Chapter 8: Filing and File Structure

- Overview of Physical Storage Media
- Magnetic Disks
- Storage Access
- File Organization
- Organization of Records in Files
- Index
- Data-Dictionary Storage

Classification of Physical Storage Media

- Speed with which data can be accessed
- Cost per unit of data
- Reliability
 - data loss on power failure or system crash
 - physical failure of the storage device
- Can differentiate storage into:
 - volatile storage: loses contents when power is switched off
 - non-volatile storage:
 - Contents persist even when power is switched off.
 - Includes secondary and tertiary storage, as well as batter-backed up main-memory.

Physical Storage Media

- Cache fastest and most costly form of storage;
 volatile; managed by the computer system hardware.
- Main memory:
 - fast access (10s to 100s of nanoseconds; 1 nanosecond = 10⁻⁹ seconds)
 - generally too small (or too expensive) to store the entire database
 - capacities of up to a few Gigabytes widely used currently
 - Capacities have gone up and per-byte costs have decreased steadily and rapidly (roughly factor of 2 every 2 to 3 years)
 - Volatile contents of main memory are usually lost if a power failure or system crash occurs.

Flash memory

- Data survives power failure
- Data can be written at a location only once, but location can be erased and written to again
 - Can support only a limited number of write/erase cycles.
 - Erasing of memory has to be done to an entire bank of memory
- Reads are roughly as fast as main memory
- But writes are slow (few microseconds), erase is slower
- Cost per unit of storage roughly similar to main memory
- Widely used in embedded devices such as digital cameras
- also known as EEPROM (Electrically Erasable Programmable Read-Only Memory)

Magnetic-disk

- Data is stored on spinning disk, and read/written magnetically
- Primary medium for the long-term storage of data; typically stores entire database.
- Data must be moved from disk to main memory for access, and written back for storage
 - Much slower access than main memory (more on this later)
- direct-access possible to read data on disk in any order, unlike magnetic tape
- Hard disks vs floppy disks
- Capacities range up to roughly 100 GB currently
 - Much larger capacity and cost/byte than main memory/flash memory
 - Growing constantly and rapidly with technology improvements (factor of 2 to 3 every 2 years)
- Survives power failures and system crashes
 - disk failure can destroy data, but is very rare

Optical storage

- non-volatile, data is read optically from a spinning disk using a laser
- CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
- Write-one, read-many (WORM) optical disks used for archival storage (CD-R and DVD-R)
- Multiple write versions also available (CD-RW, DVD-RW, and DVD-RAM)
- Reads and writes are slower than with magnetic disk
- Juke-box systems, with large numbers of removable disks, a few drives, and a mechanism for automatic loading/unloading of disks available for storing large volumes of data

Tape storage

- non-volatile, used primarily for backup (to recover from disk failure), and for archival data
- sequential-access much slower than disk
- very high capacity (40 to 300 GB tapes available)
- tape can be removed from drive ⇒ storage costs much cheaper than disk, but drives are expensive
- Tape jukeboxes available for storing massive amounts of data
 - hundreds of terabytes (1 terabyte = 10⁹ bytes) to even a petabyte (1 petabyte = 10¹² bytes)

Storage Hierarchy

Storage Hierarchy (Cont.)

- primary storage: Fastest media but volatile (cache, main memory).
- secondary storage: next level in hierarchy, nonvolatile, moderately fast access time
 - also called on-line storage
 - E.g. flash memory, magnetic disks
- tertiary storage: lowest level in hierarchy, nonvolatile, slow access time
 - also called off-line storage
 - E.g. magnetic tape, optical storage

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Magnetic Disks

Read-write head

- Positioned very close to the platter surface (almost touching it)
- Reads or writes magnetically encoded information.
- Surface of platter divided into circular tracks
 - Over 16,000 tracks per platter on typical hard disks
- Each track is divided into sectors.
 - A sector is the smallest unit of data that can be read or written.
 - Sector size typically 512 bytes
 - Typical sectors per track: 200 (on inner tracks) to 400 (on outer tracks)
- To read/write a sector
 - disk arm swings to position head on right track
 - platter spins continually; data is read/written as sector passes under head
- Head-disk assemblies
 - multiple disk platters on a single spindle (typically 2 to 4)
 - one head per platter, mounted on a common arm.
- Cylinder i consists of ith track of all the platters

Magnetic Disks (Cont.)

