CHUYÊN ĐỀ 1: LƯỢNG GIÁC

I. KIẾN THỰC TỔNG QUÁT

1. Công thức cơ bản

$$\bullet \quad \sin^2 x + \cos^2 x = 1$$

•
$$\tan x \cdot \cot x = 1$$

$$\bullet \quad \tan x = \frac{\sin x}{\cos x}$$

$$\bullet \quad \cot x = \frac{\cos x}{\sin x}$$

•
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 • $1 + \cot^2 x = \frac{1}{\sin^2 x}$

$$\bullet 1 + \cot^2 x = \frac{1}{\sin^2 x}$$

2. Công thức cung nhân đôi – Công thức hạ bậc – Công thức cung nhân ba

•
$$\sin 2x = 2\sin x \cdot \cos x$$

•
$$\cos 2x = \begin{bmatrix} \cos^2 x - \sin^2 x = \cos^4 x - \sin^4 x \\ 2\cos^2 x - 1 = 1 - 2\sin^2 x \end{bmatrix}$$

$$\bullet \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$cos^2 x = \frac{1 + cos2x}{2}$$

$$\bullet \quad \sin 3x = 3\sin x - 4\sin^3 x$$

$$\bullet \quad \cos 3x = 4\cos^3 x - 3\cos x$$

3. Công thức cộng

•
$$\sin(a \pm b) = \sin a \cdot \cos b \pm \cos a \cdot \sin b$$

•
$$cos(a \pm b) = cos a. cos b \mp sin a. sin b$$

•
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

•
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

•
$$\tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x}$$

$$\bullet \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$$

4. Công thức biến đổi tổng thành tích

•
$$\cos a + \cos b = 2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}$$

•
$$\cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2}$$

•
$$\sin a + \sin b = 2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}$$

•
$$\sin a - \sin b = 2\cos\frac{a+b}{2} \cdot \sin\frac{a-b}{2}$$

•
$$\tan a + \tan b = \frac{\sin(a+b)}{\cos a \cdot \cos b}$$

•
$$\tan a - \tan b = \frac{\sin(a-b)}{\cos a \cdot \cos b}$$

5. Công thức biến đối tích thành tổng

•
$$\cos a \cdot \cos b = \frac{1}{2} \left[\cos \left(a - b \right) + \cos \left(a + b \right) \right]$$

•
$$\sin a \cdot \cos b = \frac{1}{2} \left[\sin (a-b) + \sin (a+b) \right]$$

•
$$\sin a \cdot \sin b = \frac{1}{2} \left[\cos \left(a - b \right) - \cos \left(a + b \right) \right]$$

6. Một số công thức thông dụng khác

•
$$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right)$$
 • $\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$

•
$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$$

•
$$\cos^4 x + \sin^4 x = 1 - \frac{1}{2}\sin^2 2x = \frac{3 + 1\cos 4x}{4}$$

•
$$\cos^4 x + \sin^4 x = 1 - \frac{1}{2}\sin^2 2x = \frac{3 + 1\cos 4x}{4}$$
 • $\cos^6 x + \sin^6 x = 1 - \frac{3}{4}\sin^2 2x = \frac{5 + 3\cos 4x}{8}$

II. PHƯƠNG TRÌNH LƯỢNG GIÁC ĐƯA VỀ DẠNG TÍCH

A. KIẾN THỨC CƠ BẢN

1. Dạng tổng quát

$$m.\sin 2x + n.\cos 2x + p.\sin x + q.\cos x + r = 0$$
 (*)

2. Phương pháp giải

- Biến đổi: $\sin 2x = 2 \sin x \cos x$
- Biến đổi $\cos 2x$ có 3 hướng: $\cos 2x = \begin{bmatrix} 2\cos^2 x 1 & (1) \\ 1 2\sin^2 x & (2) \\ \cos^2 x \sin^2 x & (3) \end{bmatrix}$
- Nếu Theo (1) thì (*) \Leftrightarrow sinx. $(2 \text{ m.cos} x + p) + \underbrace{(2n \cdot \cos^2 x + q \cdot \cos x + r n)}_{(**)} = 0$
- Nếu theo (2) thì (*) \Leftrightarrow $\cos x \cdot (2 \cdot \sin x + q) + \underbrace{(-2n \cdot \sin^2 x + p \cdot \sin x + r + n)}_{(***)} = 0$.

