific conductance (micromhos at 25°C)	Hardness as CaCO ₃ (grains per gallon)	Temperature (°F)	кетығк
010-607	H. Kofroth	R. Myers' Sons, Inc.	1963	Dr	9	102	53	Trn	6-26-63	30	7	D	4-16-64	260	4	57.4	
010-607	Paul Fox	A. W. Martin		Dr	9	100		Trn	4-16-64	10.1		D	4-16-64	180	¢1	25	
010-607	A. W. Martin	do.		Dr	9			Trn				D	4-15-64	560	13	58	
010-607	Martin H. Weaver	do.	1963	Dr	9	127	44	Trn	6- ? -63	13	15	D, S	4-20-64	495	11		Dd about 70 feet after pumping 24 hrs. at 15 gpm.
010-607	Wayne Zeist	Titus Sensenig	1955	Dr	9	69	52	Trn	10- 9-55	œ	30	Ω	4-20-64	300	7		Dd about 4 feet after bailing 1 hr. at 15 gpm.
010-607	Harvey M. Zimmerman	A. W. Martin	1959	Dr	9	150	25	Trm	7- 9-59	40	30	Q	5-13-64	370	10		Most water enters at 100 feet.
010-608	Leroy Sensenig	do.	1948	Dr	9	154	>30	Trn	6- ? -48	50	>20	D	4-16-6-1	06	က		
010-608	Spring Glenn Farm Kitchen			Sp				Trn					4-16-64	125	က	52	Flow about 60 gpm on 4-16-44.
010-608	Francis C. Riddle			Dr	9	75		Trn				D	4-16-64	465	14		
010-608	Harvey Stauffer			Dr	9	76		Trn				Q	4-16-64	282	00		
010-608	Samuel H. Gchr	A. W. Martin	1955	Dr	9			Trn			>20	D	4-16-64	220	7		
010-608	William Bauman	Titus Scnsenig	1964	Dr	9	87	38	Trn	4-16-64	28.7	>20	D	4-16-64	570			Most water enters at 75 feet.
010-608	John L. Weber	R. Myers' Sons, Inc.	1963	Dr	9	09	20	Trn			20	D	4-16-64	290	00		
010-608	Eva Wingenroth		1944	Dr	9	110		Trn			>10	D	5-16-64	09	1		
010-608	lvan S. Horst	R. Myers' Sons, Inc	1963	Dr	9	82	40	Trn		20	10	Q	5-16-64	295	7		
010-609	Earl W. Hagy	A. W. Martin	1940	Dr	9	107	55	Tm			>15	C					
010-609	Arthur Sell	do	1962	Dr	9	09	: 1	Trn			20	D	4-15-64	125	4		

65																			
	_	6 7.0	235	7- 1-63	7-	D	12	10	6-11-57	Tm	16	127	9	Dr	1957	R. Myers' Sons, Inc.	Dean Koppenhaver	010-633	319
P. Most water enters at 118 ft.	3 57	11 6.6	450 1	7-19-63		D, S	30	30.1	7-19-63	Tm	18	118	9	Dr	1959	Samuel Kaylor	Robert Hostetter	010-632	318
	9 54	6 5.9	350	7-17-63	7-1	Ω				Tru		75		Dr			do,	010-632	317
						O		24.8	7-17-63	Trn		37m		$D_{\rm u}$			Gerald Neidig	010-632	317
	10	4 5.5	205	6-27-63		D, S		28.2	6-27-63	Trn		32m	40	Du			John K. Martin	010-632	316
	9 53	6 5.9	275	6-26-63	6-9	¥				Trn			40	Du			Rissers Church	010-632	315
	7	8 6.7	340	6-26-63	6-9	Ω				Trn		25	40	Du			Alvin Risser	010-632	314
						П	>10			Trn		115	9	Dr	1958	II. K. Honberger Sons	Milton Grove Sand Co.	010-631	313
	6	9 6.9	385	7-23-63	7-2	О	25			Trn		86	9	Dr	1959		Galen Shenk	010-631	312
Ca, P.	-	7 7.1	250	5-18-64		D, S	>30	4.4	7-24-63	Trn	16	80	9	Dr	1962	do.	Willis Christ	010-631	311
		œ	330	7-15-63	7-1	D	>20			Trn	20	108	9	Dr		do.	David Heistand	010-631	310
		9	235	8- 9-63	∞	s	15	14.6	8- 9-63	Trn		130	9	Dr	1963	do.	Levin A. J. Loose	010-630	309
		44	210	8- 9-63	∞.	\Box	₹	11.3	8- 9-63	Trn		92	9	Dr	1960	do.	John S. Ginder	010-630	308
						#	4			Trn		128	9	Dr	1957	R. Myers' Sons, Inc.	Chiquies Church	010-630	307
Flow about 10 gpm on 7-15-63.	53	3	180	7-15-63		D, S				Tru				$_{\mathrm{Sp}}$			Roy Ginder	010-630	306
		8	305	8- 9-63	æ	Q	>20	1	4- 9-55	Trn		107	9	Dr	1955	R. Myers' Sons, Inc.	Jacob S. Shaffer	010-629	305
		10	350	8- 8-63	∞	Q	e			Trn	52	104	9	Dr	1959	do.	Jack Bowersox	010-629	30.1
	20	14	425	4-12-64	4-1	Q	10	24.4	4-12-64	Tru	35	65	9	Dr	. 1964	R. Myers' Sons, Inc.	l George Mohler	010-611	303
		7	225	4-12-64	4-1	<u> </u>	22			Trn		83	9	Dr	1959		Frand Livengood	010-610	302
Ca. Most water enters at 184 feet.		20	570	4-10-64	4-1	C	>15			T	170	186	9	Dr	1954	do.) Eugene Leaman	010-610	301
Most water enters at 100 and 140 feet.						0	10	67.1	4-16-64	Tru	40	148	9	Dr	1964	A. W. Martin	9 Lester Carpenter	609-010	300
	0.000	3	100	4-16-64	4-	6 D		58.5	4-16-64	Trn	22	100	9	Dr	. 1962	R. Myers' Sons, Inc.	9 Donald Nelson, Jr.	609-010	299

