

Algorithms 演算法 Advanced Design and Analysis Techniques (1)

— Dynamic Programming and Greedy Algorithms ——

Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University

Algorithms NTUEE 1

Optimization Problems

- Optimization Problems
 - Find an optimal solution from many possible solutions
 - NOTE: optimal solution may not be unique
- Applications of optimization problems:
 - EDA: electronic design automation
 - · control, operation, our daily lives ...
- Approaches in this lecture:
 - Dynamic Programming: (usually bottom up)
 - * divide the problem into subproblems, which overlap
 - unlike D&C, where subproblems are disjoint
 - solve each subproblem just once
 - * record the best solution in a table
 - Greedy Algorithms: (usually top-down)
 - * make a choice that look best at the moment
 - Do NOT always yield an optimal solution.
 - But sometimes they do

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence
 - optimal binary search tree
 - elements of DP
 - Matrix Chain (self study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Algorithms NTUEE 3

Dynamic Programming*

- DP solves problems by combining the solution to subproblems
 - subproblems overlap (subproblems share subproblems)
 - * Unlike divide and conquer, where subproblems are disjoint
- DP solve each subproblem once and store the results in a table

* "programming" means using a tabular solution to an optimization problem

Dynamic Programming

- Four steps
 - 1. Characterize the structure of an optimal solution.
 - * optimal substructure
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution,
 - * typically in a bottom-up fashion.
 - * memorize solutions to many overlapping subproblems
 - 4. Construct an optimal solution from step 3.
- Example optimization problems
 - Rod cutting
 - Longest common subsequence
 - Optimal Binary Search Tree

Algorithms NTUEE 5

Rod Cutting

- How to cut steel rods into pieces in order to maximize the revenue
 - Each cut is free.
 - Rod lengths are always an integral number of inches.
- Input: A rod of length n and a prices table p_i , for i = 1, 2, ..., n.
- Output: maximum revenue r_n for rods whose lengths sum to n,
 - computed as the sum of the prices for the individual rods
- FFT: how many different ways to cut an n-inch rod? What is the complexity of exhaustive search?
 - assume all cut are integers

Example

Price Table: Fig. 15.1

i	1	2	3	4	5	6	7	8	9	10
p_{i}	1	5	8	9	10	17	17	20	24	30

8 different ways to cut an 4-inch rod : 2+2 is optimal

optimal solutions n= 1~8

i	r_i	optimal solution
1	1	1 (no cuts)
2	5	2 (no cuts)
3	8	3 (no cuts)
4	10	2 + 2
5	13	2 + 3
6	17	6 (no cuts)
7	18	1 + 6 or $2 + 2 + 3$
8	22	2 + 6
11101		

Note:

If p_n is large enough, optimal solution might require no cut

Algorithms

7

Step 1: Optimal Substructure

- Idea: Divide this optimization problems into subproblems
- suppose r_n = optimal revenue of rod of length n
- we can obtain r_n by taking the maximum of
 - p_n : the price we get by not cutting,
 - p_1+r_{n-1} : maximum revenue from a 1-inch rod and n-1 inches rod,
 - p_2 + r_{n-2} : maximum revenue from a 2-inch rod and a n-2 inches rod
 - **•** ...
 - $\bullet \quad p_{n-1} + r_1$
- so, $r_n = \max (p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, ..., p_{n-1} + r_1)$
- Q: does this approach gurantee to find the optimal solution?
 - can you find a better solution that is NOT included in these n subproblems?

Step 1: Optimal Substructure (2)

- Optimal Substructure:
 - To solve the original problem of size n, solve subproblems on smaller sizes.
 - The optimal solution to the original problem incorporates optimal solutions to the subproblems.
 - We may solve the subproblems independently.
- For rod cutting, if r_n is optimal solution for length n, then the solution to its subproblem (r_{n-i}) is also an optimal cut of length n-i
 - Proof:
 - * if r_{n-i} is NOT an optimal cut, then replace it by an optimal cut
 - st this violate our assumption that r_n is an optimal cut

- NOTE: this statement is NOT reversible
 - putting small optimal solutions together does NOT give a overall optimal solution

Algorithms NTUEE 9

Step 2: Recursive Solution

- However, we do not know what was the last cut i
 - so we must try all possible values of last cut
 - we are guaranteed to find the optimal solution after trying all i
- Recursive version of the equation for r_n

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Step3: Compute Opt. Solution (Top-Down)

A direct implementation: CUT-ROD returns the optimal revenue r_n

```
Cut-Rod(p, n)
if n == 0
    return 0
q = -\infty
for i = 1 to n
    q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))
return q
```

- Works but inefficient
 - calls itself repeatedly, even on subproblems already solved.
- Example: *n*=4 Solve the subproblem for
 - size 2 twice,
 - size 1 four times,
 - size 0 eight times.

