LEC: 30 ELECTROMAGNETIC INDUCTION AND LENZ'S LAW

CHAPTER 21:

21.1 INDUCING THE ELECTRIC CURRENT 21.2 FLUX

21.3 DIRECTION OF THE INDUCED CURRENT

REVIEW

MATH:

- Dot product : $\vec{A} \cdot \vec{B} = AB \cos \theta$
- CURRENT AS A SOURCE OF MAGNETIC FIELD
- FORCE ON A MOVING CHARGE
- FORCE ON A CURRENT-CARRYING WIRE

the left circuit...

Direction of the current is opposite to the one observed when the switch was closed.

21.2 THE IDEA OF FLUX

Let's aim a wide airstream of uniform velocity \vec{v} at a small square loop of area A

A uniform airstream of velocity \vec{v} us perpendicular to the plane of a square loop area A.

The flow rate $\Phi \propto Av$ and when $\vec{v} \perp A$

The component of the \vec{v} that is perpendicular to the loop is $v_{\perp} = v cos \theta$

The area vector \vec{A} is perpendicular to the surface, $\not\preceq (\vec{A}, \vec{v}) = \theta$ and $|\vec{A}| = A$

Flow rate (flux) $\Phi = Avcos\theta$ $\therefore \Phi = \vec{A} \cdot \vec{v}$

MAGNETIC FLUX

The **magnetic flux** is the amount of magnetic field that passes through a surface. For a uniform magnetic field

$$\Phi_B = BA \cos \theta$$

Unit: 1 weber = 1 Wb = $1T \cdot m^2$

Note:

Flux through a closed 3D surface is zero. (same number of lines enter & leave)

LENZ'S LAW - A BIT DIFFERENTLY

What if – instead of moving the magnet and changing the field, we would place a loop in a uniform magnetic field and increased its size?

LENZ'S LAW - A BIT DIFFERENTLY

Ok, what if we DECREASE THE SIZE?

TRY LC & DISCUSS IN CLASS

LENZ'S LAW - A BIT DIFFERENTLY

Ok, what if we DECREASE THE SIZE? TRY LC & DISCUSS IN CLASS $x \quad x \quad x \quad x \quad x \quad x \quad \beta$ X X X X X induced current,
needs to create Bind into

Determine the direction of the magnetic force on the moving wire.

- a) Right
- b) Left
- c) Up
- d) Down
- e) Out of the page
- f) Into the page

Let's think about it together.

Determine the direction of the magnetic current induced in this loop:

- a) Induced current would be clockwise
- b) Induced current would be counter-clockwise
- c) There will be no current induced in the loop.

Learning Catalytics!

Determine the direction of the magnetic current induced in this loop:

- a) Induced current would be clockwise
- b) Induced current would be counter-clockwise
- c) There will be no current induced in the loop.

A WEIRD IDEA - MOTIONAL EMF

Consider a conductor of length L moving with velocity \vec{v} through perpendicular uniform magnetic field \vec{B} .

If the bar is moving with velocity \vec{v} , every charge inside the bar is moving with the same velocity \vec{v} ...

...therefore each charge experiences magnetic force \vec{F}_B .

Under the force, the positive charges start accelerating upwards, creating excess of positive charges at the top.

separation Charge creates field electric inside the conductor electrostatic (no equilibrium). As a result. carriers experience electric force \vec{F}_E in addition to the magnetic force \vec{F}_R .

MOTIONAL EMF

Charges continue to separate until magnetic force \vec{F}_B and electric force \vec{F}_E have the same magnitude.

$$qvB = qE$$

 $E = vB$

The charge separation stays constant (creating \vec{E} and, therefore, potential difference $\Delta V = EL$) as long as the conductor is moving with velocity \vec{v} .

Potential difference

$$\Delta V = EL$$
.

For the conductor moving in magnetic field, electric field inside is equal to

$$E = vB$$
.

Combining the two equations leads to motional emf

$$\Delta V = \mathcal{E} = vLB$$

So... IF THE MAGNETIC FIELD CHANGES WITHOUT THE CIRCUIT, DOES IT INDUCE CURRENT?

Imagine you have a changing magnetic field – it creates EMF (potential difference) in space.

But ... if there is a potential difference, there has to be an electric field pointing in the direction of the lower potential.

So if there was a charge in space, the **induced** electric field would move it around the circuit creating current and doing work

$$|W| = |q\Delta V| = F2\pi R$$

in one loop.

Some shocking things: ΔV around the loop is NOT zero, it is actually equal to the change in flux!

$$q\frac{\Delta\Phi_B}{\Delta t} = qE2\pi R \to \frac{\Delta\Phi_B}{\Delta t} = 2E\pi R$$

This result is also valid in the absence of a conductor or charges.