ADVANCED STATISTICS PROJECT REPORT

Akshaya Nallathambi

13th June, 2021

Table Of Contents

Problem 1

Problem statement	6
Data Description	6
Sample of the dataset	7
Types of variables in the data frame	7
1.1 State the null and the alternate hypothesis for conducting one-way A both Education and Occupation individually.	NOVA for
1.2 Perform one-way ANOVA for Education with respect to the variabl State whether the null hypothesis is accepted or rejected based on th results.	-
1.3 Perform one-way ANOVA for variable Occupation with respect to the 'Salary'. State whether the null hypothesis is accepted or rejected base ANOVA results.	
1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which means are significantly different. Interpret the result.	h class <mark>10</mark>
1.5 What is the interaction between the two treatments? Analyze the effer variable on the other (Education and Occupation) with the help of an in- plot.	
1.6 Perform a two-way ANOVA based on the Education and Occupation (a their interaction Education*Occupation) with the variable 'Salary'. State the alternative hypotheses and state your results. How will you interpret this r	e null and
1.7 Explain the business implications of performing ANOVA for this partic	cular case 14

Problem 2

Prob	lem statement	15
Data	Description	15
Samp	ple of the dataset	17
Туре	s of variables in the data frame	18
	2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis be performed]. What insight do you draw from the EDA?	to 19
	2.2 Is scaling necessary for PCA in this case? Give justification and perform	
	scaling	29
	2.3 Comment on the comparison between the covariance and the correlar matrices from this data.[on scaled data]	tior 31
	2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?	33
	2.5 Extract the eigenvalues and eigenvectors.[print both]	36
	2.6 Perform PCA and export the data of the Principal Component (eigenvector) into a data frame with the original features	ors)
	2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. values with two places of decimals only). [hint: write the linear equation of Pc terms of eigenvectors and corresponding features]	
	2.8 Consider the cumulative values of the eigenvalues. How does it help you decide on the optimum number of principal components? What do eigenvectors indicate?	
	2.9 Explain the business implication of using the Principal Component Analysis this case study. How may PCs help in the further analysis? [Hint: W Interpretations of the Principal Components Obtained]	

List of Figures

	FIGURE 1	7
	FIGURE 2	10
	FIGURE 3	12
	FIGURE 4	12
	FIGURE 5	17
	FIGURE 6	17
	FIGURE 7	20
	FIGURE 8	29
	FIGURE 9	30
	FIGURE 10	30
	FIGURE 11	30
	FIGURE 12	31
	FIGURE 13	36
	FIGURE 14	37
	FIGURE 15	40
	FIGURE 16	45
L	ist of Tables	
	TABLE 1	7
	TABLE 2	8
	TABLE 3	9

TABLE 4	9
TABLE 5	12
TABLE 6	13
TABLE 7	18
TABLE 8	19
TABLE 9	32
TABLE 10	42
List of Graphs	
GRAPH 1	11
GRAPH 2	14
GRAPH 3	21
GRAPH 4	26
GRAPH 5	28
GRAPH 6	33
GRAPH 7	35
GRAPH 8	39
GRAPH 9	43
GRAPH 10	44

Problem 1

Problem statement-

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination.

Data Description-

Education: Doctorate, Bachelor, HS-grad

Occupation: Prof-specialty, Sales, Adm-clerical, Exec-managerial

Salary: Various salary level (ranging from 50,103 to 2,60,151)

Sample of the dataset-

FIGURE 1

	Education	Occupation	Salary
0	Doctorate	Adm-clerical	153197
1	Doctorate	Adm-clerical	115945
2	Doctorate	Adm-clerical	175935
3	Doctorate	Adm-clerical	220754
4	Doctorate	Sales	170769
5	Doctorate	Sales	219420
6	Doctorate	Sales	237920
7	Doctorate	Sales	160540
8	Doctorate	Sales	180934

There are 3 variables out of which 2 are categorical and 1 is continuous. The data given is for 40 individuals. There are no null values.

Types of variables in the data frame-

TABLE 1

Education	object	Categorical
Occupation	object	Categorical
Salary	int64	Continuous

1.1 State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually.

TABLE 2

H_0	Null Hypothesis
H_{a}	Alternative Hypothesis
μ	Hypothesized mean
α	Significance level

Salary and Education

 H_0 : The mean salary of individual is same with different categories of educational qualification.

 H_a : The mean salary of individual is different in at-least one category of educational qualification.

Salary and Occupation

 H_0 : The mean salary of individual is same with different categories of occupation.

 H_a : The mean salary of individual is different in at-least one category of occupation.

1.2 Perform one-way ANOVA for Education with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

The below table gives the ANOVA output for Education with respect to the variable Salary -

TABLE 3

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	30.95628	1.257709e-08
Residual	37.0	6.137256e+10	1.658718e+09	NaN	NaN

Since the p value (1.257709e-08) is less than the significance level (α = 0.05), we can reject the null hypothesis and conclude that there is a difference in the mean salary of individual in at-least one category of educational qualification.

1.3 Perform one-way ANOVA for variable Occupation with respect to the variable 'Salary'. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

The below table gives the ANOVA output for Occupation with respect to the variable Salary -

TABLE 4

	df	sum_sq	mean_sq	F	PR(>F)
C(Occupation)	3.0	1.125878e+10	3.752928e+09	0.884144	0.458508
Residual	36.0	1.528092e+11	4.244701e+09	NaN	NaN

Since the p (0.458508) value is greater than the significance level (α = 0.05), we fail to reject the null hypothesis and conclude that there is a no difference in the mean salary of individual with respect to different categories of occupation.

1.4 If the null hypothesis is rejected in either (1.2) or in (1.3), find out which class means are significantly different. Interpret the result.

The Tukey Test (or Tukey procedure), also called Tukey's Honest Significant Difference test, is a post-hoc test based on the studentized range distribution. An ANOVA test can tell you if your results are significant overall, but it won't tell you exactly where those differences lie. After you have run an ANOVA and found significant results, then you can run Tukey's HSD to find out which specific groups' means (compared with each other) are different. The test compares all possible pairs of means. [1]

The null hypothesis was rejected for Education with respect to the variable Salary. The below image shows the output of Tukey's HSD and it can be understood that all the combinations of Education are significantly different.

