МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФРМАТИКИ

Кафедра теории вероятностей и математической статистики

ПОЛУЗЁРОВ Тимофей Дмитриевич

ТЕМА РАБОТЫ

Магистерска диссертация специальность ... Прикладная математика и информатика

Научный руководитель
Харин Алексей Юрьевич
заведующий кафедрой, доктор
физико-математических наук,
профессор

Дог	ущена к защите	
« <u></u>	_» 2025 г.	
Зав	кафедрой теории вероятностей и математической ст	гатистики
	А. Ю. Харин	
док	гор физико-математических наук, профессор	

Минск, 2025

ОГЛАВЛЕНИЕ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	٩	
АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ	4	
GENERAL DESCRIPTION OF WORK	ŗ	
ВВЕДЕНИЕ	(
1. СРЕДНЕ-ДИСПЕРСИОННЫЙ АНАЛИЗ ПОРТФЕЛЯ	7	
1.1. Основные понятия	7	
1.2. Сведение к процентным ставкам	8	
1.3. Диверсификация портфеля	Ć	
ЗАКЛЮЧЕНИЕ	13	
ПРИПОЖЕНИЕ А		

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Ключевые слова: кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Цель работы: тут цель

Объект исследования является

Предмет исследования является

Методы исследования: методы методы

Результаты работы

Области применения

АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ

Ключавыя словы: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Мэта работы: тут цель Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Аб'ектам даследавання является Метады даследавання методы методы Вынікі работы Вобласть ўжывання

GENERAL DESCRIPTION OF WORK

Keywords: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

The object: тут цель

The objective:

- 1. item one
- 2. item two

Research methods: методы методы

The results

Application

введение

Тут введение будет

1. СРЕДНЕ-ДИСПЕРСИОННЫЙ АНАЛИЗ ПОРТФЕЛЯ

1.1. Основные понятия

Будем рассматривать одношаговую задачу инвестирования.

Пусть инвестор имееот возможность разместить свой начальный капитал x по акциям A_1, \ldots, A_N , стоимость которых в момент n=0 равна соответственно $S_0(A_1), \ldots, S_0(A_N)$

Пусть $X_0(b) = b_1 S_0(A_1) + \dots + B_N S_0(A_N)$, где $b_i \ge 0, i = 1, \dots N$. Иначе говоря, пусть

$$b = (b_1, \dots, b_N)$$

есть портфель ценных бумаг, где b_i – число акций A_i стоимостью $S_0(A_i)$.

Будем предпоалагать, что эволбция каждой акции A_i определяется тем, что её цена $S_1(A_i)$ в момент n=1 подчиняется разностному уравнению

$$\Delta S_1(A_i) = \rho(A_i)S_0(A_i)$$

или, что равносильно,

$$S_1(A_i) = (1 = \rho(A_i))S_0(A_i)$$

где $\rho(A_i)$ – случайная процентная ставка акции $A_i, \, \rho(A_i) > -1.$

Если инвестор выбрал портфель $b=(b_1,\ldots,b_N)$, то его начальный капитал $X_0(b)=x$ превратится в

$$X_1(b) = b_1 S_1(A_1) + \cdots + b_N S_1(A_N),$$

и эту величину желательно сделать «побольше». Это желание, однако, должно рассматриваться с учетом «риска», связанного с получением «большего» дохода.

С этой целью Γ . Марковитц рассматривает две характеристики капитала $X_1(B)$:

$$\mathbb{E}\left[X_1(b)\right]$$

- математическое ожидание и

$$\mathbb{D}\left[X_1(b)\right]$$

– дисперсию.

Имея эти две характеристики, можно по-разному формулировать оптимизационную задачу выбора наилучшего портфеля в зависимости от критерия оптимальности.

Можно, например, задаться вопросом о том, на каком портфеле b^* достигается максимум некоторой целевой функции $f = f(\mathbb{E}[X_1(b)], \mathbb{D}[X_1(b)])$ при «бюджетном ограничении» на класс допустимых портфелей:

$$B(x) = \{b = (b_1, \dots, b_N) : b_i \ge 0, X_0(b) = x\}, x > 0$$

Естественна и следующая вариационная постановка: найти

$$\inf \mathbb{D}\left[X_1(b)\right]$$

в предположении, что inf берется по тем портфелям b, для которых выполнены ограничения

$$b \in B(x)$$
,

$$\mathbb{E}\left[X_1(b)\right] = m,$$

где m — некоторая константа.

