

Report No.: STR16116046R Date: 2016-12-05 Page 1 of 6

Applicant : Hypersen Technologies Co., Ltd.

Applicant Address: A526, Baoan Intelligence Valley, No.4 Yintian Rd., Xixiang Street, Baoan Dist.,

Shenzhen City, Guangdong Province, China

The following sample was submitted by the client as:

Manufacturer : Hypersen Technologies Co., Ltd.

A526, Baoan Intelligence Valley, No.4 Yintian Rd., Xixiang Street, Baoan Address

Dist., Shenzhen City, Guangdong Province, China

Sample Description Time-of-Flight (ToF) Sensor

Style/Item No. HPS-166, HPS-161, HPS-162, HPS-163, HPS-165, HPS-167, HPS-168,

HPS-169

Brand Name Hypersen

Sample Receiving Date : Nov. 14, 2016

Test Period : Nov. 14, 2016 to Nov. 18, 2016

Test Requested:

As requested by the applicant, test(s) was/were performed as below:

Test Summary		Conclusion
	65/EU on the restriction of the use of certain hazardous delectronic equipment (XRF screening and chemical	PASS

est Results: Please refer to following page(s).

Tested by:

May li

Reviewed by:

Boly Peng

Approved by:

Jandyso

Declaration:

(1) The report shall not be reproduced partly without the written approval of the laboratory, except in full produced.

All the results shown in the report apply to the tested sample, any erasion on the report is invalid

(2) All the results shown in the report apply to the tested sample, any erasion on the report is invalid.
(3) All tested sample will be kept for one month, if there is any doubt about the test result, please inform within this period.

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

Report No.: STR16116046R Date: 2016-12-05 Page 2 of 6

RoHS hazardous substances test

Test method:

IEC 62321-3-1:2013, XRF screening

IEC 62321-4-2013 for Hg, analyzed by ICP-OES

IEC 62321-5-2013 for Cd and Pb, analyzed by ICP-OES

IEC 62321:2008 Annex C and/or IEC 62321-7-1:2015 for Cr⁶⁺, analyzed by UV-VIS

IEC 62321-6-2015 for PBBs and PBDEs, analyzed by GC-MS

1. XRF results:

No.	Name of the	Part name	Sample	Results				
INO.	sample	Description Description		Pb	Cd	Hg	Cr	Br
1-1-1		Camera lens	Black plastic	BL	BL	BL	BL	BL
1-1-2			Glass	BL	BL	BL	BL	BL
1-2-1		Probe	Black plastic	BL	BL	BL	BL	BL
1-2-2	Time-of-Flight	Flobe	Glass	BL	BL	BL	BL	BL
1-3-1		Screw	Black metal	BL	BL	BL	IN	NA
1-4-1		Socket	White plastic	BL	BL	BL	BL	NA
1-4-2			Black plastic	BL	BL	BL	BL	BL
1-4-3	(ToF) Sensor		Silvery metal	BL	BL	BL	BL	NA
1-5-1		IC 1623	Black plastic	BL	BL	BL	BL	BL
1-5-2		IC 1623	Silvery metal	BL	BL	BL	BL	NA
1-6-1			Black plastic	BL	BL	BL	BL	BL
1-6-2			10 29301	Silvery metal	BL	BL	BL	BL
1-7-1		Soldering tin	Silvery metal	BL	BL	BL	BL	NA
1-8-1		РСВ	PCB	BL	BL	BL	BL	IN

2. Chemical confirm results:

Test Item(s)	Result (mg/kg)					
	1-3-1					(mg/kg)
Hexavalent Chroumium (Cr ⁶⁺)	Negative	Negative	Negative	Negative	Negative	
Comment	PASS	PASS	PASS	PASS	PASS	

Test Item(s)	Result (mg/kg)					
	1-8-1					(mg/kg)
Mono-PBB	ND	ND	ND	ND	ND	
Di-PBB	ND	ND	ND	ND	ND	
Tri-PBB	ND	ND	ND	ND	ND	

