Épreuve: MATHÉMATIQUES II

Filière MP

Notations

- Dans tout le problème n est un entier supérieur à 2, \mathcal{M}_n est l'ensemble des matrices carrées à n lignes, à coefficients réels.
- On note $(E_{ij}, 1 \le i \le n, 1 \le j \le n)$ la base canonique de \mathcal{M}_n . Ainsi, pour tout couple (i, j) d'entiers compris entre 1 et n, tous les coefficients de la matrice E_{ij} sont nuls sauf le coefficient d'indices (i, j) qui vaut 1. On rappelle le résultat suivant :

$$\forall i, j, k, l \in \{1, ..., n\}, E_{ij}E_{kl} = \delta_{jk}E_{il}$$

où $\delta_{jk} = 1$ si j = k et 0 sinon.

- Pour tout couple (p,q) d'entiers strictement positifs, on note $\mathcal{M}_{p,q}$ l'espace vectoriel des matrices à p lignes et q colonnes, à coefficients réels.
- Pour toute matrice M de $\mathcal{M}_{p,q}$, on note tM sa matrice transposée.
- L'espace \mathbb{R}^n est identifié à l'espace $\mathcal{M}_{n,1}$. On note $\mathcal{B} = (\mathbf{e_1}, ..., \mathbf{e_n})$ la base canonique de \mathbb{R}^n . Ainsi, pour tout entier k compris entre 1 et n, $\mathbf{e_k} = {}^t(0, ..., 0, 1, 0..., 0)$ où 1 est en $k^{\text{ième}}$ position.

On munit \mathbb{R}^n de sa structure euclidienne canonique.

Pour tout couple (\mathbf{u}, \mathbf{v}) de vecteurs de \mathbb{R}^n , $\mathbf{u} = t(u_1, ..., u_n)$ et $\mathbf{v} = t(v_1, ..., v_n)$,

on note
$$\langle \mathbf{u}, \mathbf{v} \rangle = {}^t \mathbf{u}.\mathbf{v} = \sum_{k=1}^n u_k v_k$$
 leur produit scalaire.

• Pour tout couple d'entiers p, q tels que $p \leq q$, on note :

$$[[p,q]] = \{k \in \mathbb{N}, p \leqslant k \leqslant q\}.$$

• Étant donné ${}^t(\alpha_1, \alpha_2,, \alpha_n) \in \mathbb{R}^n$, on note $D = \operatorname{diag}(\alpha_1, \alpha_2,, \alpha_n) \in \mathcal{M}_n$ la matrice diagonale telle que, pour tout i de [[1, n]], $d_{ii} = \alpha_i$. On note $I_n = \operatorname{diag}(1, 1,, 1)$ la matrice de l'identité.

Soit $A = [a_{ij}]_{1 \leq i,j \leq n} \in \mathcal{M}_n$. On considère le système linéaire

$$A\mathbf{u} = \mathbf{w},\tag{1}$$

où $\mathbf{w} = {}^t(w_1, ..., w_n) \in \mathbb{R}^n$ est donné, et $\mathbf{u} = {}^t(u_1, ..., u_n)$ est l'inconnue. L'objet du problème est l'étude de quelques méthodes de résolution de ce système linéaire. On

rappelle que
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Partie I-Méthode de Gauss et factorisation

Le but de cette partie est de représenter matriciellement la méthode de Gauss pour la résolution du système (1).

On note $\mathcal{TS}_n \subset \mathcal{M}_n$ l'ensemble des matrices $M = [m_{ij}]_{1 \leq i,j \leq n}$ triangulaires supérieures (c'est-à-dire $m_{ij} = 0$ pour i > j) et $\mathcal{TI}_n \subset \mathcal{M}_n$ l'ensemble des matrice triangulaires inférieures à diagonale unité (c'est-à-dire $m_{ii} = 1$ et $m_{ij} = 0$ pour i < j). Dans toute cette partie, on suppose que $\det(A) \neq 0$, de sorte que le système

(1) admette une unique solution $\mathbf{u} = {}^t(u_1, ..., u_n) \in \mathbb{R}^n$.

