261 Loi d'une variable aléatoire : caractérisations, exemples, applications.

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

I - Loi d'une variable aléatoire

1. Définitions

a. Préliminaires théoriques

Définition 1. Soient (E, \mathscr{F}) un espace probabilisable. On appelle **variable aléatoire** toute fonction $X : \Omega \to E$ mesurable. On appelle **loi** de X la mesure image de \mathbb{P} par X, définie par

 $\mathbb{P}_X \colon \begin{array}{ccc} \mathscr{F} & \to & [0,1] \\ F & \mapsto & \mathbb{P}(X^{-1}(F)) \end{array}$

Notation 2. Pour alléger les notations, on écrira $\{X \in F\}$ pour désigner l'ensemble $X^{-1}(F)$. Ainsi, $\mathbb{P}(X^{-1}(F))$ devient $\mathbb{P}(X \in F)$. De même, $\{X = x\}$ désigne l'ensemble $X^{-1}(\{x\})$, $\{X \le a\}$ désigne l'ensemble $X^{-1}([-\infty, a])$ (dans le cas réel), etc.

Exemple 3. On se place dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$ où $\mathbb{P} = \frac{1}{3}\delta_{-1} + \frac{1}{2}\delta_0 + \frac{1}{6}\delta_1$ et on considère la fonction réelle $X : \omega \mapsto \omega$. Alors, X est une variable aléatoire, dont la loi est $\mathbb{P}_X = \mathbb{P}$.

Définition 4. Une variable aléatoire X est dite **réelle** si son espace d'arrivée est $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

b. Lois discrètes

Définition 5. — On dit qu'une loi μ est **discrète** s'il existe un ensemble D fini tel que $\mu(D) = 1$.

— On dit que la variable aléatoire X est discrète si sa loi \mathbb{P}_X est discrète.

Remarque 6. Cela revient à dire que $X(\Omega)$ est fini ou est dénombrable.

Exemple 7. On pose $\Omega = \{(\omega_n) \in \mathbb{R}^n \mid \omega_n \in \{0,1\} \, \forall \, n \in \mathbb{N}\} \text{ et } X : (\omega_n) \mapsto \inf\{n \in \mathbb{N} \mid \omega_n = 0\}.$ Alors X est une variable aléatoire discrète, à valeurs dans $\mathbb{N} \cup \{+\infty\}$.

[GOU21] p. 334

[**GOU21**] p. 334

p. 118

[G-K]

p. 335

[**GOU21**] p. 335

Proposition 8. Si X est une variable aléatoire discrète à valeurs dans un ensemble dénombrable D, alors :

[**G-K**] p. 131

p. 137

- (i) $\forall A \in \mathcal{B}(\mathbb{R}), \mathbb{P}_X(A) = \sum_{i \in D \cap A} \mathbb{P}(X = i).$
- (ii) $\mathbb{P}_X = \sum_{i \in D} \mathbb{P}(X = i) \delta_i$ où les δ_i sont des masses de Dirac (voir Exemple 9 Exemple 9).

Exemple 9. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle. Voici quelques exemples de lois discrètes classiques.

- Si x ∈ Ω, on pose $δ_x : A \mapsto \mathbb{I}_A(x)$. C'est une loi discrète sur $\mathscr{P}(Ω)$.
- Soit $E \subseteq \Omega$ fini. On appelle loi uniforme sur E la loi discrète définie sur $\mathscr{P}(\Omega)$ par

$$\mathcal{P}(\Omega) \rightarrow \begin{bmatrix} 0,1 \end{bmatrix}$$

$$A \mapsto \frac{|A \cap E|}{|E|}$$

— X suit une loi de Bernoulli de paramètre $p \in [0,1]$, notée $\mathcal{B}(p)$, si $\mathbb{P}(X=1)=p$ et $\mathbb{P}(X=0)=1-p$. Dans ce cas, X est bien une loi discrète et on a

$$\mathbb{P}_X = (1-p)\delta_0 + p\delta_1$$

— X suit une loi de binomiale de paramètres $n \in \mathbb{N}$ et $p \in [0,1]$, notée $\mathscr{B}(n,p)$, si X est la somme de n variables aléatoires indépendantes qui suivent des lois de Bernoulli de paramètre p. Dans ce cas, X est bien une loi discrète et on a

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

— X suit une loi géométrique de paramètre $p \in]0,1]$, notée $\mathcal{G}(p)$, si l'on a

$$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = p(1 - p)^{k - 1}$$

— X suit une loi de Poisson de paramètre $\lambda > 0$, notée $\mathcal{P}(\lambda)$, si l'on a

$$\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

c. Lois à densité

Définition 10. On dit qu'une loi réelle μ est **à densité** s'il existe une fonction mesurable f telle que

 $\forall A \in \mathscr{B}(\mathbb{R}), \, \mu(A) = \int_A f d\lambda$

p. 134

Proposition 11. Soit X une variable aléatoire de densité f.

