

三菱可编程控制器 MELSEC-F

FX_{2N}-232-BD通信板

用户指南

JY992D66001A

1. 引言

用于 RS232C 的通信板 FX2N-232-BD(以后称之为"232BD")可连接到 FX2N 系列可编程控制器的主单元,并可作为下述应用的端口。

- (1) 在RS232C设备之间进行数据传输, 如个人电脑, 条形码阅读机和打印机。
- (2) 在RS232C设备之间使用专用协议进行数据传输。关于专用协议的细节,参考FX-485PC-IF用户手册。
- (3) 连接编程工具。

当 232BD 用于上述(1)(2)应用时,通信格式包括波特率,奇偶性和数据长度,由参数或 FX₂N 可编程控制器的特殊数据 寄存器 D8120 进行说明。

一个基单元只可连接一个232BD。相应地,232BD不能和FX2N-485-BD或FX2N-422-BD一起使用。应用中,当需要两个或多个RS232C单元连接在一起使用时,使用用于RS232C通信的特殊模块。

1.1 外部尺寸

尺寸: 毫米(英寸) 附件: M3 自行攻丝螺钉×2, 安装夹子×2

- ① 安装孔 <2-4.0 (0.16")>
- ② 可编程控制器连接器
- ③ RX LED: 发送时高速闪烁
- ④ TXD LED 发送时高速闪烁
- ③ 外围单元连接器(9 针 D-SUB型) 此连接器的上表而高于可编程控制器面板盖子的上表面, 高出大约 3 毫米(0.12"),或者,当接上电缆时,高出大约 50 毫米。
- ⑥ 连接器的安装孔 <2-M2.7 (0.11") × 0.635 (0.025")>

2. 端子布置

连接器为9针 D-SUB型, 针脚的配置如下所示。

针脚号	信号	意义	功 能
1	CD(DCD)	载波检测	当检测到数据接收载波时,为ON
2	RD(RXD)	接收数据	接收数据(RS232C 设备到 232BD)
3	SD(TXD)	发送数据	发送数据(232BD 到 RS232C 设备)
4	ER(DTR)	发送请求	数据发送到 RS232C 设备的信号请求准备。
5	SG(GND)	信号地	信号地
6	DR(DSR)	发送使能	表示 RS232C 设备准备好接收
7,8,9	NC	不接	

3. 特性

3.1 一般特性

一般特性与FX2N系列可编程控制器的一般特性相同。

3.2 电源特性

需要来自于可编程控制器的电源为: 5V DC, 60mA

3.3 特性

传输标准	遵照 RS232C
传输距离	最大15米
连接器	9针 D-SUB型
连接器的针脚布置	1:CD(DCD) 2:RD(RXD) 3:SD(TXD) 4:ER(DTR) 5:SG(GND) 6:DR(DSR) 7,8,9:NC(不连接)
LED 指示器	RXD, TXD
通信方法	半双工通信系统
协议	编程协议,专用协议(格式1或4),无协议
隔离	不隔离

3.4 相关标记和数据寄存器

诊断设备	操作
M8121	数据传输延迟(RS 指令)
M8122	数据传输标志(RS 指令)
M8123	完成接收数据(RS 指令)
M8124	载波检测标志(RS指令)
M8126	全局标志(专用协议)
M8127	接通要求握手标志(专用协议)
M8128	接通要求错误标志(专用协议)
M8129	接通要求字节/字标志(专用协议)
M8161	应用指令的 8 位操作选择,这些指令为 ASC, RS, ASCI, HEX, CCD(RS指令)

诊断设备	操 作
M8120	通信格式(RS指令,专用协议)
M8121	本地站号(专用协议)
M8122	传送的数据量(RS 指令)
M8123	已经接收到的剩余数据量(RS 指令)
M8124	数据头 < 缺省为 STX(02H)>(RS 指令)
M8125	数据结束 < 缺省为 ETX(03H)> (RS 指令)
M8127	接通要求头设备寄存器(专用协议)
M8128	接通要求数据长度寄存器(专用协议)
M8129	数据网络"超时"时钟值(专用协议)

3.5 通信格式 D8120

为了用 232BD 在 RS232C 之间发送和接收数据,在 232BD 和 RS232C 单元之间,其通信格式,包括传送速度(波特率)和 奇偶性,必须一致。通信格式可通过参数或 FX2N 可编程控制器的特殊数据寄存器 D8120 来设定。根据所使用的 RS232C 单元,要确保设置适当的通信格式。关于用 FX2N 可编程控制器参数进行设定的方法,参考所用外围单元的手册。 修改设置后,一定要关闭可编程控制器的电源并再打开。

