

Załącznik nr 1 do Zarządzenia nr 92/2021 Rektora UEP z dnia 28 października 2021 roku

Imię i nazwisko Hubert Dalmata

Tytuł w języku polskim:

Szacowanie emisji gazów cieplarnianych netto w tonach na mieszkańca, na terenie Polski w latach 2004-2021 na podstawie modelu ekonometrycznego.

Tytuł w języku angielskim:

Estimation of net greenhouse gas emissions in tons per capita in Poland from 2004 to 2021 based on an econometric model

Praca Zaliczeniowa Ekonometria

Kierunek: Informatyka i Ekonometria studia stacjonarne

W moim projekcie zająłem się badanie wpływu wielu czynników na emisje gazów cieplarnianych netto. Wybrałem ten temat, gdyż emisja gazów cieplarniach nierozerwalnie łączy się z postępującym na świecie globalnym ociepleniem oraz zmianami klimatu. Problemy te w niedalekiej przyszłości będą wpływały w znacznym stopniu na jakość mojego życia jak i moich rówieśników, dlatego postanowiłem zająć się tym tematem.

- Y- emisja gazów cieplarnianych netto w tonach per capita
- **X1** PKB realne per capita(zmiana procentowa w stosunku do poprzedniego okresu) ,ponieważ PKB może wpływać na emisje gazów cieplarnianych poprzez różnorodne mechanizmy, włączając w to rozwój energii odnawialnej, zmiany w konsumpcji oraz stymulowanie innowacji, regulacje środowiskowe.
- **X2** Produkcja w przemyśle(zmiana procentowa w stosunku do poprzedniego okresu) ,ponieważ przy produkcji dóbr i usług oraz energii prawie zawsze wydzielają się znaczne ilości gazów cieplarniach.
- **X3** Udział energii odnawialnej w końcowym zużyciu energii brutto w procentach według sektorów , ponieważ korzystanie ze źródeł energii odnawialnej powoduje mniejsze korzystanie z nieodnawialnych źródeł energii, co za tym idzie mniejszą emisyjność.
- **X4** linie kolejowe ogółem na 100 km2 ,gdyż koleje są znacznie mniej emisyjne od samolotów czy samochodów.
- **X5** samochody osobowe na 1000 ludności , ponieważ mniejsza liczba samochodów oznacza że więcej osób podróżuje środkami transportu zbiorowego ,które są znacznie mniej emisyjne.

Model hipotetyczny $Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + \beta_3 X_{t,3} + \beta_4 X_{t,4} + \beta_5 X_{t,5} + \epsilon_t$

	Υ	X1	X2	Х3	X4	X5
2004	9,3	5	1,12121212	6,882	6,5	292,5
2005	9,3	3,6	1,05067567	6,867	6,5	323,4
2006	9,8	6,2	1,12379421	.2 6,859	6,5	351,1
2007	10	7,1	1,09442060	1 6,903	6,4	382,7
2008	9,8	4,2	1,02091503	3 7,686	6,5	421,6
2009	9,4	1,9	0,96030729	8,676	6,5	432,2
2010	9,9	2,8	1,11066666	7 9,281	6,5	447,4
2011	9,7	5	1,07322929	2 10,337	6,5	470,3
2012	9,5	1,5	1,01118568	2 10,955	6,4	486,4

2013	9,3	0,9	1,026548673	11,452	6,2	503,7
2014	9,2	3,9	1,03125	11,605	6,2	519,9
2015	9,4	4,5	1,044932079	11,881	6,2	539,1
2016	9,5	3	1,031	11,396	6,1	564,0
2017	9,9	5,2	1,068865179	11,059	6,1	585,5
2018	9,9	6	1,058076225	14,936	6,2	610,0
2019	9,8	4,5	1,042881647	15,377	6,2	634,7
2020	9,3	-0,19	0,978618421	16,102	6,2	659,4
2021	10,1	7,5	1,148739496	15,613	6,2	682,4
DANIE.						

