Linear models 2 More bells and whistles

Samuel Robinson, Ph.D.

October 15, 2020

Motivation

 I have 2+ groups of data, and I want to know whether the means are different

Motivation

- I have 2+ groups of data, and I want to know whether the means are different
- I have 2+ groups of bivariate data, and I want to know whether the relationships differ between groups

The more factor levels, the more coefficients:

 mpg is the thing you're interested in predicting

$$mpg = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(mpg, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg

$$\hat{mpg} = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(\hat{mpg}, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg

$$\hat{mpg} = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(\hat{mpg}, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
- set of 0s and 1s

$$\hat{mpg} = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(\hat{mpg}, \sigma)$

$$mpg = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(mpg, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
- set of 0s and 1s
- gears₄ = "is this data point from a 4-gear car?"

$$\hat{mpg} = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(\hat{mpg}, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
- set of 0s and 1s
- gears₄ = "is this data point from a 4-gear car?"
- $b_0 = intercept$

$$\hat{mpg} = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(\hat{mpg}, \sigma)$

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
- set of 0s and 1s
- gears₄ = "is this data point from a 4-gear car?"
- $b_0 = intercept$
- $[b_1, b_2] = \text{are coefficients}$ for gears

How do I get R to fit this model?

```
##
## Call:
## lm(formula = mpg ~ factor(gear), data = mtcars)
##
## Residuals:
      Min 1Q Median 3Q
                                   Max
## -6.7333 -3.2333 -0.9067 2.8483 9.3667
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 16.107
                            1.216 13.250 7.87e-14 ***
## factor(gear)4 8.427 1.823 4.621 7.26e-05 ***
## factor(gear)5 5.273
                            2.431 2.169 0.0384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.708 on 29 degrees of freedom
## Multiple R-squared: 0.4292, Adjusted R-squared: 0.3898
## F-statistic: 10.9 on 2 and 29 DF, p-value: 0.0002948
```

Dummy variables

```
mod1Matrix <- model.matrix(mod1) #Get model matrix (columns used to predict mpg)
head(mod1Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	factor(gear)4	factor(gear)5
##	Mazda RX4	1	1	0
##	Mazda RX4 Wag	1	1	0
##	Datsun 710	1	1	0
##	Hornet 4 Drive	1	0	0
##	Hornet Sportabout	1	0	0
##	Valiant	1	0	0
##	Duster 360	1	0	0
##	Merc 240D	1	1	0
##	Merc 230	1	1	0
##	Merc 280	1	1	0
##	Merc 280C	1	1	0
##	Merc 450SE	1	0	0
##	Merc 450SL	1	0	0
##	Merc 450SLC	1	0	0
##	Cadillac Fleetwood	1	0	0
##	Lincoln Continental	1	0	0
##	Chrysler Imperial	1	0	0
##	Fiat 128	1	1	0
##	Honda Civic	1	1	0
##	Toyota Corolla	1	1	0
##	Toyota Corona	1	0	0
##	Dodge Challenger	1	0	0
##	AMC Javelin	1	0	0
##	Camaro Z28	1	0	0
	Pontiac Firebird	1	0	0
	Fiat X1-9	1	1	0
##	Porsche 914-2	1	0	1
##	Lotus Europa	1	0	1

 Suppose that both disp and gears are important for predicting mpg?

$$m\hat{p}g = b_0 + b_1 disp$$

 $+ b_2 gears_4 + b_3 gears_5$
 $mpg \sim Normal(m\hat{p}g, \sigma)$

- Suppose that both disp and gears are important for predicting mpg?
- This is very similar to the last example, except that now we've added disp

$$mpg = b_0 + b_1 disp$$

 $+ b_2 gears_4 + b_3 gears_5$
 $mpg \sim Normal(mpg, \sigma)$

- Suppose that both disp and gears are important for predicting mpg?
- This is very similar to the last example, except that now we've added disp
- gears now changes the intercept, while disp changes the slope of all the lines

$$mpg = b_0 + b_1 disp$$

 $+ b_2 gears_4 + b_3 gears_5$
 $mpg \sim Normal(mpg, \sigma)$

$$mpg = b_0 + b_1 disp$$

 $+ b_2 gears_4 + b_3 gears_5$
 $mpg \sim Normal(mpg, \sigma)$

- Suppose that both disp and gears are important for predicting mpg?
- This is very similar to the last example, except that now we've added disp
- gears now changes the intercept, while disp changes the slope of all the lines
- Does it look like gear is very important?

How do I get R to fit this model?

