

Model Development Phase Template

Date	20 July 2024
Team ID	SWTID1720082030
Project Title	Hydration Essentials: Classifying Water Bottle
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code demonstrates the code for the CNN model that we have used .

Initial Model Training Code (5 marks):


```
model = Sequential([
    resize and rescale,
    Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape),
    MaxPooling2D(pool size=(2, 2)),
    Conv2D(64, kernel_size=(3, 3), activation='relu'),
    MaxPooling2D(pool size=(2, 2)),
    Conv2D(64, kernel_size=(3, 3), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Conv2D(64, kernel_size=(3, 3), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Flatten(),
    Dense(128, activation=None),
    BatchNormalization(),
    Activation('relu'),
    Dense(64, activation=None),
    BatchNormalization(),
    Activation('relu'),
    Dense(num classes, activation='softmax'),
1)
model.build(input shape=input shape)
```

```
    Model Training

[] model.compile(optimizer='SGD',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
[ ] history = model.fit(train_ds,epochs=75,validation_data=val_ds)
12/12 [===:
Epoch 2/75
                                      =====] - 56s 4s/step - loss: 0.9289 - accuracy: 0.5866 - val_loss: 0.9941 - val_accuracy: 0.6094
     12/12 [===
Epoch 3/75
                                            - 53s 4s/step - loss: 0.6754 - accuracy: 0.7151 - val_loss: 0.8896 - val_accuracy: 0.7031
                                             - 52s 4s/step - loss: 0.6126 - accuracy: 0.7542 - val_loss: 0.9081 - val_accuracy: 0.6250
     12/12 [==:
     Epoch 4/75
                                               52s 4s/step - loss: 0.5209 - accuracy: 0.7905 - val_loss: 0.9017 - val_accuracy: 0.5781
     12/12 [====
Epoch 6/75
                                          =] - 65s 5s/step - loss: 0.5197 - accuracy: 0.8156 - val_loss: 0.8909 - val_accuracy: 0.6579
     12/12 [==
     Epoch 7/75
     12/12 [===
                                             - 54s 4s/step - loss: 0.4946 - accuracy: 0.8045 - val_loss: 0.8811 - val_accuracy: 0.5469
```


Model Validation and Evaluation Report (5 marks)

Model	Summary	Training and Validation Performance Metrics
	Used batch normalisation and dropout(optimizer:adam)	
CNN	■ nodel : definition nodel : Sequential() resize and rescale, comput(2), kornel _size=(), 3), activation='relu', input_shape-input_shape), naneoulingn(pool_size=(), 2), activation='relu'), naneoulingn(pool_size=(), 2), activation='relu'), naneoulingn(pool_size=(), 2)), convox(c4, kornel_size=(), 2)), convox(c4, kornel_size=(), 2)), naneoulingn(pool_size=(), 2)), pareoulingn(pool_size=(), 2)), proport(s.), if it is composite a deposite rate of 0.5 benes(6), activation=some), natcheromalization(), natcheromalization(), natcheromalization(), natcheromalization(), natcheromalization(), natcheromalization(), natcheromalization(), satcheromalization(), natcheromalization(), satcheromalization(), natcheromalization(), satcheromalization(), satcheromalization(), natcheromalization(), satcheromalization(), satc	typeds 187/8 1772 1773 1774 1775 1775 1777 1775 1777 177
CNN	(optimizer:adam) Only 2 fully connected layers	1 - 595 55/5tp 1051 6.1861 100707 1051 6.1869 100707 1051 6.1869 100707 1051 6.1869 100707 1051 6.1869 100707 1051 6.1869 1051 6.1269 1051 6.1

