目录

第7章	Cortex-M4-基本定时器	2
7.1	定时器概述	2
	7.1.1 定时器本质	2
	7.1.2 STM32 的定时器	2
	7.1.3 STM32 的基本定时器	2
7.2	基本定时器框架(重点)	3
7.3	基本定时器定时预装载过程分析	3
	7.3.1 预分频器	3
	7.3.2 自动重载寄存器	4
	基本时基单元	
7.5	基本定时器相关寄存器	6
	7.5.1 TIM6 和 TIM7 控制寄存器 1 (TIMx_CR1)	6
	7.5.2 TIM6 和 TIM7 DMA/中断使能寄存器 (TIMx_DIER)	7
	7.5.3 TIM6 和 TIM7 状态寄存器 (TIMx_SR)	
	7.5.4 TIM6 和 TIM7 事件生成寄存器 (TIMx_EGR)	8
	7.5.5 TIM6 和 TIM7 计数器 (TIMx_CNT)	8
	7.5.6 TIM6 和 TIM7 预分频器 (TIMx_PSC)	8
	7.5.7 TIM6 和 TIM7 自动重载寄存器 (TIMx_ARR)	
7.6	5 基本定时器实验	
	7.6.1 查询方式	
	7.6.2 中断方式	9

第7章 Cortex-M4-基本定时器

7.1 定时器概述

7.1.1 定时器本质

计数: 1234567---数数--逐步累积递增。

定时: 有规律地计数就是定时

定时 =要数多少下*数一下要多长时间

10S=1S 数一下, 要数 10 下---一秒来一次时钟, 就需要计数 10 次。

10S=100MS 数一下, 要数 100 下

7.1.2 STM32 的定时器

在 STM32 中, 定时器分成了三大类: (片上外设)

基本定时器: 主要做基本的定时功能。还可以触发 ADC/DAC 开启转换。

通用定时器: 具有基本定时器所有功能,并且还具有比较输出和捕获输入功能。

高级定时器: 具有通用定时器所有功能,并且还具有死区功能和刹车功能。

7.1.3 STM32 的基本定时器

主要做定时的功能。

7.1.3.1 基本定时器介绍

系统嘀嗒定时器的递减计数器 24bit

基本定时器的递增计数器 16bit

基本定时器 TIM6 和 TIM7 包含一个 16 位自动重载计数器,<mark>该计数器由可编程预分频器驱动</mark>。此类定时器不仅可用作通用定时器以生成时基, 还可以专门用于驱动数模转换器 (DAC)。实际上,此类定时器内部连接到 DAC 并能够通过其触发输出驱动 DAC。

这些定时器彼此完全独立,不共享任何资源。

TIM6 1S

TIM7 800ms

USART1 9600

USART2 115200

7.1.3.2 基本定时器特征

基本定时器(TIM6 和 TIM7)的特性包括:

- 16 位自动重载递增计数器
- 用于触发 DAC 的同步电路
- 发生**更新事件**时会生成(会让标志位置一)中断请求: 计数器上溢

 $0 \rightarrow 100$

计数器上溢,产生更新事件,就让标志位置起来(时间到了),如果使能中断,NVIC就会帮你抢CPU

第2页共14页

7.2 基本定时器框架(重点)

现在基本定时器的时钟先经过预分器,再到达递增计数器

7.3 基本定时器定时预装载过程分析

7.3.1 预分频器

7.3.2 自动重载寄存器

目动重载奇存器个进行缓冲 计数器时序图,ARPE=0时更新事件(TIMx_ARR未预装载)

自动重载寄存器进行缓冲

自动重装寄存器哪种情况用影子,哪种情况不需要影子 定时时间需要中途改变 → 需要影子寄存器 定时时间不需要中途改变 → 不需要影子寄存器

自动重装寄存器可以由我们自己决定它有没有影子寄存器 預分頻器一定是有影子寄存器

7.4 基本时基单元

时基单元包括:

- 计数器寄存器 (TIMx CNT)
- 预分频器寄存器 (TIMx PSC)
- 自动重载寄存器 (TIMx_ARR) 时基单元包括:
 - 计数器寄存器 (TIMx_CNT)
 - 预分频器寄存器 (TIMx_PSC)
 - 自动重载寄存器 (TIMx_ARR)

预分器寄存器:决定计数器寄存器计一次的时间 自动重载寄存器:决定了计数器寄存器计多少次

7.5 基本定时器相关寄存器

7.5.1 TIM6 和 TIM7 控制寄存器 1 (TIMx_CR1)

偏移地址: 0x00

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	nyed				ARPE		Reserved		ОРМ	URS	UDIS	CEN
			11030	ivou				rw		i iosci vod		rw	rw	rw	rw

- 位 15:8 保留,必须保持复位值。
 - 位 7 ARPE: 自动重载预装载使能 (Auto-reload preload enable)
 - 0: TIMx ARR 寄存器不进行缓冲。
 - 1: TIMx_ARR 寄存器进行缓冲。
 - 位 6:4 保留,必须保持复位值。
 - 位 3 OPM: 单脉冲模式 (One-pulse mode)
 - 0: 计数器在发生更新事件时不会停止计数 连续模式
 - 1. 计数器在发生下一更新事<u>件</u>时停止计数(将 CFN 位清零)。 单次模式
- 位 2 URS: 更新请求源 (Update request source) 更新事件来源的选择

