MATEMÁTICA 1

Práctica adicional N°3 - ALGEBRAS DE BOOLE

- 1)Sea D_n el conjunto de los divisores positivos de n con las operaciones mcm y mcd.
- a) Decidir si D_{105} y D_{360} son o no Algebras de Boole, justificando sus respuestas. En caso afirmativo construir el correspondiente diagrama de Hasse, indicar los átomos y cómo se obtiene el complemento de cualquier elemento.
- b) Decidir si D_{119} es o no un algebra de Boole justificando su respuesta. En caso de que lo sea, hacer el diagrama de Hasse que la representa.
- c) Decidir si D_{40} es o no un algebra de Boole justificando su respuesta.
- 2) a) Sea $A = \{x, y, z\}$. Hacer el diagrama de Hasse del Algebra de Boole del conjunto P(A), conjunto de partes de A, definiendo los elementos 0 y 1 del algebra y las operaciones infimo, supremo y complemento.
 - b) Resolver las siguientes operaciones:

i)
$$\{x\} \lor \{y\} =$$

ii)
$$\{x, z\} \land \{z\} =$$

iii)
$$\{y, z\} \land \{y\} =$$

iv)
$$\{x, y\}' =$$

3) Sean *x* e *y* elementos de un Algebra de Boole B, simplificar las siguientes expresiones:

a)
$$[(x \lor y)'] \land x$$

b)
$$[(x' \lor y') \lor (x \lor y')]'$$

c)
$$[(x \land y) \lor x']'$$

- 4) a) Encontrar un conjunto U tal que el algebra de partes P(U) sea isomorfa a D_{39} . Hacer ambos diagramas de Hasse, indicar elemento a elemento la función que establece el isomorfismo.
 - b) Sean B_1 y B_2 , álgebras de Boole, 0_1 y 0_2 sus primeros elementos respectivamente. Sea $f: B_1 \to B_2$ un isomorfismo entre ellas. Demostrar que $f(0_1) = 0_2$.