

(19) World Intellectual Property Organization International Bureau

| 12410 | 13110 | 1 0110 | 0110 | 1311 | 1411 | 1510 | 1510 | 1510 | 1510 | 1510 | 1510 | 1510 | 1510 | 1510 |

(43) International Publication Date 30 January 2003 (30.01.2003)

PCT

(10) International Publication Number WO 03/008440 A2

(51) International Patent Classification7: C07K 14/00

(21) International Application Number: PCT/EP02/07929

(22) International Filing Date: 16 July 2002 (16.07.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/305,806 16 July 2001 (16.07.2001) US 60/358,416 20 February 2002 (20.02.2002) US

(71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEVIN, Joshua, Zvi [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). PATTON, David, Andrew [US/CH]; Syngenta Crop Protection AG, Werk Stein, Schaffhauserstasse, CH-4332 Stein (CH). MCELVER, John, Alan [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). BUDZISZEWSKI, Gregory, Joseph [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). ZHOU, Qing [CN/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). AUX, George, W. [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). TOSSBERG, John [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). WEGRICH GLOVER, Lyn [US/US]; 5446 Escover Lane, San Jose, CA 95118 (US). ASHBY, Carl, Sandidge [US/US]; Capital One FSD, 12061-0148, 11013 W. Broad Street, Glen Allen, VA 23060 (US). THOMAS, Carl, Randall [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). MADHAVEN, Ernie [US/US]; Falmouth, VA (US). LEWIS, Sharon [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). DUNN, Jill [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). CATES, Eddie [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). LAW, Marcus, Dixon [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US).

- (74) Agent: BASTIAN, Werner; Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACID MOLECULES ENCODING PROTEINS ESSENTIAL FOR PLANT GROWTH AND DEVELOPMENT AND USES THEREOF

(57) Abstract: Nucleotide sequences are isolated from Arabidopsis thaliana that code for proteins essential for plant growth and development. The essentially of the proteins may be exploited by recombinantly expressing the proteins and using them in screening assays to identify compounds that interact with or inhibit the proteins and are therefore potential herbicides.

1

5

10

15

20

25

30

NUCLEIC ACID MOLECULES ENCODING PROTEINS ESSENTIAL FOR PLANT GROWTH AND DEVELOPMENT AND USES THEREOF

The present invention pertains to nucleic acid molecules isolated from Arabidopsis thaliana comprising nucleotide sequences that encode proteins essential for plant growth and development. The invention particularly relates to methods of using these proteins as herbicide targets, based on this essentiality.

The use of herbicides to control undesirable vegetation such as weeds in crop fields has become almost a universal practice. The herbicide market exceeds 15 billion dollars annually. Despite this extensive use, weed control remains a significant and costly problem for farmers.

Effective use of herbicides requires sound management. For instance, the time and method of application and stage of weed plant development are critical to achieving good weed control with herbicides. Because various weed species are resistant to herbicides, the production of effective new herbicides becomes increasingly important. New herbicides can now be discovered using high-throughput screens that implement recombinant DNA technology. Metabolic enzymes found to be essential to plant growth and development can be recombinantly produced through standard molecular biological techniques and utilized as herbicide targets in screens for novel inhibitors of the enzyme activity. More generally, any essential plant protein can be used to screen for inhibitors of its activity. The novel inhibitors discovered through such screens may then be used as herbicides to control undesirable vegetation.

In view of the above, there remain persistent and ongoing problems with unwanted or detrimental vegetation growth (e.g. weeds). Furthermore, as the population continues to grow, there will be increasing food shortages. Therefore, there exists a long felt, yet unfulfilled need, to find new, effective, and economic herbicides.

In view of these needs, it is an object of the invention to provide nucleic acid molecules from Arabidopsis thaliana comprising nucleotide sequences that encode proteins essential for plant growth and development. It is another object to provide the essential proteins encoded by these essential nucleotide sequences for assay development to identify

inhibitory compounds with herbicidal activity. It is still another object of the present invention to provide an effective and beneficial method for identifying new or improved herbicides using the essential proteins of the invention.

In furtherance of these and other objects, the present invention provides nucleic acid molecules isolated from Arabidopsis thaliana comprising nucleotide sequences that encode proteins essential for plant viability. Genetic results show that when any of the nucleotide sequences of the invention are mutated in Arabidopsis thaliana, the resulting phenotype is embryo or seedling lethal in the homozygous state. In particular, by using Ac/Ds transposon or T-DNA-mediated mutagenesis, the inventors of the present invention are the first to demonstrate that the activity of each protein of the present invention is essential for plant growth in Arabidopsis thaliana.

This knowledge is exploited to provide novel herbicide modes of action. The critical role in plant growth of the proteins encoded by each of the nucleotide sequences of the invention implies that chemicals that inhibit the function of any one of these proteins in plants are likely to have detrimental effects on plants and are potentially good herbicide candidates. Thus, the proteins encoded by the essential nucleotide sequences provide the bases for assays designed to easily and rapidly identify novel herbicides.

The present invention therefore provides methods of using a purified protein encoded by any one of the nucleotide sequences described below to identify inhibitors thereof, which can then be used as herbicides to suppress the growth of undesirable vegetation, e.g. in fields where crops are grown, particularly agronomically important crops such as maize and other cereal crops such as wheat, oats, rye, sorghum, rice, barley, millet, turf and forage grasses, and the like, as well as cotton, sugar cane, sugar beet, oilseed rape, and soybeans.

Disclosed herein are nucleic acid molecules isolated from *Arabidopsis thaliana*. In one embodiment, the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence, the complement of which hybridizes under stringent conditions to a sequence selected from the group consisting of the odd numbered SEQ ID NOs:1-95. In another embodiment, the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a protein comprising an amino acid sequence having at least 60%, preferably 70%, more preferably 80%, still more preferably 90%, even more preferably 95%, and most preferably 99-100% sequence identity to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.

5

10

15

.20

25

The present invention also provides a chimeric construct comprising a promoter operatively linked to a nucleic acid molecule according to the present invention, wherein the promoter is preferably functional in a eukaryote, wherein the promoter is preferably heterologous to the nucleic acid molecule. The present invention further provides a recombinant vector comprising a chimeric construct according to the present invention, wherein said vector is capable of being stably transformed into a host cell. The present invention still further provides a host cell comprising a nucleic acid molecule according to the present invention, wherein said nucleic acid molecule is preferably expressible in the cell. The host cell is preferably selected from the group consisting of a plant cell, a yeast cell, an insect cell, and a prokaryotic cell. The present invention additionally provides a plant or seed comprising a plant cell according to the present invention.

The present invention also provides proteins essential for plant growth in Arabidopsis thaliana. In one embodiment, the present invention provides an isolated protein comprising an amino acid sequence having at least 60%, preferably 70%, more preferably 80%, still more preferably 90%, even more preferably 95%, and most preferably 99-100% sequence identity to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. In accordance with another embodiment, the present invention also relates to the recombinant production of proteins of the invention and methods of using the proteins of the invention in assays for identifying compounds that interact with the protein.

According to another aspect, the present invention provides a method of identifying a herbicidal compound, comprising: (a) combining a polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96 with a compound to be tested for the ability to bind to said polypeptide, under conditions conducive to binding; (b) selecting a compound identified in (a) that binds to said polypeptide; (c) applying a compound selected in (b) to a plant to test for herbicidal activity; and (d) selecting a compound identified in (c) that has herbicidal activity. Preferably, the polypeptide comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. More preferably, the polypeptide comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. Most preferably, the polypeptide comprises an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. Most preferably, the polypeptide comprises an amino acid sequence selected from the group consisting of the even numbered SEQ ID

5

10

15

20

25

NOs:2-96. The present invention also provides a method for killing or inhibiting the growth or viability of a plant, comprising applying to the plant a herbicidal compound identified according to this method.

According to yet another aspect, the present invention provides a method of identifying a herbicidal compound, comprising: (a) combining a polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96 with a compound to be tested for the ability to inhibit the activity of said polypeptide, under conditions conducive to inhibition; (b) selecting a compound identified in (a) that inhibits the activity of said polypeptide; (c) applying a compound selected in (b) to a plant to test for herbicidal activity; and (d) selecting a compound identified in (c) that has herbicidal activity. Preferably, the polypeptide comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. More preferably, the polypeptide comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. Most preferably, the polypeptide comprises an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96. The present invention also provides a method for killing or inhibiting the growth or viability of a plant, comprising applying to the plant a herbicidal compound identified according to this method.

The present invention still further provides a method for killing or inhibiting the growth or viability of a plant, comprising inhibiting expression in said plant of a protein having at least 60%, preferably 70%, more preferably 80%, still more preferably 90%, even more preferably 95%, and most preferably 99-100% sequence identity to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.

Other objects and advantages of the present invention will become apparent to those skilled in the art and from a study of the following description of the invention and non-limiting examples. The entire contents of all publications mentioned herein are hereby incorporated by reference.

BRIEF DESCRIPTION OF THE SEQUENCES IN THE SEQUENCE LISTING

Odd numbered SEQ ID NOs:1-95 are nucleotide sequences isolated from

Arabidopsis thaliana that are more fully described in Table 5 below.

5

10

15

20

25

Even numbered SEQ ID NOs:2-96 are protein sequences encoded by the immediately preceding nucleotide sequence, e.g., SEQ ID NO:2 is the protein encoded by the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:4 is the protein encoded by the nucleotide sequence of SEQ ID NO:3, etc.

SEQ ID NOs:101-125 are PCR primers.

DEFINITIONS

For clarity, certain terms used in the specification are defined and presented as follows:

"Associated with / operatively linked" refer to two nucleic acid sequences that are related physically or functionally. For example, a promoter or regulatory DNA sequence is said to be "associated with" a DNA sequence that codes for an RNA or a protein if the two sequences are operatively linked, or situated such that the regulator DNA sequence will affect the expression level of the coding or structural DNA sequence.

A "chimeric construct" is a recombinant nucleic acid sequence in which a promoter or regulatory nucleic acid sequence is operatively linked to, or associated with, a nucleic acid sequence that codes for an mRNA or which is expressed as a protein, such that the regulatory nucleic acid sequence is able to regulate transcription or expression of the associated nucleic acid sequence. The regulatory nucleic acid sequence of the chimeric construct is not normally operatively linked to the associated nucleic acid sequence as found in nature.

Co-factor: natural reactant, such as an organic molecule or a metal ion, required in an enzyme-catalyzed reaction. A co-factor is *e.g.* NAD(P), riboflavin (including FAD and FMN), folate, molybdopterin, thiamin, biotin, lipoic acid, pantothenic acid and coenzyme A, S-adenosylmethionine, pyridoxal phosphate, ubiquinone, menaquinone. Optionally, a co-factor can be regenerated and reused.

A "coding sequence" is a nucleic acid sequence that is transcribed into RNA such as mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Preferably the RNA is then translated in an organism to produce a protein.

Complementary: "complementary" refers to two nucleotide sequences that comprise antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between the complementary base residues in the antiparallel nucleotide sequences.

5

10

15

20

25

Enzyme activity: means herein the ability of an enzyme to catalyze the conversion of a substrate into a product. A substrate for the enzyme comprises the natural substrate of the enzyme but also comprises analogues of the natural substrate, which can also be converted, by the enzyme into a product or into an analogue of a product. The activity of the enzyme is measured for example by determining the amount of product in the reaction after a certain period of time, or by determining the amount of substrate remaining in the reaction mixture after a certain period of time. The activity of the enzyme is also measured by determining the amount of an unused co-factor of the reaction remaining in the reaction mixture after a certain period of time or by determining the amount of used co-factor in the reaction mixture after a certain period of time. The activity of the enzyme is also measured by determining the amount of a donor of free energy or energy-rich molecule (e.g. ATP, phosphoenolpyruvate, acetyl phosphate or phosphocreatine) remaining in the reaction mixture after a certain period of time or by determining the amount of a used donor of free energy or energy-rich molecule (e.g. ADP, pyruvate, acetate or creatine) in the reaction mixture after a certain period of time.

Essential: an "essential" Arabidopsis thaliana nucleotide sequence is a nucleotide sequence encoding a protein such as e.g. a biosynthetic enzyme, receptor, signal transduction protein, structural gene product, or transport protein that is essential to the growth or survival of the plant.

Expression Cassette: "Expression cassette" as used herein means a nucleic acid molecule capable of directing expression of a particular nucleotide sequence in an appropriate host cell, comprising a promoter operatively linked to the nucleotide sequence of interest which is operatively linked to termination signals. It also typically comprises sequences required for proper translation of the nucleotide sequence. The coding region usually codes for a protein of interest but may also code for a functional RNA of interest, for example antisense RNA or a nontranslated RNA, in the sense or antisense direction. The expression cassette comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. Typically, however, the expression cassette is heterologous with respect to the host, *i.e.*, the particular DNA sequence of the expression cassette does not occur naturally in the host cell and must have been introduced into the host cell or an ancestor of the host cell by a transformation event. The expression of

5

10

15

20

25

the nucleotide sequence in the expression cassette may be under the control of a constitutive promoter or of an inducible promoter that initiates transcription only when the host cell is exposed to some particular external stimulus. In the case of a multicellular organism, such as a plant, the promoter can also be specific to a particular tissue or organ or stage of development.

Gene: the term "gene" is used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. Genes also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

Heterologous/exogenous: The terms "heterologous" and "exogenous" when used herein to refer to a nucleic acid sequence (e.g. a DNA sequence) or a gene, refer to a sequence that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell but has been modified through, for example, the use of DNA shuffling. The terms also include non-naturally occurring multiple copies of a naturally occurring DNA sequence. Thus, the terms refer to a DNA segment that is foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides.

A "homologous" nucleic acid (e.g. DNA) sequence is a nucleic acid (e.g. DNA) sequence naturally associated with a host cell into which it is introduced.

Hybridization: The phrase "hybridizing specifically to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA. "Bind(s) substantially" refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target nucleic acid sequence.

5

10

15

20

25

Inhibitor: a chemical substance that inactivates the enzymatic activity of a protein such as a biosynthetic enzyme, receptor, signal transduction protein, structural gene product, or transport protein. The term "herbicide" (or "herbicidal compound") is used herein to define an inhibitor applied to a plant at any stage of development, whereby the herbicide inhibits the growth of the plant or kills the plant.

Interaction: quality or state of mutual action such that the effectiveness or toxicity of one protein or compound on another protein is inhibitory (antagonists) or enhancing (agonists).

A nucleic acid sequence is "isocoding with" a reference nucleic acid sequence when the nucleic acid sequence encodes a polypeptide having the same amino acid sequence as the polypeptide encoded by the reference nucleic acid sequence.

Isogenic: plants that are genetically identical, except that they may differ by the presence or absence of a heterologous DNA sequence.

Isolated: in the context of the present invention, an isolated DNA molecule or an isolated enzyme is a DNA molecule or enzyme that, by the hand of man, exists apart from its native environment and is therefore not a product of nature. An isolated DNA molecule or enzyme may exist in a purified form or may exist in a non-native environment such as, for example, in a transgenic host cell.

Mature protein: protein from which the transit peptide, signal peptide, and/or propeptide portions have been removed.

Minimal Promoter: the smallest piece of a promoter, such as a TATA element, that can support any transcription. A minimal promoter typically has greatly reduced promoter activity in the absence of upstream activation. In the presence of a suitable transcription factor, the minimal promoter functions to permit transcription.

Modified Enzyme Activity: enzyme activity different from that which naturally occurs in a plant (i.e. enzyme activity that occurs naturally in the absence of direct or indirect manipulation of such activity by man), which is tolerant to inhibitors that inhibit the naturally occurring enzyme activity.

Native: refers to a gene that is present in the genome of an untransformed plant cell.

Naturally occurring: the term "naturally occurring" is used to describe an object that
can be found in nature as distinct from being artificially produced by man. For example, a
protein or nucleotide sequence present in an organism (including a virus), which can be

5

10

15

20

25

isolated from a source in nature and which has not been intentionally modified by man in the laboratory, is naturally occurring.

Nucleic acid: the term "nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g. degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994)). The terms "nucleic acid" or "nucleic acid sequence" may also be used interchangeably with gene, cDNA, and mRNA encoded by a gene.

"ORF" means open reading frame.

Percent identity: the phrases "percent identical" or "percent identical," in the context of two nucleic acid or protein sequences, refers to two or more sequences or subsequences that have for example 60%, preferably 70%, more preferably 80%, still more preferably 90%, even more preferably 95%, and most preferably at least 99% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. Preferably, the percent identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the percent identity exists over at least about 150 residues. In an especially preferred embodiment, the percent identity exists over the entire length of the coding regions.

For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

5

10

15

20

25

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48: 443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual inspection (see generally, Ausubel et al., infra).

One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., 1990). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when the cumulative alignment score falls off by the quantity X from its maximum achieved value, the cumulative score goes to zero or below due to the accumulation of one or more negative-scoring residue alignments, or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89: 10915 (1989)).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin &

5

10

15

20

25

Altschul, *Proc. Nat'l. Acad. Sci. USA* 90: 5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a test nucleic acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid sequence to the reference nucleic acid sequence is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

Pre-protein: protein that is normally targeted to a cellular organelle, such as a chloroplast, and still comprises its native transit peptide.

Purified: the term "purified," when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. The term "purified" denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least about 50% pure, more preferably at least about 85% pure, and most preferably at least about 99% pure.

Two nucleic acids are "recombined" when sequences from each of the two nucleic acids are combined in a progeny nucleic acid. Two sequences are "directly" recombined when both of the nucleic acids are substrates for recombination. Two sequences are "indirectly recombined" when the sequences are recombined using an intermediate such as a cross-over oligonucleotide. For indirect recombination, no more than one of the sequences is an actual substrate for recombination, and in some cases, neither sequence is a substrate for recombination.

"Regulatory elements" refer to sequences involved in controlling the expression of a nucleotide sequence. Regulatory elements comprise a promoter operatively linked to the nucleotide sequence of interest and termination signals. They also typically encompass sequences required for proper translation of the nucleotide sequence.

Significant Increase: an increase in enzymatic activity that is larger than the margin of error inherent in the measurement technique, preferably an increase by about 2-fold or greater

5

10

15

20

25

of the activity of the wild-type enzyme in the presence of the inhibitor, more preferably an increase by about 5-fold or greater, and most preferably an increase by about 10-fold or greater.

Significantly less: means that the amount of a product of an enzymatic reaction is reduced by more than the margin of error inherent in the measurement technique, preferably a decrease by about 2-fold or greater of the activity of the wild-type enzyme in the absence of the inhibitor, more preferably an decrease by about 5-fold or greater, and most preferably an decrease by about 10-fold or greater.

Specific Binding/Immunological Cross-Reactivity: An indication that two nucleic acid sequences or proteins are substantially identical is that the protein encoded by the first nucleic acid is immunologically cross reactive with, or specifically binds to, the protein encoded by the second nucleic acid. Thus, a protein is typically substantially identical to a second protein, for example, where the two proteins differ only by conservative substitutions. The phrase "specifically (or selectively) binds to an antibody," or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, antibodies raised to the protein with the amino acid sequence encoded by any of the nucleic acid sequences of the invention can be selected to obtain antibodies specifically immunoreactive with that protein and not with other proteins except for polymorphic variants. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays, Western blots, or immunohistochemistry are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York "Harlow and Lane"), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity. Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

5.

10

15

20

25

"Stringent hybridization conditions" and "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent, and are different under different environmental parameters. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic* Acid Probes part I chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" Elsevier, New York. Generally, highly stringent hybridization and wash conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. Typically, under "stringent conditions" a probe will hybridize to its target subsequence, but to no other sequences.

The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the T_m for a particular probe. An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formamide with 1 mg of heparin at 42°C, with the hybridization being carried out overnight. An example of highly stringent wash conditions is 0.1 5M NaCl at 72°C for about 15 minutes. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see, Sambrook, infra, for a description of SSC buffer). Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is 1x SSC at 45°C for 15 minutes. An example low stringency wash for a duplex of, e.g., more than 100 nucleotides, is 4-6x SSC at 40°C for 15 minutes. For short probes (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30°C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially

5

10

15

20

25

identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.

The following are examples of sets of hybridization/wash conditions that may be used to clone nucleotide sequences that are homologues of reference nucleotide sequences of the present invention: a reference nucleotide sequence preferably hybridizes to the reference nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 2X SSC, 0.1% SDS at 50°C, more desirably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 1X SSC, 0.1% SDS at 50°C, more desirably still in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.5X SSC, 0.1% SDS at 50°C, preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C, more preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C, with washing in 0.1X SSC, 0.1% SDS at 65°C.

A "subsequence" refers to a sequence of nucleic acids or amino acids that comprise a part of a longer sequence of nucleic acids or amino acids (e.g., protein) respectively.

Substrate: a substrate is the molecule that an enzyme naturally recognizes and converts to a product in the biochemical pathway in which the enzyme naturally carries out its function, or is a modified version of the molecule, which is also recognized by the enzyme and is converted by the enzyme to a product in an enzymatic reaction similar to the naturally-occurring reaction.

Transformation: a process for introducing heterologous DNA into a plant cell, plant tissue, or plant. Transformed plant cells, plant tissue, or plants are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof.

"Transformed," "transgenic," and "recombinant" refer to a host organism such as a bacterium or a plant into which a heterologous nucleic acid molecule has been introduced. The nucleic acid molecule can be stably integrated into the genome of the host or the nucleic acid molecule can also be present as an extrachromosomal molecule. Such an extrachromosomal molecule can be auto-replicating. Transformed cells, tissues, or plants are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof. A "non-transformed," "non-transgenic," or "non-recombinant" host refers to a wild-type organism, e.g., a bacterium or plant, which does not contain the heterologous nucleic acid molecule.

5

10

15

20

25

Viability: "viability" as used herein refers to a fitness parameter of a plant. Plants are assayed for their homozygous performance of plant development, indicating which proteins are essential for plant growth.

5 I. Identification of Essential Arabidopsis thaliana Nucleotide Sequences and Encoded Proteins Using Ac/Ds Transposon or T-DNA-Mediated Mutagenesis

As shown in the examples below, the essentiality of the nucleotide sequences described herein for normal plant growth and development, have been demonstrated for the first time in *Arabidopsis* using *Ac/Ds* transposon or T-DNA-mediated mutagenesis. Having established the essentiality of the function of the encoded proteins in *Arabidopsis thaliana* and having identified the nucleotide sequences encoding these essential proteins, the inventors thereby provide an important and sought after tool for new herbicide development.

Arabidopsis insertional mutant lines segregating for seedling lethal mutations are identified as a first step in the identification of essential proteins. Starting with T2 seeds collected from single T1 plants containing T-DNA insertions in their genomes, those lines segregating homozygous seedling lethal seedlings are identified. Ds transposon insertion lines are produced as described in Sundaresan et al. (1995) (Genes and Dev., 9:1797-1810), incorporated herein by reference. Starting with F3 or F4 seeds collected from single F2 or F3 kanamycin-resistant plants containing Ds insertions in their genomes (see Figure 3 of Sundaresan et al. (1995) (Genes and Dev., 9:1797-1810), those lines segregating homozygous seedling lethal seedlings are identified. These lines are found by placing seeds onto minimal plant growth media, which contains the fungicides benomyl and maxim, and screening for inviable seedlings after 7 and 14 days in the light at room temperature. Inviable phenotypes include altered pigmentation or altered morphology. These phenotypes are observed either on plates directly or in soil following transplantation of seedlings.

Essential genes are also identified through the isolation of lethal mutants blocked in early development. Examples of lethal mutants include those blocked in the formation of the male or female gametes or embryo. Gametophytic mutants are found by examining T1 insertion lines for the presence of 50% aborted pollen grains or ovules. Embryo defective mutants produce 25% defective seeds following self-pollination of T1 plants (see Errampalli et al. 1991, Plant Cell 3:149-157; Castle et al. 1993, Mol Gen Genet 241:504-514).

10

15

20

25

When a line is identified as segregating a seedling lethal or an embryo defective phenotype, it is determined if the resistance marker in the *Ds* transposon or T-DNA insertion co-segregates with the lethality (Errampalli *et al.* (1991) The Plant Cell, 3:149-157). Cosegregation analysis is done by placing the seeds on media containing the selective agent and scoring the seedlings for resistance or sensitivity to the agent. Examples of selective agents used are kanamycin, hygromycin, or phosphinothricin. About 35 resistant seedlings are transplanted to soil and their progeny are examined for the segregation of the seedling lethal. In the case in which the *Ds* transposon or T-DNA insertion disrupts an essential gene, there is co-segregation of the resistance phenotype and the seedling lethal or embryo defective phenotype in every plant. Therefore, in such a case, all resistant plants segregate a seedling lethal or embryo defective phenotype in the next generation; this result indicates that each of the resistant plants is heterozygous for the mutation and hemizygous for the T-DNA insert causing the mutation.

For the *Arabidopsis* lines showing co-segregation of the transposon-encoded or T-DNA-encoded resistance marker and the lethal phenotype, PCR-based molecular approaches such as, TAIL-PCR (Liu *et al.* (1995) Plant J., 8:457-463; Liu and Whittier (1995), Genomics, 25:674-681), TAIL2k, vectorette PCR (Riley *et al.* (1990) Nucleic Acids Research, 18: 2887-2890), or the GenomeWalker™ kit (CLONTECH Laboratories, Inc., Palo Alto, CA), may be used to directly amplify the plant DNA fragments flanking the transposon or T-DNA. Each of these techniques utilizes the known sequence of the transposon or T-DNA, and can be used to recover small (less than 5 kb) fragments directly adjacent to the insertion. PCR products are isolated and their DNA sequence is determined.

Alternatively, plasmid rescue may be used to isolate the plant DNA/T-DNA border fragments. Southern blot analysis may be performed as an initial step in the characterization of the molecular nature of each insertion. Southern blots are done with genomic DNA isolated from heterozygotes and using probes capable of hybridizing with the T-DNA vector DNA. Using the results of the Southern analysis, appropriate restriction enzymes are chosen to perform plasmid rescue in order to molecularly clone *Arabidopsis thaliana* genomic DNA flanking one or both sides of the T-DNA insertion. Plasmids obtained in this manner are analyzed by restriction enzyme digestion to sort the plasmids into classes based on their digestion pattern. For each class of plasmid clone, the DNA sequence is determined.

5..

10

15

20

25

The resulting sequences, obtained by any of the above outlined approaches, are analyzed for the presence of non-Ds transposon and non-T-DNA vector sequences, as appropriate. When such sequences are found, they are used to search DNA and protein databases using the BLAST and BLAST2 programs (Altschul et al. (1990) J Mol. Biol. 215: 403-410; Altschul et al. (1997) Nucleic Acid Res. 25:3389-3402, both incorporated herein by reference). Additional genomic and cDNA sequences for each gene are identified by standard molecular biology procedures.

II. Recombinant Production Of Essential Proteins And Uses Thereof

For recombinant production of a protein of the invention in a host organism, a nucleotide sequence encoding the protein is inserted into an expression cassette designed for the chosen host and introduced into the host where it is recombinantly produced. The choice of the specific regulatory sequences such as promoter, signal sequence, 5' and 3' untranslated sequence, and enhancer appropriate for the chosen host is within the level of the skill of the routineer in the art. The resultant molecule, containing the individual elements linking in the proper reading frame, is inserted into a vector capable of being transformed into the host cell. Suitable expression vectors and methods for recombinant production of proteins are well known for host organisms such as *E. coli*, yeast, and insect cells (see, *e.g.*, Lucknow and Summers, *Bio/Technol*. 6:47 (1988)). Additional suitable expression vectors are baculovirus expression vectors, *e.g.*, those derived from the genome of *Autographica californica* nuclear polyhedrosis virus (AcMNPV). A preferred baculovirus/insect system is PVL1392(3) used to transfect *Spodoptera frugiperda* SF9 cells (ATCC) in the presence of linear *Autographica californica* baculovirus DNA (Phramingen, San Diego, CA). The resulting virus is used to infect HighFive *Tricoplusia ni* cells (Invitrogen, La Jolla, CA).

Recombinantly produced proteins are isolated and purified using a variety of standard techniques. The actual techniques used vary depending upon the host organism used, whether the protein is designed for secretion, and other such factors. Such techniques are well known to the skilled artisan (see, e.g. chapter 16 of Ausubel, F. et al., "Current Protocols in Molecular Biology", pub. by John Wiley & Sons, Inc. (1994).

30

5

10

15

20

III. Assays For Characterizing The Essential Proteins

The recombinantly produced proteins described herein are useful for a variety of purposes. For example, they can be used in *in vitro* assays to screen known herbicidal chemicals whose target has not been identified to determine if they inhibit protein activity. Such *in vitro* assays may also be used as more general screens to identify chemicals that inhibit such protein activity and that are therefore novel herbicide candidates. Recombinantly produced proteins may also be used to elucidate the complex structure of these molecules and to further characterize their association with known inhibitors in order to rationally design new inhibitory herbicides. Alternatively, the recombinant protein can be used to isolate antibodies or peptides that modulate the activity and are useful in transgenic solutions.

IV. In vitro Inhibitor Assay: Discovery of Small Molecule Ligands That Interact with Essential Proteins Of Unknown Biochemical Function

Once a protein has been identified as a potential herbicide target based on its essentiality for normal plant growth and viability, a next step is to develop an assay that allows screening large number of chemicals to determine which ones interact with the protein. Although it is straightforward to develop assays for proteins of known function, developing assays with proteins of unknown functions can be more difficult.

To address this issue, novel technologies are used that can detect interactions between a protein and a compound without knowing the biological function of the protein. A short description of three methods is presented, including fluorescence correlation spectroscopy, surface-enhanced laser desorption/ionization, and biacore technologies.

Fluorescence Correlation Spectroscopy (FCS) theory was developed in 1972 but it is only in recent years that the technology to perform FCS became available (Madge et al. (1972) Phys. Rev. Lett., 29: 705-708; Maiti et al. (1997) Proc. Natl. Acad. Sci. USA, 94: 11753-11757). FCS measures the average diffusion rate of a fluorescent molecule within a small sample volume. The sample size can be as low as 10³ fluorescent molecules and the sample volume as low as the cytoplasm of a single bacterium. The diffusion rate is a function of the mass of the molecule and decreases as the mass increases. FCS can therefore be applied to protein-ligand interaction analysis by measuring the change in mass and therefore in diffusion rate of a molecule upon binding. In a typical experiment, the target to be analyzed is expressed as a recombinant protein with a sequence tag, such as a poly-histidine

5.

10

15

20

25

sequence, inserted at the N or C-terminus. The expression takes place in *E. coli*, yeast or insect cells. The protein is purified by chromatography. For example, the poly-histidine tag can be used to bind the expressed protein to a metal chelate column such as Ni2+ chelated on iminodiacetic acid agarose. The protein is then labeled with a fluorescent tag such as carboxytetramethylrhodamine or BODIPY® (Molecular Probes, Eugene, OR). The protein is then exposed in solution to the potential ligand, and its diffusion rate is determined by FCS using instrumentation available from Carl Zeiss, Inc. (Thornwood, NY). Ligand binding is determined by changes in the diffusion rate of the protein.

Surface-Enhanced Laser Desorption/Ionization (SELDI) was invented by Hutchens and Yip during the late 1980's (Hutchens and Yip (1993) Rapid Commun. Mass Spectrom. 7: 576-580). When coupled to a time-of-flight mass spectrometer (TOF), SELDI provides a mean to rapidly analyze molecules retained on a chip. It can be applied to ligand-protein interaction analysis by covalently binding the target protein on the chip and analyze by MS the small molecules that bind to this protein (Worrall et al. (1998) Anal. Biochem. 70: 750-756). In a typical experiment, the target to be analyzed is expressed as described for FCS. The purified protein is then used in the assay without further preparation. It is bound to the SELDI chip either by utilizing the poly-histidine tag or by other interaction such as ion exchange or hydrophobic interaction. The chip thus prepared is then exposed to the potential ligand via, for example, a delivery system capable to pipette the ligands in a sequential manner (autosampler). The chip is then submitted to washes of increasing stringency, for example a series of washes with buffer solutions containing an increasing ionic strength. After each wash, the bound material is analyzed by submitting the chip to SELDI-TOF. Ligands that specifically bind the target will be identified by the stringency of the wash needed to elute them.

Biacore relies on changes in the refractive index at the surface layer upon binding of a ligand to a protein immobilized on the layer. In this system, a collection of small ligands is injected sequentially in a 2-5 microlitre cell with the immobilized protein. Binding is detected by surface plasmon resonance (SPR) by recording laser light refracting from the surface. In general, the refractive index change for a given change of mass concentration at the surface layer, is practically the same for all proteins and peptides, allowing a single method to be applicable for any protein (Liedberg *et al.* (1983) Sensors Actuators 4: 299-304; Malmquist (1993) Nature, 361: 186-187). In a typical experiment, the target to be analyzed is expressed

5

10

15

20

25

as described for FCS. The purified protein is then used in the assay without further preparation. It is bound to the Biacore chip either by utilizing the poly-histidine tag or by other interaction such as ion exchange or hydrophobic interaction. The chip thus prepared is then exposed to the potential ligand via the delivery system incorporated in the instruments sold by Biacore (Uppsala, Sweden) to pipette the ligands in a sequential manner (autosampler). The SPR signal on the chip is recorded and changes in the refractive index indicate an interaction between the immobilized target and the ligand. Analysis of the signal kinetics on rate and off rate allows the discrimination between non-specific and specific interaction.

Another assay for small molecule ligands that interact with a polypeptide is an inhibitor assay. For example, such an inhibitor assay useful for identifying inhibitors of the products of essential plant nucleic acid sequences, such as the essential *Arabidopsis* proteins described herein, comprises the steps of:

- a) reacting an essential Arabidopsis protein described herein and a substrate thereof in the presence of a suspected inhibitor of the protein's function;
- b) comparing the rate of enzymatic activity of the protein in the presence of the suspected inhibitor to the rate of enzymatic activity under the same conditions in the absence of the suspected inhibitor; and
- c) determining whether the suspected inhibitor inhibits the essential *Arabidopsis* 20 protein.

For example, the inhibitory effect on the activity of a hereindescribed essential Arabidopsis protein, may be determined by a reduction or complete inhibition of protein activity in the assay. Such a determination may be made by comparing, in the presence and absence of the candidate inhibitor, the amount of substrate used or intermediate or product made during the reaction.

V. Production of peptides

Phage particles displaying diverse peptide libraries permits rapid library construction, affinity selection, amplification and selection of ligands directed against an essential protein (H.B. Lowman, *Annu. Rev. Biophys. Biomol. Struct.* 26, 401-424 (1997)). Structural analysis of these selectants can provide new information about ligand-target molecule interactions and

5

10

15

25

then in the process also provide a novel molecule that can enable the development of new herbicides based upon these peptides as leads.

VI. In Vivo Inhibitor Assay

5

10

15

20

25

30

In one embodiment, a suspected herbicide, for example identified by *in vitro* screening, is applied to plants at various concentrations. The suspected herbicide is preferably sprayed on the plants. After application of the suspected herbicide, its effect on the plants, for example death or suppression of growth is recorded.

In another embodiment, an *in vivo* screening assay for inhibitors of the activity of a hereindescribed essential protein uses transgenic plants, plant tissue, plant seeds or plant cells capable of overexpressing a nucleotide sequence disclosed herein that encodes an essential protein, wherein the essential protein is enzymatically active in the transgenic plants, plant tissue, plant seeds or plant cells. A chemical is then applied to the transgenic plants, plant tissue, plant seeds or plant cells and to the isogenic non-transgenic plants, plant tissue, plant tissue, plant cells, and the growth or viability of the transgenic and non-transformed plants, plant tissue, plant seeds or plant cells are determined after application of the chemical and compared. Compounds capable of inhibiting the growth of the non-transgenic plants, but not affecting the growth of the transgenic plants are selected as specific inhibitors of the essential protein's activity.

The invention will be further described by reference to the following detailed examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified.

EXAMPLES

Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by J. Sambrook, et al., Molecular Cloning: A Laboratory Manual, 3d Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press (2001); by T.J. Silhavy, M.L. Berman, and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and by Ausubel, F.M. et al., Current Protocols in Molecular Biology, New York, John Wiley and Sons Inc., (1988), Reiter, et al., Methods in Arabidopsis Research, World Scientific Press (1992), and Schultz et al., Plant Molecular Biology Manual, Kluwer Academic Publishers (1998). These references describe

the standard techniques used for all steps in tagging and cloning genes from *AclDs* transposon or T-DNA mutagenized populations of *Arabidopsis*: plant infection and transformation; screening for the identification of seedling mutants; and cosegregation analysis. *Ds* transposon insertion lines produced as described in Sundaresan *et al.* (1995) Genes and Dev., 9:1797-1810) are used in these experiments. T-DNA lines are generated using vacuum infiltration or floral dip methods (Bechtold *et al.* (1993) C. R. Acad. Sci. Paris, 316:1194-1199; Clough and Bent (1998) Plant J., 16:735-743; Desfeux *et al.* (2000) Plant Physiol., 123:895-904).

10 Example 1: Identification of Arabidopsis Mutants with Lethal Phenotypes

Essential genes are identified through the isolation of lethal mutants blocked in early development. Examples of lethal mutants include those blocked in the formation of the male or female gametes, embryo, or resulting seedling. Gametophytic mutants are found by examining insertion lines for the presence of 50% aborted pollen grains or ovules. Embryo defective lethal mutants usually produce 25% defective seeds following self-pollination of plants heterozygous for an insertion (see Errampalli *et al.* 1991, Plant Cell 3:149-157; Castle *et al.* 1993, Mol Gen Genet 241:504-514). Seedling lethal mutants usually segregate 25% seedlings that exhibit a lethal phenotype.

Example 2: Cosegregation Analysis for Lines with Lethal Phenotypes

The linkage of the mutation to the *Ds* or T-DNA insertion is established after identifying a transformed line segregating for a lethal phenotype of interest. A line segregating with a single functional insert will segregate for resistance in the ratio of about 2:1 (resistant: sensitive) to the selectable marker. In the case of an embryo defective mutant, one-quarter of the progeny of a plant heterozygous for an insertion will fail to germinate due to embryo lethality, resulting in a reduction of the normal 3:1 ratio to 2:1. In the case of a seedling lethal mutant, the seedlings with a mutant phenotype are excluded in the calculation of this ratio. Each of the resistant progeny is therefore heterozygous for the mutation if the *Ds* or T-DNA insertion is causing the mutant phenotype. To establish cosegregation of the insertion and the mutant phenotype, about 30 resistant progeny are transplanted to soil and each plant is shown to segregate the 25% progeny with a lethal phenotype by the appropriate screening of embryo or seedlings. When all resistant plants segregate the lethal phenotype,

5

15

20

25

there is cosegregation of the insertion and the lethal mutation and the line is designated as "tagged."

Example 3: T-DNA Border Isolation by Plasmid Rescue

The plasmid rescue technique is used to molecularly clone Arabidopsis flanking DNA from one or both sides of the T-DNA insertion(s). Arabidopsis genomic DNA is isolated as described by Reiter et al. in Methods in Arabidopsis Research, World Scientific Press (1992). Genomic DNA is digested with a restriction endonuclease and ligated overnight. After ligation, the DNA is transformed into competent E. coli strain XL-1 Blue, DH10B, DH5 alpha, or the like, and colonies are selected on semi-solid medium containing ampicillin. Resistant colonies are picked into liquid medium with ampicillin and grown overnight. Plasmid DNA is isolated and digested with the rescue enzyme and analyzed on agarose gels containing ethidium bromide for visualization. Plasmids that represent different size classes are sequenced using primers that flank the plant DNA portion of the rescue element and the sequence is analyzed to determine what portion is plant DNA and what gene has been disrupted. The plasmid rescue is validated via PCR of template genomic DNA from a heterozygote for the insertion mutation. The experiment uses a primer anchored in the predicted flanking sequence and a primer in the T-DNA insertion. Finding a PCR product of the appropriate size, based on the sequence of the plasmid rescue clone confirms a valid rescue. Alternatively, Southern blot analysis with a probe that detects the relevant region of Arabidopsis DNA in genomic DNA from a heterozygote for the insertion mutation can be used to confirm the plasmid rescue results.

Example 4: Transposon or T-DNA Border Isolation by TAIL-PCR

Arabidopsis genomic DNA is isolated according to Reiter et al. in Methods in Arabidopsis Research, World Scientific Press (1992) or using the Nucleon PhytoPure™ Plant DNA isolation kit (Amersham International plc, Buckinghamshire, England) or the Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN). Fragments of genomic DNA flanking the borders of the transposon or T-DNA are isolated using the TAIL-PCR technique (Liu et al. (1995) Plant J., 8:457-463; Liu and Whittier (1995), Genomics, 25:674-681). Three sets of 12 TAIL-PCR reactions, referred to as the primary, secondary and tertiary reactions, are performed. In each reaction, one arbitrary degenerate primer and one transposon-specific or

5

15

20

25

T-DNA-specific primer are used. The arbitrary degenerate primer is chosen from among seven primers, LWAD1, CA50, CA51, CA52, CA53, CA54, and CA55 (Table 1), which are used to prime the genomic DNA flanking the insertion. Alternatively, less than 12 TAIL-PCR reactions are done using fewer arbitrary degenerate primers. These degenerate primers are used in combination with two sets of three, nested, transposon-specific primers (Table 2) 5 or T-DNA-specific primers (Table 3). The transposon-specific primers are homologous to regions of the Ds elements that lie at the outermost ends of the transposons, DS5 at the 5' end (primers 5A, 5B, and 5C) and DS3 at the 3' end (primers 3A, 3B, and 3C). The T-DNAspecific primers are homologous to regions of the T-DNA that lie in the borders of the T-DNAs. For the pCSA104 and pDAP101 T-DNAs, right borders are recovered with CA66 10 (primary primer), CA67 (secondary primer), and CA68 (tertiary primer) and left borders are recovered with JM33 (tertiary primer); JM34 (secondary primer); and JM35 (primary primer). For the pCSA110 T-DNA, right borders are recovered with QRB1 (primary primer), QRB2 (secondary primer), and QRB3 (tertiary primer) and left borders are recovered with JM33 (tertiary primer); JM34 (secondary primer); and JM35 (primary primer). For the 15 pPCVICEn4HPT (Hayashi et al. (1992), Science, 258:1350-1353) and pSKI015 (Weigel et al. (2000) Plant Physiol. 122:1003-1014) T-DNAs, left borders are recovered with SKI1 (primary primer), SKI2 (secondary primer), and SKI3 (tertiary primer). When the degenerate and nested primer pairs are used in a series of low and high-stringency PCR amplifications, as described in the TAIL-PCR protocol (Liu and Whittier (1995), Genomics, 25:674-681), DNA 20 fragments are produced that correspond to the genomic DNA that is directly adjacent to the transposon or T-DNA insertion. The nucleic acid sequences of the PCR products from the tertiary TAIL-PCR reactions are then determined by standard molecular biology techniques. The resulting sequences are analyzed for the presence of non-Ds transposon or non-T-DNA 25 vector sequence.

To confirm the integrity of the resultant products, PCR primers specific to the flanking genomic region are designed and used in conjunction with the tertiary nested primer in a PCR reaction, to confirm the transposon or T-DNA insertion point within the genomic DNA. Finding a PCR product of the appropriate size, based on the sequence of the TAIL-PCR clone confirms a valid rescue.

Table 1: Arbitrary Degenerate Primers

	SEQ ID NO:	<u>Primer</u>	Degen.	Primer Sequence
	101	LWAD1	1026	ngt tgw gna twt sgw gnt
	102	CA50	128	ngt cga swg ana wga a
5	103	CA51	128	tgw gna gsa nca sag a
	104	CA52	128	agw gna gwa nca wag g
	105	CA53	256	stt gnt ast nct ntg c
	106	CA54	64	ntc gas twt sgw gtt
	107	CA55	256	wgt gna gwa nca nag a

Table 2: Nested Primers For Ds Lines

	SEQ ID NO:	<u>Primer</u>	Primer Sequence
	108	5A	actagetetacegttteegtttac
	109	5B	ttacctcgggttcgaaatcgatcgggataa
15	110	5C	aaaatcggttatacgataacggtcggtacggga
	111	3A	gggtcttgcggatctgaatatatgttttcatgtgtg
	112	3B	taccgaagaaaaataccggttcccgtccgatttcgac
	113	3C	ggatcgtatcggttttcgattaccgtatttatcc

20 Table 3: Nested Primers For T-DNA Lines

	SEQ ID NO:	<u>Primer</u>	Primer Sequence
	114	CA66	att agg cac ccc agg ctt tac act tta tg
	115	CA67	gta tgt tgt gtg gaa ttg tga gcg gat aac
	116	CA68	taa caa ttt cac aca gga aac agc tat gac
25	117	JM33	tag cat ctg aat ttc ata acc aat ctc gat aca c
	118	JM34	get tee tat tat ate tte cea aat tae caa tae a
	119	JM35	gcc ttt tca gaa atg gat aaa tag cct tgc ttc c
	120	QRB1	caa act agg ata aat tat cgc gcg cgg tgt ca
	121	QRB2	ggt gtc atc tat gtt act aga tcg gga att ga
30	122	QRB3	cgc cat ggc ata tgc tag cat gca taa ttc
	123	SKI1	aat tgg taa tta ctc ttt ctt ttc ctc cat att ga
	124	SKI2	ata ttg acc atc ata ctc att gct gat cca t
	125	SKI3	tga tcc atg tag att tcc cgg aca tga a

Example 5: Transposon or T-DNA Border Isolation by TAIL2k PCR

Arabidopsis genomic DNA is isolated according to Reiter et al. in Methods in Arabidopsis Research, World Scientific Press (1992) or using the Nucleon PhytoPure™ Plant DNA isolation kit (Amersham International plc, Buckinghamshire, England) or the Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN). Fragments of genomic DNA flanking the borders of the transposon or T-DNA are isolated using the TAIL2k PCR technique. Two sets of 12 TAIL-PCR reactions, referred to as the primary and secondary reactions, are performed. In each reaction, one arbitrary degenerate primer and one transposon-specific or T-DNA-specific primer are used. The arbitrary degenerate primer is selected from among six primers; CA50, CA51, CA52, CA53, CA54, and CA55 (Table 1), which are used to prime the genomic DNA flanking the insertion. Alternatively, less than 12 TAIL-PCR reactions are done using fewer arbitrary degenerate primers. These degenerate primers are used in combination with two sets of two, nested, transposon-specific primers (Table 2) or T-DNAspecific primers (Table 3). The transposon-specific primers are homologous to regions of the Ds elements that lie at the outermost ends of the transposons, DS5 at the 5' end (primers 5A, 5B, and 5C) and DS3 at the 3' end (primers 3A, 3B, and 3C). The T-DNA-specific primers are homologous to regions of the T-DNA that lie in the borders of the T-DNAs. For the pCSA104 and pDAP101 T-DNAs, right borders are recovered with CA66 (primary primer), CA67 (secondary primer), and CA68 (sequencing primer) and left borders are recovered with JM33 (sequencing primer), JM34 (secondary primer), and JM35 (primary primer). Primers CA66, CA67, and CA68 are also known as RB1, RB2, and RB3, respectively. Primers JM35, JM34, and JM33 are also known as LB1, LB2, and LB3, respectively. For the pCSA110 T-DNA, right borders are recovered with QRB1 (primary primer), QRB2 (secondary primer), and QRB3 (sequencing primer) and left borders are recovered with JM33 (sequencing primer); JM34 (secondary primer); and JM35 (primary primer). For the pPCVICEn4HPT (Hayashi et al. (1992), Science, 258:1350-1353) and pSKI015 (Weigel et al. (2000) Plant Physiol. 122:1003-1014) T-DNAs, left borders are recovered with SKI1 (primary primer), SKI2 (secondary primer), and SKI3 (sequencing primer). When the degenerate and nested primer pairs are used in a series of low and high-stringency PCR amplifications, as described in the TAIL-PCR protocol (Liu and Whittier (1995), Genomics, 25:674-681), DNA fragments are produced that correspond to the genomic DNA that is directly adjacent to the transposon

5

10

15

20

25

or T-DNA insertion. TAIL2k-PCR differs from the original TAIL-PCR protocol by the elimination of the tertiary PCR and modification of the secondary PCR. The cycling conditions used in the secondary reaction are modified to include 5 high annealing temperature cycles (64 degrees C) at the beginning, three additional so-called super cycles, and five additional low annealing temperature cycles (44 degrees C) at the end of the reaction. The melting and extension times are the same as all other TAIL-PCR reactions. Additionally, the reaction volume is increased to 40 microliters. The nucleic acid sequences of the PCR products from the secondary TAIL2k-PCR reactions are then determined by standard molecular biology techniques. The resulting sequences are analyzed for the presence of non-Ds transposon or non-T-DNA vector sequence.

To confirm the integrity of the resultant products, PCR primers specific to the flanking genomic region are designed and used in conjunction with the tertiary nested primer in a PCR reaction, to confirm the transposon or T-DNA insertion point within the genomic DNA. Finding a PCR product of the appropriate size, based on the sequence of the TAIL2k-PCR sequencing result confirms a valid rescue.

Example 6: Identification of Both Borders of a T-DNA or Ds Insertion

If the results of border rescue provide information on only one of the two borders for an insertion in a given line, additional experiments are performed to identify the second border. These experiments are necessary to show that a single gene has been disrupted in a given line. In some cases, an insertion can affect more than a single gene due to a chromosomal deletion or rearrangement. In those cases, additional experiments are required to identify which of the affected genes is responsible for the lethal phenotype.

When both borders of an insertion are not recovered, primers are designed to isolate a PCR product that will provide information on the location of the missing border. Three primers are chosen in *Arabidopsis* genomic DNA on the opposite side of the insertion about one, two, and five kb away from the insertion point; the primers point towards the expected second border. Long PCR conditions (Advantage 2, Clontech) are then employed following the manufacturer's directions to amplify the relevant region from genomic DNA isolated from a heterozygote for the lethal mutation. PCR reactions are performed using appropriate pairs of genomic and T-DNA or *Ds* border primers. Finding a PCR product of the appropriate size,

5

10

15

20

25

based on the sequence of the TAIL-PCR clone confirms a valid rescue of the second border. In some cases, the PCR product is directly sequenced to determine the exact insertion point.

If the second border is not recovered with this method, an additional set of PCR reactions are preformed. In these experiments, the genomic primers are paired with a series of internal T-DNA or Ds primers designed at about one kb intervals in both orientations across the entire T-DNA or Ds vector sequence. Finding a PCR product of the appropriate size, based on the sequence of the TAIL-PCR clone confirms a valid rescue of the second border. In some cases, the PCR product is directly sequenced to determine the exact insertion point. Any borders recovered with this approach are classified as abnormal because they lack the ends of the Ds transposon or the expected 24 bp T-DNA imperfect repeat characteristic of right and left borders.

Example 7: Identification of Insertion Points for Lines with Lethal Phenotypes

For each line with a lethal phenotype, the sequences of the borders of the insertion are determined and the insertion points in the *Arabidopsis* genome are deduced. For *Ds* insertion lines, PCR products are obtained from the Ds3 and Ds5 borders. For T-DNA lines, PCR products or plasmid rescue clones are obtained from left (LB), right (RB), or abnormal (AB) borders. These sequences are used in BLASTn searches against nucleotide databases (Altschul *et al.* (1990) J Mol. Biol. 215:403-410; Altschul *et al.* (1997) Nucleic Acids Res. 25:3389-3402). The results are summarized in Table 4. *Ds* line names begin with ET or GT; T-DNA line names are numbers. The insertion point (Insert Pt.) and the direction of the flanking sequence (Dir.) either up (U) or down (D) in the genome section is noted. Often, small deletions or duplications of genomic DNA accompany the insertion of a T-DNA or *Ds* transposon.

The gene that has been inactivated in a given line with a lethal phenotype is determined from the insertion points for that line. Often, the precise location of an ORF for a given gene is not known, but predictions are available in genome sections deposited in GenBank. The precise boundaries of that ORF is determined as described in Example 7.

Table 4: Insertion Points For Lines With Lethal Phenotypes

Gene	Line #	Border	Genome Section	Acc. #	Insert Pt.	Dir.
942	942	LB	K24G6	AB012242	33667	D

5

10

15

20

25

978	978	LB	F23N20	AC016972	58221	D
, 10	978	LB	F23N20	AC016972	58301	U
3218	3218	LB	T8K14	AC007202	10500	D
0210	3218	LB	T8K14	AC007202	10540	U
1563	4563	LB	ATCHRII092	AC006438	25542	<u>D</u>
3794	8794	LB	F2J6	AC009526	45854	<u>D</u>
5194	8794	LB	F2J6	AC009526	45879	U
9106	9106	LB	T2J13	AL132967	78013	U
7100	9106	AB	T2J13	AL132967	77943	_ <u>D</u>
10708	10708	RB	F1I21	AC005687	40005	D
10708	10708	LB	F1I21	AC005687	40042	<u>U</u>
	70241	LB	F1I21	AC005687	40210	D
	70241	RB	F1I21	AC005687	40215	U
10044	10844	LB	F13F21	AC007504	60873	U
10844	10844	LB	F13F21	AC007504	60839	I
10051	10951	LB	MKP11	AB005238	20298	
10951	10951	LB	MKP11	AB005238	20318	J
10025	12935	LB	ATCHRII150	AC005168	36510	I
12935	12935	LB LB	ATCHRII150	AC005168	36545	Ţ
10002	11361	LB	T27G7	AC006932	78096	Ţ
13823	11361	AB	T27G7	AC006932	78065]
	13823	LB	T27G7	AC006932	78096	1
	13823	RB	T27G7	AC006932	77722]
14510	14519	LB	ATCHRIV72	AL161576	50259	
14519	14519	AB	ATCHRIV72	AL161576	50228	
14610.1	14610.1	LB	F4P13	AC009325	55319	
14010.1	14610.1	RB	F4P13	AC009325	55442	
14001	14891	LB	ATCHRIV89	AL161593	11412	
14891	14891	RB	ATCHRIV89	AL161593	11313	
14006	14986	LB	K10D20	AP000410	51816	
14986	14986	RB	K10D20	AP000410	54505	
15277	15377	RB	F28G11	AC074025	19572	
15377	15377	LB	F28G11	AC074025	19587	
16219	16219	LB	MRO11	AB005244	51998	
10219	16219	LB	MRO11	AB005244	51995	
16547	16547	LB	ATCHRIV65	AL161565	80692	
16347	16547	RB	ATCHRIV65	AL161565	80791	
20933	20933	LB	ATCHRII146	AC004747	47678	
20933	20933	LB	ATCHRII146	AC004747	47683	
21455	21455	LB	ATCHRIV54	AL161554	105596	
21455	21455	RB	ATCHRIV54	AL161554	105542	
01070		LB	T19F11	AC009918	19609	
21878	21878	LB LB	ATCHRII008	AC005936	49629	
23915	23915	LB LB	ATCHRII008	AC005936	49657	
20015	23915		ATCHRII192	AC004238	2411	
30945	30945	LB LB	ATCHRII192	AC004238	2410	

31895	31895	LB	MTI20	AB013396	52020	D
	31895	LB	MTI20	AB013396	52089	U
34269	34269	LB	T4O12	AC007396	92811	U
<u> </u>	34269	RB	T4O12	AC007396	92808	D
34540	34540	LB	T1G11	AC002376	41572	D
3.3.0	34540	- LB	T1G11	AC002376	41608	U
	72902	$-\frac{\overline{LB}}{LB}$	T1G11	AC002376	41494	U
	72902	LB	T1G11	AC002376	41465	D
34555	34555	LB	T1F15	AC004393	42152	D
34333	54334	RB	T1F15	AC004393	41803	U
	54334	LB	T1F15	AC004393	41671	D
35154	35154	RB	MWD9	AB007651	45718	D
33134	35154	LB	MWD9	AB007651	45732	U
35438	35438	LB	MAL21	AP000383	25170	D
33436	35438	LB	MAL21	AP000383	25738	U
37351	37351	LB	F25C20	AC007296	52890	Ū
37331	37351	RB	F25C20	AC007296	52196	D
37389	37389	LB	F3F19	AC007357	45488	บ
31369	37389	RB	F3F19	AC007357	45471	D
38108	38108	LB	ATCHRII150	AC005168	83430	D
36106	38108	RB	ATCHRII150	AC005168	83446	Ū
43301	43301	RB	T22D16	AL357612	57549	D
43301	43301	LB	T22D16	AL357612	57599	U
46250	46250	LB	F17A9	AC016827	74222	D
40230	46250	RB	F17A9	AC016827	74274	บ
47050A	47050	LB	T23E18	AC009978	49445	D
47030A	47050	RB	T23E18	AC009978	49475	Ū
52949A	52949	LB	K16H17	AB016884	34713	D
32343IX	52949	LB	K16H17	AB016884	34718	Ū
53210A	53210	RB	ATCHRII017	AC007167	92796	D
33210A	53210	LB	ATCHRII017	AC007167	92942	บ
	69121	LB	ATCHRII017	AC007167	94478	D
	69121	LB	ATCHRII017	AC007167	94502	Ū
55483	55483	RB	ATCHRII164	AC005727	71269	U
33403	55483	LB	ATCHRII164	AC005727	71258	D
58351A	58351	RB	MYH9	AB016893	42547	D
3033171	58351	LB	MYH9	AB016893	42772	U
60944	60944	LB	F1B16	AC023754	89492	$\overline{\overline{\mathbf{u}}}$
0024	60944	LB	F1B16	AC023754	89428	D
62837	62837	LB	T21J18	AL132963	70906	Ū
02037	62837	LB	T21J18	AL132963	70873	D
65310	65310	LB	T20H2	AC022472	8158	บ
02210	65310	RB	T20H2	AC022472	8096	$\frac{D}{D}$
68181	68181	RB	F12A12	AL133314	38270	U
00101	68181	LB	F12A12 F12A12	AL133314 AL133314	38275	D
I .	10101	LD	$\Gamma 1 \angle \Lambda 1 \angle$	WT 7777714	JUL 1 J	<u>D</u>

5

10

15

20

25

,,,,	70913	LB	T24H18	AL353013	5358	U
71067	71067	LB	F2E2	AC069252	63031	U
71007	71067	LB	F2E2	AC069252	62932	<u>D</u>
71654	71654	RB	MYA6	AB023046	71956	<u>U</u>
71054	71654	LB	MYA6	AB023046	71907	<u>D</u>
ET3172	ET3172	DS5	ATCHRIV4	AL161492	134442	<u>U</u>
ET3546	ET3546	DS3	ATCHRII115	AC006081	20874	D
L13340	ET3546	DS5	ATCHRII115	AC006081	20973	<u>U</u>

Example 8: Identification of cDNAs for Essential Genes

A cDNA for a gene identified as essential is identified using a variety of approaches. This information enables the ORF for a given gene to be identified and used for other experiments including expression of the corresponding protein in heterologous systems.

If there is a full-length cDNA deposited in GenBank or published elsewhere, that sequence may be checked independently using methods described below. Alternatively, the sequence may be considered to be correct.

In some cases, there are published EST sequences that can be assembled to cover the entire ORF from start codon to stop codon. This sequence may be checked independently using methods described below or it may be considered to be correct.

Often part of the cDNA is published and this information can be used to identify the entire ORF. If the 5' end containing the start codon is known, 3' RACE is performed to identify the remainder of the cDNA. If the 3' end containing the stop codon is known, 5' RACE is performed to identify the remainder of the cDNA. If both the 5' and the 3' ends are known, but the sequence between the two ends of the cDNA is not known, PCR is performed with primers hybridizing to each end of the cDNA. In all three of these cases, PCR is performed using template DNA from a GeneRacer (Invitrogen) or a Marathon (Clontech) cDNA library prepared from RNA isolated from seedling tissue. A resulting PCR product is TA-cloned (Original TA-Cloning kit, Invitrogen) and sequenced.

If no part of the cDNA is published, the cDNA is identified by starting from gene model predictions in the annotation for genomic clones or elsewhere. To identify the ORF, primers are designed to the 5' and 3' ends of the predicted ORF. PCR is performed using template DNA from a cDNA library prepared from seedling tissue or the pFL61 Arabidopsis cDNA library (Minet et al. (1992) Plant J. 2: 417-422). The resulting PCR product is TAcloned (Original TA-Cloning kit, Invitrogen) and sequenced. Alternatively, 5' and 3' RACE are performed with primers predicted by gene models to be in exons. PCR is performed using

PCT/EP02/07929 WO 03/008440

template DNA from a GeneRacer (Invitrogen) or a Marathon (Clontech) cDNA library prepared from RNA isolated from seedling tissue. A resulting PCR product is TA-cloned (Original TA-Cloning kit, Invitrogen) and sequenced.

If the cDNA sequence is the same as the sequence predicted in the GenBank annotation, the experiments confirm for the first time the actual ORF. If the cDNA sequence is not the same as the sequence predicted in the GenBank annotation, the experiments identify for the first time the actual ORF. In some cases, more than one cDNA sequence is found for a given gene and both sequences are included in this application.

Description of Essential Genes Example 9: 10

The putative function of the protein encoded by each essential gene is determined from analysis of the ORF in each cDNA. Information from the relevant Arabidopsis genomic section deposited in GenBank is used as a starting point to explore the function of a given gene. This analysis also includes BLAST searches (Altschul et al. (1990) J. Mol. Biol. 215:403-410; Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402) of sequence databases to identify similar proteins. Table 5 describes the putative functions for the essential genes discovered in this application.

Table 5: Putative Functions For Essential Genes

SEQ ID Nos: Gene Whitham, S. et al. (1994) Cell 00942 1-2 similarity to disease resistance 78:1101-1115; Botella, M.A., protein et al. (1998) Plant Cell 10: large gene family in Arabidopsis including disease resistance 1847-1860 proteins RPP1-WsA,B&C; similar to tobacco TMV resistance protein unknown protein 00978 3-4 none similar to Arabidopsis protein of unknown function (CAB87660) & ESTs from many plants 5-6 AAA ATPase Schumann, W. (1999) FEMS 03218 Microbiol Rev 23:1-11; similar to E. coli FtsH cell division Langer, T. (2000) Trends protein (P28691) that acts as an

ATP-dependent metallopeptidase;

homologs in many species

Putative Function & Similar Genes

References

Biochem Sci 2000 25:247-251

5

15

0.1550		I and a second s	none
04563	7-8	unknown protein	none
ļ		large gene family in Arabidopsis	
		of unknown function proteins	Picton, S et al. (1993) Plant
08794	9-10	putative histidine decarboxylase	1 ' ' ' '
		similar to Brassica, tomato	Mol Biol 23:627-631;
1		(tom92), and rice putative histidine	Watanabe, T et al. (1990)
		decarboxylases	Trends Pharmacol Sci 11:363-
			367; Vaaler, G.L. & Snell,
1			E.E. (1989) Biochemistry
			28:7306-7313
09106	11-12	cytosolic 40S ribosomal protein	Browning, K.S. (1996) Plant
		S11-alpha	Mol Biol 32:107-144; Gantt, J.
			S. & Thompson, M.D. (1990)
ļ			J. Biol Chem 265:2763-2767
10708	13-14	cytoplasmic 60S ribosomal protein	Peltz, S.W. et al. (1999) Mol
10/00	15 1.	L3	Cell Biol 19:384-391; Kim, Y.
\			et al. (1990) Gene 93:177-
			182; Wickner, R.B et al.
	ŀ		(1982) Proc Natl Acad Sci
	İ		USA 79:4706-4708
10844	15-16	40S ribosomal protein S17-like	Gantt, J.S. & Thompson, M.D.
10844	13-10	405 Hoosomai protein 517 ince	(1990) J Biol Chem 265:2763-
			2767; Wiener, L. et al. (1988)
-			Nucleic Acids Res 16:1233-
			1250
10951	17-18	phytoene synthase	Welsch, R. et al. (2000)
10,51		1-3	Planta 211:846-854;
			Shewmaker, C.K. et al. (1999)
			Plant J. 20:401-412; Von
			Lintig, J. et al. (1997) Plant J.
	1		12:625-634
12935	19-20	putative choline kinase	Monks, D.E. et al. (1996)
12,00		similar to soybean choline kinase	Plant Physiol. 110:1197-1205;
Ì		(T08815) and mouse & human	Bligny, R. et al. (1989) J Biol
		choline/ethanolamine kinases	Chem. 264:4888-4895;
			Wharfe, J. & Harwood, J.L.
- [(1979) Biochim Biophys Acta.
	1		575:102-111
13823	21-22	magnesium protoporphyrin IX	Papenbrock, J. et al. (1997)
13023		chelatase subunit D	Plant J. 12:981-990;
	1	·	Papenbrock, J. et al. (2000)
			Plant Physiol. 122:1161-1169;
	1 .		Luo, M. et al. (1999) Plant
	1		Mol Biol. 41:721-731; Jensen,
			P.E. et al. (1996) Mol. Gen.
			Genet. 250:383-394
1			GOIICE 230.303-334

14519	23-24	putative protein small gene family in Arabidopsis of unknown function proteins	none
14610.1	25-26	putative cell division control protein; similar to cdc48, AAA ATPase proteins similar to S. pombe AAA ATPase (CAB16902); Arabidopsis cdc48 homolog (P54609); cdc48/valosin- containing protein homologs from soybean, Capsicum annuum, rice, Dictylostelium; Drosophila smallminded	Frohlich, K.U. et al. (1991) J Cell Biol. 114:443-453; Feiler, H.S. et al. (1995) EMBO J. 14:5626-5637; Langer, T. (2000) Trends Biochem Sci 2000 25:247-251
14891	27-28	putative protein contains PFAM 02536 mTERF (mitochondrial transcription termination factor) domain; large gene family in <i>Arabidopsis</i> of unknown function proteins	Fernandez-Silva, P. et al. (1997) EMBO J 16:1066-1079
14986	29-30	ubiquitin isopeptidase T (aka ubiquitin-specific protease 14)	Wilkinson, K.D. et al. (1995) Biochemistry 34:14535- 14546; Falquet, L. et al. (1995) FEBS Lett 376:233- 237; Lindsey, D.F. et al. (1998) J Biol Chem 273:29178-29187
15377	31-32	putative formyl transferase similar to B. napus methionyl tRNA transformylase Fmt protein (AJ245479) & B. rapa S-locus protein 8 (AB022076)	Cui Y et al. (1999) Plant Cell. 11:2217-2231; Suzuki, G. et al. (1999) Genetics 153:391- 400; Cusack S. (1999) Curr Opin Struct Biol. 9:66-73
16219	33-34	polyadenylation cleavage/specificity factor 100 kDa subunit (AF283277)	Bilger, A. et al. (1994) Genes Dev. 8:1106-1116; Bienroth, S. et al. (1993) EMBO J. 12:585-594; Jenny, A. et al. (1994) Mol Cell Biol. 14:8183-8190
16547	35-36	similarity to UV-induced protein Uvi31, S. pombe, G1381578 unknown function, but similar to Pectobacterium chrysanthemi SufE protein (AJ301654) involved in iron metabolism, S. pombe uvi31 protein of the BolA / YRBA family (Q12238), Synechocystis hypothetical 17.7 KDA protein SLR1419 (P74523)	Kim, S.H. et al. (1997) Environ Mol Mutagen 30:72- 81; Santos, J.M. et al. (1999) Mol Microbiol 32:789-798

			Neer, E.J. et al. (1994) Nature
20933	37-38	hypothetical protein	
1		contains WD40 repeats, similar to	371:297-300; Johnstone, R.W.
İ		human CIAO 1 gene (O76071) &	et al. (1998) J Biol Chem
		S. cerevisiae YDR267c (S70127)	273:10880-10887
21455	39-40	putative protein	none
į		small gene family in Arabidopsis	
ļ		of unknown function proteins	
21878	41-42	Arabidopsis	Dormann, P. et al. (1999)
	72	digalactosyldiacylglycerol	Science 284:2181-2184;
		synthase (DGD1, AAD42378)	Hartel, H. et al. (1997) Plant
			Physiol 115:1175-1184
23915	43-44	hypothetical protein	Small, I.D. & Peeters, N.
23913	43-44	contains PPR motifs, member of	(2000) Trends Biochem Sci
			25:46-47; Manthey, G.M. &
		large gene family in Arabidopsis	1
			McEwen, J.E. (1995) <i>EMBO J</i>
			14:4031-4043; Barkan, A. et
			al. (1994) EMBO J 13:3170-
			3181
30945	45-46	unknown protein	none
		similar to rice hypothetical protein	
		(BAB56056)	
31895	47-48	similar to unknown protein	none
		small gene family in Arabidopsis	
į		of unknown function proteins	
34269	49-50	unknown protein	none
34540	51-52	probable lipoate protein ligase B,	Reed, K.E. & Cronan, J.E. Jr.
l l		similar to Mycobacterium LIPB	(1993) J Bacteriol 175:1325-
		gene (O32961)	1336; Chen, X.J. (1997) Mol.
		also similar to S. pombe putative	Gen. Genet. 255:341-349
		pre-tRNA/pre-rRNA processing	
l		protein (T41635)	
34555	53-54	similar to Synechocystis	none
		hypothetical 41.9KD protein	
1		(P52640)	
ļ	į	similar to several prokaryotic	
		proteins of unknown function	
		including E. coli YJEQ (P39286)	
35154	55-56	similar to unknown protein	Shpakovskii, G.V. &
33134	33-30	similar to human hypothetical	Lebedenko, E.N. (1997)
		protein (BAA91556), S. cerevisiae	· ·
i			Bloorg. Kimir. 25.254-257
•		probable membrane protein	
		YOR262w (S67159), & S. pombe	
		ATP(GTP)-binding protein Fet5	
		(AAC49837)	
35438	57-58	unknown protein	none
		weak similarity to Pennisetum	
		ciliare unknown function protein	
1	l	(AAK15504)	

37351	59-60	strong similarity to obtusifoliol 14- alpha demethylase (CYP51; P93846) from Sorghum bicolor (also wheat & rice), member of the PF100067 cytochrome P450 family	Kushiro, M. et al. (2001) Biochem Biophys Res Commun. 285:98-104; Bak et al. (1997) Plant J. 11:191-201; Grausem, B. (1995) Plant J. 7:761-770
37389	61-62	similar to human GLE1-like required for poly(A)+ RNA export (AAC25561)	Watkins, J.L. et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:6779-6784; Murphy, R. & Wente, S.R. (1996) Nature 383:357-360
38108	63-64	Arabidopsis 4-(cytidine 5'- phospho)-2-C-methyl-D-erythritol kinase (aka ispE & 4- diphosphocytidyl-2-C-methyl- Derythritol kinase) (AF288615) similar to E. coli ychB (aka ispE) gene (P24209)	Rohdich, F. et al. (2000) Proc Natl Acad Sci U.S.A. 97:8251-8256; Luettgen, H. et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97:1062-1067; Lange, B.M. & Croteau, R. (1999) Proc Natl Acad Sci U.S.A. 96:13714-13719
43301	65-66	similar to hypothetical bacterial proteins, including <i>Pseudomonas</i> aeruginosa protein PA0292 (F83608) & Lactococcus lactis (AAK05795)	none
46250	67-68	hypothetical protein weak similarity to hypothetical proteins from Arabidopsis (AAG51506) and mouse (BAB23375)	none
47050A	69-70	unknown protein weak similarity to Botrytis cDNA (AL115827)	none
52949A	71-72	6-phosphogluconolactonase-like protein similar to 6-phosphogluconolactonases such as human (O95336), Brassica carinata (AAK50346), & Mycobacterium tuberculosis (devB, CAB09261)	
53210A	73-74	putative heat shock protein in hsp90 family similar to rye hsp82 (S65776), Ipomoea nil hsp83 (P51819), chicken hsp90 beta (Q04619) and others	Felsheim, R.F. & Das, A. (1992) Plant Physiol. 100:1764-1771; Coates, A.R. et al. (1999) Biotechnol Genet Eng Rev 16:393-405; Milioni, D. & Hatzopoulos, P. (1997) Plant Mol Biol 35:955-961

55483	75-76	putative para-aminobenzoate synthase and glutamine amidotransferase, a bifunctional enzyme similar to Streptomyces pristinaespiralis papA (AAC44866), E. coli pabB (P05041) & pabA (P00903), and	Goncharoff, P. & Nichols, B.P. (1984) J Bacteriol. 159:57-62.; Roux, B. & Walsh, C.T. (1992) Biochemistry. 31:6904-6910; Kaplan, J.B. & Nichols, B.P. (1983) J Mol Biol 168:451- 468
		Bacillus stearothermophilus anthranilate synthase component I trpE (AAD33791)	D. '. A. A. J. (1997) Comp.
58351A	77-78	26S proteasome p55 protein-like similar to human 26S proteasome regulatory complex chain p55 (BAA19749), S. cerevisiae 26S proteasome regulatory complex chain RPN5 (S67695), and others	Saito, A. et al. (1997) Gene 203:241-250; Glickman, M.H. et al. (1998) Mol Cell Biol 18:3149-3162
60944	79-80	similar to Guillardia theta chloroplast 50S ribosomal protein L31 (O46917)	Yamaguchi, K. & Subramanian, A.R. (2000) <i>J Biol Chem</i> , 275:28466-28482
62837	81-82	AtClpC: regulatory subunit of Clp protease with ATPase activity (BAA82062)	Adam, Z. (2000) Biochimie 82:647-654; Sokolenko, A. et al. (1998) Planta 207:286-295; Nakabayashi, K. et al. (1999) Plant Cell Physiol. 40:504- 514; Maurizi, M.R. et al. (1990) J Biol Chem. 265:12536-12545
65310	83-84	26S proteasome regulatory subunit S3, contains a PCI PFI01399 domain similar to 26S proteasome regulatory subunit S3 from Nicotiana tabacum (P93768), carrot (Q06364), human (O43242), S. cerevisiae RPN3 (P40016), and others	
68181	85-86	small zinc finger-like protein TIM9 similar to mitochondrial import inner membrane translocase subunit TIM9 from several plants and S. cerevisiae (O74700)	Koehler, C.M. et al. (1998) EMBO J. 17:6477-6486; Tokatlidis, K. et al. (2000) Biochem Soc Trans 28:495- 499
70913	87-88	Arabidopsis CCAAT binding protein/transcription factor Hap2a (CAA74048)	Edwards, D. et al. (1998) Plant Physiol 117:1015-1022; Albani, D. & Robert, L.S. (1995) Gene 167:209-213

71067	89-90	hypothetical protein gene family in <i>Arabidopsis</i> of unknown function proteins	none
71654	91-92	poly(A) binding protein-like	Hilson, P. et al. (1993) Plant Physiol 103:525-533; Belostotsky, D.A. & Meagher, R.B. (1993) Proc Natl Acad Sci U.S.A. 90:6686-6690; Gallie, D.R. (1998) Gene 216:1-11
ET3172	93-94	hypothetical protein small gene family in <i>Arabidopsis</i> (T47999 & T02193) of unknown function	none
ET3546	95-96	cdc27/nuc2-like protein, may contain TPR-repeat similar to human cdc27 (P30260), S. pombe nuc2 (P10505), S. cerevisiae cdc23 (P16522), and others	Hirano, T. et al. (1988) J. Cell Biol. 106:1171-1183; Chen, P.L. et al (1995) Cell Growth Differ. 6:199-210

Example 10: Expression of Recombinant Essential Proteins in E. coli

The coding region of each of the essential proteins, corresponding to cDNA clones of odd-numbered SEQ ID NO:1-96, is subcloned into an appropriate expression vector, and transformed into *E. coli* using the manufacturer's conditions. Specific examples include plasmids such as pBluescript (Stratagene, La Jolla, CA), pFLAG (International Biotechnologies, Inc., New Haven, CT), and pTrcHis (Invitrogen, La Jolla, CA). *E. coli* is cultured, and expression of the essential protein is confirmed. Recombinant protein is isolated using standard techniques.

Example 11: In Vitro Binding Assays

Recombinant protein for each of the essential genes described in this application is obtained, for example, according to Example 10. The protein is immobilized on chips appropriate for ligand binding assays using techniques that are well known in the art. The protein immobilized on the chip is exposed to sample compound in solution according to methods well know in the art. While the sample compound is in contact with the immobilized protein, measurements capable of detecting protein-ligand interactions are conducted. Examples of such measurements are SELDI, biacore and FCS, described above. Compounds

5

10

15

found to bind the protein are readily discovered in this fashion and are subjected to further characterization.

The above-disclosed embodiments are illustrative. This disclosure of the invention will place one skilled in the art in possession of many variations of the invention. All such obvious and foreseeable variations are intended to be encompassed by the present invention.

. . 5

10

15

25

30

CLAIMS:

- 1. A method of identifying a herbicidal compound, comprising:
 - a) combining a polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96 with a compound to be tested for the ability to bind to said polypeptide, under conditions conducive to binding;
 - b) selecting a compound identified in (a) that binds to said polypeptide;
 - c) applying a compound selected in (b) to a plant to test for herbicidal activity; and
 - d) selecting a compound identified in (c) that has herbicidal activity.
- 2. The method according to claim 1, wherein said polypeptide comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.
- 3. The method according to claim 2, wherein said polypeptide comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.
- 4. The method according to claim 3, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.
 - 5. A method of identifying a herbicidal compound, comprising:
 - c) combining a polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96 with a compound to be tested for the ability to inhibit the activity of said polypeptide, under conditions conducive to inhibition;
 - d) selecting a compound identified in (a) that inhibits the activity of said polypeptide;
 - c) applying a compound selected in (b) to a plant to test for herbicidal activity; and
 - d) selecting a compound identified in (c) that has herbicidal activity.

6. The method according to claim 5, wherein said polypeptide comprises an amino acid sequence at least 95% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.

