UNICAMP IMECC 1a. Prova — MA-211 — Quinta-feira (TARDE), 02/10/2014		Q2	
ALUNO		Q3	
		Q4	
1a. Prova - MA-211 - Quinta-feira (TARDE), 02/10/2014		Q5	
	(:::::==), ==, ==,	\sum	

Q1

INSTRUCÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS

SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

Questão 1. Considere a função

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) A função f é contínua em (0,0)? Justifique sua resposta. (0.8)
- (b) Calcule as derivadas parciais $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$. (0.4)
- (c) Determine $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$ para $(x,y) \neq (0,0)$. (0.6)
- (d) f é diferenciável em (0,0)? Justifique sua resposta. (0.2)

Questão 2. Considere a função

$$f(x,y) = \ln(x^2 + y^2).$$

- (a) Determine a taxa de variação máxima de f em (1,1) e a direção em que isso ocorre. (0.6)
- (b) Determine a derivada direcional de f em (1,1) na direção do vetor $\mathbf{v}=(3,4)$. (0.6)

(c) Mostre que
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$
 (0.8)

Questão 3. Considere a função $f(x,y) = x\phi(x^2 - y^2)$, em que $\phi : \mathbb{R} \to \mathbb{R}$ é uma função diferenciável de uma variável real. Mostre que o plano tangente ao gráfico de f no ponto (a,a,f(a,a)) contém a origem. (2.0)

Questão 4. Determine e classifique os pontos críticos da função (2.0)

$$f(x,y) = x^3 + 2xy + y^2 - 5x.$$

Questão 5. Encontre os pontos da elipse $x^2 + xy + y^2 = 3$ mais próximos e mais distantes da origem. (2.0)