FIGURE 2

Multiple Comparison of Means - Tukey HSD, FWER=0.05							
group1	group2	meandiff	p-adj	lower	upper	reject	
Bachelors	HS-grad	-90114.1556	0.001	7541.1439 -132035.1958 -174815.0876	-48193.1153	True	

1.5 What is the interaction between the two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.

GRAPH 1

The above chart shows that the salary is significantly high for the individuals with Doctorate in all the occupations. The individuals with Exec-managerial and Sales as occupation with an education qualification as Bachelors have the same salary. It is clear that the individuals with education qualification as HS-grad have the least salary. Also, the occupation Exec managerial has the education qualification as only Bachelors or Doctorate.

1.6 Perform a two-way ANOVA based on the Education and Occupation (along with their interaction Education*Occupation) with the variable 'Salary'. State the null and alternative hypotheses and state your results. How will you interpret this result?

TABLE 5

H_{0}	Null Hypothesis
H_{a}	Alternative Hypothesis
μ	Hypothesized mean
α	Significance level

Salary with Educational qualification and Occupation

- H_0 : The mean salary of an individual is the same with different categories of educational qualification and occupation.
- H_a : The mean salary of an individual is different in at-least one category of educational qualification and occupation.

FIGURE 3

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	31.257677	1.981539e-08
C(Occupation)	3.0	5.519946e+09	1.839982e+09	1.120080	3.545825e-01
Residual	34.0	5.585261e+10	1.642724e+09	NaN	NaN

FIGURE 4

	df	sum_sq	mean_sq	F	PR(>F)
C(Occupation)	3.0	1.125878e+10	3.752928e+09	2.284576	9.648715e-02
C(Education)	2.0	9.695663e+10	4.847831e+10	29.510933	3.708479e-08
Residual	34.0	5.585261e+10	1.642724e+09	NaN	NaN

Figure 3 & Figure 4 is the ANOVA output for the combination of Education-Occupation and Occupation-Education.

The below table gives the two way ANOVA output for *Salary* with Educational qualification, Occupation and the interaction of both Educational qualification and Occupation -

TABLE 6

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	72.211958	5.466264e-12
C(Occupation)	3.0	5.519946e+09	1.839982e+09	2.587626	7.211580e-02
C(Education): C(Occupation)	6.0	3.634909e+10	6.058182e+09	8.519815	2.232500e-05
Residual	29.0	2.062102e+10	7.110697e+08	NaN	NaN

The p-value in both the treatments is less than the significance level ($\alpha = 0.05$).

Due to the inclusion of the interaction effect term, we can see a change in the p-value of the first two treatments as compared to the Two-Way ANOVA without the interaction effect terms. And we see that the p-value of the interaction effect term of 'Education' and 'Occupation' suggests that the Null Hypothesis is rejected in this case.

Therefore, the mean salary of an individual is different in at-least one category of educational qualification and occupation.

1.7 Explain the business implications of performing ANOVA for this particular case study.

The ANOVA tests clearly show that the occupation has no effect on the salary. That is the mean salary of an individual is the same with different categories of occupation. Whereas the education has definitely an effect on the salary offered. That is the mean salary of an individual is different in at-least one category of educational qualification.

Thus I can conclude that higher the educational qualification, higher the salary. This can also be visually represented with the below graph,

GRAPH 2

Problem 2

Problem statement-

The dataset Education - *Post 12th Standard.csv* contains information on various colleges. You are expected to do a Principal Component Analysis for this case study according to the instructions given. The data dictionary of the 'Education - Post 12th Standard.csv' can be found in the file: Data Dictionary.xlsx.

Data Description-

Names: Names of various university and colleges

Apps: Number of applications received

Accept: Number of applications accepted

Enroll: Number of new students enrolled

Top10perc: Percentage of new students from top 10% of Higher Secondary class

Top25perc: Percentage of new students from top 25% of Higher Secondary class

F.Undergrad: Number of full-time undergraduate students

P.Undergrad: Number of part-time undergraduate students

Outstate: Number of students for whom the particular college or university is Out-of-state tuition

Room.Board: Cost of Room and board

Books: Estimated book costs for a student

Personal: Estimated personal spending for a student

PhD: Percentage of faculties with Ph.D.'s

Terminal: Percentage of faculties with terminal degree

S.F.Ratio: Student/faculty ratio

perc.alumni: Percentage of alumni who donate

Expend: The Instructional expenditure per student

Grad.Rate: Graduation rate

Sample of the dataset-

FIGURE 5

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio
0	Abilene Christian University	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1
1	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2
2	Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9
3	Agnes Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7
4	Alaska Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9

FIGURE 6

perc.alumni	Expend	Grad.Rate
12	7041	60
16	10527	56
30	8735	54
37	19016	59
2	10922	15

There are 18 variables out of which 1 is categorical and 17 are numerical. The data given is for 777 colleges. There are no null values.

Types of variables in the data frame-

TABLE 7

Names	object	Categorical				
Apps	int64	Continuous				
Accept	int64	Continuous				
Enroll	int64	Continuous				
Top10perc	int64	Continuous				
Top25perc	int64	Continuous				
F.Undergrad	int64	Continuous				
P.Undergrad	int64	Continuous				
Outstate	int64	Continuous				
Room.Board	int64	Continuous				
Books	int64	Continuous				
Personal	int64	Continuous				
PhD	int64	Continuous				
Terminal	int64	Continuous				
S.F.Ratio	float64	Continuous				
perc.alumni	int64	Continuous				
Expend	int64	Continuous Continuous				
Grad.Rate	int64					

2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

There is only one categorical variable "Name" and each value is unique (777 values) in it. So univariate and bivariate analysis is done only in the numerical variables of the given data set.

Univariate analysis:

Univariate analysis is the simplest form of analyzing data. "Uni" means "one", so in other words your data has only one variable. It doesn't deal with causes or relationships (unlike regression) and it's major purpose is to describe; It takes data, summarizes that data and finds patterns in the data. [2]

The histograms are used for numerical variables to perform univariate analysis.

It is clear from the graph (Graph 3) that all the numerical variables are skewed.

Skewness:

Skewness is a number that indicates to what extent a variable is asymmetrically distributed. The below table represents the level of skewness and the respective skewness value. [3]

TABLE 8

Skewness level	Value					
Symmetrical or Not Skewed	0					
Less Skewed Data	± 0.5 to 1					
Highly Skewed Data	Greater than ±1					

When the skewness value is positive it is considered as right skewed data and when the skewness value is negative it is considered as left skewed data.

The table below shows the skewness value corresponding to each variable in the given data set.

