Снижение размерности пространства в задачах анализа временных рядов

Исаченко Роман Владимирович

Диссертация на соискание ученой степени кандидата физико-математических наук

05.13.17 - Теоретические основы информатики

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Москва, 2021 г.

Снижение размерности пространства в задачах анализа временных рядов

Цель

Исследовать зависимости в пространствах объектов и ответов и построить устойчивую модель декодирования временных рядов в случае коррелированного описания данных.

Проблема

Целевая переменная – вектор, компоненты которого являются зависимыми. Требуется построить модель, адекватно описывающую как пространство объектов так и пространство ответов при наблюдаемой мультикорреляции в обоих пространствах высокой размерности.

Решение

Для учёта зависимостей в пространствах объектов и ответов предлагается снизить размерность с использованием скрытого пространства. Предлагаются линейные и нейросетевые методы согласования связанных моделей в пространствах высокой размерности.

Задача декодирования сигналов

Авторегрессионная модель

Проекция в скрытое пространство

$$\mathbf{X} = \mathbf{TP}^\mathsf{T} + \mathbf{F}$$
 $\mathbf{Y} = \mathbf{UQ}^\mathsf{T} + \mathbf{E}$
 $\mathsf{cov}(\mathbf{T}, \mathbf{U}) o \max_{\mathbf{P}, \mathbf{Q}} \mathbf{Y} \subset \mathbb{R}^r$
 $\mathbf{X} \subset \mathbb{R}^n \longrightarrow \mathbf{Y} \subset \mathbb{R}^r$
 \mathbf{Q}

Задача авторегрессионного прогнозирования

$$\mathbf{X} = [\mathbf{\chi}_1, \dots, \mathbf{\chi}_n] \in \mathbb{R}^{m \times n}$$
 – матрица объектов;

$$\mathbf{Y} = [\mathbf{\nu}_1, \dots, \mathbf{\nu}_r] \in \mathbb{R}^{m \times r}$$
 – матрица ответов;

$$\mathbf{y} = \mathbf{\Theta}\mathbf{x} + \boldsymbol{\varepsilon}, \quad \mathbf{\Theta} \in \mathbb{R}^{r \times n}$$
 – модель.

Функция потерь линейной регрессии

$$\mathcal{L}(\boldsymbol{\Theta}|\mathbf{X},\mathbf{Y}) = \left\| \mathbf{Y}_{m \times r} - \mathbf{X}_{m \times n} \cdot \mathbf{\Theta}_{r \times n}^{\mathsf{T}} \right\|_{2}^{2} \to \min_{\boldsymbol{\Theta}} \quad \Rightarrow \quad \boldsymbol{\Theta}^{\mathsf{T}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}.$$

Для устранения сильной линейной зависимости столбцов матрицы ${\bf X}$ предлагается использовать методы снижения размерности пространства.

Метод проекции в скрытое пространство (PLS)

$$\mathbf{X}_{m \times n} = \mathbf{T}_{m \times l} \cdot \mathbf{P}^{\mathsf{T}}_{l \times n} + \mathbf{F}_{m \times n} = \sum_{k=1}^{l} \mathbf{t}_{k} \cdot \mathbf{p}_{k}^{\mathsf{T}} + \mathbf{F}_{m \times n},$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{m \times l} \cdot \mathbf{Q}_{l \times r}^{\mathsf{T}} + \mathbf{E}_{m \times r} = \sum_{k=1}^{r} \mathbf{u}_{k} \cdot \mathbf{q}_{k}^{\mathsf{T}} + \mathbf{E}_{m \times r}.$$

$$\hat{\mathbf{Y}} = f(\mathbf{X}) = \mathbf{X}\mathbf{\Theta}; \quad \mathbf{U} \approx \mathbf{T}\mathbf{B}, \quad \mathbf{B} = \operatorname{diag}(\beta_k), \quad \beta_k = \mathbf{u}_k^{\mathsf{T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{T}} \mathbf{t}_k).$$

Пример PLS регрессии в двумерном случае

- $\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{\Sigma});$
- y_i линейно зависят от pc_2 и не зависят от pc_1 .

Учёт взаимной связи между матрицами ${\bf X}$ и ${\bf Y}$ отклоняет вектора ${\bf w}_k$ и ${\bf c}_k$ от направления главных компонент.

Метод частных наименьших квадратов (PLS)

Утверждение (Исаченко, 2017)

Максимизация ковариации между векторами \mathbf{t}_k и \mathbf{u}_k приводит к наилучшему описанию матриц \mathbf{X} и \mathbf{Y} с учётом их взаимосвязи.