Algorithms

NTUEE

Complexity Analysis

• T (n) equal the number of calls to CUT-ROD

$$T(n) = \begin{cases} 1 & \text{if } n = 0, \\ 1 + \sum_{j=0}^{n-1} T(j) & \text{if } n > 1. \end{cases} \begin{cases} \text{if } n = 0 \\ \text{return } 0 \end{cases}$$

- $T(n) = 2^n$
 - Exponential growth!

Cut-Rod(p, n)for i = 1 to n $q = \max(q, p[i] + \text{CUT-Rod}(p, n - i))$ return q

Top-down with Memorization

- Solve recursively, but store each result in an array, r[n]
 - time-memory trade-off.

```
MEMOIZED-CUT-ROD(p,n)

let r[0..n] be a new array // initialize r

for i=0 to n

r[i]=-\infty

return MEMOIZED-CUT-ROD-AUX(p,n,r)
```

```
MEMOIZED-CUT-ROD-AUX(p, n, r)

if r[n] \ge 0 // r[n] has been solved

return r[n]

if n == 0

q = 0

else q = -\infty

for i = 1 to n

q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

r[n] = q

return q
```

Algorithms NTUEE 13

Step3: Compute Opt. Solution (bottom-up)

Sort the subproblems by size and solve the smaller ones first.

```
BOTTOM-UP-CUT-ROD(p, n)

let r[0..n] be a new array r[0] = 0

for j = 1 to n

q = -\infty

for i = 1 to j

q = \max(q, p[i] + r[j - i])

r[j] = q // memorization
```

- running time ⊕(n²)
 - doubly nested loop
 - same as Top-down approach
 - * use aggregate analysis in ch 17

Algorithms NTUEE 14

Step 4: Reconstruct Optimal Solution

- Modify BOTTOM-UP-CUT-ROD
 - s[j] = the optimal size of first piece to cut for rod size j

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
let r[0..n] and s[0..n] be new arrays
r[0] = 0
for j = 1 to n
q = -\infty
for i = 1 to j
if q < p[i] + r[j - i]
q = p[i] + r[j - i]
s[j] = i // store size
r[j] = q
return r and s
```

Algorithms NTUEE 15

Exercise

how to modify the top-down approach to save size?

Step 4: Reconstruct Optimal Solution (2)

• print size s[n], then continue with n = n-s[n]

```
PRINT-CUT-ROD-SOLUTION(p, n)

(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

while n > 0

print s[n]

n = n - s[n]
```

• Example: *n*=7

•	s[7] = 1	i	0	1	2	3	4	5	6	7	8	9	10
•	<i>s</i> [6] = 6	s[i]	0	1	2	3	2	2	6	1	2	3	10
		r[i]	0	1	5	8	10	13	17	18	22	25	30

• Exercise: *n* = 9

Exercise: n = 10

Algorithms NTUEE 17

Four steps of DP (revisit)

- Four steps
 - 1. Characterize the structure of an optimal solution.
 - * optimal substructure
 - * imagine that *DP God* promised to (1) give you a magic tool that can solve a smaller problem (2) to tell you the *last choice* in the optimal solution...
 - 2. Recursively define the value of an optimal solution
 - image that DP God is too busy to tell you the last choice so you have to search all possibilities
 - 3. Compute the value of an optimal solution,
 - * typically in a bottom-up fashion.
 - * memorize solutions to many overlapping subproblems
 - 4. Construct an optimal solution from step 3.

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence (LCS)
 - optimal binary search tree
 - elements of DP
 - Matrix Chain (self Study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Algorithms NTUEE 19

Longest Common Subsequence (LCS)

- Problem: Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$.
 - Find a subsequence common to both whose length is longest
 - subsequence doesn't have to be consecutive
 - but it has to be in order.
- Example1:

Algorithms

• Example 2: S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA S2=GTCGTTCGGAATGCCGTTGCTCTGTAAA

NTUEE

LCS=GTCGT CGGAA GCCG GC C G AA

Brute Force Approach

- For every subsequence of X, check whether it's a subsequence of Y
- Time: $\Theta(n 2^m)$
 - 2^m subsequences of X to check
 - Each subsequence takes $\Theta(n)$ time to check
 - * scan Y for first letter, from there scan for second, and so on.

Algorithms NTUEE 21

Step 1: Optimal Substructure

- Notation:
 - $X_i = \text{prefix} \langle x_1, \dots, x_i \rangle$
 - $Y_i = \text{prefix} < y_1, \dots, y_i >$
- Theorem 15.1
 - Let $Z = \langle z_1, ..., z_k \rangle$ be any LCS of $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies Z is an LCS of X_{m-1} and Y
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies Z is an LCS of X and Y_{n-1}
- Optimal substructure: If Z is an LCS of X and Y, and Z contains a subsequence Z', then Z' must be LCS of prefix of X and Y
 - Proof: cut and paste
 - * If Z' is not LCS, replace it by LCS so Z is not longest

Step 2: Recursive Solution

c[i, j]= LCS length of X_i and Y_i

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \text{ match: c++} \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \text{ no match:} \end{cases}$$

- Example: bozo, bat
 - many overlapping subproblems

c = best solution so far

24

23 **Algorithms NTUEE**

Step 3: Compute Optimal Solution (1)

LCS-LENGTH(X, Y, m, n)

return c and b

Step 3: Compute Optimal Solution (2)

Time Complexity

