实验三:基于华为云安装 HBase、 Zookeeper 及 HBase 应用实践

一、实验描述

在实验一、二搭建好的集群环境上,继续安装 HBase、Zookeeper,实践 HBase 基本使用

二、实验目的

掌握 HBase、ZooKeeper 的安装与使用,使用 MapReduce 批量将 HBase 表上的数据导入到 HDFS 中,学习本实验能快速掌握 HBase 数据库在分布式计算中的应用,理解 Java API 读取 HBase 数据等相关内容。

三、实验环境

3.1 前提

确保已安装好 Hadoop 并配置好环境变量

3.2 下载安装并配置 zookeeper

在用户目录下下载 zookeeper 压缩包并解压

wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz

mv zookeeper-3.4.6.tar.gz/usr/local

cd /usr/local

tar -zxvf zookeeper-3.4.6.tar.gz

建立软链接, 便于后期版本更换

ln -s zookeeper-3.4.6 zookeeper

打开配置文件

vim /etc/profile

添加 ZooKeeper 到环境变量。

export ZOOKEEPER HOME=/usr/local/zookeeper

export PATH=\$ZOOKEEPER HOME/bin:\$PATH

使环境变量生效。

source /etc/profile

进入 ZooKeeper 所在目录。

cd /usr/local/zookeeper/conf

#拷贝配置文件。

cp zoo_sample.cfg zoo.cfg

修改配置文件。

vim zoo.cfg

修改数据目录。

dataDir=/usr/local/zookeeper/tmp

在最后添加如下代码

server.1=192.168.0.127:2888:3888

server.2=192.168.0.80:2888:3888

server.3=192.168.0.58:2888:3888

server.4=192.168.0.204:2888:3888

制作 tmp 目录

mkdir /usr/local/zookeeper/tmp

在 tmp 目录中创建一个空文件 myid,并向该文件写入 ID

touch /usr/local/zookeeper/tmp/myid

echo 1 > /usr/local/zookeeper/tmp/myid

配置好的 ZooKeeper 拷贝到其它节点

scp -r /usr/local/zookeeper-3.4.6 root@rcx-2019211279-0001:/usr/local

 $scp -r /usr/local/zookeeper-3.4.6 \ root@rcx-2019211279-0003:/usr/local$

scp -r /usr/local/zookeeper-3.4.6 root@rcx-2019211279-0004:/usr/local

登录 rcx-2019211279-0002、rcx-2019211279-0003、rcx-2019211279-0004, 创建软链接并修改 myid 内容。

rex-2019211279-0002:

cd /usr/local

ln -s zookeeper-3.4.6 zookeeper

echo 2 > /usr/local/zookeeper/tmp/myid

rex-2019211279-0003:

cd /usr/local

ln -s zookeeper-3.4.6 zookeeper

echo 3 > /usr/local/zookeeper/tmp/myid

rcx-2019211279-0004:

cd /usr/local

ln -s zookeeper-3.4.6 zookeeper

echo 4 > /usr/local/zookeeper/tmp/myid

分别在 rex-2019211279-0002,rex-2019211279-0003,rex-2019211279-0004 上启动 ZooKeeper,需要先启动 hdfs

cd /usr/local/zookeeper/bin

./zkServer.sh start

./zkServer.sh status

查看 ZooKeeper 状态,注意, Mode 应为 leader 或 follower

3.3 下载并安装 HBase

下载 HBase:

wget https://archive.apache.org/dist/hbase/2.0.2/hbase-2.0.2-bin.tar.gz

将 hbase-2.0.2.tar.gz 放置于 rcx-2019211279-0001 节点的"/usr/local"目录,并解压。

mv hbase-2.0.2-bin.tar.gz /usr/local

cd /usr/local

```
tar -zxvf hbase-2.0.2-bin.tar.gz
```

建立软链接,便于后期版本更换。

ln -s hbase-2.0.2 hbase

编辑 "/etc/profile"文件。

vim /etc/profile

在文件底部添加环境变量

export HBASE HOME=/usr/local/hbase

export PATH=\$HBASE HOME/bin:\$HBASE HOME/sbin:\$PATH

使环境变量生效。

source /etc/profile

修改 HBase 配置文件

cd \$HBASE HOME/conf

vim hbase-env.sh

其中的 JAVA HOME 为绝对路径

export JAVA_HOME=/usr/lib/jvm/jdk8u292-b10

export HBASE_MANAGES_ZK=false

export HBASE_LIBRARY_PATH=/home/modules/hadoop-2.7.7/lib/native

修改 hbase-site.xml 文件

vim hbase-site.xml

添加或修改 configuration 标签范围内的部分参数。

```
</property>
    cproperty>
       <name>hbase.tmp.dir</name>
       <value>/usr/local/hbase/tmp</value>
    </property>
   cproperty>
       <name>hbase.cluster.distributed
       <value>true</value>
   </property>
   cproperty>
       <name>hbase.unsafe.stream.capability.enforce</name>
       <value>false</value>
   </property>
   cproperty>
       <name>hbase.zookeeper.quorum</name>
       <value>rcx-2019211279-0002:2181,rcx-2019211279-0003:2181,rcx-
2019211279-0004:2181</value>
   </property>
   cproperty>
       <name>hbase.unsafe.stream.capability.enforce</name>
       <value>false</value>
    </property>
 /configuration>
```

```
修改 regionservers
编辑 regionservers 文件
vim regionservers
# 文件内容替换为 agent 节点 IP
rcx-2019211279-0002
rcx-2019211279-0003
rcx-2019211279-0004
```

拷贝 hdfs-site.xml

拷贝 hadoop 目录下的的的 hdfs-site.xml 文件到"hbase/conf/"目录,可选择软链接或拷贝。cp /home/modules/hadoop-2.7.7/etc/hadoop/hdfs-site.xml /usr/local/hbase/conf/hdfs-site.xml

拷贝 hbase-2.0.2 到 rcx-2019211279-0002、rcx-2019211279-0003、rcx-2019211279-0004 节点的 "/usr/local"目录。

scp -r /usr/local/hbase-2.0.2 root@rcx-2019211279-0001:/usr/local/

scp -r /usr/local/hbase-2.0.2 root@rcx-2019211279-0003:/usr/local/

scp -r /usr/local/hbase-2.0.2 root@rcx-2019211279-0004:/usr/local/

分别登录到 rcx-2019211279-0002、rcx-2019211279-0003、rcx-2019211279-0004 节点, 为 hbase-2.0.2 建立软链接

cd /usr/local

ln -s hbase-2.0.2 hbase

依次启动 ZooKeeper 和 Hadoop。

在 rcx-2019211279-0001 节点上启动 HBase 集群。

/usr/local/hbase/bin/start-hbase.sh

观察进程是否都正常启动。

jps

3.3 HBase 实践

1 启动 Hadoop 集群

在 rcx-2019211279-0001 运行:

start-dfs.sh

start-yarn.sh

2 启动 Zookeeper 集群

需要在 rex-2019211279-000{2..4}分别运行:

. /usr/local/zookeeper/bin/zkServer.sh start

3 启动 HBase 集群

在 rex-2019211279-0001 运行

进入 HBase Shell 创建实验用表

输入 hbase shell 进入 hbase 交互式环境

4 数据库表格设计并插入数据扫描表格:

```
[root@rcx-2019211279-0001 local]# hbase shell
create '2019211279-rcx', 'cf1'
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hbase-2.0.2/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/im
pl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/modules/hadoop-2.7.7/share/hadoop/common/lib/slf4j-log4j12-
1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2022-04-30 00:52:14,250 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library fo
r your platform... using builtin-java classes where applicable
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
Version 2.0.2, r1cfab033e779df840d5612a85277f42a6a4e8172, Tue Aug 28 20:50:40 PDT 2018
Took 0.0086 seconds
hbase(main):001:0> create '2019211279-rcx', 'cf1'
Created table 2019211279-rcx
Took 1.9527 seconds
=> Hbase::Table - 2019211279-rcx
hbase(main):002:0> put '2019211279-rcx','2019211279-rcx-0001','cf1:keyword','C'
Took 0.2002 seconds
hbase(main):003:0> put '2019211279-rcx','2019211279-rcx-0002','cf1:keyword','C++'
Took 0.0070 seconds
hbase(main):004:0> put '2019211279-rcx','2019211279-rcx-0003','cf1:keyword','JAVA'
Took 0.0061 seconds
hbase(main):005:0> put '2019211279-rcx','2019211279-rcx-0004','cf1:keyword','Python'
Took 0.0282 seconds
hbase(main):006:0> scan '2019211279-rcx'
                          COLUMN+CELL
ROW
 2019211279-rcx-0001
                          column=cf1:keyword, timestamp=1651251181363, value=C
 2019211279-rcx-0002
                          column=cf1:keyword, timestamp=1651251188513, value=C++
 2019211279-rcx-0003
                          column=cf1:keyword, timestamp=1651251196025, value=JAVA
 2019211279-rcx-0004
                          column=cf1:keyword, timestamp=1651251201805, value=Python
4 row(s)
Took 0.0555 seconds
hbase(main):007:0>
hbase(main):008:0*
hbase(main):009:0*
hbase(main):010:0*
hbase(main):011:0*
```

