

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Sistema de monitoreo de cultivos agrícolas

Autor: Ing. Mario Fernando Aguilar Montoya

Director:

Esp. Ing. Julian Bustamante Narvaez (TECREA SAS)

Jurados:

Dr. Ing. Javier Andrés Redolfi (UTN-FRSF) Mg. Lic. Leopoldo Zimperz (FIUBA) Esp. Ing. Felipe Calcavecchia (FIUBA)

Este trabajo fue realizado en la ciudad de Tarija, entre junio de 2022 y agosto de 2023.

Resumen

En la presente memoria se aborda el diseño e implementación de un sistema de adquisición de datos para el monitoreo de cultivos agrícolas realizado como emprendimiento personal. Este trabajo pretende ayudar al agricultor a gestionar de mejor manera sus recursos. Para su desarrollo fueron fundamentales los conocimientos adquiridos en la carrera tales como conceptos de modularización, testing de software, sistemas operativos en tiempo real, protocolos de comunicación y programación de microcontroladores.

Agradecimientos

En primer lugar a mi familia y amigos que siempre me brindan su apoyo y confianza.

A mi director por su paciencia, guía y consejo en todo momento.

A mis compañeros y maestros de la CESE, por los aportes y enseñanzas que me dieron a los largo de la especialización.

Índice general

Re	sume	en en	I
1.	Intro	oducción general	1
	1.1.	Introducción	1
		1.1.1. Internet de las cosas	1
		1.1.2. Sistemas de monitoreo de cultivos agrícolas	2
	1.2.	Estado del arte	2
		1.2.1. Libelium	2
		1.2.2. Nodo RF-M1 DropControl	3
	1.3.	Objetivo y alcances	4
		1.3.1. Objetivo	4
		1.3.2. Alcances	4
2	Intro	oducción específica	5
۷.		oducción específica Componentes principales de hardware	5
	۷.1.	2.1.1. Plataforma de desarrollo STM32 NUCLEO-L432KC	5
		2.1.2. Módulo De Comunicación LTE IOT 2 CLICK	6
		2.1.3. Sensor AHT10	7
		2.1.4. Sensor ML8511	7
		2.1.5. Sensor de Humedad de Suelo HL-69 (Resistivo)	7
	2.2.	Herramientas de software y testing utilizados	8
	۷.۷.	2.2.1. STM32 CubeIDE	8
		2.2.2. FreeRTOS	8
		2.2.3. CEEDLING	8
	2.3.	Protocolos de Comunicación	9
	2.5.	2.3.1. UART	9
		2.3.2. I2C	9
		2.3.3. MQTT	9
	2.4.		و 10
	2.4.		10 10
			10 10
		2.4.2. Hungsboard	10
3.	Dise	ño e implementación	11
	3.1.	Análisis del software	11
4.	Ensa	iyos y resultados	13
			13
5.			15
		O .	15
	5.2.	Próximos pasos	15
Bil	bliog	rafía	17

Índice de figuras

1.1.	Modulo Smart Agriculture PRO	3
1.2.	Modulo RF-M1 de DropControl	3
2.1.	Plataforma de desarrollo NUCLEO-L432KC	6
2.2.	Modulo LTE IOT 2 CLICK	6
2.3.	Sensor AHT10	7
2.4.	Modulo Sensor ML8511	7
2.5.	Modulo Sensor HL-69	8
2.6.	Logo FreeRTOS	8
2.7.	Arquitectura de publicación/suscripción de MQTT	9
2.8.	Ejemplo Interfaz Gráfica Ubidots	10
2.9.	Ejemplo Interfaz Gráfica ThingsBoard	10

Índice de tablas

Introducción general

En este capítulo se hace una breve introducción a la necesidad que condujo al desarrollo del trabajo. Se presenta el concepto de internet de las cosas y el estado del arte de dispositivos similares. Asimismo, se explica el objetivo y los alcances del trabajo.

1.1. Introducción

En los últimos años la agricultura ha enfrentado muchos desafíos, desde una creciente población mundial a ser alimentada, hasta requisitos de sostenibilidad y restricciones ambientales debido al cambio climático y el calentamiento global.

La agricultura es uno de los sectores que más sufre la escasez de agua que existe actualmente en el mundo, uno de los objetivos de implementar la tecnología IoT en este sector, es el de lograr una gestión eficiente y sostenible de los recursos hídricos.

Esto obliga a implementar soluciones que permitan modernizar las prácticas agrícolas. En este contexto, la Agricultura 4.0 representa la última evolución de la agricultura de precisión. La misma se encuentra basada en el concepto de agricultura inteligente, donde convergen el uso de internet de las cosas, computación en la nube, aprendizaje automático para el análisis de grandes volúmenes de datos, vehículos no tripulados y robótica [1].