- Earlier generation disks were susceptible to head-crashes
 - Surface of earlier generation disks had metal-oxide coatings which would disintegrate on head crash and damage all data on disk
 - Current generation disks are less susceptible to such disastrous failures, although individual sectors may get corrupted
- Disk controller interfaces between the computer system and the disk drive hardware.
 - accepts high-level commands to read or write a sector
 - initiates actions such as moving the disk arm to the right track and actually reading or writing the data
 - Computes and attaches checksums to each sector to verify that data is read back correctly
 - If data is corrupted, with very high probability stored checksum won't match recomputed checksum
 - Ensures successful writing by reading back sector after writing it
 - Performs remapping of bad sectors

Disk Subsystem

- Multiple disks connected to a computer system through a controller
 - Controllers functionality (checksum, bad sector remapping) often carried out by individual disks; reduces load on controller
- Disk interface standards families
 - ATA (AT adaptor) range of standards
 - SCSI (Small Computer System Interconnect) range of standards
 - Several variants of each standard (different speeds and capabilities)

Performance Measures of Disks

- Access time the time it takes from when a read or write request is issued to when data transfer begins. Consists of:
 - Seek time time it takes to reposition the arm over the correct track.
 - Average seek time is 1/2 the worst case seek time.
 - Would be 1/3 if all tracks had the same number of sectors, and we ignore the time to start and stop arm movement
 - 4 to 10 milliseconds on typical disks
 - Rotational latency time it takes for the sector to be accessed to appear under the head.
 - Average latency is 1/2 of the worst case latency.
 - 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)
- Data-transfer rate the rate at which data can be retrieved from or stored to the disk.
 - 4 to 8 MB per second is typical
 - Multiple disks may share a controller, so rate that controller can handle is also important
 - E.g. ATA-5: 66 MB/second, SCSI-3: 40 MB/s
 - Fiber Channel: 256 MB/s

Performance Measures (Cont.)

- Mean time to failure (MTTF) the average time the disk is expected to run continuously without any failure.
 - Typically 3 to 5 years
 - Probability of failure of new disks is quite low, corresponding to a "theoretical MTTF" of 30,000 to 1,200,000 hours for a new disk
 - E.g., an MTTF of 1,200,000 hours for a new disk means that given 1000 relatively new disks, on an average one will fail every 1200 hours
 - MTTF decreases as disk ages

Optimization of Disk-Block Access

- Block a contiguous sequence of sectors from a single track
 - data is transferred between disk and main memory in blocks
 - sizes range from 512 bytes to several kilobytes
 - Smaller blocks: more transfers from disk
 - Larger blocks: more space wasted due to partially filled blocks
 - Typical block sizes today range from 4 to 16 kilobytes
- Disk-arm-scheduling algorithms order pending accesses to tracks so that disk arm movement is minimized
 - elevator algorithm: move disk arm in one direction (from outer to inner tracks or vice versa), processing next request in that direction, till no more requests in that direction, then reverse direction and repeat

Optimization of Disk Block Access (Cont.)

- File organization optimize block access time by organizing the blocks to correspond to how data will be accessed
 - E.g. Store related information on the same or nearby cylinders.
 - Files may get fragmented over time
 - E.g. if data is inserted to/deleted from the file
 - Or free blocks on disk are scattered, and newly created file has its blocks scattered over the disk
 - Sequential access to a fragmented file results in increased disk arm movement
 - Some systems have utilities to defragment the file system, in order to speed up file access

Optimization of Disk Block Access (Cont.)

- Nonvolatile write buffers speed up disk writes by writing blocks to a non-volatile RAM buffer immediately
 - Non-volatile RAM: battery backed up RAM or flash memory
 - Even if power fails, the data is safe and will be written to disk when power returns
 - Controller then writes to disk whenever the disk has no other requests or request has been pending for some time
 - Database operations that require data to be safely stored before continuing can continue without waiting for data to be written to disk
 - Writes can be reordered to minimize disk arm movement
- Log disk a disk devoted to writing a sequential log of block updates
 - Used exactly like nonvolatile RAM
 - Write to log disk is very fast since no seeks are required
 - No need for special hardware (NV-RAM)
- File systems typically reorder writes to disk to improve performance
 - Journaling file systems write data in safe order to NV-RAM or log disk
 - Reordering without journaling: risk of corruption of file system data

Storage Access

- A database file is partitioned into fixed-length storage units called blocks. Blocks are units of both storage allocation and data transfer.
- Database system seeks to minimize the number of block transfers between the disk and memory. We can reduce the number of disk accesses by keeping as many blocks as possible in main memory.
- Buffer portion of main memory available to store copies of disk blocks.
- Buffer manager subsystem responsible for allocating buffer space in main memory.

