

Flexible-Size Batched LU for Small Matrices and its Integration into Block-Jacobi Preconditioning

Hartwig Anzt, Jack Dongarra, Goran Flegar, Enrique S. Quintana-Ortí

- GPU-accelerated sparse linear algebra library
 - Focus: linear systems

- GPU-accelerated sparse linear algebra library
 - Focus: linear systems
 - Iterative, Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations

- GPU-accelerated sparse linear algebra library
 - Focus: linear systems
 - Iterative, Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver

- GPU-accelerated sparse linear algebra library
 - Focus: linear systems
 - Iterative, Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations

- GPU-accelerated sparse linear algebra library
 - Focus: linear systems
 - Iterative, Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$
 M^{-1} easy to compute

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M \approx A$$
 M^{-1} easy to compute

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

Do not compute the preconditioned system matrix explicitly!

$$y := (M^{-1}A)x$$

$$z := Ax$$

$$y := M^{-1}z$$

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \leadsto M$$

Preconditioner setup

$$z := Ax$$

$$u := M^{-1}z$$

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \leadsto M$$

Preconditioner setup

Preconditioner application

Trade-off:

faster convergence, but more work per iteration

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- · Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- · Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i y_i = z_i \longrightarrow D_i = L_i U_i$$

$$U_i y_i = w_i$$

$$L_i w_i = z_i$$

- Current focus: improve performance for problems with inherent block structure
 - Usually up to 30 unknowns per block (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i y_i = z_i$$
 $D_i = L_i U_i$ Setup $U_i y_i = w_i$ Application $L_i w_i = z_i$

Solving 30-by-30 systems in sequence on a GPU with several thousand cores wastes computational resources!

Batched routines

Launch a single kernel which applies an operation to multiple independent data entities in parallel.

* Measured on NVIDIA P100

Batched routines

Launch a single kernel which applies an operation to multiple independent data entities in parallel.

- There is no standard BLAS & LAPACK interface
- Most implementations only support problems of equal sizes
- High performance libraries are not optimized for small blocks
 - cuBLAS batched trsv: ~25 Gflop/s *
 - MAGMA-sparse SpMV: 60 90 Gflop/s *

* Measured on NVIDIA P100

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

- Process each row by a single thread
 - Able to support problems of size up to 32-by-32
 - keep the entire row in thread's registers
 - Communicate data between rows via warp-shuffles
 - Current implementation: use padding for problems of smaller sizes
 - Future work: multiple smaller problems per warp

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

- Process each row by a single thread
 - Able to support problems of size up to 32-by-32
 - keep the entire row in thread's registers
 - Communicate data between rows via warp-shuffles
 - Current implementation: use padding for problems of smaller sizes
 - Future work: multiple smaller problems per warp

- Use implicit pivoting
 - Do not explicitly swap rows, "re-assign" the threads instead

- Use "eager" triangular solves
 - Cast solution vector updates in terms of axpy, not in terms of dot product!

"Eager" triangular solve

LU decomposition performance

- Comparisson of MAGMA-sparse vs cuBLAS batched LU decomposition
- Gauss-Huard(-T) is a similar approach, using a different algorithm for decomposition/solves *

^{*} Anzt et al., Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning, ICCS'17

LU decomposition performance

- Comparisson of MAGMA-sparse vs cuBLAS batched LU decomposition
- Gauss-Huard(-T) is a similar approach, using a different algorithm for decomposition/solves*

MAGMA-sparse LU can also:

- Handle problems of different sizes
- Integrate diagonal block extraction and diagonal block decomposition into a single kernel

^{*} Anzt et al., Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning, ICCS'17

Triangular solve performance

- Comparisson of MAGMA-sparse vs cuBLAS batched triangular solves
- Gauss-Huard(-T) is a similar approach, using a different algorithm for decomposition/solves*

Complete solver runtime

56 problems from SuitSparse

Complete solver runtime

56 problems from SuitSparse

8000

"Solving many small problems in sequence on manycore hardware wastes computational resources! We can design batched routines which apply the same operation on a set of independent data entities."

Workshop on batched BLAS*

Effort to standardize the batched BLAS interface

"Solving many small problems in sequence on manycore hardware wastes computational resources! We can design batched routines which apply the same operation on a set of independent data entities."

Workshop on batched BLAS*

Effort to standardize the batched BLAS interface

What is small?

- Can we design a single routine that can handle both 8-by-8 and 500-by-500 matrices?
- Or should we have more routines?

"Solving many small problems in sequence on manycore hardware wastes computational resources! We can design batched routines which apply the same operation on a set of independent data entities."

Workshop on batched BLAS*

Effort to standardize the batched BLAS interface

What is small?

- Can we design a single routine that can handle both 8-by-8 and 500-by-500 matrices?
- Or should we have more routines?

Does batched BLAS / LAPACK solve the problem?

- Even with efficient implementation, cannot "merge" with diagonal block extraction.
- Batched gemm proposal has 16 input arguments!
- Global synchronization between two batched calls.

"Solving many small problems in sequence on manycore hardware wastes computational resources! We can design batched routines which apply the same operation on a set of independent data entities."

Workshop on batched BLAS*

Effort to standardize the batched BLAS interface

What is small?

- Can we design a single routine that can handle both 8-by-8 and 500-by-500 matrices?
- Or should we have more routines?

Does batched BLAS / LAPACK solve the problem?

- Even with efficient implementation, cannot "merge" with diagonal block extraction.
- Batched gemm proposal has 16 input arguments!
- Global synchronization between two batched calls.

Instead provide BLAS which operates on a part of memory/core hierarchy?

- E.g. block, warp, thread level BLAS for CUDA.
- Let users build their own batched routines from these building blocks.

Thank you! Questions?

All functionalities are part of the MAGMA-sparse project.

MAGMA SPARSE

ROUTINES BiCG, BiCGSTAB, Block-Asynchronous Jacobi, CG,

CGS, GMRES, IDR, Iterative refinement, LOBPCG,

LSQR, QMR, TFQMR

PRECONDITIONERS ILU / IC, Jacobi, ParlLU, ParlLUT, Block Jacobi, ISAI

KERNELS SpMV, SpMM

DATA FORMATS CSR, ELL, SELL-P, CSR5, HYB

http://icl.cs.utk.edu/magma/

github.com/gflegar/talks/icpp 2017

This research is based on a cooperation between Hartwig Anzt, Jack Dongarra (University of Tennessee), Goran Flegar and Enrique S. Quintana-Ortí (Universidad Jaume I).