```
LCS-LENGTH(X, Y, m, n)
let b[1..m, 1..n] and c[0..m, o..n] be new tables
for i = 1 to m
    c[i, 0] = 0
for j = 0 to n
    c[0, j] = 0
for i = 1 to m
     for j = 1 to n
         if x_i == y_i
              c[i, j] = c[i - 1, j - 1] + 1

b[i, j] = "\\"
          else if c[i - 1, j] \ge c[i, j - 1]
                   c[i,j] = c[i-1,j]
                   b[i,j] = "\uparrow"
              else c[i, j] = c[i, j - 1]
                   b[i, j] = "\leftarrow"
return c and b
```

- doubly nested loop
 - Θ(mn)

Step 4: Constructing Optimal Solution

- X=ABCBDAB
- Y=BDCABA
- LCS = BCBA
- O(m+n)

```
PRINT-LCS(b, X, i, j)

if i == 0 or j = 0

return

if b[i, j] == \text{``\[]}

PRINT-LCS(b, X, i - 1, j - 1)

print x_i

elseif b[i, j] == \text{``\[]}

PRINT-LCS(b, X, i - 1, j)

else PRINT-LCS(b, X, i, j - 1)
```


Algorithms NTUEE 27

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence
 - optimal binary search tree
 - elements of DP
 - Matrix Chain (self Study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Optimal Binary Search Tree (BST)

- K = < k₁, k₂, ..., k_n > are n distinct keys in sorted order
 k₁ < k₂ < ... < k_n
- $P = \langle p_1, p_2, ..., p_n \rangle$ are probability that k_i is searched
- $D = \langle d_0, d_1, ..., d_n \rangle$ are n+1 dummy keys for unsuccessful searches
- $Q = \langle q_0, q_1, q_2, ..., q_n \rangle$ are probability that d_i is searched

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

expected search cost

$$E[\operatorname{search} \operatorname{cost} \operatorname{in} T] = \sum_{i=0}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i}$$

Optimal BST = the BST of lowest search cost

Algorithms NTUEE 29

Example

• Fig 15.9. ITW d_0 , k_1 , d_1 , k_2 , ..., d_4 , k_5 , d_5

node	Depth	Probability	contributi
			on
k_1	1	0.15	0.30
k_2	0	0.10	0.10
•••			
d_{θ}	2	0.05	0.15
d_1	2	0.10	0.30
•••			
total			2.80

binary search trees for a set of n = 5 keys with the following probabilities:

i	0	1	2	3	4	5
$\overline{p_i}$		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

(a)

Example (cont'd)

cost of left tree = 2.80; cost of right tree = 2.75 → optimal BST

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected search cost 2.75. This tree is optimal.

31

Step 1: Optimal Substructure

- If an optimal BST T contains subtree T' with keys $k_i,..., k_j$,
 - T' must be optimal BST for keys $k_i,...,k_j$, and dummy keys $d_{i-1},...,d_i$
- Proof: cut and paste
 - If T' is NOT optimal, then we just replace T' by an optimal one
 - Violate our assumption that T is optimal

Cost of T'

- Given a subtree T', k_r is the root, where $i \le r \le j$
 - Left subtree of k_r contains k_i,..., k_{r-1}
 - Right subtree of k_r contains k_{r+1},..., k_j
- we're guaranteed to find an optimal subtree T' for $k_i,..., k_i$ as long as
 - 1. we examine all candidate roots k_r , $i \le r \le j$, and
 - 2. we determine all optimal BSTs containing k_i ,..., k_{r-1} and containing k_{r+1} ,..., k_i ,

Algorithms

33

Step 2: Recursive Solution

- e[i, j] = expected search cost of optimal subtree T', k_i ,..., k_j
- $w[i,j] = \text{sum of probabilities of subtree } T', k_i,..., k_j$

$$w(i, j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$

If k_r is the root of optimal subtree T'

$$e[i,j] = \underbrace{p_r}_{\text{root}} + \underbrace{(e[i,r-1] + w(i,r-1))}_{\text{left subtree (optimal)}} + \underbrace{(e[r+1,j] + w(r+1,j))}_{\text{right subtree (optimal)}})$$

$$\because w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

$$e[i, j] = e[i, r-1] + e[r+1, j] + w(i, j)$$

Algorithms NTUEE 34

Step 2: Recursive Solution (cont'd)

But we do not know which r is optimal, so try all r (eq 15.14)

$$e[i, j] = \begin{cases} q_{i-1} & \text{if } j = i - 1\\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

NOTE: j=i-1 is an empty subtree containing only d_{i-1} so cost = q_i

/ tigoritimio

Step 3: Compute Optimal Solution (1)

35

Step 3: Compute Optimal Solution (2)

Algorithms NTUEE 37

Step 3: Compute Optimal Solution (3)