FIGURE 7

	Skewness
Apps	3.716557
Accept	3.411126
Enroll	2.685268
Top10perc	1.410487
Top25perc	0.258839
F.Undergrad	2.605416
P.Undergrad	5.681358
Outstate	0.508294
Room.Board	0.476434
Books	3.478293
Personal	1.739131
PhD	-0.766686
Terminal	-0.814965
S.F.Ratio	0.686146
perc.alumni	0.605719
Expend	3.452640
Grad.Rate	-0.113558

Right skewed variables:

Apps, Accept, Enroll, Top10perc, Top25perc, F.Undergrad, P.Undergrad, Outstate, Room.Board, Books, Personal, S.F.Ratio, perc.alumni, Expend

<u>Left skewed variables:</u>

PhD, Terminal, Grad.Rate

GRAPH 3

Bivariate analysis:

Bivariate analysis is one of the simplest forms of quantitative (statistical) analysis. It involves the analysis of two variables (often denoted as X, Y), for the purpose of determining the empirical relationship between them. Bivariate analysis can be helpful in testing simple hypotheses of association. ^[4]

The pairplot is generally used for numerical variables to perform bivariate analysis.

A pairplot plots a pairwise relationship in a dataset. The pairplot function creates a grid of Axes such that each variable in data will be shared in the y-axis across a single row and in the x-axis across a single column. ^[5]

GRAPH 4

The below are the findings from the pairplot generated -

- The variable Apps is highly correlated with the variables Accept, Enroll and F.Undergrad.
- The variable Accept is highly correlated with the variables Enroll and F.Undergrad.
- The variable Enroll is highly correlated with the variable F.Undergrad.
- The variable Top10perc is highly correlated with the variable Top25perc.
- The variable PhD is highly correlated with the variable Terminal.

The heat map can also be used to check the association between two variables. All the boxes with a value higher than 0.8 are highly correlated. The heat map for all the numerical variable is below,

GRAPH 5

2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling.

Scaling:

Feature scaling is a method used to normalize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step. ^[6]

Scaling converts variables with different scales of measurements into a single scale. This is done only for the numerical variables.

The data is scaled using the formula $\frac{X-\mu}{\sigma}$.

μ: Mean

σ: Standard deviation

The process of scaling is necessary in the given data set as the variables of the data set are of different scales i.e. one variable has five digit numbers and other has only two digit numbers. For e.g. in our data set "Expend" is having values in thousands and "S.F.Ratio" in just two digits. Since the data in these variables are of different scales, it is tough to compare these variables. Therefore scaling is done in the given data set.

Before Scaling:

Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio
1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1
2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2
1428	1097	336	22	50	1038	99	11250	3750	400	1165	53	66	12.9
417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7
193	148	55	16	44	249	889	7580	4120	800	1500	76	72	11.9

FIGURE 9

perc.alumni	Expend	Grad.Rate
12	7041	60
16	10527	56
30	8735	54
37	19016	59
2	10922	15

After Scaling:

Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio
-0.346882	-0.321205	-0.063509	-0.258583	-0.191827	-0.168116	-0.209207	-0.746356	-0.964905	-0.602312	1.270045	-0.163028	-0.115729	1.013776
-0.210884	-0.038703	-0.288584	-0.655656	-1.353911	-0.209788	0.244307	0.457496	1.909208	1.215880	0.235515	-2.675646	-3.378176	-0.477704
-0.406866	-0.376318	-0.478121	-0.315307	-0.292878	-0.549565	-0.497090	0.201305	-0.554317	-0.905344	-0.259582	-1.204845	-0.931341	-0.300749
-0.668261	-0.681682	-0.692427	1.840231	1.677612	-0.658079	-0.520752	0.626633	0.996791	-0.602312	-0.688173	1.185206	1.175657	-1.615274
-0.726176	-0.764555	-0.780735	-0.655656	-0.596031	-0.711924	0.009005	-0.716508	-0.216723	1.518912	0.235515	0.204672	-0.523535	-0.553542

FIGURE 11

perc.alumni	Expend	Grad.Rate
-0.867574	-0.501910	-0.318252
-0.544572	0.166110	-0.551262
0.585935	-0.177290	-0.667767
1.151188	1.792851	-0.376504
-1.675079	0.241803	-2.939613

2.3 Comment on the comparison between the covariance and the correlation matrices from this data.[on scaled data]

Covariance matrix:

A covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector. [7]

```
Covariance Matrix
%s [[ 1.00128866  0.94466636  0.84791332  0.33927032  0.35209304  0.81554018
  0.3987775   0.05022367   0.16515151   0.13272942   0.17896117   0.39120081
  0.36996762 0.09575627 -0.09034216 0.2599265 0.14694372]
[ 0.94466636  1.00128866  0.91281145  0.19269493  0.24779465
  0.44183938 -0.02578774 0.09101577 0.11367165 0.20124767 0.35621633
  0.3380184    0.17645611   -0.16019604    0.12487773    0.06739929]
[ 0.84791332  0.91281145  1.00128866  0.18152715  0.2270373
                                                             0.96588274
  0.51372977 -0.1556777 -0.04028353 0.11285614 0.28129148 0.33189629
  0.30867133   0.23757707   -0.18102711   0.06425192   -0.02236983]
[ 0.33927032  0.19269493  0.18152715  1.00128866  0.89314445  0.1414708
  -0.10549205 0.5630552 0.37195909 0.1190116 -0.09343665 0.53251337
  0.49176793 -0.38537048 0.45607223 0.6617651
                                                 0.49562711]
[ 0.35209304  0.24779465  0.2270373  0.89314445  1.00128866  0.19970167
  -0.05364569 0.49002449 0.33191707 0.115676 -0.08091441 0.54656564
  0.52542506 -0.29500852 0.41840277 0.52812713 0.47789622]
[ 0.81554018  0.87534985  0.96588274  0.1414708  0.19970167
                                                            1.00128866
  0.57124738 -0.21602002 -0.06897917 0.11569867 0.31760831 0.3187472
  0.30040557 0.28006379 -0.22975792 0.01867565 -0.078874641
[ 0.3987775   0.44183938   0.51372977 -0.10549205 -0.05364569
                                                            0.57124738
  1.00128866 -0.25383901 -0.06140453 0.08130416 0.32029384
                                                            0.14930637
  -0.25383901 1.00128866 0.65509951 0.03890494 -0.29947232 0.38347594
  0.40850895 -0.55553625 0.56699214 0.6736456 0.57202613]
 [ 0.16515151  0.09101577 -0.04028353  0.37195909  0.33191707 -0.06897917
 -0.06140453 0.65509951 1.00128866 0.12812787 -0.19968518 0.32962651
0.3750222 -0.36309504 0.27271444 0.50238599 0.42548915]
[ 0.13272942 0.11367165 0.11285614 0.1190116 0.115676
                                                             0.11569867
  0.08130416 0.03890494 0.12812787 1.00128866 0.17952581 0.0269404
  0.10008351 -0.03197042 -0.04025955 0.11255393 0.00106226]
[ 0.17896117  0.20124767  0.28129148 -0.09343665 -0.08091441  0.31760831
  0.32029384 -0.29947232 -0.19968518 0.17952581 1.00128866 -0.01094989
  -0.03065256 0.13652054 -0.2863366 -0.09801804 -0.26969106]
[ 0.39120081  0.35621633  0.33189629  0.53251337  0.54656564  0.3187472
  0.14930637 0.38347594 0.32962651 0.0269404 -0.01094989 1.00128866
  0.85068186 -0.13069832 0.24932955 0.43331936 0.30543094]
[ 0.36996762  0.3380184  0.30867133  0.49176793  0.52542506
                                                            0.30040557
  0.14208644 0.40850895 0.3750222 0.10008351 -0.03065256
                                                            0.85068186
  1.00128866 -0.16031027 0.26747453 0.43936469 0.28990033]
[ 0.09575627  0.17645611  0.23757707  -0.38537048  -0.29500852  0.28006379
  0.23283016 -0.55553625 -0.36309504 -0.03197042 0.13652054 -0.13069832
 -0.16031027 1.00128866 -0.4034484 -0.5845844 -0.30710565]
[-0.09034216 -0.16019604 -0.18102711 0.45607223 0.41840277 -0.22975792
  -0.28115421 0.56699214 0.27271444 -0.04025955 -0.2863366
                                                             0.24932955
  0.26747453 -0.4034484 1.00128866 0.41825001 0.49153016]
[ 0.2599265   0.12487773   0.06425192   0.6617651   0.52812713   0.01867565
 -0.08367612  0.6736456  0.50238599  0.11255393  -0.09801804  0.43331936  0.43936469  -0.5845844  0.41825001  1.00128866  0.39084571]
[ 0.14694372  0.06739929 -0.02236983  0.49562711  0.47789622 -0.07887464
 -0.25733218 0.57202613 0.42548915 0.00106226 -0.26969106 0.30543094
  0.28990033 -0.30710565 0.49153016 0.39084571 1.00128866]]
```

Correlation matrix:

A correlation matrix is a table showing correlation coefficients between variables. Each cell in the table shows the correlation between two variables. A correlation matrix is used to summarize data, as an input into a more advanced analysis, and as a diagnostic for advanced analyses. [8]