- The method according to claim 6, wherein said polypeptide comprises an amino acid sequence at least 99% identical to an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.
- 8. The method according to claim 7, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of the even numbered SEQ ID NOs:2-96.
 - 9. A method for killing or inhibiting the growth or viability of a plant, comprising applying to the plant a herbicidal compound identified according to the method of claim 1.
- 15 10. A method for killing or inhibiting the growth or viability of a plant, comprising applying to the plant a herbicidal compound identified according to the method of claim 5.

SEQUENCE LISTING

<110> Syngenta Participations AG

<120> NUCLEIC ACID MOLECULES ENCODING PROTEINS ESSENTIAL FOR PLANT GROWTH AND DEVELOPMENT AND USES THEREOF

<130> 60035A

<150> US 60/305,806

<151> 2001-07-16

<150> US 60/358,416

<151> 2002-02-20

<160> 125

<170> PatentIn version 3.1

<210> 1

<211> 2010

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2010)

<223> 942

agc ttc caa ggc ctg gac acc cgt aga acc ttt gtc agc cat ctc cgc Ser Phe Gln Gly Leu Asp Thr Arg Arg Thr Phe Val Ser His Leu Arg 20 25 30

cgt tca ttg gac aga aaa ggc att aag act ttt gaa gat gaa aat gag 144

96

Z	Arg	Ser	Leu 35	Asp	Arg	Lys	Gly	Ile 40	Lys	Thr	Phe	Glu	Asp 45	Glu	Asn	Glu		
ţ	cct Ser	ctg Leu 50	aga Arg	ggt Gly	gaa Glu	tta Leu	gat Asp 55	tct Ser	tct Ser	gcg Ala	gtc Val	tat Tyr 60	cag Gln	aca Thr	att Ile	gga Gly	1	.92
(gag 3lu 65	tca Ser	aaa Lys	gtg Val	gcc Ala	gtt Val 70	gtc Val	ttg Leu	ata Ile	tcg Ser	gtg Val 75	aac Asn	tat Tyr	gcc Ala	tct Ser	tca Ser 80	2	240
]	cct Pro	ttg Leu	tgc Cys	ctg Leu	gat Asp 85	agt Ser	ctc Leu	ctt Leu	aag Lys	att Ile 90	ttg Leu	aag Lys	ttt Phe	cac His	cag Gln 95	tca Ser	2	288
•	ggt Gly	tca Ser	ctc Leu	gtt Val 100	ttg Leu	ata Ile	cca Pro	atc Ile	ttc Phe 105	tat Tyr	gaa Glu	gtt Val	gat Asp	cct Pro 110	atg Met	gat Asp	3	336
	gta Val	aga Arg	aaa Lys 115	caa Gln	att Ile	eja aaa	aaa Lys	ctg Leu 120	tac Tyr	gaa Glu	gca Ala	ttc Phe	tca Ser 125	Leu	cat His	gag Glu	:	384
	aga Arg	gaa Glu 130	aac Asn	cct Pro	gaa Glu	aag Lys	gtt Val 135	caa Gln	aca Thr	tgg Trp	agg Arg	caa Gln 140	Ala	ctg Leu	tcc Ser	caa Gln		432
	ctg Leu 145	gtc Val	agc Ser	att Ile	ccg Pro	ggc Gly 150	ggc	cag Gln	tac Tyr	tca Ser	gag Glu 155	Ile	tgg Trp	gat Asp	ggt Gly	gat Asp 160		480
	gca Ala	gag Glu	ctg Leu	atc Ile	cat His 165	caa Gln	att Ile	acc Thr	gtt Val	gac Asp 170	Ile	tgg Trp	aat Asn	ata Ile	ttt Phe	gtc Val		528
	gct Ala	tcc Ser	aag Lys	tca Ser 180	Ser	gat Asp	ttg Leu	tgt Cys	ggt Gly 185	Leu	gtg Val	. GJŽ	g atg Met	gat Asp 190	Arg	cac His		576
	atg Met	aaa Lys	gcc Ala 195	Met	tat Tyr	aga Arg	ttg Leu	tta Leu 200	ı Asp	tta Leu	gga Gly	ttg Lei	g aaa 1 Lys 205	a Asp	gaa Glu	gtt Val		624
	cgt Arg	cat His 210	Ile	aaa Lys	att Ile	tgg Trp	ggt Gly 215	Ser	cga Arg	gac J Asp	ato Ile	220 Gly Gly	y Ly:	g act s Thi	gag Gli	g ttt ı Phe		672
	gca Ala 225	Lys	tat Tyr	ctg Leu	tat Tyr	gaa Glu 230	Glu	att Ile	ttg E Lei	g cad 1 His	aac Asr 235	n Phe	t gat e Asj	t aco	c cat	t gtc s Val 240		720
	atg Met	tta Leu	aaa Lys	gct Ala	cca Pro 245	Glr	aga Arg	att J Ile	t tog e Sei	g cgt r Arg 250	g Phe	t gag	g gag u Gl	g gti u Vai	t cg l Arg 25	t ttg g Leu 5		768
	gca Ala	gaa Glu	tat Tyr	gtg Val 260	. Cys	ctt Lev	cga Arg	t cti	t gag u Gli 26!	и Гу	a gca s Ala	a ag	a ac g Th	t ttg r Le 27	u Se	a aaa r Lys		816
	aca	tee	g aag	gad	act	gca	a tca	agg	g tti	t ct	c ct	c gt	a ct	g ga	t aa	t gtg		864

Thr	Ser	Lys 275	Asp	Thr	Ala	Ser	Arg 280	Phe	Leu	Leu	Val	Leu 285	Asp	Asn	Val	
aat Asn	gaa Glu 290	tca Ser	ttt Phe	gac Asp	cca Pro	ata Ile 295	aga Arg	aaa Lys	ctt Leu	gca Ala	agg Arg 300	gtg Val	att Ile	agt Ser	tct Ser	912
ttt Phe 305	ggt Gly	cca Pro	Gly 999	agc Ser	agg Arg 310	atc Ile	att Ile	aca Thr	acc Thr	acc Thr 315	cga Arg	aac Asn	ttg Leu	cag Gln	ttc Phe 320	960
agt Ser	tcg Ser	act Thr	tcc Ser	cct Pro 325	tta Leu	ccg Pro	ttt Phe	caa Gln	tat Tyr 330	gaa Glu	gtt Val	tta Leu	gjà aaa	ctg Leu 335	Glu	1008
ttc Phe	tct Ser	gaa Glu	gct Ala 340	ctt Leu	cag Gln	ctc Leu	ttc Phe	tgt Cys 345	ctc Leu	cat His	gct Ala	ttc Phe	gag Glu 350	cag Glr	act Thr	1056
cat His	cct Pro	ttt Phe 355	Leu	ggt Gly	ttt Phe	gaa Glu	gac Asp 360	ctt Leu	tca Ser	tgt Cys	cgt Arg	gca Ala 365	Val	aaa Lys	ctc Leu	1104
gca Ala	ggt Gly 370	Gly	ttt Phe	cct Pro	tta Leu	tcc Ser 375	tta Leu	aaa Lys	aga Arg	tta Leu	ggc Gly 380	Ser	aga Arg	ttt Phe	tct Ser	1152
ggt Gly 385	Arg	aag Lys	aag Lys	gat Asp	gaa Glu 390	tgg Trp	gaa Glu	gtg Val	atc Ile	ttg Leu 395	Phe	gga Gly	tac Tyr	gaa Glu	a aga 1 Arg 400	1200
tca Ser	act	gtt Val	aac Asn	ggt Gly 405	val	ata Ile	aat Asn	ccc Pro	gaa Glu 410	Lys	aat Asr	ago n Ser	ctg Lev	g gat n Asj 41.	c ggg p Gly	1248
cta Leu	tac Tyr	gaa Glu	tac Tyr 420	Ser	tct Ser	ato Ile	atc Met	g gaa Glu 425	ı Thr	ttt Phe	tca Sei	a agt r Sei	caa Glr 430	ı Pr	g att o Ile	1296
tca Ser	ago Ser	aca Thi	Thi	a aga	a agt g Ser	ttt Phe	gaa Glu 440	ı Ası	c ctt o Leu	gtg 1 Val	g ggg	g ato y Met 44!	: Ası	ca n Hi	t cgt s Arg	1344
ato Met	Glr 450	ı Ala	t ttg a Lei	g tc <u>c</u> ı Sei	g gca c Ala	tto Lev 455	ı Lev	a gaq ı Glı	g cta u Lev	a gaa ı Glı	a tc u Se 46	r As	c aaa p Lys	a ga s Gl	a gtt u Val	1392
cgt Arg 46	y Val	a gti l Vai	t gga l Gly	a att y Ile	t tgg e Trp 470	Gly	aca Thi	a gg r Gl	a ggo y Gl	c at y Il 47	e Gl	t aa y Ly	a ac	a ac	t cta r Leu 480	
tc: Se:	a aga	a ta g Ty:	t gct r Ala	t tac a Ty: 48	r Glı	g aga	a ato	c tc e Se	g cag r Gl: 49	n Gl	a tt n Ph	c ca e Hi	c ac s Th	c ca r Hi 49	t gct s Ala 95	1488
tt: Ph	t cta	a ga u Gl	a aa u As: 50	n Al	t caa a Gli	a gaq n Gli	g ag u Se	c ag r Se 50	r Se	a tc r Se	c tg r Cy	jt ct 's Le	a ga u Gl 51	u G.	aa cgg lu Arg	1536 1
tt	t ct	a tc	c aa	a gc	t at	c ca	a ag	a ga	a gc	g ct	t go	a gt	a ag	g a	ac tct	1584

Phe	Leu	Ser 515	Lys	Ala	Ile	Gln	Arg 520	Glu	Ala	Leu	Ala	Val 525	Arg	Asn	Ser	
aaa Lys	gac Asp 530	tgt Cys	cca Pro	gaa Glu	ata Ile	atg Met 535	aaa Lys	tca Ser	ttg Leu	att Ile	caa Gln 540	cac His	cga Arg	aaa Lys	gtt Val	1632
ctg Leu 545	ctt Leu	ata Ile	gtt Val	gat Asp	gat Asp 550	gtg Val	gat Asp	aac Asn	gtc Val	aag Lys 555	acg Thr	tta Leu	gag Glu	gaa Glu	gtc Val 560	1680
ttc Phe	aag Lys	atc Ile	acc Thr	agt Ser 565	tgg Trp	ttg Leu	gtc Val	cct Pro	gga Gly 570	agt Ser	aga Arg	gtt Val	att Ile	gtg Val 575	act Thr	1728
gca Ala	cga Arg	gat Asp	gag Glu 580	agt Ser	ttt Phe	ctt Leu	ctg Leu	gcc Ala 585	agt Ser	gga Gly	gtg Val	aaa Lys	tat Tyr 590	att Ile	ttt Phe	1776
gaa Glu	gtt Val	aag Lys 595	ggc	ctg Leu	aga Arg	ttt Phe	gac Asp 600	caa Gln	gct Ala	ctt Leu	caa Gln	ctt Leu 605	Phe	tat Tyr	caa Gln	1824
ttc Phe	gct Ala 610	ttc Phe	aag Lys	cag Gln	aaa Lys	tca Ser 615	Pro	ccg Pro	gtt Val	cgg Arg	Phe 620	Arg	cag Gln	cta Leu	tca Ser	1872
gtt Val 625	Arg	gca Ala	atc Ile	aag Lys	ctt Leu 630	Val	gga Gly	ttt Phe	ctc Leu	ecc Pro 635	Leu	gcc Ala	Leu	aaa Lys	gtg Val 640	1920
acc Thr	ggc Gly	tca Ser	atg Met	tta Leu 645	Tyr	cgt Arg	aaa Lys	aaa Lys	gaa Glu 650	Ser	tac Tyr	tgg Trp	gaa Glu	act Thr 655	ata Ile	1968
ttg Leu	cag Gln	tgt Cys	ttt Phe 660	Glu	gaa Glu	aag Lys	cag Gln	aat Asr 665	r PAs	ggt Gly	aca Thi	a att	tga •	1		2010

<210> 2

<211> 669

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Ser Ser Ser Ser Ser Ser Gln Lys Phe Tyr Val Phe Leu 1 5 10 15

Ser Phe Gln Gly Leu Asp Thr Arg Arg Thr Phe Val Ser His Leu Arg 20 25 30

Arg Ser Leu Asp Arg Lys Gly Ile Lys Thr Phe Glu Asp Glu Asn Glu 35 40 . 45

Ser Leu Arg Gly Glu Leu Asp Ser Ser Ala Val Tyr Gln Thr Ile Gly 50 55 60

Glu Ser Lys Val Ala Val Val Leu Ile Ser Val Asn Tyr Ala Ser Ser 65 70 75 80

Pro Leu Cys Leu Asp Ser Leu Leu Lys Ile Leu Lys Phe His Gln Ser 85 90 95

Gly Ser Leu Val Leu Ile Pro Ile Phe Tyr Glu Val Asp Pro Met Asp 100 105 110

Val Arg Lys Gln Ile Gly Lys Leu Tyr Glu Ala Phe Ser Leu His Glu 115 120 125

Arg Glu Asn Pro Glu Lys Val Gln Thr Trp Arg Gln Ala Leu Ser Gln 130 135 140

Leu Val Ser Ile Pro Gly Gly Gln Tyr Ser Glu Ile Trp Asp Gly Asp 145 150 155 160

Ala Glu Leu Ile His Gln Ile Thr Val Asp Ile Trp Asn Ile Phe Val 165 170 175

Ala Ser Lys Ser Ser Asp Leu Cys Gly Leu Val Gly Met Asp Arg His 180 185 190

Met Lys Ala Met Tyr Arg Leu Leu Asp Leu Gly Leu Lys Asp Glu Val
195 200 205

Arg His Ile Lys Ile Trp Gly Ser Arg Asp Ile Gly Lys Thr Glu Phe 210 215 220

Ala Lys Tyr Leu Tyr Glu Glu Ile Leu His Asn Phe Asp Thr His Val 225 230 235 240

Met Leu Lys Ala Pro Gln Arg Ile Ser Arg Phe Glu Glu Val Arg Leu 245. 250 255

Ala Glu Tyr Val Cys Leu Arg Leu Glu Lys Ala Arg Thr Leu Ser Lys 260 265 270

Thr Ser Lys Asp Thr Ala Ser Arg Phe Leu Leu Val Leu Asp Asn Val 275 280 285

- Asn Glu Ser Phe Asp Pro Ile Arg Lys Leu Ala Arg Val Ile Ser Ser 290 295 300
- Phe Gly Pro Gly Ser Arg Ile Ile Thr Thr Thr Arg Asn Leu Gln Phe 305 310 315 320
- Ser Ser Thr Ser Pro Leu Pro Phe Gln Tyr Glu Val Leu Gly Leu Glu 325 330 335
- Phe Ser Glu Ala Leu Gln Leu Phe Cys Leu His Ala Phe Glu Gln Thr 340 345 350
- His Pro Phe Leu Gly Phe Glu Asp Leu Ser Cys Arg Ala Val Lys Leu 355 360 365
- Ala Gly Gly Phe Pro Leu Ser Leu Lys Arg Leu Gly Ser Arg Phe Ser 370 375 380
- Gly Arg Lys Lys Asp Glu Trp Glu Val Ile Leu Phe Gly Tyr Glu Arg 385 390 395 400
- Ser Thr Val Asn Gly Val Ile Asn Pro Glu Lys Asn Ser Leu Asp Gly
 405 410 415
- Leu Tyr Glu Tyr Ser Ser Ile Met Glu Thr Phe Ser Ser Gln Pro Ile 420 425 430
- Ser Ser Thr Thr Arg Ser Phe Glu Asp Leu Val Gly Met Asn His Arg 435 440 445
- Met Gln Ala Leu Ser Ala Leu Leu Glu Leu Glu Ser Asp Lys Glu Val
 450 455 460
- Arg Val Val Gly Ile Trp Gly Thr Gly Gly Ile Gly Lys Thr Thr Leu 465 470 475 480
- Ser Arg Tyr Ala Tyr Glu Arg Ile Ser Gln Gln Phe His Thr His Ala 485 490 495
- Phe Leu Glu Asn Ala Gln Glu Ser Ser Ser Ser Cys Leu Glu Glu Arg
 500 505 510

Phe Leu Ser Lys Ala Ile Gln Arg Glu Ala Leu Ala Val Arg Asn Ser 515 520 525

Lys Asp Cys Pro Glu Ile Met Lys Ser Leu Ile Gln His Arg Lys Val 530 540

Leu Leu Ile Val Asp Asp Val Asp Asn Val Lys Thr Leu Glu Glu Val 545 550 555 560

Phe Lys Ile Thr Ser Trp Leu Val Pro Gly Ser Arg Val Ile Val Thr 565 570 575

Ala Arg Asp Glu Ser Phe Leu Leu Ala Ser Gly Val Lys Tyr Ile Phe 580 585 590

Glu Val Lys Gly Leu Arg Phe Asp Gln Ala Leu Gln Leu Phe Tyr Gln 595 600 605

Phe Ala Phe Lys Gln Lys Ser Pro Pro Val Arg Phe Arg Gln Leu Ser 610 615 620

Val Arg Ala Ile Lys Leu Val Gly Phe Leu Pro Leu Ala Leu Lys Val 625 630 635 640

Thr Gly Ser Met Leu Tyr Arg Lys Lys Glu Ser Tyr Trp Glu Thr Ile 645 650 655

Leu Gln Cys Phe Glu Glu Lys Gln Asn Lys Gly Thr Ile 660 665

<210> 3

<211> 846

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(846)

<223> 978

<400 atg Met 1	aaq	aag	cga Arg	acg Thr 5	atg Met	tcc Ser	gca Ala	tgg Trp	gga Gly 10	tcg Ser	gcg Ala	att Ile	tta Leu	atc Ile 15	ttc Phe	48
ata Ile	ata Ile	ctt Leu	atg Met 20	atc Ile	gtc Val	act Thr	ccc Pro	aca Thr 25	atc Ile	cct Pro	caa Gln	tct Ser	cag Gln 30	gct Ala	tac Tyr	96
cac His	aat Asn	ttc Phe 35	gcc Ala	gat Asp	caa Gln	cgc Arg	tcc Ser 40	ttc Phe	ttc Phe	gjà aaa	att Ile	cca Pro 45	aat Asn	ttt Phe	tta Leu	144
aac Asn	gtc Val 50	atc Ile	tcc Ser	aac Asn	ttc Phe	cct Pro 55	ttc Phe	ctc Leu	atc Ile	atc Ile	ggc Gly 60	ttt Phe	atc Ile	ggt Gly	ctt Leu	192
atc Ile 65	ctc Leu	tgc Cys	ttt Phe	tac Tyr	cca Pro 70	gaa Glu	gat Asp	tac Tyr	ttt Phe	agc Ser 75	ttt Phe	agt Ser	ttg Leu	cga Arg	ggt Gly 80	240
gag Glu	aaa Lys	ata Ile	gga Gly	tgg Trp 85	act Thr	tgc Cys	ttt Phe	tac Tyr	atc Ile 90	ggt Gly	gta Val	gct Ala	gct Ala	gtt Val 95	gct Ala	288
ttt Phe	gga Gly	tct Ser	tct Ser 100	tac Tyr	tat Tyr	cat His	ctt Leu	cac His 105	cca Pro	aac Asn	gat Asp	gct Ala	act Thr 110	Leu	ctc Leu	336
tgg Trp	gat Asp	cgt Arg 115	ctt Leu	ccc Pro	atg Met	act Thr	att Ile 120	Ala	ttc Phe	aca Thr	tca Ser	ato Ile 125	Met	gct Ala	ata Ile	384
ttt Phe	gta Val 130	atc Ile	gag Glu	agg Arg	att Ile	gat Asp 135	Glu	cat His	aag Lys	ggt	act Thr 140	Tyr	tcc Ser	att Ile	gct Ala	432
cct Pro 145	Leu	ctt Leu	ctt Leu	gct Ala	ggt Gly 150	Leu	gtt Val	agc Ser	att Ile	ttg Leu 155	ι Тух	tgg Trp	agg Arg	j ttt j Phe	ttc Phe 160	480
gat Asp	gac Asp	ctt Leu	agg Arg	cca Pro 165	туг	gct	ttg Lev	gtt Val	cag Glr 170	Phe	gtt Val	cet L Pro	tgo Cys	att Ile 175	gtg Val	528
att Ile	ccg Pro	ttg Leu	atg Met 180	: Ala	att Ile	tta Lei	ı ttg ı Lev	cct Pro 185	Pro	a ato Met	g tat	c aca	a cat r His 190	s Sei	act Thr	576
tat Tyr	tgg Trp	cta Leu 195	Trp	gct Ala	gca Ala	. Gly	y tto y Phe 200	э Туз	c te	tta 1 Le	a gco	c aag a Ly: 20:	s Va:	g gaa l Glu	a gaa ı Glu	624
gct Ala	gcg Ala 210	Asp	aag Lys	g cct s Pro	ata o Ile	tai Ty: 21	r Se	e tgg r Trj	g act	t cat	t ca s Hi 22	s Il	t ati e Ilo	t agi e Sei	c Gly	672
cat His 225	s Ser	cts Lev	g aag 1 Lys	g cat s His	t ttg s Lei 230	і Су	t gc	c gct a Ala	t ate	g gt t Va 23	l Pr	t gt o Va	c tt	c cti e Lei	t acc u Thr 240	720

ctc atg ctt gcg aaa aga acc gtt caa act gag agg att agc ttg tat
Leu Met Leu Ala Lys Arg Thr Val Gln Thr Glu Arg Ile Ser Leu Tyr
245

aag aca tgg aag aaa gga tcc gag gaa gaa cgg ttc gag cat agc tac
Lys Thr Trp Lys Lys Gly Ser Glu Glu Glu Arg Phe Glu His Ser Tyr
260

tcc aac gtt gca gtc gaa gag act cgg tag

tcc aac gtt gca gtc gaa gag act cgg tag

846

Ser Asn Val Ala Val Glu Glu Thr Arg
275

<210> 4

<211> 281

<212> PRT

<213> Arabidopsis thaliana

<400> 4

Met Lys Lys Arg Thr Met Ser Ala Trp Gly Ser Ala Ile Leu Ile Phe 1 5 10 15

Ile Ile Leu Met Ile Val Thr Pro Thr Ile Pro Gln Ser Gln Ala Tyr 20 25 30

His Asn Phe Ala Asp Gln Arg Ser Phe Phe Gly Ile Pro Asn Phe Leu 35 40 45

Asn Val Ile Ser Asn Phe Pro Phe Leu Ile Ile Gly Phe Ile Gly Leu 50 55 60

Ile Leu Cys Phe Tyr Pro Glu Asp Tyr Phe Ser Phe Ser Leu Arg Gly 65 70 75 80

Glu Lys Ile Gly Trp Thr Cys Phe Tyr Ile Gly Val Ala Ala Val Ala 85 90 95

Phe Gly Ser Ser Tyr Tyr His Leu His Pro Asn Asp Ala Thr Leu Leu 100 105 110

Trp Asp Arg Leu Pro Met Thr Ile Ala Phe Thr Ser Ile Met Ala Ile 115 120 125

Phe Val Ile Glu Arg Ile Asp Glu His Lys Gly Thr Tyr Ser Ile Ala 130 135 140

Pro Leu Leu Leu Ala Gly Leu Val Ser Ile Leu Tyr Trp Arg Phe Phe 145 150 155 160

Asp Asp Leu Arg Pro Tyr Ala Leu Val Gln Phe Val Pro Cys Ile Val 165 170 175

Ile Pro Leu Met Ala Ile Leu Leu Pro Pro Met Tyr Thr His Ser Thr 180 185 190

Tyr Trp Leu Trp Ala Ala Gly Phe Tyr Leu Leu Ala Lys Val Glu Glu 195 200 205

Ala Ala Asp Lys Pro Ile Tyr Ser Trp Thr His His Ile Ile Ser Gly
210 215 220

His Ser Leu Lys His Leu Cys Ala Ala Met Val Pro Val Phe Leu Thr 225 230 235 240

Leu Met Leu Ala Lys Arg Thr Val Gln Thr Glu Arg Ile Ser Leu Tyr 245 250 255

Lys Thr Trp Lys Lys Gly Ser Glu Glu Glu Arg Phe Glu His Ser Tyr 260 265 270

Ser Asn Val Ala Val Glu Glu Thr Arg 275 280

<210> 5

<211> 3027

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(3027)

<223> 3218

<400> 5 atg gag att gca att tcg tat aaa ccg aat ccg ctt atc tct tca tcg

48

Met 1	Glu	Ile	Ala	Ile 5	Ser	Tyr	Lys	Pro	Asn 10	Pro	Leu	Ile	Ser	Ser 15	Ser		
act Thr	cag Gln	ttg Leu	ttg Leu 20	aaa Lys	aga Arg	tca Ser	aaa Lys	agt Ser 25	ttt Phe	ggt Gly	ctt Leu	gtt Val	cgg Arg 30	ttt Phe	ccc Pro		96
gcc Ala	aag Lys	tat Tyr 35	gga Gly	ctg Leu	gga Gly	gct Ala	acc Thr 40	cgg Arg	aaa Lys	aaa Lys	cag Gln	ctc Leu 45	ttt Phe	cga Arg	gtc Val	1	44
tat Tyr	gcg Ala 50	tct Ser	gaa Glu	agt Ser	agt Ser	agt Ser 55	gly aaa	tct Ser	tca Ser	tct Ser	aat Asn 60	agc Ser	gat Asp	gga Gly	ggc Gly	3	192
ttt Phe 65	tcg Ser	tgg Trp	gtg Val	aga Arg	ttg Leu 70	gct Ala	cag Gln	tct Ser	att Ile	cgc Arg 75	ctt Leu	ggt. Gly	gcc Ala	gag Glu	cgg Arg 80	2	240
att Ile	Gly 333	gag Glu	aag Lys	att Ile 85	gga Gly	gaa Glu	tct Ser	gtg Val	aag Lys 90	aca Thr	gaa Glu	att Ile	Gly 999	ttt Phe 95	gac Asp	2	288
tcg Ser	gaa Glu	gaa Glu	gca Ala 100	agt Ser	gjå aaa	aga Arg	gtg Val	aat Asn 105	Glu	tat Tyr	gtg Val	gct Ala	cga Arg 110	gtt Val	aag Lys	:	336
gat Asp	agt Ser	gtg Val 115	cac His	aag Lys	ggc	cat His	cac His 120	gag Glu	ctg Leu	act Thr	cgc Arg	ttt Phe 125	Lys	aat Asn	gag Glu		384
aca Thr	gtg Val 130	cct Pro	tcg Ser	ttt Phe	att Ile	gat Asp 135	tgg Trp	aac Asn	aag Lys	tgg Trp	gag Glu 140	His	tgg Trp	aag Lys	gac		432
ato Ile 145	Arg	aat Asn	tgg Trp	gac Asp	ggt Gly 150	aaa Lys	cga Arg	gtt Val	gct Ala	gcc Ala 155	Leu	ttc Phe	ata Ile	tat Tyr	gct Ala 160		480
ttt Phe	gcg Ala	ctg Leu	tta Leu	ctt Leu 165	Ser	tgt Cys	caa Gln	aga Arg	gtt Val 170	Tyr	gtt Val	gcc Ala	ato Ile	caa Glr 175	gct Ala		528
cct	cgg Arg	gta Val	gaa Glu 180	Arg	gag Glu	aga Arg	aga Arg	gag Glu 185	ı Lev	aca Thr	gag Glu	tct Ser	Phe 190	Met	g gag : Glu		576
gct	ttg Leu	ato Ile 195	Pro	gag Glu	cca Pro	tct Ser	Pro 200	Gl3	a aat 7 Asr	ata lle	gaa Glu	a aag 1 Lys 205	3 Phe	aag Lys	g aga s Arg		624
aat Ası	atg n Met 210	Trp	agg Arg	aaa Lys	gca Ala	aca Thr 215	Pro	aaa Lys	a ggo s Gly	ttg Lev	g aaa 1 Ly: 220	s Lei	a aaa 1 Lys	a agg	g ttc g Phe		672
at: 11: 22!	e Glu	gcg Ala	g cct A Pro	gat Asp	gga Gly 230	Thi	ctt Lei	gto Vai	c cad l His	gat S Asp 235	Se:	t tc: r Se:	t tai	t gt r Vai	t gga l Gly 240		720
gaa	a aat	gcg	g tgg	g gat	gac	: gat	cta	a ga	gac	e aca	a ga	g gg:	a tc	t ct	c aag		768

Glu	Asn	Ala	Trp	Asp 245	Asp	Asp	Leu	Glu	Thr 250	Thr	Glu	Gly	Ser	Leu 255	Lys	
aaa Lys	ata Ile	att Ile	ggt Gly 260	aga Arg	aat Asn	gct Ala	agg Arg	att Ile 265	cag Gln	aca Thr	gag Glu	gca Ala	aag Lys 270	aag Lys	aaa Lys	816
cta Leu	agc Ser	caa Gln 275	gat Asp	ctg Leu	ggt Gly	gtc Val	tct Ser 280	ggt Gly	gaa Glu	att Ile	gga Gly	gac Asp 285	agt Ser	gta Val	ggt Gly	864
aat Asn	tgg Trp 290	cgg Arg	gaa Glu	agg Arg	ctt Leu	gca Ala 295	acc Thr	tgg Trp	aag Lys	gaa Glu	atg Met 300	tta Leu	gaa Glu	cga Arg	gaa Glu	912
aaa Lys 305	tta Leu	tca Ser	gaa Glu	cag Gln	tta Leu 310	aac Asn	tcc Ser	tca Ser	gcg Ala	gcg Ala 315	aag Lys	tat Tyr	gtg Val	gtt Val	gaa Glu 320	960
ttt Phe	gat Asp	atg Met	aaa Lys	gag Glu 325	gta Val	gag Glu	aaa Lys	agt Ser	ctt Leu 330	cgc Arg	gaa Glu	gat Asp	gtt Val	att Ile 335	gga Gly	1008
agg Arg	aca Thr	tct Ser	gaa Glu 340	act Thr	gag Glu	gga Gly	act Thr	aga Arg 345	Ala	ctc Leu	tgg Trp	ata Ile	tca Ser 350	Lys	aga Arg	1056
tgg Trp	tgg Trp	cga Arg 355	Tyr	cgc Arg	cct Pro	aag Lys	ctt Leu 360	Pro	tat Tyr	acc Thr	tac Tyr	tto Phe 365	Leu	cag Gln	aag Lys	1104
ctt Leu	gat Asp 370	Ser	tct Ser	gag Glu	gtt Val	gca Ala 375	Ala	gtt Val	gtt Val	ttc Phe	acg Thr	Glu	ı gac ı Asp	cta Lev	aag Lys	1152
aga Arg 385	Leu	tat Tyr	gtg Val	acc Thr	atg Met 390	Lys	gaa Glu	ı ggt ı Gly	tto Phe	e cct Pro 395	Lev	a gaa 1 Glu	a tat ı Tyı	t att	gtt Val 400	1200
gac Asp	att Ile	ccc Pro	tta Leu	gat Asp 405	Pro	tac Tyr	tto Lev	g ttt ı Phe	gag Glu 410	Thi	att	tgo e Cy:	c aad s Asi	c gco n Ala 41	gga a Gly	1248
gtt Val	gag Glu	gtç Val	g gat L Asp 420	Let	ctt Lei	cag Glr	g aag 1 Lys	g agg s Arg 42!	g Gli	g ato n Ile	c cad	c tad	r Pho	e Me	g aaa t Lys	1296
gtt Va]	tto Phe	: att	a Ala	ctt Lev	cto Lev	g ccg	999 Gly	y Il	a cta e Lei	a ati u Ilo	t tt e Le	a tg u Tr 44	p Ph	t at e Il	a aga e Arg	1344
gaa Glu	a tct 1 Sei 450	Ala	c ato a Met	g ctt Lei	cto Le	c cti 1 Lei 45!	ı Il	c ac e Th	a tco r Se:	c aa r Ly	g cg s Ar 46	g Ph	t ct e Le	c ta u Ty	c aag r Lys	1392
аа <u>я</u> Ly я 46!	з Ту	aat Ası	t caç n Glı	g cto n Lei	y tt: 1 Pho 47	e As	t at p Me	g gc t Al	t ta a Ty	t gc r Al 47	a Gl	a aa u As	t tt n Ph	t at e Il	a ttg e Leu 480	
cc	g gti	t gg:	a gat	t gt	c ag	t ga	g ac	a aa	a tc	a at	g ta	t aa	ıg ga	ıa gt	g gta	1488

Pro	Val	Gly	Asp	Val 485	Ser	Glu	Thr	Lys	Ser 490	Met	Tyr	Lys	Glu	Val 495	Val	
cta Leu	ggc Gly	ggt Gly	gat Asp 500	gtc Vaļ	tgg Trp	gat Asp	ctt Leu	ctt Leu 505	gat Asp	gag Glu	cta Leu	atg Met	atc Ile 510	tac Tyr	atg Met	1536
Gly aaa	aac Asn	cca Pro 515	atg Met	caa Gln	tac Tyr	tat Tyr	gaa Glu 520	aaa Lys	gat Asp	gtg Val	gct Ala	ttt Phe 525	gtc Val	agg Arg	ggt Gly	1584
gtg Val	ctt Leu 530	ctt Leu	tct Ser	gga Gly	cct Pro	cct Pro 535	gga Gly	act Thr	gga Gly	aaa Lys	aca Thr 540	ctt Leu	ttt Phe	gcg Ala	cga Arg	1632
aca Thr 545	ctt Leu	gca Ala	aag Lys	gaa Glu	agt Ser 550	gly aaa	cta Leu	cca Pro	ttt Phe	gtg Val 555	ttt Phe	gca Ala	tct Ser	ggt Gly	gcg Ala 560	1680
gag Glu	ttc Phe	aca Thr	gac Asp	agt Ser 565	gaa Glu	aaa Lys	agt Ser	ggt Gly	gct Ala 570	gca Ala	aag Lys	atc Ile	aat Asn	gag Glu 575	atg Met	1728
ttt Phe	tca Ser	atc Ile	gcg Ala 580	aga Arg	cga Arg	aat Asn	gcc Ala	cct Pro 585	Ala	ttt Phe	gtg Val	ttt Phe	gtg Val 590	gat Asp	gaa Glu	1776
ata Ile	gat Asp	gct Ala 595	att Ile	gct Ala	ggt Gly	aga Arg	cat His 600	gct Ala	aga Arg	aaa Lys	gat Asp	cca Pro 605	Arg	aga Arg	aga Arg	1824
gca Ala	act Thr 610	Phe	gaa Glu	gct Ala	tta Leu	att Ile 615	gcg Ala	caa Gln	ctc Leu	gat Asp	999 Gly 620	Glu	aaa Lys	gag Glu	aag Lys	1872
aca Thr 625	Gly	atc Ile	gat Asp	agg Arg	ttt Phe 630	Ser	ttg Leu	aga Arg	caa Gln	gct Ala 635	Val	ata Ile	ttt Phe	atc : Ile	tgt Cys 640	1920
gct Ala	acc Thr	aat Asn	aga Arg	cct Pro 645	Asp	gaa Glu	ctc Leu	gac Asp	ctt Leu 650	Glu	ttt Phe	gto Val	cgt Arg	tet Ser 655	ggc Gly	1968
cgt Arg	att Ile	gac Asp	cgt Arg 660	Arg	ctg Leu	tat Tyr	att Ile	665 665	Let	g cct i Pro	gat Asp	gca Ala	a aag a Lys 670	Gli	a agg a Arg	2016
gtg Val	caa Gln	ata Ile 675	Phe	gga Gly	gtt Val	cac His	agt Ser 680	Ala	a Gly	g aag / Lys	g aad s Asi	c ctt 1 Le: 68!	ı Ala	a gaa	a gat ı Asp	2064
ata Ile	gac Asp 690	Phe	ggg ggg	aag Lys	g ctt Leu	gtt Val 695	. Phe	cga Arg	a acg	g gti r Vaí	700	y Pho	t tco e Sei	e ggg	g gca y Ala	2112
gat Ası 705	ıle	cgc Arc	, aat , Asn	ctt Lei	gtt val 710	Ası	gaa Glu	a gcg 1 Ala	g gct a Ala	t ata a Ilo 71	e Me	g to	g gta r Vai	a ag	g aag g Lys 720	2160
gga	a cgt	tct	tac	ata	a tat	: caa	a caa	a ga	c at	t gt	t ga	t gt	g tt	a ga	t aaa	2208

						_	_			7	3	17-3	T	7 an	Tare		
Gly	Arg	Ser	Tyr	Ile 725	Tyr	Gln	Gln	Asp	730	vai	Asp	val	Leu	735	пуъ		·
caa Gln	ttg Leu	ctc Leu	gag Glu 740	ggt Gly	atg Met	ggt Gly	gta Val	ctt Leu 745	ctt Leu	aca Thr	gag Glu	gaa Glu	gag Glu 750	caa Gln	cag Gln	I L	2256
aaa Lys	tgt Cys	gaa Glu 755	caa Gln	agt Ser	gta Val	tct Ser	tac Tyr 760	gaa Glu	aag Lys	aag Lys	aga Arg	ctt Leu 765	Leu	gct Ala	gtt Val	: L	2304
cat His	gag Glu 770	gct Ala	ggt Gly	cat His	ata Ile	gtg Val 775	ttg Leu	gct Ala	cat His	ttg Leu	ttt Phe 780	Pro	cga Arg	ttt Phe	gac Asp	e P	2352
tgg Trp 785	His	gca Ala	ttt Phe	tcg Ser	cag Gln 790	ctc Leu	ctt Leu	cct Pro	ggt Gly	ggc Gly 795	гуу	gaa Glu	act Thr	gct	gta Val	T	2400
tcg Ser	gtt Val	ttc Phe	tat Tyr	cca Pro 805	cgt Arg	gaa Glu	gac Asp	atg Met	gta Val 810	Asp	caa Glr	ggs Gly	, tat , Tyr	aco Thi	r In	g r	2448
ttt Phe	ggt Gly	tat Tyr	atg Met 820	Lys	atg Met	caa Gln	atg Met	gtg Val 825	. Val	gct Ala	cat His	ggt Gly	gga Gly 830	Arg	c tg g Cy	t s	2496
gct Ala	gaa Glu	cgt Arg	gtg Val	gtt Val	ttt Phe	ggc Gly	gat Asp 840	Asr	gto Val	act Thi	gat Asj	gg G1 84	λ GTZ	a aa 7 Ly	a ga s As	it sp	2544
gao Asj	ctg Leu 850	Glu	g aag Lys	ata Ile	aca Thr	aaa Lys 855	Ile	gco Ala	agg a Arg	g gaq g Glu	g ate 1 Me 86	t Va	g att	ag e Se	c co r Pr	et co	2592
caa Gl: 86	n Ser	gcg Ala	g aga a Arg	tta J Lev	ggt Gly 870	Let	act Thi	caa Gli	a cti n Lei	t gta u Va 87	l Ly	a aa s Ly	g ati	t gg e Gl	у ме	tg et 80	2640
gt. Va	g gat l Ası	tta Lei	a cca u Pro	a gat Asp 889	Ası	c cca	a gad o Asj	b GJ [;] c gg	c ga y Gl	u Le	g at u Il	а аа е Ьу	a ta s Ty	c cg r Ar 89	.a .r.	gg rp	2688
ga As	c cat p His	c cc	t cat o His	s Val	a ato L Mei	g cca : Pro	a gca o Ala	a ga a Gl 90	u Me	g tc t Se	g gt r Va	a ga 11 G]	ia gt iu Va 91	T S€	ec g er G	ag lu	2736
ct Le	a tto u Ph	c ac e Th 91	c cg r Ar 5	t gag g Gli	g ttg u Le	g aca	a ag r Ar 92	g Ty	t at r Il	c ga e Gl	g ga .u G]	ig ac lu Tl 92	ır Gl	a ga .u Gl	aa c lu L	tt eu	2784
gc Al	g at a Me 93	t As	t gc n Al	t ct a Le	g ag u Ar	a gc g Al 93	a As	c ag n Ar	g ca g Hi	ıc at .s I]	Le Le	eg ga eu Aa 40	ac tt sp Le	a at eu I	tc a le T	icc Thr	2832
ag Ai 94	g Gl	g tt u Le	a tt u Le	a ga u Gl	a aa u Ly 95	s Se	a ag r Ar	ıg at g Il	t ac le Th	ır G	ga ti Ly Lo 55	tg g eu G	aa gt lu Va	g g	Iu G	gag Slu 960	2880
aa	aa at	g aa	ıg ga	t ct	t to	t cc	g tt	a at	g tt	t ga	ag g	at t	tt g	tg a	ag o	cca	2928

Lys Met Lys Asp Leu Ser Pro Leu Met Phe Glu Asp Phe Val Lys Pro 965 970 975

ttc cag ata aac cct gat gat gag gag ctt tta cct cac aag gat cga

Phe Gln Ile Asn Pro Asp Asp Glu Glu Leu Leu Pro His Lys Asp Arg

980

985

990

gtg agc tat cag cca gtt gat tta cgt gct gcg cca ctc cac aga agc 3024 Val Ser Tyr Gln Pro Val Asp Leu Arg Ala Ala Pro Leu His Arg Ser 995 1000 1005

1027 tag

<210> 6

<211> 1008

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met Glu Ile Ala Ile Ser Tyr Lys Pro Asn Pro Leu Ile Ser Ser Ser 1 10 15

Thr Gln Leu Leu Lys Arg Ser Lys Ser Phe Gly Leu Val Arg Phe Pro 20 25 30

Ala Lys Tyr Gly Leu Gly Ala Thr Arg Lys Lys Gln Leu Phe Arg Val 35 40 45

Tyr Ala Ser Glu Ser Ser Ser Gly Ser Ser Ser Asn Ser Asp Gly Gly 50 55 60

Phe Ser Trp Val Arg Leu Ala Gln Ser Ile Arg Leu Gly Ala Glu Arg 65 70 75 80

Ile Gly Glu Lys Ile Gly Glu Ser Val Lys Thr Glu Ile Gly Phe Asp 85 90 95

Ser Glu Glu Ala Ser Gly Arg Val Asn Glu Tyr Val Ala Arg Val Lys 100 105 110

Asp Ser Val His Lys Gly His His Glu Leu Thr Arg Phe Lys Asn Glu 115 120 125

Thr Val Pro Ser Phe Ile Asp Trp Asn Lys Trp Glu His Trp Lys Asp 130 135 140

Ile Arg Asn Trp Asp Gly Lys Arg Val Ala Ala Leu Phe Ile Tyr Ala 145 150 155 160

- Phe Ala Leu Leu Ser Cys Gln Arg Val Tyr Val Ala Ile Gln Ala 165 170 175
- Pro Arg Val Glu Arg Glu Arg Glu Leu Thr Glu Ser Phe Met Glu 180 185 190
- Ala Leu Ile Pro Glu Pro Ser Pro Gly Asn Ile Glu Lys Phe Lys Arg 195 200 205
- Asn Met Trp Arg Lys Ala Thr Pro Lys Gly Leu Lys Leu Lys Arg Phe 210 215 220
- Ile Glu Ala Pro Asp Gly Thr Leu Val His Asp Ser Ser Tyr Val Gly 225 230 235 240
- Glu Asn Ala Trp Asp Asp Leu Glu Thr Thr Glu Gly Ser Leu Lys 245 250 255
- Lys Ile Ile Gly Arg Asn Ala Arg Ile Gln Thr Glu Ala Lys Lys Lys 260 265 270
- Leu Ser Gln Asp Leu Gly Val Ser Gly Glu Ile Gly Asp Ser Val Gly 275 280 285
- Asn Trp Arg Glu Arg Leu Ala Thr Trp Lys Glu Met Leu Glu Arg Glu 290 295 300
- Lys Leu Ser Glu Gln Leu Asn Ser Ser Ala Ala Lys Tyr Val Val Glu 305 310 315 320
- Phe Asp Met Lys Glu Val Glu Lys Ser Leu Arg Glu Asp Val Ile Gly 325 330 335
- Arg Thr Ser Glu Thr Glu Gly Thr Arg Ala Leu Trp Ile Ser Lys Arg 340 345 350
- Trp Trp Arg Tyr Arg Pro Lys Leu Pro Tyr Thr Tyr Phe Leu Gln Lys 355 360 365
- Leu Asp Ser Ser Glu Val Ala Ala Val Val Phe Thr Glu Asp Leu Lys 370 375 380

Arg Leu Tyr Val Thr Met Lys Glu Gly Phe Pro Leu Glu Tyr Ile Val 385 390 395 400

- Asp Ile Pro Leu Asp Pro Tyr Leu Phe Glu Thr Ile Cys Asn Ala Gly
 405 410 415
- Val Glu Val Asp Leu Leu Gln Lys Arg Gln Ile His Tyr Phe Met Lys 420 425 430
- Val Phe Ile Ala Leu Leu Pro Gly Ile Leu Ile Leu Trp Phe Ile Arg 435 440 445
- Glu Ser Ala Met Leu Leu Leu Ile Thr Ser Lys Arg Phe Leu Tyr Lys 450 460
- Lys Tyr Asn Gln Leu Phe Asp Met Ala Tyr Ala Glu Asn Phe Ile Leu 465 470 475 480
- Pro Val Gly Asp Val Ser Glu Thr Lys Ser Met Tyr Lys Glu Val Val 485 490 495
- Leu Gly Gly Asp Val Trp Asp Leu Leu Asp Glu Leu Met Ile Tyr Met 500 505 510
- Gly Asn Pro Met Gln Tyr Tyr Glu Lys Asp Val Ala Phe Val Arg Gly 515 520 525
- Val Leu Leu Ser Gly Pro Pro Gly Thr Gly Lys Thr Leu Phe Ala Arg 530 535 540
- Thr Leu Ala Lys Glu Ser Gly Leu Pro Phe Val Phe Ala Ser Gly Ala 545 550 555 560
- Glu Phe Thr Asp Ser Glu Lys Ser Gly Ala Ala Lys Ile Asn Glu Met 565 570 575
- Phe Ser Ile Ala Arg Arg Asn Ala Pro Ala Phe Val Phe Val Asp Glu 580 585 590
- Ile Asp Ala Ile Ala Gly Arg His Ala Arg Lys Asp Pro Arg Arg Arg 595 600 605
- Ala Thr Phe Glu Ala Leu Ile Ala Gln Leu Asp Gly Glu Lys Glu Lys 610 620

Thr Gly Ile Asp Arg Phe Ser Leu Arg Gln Ala Val Ile Phe Ile Cys 625 630 635 640

- Ala Thr Asn Arg Pro Asp Glu Leu Asp Leu Glu Phe Val Arg Ser Gly 645 650 655
- Arg Ile Asp Arg Arg Leu Tyr Ile Gly Leu Pro Asp Ala Lys Gln Arg 660 665 670
- Val Gln Ile Phe Gly Val His Ser Ala Gly Lys Asn Leu Ala Glu Asp 675 680 685
- Ile Asp Phe Gly Lys Leu Val Phe Arg Thr Val Gly Phe Ser Gly Ala 690 695 700
- Asp Ile Arg Asn Leu Val Asn Glu Ala Ala Ile Met Ser Val Arg Lys 705 710 715 720
- Gly Arg Ser Tyr Ile Tyr Gln Gln Asp Ile Val Asp Val Leu Asp Lys 725 730 735
- Gln Leu Leu Glu Gly Met Gly Val Leu Leu Thr Glu Glu Glu Gln Gln 740 745 750
- Lys Cys Glu Gln Ser Val Ser Tyr Glu Lys Lys Arg Leu Leu Ala Val 755 760 765
- His Glu Ala Gly His Ile Val Leu Ala His Leu Phe Pro Arg Phe Asp 770 775 780
- Trp His Ala Phe Ser Gln Leu Leu Pro Gly Gly Lys Glu Thr Ala Val 785 790 795 800
- Ser Val Phe Tyr Pro Arg Glu Asp Met Val Asp Gln Gly Tyr Thr Thr 805 810 815
- Phe Gly Tyr Met Lys Met Gln Met Val Val Ala His Gly Gly Arg Cys 820 825 830
- Ala Glu Arg Val Val Phe Gly Asp Asn Val Thr Asp Gly Gly Lys Asp 835 840 845
- Asp Leu Glu Lys Ile Thr Lys Ile Ala Arg Glu Met Val Ile Ser Pro 850 855

Gln Ser Ala Arg Leu Gly Leu Thr Gln Leu Val Lys Lys Ile Gly Met 865 870 875 880

Val Asp Leu Pro Asp Asn Pro Asp Gly Glu Leu Ile Lys Tyr Arg Trp 885 890 895

Asp His Pro His Val Met Pro Ala Glu Met Ser Val Glu Val Ser Glu 900 905 910

Leu Phe Thr Arg Glu Leu Thr Arg Tyr Ile Glu Glu Thr Glu Glu Leu 915 920 925

Ala Met Asn Ala Leu Arg Ala Asn Arg His Ile Leu Asp Leu Ile Thr 930 935 940

Arg Glu Leu Leu Glu Lys Ser Arg Ile Thr Gly Leu Glu Val Glu 945 950 955 960

Lys Met Lys Asp Leu Ser Pro Leu Met Phe Glu Asp Phe Val Lys Pro 965 970 975

Phe Gln Ile Asn Pro Asp Asp Glu Glu Leu Leu Pro His Lys Asp Arg 980 985 990

Val Ser Tyr Gln Pro Val Asp Leu Arg Ala Ala Pro Leu His Arg Ser 995 1000 1005

<210> 7

<211> 2550

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2550)

<223> 4563

<400> 7
atg aca aaa tcc aac ggc cac aat gca aca atg att gtt acc gga gct

48

Met 1	Thr	Lys	Ser	Asn 5	Gly	His	Asn	Ala	Thr 10	Met	Ile	Val	Thr	Gly 15	Ala	
-	-								_				tcc Ser 30			96
_		_											aac Asn			144
				_					_				ttc Phe			192
	_		_	_	_			_	_			_	cgt Arg			240
			Val										cac His			288
													caa Gln 110			336
			-	_							_	_	gaa Glu	_		384
													agg Arg			432
	_		_			_	_			_			gaa Glu	_	_	480
										Arg			cta Leu		tgg Trp	528
									Ala					Arg	ctc Leu	576
								Arg					Thr		atc Ile	624
	_	His	_	_	_		_			_		Gly			gtg Val	672
	Arg		_			Gln					Phe	_			tta Leu 240	720
acg	acg	aag	cta	gct	gaa	tac	ttg	999	aaa	gaa	cgg	g aaa	ttt	acg	aaa	768

Thr	Thr	Lys	Leu	Ala 245	Glu	Tyr	Leu	Gly	Lys 250	Glu	Arg	Lys	Phe	Thr 255	Lys		
							gtt Val										816
							gta Val 280								tca Ser		864
							gcg Ala										912
						_	cgt Arg		_	_							960
_	_	_	_	_			gga Gly			_		_	_		_	,	1008
							aat Asn										1056
							ttg Leu 360										1104
							aac Asn										1152 [.]
							gaa Glu								gct Ala 400		1200
tat Tyr	gca Ala	aag Lys	gag Glu	gga Gly 405	ggt Gly	gtg Val	gaa Glu	gaa Glu	gtt Val 410	gag Glu	agg Arg	acg Thr	tgg Trp	ctt Leu 415	gaa Glu		1248
									Ser					Tyr	aaa Lys		1296
													Met		ata Ile		1344
							Ile					Met			tac Tyr		1392
	Lys										Gln				ytg Val 480		1440
gaa	act	ctc	atg	aag	gag	ttt	gaa	gaa	ago	999	g aag	aag	a cca	, ctt	cta		1488

												_	•				•
G	lu	Thr	Leu	Met	Lys 485	Glu	Phe	Glu		Ser 490	Gly	Lys	Lys	Pro	Leu 495	Leu	
C P	ca ro	tca Ser	ttc Phe	atc Ile 500	gaa Glu	ata Ile	gcc Ala	aaa Lys	atg Met 505	tac Tyr	ttc Phe	gat Asp	ttg Leu	ggt Gly 510	tta Leu	cat His	1536
g	ag lu	aaa Lys	ttg Leu 515	gag Glu	atg Met	gct Ala	ttt Phe	gtt Val 520	cag Gln	tgc Cys	ttg Leu	gag Glu	aaa Lys, 525	tgc Cys	caa Gln	cct Pro	1584
a S	gc er	cag Gln 530	cct Pro	ata Ile	tat Tyr	aac Asn	ata Ile 535	tat Tyr	ttg Leu	gat Asp	tca Ser	ttg Leu 540	act Thr	aaa Lys	ata Ile	ggc Gly	1632
A	ac sn 345	ctt Leu	gag Glu	aaa Lys	gca Ala	999 Gly 550	gat Asp	gtc Val	ttc Phe	aat Asn	gaa Glu 555	atg Met	aaa Lys	aac Asn	aac Asn	999 560	1680
a	ca hr	atc Ile	aat Asn	gtg Val	agt Ser 565	gct Ala	aga Arg	tcc Ser	tgc Cys	aac Asn 570	agc Ser	ctt Leu	tta Leu	aag Lys	gga Gly 575	tac Tyr	1728
I	cta Seu	gat Asp	tgt Cys	gga Gly 580	aaa Lys	caa Gln	gtg Val	cag Gln	gca Ala 585	Glu	aga Arg	ata Ile	tat Tyr	gat Asp 590	ctg Leu	atg Met	1776
Į	aga Arg	atg Met	aag Lys 595	Lys	tac Tyr	gaa Glu	atc Ile	gaa Glu 600	Pro	ccg Pro	ctt Leu	atg Met	gaa Glu 605	aag Lys	ctt Leu	gat Asp	1824
t	ac Tyr	atc Ile 610	Leu	agc Ser	ttg Leu	aag Lys	aaa Lys 615	aaa Lys	gag Glu	gtg Val	aag Lys	aag Lys 620	Arg	ccg Pro	ttt Phe	agc Ser	1872
Ì	atg Met 625	Lys	cta Leu	agc Ser	aaa Lys	gac Asp 630	Gln	cgt Arg	gag Glu	gta Val	ttg Leu 635	Val	ggt Gly	ttg Leu	ttg Leu	tta Leu 640	1920
(ggt Gly	ggc	ttg Leu	caa Gln	ato Ile 645	Glu	tca Ser	gac Asp	aaa Lys	gag Glu 650	r PAs	aag Lys	g ago s Ser	cac His	atg Met 655	g atc : Ile	1968
	aaa Lys	ttt Phe	gaa Glu	ttt Phe	Arg	gaa Glu	aat Asn	tct Ser	caa Glr 665	ı Ala	cat His	ctg Lev	g gtt ı Val	ctt L Let 670	і Гуя	a caa s Gln	2016
	aac Asn	ata Ile	cat His	s Asp	cag Glr	tto Phe	cgt Arg	gag Glu 680	ı Tr	g ttg p Lei	g cat 1 His	ect Pro	t ttg b Lei 68!	ı Sei	c aat	ttt n Phe	2064
	cag Glr	gag Glu 690	ı Asp	att o Ile	ata Ile	ccg Pro	tto Phe 695	e Gli	a tto ı Pho	e Tyi	c tco	gt Va 70	l Pro	c cat o Hi:	t tca s Se:	a tac r Tyr	2112
	tto Phe 705	: Gly	ttt Phe	tac Tyr	get Ala	gaa a Glu 710	ı His	tae Ty:	c tgg r Trj	g cca p Pro	a aaq o Ly:	s Gl	t cag y Gl:	g cca n Pro	a gag o Gl	g att u Ile 720	2160
	CC	a aaa	a cte	g att	cat	cgg	g tgg	g ct	a tc	g cc	a ca	c tc	a ct	c gc	g ta	t tgg	2208

Pro	Lys	Leu	Ile	His 725	Arg	Trp	Leu	Ser	Pro 730	His	Ser	Leu	Ala	Tyr 735	Trp	
tac Tyr	atg Met	tac Tyr	agc Ser 740	ggc Gly	gtt Val	aaa Lys	aca Thr	tca Ser 745	tca Ser	gga Gly	gac Asp	att Ile	atc Ile 750	ttg Leu	aga Arg	2256
ttg Leu	aag Lys	gga Gly 755	agt Ser	ctc Leu	gaa Glu	ggt Gly	gtt Val 760	gag Glu	aaa Lys	gta Val	gta Val	aag Lys 765	gct Ala	ctt Leu	caa Gln	2304
gcc Ala	aaa Lys 770	tct Ser	atg Met	gaa Glu	tgt Cys	cga Arg 775	gtt Val	aag Lys	aag Lys	aaa Lys	gga Gly 780	aaa Lys	gtc Val	ttc Phe	tgg Trp	2352
att Ile 785	gga Gly	ctt Leu	cag Gln	gga Gly	aca Thr 790	aac Asn	tca Ser	gct Ala	ttg Leu	ttc Phe 795	tgg Trp	aaa Lys	cta Leu	ata Ile	gag Glu 800	2400
cct Pro	cat His	gtg Val	tta Leu	gag Glu 805	aac Asn	ttg Leu	aaa Lys	gag Glu	cat His 810	ttg Leu	aaa Lys	cct Pro	gct Ala	tct Ser 815	gaa Glu	2448
Ser	Leu	Asp	Asn 820	Val	Lys	Glu	Ala	Glu 825	Glu	Gln	Ser	Ile	aac Asn 830	Phe	Lys	2496
tca Ser	aac Asn	tct Ser 835	gat Asp	cac His	agt Ser	gac Asp	gat Asp 840	Cys	gtc Val	aat Asn	tca Ser	gaa Glu 845	Ala	cat His	ttt Phe	2544
tac Tyr	tga															2550

<210> 8

<211> 849

<212> PRT

<213> Arabidopsis thaliana

<400> 8

Met Thr Lys Ser Asn Gly His Asn Ala Thr Met Ile Val Thr Gly Ala 1 5 10 15

Cys Asp Phe Ser Ser Ser Phe Ser Leu Ala Ser Ser Ser Ser Ser Thr 20 25 30

Val Ser Val Thr Thr Phe Asn Ile Ser Ser Leu Ser Ser Asn Pro Asn 35 40 45

Ile Ile Asn Ser Ser Ser Thr Leu Phe Arg Ser Leu Ser Phe Ser Leu 50 55 60

- Ile Arg His Arg Ser Ser Tyr Ser Arg Arg Ser Leu Arg Arg Leu Ser 65 70 75 80
- Ile His Thr Val His Gly Asn Lys Thr Gln Phe Phe Ser His Ser Ser 85 90 95
- Thr Arg Thr Pro Pro Leu Phe Thr Ala Asn Ser Thr Ala Gln Arg Ser 100 105 110
- Gly Thr Phe Val Glu His Leu Thr Gly Ile Thr Glu Ser Glu Glu Gly
 115 120 125
- Ile Ser Glu Ala Asn Gly Phe Gly Asp Val Glu Ser Ala Arg Asn Asp 130 135 140
- Ile Arg Asn Val Ala Thr Arg Arg Ile Glu Thr Glu Phe Glu Val Arg 145 150 155 160
- Glu Leu Glu Glu Leu Pro Glu Glu Trp Arg Arg Ser Lys Leu Ala Trp 165 170 175
- Leu Cys Lys Glu Val Pro Thr His Lys Ala Val Thr Leu Val Arg Leu 180 185 190
- Leu Asn Ala Gln Lys Lys Trp Val Arg Gln Glu Asp Ala Thr Tyr Ile 195 200 205
- Ser Val His Cys Met Arg Ile Arg Glu Asn Glu Thr Gly Phe Arg Val 210 215 220
- Tyr Arg Trp Met Thr Gln Gln Asn Trp Tyr Arg Phe Asp Phe Gly Leu 225 230 235 240
- Thr Thr Lys Leu Ala Glu Tyr Leu Gly Lys Glu Arg Lys Phe Thr Lys 245 250 255
- Cys Arg Glu Val Phe Asp Asp Val Leu Asn Gln Gly Arg Val Pro Ser 260 265 270
- Glu Ser Thr Phe His Ile Leu Val Val Ala Tyr Leu Ser Ser Leu Ser 275 280 285

Val Glu Gly Cys Leu Glu Glu Ala Cys Ser Val Tyr Asn Arg Met Ile 290 295 300

Gln Leu Gly Gly Tyr Lys Pro Arg Leu Ser Leu His Asn Ser Leu Phe 305 310 315 320

Arg Ala Leu Val Ser Lys Gln Gly Gly Ile Leu Asn Asp Gln Leu Lys 325 330 335

Gln Ala Glu Phe Ile Phe His Asn Val Val Thr Thr Gly Leu Glu Val 340 345 350

Gln Lys Asp Ile Tyr Ser Gly Leu Ile Trp Leu His Ser Cys Gln Asp 355 360 365

Glu Val Asp Ile Gly Arg Ile Asn Ser Leu Arg Glu Glu Met Lys Lys 370 380

Ala Gly Phe Gln Glu Ser Lys Glu Val Val Val Ser Leu Leu Arg Ala 385 390 395 400

Tyr Ala Lys Glu Gly Gly Val Glu Glu Val Glu Arg Thr Trp Leu Glu
405 410 415

Leu Leu Asp Leu Asp Cys Gly Ile Pro Ser Gln Ala Phe Val Tyr Lys
420 425 430

Ile Glu Ala Tyr Ser Lys Val Gly Asp Phe Ala Lys Ala Met Glu Ile 435 440 445

Phe Arg Glu Met Glu Lys His Ile Gly Gly Ala Thr Met Ser Gly Tyr 450 460

His Lys Ile Ile Glu Val Leu Cys Lys Val Gln Gln Val Glu Leu Val 465 470 475 480

Glu Thr Leu Met Lys Glu Phe Glu Glu Ser Gly Lys Lys Pro Leu Leu 485 490 495

Pro Ser Phe Ile Glu Ile Ala Lys Met Tyr Phe Asp Leu Gly Leu His 500 505 510

Glu Lys Leu Glu Met Ala Phe Val Gln Cys Leu Glu Lys Cys Gln Pro 515 520 525

Ser Gln Pro Ile Tyr Asn Ile Tyr Leu Asp Ser Leu Thr Lys Ile Gly 530 540

Asn Leu Glu Lys Ala Gly Asp Val Phe Asn Glu Met Lys Asn Asn Gly 545 550 555 560

Thr Ile Asn Val Ser Ala Arg Ser Cys Asn Ser Leu Leu Lys Gly Tyr 565 570 575

Leu Asp Cys Gly Lys Gln Val Gln Ala Glu Arg Ile Tyr Asp Leu Met 580 585 590

Arg Met Lys Lys Tyr Glu Ile Glu Pro Pro Leu Met Glu Lys Leu Asp 595 600 605

Tyr Ile Leu Ser Leu Lys Lys Lys Glu Val Lys Lys Arg Pro Phe Ser 610 615 620

Met Lys Leu Ser Lys Asp Gln Arg Glu Val Leu Val Gly Leu Leu 625 630 635 640

Gly Gly Leu Gln Ile Glu Ser Asp Lys Glu Lys Lys Ser His Met Ile 645 650 655

Lys Phe Glu Phe Arg Glu Asn Ser Gln Ala His Leu Val Leu Lys Gln 660 665 670

Asn Ile His Asp Gln Phe Arg Glu Trp Leu His Pro Leu Ser Asn Phe 675 680 685

Gln Glu Asp Ile Ile Pro Phe Glu Phe Tyr Ser Val Pro His Ser Tyr 690 695 700

Phe Gly Phe Tyr Ala Glu His Tyr Trp Pro Lys Gly Gln Pro Glu Ile 705 710 715 720

Pro Lys Leu Ile His Arg Trp Leu Ser Pro His Ser Leu Ala Tyr Trp
725 730 735

Tyr Met Tyr Ser Gly Val Lys Thr Ser Ser Gly Asp Ile Ile Leu Arg 740 745 750

Leu Lys Gly Ser Leu Glu Gly Val Glu Lys Val Val Lys Ala Leu Gln 755 760 765

Ala Lys Ser Met Glu Cys Arg Val Lys Lys Lys Gly Lys Val Phe Trp 770 Ile Gly Leu Gln Gly Thr Asn Ser Ala Leu Phe Trp Lys Leu Ile Glu 790 Pro His Val Leu Glu Asn Leu Lys Glu His Leu Lys Pro Ala Ser Glu 810 Ser Leu Asp Asn Val Lys Glu Ala Glu Glu Gln Ser Ile Asn Phe Lys Ser Asn Ser Asp His Ser Asp Asp Cys Val Asn Ser Glu Ala His Phe 840 Tyr <210> 9 <211> 1449 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1449) <223> 8794 <400> 9 atg gtt gga tct ttg gaa tct gat caa act ctt tca atg gcc acc tta 48 Met Val Gly Ser Leu Glu Ser Asp Gln Thr Leu Ser Met Ala Thr Leu ate gaa aaa ete gae ate tta tet gae gae tte gat eea ace gee gta 96 Ile Glu Lys Leu Asp Ile Leu Ser Asp Asp Phe Asp Pro Thr Ala Val 20 25 144 gtc acc gaa ccg tta cct cct ccg gta act aat gga atc gga gct gat Val Thr Glu Pro Leu Pro Pro Pro Val Thr Asn Gly Ile Gly Ala Asp 35 aaa gga gga gga gga gaa aga gag atg gtt ctc ggt agg aat ata 192 Lys Gly Gly Gly Gly Glu Arg Glu Met Val Leu Gly Arg Asn Ile

50

	•										~++	224	ast	as s	ttc	240
cac His 65	aca Thr	acg Thr	tca Ser	ctc Leu	gct Ala 70	gta Val	acg Thr	gaa Glu	ecg Pro	gag Glu 75	Val	Asn	Asp	Glu	Phe 80	240
acc Thr	gga Gly	gat Asp	aaa Lys	gaa Glu 85	gct Ala	tat Tyr	atg Met	gct Ala	agt Ser 90	gtt Val	ctt Leu	gct Ala	cgt Arg	tac Tyr 95	cgg Arg	288
aaa Lys	act Thr	ttg Leu	gtt Val 100	gaa Glu	cga Arg	acc Thr	aaa Lys	aac Asn 105	cat His	tta Leu	ggt Gly	tat Tyr	cct Pro 110	tat Tyr	aac Asn	336
ttg Leu	gat Asp	ttc Phe 115	gac Asp	tat Tyr	ggt Gly	gcg Ala	ctt Leu 120	ggt Gly	cag Gln	tta Leu	caa Gln	cat His 125	ttt Phe	tcg Ser	att Ile	384
aat Asn	aat Asn 130	ctt Leu	gga Gly	gat Asp	ccg Pro	ttt Phe 135	att Ile	gaa Glu	agt Ser	aac Asn	tat Tyr 140	Gly	gta Val	Cac	tca Ser	432
aga Arg 145	cct Pro	ttt Phe	gaa Glu	gtt Val	ggt Gly 150	gtg Val	ttg Leu	gat Asp	tgg Trp	ttt Phe 155	Ala	cgt Arg	ctt	tgg Trp	g gag Glu 160	480
att Ile	gag Glu	aga Arg	gat Asp	gat Asp 165	Tyr	tgg Trp	ggt Gly	tac Tyr	att Ile 170	Thr	aat Asn	tgt Cys	ggt Gly	act Thi	gaa Glu	528
ggc Gly	aac Asn	ctt Leu	cat His 180	Gly	att Ile	tta Leu	gtc Val	999 Gly 185	Arg	gag Glu	atg Met	ttt: Phe	ccc Pro	As)	o Gly agg	576
ata Ile	ttg Leu	tat Tyr 195	Ala	tcg Ser	cgt Arg	gaa Glu	tcc Ser 200	His	tac Tyr	tc <u>c</u> Ser	g gtg Val	ttt L Phe 205	Ly:	agc sAl	t gct a Ala	624
cga Arg	atg Met 210	Туз	cga Arg	atg Met	gag Glu	tgt Cys 215	Glı	g aag 1 Lys	g gtt Val	gat L Asp	220	r Lei	ate 1 Me	g tc t Se	a ggg r Gly	672
gag Glu 225	ı Ile	gat Asp	tgt Cys	gat Asp	gat Asp 230	Leu	agg Arg	g aag	g aaq s Lys	g ttg s Let 23!	u Lei	g gci	t aa a As:	t aa n Ly	a gat s Asp 240	720
aaa Lys	a ccc s Pro	g gcg	g att a Ile	ctt Leu 245	ı Ası	gtt Val	aa Asi	c ata n Ile	a gg e Gl; 25	y Th	g ac	g gt r Va	t aa l Ly	a gg s G] 25	ga gct .y Ala 55	768
gti Va	c gat l Asp	gat Asj	t cti p Lei 26	ı Ası	c ctt p Lei	gtt 1 Val	ate Ille	c aaa e Ly: 26:	s Th	t ct r Le	t ga u Gl	a ga u Gl	g tg u Cy 27	s G.	gt ttc ly Phe	816
tc: Se:	a cat r His	ga S As 27	p Ar	g tto g Pho	c tai	t ati	ca Hi 28	s Cy	t ga s As	t gg p Gl	a gc y Al	t tt a Le 28	u Ph	t gg	ga ctt ly Leu	864
at Me	g atg t Meg 29	t Pr	t tt o Ph	t gte	c aaa l Ly:	a cgi s Arg 29	g Al	a cc a Pr	g aa o Ly	a gt s Va	g ac al Th 30	ır Ph	t aa le As	it a	aa ccg ys Pro	912

ata Ile 305	gly aaa	agt Ser	gtg Val	agt Ser	gta Val 310	tcg Ser	ggc	cac His	aaa Lys	ttt Phe 315	gtc Val	gjå aaa	tgt Cys	cca Pro	atg Met 320	960
	_		_	_	ata Ile		_	_	_		_		_			1008
					ctt Leu											1056
					cct Pro											1104
					cag Gln											1152
					cga Arg 390											1200
					act Thr											1248
	_	_			cag Gln		_	_			_		-	_		1296
					gtt Val								Phe			1344
					aga Arg							Gly				1392
					gag Glu 470						Cys					1440
	aag Lys	tga														1449

<210> 10

<211> 482

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Val Gly Ser Leu Glu Ser Asp Gln Thr Leu Ser Met Ala Thr Leu 1 5 10 15

Ile Glu Lys Leu Asp Ile Leu Ser Asp Asp Phe Asp Pro Thr Ala Val 20 25 30

Val Thr Glu Pro Leu Pro Pro Pro Val Thr Asn Gly Ile Gly Ala Asp 35 40 45

Lys Gly Gly Gly Gly Glu Arg Glu Met Val Leu Gly Arg Asn Ile 50 55 60

His Thr Thr Ser Leu Ala Val Thr Glu Pro Glu Val Asn Asp Glu Phe 65 70 75 80

Thr Gly Asp Lys Glu Ala Tyr Met Ala Ser Val Leu Ala Arg Tyr Arg 85 90 95

Lys Thr Leu Val Glu Arg Thr Lys Asn His Leu Gly Tyr Pro Tyr Asn 100 105 110

Leu Asp Phe Asp Tyr Gly Ala Leu Gly Gln Leu Gln His Phe Ser Ile 115 120 125

Asn Asn Leu Gly Asp Pro Phe Ile Glu Ser Asn Tyr Gly Val His Ser 130 135 140

Arg Pro Phe Glu Val Gly Val Leu Asp Trp Phe Ala Arg Leu Trp Glu 145 150 155 160

Ile Glu Arg Asp Asp Tyr Trp Gly Tyr Ile Thr Asn Cys Gly Thr Glu 165 170 175

Gly Asn Leu His Gly Ile Leu Val Gly Arg Glu Met Phe Pro Asp Gly 180 185 190

Ile Leu Tyr Ala Ser Arg Glu Ser His Tyr Ser Val Phe Lys Ala Ala 195 200 205

Arg Met Tyr Arg Met Glu Cys Glu Lys Val Asp Thr Leu Met Ser Gly 210 215 220

Glu Ile Asp Cys Asp Asp Leu Arg Lys Lys Leu Leu Ala Asn Lys Asp 225 230 235 240

Lys Pro Ala Ile Leu Asn Val Asn Ile Gly Thr Thr Val Lys Gly Ala 245 250 255

Val Asp Asp Leu Asp Leu Val Ile Lys Thr Leu Glu Glu Cys Gly Phe 260 265 270

Ser His Asp Arg Phe Tyr Ile His Cys Asp Gly Ala Leu Phe Gly Leu 275 280 285

Met Met Pro Phe Val Lys Arg Ala Pro Lys Val Thr Phe Asn Lys Pro 290 295 300

Ile Gly Ser Val Ser Val Ser Gly His Lys Phe Val Gly Cys Pro Met 305 310 315 320

Pro Cys Gly Val Gln Ile Thr Arg Met Glu His Ile Lys Val Leu Ser 325 330 335

Ser Asn Val Glu Tyr Leu Ala Ser Arg Asp Ala Thr Ile Met Gly Ser 340 345 350

Arg Asn Gly His Ala Pro Leu Phe Leu Trp Tyr Thr Leu Asn Arg Lys 355 360 365

Gly Tyr Lys Gly Phe Gln Lys Glu Val Gln Lys Cys Leu Arg Asn Ala 370 375 380

His Tyr Leu Lys Asp Arg Leu Arg Glu Ala Gly Ile Ser Ala Met Leu 385 390 395 400

Asn Glu Leu Ser Ser Thr Val Val Phe Glu Arg Pro Lys Asp Glu Glu 405 410 415

Phe Val Arg Arg Trp Gln Leu Ala Cys Gln Gly Asp Ile Ala His Val 420 425 430

Val Val Met Pro Ser Val Thr Ile Glu Lys Leu Asp Asn Phe Leu Lys 435 440 445

Asp Leu Val Lys His Arg Leu Ile Trp Tyr Glu Asp Gly Ser Gln Pro 450 455 460

Pro Cys Leu Ala Ser Glu Val Gly Thr Asn Asn Cys Ile Cys Pro Ala 465 470 475 480

His Lys

<210> 11
<211> 483
<212> DNA
<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(483)

<223> 9106

<400> 11 48 atg gcg gaa cag act gag aaa gct ttt ctt aag cag cct aag gtc ttc Met Ala Glu Gln Thr Glu Lys Ala Phe Leu Lys Gln Pro Lys Val Phe. ctt agc tcg aag aaa tct gga aag gga aag aga cct gga aaa ggt gga 96 Leu Ser Ser Lys Lys Ser Gly Lys Gly Lys Arg Pro Gly Lys Gly Gly aac cgt ttc tgg aag aac att ggt ttg ggc ttc aag act cct cgt gaa 144 Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg Glu gcc att gat gga gct tac gtt gac aag aaa tgc ccc ttc act gga act 192 Ala Ile Asp Gly Ala Tyr Val Asp Lys Lys Cys Pro Phe Thr Gly Thr gtt tcc att aga ggt cgt atc tta gct ggt act tgc cac agt gcg aaa 240 Val Ser Ile Arg Gly Arg Ile Leu Ala Gly Thr Cys His Ser Ala Lys 288 atg cag agg acc att atc gtg cga agg gat tac ctt cac ttt gtg aag Met Gln Arg Thr Ile Ile Val Arg Arg Asp Tyr Leu His Phe Val Lys 90 336 aag tat cag agg tat gag aag agg cat tca aac att ccg gct cat gtc Lys Tyr Gln Arg Tyr Glu Lys Arg His Ser Asn Ile Pro Ala His Val tca cca tgc ttc cgt gtt aag gaa gga gac cat atc atc att ggc caa 384 Ser Pro Cys Phe Arg Val Lys Glu Gly Asp His Ile Ile Gly Gln 115 tgc agg cca ttg tcg aag aca gtg agg ttc aat gtg ttg aag gtg ata 432

Cys Arg Pro Leu Ser Lys Thr Val Arg Phe Asn Val Leu Lys Val Ile 130 135 140

cca gct ggg tct tct tct tca ttt gga aag aag gca ttc act gga atg
Pro Ala Gly Ser Ser Ser Phe Gly Lys Lys Ala Phe Thr Gly Met
145 150 155 160

taa 483

<210> 12

<211> 160

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Ala Glu Gln Thr Glu Lys Ala Phe Leu Lys Gln Pro Lys Val Phe 1 5 10 15