Table 4. Record of wells and springs-Continued

				L				Static water level	ter level			Field determinations	inations	jo	water q	quality	
тэпwО	Triller	Date completed	Method of construction	Diameter of casing (inches)	(1991) diqəb letet)	Depth to bottom of casing (feet)	19liupA	Date measured	Depth below land (1991) sositus	Reported yield (gpm)	Ose	Dalqmes ated	Specific conductance (D'82 1s sodmoroim)	Hardness as CaCO ₃ (grains per gallon)	Hq	Temperature (°F)	. Remarks
Raymond Longenecker			Dr	9	58m		Tm	7-15-63	31.5		D						Gasoline odor on 7-15-63. Buried gasoline tank 50 feet away leaked Dee. 1960.
do.	B. Myers' Sons, Inc.	1961	Dr	9	125	44	Trn				D, S	7-15-63	290	1-			
Lloyd S. Hummer	II. K. Honberger Sons		Dr	9	06		Trn			6	s	7-17-63	365	6	6.8		
Jonathan Smith, Jr.	do.	1961	Dr	9	06	27	Trn	2- 9-61	∞	15	D						
Paul Brubaker	do.	1958	Dr	9	100		Trn	11-16-62	25.4		D	11-16-62	260	10	6.9		
C. S. Hollinger	do.	1958	Dr	9	95	21	Trn	11-16-62	23.9	1-	D	11-16-63	255	rò	7.3		
C. II. Smith	do.	1960	Dr	9	<150		Trn				D	11-16-62	235	10	6.2		
Bruce Halk	do.	1962),r	9	120	23	Trn	10- 9-62	252	9	Q						
Mrs. Ralph Mummert	H. K. Honberger Sons	1961	Dr	9	06	21	Trn			15	D	11-16-62	006	21	6.9		
Albert J. Muchan	do.	1961	Dr	9	72	21	Trn	2- ? -61	10	10	D	1- 3-63	1,225	30	7.7		
Ralph Greenly		1959	Dr	9	44	20	Trn		4	-1	D	11-14-62	400	œ	7.1		
Charles Rife	H. K. Honberger	1960	Dr	9	109	19	Trn	4- ? -60	12	4	D	6-10-63	220	3	5.9		
Paul M. Hess			Sp				Trn				D, S	7-15-63	175	ಣ		54	Flow about 5 gpm on 7-15-63.
Mrs. Mark Berrier			Da	40	32m		Trn	11-14-62	12.2		Ω	11-14-62	180	Ю	0.9		
Paul Wideler			Sp				Tm				D, S	11-15-62	190	က	6.4	54	Flow about 5 gpm on 11-15-62.
Samuel Myers		1944	Dr	9	80		Trn			10	Ω	11-15-62	009	14	9.9		
Tohn Slaback			Dr	9	120	40	Trn		28	()	D	4-16-64	375	7		57	

010-633

010-634

010-633

320 321 323 323 324 325

Location number

Well number

010-634

326

010-634

336_011-605

010-634

331

010-635 010-635 010-635

333

334

010-634

330

010-634

328

010-634

357 011-631 John Wolgemuth

do.

358 011-631

356 011-631 do.

354 001-631 Lloyd Weidman 355 001-631 Oner Hostetter

353 011-630 B, S. Hollinger

352 011-630 Roy Hess

67																
Ln-357 is 120 feet away at same altitude.			7	220	7-23-63	D, S		7.5	7-23-63	Trn		IIm	40	Ü		
		6.8	7	315	7-23-63	D, S	>30	12.6	7-23-63	Tra	21	100	9	Dr	1954	R Myers' Sons, Inc.
						Ω		41.8	7-24-63	Trn		52m	40	Du		
		5.6	S	185	7-23-63	D, S	œ			${ m Trn}$		95	9	Dr	1961	R. Myers' Sons, Inc.
Most water enters at 90 feet.			7	315	7-15-63	Ω	\rightarrow 25	12	12- ? -50	Trm	30	93	9	Dr	1950	
			च	170	8- 9-63	Ω		13.1	8- 9-63	Tru		15m	40	Du		
						D, S	12			$T_{\rm rn}$	20	100	9	Dr	1959	R. Myers' Sons, Inc.
Р.	55		6	160	7-29-63	Ω	>20	3.1	7-30-63	Tru		87	9	Dr	1961	Houberger Sons
			4	200	7-25-63	D, S	12	15	9- 7-62	Trn	06	110	9	Dr	1962	do.
						Ω	œ	27.8	5- 1-64	Tra	46	102	9	Dr	1964	do.
Ln-347 is 60 feet away at about 3 feet lower altitude.			9	225	8- 9-63	Ω		49.7	8- 9-63	Tm	55	104	9	Dr	1956	do.
						ח	15	17.1	8- 9-63	Tru	22	110	9	Dr	1955	do.
		6.5	11	385	5-10-63	\Box	8	1.61	5-10-63	Trn	<u>-</u> 23	63	9	Dr		do.
		6.0	4	165	5- 8-63	\Box		23	5- ? -63	Tru		06	9	Ü	1960	R. Myers' Sons, Inc.
		6.5	10	420	5- 8-63	Ω	4			Trn	22	95	9	Dr	1948	I. K. Ionberger Sons
		6.4	7	485	5- 7-63	D	V	24		Tm		120	9	Dr		
Ca.	52	5.7	1	350	5- 7-63	Ω		11.0	5- 7-63	Trn		17m	<u>~</u>	Du		
Ca.		6.7	4	175	5-16-64	Ω	>10	Flows		Trn	25	40	9	Dr		
:	28		10	550	4-15-64	CI		18		Trn	20	103	9	Dr		do.
			10	375	4-15-64	Ω		œ		Tru		65	9	Dr	1956	itus Sensenig
						Ω		2.4	4-15-64	Trn		06	9	Dr	1964	W. Martin
		:	6	380	5-13-64	D	30			Trn		80	9	Dr		0.0

337 011-605 Richard D. Nelson

338 011-606 Eva Cehman

339 011-606 Martin Herr

343 011-629 William W. Brosey

342 011-629 Robert Hess

341 011-606 Elwood Lees

340 011-606 G. R. Weaver

344 011-629 Raymond Shelly

345 011-629 Elmer Shelly

346 011-629 H. E. Grube

349 011-629 Paul Wolgemuth

350 011-630 Engene Shenk

351 011-630 Elam Ginder

347 011-629 Henry Gingrich

3.18 011-629 do.

