Condensé de la terminale Mathématiques

Notations non vues en cours

```
Égal par définition
  :=
  \lceil x \rceil
           Arrondir x à l'entier supérieur. (\lceil 5.1 \rceil = 6)
  1.5
           Séparateur ,
 x \cdot y
           Multiplication \times
           {\bf Croiss ant}
           Décroissant
           Revient à écrire a > b, a = b et a > b
           "et"
           "ou"
           Point d'affixe z
\operatorname{Img} z
           Caractère utilisé pour représenter plusieurs opérations
sgn(x)
\{A|C\} L'ensemble de tout les A tel que C
```

Contents

0	Out	ils	5
	0.1	Composition de fonction $f\circ g$	5
	0.2	Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$	5
	0.3	Opérations avec des puissances	5
	0.4	Diverses théorèmes	5
		0.4.1 Application de fonctions aux inéquations	5
1	Suit	ces numériques	6
	1.1	Définition fonctionnelle	6
	1.2	Définition par récurrence	6
	1.3	Suite arithmétique	6
	1.4	Suite géométrique	6
	1.5	Limites	6
	1.6	Majoration et minoration	7
	1.7	Opérations sur les limites	7
	1.8	Comparaisons et limites	7
2	Prol	babilités	8
	2.1	Probabilité conditionnelle $P(A B)$	8
	2.2	Probabilités d'intersections $P(A \cap B)$	8
	2.3	Probabilités d'union $P(A \cup B)$	8
	2.4	Partitions	8
	2.5	Formule des probabilités totales	8
	2.6	Indépendance d'évenements	8
	2.7	Autre vocabulaire	8
	2.8	Probabilités à densité	9
	2.9	Loi uniforme	9
	2.10	Loi exponentielles	9
	2.11	Espérance	9
	2.12	Loi sans vieillissement	9
	2.13	Lois normales	10
		2.13.1 Loi normale centrée réduite $\mathcal{N}(0,1)$	10
		2.13.2 Probabilité d'intervalle centrée en 0	10
		2.13.3 Théorème de Moivre-Laplace	10
		2.13.4 Lois normales $\mathcal{N}(\mu, \sigma^2)$	10
3	Lim	ites lim	11
	3.1	Notation	11
	3.2	Limites d'un quotient à la valeur indéfinie	11
	3.3	Opérations sur les limites	11
	3.4	Asymptotes	12
	3.5	Simplifications de limites	

		3.5.1 Polynômes	12
	3.6	Fonctions composées	12
4	Cor	ntinuité des fonctions	13
	4.1	Définition	13
	4.2	Continuité de fonctions usuelles	13
	4.3	Théorèmes utilisant la continuité	13
		4.3.1 Valeurs intermédiaires	13
		4.3.2 Bijection	13
5	Nor	mbres complexes $\mathbb C$	14
	5.1	Définition	14
	5.2	Partie imaginaire Im et réelle Re	14
		5.2.1 Définition	14
		5.2.2 Propriétés	14
	5.3	Conjugé \overline{z}	14
		5.3.1 Définition	14
		5.3.2 Identités	14
	5.4	Affixe Aff	14
	0	5.4.1 Propriétés	14
	5.5	Racines des polynômes de second degré $az^2 + bz + c$	15
	5.6	Coordonnées polaires avec z	15
	0.0	5.6.1 Module z	15
		5.6.2 Argument arg	15
	5.7	Formes	16
	0.1	5.7.1 Propriétés de la forme exponentielle	16
	5.8	Inégalité triangulaire	16
_			
6		rivées	17
	6.1	Opération sur des fonctions	17
7	Fon	action exponentielle exp	18
	7.1	Notation	18
	7.2	Caractéristiques	18
	7.3	Limites remarquables	18
	7.4	Propriétés	18
8	Géo	ométrie dans l'espace	19
	8.1	Intersections	19
		8.1.1 Droite-droite, plan-plan	19
		8.1.2 Droite-plan	19
	8.2	Section d'un cube	19
	8.3	Orthogonalité \bot	19
	8.4	Plan ⊥ droite	19

