(88.4)

similarities to the regression models discussed in Chapter 3. include a fixed basis function transformation $\phi(\mathbf{x})$, as this will highlight some useful ing parameter w_0 plays the role of a bias. For the remainder of this chapter, we shall basis functions is typically set to a constant, say $\phi_0(\mathbf{x})=1$, so that the correspond-

the posterior probabilities easier. space. However, suitable choices of nonlinearity can make the process of modelling the level of overlap, or create overlap where none existed in the original observation transformations $\phi(\mathbf{x})$ cannot remove such class overlap. Indeed, they can increase applying standard decision theory, as discussed in Chapter 1. Note that nonlinear mal solution is obtained by modelling the posterior probabilities accurately and then $p(C_k|\mathbf{x})$, which, for at least some values of \mathbf{x} , are not 0 or 1. In such cases, the optithe class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$. This corresponds to posterior probabilities For many problems of practical interest, there is significant overlap between

duce many of the key concepts needed for an understanding of their more complex play an important role in applications, and a discussion of such models will introdata. Notwithstanding these limitations, models with fixed nonlinear basis functions resolved in later chapters by allowing the basis functions themselves to adapt to the Such fixed basis function models have important limitations, and these will be

4.3.2 Logistic regression

can be written as a logistic sigmoid acting on a linear function of the feature vector we saw that under rather general assumptions, the posterior probability of class \mathcal{C}_1 of two-class classification. In our discussion of generative approaches in Section 4.2, We begin our treatment of generalized linear models by considering the problem

$$(78.h) \qquad (\phi^{\mathsf{T}}\mathbf{w}) \, \sigma = (\phi)y = (\phi|_{\mathbb{I}}\mathcal{I})q$$

although it should be emphasized that this is a model for classification rather than (4.59). In the terminology of statistics, this model is known as logistic regression, with $p(\mathcal{C}_2|\pmb{\phi})=1-p(\mathcal{C}_1|\pmb{\phi}).$ Here $\sigma(\cdot)$ is the logistic sigmoid function defined by

logistic regression model directly. regression. For large values of M, there is a clear advantage in working with the in contrast to the linear dependence on M of the number of parameters in logistic this gives a total of M(M+5)/2+1 parameters, which grows quadratically with M, parameters for the (shared) covariance matrix. Together with the class prior $p(C_1)$, likelihood, we would have used 2M parameters for the means and M(M+1)/2By contrast, if we had fitted Gaussian class conditional densities using maximum For an M-dimensional feature space ϕ , this model has M adjustable parameters.

moid function, which can conveniently be expressed in terms of the sigmoid function regression model. To do this, we shall make use of the derivative of the logistic sig-We now use maximum likelihood to determine the parameters of the logistic

 $(o-1)o = \frac{ob}{ab}$

Exercise 4.12

3.E noitos2

shown by the black curve in the left-hand plot. discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space, (ϕ_1,ϕ_2) together with the linear decision boundary obtained given by a logistic regression model of the form and with contours shown by the green circles. The right-hand plot shows the corresponding feature space Gaussian' basis functions $\phi_1(\mathbf{x})$ and $\phi_2(\mathbf{x})$ are defined in this space with centres shown by the green crosses shows the original input space (x_1, x_2) together with data points from two classes labelled red and blue. Two Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot

conditional density assumptions give a poor approximation to the true distributions. It may also lead to improved predictive performance, particularly when the classwill typically be fewer adaptive parameters to be determined, as we shall see shortly. discriminative training. One advantage of the discriminative approach is that there tion defined through the conditional distribution $p(\mathcal{C}_k|\mathbf{x})$, which represents a form of ginal distribution $p(\mathbf{x})$. In the direct approach, we are maximizing a likelihood functake such a model and generate synthetic data by drawing values of \mathbf{x} from the mar-Bayes' theorem, represents an example of generative modelling, because we could

