UNCLASSIFIED

AD NUMBER AD852300 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational use; Apr 1969. Other requests shall be referred to AFWL [WLRP], Kirtland AFB, NM, 87117. **AUTHORITY** Per AFEWL ltr, 30 Nov 1971

The following notice applies to any unclassified (including originally classified and now declassified) technical reports released to "qualified U.S. contractors" under the provisions of DOD Directive 5230.25, Withholding of Unclassified Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLED TECHNICAL DATA

- 1. Export of information contained herein, which includes, in some circumstances, release to foreign nationals within the United States, without first obtaining approval or license form the Department of State for items controlled by the International Traffic in Arms Regulations (ITAR), or the Department of Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of law.
- 2. Under 22 U.S.C. 2778 the penalty for unlawful export of items or information controlled under the ITAR is up to two years imprisonment, or a fine of \$100,000, or both. Under 50 U.S.C., Appendix 2410, the penalty for unlawful export of items or information controlled under the EAR is a fine of up to \$1,000,000, or five times the value of the exports, whichever is greater; or for an individual, imprisonment of up to 10 years, or a fine of up to 10 years, or a fine of up to \$250,000, or both.
- 3. In accordance with your certification that establishes you as a "qualified U.S. Contractor", unauthorized dissemination of this information is prohibited and may result in disqualification as a qualified U.S. contractor, and may be considered in determining your eligibility for future contracts with the Department of Defense.
- 4. The U.S. Government assumes no liability for direct patent infringement, or contributory patent infringement or misuse of technical data.
- 5. The U.S. Government does not warrant the adequacy, accuracy, currency, or completeness of the technical data.
- 6. The U.S. Government assumes no liability for loss, damage. Or injury resulting form manufacture or use for any purpose of any product, article, system, or material involving reliance upon any or all technical data furnished in response to the request for technical data.
- 7. If the technical data furnished by the Government will be used for commercial manufacturing or other profit potential, a license for such use may be necessary. Any payments made in support of the request for data do not include or involve any license rights.
- 8. A copy of this notice shall be provided with any partial or complete reproduction of these data that are provided to qualified U.S. contractors.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DOD 5200.22-M, Industrial Security Manual, Section II-19 or DOD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

COMPILATION OF HUGONIOT EQUATIONS OF STATE

Brian J. Kohn Lt. USAF

TECHNICAL REPORT NO. AFWL-TR-69-38

April 1969

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base
New Mexico

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRP) , Kirtland AFB, NM, 87117.

194

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331.

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

BLANK PAGE

COMPILATION OF HUGONIOT EQUATIONS OF STATE

Brian J. Kohn Lieutenant USAF

TECHNICAL REPORT NO. AFWL-TR-69-38

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRP), Kirtland AFB, NM, 87117. Distribution is limited because of the technology discussed in the report.

FOR EWORD

This report was prepared under Program Element 6.16.46.01.H, Project 5710, Subtask RAS 1114 (15.025), and was funded by the Defense Atomic Support Agency (DASA).

Inclusive dates of research were June 1968 to January 1969. The report was submitted 4 March 1969.

Information in this report is embargoed under the US Export Control Act of 1949, administered by the Department of Commerce. This report may be released by departments or agencies of the US Government to departments or agencies of foreign governments with which the United States has defense treaty commitments, subject to approval of AFWL (WLRP), Kirtland AFB, NM, 87117.

This technical report has been reviewed and is approved.

BRIAN J. KOHN Lieutenant, USAF Project Officer

HARRY F. RIZZO

Lt Colonel, USAF

Chief, Physics Branch

CLAUDE K. STAMBAUGH

Colonel, USAF

Chief, Research Division

ABSTRACT

(Distribution Limitation Statement No. 2)

Computer codes for predicting material response to shock loading in and above the elastic region of a material require a knowledge of the Hugoniot equation of state. Hugoniot and material data have been compiled from various sources on materials of interest and presented in a form which condenses the needed computer code inputs to an easily accessible source.

This page intentionally left blank.

CONTENTS

Section		Page
I	INTRODUCTION	1
II	HUGONIOT DATA REPRESENTATION	2
	Form of the Equation of State	2
	Experimental Determination of the Hugoniot	3
III	MATERIAL PROPERTIES	6
	Discussion of Material Strength	6
	Significance of the U - U Relationship	8
IV	EQUATION OF STATE DATA AND GRAPHS	13
	Aluminum	15
	Aluminum (1060)	17
	Aluminum (6061~T6)	19
	Aluminum (2024)	21
	24 ST Aluminum	23
	921 T Aluminum	25
	Antimony	27
	AVCOAT II	29
	Beryllium	31
	Bismuth	33
	Boron Nitride	35
	Brass	37
	Cadmium	39
	Boron Carbide	41
	Silicon Carbide	43
	Tungsten Carbide	45
	Carbon Phenolic	47
	3-D Carbon Phenolic	49
	Chromium	51
	Cobalt	53
	Copper	55
	Durite	57
	Ероху	59
	C-7 Frory	61

CONTENTS (cont'd)

Section		Page
	Exon	63
	Hi-D Glass	65
	Gold	67
	Graphite, Commercial	69
	Pyrolytic Graphite	71
	Hafnium	74
	Armco Iron	76
	Iron	78
	Lead	81
	Lucite	83
	Magnesium	85
	Manganin	87
	Molybdenum	89
	Mylar	91
	Nickel	93
	Niobium	95
	Nylon	97
	Palladium	99
	Paraffin	101
	AVCO Phenolic Fiberglass	103
	GE Phenolic Fiberglass	105
	Chopped Nylon Phenolic	107
	Tape-Wound Nylon Phenolic	109
	Quartz Phenolic	111
	3-D Quartz Phenolic	113
	X-Cut Crystalline Quartz	115
	Phenolic Refrasil	117
	Platinum	119
	Plexiglass	121
	Polyethylene	124
	Polystyrene	126
	RAD 58B	128
	OTWR	132
	Series 124 Resin	134
	Silver	136
	Stainless Steel Type 304	138

CONTENTS (cont'd)

Section		Page
	Stainless Steel Type 304L	140
	Steel, Mild EN3	142
	Tantalum	144
	Teflon	146
	Thallium	148
	Thorium	150
	Tin	152
	Titanium	154
	Tungsten	156
	TWSP	158
	Uranium 3 wt pct Molybdenum	160
	Vanadium	162
	Zinc	164
	Zirconium	166
v	MATERIAL DATA REFERENCE SOURCES	168
	REFERENCES	181
	DISTRIBUTION	185

SYMBOLS AND UNITS

ambient density $(\rho_0)(gm/cm^3)$ RHO Es sublimation energy (ergs/gm) Gruneisen coefficient (calculated from $B^S \cdot \beta/\rho_o \cdot C_p$ or observed from shock wave experiments; dimensionless) Longitudinal sound speed (cm/microsec) C_{L} transverse sound speed (cm/microsec) cs bulk sound speed (cm/microsec) C_B adiabatic bulk modulus = $\rho_0 C_B^2$ (Megabars) shear modulus = $\rho_0 C_S^2$ (Megabars) AMU elastic Modulus (Megabars) CO YMU compression at which elastic limit is reached in terms of μ thermal coefficient of expansion (volumetric) Specific given in joules and at constant pressure heat (Cp) data pressure points (Megabars) calculated stress (Megabars) SCAL **PCAL** calculated hydrostatic pressure or, in the case of a simple least squares fit to $P - \mu$ data, a stress term (Megabars) V, Vo specific volume at final and initial compression, respectively compressional term ρ/ρ_o or V_o/V (dimensionless) **ETA** calculated particle velocity (cm/microsec) U linear work hardening term (expre sed at $\mu = 0.2$) (Megabars) YADD $\left(\rho/\rho_{O}\right)$ - 1 or $\left(V_{O}/V\right)$ - 1 (a nondimensional compression term) constants in cubic fit $P = Cl\mu + Dl\mu^2 + Sl\mu^3$ for first plastic C1, D1, S1 wave, expressed in Megabars constants in cubic fit $P = C2\mu^2 + D2\mu^2 + S2\mu^3$ for second C2, D2, S2 plastic wave, expressed in Megabars

NOTE: All data points are referenced as to their source. Further, material properties available and included in this report are referenced as to source.

UNIT CONVERSION RELATIONS

- 1 gm/cm^3 (units of weight density) = $1 \text{ dyne-sec}^2/\text{cm}^4$ (units of mass density)
- 1 gram = 1 dyne-sec 2 /cm (= 980.7 dynes at acceleration of 1 gravity)
- $1 \text{ dyne} = 1 \text{ gram} \text{cm/sec}^2$
- 1 erg = 1 dyne $cm = 10^7$ joules
- 1 calorie = $4.186 \cdot 10^7$ ergs = $4.186 \cdot 10^5$ mbar-cm³ per unit area
- 1 tap = 1 dyne-sec/cm 2 = 1 bar- μ sec
- 1 bar = 10^6 dynes/cm² = 14.5 psi = 0.987 atmosphere
- 1 psi = $69,000 \text{ dynes/cm}^2 = 0.69 \cdot 10^7 \text{ mbar} = 70.31 \text{ grams/cm}^2$
- 1 kbar = 10^3 bar = 10^9 dynes/cm² (where kbar = kilobar)
- 1 mbar = 10^3 kbar = 10^{12} dynes/cm² (where mbar = megabar)
- 1 cal/gram°c = 1 BTU/1b°F
- $1 \text{ ft/sec} = 30.48 \text{ cm/sec} = 30.48 \times 10^{-6} \text{ cm/}\mu\text{sec}$

This page intentionally left blank.

SECTION I

INTRODUCTION

The study of shock wave propagation in solids requires a knowledge of the pressure-volume-energy (P-V-E) equation of state of the material under consideration. Typically, the Mie-Gruneisen form of the equation of state is used along with the Rankine-Hugoniot relations expressing the conservation of mass, momentum, and energy. The Rankine-Hugoniot equations are not in themselves adequate to uniquely determine the parameters; therefore, additional knowledge of a material's behavior is necessary. This additional knowledge is given by the Hugoniot of a material which defines all pressure-volume states obtainable through a shock transition.

The Hugoniots included in this report represent data accumulated from various sources and are reduced to a form usable in existing computer codes for predicting material response to shock loading at pressures in and above the elastic region of a material. The purpose of this report is therefore to present the results of various investigations on materials of interest in a form which condenses the needed computer code inputs to an easily accessible source.

SECTION II

HUGONIOT DATA REPRESENTATION

1. FORM OF THE EQUATION OF STATE

The Mie-Gruneisen compressional equation of state can be written as

$$P - P_{H}(V_{H}) = \frac{\Gamma(V)}{V} \cdot \left(E - E_{H}(V_{H})\right)$$
 (1)

relating pressure-volume-energy through use of a reference curve, generally chosen as the Hugoniot. In the above equation, P, V, E refer to any equilibrium position admissible in a complete equation of state; P_H , V_H , E_H refer to states existing on the Hugoniot, and $\Gamma(v)$, the Gruneisen coefficient, is assumed to be a function of volume only.

The Hugoniot of a material defines all pressure-volume states obtainable through a shock transition and can be represented in the form

$$P_{\mu} = C_{\mu} + D_{\mu}^2 + S_{\mu}^3 \tag{2}$$

where C, D, S are constants, $\mu = \rho/\rho_0 - 1$, and ρ_0 , ρ = initial and final densities, respectively.

A description of the Hugoniot in terms of measurable quantities can be obtained from the so-called "jump" conditions which are statements of conservation of mass, momentum, and energy across a shock front:

$$\rho_{o} U_{s} = \rho \left(U_{s} - U_{p} \right)$$
 conservation of mass (3)

$$P - P_0 = \rho_0 U_S U_D$$
 conservation of momentum (4)

$$PU_p = 1/2 \rho_0 U_s U_p^2 + \rho_0 U_s (E - E_0)$$
 conservation of energy (5)

where

p = density

 U_s , U_p = shock velocity, particle velocity, respectively

P = pressure

E = energy

and the subscript, o, refers to the undisturbed states.

By combining equations (3), (4), and (5), the Rankine-Hugoniot equation is obtained relating energy to pressure and volume on the Hugoniot curve

$$E_{H} - E_{O} = 1/2 (P_{H} + P_{O}) (V_{O} - V_{H})$$
 (6)

Combining equations (1), (2), and (6),

$$P = P_{H}(V_{H}) \cdot \left(1 - \frac{\Gamma(V)_{\rho}}{2}\right) + \Gamma(V) \cdot \rho \cdot \left(E - E_{o}\right)$$
 (7)

In PUFF-type codes $\Gamma(\mathbf{v})$ is assumed to be a constant, and $\mathbf{E}_{\mathbf{O}}$ is set to zero. Equation (7) then becomes

$$P = \left(C\mu + D\mu^2 + S\mu^3\right) \cdot \left(1 - \frac{\Gamma\mu}{2}\right) + \Gamma\rho E \tag{8}$$

This, then, is a general equation of state used to describe material response under dynamic loading.

2. EXPERIMENTAL DETERMINATION OF THE HUGONIOT

The above equations, however, are not sufficient to establish an equation of state for a material without experimental data. This additional information is generated through experimental measurements of the Hugoniot. Several forms of Hugoniot data are used of which two will be considered here.

We have seen that one form of the Hugoniot is $P_H = C\mu + D\mu^2 + S\mu^3$. From equation (3) we see that

$$\rho/\rho_{o} = \left(\frac{U_{g}}{U_{g} - U_{p}}\right)$$

and from equation (4), if any two of the parameters P, U_s , or U_p can be measured, the third can be determined and a point on the Hugoniot can be found. A series of such measurements then defines equation (2)

Another form for the Hugoniot may be found by solving equations (3) and (4) for shock velocity and particle velocity.

$$U_{s} = \left[\left(\rho / \rho_{o} \right) \left(P - P_{o} \right) / \left(\rho - \rho_{o} \right) \right]^{1/2}$$
 (9)

$$U_{\mathbf{p}} = \left[\left(\rho - \rho_{0} \right) / \rho \right] U_{\mathbf{s}} \tag{10}$$

If a simultaneous experimental determination of U_s and U_p is made, there is sufficient information to establish a point on the Hugoniot. A series of such measurements will then define the entire curve.

For most materials a linear relationship has been noted where

$$U_{g} = C_{o} + \lambda U_{p} \tag{11}$$

C = U intercept at zero pressure

 λ = slope of shock/particle velocity data

This alternate form may also be used to represent Hugoniot data. C_{O} approximates the bulk sound speed given by

$$C_R^2 = C_L^2 - 4/3 C_S^2$$

where

C_I = longitudinal sound speed

C_c = transverse sound speed

When U_s and U_p are linearly related, equation (2) can be written explicitly in terms of C_o and λ . If equations (11) and (4) are combined and P_o is negligibly small compared to P_o , then

$$P = \rho_0 U_p \left(C_o + \lambda U_p \right) \tag{12}$$

Equation (10) can be written in the form

$$\rho_{o}/\rho = 1 - \left[U_{p}/\left(c_{o} + \lambda U_{p}\right) \right]$$
 (13)

Eliminating U_p between equations (12) and (13),

$$P = \frac{\rho_0 C_0^2 \mu(\mu + 1)}{\left[1 + \mu (1 - \lambda)\right]^2}$$
 (14)

where μ = ρ/ρ_0 - 1. This then gives the user two forms of the Hugoniot representation. One form gives a least squares fit to the data points reported in the form

$$P_{H} = C\mu + D\mu^{2} + S\mu^{3}$$

The second form is the relationship

$$U_s = C_o + \lambda U_p$$

SECTION III

MATERIAL PROPERTIES

1. DISCUSSION OF MATERIAL STRENGTH

The analytic functions for the Hugoniot so far discussed describe a material's hydrostatic behavior. In some cases this hydrodynamic treatment is a good approximation in the pressure regions of interest. For strong materials with high elastic moduli it is necessary to include elastic response in the calculations. In this treatment the Von Mises yield criterion is used to describe an elastic region which, when exceeded, results in plastic or hydrodynamic response of the material.

In figure 1 the Hugoniot elastic limit (HEL) of a material is the elastic limit in stress-strain space. The stress-strain curve is taken to lie above the hydrostat by a value equal to $2/3~\rm Y_{\odot}$, where $\rm Y_{\odot}$ is the yield strength in simple tension. In this report the Hugoniot elastic limit is found by either of two methods. In the first case the HEL is observed directly by noting the amplitude of the elastic precursor in a shock wave experiment when a material is stressed above its elastic limit.

Figure 1. Typical Stress-Strain Curve

In the second case an estimate of the HEL may be calculated from $Y_{\rm O}$ and the elastic modulus. The elastic modulus is the slope of the stress-strain curve in the elastic region given by

$$\rho_0 C_B^2 + 4/3 \rho_0 C_S^2$$

where

 $\rho_0 C_B^2 = \text{bulk modulus}$

 $\rho_0 C_S^2$ = shear modulus

The Hugoniot elastic limit is then

HEL =
$$\left(\rho_{o}C_{B}^{2} + 4/3 \rho_{o}C_{S}^{2}\right)$$
 • YMU

where YMU is the value of μ at the elastic limit. Since the Von Mises yield exiterion offsets the stress-strain curve from the hydrostat by 2/3 Y_O,

HEL =
$$\rho_0 C_B^2$$
 · YMU + 2/3 Y₀

and

YMU =
$$(1/2) Y_c/\rho_0 C_S^2$$

If $U_s - U_p$ data are available, a hydrostatic pressure is calculated using equation (14) and the value 2/3 Y_o is added to the calculated hydrostat. Should the experimental points still diverge from the predicted stress, a purely empirical work hardening term, YADD, is calculated to give a final fit:

$$P = C_{\mu} + D_{\mu}^{2} + S_{\mu}^{3} + 2/3 Y_{o} + 2/3 \left(\frac{\mu - YMU}{0.2 - YMU} \right) \cdot YADD$$

Work hardening is assumed to be a linear function of the strain and YADD is its value at μ = 0.2. P is now a stress term taking into account material strength and work hardening properties.

2. SIGNIFICANCE OF THE $U_{_{\mathbf{S}}}$ - $U_{_{\mathbf{p}}}$ RELATIONSHIP

As has been noted, the Hugoniots of many materials can be represented by a linear U_s - U_p relationship, U_s = C_o + λU_p .

Departures from linearity can usually be traced to porosity, material strength properties, or phase transitions. Phase transitions, for example, whose effect may be difficult to observe in the p-v plane are quite noticeable in the $\rm U_{8}$ - $\rm U_{p}$ plane.

Since the constant term, C_0 , can be determined by direct measurement of the acoustic wave velocities in an isotropic medium, the zero particle velocity intercept may then be used to fit the data. Thus, the Hugoniot equation of state of many materials may be described by ρ_0 , C_0 , and λ . As has been previously discussed, use of the yield strength, Y_0 , and a work hardening term, YADD, improve the accuracy of the curve fit.

In some cases an adequate fit to the stress-strain data cannot be achieved using equation (14) and a U_8 - U_p relationship. Several reasons for this discrepancy should be noted. In low pressure regions, material strength properties tend to invalidate the use of equation (14). Also for some materials the U_8 - U_p relationship is not linear and has not been treated in this report.

For such cases a simple least square fit can be calculated for stress versus compression. In all cases the linear term is the bulk modulus. Since a least squares fit to the stress- μ data is used, in these cases it is not applicable to calculate a YADD.

All table data are explained under the section on symbols and units.

Table I
MATERIAL IMPEDANCES

<u>Material</u>	<u>° о</u>	c _o	$ \begin{bmatrix} \mathbf{Impedance} \\ \mathbf{Z} & \rho_{o} & \mathbf{C} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} $
Aluminum	2.7	0.544	1.469
Aluminum (1060)	2.703	0.524	1.416
Aluminum (6061-T6)	2.704	0.521	1.409
24ST Aluminum	2.785	0.5375	1.497
921 T Aluminum	2.828	0.5038	1.425
Aluminum (2024)	2.785	0.525	1.462
Antimony	6.6	0.2167	1.430
Avcoat II	1.1	0.1919	0.211
Beryllium	1.851	0.8078	1.495
Bismuth	9.79	0.132	1.292
Boron Nitride	2.142	0.255	0.546
Brass	8.45	0.3784	3.197
Cadmium	8.64	0.2465	2.130
Boron Carbide	1.92	0.2951	0.567
Silicon Carbide	2.32	0.285	0.661
Tungsten Carbide	15.02	0.5181	7.782
Carbon Phenolic	1.49	0.42	0.626
3-D Carbon Phenolic	1.34	0.3	0.402
Chromium	7.12	0.5295	3.77
Cobalt	8.82	0.48	4.23
Copper	8.93	0.392	3.501
Durite	1.38	0.2847	0.393
Ероху	1.2	0.267	0.32
С-7 Ероху	1.2	0.265	0.318

Table I (cont'd)

<u>Material</u>	<u>60</u>	C _O	Impedance $(Z = \rho_0 C_0)$
Exon	1.681	0.1948	0.327
Hi-D Glass	6.2	0.3	1.86
Gold	19.24	0.3147	6.055
Graphite Commercial	1.628	0.1477	0.240
Pyrolytic Graphite	2.2	0.4145	0.912
Hafnium	13.31	0.295	3.926
Armco Iron	7.85	0.45	3.533
Iron (Same as Armco)			
Lead	11.355	0.21	2.385
Lucite	1.181	0.2188	0.258
Magnesium	1.745	0.4545	0.793
Manganin	8.46	0.3803	3.217
Molybdenum	10.2	0.5163	5.266
Mylar	1.39	0.22	0.306
Nickel	8.86	0.4652	4.122
Niobium	8.58	0.4438	3.808
Nylon	1.14	0.2158	0.246
Palladium	11.95	0.3742	4.472
Paraffin	0.918	0.2968	0.272
AVCO Phenolic Fiberglass	1.9	0.1713	0.325
GE Phenolic Fiberglass	1.94	0.3276	0.636
Chopped Nylon Phenolic	1.21	0.2377	0.288
Tape-Wound Nylon Phenolic	1.22	0.3196	0.390
Quartz Phenolic	1.8	0.3156	0.568
3-D Quartz Phenolic	1.65	0.32	0.528

Table I (cont'd)

Material Material	Po	c o	Impedance $Z = \rho C$
X-Cut Crystalline Quartz	2.65	0.5728	1.518
Phenolic Refrasil	1.65	0.3007	0.496
Platinum	21.37	0.3636	7.770
Plexiglas	1.186	0.2745	0.326
Polyethylene	0.92	0.2931	0.270
Polystyrene	1.05	0.299	0.314
Polyurethane	1.265	0.207	0.262
RAD 588 "	1.26	0.1202	0.151
OTWR	1.66	0.317	0.526
Series 124 Resin	1.22	0.2259	0.276
Silver	10.49	0.3305	3.467
Stainless Steel Type 304	7.896	0.4557	3.598
Stainless Steel Type 304L	7.903	0.4567	3.609
Steel, Mild EN3	7.84	0.3596	2.819
Tantalum	16.6	0.33	5.478
Teflon	2.16	0.1424	0.308
Thallium	11.84	0.1887	2.234
Thorium	11.68	0.2174	2.539
Tin	7.28	0.2575	1.875
Titanium	4.51	0.4695	2.117
Tungsten	19.17	0.397	7.610
TWSP	1.66	0.3614	0.600
Uranium-3 wt pct Molybdenum	18.45	0.2553	4.710
Vanadium	6.1	0.5072	3.094
Zinc	7.14	0.3051	2.178
Zirconium	6.505	0.3757	2.444

This page intentionally left blank.

SECTION IV

EQUATION OF STATE

DATA AND GRAPHS

This page intentionally left blank.

CUBIC FIT TO EQUATION OF STATE FOR ALUMINUM

RHO(0) = 2.70000							
SUBLIMATION ENERGY=	1.176	17680E+11	טר≖ 9	6.263E-01 (CM/MICROSEC)	SEC)		
GRUNEISFN COEF= 2.0900	000		CS= 3	3.080E-01 (CM/MICROSEC)	SEC)		
AMU# 2.56133E-01(MB)			THERMAL	THERMAL COEF OF EXPANSION (VOL)	N(VOL) = 2.550E-05		
YO = 5.00000E-03(MB)	1		SPECIFI	SPECIFIC HEAT (CP) = 8.9	8.950E+06		
YMUm 9.75056E-03			CB•	5.440E-01 (CM/MICROSEC)	SEC)		
HUGONIOT ELASTIC LIMIT		•11323E-02(MB)	O 3dOTS	OF US-UP# 1.3274			
IN THE ELASTIC WAVE		CO# 1.14054					
IN THE FIRST PLASTIC NAVE	HAVE	Clm . 79903 •	01- 1-13927	927 Si=	1,39792		
S(MB) SCAL(MB	<u> </u>	PCAL (MB)	ETA	02/2	104500014780	1	d
	-03	1.2003E-03	1.0015E+00	9.9850F=01		- C2/2	K
	-03	1.64205-03	1.0023E+00	9.9770E=01	1.4356.03		
4.4200E=03 4.8105E=03	60	3-3701E-03	1 - 00 4 2 E + 00	9-9580E-01	2-62215-03	0 > / >	
. 3300E-03 5000F-03	P (4.8231E-03	1.0060E+00	9.9400E=01	3.7506E-03	0//	
.5800E-03	? 6	8.3566F=03	1.00/05/00	9.9250E-01	4.5917E-03	0//	
	200	6-8613E-03	1.0109F+00	9+6960E+01	6 + 0 1 5 4 F = 0 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1.1780E-02 1.3803E-02	-02	1.04705-02	1.0129E+00	9.87305-01	#0 W P P P P P P P P P		
	-05		1.0154E+00	9-8480E-01	8.81095-03	02/2	
1.4740E-02 1.7674E-02	20.	1.4340E-02	1.0175E+00	9.8280E-01	9.6902E-03	0//	
	V 0	3.27505_03	1,0404E+00	9.7060E-01	1.65956-02	0//	
	7 (4.1807F=01	1 9000E+00	7,6270E=01	20-116/02	0//	
		0.53.53.50.10.10.10.10.10.10.10.10.10.10.10.10.10	1.3829F+00	7-23-06-01	1.7436-01		
.0420E+00 1	00	1.0258E+00	1.55305+00	6.43905.03	7.70715-01		
•	000	1.0537E+00	1.56102+00	6-40605-01	3.77756-01	00	
1.6000E+00 1.6047E+0	• 00	1.6014E+00	1.7010E+00	5.87908-01		02/2	
)	

* IMPLIES LINEAR TERM IS IMPOSED.

1

CURIC FIT TO FUNATION OF STATE FOR ALUMINUM (1060)

RHO(") = 2.70000

		E E E E E E E E E E E E E E E E E E E
CHOSEC) CROSEC) SION(VOL) = 6.270E-05 8.370E+06 CROSEC)	1,70340	U(CM/MICROSEC) 2.2966E-03 4.45396E-03 7.25396E-03 7.25396E-03 8.67376E-03 1.6996E-02 2.66406E-02 2.66406E-02 2.4166E-02 2.4166E-02 2.4166E-02 2.4166E-01 2.4636E-01 2.4636E-01
CL# 6.400E-01(CM/MICROSEC) CS# 3.180E-01(CM/MICROSEC) THERMAL COEF OF EXPANSION(VOL)# SPECIFIC HEAT(CP)# 8.370E+06 CB# 5.240E-01(CM/MICROSEC) SLOPE OF US-UP# 1.4382	1.28107 51=	V/VO 9,9542E=01 9,9542E=01 9,8571E=01 9,8571E=01 9,547E=01 9,547E=01 9,643E=01 7,1693E=01 7,1693E=01 7,1693E=01 7,1693E=01
CL= CS= THERM SPECIF	01= 1.0	1.000000000000000000000000000000000000
NO DATA	Cls .74136 •	PCAL 3. PCAL 4. 6. 475 (MB) 1. 102 4 26 103 2. 319926 (E 102 2. 319926 (E 102 3. 412 4 6 102 4. 112 4 6 102 3. 852 6 6 102 1. 172 6 6 102 2. 852 6 6 102 4. 172 6 6 102 4. 172 6 6 102 5. 875 6 6 102 4. 172 6 6 102 5. 875 6 6 103 6. 002 6 6 103 6. 002 6 6 103 6. 002 6 6 103 6. 002 6 103 6. 0
SUBLIMATION ENERGYE -0. GRUNEISEN COEFE 2.0600 AMUE 2.73035E-01(78) YO =-0. YMUE 0. MUGONIOT ELASTIC LIMIT ==0.	IN THE FINST PLASTIC WAVE	SCAL(48) 3.62435=03 6.62435=03 1.10245=03 8.41026=02 8.41945=02 8.61245=02 8.61245=02 8.61245=02 8.61245=02 8.61245=02 8.61245=02 8.6265=01 8.6265=01
SUBLIMATI GRUNEISF: AMUE 2.73 YO E.D. YMUE 0.	ZH ZH	S.MB. 9.110.0EB. 9.940.0EE.03 1.920.0EE.02 2.105.0EE.02 2.105.0EE.02 2.105.0EE.02 2.105.0EE.02 2.105.0EE.03 3.770.0EE.01 5.830.0EE.01 6.330.0EE.01

. IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL* 5.99496E-03(MB)

CUBIC FIT TO FOHATION OF STATE FOR ALUMINUM 6061-TA (LOW PHESSURE)

RHO(0) = 2.70400

		E C C C C C C C C C C C C C C C C C C C
		+ 00 000000000000000000000000000000000
CM/MICHOSEC) CM/MICHOSEC) EXPANSION(VOL) # 6.300E-05 ') = 8.630E+06 CM/MICHOSEC) -0.	-26,98235	U(CM/MICROSEC) 9.4211CROSEC.) 3.16426EFF03 3.164046EFF03 3.164046EFF03 4.584426EFF03 4.584426EFF03 4.584426EFF03 1.684426EFF03 1.68466EFF03
CL= 6.430E-01(CM/MICROSEC) CS= 3.190E-01(CM/MICROSEC) THERMAL COEF OF EXPANSION(VO SPECIFIC HEAT(CP)= 8.630E. CB= 5.210E-01(CM/MICHOSEC) SLOPE OF US-UP= -0.	1.85973 518	9.99.99.99.99.99.99.99.99.99.99.99.99.9
CL= CS= THERMA SPECIF CB= SLOPE	01# 1.8	1.000000000000000000000000000000000000
*NO DATA	C0# 1.10086	PCAL (MB) 1.6926E=03 3.0957E=03 3.0957E=03 3.8077E=03 5.64106E=03 5.64106E=03 5.64106E=03 1.32706=03 1.32706=03 1.32706=02 1.32706=02 1.33886=02 2.3486E=02 2.34896=02 2.34896=02 2.55776=02
SUBLIMATION ENERGY = -0. GRUNFISEN COEF = 2.0300 AMU = 2.75162E-01(MB) YO = 2.6994ME-03(MB) YMUS 4.90526E-03 MIGONIOT ELASTIC LIMIT = 5.4 IN THE FIRST PLASTIC WAVE		SCAL(MR) 2.659348(2.659348(5.659348(5.659348(5.6591961033 5.6591961033 5.6591961033 5.6591961033 5.6591961033 5.6591961033 5.659196102 5.122697102 5.122697102 5.122697102 5.122697102 5.122697102 5.122697102 5.122697102
SUBLIMATIC GRUNFISEN AMUS 2.751 YO = 2.699 YHUS 4.905	IN THE ELL	1. 54 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -

. IMPLIFS LINEAP TEAM IS IMPOSED.

