Implementasi Teknologi Websocket dalam Pengembangan Sistem Berbagi Lokasi Berbasis Web

e-ISSN: 2548-964X

http://j-ptiik.ub.ac.id

Avreghly Barra Al-Ilman¹, Tri Astoto Kurniawan²

Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya Email: ¹avreghly@gmail.com, ²triak@ub.ac.id

Abstrak

Sistem berbagi lokasi adalah sebuah sistem yang memungkinkan penggunanya memberitahukan lokasi geografisnya kepada pengguna lain. Hingga kini, terdapat setidaknya 80 sistem layanan berbagi lokasi dalam basis web maupun native. Kualitas sistem layanan ini secara signifikan dipengaruhi oleh performanya yang berhubungan dengan pemilihan teknologi komunikasi yang tepat antara client dan server. Teknologi komunikasi *client-server* yang paling sesuai untuk digunakan dalam pengembangan sistem layanan berbagi lokasi berbasis web adalah teknologi Websocket. Namun belum ada literatur yang menjelaskan bagaimana teknologi komunikasi Websocket dapat diimplementasikan dalam sistem berbagi lokasi. Permasalahan tersebut berusaha dipecahkan dengan mengembangkan sistem berbagi lokasi berbasis web yang menggunakan Websocket sebagai teknologi komunikasi interaksi clientserver-nya. Sistem dikembangkan dengan model proses waterfall dengan menerapkan paradigma pengembangan berorientasi objek. Sistem dibangun dalam konstruksi client-server dengan server yang dijalankan dalam runtime environment NodeJS dengan memanfaatkan library Socket.IO. Sistem diuji dengan tiga tingkat pengujian: pengujian unit, pengujian integrasi, dan pengujian sistem. Pengujian akurasi juga dilakukan untuk mencari tahu bagaimana akurasi lokasi sistem dalam beberapa kasus penggunaan. Hasil pengujian unit dan integrasi secara white-box dengan metode basis path testing mengindikasikan bahwa setiap operasi dalam klas sistem dapat bekerja dengan baik. Hasil pengujian sistem secara black-box dengan metode requirement testing mengindikasikan bahwa seluruh kebutuhan sistem telah terpenuhi. Berdasar hasil pengujian akurasi, sistem dianjurkan untuk digunakan dengan keadaan terhubung dengan WiFi atau fitur GPS karena sistem menghasilkan akurasi terbaik ketika digunakan dalam kedua kasus penggunaan tersebut.

Kata kunci: aplikasi web, sistem berbagi lokasi, location based service (LBS), AJAX, websocket

Abstract

Location sharing system is a system that allows its users to share their geographic locations to other users. There are at least 80 location sharing service systems now, either in web or native based. The quality of these systems are significantly influenced by their performance that correspond to the selection of the appropriate communication technologies used in communication between client and server. According to the literatures, Websocket technology is the most suitable client-server communication technology for developing a web-based location sharing service system. However, there is no literature which discusses in detail how such technology can be implemented in such system. This research aims to solve such problem by developing a system that utilizes Websocket for client-server interaction to share location. The system was developed in waterfall process model by applying objectoriented development paradigm. The system was built in a client-server construction with Websocket server running on NodeJS runtime environment utilizing the Socket.IO library. The system was tested with three levels of testing: unit testing, integration testing, and system testing. Accuracy test was also conducted to check out in which usage condition that the system will give the most accurate location. The white box testing of the unit and integration testings were done using the basis path testing method. The white box testing's results indicated that every operation in the system's classes works well. Further, the black-box testing's results of the system testing indicated that all system's requirements have been fulfilled. According to accuracy test, system is recommended to be used in exposure of WiFi connection or GPS access for which both usage condition present the best average accuracy value than the others.

Keywords: web application, location sharing, location based service (LBS), AJAX, websocket

1. PENDAHULUAN

Sistem berbagi lokasi adalah sistem yang memungkinkan penggunanya memberitahukan lokasi geografisnya kepada pengguna lain. Hingga kini, terdapat setidaknya 80 layanan, baik dengan basis *web* maupun *native*, yang mengintegrasikan sistem berbagi lokasi dalam layanannya.

Dalam membangun sebuah sistem berbagi lokasi, terdapat beragam teknologi komunikasi vang dapat digunakan. Dalam beberapa literatur. peneliti menemukan pendekatan pengembangan sistem berbagi lokasi yang memanfaatkan teknologi AJAX sebagai teknologi komunikasi client-server. Namun menurut beberapa literatur lain, penggunaan AJAX dalam sistem dengan rate-request tinggi seperti sistem berbagi lokasi berpotensi menyebabkan terjadinya penurunan performa sistem karena penggunaan berlebihan terhadap sumber daya di sisi server (Puranik, et al., 2013). Resiko tersebut membuat AJAX tidak sesuai untuk digunakan sebagai teknologi komunikasi dalam sistem berbagi lokasi berbasis web.

