

Apollo Pro266 North Bridge

Socket-370 North Bridge
with 133 / 100 / 66 MHz Front Side Bus
for VIA C3 & Intel Celeron / Pentium III CPUs
with AGP 4x and V-Link
plus Advanced ECC Memory Controller
supporting DDR266 / DDR200
(PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop and Mobile PC Systems

Revision 1.5 May 6, 2003

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1999, 2000, 2001, 2002, 2003 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8233, VT8233A, and Apollo Pro266 may only be used to identify products of VIA Technologies.

VIA C3[™] is a registered trademark of VIA Technologies.

Celeron™, Pentium™, Pentium-III™, Pentium-III™, MMX™, and Intel™, are registered trademarks of Intel Corp.

PS/2[™] is a registered trademark of International Business Machines Corp.

Windows 95[™], Windows 98[™], Windows 2000[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:

940 Mission Court Fremont, CA 94539

USA

Tel: (510) 683-3300

Fax: (510) 683-3301 -or- 687-4654

Web: http://www.viatech.com

Taipei Office:

8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
0.1	1/5/00	Initial internal release as VT8633 and VT8233 V-Link chipset specs	EC
0.2 thru 0.9	-	Internal review and correction prior to public product announcement	DH
1.0	9/20/00	Changed pin names of AVCC and AGND pins to better indicate pin function	DH
		Changed pin names of VD pins to VAD to better indicate pin function	
		Removed "Confidential – NDA Required" watermark for public release	
1.1	10/26/00	Changed Rx50[7]to 8-level IOQ & changed feature bullets to match	DH
		Fixed minor document formatting problems	
1.2	12/6/00	Fixed feature bullets (SB features) & Overview (PCI 2.2 compliance)	DH
		Fixed Device 0 Rx6D[7-6]; Removed Device 1 Rx2C-2F	
1.21	2/16/01	Added note to Memory Address Mapping Table regarding x4 DRAM support	DH
1.3	2/22/01	Removed VCM SDRAM support from feature bullets, overview & registers	DH
		Fixed typos in table of contents & pinout table (VCCL changed to VCCAGP)	
		Fixed feature bullets to specify 4 module / 4G memory support for registered SDRAM	
		modules and 3 module / 3G support limit for unbuffered modules	
1.31	3/21/01	Updated title, feature bulets, overview and block diagram	DH
1.4	4/12/01	Added VAD strap descriptions	DH
		Fixed Device 0 Rx45, 46[5-4], 4D, 4E[7], 50[7-6], 54[7-6], 67, 6C-6D	
1.41	5/3/01	Removed "Apollo Pro266" from marking in Mechanical Spec section	DH
		Updated Device 0 RxF7 bit description	
1.42	10/8/01	Clarified difference between chipset name and north bridge part number	DH
		Updated company address; Changed "VIA Cyrix III" to "VIA C3"	
		Removed Slot-1 references (no longer an interesting product)	
		Updated VCCM pin description; Fixed HA/HD pin descriptions	
		Fixed Device 0 Rx67[1:0] SDR, Rx6A	
		Added typical power supply current numbers and AC Timing	
1.1	5/6/03	Updated legal page formatting, VIA USA street address, and VIA logos	DH
		Changed chipset name to be north bridge chip name & removed VT#	
		Fixed V-Link feature bullets; Fixed incorrect JEDEC-spec reference in mech diagram	

TABLE OF CONTENTS

REVISION HISTORY]
TABLE OF CONTENTS	11
LIST OF FIGURES	III
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	4
PINOUTS	7
PIN DESCRIPTIONS	
REGISTERS	
REGISTER OVERVIEW	18
MISCELLANEOUS I/O	
CONFIGURATION SPACE I/O	
REGISTER DESCRIPTIONS	23
Device 0 Header Registers - Host Bridge	
Device 0 Configuration Registers - Host Bridge	
V-Link Control	
Host CPU Control	
DRAM Control	
PCI Bus Control	
GART / Graphics Aperture Control	
AGP Control	
V-Link Control	
DRAM Toggle Reduction	
Extended Power Management Control	
Test Registers	
BIOS Scratch Registers	
Back Door Registers	
Device 1 Header Registers - PCI-to-PCI Bridge	
Device 1 Configuration Registers - PCI-to-PCI Bridge	
AGP Bus Control	46
ELECTRICAL SPECIFICATIONS	49
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	
POWER CHARACTERISTICS	50
AC TIMING SPECIFICATIONS	50
MECHANICAL SPECIFICATIONS	52

LIST OF FIGURES

FIGURE 1. APOLLO PRO266 CHIPSET SYSTEM BLOCK DIAGRAM	4
FIGURE 2. APOLLO PRO266 V-LINK CHIPSET BLOCK DIAGRAM	6
FIGURE 3. BALL DIAGRAM (TOP VIEW)	
FIGURE 4. GRAPHICS APERTURE ADDRESS TRANSLATION	
FIGURE 5. MECHANICAL SPECIFICATIONS - 552-PIN BALL GRID ARRAY PACKAGE	52

LIST OF TABLES

TABLE 1. PIN LIST (NUMERICAL ORDER)	8
TABLE 2. PIN LIST (ALPHABETICAL ORDER)	9
TABLE 3. PIN DESCRIPTIONS	10
TABLE 4. REGISTERS	
TABLE 5. SYSTEM MEMORY MAP	29
TABLE 6. MA MAP TYPE ENCODING	30
TABLE 7. MEMORY ADDRESS MAPPING TABLE	30
TABLE 8. DIMM MODULE CONFIGURATION	35
TABLE 9. VGA / MDA MEMORY / IO REDIRECTION	
TABLE 10. AC TIMING MIN / MAX CONDITIONS	50
TABLE 11. AC TIMING - V-LINK BUS	
TABLE 12. AC TIMING - CPU FRONT SIDE BUS	51
TABLE 13. AC TIMING – SDR MEMORY INTERFACE	51
TABLE 14. AC TIMING – DDR MEMORY INTERFACE	51
TABLE 15. AC TIMING – AGP INTERFACE	51

Apollo Pro266 North Bridge

Socket-370 North Bridge
With 133 / 100 / 66 MHz Front Side Bus
for VIA C3 and Intel Celeron / Pentium III CPUs
with AGP 4x and V-Link
plus Advanced ECC Memory Controller
supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop and Mobile PC Systems

PRODUCT FEATURES

• AGP / PCI / ISA Mobile and Deep Green PC Ready

- GTL+ compliant host bus supports write-combine cycles
- Supports separately powered 3.3V LVTTL (5V tolerant) and 2.5V SSTL-2 interface to system memory
- Modular power management and clock control for power conscious system applications
- Combine with VIA VT8233 highly integrated south bridge chip for state-of-the-art system power management

High Integration

- Single chip implementation for 64-bit Socket-370 CPU, 64-bit DDR / SDR system memory, 266 MB/S high bandwidth V-Link NB / SB, and 32-bit AGP interfaces
- Chipset: Apollo Pro266 V-Link Host system controller and VT8233 V-Link to PCI/LPC bridge
- Chipset includes UltraDMA-100 / 66 / 33 EIDE, Six USB ports, AC-97 audio and HSP modem, Networking, PCI / LPC buses, SMBus, and Keyboard / PS2-Mouse Interfaces plus RTC / CMOS on chip

High Performance CPU Interface

- Supports Socket-370 (VIA C3[™] and Intel Celeron[™] / Pentium III[™]) processors
- 133 / 100 / 66 MHz CPU Front Side Bus (FSB)
- Built-in PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Eight outstanding transactions (eight-level In-Order Queue)
- Supports WC (Write Combining) cycles
- Dynamic deferred transaction support
- Sleep mode support
- System management interrupt, memory remap and STPCLK mechanism

• Full Featured Accelerated Graphics Port (AGP) Controller

Synchronous and pseudo-synchronous with the host CPU bus with optimal skew control

<u>V-Link</u>	<u>AGP</u>	<u>CPU</u>	<u>Mode</u>
66 MHz	66 MHz	133 MHz	4x synchronous
66 MHz	66 MHz	100 MHz	3x synchronous
66 MHz	66 MHz	66 MHz	2x synchronous

- AGP v2.0 compliant
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- Supports 266 MHz 4x mode for AD and SBA signaling
- Pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport driver support

