Neutralização

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1	Os á	Os ácidos e as bases	
	1.1	Os ácidos e as bases em solução em água	
	1.2	Os ácidos e bases fortes e fracos	
	1.3	A neutralização	

2 A análise volumétrica

[FALAR DE ÁCIDOS QUE SE DECOMPÕE EM GASES: H2CO3, H2SO3, H2S2O3]

1 Os ácidos e as bases

Os primeiros químicos aplicavam o termo *ácido* a substâncias que tinham sabor azedo acentuado. O vinagre, por exemplo, contém ácido acético, $\mathrm{CH_3COOH}$. As soluções em água das substâncias que eram chamadas de *bases* ou **álcalis** eram reconhecidas pelo gosto de sabão. Felizmente, existem maneiras menos perigosas de reconhecer ácidos e bases. Os ácidos e as bases, por exemplo, mudam a cor de certos corantes conhecidos como indicadores. Um dos indicadores mais conhecidos é o tornassol, um corante vegetal obtido de um líquen. Soluções de ácidos em água deixam o tornassol vermelho, e as soluções de bases em água o deixam azul. Um instrumento eletrônico conhecido como *medidor de pH* permite identificar rapidamente uma solução como ácida ou básica:

- Uma leitura de pH abaixo de 7 (pH < 7) é característica de uma solução ácida.
- Uma leitura acima de 7 (pH > 7) é característica de uma solução básica.

1.1 Os ácidos e as bases em solução em água

Os químicos debateram os conceitos de acidez e basicidade por muitos anos antes que definições precisas aparecessem. Dentre as primeiras definições úteis estava a que foi proposta pelo químico sueco Svante Arrhenius, por volta de 1884. Ele definiu um *ácido* como um composto que contém hidrogênio e reage com a água para formar íons hidrogênio. Uma base foi definida como um composto que gera íons hidróxido em água. Os compostos que atendem a estas definições são chamados de **ácidos e bases de Arrhenius**. O HCl, por exemplo, é um ácido de Arrhenius, porque libera um íon hidrogênio, H⁺ (um próton), quando se dissolve em água. O CH₄ não é um ácido de Arrhenius, porque não libera íons hidrogênio em água. O hidróxido de sódio é uma base de Arrhenius, porque íons OH⁻ passam para a solução quando ele se dissolve. A amônia também é uma base de Arrhenius, porque produz íons OH⁻ por reação com a água:

$$NH_3(aq) + H_2O(1) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

O metal sódio produz íons OH⁻ quando reage com a água, mas não é considerado uma base de Arrhenius, porque é um elemento, e não um composto, como requer a definição.

O problema com as definições de Arrhenius é que se referem a um solvente particular, a água. Quando os químicos estudaram solventes diferentes da água, como a amônia líquida, encontraram algumas substâncias que mostraram o mesmo padrão de comportamento ácido-base. Um avanço importante no entendimento do conceito de ácidos e bases aconteceu em 1923, quando dois químicos trabalhando independentemente, Thomas Lowry, na Inglaterra, e Johannes Brønsted, na Dinamarca, tiveram a mesma ideia. Sua contribuição foi compreender que o processo fundamental, responsável pelas propriedades de ácidos e bases, era a transferência de um próton (um íon hidrogênio) de uma substância para outra. A **definição de Brønsted-Lowry** para ácidos e bases é a seguinte:

- Um ácido é um doador de prótons.
- Uma base é um aceitador de prótons.

Essas substâncias são chamadas de *ácidos e bases de Brønsted* ou, simplesmente, *ácidos e bases*, porque a definição de Brønsted-Lowry é comumente aceita hoje em dia e é a que usaremos neste curso.

Quando uma molécula de um ácido se dissolve em água, ela transfere um íon hidrogênio, H^+ , para uma molécula de água e forma um íon hidrônio, H_3O^+ . Assim, quando o cloreto de hidrogênio, HCl, se dissolve em água, libera um íon hidrogênio, e a solução resultante contém íons hidrônio e íons cloreto:

$$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

Note que, como H_2O aceita o íon hidrogênio para formar H_3O^+ , a água está agindo como uma base de Brønsted.