(i) Pour tout $a, b \in \mathbb{R}$ tels que $a \le b$,

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(a \le X < b)$$
$$= \mathbb{P}(a < X \le b)$$
$$= \mathbb{P}(a < X < b)$$
$$= \int_{[a,b]} f \, \mathrm{d}\lambda$$

(ii) Pour tout $a \in \mathbb{R}$,

$$\mathbb{P}(a \le X) = \mathbb{P}(a < X) = \int_{[a, +\infty[} f \, d\lambda = \int_{[a, +\infty[} f \, d\lambda$$

et

$$\mathbb{P}(a \ge X) = \mathbb{P}(a > X) = \int_{]-\infty, a]} f \, \mathrm{d}\lambda = \int_{]-\infty, a[} f \, \mathrm{d}\lambda$$

(iii)

$$\int_{\mathbb{R}} f \, \mathrm{d}\lambda = 1$$

Exemple 12. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle. Voici quelques exemples de lois à densité classiques.

— X suit une loi uniforme sur un compact K de \mathbb{R} si elle admet la densité

$$x \mapsto \frac{1}{\lambda(K)} \mathbb{1}_K(x)$$

— X suit une loi gaussienne de paramètres $m \in \mathbb{R}$ et $\sigma^2 > 0$, notée $\mathcal{N}(m, \sigma^2)$ si elle admet la densité

 $x \mapsto \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$

— X suit une loi exponentielle de paramètre a > 0, notée $\mathscr{E}(a)$ si elle admet la densité

$$x \mapsto a e^{-ax} \mathbb{1}_{\mathbb{R}^+}(x)$$

— X suit une loi Gamma de paramètres $a, \gamma > 0$, notée $\Gamma(a, \gamma)$ si elle admet la densité

$$x \mapsto \frac{\gamma^a}{\Gamma(a)} x^{a-1} e^{-\gamma x} \mathbb{1}_{\mathbb{R}^+_*}(x)$$

où $\Gamma(a)$ est la valeur au point a de la fonction Γ d'Euler.

Théorème 13. Soient X et Y deux variables aléatoires réelles indépendantes de densités respectives f et g. Alors, X + Y admet comme densité la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x - t)g(t) \, dt$.

p. 179

p. 159

p. 164

2. Espérance

Définition 14. — On note $\mathcal{L}_1(\Omega, \mathcal{A}, \mathbb{P})$ (ou simplement $\mathcal{L}_1(\Omega)$ voire \mathcal{L}_1 s'il n'y a pas d'ambiguïté) l'espace des variables aléatoires intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$.

— Si $X \in \mathcal{L}_1$, on peut définir son **espérance**

$$\mathbb{E}(X) = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbb{P}(\omega)$$

Théorème 15 (Transfert). Si X est une variable aléatoire dont la loi \mathbb{P}_X admet une densité f par rapport à \mathbb{P} et si g est une fonction mesurable, alors

$$g(X) \in \mathcal{L}_1 \iff \int_{\mathbb{R}} |g(x)| f(x) \, d\mathbb{P}(x) < +\infty$$

et dans ce cas,

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}} g(x) f(x) \, d\mathbb{P}(x)$$

Corollaire 16. Soit g une fonction mesurable. Si X est une variable aléatoire discrète telle que $X(\Omega) = D$, alors

$$g(X) \in \mathcal{L}_1 \iff \sum_{i \in D} |g(i)| \mathbb{P}(X=i) < +\infty$$

et dans ce cas,

$$\mathbb{E}(g(X)) = \sum_{i \in D} g(i) \mathbb{P}(X = i)$$

Remarque 17. En reprenant les notations précédentes, et avec $g: x \mapsto x$, on a

$$X \in \mathcal{L}_1 \iff \sum_{i \in D} |i| \mathbb{P}(X = i) < +\infty$$

et dans ce cas,

$$\mathbb{E}(X) = \sum_{i \in D} i \mathbb{P}(X = i)$$

Corollaire 18. Soit g une fonction mesurable. Si X est une variable aléatoire admettant f comme densité, alors

$$g(X) \in \mathcal{L}_1 \iff \int_{\mathbb{R}} |g| f \, d\lambda < +\infty$$

et dans ce cas,

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}} |g| f \, \mathrm{d}\lambda$$

Remarque 19. En reprenant les notations précédentes, et avec $g: x \mapsto x$, on a

$$X \in \mathcal{L}_1 \iff \int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x < +\infty$$

et dans ce cas,

$$\mathbb{E}(X) = \int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x$$

Exemple 20. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle.

