Programación en R para el análisis de datos

Visualizacion de datos con ggplot2

Nicolás Schmidt

mail::nschmidt@cienciassociales.edu.uy

GitHub::@Nicolas-Schmidt

Departamento de Ciencia Poltica Facultad de Ciencias Sociales

Ruta

Visualización

ggplot2

Histogramas y densidades

Barras

Boxplot

Lineas

Combinar gráficos

Visualización

Cuarteto de Anscombe

```
anscombe
   x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
apply(anscombe, 2, mean)
      x1 x2 x3 x4
                                v1 v2 v3
## 9 000000 9 000000 9 000000 9 000000 7 500909 7 500909 7 500000 7 500909
apply(anscombe, 2, sd)
                     x3 x4
                                y1 y2 y3
## 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657 2.030424 2.030579
```

Cuarteto de Anscombe

```
ans <- data.frame(stack(anscombe), mod = rep(c('x', 'y'), each = 44))
ans <- unstack(ans[, -2])
ansmodel \leftarrow rep(c("x1 ~ y1", "x2 ~ y2", "x3 ~ y3", "x4 ~ y4") , each = 11)
ans %>%
  split(.$model) %>%
  purrr::map(~ lm(x ~ y, data = .)) %>%
  purrr::map(summary) %>%
  purrr::map_dbl("r.squared") %>%
  round(digits = 4) %>%
  as.list()
## $`x1 ~ y1`
## [1] 0.6665
##
## $^x2 ~ y2^
## [1] 0.6662
##
## $`x3 ~ y3`
## [1] 0.6663
##
## $`x4 ~ y4`
## [1] 0.6667
```

Cuarteto de Anscombe

```
ggplot(ans, aes(x = x, y = y)) +
    geom_point() +
    facet_wrap(~model, ncol = 2)
```


datasauRus

```
wow <- datasaurus_dozen %>% filter(dataset %in% c('dino', 'star', 'x_shape', 'circle'))
WOW
## # A tibble: 568 x 3
     dataset x y
   <chr> <dbl> <dbl>
##
          55.4 97.2
## 1 dino
##
  2 dino 51.5 96.0
          46.2 94.5
## 3 dino
## 4 dino
           42.8 91.4
## 5 dino
           40.8 88.3
## 6 dino
            38.7 84.9
            35.6 79.9
## 7 dino
## 8 dino 33.1 77.6
## 9 dino 29.0 74.5
## 10 dino
             26.2 71.4
## # ... with 558 more rows
WOW %>%
   group_by(dataset) %>%
   summarise(media_x = mean(x), media_y = mean(y), sd_x = sd(x), sd_y = sd(y))
## # A tibble: 4 x 5
   dataset media_x media_y sd_x sd_y
##
  <chr>
             <dbl>
                   <dbl> <dbl> <dbl> <dbl>
## 1 circle 54.3
                   47.8 16.8 26.9
## 2 dino
            54.3
                   47.8 16.8 26.9
## 3 star
            54.3
                   47.8 16.8 26.9
                   47.8 16.8 26.9
## 4 x_shape
             54.3
```

datasauRus

```
wow %>%
    split(.$dataset) %>%
    purrr::map(~ lm(x ~ y, data = .)) %>%
    purrr::map(summary) %>%
    purrr::map_dbl("r.squared") %>%
    round(digits = 4)
## circle dino star x_shape
## 0.0047 0.0042 0.0040 0.0043
wow %>%
    split(.$dataset) %>%
    purrr::map_dbl(~ cor(.$x, .$y)) %>%
    round(digits = 4)
## circle dino star x_shape
## -0.0683 -0.0645 -0.0630 -0.0656
```

datasauRus

```
ggplot(wow, aes(x = x, y = y)) +
  geom_point(size = 2) +
  facet_wrap(~dataset)
```


Tortas

Fuente: Geofaceting Argentina: @TuQmano

Tortas

Fuente: Geofaceting Argentina: @TuQmano

Fuente: Kieran Healy

ggplot2

Gramática de gráficos

El paquete ggplot2 desarrollado por Hadley Wickham se basa en la teora de visualización de datos desarrollada en *The Grammar of Graphics*, por Leland Wilkinson.

La existencia de una gramática supone cierto orden en la composición de un gráfico. Igual que una gramática un de un lenguaje, para construir una oración en algn idioma hay que respetar cierto orden (verbo, predicado, sujeto...)

