1

GATE 2007 EE

GUNDA SRIHAAS EE24BTECH11026

- 69. Which one of the following statements regarding the INT (*interrupt*) and the BRQ (*busrequest*) pins in a CPU is true?
 - a) The BRQ pin is sampled after every instruction cycle ,but the INT is sampled after every machine cycle
 - b) Both INT and BRQ are sampled after every machine cycle
 - c) The INT pin is sampled after every instruction cycle, but the BRQ is sampled after every machine cycle
 - d) Both INT and BRQ are sampled after every instruction cycle
- 70. A bridge circuit is shown in the figure below .Which one of the sequences given below is most suitable for balancing the bridge?

- a) First adjust R_4 , and then adjust R_1
- b) First adjust R_2 , and then adjust R_3
- c) First adjust R_2 , and then adjust R_4
- d) First adjust R_4 , and then adjust R_2

I. Common Data Questions

Common Data for Questions 71, 72, 73:

A three phase squirrel cage induction motor has a starting current of seven times the full load current and full load slip of 5%

71. If an autotransformer is used for reduced voltage starting to provide 1.5 per unit starting torque,the autotransformer ratio (%) should be

a) 57.77%	b) 72.56%	c) 78.25%	d) 81.33%
72. If a star-delta starter is used to star this induction motor, the per unit starting torque will be			
a) 0.607	b) 0.816	c) 1.225	d) 1.616
73. If a starting torque of 0.5 per unit is required then the per unit starting current should be			
a) 4.65	b) 3.75	c) 3.16	d) 2.13
Common Data for Questions 74,75: A 1:1 Pulse Transformer (PT) is used to trigger the SCR in the below figure. The SCR is rated at $1.5kV$, $250A$ with $I_L = 250mA$, $I_H = 150mA$, $and I_G max = 150mA$, $I_G min = 100mA$. The SCR is connected to an inductive load, where $L = 150mH$ in series with a small resistance and the supply voltage is $200V$ dc. The forward drops of all transistors/diodes and gate-cathode junction during ON state are $1.0V$			
a) $4.7k\Omega$	b) 470Ω	c) 47Ω	d) 4.7Ω
75. The minimum approximate volt-second rating of pulse transformer suitable for triggering the <i>SCR</i> should be: (volt-second rating is the maximum of product of the voltage and the width of the pulse that may applied)			
a) $2000 \mu V-s$	b) 200μV-s	c) 20µV-s	d) $2.0\mu\text{V-s}$
II. Linked Answer Questions: Q.76 to Q.85 carry two marks each.			
11.	LINKED ANSWER QUESTIONS	Q.76 to Q.85 carry two	MARKS EACH.
Statement for Lin An inductor design with a cut of an air	aked Answer Questions 76 and with 400 turns coil wour gap length of 1 mm. The loss, iron reluctance and	&77: and on an iron core of 16 coil is connected to a 23	$5cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect
Statement for Lin An inductor design with a cut of an air coil resistance, core	aked Answer Questions 76 and with 400 turns coil wour gap length of 1 mm. The loss, iron reluctance and	&77: and on an iron core of 16 coil is connected to a 23	$5cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A	nked Answer Questions 76 and with 400 turns coil wour gap length of 1 mm. The e loss, iron reluctance and inductor is	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ_0 = c) 4.56A	$5cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $4\pi \times 10^{-7}$ H/m)
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A	aked Answer Questions 76 and with 400 turns coil would gap length of 1 mm. The loss, iron reluctance and inductor is b) 9.04A	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ_0 = c) 4.56A	$5cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $4\pi \times 10^{-7}$ H/m)
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A 77. The average force a) 829N Statement for Lin	aked Answer Questions 76 and with 400 turns coil would reproduce the first part of 1 mm. The eloss, iron reluctance and inductor is b) 9.04A on the core to reduce the a b) 1666.22N aked Answer Questions 78	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ_0 = c) 4.56 <i>A</i> ir gap will be c) 3332.47 <i>N</i>	$6cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $4\pi \times 10^{-7}$ H/m)
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A 77. The average force a) 829N Statement for Lin Cayley-Hamilton T	aked Answer Questions 76 and with 400 turns coil would reproduce the loss, iron reluctance and inductor is b) 9.04A on the core to reduce the a b) 1666.22N aked Answer Questions 78 Theorem states that a square	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ_0 = c) 4.56 <i>A</i> ir gap will be c) 3332.47 <i>N</i>	$6cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $4\pi \times 10^{-7}$ H/m) d) 2.28A
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A 77. The average force a) 829N Statement for Lin Cayley-Hamilton T	aked Answer Questions 76 and with 400 turns coil would gap length of 1 mm. The le loss, iron reluctance and linductor is b) 9.04A on the core to reduce the a b) 1666.22N aked Answer Questions 78 Theorem states that a square	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ ₀ = c) 4.56 <i>A</i> ir gap will be c) 3332.47 <i>N</i> & 79: e matrix satisfies its own	$6cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $= 4\pi \times 10^{-7}$ H/m) d) $2.28A$ d) $6664.84N$ characteristic equation. Con-
Statement for Lin An inductor design with a cut of an air coil resistance, core 76. The current in the a) 18.08A 77. The average force a) 829N Statement for Lin Cayley-Hamilton T sider a matrix	aked Answer Questions 76 and with 400 turns coil would gap length of 1 mm. The le loss, iron reluctance and linductor is b) 9.04A on the core to reduce the a b) 1666.22N aked Answer Questions 78 Theorem states that a square	&77: and on an iron core of 16 coil is connected to a 23 leakage inductance. (μ_0 = c) 4.56A ir gap will be c) 3332.47N & 79: e matrix satisfies its own $\begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix}$	$6cm^2$ cross-sectional area and $0V$, $50Hz$ AC supply. Neglect $= 4\pi \times 10^{-7}$ H/m) d) $2.28A$ d) $6664.84N$ characteristic equation. Con-