Table 4. Record of wells and springs-Continued

	К етағks		Most water enters below 100 feet.							No casing.	Stream 90 feet from well is at 10 feet lower altitude.							Kerosene spilled 5 feet from well March 1963. Tasted in water since August 1963.
nality	Temperature (°F)						54											
water quality	Hq	6.2	6.8		7.0	5.7	5.7			5.9								
of w:	Hardness as CaCO ₃ (grains per gallon)	₽	7		9	70	ec			6	12		9	6	4	9	6	ಣ
inations	Specific conductance (D°62 st sooknorsin)	195	292		240	220	160			415	530		410	375	230	450	460	150
Field determinations	Dalqmis ofaG	7-24-63	7-24-63		7-24-63	7-24-63	7-17-63			7-19-63	11-27-63		11-14-63	11-14-63	11-14-63	11-12-63	11-13-63	11-13-63
	9èU	Q	D, S	D	D	D, S	D, S	n		D, S	D, S	Ω	D, S	Ω	D	D, S	D, S	D
	Reported yield (gpm)	6	>20		N NO	V 15				× ×					>20	¢1	30	
Static water level	Depth below land (1990)	15	9	15.1	14.5	20.8	10.5	10.2	Dry		32	23.6			30	21.7		19.6
Static wa	Date measured	4-28-63	7- 9-57	7-24-63	7-24-63	7-24-63	7-17-63	7-19-63	7-19-63		11-27-63	11-14-63			7- 9-57	11-12-63		11-14-63
	19JiupA	Tru	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn
	Depth to bottom of casing (feet)	24	23			20									70			82
	Total depth (feet)	93	115	26m	64	44	16m	28m	23m	63m	70	29m	117	<100	122	87	110	125
	Diameter of casing (inches)	9	9	40	9	9	40	40	40		09	48	9	9	9	9	9	9
ı	Method of construction	Dr	Dr	Du	Dr	Dr	Du	Du	Du ,	Dr	Du (Du .	Dr	Dr	Dr	Dr	Dr	Dr
	Date completed	1963	1957									1929			1957	1956	1956	1962
	Driller	R. Myers' Sons, Inc.	dn.												Samuel Kaylor	R. Myers' Sons, Inc.	do.	do.
	19U/O	Elizabeth Thompson	Samuel S. Ginder	do.	Dale Kreiner	Raymond Miller	William B. Saylor	Jacob Forry	Paul Good	do.	Carl W. Nestleroth	Aaron G. Galbreath	do.	Percy Tshudy, Jr.	Mahlon Ober	Carl E. Martin	Elmer Fahnestock	Glen Barnes
	Location number	011-631	011-631	011-631	011-631	011-631	011-632	011-632	011-632	011-632	012-622	012-623	012-623	012-623	012-623	012-624	012-624	012-624
	Well number	359	360	361	362	363	364	365	366	366	367	368	368	369	370	371	372	373

69																	
Ca. Yield 15 gpm in Ang. 1965 5-1 – after pumping 4 months.	6.7	5 7	245	5- 1-64	Irr	35	∞	7- 2-63	Trn	14	87	9	Dr	1962	do.	Abram Siegrist	
Co. Viold 15 mm in Ann 1063		11	650	10- 8-63	\Box	>30			Trn	66	112	9	Ür	. 1954	R. Myers' Sons, Inc.	Raymond P. Groft	
					\Box		23.7	8- 7-63	Tra		25m	æ	On			Myrl L. Jefferies	
		+	155	10-15-63	\Box	œ	30	09- ¿ -1	Tm	30	110	9	Dr	1959	do.	John Potts	
		4	350	10-14-63	\subseteq		19.3	10-15-63	Tra		76m	9	Dr	1953	H. K. Honberger Sons	Paul Geth	
		1.4	715	10-15-63	D, S	20			Tra	35	80	9	Dr			do.	
					n		Dry	10-15-63	Trn		30ш	.40	Du			Silas Long	
		10	485	10- 8-63	Ω	**			Trn		227	9	Dr	1955	do.	Wilbar Weaver	
		9	280	11-12-63	D, S	10	21.9	11-12-63	Trn		119	9	Dr	. 1956	R. Myers' Sons, Inc.	J. Harold Balmer	
					ח		5.7	11-12-63	Trn		82m	9	Dr			Jacob Byers	
		6	405	10-22-63	D,S	\$\cap \cap \cap \cap \cap \cap \cap \cap	>57.2	10-22-63	Trn		120	9	Dr			do.	
							Dry	10-22-63	Trn		57m	09	Du			William F. Hornberget, Sr.	
		ъ	340	10-22-63	D, S		ю	4- ? -61	Trn		65	9	Dr			Samuel Wanner	
		4	255	10-22-63	D, S	<10			Trn		100	9	Dr			Kenneth Hoffer	
		3	200	10-15-63	2		<u>6.</u>	10-15-63	Tru	20	70	9	Dr			Carl Miller	
about 7 feet higher altitude	32		1,000	11-13-63	D		8.9	11-13-63	Trn		18m	48	Du			do.	
1 × 270 is 100 foot away at		9	340	11-13-63	D, S		50.5	11-13-63	Trn		77 m	9	Dr			Raymond Ebersnle	
		1-	410	11-13-63	D, S		2.4	11-13-63	Trn		$7 \mathrm{m}$	40	Du			Lloyd A. Wolf	
					D	>20			Tm		200	9	Dr			do.	
		14	099	11-12-63	D, S	>20			Trn		200	9	Dr	1948		dn.	
					D		9.2	11-12-63	Tra		11m	40	Da			Willoughby Kline	
Ca.	80.	9	175	3- 1-61	Q	9			Trn	20	82	9	Dr	1948	do.	Rufus Waltz	

Table 4. Record of wells and springs-Continued

					17 ft.	/een 45												
	Remarks			P.	Most water enters at 117 ft.	Yielded 20 gpm between and 55 feet.								Ca.				
quality	Temperature (°F)		20	26			52											
er qu	Hq	6.5									6.8							
of water	Hardness as CaCO ₃ (grains per gallon)	00		9	-1		c1	NO	ro.	6	18	00	7	6	N	70		14
	Specific conductance (D*52 ts sodmorsim)	315		265	275		09	500	265	125	700	350	185	410	280	230		400
Field determinations	Date sampled	5-10-63		8- 5-63	8- 5-63		8- 7-63	10-11-63	7-25-63	7-25-63	7-25-63	7-25-63	7-29-63	8- 5-63	7-25-63	5-18-64		4-27-64
-	94U	D	Ω	D	D	D	Ω	Ω	D, S	D, S	D, S	D, S	Ω	9	D, S	D	Ω	D, S
	Heported yield (gpm)	1-		10	50	30		S.	12	12	12		10	œ	22			7
ter level	Depth below land Uepth below land	22.0	11.5	28.8	9	17	20.1		20						22.9	16.7	4.2	9.1
Static water level	Date measured	5-10-63	5-10-63	8- 5-63	4- ? -50	5-?-63	8- 7-63		11- ? -55						7-25-63	5-18-64	4-27-64	4-27-64
	19liupA	Tr	Trn	Trn	Tr	Trm	Tru	Trn	Tru	Trn	Trn	Trn	Trn	Trn	Trn	Trg	Trd	Trd
	Depth to bottom of casing (feet)	20		53	20	22			21	20	21			27	16			28
-	Total depth (feet)	75	19m	110	119	102	55m	100	62	192	88	127	102	122	131	43m	24m	86m
	Diameter of casing (inches)	9	40	9	9	9	9	9	9	9	9	9	9	9	9	09	40	9
u	Method of construction	Dr	Du	Dr	Dr	Dr	IJŗ	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Du	Da	Dr
	Date completed	1956		1963	1950	1963			1955		1962		1962	1963	1953			1958
	TollitCt	, do.		R. Myers' Sons, Inc.	do.	do.			R. Myers' Sons, Inc.	do.	do.	do.	do.	H. K. Honberger Sons	R. Myers' Sons, Inc.			Titus Sensenig
	19п.мО	do.	do.	J. Harlan Shelly	Paul Webber	Clayton Hess	Robert E. Suydan	Aaron Whitcomb	Homer Ginder	Roy Hess	Katie F. Shenk	George Greiner	Abner Hollinger	Edwin A. Moore	John Ebersole	James R. Hostetter	Marcus Martin	do.
	Location number	012-629	012-629	012-629	012-629	012-629	012-629	012-629	012-630	012-630	012-630	012-630	012-630	012-630	012-631	012-632	013-605	013-605
	Well number	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	408

