Frequent Pattern Mining

- Mining Association Rules

頻繁樣式的勘測

- 頻繁樣式(Frequent patterns): patterns (set of items, sequence, etc.)在資料庫中經常出現的樣式/模式 (pattern:項目集、順序等) [AIS93]
- 頻繁樣式的勘測: 找出資料中的規律(regularities)
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

F.P.M.: frequent pattern mining

Outline

- 何謂頻繁樣式的勘測 (frequent pattern mining)?
- 頻繁樣式的勘測方法
- 植基於條件式的(Constraint-based)頻繁樣 式勘測
- 循序樣式 (sequential patterns)
- 頻繁樣式的應用
- 頻繁樣式的研究問題

Ming-Yen Lin, IECS.FCU

F.P.M. 是data mining的基本功能/工作

- 許多data mining task的基礎
 - Association rules, correlation, causality
 - sequential patterns, temporal/cyclic association, partial periodicity
 - spatial and multimedia patterns
 - associative classification
 - cluster analysis
 - iceberg cube, ...
- 廣泛的應用
 - 購物籃分析
 - 交叉行銷
 - 型錄設計
 - 行銷活動分析

— web log (click stream)分析, DNA sequence analysis, ...

/ 2

基本觀念:頻繁項目集

- 項目集 Itemset X={x₁, ..., x_k}
 例: {A,C}, {B,E,F}, {C,E}
- 項目集的支持度(support)

- s(A) = 3/4

Pattern = set of items

- 頻繁項目集: 符合最小支持度 (m.s.: minimum support) 的項目集
- 勘測頻繁樣式:找出所有的頻繁樣式

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Ming-Yen Lin, IECS.FCU

1

探勘關聯規則(例)

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50% Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

rule $A \rightarrow C$:

support = support(
$$\{A\} \cup \{C\}$$
) = 50%
confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

基本觀念:關聯規則

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

• 關聯規則的勘測:頻繁 項目集找出後,決定 「有興趣的」項目集之 間的關係

- 信賴度 confidence, c, 某交易如果包含 X , 此交易同時會包含 Y 的條件機率
- 支持度 support, s,某交易包含 X∪Y的機率
- m.s. = 50%, m.c. = 50%- $A \rightarrow C$ (50%, 66.7%) - $C \rightarrow A$ (50%, 100%)

m.s.: minimum support 最小支持度

Ming-Yen Lin, IECS.Form.c.: minimum confidence 最小信賴度

關聯規則的類別

- 布林式的 (boolean) 與 數量式的 (quantitative)
 - buys(x, "SQLServer") ^ buys(x, "DMBook") → buys(x, "DM Software") [0.2%, 60%]
 - age(x, "30..39") ^ income(x, "42..48K") \rightarrow buys(x, "PC") [1%, 75%]
- 單一維度(single dimension)與多維度(multiple dimensional)
- 單一層次(single level)與多層次(multiple-level)
 - What brands of beers are associated with what brands of diapers?

關聯規則的延伸與應用

- Correlation, causality analysis & mining interesting rules
- Maxpatterns and frequent closed itemsets
- Constraint-based mining
- Sequential patterns
- Association-based classification
- Computing iceberg cubes

و کر

Ming-Yen Lin, IECS.FCU

Ming-Yen Lin, IECS.FCU

Apriori: Candidate Generation-and-test

- 產生「候選者」後檢視方式
 - 由長度(k)的「當選者」 (frequent itemset) 產生長度(k+1)的「候選者」(candidate itemset)
 - 針對資料庫數其支持度,檢視是否是frequent
- 「候選者」條件:其子集合必定是frequent
 - 特性: anti-monotone
 - 包含 {beer, diaper, nuts}的交易必定包含 {beer, diaper}
 - 若{beer, diaper, nuts} frequent → {beer, diaper}-定 frequent
 - 任一 non-frequent 項目集之superset根本就不可能是頻繁項目集(所以就不會是「候選者」,不必產生,也不必數)
 - 可以排除許多「無用的組合」