4.3.1 Fixed basis functions

space x. Note that as in our discussion of linear models for regression, one of the in the feature space $\phi(\mathbf{x})$ need not be linearly separable in the original observation original x space, as illustrated in Figure 4.12. Classes that are linearly separable the feature space ϕ , and these correspond to nonlinear decision boundaries in the vector of basis functions $\phi(\mathbf{x})$. The resulting decision boundaries will be linear in applicable if we first make a fixed nonlinear transformation of the inputs using a rectly with the original input vector x. However, all of the algorithms are equally So far in this chapter, we have considered classification models that work diFor a data set $\{\phi_n, t_n\}$, where $t_n \in \{0, 1\}$ and $\phi_n = \phi(\mathbf{x}_n)$, with $n = 1, \ldots, N$, the likelihood function can be written

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \left\{ 1 - y_n \right\}^{1 - t_n}$$
 (4.89)

where $\mathbf{t} = (t_1, \dots, t_N)^T$ and $y_n = p(\mathcal{C}_1 | \phi_n)$. As usual, we can define an error function by taking the negative logarithm of the likelihood, which gives the *cross-entropy* error function in the form

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$
(4.90)

where $y_n = \sigma(a_n)$ and $a_n = \mathbf{w}^T \boldsymbol{\phi}_n$. Taking the gradient of the error function with respect to \mathbf{w} , we obtain

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$
 (4.91)

Section 3.1.1

where we have made use of (4.88). We see that the factor involving the derivative of the logistic sigmoid has cancelled, leading to a simplified form for the gradient of the log likelihood. In particular, the contribution to the gradient from data point n is given by the 'error' $y_n - t_n$ between the target value and the prediction of the model, times the basis function vector ϕ_n . Furthermore, comparison with (3.13) shows that this takes precisely the same form as the gradient of the sum-of-squares error function for the linear regression model.

If desired, we could make use of the result (4.91) to give a sequential algorithm in which patterns are presented one at a time, in which each of the weight vectors is updated using (3.22) in which ∇E_n is the n^{th} term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for data sets that are linearly separable. This arises because the maximum likelihood solution occurs when the hyperplane corresponding to $\sigma=0.5$, equivalent to $\mathbf{w}^{\mathrm{T}}\phi=$ 0, separates the two classes and the magnitude of w goes to infinity. In this case, the logistic sigmoid function becomes infinitely steep in feature space, corresponding to a Heaviside step function, so that every training point from each class k is assigned a posterior probability $p(\mathcal{C}_k|\mathbf{x})=1$. Furthermore, there is typically a continuum of such solutions because any separating hyperplane will give rise to the same posterior probabilities at the training data points, as will be seen later in Figure 10.13. Maximum likelihood provides no way to favour one such solution over another, and which solution is found in practice will depend on the choice of optimization algorithm and on the parameter initialization. Note that the problem will arise even if the number of data points is large compared with the number of parameters in the model, so long as the training data set is linearly separable. The singularity can be avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by adding a regularization term to the error function.

Exercise 4.13

Section 3.1.1

Exercise 4.14

4.3.3 Iterative reweighted least squares

In the case of the linear regression models discussed in Chapter 3, the maximum likelihood solution, on the assumption of a Gaussian noise model, leads to a closed-form solution. This was a consequence of the quadratic dependence of the log likelihood function on the parameter vector \mathbf{w} . For logistic regression, there is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid function. However, the departure from a quadratic form is not substantial. To be precise, the error function is concave, as we shall see shortly, and hence has a unique minimum. Furthermore, the error function can be minimized by an efficient iterative technique based on the *Newton-Raphson* iterative optimization scheme, which uses a local quadratic approximation to the log likelihood function. The Newton-Raphson update, for minimizing a function $E(\mathbf{w})$, takes the form (Fletcher, 1987; Bishop and Nabney, 2008)

$$\mathbf{w}^{\text{(new)}} = \mathbf{w}^{\text{(old)}} - \mathbf{H}^{-1} \nabla E(\mathbf{w}). \tag{4.92}$$

where ${\bf H}$ is the Hessian matrix whose elements comprise the second derivatives of $E({\bf w})$ with respect to the components of ${\bf w}$.

