801	MetLysHisLeuTrp ATGAAGCATCTGTG TACTTCGTAGACAC
851	·PhePheLeuLeuValAlaAlaProArgTrpValLeuSerGlnValGln GTTCTTCCTTCTCCTAGTGGCAGCTCCCAGATGGGTCCTGTCCCAGGTGC CAAGAAGGAAGAGGATCACCGTCGAGGGTCTACCCAGGACAGGGTCCACG
901	··LeuGlnGluSerGlyProGlyLeuValLysProSerGluThrLeuSer AGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCC TCGACGTCCTCAGCCCGGGTCCTGACCACTTCGGAAGCCTCTGGGACAGG
951	LeuThrCysThrValSerGlyAlaSerIleSerSerTyrTyrTrpSerTrp CTCACCTGCACTGTCTCTGGTGCCTCCATCAGTAGTTACTACTGGAGCTG GAGTGGACGTGACAGAGACCACGGAGGTAGTCAATGATGACCTCGAC
1001	·IleArgGlnProProGlyLysGlyLeuGluTrpIleGlyTyrIleTyrTyr GATCCGCCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATCTATT CTAGGCCGTCGGGGGTCCCTTCCCT
1051	··SerGlySerThrAsnTyrAsnProSerLeuLysSerArgValThrIle ACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATA TGTCACCCTCGTGGTTGATGTTGGGGAGGGAGTTCTCAGCTCAGTGGTAT
1101	SerValAspThrSerLysAsnGlnPheSerLeuLysLeuArgSerValThr TCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGGTCTGTGAC AGTCATCTGTGCAGGTTCTTGGTCAAGAGGGACTTCGACTCCAGACACTG
1151	·AlaAlaAspThrAlaValTyrTyrCysAlaArgGluArgLeuGlyIleGly CGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGAGCGACTGGGGATCG GCGACGCCTGTGCCGGCACATAATGACACGCTCTCTCGCTGACCCCTAGC
1201	··AspTyrTrpGlyGlnGlyThrLeuValThrValSerSerAlaSerThr GGGACTACTGGGCCCAAGGAACCCTGGTCACCGTCTCCTCAGCCTCCACC CCCTGATGACCCCGGTTCCTTGGGACCAGTGGCAGAGGAGTCGGAGGTGG
1251	LysGlyProSerValPheProLeuAlaProCysSerArgSerThrSerGlu AAGGGCCCATCGGTCTTCCCCCTGGCGCCCTGC <u>TCTAGA</u> AGCACCTCCGA TTCCCGGGTAGCCAGAAGGGGGACCGCGGGACGAGATCTTCGTGGAGGCT
1301	SerThrAlaAlaLeuGlyCysLeuValLysAspTyrPheProGluProVal GAGCACAGCCGCCCTGGGCTGGTCAAGGACTACTTCCCCGAACCGG CTCGTGTCGGCGGGACCCGACGGACCAGTTCCTGATGAAGGGGCTTGGCC
1351	··ThrValSerTrpAsnSerGlyAlaLeuThrSerGlyValHisThrPhe TGACGGTGTCGTGGAACTCAGGGGGCTCTGACCAGCGGGGGTGCACACCTTC ACTGCCACAGCACCTTGAGTCCGCGAGACTGGTCGCCGCACGTGTGGAAG

FIGURE 1 Continuation

1401	ProAlaValLeuGlnSerSerGlyLeuTyrSerLeuSerSerValValThr CCAGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAC GGTCGACAGGATGTCAGGAGTCCTGAGATGAGGGAGTCGTCGCACCACTG
1451	·ValProSerSerAsnPheGlyThrGlnThrTyrThrCysAsnValAspHis CGTGCCCTCCAGCAACTTCGGCACCCAGACCTACACCTGCAACGTAGATC GCACGGGAGGTCGTTGAAGCCGTGGGTCTGGATGTGGACGTTGCATCTAG
1501	··LysProSerAsnThrLysValAspLysThrVal ACAAGCCCAGCAACACCAAGGTGGACAAGACAGTTGGTGAGAGGCCAGCT TGTTCGGGTCGTTGTGGTTCCACCTGTTCTGTCAACCACTCTCCGGTCGA
1551	CAGGGAGGGAGGTGTCTGCTGGAAGCCAGGCTCAGCCCTCCTGCCTG
1601	CGCACCCGGCTGTGCAGCCCAGCCCAGGGCAGCCAAGGCAGGC
1651	TGTCTCCTCACCCGGAGGCCTCTGCCCGCCCCACTCATGCTCAGGGAGAGACACAGAGAGGAGAGGGGGGGG
1701	GGTCTTCTGGCTTTTTCCACCAGGCTCCAGGCAGGCACAGGCTGGGTGCC CCAGAAGACCGAAAAAGGTGGTCCGAGGTCCGTGTCCGACCCACGG
1751	CCTACCCCAGGCCCTTCACACAGAGGGGCAGGTGCTTGGCTCAGACCTGC GGATGGGGTCCGGGAAGTGTGTCCCCCGTCCACGAACCGAGTCTGGACG
1801	CAAAAGCCATATCCGGGAGGACCCTGCCCCTGACCTAAGCCGACCCCAAA GTTTTCGGTATAGGCCCTCCTGGGACGGGAC
1851	GGCCAAACTGTCCACTCCCTCAGCTCGGACACCTTCTCTCCCCAGATC CCGGTTTGACAGGTGAGGGAGTCGAGCCTGTGGAAGAGAGAG
1901	GluArgLysCysCysValGluCys CGAGTAACTCCCAATCTTCTCTCTGCAGAGCGCAAATGTTGTGTCGAGTG GCTCATTGAGGGTTAGAAGAGAGACGTCTCGCGTTTACAACACAGCTCAC
1951	·ProProCysPro CCCACCGTGCCCAGGTAAGCCAGCCCAGGCCTCGCCCTCCAGCTCAAGGC GGGTGGCACGGGTCCATTCGGTCGGGTCCGGAGCGGGAGGTCGAGTTCCG
2001	GGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCTGGG CCCTGTCCACGGGATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGACCC

FIGURE 1 Continuation

	AlaProProValAlaGlyPro
2051	TGCTGACACGTCCACCTCCATCTCTTCCTCAGCACCACCTGTGGCAGGAC
	ACGACTGTGCAGGTGGAGGTAGAGAAGGAGTCGTGGTGGACACCGTCCTG
	··SerValPheLeuPheProProLysProLysAspThrLeuMetIleSer
2101	CGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC
	GCAGTCAGAAGGAGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGG
	ArgThrProGluValThrCysValValValAspValSerHisGluAspPro
2151	CGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCACGAAGACCC
	GCCTGGGGACTCCAGTGCACGCACCACCTGCACTCGGTGCTTCTGGG
	·GluValGlnPheAsnTrpTyrValAspGlyValGluValHisAsnAlaLys
2201	CGAGGTCCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA
	GCTCCAGGTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGT
	\cdots ThrLysProArgGluGluGlnPheAsnSerThrPheArgValValSer
2251	AGACAAAGCCACGGGAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGC
	TCTGTTTGGGTGCCCTCCTCGTCAAGTTGTCGTGCAAGGCACACCAGTCG
	ValLeuThrValValHisGlnAspTrpLeuAsnGlyLysGluTyrLysCys
2301	GTCCTCACCGTTGTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTG
	CAGGAGTGGCAACACGTGGTCCTGACCGACTTGCCGTTCCTCATGTTCAC
	·LysValSerAsnLysGlyLeuProAlaProIleGluLysThrIleSerLys
2351	CAAGGTCTCCAACAAAGGCCTCCCAGCCCCCATCGAGAAAACCATCTCCA
	GTTCCAGAGGTTGTTTCCGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGT
	··ThrLys
2401	AAACCAAAGGTGGGACCCGCGGGGTATGAGGGCCACATGGACAGAGGCCG
	TTTGGTTTCCACCCTGGGCGCCCCATACTCCCGGTGTACCTGTCTCCGGC
2451	GCTCGGCCCACCCTCTGCCCTGGGAGTGACCGCTGTGCCAACCTCTGTCC
	CGAGCCGGGTGGGAGACGGGACCCTCACTGGCGACACGGTTGGAGACAGG
	GlyGlnProArgGluProGlnValTyrThrLeuProProSerArg
2501	CTACAGGGCAGCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG
	GATGTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCC
	GluGluMetThrLysAsnGlnValSerLeuThrCysLeuValLysGlyPhe
2551	GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTT
	CTCCTCTACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGTTTCCGAA
	·TyrProSerAspIleAlaValGluTrpGluSerAsnGlyGlnProGluAsn
2601	CTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGA
	GATGGGGTCGCTGTAGCGGCCTCT
	·· AsnTyrLysThrThrProProMetLeuAspSerAspGlySerPhePhe

FIGURE 1 Continuation

2651	ACAACTACAAGACCACACCTCCCATGCTGGACTCCGACGGCTCCTTCTTC TGTTGATGTTCTGGTGTGGAGGGTACGACCTGAGGCTGCCGAGGAAGAAG
2701	LeuTyrSerLysLeuThrValAspLysSerArgTrpGlnGlnGlyAsnVal CTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT GAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCA
2751	·PheSerCysSerValMetHisGluAlaLeuHisAsnHisTyrThrGlnLys CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGA GAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCT
2801	**SerLeuSerLeuSerProGlyLys AGAGCCTCTCCCTGTCTCCGGGTAAA TCTCGGAGAGGGACAGAGGCCCATTT

901	MetArgValProAlaGlnLeuLeuGlyLeuLeuLeuTrp ATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCT TACTCCCAGGGCGAGTCGAGGACCCCGAGGACGACGAGA
951	··PheProGlyAlaArgCysLysLeuAspIleGlnLeuThrGlnSerPro GGTTCCCAGGTGCCAGGTGTAAGCTTGACATCCAGCTGACCCAATCTCCA CCAAGGGTCCACGGTCCACATTCGAACTGTAGGTCGACTGGGTTAGAGGT
1001	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgAla TCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGC AGGAGGGACAGACGTAGACATCCTCTGTCTCAGTGGTAGTGAACGGCCCG
1051	SerGlnGlyIleArgAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLysAAGTCAGGGCATTAGAAATGATTTAGGCTGGTATCAGCAGAAACCAGGGA TTCAGTCCCGTAATCTTTACTAAATCCGACCATAGTCGTCTTTGGTCCCT
1101	··AlaProLysArgLeuIleTyrAlaAlaSerSerLeuGlnSerGlyVal AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTC TTCGGGGATTCGCGGACTAGATACGACGTAGGTCAAACGTTTCACCCCAG
1151	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrIle CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
1.201	SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAsn CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
1251	··ThrTyrProProThrPheGlyGlnGlyThrLysValGluIleLysArg ATACTTACCCTCCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGA TATGAATGGGAGGCTGCAAGCCGGTTCCCTGGTTCCACCTTTAGTTTGCT
1301	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
1351	·LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArg GAAATCTGGAACTGCTAGCGTTGTGTGCCTGCTGAATAACTTCTATCCCA CTTTAGACCTTGACGATCGCAACACACGGACGACTTATTGAAGATAGGGT
1401	··GluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsn GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG

FIGURE 2 Continuation

SerGlnGluSer 1451 TCCCAGGAGAGT AGGGTCCTCTCA

801	MetGluLeuGlyLeu ATGGAATTGGGGCT TACCTTAACCCCGA
851	·ArgTrpValPheLeuValAlaLeuLeuArgGlyValGlnCysGlnValGln CCGCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGTCCAGTGTCAGGTGC GGCGACCCAAAAGGAGCAACGAGAAAATTCTCCACAGGTCAGAGTCCACG
901	··LeuValGluSerGlyGlyGlyValValGlnProGlyArgSerLeuArg AGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGGCTCCCTGAGA TCGAGCACCTCAGACCCCCTCCGCACCAGGTCGGACCCTCCAGGGACTCT
951	LeuSerCysValAlaSerGlyPheThrPheSerSerTyrGlyMetHisTrp CTCTCCTGTGTAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTG GAGAGGACACATCGGAGACCTAAGTGGAAGTCATCGATACCGTACGTGAC
1001	·ValArgGlnAlaProGlyLysGlyLeuGluTrpValAlaValIleSerTyr GGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCTGGCAGTTATATCAT CCAGGCGGTCCGAGGTCCGTTCCCCGACCTCACCCACCGTCAATATAGTA
1051	··AspGlySerAsnLysTyrTyrAlaAspSerValLysGlyArgPheThr ATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACC TACTACCTTCATTATTTATGATACGTCTGAGGCACTTCCCGGCTAAGTGG
1101	IleSerArgAspAsnSerLysAsnThrLeuTyrLeuGlnMetAsnSerLeu ATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT TAGAGGTCTCTGTTAAGGTTCTTGTGCGACATAGACGTTTACTTGTCGGA
1151	·ArgValGluAspThrAlaValTyrTyrCysAlaArgAspHisGlyGlyArg GAGAGTTGAGGACACGGCTGTGTATTACTGTGCGAGAGATCACGGTGGGA CTCTCAACTCCTGTGCCGACACATAATGACACGCTCTCTAGTGCCACCCT
1201	··TyrValTyrAspTyrGlyMetAspValTrpGlyGlnGlyThrThrVal GGTACGTCTACGACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTC CCATGCAGATGCTGATGCCATACCTGCAGACCCCGGTTCCCTGGTGCCAG
1251	ThrValSerSerAlaSerThrLysGlyProSerValPheProLeuAlaPro ACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCGCC TGGCAGAGGAGTCGGAGGTGGTTCCCGGGTAGCCAGAAGGGGGACCGCGG
1301	·CysSerArgSerThrSerGluSerThrAlaAlaLeuGlyCysLeuValLys CTGCTCTAGAAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCA GACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGGACCCGACGGACCAGT
1351	··AspTyrPheProGluProValThrValSerTrpAsnSerGlyAlaLeu AGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCTCTG TCCTGATGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGTCCGCGAGAC

FIGURE 3 Continuation

1401	ThrSerGlyValHisThrPheProAlaValLeuGlnSerSerGlyLeuTyr ACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTCAGGACTCTA TGGTCGCCGCACGTGTGGAAGGGTCGACAGGATGTCAGGAGTCCTGAGAT
1451	· SerLeuSerSerValValThrValProSerSerAsnPheGlyThrGlnThr CTCCCT@AGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGA GAGGGAGTCGTCGCACCACTGGCACGGGAGGTCGTTGAAGCCGTGGGTCT
1501	··TyrThrCysAsnValAspHisLysProSerAsnThrLysValAspLys CCTACACCTGCAAGGTAGATCACAAGCCCAGCAACACCCAAGGTGGACAAG GGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTGTGGTTCCACCTGTTC
1551	ThrVal ACAGTTGGTGAGAGGCCAGCTCAGGGAGGGAGGGTGTCTGCTGGAAGCCA TGTCAACCACTCTCCGGTCGAGTCCCTCCCTCCCACAGACGACCTTCGGT
1601	GGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGTGCAGCCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCACGTCGGGGTCG
1651	GGCAGCAAGGCAGGCCCCATCTGTCTCCTCACCCGGAGGCCTCTGCCCGC CCGTCGTTCCGTGCGGGGTAGACAGAGGAGTGGGCCTCCGGAGACGGGCG
1701	CCCACTCATGCTCAGGGAGAGGGTCTTCTGGCTTTTTCCACCAGGCTCCA. GGGTGAGTACGAGTCCCTCTCCCAGAAGACCGAAAAAGGTGGTCCGAGGT
1751	GGCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCCTTCACACACA
1801	AGGTGCTTGGCTCAGACCTGCCAAAAGCCATATCCGGGAGGACCCTGCCC TCCACGAACCGAGTCTGGACGGTTTTCGGTATAGGCCCTCCTGGGACGGG
1851	CTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCACTCCCTCAGGTCGGA GACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGTGAGGGAGTCGAGCCT
1901	Glu CACCTTCTCCTCCCAGATCCGAGTAACTCCCAATCTTCTCTCTGCAGA GTGGAAGAGAGAGGGTCTAGGCTCATTGAGGGTTAGAAGAGAGACGTCT
1951	·ArgLysCysValGluCysProProCysPro GCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGGTAAGCCAGCC
2001	CCTCGCCCTCCAGCTCAAGGCGGGACAGGTGCCCTAGAGTAGCCTGCATC GGAGCGGGAGGTCGAGTTCCGCCCTGTCCACGGGATCTCATCGGACGTAG
2051	CAGGGACAGGCCCAGCTGGGTGCTGACACGTCCACCTCCATCTCTTCCT GTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGTGGAGGTAGAAAGGA

FIGURE 3 Continuation

	AlaProProValAlaGlyProSerValPheLeuPheProProLysPro
2101	CAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTCCCCCAAAACCC GTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAGAAGGGGGGTTTTGGG
	LysAspThrLeuMetIleSerArgThrProGluValThrCysValValVal
2151	AAGGACACCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTG
	·AspValSerHisGluAspProGluValGlnPheAsnTrpTyrValAspGl
2201	GGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGTACGTGGACG CCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGTTGACGATGCACCTGC
	··ValGluValHisAsnAlaLysThrLysProArgGluGluGlnPheAsn
2251	GCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGAGCAGTTCAAC CGCACCTCCACGTATTACGGTTCTGTTTCGGTGCCCTCCTCGTCAAGTTG
	SerThrPheArgValValSerValLeuThrValValHisGlnAspTrpLeu
2301	AGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCAGGACTGGCT TCGTGCAAGGCACACCAGTCGCAGGAGTGGCAACACGTGGTCCTGACCGA
	·AsnGlyLysGluTyrLysCysLysValSerAsnLysGlyLeuProAlaPro
2351	GAACGCCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCAGCCC CTTGCCGTTCCTCATGTTCACGTTCCAĞAGGTTGTTTCCGGAGGGTCGGG
2401	··IleGluLysThrIleSerLysThrLys
2401	CCATCGAGAAAACCATCTCCAAAACCAAAGGTGGGACCCGCGGGGTATGA GGTAGCTCTTTTGGTAGAGGTTTTGGTTTCCACCCTGGGCGCCCCATACT
2451	GGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCCTGGGAGTGA CCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGGACCCTCACT
2501	GlyGlnProArgGluProGlnVal CCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCCCGAGAACCACAGGTG
2301	GGCGACACGTTGGAGACAGGGATGTCCCGTCGGGGCTCTTGGTGTCCAC
2551	TyrThrLeuProProSerArgGluGluMetThrLysAsnGlnValSerLeu TACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCT
2001	ATGTGGGACGGGGTAGGGCCCTCCTCTACTGGTTCTTGGTCCAGTCGGA
2601	·ThrCysLeuValLysGlyPheTyrProSerAspIleAlaValGluTrpGluGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGG
	CTGGACGGACCAGTTTCCGAAGATGGGGTCGCTGTAGCGGCACCTCACCC
2651	··SerAsnGlyGlnProGluAsnAsnTyrLysThrThrProProMetLeu AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACCTCCCATGCTG
2031	TCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGTGGAGGGTACGAC
2701	AspSerAspGlySerPhePheLeuTyrSerLysLeuThrValAspLysSer GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG
6.101	- いかい にくいかにいけい にしに トエレエエししょしょ れいめいじかかけし ましめしいけ いけんじ めかいかい

FIGURE 3 Continuation

CTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTC

- · ArgTrpGlnGlnGlyAsnValPheSerCysSerValMetHisGluAlaLeu
 2751 CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTC
 GTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAG
- ··HisAsnHisTyrThrGlnLysSerLeuSerLeuSerProGlyLys
 TGCACAACCACTAGACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA
 ACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGCCCATTT

901	MetArgValProAlaGlnLeuLeuGlyLeuLeuLeuLeuTrpPheProATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGTTCCTACTCCCAGGGGCGAGGACCAAGG
951	··GlySerArgCysAspIleGlnMetThrGlnSerProSerSerValSer CAGGTTCCAGATGCGACATCCAGATGACCCAATCTCCATCTTCCGTGTCT GTCCAAGGTCTACGCTGTAGGTCTACTGGGTTAGAGGTAGAAGGCACAGA
1001	AlaSerIleGlyAspArgValSerIleThrCysArgAlaSerGlnGlyIle GCATCTATAGGAGACAGAGTCTCCATCACTTGTCGGGCGAGTCAGGGTAT CGTAGATATCCTCTGTCTCAGAGGTAGTGAACAGCCCGCTCAGTCCCATA
1051	·SerSerTrpLeuAlaTrpTyrGlnGlnLÿsProGlyLysAlaProThrLeuTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAGGGATCGGACCATAGTCGTCTTTTGGTCCCTTTCGGGGATGCGATCGTCGTCGTCGTCTTTTGGTCCCTTTCGGGGATGCGATCGTCGTCGTCTTTTGGTCCCTTTTCGGGGATGCGATCG
1101	LeulleTyrAlaAlaSerThrLeuGlnArgGlyValProSerArgPhe TCCTTATCTATGCTGCATCCACTTTGCAACGTGGGGTCCCATCAAGGTTC AGGAATAGATACGACGTAGGTGAAACGTTGCACCCCAGGGTAGTTCCAAG
1151	SerGlySerGlySerGlyThrAspPheThrLeuThrIleSerSerLeuGln AGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCA TCGCCGTCACCTAGACCCTGTCTAAAGTGAGAGTGGTAGTCGTCGGACGT
1201	·ProGluAspPheAlaThrTyrPheCysGlnGlnAlaAsnSerPheProPheGCCTGAAGATTTTGCAACTTACTTTTGTCAACAGGCTAACAGTTTCCCATCGGACTTCTAAAACGTTGAATGAA
1251	··ThrPheGlyProGlyThrLysValAspIleLysArgThrValAlaAla TCACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGAACTGTGGCTGCA AGTGAAAGCCGGGACCCTGGTTTCACCTATAGTTTGCTTGACACCGACGT
1301	ProSerValPheIlePheProProSerAspGluGlnLeuLysSerGlyThr CCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAAC GGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAACTTTAGACCTTG
1351	·AlaSerValValCysLeuLeuAsnAsnPheTyrProArgGluAlaLysVal TGCTAGCGTTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAG ACGATCGCAACACACGGACGACTTATTGAAGATAGGGTCTCTCCGGTTTC
1401	··GlnTrpLysValAspAsnAlaLeuGlnSerGlyAsnSerGlnGluSer TACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGT ATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTGAGGGTCCTCTCA
1451	ValThrGluGlnAspSerLysAspSerThrTyrSerLeuSerSerThrLeu GTCACAGAGCAGGACAGCAGGACAGCACCTACAGCCTCAGGAGCACCCT CAGTGTCTCGTCCTGTCGTTGCTGTCGTGGATGTCGGAGTCGTCGTGGGA

FIGURE 4 Continuation

1501	·ThrLeuSerLysAlaAspTyrGluLysHisLysValTyrAlaCysGluValGACGCTGAGCAAAGCAGAAACACAAAGTCTACGCCTGCGAAGCTGCGACGCTTCGTGTTTCAGATGCGGACGCTTC
1551	··ThrHisGlnGlyLeuSerSerProValThrLysSerPheAsnArgGly TCACCCATCAGGGCCTGAGCTCGCCGGTCACAAAGAGCTTCAACAGGGGA AGTGGGTAGTCCCGGACTCGAGCGGCAGTGTTTCTCGAAGTTGTCCCCT

GluCys 1601 GAGTGT CTCACA

Erythropoietic Activity of Ab Candidates on F36e Human Erythroleukemic Cell Line

FIGURE 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

(

Figure 13

Figure 14

Effect of ABT2-SCX-012 on the proliferation of UT7/Epo cells

Figure 15

Effect of EPOR MAb XG2 43H12 SC198 on theproliferation of UT7/Epo cells

Figure 16

Effect of EPOR MAb XG2 43H12 SC198 + secondary Ab on the growth and prolliferation of UT7 celb

Figure 17

Effect of ABT2-SCX-012 + secondary Ab on the proliferation of UT7/Epo cells

A-- ABT2-SCX-003 Nucleotide sequence of heavy chain variable region:

5'CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCC CTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCA CTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTATATCA TATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCA TCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG AGTTGAGGACACGGCTGTATTACTGTGCGAGAGTCACGGTGGGAGGTAC GTCTACGACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT CCTCAG 3'

B-- ABT2-SCX-003 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY

DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY

DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-003 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-003 Amino acid sequence of light chain variable region:

DIQMTQSPSSVSASVGDRVSITCRASQGISSWLVWYQQKPGKAPALLIYAASSLQ RGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQANSFPFTFGPGTKVDIK

A-- ABT2-SCX-012 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-012 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPSETLSLTCTVSGASISSYYWSWIRQPPGKGLEWIGYIYYSGS TNYNPSLKSRVTISVDTSKNQFSLKLRSVTAADTAVYYCARERLGIGDYWGQGT LVTVSS

C-- ABT2-SCX-012 Nucleotide sequence of light chain variable region:

5'GACATCCAGCTGACCCAATCTCCATCCTCCCTGTCTGCATCTGTAGGAGACA
GAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAAATGATTTAGGCTG
GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC
AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG
AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTAC
TGTCTACAGCATAATACTTACCCTCCGACGTTCGGCCAAGGGACCAAGGTGG
AAATCAAAC3'

D- ABT2-SCX-012 Amino acid sequence of light chain variable region:

DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQS GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNTYPPTFGQGTKVEIK

A-- ABT2-SCX-022 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-022 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVVVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY DYGMDVWGOGTTVTVSS

C-- ABT2-SCX-022 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-022 Amino acid sequence of light chain variable region:

DIQMTQSPSSVSASVGDRVSITCRASQGISSWLAWYQQKPGKAPTLLIYAASSLQ RGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQANSFPFTFGPGTKVDIK

A-- ABT2-SCX-054 Nucleotide sequence of heavy chain variable region:

5'CAGGTGCAGCTGGTGGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAAATATGGCATGC ACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGGGCCGATTTATG GTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACC ATCTCCAGAGACACTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGA GAGCCGAGGACACGGCTGTATTACTGTGCGAGAGGTCCGTACTACTTTGA CTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG3'

B-- ABT2-SCX-054 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSKYGMHWVRQAPGKGLEWVAVLW YDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGPYYFDY WGQGTLVTVSS

C-- ABT2-SCX-054 Nucleotide sequence of light chain variable region:

5'GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGAAA GAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGC CTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCA TCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGA CAGACTTCACTGTCACCATCAGCAGACTGGAACCTGAAGATTTTGCAGTGTAT TACTGTCAGCAGTATGGTAGTTCACCGTGGACGTTCGGCCAAGGGACCAAGG TGGAAATCAAAC3'

D-- ABT2-SCX-054 Amino acid sequence of light chain variable region:

EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA TGIPDRFSGSGSGTDFTVTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK

A- ABT2-SCX-060 Nucleotide sequence of heavy chain variable region:

5'CAGGTGEAGCTGGTGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCC CTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCA CTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTATATCA TATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCA TCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG AGTTGAGGACACGGCTGTATTACTGTGCGAGAGATCACGGTGGGAGGTAC GTCTACGACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT CCTCAG3'

B-- ABT2-SCX-060 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY

DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY

DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-060 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-060 Amino acid sequence of light chain variable region:
DIQMTQSPSSVSASVGDRVSITCRASQGISSWLAWYQQKPGKAPTLLIYAASSLQ
RGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQANSFPFTFGPGTKVDIK

A-- ABT2-SCX-102 Nucleotide sequence of heavy chain variable region:

5'CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCC CTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCA CTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTATATCA TATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCA TCTCCAGAGACAACTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG AGTTGAGGACACGGCTGTGTATTACTGTGCGAGAGATCACGGTGGGAGGTAC GTCTACGACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT CCTCAG3'

B-- ABT2-SCX-102 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-102 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-102 Amino acid sequence of light chain variable region:

DIQMTQSPSSVSASVGDRVSITCRASQGISSWLAWYQQKPGKAPKRLIYAASSLQ RGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQANSFPFTFGPGTKVDIK

A-- ABT2-SCX-135 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-135 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-135 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-135 Amino acid sequence of light chain variable region:
DIQMTQSPSSVSTSVGDRVSITCRASQGIGSWLAWYQQKPGQAPTLLIYAASSLQ
RGVPSRFSGSGSGTDFTLTINSLQPEDFATYFCQQANSFPFTFGPGTKVDVK

A-- ABT2-SCX-145 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-145 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-145 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-145 Amino acid sequence of light chain variable region:
DIQMTQSPSSVSASVGDRVSITCRASQGIGSWLAWYQQKPGQAPTLLIYAASSLQ
RGVPSRFSGSGSGTDFTLTINSLQPEDFATYFCQQANSFPFTFGPGTKVDVK

A-- ABT2-SCX-198 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-198 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQFGRSLRLSCVASGFTFSSYGMHWVRQAPGKGLEWVAVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARDHGGRYVY DYGMDVWGQGTTVTVSS

C-- ABT2-SCX-198 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-198 Amino acid sequence of light chain variable region:

DIQMTQSPSSVSASIGDRVSITCRASQGISSWLAWYQQKPGKAPTLLIYAASTLQR GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQANSFPFTFGPGTKVDIK

A-- ABT2-SCX-254 Nucleotide sequence of heavy chain variable region:

B-- ABT2-SCX-254 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWF

DGNNKFYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARGGSYWDY

WGQGTLVTVSS

C-- ABT2-SCX-254 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-254 Amino acid sequence of light chain variable region:
DIVMTQTPLFSFVMIGQPASISCRSRQSLVHSDGNTYLNWLQQRPGQPPRLLIYKT
SNRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQATQFPITFGQGTRLEI
K

A-- ABT2-SCX-267 Nucleotide sequence of heavy chain variable region:

5'CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCC CTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCA CTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGCAGTTATATCA TATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCA TCTCCAGAGACACTTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG AGTTGAGGACACGGCTGTGTATTACTGTGCGAAAGATCACGGTGGGAGGTAC GTCTACGACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCT CCTCAG3'

B-- ABT2-SCX-267 Amino acid sequence of heavy chain variable region:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISY DGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCAKDHGGRYV YDYGMDVWGQGTTVTVSS

C-- ABT2-SCX-267 Nucleotide sequence of light chain variable region:

D-- ABT2-SCX-267 Amino acid sequence of light chain variable region:

DIQMTQSPSSVSASVGDRVSITCRASQGIGSWLAWYQQKPGQAPTLLIYAASSLQ RGVPSRFSGSGSGTDFTLTINSUQPEDFATYFCQQANSFPFTFGPGTKVDVK

Single Cell	V Heavy/D/J	FR1	CDR1	FR2	CDR2
	Germline.	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYGM	MVRQAPGKGLEWVA	VISYDG8NKYYADSVKG
.3					
22	1			V	
60				***********	
102	VH3-30 (V3-				
135	30)/D4-23/LH6b				
145	1 [.]				
198		V			***************************************
-:-	Germline	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYGMH	WVRQAPGKGLEWVA.	VISYDGSNKYYADSVK
267	VH3-30.5 (DP- 49)/D4-23/JH6b				
	Germline	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYGMX	WVRQAPGKGLENVA	VISYDGSNKYYADSVK
54	VH3-33(DP- 50)/DIR3/JH4b		K		-L
254	VH3-33(DP- 50)/D21- 10rc/JH4b				ғкғ
-	Germline	QVQLQESGPGLVKPSETLSLTCTVS	GGSISSYYWS	WIRQPPGKGLEWIG	YIYYSGSTNYNPSLKS
12	VH4-59(DP- 71)/DIR4rc/JM4a		-A		

Single Cell	V Heavy/D/J	FR3	CDR3	PR4
	Germline ·	RETISRONSKNTLYLOMNSLRAEDTAVYYCAR	. DHGGRYVYDYGHDV'	WGQGTTVTVSS
3		V		
22				
60:			***********	
102	VH3-30 (V3-	VV		
135	.30)/D4-23/LH6b	V		
145	1	V		
198	1	V		
	Germline	RFTISRONSKNTLYLOMNSLRAEDTAVYYCAK		WGQGTTVTVSS
267	VH3-30.5 (DP- 49)/D4-23/JH6b	V		
	Germline	RETISRONSKNTLYLOMNSLRAEDTAVYYCAR .		WGQGTLVTVSS:
54	VH3-33 (DP- 50) / DIR3/JH4b		GBAALDA	
254	VH3-33(DP- 50)/D21- 10rc/JH4b		GGSYWDY	***********
-	Germline	RVTISVDTSKNGFSLKLSSVTAADTAVYYCAR.		WGQGTLVTVSS
12	VH4-59 (DP- 71)/DIR4rc/JH4a		EELCICDA	

Figure 30

Single Cell	V Kappa/J	ŧ 1L1	спы	100	cors
-		EIVINGSPOTLSISPGERATISC	RASOSVESSYLA	WYDOR POOLPRLLIY	CASSRAT
54	VEIII (A27)/Jkl	*****	*********		
-	AND DECEMBER 1885	DICHTOSPESVSASVGDRVTTTC	RASQUISSWLA	WYOOK PURKAPRILLIY	AASSEQS
3					R
22		*8		T	R
60	1				
102	VkI-(15)/3ks		**********	R	B
135		TS		QT	B
145				QT	B
198				T	TR
267				QT	R
-	minter mali particular	DIOMOSPSSLALSVGDRVTITC	RASOGIRUOLO	HYDORPGKAPKRLTY	AASSIQS
12	VEI (A30)/Jkl	L			
-	E-S (Germline)	DIVINOTELS SPOTLOG PASTSC	RESOSTAHEDGETYLE	WLQQRPGQPFRLLTY	KISHRIS
254	VkII (823)/Jio	T-T-M	RN		-T

Simple Cell	V FappsiZJ	FIET	CDF1	J
-	Will Cont Line Forth	GIFDRIESSSSSSSTOFFLITISGLEPEDIAVYCC	OGYG6SPWT	POOPLEVELE
54.	VEIII (A27)/Jkl		*****	
-	Wilk Control in Carl	GVPSRISGSGEOID FILTISSIO PIDINTYC	QQAMSTPFT	POPOLKVDIK
3			******	
22				
60				
102	VkI (L5)/Jk3			
135	ART (F2)/ARS			
145				
198				
267				V-
-	S COMMENCE	GYPER PEGEGGGGTE FTLT IS SLOPED PATTYC	LOBMSYPPT	FGOGIEVELE
12 .	WhI (A30)/Jkl		T	
-	CHARLES IN	GVPDR FEGEDAGID FTLK LERVEAKDVGVYYC	HOATOFFIT	TOOGTRIETK
254	VXII (A23)/JIS			

Comparison of Erythropoietic Activity of Gamma 1 Ab-12 versus Gamma 2 Ab-12 on F36e Human Erythroleukemic Cell Line

FIGURE 31

FIGURE 32

Ab-12 Increases Reticulocyte Count and Hematocrit in Transgenic Mice

Day 19 Hematocrit in Transgenic Mice Following Weekly Dosing with Ab-12 or Aranesp

Day 19 Hematocrit in Transgenic Mice Comparing Single vs. Weekly Dosing with Ab-12 or Aranesp

A. Ab390 nucleotide sequence of heavy chain variable region:

B. Ab390 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPSETLSLTCTVSGASISNYYWSWIRQPPGKGLEWIGYVSYSGS TYYNPSLKGRVTMSVDTSKNQFSLKLSSVTAADTAVYYCAREKLGIGDYWGQGTLV TVSS

C. Ab390 nucleotide sequence of light chain variable region:

5'GACATCCAGATGACCCAGTCTCCATCCTCCTGTCTGCATCTGTAGGAGACA GAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAAAAATGATTTAGGCTG GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTA CTGTCTACAGCATAATAGTTATCCGTGCAGTTTTGGCCAGGGGACCAAGCTG GAGATCAAAC3'

D. Ab390 Amino acid sequence of light chain variable region:

DIQMTQSPSSLSASVGDRVTITCRASQGIKNDLGWYQQKPGKAPKRLIYAASSLQS GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPCSFGQGTKLEIK

- A. Ab412 nucleotide sequence of heavy chain variable region:
- 5'CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCC TGTCCCTCACCTGCACTGTCTCTGGTGCCTCCATCAGCAGTGGTGCTTACTA CTGGAGTTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTAC ATCTATAAGAGTGAGACCTCCTACTACAACCCGTCCCTCAAGAGTCGACTTA CCCTATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAACCTGATCTCTGT GACTGCCGCGGACACGGCCGTGTATTATTGTGGGAGAGATAAACTGGGGATC GCGGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA3'
- B. Ab412 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPSQTLSLTCTVSGASISSGAYYWSWIRQHPGKGLEWIGY IYKSETSYYNPSLKSRLTLSVDTSKNQFSLNLISVTAADTAVYYCARDKLGI ADYWGQGTLVTVSS

- C. Ab412 nucleotide sequence of light chain variable region:
- 5'GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACA
 GAGTCACCATCACTTGCCGGGCAAGTCAGGACATTAGAAATGATTTAGGCTG
 GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC
 AATTTGCAAAGTGGGGTCCCATCAAGGTTCAGGGGCAGTGGATCTGGGACAG
 AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTA
 CTGTCTACAGCATAATAGCTACCCTCCCACTTTCGGCGGAGGGACCAAGGTG
 GAAATCAAAC3'
- D. Ab412 Amino acid sequence of light chain variable region:

DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIYAAS NLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPPTFGGGTKV EIK

A. Ab432 nucleotide sequence of heavy chain variable region:

B. Ab432 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPSETLSLTCTVSGVSISNYYWSWIRQSPGKGLEWIGYIY YSGSPYYNPSLKSRVTISADTSKNQFSLKLSSVTAADTAIYYCAREKLGIGD YWGQGTLVTVSS

