МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №7

по дисциплине: «Исследование операций» Вариант 23

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Куртова Лилиана Николаевна

Вирченко Юрий Петрович

Тема: Решение полностью целочисленных задач с помощью первого алгоритма Гомори, а также методом ветвей и границ

Цель работы: освоить метод отсечения Гомори для полностью целочисленных задач. Изучить алгоритм этого метода. Программно реализовать этот алгоритм.

Ход работы:

$$z = 10x_1-5x_2+4x_4 \rightarrow \max$$

$$\begin{cases} 9x_1+3x_2+x_3=75 \\ 18x_1-4x_2-3x_4=22 \\ 2x_1-10x_2+x_5=18 \end{cases}$$
 $x_i \geq 0, x_i$ - целые $(i=\overline{1,5})$

- 1. Изучить возможные постановки задач целочисленного и частичноцелочисленного программирования.
- 2. Ознакомиться с методами решения таких задач, в частности, с методами отсечения и методом ветвей и границ.
- 3. Выяснить для каких задач применяется первый алгоритм Гомори. Изучить этот алгоритм и написать реализующую его программу для ПЭВМ. В качестве тестовых данных использовать, решенную вручную одну из нижеследующих задач.

$$\frac{Z=34X_{1}-\frac{31}{3}X_{2}-\frac{88}{3}}{9X_{1}+3X_{2}+X_{3}=75} \\
-6X_{1}+\frac{9}{3}X_{2}+X_{4}=-\frac{23}{3} \\
2X_{1}-10X_{2}+X_{5}=18 \\
X_{1}>0, X_{1}-420610(i=1.5)$$

Отбрасывая условия целочисленности, решаем обобщенным двойственным симплекс методом задачу 3_0 :

$$\frac{Z=34X_{1}-\frac{31}{3}X_{2}-\frac{88}{3}}{9X_{1}+3X_{2}+X_{3}=75}$$

$$-6X_{1}+\frac{4}{3}X_{2}+X_{4}=-\frac{23}{3}$$

$$2X_{1}-10X_{2}+X_{5}=18$$

$$X_{i}>0 (i=1.5)$$

Таблица 1

Б	C		x1↓	x2	2		x3	x4	x 5	Отн	
x3	75		9		3		1	0	0	8	1/3
← x4	-7	1/3	-6		1	1/3	0	1	0	1	2/9
x5	18		2	-1	10		0	0	1	9	
Z	-29	1/3	-34	1	10	1/3	0	0	0		

Таблица 2

Б	C		x1	x2		x3	x4↓		x5	Отн	
← x3	64		0	5		1	1	1/2	0	42	2/3
x1	1	2/9	1	-	2/9	0	-	1/6	0	-7	1/3
x5	15	5/9	0	-9	5/9	0		1/3	1	46	2/3
Z	12	2/9	0	2	7/9	0	-5	2/3	0		

Таблица 3

Б	С		x1	x2	x3		x 4	x5
x4	42	2/3	0	3 1	1/3	2/3	1	0
x1	8	1/3	1	1	1/3	1/9	0	0
x5	1	1/3	0	-10 2	2/3 -	2/9	0	1
Z	254		0	21 2	2/3 3	7/9	0	0

Из последней симплекс-таблицы получаем оптимальное решение задачи 3₀:

Это решение не является целочисленным, построим задачу 3_1 , для этого запишем сечение Гомори по первой строке:

$$\frac{2}{3} - \frac{1}{3} x_2 - \frac{2}{3} x_3 \le 0$$

Преобразуя и уравнивая неравенство, получим:

Добавляя это ограничение к ограничениям задачи 3_0 , получим задачу 3_1

Таблица 4

Б	С		x1	x2		хз↓		x4	x5	u1
x4	42	2/3	0	3	1/3		2/3	1	0	0
x1	8	1/3	1		1/3		1/9	0	0	0
x5	1	1/3	0	-10	2/3	-	2/9	0	1	0
←u1	-	2/3	0	-	1/3	-	2/3	0	0	1
Z	254		0	21	2/3	3	7/9	0	0	0
Отн				65		5	2/3			