Let us first of all apply the Newton-Raphson method to the linear regression model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian of this error function are given by

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_{n} - t_{n}) \boldsymbol{\phi}_{n} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \mathbf{w} - \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$
(4.93)

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} \phi_n \phi_n^{\mathrm{T}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$
 (4.94)

where Φ is the $N \times M$ design matrix, whose $n^{\rm th}$ row is given by $\phi_n^{\rm T}$. The Newton-Raphson update then takes the form

$$\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - (\mathbf{\Phi}^{T}\mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^{T}\mathbf{\Phi}\mathbf{w}^{(\text{old})} - \mathbf{\Phi}^{T}\mathbf{t} \right\}$$
$$= (\mathbf{\Phi}^{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{T}\mathbf{t}$$
(4.95)

which we recognize as the standard least-squares solution. Note that the error function in this case is quadratic and hence the Newton-Raphson formula gives the exact solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function (4.90) for the logistic regression model. From (4.91) we see that the gradient and Hessian of this error function are given by

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n = \boldsymbol{\Phi}^{\mathrm{T}}(\mathbf{y} - \mathbf{t})$$
 (4.96)

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \phi_n \phi_n^{\mathrm{T}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{R} \mathbf{\Phi}$$
 (4.97)

(4.109)

where we have made use of (4.88). Also, we have introduced the $N \times N$ diagonal matrix \mathbf{R} with elements

$$R_{nn} = y_n(1 - y_n). (4.98)$$

We see that the Hessian is no longer constant but depends on w through the weighting matrix \mathbf{R} , corresponding to the fact that the error function is no longer quadratic. Using the property $0 < y_n < 1$, which follows from the form of the logistic sigmoid function, we see that $\mathbf{u}^T \mathbf{H} \mathbf{u} > 0$ for an arbitrary vector \mathbf{u} , and so the Hessian matrix \mathbf{H} is positive definite. It follows that the error function is a concave function of \mathbf{w} and hence has a unique minimum.

Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then becomes

$$\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{t})$$

$$= (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\text{old})} - \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{t}) \right\}$$

$$= (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \mathbf{R} \mathbf{z}$$
(4.99)

where ${\bf Z}$ is an N-dimensional vector with elements

$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\text{old})} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}). \tag{4.100}$$

We see that the update formula (4.99) takes the form of a set of normal equations for a weighted least-squares problem. Because the weighing matrix \mathbf{R} is not constant but depends on the parameter vector \mathbf{w} , we must apply the normal equations iteratively, each time using the new weight vector \mathbf{w} to compute a revised weighing matrix \mathbf{R} . For this reason, the algorithm is known as *iterative reweighted least squares*, or *IRLS* (Rubin, 1983). As in the weighted least-squares problem, the elements of the diagonal weighting matrix \mathbf{R} can be interpreted as variances because the mean and variance of t in the logistic regression model are given by

$$\mathbb{E}[t] = \sigma(\mathbf{x}) = y \tag{4.101}$$

$$\mathbb{E}[t] = \sigma(\mathbf{x}) = y$$

$$\operatorname{var}[t] = \mathbb{E}[t^2] - \mathbb{E}[t]^2 = \sigma(\mathbf{x}) - \sigma(\mathbf{x})^2 = y(1 - y)$$
(4.102)

where we have used the property $t^2 = t$ for $t \in \{0, 1\}$. In fact, we can interpret IRLS as the solution to a linearized problem in the space of the variable $a = \mathbf{w}^T \boldsymbol{\phi}$. The quantity z_n , which corresponds to the n^{th} element of \mathbf{z} , can then be given a simple interpretation as an effective target value in this space obtained by making a local linear approximation to the logistic sigmoid function around the current operating point $\mathbf{w}^{(\text{old})}$

$$a_n(\mathbf{w}) \simeq a_n(\mathbf{w}^{(\text{old})}) + \frac{\mathrm{d}a_n}{\mathrm{d}y_n}\Big|_{\mathbf{w}^{(\text{old})}} (t_n - y_n)$$

$$= \phi_n^{\mathrm{T}} \mathbf{w}^{(\text{old})} - \frac{(y_n - t_n)}{y_n(1 - y_n)} = z_n. \tag{4.103}$$

