

DGM - Homework 1 Spring 2025

Question 1: Consider a cylindrical water well with a radius of 1 meter. We drop stones from the top-centre of the well. But due to air flow inside the well the stones will not exactly land on the centre at the bottom. The bottom of the well is a circular region represented as

$$C = \{(x,y) \mid x^2 + y^2 \le 1\}. \tag{1}$$

Where the stones fall follows a probabilistic distribution represented by a PDF $f: C \mapsto \mathbb{R}$ with the following form:

$$f(x,y) = \alpha \exp(\sqrt{x^2 + y^2}) \tag{2}$$

- 1. What is the value of α ? (Hint: You may use polar coordinates.)
- 2. What is the probability of a stone landing in the region

$$S = \{(x,y) \mid \sqrt{x^2 + y^2} \le \frac{1}{4}\}. \tag{3}$$

3. What is the probability of a stone landing in the region

$$S = \{(x,y) \mid \frac{1}{2} \le \sqrt{x^2 + y^2} \le \frac{3}{4}\}. \tag{4}$$

- 4. Are the random variables X and Y independent? Give an explaination without obtaining the marginal or conditional distributions?
- 5. Define the polar coordinates by random variables $R = \sqrt{X^2 + Y^2}$ and $\Theta = \operatorname{atan2}(Y, X)$. What is the PDF $f_{R,\Theta}(r,\theta)$? Remember that the PDF must satisfy

$$\int_{(r,\theta)\in S} f_{R,\Theta}(r,\theta) \, dr d\theta = \Pr((R,\Theta)\in S).$$

6. Are the random variables R and Θ independent? Why?

Question 2: Consider the following joint probability mass function (PMF) $p_{I,N}: \{2,3,4,\ldots\} \times \{2,3,4,\ldots\} \rightarrow [0,1]:$

$$p_{I,N}(i,n) = P(I=i, N=n) = \alpha \left(\frac{1}{i}\right)^n \tag{5}$$

where $i \in \{2, 3, \dots\}$ and $n \in \{2, 3, \dots\}$.

- 1. Derive the value of α ?
- 2. Obtain the formulae for the marginal distributions $p_I(i)$ and $p_N(n)$.
- 3. Obtain the formulae for the conditional distributions $p_I(i \mid N = n)$ and $p_N(n \mid I = i)$.
- 4. Are the random variables I and N independent? Why?

You may write some of the probabilities in terms of the *Riemann zeta function*:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (6)

Question 3: Consider the following joint PMF $f_{M,N}$: $\{1,2,3\} \times \{1,2,3\}$:

m	n	$f_{M,N}(m,n)$
-1	1	0.04
-1	2	0.06
0	1	0.05
0	2	0.08
1	1	0.30
1	2	0.47

- 1. Derive $f_M(m)$, $f_N(n)$, $f_M(m \mid N = n)$ and $f_N(n \mid M = m)$.
- 2. Are M and N independent? Why?

Question 4: Assume that the joint distribution

$$P(a, b, c) = \Pr(A = a, B = b, C = c)$$

can be written as

$$P(a, b, c) = \phi(a, b) \psi(a, c),$$

where $\phi(a,b) > 0$ and $\psi(a,c) > 0$ for all values of a,b,c.

1. Prove that B and C are conditionally independent given A.

Question 5: Consider the random variables A, B, C takeing on values in sets $D_A = \{0, 1, 2\}, D_B = \{1, 2, 3, 4\}, D_C = \{2, 3\}$, respectively. Derive the minimum number of *free* parameters to fully identify each of the following distributions using *table representation*. For each case, explain your response.

- P(A, B, C)
- $P(A \mid B)$
- $P(B \mid A)$
- $P(B \mid A)$
- P(A | B, C)
- P(C | A, B)
- $P(A, B \mid C)$
- P(A, B, C) when we know that A, B, and C are mutually independent.
- P(A, B, C) when we know that B is independent of C given A.