je

- konvertovanje visokonivovskog geometrijskog opisa u boje piksela u frejm baferu,
- na primer, za zadata temena, odrediti boje piksela koji spajaju te pozicije u liniju...
- · rasterizacione operacije:
 - crtanje linija na ekranu (DDA, Bresenham midpoint varianta...), simetrija...
 - · crtanje i bojenje poligona (trouglova),
 - manipulisanje poljima piksela (pixmaps): kopiranje, skaliranje, rotiranje, i sl.
 - · aliasing i antialiasing metode.

RASTERIZACIJA

crtanje poligona

- osnovna aktivnost jer je poligon (trougao planaran i konveksan) sve u grafici,
- postoji niz algoritama za rasterski prikaz poligona (interijer i ivice) gde svaki koristi određene osobine poligona,
 - · neki su pogodni samo za trouglove,
 - drugi su za konveksne, koji se ne seku i nemaju rupe...
- · uobičajeni pristupi rasterizaciji poligona:
 - · as is.
 - podeliti ga na trouglove (triangulacija poligona).

Polygon scan conversion

1. Pronaći tačke preseka scan lines sa ivicama poligona. za scan liniju 8 sa FA, EF, DE i CD su: a, b, c i d. ako se koristi algoritam srednje tačke, presek može biti van poligona,

bolje se fokusirati na ekstreme interijera nego na preseke - nema ugrožavanja okoline poligona.

2. Sortirati tačke preseka po scan linijama i unutar po x koordinati.

za 8 scan liniju su: 2, 4.5, 8.5 i 13.

3. Obojiti tačke po scan linijama između dva preseka prebacivanjem parnosti svakim nailaskom na presek inicijalno neparan.

RASTERIZACIJA

RAČUNARSKA 2017/2018 **GRAFIKA** Prof. dr Dragan Ivetić

... crtanje poligona as is

Problemi?

- 1. Za slučaj preseka koji je razlomljeni broj A, kako znati sa koje je strane piskel interijera poligona? Prilazimo iz interijera tada zaokruži A na nižu vrednost, prilazimo iz eksterijera tada zaokruži A na veću vrednosti.
- 2. Šta ako je presek na celobrojnoj vrednosti X koordinate? Za krajnje levi je interijer, za krajnje desni – eksterijer.
- 3. Šta raditi ako je pod (2) a radi se o deljenom temenu? Samo temena na y_{min} linije utiču na prebacivanje parnosti.
- 4. Šta raditi ako je pod (2) a preseci definišu horizontalnu liniju? Boji se samo donja linija, ali ne i gornja.

triangulacija poligona ... GRAFIKA

• je particionisanje poligona na nepreklapajuće trouglove upotrebom dijagonala,

svaki jednostavni poligon se može particionisati na trouglove.

RASTERIZACIJA

RAČUNARSKA 2017/2018 GRAFIKA

... triangulacija poligona ... Prof. dr Dragan Ivetić

• svaki n-ugaoni poligon se sastoji od tačno n-2 trougla,

· dokaz?

n = 3

n = 4

n = 5

n = 6

- · triangulacija nije jednoznačna,
- · doći do rešenja na najefikasniji način,
- dosta algoritama različite kompleksnosti (<u>O notacija</u>):
 - naivno probati n² mogućnosti za svaku dijagonalu, koja je sama reda O(n) i to ponoviti n-1 put → O(n⁴),
 - manje naivan pronaći uvo (ear clipping) poligona (O(n)) i onda rekurzivno ponoviti još n-2 puta → O(n²),
 - dekompozicija monotonih poligona (GJPT-78) koji se izvršava za O(n log n) vremena,
 - Bernard Chazelle O(n) algoritam osmišljen 1991. godine, nema implementacije zbog prekompleksnosti....

RASTERIZACIJA

RAČUNARSKA 2017/2018
GRAFIKA
Prof. dr Dragan Ivetić

osnova je glavno teme (principal vertex),

... Ear clipping ... Prof. dr Dragan Ivetić

RAČUNARSKA 2017/2018 GRAFIKA Prof. dr Dragan Ivetić

Uho se može saviti jedino ako p_{i-1} , p_{i+1} definišu dijagonalu kada je p_i glavno teme.