```
OPTIMAL-BST (p, q, n)
let e[1..n+1,0..n], w[1..n+1,0..n], and root[1..n,1..n] be new tables
for i = 1 to n + 1
                                                          root
    e[i, i-1] = 0
    w[i, i-1] = 0
for l = 1 to n
    for i = 1 to n - l + 1
        i = i + l - 1
        e[i, j] = \infty
        w[i, j] = w[i, j-1] + p_i
        for r = i to j
            t = e[i, r-1] + e[r+1, j] + w[i, j]
            if t < e[i, j]
                 e[i,j] = t
                root[i, j] = r roots of optimal subtrees
return e and root
```

Running Time

- three-level nested loops
 - $\Theta(n^3)$
 - Exercise 15.2-5

```
OPTIMAL-BST(p, q, n)
let e[1 \dots n+1,0 \dots n], w[1 \dots n+1,0 \dots n], and root[1 \dots n,1 \dots n] be new tables
for i = 1 to n + 1
    e[i, i-1] = 0
    w[i, i-1] = 0
for l = 1 to n
    for i = 1 to n - l + 1
         j = i + l - 1
         e[i, j] = \infty
         w[i,j] = w[i,j-1] + p_j
         for r = i to j
             t = e[i, r-1] + e[r+1, j] + w[i, j]
             if t < e[i, j]
                  e[i, j] = t
                  root[i, j] = r
return e and root
```

Algorithms NTUEE 39

Step 4: Construct Optimal BST

Your exercise!

Algorithms NTUEE 40

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence
 - optimal binary search tree
 - elements of DP
 - Matrix Chain (self Study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Algorithms NTUEE 41

Elements of DP

- Two key elements
 - optimal substructure
 - * the solutions to the subproblems used within the optimal solution must themselves be optimal.
 - overlapping subproblems
 - * recursively solve the same subproblems over and over again
 - not brand new subproblems

Optimal Substructures

- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal
 - How to prove? Usually use "cut-and-paste"
- Two questions to ask:
 - 1. How many subproblems are used in an optimal solution
 - 2. How many choices in determining which subproblem(s) to use
- Example:
 - rod cutting:
 - * 1 subproblem of size n-i, for $1 \le i \le n$
 - * less than *n* choices for each subproblem
 - LCS
 - * 1 subproblem
 - * 1 choice (if $x_i = y_i$, LCS of X_{i-1} and Y_{i-1}), or
 - * 2 choices (if $x_i \neq y_i$, LCS of X_{i-1} and Y, and LCS of X and Y_{i-1})
 - optimal BST
 - * 2 subproblems $(k_1,..., k_{r-1})$ and $(k_{r+1},..., k_j)$
 - * j-i+1 choices for root in $k_i,...,k_j$

Algorithms NTUEE 43

Running Time

- Running time depends on
 - (# of total subproblems) times (# of choices in each subprblems)
- Examples:
 - rod cutting
 - * $\Theta(n)$ subproblems, $\leq n$ choices for each
 - * O(n²) running time
 - LCS
 - * ⊕(mn) subproblems, 2 choices for each
 - * ⊕(mn) running time
 - OBST
 - * $\Theta(n^2)$ subproblems, $\Theta(n)$ choices for each
 - * Θ(n³) running time

Subtleties

- Shortest path :find simple path (no cycle) $u \rightarrow v$ with fewest edges
 - it has optimal substructure
 - any subpath is optimal
 - p₁ is shortest
 - $-p_2$ is shortest

- Longest simple path: find simple path u >v with most edges
 - it does NOT has optimal substructure
 - * Q1: what is longest path
 - $-q \rightarrow t$
 - * Q2: what are longest paths
 - _ q → r
 - $-r \rightarrow t$
 - * Q1 does NOT contain Q2

- Solution to one subproblem affects solution to other sub problems
 - * Since first subproblem chooses q→s→t→r
 - * s and t cannot be used in the second subproblem

NTUEE **Algorithms**

Overlapping Subproblems

- DP recursively solve the same subproblems over and over again
 - Example: rod cutting

- NOTE: divide-and-conquer generates brand new subproblems
 - Example: merge sort is not DP

45

46

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence
 - · optimal binary search tree
 - elements of DP
 - Matrix Chain (self Study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Algorithms NTUEE 47

Matrix Chain Multiplication

- Given $A = A_1 \times A_2 \times ... \times A_n$
 - Find A using the minimum number of multiplications
- A product of Matrices is fully parenthesized if it is a single matrix or the produce of 2 fully parenthesized matrix products
- Example:
 - $(A_1(A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4)$
 - ---
- C=AB
 - if size A is pxq, szie B is qxr then pqr multiplications is needed
- The order of multiplication makes a big difference
 - Example: A1: 10x100, A2: 100x5, A3: 5x50
 - * (A1A2)A3 needs 7,500 multiplications
 - * A1(A2A3) needs 75,000 multiplications!

Brute Force

- Check all possible orders
- *P*(*n*): number of ways to multiply *n* matrices.

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

- P(n) is a sequence of *Catalan* numbers, which grows exponentially!
 - $\Omega(4^{n}/n^{3/2})$
- How to solve it smartly? using DP

Algorithms NTUEE 49

Outline

- Dynamic Programming, CH15
 - rod cutting
 - longest common subsequence
 - optimal binary search tree
 - elements of DP
 - Matrix Chain (self Study)