—
$$\mathbb{E}(\mathbb{1}_A) = \mathbb{P}(A)$$
.

$$-X \sim \mathcal{B}(n,p) \Longrightarrow \mathbb{E}(X) = np.$$

$$\begin{split} & - X \sim \mathcal{B}(n,p) \implies \mathbb{E}(X) = np. \\ & - X \sim \mathcal{G}(p) \implies \mathbb{E}(X) = \frac{1}{p}. \end{split}$$

$$-X \sim \mathscr{P}(\lambda) \implies \mathbb{E}(X) = \lambda.$$

3. Indépendance

Définition 21. Soient (E, \mathcal{F}) un espace probabilisable. On dit que deux variables aléatoires $X:\Omega\to E$ et $Y:\Omega\to E$ sont indépendantes si les tribus qu'elles engendrent sont indépendantes ie.

$$\forall A, B \in \mathscr{F}, \mathbb{P}(\{X \in A\} \cap \{X \in B\}) = \mathbb{P}_X(A)\mathbb{P}_X(B)$$

Proposition 22. Si X et Y sont deux variables aléatoires indépendantes, alors f(X) et g(Y)sont indépendantes pour toutes fonctions mesurables f et g.

Théorème 23. Soient *X* et *Y* deux variables aléatoires. Alors, *X* et *Y* sont indépendantes si et seulement si $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \otimes \mathbb{P}_Y$.

p. 187

Corollaire 24. Soient *X* et *Y* deux variables aléatoires indépendantes. Alors, $\mathbb{P}_{X+Y} = \mathbb{P}_X * \mathbb{P}_Y$.

II - Caractérisation de la loi par des fonctions

Soit $X: \Omega \to \mathbb{R}^d$.

1. Fonctions de répartition

Définition 25. On appelle **fonction de répartition** de X, notée F_X la fonction définie sur \mathbb{R}^d par

$$\forall (t_1, ..., t_d) \in \mathbb{R}^d, F_X(t_1, ..., t_d) = \mathbb{P}(X_1 \le t_1, ..., X_d)$$

où l'on a noté $X = (X_1, \dots, X_d)$.

Exemple 26. Si $X \sim \mathcal{E}(\lambda)$, alors

$$\forall t \in \mathbb{R}, F_X(t) = 1 - e^{\lambda t} \mathbb{1}_{\mathbb{R}^+}(t)$$

Théorème 27. Si deux variables (ou vecteurs) aléatoires ont la même fonction de répartition, alors elles ont même loi.

Théorème 28. (i) F_X est à valeurs dans [0, 1].

- (ii) F_X est croissante sur \mathbb{R} .
- (iii) $\lim_{t\to-\infty} F_X(t) = 0$ et $\lim_{t\to+\infty} F_X(t) = 1$.
- (iv) En tout point x de \mathbb{R} , F_X est continue à droite et admet une limite à gauche, qui vaut $F_X(x)$ si et seulement si $\mathbb{P}(X=x)=0$.
- (v) L'ensemble des points de discontinuité de *F* est fini ou dénombrable.

Théorème 29. Soit $F : \mathbb{R} \to \mathbb{R}$ croissante, continue à droite et telle que $\lim_{t \to -\infty} F(t) = 0$ et $\lim_{t \to +\infty} F(t) = 1$. Alors, il existe une mesure de probabilité sur \mathbb{R} dont F est la fonction de répartition.

p. 118

p. 143

2. Fonctions caractéristiques

Définition 30. On appelle fonction caractéristique de X la fonction ϕ_X définie sur \mathbb{R}^d par

p. 239

$$\phi_X : t \mapsto \mathbb{E}\left(e^{i\langle t, X \rangle}\right)$$

Exemple 31. Si $X \sim \mathcal{N}(0, \sigma^2)$, alors

[AMR08] p. 156

$$\forall t \in \mathbb{R}, \, \phi_X(t) = e^{-\frac{(xt)^2}{2}}$$

Théorème 32. Si deux variables (ou vecteurs) aléatoires ont la même fonction caractéristique, alors elles ont même loi.