Ta sẽ phân tích (**) và (***) thành nhân tử dựa vào tam thức bậc hai $f(t) = at^2 + bt + c = a(t - t_1)(t - t_2)$. Với t_1, t_2 lần lượt là hai nghiệm của phương trình f(t) = 0. Để xác định lượng nhân tử chung đưa về dạng tích

• Nếu khuyết $\sin 2x$ thì ta phân tích $\cos 2x$ theo (3)

B. VÍ DỤ MINH HỌA

Ví dụ 1: Giải phương trình : $\sin 2x + \cos 2x + \sin x + \cos x + 1 = 0$

Ví dụ 2: Giải phương trình: $\cos 2x + 3\sin 2x + 5\sin x - 3\cos x = 3$

Ví dụ 3: Giải phương trình : $\cos 2x + 3\cos x - 3\sin x = 0$

Ví dụ 4: Giải phương trình: $\cos 2x + 2\cos x + 4\sin x - 3 = 0$

Ví dụ 5: Giải phương trình: $\sin 2x - \cos 2x + 3\sin x - \cos x - 1 = 0$

Ví dụ 6: Giải phương trình $8(\sin^6 x + \cos^6 x) - 3\sqrt{3}\cos 2x = 11 - 3\sqrt{3}\sin 4x - 9\sin 2x$

Ví dụ 7: Tìm nghiệm $x \in (0; \pi)$ của phương trình: $5\cos x + \sin x - 3 = \sqrt{2}\sin(2x + \frac{\pi}{4})$

C. BÀI TẬP

Bài 1: Giải phương trình: $9\sin x + 6\cos x - 3\sin 2x + \cos 2x = 8$

Bài 2: Giải phương trình: $\sin 2x + 2\cos 2x = 1 + \sin x - 4\cos x$

Bài 3: Giải phương trình: $\cos 2x + 6\cos x + 8\sin x - 7 = 0$

Bài 4: Giải phương trình : $\sqrt{2}\sin(2x + \frac{\pi}{4}) = \sin x + 3\cos x - 2$

Bài 5: Giải phương trình $2\sqrt{2}\sin 2x - \cos 2x - 7\sin x - 2\sqrt{2}\cos x + 4 = 0$

Bài 6: Giải phương trình : $\frac{\sqrt{3}\sin 2x - \cos 2x - 5\sin x + (2 - \sqrt{3})\cos x + 3 + \sqrt{3}}{2\cos x + \sqrt{3}} = 1$

III. PHƯƠNG TRÌNH LƯỢNG GIÁC CÓ ĐIỀU KIỆN

A. KIẾN THỨC CƠ BẢN

1. Dạng tổng quát

$$\frac{f(x)}{g(x)} = 0$$
 (trong đó $f(x)$, $g(x)$ là các hàm số lượng giác theo cung x). (*)

2. Phương pháp giải tổng quát

- Bước 1: Đặt điều kiện f(x) có nghĩa và $g(x) \neq 0$.
- Bước 2: Giải phương trình f(x) = 0.
- Bước 3: Đối chiếu điều kiện với $g(x) \neq 0$.
- Bước 4: Kết luận tập nghiệm của phương trình.

3. Kỹ thuật loại nghiệm của phương trình trình lượng giác có điều kiện

- Biểu diễn điều kiện và nghiệm thông qua cùng một hàm số lượng giác.
- Sử dụng phép biến đổi lượng giác.
- Thử trưc tiếp
- Biểu diễn trên đường tròn lượng giác.
- Kỹ thuật phối hợp.

B. VÍ DỤ MINH HỌA

Ví dụ 1: Cho phương trình
$$\frac{(\sin x - \cos x)(\sin 2x - 3) - \sin 2x - \cos 2x + 1}{2\sin x - \sqrt{2}} = 0$$
. Hỏi phương trình có bao nhiều nghiệm thuộc khoảng $(-2018\pi; 2019\pi)$?

Ví dụ 2: Giải phương trình
$$\frac{1}{\cos x} - \frac{1}{\sqrt{3} \sin x} = 2 \left(\cot 2x - \frac{1}{\sqrt{3}} \right)$$

Ví dụ 3: Giải phương trình
$$\frac{4\sin^3 x - 2\cos x(\sin x - 1) - 4\sin x + 1}{1 + \cos 4x} = 0.$$

Ví dụ 4: Giải phương trình
$$\frac{2\sin^2\left(\frac{3x}{2} - \frac{\pi}{4}\right) + \sqrt{3}\cos 3x}{1 - 2\sin x} = 1.$$

Ví dụ 5: Giải phương trình
$$\cos 2x - \tan^2 x = \frac{\cos^2 x - \cos^3 x - 1}{\cos^2 x}$$
.