I.A - Résolution d'un système triangulaire

On suppose dans cette question que $A \in \mathcal{TS}_n$.

I.A.1) Calculer u_n puis pour $k \in [[1, n-1]]$ exprimer u_{n-k} en fonction de $u_n, u_{n-1}, ..., u_{n-k+1}$. Écrire l'algorithme de résolution du système (1).

I.A.2) Exprimer en fonction de n le nombre d'additions, de multiplications et de divisions nécessaires à la résolution du système (1).

I.B - Matrices d'élimination de Gauss

La matrice A de \mathcal{M}_n est de nouveau quelconque avec det $A \neq 0$.

Étant donné $M = [m_{ij}]_{1 \leq i,j \leq n} \in \mathcal{M}_n$, on note pour tout entier q de [[1,n]], $\Delta_q(M)$ la sous-matrice de M définie par $\Delta_q(M) = [m_{ij}]_{1 \leq i,j \leq q}$ élément de \mathcal{M}_q , et on note $D_q(M) = \det \Delta_q(M)$ $(D_1(M),...,D_n(M)$ sont appelés les mineurs principaux de M).

Par ailleurs, on note $L_i(M)$ le $i^{\text{ième}}$ vecteur ligne de la matrice M et défini par $L_i(M) = (m_{i1}, m_{i2}, ..., m_{in})$. On note aussi $C_j(M)$ le $j^{\text{ième}}$ vecteur colonne de M défini par $C_j(M) = {}^t(m_{1j}, m_{2j}, ..., m_{nj})$. On dira aussi dans la suite les lignes L_i de M et les colonnes C_j de M.

I.B.1) Soient M une matrice de \mathcal{M}_n et P = MA. Exprimer, pour tout entier q de $[[1, n]], L_q(P)$ en fonction des lignes $L_i(A)$ de la matrice A.

(On pourra, si l'on veut, utiliser la décomposition de $L_q(P)$ sous la forme $\sum_{j=1}^n p_{qj} E_{qj}$ avec $P = (p_{ij})_{1 \leq i,j \leq n}$).

MATHÉMATIQUES II Filière MP

I.B.2) Pour un entier k de [[1, n-1]] et un vecteur $\boldsymbol{\beta} = {}^t(\beta_{k+1}, ..., \beta_n) \in \mathbb{R}^{n-k}$, on note $F(k, \boldsymbol{\beta})$ la matrice de \mathcal{M}_n qui réalise par le produit à gauche $P = F(k, \boldsymbol{\beta})A$ les combinaisons linéaires de lignes suivantes, en notant pour simplifier $L_i = L_i(A)$ et $L_i' = L_i(P)$:

$$\forall i \in [[1, k]], \quad L'_i = L_i \quad \text{et} \quad \forall i \in [[k+1, n]], \quad L'_i = L_i + \beta_i L_k.$$
 (2)

- a) Montrer que $F(k, \boldsymbol{\beta})^{-1} = F(k, -\boldsymbol{\beta})$.
- b) Montrer que si $P = F(k, \beta)A$ on a :

$$\forall q \in [[1, n]], \quad D_q(P) = D_q(A).$$

c) Déterminer les coefficients ϵ_{ij} de $F(k,\beta)$ pour tout couple (i,j) d'entiers de $[[1,n]] \times [[1,n]]$. Montrer que $F(k,\beta) \in \mathcal{TI}_n$.