[**G-K**] p. 239

Théorème 33. (i) $\phi_X(0) = 1$.

- (ii) $|\phi_X| \le 1$.
- (iii) ϕ est uniformément continue sur \mathbb{R}^d .

Théorème 34. Soient X et Y deux variables aléatoires indépendantes et \mathcal{L}_1 . Alors,

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Corollaire 35. Si deux variables aléatoires réelles X et Y sont indépendantes, alors $\phi_{X+Y} = \phi_X \phi_Y$.

Théorème 36. Si X admet un moment d'ordre N (ie. $\mathbb{E}(\|X\|^N)$) $< +\infty$), alors ϕ_X est \mathscr{C}^N et, si d=1,

$$\forall k \in [\![1,N]\!], \phi_X^{(k)}(0) = i^k \mathbb{E}(X^k)$$

Exemple 37. Si X admet un moment d'ordre 2 et est centrée avec une variance σ^2 , on a alors

$$\phi_X(t) = 1 - \frac{\sigma^2 t^2}{2} + o(t^2)$$

quand t tend vers 0.

3. Fonctions génératrices

On suppose dans cette sous-section que X est à valeurs dans $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$.

Définition 38. On appelle **fonction génératrice** de X la fonction

p. 235

$$G_X: egin{array}{cccc} [-1,1] & & & \mathbb{R} \\ z & & \mapsto & \sum_{k=0}^{+\infty} \mathbb{P}(X=k)z^k \end{array}$$

Remarque 39.

 $\forall t \in \mathbb{R}, \, \phi_X(t) = G_X(e^{it})$

p. 246

p. 236

Exemple 40.
$$-X \sim \mathcal{B}(p) \implies \forall s \in [-1,1], G_X(s) = (1-p) + ps.$$

$$X \sim \mathcal{G}(p) \implies \forall s \in [-1,1], G_X(s) = \frac{ps}{1-(1-p)s}.$$

Proposition 41. Soient X_1 et X_2 deux variables aléatoires indépendantes et à valeurs dans N. Alors,

$$G_{X_1X_2} = G_{X_1} + G_{X_2}$$

Théorème 42. Sur [0,1], la fonction G_X est infiniment dérivable et ses dérivées sont toutes positives, avec

$$G_X^{(n)}(s) = \mathbb{E}(X(X-1)\dots(X-n+1)s^{X-n})$$

En particulier,

$$\mathbb{P}(X=n) = \frac{G_X^{(n)}(0)}{n!}$$

Exemple 43. Si $X_1 \sim \mathcal{B}(n,p)$ et $X_2 \sim \mathcal{B}(m,p)$ sont indépendantes, alors $X_1 + X_2 \sim \mathcal{B}(n+p)$

ce qui montre que la fonction génératrice caractérise la loi.

[GOU21] p. 346

m, p).

Théorème 44. $X \in \mathcal{L}_1$ si et seulement si G_X admet une dérivée à gauche en 1. Dans ce cas, $G'_X(1) = \mathbb{E}(X)$.

[G-K]

III - Convergence en loi

Soit (X_n) une suite de vecteurs aléatoires à valeurs dans $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

1. Définition et premières propriétés

Définition 45. On dit que (X_n) converge en loi vers $X: \Omega \to \mathbb{R}^d$ si

$$\forall f \in \mathscr{C}_h(\mathbb{R}^d, \mathbb{R}), \, \mathbb{E}(f(X_n)) \longrightarrow_{n \to +\infty} \mathbb{E}(f(X))$$

On note cela $X_n \xrightarrow{(d)} X$.

Exemple 46. Si $\forall n \geq 1, X_n$ suit une loi uniforme sur [1, n-1], alors $\frac{X_n}{n}$ converge en loi vers la loi uniforme sur [0, 1].

p. 313

p. 295

p. 295

Proposition 47. Si $X_n \xrightarrow{(d)} X$ et $Y_n \xrightarrow{(d)} Y$, alors :

- (i) La limite *X* est unique.
- (ii) $\langle X_n, Y_n \rangle \xrightarrow{(d)} \langle X, Y \rangle$.

Plus généralement, si $\forall n \in \mathbb{N}, X_n$ et X sont à valeurs dans E, alors $f(X_n) \xrightarrow{(d)} f(X)$ pour toute f fonction définie et continue sur E.

