CpE 213 Digital Systems Design

Lecture 19 Thursday 10/30/2003

Announcements

- Exam 2: Thursday Nov. 13th
- Review session: Tuesday Nov. 11th, from 7 to 9 pm in G31 (this room).
- See me or send me email if you have another exam on that day.
- Check your grades on blackboard and notify me of any discrepancies.
- Group exercises are for attendance check, please only write names of group members actually present.

Stepper Motors

 A Stepping Motor System consists of three basic elements, often combined with some type of user interface (Host Computer, PLC or Dumb Terminal).

 The Indexer (or Controller) is a microprocessor capable of generating step pulses and direction signals for the driver.

Adapted from http://www.ams2000.com/stepping101.htm

Stepper Motors

- The Driver (or Amplifier) converts the indexer command signals into the power necessary to energize the motor windings. For 8051, can custom-design driver from power transistors or use off the shelf packages such as ULN2003.
- The stepper motor is an electromagnetic device that converts digital pulses into mechanical shaft rotation.
- Used for position control in disk drives, dot matrix printers, robotics, etc.

Adapted from http://www.ams2000.com/stepping101.htm

Pros and Cons

- Advantages of step motors:
 - low cost, high reliability
 - high torque at low speeds
 - simple, rugged construction that operates in almost any environment.
- Main disadvantages in using a step motor:
 - resonance effect often exhibited at low speeds
 - decreasing torque with increasing speed.

Adapted from http://www.ams2000.com/stepping101.htm

Stepper Motor

- Has a permanent magnet rotor surrounded by one or more stators with center-tapped common.
- Usually four stators (four-phase).
- Center tap allows change of current direction in each of two coils, resulting in polarity change.
- Polarity change causes movement in fixed repeatable increments (steps).

Stepper Motors

- Uses square wave for excitation
- Alternatives:
 - DC motor+PWM+feedback
 - AC motor+AC excitation+feedback
- Unipolar or Bipolar varieties
 - Unipolar: current flows in one direction through centertapped windings
 - Bipolar: current flows in both directions through windings

Stepper Motor Basics

- Each step may only be a few degrees
- Step rate limited by motor inertia
- Example
 - One step equals 6 degrees
 - One step per millisecond

$$\frac{6^{\circ}}{10^{-3} \text{ sec}} \times \frac{\text{rev}}{360^{\circ}} \times \frac{60 \text{ sec}}{\text{min}} = 100 \text{rpm}$$

Stepper motor driver

```
/* Try sketching a schematic diagram for this.
   Questions:
   1. How fast does the motor go? (in RPM)
   2. What changes should be made to go in reverse?
*/
#include <reg51.h>
unsigned char code pattern[]= {0x5,0x9,0xa,0x6};
void msec(int);
void step(void) {
   static unsigned char i;
   P1= pattern[i=++i&3];
   msec(8);
   }
void main(void) {
   while(1){step();}
}
```

Assembly code driver

STEP:				
0000	0500	R	INC	i
0002	E500	R	MOV	A,i
0004	5403		ANL	A,#03H
0006	F500	R	MOV	i,A
8000	900000	R	MOV	DPTR, #pattern
000B	93		MOVC	A,@A+DPTR
000C	F590		MOV	P1,A
+ c	call to	msec	and retur	n.

H-Bridge Example

- Required for bipolar stepper motors
 - current goes through windings in both directions
- Allegro UDN2998W Dual Full Bridge:
 - ± 2A Output Current, 50 v supply voltage
 - -0.3v to 15 v logic input voltage range
 - Internal protection diodes for inductive load
 - See: http://www.allegromicro.com/control/motors1.htm for more details

Bipolar Stepper Pattern

- Only two bits needed instead of four
- Pattern is: 11, 10, 00, 01, ... (grey code)

Phase1
Phase2