Homework: Portfolio Credit Risk

Credit Risk (MF772) Fall 2020 Instructor: Roza Galeeva

Due date: Sunday Nov 22 5 pm . Please, note that late assignments will not be accepted.

1. [Expected shorfall]

Consider a homogenous portfolio of m=10,000 obligators with EAD=100, LGD=40%. Let probability of default for each obligator is p=0.04.

Question Find the expected shortfall at 99% confidence level for the following diversity scores:

$$D = 1000, 500, 200$$

You can use the CLT to approximate the distribution of number of defaults by a normal distribution.

2. [On mixed binomial model]

(a) Let a random variable Z is a standard normal from N(0,1) and let probability of default p(Z) be given by

$$p(Z) = e^{-aZ^2}$$
, for some $a > 0$.

• Consider the mixed binomial Merton model with m=2, and the indicator r.v. X_1 and X_2 with probabilities $\mathbb{P}(X_i=1)=p(Z), i=1,2$

Question

- a) Find the value of a so that such that the correlation of indicator random variables X_1 and X_2 is equal to 0.25.
- b) Let m = 100 and X_i is the indicator of default for obligator i. The probability of default for obligator is $p(Z) = e^{-aZ^2}$ Let a be as in q1. Find the standard deviation of the number of defaults, compare it with standard deviation of portfolio with m = 100 independent defaults, with probability of default $p = \bar{p} = \mathbb{E}(p(Z))$.

3. [Mapping Default Correlation to Diversity Score]

- (a) Let Z be a r.v. (its distribution does not matter in this problem). Consider a portfolio of m = 1000 similar obligors whose default indicator variables X_i are conditionally independent given Z such that $X_i \mid Z = z \sim \text{Bernoulli}(z)$. Assume that for every obligor the exposure is $EAD_i = 1$ and $LGD_i = 100\%$.
- (b) Suppose that the default probability for each obligor is $p_i = 1\%$ and the default correlation $\rho_{i,j} = 0.00901$ for $i \neq j$.

Questions:

- a) Find standard deviation of the loss of the portfolio.
- **b)** Find an equivalent portfolio of m = 1000 with diversity score D, the same total exposure, LGD_i and probability of default p = 1% so that its loss variance matches the loss variance with the given default correlation.