Таблица 5

Б	C		x1	x2		x3	x4	x5	u1
x4	42		0	3		0	1	0	1
x1	8	2/9	1		5/18	0	0	0	1/
x5	1	5/9	0	-10	5/9	0	0	1	- 1/
x3	1		0		1/2	1	0	0	-1 1/2
Z	250	2/9	0	19	7/9	0	0	0	5 2/

Полученное решение не является целочисленным. Построим задачу 3_2 , для этого запишем сечение Гомори по третьей строке:

Преобразуя и уравнивая неравенство, получим:

$$-\frac{4}{9}x_2-\frac{2}{3}u_1+u_2=-\frac{5}{9}$$

Добавляя это ограничение к ограничениям задачи 3_1 , получим задачу 3_2 .

Таблица 6

Б	С		x1	x2		x3	x4	x5	u1↓	u2	
x4	42		0	3		0	1	0	1	0	
x1	8	2/9	1		5/18	0	0	0	1/6	0	
x5	1	5/9	0	-10	5/9	0	0	1	- 1/3	0	
x3	1		0		1/2	1	0	0	-1 1/2	0	
←u2	-	5/9	0	-	4/9	0	0	0	- 2/3	1	
Z	250	2/9	0	19	7/9	0	0	0	5 2/3	0	
Отн				44	1/2				8 1/2		

Таблица 7

Б	C		x1	x2		x3	x4	x5	u1	u2	
x4	41	1/6	0	2	1/3	0	1	0	0	1	1/2
x1	8	1/12	1		1/6	0	0	0	0		1/4
x5	1	5/6	0	-10	1/3	0	0	1	0	-	1/2
x3	2	1/4	0	1	1/2	1	0	0	0	-2	1/4
u1		5/6	0		2/3	0	0	0	1	-1	1/2
z	245	1/2	0	16		0	0	0	0	8	1/2

Полученное решение не является целочисленным. Построим задачу 3_3 , для этого запишем сечение Гомори по третьей строке:

$$\frac{5}{6} - \frac{2}{3}\chi_2 - \frac{1}{2}u_1 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{2}{3}x_2 - \frac{1}{2}u_1 + u_3 = -\frac{5}{6}$$

Добавляя это ограничение к ограничениям задачи 32, получим задачу 33

Таблица 8

Б	С		x1	x2		х3	x4	x5	u1	u2↓	u3
x4	41	1/6	0	2	1/3	0	1	0	0	1 1/2	0
x1	8	1/12	1		1/6	0	0	0	0	1/4	0
x5	1	5/6	0	-10	1/3	0	0	1	0	- 1/2	0
х3	2	1/4	0	1	1/2	1	0	0	0	-2 1/4	0
u1		5/6	0		2/3	0	0	0	1	-1 1/2	0
←u3	-	5/6	0	-	2/3	0	0	0	0	- 1/2	1
Z	245	1/2	0	16		0	0	0	0	8 1/2	0
Отн				24						17	

Таблица 9

Б	С		x1	x2		x3	x4	x5	u1	u2	u3
x4	38	2/3	0		1/3	0	1	0	0	0	3
x1	7	2/3	1	-	1/6	0	0	0	0	0	1/2
x5	2	2/3	0	-9	2/3	0	0	1	0	0	-1
x3	6		0	4	1/2	1	0	0	0	0	-4 1/2
u1	3	1/3	0	2	2/3	0	0	0	1	0	-3
u2	1	2/3	0	1	1/3	0	0	0	0	1	-2
Z	231	1/3	0	4	2/3	0	0	0	0	0	17

Полученное решение не является целочисленным. Построим задачу 3₄, для этого запишем сечение Гомори по первой строке:

$$\frac{2}{3} - \frac{1}{3}x_1 \leq 0$$

Преобразуя и уравнивая неравенство, получим:

Добавляя это ограничение к ограничениям задачи 3₃, получим задачу 3₄.

