最小生成树算法的数据结构

刘恩萌

南京大学计算机科学与技术系 171860013@smail.nju.edu.cn

2018年10月22日

Contents

1 最小生成树

2 Kruskal 算法

3 Prim 算法

Contents

1 最小生成树

2 Kruskal 算法

3 Prim 算法

最小生成树算法

GENERIC-MST(G, w)

- $1 A = \emptyset$
- 2 while A does not form a spanning tree
- 3 find an edge(u, v) that is safe for A
- $4 \qquad A = A \bigcup \{(u,v)\}$
- 5 return A
- 在带权图中选择一棵权值最小的生成树

最小生成树算法

GENERIC-MST(G, w)

- $1 A = \emptyset$
- 2 while A does not form a spanning tree
- 3 find an edge(u, v)that is safe for A
- $4 \qquad A = A \cup \{(u,v)\}$
- 5 return A
- 在带权图中选择一棵权值最小的生成树
- 贪心选择方法

Contents

1 最小生成树

2 Kruskal 算法

3 Prim 算法

■ 选择策略:在所有连接森林中两棵<u>不同树</u>的边中,找到<u>权重最小</u>的边

2 终止: 选满 n-1 条边

- 选择策略:在所有连接森林中两棵<u>不同树</u>的边中,找到<u>权重最小</u>的边
- 2 终止: 选满 n-1 条边
 - 权重最小 ⇒ 排序!

- 选择策略:在所有连接森林中两棵<u>不同树</u>的边中,找到<u>权重最小</u>的边
- 2 终止:选满 n-1 条边
 - 权重最小 ⇒ 排序!
 - ② 不与已经选择的边构成循环?

- 选择策略:在所有连接森林中两棵<u>不同树</u>的边中,找到<u>权重最小</u>的边
- 2 终止:选满 n-1条边
 - 权重最小 ⇒ 排序!
 - ② 不与已经选择的边构成循环?

21.1-2 证明: CONNECTED-COMPONENTS 处理完所有的边后,两个顶点在相同的连通分量中当且仅当它们在同一个集合中。

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)
```

1 将边按权重从小到大排序

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```

- 1 将边按权重从小到大排序
- ② 初始化并查集 (MAKE-SET)

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```

- 1 将边按权重从小到大排序
- ② 初始化并查集 (MAKE-SET)
- 3 查询是否已经相连 (FIND-SET)

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

8 UNION(u, v)

9 return A
```

- 1 将边按权重从小到大排序
- ② 初始化并查集 (MAKE-SET)
- 3 查询是否已经相连 (FIND-SET)
- 4 不会构成 cycle,则合并 (UNION)

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边		

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集		

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连		

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并		

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(\text{UNION})$

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sont the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

操作	方法	时间
按权重大小排序边	QUICK-SORT	$O(E \lg E)$
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(\text{UNION})$

■ 取决于并查集的实现方式

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

定理 21.1 使用不相交集合的链表表示和加权合并启发式策略,一个具有 $m \land MAKE-SET$ 、UNION和 FIND-SET 操作的序列(其中有 $n \land MAKE-SET$ 操作)需要的时间为 $O(m+n\lg n)$ 。

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

定理 21.1 使用不相交集合的链表表示和加权合并启发式策略,一个具有 $m \land MAKE-SET$ 、UNION 和 FIND-SET 操作的序列(其中有 $n \land L$ MAKE-SET 操作)需要的时间为 $O(m+n\lg n)$ 。

$$E \ge V - 1$$

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

定理 21.1 使用不相交集合的链表表示和加权合并启发式策略,一个具有 $m \land MAKE$ -SET、UNION 和 FIND-SET 操作的序列(其中有 $n \land MAKE$ -SET 操作)需要的时间为 $O(m + n \lg n)$ 。

$$E \ge V - 1$$

$$V = O(E)$$

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$O(2E) \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