C. Ab430 nucleotide sequence of light chain variable region:

5'GACATCCAGATGACCCAGTCTCCATCCCCTGTCTGCATCTGTCGGAGACA GAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAAATGATTTAGGCTG GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTA CTGTCTACAGCATAATAGTTACCCTCCCACTTTCGGCCCTGGGACCAAGGTG GATATCAAAC3'

D. Ab430 Amino acid sequence of light chain variable region:

DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAAS SLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPPTFGPGTKV DIK

A. Ab467 nucleotide sequence of heavy chain variable region:

B. Ab467 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPSETLSLTCTVSGGSISRYYWSWIRQPPGKGLEWIGYVS YSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDKLGIGD YWGQGTLVTVSS

C. Ab467 nucleotide sequence of light chain variable region:

5'GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACA GAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAAATGATTTAGGCTG GTATCAGCAGAAACCGGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTA CTGTCTACAGCATAATAGTTACCCGTGCAGTTTTTGGCCAGGGGACCAAGCTG GAGATCAAAC3'

D. Ab467 Amino acid sequence of light chain variable region:

DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAAS SLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPCSFGQGTKL EIK

A. Ab484 nucleotide sequence of heavy chain variable region:

5'CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTTACAGACCC TGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGTTTACTA CTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTAC ATCTATAACAGTAAGACCTGCTATTATAATCCGTCCCTCAAGAGTCGACTTA CCCTATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAACCTGATCTCTGT GACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGATAAATTGGGGATC GCGGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG3'

B. Ab484 Amino acid sequence of heavy chain variable region:

QVQLQESGPGLVKPLQTLSLTCTVSGGSISSGVYYWSWIRQHPGKGLEWIGY IYNSKTSYYNPSLKSRLTLSVDTSKNQFSLNLISVTAADTAVYYCARDKLGI ADYWGQGTLVTVSS

C. Ab484 nucleotide sequence of light chain variable region:

5'GACATCCAGATGACCCAGTCTCCATCCTCCTGTGTGCATCTGTAGGAGACA GAGTCACCATCACTTGCCGGACAAGTCAGGGCATTAGAAATGATTTAGGCTG GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG AATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTA CTGTCTACAGCATAATAGCTACCCTCCCACTTTCGGCGGAGGGACCAAGGTG GAGATCAAAC3'

D. Ab484 Amino acid sequence of light chain variable region:

DIQMTQSPSSLSASVGDRVTITCRTSQGIRNDLGWYQQKPGKAPKRLIYAAS SLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPPTFGGGTKV EIK

w 11	the gla eval	Chash ID	A Beath of A	FT:	2.003	pr.
-			-	QVQLVESGGGVVQFGRSLRLSCAAS	GET ESSYCHIA	MANGARGRETANA
43H12	198	14325.3	VH3-30/D4-23/JH6			
	-			QVQLQ88GPGLVKPSETLSLTCTVS	OCE185YYNS	. MIBOSBEKETWATE
3368	12	13300.1	VH4-59/DIRARC/JH4	***************************************		***********
-	-			OVOLGREGATEVERSOTESTATATA	ENYYDUBALEDU	MINORRGRETTHIS
230A4	412	54915.1	V4-31/DIR4rc/JR4		-AA	,
-	-			QVCLQESGPGLVKPSQ1LSLTCTVS	GGSISSGGYYWS	MINONPONGLEMIE:
20BA12	464	57130.1	V4-30.1/DIR4rc/JH4			
-	+			QVCLQEEGPGLVKPSETLELTCTVS	GGS1SSYYKS	MIROPPGKGLEWIG
259012	467	56977.2	V4-59/D7-27/JR4	***************************************		*********
236D12	390	-57141.2	VH4-59/D7-27/JH4b		·-AN	
22382	432	57354:11	VH4-59/D7-27/JH4D	******************	-VH	*****

	*. 6.	tp.	2197	471
	VISTOGERKY FARSVEG	RETISROMSKYTLYLOMKSLRAEDTAVYYCAK		WCCGTTVTVSS
196			DHGGRYVYDYGHDV	**********
	YIYYSGSTRYNPSLKS	RVT1SVDTSKNOFSLKLBSVTAADTAVYYCAR		W-QGTLVTVSS
16			ERLGIGDY	*******
	YIYTAGSTYYHPELES	RVT15V0TSIONOFSLKLSSVTAADTAVYTCAA		WGQGTLV7VX6
412	K-E7S	-[-1]-x	DELGIADY	*****
	YLYTSGSTYTHEELES	SVT: EVDTSKNOFTLELSSVTAADTAVTTCAA		MODGTLVTVSS
184-	N-KTS	-L-;	DREGIADY	
-	YIYYSGSTNINPSLKG	RVTISVDTSKNOFSLKLESVTAADTAVYYCAR		WCQGTLYTVSS .
467	-V5Y		DXLGIGDY	********
390	-vs	M	ERLGIGDY	********
430		A	EKTEIGDA	

Figure 40

Rif.	C 11	'h set II	V Put.	+14)		*12
•	•			DIONTOSFSSVSASVCORVETTC	PASQUIESVLA	MIGORDE KAPIELL IN
43H12	198	14325.3	15/Jk3		*********	
•		57 Table 1 Tab	•	DIGHTOS PERLAARVOORVTITC	RANGO I NUTOLO	WYCCKPGKAPIKLL)
3308 :	12	13108.1	AND/Jk3			
21112	430	54494.3	A30/JkJ	***************************************		
		ETTER THORNEY - THE REAL		DIGHTOSPESLEASVODEVTITC	RASOCITEDEDIC	STOCKPURAPERLITY
23CM	412	\$4732.2	M10 (VE1)/JE4	***************************************	D	************
	•	The state of the s	100000000000000000000000000000000000000	DIGHTGSPESLEASVERVETTC	RASQUIRNOLG	PYOCKPGIAPERLE
208A12	484	57094.1	A30 (V21) /Jks		-T	
		THE WAY TO SHEET THE PARTY OF T		DIOMTOSPSSLEARVGDRVTITC-	DACOGIDODAS	MADOKACKWHONTA
259C12	467	56956.1	AJO (VEST/JES	***************************************		
236012	330	36829.3	A30 (VE) /Jk2	***************************************	ig	

. 1

	Th-		raa.	281
	AASSLQ9.	GVPS###DEGSGTDPTLTISELQPEDFATYYC	QQANSFPFT	PGPOTKVDIK
194	TR		******	
	AASSLOS	GVPSP780SGSGTEFTLTISSLCPEDFATTYC	LOSMSYPFT	POQUTEVELE
12			TP-	********
430	******			D
	AASSLQS	GVPSRFSGSGEGTE FTLTIERLOPEDFATYYC	LORDISTPLT	MEGATRABIE
112	***#***	***************	********	
	AASSLOS	GVPSEFSGEGGGTEFTLTIESLQFEDFATTYC	LORDISYPLT	POGUTEVELE
104			**********	
	AABSLOS	GVPSRFGGEGSGTEFTLTISELQPEDFATTYC	LCHESTPLT	PGOGTALBIK
464			····-ce	*********
190	*****	***************************************	C8	

1.	MetLysHisLeuTrpPhePheLeuLeuValAla ATGAAGCATCTGTGGTTCTTCCTTCTCCTGGTGG TACTTCGTAGACACCAAGAAGGAAGAGGACCACC
51	· AlaProArgTrpValLeuSerGlnValGlnLeuGlnGluSerGlyPro CAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCA GTCGAGGGTCTACCCAGGACAGGGTCCACGTGGACGTCCTCAGCCCGGGT
101	GlyLeuValLysProSerGluThrLeuSerLeuThrCysThrValSerGly GGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGG CCTGACCACTTCGGAAGCCTCTGGGACAGGGAGTGGACGTGACAGAGACC
151	·AlaSerIleSerAsnTyrTyrTrpSerTrpIleArgGlnProProGlyLys TGCCTCCATCAGTAATTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA ACGGAGGTAGTCATTAATGATGACCTCGACCTAGGCCGTCGGGGGTCCCT
201	··GlyLeuGluTrpTleGlyTyrValSerTyrSerGlySerThrTyrTyr AGGGACTGGAGTGGATTGGGTATGTCTCTTACAGTGGGAGTACGTAC
251	AsnProSerLeuLysGlyArgValThrMetSerValAspThrSerLysAsn AACCCCTCCCTCAAGGGTCGAGTCACCATGTCAGTAGACACGTCCAAGAA TTGGGGAGGGAGTTCCCAGCTCAGTGGTACAGTCATCTGTGCAGGTTCTT
301	·GlnPheSerLeuLysLeuSerSerValThrAlaAlaAspThrAlaValTyr CCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGT GGTCAAGAGGGACTTCGACTCGAGACACTGGCGACGCCTGTGCCGGCACA
351	· TyrCysAlaArgGluLysLeuGlyIleGlyAspTyrTrpGlyGlnGly ATTACTGTGCGAGAGAAAAACTGGGGATTGGAGACTACTGGGGCCAGGGA TAATGACACGCTCTCTTTTTGACCCCTAACGTCTGATGACCCCGGTCCCT
401	ThrLeuValThrValSerSerAlaSerThrLysGlyProSerValPhePro ACCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCC TGGGACCAGTGGCAGAGGAGTCGGAGGTGGTTCCCGGGTAGCCAGAAGGG
451	·LeuAlaProCysSerArgSerThrSerGluSerThrAlaAlaLeuGlyCys CCTGGCGCCCTGC <u>TCTAGA</u> AGCACCTCCGAGAGCACAGCCGCCCTGGGCT GGACCGCGGGACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGGACCCGA
501	··LeuValLysAspTyrPheProGluProValThrValSerTrpAsnSer GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAAGTCA CGGACCAGTTCCTGATGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGT
551	GlyAlaLeuThrSerGlyValHisThrPheProAlaValLeuGlnSerSer GGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTC CCGCGAGACTGGTCGCCGCACGTGTGGAAGGGTCGACAGGATGTCAGGAG

FIGURE 42 Continuation

601	·GlyLeuTyrSerLeuSerSerValValThrValProSerSerAsnPheGly AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCG TCCTGAGATGAGGGAGTCGTCGCACCACTGGCACGGGAGGTCGTTGAAGC
651	··ThrGlnThrTyrThrCysÄsnValAspHisLysProSerAsnThrLys GCACCGAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAG CGTGGGTCTGGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTGTGGTTC
701	ValAspLysThrVal GTGGACAGGCAGGTTGGTGAGAGGCCAGCTCAGGGAGGGA
751	TGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGTGCAGCC ACCTTCGGTCCGAGTCGGGAGGACGGACCTGCGTGGGGCCGACACGTCGG
801	CCAGCCCAGGGCAGCAAGGCAGGCCCCATCTGTCTCCTCACCCGGAGGCC GGTCGGGTCCCGTCCGTCCGGGGTAGACAGAGGAGTGGGCCTCCGG
851	TCTGGGGGGGGGGTCATGCTCAGGGAGAGGGTCTTCTGGCTTTTTCCAC AGACGGGCGGGGTGAGTACGAGTCCCTCTCCCAGAAGACCGAAAAAGGTG
901	CAGGCTCCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCCTTCACA GTCCGAGGTCCGTCCGTGTCCGACCCACGGGGATGGGGTCCGGGAAGTGT
951	CACAGGGGCAGGTGCTTGGGTCAGACCTGCCAAAAGCCATATCCGGGAGG GTGTCCCCGTCCACGAACCGAGTCTGGACGGTTTTGGGTATAGGCCCTCC
1001	ACCCTGCCCCTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCACTCCCT TGGGACGGGGACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGTGAGGGA
1051	CAGCTCGGACACCTTCTCTCCTCCCAGATCCGAGTAACTCCCAATCTTCT GTCGAGCCTGTGGAAGAGAGGGGGGTCTAGGCTCATTGAGGGTTAGAAGA
1101	GluArgLysCysCysValGluCysProProCysPro CTCTGCAGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGGTAAGC GAGACGTCTCGCGTTTACAACACAGCTCACGGGTGGCACGGGTCCATTCG
1151	CAGCCCAGGCCTCGCCCTCCAGCTCAAGGCGGGACAGGTGCCCTAGAGTA. GTCGGGTCCGGAGCGGGAGGTCCGACGGGATCTCAT
1201	GCCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTGACACGTCCACCTCCA CGGACGTAGGTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGTGGAGGT
1251	AlaProProValAlaGlyProSerValPheLeuPhePro TCTCTTCCTCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCC AGAGAAGGAGTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAGAAGGGG
	ProLysProLysAsnThrLauMetTleSerAraThrProGluValThrCys.