High Bandwidth 266 MB/Sec 8-bit V-Link Host Controller

- Supports 66 MHz V-Link Host interface with total bandwidth of 266 MB/Sec
- V-Link operates at 4x or 2x modes
- Full duplex commands with separate STB/CMD
- Request/Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer/Defer-Reply transaction
- Transaction assurance for V-Link Host to Client access. Eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state/throttle transfer latency; all V-Link transactions both Host and Client have consistent view of transaction data depth and buffer size to avoid data overflow.
- Highly efficient V-Link arbitration with minimum overhead; all V-Link transactions have predictable cycle length with known Command / Data duration

Advanced High-Performance DDR / SDR DRAM Controller

- DRAM interface synchronous with host CPU (66/100/133 MHz) for most flexible configuration
- DRAM interface may be <u>faster</u> than CPU by 33 MHz to allow use of DDR200 / PC100 memory modules with 66 MHz Celeron or use of DDR266 / PC133 with 100 MHz Pentium II or Pentium III
- DRAM interface may be <u>slower</u> than CPU by 33 MHz to allow use of older memory modules with newer CPUs (e.g., PC66 memory modules with 100 MHz Pentium II or Pentium III)
- Concurrent CPU, AGP, and PCI access
- Supports DDR and SDR SDRAM memory types
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16M / 32M /64MxN DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8 / x16 DRAM technology) for registered SDR / DDR modules
- Supports 6 banks up to 3 GB DRAMs (512Mb x8 / x16 DRAM technology) for unbuffered SDR / DDR modules
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, command, and MD signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection)
 or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-1-1-1-1-1 back-to-back accesses for SDR SDRAM
- x-1/2-1/2-1/2-1/2-1/2 back-to-back accesses for DDR SDRAM
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- V-Link and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- SDRAM self-refresh power down
- 8 bytes of BIOS scratch registers
- Low-leakage I/O pads
- Built-in NAND-tree pin scan test capability
- 2.5V, 0.22um, high speed / low power CMOS process
- 35 x 35 mm, 552 pin BGA Package

OVERVIEW

Apollo Pro266 is a high performance, cost-effective and energy efficient chip set north bridge for the implementation of AGP / V-Link / PCI / LPC desktop personal computer systems with front side bus frequencies of 133, 100, and 66 MHz based on 64-bit Socket-370 (VIA C3 and Intel Celeron and Pentium-III) super-scalar processors.

Figure 1. Apollo Pro266 Chipset System Block Diagram

The complete chip set consists of the Apollo Pro266 V-Link DDR Host system controller (552 pin BGA) and the VT8233 highly integrated V-Link Client PCI / LPC controller (376 pin BGA). The Host system controller provides superior performance between the CPU, DRAM, AGP bus, and V-Link interface with pipelined, burst, and concurrent operation. The VT8233 V-Link Client controller is a highly integrated PCI / LPC controller. Its internal bus structure is based on 66 MHz PCI bus that provides 2x bandwidth compare to previous generation PCI / ISA bridge chips. The VT8233 integrated Client V-Link controller with 266MB/S bandwidth between Host/Client V-Link interface, provides a V-Link-PCI and V-Link-LPC controller. It supports five PCI slots arbitration and decoding for all integrated functions and LPC bus.

The Pro266 supports eight banks of DDR / SDR SDRAMs up to 4 GB for registered modules (six banks up to 3GB for unbuffered). The DRAM controller supports Double-Data-Rate (DDR) SDRAM or can be configured to support standard Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 / 66 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M xN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus (133 / 100 / 66 MHz).

The Pro266 Host system controller also supports full AGP v2.0 capability for maximum bus utilization including 2x and 4x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported for interoperability with major AGP-based 3D and DVD-capable multimedia accelerators.

Revision 1.5 *May 6, 2003* -4- Features

The Pro266 host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM / cache accesses. When combined the V-Link Host/Client controllers, it realizes a complete PCI sub-system and supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 352-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.2 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10 / 100Mb base-T Ethernet or 1 / 10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated USB interface with root hubs and six function ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the Apollo Pro266 chipset provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

The Apollo Pro266 chipset is ideal for high performance, high quality, high energy efficient and high integration desktop and notebook AGP / PCI / LPC computer systems.

Revision 1.5 *May 6, 2003* -5-

Figure 2. Apollo Pro266 V-Link Chipset Block Diagram

Revision 1.5 May 6, 2003 -6-

PINOUTS

Figure 3. Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	VCC AGP	VCC AGP	GD16	GD17	AGP VREF	VCC AGP	GD23	GD24	GD28	VCC AGP	SBA7	SBS#	SBA0	VCC AGP	HD62	HD54	HD59	HD49	HD45	HD37	HD34	HD35	HD25	HD24	HD16	VCC GTL
В	GD15	GBE1	# GBE2#	GND	GD21	VCC AGP	GBE3#	GD27	GD30	VCC AGP	SBA4	SBS	SBA1	VCC AGP	HD50	HD46	HD52	HD51	HD42	HD39	HD22	HD19	HD26	HD23	HD30	HD7
C	GD1	GD12	GD13	GD14	GD19	GD20	GD22	GD26	GD31	GRBF#	SBA5	GND	GGNT#	HD56	HD60	HD58	HD57	HD47	GND	HD36	HD31	HD32	GND	HD21	HD20	HD13
D	GD8	GND	GBE0#	GND	GD18	GND	GDEV SEL#	GD25	ST0	ST2	GPIPE#	SBA3	SBA2	GREQ#	HD61	HD53	HD48	HD41	HD27	HD38	HD28	HD33	HD3	HD11	HD14	HD2
E	VCC AGP	VCC AGP	GDS0#	GD10	G STOP#	GT RDY#	G FRM#	GDS1	GWBF#	GND	SBA6	VCC AGP	ST1	CPU RSTD	VCC GTL	HD55	HD63	GND	HD44	HD43	HD29	HD9	HD18	HD12	HD10	HD17
F	GD7	GD4	GD6	GDS0	GD9	GND	GND	GDS1#	GD29	GND	GI RDY#	VCC AGP	GND	GND	VCC GTL	GTL VREF	HD40	GND	VCC GTL	GND	GND	HD5	HD8	HD1	HD4	HD15
G	GD5	GND	GCLK	GND	GPAR	VCC AGP	G 7	8	9	10	11	12	13	14	15	16	17	18	19	G20	GND	HD0	HD6	CPU RST#	HA26	HA29
Н	GD1	GD3	GD0	GD2	VCC QQ	VCC AGP	Н			AGP	Pins									Н	VCC GTL	HA27	HA30	GND	HA18	HA24
J	G COMF	G P COMP	GND V QQ	VAD0 strap	GND	GND	J		VCC AGP	VCC AGP	VCC	VCC	VCC AGP	VCC GTL	VCC	VCC	VCC GTL	VCC GTL		J	GND	HA20	HA23	HA31	HA22	HA17
K	UP STB	UP STB#	UP CMD	VBE#	VL VREF	VAD1 strap	K	Vlink	VCC AGP	K10	11	12	13	14	15	16	K17	VCC GTL	CPU	K	VCC GTL	HCLK	HA25	HA19	HA10	HA21
L	DN CMD	DN STB	DN STB#	VPAR	VAD4	VAD2 strap	L	Pins	VCC	L	GND	GND	GND	GND	GND	GND	L	VCC	Pins	L	AVCC HCK	AGND HCK	TEST IN#	HA28	HA5	HA12
M	VCC VL	VCC VL	GND	GND	VCC VL	VCC VL	M	,	VCC	M	GND	GND	GND	GND	GND	GND	M	VCC		M	HA6	HA15	HA13	HA16	HA3	HA9
N	VCC VK	VADo	VAD7	VAD5	VAD3 strap	VCC VL	N		VCC VL	N	GND	GND	GND	GND	GND	GND	N	VCC GTL		N	HREQ 4#	HA8	HA11	HA14	BNR#	HA4
P	VL COMI	GND	PWR OK	RE SET#	GND	GND	P		VCC M	P	GND	GND	GND	GND	GND	GND	P	VCC GTL		P	GND	GND	HREQ 0#	GND	HREQ 2#	BPRI#
R	MD5	3 MD63	MD59	VSUS 25	SUST#	VCCM	R		VCC	R	GND	GND	GND	GND	GND	GND	R	VCC		R	VCC GTL	HA7	HREQ 1#	H LOCK#	DE FER#	HREQ 3#
Т	VCC	I VCCM	GND	GND	MD62	VCCM	T		VCC	Т	GND	GND	GND	GND	GND	GND	Т	VCC		T	GTL VREF	GND	RS1#	HITM#	HIT#	RS0#
U	MD5	DQM7 CKE7	DQS7# CKE7	MD61	MD56	MD60	U		VCC M	U10	11	12	13	14	15	16	U17	VCC M		U	AVCC MCK	AGND MCK	HT RDY#	DBSY#	RS2#	DRDY#
V	MD5			_	MD53	M VREF	v		VCC M	VCC M	VCC	VCC	VCC M	VCC M	VCC	VCC	VCC M	VCC M		v	GND	MCLK F	MCLK	GND	BREQ 0#	GND
w	DQS6 CKE6			AGND DL2	AVCC DL2	GND	w						DDR	Pins						w	VCCM	VCCM	MD0	ADS#	VCCM	VCCM
Y	VCC	A VCCM		GND	CS7#	VCCM	Y7	8	9	10	11	12	13	14	15	16	17	18	19	Y20	GND	MAB 14	MAA 14	GND	MD5	MD4
AA	MD4) MD48	MD47	MD46	CS6#	GND	VCCM	GND	VCCM	AVCC DL1	GND	VCCM	GND	VCCM	VCCM	GND	VCCM	MD18	M VREF	VCCM	GND	MAA 8	MD2	DQM0 CKE0	MD1	DQS0# CKE0
AB	MD4	DQM5 CKE5	MD42	MAA 11	MAB 11	MAA 12	MD39	MAB 10	VCCM	AGND DL1	MECC6 CKE6	VCCM	MAB 1	MAB 2	MAB 4	MAA 4	VCCM	MD22	MD16	VCCM	MAA 5	MAB 8	GND	MAA 13	GND	MD6
AC	MD4	GND	DQS5# CKE5	MAB 12	GND	SRAS A#	MD38	GND	MAB 0	DQS FB	GND	MECC5 CKE5	GND	MAA 1	MAB 3	GND	MAA 3	MD28	MD17	MAA 6	MAB 5	DQM1 CKE1	MAB 7	MAA 9	MAB 13	MD7
AD	MD4:	5 MD44	_	CS1#	CS5#	SWE B#	MAA 10	DQS4# CKE4	MD36	MD32	MECC2 CKE2	MECC0 CKE0	MAA 0	MD27	MAA 2	DQM3 CKE3	DQS3# CKE3	MD24	DQS2# CKE2	GND	GND	MD14	MD13	MAA 7	MAB 9	MD3
AE	CS3#	CS2#	SCAS A#	CS4#	GND	SRAS B#	DQM4 CKE4	GND	MD33	MECC3 CKE3	GND	MECC1 CKE1	GND	MD31	MD30	GND		MD23	DQM2 CKE2	MAB 6	MD11	MD10	GND	MD9	GND	VCCM
AF	VCC	A VCCM		SCAS B#	SWE A#	MD35	VCCM	MD34	MD37	MECC7 CKE7	DQM8	DQS8#	VCCM	MECC4 CKE4	MD26	VCCM	MD25	MD19	MD21	VCCM	MD20	MD15	DQS1# CKE1	MD12	MD8	VCCM

