

CHƯƠNG 4 MẠNG NEURAL TÍCH CHẬP (P1)

Khoa Khoa học và Kỹ thuật thông tin Bộ môn Khoa học dữ liệu

NỘI DUNG

- 1. Dẫn nhập.
- 2. Tích chập (Convolutional).
- 3. Padding & Strides.
- 4. Tích chập trên nhiều lớp (Convolutional over volumes).

Dẫn nhập

Các bài toán trong Computer Vision

- Image classification.
- Object Detection.
- Object Tracking.
- Neural style transfer.

-

Image classification

Oject detection

Object detection

Deep neural network size

$$64x64x3 = 12288$$
 (1, 12288) (100,12288)

3 kênh màu cơ bản: RGB

Bức ảnh 64x64 rất nhỏ nhưng tốn khoảng 12 nghìn trọng số.

Deep neural network size

1000x1000x3 = 3M (1, 3M) (100,3M)

Một bức ảnh 1000x1000 tốn gần 3 triệu trọng số !!

3 kênh màu cơ bản: RGB

Làm sao để giảm kích thước của 1 lớp?

Tích chập (convolutional)

- Trong xử lý tín hiệu số, để đo độ tương quan (similarity measurement) của 2 tín hiệu, người ta dùng phép tín crosscorrelation (tạm dịch là tương quan chéo).
- Bản chất của phép tính tương quan chéo là toán tử dot product hoặc còn gọi là scalar product:
 - + Input: 2 dãy số có cùng độ dài (two equal-length sequence).
 - + Output: 1 con số (single number).
- Trong deep learning, phép tính cross-correlation được gọi là tích chập – convolution operator.

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter

1	0	-1
1	0	-1
1	0	-1

*

Output

6x6

3x3

4x4

Ví	du
	ЧŅ

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

		Filter	
	1	0	-1
*	1	0	-1
	1	0	-1
		3x3	

Output

6x6

3*1 + 1*1 + 2*1 + 0*0 + 5*0 + 7*0 + 1*(-1) + 8*(-1) + 2*(-1) = -5

3	0	1	2	7_	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter

1	0	-1		
1	0	-1		
1	0	-1		
3x3				

*

Output

-5	-4		
	4	kx4	

6x6

0*1 + 5*1 + 7*1 + 1*0 + 8*0 + 2*0 + 2*(-1) + 9*(-1) + 5*(-1) = -4

1//	
VI	u

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter

	1	0	-1		
	1	0	-1		
	1	0	-1		
•	3x3				

*

Output

-5	-4	0			
4x4					

6x6

1*1 + 8*1 + 2*1 + 2*0 + 9*0 + 5*0 + 7*(-1) + 3*(-1) + 1*(-1) = 0

VI	uu

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	Filter
4	

*	1	0	-1
	1	0	-1

3x3

Output

-5	-4	0	8	
4x4				

6x6

$$2*1 + 9*1 + 5*1 + 7*0 + 3*0 + 1*0 + 4*(-1) + 1*(-1) + 3*(-1) = 8$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8

		Filter	
	1	0	-1
*	1	0	-1
	1	0	-1
		3x3	

Output

-5	-4	0	8	
-10				
4x4				

6x6

1*1 + 2*1 + 0*1 + 5*0 + 7*0 + 1*0 + 8*(-1) + 2*(-1) + 3*(-1) = -10

1//	
VI	u

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter 1 0 -1 + 1 0 -1 1 0 -1 3x3

Output

-5	-4	0	8	
-10	-2			
4x4				

6x6

5*1 + 7*1 + 1*1 + 8*0 + 2*0 + 3*0 + 9*(-1) + 5*(-1) + 1*(-1) = -2

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
	1		3	7	
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

		Filter	
	1	0	-1
*	1	0	-1
	1	0	-1
		3x3	

-5	-4	0	8	
-10	-2	2		
4x4				

Output

6x6

8*1 + 2*1 + 3*1 + 9*0 + 5*0 + 1*0 + 3*(-1) + 1*(-1) + 7*(-1) = 2

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	~	3
0	~	თ	~	7	8
4	2	~	6	2	8
2	4	5	2	3	9

		Filter	
	1	0	-1
*	1	0	-1
	1	0	-1
		3x3	

Output

-5	-4	0	8	
-10	-2	2	3	
4x4				

6x6

$$9*1 + 5*1 + 1*1 + 3*0 + 1*0 + 7*0 + 1*(-1) + 3*(-1) + 8*(-1) = 3$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	~	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

_	14-	
	ITE	r

*	1	0	-1
	1	0	-1
		3x3	

Output

-5	-4	0	8	
-10	-2	2	3	
0				
4.4				

4X4

6x6

2*1 + 0*1 + 4*1 + 7*0 + 1*0 + 2*0 + 2*(-1) + 3*(-1) + 1*(-1) = 0

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5		3
0	1	3	1	7	8
4	2	~	6	2	8
2	4	5	2	3	9

