Algoritmos e Estrutura de Dados III Relatório do Trabalho 1

Thiago Heron Albano de Ávila Prof. Ricardo Matsumura Araújo

1. Descrição do Trabalho

O respectivo trabalho, tem como como objetivo pesquisar e compreender um algoritmo aproximativo para o problema do *Traveling Salesman Problem* (TSP) Euclidiano. Além disso, a implementação tanto de um algoritmo aproximativo quanto um algoritmo ótimo para o mesmo problema, além de compará-los para o obter o desempenho de diferentes tamanhos do problema.

2. Algoritmo Aproximativo

Para a solução do problema através do algoritmos aproximativos, foi utilizado o exemplo do livro Algoritmos Teoria e Prática de Thomas H. Cormen, para o problema do caixeiro-viajante com a desigualdade triangular utilizando o *Approx-TSP-Tour*.

Primeiramente calcula-se a árvore geradora mínima (minimum spanning tree), sendo que foi obtida através do Algoritmo de Prim. Após a obtenção desta, é usada para criar um passeio cujo o custo não é mais que duas vezes o peso da árvore geradora mínima, desde que a função custo satisfaça a desigualdade triangular.

Por fim, é retornado o Ciclo Hamiltoniano, portanto o Approx-TSP-Tour retornado um passeio cujo custo não é mais do que duas vezes o custo de um passeio ótimo. A grande parte da sua prova encontra-se no livro, na página 811.

3. Algoritmo Ótimo

A escolha para o desenvolvimento do algoritmo ótimo para a solução do problema, foi escolhido a Busca em Profundidade (depth-first search, DFS). Porém fazendo uma modificação para que sempre que uma busca termine, o último vértice

visitado é marcado como inexplorado, permitindo que todas as combinações de caminhos sejam experimentadas.

4. Implementação do Trabalho

Para a implementação e obtenção dos resultados, foram feitos alguns testes com diferentes tamanhos de entrada do problema como solicitado. Vale a pena ressaltar que, o trabalho foi implementado em Python3 através do Jupyter-Notebook. Será enviado tanto os formatos de arquivo .py para python quanto .ipynb para o jupyter.

Além disso, apesar do trabalho não ter sido em dupla, gostaria de ressaltar que tive a ajuda do meu colega Guilherme de Souza Silva, principalmente na parte do entendimento teórico do problema e suas formas de abordagem.

5. Resultados

Tabela 1. Comparação do tempo em relação ao número de vértices do grafo no algoritmo aproximativo e no da solução ótima.

Número de Vértices	Tempo Decorrido (segundos)	
	Approx-TSP-Tour	Depth-First Search
100	0.0325	1.2944
200	0.0844	21.2488
300	0.1589	112.3428
400	0.2806	415.7931
500	0.6254	1093.4044
600	0.9629	2380.6199
700	1.0824	3369.0962
800	1.1875	5563.9275
900	1.5149	Tempo Excedido
1000	1.8257	Tempo Excedido

Através da Tabela 1, pode-se perceber que o algoritmo aproximativo Approx-TSP-Tour cresce de forma mais lenta, enquanto o algoritmo Depth-First Search da solução ótima cresce de forma exponencial tornando-se perceptível a diferença de tempo para a solução do mesmo problema.

Após 900 vértices, torna-se inviável de calcularmos o tempo para a solução ótima, demorando mais de hora para obter os resultados. Por isso, a conclusão de resultados do algoritmo aproximativo.