Table 1. Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	P	VCCAGP	D03	Ю	GBE0#	G05	Ю	GPAR	P01	I	VLCOMP	Y23	О	MAA14	AC25	О	MAB13
A02	P	VCCAGP	D04	P	GND	G06	P	VCCAGP	P02	P	GND	Y24	P	GND	AC26	Ю	MD07
A03	Ю	GD16	D05	IO	GD18	G21	P	GND	P03	I	PWROK	Y25	Ю	MD05	AD01	Ю	
A04	IO	GD17	D06	P	GND	G22	IO	HD00	P04	I	RESET#	Y26	IO	MD04	AD02	IO	MD44
A05 A06	P P	AGPVREF VCCAGP	D07 D08	IO IO	GDEVSEL# GD25	G23 G24	IO O	HD06 CPURST#	P05 P06	P P	GND GND	AA01 AA02	IO IO	MD49 MD48	AD03 AD04	IO O	MD40 CS1#
A07	IO	GD23	D08	0	ST0	G25		HA26	P21	P	GND	AA03	IO	MD47	AD04 AD05	o	CS5#
A08	Ю	GD24	D10	ŏ	ST2	G26	IO	HA29	P22	P	GND	AA04	IO	MD46	AD06	ŏ	SWEB#
A09	Ю	GD28	D11	I	GPIPE#	H01	Ю	GD1	P23	Ю	HREQ0#	AA05	О	CS6#	AD07	O	MAA10
A10	P	VCCAGP	D12	I	SBA3	H02	Ю	GD3	P24	P	GND	AA06	P	GND	AD08	Ю	DQS4# / CKE4
A11	I	SBA7	D13	I	SBA2	H03	IO	GD0	P25	IO	HREQ2#	AA07	P	VCCM	AD09	IO	MD36
A12	I	SBS#	D14	I	GREQ#	H04	IO	GD2	P26	IO	BPRI#	AA08	P	GND	AD10	IO	MD32
A13	I P	SBA0 VCCAGP	D15 D16	IO IO	HD61 HD53	H05 H06	P P	VCCQQ VCCAGP	R01 R02	IO	MD58 MD63	AA09	P P	VCCM AVCCDL1	AD11 AD12	IO IO	MECC2 / CKE2 MECC0 / CKE0
A14 A15	IO	HD62	D16	IO	HD48	H21	P	VCCAGF	R02	IO	MD59	AA10 AA11	P	GND	AD12	0	MAA00
A16	Ю	HD54	D17	IO	HD41	H22		HA27	R04	P	VSUS25	AA12	P	VCCM	AD14	Ю	MD27
A17	Ю	HD59	D19	IO	HD27	H23	Ю	HA30	R05	I	SUST#	AA13	P	GND	AD15	О	MAA02
A18	Ю	HD49	D20	IO	HD38	H24	P	GND	R06	P	VCCM	AA14	P	VCCM	AD16	О	DQM3 / CKE3
A19	IO	HD45	D21	IO	HD28	H25	IO	HA18	R21	P	VCCGTL	AA15	P	VCCM	AD17	IO	DQS3# / CKE3
A20	IO	HD37	D22	IO	HD33	H26	IO	HA24	R22	IO	HA07	AA16	P	GND	AD18	IO	MD24
A21 A22	IO	HD34 HD35	D23 D24	IO IO	HD03 HD11	J01 J02	I	GCOMPP GCOMPN	R23 R24	I	HREQ1# HLOCK#	AA17 AA18	P IO	VCCM MD18	AD19 AD20	IO P	DQS2# / CKE2 GND
A23			D24 D25		HD14	J02 J03	P	GNDQQ	R25	IO	DEFER#	AA19	P	MVREF	AD20	P	GND
A24	Ю	HD24	D26	IO	HD02	J04	IO	VAD0 / strap	R26	IO	HREQ3#	AA20	P	VCCM	AD21	Ю	MD14
A25	Ю	HD16	E01	P	VCCAGP	J05	P	GND	T01	P	VCCM	AA21	P	GND	AD23	IO	MD13
A26	P	VCCGTL	E02	P	VCCAGP	J06	P	GND	T02	P	VCCM	AA22	O	MAA08	AD24	O	MAA07
B01	IO	GD15	E03	IO	GDS0#	J21	P	GND	T03	P	GND	AA23	Ю	MD02	AD25	0	MAB09
B02	IO	GBE1#	E04	IO	GD10	J22	IO	HA20	T04	P	GND	AA24	0	DQM0 / CKE0	AD26	IO	MD03
B03 B04	IO P	GBE2# GND	E05 E06	IO IO	GSTOP# GTRDY#	J23 J24	IO	HA23 HA31	T05 T06	IO P	MD62 VCCM	AA25 AA26	IO IO	MD01 DQS0# / CKE0	AE01 AE02	0	CS3# CS2#
B04 B05	IO	GD21	E00 E07	IO	GFRM#	J24 J25	IO	HA22	T21	P	GTLVREF	AB01	IO	MD43	AE02 AE03	0	SCASA#
B06	P	VCCAGP	E08	IO	GDS1	J26		HA17	T22	P	GND	AB02	0	DQM5 / CKE5	AE04	ő	CS4#
B07	IO	GBE3#	E09	I	GWBF#	K01	I	UPSTB	T23	Ю	RS1#	AB03	Ю	MD42	AE05	P	GND
B08	Ю	GD27	E10	P	GND	K02	I	UPSTB#	T24	I	HITM#	AB04	О	MAA11	AE06	О	SRASB#
B09	IO	GD30	E11	I	SBA6	K03	I	UPCMD	T25	Ю	HIT#	AB05	О	MAB11	AE07	О	DQM4 / CKE4
B10	P	VCCAGP	E12	P	VCCAGP	K04	IO	VBE#	T26	IO	RS0#	AB06	0	MAA12	AE08	P	GND
B11	I	SBA4	E13	0	ST1	K05	P	VLREF	U01	IO	MD57	AB07	IO	MD39	AE09	IO	MD33
B12 B13	I	SBS SBA1	E14 E15	O P	CPURSTD# VCCGTL	K06 K21	IO P	VAD1 / strap VCCGTL	U02 U03	O IO	DQM7 / CKE7 DQS7# / CKE7	AB08 AB09	O P	MAB10 VCCM	AE10 AE11	IO P	MECC3 / CKE3 GND
