线性代数 中国科学技术大学 2023 春 线性映射

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

线性映射组成的线性空间与对偶空间*

性质

设V和W为有限维 \mathbb{F} -线性空间. 从V到W上的全体线性映射组成的集合,记为 $\mathrm{Hom}(V,W)$,在线性映射的加法和数乘下构成 \mathbb{F} -线性空间.

考虑 $W = \mathbb{F}$ 的情形.

称从 V 到 ℙ 的线性映射为 V 上的线性函数. 记

$$V^* = \operatorname{Hom}(V, \mathbb{F}) = \{ f \colon V \to \mathbb{F} \mid f$$
 为线性函数 \}.

性质

在线性函数加法和数乘下, V^* 构成 \mathbb{F} -线性空间. 称之为 V 的对偶空间.

性质 (对偶基)

若 e_1, \cdots, e_n 为 V 的一组基, 则 V^* 存在唯一的一组基 f_1, \cdots, f_n 满足

$$f_j(e_i) = \delta_{ij} = \begin{cases} 1, & \text{\vec{x} } i = j; \\ 0, & \text{\vec{x} } i \neq j \end{cases}.$$

称 f_1, \dots, f_n 为 e_1, \dots, e_n 的对偶基.

线性映射在不同基下的矩阵与相抵关系*

设 $\mathscr A$ 为从 n 维 $\mathbb F$ -向量空间 V 到 m 维 $\mathbb F$ -向量空间的一个线性映射. 设线性映射 $\mathscr A$ 在基 α_1,\cdots,α_n 和 β_1,\cdots,β_m 下的矩阵为 A. 即

$$\mathscr{A}(\alpha_1,\cdots,\alpha_n)=(\beta_1,\cdots,\beta_m)A.$$

设线性映射 \mathscr{A} 在另外两组基 $\alpha_1',\cdots,\alpha_n'$ 和 β_1',\cdots,β_m' 下的矩阵为 B. 即

$$\mathscr{A}(\alpha'_1,\cdots,\alpha'_n)=(\beta'_1,\cdots,\beta'_m)B.$$

定理

记从线性空间 V 的基 $\alpha_1, \dots, \alpha_n$ 到基 $\alpha'_1, \dots, \alpha'_n$ 的过渡矩阵为 Q, 以及 从线性空间 W 的基 β_1, \dots, β_m 到基 $\beta'_1, \dots, \beta'_m$ 的过渡矩阵为 P. 则 $B = P^{-1}AQ$.

推论

线性映射在不同基下的矩阵之间相抵.

注: 反之亦然. 即, 相抵的矩阵是同一个线性映射在不同基下的矩阵.

线性变换在不同基下的矩阵,矩阵的相似

定理

设线性空间 V 上的线性变换 $\mathscr A$ 在两组基 α_1,\cdots,α_n 和 β_1,\cdots,β_n 下的矩阵为 A 和 B. 设 α_1,\cdots,α_n 到 β_1,\cdots,β_n 的过渡矩阵为 T. 则 $B=T^{-1}AT$.

定义(相似)

设 $A, B \in \mathbb{F}^{n \times n}$ 为两个 n 阶方阵. 若存在可逆阵 $T \in \mathbb{F}^{n \times n}$ 使得 $B = T^{-1}AT$, 则称 $A \to B$ 相似. 记为 $A \sim B$. 相似为等价关系.

定理

一个线性变换在不同基下矩阵相似. 反之任意属于该相似类的矩阵, 均为该线性变换在某组基下的矩阵.

类比于相抵关系,对相似关系我们有如下基本问题:

- 两个矩阵相似充要条件
- ② 相似等价类中的最简代表元

伸缩变换与特征向量

问题:

- 是否任意线性变换都由某组基下的各个方向伸缩给出?(答: 错误.)
- ② 哪些线性变换可以由某组基下的伸缩给出?即,哪些线性变换在合适的基下为对角阵?

为了研究回答这些问题, 我们需要引入特征值和特征向量等概念.

