Student Information

Full Name : Zeynep Özalp Id Number : 2237691

Answer 1

a.

(i)
$$G = \{V, \Sigma, R, S\}$$

 $V = \{a, b, S, S_1, S_2\}$
 $\Sigma = \{a, b\}$
 $R = \{S - > aSa|bS_1,$
 $S_1 - > aS_1a|b\}$

(ii) E generates the strings of even length except the empty sting, O generates the strings of odd length. The length of string produced by S is even + even + 3 = odd or odd + odd + 3 = odd.

$$\begin{split} G &= \{V, \Sigma, R, S\} \\ V &= \{a, b, S, E, O\} \\ \Sigma &= \{a, b\} \\ R &= \{S - > aEaEa|bEbEb|aOaOa|bObOb|aaa|bbb, \\ E - &> aEa|aEb|bEa|bEb|aa|bb, \\ O - &> aE|Ea|bE|Eb|a|b\} \end{split}$$

(iii) S_1 creates the string $a^ib^jc^k$ where $i \neq j$ and S_2 creates the string $a^ib^jc^k$ where $j \neq k$. For S_1 , T_1 creates the string a^ib^j where $i \neq j$. T_2 creates the string a^ib^j where i = j. A_1 is a^+ , B_1 is b^+ and C_1 is c^* . For S_2 , T_3 creates the string b^jc^k where $j \neq k$. T_4 creates the string b^jc^k where k = j. A_2 is a^* , B_2 is b^+ and C_2 is c^+ .

```
G = \{V, \Sigma, R, S\}
V = \{a, b, S, S_1, S_2, T_1, T_2, T_3, T_4, A_1, A_2, B_1, B_2, C_1, C_2\}
\Sigma = \{a, b\}
R = \{S - > S_1 | S_2,
S_1 - > T_1 C_1
T_1 - > A_1 T_2 | T_2 B_1,
T_2 - > aT_2b|e,
A_1 - > aA_1
B_1 - > bB_1,
C_1 - > cC_1|e,
S_2 - > A_2 T_3
T_3 - > B_2 T_4 | T_4 C_2
T_4 - > bT_4c|e
B_2 - > bB_2,
C_2 - > cC_2
A_2 - > aA_2|e|
```

(iv) S_1 generates all strings, S_2 generates a $w_i c$, S_3 generates the sequence of $w_i c$'s. S_4 generates $w_i c \{ sequence of w_i c's \} c w_i^R$.

$$G = \{V, \Sigma, R, S\}$$

$$V = \{a, b, S, S_1, S_2, S_3, S_4\}$$

$$\Sigma = \{a, b\}$$

$$R = \{S - > S_3 S_4, S_1 - > a S_1 |b S_1| e,$$

$$S_1 \rightarrow aS_1 | bS_1 | c,$$

$$S_2 - > aS_1 c | bS_1 c,$$

$$S_1 - S_2 | c,$$

$$S_3 - > S_2 S_3 | S_2,$$

$$S_4 - > aS_4 a |bS_4 b| cS_3 c$$

b.

PART 1

 $L(G) \subseteq L$, every string generated by G is in L. Use mathematical induction.

1. Basis step: Derivation in 2 steps.

$$S \Rightarrow aB \Rightarrow ab \in L$$

$$S \Rightarrow bA \Rightarrow ba \in L$$

- 2. Inductive Hypothesis: Assume that for every derivation $S \Rightarrow^* w$ with $n \geq 2$ steps, $w \in L$
- 3. Inductive Step: Let $S \Rightarrow^* w$ be a derivation with n+2 steps, $n \in N$. Since n+2>2, the derivation starts with either abS, baS, aABB or bBAA.
- i) $S \Rightarrow aB \Rightarrow abS \Rightarrow^* abw_1$. By ind. hyp., $w_1 \in L, w_1$ has equal number of a's and b's, so does abw_1 and $abw_1 \in L$.
- ii) $S \Rightarrow bA \Rightarrow baS \Rightarrow^* baw_2$. By ind. hyp., $w_2 \in L, w_2$ has equal number of a's and b's, so does baw_2 and $baw_2 \in L$.
- iii) $S \Rightarrow aB \Rightarrow abS \Rightarrow abaB \Rightarrow abaABB$. So, the string aABB can be generated by S in two steps and in L.
- iv) $S \Rightarrow bA \Rightarrow baS \Rightarrow babA \Rightarrow babBAA$. So, the string bBAA can be generated by S in two steps and in L.

