Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет безопасности информационных технологий

Дисциплина:

«Теория информационной безопасности и методология защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Экспертные оценки»

Выполнил:						
студент группы N3246,						
Суханкулиев Мухаммет						
(подпись)						
Проверила:						
Коржук Виктория Михайловна						
(отметка о выполнении)						
(отметка о выполнении)						

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

B	веде	ние		3	
1		Ознак	омится с материалом	4	
	1.1	Me	год экспертных оценок	4	
	1.2	Фор	рмулы		
		1.2.1	Коэффициент вариации (CV)	4	
		1.2.2	Стандартное отклонение (σ)	4	
		1.2.3	Среднее значение (М)	5	
2		Задач	и	7	
2.1 Задача на непосредственную оценку				7	
		2.1.1	Условие:	7	
		2.1.2	Анкета:	7	
		2.1.3	Веса вопросов:	7	
		2.1.4	Метод экспертной оценки:	7	
		2.1.5	Оценка согласованности мнений экспертов:	8	
		2.1.6	Эталонное решение:	8	
	2.2	Зад	ача на ранжирование	9	
		2.2.1	Условие:	9	
		2.2.2	Анкета:	9	
		2.2.3	Веса вопросов:	9	
		2.2.4	Метод экспертной оценки:	9	
		2.2.5	Оценка согласованности мнений экспертов:	.10	
		2.2.6	Эталонное решение:	.10	
	2.3	Зад	ача на попарное сравнение	.11	
		2.3.1	Условие:	.11	
		2.3.2	Анкета:	.11	
		2.3.3	Метод экспертной оценки:	.11	
		2.3.4	Оценка согласованности мнений экспертов:	.11	
38	клю	чение.		.12	
C	писо	к испо	ПРЗОВЗНИРІХ ИСТОЛНИКОВ	13	

ВВЕДЕНИЕ

Цель работы – изучить и научиться применять метод экспертных оценок для анализа информационной безопасности.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Ознакомится с материалом;
- 2. Разработать и решить три задачи, включающие:
 - о Метод непосредственной оценки,
 - о Метод ранжирования,
 - о Метод на выбор, основанный на конкретной ситуации;
- 3. Применить соответствующие методы для оценки согласованности мнений экспертов;
- 4. Привести эталонное (ожидаемое) решение.

1 ОЗНАКОМИТСЯ С МАТЕРИАЛОМ

1.1 Метод экспертных оценок

Метод экспертных оценок используется для анализа ситуаций, где сложно или невозможно получить точные количественные данные. Основные подходы включают:

- **Непосредственная оценка** эксперты дают свои оценки, которые затем обрабатываются статистическими методами. Применяется для получения мнений по конкретным вопросам.
- **Ранжирование** каждый эксперт ранжирует предложенные варианты, после чего анализируются средние ранги для выявления наилучшего решения.
- Попарное сравнение варианты сравниваются друг с другом по принципу "лучшехуже", результатом чего является матрица сравнений.

Для оценки согласованности мнений применяются коэффициенты:

- **Коэффициент вариации (CV)** показатель разброса оценок относительно среднего.
- Коэффициент конкордации (W) степень согласия в ранжировании вариантов.

Эти методы помогают принимать решения в условиях неопределенности и минимизируют субъективность выбора.

1.2 Формулы

1.2.1 Коэффициент вариации (CV)

Оценивает разброс мнений экспертов относительно средней оценки:

$$CV = \frac{\sigma}{M}$$

Где:

 σ — стандартное отклонение,

M — среднее значение.

1.2.2 Стандартное отклонение (б)

Оценивает степень разброса оценок:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (c_i - M)^2}$$

Где:

n — количество оценок;

 c_i — оценка эксперта.

1.2.3 Среднее значение (М)

$$M = \frac{1}{n} \sum_{i=1}^{n} c_i$$

1.2.4 Коэффициент конкордации (W)

Оценивает степень согласованности ранжирования:

$$W = \frac{12S}{d^2(m^3 - m) - d\sum_{s=1}^{d} T_s}$$

Где:

S — сумма квадратов отклонений;

d — число экспертов;

m — число вариантов;

 T_s — корректировка для связанных рангов.

1.2.5 Корректировка для связанных рангов (T_s)

Используется, если в ранжировках есть одинаковые значения:

$$T_{S} = \sum_{k=1}^{H_{S}} (h_{k}^{3} - h_{k})$$

Где:

 H_{s} — количество групп связанных рангов;

 h_k — число связанных рангов в группе.

