

Brazilian Synchrotron **Light Laboratory**

SIRIUS CONTROL SYSTEM: DESIGN, IMPLEMENTATION STRATEGY AND MEASURED PERFORMANCE

J.P.S. Martins, M. Bacchetti, E.P. Coelho, R.F. Curcio, J.G.R.S. Franco, R.P. Lisboa, P.H. Nallin, A.R.D. Rodrigues, L.D.S. Sachinelli, M.E. Silva – LNLS, Campinas, Brazil

Sirius Control System Highlights

- Designed to be modular, distributted, scalable and cost effective;
- Hardware platform to manage analog and digital I/O and equipment connectivity;
- EPICS compatible;
- Synchronous operations support;

Hardware Implementations

PUC (Universal Control Board)

- CPU board with stacked interface modules;
- ARM Cortex M4 Microcontroller;
- Serial 6 Mbps and Ethernet connectivity;
- First prototype for Sirius Control System;

Analog Modules

- Analog interface modules for equipment control;
- 18 bit ADC and DAC, ±10V operating range;
- Lineartity, repeatability and stability characterization;

Linearity test

DNL	PUC1 DAC		PUC2 DAC		PUC3 DAC	
Range	Min	Max	Min	Max	Min	Max
	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)
-9V	-0,235	0,232	-0,165	0,168	-0,396	0,402
-5V	-0,118	0,117	-0,090	0,098	-0,165	0,177
$\mathbf{0V}$	-0,283	0,289	-0,275	0,273	-0,039	0,019
+5V	-0,138	0,138	-0,085	0,085	-0,161	0,170
+9V	-0,193	0,203	-0,156	0,184	-0,295	0,254
Differential non-linearity error measurement for PUC analog outputs.						

INL	PUC1 DAC		PUC2 DAC		PUC3 DAC	
Range	Min	Max	Min	Max	Min	Max
	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)
-9V	-0,096	0,762	-0,280	0,122	-0,717	0,104
-5V	-0,226	0,129	-0,248	0,059	-0,158	0,217
$\mathbf{0V}$	-0,366	0,000	-0,409	0,000	-0,017	0,083
+5V	-0,082	0,257	-0,134	0,157	-0,133	0,263
+9V	-0,224	0,294	-0,304	0,096	-0,249	0,428

Integral non-linearity error measurement for PUC analog outputs

DNL	PUC1 ADC		PUC2 ADC		PUC3 ADC	
Range	Min	Max	Min	Max	Min	Max
	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)
-9V	-0,449	0,481	-0,384	0,311	-0,633	0,560
-5V	-0,279	0,232	-0,397	0,350	-0,318	0,311
$\mathbf{0V}$	-0,240	0,219	-0,279	0,180	-0,161	0,140
+5V	-0,279	0,232	-0,253	0,245	-0,227	0,271
+9V	-0,489	0,389	-0,410	0,376	-0,489	0,547

INL	PUC1 ADC		PUC2 ADC		PUC3 ADC	
Range	Min	Max	Min	Max	Min	Max
	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)	(LSB)
-9V	-1,067	0,293	-1,102	0,301	-1,824	0,293
-5V	-1,177	0,845	-0,030	1,392	-1,177	0,845
$\mathbf{0V}$	-0,681	0,734	-1,038	0,233	-0,681	0,734
+5V	-0,469	0,875	-1,221	0,174	-0,469	0,875
+9 V	-1,520	0,022	-0,224	0,634	-1,520	0,022

Integral non-linearity error measurement for PUC analog inputs

Stability test

repeatability test.

Profile of the repeatability test of PUC1, for analog output and input.

Hardware Platform

Beaglebone Black

- Low-cost open hardware platform;
- Based on ARM Cortex A8, running at 1 GHz;
- Linux-based OS support;
- 2x real-time 32-bit microcontrollers (PRU);
- Ideal for distributted systems;

Software Implementations

BSMP (Basic Small Messages Protocol)

- Lightweight protocol for message-based communications;
- Library in C (and Python) with a robust API for implementation;
- Based on configurable entities (variables, groups, curves and functions);

EPICS Device Support

- Based on asynDriver framework;
- Embedded libraries compatible with BSMP and Beaglebone PRU;

Synchronous Support

- Triggers for synchronous operations are transmitted over serial network as broadcast messages;
- Flexible approach, reducing the number of cables from Timing System;

13.94 17.13 13.97 14.54 13.98 18.45 ((master) and node (PUC) effective action (after the s packet over serial network).
13.98 18.45 k (master) and node (PUC) effective action (after the
k (master) and node (PUC) effective action (after the

Master	Slave	Minimun (us)	Maximum (us)	Average (us)	Std. dev (us)
PRU	PRU	23.89	23.99	23.94	0.01899
PRU	ARM	179.5	476.5	196.9	16.02
ARM	PRU	379.9	924.6	391.8	22.3
ARM	ARM	1322	6589	1453	387

Latency of synchronism trigger reception at master, and slave node action (after the reception of the broadcast

synchronous packet over serial network). Using Beaglebone Black as master and slave, but running software from

PRU unit and/or ARM core running Linux.