 J_{11}

頻繁樣式的勘測方法

- Apriori 方法與其變化、改進
 - 不產生「候選樣式」的探勘方法
- 最大樣式(max-patterns)與封閉樣式(closed patterns)
 - 精簡的表示方式
- 多維度、多層次頻繁樣式
- 有意義程度(Interestingness): correlation and causality

Ming-Yen Lin, IECS.FCU

Ming-Yen Lin, IECS.FCU sup 以count表示,未以%表示

 $\sqrt{10}$

Apriori 演算法細節

 $L_1 = \{ \text{frequent items} \}; k = 1 ;$

 \rightarrow if $L_{\nu} = \varnothing$ stop;

 C_{k+1} = 由 L_k 產生;

→ 對資料庫 D 中每一個交易 t 執行

所有包含於 t 的、 C_{k+1} 中的 candidate的個數 __ (support count) カロー

 $L_{k+1} = C_{k+1}$ 之candidate滿足最小支持者 (minimum support)

k = k + 1:

答案: L_{ι} 的聯集;

- *L*_k:大小為 *k* 的 frequent itemset
- C_k :大小為 k 的candidate itemset

Ming-Yen Lin, IECS.FCU

Apriori 關鍵細節 II

- 所有包含於 t 的 candidate的count加一; 難 在哪?
 - candidate的總個數太多
 - 各個 t中包含不止一個 candidate
- 方法:

Ming-Yen Lin, IECS.FCU

Apriori 關鍵細節 I

- $C_{k+1} = \text{由 } L_k$ 產生;
 - Step 1: self-joining L_ℓ (L_ℓ 自交)
 - Step 2: pruning (消去不可能者)
- 例:L₃={abc, abd, acd, ace, bcd}依序排好
 - Self-joining: L_3*L_3
 - abcd: \oplus abc and abd
 - acde: \(\pm\) acd and ace
 - Pruning:
 - *消去 acde* :因 ade 不在 L₃
- $C_{1}=\{abcd\}$

Ming-Yen Lin, IECS.FCU

勘測方法的挑戰

Challenges (也就是Apriori 方法變化改進的方 向)

- 全部資料庫檢視次數太多
 - 想辦法減少
- candidates個數還是太多
 - 想辦法減少
- 數 candidate support 太麻煩
 - 想辦法數快點

其他方法

- Apriori的改良
 - DIC
 - DHP
 - Partition
 - Sampling
 - ...
- 不產生candidate,壓縮資料庫再找
 - FP-Growth, H-mine
- 用項目的交集(資料庫改以直向排列)
 - Eclat/MaxEclat ,VIPER

Ming-Yen Lin, IECS.FCU

J₁₇

Association Rules 視覺化: Rule Graph

Ming-Yen Lin, IECS.FCU

Association Rules 視覺化:: Pane Graph

最大樣式Max-patterns

- Frequent pattern $\{a_1, ..., a_{100}\} \rightarrow \binom{100}{1} + \binom{100}{2} + ... + \binom{1}{1} \binom{1}{0} \binom{0}{0} = 2^{100} 1 = 1.27 \times 10^{30}$ frequent subpatterns!
- 最大樣式 Max-pattern: 沒有「真」(proper) super pattern的樣式 (PS: frequent)
 - BCDE, ACD are max-patterns
 - BCD is not a max-pattern

ern	Tid	Items
	10	A,B,C,D,E
	20	B,C,D,E,
	30	A,C,D,F

m	.S.	=	2
			_

封閉樣式(Frequent Closed Patterns)

- Conf(ac→d)=100% → 只紀錄 acd 就好
- 對於某一個頻繁項目集 X, 如果沒有項目 v 造成以下情形「每一個包含X的交易也包含 V」,則X稱為一個封閉樣式
 - "acd" is a frequent closed pattern
- 頻繁樣式的一種精簡表示方式
- 簡化樣式與規則的個數