4.3.4 Multiclass logistic regression

In our discussion of generative models for multiclass classification, we have seen that for a large class of distributions, the posterior probabilities are given by a softmax transformation of linear functions of the feature variables, so that

$$p(\mathcal{C}_k|\phi) = y_k(\phi) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$
(4.104)

where the 'activations' a_k are given by

$$a_k = \mathbf{w}_k^{\mathrm{T}} \boldsymbol{\phi}. \tag{4.105}$$

There we used maximum likelihood to determine separately the class-conditional densities and the class priors and then found the corresponding posterior probabilities using Bayes' theorem, thereby implicitly determining the parameters $\{\mathbf{w}_k\}$. Here we consider the use of maximum likelihood to determine the parameters $\{\mathbf{w}_k\}$ of this model directly. To do this, we will require the derivatives of y_k with respect to all of the activations a_i . These are given by

$$\frac{\partial y_k}{\partial a_j} = y_k (I_{kj} - y_j) \tag{4.106}$$

where I_{ki} are the elements of the identity matrix.

Next we write down the likelihood function. This is most easily done using the 1-of-K coding scheme in which the target vector \mathbf{t}_n for a feature vector $\boldsymbol{\phi}_n$ belonging to class \mathcal{C}_k is a binary vector with all elements zero except for element k, which equals one. The likelihood function is then given by

$$p(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathcal{C}_k | \boldsymbol{\phi}_n)^{t_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{nk}^{t_{nk}}$$
(4.107)

where $y_{nk} = y_k(\phi_n)$, and T is an $N \times K$ matrix of target variables with elements t_{nk} . Taking the negative logarithm then gives

$$E(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\ln p(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}$$
 (4.108)

which is known as the *cross-entropy* error function for the multiclass classification problem.

We now take the gradient of the error function with respect to one of the parameter vectors \mathbf{w}_j . Making use of the result (4.106) for the derivatives of the softmax function, we obtain

$$\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^{N} (y_{nj} - t_{nj}) \, \phi_n$$

Exercise 4.17

Exercise 4.18

Section 4.2

Exercise 4.20

211

where we have made use of $\sum_{k} t_{nk} = 1$. Once again, we see the same form arising for the gradient as was found for the sum-of-squares error function with the linear model and the cross-entropy error for the logistic regression model, namely the product of the error $(y_{nj}-t_{nj})$ times the basis function ϕ_n . Again, we could use this to formulate a sequential algorithm in which patterns are presented one at a time, in which each of the weight vectors is updated using (3.22).

We have seen that the derivative of the log likelihood function for a linear regression model with respect to the parameter vector \mathbf{w} for a data point n took the form of the 'error' $y_n - t_n$ times the feature vector ϕ_n . Similarly, for the combination of logistic sigmoid activation function and cross-entropy error function (4.90), and for the softmax activation function with the multiclass cross-entropy error function (4.108), we again obtain this same simple form. This is an example of a more general result, as we shall see in Section 4.3.6.

To find a batch algorithm, we again appeal to the Newton-Raphson update to obtain the corresponding IRLS algorithm for the multiclass problem. This requires evaluation of the Hessian matrix that comprises blocks of size $M \times M$ in which block j, k is given by

$$\nabla_{\mathbf{w}_k} \nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N y_{nk} (I_{kj} - y_{nj}) \phi_n \phi_n^{\mathrm{T}}.$$
 (4.110)

As with the two-class problem, the Hessian matrix for the multiclass logistic regression model is positive definite and so the error function again has a unique minimum. Practical details of IRLS for the multiclass case can be found in Bishop and Nabney (2008).

4.3.5 Probit regression

We have seen that, for a broad range of class-conditional distributions, described by the exponential family, the resulting posterior class probabilities are given by a logistic (or softmax) transformation acting on a linear function of the feature variables. However, not all choices of class-conditional density give rise to such a simple form for the posterior probabilities (for instance, if the class-conditional densities are modelled using Gaussian mixtures). This suggests that it might be worth exploring other types of discriminative probabilistic model. For the purposes of this chapter, however, we shall return to the two-class case, and again remain within the framework of generalized linear models so that

$$p(t=1|a) = f(a) (4.111)$$

where $a = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}$, and $f(\cdot)$ is the activation function.

