MA 102 (Mathematics II) Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 6 February 22, 2016

Constrained extrema, implicit derivative, vector fields, arclength

- (1) Find the extrema of the function $f(x,y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.
- (2) Find a point on the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ that is closest to (0,0,0).
- (3) Find the maximum and minimum of f(x,y) = 5x 3y subject to the constraint

$$x^2 + y^2 = 136.$$

- (4) Find the global maximum (also called absolute maximum) of f(x,y) := xy on the unit disk $x^2 + y^2 \le 1$.
- (5) Assume that among all rectangular boxes with fixed surface area of 10 square meters there is a box of largest possible volume. Find the dimensions of the optimum box.
- (6) Consider the equation $e^{2x-y} + \cos(x^2 + xy) 2 2y = 0$ for $(x, y) \in \mathbb{R}^2$. Can the solutions be written as $y = \phi(x)$ and $x = \psi(y)$ in a neighbourhood of 0? If so, compute the derivatives $\phi'(0)$ and $\psi'(0)$.
- (7) Show that around the point (0,1,1), the equation $xy z \log y + e^{xz} = 1$ can be solved locally as y = f(x,z) but cannot be solved locally as z = g(x,y). Find $f_x(0,1)$ and $f_z(0,1)$.
- (8) Let S be a surface given by $x^3 + 3y^2 + 8xz^2 3z^3y 1 = 0$. Find all points $(x_0, y_0, z_0) \in \mathbb{R}^3$ such that S is represented as a graph of a differentiable function z = f(x, y) in a neighbourhood of (x_0, y_0, z_0) .
- (9) Show that each of the following functions $F: \mathbb{R}^2 \to \mathbb{R}^2$ is locally invertible at (0,0) and find the derivative of the inverse function at $(u_0, v_0) := F(0,0)$.
 - (a) $F(x,y) := (x + x^2 + e^{x^2y^2}, -x + y + \sin(xy)),$ (b) $F(x,y) := (e^{x+y}, e^{x-y}).$
- (10) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $F(x,y) := (e^x \cos(y), e^x \sin(y))$.
 - (a) Show that the Inverse Function Theorem is applicable to F at each point in \mathbb{R}^2 .
 - (b) Show that F is not injective on \mathbb{R}^2 . Does this contradict (a)? Justify your answer.
- (11) Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be C^1 scalar fields. Show that (a) $\nabla (fg) = f\nabla g + g\nabla f$, (b) $\nabla f^m = mf^{m-1}\nabla f$ and (c) $\nabla (f/g) = (g\nabla f f\nabla g)/g^2$ whenever $g \neq 0$.
- (12) Let F and G be vector fields in \mathbb{R}^3 and $f: \mathbb{R}^3 \to \mathbb{R}$ be a C^1 scalar field. Then show that:
 - (a) $\operatorname{div}(F+G) = \operatorname{div} F + \operatorname{div} G$ and $\operatorname{curl}(F+G) = \operatorname{curl} F + \operatorname{curl} G$,
 - (b) div $(fG) = f \operatorname{div} G + G \bullet \nabla f$ and curl $(fG) = f \operatorname{curl} G + \nabla f \times G$,
 - (c) div $(F \times G) = G \bullet \text{curl } F F \bullet \text{curl } G$ and curl curl $F = \nabla \text{div } F \nabla^2 F$.

- (13) Let $\mathbf{r} = (x, y, z)$ and $r = ||\mathbf{r}|| = \sqrt{x^2 + y^2 + z^2}$. Then show that
 - (a) $\nabla r = \frac{\mathbf{r}}{r}$ and $\nabla(\frac{1}{r}) = \frac{-\mathbf{r}}{r^3}$ for $r \neq 0$. (b) $\operatorname{div}(r^m \mathbf{r}) = (m+3)r^m$

 - (c) curl $(r^m \mathbf{r}) = 0$ and div $\left(\nabla \frac{1}{r}\right) = 0$ for $r \neq 0$.
- (14) Find the arclength of parabolic arc $\gamma(t) := (t, t^2)$ for $t \in [0, 4]$.
- (15) Find the velocity, the speed and the arclength of the cycloid $\gamma(t) := (t \sin t, 1 \cos t)$ for $t \in [0, 2\pi]$.
- (16) A billiard ball on a square table follows the path $\gamma:[-1,1]\to\mathbb{R}^3$ given by $\gamma(t):=$ (|t|, |t-1/2|, 0). Find the distance travelled by the ball.
- (17) Find the arclength of the path $\gamma(t) := (t, t \sin t, t \cos t)$ between (0, 0, 0) and $(\pi, 0, -\pi)$.

**** End ****