Computer Science & IT

Data Structure & Programming

Graph & Hashing

Lecture No. 02

Recap of Previous Lecture

Graph Representation

Graph Touversal (BFS)

Direct Addressing

Slide

Topics to be Covered

Topic

Hashing,

Topic

Hash table

Topic

Hash-Punchon

Topic

Collision

Topic

Chaining, Linear probling

Searsching Best Method Direct Adds essing. Constant time

Rather than using a big Size table lets use a Small Size

table called Hash table.

* vather than mapping the key k at kth Index
we store (map) h(k) (Hash-function)

hash table

- * Each faster access Location of Host table is called bucket/slot
- * Hash function should uniformally distribute the keys.
- * The table Size m, if m is prime No then it leads to better distribution of keys.
- * No. of keys to be mapped is n

Which one of the following hash functions on integers will distribute keys most uniformly

over 10 buckets numbered 0 to 9?

(A)
$$h(i) = i^2 \mod 10$$

(B)
$$h(i) = i^3 \mod 10$$

(C)
$$h(i) = (11*i^2) \mod 10$$

(D)
$$h(i) = (12*i^2) \mod 10$$

Home wak

56789

Which one of the following hash functions on integers will distribute keys most uniformly

over 10 buckets numbered 0 to 9?

(A)
$$h(i) = i^2 \mod 10$$

(B)
$$h(i) = i^3 \mod 10$$

(C)
$$h(i) = (11*i^2) \mod 10$$

(D)
$$h(i) = (12*i^2) \mod 10$$

Home work

02mod 10 = 0	112 modio
$-1^2 \mod 10 = 1$	= 1
22 mod 10 = 4	
3° mud 10 = 9	
5 mod 10 = 5	
72 mud 10 = 9	
8° mud 10 = 4	
	$- \frac{1^{2} \mod 10}{2^{2} \mod 10} = \frac{1}{4^{2} \mod 10} = $

12	mod	112
C	MUC	ULU

- 2
- 3
- 4 2,8
- 5 5
- 4.6
- 7
- 8
- 9 3,7

i3 mod 10 univon

- 0 0
- 2 8
- 3 7
- 4 4
- 5 5
- 6 6
- 7 3
- 8 2
- 9 9

0	
1	
2	

- 3
- 4
- 5
- 5
- 7
- 8

- 0
- 2
- 3
- 4
- 5
- 6
- 7
- _
- 9

$$\alpha = \frac{n}{m}$$

#Q Given a has table T with 25 slots that stores 2000 elements, the load factor α for

$$\alpha = \frac{n}{m} = \frac{2000}{25} = 80$$

Two keys mapped to Same Location Leads to collision.

$$h(2) = 2^2 \mod 10 = 4^9$$

 $h(8) = 8^2 \mod 10 = 4^9$

is called collision

Collision Resolution Technique

```
1 Open Hashing
```

* chaining or seperate chaining

```
2 Closed Hashing or open Addressing

* Linear probing

* quadratic probing

* Double Hashing
```


Open hashing collided key stores outside of table. Seperate chaining is an example of open Hashing where each-time collision occurs we create a New Node and connect to chain.

Let us see the following example to get better idea. If we have some elements like $\{15, 47, 23, 34, 85, 97, 65, 89, 70\}$. And our hash function is h(x)

Array of linked List

Insert at begin

Key – x	$h(x) = x \bmod 7$						
15	1		0		70		
47	5		0		70		
23	2	A D	1	0	15	8	4
34	6		2	0-	23	6	5
85	1	XX	3				
97	6		4				
65	2		5	-	47	8	9
89	5	1	6	10	34	9	7
70	0						

#Q. Consider a hash table with 9 slots. The hash function is The collisions are resolved by chaining. $h(k) = k \mod g$

The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10.

The maximum, minimum, and average chain lengths in the hash table, respectively, are

(A) 3, 0, and 1

(B) 3, 3, and 3

(C) 4, 0, and 1

(D) 3, 0, and 2

Slide

: 5, 28, 19, 15, 20, 33, 12, 17, 10.

