2024年全国青少年信息学奥林匹克联赛

赛前模拟试卷

出题人: 606DGWY

题目名	flower	deepseek	triangle	name	building	game
题目类 型	传统型	传统型	传统型	传统型	传统型	传统型
目录	flower	deepseek	triangle	name	building	game.in
可执行 文件名	flower	deepseek	triangle	name	building	game.in
输入文 件名	flower.in	deepseek.in	triangle.in	name.in	building.in	game.in
输出文 件名	flower.out	deepseek.out	triangle.out	name.out	building.out	game.in
每个测 试点时 限	2.5秒	0.5秒	0.8秒	3.0秒	1.0秒	1.0秒
内存限 制	32 MB	512 MB	512 MB	600 MB	32MB	512 MB
测试点 数目	25	10	10	10	100	8
测试点 是否等 分	是	否 (捆绑)	是	是	是	否

提交源程序文件名

对于C++语 言	flower.cpp	deepseek.cpp	triangle.cpp	name.cpp	building.cpp	game.cpp
-------------	------------	--------------	--------------	----------	--------------	----------

编译选项

对于C++语言	-O2 - std = c + +14
---------	---------------------

注意事项与提醒 (请选手务必仔细阅读)

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 程序结束后返回值必须为 0.
- 3. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 4. 若无特殊说明, 结果比较方式为**忽略行末空格、文末回车后的全文比较**。
- 5. 程序可使用的栈空间大小与该题内存空间限制一致。
- 6. 每道题目所提交的代码文件大小限制为 $100 \mathrm{KB}$ 。
- 7. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。

- . 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。
 - . 使用 std:deque 等 STL 容器时,请注意其内存空间消耗。
- . 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外**不允许在程序中 手动开启其他编译选项**,一经发现,本题成绩以分处理。

花与剑的轮舞(flower)

题目背景

『水国枫丹庭, 胎海水龙吟。』

罪人舞步旋,宣布无人罪。放下这一切,500年过了,开始自己的一生吧。

庆典开始了,你仿照着海灯节的方式重排好了摊位。这可真是太难了,不过无所谓,对于工作人员的后勤保障还是比较好的。毕竟,后勤部的人聪明绝顶,使用两桶水创造出了无限水。

总之呢,许多摊贩的供水均依赖于此。包括但不限于一个"枫damn"专卖店。虽然不知道这是一个什么奇怪的山寨牌子,但是不影响其卖得非常好。他能卖出相对廉价的"枫damn",并且有一个活动。

题目描述

你可以先买 n_0 瓶 "枫damn",然后工作人员会随机给定一个活动常数 m_0 。

当你手上有没喝的"枫damn"时,你会喝掉一瓶"枫damn",并创造出一个装"枫damn"的空瓶。

当你手上没有没喝的"枫damn"了之后,你会去用空瓶子换"枫damn"。每 m_0 个空瓶子就可以换一瓶满的"枫damn"。你会一直换直到换完,保留没用来换的空瓶,然后接着喝。一直喝下去。

不过,你现在想知道这个活动到底是亏还是赚。你决定通过这样的方式来衡量:求出 $\forall n_0 \in [1,n], m_0 \in [2,m]$ 时你能喝到的瓶数的总和。显然这个数越大,你就是越有可能赚的。

所以,你就是需要求上面的问题的答案模 10^9+9 。

形式化:

给定函数:

\$

f(n,m,k)=

\begin{cases}

1+f(n-1,m+1,k) &\text{if }n>0 \\

 $f(\floor\frac{m}{k}\rfloor,m\bmod\ k,k) &\text{text{if }}n=0\And\ m\ge\ k\\$

0 &\text{otherwise}

\end{cases}

\$

求 $(\sum_{n_0=1}^n \sum_{m_0=2}^m f(n_0,0,m_0)) \mod 10^9 + 9$ 。

输入格式

第一行两个整数 n, m。注意数据范围!

