P-CHANNEL ENHANCEMENT MODE VERTICAL DMOS FET

ZVP4105A

ISSUE 2 - MARCH 94

FEATURES

- * 50 Volt V_{DS}
- * $R_{DS(on)} = 10\Omega$
- * Low threshold

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Drain-Source Voltage	V _{DS}	-50	V
Continuous Drain Current at T _{amb} =25°C	I _D	-175	mA
Pulsed Drain Current	I _{DM}	-520	mA
Gate Source Voltage	V_{GS}	± 20	V
Power Dissipation at T _{amb} =25°C	P _{tot}	625	mW
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	CONDITIONS.	
Drain-Source Breakdown Voltage	BV _{DSS}	-50		V	I _D =-0.25mA, V _{GS} =0V	
Gate-Source Threshold Voltage	$V_{GS(th)}$	-0.8	-2.0	V	ID=-1mA, V _{DS} = V _{GS}	
Gate-Body Leakage	I _{GSS}		10	nA	V _{GS} =± 20V, V _{DS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}		-15 -60 -100	μΑ μΑ nΑ	$\begin{array}{l} V_{DS}\!\!=\!\!-50V, \ V_{GS}\!\!=\!\!0V \\ V_{DS}\!\!=\!\!-50V, \ V_{GS}\!\!=\!\!0V, \ T\!\!=\!\!125^{\circ}C(2) \\ V_{DS}\!\!=\!\!-25V, \ V_{GS}\!\!=\!\!0V \end{array}$	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}		10	Ω	V _{GS} =-5V,I _D =-100mA	
Forward Transconductance (1)(2)	g _{fs}	50		mS	V _{DS} =-25V,I _D =-100mA	
Input Capacitance (2)(4)	C _{iss}		40	pF	V _{DS} =-25V, V _{GS} =0V, f=1MHz	
Common Source Output Capacitance (2)(4)	C _{oss}		15	pF		
Reverse Transfer Capacitance (2)(4)	C _{rss}		6	pF		
Turn-On Delay Time (2)(3)(4)	t _{d(on)}		10	ns	V _{DD} ≈-30V, I _D =-270mA	
Rise Time (2)(3)(4)	t _r		10	ns		
Turn-Off Delay Time (2)(3)(4)	t _{d(off)}		18	ns		
Fall Time (2)(3)(4)	t _f		25	ns		

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s. Duty cycle \leq 2%

⁽²⁾ Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and <5ns rise time on a pulse generator