1.2. Сведение к процентным ставкам

Покажем теперь, что в одношаговой задаче оптимизации портфеля ценных бумаг можно вместо величин $(s_1(A_1),\ldots,S_1(A_N))$ работать непосредственно с процентными ставками $(\rho(A_1),\ldots,\rho(A_N))$, подразумевая под этим следующее.

Пусть $b \in B(X)$, т.е. $x = b_1 S_0(A_1) + \cdots + b_N S_0(A_N)$. Введем величины $d = (d_1, \ldots, d_N)$, полагая

$$d_i = \frac{b_i S_0(A_i)}{r}$$

.

Поскольку $b \in B(X)$, получаем, что $d_i \geq 0$ и $\sum_{i=1}^N = 1$. Представим капитал $X_1(B)$ в виде

$$X_1(b) = (1 + R(b))X_0(b),$$

и пусть

$$\rho(d) = d_1 \rho(A_1) + \dots + d_N \rho(A_N).$$

Ясно, что

$$R(b) = \frac{X_1(b)}{X_0(b)} - 1 = \frac{X_1(b)}{x} - 1 = \frac{\sum b_i S_1(A_i)}{x} - 1 = \sum d_i \frac{S_1(A_i)}{S_0(A_i)} - 1 = \sum d_i \left(\frac{S_1(A_i)}{S_0(A_i)} - 1\right) = \sum d_i \left(\frac{S_1(A_i)}{S_0(A_i)} - 1$$

Итак,

$$R(b) = \rho(d),$$

откуда следует, что если $d=(d_1,\ldots,d_N)$ и $b=(b_1,\ldots,b_N)$ связаны соотношениями $d_i=\frac{b_iS_0(A_i)}{x}, i=1,\ldots,N,$ то для $b\in B(x)$ выполняется равенство

$$X_1(b) = x(1 + \rho(d)),$$

и, следовательно, с точки зрения оптимизационных задач для $X_1(b)$ можно оперировать с соотвествующими задачами для $\rho(d)$.

1.3. Диверсификация портфеля

Обратимся теперь к вопросу о том, как диверсификацией можно добится сколь угодно малого (несистематического) риска, измеряемого дисперсией или стандарным отклонением величин $X_1(b)$.

С этой целью рассмотрим для начала пару случайных величин ξ_1 и ξ_2 с конечными вторыми моментами. Тогда если c_1 и c_2 – константы, $\sigma_i = \sqrt{\mathbb{D}\left[\xi_i\right]}, i=1,2,$ то

$$\mathbb{D}\left[c_1\xi_1 + c_2\xi_2\right] = (c_1\sigma_1 - c_2\sigma_2)^2 + 2c_1c_2\sigma_1\sigma_2(1+\sigma_{12}),$$

где $\sigma_{12} = \frac{\mathbf{Cov}(\xi_1,\xi_2)}{\sigma_1\sigma_2}$, $\mathbf{Cov}(\xi_1,\xi_2) = \mathbb{E}\left[\xi_1\xi_2\right] - \mathbb{E}\left[\xi_1\right] \cdot \mathbb{E}\left[\xi_2\right]$. Отсюда ясно, что если $c_1\sigma_1 = c_2\sigma_2$ и $\sigma_{12} = -1$, то $\mathbb{D}\left[c_1\xi_1 + c_2\xi_2\right] = 0$. ак Таким образом, если величины ξ_1 и ξ_2 отрицательно коррелированы с коэффициентом корреляции

 $\sigma_{12} = -1$, то таким подбором констант c_1 и c_2 , что $c_1\sigma_1 = c_2\sigma_2$, получаем комбинацию $c_1\xi_1 + c_2\xi_2$ с нулевой дисперсией. Но, конечно, при этом среднее значение $\mathbb{E}\left[c_1\xi_1 + c_2\xi_2\right]$ может оказаться достаточно малым. (Случай $c_1 = c_2 = 0$ для задачи оптимизации не интересен в силу условия $b \in B(X)$).

Из этих элементарных рассуждений ясно, что при заданных ограничениях на (c_1, c_2) и класс величин (ξ_1, ξ_2) при решении задачи о том, чтобы сделать $\mathbb{E}\left[c_1\xi_1+c_2\xi_2\right]$ «побольше», а $\mathbb{D}\left[c_1\xi_1+c_2\xi_2\right]$ «поменьше», надо стремиться к выбору таких пар (ξ_1, ξ_2) , для которыз их ковариация была бы как можно ближе к минус единице.

