Methylation Array Workflow

minfi

- Tools for analyzing Illumina arrays
- Provides tools for many of the steps presented here.

Import Data

- IDAT files; slide scanner output
- Needs a SampleSheet, usually accompanies array data (or can be made manually)
- Raw intensities -> RGChannelSet
- Needs to be converted to MethylSet for initial QC

QC + Filtering

 Aim: find outliers/batch effects and artifacts and try to remove or account for them

- Several metrics:
 - Plot distributions of the Beta values
 - Quality of probes: average detection p-value
 - Internal quality control probes

QC + Filtering

- Aim: find outliers/batch effects and artifacts and try to remove or account for them
- Several metrics:
 - Plot distributions of the Beta values
 - Quality of probes: average detection p-value
 - Internal quality control probes
 - Remove probes with known SNPs
 - MDS/PCA plot

- STAINING CONTROLS
- BISULFITE CONVERSION CONTROLS
- EXTENSION CONTROLS
- SPECIFICITY CONTROLS
- HYBRIDIZATION CONTROLS
- TARGET REMOVAL CONTROLS
- NON-POLYMORPHIC CONTROLS
- NEGATIVE CONTROLS

Normalization

Within and across array normalization

Normalization

- Within and across array normalization
- Crucial step; aims to make distribution more comparable

Differential Methylation

- Identification of systematic differences in methylation between groups of samples (i.e., case vs control, smokers vs non-smokers, ...)
- Countless ways to approach this, depending on:
 - Question(s) being asked
 - Available information on potential confounders
 - Nature/structure of the data (repeat measurements, ...)
- Some possible approaches include:
 - T-tests and ANOVA models
 - Wilcoxon rank-sum and Kruskal Wallis tests
 - Linear, logistic and Cox regression
 - Mixed effects models
 - Surrogate Variable Analysis (SVA)
- Use M-values: Mvalue = log 2(M/U)
 - More homoscedastic

Differential Methylation

- Single CpG can be useful (DMP), but often regions or block of CpGs (DMR)
- How to define region?
 - Sliding window
 - Heuristic cutoffs/Smoothing
 - Functional units

Gene Set Enrichment

- Long list of DMP or DMR... What does it mean?
- Gene expression -> GO analysis
- Not so straightforward for methylation data!
 - CpG link to genes unclear
 - Directionality?
 - Extreme bias: number of CpG per gene differs

Gene-set analysis is severely biased when applied to genome-wide methylation data

Paul Geeleher^{1,2}, Lori Hartnett³, Laurance J. Egan³, Aaron Golden⁴, Raja Affendi Raja Ali³ and Cathal Seoighe^{2,*}

missMethyl, methylGSA, BioMethyl

Cell Type Deconvolution

- Estimates the relative proportion of pure cell types within a sample
- Minfi: RGChannelSet from a DNA methylation study of blood, and return the relative proportions of CD4+ and CD8+ T-cells, natural killer cells, monocytes, granulocytes, and b-cells in each sample.
- Most cohort studies currently analyse data from blood samples: can be used to correct for cell type heterogeneity

Datasets

- Small toy data
- IDAT files
- 10 samples in total: there are 4 different sorted T-cell types, collected from 3 different individuals:
 - Naïve
 - Treg
 - act naive
 - act_Treg
- An additional birth sample is included from another study (<u>GSE51180</u>)
 to illustrate approaches for identifying and excluding poor quality
 samples.