位	45575	内 容					
号	意义	0(OFF)	1(ON)				
b1	数据长度	7 位	8 位				
b1 b2	奇偶性	b2, b1 b2, b1 (0,0):无 (1,1):信 (0,1):奇	ц				
b3	停止位	1 位	2 位				
b4 b5 b6 b7	波特率(bps)	(0,0,1,1):300 (17,b6,b5,b4 0,1,1,1):4,800 1,0,0,0):9,600 1,0,0,1):19,200				

位	2	内 容					
号	意义	0(OFF)	1(ON)				
b8	头字符*1	无	D8124*2				
b9	结束字符*1	无	D8124*3				
b10	保留						
b11	DTR 检测 (控制线)*4	发送和接收	接收				
b12	控制线*4	无	H/W				
b13	和校验*5	不加和校验码	和校验码自动加上				
b14	协议	无协议	专用协议				
b15	传输控制 协议*5	协议格式1	协议格式 4				

^{*1} 当使用专用协议时,设置为"0"。

^{*2} 只有当选择无协议(RS 指令)时,它才有效,并具有初始值 STX(02H: 可由用户修改)。

^{*3} 只有当选择无协议(RS 指令)时,它才有效,并具有初始值 ETX(03H:可由用户修改)。

^{*4} 当使用专用协议时,设置(b11,b12)=(1,0)。

^{*5} 当使用无协议时,设置为"0"。

3.5.1关于设置的实例程序

通信格式由特殊数据寄存器D8120进行设置。

只有在RS指令驱动时间内,使用D8120进行通信格式设置才有效。因此,如果在RS指令驱动之后再改变参数,将不被接受。

设定D8120的例子如下所示。

Constitution of the Consti	
138F D81	20
	138F D81

H138F=001 0011 1000 1111(二进制)

上述程序设置如右所示。

数据长度	8 位
奇偶性	偶
停止位	2 位
波特率	9,600
协议	无协议
头	已使用
终止	已使用
控制线	H/W
DTR 检测	发送和接收

控制线由b12进行设置。

B12=0:没有硬件握手。发送和接收由软件协议进行控制。

B12=1:硬件握手。信号线 ER(DTR)和 DR(DSR))用于控制数据的发送和接收。

4. 布线

使用 RS232C 电缆连接 232BD 和 RS232C 设备。确保电缆的屏蔽线接地(100 欧姆或更小)。

232BD 的连接器为 9 针 D-SUN 型的。(参看 1.2 节和第 2 章)。根据所使用设备的不同,RS232C 设备的连接也是不同的。检查设备的特性后,再进行连接。

4.1 连接例子

4.1.1端子特性设备

	RS232	C 设备						
使用 ER,DR*			使用	RS, CS	3			
意义	25 针	9 针	意义	25 针	9针		-	232BD
总人	D-SUB	D-SUB	息人	D-SUB	D-SUB			9针 D-SUB
RD(RXD)	3	2	RD(RXD)	3	2			② RD(RXD)
SD(TXD)	2	3	SD(TXD)	2	3			③ SD(TXD)
ER(DTR)	29	4	RS(RTS)	4	1			4 ER(DTR)
SG(GND)	7	3	SG(GND)	0	3	$>\!\!<$	\leftarrow	③ SG(GND)
DR(DSR)	6	6	CS(CTS)	3	8			⑥ DR(DSR)

^{*}使用ER和DR信号时,根据RS232C设备的特性,检查是否需要RS和CS信号。

4.1.2调制解调器特性设备

RS232C 设备							
使用ER,DR*			使用 RS,CS			2	
意义	25 针 D-SUB	9针 D-SUB	意义	25 针 D-SUB	9针 D-SUB	232	-
	D-30B	D-30B		D-30B	D-30B	9针 D	-SUB
CD(DCD)	8	1	CD(DCD)	8	1	① CD(DCD
RD(RXD)	3	2	RD(RXD)	3	2	② RD(RXD
SD(TXD)	2	3	SD(TXD)	2	3	③ SD(TXD
ER(DTR)	20	4	RS(RTS)	4	1	4 ER(DTR)
SG(GND)	7	3	SG(GND)	7	(3)	③ SG(GND)
DR(DSR)	6	6	CS(CTS)	(3)	8	⑥ DR(DSR)

^{*}使用ER和DR信号时,根据RS232C设备的特性,检查是否需要RS和CS信号。

4.1.3编程或监视时

使用F2-232CAB-1和25针 D-SUB到9针 D-SUB转换器或制作合适的电缆。

5. 安装过程

关闭可编程控制器的电源, 根据下述过程安装232BD。

- ① 从主单元的上表面卸下面板的盖子。
- ② 将232BD连接到基单元的板安装连接器。
- ③ 使用提供的 M3 自行攻丝螺钉将 232BD 固定到主单元上,将带有地线的圆插片端子和安装夹拧紧,如右图所示。 保证插片型端子以右图所示方向固定,而且地线以下图中的方式从单元伸展出来。