 - Conclusion
- Greedy Algorithms, CH16
- Amortized Analysis, CH17

Compare Two Approaches

- 1. Bottom-up iterative approach
 - Start with recursive divide-and-conquer algorithm.
 - Find the dependencies between the subproblems (which solutions are needed for computing a subproblem).
 - Solve the subproblems in the correct order.
- 2. *Top-down* recursive approach (memorization)
 - Start with recursive divide-and-conquer algorithm.
 - Keep top-down approach of original algorithms.
 - Save solutions to subproblems in a table
 - Recurse only on a subproblem if the solution is not already available in the table.
- If all subproblems must be solved at least once, bottom-up DP is better due to less overhead for recursion and for maintaining tables.
- If many (but not all) subproblems need not be solved, top-down DP is better since it computes only those required.

Algorithms NTUEE 51

When to Use DP

- DP computes recurrence efficiently by storing partial results
 - It is efficient only when small number of partial results.
- DP is NOT suitable for :
 - n! permutations of an n-element set,
 - 2ⁿ subsets of an *n*-element set, etc.
- DP is suitable for:
 - contiguous substrings of an *n*-character string,
 - n(n+1)/2 possible subtrees of a binary search tree, etc.
- DP works best: objects that are linearly ordered and cannot be rearranged
 - Matrices in a chain
 - Characters in string
 - DNA sequence

Outline

- Dynamic Programming, CH15
- Greedy Algorithms, CH16
 - Activities Selection Problem
 - Channel Routing Problem* (not in exam)
 - Elements of Greedy Strategy
 - Huffman Codes
- Amortized Analysis, CH17

Algorithms NTUEE 53

Activity Selection Problem

- n activities require exclusive use of a common resource
 - For example, scheduling the use of a classroom
- Set of activities $S = \{a_1 \dots a_n\}$
 - a_i needs resource during period [s_i, f_i],
 - * where s_i = start time and f_i = finish time
- Goal: Select the largest possible set of non-overlapping activities
 - a_i and a_j are compatible if their intervals do not overlap
- Assume that activities are sorted by finish time:
 - $f_1 \le f_2 \le f_3 \le \dots f_{n-1} \le f_n$

Example

S sorted by finish time

- One possible solution {a₁, a₃, a₉}: not maximum
- Maximum-size mutually compatible set: {a₁, a₃, a₆, a₈}.
 - Not unique: {a2, a5, a7, a9} also maximum

Algorithms NTUEE 55

Step1: Optimal Substructure

- S_{ij} =set of activities that
 - starts after a_i finished and finishes before a_j starts
 - $\{a_k \in S ; f_i \leq s_k < f_k \leq s_i\}$
- Let A_{ij} be a maximum-size set of mutually compatible activities in S_{ij}
- Suppose we already know $a_k \in A_{ii}$. Then we have two subproblems:
 - Find $A_{ik} = A_{ii} \cap S_{ik}$ = set of activities in A_{ii} that finish before a_k
 - Find $A_{kj} = A_{ij} \cap S_{kj}$ = set of activities in A_{ij} that start after a_k
 - Then $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
- Optimal solution A_{ij} must include optimal solutions for the two subproblems for S_{ik} and S_{kj} .
- Proof: cut and paste
 - Suppose we could find a better set A_{ki} in S_{ki} , where $|A_{ki}| > |A_{ki}|$
 - Then use A_{kj} instead of A_{kj}

Step2: Recursive Solution

- Let $c[i,j] = |A_{ii}| =$ size of optimal solution in S_{ii}
 - c[i, j] = c[i, k] + c[k, j] + 1
- But actually we do not know a_k
 - exhaustively try all possible a_k

$$c[i, j] = \begin{cases} 0 & \text{if } s_{ij} = \phi \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{c[i, k] + c[k, j] + 1\} & \text{if } s_{ij} \neq \phi \end{cases}$$

- We could solve the problem like DP
 - but we ignore some important characteristic of this problem
 - can we solve the problem before solving the subproblems?

Algorithms NTUEE 57

Early Bird Always Wins

- (Theorem 16.1) If S_k is nonempty and a_m has the earliest finish time in S_k , then a_m is included in some optimal solution
 - Proof: cut and paste
 - Let A_k be an optimal solution to S_k
 - Let a_i have the earliest finish time of any activity in A_k
 - * If $a_i = a_m$, done
 - * Otherwise, let $A_k' = A_k \{a_i\} \cup \{a_m\}$
 - substitute a_m for a_i .
 - activities in A_k are disjoint because activities in A_k are disjoint
 - * a_j is first activity in A_k to finish so $f_m \le f_j$
 - Since $|A_k'| = |A_k|$, conclude that A_k' is an optimal solution to S_k , and it includes a_m
- So, don't need dynamic programming. Don't need to work bottom up
- Instead, can just repeatedly choose the activity that finishes first,
 - keep only the activities that are compatible with that one, and repeat until no activities remain

Recursive Greedy Algorithm

- s =start time array, s[0]=0
- f = finish time array, sorted in monotonically increasing order
- *n* = numbers of total activities
- k = index of currently selected activity, k=1 to n
- initial call REC-ACTIVITY-SELECTOR (s, f, 0, n)