409	eng-ero	013-bits Cedar Crest Moter			IJĽ	Q	142m		-њ пл	+0-17-1,	7.04	,		E0-17-E	717			
410	013-605	do.	R. D. Grant		Dr	9	100	84	Trn 1-	1- 2-58	22	10 C						Dd about 50 feet when bailed at 10 gpm.
411	013-605	Adam Halin	do.	1956	Dr	9	115	62	Tm 4-	4-27-56	35	01	o O	4-27-64	435	13		Dd about 55 feet when bailed at 10 gpm.
412	013-605	Howard Johnston's Restaurant	do.	1958	Dr	9	200	31	Trg 7-	7-31-58	38	94	O					Dd 40 feet after pumping 12 hours at 94 gpm.
413	013-606	Daniel II. Martin	A. W. Martin	1958	Dr	9	06		Trn			>30 E	D, S	4-27-64	340	8		
414	013-606	James Shober, Sr.	R. D. Grant	1959	D,	9	89		Trn 10-	10- 9-59	15	15 E	D. S	4-27-64	195			
415	013-606	R. D. Grant	do.	1955	Dr	9	99	32	Trn			32 I	Ω					
416	013-615	Evangelical United Brethren Church	do.	1961	Dr	9	9-fm	40	Trn 6-	6-15-63	4.6	10 R		6-15-63	245	6 7.1	51	Dd about 78 feet when bailed at 10 gpm.
417	013-616	Max Elser Jr. Estate	R. Myers' Sons, Inc.	1953	Dr	ç	137	, 04	Trn 7-	7- ? -53	05	>20 E	D, S					
418	919-610	Raymond Fidler		1935	Dr	9	92	. 04	Trn			>20 E	D 13	12- 9-63	370	7		Most water enters at 75 feet.
419	013-618	Helen Hinkle	A. W. Martin	1956	Dr	9	26		Trn			1	D 12	12- 6 63	220	ъ		
420	013-618	Ammon Hammer	R. Myers' Sons, Inc.	1956	Dr	9	99	. 23	Trn 12-	12- 9-63	19.3	30 E	D 15	12- 9-63	06	_		
421	013-619	Donald Steffy		1952	D,r	9	190	•	Trn 4-	. ? -63	œ	I	D, S 12	12- 6-63	225	T)		
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	013-619	C. Robert Snader	R. Myers' Sons, Inc.	1952),	9	92		Trn			4 U	_					
423	013-619	do.	do.	1954	Dr	9	94	[]	Trn			3 E	D					
42.1	013-620	Galen Eberley			Du 4	48	12m		Trn 12-	12- 5-63	8.6	T	D, S 15	12- 5-63	280	₹.		
425	013-620	Amos Sander			Du	8	30		Trn 4-	4- ? -63	24	I	Ω 15	12- 5-63	270	₹.		
426	013-620	L. W. Greenfield			Dr	9	150		Trn			I	D 15	12- 5-63	215	4		
427	013-620	Charles G. Keller			Dr	9	160		Trn 12-	12- 6-63	20	S		12- 6-63	365	9		
428	013-621	Richard Decker		1957	Dr	9	75		Tm			T	D 1	11-27-63	215	7		
429	013-621	Mervin W. Heisey			Du 3	36	13m		Trn 12-	. 5-63	9.8		D 15	12- 5-63	365	9		
430	013-621	Alvin Martin			Dr	9			Trn			-	D, S 15	12- 5-63	800	15		
																		71

Table 4. Record of wells and springs-Continued

	Remarks						Gasoline in well 11-27-63 from buried tank 150 feet away.						À.	Ca. Dd about 45 feet when bailed at 25 cm.	Most water enters near bottom.			1 1
quality	Temperature F)				55								26					
water o	Hq												6.5	6.9				
10	Hardness as CaCO ₃ (grains per gallon)	æ	70	೮	7	10	77	¢1		10	9		6	10	7	70	S	က
ninations	Specific conductance O°52 as solutionim)	400	320	165	255	420	225	105		275	340		425	400	350	280	290	220
Field determinations	Dalqanız ətr.U	12- 5-63	12- 5-63	11-27-63	11-27-63	11-27-63	11-27-63	11-27-63		11-27-63	11-27-63		5-23-63	5-24-63	10-22-63	11-13-63	11-13-63	11-14-63
	Use	D, S	S	\cap	So	D, S	D, S	Ω	U	D	n	S	s	_	Q	Ω	D, S	D, S
	Meported yield (mqg)		9	20		30	70	œ			20		>15	22	>16		65	15
ter level	Depth below land (1990)	11.0						30	25.3			11.3	15.5	22		6.6	9.2	
Static water level	Date measured	12- 5-63						19- 5-61	11-27-63			5-23-63	5-23-63	5- 2-57		11-13-63	11-13-63	
	19 liup A	Tm	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Tra	Trn	Trn	Trn	Tru	Trn	Trn	Trn
	Depth to bottom of casing (feet)		20	21		30	20	40					30	31			62	
İ	Total depth (feet)	25m	22	120	<50	31	55	09	25m	100	125	17m	113m	157	210	87	70	82
	Britano to 1910 (include)	\$	9	9	9	9	9	9	09	9	9	32	9	9	9	9	9	9
и	Method of construction	Du	Dr	Dr	Dr	Dr	Dr	Dr	Du	Dr	Dr	Du	Dr	Dr	Dr	Dr	Dr	Dr
	Date completed		1954	1962		1963	1958	1961		1962	1958			1957	1958		1959	: 1
	Driller	***	R. Myers' Sons, Inc.	do.		Samuel Kaylor	do.	do.			Samuel Kaylor			Kohl Bros. (M)	R. Myers' Sons, Inc.		Samuel Kaylor	***
	19Ц/10	Walter Schreiner	Carl R. Hess	John Oberholtzer	Elwood Bradley	Roy Groff	Rufus Fahnestock	George H. Haldeman	do.	Wayne Shenberger	Harry 1. Miller	Paul Heagy	do.	Roman Mosaic Tile Co., Inc.	O. N. McGee	Mark Wolgemuth	Earnest Weaver	Harvey W. Weaver
	Location number	013-621	013-621	013-622	013-622	013-622	013-623	013-623	013-623	013-623	013-623	013-624	013-624	013-624	013-625	013-625	013-625	013-625

