## Multi-step RL: Unifying Algorithm

Kirill Bobyrev

November 5, 2017

1 / 16

#### Plan

- Introduction
- From MC and one-step TD to multi-step Bootstrapping
- $\bigcirc$   $Q(\sigma)$  algorithm
- Experiments
- Conclusion

#### Results



3 / 16

#### Monte Carlo methods

## One-step TD methods

#### Monte Carlo versus Temporal Difference

left part

right part

## *n*-step TD methods

#### Overview



8 / 16

# Algorithm description

```
Initialize S_0 \neq terminal

Select A_0 according to \pi(.|S_0)

Store S_0, A_0, Q(S_0, A_0)

for t = 0, \dots, T + n - 1 do

if t < T then

Take Action A_t, observe R and store S_{t+1}

end if
```

## Intuition and Examples



# Choosing $\sigma$



## Stochastic Windy Gridworld Environment



## Comparing Sarsa, Tree-backup, Q(0.5) and dynamic $\lambda$



# **Synopsis**

- *n*-step methods are derived from both MC and  $TD(\lambda)$
- $Q(\sigma)$  unifies *n*-step Sarsa and Tree-backup
- $Q(\sigma)|_{\sigma=0}$  is Tree-backup
- $Q(\sigma)|_{\sigma=1}$  is *n*-step Sarsa



#### References



Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, Richard S. Sutton.

Multi-step Reinforcement Learning: A Unifying Algorithm. arXiv, 3 Mar 2017.



Richard S. Sutton, Andrew G. Barto.

Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 19 Jun 2017 Draft.



# The End

