Multi instance multi label learning in the presence of novel class instances: Supplementary Material

1. Surrogate function calculation

 In this section, we show the steps to compute the surrogate function. In our setting, the observed data is $\{\mathbf{Y}_D, \mathbf{X}_D\}$, the parameter is \mathbf{w} , and the hidden data $\mathbf{y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_B\}$. To compute the surrogate $g(\mathbf{w}, \mathbf{w}')$, we begin with the derivation of the complete log-likelihood. We apply the conditional rule as follows

$$p(\mathbf{Y}_D, \mathbf{X}_D, \mathbf{y} | \mathbf{w}) = p(\mathbf{Y}_D | \mathbf{y}, \mathbf{X}_D, \mathbf{w}) p(\mathbf{y} | \mathbf{X}_D, \mathbf{w}) p(\mathbf{X}_D | \mathbf{w})$$
$$= p(\mathbf{Y}_D | \mathbf{y}) [\prod_{b=1}^{B} \prod_{i=1}^{n_b} p(y_{bi} | \mathbf{x}_{bi}, \mathbf{w})] p(\mathbf{X}_D). \quad (1)$$

We recall the relation between the instance label and feature vector, including novel class, as follows

$$p(y_{bi}|\mathbf{x}_{bi},\mathbf{w}) = \frac{\prod_{c=0}^{C} e^{I(y_{bi}=c)\mathbf{w}_{c}^{T}\mathbf{x}_{bi}}}{\sum_{c=0}^{C} e^{\mathbf{w}_{c}^{T}\mathbf{x}_{bi}}}.$$
 (2)

Then, the complete log-likelihood can be computed by taking the logarithm of (1), replacing $p(y_{bi}|\mathbf{x}_{bi},\mathbf{w})$ from (2) into (1), and reorganizing as follows

$$\log p(\mathbf{Y}_D, \mathbf{X}_D, \mathbf{y} | \mathbf{w}) = \sum_{b=1}^{B} \sum_{i=1}^{n_b} \sum_{c=0}^{C} I(y_{bi} = c) \mathbf{w}_c^T \mathbf{x}_{bi}$$
(3)

$$-\sum_{b=1}^{B}\sum_{i=1}^{n_b}\log(\sum_{c=0}^{C}e^{\mathbf{w}_c^T\mathbf{x}_{bi}}) + \log p(\mathbf{Y}_D|\mathbf{y}) + \log p(\mathbf{X}_D).$$

Finally, taking the expectation of (3) w.r.t. \mathbf{y} given \mathbf{Y}_D , \mathbf{X}_D , and \mathbf{w}' , we obtain the surrogate function $q(\cdot, \cdot)$ as follows

$$g(\mathbf{w}, \mathbf{w}') = E_{\mathbf{y}}[\log p(\mathbf{Y}_D, \mathbf{X}_D, \mathbf{y}|\mathbf{w})|\mathbf{Y}_D, \mathbf{X}_D, \mathbf{w}']$$
(4)
$$= \sum_{b=1}^{B} \sum_{i=1}^{n_b} [\sum_{c=0}^{C} p(y_{bi} = c|\mathbf{Y}_b, \mathbf{X}_b, \mathbf{w}') \mathbf{w}_c^T \mathbf{x}_{bi}$$
$$-\log(\sum_{c=0}^{C} e^{\mathbf{w}_c^T \mathbf{x}_{bi}})] + \zeta,$$

where $\zeta = E_{\mathbf{y}}[\log p(\mathbf{Y}_D|\mathbf{y})|\mathbf{Y}_D, \mathbf{X}_D, \mathbf{w}'] + \log p(\mathbf{X}_D)$ is a constant w.r.t. \mathbf{w} .

2. Proof for Proposition 1

In this section, we show the detailed proof for Proposition 1 of computing $p(y_{bn_b}, \mathbf{Y}_b = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$ from $p(\mathbf{Y}_h^{n_b-1}|\mathbf{X}_b, \mathbf{w})$ and $p(y_{bn_b} = c|\mathbf{x}_{bn_b}, \mathbf{w})$.

Proposition 1 The probability $p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w})$ for all $c \in \mathbf{L} \setminus \{0\}$ can be computed using

• If
$$c = 0$$
,

$$p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w}) = p(y_{bn_b} = c | \mathbf{x}_{bn_b}, \mathbf{w}) \times [p(\mathbf{Y}_b^{n_b-1} = \mathbf{L} | \mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L} | \mathbf{X}_b, \mathbf{w})].$$

• Else if $c \neq 0$,

$$p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L}|\mathbf{X}_b, \mathbf{w}) = p(y_{bn_b} = c|\mathbf{x}_{bn_b}, \mathbf{w}) \times [p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}|\mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}_{\backslash c}|\mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}_{\backslash c}|\mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}_{\backslash c}|\mathbf{X}_b, \mathbf{w})].$$

Proof. Denote the power set of $\mathbf{L} \bigcup \{0\}$ excluding the empty set as \mathbf{P} . We compute $p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w})$ by marginalizing $p(y_{bn_b}, \mathbf{Y}_b = \mathbf{L}, \mathbf{Y}_b^{n_b} = \mathbf{L}' | \mathbf{X}_b, \mathbf{w})$ over $\mathbf{Y}_b^{n_b}$ as follows

$$p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$$

$$= \sum_{\mathbf{L}' \subset \mathbf{P}} p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L}, \mathbf{Y}_b^{n_b} = \mathbf{L}'|\mathbf{X}_b, \mathbf{w}).$$
(5)