此位由软件置 1 和清零,用以选择 UEV 事件源。

- 0: 使能时, 所有以下事件都会生成更新中断或 DMA 请求。此类事件包括:
 - 计数器上溢/下溢
 - 将 UG 位置 1.
 - 通过从模式控制器生成的更新事件
- 1: 使能时,只有计数器上溢/下溢会生成更新中断或 DMA 请求。
- 位 1 UDIS: 更新禁止 (Update disable) 允不允许产生更新事件

此位由软件置 1 和清零,用以使能/禁止 UEV 事件生成。

- 0: 使能 UEV。更新 (UEV) 事件可通过以下事件之一生成:
 - 计数器上溢/下溢
 - 将 UG 位置 1
 - 通过从模式控制器生成的更新事件

然后更新影子寄存器的值。

1: 禁止 UEV。不会生成更新事件,各影子寄存器的值(ARR 和 PSC)保持不变。但如果将 UG 位置 1,或者从从模式控制器接收到硬件复位,则会重新初始化计数器和预分频器。

位 0 CEN: 计数器使能 (Counter enable)

0: 禁止计数器

1: 使能计数器

注意: 只有事先通过软件将 CEN 位置 1, 才可以使用门控模式。而触发模式可通过硬件自动将 CEN 位置 1。

在单脉冲模式下, 当发生更新事件时会自动将 CEN 位清零。

7.5.2 TIM6 和 TIM7 DMA/中断使能寄存器 (TIMx_DIER)

偏移地址: 0x0C

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	U
			Reserved				UDE				Reserved				UIE
			i iesei veu				rw				i iesei ved				rw

r 1 1 V

位 0 UIE: 更新中断使能 (Update interrupt enable)

0:禁止更新中断。

1: 使能更新中断。

7.5.3 TIM6 和 TIM7 状态寄存器 (TIMx_SR)

偏移地址: 0x10

复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
8								Reserved								UIF
								1 leserved								rc_w0

位 15:1 保留,必须保持复位值。

位 0 UIF: 更新中断标志 (Update interrupt flag)

该位在发生更新事件时通过硬件置 1。但需要通过软件清零。

- 0: 未发生更新。
- 1: 更新中断挂起。该位在以下情况下更新寄存器时由硬件置 1:
- 上溢或下溢并且当 TIMx_CR1 寄存器中 UDIS = 0 时。
- 当由于 TIMx_CR1 寄存器中 URS = 0 且 UDIS = 0 而通过软件使用 TIMx_EGR 寄存器中的 UG 位重新初始化 CNT 时。

7.5.4 TIM6 和 TIM7 事件生成寄存器 (TIMx_EGR)

偏移地址: 0x14

复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UG

位 15:1 保留,必须保持复位值。

位 0 UG: 更新生成 (Update generation)

该位可通过软件置 1,并由硬件自动清零。

0: 不执行任何操作。

1: 重新初始化定时器计数器并生成寄存器更新事件。请注意,预分频器计数器也将清零(但 预分频比不受影响)。

7.5.5 TIM6 和 TIM7 计数器 (TIMx CNT) 给大家说了: 1-65536

偏移地址: 0x24

复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[15:0]															
Г	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位 15:0 CNT[15:0]: 计数器值 (Counter value)

7.5.6 TIM6 和 TIM7 预分频器 (TIMx PSC)

偏移地址: 0x28

复位值: 0x0000

15	14	13	12	11	10	9	8 7	6	5	4	3	2	1	0
							PSC[15:0]							
rw	nw fw	rw												

位 15:0 PSC[15:0]: 预分频器值 (Prescaler value)

计数器时钟频率 CK_CNT 等于 f_{CK_PSC} / (PSC[15:0] + 1)。

PSC 包含在每次发生更新事件时要装载到实际预分频器寄存器的值。

7.5.7 TIM6 和 TIM7 自动重载寄存器 (TIMx_ARR)

偏移地址: 0x2C

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ARR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位 15:0 ARR[15:0]: 自动重载值 (Auto-reload value)

ARR 为要装载到实际自动重载寄存器的值。

有关 ARR 更新和行为的详细信息,请参见*第 17.3.1 节: 第 484 页的时基单元*。

当自动重载值为空时, 计数器不工作。

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

7.6 基本定时器实验

定时时长=计数一次的时间*计多少数(测试的时候,就发现能达到1us)

位 15:0 PSC[15:0]: 预分频器值 (Prescaler value)

计数器时钟频率 CK_CNT 等于 f_{CK_PSC} / (PSC[15:0] + 1)。

PSC 包含在每次发生更新事件时要装载到实际预分频器寄存器的值。

假设预分器的值 84 分频, 定时 10ms

预分频器里面的值和自动重装寄存器里面的值分别是什么?

