试题

一、计算分析题(本大题共3小题,本大题共15分)

某 32 位模型计算机上,有一个 C 语言编写的程序片段如下:

int i,a[10],b[10];

for (i=0;i<=10;i++)

if (b[i] < a[i]) b[i] = a[i] + 20;

假设初始 a[5]= 0x7FFF FFFF, b[5]= 0xFFFF FFFF, 则:

- 1. (本题 4 分) 执行完上述 for 循环语句后, b[5]的结果是多少?请以 16 进制表示, 写出推导或计算过程。
- 2. (本题 4 分) if (b[i] < a[i]) 这条判断语句,在计算机中是通过 b[i] a[i]来实现的;那么执行 b[5] a[5]后,标志位 CF、OF、ZF、SF 的值是多少?
- 3. (本题 7 分) 假设数组 a 和 b 的数据类型是一种 16 位长的自定义浮点数 (高 6 位是含阶符在内的阶码,低 10 位是含数符在内的尾数,尾数和阶码都由补码表示),若 a[0]=-15.25, b[0]= 5/32。
 - (1)(2分)请写出 a[0]和 b[0]在内存中的规格化浮点数编码(以 16 进制表示);
- (2)(5分)计算 a[0]+b[0]的浮点数[a[0]+b[0]]_署(采用 0 舍 1 入法,结果以 16 进制表示,列出计算步骤)。
- 二、存储器设计题(本大题共3小题,本大题共23分)

假设某 8 位模型计算机的地址总线为 24 位,存储器按字节编址,CPU 有存储器/IO 访问信号 M/\overline{IO} (=0 访问 I/O 设备,=1 访问主存)、读/写信号 R/\overline{W} (=0 写操作,=1 读操作)信号,则作答以下试题:

- 1. (本题 14 分) 从地址 100000H 开始,设计一个 2M 空间的主存储器,可以使用的芯片是:若干 1M×4 位的 SRAM 存储器芯片、一个 2:4 译码器芯片(带低电平使能端EN、译码输出为低电平)、与非门和或非门,请分析所需芯片个数、2M 空间的地址范围,画出与 CPU 的连接图。
- 2. (本题 9 分) 假设为该 8 位模型计算机配备了一个 4KB 的 8 路组相联的指令 Cache, 每行 16 个字。
- (1)(6分)请写出对主存地址字段的划分(包括各字段的名称及位数);
- (2)(3分)当 CPU 访问主存地址 104184H 时,请说明该主存地址映射到 Cache 的哪一组,并写出计算过程。

三、指令系统设计(20分):

1、 (本题 12 分)设某 8 位模型计算机指令格式如下:

OP(4位)	MOD(2位)	RD (2位)					
ADDR/ DATA / DISP							

其中,RD 为源/目的寄存器号,MOD 为寻址方式码字段,指令第二字为地址、数据或偏移量;源操作数由 MOD 字段和指令第二字共同确定。除了 HALT 指令为单字指令外,其他指令均为双字指令;操作码字段解释见表 1-1, MOD 字段解释见表 1-2,RD 字段解释见表 1-3,变址寄存器隐含为 R2。

表 1-1

		₹ 1-1	
指令助记	操作码	指令助记	操作码
符		符	
MOV	0000	SBB	0100
ADD	0001	JMP	1000
SUB	0010	•••••	•••••
AND	0011	HALT	1111

表 1-2

77 = =				
MOD	寻址方式			
00	立即寻址			
01	直接寻址			
10	变址寻址(SI)			
11	间接寻址			

表 1-3

77 = 0					
RD	寄存器				
00	R0				
01	R1				
10	R2(SI)				
11	R3				

- ① 指令 SUB R3, ((80H)) 的功能: R3 = ((80H))-R3; 指令使用间接寻址,则该指令机器码第一字节为___(1)__H,第二字节为___(2)___H。
- ② 内存地址的部分单元内容如表 2, 若(PC) = 34H, 变址寄存器(SI) = 20H, 则此时启动程序执行,则程序执行的前三条指令如表 3,请填写完整(填写到表 3 中(3)—(12)处)。

表 2

单元地址	内容	单元地址	内容	单元地址	内容
30H	80H	34H	00H	38H	34H
31H	90H	35H	1FH	39H	32H
32H	25H	36H	19H	3AH	F0H
33Н	31H	37H	10H	3ВН	20H

		表 3			
北人安日	助记符	源操作数	源操作数	执行结果	
指令序号	助に打	寻址方式	你採作 致		
1	(3)	(4)	(5)		
2	(6)	(7)	(8)		
3	(9)	(10)	(11)	(12)	

