MSBA 7004 Operations Analytics

Class 2-1: Process Flow Analysis (I)
Capacity Rate, Flow Time, Bottleneck
2024

Assessment

Individual assignments	30%
Group assignment	10%
In-Class Participation + Attendance	10%
Final Exam	50%
Total	100%

- Objectives:
 - 1. Develop an Inventory policy for a simulation game (group assignment part 1)
 - 2. Participate in a simulation game (8th lecture)
 - 3. Reflect on the outcomes and effectiveness of your strategy (group assignment part 2)
- Group formation: 4-5 students
- Deliverables:
 - 1. Submit your strategy (inventory policy) at the beginning of the 8th lecture.
 - 2. After the game, submit a reflection analyzing your group's performance.
- Peer evaluation form

Assessment

Individual assignments	30%
Group assignment	10%
In-Class Participation + Attendance	10%
Final Exam	50%
Total	100%

- Take attendance (>=70% attendance rate = 5% final grade)
- In-Class Participation (5% = 2.5% (first half) + 2.5% (second half))
 - <u>In-class practice problems will count. If you are able to submit all the in-class practice problems, you already get 70%*2.5%. For the rest 30%, you need to participate more during class.</u>
 - If you participate (ask or answer questions) during the class, I will distribute you a sticky note.
 Please write down your name and UID and return it to me. If I forget to distribute the note, please ask for it during the break.
 - If you forget to do this, please send TA (cc me) an email (including what you asked or answered) at the end of every class (no later than 10:30 pm of the day).

Definition: Arrival Rate

Arrival Rate

- The number of flow units (customers) that arrive in a unit of time
- unit: # of customers/ unit time, e.g., 2 orders per hour
- If Arrival Rate ≥ Capacity,
 then the process cannot handle all the jobs, and hence the manager needs to find ways to increase capacity
 - Primary reason we see queues (waiting)
 - Long waiting lines everywhere HKQU

Match supply and demand

Bottleneck Characteristics

- The bottleneck is fully utilized while other resources are not utilized
 - Always working (100% of the available time)
- Shortening tasks of non-bottleneck resources decreases flow time but does not affect capacity rate
 - Reducing flow time improves response time

Processes may be unbalanced

 When the next stage is busy, the order cannot be sent to the next stage after finishing the current stage, unless an inventory buffer is introduced

Another example

More Bottleneck Characteristics

- The bottleneck is fully utilized while other resources are not utilized
- Shortening tasks of non-bottleneck resources decreases flow time but does not affect capacity rate
 - Reducing flow time improves response time
- If a buffer is provided at some upstream stage to the bottleneck, inventory may build up at the buffer
- Inventory will not build up at the (immediately) downstream stages to the bottleneck even if buffers are provided

Summary of Bottleneck Characteristics

- Increasing capacity rate of bottleneck resource(s) increases process capacity rate only when the bottleneck is unique
 - With multiple bottlenecks (same capacity rate), we need to increase capacity rate for all of them to increase process capacity rate
- Two ways of increasing capacity rate of bottleneck resources:
 - 1. Increase number of bottlenecks' resources
 - 2. Reduce unit load of bottlenecks' task
- Reducing unit load on a non-bottleneck resource reduces flow time but does not affect cycle time (or capacity rate)

Process Analysis

- Improving a process
 - Throughput (Capacity)
 - Bottleneck Analysis
 - Levers for Improvement

- Flow Time (Responsiveness)
 - Critical Path Analysis
 - Improvement Levers

Process Performance Characteristics: Capacity Rate and Flow Time

- Capacity rate: Maximum rate at which (flow) units can flow through the process
- (Theoretical) Flow time (or Throughput time): Total length of time a unit spends in the process
 - Shortest time (hence without waiting at all) for a flow unit to go through the entire process

- Flow time?
- Flow time: 50 mins
- How to reduce flow time?

How to reduce flow time?

Improving Flow Time

- Critical path: The longest path in the process flowchart.
- Critical activities: Activities on a critical path.
- Flow time = Activity time + Waiting (buffer)
 time
- Theoretical flow time = Value-adding flow time (on the critical path)

Levers for Reducing Flow Time

- Decrease the work content on the critical path (reducing activity time)
 - work faster (reduce flow time of critical activities)
 - move work content off the critical path
 - Rearrange the process
- Reduce waiting (buffer) time

- How to reduce flow time?
- What is the consequence?

How to increase capacity?

Mortgage Application

Resource	Unit Load	Resource Capacity			Process
	(time/job)	Unit Capacity	# of units	Total Capacity	Capacity
Shannon	5min	12/hr	1	12/hr	3/hr
Marcus	20min	3/hr	1	3/hr	3/hr
Kiki	15min	4/hr	1	4/hr	3/hr
Maxi	15min	4/hr	1	4/hr	3/hr
Karolien	15min	4/hr	1	4/hr	3/hr

The bottleneck doesn't have to be on the critical path