Session - 6

Merging with more than one variable

• Most of the merging usage is with two variables: date and company name.

Merging with more than one variable

 Most of the merging usage is with two variables: date and company name. Generate data using below:

```
date = seq.Date(as.Date("2018-01-01"), by = 1, length.out = 5);
comp = c("A", "B", "C", "D", "E");
all_pairs = merge(comp, date, by = NULL);
# sales data - 15 points
set.seed(1);
idx = sample(1:nrow(all_pairs), 15, replace = F);
df1 = data.frame(comp = all_pairs$x[idx], date = all_pairs$y[idx],
                 sales = round(runif(15, min = 1e3, max = 1e5)));
# advertising data - 12 points
idx = sample(1:nrow(all_pairs), 12, replace = F);
df2 = data.frame(comp = all_pairs$x[idx], date = all_pairs$y[idx],
                 adv = round(runif(12, min = 1e2, max = 1e4)));
```

<u>df1</u>		<u>df2</u>			
comp	<u>date</u>	<u>sales</u>	comp	<u>date</u>	<u>adv</u>
В	05-04-2018	53429	С	03-04-2018	980
Α	03-04-2018	70750	С	06-04-2018	6183
В	03-04-2018	5426	В	06-04-2018	8077
В	06-04-2018	88504	В	02-04-2018	241
Е	06-04-2018	78449	D	02-04-2018	3642
Α	04-04-2018	98954	В	04-04-2018	3878
D	04-04-2018	57618	E	02-04-2018	1501
E	04-04-2018	22011	В	03-04-2018	6727
С	02-04-2018	85976	D	06-04-2018	4259
D	02-04-2018	42842	D	03-04-2018	4434
Е	02-04-2018	94057	Α	06-04-2018	6745
Α	05-04-2018	25063	E	03-04-2018	2208
Е	05-04-2018	51320			
D	06-04-2018	99720			
Е	03-04-2018	16845			

Inner Join

• merge(df1, df2, by = c(" comp",
 "date"))

comp	comp date		<u>adv</u>	
В	03-04-2018	5426	6727	
В	06-04-2018	88504	8077	
D	02-04-2018	42842	3642	
E	02-04-2018	94057	1501	
D	06-04-2018	99720	4259	
E	03-04-2018	16845	2208	

Full Join

• merge(df1, df2, by = c(" comp",
 "date"), all = T)

<u>comp</u>	<u>date</u>	<u>sales</u>	<u>adv</u>
В	05-04-2018	53429	NA
A	03-04-2018	70750	NA
В	03-04-2018	5426	6727
В	06-04-2018	88504	8077
Е	06-04-2018	78449	NA
A	04-04-2018	98954	NA
D	04-04-2018	57618	NA
Е	04-04-2018	22011	NA
С	02-04-2018	85976	NA
D	02-04-2018	42842	3642
E	02-04-2018	94057	1501
A	05-04-2018	25063	NA
E	05-04-2018	51320	NA
D	06-04-2018	99720	4259
Е	03-04-2018	16845	2208
С	03-04-2018	NA	980
С	06-04-2018	NA	6183
В	02-04-2018	NA	241
В	04-04-2018	NA	3878
D	03-04-2018	NA	4434
A	06-04-2018	NA	6745

Left Join

• merge(df1, df2, by = c(" comp",
 "date"), all.x = T)

comp	comp <u>date</u>		<u>adv</u>	
В	05-04-2018	53429	NA	
Α	03-04-2018	70750	NA	
В	03-04-2018	5426	6727	
В	06-04-2018	88504	8077	
E	06-04-2018	78449	NA	
Α	04-04-2018	98954	NA	
D	04-04-2018	57618	NA	
Е	04-04-2018	22011	NA	
С	02-04-2018	85976	NA	
D	02-04-2018	42842	3642	
E	02-04-2018	94057	1501	
Α	05-04-2018	25063	NA	
Е	05-04-2018	51320	NA	
D	06-04-2018	99720	4259	
E	03-04-2018	16845	2208	

Right Join

• merge(df1, df2, by = c(" comp",
 "date"), all.y = T)

comp	<u>date</u>	<u>sales</u>	<u>adv</u>
С	03-04-2018	NA	980
С	06-04-2018	NA	6183
В	06-04-2018	88504	8077
В	02-04-2018	NA	241
D	02-04-2018	42842	3642
В	04-04-2018	NA	3878
<u>E</u>	02-04-2018	94057	<u>1501</u>
В	03-04-2018	5426	6727
D	06-04-2018	99720	4259
D	03-04-2018	NA	4434
A	06-04-2018	NA	6745
E	03-04-2018	16845	2208