Leu Ser Ser Lys Lys Ser Gly Lys Gly Lys Arg Pro Gly Lys Gly Gly
20 25 30

Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg Glu 35 40

Ala Ile Asp Gly Ala Tyr Val Asp Lys Lys Cys Pro Phe Thr Gly Thr 50 55 60

Val Ser Ile Arg Gly Arg Ile Leu Ala Gly Thr Cys His Ser Ala Lys 65 70 75 80

Met Gln Arg Thr Ile Ile Val Arg Arg Asp Tyr Leu His Phe Val Lys 85 90 95

Lys Tyr Gln Arg Tyr Glu Lys Arg His Ser Asn Ile Pro Ala His Val 100 105 110

Ser Pro Cys Phe Arg Val Lys Glu Gly Asp His Ile Ile Gly Gln 115 120 125

Cys Arg Pro Leu Ser Lys Thr Val Arg Phe Asn Val Leu Lys Val Ile 130 135 140

Pro Ala Gly Ser Ser Ser Phe Gly Lys Lys Ala Phe Thr Gly Met 145 150 155 160

<210>	13															
<211>	11	.70														
<212>	DN	ΙA														
<213>	. Aı	abio	iaqof	is th	alia	na										
<220>	•															
<221	> C	os														
<222	> (1)	(117	0)												
<223	> 1	0708														
<400 atg Met 1			agg Arg	aag Lys 5	ttt (Phe (gag Glu	cac His	Pro .	aga Arg 10	cat His	ggt Gly	tct Ser	ctt Leu	ggt Gly 15	ttc Phe	48
ctt Leu	cca Pro	agg Arg	aag Lys 20	aga Arg	gct Ala	aac Asn	cgt Arg	cac His 25	aga Arg	gga Gly	aag Lys	gtg Val	aag Lys 30	gcg Ala	ttc Phe	96
cct Pro	aag Lys	gat Asp 35	gac Asp	caa Gln	acc Thr	aag Lys	cct Pro 40	tgc Cys	aag Lys	ttc Phe	aca Thr	gct Ala 45	ttc Phe	atg Met	ggt Gly	144
tac Tyr	aaa Lys 50	gct Ala	ggt Gly	atg Met	act Thr	cac His 55	att Ile	gtc Val	aga Arg	gaa Glu	gtg Val 60	gag Glu	aaa Lys	cct Pro	gga Gly	192
tcc Ser 65	aag Lys	ctt Leu	cac His	aag Lys	aag Lys 70	gag Glu	aca Thr	tgt Cys	gag Glu	gct Ala 75	gtt Val	acc Thr	atc Ile	att Ile	gag Glu 80	240
aca Thr	cct Pro	gct Ala	atg Met	gtg Val 85	gtt Val	gtt Val	gga Gly	gtt Val	gtt Val 90	gcc Ala	tat Tyr	gtg Val	aag Lys	act Thr 95	cct Pro	288
aga Arg	ggt Gly	ttg Lev	agg Arg 100	Ser	ttg Leu	aac Asn	act Thr	gtc Val	Trp	gca Ala	cag Gln	cat His	ttg Lev	1 261	gag Glu	336
gag Glu	gto Val	agg Arg	g Arg	agg Arg	ttc Phe	tac Tyr	aac Lys	: Asn	tgg Tr	g gct o Ala	aag a Lys	tct Ser 12	с пу	g aag s Lys	g aag s Lys	384
gct Ala	tto Phe	e Thi	r Gly	j tac / Tyr	gct Ala	aag Lys 135	Glı	g tat n Tyr	ga As	c agt p Sei	t gag r Gli 140	1 AS	t ggo p Gl	c aag y Ly	g aag s Lys	432
ggt	ati	c ca	g gct	caç	g ctt	gag	g aag	g ato	g aa	g aa	g ta	c gc	t ac	t gt	c atc	480

Gly 145	Ile	Gln	Ala	Gln	Leu 150	Glu	Lys	Met	Lys	Lys 155	Tyr	Ala	Thr	Val	Ile 160		
			gct Ala														528
aag Lys	aag Lys	gct Ala	cac His 180	atg Met	atg Met	gag Glu	atc Ile	cag Gln 185	atc Ile	aat Asn	ggt Gly	ggt Gly	acc Thr 190	att Ile	gcc Ala		576
			gac Asp														624
			ttc Phe														672
			ggt Gly														720
			aag Lys														768
gcg Ala	tgg Trp	cat His	cct Pro 260	gct Ala	aga Arg	gtg Val	tcc Ser	tac Tyr 265	act Thr	gtt Val	gct Ala	agg Arg	gct Ala 270	ggt	cag Gln	•	816
			cat His					Leu					Tyr		ttg Leu		864
ggt Gly	aag Lys 290	gtt Val	ggt Gly	act Thr	gag Glu	gca Ala 295	cac His	aça Thr	gcc	atg Met	act Thr 300	Glu	tat Tyr	gac Asp	agg Arg		912
	Glu										Pro				att Ile 320		960
gtg Val	aag Lys	gat Asp	gac Asp	tac Tyr 325	Leu	atg Met	att Ile	aag Lys	Gly	Cys	tgt Cys	gtt Val	ggt Gly	Pro 335	aag Lys		1008
				Thr					Leu					Ser	Arg		1056
ctt	gcc Ala	ttg Leu 355	Glu	gag Glu	atc Ile	aaa Lys	cto Lev 360	. Lys	ttt Phe	att Ile	gac Asp	aco Thr 365	: Ala	tco a Ser	att Ile		1104
		His					Thr					. Met			tac Tyr		1152
aad	cgt	gto	acg	aag	taa	į											1170

Asn Arg Val Thr Lys 385

<210> 14

<211> 389

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Ser His Arg Lys Phe Glu His Pro Arg His Gly Ser Leu Gly Phe 1 5 10 15

Leu Pro Arg Lys Arg Ala Asn Arg His Arg Gly Lys Val Lys Ala Phe 20 25 30

Pro Lys Asp Asp Gln Thr Lys Pro Cys Lys Phe Thr Ala Phe Met Gly 35 40 45

Tyr Lys Ala Gly Met Thr His Ile Val Arg Glu Val Glu Lys Pro Gly
50 55 60

Ser Lys Leu His Lys Lys Glu Thr Cys Glu Ala Val Thr Ile Ile Glu 65 70 75 80

Thr Pro Ala Met Val Val Val Gly Val Val Ala Tyr Val Lys Thr Pro 85 90 95

Arg Gly Leu Arg Ser Leu Asn Thr Val Trp Ala Gln His Leu Ser Glu 100 105 110

Glu Val Arg Arg Arg Phe Tyr Lys Asn Trp Ala Lys Ser Lys Lys 115 120 125

Ala Phe Thr Gly Tyr Ala Lys Gln Tyr Asp Ser Glu Asp Gly Lys Lys 130 135 140

Gly Ile Gln Ala Gln Leu Glu Lys Met Lys Lys Tyr Ala Thr Val Ile 145 150 155 160

Arg Val Leu Ala His Thr Gln Ile Arg Lys Met Lys Gly Leu Lys Gln 165 170 175

Lys Lys Ala His Met Met Glu Ile Gln Ile Asn Gly Gly Thr Ile Ala 180 185 190

Gln Lys Val Asp Phe Ala Tyr Ser Phe Phe Glu Lys Gln Ile Pro Ile 195 200 205

Glu Ala Val Phe Gln Lys Asp Glu Met Ile Asp Ile Ile Gly Val Thr 210 215 220

Lys Gly Lys Gly Tyr Glu Gly Val Val Thr Arg Trp Gly Val Thr Arg 225 230 235 240

Leu Pro Arg Lys Thr His Arg Gly Leu Arg Lys Val Ala Cys Ile Gly 245 250 255

Ala Trp His Pro Ala Arg Val Ser Tyr Thr Val Ala Arg Ala Gly Gln 260 265 270

Asn Gly Tyr His His Arg Thr Glu Leu Asn Lys Lys Ile Tyr Arg Leu 275 280 285

Gly Lys Val Gly Thr Glu Ala His Thr Ala Met Thr Glu Tyr Asp Arg 290 295 300

Thr Glu Lys Asp Val Thr Pro Met Gly Gly Phe Pro His Tyr Gly Ile 305 310 315 320

Val Lys Asp Asp Tyr Leu Met Ile Lys Gly Cys Cys Val Gly Pro Lys 325 330 335

Lys Arg Val Val Thr Leu Arg Gln Ser Leu Leu Thr Gln Thr Ser Arg 340 345 350

Leu Ala Leu Glu Glu Ile Lys Leu Lys Phe Ile Asp Thr Ala Ser Ile 355 360 365

Phe Gly His Gly Arg Phe Gln Thr Ser Leu Glu Lys Met Arg Phe Tyr 370 375 380

Asn Arg Val Thr Lys 385

<210> 15

<211> 351

<212> DNA <213> Arabidopsis thaliana <220> <221> CDS (1)..(351) <222> <223> 10844 <400> 15 atg aag cca gtg ata ggc aca gtg gta tcg aac aag atg caa aaa tct 48 Met Lys Pro Val Ile Gly Thr Val Val Ser Asn Lys Met Gln Lys Ser gta gtg gtc gcc gtc gat aga ctc ttc cac aac aaa atc tac aat cgc 96 Val Val Val Ala Val Asp Arg Leu Phe His Asn Lys Ile Tyr Asn Arg tac gtc aaa cga act tcc aaa ttc atg gct cac gac gac aaa gac gcc 144 Tyr Val Lys Arg Thr Ser Lys Phe Met Ala His Asp Asp Lys Asp Ala 192 tgc aac atc ggc gat cga gtg aag tta gat cca tca agg cct ttg agc Cys Asn Ile Gly Asp Arg Val Lys Leu Asp Pro Ser Arg Pro Leu Ser 55 240 aag aat aag cat tgg att gtt gca gaa atc atc aaa aaa gct cga att Lys Asn Lys His Trp Ile Val Ala Glu Ile Ile Lys Lys Ala Arg Ile 75 tat tot cot aaa got got got got got tot got tot got tot got 288 Tyr Ser Pro Lys Ala Ala Ala Ala Ala Val Ser Ala Ser Ala Ser Ala tcc tca gcc tcc act act gac tct tct gct cag tct cag att cct cca 336 Ser Ser Ala Ser Thr Thr Asp Ser Ser Ala Gln Ser Gln Ile Pro Pro 105 100 351 tca tct act tct taa Ser Ser Thr Ser 115 <210> 16 <211> 116

<212> PRT

<213> Arabidopsis thaliana

<400> 16

Met Lys Pro Val Ile Gly Thr Val Val Ser Asn Lys Met Gln Lys Ser 1 5 10 15

Val Val Val Ala Val Asp Arg Leu Phe His Asn Lys Ile Tyr Asn Arg 20 25 30

Tyr Val Lys Arg Thr Ser Lys Phe Met Ala His Asp Asp Lys Asp Ala 35 40 45

Cys Asn Ile Gly Asp Arg Val Lys Leu Asp Pro Ser Arg Pro Leu Ser 50 55 60

Lys Asn Lys His Trp Ile Val Ala Glu Ile Ile Lys Lys Ala Arg Ile 65 70 75 80

Tyr Ser Pro Lys Ala Ala Ala Ala Val Ser Ala Ser Ala Ser Ala 85 90 95

Ser Ser Ala Ser Thr Thr Asp Ser Ser Ala Gln Ser Gln Ile Pro Pro 100 105 110

Ser Ser Thr Ser 115

<210> 17

<211> 1269

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1269)

<223> 10951

<400> 17

atg tct tct tct gta gca gtg tta tgg gtt gct act tct tct cta aat
Met Ser Ser Val Ala Val Leu Trp Val Ala Thr Ser Ser Leu Asn
1 5 10 15

cca gac cca atg aac aat tgt ggg ttg gta agg gtt cta gaa tct tct 96
Pro Asp Pro Met Asn Asn Cys Gly Leu Val Arg Val Leu Glu Ser Ser

		;	20					25					30				
aga (Arg]	Leu :	ttc Phe 35	tct Ser	cct (Pro (tgt (Cys (Gln A	aat Asn 40	cag Gln	aga Arg	cta Leu	aac Asn	aaa Lys 45	ggt Gly	aag Lys	aa Ly	ıg rs	144
aag Lys	cag Gln 50	ata Ile	cca Pro	act Thr	\mathtt{Trp}	agt Ser 55	tct Ser	tct Ser	ttt Phe	gta Val	agg Arg 60	aac Asn	cga Arg	agt Ser	ag Aı	ga cg	192
aga Arg 65	att Ile	ggt Gly	gtt Val	gtg Val	tct Ser 70	tca Ser	agc Ser	tta Leu	gta Val	gca Ala 75	agt Ser	cct Pro	tct Ser	Gly	a ga 7 G: 8	Lu	240
ata Ile	gct Ala	ctt Leu	tca Ser	tct Ser 85	gaa Glu	gag Glu	aag Lys	gtt Val	tac Tyr 90	aat Asn	gtt Val	gtc Val	, ttg L Leu	aaa Ly: 95	a c	aa ln	288
gct Ala	gct Ala	ttg Leu	gtg Val 100	aac Asn	aaa Lys	cag Gln	cta Leu	agg Arg 105	tct Ser	tct Ser	tct Ser	tat	gac Asp 110	, 16	t g u A	at .sp	336
gtg Val	aag Lys	aaa Lys 115	cca Pro	caa Gln	gat Asp	gtt Val	gtt Val 120	Leu	cct Pro	ggg ggg	g agt 7 Sei	tte Le	g agt u Sei 5	tt r Le	g t	tg Leu	384
ggt Gly	gaa Glu 130	Ala	tat Tyr	gat Asp	cga Arg	tgc Cys 135	ggt	gaa Glu	gtt Val	tgo L Cys	gc s Ala	a GI	a ta u Ty:	t co r Pr	t a	aag Lys	432
acg Thr 145	Phe	tat Tyr	ctt Lev	gga Gly	act Thr 150	Leu	ctt	ato Met	g aca	r Pro	O GI	a ag u Ar	g cg	a aa g Ly	? D 1	gcg Ala 160	480
att Ile	tgg Trp	gca Ala	ato l Ile	tac Tyr 165	Val	tgg Trp	tgt Cys	aga Arg	a aga g Arg 17	g ın	t ga r As	t ga p G]	a ct Lu Le	u v	tg al 75	gat Asp	528
61 ³ 333	g cca Pro	a aat o Asi	gct n Ala 180	a Ser	cat His	ata Ile	act	t cce r Pro 18	o Me	g go t Al	t tt a Le	a ga eu As	at ag sp Ar 19	ga to gg T	gg	gaa Glu	576
gca Ala	a agg	g tta g Lei 19!	ı Gl	a gat u As <u>r</u>	ctt Lei	tto 1 Phe	c cg Ar 20	g GT	t cg y Ar	t co	t tt	ie A	at at sp Me 05	et L	tt	gat Asp	624
gct Ala	gci a Ala 21	a Le	c gc u Al	t gat a Asp	t aca p Thi	a gti r Val	IAI	t ag a Ar	a ta g Ty	r P	CO V	tc g al A 20	at a sp I	tt c le G	ag Sln	cca Pro	672
tt Pho 22	e Ar	a ga g As	c at p Me	g ato	c gaa e Gl	u Gl	a at y Me	g ag et Ar	ga at ng Me	et A	ac t sp L 35	tg a eu I	ag a ys L	aa t ys s	cg Ser	aga Arg 240	720
ta Ty	c ca r Gl	g aa n As	c tt n Ph	c ga le As 24	p As	t ct p Le	a ta u Ty	ac ct yr Le	eu 17	ac t yr C 50	gc t ys I	ac t	ac g Tyr V	aı,	gct Ala 255	. Cly	768
ac Th	c gt	c gg	ja tt y Le	g at	g ag	c gt	t c	cg g	tt a al M	tg g et G	ga a	tc g	gat o Asp I	ect Pro	aag Lys	tcg Ser	816

			260					265					270			
aaa Lys	gca Ala	aca Thr 275	acc Thr	gaa Glu	agt Ser	gtt Val	tac Tyr 280	aac Asn	gct Ala	gcc Ala	ttg Leu	gcc Ala 285	ctt Leu	ggt Gly	ata Ile	864
gcc Ala	aat Asn 290	cag Gln	ctt Leu	act Thr	aac Asn	ata Ile 295	ctc Leu	aga Arg	gac Asp	gta Val	ggc 300	gaa Glu	gat Asp	gcg Ala	aga Arg	912
aga Arg 305	gga Gly	agg Arg	gtt Val	tat Tyr	ctg Leu 310	cct Pro	cag Gln	gat Asp	gaa Glu	ttg Leu 315	gct Ala	cag Gln	gct Ala	ggt Gly	ctt Leu 320	960
			gac Asp													1008
			atg Met 340													1056
			gtc Val													1104
			cta Leu													1152
	Tyr		aat Asn								Gly					1200
			ttg Leu							Ser					Ser	1248
_		_	cta Leu 420	_		_										1269

<210> 18

<211> 422

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Met Ser Ser Ser Val Ala Val Leu Trp Val Ala Thr Ser Ser Leu Asn 1 5 10 15

Pro Asp Pro Met Asn Asn Cys Gly Leu Val Arg Val Leu Glu Ser Ser

0	25	. 30

Arg Leu Phe Ser Pro Cys Gln Asn Gln Arg Leu Asn Lys Gly Lys Lys 35 40 45

Lys Gln Ile Pro Thr Trp Ser Ser Phe Val Arg Asn Arg Ser Arg 50 55 60

Arg Ile Gly Val Val Ser Ser Ser Leu Val Ala Ser Pro Ser Gly Glu 65 70 75 80

Ile Ala Leu Ser Ser Glu Glu Lys Val Tyr Asn Val Val Leu Lys Gln 85 90 95

Ala Ala Leu Val Asn Lys Gln Leu Arg Ser Ser Ser Tyr Asp Leu Asp 100 105 110

Val Lys Lys Pro Gln Asp Val Val Leu Pro Gly Ser Leu Ser Leu Leu 115 120 125

Gly Glu Ala Tyr Asp Arg Cys Gly Glu Val Cys Ala Glu Tyr Pro Lys 130 . 135 140

Thr Phe Tyr Leu Gly Thr Leu Leu Met Thr Pro Glu Arg Arg Lys Ala 145 150 155 160

Ile Trp Ala Ile Tyr Val Trp Cys Arg Arg Thr Asp Glu Leu Val Asp 165 170 175

Gly Pro Asn Ala Ser His Ile Thr Pro Met Ala Leu Asp Arg Trp Glu 180 185 190

Ala Arg Leu Glu Asp Leu Phe Arg Gly Arg Pro Phe Asp Met Leu Asp 195 200 205

Ala Ala Leu Ala Asp Thr Val Ala Arg Tyr Pro Val Asp Ile Gln Pro 210 215 220

Phe Arg Asp Met Ile Glu Gly Met Arg Met Asp Leu Lys Lys Ser Arg 225 230 . 235 240

Tyr Gln Asn Phe Asp Asp Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly 245 250 255

Thr Val Gly Leu Met Ser Val Pro Val Met Gly Ile Asp Pro Lys Ser

260 265 270

Lys Ala Thr Thr Glu Ser Val Tyr Asn Ala Ala Leu Ala Leu Gly Ile 275 280 285

Ala Asn Gln Leu Thr Asn Ile Leu Arg Asp Val Gly Glu Asp Ala Arg 290 295 300

Arg Gly Arg Val Tyr Leu Pro Gln Asp Glu Leu Ala Gln Ala Gly Leu 305 310 315 320

Ser Asp Glu Asp Ile Phe Ala Gly Lys Val Thr Asp Lys Trp Arg Asn 325 330 335

Phe Met Lys Met Gln Leu Lys Arg Ala Arg Met Phe Phe Asp Glu Ala 340 345 350

Glu Lys Gly Val Thr Glu Leu Ser Ala Ala Ser Arg Trp Pro Val Trp 355 360 365

Ala Ser Leu Leu Leu Tyr Arg Arg Ile Leu Asp Glu Ile Glu Ala Asn 370 375 380

Asp Tyr Asn Asn Phe Thr Lys Arg Ala Tyr Val Gly Lys Val Lys Lys 385 390 395 400

Ile Ala Ala Leu Pro Leu Ala Tyr Ala Lys Ser Val Leu Lys Thr Ser 405 410 415

Ser Ser Arg Leu Ser Ile 420

<210> 19

<211> 1125

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1125)

<223> 12935

<400	> 1	.9														
atg Met 1	gga Gly	gca Ala	gcg Ala	aag Lys 5	aat Asn	atc Ile	tgg Trp	gca Ala	tta Leu 10	gcc Ala	aac Asn	gcc Ala	gaa Glu	gat Asp 15	gca Ala	48
gct Ala	aac Asn	gac Asp	gcc Ala 20	gaa Glu	caa Gln	atc Ile	cct Pro	tat Tyr 25	tct Ser	tcg Ser	ttc Phe	gtc Val	gtc Val 30	gac Asp	acg Thr	96
tct Ser	ttg Leu	cct Pro 35	ctt Leu	cct Pro	ctc Leu	atg Met	att Ile 40	cct Pro	cgt Arg	atc Ile	ata Ile	gag Glu 45	tta Leu	tgt Cys	aaa Lys	144
gat Asp	ctg Leu 50	ttc Phe	aag Lys	aat Asn	tgg Trp	gga Gly 55	gag Glu	ctt Leu	gat Asp	gat Asp	tca Ser 60	ctc Leu	ttc Phe	tct Ser	gtt Val	192
gag Glu 65	aga Arg	gta Val	tct Ser	gga Gly	ggc Gly 70	att Ile	aca Thr	aat Asn	ctt Leu	ttg Leu 75	ctg Leu	aag Lys	gtt Val	tct Ser	gtg Val 80	240
aaa Lys	gag Glu	gac Asp	act Thr	aat Asn 85	aaa Lys	gaa Glu	gtg Val	tct Ser	gtt Val 90	aca Thr	gtg Val	aga Arg	ctg Leu	tat Tyr 95	Gly aaa	288
cct Pro	aac Asn	act Thr	gag Glu 100	tat Tyr	gtt Val	att Ile	aac Asn	cgg Arg 105	gag Glu	aga Arg	gag Glu	att Ile	ctg Leu 110	Ala	atc Ile	336
aag Lys	tat Tyr	ctc Leu 115	tcg Ser	gct Ala	gcc Ala	gga Gly	ttt Phe 120	Gly	gcc Ala	aag Lys	ttg Leu	ctt Leu 125	Gly	ggt	ttt Phe	384
gga Gly	aat Asn 130	Gly	atg Met	gtg Val	caa Gln	tcg Ser 135	Phe	atc Ile	aat Asn	gca Ala	aga Arc	, Thr	tta Leu	gag Glu	cca Pro	432
tca Ser 145	Asp	atg Met	aga Arg	gag Glu	cca Pro 150	ьуs	att Ile	gct Ala	gca Ala	caa Glr 155	ı Ile	gcc Ala	aga Arg	gaa g Glu	ctt Leu 160	480
gga Gly	aag Lys	ttt Phe	cat His	aaa Lys 165	Val	gac Asp	ata Ile	cca Pro	ggt Gl ₃	, Ser	aag Lys	g gaa s Glu	ı cct ı Pro	cag Glr 175	g ctg 1 Leu 5	528
tgg Trp	gtt Val	gat Asp	atc Ile 180	Leu	aag Lys	tto Phe	tat Tyr	gaa Glu 185	ь Гуз	a gca s Ala	a tci a Sei	t act r Thi	ctt Lei 190	ı Thi	g ttt r Phe	576
gaa Glu	gaa Glu	cct Pro 195	Asp	aag Lys	cag Gln	aag Lys	cto Lev 200	ı Phe	gaç Glı	g act	at ^e	t tcg e Sei 20!	r Phe	t gaa	a gaa u Glu	624
cto Lev	cac His 210	Lys	gaa Glu	att i Ile	att lle	gaç Glu 219	ı Le	a agg	g gaa	a tto u Pho	c ac e Th 22	r Gl	c tta y Le	a ct [.] u Le	t aac u Asn	672

gca c Ala P 225	ct gt Pro Va	g gtg al Val	ttt Phe	gct Ala 230	cat His	aac Asn	gat Asp	tta Leu	cta Leu 235	tca Ser	gga Gly	aac Asn	ttc Phe	atg Met 240	720
ctg a Leu A	aat ga Asn As	at gaa sp Glu	gaa Glu 245	gag Glu	aaa Lys	cta Leu	tac Tyr	ttg Leu 250	att Ile	gat Asp	ttc Phe	gag Glu	tat Tyr 255	gga Gly	768
		ac tat sn Tyr 260													816
		ac gac /r Asp 75													864
Tyr H		c atc ne Ile													912
		ct gaa la Glu													960
		ct cat er His													1008
		cc att co Ile 340													1056
		ac aag /r Lys 55													1104
His L		ea gca er Ala	_	_	tag										1125

<210> 20

<211> 374

<212> PRT

<213> Arabidopsis thaliana

<400> 20

Met Gly Ala Ala Lys Asn Ile Trp Ala Leu Ala Asn Ala Glu Asp Ala 1 5 10 15

Ala Asn Asp Ala Glu Gln Ile Pro Tyr Ser Ser Phe Val Val Asp Thr 20 25 30

Ser Leu Pro Leu Pro Leu Met Ile Pro Arg Ile Ile Glu Leu Cys Lys 35 40 45

Asp Leu Phe Lys Asn Trp Gly Glu Leu Asp Asp Ser Leu Phe Ser Val 50 55 60

Glu Arg Val Ser Gly Gly Ile Thr Asn Leu Leu Leu Lys Val Ser Val 65 70 75 80

Lys Glu Asp Thr Asn Lys Glu Val Ser Val Thr Val Arg Leu Tyr Gly 85 90 95

Pro Asn Thr Glu Tyr Val Ile Asn Arg Glu Arg Glu Ile Leu Ala Ile 100 105 110

Lys Tyr Leu Ser Ala Ala Gly Phe Gly Ala Lys Leu Leu Gly Gly Phe 115 120 125

Gly Asn Gly Met Val Gln Ser Phe Ile Asn Ala Arg Thr Leu Glu Pro 130 135 140

Ser Asp Met Arg Glu Pro Lys Ile Ala Ala Gln Ile Ala Arg Glu Leu 145 150 155 160

Gly Lys Phe His Lys Val Asp Ile Pro Gly Ser Lys Glu Pro Gln Leu 165 170 175

Trp Val Asp Ile Leu Lys Phe Tyr Glu Lys Ala Ser Thr Leu Thr Phe 180 185 190

Glu Glu Pro Asp Lys Gln Lys Leu Phe Glu Thr Ile Ser Phe Glu Glu
195 200 205

Leu His Lys Glu Ile Ile Glu Leu Arg Glu Phe Thr Gly Leu Leu Asn 210 215 220

Ala Pro Val Val Phe Ala His Asn Asp Leu Leu Ser Gly Asn Phe Met 225 230 235 240

Leu Asn Asp Glu Glu Glu Lys Leu Tyr Leu Ile Asp Phe Glu Tyr Gly 245 250 255

Ser Tyr Asn Tyr Arg Gly Phe Asp Ile Gly Asn His Phe Asn Glu Tyr 260 265 270

Ala Gly Tyr Asp Cys Asp Tyr Ser Leu Tyr Pro Ser Lys Glu Glu Gln 280 Tyr His Phe Ile Lys His Tyr Leu Gln Pro Asp Lys Pro Asp Glu Val 295 Ser Ile Ala Glu Val Glu Ser Val Phe Val Glu Thr Asp Ala Tyr Lys 310 Leu Ala Ser His Leu Tyr Trp Ala Ile Trp Ala Ile Ile Gln Ala Arg 325 330 Met Ser Pro Ile Glu Phe Glu Tyr Leu Gly Tyr Phe Phe Leu Arg Tyr 340 345 Asn Glu Tyr Lys Lys Gln Lys Pro Leu Thr Phe Ser Leu Val Thr Ser 360 His Leu Ser Ala Ser Leu 370 <210> 21 <211> 2283 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(2283)

<223> 13823

Leu	Ser	Leu 35	Pro	Lys	Arg	Asn	Arg 40	Ile	Ala	Ser	Cys	Arg 45	Phe	e T	'hr	Val	L	
cgt Arg	gcc Ala 50	tcc Ser	gcg Ala	aat Asn	gct Ala	acc Thr 55	gtc Val	gaa Glu	tcc Ser	cct Pro	aac Asn 60	ggt Gly	gt. Va	c c	ct Pro	gco	a a	192
tcc Ser 65	aca Thr	tca Ser	gat Asp	acg Thr	gat Asp 70	acg Thr	gag Glu	acg Thr	gat Asp	acc Thr 75	acc Thr	tcc Ser	ta Ty	t c	ggc 3ly	Ar 80	g	240
cag Gln	ttt Phe	ttc Phe	cct Pro	ttg Leu 85	gcc Ala	gca Ala	gtt Val	gtt Val	ggc Gly 90	cag Gln	gaa Glu	ggc Gly	at Il	e l	aaa Lys 95	ac Th	t r	288
gct Ala	ctt Leu	tta Leu	ctt Leu 100	Gly	gcg Ala	gtt Val	gat Asp	cgt Arg 105	gaa Glu	ato Ile	gga gga	ggg Gly	g at / Il 11	.e .	gcc Ala	at Il	t .e	336
tca Ser	ggt Gly	cgt Arg 115	Arg	ggc	act Thr	gca Ala	aaa Lys 120	Thr	gtc Val	ato Met	g gcg	g cga Arg 12	g G	ly ig	ctt Leu	ca Hi	it Is	384
gaa Glu	atc Ile 130	Leu	cct Pro	cct Pro	att Ile	gaa Glu 135	Val	gtt Val	gta Val	. Gly	tca Se:	r II	a to e So	ca er	aat Asn	go Al	ct la	432
gac Asp 145	cca Pro	gct Ala	tgt Cys	cca Pro	gat Asp 150	Glu	tgg	gaa Glu	gat Asp	gae As _]	5 ге.	a ga u As	t g	ag lu	arg	ј т.	ta le 60	480
gaç Glu	tac Tyr	aat Asr	gct Ala	gac Asp 165) Asn	acc Thr	att Ile	aag Lys	g act s Thi 170	r Gl	g at u Il	t gt e Va	c a	aa ys	tct Ser 175	. P.	ct ro	528
tto Phe	att Ile	caç Glr	g att n Ile 180	e Pro	a cta o Lev	gga Gly	gtt Val	aca l Thi 189	r Gl	a ga u As	c ag p Ar	a ct g Le	eu 1	tt 1e .90	Gly 999	g t y S	ct er	576
gtt Val	gat L Asp	gtt Va. 19	l Gl	u Glı	ı Ser	· Val	L Ly	a agg s Arg	g GT	y Tn	r ir	ır va	t t al E 05	tc he	ca: Gl:	a c n P	ro Pro	624
G1;	t ctt y Let 210	ı Le	u Ala	t gaa	a gco u Ala	c cat a His 21!	s Ar	a gg g Gl	a gt y Va	g tt l Le	u 13	at gr yr Va 20	tt g al <i>B</i>	yat Asp	ga Gl	a a u I	ita [le	672
aa As: 22	t cto n Len	c tta u Le	a ga u As	t ga p Gl	g gga u Gly 23	y Il	t ag e Se	t aa r As	t tt n Le	u Le	et ci eu Lo 35	tc a eu A	at g sn '	gta Val	tt Le	u I	acg Thr 240	720
ga As	t gg p Gl	t gt y Va	t aa l As	t at n Il 24	e Va	t ga l Gl	a ag u Ar	a ga g Gl	a gg u G] 25	.y I.	tc a	gc t er P	tt he	agg Arg	g ca g Hi 25	.s	ccg Pro	768
tg Cy	c aa s Ly	a cc s Pr	a ct o Le 26	u Le	a at u Il	t gc e Al	a ac a Th	c ta ir Ty 26	r As	ac c	ct g ro G	aa g lu G	Hu	ggt Gl ₃ 270	Z AJ	ta i	gtt Val	816
co	а фа	c ca	c tt	q ct	a ga	.c cg	t gt	t go	cc at	tt a	at t	ta a	ıgt	gca	a ga	ac ·	cta	864

Text deleted

Text deleted

Text deleted

THIS PAGE BLANK (USPTO)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 January 2003 (30.01.2003)

PCT

(10) International Publication Number WO 2003/008440 A3

(51) International Patent Classification7: C12Q 1/68

G01N 33/68,

(21) International Application Number:

PCT/EP2002/007929

16 July 2002 (16.07.2002) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

16 July 2001 (16.07.2001) 60/305,806 60/358,416

US 20 February 2002 (20.02.2002) US

(71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEVIN, Joshua, Zvi [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). PATTON, David, Andrew [US/CH]; Syngenta Crop Protection AG, Werk Stein, Schaffhauserstasse, CH-4332 Stein (CH). MCELVER, John, Alan [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). BUDZISZEWSKI, Gregory, Joseph [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). ZHOU, Qing [CN/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). AUX, George, W. [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). TOSSBERG, John [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). WEGRICH GLOVER, Lyn [US/US]; 5446 Escover Lane, San Jose, CA 95118 (US). ASHBY, Carl, Sandidge [US/US]; Capital One FSD, 12061-0148, 11013 W. Broad Street, Glen Allen, VA 23060 (US). THOMAS, Carl, Randall [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). MADHAVEN, Ernie [US/US]; Falmouth, VA (US). LEWIS, Sharon [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). DUNN, Jill [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US). CATES, Eddie [US/US]; Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). LAW, Marcus, Dixon [US/US]; Syngenta Biotechnology, Inc., 3054 Comwallis Road, Research Triangle Park, NC 27709 (US).

- (74) Agent: BASTIAN, Werner; Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 1 April 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACID MOLECULES ENCODING PROTEINS ESSENTIAL FOR PLANT GROWTH

(57) Abstract: Nucleotide sequences are isolated from Arabidopsis thaliana that code for proteins essential for plant growth and developement. The essentially of the proteins may be exploited by recombinantly expressing the proteins and using them in screening assays to identify compounds that interact with or inhibit the proteins and are therefore potential herbicides.

A. CLASSIF	ICATION OF	SUBJECT	MATTER	,,,
IPC 7	G01N33	768	C12Q1	/ b8

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $1\,\text{PC}$ 7 $$ C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data, PAJ, Sequence Search, CHEM ABS Data

	DATABASE EMBL [Online] 1 March 2001 (2001-03-01), XP002253634 accession no. EBI Database accession no. Q9FKB8 abstract	1-10
	& KOTANI, H. ET AL: "Structural analysis of Arabidopsis thaliana chromosome 5. VI. Sequence features of the regions of 1,367,185 bp covered by 19 physically assigned P1 and TAC clones." DNA RES., 1998, pages 203-216, the whole document	
A	WO 00/42205 A (NOVARTIS ERFIND VERWALT GMBH; NOVARTIS AG (CH); BUDZISZEWSKI GREGO) 20 July 2000 (2000-07-20) abstract; claims 39-44	1-10

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "8" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
28 October 2003	2 0. 01. 04
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Luis Alves, D

Form PCT/ISA/210 (second sheet) (July 1992)

ERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/07929

		PCT/EP 02/0/92	.7
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant	to claim No.
A	DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; June 2001 (2001-06), WILLIAMS MARK A ET AL: "Characterization and inhibition of chloroplast-localized peptide deformylases from Arabidopsis thaliana" XP002253632 Database accession no. PREV200100419457 abstract & HORTSCIENCE, vol. 36, no. 3, June 2001 (2001-06), page 554, 98th Annual International Conference of the American Society for Horticultural Science; Sacramento, California, USA; July 21-25, 2001 ISSN: 0018-5345		-10
Α	ITO TAKUYA ET AL: "Regional insertional mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method." PLANT JOURNAL, vol. 17, no. 4, February 1999 (1999-02), pages 433-444, XP002253633 ISSN: 0960-7412 the whole document		1-10
Α	WO 00/15809 A (NOVARTIS ERFIND VERWALT GMBH; NOVARTIS AG (CH); BUDZISZEWSKI GREGO) 23 March 2000 (2000-03-23) abstract page 8, paragraph 3 - page 17, last paragraph		1-10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 02/07929

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: See PCT/ISA/210 annex
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-10 (all partially)

Invention 1

Screening methods for herbicidal compounds comprising identifying ligands or inhibitors of the protein having SEQ Id No 2.

2. claims: 1-10 (all partially)

Inventions 2 to 48

Screening methods for herbicidal compounds comprising identifying ligands or inhibitors of the protein having SEQ Id No n (with n=4...96, n being an even number).

page 2 of 2

TERNATIONAL SEARCH REPORT

Information on patent family members

In Institute Application No
PCT/EP 02/07929

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0042205	A	20-07-2000	AU CA CN WO EP JP	2290900 A 2362484 A1 1341151 T 0042205 A2 1141344 A2 2002534128 T	01-08-2000 20-07-2000 20-03-2002 20-07-2000 10-10-2001 15-10-2002
WO 0015809	Α	23-03-2000	AU CA CN WO EP JP	6082399 A 2340332 A1 1318106 T 0015809 A2 1114168 A2 2002525061 T	03-04-2000 23-03-2000 17-10-2001 23-03-2000 11-07-2001 13-08-2002

Form PCT/ISA/210 (patent family annex) (July 1992)

Arg	Glu	His 275	Leu	Leu	Asp	Arg	Val 280	Ala	Ile	Asn	Leu	Ser 285	Ala	Asp	L€	eu	
cct Pro	atg Met 290	agt Ser	ttt Phe	gaa Glu	gat Asp	cgt Arg 295	gtc Val	gca Ala	gca Ala	gtt Val	gga Gly 300	att Ile	gcc Ala	aca Thr	G	ag ln	912
ttt Phe 305	cag Gln	gaa Glu	cgc Arg	tgt Cys	aat Asn 310	gag Glu	gtt Val	ttt Phe	aga Arg	atg Met 315	gta Val	aat Asn	gaa Glu	gag Glu	4 1.	ca hr 20	960
gaa Glu	aca Thr	gca Ala	aag Lys	acg Thr	cag Gln	att Ile	ata Ile	ttg Leu	gct Ala 330	aga Arg	gaa Glu	tat Tyr	ttg Lev	aa. Ly: 33!	<i>3</i>	at sp	1008
gtc Val	aag Lys	ata Ile	agt Ser 340	Arg	gag Glu	caa Gln	ttg Leu	aag Lys 345	Tyr	ctg Leu	gtt Val	tto Lev	gaa Glu 350	LAI	t g a V	tc al	1056
cga Arg	ggt Gly	ggt Gl ₃	v Va.	c cag l Glr	g gga n Gly	cac His	cgc Arg 360	Ala	gaa Glu	ttg Leu	tat Ty	gca Ala 369		t cg a Ar	t g	gtg Val	1104
gcg	g aag a Lys 370	з Су	t tta	a gct u Ala	t gca a Ala	att a Ile 375	: GIU	gga Gly	a cga y Arg	gaa g Glu	a aaa 1 Ly: 38	s va	c ac	a at r Il	c g	gat Asp	1152
gad Asj 38!	o Le	c ag u Ar	a aa g Ly	g gc s Al	c gtt a Va: 390	l Glu	g cto Lev	g gto ı Val	c att l Ile	ctt Leu 39!	1 PI	t cg o Ar	t tc g Se	a to r Se		cta Leu 400	1200
ga: Asj	t ga p Gl	g ac u Th	t cc r Pr	a cc o Pr 40	t gaa o Gli 5	a caa u Glr	a caa n Gli	a aa n As:	c caa n Gli 41	n Pro	a cc o Pr	a cc o Pr	t co o Pr	. O F.	ca ro 15	cct Pro	1248
cc Pr	t cc o Pr	a ca o Gl	a aa n As 42	n Se	c ga r Gl	a tci u Se:	t gg r Gl	a ga y Gl 42	u GI	a ga u Gl	a aa u As	it ga sn Gl	a ga u Gl 43		aa lu	caa Gln	1296
ga Gl	a ga u Gl	a ga u Gl	.u G3	ia ga Lu Gl	ıg ga .u As	t ga p Gl	a ag u Se 44	r As	it ga sn Gl	a ga u Gl	a aa u As	at ga sp Gl	Lu A.	at g sn G	ag lu	cag Gln	1344
ca Gl	a ca n Gl	n As	ac ca sp Gl	aa at ln'Il	a co le Pr	t ga o Gl 45	u GI	g tt u Ph	t at ne Il	a tt .e Ph	ie A	ac go sp Ai	ct g la G	ag g lu G	gc ly	ggt Gly	1392
Le	eu Va	g ga	at ga sp G	ag aa lu L	aa ct ys Le 47	eu Le	c tt	c ti le Pi	tt go he Al	et ca la G] 47	Ln G	aa g ln A	cc c la G	ag a ln I	aaa Lys	cgt Arg 480	1440
C C	99 99 rg G	gg a ly L	aa g ys A	la G	gc ag ly Ai 85	gg gc rg Al	eg aa la Ly	ag a: /s A:	SII V	tc at al I: 90	ta t le P	tc t he S	ca g er G		gat Asp 495	5	1488
g	ga c ly A	gc t rg T	yr I	ta a le L 00	ag co ys P:	ca at ro Me	ig ci	eu P	ca a ro L 05	ag g ys G	gt o ly F	ca g ro V	aı ı	aaa Lys 510	aga Arg	tta Leu	1536
g	ct g	tg g	at g	ca a	.cc c	tt ag	ga g	ca g	ict g	ca c	ca t	ac c	ag a	aaa	ttg	g ege	1584

Ala Val Asp Ala Thr Leu Arg Ala Ala Ala Pro Tyr Gln Lys Leu Arg 515 520 525	
aga gag aag gat atc tca gga act agg aaa gtc ttt gtt gag aag aca Arg Glu Lys Asp Ile Ser Gly Thr Arg Lys Val Phe Val Glu Lys Thr 530 535	1632
gat atg agg gcc aaa aga atg gca agg aaa gct gga gcc ctg gtt atc Asp Met Arg Ala Lys Arg Met Ala Arg Lys Ala Gly Ala Leu Val Ile 560	1680
ttt gtg gtt gat gca agt ggc agt atg gca ttg aat cgt atg caa aac Phe Val Val Asp Ala Ser Gly Ser Met Ala Leu Asn Arg Met Gln Asn 565 570 575	1728
gcc aaa ggt gct gca ctc aaa cta ctg gca gag agc tat act agc agg Ala Lys Gly Ala Ala Leu Lys Leu Leu Ala Glu Ser Tyr Thr Ser Arg 580 585	1776
gat cag gtt tcg att att cct ttc cga ggg gat gct gcg gaa gtg ctc Asp Gln Val Ser Ile Ile Pro Phe Arg Gly Asp Ala Ala Glu Val Leu 595 600 605	1824
ttg ccc cct tct aga tca ata gca atg gca agg aat cgt ctt gag aga Leu Pro Pro Ser Arg Ser Ile Ala Met Ala Arg Asn Arg Leu Glu Arg 610 615 620	1872
ctt cct tgt ggt ggt tct cct ctt gcc cat ggt tta aca acg gct Leu Pro Cys Gly Gly Ser Pro Leu Ala His Gly Leu Thr Thr Ala 625 630 635	1920
gta aga gta gga ctt aac gca gag aag agt ggt gat gtc ggg cgc ata Val Arg Val Gly Leu Asn Ala Glu Lys Ser Gly Asp Val Gly Arg Ile 645 650 655	1968
atg att gtt gcg ata acc gat ggt cga gcc aac att aca ctg aaa aga Met Ile Val Ala Ile Thr Asp Gly Arg Ala Asn Ile Thr Leu Lys Arg 660 665 670	2016
tca act gat ccg gag tct att gcc cca gat gct cct aga ccc acg tcc Ser Thr Asp Pro Glu Ser Ile Ala Pro Asp Ala Pro Arg Pro Thr Ser 675 680 685	2064
aaa gaa ttg aag gat gag att ctg gaa gtt gct ggg aag ata tac aag Lys Glu Leu Lys Asp Glu Ile Leu Glu Val Ala Gly Lys Ile Tyr Lys 690 695 700	2112
gca ggg atg tct ctt cta gtg att gat acc gag aac aag ttt gtt tca Ala Gly Met Ser Leu Leu Val Ile Asp Thr Glu Asn Lys Phe Val Ser 710 715 720	2160
act ggt ttt gca aag gag atc gca aga gtt gct caa gga aaa tat tat Thr Gly Phe Ala Lys Glu Ile Ala Arg Val Ala Gln Gly Lys Tyr Tyr 735 730 735	2208
tac ttg cca aat gct tcg gat gct gta atc tcg gcc acc act agg gat Tyr Leu Pro Asn Ala Ser Asp Ala Val Ile Ser Ala Thr Thr Arg Asp 740 745 750	2256
gca cta tct gat ctg aag aat tct tga	2283

Ala Leu Ser Asp Leu Lys Asn Ser 755 760

<210> 22

<211> 760

<212> PRT

<213> Arabidopsis thaliana

<400> 22

Met Ala Met Thr Pro Val Ala Ser Ser Ser Pro Val Ser Thr Cys Arg
1 5 10 15

Leu Phe Arg Cys Asn Leu Leu Pro Asp Leu Leu Pro Lys Pro Leu Phe 20 25 30

Leu Ser Leu Pro Lys Arg Asn Arg Ile Ala Ser Cys Arg Phe Thr Val

Arg Ala Ser Ala Asn Ala Thr Val Glu Ser Pro Asn Gly Val Pro Ala
50 55 60

Ser Thr Ser Asp Thr Asp Thr Glu Thr Asp Thr Thr Ser Tyr Gly Arg
70 75 80

Gln Phe Phe Pro Leu Ala Ala Val Val Gly Gln Glu Gly Ile Lys Thr 85 90 95

Ala Leu Leu Gly Ala Val Asp Arg Glu Ile Gly Gly Ile Ala Ile 100 105 110

Ser Gly Arg Arg Gly Thr Ala Lys Thr Val Met Ala Arg Gly Leu His 115 120 125

Glu Ile Leu Pro Pro Ile Glu Val Val Val Gly Ser Ile Ser Asn Ala 130 135 140

Asp Pro Ala Cys Pro Asp Glu Trp Glu Asp Asp Leu Asp Glu Arg Ile 145 150 155 160

Glu Tyr Asn Ala Asp Asn Thr Ile Lys Thr Glu Ile Val Lys Ser Pro 165 170 175 Phe Ile Gln Ile Pro Leu Gly Val Thr Glu Asp Arg Leu Ile Gly Ser 180 185 190

- Val Asp Val Glu Glu Ser Val Lys Arg Gly Thr Thr Val Phe Gln Pro 195 200 205
- Gly Leu Leu Ala Glu Ala His Arg Gly Val Leu Tyr Val Asp Glu Ile 210 215 220
- Asn Leu Leu Asp Glu Gly Ile Ser Asn Leu Leu Leu Asn Val Leu Thr 225 230 235 240
- Asp Gly Val Asn Ile Val Glu Arg Glu Gly Ile Ser Phe Arg His Pro 245 250 255
- Cys Lys Pro Leu Leu Ile Ala Thr Tyr Asn Pro Glu Glu Gly Ala Val 260 265 270
- Arg Glu His Leu Leu Asp Arg Val Ala Ile Asn Leu Ser Ala Asp Leu 275 280 285
- Pro Met Ser Phe Glu Asp Arg Val Ala Ala Val Gly Ile Ala Thr Gln 290 295 300
- Phe Gln Glu Arg Cys Asn Glu Val Phe Arg Met Val Asn Glu Glu Thr 305 310 315
- Glu Thr Ala Lys Thr Gln Ile Ile Leu Ala Arg Glu Tyr Leu Lys Asp 325 330 335
- Val Lys Ile Ser Arg Glu Gln Leu Lys Tyr Leu Val Leu Glu Ala Val 340 345 350
- Arg Gly Gly Val Gln Gly His Arg Ala Glu Leu Tyr Ala Ala Arg Val 355 360 365
- Ala Lys Cys Leu Ala Ala Ile Glu Gly Arg Glu Lys Val Thr Ile Asp 370 375 380
- Asp Leu Arg Lys Ala Val Glu Leu Val Ile Leu Pro Arg Ser Ser Leu 385 390 395 400
- Asp Glu Thr Pro Pro Glu Gln Gln Asn Gln Pro Pro Pro Pro Pro Pro 415

Pro Pro Gln Asn Ser Glu Ser Gly Glu Glu Glu Asn Glu Glu Glu Gln 420 425 430

- Glu Glu Glu Glu Glu Asp Glu Ser Asn Glu Glu Asn Glu Asn Glu Gln 435 440 445
- Gln Gln Asp Gln Ile Pro Glu Glu Phe Ile Phe Asp Ala Glu Gly Gly 450 455 460
- Leu Val Asp Glu Lys Leu Leu Phe Phe Ala Gln Gln Ala Gln Lys Arg
 465 470 475 480
- Arg Gly Lys Ala Gly Arg Ala Lys Asn Val Ile Phe Ser Glu Asp Arg 485 490 495
- Gly Arg Tyr Ile Lys Pro Met Leu Pro Lys Gly Pro Val Lys Arg Leu 500 505 510
- Ala Val Asp Ala Thr Leu Arg Ala Ala Pro Tyr Gln Lys Leu Arg
 515 520 525
- Arg Glu Lys Asp Ile Ser Gly Thr Arg Lys Val Phe Val Glu Lys Thr 530 540
- Asp Met Arg Ala Lys Arg Met Ala Arg Lys Ala Gly Ala Leu Val Ile 545 550 555 560
- Phe Val Val Asp Ala Ser Gly Ser Met Ala Leu Asn Arg Met Gln Asn 565 570 575
- Ala Lys Gly Ala Ala Leu Lys Leu Leu Ala Glu Ser Tyr Thr Ser Arg 580 585 590
- Asp Gln Val Ser Ile Ile Pro Phe Arg Gly Asp Ala Ala Glu Val Leu 595 600 605
- Leu Pro Pro Ser Arg Ser Ile Ala Met Ala Arg Asn Arg Leu Glu Arg
 610 615 620
- Leu Pro Cys Gly Gly Gly Ser Pro Leu Ala His Gly Leu Thr Thr Ala 625 630 635 640
- Val Arg Val Gly Leu Asn Ala Glu Lys Ser Gly Asp Val Gly Arg Ile 645 650 655

Met Ile Val Ala Ile Thr Asp Gly Arg Ala Asn Ile Thr Leu Lys Arg 665 Ser Thr Asp Pro Glu Ser Ile Ala Pro Asp Ala Pro Arg Pro Thr Ser 680 Lys Glu Leu Lys Asp Glu Ile Leu Glu Val Ala Gly Lys Ile Tyr Lys 695 Ala Gly Met Ser Leu Leu Val Ile Asp Thr Glu Asn Lys Phe Val Ser 710 705 Thr Gly Phe Ala Lys Glu Ile Ala Arg Val Ala Gln Gly Lys Tyr Tyr 730 725 Tyr Leu Pro Asn Ala Ser Asp Ala Val Ile Ser Ala Thr Thr Arg Asp 745 740 Ala Leu Ser Asp Leu Lys Asn Ser 755 <210> 23 <211> 1167 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1167) <223> 14519 atg gcg ttt ttt aag cta ctt ttg ttt ctt ttt ctc gta acg ctc caa <400> 23 48 Met Ala Phe Phe Lys Leu Leu Leu Phe Leu Phe Leu Val Thr Leu Gln att gct tca ttc act gga aat gga gaa gct tct tct tcc tca gag 96 Ile Ala Ser Phe Thr Gly Asn Gly Glu Ala Ser Ser Ser Ser Glu 20 aac aat ggc tgc aat gga gat caa aac cat ttg ctt aac gaa ctc aaa Asn Asn Gly Cys Asn Gly Asp Gln Asn His Leu Leu Asn Glu Leu Lys

40

35

tcc Ser	acc Thr 50	gtc Val	tct Ser	gct Ala	ctt Leu	caa Gln 55	tca Ser	atc (atc Ile	aag Lys	gag Glu 60	aaa Lys	aac Asn	ca Gl	a g n C	gaa Glu	192
ttg Leu 65	ctt Leu	agc Ser	aag Lys	gaa Glu	gag Glu 70	aaa Lys	atc Ile	cga Arg	ggt Gly	ttg Leu 75	gag Glu	tta Leu	tat Tyr	at I]	Le A	agg Arg 80	240
gag Glu	aaa Lys	cct Pro	tat Tyr	ttg Leu 85	ttt Phe	gag Glu	agt Ser	gaa Glu	att Ile 90	gat Asp	ttt Phe	tct Ser	caa Glr	tt Pl 95	ie '	gag Glu	288
aat Asn	ccg Pro	gta Val	aag Lys 100	cat His	gcg Ala	agt Ser	gaa Glu	gta Val 105	gaa Glu	gag Glu	aag Lys	gtt Val	tat Tyi	. G.	aa lu	cta Leu	336
cag Gln	aaa Lys	cag Gln 115	Val	ttt Phe	gga Gly	tta Leu	aaa Lys 120	cgg Arg	gaa Glu	gtg Val	gaa Glu	acg Thi 125	GI	a C	gc rg	aag Lys	384
aga Arg	agg Arg 130	Lev	gaa Glu	gtg .Val	gaa Glu	gct Ala 135	gaa Glu	tta Leu	gca Ala	gat Asp	aac Lys 140	з гу	a gt s Va	t g l A	ca la	caa Gln	432
ctt Leu 145	Ser	tca Sei	aag Lys	g ctt s Leu	gaa Glu 150	Asn	atc Ile	gat Asp	gly aaa	tgg Trp 155	Pne	c tte	g tc u Se	t a r L	iaa iys	ctt Leu 160	480
ggt Gly	ctt Leu	aac Ası	c ccq	g act Thr 165	Glu	agt Ser	cag Gln	gca Ala	tat Tyr 170	rei	g ate	g ac t Th	c ct r Le	u ı	:gg Trp L75	cat His	528
caa Glr	a cat n His	cti Lei	age 1 Se:	c cca r Pro	a act	ctt Leu	cat His	acc Thr	Thr	ctt Le	t ca u Gl	a at n Me	g gt t Va 19	TT 5	cg Ser	atg Met	576
aaa Ly:	a att	z ga e Gl	u Gl	a gto n Va	c caq l Gli	g aaa n Lys	tgg Trp	Ser	gaç Glu	g cci	t ca o Hi	c at s Il 20	.е с.	aa a lu '	aca Thr	ctg Leu	624
aa As	c tca n Sea	r Gl	a tg n Tr	g ati p Ilo	t cc	a ago o Sei 21!	: Ile	c aaa e Lys	a gat s Asp	gc Al	a tg a Cy 22	rs va	c ac	ca nr	ata Ile	acc Thr	672
at Il 22	е Ту	t ct r Le	c ga u Gl	a cc u Pr	a aa o Ly 23	s Va	caa l Gli	a tai	t ata	a ac e Th 23	r As	at aa sp Ly	ag t ys S	cc er	ato Ile	gag Glu 240	720
tt Le	g tt u Le	a ta u Ty	t ac	a tc ir Se 24	r Ly	g ca s Gl	g gc n Al	t tt a Le	g ac u Th 25	r Pr	a ca o H:	at c is L	tc a eu I	tc le	caa Gli 25	a gga n Gly 5	768
tt Ph	t ga le As	c go	t to a Se	er Ty	c ta r Ty	c ta r Ty	t ct r Le	t ga u Gl 26	u Va	g at 1 II	c ag	ga a rg T	nr E	at is 70	aca Th	a cat r His	816
CC Pr	g ta o Ty	r Tì	eg ad ir Ti	ec eg nr Ar	gg at	t at Le Me	g ac t Th 28	r Le	a ac u Th	g aa ir Ly	ag c ys P	ro H	ac t lis I 85	tg eu	ga Gl	g aga u Arg	864

gta caa gtt gcc tta gag cca tat act gaa aac gta aga cat ggc ttt	912
Val Gln Val Ala Leu Glu Plo Tyl III 300 290 295	0.50
cag aag ttg gtt aac tca acc aaa atc tac cat caa cag gct caa gaa Gln Lys Leu Val Asn Ser Thr Lys Ile Tyr His Gln Gln Ala Gln Glu 305 310 315	960
atg ctg aag aac aat gag atc acc aaa ccg gtt gct acc atg gac tta Met Leu Lys Asn Asn Glu Ile Thr Lys Pro Val Ala Thr Met Asp Leu 325 330 335	1008
gct tgg gtt ggg gcc aca gct tta att gga ttc cct ctt ata ttc atc Ala Trp Val Gly Ala Thr Ala Leu Ile Gly Phe Pro Leu Ile Phe Ile 340 345	1056
atc aaa ttg ctt tct gca gtc tcc aat cct aag ggg aag aag aga cac Ile Lys Leu Leu Ser Ala Val Ser Asn Pro Lys Gly Lys Lys Arg His 355	1104
aac cat aaa aaa gaa cca acc acc ggg tac cgc aga gcc aaa cgc cga Asn His Lys Lys Glu Pro Thr Thr Gly Tyr Arg Arg Ala Lys Arg Arg 380	1152
370	1167
cat cct cac caa tga His Pro His Gln 385	
<210> 24	
<211> 388	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 24 Leu Phe Leu Val Thr Leu Gln	
Met Ala Phe Phe Lys Leu Leu Phe Leu Phe Leu Val Thr Leu Gln 10 15	
Ile Ala Ser Phe Thr Gly Asn Gly Glu Ala Ser Ser Ser Ser Glu 20 25 30	
Asn Asn Gly Cys Asn Gly Asp Gln Asn His Leu Leu Asn Glu Leu Lys 35 40 45	
Ser Thr Val Ser Ala Leu Gln Ser Ile Ile Lys Glu Lys Asn Gln Glu 50 55	

Glu Lys Pro Tyr Leu Phe Glu Ser Glu Ile Asp Phe Ser Gln Phe Glu 85 90 95

Asn Pro Val Lys His Ala Ser Glu Val Glu Glu Lys Val Tyr Glu Leu 100 105 110

Gln Lys Gln Val Phe Gly Leu Lys Arg Glu Val Glu Thr Gln Arg Lys 115 120 125

Arg Arg Leu Glu Val Glu Ala Glu Leu Ala Asp Lys Lys Val Ala Gln
130 135 140

Leu Ser Ser Lys Leu Glu Asn Ile Asp Gly Trp Phe Leu Ser Lys Leu 145 150 155 160

Gly Leu Asn Pro Thr Glu Ser Gln Ala Tyr Leu Met Thr Leu Trp His 165 170 175

Gln His Leu Ser Pro Thr Leu His Thr Thr Leu Gln Met Val Ser Met 180 185 190

Lys Ile Glu Gln Val Gln Lys Trp Ser Glu Pro His Ile Glu Thr Leu 195 200 205

Asn Ser Gln Trp Ile Pro Ser Ile Lys Asp Ala Cys Val Thr Ile Thr 210 215 220

Ile Tyr Leu Glu Pro Lys Val Gln Tyr Ile Thr Asp Lys Ser Ile Glu 225 230 235 240

Leu Leu Tyr Thr Ser Lys Gln Ala Leu Thr Pro His Leu Ile Gln Gly 245 250 255

Phe Asp Ala Ser Tyr Tyr Leu Glu Val Ile Arg Thr His Thr His 260 265 270

Pro Tyr Thr Thr Arg Ile Met Thr Leu Thr Lys Pro His Leu Glu Arg 275 280 285

Val Gln Val Ala Leu Glu Pro Tyr Thr Glu Asn Val Arg His Gly Phe 290 295 300

Gln Lys Leu Val Asn Ser Thr Lys Ile Tyr His Gln Gln Ala Gln Glu 305 310 315 320

Met Leu Lys Asn Asn Glu Ile Thr Lys Pro Val Ala Thr Met Asp Leu 325 330 335	
Ala Trp Val Gly Ala Thr Ala Leu Ile Gly Phe Pro Leu Ile Phe Ile 340 345 350	
Ile Lys Leu Leu Ser Ala Val Ser Asn Pro Lys Gly Lys Lys Arg His 355 360 365	
Asn His Lys Lys Glu Pro Thr Thr Gly Tyr Arg Arg Ala Lys Arg Arg 370 375 380	
His Pro His Gln 385	
<210> 25	
<211> 2463	
<212> DNA	•
<213> Arabidopsis thaliana	
<220>	
<221> CDS	
<222> (1)(2463)	
<223> 14610.1	
<pre><400> 25 atg ggg agg aga ggt cgc ggc ggc ggt ggt atg ggc gga gga atc Atg ggg agg aga ggt cgc ggc ggc ggt ggt atg ggc gga gga atc Met Gly Arg Gly Arg Gly Gly Gly Gly Gly Met Gly Gly Gly Ile 15</pre>	48
aat cgt aga tat ctg agt caa gtt atg gat acg tgc ggc aag gat tta Asn Arg Arg Tyr Leu Ser Gln Val Met Asp Thr Cys Gly Lys Asp Leu 20 25 30	96
tct acg gcg gag gac atc gtt gat gat ctt cgt tcc agg tac ggc aat Ser Thr Ala Glu Asp Ile Val Asp Asp Leu Arg Ser Arg Tyr Gly Asn 35 40 45	144
ttt gcg agg ttg act cgg caa gtg ctt cta ctc aat gtc agg caa gtc Phe Ala Arg Leu Thr Arg Gln Val Leu Leu Leu Asn Val Arg Gln Val 50 55	192
ctt aat gtt aga aac aac aag agg gtt aaa gac gaa gat gaa gat gac	240

Leu 65	Asn	Val	Arg	Asn	Asn 70	Lys	Arg	Val	Lys	Asp 75	Glu	Asp	Glu	Asp	As 80	sp)	
aac Asn	att Ile	gga Gly	gat Asp	gag Glu 85	gaa Glu	ggt Gly	tct Ser	gct Ala	tct Ser 90	cag Gln	agg Arg	aag Lys	aaa Lys	cag Gln 95	ag A	ga rg	288
cgg Arg	gtt Val	gat Asp	gag Glu 100	aaa Lys	gag Glu	gag Glu	aaa Lys	ttg Leu 105	cag Gln	cga Arg	gcg Ala	gag Glu	cag Glr 110	. 361	H.	at is	336
tta Leu	agg Arg	aag Lys 115	agg Arg	aat Asn	atg Met	gaa Glu	cgt Arg 120	tca Ser	gtg Val	tct Ser	tct Ser	tct Ser 125	FIC	tct Sei	t t S	ct er	384
tct Ser	tct Ser 130	Ser	tcg Ser	gaa Glu	gac Asp	agt Ser 135	ggt Gly	gat Asp	gtg Val	tcg Ser	act Thr 140	. 561	gag Gl	g gad 1 Asj	c g p A	icg .la	432
gtt Val 145	Tyr	ggg	gag Glu	aag Lys	ctg Leu 150	Ser	ccg Pro	ccg Pro	cgg Arg	ttt Phe 155	: As	cto Lei	g at	c aa e As	11 4	Jac Asp 160	480
agt Ser	cta Leu	aga Arg	gat J Asp	aac Asn 165	. Тут	gct Ala	aag Lys	ttg Lev	aac Asn 170	ser	tc Se	c tc r Se	g aa r Ly	g aa s Ly 17	5 1	cca Pro	528
att Ile	e Gly ggs	tcg Sei	g cct r Pro 180) Ala	g gaa a Glu	aag Lys	aat Asr	gtg Val	g gaa L Glu	ı gtt ı Val	ga l Gl	g ac u Th	t gt r Va 19	. L. DC	r i	aac Asn	576
aaa Lys	a ggt s Gly	aga Arg 19	g Ser	c aag	g ttg s Lev	g gct 1 Ala	aca Thi	. Met	g 999 t Gly	g gco y Ala	c ag a Ar	а аа g Ly 20	S G.	ig go Lu Al	ct la	aaa Lys	624
gti Va:	t tc l Se: 21	r Le	t tce u Se:	c cto	c ag u Se:	215	7. Ala	t act	t gg r Gl	t aa y As	t gg n Gl 22	y As	it ti sp Le	eu G	aa lu	gtt Val	672
ga Gl	u Gl	t ac y Th	t aa r Ly	a gg s Gl	a cc y Pr	o Th:	t tt r Ph	t aa e Ly	a ga s As	c tt p Ph 23	e G.	gt gg Ly Gi	gg a Ly I	tt a le L	ag ys	aaa Lys 240	720
at Il	a tt e Le	g ga u As	t ga p Gl	a tt u Le 24	u Gl	g at u Me	g aa t As	t gt n Va	t ct l Le 25	u Pr	c co le Pi	cc at	tt c le L	eu A	at sn 55	cct Pro	768
ga Gl	g cc u Pr	g tt	t aa le Ly 26	s Ly	g at 's Il	t gg e Gl	a gt y Va	g aa 1 Ly 26	ıg co vs Pr	a co o Pi	ca a co S	gt g er G	T Y	tt c le I 70	ta eu	ttt Phe	816
ca Hi	ıt gg .s G]	ja co Ly Pr 27	o Pr	t gg o Gl	je te ly Cy	rs Gl	g aa y Ly 28	's TI	ct as ir Ly	ig ti 7s Le	tg g eu A	la P	at 9 sn <i>1</i> 85	jcc a la l	tt [le	gcc Ala	864
a a As	sn G	aa go lu Al	et gg la Gl	gt gt Ly Va	al Pi	g tt co Ph	ie T	at aa /r Ly	ag at ys I:	tt to le S	er P	jcc a la 1 100	ca g	gag g Blu N	gtg Val	att	912
, to	et g	gt g	tt to	st g	gt go	ct to	et ga	aa g		at a	tc a	aga g	gag (ctc '	ttt	tct	960

Ser Gly Val Ser Gly Ala Ser Glu Glu Asn Ile Arg Glu Leu Phe Ser	
305	1008
gcg att ggt tca aag aga gag aat cag caa aga gag atg gag aag cgg Ala Ile Gly Ser Lys Arg Glu Asn Gln Gln Arg Glu Met Glu Lys Arg 340 345	1056
ata gta aca caa ttg ttg act tgt atg gat gga cct ggt aac aaa ggc Ile Val Thr Gln Leu Leu Thr Cys Met Asp Gly Pro Gly Asn Lys Gly 355 360 365	1104
gat aaa aat gct cct gat tct agt gct ggt ttt gtt ctt gtc att gga Asp Lys Asn Ala Pro Asp Ser Ser Ala Gly Phe Val Leu Val Ile Gly 370 375	1152
gct aca aat agg cct gat gct ctt gat cct gct ttg agg aga agt gga Ala Thr Asn Arg Pro Asp Ala Leu Asp Pro Ala Leu Arg Arg Ser Gly 385 390 395 400	1200
cga ttt gaa act gag atc gct cta act gct cca gat gaa gac gca agg Arg Phe Glu Thr Glu Ile Ala Leu Thr Ala Pro Asp Glu Asp Ala Arg 405 410 415	1248
gct gag ata ctc tct gtt gta gcc caa aaa ctt aga tta gaa gga ccc Ala Glu Ile Leu Ser Val Val Ala Gln Lys Leu Arg Leu Glu Gly Pro 420 425 430	1296
ttt gac aag aaa aga ata gct cgt tta aca ccg ggt ttt gtt gga gct Phe Asp Lys Lys Arg Ile Ala Arg Leu Thr Pro Gly Phe Val Gly Ala 445	1344
gat ttg gag agt gtt gct tac ttg gct ggc agg aaa gcc att aag aga Asp Leu Glu Ser Val Ala Tyr Leu Ala Gly Arg Lys Ala Ile Lys Arg 450 450 460	1392
atc ttg gat tca agg aaa tct gaa cag tct ggg gac ggt gaa gac gat Ile Leu Asp Ser Arg Lys Ser Glu Gln Ser Gly Asp Gly Glu Asp Asp 465 470 480	1440
aaa tot tgg ctg agg atg coc tgg coa gaa gaa gag ttg gaa aag cto Lys Ser Trp Leu Arg Met Pro Trp Pro Glu Glu Glu Leu Glu Lys Leu 495	1488
ttt gtc aaa atg tct gat ttc gag gaa gca gtg aat cta gtt cag gca Phe Val Lys Met Ser Asp Phe Glu Glu Ala Val Asn Leu Val Gln Ala 500 505 510	1536
tot tta aca aga gaa gga tto tot ato gtg cot gat gto aag tgg gat Ser Leu Thr Arg Glu Gly Phe Ser Ile Val Pro Asp Val Lys Trp Asp 515 520 525	1584
gat gtt ggt gga ctt gac cat cta cga ctt caa ttc aac cgt tat ata Asp Val Gly Gly Leu Asp His Leu Arg Leu Gln Phe Asn Arg Tyr Ile 530 535	1632
gtg agg cct atc aaa aag cct gat att tat aag gct ttt ggg gta gac	1680

Val 545	Arg	Pro	Ile	Lys	Lys 550	Pro	Asp	Ile	Tyr	Lys 555	Ala	Phe	Gly	Val	As 56	5 p 50		
tta Leu	gag Glu	aca Thr	GJÀ aaa	ttt Phe 565	ttg Leu	ctc Leu	tat Tyr	gga Gly	cca Pro 570	ccg Pro	ggt Gly	tgt Cys	ggc	aag Lys 575	ac Th	a ir	1728	
ttg Leu	att Ile	gca Ala	aag Lys 580	gca Ala	gct Ala	gct Ala	aac Asn	gag Glu 585	gct Ala	gga Gly	gct Ala	aat Asn	ttc Phe 590	atg Met	Ca Hi	ac is	1776	
atc Ile	aag Lys	ggt Gly 595	Ala	gaa Glu	ctt Leu	cta Leu	aat Asn 600	aaa Lys	tac Tyr	gtt Val	gga Gly	gaa Glu 605	agt Ser	gag Glu	Ci L	tt eu	1824	
gct Ala	att Ile 610	Arg	acg Thr	ttg Leu	ttt Phe	cag Gln 615	Arg	gct Ala	. cgg . Arg	aca Thr	tgt Cys 620	gca Ala	cca Pro	tgt Cys	g v	ta al	1872	
atc Ile 625	Phe	ttt Phe	gat Asp	gag Glu	gtg Val	gat Asp	gct Ala	ttg Lev	g aca 1 Thr	aca Thr 635	Ser	cgt	ggc Gly	aaa Lys	,	aa lu 40	1920	
ggt Gly	gct Ala	tgg Tr	g gtt Val	gtt Val	l Glu	ı cgg ı Arg	ctt Lev	tto Lei	g aac 1 Asr 650	GIL	ttt Phe	ctt Lei	gtt Val	gag L Gl	u -	etg Jeu	1968	
gat Asp	ggt Gly	gg; Gl	a gag y Glu 660	ı Arç	g cgt	aat g Asr	gta Val	a tai L Ty: 66!	r va.	a att	gga Gly	gct Ala	a Ca a Thi 670	L AS	c a	agg Arg	2016	
cca Pro	a gat o Asj	t gt. o Va 67	l Va	t gat l As	t cci p Pro	t gct o Ala	t tto a Pho 680	e re	g aga u Arg	a ccg g Pro	g ggt o Gly	ag y Ar	g Pm	t gg e Gl	g a	aat Asn	2064	
ct: Le:	t ct u Le 69	u Ty	t gt r Va	a cc l Pr	c ct	c ccc u Pro 69	aA c	c gc n Al	a ga a As	t gag p Gl	g cgi u Arg 70	g Al	t tc a Se	a at r Il	t .e	cta Leu	2112	
aa Ly 70	s Al	t at a Il	t gc e Al	a ag a Ar	g aa g Ly 71	g aa s Ly 0	a cc s Pr	g at o Il	a ga e As	t cc p Pr 71	0 56	t gt r Va	t ga l As	t ct	g eu	gat Asp 720	2160	
g1	a at y Il	t go e Al	a aa .a Ly	g aa s As 72	n As	ic tg in Cy	t ga s Gl	a gg u Gl	gt tt Ly Ph 73	e se	c gg r Gl	a go y Al	t ga La As	P P	tc eu 35	gca Ala	2208	
ca Hi	c tt s Le	g gt eu Va	al G]	a aa In Ly IO	a go /s Al	et ac la Th	a tt r Ph	ie G.	aa go ln Al 45	a gt La Va	g ga il Gl	ig ga Lu G	LU Me	et I	ta le	ggc	2256	;
to Se	ec ag er Se	er G	ag to lu Se 55	eg to	et ga er Gi	aa ga lu As	sp As	at g sp Va	tt ac al Tì	ca ga nr As	at at sp I	TC 1	cg ca hr Gi 65	ag t ln C	gt 'ys	aca Thr	2304	L
at I:	le L	ag a ys Ti	cg ag hr Ai	gg ca rg H	at ti is Pl	tc ga he Gl	ag ca lu Gi 75	aa g ln A	cc t la L	tg to eu So	er L	ta g eu V 80	tc t al S	ca c er F	ca Pro	tct Ser	2352	2
g	tg a	ac a	aa c	ag c	aa a	ga a	ga c	ac t	at g	ac g	ca c	ta t	ca a	ca a	aag	ctt	240	0

Val Asn Lys Gln Gln Arg Arg His Tyr Asp Ala Leu Ser Thr Lys Leu 785 790 795 800

Caa gaa agc gtt ggg agg aac act gaa caa gtc acc ata ggg cca tct 2448 Gln Glu Ser Val Gly Arg Asn Thr Glu Gln Val Thr Ile Gly Pro Ser 805 810 815

ttt acc ctc gag taa 2463 Phe Thr Leu Glu 820

<210> 26

<211> 820

<212> PRT

<213> Arabidopsis thaliana

<400> 26

Met Gly Arg Gly Arg Gly Gly Gly Gly Gly Met Gly Gly Gly Ile 1 5 10 15

Asn Arg Arg Tyr Leu Ser Gln Val Met Asp Thr Cys Gly Lys Asp Leu 20 25 30

Ser Thr Ala Glu Asp Ile Val Asp Asp Leu Arg Ser Arg Tyr Gly Asn 35 40 45

Phe Ala Arg Leu Thr Arg Gln Val Leu Leu Leu Asn Val Arg Gln Val 50 55 60

Leu Asn Val Arg Asn Asn Lys Arg Val Lys Asp Glu Asp Glu Asp Asp 65 70 75 80

Asn Ile Gly Asp Glu Glu Gly Ser Ala Ser Gln Arg Lys Lys Gln Arg 85 90 95

Arg Val Asp Glu Lys Glu Glu Lys Leu Gln Arg Ala Glu Gln Ser His 100 105 110

Leu Arg Lys Arg Asn Met Glu Arg Ser Val Ser Ser Ser Pro Ser Ser 115 120 125

Ser Ser Ser Glu Asp Ser Gly Asp Val Ser Thr Ser Glu Asp Ala 130 135 140

Val Tyr Gly Glu Lys Leu Ser Pro Pro Arg Phe Asp Leu Ile Asn Asp 145 150 155 160

- Ser Leu Arg Asp Asn Tyr Ala Lys Leu Asn Ser Ser Ser Lys Lys Pro 165 170 175
- Ile Gly Ser Pro Ala Glu Lys Asn Val Glu Val Glu Thr Val Ser Asn 180 185 190
- Lys Gly Arg Ser Lys Leu Ala Thr Met Gly Ala Arg Lys Glu Ala Lys 195 200 205
- Val Ser Leu Ser Leu Ser Gly Ala Thr Gly Asn Gly Asp Leu Glu Val 210 215 220
- Glu Gly Thr Lys Gly Pro Thr Phe Lys Asp Phe Gly Gly Ile Lys Lys 225 230 235 240
- Ile Leu Asp Glu Leu Glu Met Asn Val Leu Phe Pro Ile Leu Asn Pro 245 250 255
- Glu Pro Phe Lys Lys Ile Gly Val Lys Pro Pro Ser Gly Ile Leu Phe 260 265 270
- His Gly Pro Pro Gly Cys Gly Lys Thr Lys Leu Ala Asn Ala Ile Ala 275 280 285
- Asn Glu Ala Gly Val Pro Phe Tyr Lys Ile Ser Ala Thr Glu Val Ile 290 295 300
- Ser Gly Val Ser Gly Ala Ser Glu Glu Asn Ile Arg Glu Leu Phe Ser 305 310 315 320
- Lys Ala Tyr Arg Thr Ala Pro Ser Ile Val Phe Ile Asp Glu Ile Asp 325 330 335
- Ala Ile Gly Ser Lys Arg Glu Asn Gln Gln Arg Glu Met Glu Lys Arg 340 345 350
- Ile Val Thr Gln Leu Leu Thr Cys Met Asp Gly Pro Gly Asn Lys Gly 355 360 365
- Asp Lys Asn Ala Pro Asp Ser Ser Ala Gly Phe Val Leu Val Ile Gly 370 375 380

Ala Thr Asn Arg Pro Asp Ala Leu Asp Pro Ala Leu Arg Arg Ser Gly 395 395 400

- Arg Phe Glu Thr Glu Ile Ala Leu Thr Ala Pro Asp Glu Asp Ala Arg 405 410 415
- Ala Glu Ile Leu Ser Val Val Ala Gln Lys Leu Arg Leu Glu Gly Pro 420 425 430
- Phe Asp Lys Lys Arg Ile Ala Arg Leu Thr Pro Gly Phe Val Gly Ala 435 440 445
- Asp Leu Glu Ser Val Ala Tyr Leu Ala Gly Arg Lys Ala Ile Lys Arg 450 455
- Ile Leu Asp Ser Arg Lys Ser Glu Gln Ser Gly Asp Gly Glu Asp Asp 465 470 470
- Lys Ser Trp Leu Arg Met Pro Trp Pro Glu Glu Glu Leu Glu Lys Leu 485 490 495
- Phe Val Lys Met Ser Asp Phe Glu Glu Ala Val Asn Leu Val Gln Ala 500 505 510
- Ser Leu Thr Arg Glu Gly Phe Ser Ile Val Pro Asp Val Lys Trp Asp 525
- Asp Val Gly Gly Leu Asp His Leu Arg Leu Gln Phe Asn Arg Tyr Ile 530 535
- Val Arg Pro Ile Lys Lys Pro Asp Ile Tyr Lys Ala Phe Gly Val Asp 545 550 550
- Leu Glu Thr Gly Phe Leu Leu Tyr Gly Pro Pro Gly Cys Gly Lys Thr 565 570 575
- Leu Ile Ala Lys Ala Ala Ala Asn Glu Ala Gly Ala Asn Phe Met His 580 585 590
- Ile Lys Gly Ala Glu Leu Leu Asn Lys Tyr Val Gly Glu Ser Glu Leu 595 600 605
- Ala Ile Arg Thr Leu Phe Gln Arg Ala Arg Thr Cys Ala Pro Cys Val 610 620