I.B.3)

- a) Étant donnée une matrice $M = [m_{ij}]_{1 \leq i,j \leq n}$ de \mathcal{M}_n , exprimer les vecteurs colonnes C'_i du produit matriciel $MF(k,\beta)$ en fonction des colonnes C_j de M.
- b) Soit q un entier de [[1, n]] et pour tout entier k de [[1, q]], $\beta_k = {}^t(\beta_{k+1,k}, ..., \beta_{n,k})$ un vecteur de \mathbb{R}^{n-k} . On considère la matrice produit

$$P_q = F(1, \beta_1).F(2, \beta_2)...F(q, \beta_q) = \prod_{k=1}^q F(k, \beta_k).$$
 (3)

On note C_j^q les vecteurs colonnes de la matrice P_q et pour tout entier k de [[1,q]], $\mathbf{b_k} = {}^t(0,...,0,1,\beta_{k+1,k},...,\beta_{n,k}) \in \mathbb{R}^n$.

Montrer par récurrence sur q que :

$$\forall j \in [[q+1, n]], \quad C_j^q = e_j \quad \text{et} \quad \forall j \in [[1, q]], \quad C_j^q = b_j.$$

En déduire que P_q appartient à \mathcal{II}_n et que $P_{n-1} = [\mathbf{b_1}, ..., \mathbf{b_{n-1}}, \mathbf{e_n}]$.

I.C - Factorisation de A

Dans cette question, on suppose que pour chaque $k \in [[1, n]], \Delta_k(A)$ est inversible. On note $A_1 = A = [a_{ij}^1]_{1 \le i,j \le n}$ la matrice initiale.

I.C.1) Montrer que $a_{11}^1 \neq 0$. Déterminer $\beta_1 = {}^t(\beta_{21},....,\beta_{n1}) \in \mathbb{R}^{n-1}$ pour que la première colonne de $A_2 = F(1,-\beta_1)A_1$ soit proportionnelle à $\mathbf{e_1}$. Que vaut la première ligne de A_2 ?

- I.C.2) On pose $F_1 = F(1, -\beta_1)$.
- a) Montrer par récurrence sur k l'existence des suites de matrices $(F_{k-1})_{2\leqslant k\leqslant n}, (A_k)_{2\leqslant k\leqslant n}$ avec

$$F_{k-1} = F(k-1, -\beta_{k-1})$$
 $A_k = [a_{ij}^k]_{1 \le i, j \le n} = F_{k-1}A_{k-1}$

et telles que :

$$\forall j \in [[1, k-1]], \ \forall i \in [[j+1, n]], \ a_{ij}^k = 0 \quad \text{et} \quad \forall m \in [[1, n]], \quad D_m(A_k) \neq 0.$$
 (4)

Exprimer le vecteur β_k à l'aide des coefficients de A_k .

- b) Montrer que les lignes 1 à k de A_k et A_{k+1} sont identiques.
- c) Pour $k \in [[1, n-1]]$, soit N_k le nombre de multiplications nécessaires pour passer de A_k à A_{k+1} . Calculer le nombre N_k . I.C.3)
- a) Déduire des questions précédentes qu'il existe une matrice L de \mathcal{TI}_n et une matrice U de \mathcal{TS}_n telles que l'on ait

$$A = LU. (5)$$

- b) Exprimer les coefficients l_{ij} de L pour i > j et les coefficients u_{ij} de U pour $i \leqslant j$ en fonction des coefficients a_{ij}^k des matrices A_k (Utiliser (I.B.2a) et (I.C.2a)).
- I.C.4) Montrer que les matrices L et U de la factorisation (5) sont uniques.
- I.C.5) Écrire dans le langage de son choix un programme réalisant la factorisation A = LU qui n'utilise qu'un seul tableau carré encore nommé A pour contenir toutes les itérations A_k . On prendra soin de commenter les principales lignes du programme. Comment aura-t-on en final les facteurs L et U à partir du tableau A?
- I.C.6) Soit S_n le nombre de multiplications nécessaires à la factorisation A = LU. Calculer S_n (Indication: utiliser la question I.C.2.c.)

Partie II-Applications et cas particuliers

Dans cette partie, on applique à certains exemples la factorisation vue en Partie I. Par commodité d'écriture, lorsque l'on représente une matrice, les espaces laissés vides sont remplis de 0 qui ne sont pas systématiquement écrits.