Утверждение (Исаченко, 2017)

Вектора \mathbf{w}_k и \mathbf{c}_k – собственные вектора матриц $\mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k$ и $\mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k$, соответствующие максимальным собственным значениям.

Утверждение (Исаченко, 2017)

Правила обновления векторов (6)–(9) максимизируют ковариацию между векторами \mathbf{t}_k и \mathbf{u}_k .

Модель PLS регрессии

$$\begin{split} \mathbf{Y} &= \mathbf{U} \mathbf{Q}^\mathsf{T} + \mathbf{E} \approx \mathbf{T} \mathbf{B} \mathbf{Q}^\mathsf{T} + \mathbf{E} = \mathbf{X} \mathbf{W}^* \mathbf{B} \mathbf{Q}^\mathsf{T} + \mathbf{E} = \mathbf{X} \mathbf{\Theta} + \mathbf{E}. \\ \mathbf{\Theta} &= \mathbf{W} (\mathbf{P}^\mathsf{T} \mathbf{W})^{-1} \mathbf{B} \mathbf{Q}^\mathsf{T}, \quad \mathbf{T} = \mathbf{X} \mathbf{W}^*, \quad \text{where } \mathbf{W}^* = \mathbf{W} (\mathbf{P}^\mathsf{T} \mathbf{W})^{-1}. \end{split}$$

Скрытое пространство в задаче декодирования

Особенностью задачи является избыточность описания независимой переменной \mathbf{x} и целевой переменной \mathbf{y} . Объекты \mathbf{x} и \mathbf{y} живут на некоторых многообразиях низкой размерности.

Пространства $\mathbb{T} \subset \mathbb{R}^I$ и $\mathbb{U} \subset \mathbb{R}^s$ скрытые пространства для $\mathbb{X} \in \mathbb{R}^n$ ($I \leqslant n$) и $\mathbb{Y} \in \mathbb{R}^r$ ($s \leqslant r$), если существуют функции кодировании $\varphi_e : \mathbb{X} \to \mathbb{T}$, $\psi_e : \mathbb{Y} \to \mathbb{U}$ и функции декодирования $\varphi_d : \mathbb{T} \to \mathbb{X}$, $\psi_d : \mathbb{U} \to \mathbb{Y}$:

$$\forall \mathbf{x} \in \mathbb{X} \quad \exists \mathbf{t} \in \mathbb{T} : \varphi_d(\varphi_e(\mathbf{x})) = \varphi_d(\mathbf{t}) = \mathbf{x};$$

$$\forall \mathbf{y} \in \mathbb{Y} \quad \exists \mathbf{u} \in \mathbb{U} : \psi_d(\psi_e(\mathbf{y})) = \psi_d(\mathbf{u}) = \mathbf{y}.$$

Скрытые пространства $\mathbb T$ и $\mathbb U$ являются *согласованными*, если существует функция согласования $h:\mathbb T\to\mathbb U$:

$$\mathbf{y} = f(\mathbf{x}) = \psi_d(h(\varphi_e(\mathbf{x}))).$$

Выбор признаков в задаче декодирования

Требуется

Найти бинарный вектор $\mathbf{a} = \{0,1\}^n$, компоненты – индикаторы выбранных признаков.

Функция ошибки отбора признаков

$$\mathbf{a} = \underset{\mathbf{a}' \in \{0,1\}^n}{\operatorname{arg \, min}} S(\mathbf{a}' | \mathbf{X}, \mathbf{Y}).$$

Релаксация

Замена дикретной области определения $\{0,1\}^n$ на непрерывную релаксацию $[0,1]^n$:

$$\mathbf{z} = \underset{\mathbf{z}' \in [0,1]^n}{\min} S(\mathbf{z}'|\mathbf{X}, \mathbf{Y}), \quad a_j = [z_j > \tau].$$

Получив а, решаем задачу регрессии:

$$\mathcal{L}(\mathbf{\Theta}_{\mathbf{a}}|\mathbf{X}_{\mathbf{a}},\mathbf{Y}) = \left\|\mathbf{Y} - \mathbf{X}_{\mathbf{a}}\mathbf{\Theta}_{\mathbf{a}}^{\mathsf{T}}\right\|_{2}^{2} \rightarrow \min_{\mathbf{\Theta}_{\mathbf{a}}},$$

где индекс ${f a}$ обозначает подматрицу с номерами столбцов, для которых $a_j=1.$

