MML minor #4

Сверточные нейронные сети

Какие задачи хотим решать

Какие задачи хотим решать

Как компьютер видит картинку

- Матрица яркостей пикселей (например размера 300 х 300)
- Яркости пикселей от 0 до 255

• В цветной картинке 3 канала яркости: красный, зеленый, синий

Как применить к картинке нейросеть?

Нейрон поверх всех пикселей?

Не, так не работает!

Почему нет?

• Хотим выучить детектор кота:

На этой картинке красные веса w_{ij} немного изменятся при градиентном спуске

А на этой зеленые веса w_{ij} изменятся...

- Мы учим те же самые «признаки кота» в разных областях картинки и не полностью используем наши прецеденты!
- А вдруг нам покажут кота в другой части картинки?

Операция свертки

Операция свертки

Свертки применяют к картинкам давно

Фильтр

Поиск краев

Входная картинка На однотонной заливке дает ноль (черный)

Свертки применяют к картинкам давно

Фильтр

Поиск краев

Входная картинка

	0	-1	0
*	-1	5	-1
	0	-1	0

Повышение резкости

Добавляет к картинке края

Свертки применяют к картинкам давно

Фильтр

Поиск краев

Входная картинка

	0	-1	0
k	-1	5	-1
	0	-1	0

Повышение резкости

Размытие

Свертка похожа на корреляцию с шаблоном

Свертка похожа на корреляцию с шаблоном

Свертка похожа на корреляцию с шаблоном

Свертка и сдвиг коммутативны

Свертка и сдвиг коммутативны

Сверточный слой в нейросети

Сверточный слой в нейросети

Как считать градиенты

Представим, что все использования w_4 это разные веса:

Суммируем градиенты по всем использованиям веса $w_4!$

В сверточном слое меньше параметров

- Картинка 300х300
- 300х300 выходных нейронов
- Свертка 5x5 **26** параметров
- В полно-связном слое -8.1×10^9 параметров

Цветная картинка

- Цветная картинка это тензор $W \times H \times C_{in}$
- W ширина,
- *H* высота,
- C_{in} количество каналов (3 RGB канала).

Цветная картинка

- Цветная картинка это тензор $W \times H \times C_{in}$
- W ширина,
- *H* высота,
- C_{in} количество каналов (3 RGB канала).

Одного фильтра мало!

- На входе $W \times H \times C_{in}$
- На выходе $W \times H \times C_{out}$

В одном пикселе появляется **глубина** с разными характеристиками пикселя изображения

Сколько параметров?

$$(W_k * H_k * C_{in} + 1) * C_{out}$$

Да и одного сверточного слоя мало!

- Нейроны первого слоя смотрят на кусочек 3х3.
- А что если кошка больше? ©
- Нужен второй слой!

Сколько слоев нужно для поля обзора 300х300?

N сверточных слоев

- *N* слоев с фильтрами 3х3
- На N-ом слое поле обзора $(2N+1) \times (2N+1)$.
- Если кот 300х300, то нам надо 150 слоев! Многовато...

Нужно растить поле обзора быстрее!

Можно увеличить шаг свертки!

Фильтр

Давайте вспомним инвариантность к сдвигу!

Пулинг слой

• Работает почти как свертка, только вместо свертки берет максимум (или среднее).

Как считать градиент для пулинга

• Строго говоря: максимум не дифференцируемая функция!

• Градиент 0 по немаксимальным входам, потому что при их изменении не меняется выход (максимум).

• Для максимального входа градиент 1.

Соберем это все в сверточную сеть

• LeNet-5 архитектура (1998) для распознавания рукописных цифр (датасет MNIST):

Softmax

• Softmax — это обобщение логистической функции для многомерного случая.

• Преобразует вектор значений в такие, что каждое из них на отрезке [0,1] и в сумме они дают 1:

$$\sigma(z)_i = rac{e^{z_i}}{\displaystyle\sum_{k=1}^K e^{z_k}}$$

Log loss (cross-entropy)

• Потери для классификации на K классов:

$$-\sum_{k=1}^{K} \log(p_k) [y=k]$$

Нейросеть учит иерархические шаблоны

Глубокая нейронная сеть:

Входы, на которые реагируют нейроны

Имея достаточное количество обучающих примеров машина сама найдет все эти шаблоны в данных.

Демо: визуализация обученной сети для MNIST

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Применение: image to image

https://affinelayer.com/pixsrv/

Применение: image to image

https://affinelayer.com/pixsrv/

Применение: рисунки от руки

- https://quickdraw.withgoogle.com
- Ha Kaggle: https://www.kaggle.com/c/quickdraw-doodle-recognition

Применение: рисунки от руки

- https://quickdraw.withgoogle.com
- Ha Kaggle: https://www.kaggle.com/c/quickdraw-doodle-recognition

Ссылки

- http://cs231n.stanford.edu/
- http://cs231n.github.io/convolutional-networks/
- https://brohrer.github.io/how_convolutional_neural_networks_work.html
- https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html