FIGURE 42 Continuation

1301	CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTG GGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGCAC
1351	·ValValValAspValSerHisGluAspProGluValGlnPheAsnTrpTyr· CGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGT GCACCACCACCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGTTGACCA
1401	··ValAspGlyValGluValHisAsnAlaLysThrLysProArgGluGlu ACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGAG TGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGTGCCCTCCTC
1451	GlnPheAsnSerThrPheArgValValSerValLeuThrValValHisGln· CAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCA GTCAAGTTGTCGTGCAAGGCACCAGTCGCAGGAGTGGCAACACGTGGT
1501	·AspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsnLysGlyLeu· GGACTGGCTGAACGAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC CCTGACCGACTTGCCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCCGG
1551	··ProAlaProIleGluLysThrIleSerLysThrLys TCCCAGCCCCCATCGAGAAACCATCTCCAAAACCAAAGGTGGGACCCGC AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTTGGTTTCCACCCTGGGCG
1601	GGGGTATGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCC CCCCATACTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGG
1651	GlyGlnProArgGlu TGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCCCGAGAA ACCCTCACTGGCGACACGGTTGGAGACAGGGATGTCCCGTCGGGGCTCTT
1701	ProGlnValTyrThrLeuProProSerArgGluGluMetThrLysAsnGln· CCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCA GGTGTCCACATGTGGGACGGGGGTAGGGCCCTCCTCTACTGGTTCTTGGT
1751	·ValSerLeuThrCysLeuValLysGlyPheTyrProSerAspIleAlaVal· GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCG CCAGTCGGACTGGACGACCAGTTTCCGAAGATGGGGTCGCTGTAGCGGC
1801	··GluTrpGluSerAsnGlyGlnProGluAsnAsnTyrLysThrThrPro TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACACCT ACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGTGGA
1851	ProMetLeuAspSerAspGlySerPhePheLeuTyrSerLysLeuThrVal· CCCATGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT GGGTACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCA
	·AspLysSerArgTrpGlnGlnGlyAsnValPheSerCysSerValMetHis·

FIGURE 42 Continuation

1901	GGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC CCTGTTCTCGTCCACGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACG
1951	··GluAlaLeuHisAsnHisTyrThrGlnLysSerLeuSerLeuSerPro ATGAGGCTCTGCACÄACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG TACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGC
2001	GlyLys GGTAAA CCATTT

1	MetArgLeuProAlaGlnLeuLeuGlyLeuLeu ATGAGGCTCCCGCTCAGCTCCTGGGGCTCCTGC TACTCCGAGGGGCGAGTCGAGGACCCCGAGGACG
51	··LeuTrpPheProGlyAlaArgCysAspIleGlnMetThrGlnSerPro TGCTCTGGTTCCCAGGTGCCAGGTGTGACATCCAGATGACCCAGTCTCCA ACGAGACCAAGGGTCCACGGTCCACACTGTAGGTCTACTGGGTCAGAGGT
101	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgAla TCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGC AGGAGGGACAGACGTAGACATCCTCTGTCTCAGTGGTAGTGAACGGCCCG
151	·SerGlnGlyIleLysAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLys AAGTCAGGGCATTAAAAATGATTTAGGCTGGTATCAGCAGAAACCAGGGA TTCAGTCCCGTAATTTTTACTAAATCCGACCATAGTCGTCTTTGGTCCCT
201	··AlaProLysArgLeuIleTyrAlaAlaSerSerLeuGlnSerGlyVal AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTC TTCGGGGATTCGCGGACTAGATACGACGTAGGTCAAACGTTTCACCCCAG
251	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrlle CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
301	· SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAsn CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
351	··SerTyrProCysSerPheGlyGlnGlyThrLysLeuGluIleLysArg ATAGTTATCCGTGCAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGA TATCAATAGGCACGTCAAAACCGGTCCCCTGGTTCGACCTCTAGTTTGCT
401	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
451	·LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArg GAAATCTGGAACTGCTAGCGTTGTGTGCCTGCTGAATAACTTCTATCCCA CTTTAGACCTTGACGATCGCAACACACGGACGACTTATTGAAGATAGGGT
501	··GluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsn GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG
551	SerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeu TCCCAGGAGAGTGTCACAGAGCAGGACAGCAGCACCTACAGCCT AGGGTCCTCTCACAGTGTCTCGTCCTGTCGTTCGTGGATGTCGGA

FIGURE 43 Continuation

601	·SerSerThrLeuThrLeuSerLysAlaAspTyrGluLysHisLysVal CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTC GTCGTCGTGGGACTGCGACTCGTTTCGTCTGATGCTCTTTGTGTTTCAG	T
651	···AlaCysGluValThrHisGlnGlyLeuSerSerProValThrLysSe ACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGGCCGTCACAAAGAG TGCGGACGCTTCAGTGGGTAGTCCCGGACTCGAGCGGCAGTGTTTCTC	e
701	PheAsnArgGlyGluCys TTCAACAGGGGAGAGTGT AAGTTGTCCCCTCTCACA	

	MetLysHisLeuTrpPhePheLeuLeuValAl
1	ATGAAACATCTGTGGTTCTTCCTCCTGCTGGTGG
	TACTTTGTAGACACCAAGAAGGAGGACGACCACC
	··AlaProArgTrpValLeuSerGlnValGlnLeuGlnGluSerGlyPro
51	CAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCA
~ _	GTCGAGGGTCTACCGAGGACAGGGTCCAGGTCGACGTCCTCAGCCCGGGT
	GlyLeuValLysProSerGlnThrLeuSerLeuThrCysThrValSerGly
101	GGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGG
1.01	CCTGACCACTTCGGAAGTGTCTGGGACAGGGAGTGGACGTGACAGAGACC
	CC1GACCAC11CGGAAG1G1C1GGGACAGGGAGTGGACGTGACAGAGACC
	·AlaSerIleSerSerGlyAlaTyrTyrTrpSerTrpIleArgGlnHisPr
151	TGCCTCCATCAGCAGTGGTGCTTACTACTGGAGTTGGATCCGCCAGCACC
	ACGGAGGTAGTCGTCACCACGAATGATGACCTCAACCTAGGCGGTCGTGG
	··GlyLysGlyLeuGluTrpIleGlyTyrIleTyrLysSerGluThrSer
201	CAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATAAGAGTGAGACCTCC
	GTCCCTTCCCGGACCTCACCTAACCCATGTAGATATTCTCACTCTGGAGG
	TyrTyrAsnProSerLeuLysSerArgLeuThrLeuSerValAspThrSer
251	TACTAGAACCCGTCCCTCAAGAGTCGACTTACCCTATCAGTAGACACGTC
	ATGATGTTGGGCAGGGAGTTCTCAGCTGAATGGGATAGTCATCTGTGCAG
	·LysAsnGlnPheSerLeuAsnLeuIleSerValThrAlaAlaAspThrAla
301	TAAGAACCAGTTCTCCCTGAACCTGATCTCTGTGACTGCCGCGGACACGG
	ATTCTTGGTCAAGAGGGACTTGGACTAGAGACAGTGACGGCGCCTGTGCC
	··ValTyrTyrCysAlaArgAspLysLeuGlyIleAlaAspTyrTrpGly
351	CCGTGTATTATTGTGCGAGAGATAAACTGGGGATCGCGGACTACTGGGGC
	GGCACATAATAACACGCTCTCTATTTGACCCCTAGCGCCTGATGACCCCG
	GlnGlyThrLeuValThrValSerSerAlaSerThrLysGlyProSerVal
401	CAGGGAACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGT
701	GTCCCTTGGGACCAGTGGCAGAGGAGTCGGAGGTGGTTCCCGGGTAGCCA
	$\cdot {\tt PheProLeuAlaProCysSerArgSerThrSerGluSerThrAlaAlaLeu}$
451	CTTCCCCTGGCGCCCTGC <u>TCTAGA</u> AGCACCTCCGAGAGCACAGCCGCCC
	GAAGGGGACCGCGGACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGG
	$\cdot\cdot$ GlyCysLeuValLysAspTyrPheProGluProValThrValSerTrp
501	TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGG
	ACCCGACGGACCAGTTCCTGATGAAGGGGCTTGGCCACTGCCACAGCACC
	AsnSerGlyAlaLeuThrSerGlyValHisThrPheProAlaValLeuGln
551	AACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACA
	TTGAGTCCGCGAGACTGGTCGCCGCACGTGTGGAAGGGTCGACAGGATGT

FIGURE 44 Continuation

	·SerSerGlyLeuTyrSerLeuSerSerValValThrValProSerSerAs
601	GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCA CAGGAGTCCTGAGATGAGGGAGTCGTCGCACCACTGGCACGGGAGGTCGT
651	· PheGlyThrGlnThrTyrThrCysAsnValAspHisLysProSerAsn ACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAAC
031	TGAAGCCGTGGGTCTGGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTG
701	ThrLysValAspLysThrVal
701	ACCAAGGTGGACAAGACAGTTGGTGAGAGGCCAGCTCAGGGAGGG
751	GTCTGCTGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGT
	CAGACGACCTTCGGTCCGAGTCGGGGGGGGGGGGGGCCGACA
801	GCAGCCCAGCCCAGGGCAGCAAGGCAGGCCCCATCTGTCTCCTCACCCG CGTCGGGGTCGGGTC
851	GAGGCCTCTGCCCGCCCCACTCATGCTCAGGGAGAGGGTCTTCTGGCTTT
	CTCCGGAGACGGGGGGGGGGAGTCCGTCTCCCAGAAGACCGAAA
901	TTCCACCAGGCTCCAGGCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCC AAGGTGGTCCGAGGTCCGTGTCCGACCCACGGGGATGGGGTCCGGG
951	TTCACACACAGGGGCAGGTGCTTGGCTCAGACCTGGCAAAAGCCATATCC
	AAGTGTGTCCCCGTCCACGAACCGAGTCTGGACGGTTTTCGGTATAGG
1001	GGGAGGACCCTGCCCCTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCA CCCTCCTGGGACGGGGACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGT
1051	CTCCCTCAGCTCGGACACCTTCTCTCCTCCCAGATCCGAGTAACTCCCAA
1031	GAGGGAGTCGAGCTGTGGAAGAGAGGGGGTCTAGGCTCATTGAGGGTT
	GluArgLysCysCysValGluCysProProCysPro
1101	TCTTCTCTCTGCAGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAG AGAAGAGAGACGTCTCGCGTTTACAACACAGCTCACGGGTGGCACGGGTC
1151	GTAAGCCAGCCCAGGCCTCGCCCTCCAGCTCAAGGCGGGACAGGTGCCCT
	CATTCGGTCGGGTCCGGAGCGGGAGGTCGAGTTCCGCCCTGTCCACGGGA
1201	AGAGTAGCCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTGACACGTCCA TCTCATCGGACGTAGGTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGT
	AlaProProValAlaGlyProSerValPheLeu
1251	CCTCCATCTCTCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTC GGAGGTAGAGAAGGAGTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAG
	PhoProProI veProI veAenThriouMattlaCarAreThrProCluVal

FIGURE 44 Continuation

1301	TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT AAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCA
1351	 ThrCysValValValAspValSerHisGluAspProGluValGlnPheAsp CACGTGCGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCA GTGCACGCACCACCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGT
1401	··TrpTyrValAspGlyValGluValHisAsnAlaLysThrLysProArg ACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGG TGACCATGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGTGCC
1451	GluGluGlnPheAsnSerThrPheArgValValSerValLeuThrValVal GAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGT CTCCTCGTCAAGTTGTCGTGCAAGGCACACCAGTCGCAGGAGTGGCAACA
1501	·HisGlnAspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsnLysGACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACACGTGGCTGACCGACTTGCCGTTCCTCATGTTCACGTTCCAGAGGTTGT
1551	··GlyLeuProAlaProIleGluLysThrIleSerLysThrLys AAGGCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAACCAAAGGTGGG TTCCGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTTGGTTTCCACCC
1601	ACCCGCGGGGTATGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCT TGGGCGCCCCATACTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGA
1651	GlyGlnPro CTGCCCTGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCC GACGGGACCCTCACTGGCGACACGGTTGGAGACAGGGATGTCCCGTCGGG
1701	ArgGluProGlnValTyrThrLeuProProSerArgGluGluMetThrLys CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAA GCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTCCTCTACTGGTT
1751	·AsnGlnValSerLeuThrCysLeuValLysGlyPheTyrProSerAspIle GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACA CTTGGTCCAGTCGGACTGGACGACCAGTTTCCGAAGATGGGGTCGCTGT
1801	··AlaValGluTrpGluSerAsnGlyGlnProGluAsnAsnTyrLysThr TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC AGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGG
1851	ThrProProMetLeuAspSerAspGlySerPhePheLeuTyrSerLysLeuAcAccTcccATGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTTGTGGAGGGTACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGA
1901	·ThrValAspLysSerArgTrpGlnGlnGlyAsnValPheSerCysSerVal

FIGURE 44 Continuation

GTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGC

- • MethisGluAlaLeuhisAsnhisTyrThrGlnLysSerLeuSerLeu

 1951 TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG
 ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGAC
- SerProGlyLys 2001 TCTCCGGGTAAA AGAGGCCCATTT