DANE:

EUROSTAT: https://ec.europa.eu/eurostat/web/main/data/database

GŁÓWNY URZĘD STATYSTYCZNY: https://bdl.stat.gov.pl/BDL/start

Regresja krokowa -wstecz

Model 1: Estymacja KMNK, wykorzystane obserwacje 2004-2021 (N = 18) Zmienna zależna (Y): Y

	Współczynnik	: Błąd st	and.	t-Studenta	warto	sć p	
const	-2,32109	3,063	83	-0,7576	0,46	533	
X1	0,0546139	0,0280	985	1,944	0,07	⁷ 58	*
X2	1,85561	1,168	48	1,588	0,13	883	
X3	-0,124053	0,0423	799	-2,927	0,01	.27	**
X4	1,31943	0,407	189	3,240	0,00)71	***
X5	0,00554986	0,0013	3207	4,166	0,00)13	***
,							
Średn.aryt.zm.zależ	znej 9,61	6667	Odch	.stand.zm.zale	eżnej	0,23	89523
Suma kwadratów re	eszt 0,27	3129	Błąd	standardowy	reszt	0,1:	50867
Wsp. determ. R-kw	adrat 0,80	08330	Skory	gowany R-kv	vadrat	0,7	28468
F(5, 12)	10,1	2154	Warto	ość p dla testu	F	0,0	00556
Logarytm wiarygod	lności 12,1	5274	Kryt.	inform. Akail	ke'a	-12,	30548
Kryt. bayes. Schwa	rza –6,96	3252	Kryt.	Hannana-Qui	nna	-11,	56886
Autokorel.reszt - rh	0,15	8266	Stat.	Durbina-Wats	ona	1,6	03883

ZMIENNA X2 wyrzucamy. Statystyka t-Studenta najwieksza!!

	Współczynnik	Błąd s	tand.	t-Studenta	warto	sć p	
const	-0,460170	2,991	199	-0,1538	0,88	01	
X1	0,0891399	0,0188	3133	4,738	0,00	04	***
X3	-0,110170	0,0438	3286	-2,514	0,02	59	**
X4	1,32558	0,430	345	3,080	0,00	188	***
X5	0,00508469	0,0013	7342	3,702	0,00	27	***
Średn.aryt.zm.zależ	nej 9,61	6667	Odch	.stand.zm.zale	żnej	0,28	39523
Suma kwadratów re	szt 0,33	0530	Błąd	standardowy r	eszt	0,15	59453
Wsp. determ. R-kwa	adrat 0,76	8049	Skory	gowany R-kv	vadrat	0,69	96680
F(4, 13)	10,7	6159	Warto	ość p dla testu	F	0,00	00449
Logarytm wiarygod	ności 10,4	3598	Kryt.	inform. Akail	ke'a	-10,8	37196
Kryt. bayes. Schwar	rza –6,42	0096	Kryt.	Hannana-Qui	nna	-10,2	25810
Autokorel.reszt - rho	-0,11	3860	Stat. 1	Durbina-Wats	ona	2,20)3010

POSTAĆ MODELU TEORETYCZNEGO

 $\hat{Y} = 0,0050858*X_5 + 1,325577*X_4 - 0,11017*X_3 + 0,08914*X_1 - 0,046017$

modele jednowymiarowe

X1 – PARABOLA (wybrałem prabolę gdyż ma najwiekszą wartossc R^2 jak i najmniejszą wartosc V z policzonych modeli)

X1	T	T^2
5	1	1
3,6	2	4
6,2	3	9
7,1	4	16
4,2	5	25
1,9	6	36
2,8	7	49
5	8	64
1,5	9	81
0,9	10	100
3,9	11	121
4,5	12	144
3	13	169
5,2	14	196
6	15	225
4,5	16	256
-0,19	17	289

0,029556	-0,58969	6,172941
0,020583	0,402463	1,6608
0,125339	2,092575	#N/D
1,074752	15	#N/D
9,412395	65,68303	#N/D
t1	3,716847	
t2	-1,4652	
t3	1,435967	
p1	0,002067	
p2	0,163511	NIEISTOTNE
р3	0,171538	NIEISTOTNE
V=	51 9706	ZA DUZE

PKB realne per capita

$$\widehat{Y} = b_1 + b_2 X + b_3 Z$$

$$W = \left(x_w = \frac{-b_2}{2b_3}; y_w = \frac{-\Delta}{4b_3}\right)$$

$$\hat{Y} = 6,1729-0,58969*X+0,029559*Z$$

delta	-0,38206
Xw	9,975733
Yw	3,231644

$$\widehat{Y} = b_1^{\text{ORGINALNY}} + b_2 X + b_3 X^2$$

$$\hat{Y} = 6,1729 - 0,58969 * X + 0,029559 * X^2$$

INTERPRETACJA:

Maksymalną zmianę procentową PKB per capita wynoszącą 3,23% otrzymamy w przybliżeniu w 2011 roku.