输出格式

一行一个整数, 表示答案。

输入输出样例#1

输入#1

1 2

输出#1

1

输入输出样例#2

输入#2

5 5

输出#2

6

输入#3~8

见 sample flower ex3~8.in,第 i 个输入满足 subtask i-3 的限制。

输出 #3~8

见 sample\flower\flower-ex3~8.out。

说明/提示

数据范围

总共 25 组测试点,测试点等分。对于所有的数据, $1 \leq n, m \leq 2 \times 10^{12}$ 。

Subtask	$n \le$	$m \leq$	分值
0	100	100	4
1	$2 imes 10^3$	$2 imes 10^3$	8
2	4×10^3	$4 imes 10^3$	12
3	$4 imes 10^3$	$2 imes 10^6$	16
4	$2 imes10^6$	$2 imes 10^6$	20
5	$2 imes 10^{12}$	$2 imes 10^{12}$	40

时间限制: 2.5s, 空间限制: 32MB。

deepseek(deepseek)

题目描述

给你一个一元 n 次方程 f(x) = 0, a_i 为 x^i 的系数。

有 m 次操作,每次可能修改 $a_1,a_2,a_3\ldots a_n$ 的任意一个数,还可以查询这个方程的所有正整数解。

输入格式

第一行两个整数, n, m。

第二行 n+1 个数,代表 a_0 到 a_n 。

接下来 m 行,为询问和修改操作。

对于每个询问 / 修改。

第一个数为 opt, opt = 1 代表这是修改, opt = 2 代表这是询问。

如 opt = 1,则接下来有两个数,x,y。

代表将 a_x 赋值为 y。

如 opt=2,则后面没有数,表示询问这个方程的所有正整数解。

输出格式

对于每个询问,输出两行。

第一行,此方程正整数解个数k。

第二行,输出k个数,代表所有正整数解。

输入输出样例#1

输入#1

```
2 5
2 -3 1
2
1 2 0
2
1 1 -2
2
```

输出#1

```
2
1 2
0
1
1
```

说明/提示

对于 10% 的数据, n=1.

对于另外 10% 的数据, n=2.

对于另外 10% 的数据, n=3.

对于 100% 的数据, $1 \le n \le 10$, $1 \le m \le 15$, $-10^{12} \le a_i \le 10^{12}$, $1 \le x \le n$ 。

对于剩下 0% 的数据,DeepSeek 打翻了 €€£ 的方便面,导致 xxs 们很生气,所以来看个逆天的(链接赛后公布)

第4个到第10个点捆绑,这些点总共70分,满足n=10。

其他点满足 $n \leq 3$, 每个点 10 分。

三角形战士 (triangle)

题目背景

传说在各行各业都有六边形战士,但小三(三太子???)现在还是三角形战士。

小三哪吒看多了:哪吒是中国古代神话中的著名人物,近年来在多部电影中都有精彩表现。以下是两部以哪吒为主角的电影介绍:

《哪吒之魔童降世》:

2019年7月26日上映。影片中,天地灵气孕育出混元珠,元始天尊将其炼化为灵珠和魔丸,本应是灵珠投胎的哪吒,却因申公豹使坏,被魔丸附身。魔丸转世的哪吒在陈塘关受尽百姓歧视,变得调皮捣蛋,孤独的他渴望友情却总是事与愿违。后来哪吒与敖丙在追打海妖时结识并成为朋友。天劫将至,李靖为还哪吒清白准备办生辰宴,申公豹却在宴上捣乱,告知哪吒身世,哪吒情绪失控,敖丙也在其蛊惑下企图毁掉陈塘关。最终,哪吒得知父亲愿为自己"换命"后,出手保护父母,化解了危机,也消除了与敖丙的误会。该片凭借精彩剧情、精良制作,斩获50.35亿票房。

《哪吒之魔童闹海》:

于 2025 年 1 月 29 日上映,是《哪吒之魔童降世》的续集。讲述了哪吒和敖丙在天劫之后保住了灵魂,但肉身很快会魂飞魄散,太乙真人打算用七色宝莲给二人重塑肉身,却遇到重重困难。申公豹放出被囚的四龙王,东海龙王敖光声称要让陈塘关鸡犬不留。敖丙的魂魄还被迫附身于哪吒体内,两人需要在七天内通过玉虚宫的"成仙考试"获取琼浆玉液,否则敖丙将彻底消亡,陈塘关也会被毁灭。最终,哪吒与敖丙联手龙族和众妖,揭穿了仙界阴谋,击败了无量仙翁。影片在视效上更加精益求精,上映后取得了出色的票房成绩。

