Power Electronics

Review Switching Power Supply Motor Drives

Review Outlines

- Switching Power Supply
- Introduction to Motor Drives
- DC Motor Drives
- Induction Motor Drives

Switching Power Supply

Requirements for dc Power Supplies

Regulated output;

Isolation;

Multiple output.

Major advantages of switching power supplies

- higher energy efficiency
- reduced size and weight

Switching Power Supply

High Frequency Transformer

Figure 10-4 Transformer representation: (a) typical B-H loop of transformer core; (b) two-winding transformer; (c) equivalent circuit.

$$v_1 / v_2 = N_1 / N_2$$
 $i_1 N_1 = i_2 N_2$

Switching Power Supply

For the converters without output filter inductor

The change of flux through the core over one time period must be zero in steady state.

$$\phi(T_{\rm s}) = \phi(0)$$

For the converters with output filter inductor

Equating the integral of the inductor voltage over one time period to zero.

Switching Power Supply

Important issue —— Voltage transfer ratio

Flyback converter

$$\frac{V_{\rm o}}{V_{\rm d}} = \frac{N_2}{N_1} \frac{D}{1 - D}$$

Forward converter $\frac{V_o}{V_d} = \frac{N_2}{N_1}D$

$$\frac{V_o}{V_d} = \frac{N_2}{N_1}D$$

Push-pull converter
$$\frac{V_o}{V_d} = 2 \frac{N_2}{N_1} D$$
 $0 < D < 0.5$

Half-bridge converter
$$\frac{V_o}{V_d} = \frac{N_2}{N_1}D$$
 $0 < D < 0.5$

Full-bridge converter
$$\frac{V_o}{V_d} = 2 \frac{N_2}{N_1} D$$
 $0 < D < 0.57$

Introduction to **Motor Drives**

Basic Principles

Electromagnetic
$$T - T_{load} = J \frac{d\omega}{dt}$$

$$T_{em} = J \frac{d\omega_m}{dt} + B\omega_m + T_{WL}(t) \qquad \text{(Eqs.13-9)}$$

Total equivalent 7 inertia

Total equivalent R damping

Equivalent T_{WL} load torque

Introduction to Motor Drives

Servo Drive

• In servo drives, the response time and the accuracy with which the motor follows the speed and position commands are extremely important.

Introduction to Motor Drives

Adjustable-speed Drive

 In a large number of applications, the accuracy and the response time of the motor to follow the speed command is not critical.

Figure 12-9 Ramp limiter to limit motor current.

By providing ramp limiters, drive can be prevented from "triping" under sudden changes.

DC Motor Drives

Total equivalent Jinertia

Total equivalent *B* damping

Equivalent T_{WL} load torque

DC Motor Drives

 T_{em}

$$T_{\rm em} = k_t \phi_f i_a$$

$$e_a = k_e \phi_f \omega_m$$

Generation

Braking in reverse direction

$$e_a = -i_a = +i$$

Motoring

Motoring in forward direction

$$e_a = + i_a = +$$

Motoring in reverse direction

$$e_a = i_a = -$$

Motoring

Braking in forward direction

$$e_a = + i_a = -$$

Generation

Figure 13-3 Four-quadrant operation of a dc motor.

DC Motor Drives

Permanent Magnet DC Motor

Electromagnetic torque

$$T_{\rm em} = k_T I_a \quad k_T = k_t \phi_f$$

Back-emf

$$E_{\rm a} = k_E \omega_m \qquad k_E = k_e \phi_f$$

Voltage equation

$$V_{t} = E_{a} + R_{a}I_{a}$$

DC Motor Drives

DC Motors with a Separately Excited Field Winding

$$I_f = \frac{V_f}{R_f}$$

$$\omega_m = \frac{1}{k_e \phi_f} (V_t - \frac{R_a}{k_t \phi_f} T_{em}) .$$

Equivalent circuit

DC Motor Drives

DC Motors with a Separately Excited Field Winding

Constant power control Constant torque control Per unit quantities T_{em} , I_a , ϕ_f , I_f V_t, I_a 1.0

Figure 13-5 Separately excited dc motor: (a) equivalent circuit; (b) continuous torque-speed capability.

Induction Motor Drives

Basic Principles

Table 14-1 Important Relationships

$$\omega_{s} = k_{7}f$$

$$s = \frac{\omega_{s} - \omega_{r}}{\omega_{s}}$$

$$f_{sl} = sf$$

$$%P_{r} = \frac{f_{sl}}{f - f_{sl}}$$

$$V_{s} \approx k_{3}\phi_{ag}f$$

$$I_{r} \approx k_{5}\phi_{ag}f_{sl}$$

$$T_{em} \approx k_{6}\phi_{ag}^{2}f_{sl}$$

$$I_{m} = k_{8}\phi_{ag} \quad \text{(from Eq. 14-5)}$$

$$I_{s} \approx \sqrt{I_{m}^{2} + I_{r}^{2}}$$

$$V_{\rm s} \approx E_{\rm ag}$$

$$\approx \frac{f}{f_{\rm sl}} R_{\rm r} I_{\rm r}$$

$$\approx k_3 \phi_{\rm ag} f$$
Stator frequency
$$VVVF \ control$$

Induction Motor Drives

VVVF Control - Torque-Speed Characteristics

• For small values of $f_{\rm sl}$, keeping $\phi_{\rm ag}$ constant results in a linear relationship between $f_{\rm sl}$ and $T_{\rm em}$.

 $=\omega_{s12}=\omega_{s13}=\omega_{s14}$

Figure 14-6 Torque-speed characteristics at small slip with a

constant ϕ_{ag} ; constant load torque.

Induction Motor Drives

VVVF Control - Voltage Boost

If ϕ_{ag} is kept constant.

$$V_{\rm s} \approx k_{12}f + R_{\rm s}I_{\rm r}$$

proportional to $T_{\rm em}$

Figure 14-11 Voltage boost required to keep ϕ_{ag} constant.

Induction Mot Trated 2.0

Induction Motor Capability

Below the rated speed: Constant-Torque Region

Beyond the rated speed: Constant-Power Region

High speed operation: Constant- f_{sl} Region

Figure 14-12 Induction motor characteristics and capabilities.

Induction Motor Drives

Braking in Induction Motors

• The negative $T_{\rm em}$ causes the motor speed to decrease quickly and some of the energy associated with the motor-load inertia is fed into the source connected to the stator.

Braking

$$f_0 \Rightarrow f_1$$

Figure 14-14 Braking (initial motor speed is ω_{r0} and the applied frequency is instantaneously decreased from f_2 to f_1).

Thanks & Great wishes to you all in 2025