Anti Join

- Sometimes, we wish to find observations in df1 that are not in df2
- setkey(df1, comp, date); setkey(df2, comp, date);
- df1[!df2] is anti-join.
 - df2[!df1] is also anti-join (but the other way round)
- df1[df2] is the observations in df1 that are also in df2. This is same as merge(df1, df2, all.y = T); # right-join
- df2[df1] is left-join. df1[df2, nomatch = 0] is inner-join.
- There is no short-hand for full outer join and Cartesian product.
- We can't do anti-join using merge() commands.

Reshaping (long to wide and vice-versa)

- Example data (long form):
 - dt = fread("long_form_returns.csv", na.strings = "");
 - Four columns: cusip, Date, retadj, industry
- Suppose, we want each firm (cusip) in a separate column
 - wide.ret = dcast(dt, Date + industry ~ cusip, value.var = "retadj");
 - The wide-form variable comes after ~
 - Long-form variables comes before ~
 - Finally, we want "returns" as the value of wide-from format
- How do we get the long form back from wide.ret?

- Wide-form data has only one "value" variable:
 - Rows are dates and columns are company names and the matrix inside is returns. It's very difficult to get more than one variable.

- The column names take the form: retadj_<cusip> and ret2_<cusip>
- N cusips, D dates and M other variables (like retadj, ret2 etc)
 - long-form: N*D rows of M variables
 - wide-form: D rows of N*M variables
- If there are multiple matches in converting to wide-form
 - We can aggregate data using any function like sum, mean, ...
 - wide.ret = dcast(dt, Date ~ industry, value.var = "retadj", fun.aggregate =
 mean, na.rm = T);
 - This step is irreversible in the sense that we can't get back original data
- Most of the data will be in long-form but you should know how to quickly convert wide-form to long-form.
 - World bank provides data in wide-form

```
plot(x, y, <OPTIONS>);plot(nifty$Date, nifty$Close);
```

- plot(x, y, <OPTIONS>);plot(nifty\$Date, nifty\$Close);
- The below are equivalent to the plot command above:
 - plot(Date, Close, data = nifty);
 - nifty[, plot(Date, Close)]; # only if nifty is a DT

- plot(x, y, <OPTIONS>);plot(nifty\$Date, nifty\$Close);
- The below are equivalent to the plot command above:
 - plot(Date, Close, data = nifty);
 - nifty[, plot(Date, Close)]; # only if nifty is a DT

Plotting Options

```
plot(nifty$Date, nifty$Close,
     type = '1',
     col = "blue",
     lty = 2,
     1wd = 2,
     xlab = "Date",
     ylab = "Nifty-50",
     main = "Nifty Plot",
     cex.axis = 2,
     cex.lab = 1.5,
     ylim = c(1e4, 2e4));
```


Multiple Lines

- plot(nifty\$Date, nifty\$Close, type = 'l', col = "blue", lty = 1, lwd = 2, xlab = "Date", ylab = "Nifty-50", main = "Nifty Plot");
- lines(nifty\$Date, nifty\$Low, type = 'b', col = "red", lty = 2, lwd = 2);
- lines(nifty\$Date, nifty\$High, type = 'b', col = "green", lty = 2, lwd = 2);

Nifty Plot

Legend

Nifty Plot

Multiple Axes

```
x = seq(1, 10, length.out = 1e3);
y = \sin(x);
z = sqrt(x);
org mar = par("mar");
par(mar = c(5,5,2,5)) # for extra margin on right y-axis
plot(x, y, type = "l", col = "blue", lwd = 2, xlab = "time",
ylab = "y");
par(new = TRUE);
plot(x, z, type = "1", col = "red", lwd = 2, xlab = NA, ylab =
NA, axes = F);
axis(4); # makes axis on RHS
mtext(side = 4, line = 3, "z"); # RHS text
legend("top", legend = c("sin(x)", "sqrt(x)"), lty = 1, col = c("blue", "red"), lwd = 2, bg = NULL);
par(mar = org mar);
```


Multiple Plots

```
x = seq(1, 10, length.out = 1e3);
y = \sin(x);
z = sqrt(x);
org mfrow = par("mfrow");
par(mfrow = c(2,1));
plot(x, y, type = "l", col = "blue", lwd = 2, xlab = "time",
vlab = "y");
legend("top", legend = c("sin(x)"), lty = 1, col = c("blue"),
1wd = 2);
plot(x, z, type = "l", col = "red", lwd = 2, xlab = "time",
vlab = "z");
legend("top", legend = c("sqrt(x)"), lty = 1, col = c("red"),
1wd = 2);
par(mfrow = org mfrow);
```


• Let, $Y = \beta_0 + \beta_1 \cdot X + u$ be the true model. By regressing Y on X, we hope to recover an unbiased estimate of β_1 and see how much of the variation in Y is explained by variation in X unrelated to variation in u.