Well number

437 438 439

070-010	noy Coluon	n. Myers John, 100.	1929	5	0	3	25	=	2	2	0	1	00-1-1-11		•			
013-625	013-625 Cleve Montgomery		1964	Dr	9	136		Trn			15	D						
013-625	Edwin Eby	R. Myers' Sons, Inc.	1964	Dr	9	110m	32	Trn	5- 4-64	22.3	9	D	5- 4-64	380	10	7.7	54	Ca.
013-626	Harry Leipold	do.	1960	Dr	9	80	21	Trn	5-24-63	21.5	10	D	5-24-64	320	œ	6.9	26	P.
013-626	Charles Buchy			s				Trn				D	10-22-63	92	c1			Flow about 1 gpm on 10-22-63.
013-626	W. L. Moyer			Du	48	23m		Trn	10-22-63	17.9		D	10-22-63	200	8			
013-628	John W. Fry			Du	40	19m		Trn	10-14-63	18.6		D	10-14-63	140	c1			
013-628	United Zion Church			Dr	9	110		Trg			>10	æ	3- 1-61	125	1	6.9		
013-630	Trinity Lutheran Church			Dr	9	100		Trg	8- 8-63	16.9	10	-	8- 8-63	240	9		54	P.
014-608	Chester Steuber	R. D. Grant	1963	Dr	9	92	42	Trn	11- ? -63	40	9	Ω	3-27-64	220	7			
014-608	Harry Roschoro	do.	1964	Dr	9	89	09	Trn	3-27-64	18.6	20	D						Dd 22 feet after bailing ½ hr. at 20 gpm.
014-608	Eugene Trostle	do.	1962	Dr	9	80	20	Trn	7- 2-62	18	>30	D, S	4- 7-64	450	12			Most water enters from sandstone at 50 and 70 feet.
014-609	Ralph S. Hain, Sr.			Du	36	19m		Trn	3-27-64	14.0		D	3-27-6-1	230	ক			
014-609	Mrs. Lewis Yingst			Du	09	23m		Trm	3-27-64	16.6		D	3-27-64	120	3			
014-609	1. E. Stauffer	A. W. Martin	1956	Dr	9	137	13	Trn	4- P-56	∞	10	D	4- 7-64	265	6			Most water enters at 137 feet.
014-609	Paul Schell	R. D. Grant	1960	Dr	9	102	69	Trn	4- 7-64	18.4	10	D	4- 7-64	195	ນາ			
014-610	W. W. Gerhart	. do.	1950	Dr	9	64	27	Trn			>20	D	3-25-64	380	10			
014-610	Shoeneck Elementary School	Kohl Bros. (M)		Dr	9	140	20	Trn	6-17-55	45	40	=	3-26-64	350	10			Ca. 10-in. hole to 50 feet; grouted with cement.
014-610	Lester Pannebecker		1945	Dr	9	100	20	Tm			>20	D	3-26-64	250	ro.			Most water enters at 95 feet.
014-610	Rohert Brehn	R. Myers' Sons, Inc.		Dr	9	65		Trn			œ	D	3-27-64	220	4			
014-610	Rufus Bollinger	do.	1959	Dr	9	144	09	Trn	3-27-64	20.7	8	D	3-27-64	290	ıΩ			
014-610	014-610 Paul Dinger	R. D. Grant	1952	Dr	IO.	82	32	Tm	7- ? -63	20	24	D	3-27-64	155	3			Dd about 20 feet after bailing ½ hr. at 24 gpm.

D 11-14-63

6- 7-59

40 Tm

R. Myers' Sons, Inc. 1959 Dr

013-625 Roy Gordon

46.1

Table 4. Record of wells and springs-Continued

		Remarks	Dd about 30 feet after baling 1½ hr. at 20 gpm.	Dd about 10 feet after bailing ½ hr. at 30 gpm.				P., Dd 93 feet after pumping 24 hrs. at 110 gpm.	P., Ca. Dd 110 feet after pumping 24 hrs. at 110 gpm.			Dd about 30 feet after bailing ^{1/2} hr. at 20 gpm.							
	quality	Temperature (°F)											52						
	water q	Hq																	
	of w	Hardness as CaCO ₃ (grains per gallon)	11		9			9	7	10	4		\mathcal{D}	က		4	œ	9	
	ninations	Specific conductance (O°52 ts sodmoraim)	510		275			290	345	220	185		222	160		205	495	360	
Ì	Field determinations	Date sampled	3-27-64		3-24-64			3-24-64	3-24-64	3-25-64	3-26-64		3-24-64	3-24-64		3-25-64	3-25-64	3-25-64	
	ľ	Use	D	Q	D		D, S	O	C	D	D	C	D	Ω		D	D, S	D	D
		Reported yield (gpm)	20	30	6		>20	110	110	>20	7	20	6	09				>35	
	Static water level	Depth below land (feet)	55	20	52			7	15.0	16.0		18	7.7	15.9	17.0	17.0	10.4	Flows	21.0
	Static wa	Date measured	6- 9-62	12- 4-63	4- ? -56			7-11-50	3-24-64	3-25-64		6- ? -59	3-24-64	3-24-64	3-25-64	3-25-64	3-25-64		3-23-64
		Aquifer	Tru	Tm	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn	Trn
		Depth to bottom of casing (feet)	84	80	43		24	47	36	40	57.	49	55					16	÷
		Total depth (feet)	100	117	68	18	71	151	252	06	65	63	68m	<100	25m	71m	17m	40	34m
		Diameter of easing (inches)	9	9	9		9	9	9	9	9	9	9	9	09	9		9	36
	u	Method of construction	Dr	Dr	Dr	Du	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Dr	Du	Dr	Du	Dr	Du
		Datel completed	1962	1963	1956		1949	1950	1950	1949	1960	1959	1959					1945	
		Driller	do.	do.	do.		R. D. Grant	Kohl Bros. (H)	do.	R. D. Grant		R. D. Grant	do						:
		тэпwО	Elmer Yost	Frank Unser	Mahlon Eberly	Harvey Eberly	do.	Gulf Oil Corp.	do.	Charles A. Wealand	Levi Eberly	Walter Sweigert	Perry Copenhaver	Clyde Burkholder	Robert Loose	. do.	Ralph Wingenroth	John F. Martin	Walter Henly
		Location number	014-610	014-610	014-611	014-611	014-611	014-611	014-611	014-611	014-611	014-611	014-612	014-612	014-612	014-612	014-612	014-612	014-613