Buffer Manager

- Programs call on the buffer manager when they need a block from disk.
 - 1. If the block is already in the buffer, the requesting program is given the address of the block in main memory
 - 2. If the block is not in the buffer,
 - 1. the buffer manager allocates space in the buffer for the block, replacing (throwing out) some other block, if required, to make space for the new block.
 - 2. The block that is thrown out is written back to disk only if it was modified since the most recent time that it was written to/fetched from the disk.
 - 3. Once space is allocated in the buffer, the buffer manager reads the block from the disk to the buffer, and passes the address of the block in main memory to requester.

File Organization

- The database is stored as a collection of *files*.
 Each file is a sequence of *records*. A record is a sequence of fields.
- One approach:
 - assume record size is fixed
 - each file has records of one particular type only
 - different files are used for different relations

This case is easiest to implement; will consider variable length records

later.

Organization of Records in Files

- Heap a record can be placed anywhere in the file where there is space
- Sequential store records in sequential order, based on the value of the search key of each record
- Hashing a hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed
- Records of each relation may be stored in a separate file. In a clustering file organization records of several different relations can be stored in the same file
 - Motivation: store related records on the same block to minimize I/O

Sequential File Organization

- Suitable for applications that require sequential processing of the entire file
- The records in the file are ordered by a search-key

A-217	Brighton	750	
A-101	Downtown	500	
A-110	Downtown	600	
A-215	Mianus	700	
A-102	Perryridge	400	
A-201	Perryridge	900	
A-218	Perryridge	700	
A-222	Redwood	700	
A-305	Round Hill	350	

Sequential File Organization (Cont.)

- Deletion use pointer chains
- Insertion –locate the position where the record is to be inserted
 - if there is free space insert there
 - if no free space, insert the record in an overflow block
 - In either case, pointer chain must be updated
- Need to reorganize the file from time to time to restore sequential order

A-217	Brighton	750	7
A-101	Downtown	500	-5
A-110	Downtown	600	
A-215	Mianus	700	
A-102	Perryridge	400	1
A-201	Perryridge	900	
A-218	Perryridge	700	
A-222	Redwood	700	
A-305	Round Hill	350	
			-/
A-888	North Town	800	7

Basic Concepts of Indexing

- Indexing mechanisms used to speed up access to desired data.
 - E.g., author catalog in library
- Search Key attribute to set of attributes used to look up records in a file.
- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".

Index Evaluation Metrics

- Access types supported efficiently. E.g.,
 - records with a specified value in the attribute
 - or records with an attribute value falling in a specified range of values.
- Access time
- Insertion time
- Deletion time
- Space overhead

Ordered Indices

Indexing techniques evaluated on basis of:

- In an ordered index, index entries are stored sorted on the search key value. E.g., author catalog in library.
- **Primary index:** in a sequentially ordered file, the index whose search key specifies the sequential order of the file.
 - Also called clustering index
 - The search key of a primary index is usually but not necessarily the primary key.
- Secondary index: an index whose search key specifies an order different from the sequential order of the file. Also called non-clustering index.
- Index-sequential file: ordered sequential file with a primary index.

Dense Index Files

 Dense index — Index record appears for every search-key value in the file.

Sparse Index Files

- Sparse Index: contains index records for only some searchkey values.
 - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
 - Find index record with largest search-key value < K
 - Search file sequentially starting at the record to which the index record points
- Less space and less maintenance overhead for insertions and deletions.
- Generally slower than dense index for locating records.
- Good tradeoff: sparse index with an index entry for every block in file, corresponding to least search-key value in the block.