TABLE 9

App Acce pt Enrol I Operc Top2 form F.Un dergr and address Outst of pt Roo made and state Pers onal photomatical photomatic	Expe nd Rate 0.259 0.146 592 5: 0.124 0.067: 717 1: 0.064 -0.02: 169 34 0.660 0.494: 913 8: 0.527 0.477: 447 8	m Expe i nd 0 0.259 5 592 5 0.124 717 8 0.064 4 169 5 0.660	alum ni -0.09 0226 -0.15 999	atio 0.095 633	nal 0.369 491	0.390		Book		Outet			Tana	Ton4	l	١.		
s pt I Operc 5perc ad ad ate ard s onal PhD nal atio ni Apps 0.943 0.846 0.338 0.351 0.814 0.398 0.050 0.164 0.132 0.178 0.390 0.369 0.095 -0.09 Apps 1 451 822 834 64 491 264 159 939 559 731 697 491 633 0226 Accep 0.94 0.911 0.192 0.247 0.874 0.441 -0.02 0.090 0.113 0.200 0.355 0.337 0.176 -0.15 t 3451 1 637 447 476 223 271 5755 899 525 989 758 583 229 999 0.84 0.911 0.181 0.226 0.964 0.513 -0.15 -0.04 0.112 0.280 0.331 0.308 <th>nd Rate 0.259 0.146 592 55 0.124 0.067 717 13 0.064 -0.02 169 34 0.660 0.494 913 88 0.527 0.477</th> <th>i nd 0 0.259 5 592 5 0.124 717 8 0.064 1 169 5 0.660</th> <th>ni -0.09 0226 -0.15 999 -0.18</th> <th>atio 0.095 633</th> <th>nal 0.369 491</th> <th>0.390</th> <th> </th> <th>Book</th> <th>m.Bo</th> <th>Outet</th> <th>dorar</th> <th> 40.000</th> <th>Tama</th> <th>Tom4</th> <th></th> <th></th> <th>A</th> <th></th>	nd Rate 0.259 0.146 592 55 0.124 0.067 717 13 0.064 -0.02 169 34 0.660 0.494 913 88 0.527 0.477	i nd 0 0.259 5 592 5 0.124 717 8 0.064 1 169 5 0.660	ni -0.09 0226 -0.15 999 -0.18	atio 0.095 633	nal 0.369 491	0.390		Book	m.Bo	Outet	dorar	40.000	Tama	Tom4			A	
Apps 0.943 0.846 0.338 0.351 0.814 0.398 0.050 0.164 0.132 0.178 0.390 0.369 0.095 -0.09 Accep 0.94 0.911 0.192 0.247 0.874 0.441 -0.02 0.090 0.113 0.200 0.355 0.337 0.176 -0.15 t 3451 1 637 447 476 223 271 5755 899 525 989 758 583 229 999 Benroll 6822 637 1 294 745 64 069 5477 0232 711 929 469 274 271 0794 Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 0.118 -0.09 </th <th>0.259 0.146° 592 550</th> <th>0 0.259 5 592 6 0.124 717 8 0.064 1 169 5 0.660</th> <th>-0.09 0226 -0.15 999 -0.18</th> <th>0.095 633</th> <th>0.369 491</th> <th>0.390</th> <th>onal</th> <th></th> <th></th> <th>Outst</th> <th>uergi</th> <th>aergr</th> <th>TOPZ</th> <th>TOP</th> <th>Enrol</th> <th>Acce</th> <th>App</th> <th></th>	0.259 0.146° 592 550	0 0.259 5 592 6 0.124 717 8 0.064 1 169 5 0.660	-0.09 0226 -0.15 999 -0.18	0.095 633	0.369 491	0.390	onal			Outst	uergi	aergr	TOPZ	TOP	Enrol	Acce	App	
Apps 1 451 822 834 64 491 264 159 939 559 731 697 491 633 0226 Accep 0.94 0.911 0.192 0.247 0.874 0.441 -0.02 0.090 0.113 0.200 0.355 0.337 0.176 -0.15 t 3451 1 637 447 476 223 271 5755 899 525 989 758 583 229 999 L 0.84 0.911 0.181 0.226 0.964 0.513 -0.15 -0.04 0.112 0.280 0.331 0.308 0.237 -0.18 Enroll 6822 637 1 294 745 64 069 5477 0232 711 929 469 274 271 0794 Top10 0.33 0.192 0.181 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491<	592 53 0.124 0.067 717 13 0.064 -0.02 169 34 0.660 0.494 913 88 0.527 0.477	5 592 5 0.124 717 8 0.064 1 169 5 0.660	0226 -0.15 999 -0.18	633	491			s	ard	ate	ad	ad	5perc	0perc	1	pt	s	
Accep 0.94 0.911 0.192 0.247 0.874 0.441 -0.02 0.090 0.113 0.200 0.355 0.337 0.176 -0.15 t 3451 1 637 447 476 223 271 5755 899 525 989 758 583 229 999 0.84 0.911 0.181 0.226 0.964 0.513 -0.15 -0.04 0.112 0.280 0.331 0.308 0.237 -0.18 Enroll 6822 637 1 294 745 64 069 5477 0232 711 929 469 274 271 0794 Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 48 858 3316	0.124 0.0673 717 1: 0.064 -0.023 169 34 0.660 0.4944 913 88 0.527 0.4773	0.124 717 0.064 169 0.660	-0.15 999 -0.18				0.178	0.132	0.164	0.050	0.398	0.814	0.351	0.338	0.846	0.943		
t 3451 1 637 447 476 223 271 5755 899 525 989 758 583 229 999 Lenroll 6822 637 1 294 745 64 069 5477 0232 711 929 469 274 271 0794 Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 48 858 3316 828 135 875 485 Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	717 1: 0.064 -0.02: 169 34 0.660 0.494: 913 8: 0.527 0.477:	717 3 0.064 4 169 5 0.660	999	0.176		697	731	559	939	159	264	491	64	834	822	451	1	Apps
0.84 0.911 0.181 0.226 0.964 0.513 -0.15 -0.04 0.112 0.280 0.331 0.308 0.237 -0.18 Enroll 6822 637 1 294 745 64 0.69 5477 0.232 711 929 469 274 271 0.794 Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 48 858 3316 828 135 875 485 Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	0.064 -0.022 169 34 0.660 0.4944 913 89 0.527 0.4772	0.064 169 0.660	-0.18		0.337	0.355	0.200	0.113	0.090	-0.02	0.441	0.874	0.247	0.192	0.911		0.94	Accep
Enroll 6822 637 1 294 745 64 069 5477 0232 711 929 469 274 271 0794 Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 48 858 3316 828 135 875 485 Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	169 34 0.660 0.494 913 89 0.527 0.477	169 0.660							899		271	223		447	637	1	3451	t
Top10 0.33 0.192 0.181 0.891 0.141 -0.10 0.562 0.371 0.118 -0.09 0.531 0.491 -0.384 0.455 perc 8834 447 294 1 995 289 5356 331 48 858 3316 828 135 875 485 Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	0.660 0.494 913 89 0.527 0.477	0.660	0794	0.237	0.308	0.331	0.280	0.112	-0.04	-0.15	0.513	0.964	0.226	0.181		0.911	0.84	