C. BÀI TẬP

Bài 1: Giải phương trình
$$\tan^4 x + 1 = \frac{\left(2 - \sin^2 2x\right)\sin 3x}{\cos^4 x}$$
.

Bài 2: Giải phương trình
$$\cos 3x \tan 5x = \sin 7x$$
.

Bài 3: Giải phương trình
$$\frac{2\sin^4\left(x+\frac{\pi}{4}\right)-\cos\left(x+\frac{3\pi}{4}\right)\sin\left(3x-\frac{\pi}{4}\right)-3}{2\cos x-\sqrt{2}}=0$$

Bài 4: Giải phương trình
$$\frac{\left(1+\sin x + \cos 2x\right)\sin\left(x+\frac{\pi}{4}\right)}{1+\tan x} = \frac{1}{\sqrt{2}}\cos x.$$

Bài 5: Giải phương trình
$$\frac{\sin 2x - \sin x + 2\cos x - 1}{\tan x + \sqrt{3}} = 0.$$

IV. PHƯƠNG TRÌNH LƯỢNG GIÁC ĐẶT ẨN PHỤ

A. KIÉN THỨC CƠ BẨN

1. Phương trình đối xứng: $a(\sin x \pm \cos x) + b \sin x \cos x = c$

Phương pháp chung:

Đặt
$$t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right), |t| \le \sqrt{2} \implies \sin x \cos x = \frac{t^2 - 1}{2}.$$

Đặt
$$t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right), |t| \le \sqrt{2} \implies \sin x \cos x = \frac{1 - t^2}{2}.$$

Thay vào phương trình ta được phương trình theo biến t.

2. Phương trình đối xứng: $a(\tan^2 x + \cot^2 x) + b(\tan x \pm \cot x) + c = 0$

Phương pháp chung:

Điều kiện:
$$\begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \sin 2x \neq 0 \Leftrightarrow \mathbf{x} \neq \frac{k\pi}{2}, \ k \in \mathbb{Z}$$

Đặt
$$\tan x + \cot x = t$$
, $|t| \ge 2 \Rightarrow \tan^2 x + \cot^2 x = t^2 - 2$.

Đặt
$$\tan x - \cot x = t \Rightarrow \tan^2 x + \cot^2 x = t^2 + 2$$
.

Ta được phương trình theo t như sau: $at^2 + bt + c \mp 2a = 0$. (2)

Giải phương trình theo t và chọn nghiệm t_0 thỏa điều kiện (nếu có).

Với $t = t_0 \Leftrightarrow \tan x \pm \cot x = t_0$. Ta có thể lựa chọn một trong hai hướng biến đổi sau:

Hướng 1: Ta có tan
$$x \pm \frac{1}{\tan x} = t_0 \Leftrightarrow \tan^2 x \pm -t_0 \tan x + 1 = 0$$

Hướng 2: Ta có

$$\frac{\sin x}{\cos x} \pm \frac{\cos x}{\sin x} = t_0 \iff \frac{\sin^2 x \pm \cos^2 x}{\sin x \cos x} = t_0 \iff \begin{bmatrix} \sin 2x = \frac{1}{2t_0} \\ \cot 2x = -\frac{t_0}{2} \end{bmatrix}.$$

3. Mọi phương trình lượng giác đều có thể thực hiện việc đại số hoá thông qua hàm \tan , cụ thể nếu đặt $t = \tan x$ thì:

$$\sin 2x = \frac{2t}{1+t^2}$$
, $\cos 2x = \frac{1-t^2}{1+t^2}$, $\tan 2x = \frac{2t}{1-t^2}$

4. Phương pháp đặt ẩn phụ không hoàn toàn

B. VÍ DỤ MINH HỌA

Ví dụ 1: Giải phương trình $1 + \tan x = 2\sqrt{2} \sin x$.