线性变换的特征值,特征向量以及特征子空间

定义(线性变换的特征值,特征向量以及特征子空间)

设 \mathscr{A} 为 n 维 \mathbb{F} -向量空间 V 上的线性变换. 若存在 $\lambda \in F$ 以及非零向量 $\alpha \in V$, 使得

$$\mathscr{A}\alpha = \lambda\alpha,$$

则称 λ 为 \mathscr{A} 的一个特征值, 称 α 为属于特征值 λ 的一个特征向量. 称 $V_{\mathscr{A}}(\lambda) := \ker(\mathscr{A} - \lambda \varepsilon) = \{ \alpha \in V \mid \mathscr{A} \alpha = \lambda \alpha \}$

为属于 λ 的特征子空间.

如何求特征值和特征向量

思路: 通过代数 (矩阵) 来解决几何问题 (特征值, 特征向量). 设 $\alpha_1, \dots, \alpha_n$ 为 \mathbb{F} -线性空间 V 的一组基.

$$\left\{ \begin{array}{c} V \perp \text{in } 2 \text{in } \left\{ \begin{array}{c} \underline{k} \alpha_1, \cdots, \alpha_n \\ \text{if } \underline{\alpha_1}, \cdots, \alpha_n \right) = (\alpha_1, \cdots, \alpha_n) A \end{array} \right. \quad \mathbb{F}^{n \times n}$$

定义(矩阵的特征值、特征向量以及特征子空间)

设A为 \mathbb{F} 系数的n阶方阵. 若存在 $\lambda \in F$ 及非零数组向量 $x \in \mathbb{F}^n$, 使得

$$Ax = \lambda x$$
.

则称 λ 为方阵A的特征值, 称x为属于特征值 λ 的一个特征向量. 称

$$V_A(\lambda) := \{ x \in \mathbb{F}^n \mid Ax = \lambda x \}$$

为属于λ的特征子空间.

如何求特征值和特征向量

求 A 的特征值和特征向量可以转换为求 A 的特征值和特征向量.

性质

设 $\alpha_1, \cdots, \alpha_n$ 为 \mathbb{F} -线性空间 V 的一组基. 设 V 上的线性变换在基 $\alpha_1, \cdots, \alpha_n$ 下矩阵为 A. 则

- 🗸 与 A 有相同的特征值;
- ② 若 λ 为 \mathscr{A} 的特征值, 则 $V_{\mathscr{A}}(\lambda) = \{(\alpha_1, \dots, \alpha_n)x \mid x \in V_A(\lambda)\}.$

证明思路: $x \in V_A(\lambda) \Leftrightarrow Ax = \lambda x \Leftrightarrow \mathscr{A}((\alpha_1, \dots, \alpha_n)x) = \lambda(\alpha_1, \dots, \alpha_n)x \Leftrightarrow (\alpha_1, \dots, \alpha_n)x \in V_{\mathscr{A}}(\lambda).$

性质

设 λ 为方阵A的特征值.则

- ① $f(\lambda)$ 为 f(A) 的特征值; 特别地, λ^k 为方阵 A^k 的特征值;
- ② λ 为方阵 A^T 的特征值;
- ③ 若 $\lambda \neq 0$, 则 $\frac{1}{\lambda} \det(A)$ 为 A^* 的特征值. 特别地, 若 A 可逆, 则 $\frac{1}{\lambda}$ 为 A^{-1} 的特征值.
- ④ 若 A 为实矩阵且 $AA^T = 1$, 则 $|\lambda| = 1$.

注: 实矩阵的特征值不一定还是实数!

矩阵特征值和特征向量一般求解方法

例

求矩阵
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

解:
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 1 - \lambda & 1 \\ 1 & 3 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \Rightarrow \det \begin{pmatrix} 1 - \lambda & 1 \\ 1 & 3 - \lambda \end{pmatrix} = 0 \Rightarrow \lambda = 2 \pm \sqrt{2}.$$
解方程组: $A \begin{pmatrix} x \\ y \end{pmatrix} = 2 \pm \sqrt{2} \begin{pmatrix} x \\ y \end{pmatrix}$ 得 $\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \pm \sqrt{2} \end{pmatrix}.$

