ECSE 4840 Introduction to Machine Learning Term Exam 2

Rensselaer Polytechnic Institute

Due: 2PM on December 11th

Name:			
SIN ID-			

Question	Points
1	0
2	0
3	0
4	0
Total	0

Instructions:

- 1. This examination contains 8 pages, including this page.
- 2. The exam has no grace days.
- 3. Write your answers or type them in latex. We scan this into Gradescope, so **please try to avoid writing on the backs of pages**. If you must do so, please indicate **very** clearly on the front of the page that you have written on the back of the page.
- 4. You may use notes that you have prepared. You may not use any other electrical resources, other students, other instructors, or other engineers.
- 5. You may use a calculator. You may not share a calculator with anyone.

I certify that I will neither give nor receive unpermitted aid on this examination.	
Signature:	

Question 1: Gradient Descent for Linear Regression (30 points)

Consider the linear regression problem of finding θ that minimizes the following ℓ_2 -regularized loss function

$$L(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\theta}^{\top} \mathbf{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2$$
 (1)

where $\mathcal{D} = \left\{\mathbf{x}_i, y_i\right\}_{i=1}^N$ is the training data set with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, $\boldsymbol{\theta} \in \mathbb{R}^d$ is the parameter to be determined, and $\lambda \in \mathbb{R}$ is the regularization coefficient. We plan to implement batch gradient descent algorithms to solve this problem, with a constant learning rate of α .

(a) (10 points) Write the batch gradient descent update at the k^{th} iteration, for solving this problem.

(b) (5 points) Given the dataset in Table 1 and $\lambda = 1$, find the minimizer θ^* of the problem (1). Hint: Compute the gradient. It will be easier to use the matrix and vector forms of \mathbf{x}_i and y_i .

i	\mathbf{x}_i	y_i
1	$(0, 1)^{\top}$	-1
2	$(-1, 1)^{\top}$	1

Table 1: Dataset for linear regression

By taking initial parameter $\theta^0 = (0, 0)^{\top}$, find the parameters θ^1 , θ^2 obtained after running two by	
gradient descent updates.	
	se at θ^2 gradient
	be at θ^2 radient
(5 points) For the batch gradient descent and the same setting in (c), does the loss $L(\boldsymbol{\theta})$ decrease a compared with $\boldsymbol{\theta}^0$? If yes, calculate $L(\boldsymbol{\theta}^2) - L(\boldsymbol{\theta}^0)$. Verify if this error satisfies the theory of grad descent we introduced in the class, that is,	
$L(\boldsymbol{\theta}^T) - L(\boldsymbol{\theta}^*) \leq \frac{2\beta \ \boldsymbol{\theta}^0 - \boldsymbol{\theta}^*\ ^2}{T}$	at θ^2 adient
$L(\boldsymbol{\theta}^T) - L(\boldsymbol{\theta}^*) \leq \frac{2\beta \ \boldsymbol{\theta}^0 - \boldsymbol{\theta}^*\ ^2}{T}$ where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxime eigenvalue of the Hessian matrix of $L(\boldsymbol{\theta})$.	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
where β is the smoothness of the objective function $L(\boldsymbol{\theta})$. Hint: Find β by calculating the maxim	
	gradient descent updates. (5 points) For the batch gradient descent and the same setting in (c), does the loss $L(\theta)$ decrease a compared with θ^0 ? If yes, calculate $L(\theta^2) - L(\theta^0)$. Verify if this error satisfies the theory of gradient descent and the same setting in (c), does the loss $L(\theta)$ decrease a compared with θ^0 ? If yes, calculate $L(\theta^2) - L(\theta^0)$. Verify if this error satisfies the theory of gradient descent and the same setting in (c), does the loss $L(\theta)$ decrease a compared with θ^0 ?

Question 2: Kernel Methods (15 points)

Recall that a function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a valid kernel function if it is **symmetric and positive semi-definite** function. For the current problem, we assume that the domain $\mathcal{X} = \mathbb{R}$.

	$K(x, x') = (xx' + 1)^{2021}$	(3)
where $x, x' \in \mathbb{R}$. Show that I	K is a valid kernel function. Hint: Check Homework 5	
\(\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2}		C 11
is a valid kernel function (5 points) if K_1 is a valid kernel function	The function and f is a function $f: \mathbb{R} \to \mathbb{R}$, check if the	
	$K(x,x') = f(x)K_1(x,x')f(x').$	(4)

Question 3: Neural Networks (30 points)

Consider a one-hidden-layer neural network as shown below. The input $\mathbf{x} := [x^{(1)}, x^{(2)}, x^{(3)}]^{\top} \in \mathbb{R}^3$ is a vector with dimension 3, and the output $y \in \mathbb{R}$ is a scalar. The weight vector $\mathbf{w}_1 := [w_1^{(1)}, w_1^{(2)}, w_1^{(3)}]^{\top} \in \mathbb{R}^3$ concatenates the weights to z_1 and $\mathbf{w}_2 := [w_2^{(1)}, w_2^{(2)}, w_2^{(3)}] \in \mathbb{R}^3$ concatenates the weights to z_2 . Only two neurons in the hidden layer have nonlinear activation functions σ .

(a) (10 points) Represent y as a function of $\mathbf{x}, \mathbf{w}_1, \mathbf{w}_2, v_1, v_2$.

(b) (10 points) Initialize $\mathbf{w}_1 = \mathbf{0}$, $\mathbf{w}_2 = \mathbf{0}$, $v_1 = 0$ and $v_2 = 0$. We want to run backpropagation over the network for training. Assume the stepsize is $\eta = 1$. After 1 iteration of backpropagation, what are the values of \mathbf{w}_1 ? Hint: No need to know the values of feature \mathbf{x} .

(c)	(5 points) After n iterations of backpropagation, what is the relationship between \mathbf{w}_1 and \mathbf{w}_2 ? Explain why. Hint: No heavy calculation is needed.
(d)	(5 points) Is this an effective initialization of $\mathbf{w}_1, \mathbf{w}_2, v_1, v_2$ to optimize neural networks? Why?

Question 4: Constrained Optimization (25 points)

Consider the problem of solving a constrained quadratic optimization problem over $\mathbf{x} \in \mathbb{R}^d$ given as follows:

$$\min_{\mathbf{x}} \ \mathbf{x}^{\top} P \mathbf{x} + q^{\top} \mathbf{x} \quad \text{such that} \quad A \mathbf{x} = \mathbf{a}, \tag{5}$$

where $P \in \mathbb{R}^{d \times d}$ is positive definite, $q \in \mathbb{R}^d$, $A \in \mathbb{R}^{k \times d}$, $\mathbf{a} \in \mathbb{R}^k$.

(a)	(10 points) What is the Lagrangian for the optimization problem? Clearly state the dimensionality and constraints on the Lagrange multiplier λ (if any) involved. Hint: Check the notes on SVM.
(b)	(10 points) Can the Lagrange dual for the optimization problem be written as a closed form expression in terms of the Lagrange multipliers and the given matrices and vectors? If yes, clearly state the closed form for the Lagrange dual; if no, clearly explain why a closed form is not possible.

¹Reading material: https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/admm.pdf