DFA

Specyfikacja problemu algorytmicznego

Zaprojektuj DFA nad alfabetem $\Sigma = \{1,2,5\}$ automat, który wydaje bilet pozwalający na podstawowe mycie, kiedy wartość wrzuconych monet jest równa 20. Jeśli wrzucona kwota jest większa, automat wydaje bilet, resztę i kończy działanie. Automat ignoruje wrzucane dalej monety w stanie wydawania reszty.

Dane wejściowe

$$\begin{split} \Sigma &= \{1,2,5\} \\ Q &= \{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_8,q_9,q_{10},q_{11},q_{12},q_{13},q_{14},q_{15},q_{16},q_{17},q_{18},q_{19},q_{20},q_{21},q_{22},q_{23},q_{24}\} \\ q0 &= \{q_0\} \\ A &= \{q_{20},q_{21},q_{22},q_{23},q_{24}\} \\ \delta(q,a) &= Q \ x \ \Sigma \ \Rightarrow \ Q \end{split}$$

Założenia początkowe

- 1) Do urządzenia można wrzucać monety o nominałach 1,2 i 5.
- 2) Monety mogą być wrzucane pojedynczo, nie można wrzucić dwóch lub więcej monet na raz.
- 3) Analizę zaczynamy od pierwszej do ostatniej wrzuconej monety.
- 4) Stan początkowy to q₀.
- 5) Analiza stanu końcowego rozpoczyna się, kiedy wartość monet wynosi co najmniej 20.
- 6) Jeśli zostanie wczytany symbol nie występujący z skończonym zbiorze Q automat kończy działanie, sekwencja symboli zostaje uznana za niewłaściwą.
- 7) Brak przejścia dla aktualnie analizowanego symbolu oznacza zatrzymanie DFA i również uznanie sekwencji symboli za niewłaściwa.
- 8) Funkcja δ(q,a) zostanie przedstawiona za pomocą poniższej tabeli przejść:

δ (q, a)	1	2	5
q0	q1	q2	q5
q1	q2	q3	q6
q2	q3	q4	q7
q3	q4	q5	q8
q4	q5	q6	q9
q5	q6	q7	q10
q6	q7	q8	q11
q7	q8	q9	q12
q8	q9	q10	q13
q9	q10	q11	q14
q10	q11	q12	q15
q11	q12	q13	q16
q12	q13	q14	q17
q13	q14	q15	q18
q14	q15	q16	q19
q15	q16	q17	q20
q16	q17	q18	q21
q17	q18	q19	q22
q18	q19	q20	q23
q19	q20	q21	q24
q20	q20	q20	q20
q21	q21	q21	q21
q22	q22	q22	q22
q23	q23	q23	q23
q24	q24	q24	q24

Sprawdzenie poprawności działania

np. 5555

$$-> q_0 -> 5 -> q_5 -> 5 -> q_{10} -> 5 -> q_{15} -> 5 -> q_{20}$$

Automat po wczytaniu ostatniego symbolu znalazię w stanie akceptującym q20. Wniosek: sekwencja monet 5555 jest zgodna ze specyfikacją i jest akceptowana przez ten automat.

np. 555225

$$-> q_0 -> 5 -> q_5 -> 5 -> q_{10} -> 5 -> q_{15} -> 2 -> q_{17} -> 2 -> q_{19} -> 5 -> q_{24}$$

Automat po wczytaniu ostatniego symbolu znalazł się w stanie akceptującym q₂₀. Wniosek: sekwencja monet 55225 jest zgodna ze specyfikacją i jest akceptowana przez ten automat.

np. 511

$$-> q_0 -> 5 -> q_5 -> 1 -> q_6 -> 1 -> q_7$$

Automat po wczytaniu ostatniego symbolu znalazł się w stanie nieakceptującym q₇. Wniosek: sekwencja monet 511 nie jest zgodna ze specyfikacją i nie jest akceptowana przez ten automat.