Assignment 6

Addagalla Satyanarayana

Abstract—This document uses the properties of a tangent to a circle

Download latex-tikz codes from

https://github.com/AddagallaSatyanarayana/AI5106/tree/master/Assignment6/Assignment6.tex

1 Problem

Find the length of the tangent from the point $\binom{7}{4}$ to the circle

$$\mathbf{x}^T \mathbf{x} - (46)\mathbf{x} + 12 = 0 \tag{1.0.1}$$

2 EXPLANATION

The general equation of a second degree can be expressed as :

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.1}$$

Let the equation of the tangent be

$$(-m\ 1)\mathbf{x} = c$$
 (2.0.2)

3 Solution

We know that, for a circle,

$$\mathbf{V} = \mathbf{I} \tag{3.0.1}$$

$$\mathbf{c} = -\mathbf{u} \tag{3.0.2}$$

Comparing the equation (1.0.1) and (2.0.1) we get

$$\mathbf{u} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}, f = 12$$
 (3.0.3)

$$\mathbf{c} = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{3.0.4}$$

The normal vector to the line is obtained as

$$\mathbf{n} = \mathbf{q} + \mathbf{u} \tag{3.0.5}$$

$$\mathbf{q} = \mathbf{n} - \mathbf{u} \tag{3.0.6}$$

Comparing the equation (2.0.2)

$$\mathbf{n} = \begin{pmatrix} -m & 1 \end{pmatrix}^T \tag{3.0.7}$$

Given

$$\mathbf{u} = \begin{pmatrix} -2 \\ -3 \end{pmatrix} \tag{3.0.8}$$

$$\implies \mathbf{q} = \begin{pmatrix} -m+2 \\ 4 \end{pmatrix} \tag{3.0.9}$$

The point q also satisfies the equation of the circle at (1.0.1)

$$\mathbf{q}^T \mathbf{q} + (-4 - 6)\mathbf{q} + 12 = 0$$
 (3.0.10)

$$m^2 + 4 - 4m + 16 + 4m - 32 + 12 = 0$$
 (3.0.11)

$$m^2 = 0$$
 (3.0.12)

1

$$m = 0$$
 (3.0.13)

Simplying (3.0.13) and (3.0.9) we get

$$\mathbf{q} = \begin{pmatrix} 2\\4 \end{pmatrix} \tag{3.0.14}$$

Let $\mathbf{p} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$ The length of tangent is

$$||p - q|| = \sqrt{(7 - 2)^2 + (4 - 4)^2}$$
 (3.0.15)

$$=\sqrt{25}$$
 (3.0.16)

$$= 5$$
 (3.0.17)

Fig. 0: Perpendicular Line