Teorema dva uveta (Gary H. Meisters, 1975.):

Svaki jednostavni poligon (n>3) ima barem dva
nepreklapujuća uveta!!

RASTERIZACIJA

... Ear clipping

Šta ako konveksno teme p_i nije glavno?

Pronalazi se reflektivno teme,
koje formira dijagonalu sa p_i i stvara dva
nova trougla.

Koraci algoritma su:

- 1. Podeli poligon na trapezoide.
- 2. Konvertuj trapezoide u monotone delove.
- 3. Svaki monotoni deo podeli na trouglove.

RASTERIZACIJA

RAČUNARSKA 2017/2018
GRAFIKA
Prof. dr Dragan Ivetić

Podela na trapezoide – sweep algoritmom po x osi za svako teme..

Monotona podela – za svako reflektivno teme (split ili merge tipa) napraviti dijagonalu prema levom/desnom temenu trapezoida.

- · rekurzivni algoritmi za rasterizaciju trouglova:
 - recursive subdivision into micropolygons,
 - · recursive subdivision of screen (Warnock),

RASTERIZACIJA

... crtanje trougla ...

RAČUNARSKA 2017/2018 GRAFIKA Prof. dr Dragan Ivetić

Edge walking algoritam

- ivice crtamo vertikalno,
- · ispunjavamo između po sken liniji...
- razvrstaj temena po x i po y,
- utvrdi da li se srednje teme po y nalazi
 - levo ili desno ili nema breakpoint,
 - ako trougao ima stranicu na sken liniji, nema breakpoint...
- idi levom i desnom stranicom i interpoliraj boju piksela između,
- + može biti veoma brz,
- postoji puno speciajlnih slučajeva,

... crtanje trougla ...

- · kako rešiti problem jaggies?
 - · povećavati rezoluciju,
 - koristi ALIASING, efekat odabiranja diskretnih vrednosti boje piksela!

RASTERIZACIJA

RAČUNARSKA 2017/2018
GRAFIKA
... crtanje trougla ... Prof. dr Dragan Ivetić

Edge equation algoritam

- trougao kao 3 prave kroz 3 temena,
- prava između temena $\mathbf{v_1}$ i $\mathbf{v_2}$ u homogenim koordinatama

$$v_1 \times v_2 = [x_1 \ y_1 \ 1]^T \times [x_2 \ y_2 \ 1]^T = [(y_1 - y_2) \ (x_2 - x_1) \ (x_1 y_2 - x_2 y_1)]^T$$

- gde sve tačke prave zadovoljavaju L(x,y) = A x + B y + C = 0, gde su $A = y_1 y_2$, $B = x_2 x_1$ a $C = x_1y_2 x_2y_1$,
- šta je sa L(x,y) za tačke koje su van prave?

... crtanje trougla

Edge equation algoritam

- · radi se samo sa pikselima unutar opisanog pravougla,
- sračunaju se jednačine ivica (A,B i C),
- · odezdebiti da površina trougla bude pozitivna,

Za svaku sken liniju y
za svaki piksel x
ako L1(x,y) ili L2(x,y) ili L3(x,y) tada
oboji piksel bojom.

RASTERIZACIJA

pixmaps ...

- pixmap je pravougaoni niz numeričkih vrednosti (pixel),
- · kopiranje pixmap u frejm bafer renderovanje,
- promena sadržaja frejm bafera onscreen promena slike,
- broj bita u svakoj lokaciji pixmap-e je color depth
 - bitmap color depth = 1,
 - gray scale color depth = 8,
 - RGB color depth = 24,
 - RGBA color depth = 32,

operacije nad pixmap:

peracije nad pixinap

- · skaliranje,
- rotiranje (90, 180, 270 transponovanje matrice),
- · (algebarsko) kombinovanje,
- alpha channel and image blending,
- · kompozicija.

pixel

SKALIRANJE (>1 uvećavanje, <1 smanjenje - destrukcija),

- bez iterpolacije (nearest neighbour)
 - ponavljanje piksela (brzo, ali zato jaggies),

- sa interpolacijom
 - linearna interpolacija

$$\frac{Y-A}{l} = \frac{B-A}{L}$$
$$Y = A + \frac{l(B-A)}{L}$$

RASTERIZACIJA

· bilinearna interpolacija

... pixmaps ...

bicubic interpolacija (Photoshop)

Zainteresovani za matematiku?