Gráficos estadsticos

In brief, the grammar tells us that a statistical graphic is a mapping from data to aesthetic attributes (colour, shape, size) of geometric objects (points, lines, bars). The plot may also contain statistical transformations of the data and is drawn on a specific coordinate system. Faceting can be used to generate the same plot for different subsets of the dataset. It is the combination of these independent components that make up a graphic. (Wickham)

Principales componentes (capas)

data	conjunto de datos (data.frame)
aes	atributos estéticos que son asignados a variables
	(posición (x, c(x, y),), tamao, color
geom	el objeto geométrico a plotear en una parcela
coord	sistema de coordenadas
stats	transformaciones estadsticas para visualizar
	determinado geom_*
facets	el mismo gráfico pero por algn subconjunto de datos
labels	etiquetas de los ejes
theme	Todos los aspectos relativos al fondo

Principales componentes (capas)

Código básico

library(ggplot2) ggplot()

Código básico: primer capa

ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Sepal.Width))


```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
    geom_point()
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
   geom_point(size = 5, alpha = .5, )
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species, shape = Species)) +
geom_point(size = 5, alpha = .5, ) +
facet_wrap(Species .)
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, fill = Species)) +
   geom_bin2d()
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, fill = Species)) +
geom_hex(bins = 10, alpha = .5)
```



```
ggplot(iris, ass(x = Sepal.Length, y = Sepal.Width, color = Species)) +
geom_point(size = 5, alpha = .5, ) +
geom_smooth(method="lm")
```



```
ggplot(iris, ass(x = Sepal.Length, y = Sepal.Width, color = Species)) +
geom_point(size = 5, alpha = .5, ) +
geom_smooth(method="loess")
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
geom_point(size = 5, alpha = .5, ) +
geom_smooth(method="loess", se = FALSE)
```



```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Petal.Width, shape = Species)) +
geom_point(size = 5, alpha = .5, ) +
geom_vline(aes(xintercept = mean(Sepal.Length)), color = "blue", linetype = "dashed") +
geom_hline(aes(yintercept = mean(Sepal.Width)), color = "blue", linetype = "dashed") +
scale_color_gradient(low = "yellow", high = "red")
```



```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE) +
facet_urap('Species, scale = 'free_y') +
theme_minimal()
```



```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
geom_point(size = 5, alpha = .5, ) +
xlab("Sepal Length") +
ylab("Sepal Width") +
ggtitle("Sepal Length - Width por Species")
```


Código básico: labs

```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
geom_point(size = 5, alpha = .5, ) +
labs(title = "Sepal Length - Width por Species",
subtitle = "Base de datos 'iris'",
color = "Tipo de especie", caption = "Curso de R", x = "SL", y = "SW")
```


Código básico: theme

```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
geom_point(size = 5, alpha = .5, ) +
labs(title = "Sepal Length - Width por Species",
subtitle = "Base de datos 'iris'",
color = "Tipo de especie", caption = "Curso de R", x = "SL", y = "SW") +
theme_minimal()
```


Código básico: theme

```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
geom_point(size = 5, alpha = .5, ) +
labs(title = "Sepal Length - Width por Species",
    subtitle = "Base de datos 'iris'",
    color = "Tipo de especie", caption = "Curso de R", x = "SL", y = "SW") +
    theme_bw()
```


Código básico: theme

```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width ,color = Species)) +
    geom_point(size = 5, alpha = .5, ) +
    labs(title = "Sepal Length - Width por Species", subtitle = "Base de datos 'iris'",
    color = "Tipo de especie", caption = "Curso de R", x = "SL", y = "SW") +
    theme_bw() +
    theme(panel.background = element_rect(fill = "#F6D9D9"),
        panel.grid.minor = element_line(linetype = "dotted"))
```


Código básico: text

```
ggplot(data = mtcars, aes(x = wt, y = mpg)) + geom_point() +
geom_text(
    label=rownames(mtcars),
    nudge_x = 0.25, nudge_y = 0.25,
    check_overlap = TRUE
)
```


Código básico: label

Código básico: label

```
ggplot(data = mtcars, aes(x = wt, y = mpg)) + geom_point() +
    geom_label(
    label=rownames(mtcars),
    nudge_x = 0.25, nudge_y = 0.25,
    fill = "yellou",
    color = "red"
    )
```


Código básico: label (ggrepel)

