

Euclidean norm of an orthogonal matrix is equal to 1. Proof: $||U||_{\mathcal{L}} = \max_{1 \mid X \mid |_{\mathcal{L}} = 1} ||UX||_{\mathcal{L}} = \max_{1 \mid X \mid |_{\mathcal{L}} = 1} \sqrt{(UX)^{\mathsf{T}}(UX)}$ $= \max_{\|X\|_{L}=1} \sqrt{X^T X} = \max_{\|X\|_{L}=1} \|X\|_{L} = 1$ 2) The euclidean norm of a matrix is given by the largest Singular value. $||A||_2 = \max ||Ax||_2 = \max ||U \ge V^T x||_2$ $||x||_2 = ||x||_2 = |$ $\|\underline{U}\underline{\Sigma}\underline{V}^{T}\underline{X}\|_{2} \leq \|\underline{\Sigma}\underline{V}^{T}\underline{X}\|_{2} \leq \|\underline{U}^{-1}\|_{2}\|\underline{U}\underline{\Sigma}\underline{V}^{T}\underline{X}\|_{2}$ $||A||_2 = \max_{||X||_2=1} ||X||_2 = \max_{|X||_2=1} ||X||_2 = \max_{|X|$ Similarly: || VTX ||= || X||= | let y=UTX max || \(\sum_{\text{lagoner}} \) \(\sum_{\text{lagoner}} \) diagones (= largest diagonal ontry values 11/1/2 = max 6i

Norm of the inverse of a matrix.
A is full rank, A-1 exists.
$ A^{-1} _{2} = \max V \Sigma^{-1} U^{T} X _{2}$
$ X _{L} = \frac{1}{6min}$ Norm of the pseudo-inverse matrix.
$ A^+ _1 = \frac{1}{6r}$, or is the smallest non-zero singular value.
= 0 if A is Zeromatrix.
Condition number of a matrix.
$cond_{2}(A) = A _{2} A^{+} _{2}$
= $\frac{\mathcal{O}_{\text{max}}}{\mathcal{O}_{\text{min}}}$ if A is full rank.
= (Set) if A is rank deficien

Low-Rank Approximation. $A = 6_1 U_1 V_1^T + 6_2 U_2 V_2^T + --- + 6_n U_n V_n^T$ Set $Ax = \sum_{i=1}^{k} 6_i U_i V_i^T$, $6_1 \ge 6_2 \ge --> 0$.

book think - k appropriation for a second of
best rank-k approximation for a mxn matrix A
$k \leq \min(m,n)$
min A - Ax = 6x
Sit. Mank (AK) Sk
Sit. rank (Ar) Sk minimizing error.
minimizing enfor.
Using SVD to solve square system of linear equations
$ \begin{array}{l} A \times = b \\ n \times n \end{array} $
n×h
$O. A = U \ge V^{T} \longrightarrow O.(n^{3})$
$\sum V^{T} X = U^{T} b O(n^2)$
$y = \sum_{i=1}^{n} U^{T}b \longrightarrow O(n)$
3). $V^T x = y \longrightarrow X = V y \longrightarrow O \cdot (n^2)$

Value Storing.
Storing A : <u>m x n</u> .
Storing rank k approximation: $A = \begin{bmatrix} u & u_1 - u_n \\ & \ddots & \\ & \ddots & \\ & & \ddots & \\ & & \ddots & \\ & & & &$
number of values need to store
$= m \times k + k + k \times n = k (m + n + 1).$
Example: A 31x81: 2511 values => / value/number
Mank-3 approximation: A 3: 3 x (31+81+1)=359 values.