Übungsblatt 6

Übungsgruppe 1

Daniel Schubert Anton Lydike

Donnerstag 21.11.2019

Aufgabe 1)

Ax1)

(1) $\{A, B\} \vdash A$ (A)
(2) $\{A, B\} \vdash B$ (A)
(3) $A \vdash B \to A$ (\$\to\$R)
(4) $\vdash A \to (B \to A)$ (\$\to\$R)

Ax2)

Ax3)

(1)
$$\{B, \neg A\} \vdash B$$
 (A)
(2) $\{B, \neg A\} \vdash \neg A$ (A)
(3) $\{B, \neg B\} \vdash A$ (¬R)
(4) $\{B, \neg A \rightarrow \neg B\} \vdash A$ (¬L)
(5) $\{\neg A \rightarrow \neg B\} \vdash B \rightarrow A$ (¬R)
(6) $\vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ (¬R)

Aufgabe 2) /6p.

Sei $(M_i)_{i\in\mathbb{N}}$ eine beliebige folge endlicher, konsistenter Mengen mit $M_i \subset M_{i+1} \forall i \in \mathbb{N}$. Es ist zu zeigen, dass $M := \bigcup_{i=1}^{\infty} M_i$ wieder konsistent ist.

Angenommen M wäre inkonsistent. Dann müsste M A und $\neg A$ enthalten. Wir definieren nun $M_0 := \emptyset$ und $\hat{M}_i := M_i \backslash M_{i-1}$ als die (endliche) Menge an Aussagen, die im i-ten Schritt hinzukommen. Da $\{A, \neg A\} \subset M$ und alle M_i endlich sind, finden wir j > 2 mit:

- 1. $A \in \hat{M}_i$ und $\neg A \in M_{i-1}$ oder
- 2. $\neg A \in \hat{M}_i$ und $A \in M_{i-1}$ oder
- 3. $\{A, \neg A\} \subset \hat{M}_i$

In jedem Fall ist einfach zu sehen, dass M_{j-1} konsistent, aber M_j inkonsistent ist, da aus $M_{j-1} \subset M_j$ folgt, dass $\{A, \neg A\} \subset M_j$ gilt, was ein Wiederspruch zur Angabe ist, dass alle M_i konsistent sind.

Aufgabe 3) $_/9p.$

Zu zeigen, $M \cup \{A \land B\} = M \cup \{A, B\}$:

- " \models " Sei I, β beliebig und gelte $I, \beta \models M \cup \{A \land B\}$. Dann folgt, $I, \beta \models M$ und $I, \beta \models A \land B$. Insbesondere also $I, \beta \models A$ und $I, \beta \models B$. Damit folgt $I, \beta \models M \cup \{A, B\}$
- " \dashv " Sei I, β beliebig und gelte $I, \beta \models M \cup \{A, B\}$. Dann folgt $I, \beta \models A, I, \beta \models B$ und $I, \beta \models M$. Daraus folgt, $I, \beta \models A \land B$. Damit folgt, $I, \beta \models M \cup \{A \land B\}$.

1.

- $\{\neg q, r \to (\neg p \to q), \neg (p \lor \neg r)\} \vdash$
- (2) $\{\neg q, r \to (\neg p \to q), \neg p \land r\}$ \vdash (De Morgan)
- (3) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash$ (Hinweis)
- (4) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash r \to (\neg p \to q))$ (Trivial)
- (5) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash r$ (Trivial)
- (6) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash \neg p \to q \qquad (MP(3)(4)$
- (7) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash \neg p$ (Trivial)
- (8) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash q \qquad (MP(6)(7)$
- (9) $\{\neg q, r \to (\neg p \to q), \neg p, r\} \vdash \neg q \not$ (Trivial)

2.

- $(1) \qquad \{\neg p \lor (q \to r), p \to q, \neg (p \to r)\} \vdash$
- (2) $\{p \to (q \to r), p \to q, \neg (p \to r)\} \vdash$ Meta
- (3) $\{p \to (q \to r), p \to q, \neg (p \to r)\} \vdash p \to (q \to r)$ Trivial
- $(4) \qquad \{p \to (q \to r), p \to q, \neg(p \to r)\} \vdash (p \to (q \to r)) \to ((p \to q) \to (p \to r))$ Ax2
- $(5) \qquad \{p \to (q \to r), p \to q, \neg (p \to r)\} \vdash (p \to q) \to (p \to r) \qquad \text{MP}(3)(4)$
- (6) $\{p \to (q \to r), p \to q, \neg (p \to r)\} \vdash (p \to q)$ Trivial
- (7) $\{p \to (q \to r), p \to q, \neg (p \to r)\} \vdash (p \to r)$ MP(5)(6)
- (8) $\{p \to (q \to r), p \to q, \neg(p \to r)\} \vdash \neg(p \to r) \not$ Trivial

3.

$$M_3 := \{ \neg p \leftrightarrow q, p \rightarrow r, \neg p \}$$

Wenn $p^I = ff$, $q^I = tt$ und r = tt, dann ist M_3 erfüllbar, und damit laut Skript (Satz 2.5) auch konsistent.

Gesamtpunkte: $_/25$ p.

シ