PROGNOZA:

Można przypuszczać ,że w 2022(t=19) zmiana procentowa PKB realnego per capita w stosunku do roku 2021 wyniesie : 5,638627451

X3 – MODEL WYKŁADNICZY (wybrałem wykładniczy gdyż ma najmniejszą wartość V jak i najwiekszą wartosc R^2 ze wszytskich modeli)

W=LnX	T
1,928909307	1
1,92672733	2
1,925561659	3
1,9319561	4
2,039400492	5
2,160560593	6
2,2279693	7
2,335729692	8
2,393795973	9
2,438164387	10
2,45143604	11
2,474940485	12
-	

REGLINP:

0,054184	1,820548	
0,003446	0,037306	
0,939203	0,075862	
247,1693	16	
1,422455	0,09208	
t1	48,80058	
t2	15,72162	
p1	7,75E-19	
p2	3,77E-11	
V=	3,25%	

2,433262417	13
2,403244576	14
2,703774406	15
2,732872887	16
2,778943488	17
2,748103901	18

0,054184

6,175241

$\hat{\mathbf{Y}} =$	6,175241*e ^{0,054184*X}
Ŷ=	6,175241*e ^{0,054184*2}

INTERPRETACJA:

co roku procentowy udział energii odnawialnej według sektora rósł o 5,4184% w roku 2003 (t=0) teoretyczna wartość procentowego udziału i odnawialnej według sektora wynosiła 6,175241

b2

b1

PROGNOZA:

Można przypuszczać, że w 2022(t=19) procentowy udział energii odnawialnej według sektora wyniesie: 17,28859278

X4 —**MODEL LINIOWY** (wybrałem model liniowy gdyż jest najprostszy "ma największą wartość R^2 oraz drugie co do wartości najmniejsze V z różnicą rzędu 0,5 %)

REGLINP:

X4	t
6,5	1
6,5	2
6,5	3
6,4	4
6,5	5
6,5	6
6,5	7
6,5	8
6,4	9

-0,02549	6,569935
0,003956	0,042819
0,721843	0,087073
41,52155	16
0,314804	0,121307
t1	153,4344
t2	-6,44372
p1	8,89E-27
p2	8,12E-06
V=	1,38%

6,2	10
6,2	11
6,2	12
6,1	13
6,1	14
6,2	15
6,2	16
6,2	17
6,2	18

$$\hat{Y} = b_0 + b_1 * X_4$$

$$\hat{Y} = 6,569935-0,02549*X4$$

INTERPRETACJA:

Co roku liczba linii kolejowych na 100 km^2 maleje o 0,02549 W 2003 liczba linii kolejowych wyniosła 6,569935

PROGNOZA:

Można przypuszczać ,że w 2022(t=19) liczba linii kolejowych na 100 km^2 wyniesie: 6,085620915

X5 –**MODEL LINIOWY** (wybrałem model liniowy gdyż jest najprostszy , ma <u>zdecydowanie</u> największą wartość R^2 oraz jedno z najmniejszych V z różnicą około 1%)

X5	t
292,5	1
323,4	2
351,1	3
382,7	4
421,6	5
432,2	6
447,4	7
470,3	8
486,4	9
503,7	10
519,9	11
539,1	12
564,0	13

REGLINP:

21,54561	290,1111	
0,457042	4,947187	
0,992852	10,06012	
2222,313	16	
224911,4	1619,296	
t1	58,64163	
t2	47,14141	
	.,,	
p1	4,16E-20	
p1 p2	•	
	4,16E-20	

585,5	14
610,0	15
634,7	16
659,4	17
682,4	18

Liczba zarejestrowanych samochodów na 1000

$$\hat{Y} = b_0 + b_1 * X_5$$

 $\hat{Y} = 290,1111 + 21,54561 * X_5$

INTERPRETACJA:

Co roku liczba zarejestrowanych samochodów na 1000 mieszkańców rośnie o 21,54561.