2. (本题 8 分) 若某机器指令长 16 位,指令中基本操作码 4 位,每个操作数地址码 长 4 位,采用扩展码技术:设计一个指令系统,三地址指令 14 条,两地址指令 30 条,单地址指令 20 条,零地址指令 15 条;请给出指令编码示意图。

四、控制器设计(20分):

某8位模型机系统结构如图1所示。

图 1 模型机结构框图

图中所有控制信号均为高电平有效,例如 DRin 为 1 表示允许数据从 DB 打入目的寄存器 DR, SRout 为 1 表示允许源寄存器 SR 的数据送上数据总线 DB, IDC 控制指令译码器工作。MAR 中的地址直接送地址总线 AB, 变址寄存器 SI 隐含规定为 R₃。

- 1. (本题 6 分)模型机的某条指令的指令执行流程图如图 2 所示,写出该条指令的功能和操作数的寻址方式。
- 2. (本题 8 分) 写出图 2 中标注①、②、③的 3 条微指令必须发送的微操作控制信号。
- 3. (本题 6 分)如果模型机采用微程序控制器,控存容量为 256×32 位,微程序在整个控制器中实现转移,控制字段对应的控制信号共有 21 个,判别测试字段对应的可以控制微程序的条件共 5 个,判别测试字段采用编译法。微指令采用水平型格式,后继微指令地址采用下址字段法,请为该模型机设计微指令格式。

图 2 指令执行流程图

五、IO 系统 (5分):

- 1、(1分)填空题:在主机与外设交换信息的方式中,DMA的中文名称是_(1)_。
- 2、(4分)填空题:请写出中断过程的四个阶段:(1)、(2)、(3)、(4)。

六、模型机设计(17分): 请选择以下2题中的一题作答,多做不加分。

1、(17分) 某 ARM 指令在图 4 所示的 ARM 模型机上执行过程见图 3:

图3 某AMR指令执行过程

请问:

- 1) (2分) 这条指令的功能是______
- 2) (1分) 该指令的操作数采用的寻址方式是 _______
- 3) (1分) 这是一条____。

A. 数据处理指令 B.分支跳转指令 C.单数据访存指令 D.块数据访存指令

- 4) (6分) 参考图 4 写出该指令在每个 clk 周期的控制信号。
- 5) (3分) 参考图 3 所示指令执行过程,结合图 4,画出 BX r0 指令流程图

指令码位数汇编格式	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0	功能描述
BX <c><rm></rm></c>	cond	0001	0010	1111	1111	1111	0001	rm	rm→PC

6) (4分)图 5 是 MIPS CPU 的取指令部件结构图, MIPS 采用无条件取指令策略, 而 ARM CPU 采用条件取指令策略, 请对比图 4 和图 5 简要叙述 ARM CPU 按条件取指令的过程。

图 4 ARM 模型机 CPU 结构图

图 5 MIPS CPU 取指令部件结构图

2、(17分) 一个能实现 RV32I 指令子集的多周期 RISC-V 模型机,结构如图 4 所示。

图 4 RISC-V 模型机结构图

(1)(4分)一条指令的执行过程如下,请写出该指令的助记符和功能。

M0: IMem[PC] \rightarrow IR, PC \rightarrow PC0, PC+4 \rightarrow PC

M1: Reg[rs1] \rightarrow A, Reg[rs2] \rightarrow B

M2: $A+imm32 \rightarrow F$

M3: $B \rightarrow DMem[F]$

- (2)(3分)仿照题(1),请写出指令 sub rd,rs1,rs2 指令的执行阶段的操作。
- (3)(6分)下面是一段 C语言程序,宿主机是 32位:

int i, a[];

for(i=0;i<10;i++){

if(a[i]<60) return i;

}

return -1;

对应的汇编程序如下,假设返回值存于 a0 寄存器,请完成下面的填空:

lui t0, 0x100 #t0 保存数组 a 在主存的首地址

addi t1, x0, 10 #t1=10

add t2, x0, x0 #t2 相当于变量 i

addi a0, x0, -1 #返回值 a0=-1

L: slli t3, t2, 2 #i*4

add t4, t0, t3 #计算 a[i]的地址

lw t5, 0(t4) #取 a[i]
slti t6, t5, 60 #比较, <60 则置数

①
②
bne t2, t1 L
③

exit:.....

(4)(4分)如果 rs2_imm_s 信号发生了恒 0 故障,下面哪些指令能正常执行:

A. sub B. addi C. lw D. sw E. beq F. jal G. lui