II.A - Application à la résolution de systèmes linéaires

II.A.1) On veut résoudre le système (1) en utilisant la factorisation (5). On fait toujours l'hypothèse que pour tout entier k de $[[1, n]], D_k(A) \neq 0$.

Sans compter les opérations nécessaires à la factorisation, montrer qu'il suffit de n(n-1) multiplications pour résoudre le système (préciser la méthode utilisée).

MATHÉMATIQUES II

II.A.2) En déduire une méthode pour inverser la matrice A en utilisant la factorisation (5). Exprimer le nombre total de multiplications et divisions nécessaires à cette inversion, incluant cette fois-ci le calcul de la factorisation. En donné un équivalent lorsque $n \to \infty$.

II.B - Étude du cas tridiagonal

On suppose la matrice A tridiagonale, c'est-à-dire de la forme

- II.B.1) On pose $\delta_k = D_k(A)$, $\delta_0 = 1$. On suppose que pour tout k de [[1, n]], $\delta_k \neq 0$. Calculer δ_1 puis, pour $k \in [[2, n]]$, exprimer δ_k en fonction de δ_{k-1} et de δ_{k-2} .
- II.B.2) Montrer que les matrices L et U de la factorisation (5) sont de la forme

avec pour tout i de [[2,n]], $l_{i,i-1} = a_i \frac{\delta_{i-2}}{\delta_{i-1}},$

II.B.3) Écrire un algorithme de résolution du système $A\mathbf{u} = \mathbf{w}$ en utilisant la

factorisation précédente pour une matrice tridiagonale. Donner le nombre de multiplications, de divisions et d'additions nécessaires à cette résolution.

II.C - Étude d'un exemple

Soit $A_n = [a_{ij}]_{1 \leq i,j \leq n} \in \mathcal{M}_n$, symétrique et tridiagonale définie par

$$\forall i \in [[1, n]], \ a_{ii} = 2, \quad \forall i \in [[2, n-1]], \ a_{ii+1} = a_{ii-1} = -1, \ a_{12} = a_{nn-1} = -1$$

tous les autres coefficients étant nuls, c'est-à-dire

Filière MP

II.C.1)

a) Montrer que pour chaque $\mathbf{v} = {}^t(v_1, ..., v_n)$ de \mathbb{R}^n , on a

$$\langle A_n \mathbf{v}, \mathbf{v} \rangle = v_1^2 + v_n^2 + \sum_{i=2}^n (v_i - v_{i-1})^2.$$

- b) En déduire que la matrice A_n est définie positive.
- c) Montrer que pour chaque k de [[1, n]] la matrice $\Delta_k(A_n)$ est symétrique et définie positive. En déduire qu'il existe une factorisation $A_n = L_n U_n$ de la forme (5).
- II.C.2) On reprend les notations de la question II.B. Expliciter et résoudre la récurrence sur δ_k . En déduire l'expression des matrices L_n et U_n .
- II.C.3) On veut résoudre le système $A_n \mathbf{x} = \mathbf{e_k}$ pour un entier fixé $k \in [[1, n]]$.
- a) Résoudre le système $L_n \mathbf{y} = \mathbf{e_k}$.
- b) Résoudre le système $U_n \mathbf{x} = \mathbf{y}$.

(On montrera que : $x_i = \frac{i(n+1-k)}{n+1}$ si $i \le k$ et $x_i = \frac{k(n+1-i)}{n+1}$ si $i \ge k$).

II.C.4) On pose $A_n^{-1} = [b_{ij}]_{1 \le j,k \le n}$. Calculer b_{ij} pour $(i,j) \in [[1,n]] \times [[1,n]]$.

Partie III - Une méthode itérative

III.A -

Soit $A = [a_{ij}]_{1 \leq i,j \leq n}$ une matrice inversible de \mathcal{M}_n . On étudie ici une méthode itérative de résolution du système (1). On utilise la norme euclidienne sur \mathbb{R}^n , définie

par $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle = \sum_{k=1}^n x_k^2$, avec $\mathbf{x} = {}^t(x_1, ..., x_n) \in \mathbb{R}^n$. On rappelle que la norme

matricielle subordonnée de $A \in \mathcal{M}_n$ est définie par $||A|| = \sup_{||\mathbf{x}||=1} ||A\mathbf{x}||$.