1.1.1. Internet de las cosas

El concepto de internet de las cosas o IoT (del inglés Internet of Things) se refiere a la interconexión digital de dispositivos y objetos a través de una red, es decir, dispositivos como sensores y/o actuadores, equipados con una interfaz de comunicación, unidades de procesamiento y almacenamiento. Estos dispositivos tienen la capacidad de adquirir, intercambiar y transferir datos a la red mediante alguna tecnología de comunicación inalámbrica [2].

El IoT puede usarse a favor de la sostenibilidad, no cabe duda de que Internet es un facilitador de iniciativas sostenibles. De acuerdo con el Foro Económico Mundial la mayoría de los proyectos con internet de las cosas se centran en la eficiencia energética en las ciudades, energías sostenibles y el consumo responsable [3]. Por ejemplo:

 Eficiencia energética: en este sector se interconectan sensores, algoritmos y redes de comunicación para anticipar la demanda eléctrica y así realizar una distribución sostenible de la energía para reducir el precio del kW. Uso del agua: esta tecnología pone en funcionamiento máquinas para recoger datos en tiempo real que permitan hacer uso eficiente del agua y reducir su consumo.

1.1.2. Sistemas de monitoreo de cultivos agrícolas

Los sistemas de monitoreo de cultivos agrícolas se encargan de monitorear las distintas variables ambientales a las que están expuestos los cultivos agrícolas, los datos adquiridos ayudan a la toma de decisiones y a manejar de una manera eficiente los recursos con los que cuentan los agricultores.

Cuentan con tres partes fundamentales:

- El nodo sensor, que en sí sería la parte física o hardware, es generalmente de bajo consumo.
- El firmware que abarca la lógica del sistema y se encarga de realizar la adquisición, procesamiento y transferencia de datos que puede o no estar sobre un sistema operativo de tiempo real.
- Nube o plataforma IoT, que ofrecen diferentes servicios como ser almacenamiento, procesamiento, análisis, visualización, etc. Esta parte del sistema permite al usuario del sistema poder visualizar los valores de las variables medidas y así poder tomar decisiones con respecto a las mediciones.

1.2. Estado del arte

Durante la etapa de investigación del proyecto se realizó la búsqueda de productos comerciales en el mercado local e internacional. Se encontraron algunos productos de similares características al que se pretende realizar, un dato interesante a resaltar es que todos los productos encontrados son del mercado internacional, no se encontró ningún producto o empresa que ofrezca este tipo de soluciones en el mercado local.

A continuación se describen los productos encontrados, estas opciones varían con respecto a la tecnología que utilizan.

1.2.1. Libelium

Smart Agriculture PRO figura 1.1 es un módulo de IoT que está diseñado para realizar monitoreo de viñedos para mejorar la calidad del vino, riego selectivo en campos de golf y control de condiciones en invernaderos, entre otros. Permite monitorear múltiples parámetros ambientales que involucran una amplia gama de aplicaciones, desde el análisis del desarrollo en crecimiento hasta la observación del clima. Para ello se ha dotado de sensores de temperatura y humedad del aire y del suelo, luminosidad, radiación solar, velocidad y dirección del viento, precipitaciones, presión atmosférica, humedad de las hojas, distancia y diámetro del fruto o tronco [4].

1.2. Estado del arte 3

FIGURA 1.1. Modulo Smart Agriculture PRO.

1.2.2. Nodo RF-M1 DropControl

El nodo RF-M1 es adecuado para tareas de monitoreo simples como parte de una red DropControl o por sí solo. Posee una combinación de entradas que le permite realizar múltiples tareas de monitoreo y almacenarlas en la nube. En la figura 1.2 se muestra el módulo físicamente [5].

Características del dispositivo:

- Redes RF *mesh* o comunicación celular.
- Energía autónoma, solar + batería.
- Actualización del firmware vía aérea, configuraciones y soporte por internet.
- Protección externa IP65.
- Amplia variedad de compatibilidad con sensores.
- Unidad de bajo costo para resolver necesidades básicas de monitoreo.

FIGURA 1.2. Modulo RF-M1 de DropControl.

1.3. Objetivo y alcances

1.3.1. Objetivo

El objetivo principal del trabajo es el diseño e implementación de un prototipo funcional de un sistema de monitoreo de cultivos agrícolas.

1.3.2. Alcances

- Implementación de un prototipo funcional con hardware de bajo consumo.
- Desarrollo del firmware sobre un sistema operativo de tiempo real.
- Transmisión de la información por red celular.
- Visualización de los datos en Ubidots.

