Index

abs(x)

Returns the absolute value or vector length of x.

```
X = (x,y,z)
abs(X)
(x^2 + y^2 + z^2)^{1/2}
```

adj(m)

Returns the adjunct of matrix m. Adjunct is equal to determinant times inverse.

```
A = ((a,b),(c,d))

adj(A) == det(A) inv(A)
```

1

$and(a, b, \ldots)$

Returns 1 if all arguments are true (nonzero). Returns 0 otherwise.

```
and (1=1, 2=2)
```

1

arccos(x)

Returns the arc cosine of x.

```
\arccos(1/2)
```

 $\frac{1}{3}\pi$

$\operatorname{arccosh}(x)$

Returns the arc hyperbolic cosine of x.

$\arcsin(x)$

Returns the arc sine of x.

```
arcsin(1/2)
```

 $\frac{1}{6}\pi$

$\operatorname{arcsinh}(x)$

Returns the arc hyperbolic sine of x.

$\arctan(y, x)$

Returns the arc tangent of y over x. If x is omitted then x = 1 is used.

```
\arctan(1,0)
\frac{1}{2}\pi
```

$\operatorname{arctanh}(x)$

Returns the arc hyperbolic tangent of x.

arg(z)

Returns the angle of complex z.

```
arg(2 - 3i)
- arctan(3,2)
```

binding(s)

The result of evaluating a symbol can differ from the symbol's binding. For example, the result may be expanded. The binding function returns the actual binding of a symbol.

```
p = quote((x + 1)^2)
p
p = x^2 + 2x + 1
binding(p)
(x + 1)^2
```

break

Break out of a loop or for function.

```
\mathbf{k} = 0 loop(\mathbf{k} = \mathbf{k} + 1, test(\mathbf{k} == 4, break), print(\mathbf{k})) k = 1 k = 2 k = 3
```

ceiling(x)

Returns the smallest integer greater than or equal to x.

```
ceiling(1/2)
```

1

$\mathbf{check}(x)$

If x is true (nonzero) then continue, else stop. Expression x can include the relational operators =, ==, <, <=, >, >=. Use the not function to test for inequality.

```
A = \exp(i pi)

B = -1

check(A == B) -- stop here if A not equal to B
```

choose(n, k)

Returns the binomial coefficient n choose k.

```
choose(52,5) -- number of poker hands
```

2598960

clear

Clears all symbol definitions.

$\operatorname{clock}(z)$

Returns complex z in polar form with base of negative 1 instead of e.

```
clock(2 - 3i) 13^{1/2} (-1)^{-\arctan(3,2)/\pi}
```

$\mathbf{cofactor}(m, i, j)$

Returns the cofactor of matrix m for row i and column j.

```
A = ((a,b),(c,d))
cofactor(A,1,2) == adj(A)[2,1]
1
```

conj(z)

2 + 3i

Returns the complex conjugate of z.

```
conj(2 - 3i)
```

$\mathbf{contract}(a, i, j)$

Returns tensor a summed over indices i and j. If i and j are omitted then 1 and 2 are used. The expression contract(m) computes the trace of matrix m.

```
A = ((a,b),(c,d))contract(A)
```

a + d

$\cos(x)$

Returns the cosine of x.

cos(pi/4)

$$\frac{1}{2^{1/2}}$$

$\cosh(x)$

Returns the hyperbolic cosine of x.

expform(cosh(x))

$$\frac{1}{2}\exp(-x) + \frac{1}{2}\exp(x)$$

$\mathbf{cross}(u,v)$

Returns the cross product of vectors u and v.

$\operatorname{curl}(v)$

Returns the curl of vector v with respect to symbols \mathbf{x} , \mathbf{y} , and \mathbf{z} .

```
\mathbf{d}(f, x, \ldots)
```

Returns the partial derivative of f with respect to x and any additional arguments.

```
d(\sin(x),x)
```

 $\cos(x)$

Multiderivatives are computed by extending the argument list.

```
d(\sin(x),x,x)
```

 $-\sin(x)$

A numeric argument n computes the nth derivative with respect to the previous symbol.

```
d(\sin(x y), x, 2, y, 2)
```

```
x^2y^2\sin(xy) - 4xy\cos(xy) - 2\sin(xy)
```

Argument f can be a tensor of any rank. Argument x can be a vector. When x is a vector the result is the gradient of f.

```
F = (f(),g(),h())
X = (x,y,z)
d(F,X)
```

$$\begin{bmatrix} \operatorname{d}(f(),x) & \operatorname{d}(f(),y) & \operatorname{d}(f(),z) \\ \operatorname{d}(g(),x) & \operatorname{d}(g(),y) & \operatorname{d}(g(),z) \\ \operatorname{d}(h(),x) & \operatorname{d}(h(),y) & \operatorname{d}(h(),z) \end{bmatrix}$$

Symbol d can be used as a variable name. Doing so does not conflict with function d.