Como identificar um ácido a partir de sua fórmula? Um ácido de Brønsted contém um átomo de hidrogênio ácido, que pode ser liberado como próton. Um átomo de hidrogênio ácido muitas vezes é escrito como o primeiro elemento na fórmula molecular dos ácidos

ATENÇÃO No sistema de Arrhenius, o hidróxido de sódio é uma base. Do ponto de vista de Brønsted, porém, ele apenas fornece uma base, OH⁻. Os químicos muitas vezes voltam-se para a definição de Arrhenius, menos geral.

1.2 Os ácidos e bases fortes e fracos

1.3 A neutralização

2 A análise volumétrica

Uma das técnicas de laboratório mais comuns de determinação da concentração de um soluto é a **titulação**. As titulações normalmente são **titulações ácido-base**, nas quais um ácido reage com uma base. As titulações são muito usadas no controle da pureza

^{*}Contato: gabriel.braun@pensi.com.br, (21) 99848-4949

da água, na determinação da composição do sangue e no controle de qualidade das indústrias de alimentos.

Em uma titulação, uma solução é adicionada gradativamente a outra, até a reação se completar. Um volume conhecido da solução a ser analisada, que é chamada de analito, é transferido para um frasco. Então, uma solução de concentração conhecida de reagente é vertida no frasco por uma bureta até que todo o analito tenha reagido. A solução contida na bureta é chamada de titulante, e a diferença das leituras dos volumes inicial e final na bureta dá o volume de titulante utilizado. A determinação da concentração ou

Problemas

PROBLEMA 1

Considere os compostos: NH₃, HBr, KOH, H₂SO₃ e Ca(OH)₂.

Assinale a alternativa com o caráter ácido-base de cada composto, respectivamente.

- A ácido; ácido; base; base; base.
- B base; base; ácido; ácido; base.
- c base; ácido; ácido; base; base.
- **D** base; ácido; base; ácido; base.
- **E** base; base; ácido; ácido.

PROBLEMA 2

Considere os compostos: H_2SeO_4 , $CH_3CH_2NH_2$, HCOOH, CsOH e HIO_4 .

Assinale a alternativa com o caráter ácido-base de cada composto, respectivamente.

- A ácido; ácido; base; base.
- B base; ácido; ácido; ácido; base.
- c base; ácido; ácido; base; ácido.
- **D** base; base; ácido; ácido; ácido.
- E ácido; base; ácido; base; ácido.

PROBLEMA 3

Considere os óxidos: BaO, SO₃, As₂O₃, Bi₂O₃.

Assinale a alternativa com o caráter ácido-base de cada óxido, respectivamente.

- A básico; anfotérico; ácido; anfotérico.
- **B** ácido; básico; anfotérico; anfotérico.
- c básico; ácido; anfotérico; anfotérico.
- **D** ácido; anfotérico; básico; anfotérico.
- E anfotérico; ácido; anfotérico; básico.

PROBLEMA 4

Considere os óxidos: SO₂, CaO, P₄O₁₀, Al₂O₃.

Assinale a alternativa com o caráter ácido-base de cada óxido, respectivamente.

- A ácido; anfotérico; ácido; básico.
- B anfotérico; ácido; básico; ácido.
- c ácido; básico; ácido; anfotérico.
- D básico; ácido; ácido; anfotérico.
- E anfotérico; ácido; ácido; básico.

PROBLEMA 5

Um técnico preparou uma solução de um composto em água, mas esqueceu de rotulá-la. A solução permaneceu incolor após a adição de fenoftaleína, e tem baixa condutividade comparada com uma solução padrão de NaCl.

Assinale a alternativa com um possível composto na solução.