AYERAGE DEVIATION FROM SCAL# 2.05420E-04(MB)

CURIC FIT TO FUJATION OF STATE FOR AL 2024

		REFERENCE OF CO.
		#
CH/M1CMOSEC) CM/M1CMOSEC) EXPANSION(VOL) = 6.280E~05) = 9.000E+06 CM/M1CROSEC)	1,25133	U(CM/MICROSEC) 5.14776-02 5.14776-02 7.79912-02 9.78046-02 1.152056-01 1.57176-01 1.57176-01 1.94266-01 1.94266-01 2.1256-01 2.1256-01 2.2556-01 2.44486-01 2.4546-01 2.4546-01
.390E-01(.150E-01(.00EF OF .HEAT(CP	7E OF US-UPs 1,3718	V/VO 9.1800E-01 8.7900E-01 8.7900E-01 8.3200E-01 7.8500E-01 7.6900E-01 7.5500E-01 7.5500E-01 7.5500E-01 7.2500E-01
CLE 6. CSE 3. THERMAL SPECIFIC	500E	1.0893E+00 1.1373E+00 1.1373E+00 1.1373E+00 1.273E+00 1.273E+00 1.2739E+00 1.3004E+00 1.3139E+00 1.356E+00 1.3793E+00 1.3793E+00 1.3793E+00
	5.*40000E-03(MB) C0* 1,13607 C1* .76762*	PCAL MB) 7,9694 (MB) 1,9694 (MB) 1,9494 (MB) 1,9494 (MB) 2,9494 (MB) 3,9494 (MB) 3,9494 (MB) 4,9494 (MB) 5,1444 (MB) 5,444 (MB) 5,444 (MB) 5,444 (MB) 5,444 (MB) 5,444 (MB) 6,444 (MB)
	*	SCAL(MH) 2.29276
SUBLIMAT SUBLIMAT GRUNEISF AMUR 2.7 YO = 2.6 YMUR 4.7	IN THE E	8

. IMPLIFS LINEAR TERM IS IMPOSED.

AVEDAGE DEVIATION FROM SCALM 7.36831E-03(MH)

5.123F-03

YADD AT . 24U =

·)

CUBIC FIT TO EGISTION OF STATE FOR 24ST ALUMINUM

840(n)= 2,78500

							REFERENCE	61	67	6	6.7	.	61	2	• 0	; <u>~</u>	- O.	<u>-</u>
							INPUT	0//	0//	0A/A		0^/>	0 / / /	0//	2	02/2	0 / / /	0 / / 0
(CM/HICHOSEC) *NO DATA	SEC) ON DATA	N(VGL)# 6.900E-05	9.628E+06	SEC)		\$\\\-956\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	U(CM/MICROSEC)	2.6709€-02	2.9153E-02	3.1749E-02	3.6878F=02	3,9172E-08	4.2259E-02	4.5574E 02	5.32505-02	5.83.265-02	6.6789E-02	
(CM/HICHO	(CM/MICHOSEC) #NO	THERMAL COEF OF EXPANSION(VOL)=		5.375E-01 (CM/HICROSEC)	SLOPE OF US-UP# 1.3425	e ts	0//0	9.5300E-01	9.4909E-01	9.4500E-01	9.3700£-01	9.34005-01	9.2900E-01	9.24005-01	9.1300E-01	9.06005-01	8-9400E-01	
CL= -0.	CS= =0.	THERMAL CO	SPECIFIC HEAT(CP)=	C8	SLOPE OF L	01* 1.35121	ETA	1.0493E+00						1.0823E +00			-1186E +00	
NO DATA		<			(MB)	Cl .80460 +	PCAL (MB)	4,3079E-02	20-1207 - 2	5,5988E-02	6,0488E-02	6.3930E-02	6.9799E-02	7.5836£=02 8.2049f=02	8.9742E-02	9,90608-62	1-1594E-01	
ENERGY# -0.	OEF= 2.1300	(:18) #NO DATA	(+18)		HUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MR)	4.30/9E=02	20=20021**	5,5988F-02	6.0488F-02	6.3930F-02	6.9799F-02	7.5836E 02 A.2049F 02	8.9742E-02	9,9050E-02	1-15946-01	
SUBLIMATION ENERGY*	GRUNFISEN COEF= 2.1300	AMUE :	YO #-0.	YM!= 0.	HUGONIOT EL	IN THE FIRS	S (MB)	4.22/0E=02		5.2320E=02	6.0120E-02	5.4750E-02	7,0050E-02	7.6110E-02 8.3210E-02	9.0770E-02	1.00105-01	1-17205-01	

* IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 1.19113E-03(MB)

STATE FOR 921 1 abouthor ċ CUMIC FIT TO ECONTROL

EUC 10HM

		RE FERENCE 20 20 20 20 20 20 20 20 20 20 20 20 20
		H 000000000000000000000000000000000000
CHOSEC) CHOSEC) Sion(YOL)≈ 8.700E-06 3.670E+07 CHOSEC)	* 1.62039	U(CM/MICROSEC) 6.9610E-02 6.3997E-02 6.5708E-02 1.498E-01 1.6263E-01 1.6263E-01 1.8692E-01 2.347E-01 2.347E-01 2.4470E-01 2.4875E-01 3.0886E-01 3.0886E-01
CL= h.340E-01(CM/M1CMOSEC) CS= 3.144F-01(CM/M1CMOSEC) THEMMAL GOEF OF EXPANSION(YOL)= SPECIFIC MEAT(CP)= 3.670E+07 CH= 5.034F-01(CM/M1CMOSEC) SLOPE OF US-UP= 1.4194	1.19426 51=	V/V0 9.1300E-01 8.9500E-01 8.9500E-01 4.7300E-01 7.9300E-01 7.9300E-01 7.8000E-01 7.8000E-01 7.3500E-01 7.3500E-01 7.2700E-01 7.2700E-01 7.1500E-01 6.7100E-01
CL= CS= THERM SPECT	bls 1.	ETA 1.0953E.00 1.1013F.00 1.1275E.00 1.2751F.00 1.2751F.00 1.2751F.00 1.2751F.00 1.2751F.00 1.3756E.00 1.3756E.00 1.4703F.00 1.4703F.00
*140 NATA	Cl= .71779 •	PCAL (MH) M. C6441-07 6.6531-07 2.257696-01 2.257696-01 2.257696-01 3.33821-01 3.33821-01 4.6186-01 4.6186-01 5.23756-01 7.6281-01 8.30051-01
SUBJETSENCHER 2-1000 GDULFTSENCHFF 2-1000 AFUE 2-74M29F-01(10) YNUE 3. WHUGONTOT FLASTIC LIMIT E-0.	IN THE FINST PLASTIC BAVE.	SCAL(NG) A.65494-02 1-15964-01 1-1596-01 2-75436-01 3-35156-01 3-35156-01 4-1456-01 5-8736-01 7-8736-01 7-8736-01 7-8736-01 7-8736-01 7-8736-01 7-8736-01
Subjections Subjective Articology YRECOLOGY HERCOLOGY	14 44 14	20000110000000000000000000000000000000

. Intelled (1 dear 15 per 18 prints)

3.2000f-61 3.4000f-11 3.4000f-11

3.000E-111

* 1809E - 11 * 9000E - 11 * 9000E - 01

5.4000£-01 5.4000£-01 7.4000£-01 4.2000£-01

AVERAGE DEVIATION From SCALE 6.20118E-63(MB)

CUBIC FIT TO EQUATION OF STATE FOR ANTIMONY

RHO(n) = 6.60000				
SUBLIMATION EMERGY= -0.	NO DATA	CL= -0.	(CM/HICHOSEC) +NO DATA	DATA
GRUNEISEN CUEFE .8012		.cs =0.	(CM/MICROSEC) ON DATA	DATA
AMUR 0. (MB) *NO DATA		THERMAL COE	THERMAL COEF OF EXPANSION (VOL.) = 3.600E-05	3.600E-05
YO = 1.07500E-04(48)		SPECIFIC HE	SPECIFIC HEAT(CP) = 2.110E+06	
YMUR 0.		CB= 2.167	CB= 2.167E-01(CM/MICROSEC)	
MUGONIOT ELASTIC LIMIT ==0.	(48)	STOPE OF US	SLOPE OF US-UP# 1.5384	
IN THE FIRST PLASTIC WAVE CIR	.30993	01* .17235	Sls 1,91956	49.

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U(CM/MICROSEC) 1.0330E-01 1.0270E-01 1.3970E-01 1.992E-01 1.976E-01 2.7499E-01 2.7499E-01
7.1500E-01 7.2000E-01 6.7800E-01 6.2900E-01 6.7200E-01 5.7200E-01 5.7600E-01
1.3966E.00 1.3966E.00 1.4749E.00 1.8696E.00 1.8680E.00 1.7483E.00 1.7575E.00
2.604CE 2.59984CE 3.99140EE 3.99140EE 5.3656E=01 1.1794EE=01 1.1679EE=01 1.1679EE=01
SCAL(MB) 2.699[E-0] 2.5956E-0] 3.9177E-0] 3.8037E-0] 7.160[E-0] 1.1326E+00 1.1680E-00
S(MB) 2.4000E=01 4.0000E=01 4.0000E=01 6.37000E=01 1.1420E=01 1.1520E=01

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 2.37435E-02(MB)

CUBIC FIT TO EQUATION OF STATE FUR AVCOAT IT

SUBLIMATION ENERGY= -0.	WNO DATA	CL	2.250E-01 (CH/MICHOSEC)	
GRUNFISEN CUFF# 1.1459		CS	9.200E-02(CM/MICROSEC)	
AMU= 9.31040E=03(MB)		THERM	THERMAL COEF OF EXPANSION(VOL)	3.1025-04
YO ==0. ('4B)		SPECI	SPECIFIC HEAT(CP) = 9.960E+06	
YMUE n.		86 3	1.919E-01(CM/MICROSEC)	
HUGONIOT ELASTIC LIMIT ==0.	(MB)	SLOPE	SLOPE OF US-UPs 1.6789	

	8 m 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	INP ETA ETA ETA ETA ETA ETA ETA ETA
.36728	U(CM/MICROSEC) 3.461SE-02 3.1938E-02 9.5403E-02 4.7740E-02 6.1371E-02 1.4601E-01 2.3280E-01
7 51=	V/V0 9.3633E-01 8.7336E-01 7.3564E-01 7.8309E-01 7.1891E-01 5.9988E-01
018 .01617	1.0680E+00 1.1450E+00 1.3590E+00 1.2260E+00 1.3910E+00 1.4840E+00 1.6670E+00
Clm .04051 •	PCAL (MB) 2.95116-03 7.39436-03 3.45456-02 1.44516-02 6.14616-02 6.73036-02 1.49136-01
IN THE FIRST PLASTIC HAVE	SCAL (MB) 2.9511E=03 7.3943E=03 3.4545E=02 1.4451E=02 2.0692E=02 4.1461E=02 6.7313E=02
IN THE FI	S(MB) 3.6900E-03 3.6900E-03 3.7900E-02 1.9100E-02 7.1500E-02 7.1500E-02
	29

. IMPLIFS LINEAR TERM IS IMPOSED.

AVEGAGE (FVIATION FROM SCALE 2.32424E-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR BERYLLIUM

									REFERENCE	17	17	~ ^	11	11	~ !	· .			. ~	- 1	-	14
									INPUT	0//	0//	04/4) } }	0//	0//	02/2	02/	02/2	02/2	200	02/2	0//
	1.289E+00(CM/MICHOSEC)	8.880E-01(CM/HICROSEC)	THERMAL COEF OF EXPANSION (VOL) = 3.690E-05	SPECIFIC HEAT(CP) = 1.660E+07	8.078E-01(CM/MICROSEC)	0F US-UPm 1.1373		52886 \$1. 46255	00//		8.9850E-01 9.3110E-02	8.2040E=01 1.8190F=01		-		7,37205-01			7,0240E-01 3,6201F-01	**;	1	}
	*	CS#	THERM	SPECI	89	SLOPE	,	9885511_s1g	ETA	1.1305+00	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,2189E+00	1,2183E+00	1.2773E+00	1 31956+00	1.3565E+00	1,3519E+00	1.4241E+00	1,4237E+00	1.4395E+00	1.43995+00	1.4603E+00
	3.54900E+11					HUGONIOT ELASTIC LIMIT # 3.35257E-03(MB)	CO# 3.15398	E	PCAL (MB)		1 + 1000ZE 101	3,42545_01	3.4139E-01	4.6237E-01		6.4582E-01	6.3452E-01	8.2250E-01	8.2139E-01	8.6535E-01	8-6652E-01	9.2496E-01
1.85100	SUBLIMATION EMERGY# 3	BRUNEISEN COEF# 1.4505	AMUs 1.45959E+00(Md)	YO = 3.10300E-03{MB)	297E-03	ELASTIC LIMIT =	IN THE ELASTIC WAVE	IN THE FIRST PLASTIC MAVE	SCAL (MB)	100000000000000000000000000000000000000	3.46065=01	3.4461E-01	3,43465-01	4.6444E=01	5.55756.01	6.4789E=01	6,3659E-01	8.2457E-01	8,2346E=01	8.6742E-01	8-6859E-01	9.2703F-01
RHO(") = 1.85100	SUBLIMATI	BRUNE I SEN	AMU# 1.45	YO = 3.10	YMU= 1.06297E-03	HUGONIOT	IN THE EL	IN THE FI	S (148)		3.40805-01	3.4100E-01	3.4140E-01	4.0520E-01	5.5460F_01	6,3780E-01	6.40506-01	8.1500E-01	8 1510E-01	8.7510E-01	8.8230E-01	9.1670E-01

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 5.58616E-03(HB)

CURIC FIT to FORMTION OF STATE FOR RISAUTH

RHO(1) = 0.74640

							REFERENCE 133 133 133 133 133 133 133 133 133 13
							1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECI	SEC)	N(VOL) = 4.000E-05	265+07	SEC)		3,33901	U(CM/MICROSEC) 7.1796E-02 6.7604E-02 9.1402E-02 9.2210E-02 1.2121E-01 1.2220E-03
2.140E-01 (CM/MICHOSEC)	1.100E-01(CM/HICHOSEC)	THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC MEAT(CP) = 1.226E+07	1.320E-01(CM/HICHOSEC)	SLOPE OF US-UP= 1.9276	24065 \$1=	V/VO 7,3370E-01 7,3850E-01 7,0280E-01 7,0100E-01 6,7080E-01
CL= 2	CS= 1	THERMAL	SPECIFI	C8= 1	SLOPE	01=24	ETA 1.3630E+00 1.3541E+00 1.4229E+00 1.4265E+00 1.503E+00
9.21700£+09					(мв)	C1= .1705A •	PCAL(MB) 1.8986E-01 1.7847E-01 2.8361E-01 4.2041E-01
	GRUUFTSFU CUFF# 1.9ACA	AMU= 1.13453F=01(Hs)	(H)		HIJGOMTOT FLASTIC LIMIT ==0.	IN THE FIUST PLASTIC 4AVE	SCAL (CH) 1.89455-01 1.74475-01 2.8151F-01 2.8436F-01 4.50415-01
SUBLIMATED FOR PHY	GRUUF 15F4	AMU= 1.134	YO ==:).	YMU= 0.	HUGONTOT F	IN THE FLU	S(MB) 1.8950E-01 1.7110E-01 2.7820E-01 2.7840E-01 4.3690E-01

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 8-13088E=03(MB)

CHRIC FIT TO FOLIATION OF STATE FOR BORON MITHIDE (LOW PRESSURE)

11.		-0. (CM/MICMOSEC) +NO DATA	-0. (CM/MICROSEC) *NO DATA	THERMAL SOEF OF EXPANSION(VOL) # 1+000E=04	SPECIFIC HEAT(CP) = -0. eNO DATA	2.559E-01(CM/MICHOSEC)	SLOPE OF US-UP# 2.7323
0.4 2.70200E+11 0.4 8NO DATA (1P) 4:10 DATA (1R) (1R)		CL=	CS#	THERE	SPECI	CB*	SLOPE
n/* n, (ip) +:; (ib)		2.70200€+11	*NO DATA				
SUPLITATI GRUNETSER ANUE D. YO E-D. YHUE A.	RHO(E) = 2.14790	Suppression Figures	GRUNE ISEN COFFEEDING			•	OT FLASTIC LIMIT

	æ
	INPUT ETA ETA ETA ETA
2,83313	U(CM/MICROSEC) 1,2873E-02 1,6301E-02 1,6824E-02 2,3809E-02 3,8639E-02
•57219 Slæ	V/VO 9.5484E-01 9.4003E-01 9.4796E-01 8.9063E-01
. p1	ETA 1.0473E+00 1.0638E+00 1.0549E+00 1.0753E+00
Cl= .1392A +	PCAL(MH) 8.1681E-03 1.1951E-02 9.8400E-03 1.4942E-02 3.0979E-02
IN THE FIRST PLASTIC WAVE	SCAL (74) H. 1641-03 1.1951F-02 9.8400F-03 1.4442F-02
IN THE FIS	S(48) 7.8606E-03 4.4900E-03 1.1650E-02 1.7340E-02

* INDITES LITTE AP 1EPM IS IMPOSED.

AVENAGE DEVIATION FROM SCALE 1.74320E-03(MH)

RH0(0) = H.45000

		6 ក្រុម ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភ្នំ
CHOSEC) CHOSEC) SION(VOL) = 5.760E-05 3.770E+06 CROSEC) 94	2,86633	C.C.Y.M. C.C
CL= 4.700E-01(CM/MICHOSEC) CS= 2.110E-01(CM/MICHOSEC) THERMAL COEF OF EXPANSION(VOL)= SPECIFIC HEAT(CP)= 3.770E+06 CB= 3.784E-01(CM/MICROSEC) SLOPE OF US-UP= 1.4294	2.03250 Sis	\$ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CL= CS# THERMA SPECIF CB*	01* 2.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
*NO DATA	Cls 1,20993 +	1.678CMB) 1.678CMB) 1.678SE=01 2.1756E=01 2.8257E=01 2.8257E=01 2.8257E=01 3.7256E=01 3.7256E=01 3.7256E=01 3.7256E=01 3.7256E=01 1.3265E=01
SUBLIMATION ENEWGY= -0. GRUNEISEN COLF= 2.1449 AMU= 3.75202E-01(18) YO = 1.72000E-03(48) YMU= 2.28600E-03 HUGONIOT FLASTIC LIMIT = 3.	FINST PLASTIC WAVE	10.4946000 10.00000000000000000000000000000000
SUBLIMATIC GRUNFISFN AMUE 3.752 YO E 1.720 YMUE 2.286 HUGONIOT F	IN THE FIF	22

. IMPLIES LIMEAN TERM IS IMPOSED.

AVFDAGE DEVIATION FROM SCALE 1.64/20E-02(MB)

CUBIC FIT TO EQUATION OF STATE FOR CADMIUM

								REFERENCE	61	6.	6	<u> </u>	9	61	67	61	<u>\$</u>	6.	67	51
								TUGNI	0//	0^/^	0//	0//		0//	0//	0A/A	0//	0//	0 / /	0//
	SEC))EC)	4(VOL)= 9.180E-05	2.600E+05	SEC)		4.07707	U(CM/MICROSEC)	6.1003E-02	6.8997E-02	8.4990E-02	1.1197E-01	1.45775-01	1.95408-01	1.95516-01	1.9716E-01	1.9785E-01	2.4268E-01	2.4032E-01	2.4312E-01
	2.780E-01(CM/MICHOSEC)	1.500E-01(CM/MICMOSEC)	THERMAL COEF OF EXPANSION (VOL)	SPECIFIC HEAT(CP)= 2.6(2.465E-01(CM/MICROSEC)	SLUPE OF US-UP# 1.6574	••6•1• Sl¤	0 / / /	8.1910E-01	8.0830E-61	7.8300E-01	7.4100E-01	7,3250E=01	6.6200E-01	6.6300E-01	6.5800E-01	6.5700E-01	6.2000E-01	6.2900E-01	6.2200E-01
	= 70	CS#	THERM	SPECI	68	SLUPE	018	ETA	1,2209E+00	1,2372E+00	1.2771E+00	1.34956+00	1.5291F+00	1.5106E+00	1.5083E+00	1.5198E+0G	1,5221E+00	1.6129E+00	1,5898E+00	1.6077E+90
	9.410006.09					(MB)	Cls .52499 *	PCAL (MB)	1.8250E-01	2.0500E-01	2.6793E-01	4.1430E-01	1.01145.00	9,3170E-01	9.22196-01	9.7072E-01	9.8073E-01	1.43485+09	1.3077E+00	1.4055E+00
1.643Un		GRUNFISFN CREFE 2.3390	AMU= 1.94400E-01(18)	(8 ₁)		HUGOWIOT ELASTIC LIMIT #-0.	IN THE FIRST PLASTIC WAVE	SCAL (MB)	1.R250F-01	2.05005-01	2.47435-01	4.14.30E=01	1.01146-01	9,31705-01	9.2219E-01	9.7072E-01	9.A073E-01	1.43495+00	1.30775.00	1.40555+00
RH0(1)= 8.64300	SUBLITATION ENERGY=	GRUYF ISFN	AMU= 1.944	YO == 0.	YMU= 0.	HUGONIOT E	4	S (MB)	1.82905-01	2,1450E-01	2.8760E-01	4.1020E-01	4.57305-01	9.760nE-01	9.8000E-01	9.8200E-11	9.8600E-01	1.3390E+110	1.3450E+10	1.3510€+00

. INDLIFS LINFAR TERM IS IMPOSED.

AVERAGE (IF VIATION FROM SCALS 3.07486E-02(MB)

CURIC FIT TO EQUATION OF STATE FOR HORON CAMBIDE

								REFERENCE 20	50	50	50	0 V	50	50	20
								TUGKI	08/	0 1 7	01/1	0 2 2 3	0//	0 / / >	V/V0
	(CH/MICHOSEC) OND DATA	(CH/MICHOSEC) OND DATA	N(VOL)= 2.100E-05	NO DATA	SEC)		2,87552	U(CM/MICPOSEC)	2.0946E-03	2.29785-01	2.5245E-01	2,5934E-01 3,2314F-01	2.9368F-01	3.36578-01	3.56785-01
	(CM/MICK	(CM/MICHC	THEHMAL COEF OF EXPANSION(VOL)=	SPECIFIC HEAT(CP) = -0.	2.951E-01 (CM/MICROSEC)	SLOPE OF US-UP= 1.8100	81s	V/V0 7_3100F_01	6.8800E-01	6,7300E-01	6.7800E-01	6.4200F-01	6.5500E-01	6.2500E-01	6.2400E-01
	Cl. = -0.	CS# -0.	THERMAL C	SPECIFIC	Cö≖ 2.9	SLOPE OF	Dls -,33439	ETA 1,3680F+00	1,4535E+00	1.49596.00	1.4749E+00	1,5576F+00	1.5267Ec00	1.6000E+00	1.6026E+00
	1.47000E+11	SHO DATA	ATA			(H)	Cl* .16720 •	PCAL (MB) 1,5954E=01	2.7523E-0:	3.3215E-01	3-1202E-01	4.8797E-01	*.1549E=01	6.0105E-01	6.0845E-01
1.92000	SUMLE INTIO FIIF DRY= 1.4	GRU√FISE™ COEF==u• #NE	(18) #NO DATA	(48)		HUGO 10T FLASTIC LIMIT B-0.	IN THE FIRST PLASTIC WAVE	SCAL (49)	2.75235-01	3,3215F-01	3.1202F-01	6. H7H7F_01	4.15495-01	6.0105F-01	6.U843F-91
R40(0)= 1.92000	SUPL ['AT]	GRUNF ISF	ANUE 11.	¥0 == 0 Å	YMUE O.	มี พิเษณ์ เกิด	IN THE FI	S(MA) .60008_01	.7000E-01	.1000E-n1	. 8000E-01		.8000F-n1	.8000E-01	.5000E-01

. INPLIES LINEAR TENH IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 4.01828E-02(MB)

CUBIC FIT TO EDUATION OF STATE FOR SILICON CAPRIDE RHO=2.32

RHO(0) = 2.32000

			•			REFERENCE	20	2	50	07	80	20	20	20
						TUGNI	01/1	0//	0 / / /	0 / / /	0//	08/8	0//	0///
(EC)	1(VOL)= 1.500E=05	NO DATA	EC)		2,17304	U (CM/MICROSEC)	2.2440£-01	2.0767E-01	2.4670E-01	2+5455E=01	2.65105-01	3.1372E-01	3-19096-01	3.4706E-01
1.173E+00(CM/MICHOSEC) 7.430F=01(CM/MICHOSEC)	THERMAL COEF OF EXPANSION (VOL.) =	SPECIFIC HEAT(CP) = -0.	2.850E-01(CM/MICROSEC)	SLOPE OF US-UP# 1.6616	.771 S1#	0///	6.46C0E-01	6.5500E-01	6.4700E-01		1000000	6.1300E-01	6-1900E-01	5.9500E-01
CL # 1	THERMAL	SPECIFI	C8= 9	SLOPE	01=22771	ETA	1.5480E+00	1 - 3 C 0 / E + 0 C	1.5456E*00		1,431,351,50	00+367600	1.61556+00	1,6807E+VU
1.41000E+11 *PI(1 DATA				· (MB)	Cls .18844 •	PCAL (MB)	3,9247E=01	2 04051	4.5621F-01	5,61855_01	10 11 11 11 11 11 11 11 11 11 11 11 11 1	101300000	7 00046	10-34000
	75E+00 (MB)	(HT.)		MUGO''IOT ELASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL (MB)	3.924/6=01		4.5521F-01	5.6185F=01	5,75006.0	1012000100	1011110000	470417000
SURLIMATION EVENGYE GRUNFISEN COEFE=0.	AMU= 1.24075E+00(MB)	¥0 =-0.	YMUE 0.	HUGONIOF E	IN THE FIRE	S (MR)	3,3000E=01	4 0000E-01	4,0000E-01	4.9000E-03	5.90005-01	A 2000F101	10000 Y	

. IMPLIFS LINFAR TERM IS IMPOSED.

AVERAGE (FEVIATION FROM SCAL . 4.78537E-02(MB)

CURIC FIT TO FOURTION OF STATE FOR TUNGSTEN CARHIDE

								AE FE S S S S S S S S S S S S S S S S S S
								1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	SEC)	SEC)	N(VOL)# 1.440E=05	+NO DATA	SECI		1,85336	U(CM/HICROSEC) 2.18946-02 3.51906-02 3.66276-02 4.41376-02 7.12086-02 7.46686-01 1.46616-01 1.7326-01 1.7526-01
	6.890E-01(CM/HICHOSEC)	4.180E-01(CM/MICHOSEC)	THERMAL COEF OF EXPANSION (VOL) =	SPECIFIC HEAT(CP) = -0.	5.181E-01 (CM/MICHOSEC)	SLOPE OF US-UPs 1.1640	142 Sla	V/V0 9.6600E-01 9.3500E-01 9.3500E-01 8.8600E-01 8.9400E-01 7.8600E-01 7.5600E-01 7.5600E-01
	•9 ≠13	CS# +•	THERMAL	SPECIFIC	CB* 5.	SLOPE OF	Die 5.33142	1.0417E+00 1.0661E+00 1.0695E+00 1.1287E+00 1.1351E+00 1.242E+00 1.2739E+00 1.32739E+00 1.32739E+00
	7.82800E+10	DATA				(48)	Clm 4.0317A +	PCAL(MB) 2.7738E-01 3.7458E-01 3.7458E-01 3.7458E-01 6.1097E-01 6.9464E-01 6.9466E-01 1.5303E+00 1.9189E+00 1.9189E+00 1.9189E+00
•05000		COFFE-0. ONE DATA	35E+00 (4B)	(44.)		MUGONIOT ELASTIC LIMIT =-0.	IN THE FINST PLASTIC WAVE	SCAL (MA) 1.7738E-01 2.9032F-01 3.7453F-01 5.1047F-01 6.2047F-01 1.4949F-01 1.5303F-00 1.9149F-00
RMO(0)= 15.02000	SUBLIMATION ENFHURE	GRUNFISFN COFF==0.	AMU= 2.62435E+00(9B)	Y0 ==0.	YFUE D.	MUGONIOT E	THE 2HE WI	5.0000 5.00006 5.00006 5.10006 6.10006 6.10006 6.10006 1.55006 1.55006 1.85006 1.85006 1.89006 1.89006

* IMPLIFS LINEAP TERM IS IMPOSED.