Выбор признаков с помощью квадратичного программирования

$$\|oldsymbol{
u} - oldsymbol{\mathsf{X}} oldsymbol{ heta}\|_2^2
ightarrow \min_{oldsymbol{ heta} \in \mathbb{R}^n}.$$

Задача квадратичного программирования

$$S(\mathbf{z}|\mathbf{X}, \boldsymbol{\nu}) = (1 - \alpha) \cdot \underbrace{\mathbf{z}^{\mathsf{T}} \mathbf{Q} \mathbf{z}}_{\mathsf{Sim}(\mathbf{X})} - \alpha \cdot \underbrace{\mathbf{b}^{\mathsf{T}} \mathbf{z}}_{\mathsf{Rel}(\mathbf{X}, \boldsymbol{\nu})} \to \min_{\substack{\mathbf{z} \geqslant \mathbf{0}_n \\ \mathbf{1}^{\mathsf{T}}_{\mathbf{n}} \mathbf{z} = 1}}.$$

 $\mathbf{z} \in [0,1]^n$ – значимость признаков;

 $\mathbf{Q} \in \mathbb{R}^{n \times n}$ – матрица парных взаимодействий признаков;

 $\mathbf{b} \in \mathbb{R}^n$ – вектор релевантностей признаков к целевой переменной.

$$\mathbf{Q} = \left[\left| \mathsf{corr}(\chi_i, \chi_j) \right| \right]_{i,j=1}^n, \quad \mathbf{b} = \left[\left| \mathsf{corr}(\chi_i, \nu) \right| \right]_{i=1}^n.$$

Утверждение (Исаченко, 2018)

В случае полуопределенной матрицы ${f Q}$ задача QPFS является выпуклой. Полуопределенная релаксация — сдвиг спектра:

$$\mathbf{Q} o \mathbf{Q} - \lambda_{\mathsf{min}} \mathbf{I}$$
.

Многомерный выбор признаков в задаче декодирования Агрегирование релевантностей по целевым векторам (RelAgg)

$$\mathbf{b} = [|\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu})|]_{i=1}^n \to \mathbf{b} = \left[\sum_{k=1}^r |\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_k)|\right]_{i=1}^n.$$

Недостаток: нет учёта зависимостей в матрице Y.

Симметричный учёт значимостей (SymImp)

Штрафуем коррелированные целевые вектора с помощью $\mathsf{Sim}(\mathbf{Y})$

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{x} \geqslant \mathbf{0}_{n}, \, \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{x} = 1 \\ \mathbf{z}_{y} \geqslant \mathbf{0}_{r}, \, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{y} = 1}}.$$

$$\begin{aligned} \mathbf{Q}_{\mathsf{x}} &= \left[\left|\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\chi}_j)\right|\right]_{i,j=1}^n, \ \mathbf{Q}_{\mathsf{y}} = \left[\left|\mathsf{corr}(\boldsymbol{\nu}_i, \boldsymbol{\nu}_j)\right|\right]_{i,j=1}^r, \ \mathbf{B} = \left[\left|\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_j)\right|\right]_{i=1,\dots,r}^{i=1,\dots,n}.\\ &\alpha_1 + \alpha_2 + \alpha_3 = 1, \quad \alpha_i \geqslant 0. \end{aligned}$$

Многомерный выбор признаков в задаче декодирования

SymImp штрафует коррелированные целевые вектора, которые в меньшей мере объясняются признаками.

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{x}} \geqslant \mathbf{0}_n \\ \mathbf{1}_n^{\mathsf{T}} \mathbf{z}_{\mathbf{x}} = 1}}; \quad \alpha_3 \cdot \underbrace{\mathbf{z}_{\mathbf{y}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{y}} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Sim}(\mathbf{Y})} + \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{y}} \geqslant \mathbf{0}_r \\ \mathbf{1}_{\mathbf{x}}^{\mathsf{T}} \mathbf{z}_{\mathbf{y}} = 1}}.$$

Минимаксный подход (MinMax / MaxMin)

$$\min_{\substack{\mathbf{z}_x \geqslant \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1 \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_y = 1}} \max_{\substack{\mathbf{z}_y \geqslant \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1 \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1}} \left(\text{or} \max_{\substack{\mathbf{z}_x \geqslant \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \min_{\substack{\mathbf{T}_x \\ \mathbf{0}_x = 1 \\ \mathbf{0}_y = 1 \\ \mathbf{0}_y = 1}} \right) \left[\alpha_1 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x}_{\mathrm{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y}_{\mathrm{Rel}(\mathbf{X}, \mathbf{Y})} - \alpha_3 \cdot \underbrace{\mathbf{z}_y^\mathsf{T} \mathbf{Q}_y \mathbf{z}_y}_{\mathrm{Sim}(\mathbf{Y})} \right].$$

Теорема (Исаченко, 2018)

Для положительно определенных матриц \mathbf{Q}_x и \mathbf{Q}_y minmax и тахтіп задачи достигают одинакового значения функционала.