Q. Consider a hash table with 100 slots. Collisions are resolved using chaining.

Assuming simple uniform hashing, what is the probability that the first 3 slots

are unfilled after the first insertions?

$$(A)(97 \times 97 \times 97)/100^3$$

(B)
$$(99 \times 98 \times 97)/100^3$$

(D)
$$(97 \times 96 \times 95)/(3! \times 100^3)$$

$$\frac{97}{100} \times \frac{97}{100} \times \frac{97}{100}$$

1 chaining closs not block the slot

0

Generalized result

$$\frac{m-1}{m} \times \frac{m-1}{m} \times \frac{m-1}{m}$$
 \uparrow_{st} and \downarrow_{st}

Suppose there are m buckets uniform distribution is used

what is the probability that slot

$$\left(\frac{m-1}{m}\right)^{K}$$

Suppose there are m buckets uniform distribution is used what is the probability No collision occurs in kth Insertion

Closed Hashing on open Addressing

Inecro probing: In closed Hashing collided key store

within the table at different Location.

In Linear probing if collision occurs then we Inearly Search for empty position one ofter another

Linear Probing Example

Consider the the hash table of size 13, the hash table is initially empty and hash h(k)

= k mod 13 is used. Collision is resolved by linear probing.

Insert keys:

18, 41, 22, 44, 59, 32, 31, 73 in to hash table and show the resultant hash table.

Linear Probing Example

Key	$h(x) = x \bmod 13$		0
18	-		1
10	5	41	2
41	2		3
22	9		4
		¹⁸ 1	5
44	5	44	6
59	7	59	7
32	6	32	8
		22 🔻	9
31	5	31	10
73	8	73	11
			12

A hash table contains 10 buckets and uses linear probing to resolve collisions. The key values are integers and the hash function used is key % 10. if the values 43, 165, 62, 123, 142 are inserted in the table, in what location would the key value 142 be inserted?

- (A)2
- (B)3
- (C)4
- (D) 6

123

165

142

7

9

A hash table of length 10 uses open addressing with hash function h(k) = kmod10, and linear probing. After inserting 6 values into an empty hash table, the table is as shown below

Which one of the following choices gives a possible order in which the key values could have been inserted in the table?

- A) 46, 42, 34, 52, 23, 33
- B) 34, 42, 23, 52, 33, 46
- C) 46, 34, 42, 23, 52, 33
- D) 42, 46, 33, 23, 34, 52

0	
1	
2	42
3	23
4	34
5	52
6	46
7	33
8	
9	

BC

1			A
42	,23	,30	1,52,46,33
			+

4				0	
33				1	
42	42	42	42	2	42
(52)	23	231	(33)	3<	>23
34	341	34		4	34
	52	52		5	52
46	33	46	46	6	(46)
		33		7	33
				8	
				9	

A) 46, 42, 34, 52, 23, 33 C

B) 34, 42, 23, 52, 33, 46 D

C) 46, 34, 42, 23, 52, 33

D) 42, 46, 33, 23, 34, 52

Slide

8

A					0	
A2,23,34,52,46,3	3				1	
	42	42	42	42	2	42
	23	23	231	(33)	3<	23
	34	344	34		4	34
	52	52	52		5	52
	46	33	46	46	6	(46)
12, 34, 52, 23, 33	33		33		7	33
					0	

A)	46,	42,	34,	52,	23,	33	X

D) 42, 46, 33, 23, 34, 52

Slide

How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table

-1:		- 1		- 6
en.	own	ah	nov	\mathbf{e}
	CWII	au	~	j

- (A) 10
- (B) 20
- (C) 30
- (D) 40

0	
1	
2	42
3	23
4	34
5	52
6	46
7	33
8	
9	

2 mins Summary

Topic

Topic Collision

Topic Chaining

Topic

Linear probing

Topic

THANK - YOU