## PUNTAJE:



Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

## Tarea 4 – Respuesta Pregunta 1

## 1.

Se define la siguiente gramática libre de contexto:

$$\begin{split} G &= (V, \Sigma, P, S) \\ V &= \{A, S\} \\ \Sigma &= \{a, b\} \\ P: \quad S &\rightarrow aSa \mid bSb \mid aAb \mid bAa \mid a \mid b \\ A &\rightarrow aAa \mid bAb \mid a \mid b \mid \epsilon \end{split}$$

## 2.

**PD:** 
$$\mathcal{L}(G) = L$$
  
1.  $\mathcal{L}(G) \subseteq L$ 

Para la gramática definida, se pueden dar los siguientes casos base

$$S \rightarrow a \in L$$
 (1)  

$$S \rightarrow b \in L$$
 (2)  

$$S \rightarrow aAb \rightarrow ab \in L$$
 (3)  

$$S \rightarrow aAb \rightarrow aab \in L$$
 (4)  

$$S \rightarrow aAb \rightarrow abb \in L$$
 (5)  

$$S \rightarrow bAa \rightarrow ba \in L$$
 (6)  

$$S \rightarrow bAa \rightarrow baa \in L$$
 (7)

(8)

Y se pueden dar los siguientes casos recursivos, construídos sobre los anteriores:

$$\begin{split} S &\to aAb \\ &\to bAa := kAk' \to kaAak' \\ &\to kbAbk' \to \dots \to kmAm^{rev}k' \to kmxm^{rev}k' \end{split}$$

 $S \to bAa \to bba \in L$ 

Donde:

- $k, k' \in \{a, b\}$ , y si  $k = a \to k' = b$  y  $k = b \to k' = a$
- $m \in \Sigma^*$ ,  $|m| \ge 0$
- $x \in \{a, b, \epsilon\}$

Se puede notar que  $kmxm^{rev}k' \in L$ , debido a que  $mxm^{rev}$  es un palíndromo, y tener k con k' darían la condición de casi palíndromo, al ser distintos.

El último caso recursivo que se puede armar desde corresponde a

$$\begin{split} S \rightarrow aSa \\ \rightarrow bSb \rightarrow \dots \rightarrow mSm^{rev} \rightarrow mwm^{rev} \end{split}$$

Donde:

- Nuevamente  $m \in \Sigma^*$ ,  $|m| \ge 0$
- w corresponde a alguno de los casos base (1-8), a alguna palabra de la forma  $kmxm^{rev}k'$ .

 $mwm^{rev} \in L$ , debido a que los lados derecho e izquierdo (compuestos por m y  $m^{rev}$  son palindrómicos, y w le daría la condición de casi-palíndromo, como se explicó anteriormente.

Por lo tanto, y dado que se cubrieron todos los casos,  $\mathcal{L}(G) \subseteq L$ .

2. 
$$L \subseteq \mathcal{L}(G)$$

Dada la definición de palíndromo, tenemos que corresponde a las palabras de la forma:  $uxu^{rev}$ , donde  $u \in \Sigma^*$ , y  $x \in (\Sigma \cup \{\epsilon\})$ . Por lo tanto, una definición de casi-palíndromo, sería un palíndromo  $uxu^{rev}$ , con x distinto de  $\epsilon$ , o bien, una palabra  $ukvxv^{rev}k'u^{rev}$ , donde  $k \neq k'$ , para  $k \in (\Sigma \cup \{\epsilon\})$ , y  $u, v \in \Sigma^*$ .

Podemos ver que la primera forma  $(uxu^{rev})$ , puede ser conseguida con la siguiente derivación de G:

$$\begin{split} S \to aSa \\ \to bSb \to \dots \to uSu^{rev} \to uaAbu^{rev} \\ &\to ubAau^{rev} := ukAk'u^{rev} \to \dots \to ukvAv^{rev}k'u^{rev} \to ukvxv^{rev}k'u^{rev} \end{split}$$

Por lo tanto, se pueden definir las palabras de L con G, y  $L \subseteq \mathcal{L}(G)$ .

Dado que 
$$L \subseteq \mathcal{L}(G) \wedge \mathcal{L}(G) \subseteq L$$
, entonces  $\mathcal{L}(G) = L$ .