	8.5	Plan médiateur	19
	8.6	Propriétés	20
	8.7	Coordonnées	20
	8.8	Vecteurs dans l'espace	20
		8.8.1 Propriétés identiques aux vecteurs bidimensionnels	20
		8.8.2 Propriétés	20
		8.8.3 Caractérisation vectorielle d'objets	20
	8.9	Équations paramétriques	21
		8.9.1 D'une droite	21
		8.9.2 D'un plan	21
	8.10	Produit scalaire	21
		8.10.1 Propriétés	21
	8.11	Équations cartésienne d'un plan	21
0	Tal	aganithma nánánian la	22
9	9.1		
	9.1	•	
	9.3	•	
	9.3	1 tophietes	22
10	Prir	3 Propriétés 20 7 Coordonnées 20 8 Vecteurs dans l'espace 20 8.8.1 Propriétés identiques aux vecteurs bidimensionnels 20 8.8.2 Propriétés 20 8.8.3 Caractérisation vectorielle d'objets 20 9 Équations paramétriques 21 8.9.1 D'une droite 21 8.9.2 D'un plan 21 10 Produit scalaire 21 8.10.1 Propriétés 21 11 Équations cartésienne d'un plan 21 12 clogarithme népérien ln 22 11 Caractéristiques 22 12 Limites remarquables 22	
	10.1	Définition	23
	10.2	Propriétés	23
	10.3	Primitives remarquables	23
11	Inté	Sorales (24
		·	
	-		
	11.3		
			24
		•	24
12			
	12.3		
	12.4	Trouver p avec f et n	25
13	3 Trig	gonométrie	26
	_		26
	13.9	-	26

0 Outils

0.1 Composition de fonction $f \circ g$

Soit f et g des fonctions respectivement définies sur I et J

$$(f \circ g)(x) \iff f(g(x))$$

Attention: il faut que x soit défini dans I et que g(x) soit défini dans J

Plus généralement, soit Θ un ensemble de fonctions

$$\left(\bigcirc_{i=0}^{j}\Theta_{i}\right)(x) = \Theta_{0}(\Theta_{1}(\Theta_{2}(\Theta_{3}\dots(x\dots)))$$

0.2 Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$

Soit R le rayon du cercle, et $O(x_0; y_0)$ le centre du cercle Un cercle dans le plan peut être décrit par l'équation suivante:

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$

0.3 Opérations avec des puissances

$$(x^{a})^{b} = x^{ab}$$

$$x^{a}x^{b} = x^{a+b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

$$x^{\frac{1}{a}} = \sqrt[a]{x}$$

$$x^{0} = 1$$

0.4 Diverses théorèmes

0.4.1 Application de fonctions aux inéquations

Soit I une intervalle, f une fonction définie et croissante sur I, x et y deux nombres dans I

$$x \gtrsim y$$

$$\iff f(x) \gtrsim f(y)$$

1 Suites numériques

1.1 Définition fonctionnelle

Soit f une fonction:

$$u_n = f(n)$$

1.2 Définition par récurrence

Soit f une fonction

$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = f(u_n) \end{cases}$$

1.3 Suite arithmétique

Avec r la raison de la suite

Définition fonctionnelle $u_n = u_0 + r \cdot n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n + r \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=i}^{j} u_i = (j-i+1) \cdot \frac{u_j + u_i}{2}$

1.4 Suite géométrique

Avec q la raison de la suite

Définition fonctionnelle $u_n = u_0 \cdot q^n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n \cdot q \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=i}^{j} u_i = u_j \cdot \frac{1-q^{j-i+1}}{1-q}$

1.5 Limites

Suite convergeante vers L $\lim_{n\to +\infty} u_n = L$

Suite divergeante $\lim_{n\to+\infty}u_n\neq L$

$p \in \{0.5\} \cup \mathbb{N}$ $q \in \mathbb{R}$	$-\infty$	-1	0	1	$+\infty$
$\lim_{n \to +\infty} q^n$?		0	1	$+\infty$
$\lim_{n \to +\infty} n^p$	0		1	-	$+\infty$

Limites de type cste^n ou n^{cste}

1.6 Majoration et minoration

Soit (u_n) une suite définie sur les rangs dans I et L un réel

Suite majorée $\forall n \in I \ \exists M \ u_n \leq M$

Suite minorée $\forall n \in I \ \exists m \ u_n \geq m$

Suite bornée Suite majorée et minorée

$$\lim_{n\to+\infty}u_n\dots$$

Soit f la fonction associée à u_n

$$\lim_{n \to +\infty} u_n = L \implies \lim_{n \to +\infty} u_{n+1} = f(L)$$

1.7 Opérations sur les limites

 $Voir\ en\ 3.3$

1.8 Comparaisons et limites

Soit $L \in \mathbb{R}$, (u_n) , (v_n) et (w_n) trois suites et l_A la limite quand $n \to +\infty$ de la suite A_n

Nom du théorème	Condi	tions	Résultat	Explication graphique
Par comparaison	$u_n \le v_n$	$l_u = +\infty$	$\implies l_v = +\infty$	(u_n) emporte (v_n) vers $+\infty$
Tar comparaison	$u_n \ge v_n$	$l_u = -\infty$	$\implies l_v = -\infty$	(u_n) emporte (v_n) vers $-\infty$
Théorème des gendarmes	$w_n \ge v_n \ge u_n$	$l_u = l_w = L$	$\implies l_v = L$	(u_n) et (w_n) forcent (v_n) à tendre vers L

