# 2.1 OSPF 基础

### OSPF 是基于链路状态的内部网关路由协议

- ——即开放式最短路径优先
- \*所有未收录的知识点不影响使用和理解

## 相关概念

#### ·Area 区域

骨干区以 Area0 命名, 所有的常规区域均要和骨干区域相连, 为了防止环路。

#### ·Router-id 路由器身份证

在唯一的 OSPF 区域中标识唯一一台路由器。

可以手动配置,也可以自动配置。(1.1.1.1、2.2.2.2等样式)

如果不手动配置,则以环回口最大 IP 地址作为 Router-id。

如果没有配置 Loopback 接口,则使用物理接口中最大的 IP 作为 Router-id

任何情况下 127.0.0.0 网段不会被选为 Router-id!

(华为特有的"全局 Router-id 未收录)

#### ·邻居表

display ospf peer #查看邻居表

知道邻居的 Router-id 和 IP, 在 Hello 报文后建立。

10s 发送一次 Hello 报文(组播, 所有组播 IP 都可以收到, 这里即 224.0.0.5), 如果 40s 未收到 Hello 报文, 路由器就会认为邻居故障了(40s 被称作 Dead time, 即死亡时间)。

#### ·LSDB 表

Display ospf Isdb #查看 LSDB 表

保存从邻居收到的 LSA 信息。

同一区域的 LSDB 完全一致!

#### ·OSPF 路由表

Display ospf routing #查看 OSPF 路由表

通过整合 LSDB 中信息获取的路由信息。

#### ·度量值

以 Cost (开销) 值作为路由的度量值。每一个激活 OSPF 的端口都会维护一个 Cost 值。缺省时 Cost=100Mbits/接口带宽,分子(参考带宽)可以配置。

路径计算累计路由器间 Cost 值。

接口 Cost 值也可以直接修改。

Cost 值计算结果如果包含小数,小数部分全部舍去,而非四舍五入!

#### ·版本

OSPFv2——用于 IPv4

OSPFv3——用于 IPv6

#### ·进程号

默认为1

(暂未收录更多作用)

# ·ospf 域

所有 ospf 路由器构成的整个网络被称为 ospf 域 (Domain), 注意不是 Area!

### 重点知识

采用组播的形式收发部分协议报文, 地址为 224.0.0.5 和 224.0.0.6 两个组播地址。224.0.0.5——所有运行了 OSPF 的路由器, 224.0.0.6——仅 DR 和 BDR 才可以收到。

通常情况下核心层和汇聚层之间部署在 OSPF 骨干区域,接入层和汇聚层之间部署在非骨干区域。



(多数情况跨区域设备被三层交换机取代了)

一个区域内的 LSDB 是完全同步的。——划分区域很大原因是一个区域内设备数量太多会导致 LSA 泛洪使得网络拥塞。

# OSPF 三大表项

·OSPF 邻居表 (我有那些邻居)

·LSDB 表(我的邻居的链路信息 LSA)

·OSPF 路由表(我的路由地图)

# DR与 BDR 的选举

BDR 可以没有,但班长(DR)要是死了就彻底玩完。

DR 与 BDR 是非抢占式的,除非挂掉。

DR 与 BDR 的选举是基于接口的。

·接口的 DR 优先级越大越优先。

·DR 优先级一致时, Router ID 越大越优先。

·DR 优先级为 0 时无权参与选举,只能做 DR other。

如果所有路由器优先级全为 0,那么 OSPF 根本不工作,有邻居(2-Way),但没有路由表生成(No full)。

## OSPF 状态

Down

Init

2-way——DR Other 到此为止

Exstart

Exchange

Loading

Full——DR 与 BDR

# OSPF 报文(协议号为: 89)

Hello 报文——发现和维护另据关系(目的地址: 224.0.0.5)

DD 报文——交换链路状态数据库摘要

LSR 报文——请求特定的链路状态信息

LSU 报文——发送详细的链路状态信息

LSA——确认 LSA

## OSPF 工作原理

### ·传递链路状态信息之前,需要先建立 OSPF 邻居关系

| R1    | 报文               | R2   |
|-------|------------------|------|
| Lnit  | Hello→           | Lnit |
| 2-Way | ←Hello(包含 R1 信息) | Lnit |
| 2-Way | Hello(包含 R2 信息)→ |      |