III.A.1)

a) Exprimer $||A\mathbf{x}||^2$ en fonction de $B={}^tA.A$ et de \mathbf{x} . En déduire que B est une matrice symétrique positive.

On note $\operatorname{sp}(B) = \{\lambda_1(B), ..., \lambda_n(B)\}$ le spectre de B, c'est-à-dire l'ensemble des valeurs propres de B énoncées de sorte que $\lambda_1(B) \leq ... \leq \lambda_n(B)$.

- b) Montrer que $||A|| = \sqrt{\lambda_n(B)}$.
- c) On suppose que A est symétrique et on note $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, où $\operatorname{sp}(A)$ est l'ensemble des valeurs propres de A. Montrer que l'on a $|A| = \rho(A)$.
- III.A.2) On note H une matrice de \mathcal{M}_n et \mathbf{c} un vecteur de \mathbb{R}^n tels que le système (1) peut se réécrire sous la forme

$$\mathbf{u} = H\mathbf{u} + \mathbf{c} \tag{7}$$

Soit $\mathbf{U_0} \in \mathbb{R}^n$. On considère la suite vectorielle itérée $(\mathbf{U_k})_{k \in \mathbb{N}}$ définie par la relation de récurrence $\mathbf{U_{k+1}} = H\mathbf{U_k} + \mathbf{c}$. Montrer que, si ||H|| < 1, la suite $(\mathbf{U_k})_{k \in \mathbb{N}}$ est convergente dans \mathbb{R}^n de limite \mathbf{u} , solution de l'équation (7).

III.A.3) Dans les questions qui suivent, on applique la méthode itérative ci-dessus au système $A_n \mathbf{u} = \mathbf{w}$ où A_n est définie en II.C par (6). On décompose A_n en

$$A_n = 2I_n - M_n. (8)$$

- a) Calculer les valeurs propres de M_n (Indication : interpréter le système $M_n \mathbf{x} = \lambda \mathbf{x}$ comme une équation récurrente sur la suite $(x_k)_{0 \leqslant k \leqslant n+1}$ avec $x_0 = x_{n+1} = 0$. (On constatera qu'il n'y a de solution non nulle que si $|\lambda| < 2$).
- b) En déduire qu'il existe une suite de réels $(\mu_n)_{n\in\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}^*, \ \mu_n > 0, \quad \lim_{n \to \infty} \mu_n = 0, \quad ||M_n|| = 2 - \mu_n.$$

c) Donner un équivalent de μ_n quand n tend vers l'infini.

- III.A.4) On considère la décomposition (8). On choisit la donnée initiale $\mathbf{U_0}$ de sorte que $||\mathbf{U_0}|| = 1$. On suppose en outre que $||\mathbf{w}|| = 1$.
- a) On choisit $H = \frac{M_n}{2}$. Expliciter le vecteur \mathbf{c} de manière à appliquer la méthode itérative puis donner l'expression complète de $\mathbf{U_k}$ en fonction de $\mathbf{U_0}$, de \mathbf{c} et des matrices H^m pour $m \in [[1, k]]$.
- b) Majorer l'erreur $\epsilon_k = ||\mathbf{U_k} \mathbf{u}||$ en fonction de k, μ_n et $||A_n^{-1}||$.
- c) Montrer que $\lim_{n\to\infty}||A_n^{-1}||=+\infty$ et donner un équivalent de $||A_n^{-1}||$ pour n tendant vers l'infini.
- d) Déterminer un nombre d'itérations k suffisant pour avoir $\epsilon_k < 10^{-4}$. Donner un équivalent du nombre de multiplications pour obtenir cette approximation et comparer à la méthode de factorisation LU. Pour n grand, quelle méthode est préférable?

• • • FIN • • •