- A HCl
- в кон
- **c** Glicose

- D CH₃COOH
- E NH₃

PROBLEMA 6

Um técnico preparou uma solução de um composto em água, mas esqueceu de rotulá-la. A solução ficou rosa após a adição de fenoftaleína, e conduz tanta eletricidade quanto uma solução padrão de NaCl.

Assinale a alternativa com um possível composto na solução.

- A HNO₃
- **B** NaOH
- c CH₃OH

- **D** HCOOH
- E CH₃NH₃

PROBLEMA 7

Considere as reações.

- 1. $NH_4I(aq) + H_2O(1) \longrightarrow NH_3(aq) + H_3O^+(aq) + I^-(aq)$
- 2. $NH_4I(s) \xrightarrow{\cdot} NH_3(g) + HI(g)$
- $\textbf{3.} \ \ CH_{3}COOH\left(aq\right) + NH_{3}(aq) \longrightarrow CH_{3}CONH_{2}(aq) + H_{2}O\left(l\right)$
- 4. $NH_4I(am) + KHNH_2(am) \longrightarrow KI(am) + 2NH_3(1)$

Assinale a alternativa que relaciona as reações ácido-base de Brønsted-Lowry.

- A 1 e 2
- B 1 e 4
- **c** 2 e 4

- **D** 1, 2 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 8

Considere as reações.

- 1. $KOH(aq) + CH_3I(aq) \longrightarrow CH_3OH(aq) + KI(aq)$
- $2. \ AgNO_{3}(aq) + HCl(aq) \longrightarrow AgCl(s) + HNO_{3}(aq) \\$
- 3. $2 \text{ NaHCO}_3(am) + 2 \text{ NH}_3(l) \longrightarrow \text{Na}_2\text{CO}_3(s) + (\text{NH}_4)_2\text{CO}_3(am)$
- 4. $H_2S(aq) + Na_2S(s) \longrightarrow 2 NaHS(aq)$

Assinale a alternativa que relaciona as reações ácido-base de Brønsted-Lowry.

- A 3
- B 4
- **C** 3 e 4

- **D** 1, 3 e 4
- **E** 2, 3 e 4

PROBLEMA 9

Assinale a alternativa com a base conjugada de OH⁻.

- $\mathbf{A} \quad \mathbf{O}^{2-}$
- B OH-
- C H₂O

- **D** H₃O⁺
- \mathbf{E} H_2O_2

PROBLEMA 10

Assinale a alternativa com o ácido conjugado de HPO₄²⁻.

- A PO₄³-
- **B** HPO₄^{2−}
- **c** H₂PO₄

- D H₃PO₄
- $\mathbf{E} \quad \mathrm{H_4PO_4}^+$

PROBLEMA 11

Assinale a alternativa com a base conjugada de NH₃.

- \mathbf{A} NH²⁻
- $B NH_2^-$
- C NH₄

- \mathbf{D} $\mathrm{NH_4}^+$
- \mathbf{E} N_2H_4

PROBLEMA 12

Assinale a alternativa com o ácido conjugado de H₂SO₃.

- A SO_3^{2-}
- B HSO₃
- c H₂SO₃

- $D H_3SO_3^+$
- $\mathbf{E} \quad \mathbf{H}_2 \mathbf{S}_2 \mathbf{O}_3$

PROBLEMA 13

Considere os compostos: NH₃, BF₃, Ag⁺, F⁻, H⁻.

Assinale a alternativa com o caráter ácido-base de Lewis de cada composto, respectivamente.

- A base; base; ácido; ácido; base.
- B ácido; base; ácido; base; base.
- c base; ácido; ácido; base; base.
- D ácido; ácido; base; base; base.
- **E** base; ácido; base; base; ácido.

PROBLEMA 14

Considere os compostos: SO₂, I⁻, CH₃S⁻, NH₂⁻, NO₂.

Assinale a alternativa com o caráter ácido-base de Lewis de cada composto, respectivamente.

- A ácido; base; base; ácido; base.
- B base; base; base; ácido; ácido.
- c base; ácido; ácido; base; base.
- D ácido; base; base; ácido.
- E base; ácido; base; base; ácido.