Ví dụ 2: Giải phương trình $\sin x + \sin^2 x + \sin^3 x + \sin^4 x = \cos x + \cos^2 x + \cos^3 x + \cos^4 x$

Ví dụ 3: Giải phương trình $\tan^2 x + \cot^2 x - \frac{1}{2} (\tan x + \cot x) = 0$

Ví dụ 4: Giải phương trình $(\sin x + 3)\sin^4 \frac{x}{2} - (\sin x + 3)\sin^2 \frac{x}{2} + 1 = 0$.

Ví dụ 5: Giải phương trình $4 \tan^2 x - \frac{4}{\cos x} + 5 = 0$

C. BÀI TẬP

Bài 1: Giải phương trình $2 \sin x + \cot x = 2 \sin 2x + 1$

Bài 2: Giải phương trình: $2(\tan x - \sin x) + 3(\cot x - \cos x) + 5 = 0$

Bài 3: Giải phương trình $(\tan x + 7)\tan x + (\cot x + 7)\cot x + 14 = 0$

Bài 4: Giải phương trình $\sin 4x = \tan x$

V. PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA THAM SỐ

A. KIẾN THỨC CƠ BẨN

Các phương pháp giải phương trình lượng giác chứa tham số

- Phương pháp biến đổi.
- Phương pháp đặt ẩn phụ.
- Phương pháp đánh giá.
- Phương pháp điều kiện cần và đủ.

B. VÍ DỤ MINH HỌA

1. Dạng 1: Điều kiện cho phương trình lượng giác trên $\,\mathbb{R}\,.\,$

Ví dụ 1: Tìm tất cả giá trị của tham số m để phương trình: $m = \frac{3\sin x - \cos x - 4}{2\sin x + \cos x - 3}$ có nghiệm.

Ví dụ 2: Tìm a để phương trình $4\sin\left(x+\frac{\pi}{3}\right)\cos\left(x-\frac{\pi}{6}\right) = a^2 + \sqrt{3}\sin 2x - \cos 2x$ có nghiệm.

Ví dụ 3: Tìm tất cả giá trị của tham số m để phương trình: $\sqrt{1+\sin x} + \sqrt{1+\cos x} = m$ có nghiệm.

Ví dụ 4: Cho phương trình $\sqrt[3]{(\sin x + m)^2} + \sqrt[3]{\sin^2 x - m^2} = 2\sqrt[3]{(\sin x - m)^2}$. Gọi S = [a;b] là tập hợp tất cả các giá trị thực của tham số m để phương trình trên có nghiệm thực.

Tính giá trị của $P = a^2 + b^2$.

2. Dạng 2: Điều kiện cho phương trình lượng giác trên $K \subset \mathbb{R}$.

- **Ví dụ 5:** Tìm tất cả các giá trị của tham số m để phương trình $2(m+1-\sin^2 x)-(4m+1)\cos x=0$ có nghiệm thuộc khoảng $\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$.
- **Ví dụ 6:** Tìm số tất cả các giá trị nguyên của tham số m để phương trình: $2\sin^3 2x + m\sin 2x + 2m + 4 = 4\cos^2 2x \text{ có nghiệm thuộc } \left(0; \frac{\pi}{6}\right).$
- **Ví dụ 7:** Tìm tất cả các giá trị của m để phương trình: $(1+\cos x)(\cos 4x m\cos x) = m\sin^2 x$ có đúng 3 nghiệm phân biệt thuộc $\left[0; \frac{2\pi}{3}\right]$.

3. Dạng 3: Tính chất nghiệm cho phương trình lượng giác.

Ví dụ 8: Tìm m để hai phương trình sau tương đương: $2\cos x\cos 2x = 1 + \cos 2x + \cos 3x$ và $4\cos^2 x - \cos 3x = m\cos x + (4-m)(1+\cos 2x)$