Using conditional probability rule for the right hand side of (5) we obtain

$$p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w})$$

$$= \sum_{\mathbf{L}' \subseteq \mathbf{P}} p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}' | \mathbf{X}_b, \mathbf{w}) p(\mathbf{Y}_b = \mathbf{L} | \mathbf{Y}_b^{n_b} = \mathbf{L}').$$
(6)

From the proposed model, $p(\mathbf{Y}_b = \mathbf{L}|\mathbf{Y}_b^{n_b} = \mathbf{L}') = I(\mathbf{L} = \mathbf{L}') + I(\mathbf{L} \bigcup \{0\} = \mathbf{L}')$. Replacing $p(\mathbf{Y}_b = \mathbf{L}|\mathbf{Y}_b^{n_b} = \mathbf{L}')$ into (6) we obtain

$$p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w}) = p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{X}_b, \mathbf{w}) + p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{Y}_b^{n_b} = \mathbf{Y}_b^{n_b} =$$

• For $c \neq 0$: The first term in the right hand side of (7), $p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{X}_b, \mathbf{w})$, is computed by marginalizing $p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}, \mathbf{Y}_b^{n_b-1} = \mathbf{L}' | \mathbf{X}_b, \mathbf{w})$ over $\mathbf{Y}_b^{n_b-1}$ as follows

$$p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$$

$$= \sum_{\mathbf{L}' \subset \mathbf{P}} p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}, \mathbf{Y}_b^{n_b - 1} = \mathbf{L}'|\mathbf{X}_b, \mathbf{w}). \quad (8)$$

Using the conditional probability rule we have

$$p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}, \mathbf{Y}_b^{n_b-1} = \mathbf{L}' | \mathbf{X}_b, \mathbf{w})$$

$$= p(y_{bn_b} = c, \mathbf{Y}_b^{n_b-1} = \mathbf{L}' | \mathbf{X}_b, \mathbf{w}) \times$$

$$p(\mathbf{Y}_b^{n_b} = \mathbf{L} | y_{bn_b} = c, \mathbf{Y}_b^{n_b-1} = \mathbf{L}'). \tag{9}$$

Replacing $p(y_{bn_b}=c,\mathbf{Y}_b^{n_b}=\mathbf{L},\mathbf{Y}_b^{n_b-1}=\mathbf{L}'|\mathbf{X}_b,\mathbf{w})$ into (8) we obtain

$$p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$$

$$= \sum_{\mathbf{L}' \subseteq \mathbf{P}} [p(y_{bn_b} = c, \mathbf{Y}_b^{n_b - 1} = \mathbf{L}'|\mathbf{X}_b, \mathbf{w}) \times$$

$$p(\mathbf{Y}_b^{n_b} = \mathbf{L}|y_{bn_b} = c, \mathbf{Y}_b^{n_b - 1} = \mathbf{L}')]. \tag{10}$$

From the proposed model we have $p(\mathbf{Y}_b^{n_b} = \mathbf{L}|y_{bn_b} = c, \mathbf{Y}_b^{n_b-1} = \mathbf{L}') = I(\mathbf{L} = \mathbf{L}' \bigcup \{c\})$. Moreover, given instance features, instance labels are independent. Consequently, from (10), we obtain

$$p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$$

$$= \sum_{\mathbf{L}' \subseteq \mathbf{P}} [p(y_{bn_b} = c|\mathbf{X}_{bn_b}, \mathbf{w}) \times$$

$$p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}'|\mathbf{X}_b, \mathbf{w}) I(\mathbf{L} = \mathbf{L}' \bigcup \{c\})]$$

$$= p(y_{bn_b} = c|\mathbf{X}_{bn_b}, \mathbf{w}) \times$$

$$[p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}|\mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}_{\setminus c}|\mathbf{X}_b, \mathbf{w})].$$
(11)

Deriving similar steps from (8) to (11) for the second term of (7), $p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} \bigcup \{0\} | \mathbf{X}_b, \mathbf{w})$, we obtain

$$p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} \bigcup \{0\} | \mathbf{X}_b, \mathbf{w})$$

$$= p(y_{bn_b} = c | \mathbf{x}_{bn_b}, \mathbf{w}) \times$$

$$[p(\mathbf{Y}_b^{n_b-1} = \mathbf{L} \bigcup \{0\} | \mathbf{X}_b, \mathbf{w}) + p(\mathbf{Y}_b^{n_b-1} = \mathbf{L}_{\setminus c} \bigcup \{0\} | \mathbf{X}_b, \mathbf{w})].$$
(12)

Replacing probabilities obtained in (11) and (12) into (7), we obtain the proof for the case $c \neq 0$.

• For c=0: Since the bag label **L** does not contain novel label 0 and $y_{bn_b} \in \mathbf{Y}_b^{n_b}$, the first term in the right hand side of (7), $p(y_{bn_b} = c, \mathbf{Y}_b^{n_b} = \mathbf{L} | \mathbf{X}_b, \mathbf{w}) = 0$. Replacing probabilities obtained in (12) into (7), we obtain the proof for the case c=0.