TID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

Ming-Yen Lin, IECS.FCU

多維度Association

單一維度 (dimension) 規則

 $buys(X, "milk") \Rightarrow buys(X, "bread")$

- 多維度:≥2維度或陳述 (predicate)
 - 維度內(Inter-dimension) assoc. rules (no repeated predicates) $age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")$
 - hybrid-dimension assoc. rules (repeated predicates)

 $age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$

- 類別屬性(Categorical Attributes)
 - finite number of possible values, no ordering among values
- 數量屬性(Quantitative Attributes)
 - numeric, implicit ordering among values

多層次Association Rules

- 項目通常有其概念架構
- 設定 support 要具彈性: 低層次的 support應該比較
- 依據維度與層次將交易資料庫編碼
- 探索多層次的探勘

uniform support

reduced support

Level 1 Milk $min_sup = 5\%$ [support = 10%]

Level 1 min sup = 5%

Level 2 $min_sup = 5\%$ 2% Milk

[support = 6%]

Skim Milk [support = 4%]

Level 2 $min_sup = 3\%$

Ming-Yen Lin, IECS.FCU

Distance-based Association Rules

• Binning 不見得抓得住區間資料的語意(semantic)

	Equi-width	Equi-depth	Distance-
Price(\$)	(width \$10)	(depth 2)	based
7	[0,10]	[7,20]	[7,7]
20	[11,20]	[22,50]	[20,22]
22	[21,30]	[51,53]	[50,53]
50	[31,40]		
51	[41,50]		
53	[51,60]		

- 以距離為主的分割更距離散化(discretization)考量
 - density/number of points in an interval
 - "closeness" of points in an interval

有意義程度Interestingness Measure: Correlations

- play basketball ⇒ eat cereal [40%, 66.7%] 誤導!
 - The overall percentage of students eating cereal is 75% which is higher than 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] 更精準, 雖然 support and confidence 較低
- 度量相依性/相關事件: lift

$corr_{A,B} =$	$P(A \cup B)$
	$\overline{P(A)P(B)}$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000
			Z 2:

Ming-Yen Lin, IECS.FCU

LexMiner

• Ming-Yen Lin and Suh-Yin Lee,

"A Fast Lexicographic Algorithm for Association Rule Mining in Web Applications,"

Proceedings of the ICDCS Workshop on Knowledge Discovery and Data Mining in the World-Wide Web (ICDCS00), Taipei, Taiwan, R.O.C., pp. F7-F14, 2000.

植基於條件式的頻繁樣式勘測

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

Ming-Yen Lin, IECS.FCU

 \int_{26}

Apriori use Hash Tree to stored

Candidates

- Excess Comparison, Eg. $T_1 = \{1, 2, 3, 4, 5, 6\}$
- Duplicate Counting Avoidance, Eg. $T_2 = \{1, 3, 4, 200, 401, 403\}$
- Large Storage Requirement
- High Splitting Cost

/27

LexTree: Lexicographically Ordered Tree

- Intrinsic Property: Lexicographic Order
 - Items in each transaction, eg. {7, 11, 20, 29, 37}
 - *k*-itemsets, eg. $(1, 3, 4) < (1, \underline{3}, 10) < (1, \underline{4}, 10)$
- Storing **itemsets**: by lexicographic order
- LexTree: compact, hierarchical tree
 - candidate LexTree: efficient, redundant-free support counting
 - frequent LexTree: effective candidate generation
- LexMiner Algorithm

Ming-Yen Lin, IECS.FCU

Ming-Yen Lin, IECS.FCU

LexTree Construction (1) Insert candidate (I, 3, 4)(2) Insert candidate $(I, 3, \underline{10})$ Root Last[1] Last[2] Last[3] (3) Insert candidate $(I, 3, \underline{11})$ Root Last[1] Last[2] Last[3] (4) Insert candidate $(I, 4, \underline{10})$ Root Last[1] Last[2] Last[3] Last[3] Last[3] Last[3]

Insert candidates (1, 3, 4), (1, 3, 10), (1, 3, 11), (1, 4, 10)