Теорема (Исаченко, 2018)

Минимаксная задача эквивалентна задаче квадратичного программирования $c \ n+r+1$ переменными.

Для получения выпуклой задачи применяется сдвиг спектра.

Многомерный выбор признаков в задаче декодирования Максимизация релевантностей (MaxRel)

$$\min_{\substack{\mathbf{z}_{\mathrm{x}} \geqslant \mathbf{0}_{n} \\ \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{\mathrm{x}} = 1 \\ \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{\mathrm{y}} = 1}} \max_{\substack{\mathbf{z}_{\mathrm{y}} \geqslant \mathbf{0}_{r} \\ \mathbf{0}_{r}}} \left[\left(1 - \alpha \right) \cdot \mathbf{z}_{\mathrm{x}}^{\mathsf{T}} \mathbf{Q}_{\mathrm{x}} \mathbf{z}_{\mathrm{x}} - \alpha \cdot \mathbf{z}_{\mathrm{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathrm{y}} \right].$$

Теорема (Исаченко, 2018)

Для положительно определенной матрицы \mathbf{Q}_{x} minmax и тахтіп задачи достигают одинакового значения функционала.

Асимметричный учёт значимостей (AsymImp)

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\left(\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{\mathsf{T}} \mathbf{z}_{y}\right)}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{x} \geqslant \mathbf{0}_{n}, \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{x} = 1 \\ \mathbf{z}_{y} \geqslant \mathbf{0}_{r}, \mathbf{1}_{x}^{\mathsf{T}} \mathbf{z}_{y} = 1}}.$$

При $b_j = \max_{i=1,\dots,n} [\mathbf{B}]_{i,j}$ коэффициенты при \mathbf{z}_y в $\mathsf{Rel}(\mathbf{X},\mathbf{Y})$ неотрицательны.

Утверждение (Исаченко, 2017)

B одномерном случае r=1 предлагаемые стратегии SymImp, MinMax, MaxMin, MaxRel, AsymImp совпадают с исходным алгоритмом QPFS.

Обобщение предложенных методов выбора признаков

Алгоритм	Критерий	Функция ошибки $S(\mathbf{z} \mathbf{X},\mathbf{Y})$			
RelAgg	$min[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y})]$	$\min_{\mathbf{z}_{_{_{\boldsymbol{X}}}}} \left[(1 - \alpha) \cdot \mathbf{z}_{_{_{\boldsymbol{X}}}}^{T} \mathbf{Q}_{_{\boldsymbol{X}}} \mathbf{z}_{_{\boldsymbol{X}}} - \alpha \cdot \mathbf{z}_{_{_{\boldsymbol{X}}}}^{T} \mathbf{B} 1_{_{\boldsymbol{r}}} \right]$			
SymImp	$\begin{aligned} \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \\ + Sim(\mathbf{Y}) \right] \end{aligned}$	$\min_{\mathbf{z}_{x}, \mathbf{z}_{y}} \left[\alpha_{1} \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \cdot \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} + \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right]$			
MinMax	$\begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y}) \right] \end{aligned}$	$ \min_{\mathbf{z}_{\chi}} \max_{\mathbf{z}_{y}} \left[\alpha_{1} \cdot \mathbf{z}_{\chi}^{T} \mathbf{Q}_{\chi} \mathbf{z}_{\chi} - \alpha_{2} \cdot \mathbf{z}_{\chi}^{T} \mathbf{B} \mathbf{z}_{y} - \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right] $			
MaxRel	$\begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) \right] \end{aligned}$	$\min_{\mathbf{z}_{_{\boldsymbol{X}}}} \max_{\mathbf{z}_{_{\boldsymbol{Y}}}} \left[(1-\alpha) \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{Q}_{_{\boldsymbol{X}}} \mathbf{z}_{_{\boldsymbol{X}}} - \alpha \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{B} \mathbf{z}_{_{\boldsymbol{Y}}} \right]$			
AsymImp	$ \begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y}) \right] \end{aligned} $	$\left \min_{\mathbf{z}_{x}, \mathbf{z}_{y}} \left[\alpha_{1} \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \left(\mathbf{z}_{x}^{T} B \mathbf{z}_{y} - \mathbf{b}^{T} \mathbf{z}_{y} \right) + \alpha_{3} \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right] \right $			

