Εισαγωγή στο DBMS Σχεσιακό Μοντέλο Διαγράμματα ER

Δημήτρης Αχιλ. Δέρβος

Θεσσαλονίκη, Οκτώβριος 2013

Updated: 12/10/2016

Τι είναι το DBMS;

- Ολοκληρωμένο περιβάλλον διαχείρισης δεδομένων
- Όπως το Ο.S., μόνο που τώρα δεν έχουμε να κάνουμε με H/W
- Υποστηρίζει ένα επίπεδο αφαίρεσης
- Χρήζει μοντέλου
- Στο σχεσιακό DBMS το μοντέλο είναι ένα σύνολο από πίνακες

Το Μοντέλο

- Υποσύνολο της πληροφορίας του πραγματικού συστήματος
- Σημασιολογία της πληροφορίας και των περιοριοσμών στη λειτουργία του συστήματος
- Στόχος: το μοντέλο να πλησιάζει το δυνατόν περισσότερο την επιθυμητή λειτουργικότητα

ΦΟΙΤΗΤΗΣ(ΑΜ, Επώνυμο, Όνομα, Ον_Πατέρα, Σχολή, Τμήμα)

Κύριο κλειδί πίνακα

- μονοσήμαντος προσδιορισμός της κάθε μίας γραμμής
- απλό ή σύνθετο

ΦΟΙΤΗΤΗΣ(ΑΜ, Επώνυμο, Όνομα, Ον_Πατέρα, Σχολή, Τμήμα)

Σχεσιακό σχήμα (βάση δεδομένων)

Ένας πίνακας

TAINIA					
Τίτλος	Aπόθ_Vide ο	Απόθ_DVD	Παραγωγή	T_Video	T_DVD
A night in the opera	05	24	Fox	40	25
Pretty woman	10	18	Metro	45	32
Prince of Tides	05	10	Fox	35	30
The way we were	15	20	Columbia	41	37
Ενόραση	10	12	Σινεμάτικ	38	32
Η Φυγή	18	20	Σινεμάτικ	47	40
Ηρεμη δύναμη	28	19	3K	50	42
Ο κόσμος της Ελενας	08	08	Φωτοκίνηση	55	43
Βλέμμα του Οδυσσέα	10	18	3K	47	34

Πολύ σημαντικές έννοιες/ιδιότητες

- Ακεραιότητα των οντοτήτων (entity integrity)
- Αναφορική ακεραιότητα των δεδομένων (referential integrity)

... δεν είναι οι μόνοι περιορισμοί που αφορούν στην ακεραιότητα των δεδομένων

Διάγραμμα ER

- Ποιές οι οντότητες και οι συσχετίσεις;
- Ποιό (υποσύνολο) της πληροφορίας των παραπάνω ενδιαφέρει;
- Ποιοί περιορισμοί στην ακεραιότητα των δεδομένων ισχύουν;
- Ποιοί είναι οι επιχειρησιακοί κανόνες στη λειτουργία του συστήματος;
- Διαγραμματική αναπαράσταση της βάσης δεδομένων
- Δυνατότητα 'μετασχηματισμού' σε σχεσιακό σχήμα βάσης δεδομένων

Σύνολο οντοτήτων

- Οντότητα: αντικείμενο με αυτόνομη ύπαρξη στο μοντέλο
- Σύνολο οντοτήτων: συλλογή ιδίου τύπου οντοτήτων
- Χαρακτηριστικά γνωρίσματα της οντότητας
- Πεδίο ορισμού για το κάθε ένα γνώρισμα
- Υποψήφιο κλειδί (απλό ή σύνθετο)
- Κύριο κλειδί (απλό ή σύνθετο)
- Εναλλακτικό κλειδί (απλό ή σύνθετο)

Σύνολο συσχετίσεων

- Συσχέτιση: Συνδυασμός οντοτήτων από δύο ή περισσότερα σύνολα
- Σύνολο συσχετίσεων: συλλογή από ιδίου τύπου συσχετίσεις
- Ένα σύνολο οντοτήτων μπορεί να συμμετέχει σε περισσότερα του ενός σύνολα συσχετίσεων

Περιορισμός κλειδιού

Συμμετοχή: προαιρετική/υποχρεωτική

Ασθενές σύνολο οντοτήτων

- Προσδιορίζον σύνολο οντοτήτων (ΠΣΟ)
- Ασθενές σύνολο οντοτήτων (ΑΣΟ)
- Υποχρεωτικά: ένα-προς-πολλά η συσχέτιση
- Υποχρεωτική η συμμετοχή του ΑΣΟ στη συσχέτιση προσδιορισμού του
- Μονοσήμαντος προσδιορισμός αντικειμένων ΑΣΟ:
 κύριο κλειδί ΠΣΟ + (τοπικό) κύριο κλειδί ΑΣΟ

Ιεραρχίες 'ISA'

Υφή αντικειμενοστρέφειας στο μοντέλο ER

Αλληλοεπικάλυψη στις υπο-τάξεις; Employees που δεν είναι ούτε Hourly- ούτε Contract-; Συμμετοχή των υπο-τάξεων σε συσχετίσεις (σημασιολογία)

Συνυπολογισμός

- Γνωρίσματα στα επιμέρους σύνολα συσχετίσεων
- Περιορισμός κλειδιού στη συμμετοχή του συνυπολογιζόμενου

Οντότητα ή γνώρισμα;

Εάν θέλουμε πληρέστερη εργασιακή προϊστορία (>1 φορές στο ίδιο τμήμα):

Οντότητα ή συσχέτιση;

Υπάλληλος διευθύνει τμήματα με διακριτούς προϋπολογισμούς:

Υπάλληλος διευθύνει τμήματα με συνολικό

Δυαδική(-ές) ή τριαδική συσχέτιση;

Εαν το ασφαλιστήριο συμβόλαιο περιορίζεται στο να έχει μόνο έναν κάτοχο-υπάλληλο;

...περιορισμός κλειδιού στη συμμετοχή του Policies θα σημαίνει ασφαλιστική κάλυψη ενός μόνο προστατευόμενου μέλους!