Таблица 10

Б	C		x1	x2↓		x3	x4	x5	u1	u2	u3	u4
x4	38	2/3	0		1/3	0	1	0	0	0	3	0
x1	7	2/3	1	-	1/6	0	0	0	0	0	1/2	0
x5	2	2/3	0	-9	2/3	0	0	1	0	0	-1	0
x3	6		0	4	1/2	1	0	0	0	0	-4 1/2	0
u1	3	1/3	0	2	2/3	0	0	0	1	0	-3	0
u2	1	2/3	0	1	1/3	0	0	0	0	1	-2	0
←u4	-	2/3	0	-	1/3	0	0	0	0	0	0	1
Z	231	1/3	0	4	2/3	0	0	0	0	0	17	0
Отн				14								

Таблица 11

Б	C	x1	x2	x3	x4	x5	u1	u2	u3↓	u4
x4	38	0	0	0	1	0	0	0	3	1
x1	8	1	0	0	0	0	0	0	1/2	- 1/2
x5	22	0	0	0	0	1	0	0	-1	-29
← x3	-3	0	0	1	0	0	0	0	-4 1/2	13 1/2
u1	-2	0	0	0	0	0	1	0	-3	8
u2	-1	0	0	0	0	0	0	1	-2	4
x2	2	0	1	0	0	0	0	0	0	-3
z	222	0	0	0	0	0	0	0	17	14
Отн									3 7/9	

Таблица 12

Б	С	x1	x2	x3	x4	x5	u1	u2	u3	u4
x4	36	0	0	2/3	1	0	0	0	0	10
x1	7 2/3	3 1	0	1/9	0	0	0	0	0	1
x5	22 2/3	3 0	0	- 2/9	0	1	0	0	0	-32
u3	2/3	3 0	0	- 2/9	0	0	0	0	1	-3
u1	0	0	0	- 2/3	0	0	1	0	0	-1
u2	1/3	3 0	0	- 4/9	0	0	0	1	0	-2
x2	2	0	1	0	0	0	0	0	0	-3
Z	210 2/3	3 0	0	3 7/9	0	0	0	0	0	65

Полученное решение не является целочисленным. Построим задачу 3_5 , для этого запишем сечение Гомори по второй строке:

$$\frac{2}{3} - \frac{1}{9} X_3 \leq O$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{1}{9}X_3+45=-\frac{2}{3}$$

Добавляя это ограничение к ограничениям задачи 34, получим задачу 35.

Таблица 13

Б	C	x1	x2	x3↓	x4	x5	u1	u2	u3	u4	u5
x4	36	0	0	2/3	1	0	0	0	0	10	0
x1	7 2/3	1	0	1/9	0	0	0	0	0	1	0
x5	22 2/3	0	0	- 2/9	0	1	0	0	0	-32	0
u3	2/3	0	0	- 2/9	0	0	0	0	1	-3	0
u1	0	0	0	- 2/3	0	0	1	0	0	-1	0
u2	1/3	0	0	- 4/9	0	0	0	1	0	-2	0
x2	2	0	1	0	0	0	0	0	0	-3	0
← u5	- 2/3	0	0	- 1/9	0	0	0	0	0	0	1
Z	210 2/3	0	0	3 7/9	0	0	0	0	0	65	0
Отн				34							

Таблица 14

Б	С	x1	x2	x3	x4	x5	u1	u2	u3	u4	u5
x4	32	0	0	0	1	0	0	0	0	10	6
x1	7	1	0	0	0	0	0	0	0	1	1
x5	24	0	0	0	0	1	0	0	0	-32	-2
u3	2	0	0	0	0	0	0	0	1	-3	-2
u1	4	0	0	0	0	0	1	0	0	-1	-6
u2	3	0	0	0	0	0	0	1	0	-2	-4
x2	2	0	1	0	0	0	0	0	0	-3	0
х3	6	0	0	1	0	0	0	0	0	0	-9
Z	188	0	0	0	0	0	0	0	0	65	34

Полученное решение является целочисленным. Решение исходной задачи целочисленного программирования:

 z_{max} = 188; точка максимума: (7; 2; 6; 32; 24)