Symbol d can be redefined as a different function. The function derivative, a synonym for d, can be used to obtain a partial derivative.

$$\mathbf{defint}(f, x, a, b, \ldots)$$

Returns the definite integral of f with respect to x evaluated from a to b. The argument list can be extended for multiple integrals. The following example integrates over theta then over phi.

```
defint(sin(theta), theta, 0, pi, phi, 0, 2 pi)
```

 4π

denominator(x)

Returns the denominator of expression x.

```
denominator(a/b)
b
```

det(m)

Returns the determinant of matrix m.

```
A = ((a,b),(c,d))
det(A)
ad - bc
```

dim(a, n)

Returns the dimension of the nth index of tensor a. Index numbering starts with 1.

```
A = ((1,2),(3,4),(5,6))

\dim(A,1)
```

div(v)

Returns the divergence of vector v with respect to symbols x, y, and z.

$do(a, b, \ldots)$

Evaluates each argument from left to right. Returns the result of the final argument.

```
do(A=1,B=2,A+B)
```

$dot(a, b, \ldots)$

Returns the dot product of vectors, matrices, and tensors. Also known as the matrix product. Arguments are evaluated from right to left. The following example solves for X in AX = B.

```
A = ((1,2),(3,4))

B = (5,6)

X = dot(inv(A),B)

X
\begin{bmatrix} -4 \\ \frac{9}{2} \end{bmatrix}
```

eigenvec(m)

Returns eigenvectors for matrix m. Matrix m is required to be numerical, real, and symmetric. The return value is a matrix with each column an eigenvector. Eigenvalues are obtained as shown.

```
A = ((1,2,3),(2,6,4),(3,4,5))
Q = eigenvec(A)
D = dot(transpose(Q),A,Q) -- eigenvalues on the diagonal of D dot(Q,D,transpose(Q))
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 5 \end{bmatrix}
```

$\mathbf{erf}(x)$

Error function of x. Returns a numerical value if x is a real number.

erf(1.0)

0.842701

d(erf(x),x)

$$\frac{2\exp(-x^2)}{\pi^{1/2}}$$

$\mathbf{erfc}(x)$

Complementary error function of x. Returns a numerical value if x is a real number.

```
erfc(1.0)
```

0.157299

d(erfc(x),x)

$$-\frac{2\exp(-x^2)}{\pi^{1/2}}$$

```
eval(f, x, a, y, b, ...)
```

Returns f evaluated with x replaced by a, y replaced by b, etc. All arguments can be expressions.

```
f = sqrt(x^2 + y^2)
eval(f,x,3,y,4)
```

5

In the following example, eval is used to replace x with cos(theta).

```
-- associated legendre of cos theta  P(1,m,x) = \text{test}(m < 0, (-1)^m (1 + m)! / (1 - m)! P(1,-m), \\ 1 / (2^1 1!) \sin(\text{theta})^m * \\ \text{eval}(d((x^2 - 1)^1, x, 1 + m), x, \cos(\text{theta}))
```

P(2,-1)

$$-\frac{1}{2}\cos(\theta)\sin(\theta)$$

$\exp(x)$

Returns the exponential of x.

```
exp(i pi)
```

-1

$\exp\cos(z)$

Returns the cosine of z in exponential form.

expcos(z)

$$\frac{1}{2}\exp(iz) + \frac{1}{2}\exp(-iz)$$

expcosh(z)

Returns the hyperbolic cosine of z in exponential form.

expcosh(z)

$$\frac{1}{2}\exp(-z) + \frac{1}{2}\exp(z)$$

expform(x)

Returns expression x with trigonometric and hyperbolic functions converted to exponentials.