```
REC-ACTIVITY-SELECTOR (s, f, k, n)

m = k + 1

while m \le n and s[m] < f[k] // find the first activity in S_k to finish m = m + 1

if m \le n

return \{a_m\} \cup \text{REC-ACTIVITY-SELECTOR}(s, f, m, n)
else return \emptyset
```

time complexity = ?

Algorithms NTUEE 59

Operation

• Fig 16.1

Operation (2)

Algorithms NTUEE 61

Iterative Greedy Algorithm

- s = start time array
- f = finish time array, sorted in monotonically increasing order.
- same time complexity as before
- but less overhead of recursive call of functions

```
GREEDY-ACTIVITY-SELECTOR (s, f)

n = s. length

A = \{a_1\}

k = 1

for m = 2 to n

if s[m] \ge f[k]

A = A \cup \{a_m\}

k = m

return A
```

Outline

- Dynamic Programming, CH15
- Greedy Algorithms, CH16
 - Activities Selection Problem
 - Channel Routing Problem* (not in exam)
 - Elements of Greedy Strategy
 - Huffman Codes
- Amortized Analysis, CH17

Algorithms NTUEE 63

Standard Cell Design

- Logic gates are pre-designed cells of the same height
- Interconnects are routed in routing channels
- very flexible and scalable design style

Terminology for Channel Routing

- Terminals of the same number should be connected together
- Horizontal segments are trunks
- Branches are vertical segment between trunk and terminal
- Doglegs are small vertical segments between two trunks

Algorith

65

Channel Routing Problem

- Assign horizontal segments (trunks) to tracks
 - All terminals must be connected
- Constraints
 - Assume one vertical layer and one horizontal layer
 - Horizontal constraints
 - * two trunks in the same track CANNOT overlaps each other
 - Vertical constraints
 - Two braches CANNOT overlap each oterh
- Objective: Channel height is minimized
 - minimized the number of tracks
- Very important EDA problem

Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- Treat each horizontal segment as an interval
- Intervals are sorted according to their left-end x-coordinates
- Intervals are routed one-by-one according to the order
- For a net, tracks are scanned from top to bottom
 - first track that accommodate the net is assigned to the net
- Always produces an optimal routing solution with the minimum # of tracks
 - if no vertical constraint

Algorithms NTUEE 67

Left-Edge Algorithm

```
Left-Edge (U, track[j])

// U= set of unassigned intervals (nets) I_1, ..., I_n;

// I_j=[s_j, e_j]: interval j with left-end x-coordinate s_j and right-end e_j;

// track[j]: track to which net j is assigned

U = \{I_1, I_2, ..., I_n\};

t = 0;

while (U \neq \emptyset) do

t = t + 1;

watermark = 0; // watermark is right end of this track so far

while (there is an I_j \in U s.t. s_j > watermark) do

Pick the interval I_j \in U with s_j > watermark, nearest watermark;

track[j] = t;

watermark = e_j;