2 Probabilités

2.1 Probabilité conditionnelle P(A|B)

Probabilité que A soit réalisé sachant que B a déjà été réalisé.

$$P(A|B)$$
 ou $P_B(A) = \frac{P(A \cap B)}{P(B)}$ si $P(B) \neq 0$

2.2 Probabilités d'intersections $P(A \cap B)$

Probabilité que A et B soit réalisées.

$$P(A \cap B) = P(B) \cdot P(A|B)$$
$$= P(A) \cdot P(B|A)$$

2.3 Probabilités d'union $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B)$$

2.4 Partitions

Si on a deux évenements ou plus tel que...

- Aucun évenement n'est vide $\iff B_i \neq \emptyset \quad \forall i$
- Aucun évenement ne recouvre un autre $\iff B_i \cap B_j = \emptyset \quad \forall i, j$
- L'union de chaque partition couvre l'univers entier $\iff \bigcup_{i=1}^{j} B_i = \Omega$

2.5 Formule des probabilités totales

Soit $B_1,\,B_2,\,...,\,B_n$ des évenements formant une partition de Ω

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

2.6 Indépendance d'évenements

A et B sont indépendants $\iff \overline{B}$ et B forment une partition de Ω

 $\iff \overline{A}$ et A forment une partition de Ω

 $\iff \overline{A} \text{ et } \overline{B}, A \text{ et } \overline{B} \text{ et } B \text{ et } \overline{A} \text{ sont indépendants}$

2.7 Autre vocabulaire

Évenements incompatibles $P(A \cap B) = 0$

Variable aléatoire continue La variable aléatoire peut prendre n'importe quel valeur dans $I := I \subset \mathbb{R}$

À partir d'ici, la connaissance des intégrales est requise (voir 11)

2.8 Probabilités à densité

f est une densité de probabilité si:

- $D_f \subset \mathbb{R}_+$
- f est continue
- $\bullet \int_{D_f} f(x)dx = 1$

2.9 Loi uniforme

X suit la loi uniforme sur $[a,b] \iff$ La loi de X admet $x\mapsto \frac{1}{b-a}$ comme densité de probabilité

$$[c,d] \subseteq [a,b] \iff P(X \in [c,d]) = \frac{d-c}{b-a}$$

$$E(X) = \frac{a+b}{2}$$

2.10 Loi exponentielles

X suit la loi exponentielle de paramètre $\lambda \iff$ La loi de X admet $x \mapsto \lambda e^{-\lambda x}$ comme densité de probabilité

2.11 Espérance

Si la loi de X admet f comme densité de probabilité et que, pour tout λ dans \mathbb{R}^+ , $f = x \mapsto \lambda e^{-\lambda x}$

$$E(X) = \lim_{n \to +\infty} \int_{0}^{x} t f(t) dt$$

2.12 Loi sans vieillissement

$$P(X \ge t + h | X \ge t) = P(X \ge h)$$

2.13 Lois normales

2.13.1 Loi normale centrée réduite $\mathcal{N}(0,1)$

$$X$$
 suit la loi $\mathcal{N}(0,1) \iff P(X \in [a,b]) = \int_a^b \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}} dx$

Propriétés

$$E(X) = 0$$
 \iff centrée $\sigma = 1$ \iff réduite $\iff V = 1$

2.13.2 Probabilité d'intervalle centrée en 0

$$X \sim \mathcal{N}(0,1) \iff \forall \alpha \in]0,1[\exists_{=1}u_{\alpha} \in \mathbb{R}_{+}^{*} \quad P(X \in [-u_{\alpha},u_{\alpha}]) = 1 - u_{\alpha}$$

Deux valeurs remarquables

$$u_{0.05} = 1.96$$
$$u_{0.01} = 2.58$$

2.13.3 Théorème de Moivre-Laplace

$$X_n \sim \mathcal{B}(n, p)$$

$$\land \quad p \in [0, 1]$$

$$\land \quad Z_n = \frac{X_n - np}{\sqrt{np(1 - p)}}$$

$$\implies \lim_{n \to \infty} Z_n = \mathcal{N}(0, 1)$$

2.13.4 Lois normales $\mathcal{N}(\mu, \sigma^2)$

$$\mu \in \mathbb{R}, \quad \sigma \in \mathbb{R}_+, \quad Y := \frac{X - \mu}{\sigma}$$

$$Y \sim \mathcal{N}(0,1) \implies X \sim \mathcal{N}(\mu, \sigma^2)$$

 $\implies E(X) = \mu$
 $\implies V = \sigma^2$
 $\implies \sigma \text{ (écart type)} = \sigma$