他也有 $3 \\ightharpoons n$ 臂。

第一个头会告诉你每个妖怪的位置,第二个头会告诉你每只手的长度,第三个头会操控他的身体。

我是小妖怪, 逍遥又自在, 杀人不眨眼, 吃人不放盐, 一口七八个, 肚皮要撑破,茅房去拉屎, 想起忘带纸。

我乃哪吒三太子, 能降妖来会作诗, 今日到此除奸恶, 尔等妖孽快受死。

替天行道是使命, 斩妖除魔我最擅长。

---小三/哪吒。

小三也酷爱打妖怪。

"我命由我不由天", 小三自己想升仙。

题目描述

为了升级:

• 首先,小三想知道自己的面积(按三角形计算),在直角坐标系上题目会告诉你三条边,围成三角形,保证三条边互不平行。

• 其次,小三还在修炼中,既然他的形状不规则,那么每只手的长度也不一,每只手的长度为 b_i ,在一条大街上,有 n 个妖怪的位置为 a_i 。设小三在 x,小三的每只手可以打到 $x-l_i\sim x+l_i$ 的范围。小三想知道有多少个点(自己体积忽略),使得他可以每只手打死一只妖怪,乘兴而去,尽兴而归。

输入格式

(每条组成三角形的直线的解析式为 y = kx + b)。

第一行两个整数 kk_1 和 bb_1 。

第二行两个整数 kk_2 和 bb_2 。

第三行两个整数 kk_3 和 bb_3 。

- 一个整数 n, 表示有 n 只手 n 只妖怪。
- 一行 n 个整数 a_i 表示每个妖怪的位置。
- 一行 n 个整数 b_i 表示每只手的长度。

输出格式

第一行一小数表示面积,保留3位小数。

第二行一个整数,表示能打到所有妖怪的位置的总数。

输入输出样例#1

输入#1

1 2

3 4

-2 3

4

-1 0 1 2

1 2 4 5

输出#1

1.067

说明/提示

位置可为负。

样例 1 + -2, -1, 0, 1, 2, 3 能够符合要求。

对于测试点	n		性质
1	≤ 10	$-10^2 \leq a_i$, $b_i \leq 10^2$	A
2	≤ 10	$-10^2 \leq a_i$, $b_i \leq 10^2$	

对于测试点	n	a_i , b_i	性质
3	≤ 100	$-10^2 \leq a_i$, $b_i \leq 10^2$	A
4	≤ 100	$-10^2 \leq a_i$, $b_i \leq 10^2$	
5	≤ 340	$-10^{17} \leq a_i$, $b_i \leq 10^{17}$	A
$6\sim 10$	≤ 340	$-10^{17} \leq a_i$, $b_i \leq 10^{17}$	

注意 $b_i > 0$ 。

注意 $b_i > 0$ 。

注意 $b_i > 0$ 。

表格中 b_i 不为负数。

对于所有的数据: $n \leq 340$, $-10^{17} \leq a_i \leq 10^{17}$, $0 < b_i \leq 10^{17}$, kk_i , $bb_i \leq 100$, 三角形每个点的坐标在 int 范围内。

特殊性质 A, 所有的 bb_i 为 0, 也就是所有的直线解析式为正比例函数。

祝福:

哪吒作为中国传统文化中的经典形象,他的故事和语录充满了励志和鼓舞人心的力量,尤其适合激励信息竞赛中的选手们。以下是一些经典的哪吒语录及其背后的精神,希望能为你带来力量:

1. "我命由我不由天!"

- 出处:《哪吒之魔童降世》
- **寓意**: 哪吒用自己的行动证明,命运并非天注定,而是掌握在自己手中。无论外界如何定义你,只要你努力拼搏,就能改变自己的未来。
- **竞赛启示**: 在信息竞赛中,可能会遇到难题或挫折,但不要被暂时的失败打倒。你的努力和坚持,才是决定胜负的关键。

2. "若命运不公,就和他斗到底!"

- 出处:《哪吒之魔童降世》
- 寓意: 哪吒面对不公的命运,选择勇敢抗争。这种不服输的精神,正是竞赛中需要的品质。
- 竞赛启示: 竞赛中可能会遇到不公平的规则或强大的对手, 但只要你坚持到底, 就有机会逆风翻盘。

3. "我是谁,我自己说了算!"