C. BÀI TẬP

- **Bài 1:** Tìm các giá trị của tham số m để phương trình $\sin 2x + \sqrt{2} \sin \left(x + \frac{\pi}{4}\right) 2 = m$ có đúng một nghiệm thực thuộc khoảng $\left(0; \frac{3\pi}{4}\right)$?
- **Bài 2:** Tìm m để phương trình $2\sin^2 x (2m+1)\sin x + 2m 1 = 0$ có nghiệm thuộc khoảng $\left(-\frac{\pi}{2};0\right)$.
- **Bài 3:** Số các giá trị nguyên của m để phương trình $\cos^2 x + \sqrt{\cos x + m} = m$ có nghiệm là:
- **Bài 4:** Tìm tất cả các giá trị của tham số m để phương trình $4\cos^3 x \cos 2x + (m-3)\cos x 1 = 0$ có đúng bốn nghiệm khác nhau thuộc khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.
- **Bài 5:** Tìm tham số a để phương trình $\frac{a^2}{1-\tan^2 x} = \frac{\sin^2 x + a^2 2}{\cos 2x}$ có nghiệm
- **Bài 6:** Tìm tất cả các giá trị thực của tham số m để phương trình $\sin^6 x + \cos^6 x + 3\sin x \cos x \frac{m}{4} + 2 = 0$ có nghiệm thực?
- **Bài 7:** Tìm tất cả các giá thực của tham số m để pt $2\cos 3x = m 2\cos x + \sqrt[3]{m + 6\cos x}$ có nghiệm?
- **Bài 8:** Cho phương trình $\cos^6 \frac{x}{2} = \left(\sin^2 \frac{x}{2} + m\right) \sqrt{\sin^2 \frac{x}{2} + m} + \sqrt{\sin^2 \frac{x}{2} + m} \cos^2 \frac{x}{2}$. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm thực?

- **Bài 9:** Tìm tất cả các giá trị của m để phương trình $\cos 2x 5\sin x + m = 0$ có đúng 1 nghiệm thuộc khoảng $\left(-\pi; \frac{\pi}{2}\right)$.
- **Bài 10:** Tìm các giá trị nguyên của tham số m để phương trình $\sqrt[3]{m+3\sqrt[3]{m+3\cos x}} = \cos x$ có nghiệm thực?
- **Bài 11:** Tìm tất cả các giá trị của m để phương trình: $(\sin x 1)(2\cos^2 x (2m+1)\cos x + m) = 0$ có đúng 4 nghiệm thực thuộc đoạn $[0; 2\pi]$.

VI. BÀI TẬP TỔNG HỢP

- **Bài 1:** Giải phương trình: $\cos 2x + 3\sin x 2 = 0$
- **Bài 2:** Giải phương trình: $\cos \frac{8x}{3} = \cos^2 \frac{2x}{3}$.
- **Bài 3:** Giải phương trình: $4\cos\left(\frac{\pi}{3} x\right) + \cos\left(2x + \frac{\pi}{3}\right) = \frac{5}{2}$.
- **Bài 4:** Giải phương trình: $\sqrt{\cos 2x} + \sqrt{1 \sin 2x} = 2\sqrt{\sin x \cos x}$
- **Bài 5:** Giải phương trình: $\sin^8 x + \cos^8 x = 2(\sin^{10} x + \cos^{10} x) + \frac{5}{4}\cos 2x$
- **Bài 6:** Giải phương trình: $\sin^4 x + \sin^4 \left(x + \frac{\pi}{4} \right) + \sin^4 \left(x \frac{\pi}{4} \right) = 1$.
- **Bài 7:** Giải phương trình: $2(\sin x + 3)\cos^4 \frac{x}{2} \sin x(1 + \cos x) 3\cos x 1 = 0$
- **Bài 8:** Giải phương trình: $\sin x + \cos x + 1 + \sin 2x + \cos 2x = 0$
- **Bài 9:** Giải phương trình: $4 \sin 2x 3 \cos 2x = 3(4 \sin x 1)$
- **Bài 10:** Tìm *m* để hàm số $y = \sqrt{\frac{m \sin x \cos x 2\sin x \cos x}{\sin^{2017} x \cos^{2019} x + \sqrt{2}}}$ xác định với mọi $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.
- **Bài 11:** Trong tập giá trị của hàm số $y = \frac{2\sin 2x + \cos 2x}{\sin 2x \cos 2x + 3}$ có tất cả bao nhiều giá trị nguyên?
- **Bài 12:** Tìm số nghiệm của phương trình $\frac{\sin x.\sin 2x + 2\sin x.\cos^2 x + \sin x + \cos x}{\sin x + \cos x} = \sqrt{3}\cos 2x \text{ trong}$ khoảng $(-\pi, \pi)$?
- **Bài 13:** Có bao nhiều giá trị nguyên của tham số m để phương trình $\frac{2\sin x 1}{\sin x + 3} = m$ có nghiệm thuộc đoạn $[0; \pi]$
- Bài 14: Giải phương trình $\frac{4\sin^2 \frac{x}{2} \sqrt{3}\cos 2x 1 2\cos^2\left(x \frac{3\pi}{4}\right)}{\sqrt{2\cos 3x + 1}} = 0.$

Bài 15: Cho phương trình
$$\frac{(\sin x - \cos x)(\sin 2x - 3) - \sin 2x - \cos 2x + 1}{2\sin x - \sqrt{2}} = 0.$$

Hỏi phương trình có bao nhiều nghiệm thuộc khoảng $(2018\pi; 2019\pi)$?