expform(cos(x) + i sin(x))

 $\exp(ix)$

expsin(z)

Returns the sine of z in exponential form.

expsin(z)

$$-\frac{1}{2}i\exp(iz) + \frac{1}{2}i\exp(-iz)$$

expsinh(z)

Returns the hyperbolic sine of z in exponential form.

expsinh(z)

$$-\frac{1}{2}\exp(-z) + \frac{1}{2}\exp(z)$$

exptan(z)

Returns the tangent of z in exponential form.

exptan(z)

$$\frac{i}{\exp(2iz)+1} - \frac{i\exp(2iz)}{\exp(2iz)+1}$$

exptanh(z)

Returns the hyperbolic tangent of z in exponential form.

exptanh(z)

$$-\frac{1}{\exp(2z) + 1} + \frac{\exp(2z)}{\exp(2z) + 1}$$

factorial(n)

Returns the factorial of n. The expression n! can also be used.

20!

2432902008176640000

float(x)

Returns expression x with rational numbers and integers converted to floating point values. The symbol pi and the natural number are also converted.

```
float(212^17)
3.52947 \times 10^{39}
```

floor(x)

Returns the largest integer less than or equal to x.

```
floor(1/2)
0
```

for
$$(a, b, c, d, e, f, \ldots)$$

For a equals b through c inclusive, evaluate the remaining arguments in a loop. Arguments b and c are integers. Symbol a is advanced by plus or minus 1 in the direction of c each time through the loop. Use **break** to break out of the loop early. The original value of a is restored after **for** completes. Note that if symbol **i** is used for a then the imaginary unit is overridden in the scope of **for**.

```
for (k,1,3,print(k))

k = 1

k = 2

k = 3

grad(f)

Returns the gradient d(f,(x,y,z)).

grad(f())

\begin{bmatrix} d(f(),x) \\ d(f(),y) \\ d(f(),z) \end{bmatrix}
```

hadamard(a, b, ...)

Returns the Hadamard (element-wise) product.

```
X = (a,b,c)
hadamard(X,X)
\begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix}
```

i

Symbol i is initialized to the imaginary unit $\sqrt{-1}$.

```
exp(i pi)
```

-1

Note: It is ok to clear or redefine i and use the symbol for something else.

imag(z)

Returns the imaginary part of complex z.

```
imag(2 - 3i)
```

-3

infixform(x)

Converts expression x to a string and returns the result.

```
p = (x + 1)^2
infixform(p)
x^2 + 2x + 1
```

$inner(a, b, \ldots)$

Returns the inner product of vectors, matrices, and tensors. Also known as the matrix product.

```
A = ((a,b),(c,d))
B = (x,y)
inner(A,B)
\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}
```

Note: inner and dot are the same function.

integral(f, x)

Returns the integral of f with respect to x.

```
integral(x^2, x)
\frac{1}{3}x^3
```

inv(m)

Returns the inverse of matrix m.

```
A = ((1,2),(3,4))
inv(A)
\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}
```

j

Set j=sqrt(-1) to use j for the imaginary unit instead of i.

```
j = sqrt(-1)
1/sqrt(-1)
-j
```

kronecker(a, b, ...)

Returns the Kronecker product of vectors and matrices.

```
A = ((1,2),(3,4))

B = ((a,b),(c,d))

kronecker(A,B)

\begin{bmatrix} a & b & 2a & 2b \\ c & d & 2c & 2d \\ 3a & 3b & 4a & 4b \\ 3c & 3d & 3c & 4d \end{bmatrix}
```

last

The result of the previous calculation is stored in last.

212^17

3529471145760275132301897342055866171392

```
last^(1/17)
```

212

Symbol last is an implied argument when a function has no argument list.

