Cellular Automata

Definition 1 (Cellular Automaton – **CA).** *A (finite) Cellular Automaton (CA) is* defined by a six-tuple $\mathcal{A} = \langle L, Q, \mathcal{N}, \delta, \varphi, q_0 \rangle$ where:

- 1. $L = \times_{\ell \in \mathbb{Z}_n} \mathbb{Z}_{m_\ell} \subset \mathbb{N}^n$, with $n \in \mathbb{N}$ and $\forall \ell \in \mathbb{Z}_n : m_\ell \in \mathbb{N}$, is an n-dimensional (finite) lattice of cells $\mathbf{c}_i = \langle i_k \rangle_{k \in \mathbb{Z}_n} \in L$, with $i = \sum_{k \in \mathbb{Z}_n} i_k \prod_{\ell \in \mathbb{Z}_k} m_\ell \in \mathbb{Z}_N$, and a total of $N = \prod_{\ell \in \mathbb{Z}_n} m_\ell \in \mathbb{N}$ cells.
- 2. $Q \cong \mathbb{Z}_s$ is the (finite) set of states of dimension $s \in \mathbb{N}$.
- 3. $\mathcal{N}: L \to \bigcup_{d \in \mathbb{Z}_{N+1}} L^d$ is the neighbourhood function, which maps every cell $\mathbf{c}_i \in L$ to its neighbour cells, defined as the tuple $\mathcal{N}(\mathbf{c}_i) = \langle \mathbf{c}_{i,k} \rangle_{k \in \mathbb{Z}_{d_i}} \in L^{d_i}$, consisting of $d_i = |\mathcal{N}(\mathbf{c}_i)| \in \mathbb{N}$ distinct cells.
- 4. $\delta: L \times \bigcup_{d \in \mathbb{Z}_{N+1}} Q^d \to Q$ is the local transition function, which is used to update the state of every cell according to the current states of its neighbour cells.
- 5. $\varphi: L \times \mathbb{N} \to Q$ is the local evolution function, which maps every cell $\mathbf{c}_i \in L$ to a state $q_i^{(t)} \in Q$ at each unit of time $t \in \mathbb{N}$.
- 6. $q_0: L \to Q$ is the initial state function, which assigns an initial state $q_i^{(0)} \in Q$ to every cell $\mathbf{c}_i \in L$ at time t = 0, that is $\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) \in Q$.

Example 1 (Wolfram's Rule 30 CA).

- 1. $L = \mathbb{Z}_N$, $\mathbf{c}_i = \langle i \rangle \in L$.
- 2. $Q = \mathbb{Z}_2$.
- 3. $\mathcal{N}: L \to L^3, \forall \mathbf{c}_i = \langle i \rangle \in L: \mathcal{N}(\langle i \rangle) = \langle \langle i \ominus_N 1 \rangle, \langle i \rangle, \langle i \ominus_N 1 \rangle \rangle$.
- 4. $\delta: L \times Q^3 \to Q, \forall \mathbf{c}_i \in L: \delta(\mathbf{c}_i, \langle q_l, q, q_r \rangle) = q \oplus_2 q_l \oplus_2 q_r \oplus_2 q \oplus_2 q_r$
- 5. $\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta(\mathbf{c}_i, \langle \varphi(\mathbf{c}_{i,l}, t-1), \varphi(\mathbf{c}_i, t-1), \varphi(\mathbf{c}_{i,r}, t-1) \rangle),$ $\langle \mathbf{c}_{i,l}, \mathbf{c}_i, \mathbf{c}_{i,r} \rangle = \mathcal{N}(\mathbf{c}_i).$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = \begin{cases} 1 & \text{if } i = \lfloor \frac{N}{2} \rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

Example 2 (Conway's Game of Life CA – GoL).

1.
$$L = \mathbb{Z}_c \times \mathbb{Z}_r$$
, $\mathbf{c}_i = \langle x, y \rangle \in L$, $i = x + c \cdot y \in \mathbb{Z}_N$, $N = c \cdot r$.

2.
$$Q = \mathbb{Z}_2$$
.

3.
$$\mathcal{N}: L \to L^9, \forall \mathbf{c}_i = \langle x, y \rangle \in L: \mathcal{N}(\langle x, y \rangle) = \langle \langle x \oplus_c j, y \oplus_r k \rangle \rangle_{\langle j, k \rangle \in \{-1, 0, 1\}^2}$$
.

