TU Hamburg-Harburg – Institut für Zuverlässiges Rechnen Prof. Dr. S. M. Rump und Mitarbeiter, Wintersemester 2018/2019

Programmieren in C, Testat 7

Es soll das Programmieren von Funktionen und Schleifen am Beispiel der Bestimmung elektrischer Spannungen in Gleichstromschaltungen geübt werden. Die Größen Strom, Spannung, Widerstand werden mit I, U, R bezeichnet (Einheiten Ampere A, Volt V, Ohm Ω). Das Ohmsche Gesetz lautet bekanntlich $U = I \cdot R$ und die Kirchhoffschen Regeln lauten:

- 1. Knotenregel: Die Summe aller auf einen Knotenpunkt zufließenden Ströme ist Null.
- 2. Maschenregel: Die Summe der Spannungen bei einem vollständigen Umlauf in einer Masche Umlaufspannung genannt ist Null.

Die folgende Schaltung realisiert einen Spannungsteiler.

Auf dem Widerstand R ist ein beweglicher Kontakt angebracht, der ihn in zwei Teilwiderstände $R_1 = (1-k)R$ und $R_2 = kR$ aufteilt, wobei k ein Parameter ist, der zwischen 0 und 1 variiert, wodurch sich die Spannung U_3 auf einen beliebigen Wert zwischen 0 und U skalieren lässt.

- a) Stellen Sie Maschengleichungen für die eingezeichneten Maschen 1 und 2 auf und leiten Sie aus diesen eine Formel für $u:=U_3/U$ als Funktion von k und $r:=R/R_3$ her, d.h. u=f(k,r). Lösen Sie anschließend die Gleichung u=f(k,r) nach k auf, d.h.: Finden Sie eine Formel k=g(u,r) für k als Funktion von u und r.
- b) Implementieren Sie die beiden Funktionen f und g in C. Überlegen Sie sich dafür zunächst die Signaturen der Funktionen, d.h.: Wählen Sie passende Funktionsnamen, legen Sie Anzahl und Typen der Eingabeparameter und den Rückgabetyp fest.

Hinweis: Die Quadratwurzel \sqrt{x} einer nicht-negativen reellen Zahl x kann mit der Funktion sqrt aus der Bibliothek math.h berechnet werden.

c) Programmieren Sie eine Funktion table, welche folgende Tabellen nacheinander auf dem Bildschirm ausgibt und mit Werten für k = 0, 0.1, 0.2, ..., 1, r = 0, 1, 2, ..., 5, u = 0, 1, 2, ..., 5 füllt.

k	r	f(k,r)	g(f(k,r),r)	u	r	g(u,r)	f(g(u,r),r)

- d) In Stud.IP ist eine Funktion plot bereits gegeben. Sie dient zur graphischen Veranschaulichung der Arbeitsweise eines Spannungsteilers. Für vorgegebenes Widerstandsverhältnis $r = R/R_3$ stellt sie in einem Koordinatensystem mit x-Achse k und y-Achse $u = U_3/U$ die Abhängigkeit von u von k dar. Ersetzen Sie in Zeile 13 der Funktion plot den Funktionsaufruf k_factor(u,r) durch den Ihrer Funktion g(u,r).
- e) Rufen Sie im Hauptprogramm als Erstes die Funktion table auf, um die Tabellen auszugeben. Benutzen Sie dann eine do..while-Schleife, damit der Benutzer verschiedene Widerstandsverhältnisse $r = R/R_3$ eingeben und sich die zugehörigen Kennlinien mit der plot-Funktion anzeigen lassen kann. Überprüfen Sie, ob Ihre Ergebnisse plausibel sind.

Ein Programmlauf sollte wie folgt aussehen:

k	r	f(k,r)	g(f(k,r),r)	< Tabellenausgabe
0.00	1 0.00	0.00	1 0.00	
0.10	1 0.00	0.10	0.10	
0.80	5.00	0.44	0.80	
0.90	5.00	0.62	0.90	
1.00	5.00	1.00	1.00	
u	r	g(u,r)	f(g(u,r),r)	
u 	r 0.00	g(u,r) 0.00	f(g(u,r),r) 0.00	
0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	
0.00 1.00	0.00	0.00	0.00	

Plot characteristic curve of voltage divider ? (y/n) y resistance ratio: r = 5

<--- Eingabe 'y' für 'yes'
<--- Eingabe des Widerstandsverhältnisses</pre>

Plot characteristic curve of voltage divider ? (y/n) n <--- Eingabe 'n' für 'no',

<--- Eingabe 'n' für 'no',
 Abbruch do..while-Schleife</pre>

English translation:

Programming functions and loops shall be trained in the practical context of determining d.c. voltage. The quantities current, voltage, and resistance are denoted by I, U, R (units are ampere A, volt V, ohm Ω , respectively). Ohm's law says $U = I \cdot R$ and Kirchhoff's rules are:

- 1. point rule: The sum of all currents flowing to a nodal point is zero.
- 2. mesh rule: The sum of all voltages in a circumference of a mesh is zero.

The following circuit realizes a voltage divider.

A movable contact divides the resistance R into two partial resistances $R_1 = (1 - k)R$ and $R_2 = kR$ where k is a parameter ranging between 0 and 1. In this way, the voltage U_3 can be scaled between 0 and U.

- a) Write down the mesh rule for meshes 1 and 2. From that, derive a formula for $u := U_3/U$ as a function of k and $r := R/R_3$, i.e., u = f(k, r).
 - Then, solve the equation u = f(k, r) for k, i.e., find a formula k = g(u, r) for k as a function of u and r.
- b) Implement both functions f and g in C. First, consider the signature of both functions, i.e., find suitable function names, determine the input arguments and their data types, and determine the data type of the output.

Hint: The square root \sqrt{x} of a nonnegative real number x can be computed by the function sqrt from the library math.h.

c) Write a function named table that prints the following tables on the screen filled with the corresponding values for k=0,0.1,0.2,...,1, r=0,1,2,...,5, u=0,1,2,...,5.

k	r	f(k,r)	g(f(k,r),r)	u	r	g(u,r)	f(g(u,r),r)

- d) In Stud.IP a function plot is given. For a fixed resistance ratio $r = R/R_3$ it plots the dependence of u (y-axis) on k (x-axis). This is the characteristic curve of a voltage divider having that resistance ratio r. In line 13 of the function plot you must replace $k_{factor}(u,r)$ by your function q(u,r).
- e) In the main function, first call the function table to display the two tables. Then, use a do..while loop so that the user can enter different resistance ratios $r = R/R_3$ for which the corresponding characteristic curves are drawn with the function plot. Check plausibility of your results!

A program run shall look as follows :

k	r	f(k,r)	g(f(k,r),r)	< display tables
0.00	0.00	0.00 0.10	0.00 0.10	
0.80 0.90 1.00		0.44 0.62 1.00	0.80 0.90 1.00	
u	r	g(u,r)	f(g(u,r),r)	
u 0.00 1.00	0.00	g(u,r) 0.00 1.00	f(g(u,r),r) 0.00 1.00	

Plot characteristic curve of voltage divider ? (y/n) y <--- enter 'y' for 'yes' resistance ratio: r = 5 <--- enter resistance ratio

Plot characteristic curve of voltage divider ? (y/n) n <--- enter 'n' for 'no', leave do..while loop