Reinforcement Learning in RTB A Tutorial

chaoqiyang(杨超琪)、junweilu(卢君苇)

2019 / 5 / 15 Tencent Social Ads, Beijing

Outline

- Introduction
 - Basic concepts
 - An example
- Markov decision process (MDP)
- RL categorization
 - Policy gradient
 - Q-Learning
 - A3C
- Application to ads
 - Implementation of multi-process
- Future direction

Reinforcement Learning An Introduction

Introduction

Supervised Learning

- Learning a mapping function to regression & classification
- Learning from training data

Unsupervised Learning

- Learning approaches to dimension reduction, clustering, density estimation

Reinforcement Learning

- Learning to do sequential decision making
- Learning from delayed reward

Basic concepts

- Trajectory: $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, ...)$
- Transition: (s_0, a_0, r_0, s_1) , (s_1, a_1, r_1, s_1) ...
- From initial state s_0 , we can sample many trajectories.

- 1 state s_0 , agent gives a_0
- ② Get r_0 from environment
- 4 state $\textcolor{red}{s_1}$, agent gives $\textcolor{red}{a_1}$
- \bigcirc Get r_1 from environment
- \bigcirc Transition to state s_2
- \bigcirc state s_2 , agent gives a_2
- 8

Basic concepts

State: feature vector of the current situation

- In Atari, A picture
- In RTB, \(\text{bias}, \text{conversion}, \text{pcvr}, \text{pctr}, \(\dots \)

Action: given by agent based on current state

- In Atari, left / right / up / down
- In RTB, adjust factor

Reward: assessment of action, given by environment

- In Atari, reward=1 if succeed, reward=0 if fail

- In RTB, reward =
$$\sqrt{\frac{gmv}{cost}} \times \frac{gmv}{base\ gmv}$$

An example

- State: a screenshot
 - Picture
- Action: left / right
- Reward: 1 / 0
 - Break the brick, 1
 - Miss the ball, 0

RL Tree

Markov Decision Process (MDP) An Introduction

Markov decision process (MDP)

Markov decision process (MDP)

Markov assumption / property

•
$$Pr(s_{t+1} | s_t, a_t, s_{t-1}, a_{t-1}, \dots, s_0, a_0) = Pr(s_{t+1} | s_t, a_t)$$

•
$$Pr(r_{t+1} \mid s_t, a_t, s_{t-1}, a_{t-1}, \dots, s_0, a_0) = Pr(r_{t+1} \mid s_t, a_t)$$

- Transition probability: $P_{ss'}^a = \Pr(\mathbf{s}_{t+1} = s' | s_t = s, a_t = a)$
- Reward function: $R_{ss'}^a = E\{r_{t+1} | s_{t+1} = s', s_t = s, a_t = a\}$

Policy π

- Neural Network
 - $-\pi(s)=a$
- Action
 - Discrete action
 - Continuous action: $\pi_1(s) = \mu$, $\pi_2(s) = \sigma$, $a \sim N(\mu, \sigma)$

State-value function $V^{\pi}(s)$

•
$$V^{\pi}(s) = E_{\pi}\{r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \mid s_0 = s\}$$

- Start from state s, play to the end of the game.
- Trajectory 1: $(s, a_0^1, r_0^1, s_1^1, a_1^1, r_1^1, ...)$, decayed reward = $r_0^1 + \gamma r_1^1 + ...$
- Trajectory 2: $(s, a_0^2, r_0^2, s_1^2, a_1^2, r_1^2, ...)$, decayed reward = $r_0^2 + \gamma r_1^2 + ...$
- Trajectory 3: $(s, a_0^3, r_0^3, s_1^3, a_1^3, r_1^3, ...)$, decayed reward = $r_0^3 + \gamma r_1^3 + ...$

•

State-value function $V^{\pi}(s)$

Trajectory

State-action function $Q^{\pi}(s, a)$

•
$$Q^{\pi}(s, a) = R(s, a) + \sum_{s' \in S} P(s' | s, \pi(s)) Q^{\pi}(s', \pi(s'))$$

•
$$V^{\pi}(s) = R(s, \pi(s)) + \sum_{s' \in S} P(s' | s, \pi(s)) V^{\pi}(s')$$

2019/4/15

Markov decision process (MDP)