Изложенный эффект отрицательной коррелированности, называемый эффектом Марковитца, является одной из основных идей диверсификации при инвестировании — при составлении портфеля ценных бумаг надо стремиться к тому, чтобы вложения делались в бумаги, среди которых по возможности много отрицательно коррелированных.

Другая идея, лежащая в основе диверсификации, основана на следующем соображении.

Пусть ξ_1,\dots,ξ_N — последоватльность некоррелированных случайных величин с дисперсиями $\mathbb{D}\left[\xi_i\right] \leq C, i=1,\dots,N,$ где C — некоторая константа. Тогда

$$\mathbb{D}[d_1\xi_1 + \dots + d_N\xi_N] = \sum_{i=1}^N d_i^2 \mathbb{D}[\xi_i] \le C \sum_{i=1}^N d_i^2.$$

Поэтому, взяв, например, $d_i = \frac{1}{N}$, находим, что

$$\mathbb{D}\left[d_1\xi_1 + \dots + d_N\xi_N\right] \le \frac{C}{N} \to 0, N \to \infty$$

Этот эффект некоррелиованности говорит о том, что если инвестирование производится в некоррелированные ценные бумаги, то для уменьшения риска, т. е. дисперсии $\mathbb{D}\left[d_1\xi_1+\cdots+d_N\xi_N\right]$, надо по возможности брать их число N как можно большим.

Вернемся к вопросу о дисперсии $\mathbb{D}\left[\rho(d)\right]$ величины

$$\rho(d) = d_1 \rho(A_1) + \dots + d_N \rho(A_N).$$

Имеем

$$\mathbb{D}\left[\rho(d)\right] = \sum_{i=1}^{N} d_i^2 \mathbb{D}\left[\rho(A_i)\right] + \sum_{i,j=1,i\neq j}^{N} d_i d_j \mathbf{Cov}\left(\rho(A_i), \rho(A_j)\right).$$

Возьмем здесь $d_i = \frac{1}{N}$. Тогда

$$\sum_{i=1}^{N} d_i^2 \mathbb{D}\left[\rho(A_i)\right] = \left(\frac{1}{N}\right) \cdot N \cdot \frac{1}{N} \sum_{i=1}^{N} \mathbb{D}\left[\rho(a_i)\right] = \frac{1}{N} \cdot \overline{\sigma}_N^2,$$

где $\bar{\sigma}_N^2 = \frac{1}{N} \sum_{i=1}^N \mathbb{D} \left[\rho(A_i) \right]$ — средняя дисперсия. Далее,

$$\sum_{i,j=1,i\neq j}^{N} d_i d_j \mathbf{Cov}\left(\rho(A_i), \rho(A_j)\right) = \left(\frac{1}{N}\right)^2 N(N-1) \overline{\mathbf{Cov}}_N,$$

где $\overline{\mathbf{Cov}}_N$ есть средняя ковариация

$$\overline{\mathbf{Cov}}_{N} = \frac{1}{N(N-1)} \sum_{i,j=1, i \neq j}^{N} \mathbf{Cov} \left(\rho(A_{i}), \rho(A_{j}) \right).$$

Таким образом,

$$\mathbb{D}\left[\rho(d)\right] = \frac{1}{N}\overline{\sigma}_N^2 + \left(1 - \frac{1}{N}\right)\overline{\mathbf{Cov}}_N,$$

и ясно, что если $\overline{\sigma}_N^2 \leq C$ и $\overline{\mathbf{Cov}}_N o \overline{\mathbf{Cov}}$ при $N o \infty$, то

$$\mathbb{D}\left[\rho(d)\right] \to \overline{\mathbf{Cov}}, N \to \infty.$$

Из этой формулы мы видим, что если $\overline{\mathbf{Cov}}$ равна нулю, то диверсификацией с достаточно большим N риск инвестирования, т.е. $\mathbb{D}\left[\rho(d)\right]$, может быть сделан сколь угодно малым. К сожалению, если рассматривать, скажем, рынок акций, то на нем, как правило, имеется положительная корреляция в ценах (они движутся довольно-таки согласованно в одном направлении), что приводит к тому, что $\overline{\mathbf{Cov}}_N$ не стремится к нулю при $N \to \infty$. Предельное значение $\overline{\mathbf{Cov}}$ и есть тот систематический, иначе — рыночный — риск, который присущ рассматриваемому рынку и диверсификацией не может быть

редуцирован. Первый же член в формуле !!! определяет несистематический риск, который может быть редуцирован, как мы видели, выбором большого числа акций.

ЗАКЛЮЧЕНИЕ

приложение а