AVERAGE NEVIATION FROM SCAL# 1.44994E-02(MB)

CURIC FIT TO FUNITION OF STATE FOR CAPBON PHENOLIC

	3.A17E-01(CM/MICHUSEC)	2.600E-01(5M/MICHOSEC)	THERMAL COEF OF EXPANSION(VOL) = 4.890E-05	SPECIFIC HEAT(CP)= 7.87GE+06	4.200E-01(CM/MICHOSEC)	S-UPA -0.	
	CL= 3.Al	CS= 2.60	THERMAL CO	SPECIFIC H	C6= 4.20	SLOPE OF US-UP# -0.	
	04000E+11					(MH)	
	1.0400	7				1T ==0.	
00067	FrigibGY=	OFF= 1.00	4E-01 (HB)	(448)		ASTIC LIM	
RH0(0)= 1.49000	SHRLIMATION FULTIGY	GRUNFISFN CUFF= 1.0041	AMU= 1.00724E-01(48)	Y^ ==0.	YMU= 0.	HUGONIOT ELASTIC LIMIT ==0.	

	REFEFENCE		~		7		-		4	-			53	23	22
	INPUT	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA	ETA
. 2.82512	U(CM/MICROSEC)	3,75697E-02	2,95703E-02	3.12239E-02	2,14172E-02	2,21625E-02	1,91126E-32	1.58606E-02	1.241145-62	1,00763E-02	7,132775-03	5,77619E-03	7.66142E-02	1,139975-01	1,711326-61
S1#														_	_
80899	0///	9.00090E-01	9.23361E-01	9.15248E-01	9.47867E-01	9.45180E-01	9.54107E-01	9.61908E-01	9.692745-01	9.74184E-C1	9.78091E-01	9.83091E-01	8.19672E-01	7.72201E-01	7.14796E-0
#1g															
.26284 *	ETA	1.11100E+00	1.08300E+00	1.09260E+00	1.05500€+00	1.05A00E+00	1,04810E+00	1.03960£+00	1.03170£+00	1.02650£+00	1.02240£+00	1.01720E+56	1.22000€+00	1.29500E+00	1.399006+00
<u>.</u>	, 10	-05	£-02	£-05	20-7	E=02	E-02	E-03	∑≖03	E-03	£ -03	E 0 = 0	£-02	£ -05	E-01
PLASTIC WAVE	PCAL (MB)	2,30710 -02	1,78576E-02	1.964496-02	1,24788	1,307435-02	1,10851	9,31512E-03	7,60895	6.44962	5,51336t-03	4.29582:-03	4.87508E-02	7,9562	1,5553 E-01
IN THE FIRST PLASTIC WAVE	(#;.) a	2,105n0F-02	1.70000E-02	1.714905-02	1.311006-02	1,335,005-02	1.14470F-02	9.84000E-03	7.47000E-03	5.840005-03	3,460006-03	2,94000F-03	4.85000E=02	8.50610F-02	1.530006-01

^{*} IMPLIES LINEAH TERM IS IM JOSED.

AVERAGE DEVIATION FROM SCAL= 1.41798E-03(MB)

-D CARHON PHENOLIC CUBIC FIT IN FUNATION OF STATE FOR

RHU(0)= 1.34001

							REFERENCE	<u> </u>	53	23	53
		NO DATA					INPUT	ETA	£ 1.9	E .	ETA
(CM/MICHOSEC) *NO DATA	(CM/MICHOSEC) *NO DATA	N(VOL) = -0.	NO DATA	SEC)		• 28696	U(CM/MICROSEC)	4.5391F-02	1-13645-01	1.3271E-01	1-77736-01
		THERMAL COEF OF EXPANSION (VOL) = -0.	SPECIFIC HEAT(CP) = .0.	3.000E-01(CM/MICROSEC)	SLOPE OF US-UP# 1.4287	.19967 \$1=	0//A 0//05.59	8.87315.01	7.3964E-01	7.3421E-01	6.7935E-01
CL= =0.	CS= -0.	THERMAL	SPECIF	н 60	SLOPE	Dle .19	ETA 1.0520E+00	1,1270E+00	1,3520E+00	1,3620E+00	1.4720E *00
WHO DATA	ITA	_			(48)	c1≠ •12060 •	PCAL (MB) 6-8515E=03	1.9124E-02	7.9707E-02	8.3435E-02	1.315AE-01
i EnEpGY= −0.	TUEFE-0. +un DATA	(18) WIO DATA	(41.18)		HUGO-101 FLASTIC LIMIT =-0.	IN THE FIUST PLASTIC WAVE C	SCAL (34)	1.4124F-02	7.4707E-02	H.34 J5F-02	1.31588-01
SUBLINATION ENENGY=	GRUNETSFN COFF == 0.	AMUE C.	* ∪ # ∪ X	YPUR 0	MUGO-10T FL	IN THE FIRS	S (MH) 5.6000E=03	2.4500E-02	6.6760E-02	4.9800E-02	1.32005-01

^{*} IMPLIES LINEAM TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 5.08335E-03(MB)

									æ								
									INPUT	002	0 / / /	0//	0//	0///	0 7 7	02.	>>>
	SEC)	SEC)	N(VOL)# 2.520E-05	2.336E.06	SEC)			3,16171	U(CM/MICROSEC)	5.4503E=02	7-43675-02	7.4495E-02	7.41796-02	20 = 3/ +T+*/	1.00756-01	10-36-46-61	2.24335-01
	6.600E-01(CM/MICHOSEC)	4.320E-01(CM/MICHOSEC)	THERMAL COEF OF EXPANSION(VOL)#	SPECIFIC HEAT(CP) = 2.3	5.295E-01(CM/MICHOSEC)	SLOPE OF US-UP= 1.3783		1173 51=	V/V6	9.0890E=01	8-8350E-01	8.8310E-01	8.8340E-01		0.45005-01	7.77005-01	7.3400E-01
	* 10	CS	THERMAL	SPECIFI	C 88 83	SLOPE C		Dlm 3.41173	ETA 1 AGGIEADA	1.1002E+00	1-13195-00	1.1324E+00	1 13105 00	1 17815.00	1.17795+00	1.2870E+00	1.36245+00
	7.52700E+10					4.89151E-03(MB)	CO# 3.76792	Cl= 1.99624 •	PCAL (MB) 2,3455F=01	2.3756E-01	3.2984E=01	3.314ZE-01	3.2984F_01	4.81845-01	4.8087E-01	9.29165-01	1,3229E+00
7.12000	SUBLIMATION ENERGYS 7.5	GRUNEISEN COFFE 2.0700	AMU# 1.32876E+00(78)	YO = 3.45000E+03(48)	H20E-03	HUGONIOT ELASTIC LIMIT = 4	IN THE FLASTIC WAVE	IN THF FIRST PLASTIC WAVE	SCAL (MR) 2,3645F_11	2.39865-01	3.32146-01	3 32561 01	3,32145_01	4.8414F-01	4.8317E-01	9.31465-01	1,3252F+00
RHO(1) # 7.12000	SUBLIMATI	GRUNEISEN	AMU# 1.32	YO = 3.45	YMU= 1.29420E-03	HJG04101	IN THE FLI	IN THE FIG	\$ (MB) 2_3450E=01	2.3300E-01	3.3800F=01	3,560,55	3,3600E_01	*. 7800E-01	4.7900E-01	4.2400E-01	1.3470€+00

IMPLIFS LIWFAH TERH IS IMPOSED.

AVECAGE DEVIATION FROM SCALE 6.52085E-03(MB)

١.,

CUBIC FIT TO FOUNTION OF STATE FOR CUBALT

RHO(0) = A.42000

SUBLIMATION ENERGY=		7.10800E+10	CL = -0.		(CH/MICROSEC) OND DATA		
GRU1F I SF1	GRUNEISFN COFFE 2.0516		.0- =83		(CM/MICHOSEC) OND DATA		
AMUx n.	(18) +40 DATA	JA.	THERMAL	THERMAL COEF OF EXPANSION (VOL)	ON(VOL) = 3.690E-05		
YO ==0.	(812)		SPECIFI	SPECIFIC HEAT (CP) = 4.	4.144E.06		
YMUR 0.			CBB	4.800E-01(CM/MICROSEC)	105EC)		
HUGOLIOT F	MUGOUIOT FLASTIC LIMIT ==0.	(HB)	SLOPE	SLOPE OF US-UP= 1.3038			
IN THE FIR	IN THE FIRST PLASTIC WAVE	Cls 2.03213 +	01= 3.16663	,663 S1 =	. 2,42554		
S (#B)	SCAL (MB)	PCAL (MB)	413	2		ļ	
2.4110E-01	2.4106-01	2.4 160F=01	1 10165		CCH/HICKOSEC)	INPUT	REFERENCE
3.4320E-01	3.41755-01	3.4.756-01	1.13625400	7.0.00E-01	5.0203E-02	0//	13
3-24405-01	3.26285-01	3.7528E-01	1.13115.00	10=30100*4	0-830¢E-02	0//	E 7
. 7910E-01	4.4915E-n1	ټ	1,1761E+00	8.50305-01	20-10470-0 0-10400-0	08/8	m .
09806-01	5.0788E-01	5. 788E-01	1.18745+00	8.42205-01	0.000 M 0.000	200	7 .
1 - 1 2 1 0 E - 0 0	1-11916+00	1 - 1 1 91 E + 00	1 • 3333E • 00	7.5000E-01	1-78255-01		<u>.</u>
1 1480F+00	1 - 1 358E - 00 1 - 1 821E - 00	1-13685+00	1.3369E+00	7-4800E-01	1-80245-01	0//	חור
1.3620E+00	1.34845+00	1.34845+00	37746400	7 26661 01	1,82905-01	0//	S)
1,3580€+00	1.37985+00	1-3798E+00	1.38315+00	7 22605-01	2.0370E-01	0 / / / /	ın i
1.3570E+00	1-40115+00	1.4011E+00	1.3870F+00	7.21005-01	Z-005ZE-01	0//	សា (
1,5840E.00	1.5705r+00	1.5705E+00	1.41645.00	7.06005.01	70-10E+40-07	04/4	ın ı
00+30786-1	1.5825E+00	1.58256+00	1,4184E+00	7,0500F_01	2.2905F.01	02/2	n 4
00+3012c*1	1.6056E+00	1.6066E+00	1 4225E+00	7.0300F-01	2.3044E.01		n u
. ************************************	1.5587F+00	1.55875+00	1.4144E+00	7.0700E-01	2,31,25-01	2 2	n w
* 00-30c-0u	1.4055400	1.6066E+00	1.4225E+00	7.0300E-01	2,32335-01	20	חוי

• IMPLIES LINEAP TERM IS IMPOSED.

AVEHAGE OFVIATION FROM SCAL= 1.42483E-02(MB)

CUBIC FIT TO FOURTION OF STATE FOR COPPER

RHO (1) = 8.93000

		8 8 8 44 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9
		T 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CHOSEC) CHOSEC) SION(VOL) = 5.040E-05 3.860E+06 CROSEC)	5,64322	U(CM/MICROSEC) 2.68659E-03 6.0865E-03 6.0865E-03 1.18658E-03 1.4645E-03 1.4645E-03 1.4645E-03 1.4645E-03 1.66919E-02 7.69619E-02 7.69619E-02 7.69619E-02 7.69619E-01 1.8608E-01 2.4706E-01 2.4706E-01 2.4706E-01 4.1385E-01 4.1385E-01 4.1385E-01
CL # 4.700E-01(CM/MICHOSEC) CS	1.75178 S1=	9.95 V V O 9.95 V V V O 9.95 V V V O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CLE CSB TMERMA SPECIF CBB	D1= 1.7	1.000
5.24500E+10 = 1.64557E=03(MB)	COm 1.98036	PCAL(MB) 1.01992E-03 2.01672E-03 2.01896E-03 2.01896E-02 2.01896E-02 2.01896E-01 2.01896E-01 2.01896E-01 3.01896E-01 1.05386-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00 3.0512E-00
SUBLIMATION FNERGY 5.24 GRUNEISFN COEF 1.9600 AMU 4.56109E-01(48) YO = 7.58000E-04(48) YMU 8.19942F-04 HUGOMIOT FLASTIC LIMIT = 1.	IN THE FLASTIC WAVE IN THE FIRST PLASTIC MAVE	SCAL(MR) 6.9013F-03 1.1233E-02 2.3175E-02 3.1386F-02 5.5124F-02 1.1399F-01 4.3456F-01 4.3456F-01 6.4430F-01 1.105F-00 1.9166F-00 3.7167F-00 3.7167F-00 3.7167F-00 3.7167F-00 3.7167F-00 3.7167F-00 3.7167F-00 3.7167F-00
SURLIMATIO GRUNEISF': AMU= 4.56) YO = 7.58(YMU= R.100	IN THE FL	5.000 E - 0.3 1.01906 E - 0.3 2.18206 E - 0.3 2.98606 E - 0.2 3.29206 E - 0.2 3.29206 E - 0.1 3.26206 E - 0.1 5.95906 E - 0.1 5.95906 E - 0.1 1.9596 E - 0.1 1.9596 E - 0.1 1.9596 E - 0.0 1.95906 E - 0.0 3.74006 - 0.0 3.74006 - 0.0 3.74006 - 0.0 3.74006 - 0.0 3.74006 - 0.0

. IMPLIES LINEAM TERM IS IMPOSED.

1 4.

AVEPAGE DEVIATION FROM SCAL= 3.42143E-02(MB)

YADD AT .240 = 2.471E-02

CUBIC FIT TO FRUATION OF STATE FOR DURITE

								REFERENCE 20 20 20	0
			NO DATA					104/V 100/V 100/V	
	(CM/MICHOSEC) +NO DATA	(CM/MICROSEC) OND DATA	N(VOL) = -0.	NO DATA	SEC)		.49106	U(CM/MICROSEC) 1.2763E_01 2.9157E=01 3.7777E=01	4.87] 05-01
			THERMAL COEF OF EXPANSION (VOL) = -0.	SPECIFIC HEAT(CP)= -0.	2.847E-01(CM/MICROSEC)	SLOPE OF US-UP= 1.4651	51 S1=	7.1906-01 5.9106-01 5.4206-01	*******
	CL = -0.	CS# =0.	THERMAL	SPECIFIC	CB≖ 2•	SLOPE OF	02951	ETA 1,3908£+00 1,7212E+00 1,8450E+00	C.0363E.90
	NO DATA	TA				(MB)	c1* .11185 *	PCAL (MB) 7,7536E-02 2,8020E-01 4,0189E-01	0+0/206-01
	•0•	NO DATA	(16) BNO DATA	í.		IMIT 8-0.			
RHO(0)= 1.3H000	SURI IMATION ENERGYS	GRUNEISEN COEF=-U.	<u> </u>	(HE)		MUGOMIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC MAVE	SCAL (MR) 7.7536F-02 2.802GF-01 4.1199F-01	10-10¢/k°¢
RHO (0) =	SURI 1"AT	GRUNE I SE	AMUR D.	Y0 == 0.	YMUR D.	HUGOMIO	IN THE F	S(48) 2,0000E-02 2,8000E-01 4,3000E-01	0.5000t-01

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 1.45665E-02(MB)

STATE FOR EPOXY CUBIC FIT TO FOUNTION OF

								REFERENCE	92	2	92	92	92	5 6	9 76	5	56	92	92	5 6	\$	92	02	50	20	20	20	20
								INPUT	ETA	E 1 A	ETA	ETA	ETA	ETA	ETA	0///	0//	0//	0 > >	0//	0//	0A/A						
	SEC)	SEC)	N(VOL)# 1.500E=04	NO DATA	SEC)		,347 ₈ 5	U (CM/MICROSEC)	4.6483E-02	1.8498E-02	2,38735-02	2.3459E-02	2.4562E-02	3.0660E-02	3.7054E-02	3,90425-02	6.4537E-03	8.8097£-03	1,0640E-02	1.1001E-02	1.1060E-92	1.2480E-01	1.25035-01	1.7234E-01	1.7234E-01	1.72346-01	2.2121E-01	2.21815-01
	2.870E-01(CM/HICHOSEC)	1.480E-01 (CM/MICROSEC)	THERMAL COEF OF EXPANSION(VOL)*	SPECIFIC HEAT(CP)= -0.	2.670E-61 (CH/HICROSEC)	SLOPE OF US-UP= 1.5240	•12935 SI •	0//0	8.6281E-01	9.3844E-01	9.2039E-01	9.2276E-01	9.1920E-01	9.03595-01	9-8558E-01	8.7958E=01	9.7675E-01	9.6843E-01	9.6237E-01	9.61175-01	9.6117E-01	7.3300E-01	7.3200E-01	6.7600E-01	6.7600E-01	6.7600E-01	6.3300E-01	6.3100E-01
	- 10	CS=	THERM	SPECIF	CB.	SLOPE	# C	ETA	1,1590E+00	1.0656E+00	1.0865E+00	1,0837E+00	1,08795+00	1,1067E+00	1.1292E+00	1,1369E+00	1,02385+00	1.0326E+00	1,03916+00	1.0404E+00	1.0404E+00	1.3643E+00		1.4793E+00	1.47936+00	1.4793E+00	1,5798E+00	1.58485+00
	SNO DATA	ATA				(Rw)	cl* .08555 *	PCAL (MB)	1.8270E-02	6.26675-03	8.5928E-03	A I	٠:	1.10235-02	1.3962E-02	1,5028E=02	2,1140E-03	Z.9383E.03	3.5634E-03	3.6901E-03	3.69016-03	6.51355-02	0.5730E-02	1.0901E-01	1.0901E-01	1.0901E-01	1.6087E-01	1.6.382E-01
1.29000	N FIERGYS -U.	COFFE-0. •NO DATA	485-02(46)	((() ()		MUGONIOT FLASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL (MR)	1.8270F-02	6.2667F-03	N.5928F-03	A.2704F-03	8.7552E-03	1.10235-02	1,39625-02	1,50285-02	2,1140F_n3	2,93936-03	3.56346-03	3.6901E-03	3.69015-03	6.5135F-02	6.5730F-n2	1.09015-01	1.09016-01	1.0901E-01	1.40A7F-01	1.63425-01
RMO(a) = 1	SUBLIMATION FRENGYS	GRUNFISEN COFF=0	AMUS 2.6284RE-02(116)	YO =- "	YMUR 9.	MUGONIOT FI	IN THE FIG	S (MB)	1.8900E-02	6.6700E-03	A.5900E-03	H.5500E-03	8.9600E=03	1.1700F_0?	1.4450E-17	1,5190E-02	2,1500E-03	FU-30056-2	3.6100E-03	3.7400E-03	3. 7800E=03	7.0000E_02	7.0000E-07	1.10005-01	1.1000f-01	1.1000£ - 61	1.60006-01	1.60006-01

. IMPLIFS LINFAR TERM IS IMPOSED.

CUBIC FIT TO FOUNTION OF STATE FOR C-7 EPOXY

								RFFRENCE	23	3 6		כ	23	22	22	25	25	22	22	22	25	25	25	25
			NO DATA					TUGNI	614	449	7 L L	4 1 1	ETA	0//	0//	0//	0///	0A/A	0//	0//	0//	0//	0//	0//
	(CM/MICHOSEC) OND DATA	(CM/MICHOSEC) +NO DATA	**************************************	NO DATA	SEC)		.19404	U(CM/MICROSEC)	4.87145-02	1.17415-01	4-3746F-02	1.35405-02	1.44936-02	8.29475-02	8.9686E-02	9.7788E-02	1.0369E-01	1.1008E-01	1,1712E-01	1,2331E-01	1.2976E-01	1,3615E-01	1,3967E-01	1.16156-01
	-0. (CM/MICHO	•	THERMAL COEF OF EXPANSION (VOL) =	SPECIFIC HEAT(CP) = +0.	2.650E-01(CM/MICHOSEC)	SLOPE OF US-UP# 1.4404	.14612 518	0//0	8-54705-01	7.2150E-61	8.77195-01	9.53296-01	9.48775-01	7.8100E-01	7.6400E-01	7.5000E-01	7.4700E-01	7.3800E-01	7.2700E=01	7.2100E-01	7,1300£-01	7.0500E_01	7.1100E-01	7.1600E-01
	- =10	CS= =0	THERMAL	SPECIF		SLOPE	01.	ETA	1.1700E+00	1,3860E+00	1,1400E+00	1.0490E+00	1.0540E+00	1,2804E+00	1.3089E.00	1.3333E+00	1.3387E+00	1,3350E+00	1 30305 00	1.3870E+00	1,4025€+00	1.4184E+00	1.4065E+00	1,3966E+00
	NO DATA	ATA	•			(HW)	Cl* .08427 •	PCAL (MB)	1.9502E-02	6.5460E-02	1.5194E-02	4.5029E-03	5.0072E-03	3.9398E-02	4.5694E-02	5.1513E-02	5.2842E=02	70 - 100 0 0 V	6 57347 63	7 03631 03	20-32E-02	7.5064E_02	20-31-5-10 P	0-345c8.0
u00u	ENEUGY= -0.	FFE-0. HIO DATA	(MH) OND DATA	(41.)		MUGOSTOT FLASTIC LINIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL ("H)	1.9502F-n2	4.5440E-02	1.5194F-02	4.5029F-03	5,0072E-03	3.939RF-02	4.3545	5.151.35 -02	5 2015r 62	10 110 1 V	A 57341 50	2011 10 10 10 10 10 10 10 10 10 10 10 10	7 - 06 36 E - UC	7.5004F-02	7 1 4 C 1 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	7, H324F_02
RHO(4) = 1.20000	SUBLIMATION ENEUGY=	GPUNEJSFt: COFF=+0	AMUs n.	YO == U	YMUE 0.	HUGOSTOT FLA	IN THE FIRST	S (MR)	1.9600F-n2	5.9400F-02	1.8700F-02	4.7100E-03	4.9200F-03	3.7700E=02	50-300E-	20-30060**	5.1300t-02	CO-2000.	A 15400F 02	00 100 40 A		\= W=000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7. '000E-02

. IMPLIES LINEAH TERM IS IMPOSED.

AVERAGE (PEYIATION FROM SCAL® 3.09754E-03(MB)

CHHIC FIT TO FOUNTION OF STATE FOR EXON

RHO(0)= 1.5A100

			REFERENCE 20 20 20 20 20
NO DATA			IMPUT 0//0 0//0 0//0
(CM/MICHOSEC) OND DATA (CM/MICHOSEC) OND DATA EXPANSION(VOL) = -0.	•NO DATA Sec)	.58262	U(CM/MICROSEC) 1.1929E-01 1.2127E-01 1.5739E-01 2.0145E-01
COEF OF	SPECIFIC HEAT(CP)= -0. Cb= 1.948E-01(CM/MICROSEC)	SLOPE OF US-UPs 1.6638 s .01379 Sl*	V/V0 7.0100E_01 6.9100E_01 6.5300E_01
CLs -0. CSs -0. TMERMAL	SPECIFIC	SLOPE OF US	ETA 1.4265E+00 1.4472E+00 1.5314E+00 1.6103E+00
ATA ONO DATA		(MB) Cl= •06379 ●	PCAL (MB) 7.4928E-02 8.3381E-02 1.2522E-01 1.7651E-01
N ETIEMĠT= -0. GOEF=-J. •NO DATA (48) •NO DATA	(9)	MUGNNIOT ELASTIC LIMIT ==0. IN THE FIRST PLASTIC MAVE	SCAL(18) 7.4928F-62 8.3341F-02 1.7522E-01 1.7651F-01
SUBLIMATION EHERGY= GRUNFISEN COFF=-0. AMU= 10. (18)	YO E-D.	MUGANIOT EI	S(MB) A_0000E_02 H_0000E_02 1,2000E_01 1,8000E_01

^{*} IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 4.28980E-03(MB)

CUBIC FIT IN FULLATION OF STATE FOR MI-D GLASS (LOW PHESSURE)

RHO(0)= 6.20000

. IMPLIES LINEAR TERM IS IMPOSED.

CUBIC FIT TO ENUATION OF STATE FOR GOLD

	w
	M
CMOSEC) CWOSEC) SION(VOL.) = 4.040E-05 1.260E+06 CROSEC) 68	8.11259 U(CM/MICROSEC) 3.8004E-02 5.0499E-02 6.6566E-02 7.1565E-02 1.3717E-01 1.7352E-01 1.7405E-01 1.7405E-01 1.7405E-01
CL= 3.280E-01(CM/MICMOSEC) CS= 1.230E-01(CM/MICMOSEC) THERMAL COEF OF EXPANSION(VOL)= SPECIFIC HEAT(CP)= 1.260E.06 CB= 3.147E-01(CM/MICMOSEC) SLOPE OF US-UP= 1.4968	2.40096 S18 V/VO 8.9670E-01 8.3890E-01 8.3300E-01 7.3000E-01 7.0000E-01 7.0000E-01 7.0000E-01 6.9900E-01 6.9900E-01
CLS CSS THERM SPECII CBS	ETA 1.1152E+00 1.1920E+00 1.2005E+00 1.3592E+00 1.4286E+00 1.4286E+00 1.4493E+00 1.4493E+00
76830E+10 5.47621E-03(MB) CO= 2.29356	Cl= 1.90545 • PCAL(NB) 2.6377E=01 3.6833E=01 1.3298E=01 1.4437E=00 1.8962E=00 1.9135E=00 2.0754E=00 5.1093E=00
RAD(0) = 19.24000 SURLIMATION EMERGY = 1.7 GRUNFISEN COEF = 2.8000 AMU = 2.91082E-01(MB) YO = 1.39000E-03(MB) YMU = 2.38764E-03 HUGONIOT ELASTIC LIMIT = 5	MB) SCAL[MB) SCAL[MB] 00E=01 2.7354F=01 2.0E=01 3.4046E=01 5.271F=01 00E=01 5.6033F=01 00E=01 1.9583F=00 1.9580F=00 1.9580F=00 1.9580F=00 1.9580F=00 1.9580F=00 1.9580F=00 00E=00 5.1124F=00 5.1124F=00 5.1124F=00 00E=00 5.1124F=00 5.1124F=00 00E=00 00E=000 00E=00 00E=00 00E=00 00E=00 00E=00 00E=000 00E=00 00E=00 00E=000 00E=00 00E=00 00E=00 00E=
SUBLIMAT GRUNFISE ANUE 2.9 YO = 1.3 YMUE 2.3 HUGONIOT	2.6900E=01 3.7540E=01 5.2920E=01 5.9920E=01 1.9300E+00 1.9360E+00 1.9500E+00 1.9500E+00

^{*} IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE HEVLATION FHOM SCAL= 3.84915E-02(MB)

CUBIC FIT TO EQUATION OF STATE FOR GHAPHITE COMMERCIAL

								REFERENCE	24	42	~	24	45	2	~ ~	75	42	*	7	: 2		\$	24	45	42	45
			ONO DATA					INPUT	0//0	0//	02/2	0 / / /	0//	0//	02/2	0^/	0///	02/2	0//A		02/2	0//	0//	0//	0//	۸/۷
	CH/MICROSEC) *NO DATA	(CM/MICROSEC) +NO DATA	WION(VOL) = -0.	-0. eNO DATA	ICROSEC)		Sl = . 41540	U(CM/MICROSEC)	2,32521E-01	2,32036E-01	2.06575E-01	2_09920E-01	2,06507E-01	1.888775-01	1,909958=01			1.726505-01	1.76349E-01	1.53895F±01	1.578428-01	1.530405-01	1,340605-01	1,33558E-01	1,28438E-01	1.13586E-01
	CL= -0. (CH/M)	CSE -0. (CM/M)	THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC MEAT(CP)=	CB= 1.477E-01(CM/MICROSEC)	SLOPE OF US-UPs -0.	0]=03953	0 / / /	5.61000E-01	5.65000E-01	5.84000E=01	5.78000E-01	5.940005-01	5-91000E-01	5.96000F=01	6.10000E-01	5.9000E-01	5.870005-01	6.05000E+01	6.26000F=01	6-16000E-01	6.28000E-01	6.41000E-01	6.48000E-01	6,27000E-01	6.440005-01
	ONO DATA					(#6)	.03552 • 03552	ETA	1.78253£+00	1.76991E+09	1.712335.00	1.73010E+00	1.68350E+00	1.69205E+00	1,677855+00	1.63934E+00	1.69492E+00	1 • 10398F+00	1.65017E+00 1.643B9F+00	1.597446+00	1.639345+00	1.59236E+00	1 - 56006E+00	I .54321E+00	1.59490€+00	1.55280E.00
	• 0 -	MHO DATA	(48) ONO DATA	•		MIT 2-0.	IC WAVE CIP	PCAL (MB)	2.02644E-01	1.93494E-01	1.55388E-01 1_78470E-01	1,665295-01	1,384545-01	1.43330E=01	1,35295E-01	1,151116-01	1.44994E-01	1,50101E-01	1.205505-01	9.56955E-02	1.151116-01	9,351036-02	•	7,421366-06	4.45968E-02	7.77261E-02
PHO(n) = 1.6.240n	SUBLIMATION ENERGY=	GRUNE ISEN COEF=-0.	AMUE 0. (148	YO ==0. (MB)	YMUs n.	MUGONIOT ELASTIC LIMIT 2-0.	IN THE FIRST PLASTIC WAVE	(8 H) d			1.67000F-01		1.710095-01	1.423005-01	1.47000E-01		1.2000E-01	101200111	1.24000F-01	1.030005-01	1.04000E-01	1.02500F-01	8.15000F-02	6.45000E-02	1.20000E-02	5.900008-02