- a) 511A + 510I
- b) 309A + 104I
- c) 154A + 155I
- d) $\exp(9A)$

Consider the R-L-C circuit shown in figure.

- 80. For a step-input e_i , the overshoot in the output e_o will be
 - a) 0, since the system is not under-damped
 - b) 5%
 - c) 16%
 - d) 48%
- 81. If the above step response is to be observed on a non-storage CRO, then it would be best to have the e_i as
 - a) Step function
 - b) Square wave of 50Hz
 - c) Square wave of 300Hz
 - d) Square wave of 2.0KHz

Statement for Linked Answer Questions 82 & 83:

The associated figure shows the two types of rotate right instructions R1, R2 available in a micro-processor where Reg is an 8-bit register and C is the carry bit. The rotate left instructions L1 and L2 are similar except that C now links the most significant bit of Reg instead of the least significant one.

- 82. Suppose *Reg* contains the 2' scomplementnumber 11010110. If this number is divided by 2 the answer should be
 - a) 01101011
 - b) 10010101
 - c) 11110001
 - d) 11101011
- 83. Such a division can be correctly performed by the following set of operations
 - (A) L2, L2, R1
 - (B) L2, R1, R2

- (C) R2, L1, R1
- (D) R1, L2, R2

Statement for Linked Answer Questions 84 & 85:

- 84. A signal is processed by a causal filter with transfer function G(s). For a distortion-free output signal waveform, G(s) must
 - a) provide zero phase shift for all frequency
 - b) provide constant phase shift for all frequency
 - c) provide linear phase shift that is proportional to frequency
 - d) provide a phase shift that is inversely proportional to frequency
- 85. $G(z) = \alpha z^2 + \beta z^5$ is a low-pass digital filter with a phase characteristic same as that of the above question if
 - a) $\alpha = \beta$
 - b) $\alpha = -\beta$
 - c) $\alpha = \beta^{1/3}$
 - d) $\alpha = \beta^{-(1/3)}$