到此 R1 和 R2 成功建立了邻居。

### ·邻接关系的建立



ExStart 选主从设备(Master/Slave),使用不包含 LSA 的 DD 报文。然后确认主从设备后才开始传递 LSA。

#### ·生成路由表,这是 OSPF 的最后一步



Full 为同步完成。

所有设备(DR、BDR、DRother)都会和 DR、BDR 完成上述所有步骤,所有设备与 DR和 BDR 建立邻接关系。DRother 之间只会建立邻居,即 2-Way 状态,LSDB全部只和他们的"区域长"DR和 BDR 同步。这样极大减少了网络拥塞的可能性。

# OSPF 网络类型(拓展)

网络类型决定了 OSPF 的交互速度。常见的 PPP 链路(点到点)和以太网链路(广播式多路访问)。可配置的有 P2P、P2MP、broadcast、nbma。

目前只有广播式多路(broadcast)访问和被淘汰的 NBMA 有 DR 和 BDR 的选举。

如果一个链路上只有两个设备,通过接口视图使用"ospf network p2p"可以极大提高工作效率。

# 2.2 OSPF 路由计算

# 多样的 LSA

这是 LSA 基本概念,有多种不同的 LSA,它被封装在 LSU 报文当中。



特别指出 LSA 的老划时间,一般为 1800s,大于这个时间的 LSA 会被删除 (eNSP 存在老化 LSA 没有被删除的 bug)。

记忆 LSA 时,记住"谁产生的","干什么的"和"传播区域"。

# 常见LSA的类型

| 类型 | 名称                               | 描述                                                                                                                        |
|----|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1  | 路由器LSA<br>(Router LSA)           | 每个设备都会产生,描述了设备的链路状态和开销,该LSA只能在接口所属的区域内泛洪                                                                                  |
| 2  | 网络LSA<br>(Network LSA)           | 由DR产生,描述该DR所接入的MA网络中所有与之形成邻接关系的路由器,以及DR自己。该LSA只能在接口所属区域内泛洪                                                                |
| 3  | 网络汇总LSA<br>(Network Summary LSA) | 由ABR产生,描述区域内某个网段的路由,该类LSA主要用于区域间路由的传递                                                                                     |
| 4  | ASBR汇总LSA<br>(ASBR Summary LSA)  | 由ABR产生,描述到ASBR的路由,通告给除ASBR所在区域的其他相关区域。                                                                                    |
| 5  | AS外部LSA<br>(AS External LSA)     | 由ASBR产生,用于描述到达OSPF域外的路由                                                                                                   |
| 7  | 非完全末梢区域LSA<br>(NSSA LSA)         | 由ASBR产生,用于描述到达OSPF域外的路由。NSSA LSA与AS外部LSA功能类似,但是泛洪范围不同。NSSA LSA只能在始发的NSSA内泛洪,并且不能直接进入Area0。NSSA的ABR会将7类LSA转换成5类LSA注入到Area0 |
|    |                                  | D JoinLa<br>卓应教                                                                                                           |



### 区域内的 LSA

Router LSA(1类 LSA)包含拓扑信息(本端 IP+对端 Router-id)+路由信息(路由信息包含掩码)——你完全可以想象在填你配置静态路由时"[接口视图]ip route-s <目标网段> <掩码> <下一跳——对端 IP>",正是因为 1 类 LSA 存在这些关键字段,才产生路由。每一个 Router LSA 都会包含来源,即谁产生的。比如两个属于同一区域的路由器之间运行了 OSPF,一个路由器里会有两条 Router LSA,一个来自自己,一条来自对端。一来一去,两者才能通讯。就像静态路由你要配置一来一回。(以太网接口描述部分链路信息,点到点则为链路和路由信息,环 回只有路由信息)

