# RA272746\_aula6

### April 25, 2024

### 0.1 IA376I – Tópicos em Engenharia de Computação VII

0.1.1 Tópico: Análise de Dados Visual (Visual Analytics)

Professora: Wu, Shin - Ting Aluno: Luiz Roberto Albano Junior RA: 272746

\_\_\_\_

Aula 06 - 19/04/2024

#### 0.1.2 Exercícios 5.6

Item 2: Usando o mesmo conjunto de dados Galton, plote:

#### Carregamento dos dados e bibliotecas

```
[]: import pandas as pd
from plotnine import *

galton = pd.read_csv("Galton.csv")
galton
```

| []: |     | rownames | parent | child |
|-----|-----|----------|--------|-------|
|     | 0   | 1        | 70.5   | 61.7  |
|     | 1   | 2        | 68.5   | 61.7  |
|     | 2   | 3        | 65.5   | 61.7  |
|     | 3   | 4        | 64.5   | 61.7  |
|     | 4   | 5        | 64.0   | 61.7  |
|     |     | •••      |        |       |
|     | 923 | 924      | 69.5   | 73.7  |
|     | 924 | 925      | 69.5   | 73.7  |
|     | 925 | 926      | 69.5   | 73.7  |
|     | 926 | 927      | 69.5   | 73.7  |
|     | 927 | 928      | 69.5   | 73.7  |
|     |     |          |        |       |

[928 rows x 3 columns]

a) gráficos de distribuição de frequência das alturas dos pais e das crianças para avaliar o grau de simitria das distrituições.

## Distribuição das alturas dos pais





b) gráficos de distribuição acumulada de frequências das alturas das crianças e dos pais para determinar as medianas das duas distribuições.

### Distribuição acumulada das crianças

# Distribuição acumulada das crianças



## Distribuição acumulada dos pais

# Distribuição acumulada dos pais



#### c) gráficos de caixa para comparar as estatísticas dos pais com as das crianças

```
[]:
            Grupo
                    Altura
     0
           parent
                      70.5
                      68.5
     1
           parent
     2
           parent
                      65.5
     3
           parent
                      64.5
     4
           parent
                      64.0
            child
                      73.7
     1851
     1852
            child
                      73.7
     1853
             child
                      73.7
     1854
            child
                      73.7
```

```
1855 child 73.7
```

[1856 rows x 2 columns]

# Comparativo de Alturas entre Pais e Filhos



d) gráficos de quantil-quantil para verificar se a distribuição das alturas dos pais segue uma distribuição Gaussiana.

```
[]: (
    ggplot(galton, aes(sample="parent"))
    + geom_qq()
    + geom_qq_line()
    + labs(title="Q-Q das alturas dos pais", y="Alturas")
```

)

# Q-Q das alturas dos pais



## Q-Q das alturas dos filhos



e) gráfico de dispersão para verificar se há correlação entre as alturas das crianças e as alturas dos pais.

## Correlação entre alturas dos Pais e Crianças



f) mapa de calor dos dados para identificar a quantidade de clusters subjacentes e compare com a quantidade de grupos de pontos de dados mostrados no gráfico de dispersão no item 2e.

```
[]: import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

# Aplicar K-Means para identificar clusters
# El número de clusters (n_clusters) puede ajustarse según la observación ou
evaluación previa
kmeans = KMeans(n_clusters=3, random_state=0).fit(galton)

# Asignar las etiquetas de cluster al DataFrame original
galton['Cluster'] = kmeans.labels_

# Crear un mapa térmico usando el promedio de alturas en cada cluster
pivot_table = galton.pivot_table(index='Cluster', values=['parent', 'child'],u
eaggfunc='mean')
heatmap = sns.heatmap(pivot_table, annot=True, cmap='coolwarm')
```

```
# Mostrar el gráfico
plt.title('Mapa Térmico de Clusters')
plt.show()
```