471 472 472

		C1		155	12- 9-63	Ω		32.0	12- 9-63	Tm		38m	48	Du			J. D. Miller	014-616	504
Flow about 3 gpm on 6-6-63.	1 52	5 6.1		215	6- 6-63	D, S				Tm				$_{\mathrm{pp}}$			Jacob Borry	014-616	503
Water enters at 180 feet.						D	ນ	42.1	5-27-63	Trn	22	218	9	Dr	1962	do.	Lloyd Miller	014-616	502
	,,,	6 6.5		220	5-27-63	Q	1	41	10-17-62	Trn	22	135	9	Dr	1962	do	Vernon Bucher	014-616	501
	_	3 6.1		160	5-27-63	D	22	18	12- ? -61	Trn	52	82	9	Dr	1961	H. K. Honberger Sons	Fred Wiegand	014-616	500
						С	28			Trg	54	170	9	Dr	1962	do.	Ephrata Diamond Spring Water Co.	014-615	499
		_	11	475	3-27-64	D	1			Trn		<100	9	Dr	1952	R. Myers' Sons, Inc.		014-615	498
		~	9	355	3-23-64	Q	×	30		Tm	4	100	9	Dr	1950		Grant Schwendemann	014-615	497
		10	20	302	12-10-63	D	30			Trn	30	82	9	Dr	1958		Maurice Carter	014-615	496
Most water enters at 92 feet.			1	440	12-10-63	D, S	>30	20	10- 9-57	Trn	16	92	9	Dr	1957	R. D. Grant	Earl F. Smoker	014-615	495
			3	150	12-10-63	D	20	30	7- ? -63	Trn	51	93	9	Dr	1963	R. Myers' Sons, Inc.	Leon Martin	014-615	494
			8	350	12-10-63	D	10	41	7- 9-61	Trn	27	59	9	Dr	1957		William Womer	014-615	493
Ca.		6.1	11	475	6- 6-63	D	15	38	11- 9 -61	Trn	92	100	9	Dr	1961	R. Myers' Sons, Inc.	James Steininger	014-616	492
		3. 3.		440	6- 6-63	Q		8.7	6- 6-63	Tm		13m	40	Du			Howard Farlow	014-615	491
casonne in wen Mar. 1904. In well since tank 60 feet away leaked in Feb. 1963.						Ω	10			Trn		80	9	Dr	1920		Ralph Bingeman	014-615	490
1 1004 J. H. 1004 J.			ນ	240	3-23-64	D, S				Trn		20	9	D			Cilbert Paul	014-614	489
			8	155	3-23-64	Q	61			Trn	21	170	9	D	1963	do.	Daniel E. Wenger	014-614	488
			61	180	12-10-63	D	6	6,0	12-10-63	Trn	17	20	9	Dr	1959	do.	Dean Grosteffon	014-614	487
			61	145	12-10-63	D	12			Trn	35	65	9	Dr	1963	R. Myers' Sons, Inc.	Stephen Grosteffon	014-614	486
			9	255	3-24-64	D				Tm		20	9	Dr			A. N. Onemus	014-613	485
			ro.	240	3-23-64	D	>20	6.0	3-23-64	Tru	99	19	9	Ď	1960	Titus Sensenig	Clayton Zimmerman	014-613	484
											ı	-	>	;				212 212	5

Table 4. Record of wells and springs-Continued

	Нетагкs	-						Ca.	Most water enters at 100 feet.	***************************************
quality	Temperature (°F)		51							
	Hq		6.1					6.3		
of water	Hardness as CaCO ₃ (grains per gallon)	3	7	10	6/1	က	ro	4	c1	
nations	Specific conductance (D°52 ts sodmoroim)	160	395	290	115	155	215	225	85	
Field determinations	Date sampled	12- 9-63	6- 6-63	12- 9-63	12- 6-63	12- 9-63	12- 9-63	3- 1-61	12-5-63	
	əsN	D	D	D	D	Q	D	D	Q	D
	Reported yield (gpm)	9		30	>15	12	īO		22	, N
ter level	Depth below land surface (feet)	30	11.9		4	65.8			15	
Static water level	Date measured	10. 9 -58	6- 6-63		8-15-63	12- 9-63			10- 9 -56	
	Aquifer	Trn	Trn	Tra	Trn	Trg	Trg	Trg	Trg	Trg
	Depth to bottom of casing (feet)	35			62				30	
-	Total depth (feet)	85	19m	200	75	128	06	96	100	235
	Diameter of casing (tendoni)	9	40	9	9	9	9	9	9	9
u	Method of constructio	Dr	$D_{\mathbf{u}}$	Dr	Dr	Dr	Dr	Dr	Dr	Dr
	Date completed	1958		1961	1960	1960	1960	1938	1956	1953
	19llinG			R. Myers' Sons, Inc.	H. K. Honberger Sons	do.	do.			
	тэпжО.	Ceorge W. Carvell	C. D. Coleman Estate	do.	W. J. Packard	James D. Snader	J. R. Ruhl	A. M. Yoder	Avid Sherpf	014-620 Robert Claus
	Location number	014-616	014-617	014-617	014-619	014-619	014-619	014-620	014-620	014-620
	Well number	505	206	202	208	209	510	511	512	513

Summary of chemical analyses of ground water in the New Oxtora rormanion. Table 5.