W 2003 roku liczba zarejestrowanych samochodów na 1000 mieszkańców wynosiła : 290,1111

PROGNOZA:

Można przypuszczać ,że w 2022(t=19) liczba zarejestrowanych samochodów na 1000 mieszkańców wyniesie: 699,477778

testy sprawdzające założenia modelu

Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) Estymacja KMNK, wykorzystane obserwacje 2004-2021 (N = 18) Zmienna zależna (Y): uhat^2

	współczynnik	błąd standardowy	t-Studenta	wartość p)
const	203,740	66,3870	3,069	0,0546	*
X1	1,04833	0,276214	3,795	0,0321	**
X3	1,60023	0,646626	2,475	0,0897	*
X4	-60,4646	19,5662	-3,090	0,0537	*
X5	-0,0902563	0,0274176	-3,292	0,0460	**
sq_X1	-0,000264003	0,00142579	-0,1852	0,8649	
X2_X3	-0,0123988	0,00551522	-2,248	0,1101	
X2_X4	-0,159216	0,0419918	-3,792	0,0322	**
X2_X5	0,000209898	0,000149706	1,402	0,2555	
sq_X3	-0,0130317	0,00574714	-2,268	0,1082	
X3_X4	-0,236582	0,0917470	-2,579	0,0819	*
X3_X5	0,000515880	0,000300874	1,715	0,1849	
sq_X4	4,49005	1,44752	3,102	0,0532	*
X4_X5	0,0133070	0,00396322	3,358	0,0438	**
sq_X5	-1,35406e-06	4,79768e-06	-0,2822	0,7961	

Uwaga: macierz danych jest osobliwa!
 Wsp. determ. R-kwadrat = 0,921841
Statystyka testu: TR^2 = 16,593133,
z wartością p = P(Chi-kwadrat(14) > 16,593133) = 0,278509

Hipoteza zerowa: heteroskedastyczność reszt nie występuje

WNIOSKI Możemy przyjąć założenie o homoskedastyczności w modelu (p-wartość = 0,2785> 0,05).

Test Goldfelda-Quandta

0,005682	-0,07031	-0,1439	0,091588	8,621765		0,000526	-2,90787	0,066428	0,095166	25,99941
0,002015	1,451085	0,091955	0,041645	9,612404		0,004334	3,270314	0,14302	0,030525	20,65261
0,79642	0,168823	#N/D	#N/D	#N/D		0,863987	0,171005	#N/D	#N/D	#N/D
	4		_	#N/D		6,352255	4	#N/D	#N/D	#N/D
0,445995	0,114005	#N/D	#N/D	#N/D		0,743029	0,116971	#N/D	#N/D	#N/D
	F empiryczr	ne:	1,026019							
	F kryt (0,1,	T/2-K, T/2-K)=	4,10725		Fkryt>f em	piryczne			
			BRAK PODS	STAW DO OI	ORZUCENIA	HIPOTEZY 0	SKŁADNIKI	LOSOWE SA	HOMOSKE	DASTYCZNE

Test RESET na specyfikację Hipoteza zerowa: specyfikacja poprawna
Statystyka testu: F(2, 11) = 1,66743
z wartością p = P(F(2, 11) > 1,66743) = 0,233076

WNIOSKI. Nie mamy podstaw do odrzucenia hipotezy zerowej. Model ma postać liniową (pwartość = 0,2331>0,05).

Test na normalność rozkładu reszt – Test Doornika-Hansena (1994)

Rozkład częstości dla residual, obserwacje 1-18 liczba przedziałów = 7, średnia = -5,92119e-016, odch.std. = 0,159453

Przedziały		średnia	liczba	częstość	skumulowana
<	-0,22831	-0,27106	1	5,56%	5,56% *
-0,22831 -	-0,14281	-0,18556	3	16,67%	22,22% *****
-0,14281 -	-0,057313	-0,10006	2	11,11%	33,33% ***
-0,057313 -	0,028184	-0,014565	4	22,22%	55,56% ******
0,028184 -	0,11368	0,070933	4	22,22%	77,78% ******
0,11368 -	0,19918	0,15643	3	16,67%	94,44% *****
>=	0,19918	0,24193	1	5,56%	100,00% *

Hipoteza zerowa: składnik losowy ma cechy rozkładu normalnego Statystyka testu: Chi-kwadrat(2) = 0,186378 z wartością p = 0,911021

WNIOSKI.Nie ma podstaw do odrzucenia hipotezy zerowej o normalnym rozkładzie składnika losowego (p-wartość = 0,9110>0,05).