PROBLEMA 15

Uma alíquota de 15 mL de uma solução de HCl foi titulada com 13,3 mL de KOH 0,015 mol \cdot L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de HCl.

- **A** $0.02 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.031 \, \text{mol} \, \text{L}^{-1}$
- c 0,047 mol L⁻¹

- ${\bf D}$ 0,073 mol L⁻¹
- **E** $0,11 \, \text{mol} \, L^{-1}$

PROBLEMA 16

Uma alíquota de 15 mL de uma solução de NaOH foi titulada com 17,4 mL de KOH 0,23 mol \cdot L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de NaOH.

- **A** $0.091 \, \text{mol} \, \text{L}^{-1}$
- **B** $0.12 \, \text{mol} \, \text{L}^{-1}$
- \mathbf{c} 0,16 mol L⁻¹

- **D** $0,21 \, \text{mol} \, L^{-1}$
- **E** $0,27 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 17

Uma alíquota de 25 mL de uma solução de $Ca(OH)_2$ foi titulada com 12 mL de $HClO_4$ 0,15 mol·L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de $Ca(OH)_2$.

- \mathbf{A} 24 mmol L⁻¹
- \mathbf{B} 36 mmol \mathbf{L}^{-1}
- \mathbf{C} 54 mmol \mathbf{L}^{-1}

- \mathbf{D} 82 mmol L⁻¹
- \mathbf{E} 120 mmol L⁻¹

PROBLEMA 18

Uma alíquota de 25 mL de uma solução do ácido oxálico, $H_2C_2O_4$, foi titulada com 30 mL de NaOH 0,3 mol·L-1.

Assinale a alternativa que mais se aproxima da concentração da solução de ácido oxálico.

- **A** $0.18 \, \text{mol} \, L^{-1}$
- **B** $0.24 \, \text{mol} \, \text{L}^{-1}$
- \mathbf{C} 0,33 mol L⁻¹

- **D** $0,44 \, \text{mol} \, \text{L}^{-1}$
- **E** $0,60 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 19

Uma amostra de 9,7 g de hidróxido de bário foi dissolvida e diluída até a marca de 250 mL em um balão volumétrico. Foram necessários 11,56 mL dessa solução para titular 25 mL de uma solução de ácido nítrico.

Assinale a alternativa que mais se aproxima da concentração da solução de HNO₃.

A $0,21 \, \text{mol} \, L^{-1}$

B $0.28 \, \text{mol} \, \text{L}^{-1}$

c $0.37 \, \text{mol} \, \text{L}^{-1}$

D $0.50 \, \text{mol} \, L^{-1}$

E $0.67 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 20

Um alíquota de $10\,\text{mL}$ de uma solução $3\,\text{mol}\cdot\text{L}-1$ de KOH foi transferida para um balão volumétrico de $250\,\text{mL}$ e diluída até a marca. Foram necessários 38,5 mL da solução diluída para titular $10\,\text{mL}$ de uma solução de ácido fosfórico, $H_3\text{PO}_4$.

Assinale a alternativa que mais se aproxima da concentração da solução de H₃PO₄.

A $0.088 \, \text{mol} \, \text{L}^{-1}$

B $0.12 \, \text{mol} \, \text{L}^{-1}$

 \mathbf{c} 0,16 mol L⁻¹

D 0,21 mol L^{-1}

E $0,28 \, \text{mol} \, \text{L}^{-1}$

PROBLEMA 21

Uma solução de ácido clorídrico foi preparada colocando-se 10 mL do ácido concentrado em um balão volumétrico de 1 L e adicionando-se água até a marca. Outra solução foi preparada colocando-se 0,832 g de carbonato de sódio anidro em um balão volumétrico de 100 mL e adicionando-se água até a marca. Então, 25 mL desta última solução de carbonato foram pipetados para outro balão e titulados com o ácido diluído. O ponto estequiométrico foi atingido quando 31,25 mL do ácido foram adicionados.