Therefore, every string generated by G is in L.

PART 2

 $L \subseteq L(G)$, every string in L can be generated by G. $L = \{ab, ba, ...\}$ Use mathematical induction.

1. Basis step: For |w|=2, $S\Rightarrow aB\Rightarrow ab$ and $S\Rightarrow bA\Rightarrow ba$. So, $ab\in L(G)$ and $ba\in L(G)$.

- 2. Inductive Hypothesis: Assume that all strings $|w| \le k 1$ in L can be generated by G.
- 3. Inductive Step: Suppose $x = a_1 a_2 a_3 ... a_k \in L$ with k > 2, $a_i \in \Sigma$. Now assume that $a_1 a_2 = ab$. Define $N_a(x)$ as the number of a's in x and

$$d_i = N_a(x) - N_b(x), 0 \le i \le k$$

 $t = min(i > 0, d_i = 0)$

Since we choose $a_1a_2=ab$, $d_1=1, d_2=0$. Also, $d_k=0$ since $x\in L$. Thus, there exists a smallest i such that $d_i=-1$ and $d_{i+1}=0$. This value is represented as t. Since t was chosen to be the smallest possible and $d_1>0$, we must have $d_t<0$. Since $d_t<0$ and $d_{t+1}=0$, we must have $a_ta_{t+1}=ba$. Therefore, we have

$$x = aba_3...a_{t-1}baa_{t+2}...a_k$$

Let $y = a_3...a_{t-1}$ and $z = a_{t+2}...a_k$. Clearly, because $x \in L$, y and z have equal number of a's and b's, $y \in L$ and $z \in L$. By inductive hypothesis, since |y| < k and |z| < k, $y, z \in L(G)$. This means $S \Rightarrow^* y$ and $S \Rightarrow^* z$.

$$S \Rightarrow aB \Rightarrow abS \Rightarrow^* abyS \Rightarrow abybA \Rightarrow abybaS \Rightarrow^* abybaz = x$$

Therefore, $x \in L(G)$ and for all $x \in L \to x \in L(G)$. This completes the proof that L(G) is the set of all non-empty strings in Σ^* that have equal number of a's and b's.

Answer 2

a.

$$s = aab$$

$$S \Rightarrow aaB \Rightarrow aab$$
$$S \Rightarrow Ab \Rightarrow Aab \Rightarrow aab$$

b.

$$\begin{split} L(G) &= \{ab, aab, aaab, \ldots\} \\ \text{G' is an equivalent unambiguous CFG of G.} \\ G' &= \{V', \Sigma, R', S\}, \ V' = \{a, b, S, A\}, \\ R &= \{S \rightarrow Ab, A \rightarrow a | aA\} \end{split}$$

c.

Answer 3

a.

$$L = \{w \in \{a,b\}^* | w = (aa)^i (bbb)^i, i \geq 0\}$$

b.

$$\begin{split} M &= \{K, \Sigma, \Gamma, \Delta, q_0, q_7\} \\ K &= \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \ \Sigma = \{a, b\}, \Gamma = \{Z_0, X, Y\} \\ T &= \{Z_0, X\} \end{split}$$

c.

(i)
$$L(M) = \{a^i b^j c^k \in \{a, b, c\}^* | i, j, k \ge 0, i = j \text{ or } j > k \text{ or } j < k\}$$

 $M = (K, \{a, b, c\}, \Gamma, \Delta, q_0, \{q_3, q_7\})$
 $K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}\}, \Gamma = \{Z_0, a, b\}$

	State	Input	Stack	Transition
	q_0	aabcc	e	-
	q_{10}	aabcc	Z_0	(7)
	q_{10}	abcc	Z_0	(8)
	q_{10}	bcc	Z_0	(8)
(ii)	q_4	bcc	Z_0	(9)
(11)	q_4	cc	b, Z_0	(10)
	q_8	cc	b, Z_0	(16)
	q_8	\mathbf{c}	Z_0	(17)
	q_9	e	Z_0	(18)
	q_7	e	e	(20)
	q_7	e	e	Accepts.
	L			

State	Input	Stack	Transition
q_0	bac	e	_
q_1	bac	Z_0	(1)
q_2	bac	Z_0	(3)
q_3	bac	Z_0	(5)
q_3	bac	Z_0	Rejects.
q_0	bac	e	_
q_{10}	bac	Z_0	(7)
q_4	bac	Z_0	(9)
q_4	ac	b, Z_0	(10)
q_5	ac	b, Z_0	(11)
q_5	ac	b, Z_0	Rejects.
q_0	bac	e	-
q_{10}	bac	Z_0	(7)
q_4	bac	Z_0	(9)
q_4	ac	b, Z_0	(10)
q_8	ac	b, Z_0	(11)
q_8	ac	b, Z_0	Rejects.

