Mathematics of Life Sciences at Mathematical Sciences Chalmers and University of Gothenburg

Click here

BIOINFORMATICS AND STATISTICAL GENETICS

Erik Kristiansson

Comparative meta-genomics

Antibiotic resistance bacteria using genome sequencing

Large-scale data from next generation DNA sequencing

Marina Axelson-Fisk

Biological sequence analysis

Cross-species gene finding

Protein domain prediction

Petter Mostad

Bayesian statistics and neural networks

Forensic statistics

Paternity DNA testing

BIOSTATISTICS

Rebecka Jörnsten

Large-scale network models for human cancer Clustering and data integration in systems biology Model selection

Aila Särkkä

Spatial statistics for spatio-temporal data 3D microscopy point pattern data with replicates Materials science and neurology

Ottmar Cronie

Spatial and spatio-temporal statistics Stochastic geometry Statistical learning for epidemiology

Systems bioilogy

Marija Cvijovic

Systems biology of protein-folding diseases
Studying cellular ageing using computational methods
Experimental methods to study the ageing of budding yeast

Eszter Lakatos (starting in March 2023)

Computational biology
Cancer evolution and cancer genomics
Immuno-oncology

Bernt Wennberg

Interacting particle systems Human lipoprotein kinetics Biological swarm models

BIO-DATA SCIENCE

<u>Umberto Picchini</u>

Bayesian methods for models with intractable likelihoods Stochastic differential models with applications to physiology Markov chain Monte Carlo algorithms

Moritz Schauer

Stochastic differential equations
Evolution of systems with temporal and spatial interactions
Bayesian approaches to inference

Tobias Gebäck

SuMo Biomaterials research center

Mass transport in soft, porous materials

Modeling of radiation treatment of cancer tumours

BIOMATHEMATICS

Torbjörn Lundh

Morphogenesis and general pattern-formation Artificial life, evo-devo, speciation Game theory

Philip Gerlee

Cancer modeling
Mathematical aspects of evolution and ecology
Applications of game theory to biology

Jenny Larsson

Quantifying shapes in biological structures
Variation in shape found in snail shells at a population level
Snail adaptation to different environments

Modeling evolution

Julie Rowlett

Geometric features and partial differential equations

Biodiversity of marine microbes

Evolution of cooperation

Peter Jagers

Extinction and growth of populations
Branching PCR processes
Stable age structure of populations

Serik Sagitov

Coalescent processes in population genetics
Mathematical phylogenetics
Branching processes and population models