Théorème 48 (Lemme de Scheffé). On suppose :

- $\lim_{n\to+\infty} \int_{\Omega} X_n \, d\mathbb{P} = \int_{\Omega} X \, d\mathbb{P}$. Alors, $X_n \xrightarrow{(L_1)} X$.

Corollaire 49. On suppose:

- $\forall n \in \mathbb{N}$, X_n admet une densité f_n .
- (f_n) converge presque partout vers une fonction f.
- Il existe une variable aléatoire *X* admettant *f* pour densité.

Alors, $X_n \xrightarrow{(d)} X$.

Corollaire 50. Si X et X_n sont des variables aléatoires à valeurs dans un ensemble dénombrable D pour tout $n \in \mathbb{N}$, en supposant

$$\forall k \in D, \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$$

alors $X_n \xrightarrow{(d)} X$.

Application 51. Soit, pour $n \ge 1$, une variable aléatoire X_n suivant la loi binomiale de paramètres n et p_n . On suppose que $\lim_{n\to+\infty} np_n = \lambda > 0$. Alors,

$$X_n \xrightarrow{(d)} X$$

où X suit une loi de Poisson de paramètre λ .

Théorème 52. En notant F_X la fonction de répartition d'une variable aléatoire X, on a,

$$X_n \xrightarrow{(d)} X \iff F_{X_n}(x) \longrightarrow_{n \to +\infty} F_X(x)$$

en tout point x où F_X est continue.

Théorème 53. Soit $X : \Omega \to \mathbb{R}^d$ une variable aléatoire.

- (i) Si (X_n) converge en probabilité vers X, alors (X_n) converge en loi vers X.
- (ii) Si (X_n) converge en loi vers une constante a (ou de manière équivalente, vers une masse de Dirac δ_a), alors (X_n) converge en probabilité vers a.

Contre-exemple 54. Si (X_n) est une suite de variables aléatoires indépendantes identiquement distribuées de loi $\mathcal{B}(p)$, alors (X_n) converge en loi vers $\mathcal{B}(2p(1-p))$, mais pas en probabilité.

2. Théorème central limite et applications

Théorème 55 (Slutsky). Si $X_n \xrightarrow{(d)} X$ et $Y_n \xrightarrow{(d)} c$ où c est un vecteur constant, alors :

- (i) $X_n + Y_n \xrightarrow{(d)} X + c$.
- (ii) $\langle X_n, Y_n \rangle \xrightarrow{(d)} \langle X, c \rangle$.

Théorème 56 (Lévy). On suppose que (X_n) est une suite de variables aléatoires réelles et X

p. 302

p. 362

[HAU]

p. 305

[Z-Q]

une variable aléatoire réelle. Alors :

$$X_n \xrightarrow{(d)} X \iff \phi_{X_n}$$
 converge simplement vers ϕ_X

[DEV]

Théorème 57 (Central limite). On suppose que (X_n) est une suite de variables aléatoires p. 307

réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Application 58 (Théorème de Moivre-Laplace). On suppose que (X_n) est une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

Lemme 59. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

p. 180

Application 60 (Formule de Stirling).

p. 556

p. 390

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

[DEV]

Application 61 (Théorème des événements rares de Poisson). Soit $(N_n)_{n\geq 1}$ une suite d'entiers tendant vers l'infini. On suppose que pour tout $n, A_{n,N_1}, \ldots, A_{n,N_n}$ sont des événements indépendants avec $\mathbb{P}(A_{n,N_k}) = p_{n,k}$. On suppose également que :

- (i) $\lim_{n\to+\infty} s_n = \lambda > 0$ où $\forall n \in \mathbb{N}, s_n = \sum_{k=1}^{N_n} p_{n,k}$.
- (ii) $\lim_{n\to+\infty} \sup_{k\in[1,N_n]} p_{n,k} = 0$.

Alors, la suite de variables aléatoires (S_n) définie par

$$\forall n \in \mathbb{N}^*$$
, $S_n = \sum_{k=1}^n \mathbb{I}_{A_{n,k}}$

converge en loi vers la loi de Poisson de paramètre λ .

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

De l'intégration aux probabilités

[**G**-**K**]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021. https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Les Contre-Exemples en Mathématiques

[HAU]

Bertrand HAUCHECORNE. Les Contre-Exemples en Mathématiques. 2^e éd. Ellipses, 13 juin 2007. https://www.editions-ellipses.fr/accueil/5328-les-contre-exemples-en-mathematiques-9782729834180.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques*. 5° éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$