3 Limites lim

3.1 Notation

Soit x, C et D des nombres et Ψ un réel, $+\infty$ ou $-\infty$

$$\lim_{x\to\Psi} C = D \iff C \xrightarrow[x\to\Psi]{} D$$

$$\iff \text{Limite de C quand x tends vers Ψ}$$

$$\begin{split} \lim_{\substack{x\to\Psi\\>}} C &= D \iff C \xrightarrow[x\to\Psi^+]{} D \\ &\iff \text{Limite de } C \text{ en } \Psi \text{ par valeurs supérieures} \\ &\iff \text{Limite de } C \text{ à droite de } \Psi \end{split}$$

$$\begin{split} \lim_{x \to \Psi} C &= D \iff C \xrightarrow[x \to \Psi^-]{} D \\ &\iff \text{Limite de C en Ψ par valeurs inférieures} \\ &\iff \text{Limite de C à gauche de Ψ} \end{split}$$

3.2 Limites d'un quotient à la valeur indéfinie

Soit
$$f: x \mapsto \frac{p(x)}{q(x)}$$
 et $r \in \mathbb{R}$ tq. $q(r) = 0$

- 1. Calculer $\lim_{x \to x} p(x)$
- 2. Par valeurs supérieures Calculer $\lim_{x\to r^+}q(x)$: 0^+ ou 0^- Par valeurs inférieures Calculer $\lim_{x\to r^-}q(x)$: 0^+ ou 0^-
- 3. Conclure par quotient: $0^+ \rightarrow +$ et $0^- \rightarrow -$

3.3 Opérations sur les limites

Les opérations entre deux limites réelles sont comparables aux opérations sur des nombres

FI Forme Indéterminée

x, y	x+y	$x \cdot y$	x/y	
$\pm \infty$	$\begin{array}{ccc} \text{Signes} = & \pm \infty \\ \text{Signes} \neq & \text{FI} \end{array}$	(règle des signes)	FI	
		x = 0 FI	y = 0	FI
\mathbb{R} ou $\pm \infty$	$\pm \infty$	$x = 0 \text{FI}$ $x > 0 \pm \infty$	$y = 0$ $y = \pm \infty$	0
10 0 d ± 00		$x < 0 \mp \infty$	$x = \pm \infty \text{ et } y \in \mathbb{R}^*$	$\pm \infty$

3.4 Asymptotes

Soit $L \in \mathbb{R}$, f une fonction, Γ la courbe d'équation y = f(x) et Ψ un nombre ou symbole

$$f(x) \xrightarrow[x \to L]{} L \iff \Gamma \text{ admet en } \Psi \text{ une asymptote (horizontale) d'équation } y = L$$

$$\begin{cases} f(x) \xrightarrow[x \to L^+]{} \pm \infty \\ f(x) \xrightarrow[x \to L^-]{} \pm \infty \end{cases} \iff \Gamma \text{ admet en } L \text{ une asymptote (verticale) d'équation } x = L$$

3.5 Simplifications de limites

3.5.1 Polynômes

Pour les limites en $+\infty$ ou en $-\infty$, on peut simplifier la limite d'un polynôme à la limite du terme de plus haut degré:

$$\lim_{x \to +\infty} 2x^3 - 4x + 1 = \lim_{x \to +\infty} 2x^3$$

Ça marche aussi avec les fractions:

$$\lim_{x \to +\infty} \frac{4x^9 + x^3 - 2}{5x^3 - 8x^{18} + 420} = \lim_{x \to +\infty} \frac{4x^9}{-8x^{18}}$$

3.6 Fonctions composées

Soit a, b et $c \in \mathbb{R} \cup \{-\infty; +\infty\}$, f et g des fonctions

$$\begin{cases} f(x) \xrightarrow[x \to a]{x \to a} b \\ g(x) \xrightarrow[x \to b]{c} c \end{cases} \implies (f \circ g)(x) \xrightarrow[x \to a]{c} c$$

4 Continuité des fonctions

4.1 Définition

Une fonction est continue quand "on peut tracer sa courbe sans lever le stylo". Plus rigoureusement, la fonction f est continue sur l'intervalle I si, pour tout $a \in I$, $f(a) \xrightarrow[x \to a]{} f(a)$.