• Let, $Y = \beta_0 + \beta_1 \cdot X + u$ be the true model. By regressing Y on X, we hope to recover an unbiased estimate of β_1 and see how much of the variation in Y is explained by variation in X unrelated to variation in u.

```
n = 1000;
x = rnorm(n, 0, 1);
u = rnorm(n, 0, 0.1);
y = u + x;
plot(x,y);
```

• Let, $Y = \beta_0 + \beta_1 \cdot X + u$ be the true model. By regressing Y on X, we hope to recover an unbiased estimate of β_1 and see how much of the variation in Y is explained by variation in X unrelated to variation in u.

```
n = 1000;

x = rnorm(n, 0, 1);

u = rnorm(n, 0, 0.1);

y = u + x;

plot(x,y);
```

```
fit = lm(y ~ x);
summary(fit);
stargazer(fit, type = "html", out = "fit.html");
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```

```
fit = lm(y ~ x);
summary(fit);
stargazer(fit, type = "html", out = "fit.html");
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```



```
u = rnorm(n, 0, 0.5);
y = u + x;
plot(x,y);
fit = lm(y ~ x);
summary(fit);
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```

```
7
u = rnorm(n, 0, 0.5);
y = u + x;
                                                  Х
plot(x,y);
fit = lm(y \sim x);
summary(fit);
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```

```
u = rnorm(n, 0, 5);
y = u + x;
plot(x,y);
fit = lm(y ~ x);
summary(fit);
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```

```
u = rnorm(n, 0, 5);
y = u + x;
plot(x,y);
fit = lm(y \sim x);
summary(fit);
# Regression Line
abline(fit$coefficients, col = "red", lwd = 2);
```

Fixed Effects and Clustering (Ife package)

- This package is currently under repair. So we need to download an earlier version
 - rtools provides a set of tools to build and install earlier version of softwares

```
remotes::install_version("lfe");OR try: remotes::install_github("cran/lfe");
```

The above will take some time

Fixed Effects and Clustering (Ife package)

- This package is currently under repair. So we need to download an earlier version
 - rtools provides a set of tools to build and install earlier version of softwares

```
remotes::install_version("lfe");OR try: remotes::install_github("cran/lfe");
```

- The above will take some time
- We ran basic regression as: $lm(y \sim x)$
- Suppose we wish to add fixed effects, we can do

```
• lm(y \sim x + factor(fe_1) + factor(fe_2) + ...)
```

- The above works fine for a small number of fixed effects (FE)
- lm() is prohibitively slow for large number of FE and FE with large num of levels

- There are two ways to take care of FE
 - Include them in regression
 - De-mean the variables (both x and y) with respect to those FE levels
 - lfe:felm() is very efficient at this

- There are two ways to take care of FE
 - Include them in regression
 - De-mean the variables (both x and y) with respect to those FE levels
 - lfe:felm() is very efficient at this
- lm() offers no support for clustering of standard errors
 - Most recent research includes some form of clustering in the results
 - In panel data, you often need multi-way clustering
 - Earlier approach was to correct for heteroscedasticity and autocorrelation (HAC)
 - You might recognize terms like White (Robust) standard errors, Newey-West adjustment, etc while reading papers
 - lfe::felm() provides inbuilt cluster robust standard errors

- There are two ways to take care of FE
 - Include them in regression
 - De-mean the variables (both x and y) with respect to those FE levels
 - lfe:felm() is very efficient at this
- lm() offers no support for clustering of standard errors
 - Most recent research includes some form of clustering in the results
 - In panel data, you often need multi-way clustering
 - Earlier approach was to correct for heteroscedasticity and autocorrelation (HAC)
 - You might recognize terms like White (Robust) standard errors, Newey-West adjustment, etc while reading papers
 - lfe::felm() provides inbuilt cluster robust standard errors
- Syntax: felm(formula, data)
 - formula: <MODEL> | <FE> | <INSTR> | <CLUSTERS> | felm(y ~ x1 + x2 | f1 + f2 | 0 | c1 + c2)

?felm (Help page of felm command)

?felm (Help page of felm command)

- The formula specification is a response variable followed by a four part formula.
 - The first part consists of ordinary covariates, the second part consists of factors to be projected out. The third part is an IV-specification. The fourth part is a cluster specification for the standard errors.
 - I.e. something like y ~ x1 + x2 | f1 + f2 | (Q|W ~ x3+x4) | clu1 + clu2 where y is the response, x1,x2 are ordinary covariates, f1, f2 are factors to be projected out, Q and W are covariates which are instrumented by x3 and x4, and clu1, clu2 are factors to be used for computing cluster robust standard errors.
 - Parts that are not used should be specified as ∅, except if it's at the end of the formula, where they can be omitted.
 - The parentheses are needed in the third part since | has higher precedence than ~.
 - Multiple left hand sides like $y | w | x \sim x1 + x2 | f1+f2 | \dots$ are allowed.

• OLS is very simple

