

11 bit SAR ADC for the Evaluation of Analog Defect Simulation Tools

adstestsuite@infineon.com

December 16, 2020

Disclaimer: THIS FILE IS PROVIDED AS IS AND WITH:

- A **NO WARRANTY OF ANY KIND**, express, implied or statutory, including any implied warranties of merchantability, fitness for a particular purpose and noninfringement, which Infineon disclaims to the maximum extent permitted by applicable law; and
- B NO INDEMNIFICATION FOR INFRINGEMENT OF INTEL-LECTUAL PROPERTY RIGHTS.
- C LIMITATION OF LIABILITY: IN NO EVENT SHALL INFINEON BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS) WHATSOEVER, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
- © 2020 Infineon Technologies AG. All rights reserved.

Note:

The CMOS transistor models used, were freely available models downloaded from: http://ptm.asu.edu.

The bipolar transistor models are from: **The Development of Bipolar Log-Domain Filters in a Standard CMOS Process**, G. D. Duerden, G. W. Roberts, M. J. Deen, 2001

Contents

1	Overview	5
2	Electrical Characteristics	10
3	Startup and Conversion	11
4	Analog Core	13
5	ADC Core	14
6	ADC DAC	15
7	Comparator	17
8	SAR Register	18
9	Bias Current Generation	19
10	Test IDs	19
Li	ist of Figures Symbol of the top-level SAR ADC	5
	2 Analog and digital modules	9
	3 Startup of ADC	11
	4 Zoom at single conversion	12
	5 Analog core of the SAR ADC	13
	6 ADC core of the SAR ADC	14
	7 ADC DAC	15
	8 DAC capacitor array	16
	9 ADC Comparator	17 18
	Bias generation example	19
Li	ist of Tables	
	Pin list of the top-level SAR ADC	5
	2 Electrical characteristics of the SAR ADC	10
	3 Test IDs of the SAR ADC	19

Abstract:

This document introduces you to the schematic and the internal circuits of the delivered 11 bit SAR ADC. The purpose is to enable the reader to understand, run and extend the test benches of this circuit.

Audience: Tool evaluators

1 Overview

This document gives you the most important information about the 11 bit redundant SAR ADC that is used to test EDA software for Analog Fault Simulation. The circuit has been implemented in an 130 nm open source technology taken from http://ptm.asu.edu/. The top-level symbol of the SAR ADC is shown in figure 1.

Figure 1: Symbol of the top-level SAR ADC.

Table ${\color{red} 1}$ shows the description of all pins.

Table 1: Pin list of the top-level SAR ADC.

Pin name	Direction	Min	Тур	Max	Unit	Description
vsense_gnd_ai	gnd_ai input		0	-	V	No internal con-
						nection
vrefp_ai	input		1.2		V	Bandgap refer-
						ence voltage
vrefn_ai	input		0		V	Negative refer-
						ence voltage

Continued on next page

Continued from previous page

Pin name	Direction	Min	Тур	Max	Unit	Description
tst_stress_i	input		0		V	Test mode
	1					stress: switches
						on all input
						switches and
						power module
track_cfg_i<1:0>	input		0,0		V	Tracking mode
_						configuration
stc_i<1:0>	input		0,0		V	Sample time
	_					control
stc_cal_i<1:0>	input		0,0		V	Sample time
						control for
						calibration
start_adc_i	input	О		VDDC	V	Enable the ADC
sesp_i	input		О		V	Spreaded early
						sample point en-
						able
scan_mode_i	input		0		V	Scan mode se-
						lect signal
scan_in_i<3:0>	input		0,0,0		V	scan input to
						scan chains
res_n_i	input	О		VDDC	V	Reset of the
						ADC (must be
						VDD to enable
						ADC)
overs_cfg_i<1:0>	input		0,0		V	Oversampling
						configuration
mod_enable_i	input		VDDC		V	Module enable
lv_in2_1v5_ai	input	О	-	1.5	V	Input channel
						2 (Max code
						is reachted at
						V_{refp})
lv_in1_1v5_ai	input	О	_	1.5	V	Input channel
						1 (Max code
						is reachted at
						$V_{ m refp})$

Continued on next page

Continued from previous page

Pin name	Direction	Min	Тур	Max	Unit	Description
lv_ino_1v5_ai	input	О	-	1.5	V	Input channel
						o (Max code
						is reachted at
						$V_{ m refp}$)
lv_gain_i	input		О		V	Low voltage
						gain selection
jtag_mode_i	input		О		V	JTAG MODE en-
						able
epcal_i	input		О		V	Enable post-
						calibration
dscal_i	input		VDDC		V	Disable startup
						calibration
dither_cfg_i<1:0>	input		0,0		V	Dither configu-
						ration
comp_val_i<12:0>	input		00		V	Comparator
						value - redun-
						dant code
comp_en_i	input		О		V	Comparator
	_					mode enable
clk_i	input	0		VDDC	V	Input clock
chnr_i<4:0>	input	О		VDDC	V	Channel num-
						ber:
						o: obo1001
						1: obo1010
11				TIDDG		2: obo1011
tst_dig_o<19:0>	output	О		VDDC	V	Test digital out-
				LIDDG	X 7	put bits
scan_out_o<3:o>	output	0		VDDC	V	Scan output
						from scan
						chains