. IMPLIES LINEAH TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 1.21439E-02(MB)

								UT REFERENCE	35	35 08/8			V/V0 35	SE 0A/A					27.00 M								*/**									
	EC) WHO DATA) }	(VOL.) = 7.800E-05	9.630E+07	EC)		2.42666	U(CM/MICROSEC) INPUT	.7796E-91	.3010E-01	95336-02	.0>89E-0<	-4123E-01				3.0585F=02				,4186E-92 ,444E-03	.9779E-02	.8598E-02	.5592E=02	10	.6359E-02	523E-02	. 7955E-02	3,5007E-02 V/VO	•6393E-02	.9882E-02	.5027E-01	.2365E-01	•2536E=01	.517/E-01	_
	-0. (CM/WICROSEC)		נעני	SPECIFIC HEAT(CP)= 9.63	4.145E-01(CH/HICROSEC)	E OF US-UP# 1.7341	•73713 S1 •	08/8	7.52005-01	6.44005.01	8.5800E-01	8.4200E-01	7.8800E-01	/.0400E=01 8.4400E=01	8-51005-01	8,9500E=01	9.30005-01	8-8100E-01	8,5400F=01	8.5500E-01	9.0900E=01	8.4700E-01	8.5100E-01	8.5700F=01 8.5100F=01	8.5700E-01	9.00006-01	9-1906E-01	9.0400E-01	9.2600E+01 b.4760E-01	8.45005-01	8.5300E-01	7.7000E-01	8.0500E-01	•	•	•
ā C		THEORY		SPECI	86 0	36078	018	ETA	1 3298E+00	1.18485+00	1.1655E+00	1.18765+00	1.2690E+00	1,1848E+00	1-1751E+00	1.07185-00	1.0753E+00	1.1351E+00	1.17105.00	1.1696E+00	1.09536+00	1.1006E+00	1.17516+00	1-17516+00	1.1669E.00	1.07415400	1.0881E+00	1.1062E+00	1.0/99E+00	1.18346.00	1,17236+00	1,29876+00	2422E+0		43005 +0	•
8.00000E+03		DATA	l l			9•	Clm .37798 •	2		; ~	M C		2.0230E-01	-	5		ň	èà	ě	7	4.4811E-02	1.0663E-01	1.01805-01	1.01306-01	9.4868E-02	3,30515-02	0	5-13595-02		1.09116-01	6	•	9	932	ARAIF	
RMO(0) = 2.20000 SUBLIMATION ENERGY = 8.	000	ATAO ONO (MM)		(NB)		ELASTIC LIMIT ==0	FIRST PLASTIC WAVE	SCAL (MR)	1.7476F=01	1-10-76-01	.3748E-02	.1292F-01	2.0230E-01	1.10376-01	1-61805-01	3,18436-62	3.36916-02	7.0485E-02	9.8290E-02	9.7139E-02	4.4811E-02	1.0663F-01	1.01805-01	1.01805-01	9.4868E=02	3,30515-02	4.0703E-02	5.13595-02	1.05636-01	1.0911E-01	9.9651E-02	2.43355-01	e r	9	AH TE	
RHO(0) = SUBLIMATI	GRUNE ISEN COEF=	AMU 0.	•	¥6 =-0.	YNU 0.	HUGONIOT	IN THE FI	S (MB	1.9300E-01	.2250E-0	.8600E-0	.2300E-0	2.0700E-01	1900E-0				7.5000E-02		9.8000E-02				1-0950E-01	9.5500E-02	2.9700E-02	4.4600E-02	5.2700E-02	1.1140E-01	1090	.5500E-0	. 1600E	1.720c=01	6330F.0	59305	2000

Ī	_	
0//	0//	0 > / >
2.1807E-01	2.33125-01	2.0599E-01
7.14005-01	7.2050E-01	7.2800E-01
1.4006E+06	1.3889E+00	1.3736E+00
4.2564E-01	4.0119E-01	3.7069E-01
4.25645-01	4.01195-01	3.70695-01
3.6580E-01	4.2700E-01	3,4320E-01

777

. IMPLIES LINEAH TERH IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 1.17353E-02(MB)

CUBIC FIT TO EQUATION OF STATE FOR HAFNIUM

RHO(0)= 13.31000

								## ### ###############################
	8 S							12/4/ 12/4/
SEC) SEC)	N(VOL) = 1.800E-05	2.551E+06	SEC)		.35148	116017		0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.860E-01(CM/MICROSEC) 2.120E-01(CM/MICROSEC)	OEF OF EXPANSION(VOL)=	SPECIFIC MEAT(CP)= 2.5	2.950E-01 (CM/HICROSEC)	OF US-UP= 1.1210	. Sla	5.	16.7440	9.972996 9.572996 9.572996 7.4520966 7.4520966 6.7749096 6.7749096 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.779996 6.7799996 6.77996 6.779
CS= 2.1	THERMAL COEF	SPECIFIC	CB= 2.9	SLOPE OF	Dls 1.43697	02= 3,14275	11 MU = .25600	1.1062R+00 1.10642R+00 1.2042R+00 1.3024R+00 1.3024R+00 1.30398R+00 1.5024R+00 1.5024R+00 1.5024R+00 1.5024R+00 1.5024R+00 1.5024R+00 1.5024R+00
					Cl= 1.15830 •	• 69926• ==20	- 4.0000E =	1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00 1.346.00
GRUNEISEN COEF# 1.0400	05E-01 (HB)	(48)		MUGONIOT ELASTIC LIMIT ==0.	FIRST PLASTIC WAVE C	IN THE SECOND PLASTIC WAVE C	PRESSURE	S. S
GRUNEISEN COEF# 1.0	AMU= 5.99205E-01(MB	YO 8-0.	YMU# 0.	HUGONIOT E	IN THE FIRS	IN THE SEC	INFLECTION POINT	11. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 1.66530E-02(MB)

CUMIC FIT TO FOURTION OF STATE FOR ARMCO INON

RHO(6) = 7.850Li

								PEFERENCE STATES OF STATES
								F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEC)	SEC)	N(VOL) = 3.510E-03	2.503£+08	SECI			51,76727	U(CM/MICROSEC) 1.9637E-03 1.4919E-03 1.4919E-03 7.9876-03 7.9876-03 7.9876-03 1.9846E-03 1.9898E-02 1.9898E-02 1.9898E-02
5.860E-01 (CM/MICROSEC)	3.230E-01 (CM/MICROSEC)	THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC MEAT(CP) = 2.5	4.500E-01 (CM/HICROSEC)	SLOPE OF US-UP= 3.1416		5.16968 S1=	9.96.01 9.96.00 9.96.00 9.96.00 9.96.00 9.96.00 9.96.00 9.63.00 9.63.00 9.63.00 9.63.00 9.63.00 9.63.00 9.63.00 9.63.00 9.63.00
כר=	≈ S⊃	THERM	SPECIF	.	3407S		01.	1.00032E 1.00032E 1.00032E 1.00032E 1.00032E 1.00032E 1.00032E 1.00032E 1.0032E 1.00342E 1.00342E 1.00342E 1.00342E 1.00342E 1.00342E 1.00342E
7.36000E+10					.30000E-02(HB)	C0= 2.68160	C1= 1.58962 +	70 PC
SURLIMATION FILEMGY 7.30	GRUHEISEN COFFE 1.6900	AMUS A.149M3E-01(HB)	YO = 7.94061F-03(HB)	17A5E-03	MUGONIOT FLASTIC LIMIT = 1.30000E-	IN THE ELASTIC WAVE	IN THE FIRST PLASTIC WAVE	SCALL 6.650 WG MA 7.550 WG MA 7.550 WG MA 7.550 WG MG MG 7.550 WG MG MG 8.550 WG MG MG 8.550 WG MG MG 8.550 WG MG MG 8.550 WG MG 8.550 WG MG 7.570 WG
SURL IMAT 1	GRUHE I SFP	AMU B A.14	YO = 7.94	YMU# 4.84785E-03	HUGONIOT	IN THE EL	N THE FI	1.000

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 1.05576E-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR INON

CMOSEC) CROSEC) SION(VOL) = 3.510E=05 2.503E.08 CROSEC)	51,76727	5,12915		C.C.M.C.R.C.R.C.R.C.R.C.R.C.R.C.R.C.R.C.
.860E-01(CM/HI .230E-01(CM/HI COEF OF EXPAN C HEAT(CP) = .500E-01(CM/HI F US-UPE 3.14	966	87S	8.3210	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CL= S. CS= 3. TMERMAL SPECIFIC CB= 4.	01= 5.16968	D2= 4.21968	0. RHO	1.0024E+00 1.0032E+00 1.0024E+00 1.0028E+00 1.0121E+00 1.0152E+00 1.03362E+00 1.03362E+00 1.0337E+00 1.2346E+00 1.3359E+00 1.33514E+00 1.33514E+00 1.33514E+00
7.36000E+10 s 1.30000E=02(MB)	; :	C2= 1.01932 + E(MB) = 1.30000E-01	.3500 SLOPE = -	5. 70
		SECOND PLASTIC WAVE C2=	# 63	SCAL(MB) 9.684677.03 7.545137.03 7.545137.03 3.19867.03 3.25457.02 3.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.02 7.19867.03 7.19867.03 7.19867.03 7.19867.03 7.19867.03 7.19867.03 7.19867.03 7.19867.03 7.1987.03
SUBLIMATION FREELING GRUNEISEN COFFE 1 AMUE A.1 HAPABE-03 (YO E 7.940A1E-03 (YOUE 4.847RSE-03 HUGONIOT FLASTIC		IN THE SECOND PLINE		1.0000E 10111100E 101111100E 101111111111

10000						6117	
8400F+00	1.9346F+00	1.9333E+00	1.5129E+00	6.61005-01	2.8189E-01	0//	20
						• • • • • • • • • • • • • • • • • • • •	•
9200E+00	1.95766+00	1.95175+00	1.51526+00	6.6000E-91	2.8837E=U1	0//>	3
11005-00	2.09075400	2,0854F+110	1.53145+06	6.5300F-01	3.0540F-01	0///	20
19005+30	2.13065.00	2.1253E+00	1,5361E+00	6.5100E-01	3.1203E-01	0^/	92
2000	7 73345.00	2 2283E404	1 SABACANA	4 4400E-01	2.17m16=01	C2/2	20
2400E+00	00.000000	C+55035+3	00. J00.00	7000000	40-400-400		
2800E+00	2,15085+00	2.1455E+00	1.5385E+00	6.5000E-01	3.1684E-01	0?/>	20
43005	2 431AC+00	2-4266F400	SAGOFADO	6 2700F=01	1.1501F-01	02/2	20
4500E+00	2.4089E+00	2.4036E+00	1,5574E+00	6.3800E-01	3.36135-01	9//	00
		C LICEP C				0777	50
≎80 2€+00	C. (139E+00	00+390//**	1,00012,000	0.6300E-01	74-10/0000		•

. IMPLIES LINFAM TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 1.84631E-02(MB)

CUMIC FIT TO FOUNTION OF STATE FOR LEAD

		8. E 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 8 8 8 8
		# 000000000000000000000000000000000000
CMOSEC) CROSEC) SION(VOL) = 2.900E-05 2.675E+07 CROSEC)	5.01909	CCA/MICA 1. 9 9 1 3 4 6 7 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2.160E-01(CM/MI 7.003E-02(CM/MI AL COEF OF EXPAN FIC HEAT!CP) = 2.100E-01(CM/MI OF US-UP= 1.45	.49865 Sla	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CS THERM SPECI	•10	11.00000000000000000000000000000000000
9.15500£+09	Cl= .50076 *	PCAL (#8) 7.5586FE 03 7.5586FE 03 3.01986FE 02 7.58696FE 02 7.8676FE 02 7.8676FE 02 7.8676FE 02 7.8676FE 03 7.876FE 01 1.9726FE 01
0 1	FIRST PLASTIC WAVE	5CAL (48) 7.5886E-03 7.5886E-03 7.5886E-03 7.098376-02 7.96996-02 7.96996-02 7.96996-02 7.96996-02 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.96996-03 7.9696-
PHO(0)= 11.35500 SUBLIMATION ENERGY= GRUNEISEN COEF= 2.2 AMU= 5.56395E-02(MB YO =-0. (MB YMU= 0.	IN THE FIR	2.20.00 2.30.00 2.40.00 2.40.00 2.40.00 3.90.00 1.9

. IMPLIES LINEAR TEPM IS IMPOSED.

CUBIC FIT TO FOUATION OF STATE FOR LUCITE

RMO(n)= 1.19100

SUBLIMATION ENERGY	NERGY	• 0 •		NO DATA	ATA		2.690E-01(CM/HICROSEC)	MICROS	EC)		
GRUNEISEN COEF=-0.	F==0.	NO DATA	ATA			CS=	1.380E-01 (CM/HICHOSEC)	HICHOS	EC)		
AMU= 2.24910E-02(MB)	-02 (MB)					THERMAL	THERMAL COEF OF EXPANSION (VOL) = -0.	AHSION	1(VOL) = -0.	ONG DATA	
Y0 =-0.	(MB)					SPECIF	SPECIFIC HEAT (CP) = -0.	÷	MO DATA		
YHU. 0.						*80	2.188E-01 (CM/MICROSEC)	MICROS	EC)		
HUGONIOT ELASTIC LIMIT ==0.	TIC LIMIT			(ME)	!	36078	SLOPE OF US-UPs 1.8302	6302	;		
IN THE FIRST PLASTIC WAVE	PLASTIC 1			• 65654	•	D)**	02314	• is	.62308		
(84) \$	SCAL (MB)	!	PCA	(36)		¥.3	OAZA		U (ČM/HĮCROSEC)	INPUT	REFERENCE
100E-01	1.5948E=01	7.	1,594			1,54895+00	6. A600E-0	= :	2,190CE-01	02/2	50
000E-01	1.5048E-0	:		10-701		1.5501E+00		= :	2.10545-01	2	02
00E-02	1.0117E-	- 2	9			1.38315+00	7.23805-0	1=	1.03366-01	0%/%	. .
1	6.3789E-02	2	6.37	. 88		1 3012E+00	7.2400E-0	-	1.2790E-31	02/7	2
	1.2058E-01	=	1.20	58E-01		1.4925€+00	6.7000E-0	=	1.75325-01	02/2	•
900E-01	1.3710E-	7	1,37			1,5175E+00	6.5900E-01	=	1.9961E-01	0A/A	*
100E-02	6.0823E-02	2	6.08	~		1.3736E+00	7.28035-	7	1:21415-01	0//	*
000E-02	4.0971E-02	32	4.097	71E-02		1.31416+30	7.6100E-0	=	8.7693E-02	0//	•

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 3.49262E-03(MB)

7.0000E 102 7.0000E 102 7.0000E 102 1.1000E 101 1.3000E 101 3.4000E 102 3.6000E 102

CURIC FIT TO FOUNTION OF STATE FOR MASNESIUM

	5.740E-01 (CM/H1CHOSEC)	3.150E-01(CM/MICROSEC)	THERMAL COEF OF EXPANSION(VOL)= 7.824E-05	SPECIFIC HEAT(CP)= 1.030E+07	4.545E-01(CM/MICHOSEC)	SLOPE OF US-UP= 1.2423		508 S1= .37320
	כר צי	CS= 3,	HERMAL	PECIFIC	C8s ♣.	LOPE OF		D1= .49508
)3 (MB)	.59133	.36047 • D
	5.87300E+16					" в 1.88347E-03(MB)		VE CIE
RHO(0)= 1.74500	SUBLIMATION ENERGY*	GRUNEISEN COFF= 1.1400	AMUS 1.73148E-01(MR)	YO = 1.10300E-03(MB)	YMUm 3.18514E-03	HUGONIOT ELASTIC LIMIT	IN THE ELASTIC WAVE	IN THE FIRST PLASTIC WA

REFERENCE 1177777777777777777777777777777777777	
T 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90000
U(CM/MICAOSEC) 9.33766-02 9.33766-02 1.133866-02 1.538866-01 1.538866-01 1.954766-01 2.195366-01 2.48386-01 2.48386-01 2.48386-01 2.47916-01	3.0839E-01 3.9387E-01 3.9821E-01 4.3601E-01 6.3439E-01
88.37106.0337106.0337106.0337106.0337106.0337106.03	6.3130E-01 5.8640E-01 5.9410E-01 5.5880E-01 5.6520E-01
11.02346ETA 12.02346ETA 13.02346ETA 13.023	1.5840E+00 1.7053E+00 1.6832E+00 1.7895E+00
PCAL 9 . 16 A E M B B B B B B B B B B B B B B B B B B	%.33/4E-01 6.3148E-01 5.9639E-01 7.7692E-01 7.4019E-01
SCAL (MB) 9.20AL (MB) 1.179567 = 02 1.179567 = 01 1.179567 = 01 1.179567 = 01 2.26868 = 01 2.36967 = 01 3.265967 = 01 3.265967 = 01 3.265967 = 01 3.265967 = 01 3.265967 = 01 3.265967 = 01	4.544/E=01 6.32225=01 5.9713E=01 7.7766E=01 7.4093E=01
S(MB) 9.3400E-02 1.1770E-01 1.700E-01 1.700E-01 2.4000E-01 2.700E-01 2.780E-01 2.9380E-01 3.1970E-01 3.2810E-01 3.4940E-01	*.5010E-01 6.2170E-01 7.5190E-01 7.5730E-01

[.] IMPLIES LINEAR TERM IS IMPOSED.

CUBIC FIT TO EQUATION OF STATE FOR MANGANIN

								11 11 11 11 11 11 11 11
	(CM/HICROSEC) #NO DATA	CM/MICROSEC) +NO DATA	1(VOL) # 5.610E-05	4.060E+06	(EC)		4.97993	U(CM/MICROSEC) 1.6464E-02 2.9108E-02 6.1475E-02 7.8236E-02
			THERMAL COEF OF EXPANSION(VOL)	SPECIFIC MEAT(CP) = 4.06	3.803E-01 (CM/MICROSEC)	SLOPE OF US-UPs 1.7199	370 S1=	9.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	CL= -0.	CS= =0.	THERMAL	SPECIFI	C88	SLOPE OF	01= 2.89370	1.00 E + 00 1.00 E + 00 1.1000 E + 00 1.1760 E + 00 1.1760 E + 00
	NO DATA		•			(98)	Cl= 1.22355 +	PCAL (MB) 5.7916E-02 1.0461E-01 1.5627E-01 2.3213E-01 3.6624E-01
.44000	IN ENERGY# -0.	GRUNEISEN COEF= 1.99A4	(MB) ONO DATA	(46)		MUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL(MB) 5.7910E-02 1.0461E-01 1.5627E-01 2.5107E-01 3.4213E-01
RHO(0) = 8.44000	SUBLIMATION ENERGY:	GRUNEISEN	AMUE 0.	YO ==0.	YMUR 0.	MUGONIOT E	IN THE FIR	S.48) 5.6006-02 1.07006-01 2.54006-01 3.66006-01

. IMPLIES LINFAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 5.01129E-03(MB)

REFERENCE

CUBIC FIT TO EQUATION OF STATE FOR MOLYBDENUM

PHO(0)= 10.20000	0000						
SUBLIMATION ENERGY?		6.80700E-10	CL# -0.	(CM/MICHOS	(CM/MICHOSEC) OND DATA		
GRUNEISEN COEF# 1.4100	F# 1.4100		CS# =0.	(CM/MICHOSEC) +NO	SEC) ONO DATA		
AMU= 0.	(MB) ONO DATA	ATA	THERMAL	THERMAL COEF OF EXPANSION(VOL)=	N(VOL) = 1.490E-05	80	
Y0 =-0.	(HE)		SPECIFIC	SPECIFIC HEAT(CP)= 2.3	2.384E+06		
YMU= 0.			C8 = 2*]	5.163E-01 (CM/HICROSEC)	SEC)		
MUGONIOT ELAS	HUGONIOT ELASTIC LIMIT ==0.	(94)	30 360 OF	SLOPE OF US-UPs 1.2364			
IN THE FIRST	IN THE FIRST PLASTIC WAVE	Cla 2,71897 •	Dl= 3.95760	\$3 818	2.11346		
S (#B)	SCAL (MB)	PCAL (MB)	ETA	OA/A	U(CM/MICROSEC)	INPUT	REFERENCE
_	2,54395-01	2,5439£-01	1.0031E+00	9.2330E-01	4.3703E-02	0//	67
p4	2.62056-01	2.6205E-01	1.0853E+00	9.2140E-01	4.4346E-02		\$
3.5900F-01	3.5024E=01	3.5024E=01	1.1101E****	9.00 .00E	5.9089E=02	0 > > >	~ 6
	5.3926r_01	5.39265.01	1.1586E+00	8,6310£=01	8,5007E=02	02/2	2
	4.9796E-01	4.9796E-01	1,1485E+00	8,70705-01	7.9190E-02	01/1	67
2560E+00	1.23116+00	1.2311E.00	1.3004E+00	7.6900E-01	1.6966E-01	0	61
.2450E+00	1.27985 +00	1 - 2 7 9 8 E + 0 0	1 .3089E .00	7.6400E-01	1.69728-01	02/>	<u>~</u> .
1.2500E+00	1.2215E+00	1.22156+00	1.2987E+00	7.70005-01	1.67895-01	0 (2 >)	<u> </u>
. 00 4 4 5 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	1.61766.00	1.61765.00	1 36435 00	7.33005.01	2.05805-01	200	•
4330E+00	1.6176500	00000:1011	1.36636+00	7.33005-01	2.0675E-01	0 > > >	6
201116		•				•	

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 1.40804E-02(MB)

CUBIC FIT TO EQUATION OF STATE FOR MYLAR

			*NO CATA				
	(CM/HICHOSEC) OND DATA	(CM/MICROSEC) .NO DATA	THERMAL COEF OF EXPANSION(VOL) = -0.	SPECIFIC HEAT(CP) = -0. +NO DATA	2.200E-01 (CM/HICHOSEC)	SLOPE OF US-UP. 1.6313	51= ,23627
	CL 8 -0.	CS# -0.	THERMAL COF	SPECIFIC HE	CB* 2.20(SLOPE OF US	Dis .14549
	SHO DATA					(MB)	.06728 *
	•0•	NO DATA	NO DATA			T 8-0.	WAVE C1=
RH0(0) = 1,39000	SUBLIMATION ENERGY=	GRUNEISEN COEF==0.	AMUE 0. (HH) *NO	YO ==0. (MB)	YMU# 0.	HUGONIOT ELASTIC LIMIT 8-0.	IN THE FIRST PLASTIC WAVE

ETA 1.0493E-00 1.0977E-00 1.1494E-00 1.2077E-00	1.2407E+00
PCAL (MB) 3.7001E-03 8.1814E-03 1.4090E-02 2.2371E-02	2.7916E-02
SCAL(MB; 3.7001E=03 8.1814E=03 1.4090E=02 2.5364E=02	2.7916E-02
S(MB) 3.5500E=03 6.7400E=03 1.4710E=02 1.9950E=02	2.7500E-02

REFERENCE 42 42 42 42 42

U(CM/MICROSEC) 1.0956E.02 2.3656E.02 3.7091E.02 4.8368E.02 5.1819E.02

> 9.5300E=01 9.1100E=01 9.7000E=01 8.3700E=01 8.2890E=01

+ IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 4.71865E-04(MB)

CUBIC FIT TO FOUATION OF STATE FOR NICKEL

RHO(0) = 8.86000

				# >> > > > > > > > > > > > > > > > > >
SEC) SEC) N(VGL)p 3.810F-05	•		4,26322	UCEM/MICACACACACACACACACACACACACACACACACACACA
CL# 5.63GE-01(CM/MICROSEC) CSm 2.960E-01(CM/MICROSEC) THERMAL COEF OF EXPANSION(VOLIS	SPECIFIC HEAT(CP) = 2.608E+ CB= 4.652E-01(CH/MIC206FC)	SLOPE OF US-UPs 1.4453	61 51=	9.0950E-01 8.3550E-01 8.3550E-01 7.5500E-01 7.2400E-01 7.2400E-01 7.2400E-01
CLE 5. CSR 2. THERMAL	SPECIFIC	Ň	01= 3.41861	1.099867 1.136867 1.136867 1.196867 1.196867 1.30587 1.30587 1.30587 1.3618400 1.38187 1.3818 1.3818 1.38187 1.38187 1.38187 1.38187 1.3818 1.3818 1.3818 1.3818 1.3818 1.3818 1.3818 1.3818 1
7.10400E+10		(MB)	Cl= 1.91740 *	PC P
0 0	(MB)	MUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL(MB) 3.2544E=01 3.3544E=01 3.4564E=01 5.1196E=01 1.0263E=00 1.0263E=00 1.4639E=00 1.4639E=00 1.4762E=00
SUBLIMATION ENERGYE Gruneisen COEF± 2.00 Amus 7.76278E-01(48)	YO ==0.	MUGONIOT E	IN THE FIRE	2. 350 (

* IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 1.45063E-02(MB)

CUBIC FIT TO EQUATION OF STATE FOR NICEIUM

				+ 000000000000000000000000000000000000
SEC)	CMOSEC) SIGN(VOL) = 2.10GE-05 2.497E+06)SEC)	1,16151	C.C.M. 5.0047CROSEC. 5.0047CROSEC. 5.0047CROSEC. 7.2569CRC. 9.3669CRC. 9.5696RC. 1.5696RC. 1.5696RC. 1.6696RC. 2.3604RC. 2.4604RC.
5.030E-01(CM/HICROSEC)	THERMAL COEF OF EXPANSION(VOL)= SPECIFIC HEAT(CP)= 2.497E+06	_	SLUPE OF US-UPs 1,2082 = 2,34551 SIM	9.04/VO 9.04/VO 9.04/VO 9.04/VO 9.04/VO 9.06/E-01 7.46000E-01 7.4600E-01 7.6000E-01 6.9900E-01 6.9900E-01
* 10	THERM	# @	SLUPE 01= 2.	1.1074E 1.11074E 1.11074E 1.11076E 1.11076E 1.12019E 1.2019E 1.3199E 1.3369E 1.4369E 1.4371E 1.4970E
7.90900E+10			(MS) C1= 1.68990 •	PCAL(MB) 2.1006(MB) 3.02346(MB) 3.02346(0) 4.465146(0) 4.465146(0) 1.26646(0) 1.56646(0) 1.56646(0) 1.56646(0)
4	AMUE 3.81990E=01(MB)		TOGONIOT ELASTIC LIMIT BEO. IN THE FIRST PLASTIC WAVE	SCAL(MB) 2.1006E-01 3.023E-01 3.023E-01 4.4659E-01 4.9647E-01 8.939E-01 1.2570E-00 1.5648E-00 1.7498E+00
RMD(0) = 8.58000 SUBLIMATION ENERGY# GRUNEISEN COFF# 1.66	AMUR 3.819	YMUS U.	IN THE FIR	2.2000 M 3.30000 M 3.30000 M 3.30000 M 5.50000 M 5.0000 M 1.2000 M 1.54000 M 1.54000 M 1.54000 M 1.5600 M 1.5600 M 1.5600 M

* IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 7.12338-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR NYLON

								REFERENCE 19 19 19
								INDUI
	SEC)	SEC)	N(VOL) = 2.700E-04	1.520€+07	SEC)		.20632	U(CM/MICROSEC) 1.4734E-02 1.4950E-02 5.8023E-02 1.5443C-01
	2.516E-01(CM/MICROSEC)	1.120E=01(CM/MICHOSEC)	THERMAL COEF OF EXPANSION (VOL)	SPECIFIC HEAT(CP)= 1.52	2.158E-01 (CM/HICROSEC)	SLOPE OF US-UP: 1.5497	.09435 Sl*	V/VO 9.4500E-01 9.3000E-01 8.1000E-01 6.6100E-01
	בר.		THERM	SPECIF	8 0	3d07S	01.	1.0582E+00 1.0753E+00 1.2346E+00 1.5129E+00
	NO DATA					(MR)	Cls .05309 •	PCAL (MB) 3.4501E-03 4.6185E-03 7.9876E-02
RHO(0) = 1.14000	SUBLIMATION ENERGY# -0.	GRUNEISEN COFF= .9100	AMUm 1.43002E-U2(MB)	(48)		HUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE (SCAL (MB) 3.45016-03 4.6185E-03 2.03076-02 7.9876E-02
RHO (0) =	SUBL IMAT	GRUNE I SE	AMUm 1.4	Y0 =-0.	YMUR 0.	HUGONIOT	IN THE	S(MB) 4.5000E-03 3.6400E-03 2.0200E-02 A.0200E-02

* IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL® 6.14969E-04(MB)

CUBIC FIT TO FUMBITION OF STATE FOR PALLADIUM

RMO(0) # 11.95000						
SUBLIMATION ENEWGY# 3.64000E+10		=13	4.570E-01 (CM/MICHOSEC)	1CHOSEC)		
GPUNEISEN COEF= 2.8400			2.060E-01(CM/HICROSEC)	I CROSEC)		
AMUs 5.07110E-01(Mb)		THERMA	THERMAL COEF OF EXPANSION(VOL)=	INSION (VOL) =	3.4505-05	
¥ῦ sen. (MB)		SPECIF	SPECIFIC HEAT(CP) = 2.600E+06	2.600E.06		
YMUR 0.			3.742E-01 (CM/MICHOSEC)	HCHOSECI		
MUGONIOT ELASTIC LIMIT ==0.	(MB)	SLOPE	SLOPE OF US-UP# 1.9975	1975		
IN THE FIRST PLASTIC WAVE CIR 1.67331	7331 •	01= 4.58725	3725	Si= 13,39948		

PCAL (MB) 3.0305E-01 3.6629E-01 5.3028E-01	
SCAL(MR) 3.0305E-01 3.6629F-01 5.3028E-01	
S(MB) 2506-01 1006-01	

	4.9201E-02	6.2105E-02	8.2427E-02
	8.8980E-01	8.7610E-01	8.4710E-01
•	E+00	E+00	E+00

. IMPLIES LINFAM TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 1.56619E-02(MB)

CUMIC FIT TO FORCITING OF STATE FOR PARAFFIN

H (5) 044

(CM/HICKOSEC) +NO DATA	(CH/MICHOSEC) *NO DATA	NSION(VOL) = 3.900E-04	2.900E+07	ICHOSEC	273	Sl= .64874
CL= -0. (CH/H	CS# -0. (CM/M	THERMAL COEF OF EXPANSION (VOL) =	SPECIFIC HEAT(CP) = 2.900E+07	CB# 2.968E-01 (CM/MICKOSEC)	SLOPE OF US-UP# 1.5273	Ula05673
*NO DATA					(£	.08087
** **** ** ***** **** ***** ***** ***** ****	FF 1. 1step	THE SHOUNTE	- 		MIGDESTOT FLESTIC LINIT ##0.	IN THE FIRST PLASFIC WAVE CIR
sind beatter to the state of th	Generalists of the last	6.11 2 /1.	۴٠٠ ٣٠٠٠	Yedja .	MIGONTOT 417	IP THE FLAST

. IMPLIES LINERS TEPM IS IMPOSED.