Teknologi yang disimpulkan sebagai teknologi komunikasi paling sesuai untuk digunakan dalam membangun sistem berbagi lokasi berbasis web adalah teknologi Websocket. Menurut hasil studi literatur, Websocket merupakan teknologi yang mampu memberikan performa terbaik ketika diimplementasikan dalam sistem dengan rate-request tinggi, dibandingkan dengan teknologi komunikasi lain termasuk AJAX (Zhang & Shen, 2013). Websocket mampu memberikan reduksi kepadatan lalu lintas jaringan (network traffic), delay rate, dan latensi, khususnya dalam sistem dengan koneksi simultan dalam jumlah besar. Selain itu, teknologi ini adalah teknologi yang secara umum dianggap sebagai pilihan terbaik untuk membangun sistem dengan komunikasi real-time (Liu & Sun, 2012). Beberapa pertimbangan tersebut menempatkan teknologi ini sebagai pilihan teknologi terbaik untuk membangun sistem berbagi lokasi berbasis web. Akan tetapi, berdasarkan penelusuran yang telah dilakukan, masih belum ada literatur yang menerangkan bagaimana pembangunan sistem berbasis lokasi dengan menggunakan teknologi komunikasi ini dapat dilakukan.

Penelitian ini dilakukan untuk mencari jawaban atas permasalahan tersebut. Secara spesifik, penelitian ini dilakukan untuk mencari tahu kebutuhan perangkat lunak apa saja yang harus ada dalam mengembangkan sebuah sistem berbagi lokasi berbasis web yang menggunakan teknologi komunikasi Websocket, mencari tahu bagaimanakah rancangan sistem berbagi lokasi berdasarkan kebutuhan perangkat, serta mencari tahu bagaimana pengujian sistem yang diperlukan untuk memastikan ketercapaian tujuan serta kualitas dari sistem yang dibangun. Untuk mencari solusi atas ketiga rumusan masalah tersebut, dalam penelitian ini dilakukan proses pengembangan sebuah sistem berbagi lokasi berbasis web yang menerapkan Websocket sebagai teknologi komunikasinya.

Dalam penelitian ini, ditetapkan beberapa batasan masalah. Salah satu batasan masalah yang perlu digaris bawahi adalah bahwa fungsi yang disediakan sistem yang dibangun dalam penelitian ini dibatasi hanya pada fungsi dasar sistem berbagi lokasi yaitu mekanisme pelacakan lokasi, pengiriman dan penerimaan, dan visualisasi lokasi. Selain itu, dalam penelitian ini, pengembangan sistem akan dilakukan dengan menerapkan model proses waterfall dalam tahap rekayasa kebutuhan, perancangan, implementasi, dan pengujian.

Bagian selanjutnya dari artikel ini disusun dalam sistematika pembahasan yang terdiri dari: Bagian 2 menjelaskan secara singkat metodologi yang digunakan dalam menyelesaikan penelitian ini. Bagian 3 memaparkan hasil penelitian yang diperoleh melalui tahap-tahap penelitian yang dilalui. Bagian 4 berisi kesimpulan penelitian yang ditarik dari seluruh proses penelitian serta saran yang dapat dilakukan untuk mengembangkan penelitian ini lebih lanjut.

2. METODE PENELITIAN

2.1. Studi Literatur

Pada tahap studi literatur dilakukan penelusuran pustaka serta referensi yang relevan dengan topik penelitian yang dilakukan. Dalam tahapan ini, dilakukan penelusuran sumbersumber tulisan yang pernah dibuat sebelumnya untuk mempelajari penelitian-penelitian terkait dan mempelajari dasar-dasar teori yang dapat dimanfaatkan untuk menyelesaikan penelitian.

Dalam penelitian ini, studi literatur dilakukan pada topik-topik berikut: sistem berbagi lokasi, teknologi komunikasi Websocket, rekayasa perangkat lunak, model proses pengembangan waterfall, pendekatan object oriented, Unified Modelling Language

(UML), JavaScript, Node.JS, SocketIO, Google Map API, Geolocation API, dan Chrome Developer Tools.