Answer 4

a.

```
Construct a PDA M = (\{p,q\}, \Sigma, V, \Delta, p, \{q\}) such that L(M) = L(G). By Lemma 3.4.1, \Delta = ((p,e,e), (q,E)), ((q,e,E), (q,E+T)), ((q,e,E), (q,T)), ((q,e,T), (q,T\times F)), ((q,e,T), (q,F)), ((q,e,F), (q,E)), ((q,e,F), (q,a)), ((q,e,F), (q,a)), ((q,e,F), (q,e)), ((q,x,x), (q,e)),
```

b.

First add Δ' the transitions ((s',e,e),(s,Z)) and ((f,e,Z),(f',e)) for each $f \in F$. Now, Δ' consists of these transitions described above and all the transitions in Δ . Next, we replace all the transitions

in Δ' that violates the condition $|\beta| + |\gamma| \leq 1$.

Consider any transition $((q, a, \beta), (p, e))$ where $\beta = B_1B_2...B_n$ with n > 1. It is replaced by new transitions that pop sequentially the symbols $B_1...B_n$. So, we add δ' these transitions:

$$((q, e, B_1), (q_1, e))$$

$$((q_1, e, B_2), (q_2, e))$$

$$\vdots$$

$$((q_{n-2}, e, B_{n-1}), (q_{n-1}, e))$$

$$((q_{n-1}, e, B_n), (p, e))$$

We repeat these replacements for all transitions $((q, a, \beta), (p, e))$ where $|\beta| > 1$ in δ' .

Similarly, we replace transitions $((q, a, e), (p, \gamma))$ where $\gamma = G_1G_2...G_m$ and m > 1 by the new transitions:

$$((q, e, e), (q_1, G_1))$$

$$((q_1, e, e), (q_2, G_2))$$

$$\vdots$$

$$((q_{n-2}, e, e), (q_{n-1}, G_{n-1}))$$

$$((q_{n-1}, e, e), (p, G_n))$$

We repeat these replacements for all transitions $((q, a, e), (p, \gamma))$ where $|\gamma| > 1$ in δ' .

Now, consider any transition $((q, a, \beta), (p, \gamma))$ where $\beta = B_1B_2...B_n$ with n > 1 and $\gamma = G_1G_2...G_m$ with m > 1. We replace these transitions by the new transitions:

$$((q, e, B_1), (q_1, e))$$

$$((q_1, e, B_2), (q_2, e))$$

$$\vdots$$

$$((q_{n-2}, e, B_{n-1}), (q_{n-1}, e))$$

$$((q_{n-1}, e, B_n), (p, e))$$

$$((q_n, e, e), (q_{n+1}, G_1))$$

$$((q_{n+1}, e, e), (q_{n+2}, G_2))$$

$$\vdots$$

$$((q_{n+m-2}, e, e), (q_{n+m-1}, G_{m-1}))$$

$$((q_{n+m-1}, e, e), (p, G_m))$$

It is clear that the resulting pushdown automata is equivalent to the original one.

Answer 5

a.

- (i) Let $L_1 = \{a^m b^m \in \{a,b\}^* | m \in N\}$ and $L_2 = \{b^n a^n \in \{a,b\}^* | n \in N\}$. Grammer for L_1 is $G_1 = \{\{a,b,S\}, \{a,b\}, \{S \to aSb|e\}, S\}$ and grammer for L_2 is $G_1 = \{\{a,b,S\}, \{a,b\}, \{S \to bSa|e\}, S\}$. So, L_1 and L_2 are context-free languages. By Theorem 3.5.1, their concatenation L_1L_2 are also context-free.
- (ii) $L = \{ba, babaa, babaabaaa, ...\}$ Let L' be the complement of L and use an algorithm to find the complement of L. We can generate strings that is not in L by changing one a or b from the beginning and in order. For n = 1, we have the string ba in L. Change a b to an a or change an a to a b in ba, we get aa or bb respectively, which are not in L. Concatenating Σ^* to these two strings we have the languages $aa\Sigma^*$ and $bb\Sigma^*$. These two languages differ from L by the first a or the first b symbols. However, we may have other strings that differs from L by changing the n^th a to a b and a, which are in case, the ones who do not fit the condition of L. Thus, one can generate L' by taking the infinite union of such languages.

