YTO	YTÜ FİZİK BÖLÜMÜ, 2016-2017 GÜZ DÖNEMİ FIZ1001 Fizik-1 FİNAL SINAVI		Tarih : 04 Ocak 2017			Süre: 110 dk.			
			P1	P2	P3	P4	P5	TOPLAM	
Adı Soyadı									
Öğrenci Numarası									
Bölüm									
Grup No	Sınav Yeri	Öğrencinin İmzası	YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.						
	en Öğretim Adı Soyadı		sormayın	Hesap makinası kullanılmayacaktır. Problemlerle ilgili herhangi bir sor sormayınız. Herhangi bir açıklama kesinlikle yapılmayacaktı Çözümlerinizi okunaklı ve size ayrılan alanlarda yapınız.					

PROBLEM 1

Yerden θ açısı ve v_0 ilk hızı ile atılan bir cismin ulaştığı maksimum yükseklik (A noktası) H'tır. Cisim h yüksekliğinde (B noktası) bulunan duvara şekildeki gibi çarptığına göre $\frac{H}{h}$ oranını bulunuz. (Enerji korunumu ile yapılan çözümler kabul edilmeyecektir).

$$v_{Ay} = v_{oy} - g + A$$

$$0 = v_{oy} - g + A$$

$$t_{A} = \frac{v_{oy}}{g}$$

$$(2)$$

$$H = \frac{Voy^2}{2g}$$

$$3L = V_{0x} \cdot L_{A} \Rightarrow I = \frac{V_{0x} V_{0y}}{39}$$

B noktosina garpma suresi: EB

$$5L = V_{0x} t_{B} \Rightarrow \begin{bmatrix} +B = \frac{5L}{V_{0x}} \end{bmatrix}$$

$$t_B = \frac{5 \text{ Vox Voy}}{39 \text{ Vox}} \Rightarrow \begin{bmatrix} t_B = \frac{5}{3} \frac{\text{Voy}}{9} \end{bmatrix}$$

$$h = V_{0y} \cdot t_{B} - \frac{1}{2}gt_{B}^{2}$$

$$h = V_{0y} \left(\frac{5}{3} \frac{V_{0y}}{g}\right) - \frac{1}{2}g' \cdot \frac{25}{9} \cdot \frac{V_{0y}^{2}}{g^{2}}$$

$$h = \frac{V_{0y}^{2}}{9} \left(\frac{5}{3} - \frac{25}{18}\right)$$

$$h = \frac{5}{18} \frac{V_{0y}}{g}$$

$$h = \frac{5}{18} \frac{V_{0y}}{g}$$

$$\frac{H}{h} = \frac{\sqrt{3}}{23} \Rightarrow \frac{H}{h} = \frac{9}{5}$$

b) m kütleli cisim A noktasında iken, B noktasına göre açısal momentumunun yönü ve büyüklüğünü verilenler cinsinden bulunuz.

$$\vec{L}_B = \vec{r}_x \vec{P} = m \vec{r}_x \vec{V}_{ox}$$
 ①
Sekil den;

$$\vec{r} = 2L(-\hat{i}) + (H-h)\hat{j} \hat{j} \quad \vec{V}_{0x} = V_{0}\cos\hat{i}$$

$$\vec{r} = 2L(-\hat{i}) + (H-h)\hat{j} \hat{j} \quad \vec{V}_{0x} = V_{0}\cos\hat{i}$$

$$\vec{r} = 2L(-\hat{i}) + (H-h)\hat{j} \hat{j} \times V_{0}\cos\hat{i}$$

$$\vec{r} = m\left[-2L\hat{i} + (H-h)\hat{j}\right] \times V_{0}\cos\hat{i}$$

$$\overrightarrow{L}_{B} = m v_{o} (H-h) Cos \theta (-\widehat{k})$$
 (3)

a) Enerjinin korunumunu kullanarak, iki blok aynı hizadan geçerken hızlarını bulunuz.

$$\Sigma K_1 + \Sigma U_1 = \Sigma K_5 + \Sigma U_5$$

$$0 + M_1 g \frac{1}{2} - M_2 g \frac{1}{2} = \frac{1}{2} (m_1 + m_2) V^2 + \frac{1}{2} \Sigma u^2$$

$$(u) = \frac{1}{k}$$

$$(m_1 - m_2) \frac{gh}{2} = \frac{1}{2} (m_1 + m_2) V^2 + \frac{1}{2} \frac{1}{2} m_1 k^2 V^2$$

$$(m_1 = 6M, m_2 = 3M \text{ ve } m_3 = 2M)$$

$$3N9h = (9M + M)v^{2}(2)$$
 $39h = 10V^{2} \Rightarrow v = \sqrt{\frac{39h}{10}}$

b) Sistemin \vec{L} açısal momentum vektörünü yazınız.

$$\overrightarrow{L} = (m_1 v R + m_2 v R + I w) \widehat{k}$$

$$\overrightarrow{L} = (9 M v R + \frac{1}{2} 2 M R^2 w) \widehat{k}$$

c) Sisteme etkiven net torku $(\vec{\tau})$ yazınız.

bir makara üzerinden geçen ip ile şekilde görüldüğü gibi birbirlerine bağlanmışlardır. İp kütlesizdir ve makara üzerinden kaymamaktadır. Makara kendi ekseni etrafında sürtünmesiz olarak dönmektedir. Kütleler başlangıçta durgun ve aralarındaki mesafe h kadardır. (Makara için eylemsizlik momenti $I_{mak} = \frac{1}{2}m_3R^2$).