4.2 Continuité de fonctions usuelles

Polynôme \mathbb{R} \sqrt{x} \mathbb{R}^+

Rationnelle Ensemble de définition

De plus, n'importe quelle fonction créée par +, ×, o ou ÷ à partir de fonctions continues sont continues

4.3 Théorèmes utilisant la continuité

4.3.1 Valeurs intermédiaires

Soit a et b des réels, f une fonction continue sur [a;b].

 $\forall k \in [f(a); f(b)], \quad f(x) = k \text{ admet au moins une solution dans } [a; b]$

4.3.2 Bijection

Soit I une intervalle, a et b des réels dans I et f une fonction définie sur I ou plus grand

 $\begin{cases} f \text{ est continue sur } I \\ f \text{ est strictement monotone sur } I \end{cases} (1)$ $k \in [f(a); f(b)] \quad (2)$ $\implies f(x) = k \text{ admet une unique solution dans } [a; b]$

(1) quand elle ne l'est pas, on étudie séparémment chaque intervalle où la fonction est strictement monotone (2) si a ou $b=\pm\infty$, on calcule la limite pour l'intervalle image:

Montrer que f(x) = k n'admet qu'une seule solution dans \mathbb{R}

$$k \in \left[\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x) \right]$$

Attention: pour montrer que f(x) = k n'a pas de solutions on n'utilise pas la bijection mais le tableau de variations

5 Nombres complexes $\mathbb C$

5.1 Définition

$$i^2:=-1,\quad a,b\in\mathbb{R},\quad z\in\mathbb{C}$$

$$z=a+ib$$

Ensemble des imaginaires purs: $i\mathbb{R} := \mathbb{R}$

5.2 Partie imaginaire Im et réelle Re

5.2.1 Définition

- Re (a+ib) := a
- $\operatorname{Im}(a+ib) := b$

5.2.2 Propriétés

- $\operatorname{Re} z = 0 \iff z \in \mathbb{R}$
- $\operatorname{Im} z = 0 \iff z \in i\mathbb{R}$

5.3 Conjugé \bar{z}

5.3.1 Définition

$$\overline{z} := \operatorname{Re} z - i \operatorname{Im} z$$

5.3.2 Identités

 \diamond représente les opérations +, × et \div

- $z \cdot \overline{z} = |z|^2 = (\text{Im } z)^2 + (\text{Re } z)^2$
- $\bullet \ \overline{z \diamond w} = \overline{z} \diamond \overline{w}$
- $\overline{z^n} = (\overline{z})^n$
- $\bullet \ \overline{\overline{z}} = z$
- $\bullet \ \overline{z} = z \iff z \in \mathbb{R}$

5.4 Affixe Aff

L'affixe est un nombre complexe représenté par un point ou un vecteur dans le plan:

$$Aff \begin{pmatrix} a \\ b \end{pmatrix} = a + ib$$

Réciproquement, l'image de a + ib est (a; b)

5.4.1 Propriétés

•
$$\operatorname{Aff}(\overrightarrow{AB}) = \operatorname{Aff}(B) - \operatorname{Aff}(A)$$

5.5 Racines des polynômes de second degré $az^2 + bz + c$

$$az^2 + bz + c = 0$$
 $a, b, c \in \mathbb{R}$, $\Delta := b^2 - 4ac$

$$\begin{cases} \Delta < 0 & \Longrightarrow \frac{-b \pm i\sqrt{-\Delta}}{2a} \\ \Delta = 0 & \Longrightarrow \frac{-b}{2a} \\ \Delta > 0 & \Longrightarrow \frac{-b \pm \sqrt{\Delta}}{2a} \end{cases}$$

5.6 Coordonnées polaires avec z

Figure 1: Représentation géométrique de l'affixe de z et de ses propriétés

5.6.1 Module |z|

$$|z| = \sqrt{\operatorname{Re}^2 z + \operatorname{Im}^2 z}$$

Propriétés

 \diamond représente les opérations \times et \div

$$|z^n| = |z|^n$$
$$|z \diamond z'| = |z| \diamond |z'|$$

5.6.2 Argument arg

$$\forall z \in ^*$$

$$\arg z := \left(\vec{x}; \ \overline{O\operatorname{Img}z}\right)$$

$$= \begin{cases} \cos(\arg z) &= \frac{\operatorname{Re}z}{|z|} \\ \sin(\arg z) &= \frac{\operatorname{Im}z}{|z|} \end{cases}$$

Propriétés

On note z_{\diamond} l'affixe du point ou vecteur \diamond

•
$$(\vec{w}, \overrightarrow{w}') = \arg \frac{z_{w'}}{z_w}$$

•
$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg \frac{D-C}{B-A}$$

Propriétés de produit, puissance, quotient et inverse identiques à ln, voir 9.2

5.7 Formes

Notations usuelles: $r:=|z|, \ \theta:=\arg z, \ x:=\operatorname{Re} z, \ y:=\operatorname{Im} z$

