

EXTRACCION DE RITMOS DE AUDIOS

Francisco José Durá Galiana

Extracción de ritmos de audios

Motivación y objetivos

Procedimiento

Metodología

Resultados

Motivación y objetivos

Motivación: ¿por qué predecir ritmos?

- Transcripción automática de audios
- Estudio (práctica) de música
- Inspiración/curiosidad

Objetivo: Ideal

Objetivo: Real

- Investigar posible algoritmo para extracción de ritmos
- Simplificación del problema: Género y tempo
 - Predecir Género
 - Predecir tempo
- Construir un predictor conjunto de ambas variables

Procedimiento

Procedimiento

- 1. Red de predicción de género
 - 1. Arquitectura simple
 - 2. Arquitectura paralela
- 2. Red de predicción de tempo
 - 1. Arquitectura simple
 - 2. Arquitectura paralela
- 3. Red de predicción conjunta

Ejemplo de arquitectura paralela

Metodología

Metodología I: Datos

- Búsqueda de bases de datos
- Análisis de variables objetivo
- Obtención de datos brutos

Procesamiento de los datos

Metodología I: Datos

Espectrograma Coeficientes Cepstral (MFCC)

MFCC con conversión a decibelios

Metodología II: Meta-parámetros

Estructura

- Simple (serie)
- Paralela (con ramas)

Filtros

- Filtros generales (3x3, 5x5, 2x2,...)
- Filtros horizontales (8x2, 4x1, 14x1,...)
- Filtros Verticales (2x8,...

Otros

- Optimizador (tipo y ratio inicial de aprendizaje)
- Activaciones (relu, elu, ...)

Metodología III: Herramientas

TensorBoard

Resultados

14

Resultados I: Predicción de Género

Arquitectura simple (precisión=0.84)

Arquitectura paralela (precisión=0.82)

Resultados II: Predicción de tempo

	Entrenamiento	\mathbf{Test}
Red H2V	0.57	0.57
${ m Red} { m V2H}$	0.56	0.50

Resultados III: Predicción simultánea

	Entrenamiento	Test
Género	0.82	0.78
Tempo	0.68	0.62

Resultados III: Predicción simultánea

Género

Tempo

Conclusiones

Conclusiones

- Extracción de información musical usando CNN
- El género musical se predice con facilidad debido a la textura
- Métricas de tempo son más complicadas pero también posibles
- La estabilidad de predicción género ayuda al entrenamiento con tempo
- Una red compleja sería capaz de predecir ritmos específicos (futuro...)

Preguntas