④ 使用工具如钳子和剪刀,将面板盖子左边的孔剪掉,以便可看到端子块。连接器的上表面高于可编程控制器面板盖子的上表面,高大约7毫米(0.27")。

6. 使用注意

- 1) 当编程工具连接到232BD时,不要使用任何其它通信格式或参数。如果设置了通信格式或参数,就不能进行编程。
- 2) 只能有一个编程工具(如FX-10P,FX-20P等)可连接到编程端口或232BD提供的端口。如果编程工具连接到两个连接器,将发生下面的情况。
 - a) 可编程控制器内的程序与编程工具内的程序可能不一致。如果程序修改了,或时钟或计数器的设定值修改了,部分程序可能受到损害,可编程控制器可能发生故障。
 - b) 当两个端口都使用可编程控制器的采样跟踪功能时, 将不会得到正确的采样跟踪结果。

7. 程序实例

1) 连接232BD和打印机,打印出由PC发送来的数据。

• 串型打印机的通信格式如下。

数据长度	8 位
奇偶性	偶
停止位	1 位
波特率	2400bps

顺序程序

• 本例子中, CR(H000D)和 LF(H000A)在消息的最后 写。对每一次消息, 打印机向下移动一行。

CR: 托架返回 LF: 线反馈

注意:

可能需要设置打印机的 DIP 开关。查看你的打印机手册,看它是怎样配置串型通信的。

2) 连接232BD和个人电脑, 使其与PC交换数据

 使用适于个人电脑连接器管脚配置的电缆。 (对于典型布线,参看第4部分)

软件准备

• 使用一般的通信软件(终端仿真器)或个人电脑中的专用程序。

本例子中, 个人电脑的通信格式如下表。

数据长度	8 位
奇偶性	偶
停止位	1 位
波特率	2400bps

如果软件的通信格式不能调整到这种格式,调整 PC 和软件,使 其格式相同。

8. 诊断

8.1 一般项目

- 1) 确保可编程控制器已经接上, 而且可编程控制器上的POWER LED亮。
- 2) 确保程序中 VRRD 或 VRSC 指令未被使用。如果使用了这些指令、要删去、关闭可编程控制器的电源、然后再打开。
- 3) 当特殊辅助继电器 M8070 或 M8071 打开时,使用外围单元关闭继电器,关闭可编程控制器的电源,然后再打开。
- 4) 确保正确布线,参看第4部分。
- 5) 根据应用的情况,通过外围单元,确保通信参数正确设置。如果设置不正确,使用外围单元正确设置参数。

8.2 使用并行连接功能时

- 1) 确保通信格式处于初始状态(D81200 = K0)。使用外围单元、检查通信参数是如何设置的。如果选择了无协议(RS 指令)或专用协议、使用外围单元正确设置参数。
- 2) 在程序中, 如果使用了RS指令, 将其删除, 关闭可编程控制器的电源, 然后再打开。

8.3 使用无协议在计算机之间进行通信时

- 1) 在外部单元(RS232C)和可编程控制器(D8120)之间,确保其通信格式是一致的。如果不一致,校正通信参数设置或校正 D8120 的内容。当 D8120 修改后,再打开 RS 指令。当通信参数修改后,关闭可编程控制器的电源,然后再打开。
- 2) 检查发送和接收数据的定时,例如,在发送数据前,确保对应单元处于接收就绪状态。
- 3) 如果没有用到停止位,确保发送数据量和接收数据量是一致的。如果两个数据量不一致,使其一致。(如果发送数据量是变化的,使用停止位。)
- 4) 确保外部单元正确操作。
- 5) 确保传送的数据格式是一样的, 否则, 要对其进行校正。
- 6) 当在一个程序中使用两次或多次RS指令时,确保在一个计算周期内,只有一个RS指令打开。当数据正在接收或发送时,不要将RS指令设置到OFF状态。

8.4 计算机之间使用专用协议进行通信时

- 1) 确保在计算机(RS232C单元)和可编程控制器(D8120)之间,其通信格式是一致的。如果不一致,对计算机或可编程控制器的设置进行校正。当可编程控制器修改后,关闭可编程控制器的电源,然后再打开。
- 2) 确保可编程控制器的站号,即数据传送的目的地,等于通信过程中设置的站号。如果它们不相等,校正错误的一方。
- 3) 确保通信过程是正确的。如果不正确,修改 RS232 单元的设置,以实现正确的通信。
- 4) 检查是否有故障出现在 RS232 单元和可编程控制器。对于检查方法和措施,参看 FX-485PC-IF 的用户手册。
- 5) 如果程序中使用 RS 指令, 将其删除。关闭可编程控制器的电源, 然后再打开。