5.7.1 Propriétés de la forme exponentielle

$$e^{-i\theta} = \overline{e^{i\theta}}$$

Les autres propriétés découlent de celles de l'exponentielle, voir 7.3

5.8 Inégalité triangulaire

$$|z + z'| \le |z| + |z'|$$

6 Dérivées

6.1 Opération sur des fonctions

Soit u et v des fonctions.

$$(uv)' = u'v + v'u$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$(u^n)' = nu'u^{n-1} \quad \forall n \in \mathbb{N} \cup \{0.5; -1\}$$

$$(u \circ v)' = u'(v' \circ u)$$

$$\sin' = \cos$$

$$\cos' = -\sin$$

7 Fonction exponentielle exp

7.1 Notation

$$e^x := \exp x$$

7.2 Caractéristiques

Soit $x\in\mathbb{R}$ et u une fonction définie sur \mathbb{R}

Dérivée
$$(e^x)' = e^x \\ (e^u)' = u'e^u$$

Réciproque
$$\ln(e^x) = x$$

Signe
$$e^x > 0$$

$$f Variations$$
 strictement croissante sur $\Bbb R$

Limites
$$e^x \xrightarrow[x \to +\infty]{} +\infty$$

$$e^x \xrightarrow[x \to +\infty]{} 0$$

7.3 Limites remarquables

lim	$x \rightarrow$	=
$e^x - 1/x$	0	1
Par croissa	nce comparée ↓	
xe^x	$-\infty$	0
e^x/x	$+\infty$	$+\infty$

7.4 Propriétés

$$e^a \gtrsim e^b \iff a \gtrsim b$$

$$\begin{array}{c|cc}
e^{a \diamond b} & e^a \diamond e^b \\
+ & \times \\
- & \vdots \\
\hline
(e^a)^n & e^{an}
\end{array}$$

8 Géométrie dans l'espace

8.1 Intersections

8.1.1 Droite-droite, plan-plan

Soit a et b des droites et P et Q des plans

	Coplanaires				
	Parallèles		Sécantes	Non-coplanaires	
	Strictement	Confondues	Secantes		
$a \cap b$	Ø	$a ext{ et } b$	{point}	Ø	
$P\cap Q$	Ø	P et Q	droite	Ø	

8.1.2 Droite-plan

	Parallèl	Sécants	
	Strictement	$a \subset P$	Decants
$a \cap P$	Ø	droite	{point}

8.2 Section d'un cube

2 points dans la même face Relier directement

[AB] sur une face, C sur face opposée Tracer la parallèle à [AB] passant par C

[AB] sur une face E, C sur face adjaçente Prolonger une arrête et (AB) jusqu'à intersection en DTracer (DC). La partie du segment qui est sur la face E est la section.

8.3 Orthogonalité \perp

$$d \underset{\text{orth.}}{\perp} d' \iff \gamma \underset{\text{perp.}}{\perp} \gamma' \quad \exists \gamma \parallel d, \gamma' \parallel d'$$

8.4 Plan \perp droite

$$d\bot P \iff d\bot \gamma \wedge d\bot \gamma' \quad \forall \gamma \cap \gamma' = \text{point}$$
$$\implies \gamma\bot d \quad \forall \gamma \in P$$

8.5 Plan médiateur

$$P \operatorname{med} [AB] \iff P \perp (AB) \land I \in P \quad \forall I \operatorname{mil} [AB]$$

$$\iff P = \{C \mid CA = CB\}$$

8.6 Propriétés

Soit P, Γ , Q, P' des plans. Soit d, d', d_1 , droite, d'_1 , γ , Δ des droites. Soit point un point.

$$d \parallel d' \implies P \perp d \quad \forall P \perp d'$$

$$\iff d \parallel \gamma \wedge d' \parallel \gamma$$

$$\iff P \cap P' = d' \wedge d \parallel P \wedge d \parallel P' \quad \text{(doute)}$$

$$P \parallel P' \iff P \perp d \wedge P' \perp d$$

$$\iff P \parallel \Delta \wedge P' \parallel \Delta$$

$$\iff d_1 \parallel d'_1 \wedge d \parallel d' \quad \forall d \cap d' = \text{point}, d_1 \cap d'_1 = \text{point} \quad \text{(il faut que } P \text{ soit présent)}$$

$$\iff \Gamma \cap P' = \gamma \wedge \Gamma \cap P = \gamma' \wedge \gamma \parallel \gamma' \quad \forall \Gamma \cap P = \text{droite}$$

$$\Delta \parallel d \wedge \Delta \parallel d' \iff d \parallel d' \wedge d \subset P \wedge d' \subset P' \wedge P \cap P' = \Delta$$

$$\Delta \parallel P \iff \Delta \parallel d \quad \forall d \subset P$$

$$P \parallel Q \land \Gamma \cap P = \gamma \implies \Gamma \cap Q = \gamma' \land \gamma \parallel \gamma'$$

