

Augmented Leverage Score Sampling

Daniel J. Perry and Ross T. Whitaker SCI Institute, University of Utah, USA

Objective for Column Subset Selection Problem (CSSP)

Let $\mathbf{A} \in \mathbb{R}^{d \times n}$ and let m < n be a sampling parameter. Find m columns for A - denoted as $\mathbf{C} \in \mathbb{R}^{d \times m}$ that minimize

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\eta}$$

for $\eta \in \{F, 2\}$, and where C^{\dagger} denotes the Moore-Penrose pseudo-inverse.

Algorithm: Augmented Leverage Score Sampling

Input $\mathbf{A} \in \mathbb{R}^{d \times n}, k, \theta$ Compute $\mathbf{Y}_k = \mathbf{V}_k \hat{\mathbf{\Sigma}}_k \in \mathbb{R}^{n \times k}$ Compute $\hat{I}_i^{(k)} = \|[\mathbf{Y}_k]_{i,:}\|_2^2 \forall i = 1, 2, \dots, n$ Let $\hat{I}_i^{(k)}$'s be sorted, $\hat{I}_1^{(k)} \geq \dots \geq \dots \geq \hat{I}_n^{(k)}$ Find index $m \in \{1, \dots, n\}$ such that:

$$m = \arg\min_{m} \left(\sum_{i=1}^{m} \hat{I}_{i}^{(k)} > \theta \right).$$

If m < k, set m = k.

Output S $\in \mathbb{R}^{n \times m}$, s.t. **AS** has the top m columns of **A**.

Theorem: Frobenius and spectral error bound

Let $\theta = k \cdot \hat{\sigma}_1^2(\Sigma_k) - \epsilon$ for some $\epsilon \in (0,1)$, and let $S \in \mathbb{R}^{n \times m}$ be the sampling matrix from the augmented leverage sampling algorithm, then, for C = AS and $\zeta = \{2, F\}$

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\zeta}^{2} < \frac{\hat{\sigma}_{1}^{2}(\mathbf{\Sigma}_{\mathsf{k}})}{1 - \epsilon} \cdot \|\mathbf{A} - \mathbf{A}_{\mathsf{k}}\|_{\zeta}^{2},$$

where $\hat{\sigma}_1 = \sigma_1/\sigma_k$. We can rewrite the bound as

$$\|\mathsf{A}-\mathsf{C}\mathsf{C}^{\dagger}\mathsf{A}\|_{\zeta}^2<(1+2\epsilon)\cdot\hat{\sigma}_1^2(\mathbf{\Sigma}_\mathsf{k})\cdot\|\mathsf{A}-\mathsf{A}_\mathsf{k}\|_{\zeta}^2$$
 if $\epsilon<\frac{1}{2}$.

Augmented leverage score space

The data points shown are $P_{\text{aug-lev}} = \Sigma_2 V_2^T = U_2^T A$ (PCA projection)

Previous work

► Deterministic leverage score sampling bound due to (Papailiopoulos, et al., KDD 2014),

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}\|_{\zeta}^{2} < (1 + 2\epsilon) \cdot \|\mathbf{A} - \mathbf{A}_{\mathsf{k}}\|_{\zeta}^{2}.$$

for $\epsilon \in (0, 0.5)$.

► Greedy column subset selection tight bound due to (Altschuler, et al. ICML 2016)

$$\|\mathsf{CC}^{\dagger}\mathsf{A}\|_{F} \geq (1+\epsilon)\|\mathsf{DD}^{\dagger}\mathsf{A}\|_{F}$$

where \mathbf{D} is the optimal subset of size m from A.

Datasets

► Methods were compared on real and synthetic datasets, including three real datasets below from the UCI machine learning repository.

The data points shown are $P_{lev} = V_2^T = \Sigma^{\dagger} U_2^T A$ (Whitened PCA projection)