5 编写代码,将 Hbase 中的数据导出到 hdfs 指定目录

打开 IDEA, 新建 maven 工程, 工程名 MyHBase, 编写 pom.xml 文件添加依赖 在 src/java 目 录 下 新 建 package , 名 称 org/rcx2019211279/hbase/inputSource 新建类 MemberMapper

```
| Seminary | Seminary
```

新建类 Main

6 打包程序,导出 jar 包

7 将 jar 包通过 winscp 或 scp 命令复制到服务器 rcx-2019211279-0001 上运行 jar 包

8 查看结果

```
Types call by lyee-179

Splited Storytose
Falled Storytos
```

四、实验结果与分析

4. 1

```
[root@rcx-2019211279-0001 local]# hbase shell
create '2019211279-rcx', 'cf1'
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hbase-2.0.2/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/im
pl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/modules/hadoop-2.7.7/share/hadoop/common/lib/slf4j-log4j12-
1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2022-04-30 00:52:14,250 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library fo
r your platform... using builtin-java classes where applicable
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
Version 2.0.2, r1cfab033e779df840d5612a85277f42a6a4e8172, Tue Aug 28 20:50:40 PDT 2018
Took 0.0086 seconds
hbase(main):001:0> create '2019211279-rcx','cf1'
Created table 2019211279-rcx
Took 1.9527 seconds
=> Hbase::Table - 2019211279-rcx
hbase(main):002:0> put '2019211279-rcx','2019211279-rcx-0001','cf1:keyword','C'
Took 0.2002 seconds
hbase(main):003:0> put '2019211279-rcx','2019211279-rcx-0002','cf1:keyword','C++'
Took 0.0070 seconds
hbase(main):004:0> put '2019211279-rcx','2019211279-rcx-0003','cf1:keyword','JAVA'
Took 0.0061 seconds
hbase(main):005:0> put '2019211279-rcx','2019211279-rcx-0004','cf1:keyword','Python'
Took 0.0282 seconds
hbase(main):006:0> scan '2019211279-rcx'
                          COLUMN+CELL
 2019211279-rcx-0001
                          column=cf1:keyword, timestamp=1651251181363, value=C
 2019211279-rcx-0002
                          column=cf1:keyword, timestamp=1651251188513, value=C++
 2019211279-rcx-0003
                          column=cf1:keyword, timestamp=1651251196025, value=JAVA
                          column=cf1:keyword, timestamp=1651251201805, value=Python
 2019211279-rcx-0004
4 row(s)
Took 0.0555 seconds
hbase(main):007:0>
hbase(main):008:0*
hbase(main):009:0*
hbase(main):010:0*
hbase(main):011:0*
```

```
### Window | Section | Sec
```

截图二

```
First Solit System 279

Select System 279

Select Solit System 279

Select Solit System 279

Select Solit System 279

Select System 2
```

截图三

4. 2src 文件夹: 见附件

五、经验总结

在本次实验中,我遇到一个问题,不小心删除某些文件夹内容导致 hadoop 无法正常启动,我尝试了重新格式化 Hadoop,但是由于忘记了删除 tmp 文件夹的内容,导致重新格式化后的 Hadoop 仍然无法正常使用,且会报错提示无可用的 datanode。

这个问题解决办法之前就有同学提到,删除所有节点的 hadoop 下的 tmp 文件夹即可。但是为什么会出现这个问题?

我在网上找到了一个合理的解释: 提示无可用的 datanode 是因为多次格式化 Hadoop 导致 namenode 的 clusterID 与 datanode 的 clusterID 不一致,namenode 的 clusterID 在每次格式化都会更新,datanode 的 clusterID 只有在首次格式化时才会更新。而他们的 clusterID 分别在 tmp 文件夹下的/data/version 和/name/version 中。

所以删除所有节点的 tmp 文件夹是一个办法,但如果想要保留 tmp 文件夹的内容,那么可以将 tmp/name/version 中的 clusterID 拷贝替换到 tmp/data/version 中