Filter

	1	0	-1
*	1	0	-1
	1	0	-1
·		3x3	

Output

-5	-4	0	8
-10	-2	2	3
0	-2		

4x4

6x6

7*1 + 1*1 + 2*1 + 2*0 + 3*0 + 1*0 + 5*(-1) + 1*(-1) + 6*(-1) = -2

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	က
0	~	ര	1	7	8
4	2	1	6	2	8

F	 lt	er

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	

4x4

6x6

5 2

2*1 + 3*1 + 1*1 + 5*0 + 1*0 + 6*0 + 1*(-1) + 7*(-1) + 2*(-1) = -4

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	~	3
0	1	3	~	7	8
4	2	1	60	2	8
2	1	ע	?	Ŋ	Q

Filter

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7

4x4

6x6

5*1 + 1*1 + 6*1 + 1*0 + 7*0 + 2*0 + 3*(-1) + 8*(-1) + 8*(-1) = -7

VI	du
	•

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter

	1	0	-1
*	1	0	1
	1	0	-1
·		3x3	

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3			

4x4

6x6

0*1 + 4*1 + 2*1 + 1*0 + 2*0 + 4*0 + 3*(-1) + 1*(-1) + 5*(-1) = -3

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5		3
0	▼	ര	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	1	0	-1
*	1	0	-1
	1	0	-1
·		3x3	

Filter

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2		

4x4

6x6

1*1 + 2*1 + 4*1 + 3*0 + 1*0 + 5*0 + 1*(-1) + 6*(-1) + 2*(-1) = -2

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5		3
0	~	က	~	7	8
4	2	~	6	2	8
2	4	5	2	3	9

	1	0	-1				
*	1	0	-1				
	1	0	-1				
·	3x3						

Filter

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	

4x4

6x6

3*1 + 1*1 + 5*1 + 1*0 + 6*0 + 2*0 + 7*(-1) + 2*(-1) + 3*(-1) = -3

3	0	~	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Filter

Output

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

4x4

6x6

1*1 + 6*1 + 2*1 + 7*0 + 2*0 + 3*0 + 8*(-1) + 8*(-1) + 9*(-1) = -16

Ánh hưởng của việc tích chập

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1		
1	0	-1		
1	0	-1		
3x3				

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0
	4 -	. 1	

4x4

6x6

Hình thật:

Công thức tính ma trận tích chập

VD: N = 6 (6x6)

$$F = 3 (3x3)$$

$$F = 3 (3x3)$$
 $\rightarrow C = 6 - 3 + 1 = 4 (4x4)$

Padding & Strides

Padding

- Padding (tạm dịch là đệm) là kỹ thuật thêm vào một hàng ảo và một cột ảo trong ma trận feature hiện tại.
- Mục tiêu là tránh các trường hợp sau:
 - + Shrinking output (làm co ma trận tích chập lại).
 - VD: Bức ảnh 6x6 sau khi thực hiện tích chập co lại còn 4x4
 - + Bỏ qua các thông tin về biên cạnh (edge).

*

Ví	dụ
	•

0	0	0	0	0	0	0	0
0	10	10	10	0	0	0	0
0	10	10	10	0	0	0	0
0	10	10	10	0	0	0	0
0	10	10	10	0	0	0	0
0	10	10	10	0	0	0	0
0	10	10	10	0	0	0	0
0	0	0	0	0	0	0	0

	1	0	-1			
	1	0	-1			
	1	0	-1			
3x3						

0	30	30	0	
0	30	30	0	
0	30	30	0	
0	30	30	0	

Padding

(ban đầu là 6x6)

Bức ảnh ban đầu được giữ nguyên kích thước sau khi thực hiện tích chập nhờ padding

$$C = 8 - 3 + 1 = 6$$

Công thức tính ma trận tích chậ pok thi cố chiến chiến cố chiến cố chiến cố chiến cố chiến cố chiến có chiến chiến cố chiến chiến cố chiến chiến cố chiến chiến chiến cố chiến ch padding P

 $N \times N$

$$C = N - F + 2P + 1$$

VD:
$$N = 6 (6x6)$$

 $F = 3 (3x3)$

$$P=1$$

$$P = 1$$
 $\rightarrow C = 6 - 3 + 2 + 1 = 6 (6x6)$

Valid and same convolution

Valid: Không dùng pading

$$C = N - F + 1$$

 Same: Sử dụng padding sao cho ma trận tích chập bằng với ảnh ban đầu

$$C = N - F + 2P + 1$$

Để tìm P sao cho C = N:

$$C = N \text{ (same)} \Leftrightarrow N - F + 2P + 1 = N$$

$$\Leftrightarrow$$
 - F + 2P + 1 = 0 \Leftrightarrow P = $\frac{F-1}{2}$

Lưu ý

- Kích thước các bộ lọc thường là các số lẻ (odd number), mục đích là tạo sự đối xứng.
- VD: 3x3, 5x5, 7x7,

- Strides là kỹ thuật "dịch chuyển" filter đi N đơn vị trên ma trận đầu vào (input data).
- Việc dịch chuyển bao nhiêu đơn vị sẽ ảnh hưởng đến kích thước của ma trận tích chập đầu ra.