B13	P	VCCAGP	E16	IO	HD55	K21 K22	I	HCLK	U04	IO	MD61	AB10	P	AGNDDL1	AE11	IO	MECC1 / CKE1
B15	Ю	HD50	E17	IO	HD63	K23	Ю	HA25	U05	Ю	MD56	AB11	Ю	MECC6 / CKE6	AE13	P	GND
B16	Ю	HD46	E18	P	GND	K24	Ю	HA19	U06	Ю	MD60	AB12	P	VCCM	AE14	Ю	MD31
B17	Ю	HD52	E19	Ю	HD44	K25	Ю	HA10	U21	P	AVCCMCK	AB13	О	MAB01	AE15	Ю	MD30
B18		HD51	E20	IO	HD43	K26	Ю	HA21	U22	P	AGNDMCK	AB14	О	MAB02	AE16	P	GND
B19	IO	HD42	E21	IO	HD29	L01	0	DNCMD	U23	IO	HTRDY#	AB15	0	MAB04	AE17	IO	MD29
B20 B21	IO	HD39 HD22	E22 E23	IO IO	HD09 HD18	L02 L03	0	DNSTB DNSTB#	U24 U25	IO	DBSY# RS2#	AB16 AB17	O P	MAA04 VCCM	AE18 AE19	IO O	MD23 DQM2 / CKE2
B21 B22		HD19	E23	IO	HD12	L03		VPAR	U26	IO	DRDY#	AB17 AB18	IO	MD22	AE19	ő	MAB06
B23			E25		HD10	L05	IO	VAD4	V01	IO	MD51	AB19	Ю	MD16	AE21	Ю	MD11
B24	ΙÖ	HD23	E26	ΙÖ	HD17	L06	IO	VAD2 / strap	V02	ΙÖ	MD55	AB20	P	VCCM	AE22	ΙÖ	MD10
B25	Ю	HD30	F01	IO	GD7	L21	P	AVCCHCK	V03	Ю	MD50	AB21	О	MAA05	AE23	P	GND
B26	IO	HD07	F02	IO	GD4	L22	P	AGNDHCK	V04	Ю	MD54	AB22	О	MAB08	AE24	IO	MD09
C01	IO	GD11	F03	IO	GD6	L23	I	TESTIN#	V05	IO	MD53	AB23	P	GND	AE25	P	GND
C02	IO	GD12	F04	IO	GDS0 GD9	L24 L25	IO	HA28	V06 V21	P	MVREF	AB24	O P	MAA13 GND	AE26	P P	VCCM
C03 C04	IO	GD13 GD14	F05 F06	IO P	GND	L25 L26		HA05 HA12	V21 V22	P I	GND MCLKF	AB25 AB26		MD06	AF01 AF02		VCCM VCCM
C05			F07		GND	M01		VCCVL	V23		MCLKI	AC01	IO		AF03		CS0#
C06	Ю	GD20	F08	IO	GDS1#	M02		VCCVL	V24	P	GND	AC02	P	GND	AF04	ŏ	SCASB#
C07	Ю	GD22	F09	IO	GD29	M03	P	GND	V25	О	BREQ0#	AC03	Ю	DQS5# / CKE5	AF05	О	SWEA#
C08		GD26	F10		GND	M04	P	GND	V26	P	GND	AC04		MAB12	AF06		MD35
C09	_		F11		GIRDY#	M05		VCCVL	W01	IO	DQS6# / CKE6	AC05	P	GND	AF07	P	VCCM
C10	I	GRBF# SBA5	F12 F13	P P	VCCAGP	M06		VCCVL HA06	W02 W03	O IO	DQM6 / CKE6 MD52	AC06	0	SRASA# MD38	AF08		MD34 MD37
C11 C12	I P	GND	F13		GND GND	M21 M22		HA06 HA15	W03	P	AGNDDL2	AC07 AC08	IO P	GND	AF09 AF10		MECC7 / CKE7
C12	o	GGNT#	F15	P	VCCGTL	M23		HA13	W05	P	AVCCDL2	AC09	o	MAB00	AF11	0	DQM8
C14		HD56	F16		GTLVREF	M24		HA16	W06	P	GND	AC10	Ĭ	DQSFB	AF12		
C15	Ю	HD60	F17	IO	HD40	M25	Ю	HA03	W21	P	VCCM	AC11	P	GND	AF13	P	VCCM
C16		HD58	F18		GND	M26		HA09	W22	P	VCCM	AC12	Ю	MECC5 / CKE5	AF14		MECC4 / CKE4
C17		HD57	F19		VCCGTL	N01		VCCVK	W23	IO		AC13	P	GND	AF15		MD26
C18		HD47	F20		GND	N02		VAD6	W24	IO	ADS#	AC14	0	MAA01 MAB03	AF16	P	VCCM
C19 C20		GND HD36	F21 F22	P IO	GND HD05	N03 N04		VAD7 VAD5	W25 W26	P P	VCCM VCCM	AC15 AC16	O P	GND	AF17 AF18		MD25 MD19
C20 C21		HD31	F23		HD08	N04 N05		VAD3 / strap	Y01	P	VCCM	AC17	0	MAA03	AF19		MD19 MD21
C21		HD32	F24		HD01	N05		VCCVL	Y02	P	VCCM	AC17		MD28	AF20	P	VCCM
C23		GND	F25		HD04	N21		HREQ4#	Y03	P	GND	AC19	IO		AF21		MD20
C24	Ю	HD21	F26	Ю	HD15	N22	Ю	HA08	Y04	P	GND	AC20	О	MAA06	AF22	Ю	MD15
C25		HD20	G01		GD5	N23		HA11	Y05	0	CS7#	AC21	0	MAB05	AF23		DQS1# / CKE1
C26		HD13	G02	P	GND	N24		HA14	Y06	P	VCCM	AC22	0	DQM1 / CKE1	AF24		MD12
D01		GD8	G03	I	GCLK	N25		BNR#	Y21	P	GND MAD14	AC23	0	MAB07	AF25		MD08
D02	P	GND	G04	P	GND	N26		HA04	Y22	0	MAB14	AC24	О	MAA09	AF26	P	VCCM