$$L' = a\Sigma^* \cup baba\Sigma^* \cup babaaa\Sigma^* \cup ... \cup bb\Sigma^* \cup baba\Sigma^* \cup babab\Sigma^* \cup babaabb\Sigma^* \cup ...$$

Since all regular languages are context-free and context-free languages are closed under union by Theorem 3.5.1, L' is context-free.

b.

- (i) Assume L is context-free. Then there exists a pumping length k such that for all $w \in L$ and |w| > k there exists a split w = uvxyz, |vy| > 0, $|vxy| \le k$ and $yv^nxy^nz \in L$ for all $n \ge 0$. Choose $w = a^{k^2}b^k$. There are three possible splits:
 - 1) $vxy = a^j$, j > 0. $uv^2xy^2z = a^{k^2+2j}b^k$. $k^2 + 2j$ is not less than or equal k^2 since j > 0.
 - 2) $vxy = b^j$, j > 0. $uv^2xy^2z = a^{k^2}b^{k+2j}$. k^2 is not less than or equal $(k+2j)^2$ since j > 0.
 - 3) $vxy = a^i b^j$, $0 < i + j \le k$. There are 2 cases:
 - 3.1) v and y consist of one symbol, $v = a^l$ and $y = b^m$. If we pump n times, we get $a^{k^2 + nl}b^{k + nm}$. $k^2 + nl \le (k + nm)^2$ should hold for all $n, m, l \in N$. Clearly it does not.
 - 3.2) One of v or y consist of two symbols, say v, $v = a^i b^j$ and $y = b^m$. When we pump, the order of the new string does not match the order of the languages in L that is first only a's then only b's.

For all of these 3 cases, $w \notin L$. Thus, L is not context-free.

- (ii) Assume L is context-free. Then there exists a pumping length k such that for all $www \in L$ and |www| > k there exists a split www = uvxyz, |vy| > 0, |vxy| < k and $yv^nxy^nz \in L$ for all n > 0. Choose $www = a^kb^ka^kb^ka^kb^k$. There are three possible splits:
 - **1.** $vxy = a^i$. For n=0:

1.1: $yv^nxy^nz=a^{k-i}b^ka^kb^ka^kb^k$ is not in L since to get w we need to split this string in 3

pieces with equal lengths. However, when we do this, the first one ends with an a but the last one ends with a b. So, there no such string in L.

- 1.2: $yv^nxy^nz = a^kb^ka^{k-i}b^ka^kb^k$ is not in L since to get w we need to split this string in 3 pieces with equal lengths. However, when we do this, the first one begins with an a but the middle one begins with a b. So, there no such string in L.
- 1.3: $yv^nxy^nz = a^kb^ka^kb^ka^{k-i}b^k$ is not in L since to get w we need to split this string in 3 pieces with equal lengths. However, when we do this, the first one begins with an a but the last one begins with a b. So, there no such string in L.

The same discussion and reasons are valid for case 2 and 3.

- **2.** $vxy = a^i b^j$. For n=0:
- 2.1: $yv^n xy^n z = a^{k-i}b^{k-j}a^kb^ka^kb^k$
- 2.2: $yv^n xy^n z = a^k b^k a^{k-i} b^{k-j} a^k b^k$
- 2.3: $yv^n xy^n z = a^k b^k a^k b^k a^{k-i} b^{k-j}$
- **3.** $vxy = b^j a^i$. For n=0:
- $3.1: yv^n xy^n z = a^k b^{k-j} a^{k-i} b^k a^k b^k$
- 3.2: $yv^n xy^n z = a^k b^k a^k b^{k-j} a^{k-i} b^k$

Therefore, L is not context-free.

Answer 6

- (i) (T/F)? F
- (ii) (T/F)? T
- (iii) (T/F)? T
- (iv) (T/F)? F