Introducción específica

En el presente capítulo se describen los componentes de hardware, software, protocolos de comunicación y plataformas IoT utilizados para realizar el trabajo.

2.1. Componentes principales de hardware

2.1.1. Plataforma de desarrollo STM32 NUCLEO-L432KC

La placa STM32 Nucleo-L432KC que se muestra en la figura 2.1 proporciona una forma asequible y flexible para que los usuarios prueben nuevos conceptos y construyan prototipos eligiendo entre las diversas combinaciones de funciones de rendimiento y consumo de energía que proporciona el microcontrolador STM32L4KC [6].

Características:

- Microcontrolador STM32L4KC en paquete 32 de pines.
- Led de usuario.
- Pulsador de reset.
- Conector de expansión Arduino Nano V3.
- Conector USB Micro-AB para ST-LINK.
- Opciones flexibles de fuente de alimentación.
- Depurador/Programador ST-LINK integrado.
- Compatibilidad con una amplia variedad de entornos de desarrollo integrado.
- Oscilador de cristal de 24MHz
- Compatible con Arm Mbed Enabled

FIGURA 2.1. Plataforma de desarrollo NUCLEO-L432KC.

2.1.2. Módulo De Comunicación LTE IOT 2 CLICK

LTE IoT 2 click que se muestra en la 2.2 está equipado con el módulo BG96 LTE de Quectel Wireless Solutions , que admite tecnologías LTE CAT M1 y NB1, desarrolladas con aplicaciones IoT en mente. Además, admite EGPRS a 850/900/1800/1900 MHz, lo que significa que se puede usar globalmente; no está restringido a ninguna región. El soporte para las tecnologías CAT M1 y NB1 y el consumo de energía ultra bajo hacen de este módulo una elección perfecta para la próxima tecnología 3GPP IoT [7].

Características:

- Protocolos de internet integrados(TCP/UDP/PPP).
- Conectores SMA integrados .
- Leds de alimentación e indicación de estado.
- Conector USB para conectarlo con la aplicación de software de quectel.
- Interfaz UART para intercambiar comandos.
- Voltaje de alimentación 5V o 3.3V.

FIGURA 2.2. Modulo LTE IOT 2 CLICK.

2.1.3. **Sensor AHT10**

El sensor AHT10 presentado en la figura 2.3 permite obtener lecturas de temperatura y humedad, es de bajo costo y excelente rendimiento. El sensor es muy versátil, puede sustituir a los sensores DHT11, SHT20 y AM2302, debido a su estabilidad en entornos más hostiles. Se utiliza este sensor en aplicaciones de control automático de temperatura, aire acondicionado, estaciones meteorológicas, aplicaciones en el hogar, regulador de humedad y temperatura [8].

FIGURA 2.3. Sensor AHT10.

2.1.4. Sensor ML8511

El módulo ML8511 presentado en la figura 2.4 es un sensor de luz ultravioleta (UV), entrega una señal de voltaje analógica que depende de la cantidad de luz UV que detecta. Sensor ideal para proyectos de monitoreo de condiciones ambientales como el índice UV, aplicaciones meteorológicas, cuidado de la piel, medición industrial de nivel UV. El sensor ML8511 detecta luz con una longitud de onda entre 280-390 nm, este rango cubre tanto al espectro UV-B como al UV-A. La salida analógica está relacionada linealmente con la intensidad UV (mW/cm2) [9].

FIGURA 2.4. Modulo Sensor ML8511.

2.1.5. Sensor de Humedad de Suelo HL-69 (Resistivo)

El módulo HL-69 presentado en la figura 2.5, un sensor de humedad de suelo resulta ser otro módulo que utiliza la conductividad entre dos terminales para determinar ciertos parámetros relacionados a agua, líquidos y humedad [10].

FIGURA 2.5. Modulo Sensor HL-69.

2.2. Herramientas de software y testing utilizados

2.2.1. STM32 CubeIDE

STM32CubeIDE es una herramienta de desarrollo multi-OS todo en uno, que forma parte del ecosistema de software STM32Cube.STM32CubeIDE es una plataforma de desarrollo C/C++ avanzada con funciones de configuración de periféricos, generación de código, compilación de código y depuración para microcontroladores y microprocesadores STM32. Se basa en el marco Eclipse y la cadena de herramientas GCC para el desarrollo y GDB para la depuración. Permite la integración de los cientos de plugins existentes que completan las funcionalidades del IDE de Eclipse [11].

STM32CubeIDE integra las funcionalidades de configuración y creación de proyectos de STM32 de STM32CubeMX para ofrecer una experiencia de herramienta todo en uno y ahorrar tiempo de instalación y desarrollo [11].