AVERAGE GEVIATION FROM SCALS 1.55678E-62(MH)

REFERENCE 20 20 20 20 20 20

U(CM/HICROSEC) 1,3161E-01 1,4375E-01 2,3842E-01 3,1933E-01 4,0584E-01 5,2752E-01

7.350E-01 7.290E-01 6.260E-01 5.930E-01 5.680E-01

ETA 1,3605E+00 1,3717E+00 1,5974E+00 1,6863E+00 1,7606E+00 1,9305E+00

PCAL(MB) 5.2187E-02 5.5549E-02 1.6641E-01 2.3852E-01 3.1411E-01 5.4879E-01

5,21×15=02 5,51×15=02 1,00×415=01 1,00×415=01 3,14116=01 4,14755=01

> 7.0000E.02 7.0000F.02 1.4000E.01 7.3000F.01 5.3000F.01

CUBIC FIT TO EMBATION OF STATE FOR AVCO PHENOLIC FIRERGLASS

RHO(0)= 1,9000n

							INPUT REFERENCE V/VO 19 V/VO 19 V/VO 19
(CM/HICHOSEC) #NO DATA	(CM/HICHOSEC) *NO DATA	IN (VOL) = 6.660E-05	9.339E.08	SEC)		.03701	U(CM/MICROSEC) 4.4459E-02 5.6804E-02 1.3753E-01 2.1901E-01
	-0. (CM/HICHG	THERMAL COEF OF EXPANSION(VOL)	SPECIFIC HEAT(CP) = 9.3	1.713E-01 (CM/MICROSEC)	SLOPE OF US-UP# 1:1713	•06978 S1=	V/VO 7.9700E=01 7.6600E=01 5.8600E=01 4.8800E=01
CL= -0.	. S≥.	THERMA	SPECIF		SLOPE	0)= 0	1,2547E+00 1,3055E+00 1,7065E+00 2,0492E+00
1 • / 5000E • 1 1		TA			(MB)	Cl* .05575 *	PCAL(MB) 1.9339E-02 2.4598E-02 8.7267E-02 1.7805E-01
CONTRACTOR ENTERS TO 10.00	GRUNEISFN COFF= .2093	(AH) OND DATA	(98)		HUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MB) 1.93295-02 2.45985-02 8.72675-02 1.7AUSF-01
1 - 4-1 1405	GRUNE I SF N	AMUR 0.	YO =-0.	YMUR D.	HUGONIOT	IN THE FI	S(MB) 1.8500F-02 2.6200E-02 8.6800E-02 1.7800F-01

[.] IMPLIES LINEAR TERM IS IMPOSED.

AVEDAGE DEVIATION FROM SCALE 7.38839E-04(MB)

CUBIC FIT TO EGUATION OF STATE FOR G E PHENOLIC FIRERGLASS

RHO(P)= 1.94000

SUBLIMATION FINERGY 1.78500E	\$00E+11	• •10	4.340E-01(CH/MICROSEC)	SEC)		
GRUNEISEN COEF# .3200		C *8.	2.465E-01 (CM/MICHOSEC)	SECI		
AMUZ 1.17905F-01(PIN)		THERMAL	THERMAL COEF OF EXPANSION (VOL)	3N(VOL)= 7.200E-05	-05	
YO == 0.		SPECIFI	SPECIFIC HEAT(CP) = 9.3	9.377£.06		
YMU= 0.		CB= 3	3.276E-01 (CM/HICROSEC)	SEC)		
HUGONIOT FLASTIC LIMIT ==0.	(MB)	O 3607S	SLOPE OF US-UPs 1.0544			
IN THE FIRST PLASTIC WAVE	C1* .20820 *	01= -23	.23070 Sl=	.02566		
S(MB) SCAL(MB)	PCAL (MB)	ET A	0//	U (CM/MICROSEC)	INPUT	REFERENC
	3.708mF102	1.15216-00	3.9000E-01	3,8396F-02	0A/A	<u></u>
	6.3837E-02	1.24075+00	10=00000 B	3-010/E-02 4-010/E-02		. ·
	8.46555-02	1.3021E+00	7.6800F=01	1.01245-02		<u>,</u>
	1,1133E-01	1,3736£+00	7,2800E-01	1.24756-01	0^/	61

. IMPLIES LINFAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 5.77886E-04(MB)

2.7500E-02 3.6900E-02 6.700E-02 H.5700E-02 1.1100E-01

CUBIC FIT TO FOURTION OF STATE FOR CHOPPED NYLON PHENOLIC

RHO(n)= 1.2100n

							PEFERENCE	.	S.	\$	6	30	90	30
							INPUT	ETA	ETA	ETA	ETA	ETA	ETA	ETA
OSEC)	OSEC)	ON(YOL) = 1.910E-04	1.650E+07	0SEC)		.52168	U(CM/MICROSEC)	1.59946-02	3.0137E-02	9.23795-02	1-4240E-01	9.23595-02	2,3234E-01	3.0813E-01
2.550E-01 (CM/MICHOSEC)	7.995E-02(CM/MICROSEC)	THERMAL COEF OF EXPANSION (VOL) =	SPECIFIC HEAT (CP) = 1.	2.377E-01(CM/MICROSEC)	SLOPE OF US-UP# 1.6057	.03724 51	0//0	9.4967E-01	9.09925-01	7.5930E-01	6.9930E-01	7,3250E-01	6,1350£-01	5.8072E-01
כר• כר•	CS	THERM	SPECI	CB	SLOPE	•	ETA	1.0530E+00	1.0990E+00	1.3170E+00	1.4300E+00	1,3650E+00	1,6300E+00	1.7220E+00
NO DATA					(MB)	Cl .06837 *	PCAL (MB)	3.8057E=03	1.6394E=03	4.2032E-02	7.7760E-02	5,52 62E- 02	1.8829E-01	2.6511E-01
SUBLIMATION ENERGY = -0.	GRUNFISEN COEF* .6540	ANUE 7.73527E-03(MB)	(4)		HUGONIOT ELASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL (MH)	3. A05/F-03	7.63445-03	4.2032E-02	7.7750F-02	5.52H2F-02	1.43295-01	2,6511F-01
SUBLIMATIC	GRUNF I SEN	AMUE 7.73	YO =-0°	YMU= 0.	HUGONIOT !	IN THE FI	S (MB)	6.1500E-03	1.2200E-02	4.2900E-02	A.1600E-02	3.8600E-n2	1.6900E-01	2.7400E-01

. IMPLIES LINFAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 8.06792E-03(MB)

CURIC FIT TO FOHATION OF STATE FOR TAPE WOUND NYLON PHENOLIC

P_E0(n)= 1.22000

							REFERENCE	6	61	61	67
							INPUT		01/1	04/4	9//
(CM/MICHOSEC) *NO DATA	(CM/MICROSEC) OND DATA	N(VOL)= 3.120E-04	10€+07	SEC)		.15422	U(CM/MICROSEC)	5.6068E-02	8.8790E-02	1.1337E-01	1.3778E-01
		THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC HEAT (CP) # 1.710E+07	3.196E-01 (CM/MICROSEC)	SLOPE OF US-UP- 1.3192	.19916 51.	0//	8.5900E=01	7.9000E-01	7.5500E-01	7.31005-01
CL# -0.	CS# =0.	THERMAL	SPECIFI	€ #80	SLOPE 0	01= .19	ETA	1.1641E+00	1,2658E+00	1,3245E+00	1.3680E+00
NO DATA		₹			(MB)	Clm .12462 *	PCAL (MB)	2.6503E-02	5.0096E-02	6.6680E-02	8.0512E-02
F. EPERGY = -0.	GRUNFISFN COFFE 1.8637	(MR) #NO DATA	(.48)		HUGONIOT FLASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MH)	2.5503E-02	5.00968-02	6.6680E-02	N.0512E-02
SUBLIMATION ENERGY	GRUNE I SFN	APIU= 0.	YO ==0.	YMUE D.	HUGONIOT F	THE AL	S (MB)	2.7200E-02	4.5800E-02	5.4000E-02	A.6100E-02

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 2.89926E-03(MB)

CURIC FIT TO FULATION OF STATE FOR QUARTZ PHENOLIC

SFY COFF = .2499	**************************************						
SFY CUFFE -2849	1.20	10E+11		(CM/HICHO	SEC) ON DATA		
('HB)				(CM/MICPO			
SECOND PLASTIC LIMIT =-0. FIRST PLASTIC LIMIT =-0. FIRST PLASTIC LIMIT =-0. FIRST PLASTIC LIMIT =-0. FIRST PLASTIC MAVE C2m .10654 * D2m .18977 S1m .01160 SECOND PLASTIC WAVE C2m .10654 * D2m .09108 S2m 1.89423 TION POINT PRESSURE(MB) = 2.00000E-01 MU = .65000 CB .1897 S25E-02 S25EE-02 1.38977 S1m .0106E-01 V/VO 1.3394E-01 V/VO 1.3394E-01 V/VO 1.3394E-01 V/VO 1.3994E-01 1.3996E-01 S.1899E-01 V/VO 1.3994E-01 1.3996E-01 S.1899E-01 V/VO 1.3994E-01 1.3996E-01 S.1899E-01 V/VO 1.3994E-01 1.3994E-01 1.3994E-01 1.3994E-01 V/VO 1.3994E-01 1.3994E-01 1.3994E-01 V/VO 1.3994E-01 1.3994E-01 1.3994E-01 1.3994E-01 1.3994E-01 V/VO 1.3994E-	(4H) ONO DA		THERMAL C	OEF OF EXPANSIO			
FIRST PLASTIC LIMIT ==0. (MB) SLOPE OF US-UPm 1.0296 FIRST PLASTIC LAIT ==0. (MB) SLOPE OF US-UPm 1.0296 SECOND PLASTIC MAVE C2m .17929 * D1m .18977 S1m .01160 SECOND PLASTIC MAVE C2m .10654 * D2m .09108 S2m 1.899423 TION POTAT PRESSURE(MB) = 2.00000E-01 MU = .65000 TION POTAT PRESSURE(MB) = 2.00000E-01 MU = .65000 CB = .1894 SLOPE m -0. RHO = 2.9700 CB = .1894 SLOPE m -0. RHO = 2.9700 SCAL(MB) PCAL(MB) ETA V/VO 1.8607E-01 1.950E-01 1.4266E-00 7.3100E-01 1.736E-01 V/VO 1.8607E-01 1.8607E-01 1.8607E-01 1.8260E-01 2.3545E-01 V/VO 2.6491E-01 2.5691E-01 1.80607E-01 2.3545E-01 V/VO 2.75345E-01 2.5691E-01 1.80607E-01 2.3545E-01 V/VO 2.75345E-01 2.5691E-01 1.8196E-01 1.8260E-01 2.3545E-01 V/VO 2.77345E-01 2.5691E-01 1.8196E-01 1.8260E-01 2.7545E-01 V/VO 2.77346-01 2.3116E-01 1.8196E-01 1.8196E-01 2.7545E-01 V/VO 2.77346-01 2.3116E-01 1.8196E-01 2.3277E-00 4.7600E-01 2.7545E-01 V/VO 2.77346-01 2.3116E-01 1.8196E-01 1.8196E-01 2.7545E-01 V/VO 2.77346-01 2.3116E-01 1.8196E-01 2.3277E-00 4.7600E-01 2.7545E-01 V/VO 2.77346-01 2.3116E-01 1.8196E-01 2.3227E-00 4.7600E-01 3.3355E-01 V/VO 4.74937-01 2.32520E-01 2.33220E-01 4.9900E-01 3.3355E-01 V/VO 4.74937-01 2.32520E-01 2.33220E-01 4.9900E-01 3.3355E-01 V/VO 4.74017-01 2.3116E-01 1.937620E-01 4.9900E-01 3.3355E-01 V/VO 5.77346-01 2.316E-01 1.937620E-01 4.9900E-01 3.3355E-01 V/VO 5.77346-01 2.316E-01 1.937620E-01 4.9000E-01 3.3355E-01 V/VO 5.77346-01 2.316E-01 1.937620E-01 4.9000E-01 3.3355E-01 V/VO 5.77346-01 2.316E-01 1.937620E-01 4.9000E-01 3.3355E-01 V/VO 5.77346-01 0.77010E-01 0.77010E			SPECIFIC		.20E+06		
FIRST PLASTIC LIMIT =-0. (MB) SLOPE OF US-UP= 1.0296 FIRST PLASTIC WAVE CIE .17929 • DI= .18977 SI= .01160 SECONO PLASTIC WAVE CE= .10654 • DZ= .09108 SZ= 1.89423 TION POINT PRESSURE(MB) = 2.00000E=01 MU = .65000 TION POINT PRESSURE(MB) = 2.00000E=01 MU = .65000 CB = .1894 SLOPE = -0. RHO = 2.9700 CB = .1894 SLOPE = -0. RHO = 2.9700 CB = .1896 E-01 1.4265E+00 7.0100E=01 1.736E-01 V/VO 1.8505E=01 1.976E-01 1.976E-01 1.976E-01 1.976E-01 1.993EE-01 2.0159E=01 V/VO 2.5891E=01 2.5891E=01 1.993EE-01 2.0159E=01 V/VO 2.5891E=01 2.7361E=01 2.7361	YMUM o.			56E-01 (CM/HICRO	SEC)		
FIRST PLASTIC MAVE CIE .17929 * DIE .18947 SIE .01160 SECOND PLASTIC WAVE C2 .10654 * D2 .09108 S2 1.89423 TION POINT PRESSURE(HB) = 2.00000E-01 MU = .65000 TION POINT PRESSURE(HB) = 2.00000E-01 MU = .65000 CB = .1894 SLOPE = -0. RHO = 2.9700 CB = .1894 SLOPE = -0. RHO = 2.9700 SCAL(MB) PCAL(HB) FTA V/VO U(CM/MICROSEC) INPUT REF 1.1190E-01 1.1190E-01 1.4265E-00 7.3100E-01 1.726E-01 V/VO 1.4860E-01 1.4860E-01 1.4860E-01 1.4860E-01 2.6589E-01 V/VO 2.9589E-01 1.8999E-01 1.9929E-01 2.6589E-01 2.6589E-01 2.6589E-01 2.6589E-01 2.6589E-01 2.7793E-01 V/VO 2.7791E-01	HUGOMIOT FLASTIC LIMIT =-0.	(MB)	SLOPE OF				
SECOND PLASTIC WAVE C2m .10654 • D2m .09108 S2m 1.89423 TION POINT PRESSURE(MB) = 2.00000E=01 MU = .65000 CB = .1894 SLOPE m = 0. RHO = 2.9700 CB = .1894 SLOPE m = 0. RHO = 2.9700 SCAL(MB) PCAL(MB)		.17929			.01160		
SCAL(Mg)		.10654			1,89423		
SCAL(Mg) PCAL(MB) ETA V/VO U(CM/MICROSEC) INPUT REF 1.1190E-01 1.1190E-01 1.4265E-00 7.0100E-01 1.3394E-01 V/VO 1.6180E-01 1.726E-01 V/VO 1.8607E-01 1.6180E-01 1.9921E-01 V/VO 2.552F-02 1.8607E-01 1.6180E-01 1.9921E-01 V/VO 2.5180E-01 2.6588E-01 1.7007E-00 6.1800E-01 2.0159E-01 V/VO 2.51841E-01 2.5881E-01 1.9939E-00 5.2800E-01 2.523E-01 V/VO 2.51841E-01 2.7234E-01 1.9939E-00 5.1700E-01 2.7491E-01 2.7234E-01 1.9934E-00 5.1700E-01 2.7703E-01 V/VO 5.1800E-01 3.7354E-01 V/VO 5.1800E-01 3.7354E-01 V/VO	PRESSUR		N D				
SCAL(MB) PCAL(MB) ETA V/VO U(CM/MICROSEC) INPUT REF 1.190E-01 1.190E-01 1.4265E.00 7.0100E-01 1.3394E-01 V/VO 1.4265E-02 1.3690E+00 7.3100E-01 1.3394E-01 V/VO 1.48607E-01 1.8607E-01 1.8906E-01 1.8906E-01 1.8906E-01 1.8939E-00 5.2800E-01 2.5245E-01 V/VO 2.5491E-01 2.7234E-01 2.7234E-01 1.9394E-00 5.2100E-01 2.7703E-01 V/VO 2.7234E-01 2.7234E-01 1.9342E+00 5.1700E-01 2.7703E-01 V/VO 2.7234E-01 2.322E+00 5.1700E-01 3.7354E-01 V/VO 4.8493E-01 2.322E+00 4.8493E-01 3.7354E-01 V/VO	•		AHO OHO	2.9700			
1.1190E-01 1.1190E-01 1.4265E+00 7.0100E-01 1.3394E-01 V/V0 9.2252E-02 1.3680E+00 7.3100E-01 1.1726E-01 V/V0 1.8607E-01 1.8607E-01 1.6181E+00 6.1800E-01 1.9921E-01 V/V0 1.8607E-01 1.6260E-00 6.1800E-01 2.0159E-01 V/V0 2.5491E-01 1.6260E-00 6.1800E-01 2.0159E-01 V/V0 2.5491E-01 1.8939E-00 5.2800E-01 2.7534E-01 V/V0 5.2100E-01 2.7234E-01 1.9394E+00 5.1700E-01 2.7703E-01 V/V0 4.8493E-01 4.8493E-01 2.1322E+00 4.8493E-01 3.7354E-01 V/V0 4.8493E-01 2.1322E+00 4.8493E-01 3.7354E-01 3.7354E-01 V/V0 4.8493E-01 V/V		PCAL (MB)	A TA	0//	U(CM/M1CROSEC)	Tudni	
9.2252E-02 1.3680E-02 1.3680E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8607E-03 1.8600E-03 1.8600E-03 2.0159E-03		1.11906-01	1.42655+00	7.0100E-01	1.3394E-01	0^/^	Ä
1-8607E-01 1-8607E-01 1-6101E-00 6-1800E-01 1-9921E-01 V/VO 1-8945E-01 1-8945E-01 1-8945E-01 1-8945E-01 1-8945E-01 1-8945E-01 1-8945E-01 1-6260E+00 6-1500E-01 2-0159E-01 V/VO 2-0498E-01 2-0598E-01 1-700E-01 2-5900E-01 2-5991E-01 V/VO 2-7234E-01 2-7234E-01 1-9345E-00 5-2100E-01 2-7703E-01 V/VO 2-7234E-01 1-9345E-00 5-2100E-01 2-7703E-01 V/VO 2-7234E-01 1-9342E-00 5-1700E-01 3-7354E-01 V/VO 2-7234E-01 2-1322E-00 4-6400E-01 3-7354E-01 V/VO		9.2252E-02	1.3680€+00	7,3100E-01	1-17265-01	0//	7
1.8945E-01 1.6260E+00 6.1500E-01 2.0159E-01 V/VO 2.058E-01 1.7007E+00 5.8800E-01 2.1609E-01 V/VO 2.5491E-01 2.5891E-01 1.8939E+00 5.2800E-01 2.543E-01 V/VO 4.7811E-01 2.7234E-01 2.7234E-01 2.7234E-01 1.994E+00 5.2100E-01 2.7491E-01 V/VO 2.414E-01 1.9342E+00 5.1700E-01 2.773E-01 V/VO 4.8493E-01 4.8493E-01 2.132E+00 4.6900E-01 3.7354E-01 V/VO		1.8607E-01	1.6181E.00	6.1800E-01	1-99215-01	0//	Ä
2.5H41F-01 2.5B91E-01 1.8939E-00 5.2800E-01 2.5245E-01 V/VO 4.7811F-01 4.7811F-01 2.7234F-01 2.7234F-01 2.7234F-01 2.7234F-01 2.7234F-01 1.9342F-00 5.2100E-01 2.7703E-01 V/VO 5.1700E-01 2.7703E-01 V/VO 5.1700E-01 3.7354F-01 V/VO 5.1700E-01 V/VO 5.1700E-01 3.7354F-01 V/VO 5.1700E-01 V/VO 5.1700E-01 3.7354F-01 V/VO 5.1700E-01 V/VO 5.1		2.0588F-01	1.6260E+00	6.1500E-01	2.01596-01	0///	ň
4.7811F-01 4.7811E-01 2.1277E-00 4.7000E-01 3.7945E-01 V/VO 2.7234E-01 1.9194E+00 5.2100E-01 2.7491E-01 V/VO 2.7134E-01 1.9342E+00 5.1700E-01 2.7703E-01 V/VO 4.8493E-01 4.8493E-01 2.1322E+00 4.6900E-01 3.7354E-01 V/VO		2,58916-01	1.8939E.00	5.28005.01	2.52435-01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠, ج
2.7234F-01 2.7234E-01 1.9194E+00 5.2100E-01 2.7791E-01 V/VO 2.4114E-01 2.7703E-01 V/VO 4.8493E-01 4.8493E-01 2.1322E+00 4.8900E-01 3.7354E-01 V/VO		4.7811E-01	2.1277E+00	4.7000E-01	3.79456=01		5
<pre><.**!!*F=0!</pre>		2.7234E-01	1.91946+00	5.2100E-01	2.74915-01	0	Ä
1 4.8493E-01 4.8493E-01 2.1322E+00 4.6900E-01 3.7354E-01 V/VO		2.8114E-01	1.9342E+00	5.17005-01	2,77035-01	0///	Ä
	_	4.8493E-01	2.1322E+00	4.6900E-01	3.7354E-01	0.4/	Ä

IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 6.27519E-03(MB)

3-U QUARTZ PHENOLIC CUBIC FIT TO FOUNTION OF STATE FOR

RHO(0)= 1.65000

							REFEREN	N 70	222	22
		SHO DATA					INPUT OV/V	02/2	4/8 6/8 8/8	200
(CM/MICHOSEC) +NO DATA	(CM/MICHOSEC) ON DATA	ASION(VOL)= -0.	-0.	(CH0SEC)	003	S1 . 99473	U(CM/MICROSEC) 6,63188E-02	9,302986:02 9,302986:02	1,21451E=01 1,26996E=01	1.60409E-01 2.26668E-01
CL= -0. (CM/M]	CS= -0. (CM/H)	THERMAL COEF OF EXPANSION (VOL) = -0.	SPECIFIC HEAT (CP) = -0.	CB= 3.200E-01(CM/HICHOSEC)	SLOPE OF US-UP9600	01= .0630+ 5	V/V0 8.23006E-01	7.62000E=01	7.1700E=01 7.01000E=01	6.52000E-01 5.74000E-01
-					(MB)	.16896 * D	ETA 1.21507E+00	1.312345.00	1.39470E+00 1.42653E+00	1.53374E+00 1.74216E+00
1.08840E+11	•NO DATA	(MH) ONO DATA			-0-	WAVE CIR	PCAL (MB) 4.01960E=02		A.23349E-02	1.22545E-01 1.98843E-01
SUBLIMATION FREPGYE	GRUNFISFN COFFE-0.	AMIR 0. (AH)	YO ==0. (HH)	YMUB 0.	HUGONIOT ELASTIC LIMIT 8-0.	IN THE FIRST PLASTIC WAVE	P (MR) \$_10000E_02 \$_20000E_03		α. α.	1,22000E-01 1,99000E-01

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL# 1-19661E-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR X-CUT CRYSTALLINE QUARTZ (ELASTIC REGION)

	CL* 5.730E-01(CM/MICROSEC)	CS= 3.737E=01 (CM/HICROSEC)	THERMAL COEF OF EXPANSION(VOL) = -6. •NO DATA	SPECIFIC HEAT(CP) = -0. *NO DATA	CB= 3.770E=01(CM/MICROSEC)	SLOPE OF US-UPs =0.
RHA(0) = 2,65000	SUBLIMATION ENERGY 2.35200E+11	GRUNEISEN COEFE .7800	AMUR 3.70077E-01 (M9)	YO # 4.25338E-02(MB)	YMU# 5.74661E-92	HUGONIOT ELASTIC LIMIT = 5.00000E=02(MB)

IN THE ELASTIC WAVE COS .87008

REFERENCE	\$	6,7	6	9	9	6	64	64	•
TUGNI	ETA								
U(CH/MICROSEC)	2.01295-03	4.6070E-03	6.9715E-03	1.14376-02	1.3432E-02	1.6591E-02	2.1984E-02	2,6876E-02	2.8853E-02
0//	9.9512E-01	9.9197E-n1	9.8785E-01	9.8116E-01	4.7656E-01	9.71165-01	9.6219E-01	9.54385-01	9.5093E=01
ETA	1.00496.00	1.0001E+00	1,0123E+00	1.0192E+00	1.02405.00	1.0297E+00	1.03936.00	1.6478E+50	1,0516E+00
PCAL (MB)	•0	•	•	•	•	•	•0	•	• 0
SCAL (MB)	4.2634E-03	7.0476E-03	1.0702E-02	1.6705E-02	2.0002E-02	2.5841E-02	3.4194E-02	4.1590E-02	4,4896E-02
S(M9)	4.3000E-03	7.00006-03	1.0606F-02	1.8400E-02	2.0400E-0Z	2.5290E-02	3.38705-02	4.1966E-02	4.4960E-02

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS \$.08024E-04(HB)

CUBIC FIT TO EQUATION OF STATE FOR PHENOLIC REFRASIL

								REFERENCE	92	20	92	90	62	92	50	20	22	50
			ONO DATA					TURNI	0.//	0//	0A/A	0//	0//0	0//	0//	0//	0//	0///
	(CM/MICROSEC) +NO DATA	(CH/HICROSEC) +NO DATA	ON(VOL) = -0.	ND DATA	iosec)		00365	U(CM/MICROSEC)	6,55055-02	6.6788E-02	9.3030E-02	1.24246-01	1.27716-01	1.54326-01	2,2724E-01	2.3745E-01	2,9245E-01	3,32126-01
	-0. (CM/MICR	-0. (CM/HICR	THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC HEAT(CP) = +0.	3.007E-01 (CM/HICROSEC)	SLOPE OF US-UP= 1.0117	.15265 51*	0//	8,2300E-01	8.1500E-01	7.6200E-01	7.1700E-01	7.010CE-61	6.5100E-01	5.7400E-01	5.5700E-01	4.9600E-01	4.8000E-01
	- = 10	CS# #(THERMA	SPECIF		SLOPE	01•	ETA	1,2151E+00	1.2255E+00	1.3123E+00	1,3947E+00	1.42655+00	1.5361E+00	1.7422E+00	1.7953E+00	2.0161£+00	2,0833E+00
	6.00000E+10	*NO DATA	DATA			O. (MB)	Cls .14919 •	PCAL (MB)	3.91845-02	4.1445E-02	6.1601E-02	8.2892E-02	9.1691E-02	1.2442E-01	1.9630E=01	2.1705E-01	3.1305E-01	3.4542E-01
1.65000	SURL IMATION ENERGY= 6.		(MB) *NO DATA	(48)		HUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MB)	3.91H4F-02	4.1445F-02	6.1601E-02	A.2892F-02	9.1691E-02	1.24425-01	1.96.306-01	2-1705E-01	3,1305E-01	3.4542F=01
RHO(0)= 1.65000	SURL IMATI	GRUNEISEN COEF=0.	AMUs n.	40 == U	YMUE 0.	HUGOMIOT	IN THE FI	S (MB)	4.0000E-12	4.0000E-02	4.0000E-02	9.0000E-02	9.0000E-02	1.2000E-11	2.0000E-01	2.1000F-01	2.8000E-01	3.500E-01

[.] IMPLIES LINEAR TERM IS IMPOSED.

