Министерство образования и науки РФ Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчёт по лабораторной работе №1 по дисциплине «Вычислительная математика»

Вариант №15

Выполнил

Руководитель

Воскобойников С.П.

Оглавление

Оглавление	2
Эписание работы	
1. Постановка задачи:	
2. Текст программы	
3. Результаты работы программы	
4. Выводы по результатам	

Описание работы

1. Постановка задачи:

Для $2 \le x \le 3$ с шагом h = 0.1 вычислить значения функции f(x) с использованием программы QUANC8, где $f(x) = \int_0^x \frac{1-\cos(t)}{t} dt$. По полученным точкам построить сплайн-функцию и полином Лагранжа 10-й степени. В точках $x_k = 2.05 + 0.1k$ для k = 0,1,...,9 сравнить значения сплайнфункции и полинома с точным значением f(x) (вычислить интеграл по QUANC8 с высокой точностью).

2. Текст программы

```
#include <math.h>
#include <stdio.h>
#include "cmath.h"
// SPLINE values
#define ndim 11
double x[ndim], y[ndim], bspl[ndim], cspl[ndim], dspl[ndim], u[ndim], fspline[ndim];
// Lagrange values
double temp[ndim];
// Total comparison values
double quancArr[ndim], splineArr[ndim], lagrangeArr[ndim], splineDiff, lagrangeDiff;
double fquanc(double t) // integrand (fun)
  double temp;
  if (t == 0.0) temp = 0.0;
  if (t != 0.0) temp = (1 - cos(t)) / t;
  return (temp);
void quancer(double a, double b, double bx, double step) // QUANC8 function for interval
  double result, errest, posn;
  int nfe, flag;
  double epsrel = 1.0e-10; // relative epsilon
  double epsabs = 0.0; // absolute epsilon
  int i = 0;
  while(b < bx + step)</pre>
    quanc8(fquanc, a, b, epsabs, epsrel, &result, &errest, &nfe, &posn, &flag);
    x[i] = b;
    y[i] = result;
    b += step;
    i++;
  }
void splinerXk(double n, double final, double step) // U array creation for SPLINE
  int i = 0;
  while (n < final + step)</pre>
   u[i] = n;
    n += step;
    i++;
```

```
}
void spliner() // SPLINE function for interval, uses QUANC8 calculations
{
 int last, flagspline;
 spline(ndim, 1, 1, 1, 1, x, y, bspl, cspl, dspl, &flagspline);
 for (int i = 0; i < ndim; ++i)</pre>
   fspline[i] = seval(ndim, u[i], x, y, bspl, cspl, dspl, &last);
 }
}
double lagranger(double xlag) // Lagrange function for interval, uses QUANC8 calculations
{
 double resultlag = 0;
 double numer[ndim], denom[ndim];
 for (int i = 0; i < ndim; i++)</pre>
   for (int j = 0; j < ndim; j++)
    if (i != j)
    {
      numer[i] *= xlag - x[j];
      denom[i] *= x[i] - x[j];
   if (denom[i] != 0)
    resultlag += (numer[i] / denom[i]) * y[i];;
   }
 }
 return resultlag;
}
void totalComp(double a, double b, double bx, double step, double bp, double bxp, double
stepp) // the overall comparison
 printf("-----\n");
                                                  \n", b, bx);
              -----\n");
 printf(" | X | QUANC8 |\n");
 printf("-----\n");
 quancer(a, b, bx, step);
 for (int i = 0; i < ndim; i++)</pre>
   quancArr[i] = y[i];
   printf("|%17.2f
                          |%22.9f |\n", x[i], quancArr[i]);
 splinerXk(2.05, 2.95, 0.1);
 spliner();
 for (int z = 0; z < ndim - 1; z++)
   temp[z] = lagranger(u[z]);
 quancer(0, bp, bxp, stepp);
 printf("-----\n");
               %.2f <= x <= %.2f
 printf("|
                                                        \n", 2.05,
2.95);
 printf("-----
                                              ----\n");
 printf("| X | QUANC8 | SPLINE | Lagrange |\n");
 printf("----\n");
 for (int i = 0; i < ndim - 1; i++)</pre>
   quancArr[i] = y[i];
   splineArr[i] = fspline[i];
```

```
lagrangeArr[i] = temp[i];
printf("|%7.2f |%13.9f |%13.9f |%14.9f |\n", u[i], quancArr[i],
splineArr[i], lagrangeArr[i]);
 }
 printf("-----\n");
 printf("| X | QUANC8 | Q8 - S | Q8 - Lgr |\n");
printf("----\n");
 for (int i = 0; i < ndim - 1; i++)</pre>
   splineDiff = fabs(quancArr[i] - splineArr[i]);
   lagrangeDiff = fabs(quancArr[i] - lagrangeArr[i]);
printf("|%7.2f |%13.9f |%14.6e |%15.6e |\n", x[i], quancArr[i], splineDiff, lagrangeDiff);
 }
 printf("-----\n");
 printf("|
                                                      |\n");
 int main(void)
 totalComp(0, 2.0, 3.0, 0.1, 2.05, 2.95, 0.1);
 return (0);
```

3. Результаты работы программы

		2 00	<= ×	<= 3.00			,
 			x				
 		X		<u>:</u>	Qા	JANC8 	
		2.00		. !		47382017	
		2.10		į	0.91 n 90	18641022 70598426	
		2.20 2.30		i	1.06	52949170	
		2.40 2.50 2.60				35392785 07635200	H
		2.60			1.25	97635200 79390494	
2.70 2.80 2.90				1.350382559			
2.80 2.90					1.420346692 1.489031078		
3.00						1.556198168	
		2.05	<= x	<= 2.95			:
X	:	QUANC8	;	SPLINE	:	Lagrange	:
 2.05	:	0.882905024	:	0.887531900	:	0.882905024	
2.15 2.25		0.954551576 1.026743539		0.953311666 1.027076246	- 1	0.954551576 1.026743539	
2.35	÷	1.099177919		1.099086914		1.099177919	
2.45		1.171557224		1.171588421	1	1.171557224	
2.55 2.65		1.243591243 1.314998759		1.243557319 1.315103093		1.243591243 1.314998759	
2.75	- 1	1.385509175	- 1	1.385125574		1.385509175	
2.85	i	1.454864050		1.456293907	i	1.454864050	
 2.95		1.522818539	- 1	1.517482479		1.522818539	i i
X	:	QUANC8	:	Q8 - S	:	Q8 – Lgr	:
2.05		0.882905024	- 1	4.626876e-03	- 1	7.438494e-15	
2.15		0.954551576		1.239910e-03	- !	1.554312e-15	
2.25 2.35	1	1.026743539 1.099177919	- 1	3.327071e-04 9.100454e-05	- 1	2.220446e-16 4.440892e-16	
2.45		1.171557224	- 1	3.119699e-05	- 1	4.440892e-16	
2.55	1	1.243591243	- 1	3.392424e-05	- 1	2.220446e-16	
2.65		1.314998759	· !	1.043337e-04		6.661338e-16	
2.75 2.85	i	1.385509175 1.454864050		3.836008e-04 1.429857e-03		2.220446e-16 8.881784e-16	į
2.95	i	1.522818539	i	5.336060e-03		6.439294e-15	
							:

4. Выводы по результатам

По результатам, полученным в ходе работы программы, мы видим, что сплайн-функция и полином Лагранжа описывают функцию практически одинаково, однако вторая аппроксимация оказалась точнее.