Center VCC Pins (16 pins): J11-12,15-16,L9,18,M9,18,R9,18,T9,18,V11-12,15-16
Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

VCCM (9 pins): P9,U9,18,V9-10,13-14,17-18 VCCAGP (4 pins): J9-10,13,K9 VCCGTL (6 pins): J14,17-18,K18,N18,P18 VCCVL (1 pin): N9

Table 2. Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	<u> Pin #</u>		Pin Name
	IO	ADS#	D08		GD25	AE25	P	GND	B20		HD39			MD14	E13		ST1
AB10 W04	P P	AGNDDL1 AGNDDL2	C08 B08		GD26 GD27	J03 G05	P IO	GNDQQ GPAR	F17 D18		HD40 HD41	AF22 AB19	IO IO	MD15 MD16	D10 R05	O	ST2 SUST#
L22	P	AGNDHCK	A09		GD27 GD28	D11	I	GPIPE#	B19		HD42	AC19		MD17	AF05	0	SWEA#
U22	P	AGNDMCK	F09	Ю	GD29	C10	I	GRBF#	E20	IO	HD43	AA18	Ю	MD18	AD06	О	SWEB#
A05 AA10	P P	AGPVREF AVCCDL1	B09 C09	IO IO	GD30 GD31	D14 E05	I IO	GREQ# GSTOP#	E19 A19		HD44 HD45	AF18 AF21		MD19 MD20	L23 K03	I	TESTIN# UPCMD
W05	P	AVCCDL1 AVCCDL2	F04		GDS0	F16	P	GTLVREF	B16		HD45	AF19		MD21	K03	I	UPSTB
L21	P	AVCCHCK	E03		GDS0#	T21	P	GTLVREF	C18	Ю	HD47	AB18	Ю	MD22	K02	I	UPSTB#
U21	P	AVCCMCK DND#	E08	IO	GDS1	E06	IO	GTRDY#	D17		HD48	AE18	IO	MD23	J04	IO	VAD0 / strap
N25 P26	IO IO	BNR# BPRI#	F08 D07	IO	GDS1# GDEVSEL#	E09 M25	I IO	GWBF# HA03	A18 B15		HD49 HD50	AD18 AF17		MD24 MD25	K06 L06		VAD1 / strap VAD2 / strap
V25	O	BREQ0#	E07		GFRM#	N26	IO	HA04	B18		HD51	AF15	Ю	MD26	N05		VAD3 / strap
G24	0	CPURST#	C13	0	GGNT#	L25	IO	HA05	B17	IO	HD52	AD14	IO	MD27	L05		VAD4
E14 AF03	0	CPURSTD# CS0#	F11 B04	IO P	GIRDY# GND	M21 R22	IO IO	HA06 HA07	D16 A16		HD53 HD54	AC18 AE17	IO IO	MD28 MD29	N04 N02		VAD5 VAD6
AD04	ŏ	CS1#	C12	P	GND	N22	IO	HA08	E16		HD55	AE15		MD30	N03	IO	VAD7
AE02	0	CS2#	C19	P	GND	M26	IO	HA09	C14		HD56	AE14		MD31	K04	IO	VBE#
AE01 AE04	0	CS3# CS4#	C23 D02	P P	GND GND	K25 N23	IO IO	HA10 HA11	C17 C16		HD57 HD58	AD10 AE09	IO IO	MD32 MD33	A01 A02	P P	VCCAGP VCCAGP
AD05	ŏ	CS5#	D04	P	GND	L26	IO	HA12	A17		HD59	AF08	Ю	MD34	A06	P	VCCAGP
AA05	0	CS6#	D06	P	GND	M23	IO	HA13	C15		HD60	AF06	IO	MD35	A10	P	VCCAGP
Y05 U24	O IO	CS7# DBSY#	E10 E18	P P	GND GND	N24 M22	IO IO	HA14 HA15	D15 A15		HD61 HD62	AD09 AF09	IO IO	MD36 MD37	A14 B06	P P	VCCAGP VCCAGP
R25	IO	DEFER#	F06	P	GND	M24	IO	HA16	E17		HD63	AC07	Ю	MD38	B10	P	VCCAGP
L01	О	DNCMD	F07	P	GND	J26	Ю	HA17	T25	IO	HIT#	AB07	Ю	MD39	B14	P	VCCAGP
L02	0	DNSTB DNSTB#	F10 F13	P P	GND	H25	IO	HA18	T24 R24	I	HITM# HLOCK#	AD03		MD40 MD41	E01	P P	VCCACP
L03 AA24	0	DNSTB# DQM0 / CKE0	F13	P	GND GND	K24 J22	IO IO	HA19 HA20	P23	IO	HREQ0#	AC01 AB03		MD41 MD42	E02 E12	P P	VCCAGP VCCAGP
AC22	О	DQM1 / CKE1	F18	P	GND	K26	Ю	HA21	R23	Ю	HREQ1#	AB01	Ю	MD43	F12	P	VCCAGP
AE19	0	DQM2 / CKE2	F20	P	GND	J25	IO	HA22	P25		HREQ2#	AD02	IO	MD44	G06	P	VCCAGP
AD16 AE07	0	DQM3 / CKE3 DQM4 / CKE4	F21 G02	P P	GND GND	J23 H26	IO IO	HA23 HA24	R26 N21		HREQ3# HREQ4#	AD01 AA04	IO	MD45 MD46	H06 A26	P P	VCCAGP VCCGTL
AB02	ŏ	DQM5 / CKE5	G04	P	GND	K23	IO	HA25	U23		HTRDY#	AA03	IO	MD47	E15	P	VCCGTL
W02	0	DQM6 / CKE6	G21	P	GND	G25	IO	HA26	AD13		MAA00	AA02	IO	MD48	F15	P	VCCGTL
U02 AF11	0	DQM7 / CKE7 DQM8	H24 J05	P P	GND GND	H22 L24	IO IO	HA27 HA28	AC14 AD15		MAA01 MAA02	AA01 V03	IO	MD49 MD50	F19 H21	P P	VCCGTL VCCGTL
		DQS0# / CKE0	J06	P	GND	G26	Ю	HA29	AC17		MAA03	V01	IO	MD51	K21	P	VCCGTL
AF23	IO	DQS1# / CKE1	J21	P	GND	H23	Ю	HA30	AB16		MAA04	W03	Ю	MD52	R21	P	VCCGTL
AD19 AD17		DQS2# / CKE2 DQS3# / CKE3	M03 M04	P P	GND GND	J24 K22	IO I	HA31 HCLK	AB21 AC20		MAA05 MAA06	V05 V04	IO	MD53 MD54	R06 T01	P P	VCCM VCCM
AD08		DQS4# / CKE4	P02	P	GND	G22	IO	HD00	AD24		MAA07	V04 V02	IO	MD55	T02	P	VCCM
AC03	Ю	DQS5# / CKE5	P05	P	GND	F24		HD01	AA22	О	MAA08	U05	Ю	MD56	T06	P	VCCM
W01 U03		DQS6# / CKE6 DQS7# / CKE7	P06 P21	P P	GND GND	D26 D23	IO IO	HD02 HD03	AC24 AD07		MAA09 MAA10	U01 R01	IO IO	MD57 MD58	W21 W22	P P	VCCM VCCM
		DQS/# / CRE/	P22	P	GND	F25	Ю	HD04	AB04		MAA11	R03		MD59	W25	P	VCCM
AC10	I	DQSFB	P24	P	GND	F22	Ю	HD05	AB06	О	MAA12	U06	Ю	MD60	W26	P	VCCM
U26		DRDY#	T03	P	GND	G23	IO	HD06	AB24		MAA13	U04	IO	MD61	Y01	P	VCCM
D03 B02		GBE0# GBE1#	T04 T22	P P	GND GND	B26 F23	IO IO	HD07 HD08	Y23 AC09		MAA14 MAB00	T05 R02	IO IO	MD62 MD63	Y02 Y06	P P	VCCM VCCM
B03	Ю	GBE2#	V21	P	GND	E22	Ю	HD09	AB13	О	MAB01	AD12	Ю	MECC0 / CKE0	AA07	P	VCCM
B07		GBE3#	V24	P	GND	E25	IO	HD10	AB14		MAB02	AE12		MECC1 / CKE1	AA09	P	VCCM
G03 J02	I	GCLK GCOMPN	V26 W06	P P	GND GND	D24 E24	IO IO	HD11 HD12	AC15 AB15		MAB03 MAB04	AD11 AE10	IO	MECC2 / CKE2 MECC3 / CKE3	AA12 AA14	P P	VCCM VCCM
J01	Ι	GCOMPP	Y03	P	GND	C26	Ю	HD13	AC21	О	MAB05	AF14	Ю	MECC4 / CKE4	AA15	P	VCCM
H03			Y04	P	GND									MECC5 / CKE5			
H01 H04		GD1 GD2	Y21 Y24	P P	GND GND	F26 A25		HD15 HD16	AC23 AB22		MAB07 MAB08	AB11 AF10		MECC6 / CKE6 MECC7 / CKE7	AA20 AB09		VCCM VCCM
H02	Ю	GD3	AA06	P	GND	E26		HD17	AD25	О	MAB09	V06	P	MVREF	AB12	P	VCCM
F02		GD4	AA08		GND	E23		HD18	AB08		MAB10	AA19		MVREF	AB17		VCCM
G01 F03		GD5 GD6	AA11 AA13		GND GND	B22 C25		HD19 HD20	AB05 AC04		MAB11 MAB12	P03 P04	I	PWROK RESET#	AB20 AE26		VCCM VCCM
F01		GD7	AA16		GND	C24		HD21	AC25		MAB12 MAB13	T26		RS0#	AF01		VCCM
D01	Ю	GD8	AA21	P	GND	B21	Ю	HD22	Y22	О	MAB14	T23	Ю	RS1#	AF02	P	VCCM
F05 E04		GD9 GD10	AB23		GND GND	B24 424		HD23 HD24	V22 V23		MCLKF MCLK	U25	_	RS2# SBA0	AF07		VCCM VCCM
C01		GD10 GD11	AB25 AC02		GND GND	A24 A23		HD24 HD25	W23		MD00	A13 B13	I	SBA0 SBA1	AF13 AF16		VCCM VCCM
C02	Ю	GD12	AC05	P	GND	B23	Ю	HD26	AA25	IO	MD01	D13	I	SBA2	AF20	P	VCCM
		GD13	AC11		GND	D19		HD27	AA23			D12	I	SBA3	AF26		VCCOO
C04 B01		GD14 GD15	AC11 AC13		GND GND	D21 E21		HD28 HD29			MD03 MD04	B11 C11	I I	SBA4 SBA5	H05 N01	P	VCCQQ VCCVK
A03	Ю	GD16	AC16	P	GND	B25	Ю	HD30	Y25	Ю	MD05	E11	I	SBA6	M01	P	VCCVL
		GD17	AD20		GND	C21		HD31			MD06	A11	I	SBA7	M02		VCCVL
D05 C05		GD18 GD19	AD21 AE05		GND GND	C22 D22		HD32 HD33	AC26 AF25		MD07 MD08	B12 A12	I I	SBS SBS#	M05 M06		VCCVL VCCVL
C06		GD20	AE08		GND	A21		HD34			MD09	AE03		SCASA#	N06		VCCVL
B05	Ю	GD21	AE11	P	GND	A22		HD35	AE22	Ю	MD10	AF04	0	SCASB#	P01	Ι	VLCOMP
C07 A07		GD22 GD23	AE13 AE16		GND GND	C20 A20		HD36 HD37	AE21 ΔE24		MD11 MD12	AC06 AE06		SRASA# SRASB#	K05 L04		VLVREF VPAR
		GD23 GD24	AE10 AE23		GND	D20		HD37 HD38			MD12 MD13	D09		SKASB# ST0	R04		VSUS25
		Pine (16 nine): I11-12 15									IQ 18 VQ_10 13_1						