2.2. Rekayasa Kebutuhan

Pada tahapan ini dilakukan proses elisitasi kebutuhan, definisi kebutuhan, spesifikasi kebutuhan, uji validitas kebutuhan, dan pemodelan. Seluruh proses tersebut dilakukan untuk mendapatkan kebutuhan fungsional dan nonfungsional yang diterapkan sebagai dasar pembangunan sistem berbagi lokasi berbasis web. Proses rekayasa kebutuhan pada penelitian ini dilakukan dengan pendekatan object oriented analysis (OOA).

Proses elisitasi kebutuhan, dilakukan dengan teknik elisitasi *requirement reuse* dengan mengacu pada tiga sistem yang telah dikembangkan sebelumnya yaitu *Glympse Android*¹, *Find My Friends*², dan *One Touch Location*³.

Proses uji validitas kebutuhan dilakukan dengan melakukan *review* terhadap spesifikasi kebutuhan untuk memastikan bahwa kebutuhan sistem telah memenuhi lima parameter validitas sistem yaitu *validity*, *consistency*, *completeness*, *realism*, dan *verifiability*.

Pada akhir proses rekayasa kebutuhan, kebutuhan sistem dimodelkan sebagai *use case diagram*. Selain itu, model kebutuhan juga disertai dengan *use case scenario* yang digunakan untuk menjelaskan setiap *use case* yang terdapat dalam diagram.

2.3. Perancangan

Pada tahapan ini dilakukan proses transformasi model kebutuhan menjadi model perancangan sistem. Proses perancangan dilakukan dengan pendekatan perancangan berorientasi objek/object oriented design (OOD). Hasil yang didapatkan dari tahapan ini adalah model rancangan yang digunakan untuk melakukan tahap implementasi sistem.

Dalam tahapan ini, dilakukan perancangan arsitektur, perancangan basis data, dan perancangan antarmuka pengguna. Hasil proses perancangan arsitektur sistem direpresentasikan dalam dua diagram yaitu *class diagram* dan *sequence diagram*. Hasil proses perancangan

basis data direpresentasikan sebagai tabel yang berisi penjelasan struktur entitas data nonvolatil yang terlibat dalam sistem. Hasil proses perancangan antarmuka pengguna direpresentasikan sebagai denah/mockup tampilan antarmuka pengguna beserta penjelasan komponen-komponen antarmuka yang terdapat di dalamnya.

2.4. Implementasi

Pada tahap ini dilakukan realisasi rancangan perangkat lunak untuk mewujudkan seluruh model yang dihasilkan dalam proses perancangan menjadi sistem yang dapat dioperasikan. Proses implementasi dilakukan dengan pendekatan pemrograman berorientasi objek/object oriented programming (OOP).

Proses implementasi sistem dibagi menjadi dua bagian: implementasi sistem *client* dan sistem *server*. Proses implementasi sistem *server* dilakukan dengan menggunakan bahasa pemrograman *JavaScript* berorientasi objek dalam *runtime environment Node.JS*. Sedangkan implementasi sistem *client* dilakukan dengan menggunakan *HTML*, *CSS*, dan *JavaScript*.

2.5. Pengujian

Dalam penelitian ini dilakukan dua jenis pengujian yaitu pengujian terhadap kebutuhan sistem dan pengujian akurasi sistem. Pengujian kebutuhan sistem dilakukan dalam tiga tingkatan pengujian yaitu pengujian tingkat unit, pengujian integrasi unit, dan tingkat sistem.

Proses pengujian unit dan integrasi unit dilakukan secara *white-box* dengan metode *basis path testing*. Sedangkan pada tingkat sistem, pengujian dilakukan secara *black-box* dengan metode *requirement testing* terhadap kebutuhan fungsional dan nonfungsional sistem.

Pengujian tingkat sistem dilakukan dengan menciptakan beberapa kasus uji, menjalankan kasus uji tersebut, kemudian menganalisis apakah hasil yang diperoleh dapat membuktikan bahwa definisi kebutuhan telah terpenuhi ataukah tidak. Dalam pengujian terhadap kebutuhan nonfungsional sistem dilakukan dengan memanfaatkan Network Panel dalam Google Chrome Developer Tools. Perangkat lunak ini digunakan untuk menganalisis apakah

¹ https://www.glympse.com/

² Dapat ditemukan di *Google Play Store* dengan ID: com.fsp.android.friendlocator

³ Dapat ditemukan dalam *Google Play Store* dengan ID: *com.creativeworkline.onetouchlocation*

interaksi jaringan antara *client* dan *server* yang terjadi dalam proses berbagi lokasi telah terjadi dengan menggunakan *Websocket* ataukah tidak.