AVENAGE DEVIATION FURM SCALE 6.54594E-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR PLATINUM

								REFERENCE	7	P) (_:			17	17	11	7	~ 1	-1	17	11
								INPUT	02/2	0//	0//	0 2 2 3	> >	08/>	0//	0//	0//	0//	02/2	0//	0//	0//
)SEC)	SECI	3N(VOL) = 2.670E-65	1.348E.05	SECI		9.25661	U(CM/MICROSEC)	3.24336-02	4.5398E-02	6-10236-02	3.60416-02		6.76045-02	7,39165-02	1,15176-01	1,15365-01	1.18165-61	1,52,0E-01	1.7025E-01	1.7896E-01	1.93976-01
	4.080E-01(CM/MICROSEC)	1.790E-01 (CM/MICHOSEC)	THERMAL COEF OF EXPANSION(VOL) =	SPECIFIC HEAT(CP)= 1.	3.636E-01 (CM/MICHOSEC)	SLOPE OF US-UP= 1.5395	5.29683 512	0//	9.2380E=01	8.9430E-01	8.6420E-01	9,1390E=01		8,5580E=01	8,4550E-01	7.8780E-01	7.8920E-01	7.8320E-01	10-3069-1	7.3080E-01	7.1930E-01	7.0420E-01
	כר.	CS	THERMA	SPECIF	CBB	SLOPE	01s 5.2	ETA	1.0825E+00	1.11825+00	1.15716+00	1,0942E+00	1 12475400	1.1685F+00	1,1827E+00	1,2694E+00	1,2671E+00	1.27685-00	1,33995+00	1.3684E+00	1.3902E+00	1.4201E+00
	2.85900E+10					(AB)	Cla 2.82522 •	PCAL (MB)	2.7427E-01	4.2320E-01	6-10675-01	3.2092E-01	10-14010-4	6.7071E_01	7.4961E-01	1,3262E+00	1.3089E+00	1 - 3943E+00	1.9362E+00	2.2221E+00	2.4593E+00	2-8074E+00
.37000		GRUNFISEN CREF= 2.6146	16E-01 (MB)	(48)		MUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MB)	2.7427F-01	4.2320E-01	6.1067F-01	3.2092F-01	4.31048-01	6.70715-01	7,49615-01	1.3262F+00	1.3089F+00	1.3843F+00	1,9362E+00	2.22215+00	2.45936+00	2.8074F+00
RHO(0) = 21.37000	SUBLIMATION ENERGYS	GRUNF I SEN	AMUE 6.84716E-01(MB)	40 =-0.	YMUm 0.	MUGON: TOT E	IN THE FIR	S (HB)	2.9500E-01	4.1650E-01	5.8600E-01	3.2240E-01	4.5160E=n1	6.7730F-01	7_5570E_01	1,33575+00	1,34925+00	1.37616+00	1.9667E+00	2.3010€+00	2.4383E+00	2.71815.00

. IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 2.34756E-02(MB)

RHO(0)= 1.18600

							REFERENCE 20	50	9 00	202	50	56	502	50	000	20	20	50	20	3 O Z	0 °	20	20	9 0 7 0	20	20	9 0	50	000	50	50	9 E
							INPUT	00	0 1 / 2	0 2 2	07/2)))))	200	00//	0///	20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02/2	0//	0 1	0 0	0//	2 2	22	0//	0 ?		0//	0 2 2 2 3	0//	0A/A	200
OSEC)	0SEC)	EXPANSION(VOL) = 1.650E-04	8.244E+06	0SEC)		,43556	U(CM/MICROSEC)		7.2186E-02	36574.	.0101E	77	. 1709E-0	1,3743E-01 1,3718E-01	.3038E-0	1,32846-01	1.4484E-01	1.6503E-01	1.71746-01	1.76535-01	.8872E-0	1.86565-01	1720E-0		4047E-0	.3920E=0	43264	.4863E-0	in in	. B129E-0		2.8369E-01 2.8369E-01
2.720E-01(CM/MICROSEC)	1.400E-01 (CM/HICHOSEC	COEF OF	SPECIFIC MEAT(CP) = 8.	2.745E-01 (CM/MICROSEC)	OF US-UP= 1.4508	04566 S1=	V/V0 8.4206F=01	0-30090	94006	6000£-0	.5800E-0	3400E-0	2900E-0	7.2000E-01 7.2100E-01	1200E-0	7.0100E-01	6.8900E=01 6.7800F=01	6.7700E=01	6-8200E=01	6.64005-01	4800E-0 4800E-0	0-30099	2700E-0	100E-0	1900E-0	2300E-0 2006-0	1000E	. 1600E	6.0500E-01 6.0500E-01	.9200E	.9200E	5.8500E=01
ะาว	CS	THERMAL	SPECI	8 9	SLOPE	. s10	ETA 1,1876F+00	.2407E+0	1.2594E+00	•	•	•	•	1,3889E+00 1,3870E+00		1,4265E+00	1,4514E+60 1,4749E+00	1.47716+00	1.4663E+00	1.5060E+00	1.5432E+00 1.5432E+00	I 5244E +00	1.59495+00	1.6103E+00	1,6155E+00	1.5051E+00	.6393E+0	1,6234E+00	1.6529E+00 1.6529E+00	.6892E+0	6892E+0	1.7094E+00
NO DATA					(48)	Cl= .08937 +	PCAL (MB) 2,1255E_02	20.	3.3866E=02	4.64915.02	4.7359E-02	6.0215E-02	9	6.7276E-02 6.6657E-02	7.2445E-02 7.4487F-02	8.0224E-02	8.9698E-02 9.9400E-02	1.00335-01	9.5751E-02	1.13356-01	1.31835-01	2	1.6102E-01			•	ě	.789		.258	,2586 9825	2.4187E-01
n FuERGY≖ -0.	COEF# .8000	2.32456E-02(118)	(84)		ELASTIC LIMIT #=0.	FIRST PLASTIC WAVE	SCAL (MB) 2,1255F=02	3.0229F=02	3.3866F-02	4.4401F=02	4.7359F=02	5.9113E-02 6.0215F-02	6.1907F-02	6.7276E-02 6.6657E-02	7.2445F-02	A.0224F-02	9.94986-02	1.0033F-01	9.5751E=02 9.5751E=02	1,13356-01	1.31835-01	[.2223F_n]	1.61026-01	1.70505-01	1,73476-01	.72215-0	. 4963E-0	.7896E-0	<i>y y</i>	.25H6E-0	.2586F=0	10-42714.2
SUBLIMATION FUERGY=	GRUNFISEN	ANU# 2.324	Y0 #-0.	YMUE 0.	HUGONIOT E	IN THE FIR	S(MB) 2,0000E_02	0000E		0000 E = 0	0000E	6.0000E-02	3000E	H.0000E-02 P.0000E-02	7.0000E-02	7.0000E-02	1.0000E-02	1.0000E-01	1.1000E-01	1.10005-01	1.2000E-01 1.2000E-01	I 2000E-01	1.5000F-01	.8000E-0	. A000F = 0		• •		2.0000E-01 2.0000E-01		000.	

0 0 V'V
0 / / / / / / / / / / / / / / / / / / /
4.3338E-01
5.0500E-01 5.1300E-01
1.9802E+00 1.9493E+00
5.4166E-01 4.9862E-01
5.4166E-01 4.9462E-01
00E-01 00E-01

* IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL # 9.52961E-03(MB)

CUMIC FIT TO EQUATION OF STATE FOR POLYETHYLENE

									NPUT REFERENCE		61 00//	6. CAN	•	-	6. OA/A				7/0 19 19
	(OSEC)	OSEC)	ON (VOL.) = 6.000E-06	2.303E+07	OSEC)			.43370	U(CM/MICROSEC) IN		1.50075-01			2-4694E-01			4.1005E-01 v		4.5249E=01 4.8112E=01
	CL* 1.950E-01(CM/HJCHOSEC)	CS# 5.400E-62(CM/MICROSEC)	THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC MEAT (CP) = 2.	CB= 2.931E-01(CM/MICROSEC)	SLOPE OF US-UP= 1.4720		els .02299 sla	ETA V/VO .3316E+00 7.5100E=01	~	1-4205E-00 7-0400E-01	.5649E+00		.5974E+00	.7699E+00	.8116E+00			.9380E.00 5.1600E.01
	4.40000E+10					= 2.12479E-03(MB)	C0= .08261	AVE CI# .07904 *	4 0.4 80	6.0864E-02	6 • 9531E • 02 9 - 1 702F - 52	1-3019E-01	1.4361E-01	1 0 4 7 9 1 E = 0 1	2.72415-01	3-11145-01	0-347E-01	10-1000 - 0-000 - 0-000	1 4.5227E=01 1
RMO(n) = .92000	SUBLIMATION ENERGY#	GRUNEISEN COEF= .8600	ANUM 2.68272F-03(MB)	YO = 1.3900E-04(MB)	YMU8 2.57202F-02	MUGONINT ELASTIC LIMIT = 2.12479E-03(MB)	IN THE ELASTIC WAVE	IN THE FIRST PLASTIC WAVE	5(MB) SCAL(MH) 5.0000E-02 4.4631E-D2		7.0000E=02 9.0000F=02			1.3000f=0]				4.0000F=01	

* IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 5.41408E-03(MB)

CHRIC FIT TO FOUNTION OF STATE FOR PULYSTYRENE

							REFERENCE	2 %	20	61	61	61
							INPUT	200	0//))))	0///	0//
(CM/HICROSEC) *NO DATA	(CM/MICROSEC) OND DATA	(VOL) = 1.650E-04	NO DATA	EC)		.06873	U(CM/MICROSEC)	1.2784E-01	2-2002E-01	3.19975-02	4.5791E-02	1.23716-01
		THERMAL COEF OF EXPANSION (VOL.) =	SPECIFIC HEAT(CP) = -0.	2.990E-01 (CM/MICROSEC)	SLOPE OF US-UP# 1.2038	743 51#	V/V0	7.1400E-01	6.0900E=01	9.1400F=01	F. 7700E-01	7.2900E-01
CL= -0•	CS* -0.	THERMAL	SPECIFIC	C8* 2.	SLOPE OF	01= .12743	ETA	1.4006E+00	1 . 6420E+00	1,09415+00	1.14035+00	1,3717E+00
ONO DATA	.				(#B)	Clm .09387 *	PCAL (MB)	6.2464E-02	1-3098E-01	1.001AE-02	1.5862E-02	
• 0 •	*HO DATA	(148) ONO DATA	(MB)		IMIT ==0.		SCAL (MB)	6.2464E-02	8F-01	1 .0018F=02	1.5862F-02	5.6036F-02
RHO(0)= 1.05000 SUALIMATION FNERGY=	GPUNEISEN COEF=-0.				MUGONIOT ELASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL	947.9	1.30986-0	1,001	1.586	5,603
RHO (0) = SURL 1'4A	GPUNEIS	Arium 0.	Y0 ==1].	YMUE 0.	MUGONI	IN THE	S (MB)	6.0000E-02	1.3000E-01	1.25005-02	1.7900E-02	5.9300E-02

* IMPLIFS LINFAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 2.49330E-03(MB)

CURIC FIT TO EQUATION OF STATE FOR POLYURETHANE

RMO(0)= 1.26500

		REFERÊNCE	02°	0 0	2	202	50	5 0	50	50	50	5 6	5 0	50	20	5 0	02	20	50	20	2	9
•NO DATA		INPUT	0A/>	00/	04/4	00	0//	0//0	0//0	9//	0//0	0//	0//	0//	0//	0//	0//	0//	0//	0///	0//>	0//
OSEC) ON(VOL) = -0. ONO DATA OSEC)	. 13846	UICM/HICROSEC)	1.000000	1.099775-01	1.25361E-01	1.69398E-01	1,693985-01	2,14863E-01	2,16037E-01	1.65073E-01	2.40471E-01	2,54773E-01	2.55098E-01	2.70017E-01	2.70689E-01	2.720295-01	3,41098E-01	3.41862E-01	4.14099E-01	4.14099E-01	10-36+692"+	4,79328E-01
CL= 2.390E-01(CM/MICHOSEC) CS= 1.030E-01(CM/MICHOSEC) THERMAL COEF OF EXPANSION(VOL)= SPECIFIC MEAT(CP)= -0. CB= 2.070E-01(CM/MICHOSEC) SLOPE OF US-UP= -0.	*15 [6262•	0.77	7.47000E-01	7.45000E=01	7 - 15000E-01	6.7000E-01	6.7000E-01	6,350005-01	6.31000E-01	6.17000E-01	6.15000E-01	6.09000E-01	6.08000£-01	5.99000E-01	5.97000E-01	5.93000E-01	5,54000E-01	5.52000E-01	5.07000E-01	5.07000E-01	4.87600E=01	4.81000E-01
*NO DATA CLE CSE THEF THEF SPE CBE CBE	.05420 • D1=		1.33869E+00	1 • 3422BE+00	1.046651400	1.57850E+00 1.49254E+00	1.49254E+00	I.57480E.00	1.58479E+00		1.62602E+00	1.6&204E+00	1.64474E+00	1.66945E+00	1.67504E+00	1.686345+00	1,80505E+00	1.81159E+00	1.97239E+00	1.972398+00	2°02336E00	Z.07900E.00
167≈ -0. 10. •HI DATA (MR) (MR)	ASTIC WAVE CIR	PCAL (MB)	5,73367E-02	5.842145-02	7.62234E=02	1.14299E-01	1-14299E-01	1,54228E-01	1.59554E-01	1.79630E-01	1,82691E-01	1,92185E-01	1.93813E-01	2.09098E-01	2.12654E-01	2.19946E-01	3.05718E-01	3.10945E-01	4.56967E-01	4.56967E-01	5.43959E-01	5,73442E-01
SURLIMATION FRENGY = -0. GRUNEISFN COEF=-0. AMUS 1.34204E-02(MR) YO =-0. YMUS 0. HUGONIOT FLASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE	P (AR)	5.00000F-02	6.00000E-02	7.00000F-02	1.10000F-01	1.100006-01	1.500005-01	1.600006-01	9.000006-02	1.900006-01	2.10000E-01	2.10000E-01	2,3n000E-01	2,300005-01	2.300005-01	3,30000E_01	3.3000E-01	4.40000E-01	10-300004*4	5. hnnnge-01	5,6000ng-01

. IMPLIES LINFAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 1.53744E-02(MB)

CURIC FIT TO EQUATION OF STATE FOR MAD 588 (LOW PRESSURE)

	HOSEC)	ROSEC)	ION(VOL) = 1.200E-04	. eno DATA	MOSEC)	8	
	2.700E-01(CM/MICHOSEC)	2.094E-01(CM/MICROSEC)	THERMAL COEF OF EXPANSION(VOL)*	SPECIFIC HEAT(CP) = -0.	CB= 1.202E-01 (CM/HICHOSEC)	SLOPE OF US-UPs .6832	
	cr.	CS#	THER	SPEC	85	SLOP	i
	NO DATA					(MB)	• • • • • • • • • • • • • • • • • • • •
		NO DATA				•	ğ
	٧= -0.		ŧ	(HF)		- 11417	717
1.26000	ON: FNERG	CUFF=-0	3715-02(٠		ELASTIC	DCT DI AC
RHG(0) = 1.26000	SURLIMATION FRERGY=	GRUNFISEN COFFE-0.	AMU# 5.52371F-02(4H)	Y0 ==0.	YHU= 0.	HUGONICT ELASTIC LIMIT =-0.	IN THE STORY OF ACT OF ANY

# 9736E-03 1.2594E-00 7.9400E-01 2.9685E-02 9.6017E-03 1.4837E-00 6.7400E-01 2.9685E-02 9.6017E-02 1.4620E-00 5.0277E-02 1.4638E-02 2.413E-00 5.9100E-01 1.6228E-01 3.3341E-02 2.5773E-00 3.8800E-01 1.5052E-01 3.784E-00 2.9600E-01 1.6084E-01		**************************************		00141	
1.4837E=00 1.4837E=00 1.48320E=00 2.1413E=00 2.5773E=00 3.3784E=00 3.3784E=00 2.9600E=01	PCAL (MB)	ETA	0//0	U (CM/MICRO	SEC)
1.4837E+00 6.7400E=01 1.492@E+00 5.9100E=01 2.1413E+00 4.6700E=01 2.5773E+00 3.8800E=01 3.3784E+00 2.9600E=01		100316201	·*******	2.4085E-02	
1.6920E+00 5.9100E=01 2.1413E+00 4.6700E=01 2.5773E+00 3.8800E=01 3.3784E+00 2.9600E=01	7.6017E=03	1.4837E+00	6.7400E-01	5.0277E-02	
2,1413E+00	1.4088E-02	1.6920E+00	5.91006-01	6.5458E=02	
2,5773E+00 3,8800E=01 3,3784E+00 2,9600E=01	6.4002E-92	2,1413E+00	4_6700F_01	1.0222F-01	
3,3784E+00 2,9600E-01	3,3341E=02	2,5773E+00	3.88005-01	1.30576-01	
	4.7414E-02	3.3784E+00	2,9600E-01	1.6084E-01	

. IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 8.40604E-04(MB)

CUMIC FIT TO FAUATION OF STATE FOR OHLIQUE TAPE WOUND REFRASIL

RM0(0)= 1.06000					•	
SUBLIMATION ENEMBY	.Y= 1.76000E+11		CL= 3.360E-01(CM/HICHOSEC)	HICHOSEC)		
GRUNFISEN CHEFE	.6400		CS# 9.646E-02(CM/MICHOSEC)	MICHOSEC)		
AMUR 1.54447E-02('48)	(B)		THERMAL COEF OF EXPANSION (VOL)*	ANSION (VOL.) = 2.000E-05		
,0-= 0v	(46)		SPECIFIC HEAT(CP)=	1.9295.07		
YMU= 0.			CB# 3.170E-01(CM/MICHOSEC)	MICHOSEC)		
HUGOMIOT FLASTIC LIMIT ==0.	LI417 ==0.	(MB)	SLAVE OF US-UPs -0.			
IN THE FIRST PLASTIC WAVE	* 10	.16681 •	01= -,20652	\$1* ,30133		
(47) a	PCAL (MB)	ETA	0///	U(CM/MICROSEC)	IMPUT	REFERENCE
1.5400E-03	1.81034E-03	1.01100E+60	9.89120E-01	3_17707E-03	ETA	1
3.240005-03	3,98318E-03	1.02460E+00	9.75990E-01	6.845655-03	0//	31
3.64010E-03	4.13992E-03	1.02560E+00	9.75040E-01	7.398085-03	0//	គ
4.14000E-03	4.78003E-03	1.02970E+00	9.71157E-01	B. 48143E-03	ETA	}
4.99000E-03	5.16727E-03	1.03220E+00	9.68804E-01	9.68372E-03	ETA	-
5-17000E-03	7.26615E-03	1.04600E+00	9.56020E-01	1.17035E-02	0//	31
1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.03371E-03	1.058105+00	9.45090E-01	1.60318E-02	ETA	
6-310005-03	9.50443E=03	1.06120E+00	9.42329E-01	1.68886E-02	ETA	-
8 - 19000M1 - 100	9.14118E-03	1.05870E+00	9.445555-61	1 - 71346E-02	ETA	
4.72000E-02			70-3014105-6		ETA	;
0 30000E 0	6.26980F.02	1.461996.00	7.4600E-01	20-36-06-8 	02/2	<u> </u>
8.34000F-02	8.48751E=02	1.574805400				
•			*************	10=1000000		-

^{*} IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 9.45968E=04(MB)

CUBIC FIT TO ECUATION OF STATE FOR SERIES 124 RESIN

	41CHOSEC)	HICHOSEC	ANSION (VOL) = -0. SNO DATA	-0-	HICROSEC	9639	\$0*06° =1S
	CL= 2.450E-01(CM/MICHOSEC)	CS* A.213E-02(CM/MICHOSEC)	THERMAL COEF OF EXPANSION(VOL) = -0.	SPECIFIC HEAT(CP) = -0.	CB= 2.259E-01(CH/HICROSEC)	SLOPE OF US-UPs 1.8939	01= .02162
	10					(HB)	.06226 •
	3.23000£+					• • • • • • • • • • • • • • • • • • • •	HAVE CI=
.22000	FNERGY	.0EF# .900	AE-03(1H)	(A)		ASTIC LIMII	IT PLASTIC .
RH0(8)= 1.22000	SUBLIMATION ENERGY=	GRUNEISEN COFF# .9000	AMUE A.22969E-03(1H)	YO =-9.	YMU= n.	MUGONIOT ELASTIC LIMIT =-0.	IN THE FIRST PLASTIC WAVE

AVERAGE DEVIATION FROM SCAL = 3.32133E-03(MB)

۱ ĸ

REFERENCE 45 45 30 30 30

INPUT ETA ETA ETA ETA ETA

U(CM/HICROSEC) 1.5973E-62 3.0540E-02 9.3125E-02 1.4059E-01 1.9937E-01

V/VO 9.3897E-01 8.9366E-01 7.6278E-01 7.1429E-01

> 1.0550E+00 1.1190E+00 1.3110E+00 1.4000E+00

PCAL(MB) 4.3875E-03 9.2426E-03 4.8694E-02 8.6311E-02 1.3857E-01

SCAL(MB) 4.3975E-03 9.2426E-03 4.8594E-02 8.6311F-02

> 5.1000E-03 1.0700E-03 4.4600E-02 8.4400E-02

S (#B)

[.] IMPLIES LINEAR TERM IS IMPOSED.

CUBIC FIT IN EQUATION OF STATE FOR SILVER

RMO(0)= 10.43000

							REFERENCE	13	£1	<u>e:</u>	9 FT	. <u>e</u>	'n	'n	'n	L	u	'n	91
							INPUT	0///	07/7	0//	0 2 2 2	0 / / /	0///	0///	0//	0//	0//	0///	0///
SEC)	SEC)	N(VOL) = 5.760E-05	Z-551E+06	SEC)		4.21170	U(CM/MICROSEC)	5.0401E-02	5.2697E-02	7-1708E-02	9.3508F=02	1.00995-01	1.7644E-01	1.77505-01	2.1689E-01	2-1563E-01	2-1443E-01	2-1705E-01	2-1880E-01
3.600E-01(CH/WICHOSEC)	1.590E-01(CM/MICHOSEC)	THERMAL CUEF OF EXPANSION (VOL)	SPECIFIC HEAT(CP) = 2.5	3.305E-01 (CM/MICHOSEC)	SLOPE OF US-UP# 1.5401	2.01967 51=	0//	8.7600E-01	8.7190E-01	8-3620E-01	7.9670F=01	7.9170E-01	7.0500E-01	7.0200E-01	6.7300E-01	6-77005-01	6.8100E-01	6.7700E-01	6.76005-01
: •าว	#S0	THERMAL	SPECIF	# 8 00	SLOPE	D1m 2.0	ETA	1.14165.00	1.14695.00	1.1959E+00	1,2552 + 00	1,2631E+00	1.4184E+00	1.4245E+00	1.48596+00	1.4771E*00	1.4584E+00	1.47716+00	1.47936+00
2.59560£+10					(MB)	Cl* 1.16583 •	PCAL (MB)	2.1461E-01	2.2530E-01	3.3361E-01	4.9388E=01	5.1799E-01	1.14176+00	1.17256.00	1.5167E+00	1.4638E+00	1.4128E+00	1.4638E+00	1.4769E+00
SUBLIMATION FRENGY= 2.59	GRUNFISEN COEFE 2.4664	AMUR 2.65198E-01(98)	(B)4)		MUGONIOT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL (MH)	2.16blr-01	2.2530F=01	3.3341F=01	4.938F-01	5.17995-01	1-1417F+00	1.1/25 1.00	1.5167E+00	1-463AF+00	1.4128F+00	1.46385+00	1.47595+00
SUBL IMATI	GRUNF I SEN	AMUR 2.65	YO ==0.	YMU. n.	MUGONTOT	IN THE F.	S (HB)	. 1490E-01	.2740E-01	1.2930F-01 . 6060F-01	.0070E-01	5.1360E-n1	-1070E+0n	1 . 10 VOE + 0.0	1.5090E+04	1.5100E+0n	1.51205.00	. 5300E+00	. 5500E+00

* IMPLIFS LINEAR TERM IS IMPOSED.

AVERAGE HEVIATION FROM SCAL= 3.28431E-02(MB)

CUMIC FIT TO EQUATION OF STATE FOR STAINLESS STEEL TYPE 304

									REFERENCE	659	50	2	2	20	50	20	07	20	0,1	3 3	9	2	000	2 2
									INPU!	0//A	0//	0//	0///	0//	0//	0//	0/://	08/8	0/./	0 / / /	04/4	0//	0//	
	SECI	SEC)	N(VOL) = 1.492E-04	2.650E.07)SEC)			5.00068	U(CM/MICROSEC)	2.3145E-02	3-44675-02	5-25205-02	6.5832E-02	7.4275E-02	A-8548E-02	9.68475-02	1.00455-01	1.0540E-01	1.37725-01		10-3060401	1.64925-01	1.91.48E 101	2.7093E-01
	5.770E-01(CM/HICROSEC)	3.120E-01(CM/HICROSEC)	THERMAL COEF OF EXPANSIONIVOL)	SPECIFIC HEAT (CP) = 2.6	4.557E-01(CM/MICMOSEC)	SLOPE OF US-IIP# 1.5059		2.94437 51=	0//2	9.5300E-01	9.3300E-01	9.0100E-01	8.8200E-01	8.6800E-01	8.4900E-01	8.3900E=01	8.3400E-01	8.2800E-01	7.9200E-01	7 0100E=01		1.0400E=01	7 1000F-01	6.8500E-01
	cr.	CS*	THERMA	SPECIF	CB*	SLOPE		01= 2.5	ETA	1.0493E+00	1.0718E+00	1.10995.00	1,1338E+00	1.15216.00	1.17795-00	00.000 c	1 1 1 9 9 0 E + 0 0	1,2077E+00	1.5656E+00	1 26425406	30805	1,34605,00	1.40956+00	1.4599€+00
	AND DATA					30000E-03(HB)	CO# 2.66454	Cl= 1.63970 •	PCAL (MB)	8.8628E-02	1.3478E-01	2.2235E-01	2.8405E-01	3.3504E-01	4.1291E+01	4 524EF 55		9.1250E-01	7-31055-01	7.31056-01	9-36865-01	1,1264540	1.5017E+00	1.8630E+00
7.84609	SURLIMATION FNERGYS -0.	GRUNEISEN COFF# 1.164A	AMUR 7.68628E-01(4H)	YO = 1.32694E-03(MB)	31A8E-n4	HUGONIOT ELASTIC LIMIT = 2.30000E-	IN THE ELASTIC MAVE	FIRST PLASTIC WAVE	SCAL (MB)	4.9513E-n2	1.35676-01	2.23235-01	2. R493F-01	3.3592F-01	4 - 13/4F-01	4 6333		3.1338F=01	7.31946.01	7.31946-07	9-35745-01	101 10 10 10 10 10 10 10 10 10 10 10 10	1.5026F+00	1.8638E+00
RHO (0) # 7. R3409	SURLIMAT	GRUNE I SEA	AMUR 7.68	YO = 1.3%	YMU# 4.531A8E-04	HUGONIOT	IN THE FL	IN THE FI	S (MB)	9.0000E-02	1.4000E-01	2.2000E-01	2.9000E-01	4.3000E-01	- 1000r	BOODE +	10006	7.20005-01	7.5000F-01	7.5000F-01	9.1000E-01	1-13005-01	1.4800E+00	1.8400€+00

[.] IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALS 9,15459E=03(MB)

CUBIC FIT TO EQUATION OF STATE FOR STAINLESS STEEL TYPE 304L

								REFERENCE	90	90	50	20	200	202	20	92	20	200	2	20	50	20
								INPUT	0//	0//	0 2 2	0//	0//		0//	0//2	0//	0//	0^/>	0///	01/1	0//
OSEC)	OSEC)	ON(VOL) = 1.492E-04	2.660E.67	0SEC)			4.65787	U(CM/MICROSEC)	2.3135E-02	3.4193E-02	5.2497E-02	6.60815-02	7.4242E-02	9.6605F=02	1.0071E-01	1.13565-01	1.38325-01	1,41845-01	1.65205-01	1,91695-01	2.3304E-01	2.7124E-01
5.790E-01 (CM/MICHOSEC)	3.160E-01(CM/MICROSEC)	THERMAL COLF OF EXPANSION(VOL) =	SPECIFIC HEAT(CP) = 2.	4,567E-01(CM/MICROSEC)	SLOPE OF US-UP= 1.4865		2.93236 S1=	0///	9.5300E-01	9.3400E-01	9.0100E-01	8.8100E-01	8.68005-01	8.3900F=01	8,3300E-01	B.1800E-01	7.9000E-01	7.98006-01	7.6300E=01	7.43006-01	7.1000E-01	6.8400E-01
- 5	CS.	THERM	SPECI	CBs	SLOPE		01= 2•	ETA	1.04935+00	1.0707E+00	1,1099E+00	1.1351E+00	1.1521E+00	1,19195.00	1.2005E+00	1,2225€+00	1.2658E+00	1,2690E+00	00+30015*1	1,34595+00	1.4085E+00	1.4620E*00
WO DATA					,20000E-02(MB)	C0= 2,70058	Cl= 1.64837 •	PCAL (MB)	8-8985E-02	1.32776-01	2.2270E-01	2.8763E-01	3.3467E=01	4.5721E-01	4.8586E=01	5.6322E-01	'n.	7.4642E=01	Ì.	1.1138E+00	1.4799E+00	1.84676.00
PHO(0)= 7.4030) SUBLIMATION ENERGY= -0.	GRUNFISEN COEF= 1.1499	AMUs 7.89162F-01(MB)	YO = 7.01326E-03(MB)	634HE-U3	MUGONIOT ELASTIC LIWIT = 1.20000E-02(MB)	IN THE ELASTIC HAVE	IN THE FIRST PLASTIC MAVE	SCAL (MB)	9.36615-02	1.3744F-01	2.2738E-01	2.92315-01	3.3955F=01	4.6188F-01	4.9053F-01	5.67895-01	7.3755F-01	7.5109F-01	10-40366.	1.11H4F+00	1.4846F+00	1.8513F*00
RNO(0)= SUBLIMATI	GRUNF 1 SEN	AMUR 7.R	YO = 7.0	YMU# 4.4434HE-03	MUGONIOT	IN THE E	H H N	S (MB)	9.0000E-n2	1.4000E-01	2.2000£-01	2.9000F-01	3.3000E-01	4.60005-01	4.8000E-01	5.60005-01	7.20005-01	7.5000E=01		1 . 1300E+00	1.4800E+0n	1.8400€*00