```
• fit = lm(y \sim x)
```

- You can check the summary using Summary(fit). This gives std errors, t-stats and R2
- lfe::felm(y ~ x)

OLS is very simple

```
• fit = lm(y \sim x)
```

- You can check the summary using summary (fit). This gives std errors, t-stats and R2
- lfe::felm(y \sim x)
- GLS
 - nlme::gls(y ~ x, correlation = C, weights = w)
 - C is the group correlation mx, while w are heteroscedasticity weights

- OLS is very simple
 - fit = $lm(y \sim x)$
 - You can check the summary using summary (fit). This gives std errors, t-stats and R2
 - lfe::felm($y \sim x$)
- GLS
 - nlme::gls(y ~ x, correlation = C, weights = w)
 - C is the group correlation mx, while w are heteroscedasticity weights
- IV
 - We can use lfe::felm for IV regression
 - lfe::felm(y \sim x1 + x2 | 0 | (x3|x4 \sim w3 + w4) | 0)
 - AER::ivreg(y \sim x1 + x2 + x3 + x4 | x1 + x2 + w3 + w4)
 - Requirements:
 - Instruments (w3, w4) must be <u>correlated</u> with endogenous variables (x3, x4)
 - Instruments (w3, w4) are <u>unrelated</u> to the error term, i.e. instruments affect y only through endogenous variables x3 and x4

Logit and Probit Models

```
    glm(y ~ x1 + x2, family = binomial("logit"))
    glm(y ~ x1 + x2, family = binomial("probit"))
```

• Try ?family for more insights into how to use other models

Logit and Probit Models

```
glm(y ~ x1 + x2, family = binomial("logit"))
glm(y ~ x1 + x2, family = binomial("probit"))
```

- Try ?family for more insights into how to use other models
- For more details check out VGAM::vglm which implements vectorised glm for several other models
- The need to perform a regression other than plain vanilla OLS rarely arises
 - Important exceptions are IV (2-SLS), FE and clustering.
 - Refer "Introductory Econometrics" by Woolridge for more theory and details on different regression models.

Logit and Probit Models

```
glm(y ~ x1 + x2, family = binomial("logit"))
glm(y ~ x1 + x2, family = binomial("probit"))
```

- Try ?family for more insights into how to use other models
- For more details check out VGAM::vglm which implements vectorised glm for several other models
- The need to perform a regression other than plain vanilla OLS rarely arises
 - Important exceptions are IV (2-SLS), FE and clustering.
 - Refer "Introductory Econometrics" by Woolridge for more theory and details on different regression models.

Bootstrapping

- In some models, its impossible to accurately judge the structure of standard errors. There we can employ boot-strapping to get standard errors.
 - Sample N data points (with repetition) from your dataset and estimate the model
 - Do this 1000 (or more) times
 - The standard error of coef. errors is then your standard errors

Time-series Regressions

• The time-series regression is specified the same way as a crosssectional regression

Time-series Regressions

- The time-series regression is specified the same way as a cross-sectional regression
- But we need to be careful about some issues
 - Non-stationarity in data
 - 1st/2nd order integration?
 - Persistent time-series
 - AR (autoregressive) and moving average (MA) parameters
 - Fit arima(x, order) model where order = c(p, d, q)
 - p: AR order, d: integration order, q: MA order
 - Spurious Regression
 - Will return of SBI predict return of HDFC? Reliance?
 - Nifty (or broader market) return predicts both SBI and Reliance!
 - Co-integration
 - Does India's GDP forecasts predict Nifty levels?
- Learn more at https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average model