Pengujian akurasi sistem dilakukan untuk menentukan seberapa baik akurasi data lokasi yang diberikan sistem kepada pengguna melalui proses berbagi lokasi sistem. Pengujian ini dilakukan dengan observasi lapang. Dalam pengujian ini, fungsi berbagi lokasi dari sistem diuji coba di beberapa titik lokasi yang telah ditentukan. Sistem diuji dengan menggunakan tiga skenario uji berdasarkan tipe akses jaringan: akses WiFi, akses GPS, dan akses jaringan selular. Ketika proses berbagi lokasi dijalankan, koordinat lokasi yang diperoleh sistem Observer dari sistem Provider dicatat sebagai data hasil pengujian akurasi.

Analisis akurasi dilakukan dengan membandingkan koordinat lokasi yang diperoleh sistem *Observer* dengan koordinat lokasi dari sistem *Provider*. Melalui proses analisis tersebut, akan dapat akan ditentukan, dalam skenario penggunaan manakah sistem dapat menyediakan lokasi dengan akurasi lokasi terbaik.

3. HASIL DAN PEMBAHASAN

3.1. Rekayasa Kebutuhan

Melalui proses rekayasa kebutuhan nonfungsional, diperoleh satu kebutuhan nonfungsional sistem yang ditetapkan yaitu: server dari sistem harus berkomunikasi dengan client menggunakan teknologi Websocket ketika melakukan mekanisme pengiriman dan penyiaran lokasi.

Melalui proses benchmark terhadap tiga sistem yang sudah ada, peneliti berhasil mengidentifikasi fungsionalitas dasar sistem berbasis lokasi. Hasil identifikasi tersebut dicantumkan dalam Tabel 1. Berdasarkan analisis terhadap seluruh fungsionalitas tersebut, ditarik lima definisi kebutuhan yang harus dipenuhi sistem. Kelima definisi kebutuhan tersebut dicantumkan dalam Tabel 2. Berdasarkan analisis, juga berhasil diidentifikasi tiga aktor dalam sistem yang dicantumkan dalam Tabel 3.

Tabel 1. Daftar fungsionalitas dasar (FD) yang dari analisis terhadap sistem yang sudah ada

sistem	no	fd	deskripsi		
Glym pse	1	Share Location	Fitur dalam sistem untuk memulai proses berbagi lokasi.		

		Location	Fitur dalam sistem untuk mengirimkan pesan ke orang lain menggunakan <i>SMS</i> untuk meminta orang lain membagi lokasinya.
	3	Send Glympse To	Fitur dalam sistem untuk mengirimkan kode referensi yang dapat dimasukkan dalam sistem sehingga pengguna lain untuk melihat lokasi pengguna.
	4	View Map	Fitur dalam aplikasi sistem untuk memantau lokasi dari pengguna yang berbagi lokasi.
	5	Change Map Type	Fitur dalam sistem untuk mengganti bagaimana lokasi divisualisasikan.
	6	Change Map Overlays	Fitur dalam sistem untuk mengganti bagaimana lokasi divisualisasikan.
	7	Recentre Location	Fitur dalam sistem untuk meletakkan lokasi dari pengguna yang sedang dilacak lokasinya titik di tengah peta visualisasi.
	1	Create Circle	Fitur dalam sistem untuk membuat sebuah wadah virtual untuk sharing (ruang sharing/sharing room).
qs	2	Join Circle	Fitur dalam sistem untuk melakukan <i>join</i> pada sebuah ruangan <i>sharing</i>
Find My Friends	3	Invite to circle	Fitur dalam sistem untuk mengundang orang lain untuk masuk ke dalam ruangan sharing dengan mengirimkan kode referensi melalui metode yang disediakan
	4	Track Location	Fitur dalam sistem untuk memulai proses pelacakan lokasi dan mengirimkan lokasi ke dalam ruangan sharing yang dikehendaki.
	1	Track Location	Fitur dalam sistem untuk memulai proses pelacakan lokasi.
One Touch Location	2	Send Track	Fitur dalam sistem untuk mengirimkan kode referensi untuk melihat lokasi kepada orang lain yang dikehendaki.
One T			Dalam sistem ini pengiriman lokasi dapan dilakukan melalui akun sosial media, <i>SMS</i> , atau dengen menyalin kode referensi ke <i>clipboard</i> .