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 8.81595E=03(MB)

CUMIC FIT TO FUMATION OF STATE FOR STEEL MILD . FN3

									11	11	=	⊒:	: =	:=	: =	-	: =
								T. O.	0//	0//	0//	000	02/2	07/7			9/
	ICH/MICHOSEC) OND DATA	(CM/MICROSEC) OND DATA	(VOL) = 3.630E-05	NO DATA	EC)		51* 10,74390	U(CH/MICROSEC)	1.96956-01	1.98935-01	2-04596-01	2.74466.01	70706101	2,75195-01	3.88535-01	A.0328Fe01	4.32316-01
			THERMAL COEF OF EXPANSION(VOL)=	SPECIFIC HEAT (CP) = -0.	3.596E-01 (CM/MICROSEC)	SLOPE OF US-UP# 1.6863		0^/^	7.2100E-01	7.2300E-01	7.0700E-01	6.5200F=01	6.6700E-01	6.5900E-01	6.17005-01	6-1600E-01	6.0400E-01
	יט• כרי	CS= =0.	THERMAL	SPECIFIC	C8= 3	SLOPE OF	01=24748	ETA	1.38705+00	1.38316+00	1.4144E+00	1.53376+00	1.4993E+00	1.5175E+00	1.6207E+00	1.62345+00	1.65565+00
	SNO DATA	ATA	⋖			(48)	Cl= 1.01381 +	PCAL (MR)	9.77795-01	7.5630E=01	1.14245+00	2.1043E+00	1.7814E+00	1.9469E+00	3.103AE+U0	3.1385E+00	3.58625.00
. A ◆040	FILEGY -0.	OFFE-0. SNO DATA	(HH) OND DATA	(48)		HUGONIUT ELASTIC LIMIT ==0.	IN THE FIRST PLASTIC WAVE	SCAL ("H)	9.7779F-01	Tu-incore	1.63005+00	2.1043E+90	1.78145+00	1.9469F+00	3.10388+90	3.13455+00	3.58625+00
RHO(п) # 7+84000	SUBLIMATION FILEGY	GRUNFISFU COFFE-0.	AMUs n.	YG ==0.	YMUR 1.	MUGONIOT EL	IN THE FIRS	S (HE)	.0900E+00	10000	6700E+00	.7000E+00	.7200E+00	* ************************************	.0900F+AP	-4200E+00	-7000E+nn

* IMPLIFS LINEAW FERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 1.42003E-01 (MB)

CURIC FIT TO EQUATION OF STATE FOR TANTALUM

RHO(n) = 16.60000			
SUBLIMATION ENERGY= 4.28700E+10	J	CL= 4.150E-01(CM/MICPOSEC)	MICPOSEC)
GAUNEISFM COEF# .3200	v	CS= 2.070E-01(CM/HICROSEC)	HICHOSEC)
AMU= 7.11293E=01(MB)	-	THERMAL COEF OF EXPANSION(VOL)=	ANSION(VOL) = 2.010E-05
(48)	S	SPECIFIC HEAT (CP) = 1.357E+96	1.357E+96
	U	CB# 3.300E+01 (CM/NICROSEC)	MICROSEC
MUGONIOT ELASTIC LIMIT ==0.	(BH)	SLOPE OF US-UP# 1.3224	3224
IN THE FIRST PLASTIC WAVE CIR 1.80774	•	01= 2.85902	51= 2.41927

REFERENCE	13	17) -) ·	17	11	P	- 1	. 7	18	
INPUT	OA/A	27/7	2 2 2			04/4	9 // /	0//	2/2			02/2	0//
U(CM/MICRUSEC)	4.3085F-02	4.29A3F.02	5.7760Fe02	E 7441E-02	7 65436-62		8.03106-02	8.7358E-02	1 . 16.05-01		10-300001	1.44115-01	1.7931E-01
0//	8.8650£-01	8.9220r-01	8.55405-01	A 40705-01			8.1710E-01	8.0600E-01	7.31505-01	7 33305-01		7,23105-01	6.8160E-01
ETA	1,1280E+09	1,1208£+00	1,1690E+00	1,16185.00	1.21625.00	00000	10+386+00	1.2407E+00	1.3671E+00	1.36375+00		1.3829E+00	1.4671E+00
PCAL (MB)	2.8339£-01	Z.6443E_01	3,98975-01	3.7772E_01	5.4909E-01	5 75635		6.3448E-01	1.16845.00	1.1520E+00	24436	4 • C • 7 3 C + 0 0	1.7150E+00
SCAL (MP)	2.8339E-01	Z.6443F_01	3.98476-01	3.7772F_01	5.4409F_01	6 75A3r 61		6.3448F=01	1,1444.00	1.1520F+00	1 24 725 . 40	00+1217	1.71505+00
S(MB)	Z. 7150E_01	10-306-0	3.6300E.01	3,96205-01	5.4700E_01	S ABBOR A		10-3000-0	1.1450E+0n	1.1520E+00	1 24505 460		1.07038+00

[.] IMPLIES LINEAR TERM IS IMPOSED.

AVERACE DEVIATION FROM SCALE 1.49727E-02(MB)

CURIC FIT TO EQUATION OF STATE FOR TEFLON

	6.480E-04			
CS= 5.000E-02(CM/HICROSEC)	THERMAL COEF OF EXPANSION(VOL)	SPECIFIC HEAT(CP) = 3.770E+06	CB= 1.424E-01(CM/HICROSEC)	SLOPE OF US-UP* 1.9724
				(40)
				.0-
SQUNETSEN COFFE .3900	MUR 5.40001F-U3(46)	(48)	'MUB 0.	HUGONIOT FLASTIC LIMIT
			CS* 5.000E-02(CM/MICROSEC) THERMAL COEF OF EXPANSION(VOL)* SPECIFIC HEAT(CP)* 3.770E+06	### COFF# .34300 CS# 5.000E-02(CM/MICROSEC) ####################################

	REFERENCE 20 20 20 19 9 19 9 25 25 25 25 25 25 25 25 25 25 25 25 25
	I N
1.12266	C(CM/MICROSEC) 1.1199E-01 1.4623E-01 2.4641E-01 2.490EE-02 5.492E-02 2.2431E-02 3.5431E-02
**11955 Sl*	6.9900E-01 6.5100E-01 6.5100E-01 7.5300E-01 7.2300E-01 7.2300E-01 8.7650E-01
01*1	1.54 1.5129E+00 1.5649E+00 1.25649E+00 1.25649E+00 1.3631E+00 1.3631E+00 1.265E+00
Cl= .04380 +	PCAL (MB) 1.6236E-02 1.4246E-01 2.0924E-01 2.0127E-03 3.3746E-02 6.2369E-02 6.9384E-03
IN THE FIRST PLASTIC WAVE	SCAL(WH) A.6336F-02 1.6246F-01 2.0926F-01 2.0127F-03 3.3746F-02 6.2359F-02 1.3709F-02
IN THE FILE	0.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

[.] IMPLIFS I INEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 2.71565E-03(MB)

CUBIC FIT TO EQUATION OF STATE FOR THALLIUM

								REFERÊNCE	61	61	61	57	61	67	6.	61	61	61	67	61
								INPUT	0//	V/VG	0//	0//0	0//	0//	0//	0//	9//	0//	0//	0//
	(CH/HICHOSEC) OND DATA	(CH/HICHOSEC) OND DATA	30430E-05	1.160E.06)SEC)		2,10552	U(CM/MICROSEC)	6.4157E-02	6.3862E-02	8.4459E-02	8.4061E-02	1.08995-01	1.0888E-01	1.64985-01	1.6501E-01	2.1498E-01	2.3720E-01	2.3716E-01	2.3709E-01
			THERMAL COEF OF EXPANSION(VOL)	SPECIFIC HEAT (CP) = 1.	1.687E-01(CM/MICHOSEC)	SLOPE OF US-UP: 1.4978	46 S) #	0A/A	7.7120E-01	7.7330E-01	7.2930E-01	7.3270E-01	6.9190E-01	6.9250E-01	6.2700E-01	6.2600E-01	5.8100E-01	5.60006-01	5.6100E-01	5.6100E-01
	CL* -0.	CS# +0.	THERMAL	SPECIFIC	CBs 1.	SLOPE OF	Dis .37546	ETA	1.2967£+00	1.2932E+00	1.37126.00	1.36485+00	1.4453E+00	1.4440E+00	1.5949E+00	1.5974E+00	1,7212E+00	1,7857E+00	1.7825E+00	1,7825E+00
	NO DATA					(MB)	Cl= .42160 •	PCAL (MB)	2.13116-01	2,0891E-01	3.15895-01	3.0600E-01	4.4809E-01	4.4558E-01	8.2697E-01	8.3490E-01	1.2890E+00	1.5843E+00	1.5688E+00	1.5688E+0n
. **000	N ENERGY = -0.	GRUNFISEN COEF= 1.5100	(MB) ONO DATA	(84)		HUGONIOT FLASTIC LIMIT ==0.	IN THE FIRST PLASTIC MAVE	SCAL (MH)	2.1825E-01	2-13996-01	3.22315-01	3.1232E-01	4.5580E-01	4.5327F-01	8.3726F-01	8.45245-01	1.3015F+00	1.5979F+00	1.58235.00	1.58235+00
RHO(0) = 11.44000	SUBLIMATION ENERGY=	GRUNF ISEN	AMUE 0.	YO ==0.	VMUs n.	HUGONIOT F	IN THE FIR	S (MB)	2,1300E-01	2,1300E-01	3.1200£-01	3.1300E-01	4.5650E-01	4.5650E-01	H.6400E-01	8.6200E-0]	1.3060E+00	1.5150€+00	1.5170€+00	1.5160€+00

* INPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 2.41145E-02(MB)

YADD AT .2MU = 5.193E-03

CUBIC FIT TO EQUATION OF STATE FOR THURIUM

			3.690E-05						C) INPUT REFERENCE	00//	0 / / /	0//	0//		02/2		
	OSECI	OSECI		1.155€ 06	OSEC)			,63833	U(CM/MICROSEC)	5.7099F-62	8,1198E-02	1.04315-01	1.9036E-01	1 • 9390E • 0 1	2.3663F=01	2.32706-01	2,35746-01
	3.000E-01(CH/MICHOSEC)	1.400E-01 (CM/MICROSEC)	THERMAL COEF OF EXPANSION (VOL) =	SPECIFIC HEAT(CP) = 1.	2.174E-01(CM/HICHOSEC)	SLOPE OF US-UPs 1.2526		251 SI*	0///	8-0310E-01	7.4560c-01	7.0170E-01	5.7800E-01	5.500000	5.4800E=01	5.4300E-01	5,38005-01
	CL 3.	CS= 1.	THERMAL	SPECIFIC	CB* 2.	SLOPE OF		01= .75251	ETA	1.2452E+00 1.2657F+00	1,3412E+00	1,4251E+00	1,7301E+00	1.4035.00	1,8248E+00	1.8416E+00	1.6587E+00
	2.20000£+10					.40000E-03(MB)	CO 1.11423	Cl# .55203 •	PCAL (MB)	1.8999E-01 2.1173E-01	3,0132E_01	4.1971E-01	1.05265+00	1.30505+00	1-3255E+00	1.37825+00	1.4332E+00
0.049.0	SUBLIMATION FINENGIE 2.2	GRUNEISEN COEF# 1.7400	AMU= 4.21648E-01(HH)	YO = 1.0595RE-03(48)	54HE-03	HUGONIOT ELASTIC LIMIT = 1.40000E-0	IN THE ELASTIC WAVE	IN THE FIRST PLACTIC MAVE	SCAL (MH)	1.9597E-01 2.1816F01	3,00375-01	4.2458F-01	1.0691E+60	1.32346400	1.34.0F+00	1.3970F+00	1,4524F+00
RHO(n) # 11.64000	SURL JMATI	GRUNE I SEN	AMU= 4.21	YO = 1.05	YMU= 1.2564HE-03	HUGONIOT	IN THE EL	IN THE FI	S (MB)	1.9340E-01	3,0270E-01	*.2600F-01	1.0030E+00	1.4000F+00	1,3780E+01	1.3840E+00	1.4050E+00

[.] IMPLIFS LINEAD TERM IS IMPOSED.

AVEDAGE DEVIATION FORM SCALS 3.17362E-02(MB)

VADD AT .2MU = 6.446F=03

CUBIC FIT TO EGGATION OF STATE FOR TIN

RHO(0) = 7.28000

							REFERENCE	13	13	13	4.5) P.T	, w	S	A)	*	un ur	'n	**
							INGNI	0//	0///	0//	0//	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07.7	0//	0//	0//	02/2	200	02/2
osec)	3 8C)	ON (VOL) = 8.070E-05	2.270€+06	0 5 £C)		2,47115	U(CM/MICROSEC)	6.7016E-02	7.0508E-02	9.24915-02	1.08425-01	1.2900E-01	1.95205-01	1 . 9461E-01	1.94572-01	2.150 YE-01	7+7814F=01	2.7952E-01	2-4603E-01
3.320E~01 (CM/HICHOSEC)	1.670E-01(CM/MICHOSEC)	THERMAL COEF OF EXPANSION (VOL)	SPECIFIC HEAT (CP) = 2.	2.575E-01 (CM/MICPOSEC)	SLOPE OF US-UP= 1.519A	.47553 Sl¤	0//	8.0980E-01	8.0180E-01	7.6900E-01	7.40705-01	7.1680E-01	6.4800E-01	6.5100E-01	6.5200E-01	6.4100E-01	5.9100E=01	5.8300E=01	5-1310E-01
*10	= \$0	THERM	SPECIF	CB#	SLOPE	01 8	ETA	1,2349E+00	1.2472E+00	1.3004E+00	1.3501E+00	1,39516+00	1,54326+00	1.5361E+00	1,5337E+00	1,5601E+00	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,7153E+00	1.6311E.00 1.7349E.00
2,48700E+10					(MB)	Cls .48271 *	PCAL (MB)	1.71635-01	1.8571E-01	2.5489E-01	3.3328E-01	4.1734E-01	7.9863E-01	7.7619E-01	7.0886E=01	0.5.362E-01	1.47835+00	1.4928E.00	1.1150E.00 1.5924E.00
	GRUNE[SEN COEF# 1.8500	AMUs 2.03032E-01('8)	(MB)		HUGONIOT FLASTIC LÍMIT =-0.	IN THE FIRST PLASTIC WAVE	SCAL (WH)	1.7153F-01	1.85715-01	2.5489F-01	3.3328F-01	4.1734E-01	7.9863F-n1	7.76195-01	10-308401	#+>302E-01	1.47835.00	1.49285+00	1.1150F + 0.0 1.5924F + 0.0
SUBLIMATION ENERGY	GRUNEISEN	AMU# 2.030	*0 == 0.	YAUR 0.	HUGONIOT F	IN THE FIR	S (MB)	1.71906-01	1.8260E-01	2.69508-01	3.3000E=01	4.2760E-01	7.8800E-01	7.9000E-01	, 7200£ -01	7.3800E-0]	1.3780E+00	1,3640E+00	1.1390E+00 1.6080E+00

. IMPLIFS LINEAR TEGH IS IMPOSED.

AVERAGE DEVIATION FROM SCAL= 3.05197E-02(MB)

RHO(9) = 4.51000

6.070E-01 (CM/MICHOSEC)	3.125E-01 (CM/MICHOSEC)	THERMAL COEF OF EXPANSION(VOL)# 1.400E-05) = 4.709E+06	4.695E-01 (CM/MICHOSEC)	1.1465		Sla .48473
CL= 6.070E-01	CSs 3.125E-01	THERMAL COEF OF	SPECIFIC HEAT(CP)=	CB= 4.695E=01	SLOPE OF US-UPs 1.1465		Dle 1.24432
9.68300£+10					= 2.47747E-03(MB)	CO# 1.58138	VE CI= .99414 *
SUBLIMATION ENEMOYS	GRUNEISEN COEFE 2.0400	AMUS 4.40430E-01 (AIR)	YO = 1.3A004E-03(48)	YMUR 1.56645F-03	MUGOMIOT ELASTIC LIMIT # 2.47747E-03(MB)	IN THE FLASTIC MAVE	IN THE FIRST PLASTIC WAVE

	MEFERENCE	0,5	20		٠ ا	92	20	•	, EV	92	20	, 6	2	9	20	· "	CT.	m ~	<u> </u>	? .	74	۱ ۱	'n	ur.	•	•	87	9		
1		0 * * *	0^/^	2		0//	08/8	22.7		0A/A	02//	02/2		0//	07/2		2 / 4	0 ^ /^	0//	6272	• • •		0 × ×	0///	27.7		0 / / /	0//	DA/A	
1030000 M/NO/21	0 750 36 6 1	1003060.03	2.2815E-01	1.09EAF	30 30000	3. ZU3.3E = U.C	7,22775-02			10-31101-1	1.5045E-01	1.65015.01	70-110-0-1	10-31666.	2.1758F-01	6.0396r.02	30-20-00-0	7,2277E-02	9.7973E-02	1.24075.01		-0120000	2.29965-01	2.2879E-01	5.18245-01		Z-8090E-01	2.9688E=01	2.4367E-01	
Ç2/2	6 44005-01	10-3000 · • 0	6.8700E-01	9.280FF-01	10 10000	10-3000 ·	8.7600E-UI	8.3100Fe01		10-13007-0	7.0800E-01	7.5200F=01		10-100220	6.9500E=01	H. 7400F.01	10000	8. n890E=01	8.3070E-01	7.8350Fm01	6.80005-0	100100	0.8/00E=01	6.9100E-01	5.1550E-01	7 2400	0.50005.0	6.2500E-01	6.7660E-01	
FTA	2 S480F400		1,4556E+00	1.07765.00		1117 F	00+301+1*	1.2034E+00	1 23445400	1 2030	1 - 30 - 1 E + 00	1.3298E+00	1 20505+00		1.4388E+00	1.1430F+00	1 16121	101251010	1.2038E+00	1.2763E+00	1.45146+00	1 AEGGEAGG	0043966497	1.4472E+00	1.9399E+00	1.50745400		1.5000E+00	1.4780E+00	
PCAL (MP)	9.982nE=01		1.5/U/E=0]	8.484AE-02	1-170aF-01	44.00	10-36010-	2.5772E-01	3.07915-01	4 2723r 61	10=363.30	4.8057E=01	5.0494F-01		/ • Logge=01	1.6901E-01	1 ANSKELON		2.5840E-01	3.7994E-01	7.4683E-01	7.57075.01		(• 30 / 3E = 0]	2.4360E+00	1.14155.00		00+316+00	8.12396-01	
SCAL (MH)	9.9912F-n1	7 = 700F	10-144-6-1	A.5/68F-02	1-14005-01	1 4705	10-404 10-1	2.5864F-01	3.04435-01	4 2415r	16-26-11	4.8149E-01	5.9586F-01		TOP THE OUT	16-46ケナケ。1	1-81475-01		2.773ct-01	3.8046F-01	7.4775E-01	7.57495-01		10-30476	2.4309F+00	1.14245.00		00+47061-1	M. 1331F-01	
S (MB)	4.700nE-01	7 Sabora		100000-1	1.3000F-01	1 00000	111111111111111111111111111111111111111	Z. (000E-01	3.2000E-01	4 40006.0		5.0000E-01	6.1000E-01	7 00005-01		10-30580.1	1.7930F=01		10-30,000	3.4080F = 01	1.38006-01	7.6200E-01	7.64006101		2000c-2	1.0630E+00	1 OCOSE ADD		10-30067+J	

. IMPLIFS LINEAR TERN IS IMPOSED.

CIMIC FIT TO FRIGHTION OF STATE FOR TUNGSTEN

	MICHOSEC)	HICPOSEC	ANSION (VOL.) = 1.290E-05	1.420€+06	HICROSEC	2654		Slm 3,34996
	CL= 5.220E-01(CH/HICHOSEC)	CS= 2.890E-01(CM/MICROSEC)	THERMAL COEF OF EXPANSIONIVOL) =	SPECIFIC HEAT(CP)= 1.420E+06	CBm 3.970E-01 (CM/MICROSEC)	SLOPE OF US-UP= 1.2954		01s 4.69886
BH0;01 = 10.17090	SIMPLIMATION FNERGYS 4.51960E+10	GRINETSEN COFFE 1.431A	AMIR 1.67110E.00(MH)	Yn = 1.94745=12(M9)	VMUm 6.2n617E-03	MJ60NIOT FLASTIC LIMIT = 3.20000E-02(MB)	IN THE ELASTIC WAVE COR 5.15616	IN THE FIRST PLASTIC WAVE CIR 3.02136 .

. IMPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCAL = 1.63544E-02(MB)

VADO AT .2MU = 2.14AE-03

3.600£-01 7.8606£-01 7.8606£-01 7.2100£-01 7.2100£-01

1.35216.00 1.27236.00 1.26966.00 1.30706.00 1.30706.00

3.9316E-01 5.9342E-01 5.7992E-01 1.2385E-00 2.0669E-00 2.0669E-00

> 5.9425F-01 1.2538F+00 1.2334F+00 2.0829F+00 2.0829F+00

> > 1.2250E+00 1.2270E+00 2.6540E+00 2.0610E+00 2.0740E+00

U(CM/MICROSEC)

9.0100E-01 9.0100E-01 8.6600E-01

1.1090E-00 1.1099E-00 1.1547E-00

SCAL (MR) 4.0717F-01 4.0717F-01 6.0677F-01

> 3.950f.01 3.950f.01 5.8700f.01 5.9000f.01

CUMIC FIT TO FULLATION OF STATE FOR THISP

RHO (A) = 1.64000

		ONO DATA					INPUT REFERENCE ETA 1 ETA 1 ETA 23 ETA 23 ETA 23
ICH/HICHOSEC) MO DATA	CM/HECHOSEC) +NO DATA	M(AOF) # -0.	ATAG DATA				U(CM/MICROSEC) 1.9175E-92 3.2292E-02 1.7272E-02 5.7467E-02 1.0469E-01
CL* -0. (CM/M1CM)	CS# -0. ICM/HECHO	THENNAL COEF OF EXPANSION (VOL.) = -0.	SPECIFIC HEAT(CP)= -6.	CBE 3.614E-01(CM/MICHOSEC)	SLOPE OF US-UP# 1.0814	.25161 \$1*	V/VO 9.3897E-01 8.9847E-01 9.5238E-01 8.6430E-01 7.7942E-01
*13	CS	THEN)34S	-e2	STOP		E7A 1.0650E+00 1.1130E+00 1.0500E+00 1.1570E+00 1.2830E+00
1.04840€+11	HO DATA	2474			(HH)	Cle .21681 .	PCAL (MB) 1.5166E-02 2.775E-02 1.1475E-02 4.0408E-02 8.2483E-02 1.5621E-01
	ORUMETSEN CHEF = ".	(19) MO DATA	Ŧ		MUGNATAT FLASTIC LIAIT =-0.	IN THE FIRST PLASFIC MAVE	SCAL (MM) 1.51586-02 2.77756-02 1.10.756-02 4.04086-02 A.24436-02 1.56216-01
SUBL I MAT I	N3S I JWNWO	ANUE 0.	YO BED.	YAUE F.	MUGNITAT	IN THE FE	1. 70500 1

· IMPLIES LITTEN TEAM IS IMPOSED.

AVERAGE DEVIATION FORM SCALE 2.91671E-03(MB)

CUMIC FIT TO FULLTION OF STATE FOR URANIUM-3 AT PCT MOLYADENUM

PHO(0)= 14.45000

SURL I - AT	SUMI INATION ENERGY= -0.	NO DATA	*13	3.310E-01(CM/MICROSEC)	05EC)		
GRUNF 1 SFR	GAUNETSEN COEFE 2.0360		CSN	1.850E-01 (SM/HICROSEC)	OSEC)		
A4U= 6.3	A-4Uz 6.31451E-01(-18)		THERMA	THERMAL COEF OF EXPANSION(VOL)#	ON(VOL)# 3.840E-05		
Y0 =-4.	(8)		SPECIF	SPECIFIC HEAT(CP) = 5.			
Yadya U.				Ŧ	JSEC.)		
MUGORIOT	MUGOLIOT ELESTIC LIAIT E=0.	((((((((((((((((((((SLOPE	SLOPE OF US-UPs 1.5322			
I	IN THE FINST PLASTIC MAVE	Cl# 1.20254 +	b) = 1.45	1°45929	5.84026		
S (Mr)	יין און נייין	PCAL (MR)	4	2			
C 3000 7	2,20035.21	2.2643F_01	1 145AF±00	0 1300: 01	OICH/MICHOSEC)	I NOCT	REFERENCE
10000	10-31-51.00	2,80475-01	1,17236.00	1. 5300r u		0//	20
1:- 4000c ·	Rothur ry.s	4-6-03E-01	1.24535+00	H-1300F=41	7 23226-02	0 > :	0 i
1 - 20002 - X	# C # 14 # 1 # 1 # 1	*.8784E-01	1.25166+00	7.99006-01	7.50657	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 7
10000		3.6-036-01	1.3532£ +00	7.3900E=.1	300000	0 2 2 2	0.5
1 10001		10=0.000	1.2952F+00	7.7150E-01	1.1565E-01	04/>	2
1. KAUDE + CL	C - 1.777	1.7845		7.09305-01	1-31726-01	0//0	50
1.77.106 . 1	00 + 1 + 2 + 2 + 2 · ·	1.7484E+33	1.51296 4.00	6.6100E=01	1-75696-01	0//>	20
1.4200F + AD	1 546- + 00	1.85555+00	1.52216440	10-30010-0	MOT LANGUAGE	07/7	50
7.2700F cum	2+2130F+1U	2-21905-00	1.56741.00	10-3000E-4	1.83946=01	0//	20
/ .6500% + 5.5	7 156F+00	2.8914E.90	1 6393F +00	10-200001-0	Z•1404E=01	0//	20
/* /506r + r c	2 - FL 2 #3F + FL	2.62936+00	1,61298+00	5.2000F=01	2-3005-2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ;
3 43000 vicin	2 - F - 2] AF - P. D.	Z.F. 316E+00	1.63935.00	h 1000E 01	2+53415-01		0 0
mar mar	3• 4F:35+ • U()	3.3+86E+ú3	1.6835F+00	2.94005-01	2-7473F-01	2	0 Z

· INCLIS LIVEAN TERM IS IMPOSED.

AVENAGE DEVIATION FROM SCALE 9.16939E-02(MB)

PHO(0) = 4.10000

SUFILINATION ENFIRSTS 9.43000E+10	•	CL* -0.	(CM/MICROSEC) #ND DATA
GAUNEISEU COFF= 2.1100		CS# +0.	(CH/MICHOSEC) ONG DATA
ANUM II. (48) 410 DATA		THERMAL COEF	THERMAL COEF OF EXPANSION (VOL.) = 2.4490E=65
YO =- n. (-18)		SPECIFIC HEAT	SPECIFIC HEAT(CP)= 2.470E+06
YIMIS G.		CB= 5.072E=	CB# 5.072E-01(CM/MICHOSEC)
HUGOTIOT FLASTIC LIMIT ==0.	(44)	SLOPE OF US.UP& 1.2026	* 1.2026
IN THE FINST PLASTIC HAVE CIR 1	1.56924 •	013 2,17686	Sis 1.01241

51= 1,01261

REFERENCE	20	20	200	200	5 0	. 6	3 %	20.2	92	50	97	50	50		20	50	20
FOGNI	0///	0//	04/4	27.7	0//	04/4	CA/A	0//	0///	0///	0///	08//	OA/A	0///	0 / / /	05/6	0//
U(CM/MICROSEC)	• 0	5.4966E-02	5.5530E-02	7.8008E-02	7.8917E-02	7.89175-32	7-89176-02	7-42175-02	1.0915E-01	1.0947E-01	1.09796-01	1.7922E-01	1.7958E-01	1.7994E-01	1.79445-01	2.4232E-01	2.52A5E-0]
0///	1.0000E+00	7.0300E-01	6.0100E-01	A. 7200E-01	6.4900E-01	×.6. 01	lo. ,• ;	K.57	H. 3100F-01	8.3000F-01	8.2900E-01	1.5200E+01	7.51006-01	7.5000E-01	7.5000E-01	6.9900E-01	6.AR00E-01
27.2	1.00008+00	1.10/45+00	1 - 1099E + 00	00000000	1.15076+00	1.1507E+00	00-1/051-1	1.15216+00	000-34500-1		1 42000 + 1000	10.3676.	1001201400	1 - 14446	1 43535 + 00		00+3555.
PCAL (MR)	1 94945 00	1300000	A + 00 = 00 10 10 10 10 10 10	7 404.00	10=305655	2-406-6-01	2.0254F-01	4 176 of 01	4.2343E-01	10-30-52-4	7.90595-01	7.96508-01	101305074	H 02445	1 16025.00	1 25375.00	00-310-3-4
SCAL (MH.)	10.04.246.73	2-00-156-63	20 10 10 10 10 10 10 10 10 10 10 10 10 10	2,49305-03	10-30-574-6	101 100, 110	7.42544	4-17-HE-01	4.71+3Fa01	4.75.20F.m.1	7.495.09.	7.96505-01	9-02+6F	10-14-0-H	1,10,25,400	1.25.376.00	
S (MR)	1,9000E-01	1.40005-1	2,9600E_01	2.9000F-01	7. 4000F .C	2.9000F-11	10- 30006 - 2	4. 3000F . 01	4.3000F-11	4.3000F-01	7.9600F-01	7.9000E-01	1.9000F-11	7.9000F - 1	1,1900F.00	1.2500F++0	

. I'MPLIES LINEAR TERM IS IMPOSED.