	Hq
	Specific conduct- ance (micromhos 25°C)
	Non- carbonate
	Calcium, g H Calcium, magnesium
	beviossib to mus sbilos
	Alkyl benzene
	Nitrate (NO ₃)
	Fluoride (T)
ated]	Chloride (Cl)
s indic	Sulfate (\$OS)
Results in parts per million except as indicated	Bicarbonate (HCO ₃)
	Carbonate (CO)
	Totassium (X)
	muibo?
	muisəngaM (BM)
esults	Calcium (Ga)
[Re	Manganese (Mn)
	Iron (Fe)
	Silica (SiO.2)
	Temperature
	Depth of well (1991)
	Date of collection

Lancaster County

Well or spring number

Color

	-	0	וינ	4	(2)	50	0	1 73	4	· co	J.C) JC	70	(C)	l က	4	က	c	(C)		က	n	CC)) JC) J.) LC) (C	, —
	6.2	6.9	10	7.	ν. ∞	6.7	7.7	7.6	7.7	7.1	7.2	7.4	7.7	7.3	7.7	7.0	7.	6.9	6.0	6.2	6.9	7.7	7.7	α,	9	7	6.4	5.5
	251	213	331	441	156	794	358	269	478	$\frac{219}{219}$	321	75	508	399	305	584	250	165	317	166	331	402	367	347	349	333	449	223
	41	30	14	62	56	5	40	-	64	21	32	0	65	49	23	м 2	12	က	85	56	53	63	64		55	37	124	23
	92	72	38	526	44	330	54	07	240	98	140	26	227	175	139	274	107	64	001	26	135	164	174	991	20	38	173	87
				•		•		_	•	_						_			_	_					_		270	
				- ,		•	- '		- '				•			-											.18	
		_																										
	1 1			-					-		-										-						84	
	0.1	0.	7	0.	0.	0.	0.	7	0.	0.	0.	Τ.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	16	9.4	14	8.6	7.4	39	I	6.0	8.6	2.9	9.3	2.1	15	7. ت	ro ro	23	5.3	3.2	18	5.5 5.5	8.4	17	9.4	3.8	7.2	26	32	10
	8.2	14	22	22	21	0.	45	24	26	18	12	4.0	61	67.0	8.4	31	10	10	37	56	32	49	23	14	20	20	39	13
																											09	
•	0	0	0	· •	0	·· 0	0	0	· •	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.8	1.0	1.2	0.	1.5	1.5	œ	1.1	0.	5.	1.5	1.4	0.	1.3	oj	0.	1.2	οi	0,4	2 7	رن برن	0.	οj	νi	0.	1.5	20	2.3
																											15	
																											8.1	
	27	20	48	61	9.6	92	52	30	84	27	42	0.9	73	09	46	06	35	19	ದ್ದ	15	œ.	20	26	45	48.	43	26	23
	0.03	60:	.12	8	0.0	6.5 5	00.	.03	.01	00.	8	.01	.02	.03	00.	.0	00.	0.	0.	.07	0.	.01	8.	24	.0	00.	.03	00.
	0.05	.18	.12	0.	.19	12	.08	.14	0.	90:	.15	.19	.04	.07	60.	52	.04	.04	.04	.12	.I3	.04	80:	33	.03		.20	.10
	21	19	16	ν. ∞	16	17	17	21	7.3		17	16	12	56	<u>1</u> 8	18	15	<u>∞</u> ;	12	1 <u>6</u>	15	16	16	13	5.5	15	5.9	20
	:		53.5	53		49	56	:	53	:	:1	52.5	:	:	:	:	:		53	: 1	50.5	:		54	:	:	:	:
	200	318	305	$\frac{102}{2}$	82		200	200	$\frac{135}{2}$	74	185	300	တ္တ	200	$\frac{140}{1}$	$\frac{186}{2}$	08 9	40 !	17	20 C	28,	122	156	110	140	252	100 §	96
	2-27-61	3-4-63	6- 4-63	5- 1-64	1-31-63	4-30-63	5-17-63	7-19-63	5- 5-64	5 - 13 - 64	6- 7-63	6-25-63	5.1-64	$\frac{2-27-61}{2}$	5-14-64	5-13-64	5-18-64	5-16-64	5-23-63	3- 1-61 3- 1-61	5- 1-64 7-17-64	5-15-64	5-24-63	5- 4-64	3-26-64	3-24-64	6 -6-62	3- 1-61

^a Sanitary landfill 1,000 feet upslope.

^b Gettysburg Formation

Table 6. Sample logs of wells in the New Oxford Formation, Lancaster County.

Well Ln-88

Owner: U.S. Geological Survey Driller: C. H. Eichelberger

Static water-level: 20.5 feet below land surface, 6-24-63

Principal water-yielding zones: 96 and 163 feet

Samples collected and described by H. E. Johnston, U.S. Geological Survey

bamples confected and described by 11. 2. joinston, o.e. configuration	
Description	Depth (feet)
Sand, very fine-grained, silty, yellowish-brown	0 — 10
Gravel, granule, dark-yellowish-brown; 6-inch boulder at 13 feet	10 — 15
Gravel, pebble, dark-yellowish-brown	15 — 20
Siltstone, slightly micaceous, grayish-red, soft	20 — 25
Siltstone, slightly micaceous, calcareous, reddish-brown, soft	25 — 37
Sandstone, very fine-grained, slightly micaceous, gray	37 — 45
Siltstone, slightly micaceous, calcareous, grayish-red	45 - 50
Siltstone, calcareous, dark-reddish-brown	50 — 62
Sandstone, very fine-grained, gray	62 - 64
Sandstone, very fine-grained, gray; some dark-gray siltstone	64 - 70
Sandstone, very fine-grained, micaceous, gray; muddy cuttings at 70	
feet	70 - 75
Sandstone, fine-grained, quartzose, micaceous, gray	75 - 80
Sandstone, fine-grained, quartzose, micaceous, gray; slightly limonite	
stained	80 — 95
Sandstone, fine-grained, gray; some very fine-grained quartzose sand-	
stone and black carbonaceous shale (water-yielding zone 1-foot	
thick at 96 feet)	95 - 103
Shale, calcareous, grayish-black	103 - 105
Siltstone, micaceous, grayish-red	105 - 107
Sandstone, fine-grained, gray	107 - 110
Sandstone, very fine-grained, quartzose, micaceous, gray	110 - 113
Limestone, dark-gray	113 — 114
Shale, grayish-red	114 - 115
Siltstone, micaceous, grayish-red; some very fine-grained gray sand-	
stone	115 - 130
Sandstone, very fine-grained, quartzose, micaceous, gray, very hard	130 - 150
Sandstone, fine-grained, quartzose, gray; slightly limonite stained at	
153 feet	150 - 155
Sandstone, fine-grained, slightly micaceous	155 - 160
Sandstone, fine- to medium-grained, quartzose, slightly micaceous with	
scattered coarse quartz grains, very light-gray	160 - 163
Sandstone, fine-grained, quartzose, very light-gray; interbedded gray	
siltstone (water-yielding zone 1-foot thick at 163 feet)	163 - 178
Siltstone, gray	178 - 185
Sandstone, very fine-grained, slightly micaceous, greenish-gray	185 - 199
Sandstone, fine-grained, quartzose, slightly micaceous, gray	199 - 215
Sandstone, medium-grained, quartzose, gray, with a few coarse quartz	015 000
grains	215 - 220
Sandstone, fine- to medium-grained, quartzose, very light-gray	220 — 225
Sandstone, fine-grained, quartzose, greenish-gray	225 - 230
Sandstone, medium- to coarse-grained, quartzose	230 - 235
Siltstone, siliceous, slightly micaceous, greenish-gray	235 - 240