2.2.2. FreeRTOS

FreeRTOS es un sistema operativo en tiempo real (RTOS) líder en el mercado para microcontroladores y pequeños microprocesadores. Distribuido libremente bajo la licencia de código abierto del MIT, FreeRTOS incluye un núcleo y un conjunto creciente de bibliotecas adecuadas para su uso en todos los sectores de la industria. FreeRTOS está diseñado con énfasis en la confiabilidad, la accesibilidad y la facilidad de uso [12].El logo de FreeRTOS se muestra en la figura 2.6.

FIGURA 2.6. Logo FreeRTOS.

2.2.3. CEEDLING

Ceedling es un sistema de compilación para proyectos C que es algo así como una extensión del sistema de compilación Rake (make-ish) de Ruby. Ceedling

está dirigido principalmente al desarrollo basado en pruebas en C y está diseñado para reunir CMock, Unity y CException, otros tres increíbles proyectos de código abierto sin los que no puede vivir si está creando maravillas en el lenguaje C. Con el fin de difundir la genialidad, Ceedling es un artilugio extensible con un buen mecanismo de complemento [13].

2.3. Protocolos de Comunicación

2.3.1. UART

UART (universal asynchronous receiver / transmitter, por sus siglas en inglés) define un protocolo o un conjunto de normas para el intercambio de datos en serie entre dos dispositivos. UART es sumamente simple y utiliza solo dos hilos entre el transmisor y el receptor para transmitir y recibir en ambas direcciones. Ambos extremos tienen una conexión a masa. La comunicación en UART puede ser simplex(los datos se envían en una sola dirección), semidúplex(cada extremo se comunica, pero solo uno al mismo tiempo), o dúplex completo(ambos extremos pueden transmitir simultáneamente). En UART, los datos se transmiten en forma de tramas [14].

2.3.2. I2C

El protocolo I2C(Inter-Integrated Circuit) es un protocolo destinado a permitir que múltiples circuitos integrados digitales se comuniquen con uno o más chips çontroladores". Al igual que la interfaz periférica en serie, solo está diseñada para comunicaciones de corta distancia dentro de un solo dispositivo. Al igual que las interfaces seriales asíncronas , solo requiere dos cables de señal para intercambiar información [15].

2.3.3. MQTT

MQTT es un protocolo de mensajería estándar de OASIS para Internet de las cosas (IoT). Está diseñado como un transporte de mensajería de publicación/suscripción extremadamente liviano que es ideal para conectar dispositivos remotos con un espacio de código pequeño y un ancho de banda de red mínimo. MQTT hoy en día se utiliza en una amplia variedad de industrias, como la automotriz, la manufactura, las telecomunicaciones, el petróleo y el gas, etc [16].En la figura 2.7 se muestra la arquitectura del protocolo MQTT.

FIGURA 2.7. Arquitectura de publicación/suscripción de MQTT.

2.4. Plataformas IoT

2.4.1. Ubidots

Ubidots una plataforma de IoT que habilita la toma de decisiones a empresas de integración de sistemas a nivel global. Este producto permite enviar datos de sensores a la nube, configurar tableros y alertas, conectarse con otras plataformas, usar herramientas de analítica y arrojar mapas de datos en tiempo real. Ubidots es una plataforma en la nube para el IoT, ahorrarse mucho tiempo y dinero a la hora de salir al mercado y poder tomar mejores decisiones basadas en datos [17].En la figura 2.8 se muestra un ejemplo de interfaz gráfica en ubidots.

FIGURA 2.8. Ejemplo Interfaz Gráfica Ubidots.

2.4.2. ThingsBoard

ThingsBoard es una plataforma IoT de código abierto para la recopilación, el procesamiento, la visualización y la gestión de dispositivos de datos. Permite la conectividad de dispositivos a través de protocolos IoT estándar de la industria: MQTT, CoAP y HTTP, y admite implementaciones en la nube y locales. Things-Board combina escalabilidad, tolerancia a fallas y rendimiento para que nunca pierda sus datos [18].En la figura 2.9 se muestra un ejemplo de una interfaz grafica desarrollada en thingsboard.

FIGURA 2.9. Ejemplo Interfaz Gráfica ThingsBoard.