perc 8834 447 294 1 995 289 5356 331 48 858 3316 828 135 875 485 Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	913 89 0.527 0.4772			271	274		929	711	0232	5477	069	64	745	294	1	637	6822	
Top25 0.35 0.247 0.226 0.891 0.199 -0.05 0.489 0.331 0.115 -0.08 0.545 0.524 -0.294 0.417	0.527 0.477	913	0.455	-0.384	0.491	0.531	-0.09	0.118	0.371	0.562	-0.10	0.141	0.891		0.181	0.192	0.33	Top10
	1 1		485	875			3316			331	5356	289	995	1	294	447	8834	perc
perc 164 476 745 995 1 445 3577 394 49 527 081 862 749 629 864	447 8	0.527	0.417	-0.294	0.524	0.545	-0.08	0.115	0.331	0.489	-0.05	0.199		0.891	0.226	0.247	0.35	Top25
[447	864	629	749	862	081	527	49	394	3577	445	1	995	745	476	164	perc
F.Und																		F.Und
ergra 0.81 0.874 0.964 0.141 0.199 0.570 -0.21 -0.06 0.115 0.317 0.318 0.300 0.279 -0.22	0.018 -0.078	0.018	-0.22	0.279	0.300	0.318	0.317	0.115	-0.06	-0.21	0.570		0.199	0.141	0.964	0.874	0.81	ergra
d 4491 223 64 289 445 1 512 5742 889 55 2 337 019 703 9462	652 773	652	9462	703	019	337	2	55	889	5742	512	1	445	289	64	223	4491	d
P.Und P.Und																		P.Und
ergra 0.39 0.441 0.513 -0.10 -0.05 0.570 -0.25 -0.06 0.081 0.319 0.149 0.141 0.232 -0.28	-0.08 -0.25	-0.08	-0.28	0.232	0.141	0.149	0.319	0.081	-0.06	-0.25		0.570	-0.05	-0.10	0.513	0.441	0.39	ergra
d 8264 271 069 5356 3577 512 1 3512 1326 2 882 114 904 531 0792	3568 00	3568	0792	531	904	114	882	2	1326	3512	1	512	3577	5356	069	271	8264	d
Outst 0.05 -0.02 -0.15 0.562 0.489 -0.21 -0.25 0.654 0.038 -0.29 0.382 0.407 -0.554 0.566	0.672 0.5712	0.672	0.566	-0.554	0.407	0.382	-0.29	0.038	0.654		-0.25	-0.21	0.489	0.562	-0.15	-0.02	0.05	Outst
ate 0159 5755 5477 331 394 5742 3512 1 256 855 9087 982 983 821 262	779	779	262	821	983	982	9087	855	256	1	3512	5742	394	331	5477	5755	0159	ate
Room																		Room
.Boar 0.16 0.090 -0.04 0.371 0.331 -0.06 -0.06 0.654 0.127 -0.19 0.329 0.374 -0.362 0.272	0.501 0.4249	0.501	0.272	-0.362	0.374	0.329	-0.19	0.127		0.654	-0.06	-0.06	0.331	0.371	-0.04	0.090	0.16	.Boar
d 4939 899 0232 48 49 889 1326 256 1 963 9428 202 54 628 363	739 42	739	363	628	54	202	9428	963	1	256	1326	889	49	48	0232	899	4939	d
Book 0.13 0.113 0.112 0.118 0.115 0.115 0.081 0.038 0.127 0.179 0.026 0.099 -0.031 -0.04	0.112 0.001	0.112	-0.04	-0.031	0.099	0.026	0.179		0.127	0.038	0.081	0.115	0.115	0.118	0.112	0.113	0.13	Book
s 2559 525 711 858 527 55 2 855 963 1 295 906 955 929 0208	409 6	409	0208	929	955	906	295	1	963	855	2	55	527	858	711	525	2559	s
Perso 0.17 0.200 0.280 -0.09 -0.08 0.317 0.319 -0.29 -0.19 0.179 -0.01 -0.03 0.136 -0.28	-0.09 -0.269	-0.09	-0.28	0.136	-0.03	-0.01		0.179	-0.19	-0.29	0.319	0.317	-0.08	-0.09	0.280	0.200	0.17	Perso
nal 8731 989 929 3316 081 2 882 9087 9428 295 1 0936 0613 345 5968	7892 344	7892	5968	345	0613	0936	1	295	9428		882	2	081	3316	929	989	8731	nal
0.39 0.355 0.331 0.531 0.545 0.318 0.149 0.382 0.329 0.026 -0.01 0.849 -0.130 0.249	0.432 0.3050	0.432	0.249	-0.130	0.849		-0.01	0.026	0.329	0.382	0.149	0.318	0.545	0.531	0.331	0.355	0.39	
PhD 0697 758 469 828 862 337 114 982 202 906 0936 1 587 53 009	762 38	762	009	53	587	1	0936	906	202	982	114	337	862	828	469	758	0697	PhD
Termi 0.36 0.337 0.308 0.491 0.524 0.300 0.141 0.407 0.374 0.099 -0.03 0.849 -0.160 0.267	0.438 0.289	0.438	0.267	-0.160		0.849	-0.03	0.099	0.374	0.407	0.141	0.300	0.524	0.491	0.308	0.337	0.36	Termi
nal 9491 583 274 135 749 019 904 983 54 955 0613 587 1 104 13	799 2	799	13	104	1	587	0613	955	54	983	904	019	749	135	274	583	9491	nal
S.F.Ra 0.09 0.176 0.237 -0.38 -0.29 0.279 0.232 -0.55 -0.36 -0.03 0.136 -0.13 -0.16 -0.40	-0.58 -0.30	-0.58	-0.40		-0.16	-0.13	0.136	-0.03	-0.36	-0.55	0.232	0.279	-0.29	-0.38	0.237	0.176	0.09	S.F.Ra
tio 5633 229 271 4875 4629 703 531 4821 2628 1929 345 053 0104 1 2929	3832 7	3832	2929	1	0104	053	345	1929	2628	4821	531	703	4629	4875	271	229	5633	tio
perc.a -0.09 -0.15 -0.18 0.455 0.417 -0.22 -0.28 0.566 0.272 -0.04 -0.28 0.249 0.267 -0.402	0.417 0.490	0.417	:	-0.402	0.267	0.249	-0.28	-0.04	0.272	0.566	-0.28	-0.22	0.417	0.455	-0.18	-0.15	-0.09	perc.a
	712 98	712	1	929	13	009	5968	0208	363	262	0792	9462	864	485	0794	999	0226	lumni
Expen 0.25 0.124 0.064 0.660 0.527 0.018 -0.08 0.672 0.501 0.112 -0.09 0.432 0.438 -0.583 0.417	0.390	1	0.417	-0.583	0.438	0.432	-0.09	0.112	0.501	0.672	-0.08	0.018	0.527	0.660	0.064	0.124	0.25	Expen
d 9592 717 169 913 447 652 3568 779 739 409 7892 762 799 832 712	1 4	1	712	832	799	762	7892	409	739	779	3568	652	447	913	169	717	9592	d
Grad. 0.14 0.067 -0.02 0.494 0.477 -0.07 -0.25 0.571 0.424 0.001 -0.26 0.305 0.289 -0.306 0.490	0.390	0.390	0.490	-0.306	0.289	0.305	-0.26	0.001	0.424	0.571	-0.25	-0.07	0.477	0.494	-0.02	0.067	0.14	Grad.
Rate 6755 313 2341 989 281 8773 7001 29 942 061 9344 038 527 71 898	343	343	898	71	527	038	9344	061	942	29	7001	8773	281	989	2341	313	6755	Rate