Table 6. Sample logs—Continued

Well Ln-88—Continued

Siltstone, grayish-red	240 - 248
Sandstone, very fine-grained, slightly micaceous, greenish-gray	248 - 268
Sandstone, fine-grained, quartzose, slightly micaceous, greenish-gray;	
some greenish-gray siliceous siltstone	
Siltstone, slightly micaceous, grayish-red	295 — 305

Well Ln-265

Owner: Elizabethtown Water Co. Driller: Kohl Bros. (Harrisburg)

Static water level: 55 feet below land surface, 4-29-54

Principal water-yielding zones: One-third of the yield was obtained above 500 feet and two-thirds of the yield was obtained between 500 and 700 feet Samples described by R. M. Foose and G. M. Cresswell, formerly of Franklin and Marshall College

Warshan Gonege	
Description	Depth (feet)
Arkose, fine- to medium grained, tan; abundant muscovite	1 — 25
Arkose, fine- to medium-grained, bluish-gray to greenish-gray; abundant muscovite	25 — 50
grained, gray, soft; arkose, fine-grained, buff gray; abundant mica Arkose, medium-grained, greenish-gray, soft; some chlorite; arkose,	50 — 75
fine- to medium-grained, tan; some muscovite	75 — 110
Arkose, fine- to medium-grained, gray; arkose, fine-grained, tan; abundant muscovite	110 — 120
Arkose, fine- to medium-grained, grayish-white; some chlorite; arkose, fine-grained, tan; abundant muscovite	120 — 130
Arkose, fine-grained, gray to dark-gray; abundant biotite; arkose, fine-grained, dark-red	130 — 150
Siltstone, red; siltstone, gray; arkose, fine-grained, greenish-gray	150 - 170 $170 - 190$
Arkose, fine- to medium-grained, dirty-white, micaceous	190 — 210
Sandstone, arkosic, fine- to medium-grained, quartzose, dirty-white to gray; abundant euhedral pyrite	210 — 230
Arkose, fine- to medium-grained, dirty-white, micaceous, abundant quartz; arkose, fine-grained, gray	230 — 240
Siltstone, dark-rcd; abundant mica; arkose, fine-grained, grcenish-gray; abundant mica	240 — 250
Arkose, fine-grained, gray, soft	250 — 260
calcareous	260 - 270 $270 - 280$
Siltstone, dark-red; siltstone, gray	280 - 290
Sandstone, fine-grained, grayish-green; siltstone, dark-red soft siltstone Sandstone, fine-grained, light-buff, soft; some dark-red soft siltstone	290 - 300 $300 - 320$
Sandstone, fine-grained, grayish-green to dark-gray, somewhat calcarcous, fairly hard	320 — 330

Table 6. Sample logs—Continued

Well Ln-265—Continued

Description	Depth (feet)
Sandstone, fine-grained, grayish-green to dark-gray, somewhat calcar-	
eous, fairly hard; siltstone, buff, soft; siltstone, dark-red	330 - 340
Sandstone, fine-grained, grayish-green to gray; siltstone, dark-red	340 - 350
Arkose, fine-grained, dirty-white to greenish-gray, somewhat calcar-	070 070
eous, fairly hard	350 — 370
Sandstone, fine-grained, dirty-white, soft, somewhat calcareous; sand-	050 000
stone, fine-grained, grayish-green	370 — 380
Sandstone, arkosic, fine-grained, dirty-white	380 — 390
Sandstone, fine-grained, dirty-white to greenish-gray, slightly calcar-	390 — 400
eous, fairly hard; siltstone, buff, soft	400 - 410
Sandstone, fine-grained, gray, calcareous, fairly hard	400 - 410 $410 - 420$
Siltstone, gray; arkose, fine-grained, dirty-white to greenish-gray,	410 — 420
calcareous	420 — 430
Siltstone, gray; arkose, fine-grained, dirty-white	430 — 440
Siltstone, gray; arkose, fine-grained, dirty-white, calcareous	440 — 450
Arkose, fine-grained, dirty-white, calcareous	450 - 460
Siltstone, gray, slightly calcareous; siltstone, dark-red; arkose, fine-	100
grained, dirty-white, calcareous; shale, bluish-gray; some calcite	460 - 470
Siltstone, dark-red; siltstone, gray; arkose, fine-grained, dirty-white	
to grcenish-gray, calcareous	470 - 480
Arkose, fine-grained, dirty-white to greenish-gray, slightly calcareous	480 - 490
Arkose, fine-grained, dirty-white to gray, calcareous; siltstone, dark-	
red	490 - 500
Siltstone and shale, dark-red	500 — 530
Sandstone, arkosic, fine-grained, grayish-green	530 — 580
Sandstone, quartzose, fine- to medium-grained, light-gray to white,	
slightly calcarcous; some pyrite	580 - 600
Siltstone, dark-red	600 - 620
Sandstone, arkosic, fine-grained, greenish-white, calcareous, micaceous	620 - 630
Arkose, fine-grained, dirty-white, calcareous; some muscovite; arkose,	000 040
fine-grained, grayish-green; some mica	630 — 640
Arkose, very fine-grained, dark-red, very calcareous; some mica	640 — 650
Arkose, very fine-grained, dark-red; arkose, fine-grained, gray, calcar-	650 660
eous	650 — 660 660 — 670
Arkose, fine-grained, gray, calcareous; some muscovite	670 - 705
Arkose, fine-grained, greenish-gray, calcareous; abundant mica	010 — 100

TO STATE OF THE ST

Sedimentary Rocks, Undivided Includes limestone, dolomite, shale, and phyllite

Gettysburg Formation

Red to brown, fine, to coarse-grauted sandstone with red shale interbeds, interbedded shale and limestone conflorerate; and quarts
pubble conflorerate.

Tollow .

