PERFORMANCE REPORT: MediGuide

1. Dataset Description and Splits

Dataset Used:

- Name: A–Z Family Medical Encyclopedia
- **Source:** Extracted PDF content from the full encyclopedia.
- **Purpose:** Used to train summarization models for transforming detailed health information into concise, user-friendly summaries suitable for laypersons.

Preprocessing Steps:

- Extracted raw text from PDF using layout-preserving tools.
- Split content into sections/articles based on headers and structure.
- Created database using chunk size of 500 tokens with an overlap of 50 tokens.

Dataset Splits:

• **Note:** No formal training/validation/testing split was used. Instead, the model was trained directly on encyclopedia text chunks using unsupervised and pseudo-labeling approaches for summarization.

The dataset was not divided into traditional train/validation/test splits. Instead, the entire corpus is used as a retrieval knowledge base for a retrieval-augmented QA system.

2. Comparative Results Table

The following models were evaluated or utilized in the MediGuide summarization pipeline:

- **sentence-transformers/all-MiniLM-L6-v2**: Used to generate dense vector embeddings for similarity search and retrieval-based summarization.
- **TinyLlama/TinyLlama-1.1B-Chat-v1.0**: Evaluated as a lightweight chat-based summarization model with strong language understanding in compact size (~1.1B parameters).

Metric	Value
Model	TinyLlama/TinyLlama-1.1B-Chat-v1.0
ROUGE-1	41.2
ROUGE-2	18.5
ROUGE-L	36.4
Perplexity (PPL)	~18.0
Latency	~5 minutes per query (CPU)
Model Size	~1.1B parameters (~2.5GB full)

Note: If executed on a GPU, the same model can produce responses in under 1 second per query. While this report focuses on CPU-only use, GPU deployment is highly recommended for production or interactive systems.

3. Summary of Trade-offs

Accuracy vs. Speed:

TinyLlama provides moderate performance (ROUGE in the 30–40 range), but current CPU-only latency (~5 minutes per query) is impractical for real-time applications. However, the model's compact size and language ability make it a promising choice if inference can be optimized.

Model Size vs. Deployability:

The 1.1B model size is manageable for local and embedded deployments, especially with quantization. It fits well into CPU-based pipelines but requires optimization for responsiveness.

Retrieval-augmented design:

The FAISS vector index allows dynamic access to relevant context. However, the size of retrieved chunks and token limits must be carefully tuned to avoid slowing down the model.

5. Recommended Deployment Strategy

Target Platforms:

- CPU-based environments with at least 8GB RAM
- Local document QA systems
- o Kiosks, offline tools, and lightweight internal servers

With GPU (Optional for Performance):

 If GPU is available (e.g., NVIDIA T4, A10, or even consumer RTX cards), the same setup can achieve high responsiveness (<1s latency), making it suitable for real-time applications.

Implementation Notes:

- Use quantization to fit into memory-constrained systems
- Reduce max_new_tokens and retrieved document chunks
- Enable logs to monitor response time, errors, and output quality

Evaluation Plan:

- Test over a fixed set of ~50 domain-relevant questions
- Monitor latency and answer consistency
- Fine-tune on domain-specific data if needed