Внешние критерии качества

Нормированное RMSE

Качество предсказания:

$$\mathsf{sRMSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a) = \sqrt{\frac{\mathsf{MSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a)}{\mathsf{MSE}(\boldsymbol{Y},\overline{\boldsymbol{Y}})}} = \frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_a\|_2}{\|\boldsymbol{Y}-\overline{\boldsymbol{Y}}\|_2}, \quad \text{где} \quad \widehat{\boldsymbol{Y}}_a = \boldsymbol{X}_a\boldsymbol{\Theta}_a^\mathsf{T}.$$

 $\overline{\mathbf{Y}}$ — константный прогноз.

Мультикорреляция

Среднее значение коэффициента множественной корреляции:

$$R^2 = \frac{1}{r} \operatorname{tr} \left(\mathbf{C}^\mathsf{T} \mathbf{R}^{-1} \mathbf{C} \right); \quad \mathbf{C} = [\operatorname{corr}(\chi_i, \nu_j)]_{\substack{i=1,\dots,n\\j=1,\dots,r}}^{i=1,\dots,n}, \, \mathbf{R} = [\operatorname{corr}(\chi_i, \chi_j)]_{\substack{i,j=1}}^n.$$

BIC

Компромисс между качеством предсказания и количеством выбранных признаков $\|\mathbf{a}\|_0$:

$$\mathsf{BIC} = m \ln \left(\mathsf{MSE}(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}}) \right) + \|\mathbf{a}\|_{0} \cdot \log m.$$

Данные ECoG

- $\mathbf{X} \in \mathbb{R}^{m \times (32 \cdot 27)}$ сигналы ECoG.
- $\mathbf{Y} \in \mathbb{R}^{m \times 3k}$ траектория движения руки.

$$\mathbf{Y} = \begin{pmatrix} x_1 & y_1 & z_1 & \dots & x_k & y_k & z_k \\ x_2 & y_2 & z_2 & \dots & x_{k+1} & y_{k+1} & z_{k+1} \\ \dots & \dots & \dots & \dots \\ x_m & y_m & z_m & \dots & x_{m+k} & y_{m+k} & z_{m+k} \end{pmatrix}$$

Матрица корреляций **Y**

Анализ предложенных методов выбора признаков

Предложенные методы выбирают модель с меньшей ошибкой по отношению к базовому алгоритму.

Стабильность методов выбора признаков

Постановка эксперимента

• создать бутстреп-выборки

$$(\mathbf{X},\mathbf{Y}) \rightarrow \{(\mathbf{X}_1,\mathbf{Y}_1),\ldots,(\mathbf{X}_s,\mathbf{Y}_s)\};$$

• решить задачу выбора признаков

$$\big\{(\boldsymbol{X}_1,\boldsymbol{Y}_1),\ldots,(\boldsymbol{X}_s,\boldsymbol{Y}_s)\big\}\to\{\boldsymbol{z}_1,\ldots,\boldsymbol{z}_s\};$$

вычислить статистики

$$\{\mathbf{z}_1,\ldots,\mathbf{z}_s\} o \{\mathsf{sRMSE}, \|\mathbf{a}\|_0, \mathsf{Спирмен}\
ho, \ell_2\ \mathsf{расстояниe}\}.$$

	sRMSE	$\ \mathbf{a}\ _0$	Спирмен $ ho$	ℓ_2 расстояние
RelAgg	0.965 ± 0.002	26.8 ± 3.8	0.915 ± 0.016	0.145 ± 0.018
SymImp	0.961 ± 0.001	224.4 ± 9.0	0.910 ± 0.017	0.025 ± 0.002
MinMax	0.961 ± 0.002	101.0 ± 2.1	0.932 ± 0.009	0.059 ± 0.004
MaxRel	0.958 ± 0.003	41.2 ± 5.2	0.862 ± 0.027	0.178 ± 0.010
AsymImp	0.955 ± 0.001	85.8 ± 10.2	0.926 ± 0.011	0.078 ± 0.007

Сравнение метода проекции в скрытое пространство с методами выбора признаков

- Предлагаемые методы выбора признаков достигают меньшей ошибки по сравнению с базовыми алгоритмами Lasso и Elastic.
- PLS показывает сравнимое качество с QPFS.
- Комбинация двух алгоритмов показывает наилучший результат.