```
#mpg depends on disp and gears
mod2 <- lm(mpg - disp+factor(gear), data = mtcars)
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ disp + factor(gear), data = mtcars)
##
## Residuals:
      Min
           10 Median
                                    Max
## -4.9155 -2.1892 -0.9054 1.5790 7.2498
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.411183 2.627966 11.192 7.58e-12 ***
## disp
          -0.040774 0.007601 -5.364 1.03e-05 ***
## factor(gear)4 0.138017 2.021332 0.068 0.946
## factor(gear)5 0.224712 1.976090 0.114 0.910
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.365 on 28 degrees of freedom
## Multiple R-squared: 0.7185, Adjusted R-squared: 0.6883
## F-statistic: 23.82 on 3 and 28 DF, p-value: 7.31e-08
```

Dummy variables

```
mod2Matrix <- model.matrix(mod2) #Get model matrix (columns used to predict mpg)
colnames(mod2Matrix) <- gsub('factor\\((gear\\)','gear',colnames(mod2Matrix)) #Shorten colnames
head(mod2Matrix,28) #Show first 28 rows of model matrix
```

##	(Intercept)	dien	goar/	goars
## Mazda RX4		160.0		gears 0
## Mazda RX4 Wag	_	160.0	_	0
## Datsun 710		108.0		0
## Hornet 4 Drive	_	258.0	_	0
## Hornet Sportabout	_	360.0	_	0
## Valiant		225.0		0
## Duster 360	_	360.0	-	0
## Merc 240D	1	146.7	1	0
## Merc 230	1	140.8	1	0
## Merc 280	1	167.6	1	0
## Merc 280C	1	167.6	1	0
## Merc 450SE	1	275.8	0	0
## Merc 450SL	1	275.8	0	0
## Merc 450SLC	1	275.8	0	0
## Cadillac Fleetwood	1	472.0	0	0
## Lincoln Continental	1	460.0	0	0
## Chrysler Imperial	1	440.0	0	0
## Fiat 128	1	78.7	1	0
## Honda Civic	1	75.7	1	0
## Toyota Corolla	1	71.1	1	0
## Toyota Corona	1	120.1	0	0
## Dodge Challenger	1	318.0	0	0
## AMC Javelin	1	304.0	0	0
## Camaro Z28	1	350.0	0	0
## Pontiac Firebird	1	400.0	0	0
## Fiat X1-9	1	79.0	1	0
## Porsche 914-2	1	120.3	0	1
## Lotus Europa	1	95.1	0	1

Interlude: problems with plotting raw data

Say that I've fit the following model:
 mpg ~ disp + factor(gear)

Interlude: problems with plotting raw data

- Say that I've fit the following model: mpg ~ disp + factor(gear)
- All of the plots below are using raw data, but which one is "telling the truth"?

Interlude: problems with plotting raw data

- Say that I've fit the following model: mpg ~ disp + factor(gear)
- All of the plots below are using raw data, but which one is "telling the truth"?
- Answer: c. a and b are hiding the effect of the other variable

How do I plot these model results?

Rule for plotting model results:

- If the model uses N variables, you should show all N effects simultaneously
- If this is impractical, you should use a partial effects plot

Other names for partial effects:

- counterfactual plot, predictor effect plot, leverage plot
- Try using effects or ggeffects. Requires the effects and ggeffect packages

Incorrect example, using raw data:

```
#Fit model with 5 variables (all important)
simMod <- lm(y-X1+X2+X3+X4+X5, data=pred)
#Incorrect way, using raw data
plot(y-X5, data=pred, pch=19.cex, lab=3)</pre>
```


The effect of X5 is actually **very** strong (p > 0.0001), but it doesn't look like it from this plot!

Partial effects plots - using effects

library(effects) #Load effects package
simModEff <- predictorEffects(simMod,partial.residuals=TRUE) #Calculate partial effects
#Plot partial effects
plot(simModEff,lines=list(col='red'), partial.residuals=list(pch=19,col='black',cex=0.25))

Partial effects plots - using ggpredict

```
library(ggeffects) #Load ggeffects package
simModEff2 <- ggeffect(simMod,terms=c('X5')) #Calculate partial effects for X5
plot(simModEff2) #Plot effect of X5
```


What if the slopes and intercepts differ between groups?

$$egin{aligned} \emph{mpg} &= b_0 + b_1 \emph{disp} \ &+ b_2 \emph{gears}_4 + b_3 \emph{gears}_5 \ &+ b_4 (\emph{disp} \times \emph{gears}_4) \ &+ b_5 (\emph{disp} \times \emph{gears}_5) \ \emph{mpg} &\sim \emph{Normal}(\emph{mpg}, \sigma) \end{aligned}$$

 Interactions occur when predictors are multiplied