# Router LSA详解 (2)

· 路由器可能会采用一个或者多个Link来描述某个接口。

- Router LSA使用Link来承载路由器直连接口的信息。
- 每条Link均包含"链路类型"、"链路ID"、"链路数据"以及"度量值"这几个关键信息。
- Options Link Type Link State ID Point-to-Point (P2P) : 描述一个从本路由器到邻居路由器之间的点到点链 宣告该Router LSA的路 由器接口的IP地址 邻居路由器的 Router ID 路,属于拓扑信息 LS sequence number コハイおれ TransNet: 描述一个从本路由器到一个Transit网段(例如MA或者NBMA网 LS checksum DR的接口IP地 址 length 宣告该Router LSA的路 V E B 由器接口的iptittil 段)的连接,属于拓扑信息 Link ID StubNet: 描述一个从本路由器到一个 宣告该Router Link Data Stub网段(例如Loopback接口)的连 LSA的路由器接 该Stub网络的网络掩码

接,属于网段信息

第9页



口的网络IP地址

Network LSA 包含整个 MA 网络里的路由和链路状态(接口信息+网段)。<u>你可以理解为 DR 收集了所有人发出的 Router LSA,然后汇总打包好,在送给所有</u>和自己建立邻接关系的路由器。

补充:假设你配置了一条静态路由,优先级设置为最高。经过 SPF 算法后,即便是被认定为最优的 OSPF 路由也不会被放入公共路由表。

## 区域间的 LSA (3 类 LSA)

——单区域 OSPF 规模过大时, LSDB 会变得相当臃肿, 徒增性能损耗。其次,即便是微小的拓扑变化,这个变更会被扩散到整个区域,并可能引发路由的重新计算。因此引入了多区域,区域间便通过 Summary LSA (3 类 LSA) 进行同步。

·ABR 区域边界路由器(一个接口在骨干区,一个在非骨干区)

三类 LSA 是由 ABR 路由器产生的,三类 LSA 只能够在本区域内泛洪。三类 LSA 传至 ABR 不相邻区域是,必须重新生成一份三类 LSA! (比如 Area0 与 Area2 间的 ABR 在 Area0 传递三类 LSA,由 Area1 与 Area0 的 ABR 收到后,Area1 与 Area0 的 ABR 重新生成一份三类 LSA 传到 Area1。

为什么重新生成,除了三类 LSA 无法跨区域传播外,<u>Cost 值也需要重新计</u>算。

# 

R2自己到192.168.1.0/24的Cost为1,因此它向Area0所通告的192.168.1.0/24路由的Cost为1。

- 1. 通过区域内SPF的计算,R1到达R2的Cost值为1,R3到 达R2的Cost值为2。
- 2. R1和R3根据收到的Network Summary LSA进行路由计算:
  - R1将到达R2和Cost值和Network Summary LSA所携带的Cost值相加,因此R1到达192.168.1.0/24的Cost值为2。
  - 。 R3将到达R2和Cost值和Network Summary LSA所携带的 Cost值相加,因此R3到达192.168.1.0/24的Cost值为3。



\*192.168.1.0 是 R2 和 R4 之间的网段。

第23页

## 区域间路由防环机制

这里建议所有人配置 OSPF 时,所有非骨干区域必须与骨干区域相连!

OSPF 为了防止缺心眼网工搞了一个环, 拒绝传出的三类 LSA 重新注入到自己区域(出了门就别想回来了)。

# 区域间路由的防环机制 (3)

ABR从非骨干区域收到的3类LSA不能用于区域间路由的计算。



第31页

R1和R2、R3和R4之间的链路中断导致骨干区域不连续。

- R4将10.0.2.2/32路由以3类LSA的形式发送到Area 1。
- R5和R6可以根据上述3类LSA计算出10.0.2.2/32路由。
- ・ R3<u>从非骨干区域收到3类LSA,不进行路由计</u>算,也不会将此3 类LSA发送到其他区域。
  - 此时, R1和R3都无法和10.0.2.2/32通信。

DoinLabs 卓应教育

如图, R3 会拒收来自 Area0 的三类 LSA, 所以 R1、R3 和 R2 就这样分开了, 除非链路修好, 不然它们这辈子都说不了话了。

### 虚链接

既要求骨干区域和非骨干区域相连,OSPF 又自带防环圣体,但我现在就要非骨干区域和非骨干区域的 ABR 做邻居咋办······

学过 CAPWAP 和 VPN 的你第一反应就是"建隧道"对吧、巧了、OSPF 它有!