1.2.6 Сумма квадратов отклонений (S)

$$S = \sum_{j=1}^{m} (R_j - \bar{R})^2$$

Где:

 R_j — средний ранг;

 \bar{R} — общее среднее рангов.

1.2.7 Общий ранг варианта

$$r_i = \sum_{i=1}^n r_{ij}$$

Где:

 r_{ij} — ранг, присваиваемый j-м экспертом i-му варианту.

1.2.8 Разность ранга

$$d_i = (r_i - \frac{n(m+1)}{2})^2$$

1.2.9 Дисперсия

$$D = \sum_{i=1}^{m} d_i$$

1.2.10 Максимальная дисперсия

$$D_{max} = \frac{n^2(m^3 - m)}{12}$$

1.2.11 Коэффициент конкордации

$$W = \frac{D}{D_{max}}$$

2 ЗАДАЧИ

2.1 Задача на непосредственную оценку

2.1.1 Условие:

Компания хочет оценить уровень угроз безопасности для своей информационной системы. Для этого она решила провести опрос среди экспертов в области информационной безопасности. Каждый эксперт должен оценить угрозы по пятибалльной шкале, где 1 — незначительная угроза, а 5 — критическая угроза.

2.1.2 Анкета:

•	Оцени	те каждую из угроз по шкале от 1 до 5.
	1.	Угроза утечки данных:
	2.	Угроза кибератак:
	3.	Угроза внутреннего мошенничества:
	4.	Угроза использования уязвимостей ПО:
	5.	Угроза физического доступа:

2.1.3 Веса вопросов:

- Угроза утечки данных -0.2 (высокая важность из-за потенциальных последствий).
- Угроза кибератак 0.3 (очень важная угроза, поскольку влияет на доступность).
- Угроза внутреннего мошенничества 0.15 (существенная, но не критическая).
- Угроза использования уязвимостей ПО 0.25 (высокая вероятность, требует внимания).
- Угроза физического доступа 0.1 (важно, но менее вероятно).

2.1.4 Метод экспертной оценки:

В данном случае применяется метод непосредственной оценки, так как необходимо собрать мнения экспертов по каждому вопросу. Эксперты предоставляют свои оценки, которые затем обрабатываются статистическими методами, что позволяет получить общее представление о состоянии угроз в компании.

2.1.5 Оценка согласованности мнений экспертов:

Коэффициент вариации позволяет оценить степень разброса мнений экспертов относительно средней оценки. Значение CV < 0.2 указывает на достаточную согласованность.

2.1.6 Эталонное решение:

Вопрос	1	2	3	4	5
Bec	0,2	0,3	0,15	0,25	0,1
Эксперт 1	4	5	4	4	3
Эксперт 2	3	4	4	5	3
Эксперт 3	5	5	5	4	3
Эксперт 4	4	5	3	3	2
Эксперт 5	4	4	4	4	3
М	4	4,6	4	4	2,8
σ	0,707107	0,547723	0,707107	0,707107	0,447214
CV	0,176777	0,11907	0,176777	0,176777	0,159719
Взвешенная оценка	0,8	1,38	0,6	1	0,28

Где: Взвешенная оценка = $M \cdot \text{Вес}$

Эталонным решением в данном кейсе будет устранение угроз кибератак.

2.2 Задача на ранжирование

2.2.1 Условие:

Игровая компания провела внутренний аудит безопасности своей игровой платформы и обнаружила несколько потенциальных угроз. Для принятия решения о том, какие угрозы следует устранить в первую очередь, компания решила провести опрос среди экспертов в области информационной безопасности. Эксперты должны ранжировать угрозы по степени критичности, где 1 — незначительная угроза, а 5 — критическая угроза.

2.2.2 Анкета:

	Пожалуйста, ранжируйте каждую из угроз по шкале от 1 до 5:
1.	Угроза DDoS-атак на игровую платформу:
2.	Угроза утечки личных данных игроков:
3.	Угроза использования чит-программ:
4.	Угроза уязвимостей в игровом коде:
5.	Угроза фишинга в игровых сообществах:

2.2.3 Веса вопросов:

- Угроза DDoS-атак на игровую платформу 0.25 (очень важная угроза, влияющая на доступность сервисов).
- Угроза утечки личных данных игроков -0.4 (высокая важность из-за последствий для игроков и репутации компании).
- Угроза использования чит-программ -0.2 (сильно влияет на игровой баланс, но не критично для безопасности).
- Угроза уязвимостей в игровом коде -0.1 (требует внимания, но последствия могут быть менее заметными).
- Угроза фишинга в игровых сообществах 0.05 (менее вероятная угроза, но всё же важна).