- **Bài 16:** Giải phương trình: $\cos 2x + 7\cos x \sqrt{3}(\sin 2x 7\sin x) = 8$
- **Bài 17:** Giải phương trình: $2\cos^2\left(\frac{\pi}{4}-2x\right)+\sqrt{3}\cos 4x=4\cos^2 x-1$.
- **Bài 18:** Giải phương trình: $\sin^2 3x \cdot \cos 2x + \sin^2 x = 0$.
- **Bài 19:** Tính tổng các nghiệm của phương trình sau trên $[0;1000\pi]$

$$\frac{2\sin^4\left(x+\frac{\pi}{4}\right)-\cos\left(x+\frac{3\pi}{4}\right)\sin\left(3x-\frac{\pi}{4}\right)-3}{2\cos x-\sqrt{2}}=0$$

- **Bài 20:** Giải phương trình: $2\cos^3 x \sin 2x \sin x = -2\sqrt{2}.\cos\left(x + \frac{2019\pi}{4}\right)$.
- **Bài 21:** Giải phương trình sau: $9\sin x + 6\cos x 3\sin 2x + \cos 2x = 8$.
- **Bài 22:** Giải phương trình $\frac{2\sqrt{3}\sin^2 x \sqrt{3}\cos x 2\sin x}{(1 2\cos x)\tan x} = \cos x.$
- **Bài 23:** Giải phương trình $\sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) + \sqrt{6} \sin\left(x \frac{\pi}{4}\right) = 1$.
- **Bài 24:** Giải phương trình $2\cos^2\left(\frac{\pi}{4} 2x\right) + \sqrt{3}\cos 4x = 4\cos^2 x 1$.
- **Bài 25:** Với giá trị nào của m thì phương trình $3\sin^2 x + 2\cos^2 x = m + 2$ có nghiệm?
- **Bài 26:** Giải phương trình : $\frac{2\sin 2x \cos 2x 7\sin x + 4 + \sqrt{3}}{2\cos x + \sqrt{3}} = 1$.
- **Bài 27:** Giải phương trình: $\frac{2\sin^3 x \sin x + \cos 2x}{\tan x 1} = 0.$
- **Bài 28:** Giải phương trình: $2\sqrt{2}\cos 2x \sin 2x \cos\left(x + \frac{3\pi}{4}\right) 4\sin\left(x + \frac{\pi}{4}\right) = 0 \quad (x \in \mathbb{R}).$
- **Bài 29:** Giải phương trình: $(2\sin x 3)(4\sin^2 x 6\sin x + 3) = 1 + 3\sqrt[3]{6\sin x 4}$
- **Bài 30:** Giải phương trình: $\frac{\left(1+\sin x + \cos 2x\right)\sin\left(x+\frac{\pi}{4}\right)}{1+\tan x} = \frac{1}{\sqrt{2}}\cos x$
- **Bài 31:** Giải phương trình: $\cos^2 x \sqrt{3}\cos x + 6\sin x \cdot \cos x = (\sin x + \cos x)^2 \sin^2 x \sin x$.
- **Bài 32:** Giải phương trình: $(1+2\sin 4x)\tan 2x = 1$.
- **Bài 33:** Giải phương trình: $4\cos^2 x (1 + \sin x) + 2\sqrt{3}\cos x \cos 2x = 1 + 2\sin x$.

Bài 34: Tính tổng tất cả các nghiệm của phương trình $\cos 3x - \cos 2x + 9\sin x - 4 = 0$ trên khoảng $(0;3\pi)$.

Bài 35: Giải phương trình: $\cos^2 x - \sqrt{3}\cos x + 6\sin x \cdot \cos x = (\sin x + \cos x)^2 - \sin^2 x - \sin x$.

