PROOF LOGIC

There are three related statements for the Borsuk-Ulam theorem

Statement $C: (f: \mathbb{S}^n \to \mathbb{R}^n) \Rightarrow (\exists x \in \mathbb{S}^n. f(x) = f(-x))$. Symbolize this as $C_0 \Rightarrow C_1$. Statement $O: (g: \mathbb{S}^n \to \mathbb{R}^n \text{ odd and cont.} \Rightarrow \exists x \in \mathbb{S}^n. g(x) = 0$. Symbolize this as $O_0 \Rightarrow O_1$

Statement $R: \exists h: \mathbb{S}^n \to \mathbb{S}^{n-1} \text{ odd and cont.}$

The Borsuk-Ulam theorem are the three classically equivalent statement

$$C \Leftrightarrow O \Leftrightarrow -R$$
.

The logic underlying classical strategy to prove this is as follows.

- (1) $C \models O$
- (2) $O \models C$
- (3) $O \models -R$ where we instead prove

$$R \models -O$$

 $R \models -(O_0 \Rightarrow O_1)$
 $R \models (O_0 \land -O_1)$ $(R \models O_0 \text{ holds})$
 $R \models -O_1$ (prove this)

prove this

Note these are two way equivalences in classical logic.

$$(4)$$
 $-R \models O$

$$-R \models O$$

$$-R \models (O_0 \Rightarrow O_1)$$

$$-R \models (-O_1 \Rightarrow -O_0)$$

$$-(-O_1 \Rightarrow -O_0) \models R$$

$$(-O_1 \land O_0) \models R$$