Ile Phe Phe Asp Glu Val Asp Ala Leu Thr Thr Ser Arg Gly Lys Glu 625 630 635 640

Gly Ala Trp Val Val Glu Arg Leu Leu Asn Gln Phe Leu Val Glu Leu 645 650 655

Asp Gly Glu Arg Arg Asn Val Tyr Val Ile Gly Ala Thr Asn Arg 660 665 670

Pro Asp Val Val Asp Pro Ala Phe Leu Arg Pro Gly Arg Phe Gly Asn 675 680 685

Leu Leu Tyr Val Pro Leu Pro Asn Ala Asp Glu Arg Ala Ser Ile Leu 690 695 700

Lys Ala Ile Ala Arg Lys Lys Pro Ile Asp Pro Ser Val Asp Leu Asp 705 710 715 720

Gly Ile Ala Lys Asn Asn Cys Glu Gly Phe Ser Gly Ala Asp Leu Ala 725 730 735

His Leu Val Gln Lys Ala Thr Phe Gln Ala Val Glu Glu Met Ile Gly 740 745 750

Ser Ser Glu Ser Ser Glu Asp Asp Val Thr Asp Ile Thr Gln Cys Thr 755 760 765

Ile Lys Thr Arg His Phe Glu Gln Ala Leu Ser Leu Val Ser Pro Ser 770 775 780

Val Asn Lys Gln Gln Arg Arg His Tyr Asp Ala Leu Ser Thr Lys Leu 785 790 795 800

Gln Glu Ser Val Gly Arg Asn Thr Glu Gln Val Thr Ile Gly Pro Ser 805 810 815

Phe Thr Leu Glu 820

<210> 27

<211> 1002

<212> DNA

<213> Arabidopsis thaliana

<220>	
<221> CDS	
<222> (1)(1002)	
<223> 14891 ·	
<pre><400> 27 atg gag gtg aca aat acg agc agc atc atg tgg ttc ttc agg gac aaa Met Glu Val Thr Asn Thr Ser Ser Ile Met Trp Phe Phe Arg Asp Lys 1</pre>	48
ggt ttc gat gat ccg agt atc gac aag atg ttg aga aaa tgc aaa cag Gly Phe Asp Asp Pro Ser Ile Asp Lys Met Leu Arg Lys Cys Lys Gln 20 25 30	96
ttg gaa aag gct caa agc gat gtg gca tca gaa aac tgg gac tac ctg Leu Glu Lys Ala Gln Ser Asp Val Ala Ser Glu Asn Trp Asp Tyr Leu 35 40 45	144
agt aac att gtt ggt atc caa gag aga aaa ctc cct tac atc gtc tct Ser Asn Ile Val Gly Ile Gln Glu Arg Lys Leu Pro Tyr Ile Val Ser 50 55 60	192
cga tgc ccc aaa atc ctg act tta cgc ctc gat gag aga ctc atc ccg Arg Cys Pro Lys Ile Leu Thr Leu Arg Leu Asp Glu Arg Leu Ile Pro 65 70 75 80	240
atg gtc gag tgc ctc tcc agt ctt gga agg aat cct cgg gaa gtt gct Met Val Glu Cys Leu Ser Ser Leu Gly Arg Asn Pro Arg Glu Val Ala 85 90 95	288
tcc gcc att acc aaa ttt cct cca ata ctc tct cat agc gtg gag gag Ser Ala Ile Thr Lys Phe Pro Pro Ile Leu Ser His Ser Val Glu Glu 100 105 110	336
aaa ctc tgt ccc ctt ctt gct ttc ttt caa gcg tta ggt gtg cct gag Lys Leu Cys Pro Leu Leu Ala Phe Phe Gln Ala Leu Gly Val Pro Glu 115 120 125	384
act caa ctt ggc aaa atg ata ctt ttt aac cca agg ctt atc agc tac Thr Gln Leu Gly Lys Met Ile Leu Phe Asn Pro Arg Leu Ile Ser Tyr 130 135 140	432
agc atc gac acc aag ctg aca gtg atc gtc agc ttt ctt gct agc ctt Ser Ile Asp Thr Lys Leu Thr Val Ile Val Ser Phe Leu Ala Ser Leu 145 150 155 160	480
ggc ctt gat caa gat ggg atg att ggc aaa gtt ttg gtg aag aac cca Gly Leu Asp Gln Asp Gly Met Ile Gly Lys Val Leu Val Lys Asn Pro 165 170 175	528
ttt ctt atg ggg tac agt gtt gat aaa agg tta cgg cct acc act gaa Phe Leu Met Gly Tyr Ser Val Asp Lys Arg Leu Arg Pro Thr Thr Glu 180 185 190	576

ttc Phe	ttg Leu	aaa Lys 195	tca Ser	tcc Ser	gtt Val	ggc Gly	ctg Leu 200	agt Ser	gag Glu	gat Asp	ggc Gly	att Ile 205	aag Lys	tcg Ser	gtg Val	624
gtc Val	atg Met 210	aat Asn	ttc Phe	cca Pro	caa Gln	ctt Leu 215	ttg Leu	tgc Cys	aga Arg	gac Asp	gtt Val 220	aac Asn	aag Lys	att Ile	ctc Leu	672
aaa Lys 225	cca Pro	aat Asn	tat Tyr	gat Asp	tat Tyr 230	ttg Leu	aag Lys	gag Glu	tgt Cys	999 Gly 235	ttt Phe	gga Gly	gat Asp	tcc Ser	cag Gln 240	720
ata Ile	gca Ala	acc Thr	atg Met	gtc Val 245	act Thr	ggt Gly	tat Tyr	ccc Pro	caa Gln 250	atc Ile	ttg Leu	att Ile	aag Lys	agt Ser 255	gtt Val	768
aag Lys	aat Asn	tca Ser	cta Leu 260	cag Gln	cct Pro	agg Arg	atc Ile	aga Arg 265	ttc Phe	ctc Leu	gtc Val	cag Gln	gtg Val 270	atg Met	gga Gly	816
aga Arg	ggc Gly	atg Met 275	gat Asp	gaa Glu	gtg Val	gct Ala	tct Ser 280	tat	cct Pro	gaa Glu	ttc Phe	ttt Phe 285	cac His	cat His	gga Gly	864
ttg Leu	aag Lys 290	Lys	aag Lys	gtc Val	gaa Glu	tcg Ser 295	agg Arg	ttt Phe	aaa Lys	ctt Leu	gtc Val 300	Lys	aag Lys	aac Asn	aac Asn	912
att Ile 305	Āsp	tgc Cys	agc Ser	ctt Leu	aga Arg 310	gaa Glu	atg Met	ctg Leu	gac Asp	tgt Cys 315	Asn	aca Thr	aag Lys	aaa Lys	ttc Phe 320	960
cat His	gag Glu	aag Lys	ttt Phe	ggc Gly 325	ttt Phe	tcg Ser	gag Glu	gta Val	act Thr 330	Ala	ago Ser	tcc Ser	tag	ſ		1002

<210> 28

<211> 333

<212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Glu Val Thr Asn Thr Ser Ser Ile Met Trp Phe Phe Arg Asp Lys 1 5 10 15

Gly Phe Asp Asp Pro Ser Ile Asp Lys Met Leu Arg Lys Cys Lys Gln 20 25 30

Leu Glu Lys Ala Gln Ser Asp Val Ala Ser Glu Asn Trp Asp Tyr Leu 35 40 45

Ser Asn Ile Val Gly Ile Gln Glu Arg Lys Leu Pro Tyr Ile Val Ser 50 55 60

Arg Cys Pro Lys Ile Leu Thr Leu Arg Leu Asp Glu Arg Leu Ile Pro 65 70 75 80

Met Val Glu Cys Leu Ser Ser Leu Gly Arg Asn Pro Arg Glu Val Ala 85 90 95

Ser Ala Ile Thr Lys Phe Pro Pro Ile Leu Ser His Ser Val Glu Glu 100 105 110

Lys Leu Cys Pro Leu Leu Ala Phe Phe Gln Ala Leu Gly Val Pro Glu 115 120 125

Thr Gln Leu Gly Lys Met Ile Leu Phe Asn Pro Arg Leu Ile Ser Tyr 130 135 140

Ser Ile Asp Thr Lys Leu Thr Val Ile Val Ser Phe Leu Ala Ser Leu 145 150 155 160

Gly Leu Asp Gln Asp Gly Met Ile Gly Lys Val Leu Val Lys Asn Pro 165 170 175

Phe Leu Met Gly Tyr Ser Val Asp Lys Arg Leu Arg Pro Thr Thr Glu 180 185 190

Phe Leu Lys Ser Ser Val Gly Leu Ser Glu Asp Gly Ile Lys Ser Val 195 200 205

Val Met Asn Phe Pro Gln Leu Leu Cys Arg Asp Val Asn Lys Ile Leu 210 215 220

Lys Pro Asn Tyr Asp Tyr Leu Lys Glu Cys Gly Phe Gly Asp Ser Gln 225 230 235

Ile Ala Thr Met Val Thr Gly Tyr Pro Gln Ile Leu Ile Lys Ser Val 245 250 250

Lys Asn Ser Leu Gln Pro Arg Ile Arg Phe Leu Val Gln Val Met Gly 260 265 270

Arg Gly Met Asp Glu Val Ala Ser Tyr Pro Glu Phe Phe His His Gly 275 280 285

Leu Lys Lys Lys Val Glu Ser Arg Phe Lys Leu Val Lys Lys Asn Asn 290 295 300

Ile Asp Cys Ser Leu Arg Glu Met Leu Asp Cys Asn Thr Lys Lys Phe 305 310 315 320

His Glu Lys Phe Gly Phe Ser Glu Val Thr Ala Ser Ser 325 330

<210> 29

<211> 2394

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2394)

<223> 14986

<400 atg Met 1	gag	ctc	ctc Leu	cga Arg 5	tcc Ser	aac Asn	ttg Leu	tct Ser	agg Arg 10	gtt Val	cag Gln	atc Ile	cct Pro	gaa Glu 15	cct Pro		48
act Thr	cat His	cgc Arg	atc Ile 20	tac Tyr	aag Lys	cat His	gag Glu	tgt Cys 25	tgc Cys	atc Ile	tcc Ser	ttc Phe	gat Asp 30	act Thr	ccg Pro		96
aga Arg	tcc Ser	gaa Glu 35	gga Gly	gga Gly	ttg Leu	ttc Phe	gtt Val 40	gat Asp	atg Met	aat Asn	agt Ser	ttt Phe 45	ctt Leu	gct Ala	ttc Phe	3	L 44
Gly 999	aag Lys 50	gat Asp	tat Tyr	gtt Val	tct Ser	tgg Trp 55	aac Asn	tat Tyr	gag Glu	aag Lys	act Thr 60	gga Gly	aac Asn	cct Pro	gtt Val	J	192
tat Tyr 65	ctt Leu	cat His	att Ile	aag Lys	cag Gln 70	act Thr	agg Arg	aag Lys	tct Ser	att Ile 75	ccc Pro	gag Glu	gat Asp	cgg Arg	cct Pro 80	;	240
ctc Leu	aag Lys	aaa Lys	ccg Pro	act Thr 85	ctg Leu	ctc Leu	gct Ala	ata Ile	ggt Gly 90	gtt Val	gat Asp	gga Gly	ggc	ttt Phe 95	gat Asp		288
aac	aat	gag	cca	gag	tac	qaq	gag	tct	tat	agc	ata	gto	ata	ctt	ccg		336

Asn	Asn	Glu	Pro 100	Glu	Tyr	Glu	Glu	Ser 105	Tyr	Ser	Ile	Val	Ile 110	Leu	Pr	O .	
gat Asp	ttt Phe	gtt Val 115	tca Ser	ctc Leu	ccg Pro	ttt Phe	cct Pro 120	tct Ser	gtt Val	gag Glu	cta Lev	cca Pro 125	gag Glu	aag Lys	gt Va	g .1	384
agg Arg	att Ile 130	gct Ala	gtc Val	gat Asp	act Thr	gta Val 135	gtg Val	aat Asn	gcc Ala	gtt Val	. ggt . Gly 140	A WT	gag Glu	cgg Arg	g Ly	ıa ⁄s	432,
gag Glu 145	Gln	gtt Val	gca Ala	gct Ala	tgg Trp 150	aca Thr	gct Ala	gag Glu	aaa Lys	aaç Lys 155	; ne	a at u Il	t agt e Ser	ga:	u	at is 50	480
gca Ala	ttg Leu	aca Thr	ctg Leu	cag Gln 165	Gln	atc Ile	aag Lys	agt Ser	gg Gl ₃	116	t gt e Va	c at l Il	t cct e Pro	c cc Pr 17		ct er	528
ggt Gly	tgg Trp	aaa Lys	tgt Cys 180	Ser	aag Lys	tgt Cys	gat Asp	aag Lys 185	s Th	g ga	g aa u As	t ct n Le	c tg u Tr 19	۰	t a u A	at .sn	576
ctt Let	aco ı Thi	gat Asp 195	o Gly	atg Met	att : Ile	cto Lev	tgt Cy:	s GT	a ag y Ar	a aa g Ly	a aa s As	ac to sn Ti 20	gg ga p As	t gg p G]	ga a Ly I	ct hr	624
glj ggj	t gga y Gly 210	y Ası	c aac n Ası	c cat n His	gct Ala	gti a Val 21!	f GT.	g ca u Hi	c ta s Ty	c aa r Ly	'S G	ag ao lu Tl 20	ca go hr Al	c ta .a T	ac o	ect Pro	672
ct Le 22	t gc		a aaq l Ly:	g cti s Le	t gga u Gly 230	y Th	t at r Il	c ac e Th	t go r Al	.a A	ac t sp L 35	ta g eu G	aa go lu Al	a g la A		gat Asp 240	720
		t tc r Se	c ta r Ty	t cc r Pr 24	o Gl	a ga u As	t ga p As	ıc aç sp Se	er va	et to al Lo	tg g eu A	ac c sp P	cg c ro L	-u -	tg eu 55	gct Ala	768
ga G1	ıg ca .u Hi	t ct s Le	g gc u Al 26	a Hi	t tt s Ph	t gg e Gl	.у т.	Le As	SP P	ne s	er s	cg a Ser M	tg c let G 2	ag a ln I 70	ıys	act Thr	816
ga G]	aa at Lu Me	g ac et Th	ır Th	t go ir Al	t ga la Gl	a ag u Ar	rg G	aa c lu L 80	tt g eu A	at c sp G	aa a ln l	Porr :	aca a Thr A 285	at t sn 1	tt Phe	gat Asp	864
t:	rp A	ac co sn Ai	gt at gg I]	a ca le Gl	aa ga ln Gl	u Se	gt g er G 95	ga a ly L	aa g ys G	aa t lu I	Jeu	gtg (Val :	cca ç Pro \	tt (7al :	ttt Phe	gga Gly	912
P	ct g ro G 05	ga ta ly T	at ac yr Tl	ec gg ir G	ly Le	et gr	tc a al A	at c sn I	ett g	TY A	aac Asn 315	agt Ser	tgc (Cys !	ac Tyr	ttg Leu	gca Ala 320	960
		cg a	tg ca et G	ln I	tt g le Va 25	tt t al P	tc t he S	ct a Ser 1	inr i	cat His 330	tca Ser	ttt Phe	att Ile	tca Ser	aga Arg 335	-2-	1008
t	tt t	.ca c	at c	ag a	gc t	ta a	ag a	atg 9	gct	ttt	gag	atg	gct	cct	gct	gat	1056

Phe	Ser	His	Gln 340	Ser	Leu	Lys	Met	Ala 345	Phe	Glu	Met	Ala	Pro 350	Ala	Asp	·
cca Pro	act Thr	ttg Leu 355	gac Asp	ctc Leu	aat Asn	atg Met	caa Gln 360	tta Leu	aca Thr	aag Lys	ctt Leu	gga Gly 365	cac His	ggc Gly	tta Leu	1104
cta Leu	tct Ser 370	Gly 999	aag Lys	tac Tyr	tca Ser	atg Met 375	cct Pro	gca Ala	act Thr	cag Gln	aag Lys 380	gat Asp	gct Ala	aca Thr	act Thr	1152
gga Gly 385	gat Asp	cct Pro	aga Arg	caa Gln	gaa Glu 390	gga Gly	ata Ile	cct Pro	cct Pro	cgc Arg 395	atg Met	ttc Phe	aaa Lys	aac Asn	gta Val 400	1200
att Ile	gcc Ala	gcg Ala	agc Ser	cac His 405	gca Ala	gaa Glu	ttc Phe	tct Ser	tct Ser 410	atg Met	aga Arg	cag Gln	Gln	gat Asp 415	gct Ala	1248
ctc Leu	gac Asp	ttt	ttc Phe 420	ctc Leu	cat His	ctg Leu	gta Val	ggc Gly 425	aag Lys	gtt Val	gag Glu	cgt Arg	gct Ala 430	agc Ser	aac Asn	1296
acg Thr	aca Thr	cca Pro 435	gat Asp	tta Leu	gac Asp	ccc Pro	tcg Ser 440	agg Arg	agc Ser	ttc Phe	aag Lys	ttt Phe 445	gga Gly	ata Ile	gaa Glu	1344
gag Glu	aag Lys 450	atc Ile	ctt Leu	tgt Cys	ccg Pro	tct Ser 455	gga Gly	aag Lys	gtt Val	gga Gly	tat Tyr 460	Asn	aag Lys	agg Arg	gaa Glu	. 1392
gac Asp 465	Cys	att Ile	ctt Leu	tct Ser	ttg Leu 470	aac Asn	att Ile	ccg Pro	cta Leu	cat His 475	Glu	gca Ala	act Thr	aat Asn	aaa Lys 480	1440
gat Asp	gaa Glu	tta Leu	gaa Glu	gcc Ala 485	Phe	cac His	aag Lys	caa Gln	aaa Lys 490	Ala	gga Gly	aaa Lys	gga Gly	Leu 495	gaa Glu	1488
gag Glu	aat Asn	gat Asp	atg Met 500	Arg	tca Ser	agt Ser	gat Asp	gaa Glu 505	Ile	gta Val	. Arg	cca Pro	Arg 510	Val	cct Pro	1536
tta Leu	gaa Glu	gcc Ala 515	Cys	cta Leu	gca Ala	aat Asn	ttt Phe 520	Ala	tca Ser	tca Ser	gag Glu	g ccg 1 Pro 525) Ile	gaa Glu	a gac a Asp	1584
tac Tyr	tat Tyr 530	Ser	tct Ser	gct Ala	ttg Leu	aag Lys 535	Gly	atg Met	aca Thr	aca Thi	a gct c Ala 540	a Ile	aag Lys	g aca	act Thr	1632
Gly 545	Leu 5	Thr	Ser	Phe	9ro 550	Asp	тут	Lev	ı Val	Let 55:	ı Hi: 5	s Met	. Arq	д Гу:	ttt Phe 560	1680
gtt Val	atg Met	g gag : Glu	gaa Glu	ggc Gly 565	Trp	gto Val	p cca Pro	a aag o Lys	g aaa s Lys 570	E Lei	t gat u Asj	t gta p Val	a tad	2 at: r Il: 57	t gat e Asp 5	1728
gtt		g gat	gtt	att	gat	ato	ago	cac	ate	g cg	t ag	c aa	a gg	a ct	c càa	1776

Val Pro Asp Val Ile Asp Ile Ser His Met Arg Ser Lys Gly Leu Gln 580 585 590	
cct ggg gaa gaa ctg ttg cca gat ggc gtt cca gaa gaa gtg atg gaa Pro Gly Glu Glu Leu Leu Pro Asp Gly Val Pro Glu Glu Val Met Glu 595 600 605	1824
tca gcg cag ccc gtg gca aat gag gag ata gtt gca cag cta gtc tca Ser Ala Gln Pro Val Ala Asn Glu Glu Ile Val Ala Gln Leu Val Ser 610 615 620	1872
atg gga ttt agc cag ctt cac tgc cag aaa gct gcc ata aat act tcc Met Gly Phe Ser Gln Leu His Cys Gln Lys Ala Ala Ile Asn Thr Ser 625 630 635 640	1920
aat gct ggg gtt gaa gag gca atg aac tgg tta ctt tct cac atg gat Asn Ala Gly Val Glu Glu Ala Met Asn Trp Leu Leu Ser His Met Asp 655	1968
gat cca gac atc gat gca cca atc tcc cac cag aca tct gac att gat Asp Pro Asp Ile Asp Ala Pro Ile Ser His Gln Thr Ser Asp Ile Asp 660 665 670	2016
caa tca agc gtt gat acc tta ctc tcc ttt ggt ttt gct gaa gat gtt Gln Ser Ser Val Asp Thr Leu Leu Ser Phe Gly Phe Ala Glu Asp Val 675 680 685	2064
gct cgg aag gca cta aaa gcc tcg gga gga gac att gag aaa gca aca Ala Arg Lys Ala Leu Lys Ala Ser Gly Gly Asp Ile Glu Lys Ala Thr 690 695 700	2112
gac tgg gta ttc aac aac cct aat gca tct gtt tca gac atg gat gta Asp Trp Val Phe Asn Asn Pro Asn Ala Ser Val Ser Asp Met Asp Val 705 710 715 720	2160
tcc tct agc aat tca gcg cag act ccg gct caa agt gga tta cca gat Ser Ser Ser Asn Ser Ala Gln Thr Pro Ala Gln Ser Gly Leu Pro Asp 725 730 735	2208
gga gga ggg aaa tac aag ctg ttt gga ata gta agt cac atg gga aca Gly Gly Gly Lys Tyr Lys Leu Phe Gly Ile Val Ser His Met Gly Thr 740 745 750	2256
tca gtg cac tgt ggt cat tac gtg gct cac ata ttg aaa gaa ggc cgc Ser Val His Cys Gly His Tyr Val Ala His Ile Leu Lys Glu Gly Arg 755 760 765	2304
tgg gta att ttc aat gac gac aaa gtt ggt atc tcg act gat cct cct Trp Val Ile Phe Asn Asp Asp Lys Val Gly Ile Ser Thr Asp Pro Pro 770 775 780	2352
aaa gac atg ggt tat gtc tac ttc ttt cag cgg ctt gat tga Lys Asp Met Gly Tyr Val Tyr Phe Phe Gln Arg Leu Asp 785 790 795	2394

<210> 30

<211> 797

<212> PRT

<213> Arabidopsis thaliana

<400> 30

Met Glu Leu Leu Arg Ser Asn Leu Ser Arg Val Gln Ile Pro Glu Pro 1 5 10 15

Thr His Arg Ile Tyr Lys His Glu Cys Cys Ile Ser Phe Asp Thr Pro 20 25 30

Arg Ser Glu Gly Gly Leu Phe Val Asp Met Asn Ser Phe Leu Ala Phe 35 40 45

Gly Lys Asp Tyr Val Ser Trp Asn Tyr Glu Lys Thr Gly Asn Pro Val

Tyr Leu His Ile Lys Gln Thr Arg Lys Ser Ile Pro Glu Asp Arg Pro 65 70 75 80

Leu Lys Lys Pro Thr Leu Leu Ala Ile Gly Val Asp Gly Gly Phe Asp 85 90 95

Asn Asn Glu Pro Glu Tyr Glu Glu Ser Tyr Ser Ile Val Ile Leu Pro 100 105 110

Asp Phe Val Ser Leu Pro Phe Pro Ser Val Glu Leu Pro Glu Lys Val 115 120 125

Arg Ile Ala Val Asp Thr Val Val Asn Ala Val Gly Ala Glu Arg Lys
130 135 140

Glu Gln Val Ala Ala Trp Thr Ala Glu Lys Lys Leu Ile Ser Glu His 145 150 155 160

Ala Leu Thr Leu Gln Gln Ile Lys Ser Gly Ile Val Ile Pro Pro Ser 165 170 175

Gly Trp Lys Cys Ser Lys Cys Asp Lys Thr Glu Asn Leu Trp Leu Asn 180 . 185 190

Leu Thr Asp Gly Met Ile Leu Cys Gly Arg Lys Asn Trp Asp Gly Thr 195 200 205

Gly Gly Asn Asn His Ala Val Glu His Tyr Lys Glu Thr Ala Tyr Pro 210 215 220

- Leu Ala Val Lys Leu Gly Thr Ile Thr Ala Asp Leu Glu Ala Ala Asp 225 230 235 240
- Val Tyr Ser Tyr Pro Glu Asp Asp Ser Val Leu Asp Pro Leu Leu Ala 245 250 255
- Glu His Leu Ala His Phe Gly Ile Asp Phe Ser Ser Met Gln Lys Thr 260 265 270
- Glu Met Thr Thr Ala Glu Arg Glu Leu Asp Gln Asn Thr Asn Phe Asp 275 280 285
- Trp Asn Arg Ile Gln Glu Ser Gly Lys Glu Leu Val Pro Val Phe Gly 290 295 300
- Pro Gly Tyr Thr Gly Leu Val Asn Leu Gly Asn Ser Cys Tyr Leu Ala 305 310 315 320
- Ala Thr Met Gln Ile Val Phe Ser Thr His Ser Phe Ile Ser Arg Tyr 325 330 335
- Phe Ser His Gln Ser Leu Lys Met Ala Phe Glu Met Ala Pro Ala Asp 340 345 350
- Pro Thr Leu Asp Leu Asn Met Gln Leu Thr Lys Leu Gly His Gly Leu 355 360 365
- Leu Ser Gly Lys Tyr Ser Met Pro Ala Thr Gln Lys Asp Ala Thr Thr 370 375 380
- Gly Asp Pro Arg Gln Glu Gly Ile Pro Pro Arg Met Phe Lys Asn Val 385 390 395 400
- Ile Ala Ala Ser His Ala Glu Phe Ser Ser Met Arg Gln Gln Asp Ala 405 410 415
- Leu Asp Phe Phe Leu His Leu Val Gly Lys Val Glu Arg Ala Ser Asn 420 425 430
- Thr Thr Pro Asp Leu Asp Pro Ser Arg Ser Phe Lys Phe Gly Ile Glu 435 440 445

Glu Lys Ile Leu Cys Pro Ser Gly Lys Val Gly Tyr Asn Lys Arg Glu 450 455 460

Asp Cys Ile Leu Ser Leu Asn Ile Pro Leu His Glu Ala Thr Asn Lys 465 470 475 480

Asp Glu Leu Glu Ala Phe His Lys Gln Lys Ala Gly Lys Gly Leu Glu
485 490 495

Glu Asn Asp Met Arg Ser Ser Asp Glu Ile Val Arg Pro Arg Val Pro 500 505 510

Leu Glu Ala Cys Leu Ala Asn Phe Ala Ser Ser Glu Pro Ile Glu Asp 515 520 525

Tyr Tyr Ser Ser Ala Leu Lys Gly Met Thr Thr Ala Ile Lys Thr Thr 530 535 540

Gly Leu Thr Ser Phe Pro Asp Tyr Leu Val Leu His Met Arg Lys Phe 545 550 555 560

Val Met Glu Glu Gly Trp Val Pro Lys Lys Leu Asp Val Tyr Ile Asp 565 570 575

Val Pro Asp Val Ile Asp Ile Ser His Met Arg Ser Lys Gly Leu Gln 580 585 590

Pro Gly Glu Glu Leu Leu Pro Asp Gly Val Pro Glu Glu Val Met Glu 595 600 605

Ser Ala Gln Pro Val Ala Asn Glu Glu Ile Val Ala Gln Leu Val Ser 610 615 620

Met Gly Phe Ser Gln Leu His Cys Gln Lys Ala Ala Ile Asn Thr Ser 625 630 635 640

Asn Ala Gly Val Glu Glu Ala Met Asn Trp Leu Leu Ser His Met Asp 645 650 655

Asp Pro Asp Ile Asp Ala Pro Ile Ser His Gln Thr Ser Asp Ile Asp 660 665 670

Gln Ser Ser Val Asp Thr Leu Leu Ser Phe Gly Phe Ala Glu Asp Val 675 680 685

Ala Arg Lys Ala Leu Lys Ala Ser Gly Gly Asp Ile Glu Lys Ala Thr 690 695 700

Asp Trp Val Phe Asn Asn Pro Asn Ala Ser Val Ser Asp Met Asp Val
705 710 715 720

Ser Ser Ser Asn Ser Ala Gln Thr Pro Ala Gln Ser Gly Leu Pro Asp
725 730 735

Gly Gly Gly Lys Tyr Lys Leu Phe Gly Ile Val Ser His Met Gly Thr 740 745 750

Ser Val His Cys Gly His Tyr Val Ala His Ile Leu Lys Glu Gly Arg 755 760 765

Trp Val Ile Phe Asn Asp Asp Lys Val Gly Ile Ser Thr Asp Pro Pro 770 775 780

Lys Asp Met Gly Tyr Val Tyr Phe Phe Gln Arg Leu Asp 785 790 795

<210> 31

<211> 1068

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1068)

<223> 15377

tct ata gct cca tca ccg aag aag cct ctc atc ttc tta ggc tct Ser Ile Ala Pro Ser Pro Lys Lys Pro Leu Ile Phe Leu Gly Ser 20 25 30

cct cag gtc tcc gtg agt gtg ctt gaa gct ctt ttc aat gca tct aat
Pro Gln Val Ser Val Ser Val Leu Glu Ala Leu Phe Asn Ala Ser Asn
35 40 45

96

gct Ala	cca Pro 50	aac Asn	tct Ser	tcc Ser	ttc Phe	gag Glu 55	gtt Val	gca Ala	ggt Gly	att Ile	gtt Val 60	aca Thr	cag Gln	cct Pro	cca Pro	192 ·
tca Ser 65	agg Arg	aga Arg	gat Asp	agg Arg	ggt Gly 70	aaa Lys	aaa Lys	gtg Val	ttg Leu	cct Pro 75	tca Ser	cca Pro	gta Val	gcg Ala	caa Gln 80	240
tac Tyr	gct Ala	ctt Leu	gat Asp	aaa Lys 85	ggc	tta Leu	cct Pro	tct Ser	gat Asp 90	ctc Leu	att Ile	ttc Phe	tcc Ser	cct Pro 95	gag Glu	288
aag Lys	gca Ala	gga Gly	gat Asp 100	gaa Glu	gca Ala	ttt Phe	tta Leu	tcg Ser 105	gct Ala	tta Leu	aga Arg	gag Glu	ttg Leu 110	caa Gln	cct Pro	336
gag Glu	ctt Leu	tgt Cys 115	att Ile	aca Thr	gca Ala	gct Ala	tat Tyr 120	ej aaa	aat Asn	att Ile	ttg Leu	cct Pro 125	act Thr	aag Lys	ttc Phe	384
ctt Leu	aag Lys 130	att Ile	ccg Pro	gta Val	cat His	999 Gly 135	aca Thr	gtg Val	aac Asn	ata Ile	cac His 140	cca Pro	agt Ser	ttg Leu	ctg Leu	432
ccg Pro 145	ctg Leu	tac Tyr	cgt Arg	ggt Gly	gca Ala 150	gct Ala	cca Pro	gtt Val	caa Gln	aga Arg 155	gca Ala	tta Leu	cag Gln	gat Asp	ggt Gly 160	480
gtc Val	ccg Pro	gaa Glu	aca Thr	gga Gly 165	gta Val	tca Ser	tta Leu	gca Ala	ttt Phe 170	act Thr	gtg Val	cgt Arg	aag Lys	tta Leu 175	Asp	528
gca Ala	GJÀ 333	cca Pro	gtg Val 180	Ile	gcc Ala	tct Ser	aag Lys	agg Arg 185	Phe	caa Gln	gtg Val	gat Asp	gat Asp 190	cta Leu	ata Ile	576
aag Lys	gca Ala	cca Pro 195	Glu	cta Leu	ctc Leu	tcg Ser	ttc Phe 200	Leu	ttt Phe	tct Ser	gaa Glu	ggt Gly 205	Ser	aat Asn	ctt Leu	624
ctt Leu	atc Ile 210	Arg	gaa Glu	ctt Leu	ccc Pro	tcg Ser 215	Ile	ttt Phe	gat Asp	Gly ggg	Sei 220	: Ala	aaa Lys	tca Ser	aaa Lys	672
gca Ala 225	Ala	ecc Pro	caa Gln	gat Asp	gat Asp 230	Ser	aaa Lys	gct Ala	acc Thr	tta Lev 235	ı Ala	cca Pro	aag Lys	g ata ; Ile	a gct Ala 240	720
Pro	gat Asp	gag Glu	gct Ala	tgg Trp 245	Leu	tct Ser	ttt Phe	gac S Asp	cag Glr 250	ı Glı	a gci	t ttt a Phe	gtt Val	Let Let 25!	a cat 1 His	768
aac Ası	aag Lys	gtt Val	cgt Arg 260	, Ala	ttt Phe	gca Ala	gga Gly	tgg Trp 265	Pro	g gga	a ac	a cga r Arg	a gca g Ala 270	а Гу	a gtt s Val	816
gta Va	a gto l Val	ctt Leu 275	ı Asp	gag Glu	g aaa Lys	ago Ser	ggt Gly 280	/ Gli	g caa n Gli	a aat n Asi	t gt n Va	g cta l Le 28	ı Glı	ı Le	t aaa u Lys	864

att atg tcc act cga gta tgc aaa gat ctg gaa att cag gat agt gaa Ile Met Ser Thr Arg Val Cys Lys Asp Leu Glu Ile Gln Asp Ser Glu 290 295 300	912
caa gat tat gta act ttc aag aaa ggt tca cta ata ttt ccc tgc aga Gln Asp Tyr Val Thr Phe Lys Lys Gly Ser Leu Ile Phe Pro Cys Arg 305 310 315 320	960
gga ggt aca gct tta gag gta ctg gaa gtc cag ctt cct ggt aag aaa Gly Gly Thr Ala Leu Glu Val Leu Glu Val Gln Leu Pro Gly Lys Lys 325 330 335	1008
gcc atc aac gca gct gct ttt tgg aat ggc ttg aga ggt caa aag ctg Ala Ile Asn Ala Ala Ala Phe Trp Asn Gly Leu Arg Gly Gln Lys Leu 340 345 350	1056
aag aag cta tga Lys Lys Leu 355	1068
<210> 32	
<211> 355	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 32	
<pre><400> 32 Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser 1</pre>	
Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser	
Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser 1 5 10 15 Ser Ile Ala Pro Ser Pro Lys Lys Lys Pro Leu Ile Phe Leu Gly Ser	
Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser 1 Ser Ile Ala Pro Ser Pro Lys Lys Lys Pro Leu Ile Phe Leu Gly Ser 20 Pro Gln Val Ser Val Leu Glu Ala Leu Phe Asn Ala Ser Asn	
Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser 1 Ser Ile Ala Pro Ser Pro Lys Lys Lys Pro Leu Ile Phe Leu Gly Ser 25 Pro Gln Val Ser Val Ser Val Leu Glu Ala Leu Phe Asn Ala Ser Asn 45 Ala Pro Asn Ser Ser Phe Glu Val Ala Gly Ile Val Thr Gln Pro Pro	
Met Ile Leu Arg Arg Phe Ile Cys Tyr Asn Ala Ser Ser Thr Val Ser Ile Ala Pro Ser Pro Lys Lys Lys Pro Leu Ile Phe Leu Gly Ser 25 Pro Gln Val Ser Val Ser Val Leu Glu Ala Leu Phe Asn Ala Ser Asn 45 Ala Pro Asn Ser Ser Phe Glu Val Ala Gly Ile Val Thr Gln Pro Pro 50 Ser Arg Arg Asp Arg Gly Lys Lys Val Leu Pro Ser Pro Val Ala Gln	

Glu Leu Cys Ile Thr Ala Ala Tyr Gly Asn Ile Leu Pro Thr Lys Phe 115 120 125

- Leu Lys Ile Pro Val His Gly Thr Val Asn Ile His Pro Ser Leu Leu 130 135 140
- Pro Leu Tyr Arg Gly Ala Ala Pro Val Gln Arg Ala Leu Gln Asp Gly 145 150 155 160
- Val Pro Glu Thr Gly Val Ser Leu Ala Phe Thr Val Arg Lys Leu Asp 165 170 175
- Ala Gly Pro Val Ile Ala Ser Lys Arg Phe Gln Val Asp Asp Leu Ile 180 185 190
- Lys Ala Pro Glu Leu Leu Ser Phe Leu Phe Ser Glu Gly Ser Asn Leu 195 200 205
- Leu Ile Arg Glu Leu Pro Ser Ile Phe Asp Gly Ser Ala Lys Ser Lys 210 215 220
- Ala Ala Pro Gln Asp Asp Ser Lys Ala Thr Leu Ala Pro Lys Ile Ala 225 230 235 240
- Pro Asp Glu Ala Trp Leu Ser Phe Asp Gln Glu Ala Phe Val Leu His 245 250 255
- Asn Lys Val Arg Ala Phe Ala Gly Trp Pro Gly Thr Arg Ala Lys Val 260 265 270
- Val Val Leu Asp Glu Lys Ser Gly Gln Gln Asn Val Leu Glu Leu Lys 275 280 285
- Ile Met Ser Thr Arg Val Cys Lys Asp Leu Glu Ile Gln Asp Ser Glu 290 295 300
- Gln Asp Tyr Val Thr Phe Lys Lys Gly Ser Leu Ile Phe Pro Cys Arg 305 310 315 320
- Gly Gly Thr Ala Leu Glu Val Leu Glu Val Gln Leu Pro Gly Lys Lys 325 330 335
- Ala Ile Asn Ala Ala Ala Phe Trp Asn Gly Leu Arg Gly Gln Lys Leu 340 345 350

432

Lys 1	-	Leu 355														
<210	> 3	3														
<211	> 2	220														
<212	> D	AN														
<213	> A	rabi	dops	is t	hali	ana										
<220	>															
<221		DS														
<222		1)	(222	0)												
<223	> 1	.6219	1													
<400 atg Met 1	aat	act Thr	tcg Ser	gtg Val 5	caa Gln	gtg Val	act Thr	cct Pro	ctc Leu 10	tgc Cys	gga Gly	gtt Val	tac Tyr	aac Asn 15	gag Glu	48
aat Asn	cct Pro	ctc Leu	tcc Ser 20	tac Tyr	tta Leu	gtc Val	tcc Ser	att Ile 25	gat Asp	ggt Gly	ttc Phe	aac Asn	ttc Phe 30	ctc Leu	atc Ile	96
gac Asp	tgt Cys	ggt Gly 35	tgg Trp	aac Asn	gat Asp	ctc Leu	ttc Phe 40	gac Asp	aca Thr	tcg Ser	ctc Leu	ctc Leu 45	gaa Glu	cct Pro	ctc Leu	144
ccc Pro	agg Arg 50	gtt Val	gct Ala	tct Ser	act Thr	ata Ile 55	gat Asp	gca Ala	gtt Val	ttg Leu	ctt Leu 60	tct Ser	cat His	cca Pro	gat Asp	192
aca Thr 65	ctt Leu	cac His	att Ile	ggt Gly	gct Ala 70	ctt Leu	cct Pro	tat Tyr	gct Ala	atg Met 75	aag Lys	cag Gln	ctt Leu	gga Gly	ctc Leu 80	240
tcc Ser	gct Ala	cct Pro	gtt Val	tat Tyr 85	gct Ala	act Thr	gag Glu	cct Pro	gtt Val 90	cat His	aga Arg	tta Leu	ggt Gly	ctc Leu 95	ctt Leu	288
aca Thr	atg Met	tat Tyr	gat Asp 100	cag Gln	ttt Phe	ttg Leu	tcc Ser	agg Arg 105	Lys	caa Gln	gta Val	tcc Ser	gac Asp 110	ttt Phe	gat Asp	336
ctg Leu	ttt Phe	aca Thr 115	Leu	gat Asp	gac Asp	ata Ile	gat Asp 120	Ser	gct Ala	ttc Phe	cag Gln	aat Asn 125	. Val	atc Ile	aga Arg	384
ttg	act	tac	tct	caa	aat	tac	cat	ctt	tct	gga	aag	gga	gag	ggt	att	432

Leu	Thr 130	Tyr	Ser	Gln	Asn	Tyr 135	His	Leu	Ser	Gly	Lys 140	Gly	Glu	Gly	Ile	
												ggt Gly				480
agg Arg	ata Ile	aca Thr	aag Lys	gat Asp 165	Gly 999	gag Glu	gat Asp	gtt Val	ata Ile 170	tat Tyr	gct Ala	gtt Val	gac Asp	tac Tyr 175	aat Asn	528
cat His	cgg Arg	aaa Lys	gaa Glu 180	agg Arg	cat His	ttg Leu	aat Asn	gga Gly 185	act Thr	gtt Val	tta Leu	cag Gln	tct Ser 190	ttt Phe	gtt Val	576
cgg Arg	cct Pro	gct Ala 195	gtt Val	ctg Leu	ata Ile	acc Thr	gat Asp 200	gca Ala	tat Tyr	cat His	gct Ala	ctt Leu 205	tat Tyr	acc Thr	aat Asn	624
caa Gln	acc Thr 210	gca Ala	aga Arg	cag Gln	caa Gln	agg Arg 215	gac Asp	aaa Lys	gaa Glu	ttt Phe	cta Leu 220	gat Asp	acc Thr	att Ile	tca Ser	672
aaa Lys 225	cat His	ctt Leu	gaa Glu	gtt Val	gga Gly 230	gga Gly	aat Asn	gtt Val	cta Leu	ttg Leu 235	cca Pro	gta Val	gac Asp	act Thr	gcg Ala 240	720
ggt Gly	cgt Arg	gtc Val	ctg Leu	gaa Glu 245	ctt Leu	ctc Leu	ttg Leu	ata Ile	ctt Leu 250	gaa Glu	cag Gln	cat His	tgg Trp	tca Ser 255	caa Gln	768
aga Arg	ggt Gly	ttc Phe	agc Ser 260	ttt Phe	ccc Pro	att Ile	tat Tyr	ttt Phe 265	Leu	acg Thr	tac Tyr	gtg Val	tca Ser 270	tct Ser	agc Ser	816
								Leu				agt Ser 285				864
tca Ser	aag Lys 290	Ser	ttt Phe	gag Glu	act Thr	tca Ser 295	cgt Arg	gat Asp	aat Asn	gcc Ala	Phe 300	cta Leu	ttg Leu	agg Arg	cat His	912
gto Val 305	Thr	ctg Leu	ttg Leu	ata Ile	aac Asn 310	aag Lys	act Thr	gat Asp	ctg Leu	gat Asp 315	Asn	gct Ala	cca Pro	cct Pro	ggt Gly 320	960
Pro	aag Lys	gtt Val	gtt Val	ctt Leu 325	Ala	tcc Ser	atg Met	gct Ala	agt Ser 330	Leu	gaa Glu	gcc Ala	ggt Gly	Phe 335	Ala	1008
cga Arg	gag Glu	ata Ile	Phe 340	Val	gag Glu	tgg Trp	gca Ala	aat Asr 345	ı Asp	ccc Pro	aga Arg	a aat g Asn	tta Lev 350	ı Val	ctc Leu	1056
			Thr					Thi					: Let		g tca n Ser	1104
gco	cca	cct	сса	aaa	ttt	gtt	aaa	gto	aco	ato	g tc	t aag	g agg	ggtt	cct	1152

Ala	Pro 370	Pro	Pro	Lys	Phe	Val 375	Lys	Val	Thr	Met	Ser 380	Lys	Arg	Val	Pro	
ttg Leu 385	gct Ala	Gly 999	gaa Glu	gag Glu	tta Leu 390	att Ile	gca Ala	tat Tyr	gag Glu	gaa Glu 395	gag Glu	caa Gln	aac Asn	aga Arg	ctg Leu 400	1200
aaa Lys	agg Arg	gaa Glu	gaa Glu	gct Ala 405	ttg Leu	cga Arg	gct Ala	agc Ser	ctc Leu 410	gtt Val	aaa Lys	gag Glu	gag Glu	gaa Glu 415	aca Thr	1248
aaa Lys	gct Ala	tcc Ser	cat His 420	gga Gly	tcc Ser	gat Asp	gat Asp	aat Asn 425	tca Ser	agt Ser	gaa Glu	cct Pro	atg Met 430	atc Ile	ata Ile	1296
gat Asp	acc Thr	aag Lys 435	act Thr	act Thr	cac His	gat Asp	gtt Val 440	gtt Val	ggt Gly	tct Ser	cac His	999 Gly 445	Pro	gca Ala	tat Tyr	1344
aaa Lys	gat Asp 450	ata Ile	ttg Leu	att Ile	gat Asp	gga Gly 455	ttt Phe	gtt Val	ccc Pro	cca Pro	tcg Ser 460	Ser	agc Ser	gta Val	gct Ala	1392
cca Pro 465	Met	ttc Phe	cca Pro	tat Tyr	tat Tyr 470	gat Asp	aac Asn	aca Thr	tct Ser	gaa Glu 475	Trp	gac Asp	gac Asp	ttt Phe	999 Gly 480	1440
gag Glu	att Ile	att Ile	aat Asn	cca Pro 485	gat Asp	gac Asp	tat Tyr	gtg Val	atc Ile 490	Lys	gat Asp	gaa Glu	a gac ı Asp	atg Met 495	gac : Asp	1488
cga Arg	gga Gly	gca Ala	atg Met 500	His	aac Asn	gga Gly	ggt	gat Asp 505	Val	gac	gga Gly	a agg	g ctt g Lei 510	ı Ası	gag Glu	1536
gca Ala	act Thr	gct Ala 515	Ser	ctc Leu	atg Met	ctt	gat Asp 520	Thr	aga Arg	cct Pro	tcg Sei	g aa r Ly: 52	s Val	c ato	g tcc c Ser	1584
aat Ası	gag Glu 530	ı Leı	att ı Ile	gtg Val	act Thr	gtt Val	. Ser	tgt Cys	tca Ser	ctt Lei	gti 1 Va: 54	l Ly	a ato s Me	g gad t Asj	c tat p Tyr	1632
gaa Glu 54!	ı Gly	cgg Arg	g tca g Sei	a gat : Asp	ggc Gl _y 550	Arc	tca Sei	a ato r Ile	e aag	g tca s Sea 55!	r Me	g at t Il	t gc	g ca a Hi	t gtt s Val 560	1680
tc:	t cct r Pro	cta Le	a aaa u Lys	a ctt s Leu 565	ı Val	tte Lei	g gtg ı Val	g cad l His	geg s Ala 570	a Il	a gc e Al	t ga a Gl	g gc u Al	t ac a Th 57	a gag r Glu 5	1728
ca [*]	t tt: s Le	g aag u Lys	g caa s Gli 580	n His	c tgo s Cys	tto Lei	g aa ı Ası	c aa n Asi 58	n Ile	c tg e Cy	t cc s Pr	a ca o Hi	c gt s Va	l Ty	t gct r Ala	1776
cc Pr	t ca o Gl:	a at n Il 59	e Gl	g gaa u Gli	a acq u Thi	g gte r Va	c ga l As 60	p Va	g ac	t tc r Se	t ga r As	t tt sp Le	eu Cy	t go s Al	t tac .a Tyr	1824
aa	g gt	c ca	a ct	t tc	t ga	a aa	g ct	g at	g ag	c aa	t gt	g at	c tt	c aa	ig aag	1872

Lys	Val 610	Gln	Leu	Ser	Glu	Lys 615	Leu	Met	Ser	Asn	Val 620	Ile	Phe	Lys	Lys	
ctg Leu 625	gga Gly	gat Asp	tca Ser	gaa Glu	gta Val 630	gct Ala	tgg Trp	gtg Val	gat Asp	tcc Ser 635	gaa Glu	gta Val	gjà aaa	aag Lys	aca Thr 640	1920
gag Glu	agg Arg	gac Asp	atg Met	agg Arg 645	tct Ser	cta Leu	cta Leu	ccg Pro	atg Met 650	cca Pro	ggt Gly	gst Ala	gct Ala	tcg Ser 655	cca Pro	1968
cac His	aaa Lys	cct Pro	gtt Val 660	cta Leu	gta Val	ggt Gly	gat Asp	ctg Leu 665	aaa Lys	atc Ile	gca Ala	gac Asp	ttc Phe 670	aag Lys	cag Gln	2016
ttt Phe	ctg Leu	tcg Ser 675	agc Ser	aag Lys	ggt Gly	gtt Val	cag Gln 680	gta Val	gaa Glu	ttt Phe	gca Ala	ggt Gly 685	gga Gly	gga Gly	gct Ala	2064
tta Leu	cgt Arg 690	Cys	ggt Gly	gaa Glu	tat Tyr	gtc Val 695	act Thr	cta Leu	cga Arg	aag Lys	gtt Val 700	Gly	ccg Pro	acg Thr	ggt Gly	2112
caa Gln 705	Lys	gga Gly	gga Gly	gca Ala	tcg Ser 710	Gly	cca Pro	cag Gln	caa Gln	att Ile 715	Leu	ata Ile	gaa Glu	gga Gly	ccg Pro 720	2160
ttg Leu	tgt Cys	gaa Glu	gac Asp	tat Tyr 725	Tyr	aaa Lys	atc Ile	agg Arg	gat Asp 730	Tyr	cto Lev	tat Tyr	tct Ser	cag Gln 735	ttc Phe	2208
		ctc Leu	tga								•					2220

<210> 34

<211> 739

<212> PRT

<213> Arabidopsis thaliana

<400> 34

Met Gly Thr Ser Val Gln Val Thr Pro Leu Cys Gly Val Tyr Asn Glu
1 5 10 15

Asn Pro Leu Ser Tyr Leu Val Ser Ile Asp Gly Phe Asn Phe Leu Ile 20 25 30

Asp Cys Gly Trp Asn Asp Leu Phe Asp Thr Ser Leu Leu Glu Pro Leu 35 40 45

Pro Arg Val Ala Ser Thr Ile Asp Ala Val Leu Ser His Pro Asp 50 60

Thr Leu His Ile Gly Ala Leu Pro Tyr Ala Met Lys Gln Leu Gly Leu 65 70 75 80

Ser Ala Pro Val Tyr Ala Thr Glu Pro Val His Arg Leu Gly Leu Leu 85 90 95

Thr Met Tyr Asp Gln Phe Leu Ser Arg Lys Gln Val Ser Asp Phe Asp 100 105 110

Leu Phe Thr Leu Asp Asp Ile Asp Ser Ala Phe Gln Asn Val Ile Arg 115 120 125

Leu Thr Tyr Ser Gln Asn Tyr His Leu Ser Gly Lys Gly Glu Gly Ile 130 135 140

Val Ile Ala Pro His Val Ala Gly His Met Leu Gly Gly Ser Ile Trp 145 150 155 160

Arg Ile Thr Lys Asp Gly Glu Asp Val Ile Tyr Ala Val Asp Tyr Asn 165 170 175

His Arg Lys Glu Arg His Leu Asn Gly Thr Val Leu Gln Ser Phe Val 180 185 190

Arg Pro Ala Val Leu Ile Thr Asp Ala Tyr His Ala Leu Tyr Thr Asn 195 200 205

Gln Thr Ala Arg Gln Gln Arg Asp Lys Glu Phe Leu Asp Thr Ile Ser 210 215 220

Lys His Leu Glu Val Gly Gly Asn Val Leu Pro Val Asp Thr Ala 225 230 235 240

Gly Arg Val Leu Glu Leu Leu Leu Ile Leu Glu Gln His Trp Ser Gln
245 250 255

Arg Gly Phe Ser Phe Pro Ile Tyr Phe Leu Thr Tyr Val Ser Ser Ser 260 265 270

Thr Ile Asp Tyr Val Lys Ser Phe Leu Glu Trp Met Ser Asp Ser Ile 275 280 285 Ser Lys Ser Phe Glu Thr Ser Arg Asp Asn Ala Phe Leu Leu Arg His 290 295 300

- Val Thr Leu Leu Ile Asn Lys Thr Asp Leu Asp Asn Ala Pro Pro Gly 305 310 315 320
- Pro Lys Val Val Leu Ala Ser Met Ala Ser Leu Glu Ala Gly Phe Ala 325 330 335
- Arg Glu Ile Phe Val Glu Trp Ala Asn Asp Pro Arg Asn Leu Val Leu 340 345 350
- Phe Thr Glu Thr Gly Gln Phe Gly Thr Leu Ala Arg Met Leu Gln Ser 355 360 365
- Ala Pro Pro Pro Lys Phe Val Lys Val Thr Met Ser Lys Arg Val Pro 370 375 380
- Leu Ala Gly Glu Glu Leu Ile Ala Tyr Glu Glu Glu Gln Asn Arg Leu 385 390 395 400
- Lys Arg Glu Glu Ala Leu Arg Ala Ser Leu Val Lys Glu Glu Glu Thr 405 410 415
- Lys Ala Ser His Gly Ser Asp Asp Asn Ser Ser Glu Pro Met Ile Ile 420 425 430
- Asp Thr Lys Thr Thr His Asp Val Val Gly Ser His Gly Pro Ala Tyr 435 440 445
- Lys Asp Ile Leu Ile Asp Gly Phe Val Pro Pro Ser Ser Val Ala 450 455 460
- Pro Met Phe Pro Tyr Tyr Asp Asn Thr Ser Glu Trp Asp Asp Phe Gly 465 470 475 480
- Glu Ile Ile Asn Pro Asp Asp Tyr Val Ile Lys Asp Glu Asp Met Asp 485 490 495
- Arg Gly Ala Met His Asn Gly Gly Asp Val Asp Gly Arg Leu Asp Glu 500 505 510
- Ala Thr Ala Ser Leu Met Leu Asp Thr Arg Pro Ser Lys Val Met Ser 515 520 525

Asn Glu Leu Ile Val Thr Val Ser Cys Ser Leu Val Lys Met Asp Tyr 530 535 540

Glu Gly Arg Ser Asp Gly Arg Ser Ile Lys Ser Met Ile Ala His Val 545 550 555 560

Ser Pro Leu Lys Leu Val Leu Val His Ala Ile Ala Glu Ala Thr Glu 565 570 575

His Leu Lys Gln His Cys Leu Asn Asn Ile Cys Pro His Val Tyr Ala 580 585 590

Pro Gln Ile Glu Glu Thr Val Asp Val Thr Ser Asp Leu Cys Ala Tyr 595 600 605

Lys Val Gln Leu Ser Glu Lys Leu Met Ser Asn Val Ile Phe Lys Lys 610 615 620

Leu Gly Asp Ser Glu Val Ala Trp Val Asp Ser Glu Val Gly Lys Thr 625 630 635 640

Glu Arg Asp Met Arg Ser Leu Leu Pro Met Pro Gly Ala Ala Ser Pro 645 650 655

His Lys Pro Val Leu Val Gly Asp Leu Lys Ile Ala Asp Phe Lys Gln 660 665 670

Phe Leu Ser Ser Lys Gly Val Gln Val Glu Phe Ala Gly Gly Gly Ala 675 680 685

Leu Arg Cys Gly Glu Tyr Val Thr Leu Arg Lys Val Gly Pro Thr Gly 690 695 700

Gln Lys Gly Gly Ala Ser Gly Pro Gln Gln Ile Leu Ile Glu Gly Pro 705 710 715 720

Leu Cys Glu Asp Tyr Tyr Lys Ile Arg Asp Tyr Leu Tyr Ser Gln Phe 725 730 735

Tyr Leu Leu

<210> 35

<211> 1116

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1116)

<223>

<400	> 3	5															4.0
atg (Met)	gca Ala	gca Ala	gcg Ala	atg Met 5	tct Ser	tct Ser	tct Ser	tgt Cys	tgc Cys 10	gct Ala	tcc Ser	ccg Ser	Leu	egt Arg 15	tta Leu		48
atc Ile	cca Pro	ttc Phe	aaa Lys 20	cgg Arg	acc Thr	ttg Leu	ttt Phe	tct Ser 25	tca Ser	atc Ile	cat His	tat Tyr	ccg Pro 30	gcc Ala	aaa Lys		96
acc Thr	ctt Leu	ctt Leu 35	cta Leu	cga Arg	cca Pro	cta Leu	aaa Lys 40	ccg Pro	tcg Ser	gaa Glu	gtt Val	cct Pro 45	tcc Ser	ttt Phe	cgc Arg	:	144
cgg Arg	acg Thr 50	atc Ile	atc Ile	act Thr	ttc Phe	cag Gln 55	aaa Lys	att Ile	tca Ser	Thr	60 GJA 333	att Ile	gtt Val	cct Pro	cca Pro		192
cca Pro 65	tcg Ser	gct Ala	tca Ser	tca Ser	tct Ser 70	ccg Pro	tcg Ser	agc Ser	tat Tyr	gga Gly 75	gac Asp	ctt Leu	caa Gln	cca Pro	atc Ile 80		240
gaa Glu	gag Glu	ctt Leu	cca Pro	ccg Pro 85	aag Lys	cta Leu	caa Gln	gag Glu	atc Ile 90	gtc Val	aag Lys	ctt Leu	ttc Phe	caa Gln 95	tcg Ser		288
gta Val	caa Gln	gag Glu	cca Pro 100	aag Lys	gct Ala	aaa Lys	tac Tyr	gag Glu 105	Gln	ctt Leu	atg Met	ttc Phe	tac Tyr 110	gly aaa	aag Lys		336
aat Asn	ctg Leu	aca Thr	Pro	ctc Leu	gat Asp	tct Ser	caa Gln 120	Phe	aag Lys	acg Thr	agg Arg	gag Glu 125	Asn	aaa Lys	gta Val		384
gaa Glu	gga Gly 130	Cys	gtt Val	tct Ser	cag Gln	gtt Val 135	Trp	gtt Val	agg Arg	gct Ala	tto Phe 140	: Phe	gat Asp	gag Glu	gaa Glu		432
cgt Arg 145	Asr	gtt Val	gt <u>c</u> Val	tat Tyr	gaa Glu 150	Ala	gat Asp	tct Ser	gat Asp	tcg Ser 155	· Val	cto L Lev	act Thi	aaa Lys	1 ggg 3 Gly 160		480
tta Leu	gct	gct A Alá	cta Lev	tta Lev 165	·Va]	aac Lys	g ggt Gly	tta Lei	a tot 1 Set 170	c Gly	a aga / Arg	a cct g Pro	gto Val	Pro	gag Glu		528

att Ile	ttg Leu	agg Arg	ata Ile 180	aca Thr	cct Pro	gat Asp	ttc Phe	gct Ala 185	gtt Val	ctt Leu	ctc Leu	gjå aaa	ttg Leu 190	cag Gln	cag Gln		576
agt Ser	ctg Leu	tct Ser 195	cct Pro	tct Ser	aga Arg	aac Asn	aat Asn 200	gga Gly	tta Leu	ctt Leu	aat Asn	atg Met 205	ctt Leu	aag Lys	ctg Leu		624
atg Met	cag Gln 210	aaa Lys	aag Lys	gct Ala	ctt Leu	cat His 215	ttg Leu	gaa Glu	gtc Val	aaa Lys	ggt Gly 220	gag Glu	gaa Glu	gat Asp	tca Ser		672
agt Ser 225	tct Ser	gga Gly	gag Glu	agt Ser	tca Ser 230	gaa Glu	tcc Ser	agc Ser	ttt Phe	gtg Val 235	tct Ser	att Ile	cct Pro	gag Glu	act Thr 240		720
aag Lys	gac Asp	gaa Glu	gct Ala	aat Asn 245	gtt Val	ccg Pro	gag Glu	gtg Val	gat Asp 250	ttg Leu	gag Glu	tct Ser	aaa Lys	cct Pro 255	gat Asp		768
cta Leu	gtt Val	gag Glu	gat Asp 260	ttg Leu	gga Gly	aca Thr	gaa Glu	aag Lys 265	att Ile	gat Asp	gat Asp	tct Ser	gag Glu 270	Ser	gjå aaa		816
Ser	Asn	Val 275	gtt Val	Ala	Leu	Gly	Ser 280	Arg	Gly	Met	Arg	1le 285	Arg	Glu	Lys		864
Leu	Glu 290	Lys	gag Glu	Leu	Asp	Pro 295	Val	. Glu	Leu	. Glu	300	Glu	Asp	Val	. Ser	•	912
Tyr 305	Gln	His	Ala	Gly	His 310	Ala	Ala	ı Val	. Arg	315	y Sei	c Ala	ı Gly	r Asp	gat Asp 320		960
Gly	· Glu	Thr	His	Phe 325	Asn	. Leu	Arg	j Il∈	330	L Sei	c Asj	o Ala	a Phe	335			1008
Lys	Ser	Leu	Val 340	Lys	Arg	His	Arg	349	ı Ile	е Ту	r As	p Lêi	1 Let 350	ı Gli	a gat n Asp		1056
gaç Glu	ttg Leu	aag Lys 355	Ser	. Gl ^y s aas	j tta ⁄ Leu	cat His	gci Ala 36	a Let	tci 1 Se:	t ati	t gt e Va	g gca 1 Ala 36	а Гу	g ac	t cct r Pro		1104
_	gag Glu 370	ı Val	tga	l													1116

<210> 36

<211> 371

<212> PRT

<213> Arabidopsis thaliana

<400> 36

Met Ala Ala Met Ser Ser Ser Cys Cys Ala Ser Ser Leu Arg Leu 1 5 10 15

Ile Pro Phe Lys Arg Thr Leu Phe Ser Ser Ile His Tyr Pro Ala Lys 20 25 30

Thr Leu Leu Arg Pro Leu Lys Pro Ser Glu Val Pro Ser Phe Arg 35 40 45

Arg Thr Ile Ile Thr Phe Gln Lys Ile Ser Thr Gly Ile Val Pro Pro 50 55 60

Pro Ser Ala Ser Ser Ser Pro Ser Ser Tyr Gly Asp Leu Gln Pro Ile 65 70 75 80

Glu Glu Leu Pro Pro Lys Leu Gln Glu Ile Val Lys Leu Phe Gln Ser 85 90 95

Val Gln Glu Pro Lys Ala Lys Tyr Glu Gln Leu Met Phe Tyr Gly Lys 100 105 110

Asn Leu Thr Pro Leu Asp Ser Gln Phe Lys Thr Arg Glu Asn Lys Val

Glu Gly Cys Val Ser Gln Val Trp Val Arg Ala Phe Phe Asp Glu Glu 130 135 140

Arg Asn Val Val Tyr Glu Ala Asp Ser Asp Ser Val Leu Thr Lys Gly 145 150 155 160

Leu Ala Ala Leu Leu Val Lys Gly Leu Ser Gly Arg Pro Val Pro Glu 165 170 175

Ile Leu Arg Ile Thr Pro Asp Phe Ala Val Leu Leu Gly Leu Gln Gln 180 185 190

Ser Leu Ser Pro Ser Arg Asn Asn Gly Leu Leu Asn Met Leu Lys Leu 195 200 205

Met Gln Lys Lys Ala Leu His Leu Glu Val Lys Gly Glu Glu Asp Ser 210 215 220

Ser Ser Gly Glu Ser Ser Glu Ser Ser Phe Val Ser Ile Pro Glu Thr 225 230 235 240

Lys Asp Glu Ala Asn Val Pro Glu Val Asp Leu Glu Ser Lys Pro Asp 245 250 255

Leu Val Glu Asp Leu Gly Thr Glu Lys Ile Asp Asp Ser Glu Ser Gly 260 265 270

Ser Asn Val Val Ala Leu Gly Ser Arg Gly Met Arg Ile Arg Glu Lys 275 280 285

Leu Glu Lys Glu Leu Asp Pro Val Glu Leu Glu Val Glu Asp Val Ser 290 295 300

Tyr Gln His Ala Gly His Ala Ala Val Arg Gly Ser Ala Gly Asp Asp 305 310 315 320

Gly Glu Thr His Phe Asn Leu Arg Ile Val Ser Asp Ala Phe Gln Gly 325 330 335

Lys Ser Leu Val Lys Arg His Arg Leu Ile Tyr Asp Leu Leu Gln Asp 340 345 350

Glu Leu Lys Ser Gly Leu His Ala Leu Ser Ile Val Ala Lys Thr Pro 355 360 365

Ala Glu Val 370

<210> 37

<211> 1059

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1059)

<223> 20933

<400	> 3	7								_						4.0
atg Met 1	gat Asp	ttg Leu	atg Met	gag Glu 5	aag Lys	aac Asn	ttg Leu	Glu	tta Leu 10	gtg Val	gag Glu	Ile	Gln	aaa Lys 15	Leu	48
gaa Glu	ggc Gly	cac His	acc Thr 20	gat Asp	cgt Arg	gtt Val	tgg Trp	agc Ser 25	gta Val	gct Ala	tgg Trp	aac Asn	ccc Pro 30	gtt Val	tct Ser	. 96
tct Ser	cac His	gcc Ala 35	gac Asp	ggt Gly	gtt Val	tca Ser	ccg Pro 40	att Ile	ctt Leu	gct Ala	tct Ser	tgc Cys 45	agt Ser	ggc Gly	gat Asp	144
aac Asn	act Thr 50	gtt Val	cga Arg	atc Ile	tgg Trp	gaa Glu 55	caa Gln	agc Ser	tct Ser	ctc Leu	tct Ser 60	cgc Arg	tcc Ser	tgg Trp	act Thr	192
tgc Cys 65	aag Lys	aca Thr	gtt Val	ttg Leu	gaa Glu 70	gag Glu	acġ Thr	cat His	aca Thr	aga Arg 75	act Thr	gtg Val	agg Arg	tcg Ser	tgc Cys 80	240
gct Ala	tgg Trp	tca Ser	ccc Pro	tca Ser 85	gga Gly	cag Gln	tta Leu	ttg Leu	·gcc Ala 90	act Thr	gca Ala	agt Ser	ttt Phe	gat Asp 95	ggt Gly	288
acc Thr	act Thr	ggc	att Ile 100	Trp	aag Lys	aat Asn	tac Tyr	ggt Gly 105	tct Ser	gag Glu	ttt Phe	gag Glu	tgt Cys 110	Ile	tcc Ser	336
act Thr	ttg Leu	gag Glu 115	Gly	cat His	gaa Glu	aac Asn	gaa Glu 120	\Val	aaa Lys	agt Ser	gta Val	tca Ser 125	Trp	aat Asr	gca Ala	384
tct Ser	ggt Gly 130	Ser	tgc Cys	ctt Lev	gca Ala	aca Thr	Cys	agt Ser	aga Arg	gat J Asp	: aag Lys 140	s Ser	gtt Val	tgg L Trp	g att	432
tgg Trp 145	Glu	gtg Val	ctt Leu	gaa Glu	ggg Gly 150	/ Asi	gaa Glu	a tat ı Tyr	gac Asp	tgt Cys 15!	s Ala	gcg a Ala	g gta a Va.	a tta l Le:	a act 1 Thr 160	480
GJ ⁷ GG	cat His	aca Thr	caa Glr	ı gat ı Asp 169	Val	g aag L Lys	g ato	g gtt t Val	caç Glr 170	a Trj	g cat p His	t cco	c acc	c atom	g gat t Asp	528
gtt Va]	tta Lei	a ttt 1 Phe	tct Ser 180	Cy:	c agt s Sei	tai r Ty	t gai r Asj	t aad p Asi 189	n Th	c ate	c aag e Ly	g gt s Va	t tg l Tr 19	p Tr	g tct p Ser	576
gaa Glu	a gat ı Ası	gat Asj 19!	g Ası	gg [†]	t gag y Gl	g ta u Ty	t ca r Gl 20	п Су	t gte	c ca l Gl	a ac n Th	c tt r Le 20	u GI	t ga y Gl	a tct u Ser	624
aa As	c aa n As: 21	n Gl	t cae	c tc s Se	t tc r Se	a ac r Th 21	r Va	a tgg	g tc p Se	c at r Il	c tc e Se 22	r Ph	t aa e As	c gc	t gca a Ala	672
aa	a aa	c aa	g ate	a at	c ac	t ta	t aq	t ga	t ga	t ct	a ac	c tt	g aa	g at	a tgg	720

Gly 225	Asp	Lys	Met	Val	Thr 230	Суз	Ser	Asp	Asp	Leu 235	Thr	Leu	Lys	Ile	Trp 240	
gjå aaa	aca Thr	gat Asp	att Ile	gcc Ala 245	aag Lys	atg Met	cag Gln	tct Ser	ggt Gly 250	gaa Glu	gaa Glu	tat Tyr	gca Ala	cct Pro 255	tgg Trp	768
att Ile	cat His	ctt Leu	tgt Cys 260	act Thr	ctc Leu	tct Ser	ggc	tat Tyr 265	cat His	gac Asp	cgt Arg	acc Thr	ata Ile 270	tac Tyr	tca Ser	816
gct Ala	cac His	tgg Trp 275	tca Ser	agg Arg	gac Asp	gac Asp	att Ile 280	att Ile	gcc Ala	agt Ser	gga Gly	gca Ala 285	ggc Gly	gat Asp	aat Asn	864
gct Ala	ata Ile 290	cgg Arg	ttg Leu	ttt Phe	gtg Val	gac Asp 295	agc Ser	aaa Lys	cat His	gac Asp	tct Ser 300	gtt Val	gat Asp	gga Gly	cct Pro	912
tca Ser 305	Tyr	aat Asn	ctt Leu	ttg Leu	ctg Leu 310	aag Lys	aag Lys	aat Asn	aaa Lys	gca Ala 315	cat His	gaa Glu	aat Asn	gat Asp	gta Val 320	960
aac Asn	tct Ser	gtc Val	caa Gln	tgg Trp 325	tca Ser	ccc Pro	ggt Gly	gag Glu	330 Gly 999	Asn	cgg Arg	ttg Leu	ctt Leu	gcg Ala 335	tcg Ser	1008
gct Ala	agt Ser	gat Asp	gat Asp 340	Gly	atg Met	gtc Val	aag Lys	att Ile 345	Trp	cag Gln	ctt Leu	gca Ala	act Thr 350	Lys	ccg	1056
tga	•															1059

<210> 38

<211> 352

<212> PRT

<213> Arabidopsis thaliana

<400> 38

Met Asp Leu Met Glu Lys Asn Leu Glu Leu Val Glu Ile Gln Lys Leu 1 5 10 15

Glu Gly His Thr Asp Arg Val Trp Ser Val Ala Trp Asn Pro Val Ser 20 25 30

Ser His Ala Asp Gly Val Ser Pro Ile Leu Ala Ser Cys Ser Gly Asp 35 40 45

Asn Thr Val Arg Ile Trp Glu Gln Ser Ser Leu Ser Arg Ser Trp Thr 50 55 60

Cys Lys Thr Val Leu Glu Glu Thr His Thr Arg Thr Val Arg Ser Cys 65 70 75 80

- Ala Trp Ser Pro Ser Gly Gln Leu Leu Ala Thr Ala Ser Phe Asp Gly 85 90 95
- Thr Thr Gly Ile Trp Lys Asn Tyr Gly Ser Glu Phe Glu Cys Ile Ser
- Thr Leu Glu Gly His Glu Asn Glu Val Lys Ser Val Ser Trp Asn Ala 115 120 125
- Ser Gly Ser Cys Leu Ala Thr Cys Ser Arg Asp Lys Ser Val Trp Ile 130 135 140
- Trp Glu Val Leu Glu Gly Asn Glu Tyr Asp Cys Ala Ala Val Leu Thr 145 150 155 160
- Gly His Thr Gln Asp Val Lys Met Val Gln Trp His Pro Thr Met Asp 165 170 175
- Val Leu Phe Ser Cys Ser Tyr Asp Asn Thr Ile Lys Val Trp Trp Ser 180 185 190
- Glu Asp Asp Gly Glu Tyr Gln Cys Val Gln Thr Leu Gly Glu Ser 195 200 205
- Asn Asn Gly His Ser Ser Thr Val Trp Ser Ile Ser Phe Asn Ala Ala 210 215 220
- Gly Asp Lys Met Val Thr Cys Ser Asp Asp Leu Thr Leu Lys Ile Trp 225 230 235 240
- Gly Thr Asp Ile Ala Lys Met Gln Ser Gly Glu Glu Tyr Ala Pro Trp 245 250 255
- Ile His Leu Cys Thr Leu Ser Gly Tyr His Asp Arg Thr Ile Tyr Ser 260 265 270
- Ala His Trp Ser Arg Asp Asp Ile Ile Ala Ser Gly Ala Gly Asp Asn 275 280 285
- Ala Ile Arg Leu Phe Val Asp Ser Lys His Asp Ser Val Asp Gly Pro 290 295 300

Ser Tyr Asn Leu Leu Lys Lys Asn Lys Ala His Glu Asn Asp Val 310 Asn Ser Val Gln Trp Ser Pro Gly Glu Gly Asn Arg Leu Leu Ala Ser 330 Ala Ser Asp Asp Gly Met Val Lys Ile Trp Gln Leu Ala Thr Lys Pro <210> 39 <211> 942 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (1)..(924) <222> <223> <400> 39 atg cta agc ttg aga tat tca tta cct tat ctt ctt caa aca agg 48 Met Leu Ser Leu Arg Tyr Ser Leu Pro Tyr Leu Leu Gln Thr Arg 5 gaa tca tca act aag ctc ttc acc aaa aag cct aac aat gtt gtg gtt 96 Glu Ser Ser Thr Lys Leu Phe Thr Lys Lys Pro Asn Asn Val Val tgt gcg gcg aga ggt cca aga cct cgg tct cct cgt gta tgg aaa aca 144 Cys Ala Ala Arg Gly Pro Arg Pro Arg Ser Pro Arg Val Trp Lys Thr 35 192 agg aag agg att gga act atc tct aaa gct gcc aaa atg att gct tgt Arg Lys Arg Ile Gly Thr Ile Ser Lys Ala Ala Lys Met Ile Ala Cys 50 ata aaa gga ttg tcg aat gtt aaa gaa gaa gtt tat gga gcg ctt gat 240 Ile Lys Gly Leu Ser Asn Val Lys Glu Glu Val Tyr Gly Ala Leu Asp 70 tcc ttc att gct tgg gaa tta gag ttc cct ctt gtt ata gtt aag aag 288 Ser Phe Ile Ala Trp Glu Leu Glu Phe Pro Leu Val Ile Val Lys Lys 85 90 336 Ala Leu Val Ile Leu Glu Asp Glu Lys Glu Trp Lys Lys Ile Ile Gln

			100					105					110			
gtg Val	aca Thr	aaa Lys 115	tgg Trp	atg Met	ctg Leu	agt Ser	aaa Lys 120	ggc Gly	caa Gln	gga Gly	aga Arg	aca Thr 125	atg Met	gga Gly	act Thr	384
tac Tyr.	ttc Phe 130	tca Ser	tta Leu	cta Leu	aat Asn	gct Ala 135	tta Leu	gca Ala	gaa Glu	gat Asp	aat Asn 140	cgc Arg	ctt Leu	gac Asp	gaa Glu	432
gct Ala 145	gag Glu	gaa Glu	ttg Leu	tgg Trp	aac Asn 150	aaa Lys	ttg Leu	ttc Phe	atg Met	gaa Glu 155	cat His	tta Leu	gaa Glu	gga Gly	act Thr 160	480
cct Pro	aga Arg	aag Lys	ttc Phe	ttc Phe 165	aac Asn	aaa Lys	atg Met	atc Ile	tct Ser 170	ata Ile	tat Tyr	tac Tyr	aag Lys	aga Arg 175	gat Asp	528
atg Met	cac His	caa Gln	aag Lys 180	ctc Leu	ttc Phe	gag Glu	gtc Val	ttt Phe 185	gct Ala	gac Asp	atg Met	gag Glu	gag Glu 190	Leu	gga Gly	576
gtg Val	aaa Lys	ccg Pro 195	Asn	gtt Val	gcg Ala	att Ile	gtg Val 200	Ser	atg Met	gtt Val	gga Gly	aaa Lys 205	vai	ttt Phe	gtg Val	624 _.
aaa Lys	cta Leu 210	Glu	atg Met	aag Lys	gat Asp	aag Lys 215	Tyr	gag Glu	aaa Lys	ctg Leu	atg Met 220	: Lys	g aaa S Lys	tat Tyr	cct Pro	672
cca Pro 225	Pro	cag Gln	tgg Trp	gag Glu	ttt Phe 230	Arg	tac	atc Ile	aaa Lys	gga Gly 235	Arg	cgt Arg	gtt g Val	aag Lys	g gtc s Val 240	720
aag Lys	gca Ala	aag Lys	cag Gln	ctg Leu 245	Asn	gag Glu	cta Lev	ago Ser	gaa Glu 250	ı GIZ	gaa Glu	a gg	t ggt y Gly	tta / Let 25!	a agc u Ser 5	768
ago Ser	gac Asp	gaa Glu	gat Asp 260	Lys	att Ile	gac Asp	aat Asi	gag Glu 265	ı Ile	gag Glu	g agt ı Se:	t gaar	a gaa u Gli 27	n GT	a gat u Asp	816
ggt Gly	gag Glu	g gat 1 Asp 275	Lev	agt Ser	gaa Glu	gag Glu	g gaa 1 Gl1 286	ı Glı	a gat 1 Asj	gaa o Gl	a aa u Ly	a ga s Gl 28	и те	t tt u Le	g ggt u Gly	864
gga Gly	a agi y Se: 29	r Glı	a gga n Gly	a cag / Glr	g att n Ile	act Thi	r Se	t aga	a gaa g Gl	a cc u Pr	c ag o Se 30	r Le	t ga u As	t ca p Hi	t ttg s Leu	912
_	p Se	t tca r Sei	a tga	a												924
<2	10>	40														