Diseño e implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
las líneas de código irían aquí...
\end{lstlisting}
A modo de ejemplo:
```

```
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
{\tiny 5}\>\>\> uint32\_t\>\>\>\> sensorValue[MAX\_SENSOR\_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER]; //ON or OFF
8 state_t actuatorState[MAX_ACTUATOR_NUMBER]; //ON or OFF
void vControl() {
11
    initGlobalVariables();
12
13
    period = 500 ms;
15
    while (1) {
16
17
      ticks = xTaskGetTickCount();
18
19
      updateSensors();
20
21
      updateAlarms();
22
23
      controlActuators();
      vTaskDelayUntil(&ticks, period);
27
28 }
```

CÓDIGO 3.1. Pseudocódigo del lazo principal de control.

Ensayos y resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

Algunas preguntas que pueden servir para completar este capítulo:

- ¿Cuál es el grado de cumplimiento de los requerimientos?
- ¿Cuán fielmente se puedo seguir la planificación original (cronograma incluido)?
- ¿Se manifestó algunos de los riesgos identificados en la planificación? ¿Fue efectivo el plan de mitigación? ¿Se debió aplicar alguna otra acción no contemplada previamente?
- Si se debieron hacer modificaciones a lo planificado ¿Cuáles fueron las causas y los efectos?
- ¿Qué técnicas resultaron útiles para el desarrollo del proyecto y cuáles no tanto?

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.

Bibliografía

- [1] Sara Oleiro Araujo y col. «Characterising the Agriculture 4.0». En: Agronomy 11.4, 2021, pág. 667.
- [2] Marco Centenaro y col. «Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios». En: IEEE Wireless Communications 23.5, 2016, págs. 60-67.
- [3] Ferrovial. *Internet de las cosas(IoT)*. Visitado: 2023-05-27. URL: https://www.ferrovial.com/es/recursos/internet-de-las-cosas/.
- [4] Libelium. *Smart Agriculture PRO,TECHNICAL GUIDE*. Visitado: 2023-05-27. URL: https://development.libelium.com/agriculture-sensor-guide/.
- [5] WiseConn. *Nodo RF-M1*. Visitado: 2023-05-27. URL: https://www.wiseconn.cl/dropcontrol/hardware/rf-m1/.
- [6] STMicroelectronics. *Especificacion de Producto,STM32 Nucleo-32 boards*. Ultima actualizacion 2019-06-05 V8.0. URL: https://www.st.com/resource/en/data_brief/nucleo-1432kc.pdf.
- [7] MikroElectronic. *Especificacion de Producto,LTE IOT 2 CLICK*. Visitado: 2023-05-27. URL: https://www.mikroe.com/lte-iot-2-click.
- [8] SSDIELECT ELECTRONICA SAS. Especificacion de Producto, AHT10 SENSOR DE TEMPERATURA Y HUMEDAD I2C. Visitado: 2023-05-27. URL: https://ssdielect.com/temperatura/3885-aht10.html.
- [9] naylampmechatronics. *Especificacion de Producto,MÓDULO SENSOR DE LUZ ULTRAVIOLETA (UV) ML8511*. Visitado: 2023-05-27. URL: https://ssdielect.com/temperatura/3885-aht10.html.
- [10] PANAMAHITEK. Especificacion de Producto, Módulo HL-69: Un sensor de humedad de suelo. Visitado: 2023-05-27. URL: https://panamahitek.com/modulo-hl-69-un-sensor-de-humedad-de-suelo/.
- [11] STMicroelectronics. *Descripción del producto,Integrated Development Environment for STM32*. Visitado: 2023-05-27. URL: https://www.st.com/en/development-tools/stm32cubeide.html.
- [12] FreeRTOS. *Acerca del Sistema Operativo, Descripción General*. Visitado: 2023-05-27. URL: https://www.freertos.org/RTOS.html.
- [13] CEEDLING. *Descripción del producto, Descripción General*. Visitado: 2023-05-27. URL: http://www.throwtheswitch.org/ceedling.
- [14] rohde-schwarz. *Descripción del protocolo,Qué es UART*. Visitado: 2023-05-27. URL: https://www.rohde-schwarz.com/es/productos/test-y-medida/essentials-test-equipment/digital-oscilloscopes/que-es-uart_254524.html.
- [15] sparkfun. *Definicion del Protocolo*. Visitado: 2023-05-27. URL: hhttps://learn.sparkfun.com/tutorials/i2c/all.
- [16] MQTT. *Descripción del protocolo,Introduccion a MQTT*. Visitado: 2023-05-27. URL: https://mqtt.org/.
- [17] connectamericas. *Descripción de la empresa,Definición de UBIDOTS*. Visitado: 2023-05-27. URL: https://connectamericas.com/es/company/ubidots.

18 Bibliografía

[18] ThingsBoard. *Descripción de la plataforma IoT,Definición de ThingsBoard*. Visitado: 2023-05-27. URL: https://thingsboard.io/.