- 出处:《哪吒之魔童降世》
- 寓意: 哪吒不被外界的偏见所束缚,勇敢做自己。这种自信和坚定,是成功的重要基石。
- 竞赛启示: 不要被他人的评价或标签所影响, 专注于自己的目标, 勇敢追求自己的梦想。

4. "不认命,就是哪吒的命!"

- 出处:《哪吒之魔童降世》
- 寓意: 哪吒用自己的行动证明,不向命运低头的人,才能真正掌握自己的命运。
- **竞赛启示**: 竞赛中可能会遇到瓶颈或困难,但只要你不认输,继续努力,就一定能突破自我,取得更好的成绩。

5. "乾坤圈,混天绫,风火轮,我全都要!"

- 出处: 传统哪吒故事
- 寓意: 哪吒拥有强大的法宝,象征着他不断追求力量和完善自我的精神。
- **竞赛启示**: 在竞赛中,掌握更多的知识和技能(就像哪吒的法宝一样),才能应对各种挑战。不断学习,提升自己,是成功的关键。

6. "我哪吒,生来就是英雄!"

- 出处: 传统哪吒故事
- 寓意: 哪吒从小就有英雄气概, 敢于承担责任, 保护他人。

加油! 愿你在竞赛中像哪吒一样,勇敢无畏,所向披靡!

• **竞赛启示**: 竞赛不仅是个人能力的比拼,更是团队合作和责任感的体现。勇敢担当,才能成为真正的"英雄"。

总结:

哪吒的故事和语录传递了一种**不屈服于命运、勇敢拼搏、自信坚定**的精神,这种精神正是信息竞赛中需要的。无论面对多么强大的对手或困难,只要你相信自己,努力奋斗,就一定能创造属于自己的奇迹!

题目名称 (name)

时间限制

3.00s

内存限制

512/768.00MB

Special Judge

输入: name.in 输出: name.out 程序: name.cpp

题目背景

题目背景

题目描述

给定一个长度为 n 的数列 $a_1, a_2, a_3, \ldots, a_n$ 。

令 $k=(\sum_{i=1}^n\sum_{j=i+1}^n\mathrm{lcm}(a_i,a_j))$ mod 3499999,求一个 S 使得 k+1|S,S 的数位累加和最小。

输入格式

输入包含两行,第一行是一个整数 n 表示输入的数据个数,第二行包含 n 个整数,用空格分开。

输出格式

输出最后的答案 (S) 。

输入输出样例#1

输入#1

3 1 1 4

输出#1

1

输入输出样例 #2

输入#2

输出#2

3

说明/提示

样例解释:

对于第一个样例,它的 $k=1(\mathrm{lcm}(a_1,a_2))+4(\mathrm{lcm}(a_1,a_3))+4(\mathrm{lcm}(a_2,a_3))=9$,可以证明 10 的 1 倍是各个数位之和最小的解。

对于第二个样例,它的 $k=5(\operatorname{lcm}(a_1,a_2))+20(\operatorname{lcm}(a_1,a_3))+4(\operatorname{lcm}(a_2,a_3))=29$,可以证明 30 的 1 倍是各个数位之和最小的解。

• $1 \le N \le 200000$

• $1 \le a_i \le 1000000$

$n \leq$	$a_i \leq$	特殊性质	分数
100	100		20
20000			10
		А	10
		В	10
		С	10

• 特殊性质A: 保证 $a_i = i$

• 特殊性质B: 保证 $\displaystyle \sum_{i=1}^{n-1} a_i < a_n$

• 特殊性质C: 保证 $\prod_{i=1}^{\lfloor rac{n}{2}
floor} a_i < \prod_{i=\lfloor rac{n}{2}
floor+1}^n a_i$

温馨提示:如果你无法保证自己会输出正解,但是可以保证自己会做出正确的 k,你也可以输出 k 来获取这个测试点 70% 的分。

checker.cpp:

```
#include "testlib.h"
int main(int argc, char* argv[]) {
    registerTestlibCmd(argc, argv);
    int a=ouf.readInt(),ans1=ans.readInt(),ans2=ans.readInt();
    if(a==ans2) quitf(_ok, "The answer is correct. answer is %d",ans2);
    else if(a==ans1) quitp(0.7,"Partially Correct get %d percent", 70);
    else quitf(_wa, "The answer is wrong: expected k = %d, ans = %d, found = %d",
ans1, ans2, a);
    return 0;
}
```