Программная реализация первого алгоритма Гомори:

```
#include <iostream>
#include <string>
#include <iomanip>
#include <cmath>
#include <numeric>
#define DBL_EPSILON_IN_MY_CASE 7.7e-10
using SimplexTable = std::vector<std::pair<std::string,</pre>
    std::vector<double>>>;
roid outputSimplexTable(const SimplexTable &simplexTable) {
 for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i) {</pre>
 for (size_t i{}; i < simplexTable.size(); ++i) {</pre>
  std::cout << simplexTable.at(i).first << '\t';</pre>
  for (size_t j{}; j < simplexTable.at(i).second.size();</pre>
   std::cout << simplexTable.at(i).second.at(j) << '\t';</pre>
  std::cout << '\n';
std::cout << '\n';
void derivationOfTheOptimumPoint(const SimplexTable
                     &simplexTable, const std::vector<std::string> integralVar) {
 for (size_t i{}; i < integralVar.size(); ++i) {</pre>
```

```
bool findVar{false};
  for (size_t j{}; j < simplexTable.size() - 1; ++j) {</pre>
  if (simplexTable.at(j).first == integralVar.at(i)) {
    findVar = true;
    if (simplexTable.at(j).second.at(0) <=</pre>
       DBL EPSILON IN MY CASE) {
     std::cout << 0 << ';';
     std::cout << simplexTable.at(j).second.at(0)</pre>
 if (!findVar) {
oool objFunctionHasNegative(const SimplexTable &simplexTable,
                 size_t &minNegativeIndex) {
size t rowIndex{simplexTable.size() - 1};
size_t minIndex{};
bool findNegative{false};
for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i) {</pre>
 if (simplexTable.at(rowIndex).second.at(i) < (-</pre>
       DBL_EPSILON_IN_MY_CASE)) {
   findNegative = true;
   if (simplexTable.at(rowIndex).second.at(i) <</pre>
     simplexTable.at(rowIndex).second.at(minIndex)) {
    minIndex = i;
minNegativeIndex = minIndex;
return findNegative;
oool exHasPositiveCoeff(const SimplexTable &simplexTable, const
size_t &colIndex, size_t &minCoeffIndex) {
size t minCoeffIn{};
double minCoeff{std::numeric_limits<double>::max()};
bool findPositive{false};
for (size_t i{}; i < simplexTable.size() - 1; ++i) {</pre>
 if (simplexTable.at(i).second.at(0) /
    simplexTable.at(i).second.at(colIndex) > DBL_EPSILON_IN_MY_CASE) {
   findPositive = true;
   const double coeff{simplexTable.at(i).second.at(0) /
              simplexTable.at(i).second.at(colIndex)};
  if (coeff < minCoeff) {</pre>
   minCoeff = coeff;
    minCoeffIn = i;
minCoeffIndex = minCoeffIn;
return findPositive:
oid maxValueOfTheObjFunctionWithTableDisplay(SimplexTable
                            &simplexTable) {
size_t minIndex{};
```

```
size t minCoeffIndex{};
 while (objFunctionHasNegative(simplexTable, minIndex)) {
 std::cout << "Simplex table :\n";</pre>
  outputSimplexTable(simplexTable);
  if (exHasPositiveCoeff(simplexTable, minIndex,
                minCoeffIndex)) {
   const double
        divider{simplexTable.at(minCoeffIndex).second.at(minIndex)};
   for (size_t i{}; i <
             simplexTable.at(minCoeffIndex).second.size(); ++i) {
    simplexTable.at(minCoeffIndex).second.at(i) /=
         divider;
   for (size_t i{}; i < simplexTable.size(); ++i) {</pre>
    if (i != minCoeffIndex) {
     const double divide{-
                       simplexTable.at(i).second.at(minIndex) /
                  simplexTable.at(minCoeffIndex).second.at(minIndex)};
     for (size_t j{}; j <
                simplexTable.at(i).second.size(); ++j) {
      simplexTable.at(i).second.at(j) +=
           (divide * simplexTable.at(minCoeffIndex).second.at(j));
   simplexTable.at(minCoeffIndex).first = "x" +
                           std::to_string(minIndex);
   std::cout << "The problem does not have solution(The objective "</pre>
   std::exit(1);
outputSimplexTable(simplexTable);
oool hasNegativeFree(const SimplexTable &simplexTable, size_t
&minFreeIndex) {
size t minFreeIn{};
double minFree{std::numeric_limits<double>::max()};
bool findNegative{false};
for (size_t i{}; i < simplexTable.size() - 1; ++i) {</pre>
 if (simplexTable.at(i).second.at(0) < (-</pre>
       DBL_EPSILON_IN_MY_CASE)) {
   findNegative = true;
   if (simplexTable.at(i).second.at(0) < minFree) {</pre>
    minFree = simplexTable.at(i).second.at(0);
    minFreeIn = i;
minFreeIndex = minFreeIn;
return findNegative;
oool hasNegativeCoeff(const SimplexTable &simplexTable, const
size t &rowIndex, size t &minColIndex) {
bool hasNegative{false};
double minimum{std::numeric_limits<double>::max()};
size_t minIndex{0};
for (size_t i{1}; i <
```

```
simplexTable.at(rowIndex).second.size(); ++i) {
 if (simplexTable.at(rowIndex).second.at(i) < (-</pre>