AVERAGE DEVIATION FROM SCALE 7.04539E-03(MB)

CURTO FIT TO EQUATION OF STATE FOR ZING

PHO(0) = 7.14000

		86 FT M = = = = = = = = = = = = = = = = = = =
		# 000000000000000000000000000000000000
CHOSEC) CHOSEC) SION(VOL) = 7.864E-05 3.870E.06 CHOSEC)	3.07582	U(CM/MICROSEC) 6.30/MICROSEC) 6.4990E-02 8.4992E-02 8.992E-02 9.933E-02 1.1246E-01 1.1249E-01 1.7985E-01 1.7985E-01 2.4106E-01 2.405E-01 2.405E-01
CL# 4.210E-01(CM/MICHOSEC) CS# 2.440F-31(CM/MICHOSEC) THERMAL COEF OF EXPANSION(VOL)# SPECIFIC HEAT(CP)# 3.870E+06 CB# 3.051E-01(CM/MICHOSEC) SLOPE OF US-UP# 1.5545	.99143 S1=	A V V V V V V V V V V V V V V V V V V V
CL# CS# THERM SPECI CB#		ETA 1.1857E+00 1.1947E+00 1.2544E+00 1.2514E+00 1.2547E+00 1.2547E+00 1.3158E+00 1.3235E+00 1.4549E+00 1.4535E+00 1.4549E+00 1.4549E+00 1.5069E+00 1.5069E+00
1.90100E+10	Co* 1.23142	PCAL (MB) 1.7728E-01 1.8461E-01 2.6666E-01 2.7463E-01 2.7463E-01 3.3119E-01 4.0561E-01 4.2776E-01 7.7765E-01 7.7765E-01 7.7251E-01 7.7251E-01 1.1455E-00 1.3428E-01
67% 1. 2.1500 (38) (44)	IN THE FLASTIC MAVE IN THE FINST PLASTIC WAVE	SCAL(44) 1. 74265-01 1. 85515-01 2. 67755-01 2. 7345-01 2. 4345-01 4. 63715-01 7. 7. 455-01 7. 7. 455-01 7. 7. 455-01 1. 1455-00 1. 3436-00 1. 3436-00
SUBLIMATION FILEM GRUNEISEN COEFE ANUE 4.25087E=61 YO = 1.50999F=03 YMUE 1.76434E=03 HUGOMIOT FLASTIC	IN THE FLA	\$1005.01 1.830005.01 2.930005.01 2.950005.01 2.950005.01 3.96005.01 4.47005.01 7.43005.01 7.45005.01 7.45005.01 1.90005.01 1.90005.01 1.90005.01

. IMPLIES LIMFAN TERN IS IMPOSED.

AVERAGE OFVIATION FROM SCALE 2.22466E-02(MH)

RHD(0)= 4.50500

6.62500E+10	
	CS= 2.390E=01(CM/MICHUSEC)
	THERMAL COEF OF EXPANSION (VOL) = 5.780E-06
	SPECIFIC HEAT(CP) = 2.562E+06
	CB= 3.757E-01(CM/MICROSEC)
(48)	SLOPE OF US-UP= 1.0180
. 91816.	03428 sia ,03428
.67109 •	02m 3.56056 S2m46068
PRESSURE(MB) = 2.60000E=01	MU = .22670
.2900 SLOPE = -0.	RHO = 7,9797

REFERENCE	200	200	20	2	20	20		200		2 6	2	20	50	2		>C	2 5) (07	20	2		36) (9
TWPUT	0 / / /	0//	0//	0///	0>/>	04/	07/7	27/7	2 2 2	> >		0 / / A	0//	0//	07/7	227			02/2	0//2	0//	G 2/ 2			02//
U(CH/HTCROSEC)	5-30406-02	5.9836E-02	6.0271F-02	6.8810E-02	7.44755-02	7.4475E-02	A.0811F002	20111100	9.30155-02	1-10435-01	7013500101	1.13165-01	1.20615-01	1.22925-01	2 - 2 3 B OF = 6.1	1 .8573F 01	1.87098-01		10-30+06 · I	2.1095E-01	2.23475-01	2.6200F-01	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Z*080 <e-01< td=""></e-01<>
0//	8.7800E-01	8.630GE-01	8.6100E-01	8.4€00E-01	8.3600E-01	8.36005-01	8.2300E-01	8.2300F-01	7.9900F+01	7.5500F=01		1.6200E-01	7.5100E-01	7.4800E-01	7-4400F-01	4.7000F-01	6.70005-01	6 6 300 C	10=300000	6.4700E-01	6.3500E-01	6-2000E-01	6.05005-01	10 10010 1	10 - 300 + 0 · u
ETA	1.1390E+00	1.1587E+00	1-16146-00	1,1820E+00	1.1962E+00	1.1962E+00	1.21515+00	1,2151E+00	1.2516E+00	1.3072E+00	00000000	1001771	1.33165+00	1.3369E+00	1.34415.00	1.4925E+06	1_4925F+00	1.5083F400		1.5456E+00	1.5748E+00	1.6129E+00	1.6529F+00	1 45545	2000
PCAL (MB)	1.4604E-01	1.6987E-01	1 - 7317E-01	10-3/88/TE-01	Z.1699E-01	2.1699E-01	2.41A1E-01	Z.4181E-01	2.7888E-01	3.3684E-01	3.4.329Fan	2 1304L02	10-366-01	3.7657E-01	3.8709E-01	6.6137E-01	6.8137E-01	7.2103F=01		8.2116E-01	7 0 5 ¢ 3 E = 0 1	1.0237E+09	1.1571E+00	1.16665.00	
SCAL (HB)	1.40046-01	1.59875-01	1-7317F-01	10-3/00/1	2.1599F-01	2.1499F-11	2.4 IHIF = 01	2.41A1F_01	7.78ABF-01	3.3084F-01	3-63295-01	TOTAL OF	TOTAL CONT.	3. 765 /F = 01	3.H709F-01	6.8137F-01	6.4137F_n1	7.21035-01		H-2110F-01	10-15050-6	1.0237F+00	1.15716+00	1.14005.00	
S (ME)	1.5000E-01	1 - 7000E-01	7.70005-01	20000	- C000E-01	2.2000E=01	Z-4000E-01	10-3000+-2	7.8000E-01	3.4000E-n1	3.5000F-01	A ACCE		3.7000C-01	3-90005-61	10-3000E-01	6.9000E-01	7.0000E-01	44446		10-3000-0	1.01001.00	1.17006.00	1,1000F+00	•

. IMPLIES LIMEAM TERM IS IMPOSED.

AVFDAGE DEVIATION FUNH SCALE 6.55573E-03(MB)

SECTION V

MATERIAL DATA REFERENCE SOURCES

Aluminum

Reference 39 cr, cs Reference 11 C_P, ß Handbook of Physics and Chemistry Reference 40 Taken from a materials handbook

Aliminum (1060)

cr, cs Reference 46 CB Reference 24 Cp, B Reference 46 Reference 46 Al/Si/Fe/Cu/Mn/Mg/Zn/Ti/99.13/0.25/ 0.35/0.05/0.03/0.03/0.05/C.03 Composition (percent)

Aluminum (6061-T6)

Reference 46 cr, cs Cp, B Reference 46 Reference 46 Hugoniot Elastic Limit Reference 20 A1/Mg/Si/Cu/Cr/97.9/1.0/0.6/0.25/0.25 Composition (percent)

24ST Aluminum

Reference 13 Cp, B Reference 43

921-T Aluminum

c _r ,	c _s	Reference	20
c _p ,	β	Reference	20
Γ		Reference	20

Aluminum (2024)

L, Cs	reieleuce	20
С _р , β	Reference	20
Γ	Reference	20
Hugoniot Elastic Limit	Reference	20
C _R	Reference	20

Antimony

С_р, в	Handbook of Physics and Chemistry
Γ	Calculated from C_{p} , β
Y	Handbook of Physics and Chemistry

*Phase transitions at 115 Kb and 135 Kb not indicated in this report. See Journal of Applied Physics, Vol 39, No. 7, "Dynamic Observations of the Course of a Shock Induced Polymorphic Phase Transition in Antimony."

Avcoat

c _L , c _S	Reference 46
С _р , в	Reference 46
Γ	Calculated from C_p , β

Beryllium

E _s	Reference 39
c _L , c _s	Handbook of Physics and Chemistry
С _{р} , в	Handbook of Physics and Chemistry
Γ	Calculated from C_p , β
Yo	Taken from a materials handbook

Bismuth

E Reference 39

C_L, C_S Reference 39

C_p, β Reference 13

Reference 40

*Phase transition not indicated in this report.

Boron Nitride

Data from McDonnell Douglas Corporation

Reference 44

Brass

 C_L , C_S , C_P , β , Y_O Handbook of Physics and Chemistry

Calculated from C_p, β

Cadmium

Reference 39

C_L, C_S Reference 13

C_p, β Reference 40

Reference 40

Boron Carbide

E Data from McDonnell Douglas Corporation (estimate)

Γ Reference 48

Silicon Carbide

Data from McDonnell Douglas Corporation

(estimate)

C_L, C_S Reference 20

Γ Reference 48

Tungsten Carbide

Data from McDonnell Douglas Corporation (estimate)

Reference 20 c_L, c_s Reference 48

Carbon Phenolic

Es Reference 44 c_L, c_s Reference 46

С_Р, в Reference 46 Calculated from C_p , β

Chromium

Reference 39 Es c_L, c_s Reference 13 $C_{\mathbf{p}}$, β Handbook of Physics and Chemistry

Reference 20

Cobalt

Es C_p , β Reference 13 Calculated from C_p , β

Reference 39

Copper

Reference 39 Es c_L, c_s Reference 13 C_p, ß Handbook of Physics and Chemistry

Reference 20 γ

Yo Handbook of Physics and Chemistry Ероху

CL, CS

CB

β

Reference 20

Reference 26

Reference 48

AVCO Phenolic Fiberglass

 C_{L}

0.435 cm/microsec (a-direction), 0.272 cm/microsec (c-direction) Reference 43

 $C_{\mathbf{P}}$, β

Reference

GE Phenolic Fiberglass

 c_{Γ}

0.434 cm/microsec (a-direction), 0.333 cm/microsec (c-direction) Reference 43

cs

Calculated from C_{L} , C_{B} (approximate)

С_р, в

ъ,

Reference 46

Γ

Reference 46

Go1d

Es

Reference 39

c_L, c_s

Reference 46

C_p, β

Reference 40

-

Reference 46

Yo

Taken from a materials handbook

Pyrolytic Graphite

Es

Estimated for medium to low pressures

 $C_{\mathbf{p}}$

Reference 44

۵

Reference 43

Γ

Calculated from C_p , β

*For further data see (1) AFWL-TR-64-42, Reference 36; (2) AFWL-TR-64-92, Vol II, Reference 38; (3) Boeing D2-90099, Reference 29; (4) Journal of Applied Physics, Vol 34, No. 4, 844 (1963), Reference 35

Hafn1um

E s	Reference 39
cr, cs	Reference 20
C _p , ß	Reference 40
Γ	Reference 40

Iron

E _S	Kererence	39
c _L , c _s	Reference	21
С _Р , в	Reference	40
Γ	Reference	20

Hugoniot Elastic Limit

Taken from Reference 20 where elastic limit varies from 15 kbar for FINE GRAIN HARD to 9 kbar for LARGE GRAIN SOFT iron

*The low pressure data below the phase transition at 130 kbar is Armco Iron. Material properties indicated for Armco Iron and Iron have been considered the same.

Lead

E _s	Reference	39
c _L , c _S	Reference	13
С _Р , в	Reference	40
r	Reference	46

Lucite

C,	C_	Reference 20)
٠,,	٧٥		

Magnesium

E _s	Reference 39
c _L , c _S	Reference 17
С _{р.} β	Handbook of Physics and Chemistry

Magnerium (cont'd)

Yo Handbook of Physics and Chemistry Γ Reference 40 Mangar in С_р, в Reference 22 Calculated from C_p , β Composition (percent) Cu/Mn/N1/84/12/4 Molybdenum Reference 39 Eg $C_{\mathbf{p}}$, β Reference 40 r Reference 40 Mylar For additional data see References 29 and 23 Nickel Reference 39 E c_L, c_s Reference 13 Niobium Es Reference 39 c_L, c_s Reference 20 Cp, B Reference 40 Calculated from C_p , β Nylon (Polyamide--C6 Hll N O) cs Reference 46 Calculated from C_S, C_B C **С**_р, в Reference 46 Reference 46

Palladium

CL, CS

С_р, в

Γ

Reference 39

Reference 20

Reference 40

Calculated from C_p , β

Paraffin

 C_p , β

Handbook of Physics and Chemistry

Chopped Nylon Phenolic

C_{T.}

 $C_{\mathbf{S}}$

С_р, в

r

Reference 43 (c-direction)

Calculated from C_L, C_R

General Electric Cincinnati Testing Laboratory information

Calculated from C_p , β

Tape-Wound Nylon Phenolic

С_р, в

General Electric Cincinnati Testing Laboratory information

Calculated from C_p , β

X-Cut Crystalline Quartz

All data taken from Reference 49

Quartz Phenolic

 E_{g} , C_{p} , β

Data from McDonnell Douglas Corporation

Calculated from C_p , β

3-D Quartz Phenolic

 $\mathbf{E}_{\mathbf{s}}$

Data from McDonnell Douglas Corporation for Phenolic Quartz--35 percent resin, ρ₀ = 1.68

Platinum

Es

c_L, c_s

c_p, s

γ

Reference 39

Reference 17

Reference 13

Calculated from C_p , β

OTWR

E

 c_L

cs

С_р, в

Γ

Approximate

Reference 43 (a-direction)

Calculated from C_L , C_B

Reference 46

Calculated from C_{p} , β (AFWL-TR-65-188

data)

Phenolic Refrasil

Eg

Reference 44 (Phenolic Resin data)

Tape-Wound Silicon Phenolic

Eg

Data from McDonnell Douglas Corporation for Phenolic Quartz--35 percent resim, $\rho_{_{\scriptsize O}}$ = 1.68

Plexiglas

c_L, c_s

С_Р, в

Γ

Reference 20

Reference 46

Reference 46

Polyethylene

E

c_L, c_s

 $C_{\mathbf{p}}$, β

Γ

AFWL-TDR-64-42

Reference 46

Reference 46

Reference 46

Polystyrene

β

Data from McDonnell Douglas Corporation

Polyurethane

c_L, c_s

Reference 20

RAD 58B

CL

 c_s

В

Reference 43

Calculated from C_{L} , C_{R}

Reference 43

Silver

Es

c_L, c_s

c_p, в

г

Reference 39

Reference 13

Reference 40

Calculated from C_p , β

Stainless Steel Type 304L

 C_{L} , C_{S}

С_р, в

Γ

Reference 20

AFWL notes on Stainless Steel

Calculated from C_p , β

Cr/Ni/18/8

Stainless Steel Type 304

Composition (percent)

CL, CS

с_р, в, г

Reference 20

Values used as for Stainless Steel

Type 304L

Reference 20

Steel, Mild EN3

β

Composition (percent)

Hugoniot Elastic Limit

Handbook of Physics and Chemistry

Fe/C/Mn/98.75/0.25/1.0

177

Tantalum

E_s C_L, C_S

C_P, ß

Г

Reference 39

Reference 13

Reference 40

Reference 40

Teflon

Es

cs

CL

C_P, ß

r

Data from AVCO Corporation

Reference 46

Calculated from C_S, C_B

Reference 46

Reference 46

Thallium

С_P, в

Г

Handbook of Physics and Chemistry

Reference 40

Thorium

Es

C_P, ß

Hugoniot Elastic Limit

r

Data from McDonnell Douglas Corporation

Handbook of Physics and Chemistry

Reference 40

Reference 20

Tin

. Es

cr, cs

С_P, в

1

Reference 39

Reference 13

Handbook of Physics and Chemistry

Reference 40

Titanium

Eg

c_L, c_s

C_p, ß

г

Reference 39

Handbook of Physics and Chemistry

Handbook of Physics and Chemistry

Reference 40

*The phase transition at 175 kbar is not indicated in this report. See Reference 20.

Tungsten

Es

с_L, с_S, в, с_P, ч_о

Г

Reference 39

Handbook of Physics and Chamistry

Calculated from C_p , β

Uranium-Molybdenum Alloy

c_L, c_s

C_p, β

Γ

Reference 20

Reference 20

Reference 20

Vanadium

Es

C_P, β

Γ

Reference 39

Reference 40

Reference 40

Zinc

Ea

 c_L, c_S

Cp, B

Г

Reference 39

Handbook of Physics and Chemistry

Handbook of Physics and Chemistry

Reference 40

Zirconium

E_s Reference 39
C_L, C_S Reference 20
C_p, β Reference 40
Γ Reference 40

REFERENCES*

- 1. Unpublished data from the Air Force Weapons Laboratory Gas Gun Facility.
- 2. Wagner, M. H., Waldorf, W. F., Jr., Louie, N. A., <u>Determination of Hugoniot Equations of State for Polymers and Reentry Vehicle Materials and Investigations of Fracture Phenomena</u>, AFSWC-62-66, Vol I, Air Force Force Weapons Center, Kirtland AFB, NM.
- 3. Marsh, S. P., taken from private communication, Los Alamos.
- 4. Lawrence Radiation Laboratory Data.
- 5. McQueen, R. C., Marsh, S. P., "Equation of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars," <u>Journal of Applied Physics</u>, Vol 31, No. 7.
- 6. Lundergren, C. D., <u>The Hugorict Equation of State of 6061-T6 Aluminum at Low Pressures</u>, Research Report SC-4637 (RR), Sandia Corporation, September 1961.
- 7. Anderson, G. D., Doran, D. G., Fahrenbruch, A. L., Equation of State of Solids-Aluminum and Teflon, AFWL-TR-65-147, Air Force Weapons Laboratory, Kirtland AFB, NM, December 1965.
- 8. Al'tshuler, L. V., Kormer, S. B., Bakanova, A. A., Trunin, R. F., "Equation of State for Aluminum, Copper, and Lead in the High Pressure Region," <u>Soviet Physics/JEPT</u> 11, p. 573, 1960.
- 9. Taken from progress report No. 11, DA-49-146-XZ-280.
- 10. Al'tshuler, L. V., Kormer, S. B., Bakanova, A. A., Trunin, R. F., "Equation of State for Aluminum, Copper, and Lead in the High Pressure Region," Soviet Physics/JEPT 11, p. 766, 1960.
- 11. Skidmore, I. C., Morris, E., <u>Thermodynamics of Nuclear Materials</u>, p. 173 FF, 1962.
- 12. Fowles, G. R., "Shock Wave Compression of Hardened and Annealed 2024 Aluminum," <u>Journal of Applied Physics</u>, Vol <u>32</u>, p. 1475, 1961.
- 13. Walsh, J. M., Rice, M. H., McQueen, R. G., Yarger, F. L., "Shock-Wave Compression of Twenty-Seven Metals," Physical Review, Vol 108, No. 2, pp. 196-216, October 1957.
- 14. Al'tshuler, L. V., Bakanova, A. A., Trumin, R. F., "Shock Adiabats and Zero Isotherms of Seven Metals at High Pressures," Soviet Physics/JEPT, Vol 15, p. 65, 1962.

^{*}References 2 through 18 are taken from LRL Compendium of Shock Wave Data.

REFERENCES (cont'd)

- 15. Al'tshuler, L. V., Bakanova, A. A., Trunin, R. F., "Shock Adiabats and Zero Isotherms of Seven Metals at High Pressures," Soviet Physics/JEPT, Vol 15, p. 65, 1962.
- 16. Al'tshuler, L. V., Krupnikov, K. K., Brazhnik, M. I., "Dynamic Compressibility of Metals under Pressure from 400,000 to 4,000,000 Atmospheres,"

 Soviet Physics/JEPT, Vol 7, p. 614, 1958.
- 17. McQueen, R. G., Marsh, S. P., Report No. GMX-6-566, Los Alamos Scientific Laboratory, pp. 51-62, 1964.
- 18. Krupnikov, K. K., Bakanova, A. A., Soviet Physics/JEPT, Vol 8, p 205, 1963.
- 19. Rinehart, J. S., Compilation of Dynamic Equation of State Data for Solids and Liquids, Technical Publication 3798, US Naval Ordnance Test Station, May 1965.
- 20. McQueen, R. G. et al., High Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, NY (taken from preprint copy).
- 21. Taylor, John W., Rice, M. H., "Elastic-Plastic Properties of Iron," <u>Journal of Applied Physics</u>, Vol 34, p. 364, 1963.
- 22. Keough, D. D., Procedure for Fabrication and Operation of Manganin Shock Fressure Gages, AFWL-TR-68-57, Air Force Weapons Laboratory, Kirtland AFB, NM, August 1968.
- 23. Louie, N. A., Kinney, W. W., Reid, R. D., Jr., Dynamic Properties of Materials, AFWL-TR-68-101, Air Force Weapons Laboratory, Kirtland AFB, NM, 1968.
- 24. Munson, D. E., Barker, L. M., "Dynamically Determined Pressure-Volume Relationships for Aluminum, Copper, and Lead," <u>Journal of Applied Physics</u>, Vol 37, pp. 1652-1660, 1956.
- 25. Anderson, G. D., Fahrenbruch, A. L., Equation of State of Solids, II-Aluminum and Teflon," AFWL-TR-67-43, Air Force Weapons Laboratory, Kirtland
 AFB, NM, Saptember 1967.
- 26. Guess, T. R., Some Dynamic Mechanical Properties of an Epoxy, Sandia Corporation, New Mexico, SC-DR-68-343, 1968.
- 27. Los Alamos Scientific Laboratory, private communication.
- 28. Wackerle, J., "Shock-Wave Compression of Quartz," <u>Journal of Applied Physics</u>, Vol 33, No. 3, 1962.
- 29. See Boeing Document, Equation of State of Mylar, Boeing-D2-90099, 1962.
- 30. Wagner, M. H., Louie, N. A., <u>Determination of Hugoniot Equation-of-State</u>
 for Polymers and Reentry Vehicle Materials and Investigations of Fracture
 Phenomena, SWC-TDR-62-66, Vol II, Air Force Special Weapons Center,
 Kirtland AFB, NM, August 1962.

REFERENCES (cont'd)

- 31. Hartman, W. F., Smith, J. H., Response of Several Ablation Materials to Dynamic Loading, SC-4647, Sandia Corporation, NM, January 1962.
- 32. Bancroft, D., Peterson, E. L., Minshall, S., "Polymorphism of Iron at High Pressure," <u>Journal of Applied Physics</u>, Vol 27, No. 3, 1956.
- 33. Isbell, W. M., Froula, N., Shipman, F. H., Shock Wave Propagation and Equation-of-State Measurements of Quartz Phenolic, Final Report, BSD-TR-67-25, Vol 3, 1967.
- 34. Isbell, W. M., Froula, N., Shipman, F. H., Shock Wave Propagation and Equation-of-State Measurements of Quartz Phenolic, Final Report, BSD-TR-67-25, Vol 3, 1967.
- 35. Doran, D. G., "Hugoniot Equation of State of Pyrolytic Graphite to 300 Kilobars," <u>Journal of Applied Physics</u>, Vol 34, No. 4, p. 844, 1963.
- 36. Allen, R. G., Goodwin, L. K., <u>Study of X-Ray Countermeasure Methods</u>, Final Report, AFWL-TDR-64-42, Air Force Weapons Laboratory, Kirtland AFB, NM, June 1964.
- 37. Morgan, D. T., Rockowitz, M., Atkinson, A. L., Measurement of Gruneisen Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminum and Teflon, AFWL-TR-65-117, Air Force Weapons Laboratory, Kirtland AFB, NM, 1965.
- 38. Morgan, D. T., Rockowitz, M., Atkinson, A. L., Measurement of the Gruneisen Parameter and the Internal Energy Dependence of the Solid Equation of State of Aluminum and Teflon, AFWL-TR-65-117, Air Force Weapons Laboratory. Kirtland AFB, NM, October 1965.
- 39. Stull and Sinke, Thermodynamic Properties of the Elements, American Chemical Society, Washington, 1956.
- 40. Seitz, F., Turnbull, D., Solid State Physics, Vol 16, Academic Press, 1964.
- 41. "The Compressibility of Pyrolytic Graphite," US Naval Ordnance Laboratory, J. Chem. Phys., Vol 40, p. 71, 1963.
- 42. Penning, J. R., Davies, F. W., <u>Hugoniot Equation of State of Mylar</u>, taken from preprint of Boeing Document D2-125304-1.
- 43. Asay, J. R., Darr, A. J., Arnold, N. D., Guenther, A. H., <u>Ultrasonic Wave Velocity-Temperature Studies in Several Plastics</u>, Plastic Foams and Nose <u>Cone Materials</u>, AFWL-TR-65-188, Air Force Weapons Laboratory, Kirtland AFB, NM, March 1966.
- 44. Radiation Damage Study (RADS), Vol 5, Final Report, Material Data Handbook, BSD-TR-66-372, 1966.
- 45. Louie, N. A., Anderson, W. H., Experimental Fracture Studies and Equation-of-State Measurements, Final Report, RTD-TDR-63-3102, Air Force Weapons Laboratory, Kirtland AFB, NM, March 1964.

REFERENCES (cont'd)

- 46. Asay, J. R., Urzendowski, S. R., Guenther, A. H., <u>Ultrasonic and Thermal Studies of Selected Plastics</u>, <u>Laminated Materials</u>, <u>and Metals</u>, <u>AFWL-TR-67-91</u>, <u>Air Force Weapons Laboratory</u>, <u>Kirtland AFB</u>, NM, January 1968.
- 47. Crotwell, G. P., Jr., <u>Hugoniot Data on Several Materials</u>, AFWL-TR-68-82, Air Force Weapons Laboratory, Kirtland AFB, NM, October 1968.
- 48. Toulaukian, Y. S., Thermodynamic Properties of High Temperature Solid Materials, 6 Volumes, Thermophysical Properties Research Center, Purdue University, Macmillan, 1967.
- 49. Bakken, L. H., Anderson, P. D., Memo, "Correction of Equation of State Values in SCL-TM-67-118," Sandia Corporation, New Mexico, 1968.

INCLASSIFIED

Security Claraffication							
DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered wher, the overall report is classified)							
1. ORIGINATING ACTIVITY (Corporate author)	OF U		CURITY CLASSIFICATION				
Air Force Weapons Laboratory (WLRP)		UNCLASSIFIED					
Kirtland Air Force Base, New Mexico 87117		26. GROUP					
3. REPORT TITLE		,					
COMPILATION OF HUCONIOT EQUATIONS OF STATE							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)							
June 1968-January 1969 5. AUTHOR(S) (First name, middle initial, last name)	****						
Brian J. Kohn, Lieutenant, USAF							
6. REPORT DATE	74. TOTAL NO. OF	PAGES	7b. NO. OF REFS				
Anvil 1060 R. CONTRACT OF GRANT NO.	198						
NE CONTRACT OR GRANT NO.	94. ORIGINATOR'S REPORT NUMBER(S)						
6. PROJECT NO. 5710	AFWL-TR-69-38						
• Subtask No. RAS 1114 (15.025)	9b. OTHER REPORT NO(5) (Any other numbers that may be easigned this report)						
d.							
10 DISTRIBUTION STATEMENT This document is subje	ct to special	export co	ontrols and each				
transmittal to foreign governments or foreign							
approval of AFWL (WLRP), Kirtland AFB, NM,	87117. Distr	ibution is	limited because				
of the technology discussed in the report.							
11. SUPPLEMENTARY NOTES	12. SPONSORING MI	LITARY ACTIV	177				
AFWL (WLRP)							
	Kirtland AFB, NM 87117						
(Distribution Limitation	Statement No.	2)					
Computer codes for predicting material response			n and above the				
elastic region of a material require a knowledge of the Hugoniot equation of state.							
Hugoniot and material data have been compiled from various sources on materials of							
interest and presented in a form which condenses the needed computer code inputs to							
an easily accessible source.							
i de la companya de							

DD FORM 1473

UNCLASSIFIED
Security Classification

UNCLASSIFIED Security Classification

NEV WORDS	LINK		LINK B		LIN	LINK C	
			l		<u> </u>		
Hugoniot Mie-Gruneisen equation of state Elastic limit Hydrostat Stress-strain	HOLE	WT	LIM	W T	LIN	W T	

UNCLASSIFIED				
Security Classification				