	MetArgValProAlaGlnLeuLeuGlyLeuLeuLe
1	ATGAGGGTCCCGCTCAGCTCCTGGGGCTCCTGC
	TACTCCCAGGGGCGAGTCGAGGACCCCGAGGACG
	··LeuTrpPheProGlyAlaArgCysAspIleGlnMetThrGlnSerPro
51	TGCTCTGGTTCCCAGGCGCCAGGTGTGACATCCAGATGACCCAGTCTCCA
	ACGAGACCAAGGGTCCGCGGTCCACACTGTAGGTCTACTGGGTCAGAGGT
	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgAla
101	TCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGC
	AGGAGGACAGACGTAGACATCCTCTGTCTCAGTGGTAGTGAACGGCCCG
	·SerGlnAspIleArgAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLy
151	AAGTCAGGACATTAGAAATGATTTAGGCTGGTATGAGGAGAAACCAGGGA
	TTCAGTCCTGTAATCTTACTAAATCCGACCATAGTCGTCTTTGGTCCCT
	··AlaProLysArgLeuIleTyrAlaAlaSerAsnLeuGlnSerGlyVal
201	AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAATTTGCAAAGTGGGGTC
	TTCGGGGATTCGCGGACTAGATACGACGTAGGTTAAACGTTTCACCCCAG
	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrIle
251	CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT
	GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
	·SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAs
301	CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA
	GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
	··SerTyrProProThrPheGlyGlyGlyThrLysValGluIleLysArg
351	ATAGCTACCCTCCCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACGA
	TATCGATGGGAGGGTGAAAGCCGCCTCCCTGGTTCCACCTTTAGTTTGCT
	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu
401	ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT
	TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
	·LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArc
451	GAAATCTGGAACT <u>GCTAGC</u> GTTGTGTGCCTGCTGAATAACTTCTATCCCA
	CTTTAGACCTTGACGATCGCAACACACGGACGACTTATTGAAGATAGGGT
	$\cdot\cdot$ GluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsn
501	GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC
	CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG
	SarClnCluSarValmbrCluClnAanSarTwaAanSarmbron
551	SerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeu TCCCAGGAGAGTGTCACAGGACAGGACAGGACAGCACCTACAGCCT
221	AGGGTCCTCTCACAGTGTCTCGTCGTCGTTCCTGTCGTGGATGTCGGA
	Addatociotononalalolodiologialololologialodiologial

FIGURE 45 Continuation

601	·SerSerThrLeuThrLeuSerLysAlaAspTyrGluLysHisLysValTyr CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT GTCGTCGTGGGACTGCGACTCGTTTCGTCTGATGCTCTTTGTGTTTCAGA
651	··AlaCysGluValThrHisGlnGlyLeuSerSerProValThrLysSer ACGCCTGCGAAGTCACCCATGAGGGCCTGAGCTCGCCCGTCACAAAGAGC TGCGGACGCTTCAGTGGGTAGTCCCGGACTCGAGCGGGCAGTGTTTCTCG
701	PheAsnArgGlyGluCys TTCAACAGGGGAGAGTGT AAGTTGTCCCCTCTCAGA

1	MetLysHisLeuTrpPhePheLeuLeuValAla ATGAAACACCTGTGGTTCTTCCTTCTCCTGGTGG TACTTTGTGGACACCAAGAAGGAAGAGGACCACC
51	··AlaProArgTrpValLeuSerGlnValGlnLeuGlnGluSerGlyPro CAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCA GTCGAGGGTCTACCCAGGACAGGGTCCACGTCGACGTCCTCAGCCCGGGT
101	GlyLeuValLysProSerGluThrLeuSerLeuThrCysThrValSerGly GGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGG CCTGACCACTTCGGAAGCCTCTGGGACAGGGAGTGGACGTGACAGAGACC
151	·ValSerileSerAsnTyrTyrTrpSerTrpIleArgGlnSerProGlyLys TGTCTCCATCAGTAATTACTACTGGAGCTGGATCCGGCAGTCCCCAGGGA ACAGAGGTAGTCATTAATGATGACCTCGACCTAGGCCGTCAGGGGTCCCT
201	··GlyLeuGluTrpIleGlyTyrIleTyrTyrSerGlySerProTyrTyr AGGGACTGGAGTGGATTGGATATATCTATTACAGTGGGAGTGCCTATTAC TCCCTGACCTCACCTATACTATA
251	AsnProSerLeuLysSerArgValThrlleSerAlaAspThrSerLysAsn AACCCCTCCCTCAAGAGTCGAGTCACTATATCTGCAGACACGTCCAAGAA TTGGGGAGGGAGTTCTCAGCTCAG
301	·GlnPheSerLeuLysLeuSerSerValThrAlaAlaAspThrAlaIleTyr CCAATTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCATTT GGTTAAGAGGGACTTCGACTCGAGACACTGGCGACGCCTGTGCCGGTAAA
351	··TyrCysAlaArgGluLysLeuGlyIleGlyAspTyrTrpGlyGlnGly ATTACTGTGCGAGAGAAAACTGGGGATTGGAGACTACTGGGGCCAGGGA TAATGACACGCTCTCTTTTTGACCCCTAACCTCTGATGACCGCGGTCCCT
401	ThrLeuValThrValSerSerAlaSerThrLysGlÿProSerValPhePro ACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCC TGGGACCAGTGGCAGAGGAGTCGGAGGTGGTTCCCGGGTAGCCAGAAGGG
451	·LeuAlaProCysSerArgSerThrSerGluSerThrAlaAlaLeuGlyCys CCTGGCGCCCTGC <u>TCTAGA</u> AGCACCTCCGAGAGCAGCCGCCCTGGGCT GGACCGCGGGACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGGACCCGA
501	··LeuValLysAspTyrPheProGluProValThrValSerTrpAsnSer GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCA CGGACCAGTTCCTGATGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGT
551	GlyAlaLeuThrSerGlyValHisThrPheProAlaValLeuGlnSerSer GGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTC CCGCGAGACTGGTCGCCGCACGTGTGGAAGGGTCGACAGGATGTCAGGAG

FIGURE 46 Continuation

601	·GlyLeuTyrSerLeuSerSerValValThrValProSerSerAsnPheGly AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCG TCCTGAGATGAGGGAGTCGTCGCACCACTGGCACGGGAGGTCGTTGAAGC
651	··ThrGlnThrTyrThrCysAsnValAspHisLysProSerAsnThrLys GCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAG CGTGGGTCTGGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTGTGGTTC
701	ValAspLysThrVal GTGGACAAGACAGTTGGTGAGAGGCCAGCTCAGGGAGGGA
751	TGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGTGCAGCCACCCTGCGTCGGGTCGGGACGCCGACACGTCGG
801	CCAGCCCAGGGCAGCAAGGCAGGCCCCATCTGTCTCCTCACCCGGAGGCC GGTCGGGTCCCGTCGTCCGGGGTAGACAGAGGAGTGGGCCTCCGG
851	TCTGCCCGCCCACTCATGCTCAGGGAGAGGGTCTTCTGGCTTTTTCCAC AGACGGGCGGGGTGAGTACGAGTCCCTCTCCCAGAAGACCGAAAAAGGTG
901	CAGGCTCCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCCTTCACA GTCCGAGGTCCGTGTCCGACCCACGGGGATGGGGTCCGGGAAGTGT
951	CACAGGGCAGGTGCTTGGCTCAGACCTGCCAAAAGCCATATCCGGGAGG GTGTCCCCGTCCACGAACCGAGTCTGGACGGTTTTCGGTATAGGCCCTCC
1001	ACCCTGCCCTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCACTCCCT TGGGACGGGGACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGTGAGGGA
1051	CAGCTCGGACACCTTCTCCTCCCAGATCCGAGTAACTCCCAATCTTCT GTCGAGCCTGTGGAAGAGAGGGGGTCTAGGCTCATTGAGGGTTAGAAGA
1101	GluArgLysCysCysValGluCysProProCysPro CTCTGCAGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGGTAAGC GAGACGTCTCGCGTTTACAACACAGCTCACGGGTGGCACGGGTCCATTCG
1151	CAGCCCAGGCCTCGCCCTCCAGCTCAAGGCGGACAGGTGCCCTAGAGTA GTCGGGTCCGGAGCGGGAGGTCGAGTTCCGCCCTGTCCACGGGATCTCAT
1201	GCCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTĞACACGTCCACCTCCA CGGACGTAGGTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGTGGAGGT
1251	AlaProProValAlaGlyProSerValPheLeuPhePro TCTCTTCCTCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCC AGAGAAGGAGTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAGAAGGGG
1301	ProLysProLysAspThrLeuMetIleSerArgThrProGluValThrCys CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTG

FIGURE 46 Continuation

	GGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGCAC
1351	·ValValValAspValSerHisGluAspProGluValGlnPheAsnTrpTyr CGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGT GCACCACCACCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGTTGACCA
1401	··ValAspGlyValGluValHisAsnAlaLysThrLysProArgGluGlu ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGAG TGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGTGCCCTCCTC
1451	GlnPheAsnSerThrPheArgValValSerValLeuThrValValHisGln CAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCA GTGAAGTTGTCGTGCAAGGCACACCAGTCGCAGGAGTGGCAACACGTGGT
1501	· AspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsnLysGlyLeu GGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC CCTGACCGACTTGCCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCCGG
1551	··ProAlaProIleGluLysThrIleSerLysThrLys TCCCAGCCCCCATCGAGAAACCATCTCCAAAACCAAAGGTGGGACCCGC AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTTGGTTTCCACCCTGGGCG
1601	GGGGTATGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCC CCCCATACTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGG
1651	GlyGlnProArgGlu TGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCCCGAGAA ACCCTCACTGGCGACACGGTTGGAGACAGGGATGTCCGGTCGGGGCTCTT
1701	ProGlnValTyrThrLeuProProSerArgGluGluMetThrLysAsnGln CCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGÂACCA GGTGTCCACATGTGGGACGGGGGTAGGGCCCTCCTCTACTGGTTCTTGGT
1751	·ValSerLeuThrCysLeuValLysGlyPheTyrProSerAspIleAlaVal GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCG CCAGTCGGACTGGACGGACCAGTTTCCGAAGATGGGGTCGCTGTAGCGGC
1801	··GluTrpGluSerAsnGlyGlnProGluAsnAsnTyrLysThrThrPro TGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACCT ACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGTGGA
1851	ProMetLeuAspSerAspGlySerPhePheLeuTyrSerLysLeuThrVal CCCATGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT GGGTACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCA
1901	·AspLysSerArgTrpGlnGlnGlyAsnValPheSerCysSerValMetHis GGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGC CCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACG

FIGURE 46 Continuation

··GluAlaLeuHisAsnHisTyrThrGlnLysSerLeuSerLeuSerPro 1951 ATGAGGETCTGEACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG TACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGC

GlyLys 2001 GGTAAA CCATTT

1	MetArgValProAlaGlnLeuLeuGlyLeuLeuLeu ATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGC TACTCCCAGGGGCGAGTCGAGGACCCCGAGGACG
51	···LeuTrpPheProGlyAlaArgCysAspIleGlnMetThrGlnSerPro TGCTCTGGTTCCCAGGTGCCAGGTGTGACATCCAGATGACCCAGTCTCCA ACGAGACCAAGGGTCCACGGTCCACACTGTAGGTCTACTGGGTCAGAGGT
101	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgAla TCCTCCCTGTCTGCATCTGTCGGAGACAGAGTCACCATCACTTGCCGGGC AGGAGGGACAGACGTAGACAGCCTCTGTCTCAGTGGTAGTGAACGGCCCG
151	·SerGlnGlyIleArgAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLys AAGTCAGGGCATTAGAAATGATTTAGGCTGGTATCAGCAGAAACCAGGGA TTCAGTCCCGTAATCTTTACTAAATCCGACCATAGTCGTCTTTTGGTCCCT
201	··AlaProLysArgLeuIleTyrAlaAlaSerSerLeuGlnSerGlyVal AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTC TTCGGGGATTCGCGGACTAGATACGACGTAGGTCAAACGTTTCACCCCAG
251	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrlle CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
301	·SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAsn CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
351	· ·SerTyrProProThrPheGlyProGlyThrLysValAspIleLysArg ATAGTTACCCTCCACTTTCGGCCCTGGGACCAAGGTGGATATCAAACGA TATCAATGGGAGGGTGAAAGCCGGGACCCTGGTTCCACCTATAGTTTGCT
401	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGGCATCTGATGAGCAGTT TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
451	·LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArg GAAATCTGGAACT <u>GCTAGC</u> GTTGTGTGCCTGCTGAATAACTTCTATCCCA CTTTAGACCTTGACGATCGCAACACACGGACGACTTATTGAAGATAGGGT
501	···GluAlaLysValGInTrpLysValAspAsnAlaLeuGlnSerGlyAsn GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG
551	SerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeu TCCCAGGAGAGTGTCACAGAGCAGGACAGCAGGACAGCACCTACAGCCT AGGGTCCTCTCACAGTGTCTCGTCCTGTCGTTCCTGTCGTGGATGTCGGA

