ПРОЕКТИРОВАНИЕ РЦФ

Рекурсивный цифровой фильтр (РЦФ) с бесконечной импульсной характеристикой g(k) описывается в общем случае системной функцией

$$H(z) = \sum_{k=0}^{N-1} a_k z^{-k} / \left(1 + \sum_{m=1}^{M-1} b_m z^{-m} \right)$$
 (19)

и разностным уравнением

$$y(k) = \sum_{n=0}^{N-1} a_n x(k-n) - \sum_{m=1}^{M-1} b_m y(k-m), k = 0, 1, 2, \dots, M \ge N.$$

Для решения аппроксимационной задачи (т. е. для расчёта коэффициентов a_k и b_m системной функции H(z) РЦФ по заданным требованиям к AЧX) используются три класса методов:

- прямые методы расчёта в z-плоскости;
- методы, использующие алгоритмы оптимизации;
- методы преобразования аналогового фильтра в цифровой фильтр.

После определения коэффициентов функции H(z) следует выбрать структуру фильтра (например, последовательную каскадную, состоящую из биквадратных звеньев) и рассчитать разрядности отсчётов входного сигнала (8...16 двоичных разрядов и более), коэффициентов системной функции и внутренних кодов фильтра. Как отмечалось, при расчёте и моделировании ЦФ на ПЭВМ с микропроцессором Pentium используются 32-х разрядные числа с двойной точностью, что позволяет не учитывать эффекты, связанные с конечной разрядностью регистров фильтров.

Исходными данными для решения аппроксимационной задачи при проектировании РЦФ (как и НЦФ) являются граничные частоты w_n и w_3 полос пропускания и задерживания, а также величины α_{max} и α_{min} .

Для расчёта избирательных РЦФ наиболее широко используется один из методов третьего класса: **метод билинейного преобразования**. С помощью этого метода передаточная функция H(p) устойчивого аналогового фильтра-прототипа (АФ-прототипа) преобразуется в системную функцию H(z) цифрового рекурсивного фильтра.

Достоинством метода билинейного преобразования является то, что системная функция H(z) РЦФ определяется с помощью простых формул из передаточной функции H(p) аналогового фильтра. При этом выходной сигнал РЦФ приближённо совпадает с выходным сигналом аналогового фильтра-прототипа при одинаковых произвольных входных сигналах. Однако при билинейном преобразовании (при переходе от аналогового фильтра к цифровому) имеет место **деформация шкалы частот**, которую обычно компенсируют перед началом расчёта АФ-прототипа с помощью предыскажений в аналоговом фильтре.

Билинейное преобразование представляет собой конформное преобразование точек p-плоскости в точки z-плоскости и использует замену переменной p в передаточной функции H(p) А Φ -прототипа:

$$p = \gamma \frac{1 - z^{-1}}{1 + z^{-1}} = \gamma \frac{z - 1}{z + 1}$$
 (обратное соотношение $z = \frac{\gamma + p}{\gamma - p}$), (20)

где γ - некоторый постоянный коэффициент, величина которого не меняет формы преобразования. Во многих случаях применяют $\gamma = 2/\Delta t$. В данной работе значение коэффициента γ вычисляется с использованием исходных данных ЦФ для внесения частотных предыскажений в АФ-прототип.

Итак, системная функция ЦФ

$$H(z) = H(p)\Big|_{p=\gamma} \frac{z-1}{z+1}.$$

Для различения "аналоговых" и "цифровых" частот угловую "аналоговую" частоту будем обозначать Ω , а "цифровую" - ω .

Преобразование (20) позволяет сопоставить каждой точке комплексной p-плоскости ($p=\sigma+j\Omega$) определённую точку z-плоскости ($z=e^{\overline{(\sigma}+j\omega)\Delta t}$).

Билинейное преобразование обладает свойством, при котором мнимая ось $(p=j\Omega$ для - $\infty < \Omega < \infty)$ p-плоскости отображается на z-плоскости **одним обходом окружности** радиуса $\mathbf{r}=|z|=1$ (рис. 11, a). Действительно, если подставить в (20) $z=e^{j\omega\Delta t}$:

$$p = j\Omega = \gamma \frac{1 - e^{-j\omega\Delta t}}{1 + z^{j\omega\Delta t}} = \gamma \frac{2j\sin(\omega\Delta t/2)}{2\cos(\omega\Delta t/2)} = j\gamma \operatorname{tg}(\omega\Delta t/2) = 1 \cdot e^{j\varphi(\Omega)} = r \cdot e^{j\varphi(\Omega)},$$

то для точек z, находящихся на единичном круге (r=1), $\sigma \Delta t = 0$, а частоты Ω и ω связаны соотношением

 $\Omega = \gamma \operatorname{tg}(\omega \Delta t/2)$ [обратное соотношение $\omega = (2/\Delta t) \cdot \operatorname{arctg}(\Omega/\gamma)$], (21) которое графически показано на рис. 11, δ.