Нелинейные методы согласования скрытого пространства

Нелинейная проекция в скрытое пространство

$$\begin{split} \mathbf{T} &= \varphi_e(\mathbf{X}) = \mathbf{W}_x^L \sigma(\dots \sigma(\mathbf{W}_x^2 \sigma(\mathbf{X} \mathbf{W}_x^1)) \dots) \\ \mathbf{U} &= \psi_e(\mathbf{Y}) = \mathbf{W}_y^L \sigma(\dots \sigma(\mathbf{W}_y^2 \sigma(\mathbf{Y} \mathbf{W}_y^1)) \dots) \\ \mathbf{X} &= \varphi_d(\mathbf{X}) = \mathbf{W}_t^L \sigma(\dots \sigma(\mathbf{W}_x^2 \sigma(\mathbf{T} \mathbf{W}_t^1)) \dots) \\ \mathbf{Y} &= \psi_d(\mathbf{Y}) = \mathbf{W}_u^L \sigma(\dots \sigma(\mathbf{W}_y^2 \sigma(\mathbf{U} \mathbf{W}_u^1)) \dots) \end{split}$$

$\mathbb{X} \subset \mathbb{R}^{n} \longrightarrow \mathbb{Y} \subset \mathbb{R}^{r}$ $\varphi_{e} \left(\begin{array}{c} \varphi_{d} \\ \end{array} \right) \varphi_{d} \qquad \qquad \psi_{d} \left(\begin{array}{c} \psi_{e} \\ \end{array} \right) \psi_{e}$ $\mathbb{T} \subset \mathbb{R}^{l} \longrightarrow \mathbb{U} \subset \mathbb{R}^{s}$

Данные рукописных цифр

Согласование проекций

$$g(\mathbf{T},\mathbf{U}) o\max_{\mathbf{W}},$$
где $\mathbf{W}=\{\{\mathbf{W}_x^i\}_{i=1}^L,\{\mathbf{W}_y^i\}_{i=1}^L,\{\mathbf{W}_t^i\}_{i=1}^L,\{\mathbf{W}_u^i\}_{i=1}^L\}.$

Результаты, выносимые на защиту

- 1. Исследована задача декодирования сигналов в пространствах высокой размерности. Исследованы методы снижения размерности с анализом структуры пространства.
- 2. Предложены методы для выбора признаков, учитывающие зависимости как в пространстве объектов, так и в пространстве ответов.
- 3. Предложена комбинация методов выбора признаков и снижения размерности пространства. Предложенные алгоритмы выбора признаков доставляют устойчивые и адекватные решения в коррелированных пространствах высокой размерности.
- 4. Преложены нелинейные методы согласования скрытых пространств для данных со сложно организованной целевой переменной.
- 5. Создан макет системы, пригнозирующей сигналы в пространстве большой размерности.

Заключение

Публикации ВАК

- 1. Исаченко Р.В., Стрижов В. В. Метрическое обучение в задачах мультиклассовой классификации временных рядов Информатика и её применения, 10(2), 2016.
- 2. Isachenko R. et al. Feature Generation for Physical Activity Classification. *Artificial Intellegence and Decision Making*, 3, 2018.
- Isachenko R., Strijov V. Quadratic programming optimization for Newton method. Lobachevskii Journal of Mathematics, 39(9), 2018.
- 4. Isachenko R., Vladimirova M., Strijov V. Dimensionality Reduction for Time Series Decoding and Forecasting Problems. *DEStech Transactions on Computer Science and Engineering*, optim, 2018.
- 5. Исаченко Р.В., Яушев Ф.Р., Стрижов В.В. Модели согласования скрытого пространства в задаче прогнозирования // Системы и средства информатики, 31(1), 2021.

Выступления с докладом

- Ломоносов, 2016. Метрическое обучение в задачах мультиклассовой классификации временных рядов.
- 2. Intelligent Data Processing Conference, 2016. Multimodel forecasting multiscale time series in internet of things.
- 3. Математические методы распознавания образов, 2017. Локальные модели для классификации объектов сложной структуры.
- Intelligent Data Processing Conference, 2018, Dimensionality reduction for multicorrelated signal decoding with projections to latent space.
- 5. Intelligent Data Processing Conference, 2020, Снижение размерности в задаче декодирования временных рядов.