Ming-Yen Lin, IECS.FCU

Notations

- D: The database of transactions
- $T: A \underline{\text{transaction}}, T=\{x_1, x_2, ..., x_p, ..., x_m\}$
 - $x_1, x_2, ..., x_k$: Items
- minsup: The minimum support specified by the user
- $X : \underline{k \text{-itemset}}, X = (x_1, x_2, ..., x_k)$
- *X.support* : The support of itemset *X*
- C_k : The <u>set of candidate</u> *k-itemsets*
- L_k : The set of frequent *k*-itemsets
- Γ_{C_k} : The <u>candidate</u> k-itemset <u>LexTree</u>
- Γ_{L_k} : The <u>frequent</u> k-itemset <u>LexTree</u>

Example 2: Fast Support Counting

Candidate 3-itemset LexTree, Γ_{C_3}

Ming-Yen Lin, IECS.FCU

FP-growth

- J. Han, J. Pei, and Y. Yin: "Mining frequent patterns without candidate generation". In Proc. ACM-SIGMOD'2000, pp. 1-12, Dallas, TX, May 2000.
- Compress DB into a tree (FP-tree)
- Find frequent itemsets in FP-tree

Efficient Candidate Generation

- Common prefixed L_{k-1} : linked by sibling
- Join: $C_k = L_{k-1} \times L_{k-1}$, then

insert into
$$C_k$$
 select $p[1], p[2], ..., p[k-1], q[k-1]$ from $L_{k-1} p, L_{k-1} q$ where $p[1] = q[1], ..., p[k-2] = q[k-2], p[k-1] < q[k-1]$;

- Prune: candidate itemset having any subset that is not in $\Gamma_{L_{k-1}}$
 - Searching in $\Gamma_{L_{k-1}}$: similar technique for find_and_increment

Ming-Yen Lin, IECS.FCU

Construction of FP-tree from a Transaction Database

\triangle				
٦	TID	Items bought (o.	rdered) frequent items	
	100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
	200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	$min_support = 0.5$
	300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
	400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
	500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree

Mining Frequent Patterns with FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FPtree
 - Until the resulting FP-tree is empty, or it contains only one path —single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Ming-Yen Lin, IECS.FCU

7 41

Transformed Prefix Paths

- Derive the *transformed prefix paths* of item p
 - For each item p in the tree, collect p's prefix path with count = p's frequency
 - Why only prefix path? Why this count? Complete?

From FP-tree to Conditional Pattern-Base

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item *p*
- Accumulate all of *transformed prefix paths* of item *p* to form *p* 's conditional pattern base

Conditional pattern bases item cond. pattern base c f:3 a fc:3 b fca:1, f:1, c:1 m fca:2, fcab:1

Ming-Yen Lin, IECS.FCU

From Conditional Pattern-Bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree Until ...

0

Cond. pattern base of "cam": (f:3) $\frac{G}{f:3}$

cam-conditional FP-tree

Ming-Yen Lin, IECS.FCU

A More General (Special) Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Ming-Yen Lin, IECS.FCU

{}

A Special Case: Single FP-tree Path

- Suppose a (conditional) FP-tree T has a single path P
- The complete set of frequent patterns of T can be generated by enumeration of all the combinations of the sub-paths of P

m-conditional FP-tree

Ming-Yen Lin, IECS.FCU

循序樣式 (sequential patterns)

- 交易資料庫 (transaction databases), 時序資料庫 (time-series databases) 與序列資料庫 (sequence databases)
- 頻繁樣式(frequent patterns)與循序樣式(sequential patterns)
- 循序樣式的應用 Applications of sequential pattern mining
 - 顧客購買序列
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - 醫療處方, 天災 (e.g., earthquakes), 科學、工程程序, 股票等
 - 電話通聯樣式, Weblog click streams
 - DNA sequences and gene structures

/₄₈

何謂循序樣式之勘測?

