Вопрос по выбору

Спектральный анализ электрических сигналов

Цель работы: Изучение спектрального состава периодических электрических сигналов.

В работе используются: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

1 Разложение сигнала в спектр:

1) Переодические сигналы

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$

2) Не переодические сигналы

$$\begin{split} f(t) &= \sum_{n \to -\infty}^{+\infty} \frac{1}{T} \left[\int\limits_{t_1}^{t_2} f(t) e^{-in\Omega_1 t} dt \right] e^{in\Omega_1 t} = \\ &= \frac{1}{2\pi} \sum_{n \to -\infty}^{+\infty} \frac{1}{T} \left[\int\limits_{t_1}^{t_2} f(t) e^{-in\Omega_1 t} dt \right] e^{in\Omega_1 t} \cdot \Omega_1. \end{split}$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{t_1}^{t_2} f(t) e^{-i\Omega t} dt \right] e^{i\Omega t} d\Omega.$$

Внутренний интеграл обозначим

$$\hat{F}(\Omega) = \int_{t_1}^{t_2} f(t)e^{-i\Omega t}dt.$$

2 Исследование спектра периодической последовательности прямоугольных импульсов

Установка:

Основные данные:

fповт, Гц t, с 1000 (т, Гц

0,000025 5000

Следующим образом меняется спеткр при увеличении вдвое t и при увеличении вдвое f (второй параметр не изменялся)

Измерения зависимости спектра длительности импульса dv(t) при увеличении t от 25 до 100 мкс.

dv, кГц	t, mkC	
20,97	7	50
15,26	5	70
13,66	õ	80
11,04	4	100
9,25	5	120
7,03	3	140
5,04	4	180

График зависимости dv(1/t):

Исследование спектра периодической 3 последовательности цугов

Установка:

fповт, Гц t, мкс	т, Гц	v0, кГц	
1000	10	50	25
1000	25	100	25
1000	100		25

Следующим образом меняется спектр при изменении t и m

Данные:

dv	f, кГц	t = 50 мкC
	1	1
	2,02	2
	3,04	3
	4,01	4
	5,02	5
	6,03	6

График по полученным данным:

f, кГц относительно параметра "dv"

4 Исследование спектра гармонически сигналов, модулированных по амплитуде.

Установка:

Данные:

Amin/Amax	m	
0,5	1,03	
0,375	0,76	
0,0625	0,085	
0,1428571429	0,3257142857	
0,2857142857	0,5614285714	
0,3571428571	0,7442857143	
0,4285714286	0,8871428571	
0,4571428571	0,9442857143	
График по данным:		

Amin/Amax и m

Из данных графика $\kappa = (0.53 \pm 0.003)$