

Seismological software developments at LMU Munich: Python & ObsPy

Robert Barsch, Tobias Megies

Department für Geo- and Umweltwissenschaften (Geophysik) Ludwig-Maximilians-Universität München

2011-03-08

SeisHub

Native, document-centric XML database

- RESTful Web service (HTTP, HTTPS),
- Standard relational database as back-end
- Both worlds: SQL for querying and manipulating data and any standard connected to XML, e.g. XSLT or XSD
- Not restricted to seismology at all

Extended to a "classical" seismic database

- Index of local, file-based waveform archive (MiniSEED, GSE2, SAC, ...)
 - ► Meta Data: Gaps, overlaps, quality and timing information
 - Waveform previews (30s)
- XML resource types for handling inventory data (XML-SEED) and events (QuakeML based)
- Remote waveforms access (ArcLink)

SeisHub: Technical Details

- · Python-based, standalone web service
- Platform independent, open source (GPL)
- Implementation of various web protocols, like HTTP, SSH, SFTP
- Plug-in architecture: Dynamic discovering and loading of modules and support for Python .egg files
- Development remarks:
 - ► Test-driven development proven software, so far ⇒ ca. 250 test cases
 - Well-documented source code
 - Subversion
 - Trac: ticket system and project wiki

SeisHub: Database Design

Data storage

- Primary data ⇒ file system
 - ► Continuous waveform archive (MiniSEED, GSE2, SAC ...)
 - ▶ Other data via (GeoTIFF, GPS time series, etc.) file system
- Meta Data ⇒ Web service on top of a XML/relational database hybrid
 - ▶ Data is packed into a XML document ⇒ Data structure is within the document, no need for a predefined database schema
 - XML resources are archived into a BLOB field
 - Only searchable values are indexed
 - Pointers to primary data

SeisHub: Database Design

Data access

- HTTP/HTTPS: REST web service
 - XML documents have a fixed resource identifier (URL's)
 - ▶ Data transformation via XML Style Sheets on request (?output=...)
 - Data validation via Schema (XML Schema, RelaxNG, Schematron) on resource upload
 - Document properties like related meta data or indexes
- SFTP: XML documents mapped into a virtual file system

SeisHub: Database Design

- Indexing
 - Generated using a XPath expression, type and additional options
 - ► Simple creation + reindexing via web interface
 - ► Various build-in types (datetime, bool, numeric, double, float, etc..)
 - ► ProcessorIndex: custom processing
- Searching
 - XPath-like query on XML catalog object (restricted to indexes)
 - SQL on database object
- Mapper: predefined queries & output format bound to an fixed URL
- FileSystemResource: integrates a file system directory (read only)

SeisHub: Advantages

Technical:

- Sharing data over the network, but no firewall problems (HTTP / HTTPS)
- · License free, open source, internet standards
- Platform independent
- Most basic client is a standard browser
- XML:
 - Data validation on upload (XML schemas)
 - Data transformation on request (XML stylesheets)
- Querying: SQL or XPath

Scientist:

- May modify there data provided as XML document at any time without corrupting the underlying database
- May dynamically add or delete search indexes, schemas and stylesheets

SeisHub: Disadvantages

Technical:

- Slower than "common" solutions
 - XML parsing during validation and indexing
 - Data overhead (XML verbosity)
- Infrastructure

Scientist:

• Seismologist != IT nerds