Introduction to Apache Airflow

Session 1

HEALTHCARE EVOLUTION

- Data pipelines
- Apache Airflow
- Features
- Important concepts
- Internal architecture

- Airflow Setup
- CTL walkthrough
- UI Walkthrough
- Airflow Operators

- Orchestrate a real-world problem statement using Airflow
- Advanced concepts in Airflow

SESSION OVERVIEW

Data pipelines in large scale distributed environments 02 Solutions to data pipeline orchestration 03 **Apache Airflow and its features** 04 The architecture of Airflow

FLOW CHART

- O Visual representation of the flow of actions taken to reach to an output or conclusion
- Easy to understand the logical steps happening in the activity

DATA PIPELINE

- Databases good for Online Transactional Processing (OLTP) are not best suited for Online Analytical Processing (OLAP)
- First step in cost effective and scalable solution for data processing is to bring data from OLTP databases to OLAP systems
- Data Pipeline
 - Process of moving data from one system to the other and possibly transforming and validating it in the process

UBER USE CASE

GENERAL STRUCTURE OF DATA PIPELINES

IMPORTANCE OF DATA PIPELINE AUTOMATION

- O Data pipeline acts as the central nervous system for the data-driven-decision-making.
- O Notification when processed data is available or if something fails
- Reduced manual effort. More focus on business logic.
- Keep track of the performance of different steps in the pipeline. This helps in identification and resolution of bottlenecks
- Automating data pipelines allows the company to collect, process and economically use data in real-time

POSSIBLE SOLUTIONS TO DATA PIPELINE AUTOMATION

- O Manual Orchestration
 - No need to learn any data-pipeline orchestration tool
 - Impractical in a large scale industry environment
 - Against the principle of Do-Not-Repeat

POSSIBLE SOLUTIONS

- Cron Jobs
 - Very simple, comes pre-installed in Linux machines, easy to learn
 - Cumbersome when pipelines are longer
 - No intelligent handling of failed tasks or task retries
 - Lacks in-built alerting and monitoring
 - Not extensible
 - No visualization
 - Difficult to get info about the components of the pipeline or current status or previous runs

POSSIBLE SOLUTIONS

- O Apache Oozie
 - One of the early and robust data orchestration tools with
 - scheduling capabilities
 - UI
 - parameterization (using variables)
 - supporting diverse operations (like Email, MapReduce, Hive etc.)
 - Steep learning curve
 - Uses XML for building pipelines, difficult to create dynamic DAGs
 - Difficult to build pipelines with a mediocre GUI
 - Community support is not great

WHY DO WE NEED A NEW TOOL?

- Scalable to orchestrate and schedule large number of processes
- Efficient maintenance and monitoring of pipelines
- O Richer UI to visualise the status and compare against historical runs
- Retry and timeout feature for failed tasks
- Easy SLA handling
- O Compatibility with various tools in the data engineering domain
- Strong community support

INTRODUCTION TO APACHE AIRFLOW

- O Started in October 2014 by Maxime Beauchemin at Airbnb
- O Aims at meeting the needs of complex data processing pipelines
- Framework to programmatically create, schedule and monitor data pipelines
- Data pipelines in Airflow
 - Implemented in the form of DAGs
 - Created from the Python code
 - Can be generated dynamically

FEATURES OF APACHE AIRFLOW

DAG: DATA PIPELINES IN AIRFLOW

- O DAGs or **Directed Acyclic Graphs** form the core structure around which Airflow structures its data pipelines.
- Properties of DAGs include:
 - Should be directed (i.e., the edges all have a direction indicating which task is dependent on which).
 - Must be acyclic (i.e., they can't contain cycles).
 - Are graph structures (i.e., a collection of vertices and edges).
- The whole DAG is defined in a Python program.

DAG ATTRIBUTES

- When creating a DAG we require :
 - ID
 - Description
 - Schedule (can be a cron expression or shorthand string notation like @once, @hourly etc.)
 - Start Date
 - Configs/default arguments
 - Owner
 - Retries

DAG DEFINITION

```
from datetime import datetime
from airflow import DAG
dag default configs = {
    'start date': datetime(2016, 1, 1),
    'owner': 'airflow'
dag object = DAG('my dag',
              default args = dag default configs,
              description='Sample DAG',
              schedule interval='0 12 * * *')
```

CRON EXPRESSION GUIDE

COMPONENTS OF A DAG

A DAG consists of tasks and dependencies between them.

- O Tasks:
 - A Task defines a unit of work within a DAG
 - It is represented as a node in the DAG graph
 - Operators determine what actually gets done by a task.
 - Each task is a python process running on the same or different machines (called worker)
 - E.g. calling a python function, executing a shell script, running a hive query, running a spark job etc.
- Task dependencies :
 - They define the order in which the tasks in a DAG are executed.

CONSTRUCTING DAG FOR UBER USE CASE

COMPONENTS OF AIRFLOW

Web server serves as the front-end

Scheduler orchestrates various DAGs and their tasks

Executor is the mechanism by which task instances get run

Workers perform the actual work

Metadata Database is used to keep track of task job statuses and other persistent(meta) information

SINGLE NODE ARCHITECTURE

SCALING AIRFLOW: TYPES OF EXECUTORS

- Sequential executor:
 - It is the default executor and will only run one task instance at a time.
 - It is suitable for testing and debugging DAGs before they're implemented in an industry environment.
- O Local executor:
 - It is like a sequential executor with unlimited parallelism.
 - It runs tasks by spawning processes in a controlled fashion in different modes.
- Celery executor:
 - Used in scalable environments
 - Needs RabbitMQ and Redis for configuration.
 - Each worker is in a different node, so it can be easily scaled by adding more nodes.
 - Recommended in production scenario

DISTRIBUTED ARCHITECTURE

SESSION SUMMARY

01 **Data pipelines** 02 Importance of pipeline orchestration 03 Possible solutions to data pipeline orchestration 04 **Introduction to Airflow** 05 **Airflow Architecture**

THANK YOU