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

Report No.: STR16116046R Date: 2016-12-05 Page 3 of 6

Tetra-PBB	ND	ND	ND	ND	ND	
Penta-PBB	ND	ND	ND	ND	ND	
Hexa-PBB	ND	ND	ND	ND	ND	
Hepta-PBB	ND	ND	ND	ND	ND	
Octa-PBB	ND	ND	ND	ND	ND	
Nona-PBB	ND	ND	ND	ND	ND	
Deca-PBB	ND	ND	ND	ND	ND	
Sum of PBBs	ND	ND	ND	ND	ND	1000
Mono-PBDE	ND	ND	ND	ND	ND	
Di- PBDE	ND	ND	ND	ND	ND	
Tri- PBDE	ND	ND	ND	ND	ND	
Tetra- PBDE	ND	ND	ND	ND	ND	
Penta- PBDE	ND	ND	ND	ND	ND	
Hexa- PBDE	ND	ND	ND	ND	ND	
Hepta- PBDE	ND	ND	ND	ND	ND	
Octa- PBDE	ND	ND	ND	ND	ND	
Nona- PBDE	ND	ND	ND	ND	ND	
Deca- PBDE	ND	ND	ND	ND	ND	
Sum of PBDEs	ND	ND	ND	ND	ND	1000
Comment	PASS	PASS	PASS	PASS	PASS	

Remark:

- 1. BL = below limit
- 2. OL = over limit
- 3. IN = inconclusive, chemical confirm test is recommended
- 4. NA = not applicable
- 5. mg/kg = milligram per kilogram = ppm
- 6. Method Detection Limit (MDL):10mg/kg for Pb, Cd, Hg and Cr⁶⁺; 10mg/kg for PBB and PBDE
- 7. ND = not detected
- 8. Negative = The Cr^{6+} concentration is below the limit of quantification. The coating is considered a non- Cr^{6+} based coating.
- 9. Positive = The Cr^{6+} concentration is above the limit of quantification and the statistical margin of error, The sample coating is considered to contain Cr^{6+} .

Note:

- 1. When perform screening tests, it is the result on total Br while test item on restricted substances is PBBs/PBDEs, it is the result on total Cr while test item on restricted substances is Cr⁶⁺.
- 2. Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Cd, Pb, Hg), UV-VIS (for Cr⁶⁺) and GC-MS (for PBBs, PBDEs) is recommended to be

<u>Report No.: STR16116046R</u> Date: 2016-12-05 Page 4 of 6

performed, if the concentration falls into the inconclusive area according to IEC 62321-3-1:2013 (unit: mg/kg)

Element	<u> </u>	Metal	Composite Meterials
Element	Polymer	Wietai	Composite Materials
Cd	BL≤(70-3σ) <x<(130+3σ)< td=""><td>BL≤(70-3σ)<x<(130+3σ) td="" ≤ol<=""><td>LOD<x<(150+3σ) td="" ≤ol<=""></x<(150+3σ)></td></x<(130+3σ)></td></x<(130+3σ)<>	BL≤(70-3σ) <x<(130+3σ) td="" ≤ol<=""><td>LOD<x<(150+3σ) td="" ≤ol<=""></x<(150+3σ)></td></x<(130+3σ)>	LOD <x<(150+3σ) td="" ≤ol<=""></x<(150+3σ)>
	≤OL		,
Pb	BL≤(700-3σ)	BL≤(700-3σ) <x<(1300+3σ)< td=""><td>BL≤(500-3σ)</td></x<(1300+3σ)<>	BL≤(500-3σ)
	<x<(1300+3σ) td="" ≤ol<=""><td>≤OL</td><td><x<(1500+3σ) td="" ≤ol<=""></x<(1500+3σ)></td></x<(1300+3σ)>	≤OL	<x<(1500+3σ) td="" ≤ol<=""></x<(1500+3σ)>
Hg	BL≤(700-3σ)	BL≤(700-3σ) <x<(1300+3σ)< td=""><td>BL≤(500-3σ)</td></x<(1300+3σ)<>	BL≤(500-3σ)
	<x<(1300+3σ) td="" ≤ol<=""><td>≤OL</td><td><x<(1500+3σ) td="" ≤ol<=""></x<(1500+3σ)></td></x<(1300+3σ)>	≤OL	<x<(1500+3σ) td="" ≤ol<=""></x<(1500+3σ)>
Br	BL≤(300-3σ) <x< td=""><td></td><td>BL≤(250-3σ)<x< td=""></x<></td></x<>		BL≤(250-3σ) <x< td=""></x<>
Cr	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ)<x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<>	BL≤(500-3σ) <x< td=""></x<>

^{3.} The XRF screening test for RoHS elements. The reading may be different to the actual content in the sample be of non-uniformity composition.

<u>Report No.: STR16116046R</u> <u>Date: 2016-12-05</u> <u>Page 5 of 6</u>

<u>Report No.: STR16116046R</u> <u>Date: 2016-12-05</u> <u>Page 6 of 6</u>

Tested sample photo:

--- End of Report ---