RASTERIZACIJA

... pixmaps ...

Original 128x128

75%

150%

bilinear

bicubic

... pixmaps ...

KOMBINOVANJE dve pixmap-e u treću pomoću algebarskih operacija

• $C[i][j] = A[i][j] \otimes B[i][j]$

• C[i][j] = 0.5 *(A[i][j] + B[i][j])

C[i][j] = A[i][j] - B[i][j]

• C[i][j] = (1-f)*A[i][j] + f*B[i][j]

RASTERIZACIJA

... pixmaps

RAČUNARSKA 2017/2018 GRAFIKA Prof. dr Dragan Ivetić

Alpha channel & image blending

- Mešanje slika (blending)
 - prikaz delimično transparentne slike preko druge,
 - standardnoj RGB se dodaje nova komponenta, alpha vrednost (A) → RGBA,

 alpha specifikuje koliko je neprovidan (opaque) svaki piksel, 0 – transp. ili 255 – opaque,

Alpha channel

· serija alpha vrednosti u pixmap.

Lepljenje 2D i 3D tekstura

RAČUNARSKA 2017/2018
GRAFIKA

2D teksturisanje ... Prof. dr Dragan Ivetić

Tehnike 2D teksturisanja:

• slikanje 2D objekata na površinu 3D objekta (Mudbox),

- · environmental (reflection) mapping,
- · displacement & bump mapping,
- · proceduralno mapiranje teksture.

TEKSTURA

RAČUNARSKA 2017/2018
GRAFIKA
... 2D teksturisanje ... Prof. dr Dragan Ivetić

ENVIRONMENT MAPS

 simuliranje veoma složenih objekata sa reflektivnom površinom,

· snimanje teksture.

TEKSTURA

RAČUNARSKA 2017/2018
GRAFIKA
... 2D teksturisanje ... Prof. dr Dragan Ivetić

DISPLACEMENT & BUMP MAPPING

- umesto mapiranje boja prema temenima,
 - modifikuje temena "u smeru normala", ili

manipuliše normalama.

RAČUNARSKA 2017/2018
GRAFIKA
... 2D teksturisanje ... Prof. dr Dragan Ivetić

PROCEDURALNO MAPIRANJE TEKSTURE

- programsko mapiranje teksture na projektovani 3D objekat na ekranu,
- · tekstura može biti definisana
 - · algoritamski (matematički), uobičajeno za 3D teksture,
 - mapa vrednosti (pixmaps).

RAČUNARSKA 2017/2018 **GRAFIKA** ... 2D teksturisanje ... Prof. dr Dragan Ivetić

- uspostavi $V_0 \rightarrow T_0$, $V_1 \rightarrow T_1$, $V_2 \rightarrow T_2$.
- ostale tačke unutar (V₀,V₁,V₂) se interpoliraju na osnovu teksela unutar (T_0, T_1, T_2) ,
- problem: jedna tačka u (V₀,V₁,V₂) na deo, jedan ili više teksela u (T_0,T_1,T_2) ,
- problem: kontinualnost teksture na površini objekta.

TEKSTURA

RAČUNARSKA 2017/2018 **GRAFIKA** ... 2D teksturisanje ... _{Prof. dr Dragan Ivetić}

- kontinualnost teksture na objektu moguće je obezbediti:
 - · projekciono teksturisanje,

- kocka,
- cilindar,

· Kako sa posredničke površi na 3D objekat?