Histograma

```
ggplot(data = iris, aes(x = Sepal.Width)) +
    geom_histogram(binwidth = 0.2, color = "white")
```



```
ggplot(data = iris, aes(x = Sepal.Width)) +
   geom_histogram(binwidth = 0.2, color = "black", aes(fill = Species))
```



```
ggplot(data = iris, aes(x = Sepal.Width)) +
geom_histogram(binwidth = 0.2, color = "black",alpha = .42, aes(fill = Species)) +
theme(legend.position="bottom") #"top", "none"..
```



```
ggplot(data = iris, aes(x = Sepal.Width)) +
geom_histogram(binwidth = 0.2, color = "black", aes(fill = Species)) +
facet_grid(Species ~ .) +
geom_density(alpha=.7, fill="#FF6666")
```



```
ggplot(data = iris,aes(x = Sepal.Length, color = Species, fill = Species)) +
   geom_density(alpha = 0.2)
```



```
ggplot(data = iris,aes(x = Sepal.Length, fill = Species)) +
    geom_density(alpha = 0.2) +
    geom_vline(aes(xintercept = mean(Sepal.Length)), color="red", linetype = "dashed", size = 1)
```



```
ggplot(data = iris,aes(x = Sepal.Length, fill = Species)) +
geom_density(alpha = 0.2) +
geom_vline(aes(xintercept = mean(Sepal.Length)), color="red", linetype = "dashed", size = 1) +
facet_grid(Species".)
```



```
ggplot(data = iris,aes(x = Petal.Length, Petal.Width, color = Species)) +
    geom_density2d()
```



```
library(ggridges)
ggplot(iris, aes(x = Sepal.Length, y = Species, fill = Species)) +
geom_density_ridges(alpha = 0.5) +
theme_minimal() +
theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
)
```

Picking joint bandwidth of 0.181


```
gapminder %>%
 filter(continent == 'Americas') %>%
 group_by(country) %>%
 mutate(media = mean(lifeExp)) %>%
 ggplot(aes(x = lifeExp, y = reorder(country, media))) +
     geom_density_ridges(alpha = 0.5) +
     theme_minimal() +
     theme (
         legend.position="none",
         panel.spacing = unit(0.1, "lines"),
         strip.text.x = element_text(size = 8)
          ) +
     labs(x = "",
          y = "",
          title = "Expetctiva de vida",
           subtitle = "Datos: gapminder"
```

Picking joint bandwidth of 3.63


```
ggplot(diamonds) +
   geom_density(aes(x = carat, fill = clarity), position = 'stack') +
   facet_grid(clarity~., scales = 'free') +
   labs(x = "Carat", y = "Frecuencia", title = "Distribucin de 'Carat' por 'Clarity'") +
   theme_minimal()
```


Barras

```
ggplot(mpg, aes(x = class)) +
  geom_bar()
```



```
ggplot(mpg, aes(x = class)) +
  geom_bar() +
  coord_flip()
```



```
ggplot(mpg, aes(x = class)) +
  geom_bar(fill = 'gray', color = 'black')
```



```
ggplot(mpg, aes(x = class, fill = drv)) +
  geom_bar( color = 'black')
```



```
ggplot(mpg, aes(x = class, fill = factor(cyl))) +
  geom_bar( color = 'black') +
  theme_minimal()
```



```
ggplot(mpg, aes(x = class, fill = factor(cyl))) +
geom_bar(color = 'black') +
theme_bw() +
facet_wrap( ^ factor(cyl)) +
theme(legend.position = "none")
```



```
ggplot(mpg, aes(x = class, fill = factor(cyl))) +
geom_bar(color = 'black') +
theme_bw() +
facet_wrap( ~ factor(cyl), scales = "free_x") +
theme(legend.position = "none")
```