有很多很就要问了, R2 不能直接发 Hello 报文给 R3 嘛! 抱歉 OSPF 报文的 TTL=1, 一旦被 R1 这么一转发, TTL-1, 呕吼~

你把虚连接想象成一根虚拟的线,把 R2 和 R3 连在一起了……但还是建议,拿根<u>物理的线(哈哈哈,没想到吧,这才是最简单的解决方案!)</u>把 R2 和 R3 连起来效果更好!

# OSPF 路由引入(5 类 LSA)

因为一些特殊原因,整个网络区域并非所有链路都运行了 OSPF (这也说明了 OSPF 域不等于整个网络)。常见的是边缘服务器 (FTP 服务器这种),使用静态路由前往网络的其它地方的设备。为了解决动态路由无法自动获取这部分链路和路由的情况,便有了 OSPF 路由引入。

·AS 自治系统(暂未收入更多信息)

·ASBR 自治系统边界路由器——只要一台 OSPF 设备引入了外部路由,他就成为了 ASBR。

ASBR 将外部路由以 AS-external LSA (五类 LSA) 的形式在 OSPF 域中泛洪,描述外部的路由信息。



OSPF 外部路由的开销有两种情况,Metric-Type-1 和 Metric-Type-2。当外部路由度量值,即参考带宽和内部一致时, ASBR 会认为其具有可比性, 使用 type-1, 会连同 OSPF 内部的开销一起计算。倘若外部计算开销的方式不一样或度量值不同,则会用 type-2,仅计算外部路由开销。多数情况下为 Metric-Type-2。四类 LSA(AS-sum LSA)

你一定很好奇为什么 4 类 LSA 会放到 5 类 LSA 后面来说。5 类 LSA 告知所有 OSPF 路由器外部路由状况后,OSPF 仍无法前往,这是因为路由器们根本就不知 道出口在哪里。4 类 LSA 则描述了前往 ASBR 的路由,你可以理解为 OSPF 域"网 关"。和三类 LSA 一样,四类 LSA 只在 Area 内传播,并且跨区会由 ABR 制作一

个新的在下一个区域泛洪,倒不是开销的问题,只是告诉自己所在区域去,你想 去那个地方,可以找我。

### SPF 算法

### 一、SPF 算法的基本原理

SPF 算法是一种用于解决图论中单源最短路径问题的算法,最初由荷兰计算机科学家 Edsger W. Dijkstra 提出。在 OSPF 中,SPF 算法用于计算路由器到网络中其他节点的最短路径。具体来说,每个运行 OSPF 的路由器都会维护一个链路状态数据库(LSDB),该数据库中存储了网络中所有路由器的链路状态信息。当LSDB 更新完成后,路由器会运行 SPF 算法,生成一棵以该路由器为根的最短路径树(Shortest Path Tree, SPT),从而确定数据包转发的最佳路径。

### 二、SPF 算法的实现步骤

初始化:

选择一个起点(通常是运行 SPF 算法的路由器本身), 并将起点的最短路径 距离设为 0。

将所有其他节点的最短路径距离设为无穷大。

创建一个未处理节点列表,将所有节点加入该列表。

选择最近节点:

从未处理节点列表中选择一个距离起点最近的节点、标记为已处理。

将该节点从未处理节点列表中移除。

更新邻居节点的距离:

对于已处理节点的所有邻居节点,计算从起点到这些邻居节点的路径距离。如果新计算的距离小于当前记录的距离,则更新邻居节点的最短路径距离, 并记录前驱节点(即从起点到该邻居节点的上一个节点)。

### 重复步骤2和3:

重复上述步骤,直到所有节点都被标记为已处理。

生成最短路径树 (SPT):

SPF 算法执行完毕后, 会生成一棵以该路由器为根的最短路径树 (SPT)。

SPT 描述了从该路由器到网络中所有其他节点的最优路径,路由器根据 SPT 中的信息更新其路由表,从而确定数据包转发的最佳路由。



### OSPF 特俗区域

——上世纪的设备就不要拿到今天用了喵……

### Stub 与 Totally Stub

末端路由器的性能可能不如骨干区域的路由器,难以承载庞大的 LSA,即便已经划分过区域……这个时候就引入一个 Stub 区域,Stub 针对那些没有大量区域间流量转发而设计。Stub 下的路由器会删除区域内除 ABR 所有 4、5 类 LSA (即不能引入 AS 外部路由也不接受 AS 外部路由),但会留下一条缺省路由前往ABR,即一个报文源目 IP 都匹配不上时,默认给 ABR,这样可以极大减小末端路由的压力。此外,骨干区域不可以被设定为 Stub 区域、虚连接也不能穿过 Stub 区域。