Assinale a alternativa que mais se aproxima da concentração da solução de ácido clorídrico concentrado.

 \mathbf{A} 4.4 mol L⁻¹

B $6.2 \, \text{mol} \, \text{L}^{-1}$

c $8.9 \, \text{mol} \, \text{L}^{-1}$

 \mathbf{D} 13 mol L⁻¹

 $E 18 \, \text{mol} \, L^{-1}$

PROBLEMA 22

O enxofre é uma impureza indesejável no carvão e no petróleo usados como combustível. A percentagem em massa de enxofre em um combustível pode ser determinada pela queima do combustível em oxigênio e dissolução em água do SO_3 produzido para formar ácido sulfúrico diluído. Em um experimento, 8,54 g de um combustível foram queimados, e o ácido sulfúrico resultante foi titulado com 17,54 mL de uma solução 0,1 mol L^{-1} de NaOH.

Assinale a alternativa que mais se aproxima da fração mássica de enxofre no combustível.

A 0,20%

B 0,25%

c 0,33 %

D 0,43 %

E 0,55%

PROBLEMA 23

Uma amostra de 3,25 g de um ácido foi diluída em água e titulada com 68,8 mL de uma solução 0,75 mol $\rm L^{-1}$ de NaOH.

Assinale a alternativa que mais se aproxima da massa molar do ácido.

 $\mathbf{A} \quad 11 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 $\mathbf{B} \quad 17 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{C} 26 g mol⁻¹

 \mathbf{D} 40 g mol⁻¹

 \mathbf{E} 63 g mol⁻¹

PROBLEMA 24

Uma amostra de 0,204 g de um ácido diprótico foi diluída em água e titulada com 29 mL de uma solução 0,115 mol $\rm L^{-1}$ de NaOH.

Assinale a alternativa que mais se aproxima da massa molar do ácido.

 $\mathbf{A} \quad 47 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{B} 75 g mol⁻¹

 $120 \,\mathrm{g} \,\mathrm{mol}^{-1}$

 \mathbf{D} 200 g mol⁻¹

 \mathbf{E} 320 g mol⁻¹

PROBLEMA 25

Uma alíquota de 30 mL de uma solução $0,1 \, \text{mol} \, L^{-1}$ de $Mg(NO_3)_2$ foi titulada com EDTA $0,05 \, \text{mol} \, L^{-1}$.

Assinale a alternativa que mais se aproxima do volume da solução de EDTA necessário para atingir o ponto estequiométrico.

A 60 mL

B 93 mL

c 150 mL

D 230 mL

E 350 mL

PROBLEMA 26

Os cátions zinco em uma amostra de 0,7 g talco foi titulado com 22 mL de EDTA 0,016 mol $\rm L^{-1}$

Assinale a alternativa que mais se aproxima da fração mássica de zinco no talco.

A 2,5 %

B 3,3%

c 4,3%

D 5,6%

E 7,3%

PROBLEMA 27

PROBLEMA 28

PROBLEMA 29

PROBLEMA 30

PROBLEMA 31

PROBLEMA 32

PROBLEMA 33

PROBLEMA 34 PROBLEMA 35

PROBLEMA 36

PROBLEMA 37

PROBLEMA 38

PROBLEMA 39

PROBLEMA 40

Gabarito

Problemas

- 1. D
- 2. **E**
- 3. C
- 4. C
- 5. **D**
- 6. **B**
- 7. **D**
- 8. **C**
- 9. A
- 10. C
- 11. B
- 12. D
- 13. C
- 14. D
- 15. A
- 16. E
- 17. B
- 18. A
- 19. A
- 20. **D**
- 21. D 22. C
- 23. **E**
- 24. C 25. A
- 26. B
- 27. -
- 28. -
- 29. -
- 30. -
- 31. -
- **32.** -
- 33. -34. -
- __
- 35. -36. -
- 37. -
- 38. -
- 39. -40. -