212^17

3529471145760275132301897342055866171392

float

 3.52947×10^{39}

lgamma(x)

Returns the log of the absolute value of the Gamma function of x.

```
lgamma(0.5)
```

0.572365

$\log(x)$

Returns the natural logarithm of x.

```
log(x^y)
```

 $y \log(x)$

$loop(a, b, c, \ldots)$

Evaluate arguments in a loop. Use break to break out of the loop.

```
 k = 0   loop(k = k + 1, test(k == 4, break), print(k))   k = 1   k = 2   k = 3
```

mag(z)

Returns the magnitude of complex z. Function mag treats undefined symbols as real while abs does not.

```
mag(x + i y)
```

$$(x^2+y^2)^{1/2}$$

minor(m, i, j)

Returns the minor of matrix m for row i and column j.

```
A = ((1,2,3),(4,5,6),(7,8,9))
minor(A,1,1) == det(minormatrix(A,1,1))
```

1

minormatrix(m, i, j)

Returns a copy of matrix m with row i and column j removed.

```
A = ((1,2,3),(4,5,6),(7,8,9))
minormatrix(A,1,1)
\begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}
```

noexpand(x)

Evaluates expression x without expanding products of sums.

```
noexpand((x + 1)^2 / (x + 1)) x+1
```

not(x)

Returns 0 if x is true (nonzero). Returns 1 otherwise.

```
not(1=1)
```

 $\mathbf{nroots}(p, x)$

Returns the approximate roots of polynomials with real or complex coefficients. Multiple roots are returned as a vector.

```
\begin{array}{c} \mathbf{p} = \mathbf{x} \hat{\phantom{}} 5 - 1 \\ \mathbf{nroots}(\mathbf{p}, \mathbf{x}) \\ \\ \begin{bmatrix} 1 \\ -0.809017 + 0.587785 \, i \\ -0.809017 - 0.587785 \, i \\ 0.309017 + 0.951057 \, i \\ 0.309017 - 0.951057 \, i \\ \end{bmatrix}
```

number(x)

Returns 1 if x is a real number. Returns 0 otherwise.

```
number(1/2)
1
number(x)
0
```

numerator(x)

Returns the numerator of expression x.

```
numerator(a/b)
```

a

$$or(a, b, \ldots)$$

Returns 1 if at least one argument is true (nonzero). Returns 0 otherwise.

```
or(1=1,2=2)
```

1

$\mathbf{outer}(a, b, \ldots)$

Returns the outer product of vectors, matrices, and tensors.

```
A = (a,b,c)

B = (x,y,z)

outer(A,B)
```

$$\begin{bmatrix} ax & ay & az \\ bx & by & bz \\ cx & cu & cz \end{bmatrix}$$

pi

Symbol for π .

exp(i pi)

-1

polar(z)

Returns complex z in polar form.

$$(x^2+y^2)^{1/2}\exp(-i\arctan(y,x))$$

power

Use ^ to raise something to a power. Use parentheses for negative powers.

```
x^{(-2)}
```

 $\frac{1}{r^2}$

print(a, b, ...)

Evaluate arguments and print the results. Useful for printing from inside a for loop.

```
for(j,1,3,print(j))
```

j = 1

j=2

j=3

product(i, j, k, f)

For i equals j through k evaluate f. Returns the product of all f.

```
product(j,1,3,x + j)
```

$$x^3 + 6x^2 + 11x + 6$$

The original value of i is restored after product completes. If symbol i is used for index variable i then the imaginary unit is overridden in the scope of product.

product(y)

Returns the product of components of y.

```
y = (1,2,3,4)
product(y)
```

24

quote(x)

Returns expression x without evaluating it first.

```
quote((x + 1)^2)
```

$$(x+1)^2$$

rand()

Returns a random floating point value from the interval [0,1).

```
rand()
```

0.655424

rank(a)

Returns the number of indices that tensor a has.

```
A = ((a,b),(c,d))
rank(A)
```

2

rationalize(x)

Returns expression x with everything over a common denominator.

```
rationalize(1/a + 1/b + 1/2) \frac{2a + ab + 2b}{2ab}
```

Note: rationalize returns an unexpanded expression. If the result is assigned to a symbol, evaluating the symbol will expand the result. Use binding to retrieve the unexpanded expression.

```
f = rationalize(1/a + 1/b + 1/2)
binding(f)
\frac{2a + ab + 2b}{2ab}
```

real(z)

Returns the real part of complex z.

```
real(2 - 3i)
```

2

$\mathbf{rect}(z)$

Returns complex z in rectangular form.

```
rect(exp(i x))
```

$$\cos(x) + i\sin(x)$$

$\mathbf{roots}(p, x)$

Returns the rational roots of a polynomial. Multiple roots are returned as a vector.

```
p = (x + 1) (x - 2)
roots(p,x)
\begin{bmatrix} -1 \\ 2 \end{bmatrix}
```

If no roots are found then nil is returned. A nil result is not printed so the following example uses infixform to print nil as a string.

```
p = x^2 + 1
infixform(roots(p,x))
nil
```

rotate(u, s, k, ...)