Bài 36: Giải phương trình:
$$\sin\left(\frac{5\pi}{4} - 3x\right) - 16 = -15\sin\left(\frac{\pi}{4} + x\right)$$

- **Bài 37:** Trên đoạn [-2018; 2018] phương trình $\sin x \left(2\cos x \sqrt{3}\right) = 0$ có tất cả bao nhiều nghiệm ?
- **Bài 38:** Có tất cả bao nhiều số nguyên dương m để phương trình $\cos^2 x + \sqrt{m + \cos x} = m$ có nghiệm?
- **Bài 39:** Cho phương trình $\cos 2x + \sqrt{3} \sin 2x + 5(\sqrt{3} \sin x \cos x) 6 = 0$. Tính tổng giữa nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình.

VII. GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ LƯỢNG GIÁC

A. KIẾN THỨC CƠ BẨN

Cho hàm số y = f(x) xác định trên miền $D \subset R$.

- Số thực M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu $\begin{cases} f(x) \leq M, \forall x \in D \\ \exists x_0 \in D, f(x_0) = M \end{cases}$
- Số thực m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu $\begin{cases} f(x) > m, \forall x \in D \\ \exists x_0 \in D, f(x_0) = m \end{cases}$
- 1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hs $y = a \sin u + b \cos u$ trên \mathbb{R} , với $a, b \in \mathbb{R}$; $a^2 + b^2 > 0$.

Phương pháp tổng quát

$$y = a \sin u + b \cos u \Rightarrow y = \left(\frac{a}{\sqrt{a^2 + b^2}} \sin u + \frac{b}{\sqrt{a^2 + b^2}} \cos u\right) \sqrt{a^2 + b^2}$$

$$Vi\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right) = 1 \Rightarrow \alpha \in R \text{ sao cho } \cos\alpha = \frac{a}{\sqrt{a^2+b^2}} \text{ và } \sin\alpha = \frac{b}{\sqrt{a^2+b^2}}$$

$$\Rightarrow y = \sqrt{a^2 + b^2} \left(\sin u . \cos \alpha + \cos u . \sin \alpha \right) \Rightarrow \boxed{y = \sqrt{a^2 + b^2} . \sin \left(u + \alpha \right)}$$

$$V_i -1 \le \sin(u+\alpha) \le 1 \Rightarrow -\sqrt{a^2 + b^2} \le y \le \sqrt{a^2 + b^2}$$

Ngoài ra ta có thể mở rộng bài toán như sau:

$$y = a \sin \left[f\left(x\right) \right] + b \cos \left[f\left(x\right) \right] + c \ . \ Ta \ c\acute{o} \ -\sqrt{a^2 + b^2} \ + c \le y \le \sqrt{a^2 + b^2} \ + c$$

Chú ý:

 Ngoài cách nhớ công thức ở bài toán tổng quát phía bên phải ta có thể nhớ theo điều kiện có nghiệm của phương trình bậc nhất theo sin và cos như sau:

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = a \sin[f(x)] + b \cos[f(x)] + c$

 $a\sin[f(x)]+b\cos[f(x)]+c-y=0$ điều kiện có nghiệm $a^2+b^2 \ge (c-y)^2$. Từ đây ta tìm được min, max của y.

- Nếu hàm số có dạng $y = \frac{a_1 \sin x + b_1 \cos x + c_1}{a_2 \sin x + b_2 \cos x + c_2}$ ta tìm miền xác định của hàm số rồi quy đồng mẫu số, đưa về dạng phương trình trong **Chú ý** ở phía trên và tiếp tục lời giải.
- Với các bài toán tìm min, max của hàm số lượng giác trên một đoạn ta thường phải xét nhanh BBT để giải quyết bài toán.
- Ta có thể đưa hàm số về dạng $y = A^2(x) + B \ge B$. Nhưng cần lưu ý xem dấu bằng có xảy ra hay không
- Ta có thể sử dung tính chất của tam thức bậc hai hoặc lập bảng biến thiên.

2. Phương pháp sử dụng bất đẳng thức cơ bản

- **2.1. Bất đẳng thức**: $|A+B| \le |A| + |B|$ dấu bằng xảy ra khi A, B cùng dấu
- 2.2. Bất đẳng thức Cauchy.
 - a. Với hai số:

Cho hai số thực a,b là hai số dương, ta có $\frac{a+b}{2} \ge \sqrt{ab}$ dấu bằng xảy ra khi a=b.

b. Với n số:

Cho các số thực $x_1; x_2; x_3; ...; x_n$ là các số dương $n \in N^*$, ta có

$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \ge \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots x_n} \text{ dấu bằng xảy ra khi } x_1 = x_2 = x_3 = \dots = x_n.$$