U = U - \{I_j\};

end
```

Basic Left-Edge Example

- $U = \{I_1, I_2, ..., I_6\}$
 - $I_1 = [1, 3], I_2 = [2, 6], I_3 = [4, 8], I_4 = [5, 10], I_5 = [7, 11], I_6 = [9, 12].$
- *t* =1:
 - Route I_1 : watermark = 3;
 - Route *I*₃: watermark = 8;
 - Noute I₁: watermark = 12;
- t = 2:
 - Route I_2 : watermark = 6;
 - Route *I₅*: watermark = 11;
- t = 3: Route I_4

Algorithms

69

Outline

- Dynamic Programming, CH15
- Greedy Algorithms, CH16
 - Activities Selection Problem
 - Channel Routing Problem* (not in exam)
 - Elements of Greedy Strategy
 - Huffman Codes
- Amortized Analysis, CH17

Elements of Greedy Algorithms

- Six steps to develop a greedy algorithm
 - 1. Determine the optimal substructure
 - 2. Develop a recursive solution.
 - 3. Show that if we make the greedy choice, only one subproblem remains
 - 4. Prove that it's always safe to make the greedy choice
 - * greedy choice property
 - 5. Develop a recursive greedy algorithm
 - 6. Convert it to an iterative algorithm

Algorithms NTUEE 71

Key Ingredients of Greedy

- 1. Greedy-choice Property
 - Can assemble a globally optimal solution by making locally optimal (greedy) choices
 - Example: activity selection:
 - Look at an optimal solution
 - * If it includes the greedy choice, done
 - * Otherwise, modify the optimal solution to include the greedy choice, yielding another solution that's just as good
 - different from DP
- 2. Optimal Substructure
 - Optimal solution to subproblem is included in optimal solution to the whole problem
 - same as DP

DP vs. Greedy

- Dynamic programming
 - Make a choice at each step
 - Choice depends on knowing optimal solutions to subproblems
 - Solve subproblems first bottom-up
- Greedy
 - Make a choice at each step
 - Make the choice before solving the subproblems
 - Solve problems top-down
- Both greedy and DP exploits optimal substructure
 - sometimes we can get confused
- Two examples to demonstrate the difference
 - Fractional Knapsack Problem
 - 0-1 Knapsack Problem

Algorithms NTUEE 73

Fractional Knapsack Problem

- A thief has n items to steal
- Item *i* is worth v_i , weighs v_i pounds
- Find a most valuable subset of items with total weight ≤W
- Can take a fraction of an item
- Example: Fig. 16.2
 - optimal solution: item 1+ item2 + 2/3 item 3
- Greedy algorithm applies

Greedy Algorithm

- Rank items by value/weight: v_i/w_i
- Take items in decreasing order of value/weight
- Possibly a fraction of the item
- Time complexity:
 - O(n lg n) to sort, O(n) thereafter

```
FRACTIONAL-KNAPSACK (v, w, W)

