Deposition and X-RAY
Characterization of
Oxide Thin Films for
Green Energy
Application

Nikolas Vitaliti

Supervised by Prof. Simone Sanna

Fuel Cells

- Energy conversion with a lower-to-zero emission
- Higher efficiency, exceeding 60%

Solid Oxide Fuel Cell

Solid Oxide Electrolysis Cell

Micro-SOFCs

State-of-the-art Micro-SOFC

Nanometric thickness

 Operating temperature decrease without performance decrease

Usable as portable power generators

Micro-SOFC Schematic View

Materials Used

Complex Oxides

- Compounds containing Oxygen and at least 2 other elements
- Wide variety of magnetic and electronic properties
- > Used as electrolytes, anodes and cathodes of the fuel cells

Deposition process:

Image of the cross section taken from a FE-SEM micrograph

Strontium Titanate

Strontium Aluminate

Samarium Doped Ceria

Strontium Titanate (STO)

• Foundation substrate for the process

Induces epitaxial growth of film (SDC)

Perovskyte Oxide

Body Centered Cubic (BCC)

STO Structure

BCC Structure

Strontium Aluminate (SAO)

Deposited onto STO before final deposition

Sacrificial Salt Layer

Improves film deposition

Allows final film detachment

Schematic view of the 3 layers

Final detachment

Samarium Doped Ceria (SDC)

- Final thin film deposition
- Samarium doping grants higher ionic conductivity
- Fluorite
- Face Centered Cubic (FCC)

Why Samarium Doped Ceria?

- Catalytic properites/ Ionic conductivity
- Carbon-deposition suppression (Similar reaction of water-splitting)

SDC Structure

FCC Structure

Pulsed Laser Deposition

- Physical Vapor Deposition
- High power laser used to vaporize target of the interested material
- Plasma plume

Interior of one of the vacuum chambers at the PLD lab.

Reflection High Energy Electron Diffraction (RHEED)

- Pattern provides various kind of informations
- Practicality: Surface Structure
- Electron interference according to atoms position

Picture representing

the 4 different patterns

created by the diffracted

electrons

a) STO: substrate before film deposition

sDC: not yet uniform film pattern

b) SAO: sacrificial layer pattern

d) SDC: uniform film pattern

X-Ray detector X-Ray source X-ray incident X-ray diffracted

X-Ray diffraction (XRD)

Technique and process

Experimental analysis

Rocking Curve

Conclusions

2θ