Relationship V^{π} , π , $Q^{\pi}(s, a)$

- $\pi^* = argmax_{\pi} V^{\pi}(s)$
- $V^*(s) = max_{\pi} V^{\pi}(s)$
- $\pi^* = argmax_{a \in A} [R(s, a) + \sum_{s' \in S} P(s' | s, a) V^*(s')]$
- $V^*(s) = max_{a \in A} [R(s, a) + \sum_{s' \in S} P(s' | s, a) V^*(s')]$
- $\pi^*(s) = argmax_{a \in A} Q^*(s, a)$
- $V^*(s) = max_{a \in A} Q^*(s, a)$

Policy iteration

- Initialize π
- Compute $V^{\pi}(s)$
 - $s_0, \pi(s_0), r_0, s_1, \pi(s_1), r_1, \dots$
 - $-V^{\pi}(s) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$
- Update π
 - $\pi^{next}(s) = argmax_{a \in A} [R(s, a) + \sum_{s' \in S} P(s' | s, a) V^{\pi}(s')]$
- Compute $V^{\pi^{next}}(s)$
- Update π^{next}

•

Value iteration

- Initialize V(s)
- update V(s)

$$-V(s) = max_{a \in A} \left[R(s, a) + \sum_{s' \in S} P(s' | s, a) V(s') \right]$$

• Compute π

$$-\pi(s) = \operatorname{argmax}_{a \in A} \left[R(s, a) + \sum_{s' \in S} P(s' | s, a) V(s') \right]$$

• Or we could iterate Q(s, a)

Bellman equation

- $V(s) = \left[\mathbf{R}(s, \pi(s)) + \sum_{s' \in S} P(s' | s, \pi(s)) V(s') \right]$
- $Q(s,\pi(a)) = \left[R(s,\pi(s)) + \sum_{s' \in S} P(s'|s,\pi(s)) Q(s',\pi(a))\right]$

Reinforcement Learning --- Q-Learning

Q-Table

- Refer table to choose action
- It can be updated

Q(s, a)	a_1	a_2	a_3	a_4
s_1	-1	-3	3	2
S_2	*	*	*	*
S_3	*	*	*	*
S_4	*	*	*	*
S ₅	*	*	*	*
<i>S</i> ₆	*	*	*	*

An example

- State is the distance away from exit
- Action is forward or backward
- Initial Q-Table

Q(s, a)	5米	4米	3米	2米	1米
forward	1分	1分	1分	1分	10分
backward	1分	1分	1分	1分	-5分

First round later

Q(s, a)	5米	4米	3米	2米	1米
forward	1分	1分	1分	5分	10分
backward	1分	1分	1分	-1分	-5分

An example

Second round later

Q(s, a)	5米	4米	3米	2米	1米
forward	1分	1分	6分	8分	10分
backward	1分	1分	0分	-3分	-5分

Many rounds later

Q(s, a)	5米	4米	3米	2米	1米
forward	3分	4分	6分	9分	10分
backward	0分	0分	-1分	-3分	-5分

Basic Q-Learning

- Update every entry in Q-Table
- In state s, take action a, get reward r, transition to state s'
- Gradient
 - $-r + \gamma max_{a'}Q(s',a') Q(s,a)$
 - Like Floyd Algorithm
- Update Q(s, a)
 - $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma max_{a'}Q(s',a') Q(s,a)]$