Tosone	Po (b "	u. cosc	0,522
	TEST JBT		
	T=	18	
	odch std	0,135509	
	S=	-0,18449	
	K=	2,239689	
	JBT=	0,059518	
	Chikwadrat	5,991465	
	IstotnoscChi	0,970679	
	Rozkład	JEST NORM	1ALNY

```
TEST na autokorelacje

Autokorel.reszt - rho1 -0,113860 Stat. Durbina-Watsona 2,203010

Statystyka testu Durbina-Watsona dla 5% poziomu istotności, n = 18, k = 4

dL = 0,8204
dU = 1,8719
składnik losowy nie wykazuje autokorelacji pierwszego rzędu

WNIOSKI. Nie ma podstaw do odrzucenia hipotezy zerowej o braku autokorelacji pierwszego rzędu w składniku losowym, ponieważ wartość DW jest większa od górnej granicy (dU = 1,8719).
```

```
(TEST NORMALNIE WYKONUJE SIE DLA T>=30 WIEC WYNIK JEST OBARCZONY DUŻYM BŁEDEM!!!!)
TEST LAGRANGEA
Test LM na autokorelację rzędu 4 -
Hipoteza zerowa: brak autokorelacji składnika losowego
Statystyka testu: LMF = 1,58902
z wartością p = P(F(4, 9) > 1,58902) = 0,258578

WNIOSKI. Nie mamy podstaw do odrzucenia hipotezy zerowej o braku autokorelacji 4 rzędu (p-wartość = 0,2586>0,05).
```

BADANIE DOBROCI

WSPÓŁCZYNNIK DETERMINACJI

R²= 76,80% Uzyskany model w 76,8% wyjaśnia jak kształtuje się emisja gazów cieplarnianych netto per capita w zależności od (PKB realne per capita "Procentowym Udziale energii odnawialnej w końcowym zużyciu energii "linii kolejowych na 100 km²2,liczbie zarejestrowanych samochodów na 1000 osób). **Adj. R**²= 70%

WSPÓŁCZYNNIK INDETERMINACJI

 ϕ^2 = 23,2% emisji gazów cieplarnianych zależy od innych czynników, nieuwzględnionych w modelu.

OCENA WPŁYWU CZYNNIKÓW LOSOWYCH NA ZMIENNĄ OBJAŚNIANĄ

S= 0,159453352, Wartości empiryczne odchylają się od wartości teoretycznych przeciętnie o 0,1594 ton/ na mieszkańca

V= Co stanowi 1,66% przeciętnych emisji gazów cieplarnianych netto per capita.

BŁAD SZACUNKU PARAMETRU

d1= 2,991994057, Oceny parametru pierwszego (wyraz wolny) mogą się odchylać od jego nieznanej rzeczywistej wartości przeciętnie o 2,99.

d2= 0,018813324, Oceny parametru drugiego mogą się odchylać od jego nieznanej rzeczywistej wartości przeciętnie o 0,018813.

d3= 0,043828624, Oceny parametru trzeciego mogą się odchylać od jego nieznanej rzeczywistej wartości przeciętnie o 0,0438.

d4= 0,43034504, Oceny parametru czwartego mogą się odchylać od jego nieznanej rzeczywistej wartości przeciętnie o 0,43.

d5= 0,001373425, Oceny parametru piątego mogą się odchylać od jego nieznanej rzeczywistej wartości przeciętnie o 0,001.

