CVIČENÍ 11

Téma: Planární grafy a toky v sítích.

Cíle: Posílit pochopení vlastností planárních grafů, získat praktické zkušenosti se základním algoritmem určování maximálního toku (Ford-Fulkerson) a určením přípustné cirkulace.

	Planární grafy
1.	Zjistěte a zdůvodněte, zda jsou 3-rozměrná a 4-rozměrná hyperkrychle planárnámi grafy.
2.	Dokažte, že pro jakýkoliv graf lze sestrojit jeho diagram bez průsečíků ve třírozměrném prostoru \mathbf{R}^3 .
3.	Navrhněte postup, jak sestrojit (obyčejný) neplanární graf se zadaným počtem uzlů $ U =n$ a počtem hran $ H =m$.
4.	Máme obyčejný neorientovaný graf $G = \langle H, U \rangle$ s $ U = n$ (≥ 6) uzly, nechť T_1 , T_2 a T_3 jsou tři jeho hranově disjunktní kostry. Může být graf G planární?
	Toky v sítích
5.	Nechte studenty zopakovat definice sítě, maximálního toku, kapacity řezu sítě, zlepšují cesty.
6.	Pro konkrétní příklady jednoduchých sítí určete kapacitu všech jejich hranových řezů.
7.	 Pomocí max flow – min cut teorému dokažte platnost následujících tvrzení: Maximální počet hranově disjunktních cest v orientovaném grafu G z uzlu s do uzlu t je roven minimálnímu počtu s→t hran v hranovém řezu oddělujícím uzly s a t. Maximální počet uzlově disjunktních cest v orientovaném grafu G z uzlu s do uzlu t je roven minimálnímu počtu uzlů, jejichž odebráním se zruší všechny orientované cesty z s do t.
8.	 Vyslovte se o pravdivosti následujících tvrzení. Správná tvrzení dokažte, pro nesprávná podejte protipříklady. a) Nechť f je maximální tok v síti G a (u,v), (v,u) libovolná dvojice opačně orientovaných hran. Pak platí, že buď f(u,v) = 0 nebo f(v,u) = 0. b) V každé síti G existuje maximální tok f takový, že buď f(u,v) = 0 nebo f(v,u) = 0 pro každou dvojici opačně orientovaných hran. c) Jestliže kapacity jednotlivých hran v síti jsou navzájem různé, pak má síť jediný hranovy řez s minimální kapacitou. d) Pokud v síti zrušíme orientaci nějaké orientované hrany, hodnota maximálního toku se nezmění. e) Jestliže v síti vynásobíme kapacity všech hran kladným číslem K, složení hranového řez s minimální kapacitou se nezmění. f) Jestliže v síti přičtem ke kapacitě každé hrany kladné číslo K, složení hranového řezu s minimální kapacitou se nezmění.
9.	Fordův-Fulkersonův algoritmus Pro síť na obrázku nalezněte maximální tok a ověřte, že jeho hodnota se rovná hodnotě minimálního řezu sítě. Kapacity hran jsou rovny jedné.

- 10. Sestrojte graf, u něhož Fordův-Fulkersonův algoritmus provádí alespoň 5 iterací zlepšující se cesty. (Obecně *k* iterací.)
- 11. Pro konkrétní síť s alespoň 2 hranami s dolní mezí toku (tj. 2 hrany s ohodnoceními **min/max**) proveďte jejich úpravu na úlohu s omezeným minimálním tokem, a tuto úlohu vyřešte.

12. Pro stejnou síť jako v minulém příkladu určete nějakou přípustnou cirkulaci.

Zvolte nějak jednotkové ceny toku ve všech hranách sítě z minulého příkladu a pro tyto ceny nalezněte nejlacinější přípustnou cirkulaci. Vycházíme ze získané přípustné cirkulace, jednotkové ceny toku jsou určeny červenými čísly před dvojtečkou, za nimi jsou modře aktuální toky hranami.

13. Katedra s učiteli u₁, u₂, ..., u_n zajišťuje v příštím semestru přednášky předmětů p₁, p₂, ..., p_n. Každý z učitelů si stanovil dva předměty, které může přednášet. Jakým způsobem zjistí úvazkář katedry, zda je možné přidělit po jedné přednášce každému učiteli s respektováním jeho požadavků?