95

<211> 307

<212> PRT

<213> Arabidopsis thaliana

<400> 40

Met Leu Ser Leu Arg Tyr Ser Leu Pro Tyr Leu Leu Gln Thr Arg 1 5 10 15

Glu Ser Ser Thr Lys Leu Phe Thr Lys Lys Pro Asn Asn Val Val Val 20 25 30

Cys Ala Ala Arg Gly Pro Arg Pro Arg Ser Pro Arg Val Trp Lys Thr 35 40 45

Arg Lys Arg Ile Gly Thr Ile Ser Lys Ala Ala Lys Met Ile Ala Cys 50 55 60

Ile Lys Gly Leu Ser Asn Val Lys Glu Glu Val Tyr Gly Ala Leu Asp 65 70 . 75

Ser Phe Ile Ala Trp Glu Leu Glu Phe Pro Leu Val Ile Val Lys Lys 85 90 95

Ala Leu Val Ile Leu Glu Asp Glu Lys Glu Trp Lys Lys Ile Ile Gln
100 105 110

Val Thr Lys Trp Met Leu Ser Lys Gly Gln Gly Arg Thr Met Gly Thr 115 120 125

Tyr Phe Ser Leu Leu Asn Ala Leu Ala Glu Asp Asn Arg Leu Asp Glu
130 140

Ala Glu Glu Leu Trp Asn Lys Leu Phe Met Glu His Leu Glu Gly Thr 145 150 155 160

Pro Arg Lys Phe Phe Asn Lys Met Ile Ser Ile Tyr Tyr Lys Arg Asp 165 170 175

Met His Gln Lys Leu Phe Glu Val Phe Ala Asp Met Glu Glu Leu Gly 180 185

Val Lys Pro Asn Val Ala Ile Val Ser Met Val Gly Lys Val Phe Val
195 200 205

Lys Leu Glu Met Lys Asp Lys Tyr Glu Lys Leu Met Lys Lys Tyr Pro 215 Pro Pro Gln Trp Glu Phe Arg Tyr Ile Lys Gly Arg Arg Val Lys Val 235 230 Lys Ala Lys Gln Leu Asn Glu Leu Ser Glu Gly Glu Gly Leu Ser 250 245 Ser Asp Glu Asp Lys Ile Asp Asn Glu Ile Glu Ser Glu Glu Glu Asp 265 Gly Glu Asp Leu Ser Glu Glu Glu Glu Asp Glu Lys Glu Leu Leu Gly 285 280 275 Gly Ser Gln Gly Gln Ile Thr Ser Arg Glu Pro Ser Leu Asp His Leu 300 295 290 Asp Ser Ser 305 <210> 41 <211> 2427 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(2427) <223> 21878 <400> 41 atg gta aag gaa act cta att cct ccg tca tct acg tca atg acg acc 48 Met Val Lys Glu Thr Leu Ile Pro Pro Ser Ser Thr Ser Met Thr Thr gga aca tet tet tet teg tet ett tea atg acg tta tee tea aca aac 96 Gly Thr Ser Ser Ser Ser Leu Ser Met Thr Leu Ser Ser Thr Asn gcg tta tcg ttt ttg tcg aaa gga tgg aga gag gta tgg gat tca gca 144 Ala Leu Ser Phe Leu Ser Lys Gly Trp Arg Glu Val Trp Asp Ser Ala

		35					40					•	45						
gat Asp	gcg Ala 50	gat Asp	ttg Leu	cag Gln	ctg Leu	atg Met 55	cga Arg	gac Asp	aga Arg	gc Al	ан	ac sn 0	tct Ser	gtt Val	aag Lys	aa As	at sn		192
cta Leu 65	gca Ala	tca Ser	acg Thr	ttc Phe	gat Asp 70	aga Arg	gag Glu	atc Ile	gag	g aa 1 As 75	111 -	tc he	ctc Leu	aat Asn	aac Asr		cg er 0		240
gcg Ala	agg Arg	tct Ser	gcg Ala	ttt Phe 85	ccc Pro	gtt Val	ggt Gly	tca Ser	Pro	a to o Se	g g er F	Ala	tcg Ser	tct Ser	Pho 95	e t e S	ca er		288
aat Asn	gaa Glu	att Ile	ggt Gly 100	atc Ile	atg Met	aag Lys	aag Lys	ctt Lei 105	1 GI	g co n Pi	cg a	aag Lys	att Ile	tcg Ser 110		g t u F	tt Phe		336
cgt Arg	agg Arg	gtt Val 115	tat Tyr	tcg Ser	gcg Ala	ccg Pro	gag Glu	TT	ag e Se	t co	gc : rg :	aag Lys	gtt Val 125	rice	g ga : Gl	ga u <i>I</i>	aga Arg		384
tgg Trp	gga Gly 130	Pro	gcg Ala	aga Arg	gcg Ala	aag Lys 135	ь ьет	gg;	a at y Me	g g t A	ъp	cta Leu 140	501	gcg Ala	g at a Il	t i	aag Lys		432
aag Lys 145	Ala	g att	gtg Val	g tct L Ser	gag Glu 150	. Met	g gaa	a tt u Le	g ga u As	sp G	ag lu 155	cgt Arg	cag Gli	g gg n Gl	agt yVa		ttg Leu 160		480
gag Glu	g ato 1 Mei	g agt	t aga r Arg	a ttg g Lei 16!	ı Arç	g ag	a cg g Ar	g cg g Ar	g A	at a sn S 70	igt Ser	gat Asp	agg Arg	g gt g Va		99 rg 75	ttt Phe	: :	528
acç Thi	g gag r Gl	g tt u Ph	t tto e Pho 18	e Ala	g gaq a Gli	g gc ı Al	t ga a Gl	g ag u Ai 18	g A	at g sp (gga Gly	gaa Glu	agc ıAl	t ta a Ty 19		tc he	ggt Gly	; /	576
ga As	t tg p Tr	g ga p Gl 19	a cc u Pr	g at o Il	t ag e Ar	g to g Se	t tt r Le 20	u L	ag a ys S	gt er	aga Arg	tt Ph	t aa e Ly 20	S G.	ag t Lu F	tt he	gag Gl	g u	624
aa Ly	a cg s Ar 21	g Se	c tc r Se	g tt r Le	a ga u Gl	a at u Il 21	.е ь	g a eu S	gt g er G	ga ly	ttc Phe	аа . Ly 22	5 A	ic ag	gt g er (gaa 31u	tt Ph	t e	672
gt Va 22	1 G]	ıg aa .u Ly	ag ct /s Le	c aa u Ly	a ac s Th	r Se	gc ti	tt a he L	aa t ys s	ca Ser	att Ile 235	: тХ	c aa r Ly	aa g ys G	aa a lu '	act Thr	ga As 24	F	720
ga G]	ig go Lu Al	t aa la Ly	ag ga ys As	at gt sp Va 24	il Pi	t co	eg t ro L	tg g eu A	rsb	gta Val 250	ect Pro	ga o Gi	aa ci lu L	tg t eu L	cu.	gca Ala 255	. 0,	jt /s	768
tt Le	eu V	tt ag	ga ca rg GI 20	aa to ln Se 60	et ga er Gl	aa c Lu P	ct t ro P	ne i	ett Seu 265	gat Asp	caq Gl:	g at n I	tt g le G	TA A	tt 7al 270	aga Arg	a aa g Ly	ys Ag	816
g:	at a	ca t hr C	gt ga	ac co	ga at	ta g le V	ta g	jaa a Slu S	agc Ser	ctt Leu	tg Cy	c a	aa t ys C	gc a	aag Lys	age Se:	c c r G	aa ln	864

		275					280					285				
caa Gln	ctt Leu 290	tgg Trp	cgt Arg	ctg Leu	Pro	tct Ser 295	gca Ala	caa (Gln .	gca Ala	tcc Ser	gat Asp 300	tta Leu	att (gaa Glu	aat Asn	912
gat Asp 305	aac Asn	cat His	gga Gly	gtt Val	gat Asp 310	ttg Leu	gat Asp	atg Met	agg Arg	ata Ile 315	gcc Ala	agt Ser	gtt Val	ctt Leu	caa Gln 320	960
agc Ser	aca Thr	gga Gly	cac His	cat His 325	tat Tyr	gat Asp	ggt Gly	gjå aaa	ttt Phe 330	tgg Trp	act Thr	gat Asp	ttt Phe	gtg Val 335	aag Lys	1008
cct Pro	gag Glu	aca Thr	ccg Pro 340	gaa Glu	aac Asn	aaa Lys	agg Arg	cat His 345	gtg Val	gca Ala	att Ile	gtt Val	aca Thr 350	aca Thr	gct Ala	1056
agt Ser	ctt Leu	cct Pro 355	tgg Trp	atg Met	acc Thr	gga Gly	aca Thr 360	gct Ala	gta Val	aat Asn	ccg Pro	cta Leu 365	ttc Phe	aga Arg	gcg Ala	1104
gcg Ala	tat Tyr 370	Leu	gca Ala	aaa Lys	gct Ala	gca Ala 375	aaa Lys	cag Gln	agt Ser	gtt Val	act Thr 380	ctc Leu	gtg Val	gtt Val	cct Pro	1152
tgg Trp 385	Leu	tgc Cys	gaa Glu	tct Ser	gat Asp 390	caa Gln	gaa Glu	cta Leu	gtg Val	tat Tyr 395	Pro	aac Asn	aat Asn	ctc Leu	acc Thr 400	1200
ttc Phe	ago Ser	tca Ser	cct Pro	gaa Glu 405	Glu	caa Gln	gag Glu	agt Ser	tat Tyr 410	Ile	cgt Arg	: aaa J Lys	tgg Trp	ttg Leu 415	GIU	1248
gaa Glu	agg Arg	g att g Ile	ggt Gly 420	Phe	aag Lys	gct	gat Asp	ttt Phe 425	Lys	ato Ile	tco Sei	ttt Phe	tac Tyr 430	Pro	gga Gly	1296
aag Lys	s Phe	e Sei	: Lys	Glu	agg Arg	Arg	Ser	ata Ile	Phe	cct Pro	get Ala	t ggt a Gly 445	Asp	act Thi	tct Ser	1344
caa Gl:	a ttt n Phe 450	e Ile	a tog e Sei	g tca Ser	aaa Lys	gat Asp 455	Ala	gac Asp	att Ile	gct Ala	t ata a Il 46	е тел	gaa Glu	gaa Gli	a cct 1 Pro	1392
ga: Gl: 46	u Hi	t cto s Lei	c aad u Ası	tgg Tr	tato Tyr 470	туг	cac His	ggo Gly	aaq y Lys	g cg s Ar 47	g ir	g act p Thi	gat Ası	с аа Э Ьу	a ttc s Phe 480	1440
aa As	c ca n Hi	t gt s Va	t gti l Vai	t gga 1 Gl ₃ 48!	$_{\prime}$ Ile	gto Val	c cad	c aca	a aac r As: 49	n Ty	c tt r Le	a gag u Gli	g tao u Ty:	c at r Il 49	c aag e Lys 5	1488
ag Ar	g ga g Gl	g aa u Ly	g aa s As: 50	n Gl	a gct y Ala	cti a Lei	t car u Gl	a gca n Ala 50	a Ph	t tt e Pb	t gt le Va	g aad 1 As:	c ca n Hi 51	s va	a aac l Asn	1536
aa As	t tg n Tr	g gt p Va	c ac l Th	a cg	a gcg g Ala	g tai	t tg r Cy	t ga s As	c aa p Ly	g gt s Va	t ct 1 Le	t cg eu Ar	c ct g Le	c to u Se	t gcg r Ala	1584

PCT/EP02/07929 WO 03/008440

525 520 515 gca aca caa gat tta cca aag tot gtt gta tgc aat gtc cat ggt gtc 1632 Ala Thr Gln Asp Leu Pro Lys Ser Val Val Cys Asn Val His Gly Val 535 530 aat ccc aag ttc ctt atg att ggg gag aaa att gct gaa gag aga tcc 1680 Asn Pro Lys Phe Leu Met Ile Gly Glu Lys Ile Ala Glu Glu Arg Ser 550 545 cgt ggt gaa caa gct ttc tca aaa ggt gca tac ttc tta gga aaa atg 1728 Arg Gly Glu Gln Ala Phe Ser Lys Gly Ala Tyr Phe Leu Gly Lys Met 570 565 gtg tgg gct aaa gga tac aga gaa cta ata gat ctg atg gct aaa cac 1776 Val Trp Ala Lys Gly Tyr Arg Glu Leu Ile Asp Leu Met Ala Lys His 585 580 aaa agc gaa ctt ggg agc ttc aat cta gat gta tat ggg aac ggt gaa 1824 Lys Ser Glu Leu Gly Ser Phe Asn Leu Asp Val Tyr Gly Asn Gly Glu 600 595 gat gca gtc gag gtc caa cgt gca gca aag aaa cat gac ttg aat ctc 1872 Asp Ala Val Glu Val Gln Arg Ala Ala Lys Lys His Asp Leu Asn Leu 615 610 aat ttc ctc aaa gga agg gac cac gct gac gat gct ctt cac aag tac 1920 Asn Phe Leu Lys Gly Arg Asp His Ala Asp Asp Ala Leu His Lys Tyr 635 630 625 aaa gtg ttc ata aac ccc agc atc agc gat gtt cta tgc aca gca acc 1968 Lys Val Phe Ile Asn Pro Ser Ile Ser Asp Val Leu Cys Thr Ala Thr 650 645 gca gaa gca cta gcc atg ggg aag ttt gtg gtg tgt gca gat cac cct 2016 Ala Glu Ala Leu Ala Met Gly Lys Phe Val Val Cys Ala Asp His Pro 665 660 tca aac gaa ttc ttt aga tca ttc ccg aac tgc tta act tac aaa aca 2064 Ser Asn Glu Phe Phe Arg Ser Phe Pro Asn Cys Leu Thr Tyr Lys Thr 680 675 tcc gaa gac ttt gtg tcc aaa gtg caa gaa gca atg acg aaa gag cca 2112 Ser Glu Asp Phe Val Ser Lys Val Gln Glu Ala Met Thr Lys Glu Pro 700 695 690 cta cct ctc act cct gaa caa atg tac aat ctc tct tgg gaa gca gca 2160 Leu Pro Leu Thr Pro Glu Gln Met Tyr Asn Leu Ser Trp Glu Ala Ala 710 705 aca cag agg ttc atg gag tat tca gat ctc gat aag atc tta aac aat 2208 Thr Gln Arg Phe Met Glu Tyr Ser Asp Leu Asp Lys Ile Leu Asn Asn 730 725 gga gag gga gga agg aag atg cga aaa tca aga tcg gtt ccg agc ttt 2256 Gly Glu Gly Gly Arg Lys Met Arg Lys Ser Arg Ser Val Pro Ser Phe

2304

aac gag gtg gtc gat gga gga ttg gca ttc tca cac tat gtt cta aca

Asn Glu Val Val Asp Gly Gly Leu Ala Phe Ser His Tyr Val Leu Thr

740

755 760 765

ggg aac gat ttc ttg aga cta tgc act gga gca aca cca aga aca aaa 2352 Gly Asn Asp Phe Leu Arg Leu Cys Thr Gly Ala Thr Pro Arg Thr Lys 770 775 780

gac tat gat aat caa cat tgc aag gat ctg aat ctc gta cca cct cac 2400 Ası Tyr Asp Asn Gln His Cys Lys Asp Leu Asn Leu Val Pro Pro His 785 790 795 800

gtt cac aag cca atc ttc ggc tgg tag
Val His Lys Pro Ile Phe Gly Trp
805

<210> 42

<211> 808

<212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Val Lys Glu Thr Leu Ile Pro Pro Ser Ser Thr Ser Met Thr Thr 1 5 10 15

Gly Thr Ser Ser Ser Ser Leu Ser Met Thr Leu Ser Ser Thr Asn 20 25 30

Ala Leu Ser Phe Leu Ser Lys Gly Trp Arg Glu Val Trp Asp Ser Ala 35 40 45

Asp Ala Asp Leu Gln Leu Met Arg Asp Arg Ala Asn Ser Val Lys Asn 50 55 60

Leu Ala Ser Thr Phe Asp Arg Glu Ile Glu Asn Phe Leu Asn Asn Ser 65 70 75 80

Ala Arg Ser Ala Phe Pro Val Gly Ser Pro Ser Ala Ser Ser Phe Ser 85 90 95

Asn Glu Ile Gly Ile Met Lys Lys Leu Gln Pro Lys Ile Ser Glu Phe 100 105 110

Arg Arg Val Tyr Ser Ala Pro Glu Ile Ser Arg Lys Val Met Glu Arg 115 120 125

Trp Gly Pro Ala Arg Ala Lys Leu Gly Met Asp Leu Ser Ala Ile Lys

130 135 140

Lys Ala Ile Val Ser Glu Met Glu Leu Asp Glu Arg Gln Gly Val Leu 145 150 155 160

Glu Met Ser Arg Leu Arg Arg Arg Arg Asn Ser Asp Arg Val Arg Phe 165 170 175

Thr Glu Phe Phe Ala Glu Ala Glu Arg Asp Gly Glu Ala Tyr Phe Gly 180 185 190

Asp Trp Glu Pro Ile Arg Ser Leu Lys Ser Arg Phe Lys Glu Phe Glu 195 200 205

Lys Arg Ser Ser Leu Glu Ile Leu Ser Gly Phe Lys Asn Ser Glu Phe 210 215 220

Val Glu Lys Leu Lys Thr Ser Phe Lys Ser Ile Tyr Lys Glu Thr Asp 225 230 235 240

Glu Ala Lys Asp Val Pro Pro Leu Asp Val Pro Glu Leu Leu Ala Cys 245 250 . 255

Leu Val Arg Gln Ser Glu Pro Phe Leu Asp Gln Ile Gly Val Arg Lys 260 265 270

Asp Thr Cys Asp Arg Ile Val Glu Ser Leu Cys Lys Cys Lys Ser Gln 275 280 285

Gln Leu Trp Arg Leu Pro Ser Ala Gln Ala Ser Asp Leu Ile Glu Asn 290 295 300

Asp Asn His Gly Val Asp Leu Asp Met Arg Ile Ala Ser Val Leu Gln 305 310 315

Ser Thr Gly His His Tyr Asp Gly Gly Phe Trp Thr Asp Phe Val Lys 325 330 335

Pro Glu Thr Pro Glu Asn Lys Arg His Val Ala Ile Val Thr Thr Ala 340 345 350

Ser Leu Pro Trp Met Thr Gly Thr Ala Val Asn Pro Leu Phe Arg Ala 355 360 365

Ala Tyr Leu Ala Lys Ala Lys Gln Ser Val Thr Leu Val Val Pro

_03008440A2_I_>

BNSDOCID: <WO____

PCT/EP02/07929 WO 03/008440

Trp Leu Cys Glu Ser Asp Gln Glu Leu Val Tyr Pro Asn Asn Leu Thr

Phe Ser Ser Pro Glu Glu Glu Ser Tyr Ile Arg Lys Trp Leu Glu

Glu Arg Ile Gly Phe Lys Ala Asp Phe Lys Ile Ser Phe Tyr Pro Gly

Lys Phe Ser Lys Glu Arg Arg Ser Ile Phe Pro Ala Gly Asp Thr Ser

Gln Phe Ile Ser Ser Lys Asp Ala Asp Ile Ala Ile Leu Glu Pro

Glu His Leu Asn Trp Tyr Tyr His Gly Lys Arg Trp Thr Asp Lys Phe

Asn His Val Val Gly Ile Val His Thr Asn Tyr Leu Glu Tyr Ile Lys

Arg Glu Lys Asn Gly Ala Leu Gln Ala Phe Phe Val Asn His Val Asn

Asn Trp Val Thr Arg Ala Tyr Cys Asp Lys Val Leu Arg Leu Ser Ala

Ala Thr Gln Asp Leu Pro Lys Ser Val Val Cys Asn Val His Gly Val

Asn Pro Lys Phe Leu Met Ile Gly Glu Lys Ile Ala Glu Glu Arg Ser

Arg Gly Glu Gln Ala Phe Ser Lys Gly Ala Tyr Phe Leu Gly Lys Met

Val Trp Ala Lys Gly Tyr Arg Glu Leu Ile Asp Leu Met Ala Lys His

Lys Ser Glu Leu Gly Ser Phe Asn Leu Asp Val Tyr Gly Asn Gly Glu

Asp Ala Val Glu Val Gln Arg Ala Ala Lys Lys His Asp Leu Asn Leu

610 615 620

Asn Phe Leu Lys Gly Arg Asp His Ala Asp Asp Ala Leu His Lys Tyr 625 630 635 640

Lys Val Phe Ile Asn Pro Ser Ile Ser Asp Val Leu Cys Thr Ala Thr 645 650 655

Ala Glu Ala Leu Ala Met Gly Lys Phe Val Val Cys Ala Asp His Pro 660 665 670

Ser Asn Glu Phe Phe Arg Ser Phe Pro Asn Cys Leu Thr Tyr Lys Thr 675 680 685

Ser Glu Asp Phe Val Ser Lys Val Gln Glu Ala Met Thr Lys Glu Pro 690 695 700

Leu Pro Leu Thr Pro Glu Gln Met Tyr Asn Leu Ser Trp Glu Ala Ala 705 710 715 720

Thr Gln Arg Phe Met Glu Tyr Ser Asp Leu Asp Lys Ile Leu Asn Asn 725 730 735

Gly Glu Gly Gly Arg Lys Met Arg Lys Ser Arg Ser Val Pro Ser Phe 740 745 750

Asn Glu Val Val Asp Gly Gly Leu Ala Phe Ser His Tyr Val Leu Thr 755 760 765

Gly Asn Asp Phe Leu Arg Leu Cys Thr Gly Ala Thr Pro Arg Thr Lys
770 775 780

Asp Tyr Asp Asn Gln His Cys Lys Asp Leu Asn Leu Val Pro Pro His 785

Val His Lys Pro Ile Phe Gly Trp 805

<210> 43

<211> 1299

<212> DNA

<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(1299)
<223> 23915

<400> 43 atg gga gct agg gtt caa gta caa cat tac aat tta gga tca tct gat 48 Met Gly Ala Arg Val Gln Val Gln His Tyr Asn Leu Gly Ser Ser Asp tec tac atc get act tet etc cac gat etc aac tec gte gat ggt eeg 96 Ser Tyr Ile Ala Thr Ser Leu His Asp Leu Asn Ser Val Asp Gly Pro 25 ccg aga gat atc gac ggt atc gga ggc gcc gtt ggt cgt gac ggc gat 144 Pro Arg Asp Ile Asp Gly Ile Gly Gly Ala Val Gly Arg Asp Gly Asp agt tta gat aat gac ggc gat tcc tct tct gcg gac tgt atg cat gaa 192 Ser Leu Asp Asn Asp Gly Asp Ser Ser Ser Ala Asp Cys Met His Glu tca tac aga aac tct atg caa atc gga gta gaa gga gga tct aac 240 Ser Tyr Arg Asn Ser Met Gln Ile Gly Val Glu Glu Gly Gly Ser Asn 288 atg gag aac aaa gga tot got tac att atg tta aac att gaa gat gtt Met Glu Asn Lys Gly Ser Ala Tyr Ile Met Leu Asn Ile Glu Asp Val tca ccg att gaa gca gca aga ggg agg ttt ctg caa atc ata ttg gac 336 Ser Pro Ile Glu Ala Ala Arg Gly Arg Phe Leu Gln Ile Ile Leu Asp 105 100 tac ttt att agc caa cat gtg att gaa gtc tgt gag agc aaa cgt gat 384 Tyr Phe Ile Ser Gln His Val Ile Glu Val Cys Glu Ser Lys Arg Asp 120 115 cat gat gtg gat tca gga gga cgt gat agt aat agt aaa gtg aag agg 432 His Asp Val Asp Ser Gly Gly Arg Asp Ser Asn Ser Lys Val Lys Arg 135 130 aag tog gat gat acg oga tat gaa ggt gat oog agt tit gog tia oog 480 Lys Ser Asp Asp Thr Arg Tyr Glu Gly Asp Pro Ser Phe Ala Leu Pro 150 145 ttg atg tat att gca aat ttg tat gag act tta gtt ggt gaa gca aat 528 Leu Met Tyr Ile Ala Asn Leu Tyr Glu Thr Leu Val Gly Glu Ala Asn 170 165 gtg agg ctt gct tca ttg aat gga ata agg gat aag act att gga gta 576 Val Arg Leu Ala Ser Leu Asn Gly Ile Arg Asp Lys Thr Ile Gly Val 190 185 180

gct c	ieu (gaa Glu 195	gct Ala	gct Ala	ggt Gly	ggc Gly	ttg Leu 200	tat Tyr	agg Arg	aaa Lys	a tt s Le	eu :	act Thr 205	aag Lys	aag Lys	g ti s Pi	tt he	624
cct a Pro I	aag Lys 210	aaa Lys	ggt Gly	act Thr	tgc Cys	atg Met 215	tac Tyr	agg Arg	aga Arg	ag Ar	g G	aa lu 20	ctg Leu	gca Ala	ac Th	t t r S	ca er	672
gtt g Val (225	gaa Glu	aca Thr	agg Arg	aca Thr	aga Arg 230	ttt Phe	cca Pro	gaa Glu	ttg Lev	gt Va 23	1	ta le	cat His	gaa Glu	ga Gl	u L	aa ys !40	720
cga Arg	gtt Val	cgc Arg	ttt Phe	gtg Val 245	gtg Val	gtt Val	aat Asn	ggt Gly	tto Lei 250	ı As	it a sp I	tt le	gtt Val	gaa Glu	aa Ly 25	'S 1	cca Pro	768
agt Ser	gat Asp	ttg Leu	cct Pro 260	Ile	gaa Glu	gaa Glu	gct Ala	gaa Glu 265	Tr	g tt p Pl	t a ne I	aag Lys	cga Arg	tta Leu 270	1 11	ca q	ggc	816
cgt Arg	aat Asn	gaa Glu 275	Val	gct Ala	ato Ile	tct Ser	gct Ala 280	Arc	g As	t ta p T	at a yr 1	aaa Lys	tto Phe 285	: ту.	r C	As Bc	cct Pro	864
cga Arg	cgc Arg 290	Lys	cat His	agg Arg	g cgt g Arg	ctt Leu 295	Gir	g aat n Asi	t to n Se	t g r V	aı	tcc Ser 300	261	at Il	c a e A	at sn	ggc Gly	912
ttg Leu 305	Pro	aca Thi	ttt Phe	cca Pro	a ggt o Gly 310	ata / Ile	gac Asp	tct Se:	t to r Se	r T	cg hr 15	tta Leu	gct Ala	a As	t a n T	ca hr	caa Gln 320	960
gga Gly	ttt Phe	cgo Arg	g gaa	a gat ı Ası 32	p Gl:	a ago n Sei	c caa Gli	a ca n Gl:	n G	aa c ln H 30	ac Iis	act Thr	r CC	t to o Se	:. E	ro 335	tcc Ser	1008
aaa Lys	cat His	cat Hi	t ate	t Se	a tc r Se	t ttg r Lei	g to 1 Se	t ca r Hi 34	s G.	aa t ln I	tt Phe	cat His	ca s Gl	n se	et a er 3 50	att [le	cac His	1056
cag Gln	ago Sei	c ca Hi 35	s Gl	a ca n Hi	c ca s Hi	t ca s Gl	a tc n Se 36	r Il	a to	ac (caa 31n	agi Se:	t ca r Gl 36	n H.	ac g is i	gca Ala	gcc Ala	1104
aca Thr	a ca Hi:	s Т у	t cc r Pr	c ag o Se	t ca r Gl	g aa n As 37	n Hi	t ca s G]	aa t Ln C	gt (gac Asp	cc Pr 38	0 61	a c lu L	ta eu	tct Ser	cac His	1152
aca Thi 385	r Gl	a at n Me	g gc t Al	t to a Cy	jc tt /s Le 39	g ca eu Gl	a cc n Pr	c ct	tc a eu T	hx	gga Gly 395	. GI	c ca y H	at g is V	ta al	atg Met	cca Pro 400	,
aat Asi	t ag n Se	t co r Pr	g go	la Ly	aa tt /s Pl 05	t to ne Cy	jt ga vs As	ac ca sp G	TD (gt Cys 110	gga Gly	A]	a ca la G	ag t ln T	ac Yr	tto Lei 41	, AL	1248
ga Gl	g ac u Th	a to ir Se	er Ly	aa ti /s Pl 20	tc to	gc to ys Se	ca ga er G	lu C	gt g ys (25	ggt 31y	tcc Ser	aa Ly	ag a ys A	rg 1	etc Leu 130	Gl;	g ata y Ile	a 1296 e

1299

<210> 44

<211> 432

<212> PRT

<213> Arabidopsis thaliana

<400> 44

Met Gly Ala Arg Val Gln Val Gln His Tyr Asn Leu Gly Ser Ser Asp 1 5 10 15

Ser Tyr Ile Ala Thr Ser Leu His Asp Leu Asn Ser Val Asp Gly Pro 20 25 30

Pro Arg Asp Ile Asp Gly Ile Gly Gly Ala Val Gly Arg Asp Gly Asp 35 40 45

Ser Leu Asp Asn Asp Gly Asp Ser Ser Ser Ala Asp Cys Met His Glu 50 55 60

Ser Tyr Arg Asn Ser Met Gln Ile Gly Val Glu Glu Gly Gly Ser Asn 70 75 80

Met Glu Asn Lys Gly Ser Ala Tyr Ile Met Leu Asn Ile Glu Asp Val 85 90 95

Ser Pro Ile Glu Ala Ala Arg Gly Arg Phe Leu Gln Ile Ile Leu Asp 100 105 110

Tyr Phe Ile Ser Gln His Val Ile Glu Val Cys Glu Ser Lys Arg Asp 115 120 125

His Asp Val Asp Ser Gly Gly Arg Asp Ser Asn Ser Lys Val Lys Arg 130 135 140

Lys Ser Asp Asp Thr Arg Tyr Glu Gly Asp Pro Ser Phe Ala Leu Pro 145 150 155 160

Leu Met Tyr Ile Ala Asn Leu Tyr Glu Thr Leu Val Gly Glu Ala Asn 165 170 175

Val Arg Leu Ala Ser Leu Asn Gly Ile Arg Asp Lys Thr Ile Gly Val 180 185 190

Ala Leu Glu Ala Ala Gly Gly Leu Tyr Arg Lys Leu Thr Lys Lys Phe 195 200 205

Pro Lys Lys Gly Thr Cys Met Tyr Arg Arg Glu Leu Ala Thr Ser 210 215 220

Val Glu Thr Arg Thr Arg Phe Pro Glu Leu Val Ile His Glu Glu Lys 225 230 235 240

Arg Val Arg Phe Val Val Val Asn Gly Leu Asp Ile Val Glu Lys Pro 245 250 255

Ser Asp Leu Pro Ile Glu Glu Ala Glu Trp Phe Lys Arg Leu Thr Gly 260 265 270

Arg Asn Glu Val Ala Ile Ser Ala Arg Asp Tyr Lys Phe Tyr Cys Pro 275 280 285

Arg Arg Lys His Arg Arg Leu Gln Asn Ser Val Ser Ser Ile Asn Gly 290 295 300

Leu Pro Thr Phe Pro Gly Ile Asp Ser Ser Thr Leu Ala Asn Thr Gln 305 310 315 320

Gly Phe Arg Glu Asp Gln Ser Gln Gln Gln His Thr Pro Ser Pro Ser 325 330 335

Lys His His Met Ser Ser Leu Ser His Gln Phe His Gln Ser Ile His 340 345 350

Gln Ser His Gln His His Gln Ser Ile Tyr Gln Ser Gln His Ala Ala 355 360 365

Thr His Tyr Pro Ser Gln Asn His Gln Cys Asp Pro Glu Leu Ser His 370 375 380

Thr Gln Met Ala Cys Leu Gln Pro Leu Thr Gly Gly His Val Met Pro 385 390 395 400

Asn Ser Pro Ala Lys Phe Cys Asp Gln Cys Gly Ala Gln Tyr Leu Arg 405 410 415

PCT/EP02/07929 WO 03/008440

Glu Thr Ser Lys Phe Cys Ser Glu Cys Gly Ser Lys Arg Leu Gly Ile 425

<210> 45

<211> 1617

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1617)

<223> 30945

<400	> 4	5															48
atg Met 1	aat Asn	gag Glu	gac Asp	aaa Lys 5	aat Asn	cct Pro	gct Ala	agg Arg	gct Ala 10	att Ile	gac Asp	ttg Leu	Ala	Ala 15	Ser		40
aat Asn	agc Ser	atg Met	tat Tyr 20	tta Leu	cgt Arg	gag Glu	acc Thr	ata Ile 25	ctt Leu	tct Ser	agt Ser	gaa Glu	tct Ser 30	cct Pro	agt Ser	•	96
ctc Leu	aac Asn	act Thr 35	cag Gln	aat Asn	atc Ile	tca Ser	gtg Val 40	aca Thr	gtt Val	gaa Glu	atg Met	cca Pro 45	ccc Pro	atg Met	ttg Leu		144
aaa Lys	ccg Pro 50	ttg Leu	cat His	Gly aaa	cat His	ctt Leu 55	ctt Leu	aaa Lys	cac His	ttt Phe	att Ile 60	gtg Val	ttt Phe	tca Ser	aat Asn	•	192
att Ile 65	gaa Glu	gac Asp	cag Gln	aac Asn	agt Ser 70	atc Ile	atc Ile	ata Ile	ata Ile	att Ile 75	cat His	gct Ala	act Thr	aac Asn	aat Asn 80		240
tgt Cys	cta Leu	cag Gln	cgt Arg	tgc Cys 85	ccg Pro	tca Ser	gtt Val	act Thr	aaa Lys 90	gaa Glu	cag Glr	tgg Trp	gca Ala	gtg Val 95	cca Pro		288
gcg	att Ile	ttc Lev	tct Ser 100	Ser	ttg Leu	aaa Lys	atg Met	gaa Glu 105	GIU	aac Asr	c ctt n Leu	ttg Lev	gco Ala 110	3 611	j gaa 1 Glu		336
agg Arg	geo Ala	tgt Cys 115	³ Val	tto Phe	cto Lev	tcc Ser	tto Lev	ı Leı	g ct <u>c</u> 1 Leu	g cat	t aad s Asi	tto n Phe 129	= SE	c ato	g gtt t Val		384
His	aca Thi	r Thi	r Lys	a act	c Gly	Ası	1 Thi	c te	g aat ı Ası	gt 1 Va	t ga l As 14	p se.	t tt r Ph	c tc e Se:	c tgc r Cys		432

135

130

ttg gat tct ttc tca aag cat ata cgt ggt ggt atg gct gat act gaa Leu Asp Ser Phe Ser Lys His Ile Arg Gly Gly Met Ala Asp Thr Glu 145 150 155 160	480
gct gga gtt atg ctt tct gga ttt tcg gaa gaa ctc ctt tgt ctt ctt Ala Gly Val Met Leu Ser Gly Phe Ser Glu Glu Leu Leu Cys Leu Leu 165 170 175	528
cag gac ctc ctt tct ggg cag cgg gta tta ttt tcg gtt aaa tcc tca Gln Asp Leu Leu Ser Gly Gln Arg Val Leu Phe Ser Val Lys Ser Ser 180 185	576
gaa aca tgt gaa tct gat tta agc atc cct gtc acc ctg aat gga gaa Glu Thr Cys Glu Ser Asp Leu Ser Ile Pro Val Thr Leu Asn Gly Glu 195 200 205	624
aat gta gct ctc gtc aac aaa atc gct cta act gat caa ttg gtg gcc Asn Val Ala Leu Val Asn Lys Ile Ala Leu Thr Asp Gln Leu Val Ala 210 215 220	672
gga agc gct att ttg gcg gca ata tgt act gca ctt gat cgt att gga Gly Ser Ala Ile Leu Ala Ala Ile Cys Thr Ala Leu Asp Arg Ile Gly 225 230 235 240	720
tat atc tgc gaa gct tcc ttt gaa atc ctg cac aag tac agt cat gag Tyr Ile Cys Glu Ala Ser Phe Glu Ile Leu His Lys Tyr Ser His Glu 255	768
aaa acc tca gtg cta ctg acc att ctt cac gtt ttt gct tac att gct Lys Thr Ser Val Leu Leu Thr Ile Leu His Val Phe Ala Tyr Ile Ala 260 265 270	816
gga gag aaa atg gtg ttg tct agt gag cat ggc ata tca att gca gtg Gly Glu Lys Met Val Leu Ser Ser Glu His Gly Ile Ser Ile Ala Val 275 280 285	864
ttg aaa tac att gtc atg ttt cta gaa aac aaa cat ttt ggt act gtg Leu Lys Tyr Ile Val Met Phe Leu Glu Asn Lys His Phe Gly Thr Val 290 295 300	912
gag ggc agt tot cga ttg cac cca ggc aag aac aag tgt cca tto tca Glu Gly Ser Ser Arg Leu His Pro Gly Lys Asn Lys Cys Pro Phe Ser 305 310 315	960
gac agg tot too tog otg gag got atg goa tot aag oto atg gaa att Asp Arg Ser Ser Ser Leu Glu Ala Met Ala Ser Lys Leu Met Glu Ile 325 330 335	1008
ctt cag gaa ttt act gag tct aat act ttg cat aaa agc ttg act ggt Leu Gln Glu Phe Thr Glu Ser Asn Thr Leu His Lys Ser Leu Thr Gly 340 345	1056
tca ttg ggt tct agc cac cta gag aag acc gag ttt agg ccg gca cac Ser Leu Gly Ser Ser His Leu Glu Lys Thr Glu Phe Arg Pro Ala His 355 360 365	1104
aaa gat ttc cag tgt gta ttg acc agg gat caa agt atc aat ctc tgt Lys Asp Phe Gln Cys Val Leu Thr Arg Asp Gln Ser Ile Asn Leu Cys 370 375 380	1152

gac Asp 385	att Ile	cta Leu	tca Ser	ttg Leu	gtg Val 390	gag Glu	ctt Leu	att Ile	gct Ala	tgt Cys 395	tat Tyr	acg Thr	gct Ala	tgg Trp	gat Asp 400	1200
tgg Trp	act Thr	agt Ser	gcg Ala	aac Asn 405	att Ile	gtt Val	gct Ala	cca Pro	ctg Leu 410	ctt Leu	aag Lys	atg Met	ctg Leu	gga Gly 415	atg Met	1248
cca Pro	ttg Leu	cca Pro	atg Met 420	aac Asn	ctc Leu	tct Ser	gtt Val	gca Ala 425	atc Ile	gtc Val	tcc Ser	ctt Leu	ctt Leu 430	gjà aaa	caa Gln	1296
ctt Leu	agc Ser	agt Ser 435	att Ile	gga Gly	gtg Val	gat Asp	gct Ala 440	ggt Gly	ggc	tat Tyr	gaa Glu	aac Asn 445	Gru	gga Gly	atc Ile	1344
tca Ser	aac Asn 450	ttg Leu	aga Arg	gtg Val	aaa Lys	ctg Leu 455	tca Ser	gca Ala	ttt Phe	cta Leu	cag Gln 460	tgt Cys	gag Glu	acg Thr	aca Thr	1392
cta Leu 465	aag Lys	gcc Ala	ggt Gly	ttt Phe	gca Ala 470	Val	cag Gln	ata Ile	gca Ala	act Thr 475	Val	agc Ser	tcc	cto Leu	ctg Leu 480	1440
aag Lys	acg Thr	ctg Leu	cag Gln	ctg Leu 485	. Lys	ttc Phe	cca Pro	ata Ile	gac Asp 490	Phe	caa Glr	a gac n Asp	aaa Lys	acc Thi 495	acc Thr	1488
atg Met	att Ile	. ccg . Pro	ggt Gly 500	Ser	ggc	gac Asp	caa Glr	ago Sei 505	r Lei	a tct 1 Se1	ggt Gly	t tca y Ser	gto Val	LASI	gtg n Val	1536
gtg Val	aco Thi	aaç Lys 515	Tr	tto Lei	tcg Ser	ttg Lev	tto Lei 520	ı Sei	c aag r Ly:	g gaa s Glu	a caa 1 Gl:	a cga n Arg 525	g va.	t tto l Pho	e Ala	1584
ttt Phe	gag Glu 530	ı Phe	cta e Lei	a caa 1 Gli	a aco	c aat c Asr 53!	ı Va	t gt l Va	t ag l Ar	a tg: g	a					1617

<210> 46

<211> 538

<212> PRT

<213> Arabidopsis thaliana

<400> 46

Met Asn Glu Asp Lys Asn Pro Ala Arg Ala Ile Asp Leu Ala Ala Ser 1 5 10 15

Asn Ser Met Tyr Leu Arg Glu Thr Ile Leu Ser Ser Glu Ser Pro Ser 20 25 30

Leu Asn Thr Gln Asn Ile Ser Val Thr Val Glu Met Pro Pro Met Leu 35 40 45

- Lys Pro Leu His Gly His Leu Leu Lys His Phe Ile Val Phe Ser Asn 50 55
- Ile Glu Asp Gln Asn Ser Ile Ile Ile Ile Ile His Ala Thr Asn Asn 65 70 75 80
- Cys Leu Gln Arg Cys Pro Ser Val Thr Lys Glu Gln Trp Ala Val Pro 85 90 95
- Ala Ile Leu Ser Ser Leu Lys Met Glu Glu Asn Leu Leu Ala Gln Glu 100 105 110
- Arg Ala Cys Val Phe Leu Ser Leu Leu Leu His Asn Phe Ser Met Val
- His Thr Thr Lys Thr Gly Asn Thr Leu Asn Val Asp Ser Phe Ser Cys 130
- Leu Asp Ser Phe Ser Lys His Ile Arg Gly Gly Met Ala Asp Thr Glu 145 150 155 160
- Ala Gly Val Met Leu Ser Gly Phe Ser Glu Glu Leu Leu Cys Leu Leu 175
- Gln Asp Leu Leu Ser Gly Gln Arg Val Leu Phe Ser Val Lys Ser Ser 180 185 190
- Glu Thr Cys Glu Ser Asp Leu Ser Ile Pro Val Thr Leu Asn Gly Glu 195 200 205
- Asn Val Ala Leu Val Asn Lys Ile Ala Leu Thr Asp Gln Leu Val Ala 210 215 220
- Gly Ser Ala Ile Leu Ala Ala Ile Cys Thr Ala Leu Asp Arg Ile Gly 225 230 235 240
- Tyr Ile Cys Glu Ala Ser Phe Glu Ile Leu His Lys Tyr Ser His Glu 255
- Lys Thr Ser Val Leu Leu Thr Ile Leu His Val Phe Ala Tyr Ile Ala 260 265 270

Gly Glu Lys Met Val Leu Ser Ser Glu His Gly Ile Ser Ile Ala Val 275 280 285

- Leu Lys Tyr Ile Val Met Phe Leu Glu Asn Lys His Phe Gly Thr Val 290 295 300
- Glu Gly Ser Ser Arg Leu His Pro Gly Lys Asn Lys Cys Pro Phe Ser 305 310 315 320
- Asp Arg Ser Ser Leu Glu Ala Met Ala Ser Lys Leu Met Glu Ile. 325 330 335
- Leu Gln Glu Phe Thr Glu Ser Asn Thr Leu His Lys Ser Leu Thr Gly 340 345 350
- Ser Leu Gly Ser Ser His Leu Glu Lys Thr Glu Phe Arg Pro Ala His 355 360 365
- Lys Asp Phe Gln Cys Val Leu Thr Arg Asp Gln Ser Ile Asn Leu Cys 370 375 380
- Asp Ile Leu Ser Leu Val Glu Leu Ile Ala Cys Tyr Thr Ala Trp Asp 385 390 395 400
- Trp Thr Ser Ala Asn Ile Val Ala Pro Leu Leu Lys Met Leu Gly Met
- Pro Leu Pro Met Asn Leu Ser Val Ala Ile Val Ser Leu Leu Gly Gln
 420 425 430
- Leu Ser Ser Ile Gly Val Asp Ala Gly Gly Tyr Glu Asn Glu Gly Ile 435 440 445
- Ser Asn Leu Arg Val Lys Leu Ser Ala Phe Leu Gln Cys Glu Thr Thr 450 455 460
- Leu Lys Ala Gly Phe Ala Val Gln Ile Ala Thr Val Ser Ser Leu Leu 465 470 475 480
- Lys Thr Leu Gln Leu Lys Phe Pro Ile Asp Phe Gln Asp Lys Thr Thr 485 490 495
- Met Ile Pro Gly Ser Gly Asp Gln Ser Leu Ser Gly Ser Val Asn Val 500 505 510

PCT/EP02/07929 WO 03/008440

Val Thr Lys Trp Leu Ser Leu Leu Ser Lys Glu Gln Arg Val Phe Ala 515

Phe Glu Phe Leu Gln Thr Asn Val Val Arg 535

<210> 47

<211> 1332

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1332)

<223> 31895

<400> 47 atg tcg ata acg tac tcc gct att tcc tct agt aca gtt tct ggg ttt 48 Met Ser Ile Thr Tyr Ser Ala Ile Ser Ser Ser Thr Val Ser Gly Phe tca cca aaa agt gta cct ttt gct att cat agc gta acc agg agg caa 96 Ser Pro Lys Ser Val Pro Phe Ala Ile His Ser Val Thr Arg Arg Gln ttt ctt aat ccc aac acg ttt tat aga ttt ggg ttc tct cct tct ctt 144 Phe Leu Asn Pro Asn Thr Phe Tyr Arg Phe Gly Phe Ser Pro Ser Leu cag gga agt agc att gag ttt agc ctt cag ttg aat tca aga gtt gtg 192 Gln Gly Ser Ser Ile Glu Phe Ser Leu Gln Leu Asn Ser Arg Val Val ctt agt aaa gag cgt cga tct ctg cca tta gtt gtg aga aat gat cgt 240 Leu Ser Lys Glu Arg Arg Ser Leu Pro Leu Val Val Arg Asn Asp Arg cct cag aat gaa gac tta cct aag cag tac aca agg cga gag aag aaa 288 Pro Gln Asn Glu Asp Leu Pro Lys Gln Tyr Thr Arg Arg Glu Lys Lys 90 cct ttc cca gtc cct att gtg gac ctg aga cga gct gcg agg gag aga 336

Pro Phe Pro Val Pro Ile Val Asp Leu Arg Arg Ala Ala Arg Glu Arg

gtc aag aac aac aaa gac aaa cct aag aga cct cta cct ccg cct aaa

114

384

Val	Lys	Asn 115	Asn	Lys	Asp	Lys :	Pro :	Lys .	Arg :	Pro	Leu	Pro 125	Pro	Pro	L	ys	
aat Asn	ggt Gly 130	atg Met	gtt Val	gtg Val	aag Lys	agc Ser 135	ctt Leu	gtg Val	cct Pro	ctt Leu	gct Ala 140	tat Tyr	aaa Lys	gta Va:	a t l T	ac Yr	432
aat Asn 145	gca Ala	aga Arg	atc Ile	aga Arg	ttg Leu 150	atc Ile	aac Asn	aat Asn	ctc Leu	cac His 155	cgg Arg	ctt Lev	atg Met	aa: Ly	s v	itt /al 160	480
gtt Val	cgt Arg	gtt Val	aat Asn	gct Ala 165	tgt Cys	gly ggg	tgg Trp	tgc Cys	aat Asn 170	gag Glu	att Ile	cat His	gtt Val	99 Gl 17	у	cct Pro	528
tat Tyr	gly aaa	cat	cca Pro	Phe	aag Lys	tcg Ser	tgt Cys	aaa Lys 185	ggt Gly	ccc Pro	aat Asr	act Thi	tcc Sei 19	GI	a a .n .	agg Arg	576
aaa Lys	ggt	ctt Lev 195	ı His	gaa Glu	tgg Trp	act Thr	aac Asn 200	tcg Ser	gtt Val	att Ile	gag Glu	g gad 1 Asj 20	p va	t at l II	te	gtt Val	624
cct Pro	ctt Leu 210	ı Glı	a gco ı Ala	tat a Tyr	cac His	ctt Leu 215	ttt Phe	gac Asp	cgc Arg	ctt	gg Gl Gl	А гА	g cg s Ar	t at g I	cc le	cgt Arg	672
cat His	. Ası	gaa Glu	a aga u Arg	a tto g Phe	c tcg e Ser 230	att Ile	ccc Pro	cga Arg	gtt Val	cct Pro	O AL	t gt a Va	a gt 1 Va	t ga 1 G	ag lu	ctc Leu 240	720
tg: Cy:	c att	c ca e Gl	g gg	c ggo y Gl: 24!	y Val	gaa Glu	ata Ile	cco Pro	gaa Glu 250	ı Pne	t cc e Pr	a go	a aa .a Ly	S A	gg rg 55	aga Arg	768
ag Ar	a aa g Ly	a cc s Pr	g at o Il 26	e Il	c cgo	att g Ile	ggc Gly	2 aaa 7 Lys 26!	s Sei	ga Gl	g tt u Ph	t gt ie Va	T A	at g sp A 70	ca la	gat Asp	816
ga Gl	a ac u Th	t ga r Gl 27	u Le	g cc u Pr	t gai o As _l	t cca o Pro	gag Glu 280	ı Pro	t cag o Gli	g cc n Pr	t co o Pr	CO P	ca g ro V 85	tg c	ca Pro	ttg Leu	864
tt Le	a ac u Th 29	r Gl	g tt .u Le	a cc u Pr	t gte o Va	c tca l Sei 29!	c Gl	g at u Il	c ac e Th	t cc r Pr	OP	ca t ro S 00	ct a er S	gc g er (gaa 31u	gaa Glu	912
ga G] - 30	u Th	a gt ir Va	c to	c tt r Le	a gc u Al 31	a Gl	a ga u Gl	a ac u Tb	a tt r Le	a ca u Gl 31	Ln A	cc t la T	rp G	aa g lu (gaa Glu	atg Met 320	960
ag Ai	ga go cg Al	a gg la G	ga go ly Al	ec aa la Ly 32	s Ly	g ct s Le	g at u Me	g ag t Ar	g at g Me 33	E 13	ac a yr A	gg g rg V	tt a /al <i>F</i>	щу	gto Val 335	c tgt 1 Cys 5	1008
G:	gg ta ly Ty	ac to	ys P	ca ga ro Gi 40	ag gt lu Va	t ca l Hi	c gt s Va	a gg 1 G] 34	LY PI	ca ac	cg g hr G	ga o	11S I	aag Lys 350	gc: Al:	c cag a Gln	1056
a	ac t	gt g	gt g	ca t	tc aa	ag ca	c ca	aa ca	ag c	gg a	at g	gc (cag (cat	gg.	t tgg	1104

Asn	Cys	Gly 355	Ala	Phe	Lys	His	Gln 360	Gln	Arg	Asn	Gly	Gln 365	His	Gly	Trp	
caa Gln	tct Ser 370	gca Ala	gta Val	ctt Leu	gac Asp	gac Asp 375	ttg Leu	ata Ile	ccg Pro	cca Pro	aga Arg 380	tat Tyr	gtt Val	tgg Trp	cat His	1152
gtt Val 385	Pro	gat Asp	gtg Val	aat Asn	390 999	cca Pro	ésg Pro	atg Met	cag Gln	cga Arg 395		cta Leu	cga Arg	agc Ser	ttc Phe 400	1200
tac Tyr	gly ggg	caa Gln	gca Ala	cct Pro 405	Ala	gtt Val	gtg Val	gag Glu	ata Ile 410	Cyb	gct	cag Gln	gct Ala	ggo Gly 415	gct Ala	1248
gtt Val	gta Val	cct Pro	gag Glu 420	His	tat Tyr	aga Arg	gct Ala	aca Thr	. Met	aga Arg	ctg Lev	g gag ı Glu	gtt Val 430	gga Gly	att / Ile	1296
cct Pro	tcg Sei	g agt c Sei 43!	gtg Val	g aaa L Lys	ı gaa s Glı	gct Ala	gag a Glu 44	T Me	g gti z Val	gti L Va	tg:	a				1332

<210> 48

<211> 443

<212> PRT

<213> Arabidopsis thaliana

<400> 48

Met Ser Ile Thr Tyr Ser Ala Ile Ser Ser Ser Thr Val Ser Gly Phe 10 5 15

Ser Pro Lys Ser Val Pro Phe Ala Ile His Ser Val Thr Arg Arg Gln 20 25 30

Phe Leu Asn Pro Asn Thr Phe Tyr Arg Phe Gly Phe Ser Pro Ser Leu 35 40

Gln Gly Ser Ser Ile Glu Phe Ser Leu Gln Leu Asn Ser Arg Val Val 50 55

Leu Ser Lys Glu Arg Arg Ser Leu Pro Leu Val Val Arg Asn Asp Arg 65 70 75 80

Pro Gln Asn Glu Asp Leu Pro Lys Gln Tyr Thr Arg Arg Glu Lys Lys 85 90 95

Pro Phe Pro Val Pro Ile Val Asp Leu Arg Arg Ala Ala Arg Glu Arg 100 105 110

- Val Lys Asn Asn Lys Asp Lys Pro Lys Arg Pro Leu Pro Pro Pro Lys 115 120 125
- Asn Gly Met Val Val Lys Ser Leu Val Pro Leu Ala Tyr Lys Val Tyr 130 135 140
- Asn Ala Arg Ile Arg Leu Ile Asn Asn Leu His Arg Leu Met Lys Val 145 150 155 160
- Val Arg Val Asn Ala Cys Gly Trp Cys Asn Glu Ile His Val Gly Pro 165 170 175
- Tyr Gly His Pro Phe Lys Ser Cys Lys Gly Pro Asn Thr Ser Gln Arg 180 185 190
- Lys Gly Leu His Glu Trp Thr Asn Ser Val Ile Glu Asp Val Ile Val 195 200 205
- Pro Leu Glu Ala Tyr His Leu Phe Asp Arg Leu Gly Lys Arg Ile Arg 210 215 220
- His Asp Glu Arg Phe Ser Ile Pro Arg Val Pro Ala Val Val Glu Leu 235 230 235 240
- Cys Ile Gln Gly Gly Val Glu Ile Pro Glu Phe Pro Ala Lys Arg Arg 245 250 255
- Arg Lys Pro Ile Ile Arg Ile Gly Lys Ser Glu Phe Val Asp Ala Asp 260 265 270
- Glu Thr Glu Leu Pro Asp Pro Glu Pro Gln Pro Pro Pro Val Pro Leu 275 280 285
- Leu Thr Glu Leu Pro Val Ser Glu Ile Thr Pro Pro Ser Ser Glu Glu 290 295 300
- Glu Thr Val Ser Leu Ala Glu Glu Thr Leu Gln Ala Trp Glu Glu Met 305 310 315 320
- Arg Ala Gly Ala Lys Lys Leu Met Arg Met Tyr Arg Val Arg Val Cys 325 330 335

PCT/EP02/07929 WO 03/008440

Gly Tyr Cys Pro Glu Val His Val Gly Pro Thr Gly His Lys Ala Gln 350 345 Asn Cys Gly Ala Phe Lys His Gln Gln Arg Asn Gly Gln His Gly Trp 360 355 Gln Ser Ala Val Leu Asp Asp Leu Ile Pro Pro Arg Tyr Val Trp His 375 Val Pro Asp Val Asn Gly Pro Pro Met Gln Arg Glu Leu Arg Ser Phe 390 Tyr Gly Gln Ala Pro Ala Val Val Glu Ile Cys Ala Gln Ala Gly Ala 410 Val Val Pro Glu His Tyr Arg Ala Thr Met Arg Leu Glu Val Gly Ile 420 Pro Ser Ser Val Lys Glu Ala Glu Met Val Val <210> 49 <211> 540 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(540) <223> 34269 <400> 49 atg tta tca agc att gtt gtt gtc acc agg atc gaa aat ttt caa 48 Met Leu Ser Ser Ile Val Val Val Val Thr Arg Ile Glu Asn Phe Gln tgt tgt tgt ttg aga gag atg atg gct gcg aag ctt cag aaa tgg cga 96 Cys Cys Leu Arg Glu Met Met Ala Ala Lys Leu Gln Lys Trp Arg aat ctg gca ggt cgt cta gat ctg atg aat cgg agc ggc gct gtg tcg 144

45

Asn Leu Ala Gly Arg Leu Asp Leu Met Asn Arg Ser Gly Ala Val Ser

40

35

Thr	agg Arg 50	cgg Arg	ttc Phe	ctg Leu	cac His	gaa Glu 55	ggt Gly	cca Pro	gat Asp	acc Thr	gtg Val 60	gag Glu	gag Glu	ctt Leu	ctc Leu	:	192
gaa Glu 65	aga Arg	cat His	cta Leu	gcg Ala	aag Lys 70	aaa Lys	gag Glu	aaa Lys	cca Pro	ata Ile 75	atc Ile	gat Asp	cac His	gat Asp	gag Glu 80		240
gct Ala	gag Glu	ttt Phe	ctg Leu	aat Asn 85	aga Arg	cgg Arg	cgt Arg	ctg Leu	acg Thr 90	agc Ser	acg Thr	cgc Arg	cgg Arg	gaa Glu 95	gcg Ala		288
ttg Leu	agt Ser	ttg Leu	tac Tyr 100	aga Arg	gac Asp	ata Ile	tta Leu	cga Arg 105	gcg Ala	act Thr	cgg Arg	ttc Phe	ttc Phe 110	acg Thr	tgg Trp		336
att Ile	gat Asp	tcc Ser 115	agg Arg	gga Gly	aat Asn	tta Leu	tgg Trp 120	agg Arg	gac Asp	gtg Val	ttg Leu	aga Arg 125	gag Glu	aac Asn	gcg Ala		384
agg Arg	aag Lys 130	Glu	ttt Phe	gaa Glu	gcg Ala	gcg Ala 135	cga Arg	ttt	gag Glu	acg Thr	gat Asp 140	ccg Pro	gag Glu	gtt Val	atc Ile		432
aca Thr 145	Arg	ctt Leu	ctg Leu	ata Ile	ggt Gly 150	Gly	agc Ser	gac Asp	gcc Ala	gtt Val 155	Ser	tct Ser	gct Ala	tta Leu	gat Asp 160		480
aag Lys	ctt Leu	gcg Ala	gag Glu	aag Lys 165	Gln	aga Arg	gag Glu	atg Met	att Ile 170	GIU	aaa Lys	a caa s Gln	cgc Arg	cgt Arc 175	ggt Gly		528
		cgc Arg		L											•		540

<210> 50

<211> 179

<212> PRT

<213> Arabidopsis thaliana

<400> 50

Met Leu Ser Ser Ile Val Val Val Thr Arg Ile Glu Asn Phe Gln
1 5 10 15

Cys Cys Cys Leu Arg Glu Met Met Ala Ala Lys Leu Gln Lys Trp Arg 20 25 30

Asn Leu Ala Gly Arg Leu Asp Leu Met Asn Arg Ser Gly Ala Val Ser 35 40 45

Thr Arg Arg Phe Leu His Glu Gly Pro Asp Thr Val Glu Glu Leu Leu 50 55 60

Glu Arg His Leu Ala Lys Lys Glu Lys Pro Ile Ile Asp His Asp Glu 65 70 - 75 80

Ala Glu Phe Leu Asn Arg Arg Arg Leu Thr Ser Thr Arg Arg Glu Ala 85 90 95

Leu Ser Leu Tyr Arg Asp Ile Leu Arg Ala Thr Arg Phe Phe Thr Trp 100 105 110

Ile Asp Ser Arg Gly Asn Leu Trp Arg Asp Val Leu Arg Glu Asn Ala 115 120 125

Arg Lys Glu Phe Glu Ala Ala Arg Phe Glu Thr Asp Pro Glu Val Ile 130 135 140

Thr Arg Leu Leu Ile Gly Gly Ser Asp Ala Val Ser Ser Ala Leu Asp 145 150 155 160

Lys Leu Ala Glu Lys Gln Arg Glu Met Ile Glu Lys Gln Arg Gly 165 170 175

Asp Gln Arg

<210> 51

<211> 708

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(708)

<223> 34540

<400> 51 atg aga tcc cct aga acc ttg gag gtt tgg aag cta ggc act gtc aac

120

48

Met 1	Arg	Ser	Pro	Arg 5	Thr	Leu	Glu	Val	Trp 10	Lys	Leu	Gly	Thr	. Va	al A	Asn		
tat Tyr	ttg Leu	aaa Lys	tcc Ser 20	ctt Leu	aaa Lys	ctg Leu	cag Gln	gag Glu 25	aaa Lys	tta Leu	gtt Val	tca Ser	gag Glu 30	g ag	ga rg	aaa Lys		96
gct Ala	cat His	cag Gln 35	att Ile	cca Pro	gat Asp	acc Thr	ctc Leu 40	ctc Leu	tcg Ser	ctt Leu	cag Glr	cat His 45	cca Pro	a C	ca ro	act Thr	,	144
tat Tyr	acg Thr 50	ctc Leu	gga Gly	aag Lys	cgt Arg	aga Arg 55	acc Thr	gat Asp	cac His	aat Asn	cta Leu 60	cti Lei	t ato	c c e P	ro	gaa Glu		192
tct Ser 65	gaa Glu	ctt Leu	aca Thr	aaa Lys	atc Ile 70	gga Gly	gct Ala	gaa Glu	ctt Leu	cat His 75	tai Ty:	ac r Th	t ca r Gl	a a n A	ıga xrg	gga Gly 80		240
gga Gly	gac Asp	atc Ile	acc Thr	ttc Phe 85	cat His	ggc	cct Pro	cat His	caa Gln 90	gcc Ala	ate	c tt e Le	a ta u Ty	T	ecc Pro 95	atc Ile		288
att Ile	tcc Ser	tta Leu	cgc Arg	Ser	att Ile	ggt Gly	ttt Phe	ggt Gly 105	Ala	agg Arg	g aa g As	c ta n Ty	ic gt r Va 11	fT (gag 31u	aca Thr		336
ttg Leu	gag Glu	cgg Arg	, Ser	atg Met	atc : Ile	gag Glu	ttt Phe 120	A1a	t tog a Sei	g ati	t ta e Ty	t gg r Gl	Ly vo	g al	aaa Lys	gct Ala		384
cga Arg	gca J Ala	c Gly	a aac / Asr	aaa Lys	tgt Cys	gag Glu 135	Thi	gg Gl	g gti y Vai	t tg l Tr	p va	t gg 1 G	ly A	at sp	agg Arg	aag Lys		432
ato Ile 145	e Gly	gct Ala	att a Ile	= ggg	g gtt Val 150	. Arg	ata ; Ile	a tc e Se	t tc r Se	t gg r Gl 15	λ _T -	c a le T	ct a hr S	gt er	cat His	ggt Gly 160		480
tt: Le:	g gc	c tt a Le	a aat u Asi	t ata n Ilo 16	e Ası	cct Pro	ga As	t at p Me	g aa t Ly 17	s Ty	r P	tt g he G	ag c lu H	ac	att Ile 17	gtg Val	!	528
cc Pr	t tg o Cy	t gg s Gl	g at y Il 18	e Al	t gai a Asj	t aaa p Lys	a ga s Gl	a gt u Va 18	il Th	a to ir Se	et t er L	tg c eu A	rg A	iga irg .90	gaq Gl	g acg	:	576
ga As	t ac p Th	t ct r Le 19	u Le	t cc u Pr	t tc o Se	a ga r Gl	a ga u Gl 20	u Va	g at al Il	t ca le H	at g is G	Tu C	ag t Eln I 205	tg Leu	gt Va	t tci 1 Sei	r r	624
tg Cy	t tt s Le 21	u Al	c aa .a Ly	a go s Al	g tt a Ph	t tc e Se 21	r Ty	t ga r As	at ga sp As	at g sp V	aı v	tc tal :	igg a	aag Lys	ga Gl	a ga u As	t p	672
CC Pr 22	o Se	a ct er Le	c at u Il	t tt .e Le	g ga eu As 23	p Th	c ca	ia ga ln Aa	at a sp L	ys G	aa t lu 35	aa						708

<210> 52

<211> 235

<212> PRT

<213> Arabidopsis thaliana

<400> 52

Met Arg Ser Pro Arg Thr Leu Glu Val Trp Lys Leu Gly Thr Val Asn 1 5 10 15

Tyr Leu Lys Ser Leu Lys Leu Gln Glu Lys Leu Val Ser Glu Arg Lys 20 25 30

Ala His Gln Ile Pro Asp Thr Leu Leu Ser Leu Gln His Pro Pro Thr 35 40 45

Tyr Thr Leu Gly Lys Arg Arg Thr Asp His Asn Leu Leu Ile Pro Glu 50 55 60

Ser Glu Leu Thr Lys Ile Gly Ala Glu Leu His Tyr Thr Gln Arg Gly 65 70 75 80

Gly Asp Ile Thr Phe His Gly Pro His Gln Ala Ile Leu Tyr Pro Ile 85 90 95

Ile Ser Leu Arg Ser Ile Gly Phe Gly Ala Arg Asn Tyr Val Glu Thr 100 105 110

Leu Glu Arg Ser Met Ile Glu Phe Ala Ser Ile Tyr Gly Val Lys Ala 115 120 125

Arg Ala Gly Asn Lys Cys Glu Thr Gly Val Trp Val Gly Asp Arg Lys 130 135 140

Ile Gly Ala Ile Gly Val Arg Ile Ser Ser Gly Ile Thr Ser His Gly
145 150 155 160

Leu Ala Leu Asn Ile Asp Pro Asp Met Lys Tyr Phe Glu His Ile Val 165 170 175

Pro Cys Gly Ile Ala Asp Lys Glu Val Thr Ser Leu Arg Arg Glu Thr 180 185 190

Asp Thr Leu Leu Pro Ser Glu Glu Val Ile His Glu Gln Leu Val Ser 195 200 205

Cys Leu Ala Lys Ala Phe Ser Tyr Asp Asp Val Val Trp Lys Glu Asp 210 215 220

Pro Ser Leu Ile Leu Asp Thr Gln Asp Lys Glu 225 230 235

<210> 53

<211> 1473

<212> DNA

<213> Arabidopsis thaliana

100

<220>

<221> CDS

<222> (1)..(1473)

<223>

<400> 53 atg cag aca ttt tca att tca ctc ctc cgt cac tct tct ccg ttc ctc 48 Met Gln Thr Phe Ser Ile Ser Leu Leu Arg His Ser Ser Pro Phe Leu 10 5 cgt cac acc gcg att ttt cac ggc gga gtt gga gtt aga ttc aaa ttc 96 Arg His Thr Ala Ile Phe His Gly Gly Val Gly Val Arg Phe Lys Phe ctt cgc agc ttt tct cct ctc tca gca aga cga gat aat ccc gat gtc 144 Leu Arg Ser Phe Ser Pro Leu Ser Ala Arg Arg Asp Asn Pro Asp Val 40 35 tcc aga aaa ccc caa ccg agc aaa aat atg ctc aga gcg aag cac atc 192 Ser Arg Lys Pro Gln Pro Ser Lys Asn Met Leu Arg Ala Lys His Ile 50 ggt aaa aat tac tcc tcc tcc ttg tca cca gtt ctc tcg ccg gag cat 240 Gly Lys Asn Tyr Ser Ser Ser Leu Ser Pro Val Leu Ser Pro Glu His 75 70 65 aaa cct tcg ctc tta gag tct caa gct att ggt act gtc gca aca gct 288 Lys Pro Ser Leu Leu Glu Ser Gln Ala Ile Gly Thr Val Ala Thr Ala 90 85 caa gcg aac ttt atg cgc gtc att gtt caa gat gta gct aat tct gtg 336 Gln Ala Asn Phe Met Arg Val Ile Val Gln Asp Val Ala Asn Ser Val

105

110

acg agt gat gat gat aat gat tct tca aag act ggt gtt gaa ttg ctt Thr Ser Asp Asp Asp Asp Ser Ser Lys Thr Gly Val Glu Leu Leu 115 120 125	384
tgt gtg gtg aga gct gtg ttg aag aaa ata cga agg aga gtt tta gtt Cys Val Val Arg Ala Val Leu Lys Lys Ile Arg Arg Arg Val Leu Val 130 135 140	432
gga gat aag gtt ctt gtt gga tct att gat tgg gtt gat aga aga gga Gly Asp Lys Val Leu Val Gly Ser Ile Asp Trp Val Asp Arg Arg Gly 145 150 155 160	480
atg att gag aat gtg ttt cat cga cgt tcg gag att ttg gat cca cct Met Ile Glu Asn Val Phe His Arg Arg Ser Glu Ile Leu Asp Pro Pro 165 170 175	528
gtt gcg aac gtt gat cat ttg ctt gtt ctt ttc tct ttg gat caa ccg Val Ala Asn Val Asp His Leu Leu Val Leu Phe Ser Leu Asp Gln Pro 180 185 190	576
aaa ctt gag ccg ttt act ctt act agg ttc ttg gtg gaa gct gaa tct Lys Leu Glu Pro Phe Thr Leu Thr Arg Phe Leu Val Glu Ala Glu Ser 195 200 205	624
act cgt att cca tta aca ctt gct ttg aat aaa act gaa ctc att agt Thr Arg Ile Pro Leu Thr Leu Ala Leu Asn Lys Thr Glu Leu Ile Ser 210 215 220	672
gaa gag gaa ttg gaa act tgg aag ata agg ttg cgt gga tgg aac tat Glu Glu Glu Leu Glu Thr Trp Lys Ile Arg Leu Arg Gly Trp Asn Tyr 225 230 235 240	720
gaa cca ttg ttt tgt agt gtg gga act aaa gat gga ctt gat gat att Glu Pro Leu Phe Cys Ser Val Gly Thr Lys Asp Gly Leu Asp Asp Ile 245 250 255	768
gcg ttt gtt ctg aga gat cag act tct gtg att gtt gga cct agt ggt Ala Phe Val Leu Arg Asp Gln Thr Ser Val Ile Val Gly Pro Ser Gly 260 265 270	816
gtt gga aag tcg agt tta atc aac gta ttg agg agt aat cat ggt ggt Val Gly Lys Ser Ser Leu Ile Asn Val Leu Arg Ser Asn His Gly Gly 275 280 285	864
ggt gtg gtg gaa gat gag aat tgg ttt gag cct atg tta ggt aat aag Gly Val Val Glu Asp Glu Asn Trp Phe Glu Pro Met Leu Gly Asn Lys 290 295 300	912
tgg ttt gat gat cag cga gta ggg gaa gtt tcg agt aga agt ggt aga Trp Phe Asp Asp Gln Arg Val Gly Glu Val Ser Ser Arg Ser Gly Arg 305 310 315	960
ggt aaa cat aca aca cga aat gta tcg cta ctg ccg gtt tct gaa ggt Gly Lys His Thr Thr Arg Asn Val Ser Leu Leu Pro Val Ser Glu Gly 325 330 335	1008
ggt tac ctc gct gat act cct ggc ttt aac cag cct agt ttg ctg aaa Gly Tyr Leu Ala Asp Thr Pro Gly Phe Asn Gln Pro Ser Leu Leu Lys 340 345 350	1056

gt Va	al	acg Thr	aag Lys 355	cat His	tca Ser	cta Leu	Ala	cac His 360	tgt Cys	ttt Phe	cct Pro	gag Glu	ata Ile 365	cgg Arg	aac Asn	atg Met	:	1104
at I:	t le	gag Glu 370	agc Ser	gaa Glu	aaa Lys	tgt Cys	gga Gly 375	ttc Phe	aga Arg	gac Asp	tgc Cys	ttg Leu 380	cat His	att Ile	GJA aaa	gaa Glu		1152
P	ca ro 85	gga Gly	tgt Cys	gtt Val	gtg Val	aaa Lys 390	ggt Gly	gac Asp	tgg Trp	gaa Glu	agg Arg 395	tat Tyr	cct Pro	tac Tyr	tac Tyr	tta Leu 400		1200
G	aa ln	ttg Leu	ctt Leu	gat Asp	gag Glu 405	atc Ile	aga Arg	atc Ile	agg Arg	gaa Glu 410	gaa Glu	ttt Phe	cag Gln	ctt Leu	agg Arg 415	act Thr		1248
t P	tt he	gga Gly	acc Thr	aaa Lys 420	agg Arg	gaa Glu	gat Asp	gat Asp	gtt Val 425	agg Arg	tac Tyr	aag Lys	gtg Val	gga Gly 430	gac	atg Met		1296
g	gt ly	gtg Val	aaa Lys 435	cat His	gct Ala	gaa Glu	cca Pro	cgg Arg 440	Leu	atg Met	cct Pro	aag Lys	aag Lys 445	His	agg Arg	aga Arg		1344
9	gag Slu	tca Ser 450	Arg	aag Lys	aaa Lys	acg Thr	aaa Lys 455	Gln	aca Thr	atg Met	atc Ile	agt Ser 460	: GIu	ctg Leu	gat Asp	gag Glu		1392
I	tc he	Glu	gat Asp	gaa Glu	gac Asp	agt Ser 470	Asp	ttg Leu	tac Tyr	ata Ile	gag Glu 475	l Asr	gac n Asp	cca Pro	ato Ile	gtc Val 480		1440
Ċ	caa Gln	gcc Ala	att Ile	gag Glu	aat Asn 485	Glu	aat Asn	aaa Lys	aga ; Arg	caa Glr 490	1	ı						1473

<210> 54

<211> 490

<212> PRT

<213> Arabidopsis thaliana

<400> 54

Met Gln Thr Phe Ser Ile Ser Leu Leu Arg His Ser Ser Pro Phe Leu 1 5 10 15

Arg His Thr Ala Ile Phe His Gly Gly Val Gly Val Arg Phe Lys Phe 20 25 30

Leu Arg Ser Phe Ser Pro Leu Ser Ala Arg Arg Asp Asn Pro Asp Val 35 40 45

Ser Arg Lys Pro Gln Pro Ser Lys Asn Met Leu Arg Ala Lys His Ile 50 55 60

Gly Lys Asn Tyr Ser Ser Ser Leu Ser Pro Val Leu Ser Pro Glu His 65 70 75 80

Lys Pro Ser Leu Leu Glu Ser Gln Ala Ile Gly Thr Val Ala Thr Ala 85 90 95

Gln Ala Asn Phe Met Arg Val Ile Val Gln Asp Val Ala Asn Ser Val 100 105 110

Thr Ser Asp Asp Asp Asn Asp Ser Ser Lys Thr Gly Val Glu Leu Leu 115 120 125

Cys Val Val Arg Ala Val Leu Lys Lys Ile Arg Arg Arg Val Leu Val

Gly Asp Lys Val Leu Val Gly Ser Ile Asp Trp Val Asp Arg Arg Gly 145 150 155 160

Met Ile Glu Asn Val Phe His Arg Arg Ser Glu Ile Leu Asp Pro Pro 165 170 175

Val Ala Asn Val Asp His Leu Leu Val Leu Phe Ser Leu Asp Gln Pro 180 185 190

Lys Leu Glu Pro Phe Thr Leu Thr Arg Phe Leu Val Glu Ala Glu Ser 195 200 205

Thr Arg Ile Pro Leu Thr Leu Ala Leu Asn Lys Thr Glu Leu Ile Ser 210 215 220

Glu Glu Glu Leu Glu Thr Trp Lys Ile Arg Leu Arg Gly Trp Asn Tyr 225 230 235 240

Glu Pro Leu Phe Cys Ser Val Gly Thr Lys Asp Gly Leu Asp Asp Ile 245 250 255

Ala Phe Val Leu Arg Asp Gln Thr Ser Val Ile Val Gly Pro Ser Gly 260 265 270

Val Gly Lys Ser Ser Leu Ile Asn Val Leu Arg Ser Asn His Gly Gly
275 280 285

Gly Val Val Glu Asp Glu Asn Trp Phe Glu Pro Met Leu Gly Asn Lys 290 295 300

Trp Phe Asp Asp Gln Arg Val Gly Glu Val Ser Ser Arg Ser Gly Arg

Gly Lys His Thr Thr Arg Asn Val Ser Leu Leu Pro Val Ser Glu Gly 325 330 335

Gly Tyr Leu Ala Asp Thr Pro Gly Phe Asn Gln Pro Ser Leu Leu Lys 340 345 350

Val Thr Lys His Ser Leu Ala His Cys Phe Pro Glu Ile Arg Asn Met 355 360 365

Ile Glu Ser Glu Lys Cys Gly Phe Arg Asp Cys Leu His Ile Gly Glu 370 375 380

Pro Gly Cys Val Val Lys Gly Asp Trp Glu Arg Tyr Pro Tyr Tyr Leu 385 390 395 400

Gln Leu Leu Asp Glu Ile Arg Ile Arg Glu Glu Phe Gln Leu Arg Thr 405 410 415

Phe Gly Thr Lys Arg Glu Asp Asp Val Arg Tyr Lys Val Gly Asp Met 420 425 430

Gly Val Lys His Ala Glu Pro Arg Leu Met Pro Lys Lys His Arg Arg 435 440 445

Glu Ser Arg Lys Lys Thr Lys Gln Thr Met Ile Ser Glu Leu Asp Glu 450 455 460

Phe Glu Asp Glu Asp Ser Asp Leu Tyr Ile Glu Asn Asp Pro Ile Val 465 470 475 480

Gln Ala Ile Glu Asn Glu Asn Lys Arg Gln 485 490

<210> 55

<211> 897

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(897)