对于方阵 A 的特征值的计算, 我们有如下一般方法:

$$\lambda_0$$
 为 A 的特征值 $\Leftrightarrow \exists x \neq 0$ $s.t.$ $Ax = \lambda_0 x$ \Leftrightarrow 线性方程组 $(\lambda_0 I_n - A)X = 0$ 有非零解 $\Leftrightarrow \det(\lambda_0 I_n - A) = 0$

即, λ_0 为 A 的特征值当且仅当 λ_0 为多项式 $\det(\lambda I_n - A)$ 的根. 称行列式 $\det(\lambda I - A)$ 为 A 的特征多项式. 记为 $P_A(\lambda)$. 注:

- ❶ 数域 ℙ上的多项式在 ℙ上不一定有根!
- ② (代数基本定理) 复数域 \mathbb{C} 上的非常值多项式在 \mathbb{C} 上一定有根. 在计算特征值和特征向量时,总是假设 $\mathbb{F} = \mathbb{C}$.

矩阵特征值和特征向量一般求解方法

设 A 为 n 阶复矩阵. 求解过程分为如下两步:

- ① 求 $P_A(\lambda) = \det(\lambda I_n A)$,并做分解 $P_A(\lambda) = (\lambda \lambda_1)^{n_1} \cdot (\lambda \lambda_2)^{n_2} \cdot \dots \cdot (\lambda \lambda_s)^{n_s}$ 其中 $\lambda_i \in \mathbb{C}$, $n_i \geq 1$, $n_1 + n_2 + \dots + n_s = n$. 我们称 n_i 为特征值 λ_i 的重数.
- ② 给定 $i=1,\cdots,s$. 解齐次线性方程组 $(\lambda_i I_n A)X = 0$ 得解空间 $V_A(\lambda_i)$ 或者基础解系.

例

求矩阵
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}$$
 的特征值和特征向量.

答案: $P_A(\lambda) = \lambda(\lambda - 1)^2$.

•
$$(0 \cdot I - A)\vec{x} = 0 \Rightarrow \vec{x} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix};$$

$$\bullet (1 \cdot I - A)\vec{x} = 0 \Rightarrow \vec{x} = c_2 \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}.$$

矩阵特征值和特征向量一般求解方法

例

设 $A=\begin{pmatrix}1&1\\0&2\end{pmatrix}$. 设 \mathscr{A} 为 $V=\mathbb{F}^{2\times 2}$ 上的线性变换满足 $\mathscr{A}(M)=AM$. 求 \mathscr{A} 的特征值和特征向量.

答案:
$$\mathscr{A}(E_{11}, E_{12}, E_{21}, E_{22}) = (E_{11}, E_{12}, E_{21}, E_{22}) \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\Rightarrow P_{\mathscr{A}}(\lambda) = (\lambda - 1)^{2}(\lambda - 2)^{2}.$$

•
$$(I-A)\vec{x} = 0 \Rightarrow$$
 基础解系 $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$ \Rightarrow 特征子空间 $\langle E_{11}, E_{12} \rangle$

•
$$(2I - A)\vec{x} = 0 \Rightarrow \vec{x}$$
 \vec{x} \vec{x}

相似不变量

可以用矩阵来定义线性变换的哪些不变量(即,不依赖于基的选取的量).

性质

相似的矩阵具有相同的特征多项式和特征值.

证明: 设 $B = T^{-1}AT$. 则

$$P_B(\lambda) = \det(\lambda I - T^{-1}AT) = \det(T^{-1})\det(\lambda I - A)\det(T) = P_A(\lambda).$$

即,可以用矩阵来定义线性变换的特征多项式和特征值,有没有其它相 似不变量呢?

定理

设 A 为 n 阶复矩阵的 n 个特征值分别为 $\lambda_1, \cdots, \lambda_n$ (可能有重复的). 则

- \mathbf{Q} det $(A) = \lambda_1 \lambda_2 \cdots \lambda_n$.

证明思路: 展开 $P_A(\lambda)$ 并使用根与系数之间的关系.

推论

一个n阶方阵可逆当且仅当其n个特征值均不为零.