> d) Açısal momentum ve tork kavramlarını kullanarak, m_1 ve m_2 kütlelerinin lineer ivmelerini bulunuz.

$$Z\overline{Z} = \frac{d\overline{L}}{dt} (1)$$

$$3MgR\hat{k} = \frac{d}{dt} (10MuR\hat{k}) (1)$$

$$3MgR = 10MR \frac{du}{dt}$$

$$\alpha = \frac{3}{10}9 (2)$$

e) İpteki gerilmeleri "d" şıkkında elde edilen sonucu ત્ર્યાlanarak bulunuz.

$$\Sigma F = m_{1}g - T_{1} = m_{1}\alpha$$

$$T_{1} = m_{1}(9 - \alpha)$$

$$T_{1} = 6M(9 - \frac{3}{10}9)$$

$$T_{2} = \frac{42}{10}M_{2}(2)$$

$$T_{3} = T_{2} - m_{2}g = m_{2}\alpha$$

$$T_{5} = m_{2}(9 + \alpha)$$

To = 3M (9+3)

 $T_2 = \frac{39Mg}{10}$

 $m_1=m$ kütleli ve $r_1=r$ yarıçaplı bir disk v hızla ilerlerken, kütlesi $m_2=3m$ ve yarıçapı $r_2=\frac{3}{3}r$ olan, düzgün ve sürtünmesiz buzlu bir yüzey üzerinde durmakta olan bir başka diske çarpmaktadır. İki top birbirini sıyıracak şekilde tamamen esnek olmayan çarpışma yaparak birbirlerine P noktasından yapışmaktadırlar. Çarpışma sonrası iki disk birlikte ω açısal hızı ile dönmektedir. Kütlesi m yarıçapı r olan bir diskin kütle merkezine göre eylemsizlik momenti $I=\frac{1}{2}mr^2$. (Cevaplarınızı sadece m, r ve v'ye bağlı olarak ifade ediniz). Çarpışmadan sonra;

(5) Kütle merkezinin konumunu P noktasına göre (P noktasını orijin seçiniz) bulunuz.

Kütle merkezinin konumunu P noktasına göre (P oktasını orijin seçiniz) bulunuz.

$$y_{km} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2} \qquad m_2 = 3m, y_2 = \frac{5}{3}\Gamma$$

$$y_{km} = \frac{m_1 y_1 + m_2}{m_1 + m_2} = \frac{-4\Gamma}{4}$$

b) Sistemin eylemsizlik momentini yeni kütle merkezine göre bulunuz.

$$\mathbb{L}_{km}^{sis} = \mathbb{L}_{km}^{m_1} + \mathbb{L}_{km}^{m_2}$$

$$\mathbb{L}_{km}^{sis} = \left(\frac{1}{2} m_1 r_1^2 + m_1 ol_1^2\right) + \left(\frac{1}{2} m_2 r_2^2 + m_2 d_2^2\right)$$

M1=m, [=[] M2=3m, [2===], d1=2[, d2===]

$$\Gamma_{km}^{sis} = \left(\frac{1}{2} m r^2 + m 4 r^2\right) + \frac{1}{2} m \frac{25}{33} r^2 + 8m \frac{4}{33} r^2$$

$$\frac{\sum_{km}^{Sis} = \left(\frac{1}{2} + 4 + \frac{25}{6} + \frac{4}{3}\right)mr^2 = \frac{60}{6}mr^2}{\sum_{km}^{Sis} = 10mr^2}$$
c) Kütle merkezinin hizini bulunuz.

$$\overline{ZP_i} = \overline{ZP_s}$$

$$m_1 \overline{V_1}_i + m_2 \overline{V_2}_i = (m_1 + m_2) \overline{V_{km}}$$

d) Sistemin açısal hızını bulunuz.

$$\begin{array}{ccc}
5 & \overrightarrow{L}_{i} = \overrightarrow{L}_{s} \cdot 1
\end{array}$$

Yeni kutle merkezine göre:

$$L_i = mve(r+r)$$
; $L_s = \frac{\Gamma_{km}}{4}w$

$$W = \frac{1}{2}$$

Sistemin kinetik enerjisini bulunuz.

$$K_s = \left(\frac{1}{8} + \frac{1}{5}\right) m v^2$$

$$4s = \frac{13}{40} \text{ mv}^2$$
 (2)