8.7 Coordonnées

Un triplet $(x, y, z) \in \mathbb{R}^3$

Les propriétés de la géométrie planaire (milieu, colinéarité et vecteurs) se traduisent trivialement

8.8 Vecteurs dans l'espace

8.8.1 Propriétés identiques aux vecteurs bidimensionnels

- Relation de Chasles
- Colinéarité

8.8.2 Propriétés

- A, B, C non-alignés. $\forall D$ \overrightarrow{AD} coplanaire \overrightarrow{AB} coplanaire $\overrightarrow{AC} \iff D \in (ABC)$
- $\bullet \ \exists x,y \in \mathbb{R} \quad \overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC} \implies D \in (ABC)$
- \vec{u} , \vec{v} et \vec{w} coplanaires $\iff \exists a, b, c \in \mathbb{R}^* : a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$
- $\vec{u}, \vec{v} \in P$ non colinéaires, $\vec{n} \neq \vec{0}$. \vec{n} normal à $P \iff \vec{n} \perp \vec{v} \land \vec{n} \perp \vec{u}$

8.8.3 Caractérisation vectorielle d'objets

Droite A point, $\vec{u} \neq \vec{0}$, $x \in \mathbb{R}$, d la droite passant par A de vecteur directeur \vec{u}

$$M = \{B | \overrightarrow{AB} = x\overrightarrow{u}\} \implies M \text{ est la droite } d$$

Plan A point, \vec{u} colinéaire \vec{v} , M ensemble de points, $x,y\in\mathbb{R}$, $\overrightarrow{AB}:=\vec{u}$, $\overrightarrow{AC}:=\vec{v}$

$$M = \{B | \overrightarrow{AB} = x\overrightarrow{u} + y\overrightarrow{v}\} \implies M \text{ est un plan } (ABC)$$

C'est l'ensemble de tout les points dans le repère (A, \vec{u}, \vec{v})

8.9 Équations paramétriques

8.9.1 D'une droite

Soit...

$$\begin{split} A &:= (x_A; y_A; z_A) \\ \vec{u} &:= (x_u; y_u; z_u) \\ M &:= (x; y; z) \\ D &:= \text{droite passant par } A \text{ de vecteur directeur } \vec{u} \end{split}$$

On a:

$$M \in D \iff \begin{cases} x = x_u t + x_A \\ y = y_u t + y_A \\ z = z_u t + z_A \end{cases}$$

8.9.2 D'un plan

Soit...

$$\begin{split} A &:= (x_A; y_A; z_A) \\ \vec{u} &:= (x_u; y_u; z_u) \\ \vec{w} &:= (x_w; y_w; z_w) \\ M &:= (x; y; z) \\ P &:= \text{plan passant par } A \text{ de vecteur directeurs } \vec{u} \text{ et } \vec{w} \end{split}$$

On a:

$$M \in P \iff \begin{cases} x = x_u t + x_w t' + x_A \\ y = y_u t + y_w t' + y_A \\ z = z_u t + z_w t' + z_A \end{cases}$$

8.10 Produit scalaire

8.10.1 Propriétés

- $\bullet \ \vec{u}^2 = \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$
- $\bullet \ \vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$
- $\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$
- $\bullet \ \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- $\vec{v} \perp \vec{u} \iff \vec{v} \cdot \vec{u} = 0$

8.11 Équations cartésienne d'un plan

Soit $a,b,c\in\mathbb{R}$, P un plan, $\vec{n}:=(a,b,c)$ le vecteur normal à P et A:=(x,y,z)

$$A \in P \iff ax + by + cz + d = 0$$

9 Le logarithme népérien \ln

Aussi appelé "logarithme naturel" ou "logarithme base e"

