A Light-Weight Multi-Objective Asynchronous Hyper-Parameter Optimizer

Presentation of HOLA

March 24, 2025

Problem: Hyper-Parameter Optimization

- Task: Find optimal hyper-parameters $x \in \mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_k$
- Multiple objectives to evaluate x:
 - $f_i: \mathcal{X} \to \mathbf{R}$ for $i = 1, \dots, k$
 - Some to minimize, others to maximize
- Challenges:
 - Simulations are expensive (black-box)
 - No gradients available
 - Workers may be unreliable (stragglers, failures)
 - Need to balance exploration vs exploitation

Multi-Objective Scalarization

Need to convert multiple objectives into single cost:

$$F(x) = \phi(f(x)) = \phi(f_1(x), \dots, f_k(x))$$

- HOLA uses target-priority-limit scalarizer
 - Separable: $\phi(u) = \sum_{i=1}^k \phi_i(u_i)$
 - Each objective characterized by:
 - Target (T_i) : Ideal value we aim for
 - Limit (L_i): Maximum/minimum acceptable value
 - **Priority** (*P_i*): Relative importance

Target-Priority-Limit Scalarizer

For minimization objective:

$$\phi_i(u_i) = \begin{cases} 0 & u_i \leq T_i \\ P_i \frac{u_i - T_i}{L_i - T_i} & T_i \leq u_i \leq L_i \\ +\infty & u_i > L_i \end{cases} \uparrow \phi_i(u_i)$$

For maximization objective:

$$\phi_i(u_i) = \begin{cases} 0 & u_i \ge T_i \\ P_i \frac{T_i - u_i}{T_i - L_i} & L_i \le u_i \le T_i \\ +\infty & u_i < L_i \end{cases}$$

- Overall cost: $F(x) = \sum_{i=1}^k \phi_i(f_i(x))$
- Intuitively: 0 cost when better than target, infinite cost when worse than limit

Minimization Objective

Hyper-Parameter Attributes

Standardizing hyper-parameters for sampling:

- Range: Min/max values l_i and u_i
- Scale: Linear or logarithmic
- Grid/discrete: Finite set of values

Standardization: Map each parameter to $z_i \in [0, 1]$

- Linear scale: $z_i = \frac{x_i l_i}{u_i l_i}$
- Log scale: $z_i = \frac{\log x_i \log l_i}{\log u_i \log l_i}$

This standardizes the sample space, while respecting original constraints.

Optimization Method

Asynchronous exploration strategy:

- **1 Initial phase**: Uniform sampling (or Sobol' sequence) until threshold
- **2** Elite points: Track top $r = \eta K$ simulations (e.g., $\eta = 0.2$)
- 3 Statistical model: Fit Gaussian mixture model to elite points
- 4 Sample: Generate new suggestions from the model

Comparison Groups and Pareto Ranking

- Comparison Groups: Group comparable objectives together
 - Each objective belongs to a comparison group
 - Within a group: Combine using priority-weighted sums
 - Example: $\Phi_g(x) = \sum_{i \in \text{group } g} \phi_i(f_i(x))$
- Pareto/Nondominance Ranking:
 - Calculate group scores: $\Phi(x) = (\Phi_1(x), \Phi_2(x), \dots, \Phi_G(x))$
 - Solution x dominates y if:
 - For all groups $g: \Phi_g(x) \leq \Phi_g(y)$
 - For at least one group g: $\Phi_g(x) < \Phi_g(y)$
 - Solutions ranked by their Pareto front level
 - Elite set selected across multiple Pareto fronts