定理 21.1 使用不相交集合的链表表示和加权合并启发式策略,一个具有 $m \land MAKE$ -SET、UNION和 FIND-SET 操作的序列(其中有 $n \land E$ MAKE-SET 操作)需要的时间为 $O(m + n \lg n)$ 。

$$E > V - 1$$

$$V = O(E)$$

$$O(E + V \lg V)$$

不相交集合森林实现并查集

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$2E \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

不相交集合森林实现并查集

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$2E \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

不相交集合森林实现并查集的时间复杂度

当同时使用按秩合并和路径压缩时,最坏情况的运行时间为 $O(m\alpha(n))$ 。

$$O((V + E)\alpha(V))$$

不相交集合森林实现并查集

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$2E \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

不相交集合森林实现并查集的时间复杂度

当同时使用按秩合并和路径压缩时,最坏情况的运行时间为 $O(m\alpha(n))$ 。

$$O((V + E)\alpha(V))$$

 $O(E\alpha(V))$

不相交集合森林实现并查集

操作	方法	时间
初始化并查集	MAKE-SET	$V \cdot T(\text{MAKE-SET})$
查询是否已经相连	FIND-SET	$2E \cdot T(\text{FINDESET})$
合并	UNION	$(V-1) \cdot T(UNION)$

不相交集合森林实现并查集的时间复杂度

当同时使用按秩合并和路径压缩时,最坏情况的运行时间为 $O(m\alpha(n))$ 。

$$O((V + E)\alpha(V))$$

 $O(E\alpha(V))$

- 并查集
 - ▶ 链表实现 *O*(*E* + *V* lg *V*)
 - ▶ 不相交集合森林实现 $O(E\alpha(V))$

- 并查集
 - ▶ 链表实现 O(E + Vlg V)
 - ► 不相交集合森林实现 $O(E\alpha(V))$
- 排序 O(Elg E)

- 并查集
 - ▶ 链表实现 O(E + Vlg V)
 - ▶ 不相交集合森林实现 $O(E\alpha(V))$
- 排序 O(Elg E)

- 并查集
 - ▶ 链表实现 O(E + Vlg V)
 - ► 不相交集合森林实现 $O(E\alpha(V))$
- 排序 O(Elg E)

Contents

1 最小生成树

2 Kruskal 算法

3 Prim 算法

选择策略:

选择策略:

- 集合 A 中的边总是构成一棵树
- 从任意一个根结点 r 开始
- 每次选择连接已选择的和未选择的点的、权重最小 的一条边
- 终止: 选满 n-1 条边

选择策略:

- 集合 A 中的边总是构成一棵树
- 从任意一个根结点 r 开始
- 每次选择连接已选择的和未选择的点的、权重最小 的一条边
- 终止: 选满 n-1 条边

■ 权重最小 ⇒ 排序?

选择策略:

- 集合 A 中的边总是构成一棵树
- 从任意一个根结点 r 开始

■ 最小优先队列

选择策略:

- 集合 A 中的边总是构成一棵树
- 从任意一个根结点 r 开始

- 每次选择未选择的点中 与已选择的点中距离最小 的一个点
- 终止: 选满 n 个点

■ 最小优先队列

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

v.key: 连接 v 和树中结点的所有边中最小边的权重

```
\begin{array}{lll} {\rm MST-PRIM}\,(G,w,r) \\ 1 & {\rm for \, each} \, u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = {\rm NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & {\rm while} \, Q \neq \emptyset \\ 7 & u = {\rm EXTR \, ACT-MIN}\,(Q) \\ 8 & {\rm for \, each} \, v \in G.Adj[u] \\ 9 & {\rm if} \, v \in Q \, {\rm and} \, w(u,v) < v.key \\ 10 & v.\pi = u \\ 11 & v.key = w(u,v) \end{array}
```