3	Show	Fitur	dalam	aplikasi
	Track	sistem	untuk	memantau
		lokasi d	lari pen	gguna yang
		melaku	kan ber	bagi lokasi.

Tabel 2. Daftar kebutuhan fungsional sistem

no	pernyataan kebutuhan	use case
1	Sistem harus menyediakan halaman bagi pengguna untuk melakukan pembuatan grup untuk melakukan berbagi lokasi (sharing room) baru sebagai media pembagian lokasi dengan pengguna lain	Buat Sharing Room
2	Sistem harus menyediakan halaman bagi pengguna untuk mendaftar sebagai anggota dalam sharing room yang telah dibuat sebelumnya oleh pengguna lain.	Join Sharing Room
3	Ketika berada pada halaman tracking lokasi, sistem harus mampu melacak lokasi pengguna yang hendak membagi lokasi dan kemudian mengirimkannya ke server.	Lacak dan Kirim Lokasi
4	Ketika sistem menerima kiriman data lokasi dari pengguna yang hendak membagikan lokasi, sistem harus mampu mengirimkan lokasi tersebut ke pengguna lain yang terdaftar sebagai <i>Observer</i> dalam <i>sharing room</i> yang dibuat oleh pengguna pengirim.	<i>Update</i> Lokasi
5	Sistem harus menyediakan fungsi bagi pengguna yang menerima informasi lokasi untuk memvisualisasikan data lokasi dalam bentuk peta dua dimensi.	Visualisasi Lokasi

Tabel 3. Aktor dalam sistem

aktor	deskripsi
Provider	Pengguna sistem yang menyiarkan lokasi geografisnya ke dalam sistem. Posisi aktor ini diberikan secara spesifik pada pengguna yang menciptakan sebuah sharing room dalam sistem.
Observer	Pengguna sistem yang menjadi penerima lokasi yang disiarkan oleh <i>Provider</i> . Posisi aktor ini diberikan untuk pengguna yang mendaftar ke dalam sebuah <i>sharing room</i> .
Geolocator	Aktor eksternal sistem yang membantu sistem dalam proses pelacakan lokasi <i>Provider</i> .

Seluruh kebutuhan fungsional tersebut dikelompokkan sebagai dua subsistem berbeda berdasarkan aktor dan fungsi kerja. Kedua subsistem tersebut disebut sebagai Subsistem *Provider* dan Subsistem *Observer*. Adapun representasi kebutuhan-kebutuhan fungsional

tersebut berdasarkan subsistem dapat digambarkan sebagai diagram *use case* yang dicantumkan dalam Gambar 1.

Gambar 1. Use case diagram kebutuhan sistem

3.2. Perancangan Sistem

Melalui proses perancangan sistem diperoleh empat hasil perancangan yaitu rancangan alur dari setiap *use case* yang digambarkan dengan *sequence diagram*, rancangan arsitektur yang direpresentasikan dengan *class diagram*, rancangan entitas data, dan rancangan antarmuka.

Salah satu contoh sequence diagram untuk use case "Buat Sharing Room" disertakan sebagai Gambar 2. Sedangkan rancangan arsitektur sistem yang diperoleh dapat digambarkan sebagai class diagram dalam sistem yang dapat diperhatikan dalam Gambar 4.

Dalam proses perancangan basis data, hanya ditemukan satu entitas data nonvolatil dalam sistem ini yaitu entitas sharing room. Entitas data ini digunakan untuk mencatat informasi sharing room dan mencatat daftar pengguna (Observer) yang akan menjadi penerima kiriman informasi lokasi dari Provider. Rancangan struktur data dari entitas ini dapat diperhatikan dalam Tabel 4.

Tabel 4. Spesifikasi entitas data *Sharing Room*

atribut	tipe data	keterangan
roomID	String	Primary key dari setiap entitas sharing room. Di ciptakan oleh sistem. Harus ada saat pembuatan entitas.
key	String	Kata kunci untuk autentikasi pendaftaran ke dalam <i>sharing room</i> . Berasal dari <i>string</i> yang dimasukkan di awal pembuatan <i>sharing room</i> oleh pengguna. Harus ada saat pembuatan entitas.
providerID	String	Identifier dari Provider yang menciptakan entitas sharing

Gambar 2. Sequence diagram untuk use case "Buat Sharing Room"

		room. Harus ada saat pembuatan entitas.
observerIDs	Array	Array yang berisi daftar identifier Observer yang terdaftar sebagai penerima dalam sharing room.
latitude	Float	Informasi lokasi terakhir yang dikirimkan dalam sistem. Opsional.
longitude	Float	Informasi lokasi terakhir yang dikirimkan dalam sistem. Opsional.
accuracy	Float	Informasi lokasi terakhir yang dikirimkan dalam sistem. Opsional.

Hasil rancangan antarmuka pengguna sistem direpresentasikan dalam bentuk denah/mockup. Salah satu contoh hasil rancangan denah dan spesifikasi antarmuka halaman visualisasi dapat ditemukan dalam Gambar 3 dan Tabel 5.

