Calculus

Xi Tan (tan 19@purdue.edu)

November 16, 2017

Contents

Ι	Calculus	5
	Infinite Sequences and Series 1.1 Convergence Tests	7 7
2	Vectors and the Geometry of Space	9
	2.1 Lines in \mathbb{R}^n	_
	2.2 Hyperplanes in \mathbb{R}^n	9

4 CONTENTS

Preface

This book reviews calculus, advanced calculus, real analysis, and functional Analysis. The main references to be used are [?] for calculus, [?] for advanced calculus, [?] for real analysis, and [?] for functional analysis. Other useful texts include: [?] and [?] for real analysis.

Part I Calculus

Chapter 1

Infinite Sequences and Series

1.1 Convergence Tests

There are five common techniques to test whether or not an infinite series is convergent. But first of all, a necessary condition:

Theorem 1.1.1 If the limit of the summand is undefined or nonzero, that is, $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ must diverge.

Theorem 1.1.2 Comparison Test. If $\{a_n\}, \{b_n\} > 0$, and the limit $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists, is finite and is not zero, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Theorem 1.1.3 Integral Test. Let $f:[1,\infty)\to \mathbf{R}_+$ be a positive and monotone decreasing function such that $f(n)=a_n$. Then the series $\{a_n\}$ converges if and only if the integral $\int_1^\infty f(x)dx$ converges.

Theorem 1.1.4 Ratio Test. Suppose there exists r such that $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = r$. If r<1, then the series converges. If r>1, then the series diverges. If r=1, the ratio test is inconclusive, and the series may converge or diverge.

Theorem 1.1.5 Root Test. Define $r = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge.

Theorem 1.1.6 Alternating Series Test. If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$, $(b_n > 0)$ satisfies

- 1. $b_{n+1} \leq b_n$, for all n; and,
- $2. \lim_{n\to\infty} b_n = 0.$

Then the series is convergent.

Theorem 1.1.7 A series is said to be absolutely convergent if $\sum_{i=1}^{\infty} |a_n|$ converges. Every absolutely convergent series is convergent. But not all convergent series are absolutely convergent. A convergent series that is not absolutely convergent is called conditionally convergent.

Chapter 2

Vectors and the Geometry of Space

2.1 Lines in \mathbb{R}^n

Definition 2.1.1 Given a vector $\mathbf{p} \in \mathbb{R}^n$ and a nonzero vector $\mathbf{v} \in \mathbb{R}^n$, the set of all points $\mathbf{y} \in \mathbb{R}^n$ such that

$$\mathbf{y} = t\mathbf{v} + \mathbf{p}, \quad t \in \mathbb{R} \tag{2.1}$$

is called the *line* through \mathbf{p} in the direction of \mathbf{v} .

Example 2.1.1 The shortest distance from a point $\mathbf{q} \in \mathbb{R}^n$ to a line L with equation $\mathbf{y} = t\mathbf{v} + \mathbf{p}$ is

$$\left\| (\mathbf{q} - \mathbf{p}) - \frac{(\mathbf{q} - \mathbf{p})^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} \right\|$$
 (2.2)

2.2 Hyperplanes in \mathbb{R}^n

Definition 2.2.1 Suppose **n** is a normal vector for a hyperplan H through $\mathbf{p} \in \mathbb{R}^n$, then the normal equation for H is

$$\mathbf{n}^T(\mathbf{y} - \mathbf{p}) = 0 \tag{2.3}$$

If H is in \mathbb{R}^3 , we can use cross-product \times to obtain the normal vector given two vectors on the hyperplane.

Example 2.2.1 The shortest distance from a point $\mathbf{q} \in \mathbb{R}^n$ to a hyperplane H with equation $\mathbf{n}^T(\mathbf{y} - \mathbf{p}) = 0$ is

$$\left| \frac{\mathbf{n}^T (\mathbf{q} - \mathbf{p})}{\|\mathbf{n}\|} \right| \tag{2.4}$$

A hyperplane is a set satisfies $H = \{x : w^T x = b\}$. An equivalent form is $w^T (x - \frac{w}{\|w\|^2} b) = 0$, which suggests that the vector \underline{w} is perpendicular to the hyperplane, called a normal vector.

Particularly, since $\frac{w^Tw}{\|w\|^2}b = b$, we know $x_0 = \frac{w}{\|w\|}\frac{b}{\|w\|}$ is on the hyperplane. The x_0 is actually the projection of the origin, since w is orthogonal to the hyperplane and it is nothing but a scaled w on the hyperplane. Therefore, the shortest distance (along the direction of w) from the origin to the hyperplane is given by $\frac{b}{\|w\|}$ (could be negative, which means w is on the other side of the hyperplane).

In general, if a hyperplane is given by the equation $f(x) = w^T x - b = 0$, the distance from any arbitrary vector p to the hyperplane $w^T x = b$ is given by

$$\frac{f(p)}{\|w\|} = \frac{w^T p - b}{\|w\|}, \quad \text{if } p \text{ is on the opposite side of the origin} \tag{2.5}$$

$$-\frac{f(p)}{\|w\|} = -\frac{w^T p - b}{\|w\|}, \quad \text{if } p \text{ is on the same side of the origin}$$
 (2.6)

Particularly, when p=0 (the origin), the above becomes $\frac{b}{\|w\|}$, which agrees with our previous result. Proof: Let's prove the first case. Suppose there is a vector x on the hyperplane, such that $p-x=d\frac{w}{\|w\|}$. Since w is orthogonal to the hyperplane, the scalar d is the distance we are after. Now, multiply both sides

Since
$$w$$
 is orthogonal to the hyperplane, the by w^T ,
$$w^T p - w^T x = dw^T \frac{w}{\|w\|}$$

$$w^T p - (w^T x - b) = d \frac{w^T w}{\|w\|} + b$$

$$w^T p = d\|w\| + b$$

$$d = \frac{w^T p - b}{\|w\|}$$
 The proof for the other case is similar.