Фазовый угол φ (см. рис. 11, a) на z-плоскости легко определить из обратного соотношения (20): при $z = (\gamma + p)/(\gamma - p)$ и $p = j\Omega$

$$z = \frac{\gamma + j\Omega}{\gamma - j\Omega} = \frac{\sqrt{\gamma^2 + \Omega^2} e^{j\operatorname{arctg}(\Omega/\gamma)}}{\sqrt{\gamma^2 + \Omega^2} e^{-j\operatorname{arctg}(\Omega/\gamma)}} = 1 \cdot e^{j2\operatorname{arctg}(\Omega/\gamma)} = re^{j\varphi(\Omega)},$$

или из (21): $\varphi(\Omega) = \omega \Delta t = 2 \arctan(\Omega/\gamma)$.

При монотонном изменении \varOmega от - ∞ до + ∞ фазовый угол φ монотонно изменяется от - π до + π . В частности, для $\varOmega_3=0$ имеем $z=e^{j0}=1$ (на вещественной оси z-плоскости), для $\varOmega=\pm\infty$ получаем $z=e^{\pm j\pi}=-1$.

Из рис. 11, a видно, что положительная и отрицательная мнимые оси из p-плоскости отображаются соответственно в верхнюю и нижнюю половины единичной окружности на z-плоскости.

Известно, что все полюсы передаточной функции устойчивого аналогового фильтра расположены в левой половине p-плоскости; он при преобразовании будет давать устойчивый РЦФ. Границей устойчивой работы цепи аналогового фильтра является мнимая ось $j\Omega$ ($\sigma=0$), цифрового единичная окружность с центром в точке z=0.

Так как мнимая ось p-плоскости отображается на единичную окружность z-плоскости, то все максимумы и минимумы АЧХ $H(\Omega)$ АФ-прототипа сохраняются и в АЧХ $H(\omega)$ ЦФ. Сохраняется также и неравномерность АЧХ для соответствующих диапазонов частот (см. рис. 11, δ).

Таким образом, билинейное преобразование $p = \gamma(1-z^{-1})/(1+z^{-1})$ отображает левую полуплоскость p во внутреннюю область (|z| < 1), а правую (заштрихованную на рис. 11, a) - во внешнюю (также заштрихованную) область единичной окружности на плоскости z. Полюсы функции H(z) устойчивой дискретной системы должны располагаться только внутри круга единичного радиуса, нули же могут быть расположены в любой точке плоскости z.

Хотя билинейное преобразование может быть эффективно использовано для отображения кусочно-постоянных АЧХ из p-плоскости на z-плоскость (сохраняя масштаб по оси ординат), деформация шкалы частот будет проявляться в искажениях ФЧХ фильтра, особенно в области высоких частот (см. рис. 11, δ). Если бы нас, например, интересовал ЦФ нижних частот с линейной фазовой характеристикой, то мы не смогли бы получить такой фильтр, применив билинейное преобразование к аналоговому фильтру нижних частот с линейной фазовой характеристикой.

Деформацию частотной шкалы (см нелинейное соотношение (21) между "аналоговыми" частотами Ω и "цифровыми" частотами ω : $\Omega = \gamma \operatorname{tg}(\omega \Delta t/2) = \gamma \operatorname{tg}(\pi w)$, где $w = \omega/\omega_{\partial} = f/f_{\partial}$ - нормированная "цифровая" частота) учитывают при расчёте РЦФ посредством соответствующего выбора коэффициента γ . Так, для получения РЦФ нижних частот с граничной

частотой ω_n полосы пропускания надо в качестве прототипа использовать нормированный аналоговый фильтр с нормированной частотой среза $\Omega_c = \Omega_n = 1$. Тогда $\Omega_n = \gamma \operatorname{tg}(\omega_n \Delta t/2) = \gamma \operatorname{tg}(\pi w_n) = 1$, откуда

$$\gamma = 1/\operatorname{tg}(\omega_n \Delta t/2) = \operatorname{ctg}(\omega_n \Delta t/2) = \operatorname{ctg}(\pi w_n). \tag{22}$$

Процедуры расчёта аналоговых фильтров хорошо отработаны; значения основных параметров, описывающих АЧХ классических аналоговых фильтров, вычислены и протабулированы. Так, в справочнике [5] по расчёту аналоговых фильтров приведены таблицы коэффициентов передаточных функций H(p) нормированных фильтров нижних частот с ограниченным количеством комбинаций величин α_{max} (или |p| %) для полиномиальной аппроксимации Баттерворта, Чебышева, Золотарёва-Кауэра.