Yarıçapı r olan durgun bir yarım silindir ve kütlesi m, uzunluğu silindirin yarıçapına eşit olan bir çubuk şekildeki gibi yerleştiriliyor. Çubuğun bir ucu sürtünme katsayısı $\mu_s = \frac{\sqrt{3}}{2}$ olan düzleme A noktasından diğer ucu da sürtünmesiz yarım silindire B noktasından

a) Çubuğun serbest cisim diyagramını verilen şekil üzerinde çiziniz ve statik denge şartı için denklemleri yazınız.

$$\sum_{x} F_x = n_x \cos \theta - f_s = O(1)$$

$$\Sigma Fy = N_B \sin\theta + N_A - mg = 0$$
 (2)

$$ZZ_{A} = mg \frac{\pi}{2} C_{0} \frac{\pi}{2} - (\Omega_{B} C_{0} \frac{\pi}{2}) \frac{\pi}{2} - 2\Omega_{B} \sin \theta - (\Omega_{B} \sin \theta) \frac{\pi}{2} \frac{\pi}{2} - 2\Omega_{B} \sin \theta = 0$$

$$ZZ_{B} = \Omega_{A} \Gamma \cos \theta - f_{S} \Gamma \sin \theta - mg \frac{\pi}{2} \cos \theta = 0$$

$$(3.6)$$

(5)6) Çubuğun statik dengede durabileceği en küçük heta açısını bulunuz.

$$f_s = M_s \Pi_A$$
 ise θ en küçük acı olur

$$(3 \cdot \alpha) \Rightarrow 2 \cdot n_B \sin \theta = \frac{mg}{2} \Rightarrow \boxed{n_B \sin \theta = \frac{mg}{4}} (4)$$

$$(1) \Rightarrow \cap_B \cos \theta - M_S \cap_A = 0 \Rightarrow \boxed{n_A = \frac{3 \cap_B \cos \theta}{\sqrt{3}}} (5)$$

(2) =>
$$\frac{mg}{18}\sin\theta + \frac{3ne\cos\theta}{3} = mg$$

 $\frac{3}{3}\cos\cos\theta = mg(1-t_0) = \frac{3}{4}mg$
 $\frac{3}{3}\cos\cos\theta = \frac{3}{4}mg(6)$

$$\frac{(4)}{(6)} \Rightarrow \boxed{+\alpha\theta = \frac{1}{\sqrt{3}}} \Rightarrow \boxed{\theta = 30^{\circ}}$$

M kütleli L uzunluklu homojen bir çubuğun üst ucu, sekilde görüldüğü gibi O noktasından tutturulmuştur. Alt ucu ise k yay sabitli bir yay ile duvara bağlanmıştır. Çubukyay sistemi denge konumunda iken x = 0 ve $\theta = 0$ 'dır. Çubuğun alt ucu şekildeki gibi yatayda denge konumundan küçük bir x mesafesi kadar (veya küçük bir θ açısı kadar) hareket ettirilip serbest bırakılıyor (Çubuk için: $I_{KM} =$ $\frac{1}{12}ML^2).$

3) Sistemin salınım hareketi için hareket denklemlerini yazınız.

Finde çiziniz ve statik denge şartı için denklemleri nız.

$$\Sigma F_{X} = n_{B} \cos \theta - f_{S} = 0 \quad (1) \quad (2)$$

$$\Sigma F_{Y} = n_{B} \sin \theta + n_{A} - mg = 0 \quad (2) \quad (2)$$

$$\Sigma F_{Y} = n_{B} \sin \theta + n_{A} - mg = 0 \quad (2) \quad (2)$$

$$\Gamma_{0} = \frac{1}{3} ML^{2}$$

$$\Gamma_{0} = \frac{1}{3} ML^{2}$$

$$\Gamma_{0} = \frac{1}{3} ML^{2}$$

$$\sum C_0 = -M_0 \sin \theta \frac{L}{2} - |x| \cdot L \cos \theta = L_0 \propto$$

$$\propto = \frac{d^2 \theta}{dt^2} \quad \text{ve } x = L \sin \theta$$

$$\frac{d^2\theta}{dt^2} + \left(\frac{Mg}{2} + \frac{L^2\cos(\sin\theta)}{Lo}\right) = 0$$

b) Küçük salınımlar (titreşimler) için salınımın periyodunu bulunuz.

Küçük salınımlardar; Sind & & ve Coso & 1 olur. $\frac{d^2\theta}{dt^2} + \left(\frac{MgLfkl^2}{2t^6}\right)\theta = 0$

$$\omega = \sqrt{\frac{M9L+2kL^2}{\frac{3}{2}ML^2}} \rightarrow \omega = \sqrt{\frac{3M9/46kL^2}{2ML^2}}$$

$$T = \frac{27}{W} \Rightarrow T = 2\pi \sqrt{\frac{2ML}{3M9 + 16kL}}$$