      DBL_EPSILON_IN_MY_CASE)) {
  hasNegative = true;
  const double coeff{-
                   simplexTable.at(simplexTable.size() - 1).second.at(i) /
              simplexTable.at(rowIndex).second.at(i)};
  if (coeff < minimum) {</pre>
   minimum = coeff;
   minIndex = i;
minColIndex = minIndex;
return hasNegative;
louble generalizedSimplexMethod(SimplexTable &simplexTable) {
maxValueOfTheObjFunctionWithTableDisplay(simplexTable);
size t minFreeIndex{};
while (hasNegativeFree(simplexTable, minFreeIndex)) {
 size_t minColIndex{};
 if (hasNegativeCoeff(simplexTable, minFreeIndex,
              minColIndex)) {
  const double
       divide{simplexTable.at(minFreeIndex).second.at(minColIndex)};
  for (size_t i{}; i <
            simplexTable.at(minFreeIndex).second.size(); ++i) {
   simplexTable.at(minFreeIndex).second.at(i) /=
        divide;
  for (size_t i{}; i < simplexTable.size(); ++i) {</pre>
   if (i != minFreeIndex) {
    const double divider{-
                       simplexTable.at(i).second.at(minColIndex) /
                 simplexTable.at(minFreeIndex).second.at(minColIndex)};
    for (size_t j{}; j <
               simplexTable.at(i).second.size(); ++j) {
      simplexTable.at(i).second.at(j) +=
           (divider * simplexTable.at(minFreeIndex).second.at(j));
  simplexTable.at(minFreeIndex).first = "x" +
                         std::to_string(minColIndex);
  std::cout << "The problem has no solution due to the absence "</pre>
  std::exit(1);
 outputSimplexTable(simplexTable);
return simplexTable.at(simplexTable.size() - 1).second.at(0);
louble fractionPart(const double &value) {
if (std::fabs(value) <= DBL_EPSILON_IN_MY_CASE) {</pre>
return 0:
return value - std::floor(value);
```

```
oool isInteger(const double &value) {
return (fractionPart(value) <= DBL_EPSILON_IN_MY_CASE);</pre>
oool resultIsInteger(const SimplexTable &simplexTable, const
std::vector<std::string> &integerVar) {
for (size_t i{}; i < integerVar.size(); ++i) {</pre>
 for (size_t j{}; j < simplexTable.size() - 1; ++j) {</pre>
  if (simplexTable.at(j).first == integerVar.at(i) &&
     !isInteger(simplexTable.at(j).second.at(0))) {
size_t rowIndexOfMaxFraction(const SimplexTable &simplexTable) {
size_t maxIndex{};
double maxValue{std::numeric_limits<double>::min()};
for (size_t i{}; i < simplexTable.size() - 1; ++i) {</pre>
       fracPart{fractionPart(simplexTable.at(i).second.at(0))};
 if (fracPart - maxValue > DBL_EPSILON_IN_MY_CASE) {
   maxValue = fracPart;
   maxIndex = i;
return maxIndex;
louble GomorysFirstAlgorithm(SimplexTable &simplexTable, const
std::vector<std::string> &integerVar) {
double result{};
while (true) {
 result = generalizedSimplexMethod(simplexTable);
 if (resultIsInteger(simplexTable, integerVar)) {
  return result;
 * build Section of Gomory
 size_t maxRow{rowIndexOfMaxFraction(simplexTable)};
  simplexTable.push_back(std::make_pair(std::string("x" +
                                std::to_string(simplexTable.at(0).second.size())),
  for (size_t i{}; i <
            simplexTable.at(maxRow).second.size(); ++i) {
   simplexTable.at(simplexTable.size() -
             1).second.push_back(-
                              fractionPart(simplexTable.at(maxRow).second.at(i)));
  for (size_t i{}; i < simplexTable.size(); ++i) {</pre>
  if (i != simplexTable.size() - 1) {
    simplexTable.at(i).second.push_back(0);
   } else {
    simplexTable.at(i).second.push_back(1);
 std::swap(simplexTable.at(simplexTable.size() - 1),
        simplexTable.at(simplexTable.size() - 2));
nt main(int argc, char **argv) {
```

```
size_t numberOfIntegerVar{};
std::cin >> numberOfIntegerVar;
std::vector<std::string>
    integerVariables(numberOfIntegerVar);
for (size_t i{}; i < numberOfIntegerVar; ++i) {</pre>
std::cin >> integerVariables.at(i);
size_t numberOfRows{};
size_t numberOfCols{};
std::cout << "Number of rows in simplex table = ";</pre>
std::cin >> numberOfRows;
std::cin >> numberOfCols;
SimplexTable simplexTable(numberOfRows);
for (size_t i{}; i < numberOfRows; ++i) {</pre>
 std::string basisVarName{};
 std::cin >> basisVarName;
 simplexTable.at(i).first = basisVarName;
 for (size_t j{}; j < numberOfCols; ++j) {</pre>
  double value{};
  std::cin >> value;
  simplexTable.at(i).second.push_back(value);
std::cout << std::setprecision(3);</pre>
double maxFunctValue{GomorysFirstAlgorithm(simplexTable,
                          integerVariables)};
std::cout << "Max function value = " << maxFunctValue <<
derivationOfTheOptimumPoint(simplexTable, integerVariables);
return 0;
```

