Лабораторная работа №4

Модель гармонических колебаний

Якушевич Артём Юрьевич

Содержание

1	целі	ь работы	/							
2		ретическая справка Уравнение свободных колебаний	8							
3	Зада		9							
	3.1	1. Построить решение уравнения гармонического осциллятора без затухания.	9							
	3.2	2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазо-								
	3.3	вый портрет гармонических колебаний с затуханием	9							
		если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.	9							
4	Вып	олнение лабораторной работы	10							
5	Стан	дартные библиотеки	11							
6	Первый случай (рис. 6.1)									
7	Запишем правую часть уравнения (рис. 7.1)									
8	Далее запишем вектор-функцию f(t, x) для решения системы дифференциальных уравнений x' = y(t, x)(рис. 8.1)									
9	Так выглядит вектор начальных условий x(t0) = x0 x' = y(t, x)(рис. 9.1)									
10	Инте	ервал, на котором будет решаться задача (рис. 10.1)	16							
11		аем дифференциальные уравнения с начальным условием x(t0) = x0 на ервале t с правой частью,	17							
12	запи	сываем y1 y2 (рис. 12.1)	18							
13	Для	второго случая (рис. 13.1)	19							
14	Запи	ишем правую часть уравнения (рис. 14.1)	20							

27	Выводы	37										
	ниям первого порядка	35 35										
	26.2.4 Запишите алгоритм перехода от дифференциального уравне- нения второго порядка к двум дифференциальным уравне-											
	26.2.3 Запишите модель математического маятника	34										
	26.2.2 Дайте определение осциллятора	34										
	26.2.1 Запишите простейшую модель гармонических колебаний.	34										
	26.2 Ответы на вопросы	34										
20	26.1 Графики	32										
26	Переписываем отдельно ууу1 и ууу2 (рис. 26.1)	32										
25	Решаем дифференциальные уравнения с начальным условием x(t0) = x0 на интервале t с правой частью, заданной у и записываем решение в матрицу x (рис. 25.1)	31										
24	Интервал, на котором будет решаться задача (рис. 24.1)	30										
23	3 Вектор начальных условий х(t0) = х0 (рис. 23.1)											
22	2 Так выглядим вектор-функция f(t, x) для решения системы дифференциальных уравнений x' = y(t, x) (рис. 22.1)											
21	Запишем правуб часть уравнения (рис. 21.1)	27										
20	И наконец третий случай (рис. 20.1)	26										
19	Переписываем отдельно уу1 и уу2 (рис. 19.1)	25										
18	8 Решаем дифференциальные уравнения с начальным условием x(t0) = x0 на интервале t с правой частью,											
17	7 Так выглядит интервал, на котором будет решаться задача (рис. 17.1)											
16	Так выглядит вектор начальных условий x(t0) = x0 (рис. 16.1)											
1)	далее запишем вектор-функцию $f(t, x)$ для решения системы дифференциальных уравнений $x' = y(t, x)$ (рис. 15.1)											

List of Tables

List of Figures

6.1	Первый случай	. 12
7.1	Уравнение	. 13
8.1	Вектор-функция	. 14
9.1	вектор начальных условий	. 15
10.1	Интервал	. 16
11.1	дифференциальные уравнения	17
12.1	y1 y2	. 18
13.1	Второй случай	. 19
14.1	правая часть уравнения	. 20
15.1	вектор-функция	21
16.1	Вектор начальных условий	. 22
17.1	Интервал	. 23
18.1	Рещение диф уравнения и матрица	. 24
19.1	уу1 и уу2	. 25
20.1	третий случай	. 26
21.1	Правая часть уравнения	. 27
22.1	Вектор-функция	. 28
23.1	Вектор-функция	. 29
24.1	Интервал	30
25.1	Дифференциальные уравнения	31
26.2	ууу1 и ууу2	

															_	
26.4 Третий случай															3	4
•																

1 Цель работы

Рассмотреть фазовый портрет гармонического осциллятора и решить уравнения гармонического осциллятора для следующих случаев

На интервале $t \in [0;45]$ (шаг 0.05) с начальными условиями $x_0 = 0.9, y_0 = 0.9$

2 Теоретическая справка

2.1 Уравнение свободных колебаний

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + w_0^2 x = f(t)$$

w — частота

 γ — затухание

3 Задание

- 3.1 1. Построить решение уравнения гармонического осциллятора без затухания.
- 3.2 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием.
- 3.3 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.