3.3. Implementasi Sistem

Melalui proses implementasi, diperoleh sebuah prototip sistem yang dapat dioperasikan. Server dari sistem dibangun di atas runtime environment Node.JS dan menggunakan nonrelational database MongoDB dengan memanfaatkan framework aplikasi ExpressJS dan MongooseJS. Sedangkan sisi client sistem diimplementasikan menggunakan teknologi web yang terdiri dari HTML, CSS, dan JavaScript. Interaksi Websocket di sisi client dan server

diwujudkan dengan bantuan library Socket.IO.

Gambar 3. Contoh rancangan antarmuka buat/*create room*

Tabel 5. Spesifikasi antarmuka dari rancangan antarmuka buat/*create room*

no	nama	deskripsi
1	Judul	Menampilkan nama/judul dari halaman sistem
2	Form password	Input box yang digunakan untuk memasukkan password
3	Tombol Buat Ruang	Tombol untuk mengirimkan request pembuatan sharing room ke server.

Sistem yang dihasilkan memiliki skenario penggunaan sebagai berikut:

- 1. *Provider* membuat *sharing room* dengan memasukkan *password sharing room* yang dikehendaki.
- 2. Server menciptakan sebuah sharing room baru dan mengarahkan Provider ke sebuah halaman web dari sharing room tersebut. Di halaman ini Provider dapat menemukan

Gambar 4. Class diagram dari arsitektur sistem

kode unik *sharing room* yang diciptakan oleh sistem dalam proses pembuatan *sharing room*.

- 3. *Provider* membagikan kode unik dan *password sharing room* ke pengguna lain yang hendak menjadi *Observer*.
- 4. *Observer* mengakses sistem dan melakukan *join* ke *sharing room* dengan kode unik dan *password sharing room* yang diberikan oleh *Provider* sebelumnya.
- 5. *Provider* melakukan pengiriman lokasi ke *server*.
- 6. Lokasi disiarkan dan diterima oleh *Observer* yang terhubung melalui halaman *sharing room*.

Contoh hasil implementasi halaman sistem (halaman "buat *sharing room*", halaman "*join sharing room*", dan "*observing room*") digambarkan dalam Gambar 5.

3.4. Pengujian Sistem

Dalam pengujian tingkat unit dan pengujian tingkat komponen (pengujian integrasi), diperoleh hasil yang mengindikasikan bahwa seluruh unit (klas) dalam sistem dapat menjalankan mekanisme yang dimiliki unit baik ketika diuji secara independen maupun ketika saling diintegrasikan dengan komponen yang

berkaitan.

Gambar 5. Contoh hasil rancangan antarmuka halaman "buat *sharing room*", halaman "*join sharing room*", dan halaman "*observing room*"

Dalam pengujian tingkat sistem, hasil pengujian menunjukkan bahwa setiap pengujian yang dilakukan berdasarkan kasus uji menghasilkan nilai valid (hasil uji sesuai dengan ekspektasi kasus uji). Nilai valid ini diperoleh baik dalam pengujian terhadap kebutuhan fungsional maupun nonfungsional. Dalam

pengujian terhadap kebutuhan fungsional, sistem berhasil menghasilkan nilai valid dalam setiap kasus uji yang dibangun berdasarkan *use case* sistem. Dalam pengujian terhadap kebutuhan nonfungsional, sistem terbukti berhasil melakukan komunikasi antara *client* dan *server* menggunakan teknologi komunikasi *Websocket*.

Dalam pengujian akurasi sistem, proses observasi dilakukan di lima titik lokasi dalam lingkungan Fakultas Ilmu Komputer (FILKOM) Universitas Brawijaya Malang (titik-titik koordinat lokasi uji dicantumkan dalam Tabel 6. Setelah pengujian akurasi diselesaikan, untuk setiap titik observasi dari setiap skenario didapatkan hasil pengujian yang dicantumkan dalam Tabel 7. Berdasarkan hasil tersebut. dilakukan analisis seberapa penyimpangan/selisih antara titik koordinat asli dengan koordinat yang diberikan oleh sistem untuk setiap titik observasi di setiap skenario pengujian. Penentuan selisih antar koordinat dilakukan menggunakan kaidah dengan Phytagoras. Analisis perbedaan hasil observasi terhadap koordinat asli setiap titik observasi dicantumkan sebagai lampiran penelitian ini.

