Notes for November 8, 2021

Prakhar Mittal, Sanjay Srihari

1 Class Updates

November 8 - 12: Homework 5 due on Friday

November 15 - 19: Quiz 4

November 22 - 26: Thanksgiving Break

November 29 - December 3: Exam 2 on Monday

December 6: Last Day of Class

December 10: Final Exam

There will be one more graded homework (on Combinatorics and Probability).

2 Product Rule

Definition: Suppose that a procedure can be broken down into a sequence of two tasks. If there are $\mathbf{n_1}$ ways to do the first task and for each of these ways of doing the first task, there are $\mathbf{n_2}$ ways to do the second task, then there are $\mathbf{n_1}\mathbf{n_2}$ ways to do the procedure.

Example 1: License Plates

How many license plates exist if a license plate consists of 3 letters followed by 3 digits?

$$26 \times 26 \times 26 \times 10 \times 10 \times 10 = 26^3 \times 10^3$$

Example 2: Functions

How many functions $f: A \to B$ exist given |A| = n and |B| = m?

$$A = \{a_1, a_2, a_3, ...a_n\}$$

For a_1 , there are m possibilities for $f(a_1)$

```
For a_2, there are m possibilities for f(a_2)
And so on...
Total functions = m \times m \times ... \times m (n \text{ times}) = m^n
```

Example 3: One-to-one Functions

```
How many one-to-one functions f: A \to B exist given |A| = n and |B| = m?
```

Unlike example 2, possibilities reduce as we go on counting to ensure that the function is one-to-one.

```
A = \{a_1, a_2, a_3, \dots a_n\}
```

For a_1 , there are m possibilities for $f(a_1)$

For a_2 , there are m-1 possibilities for $f(a_2)$

For a_3 , there are m-2 possibilities for $f(a_3)$

For a_n , there are m - (n - 1) possibilities for $f(a_n)$

If $m \le n - 1$, there are no one-to-one functions from A to B.

If m > n-1, total one-to-one functions $= m \times (m-1) \times (m-2) \times ... \times (m-n+1)$

3 Sum Rule

Definition: If a task can be done either in one of $\mathbf{n_1}$ ways or in one of $\mathbf{n_2}$ ways, where none of the set of n_1 ways is the same as any of the set of n_2 ways, then there are $\mathbf{n_1} + \mathbf{n_2}$ ways to do the task.

In simpler words: If you count $\mathbf{n_1}$ elements and $\mathbf{n_2}$ elements, and you check/prove that you are not double counting and that you are counting every element, then there are $\mathbf{n_1} + \mathbf{n_2}$ total elements.

Example 4: Computer Passwords

A password has 6-8 characters (an uppercase letter or a digit) and must contain at least one digit. How many valid passwords exist?

Total passwords = No. of 6 char passwords + No. of 7 char passwords + No. of 8 char passwords We could fix the required digit and count passwords with required digit at 1^{st} character, 2^{nd} character, and so on separately. However, this would result in double counting because we are allowed to use as many digits as we want, not just the fixed digit.

4 Subtraction Rule

Definition: If a task can be done in either n_1 ways or n_2 ways, then the number of ways to do the task is $n_1 + n_2$ minus the number of ways to do the task that are common to the two different ways.

In simpler words: You can over-count the number of elements and then remove the elements not in your desired set.

Example 4: Computer Passwords (continued)

No. of passwords = No. of strings with letters or digits - No. of strings with only letters

No. of 6 char passwords = $36^6 - 26^6$

No. of 7 char passwords = $36^7 - 26^7$

No. of 8 char passwords = $36^8 - 26^8$

Total passwords = $(36^6 - 26^6) + (36^7 - 26^7) + (36^8 - 26^8)$

Example 5: Euler Totient Function of 1000

How many numbers a < 1000 are such that g.c.d(a, 1000) = 1?

Define $U = \{1, 2, 3, ...999, 1000\}$

Let $A_1 = \text{set of multiples of 2}$ and $A_2 = \text{set of multiples of 5}$. Then, $A_1 \cap A_2 = \text{set of multiples of 10}$ and $(A_1 \cup A_2)^c = \text{set of numbers that are multiples of neither 2 nor 5}$.

$$|(A_1 \cup A_2)^c| = |U| - |A_1| - |A_2| + |A_1 \cap A_2|$$

$$= 1000 - \frac{1000}{2} - \frac{1000}{5} + \frac{1000}{10}$$

$$= 1000 - 500 - 200 + 100$$

$$= 400$$

From Number Theory, $\varphi(1000) = 2^{3-1} \cdot 5^{3-1} \cdot (2-1) \cdot (5-1) = 400$

5 Inclusion-Exclusion Principle

Three Sets:
$$|(A_1 \cup A_2 \cup A_3)^c| = |U| - |A_1| - |A_2| - |A_3| + |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|$$

Extending to n Sets:
$$|(A_1 \cup A_2 \cup ... \cup A_n)^c| = |U| - \sum_{i=1}^n |A_i|$$

$$+ \sum_{1 \leq i < j}^n |A_i \cap A_j|$$

$$- \sum_{1 \leq i < j < k} |A_i \cap A_j \cap A_k|$$
...
$$(-1)^n \sum |A_1 \cap A_2 \cap ... \cap A_n|$$

Proof by induction with base case 1/2/3 is left as an exercise to the reader.

Example 6: Euler Totient Function is Multiplicative

Let $\varphi(n)$ be the number of a such that 0 < a < n and g.c.d(a, n) = 1. Prove $\varphi(ab) = \varphi(a)\varphi(b)$.

$$\varphi(a)\varphi(b)=$$
 No. of $k=\hat{a}\hat{b}$ where $g.c.d(\hat{a},a)=1$ and $g.c.d(\hat{b},b)=1$ Define $U=\{1,2,3,...,ab\}$

Incorrect Approach:

Let A_1 = set of multiples of a and A_2 = set of multiples of b. Then, $A_1 \cap A_2$ = set of multiples of ab. Now, $|U| - |A_1| - |A_2| + |A_1 \cap A_2|$ $= ab - \frac{ab}{a} - \frac{ab}{b} + 1$ = ab - b - a + 1

Problem: $(A_1 \cup A_2)^c$ includes extra numbers larger than or not relatively prime with a or b.

Correct Approach:

Let A_1 = set of numbers relatively prime with a and A_2 = set of numbers relatively prime with b. To be continued in next class.