Rotates vector u and returns the result. Vector u is required to have 2^n elements where n is an integer from 1 to 15. Arguments s, k, \ldots are a sequence of rotation codes where s is an upper case letter and k is a qubit number from 0 to n-1. Rotations are evaluated from left to right. See the section on quantum computing for a list of rotation codes.

```
psi = (1,0,0,0)
rotate(psi,H,0)
\begin{bmatrix} \frac{1}{2^{1/2}} \\ \frac{1}{2^{1/2}} \\ 0 \\ 0 \end{bmatrix}
```

$\mathbf{run}(x)$

Run script x where x evaluates to a filename string. Useful for importing function libraries.

```
run("/Users/heisenberg/EVA2.txt")
```

For Eigenmath installed from the Mac App Store, run files need to be put in the directory ~/Library/Containers/eigenmath/Data/ and the filename does not require a path.

```
run("EVA2.txt")
```

```
sgn(x)
Returns the sign of x if x is a real number.
sgn(0)
0
sgn(1/2)
1
sgn(-1/2)
-1
sgn(-x)
sgn(-x)
simplify(x)
Returns expression x in a simpler form.
simplify(sin(x)^2 + cos(x)^2)
1
sin(x)
Returns the sine of x.
sin(pi/4)
\frac{}{2^{1/2}}
sinh(x)
Returns the hyperbolic sine of x.
expform(sinh(x))
-\frac{1}{2}\exp(-x) + \frac{1}{2}\exp(x)
```

$\mathbf{sqrt}(x)$

Returns the square root of x.

sqrt(10!)

 $720 \ 7^{1/2}$

stop

In a script, it does what it says.

$\mathbf{sum}(i, j, k, f)$

For i equals j through k evaluate f. Returns the sum of all f.

$$sum(j,1,5,x^{j})$$

$$x^5 + x^4 + x^3 + x^2 + x$$

The original value of i is restored after sum completes. If symbol i is used for index variable i then the imaginary unit is overridden in the scope of sum.

sum(y)

Returns the sum of components of y.

$$y = (1,2,3,4)$$

sum(y)

10

tan(x)

Returns the tangent of x.

$$simplify(tan(x) - sin(x)/cos(x))$$

0

tanh(x)

Returns the hyperbolic tangent of x.

expform(tanh(x))

$$-\frac{1}{\exp(2x) + 1} + \frac{\exp(2x)}{\exp(2x) + 1}$$

$\mathbf{test}(a, b, c, d, \ldots)$

If argument a is true (nonzero) then b is returned, else if c is true then d is returned, etc. If the number of arguments is odd then the final argument is returned if all else fails. Expressions can include the relational operators =, ==, <, <=, >, >=. Use the not function to test for inequality. (The equality operator == is available for contexts in which = is the assignment operator.)

```
A = 1
B = 1
test(A=B, "yes", "no")
yes
```

tgamma(x)

Returns the Gamma function of x if x is a real number.

```
tgamma(4)
```

trace

Set trace=1 in a script to print the script as it is evaluated. Useful for debugging.

```
trace = 1
```

Note: The contract function is used to obtain the trace of a matrix.

transpose(a, i, j)

Returns the transpose of tensor a with respect to indices i and j. If i and j are omitted then 1 and 2 are used. Hence a matrix can be transposed with a single argument.

```
A = ((a,b),(c,d))
transpose(A)
\begin{bmatrix} a & c \\ b & d \end{bmatrix}
```

Note: The argument list can be extended for multiple transpose operations. Arguments are evaluated from left to right. For example, transpose(A,1,2,2,3) is equivalent to transpose(transpose(A,1,2),2,3)

tty

Set tty=1 to show results in string format. Set tty=0 to turn off. Can be useful when displayed results exceed window size.

```
tty = 1
(x + 1)^2
x^2 + 2 x + 1
```

unit(n)

Returns an n by n identity matrix.

unit(3)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$zero(a, b, \ldots)$

Returns a null tensor with dimensions a, b, etc.

zero(2,3,3)

$$\begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$