PROBLEMS 4a. 19.10.2016

Q1. Vega for European options.

The partial derivative of an option price w.r.t. the volatility σ is called its vega, v.

For calls and puts in the Black-Scholes model, show that vega is positive. Interpretation: *options like volatility*. This makes good intuitive sense: an option is an insurance policy against adverse price movements. The worse these might be, the more we will be prepared to pay for it.

Q2. Delta.

The partial derivative of an option price w.r.t. the stock price S is called its Delta.

- (i) For (European) calls, show that $\Delta \in (0, 1)$.
- (ii) For (European) puts, show that $\Delta \in (-1,0)$.

Q3. Vega for American options.

By using Q1 and the Snell envelope, or otherwise, show that vega is also positive for American options.

NHB