<223> 35154

<400: atg (Met '	~+~	+++	gga Gly	caa Gln 5	gta (Val	gta (Val	ata Ile	ggt Gly	cct Pro 10	cca Pro	gga Gly	tcg Ser	gga Gly	aag Lys 15	acc Thr	48
act Thr	tat Tyr	tgc Cys	aat Asn 20	gga Gly	atg Met	tct Ser	cag Gln	ttc Phe 25	ctc Leu	tct Ser	cta Leu	atg Met	ggc 30	agg Arg	aag Lys	96
gtt Val	gct Ala	att Ile 35	gtt Val	aat Asn	ctg Leu	gat Asp	cct Pro 40	gca Ala	aat Asn	gat Asp	gca Ala	tta Leu 45	cct Pro	tat Tyr	gag Glu	144
tgt Cys	ggt Gly 50	gtg Val	aat Asn	ata Ile	gaa Glu	gaa Glu 55	ttg Leu	atc Ile	aag Lys	tta Leu	gaa Glu 60	gat Asp	gtt Val	atg Met	tcg Ser	192
gaa Glu 65	cac His	tcg Ser	ctt Leu	ggt Gly	cct Pro 70	aat Asn	gga Gly	ggt Gly	ctt Leu	gta Val 75	tat Tyr	tgt Cys	atg Met	gag Glu	tac Tyr 80	240
ttg Leu	gag Glu	aaa Lys	aac Asn	att Ile 85	gac Asp	tgg Trp	ctg Leu	gaa Glu	tct Ser 90	aaa Lys	cta Leu	aag Lys	cct Pro	ctt Lei 95	ctg 1 Leu	288
aag Lys	gat Asp	cat His	tac Tyr 100	Ile	ctc Leu	ttt Phe	gat Asp	ttt Phe 105	Pro	ggc Gly	caa Glr	a gtç n Val	gaa Glu 110	י הפי	g ttc u Phe	336
ttc Phe	att Ile	cat His	Asp	agt Ser	acc Thr	aag Lys	aat Asr 120	ı Va.	cto Lev	ace Thi	g aaq c Ly:	g cto s Let 12!	7 77	t aa e Ly	a tca s Ser	384
ttg Lev	aac Asr 130	1 Lev	aga Arg	tta g Lev	a act 1 Thr	gct Ala 135	. Va.	g caa	a cta n Le	a ati	t ga e As; 14	p se	c ca r Hi	t ct s Le	a tgt u Cys	432
tgt Cys 145	Ası	c ccc	ggg Gly	g aad ⁄ Asi	tac 1 Ty1 150	· Val	agi Se:	t tc r Se	g cta r Le	a ct u Le 15	ս ոշ	c tc u Se	c tt r Le	a to u Se	c aca er Thr 160	480
ato Mei	g cti t Lei	t cae	c ato	g gaa t Gli 16:	u Lei	e eca	a ca o Hi	t gt s Va	c aa l As 17	n va	a tt l Le	g to eu Se	t aa r Ly	, S T.	cc gat le Asp 75	528

ctg Leu	att Ile	gga Gly	agc Ser 180	tac Tyr	GJA aaa	aag Lys	cta Leu	gct Ala 185	ttc Phe	aat Asn	tta Leu	gat Asp	ttc Phe 190	tat Tyr	acc Thr	•	576
gat Asp	gtt Val	caa Gln 195	gac Asp	ttg Leu	tca Ser	tac Tyr	ttg Leu 200	gag Glu	cac His	cat His	ctt Leu	agt Ser 205	caa Gln	gat Asp	cct Pro		624
cgc Arg	tct Ser 210	gct Ala	aag Lys	tac Tyr	aga Arg	aaa Lys 215	cta Leu	aca Thr	aaa Lys	gag Glu	cta Leu 220	tgt Cys	agt Ser	gtc Val	att Ile		672
gaa Glu 225	gat Asp	tac Tyr	agt Ser	ctt Leu	gtt Val 230	aat Asn	ttt Phe	aca Thr	acc Thr	ttg Leu 235	gat Asp	att Ile	cag Gln	gat Asp	aaa Lys 240		720
gaa Glu	agt Ser	gtt Val	Gly 999	gat Asp 245	cta Leu	gta Val	aag Lys	ctc Leu	atc Ile 250	Asp	aag Lys	agc Ser	aat Asn	gga Gly 255	tac		768
ata Ile	ttt Phe	gcc Ala	ggc Gly 260	Ile	gat Asp	gca Ala	agt Ser	gtg Val 265	Val	gaa Glu	tac Tyr	ago Ser	aag Lys 270	, тте	gca Ala		816
att Ile	ggt Gly	caa Gln 275	Thr	gat Asp	tgg Trp	gat Asp	tat Tyr 280	Asr	aga Arg	gto y Val	gca L Ala	a gct a Ala 289	ı va.	a cag l Gli	g gag n Glu		864
aag Lys	tac Tyr 290	Met	gaa Glu	ı gat ı Asp	gag Glu	gaa Glu 295	ı Ile	a caa e Glr	a gad a Asj	tga P	a						897

<210> 56

<211> 298

<212> PRT

<213> Arabidopsis thaliana

<400> 56

Met Val Phe Gly Gln Val Val Ile Gly Pro Pro Gly Ser Gly Lys Thr

Thr Tyr Cys Asn Gly Met Ser Gln Phe Leu Ser Leu Met Gly Arg Lys 20 25 30

Val Ala Ile Val Asn Leu Asp Pro Ala Asn Asp Ala Leu Pro Tyr Glu 35 40 45

Cys Gly Val Asn Ile Glu Glu Leu Ile Lys Leu Glu Asp Val Met Ser 50 55 60

Glu His Ser Leu Gly Pro Asn Gly Gly Leu Val Tyr Cys Met Glu Tyr 65 70 75 80

Leu Glu Lys Asn Ile Asp Trp Leu Glu Ser Lys Leu Lys Pro Leu Leu 85 90 95

Lys Asp His Tyr Ile Leu Phe Asp Phe Pro Gly Gln Val Glu Leu Phe 100 105 110

Phe Ile His Asp Ser Thr Lys Asn Val Leu Thr Lys Leu Ile Lys Ser 115 120 125

Leu Asn Leu Arg Leu Thr Ala Val Gln Leu Ile Asp Ser His Leu Cys 130 135 140

Cys Asp Pro Gly Asn Tyr Val Ser Ser Leu Leu Ser Leu Ser Thr 145 150 155 160

Met Leu His Met Glu Leu Pro His Val Asn Val Leu Ser Lys Ile Asp 165 170 175

Leu Ile Gly Ser Tyr Gly Lys Leu Ala Phe Asn Leu Asp Phe Tyr Thr 180 185 190

Asp Val Gln Asp Leu Ser Tyr Leu Glu His His Leu Ser Gln Asp Pro 195 200 205

Arg Ser Ala Lys Tyr Arg Lys Leu Thr Lys Glu Leu Cys Ser Val Ile 210 215 220

Glu Asp Tyr Ser Leu Val Asn Phe Thr Thr Leu Asp Ile Gln Asp Lys 225 230 235 240

Glu Ser Val Gly Asp Leu Val Lys Leu Ile Asp Lys Ser Asn Gly Tyr 245 250 255

Ile Phe Ala Gly Ile Asp Ala Ser Val Val Glu Tyr Ser Lys Ile Ala 260 265 270

Ile Gly Gln Thr Asp Trp Asp Tyr Asn Arg Val Ala Ala Val Gln Glu 275 280 285

Lys Tyr Met Glu Asp Glu Glu Ile Gln Asp 290 295

<210> 57

<211> 849

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(849)

<223> 35438

<400	> 5	7															
atg Met 1	gaa Glu	gct Ala	ctc Leu	tac Tyr 5	gcc Ala	aag Lys	ctc Leu	tac Tyr	gac Asp 10	aaa Lys	tac Tyr	acc Thr	aaa Lys	ctc Leu 15	cag Gln	,	48
aag Lys	aag Lys	aaa Lys	tat Tyr 20	tcc Ser	gaa Glu	tac Tyr	gat Asp	gag Glu 25	att Ile	aat Asn	aag Lys	gaa Glu	caa Gln 30	gaa Glu	gag Glu		96
aaa Lys	ttc Phe	ctt Leu 35	acc Thr	ttt Phe	gtt Val	tca Ser	gcc Ala 40	tca Ser	gag Glu	gag Glu	ttg Leu	atg Met 45	gaa Glu	cat His	ttg Leu		144
aga Arg	ggt Gly 50	gaa Glu	aat Asn	cag Gln	agt Ser	tct Ser 55	ctg Leu	gag Glu	atg Met	gtt Val	gag Glu 60	aag Lys	ttg Leu	agg Arg	aat Asn		192
gaa Glu 65	atc Ile	att Ile	tca Ser	atc Ile	aga Arg 70	tct Ser	ggc Gly	agg Arg	gac Asp	gac Asp 75	aag Lys	ttt Phe	ctg Leu	gag Glu	tgt Cys 80		240
caa Gln	aag Lys	ctt Leu	ctc Leu	atg Met 85	gaa Glu	gaa Glu	gaa Glu	cta Leu	aag Lys 90	aac Asn	aaa Lys	tca Ser	ctt Leu	tct Ser 95	gaa Glu		288
gaa Glu	gtt Val	gtc Val	aag Lys 100	Leu	aaa Lys	gag Glu	ctg Leu	gto Val 105	Gln	gag Glu	gaa Glu	cat His	cct Pro 110	Arg	aac Asn		336
tat Tyr	gaa Glu	gat Asp 115	Gln	agt Ser	gga Gly	aaa Lys	aaa Lys 120	Glr	aag Lys	aga Arg	aag Lys	act Thr 125	Pro	gaa Glu	agt Ser		384
gct Ala	cga Arg	Val	aca Thr	acg Thr	aga Arg	agc Ser 135	Met	ata Ile	a aaa e Lys	cgt Arg	ago Ser 140	Arg	t cto g Let	g tca 1 Sei	a gaa Glu		432
gat	tte	gtg	gaa	ace	gat	atg	gta	tca	a cct	gac	att	ago	c aaa	a cat	cat		480

Asp 145	Leu	Val	Glu	Thr	Asp 150	Met	Val	Ser	Pro	Asp 155	Ile	Ser	ГÀЗ	His	His 160	
aaa Lys	gca Ala	aag Lys	gag Glu	cct Pro 165	ctc Leu	ttg Leu	gtt Val •	tct Ser	cag Gln 170	cca Pro	caa Gln	tgc Cys	tgc Cys	aga Arg 175	aca Thr	528
acc Thr	tac Tyr	gat Asp	gga Gly 180	tca Ser	agt Ser	agt Ser	tct Ser	gct Ala 185	agt Ser	tgt Cys	aca Thr	ttt Phe	caa Gln 190	gct Ala	ctt Leu	576
ggg	aaa Lys	cac His 195	ttg Leu	cta Leu	gga Gly	atg Met	aaa Lys 200	tta Leu	tca Ser	act Thr	aat Asn	aat Asn 205	aag Lys	ggc Gly	aaa Lys	624
cgo	gcc Ala 210	Cys	att Ile	gta Val	gcc Ala	tca Ser 215	cac His	cca Pro	aca Thr	acc Thr	ggt Gly 220	Leu	tcc Ser	ttc Phe	agc Ser	672
cta Let 22	ı Thr	ttt Phe	ata Ile	aat Asn	aac Asn 230	Pro	aat Asn	ggt Gly	gaa Glu	gaa Glu 235	Ser	gag Glu	ctg Lev	ctt Lev	tac Tyr 240	720
aa Ly	g cct s Pro	gca Ala	tca Ser	cto Leu 245	ı Gly	aca Thr	ttt Phe	caa Glr	a aga n Arg 250	y Va.	g gca L Ala	a cce a Pro	g gaa o Glu	tgg Trj 25!	g atg o Met	768
ag Ar	a gaa g Gli	a gtt ı Val	ata 1 11e	: Гу	g tto s Phe	e Ser	aca Thi	a agt Sei 26!	r Met	g tgi t Cy:	t cc	c ato	270	e Pm	t gaa e Glu	816
ag Ar	a gt g Va	c tct l Sei 27!	r Arg	a gto g Val	c att	t aag e Lys	g cto s Lem 280	ı As:	t tg: n Cy:	t tg	a					849
_	10.	EO														·

<210> 58

<211> 282

<212> PRT

<213> Arabidopsis thaliana

<400> 58

Met Glu Ala Leu Tyr Ala Lys Leu Tyr Asp Lys Tyr Thr Lys Leu Gln
1 5 10 15

Lys Lys Lys Tyr Ser Glu Tyr Asp Glu Ile Asn Lys Glu Gln Glu Glu 20 25 30

Lys Phe Leu Thr Phe Val Ser Ala Ser Glu Glu Leu Met Glu His Leu 35 40 45

Arg Gly Glu Asn Gln Ser Ser Leu Glu Met Val Glu Lys Leu Arg Asn 50 55 60

- Glu Ile Ile Ser Ile Arg Ser Gly Arg Asp Asp Lys Phe Leu Glu Cys
 65 70 75 80
- Gln Lys Leu Leu Met Glu Glu Glu Leu Lys Asn Lys Ser Leu Ser Glu 85 90 95
- Glu Val Val Lys Leu Lys Glu Leu Val Gln Glu Glu His Pro Arg Asn 100 105 110
- Tyr Glu Asp Gln Ser Gly Lys Lys Gln Lys Arg Lys Thr Pro Glu Ser 115 120 125
- Ala Arg Val Thr Thr Arg Ser Met Ile Lys Arg Ser Arg Leu Ser Glu 130 135 140
- Asp Leu Val Glu Thr Asp Met Val Ser Pro Asp Ile Ser Lys His His 145 150 155 160
- Lys Ala Lys Glu Pro Leu Leu Val Ser Gln Pro Gln Cys Cys Arg Thr 165 170 175
- Thr Tyr Asp Gly Ser Ser Ser Ser Ala Ser Cys Thr Phe Gln Ala Leu 180 185 190
- Gly Lys His Leu Leu Gly Met Lys Leu Ser Thr Asn Asn Lys Gly Lys 195 200 205
- Arg Ala Cys Ile Val Ala Ser His Pro Thr Thr Gly Leu Ser Phe Ser 210 215 220
- Leu Thr Phe Ile Asn Asn Pro Asn Gly Glu Glu Ser Glu Leu Leu Tyr 225 230 235 240
- Lys Pro Ala Ser Leu Gly Thr Phe Gln Arg Val Ala Pro Glu Trp Met 245 250 255
- Arg Glu Val Ile Lys Phe Ser Thr Ser Met Cys Pro Ile Phe Phe Glu 260 265 270
- Arg Val Ser Arg Val Ile Lys Leu Asn Cys 275 280

<210> 59 <211> 1467 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (1)..(1467) <222> <223> 37351 <400> 59 atg gaa ttg gat tcg gag aac aaa ttg ttg aag acg ggt ttg gtt ata 48 Met Glu Leu Asp Ser Glu Asn Lys Leu Leu Lys Thr Gly Leu Val Ile 96 gtg gcg aca ctt gtt ata gcc aaa ctc atc ttc tct ttc act tct Val Ala Thr Leu Val Ile Ala Lys Leu Ile Phe Ser Phe Phe Thr Ser gat tot aag aag aag ogt ott oot oot act ott aaa got tgg oot ooa 144 Asp Ser Lys Lys Arg Leu Pro Pro Thr Leu Lys Ala Trp Pro Pro ttg gtt gga agt ctt atc aaa ttc ttg aaa gga cct att att atg ctt 192 Leu Val Gly Ser Leu Ile Lys Phe Leu Lys Gly Pro Ile Ile Met Leu aga gag gaa tac cct aag ctt gga agt gtg ttt act gtt aat ctt gtt 240 Arg Glu Glu Tyr Pro Lys Leu Gly Ser Val Phe Thr Val Asn Leu Val cac aaa aag att act ttt ctt att ggt cct gaa gtc tct gct cat ttt 288 His Lys Lys Ile Thr Phe Leu Ile Gly Pro Glu Val Ser Ala His Phe ttc aaa gct tct gaa tct gat ctt agt cag cag gaa gtg tat cag ttc 336 Phe Lys Ala Ser Glu Ser Asp Leu Ser Gln Gln Glu Val Tyr Gln Phe 105 aat gtc cct act ttt ggt cct gga gtt gtt ttc gat gtt gat tat tct 384 Asn Val Pro Thr Phe Gly Pro Gly Val Val Phe Asp Val Asp Tyr Ser 120 115 gtt cgt cag gag cag ttt cgg ttc ttc act gag gca ctt aga gtt aac 432 Val Arg Gln Glu Gln Phe Arg Phe Phe Thr Glu Ala Leu Arg Val Asn 130

155

480

aag ttg aag ggt tat gtg gat atg atg gtt act gaa gct gag gat tac

Lys Leu Lys Gly Tyr Val Asp Met Met Val Thr Glu Ala Glu Asp Tyr

150

145

ttc Phe	tct Ser	aaa Lys	tgg Trp	gga Gly 165	gag Glu	agt Ser	ggt Gly	gaa Glu	gtt (Val / 170	gat a Asp :	att Ile	aag Lys	gtt Val	gag Glu 175	cta Leu	5:	28 -
gag Glu	agg Arg	ctc Leu	atc Ile 180	atc Ile	ttg Leu	act Thr	gca Ala	agt Ser 185	aga Arg	tgt Cys	tta Leu	ctg Leu	ggt Gly 190	cga Arg	gaa Glu	5	76
gtt Val	cgt Arg	gat Asp 195	cag Gln	ctt Leu	ttt Phe	gat Asp	gat Asp 200	gtc Val	tct Ser	gct Ala	ttg Leu	ttc Phe 205	cat His	gac Asp	ctt Leu	6	24
gac Asp	aat Asn 210	gga Gly	atg Met	ctt Leu	ccc Pro	atc Ile 215	agt Ser	gtt Val	ctc Leu	ttc Phe	cca Pro 220	tat Tyr	ctc Leu	cca Pro	att Ile	6	72
cca Pro 225	gct Ala	cac His	cgc Arg	cgt Arg	cgt Arg 230	gac Asp	cgt Arg	gcc Ala	cga Arg	gaa Glu 235	aag Lys	ctt Leu	tcg Ser	gag Glu	att Ile 240	7	720
ttc Phe	gca Ala	aaa Lys	atc Ile	att Ile 245	Gly 999	tcg Ser	aga Arg	aaa Lys	cgc Arg 250	tct Ser	gga Gly	aaa Lys	aca Thr	gag Glu 255	aac Asn	7	768
gac Asp	atg Met	ctg Leu	cag Gln 260	Cys	ttc Phe	atc Ile	gaa Glu	tca Ser 265	aag Lys	tac Tyr	aaa Lys	gat Asp	ggt Gly 270	Arg	cag Gln		816
aca Thr	acc Thr	gaa Glu 275	Ser	gaa Glu	gtc Val	act Thr	ggt Gly 280	Leu	ctc Leu	att Ile	gct Ala	gct Ala 285	Leu	ttt Phe	gca Ala	-	864
gga Gly	caa Gln 290	His	acg Thr	agc Ser	tct Ser	atc Ile 295	Thr	tcc Ser	acc Thr	tgg Trp	acc Thr 300	GT?	gct Ala	tat Tyr	Leu		912
atg Met 305	Arg	tac Tyr	aaa Lys	gag Glu	tac Tyr 310	Phe	tca Ser	gct Ala	gct Ala	ctt Leu 315	Asp	gag Glu	g cag ı Glr	g aag n Lys	g aac s Asn 320		960
ctg Leu	att Ile	gcg Ala	g aaa a Lys	cat His	: Gly	gac Asp	aag Lys	g ato	c gat e Asp 330) HIS	gat B	t ato	c tta e Le	tco Ser 33!	gag Glu	1	800
at <u>c</u> Met	g gat : Asp	gti Val	t cto l Leu 340	туз	cgc Arg	tgo G Cys	ati	t aag e Lys 34!	s Glu	a gcg a Ala	tte Lei	g ag u Ar	g cti g Lei 35	n HT	c cct s Pro	1	L056
cca Pro	a cto b Lei	2 ato 1 110 35	e Met	g tta t Lev	a atg ı Met	g aga	a gc g Ala 36	a Se	g cad r His	agt Sei	c ga	t tt p Ph 36	e se	c gt r Va	g aca l Thr	=	1104
gci	t cgg a Arg	g As	t gga p Gl	a aaa y Ly:	a act	t tac r Ty: 37!	r As	t at p Il	c cca e Pro	a aag o Lys	g gg s Gl 38	уні	c at s Il	c gt e Va	t gca l Ala	:	1152
ac Th	r Se	c cc r Pr	t gc	a tt: a Ph	t gc e Al 39	a As	c cg n Ar	c tt g Le	a cc	g ca o Hi 39	s II	c tt .e Ph	c aa le Ly	a ga 's As	c ccc p Pro 400		1200

gac Asp	acc Thr	tac Tyr	Asp	cca Pro 405	gaa Glu	aga Arg	ttc Phe	tcc Ser	cct Pro 410	gga Gly	aga Arg	gaa Glu	gag Glu	gac Asp 415	aaa Lys	1248
gcc Ala	gca Ala	GJÀ 333	gca Ala 420	ttc Phe	tcg Ser	tac Tyr	att Ile	gca Ala 425	ttc Phe	gga Gly	gly aaa	gga Gly	agg Arg 430	cac His	Gly 999	1296
tgc Cys	ctt Leu	gga Gly 435	gag Glu	ccg Pro	ttt Phe	gct Ala	tac Tyr 440	ctg Leu	cag Gln	atc Ile	aaa Lys	gcc Ala 445	ata Ile	tgg Trp	agt Ser	1344
cat His	ttg Leu 450	ttg Leu	agg Arg	aac Asn	ttc Phe	gag Glu 455	ctt Leu	gag Glu	cta Leu	gtt Val	tca Ser 460	PIO	ttc Phe	cct Pro	gag Glu	1392
att Ile 465	Asp	tgg Trp	aac Asn	gct Ala	atg Met 470	Val	gtt Val	gga Gly	gtt Val	aaa Lys 475	GTA	aat Asn	gtg Val	atg Met	gtg Val 480	1440
cgt Arg	tac Tyr	aag Lys	agg Arg	cgc Arg 485	Gln	ctt Leu	tct Ser	taa	l							1467

<210> 60

<211> 488

<212> PRT

<213> Arabidopsis thaliana

<400> 60

Met Glu Leu Asp Ser Glu Asn Lys Leu Leu Lys Thr Gly Leu Val Ile 1 5 10 15

Val Ala Thr Leu Val Ile Ala Lys Leu Ile Phe Ser Phe Phe Thr Ser 20 25 30

Asp Ser Lys Lys Lys Arg Leu Pro Pro Thr Leu Lys Ala Trp Pro Pro 35 40 45

Leu Val Gly Ser Leu Ile Lys Phe Leu Lys Gly Pro Ile Ile Met Leu 50 55 60

Arg Glu Glu Tyr Pro Lys Leu Gly Ser Val Phe Thr Val Asn Leu Val 65 70 75 80

His Lys Lys Ile Thr Phe Leu Ile Gly Pro Glu Val Ser Ala His Phe 85 90 95

Phe Lys Ala Ser Glu Ser Asp Leu Ser Gln Gln Glu Val Tyr Gln Phe 100 105 110

- Asn Val Pro Thr Phe Gly Pro Gly Val Val Phe Asp Val Asp Tyr Ser 115 120 125
- Val Arg Gln Glu Gln Phe Arg Phe Phe Thr Glu Ala Leu Arg Val Asn 130 135 140
- Lys Leu Lys Gly Tyr Val Asp Met Met Val Thr Glu Ala Glu Asp Tyr 145 150 155 160
- Phe Ser Lys Trp Gly Glu Ser Gly Glu Val Asp Ile Lys Val Glu Leu 165 170 175
- Glu Arg Leu Ile Ile Leu Thr Ala Ser Arg Cys Leu Leu Gly Arg Glu 180 185 190
- Val Arg Asp Gln Leu Phe Asp Asp Val Ser Ala Leu Phe His Asp Leu 195 200 205
- Asp Asn Gly Met Leu Pro Ile Ser Val Leu Phe Pro Tyr Leu Pro Ile 210 215 220
- Pro Ala His Arg Arg Arg Asp Arg Ala Arg Glu Lys Leu Ser Glu Ile 225 230 235 240
- Phe Ala Lys Ile Ile Gly Ser Arg Lys Arg Ser Gly Lys Thr Glu Asn 245 250 255
- Asp Met Leu Gln Cys Phe Ile Glu Ser Lys Tyr Lys Asp Gly Arg Gln 260 265 270
- Thr Thr Glu Ser Glu Val Thr Gly Leu Leu Ile Ala Ala Leu Phe Ala 275 280 285
- Gly Gln His Thr Ser Ser Ile Thr Ser Thr Trp Thr Gly Ala Tyr Leu 290 295 300
- Met Arg Tyr Lys Glu Tyr Phe Ser Ala Ala Leu Asp Glu Gln Lys Asn 305 310 315
- Leu Ile Ala Lys His Gly Asp Lys Ile Asp His Asp Ile Leu Ser Glu 325 330 335

Met Asp Val Leu Tyr Arg Cys Ile Lys Glu Ala Leu Arg Leu His Pro 340 345 350

Pro Leu Ile Met Leu Met Arg Ala Ser His Ser Asp Phe Ser Val Thr 355 360 365

Ala Arg Asp Gly Lys Thr Tyr Asp Ile Pro Lys Gly His Ile Val Ala 370 375 380

Thr Ser Pro Ala Phe Ala Asn Arg Leu Pro His Ile Phe Lys Asp Pro 385 390 395 400

Asp Thr Tyr Asp Pro Glu Arg Phe Ser Pro Gly Arg Glu Glu Asp Lys 405 410 415

Ala Ala Gly Ala Phe Ser Tyr Ile Ala Phe Gly Gly Arg His Gly 420 425 430

Cys Leu Gly Glu Pro Phe Ala Tyr Leu Gln Ile Lys Ala Ile Trp Ser 435 440 445

His Leu Leu Arg Asn Phe Glu Leu Glu Leu Val Ser Pro Phe Pro Glu 450 455 460

Ile Asp Trp Asn Ala Met Val Val Gly Val Lys Gly Asn Val Met Val
465 470 475 480

Arg Tyr Lys Arg Arg Gln Leu Ser 485

<210> 61

<211> 1836

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1836)

<223> 37389

<400	> 6	1															
ato o	aaa	att	gtt Val	ttg Leu 5	gaa Glu	cct Pro	cct Pro	tgt Cys	cct Pro 10	aaa Lys	agt Ser	gtt Val	gat Asp	15 Gly 999	att Ile	.	8
agc Ser	att Ile	gat Asp	cct Pro 20	gag Glu	cct Pro	aat Asn	tgg Trp	aat Asn 25	ttc Phe	gag Glu	agt Ser	ttg Leu	gtc Val 30	gct Ala	gag Glu		96
att Ile	gct Ala	tct Ser 35	gtt Val	gaa Glu	aag Lys	aag Lys	ctc Leu 40	aat Asn	Gly	ttc Phe	tca Ser	atg Met 45	tat Tyr	cct Pro	cag Gln	14	14
cca Pro	att Ile 50	act Thr	aac Asn	aca Thr	acc Thr	tta Leu 55	cgg Arg	atg Met	gga Gly	agg Arg	aga Arg 60	ggt Gly	gga Gly	gga Gly	ttt Phe	19	92
gta Val 65	atg Met	cat His	gtc Val	tca Ser	gaa Glu 70	gat Asp	gag Glu	atg Met	gag Glu	agt Ser 75	gac Asp	gaa Glu	ggt Gly	gaa Glu	gag Glu 80	2	40
agt Ser	gat Asp	gat Asp	gag Glu	gaa Glu 85	gaa Glu	gaa Glu	gaa Glu	gat Asp	cat His 90	agt Ser	caa Gln	atc Ile	tgt Cys	aca Thr 95	gcg Ala	2	88
gga Gly	aaa Lys	cgt Arg	ttt Phe 100	Ala	tgt Cys	gat Asp	gag Glu	ctt Leu 105	Tyr	ttg Leu	agt Ser	gat Asp	gaa Glu 110	Ser	gat Asp	. 3	36
gaa Glu	gag Glu	ttt Phe 115	Asp	cat His	gaa Glu	cct Pro	gag Glu 120	Tyr	atg Met	atg Met	aat Asn	aag Lys 125	Lev	ggt Gly	ctg Leu	3	84
gct Ala	gag Glu 130	Ser	gcc Ala	cta Leu	tat Tyr	gag Glu 135	Val	atc Ile	aac Asn	gac Asp	cac His	s Glr	acc Thr	gaa Glu	atc l Ile	4	132
aag Lys 145	gac	gac Asp	att Ile	agg Arg	aat Asn 150	Gln	gta Val	tca Ser	gtt Val	gtt Val	. Glı	a aca	a gaa r Glu	a ata ı Ile	a atg e Met 160	4	180
aat Asn	gag	g att	gaa Glu	acg Thr 165	Ser	cto Leu	tct Ser	gco Ala	ata 110	e Ala	c cg	g gti g Va	t gaa l Gli	a aag u Ly: 17	g tac s Tyr 5	!	528
agt Ser	gaç Glı	g act ı Thr	cgg Arg	J Lys	a gaa s Glu	gtt Val	gaa Glu	a cgg 1 Arg 189	д Гу:	a cti s Lei	z ga ı As	t ct p Le	t ca u Gl: 19	n Ty	t cag r Gln	!	576
cga Arg	aaa Lys	a gtt s Val	l Ala	z gaa a Glu	a gca u Ala	a ctt a Lei	gat 1 Asp 200	Th:	c ca r Hi	t cto	g ac u Th	t gc r Al 20	a Va	c ca 1 Gl	a cgc n Arg		624
gaa Glu	cai Hi:	s Lys	a att	t aaa e Lya	a tcg s Sei	g caa Gl: 21!	ı Ile	a ga e Gl	a ga u Gl	a ag u Ar	a aa g Ly 22	s Il	a ag e Ar	g ag g Se	c gag r Glu		672
αaa	a qc	t cad	g ga	g ga	g gco	c ag	g ag	g aa	g ga	a ag	g go	t ca	t ca	a ga	a gag		720

Glu 225	Ala	Gln	Glu	Glu :	Ala 1 230	Arg A	rg I	ys (Glu A	arg A	la Hi	is Gl	in G	lu G	31u 240	·
aaa Lys	ata Ile	cgt Arg	caa Gln	gaa Glu 245	aaa (Lys :	gct o Ala <i>l</i>	gc g	Ala	gag g Glu <i>l</i> 250	gct c Ala G	aa at ln Mo	tg c et L	eu A	ca a la 1 55	aaa Lys	768
atc Ile	aga Arg	gct Ala	gaa Glu 260	gaa Glu	gaa Glu	aag a Lys 1	Lys (gaa Glu 265	gtt (Val (gag a Glu A	ga a rg L	ys A	ca g la A 70	la i	aga Arg	816
gaa Glu	gta Val	gct Ala 275	gaa Glu	aaa Lys	gaa Glu	Val .	gca Ala 280	gat Asp	cgc Arg	aaa g Lys <i>F</i>	TT A	jcc g la G 185	aa c	aa In	aaa Lys	864
ctt Leu	gcg Ala 290	gaa Glu	cag Gln	aag Lys	gct Ala	gtg Val 295	ata Ile	gag Glu	agt Ser	gtt a Val :	acg g Thr G	ggg a	gt t Ser S	ca Ser	gct Ala	912
aca Thr 305	tca Ser	aat Asn	gct Ala	caa Gln	gct Ala 310	gly aaa	ggt Gly	aat Asn	tca Ser	atc o Ile i 315	cga g Arg <i>P</i>	gct g Ala <i>I</i>	gca g Ala (gaa Glu	agt Ser 320	960
		ata Ile	ttg Leu	gag Glu 325	aac Asn	cac His	aga Arg	ttg Leu	aaa Lys 330	aag Lys	ctc (Leu (gaa g Glu (JIU .	cta Leu 335	gaa Glu	1008
aca Thr	ace Thr	aac Ası	caa Gln 340	Ser	ctt Leu	aag Lys	tca Ser	cgt Arg 345	Ser	aat Asn	gaa Glu	ASI	ttt Phe 350	agc Ser	agt Ser	1056
ttt Phe	gag Glu	g aag 1 Lys 355	s His	att Ile	gga Gly	aga Arg	gtg Val 360	тте	agg Arg	caa Gln	TTG	agt Ser 365	gly ggg	aca Thr	aag Lys	1104
gai Asj	t agi p Se: 37	r Va	a agt 1 Sei	. Gly	aaa Lys	atc Ile 375	aat Asn	gat Asp	att Ile	gtg Val	aaa Lys 380	ata Ile	ttt Phe	aaa Lys	gac Asp	1152
cc Pro	o Ar	t tg g Cy	t ccq	g gta o Val	tcc Ser 390	: Ile	agt Ser	att	gca Ala	gct Ala 395	ttt Phe	gca Ala	aag Lys	aag Lys	atg Met 400	1200
		c ac r Th	t aag r Ly	g gaa s Glu 40!	ı Lys	a cca s Pro	aac Asr	c cct n Pro	t ttt o Phe 410	e Ala	tgc Cys	agc Ser	tat Tyr	gto Val	e att L Ile	1248
gt Va	t ta l Ty	c at	c aa e As 42	n Se	a caq r Gli	g ttt n Phe	cc Pro	c caa o Gl: 42	n Va.	atg L Met	gat Asp	att Ile	ctt Leu 430	. це	c gcg u Ala	1296
ga Gl	ıa tt .u Ph	c ca ne Hi 43	s Ly	a gc s Al	t tg a Cy	c att s Ile	tae Ty:	r Th	t gto r Va	c cca l Pro	aag Lys	cat His 445	тте	gt. Va	a aac l Asn	1344
to Se	er Gi	ag to In Se	ea go er Al	t tg a Tr	g ga p As	t tca p Sei 45	r As	c gc p Al	a ta a Ty	t gaa r Glu	a cgc a Arg 460	ј љеu	gat Asp	tc Se	t ata r Ile	1392
aŧ	tg a	gg ct	c ta	ıc gg	t gc	a ct	t gt	t ca	ıg ac	c gat	atc	c cgc	gt:	c gg	c aat	1440

Met 465	Arg	Leu	Tyr	Gly	Ala 470	Leu	Val	Gln	Thr	Asp 475	Ile	Arg	Val	Gly	Asn 480	
gct Ala	act Thr	aac Asn	gtt Val	cat His 485	gly aaa	ata Ile	gaa Glu	cat His	gga Gly 490	tgg Trp	gct Ala	tgg Trp	tta Leu	gcc Ala 495	cgg Arg	1488
ttc Phe	ctt Leu	aac Asn	aaa Lys 500	atc Ile	cca Pro	gcc Ala	aac Asn	aga Arg 505	gcc Ala	act Thr	gcg Ala	aca Thr	gcc Ala 510	tțg Leu	aac Asn	1536
tcc Ser	ttt Phe	ctc Leu 515	cag Gln	acg Thr	gct Ala	GJÀ aaa	ttt Phe 520	ggt Gly	ctt Leu	cat His	cag Gln	agg Arg 525	tac Tyr	aaa Lys	tct Ser	1584
cag Gln	ttt Phe 530	ctg Leu	aag Lys	gtt Val	gtg Val	aat Asn 535	gtt Val	gtg Val	aga Arg	gag Glu	cat His 540	ttc Phe	ttg Leu	cag Gln	aaa Lys	1632
ttg Leu 545	cgg Arg	gcg Ala	aag Lys	aag Lys	gac Asp 550	acg Thr	tcg Ser	gat Asp	cta Leu	ctt Leu 555	gtg Val	atc Ile	ata Ile	gcc Ala	gaa Glu 560	1680
atc Ile	aca Thr	gcg Ala	tac Tyr	tta Leu 565	Asp	gac Asp	cgg Arg	atg Met	tat Tyr 570	Leu	aag Lys	gaa Glu	cct Pro	gaa Glu 575	gga Gly	1728
aga Arg	gct Ala	atg Met	aag Lys 580	Thr	act Thr	agt Ser	acc Thr	ttg Leu 585	Ser	tct Ser	gaa Glu	ctt Leu	act Thr 590	· Ala	gaa Glu	1776
tta Leu	aat Asn	cag Gln 595	Pro	aac Asn	tac Tyr	aat Asn	cag Gln 600	Ası	tac Tyr	cag Gln	agg Arg	aat Asn 605	Asp	tac Tyr	aga Arg	1824
	tac Tyr 610	Tyr	tga	L												1836
<21	.0>	62														
<21	1>	611														

<212> PRT

<213> Arabidopsis thaliana

<400> 62

Met Gly Ile Val Leu Glu Pro Pro Cys Pro Lys Ser Val Asp Gly Ile 1 5 10 15

Ser Ile Asp Pro Glu Pro Asn Trp Asn Phe Glu Ser Leu Val Ala Glu 20 25 30

Ile Ala Ser Val Glu Lys Lys Leu Asn Gly Phe Ser Met Tyr Pro Gln 35 40 45

- Pro Ile Thr Asn Thr Thr Leu Arg Met Gly Arg Arg Gly Gly Phe 50 55
- Val Met His Val Ser Glu Asp Glu Met Glu Ser Asp Glu Gly Glu Glu 65 70 75 80
- Ser Asp Asp Glu Glu Glu Glu Glu Asp His Ser Gln Ile Cys Thr Ala 85 90 95
- Gly Lys Arg Phe Ala Cys Asp Glu Leu Tyr Leu Ser Asp Glu Ser Asp 100 105 110
- Glu Glu Phe Asp His Glu Pro Glu Tyr Met Met Asn Lys Leu Gly Leu 115 120 125
- Ala Glu Ser Ala Leu Tyr Glu Val Ile Asn Asp His Gln Thr Glu Ile 130 135 140
- Lys Asp Asp Ile Arg Asn Gln Val Ser Val Val Glu Thr Glu Ile Met 145 150 155 160
- Asn Glu Ile Glu Thr Ser Leu Ser Ala Ile Ala Arg Val Glu Lys Tyr 165 170 175
- Ser Glu Thr Arg Lys Glu Val Glu Arg Lys Leu Asp Leu Gln Tyr Gln 180 185 190
- Arg Lys Val Ala Glu Ala Leu Asp Thr His Leu Thr Ala Val Gln Arg 195 200 205
- Glu His Lys Ile Lys Ser Gln Ile Glu Glu Arg Lys Ile Arg Ser Glu 210 215 220
- Glu Ala Gln Glu Glu Ala Arg Arg Lys Glu Arg Ala His Gln Glu Glu 225 230 235 240
- Lys Ile Arg Gln Glu Lys Ala Arg Ala Glu Ala Gln Met Leu Ala Lys 245 250 255
- Ile Arg Ala Glu Glu Lys Lys Glu Val Glu Arg Lys Ala Ala Arg 260 265 270

Glu Val Ala Glu Lys Glu Val Ala Asp Arg Lys Ala Ala Glu Gln Lys 275 280 285

- Leu Ala Glu Gln Lys Ala Val Ile Glu Ser Val Thr Gly Ser Ser Ala 290 295 300
- Thr Ser Asn Ala Gln Ala Gly Gly Asn Ser Ile Arg Ala Ala Glu Ser 305 310 315 320
- Ala Leu Ile Leu Glu Asn His Arg Leu Lys Lys Leu Glu Glu Leu Glu 325 330 335
- Thr Thr Asn Gln Ser Leu Lys Ser Arg Ser Asn Glu Asn Phe Ser Ser 340 345 350
- Phe Glu Lys His Ile Gly Arg Val Ile Arg Gln Ile Ser Gly Thr Lys 355 360 365
- Asp Ser Val Ser Gly Lys Ile Asn Asp Ile Val Lys Ile Phe Lys Asp 370 375 380
- Pro Arg Cys Pro Val Ser Ile Ser Ile Ala Ala Phe Ala Lys Lys Met 385 390 395 400
- Val Thr Thr Lys Glu Lys Pro Asn Pro Phe Ala Cys Ser Tyr Val Ile 405 410 415
- Val Tyr Ile Asn Ser Gln Phe Pro Gln Val Met Asp Ile Leu Leu Ala 420 425 430
- Glu Phe His Lys Ala Cys Ile Tyr Thr Val Pro Lys His Ile Val Asn 435 440 445
- Ser Gln Ser Ala Trp Asp Ser Asp Ala Tyr Glu Arg Leu Asp Ser Ile 450 455 460
- Met Arg Leu Tyr Gly Ala Leu Val Gln Thr Asp Ile Arg Val Gly Asn 465 470 475 480
- Ala Thr Asn Val His Gly Ile Glu His Gly Trp Ala Trp Leu Ala Arg 485 490 495
- Phe Leu Asn Lys Ile Pro Ala Asn Arg Ala Thr Ala Thr Ala Leu Asn 500 505 510

Ser Phe Leu Gln Thr Ala Gly Phe Gly Leu His Gln Arg Tyr Lys Ser 515 Gln Phe Leu Lys Val Val Asn Val Val Arg Glu His Phe Leu Gln Lys Leu Arg Ala Lys Lys Asp Thr Ser Asp Leu Leu Val Ile Ile Ala Glu 550 Ile Thr Ala Tyr Leu Asp Asp Arg Met Tyr Leu Lys Glu Pro Glu Gly 565 Arg Ala Met Lys Thr Thr Ser Thr Leu Ser Ser Glu Leu Thr Ala Glu 585 580 Leu Asn Gln Pro Asn Tyr Asn Gln Asn Tyr Gln Arg Asn Asp Tyr Arg 600 Asn Tyr Tyr 610 <210> 63 <211> 1152 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1152) <223> 38108 atg gca acg gct tct cct cca ttt atc tca act ctc agc ttc act cac 48 Met Ala Thr Ala Ser Pro Pro Phe Ile Ser Thr Leu Ser Phe Thr His

144

45

96

144

tot tot tto aaa act tot tot tot toa ttt tot cog aag ott ott

Ser Ser Phe Lys Thr Ser Ser Ser Ser Phe Ser Pro Lys Leu Leu

cga ccc ctc tta agc ttt tcc gtc aaa gct tcc aga aag caa gta gag Arg Pro Leu Leu Ser Phe Ser Val Lys Ala Ser Arg Lys Gln Val Glu

40

20

35

ata Ile	gtg Val 50	ttt Phe	gat Asp	cct Pro	gat Asp	gag Glu 55	agg Arg	ctt Leu	aat Asn	aag Lys	ata Ile	gg Gl	ıt g .y A	at :	gat Asp	gt Va	t	192
gac Asp 65	aaa Lys	gaa Glu	gct Ala	cct Pro	ttg Leu 70	tcc Ser	agg Arg	ctt Leu	aag Lys	cto Leu 75	tto Phe	c to e Se	ca c er P	ct Pro	tgc Cys	аа L y 80	75	240
atc Ile	aat Asn	gtt Val	ttc Phe	ttg Leu 85	agg Arg	atc Ile	acc Thr	gga Gly	aag Lys 90	cga	gaa g Gl	aga uAs	at g sp G	31y 9aa	ttt Phe 95	Ca H:	at is	288
gat Asp	tta Leu	gcc Ala	tct Ser	Leu	ttt Phe	cat His	gtg Val	att Ile 105	agc Ser	tta Lei	a gg ı Gl	aga yA	sp.	act Thr 110	att	. a:	aa ys	336
ttc Phe	tca Ser	ttg Lev 119	Ser	cca Pro	tca Ser	aag Lys	tct Ser 120	гÀг	gat Asp	cg	t tt g Le	u s	ct 6 er 6 25	act Thr	aac Asr	g 1 V	tt al	384
caa Gln	gga Gly 130	Va]	cct L Pro	gtt Val	gat Asp	ggg Gly 135	Arg	aat Asn	ct <u>c</u> Le	g at ı Il	t at e Il 14	.е л	aa ys	gca Ala	ctt Lei	a 1 A	ac .sn	432
ctt Leu 145	Туг	agg Arg	g aaq g Ly:	g aaa s Lys	a act s Thi	ggt Gly	agt Ser	aac Asr	aga n Arg	a tt g Ph 15	e Pi	c t ne T	rp gg	att Ile	ca Hi	5 L	ta Leu L60	480
gat Asp	aag Lys	g aag E Ly	g gt s Va	g cci 1 Pro 16	o Th	ggg Gly	g gct 7 Ala	gga a Gly	a ct y Le 17	u G1	jt gg .y Gi	gt g ly (gga 3ly	agt Ser	ag Se 17		aat Asn	_. 528
gct Ala	gca Ala	a ac a Th	t gc r Al 18	a Le	c tg u Tr	g gcg p Ala	g gca a Ala	a aat a Asi 18	u GT	g ct u Le	c a	at g sn (gga Gly	ggt Gl ₃ 190	, 10	t q	gtc Val	576
act Th	r ga	g aa u As 19	n Gl	a ct u Le	c ca u Gl	g gat n Asj	t tg p Tr 20	p se	a ag r Se	jt ga er Gi	aa a lu I	TE.	ggg Gly 205	tca Sei	aga rAs	ıt p	att Ile	624
CC ¹	t tt o Ph 21	e Pb	c tt e Ph	c to e Se	g ca r Hi	t gg s Gl 21	y Al	t gc a Al	c ta a Ty	at to	ys 1	hr 20	ejy aaa	ag Ar	a gg g G]	gt Ly	gag Glu	672
at Il 22	e Va	c ca l Gl	a ga In As	ic ct sp Le	t co eu Pr 23	t cc to Pr	a co o Pr	t tt	t co ne Pi	ro L	tt g eu <i>F</i> 35	gat Asp	ctt Leu	cc Pr	g at	tg et	gtg Val 240	720
.ct Le	c at u Il	a aa .e Ly	ag co ys Pi	cc cg co Ai 24	rg G	aa go lu Al	a to .a Cy	jt to 's Se	er T	ct g hr A 50	ct g la (gaa Glu	gtt Val	ta Ty	т п	aa ys 55	cgt Arg	768
ct Le	t co eu Ai	gt ti	eu A	at ca sp G:	ag ao ln T	eg ag nr Se	jc aa er As	sn I.	tt a le A 65	at o sn I	ecc Pro	ttg Leu	aca Thi	t to Le	eu n	ta eu	gag Glu	816
aa As	at gi sn Va	al T	cc a hr S 75	gc a er A	at g sn G	gt gt ly Va	al S	et c er G B0	aa a ln S	gc a Ser :	ata [le	tgc Cys	gta Va: 28!	T 122	ac g	at sp	ttg Leu	864

gaa Glu	ccg Pro 290	cca Pro	gcg Ala	ttt Phe	tca Ser	gtt Val 295	ctt Leu	cca Pro	tct Ser	cta Leu	aaa Lys 300	cgc Arg	ttg Leu	aag Lys	caa Gln	912
cgg Arg 305	ata Ile	ata Ile	gca Ala	tct Ser	gga Gly 310	cgt Arg	gjà aaa	gaa Glu	tac Tyr	gat Asp 315	gct Ala	gtg Val	ttt Phe	atg Met	tct Ser 320	960
Gly 999	agt Ser	gga Gly	agc Ser	act Thr 325	att Ile	atc Ile	ggt Gly	att Ile	ggt Gly 330	tca Ser	cca Pro	gat Asp	cct Pro	cct Pro 335	caa Gln	1008
ttt Phe	ata Ile	tat Tyr	gat Asp 340	gat Asp	gaa Glu	gaa Glu	tac Tyr	aag Lys 345	aac Asn	gtg Val	ttc Phe	ttg Leu	tct Ser 350	gaa Glu	gca Ala	1056
aac Asn	ttt Phe	atg Met 355	acg Thr	cgt Arg	gag Glu	gct Ala	aat Asn 360	gaa Glu	tgg Trp	tac Tyr	aaa Lys	gaa Glu 365	cct Pro	gct Ala	tct Ser	1104
gca Ala	aat Asn 370	Ala	act Thr	acc Thr	tca Ser	tcc Ser 375	Ala	gaa Glu	tct Ser	cgc Arg	atg Met 380	Asp	ttc Phe	caa Gln	tga	1152

<210> 64

<211> 383

<212> PRT

<213> Arabidopsis thaliana

<400> 64

Met Ala Thr Ala Ser Pro Pro Phe Ile Ser Thr Leu Ser Phe Thr His 1 10 15

Ser Ser Phe Lys Thr Ser Ser Ser Ser Ser Phe Ser Pro Lys Leu Leu 20 25 30

Arg Pro Leu Leu Ser Phe Ser Val Lys Ala Ser Arg Lys Gln Val Glu 35 40 45

Ile Val Phe Asp Pro Asp Glu Arg Leu Asn Lys Ile Gly Asp Asp Val 50 55 60

Asp Lys Glu Ala Pro Leu Ser Arg Leu Lys Leu Phe Ser Pro Cys Lys 65 70 75 80

Ile Asn Val Phe Leu Arg Ile Thr Gly Lys Arg Glu Asp Gly Phe His 85 90 95

Asp Leu Ala Ser Leu Phe His Val Ile Ser Leu Gly Asp Thr Ile Lys 100 105 110

- Phe Ser Leu Ser Pro Ser Lys Ser Lys Asp Arg Leu Ser Thr Asn Val 115 120 125
- Gln Gly Val Pro Val Asp Gly Arg Asn Leu Ile Ile Lys Ala Leu Asn 130 135 140
- Leu Tyr Arg Lys Lys Thr Gly Ser Asn Arg Phe Phe Trp Ile His Leu 145 150 155 160
- Asp Lys Lys Val Pro Thr Gly Ala Gly Leu Gly Gly Gly Ser Ser Asn 165 170 175
- Ala Ala Thr Ala Leu Trp Ala Ala Asn Glu Leu Asn Gly Gly Leu Val 180 185 190
- Thr Glu Asn Glu Leu Gln Asp Trp Ser Ser Glu Ile Gly Ser Asp Ile 195 200 205
- Pro Phe Phe Phe Ser His Gly Ala Ala Tyr Cys Thr Gly Arg Gly Glu 210 215 220
- Ile Val Gln Asp Leu Pro Pro Pro Phe Pro Leu Asp Leu Pro Met Val 225 230 235 240
- Leu Ile Lys Pro Arg Glu Ala Cys Ser Thr Ala Glu Val Tyr Lys Arg 245 250 255
- Leu Arg Leu Asp Gln Thr Ser Asn Ile Asn Pro Leu Thr Leu Leu Glu 260 265 270
- Asn Val Thr Ser Asn Gly Val Ser Gln Ser Ile Cys Val Asn Asp Leu 275 280 285
- Glu Pro Pro Ala Phe Ser Val Leu Pro Ser Leu Lys Arg Leu Lys Gln 290 295 300
- Arg Ile Ile Ala Ser Gly Arg Gly Glu Tyr Asp Ala Val Phe Met Ser 305 310 315 320
- Gly Ser Gly Ser Thr Ile Ile Gly Ile Gly Ser Pro Asp Pro Pro Gln 325 330 335

Phe Ile Tyr Asp Asp Glu Glu Tyr Lys Asn Val Phe Leu Ser Glu Ala 340 345 350

Asn Phe Met Thr Arg Glu Ala Asn Glu Trp Tyr Lys Glu Pro Ala Ser 355 360 365

Ala Asn Ala Thr Thr Ser Ser Ala Glu Ser Arg Met Asp Phe Gln 370 375 380

<210> 65

<211> 1152

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1152)

<223> 43301

caa gat aac tgg cgg cac aac gct tta ccc gca caa cga gtg ttt gca 144 Gln Asp Asn Trp Arg His Asn Ala Leu Pro Ala Gln Arg Val Phe Ala

gat gtt gca aag gcc atc tca aag ttc gag cct gtc act gtc tgt gct

Asp Val Ala Lys Ala Ile Ser Lys Phe Glu Pro Val Thr Val Cys Ala

50 55 60

agc cct gct cag tgg gaa aat gca agg aaa cag ctt cca gag gat ata 240 Ser Pro Ala Gln Trp Glu Asn Ala Arg Lys Gln Leu Pro Glu Asp Ile

aga gtt gtt gag atg agc atg aat gat tct tgg ttc cgc gac tct gga 288
Arg Val Val Glu Met Ser Met Asn Asp Ser Trp Phe Arg Asp Ser Gly
85 90 95

cca act ttc att gta cgg aaa aga cca gta aag ctc agt tct ctt aac 336

Pro	Thr	Phe	Ile 100	Val	Arg	Lys	Arg	Pro 105	Val	Lys	Leu	Ser	Ser 110	Leu	Asn	
					atc Ile											384
					aat Asn										cga Arg	432
					gaa Glu 150											480
	_				atc Ile		_	_								528
					ttg Leu											576
					gaa Glu											624
atc Ile	tgg Trp 210	ctt Leu	cct Pro	cgt Arg	ggt Gly	ctt Leu 215	tac Tyr	gly aaa	gat Asp	gag Glu	gac Asp 220	aca Thr	aat Asn	ggt Gly	cac His	672
	Asp				tgc Cys 230										tct Ser 240	720
					acc Thr										Ala	768
				Ser										Ile	caa Gln	816
								Pro					Glu		gaa Glu	864
												Arg			Gly Ggg	912
	Arg										Ile				gga Gly 320	960
ata Ile	atc Ile	gct Ala	cca Pro	caa Gln 325	ttc Phe	ggt Gly	gat Asp	cca Pro	ata Ile 330	Arg	gat Asp	aaa Lys	ı gaa s Glu	gcg Ala 335	g att a Ile	1008
cgt	gtc	ctc	tcg	gat	aca	ttt	cct	cat	cac	tcg	gtt	gts	g gga	ato	gag	1056

Arg Val Leu Ser Asp Thr Phe Pro His His Ser Val Val Gly Ile Glu 340 345 350

aat gca aga gag atc gtt ctt gct gga gga aac att cat tgt ata acg 1104 Asn Ala Arg Glu Ile Val Leu Ala Gly Gly Asn Ile His Cys Ile Thr 355 360 365

cag cag cag ccg gcg gag cct act tcc gtc gcc gaa aat ggc cac tga 1152 Gln Gln Gln Pro Ala Glu Pro Thr Ser Val Ala Glu Asn Gly His 370 375 380

<210> 66

<211> 383

<212> PRT

<213> Arabidopsis thaliana

<400> 66

Met Glu Glu Ser Arg Glu Ser Pro Ala Glu His Gly Tyr Tyr Met Pro 1 5 10 15

Ala Glu Trp Asp Ser His Ala Gln Thr Trp Ile Gly Trp Pro Glu Arg
20 25 30

Gln Asp Asn Trp Arg His Asn Ala Leu Pro Ala Gln Arg Val Phe Ala 35 40 45

Asp Val Ala Lys Ala Ile Ser Lys Phe Glu Pro Val Thr Val Cys Ala 50 60

Ser Pro Ala Gln Trp Glu Asn Ala Arg Lys Gln Leu Pro Glu Asp Ile 70 75 80

Arg Val Val Glu Met Ser Met Asn Asp Ser Trp Phe Arg Asp Ser Gly 85 90 95

Pro Thr Phe Ile Val Arg Lys Arg Pro Val Lys Leu Ser Ser Leu Asn 100 105 110

Arg Asn Ile Ala Gly Ile Asp Trp Asn Phe Asn Ala Trp Gly Gly Ala 115 120 125

Asn Asp Gly Cys Tyr Asn Asp Trp Ser His Asp Leu Leu Val Ser Arg 130 135 140

Lys Ile Leu Ala Leu Glu Arg Ile Pro Arg Phe Gln His Ser Met Ile 145 150 155 160

Leu Glu Gly Gly Ser Ile His Val Asp Gly Glu Gly Thr Cys Leu Val
165 170 175

Thr Glu Glu Cys Leu Leu Asn Lys Asn Arg Asn Pro His Met Ser Lys 180 185 190

Glu Gln Ile Glu Glu Glu Leu Lys Lys Tyr Leu Gly Val Gln Ser Phe 195 200 205

Ile Trp Leu Pro Arg Gly Leu Tyr Gly Asp Glu Asp Thr Asn Gly His 210 215 220

Ile Asp Asn Met Cys Cys Phe Ala Arg Pro Gly Val Val Leu Leu Ser 225 230 235 240

Trp Thr Asp Asp Glu Thr Asp Pro Gln Tyr Glu Arg Ser Val Glu Ala 245 250 255

Leu Ser Val Leu Ser Asn Ser Ile Asp Ala Arg Gly Arg Lys Ile Gln
260 265 270

Val Ile Lys Leu Tyr Ile Pro Glu Pro Leu Tyr Met Thr Glu Glu Glu 275 280 285

Ser Ser Gly Ile Thr Gln Asp Gly Glu Ala Ile Pro Arg Leu Ala Gly 290 295 300

Thr Arg Leu Ala Ala Ser Tyr Val Asn Phe Tyr Ile Ala Asn Gly Gly 305 310 315 320

Ile Ile Ala Pro Gln Phe Gly Asp Pro Ile Arg Asp Lys Glu Ala Ile 325 330 335

Arg Val Leu Ser Asp Thr Phe Pro His His Ser Val Val Gly Ile Glu 340 345 350

Asn Ala Arg Glu Ile Val Leu Ala Gly Gly Asn Ile His Cys Ile Thr 355 360 365

Gln Gln Gln Pro Ala Glu Pro Thr Ser Val Ala Glu Asn Gly His 370 375 380

:210>	67	,															-
(211>	19	35															
<212>	D1	JA															
<213>	. Ai	cabi	dops	is th	nalia	ına											
<220:	>																
<221:	> C	DS															
<222:	> (1)	(193	5)													
<223	> 4	6250															
<400 atg Met 1	act	agt	ctt Leu	ctt Leu 5	cga Arg	tcc Ser	tta Leu	atc Ile	ctt Leu 10	ttg Leu	cta Leu	atc Ile	var	caa Gln 15	tca Ser		48
ttt Phe	ttg Leu	gtt Val	gcg Ala 20	atc Ile	gct Ala	ttc Phe	gjå aaa	tcg Ser 25	aaa Lys	gaa Glu	gtt Val	gaa Glu	gaa Glu 30	ttc Phe	agc Ser		96
gag Glu	gca Ala	ttg Leu 35	ctc Leu	ttg Leu	aag Lys	cct Pro	tta Leu 40	cct Pro	gat Asp	cga Arg	aaa Lys	gtt Val 45	tta Leu	gct Ala	cac His	:	144
ttc Phe	cac His 50	ttc Phe	gag Glu	aac Asn	cga Arg	gct Ala 55	cct Pro	ccg Pro	ser Ser	aac Asn	tcc Ser 60	cat His	ggc	cgc Arg	cat His		192
cac His 65	cat His	ctc Leu	ttc Phe	ccg Pro	aaa Lys 70	gct Ala	att Ile	tct Ser	cag Gln	ttg Leu 75	gtt Val	cag Gln	aag Lys	ttt Phe	Arg 80		240
gtc Val	aag Lys	gag Glu	atg Met	gag Glu 85	tta Leu	tct Ser	ttt Phe	act Thr	cag Gln 90	ggt Gly	cga Arg	tgg Trp	aac Asn	cat His 95	gaa Glu		288
cat His	tgg Trp	gga Gly	gga Gly 100	ttt Phe	gac Asp	cct Pro	cta Leu	tca Ser 105	Ser	atg Met	aat Asn	gcg Ala	aag Lys 110	Pro	gtt Val		336
ggt Gly	gtg Val	gag Glu 115	Leu	tgg Trp	gct Ala	gtg Val	ttt Phe 120	Asp	gtt Val	cct Pro	cag Gln	tct Ser 125	GIII	gtt Val	gat Asp		384
act Thr	tct Ser	Trp	aag Lys	aac Asn	tta Leu	act Thr 135	His	gca Ala	cto Lei	g tca ı Ser	140	пес	tto Phe	tgt Cy:	gct Ala		432
tco Ser 145	: Ile	aat Asr	ttt Phe	cta Leu	gaa Glu 150	Ser	tco Sei	c act	tca Se:	a tat r Ty:	c Als	gct Ala	cct Pro	t ac	a tgg r Trp 160		480

gga Gly	ttt Phe	gga Gly	Pro	aat Asn 165	tct Ser	gac Asp	aag Lys	Leu	agg Arg 170	tat Tyr	ggt Gly	tca Ser	Leu	cca Pro 175	cgt Arg	528
gaa Glu	gct Ala	gtt Val	tgt Cys 180	act Thr	gag Glu	aac Asn	ttg Leu	acc Thr 185	cca Pro	tgg Trp	cta Leu	aag Lys	tta Leu 190	ctt Leu	cct Pro	576
tgt Cys	aga Arg	gat Asp 195	aag Lys	gat Asp	ggt Gly	att Ile	tct Ser 200	gcg Ala	tta Leu	atg Met	aat Asn	agg Arg 205	cca Pro	tct Ser	gtt Val	624
tac Tyr	aga Arg 210	GJÀ 888	ttt Phe	tat Tyr	cat His	tct Ser 215	cag Gln	aga Arg	ttg Leu	cat His	tta Leu 220	tcc Ser	acg Thr	gtt Val	gaa Glu	672
tct Ser 225	Gly	caa Gln	gag Glu	gga Gly	ttg Leu 230	ggt Gly	tct Ser	ggt Gly	ata Ile	gtg Val 235	ctg Leu	gag Glu	cag Gln	acg Thr	ctt Leu 240	720
act Thr	gtt Val	gtt Val	ctt Leu	cag Gln 245	cct Pro	gag Glu	act Thr	act Thr	tct Ser 250	gtt Val	gaa Glu	tca Ser	aat Asn	atg Met 255	cag Gln	768
cca Pro	agt Ser	tgg Trp	tcc Ser 260	ctc Leu	agc Ser	tcc Ser	ctc Leu	ttt Phe 265	GJA aaa	aga Arg	caa Gln	gtt Val	gtt Val 270	Gly	aga Arg	816
tgt Cys	gtt Val	ctt Leu 275	Ala	aag Lys	tca Ser	agt Ser	aat Asn 280	. Val	tat Tyr	ctt Leu	caa Gln	ttg Leu 285	GIU	ggt Gly	ctt Leu	864
cti Lei	ggt 1 Gly 290	Tyr	gaa Glu	tca Ser	aaa Lys	aac Asn 295	Val	gat Asp	aca Thr	gaa Glu	ata Ile 300	Glu	gca Ala	cac His	caa Gln	912
ct: Le: 30:	ı Trg	g aag Lys	aat Asn	gca Ala	gag Glu 310	Phe	gaa Glu	ttg Lev	tct Ser	ctt Lev 315	ı Lys	g cca s Pro	gag Glu	g agg n Arg	ggtt gVal 320	960
at Il	t cga e Arg	a gaa g Gli	a ago 1 Ser	tgo Cys 325	Ser	ttt Phe	ctt Lev	ttt 1 Phe	att 11e 330	e Phe	e Asp	t att p Ile	gao Asp	2 aaa 2 Lys 33!	a tca s Ser	1008
ag Se	t gad r Asj	c ago p Sei	gag Glu 340	Pro	ttt Phe	gat Asp	ctt Lei	gg Gly 34!	, Per	c act	t tgg r Tr	g aaq p Ly:	g cgt s Arg 35	g Pro	c tca o Ser	1056
aa Ly	g tg s Tr	g tca p Sei 35!	r Cys	caa Glr	a caa n Glr	a gct a Ala	cca Pro 36	o Le	a cad	c tc s Se	g ag r Se	t cg r Ar 36	g vn	t tt e Le	g atg u Met	1104
G1 gg	a ag y Se 37	r Gl	g aad y Asi	e gaa n Glu	a aga u Arg	a ggt g Gl; 37	y Al	a ata a Il	a gc e Al	c at a Il	c tt e Le 38	и ье	a aa u Ly	a gc s Al	g aca a Thr	1152
ga G] 38	u Se	t ca r Gl	g gag n Gl	g aag u Ly	g tta s Le 39	u Se	a gg r Gl	c ag y Ar	a ga g As	t ct p Le 39	u Th	t aa Ir As	t gg n Gl	c ca y Gl	a tgt n Cys 400	,

aca ata aaa gca aat atc ttc cag att ttc cca tgg tat att aag gtt Thr Ile Lys Ala Asn Ile Phe Gln Ile Phe Pro Trp Tyr Ile Lys Val 405 410 415	1248
tat tat cat act cta caa atc ttt gtg gat caa caa cag aag aca gac Tyr Tyr His Thr Leu Gln Ile Phe Val Asp Gln Gln Gln Lys Thr Asp 420 425 430	1296
agt gag gtc tta aag aag atc aat gtc tca cca tct acg gat aag gtg Ser Glu Val Leu Lys Lys Ile Asn Val Ser Pro Ser Thr Asp Lys Val 435 440 445	1344
tca tct ggc atg atg gag atg atg ttg gaa cta cca tgt gaa gtg aaa Ser Ser Gly Met Met Glu Met Met Leu Glu Leu Pro Cys Glu Val Lys 450 455 460	1392
tct gta gcc ata tca att gaa tat gat aag ggt ttt ctg cat ata gat Ser Val Ala Ile Ser Ile Glu Tyr Asp Lys Gly Phe Leu His Ile Asp 470 475 480	1440
gaa tat cct cct gat gct aat caa gga ttc gac att cca tcg gct ttg Glu Tyr Pro Pro Asp Ala Asn Gln Gly Phe Asp Ile Pro Ser Ala Leu 495	1488
ata agc ttc ccc gat cat cat gct agt tta gat ttc caa gaa gag ctc Ile Ser Phe Pro Asp His His Ala Ser Leu Asp Phe Gln Glu Glu Leu 500 505 510	1536
agc aac tcg ccc tta tta tca agt tta aag gaa aaa tcc tta gta cgc Ser Asn Ser Pro Leu Leu Ser Ser Leu Lys Glu Lys Ser Leu Val Arg 515 520 525	1584
tct tac aca gaa gta ttg ctc gta cct ttg aca acc cct gat ttt agc Ser Tyr Thr Glu Val Leu Leu Val Pro Leu Thr Thr Pro Asp Phe Ser 530 535 540	1632
atg cct tac aac gta atc acg atc aca tgc acc atc ttc gca ttg tat Met Pro Tyr Asn Val Ile Thr Ile Thr Cys Thr Ile Phe Ala Leu Tyr 545 550 555 560	1680
ttt gga tca ttg cta aat gtt cta cgt aga cga att ggt gaa gaa gaa Phe Gly Ser Leu Leu Asn Val Leu Arg Arg Arg Ile Gly Glu Glu 565 570 575	1728
agg ttt ctc aaa agc caa gca gga aag aaa aca ggt ggg ctt aag cag Arg Phe Leu Lys Ser Gln Ala Gly Lys Lys Thr Gly Gly Leu Lys Gln 580 585	1776
tta tta tcg aga atc aca gcc aag att aga ggg aga cca att gaa gca Leu Leu Ser Arg Ile Thr Ala Lys Ile Arg Gly Arg Pro Ile Glu Ala 595 600 605	1824
cca tca tca tca gaa gct gaa tct tcg gtc ttg tct agt aaa ctt atc Pro Ser Ser Ser Glu Ala Glu Ser Ser Val Leu Ser Ser Lys Leu Ile 610 615 620	1872
tta aaa atc ata tta gtt gca gga gct gct gca gcg tgg caa tat ttt Leu Lys Ile Ile Leu Val Ala Gly Ala Ala Ala Ala Trp Gln Tyr Phe 625 630 635	1920

tcc acg gac gag tag Ser Thr Asp Glu 1935

<210> 68

<211> 644

<212> PRT

<213> Arabidopsis thaliana

<40.0> 68

Met Ala Ser Leu Leu Arg Ser Leu Ile Leu Leu Leu Ile Val Gln Ser 1 5 10 15

Phe Leu Val Ala Ile Ala Phe Gly Ser Lys Glu Val Glu Glu Phe Ser 20 25 30

Glu Ala Leu Leu Lys Pro Leu Pro Asp Arg Lys Val Leu Ala His 35 40 45

Phe His Phe Glu Asn Arg Ala Pro Pro Ser Asn Ser His Gly Arg His 50 55 60

His His Leu Phe Pro Lys Ala Ile Ser Gln Leu Val Gln Lys Phe Arg
65 70 75 80

Val Lys Glu Met Glu Leu Ser Phe Thr Gln Gly Arg Trp Asn His Glu 85 90 95

His Trp Gly Gly Phe Asp Pro Leu Ser Ser Met Asn Ala Lys Pro Val

Gly Val Glu Leu Trp Ala Val Phe Asp Val Pro Gln Ser Gln Val Asp 115 120 125

Thr Ser Trp Lys Asn Leu Thr His Ala Leu Ser Gly Leu Phe Cys Ala 130 135 140

Ser Ile Asn Phe Leu Glu Ser Ser Thr Ser Tyr Ala Ala Pro Thr Trp 145 150 155 160

Gly Phe Gly Pro Asn Ser Asp Lys Leu Arg Tyr Gly Ser Leu Pro Arg 165 170 175 Glu Ala Val Cys Thr Glu Asn Leu Thr Pro Trp Leu Lys Leu Leu Pro 180 185 190

- Cys Arg Asp Lys Asp Gly Ile Ser Ala Leu Met Asn Arg Pro Ser Val 195 200 205
- Tyr Arg Gly Phe Tyr His Ser Gln Arg Leu His Leu Ser Thr Val Glu 210 215 220
- Ser Gly Gln Glu Gly Leu Gly Ser Gly Ile Val Leu Glu Gln Thr Leu 225 230 235 240
- Thr Val Val Leu Gln Pro Glu Thr Thr Ser Val Glu Ser Asn Met Gln 245 250 255
- Pro Ser Trp Ser Leu Ser Ser Leu Phe Gly Arg Gln Val Val Gly Arg 260 265 270
- Cys Val Leu Ala Lys Ser Ser Asn Val Tyr Leu Gln Leu Glu Gly Leu 275 280 285
- Leu Gly Tyr Glu Ser Lys Asn Val Asp Thr Glu Ile Glu Ala His Gln 290 295 300
- Leu Trp Lys Asn Ala Glu Phe Glu Leu Ser Leu Lys Pro Glu Arg Val 305 310 315 320
- Ile Arg Glu Ser Cys Ser Phe Leu Phe Ile Phe Asp Ile Asp Lys Ser 325 330 335
- Ser Asp Ser Glu Pro Phe Asp Leu Gly Leu Thr Trp Lys Arg Pro Ser 340 345 350
- Lys Trp Ser Cys Gln Gln Ala Pro Leu His Ser Ser Arg Phe Leu Met 355 360 365
- Gly Ser Gly Asn Glu Arg Gly Ala Ile Ala Ile Leu Leu Lys Ala Thr 370 375 380
- Glu Ser Gln Glu Lys Leu Ser Gly Arg Asp Leu Thr Asn Gly Gln Cys 385 390 395 400
- Thr Ile Lys Ala Asn Ile Phe Gln Ile Phe Pro Trp Tyr Ile Lys Val 405 410 415

Tyr Tyr His Thr Leu Gln Ile Phe Val Asp Gln Gln Gln Lys Thr Asp 420 425 430

Ser Glu Val Leu Lys Lys Ile Asn Val Ser Pro Ser Thr Asp Lys Val

Ser Ser Gly Met Met Glu Met Met Leu Glu Leu Pro Cys Glu Val Lys 450 455 460

Ser Val Ala Ile Ser Ile Glu Tyr Asp Lys Gly Phe Leu His Ile Asp 465 470 475 480

Glu Tyr Pro Pro Asp Ala Asn Gln Gly Phe Asp Ile Pro Ser Ala Leu 485 490 495

Ile Ser Phe Pro Asp His His Ala Ser Leu Asp Phe Gln Glu Glu Leu 500 505 510

Ser Asn Ser Pro Leu Leu Ser Ser Leu Lys Glu Lys Ser Leu Val Arg 515 520 525

Ser Tyr Thr Glu Val Leu Leu Val Pro Leu Thr Thr Pro Asp Phe Ser 530 535 540

Met Pro Tyr Asn Val Ile Thr Ile Thr Cys Thr Ile Phe Ala Leu Tyr 545 550 555 560

Phe Gly Ser Leu Leu Asn Val Leu Arg Arg Arg Ile Gly Glu Glu Glu 565 570 575

Arg Phe Leu Lys Ser Gln Ala Gly Lys Lys Thr Gly Gly Leu Lys Gln 580 585 590

Leu Leu Ser Arg Ile Thr Ala Lys Ile Arg Gly Arg Pro Ile Glu Ala 595 600 605

Pro Ser Ser Ser Glu Ala Glu Ser Ser Val Leu Ser Ser Lys Leu Ile 610 615 620

Leu Lys Ile Ile Leu Val Ala Gly Ala Ala Ala Ala Trp Gln Tyr Phe 625 630 635 640

Ser Thr Asp Glu

<210>	69																
<211>	21	.0															
<212>	DI.	ΙA															
<213>	Aı	abio	aqof:	is th	nalia	ana											
<220>								•								٠	
<221>	CI	ာင															
<222>	(1)	(210)													
<223>	4	7050	Α														
<400> atg g		9	aa.	aas	cat	aac	gga	aat	ata	act	tac	aag	gga	gtc	act		48
Met G	lly	Gly	Gly	Gly 5	His	Gly	Gly	Gly	Ile 10	Thr	Tyr	Lys	Gly	Val 15	Thr	•	
1 gtc c		act	ccc	224	act	taa	cac	acc	gtc	acc	gga	aaa	ggc	ttg	tgc		96
gtc c	lis	Thr	Pro 20	Lys	Thr	Trp	His	Thr 25	Val	Thr	Gly _.	Lys	Gly	Leu	Cys		
gcc g	atit	atq	.	ttc	tgg	att	ctg	tac	agg	gca	aag	caa	gat	ggt	cct		144
gcc c	/al	Met 35	Trp	Phe	Trp	Ile	Leu 40	Tyr	Arg	Ala	Lys	G1n 45	Asp	GTĀ	PLO		
gta g	att	atg	gga	tgg	agg	cac	cct	tgg	gat	ggt	cat	ggt	gat	cac	ggt		192
Val ¹	Val 50	Met	Gly	Trp	Arg	His 55	Pro	Trp	Asp	Gly	His 60	GIĀ	Asp	HIS	GIY		
cac	gga	gat	cat	cac	tag												210
His 65	Gly	Asp	His	His	1					٠							
<210	>	70															
<211	.>	69															
<212	?>	PRT															
<213	3>	Aral	bido	psis	tha:	lian	a										
															•		
<400		70						=			m-	T-	ים מז	v 172	ገ ጥሎ [.]	r	
Met 1	G1	y Gl	y Gl	y Gl 5	y Hi	s Gl	y Gl	y G1	y II 10	e Th	ır Ty	r ny	e Gl	.y va 15	1 Th	-	

Val His Thr Pro Lys Thr Trp His Thr Val Thr Gly Lys Gly Leu Cys 20 25 30

Ala Val Met Trp Phe Trp Ile Leu Tyr Arg Ala Lys Gln Asp Gly Pro 35 40 45

Val Val Met Gly Trp Arg His Pro Trp Asp Gly His Gly Asp His Gly 50 55 60

His Gly Asp His His 65

<210> 71

<211> 978

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(978)

<223> 52949A

<400 atg Met 1	act	tct	tct Ser	tct Ser 5	tgt Cys	ttc Phe	ctt Leu	cgc Arg	tcg Ser 10	att Ile	ctc Leu	ttc Phe	tct Ser	tct Ser 15	cct Pro	48
act Thr	aac Asn	ctt Leu	cgt Arg 20	tca Ser	aat Asn	cac His	cat His	ctc Leu 25	ccc Pro	act Thr	ttc Phe	ttc Phe	ccc Pro 30	aag Lys	aat Asn	96
tat Tyr	ctc Leu	att Ile 35	tgc Cys	tct Ser	cat His	tcc Ser	act Thr 40	tct Ser	tct Ser	cgc Arg	ttc Phe	gaa Glu 45	tcg Ser	ctc Leu	tcg Ser	144
gtt Val	tca Ser 50	tcg Ser	atc Ile	gga Gly	act Thr	gga Gly 55	tct Ser	acc Thr	aag Lys	aaa Lys	tca Ser 60	tcc Ser	gat Asp	act Thr	cgg Arg	192
aga Arg 65	aag Lys	gta Val	aag Lys	agc Ser	atg Met 70	gct Ala	acg Thr	aca Thr	aat Asn	ata Ile 75	gga Gly	aag Lys	gag Glu	gag Glu	aag Lys 80	240
aaa Lys	aga Arg	gtc Val	gag Glu	att Ile 85	tat Tyr	gat Asp	ctc Leu	gaa Glu	gag Glu 90	aat Asn	tta Leu	gtg Val	att	gat Asp 95	ttg Leu	288

gct (aaa Lys	ttc Phe	aca Thr 100	gca Ala	gat Asp	ctc Leu	tcc Ser	gat Asp 105	ь г	ag t ys I	ctt Phe	tgt Cys	aaa Lys	ga Gl 11	. u -	aga Arg	gg gg	c Y	336
gct Ala	ttc Phe	acc Thr 115	gtc Val	gtt Val	gtc Val	tcc Ser	ggt Gly 120	GIZ	y S	ct (er :	ctc Leu	atc Ile	ааа Буя 12		er :	ctc Leu	cg Ar	.a a	384
aaa Lys	tta Leu 130	gta Val	gaa Glu	tct Ser	cct Pro	tac Tyr 135	Val	ga ¹ . As	t t p S	ct er	ata Ile	gat Asp 140	11	g g(ca la	agg Arg	te	.b ia	432
cat His 145	ttt Phe	ttc Phe	tgg Trp	gtt Val	gac Asp 150	GIU	aga Arg	a gt g Va	t g l V	tt al	ccc Pro 155	aag Lys	, aa : As	t c	ac is	gat Asp		at sp 60	480
agc Ser	aac Asn	tat Tyr	aaa Lys	cto Lev 165	ı Ala	tat Tyi	gat Asj	t ag p Se	I. I	tt Phe L70	cta Leu	tc: Se:	aa c Ly	g g s V	ta al	cca Pro 175		tt le	528
ccg Pro	cct	gga Gly	aat Asr 180	ı Va.	a tat L Tyr	gca Ala	a at a Il	c aa e As 18	sn (gaa 3lu	gcc Ala	cto Le	c to u Se		jct la 190	gag	9 1 A	ct . la	576
gca Ala	gcg	g gat Asi 195	As ₁	tae p Ty:	c gag r Gl	g ac u Th	c tg r Cy 20	S Le	c eu	aaa Lys	cat	tt Le	u v	tc a al <i>I</i> 05	aac Asn	Thi	c a	ac sn	624
att Ile	cto Lev	c cg [†]	g Va	a tc l Se	t ga r Gl	a to u Se 21	r Tr	t g	gc ly	ttt Phe	Pro	2 aa 5 Ly 22	5 F	tt q	gat Asp	ct: Le	c a u N	itg Met	672
ctt Lei 225	ı Le	a gg u Gl	t at y Me	g gg t Gl	a cc y Pr 23	o As	t gg	gt c ly H	at is	gtg Val	gc: . Al:	a se	a ter L	ta eu	ttc Phe	cc Pr	•	999 31y 240	720
cat Hi:	: gg : Gl	t ct y Le	c tg u Cy	c aa s As 24	n Gl	ıg aç .u Se	jc aa er L	ag a ys L	aa ys	tgg Trp 250	, va	a gi 1 Va	al S	ca Ser	ato Ile	to Se 25		gac Asp	768
tc Se	t cc r Pr	a aa o Ly	a co s Pr 26	o Pi	g to	et ga er G	ag a lu A	rg 1	tc 11e 265	acc Th	c tt r Ph	.c a le T	cg t hr I	tc Phe	ecg Pro 27		c al	atc Ile	816
aa As	c to n Se	a to er Se 27	er Al	ea ca La Hi	at gi is Va	ca g al A	la L	ta q eu V 80	gtt Val	gt Va	t to 1 Cy	ıc g vs G	TÀ	tct Ser 285	G1	g aa y Ly	aa ys	gct Ala	864
ga G1	u A.	ct gt la Va 90	g ga al G	ag g lu A	ca g la A	la L	ta a eu I 95	ag i	aag Lys	ac Th	t gg r G	ry F	at sn	gta Val	cc Pr	a c	ct ro	gct Ala	912
gg 3 (Ly S	ct g er V	tt t al S	ct g er A	la G	aa g lu A 10	ac g	gag Slu	ttg Lev	g gt . Va	TT T	gg t rp 1 15	tc Phe	ctg Leu	ga As	ıc a sp L	aa ys	cca Pro 320	960
go A.	ca t la S	ct t er S	cc a er L	ys I	tc t eu 25	aa													978

