Marcus Zibrowius Jan Hennig

Topologie I Blatt 4

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**.

1 | Stegreiffragen: Faserungen

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: Die Abbildung $p: X \to *$ ist eine Faserung.
- (b) Wahr oder falsch: Die Abbildung $pr_1: (I \times \{0\}) \cup (\{0\} \times I) \to I$ ist eine Faserung.
- (c) Wahr oder falsch: Ist $p: E \to B$ eine Faserung und $X \subseteq E$, dann ist $p|_X: X \to B$ eine Faserung.

2 | Bilder von Faserungen

Sei $p: E \to B$ eine Faserung mit $E \neq \emptyset$.

- (a) Zeigen Sie, dass $\operatorname{im}(p)$ eine Vereinigung von Wegzusammenhangskomponenten von B ist. Konkret: Ist $x \in \operatorname{im}(p)$ und $\gamma \colon I \to B$ ein Weg von x nach $y \in B$, dann gilt $y \in \operatorname{im}(p)$.
- (b) Folgern Sie, dass eine Faserung in einen wegzusammenhängenden Raum surjektiv ist.
- (c) Finden Sie ein Beispiel für eine nicht-surjektive Faserung.

3 | Satz von Kieboom ★

Ziel dieser Aussge ist eine Verallgemeinerung von Blatt 3 Aufgabe 3(a) zu zeigen (Produkte von Kofaserungen sind Kofaserungen, siehe (l) und (m)).

Zur Vorbereitung:

- (a) Sei $i_a : A \hookrightarrow B$ eine Kofaserung und $p : E \to B$ eine Faserung. Zeigen Sie, dass $p^{-1}(i_A(A)) \hookrightarrow E$ eine Kofaserung ist.
 - (Hinweis: Die Abbildung $u: B \to I$ in der Definition eines UDRs kann "besser" gewählt werden.)
- (b) Seien $j \colon B \to A$ und $i \colon A \to X$ Abbildungen, wobei i und $i \circ j$ Kofaserungen sind. Zeigen Sie, dass j eine Kofaserung ist.
- (c) Betrachte das folgende kommutative Diagramm, wobei $i: A \to X$ ein (starker) Deformationsretrakt und $p: E \to B$ eine Faserung ist. Zusätzlich gebe es ein $u: X \to I$ mit $u^{-1}(\{0\}) = A$.

$$\begin{array}{ccc}
A & \xrightarrow{f} & E \\
\downarrow i & & \downarrow p \\
X & \xrightarrow{g} & B
\end{array}$$

Zeigen Sie, dass ein Lift $H: X \to E$ existiert.

(d) Betrachte das folgende kommutative Diagramm, wobei $i: A \to X$ eine Kofaserung und p_A, p_X Faserungen sind:

Folgern Sie, dass $i: A \to X$ eine Kofaserung über B ist, d.h. eine Retraktion $r: X \times I \to M_i$ existiert, sodass das folgende Diagramm kommutiert:

$$M_{i} \xrightarrow{\operatorname{id}_{M_{i}}} M_{i}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times I \xrightarrow{p_{X} \circ \operatorname{pr}_{1}} B$$

Betrachte nun das folgende kommutative Diagramm:

wobei i_{X_0} , i_{B_0} , i_{E_0} Kofaserungen, und p_0 , p Faserungen sind.

- (e) Zeigen Sie, dass $p^{-1}(i_{B_0}(B_0)) \hookrightarrow E$ eine Kofaserung ist.
- (f) Zeigen Sie, dass $E_0 \hookrightarrow p^{-1}(i_{B_0}(B_0))$ eine Kofaserung ist.
- (g) Zeigen Sie, dass $p_0|_{p^{-1}(i_{B_0}(B_0))}: p^{-1}(i_{B_0}(B_0)) \to B_0$ eine Faserung ist.
- (h) Zeigen Sie, dass $E_0 \hookrightarrow p^{-1}(i_{B_0}(B_0))$ eine Kofaserung über B_0 ist.
- (i) Zeigen Sie, dass $X_0 \times_{B_0} E_0 \hookrightarrow X_0 \times_B p^{-1}(i_{B_0}(B_0))$ eine Kofaserung ist.
- (j) Zeigen Sie, dass $\overline{p} \colon X \times_B E \to X$ eine Faserung ist.
- (k) Zeigen Sie, dass $X_0 \times_B p^{-1}(i_{B_0}(B_0)) \hookrightarrow X \times_B E$ eine Kofaserung ist.

Endlich folgt das Finale:

- (l) Zeigen Sie, dass $X_0 \times_{B_0} E_0 \hookrightarrow X \times_B E$ eine Kofaserung ist.
- (m) Folgern Sie, dass das Produkt zweier Kofaserungen eine Kofaserung ist (Blatt 3, Aufgabe 3(a)).