9.1 Caractéristiques

Notation $\ln x$

Réciproque exp

Ensemble $\mathbb{R}_+^* \to \mathbb{R}$

Limites $\lim_{x \to \infty} \ln x = -\infty$

 $\lim_{x \to 0^+} \ln x = -\infty$ $\lim_{x \to +\infty} \ln x = +\infty$

Dérivée d'une variable $\frac{1}{x}$

Dérivée d'une fonction $u' \ln u$

Variations Croissante sur \mathbb{R}_+^*

Continue sur \mathbb{R}_+^*

Valeurs remarquables $\ln 1 = 0$

9.2 Limites remarquables

$$\lim_{x \to +\infty} \frac{\ln x}{r} = 0$$

$$\lim_{x\to 0^+} x \ln x = 0$$

9.3 Propriétés

$$\begin{array}{c|c}
\ln(a \diamond b) & \ln a \diamond \ln b \\
\times & +
\end{array}$$

$$\begin{array}{c|cc} \times & + \\ \hline \div & - \\ \hline a^n & n \ln a \end{array}$$

10 Primitives F

10.1 Définition

 $\forall x \in \mathbb{R}$

$$F'(x) = f(x)$$

10.2 Propriétés

- F + G primitive de f + g
- $\forall k \in \mathbb{R}$ kF primitive de kf

10.3 Primitives remarquables

$$\begin{array}{ccc} f & F & \in I \ (\mathbbm{R} \ \mathrm{par} \ \mathrm{d\'efaut}) \\ \hline k & kx \\ x & \frac{1}{2}x^2 \\ x^n & \frac{1}{n+1}x^{n+1} & \mathbbm{R} - \{1\} \\ \frac{u'(x)}{u(x)} & \ln(\mathrm{sgn}(u(x))u(x)) \end{array}$$

11 Intégrales ∫

11.1 Notation

Soit $A_f \in \mathbb{R}$ l'aire sous la courbe de f de x=a à x=b par rapport à l'axe des abcisses

$$\int_{a}^{b} f(x)dx = A_{f}$$

$$\int_{\text{borne inf.}}^{\text{borne sup.}} \text{expression} \quad d \text{var. d'intégration}$$

11.2 Unité d'aires ua

 $\forall x \in [a;b] \ f(x) \geq 0 \land b \geq a \iff A_f \ \text{est exprimée en } ua.$

11.2.1 Définition

$$1ua = ||\vec{i}|| \cdot ||\vec{j}||$$

11.3 Calcul

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b}$$
$$= F(b) - F(a)$$

11.4 Propriétés

Pour alléger les notations: $\exists = f(x)dx, \, \ni = g(x)dx$ et $\int = \int_a^b$

- $\int_a^a d = 0$
- $\bullet \ \int_a^b \exists = -\int_b^a \exists$
- $\int_a^c \exists = \int_a^b \exists + \int_b^c \exists$ (Relation de Chasles)
- $\int k d = k \int d$
- $\int (f(x) + g(x))dx = \int \exists + \int \exists$
- $\bullet \ \ \smallint \ \exists \geq 0 \implies f(x) \geq 0$
- $f(x) \gtrsim g(x) \implies \int \exists \gtrsim \int \partial$

11.5 Valeur moyenne de f sur [a; b]

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

12 Échantillonage

12.1 Fréquence de caractère X_n

Soit le caractère C dont la proportion de présence dans une population est p. X_n associe à la taille d'échantillon n le nombre de caractères présents dans l'échantillon.

$$X_n \sim \mathcal{B}(n,p)$$

12.2 Fréquence de caractère dans échantillon F_n

$$F_n = \frac{X_n}{n}$$

12.3 Intervalle de fluctuation I_n

Soit Z la loi normale centrée réduite, $\alpha \in]0,1[,$ $u_{\alpha} \in \mathbb{R}$ tq. $P(Z \in [-u_{\alpha},u_{\alpha}]) = 1-\alpha$, q:=1-p

$$I_n = \left[p - u_a \frac{\sqrt{pq}}{\sqrt{n}}, p + u_a \frac{\sqrt{pq}}{\sqrt{n}} \right]$$

$$\lim_{n \to \infty} P(F_n \in I_n) = 1 - \alpha$$

.

12.3.1 Interprétation

Pour un n assez grand, $F_n \in I_n$ avec une probabilité d'approximativement $1-\alpha$. On admet que

$$P(F_n \in I_n) \approx 1 - \alpha$$

Quand:

- $n \ge 30$
- $np \ge 5$
- $nq \ge 5$

Si au moins une des conditions n'est pas remplie, il faudra utiliser une intervalle de fluctuation

12.4 Trouver p avec f et n

$$\exists n_0 : n \ge n_0 \implies P\left(p \in \left[F_n - \frac{1}{\sqrt{n}}, F_n + \frac{1}{\sqrt{n}}\right]\right) \ge 0.95$$

13 Trigonométrie

13.1 Valeurs remarquables

Table 1: Valeurs remarquables de \sin,\cos,\tan et cotan

x	$\sin x$	$\cos x$	$\tan x$	$\cot x$
0	0	1	0	
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	1	0		0