One way to motivate an alternative choice for the link function is to consider a noisy threshold model, as follows. For each input ϕ_n , we evaluate $a_n = \mathbf{w}^T \phi_n$ and then we set the target value according to

$$\begin{cases} t_n = 1 & \text{if } a_n \geqslant \theta \\ t_n = 0 & \text{otherwise.} \end{cases}$$
 (4.112)

Figure 4.13 Schematic example of a probability density $p(\theta)$ shown by the blue curve, given in this example by a mixture of two Gaussians, along with its cumulative distribution function f(a), shown by the red curve. Note that the value of the blue 0.8 curve at any point, such as that indicated by the vertical green line, corresponds to the slope of the red curve at the same point. 0.6Conversely, the value of the red curve at this point corresponds to the area under the blue curve indicated by the shaded green region. In the stochastic threshold model, the class label takes 0.4 the value t=1 if the value of $a=\mathbf{w}^{\mathrm{T}}\phi$ exceeds a threshold, otherwise it takes the value t=0. This is equivalent to an activation 0.2function given by the cumulative distribution function f(a).

If the value of θ is drawn from a probability density $p(\theta)$, then the corresponding activation function will be given by the cumulative distribution function

$$f(a) = \int_{-\infty}^{a} p(\theta) \, \mathrm{d}\theta \tag{4.113}$$

as illustrated in Figure 4.13.

Exercise 4.21

As a specific example, suppose that the density $p(\theta)$ is given by a zero mean, unit variance Gaussian. The corresponding cumulative distribution function is given by

$$\Phi(a) = \int_{-\infty}^{a} \mathcal{N}(\theta|0,1) \,d\theta \tag{4.114}$$

which is known as the *probit* function. It has a sigmoidal shape and is compared with the logistic sigmoid function in Figure 4.9. Note that the use of a more general Gaussian distribution does not change the model because this is equivalent to a re-scaling of the linear coefficients w. Many numerical packages provide for the evaluation of a closely related function defined by

$$\operatorname{erf}(a) = \frac{2}{\sqrt{\pi}} \int_0^a \exp(-\theta^2/2) \, \mathrm{d}\theta$$
 (4.115)

and known as the erf function or error function (not to be confused with the error function of a machine learning model). It is related to the probit function by

$$\Phi(a) = \frac{1}{2} \left\{ 1 + \frac{1}{\sqrt{2}} \operatorname{erf}(a) \right\}.$$
(4.116)

The generalized linear model based on a probit activation function is known as probit

We can determine the parameters of this model using maximum likelihood, by a straightforward extension of the ideas discussed earlier. In practice, the results found using probit regression tend to be similar to those of logistic regression. We shall, however, find another use for the probit model when we discuss Bayesian treatments of logistic regression in Section 4.5.

One issue that can occur in practical applications is that of *outliers*, which can arise for instance through errors in measuring the input vector \mathbf{x} or through mislabelling of the target value t. Because such points can lie a long way to the wrong side of the ideal decision boundary, they can seriously distort the classifier. Note that the logistic and probit regression models behave differently in this respect because the tails of the logistic sigmoid decay asymptotically like $\exp(-x)$ for $x \to \infty$, whereas for the probit activation function they decay like $\exp(-x^2)$, and so the probit model can be significantly more sensitive to outliers.

However, both the logistic and the probit models assume the data is correctly labelled. The effect of mislabelling is easily incorporated into a probabilistic model by introducing a probability ϵ that the target value t has been flipped to the wrong value (Opper and Winther, 2000a), leading to a target value distribution for data point x of the form

$$p(t|\mathbf{x}) = (1 - \epsilon)\sigma(\mathbf{x}) + \epsilon(1 - \sigma(\mathbf{x}))$$

= $\epsilon + (1 - 2\epsilon)\sigma(\mathbf{x})$ (4.117)

where $\sigma(\mathbf{x})$ is the activation function with input vector \mathbf{x} . Here ϵ may be set in advance, or it may be treated as a hyperparameter whose value is inferred from the data.