建筑 (building)

题目描述

在 xzy 玩 Minecraft 时,服务器的建筑犇却给他了一个任务:用现在服务器中的 n 个建筑方块建造一个大小不超过 $m \times m \times m$ 的建筑(无视重力,MOJANG:我们拥有最完善的物理系统),并且为了美观,要求这个建筑的六个面看起来是相同的(其实就是三视图(前面、上面和左面)相同)。因为服务器里面的建筑方块实在是太多了,他只能把这个任务交给你。

形式化地说, 你需要找到一个 $m \times m \times m$ 的 01 数组 f, 使得

\$

\begin{matrix}

 $a_{i,j}=\bigvee\limits_{k=1}^mf_{i,j,k}\$

 $b_{i,k}=\bigvee\limits_{j=1}^mf_{i,j,k}\$

 $c_{j,k}=\bigvee\limits_{i=1}^mf_{i,j,k}\\\label{eq:c_fi}$

\end{matrix}

\$

相等并且 f 中为 1 的个数恰好等于 n。 (其中 \lor 是逻辑或)

特殊地,如果找不到这样一个 f ,请输出 -1 。

输入格式

一行两个整数 n, m,分别表示可用的方块数量,m 表示最大的搭建大小。

输出格式

存在一个 f 满足条件

一共 n 行,输出 f 中所有值为 1 的点的坐标,例如如果 $f_{i,j,k}=1$,那么输出 $i \in \mathbb{N}$ (中间用一个空格分隔)。

本题配有 Special Judge , 输出任意一组答案即可

不存在一个 f 满足条件

输出一行 -1。

输入输出样例#1

输入#1

3 2

输出#1

```
1 1 2
```

1 2 1

2 1 1

输入输出样例 #2

输入#2

7 5

输出 #2

3 3 3

3 4 3

3 2 3

4 3 3

2 3 3

3 3 4

3 3 2

说明/提示

对于 20% 的数据, $1 \leq m \leq 3$

对于 100% 的数据, $1 \leq m \leq 160, 1 \leq n \leq m^3$

新原崩绝:天明阴火F9(闪弹blue) (game.cpp)

题目背景

你是一名普通的游戏玩家,正被各种游戏的抽卡所困扰,所以你想知道你何时能得到心仪的角色。 新原崩绝:天明阴火F9(闪弹blue)=(物化弥新,原神,崩坏学院2,崩坏3,崩坏:星穹铁道,绝区零,炽焰天穹,鸣(ming)潮,明日方舟,阴阳师,火影,命运/冠位指定(Fate/Grand Order),重返未来1999,闪耀优骏少女,世界弹射物语,蔚蓝(blue)档案,碧蓝(blue)航线)

题目描述

市面上的抽卡游戏实在是太多啦,你需要进行针对性的计算,判断自己抽到心仪角色的概率。 有几种抽奖规则,分为基本规则与特殊规则。

基本规则:

- 1.抽中大奖有基本概率
- 2.设立最终大奖,每抽中一次大奖却不是最终大奖增加一点幸运值,幸运值达到上限后下一次中大奖必为最终大奖。(任意一次抽中最终大奖后清空幸运值)
- 3.在一定抽数后抽取大奖概率逐渐提升,直至100% (超过100%按100%算) ,抽中后清空抽数

输入格式

总共四行

第一行是一个正整数a和一个正实数b,表示第多少抽后开始增加概率及固定增加的概率,注意:此处可能混淆,若读入74和0.06,则第1~73抽时为基础概率,第74抽为基础概率加6%,第75抽为基础概率加12%,以此类推。

第二行是一个正实数c表示中大奖时不是最终大奖的概率

第三行是一个正实数d表示中大奖的基础概率

第四行是一个正整数e表示幸运值上限

具体为:

a b

C

d

е

输出格式

输出你抽中一次心仪角色的期望抽数,保留五位小数

说明/提示

对于所有的测试点

 $50 \le a \le 2000$

 $b \le 1$

 $c \le 1$

 $d \leq 1$

 $e \le 1$