```
egin{aligned} \hat{mpg} &= b_0 + b_1 disp \ &+ b_2 gears_4 + b_3 gears_5 \ &+ b_4 (disp 	imes gears_4) \ &+ b_5 (disp 	imes gears_5) \ mpg &\sim Normal(\hat{mpg}, \sigma) \end{aligned}
```

- Interactions occur when predictors are multiplied
- In this case, disp is multiplied by gears₄ and gears₅


```
egin{aligned} 	extbf{mpg} &= b_0 + b_1 	ext{disp} \ &+ b_2 	ext{gears}_4 + b_3 	ext{gears}_5 \ &+ b_4 	ext{(disp} 	imes 	ext{gears}_4) \ &+ b_5 	ext{(disp} 	imes 	ext{gears}_5) \end{aligned}
egin{aligned} 	ext{mpg} &\sim 	ext{Normal}(	ext{mpg}, \sigma) \end{aligned}
```

- Interactions occur when predictors are multiplied
- In this case, disp is multiplied by gears₄ and gears₅
- gears now changes the intercept and the slope of the relationship between mpg and disp

How do I get R to fit this model?

```
#mpg depends on disp interacted (*) with gears
mod2 <- lm(mpg ~ disp*factor(gear), data = mtcars)
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ disp * factor(gear), data = mtcars)
##
## Residuals:
      Min
              1Q Median 3Q
                                    Max
## -4.5986 -1.5990 -0.0143 1.6329 4.9926
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    24.515566 2.462431 9.956 2.32e-10 ***
## disp
                   -0.025770 0.007265 -3.547 0.001505 **
## factor(gear)4 15.051963 3.558043 4.230 0.000256 ***
## factor(gear)5
                   7.145380 3.535913 2.021 0.053711 .
## disp:factor(gear)4 -0.096442 0.021261 -4.536 0.000114 ***
## disp:factor(gear)5 -0.025005 0.013320 -1.877 0.071742 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.579 on 26 degrees of freedom
## Multiple R-squared: 0.8465, Adjusted R-squared: 0.817
## F-statistic: 28.67 on 5 and 26 DF, p-value: 8.452e-10
```

Beware of fitting too many interactions, or else the *Bilbo effect* occurs!

Dummy variables

```
mod2Matrix <- model.matrix(mod2) #Get model matrix (columns used to predict mpg)
colnames(mod2Matrix) <- gsub('factor\\(gear\)', 'gear', colnames(mod2Matrix)) #Shorten colnames
head(mod2Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	disp	gear4	gear5	disp:gear4	disp:gear5
##	Mazda RX4	1	160.0	1	0	160.0	0.0
##	Mazda RX4 Wag	1	160.0	1	0	160.0	0.0
##	Datsun 710	1	108.0	1	0	108.0	0.0
##	Hornet 4 Drive	1	258.0	0	0	0.0	0.0
##	Hornet Sportabout	1	360.0	0	0	0.0	0.0
##	Valiant	1	225.0	0	0	0.0	0.0
##	Duster 360	1	360.0	0	0	0.0	0.0
##	Merc 240D	1	146.7	1	0	146.7	0.0
##	Merc 230	1	140.8	1	0	140.8	0.0
##	Merc 280	1	167.6	1	0	167.6	0.0
	Merc 280C		167.6	1	0	167.6	0.0
##	Merc 450SE	1	275.8	0	0	0.0	0.0
##	Merc 450SL	1	275.8	0	0	0.0	0.0
	Merc 450SLC	_	275.8	0	0	0.0	0.0
##	Cadillac Fleetwood	1	472.0	0	0	0.0	0.0
##	Lincoln Continental		460.0	0	0	0.0	0.0
	Chrysler Imperial	1	440.0	0	0	0.0	0.0
##	Fiat 128	1	78.7	1	0	78.7	0.0
	Honda Civic	1	75.7	1	0	75.7	0.0
	Toyota Corolla	1	71.1	1	0	71.1	0.0
##	Toyota Corona	1	120.1	0	0	0.0	0.0
	Dodge Challenger	_	318.0	0	0	0.0	0.0
	AMC Javelin		304.0	0	0	0.0	0.0
	Camaro Z28	_	350.0	0	0	0.0	0.0
	Pontiac Firebird	1	400.0	0	0	0.0	0.0
	Fiat X1-9	1	79.0	1	0	79.0	0.0
##	Porsche 914-2	1	120.3	0	1	0.0	120.3
##	Lotus Europa	1	95.1	0	1	0.0	95.1

A challenger approaches!

- Since you're all bat folks, here's some bat data!
 - batDat.csv
- Data: 100 bat weights from 2 cities, recorded along with sex and age
- How do these variables affect bat weight?
 - Think about how these variables might be related to weight using your brain
 - Fit a model using 1m
 - Make some plots, using effects or ggeffects