v.key: 连接 v 和树中结点的所有边中最小边的权重

1 初始化

```
\begin{aligned} & \text{MST-PRIM}(G, w, r) \\ & 1 & \text{ for each } u \in G.V \\ & 2 & u.key = \infty \\ & 3 & u.\pi = \text{NIL} \\ & 4 & r.key = 0 \\ & 5 & Q = G.V \\ & 6 & \text{ while } Q \neq \emptyset \\ & 7 & u = \text{EXTRACT-MIN}(Q) \\ & 8 & \text{ for each } v \in G.Adj[u] \\ & 9 & \text{ if } v \in Q \text{ and } w(u,v) < v.key \\ & 10 & v.\pi = u \\ & 11 & v.key = w(u,v) \end{aligned}
```

v.key: 连接 v 和树中结点的所有边中最小边的权重

- 初始化
- 2 从未被连通的点中选点

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

v.key: 连接 v 和树中结点的所有边中最小边的权重

- 初始化
- 2 从未被连通的点中选点
- 3 更新未被连通的点的通路信息

[TC:2.6] 二叉最小优先队列

[TC:2.6] 二叉最小优先队列

BUILD-MAX-HEAP O(n)EXTRACT-MIN $O(\lg n)$ DECREASE-KEY $O(\lg n)$

```
MST-PRIM(G, w, r)
    for each u \in G.V
         u.key = \infty
         u.\pi = NIL
    r.kev = 0
    Q = G.V
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
8
         for each v \in G.Adj[u]
9
             if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key} \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

操作

方法

时间

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

操作 方法 初始化 BUILD-MAX-HEAP 时间

O(V)

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u. key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r. key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v. key \\ 10 & v.\pi = u \\ 11 & v. key = w(u, v) \end{aligned}
```

操作	方法	时间
初始化	BUILD-MAX-HEAP	O(V)
选点	EXTRACT-MIN	$V \cdot O(\lg V) = O(V \lg V)$

差点 EXTRACT-MIN $V \cdot O(\lg V) = O(V \lg V)$

```
MST-PRIM(G, w, r)
    for each u \in G.V
         u.key = \infty
         u.\pi = NIL
    r.kev = 0
    Q = G.V
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
8
         for each v \in G.Adj[u]
9
             if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

操作	方法	时间
初始化	BUILD-MAX-HEAP	O(V)
选点	EXTRACT-MIN	$V \cdot O(\lg V) = O(V \lg V)$
更新队列信息	DECREASE-KEY	$O(E) \cdot O(\lg V) = O(E \lg V)$

```
MST-PRIM(G, w, r)
    for each u \in G, V
         u.key = \infty
         u.\pi = NIL
   r.kev = 0
    Q = G.V
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
8
         for each v \in G.Adj[u]
9
             if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

操作	方法	时间
初始化	BUILD-MAX-HEAP	O(V)
选点	EXTRACT-MIN	$V \cdot O(\lg V) = O(V \lg V)$
更新队列信息	DECREASE-KEY	$O(E) \cdot O(\lg V) = O(E \lg V)$

E > V - 1

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for each } u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \text{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \text{EXTRACT-MIN}(Q) \\ 8 & \text{ for each } v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key} \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

操作	方法	时间
初始化	BUILD-MAX-HEAP	O(V)
选点	EXTRACT-MIN	$V \cdot O(\lg V) = O(V \lg V)$
更新队列信息	DECREASE-KEY	$O(E) \cdot O(\lg V) = O(E \lg V)$

$$E \ge V - 1$$

$$O(V) + O(V \lg V) + O(E \lg V) = O(E \lg V)$$

Kruskal v.s. Prim

Kruskal v.s. Prim

$$E \le \frac{V(V-1)}{2} \le V^2$$

$$\lg E \leq 2 \lg \, V$$

$$O(\lg E) = O(\lg V)$$

 $\begin{array}{ll} \text{Kruskal} & \text{Prim} \\ O(E \lg \textit{V}) & O(E \lg \textit{V}) \end{array}$

Kruskal Prim $O(E \lg V) = O(E \lg V)$

两种最小生成树算法的时间复杂度比较

从渐近意义上来说, Kruskal 算法与 Prim 算法的运行时间相同。

THANK YOU