# Lecture 03 Transformations in 2D Short version

We will discuss transformation in 3D, and with full details, later in the course

• We can use different constants  $(s_x, s_y)$  for the x-axis vs. the y-axis. Then we shift each point (x, y) into the point

Scaling

 $\bullet(x,y) \to (s_x \cdot x, s_y \cdot y)$ 



# Translations (shift) by $(\alpha, \beta)$

Translation (shift) by (4,4) $(x,y) \rightarrow (x+4,y+4)$ 





- Adding a constant  $\alpha$  to the x-coordinate of every point
- Adding a constant  $\beta$  to the x-coordinate of every point
- $(x, y) \rightarrow (x + \alpha, y + \beta)$

### Scaling

• Let s be a constant. If we move each point (x,y) into the point  $(x,y) \rightarrow (s \cdot x, s \cdot y)$  we scaled the image by s.











## Shearing

• If we move each point (x,y) into the point  $(x,y) \rightarrow (x+y, y)$  we scaled the image by s.



# Shearing

• Vertical shearing shifts each column based on the x value.



#### **Rotation**

• Rotate counterclockwise by an angle  $\phi$  about the origin.

$$(x, y) \rightarrow (x \cos \phi - y \sin \phi, x \sin \phi + y \cos \phi)$$
New  $x$ 