Basic Q-Learning

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
   Initialize s
   Repeat (for each step of episode):
       Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)
       Take action a, observe r, s'
      Q(s,a) \leftarrow Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]
       s \leftarrow s':
   until s is terminal
```

Deep Q-Network

- If the state set is infinite?
 - No Q-Table
- Deep Neural Network

Other variants

Double DQN

- One network to choose action
- Another network to evaluate Q(s, a)

Continuous DQN

•

Reinforcement Learning --- Policy gradient

Policy gradient

Trajectory
$$\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$$

$$p_{\theta}(\tau)$$
= $p(s_1)p_{\theta}(a_1|s_1)p(s_2|s_1,a_1)p_{\theta}(a_2|s_2)p(s_3|s_2,a_2)\cdots$

Trajectory

Policy gradient

- Tajectory τ
- $R(\tau) = \sum r$
- $\widehat{R}_{\theta} = \mathbf{E}_{\tau}[R(\tau)] = \sum_{\tau} R(\tau) p_{\theta}(\tau)$

Policy gradient

$$\begin{split} \nabla \bar{R}_{\theta} &= \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) &= \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)} \\ &= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau) \\ &= E_{\tau \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log p_{\theta}(\tau^{n}) \\ &= \frac{1}{N} \sum_{t=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log p_{\theta}(a_{t}^{n} | s_{t}^{n}) \end{split}$$

Proximal Policy Optimization (PPO)

On-policy

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\tau)}[R(\tau)\nabla log p_{\theta}(\tau)]$$

Off-policy

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau \sim p_{\theta'}(\tau)}} \left[\frac{p_{\theta}(\tau)}{p_{\theta'}(\tau)} R(\tau) \nabla log p_{\theta}(\tau) \right]$$

- Importance sampling
 - Assumption: If $p_{\theta}(\tau)$ is similar to $p_{\theta'}(\tau)$

Other variants

- Deep deterministic policy gradient (DDPG)
- Trust region policy optimization (TRPO)

•

Reinforcement Learning ---- Actor-Critic

Problem of policy gradient

2019/4/15 Tencent Social Ads 转化优化组 38

Baseline reward

Basic policy gradient

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

Add a baseline reward

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla log p_{\theta}(a_t^n | s_t^n)$$
 $b \approx E[R(\tau)]$ advantage

Advantage actor-critic

TD-error

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (r_t^n + V^{\pi}(s_{t+1}^n) - V^{\pi}(s_t^n)) \nabla log p_{\theta}(a_t^n | s_t^n)$$

Monte Carlo-error

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\underbrace{\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - V^{\pi_{\theta}}(s_t^n)}_{\text{critic}} \right) \underline{\nabla log p_{\theta}(a_t^n | s_t^n)}_{\text{actor}}$$

Asynchronously Advantage Actor-Critic (A3C)

Reinforcement Learning Application in ads

Problem

- Give adjusted factor α
- Choose click log

- Max_cpa *
$$\alpha$$
 > ecpa

Compute score

$$-\sqrt{\frac{gmv}{cost}} \times \frac{gmv}{base\ gmv}$$

- 综合衡量指标R

	adgroupid	current	siteset	fraud_type	cost	report_conversion	target_cpa	max_cpa	report_time	есра
962	71979193	10	25.0	1.0	0.0	0	2625.0	4523.0	-1	1829.689427
963	71979193	10	25.0	1.0	0.0	0	2625.0	4523.0	-1	2293.199967
964	71979193	10	25.0	0.0	107.0	0	2625.0	4523.0	-1	2652.972370
965	71979193	10	25.0	0.0	20.0	0	2625.0	4523.0	-1	2691.336172
966	71979193	10	25.0	0.0	30.0	0	2625.0	4523.0	-1	2729.030843
967	71979193	10	25.0	0.0	56.0	0	2625.0	4523.0	-1	2748.947779
968	71979193	10	25.0	1.0	0.0	0	2625.0	4523.0	-1	2799.494196
969	71979193	10	25.0	0.0	67.0	0	2625.0	4523.0	-1	3016.184124
970	71979193	10	25.0	0.0	79.0	0	2625.0	4523.0	-1	3028.532611
971	71979193	10	25.0	0.0	100.0	0	2625.0	4523.0	-1	3088.102674
972	71979193	10	25.0	0.0	70.0	0	2625.0	4523.0	-1	3182.256031
973	71979193	10	25.0	0.0	106.0	0	2625.0	4523.0	-1	3268.750431
974	71979193	10	25.0	0.0	63.0	0	2625.0	4523.0	-1	3341.317137
975	71979193	10	25.0	0.0	69.0	0	2625.0	4523.0	-1	3348.984903
976	71979193	10	25.0	0.0	69.0	0	2625.0	4523.0	-1	3348.984903
977	71979193	10	25.0	1.0	0.0	1	2625.0	4523.0	11	3348.984903
978	71979193	10	25.0	0.0	75.0	0	2625.0	4523.0	-1	3349.138439
979	71979193	10	25.0	0.0	53.0	0	2625.0	4523.0	-1	3361.309150
980	71979193	10	25.0	0.0	61.0	0	2625.0	4523.0	-1	3411.860949
981	71979193	10	25.0	0.0	61.0	0	2625.0	4523.0	-1	3411.860949
1020	71979193	10	25.0	0.0	40.0	0	2625.0	4523.0	-1	4382.211683

Problem

- total
 - Conversion
 - Cost

compute

$$- \sqrt{\frac{gmv}{cost} \times \frac{gmv}{base\ gmv}}$$

- 综合衡量指标R

Experiment setting

State: feature vector

- <pError, iError, dError, timestamp, bias, ...>

Action: adjust factor

- Discrete action
- Continuous action, $a \sim N(\mu, \sigma)$

Reward: evaluation

$$- \sqrt{\frac{gmv}{cost}} \times \frac{gmv}{base\ gmv}$$

- 综合衡量指标R
- Method: A3C

idea

idea

Reward1: adjust bias

$$Reward_{1}\left(\frac{CPA_{real}^{(j)}}{CPA_{target}^{(j)}}\right) = \begin{cases} -x^{2}, & 1.2 < x \\ 1-x, & 1 < x \le 1.2 \\ 1, & x \le 1 \end{cases}$$

Reward2: adjust conversion

$$Reward_{2}\left(\frac{conversions^{(i,j)}}{conversions^{(i,j)}_{PID}}\right) = \begin{cases} \frac{1}{1+e^{x}}, & 1 < x \\ x, & 0.8 < x \le 1, \\ x - 0.8, & x \le 0.8 \end{cases}$$

Current result

The result is on training ads

Model	Revenue	Cost	ROI
A2C	1.0019 (+0.19%)	1.0366 (+3.66%)	0.9665 (-3.35%)
DQN	0.9840 (-2.60%)	0.9765 (-2.35%)	1.0076 (+0.76%)
Agg-A3C	1.0625 (+6.25%)	1.0952 (+9.52%)	0.9702 (-2.98%)
O1-A3C	0.9744 (-2.56%)	0.9580 (-4.20%)	1.0170 (+1.70%)
O2-A3C	1.0645 (+6.45%)	1.0891 (+8.91%)	0.9774 (-2.26%)
MoTiAC	1.0421 (+4.21%)	1.0150 (+1.50%)	1.0267 (+2.67%)

Table 2: Comparative Result based on PID

Multi-process

- Problem: large click log
 - Share memory
- Solution
 - Redis, multiprocessing.manager
 - Not work (due to the overhead of pickle)
 - Ctypes, multiprocessing.sharedctypes
 - Work

Multi-process

Ctypes class