· distorzija manja, ali ipak ima problema...

TEKSTURA

... 2D teksturisanje ... Prof. dr Dragan Ivetić

RAČUNARSKA 2017/2018 GRAFIKA Prof. dr Dragan Ivetić

Prilikom (t,s) \rightarrow (u,v) paziti na:

- · problem sa aliasing,
- · problem perspektive,

RAČUNARSKA 2017/2018 **GRAFIKA** ... 2D teksturisanje Prof. dr Dragan Ivetić

 $(x_3, y_3), (s_3, t_3)$

Prilikom (t,s) \rightarrow (u,v) paziti na:

· mapiranje više texela na piksel,

· interpolacija ka x,y...

Bilinear

MIPmapping

TEKSTURA

3D tekstura ...

ili solid tekstura

 3D (obično proceduralno) dodeljivanje vrednosti tački u prostoru,

$$f(x,y,z) \to \mathsf{RGB}$$

- utisak da je objekat isklesan od punog materijala,
- · odlični rezultati sa plemenitim kamenom i drvetom,

- najviše se koriste dve funkcije noise i turbulence (Ken Perlin-ov članak An Image Synthesizer SIGGRAPH 85),
- noise je (kontinualna) funkcija koja varira u 3D prostoru

uniformnom frekvencijom,

sa color[x][y][z] = 255 * Noise[x][y][z]

PREVIŠE ZRNASTA, pa češće kao kontinualna funkcija dobijena 3-linearnom interpolacijom vrednosti u mreži...

TEKSTURA

... 3D tekstura ...

· turbulence upošljava nekoliko noise funkcija odjednom

$$turb(s, x, y, z) = \sum_{i=0}^{N-1} \frac{Noise(sb^{i}x, sb^{i}y, sb^{i}z)}{a^{i+1}}$$

gde je

s faktor skaliranja,

N broj noise funkcija (harmonika),

b > 1 (obično neki stepen 2),

a definiše grubost funkcije (što je veće, to je funkcija manje gruba),

Turbulence

Noise

TEKSTURA

... 3D tekstura

$$mermer(x, y, z) = z + \sum_{i=0}^{N} \frac{SmoothNoise(2^{i} x, 2^{i} y, 2^{i} z)}{2^{i}}$$

$$drvo(x, y, z) = x^2 + y^2 + SmoothNoise(4x, 4y, z)$$

Frame buffer ...

 memorija organizovana prema nameni (barem čuva boju piksela prikaza) sa kapacitetom koji odgovara rezoluciji i dubini (depth), odnosno preciznosti – (n x m) x k,

· obično se logički organizuje u više nivoa

depth buffer, ~32 bita color buffer, i do 128 bita m

RASTERIZACIJA

... Frame buffer ...

Color buffer

n

- sadrži index boje, ili RGB, ili RGBA,
- · stereoskopski prikaz (inače left),
- double-buffering,
- · moguće dodati i auxiliary (nondisplay) buffer po potrebi.

... Frame buffer ...

RAČUNARSKA 2017/2018 GRAFIKA Prof. dr Dragan Ivetić

Stencil buffer

- · čuva šablon matricu,
- · jedan ka svim kolor baferima,
- kako animirati šta se vidi sa pozicije pilota UFO?

RASTERIZACIJA

... Frame buffer

Accumulation buffer

- čuva RGBA tip kao i kolor bafer (nije za indeksiranje),
- · koristi se uglavnom pri kompoziciji slike,
- pre svega za antialiasing pomoću supersampling-a (Screenbased Anti-aliasing),
- · ali i za motion blur...

MoDeL specifikacija

- · Bioware Corp.,
- pojednostavljena AutoDesk specifikacija 3D scene.
- namenski za jednostavno generisanje računarskih igrica,
- · skript fajl koji nosi informacije o:
 - · geometriji MDL modela (trougaoni meš),
 - · frejm animacija (u narednoj lekciji),
- · detalji na http://www.wnwn.net/mdl/.
- Zaglavlje

... MDL geometrija