Tabel 6. Koordinat titik observasi

titile abaamsaai	koordinat			
titik observasi	longitude	latitude		
1	-7.95371	112.6147		
2	-7.95361	112.6148		
3	-7.95356	112.6150		
4	-7.95372	112.6150		
5	-7.95391	112.6148		

Tabel 7. Data hasil uji akurasi

skenario	titik	koordinat	dari sistem
SKellario	observasi	latitude	longitude
	1	-7.9536443	112.6146969
	2	-7.9537185	112.6147901
1	3	-7.9536230	112.6150694
	4	-7.9537132	112.6148832
	5	-7.9537980	112.6147901
	1	-7.9536443	112.6146969
	2	-7.9537185	112.6147901
2	3	-7.9536230	112.6150694
	4	-7.9537132	112.6148832
	5	-7.9537980	112.6147901
	1	-7.9537132	112.6148832
	2	-7.9537185	112.6147901
3	3	-7.9536230	112.6150694
	4	-7.9536443	112.6146969
	5	-7.9567302	112.6149868

Melalui proses analisis, diperoleh nilai ratarata penyimpangan yang terjadi, baik dalam satuan poin koordinat maupun meter, untuk setiap skenario. Perolehan nilai rata-rata tersebut

dicantumkan dalam Tabel 8.

Tabel 8. Rata-rata selisih koordinat sistem dengan koordinat riil

skenario	rata-rata selisih (poin koordinat)	rata-rata selisih (m)	
Dengan akses WiFi	0.0000961269	10 meter	
Dengan akses GPS	0.0001110804	12 meter	
Dengan jaringan internet seluler saja	0.0007068024	77 meter	

Berdasarkan hasil pengujian terhadap kebutuhan fungsional dan nonfungsional sistem, ditarik kesimpulan bahwa hasil implementasi sistem telah memenuhi seluruh kebutuhan yang dispesifikasikan. Sedangkan berdasarkan pengujian akurasi, sistem dianjurkan untuk digunakan ketika terhubung dengan WiFi atau fitur GPS dinyalakan karena penggunaan dengan koneksi WiFi dan akses GPS memberikan ratarata penyimpangan paling kecil dibandingkan menggunakan koneksi data operator saja (tanpa koneksi WiFi dan akses GPS).

4. PENUTUP

4.1. Kesimpulan

Berdasarkan seluruh tahapan yang telah dilakukan dalam penelitian ini, terdapat beberapa kesimpulan yang dapat ditarik.

Melalui proses rekayasa kebutuhan sistem menghasilkan lima kebutuhan fungsional dan satu kebutuhan nonfungsional yang harus ada dalam sistem berbagi lokasi berbasis web dengan teknologi komunikasi Websocket. Seluruh kebutuhan fungsional dapat direpresentasikan sebagai lima use case dan dua subsistem.

Melalui proses perancangan dan implementasi, seluruh model kebutuhan diketahui dapat dirancang dengan pendekatan berorientasi objek sebagai sistem dalam konstruksi server/client dengan sisi server sistem yang dibangun di atas runtime environment Node.js. Seluruh perancangan juga diketahui dapat diimplementasikan dengan menerapkan model proses waterfall dan pemrograman berorientasi objek JavaScript.

Melalui pengujian yang dilakukan terhadap sistem, diketahui bahwa sistem hasil implementasi telah memenuhi seluruh kebutuhan sistem yang telah dispesifikasikan di awal pengembangan. Terpenuhinya seluruh kebutuhan sistem menjadi dasar penarikan kesimpulan bahwa rancangan yang dipaparkan

dalam penelitian ini merupakan rancangan yang valid. Penelitian ini membuktikan bahwa sebuah sistem berbagi lokasi berbasis *web* dapat dikembangkan dengan mengimplementasikan teknologi *Websocket* sebagai teknologi komunikasi dalam proses berbagi lokasinya.

Hasil proses pengujian juga mengindikasikan bahwa sistem dianjurkan untuk digunakan dengan keadaan terhubung dengan WiFi atau fitur GPS dinyalakan karena penggunaan dengan koneksi WiFi dan akses GPS memiliki rata-rata akurasi terbaik dibandingkan menggunakan koneksi data operator saja.

4.2. Saran

Menurut peneliti, terdapat beberapa hal dapat dilakukan untuk mengembangkan penelitian ini, antara lain:

- 1. Perlu adanya uji *benchmark* terhadap sistem untuk mengetahui detail performa sistem baik di sisi *client* maupun *server*.
- 2. Dalam penelitian ini, kebutuhan yang ditetapkan untuk sistem terbatas pada fitur dasar dari sistem berbagi lokasi. Penambahan kebutuhan-kebutuhan fungsional maupun nonfungsional lain dapat dilakukan untuk menciptakan sistem dengan lebih banyak manfaat.
- 3. Peneliti menyarankan dilakukan pengembangan ulang rancangan sistem untuk memperbaiki kualitas sistem dalam segi sekuritas, performa, dan/atau kemudahan penggunaan.