load = 0
i = 1

while load < W and i \le n

if w_i \le W - load

take all of item i

else take (W - load)/w_i of item i

add what was taken to load

i = i + 1
```

i	1	2	3				
v_i	60	100	120				
w_i	10	20	30				
$v_i \ w_i \ v_i/w_i$	6	5	4				
W=50.							

Algorithms NTUEE 75

0-1 Knapsack Problem

- Have to either take an item or not take it can't take part of it
- Example: Fig. 16.2
 - optimal solution: item3 + item2
- Greedy strategy does NOT apply
- Need to use DP
 - O(nW) time, exercise 16.2-2

		2	3				
v_i	60	100	120				
w_i	10	20	30				
$v_i \ w_i \ v_i/w_i$	6	5	4				
W = 50.							

Algorithms NTUEE 76

- Both problems have optimal substructure
- But fractional knapsack problem has the greedy-choice property
 - * the 0-1 knapsack problem does not
- FFT
 - In 0-1 Knapsack problem, what if we take items in the order of their values? Does greedy algorithm work in this way?
 - * Yes, prove the greedy-choice property
 - No, give an counter example

Algorithms

77

Outline

- Dynamic Programming, CH15
- Greedy Algorithms, CH16
 - Activities Selection Problem
 - Channel Routing Problem* (not in exam)
 - Elements of Greedy Strategy
 - Huffman Codes
- Amortized Analysis, CH17

David A. Huffman [1925-1999 USA]

- In 1951 Huffman (aged 25) and his classmates in an electrical engineering graduate course on information theory were given the choice of a term paper or a final exam. Huffman's professor, Robert M. Fano, had assigned what at first appeared to be a simple problem. Students were asked to find the most efficient method of representing numbers, letters or other symbols using a binary code.
- Huffman worked on the problem for months, developing a number of approaches, but failed.
 Just as he was throwing his notes in the garbage, the solution came to him.
- Huffman says he might never have tried his hand at the problem if he had known that Fano, his professor, and Claude E. Shannon, the creator of information theory, had struggled with it.

Algorithms

NTUEE

Coding

- Application: data compression, error correction, encryption etc
- Binary Character Code: each character represented by a unique binary string (codeword)
 - Fixed-length code: codeword are the same length
 - * e.g. a=000, b=001, ... f=101
 - afb=<u>000</u> <u>101</u> <u>001</u>
 - Variable-length code: codeword are different in length
 - * e.g. Huffman code
 - frequent characters are represented by shorter codeword
- Example: Fig 16.3, 100K characters (a ~ f)
 - * fixed length coding: 300K bits
 - * variable length coding: 224 K bits

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Prefix Code

- Prefix Code: No code is a prefix of some other code
- Example
 - C={a, b, c, d, e, f} alphabet, the set of characters in use

	а	b	С	d	е	f
Prefix code	0	101	100	111	1101	1100
Non-prefix	000	0001	001	0011	111	1110

- Encoding is always simple
 - just concatenation
 - * e.g. afb=0 1100 101
- Decoding is easy when prefix code is used
 - decode each character is unambiguous
 - * e.g. 001011101 \rightarrow 0 0 101 1101
 - Decoding for non-prefix code is ambiguous

Algorithms NTUEE 81

Tree Representation

- Decoding process of prefix code
 - Codeword is represented by a simple path from root to leave

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with

Optimal Prefix Code Design Problem

- Input: given a set of alphabet and the frequency of each character
- Output: find a binary tree such that cost is minimized
 - c.freq is the frequency of appearance of character c
 - $d_{\tau}(c)$ is depth of c's leaf in the tree = length of c's codeword
 - cost of the tree $B(T) = \sum_{c \in C} c. freq \cdot d_T(c)$
- Optimal prefix code is always represented by a full binary tree
 - every non-leaf node has two children
 - optimal tree has |C/ leaves and |C|-1 nodes
- Example (a) cost = 300, not full (b) =224, optimal cost, full tree

83

Huffman's Algorithm

- Idea: more frequent characters are deeper in the tree
- Bottom up: combine two nodes with the least cost at each step

84

Huffman's Pseudo Code

- Time complexity: Q is implemented in min-heap
 - loop n-1 times, each EXTRACT-MIN is O(lg n)
 - totally O(n lg n)

```
HUFFMAN (C)

n=|C|

Q=C

for i=1 to n-1

allocate a new node z

z.left = x = \text{EXTRACT-MIN}(Q)

z.right = y = \text{EXTRACT-MIN}(Q)

z.freq = x.freq + y.freq

INSERT(Q,z)

return EXTRACT-MIN(Q)
```


Algorithms NTUEE 85

Greedy-choice Property

- Lemma 16.2: Two characters x and y with the lowest frequencies must have the same length and differ only in the last bit
 - Proof: suppose tree T is optimal, x and y are NOT at bottom
 - * swapping x with a, y with b (does not increase cost)
 - * resulting in T" with lower cost than T
- Therefore, building an optimal tree can start with greedy choice of merging together two characters of lowest frequency

Optimal Substructure Lemma 16.3 V1

- Tree T is the tree representing code over C
 - z is parent of characters x and y of minimum frequency
 - * z.freq =x.freq+y.freq
- Tree T' is a tree representing code over C'
 - * $C' = C \{x, y\} \cup \{z\}$
- If tree T' represents optimal prefix code for C',
 - then tree T also represents optimal prefix code C
- Proof: cut and paste
 - if there is a better tree T" than T i.e. B(T") < B(T)
 - both T" and T have leaves x and y as siblings (lemma 16.2)
 - we can replace x and y by z in T"

* get a better tree T"'than T' → contradiction

T

a

b

Z

Algorithms

* get a better tree T"'than T' → contradiction

T

Algorithms

Optimal Substructure Lemma 16.3 V2

- Tree T is the tree representing code over C
 - z is parent of x and y of minimum frequency
 - * z.freq = x.freq+y.freq
- Tree T' is a tree representing code over C'
 - * $C'= C \{x, y\} \cup \{z\}$
- If tree T represents optimal prefix code for C,
 - then tree T'also represents optimal prefix code C'
- Proof: cut and paste
 - if there is a better tree T" than T' i.e. B(T") < B(T")
 - then we add leaves x and y under z in T"
 - * get a better tree T"'than T → contradiction

b

87

88

Finally

- Theorem 16.4: HUFFMAN produces an optimal prefix code
 - results from lemma 16.2 and 16.3
- Huffman coding today is often used as back-end to other compression methods
 - PKZIP, JPEG and MP3 uses Huffman coding
- Huffman coding beat his teacher's method, Shannon-Fano coding
 - you can beat your teachers too!

Algorithms NTUEE 89

Reading

- CH15
- CH16