# Software Re-Engineering

Lecture: 10



Dr. Syed Muazzam Ali Shah
Department of Software Engineering
National University of Computer &
Emerging Sciences
muazzam.ali@nu.edu.pk

# Sequence [Todays Agenda]

#### **Content of Lecture**

- - Identify the components of an operational software.
  - Identify the relationships among those components.
  - Represent the system at a higher level of abstraction or in another form.

■ In other words, by means of reverse engineering one derives information from the existing software artifacts and transforms it into abstract models to be easily understood by maintenance personnel.

- ☐ The factors necessitating the need for reverse engineering are as follows:
  - The original programmers have left the organization.
  - The language of implementation has become obsolete, and the system needs to be migrated to a newer one.
  - There is insufficient documentation of the system.
  - The business relies on software, which many cannot understand.
  - The company acquired the system as part of a larger acquisition and lacks access to all the source code.
  - The system requires adaptations and/or enhancements.
  - The software does not operate as expected.

- ★ The factors discussed previously imply that a combination of both high-level and low-level reverse engineering steps need to be applied.
  - High-Level Reverse Engineering:
    - It means creating abstractions of source code in the form of design, architecture, and/or documentation.
  - Low-Level Reverse Engineering:
    - It means creating source code from object code or assembly code.

- **♯** Reverse engineering is performed to achieve two key objectives:
  - Redocumentation of artifacts
    - It aims at revising the current description of components or generating alternative views at the same abstraction level. Examples of redocumentation are pretty printing and drawing CFGs.

#### Design recovery

It creates design abstractions from code, expert knowledge, and existing documentation.

The relationship between forward engineering, reengineering, and reverse engineering is shown in Figure 1



Figure 1 Relationship between reengineering and reverse engineering

- ➡ Six objectives of reverse engineering, as identified by Chikofsky and Cross II:
  - Generating alternative views.
  - Recovering lost information.
  - Synthesizing higher levels of abstractions.
  - Detecting side effects.
  - Facilitating reuse.
  - Coping with complexity.

- ★ Six key steps in reverse engineering, as documented in the IEEE

  Standard for Software Maintenance, are:
  - Partition source code into units.
  - Describe the meanings of those units and identify the functional units.
  - Create the input and output schematics of the units identified before.
  - Describe the connected units.
  - Describe the system application.
  - Create an internal structure of the system.

- Reverse engineering has been effectively applied in the following problem areas:
  - Redocumenting programs
  - ■Identifying reusable assets
  - Discovering design architectures,
  - Recovering design patterns
  - Building traceability between code and documentation
  - Finding objects in procedural programs
  - Deriving conceptual data models
  - Detecting duplications and clones
  - Cleaning up code smells
  - Aspect-oriented software development
  - Computing change impact

- Transforming binary code into source code
- Redesigning user interfaces
- Parallelizing largely sequential programs
- Translating a program to another language
- Migrating data
- Extracting business rules
- Wrapping legacy code
- Auditing security and vulnerability
- Extracting protocols of network application

- ★ A high level organizational paradigm is found to be useful while setting up a reverse engineering process, as advocated by Benedusi et al.
- ➡ The high level paradigm plays two roles:
  - Define a framework to use the available methods and tools, and
  - Allow the process to be repetitive.
- □ The paradigm, namely, Goals/Models/Tools, which partitions a process for reverse engineering into three ordered stages: Goals, Models, and Tools.

#### Goals:

- # Analyses are performed to identify the information needs of the process and the abstractions to be created by the process.
- ➡ The team setting up the process first acquires a good understanding of the forward engineering activities and the environment where the products of the reverse engineering process will be used.
- - The information to be generated.
  - The formalisms to be used to represent the information

#### **Models:**

- **♯** Representation models include information required for the generation of abstractions.
- **#** Activities in this phase are:
  - Identify the kinds of documents to be generated.
  - To produce those documents, identify the information and their relations to be derived from source code.
  - Define the models to be used to represent the information and their relationships extracted from source code.
  - To produce the desired documents from those models, define the abstraction algorithm for reverse engineering.

#### Tools:

- □ In this phase, tools needed for reverse engineering are identified, acquired, and/or developed in-house.
- **#** Those tools are grouped into two categories:
  - Tools to extract information and generate program representations according to the identified models.
  - Tools to extract information and produce the required documents.
    - Extraction tools generally work on source code to reconstruct design documents.
- ➡ Therefore, those tools are ineffective in producing inputs for an abstraction process aiming to produce high-level design documents.

hank Mou!