DAFTAR PUSTAKA

- Bell, D., 2005. Software Engineering for Students. 4th ed. Harlow: Pearson Education Limited.
- Bruegge, B. & Dutoit, A. H., 2010. Object-Oriented Software Engineering Using UML, Patterns, and Java. 3rd ed. s.l.:Pearson.
- Flanagan, D., 2006. *JavaScript: The Definitive Guide*. s.l.:O'Reilly Media, Inc.
- Liu, Q. & Sun, X., 2012. Research of Web Real-Time Communication Based on Web Socket. *International Journal of Communications, Network and System Sciences*, 5(12).
- Ogawa, S., Niibori, M. & Kamada, M., 2015. Web-based location sharing service for

- a group of people to get together. 18th International Conference on Network-Based Information Systems, p. 698.
- Pressman, R. S., 2001. *Software Engineering A Practitioner's Approach*. 5th ed. New York: McGraw-Hill Higher Education.
- Puranik, D., Feiock, D. & Hill, J., 2013. Realtime Monitoring using AJAX and WebSockets. *Engineering of Computer Based Systems (ECBS), 2013 20th IEEE International Conference and Workshops*, pp. 110-118.
- Quillin, M. J., 2001. *Object Oriented Analysis and Design.* s.l.:University of Missouri-St. Louis.
- Sommerville, I., 2011. *Software Engineering*. 9, illustrated ed. Boston: Pearson.
- Tang, K. Et Al., 2010. Rethinking Location Sharing: Exploring the Implications of Social-Driven vs. Purpose-Driven Location Sharing. *Proceedings of the 12th ACM international conference on Ubiquitous computing*, pp. 85-94.
- Tsai, J., Kelley, P. G., Cranor, L. F. & Sadeh, N., 2010. Location-Sharing Technologies: Privacy Risks and Controls. *ISJLP*, Volume 6, p. 119.
- Zhangling, Y. & Mao, D., 2012. A Real-Time Group Communication Architecture Based on WebSocket. *International Journal of Computer and Communication Engineering*, 1(4), p. 408.
- Zhang, L. & Shen, X., 2013. Research and Development of Real-time Monitoring System Based on WebSocket Technology. International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), p. 1955.
- Zickuhr, K., 2012. Three-Quarters of Smartphone Owners Use Location-Based Services. Washington, D.C.: s.n.

Lampiran 1. Tabel analisis seluruh data hasil uji akurasi

Skenario	T:4:1-	Koordinat Asli		Koordina	Koordinat dari Sistem		Selisih Jarak		
	Titik	Latitude	Longitude	Latitude	Longitude	Latitude	Longitude	Jarak	
	1	-7.953713	112.614680	-7.9536443	112.6146969	0.0000687	0.0000169	0.0000707481	
	2	-7.953612	112.614829	-7.9537185	112.6147901	0.0001065	0.0000389	0.0001133820	
Dengan akses WiFi	3	-7.953556	112.614969	-7.9536230	112.6150694	0.0000670	0.0001004	0.0001207030	
	4	-7.953721	112.614951	-7.9537132	112.6148832	0.0000078	0.0000678	0.0000682472	
	5	-7.953905	112.614801	-7.9537980	112.6147901	0.0001070	0.0000109	0.0001075540	
	1	-7.953713	112.614680	-7.9536443	112.6146969	0.0000687	0.0000169	0.0000707481	
	2	-7.953612	112.614829	-7.9536185	112.6148901	0.0000065	0.0000611	0.0000615000	
Dengan akses GPS	3	-7.953556	112.614969	-7.9535230	112.6151694	0.0000330	0.0002004	0.0002031000	
_	4	-7.953721	112.614951	-7.9536132	112.6149832	0.0001078	0.0000322	0.0001125000	
	5	-7.953905	112.614801	-7.9537980	112.6147901	0.0001070	0.0000109	0.0001075540	
	1	-7.953713	112.614680	-7.9537132	112.6148832	0.0000002	0.0002032	0.0002032000	
Dan ann ionin ann internat	2	-7.953612	112.614829	-7.9537185	112.6147901	0.0001065	0.0000389	0.0001133820	
Dengan jaringan internet seluler saja	3	-7.953556	112.614969	-7.9536230	112.6150694	0.0000670	0.0001004	0.0001207030	
	4	-7.953721	112.614951	-7.9536443	112.6146969	0.0000767	0.0002541	0.0002654240	
	5	-7.953905	112.614801	-7.9567302	112.6149868	0.0028252	0.0001858	0.0028313030	