在 OSPF 区域视图下输入 "Stub"设定区域,一个 area 内所有路由器都必须设置 stub。注意 stub 开始执行命令后所有路由器需要重新建立邻居关系!

别急,有那么些时候,末端路由器菜的超乎你想象,哪怕抹去了 4、5 内 LSA,他还嫌多……(这边建议直接扔掉换新的)。在 Stub 的基础上,多了一个 Totally Stub,进一步削减三类 LSA,转发的工作全部扔给 ABR (ABR: 6),只要是报文统统扔给 ABR 去转发就行啦!

### NSSA 与 Totally NSSA

为了解决 Stub 无法引入外部路由的问题,创造了 NSSA。就是在删除 4、5 类 LSA 的前提下允许引入外部路由。外部路由的传递引入了 7 类 LSA——即有 NSSA 区域的 ASBR 产生,发送给 ABR(仅在 NSSA 区域中泛洪)。7 类 LSA 会被 ABR 转化为 5 类 LSA 发往其它区域。同时 ABR 会生成一条缺省的 7 类 LSA 在 NSSA 区域内泛洪,用于描述外部路由。

# NSSA区域与Totally NSSA区域

- NSSA区域能够引入外部路由,同时又不会学习来自OSPF网络其它区域引入的外部路由。
- Totally NSSA与NSSA区域的配置区别在于前者在ABR上需要追加no-summary关键字。





当然 Totals NSSA 和 Stub、totally Stub 一致,进一步削减 3 类 LSA,缺省交给 ABR 中转。

# 路由汇总

比特殊区域温和一点的处理方式,不是直接删除,而是聚合到一个网段内。

#### ABR 路由汇总

比如说一个 Area 内存在 172.16.1.0,172.16.2.0,172.168.3.0······他们都是实在存在网段。如果不启用路由汇总,那么会产生很多三类 LSA 去描述前往每一个网段的路由。ABR 路由汇总则是将上述网段全汇总到 172.168.0.0 255.255.0.0 这个

大网段中,这样就只会产生1条三类LSA。

ABR 路由器在 ospf 区域视图下输入 "abr-summary <汇总的网络地址> < 汇总的电子掩码>"——汇总前你需要自行根据主机数量去计算掩码。

#### ASBR 路由汇总

在理解汇总的基础上,ASBR 汇总就是将外部区域所有相同的网段汇总到一个大网段。

和 ABR 路由引入不太一样的是,在 ospf 进程视图下配置。

### OSPF 其它特性

### Silent-Interface 静默接口

有些时候,一台 OSPF 路由器的下游是一些服务器和 PC,但为了能够访问这个网段,路由器面向此网段的接口仍需要激活 OSPF。这造成一个问题,该端口上路由器仍会发送 Hello 报文,终端设备们仍需要处理这些报文(丢弃也消耗性能)。这多出来的 Hello 报文就是无用的,而且还不利于安全。这个时候我们就可以将该端口配置为静默端口,宣告网段(直连路由仍会给出去),但不发出也不接收 OSPF 报文。

在 ospf 区域视图下. 输入 "silent <接口>"讲行配置。

### Ospf 报文认证

- OSPF 共有两种认证方式
  - ·区域认证
  - ·接口认证

# OSPF报文认证

- OSPF支持报文认证功能,只有通过认证的OSPF报文才能被接收。
- 路由器支持两种OSPF报文认证方式,当两种认证方式都存在时,优先使用接口认证方式:
  - 。 区域认证方式:一个OSPF区域中所有的路由器在该区域下的认证模式和口令必须一致。
  - 接口认证方式: 相邻路由器直连接口下的认证模式和口令必须一致。



命令如图所示。

(Wireshark 抓包会显示密文)

=====我也是有底线的=====