Результат работы программы:

```
Number of integer variables =5
Enter variables that are integers (In ascending order of indices) :x1 \times 2 \times 3 \times 4 \times 5
Number of rows in simp
lex table =
Number of cols in simplex table = 6
Enter simplex table(with the names of basic variables) :
Simplex table :
Simplex table :
                                    х4
                                      0.818 0
                                      -0.0909 -0
                                      -0.182 1
       15.3 0
                                      -0.636 0
Simplex table :
Simplex table :
                                              -0.268
Simplex table :
                        7.89 0.222 0
                      0.444 0.111 0
                       7.89
Simplex table :
                     X2
                        7.89 1.22 1
-0.889 -0.222 -0
Simplex table :
```

BV .	F۷	x1	x2	х3	х4	x5	хó	х7
х4	36				1		10	0
x1		1					1	
x5	22					1	-32	
x2	2		1				-3	
x7	-0.5	-0	-0	-0.25	-0	-0	-0.875	1
	210						65	
Simpl	ex table							
BV	F۷	x1	х2	х3	х4	х5	Хó	х7
χ4	32				1		10	
x1		1					1	1
x5	24					1	-32	-2
x2	2		1				-3	
х3								
Z	188	Θ	Θ	Θ	Θ	0	65	34

Вывод: Освоил метод сечения Гомори для полностью целочисленных задач. Изучил алгоритм этого метода. Программно реализовал этот алгоритм.