Center VCC Pins (16 pins): J11-12,15-16,19,18,M9,18,R9,18,T9,18,V11-12,15-16 Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

Pin Descriptions

Table 3. Pin Descriptions

			CPU Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
HA[31:3]	(See Pin List)	IO	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU
			cycles HA[31:3] are inputs. These signals are driven by the Pro266 during cache
HD[62.0]	(See Pin List)	IO	snooping operations. Heat CRI Date. These signals are connected to the CRI date by:
HD[63:0] ADS#	W24	IO	Host CPU Data. These signals are connected to the CPU data bus. Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
BNR#	N25	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	P26	IO	Priority Agent Bus Request. The owner of this signal will always be the next bus
			owner. This signal has priority over symmetric bus requests and causes the current
			symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted.
DDCX///	1104	10	The Pro266 drives this signal to gain control of the processor bus.
DBSY#	U24	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring
DEFER#	R25	IO	more than one cycle. Defer. The Pro266 uses a dynamic deferring policy to optimize system performance.
DEFER#	K23	10	The Pro266 also uses the DEFER# signal to indicate a processor retry response.
DRDY#	U26	IO	Data Ready. Asserted for each cycle that data is transferred.
HIT#	T25	IO	Hit. Indicates that a cacheing agent holds an unmodified version of the requested line.
1111#	123	10	Also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	T24	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last
1111111	12.	-	snoop cycle is modified in the L1 cache and needs to be written back.
HLOCK#	R24	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the
			negation of HLOCK# must be atomic.
HREQ[4:0]#	N21, R26,	IO	Request Command. Asserted during both clocks of the request phase. In the first
	P25, R23,		clock, the signals define the transaction type to a level of detail that is sufficient to begin
	P23		a snoop request. In the second clock, the signals carry additional information to define
			the complete transaction type.
HTRDY#	U23	IO	Host Target Ready. Indicates that the target of the processor transaction is able to enter
DCIA ALII	1125 T22	10	the data transfer phase.
RS[2:0]#	U25, T23, T26	IO	Response Signals. Indicates the type of response per the table below:
	120		RS[2:0]# Response type 1000 Idle State
			000 Retry Response
			010 Defer Response
			011 Reserved
			100 Hard Failure
			101 Normal Without Data
			110 Implicit Writeback
			111 Normal With Data
CPURST#	G24	О	CPU Reset. Reset output to CPU
BREQ0#	V25	О	Bus Request 0. Bus request output to CPU.

Note: Clocking of the CPU interface is performed with HCLK. See the clock pin group at the end of the pin descriptions section for descriptions of the clock pins.

Revision 1.5 May 6, 2003 -10- Pin Descriptions

The Pro266 pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

	D	RAM	I Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(See Pin List)	IO	Memory Data. These signals are connected to the DRAM data bus.
MECC[7:0] / CKE[7:0]	AF10, AB11, AC12, AF14, AE10, AD11, AE12, AD12	Ю	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat/temperature in high-speed memory systems.
MAA[14:0]	Y23, AB24, AB6, AB4, AD7, AC24, AA22, AD24, AC20, AB21, AB16, AC17, AD15, AC14, AD13	O	Memory Address A. DRAM address lines (two sets for better drive)
MAB[14:0]	Y22, AC25, AC4, AB5, AB8, AD25, AB22, AC23, AE20, AC21, AB15, AC15, AB14, AB13, AC9	О	Memory Address B. DRAM address lines (two sets for better drive).
CS[7:0]#	Y5, AA5, AD5, AE4, AE1, AE2, AD4, AF3	О	Memory Chip Select. Chip select of each bank.
DQM8, DQM7 / CKE7, DQM6 / CKE6, DQM5 / CKE5, DQM4 / CKE4, DQM3 / CKE3, DQM2 / CKE2, DQM1 / CKE1, DQM0 / CKE0	AF11, U2, W2, AB2, AE7, AD16, AE19, AC22, AA24	0	Memory Data Mask. Data mask of each data byte lane (DQM[0-7] and ECC byte (DQM8).
SRASA#, SRASB#	AC6, AE6	0	Row Address Command Indicator. (2 pins for better drive)
SCASA#, SCASB# SWEA#, SWEB#	AE3, AF4 AF5, AD6	0	Column Address Command Indicator. (2 pins for better drive) Write Enable Command Indicator. (2 pins for better drive)
DQS[8]#, DQS[7:0]# / CKE[7:0]	AF3, AD6 AF12, U3, W1, AC3, AD8, AD17, AD19, AF23, AA26	IO	DDR Data Strobe. DQS[8]# for ECC bit.
DQSFB	AC10	I	DDR Data Strobe Feedback.

Revision 1.5 May 6, 2003 -12- Pin Descriptions

			V-Link Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
VAD7,	N3,	IO	V-Link Address / Data Bus.
VAD6,	N2,		
VAD5,	N4,		
VAD4,	L5,		
VAD3 / strap,	N5,		VAD3 strap = GTL Internal Pullups (0=Disable, 1=Enable) See Rx50[6].
VAD2 / strap,	L6,		VAD2 strap = IOQ Depth (0=8-Level, 1=1-Level) See Rx50[7].
VAD1 / strap,	K6,		VAD1-0 straps = CPU FSB Frequency (00=66, 01=100, 1x=133) See Rx54[7-6].
VAD0 / strap	J4		
VPAR	L4	IO	Parity.
VBE#	K4	IO	Byte Enable.
UPCMD	K3	I	Command from Client-to-Host.
UPSTB	K1	I	Strobe from Client-to-Host.
UPSTB#	K2	I	Complement Strobe from Client-to-Host.
DNCMD	L1	О	Command from Host-to-Client.
DNSTB	L2	О	Strobe from Host-to-Client.
DNSTB#	L3	О	Complement Strobe from Host-to-Client.