2.3. Bấtđẳng thức Bunhyakovsky

a. Bất đẳng thức Bunyakovsky dạng thông thường.

$$(a^2+b^2)(c^2+d^2) \ge (ac+bd)^2$$
. Dấu bằng xảy ra khi $\frac{a}{c} = \frac{b}{d}$

b. Bất đẳng thứcBunyakovsky cho bộ hai số

Với hai bộ số $(a_1; a_2; ...; a_n)$ và $(b_1; b_2; ...; b_n)$ ta có

$$\left(a_1^2 + a_2^2 + \dots + a_n^2\right) \left(b_1^2 + b_2^2 + \dots + b_n^2\right) \ge \left(a_1b_1 + a_2b_2 + \dots + a_nb_n\right)^2$$

Dấu bằng xẩy ra khi và chỉ khi $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$

với quy ước nếu một số b_i nào đó (i=1,2,3...) bằng 0 thì a_i tương đương bằng 0.

c. Hệ quả của bất đẳng thức Bunhyakopvsky ta có $(a^2 + b^2)(c^2 + d^2) \ge 4abcd$

B. VÍ DỤ MINH HỌA

Ví dụ 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: $y = 2\cos^2 x - 2\sqrt{3}\sin x\cos x + 1$

Ví dụ 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = 2\cos^2 x - 2\sqrt{3}\sin x.\cos x + 1$ trên đoạn $\left[0, \frac{7\pi}{12}\right]$

- **Ví dụ 3:** Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = \frac{\sin x + 2\cos x + 3}{2 + \cos x}$
- **Ví dụ 4:** Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt[4]{\sin x} \sqrt{\cos x}$.
- Ví dụ 5: Tìm giá trị nhỏ nhất của biểu thức $P = \cot^4 a + \cot^4 b + 2 \tan^2 a \cdot \tan^2 b + 2$
- **Ví dụ 6:** Tìm giá trị nhỏ nhất của biểu thức $P = 3\cos^2 x 4\cos x \sqrt{3}\sin x + \frac{19}{4}$
- Ví dụ 7: Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y = \sin^2 x \sin x + 2$.
- **Ví dụ 8:** Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y = \frac{3}{\cos^4 x} 2 \tan^4 x$ với $x \in \left[0; \frac{\pi}{3}\right]$
- **Ví dụ 9:** Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y = \cos \frac{2x}{1+x^2} + \cos \frac{4x}{1+x^2} + 1$.
- **Ví dụ 10:** Tìm giá trị lớn nhất của hàm số $y = \sqrt{1 + \frac{1}{2}\cos^2 x} + \frac{1}{2}\sqrt{5 + 2\sin^2 x}$
- **Ví dụ 11:** Cho x, y, z > 0 và $x + y + z = \frac{\pi}{2}$. Tìm giá trị lớn nhất của

$$y = \sqrt{1 + \tan x \cdot \tan y} + \sqrt{1 + \tan y \cdot \tan z} + \sqrt{1 + \tan z \cdot \tan x}$$

C. BÀI TẬP

- **Bài 1:** Tìm giá trị lớn nhất của hàm số $y = \sin^6 x + \cos^6 x$
- **Bài 2:** Tìm giá trị nhỏ nhất của hàm số $y = \frac{\sin x + 1}{\cos x + 2}$
- **Bài 3:** Tìm giá trị lớn nhất của hàm số: $y = \frac{\cos x + 2\sin x + 3}{2\cos x \sin x + 4}$
- **Bài 4:** Tìm giá trị nhỏ nhất của hàm số $f(x) = 3 \frac{1}{5} \sin^2 x \cos^2 x$
- **Bài 5:** Tìm giá trị nhỏ nhất của hàm số $y = 4 \sin x 4 \cos^2 x$
- **Bài 6:** Tìm giá trị nhỏ nhất của hàm số $y = 4\cot^2 2x \frac{\sqrt{3}(1-\tan^2 x)}{\tan x}$
- **Bài 7:** Tìm giá trị nhỏ nhất của hàm số $y = \sin x \sqrt{\cos x} + \cos x \sqrt{\sin x}$
- **Bài 8:** Tìm giá trị lớn nhất của hàm số $y = \sqrt{\cos^2 x + 7\sin^2 x} + \sqrt{\sin^2 x + 7\cos^2 x}$.