0.0.1 recap

We defined "+" on \mathbb{N} .

0.0.2 Properties of \mathbb{N}

[Exercises]

- 1. If $m, n \in \mathbb{N}$, then $m \in n$ iff $m \subseteq n$
- 2. If $m, n \in \mathbb{N}$, we say $m \le n$ if either $m \in n$ or m = n For any two $m, n \in \mathbb{N}$, either m < n or n < m or n = m (Exactly one is true Trichotomy)
- 3. For every $m, n \in \mathbb{N}$, we have $m \leq n \iff$ there is a unique $k \in \mathbb{N}$ such that m + k = n Induction proof
- 4. If $m, n, k \in \mathbb{N}$ such that n + m = n + k, then m = k. Induction proof

Definition 0.1 (Subtraction) If $m, n \in \mathbb{N}$, and $m \leq n$, set n - m := the unique k, such that m + k = n

Definition 0.2 (Multiplication) Let $m \in \mathbb{N}$. Let p_m be a relation on $\mathbb{N} \times \mathbb{N}$ with two properties:

- 1. $p_m(0) = 0$
- 2. $p_m(n+) = p_m(n) + m$

Proceeding exactly with S_m , we can show that there is a function that satisfies the above properties. Properties:

- 1. Commutativity
- 2. Associativity etc.

0.1 Construction of the Integers \mathbb{Z}

[Equivalence classes of pairs of naturals]

Let
$$Z := \mathbb{N} \times \mathbb{N}$$
.

Define the following relation R on $Z \times Z$ as follows: $R \subset Z \times Z$

$$R := \{ ((a,b), (c,d)) \in Z \times Z | a+d = b+c \}$$

((1,5),(5,9)) etc.

Claim 0.3 R is an equivalence relation.

Proof:

- Reflexivity: $\forall (a,b) \in \mathbb{Z}$, notice: $a+b=b+a \implies ((a,b),(a,b)) \in \mathbb{R}$ (comm)
- Symmetry: $\forall ((a,b),(c,d)) \in R, ((c,d),(a,b)) \in R \text{ (comm)}$
- Transitivity: Suppose $((a,b),(c,d)) \subset R$ and $((c,d),(p,q)) \in R$ a + d = b + c and c + q = d + q (assoc and comm) (a+d) + (c+q) = (b+c) + (d+p) (a+q) + (c+d) = (b+p) + (c+d) (property 4) $a+q=b+p=((a,b),(p,q)) \in R$

R is an equivalence relation on $Z \times Z$.

If
$$x \in \mathbb{Z}$$
, then $[x] =$ equivalence class of $x = \{y \in \mathbb{Z} | (x,y) \in \mathbb{R}\}$ $[x] \subseteq \mathbb{Z}$ and $[x] \neq \emptyset$

Define $\mathbb{Z} := \mathbb{Z}/\mathbb{R} = \text{set of equivalence classes of R on Z}$

$$=[x]|x\in Z$$

E.g.
$$[(1,3)] = [(2,4)] \in \mathbb{Z}$$

$$i: \mathbb{N} \to \mathbb{Z}$$
, given by $n \to [(n,0)] [(a,b)] + [(c,d)] := [(a+c,b+d)]$

2) Negative:

If
$$[(a, b)]$$
, define $-[(a, b)] := [(b, a)]$

3) Subtraction.

If
$$[(a,b)], [(c,d)] \in \mathbb{Z}$$
 then

$$[(a,b)] - [(c,d)] := [(a,b)](-[(c,d)]) = [(a,b)] + [(d,c)] = [(a+d,b+c)]$$

4) Order relation:

$$[(a,b)]$$
; $[(c,a)]$ if $a+d$; $b+c$.

Well defined, and strict/total order. That is, for all [(a,b)], [(c,d)] well defined, or (c,d); (a,b) or [(a,b) = (c,d). Exactly one satisfied].

5 Multiplication
$$(a,b):[(c,d)] = [ac + bd, ad + bc]$$

6) Absolute value
$$|[(a,b)| = a - bifa \ge q]$$
, begotherwise

From now on, we'll write integers the usual way, [(a,b)] = (a-b)

0.2 Constructions of the rationls \mathbb{Q}

$$\mathbb{Q} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | b = 0\}$$

Define relation R on $Q \times Q[R \subset Q \times Q]$.

$$((a,b),(c,d)) \in R \text{ iff } ad = bc$$