• 給一堆序列(sequence),找出所有 frequent subsequences (子序列)

A <u>sequence</u>: < (ef) (ab) (df) c b >

A sequence database

SID	sequence	
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	
20	<(ad)c(bc)(ae)>	
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
40	<eg(af)cbc></eg(af)cbc>	

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a <u>subsequence</u> of $<\underline{a(abc)}(ac)\underline{d(cf)}>$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a sequential pattern

Ming-Yen Lin, IECS.FCU

Sequential Patterns基本特性: Apriori

- 基本特性: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - then none of the super-sequences of S is frequent
 - 例如, <hb> infrequent → <hab> and <(ah)b> 也 infrequent

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup = 2

循序樣式勘測的困難何在?

- 隱藏於資料庫中的可能的循序樣式個數相 當龐大可能
- 探勘演算法必須
 - 找出所有滿足 minimum support (frequency) threshold的樣式
 - 要具有高度效率與可擴充性,減少資料庫檢視 次數
 - 可以跟各種使用者所指定的constraints 搭配

Ming-Yen Lin, IECS.FCU

GSP 演算法細節

 $L_1 = \{ \text{frequent sequence of length 1} \}; k = 1 ;$

 \rightarrow **if** $L_k = \emptyset$ **stop**;

 C_{k+1} = 由 L_k 產生;

→ 對資料庫 D 中每一個交易 t 執行

所有包含於 t 的、 C_{k+1} 中的 candidate的個數 (support count) 加一

 $L_{k+1} = C_{k+1}$ 之candidate滿足最小支持者 (minimum support)

k = k + 1;

答案: L_{ι} 的聯集;

- L_k :大小為 k 的 frequent sequence
- C_k :大小為 k 的candidate sequence

50

/ - 1

找 Length-1的 Sequential Patterns

- Initial candidates: all singleton sequences
 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

min_sup =2

IIIII_Su	0 – 2
Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Cand	Sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
ZgS.	1
Ah S	1

Ming-Yen Lin, IECS.FCU

找Length-2 Sequential Patterns

- Scan database one more time, collect support count for each length-2 candidate
- There are 19 length-2 candidates which pass the minimum support threshold
 - They are length-2 sequential patterns

產生 Length-2 Candidates

51 length-2 Candidates

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Ming-Yen Lin, IECS.FCU

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes
44.57% candidates
54

產生&找出 Length-2 Candidates

- 產生
 - length-2 sequential patterns 自交 (Self-join)
 - Based on the Apriori property
 - <ab>, <aa> and <ba> are all length-2 sequential patterns
 → <aba> is a length-3 candidate
 - <(bd)>, <bb> and <db> are all length-2 sequential patterns → <(bd)b> is a length-3 candidate
 - 46 candidates are generated, prune the impossible
- 找 Length-3 Sequential Patterns
 - Scan database once more, collect support counts for candidates
 - 19 out of 46 candidates pass support threshold

The GSP Mining Process

	Seq. ID	Sequence
min_sup =2	10	<(bd)cb(ac)>
/-	20	<(bf)(ce)b(fg)>
	30	<(ah)(bf)abf>
	40	<(be)(ce)d>
	50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Ming-Yen Lin, IECS.FCU

頻繁樣式的應用

- 以關聯性來分類Association-based classification
- Iceberg cube computation
- Database compression by fascicles and frequent patterns
- Mining sequential patterns (GSP, PrefixSpan, SPADE, etc.)
- Mining partial periodicity, cyclic associations, etc.
- Mining frequent structures, trends, etc

GSP瓶頸

- candidates 個數太多
 - 1,000 frequent length-1 sequences: generate length-2

$$1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$$

- 全部資料庫檢視次數太多
- 真正難的: mining long sequential patterns
 - An exponential number of short candidates 天文數字
 - A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} {100 \choose i} = 2^{100} - 1 \approx 10^{30}$$

