Deep k-Nearest Neighbors

Buhua Liu

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

 $+.007 \times$

=

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, x, y))$ "gibbon"
99.3 % confidence

Adversarial Examples

http://arxiv.org/abs/1412.6572

 $+.007 \times$

 \boldsymbol{x}

"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"

8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"
99.3 % confidence

Adversarial Examples

http://arxiv.org/abs/1412.6572

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

What is wrong?

- Misclassification—Lack of robustness
- Unreliable confidence estimates
- Lack of interpretability—Over-parameterized
 DNN

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

Intuition behind the DkNN

http://arxiv.org/abs/1803.04765

Algorithm 1 – Deep k-Nearest Neighbor.

Input: training data (X,Y), calibration data (X^c,Y^c)

Input: trained neural network f with l layers

Input: number k of neighbors

Input: test input z

1: // Compute layer-wise k nearest neighbors for test input z

2: for each layer $\lambda \in 1...l$ do

3: $\Gamma \leftarrow k$ points in X closest to z found w/ LSH tables

4: $\Omega_{\lambda} \leftarrow \{Y_i : i \in \Gamma\}$ >Labels of k inputs found

5: end for

6: // Compute prediction, confidence and credibility

7: $A = \{\alpha(x, y) : (x, y) \in (X^c, Y^c)\}$ \triangleright Calibration

8: for each label $j \in 1..n$ do

9: $\alpha(z,j) \leftarrow \Sigma_{\lambda \in 1...l} | i \in \Omega_{\lambda} : i \neq j |$ >Nonconformity

10: $p_j(z) = \frac{|\{\alpha \in A: \alpha \geq \alpha(z,j)\}|}{|A|}$ >empirical p-value

11: end for

12: prediction $\leftarrow \arg \max_{j \in 1...n} p_j(z)$

13: confidence $\leftarrow 1 - \max_{j \in 1...n, j \neq prediction} p_j(z)$

14: credibility $\leftarrow \max_{j \in 1...n} p_j(z)$

15: return prediction, confidence, credibility

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

Reliability Diagrams

- Introduction
- Problem Definition
- Methodology
- Experiments
- Conclusion

Conclusion

- Validate the effectiveness of DkNN
- Hands-on experience on TF2.0

Thank you!