4.
$$\delta: L \times Q^9 \to Q$$
,

$$\forall \mathbf{c}_i \in L: \delta\left(\mathbf{c}_i, \langle q_{j,k} \rangle_{\langle j,k \rangle \in \{-1,0,1\}^2}\right) = \begin{cases} 1 & \text{if } S = 3 \lor (S = 4 \land q_{0,0} = 1), \\ 0 & \text{otherwise.} \end{cases}$$
,
$$S = \sum_{\langle i,j \rangle \in \{-1,0,1\}^2} q_{i,k}$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta\left(\mathbf{c}_i, \langle \varphi(\mathbf{c}_{i,k}, t-1) \rangle_{k \in \mathbb{Z}_0}\right), \langle \mathbf{c}_{i,k} \rangle_{k \in \mathbb{Z}_0} = \mathcal{N}(\mathbf{c}_i).$$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = t, t \stackrel{\$}{\longleftarrow} \mathbb{Z}_2.$$

Example 3 (Brians's Brain CA).

1.
$$L = \mathbb{Z}_c \times \mathbb{Z}_r$$
, $\mathbf{c}_i = \langle x, y \rangle \in L$, $i = x + c \cdot y \in \mathbb{Z}_N$, $N = c \cdot r$.

2.
$$Q = \mathbb{Z}_3$$
.

3.
$$\mathcal{N}: L \to L^9, \forall \mathbf{c}_i = \langle x, y \rangle \in L: \mathcal{N}(\langle x, y \rangle) = \langle \langle x \oplus_c j, y \oplus_r k \rangle \rangle_{\langle j, k \rangle \in \{-1, 0, 1\}^2}.$$

$$4. \ \delta: L \times Q^9 \to Q, \ \forall \mathbf{c}_i \in L: \delta\left(\mathbf{c}_i, \langle q_{j,k} \rangle_{\langle j,k \rangle \in \{-1,0,1\}^2}\right) = \begin{cases} 2 & \text{if } q_{0,0} = 0 \land S = 2, \\ 1 & \text{if } q_{0,0} = 2, \\ 0 & \text{otherwise.} \end{cases},$$

$$S = \left|\left\{q \in \langle q_{j,k} \rangle_{\langle j,k \rangle \in \{-1,0,1\}^2 \setminus \{\langle 0,0 \rangle\}} \mid q = 2\right\}\right|.$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta\left(\mathbf{c}_i, \langle \varphi(\mathbf{c}_{i,k}, t-1) \rangle_{k \in \mathbb{Z}_0}\right), \langle \mathbf{c}_{i,k} \rangle_{k \in \mathbb{Z}_0} = \mathcal{N}(\mathbf{c}_i).$$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = t, t \xleftarrow{\$} \mathbb{Z}_3.$$

Example 4 (Langton's Ant CA).

1.
$$L = \mathbb{Z}_c \times \mathbb{Z}_r$$
, $\mathbf{c}_i = \langle x, y \rangle \in L$, $i = x + c \cdot y \in \mathbb{Z}_N$, $N = c \cdot r$.

2.
$$Q = \{w, b, N_w, E_w, S_w, W_w, N_b, E_b, S_b, W_b\}.$$

3.
$$\mathcal{N}: L \to L^9, \forall \mathbf{c}_i = \langle x, y \rangle \in L: \mathcal{N}(\langle x, y \rangle) = \langle \langle x \oplus_c j, y \oplus_r k \rangle \rangle_{\langle j, k \rangle \in \{-1, 0, 1\}^2, |j| + |k| \leq 1}$$

4.
$$\delta: L \times Q^9 \to Q, \forall \mathbf{c}_i \in L:$$

$$\delta: L \times Q^{\circ} \to Q, \forall \mathbf{c}_{i} \in L:$$

$$\begin{cases}
N_{c} & \text{if } q = c \land q_{S} \in \{W_{w}, E_{b}\}, \\
E_{c} & \text{if } q = c \land q_{W} \in \{N_{w}, S_{b}\}, \\
S_{c} & \text{if } q = c \land q_{N} \in \{E_{w}, W_{b}\}, \\
W_{c} & \text{if } q = c \land q_{E} \in \{S_{w}, N_{b}\}, \\
w & \text{if } q = D_{b}, \\
b & \text{if } q = D_{w}, \\
c & \text{otherwise.}
\end{cases}$$

$$c \in \{w, b\}, D \in \{N, E, S, W\}.$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta\left(\mathbf{c}_i, \langle \varphi(\mathbf{c}_{i,k}, t-1) \rangle_{k \in \mathbb{Z}_9}\right), \langle \mathbf{c}_{i,k} \rangle_{k \in \mathbb{Z}_9} = \mathcal{N}(\mathbf{c}_i).$$

6.
$$\forall \mathbf{c}_i = \langle x, y \rangle \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = \begin{cases} 1 & \text{if } x = \left\lfloor \frac{c}{2} \right\rfloor \land y = \left\lfloor \frac{r}{2} \right\rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

Example 5 (Hexagonal Lattice Wolfram's Snowflake CA).