			AGP Bus Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
GD[31:0]	(See Pin List)	Ю	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.
GBE[3:0]#	В7,	IO	Command/Byte Enable.
GDE[3.v]#	B3, B2, D3	10	AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
CDAD	G5	IO	
GPAR GDS0	G5 F4	IO IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0]. Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on
GDS0	Г4	10	AD[15:0]. The agent that is providing the data drives this signal.
GDS0#	E3	IO	Bus Strobe 0 compliment and Bus Strobe 0 (AGP transactions only). Provides timing for 4x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.
GDS1	E8	Ю	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GDS1#	F8	IO	Bus Strobe 1 compliment and Bus Strobe 1 (AGP transactions only). Provides timing for 4x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GFRM#	E7	Ю	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	F11	Ю	Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	E6	Ю	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	E5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDEVSEL#	D7	IO	Device Select (PCI transactions only). This signal is driven by the Pro266 when a PCI initiator is attempting to access main memory. It is an input when the Pro266 is acting as PCI initiator. Not used for AGP cycles.
GPIPE#	D11	I	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-width request is to be enqueued by the target Pro266. The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus.
GRBF#	C10	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the Pro266 will not return low priority read data to the master.
GWBF#	E9	I	Write Buffer Full.

			AGP Bus Interface (continued)
Signal Name	Pin#	<u>I/O</u>	Signal Description
SBA[7:0]	A11, E11, C11, B11, D12, D13, B13, A13	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (the Pro266, these pins are ignored until enabled.
SBS	B12	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)
SBS#	A12	I	Sideband Strobe compliment and SBS . Provides timing for SBA[7:0] (driven by the master) when 4x timing is supported.
ST[2:0]	D10, E13, D9	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the Pro266 and inputs to the master.
GREQ#	D14	I	Request. Master request for AGP.
GGNT#	C13	О	Grant. Permission is given to the master to use AGP.

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the Pro266 has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

Revision 1.5 May 6, 2003 -15- Pin Descriptions

	Clock / Reset Control				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
HCLK	K22	Ι	Host Clock. This pin receives the host CPU clock (66 / 100 / 133 MHz). This clock is used by all Pro266 logic that is in the host CPU domain.		
GCLK	G3	I	AGP Clock. This pin receives the AGP bus clock (66 MHz). This clock is used by all Pro266 logic that is in the AGP clock domain. The AGP clock must be synchronous / pseudo-synchronous to the host CPU clock (selectable as shown in the table above).		
MCLK	V23	О	DRAM Clock. Output from internal clock generator to the external clock buffer.		
MCLKF	V22	I	DRAM Clock Feedback Input.		
RESET#	P4	I	Reset. Input from south bridge chip. When asserted, this signal resets the Pro266 and sets all register bits to the default value. The same signal that connects to this pin may also be used (connected through an external inverter) to reset the ISA bus (if implemented). The rising edge of this signal is used to sample all power-up strap options.		
PWROK	P3	I	Power OK.		
CPURST#	G24	О	CPU Reset. CPU Reset output to the CPU.		
CPURSTD#	E14	О	CPU Reset Delayed. CPU Reset output to the CPU, 2T delayed from CPURST#.		
SUST#	R5	Ι	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.		

	Power, Ground, Analog, and Test				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
VCC	(See Pin List)	P	Core Power. $2.5V \pm 5\%$.		
GND	(See Pin List)	P	Ground		
VCCGTL	A26, E15, F15, F19, H21,	P	GTL+ I/O Power. $2.5V \pm 5\%$.		
	J14, J17-J18, K18, K21,				
	N18, P18, R21				
VCCVL	M1-M2, M5-M6, N6, N9	P	V-Link Power. $2.5V \pm 5\%$.		
VCCM	P9, R6, T1-T2, T6, U9, U18,	P	DRAM Power. Connect to $2.5V \pm 5\%$ power source for DDR		
	V9-V10, V13-V14, V17-V18,		SDRAM or to 3.3V \pm 5% for SDR SDRAM (see Design Guide for		
	W21-W22, W25-W26, Y1-Y2,		details).		
	Y6, AA7, AA9, AA12, AA14, AA15, AA17, AA20, AB9,				
	AB12, AB17, AB20, AE26,				
	AF1, AF2, AF7, AF13, AF16,				
	AF20, AF26				
VCCAGP	A1-A2, A6, A10, A14, B6, B10,	P	AGP Power. 1.5V (AGP 4x) / 3.3V (AGP 2x and 1x) \pm 5%.		
	B14, E1-E2, E12, F12, G6, H6,				
	J9-J10, J13, K9				
VCCQQ	H5	P	AGP Quiet Power. $1.5V (AGP 4x) / 3.3V (AGP 2x and 1x) \pm 5\%$.		
GNDQQ	Ј3	P	AGP Quiet Ground.		
VSUS25	R4	P	Suspend Power. 2.5V ±5%.		
AVCCHCK	L21	P	PLL Power. Clock generator/deskew. 2.5V ±5%.		
AGNDHCK	L22	P	PLL Analog Ground. Clock generator/deskew ground. Connect to		
			main ground plane through ferrite bead.		
AVCCMCK	U21	P	DRAM Dskew Power. 2.5V ±5%.		
AGNDMCK	U22	P	DRAM Dskew Analog Ground. Connect to main ground plane		
		_	through ferrite bead.		
AVCCDL1	AA10	P	DLL Power. 2.5V ±5%.		
AGNDDL1	AB10	P	DLL Analog ground		
AVCCDL2	W5	P P	DLL Power. 2.5V ±5%.		
AGNDDL2	W4		DLL Analog ground		
MVREF	V6, AA19	P	DDR SDRAM Memory Voltage Reference. 1.25V		
GTLVREF	F16, T21	P P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2% AGP Voltage Reference. ½ VCCQQ.		
AGPVREF VLVREF	A5 K5	P P	V-Link Voltage Reference. 0.9V.		
GCOMPN	J2	I	N Channel Compensation for AGP		
GCOMPP	J1	I	P Channel Compensation for AGP		
VCCVK	N1	I	V-Link Compensation Circuit Power. 2.5V ±5%.		
VLCOMP	P1	I	P Channel Compensation for V-Link		
TESTIN#	L23	I	Test Input. NAND tree / tristate mode test select.		
ILSIII\#	L23	1	1 cs. input. Ivand tice / tilstate filode test select.		

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the Pro266. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 4. Registers

I/O Ports

Port #	I/O Port	<u>Default</u>	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

Pro266 Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3091	RO
5-4	Command	0006	\mathbf{RW}
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	Reserved	00	
D	Latency Timer	00	\mathbf{RW}
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	\mathbf{RW}
14-2B	Reserved	00	
2D-2C	Subsystem Vendor ID	0000	RW
2F-2E	Subsystem ID	0000	RW
33-30	Reserved	00	
37-34	Canability Pointer	0000 00A0	RO
3F-38	Reserved	00	

Device-Specific Registers

Offset	V-Link Control	Default	Acc
40	V-Link Revision ID	00	RW
41	V-Link NB Capability	18	RW
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RW
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RW
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RO
4D	V-Link SB Bus Timer	44	RW
	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	Default	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	03	RW
	Miscellaneous	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DOS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	Extended SMRAM Control	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	00	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	RW
72	-reserved-	00	
73	PCI Master Control	00	RW
74	-reserved-	00	
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved-	00	_
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
9F-8C	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0201	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
B0	AGP Compensation Control / Status	XX	RW
B1	AGP Drive Strength	63	RW
B2	AGP Drive / Delay Control	08	RW
В3	-reserved-	00	

Offset	V-Link Control	Default	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
B6-B7	-reserved-	00	
B8	V-Link SB Compensation Control	00	RW
В9	V-Link SB Drive Control	00	RW
BA-BE	-reserved-	00	

Offset	Miscellaneous Control	Default	Acc
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Extended Power Management	Default	Acc
C0	Capability ID	01	RO
C1	Next Pointer	00	RO
C2	Power Management Capabilities 1	02	RO
C3	Power Management Capabilities 2	00	RO
C4	Power Management Control / Status	00	RW
C5	Power Management Status	00	RW
C6	PCI-to-PCI Bridge Support Extension	00	RW
C7	Power Management Data	00	RW
C8-DF	-reserved-	00	

Offset	UMA Control (Reserved)	Default	Acc
E0-EF	-reserved-	00	_

Offset	Test	Default	Acc
F0	PLL Test Mode (do not program)	00	RW
F1	PLL Test Mode Select	00	RW
F2	Chin Test Mode (do not program)	00	RW

Offset	BIOS Scratch & Foundry ID	Default	Acc
F3-F7	BIOS Scratch Registers	00	RW
F8	Foundry ID	00	RW

Offset	Back Door Control	Default	Acc
F9	Back Door Control	00	RW
FA	Back-Door Max # of AGP Requests	00	RW
FB	Back-Door Revision ID	00	RW
FD-FC	Back-Door Device ID	0000	RW
	-reserved-	00	

Pro266 Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	B091	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID (R/W if Rx44[7]=1)	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
С	-reserved-	00	_
D	Latency Timer	00	RW
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
17-10	-reserved-	00	_
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-33	-reserved-	00	
34	Capability Pointer	80	RO
35-3D	-reserved-	00	_
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Back-Door Register Control	20	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the Pro266: Port 22.