4 Выполнение лабораторной работы

5 Стандартные библиотеки

import math import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt

6 Первый случай (рис. 6.1)

Первый случай

Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+2.7x=0$

```
In [110]: w = math.sqrt(2.7);
g = 0.00;
```

Figure 6.1: Первый случай

7 Запишем правую часть уравнения (рис.7.1)

Figure 7.1: Уравнение

8 Далее запишем вектор-функцию f(t, x) для решения системы дифференциальных уравнений x' = y(t, x)(рис. 8.1)

Figure 8.1: Вектор-функция

9 Так выглядит вектор начальныхусловий x(t0) = x0 x' = y(t, x)(рис. 9.1)

```
Вектор начальных условий x(t0) = x0

In [113]: | x0 = np.array([0.7,0.7])
```

Figure 9.1: вектор начальных условий

10 Интервал, на котором будет решаться задача (рис. 10.1)

Figure 10.1: Интервал

11 Решаем дифференциальные уравнения с начальным условием x(t0) = x0 на интервале t с правой частью,

заданной у и записываем решение в матрицу х (рис. 11.1)

Figure 11.1: дифференциальные уравнения

12 записываем у1 у2 (рис. 12.1)

y1 = x[:,0]

```
In [117]: y1 = x[:,0]
In [118]: y2 = x[:,1]
In [119]: plt.plot(y1,y2)
    plt.grid(axis='both')
```

Figure 12.1: y1 y2

plt.plot(y1,y2) plt.grid(axis='both')

13 Для второго случая (рис. 13.1)

Второй случай

Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+2.7\dot{x}+2.7x=0$

```
In [120]: w2 = math.sqrt(2.7);
g2 = 1.35;
```

Figure 13.1: Второй случай

14 Запишем правую часть уравнения (рис. 14.1)

```
def f2(tt):
    f2 = 0
    return f2
```

Figure 14.1: правая часть уравнения

15 далее запишем вектор-функцию f(t, x) для решения системы дифференциальных уравнений x' = y(t, x) (рис. 15.1)

```
def y22(xx, tt):
    dxx1 = xx[1]
    dxx2 = - w2*w2*xx[0] - 2*g2*xx[1] - f2(tt)
    return dxx1, dxx2
```

Figure 15.1: вектор-функция

16 Так выглядит вектор начальных условий x(t0) = x0 (рис. 16.1)

```
23]: xx0 = np.array([0.7, 0.7])
```

Figure 16.1: Вектор начальных условий

17 Так выглядит интервал, на котором будет решаться задача (рис. 17.1)

]: tt = np.arange(0, 47, 0.05)

Figure 17.1: Интервал

18 Решаем дифференциальные уравнения с начальным условием x(t0) = x0 на интервале t с правой частью,

заданной у и записываем решение в матрицу х (рис. 18.1)

```
]: xx = odeint(y22, xx0, tt)
```

Figure 18.1: Рещение диф уравнения и матрица

19 Переписываем отдельно уу1 и уу2 (рис. 19.1)

```
127]: yy1 = xx[:,0]

128]: yy2 = xx[:,1]

129]: plt.plot(yy1,yy2)
  plt.grid(axis='both')
```

Figure 19.1: yy1 и yy2

20 И наконец третий случай (рис. 20.1)

```
L30]: w3 = math.sqrt(0.7);
g3 = 8.50;
```

Figure 20.1: третий случай

21 Запишем правуб часть уравнения (рис. 21.1)

```
def f3(ttt):
f3 = 0.7*np.sin(7*ttt)
return f3
```