Example of Sparse Index Files

Clustering File Organization

- Simple file structure stores each relation in a separate file
- Can instead store several relations in one file using a clustering file organization
- E.g., clustering organization of *customer* and *depositor*:

Hayes	Main	Brooklyn
Hayes	A-102	
Hayes	A-220	
Hayes	A-503	
Turner	Putnam	Stamford
Turner	A-305	

- bad for queries involving only customer
- results in variable size records

Secondary Indices

- Frequently, one wants to find all the records whose values in a certain field (which is not the search-key of the primary index satisfy some condition.
 - Example 1: In the account database stored sequentially by account number, we may want to find all accounts in a particular branch
 - Example 2: as above, but where we want to find all accounts with a specified balance or range of balances
- We can have a secondary index with an index record for each search-key value; index record points to a bucket that contains pointers to all the actual records with that particular search-key value.

Secondary Index on *balance* field of *account*

Primary and Secondary Indices

- Secondary indices have to be dense.
- Indices offer substantial benefits when searching for records.
- When a file is modified, every index on the file must be updated, Updating indices imposes overhead on database modification.
- Sequential scan using primary index is efficient, but a sequential scan using a secondary index is expensive
 - each record access may fetch a new block from disk

B⁺-Tree Index Files

B⁺-tree indices are an alternative to indexed-sequential files.

- Disadvantage of indexed-sequential files: performance degrades as file grows, since many overflow blocks get created. Periodic reorganization of entire file is required.
- Advantage of B⁺-tree index files: automatically reorganizes itself with small, local, changes, in the face of insertions and deletions. Reorganization of entire file is not required to maintain performance.
- Disadvantage of B+-trees: extra insertion and deletion overhead, space overhead.
- Advantages of B⁺-trees outweigh disadvantages, and they are used extensively.

B⁺-Tree Index Files (Cont.)

A B⁺-tree is a rooted tree satisfying the following properties:

- All paths from root to leaf are of the same length
- Each node that is not a root or a leaf has between $\lfloor n/2 \rfloor$ and n children.
- A leaf node has between [(n-1)/2] and n-1 values
- Special cases:
 - If the root is not a leaf, it has at least 2 children.
 - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (n-1) values.

Example of a B+-tree

 B^+ -tree for *account* file (n = 3)

Static Hashing

- A **bucket** is a unit of storage containing one or more records (a bucket is typically a disk block).
- In a hash file organization we obtain the bucket of a record directly from its search-key value using a hash function.
- Hash function h is a function from the set of all searchkey values K to the set of all bucket addresses B.
- Hash function is used to locate records for access, insertion as well as deletion.
- Records with different search-key values may be mapped to the same bucket; thus entire bucket has to be searched sequentially to locate a record.

Example of Hash File Organization (Cont.)

Hash file organization of *account* file, using *branch-name* as key (See figure in next slide.)

- There are 10 buckets,
- The binary representation of the *i*th character is assumed to be the integer *i*.
- The hash function returns the sum of the binary representations of the characters modulo 10
 - E.g. h(Perryridge) = 5 h(Round Hill) = 3
 h(Brighton) = 3

Example of Hash File Organization

Hash file organization of account file, using branch-name as key

bucket 0			bucket 5			
			A-102	,	400	
			A-201	Perryridge	900	
			A-218	Perryridge	700	
bucket 1			bucket 6			
bucket 2				bucket 7		
			A-215	Mianus	700	
bucket 3			bucket 8	bucket 8		
A-217	Brighton	750	A-101	Downtown	500	
A-305	Round Hill	350	A-110	Downtown	600	
bucket 4			bucket 9	bucket 9		
A-222	Redwood	700				

Hash Functions

- Worst has function maps all search-key values to the same bucket; this makes access time proportional to the number of search-key values in the file.
- An ideal hash function is uniform, i.e., each bucket is assigned the same number of search-key values from the set of all possible values.
- Ideal hash function is **random**, so each bucket will have the same number of records assigned to it irrespective of the *actual distribution* of search-key values in the file.
- Typical hash functions perform computation on the internal binary representation of the search-key.
 - For example, for a string search-key, the binary representations of all the characters in the string could be added and the sum modulo the number of buckets could be returned.

Handling of Bucket Overflows

- Bucket overflow can occur because of
 - Insufficient buckets
 - Skew in distribution of records. This can occur due to two reasons:
 - multiple records have same search-key value
 - chosen hash function produces non-uniform distribution of key values
- Although the probability of bucket overflow can be reduced, it cannot be eliminated; it is handled by using overflow buckets.

