FUNKCJE

- **1.** Wykaż, że funkcja f określona wzorem $f(x) = (k^2 1)x^2 2kx + 4k + 5$ jest rosnąca w przedziale $(-\infty; 1)$ i malejąca w przedziale $(1; \infty)$ dla $k = \frac{1-\sqrt{5}}{2}$.
- **2.** Dana jest funkcja f określona wzorem $f(x) = (m^2 1)x^2 + 2(m 1) + 2$. Wykaż, że istnieje taka wartość parametru m, dla którego dana funkcja przyjmowałaby wartości ujemne.
- **3.** Dany jest wielomian $W(x) = x^3 5x^2 + 3x 15$. Wykaż, że $W(2 \sqrt{5})$ jest liczbą całkowitą.
- **4.** Dana jest funkcja f określona wzorem $f(x) = \frac{4}{x}$. Wykres tej funkcji przesunięto o wektor $\vec{u} = [-5, 2]$, a następnie przekształcono przez powinowactwo prostokątne o osi OX i skali k = -2, tzn. wykres funkcji y = h(x) otrzymano z wykresu y = -2g(x). Udowodnij, że funkcja h określa się wzorem $h(x) = \frac{-4x-28}{x+5}$.
- 5. Uzasadnij, że zbiorem wartości funkcji $f(x) = 5^{\log_5(-x^2+5x+6)}$ jest zbiór (0; $12\frac{1}{4}$).
- **6.** Punkt $A=(-1,\frac{1}{3})$ należy do wykresu funkcji wykładniczej $f(x)=a^x$. Uzasadnij, że równanie |f(x-1)-3|=m ma dwa różne rozwiązania dodatnie dla $m\in(0;2)$.
- 7. Dana jest funkcja f określona wzorem $f(x) = \frac{1}{x-1} 2$. Uzasadnij, że najmniejszą liczbą całkowitą spełniającą nierówność $f(8-x) \le f(2x)$ jest liczba 1.