Boxplot

```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
    geom_boxplot()
```



```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
    geom_boxplot(aes(fill = factor(cyl)))
```



```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
    geom_boxplot(aes(fill = factor(cyl)), notch = TRUE) +
    labs(fill = "cyl")

## notch went outside hinges. Try setting notch=FALSE.
## notch went outside hinges. Try setting notch=FALSE.
```



```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_boxplot(aes(fill = factor(cyl))) +
coord_flip() +
labs(fill = "cyl")
```



```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_violin(aes(fill = factor(cyl))) +
geom_jitter(color = "black", size = 1, alpha = 0.5) +
labs(fill = "cyl")
```



```
ggplot(mpg, aes(x=class, y=hwy, fill=class)) +
  geom_boxplot() +
  geom_jitter(color = "black", size = 1, alpha = 0.5)
```



```
ggplot(mpg, aes(x=class, y=hwy, fill=class)) +
  geom_boxplot(outlier.colour = "red") +
  theme(legend.position="none") +
  xlab("") +
  xlab("")
```



```
ggplot(mpg, aes(x=class, y=hwy, fill=class)) +
  geom_violin() +
  theme(legend.position="none") +
  xlab("") +
  xlab("")
```



```
ggplot(mpg, aes(x=class, y=hwy, fill=class)) +
geom_violin() +
theme(legend.position="none") +
stat_summary(fun.y = mean, geom = "point", shape = 18, size=5, color="black") +
xlab("") +
xlab("")
```



```
ggplot(mpg, ass(x=class, y=hwy, fill=class)) +
geom_violin() +
geom_jitter(size = 1, color = 'black', alpha = 0.5) +
stat_summary(fun.y = mean, geom = "point", shape = 18, size=5, color='black') +
geom_boxplot(color = 'black', fill = 'white', alpha = 0.3) +
xlab("") + xlab("") + theme(legend.position="none")
```



```
gapminder %>%
filter(year %in% c(1952,1972,1992, 2002)) %>%
ggplot(aes(x = continent, y = gdpPercap, fill = factor(year))) +
geom_boxplot()
```



```
gapminder %>%
filter(year %in% c(1952,1972,1992, 2002)) %>%
ggplot(aes(x = continent, y = lifeExp, fill = factor(year))) +
geom_boxplot(outlier.shape = %A)
```



```
gapminder %>%
    geom_boxplot(outlier.shape = NA) +
    facet_wrap("year) +
    theme(legend.position="none") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
gapminder%>%
ggplot(aes(x=factor(year),y = lifeExp, fill = continent)) +
geom_boxplot(cutlier.shape = NA) +
xlab("Year")+
facet_wrap("continent, ncol = 5) +
theme(legend.position="none") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Lineas

Código básico: line

```
library(gapminder)
ggplot(gapminder, aes(x = year, y = gdpPercap)) +
    geom_line(aes(group = country))
```


Código básico: line

```
gapminder %% dplyr::filter(country == 'Uruguay') %%
ggplot(aes(x = year, y = gdpPercap)) +
geom_line(size = 1) +
geom_lonint(color = 'red', size = 3) +
scale_y_log10(labels = scales::dollar) +
labs(x = "", y = "", title = "GDP per capita de Uruguay")
```


Código básico: segment

```
gapminder %>% dplyr::filter(country == 'Uruguay') %>%
ggplot(aes(x = year, y = gdpPercap)) +
    geom_point(color = 'red', size = 3) +
    geom_segment(aes(x = year, xend = year, y = 0, yend = gdpPercap)) +
    labs(x = "", y = "", title = "GDP per capita de Uruguay")
```


Código básico: line

```
ggplot(gapminder, aes(x = year, y = gdpPercap)) +
    geom_line(aes(group = country)) + facet_wrap(~ continent)
```


Código básico: line

Código básico: smooth

```
ggplot(gapminder, mapping = aes(x = log(gdpPercap), y = lifeExp)) +
geom_point(alpha=0.3) +
geom_smooth(color = "steelblue", fill = "steelblue", method = "lm")
```


Código básico: smooth

```
ggplot(gapminder, mapping = aes(x = log(gdpPercap), y = lifeExp)) +
geom_point(alpha=0.3) +
geom_smooth(color = "red", fill = "steelblue", method = "lm") +
facet_wrap("continent, scale = 'free_x')
```


Código básico: smooth

```
gapminder %>% filter(continent == 'Americas') %>%
ggplot(aes(x = year, y = lifeExp)) +
geom_line() +
facet_wrap("country) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Combinar gráficos

gridExtra

```
library(gridExtra)
g1 <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, fill = Species)) + geom_point(size = 3)
g2 <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, fill = Species)) + geom_point(size = 3)
grid.arrange(g1, g2, ncol = 2)
```



```
library(patchwork)
grafi <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) + geom_point()
graf2 <- ggplot(iris, aes(Petal.Length, Petal.Width)) + geom_point()
grafi + graf2</pre>
```



```
graf3 <- ggplot(iris, aes(Species, Sepal.Length)) + geom_boxplot()
graf4 <- ggplot(iris, aes(Species, Petal.Length)) + geom_boxplot()
graf1 + graf2 + graf3 + graf4</pre>
```


graf1 + graf2 + graf3 / graf4

(graf1 + graf2 + graf3) / graf4


```
graf5 <- ggplot(anscombe) + geom_point(aes(x = x1, y = y1), size = 5)
graf5 + gridExtra::tableGrob(anscombe[, c('x1', 'y1')])</pre>
```


graf5 + grid::textGrob('Primero del cuarteto de Anscombe!')