The correlation matrix of the standard scaled dataset is almost the same as the covariance matrix of the same standard scaled dataset.

2.4 Check the dataset for outliers before and after scaling. What insight do you derive here? [Please do not treat Outliers unless specifically asked to do so]

Outliers can be checked using boxplots. The given dataset has outliers in it.

Before scaling -

GRAPH 6

After scaling -

GRAPH 7

It is clear from the graphs that outliers are still present in the data even after scaling. Scaling only converts variables with different scales of measurements into a single scale. It will not necessarily remove the outliers present in the data.

2.5 Extract the eigenvalues and eigenvectors.[print both]

Eigenvalues:

```
Eigen Values
%s [5.45052162 4.48360686 1.17466761 1.00820573 0.93423123 0.84849117
0.6057878 0.58787222 0.53061262 0.4043029 0.02302787 0.03672545
0.31344588 0.08802464 0.1439785 0.16779415 0.22061096]
```

Eigenvectors:

```
Eigen Vectors
%s [[-2.48765602e-01 3.31598227e-01 6.30921033e-02 -2.81310530e-01
  5.74140964e-03 1.62374420e-02 4.24863486e-02 1.03090398e-01
  9.02270802e-02 -5.25098025e-02 3.58970400e-01 -4.59139498e-01
  4.30462074e-02 -1.33405806e-01 8.06328039e-02 -5.95830975e-01
  2.40709086e-02]
[-2.07601502e-01 3.72116750e-01 1.01249056e-01 -2.67817346e-01
  5.57860920e-02 -7.53468452e-03 1.29497196e-02 5.62709623e-02
  1.77864814e-01 -4.11400844e-02 -5.43427250e-01 5.18568789e-01
 -5.84055850e-02 1.45497511e-01 3.34674281e-02 -2.92642398e-01
 -1.45102446e-01]
[-1.76303592e-01 4.03724252e-01 8.29855709e-02 -1.61826771e-01
 -5.56936353e-02 4.25579803e-02 2.76928937e-02 -5.86623552e-02
  1.28560713e-01 -3.44879147e-02 6.09651110e-01 4.04318439e-01
 -6.93988831e-02 -2.95896092e-02 -8.56967180e-02 4.44638207e-01
  1.11431545e-021
[-3.54273947e-01 -8.24118211e-02 -3.50555339e-02 5.15472524e-02
 -3.95434345e-01 5.26927980e-02 1.61332069e-01 1.22678028e-01
 -3.41099863e-01 -6.40257785e-02 -1.44986329e-01 1.48738723e-01
 -8.10481404e-03 -6.97722522e-01 -1.07828189e-01 -1.02303616e-03
  3.85543001e-02]
[-3.44001279e-01 -4.47786551e-02 2.41479376e-02 1.09766541e-01
 -4.26533594e-01 -3.30915896e-02 1.18485556e-01 1.02491967e-01
 -4.03711989e-01 -1.45492289e-02 8.03478445e-02 -5.18683400e-02
 -2.73128469e-01 6.17274818e-01 1.51742110e-01 -2.18838802e-02
 -8.93515563e-02]
[-1.54640962e-01 4.17673774e-01 6.13929764e-02 -1.00412335e-01
 -4.34543659e-02 4.34542349e-02 2.50763629e-02 -7.88896442e-02
  5.94419181e-02 -2.08471834e-02 -4.14705279e-01 -5.60363054e-01
 -8.11578181e-02 -9.91640992e-03 -5.63728817e-02 5.23622267e-01
  5.61767721e-02]
[-2.64425045e-02 3.15087830e-01 -1.39681716e-01 1.58558487e-01
  3.02385408e-01 1.91198583e-01 -6.10423460e-02 -5.70783816e-01
 -5.60672902e-01 2.23105808e-01 9.01788964e-03 5.27313042e-02
  1.00693324e-01 -2.09515982e-02 1.92857500e-02 -1.25997650e-01
 -6.35360730e-02]
```

```
[-2.94736419e-01 -2.49643522e-01 -4.65988731e-02 -1.31291364e-01
 2.22532003e-01 3.00003910e-02 -1.08528966e-01 -9.84599754e-03
 4.57332880e-03 -1.86675363e-01 5.08995918e-02 -1.01594830e-01
 1.43220673e-01 -3.83544794e-02 -3.40115407e-02 1.41856014e-01
-8.23443779e-01]
[-2.49030449e-01 -1.37808883e-01 -1.48967389e-01 -1.84995991e-01
 5.60919470e-01 -1.62755446e-01 -2.09744235e-01 2.21453442e-01
-2.75022548e-01 -2.98324237e-01 1.14639620e-03 2.59293381e-02
-3.59321731e-01 -3.40197083e-03 -5.84289756e-02 6.97485854e-02
 3.54559731e-01]
[-6.47575181e-02 5.63418434e-02 -6.77411649e-01 -8.70892205e-02
 -1.27288825e-01 -6.41054950e-01 1.49692034e-01 -2.13293009e-01
 1.33663353e-01 8.20292186e-02 7.72631963e-04 -2.88282896e-03
 3.19400370e-02 9.43887925e-03 -6.68494643e-02 -1.14379958e-02
-2.81593679e-02]
[ 4.25285386e-02 2.19929218e-01 -4.99721120e-01 2.30710568e-01
-2.22311021e-01 3.31398003e-01 -6.33790064e-01 2.32660840e-01
 9.44688900e-02 -1.36027616e-01 -1.11433396e-03 1.28904022e-02
-1.85784733e-02 3.09001353e-03 2.75286207e-02 -3.94547417e-02
-3.92640266e-02]
[-3.18312875e-01 5.83113174e-02 1.27028371e-01 5.34724832e-01
 1.40166326e-01 -9.12555212e-02 1.09641298e-03 7.70400002e-02
 1.85181525e-01 1.23452200e-01 1.38133366e-02 -2.98075465e-02
 4.03723253e-02 1.12055599e-01 -6.91126145e-01 -1.27696382e-01
 2.32224316e-02]
[-3.17056016e-01 4.64294477e-02 6.60375454e-02 5.19443019e-01
 2.04719730e-01 -1.54927646e-01 2.84770105e-02 1.21613297e-02
 2.54938198e-01 8.85784627e-02 6.20932749e-03 2.70759809e-02
-5.89734026e-02 -1.58909651e-01 6.71008607e-01 5.83134662e-02
 1.64850420e-02]
[ 1.76957895e-01 2.46665277e-01 2.89848401e-01 1.61189487e-01
-7.93882496e-02 -4.87045875e-01 -2.19259358e-01 8.36048735e-02
-2.74544380e-01 -4.72045249e-01 -2.22215182e-03 2.12476294e-02
 4.45000727e-01 2.08991284e-02 4.13740967e-02 1.77152700e-02
-1.10262122e-02]
-2.05082369e-01 -2.46595274e-01 1.46989274e-01 -1.73142230e-02
-2.16297411e-01 4.73400144e-02 -2.43321156e-01 -6.78523654e-01
 2.55334907e-01 -4.22999706e-01 -1.91869743e-02 -3.33406243e-03
-1.30727978e-01 8.41789410e-03 -2.71542091e-02 -1.04088088e-01
 1.82660654e-011
```

```
[-3.18908750e-01 -1.31689865e-01 -2.26743985e-01 -7.92734946e-02 7.59581203e-02 2.98118619e-01 2.26584481e-01 5.41593771e-02 4.91388809e-02 -1.32286331e-01 -3.53098218e-02 4.38803230e-02 6.92088870e-01 2.27742017e-01 7.31225166e-02 9.37464497e-02 3.25982295e-01]
[-2.52315654e-01 -1.69240532e-01 2.08064649e-01 -2.69129066e-01 -1.09267913e-01 -2.16163313e-01 -5.59943937e-01 5.33553891e-03 -4.19043052e-02 5.90271067e-01 -1.30710024e-02 5.00844705e-03 2.19839000e-01 3.39433604e-03 3.64767385e-02 6.91969778e-02 1.22106697e-01]]
```

2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features

In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA). [9]

The below is the scree plot for the given data set-

GRAPH 8

There were originally 17 dimensions. After performing PCA, there are now 8 PCA components.