<210> 72

<211> 325

<212> PRT

<213> Arabidopsis thaliana

<400> 72

Met Ala Ser Ser Ser Cys Phe Leu Arg Ser Ile Leu Phe Ser Ser Pro 1 5 10 15

Thr Asn Leu Arg Ser Asn His His Leu Pro Thr Phe Phe Pro Lys Asn 20 25 30

Tyr Leu Ile Cys Ser His Ser Thr Ser Ser Arg Phe Glu Ser Leu Ser 35 40 45

Val Ser Ser Ile Gly Thr Gly Ser Thr Lys Lys Ser Ser Asp Thr Arg 50 55 60

Arg Lys Val Lys Ser Met Ala Thr Thr Asn Ile Gly Lys Glu Glu Lys 65 70 75 80

Lys Arg Val Glu Ile Tyr Asp Leu Glu Glu Asn Leu Val Ile Asp Leu 85 90 95

Ala Lys Phe Thr Ala Asp Leu Ser Asp Lys Phe Cys Lys Glu Arg Gly
100 105 110

Ala Phe Thr Val Val Val Ser Gly Gly Ser Leu Ile Lys Ser Leu Arg 115 120 125

Lys Leu Val Glu Ser Pro Tyr Val Asp Ser Ile Asp Trp Ala Arg Trp 130 135 140

His Phe Phe Trp Val Asp Glu Arg Val Val Pro Lys Asn His Asp Asp 145 150 155 160

Ser Asn Tyr Lys Leu Ala Tyr Asp Ser Phe Leu Ser Lys Val Pro Ile 165 170 175

Pro Pro Gly Asn Val Tyr Ala Ile Asn Glu Ala Leu Ser Ala Glu Ala 180 185 190

Ala Ala Asp Asp Tyr Glu Thr Cys Leu Lys His Leu Val Asn Thr Asn 195 200 205

Ile Leu Arg Val Ser Glu Ser Thr Gly Phe Pro Lys Phe Asp Leu Met 210 215 220

Leu Leu Gly Met Gly Pro Asp Gly His Val Ala Ser Leu Phe Pro Gly 225 230 235 240

His Gly Leu Cys Asn Glu Ser Lys Lys Trp Val Val Ser Ile Ser Asp 245 250 255

Ser Pro Lys Pro Pro Ser Glu Arg Ile Thr Phe Thr Phe Pro Val Ile 260 265 270

Asn Ser Ser Ala His Val Ala Leu Val Val Cys Gly Ser Gly Lys Ala 275 280 285

Glu Ala Val Glu Ala Ala Leu Lys Lys Thr Gly Asn Val Pro Pro Ala 290 295 300

Gly Ser Val Ser Ala Glu Asp Glu Leu Val Trp Phe Leu Asp Lys Pro 305 310 315 320

Ala Ser Ser Lys Leu 325

<210> 73

<211> 2343

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2343)

<223> 53210A

<400> 73 atg gct cct gct ttg agt aga agt ctc tac aca tct cct ttg act tca

48

Met . 1	Ala	Pro	Ala	Leu 5	Ser	Arg	Ser	Leu	Tyr 10	Thr	Ser	Pro	o Le	u I	hr .5	Ser			
gtt Val	cca Pro	atc Ile	act Thr 20	cct Pro	gtc Val	tct Ser	tct Ser	cgt Arg 25	ctc Leu	tct Ser	cat His	cte	g ag u Ar 30	.g =	igc Ser	tcg Sei	3	96	
ttt Phe	ctc Leu	cca Pro 35	cac His	ggc Gly	ggc	gct Ala	tta Leu 40	aga Arg	acc Thr	ggc Gly	gtt Va]	tc L Se 45	r C	gt a ys S	agc Ser	tg:	b a	144	
aat Asn	ctc Leu 50	gaa Glu	aag Lys	aga Arg	tgt Cys	aac Asn 55	cga Arg	ttc Phe	gcc Ala	gtg Val	aaq Lys 60	g tg s Cy	rs A	ac q	gcc Ala	gc Al	c a	192	
gtg Val 65	gcg Ala	gag Glu	aaa Lys	gag Glu	acc Thr 70	act Thr	gaa Glu	gaa Glu	gly aaa	tca Ser 75	gg Gl	t ga y Gl	ig a lu L	ag ys	ttt Phe	ga Gl 80	u	240	
tac Tyr	caa Gln	gct Ala	gag Glu	gtt Val 85	agt Ser	aga Arg	ttg Leu	ttg Leu	gat Asp 90	tto Lev	g at 1 Il	t gt e Va	al H	at is	agc Ser 95	tt Le	a eu	288	
tac Tyr	agt Ser	cac His	aag Lys	gag Glu	gtg Val	ttt Phe	cto Lev	agg Arg 105	g GIU	cti Lei	t gt u Va	a ag	er P	at sn .10	gca Ala	aç Se	jt er	336	5
gat Asp	gct Ala	ttg Lev 115	ı Asp	aag Lys	g ctg Lev	g agg	tto Phe 120	e Lev	g agt 1 Sei	gt: Va	a ac 1 Th	IL G	ag o lu I 25	ect Pro	tct Ser	tt Le	eu	384	4
ctt Leu	gga Gl ₃	/ As	ggt Gly	Gly Gly	a gat y As <u>r</u>	ctt Leu 135	ı Glı	g att ı Ile	t agg	g at g Il	е гу	ag c /s P 10	ct g	gat Asp	Pro	g A	at sp	43:	2
aac Asr 145	Gl	c aco	c ate	e Thi	c ata r Ila 150	e Th	ga r Asj	t act	t gg r Gl	t at y Il 15	e G.	ga a ly M	itg i	aca Thr	aag Lys	5 G	aa lu 60	48	0
Glı	ı Le	u Il	e As	t tge p Cy: 16	s Le	u Gl	y Th	r Il	e Al 17	a G1 0	n S	er (этХ	THE	17:	5	iys	52	
Pho	e Le	u Ly	s Al 18		u Ly	s Gl	u As	n Ly 18	rs As 5	ъ ге	eu G	ту и	Ala	190))	11 0	3 . Y	57	
Le	u Il	e Gl 19	y Gl 5	g tt n Ph	e Gl	y Va	1 G1 20	.y Pn)0	ie Ty	T Se	er A	ila .	205	пес	. va		114	62	
ga Gl	g aa u Ly 21	rs Va	t gt il Va	t gt il Va	g to il Se	c ac r Th 21	ır Lj	aa ag 7s Se	ge eo er Pi	ec a co L	ys S	er 220	gac Asp	aag Lys	g ca s Gl	a t	tat Tyr		72
Va 22	1 T1	rp Gl	lu Se	eg gt er Va	11 Al 23	a As	sp Se	er Se	er S	er T	yr 1 35	Leu	TTE	AL	g GJ	Lu	240		20
ac	a ga	ac co	et ga	at aa	ac at	t ct	a c	gt c	gt g	ga a	ca	caa	atc	ac	c ti	g.	tat	7	68

Thr	Asp	Pro	Asp	Asn 245	Ile	Leu .	Arg	Arg	Gly 250	Thr	Gln	Ile	Thr	Leu 255	Tyr	
ctg Leu	agg Arg	gag Glu	gat Asp 260	gat Asp	aaa Lys	tac Tyr	gaa Glu	ttt Phe 265	gcg Ala	gag Glu	tct Ser	aca Thr	agg Arg 270	atc Ile	aag Lys	816
aac Asn	ctc Leu	gtg Val 275	aag Lys	aat Asn	tac Tyr	tct Ser	cag Gln 280	ttc Phe	gtt Val	Gly aaa	ttt Phe	cct Pro 285	atc Ile	tat Tyr	aca Thr	864
tgg Trp	cag Gln 290	gag Glu	aaa Lys	tca Ser	agg Arg	act Thr 295	ata Ile	gag Glu	gtc Val	gaa Glu	gag Glu 300	gac Asp	gaa Glu	cca Pro	gtt Val	912
aag Lys 305	gaa Glu	gga Gly	gaa Glu	gag Glu	ggt Gly 310	gag Glu	cca Pro	aag Lys	aaa Lys	aag Lys 315	aag Lys	acc Thr	act Thr	aaa Lys	act Thr 320	960
gag Glu	aag Lys	tat Tyr	tgg Trp	gat Asp 325	tgg Trp	gaa Glu	cta Leu	gcc Ala	aac Asn 330	gag Glu	acc Thr	aaa Lys	ccg	cta Leu 335	tgg Trp	1008
atg Met	cgc Arg	aat Asn	tcg Ser 340	aag Lys	gaa Glu	gtg Val	gaa Glu	aaa Lys 345	Gly	gag Glu	tac	aat Asn	gag Glu 350	PDE	tac Tyr	1056
aaa Lys	aag Lys	gct Ala 355	Phe	aat Asn	gag Glu	ttc Phe	ttg Leu 360	gat Asp	cca Pro	ctt Leu	gct Ala	cac His	Thr	cac His	ttc Phe	1104
aca Thr	act Thr	Glu	ggt Gly	gag Glu	gtt Val	gag Glu 375	Phe	agg	g ago g Ser	att Ile	tto Lei 380	1 Туз	ato Ile	c cci	gly ggg	1152
ato Met	: Gly	cct Pro	ctt Leu	aac Asn	aat Asn 390	Glu	gat Asp	gtt Val	aca L Thr	aac Asr 395	ı Pro	g áaa o Lys	a aca	a aa r Ly	g aac s Asn 400	1200
att Ile	cgt Arg	cto Lev	tac Tyr	gtg Val	. Lys	cgt Arg	gtg Val	ttt Phe	t ato e Ile 410	e Sei	ga As	c ga p As	t tt p Ph	t ga e As 41	t gga p Gly 5	1248
gaq Glı	g ctt ı Let	tto 1 Phe	ccg Pro 420	Arg	tat Tyr	ctg Lev	g ago 1 Sei	tti Pho	e Vai	g aaq l Ly:	s Gl	a gt y Va	t gt 1 Va 43	I As	c tct p Ser	1296
ga Asj	t gat p Asj	t ctt o Lei 43!	ı Pro	ctt Lev	aat 1 Asi	gtt Val	tct Ser 440	c Ar	t gaa g Gl	a ati u Ilo	t ct e Le	c ca u Gl 44	n Gi	a ag u Se	gc aga er Arg	1344
at Il	t gt: e Va 45	l Ar	a ato g Ile	ato e Mei	g aga t Arg	a aag J Lys 459	s Arg	g ct g Le	c at u Il	t ag e Ar	a aa g Ly 46	rs Th	c tt ir Ph	t ga ne As	ic atg sp Met	1392
at Il 46	e Gl	a gaa n Gl	a ato u Ilo	c tci e Se:	t gag r Gli 470	ı Se:	t ga r Gl	a aa u As	c aa n Ly	a ga s Gl 47	u As	it ta sp Ty	ac aa /r Ly	ag aa /s Ly	aa ttc ys Phe 480	
tg	g ga	g aa	c tt	t gg	t ag	a tt	c ct	t aa	a tt	g gg	ıt tç	gt at	t ga	aa g	ac acc	1488

Trp Glu Asn Phe Gly Arg Phe Leu Lys Leu Gly Cys Ile Glu Asp Thr 485 490 495	
ggt aac cac aag cgt atc aca ccg cta ctt aga ttc ttc agt tcc aag Gly Asn His Lys Arg Ile Thr Pro Leu Leu Arg Phe Phe Ser Ser Lys 500 505 510	1536
aat gaa gag gaa ttg aca agc ttg gat gat tat atc gag aac atg gga Asn Glu Glu Geu Thr Ser Leu Asp Asp Tyr Ile Glu Asn Met Gly 515 520 525	1584
gag aac caa aag gcg atc tac tac ctc gca act gat agt ctt aaa agt Glu Asn Gln Lys Ala Ile Tyr Tyr Leu Ala Thr Asp Ser Leu Lys Ser 530 535 540	1632
gcc aag tct gcc cct ttc ttg gag aaa cta atc caa aaa gat atc gag Ala Lys Ser Ala Pro Phe Leu Glu Lys Leu Ile Gln Lys Asp Ile Glu 555 560	1680
gtt cta tat ttg gtt gaa cca atc gat gaa gtt gct att cag aat ttg Val Leu Tyr Leu Val Glu Pro Ile Asp Glu Val Ala Ile Gln Asn Leu 565 570 575	1728
caa acc tac aaa gaa aag aaa ttc gtt gat atc agt aaa gaa gat ttg Gln Thr Tyr Lys Glu Lys Lys Phe Val Asp Ile Ser Lys Glu Asp Leu 580 585 590	1776
gaa ctc gga gat gaa gat gaa gta aag gac agg gaa gcg aaa caa gag Glu Leu Gly Asp Glu Asp Glu Val Lys Asp Arg Glu Ala Lys Gln Glu 595 600 605	1824
ttt aac ctt ctc tgt gac tgg ata aaa cag cag ctc ggt gac aaa gtt Phe Asn Leu Leu Cys Asp Trp Ile Lys Gln Gln Leu Gly Asp Lys Val 610 615 620	1872
gca aaa gtc caa gtc tca aac cgt ttg agc tct tct cct tgt gtg ctt Ala Lys Val Gln Val Ser Asn Arg Leu Ser Ser Pro Cys Val Leu 625 630 635 640	1920
gtc tct ggc aaa ttc ggg tgg tca gct aat atg gaa agg cta atg aag Val Ser Gly Lys Phe Gly Trp Ser Ala Asn Met Glu Arg Leu Met Lys 645 650 655	1968
gca cag gct ctt gga gac act tca agc ctg gag ttc atg aga ggt agg Ala Gln Ala Leu Gly Asp Thr Ser Ser Leu Glu Phe Met Arg Gly Arg 660 665 670	2016
aga ata cta gag atc aat cca gat cat ccc atc atc aaa gac ttg aac Arg Ile Leu Glu Ile Asn Pro Asp His Pro Ile Ile Lys Asp Leu Asn 675 680 685	2064
gct gct tgt aag aat gca cca gag agc act gaa gca aca aga gtg gtc Ala Ala Cys Lys Asn Ala Pro Glu Ser Thr Glu Ala Thr Arg Val Val 690 695 700	2112
gat ctc ttg tat gac act gct ata ata tca agt gga ttc act cct gat Asp Leu Leu Tyr Asp Thr Ala Ile Ile Ser Ser Gly Phe Thr Pro Asp 705 710 715 720	2160
age ceg gee gag ete ggg aac aag ata tat gag atg atg gea atg geg	2208

Ser Pro Ala Glu Leu Gly Asn Lys Ile Tyr Glu Met Met Ala Met Ala 725 730 735

gtt gga gga aga tgg ggc aga gtt gaa gaa gaa gaa gaa agc tcg act 2256 Val Gly Gly Arg Trp Gly Arg Val Glu Glu Glu Glu Glu Ser Ser Thr 740 745 750

gtg aat gaa gga gat gac aaa agc gga gaa aca gag gta gtt gaa cca 2304 Val Asn Glu Gly Asp Asp Lys Ser Gly Glu Thr Glu Val Val Glu Pro 755 760 765

tct gaa gtg agg gca gag agt gat cct tgg caa gat tga 2343 Ser Glu Val Arg Ala Glu Ser Asp Pro Trp Gln Asp 770 780

<210> 74

<211> 780

<212> PRT

<213> Arabidopsis thaliana

<400> 74

Met Ala Pro Ala Leu Ser Arg Ser Leu Tyr Thr Ser Pro Leu Thr Ser 1 5 10 15

Val Pro Ile Thr Pro Val Ser Ser Arg Leu Ser His Leu Arg Ser Ser 20 25 30

Phe Leu Pro His Gly Gly Ala Leu Arg Thr Gly Val Ser Cys Ser Trp 35 40 45

Asn Leu Glu Lys Arg Cys Asn Arg Phe Ala Val Lys Cys Asp Ala Ala 50 55 60

Val Ala Glu Lys Glu Thr Thr Glu Glu Gly Ser Gly Glu Lys Phe Glu 65 70 75 80

Tyr Gln Ala Glu Val Ser Arg Leu Leu Asp Leu Ile Val His Ser Leu 85 90 95

Tyr Ser His Lys Glu Val Phe Leu Arg Glu Leu Val Ser Asn Ala Ser 100 105 110

Asp Ala Leu Asp Lys Leu Arg Phe Leu Ser Val Thr Glu Pro Ser Leu 115 120 125

Leu Gly Asp Gly Gly Asp Leu Glu Ile Arg Ile Lys Pro Asp Pro Asp 130 135 140

Asn Gly Thr Ile Thr Ile Thr Asp Thr Gly Ile Gly Met Thr Lys Glu 145 150 155 160

Glu Leu Ile Asp Cys Leu Gly Thr Ile Ala Gln Ser Gly Thr Ser Lys 165 170 175

Phe Leu Lys Ala Leu Lys Glu Asn Lys Asp Leu Gly Ala Asp Asn Gly 180 185 190

Leu Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Phe Leu Val Ala 195 200 205

Glu Lys Val Val Val Ser Thr Lys Ser Pro Lys Ser Asp Lys Gln Tyr 210 215 220

Val Trp Glu Ser Val Ala Asp Ser Ser Ser Tyr Leu Ile Arg Glu Glu 225 230 235 240

Thr Asp Pro Asp Asn Ile Leu Arg Arg Gly Thr Gln Ile Thr Leu Tyr 245 250 255

Leu Arg Glu Asp Asp Lys Tyr Glu Phe Ala Glu Ser Thr Arg Ile Lys 260 265 270

Asn Leu Val Lys Asn Tyr Ser Gln Phe Val Gly Phe Pro Ile Tyr Thr 275 280 285

Trp Gln Glu Lys Ser Arg Thr Ile Glu Val Glu Glu Asp Glu Pro Val 290 295 300

Lys Glu Gly Glu Gly Glu Pro Lys Lys Lys Lys Thr Thr Lys Thr 305 310 315

Glu Lys Tyr Trp Asp Trp Glu Leu Ala Asn Glu Thr Lys Pro Leu Trp 325 330 335

Met Arg Asn Ser Lys Glu Val Glu Lys Gly Glu Tyr Asn Glu Phe Tyr 340 345 . 350

Lys Lys Ala Phe Asn Glu Phe Leu Asp Pro Leu Ala His Thr His Phe 355 360 365

Thr Thr Glu Gly Glu Val Glu Phe Arg Ser Ile Leu Tyr Ile Pro Gly 370 375 380

Met Gly Pro Leu Asn Asn Glu Asp Val Thr Asn Pro Lys Thr Lys Asn 385 390 395 400

Ile Arg Leu Tyr Val Lys Arg Val Phe Ile Ser Asp Asp Phe Asp Gly
405 410 415

Glu Leu Phe Pro Arg Tyr Leu Ser Phe Val Lys Gly Val Val Asp Ser 420 425 430

Asp Asp Leu Pro Leu Asn Val Ser Arg Glu Ile Leu Gln Glu Ser Arg 435 440 445

Ile Val Arg Ile Met Arg Lys Arg Leu Ile Arg Lys Thr Phe Asp Met 450 455

Ile Gln Glu Ile Ser Glu Ser Glu Asn Lys Glu Asp Tyr Lys Lys Phe 465 470 475 480

Trp Glu Asn Phe Gly Arg Phe Leu Lys Leu Gly Cys Ile Glu Asp Thr 485 490 495

Gly Asn His Lys Arg Ile Thr Pro Leu Leu Arg Phe Phe Ser Ser Lys 500 505 510

Asn Glu Glu Leu Thr Ser Leu Asp Asp Tyr Ile Glu Asn Met Gly 515 520 525

Glu Asn Gln Lys Ala Ile Tyr Tyr Leu Ala Thr Asp Ser Leu Lys Ser 530 535 540

Ala Lys Ser Ala Pro Phe Leu Glu Lys Leu Ile Gln Lys Asp Ile Glu 545 550 555 560

Val Leu Tyr Leu Val Glu Pro Ile Asp Glu Val Ala Ile Gln Asn Leu 565 570 575

Gln Thr Tyr Lys Glu Lys Lys Phe Val Asp Ile Ser Lys Glu Asp Leu 580 585 590

Glu Leu Gly Asp Glu Asp Glu Val Lys Asp Arg Glu Ala Lys Gln Glu
595 600 605

Phe Asn Leu Leu Cys Asp Trp Ile Lys Gln Gln Leu Gly Asp Lys Val 610 615 620

Ala Lys Val Gln Val Ser Asn Arg Leu Ser Ser Ser Pro Cys Val Leu 625 630 635 640

Val Ser Gly Lys Phe Gly Trp Ser Ala Asn Met Glu Arg Leu Met Lys 645 650 655

Ala Gln Ala Leu Gly Asp Thr Ser Ser Leu Glu Phe Met Arg Gly Arg 660 665 670

Arg Ile Leu Glu Ile Asn Pro Asp His Pro Ile Ile Lys Asp Leu Asn 675 680 685

Ala Ala Cys Lys Asn Ala Pro Glu Ser Thr Glu Ala Thr Arg Val Val 690 695 700

Asp Leu Leu Tyr Asp Thr Ala Ile Ile Ser Ser Gly Phe Thr Pro Asp 705 710 715 720

Ser Pro Ala Glu Leu Gly Asn Lys Ile Tyr Glu Met Met Ala Met Ala 725 730 735

Val Gly Gly Arg Trp Gly Arg Val Glu Glu Glu Glu Glu Ser Ser Thr 740 745 750

Val Asn Glu Gly Asp Asp Lys Ser Gly Glu Thr Glu Val Val Glu Pro
755 760 765

Ser Glu Val Arg Ala Glu Ser Asp Pro Trp Gln Asp 770 775 780

<210> 75

<211> 2760

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2760)

<223> 55483

<400 atg	> 7	5 ata	22 +	+++	tca	ttt	t.at.	tca	aca	tct	tct	gag	tta	a t	ca	tat	:	48
Met 1	Asn	Met	Asn	Phe 5	Ser	Phe	Cys	Ser	Thr 10	Ser	Ser	Glu	Let	ı s	er .5	Туз	c	
cca Pro	agt Ser	gag Glu	aat Asn 20	gtt Val	ctg Leu	aga Arg	ttt Phe	tct Ser 25	gtt Val	gca Ala	agt Ser	cgg Arg	Le 30	g t u F	tt he	tci Se:	t r	96
cct Pro	aaa Lys	tgg Trp 35	aag Lys	aaa Lys	agt Ser	ttc Phe	att Ile 40	agt Ser	tta Leu	cct Pro	tgt Cys	cgt Arg 45	ag g Se	t a r I	aaa Lys	ac Th	t r	144
acg Thr	agg Arg 50	aag Lys	gtt Val	ttg Leu	gcg Ala	tca Ser 55	agc Ser	cgt Arg	tat Tyr	gtg Val	cca Pro 60	gg Gl	g aa y Ly	a t	ttg Leu	ga Gl	a u	192
gat Asp 65	ttg Leu	tcg Ser	gtt Val	gtt Val	aag Lys 70	aag Lys	agt Ser	tta Leu	ccg Pro	aga Arg 75	aga Arg	g Gl	a co u Pr	t i	gtg Val	ga Gl 80	Lu	240
Lys	Leu	Gly	Phe	gtg Val 85	Arg	Thr	Leu	Leu	90	a Asp	ASI	а ту	r A:	зħ	95 95	+7	Y -	288
Thr	Phe	Asr	100		Gln	. Ala	Leu	105	Tnr	. 116	e AS	11 G1	.y v.	10	FIG	,		336
Val	Va]	116 119	e Arg	j aat j Asi	ı Asp	Glu	120	Thi	r Trp	ò GT	1 G1	u A3	25	· YL	UTS	, I	γı	384
tta Lev	tat Ty:	r Gl	a gat u Asj	gtt Val	gct L Ala	ttt Phe 135	: Asp	aat Asi	t att n Ile	t gti e Vai	t at 1 I1 14	e 56	er P	ro	Gly	ac 7 P	ct ro	432
ggt Gl ₃ 145	, Se	g cc	t ate	g tgi t Cy:	t cca s Pro 150	o Ala	gat Asp	t at	a gga e Gl	a at y Il 15	e C	jt ci /s L	tt c eu <i>P</i>	gt	cti Le:	u L	tg eu 160	480
cti Lei	ga ıGl	a tg u Cy	c cg s Ar	t ga g As 16	p Ile	e cca	a at	t ct e Le	a gg u Gl 17	y va	c to	gc c /s L	tt g eu (ggc 31y	са Ні 17	5	ag 31n	528
gc: Al:	a ct a Le	a gg u Gl	t ta y Ty 18	t gt r Va 0	c ca 1 Hi	t gg s Gl	a gc y Al	t ca a Hi 18	s Va	g gt 1 Va	g ca	at g is A	La :	ecg Pro 190	, GT	a d u l	cca Pro	576
gt Va	c ca l Hi	it gg .s Gl	y Ar	g tt g Le	g ag u Se	t gg r Gl	g at y Il 20	.e GJ	a ca Lu Hi	it ga is As	at g sp G	TA F	ac Asn 205	ata Ile	tte Le	g (ttt Phe	624
tc Se	t ga r As 21	II q	t co le Pi	a to To Se	c gg r Gl	g ag y Ar 21	g As	nc to	et ga er As	at ti sp Pl	ne i	ag g ys V 20	gtt /al	gtt Va:	ag l Ai	ga rg	tac Tyr	672

cai Hi:	3 S	ca er	ctg Leu	atc Ile	ata Ile	gat Asp 230	aag Lys	gaa Glu	tca Ser	cta Leu	cca Pro 235	aag Lys	gaa Glu	ctt Leu	gta Val	Pr 24	.0	72	20
at: Il	a g e A	gcg Ala	tgg Trp	acg Thr	att Ile 245	tat Tyr	gat Asp	gac Asp	act Thr	ggc Gly 250	tct Ser	ttc Phe	tct Ser	gag Glu	aag Lys 255	A	at sn	7	68
tc Se	c t	tgt Cys	gtt Val	cct Pro 260	gtg Val	aat Asn	aac Asn	act Thr	999 Gly 265	agc Ser	cca Pro	ctt Leu	gjy aaa	aac Asn 270	gga Gly	to Se	ct er	8	16
gt Va	c a 1 :	att Ile	cct Pro 275	gtt Val	tca Ser	gaa Glu	aag Lys	tta Leu 280	Glu	aat Asn	cga Arg	agt Ser	cat His 285	tgg Trp	Pro	t t	cg er		164
to Se	r	cat His 290	gtt Val	aat Asn	gjà aaa	aaa Lys	caa Gln 295	Asp	aga Arg	cac His	att	Lev 300	ı met	. Gly	ato Ilo	c a e M	tg let	g	912
H	is 05	tct Ser	tct Ser	ttt Phe	ccc	cat His 310	Tyr	ggt	tta Leu	cag Glr	ttt Phe 315	HIS	cca Pro	gaa Glu	ag Se:	г т	itt []e 320	9	960
g(ct la	act Thr	acc	tat Tyr	ggt Gly 325	Ser	cag Gln	tta Lev	ttt Phe	aaa Lys 330	. Asr	tto Pho	c aaq e Ly:	g gad s Asp	at Il 33	е 1	act Thr	1	800
g	tg al	aat Asn	tat Tyr	tgg Trp	Ser	cgg Arg	tgo Cys	aaa Lys	a tct s Ser 345	r Th	a tco r Sei	c cty r Le	g cg	t cga g Arg 350	3 AI	ai a g 2	aac Asn	. 1	056
a I	ta le	aat Asn	gac Asp 355	Thi	gca Ala	a aac a Ası	ato Met	360	n Va	g cc	t gai	t gc p Al	t ac a Th 36	t caa r Gl: 5	a tt n Le	g (ctg Leu	1	.104
L	ys	Glu 370	Let)	ı Se	r Arg	g Thi	37	g Cy: 5	s Th	r Gl	y As	n G1	y se 0	t ag r Se	r 13	/I	Pne	. 1	152
G	99 1y 85	aac Asr	c cc	t aag o Lys	g tc s Se:	t ctg r Leg 39	u Ph	t tc e Se	t gc r Al	c aa a Ly	g ac s Th 39	r As	it gg sn Gl	rt gt .y Va	a ga 1 As	ac sp	gtc Val 400	1	L200
ţ	tt he	gat Asj	t at	g gt t Va	g ga 1 As 40	p Se	a tc r Se	a ta r Ty	t co r Pr	a aa o Ly 41	rs Pr	a ca o Hi	it ac is Th	a aa ir Ly	SL	tg eu 15	ctg Leu		1248
. 6	agg Arg	tte	g aa u Ly	a tg s Tr 42	р Гу	g aa s Ly	g ca s Hi	t ga s Gl	a cg .u Ar 42	g Le	t go eu Al	eg ca La Hi	at aa is Ly	aa gt ys Va 43	al G	gt ly	gga Gly	:	1296
,	Val	. Ar	g As 43	n Il 5	e Ph	e Me	t Gl	u Le 44	eu Pl 10	ne G.	ly Ly	ys A	sn A	ga gg rg G: 45	LY A	sn	Asp		1344
,	act Thr	tt Ph 45	e Tr	g ct p Le	g ga eu As	it ac sp Th	t to r Se 49	er Se	et ag er Se	gt ga er A	ac aa sp L	ys A	ct a la A 60	ga g rg G	ga c ly A	ga Yg	ttt Phe		1392

tct Ser 465	ttc Phe	atg Met	Gly	ggt Gly	aaa Lys 470	ggt Gly	gga Gly	tct Ser	Leu	tgg Trp 475	aag Lys	caa Gln	ttg Leu	ac Th	I F	tt Phe 180	1440
agt Ser	tta Leu	tct Ser	gat Asp	caa Gln 485	agt Ser	gag Glu	gtt Val	Thr	tca Ser 490	aaa Lys	cat His	gcg Ala	gga Gly	ca Hi 49	s !	ctt Leu	1488
ctg Leu	att Ile	gaa Glu	gat Asp 500	tct Ser	cag Gln	agt Ser	tct Ser	act Thr 505	gag Glu	aaa Lys	caa Gln	ttc Phe	ttg Leu 510	. GJ	aa (gaa Glu	1536
ggc Gly	ttt Phe	ctt Leu 515	gat Asp	ttt Phe	ctc Leu	cgt Arg	aag Lys 520	gag Glu	ctt Leu	tca Ser	tct Ser	atc Ile 525	Ser	ta Ty	at yr	gat Asp	1584
gag Glu	aag Lys 530	gac Asp	ttc Phe	gaa Glu	gag Glu	ttg Leu 535	cct Pro	ttt Phe	gat Asp	ttt Phe	tgc Cys 540	GIA	gga Gly	a ta	ac yr	gta Val	1632
ggt Gly 545	tgt Cys	att Ile	gly aaa	tat Tyr	gat Asp 550	att Ile	aaa Lys	gtg Val	gaa Glu	tgt Cys 555	GIŽ	atg Met	g cca Pro	a a	tt le	aat Asn 560	1680
cgt Arg	cac His	aaa Lys	tcc Ser	aac Asn 565	gct Ala	cca Pro	gat Asp	gca Ala	tgt Cys 570	ttc Phe	tto Phe	tti Pho	z gc	a A	at sp 75	aat Asn	1728
gtt Val	gtc Val	gcc Ala	att Ile 580	gat Asp	cat His	caa Gln	ctc Leu	gat Asp 585	Asp	gtt Val	tai Ty	t ata	a tt e Le 59	u S	.cg Ser	ctt Leu	1776
tac Tyr	gaa Glu	gag Glu 595	Gly	act Thr	gca Ala	gaa Glu	acc Thr 600	Ser	tto Phe	ct <u>c</u> Lev	g aa 1 As:	t ga n As 60	b ru	t c	gaa 31u	gag Glu	1824
aag Lys	cto Lev 610	ılle	ago Ser	ttg Leu	ato Met	ggt Gly 615	Leu	g tcc 1 Ser	aca Thr	aga Ar	a aa g Ly 62	s re	g ga u Gl	ıg g .u A	gat Asp	caa Gln	1872
act Thi 62!	c Lev	cca Pro	a gtt o Val	ata L Ile	gat Asp 630	Ser	tct Ser	caa Glr	a tco n Sei	c aa c Ly 63	s Th	a ag ir Se	jt tt er Pl	et (gtt Val	cct Pro 640	1920
ga Asj	c aaa o Lys	a too s Sei	c cga r Arg	a gag g Glu 645	ı Glı	g tat n Tyr	ate r Ile	c aad e Ası	c gat n Asj 65	p Va	t ca 1 Gl	ng ag In Se	gc to	ys .	ato Met 655	g aag Lys	1968
ta Ty	t ate	c aaa e Ly	a gad s Asj 66	p Gly	g gaq y Gli	g age	c ta r Ty	c gag r Gl	u Le	t tg u Cy	rt ct rs Le	eu T	nr T	ct hr 70	caa Gli	a aac n Asn	2016
ag Ar	a ag g Ar	g aa g Ly 67	s Il	a gg e Gl	a aa y As:	t gc n Al	t ga a As 68	p Pr	t tt o Le	g gg u G]	ja ci iy Le	eu 1	at c yr L 85	tc eu	ca Hi	c ctg s Leu	2064
ag Ar	a ga g Gl 69	u Ar	g aa g As	t cc n Pr	a gc o Al	a cc a Pr 69	о Ту	t gc r Al	a go a Al	a ti .a Pl	ле г	tc a eu A 00	ac t sn F	tc he	tc Se	a aat r Asn	2112

gca Ala 705	aat Asn	ctg Leu	tct Ser	tta Leu	tgc Cys 710	tct Ser	tcg Ser	tcc Ser	cct Pro	gaa Glu 715	agg Arg	ttt Phe	ctt Leu	aag Lys	ctg Leu 720	2160
gac Asp	aga Arg	aat Asn	gga Gly	atg Met 725	ctt Leu	gaa Glu	gca Ala	aag Lys	ccg Pro 730	att Ile	aag Lys	ggt Gly	act Thr	ata Ile 735	gct Ala	2208
cgt Arg	ggc	tcc Ser	acg Thr 740	cct Pro	gaa Glu	gaa Glu	gat Asp	gaa Glu 745	ttt Phe	ctt Leu	aaa Lys	ttg Leu	caa Gln 750	ttg Leu	aaa Lys	2256
ctc Leu	agt Ser	gag Glu 755	aag Lys	aat Asn	caa Gln	gcc Ala	gag Glu 760	aat Asn	ctg Leu	atg Met	att Ile	gtt Val 765	gac Asp	ctt Leu	cta Leu	2304
agg Arg	aat Asn 770	gat Asp	ctc Leu	ggt Gly	cgt Arg	gtc Val 775	tgt Cys	gag Glu	cct Pro	ggc Gly	tca Ser 780	gtc Val	cat His	gta Val	cct Pro	2352
aac Asn 785	Leu	atg Met	gat Asp	gta Val	gaa Glu 790	tca Ser	tac Tyr	aca Thr	aca Thr	gta Val 795	cat His	aca Thr	atg Met	gtg Val	agc Ser 800	2400
acg Thr	atc Ile	cgt Arg	gga Gly	ctg Leu 805	aaa Lys	aaa Lys	aca Thr	gat Asp	att Ile 810	Ser	cca Pro	gtg Val	gaa Glu	tgt Cys 815	Val	2448
aga Arg	gct Ala	gct Ala	ttc Phe 820	Pro	Gly	ggt Gly	tca Ser	atg Met 825	Thr	ggt Gly	gcc Ala	cca Pro	aaa Lys 830	Leu	aga Arg	2496
tct Ser	gtt Val	gag Glu 835	Ile	ctc Leu	gat Asp	tct Ser	cta Leu 840	Glu	aac Asn	tgt Cys	tcg Ser	aga Arg 845	Gly	ctt Lev	tac Tyr	2544
tct Ser	ggc Gly 850	Ser	atc :Ile	Gly 999	tat Tyr	ttc Phe 855	Ser	tat Tyr	aat Asr	ggt Gly	acg Thi 860	Phe	gat Asp	cto Lev	aat Asn	2592
att Ile 865	e Val	g ata L Ile	aga Arg	aca Thr	gta Val 870	. Ile	ata : Ile	a cat e His	gaa Glu	a gat a Asp 875	Gli	a gct ı Ala	tco Sei	att	gga Gly 880	2640
gca Ala	a gga a Gly	a gga / Gly	gct Ala	att Ile 885	· Val	gca Ala	tta Lei	a tca 1 Sei	a agt Sei 890	r Pro	a gaa o Gli	a gat u Ası	gag Gli	9 tt: 1 Phe 89	t gag e Glu 5	2688
ga: Gl:	a atq u Me	g att	ctt E Lev 900	ь Ьуя	g act	aga Arg	a gci g Ala	e cct a Pro 90!	o Ala	t aat a Asi	t gc	a gto a Vai	c ate l Me 91	f GT	g ttt u Phe	2736
			cag Glr					g			-					2760

<210> 76

<211> 919

<212> PRT

<213> Arabidopsis thaliana

<400> 76

Met Asn Met Asn Phe Ser Phe Cys Ser Thr Ser Ser Glu Leu Ser Tyr 1 5 10 15

Pro Ser Glu Asn Val Leu Arg Phe Ser Val Ala Ser Arg Leu Phe Ser 20 25 30

Pro Lys Trp Lys Lys Ser Phe Ile Ser Leu Pro Cys Arg Ser Lys Thr 35 40 45

Thr Arg Lys Val Leu Ala Ser Ser Arg Tyr Val Pro Gly Lys Leu Glu 50 55 60

Asp Leu Ser Val Val Lys Lys Ser Leu Pro Arg Arg Glu Pro Val Glu 65 70 75 80

Lys Leu Gly Phe Val Arg Thr Leu Leu Ile Asp Asn Tyr Asp Ser Tyr 85 90 95

Thr Phe Asn Ile Tyr Gln Ala Leu Ser Thr Ile Asn Gly Val Pro Pro 100 105 110

Val Val Ile Arg Asn Asp Glu Trp Thr Trp Glu Glu Ala Tyr His Tyr 115 120 125

Leu Tyr Glu Asp Val Ala Phe Asp Asn Ile Val Ile Ser Pro Gly Pro 130 135 140

Gly Ser Pro Met Cys Pro Ala Asp Ile Gly Ile Cys Leu Arg Leu Leu 145 150 155 160

Leu Glu Cys Arg Asp Ile Pro Ile Leu Gly Val Cys Leu Gly His Gln 165 170 175

Ala Leu Gly Tyr Val His Gly Ala His Val Val His Ala Pro Glu Pro 180 185 190

Val His Gly Arg Leu Ser Gly Ile Glu His Asp Gly Asn Ile Leu Phe 195 200 205

Ser Asp Ile Pro Ser Gly Arg Asn Ser Asp Phe Lys Val Val Arg Tyr 210 215 220

His Ser Leu Ile Ile Asp Lys Glu Ser Leu Pro Lys Glu Leu Val Pro 225 230 235 240

Ile Ala Trp Thr Ile Tyr Asp Asp Thr Gly Ser Phe Ser Glu Lys Asn 245 250 255

Ser Cys Val Pro Val Asn Asn Thr Gly Ser Pro Leu Gly Asn Gly Ser 260 265 270

Val Ile Pro Val Ser Glu Lys Leu Glu Asn Arg Ser His Trp Pro Ser 275 280 285

Ser His Val Asn Gly Lys Gln Asp Arg His Ile Leu Met Gly Ile Met 290 295 300

His Ser Ser Phe Pro His Tyr Gly Leu Gln Phe His Pro Glu Ser Ile 305 310 315 320

Ala Thr Thr Tyr Gly Ser Gln Leu Phe Lys Asn Phe Lys Asp Ile Thr 325 330 335

Val Asn Tyr Trp Ser Arg Cys Lys Ser Thr Ser Leu Arg Arg Arg Asn 340 345 350

Ile Asn Asp Thr Ala Asn Met Gln Val Pro Asp Ala Thr Gln Leu Leu 355 360 365

Lys Glu Leu Ser Arg Thr Arg Cys Thr Gly Asn Gly Ser Ser Tyr Phe 370 375 380

Gly Asn Pro Lys Ser Leu Phe Ser Ala Lys Thr Asn Gly Val Asp Val 385 390 395

Phe Asp Met Val Asp Ser Ser Tyr Pro Lys Pro His Thr Lys Leu Leu 405 410 415

Arg Leu Lys Trp Lys Lys His Glu Arg Leu Ala His Lys Val Gly Gly 420 425 430

Val Arg Asn Ile Phe Met Glu Leu Phe Gly Lys Asn Arg Gly Asn Asp 435 440 445

Thr Phe Trp Leu Asp Thr Ser Ser Ser Asp Lys Ala Arg Gly Arg Phe 450 455 460

Ser Phe Met Gly Gly Lys Gly Gly Ser Leu Trp Lys Gln Leu Thr Phe 465 470 475 480

Ser Leu Ser Asp Gln Ser Glu Val Thr Ser Lys His Ala Gly His Leu 485 490 495

Leu Ile Glu Asp Ser Gln Ser Ser Thr Glu Lys Gln Phe Leu Glu Glu 500 505 510

Gly Phe Leu Asp Phe Leu Arg Lys Glu Leu Ser Ser Ile Ser Tyr Asp 515 520 525

Glu Lys Asp Phe Glu Glu Leu Pro Phe Asp Phe Cys Gly Gly Tyr Val 530 540

Gly Cys Ile Gly Tyr Asp Ile Lys Val Glu Cys Gly Met Pro Ile Asn 545 550 555 560

Arg His Lys Ser Asn Ala Pro Asp Ala Cys Phe Phe Phe Ala Asp Asn 565 570 575

Val Val Ala Ile Asp His Gln Leu Asp Asp Val Tyr Ile Leu Ser Leu 580 585 590

Tyr Glu Glu Gly Thr Ala Glu Thr Ser Phe Leu Asn Asp Thr Glu Glu 595 600 605

Lys Leu Ile Ser Leu Met Gly Leu Ser Thr Arg Lys Leu Glu Asp Gln 610 615 620

Thr Leu Pro Val Ile Asp Ser Ser Gln Ser Lys Thr Ser Phe Val Pro 625 630 635 640

Asp Lys Ser Arg Glu Gln Tyr Ile Asn Asp Val Gln Ser Cys Met Lys 645 650 655

Tyr Ile Lys Asp Gly Glu Ser Tyr Glu Leu Cys Leu Thr Thr Gln Asn 660 665 670

Arg Arg Lys Ile Gly Asn Ala Asp Pro Leu Gly Leu Tyr Leu His Leu 675 680 685

Arg Glu Arg Asn Pro Ala Pro Tyr Ala Ala Phe Leu Asn Phe Ser Asn 690 695 700

Ala Asn Leu Ser Leu Cys Ser Ser Ser Pro Glu Arg Phe Leu Lys Leu 705 710 715 720

Asp Arg Asn Gly Met Leu Glu Ala Lys Pro Ile Lys Gly Thr Ile Ala 725 730 735

Arg Gly Ser Thr Pro Glu Glu Asp Glu Phe Leu Lys Leu Gln Leu Lys 740 745 750

Leu Ser Glu Lys Asn Gln Ala Glu Asn Leu Met Ile Val Asp Leu Leu 755 760 765

Arg Asn Asp Leu Gly Arg Val Cys Glu Pro Gly Ser Val His Val Pro 770 780

Asn Leu Met Asp Val Glu Ser Tyr Thr Thr Val His Thr Met Val Ser 785 790 795 800

Thr Ile Arg Gly Leu Lys Lys Thr Asp Ile Ser Pro Val Glu Cys Val 805 810 815

Arg Ala Ala Phe Pro Gly Gly Ser Met Thr Gly Ala Pro Lys Leu Arg

Ser Val Glu Ile Leu Asp Ser Leu Glu Asn Cys Ser Arg Gly Leu Tyr 835 840 845

Ser Gly Ser Ile Gly Tyr Phe Ser Tyr Asn Gly Thr Phe Asp Leu Asn 850 860

Ile Val Ile Arg Thr Val Ile Ile His Glu Asp Glu Ala Ser Ile Gly 865 870 875 880

Ala Gly Gly Ala Ile Val Ala Leu Ser Ser Pro Glu Asp Glu Phe Glu 885 890 895

Glu Met Ile Leu Lys Thr Arg Ala Pro Ala Asn Ala Val Met Glu Phe 900 905 910

Cys Ser Asp Gln Arg Arg Gln 915

PCT/EP02/07929 WO 03/008440

<210	> 7	77														
<211	> :	L329														
<212	> J	ONA														
<213	> 1	Arabi	.dops	is t	hali	ana										
<220	>															
<221	>	CDS														
<222	>	(1)	(132	9)												
<223	>	58351	LA													
<400 atg	aaa	77 gac	agc	ggg	aag	ctt	gag	gca	acg	ata	gat	cgg	ctt	ctg	aat	48
Met 1	Gly	Asp	Ser	Gly 5	Lys	Leu	Glu	Ala	Thr 10	Ile	Asp	Arg	ьeu	ьеи 15	ASI	
gaa	gag	aag Lys	cag	atg	aga	ctc	gcc	gaa	aac	gta	gcc	ggt	aca Thr	agg Arg	aaa Lvs	96
GIU	GIU	·	20	Mec	Arg	пеп	ATa	25	ASII	vai	ALG	Cly	30		-10	
gcc	gcc	act Thr	gag	att	ctt	cag Gln	ctt Leu	tgt Cvs	ttc Phe	gat Asp	gct Ala	aag Lys	gat Asp	tgg Trp	aaa Lys	144
Ara	ALC	35	0				40	-4		•		45	_	_		
ctt Leu	cto	aat Asn	gag Glu	cag Gln	att Ile	ctc Leu	aat Asn	ctc Leu	tct Ser	aag Lys	aaa Lys	cgt Arg	ggt Gly	cag Gln	ctc Leu	192
	50					55					60					
aaa Lys	cag Gl:	g gct n Ala	gtg Val	caa Gln	tcc Ser	atg Met	gtg Val	cag Gln	caa Gln	Ala	atg Met	cag Gln	tat Tyr	atc Ile	Asp	240
65					70					75					80	200
cag Gln	aca Th:	a cca r Pro	gac Asp	Ile	gaa Glu	act Thr	cgg Arg	Ile	Glu	Leu	Ile	Lys	Thr	Leu 95	Asn	288
		a tct		85	225	242	+-+	a++	90	atc	aaa	add	aca		ctc	336
aat Asn	Va	l Ser	Ala 100	Gly	Lys	Ile	Tyr	Val	Glu	Ile	Glu	Arg	Ala 110	Arg	Leu	
		g aaa			220	att	220		gaa	cag	aat	cag			gaa	384
Thr	Lу	s Lys 115	Leu	Ala	Lys	Ile	Lys 120	Glu	Glu	Gln	Gly	Gln 125	Ile	Āla	Glu	
act	ac			atq	caa	gaa			gto	gag	aca	ttt	. ggt	get	atg	432
Ala	Al 13	a Asp	Leu	Met	Gln	. Glu 135	Val	Ala	Val	Glu	Thr 140	Phe	: Gly	Ala	Met	

480

gca aaa act gag aaa att gca ttt atc ctt gaa caa gtt cgc ttg tgc

Ala 145	Lys	Thr	Glu	Lys	Ile 150	Ala :	Phe	Ile	Leu	Glu (155	Gln	Val	Arg	Leu	C)	78 50		
ttg Leu	gat Asp	cgt Arg	caa Gln	gat Asp 165	ttt Phe	gtt Val	cgt Arg	gca Ala	caa Gln 170	atc Ile	tta Leu	tct Ser	agg Arg	aag Lys 175	Ι.	c le	528	
aat Asn	cct Pro	aga Arg	gtt Val 180	ttt Phe	gac Asp	gca Ala	gat' Asp	aca Thr 185	aaa Lys	aaa Lys	gat Asp	aag Lys	aag Lys 190	тА≈	C P	ct ro	576	
aag Lys	gaa Glu	ggt Gly 195	Asp	aac Asn	atg Met	gta Val	gaa Glu 200	gag Glu	gct Ala	cct Pro	gct Ala	gat Asp 205	110	cca Pro	a o T	cc hr	624	
ctt Leu	ttg Leu 210	Glu	ctt Leu	aag Lys	cga Arg	att Ile 215	tac Tyr	tac Tyr	gag Glu	ctt Leu	atg Met 220	TTE	cgg Arg	j tao	t T	at Yr	672	
tct Ser 225	His	aac Asr	aat Asn	gag Glu	tac Tyr 230	Ile	gaa Glu	atc Ile	tgc Cys	cgt Arg 235	agc Ser	tac Tyr	aaq Ly:	g gc	a 1	ita Ile 240	720	
tat Tyr	gat Asp	ato	cct Pro	tca Ser 245	Val	aaa Lys	gaa Glu	act Thr	ccg Pro 250	gag Glu	cag Glr	tgg Tr	g at	t cc e Pr 25	0 '	gtc Val	768	
ctg Leu	agg Arg	g aag g Lys	g ato 5 Ile 260	суя	tgg Trp	ttc Phe	ttg Leu	gto Val 265	. Leu	gca Ala	cct Pro	cat Hi	t ga s As 27	ρъг	a i	atg Met	. 816	
caa Glr	tca Se	a age r Set 27!	r Lei	g cto 1 Lev	: aat 1 Asr	gca Ala	act Thr 280	Leu	g gaa 1 Glu	ı gac ı Asp	aaq Ly	g aa s As: 28	п те	a to u Se	a	gaa Glu	864	
ato Ile	c cc e Pro 29	o As	t tto p Pho	c aag e Lys	g ato	g ctt Leu 295	Let	a aaa 1 Ly:	a cag s Glr	g gta n Val	gt Va 30	T In	a at r Me	g ga t Gl	ig lu	gtt Val	912	
ati Ile 30	e Gl	a tg n Tr	g ac	a tci r Se:	t cto r Lev	ı Trp	aa Ası	c aaa n Ly	a tao s Ty	c aag r Lys 315	s As	t ga p Gl	g tt u Pl	c ga	ag lu	aaa Lys 320	960	
ga Gl	g aa u Ly	a ag s Se	c at r Me	g at t Il 32	e Gl	a ggt y Gly	tc Se	t tt r Le	g gg u Gl; 33	t gad y Asj 0	c aa p Ly	a go rs Al	t g	ту С	aa lu 35	gat Asp	1008	
ct Le	g aa u Ly	a ct 's Le	g ag u Ar 34	g Il	c at e Il	c gaa e Gli	a ca ı Hi	t aa s As 34	n II	c ct e Le	c gt u Va	t gi	41 S	ca a er L 50	ag ys	tac Tyr	1056	;
ta Ty	c go r Al	ea ag la Ai 35	g Il	a ac e Tb	c tt r Le	a aa u Ly	g ag s Ar 36	a re	t go u Al	c ga .a Gl	g ct u Le	շա բ	ta t eu C 65	gc c	tg eu	agc Ser	1104	ł
at Me	t G	ag ga lu Gi 70	ag go lu Al	g ga .a Gl	ıg az .u Ly	g ca rs Hi 37	s Le	a to eu Se	eg ga	ig at Lu Me	E V	ta g al V 80	tg t al S	ca a Ser I	iys .ys	gca Ala	1152	2
ct	g a	tt g	ca aa	aa at	a ga	ac ag	a co	a to		ga at	t g	tg t	gc t	tc o	cag	atc	120	0

Leu 385	Ile	Ala	Lys	Ile	Asp 390	Arg	Pro	Ser	Gly	Ile. 395	Val	Cys	Phe	Gln	Ile 400	
gca Ala	aag Lys	gac Asp	agc Ser	aac Asn 405	gag Glu	att Ile	cta Leu	aac Asn	tcg Ser 410	tgg Trp	gca Ala	glà aaa	aat Asn	ttg Leu 415	gag Glu	1248
aag Lys	ctt Leu	cta Leu	gat Asp 420	ctt Leu	gtg Val	gaa Glu	aag Lys	agt Ser 425	tgc Cys	cac His	caa Gln	att Ile	cac His 430	aag Lys	gaa Glu	1296
acc Thr	atg Met	gtt Val 435	cac His	aaa Lys	gcc Ala	gct Ala	ctc Leu 440	aga Arg	cct Pro	tga						1329

<210> 78

<211> 442

<212> PRT

<213> Arabidopsis thaliana

<400> 78

Met Gly Asp Ser Gly Lys Leu Glu Ala Thr Ile Asp Arg Leu Leu Asn 1 5 10 15

Glu Glu Lys Gln Met Arg Leu Ala Glu Asn Val Ala Gly Thr Arg Lys 20 25 30

Ala Ala Thr Glu Ile Leu Gln Leu Cys Phe Asp Ala Lys Asp Trp Lys 35 40 45

Leu Leu Asn Glu Gln Ile Leu Asn Leu Ser Lys Lys Arg Gly Gln Leu 50 55 60

Lys Gln Ala Val Gln Ser Met Val Gln Gln Ala Met Gln Tyr Ile Asp 65 70 75 80

Gln Thr Pro Asp Ile Glu Thr Arg Ile Glu Leu Ile Lys Thr Leu Asn 85 90 95

Asn Val Ser Ala Gly Lys Ile Tyr Val Glu Ile Glu Arg Ala Arg Leu 100 105 110

Thr Lys Lys Leu Ala Lys Ile Lys Glu Glu Gln Gly Gln Ile Ala Glu 115 120 125

Ala Ala Asp Leu Met Gln Glu Val Ala Val Glu Thr Phe Gly Ala Met

Ala Lys Thr Glu Lys Ile Ala Phe Ile Leu Glu Gln Val Arg Leu Cys 145 150 155 160

Leu Asp Arg Gln Asp Phe Val Arg Ala Gln Ile Leu Ser Arg Lys Ile 165 170 175

Asn Pro Arg Val Phe Asp Ala Asp Thr Lys Lys Asp Lys Lys Pro 180 185 190

Lys Glu Gly Asp Asn Met Val Glu Glu Ala Pro Ala Asp Ile Pro Thr 195 200 205

Leu Leu Glu Leu Lys Arg Ile Tyr Tyr Glu Leu Met Ile Arg Tyr Tyr 210 215 220

Ser His Asn Asn Glu Tyr Ile Glu Ile Cys Arg Ser Tyr Lys Ala Ile 225 230 235 240

Tyr Asp Ile Pro Ser Val Lys Glu Thr Pro Glu Gln Trp Ile Pro Val 245 250 255

Leu Arg Lys Ile Cys Trp Phe Leu Val Leu Ala Pro His Asp Pro Met 260 265 270

Gln Ser Ser Leu Leu Asn Ala Thr Leu Glu Asp Lys Asn Leu Ser Glu 275 280 285

Ile Pro Asp Phe Lys Met Leu Leu Lys Gln Val Val Thr Met Glu Val 290 295 300

Ile Gln Trp Thr Ser Leu Trp Asn Lys Tyr Lys Asp Glu Phe Glu Lys 305 310 315

Glu Lys Ser Met Ile Gly Gly Ser Leu Gly Asp Lys Ala Gly Glu Asp 325 330 335

Leu Lys Leu Arg Ile Ile Glu His Asn Ile Leu Val Val Ser Lys Tyr 340 345 350

Tyr Ala Arg Ile Thr Leu Lys Arg Leu Ala Glu Leu Leu Cys Leu Ser 355 360 365

Met Glu Glu Ala Glu Lys His Leu Ser Glu Met Val Val Ser Lys Ala 370 375 380

Leu Ile Ala Lys Ile Asp Arg Pro Ser Gly Ile Val Cys Phe Gln Ile 385 390 395 400

Ala Lys Asp Ser Asn Glu Ile Leu Asn Ser Trp Ala Gly Asn Leu Glu 405 410 415

Lys Leu Leu Asp Leu Val Glu Lys Ser Cys His Gln Ile His Lys Glu 420 425 430

Thr Met Val His Lys Ala Ala Leu Arg Pro 435 440

<210> 79

<211> 435

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(435)

<223> 60944

<400>																
atg g Met A	gcg Ala	gtt Val	tct Ser	ctc Leu 5	ccg Pro	aac Asn	tcg Ser	ttt Phe	ctt Leu 10	cag Gln	att Ile	agc Ser	cca Pro	tgt Cys 15	gtt Val	48
cct t Pro S	tct Ser	ctg Leu	caa Gln 20	tta Leu	aga Arg	aag Lys	ccg Pro	gtg Val 25	atg Met	gcg Ala	gca Ala	gtg Val	aaa Lys 30	gga Gly	gga Gly	96
aaa d Lys (caa Gln	tcg Ser 35	gtg Val	aga Arg	aga Arg	agc Ser	agc Ser 40	aat Asn	acg Thr	gtg Val	gtt Val	cag Gln 45	ata Ile	acg Thr	tgt Cys	144
cgt a	aag Lys 50	aag Lys	gaa Glu	ttg Leu	cat His	cct Pro 55	gaa Glu	ttc Phe	cac His	gaa Glu	gac Asp 60	gca Ala	aag Lys	gtt Val	tac Tyr	192
tgc a Cys 2 65	aat Asn	gga Gly	gag Glu	ctg Leu	gtg Val 70	atg Met	act Thr	aca Thr	gga Gly	gga Gly 75	aca Thr	aag Lys	aaa Lys	gag Glu	tat Tyr 80	240

gtg Val	gtt Val	gat Asp	gta Val	tgg Trp 85	tca Ser	ggt Gly	aac Asn	cat His	ccg Pro 90	ttt Phe	tac Tyr	ctc Leu	GJA aaa	aat Asn 95	cg Ar	t g
tcg Ser	gct Ala	ttg Leu	atg Met 100	gtt Val	gat Asp	gct Ala	gat Asp	caa Gln 105	gtt Val	gag Glu	aag Lys	ttt Phe	cgt Arg 110	aag Lys	ag Ar	g
ttc Phe	gct Ala	999 Gly 115	Leu	tct Ser	gag Glu	att Ile	atg Met 120	gag Glu	att Ile	cct Pro	gtg Val	ctt Leu 125	aaa Lys	gga	ga ga	ia Lu
atc Ile	att Ile 130	Met	cct Pro	act Thr	aag Lys	aaa Lys 135	agt Ser	aaa Lys	ggt Gly	ccc Pro	aaa Lys 140	gjà aaa	aag Lys	aag Lys	aa Ly	aa /s
tga																
<21	0>	80														
<21	1>	144					-									
<21	2>	PRT														
<21	.3>	Arab	oidop	sis	thal	iana										
<40	٠٥٠	80														•
			l Sei	Leu 5	ı Pro	Asn	Sei	c Phe	Le: 10	ı Gl	n Ile	e Se:	r Pr	o Cy 15	s V	/al
Pro	se:	r Lei	u Gli 20		ı Arg	g Lys	Pro	o Val 25	L Met	t Al	a Ala	a Va	1 Ly 30	s Gl	y	∃ly
Ьy	s Gl	n Se:		l Arg	g Arg	g Sei	s Se:	r Ası	n Th	r Va	l Va	1 Gl 45	n Il	e Th	ır (Cys
Ar	g Ly 50		s Gl	u Le	u Hi	s Pro	o Gl	u Ph	e Hi	s Gl	u As 60	p Al	a Ly	ys Va	al '	Tyr
Су 65		n Gl	y Gl	u Le	u Va 70		t Th	r Th	r Gl	y G] 75	ly Th	ır Ly	ys Ly	ys G	lu	Tyr 80
Va	l Va	l As	sp Va	1 Tr 85		r Gl	y As	n Hi	s Pr 90	:0 Pl	ne Ty	T Le	eu G	ly A 9	sn 5	Arg .
Se	r Al	la Le	eu Me		l As	p Al	a As	sp Gl	.n Va	al G	lu Ly	/s P	he A 1	rg L 10	ys	Arg

Phe Ala Gly Leu Ser Glu Ile Met Glu Ile Pro Val Leu Lys Gly Glu 115 120 125

Ile Ile Met Pro Thr Lys Lys Ser Lys Gly Pro Lys Gly Lys Lys Lys 130 135 140

<210> 81

<211> 2859

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2859)

<223> 62837

<400> 81 atg gct tgg tcg ata gct ctt ctt aca cct cct ttt ttt ggt ccc gga 48 Met Ala Trp Ser Ile Ala Leu Leu Thr Pro Pro Phe Phe Gly Pro Gly agg cat gtg cag gcc aaa gaa tac agg gaa cca aga ggg tgt gtg atg 96 Arg His Val Gln Ala Lys Glu Tyr Arg Glu Pro Arg Gly Cys Val Met 144 aag atg agc agt tta aaa gca cct gtt ctg aga att cag gcc aca gaa Lys Met Ser Ser Leu Lys Ala Pro Val Leu Arg Ile Gln Ala Thr Glu tac aga gaa cca aga ggg cgt gtg aag atg atg tcc agt tta caa gca 192 Tyr Arg Glu Pro Arg Gly Arg Val Lys Met Met Ser Ser Leu Gln Ala cct ctt ctg aca att cag agc ttc tca ggg tta agg gcc ccc agt gca 240 Pro Leu Leu Thr Ile Gln Ser Phe Ser Gly Leu Arg Ala Pro Ser Ala tta gat tat ttg gga agg cct agt cca ggt ttc ctt gtt aag tat aaa 288 Leu Asp Tyr Leu Gly Arg Pro Ser Pro Gly Phe Leu Val Lys Tyr Lys ctt gca aaa tca tct ggg aga gaa aaa gct agc cga tgt gta ccc aaa 336 Leu Ala Lys Ser Ser Gly Arg Glu Lys Ala Ser Arg Cys Val Pro Lys 100 gca atg ttt gag cgt ttt acc gag aaa gca att aag gtc ata atg ctg 384 Ala Met Phe Glu Arg Phe Thr Glu Lys Ala Ile Lys Val Ile Met Leu 125 120 115

tct c Ser G	aa q 31n (gag 31u	gaa Glu	gct Ala	Arg	aga Arg 135	ctt Leu	ggc	cat His	Asn	ttt Phe 140	gtt Val	gly aaa	act Thr	gag Glu		432
caa a Gln J 145	ata (ctg Leu	ttg Leu	ggt Gly	cta Leu 150	att Ile	gga Gly	gaa Glu	Gly 999	act Thr 155	Gly 999	att Ile	gcc Ala	gcc Ala	aag Lys 160	i	480
gtt d Val I	ctt Leu	aaa Lys	tcc Ser	atg Met 165	Gly 999	atc Ile	aat Asn	ctt Leu	aaa Lys 170	gat Asp	tca Ser	cgc Arg	gtg Val	gaa Glu 175	gta Val		528
gaa a Glu l	aag Lys	ata Ile	att Ile 180	Gly 333	aga Arg	ggc	agt Ser	gga Gly 185	ttc Phe	gtg Val	gca Ala	gtg Val	gag Glu 190	att Ile	Pro	a D	576
ttt i Phe	act Thr	cct Pro 195	cgc Arg	gca Ala	aag Lys	cgg Arg	gtg Val 200	ctg Leu	gag Glu	ttg Leu	tca Ser	cta Leu 205	Gru	gaa Glu	gci Ala	t a	624
Arg	caa Gln 210	ctt Leu	gjå aaa	cat His	aac Asn	tac Tyr 215	att Ile	ggt Gly	tca Ser	gag Glu	cac His 220	ьeu	ttg Leu	ctt Leu	gg Gl	t Y	672
cta Leu 225	Leu	cgt Arg	gaa Glu	Gly 999	gag Glu 230	Gly	gtg Val	gca Ala	gct Ala	cgt Arg 235	vaı	ttg Lev	g gag Glu	aat Asr	tt 1 Le 24	u	720
ggt Gly	gca Ala	gat Asp	cct Pro	agt Ser 245	Asn	ata Ile	cgg Arg	aca Thr	cag Gln 250	Val	ata Ile	cgt Arg	ato g Met	gto : Val 25!	r GT	A. Ia	768
gaa Glu	aac Asn	aat Asn	gaa Glu 260	Val	aca Thr	gca Ala	ago Ser	gtt Val 265	L Gly	Gly ggg	gga gga	a ago 7 Sei	c ago c Sei 270	. GT	a aa y As	ic sn	816
Ser	Lys	Met 275	Pro	Thr	Leu	ı Glu	280	ı Tyı)	r Gly	, Thi	c Asi	а ње 28.		с ру	S De	su.	864
gca Ala	gag Glu 290	Glı	g ggt 1 Gly	: aaa / Lys	ct <u>c</u> Lev	g gat 1 Asp 295	Pro	g gti o Vai	t gti l Va:	t gga l Gly	a agg Y Arg 30	g Gi	g cc n Pr	a ca o Gl	g at n I	tc le	912
Glu 305	Arg	Met	. Val	l Glr	116 310	e Let	ı Al	a Ar	g Ar	g Th: 31	r Ly 5	s As	c aa n As	n Pi	3	ys 20	960
Leu	Il€	gl;	y Gli	1 Pro 32	o Gl y	y Va	l Gl	у Гу	s Th	O AI	a II	e Al	a ga .a Gl	33	15 35	eu	1008
gca Ala	cag Glr	g cg n Ar	a ata g Ilo 34	e Al	t ag a Se	t gg r Gl	t ga y As	t gt p Va 34	l Pr	t ga o Gl	a ac u Th	a at r Il	c ga le G1 35	.u G.	gg a ly I	ys .ys	1056
acg Thr	g gti Va	at 1 Il 35	e Th	c ct r Le	t ga u As	t at p Me	g gg t Gl 36	у ҍє	t ct u Le	a gt u Va	g go ll Al	La G.	ga ad ly Tl 65	g aa nr L	aa t ys T	ac	1104

cgt Arg	gga Gly 370	gag Glu	ttc Phe	gag Glu	Glu	aga Arg 375	ttg Leu	aag Lys	aag Lys	ctt Leu	atg Met 380	gag Glu	gaa Glu	atc Ile	agg Arg	1152
caa Gln 385	agt Ser	gat Asp	gag Glu	ata Ile	att Ile 390	ctg Leu	ttt Phe	att Ile	gat Asp	gaa Glu 395	gtg Val	cac His	acg Thr	ctc Leu	atc Ile 400	1200
ggt Gly	gca Ala	gga Gly	gcc Ala	gct Ala 405	gaa Glu	ggt Gly	gcg Ala	atc Ile	gat Asp 410	gct Ala	gct Ala	aac Asn	atc Ile	tta Leu 415	aag Lys	1248
cca Pro	gct Ala	cta Leu	gca Ala 420	aga Arg	ggt Gly	gaa Glu	ttg Leu	cag Gln 425	tgt Cys	att Ile	ggt Gly	gca Ala	aca Thr 430	aca Thr	att Ile	1296
gat Asp	gag Glu	tac Tyr 435	agg Arg	aaa Lys	cac His	att Ile	gag Glu 440	aaa Lys	gat Asp	cct Pro	gca Ala	ttg Leu 445	gag Glu	aga Arg	cgg Arg	1344
ttc Phe	cag Gln 450	cct Pro	gtg Val	aaa Lys	gta Val	cct Pro 455	gaa Glu	cca Pro	act Thr	gta Val	gaa Glu 460	GLu	gct Ala	ata Ile	cag Gln	1392
att Ile 465	ttg Leu	caa Gln	ggt Gly	ctg Leu	cgt Arg 470	gag Glu	cgc Arg	tat Tyr	gag Glu	atc Ile 475	His	cac His	aaa Lys	ctt Leu	cga Arg 480	1440
tac Tyr	act Thr	gat Asp	gaa Glu	gcc Ala 485	ttg Leu	gtt Val	gct Ala	gct Ala	gca Ala 490	Gln	ttg Leu	tca Ser	cat His	cag Glr 495	g tac n Tyr	1488
atc Ile	agt Ser	gat Asp	cgg Arg 500	Phe	ctt Leu	ccc Pro	gac Asp	aaa Lys 505	Ala	att Ile	gac Asp	tto Lev	att l Ile 510	a Ası	gaa Glu	1536
gct Ala	ggg Gly	tct Ser 515	Arg	gtt Val	cga Arg	cta Leu	cgc Arg 520	, His	gct Ala	cag Glr	g ctt 1 Lei	cct Pro 525	o Gli	g gaa 1 Gl	a gct u Ala	1584
aga Arg	gag Glu 530	Lev	gaa Glu	aag Lys	caa Glm	ctc Leu 535	Arg	g cas g Glr	ato 111e	aco Thi	c aaa c Ly: 54	s Gl	g aag 1 Ly	g aa s As:	t gaa n Glu	1632
gct Ala 545	val	g cga L Arg	ago g Ser	caa Glr	gac Asp 550	Phe	gag Glu	g ato 1 Met	g gct : Ala	ggt a Gly 55	y Se	t ca r Hi	t cg s Ar	t ga g As	c cgt p Arg 560	1680
gaa Glu	ata 1 Ile	a gag e Glu	g cto l Lei	aag Lys 565	a Ala	gag Glu	g ata	a gct e Ala	a Asi	n Va	t tt l Le	a tc u Se	t cg r Ar	a gg g Gl 57	c aaa y Lys '5	1728
gaa Glu	a gto ı Val	g gco l Ala	c aaa a Lys 580	s Ala	e gag a Glu	g aat 1 Asi	gaa Glu	a gc u Ala 58	a Gl	g ga u Gl	a gg u Gl	a gg y Gl	a co y Pr 59	o Tr	t gtc ir Val	1776
aca Th	a gaa r Gli	a tci u Sei 59!	r As	c ato p Ile	c caa e Gli	a cad	ate s Ile 60	e Va	c gc l Al	c ac a Th	c tg r Tr	g ac p Th	r G	ga at .y I]	c ccg Le Pro	1824

gta Val	gag Glu 610	aaa Lys	gtc Val	tcg Ser	tct Ser	gat Asp 615	gaa Glu	tct Ser	agc Ser	cgt Arg	ctt Leu 620	ctc Leu	caa Gln	atg Met	gag Glu	1872
cag Gln 625	acc Thr	ctt Leu	cac His	aca Thr	aga Arg 630	gtc Val	att Ile	ggc Gly	caa Gln	gat Asp 635	gaa Glu	gcc Ala	gtt Val	aaa Lys	gca Ala 640	1920
atc Ile	agt Ser	cgg Arg	gct Ala	atc Ile 645	cgc Arg	cgt Arg	gcc Ala	cgt Arg	gtt Val 650	gjà aaa	ctc Leu	aaa Lys	aac Asn	cca Pro 655	aac Asn	1968
cgt Arg	cct Pro	atc Ile	gcc Ala 660	agt Ser	ttc Phe	atc Ile	ttc Phe	tct Ser 665	ggt Gly	cca Pro	act Thr	Gly	gtt Val 670	gly aaa	aaa Lys	2016
tca Ser	gag Glu	ctt Leu 675	gct Ala	aag Lys	gcc Ala	ttg Leu	gct Ala 680	gct Ala	tac Tyr	tac Tyr	ttc Phe	ggt Gly 685	tca Ser	gaa Glu	gaa Glu	2064
gca Ala	atg Met 690	atc Ile	cgt Arg	ctt Leu	gac Asp	atg Met 695	agt Ser	gag Glu	ttc Phe	atg Met	gaa Glu 700	Arg	cac His	act Thr	gtt Val	2112
tcg Ser 705	Lys	ctc Leu	atc Ile	ggt Gly	tca Ser 710	cct Pro	cct Pro	ggt Gly	tac Tyr	gta Val 715	gga Gly	tac Tyr	aca Thr	gaa Glu	gga Gly 720	2160
ggt Gly	cag Gln	tta Leu	aca Thr	gag Glu 725	gcg Ala	gtt Val	cga Arg	cgc Arg	agg Arg 730	Pro	tac Tyr	act Thr	ctt Leu	gtt Val 735	ctc Leu	2208
ttt Phe	gac Asp	gaa Glu	att Ile 740	Glu	aaa Lys	gca Ala	cat His	ccc Pro 745	Asp	gtt Val	tto Phe	aac Asn	atg Met 750	Met	ctt Leu	2256
caç Glr	g atc n Ile	cta Lev 755	Glu	gac Asp	ggt	aga Arg	cta Leu 760	Thr	gat Asp	ago Ser	aaa Lys	gga Gly 765	Arg	act Thi	gtc Val	2304
gat As <u>r</u>	Phe 770	Lys	g aac : Asn	acg Thr	ctt Leu	ctg Leu 775	Ile	atg Met	act Thr	tca Sei	a aad Asr 780	ı Val	Gl ⁷ GB ²	g ago	e agc r Ser	2352
gt: Va: 789	l Ile	gaa Glu	a aaa 1 Lys	ggt Gly	ggt Gly 790	Arg	aga Arg	a att g Ile	: ggg	Phe 7 Phe 795	e Ası	t cti p Lei	gad 1 Ası	c cae	gac s Asp 800	2400
gag	g aaa u Lys	a gad s Asj	e ago o Ser	agt Ser 805	Туг	aac Asr	aga Arg	a ato g Ile	2 aag 2 Lys 810	s Se:	c tta r Le	a gte u Vai	g act	t ga r Gl 81	g gaa u Glu 5	2448
ct: Le	a aaa u Lys	a caq	tat n Tyr 820	Phe	aga Arg	cca p Pro	gag Gli	g tto u Phe 82!	e Le	g aa u As:	c ag n Ar	g tt g Le	a ga u As 83	p Gl	g atg u Met	2496
at Il	t gt: e Val	t tte 1 Phe 83	e Arg	a cag g Gli	g tta 1 Leu	a aca 1 Thi	a aag c Lys 84	s Le	g ga u Gl	a gt u Va	c aa l Ly	g ga s Gl 84	u Il	t gc e Al	t gat a Asp	2544

ata Ile	atg Met 850	ctt Leu	aaa Lys	gaa Glu	gtg Val	gtg Val 855	gcg Ala	aga Arg	ctt Leu	gag Glu	gtc Val 860	aaa Lys	gag Glu	att Ile	gag Glu	2592
ctt Leu 865	cag Gln	gtg Val	act Thr	gag Glu	agg Arg 870	ttt Phe	aaa Lys	gag Glu	aga Arg	gtg Val 875	gtg Val	gat Asp	gaa Glu	gga Gly	ttc Phe 880	2640
gac Asp	ccg Pro	agt Ser	tat Tyr	ggt Gly 885	gcg Ala	agg Arg	cca Pro	ctt Leu	aga Arg 890	cgt Arg	gca Ala	ata Ile	atg Met	agg Arg 895	ctt Leu	2688
ttg Leu	gag Glu	gat Asp	agt Ser 900	.atg Met	gcg Ala	gag Glu	aag Lys	atg Met 905	ьeu	tca Ser	agg Arg	gac Asp	att Ile 910	aaa Lys	gaa Glu	2736
gga Gly	gat Asp	tct Ser 915	Val	att Ile	gtt Val	gat Asp	gtt Val 920	Asp	gcc Ala	gaa Glu	gga Gly	agt Ser 925	val	gtt Val	gtg Val	2784
ttg Leu	agt Ser 930	Gly	acc Thr	act Thr	gga Gly	cgt Arg 935	Val	ggt Gly	ggt Gly	ttt Phe	gct Ala 940	z WTC	gaa Glu	gaa Glu	gcc Ala	2832
ato Met 945	Glu	ı gat ı As <u>ı</u>	cct Pro	att Ile	cca Pro) Ile	tt <u>e</u> Lev	g tag	3							2859

