FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 26: 06/10/22)

FUND. ELEM. DA MATEMATICA AULA 26: Relações. Relações Def: Considere A e B conjunt. Ama Relação R entre A e B i um subconjunts de A x B, ou sua, RCAXB Assim, se $(a,b) \in R$, were unes arb on a ~ b

expression que a e bestão relacio. mado. En: A={a,b} & B={1,2,3}. temos: AxB={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)} Sois relações entre A e B: $R_{1}=\{(9,1),(6,3)\}$ $\subset A\times B$ Q $R_{3} = \frac{3}{2}(a_{1})(b_{1}z)(a_{1}z) < A_{1}x B_{1}$ En: Considere Z×Z. Terros a rela-R={(n,y) ∈ Z×Z: N+y=0} cZ×Z

Note que:	
* (1,2) & R, Poid 1+3 +0	/-
$ \begin{array}{cccc} * & (-1,1) \in \mathbb{R} \\ * & (0,0) \in \mathbb{R} \end{array} $	
$* (12,-12) \in \mathbb{R}$	A
En: No conjunto RXR temos a relocati	1
F-= S (MU) EIR XIR: N_+ 43 - 17	
Q-125	
×Z Notique: 0×1 pais $\frac{0^2}{3} + \frac{1^2}{25} + 1$.	

Por outro lado: $3 \sim 0$, poris $\frac{3}{9} + \frac{0}{25}$ Def. (Relação Inversa): Dados A e B Cony. e R una relação entre A e B, definirus or Relações Inverso de R, representada por $\mathbb{R}^{-1} = \left\{ (y, u) \in \mathbb{B} \times \mathbb{A} : (n, y) \in \mathbb{R} \right\}$ En: A={a,b} & B={1,2,3} Terms à reloções R={(a,),(b,z),(a,3)}

lemos as relações R={(1,P),(1,9),(2,9),(3,n),(4,n)}CAXB Note que: * $(1,P) \in \mathbb{R} \quad (P,X) \in S$ (1, x) ESOR, pois exute pe Btg.
(1, p) ER e (p,x) ES. Amm! 50R={(1, N), (1, Y), (2, N), (2, Y), (4, 2)} En: Podemis ter relações lais que ROS & SOR.

	Porén, nem rempre vale à igueldade:
	205 = S0R
	De fats, considere
	R={(n,y) \in 1R \in 1 Y = n + 1}
	2 5={(y,z) \in RxR: Z=y^2}
la Ta	0
	As comportes não:
	$RoS = \{(\alpha, \gamma) \in \mathbb{R} \times \mathbb{R} : \exists \beta \in \mathbb{R} \forall \alpha \in \mathbb{R} \} \in \mathbb{R}$
	$= \{(x,y) \in \mathbb{R} \times \mathbb{R} : \exists \beta \in \mathbb{R} \neq \beta = x^2 $
	= > (~) = RXR: FRER to r= x+13
	$= \{(\alpha, \gamma) \in R \times R: \gamma = \alpha^2 + 1\}$

```
ROS= {(n,y) elRx1R: y= n2+5]
Agra, do mesmo modo podemo obten
    SOR = {(u,y) = (RxR: y=(n+1)2}
Conclusas: RoS + SOR
       (Componicas mos à Constaliva)
evonna: Considere A, B, C e D eary.
      R è una relaços entre A e B
                     11 ByC
       T 11 11 11
Simpre Vale:
   (i)(R^{-1})^{-2}=R
```

(11) (ToS)OR = To(SOR) (1M) (ROS) = 5-30 R-1 Prava: Ennérero! (mem as Definiser!)