# Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

**Brian Russin** 



# Module 6F Parametric Surfaces



#### Parametric Curved Surfaces

- Can extend treatment of parametric cubic curves to biparametric cubic surface patches
  - Foley and van Dam call them parametric bicubic surfaces
  - A point on a surface patch is given by a biparametric function
    - A set of basis functions is used for each parameter
  - Two sets of orthogonal curves define a surface
- Bicubic Bezier patch is defined as:

$$p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} B_i(u)B_j(v)p_{ij}$$

- p<sub>ij</sub> is an array of 16 control points 12 boundary/edge and 4 interior
- B<sub>i</sub>(u) and B<sub>j</sub>(v) are basis functions





## Bezier Surface Patches (cont.)

- Properties of the Bicubic Bezier patch
  - Bezier patch goes through the 4 corner points p<sub>0,0</sub>, p<sub>n,0</sub>, p<sub>0,n</sub>, p<sub>n,n</sub>
  - Each boundary is described by a cubic Bezier curve formed by the control points along that boundary
  - Patch lies within the convex hull of its control points
  - Invariant under affine transformation
    - Transforming control points and then generating points on the patch is equivalent to generating points on the path and transforming them
- See Figure 17.21 (13.18 in 3rd Edition) for example of moving a control point
- Normal vectors found by taking cross product of the derivatives with respect to u and v

$$\frac{\delta p(u,v)}{\delta u} = m \sum_{j=0}^{n} \sum_{i=0}^{m-1} B_i^{m-1}(u) B_j^n(v) \Big[ p_{i+1,j} - p_{i,j} \Big] \qquad \qquad \frac{\delta p(u,v)}{\delta v} = n \sum_{i=0}^{m} \sum_{j=0}^{n-1} B_i^m(u) B_j^{n-1}(v) \Big[ p_{i,j+1} - p_{i,j} \Big]$$

$$n(u, v) = \frac{\delta p(u, v)}{\delta u} \times \frac{\delta p(u, v)}{\delta v}$$
 (Not unit length)

Normals at the corner points can calculated from the cross product of tangent vectors at the vertex:  $a = (p_{01} - p_{00}), b = (p_{10} - p_{00}) n = a \times b$ 



### Joining Bezier Surface Patches

- Often want to "stitch" together several Bezier surfaces to form a more complex, composite surface
  - As with curves, need to apply some continuity conditions
- For positional continuity (G<sub>0</sub>) along the "right" boundary
  - $a_{3j} = b_{0j}$ 
    - 2 patches must have a common boundary edge control polygon:
      - $a_{30} = b_{00}$ ,  $a_{31} = b_{01}$ ,  $a_{32} = b_{02}$ , and,  $a_{33} = b_{03}$
- For G¹ continuity the four pairs of control polyhedra edges that straddle the boundary must be collinear
  - To produce same tangent vector directions
  - For C¹ continuity must have same ratio between segment lengths
    - See Figures 17.24 (13.25 in 3rd Edition)
    - C¹ continuity is generally required for texture mapping continuity
- When developing successive composite surface patches, this **fixes** several of the control points in the new patch