Continued on next page

Continued from previous page

Pin name	Direction	Min	Тур	Max	Unit	Description
result_o<11:0>	output	О		VDDC	V	Result of A/D
						conversion (re-
						sult_o <o> is not</o>
						used! The 11 bit
						binary result is
						starting from
						result_o<1>
						and end at
						result_o<11>).
mod_ready_o	output	0		VDDC	V	Module ready
	1					signal
eoc_pre_o	output	0		VDDC	V	End of conver-
1	1					sion pre-timed
						advanced eoc_o
						pulse
eoc_o	output	0		VDDC	V	End of con-
						version signal
						pulse flags end
						of conversion
busy_o	output	0		VDDC	V	Busy signal
-	_					(high indicates
						running conver-
						sion/operation)
mv_cs_valid_i	input	О	VDDA	VDDA	V	Core supply
						valid
						- if high, all
						level shifters are
						released
						- if low, all level
						shifters are in
						isolation mode
scan_enable_i	input		О		V	Scan enable
						path
tst_dig_i<36:0>	input		00		V	Test mode digi-
						tal input bits
mod_lowsup_i	input	0	VDDC	VDDC	V	Not imple-
						mented

Note:

- The 11 bit output of the result can be found in result_o<11:1>. The signal result_o<0> is inactive.
- ullet Code ob11111111111 is reachted at $V_{
 m in} = V_{
 m refp} = 1.2\,{
 m V}$

The digital SystemVerilog block is located in the first hierarchy as shown in figure 2. The right block has to be linked to the SystemVerilog module.

Figure 2: Analog and digital modules.

2 Electrical Characteristics

Table 2 shows the typical electrical characteristics of the ADC.

Table 2: Electrical characteristics of the SAR ADC.

Symbol	Min	Тур	Max	Unit	Description		
VDDA	-	2.5	-	V	Supply voltage for the analog		
					core		
VDDC	-	1.5	-	V	Supply voltage		
					for the digital		
					core		
f	-	28	-	MHz	Clock frequency		
Vrefp	_	1.2	-	V	Bandgap refer-		
_					ence voltage		

3 Startup and Conversion

To start the ADC the following steps have to be done:

- 1. $res_n_i = VDDC$
- 2. Apply clock to clk_i
- 3. Wait for mod_ready_o signal from ADC
- 4. Start conversion by applying a pulse to start_adc_i (start_adc_i has to be high during a rising edge of clk_i)
- 5. Wait for eoc_o going high (then the result will be available on result_o)

Figure 3 shows the startup routine and figure 4 shows a zoom to one conversion.

Figure 3: Startup of ADC.

Figure 4: Zoom at single conversion.

The mod_ready_o signal signalizes the readiness of the analog circuitry and it is set after $4.85\,\mu s$ for a $28\,MHz$ clock. One conversion takes $25\,clock$ cycles. With an input clock of $28\,MHz$ one conversion takes about $900\,ns$.

4 Analog Core

Figure 5 shows the analog core of the SAR ADC. On left, you see the input multiplexer for the input channels. On the right side, you see the level shifters, connecting the digital circuitry to the analog side. On the top, you will find the internal voltage regulators that produce the internal voltages:

- $V_{\rm cm} \approx 0.9 \, \rm V$
- $V_{\text{comp}} = 1.5 \,\text{V}$
- $V_{\text{logic}} = 1.5 \,\text{V}$

and the required bias currents: $10 \,\mu\text{A}$ and $5 \,\mu\text{A}$.

Figure 5: Analog core of the SAR ADC.

5 ADC Core

The ADC core is shown in figure 6. On the top, you see the buffer for the reference voltage together with a low pass filter on the input. On the right side, you see the comparator. On the bottom, you see the C-DAC.

Figure 6: ADC core of the SAR ADC.

6 ADC DAC

The DAC of the ADC can be seen in figure 7. The capacitor array, which has a total capacitance of 512 fF, is shown in figure 8.

The calibration DAC is not used during the tests. The tracking DAC has been removed.

Figure 8: DAC capacitor array.

7 Comparator

Figure 9 shows the comparator. It consists out of 3 amplifier and one latching stage. The switches to precharge the inputs to $V_{\rm cm}$ are boosted by a current that originates from the 2.5 V voltage domain.

Figure 9: ADC Comparator.

8 SAR Register

The register that contains the results of each comparison is depicted in figure 10. The register of the tracking DAC is kept but not used. Any injected fault in this block cannot be detected.

9 Bias Current Generation

In contrast to the current sinks, all current sources are cascoded (see e.g. figure 11). If the cascode has a short between drain and source, then this error should most likely not be detectable.

Figure 11: Bias generation example.

VDDbo! VSSb! VDDo!

10 Test IDs

The following test ids are output when an error occures:

Table 3: Test IDs of the SAR ADC.

Test ID	Description
4	DNL histogram test failed
5	INL histogram test failed
6	Catastrophic fault detected
11	DNL and INL histogram test failed

The test id is o if everything is within the specification.