The below is the sample of the data after performing PCA-

FIGURE 15

pc_expenditure	pc_students	pc_books	pc_faculty	pc_top_schools	pc_s.f.ratio	pc_grad.rate	pc_alumni
-1.592855	0.767334	-0.101074	-0.921749	-0.743975	-0.298306	0.638443	-0.879388
-2.192402	-0.578830	2.278798	3.588918	1.059997	-0.177137	0.238753	0.046925
-1.430964	-1.092819	-0.438093	0.677241	-0.369613	-0.960592	-0.248276	0.308740
2.855557	-2.630612	0.141722	-1.295488	-0.183837	-1.059508	-1.249358	-0.147694
-2.212008	0.021631	2.387030	-1.114538	0.684451	0.004918	-2.159220	-0.624413
-0.571685	-1.496325	0.024354	0.066944	-0.376261	-0.668344	-1.609835	-0.529391
0.241952	-1.506368	0.234194	-1.142024	1.546983	-0.009995	0.590933	-0.329858
1.750474	-1.461412	-1.026589	-0.981184	0.217044	0.222924	0.038169	0.173929
0.769127	-1.984433	-1.426052	-0.071424	0.586380	-0.655179	-0.213314	-0.275114
-2.770721	-0.844611	1.627987	1.705091	-1.019826	-0.794401	-0.317891	-0.160687

2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

An equation that can be written in the form ax + by = c is called a linear equation. This is the standard form of a linear equation in two variables x and y. [10]

The below is general form of a first PC linear equation-

$$PC_1 = W_1(Y_1) + W_2(Y_2) + ... + W_{17}(Y_{17})$$

PC₁: First Principal Component

 W_i : PCA component loadings (i = 1, 2, ..., 17)

 Y_i : Features (i = 1, 2, ..., 17)

As there are 17 features in the given data set, the equation extends upto 17.

The below is first PC linear equation for the given data set (two places of decimals)-

$$PC_1 = 0.24 \, (Apps) + 0.20 \, (Accept) + 0.17 \, (Enroll) + 0.35 \, (Top10perc) + 0.34 \, (Top10perc) + 0.15 \, (F. Undergrad) + 0.02 \, (P. Undergrad) + 0.29 \, (Outstate) + 0.24 \, (Room. Bood + 0.06 \, (Books) - 0.04 \, (Personal) + 0.31 \, (PhD) + 0.31 \, (Terminal) - 0.17 \, (S. F. Racket) + 0.20 \, (perc. alumni) + 0.31 \, (Expend) + 0.25 \, (Grad. Rate)$$

2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

The cumulative variance gives the percentage of variance accounted for by the first n components. For example, the cumulative percentage for the second component is the sum of the percentage of variance for the first and second components. [11]

The below table gives the cumulative variance-

TABLE 10

Component	Cumulative Variance (%)		
1	32.0206282		
2	58.36084263		
3	65.26175919		
4	71.18474841		
5	76.67315352		
6	81.65785448		
7	85.21672597		
8	88.67034731		
9	91.78758099		
10	94.16277251		
11	96.00419883		
12	97.30024023		
13	98.28599436		
14	99.13183669		
15	99.64896227		

16	99.86471628			
17	100			

The graph below explains how much variance is covered within each component. This will help us reduce the number of dimensions while retaining the original features.

GRAPH 9

There are 17 components in the given data set. After the 8th component, the variance reduces to a very small number. Therefore we can consider the first 8 components for dimension reduction. Thus, cumulative variance helps to decide on the optimum number of principal components.

Eigenvectors are a special set of vectors associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic vectors, proper vectors, or latent vectors. [12]

Eigenvectors represent *direction* or *magnitude*. An individual Eigenvector is a particular "direction" in the scatterplot of data.

2.9 Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

Principal Component Analysis, or PCA, is a dimensionality-reduction method that is often used to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still contains most of the information in the large set.

The below correlation matrix shows the correlations between the PCs and the constituent variables,

GRAPH 10

The image below is the sample data of the reduced data set-

FIGURE 16

Names	pc_expenditure	pc_students	pc_books	pc_faculty	pc_top_schools	pc_s.f.ratio	pc_grad.rate	pc_alumni
Abilene Christian University	-1.592855	0.767334	-0.101074	-0.921749	-0.743975	-0.298306	0.638443	-0.879388
Adelphi University	-2.192402	-0.578830	2.278798	3.588918	1.059997	-0.177137	0.236753	0.046925
Adrian College	-1.430964	-1.092819	-0.438093	0.677241	-0.369613	-0.960592	-0.248276	0.308740
Agnes Scott College	2.855557	-2.630612	0.141722	-1.295486	-0.183837	-1.059508	-1.249356	-0.147694
Alaska Pacific University	-2.212008	0.021631	2.387030	-1.114538	0.684451	0.004918	-2.159220	-0.624413
Albertson College	-0.571665	-1.496325	0.024354	0.066944	-0.376261	-0.668344	-1.609835	-0.529391
Albertus Magnus College	0.241952	-1.506368	0.234194	-1.142024	1.546983	-0.009995	0.590933	-0.329858
Albion College	1.750474	-1.481412	-1.026589	-0.981184	0.217044	0.222924	0.038169	0.173929
Albright College	0.769127	-1.984433	-1.426052	-0.071424	0.586380	-0.655179	-0.213314	-0.275114
Alderson-Broaddus College	-2.770721	-0.844611	1.627987	1.705091	-1.019826	-0.794401	-0.317891	-0.160687

With the dimensions reduced, it will be easy for any algorithm to process the data. We can find the college with the most graduation rate and the one with the least. This can also be used to improvise the donations based on the expense.

There were 17 different variables in the original data set. The application of PCA has reduced the dimensions to 8 which is able to explain 88% of variance in the data.

Unsupervised learning like clustering can further be applied on the data to segment the colleges based on the components created and further analyzed.

References

Websites-

- [1] https://www.statisticshowto.com/tukey-test-honest-significant-difference/
- [2] https://www.statisticshowto.com/univariate/
- [3] https://www.spss-tutorials.com/skewness/
- [4] https://en.wikipedia.org/wiki/Bivariate analysis
- [5] https://pythonbasics.org/seaborn-pairplot/
- [6] https://en.wikipedia.org/wiki/Feature_scaling
- [7] https://en.wikipedia.org/wiki/Covariance matrix
- [8] https://www.displayr.com/what-is-a-correlation-matrix/
- [9] https://en.wikipedia.org/wiki/Scree_plot
- [10] https://www.cuemath.com/algebra/linear-equations/
- [11] https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=reduction-total-variance-explained
- [12] https://mathworld.wolfram.com/Eigenvector.html

End of Project