

Introdução à programação

/afburger

André Felipe Bürger

Formação acadêmica

Graduado em Sistemas de Informação - FURB

Especialização em Tecnologias Para o Desenvolvimento de Aplicações WEB - FURB

MBA em Inovação e Gestão Ágil de Projetos - FAE

Matérias lecionadas

- Algoritmos e Estrutura de Dados;
- Introdução à Programação;
- Programação Orientada à Objetos;

Dividido em 7 unidades:

- 1. Fundamentos da programação de computadores
- 2. Construção de algoritmos
- 3. Introdução à linguagem de programação
- 4. Comandos de controle de fluxo: Seleção
- 5. Comandos de controle de fluxo: Repetição
- 6. Tipos estruturados
- 7. Introdução à orientação à objetos

1. Fundamentos da programação de computadores

- Solução de problemas
- Técnicas para representação da solução

2. Construção de algoritmos

- Dados e Tipos
- Comandos e Instruções

3. Introdução à linguagem de programação

- Introdução de uma IDE;
- Características da linguagem de programação;
- Tipos de dados;
- Palavras reservadas;
- Operadores;
- Comandos de entrada e saída;
- Método "main" e conceitos de subprograma;
- Passagem de parâmetros por valor e referência;
- Retorno da função;

4. Comandos de controle de fluxo: Seleção

- Simples: se (if)
- Encadeada: se-senão (if else)
- Multipla: escolha (switch case)

Prova 01 (Individual – Teórica e prática)

- Unidade 1;
- Unidade 2;
- Unidade 3;
- Unidade 4;

5. Comandos de controle de fluxo: Repetição

- Enquanto (while);
- Para (for);
- Faça enquanto (do while);

6. Tipos estruturados

- Características dos tipos estruturados;
- Vetores;

Prova 02 (Individual – Teórica e prática)

- Unidade 5;
- Unidade 6;

7. Introdução à orientação a objetos

- Classes e objetos;
- Atributos;
- Mensagens e métodos;
- Encapsulamento;
- Construtores;

Trabalho final (Em dupla – Implementação + Apresentação) *avaliado individualmente

- Unidade 1;Unidade 4;
- Unidade 2;Unidade 5;
- Unidade 3;Unidade 6;


```
*
```

Procedimento de avaliação

Exemplos:

Prova de suficiência

Material

Fundamentos da programação de computadores

- Computadores Máquinas programáveis
- Ações baseadas em dados e regras
- Programador
- Algoritmos, Fluxogramas, Diagramas

► Algoritmo

Um Algoritmo é uma sequência de instruções passo a passo para resolver um problema.

- Listar os ingredientes
- Preparar esses ingredientes
- Montar o sanduíche
- Servir o sanduíche

Solução de problemas

Ciclo de vida de um software

Métodos de especificações de problemas

Abordagem Estruturada

O programa é dividido em blocos de código chamados funções ou procedimentos, que realizam tarefas específicas. Cada função recebe dados como entrada, processa esses dados e pode retornar um resultado.

Abordagem Orientada a Objetos

O programa é modelado em torno de objetos, que são instâncias de classes. Cada objeto possui características (atributos) e comportamentos (métodos) associados a ele.

Exemplo: Calculo de média de alunos

Métodos de especificações de problemas

Abordagem Estruturada

Abordagem Orientada a Objetos

Algoritmos

```
ler (nota)
se nota >= 6.0 então
  escrever ("Aluno aprovado")
senão
  escrever ("Aluno reprovado")
fim se
```

pseudolinguagem

Diagramas

Fluxograma

Diagrama de estados

Diagrama de Classes

✓ Solução de Problemas

- A solução de um problema computacional requer
 - Busca de outras experiências;
 - Divisão e conquista;
 - Diversidade de soluções;
 - Escolha da linguagem;
- Para ser um bom programador é necessário
 - Estudar soluções algorítmicas;
 - Conhecer as estruturas e recursos das linguagens;
 - Praticar, praticar e praticar;
 - Escolha da linguagem;

Praticando a solução de problemas

Interpretando os enunciados

- Entradas (substantivos)
- Definir os processos (ações/verbos)
- Saídas
- Dados de entrada
- Dados intermediários
- Dados de saída

Exemplos de enunciados

Era uma vez, uma pessoa que estava na praia. Esta pessoa conhecia um professor e este professor tinha um problema para resolver. O seu problema era em determinada situação ele poderia ter <u>3 notas de um aluno</u> e com elas poderia calcular a média deste aluno.

Exemplos de enunciados

Considerando que um professor tem notas de um aluno, calcule média do aluno.

Exemplos de enunciados

Um professor deseja calcular a média de um aluno. O professor tem o nome e as 3 notas do aluno e a média deve ser calculada de forma aritmética.

Você consegue resolver este problema sem o uso do computador?

3 notas;

$$\frac{\text{Nota1} + \text{Nota2} + \text{Nota3}}{3} = \text{Média}$$

Algoritmo - Pseudo linguagem

Sequência de instruções ordenadas de forma lógica para a resolução de uma determinada tarefa ou problema

```
ler (nota)
se nota >= 6.0 então
  escrever ("Aluno aprovado")
senão
  escrever ("Aluno reprovado")
fim
```

- Desenvolver a ideia
- Formalizar a ideia
- Codificar
- Testar

Interpretando os enunciados

Um professor deseja calcular a média de um aluno. O professor tem o nome e as 3 notas do aluno e a média deve ser calculada de forma aritmética.

Entradas:	Processos:	Saída:
-----------	------------	--------

Nota
$$2 = 8$$

$$media = (7 + 8 + 9) / 3$$

Testes

Entradas	Saída
Nota1 = 5.0, Nota2 = 7.0, Nota3 = 9.0	Média = 7.0
Nota1 = 4.0, Nota2 = 6.0, Nota3 = 5.0	Média = 5.0
Nota1 = 7.0, Nota2 = 5.0, Nota3 = 1.5	Média = 4.5
Nota1 = 7.0, Nota2 = 8.0, Nota3 = 9.0	Média = 8.0

Interpretando os enunciados

Modele a solução de um problema para calcular a área de uma sala retangular. Considere que as medidas estão expressas em metros.

Comprimento: 7 metros

Largura: 5 metros

Entradas	Saída
Comprimento: 10, largura:10	Área = 100
Comprimento: 3, largura:5	Área = 15
Comprimento: 90, largura:3	Área = 270
Comprimento: 7, largura:9	Área = 63