1.
$$L = \mathbb{Z}_c \times \mathbb{Z}_r$$
, $\mathbf{c}_i = \langle x, y \rangle \in L$, $i = x + c \cdot y \in \mathbb{Z}_N$, $N = c \cdot r$.

2.
$$Q = \mathbb{Z}_2$$
.

3.
$$\mathcal{N}: L \to L^7, \forall \mathbf{c}_i = \langle x, y \rangle \in L: \mathcal{N}(\langle x, y \rangle) = \langle \langle x \oplus_c j, y \oplus_r k \rangle \rangle_{\langle j, k \rangle \in \{-1, 0, 1\}^2 \setminus \{\langle -1, -1 \rangle, \langle 1, 1 \rangle\}}$$

4.
$$\delta: L \times Q^7 \to Q, \forall \mathbf{c}_i \in L:$$

$$\delta\left(\mathbf{c}_{i},\langle q_{j,k}\rangle_{\langle j,k\rangle\in\{-1,0,1\}^{2}\smallsetminus\{\langle-1,-1\rangle,\langle1,1\rangle\}}\right) = \begin{cases} 1 & \text{if } q = 1 \lor q = 0 \land S = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$S = \sum_{\langle j,k\rangle \in \{-1,0,1\}^2 \setminus \{\langle -1,-1\rangle,\langle 1,1\rangle\}} q_{j,k}.$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta\left(\mathbf{c}_i, \langle \varphi(\mathbf{c}_{i,k}, t-1) \rangle_{k \in \mathbb{Z}_7}\right), \langle \mathbf{c}_{i,k} \rangle_{k \in \mathbb{Z}_7} = \mathcal{N}(\mathbf{c}_i).$$

6.
$$\forall \mathbf{c}_i = \langle x, y \rangle \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = \begin{cases} 1 & \text{if } x = \left\lfloor \frac{c}{2} \right\rfloor \land y = \left\lfloor \frac{r}{2} \right\rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

Example 6 (Rock/Paper/Scissor CA).

1.
$$L = \mathbb{Z}_c \times \mathbb{Z}_r$$
, $\mathbf{c}_i = \langle x, y \rangle \in L$, $i = x + c \cdot y \in \mathbb{Z}_N$, $N = c \cdot r$.

2.
$$Q = \mathbb{Z}_3$$
.

3.
$$\mathcal{N}: L \to L^2, \forall \mathbf{c}_i = \langle x, y \rangle \in L: \mathcal{N}(\mathbf{c}_i) = \langle \mathbf{c}_i, \mathbf{c}_i' \rangle,$$

$$\mathbf{c}_i' \stackrel{\$}{\longleftarrow} \{ \langle x \oplus_c j, y \oplus_r k \rangle \}_{\langle j, k \rangle \in \{-1, 0, 1\}^2 \setminus \{\langle 0, 0 \rangle\}}.$$

4.
$$\delta: L \times Q^2 \to Q, \forall \mathbf{c}_i \in L: \delta\left(\mathbf{c}_i, \langle q, q' \rangle\right) = \begin{cases} q' & \text{if } q = q' \ominus_3 1, \\ q & \text{otherwise.} \end{cases}$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta(\mathbf{c}_i, \langle \varphi(\mathbf{c}_i, t-1), \varphi(\mathbf{c}_i', t-1) \rangle), \langle \mathbf{c}_i, \mathbf{c}_i' \rangle = \mathcal{N}(\mathbf{c}_i).$$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = t, t \stackrel{\$}{\longleftarrow} \mathbb{Z}_3.$$

Example 7 (Rules 90 and 150 Hybrid CA (HCA)).

1.
$$L = \mathbb{Z}_N, \mathbf{c}_i = \langle i \rangle \in L.$$

2.
$$Q = \mathbb{Z}_2$$
.

3.
$$\mathcal{N}: L \to L^3, \forall \mathbf{c}_i = \langle i \rangle \in L: \mathcal{N}(\langle i \rangle) = \langle \langle i \ominus_N 1 \rangle, \langle i \rangle, \langle i \ominus_N 1 \rangle \rangle$$
.