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4
			7x7			

Filter

3	4	4
1	0	2
-1	0	3

Output

3x3

3x3

*

[E] info@uit.edu.vn

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4		
1	0	2		
-1	0	3		
3x3				

Output

91					
3x3					

7x7

*

2*3 + 6*1 + 3*(-1) + 3*4 + 6*0 + 4*0 + 7*4 + 9*2 + 8*3 = 91

Ví dụ

Filter

3	4	4		
1	0	2		
-1	0	3		
3x3				

Output

91	100	

3x3

7x7

*

7*3 + 9*1 + 8*(-1) + 4*4 + 8*0 + 3*0 + 6*4 + 7*2 + 8*3 = 100

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4		
1	0	2		
-1	0	3		
3x3				

Output

91	100	88

3x3

$$6*3 + 7*1 + 8*(-1) + 2*4 + 4*0 + 9*0 + 9*4 + 3*2 + 7*3 = 88$$

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4			
1	0	2			
-1	0	3			
	3x3				

Output

91	100	88
69		

3x3

7x7

3*3 + 7*1 + 4*(-1) + 4*4 + 8*0 + 2*0 + 8*4 + 3*2 + 1*3 = 69

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4
1	0	2
-1	0	3
	3x3	

Output

91	100	88
69	91	

3x3

7x7

8*3 + 3*1 + 1*(-1) + 3*4 + 6*0 + 8*0 + 8*4 + 6*2 + 3*3 = 91

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4
1	0	2
-1	0	3
	3x3	

Output

91	100	88
69	91	117

3x3

$$8*3 + 6*1 + 3*(-1) + 9*4 + 3*0 + 4*0 + 7*4 + 4*2 + 6*3 = 117$$

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4
1	0	2
-1	0	3
	3x3	

Output

91	100	88
69	91	117
44		

3x3

$$4*3 + 3*1 + 0*(-1) + 2*4 + 2*0 + 1*0 + 1*4 + 4*2 + 3*3 = 44$$

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3

*

Output

91	100	88
69	91	117
44	72	

3x3

$$1*3 + 4*1 + 3*(-1) + 8*4 + 1*0 + 9*0 + 3*4 + 9*2 + 2*3 = 72$$

UIT University of Information Technology

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Filter

3	4	4		
1	0	2		
-1	0	3		
3x3				

*

Output

91	100	88
69	91	117
44	72	74

3x3

$$3*3 + 9*1 + 2*(-1) + 4*4 + 8*0 + 1*0 + 6*4 + 3*2 + 4*3 = 74$$

Công thức tính ma trận tích chậ pok tiến cố chology padding P và Stride S

$$N \times N$$

$$C = \{(N - F + 2P)/S\} + 1$$

VD:
$$N = 7 (7x7)$$

 $F = 3 (3x3)$

$$P = 1$$
; $S = 2$ $\rightarrow C = ((7 - 3 + 2)/2) + 1 = 3 (3x3)$

Tích chập trên nhiều lớp

Một lớp (1-layer) vs Một filter

Ba lớp (3-layer) – 1 filter

Chỉ số này đôi khi còn được gọi là số kênh (Number of chanels)

3 ứng với 3 kênh màu cơ bản: RGB (Red, Green, Blue)

Ba lớp (3-layer) – 2 filters

- Đầu vào:
 - + Bức ảnh kích thước *NxNxNc*, với Nc là số kênh (Number of chanels).
 - + Nf bộ lọc kích thước: FxFxNc.
 - + Các thông số khác như: Padding (P), Strides (S).
- Ma trận tích chập đầu ra: CxCxNf, với Nf là số lượng bộ lọc sử dụng (Nf = Number of filters), trong đó:

$$C = \{(N - F + 2P)/S\} + 1$$

- Ảnh đầu vào: 6x6x3.
- − 2 Bộ lọc có kích thước: 3x3x3.
- Padding: S = 0 và Stride là 1.
- Ma trận đầu ra: C = ((N F + 2P) / S) + 1 = ((6 3 + 0) / 1) + 1 = 4.
- Có 2 bộ lọc.
- → Kích thước ma trận là: 4x4x2

TÀI LIỆU THAM KHẢO

- 1. Khoá học Neural Network and Deep learning, deeplearning.ai.
- Ian Goodfellow, Yoshua Bengio, Aaron Courvile, *Deep learning*,
 MIT Press, 2016.
- 3. Andrew Ng., *Machine Learning Yearning*. Link: https://www.deeplearning.ai/machine-learning-yearning/
- 4. Vũ Hữu Tiệp, *Machine Learning cơ bản*, NXB Khoa học và Kỹ thuật, 2018.