```
ss MockAdRequest(object):
      '''根据点击日志仿真广告的一次请求
219
220
       def init (self):
221
          '''ad id feature存储广告的id类信息
222
             bidding info list存储每次点击的出价信息,是AdBiddingInfo的list
223
             conversion info list存储发生了转化的点击出价信息
224
225
          self.ad id feature = None
226
          self.bidding_info_list = [[] for _ in range(0, DAY_OP_COUNT)]
          self.conversion_info_list = [[] for _ in range(0, DAY_OP_COUNT)]
227
228
229
       def set id feature(self, array):
230
          '''根据点击日志设置广告的id类信息
231
232
          self.ad id feature = AdIdFeature(array)
233
234
       def set_request(self, index, array, start_time_stamp):
          '''根据点击日志设置广告的一次请求
237
          bidding info = AdBiddingInfo(array, start time stamp)
238
          self.bidding info list[index].append(bidding info)
          bidding info = AdBiddingInfo(array, start time stamp)
          if bidding info.conversion num > 0:
241
              self.conversion info list[index].append(bidding info)
242
       def transform(self):
244
          ''' 把点击日志按照ecpa进行排序,然后逐个累加,
              调价后则比调节后的ecpa小的点击仍然能够赢得竞价
```

python class

Multi-process

- Machine: 126G memory
- 5 workers experiment
 - 20190109 all ads loading
 - Shared memory: 20.2G / 126G
 - Not share: 84.5G / 126G
- Similar running time

Future Work About Our Project

Future work

Change the definition of state

- To address sparsity of state

State definition

- (Bias pattern, conversion pattern)
- Clustering N bias/conversion pattern

Conversion clustering center

• N = 25

The 4th conversion cluster

Bias clustering center

• N = 25

The 4th bias cluster