4.
$$\delta: L \times Q^3 \to Q, \forall \mathbf{c}_i \in L: \delta(\mathbf{c}_i, \langle q_l, q, q_r \rangle) = q_l \oplus_2 d_i \odot_2 q \oplus_2 q_r$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} = \delta(\mathbf{c}_i, \langle \varphi(\mathbf{c}_i, t-1), \varphi(\mathbf{c}_{i,r}, t-1) \rangle),$$

 $\langle \mathbf{c}_i, \mathbf{c}_{i,r} \rangle = \mathcal{N}(\mathbf{c}_i).$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = \begin{cases} 1 & \text{if } i = \left\lfloor \frac{N}{2} \right\rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

The values $\langle d_i \rangle_{i \in \mathbb{Z}_N}$ are obtained once and for all uniformly at random from \mathbb{Z}_2 , that is:

$$\forall i \in \mathbb{Z}_N : d_i \stackrel{\$}{\longleftarrow} \mathbb{Z}_2.$$

Example 8 (Rule 150 Reversible Second-Order CA (RCA²)).

1.
$$L = \mathbb{Z}_N, \mathbf{c}_i = \langle i \rangle \in L.$$

2.
$$Q = \mathbb{Z}_2$$
.

3.
$$\mathcal{N}: L \to L^3, \forall \mathbf{c}_i = \langle i \rangle \in L: \mathcal{N}(\langle i \rangle) = \langle \langle i \ominus_N 1 \rangle, \langle i \rangle, \langle i \ominus_N 1 \rangle \rangle$$
.

4.
$$\delta: L \times Q^3 \to Q, \forall \mathbf{c}_i \in L: \delta(\mathbf{c}_i, \langle q_l, q, q_r \rangle) = q_l \oplus_2 q \oplus_2 q_r.$$

5.
$$\forall \langle \mathbf{c}_{i}, t \rangle \in L \times \mathbb{N}_{>1} : \varphi(\mathbf{c}_{i}, t) = q_{i}^{(t)} = \delta\left(\mathbf{c}_{i}, \langle \varphi(\mathbf{c}_{i,l}, t-1), \varphi(\mathbf{c}_{i}, t-1), \varphi(\mathbf{c}_{i,r}, t-1) \rangle\right) \ominus_{2}$$

 $\varphi(\mathbf{c}_{i}, t-2),$
 $\forall \mathbf{c}_{i} \in L : \varphi(\mathbf{c}_{i}, 1) = q_{i}^{(1)} = \delta\left(\mathbf{c}_{i}, \langle \varphi(\mathbf{c}_{i,l}, 0), \varphi(\mathbf{c}_{i}, 0), \varphi(\mathbf{c}_{i,r}, 0) \rangle\right), \langle \mathbf{c}_{i,l}, \mathbf{c}_{i}, \mathbf{c}_{i,r} \rangle = \mathcal{N}(\mathbf{c}_{i}).$

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = \begin{cases} 1 & \text{if } i = \left\lfloor \frac{N}{2} \right\rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

Example 9 (Cyclically Asynchronous Rule 30 CA).

1.
$$L = \mathbb{Z}_N, \mathbf{c}_i = \langle i \rangle \in L.$$

$$2. \ Q = \mathbb{Z}_2.$$

3.
$$\mathcal{N}: L \to L^3, \forall \mathbf{c}_i = \langle i \rangle \in L: \mathcal{N}(\langle i \rangle) = \langle \langle i \ominus_N 1 \rangle, \langle i \rangle, \langle i \ominus_N 1 \rangle \rangle$$
.

4.
$$\delta: L \times Q^3 \to Q, \forall \mathbf{c}_i \in L: \delta(\mathbf{c}_i, \langle q_l, q, q_r \rangle) = q \oplus_2 q_l \oplus_2 q_r \oplus_2 q \odot_2 q_r$$

5.
$$\forall \langle \mathbf{c}_i, t \rangle \in L \times \mathbb{N}^+ : \varphi(\mathbf{c}_i, t) = q_i^{(t)} =$$

$$= \begin{cases} \delta\left(\mathbf{c}_{i}, \langle \varphi(\mathbf{c}_{i,l}, t-1), \varphi(\mathbf{c}_{i}, t-1), \varphi(\mathbf{c}_{i,r}, t-1) \rangle\right) & \text{if } t = \pi\left([i \bmod N]\right), \\ \varphi(\mathbf{c}_{i}, t-1) & \text{otherwise.} \end{cases}$$

$$\langle \mathbf{c}_{i,l}, \mathbf{c}_i, \mathbf{c}_{i,r} \rangle = \mathcal{N}(\mathbf{c}_i), \ \pi : \mathbb{Z}_N \to \mathbb{Z}_N, \ \pi$$
 bijective.

6.
$$\forall \mathbf{c}_i \in L : \varphi(\mathbf{c}_i, 0) = q_i^{(0)} = q_0(\mathbf{c}_i) = t, t \xleftarrow{\$} \mathbb{Z}_2.$$