4.3.6 Canonical link functions

For the linear regression model with a Gaussian noise distribution, the error function, corresponding to the negative log likelihood, is given by (3.12). If we take the derivative with respect to the parameter vector w of the contribution to the error function from a data point n, this takes the form of the 'error' $y_n - t_n$ times the feature vector ϕ_n , where $y_n = \mathbf{w}^T \phi_n$. Similarly, for the combination of the logistic sigmoid activation function and the cross-entropy error function (4.90), and for the softmax activation function with the multiclass cross-entropy error function (4.108), we again obtain this same simple form. We now show that this is a general result of assuming a conditional distribution for the target variable from the exponential family, along with a corresponding choice for the activation function known as the canonical link function.

We again make use of the restricted form (4.84) of exponential family distributions. Note that here we are applying the assumption of exponential family distribution to the target variable t, in contrast to Section 4.2.4 where we applied it to the input vector \mathbf{x} . We therefore consider conditional distributions of the target variable of the form

$$p(t|\eta, s) = \frac{1}{s} h\left(\frac{t}{s}\right) g(\eta) \exp\left\{\frac{\eta t}{s}\right\}. \tag{4.118}$$

Using the same line of argument as led to the derivation of the result (2.226), we see that the conditional mean of t, which we denote by y, is given by

$$y \equiv \mathbb{E}[t|\eta] = -s\frac{d}{d\eta} \ln g(\eta). \tag{4.119}$$

Thus y and η must related, and we denote this relation through $\eta = \psi(y)$.

Following Nelder and Wedderburn (1972), we define a *generalized linear model* to be one for which y is a nonlinear function of a linear combination of the input (or feature) variables so that

$$y = f(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}) \tag{4.120}$$

213

where $f(\cdot)$ is known as the *activation function* in the machine learning literature, and $f^{-1}(\cdot)$ is known as the *link function* in statistics.

Now consider the log likelihood function for this model, which, as a function of η , is given by

$$\ln p(\mathbf{t}|\eta, s) = \sum_{n=1}^{N} \ln p(t_n|\eta, s) = \sum_{n=1}^{N} \left\{ \ln g(\eta_n) + \frac{\eta_n t_n}{s} \right\} + \text{const}$$
 (4.12)

where we are assuming that all observations share a common scale parameter (which corresponds to the noise variance for a Gaussian distribution for instance) and so s is independent of n. The derivative of the log likelihood with respect to the model parameters \mathbf{w} is then given by

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\eta, s) = \sum_{n=1}^{N} \left\{ \frac{d}{d\eta_n} \ln g(\eta_n) + \frac{t_n}{s} \right\} \frac{d\eta_n}{dy_n} \frac{dy_n}{da_n} \nabla a_n$$

$$= \sum_{n=1}^{N} \frac{1}{s} \left\{ t_n - y_n \right\} \psi'(y_n) f'(a_n) \phi_n \qquad (4.122)$$

where $a_n = \mathbf{w}^T \phi_n$, and we have used $y_n = f(a_n)$ together with the result (4.119) for $\mathbb{E}[t|\eta]$. We now see that there is a considerable simplification if we choose a particular form for the link function $f^{-1}(y)$ given by

$$f^{-1}(y) = \psi(y) \tag{4.123}$$

which gives $f(\psi(y)) = y$ and hence $f'(\psi)\psi'(y) = 1$. Also, because $a = f^{-1}(y)$, we have $a = \psi$ and hence $f'(a)\psi'(y) = 1$. In this case, the gradient of the error function reduces to

$$\nabla \ln E(\mathbf{w}) = \frac{1}{s} \sum_{n=1}^{N} \{y_n - t_n\} \phi_n.$$
 (4.124)

For the Gaussian $s = \beta^{-1}$, whereas for the logistic model s = 1.

4.4. The Laplace Approximation

In Section 4.5 we shall discuss the Bayesian treatment of logistic regression. As we shall see, this is more complex than the Bayesian treatment of linear regression models, discussed in Sections 3.3 and 3.5. In particular, we cannot integrate exactly