Machine Learning 2021 Homework 3

310511048 張奕廷

1. Support Vector Machine (SVM)

- 1. **Discussion.** For one-versus-the-rest decision approach, since each classifier discriminates one class from the others, we only need to build N classifiers for N-class classification. On the other hand, one-versus-one approach needs a total of $\frac{N(N-1)}{2}$ classifiers for N-class classification because it splits the problem into one binary classification problem for each pair of classes. However, one-versus-the-rest may have larger bias (undefined region) than one-versus-one, while one-versus-one may be more time-consuming since it requires more classifiers. I still choose one-versus-one approach for this problem, because there only exists 3 classes in the dataset, and thus the number of classifiers for both approaches are 3.
- 2. Decision boundary and support vectors for SVM with different kernel.

3. **Discussion.** The decision boundary with polynomial kernel seems to be more flexible, unlike the ones with linear kernel being all straight lines. Theoretically, SVM with polynomial kernel should have better ability to fit the data when the distribution is more complex. However, we can see that SVM with polynomial kernel still misclassifies a considerable amount of samples in this case, especially for class 0 and 2. I observe that in this dataset, samples from class 1 mostly lie in the same region after PCA (Principal Component Analysis), while class 0 and class 2 have quite a few samples mixed together. Hence, I consider the model is somehow confused and cannot give an accurate decision boundary. From this example, we can infer that there is no such classifier which can always have better performance, it all depends on the data distribution.

2. Gaussian Mixture Model

1. Table of the estimated $\{\mu_k\}_{k=1}^K$ by K-means.

W 2							
K = 3				K = 7			
K	R	G	В	K	R	G	В
0	189	186	177	0	51	99	82
1	77	118	106	1	81	124	112
2	18	31	35	2	176	174	163
_	10	31	33	3	31	52	59
				4	122	145	138
				5	226	217	208
				6	9	14	18
K = 10				K = 30			
K	R	G	В	K	R	G	В
0	105	138	125	0	168	165	149
1	8	12	17	1	144	147	131
2	36	105	72	2	210	198	185
3	27	44	52	3	12	28	61
4	73	105	164	4	10	16	22
5	192	185	174	5	81	102	95
6	231	221	213	6	166	179	196
7	149	157	147	7	43	91	70
8	72	120	100	8	30	48	92
9	56	76	84	9	36	45	48
	50	, 0	0.	10	73	127	104
				11	225	215	207
				12	21	30	33
				13	140	158	157
				14	118	134	127
				15	105	157	139
				16	4	6	8
				17	102	138	189
				18	70	102	162
				19	85	142	121
				20	243	234	226
				21	101	117	110
				22	52	135	97
				23	190	181	164
				24	47	71	125
				25	52	112	84
				26	23	108	68
				27	66	85	81
				28	18	74	49
				29	51	63	65

2. Learning curve for log likelihood by Gaussian mixture model (GMM).

3. Resulting images for K = 3, 7, 10, 30.

K-means

Gaussian Mixture Model

4. **Discussion.** The crucial factor that affects the output image between K-means and Gaussian mixture model (GMM) is the value of *K*, indicating the number of clusters. Firstly, from the results in 2.3, we can see that as *K* increases, the image by both K-means and Gaussian mixture model (GMM) become more similar to the original one. Also, we can see that when *K* is small, not only the image looks colorless, but also the output image between two clustering methods looks significantly different. Nevertheless, as *K* increases, the differences between two output image seems to reduce.