Handling of Bucket Overflows (Cont.)

- Overflow chaining the overflow buckets of a given bucket are chained together in a linked list.
- Above scheme is called closed hashing.
 - An alternative, called open hashing, which does not use overflow buckets, is not suitable for database applications.

Hash Indices

- Hashing can be used not only for file organization, but also for index-structure creation.
- A hash index organizes the search keys, with their associated record pointers, into a hash file structure.
- Strictly speaking, hash indices are always secondary indices
 - if the file itself is organized using hashing, a separate primary hash index on it using the same search-key is unnecessary.
 - However, we use the term hash index to refer to both secondary index structures and hash organized files.

Example of Hash Index

Deficiencies of Static Hashing

- In static hashing, function h maps search-key values to a fixed set of B of bucket addresses.
 - Databases grow with time. If initial number of buckets is too small, performance will degrade due to too much overflows.
 - If file size at some point in the future is anticipated and number of buckets allocated accordingly, significant amount of space will be wasted initially.
 - If database shrinks, again space will be wasted.
 - One option is periodic re-organization of the file with a new hash function, but it is very expensive.
- These problems can be avoided by using techniques that allow the number of buckets to be modified dynamically.

Dynamic Hashing

- Good for database that grows and shrinks in size
- Allows the hash function to be modified dynamically
- Extendable hashing one form of dynamic hashing
 - Hash function generates values over a large range typically b-bit integers, with b = 32.
 - At any time use only a prefix of the hash function to index into a table of bucket addresses.
 - Let the length of the prefix be *i* bits, $0 \le i \le 32$.
 - Bucket address table size = 2^{i} . Initially i = 0
 - Value of i grows and shrinks as the size of the database grows and shrinks.
 - Multiple entries in the bucket address table may point to a bucket.
 - Thus, actual number of buckets is $< 2^{i}$
 - The number of buckets also changes dynamically due to coalescing and splitting of buckets.

General Extendable Hash Structure

In this structure, $i_2 = i_3 = i$, whereas $i_1 = i - 1$ (see next slide for details)

Use of Extendable Hash Structure

- Each bucket j stores a value i_j ; all the entries that point to the same bucket have the same values on the first i_j bits.
- To locate the bucket containing search-key K_i :
 - 1. Compute $h(K_i) = X$
 - 2. Use the first *i* high order bits of *X* as a displacement into bucket address table, and follow the pointer to appropriate bucket
- To insert a record with search-key value K_i
 - follow same procedure as look-up and locate the bucket, say j.
 - If there is room in the bucket j insert record in the bucket.
 - Else the bucket must be split and insertion re-attempted (next slide.)
 - Overflow buckets used instead in some cases (will see shortly)

Comparison of Ordered Indexing and Hashing

- Cost of periodic re-organization
- Relative frequency of insertions and deletions
- Is it desirable to optimize average access time at the expense of worst-case access time?
- Expected type of queries:
 - Hashing is generally better at retrieving records having a specified value of the key.
 - If range queries are common, ordered indices are to be preferred

Data Dictionary Storage Data dictionary (also called system catalog) stores metadata: that

Data dictionary (also called system catalog) stores metadata: that is, data about data, such as

- Information about relations
 - names of relations
 - names and types of attributes of each relation
 - names and definitions of views
 - integrity constraints
- User and accounting information, including passwords
- Statistical and descriptive data
 - number of tuples in each relation
- Physical file organization information
 - How relation is stored (sequential/hash/...)
 - Physical location of relation
 - operating system file name or
 - disk addresses of blocks containing records of the relation
- Information about indices (Chapter 12)

Data Dictionary Storage (Cont.)

- Catalog structure: can use either
 - specialized data structures designed for efficient access
 - a set of relations, with existing system features used to ensure efficient access

The latter alternative is usually preferred

A possible catalog representation:

```
Relation-metadata = (<u>relation-name</u>, number-of-attributes,

storage-organization, location)

Attribute-metadata = (<u>attribute-name</u>, relation-name</u>, domain-type,

position, length)

User-metadata = (<u>user-name</u>, encrypted-password, group)

Index-metadata = (<u>index-name</u>, relation-name, index-type,

index-attributes)

View-metadata = (<u>view-name</u>, definition)
```