В данной работе ограничимся рассмотрением фильтра Чебышева типа T, АЧХ которого является равноволновой (колеблется между уровнями 1 и 1 - ε) в полосе пропускания и монотонно убывающей в полосе задерживания (см. кривую 2, рис. 7, a).

Функция, аппроксимирующая квадрат $H^2(\Omega)$ требуемой АЧХ фильтра Чебышева, имеет вид

$$H^2(\Omega) = \frac{1}{1 + \varepsilon^2 T_N^2(\Omega/\Omega_n)}$$
 или $\alpha(\Omega)[\mathbf{д}\mathbf{b}] = -10\lg(1 + \varepsilon^2 T_N^2(\Omega/\Omega_n))$

где полином Чебышева $T_N(\Omega) = \cos(N \cdot \arccos \Omega)$, $-1 \le \Omega \le 1$;

 $T_N(\Omega) = \operatorname{ch}(N \cdot \operatorname{Arcch} \Omega))$ вне указанного интервала, причём

$$T_0(\Omega) = 1$$
; $T_1(\Omega) = \Omega$; $T_2(\Omega) = 2\Omega^2 - 1$; $T_3(\Omega) = 4\Omega^3 - 3\Omega$;

$$T_4(\Omega) = 8\Omega^4 - 8\Omega^2 - 1$$
; $T_5(\Omega) = 16\Omega^5 - 20\Omega^3 + 5\Omega$ ит. д.;

 Ω - "аналоговая" угловая частота; Ω_n - граничная частота полосы пропускания аналогового фильтра нижних частот; N - порядок фильтра (обычно равный 2...8); $\varepsilon = \sqrt{10^{0.1}\alpha_{max}-1} = 0,1...1$ (α_{max} в дБ) - коэффициент неравномерности затухания в полосе пропускания.

Квадрат АЧХ $H^2(\Omega)$ колеблется в интервале между 1 и $1/(1+\varepsilon^2)$ в полосе пропускания, равен 1 в точке $\Omega=0$, когда N нечётно; когда N чётно, он равен $1/(1+\varepsilon^2)$ в точке $\Omega=0$ и в точке $\Omega=\Omega_n$.

Методы проектирования аналоговых фильтров заданным требованиям к АЧХ основаны на использовании таблиц и номограмм, приводимых в справочниках. Формулировка требований к аналоговому фильтрупрототипу определяется билинейным преобразованием структурой используемого справочника по расчёту аналоговых фильтров. Для определения передаточной функции H(p) A Φ -прототипа используем номограммы и таблицы справочника [5], относящиеся к фильтрам с характеристиками Чебышева типа T невысоких порядков. В справочнике [5] приводятся для аналоговых ФНЧ нормализованные передаточные **функции**, т. е. имеющие частоту среза $\Omega_n = 1$ рад/с.

Рассмотрим алгоритм определения передаточной функции аналогового фильтра-прототипа нижних частот с характеристикой Чебышева типа T по справочным таблицам и номограммам. В качестве исходных данных должны быть заданы (или предварительно вычислены): Ω_n ; α_{max} - максимально допустимый коэффициент затухания в полосе пропускания $0...\Omega_n$; Ω_3 ; α_{min} - гарантированное затухание на граничной частоте Ω_3 полосы задерживания.

Алгоритм определения функции H(p) включает следующие этапы:

а) определяется модуль коэффициента отражения |p|% по заданной величине α_{max} (в полосе пропускания от 0 до Ω_n) по формуле

$$|p| \% = 100 \sqrt{1 - e^{-0.23026 \alpha_{max}}}$$

(обратное соотношение $\alpha_{max} = -10\lg(1-\rho^2)$, дБ; p = |p|%/100) и выбирается из таблицы 1 ближайшее меньшее значение |p|%;

Таблица 1

p %	5	10	15	25	50
$lpha_{max}$, дБ	0,0109	0,0436	0,0988	0,2803	1,25

- б) определяется вспомогательный параметр L с помощью величин α_{min} и |p|% по общей номограмме (см. рис. 12);
- в) определяется порядок N передаточной функции фильтра типа T с помощью заданной нормированной величины Ω_3 в полосе задерживания (от частоты $\Omega = \Omega_3$ до $\Omega = \infty$) и полученной величины L (см. рис.13);
 - г) записывается передаточная функция H(p) фильтра в общем виде

$$H(p) = \begin{cases} 1/[C \prod_{i=1}^{N/2} (p^2 - 2a_i p + a_i^2 + b_i^2)], & N - \text{чётное;} \\ 1/[C(p - a_0) \prod_{i=1}^{(N-1)/2} (p^2 - 2a_i p + a_i^2 + b_i^2)], & N - \text{нечётное.} \end{cases}$$
(23)

Коэффициент C вводится для нормирования AЧX к единице при $\, \varOmega = 0 \,$ (и соответственно p = 0);

- д) определяются численные значения коэффициентов C, a_i и b_i передаточной функции H(p) из таблиц (см. табл. 2) с учётом величин N и |p|%;
- е) записывается передаточная функция H(p) аналогового нормированного ФНЧ Чебышева с численными значениями коэффициентов.

