

STB30NF20L

Automotive-grade N-channel 200 V, 0.066 Ω typ., 30 A, STripFET™ Power MOSFET in D²PAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STB30NF20L	200 V	0.075 Ω	30 A	150 W

- AEC-Q101 qualified
- Gate charge minimized
- 100% avalanche tested
- Excellent FoM (figure of merit)
- Very low intrinsic capacitance

Applications

Switching applications

Description

This N-channel enhancement mode Power MOSFET benefits from the latest refinement of STMicroelectronics' unique "single feature size" strip-based process, which decreases the critical alignment steps to offer exceptional manufacturing reproducibility. The result is a transistor with extremely high packing density for low on-resistance, rugged avalanche characteristics and low gate charge.

Table 1: Device summary

Order code	Marking	Package	Packaging
STB30NF20L	30NF20L	D²PAK	Tape and reel

Contents STB30NF20L

Contents

1	Electric	al ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	D²PAK package information	9
	4.2	D ² PAK packing information	12
5	Revisio	n history	14

STB30NF20L Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	200	V
V _{GS}	Gate-source voltage	±20	V
I-	Drain current (continuous) at T _C = 25 °C	30	Α
l _D	Drain current (continuous) at T _C = 100 °C	19	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	120	Α
Ртот	Total dissipation at T _C = 25 °C	150	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	10	V/ns
T _{stg}	Storage temperature range	- 55 to 175	°C
Tj	Operating junction temperature range	- 55 (0 175	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case	1	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax} .)	30	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	140	mJ

 $^{^{(1)}}$ Pulse width is limited by safe operating area.

 $^{^{(2)}}I_{SD} \le 30$ A, di/dt ≤ 200 A/ μ s, $V_{DD} = 80\%$ $V_{(BR)DSS}$

Electrical characteristics STB30NF20L

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	200			V
	. Zero gate voltage	V _{GS} = 0 V, V _{DS} = 200 V			1	μΑ
I _{DSS} drain current	V _{GS} = 0 V, V _{DS} = 200 V, T _C = 125 °C ⁽¹⁾			10	μΑ	
Igss	Gate source leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS}=V_{GS}$, $I_D=250 \mu A$	1	2	3	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 5 V, I _D = 15 A		0.066	0.075	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
C _{iss}	Input capacitance		-	1990	-	pF	
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0 \text{ V}$	-	297	1	pF	
Crss	Reverse transfer capacitance	, , , ,	-	42	-	pF	
Qg	Total gate charge	V _{DD} = 160 V, I _D = 30 A, V _{GS} = 0 to 10 V (see Figure 14: "Test circuit for gate charge behavior")	-	65	1	nC	
Q_{gs}	Gate-source charge		-	7	1	nC	
Q_{gd}	Gate-drain charge		-	21	-	nC	

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	V _{DD} = 100 V, I _D = 15 A,	ı	14	1	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	ı	12	ı	ns	
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load switching times"	-	68	-	ns	
t _f	Fall time	and Figure 18: "Switching time waveform")	-	14	-	ns	

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		30	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	V _{SD} = 1.5 V	-		120	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 30 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 30 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	140		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}$	-	0.75		μC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	13		А
t _{rr}	Reverse recovery time	I _{SD} = 30 A, di/dt = 100 A/μs	-	170		ns
Qrr	Reverse recovery charge	$V_{DD} = 100 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	1.1		μC
IRRM	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	14		А

Notes:

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 8: Gate charge vs gate-source voltage $V_{DS}(V)$ VDD=160V 100 12 ID=30A Vos 100 10 100 8 100 80 6 60 4 40 2 20 ____0 Qg(nC) 0 20 40 60

Figure 10: Normalized gate threshold voltage vs temperature AM11239v1 VGS(th) (norm) ID=250μA 1.2 1.0 8.0 0.6 0.4 0.2 50 -100 -50 100 150 TJ(°C) 0

Test circuits STB30NF20L

3 Test circuits

Figure 15: Test circuit for inductive load switching and diode recovery times

577

STB30NF20L Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D²PAK package information

Figure 19: D²PAK (TO-263) type A package outline

Table 9: D²PAK (TO-263) type A package mechanical data

	ie 9. D-PAR (10-203) typi	mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10.00		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15.00		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.40	
V2	0°		8°

Figure 20: D²PAK (TO-263) type A recommended footprint (dimensions are in mm)

D²PAK packing information 4.2

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 22: D²PAK type A reel outline

Table 10: D2PAK type A tape and reel mechanical data

Таре				Reel	
Dim.	n	nm	Dim.	m	m
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STB30NF20L

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
01-Feb-2012	1	First release
07-Mar-2012	2	P _{TOT} in cover page and in <i>Table 2</i> has been updated. <i>Figure 2, Figure 6, Figure 10</i> and <i>Figure 11</i> have been updated.
02-Mar-2017	3	Updated title and features on cover page. Updated <i>Table 2: "Absolute maximum ratings"</i> , <i>Table 5: "On/off states"</i> and <i>Figure 3: "Thermal impedance"</i> . Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