2.2.4 Метод экспертной оценки:

В данном случае применяется метод ранжирования, так как необходимо определить приоритеты в устранении угроз. Эксперты ранжируют каждую угрозу, после чего

вычисляется средний ранг для каждого варианта, что позволяет выявить наиболее критичные угрозы.

2.2.5 Оценка согласованности мнений экспертов:

Коэффициент конкордации (W) будет использован для оценки согласованности мнений экспертов при ранжировании угроз. Если значение W близко к 1, это указывает на высокий уровень согласия среди экспертов.

2.2.6 Эталонное решение:

Вопрос	1	2	3	4	5	
Bec	0,25	0,4	0,2	0,1	0,05	
Эксперт 1	5	4	3	2	1	
Эксперт 2	5	4	1	3	2	
Эксперт 3	4	5	2	3	1	
Эксперт 4	4	5	1	3	2	
Эксперт 5	3	5	2	4	1	
r	21	23	9	15	7	
d	36	64	36	0	64	
D	200					
D_{max} 250						
W	0,8					
Взвешенная оценка	1,05	1,84	0,36	0,3	0,07	

Эталонное решение будет включать в себя рекомендации по устранению угроз на основе их приоритета, где вверху находятся угрозы, требующие большего внимания:

- 1. Угроза утечки личных данных игроков;
- 2. Угроза DDoS-атак на игровую платформу;
- 3. Угроза использования чит-программ;
- 4. Угроза уязвимостей в игровом коде;
- 5. Угроза фишинга в игровых сообществах.

2.3 Задача на попарное сравнение

2.3.1 Условие:

Игровая компания снова проводит аудит своей платформы и хочет уточнить приоритеты устранения угроз, используя метод попарного сравнения.

2.3.2 Анкета:

Эксперты должны заполнить матрицу размером 5x5, где каждая ячейка a_{ij} будет содержать следующие значения:

- 2, если угроза і предпочтительнее угрозы і (т.е. $i \ge ji \ge ji \ge j$),
- 1, если угрозы і и ј равнозначны (т.е. i=ji = ji=j),
- 0, если угроза ј предпочтительнее угрозы і (т.е. $i \le ji \le ji \le j$).

Пример матрицы:

	DDoS	Утечка	Читы	Уязвимости	Фишинг
DDoS	1	2	2	2	2
Утечка	0	1	1	1	1
Читы	0	0	1	1	1
Уязвимости	0	0	0	1	1
Фишинг	0	0	0	0	1

2.3.3 Метод экспертной оценки:

Метод попарного сравнения заключается в сравнении каждой угрозы с остальными. Эксперты должны заполнить матрицу, в которой указывают, какая угроза важнее, ставя соответствующие оценки. Затем на основе полученных оценок рассчитываются средние ранги для каждой угрозы.

Для вычисления общего ранга каждой угрозы можно суммировать значения в строках матрицы. Каждая строка будет представлять собой угрозу, и сумма будет показывать, насколько она была оценена по сравнению с другими угрозами.

2.3.4 Оценка согласованности мнений экспертов:

Чтобы оценить согласованность мнений экспертов, можно использовать коэффициент конкордации W, как было описано ранее. Формула для его расчета будет аналогична той, что была приведена выше, с учетом среднего ранга и дисперсии.

ЗАКЛЮЧЕНИЕ

Я изучил методы экспертных оценок для анализа угроз информационной безопасности. Применяя методы непосредственной оценки, ранжирования и попарного сравнения, я смог выявить ключевые угрозы.

Полученные знания и навыки будут полезны для дальнейшего развития в области информационной безопасности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Microsoft Word Глава_7.doc (ifmo.ru)
- 2. Методы экспертных оценок / Хабр (habr.com)
- 3. <u>ОЦЕНКА СТЕПЕНИ СОГЛАСОВАННОСТИ МНЕНИЙ ЭКСПЕРТОВ | sibac.info</u>
- 4. Коэффициент конкордации Процесс принятия решений в организации (studbooks.net)
- 5. Коэффициент вариации, формула, пример расчета | Coefficient of Variation (allfi.biz)