FIGURE 47 Continuation

601	SerSerThrLeuThrLeuSerLysAlaAspTyrGluLysHisLysValTyr CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT GTCGTCGTGGGACTGCGACTCGTTTCGTCTGATGCTCTTTGTGTTTCAGA
651	··AlaCysGluValThrHisGlnGlyLeuSerSerProValThrLysSer ACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGC TGCGGACGCTTCAGTGGGTAGTCCCGGACTCGAGCGGCCAGTGTTTCTCG
701	PheAsnArgGlyGluCys TTCAACAGGGGAGAGTGT

•	MetLysHisLeuTrpPhePheLeuLeuLeuValAl
1	ATGAAACATCTGTGGTTCTTCCTTCTCCTGGTGG TACTTTGTAGACACCAAGAAGGAAGAGGACCACC
	TACTITGTAGACACCAAGAAAAAAAAACACCACC
	··AlaProArgTrpValLeuSerGlnValGlnLeuGlnGluSerGlyPro
51	CAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCA
	GTCGAGGGTCTACCCAGGACAGGGTCCACGTCGACGTCCTCAGCCCGGGT
	GlyLeuValLysProSerGluThrLeuSerLeuThrCysThrValSerGly
101	GGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGG
101	CCTGACCACTTCGGAAGCCTCTGGGACAGGGAGTGGACGTGACAGAGACC
	CCIOACOACIIÇAGAAGOCICIGAGAGAGAGIOTOGACOIQACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
	·GlySerIleSerArgTyrTyrTrpSerTrpIleArgGlnProProGlyLy
151	TGGCTCCATCAGTCGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA
	ACCGAGGTAGTCAGCAATGATGACCTCGACCTAGGCCGTCGGGGGTCCCT
	··GlyLeuGluTrpIleGlyTyrValSerTyrSerGlySerThrTyrTyr
201	AGGGACTGGAGTGGATTGGGTATGTCTCTTACAGTGGGAGCACCTACTAC
	TCCCTGACCTCACCTAACCCATACAGAGAATGTCACCCTCGTGGATGATG
	AsnProSerLeuLysSerArgValThrIleSerValAspThrSerLysAsn
251	ASTRICTOR ASTRICT AND ASTRICT
201	TTGGGGAGGGAGTTCTCAGCTCAGTGTATAGTCATCTGTGCAGGTTCTT
	11904964911C1CAGC1CAG1GG1A1AG1CA1C1G1GCAGG11C11
	$\cdot \texttt{GlnPheSerLeuLysLeuSerSerValThrAlaAlaAspThrAlaValTyrand}$
301	CCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGT
	GGTCAAGAGGGACTTCGACTCGAGACACTGGCGACGCCTGTGCCGGCACA
	··TyrCysAlaArgAspLysLeuGlyIleGlyAspTyrTrpGlyGlnGly
351	ATTACTGTGCGAGAGATAAACTGGGGATTGGAGACTACTGGGGCCAGGGA
	TAATGACACGCTCTCTATTTGACCCCTAACCTCTGATGACCCCGGTCCCT
	ThrLeuValThrValSerSerAlaSerThrLysGlyProSerValPhePro
401	ACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGTCTTCCC
MOI	TGGGACCAGTGGCAGAGGAGTCGGAGGTCCCCGGGTAGCCAGAAGGG
	10000,000100000010010000001001100000000
	·LeuAlaProCysSerArgSerThrSerGluSerThrAlaAlaLeuGlyCys
451	CCTGGCGCCCTGC <u>TCTAGA</u> AGCACCTCCGAGAGCACAGCCGCCCTGGGCT
	GGACCGCGGACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGGACCCGA
	··LeuValLysAspTyrPheProGluProValThrValSerTrpAsnSer
501	GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCA
001	CGGACCAGTTCCTGATGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGT
	GlyAlaLeuThrSerGlyValHisThrPheProAlaValLeuGlnSerSer
551	GGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTCCTACAGTCCTC
	CCGCGAGACTGGTCGCCGCACGTGTGGAAGGGTCGACAGGATGTCAGGAG
	· · · · · · · · · · · · · · · · · · ·

FIGURE 48 Continuation

601	AGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCG TCCTGAGATGAGGGAGTCGTCGCACCACTGGCACGGAGGTCGTTGAAGC
651	··ThrGlnThrTyrThrCysAsnValAspHisLysProSerAsnThrLys GCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAG. CGTGGGTCTGGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTGTGGTTC
701	ValAspLysThrVal GTGGACAAGACAGTTGGTGAGAGGCCAGCTCAGGGAGGGA
751	TGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGTGCAGCC ACCTTCGGTCCGAGTCGGGAGGACGGACCTGCGTGGGGCCGACACGTCGG
801	CCAGCCCAGGGCAGGCAGGCCCCATCTGTCTCCTCACCCGGAGGCC GGTCGGGTCCCGTCGTCCGGGGTAGACAGAGGAGTGGGCCTCCGG
851	TCTGCCCGCCCCACTCATGCTCAGGGAGAGGGGTCTTCTGGCTTTTTCCAC AGACGGGCGGGGTGAGTACGAGTCCCTCTCCCAGAAGACCGAAAAAGGTG
901	CAGGCTCCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCCTTCACA GTCCGAGGTCCGTGTCCGACCCACGGGGATGGGGTCCGGGAAGTGT
951	CACAGGGGCAGGTGCTTGGCTCAGACCTGCCAAAAGCCATATCCGGGAGG GTGTCCCCGTCCACGAACCGAGTCTGGACGGTTTTCGGTATAGGCCCTCC
1001	ACCCTGCCCCTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCACTCCCT TGGGACGGGGACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGTGAGGGA
1051	CAGCTCGGACACCTTCTCTCCTCCCAGATCCGAGTAACTCCCAATCTTCT GTCGAGCCTGTGGAAGAGAGGAGGGTCTAGGCTCATTGAGGGTTAGAAGA
1101	GluArgLysCysValGluCysProProCysPro CTCTGCAGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGGTAAGC GAGACGTCTCGCGTTTACAACACAGCTCACGGGTGGCACGGGTCCATTCG
1151	CAGCCCAGGCCTCGCCCTCCAGCTCAAGGCGGGACAGGTGCCCTAGAGTA GTCGGGTCCGGAGCGGGAGGTCGAGTTCCGCCCTGTCCACGGGATCTCAT
1201	GCCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTGACACGTCCACCTCCA CGGACGTAGGTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGTGGAGGT
1251	AlaProProValAlaGlyProSerValPheLeuPhePro TCTCTTCCTCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCC AGAGAAGGAGTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAGAAGGGG
	ProlysprolysasnThrlauMatilaSararaThrProCluValThrCus

FIGURE 48 Continuation

1301	CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTG GGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGCAC
1351	·ValValValAspValSerHisGluAspProGluValGlnPheAsnTrpTyl CGTGGTGGTGACGTGAGCCACGAGACCCCGAGGTCCAGTTCAACTGGT GCACCACCACCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGTTGACCA
1401	··ValAspGlyValGluValHisAsnAlaLysThrLysProArgGluGlu ACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGAG TGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGTGCCCTCCTC
1451	GlnPheAsnSerThrPheArgValValSerValLeuThrValValHisGln CAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCA GTCAAGTTGTCGTGCAAGGCACCAGTCGCAGGAGTGGCAACACGTGGT
1501	-AspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsnLysGlyLeu GGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCC CCTGACCGACTTGCCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCCGG
1551	··ProAlaProIleGluLysThrIleSerLysThrLys TCCCAGCCCCCATCGAGAAAACCATCTCCAAAAACCAAAGGTGGGACCCGC AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTTGGTTTCCACCCTGGGCG
1601	GGGGTATGAGGGCCACATGGACAGAGGGCCGGCTCGGCCCACCCTCTGCCC CCCCATACTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGG
1651	GlyGlnProArgGlu TGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCCCGAGAA ACCCTCACTGGCGACACGGTTGGAGACAGGGATGTCCCGTCGGGGCTCTT
1701	ProGlnValTyrThrLeuProProSerArgGluGluMetThrLysAsnGln CCACAGGTGTACACCCTGCCCCCATCCGGGAGGAGATGACCAAGAACCA GGTGTCCACATGTGGGACGGGGGTAGGGCCCTCCTCTACTGGTTCTTGGT
1751	·ValSerLeuThrCysLeuValLysGlyPheTyrProSerAspIleAlaVal GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCG CCAGTCGGACTGGACGGACCAGTTTCCGAAGATGGGGTCGCTGTAGCGGC
1801	··GluTrpGluSerAsnGlyGlnProGluAsnAsnTyrLysThrThrPro TGGAGTGGGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACACCT ACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGTGGA
1851	ProMetLeuAspSerAspGlySerPhePheLeuTyrSerLysLeuThrVal CCCATGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGT GGGTACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCA
1901	· AspLysSerArgTrpGlnGlnGlyAsnValPheSerCysSerValMetHis

FIGURE 48 Continuation

CCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACG

··GluAlaLeuHisAsnHisTyrThrGlnLysSerLeuSerLeuSerPro
ATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCG
TACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGACAGAGGC

GlyLys 2001 GGTAAA CCATTT

1	Metargleuproalaginleuleugiyleuleuleu ATGAGGCTCCCTGCTCAGCTCCTGGGGCTCCTGC TACTCCGAGGGACGAGTCGAGGACCCCGAGGACG
51	· LeuTrpPheProGlyAlaArgCysAspIleGlnMetThrGlnSerPro TGCTCTGGTTCCCAGGTGCCAGGTGTGACATCCAGATGACCCAGTCTCCA ACGAGACCAAGGGTCCACGGTCCACACTGTAGGTCTACTGGGTCAGAGGT
101	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgAla TCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGC AGGAGGGACAGACGTAGACATCCTCTGTCTCAGTGGTAGTGAACGGCCCG
151	·SerGlnGlyIleArgAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLysAAGTCAGGGCATTAGAAATGATTTAGGCTGGTATCAGCAGAAACCGGGGA TTCAGTCCCGTAATCTTTACTAAATCCGACCATAGTCGTCTTTGGCCCCT
201	··AlaProLysArgLeuIleTyrAlaAlaSerSerLeuGlnSerGlyVal AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTC TTCGGGGATTCGCGGACTAGATACGACGTAGGTCAAACGTTTCACCCCAG
251	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrIle CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
301	·SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAsr CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
351	··SerTyrProCysSerPheGlyGlnGlyThrLysLeuGluIleLysArg ATAGTTACCCGTGCAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAACGA TATCAATGGGCACGTCAAAACCGGTCCCCTGGTTCGACCTCTAGTTTGCT
401	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
451	 LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArg GAAATCTGGAACTGCTAGCGTTGTGTGCCTGCTGAATAACTTCTATCCCA CTTTAGACCTTGACGATCGCAACACACGGACGACTTATTGAAGATAGGGT
501	··GluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsn GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG
551	SerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeu TCCCAGGAGAGTGTCACAGAGCAGGACAGCACAGCACCTACAGCCT AGGGTCCTCTCACAGTGTCTCGTCCTGTCGTTCGTGGATGTCGGA

FIGURE 49 Continuation

601	·SerSerThrLeuThrLeuSerLysAlaAspTyrGluLysHisLysValTyr CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT GTCGTCGTGGGACTGCGACTCGTTTCGTCTGATGCTCTTTGTGTTTCAGA
651	··AlaCysGluValThrHisGlnGlyLeuSerSerProValThrLysSer ACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGC TGCGGACGCTTCAGTGGGTAGTCCCGGACTCGAGCGGGCAGTGTTTCTCG
701	PheAsnArgGlyGluCys TTCAACAGGGAGAGTGT