Ming-Yen Lin, IECS.FCU

頻繁樣式的研究問題

- Multi-dimensional gradient analysis: patterns regarding changes and differences
- Mining fault-tolerant associations
 - "3 out of 4 courses excellent" leads to A in data mining
- Fascicles and database compression by frequent pattern mining
- Partial periodic patterns
- DNA sequence analysis and pattern classification

Tools: Association Rule Mining

- Free
 - ARTool, http://www.cs.umb.edu/~laur/ARtool/
 - Apriori, http://fuzzy.cs.unimagdeburg.de/~borgelt/#Software
- Commercial
 - IBM Intelligent Miner for Data,
 http://www.software.ibm.com/data/intelli-mine/
 - DBMiner 2.0, http://www.dbminer.com/
 - clementine, http://www.spss.com/clementine/

Ming-Yen Lin, IECS.FCU

61

Apriori (2/2) options

- -b/f/r# blank characters, field and record separators (default: " \t\r", " \t", "\n")
- -o use original definition of the support of a rule (body & head)
- -p# output format for support/confidence (default: "%.1f%%")
- -x extended support output (print both rule support types)
- -a print absolute support (number of transactions)
- -e# additional rule evaluation measure (default: none)
- (# always means a number, a letter, or a string that specifies the parameter of the option.)

63

Apriori (1/2)

- apriori [options] infile outfile [appfile]
 - infile: file to read transactions from
 - outfile: file to write association rules
 - appfile: file stating item appearances (optional)
- options:
 - -t# target type (s: item sets, r: rules (default), h: hyperedges)
 - -m# minimal number of items per set/rule/hyperedge (default:
 - 1)
 - -n# maximal number of items per set/rule/hyperedge (default: 5)
 - -s# minimal support of a set/rule/hyperedge (default: 10%)
- -c# minimal confidence of a rule/hyperedge (default: 80%)

 \int_{62}

Apriori Input Format

- text file (field and record separators and blanks)
 - Record separators: lines
 - field separators fields (or columns): words
 - Blanks: fill fields (columns), e.g. to align them.
- Examples

1,2,3	
1,4,5	
2,3,4	
1,2,3,4	
2,3	
1,2,4	
4,5	
1,2,3,4	
3,4,5	
1,2,3	

) 64

Item Appearances File

- item may appear only in rule bodies (antecedents):
 - i in b body a ante antecedent
- item may appear only in rule heads (consequents):
 - o out h head c cons consequent
- item may appear in rule bodies (antecedents) or in rule heads (consequents):
 - io inout bh b&h ac a&c both
- item may appear neither in rule bodies (antecedents) nor in rule heads (consequents):
 - n neither none ign ignore -
- Example 1: Generate only rules with item "x" in the consequent. in

x out

Ming-Yen Lin, IECS.FCU

65

Sample Output

 $3 < -2 \ (70.0\%, 85.7\%)$

 $2 < -3 \ (70.0\%, 85.7\%)$

2 <- 1 (60.0%, 83.3%)

4 <- 5 (30.0%, 100.0%)

3 <- 2 1 (50.0%, 80.0%)

2 <- 3 1 (40.0%, 100.0%)

4 <- 3 5 (10.0%, 100.0%)

4 <- 1 5 (10.0%, 100.0%)

2 <- 3 4 1 (20.0%, 100.0%)

Sample Command

• apriori test1.tab test.rul

• apriori -b"(" -f, -r")" test2.tab test2.rul

 $(0,1)(0,2)(0,3)(1,1)(1,4)(1,5)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,2)(4,3)\dots$

• apriori -f ",.;:" -1 test3.tab test3.rul

• apriori test1.tab -

Example 2: Item "x" may appear only in a rule head (consequent), item "y" only in a rule body (antecedent); appearance of all other items is not restricted. both x head y body

1,2,3 1,4,5 2.3.4 1,2,3,4 2:3 1,2,4 4,5 1,2,3,4 3;4;5 1,2,3

Applications 回顧

- 購物籃分析
- 交叉行針

- 型錄設計
- 行銷活動分析
- web log (click stream)分析
- DNA sequence analysis
- ...