预分频从 0 开始 83 1000 000 分子 1 = 1us

10 ms = 1 us * 10 000

PSC = 83

ARR = 9999 从 0 开始计数: 10 000 -1= 9999

0.1us 0.1*10 0000

f=84Mhz 要 42 分频 (2Mhz T = 1/f = 0.5us), 定时器 20ms

PSC = 41

 $ARR = 20\ 000us = 0.5us * 40000 - 1 = 39999$

84 分频

PSC = 83

ARR = 19999

1us *20000

7.6.1 查询方式

延时 1S 翻转一次 LED1

- 1. 开启定时器 6 的时钟
- 2. 配置 CR1 寄存器 (不缓冲、连续模式 URS=1)
- 3. 设置重载值
- 4. 设置分频值
- 5. UG 置一(将上层寄存器里面的值加载到对应影子寄存器中,对计数器清零)
- 6. 使能定时器(CR1[0] = 1)
- 7. 等待 UIF 标志位置一
- 8. 关闭定时器

7.6.2 中断方式

- 1. 开启定时器 6 的时钟
- 2. 配置 CR1 寄存器 (不缓冲、连续模式 URS = 1)
- 3. 设置重载值
- 4. 设置分频值
- 5. UG 置一(将上层寄存器里面的值加载到对应影子寄存器中,对计数器清零)
- 6. 使能更新中断 模块级的中断使能
- 7. 设置 TIM6 中断优先级

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究

9 页 共 14 页

- 8. 使能 NVIC 响应请求—核心级中断使能
- 9. 使能定时器(CR1[0] = 1)
- 10. 编写中断服务函数

7.6.3 作业

1. 定时器 7 中断点灯--1s (定时 1s)

PSC = ?

ARR = ?

1、基本定时器查询功能实验

第一步: //打开 TIM6 的时钟

RCC->APB1ENR = (0x1 << 4);

6.3.15 用于 STM32F495xx/07xx 和 STM32F415xx/17xx 的 RCC APB1 外设时钟 使能寄存器 (RCC/APB1ENR)

第二步: //配置 CR1 寄存器

TIM6->CR1 = 0;//整体清零

TIM6->CR1 |= (0x1 << 2);//只有计数器上溢才能让 UIF 置一

17.4.1 TIM6 和 TIM7 控制寄存器 1 (TIMx_CR1)

第三步: //配置时基单元

TIM6->PSC = psc - 1;//设置预分频值 确定好计一次的时间

偏移地址: 0x28

TIM6 和 TIM7 预分频器 (TIMx_PSC)

17.4.7

1: 更新中断挂起。该位在以下情况下更新寄存器时由硬件置 1: - 上溢或下溢并且当 TIMx_CR1 寄存器中 UDIS = 0 时。

的 UG 位重新初始化 CNT 时。

- 当由于 TIMx_CR1 寄存器中 URS = 0 且 UDIS = 0 而通过软件使用 TIMx_EGR 寄存器中

第11 页 共 14 页

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

第7步: //关闭定时器

TIM6->CR1 &=~(0x1 << 0);

位 0 CEN: 计数器使能 (Counter enable)

0: 禁止计数器

1: 使能计数器

注意: 只有事先通过软件将 CEN 位置 1, 才可以使用门控模式。而触发模式可通过硬件自动将

在单脉冲模式下,当发生更新事件时会自动将 CEN 位清零。

2、基本定时器中断方式实验

第一步: //打开 TIM6 的时钟

RCC->APB1ENR = (0x1 << 4);

用于 STM32F495xx/07xx 和 STM32F415xx/17xx 的 RCC APB1 外设时钟 使能寄存器 (RCC_APB1ENR)

RCC APB1 peripheral clock enable register

偏移地址: 0x40 复位值: 0x0000 0000

		访问:	无等符)周期,	按字、	半字和	印字节词	方问。								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Res	erved	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	Reser- ved	
		rw _	rw	ved	rw	rw	veu	rw	rw	rw	rw	yk.	rw	rw	, veu	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SPI3 EN	SPI2 EN	Res	Reserved EN		Res	erved	TIM14	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN	
rw	rw rw rw				rw	rw	rw	rw	av	rw	rw	rw	rw			
											•					

第二步: //配置 CR1 寄存器

TIM6->CR1 = 0;//整体清零

TIM6->CR1 |= (0x1 << 2);//只有计数器上溢才能让 UIF 置:

TIM6 和 TIM7 控制寄存器 1 (TIMx_CR1)

TIM6&TIM7 control register 1

第三步: //配置时基单元

TIM6->PSC = psc - 1;//设置预分频值 确定好计一次的时间

17.4.7 TIM6 和 TIM7 预分频器 (TIMx_PSC)

位 15:0_PSC[15:0]: 预分频器值 (Prescaler value)

计数器时钟频率 CK_CNT 等于 f_{CK_PSC} / (PSC[15:0] + 1)。

PSC 包含在每次发生更新事件时要装载到实际预分频器寄存器的值。

TIM6->ARR = arr - 1;//确定计数器计的次数

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心 官网: www. edu118. com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究 页 北 页 12 無

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

第13页共14页