1	ATGAAGCATCTGTGGTTCTTCCTCCTGCTGGTGG TACTTCGTAGACACCAAGAAGGAGGACGACCACC
51	··AlaProArgTrpValLeuSerGlnValGlnLeuGlnGluSerGlyPro CAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCA GTCGAGGGTCTAGCCAGGACAGGGTCCACGTCGACGTCCTCAGCCCGGGT
101	GlyLeuValLysProLeuGlnThrLeuSerLeuThrCysThrValSerGly GGACTGGTGAAGCCTTTACAGACCCTGTCCCTCACCTGCACTGTCTCTGG CCTGACCACTTCGGAAATGTCTGGGACAGGGAGTGGACGTGACAGAGACC
151	·GlySerIleSerSerGlyValTyrTyrTrpSerTrpIleArgGlnHisPro TGGCTCCATCAGCAGTGGTGTTTACTACTGGAGCTGGATCCGCCAGCACC ACCGAGGTAGTCGTCACCACAAATGATGACCTCGACCTAGGCGGTCGTGG
201	··GlyLysGlyLeuGluTrpIleGlyTyrIleTyrAsnSerLysThrSer CAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATAACAGTAAGACCTCC GTCCCTTCCCGGACCTCACCTAACCCATGTAGATATTGTCATTCTGGAGG
251	TyrTyrAsnProSerLeuLysSerArgLeuThrLeuSerValAspThrSer TATTATAATCCGTCCCTCAAGAGTCGACTTACCCTATCAGTAGACACGTC ATAATATTAGGCAGGGAGTTCTCAGCTGAATGGGATAGTCATCTGTGCAG
301	·LysAsnGlnPheSerLeuAsnLeuIleSerValThrAlaAlaAspThrAla TAAGAACCAGTTCTCCCTGAACCTGATCTCTGTGACTGCCGCGGACACGG ATTCTTGGTCAAGAGGGACTTGGACTAGAGACACTGACGGCGCCTGTGCC
351	··ValTyrTyrCysAlaArgAspLysLeuGlyIleAlaAspTyrTrpGly CCGTGTATTACTGTGCGAGAGATAAATTGGGGATCGCGGACTACTGGGGC GGCACATAATGACACGCTCTCTATTTAACCCCTAGCGCCTGATGACCCCG
401	GlnGlyThrLeuValThrValSerSerAlaSerThrLysGlyProSerVal CAGGGAACCCTGGTCACCGTCTCCTCAGCCTCCACCAAGGGCCCATCGGT GTCCCTTGGGACCAGTGGCAGAGGAGTCGGAGGTGGTTCCCGGGTAGCCA
451	 PheProLeuAlaProCysSerArgSerThrSerGluSerThrAlaAlaLeu CTTCCCCCTGGCGCCCTGCTCTAGAAGCACCTCCGAGAGCACAGCCGCCC GAAGGGGGACCGCGGGACGAGATCTTCGTGGAGGCTCTCGTGTCGGCGGG
501	··GlyCysLeuValLysAspTyrPheProGluProValThrValSerTrp TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGG ACCGGACGGACCAGTTCCTGATGAAGGGGGCTTGGCCACTGCCACAGCACC
551	AsnSerGlyAlaLeuThrSerGlyValHisThrPheProAlaValLeuGln AACTCAGGCGCTCTGACCAGCGGCGTGCACACCCTTCCCAGCTGTCCTACA

FIGURE 50 Continuation

601	• SerSerGlyLeuTyrSerLeuSerSerValValThrValProSerSerAsn GTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCA
001	CÁGGAGTCCTGAGATGAGGGAGTCGTCGCACCACTGGCACGGGAGGTCGT
	$\cdot\cdot$ PheGlyThrGlnThrTyrThrCysAsnValAspHisLysProSerAsn
651	ACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAAC
	TGAAGCCGTGGGTCTGGATGTGGACGTTGCATCTAGTGTTCGGGTCGTTG
	ThrLysValAspLysThrVal
701	ACCAAGGTGGACAAGACAGTTGGTGAGAGGCCAGCTCAGGGAGGG
	TGGTTCCACCTGTTCTGTCAACCACTCTCCGGTCGAGTCCCTCCC
751	GTCTGCTGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGCTGT
	CAGACGACCTTCGGTCCGAGTCGGGAGGACGGACCTGCGTGGGGCCGACA
801	GCAGCCCAGCCAGGGCAGCAAGGCAGGCCCCATCTGTCTCCTCACCCG
	CGTCGGGGTCGGGTCCGTCGTCCGGGGTAGACAGAGGAGTGGGC
851	GAGGCCTCTGCCCGCCCCACTCATGCTCAGGGAGAGGGTCTTCTGGCTTT
4	CTCCGGAGACGGGCGGGTGAGTACGAGTCCCTCTCCCAGAAGACCGAAA
901	TTCCACCAGGCTCCAGGCAGGCACAGGCTGGGTGCCCCTACCCCAGGCCC
90 I	
	AAGGTGGTCCGAGGTCCGTCCGTGCCGACCCACGGGGATGGGGTCCGGG
951	TTCACACACAGGGGCAGGTGCTTGGCTCAGACCTGCCAAAAGCCATATCC
	AAGTGTGTGTCCCCGTCCACGAACCGAGTCTGGACGGTTTTCGGTATAGG
1001	GGGAGGACCCTGCCCCTGACCTAAGCCGACCCCAAAGGCCAAACTGTCCA
	CCCTCCTGGGACGGGACTGGATTCGGCTGGGGTTTCCGGTTTGACAGGT
1051	CTCCCTCAGCTCGGACACCTTCTCTCCCCAGATCCGAGTAACTCCCAA
1031	GAGGGAGTCGAGCCTGTGGAAGAGAGGGGGGTCTAGGCTCATTGAGGGTT
	GAGGAGICGAGCCIGIGGAAGAAGAGGAGGICIAGGCICAIIGAGGGII
	GluArgLysCysCysValGluCysProProCysPro
1101	TCTTCTCTCTGCAGAGCGCAAATGTTGTGTGGAGTGCCCACCGTGCCCAG
	AGAAGAGAGACGTCTCGCGTTTACAACACAGCTCACGGGTGGCACGGGTC
1151	GTAAGCCAGCCCAGGCCTCGCCCTCCAGCTCAAGGCGGGACAGGTGCCCT
	CATTCGGTCGGGTCCGGAGCGGGAGGTCGAGTTCCGCCCTGTCCACGGGA
1201	AGAGTAGCCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTGACACGTCCA
	TCTCATCGGACGTAGGTCCCTGTCCGGGGTCGACCCACGACTGTGCAGGT
	AlaProProValAlaGlyProSerValPheLeu
1251	CCTCCATCTCTCCTCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTC
	GGAGGTAGAGAAGGAGTCGTGGTGGACACCGTCCTGGCAGTCAGAAGGAG
	PheProProLysProLysAspThrLeuMetIleSerArgThrProGluVal
	ruerrorronAstronAsysbiurnenmerrreservidiurtroginAq1

FIGURE 50 Continuation

1301	TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGT
	AAGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCA
	·ThrCysValValValAspValSerHisGluAspProGluValGlnPheAsr
1351	CACGTGCGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCA
	GTGCACGCACCACCTGCACTCGGTGCTTCTGGGGCTCCAGGTCAAGT
	··TrpTyrValAspGlyValGluValHisAsnAlaLysThrLysProArg
1401	ACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGG
	TGACCATGCACCTGCGCACCTCCACGTATTACGGTTCTGTTTGGGTGCC
	${\tt GluGluGlnPheAsnSerThrPheArgValValSerValLeuThrValVal}$
1451	GAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGT
	CTCCTCGTCAAGTTGTCGTGCAAGGCACACCAGTCGCAGGAGTGGCAACA
	·HisGlnAspTrpLeuAsnGlyLysGluTyrLysCysLysValSerAsnLys
1501	GCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACA
	CGTGGTCCTGACCGACTTGCCGTTCCTCATGTTCACGTTCCAGAGGTTGT
	$\cdot\cdot$ GlyLeuProAlaProIleGluLysThrIleSerLysThrLys
1551	AAGGCCTCCCAGCCGCATCGAGAAAACCATCTCCAAAACCAAAGGTGGG
	TTCCGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTTTGGTTTCCACCC
1601	ACCCGCGGGTATGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCT
	TGGGCGCCCATACTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGA
	ĢlyGlnPro
1651	CTGCCCTGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGGCAGCCC
	GACGGGACCCTCACTGGCGACACGGTTGGAGACAGGGATGTCCCGTCGGG
	${\tt ArgGluProGlnValTyrThrLeuProProSerArgGluGluMetThrLys}$
1701	CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAA
	GCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTCCTACTGGTT
	$\cdot \texttt{AsnGlnValSerLeuThrCysLeuValLysGlyPheTyrProSerAspIle}$
1751	GAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACA
	CTTGGTCCAGTCGGACTGGACGGACCAGTTTCCGAAGATGGGGTCGCTGT
	· AlaValGluTrpGluSerAsnGlyGlnProGluAsnAsnTyrLysThr
1801	TCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC
	AGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGG
	ThrProProMetLeuAspSerAspGlySerPhePheLeuTyrSerLysLeu
1851	ACACCTCCCATGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCT
	TGTGGAGGGTACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGA
	·ThrValAspLysSerArgTrpGlnGlnGlyAsnValPheSerCysSerVal
1901	CACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG

FIGURE 50 Continuation

																							SZ		

	· MetHisGluAlaLeuHisAsnHisTyrThrGlnLysSerLeuSerLeu
1951	TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG
	ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTGTCGGAGAGGGAC

SerProGlyLys 2001 TCTCCGGGTAAA AGAGGCCCATTT

	MetArgValProAlaGlnLeuLeuGlyLeuLeuLe
1	ATGAGGGTCCCTGCTCAGCTCCTGGGGCTCCTGC
	TACTCCCAGGGACGAGTCGAGGACCCCGAGGACG
	··LeuTrpPheProGlyAlaArgCysAspIleGlnMetThrGlnSerPro
r 3	
51	TGCTCTGGTTCCCAGGTGCCAGGTGTGACATCCAGATGACCCAGTCTCCA
	ACGAGACCAAGGGTCCACGGTCCACACTGTAGGTCTACTGGGTCAGAGGT
	SerSerLeuSerAlaSerValGlyAspArgValThrIleThrCysArgThr
101	TCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGAC
	AGGAGGGACAGACGTAGACATCCTCTGTCTCAGTGGTAGTGAACGGCCTG
	·SerGlnGlyIleArgAsnAspLeuGlyTrpTyrGlnGlnLysProGlyLy
151	AAGTCAGGGCATTAGAAATGATTTAGGCTGGTATCAGCAGAAACCAGGGA
,1 J 1	TTCAGTCCCGTAATCTTTACTAAATCCGACCATAGTCGTCTTTTGGTCCCT
	Trongrecedingleringingnicegneeningregicilitedicect
	$\cdots \texttt{AlaProLysArgLeuIleTyrAlaAlaSerSerLeuGlnSerGlyVal}$
201	AAGCCCCTAAGCGCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTC
	TTCGGGGÁTTCGCGGACTÁGÁTACGACGTAGGTCAAACGTTTCACCCCAG
	ProSerArgPheSerGlySerGlySerGlyThrGluPheThrLeuThrIle
251	CCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAAT
	GGTAGTTCCAAGTCGCCGTCACCTAGACCCTGTCTTAAGTGAGAGTGTTA
	·SerSerLeuGlnProGluAspPheAlaThrTyrTyrCysLeuGlnHisAs
301	CAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCTACAGCATA
301	
	GTCGTCGGACGTCGGACTTCTAAAACGTTGAATAATGACAGATGTCGTAT
	$\cdots {\tt SerTyrProProThrPheGlyGlyGlyThrLysValGluIleLysArg}$
351	ATAGCTACCCTCCCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGA
	TATCGATGGGAGGGTGAAAGCCGCCTCCCTGGTTCCACCTCTAGTTTGCT
	ThrValAlaAlaProSerValPheIlePheProProSerAspGluGlnLeu
401	ACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT
	TGACACCGACGTGGTAGACAGAAGTAGAAGGGCGGTAGACTACTCGTCAA
	TORCACCOACCIOCIACACACACACACACACACACACACACAC
	·LysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyrProArg
451	GAAATCTGGAACTGCTAGCGTTGTGTGCCTGCTGAATAACTTCTATCCCA
	CTTTAGACCTTGACGATCGCAACACGCGACGACTTATTGAAGATAGGGT
	··GluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsn
501	GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAAC
301	
	CTCTCCGGTTTCATGTCACCTTCCACCTATTGCGGGAGGTTAGCCCATTG
	SerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeu
551	TCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCT
	AGGGTCCTCTCACAGTGTCTCGTCCTGTCGTTCCTGTCGTGGATGTCGGA

FIGURE 51 Continuation

601	·SerSerThrLeuThrLeuSerLysAlaAspTyrGluLysHisLysValTyr CAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT GTCGTCGTGGGACTGCGACTCGTTTCGTCTGATGCTCTTTGTGTTTCAGA
651	··AlaCysGluValThrHisGlnGlyLeuSerSerProValThrLysSer ACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGC TGCGGACGCTTCAGTGGGTAGTCCCGGACTCGAGCGGGCAGTGTTTCTCG
701	PheAsnArgGlyGluCys TTCAACAGGGGAGAGTGT AAGTTGTCCCCTCTCACA