Таблица 2

TO2:	H(p) = 1/[0]	$7(n^2 -$	$2a_1 n +$	$a_1^2 +$	(b_1^2) 1
102.	II(p)-I/ C	$\sim (P)$	$\Delta u \mid P \mid$	a_{\parallel}	ν_{\parallel}

p %	C	$-a_1$	$\pm b_1$
5	0,10012523	2,1794494718	2,2912878475
10	0,20100756	1,5000000138	1,6583124073
15	0,30343304	1,1902380715	1,3844305
25	0,51639778	0,8660254040	1,1180339888
50	1,1547005	0,5	0,8660254038

TO3: $H(p) = 1/[C(p - a_0)(p^2 - 2a_1p + a_1^2 + b_1^2)]$

p %	С	i	$-a_i$	$-a_{i+1}$	$\pm b_{i+1}$
5	0,20025047	0	1,5633880273	0,7816940137	1,6072159226
10	0,40201513	0	1,1717182911	0,5858591455	1,3340512791
15	0,60686608	0	0,9721338860	0,4860669430	1,2078009850
25	1,03279560	0	0,7433421107	0,3716710553	1,0790820730
50	2,30940110	0	0,4532218472	0,2266109236	0,9508194004

TO4:
$$H(p) = 1/[C \prod_{i=1}^{2} (p^2 - 2a_i p + a_i^2 + b_i^2)]$$

p%	С	i	$-a_i$	$\pm b_i$	$-a_{i+1}$	$\pm b_{i+1}$
5	0,40050094	1	0,4050275555	1,3452476518	0,9778230177	0,5572198221
10	0,80403025	1	0,3138479999	1,1948459178	0,7576960978	0,4949213841
15	1,2137322	1	0,2648393341	1,1235472968	0,6393787122	0,4638852830
25	2,0655911	1	0,2062835572	1,0498570027	0,4980125615	0,4347407450
50	4,6188022	1	0,1282831330	0,9444071347	0,3097028796	0,4036126513

TO5:
$$H(p) = 1/[C(p-a_0)\prod_{i=1}^{2}(p^2-2a_ip+a_i^2+b_i^2)]$$

				ı		
p %	C	i	$-a_i$	$\pm b_i$	$-a_{i+1}$	$\pm b_{i+1}$
5	0,80100180	0 2	0,8063906936 0,2491884284	- 1,2219526653	0,6523837753	0,7550846730
10	1,6080605	0 2	0,6550473506 0,1962404236	- 1,1266247516	0,5137640989	0,6962923890
15	2,4274643	0 2	0,5402488996 0,1669460912	- 1,0809747330	0,4370705410	0,6680791260
25	4,1311822	0 2	0,4245017665 0,1311782600	- 1,0332001312	0,3434291432	0,6383527983
50	9,2376043	0 2	0,2664476315 0,0823368462	- 0,9842375126	0,2155606620	0,6082922358

Таблица 2 (Продолжение)

TO6: $H(p) = 1/[C \prod_{i=1}^{3} (p^2 - 2a_i p + a_i^2 + b_i^2)]$

p%	С	i	$-a_i$	$\pm b_i$	$-a_{i+1}$	$\pm b_{i+1}$
5	1,6020038	1	0,1693090834	1,1542411045	0,4625610181	0,8449631326
	1,0020030	3	0,6318701016	0,3092779717	-	-
10	3,2161210	1	0,1345398201	1,0886352022	0,3675696295	0,7969362789
	3,2101210	3	0,5021094516	0,2916989232	-	-
15	4,8549287	1	0,1149705044	1,0569383677	0,3141052595	0,7737325856
13	4,0547207	3	0,4290757640	0,2832057820	-	-
25	8,2623645	1	0,0907744202	1,0236117584	0,2480003280	0,7493358144
23	0,2023043	3	0,3387747482	0,2742759440	-	-
50	18,475209	1	0,0572662135	0,9892871773	0,1564543048	0,7242084770
	10,473207	3	0,2137204182	0,2650787002	-	-