Figure 21.1: Правая часть уравнения

22 Так выглядим вектор-функция f(t, x) для решения системы дифференциальных уравнений x' = y(t, x) (рис. 22.1)

```
def y33(xxx, ttt):
    dxxx1 = xxx[1]
    dxxx2 = - w3*w3*xxx[0] - 2*g3*xxx[1] - f3(ttt)
    return dxxx1, dxxx2
```

Figure 22.1: Вектор-функция

23 Вектор начальных условий x(t0) = x0 (рис. 23.1)

```
: xxx0 = np.array([0.7, 0.7])
```

Figure 23.1: Вектор-функция

24 Интервал, на котором будет решаться задача (рис. 24.1)

```
]: ttt = np.arange(0, 47, 0.05)
```

Figure 24.1: Интервал

25 Решаем дифференциальные уравнения с начальным условием x(t0) = x0 на интервале t с правой частью, заданной у и записываем решение в матрицу x (рис. 25.1)

```
35]: xxx = odeint(y33, xxx0, ttt)
```

Figure 25.1: Дифференциальные уравнения

26 Переписываем отдельно ууу1 и ууу2 (рис. 26.1)

```
[137]: yyy1 = xxx[:,0]
[138]: yyy2 = xxx[:,1]
[139]: plt.plot(yyy1,yyy2)
    plt.grid(axis='both')
```

Figure 26.1: ууу1 и ууу2

26.1 Графики

График первого случая. Колебания гармонического осциллятора без затуханий и без действий внешней силы (рис. 26.2)

Figure 26.2: Первый случай

График второго случая. Колебания гармонического осциллятора с затуханием и без действий внешней силы (рис. 26.3)

Figure 26.3: Второй случай

График третьего случая. Колебания гармонического осциллятора с затуханием и под действием внешней силы (рис. 26.4)

Figure 26.4: Третий случай

26.2 Ответы на вопросы

26.2.1 Запишите простейшую модель гармонических колебаний

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением $x=x_mcos(\omega t+\varphi 0)$.

26.2.2 Дайте определение осциллятора

Осциллятор — система, совершающая колебания, то есть показатели которой периодически повторяются во времени.

26.2.3 Запишите модель математического маятника

Уравнение динамики принимает вид:

$$\frac{d^2\alpha}{dt^2} + \frac{g}{L}sin\alpha = 0$$

В случае малых колебаний полагают $sin lpha \approx lpha$. В результате возникает линейное дифференциальное уравнение

$$\frac{d^2\alpha}{dt^2} + \frac{g}{L}\alpha = 0$$

или

$$\frac{d^2\alpha}{dt^2} + \omega^2\alpha = 0$$

26.2.4 Запишите алгоритм перехода от дифференциального уравнения второго порядка к двум дифференциальным уравнениям первого порядка

Пусть у нас есть дифференциальное уравнение 2-го порядка:

$$\ddot{x} + w_0^2 x = f(t)$$

Для перехода к системе уравнений первого порядка сделаем замену (это метод Ранге-Кутты):

$$y = \dot{x}$$

Тогда получим систему уравнений:

$$\begin{cases} y = \dot{x} \\ \dot{y} = -w_0^2 x \end{cases}$$

26.2.5 Что такое фазовый портрет и фазовая траектория?

Фазовый портрет — то, как величины, описывающие состояние системы (= дина-мические переменные), зависят друг от друга. Фазовая траектория — кривая в фазовом пространстве, составленная из точек, представляющих состояние динамической системы в последовательные моменты времени в течение всего

времени эволюции.

27 Выводы

Я промоделировал фазовый портрет гармонического осциллятора и решил уравнения гармонического осциллятора для 3х случаев: колебания гармонического осциллятора без затуханий и без действий внешней силы, колебания гармонического осциллятора с затуханием и без действий внешней силы, колебания гармонического осциллятора с затуханием и под действием внешней силы.