WNIOSKOWANIE O WEKTORZE PARAMETRÓW

F= 10,76159477

F alfa= 3,179117053

F>F(alfa), wektor parametrów jest łącznie istotny

X5	X4	Х3	X1	Wyraz woln	у
0,005085	1,325577	-0,11017	0,08914	-0,46017	
0,001373	0,430345	0,043829	0,018813	2,991994	
0,768049	0,159453	#N/D	#N/D	#N/D	
10,76159	13	#N/D	#N/D	#N/D	
1,09447	0,33053	#N/D	#N/D	#N/D	

PRZEDZIAŁY UFNOSCI

ud1= -6,923980284 ug1= 6,003640077, Przedział o granicach -6,92233 i 6,00 z prawdopodobieństwem 0,95 zawiera nieznaną rzeczywistą wartość parametru 1(wyraz wolny)

ud2= -6,923980284 ug2= 6,003640077, Przedział o granicach0,048 i 0,12978 z prawdopodobieństwem 0,95 zawiera nieznaną rzeczywistą wartość parametru 2

ud3= -6,923980284 ug3= 6,003640077, Przedział o granicach -0,20486 i -0,01548 z prawdopodobieństwem 0,95 zawiera nieznaną rzeczywistą wartość parametru 3

ud4= -6,923980284 ug4= 6,003640077, Przedział o granicach 0,395873 i 2,255281z prawdopodobieństwem 0,95 zawiera nieznaną rzeczywistą wartość parametru 4

ud5= -6,923980284 ug5= 6,003640077, Przedział o granicach 0,002118 i 0,0,008 z prawdopodobieństwem 0,95 zawiera nieznaną rzeczywistą wartość parametru 5

POSTAĆ MODELU TEORETYCZNEGO

 $\hat{Y} = 0.0050858*X5 + 1.325577*X4 - 0.11017*X3 + 0.08914*X1 - 0.046017$

INTERPRETACJA

- -Jeżeli Liczba samochodów zarejestrowanych na 1000 osób wzrośnie o 1 jednostkę to emisja gazów cieplarnianych wzrośnie o 0,005 ton /na mieszkańca, ceteris paribus. Sugeruje to, że większa liczba samochodów prowadzi do wyższych emisji gazów cieplarnianych, co jest zgodne z intuicją.
- -Jeżeli Liczba linii kolejowych ogółem na 100 km^2 wzrośnie o 1 jednostkę to emisja gazów cieplarnianych netto wzrośnie o 1,325577 ton /na mieszkańca, ceteris paribus. To może sugerować, że rozwój infrastruktury kolejowej jest związany z wyższymi emisjami, być może z powodu energii używanej w transporcie kolejowym lub związanych z tym działań gospodarczych.
- Każdy 1% wzrost udziału energii odnawialnej w końcowym zużyciu energii brutto (przy założeniu, że inne zmienne pozostają stałe) jest związany ze spadkiem emisji gazów cieplarnianych netto o 0,11017 ton per capita. Sugeruje to, że większe wykorzystanie energii odnawialnej pomaga w redukcji emisji gazów cieplarnianych.
- Każdy 1% wzrost PKB realnego per capita (przy założeniu, że inne zmienne pozostają stałe) jest związany ze wzrostem emisji gazów cieplarnianych netto o 0,08914 ton per capita. Sugeruje to, że wzrost gospodarczy, mierzony jako wzrost PKB na mieszkańca, prowadzi do wzrostu emisji gazów cieplarnianych.
- -WYRAZ WOLNY (NIE DO ZINTERPRETOWANIA)

WNIOSKI

Mój model wskazuje na to, że wzrost PKB realnego per capita, liczby samochodów osobowych oraz długości linii kolejowych zwiększa emisje gazów cieplarnianych, podczas gdy wzrost udziału energii odnawialnej zmniejsza te emisje(co sugeruje bardziej skomplikowane relacje miedzy emisjami gazów cieplarnianych a długością linii kolejowych. Plusem jest to, że tylko jedna zmienna X2 przy budowie modelu była nieistotna. Model przeszedł wszystkie testy z pozytywnymi rezultatami. Zależność między zmienną zależną a zmiennymi niezależnymi jest liniowa, reszty są homoskedastyczne, Składniki losowe nie są skorelowane, składnik losowy ma rozkład normalny. V=(współczynnik zmienności losowej) na poziomie 1,66% jest dobrym wynikiem. R^2 na poziomie 76,6% jest zdecydowanie do poprawy. Należało by dodać jeszcze jedną lub 2 zmienne istotne do modelu w celu poprawy R^2.