<210> 82

<211> 952

<212> PRT

<213> Arabidopsis thaliana

<400> 82

Met Ala Trp Ser Ile Ala Leu Leu Thr Pro Pro Phe Phe Gly Pro Gly
1 10 15

Arg His Val Gln Ala Lys Glu Tyr Arg Glu Pro Arg Gly Cys Val Met 20 25 30

Lys Met Ser Ser Leu Lys Ala Pro Val Leu Arg Ile Gln Ala Thr Glu 35 40 45

Tyr Arg Glu Pro Arg Gly Arg Val Lys Met Met Ser Ser Leu Gln Ala 50 55 60

Pro Leu Leu Thr Ile Gln Ser Phe Ser Gly Leu Arg Ala Pro Ser Ala 65 70 75 80

Leu Asp Tyr Leu Gly Arg Pro Ser Pro Gly Phe Leu Val Lys Tyr Lys 85 90 95

Leu Ala Lys Ser Ser Gly Arg Glu Lys Ala Ser Arg Cys Val Pro Lys
100 105 110

Ala Met Phe Glu Arg Phe Thr Glu Lys Ala Ile Lys Val Ile Met Leu 115 120 125

Ser Gln Glu Glu Ala Arg Arg Leu Gly His Asn Phe Val Gly Thr Glu 130 135 140

Gln Ile Leu Leu Gly Leu Ile Gly Glu Gly Thr Gly Ile Ala Ala Lys 145 150 155 160

Val Leu Lys Ser Met Gly Ile Asn Leu Lys Asp Ser Arg Val Glu Val 165 170 175

Glu Lys Ile Ile Gly Arg Gly Ser Gly Phe Val Ala Val Glu Ile Pro 180 185 190

Phe Thr Pro Arg Ala Lys Arg Val Leu Glu Leu Ser Leu Glu Glu Ala 195 200 205

Arg Gln Leu Gly His Asn Tyr Ile Gly Ser Glu His Leu Leu Gly 210 215 220

Leu Leu Arg Glu Gly Glu Gly Val Ala Ala Arg Val Leu Glu Asn Leu 225 230 235 240

Gly Ala Asp Pro Ser Asn Ile Arg Thr Gln Val Ile Arg Met Val Gly 245 250 255

Glu Asn Asn Glu Val Thr Ala Ser Val Gly Gly Gly Ser Ser Gly Asn 260 265 270

Ser Lys Met Pro Thr Leu Glu Glu Tyr Gly Thr Asn Leu Thr Lys Leu 275 280 285

Ala Glu Glu Gly Lys Leu Asp Pro Val Val Gly Arg Gln Pro Gln Ile 290 295 300

Glu Arg Met Val Gln Ile Leu Ala Arg Arg Thr Lys Asn Asn Pro Cys 305 310 315 320

Leu Ile Gly Glu Pro Gly Val Gly Lys Thr Ala Ile Ala Glu Gly Leu 325 330 335

Ala Gln Arg Ile Ala Ser Gly Asp Val Pro Glu Thr Ile Glu Gly Lys 340 345 350

Thr Val Ile Thr Leu Asp Met Gly Leu Leu Val Ala Gly Thr Lys Tyr 355 360 365

Arg Gly Glu Phe Glu Glu Arg Leu Lys Lys Leu Met Glu Glu Ile Arg 370 375 380

Gln Ser Asp Glu Ile Ile Leu Phe Ile Asp Glu Val His Thr Leu Ile 385 390 395 400

Gly Ala Gly Ala Glu Gly Ala Ile Asp Ala Ala Asn Ile Leu Lys 405 410 415

Pro Ala Leu Ala Arg Gly Glu Leu Gln Cys Ile Gly Ala Thr Thr Ile 420 425 430

Asp Glu Tyr Arg Lys His Ile Glu Lys Asp Pro Ala Leu Glu Arg Arg 435 440 445

Phe Gln Pro Val Lys Val Pro Glu Pro Thr Val Glu Glu Ala Ile Gln 450 455 460

Ile Leu Gln Gly Leu Arg Glu Arg Tyr Glu Ile His His Lys Leu Arg 465 470 475 480

Tyr Thr Asp Glu Ala Leu Val Ala Ala Ala Gln Leu Ser His Gln Tyr 485 490 495

Ile Ser Asp Arg Phe Leu Pro Asp Lys Ala Ile Asp Leu Ile Asp Glu 500 505 510

Ala Gly Ser Arg Val Arg Leu Arg His Ala Gln Leu Pro Glu Glu Ala 515 520 525

Arg Glu Leu Glu Lys Gln Leu Arg Gln Ile Thr Lys Glu Lys Asn Glu 530 535 540

Ala Val Arg Ser Gln Asp Phe Glu Met Ala Gly Ser His Arg Asp Arg 545 550 555 560

Glu Ile Glu Leu Lys Ala Glu Ile Ala Asn Val Leu Ser Arg Gly Lys 565 570 575

- Glu Val Ala Lys Ala Glu Asn Glu Ala Glu Glu Gly Gly Pro Thr Val 580 585 590
- Thr Glu Ser Asp Ile Gln His Ile Val Ala Thr Trp Thr Gly Ile Pro 595 600 605
- Val Glu Lys Val Ser Ser Asp Glu Ser Ser Arg Leu Leu Gln Met Glu 610 620
- Gln Thr Leu His Thr Arg Val Ile Gly Gln Asp Glu Ala Val Lys Ala 625 630 635 640
- Ile Ser Arg Ala Ile Arg Arg Ala Arg Val Gly Leu Lys Asn Pro Asn 645 650 655
- Arg Pro Ile Ala Ser Phe Ile Phe Ser Gly Pro Thr Gly Val Gly Lys 660 665 670
- Ser Glu Leu Ala Lys Ala Leu Ala Ala Tyr Tyr Phe Gly Ser Glu Glu 675 680 685
- Ala Met Ile Arg Leu Asp Met Ser Glu Phe Met Glu Arg His Thr Val 690 695 700
- Ser Lys Leu Ile Gly Ser Pro Pro Gly Tyr Val Gly Tyr Thr Glu Gly 705 710 715 720
- Gly Gln Leu Thr Glu Ala Val Arg Arg Pro Tyr Thr Leu Val Leu
 725 730 735
- Phe Asp Glu Ile Glu Lys Ala His Pro Asp Val Phe Asn Met Met Leu 740 745 750
- Gln Ile Leu Glu Asp Gly Arg Leu Thr Asp Ser Lys Gly Arg Thr Val 755 760 765
- Asp Phe Lys Asn Thr Leu Leu Ile Met Thr Ser Asn Val Gly Ser Ser 770 775 780
- Val Ile Glu Lys Gly Gly Arg Arg Ile Gly Phe Asp Leu Asp His Asp 785 790 795 800

Glu Lys Asp Ser Ser Tyr Asn Arg Ile Lys Ser Leu Val Thr Glu Glu 805 810 815

Leu Lys Gln Tyr Phe Arg Pro Glu Phe Leu Asn Arg Leu Asp Glu Met 820 825 830

Ile Val Phe Arg Gln Leu Thr Lys Leu Glu Val Lys Glu Ile Ala Asp 835 840 845

Ile Met Leu Lys Glu Val Val Ala Arg Leu Glu Val Lys Glu Ile Glu 850 860

Leu Gln Val Thr Glu Arg Phe Lys Glu Arg Val Val Asp Glu Gly Phe 865 870 875 880

Asp Pro Ser Tyr Gly Ala Arg Pro Leu Arg Arg Ala Ile Met Arg Leu 885 890 895

Leu Glu Asp Ser Met Ala Glu Lys Met Leu Ser Arg Asp Ile Lys Glu 900 905 910

Gly Asp Ser Val Ile Val Asp Val Asp Ala Glu Gly Ser Val Val Val 915 920 925

Leu Ser Gly Thr Thr Gly Arg Val Gly Gly Phe Ala Ala Glu Glu Ala 930 935 940

Met Glu Asp Pro Ile Pro Ile Leu 945 950

<210> 83

<211> 1467

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1467)

<223> 65310

<40 atg Met 1	act	cag	gac Asp	gtg Val 5	gag Glu	atg Met	aaa Lys	gat Asp	aac Asn 10	aac Asn	acc Thr	cct Pro	tct Ser	caa Gln 15	tcg Ser	48	
att Ile	atc Ile	tct Ser	tct Ser 20	tct Ser	acc Thr	tc: Ser	act Thr	atg Met 25	cag Gln	aat Asn	ttg Leu	aag Lys	gag Glu 30	att Ile	gca Ala	96	
gca Ala	ctc Leu	atc Ile 35	gat Asp	act Thr	gly aaa	tct Ser	tac Tyr 40	acg Thr	aag Lys	gag Glu	gtt Val	cgt Arg 45	cgt Arg	att Ile	gct Ala	144	
cgt Arg	gct Ala 50	gtg Val	cgt Arg	ctc Leu	act Thr	ata Ile 55	Gly 999	ctt Leu	agg Arg	cag Gln	aaa Lys 60	ctc Leu	acc Thr	ggc Gly	tct Ser	192	
gtg Val	g ctc Leu	tct Ser	tcc Ser	ttc Phe	ctg Leu 70	gat Asp	ttt Phe	gct Ala	ttg Leu	gtt Val 75	cca Pro	gga Gly	tcc Ser	gaa Glu	gct Ala 80	240	
cac His	tct Ser	cgc Arg	ctc Leu	tct Ser 85	tcc Ser	ttt Phe	gtt Val	cct Pro	aag Lys 90	ggt Gly	gat Asp	gaa Glu	cat His	gac Asp 95	atg Met	288	
ga: Gl:	a gtt u Val	gat Asp	act Thr	Ala	tca Ser	tcg Ser	gcc Ala	aca Thr 105	Gln	gct Ala	gct Ala	cct Pro	tct Sei	с гА:	g cat s His	336	
ct Le	a cct u Pro	gca Ala	ı Glu	ctc Leu	gag Glu	atc Ile	tac Tyr 120	. Cys	tac Tyr	ttc Phe	att Ile	gtt Val	ь ьег	t cti u Lei	t ttt u Phe	384	
ct Le	g ati u Ile 130	e Asp	caç Glr	g aag 1 Lys	aag Lys	tac Tyr 135	Ası	gag n Glu	g gct n Ala	aaa Lys	gct Ala 140	а Су	t to s Se	t tc r Se	a gca r Ala	432 1	
ag Se 14	r Il	t gci e Ala	t cgt a Arg	cto g Lev	aag Lys 150	Ası	gte n Va	c aac l Ası	c cga	a agg g Arg 159	y Th	c at	t ga e As	t gt p Va	g ata 1 Ile 160	3	
gc Al	a tc .a Se	a aga r Ar	a cto g Lei	tac ı Tyı 169	r Phe	tac Ty:	c ta r Ty	t tct r Sei	t ttg r Lei 170	u Sei	t ta r Ty	t ga r Gl	g ca u Gl	a ac n Th	c ggt r Gly	t 528 Y	
ga As	it ct sp Le	t gc u Al	t gaa a Gli 18	u Ile	t cgo	g Gl	t ac y Th	t cti r Lei 18	u Le	t gc	g tt a Le	g ca u Hi	t ca s Hi	.s 5	et go	a 576 a	
a Tì	eg ct nr Le	a ag u Ar 19	g Hi	c ga s As	t gag p Gl	g ct u Le	g gg u Gl 20	y G1:	g ga n Gl	a ac u Th	c ct r Le	t ct u Le 20	eu As	ac ct sn Le	g tt eu Le	g 624 u	
L	ta co eu Ar 21	g As	c ta n Ty	t tt r Le	g ca u Hi	t ta s Ty 21	r As	ıc ct sn Le	c ta u Ty	t ga r As	t ca p G] 22	ln A.	ca ga La Gi	ag aa lu L	ag ct ys Le	a 672 u	
a	ga to	a aa	a go	a cc	t cg	c tt	t ga	ag go	t ca	t to	a aa	ac ca	aa c	ag t	tt tg	jt 720	

Arg 225	Ser	Lys	Ala	Pro	Arg 230	Phe	Glu	Ala	His :	Ser <i>1</i> 235	Asn	Gln	Gln	Phe	Суя 240	3	
agg Arg	tac Tyr	ctt Leu	ttc Phe	tat Tyr 245	ctc Leu	gjå aaa	aag Lys	att Ile	cgt Arg 250	act a	att Ile	cag Gln	ctc Leu	gaa Glu 255	tat Ty:	t r	768
acg Thr	gac Asp	gca Ala	aaa Lys 260	gag Glu	agc Ser	ctt Leu	ctt Leu	cag Gln 265	gcg Ala	gcc Ala	agg Arg	aaa Lys	gcc Ala 270	cct Pro	at: Il	a e	816
gca Ala	gct Ala	ttg Leu 275	ggc Gly	ttc Phe	agg Arg	atc Ile	caa Gln 280	tgc Cys	aat Asn	aaa Lys	tgg Trp	gca Ala 285	att Ile	ctg Leu	gt Va	t .1	864
cgt Arg	cta Leu 290	Leu	ctg Leu	ggt Gly	gag Glu	ata Ile 295	cca Pro	gag Glu	cgt Arg	tct Ser	atc Ile 300	ttc Phe	act Thr	caa Gln	aa Ly	ıg 's	912
ggt Gly 305	Met	gag Glu	aag Lys	gcc Ala	ctc Leu 310	Arg	ccc Pro	tac Tyr	ttc Phe	gag Glu 315	cta Leu	aca Thr	aat Asn	gcg	ı Va	t al 20	960
agg Arg	att Ile	ggg ggg	gac Asp	ttg Leu 325	Glu	ttg Leu	ttt Phe	agg Arg	aca Thr 330	gtc Val	cag Gln	gag Glu	aag Lys	tto Phe 33!	3 Tre	tg eu	1008
gac Asp	aca Thi	ttt Phe	gct Ala 340	Glr	gac Asp	aga Arg	acg Thr	cac His	aat Asn	ctc Leu	atc Ile	gtg Val	g cga Arg 350	a ne	c c	gc rg	1056
cac His	: aat : Ası	t gto n Va: 35!	l Ile	agg Arg	g act g Thi	gga Gly	ctg Lev 360	ı Arg	g aac g Asn	ata Ile	agt Ser	ato 116 369	: SE.	c ta r Ty	c t r S	ca er	1104
aga Arg	a ato	e Se	t tta r Le	a cco	c gat o Ası	gtt Val	Ala	c aaa a Lys	a aag s Lys	g ctg Leu	agg Arg 380	а тел	c aa u As:	c to n Se	t g r G	gaa Blu	1152
aac Asi 38	n Pr	t gt o Va	g gc	t gaʻ a Asj	t gcg p Ala 39	a Glı	a ago 1 Sei	c ate	c gtg e Val	g gca L Ala 395	я гъ	g gc	c at a Il	a co e Ar	.y £	100 Jac Jac	1200
gl gg	a gc y Al	t at a Il	t ga e As	t gc p Al 40	a Th	a ate	c ga e As	t ca p Hi	c aaa s Ly: 410	s Ası	gg n Gl	a tg y Cy	c at s Me	g gt t Va 4:	3T ;	cc Ser	1248
aa Ly	a ga s Gl	a ac u Tb	t gg r Gl 42	y As	c at p Il	c ta e Ty	c tc r Se	g ac r Th 42	g aa r As:	t gag n Gl	g cc u Pr	a ca o Gl	a ac n Th	ır A.	cg (la :	ttc Phe	1296
aa As	c to n Se	a ag er Ar 43	g Il	t go e Al	t tt .a Ph	c tg e Cy	c ct s Le 44	u As	c at n Me	g ca t Hi	t aa s As	ic ga in Gl	.u A.	et g la V	tc al	aga Arg	1344
gc A]	a Le	eu Ar	gg tt :g Pl	t co ne Pr	et co co Pr	t aa o As 45	n Th	t ca ir Hi	ac aa is Ly	g ga s Gl	g aa u Ly 46	/s G.	aa aq Lu Se	gc g er A	at sp	gag Glu	1392
aa	ng ag	gg ag	ga ga	ag ag	gg aa	ıg ca	a ca	ag ga	aa ga	ia ga	ıg ct	t g	ct a	ag c	at	atg	1440

Lys Arg Arg Glu Arg Lys Gln Gln Glu Glu Glu Leu Ala Lys His Met 465 470 475 480

gct gag gaa gac gat gat gat ttt tag Ala Glu Glu Asp Asp Asp Phe 485 1467

<210> 84

<211> 488

<212> PRT

<213> Arabidopsis thaliana

<400> 84

Met Thr Gln Asp Val Glu Met Lys Asp Asn Asn Thr Pro Ser Gln Ser

Ile Ile Ser Ser Ser Thr Ser Thr Met Gln Asn Leu Lys Glu Ile Ala
20 25 30

Ala Leu Ile Asp Thr Gly Ser Tyr Thr Lys Glu Val Arg Arg Ile Ala 35 40 45

Arg Ala Val Arg Leu Thr Ile Gly Leu Arg Gln Lys Leu Thr Gly Ser 50 55 60

Val Leu Ser Ser Phe Leu Asp Phe Ala Leu Val Pro Gly Ser Glu Ala 65 70 75 80

His Ser Arg Leu Ser Ser Phe Val Pro Lys Gly Asp Glu His Asp Met 85 90 95

Glu Val Asp Thr Ala Ser Ser Ala Thr Gln Ala Ala Pro Ser Lys His 100 105 110

Leu Pro Ala Glu Leu Glu Ile Tyr Cys Tyr Phe Ile Val Leu Leu Phe 115 120 125

Leu Ile Asp Gln Lys Lys Tyr Asn Glu Ala Lys Ala Cys Ser Ser Ala 130 135 140

Ser Ile Ala Arg Leu Lys Asn Val Asn Arg Arg Thr Ile Asp Val Ile 145 150 155 160 Ala Ser Arg Leu Tyr Phe Tyr Tyr Ser Leu Ser Tyr Glu Gln Thr Gly 165 170 175

- Asp Leu Ala Glu Ile Arg Gly Thr Leu Leu Ala Leu His His Ser Ala 180 185 190
- Thr Leu Arg His Asp Glu Leu Gly Gln Glu Thr Leu Leu Asn Leu Leu 195 200 205
- Leu Arg Asn Tyr Leu His Tyr Asn Leu Tyr Asp Gln Ala Glu Lys Leu 210 215 220
- Arg Ser Lys Ala Pro Arg Phe Glu Ala His Ser Asn Gln Gln Phe Cys 225 230 235 240
- Arg Tyr Leu Phe Tyr Leu Gly Lys Ile Arg Thr Ile Gln Leu Glu Tyr 245 250 255
- Thr Asp Ala Lys Glu Ser Leu Leu Gln Ala Ala Arg Lys Ala Pro Ile 260 265 270
- Ala Ala Leu Gly Phe Arg Ile Gln Cys Asn Lys Trp Ala Ile Leu Val 275 280 285
- Arg Leu Leu Gly Glu Ile Pro Glu Arg Ser Ile Phe Thr Gln Lys 290 295 300
- Gly Met Glu Lys Ala Leu Arg Pro Tyr Phe Glu Leu Thr Asn Ala Val 305 310 315 320
- Arg Ile Gly Asp Leu Glu Leu Phe Arg Thr Val Gln Glu Lys Phe Leu 325 330 335
- Asp Thr Phe Ala Gln Asp Arg Thr His Asn Leu Ile Val Arg Leu Arg 340 345 350
- His Asn Val Ile Arg Thr Gly Leu Arg Asn Ile Ser Ile Ser Tyr Ser 355 360 365
- Arg Ile Ser Leu Pro Asp Val Ala Lys Lys Leu Arg Leu Asn Ser Glu 370 375 380
- Asn Pro Val Ala Asp Ala Glu Ser Ile Val Ala Lys Ala Ile Arg Asp 385 390 395 400

Gly Ala Ile Asp Ala Thr Ile Asp His Lys Asn Gly Cys Met Val Ser 410 Lys Glu Thr Gly Asp Ile Tyr Ser Thr Asn Glu Pro Gln Thr Ala Phe 425 420 Asn Ser Arg Ile Ala Phe Cys Leu Asn Met His Asn Glu Ala Val Arg 440 435 Ala Leu Arg Phe Pro Pro Asn Thr His Lys Glu Lys Glu Ser Asp Glu 455 Lys Arg Arg Glu Arg Lys Gln Gln Glu Glu Glu Leu Ala Lys His Met 475 470 465 Ala Glu Glu Asp Asp Asp Phe 485 <210> 85 <211> 282 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (1) . . (282) <222> 68181 <223>

	> 8 gac Asp	~~~	agc Ser	atg Met 5	atg Met	gct Ala	gga Gly	Leu	gat Asp 10	ggt Gly	ctt Leu	cct Pro	gaa Glu	gaa Glu 15	gac Asp	48
aaa Lys	gcc Ala	aaa Lys	atg Met 20	gcc Ala	tcc Ser	atg Met	atc Ile	gat Asp 25	cag Gln	ctt Leu	cag Gln	ctc Leu	cgt Arg 30	gat Asp	agt Ser	96
ttg Leu	agg Arg	atg Met 35	tac Tyr	aat Asn	tca Ser	ttg Leu	gtg Val 40	gag Glu	agg Arg	tgt Cys	ttc Phe	gtg Val 45	gac Asp	tgt Cys	gtt Val	144
gat Asp	agc Ser 50	ttc Phe	aca Thr	cgc Arg	aaa Lys	tct Ser 55	ctg Leu	cag Gln	aaa Lys	caa Gln	gag Glu 60	gag Glu	act Thr	tgt Cys	gtg Val	192

atg cgt tgc gct gag aag ttc ctt aag cat acg atg cgt gtt ggt atg 240
Met Arg Cys Ala Glu Lys Phe Leu Lys His Thr Met Arg Val Gly Met
65 70 75 80

cgg ttt gct gag ctc aat cag aac gca cca acc caa gac tga 282
Arg Phe Ala Glu Leu Asn Gln Asn Ala Pro Thr Gln Asp
85 90

<210> 86

<211> 93

<212> PRT

<213> Arabidopsis thaliana

<400> 86

Met Asp Ala Ser Met Met Ala Gly Leu Asp Gly Leu Pro Glu Glu Asp
1 10 15

Lys Ala Lys Met Ala Ser Met Ile Asp Gln Leu Gln Leu Arg Asp Ser 20 25 30

Leu Arg Met Tyr Asn Ser Leu Val Glu Arg Cys Phe Val Asp Cys Val 35 40 45

Asp Ser Phe Thr Arg Lys Ser Leu Gln Lys Gln Glu Glu Thr Cys Val 50 55 60

Met Arg Cys Ala Glu Lys Phe Leu Lys His Thr Met Arg Val Gly Met 65 70 75 80

Arg Phe Ala Glu Leu Asn Gln Asn Ala Pro Thr Gln Asp 85 90

<210> 87

<211> 816

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(816)

<223> 70913

	_					•							•					
<400 atg Met 1		tca Ser	aaa Lys	ccg Pro 5	gga Gly	aga Arg	gaa Glu	aac Asn	gaa Glu 10	gag Glu	gaa Glu	gtc Val	aat Asn	aat Asn 15	Ca Hi	ac is		48
cat His	gct Ala	gtt Val	cag Gln 20	cag Gln	ccg Pro	atg Met	atg Met	tat Tyr 25	gca Ala	gag Glu	ccc Pro	tgg Trp	tgg Trp 30	aaa Lys	a: A:	ac sn		96
aac Asn	tcc Ser	ttt Phe 35	ggt Gly	gtt Val	gta Val	cct Pro	caa Gln 40	gcg Ala	aga Arg	cct Pro	tct Ser	gga Gly 45	att	cca	to S	ca er	:	L44
aat Asn	tcc Ser 50	tct Ser	tct Ser	ttg Leu	gat Asp	tgc Cys 55	ccc Pro	aat Asn	ggt Gly	tcc Ser	gag Glu 60	tca Ser	aac Asn	gat Ası	e g o V	tt al		192
cat His 65	tca Ser	gca	tct	gaa Glu	gac Asp 70	ggt Gly	gcg Ala	ttg Leu	aat Asn	ggt Gly 75	gaa Glu	aac Asr	gat Asp	gg Gl	<i>y</i> -	ict Thr 30		240
tgg Trp	aag Lys	gat Asi	tca Ser	caa Glr 85	gct Ala	gca Ala	act Thr	tcc Ser	tct Ser 90	cgt Arg	tca Ser	a gat c Asp	aat Asr	ca 1 Hi 95	5 (gga 31y		288
atg Met	gaa Glu	a gga a Gly	a aat 7 Asi 100	n Ası	c cca	gcg Ala	g cto Lei	tct Ser 105	. TT6	e cgt	aad g Asi	ato n Me	g cat His	o Alo	t (cag Gln		336
cca Pro	a cti	t gta ı Va 11	1 G1:	a cca n Pre	a cca	a gag	g cti 1 Lei 12	ı va.	gga 1 Gl	a cae y His	ta s Ty	t at r Il 12	C AI	t t⊆ a Cy	jt 75	gtc Val		384
cca	a aa o As: 13	n Pr	a ta o Ty	t ca r Gl	g gat n Asj	t cc p Pro	э Ту	t ta r Ty	t gg r Gl	A ej a aa	a tt y Le 14	u me	g 99 t Gl	a go y A	ca la	tat Tyr		432
99 Gl 14	у Ні	t ca s Gl	g ca n Gl	a tt n Le	9 99 u Gl	y Ph	t cg e Ar	t cc g Pr	a ta o Ty	t ct r Le 15	u Gi	a at y Me	g co t Pr	t co	gt rg	gaa Glu 160		480
ag Ar	a ac g Th	a go r Al	t ct a Le	g co u Pr 16	a ct o Le	t ga u As	c at p Me	g gc t Al	a ca a Gl	n Gı	g co .u Pi	co ya	t ta	•	tg al 75	aat Asn		528
gc Al	a aa .a Ly	ıg ca /s G]	g ta n Ty 18	r Gl	ig gg Lu Gl	a at y Il	t ct e Le	a ag u Ar 18	g Ai	ja ag	ga aa rg Ly	aa go ys A	raiv	gt g rg A 90	cc la	aag Lys		576
go Al	a ga la Gi	lu Le	a ga eu Gi 95	ag ag lu Ai	gg aa rg Ly	ia gt 7s Va	al I.	cc cg le Ai	gg ga	ac aq sp Ai	ga a rg L	ys P	ca to ro T	at c yr I	tt Leu	cac His		624
ga	ag t	ca a	ga ca	ac a	ag ca	at go	ca a	tg a	ga a	gg g	ca c	ga g	cg ·a	gt g	gga	ggc		672

Glu	Ser 210	Arg	His	Lys	His	Ala 215	Met	Arg	Arg	Ala	Arg 220	Ala	Ser	Gly	Gly	
		gcg Ala														720
		aga Arg														768
		aca Thr													taa	816

<210> 88

<211> 271

<212> PRT

<213> Arabidopsis thaliana

<400> 88

Met Gln Ser Lys Pro Gly Arg Glu Asn Glu Glu Glu Val Asn Asn His 1 5 10 15

His Ala Val Gln Gln Pro Met Met Tyr Ala Glu Pro Trp Trp Lys Asn 20 25 30

Asn Ser Phe Gly Val Val Pro Gln Ala Arg Pro Ser Gly Ile Pro Ser 35 40 45

Asn Ser Ser Ser Leu Asp Cys Pro Asn Gly Ser Glu Ser Asn Asp Val 50 55 60

His Ser Ala Ser Glu Asp Gly Ala Leu Asn Gly Glu Asn Asp Gly Thr 65 70 75 80

Trp Lys Asp Ser Gln Ala Ala Thr Ser Ser Arg Ser Asp Asn His Gly 85 90 95

Met Glu Gly Asn Asp Pro Ala Leu Ser Ile Arg Asn Met His Asp Gln
100 105 110

Pro Leu Val Gln Pro Pro Glu Leu Val Gly His Tyr Ile Ala Cys Val 115 120 125

Pro Asn Pro Tyr Gln Asp Pro Tyr Tyr Gly Gly Leu Met Gly Ala Tyr 130 135 140

Gly His Gln Gln Leu Gly Phe Arg Pro Tyr Leu Gly Met Pro Arg Glu 145 150 155 160

Arg Thr Ala Leu Pro Leu Asp Met Ala Gln Glu Pro Val Tyr Val Asn 165 170 175

Ala Lys Gln Tyr Glu Gly Ile Leu Arg Arg Arg Lys Ala Arg Ala Lys 180 185 190

Ala Glu Leu Glu Arg Lys Val Ile Arg Asp Arg Lys Pro Tyr Leu His 195 200 205

Glu Ser Arg His Lys His Ala Met Arg Arg Ala Arg Ala Ser Gly Gly
210 215 220

Arg Phe Ala Lys Lys Ser Glu Val Glu Ala Gly Glu Asp Ala Gly Gly 225 230 240

Arg Asp Arg Glu Arg Gly Ser Ala Thr Asn Ser Ser Gly Ser Glu Gln 245 250 255

Val Glu Thr Asp Ser Asn Glu Thr Leu Asn Ser Ser Gly Ala Pro 260 265 270

<210> 89

<211> 990

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(990)

<223> 71067

<400> 89
atg agt cgc cgg gtg gaa tac acg tta gct cct ccg cag agg aat gaa
Met Ser Arg Arg Val Glu Tyr Thr Leu Ala Pro Pro Gln Arg Asn Glu
1 5 10 15

48

tct Ser	gac Asp	ggt Gly	ttt Phe 20	gat Asp	tat Tyr	ccc Pro	gac Asp	ggt Gly 25	atc Ile	cca Pro	ata Ile	tca Ser	tac Tyr 30	aat Asn	ct Le	:t eu	96	
cat His	agg Arg	ctt Leu 35	cgt Arg	cac His	ttt Phe	gag Glu	tgt Cys 40	gaa Glu	ggc Gly	agt Ser	tat Tyr	ccc Pro 45	aag Lys	tat Tyr	Pi	ct ro	144	
tat Tyr	ggt Gly 50	tct Ser	ttg Leu	gtc Val	aag Lys	ttt Phe 55	tat Tyr	gca Ala	atg Met	gtg Val	gga Gly 60	ctt Leu	cat His	cgt	t;	ac yr	192	
aat Asn 65	gtg Val	tt <u>c</u> Lev	gag Glu	ı Gly	aaa Lys 70	aat Asn	ttg Leu	cag Gln	ctc Leu	gat Asp 75	acc Thr	cta Leu	aag Lys	agt Sei		tc he 0	240	
aac Asn	atg Met	aga Arg	a ato	aat Asr 85	tgt Cys	ggt Gly	gct Ala	tct Ser	tct Ser 90	tac Tyr	tac	att Ile	act Thr	tte Let 95	9 9 1 A	ct la	288	
gca Ala	. cgc	gti y Va	t cca l Pro	a Ası	ago Ser	ggt Gly	ttg Leu	aag Lys 105	Gin	atc Ile	ttt Phe	cag e Gli	g gtt n Val	r ne	a g u V	gtt /al	336	
cat His	gaa Gli	a ga ı Gl	g cg u Ar	t cti g Le	t ggo u Gly	agt Ser	tta Lev	ı Asp	e atg Met	aca Thi	tgi Cy	t ac s Th 12	E TT	c gc e Al	t a a <i>l</i>	aga Arg	384	
cct Pro	cg Arg	g Va	g ac l Th	t ac r Th	c aat r Asi	t gtg n Val	l Pro	ttt Phe	cta Lei	a cgt 1 Arg	c cc g Pr 14	о ит	c ag s Se	c ga r Gl	ia i	tca Ser	432	
gag Gli 14	u Ty	t ga r As	t ta p Ty	t at r Me	g ga t As 15	p Ası	t gat n Asj	t gaa p Gli	a ttg ı Le	g cci u Pro 15	o As	c to p Tr	g cc	t to	21	gag Glu 160	480	
at Il	t go e Al	t tt a Ph	c ga ne As	it ga sp As 16	p Th	a aa r Ly	a cg s Ar	g tt g Ph	t ca e Hi 17	s Le	g gt u Va	g aa 11 Ly	ıg ga /s Gl	u s	ca er 75	gag Glu	528	
tt Le	g cg u Ar	ja ga ig As	ac aa sp As 18	sn As	it tg sp Tr	g at p Il	t cg e Ar	a ct g Le 18	и ту	t tt r Le	g ga u Gl	aa ci lu Le	=u 11	ea c nr L 90	tt eu	gtt Val	576	
gc	t ca .a Hi	is A	at ag sp Ar 95	gg tt rg Pl	t ct ne Le	t ac	a gt r Va 20	l Hi	c ta s Ty	t ct r Le	c to	er G	ag ti ln L 05	tg g eu G	ag lu	att Ile	624	
gt Va	al L	aa g ys V	tt g	cg at la I	tt ga le G	aa ga lu Gl 21	u Va	g ga al Gl	ig ca iu Gl	aa co ln Pi	COA	at g sn A 20	cg a la S	gt c er I	tc eu	aac Asn	672	
T	cc a hr L	aa a ys T	ct a hr T	ca t hr P	he V	tc ta al Ty 30	ac at	ca ao le Tì	et ta nr T	Ar P	ag g ys A 35	ac t sp I	tg g eu A	ca a la I	aag Jys	gct Ala 240	720	ı
G:	ag a ln I	tt g le G	gt g ly G	lu P	cg g ro V 45	tt ga al A	at c	gc a rg L	ys A	ct a la I 50	tt g le V	gtt a Val A	aga a Arg I	ıys .	atc Ile 255	atc : Ile	768	}

aat Asn	gag Glu	act Thr	acg Thr 260	gga Gly	ctc Leu	ttg Leu	aga Arg	ctc Leu 265	cgg Arg	ggt Gly	gat Asp	tat Tyr	tgg Trp 270	agt Ser	gga Gly		816
gaa Glu	aga Arg	agt Ser 275	gtg Val	atc Ile	act Thr	ccg Pro	gag Glu 280	gag Glu	gaa Glu	tat Tyr	atg Met	ctt Leu 285	ctc Leu	cat His	ggc Gly		864
gga Gly	gaa Glu 290	aaa Lys	gtt Val	cga Arg	aac Asn	aat Asn 295	gag Glu	cag Gln	cgt Arg	Ser	aaa Lys 300	aaa Lys	ctt Leu	aag Lys	cgt Arg	·	912
cgt Arg 305	gta Val	ggt Gly	gtt Val	cat His	agg Arg 310	cta Leu	tgg Trp	cga Arg	tgg Trp	tgg Trp 315	Tyr	cag Gln	gct Ala	tac Tyr	aaa Lys 320		960
aac Asn	cgt Arg	ggc	ctc Leu	cgc Arg 325	Ser	tcg Ser	tct Ser	tat Tyr	taa				-				990

<210> 90

<211> 329

<212> PRT

<213> Arabidopsis thaliana

<400> 90

Met Ser Arg Arg Val Glu Tyr Thr Leu Ala Pro Pro Gln Arg Asn Glu
1 5 10 15

Ser Asp Gly Phe Asp Tyr Pro Asp Gly Ile Pro Ile Ser Tyr Asn Leu 20 25 30

His Arg Leu Arg His Phe Glu Cys Glu Gly Ser Tyr Pro Lys Tyr Pro 35 40 45

Tyr Gly Ser Leu Val Lys Phe Tyr Ala Met Val Gly Leu His Arg Tyr 50 55 60

Asn Val Leu Glu Gly Lys Asn Leu Gln Leu Asp Thr Leu Lys Ser Phe 65 70 75 80

Asn Met Arg Ile Asn Cys Gly Ala Ser Ser Tyr Tyr Ile Thr Leu Ala 85 90 95

Ala Arg Val Pro Asp Ser Gly Leu Lys Gln Ile Phe Gln Val Leu Val 100 105 110

His Glu Glu Arg Leu Gly Ser Leu Asp Met Thr Cys Thr Ile Ala Arg 115 120 125

Pro Arg Val Thr Thr Asn Val Pro Phe Leu Arg Pro His Ser Glu Ser 130 135 140

Glu Tyr Asp Tyr Met Asp Asn Asp Glu Leu Pro Asp Trp Pro Ser Glu 145 150 155 160

Ile Ala Phe Asp Asp Thr Lys Arg Phe His Leu Val Lys Glu Ser Glu 165 170 175

Leu Arg Asp Asn Asp Trp Ile Arg Leu Tyr Leu Glu Leu Thr Leu Val

Ala His Asp Arg Phe Leu Thr Val His Tyr Leu Ser Gln Leu Glu Ile 195 200 205

Val Lys Val Ala Ile Glu Glu Val Glu Gln Pro Asn Ala Ser Leu Asn 210 215 220

Thr Lys Thr Thr Phe Val Tyr Ile Thr Tyr Lys Asp Leu Ala Lys Ala 225 230 235 240

Gln Ile Gly Glu Pro Val Asp Arg Lys Ala Ile Val Arg Lys Ile Ile 245 250 255

Asn Glu Thr Thr Gly Leu Leu Arg Leu Arg Gly Asp Tyr Trp Ser Gly 260 265 270

Glu Arg Ser Val Ile Thr Pro Glu Glu Glu Tyr Met Leu Leu His Gly 275 280 285

Gly Glu Lys Val Arg Asn Asn Glu Gln Arg Ser Lys Lys Leu Lys Arg 290 295 300

Arg Val Gly Val His Arg Leu Trp Arg Trp Trp Tyr Gln Ala Tyr Lys 305 310 315

Asn Arg Gly Leu Arg Ser Ser Ser Tyr 325

<210> 91

<211> 1614

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1614)

<223> 71654

					•													
]	<400 atg Met 1	aca	1 ctc Leu	gtg Val	aaa Lys 5	acg Thr	gaa Glu	acg Thr	cag Gln	gcg Ala 10	tta Leu	gga Gly	aac Asn	cac His	cag Gln 15	cat His	48	
	tct Ser	tca Ser	agg Arg	ttt Phe 20	ggt Gly	tcg Ser	ctt Leu	tac Tyr	gtc Val 25	ggt Gly	gat Asp	ctt Leu	agc Ser	cca Pro 30	gac Asp	gtg Val	96	
	acg Thr	gag Glu	aaa Lys 35	gat Asp	ctc Leu	att Ile	gat Asp	aag Lys 40	ttc Phe	tct Ser	ttg Leu	aat Asn	gtt Val 45	ccg Pro	gta Val	gtg Val	144	
	tcc Ser	gtt Val 50	cat His	ctt Leu	tgc Cys	cgt Arg	aac Asn 55	tct Ser	gtc Val	acc Thr	gga Gly	aaa Lys 60	tcc Ser	atg Met	tgt Cys	tac Tyr	192	
	gct Ala 65	tac Tyr	atc Ile	aac Asn	ttc Phe	gat Asp 70	tca Ser	cct Pro	ttc Phe	agc Ser	gca Ala 75	tcg Ser	aat Asn	gct Ala	atg Met	act Thr 80	240	
	cgc Arg	tta Leu	aac Asn	cat His	agt Ser 85	gat Asp	ttg Leu	aag Lys	gga Gly	aag Lys 90	gct Ala	atg Met	cga Arg	ata Ile	atg Met 95	tgg Trp	288	
	tct Ser	cag Gln	agg Arg	gat Asp 100	Leu	gcg Ala	tac Tyr	cgt Arg	cgt Arg 105	Arg	act Thr	cgt Arg	act Thr	ggt Gly 110	Pne	gca Ala	336	
	aat Asn	cta Leu	tac Tyr 115	Val	aag Lys	aat Asn	ctg Leu	gat Asp 120	Ser	tcg Ser	att Ile	act Thr	ago Ser 125	Sei	tgo Cys	tta Leu	384	
•	gag	cga Arg	Met	ttt Phe	tgo Cys	ccc Pro	ttt Phe 135	Gly	tco Ser	ata : Ile	ctt Lev	tct Sei 140	cys	aaa Lys	a gto s Val	gtt Val	432	
	gaa Glu 145	ı Gli	aat Asr	ggo Gly	caa Glr	agt Ser 150	- Lys	ggt Gly	ttt Phe	ggc Gly	ttt Phe 15!	e va.	cag l Gli	g tti	t gat e Asj	t aca p Thr 160	480	
	gag	g caa	a tct	gct	gta	a tct	gct	. cgt	tct	gct	t ct	c ca	c gg	e te	t at	g gtt	528	

						•										
Glu (3ln	Ser	Ala	Val 165	Ser	Ala	Arg	Ser .	Ala 1 170	Leu E	Iis G	ly S	er Mo	et V 75	al	
tat q	ggc Gly	aag Lys	aaa Lys 180	ctg Leu	ttt Phe	gtt Val	gcc Ala	aag Lys 185	ttc (Phe	atc a Ile <i>B</i>	aac a Asn I	ıys H	at g sp G .90	aa a lu <i>l</i>	iga Arg	576
gca Ala	gct Ala	atg Met 195	gca Ala	gga Gly	aat Asn	caa Gln	gac Asp 200	tct Ser	aca Thr	aac (Asn '	var :	at g Tyr V 205	ntg a Mal I	ag a ys i	aat Asn	624
ctg Leu	atc Ile 210	gaa Glu	act Thr	gtt Val	aca Thr	gat Asp 215	gat Asp	tgt Cys	cta Leu	Hls	aca o Thr 1 220	ctg t Leu 1	ttt t Phe S	et Ger	caa Gln	672
tat Tyr 225	gga Gly	act Thr	gtc Val	tct Ser	agt Ser 230	Val	gtg Val	gtt Val	atg Met	agg Arg 235	gat Asp	ggt (Gly)	atg (Met (gga 31y	aga Arg 240	720
tct Ser	aga Arg	ggt	ttc Phe	gga Gly 245	ttt Phe	gtt Val	aac Asn	ttc Phe	tgc Cys 250	aat Asn	cca Pro	gaa Glu	ASII .	gct Ala 255	aag Lys	768
aaa Lys	gct Ala	ato Met	g gaa Glu 260	ı Ser	cto Lev	tgt Cys	gga Gly	cta Leu 265	GIN	ctt Leu	gga Gly	tcg Ser	aag Lys 270	aaa Lys	ttg Leu	816
ttt Phe	gtt Va]	gg Gl; 27	у Ьуз	g gca s Ala	a cto a Lev	aag Lys	aaa Lys 280	Asp	gaa Glu	agg Arg	agg Arg	gag Glu 285	atg Met	ctg Leu	aaa Lys	864
cag Gln	aaa Lys 290	3 Ph	c ag e Se:	t gad r Asj	c aad p Ası	c ttt n Phe 29!	e Ile	gca Ala	a aag a Lys	g cct Pro	aac Asn 300	atg Met	aga Arg	tgg Trp	tcc Ser	912
aat Asr 305	Le	g ta u Ty	c gt r Va	g aa l Ly	g aa s As: 31	n Le	g agt u Sei	t gaa	a tca u Sei	a atg r Met 315	ABII	gaa Glu	aca Thr	aga Arg	ctg Leu 320	960
cga Arg	a ga g Gl	a at u Il	c tt e Ph	t gg e Gl 32	у Су	c ta s Ty	t gg r Gl	g ca y Gl	a ata n Ilo 33	e vaı	tca Ser	gct Ala	aaa Lys	gtg Val 335	g atg L Met	1008
tgi Cy:	t ca s Hi	t ga s Gl	ig aa .u As 34	n Gl	jc ag .y Ar	a ag g Se	t aa r Ly	a gg s Gl 34	y Pn	c ggq e Gly	ttt Phe	gtg Val	tgc Cys 350		c tct e Ser	1056
aa As:	c to n Cy	rs G.	aa ga lu G] 55	ig to Lu Se	cc aa er Ly	a ca 's Gl	ıg go n Al 36	.а ьу	a ag 's Ar	a tai	t cto	c aat 1 Asi 36!	נים י	y tt	c tta e Leu	1104
gt Va	1 As	at gg sp G:	ga aa ly Ly	ag co ys Pi	ca at ro Il	a gt Le Va	al Va	t co al Ai	ga gt cg Va	t gc al Al	a gag a Gli 38	u AL	c aaa g Lys	a ga s Gl	g gat u Asp	1152
cg Ar 38	g I	tc a le L	ag ag	gg ti rg L	eu G	ag ca ln Gi	aa ta ln Ty	at ti yr Pl	tt ca he GI	ag gc ln Al 39	a Gi	g cc n Pr	a cg o Ar	c ca g Gl	g tac n Tyr 400	•
ac	g c	aa g	ct c	ct t	ct g	cc c	ct to	ca c	ca g	ct ca	ıg cc	a gt	c ct	c to	a tat	1248

•	Thr	Gln	Ala	Pro	Ser 405	Ala	Pro	Ser	Pro	Ala 410	Gln	Pro	Val	Leu	Ser 415	Tyr		
	gtg Val	tcc Ser	agc Ser	tca Ser 420	tat Tyr	ggt Gly	tgc Cys	ttt Phe	cag Gln 425	cca Pro	ttc Phe	cag Gln	gtc Val	999 Gly 430	aca Thr	tct Ser	3	1296
	tat Tyr	tac Tyr	tat Tyr 435	atg Met	ggc	aat Asn	cag Gln	gtg Val 440	cca Pro	caa Gln	atg Met	tcc Ser	ggt Gly 445	cac His	caa Gln	aac Asn	:	1344
	atc Ile	acc Thr 450	acc Thr	tac Tyr	gtt Val	cca Pro	gct Ala 455	gjà aaa	aaa Lys	gtg Val	cct Pro	ctc Leu 460	Lys	gag Glu	aga Arg	aga Arg	-	1392
	tca Ser 465	atg Met	cat His	ctg Leu	gtc Val	tac Tyr 470	aaa Lys	cat	ccg Pro	gct Ala	tat Tyr 475	ccc Pro	gtt Val	gcc Ala	aag Lys	agg Arg 480		1440
	ggt Gly	gct Ala	aaa Lys	cag Gln	aca Thr 485	Leu	gtt Val	ttt Phe	aag Lys	ggt Gly 490	Glu	gtt Val	aac Asn	aga Arg	aat Asn 495	tta Leu		1488
	gag Glu	gct Ala	gca Ala	aca Thr 500	Cys	tcc Ser	aaa Lys	gca Ala	aca Thr 505	Thr	tct Ser	gag Glu	gag Glu	aac Asn 510	Arg	aaa Lys		1536
	gaa Glu	gaa Glu	cga Arg	Arg	ttg Leu	act Thr	ttg Leu	tca Ser 520	Gly	aag Lys	ttg Lev	tca Sei	e cca Pro 525	GIU	ı gtç ı Val	g aag L Lys		1584
	gta Val	gag Glu 530	Glu	tca Ser	gga Gly	aaa / Lys	caa Glr 535	Lev	g caa ı Glr	a tga 1								1614
	<21	0>	92		-													

<210> 92

<211> 537

<212> PRT

<213> Arabidopsis thaliana

<400> 92

Met Ala Leu Val Lys Thr Glu Thr Gln Ala Leu Gly Asn His Gln His 1 5 10 15

Ser Ser Arg Phe Gly Ser Leu Tyr Val Gly Asp Leu Ser Pro Asp Val 20 25 30

Thr Glu Lys Asp Leu Ile Asp Lys Phe Ser Leu Asn Val Pro Val Val 35 40 45

Ser Val His Leu Cys Arg Asn Ser Val Thr Gly Lys Ser Met Cys Tyr 50 55 60

- Ala Tyr Ile Asn Phe Asp Ser Pro Phe Ser Ala Ser Asn Ala Met Thr 65 70 75 80
- Arg Leu Asn His Ser Asp Leu Lys Gly Lys Ala Met Arg Ile Met Trp 85 90 95
- Ser Gln Arg Asp Leu Ala Tyr Arg Arg Arg Thr Arg Thr Gly Phe Ala 100 105 110
- Asn Leu Tyr Val Lys Asn Leu Asp Ser Ser Ile Thr Ser Ser Cys Leu 115 120 125
- Glu Arg Met Phe Cys Pro Phe Gly Ser Ile Leu Ser Cys Lys Val Val 130 135 140
- Glu Glu Asn Gly Gln Ser Lys Gly Phe Gly Phe Val Gln Phe Asp Thr 145 150 155 160
- Glu Gln Ser Ala Val Ser Ala Arg Ser Ala Leu His Gly Ser Met Val 165 170 175
- Tyr Gly Lys Lys Leu Phe Val Ala Lys Phe Ile Asn Lys Asp Glu Arg 180 185 190
- Ala Ala Met Ala Gly Asn Gln Asp Ser Thr Asn Val Tyr Val Lys Asn 195 200 205
- Leu Ile Glu Thr Val Thr Asp Asp Cys Leu His Thr Leu Phe Ser Gln 210 215 220
- Tyr Gly Thr Val Ser Ser Val Val Wet Arg Asp Gly Met Gly Arg 225 230 235 240
- Ser Arg Gly Phe Gly Phe Val Asn Phe Cys Asn Pro Glu Asn Ala Lys 245 250 255
- Lys Ala Met Glu Ser Leu Cys Gly Leu Gln Leu Gly Ser Lys Lys Leu 260 265 270
 - Phe Val Gly Lys Ala Leu Lys Lys Asp Glu Arg Arg Glu Met Leu Lys 275 280 285

Gln Lys Phe Ser Asp Asn Phe Ile Ala Lys Pro Asn Met Arg Trp Ser 290 295 300

- Asn Leu Tyr Val Lys Asn Leu Ser Glu Ser Met Asn Glu Thr Arg Leu 305 310 315 320
- Arg Glu Ile Phe Gly Cys Tyr Gly Gln Ile Val Ser Ala Lys Val Met 325 330 335
- Cys His Glu Asn Gly Arg Ser Lys Gly Phe Gly Phe Val Cys Phe Ser 340 345 350
- Asn Cys Glu Glu Ser Lys Gln Ala Lys Arg Tyr Leu Asn Gly Phe Leu 355 360 365
- Val Asp Gly Lys Pro Ile Val Val Arg Val Ala Glu Arg Lys Glu Asp 370 375 380
- Arg Ile Lys Arg Leu Gln Gln Tyr Phe Gln Ala Gln Pro Arg Gln Tyr 385 390 395 400
- Thr Gln Ala Pro Ser Ala Pro Ser Pro Ala Gln Pro Val Leu Ser Tyr 405 410 415
- Val Ser Ser Ser Tyr Gly Cys Phe Gln Pro Phe Gln Val Gly Thr Ser 420 425 430
- Tyr Tyr Met Gly Asn Gln Val Pro Gln Met Ser Gly His Gln Asn 435 440 445
- Ile Thr Thr Tyr Val Pro Ala Gly Lys Val Pro Leu Lys Glu Arg Arg 450 455 460
- Ser Met His Leu Val Tyr Lys His Pro Ala Tyr Pro Val Ala Lys Arg 465 470 475 480
- Gly Ala Lys Gln Thr Leu Val Phe Lys Gly Glu Val Asn Arg Asn Leu 485 490 495
- Glu Ala Ala Thr Cys Ser Lys Ala Thr Thr Ser Glu Glu Asn Arg Lys 500 505 510
- Glu Glu Arg Arg Leu Thr Leu Ser Gly Lys Leu Ser Pro Glu Val Lys 515 520 525

Val Glu Glu Ser Gly Lys Gln Leu Gln 530 535

<210> 93

<211> 657

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(657)

<223> ET3172

<400		3														*
atg Met 1	gct Ala	ttt Phe	gat Asp	gaa Glu 5	gat Asp	atg Met	aaa Lys	atg Met	gcg Ala 10	tct Ser	ttc Phe	tta Leu	aga Arg	gaa Glu 15	gaa Glu	48
					tct Ser											96
gac Asp	ggc Gly	gat Asp 35	gaa Glu	gcc Ala	gac Asp	ggt Gly	gag Glu 40	tct Ser	tct Ser	gct Ala	tcc Ser	gac Asp 45	gag Glu	aaa Lys	cgt Arg	144
gtt Val	gtc Val 50	cac His	ggc	gga Gly	gga Gly	gag Glu 55	aaa Lys	tcc Ser	atg Met	gag Glu	gag Glu 60	cta Leu	aat Asn	ttt Phe	tca Ser	192
gat Asp 65	tct Ser	gat Asp	aaa Lys	gaa Glu	tca Ser 70	acc Thr	ggt Gly	tgt Cys	caa Gln	tct Ser 75	ctc Leu	ccg Pro	gcg Ala	aca Thr	cct Pro 80	240
ccg Pro	aga Arg	cgg Arg	aga Arg	cgg Arg 85	cgg Arg	aga Arg	ggc	ggt Gly	gga Gly 90	gga Gly	gga Gly	gga Gly	tat Tyr	tta Leu 95	gcg Ala	288
gtg Val	agt Ser	tct Ser	ccg Pro 100	gtt Val	tcc Ser	ggc Gly	gat Asp	aaa Lys 105	gct Ala	tac Tyr	gct Ala	agc Ser	gag Glu 110	aac Asn	gaa Glu	336
gta Val	caa Gln	aag Lys 115	Thr	aat Asn	aac Asn	aat Asn	cag Gln 120	Arg	aga Arg	agg Arg	agg Arg	aga Arg 125	Leu	aaa Lys	ccg Pro	384
gag Glu	tgt Cys 130	Pro	ccg Pro	tgg Trp	gtt Val	gat Asp 135	Ser	atg Met	cgg Arg	agg Arg	ago Ser 140	Tyr	gtc Val	gga Gly	gat Asp	432

gaa Glu 145	cag Gln	agt Ser	agt Ser	cac His	ggt Gly 150	ggt Gly	tac Tyr	gga Gly	gga Gly	gga Gly 155	gtg Val	gtg Val	gtt Val	gtt Val	acg Thr 160	480
agg Arg	cct Pro	ata Ile	gga Gly	gga Gly 165	gga Gly	agg Arg	cca Pro	ttg Leu	tgt Cys 170	atg Met	gat Asp	tta Leu	gaa Glu	gaa Glu 175	gtc Val	528
aaa Lys	gct Ala	tgt Cys	aaa Lys 180	gat Asp	ttg Leu	gjå aaa	ttt Phe	gag Glu 185	ctt Leu	gaa Glu	ccg Pro	ggt Gly	cgg Arg 190	gtt Val	tcg Ser	576
tat Tyr	tcc Ser	999 Gly 195	tca Ser	acg Thr	gtg Val	gat Asp	act Thr 200	agt Ser	agt Ser	ggc	Gly	aat Asn 205	tct Ser	cct Pro	atc Ile	624
tct Ser	tct Ser 210	Asn	cac	cgt Arg	att Ile	tcg Ser 215	agt Ser	ccc Pro	ggt Gly	tag						657

<210> 94

<211> 218

<212> PRT

<213> Arabidopsis thaliana

<400> 94

Met Ala Phe Asp Glu Asp Met Lys Met Ala Ser Phe Leu Arg Glu Glu 1 5 10 15

Glu Glu Gln His Tyr Ser Leu Ser Arg Leu Ser Val Cys Ser Asn Tyr 20 25 30

Asp Gly Asp Glu Ala Asp Gly Glu Ser Ser Ala Ser Asp Glu Lys Arg 35 40 45

Val Val His Gly Gly Glu Lys Ser Met Glu Glu Leu Asn Phe Ser 50 55 60

Asp Ser Asp Lys Glu Ser Thr Gly Cys Gln Ser Leu Pro Ala Thr Pro 65 70 75 80

Pro Arg Arg Arg Arg Arg Gly Gly Gly Gly Gly Tyr Leu Ala 85 90 95

Val Ser Ser Pro Val Ser Gly Asp Lys Ala Tyr Ala Ser Glu Asn Glu 100 105 110

Val Gln Lys Thr Asn Asn Asn Gln Arg Arg Arg Arg Leu Lys Pro 115 120 125

Glu Cys Pro Pro Trp Val Asp Ser Met Arg Arg Ser Tyr Val Gly Asp 130 135 140

Glu Gln Ser Ser His Gly Gly Tyr Gly Gly Gly Val Val Val Val Thr 145 150 155 160

Arg Pro Ile Gly Gly Arg Pro Leu Cys Met Asp Leu Glu Glu Val 165 170 175

Lys Ala Cys Lys Asp Leu Gly Phe Glu Leu Glu Pro Gly Arg Val Ser 180 185 190

Tyr Ser Gly Ser Thr Val Asp Thr Ser Ser Gly Gly Asn Ser Pro Ile 195 200 205

Ser Ser Asn His Arg Ile Ser Ser Pro Gly 210 215

<210> 95

<211> 2220

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2220)

<223> ET3546

cct tct gag gtt aat ttg cag cta tta gcc acc agc tac ctg cag aat 144

Pro	Ser	Glu 35	Val	Asn	Leu	Gln	Leu 40	Leu	Ala	Thr	Ser	Tyr 45	Leu	G1	n A	sn	
aat Asn	caa Gln 50	gct Ala	tac Tyr	agt Ser	gca Ala	tat Tyr 55	cat His	ctg Leu	cta Leu	aag Lys	gga Gly 60	aca Thr	caa Gln	at Me	g g t A	ıct la	192
cag Gln 65	tcc Ser	cga Arg	tac Tyr	ttg Leu	ttc Phe 70	gca Ala	tta Leu	tca Ser	tgc Cys	ttc Phe 75	cag Gln	atg Met	gac Asp	ct Le	eu 1	etc Seu 30	240
aat Asn	gaa Glu	gct Ala	gaa Glu	tct Ser 85	gca Ala	ctc Leu	tgc Cys	cct Pro	gtt Val 90	aat Asn	gaa Glu	Pro	ggt Gly	gc 7 Al 95	ıa (gag Glu	288
atc Ile	cca Pro	aat Asn	ggt Gly 100	Ala	gca Ala	ggc Gly	cat His	tac Tyr 105	Leu	ctt Leu	gga Gly	ctt Lei	att 1 Ile 11	= +;	ac a	aag Lys	336
aag Lys	aat Asn	gct Ala 115	. Ala	caa Gln	caa Gln	ttt Phe	aaa Lys 120	Gln	tcc Ser	ttg Lev	aca Thi	a ata c Ile 12	e AS	c c p P	ct ro	cta Leu	384
ctt Lev	tgg Trp 130) Ala	gca Ala	tat Tyr	gag Glu	gaa Glu 135	Leu	tgt Cys	ata Ile	tta Lev	1 gg	A T	t gc a Al	t g a G	ag lu	gaa Glu	432
gca Ala 145	Thi	gca Ala	a gtt a Val	ttt L Phe	ggt Gly 150	gaa Glu	aca Thr	gct Ala	get Ala	Lei Lei 15	ı se	c at r Il	t ca e Gl	a a .n I	ag ys	cag Gln 160	480
tai Ty:	ate Me	g caa	a caa n Gli	a cto n Lev 169	ı Ser	a act	tcc Ser	cto Lev	2 gg0 1 Gly 170	Le	a aa u As	c ac n Th	t ta r Ty	T F	aac Asn 175	gag Glu	528
ga: Gl:	a cg u Ar	t aa g As	t tc n Se 18	r Th	t tct r Sei	act Thr	aaa Lys	a aad s Asi 18!	n Thi	g ag r Se	t to r Se	t ga er Gl	Lu As	at t sp :	tat Tyr	agt Ser	576
cc Pr	a ag o Ar	g ca g Gl 19	n Se	t aa r Ly	a cad s Hi:	c aca s Thi	a caa c Gli 200	n Se	c cat r Hi	t gg s Gl	c ct y Le	a ri	aa ga ys A 05	at a	atc Ile	tcc Ser	624
gg gg	a aa y As 21	n Ph	c ca le Hi	t tc s Se	t ca r Hi	t gga s Gly 21	y Vai	t aa l As	t gg n Gl	a gg y Gl	y va	al So	cg a er A	ac sn	atg Met	tca Ser	672
tt Ph 22	e Ty	nt aa ⁄r As	it ac sn Th	g cc ir Pr	t tc o Se 23	r Pr	a gt o Va	g gc l Al	t gc a Al	a ca a Gl 23	רם די	ta t eu S	cc g er G	gt ly	ata Ile	gct Ala 240	720
Pi	a co co Pi	ca co co Pi	ca ct	t tt eu Ph 24	ie Ar	g aa g As	t tt n Ph	t ca le Gl	ng co n Pr 25	O A.	ct g la V	tt g al A	ca a la A	ac sn	Pro 255	a aac o Asn	768
to Se	ec c	tt at eu I	le Ti	et ga nr As 50	ac ag sp Se	gt to er Se	t co r Pr	a aa o Ly 26	ys Se	ec a er T	ct g hr V	tt a al A	usn S	et Ser 270	act Thi	t ctt r Leu	816
C	aa g	ca c	ct a	ga ag	ga aa	ag tt	t gt	a ga	at ga	aa g	ga a	ag t	ta o	cgt	aa	g att	864

Gln	Ala	Pro 275	Arg	Arg	Lys 1	Phe V	Val 280	Asp (Glu (3ly	Lys	Leu 285	Arg	Ьy	s I	le	
tct Ser	ggc Gly 290	aga Arg	cta Leu	ttt Phe	tct (gat (Asp :	tct Ser	ggt Gly	cca (Pro)	Arg	cgg Arg 300	agt Ser	tca Ser	ag Ar	a o	ctg Leu	912
tct Ser 305	gct Ala	gat Asp	tca Ser	gly aaa	gca Ala 310	aac Asn	att Ile	aat Asn	Ser	agt Ser 315	gtt Val	gca Ala	aca Thr	gt Va	TT :	agc Ser 320	960
gga Gly	aat Asn	gtg Val	aac Asn	aac Asn 325	gct Ala	tcc Ser	aag Lys	tat Tyr	ttg Leu 330	gga Gly	ggt Gly	tct Ser	aaa Lys	ь те	eu 85	agt Ser	1008
tct Ser	ttg Leu	gca Ala	ctt Leu 340	cgt Arg	tct Ser	gta Val	aca Thr	ctt Leu 345	cgg Arg	aag Lys	gga Gly	Cac	tco Sei 350	111	rp 33	gca Ala	1056
aat Asn	gaa Glu	aac Asn 355	Met	gat Asp	gaa Glu	gly aaa	gtc Val 360	Arg	Gly 999	gaa Glu	cct	tt1 Pho 36	e As	e g	at sp	tca Ser	1104
agg Arg	cct Pro	Asr	act Thr	gcc Ala	tca Ser	acg Thr 375	act Thr	ggt	tct Ser	atg Met	gct Ala 380	a se	c aa r As	tg nA	at .sp	caa Gln	1152
gaa Glu 385	ı Ası	gaa Glu	aca 1 Thr	atg Met	tcg Ser 390	att Ile	ggt Gly	ggc Gly	ata Ile	gca Ala 395	мет	g ag : Se	t tc r Se	t c r G	aa In	aca Thr 400	1200
ato Ile	c aca	a att	ggt Gly	gtt Val 405	tcg Ser	gaa Glu	att Ile	tta Leu	aac Asn 410	Leu	cti Lei	t ag u Ar	g ac g Th	II. I	etc Seu 115	gga Gly	1248
gaa Gli	a ggg	g tgi y Cy:	t aga s Arg 420	g Lev	tca Ser	tac Tyr	ato Met	tac Tyr 425	: Arg	tgt Cys	ca Gl:	g ga n Gl	ig go .u Al 43	.a ı	ctg Leu	gat Asp	1296
ac; Th:	g ta r Ty	t ate	t Ly	a ctt s Lei	cca Pro	cat His	aaq Ly:	s His	tat Tyr	aat Ası	t ac n Th	a gg r Gl 44	rA T	ub, Bai	gtt Val	ctt Leu	1344
tc Se	c ca r Gl 45	n Va	c ggg	g aaa y Lys	a gca s Ala	tac Tyr 455	Ph	t gaa e Glu	a cta u Lev	a att	t ga e As 46	p 17	at ti yr L	ta (gag Glu	gct Ala	1392
ga Gl 46	u Ly	g gc s Al	a tt a Ph	c cg	t ctt g Lev 470	ı Ala	c cg	t ctg g Le	g gct u Ala	t tc a Se 47	r Pr	t t	at t yr C	gc ys	tta Le:	gaa Glu 480	1440
G1 99	a at y Me	g ga et As	t at p Il	a ta e Ty 48	r Sei	ace Thi	g gt r Va	c ct l Le	c tai u Ty: 49	r Hi	t tt s Le	eu L	ag g ys G	aa lu	gad Asj 49	e atg p Met 5	1488
aa Ly	ıg ct 7s Le	g ag eu Se	it ta er Ty 50	r Le	g gci u Ala	caq a Gli	g ga n Gl	a ct u Le 50	u II	a to e Se	a ac	cc g hr A	sp A	gc rg 10	tt: Le	a gct u Ala	1536
co	et ca	aa to	et to	ıg tg	t gc	t at	g gs	ja aa	t tg		at a	gc t	tg c	aa	aa	g gac	1584

Pro	Gln	Ser 515	Trp	Cys	Ala	Met (Gly 520	Asn	Cys	Tyr	Ser	Leu 525	Gln	Lys	Asp ·		
cat His	gag Glu 530	acc Thr	gca Ala	ctg Leu	aag Lys	aat Asn 535	ttc Phe	cta Leu	cga Arg	gct Ala	gtt Val 540	caa Gln	ctg Leu	aat Asn	cca Pro		1632
aga Arg 545	ttt Phe	gca Ala	tat Tyr	gca Ala	cat His 550	acc Thr	tta Leu	tgt Cys	ggc Gly	cac His 555	gaa Glu	tac Tyr	aca Thr	act Thr	ctt Leu 560		1680
gag Glu	gat Asp	ttt Phe	gag Glu	aac Asn 565	gga Gly	atg Met	aaa Lys	agt Ser	tac Tyr 570	caa Gln	aac Asn	gca Ala	ctt Leu	egt Arg 575	var	•	1728
gat Asp	aca Thr	aga Arg	cac His 580	tac Tyr	aac Asn	gca Ala	tgg Trp	tac Tyr 585	GJA aaa	ctt Leu	gga Gly	atg Met	ata Ile 590	TÀI	cta Leu		1776
cgc	caa Gln	gag Glu 595	Lys	tta Leu	gag Glu	ttc Phe	tca Ser 600	gag Glu	cat His	cac His	ttc Phe	aga Arg	atg Met	gct Ala	tto a Phe	: =	1824
cta Lev	ata Ile	Asn	ccg Pro	agt Ser	tcc Ser	tct Ser 615	gtt Val	ata Ile	atg Met	tct Ser	tat Tyr 620	с ге	a ggg ı Gly	g ac	a tct r Sei	r r	1872
ttg Lei 625	ı His	gcc Ala	ttg Leu	aag Lys	aga Arg 630	Ser	gag Glu	gaa Glu	gca Ala	cta Lev 635	i GTI	g ata	a atg e Me	g ga t Gl	g cas u Gli 64	11	1920
gc: Ala	ata a Ile	a gta e Val	a gca L Ala	gat Asp 645	Arg	aaa Lys	aac	cct Pro	ctt Lev 650	ı Pro	a ate	g ta t Ty	c ca r Gl:	g aa n Ly 65	S AI	t a	1968
aa As:	c ata n Ile	a ctt e Lei	gto 1 Val	L Cys	tta Leu	gaa Glu	aga Arg	tta g Lev 669	ı Ası	gaa Gli	a gc u Al	t ct a Le	a ga u Gl 67	u va	t ct il Le	t u	2016
ga Gl	g gag u Gl	g cto u Leo 67	r PA	a gaç s Glu	g tat ı Tyı	gcc Ala	g cct L Pro 680	s Se	a gaç r Glı	g ag u Se	c ag r Se	c gt r Va 68	t ta 1 Ty 15	c go	t tt la Le	:a eu	2064
at Me	g gg t Gl 69	y Ar	g ato g Ilo	c tai	t aag r Lys	g cgg s Arg 695	g Ar	a aa g As:	c at n Me	g ca t Hi	c ga s As 70	ъъ	a go /s Al	c at a Me	tg ct et Le	eu '	2112
ca Hi	s Ph	c gg e Gl	t ct y Le	a gc u Al	t tta a Lei 71	u Asj	t at p Me	g aa t Ly	a cc s Pr	g cc o Pr 71	LA O	ca ad la Ti	et ga ar As	ac g	al A	ct la 20	2160
go Al	a at la Il	a aa .e Ly	g gc s Al	t gc a Al 72	a Me	g ga t Gl	g aa u Ly	a tt s Le	g ca u Hi 73	.s Va	t co	ca ga ro A	at g sp G	ru r	tc g le A 35	at sp	2208
_	ag ag Lu Se		g tg	a													2220

<210> 96

<211> 739

<212> PRT

<213> Arabidopsis thaliana

<400> 96

Met Glu Ala Met Leu Val Asp Cys Val Asn Asn Ser Leu Arg His Phe 1 5 10 15

Val Tyr Lys Asn Ala Ile Phe Met Cys Glu Arg Leu Cys Ala Glu Phe 20 25 30

Pro Ser Glu Val Asn Leu Gln Leu Leu Ala Thr Ser Tyr Leu Gln Asn 35 40 45

Asn Gln Ala Tyr Ser Ala Tyr His Leu Leu Lys Gly Thr Gln Met Ala 50 55 60

Gln Ser Arg Tyr Leu Phe Ala Leu Ser Cys Phe Gln Met Asp Leu Leu 65 70 75 80

Asn Glu Ala Glu Ser Ala Leu Cys Pro Val Asn Glu Pro Gly Ala Glu 85 90 95

Ile Pro Asn Gly Ala Ala Gly His Tyr Leu Leu Gly Leu Ile Tyr Lys 100 105 110

Lys Asn Ala Ala Gln Gln Phe Lys Gln Ser Leu Thr Ile Asp Pro Leu 115 120 125

Leu Trp Ala Ala Tyr Glu Glu Leu Cys Ile Leu Gly Ala Ala Glu Glu 130 135 140

Ala Thr Ala Val Phe Gly Glu Thr Ala Ala Leu Ser Ile Gln Lys Gln 145 150 155 160

Tyr Met Gln Gln Leu Ser Thr Ser Leu Gly Leu Asn Thr Tyr Asn Glu 165 170 175

Glu Arg Asn Ser Thr Ser Thr Lys Asn Thr Ser Ser Glu Asp Tyr Ser 180 185 190

Pro Arg Gln Ser Lys His Thr Gln Ser His Gly Leu Lys Asp Ile Ser 195 200 205

- Gly Asn Phe His Ser His Gly Val Asn Gly Gly Val Ser Asn Met Ser 210 215 220
- Phe Tyr Asn Thr Pro Ser Pro Val Ala Ala Gln Leu Ser Gly Ile Ala 225 230 235 240
- Pro Pro Pro Leu Phe Arg Asn Phe Gln Pro Ala Val Ala Asn Pro Asn 245 250 255
- Ser Leu Ile Thr Asp Ser Ser Pro Lys Ser Thr Val Asn Ser Thr Leu 260 265 270
- Gln Ala Pro Arg Arg Lys Phe Val Asp Glu Gly Lys Leu Arg Lys Ile 275 280 285
- Ser Gly Arg Leu Phe Ser Asp Ser Gly Pro Arg Arg Ser Ser Arg Leu 290 295 300
- Ser Ala Asp Ser Gly Ala Asn Ile Asn Ser Ser Val Ala Thr Val Ser 305 310 315 320
- Gly Asn Val Asn Asn Ala Ser Lys Tyr Leu Gly Gly Ser Lys Leu Ser 325 330 335
- Ser Leu Ala Leu Arg Ser Val Thr Leu Arg Lys Gly His Ser Trp Ala 340 345 350
- Asn Glu Asn Met Asp Glu Gly Val Arg Gly Glu Pro Phe Asp Asp Ser 355 360 365
- Arg Pro Asn Thr Ala Ser Thr Thr Gly Ser Met Ala Ser Asn Asp Gln 370 375 380
- Glu Asp Glu Thr Met Ser Ile Gly Gly Ile Ala Met Ser Ser Gln Thr 385 390 395 400
- Ile Thr Ile Gly Val Ser Glu Ile Leu Asn Leu Leu Arg Thr Leu Gly
 405 410 415
- Glu Gly Cys Arg Leu Ser Tyr Met Tyr Arg Cys Gln Glu Ala Leu Asp 420 425 430

Thr Tyr Met Lys Leu Pro His Lys His Tyr Asn Thr Gly Trp Val Leu 435 440 445

Ser Gln Val Gly Lys Ala Tyr Phe Glu Leu Ile Asp Tyr Leu Glu Ala 450 455 460

Glu Lys Ala Phe Arg Leu Ala Arg Leu Ala Ser Pro Tyr Cys Leu Glu
465 470 475 480

Gly Met Asp Ile Tyr Ser Thr Val Leu Tyr His Leu Lys Glu Asp Met 485 490 495

Lys Leu Ser Tyr Leu Ala Gln Glu Leu Ile Ser Thr Asp Arg Leu Ala 500 505 510

Pro Gln Ser Trp Cys Ala Met Gly Asn Cys Tyr Ser Leu Gln Lys Asp 515 520 525

His Glu Thr Ala Leu Lys Asn Phe Leu Arg Ala Val Gln Leu Asn Pro 530 535 540

Arg Phe Ala Tyr Ala His Thr Leu Cys Gly His Glu Tyr Thr Thr Leu 545 550 555 560

Glu Asp Phe Glu Asn Gly Met Lys Ser Tyr Gln Asn Ala Leu Arg Val 565 570 575

Asp Thr Arg His Tyr Asn Ala Trp Tyr Gly Leu Gly Met Ile Tyr Leu 580 585 590

Arg Gln Glu Lys Leu Glu Phe Ser Glu His His Phe Arg Met Ala Phe 595 600 605

Leu Ile Asn Pro Ser Ser Ser Val Ile Met Ser Tyr Leu Gly Thr Ser 610 615 620

Leu His Ala Leu Lys Arg Ser Glu Glu Ala Leu Glu Ile Met Glu Gln 625 630 635 640

Ala Ile Val Ala Asp Arg Lys Asn Pro Leu Pro Met Tyr Gln Lys Ala 645 650 655

Asn Ile Leu Val Cys Leu Glu Arg Leu Asp Glu Ala Leu Glu Val Leu 660 665 670

Glu Glu Leu Lys Glu Tyr Ala Pro Ser Glu Ser Ser Val Tyr Ala Leu 675 680 685

Met Gly Arg Ile Tyr Lys Arg Arg Asn Met His Asp Lys Ala Met Leu 690 695 700

His Phe Gly Leu Ala Leu Asp Met Lys Pro Pro Ala Thr Asp Val Ala 705 710 715 720

Ala Ile Lys Ala Ala Met Glu Lys Leu His Val Pro Asp Glu Ile Asp 725 730 735

Glu Ser Pro

<210> 97

<211> 0

<212> DNA

<213> Arabidopsis thaliana

<400> 97

000

<210> 98

<211> 0

<212> DNA

<213> Arabidopsis thaliana

<400> 98

000

<210> 99

<211> 0

<212> DNA

<213> Arabidopsis thaliana

<400> 99

000

<210> 100

<211> 0

<212> DNA

<213> Arabidopsis thaliana

<400> 100

000

<210> 101

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> LWAD1

<220>

<221> misc_feature

<222> (1)..(18)

<223> n = a, t, c, or g

<400> 101

ngttgwgnat wtsgwgnt

<210> 102

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> CA50

18

<220>

<221> misc_feature

<222> (1)..(16)

<223> n = a, t, c, or g

<400> 102

ngtcgaswga nawgaa

16

<210> 103

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> CA51

<220>

<221> misc_feature

<222> (1)..(16)

<223> n = a, t, c, or g

<400> 103

tgwgnagsan casaga

16

<210> 104

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> CA52

<220>

<221> misc_feature

```
<222> (1)..(16)
<223> n = a, t, c, or g
<400> 104
agwgnagwan cawagg
                                                                    16
<210> 105
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> CA53
<220>
<221> misc_feature
<222> (1)..(16)
<223> n = a, t, c, or g
<400> 105
sttgntastn ctntgc
                                                                    16
<210> 106
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
```

222

<223> CA54

<221> misc_feature

<223> n = a, t, c, or g

<222> (1)..(15)

<220>

<400> ntcgas	106 twts gwgtt	·	1.5
<210>	107		
<211>	16		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	CA55		
<220>			
<221>	misc_feature	• .	
· <222>	(1)(16)		
<223>	n = a, t, c, or g		
<400> wgtgna	107 agwan canaga		16
<210>	108		
<211>	30		
<212>	DNA	•	
<213>	Artificial Sequence		
<220>		·	
<223>	5A		
<400> actag	108 ctcta ccgtttccgt ttccgtttac		30
<210>	109		
<211>	30	·	
<212>	DNA		
<213>	Artificial Sequence		

<220>		
<223>	5B	
<400> ttacct	109 cggg ttcgaaatcg atcgggataa	30
	110	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	5C	
<400>	110	
aaaatc	ggtt atacgataac ggtcggtacg gga	33
<210>	111	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	3A	
<400>		
gggtcti	tgcg gatctgaata tatgttttca tgtgtg	36
<210>	112	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
-222	20	

224

<400> taccgaa	112 agaa aaat	accggt tcc	ccgtccga	tttcgac		·		37
<210>	113							
<211>	34							
<212>	DNA				•			
<213>	Artifici	al Sequenc	ce					
			٠					
<220>	•				. :			
<223>	3C							
	113 tatc ggtt	ttcgat ta	ccgtattt	atcc				34
				٠				
<210>	114							
<211>	29						•	•
<212>	DNA							
<213>	Artifici	al Sequen	ce					
		•						
<220>		•						
<223>	CA66							
<400>	114							29
attagg	cace ccag	gettta ca	ccccacg					23
<210>	115					·		
<211>	30							
<212>	DNA					·		
<213>	Artifici	lal Sequen	ice					
<220>								
<223>	CA67							
<400> gtatgt		aattgtg ag	geggataac				·	30
<210×	116							

<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	CA68	
<400> taacaat	116 Ettc acacaggaaa cagctatgac	30
<210>	117	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	.JM33	
<400> tagcato	117 otga atttoataac caatotogat acac	34
<210>	118	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	JM34	
<400> gcttcci	118 catt atatetteee aaattaeeaa taca	34
<210>	119	
<211>	34	
<212>	DNA	
-2725	Artificial Seguence	

PCT/EP02/07929

WO 03/008440

<220>		
<223>	JM35	
<400> gccttt	119 tcag aaatggataa atagccttgc ttcc	34
<210>	120	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	QRB1	
<400> caaact	120 Lagga taaattatog ogogoggtgt ca	32
<210>	121	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	QRB2	
<400> ggtgt	121 catct atgttactag atcgggaatt ga	32
<210>	. 122	
<211>	> 30	
<212>	> DNA	
<213	Artificial Sequence	
<220:	>	
	ODD 2	

	122 ggca tatgctagca tgcataattc	30
<210>	123	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	SKI1	
<400> aattgg	123 rtaat tactetttet ttteeteeat attga	35
<210>	124	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence .	
<220>		
<223>	SKI2	
<400> atatto	124 gacca tcatactcat tgctgatcca t	31
<210>	125	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	SKI3	
<400>	. 125 catgt agatttcccg gacatgaa	28

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)