Machine Learning Sasakian and G2 topology on contact Calabi-Yau 7-manifolds

Dr Edward Hirst

Queen Mary, University of London e.hirst@qmul.ac.uk

DANGER

arXiv: 2112.06350, 230y.xxxxx

...work with {Prof. David Berman, Prof. Yang-Hui He}; {Daattavya Aggarwal, Prof. Yang-Hui He, Elli Heyes, Prof. Henrique N. Sá Earp, Tomás S. R. Silva}

24th August 2023

Overview

- Calabi-Yau Link Construction
 - $CY_3 \hookrightarrow \mathbb{P}^4_w$
 - CY Links
- Data Analysis
 - Link Invariants
 - Link Conjectures
- Supervised Learning
 - CY Topology
 - Link Topology
 - Gröbner Basis
- Summary

Calabi-Yau 3-folds

Weighted Projective Spaces: \mathbb{P}^4_w

$$\mathbb{C}^5 \longmapsto \mathbb{P}^4_w \longmapsto CY_3$$

s.t. $(z_0, z_1, z_2, z_3, z_4) \sim (\lambda^{w_0} z_0, \lambda^{w_1} z_1, \lambda^{w_2} z_2, \lambda^{w_3} z_3, \lambda^{w_4} z_4) \quad \forall \lambda \in \mathbb{C}^*$...then restrict to anticanonical divisor hypersurface.

For 7555 (w_i) vectors this hypersurface is a Calabi-Yau 3-fold.

Topological Invariant Formulas

$$Q(u,v) = \sum_{p,q} h^{p,q} u^p v^q = \frac{1}{uv} \sum_{l=0}^{\sum_i (w_i)} \left[\prod_{\tilde{\theta}_i(l) \in \mathbb{Z}} \frac{(uv)^{q_i} - uv}{1 - (uv)^{q_i}} \right]_{int} \left(v^{size(l)} \left(\frac{u}{v} \right)^{age(l)} \right),$$

$$\chi = \frac{1}{\sum_i (w_i)} \sum_{l=0}^{\sum_i (w_i) - 1} \left[\prod_{i \mid q, k, m_i \in \mathbb{Z}} \left(1 - \frac{1}{q_i} \right) \right].$$

Calabi-Yau Links

Construction

Complex variety $\mathcal{V}\subset\mathbb{C}^{n+1}$, with isolated singularity at origin, transversally intersects S_{ε}^{2n+1} , defining a link: $K:=\mathcal{V}\cap S_{\varepsilon}^{2n+1}$

Sasakian Structure (K, θ, g)

Where $\mathcal V$ a homogeneous polynomial f, link an S^1 -bundle over this smooth projective hypersurface. S^1 -bundle gives global angular contact form θ . Contact form gives Reeb vector ξ , and hence characteristic 1d foilation for transverse Kähler structure.

G2 Structure (K, φ)

Set n = 4 produces 7d CY link with cocalibrated G2 structure:

$$\varphi := \theta \wedge \omega + \mathit{Im}\Omega \; , \qquad \psi = * \varphi := \frac{1}{2} \omega \wedge \omega + \theta \wedge \mathit{Re}\Omega \; ,$$

...for 2-form $\omega = d\theta$, and CY_3 holomorphic volume (3,0)-form Ω .

Link Topological Data

Sasakian h^{p,q}

Hodge numbers with p+q=3 given by dimension of linear subspaces of Milnor algebra $\mathbb{M}_f := \mathbb{C}[z_i]/(\partial f/\partial z_i)$:

$$h^{p,q}(K) = \dim_{\mathbb{C}}(\mathbb{M}_f)_{\ell}$$
,

for
$$\ell=(p+1)d-\sum_i w_i.$$
 $h^{3,0}=1,$ $h^{2,1}\to$

Crowley-Nordström ν

A \mathbb{Z}_{48} -valued homotopy invariant, computed from a compact coboundary Spin(7)-structure manifold (W_8, Ψ) , such that $K = \partial W \& \Psi|_K = \varphi$:

$$\nu(\varphi) := \chi(W) - 3\sigma(W) \mod 48$$

for Euler characteristic χ and signature σ .

Link Conjectures

Weak R-Equivalence

Two weighted homogeneous polynomials with the same weights, but manifestly non-isomorphic Jacobi ideals, have the same dimensions of Milnor algebra linear subspaces.

 \implies any homogeneous polynomial from the same weight system (w_i) has the same ν and Sasakian $h^{p,q}$ for p+q=3.

Link $h^{2,1}$ Restriction

The transverse Sasakian Hodge number $h_S^{2,1}$ for a Calabi-Yau link is bounded above by the equivalent Hodge number $h_{CY}^{2,1}$ of the Calabi-Yau manifold it was built from:

$$h_S^{2,1} \leq h_{CY}^{2,1}$$
.

...also trivially applies for $h_S^{3,0} = h_{CY}^{3,0} = 1$.

Supervised Learning

Neural Network Architecture

Regressor Leaky-ReLU NN

Layers: (32,64,32), MSE loss, Adam, 5-fold cross-validation

Measure
$$R^2 = 1 - rac{\sum (y_{true} - y_{pred})^2}{\sum (y_{true} - y_{truemean})^2} \in (-\infty, 1]$$

$$(w_0, w_1, w_2, w_3, w_4) \longmapsto h^{p,q}$$

Calabi-Yau: $\{\chi, h^{1,1}, h^{2,1}\}$

Measure	Moasuro Parameter		
ivicasure	χ	$h^{1,1}$	$h^{2,1}$
D2	0.9510	0.9630	0.9450
Λ	$\pm \ 0.0023$	\pm 0.0015	\pm 0.0133

Sasakian: $\{h^{2,1}\}$

Measure	Parameter	
ivicasure	$h^{2,1}$	
D2	0.951	
Λ	$\pm~0.012$	

Supervised Learning

Gröbner Basis

By a significant margin, the computational bottleneck (in terms of both time and memory) of the invariant calculations was the generation of the *Gröbner basis*. Many initial runs failed from memory overload in this step for specific Calabi-Yau links. ML methods can predict the basis length to allow efficient HPC resource allocation.

DANGER

Predicting Basis Length

$$(w_0, w_1, w_2, w_3, w_4) \longmapsto |GB|$$

Measure	Parameter	
ivicasure	GB	
R^2	0.969 ± 0.002	
MAE	107 ± 2	

Summary

Summary Points

- 1) Generated the largest database of Calabi-Yau links.
- 2) Identified links with new ν -invariant values.
- 3) Conjectured the spectrum of topological invariants is *exhaustive* for \mathbb{P}^4_w constructions.
- 4) Conjectured $h_S^{2,1} \le h_{CY}^{2,1}$.
- 5) NNs can predict $h_s^{2,1}$ with high accuracies.
- 6) NNs can predict Gröbner basis length with high accuracies.

Outlook

- 1) Prove the raised conjectures.
- 2) Symbolically regress the $h_5^{2,1}$ NN formula.
- 3) Extend computation to other Hodge numbers.
- 4) Learn other Gröbner basis properties for more general ideals.

ML *CY*₃ 2112.06350