19

Καλύτερο διάγραμμα ΕR στην προκείμενη περίπτωση:

Υπάρχουν περιορισμοί στην ακεραιότητα των δεδομένων οι οποίοι δεν είναι δυνατόν να απεικονισθούν στο διάγραμμα ΕR (ακόμα: και στο σχεσιακό σχήμα της βάσης δεδομένων)!

Μετασχηματισμός: συσχέτιση ένα-προς-ένα

$$A(\underline{KK}_A, A_1, A_2, ..., A_k)$$

 $B(\underline{KK}_A, B_1, B_2, ..., B_u)$

$$\begin{array}{lll} A(\underline{\textbf{KK}}_A,\ A_1,\ A_2,\ ...,\ A_{\kappa},KK_B) & A(\underline{\textbf{KK}}_A,\ A_1,\ A_2,\ ...,\ A_{\kappa}) \\ B(\underline{\textbf{KK}}_B,\ B_1,\ B_2,\ ...,\ B_{\mu}) & B(\underline{\textbf{KK}}_B,\ B_1,\ B_2,\ ...,\ B_{\mu},\ KK_A) \end{array}$$

Μετασχηματισμός: συσχέτιση ένα-προς-πολλά

$$A(\underline{KK}_A, A_1, A_2, ..., A_k)$$

 $B(\underline{KK}_B, B_1, B_2, ..., B_u, KK_A)$

23

Μετασχηματισμός: συσχέτιση πολλά-προς-πολλά

συνήθως:

$$A_B(\underline{KK}_A,\underline{KK}_B)$$

...οπότε:

Μετασχηματισμός: συσχέτιση πολλά-προς-πολλά

Σημείωση-1:

Ξένο κλειδί στον Α_Β μπορεί να είναι και εναλλακτικό κλειδί των Α ή/και Β

Σημείωση-2:

Η περίπτωση της υποχρεωτικής συμμετοχής συνόλου οντοτήτων σε σύνολο συσχετίσεων ανάγεται στην αντίστοιχη περίπτωση συσχετίσεων τύπου ένα-προς-πολλά (δήλωση του ξένου κλειδιού ως NOT NULL)

Μετασχηματισμός: τριαδική συσχέτιση

συνήθως:

 $A_B_\Gamma(\underline{KK}_A,\underline{KK}_B,\underline{KK}_\Gamma)$

...οπότε:

Μετασχηματισμός: τριαδική συσχέτιση

Υπάρχουν και ιδιαίτερες περιπτώσεις:

$$A_B_\Gamma(\underline{KK}_A,\underline{KK}_B,KK_\Gamma)$$

$$A_B_\Gamma(\underline{KK}_A,KK_B,\underline{KK}_\Gamma)$$

$$A_B_\Gamma(KK_A,KK_B,\underline{KK}_\Gamma)$$

..φυσικά, στη θέση των ξένων κλειδιών και εναλλακτικά κλειδιά

Για την υποστήριξη των επιπλέον περιορισμών, το ΕR διαθέτει τους συνυπολογισμούς και το σχεσιακό DBMS τα εναύσματα (triggers) και τις διασφαλίσεις (assertions)

Μετασχηματισμοί: γενική παρατήρηση

Όταν το σύνολο συσχετίσεων συμπεριλαμβάνει και δικά του, ιδιαίτερα, γνωρίσματα, τα τελευταία 'μετακομίζουν' κατάλληλα στον πίνακα ο οποίος φιλοξενεί το/α ξένο/α κλειδί/ιά.

Εξαιρείται η περίπτωση ένα-προς-ένα συνόλου συσχετίσεων: εκεί η σημασιολογία της περίπτωσης ισοδυναμεί με αντίστοιχη όπου τα χαρακτηριστικά του συνόλου συσχετίσεων επισυνάπτονται στη δομή ενός από τα δύο συνόλα οντοτήτων τα οποία συσχετίζονται.

Ολοκληρώνοντας

Όσα είπαμε για τους μετασχηματισμούς συνιστούν την ουσία της προσέγγισης του θέματος.

Με ανάλογο τρόπο αντιμετωπίζονται οι περιπτώσεις του ασθενούς συνόλου οντοτήτων, του συνυπολογισμού και της ιεραρχίας ISA.

Η υλοποίηση του (αντίστοιχου) σχεσιακού σχήματος θα κατανοηθεί καλύτερα αφού έχουμε μιλήσει και για τον κώδικα SQL. Αυτό ισχύει και για τις όψεις οι οποίες εξετάζονται στο 3° κεφάλαιο του βιβλίου των R&G

- Τα βασικά του σχεσιακού μοντέλου Δεδομένα σε πίνακες και περιορισμοί που αφορούν στην ακεραιότητά τους
- Μεθοδολογία ΕR
 Το δυνατόν περισσότεροι περιορισμοί στο μοντέλο. Αποσφαλμάτωση στο στάδιο της ανάλυσης
- Μετασχηματισμός ΕR σε σχεσιακό σχήμα Ένα βήμα πριν από την υλοποίηση