Port 22	2 – PCI / AGP Arbiter Disable	RW
7-2	Reservedalways	reads 0
1	AGP Arbiter Disable	
	0 Respond to GREQ# signal	.default
	1 Do not respond to GREQ# signal	
0	PCI Arbiter Disable	
	0 Respond to all REQ# signals	.default
	1 Do not respond to any REQ#	signals.
	including PREQ#	-
- T		

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 76.

Configuration Space I/O

All registers in the Pro266 (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration Address.....RW

31	Configuration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
	(devices 0 and 1 are defined for the Pro266)
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions (only function 0 is
	defined for the Pro266).
7-2	Register Number (also called the "Offset")
	Used to select a specific DWORD in the Pro266
	configuration space
1-0	Fixed always reads 0

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Port CFF-CFC - Configuration Data.....RW

Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO
15-0		ode (reads 1106h to identify VIA Technologies)
Davica	n Offe	et 3-2 - Device ID (3091h)RO
15-0	ID C	ode (reads 3091h to identify the Pro266)
Device	0 Offs	et 5-4 -Command (0006h)RW
15-10		rvedalways reads 0
9	Fast	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8	SER	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report parity errors if bit-6 is set).
7	Addı	ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4	Mem	ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	Speci	ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	Bus I	MasterRO
	0	Never behaves as a bus master
	1	Can behave as a bus masterdefault
1	Mem	ory SpaceRO
	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space

Device	0 Offse	et 7-6 – Status (0210h)RWC
15	Detec	eted Parity Error
	0	No parity error detecteddefault
	1	Error detected in either address or data phase.
		This bit is set even if error response is disabled
		(command register bit-6) write one to clear
14	Signa	lled System Error (SERR# Asserted)
		always reads 0
13	Signa	led Master Abort
	0	No abort received default
	1	Transaction aborted by the master
		write one to clear
12	Recei	ved Target Abort
	0	No abort received default
	1	Transaction aborted by the target
		write one to clear
11	_	always reads 0
40.0	0	Target Abort never signaled
10-9		SEL# Timing
	00	- ***
	01	Mediumalways reads 01
	10	Slow Reserved
8	11 Data	
o	Data 0	Parity Error Detected No data parity error detected default
	1	Error detected in data phase. Set only if error
	1	response enabled via command bit- $6 = 1$ and
		Pro266 was initiator of the operation in which
		the error occurredwrite one to clear
7	Fast 1	Back-to-Back Capablealways reads 0
6		Definable Features always reads 0
5		Hz Capablealways reads 0
4		orts New Capability listalways reads 1
3-0	Reser	
		et 8 - Revision ID (0nh)RO
7-0	Chip	Revision Codealways reads 0nh
		$\dots (n = revision code)$
Device	0 Offse	et 9 - Programming Interface (00h)RO
7-0		face Identifieralways reads 00
, 0		
Device	<u>0 Offse</u>	et A - Sub Class Code (00h)RO
7-0	Sub C	Class Codereads 00 to indicate Host Bridge
Device	∩ Offsa	et B - Base Class Code (06h)RO
7-0		Class Code reads 06 to indicate Bridge Device
7-0	Dase	Class Code Icads oo to indicate Bridge Device
Device	0 Offse	et D - Latency Timer (00h)RW
		atency timer value in PCI bus clocks.
7-3	Reser	
2-0		anteed Time Slice for CPU (fixed granularity
4 -0	of 8 c	
		-1 are writeable but read 0 for PCI specification
		atibility. The programmed value may be read
		in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device 0 Offset E - Header Type (00h)RO												
7-0	Header Type Code reads 00: single function											
Device 0 Offset F - Built In Self Test (BIST) (00h)RO												
7	BIST Supported reads 0: no supported functions											
6-0	Reserved always reads 0											
	·											
Device (O Offset 13-10 - Graphics Aperture Base											
<u>(000000</u>	<u>(08h)RW</u>											
31-28	Upper Programmable Base Address Bits def=0											
27-20	Lower Programmable Base Address Bits def=0											
	These bits behave as if hardwired to 0 if the											
	corresponding Graphics Aperture Size register bit											
	(Device 0 Offset 84h) is 0.											
	27 26 25 24 22 22 21 20 (This Besides)											
	27 26 25 24 23 22 21 20 (This Register)											
	$\frac{7}{6}$ $\frac{6}{5}$ $\frac{4}{4}$ $\frac{3}{2}$ $\frac{2}{1}$ $\frac{1}{0}$ (Gr Aper Size)											
	RW RW RW RW RW RW RW 1M											
	RW RW RW RW RW RW 0 2M											
	RW RW RW RW RW 0 0 4M											

19-0 Reservedalways reads 00008

0 0 0 0

0 0 0

0 0 0

0

8M

16M

32M

64M

128M

256M

RW RW RW RW RW

RWRWRWRW 0

 $0 \quad 0 \quad 0 \quad 0 \quad 0$

RWRWRW 0

RWRW 0

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

RW 0

Note: The locations in the address range defined by this register are prefetchable.

<u>Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h) RW</u>

15-0 Subsystem Vendor IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h).....RW

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO	Device	0 Offset 45 –NB V-Link Bus Timer (44h)RW
7-0	Specification Revision	7-4	0000 Immediate 0001 1*4 VCLKs
	-		0010 2*4 VCLKs
7-6 -	Reserved always reads 0		0011 3*4 VCLKs
5	16-bit Bus Width SupportedRO		0100 4*4 VCLKs default
	0 Not Supporteddefault		0101 5*4 VCLKs
	1 Supported		0110 6*4 VCLKs
4	8-Bit Bus Width SupportedRO		0111 7*4 VCLKs
	0 Not Supported		1000 8*4 VCLKs
	1 Supporteddefault		1001 16*4 VCLKs
3	4x Rate SupportedRO		1010 32*4 VCLKs
	0 Not Supported		1011 64*4 VCLKs
	1 Supporteddefault		11xx Own the bus for as long as there is a request
2	2x Rate SupportedRO	3-0	Timer for High Priority Requests from SB
	0 Not Supporteddefault		0000 Immediate
	1 Supported		0001 1*2 VCLKs
1-0	Reserved always reads 0		0010 2*2 VCLKs
			0011 3*2 VCLKs
	0.000 (40.100)		0100 4*2 VCLKs default
<u>Device</u>	0 Offset 42 – NB Downlink Command (88h)RW		0101 5*2 VCLKs
7-4	DnCmd Max Request Depth $(0=1 \text{ DnCmd})$. $def = 8$		0110 6*2 VCLKs
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0111 7*2 VCLKs
D	0. Office 4.4.4.2. ND Heller Control (02001)		1000 8*2 VCLKs
	0 Offset 44-43 – NB Uplink Status (8280h)RO		1001 16*2 VCLKs
	UpCmd P2C Write Buffer Size (max lines) def = 8		1010 32*2 VCLKs
11-8	UpCmd P2P Write Buffer Size (max lines) $def = 2$		1011 64*2 VCLKs
7-4	UpCmd Max Request Depth $(0=1 \text{ UpCmd})$. $def = 8$		11xx Own the bus for as long as there is a request
3-0	Reserved always reads 0		are one for an long an alone in a loquon

Device	U OHS	et 40 - ND V-Link Misc Control (0011) KW
7	Down	nstream High Priority
	0	Disable High Priority Down Commandsdef
	1	Enable High Priority Down Commands
6	Down	ılink Priority
	0	Treat Downlink Cycles as Normal Priority.def
	1	Treat Downlink Cycles as High Priority
5-4	Com	bine Multiple STPGNT Cycles into One V-
	Link	Command
	00	Compatible, 1 command per V-Link cmddef
	01	2 commands per V-Link command
	10	3 commands per V-Link command
	11	4 commands per V-Link command
3-2	V-Li	nk Master Access Ordering Rules
	00	High priority read, pass normal read (not pass
		write)default
	01	(B)
	1x	Read / write in order
1-0	Rese	rved always reads 0
Device	0 Offs	et 47 – V-Link Control (00h)RW
7-3		rvedalways reads 0
2	Auto	-Disconnect
	0	Disabledefault
	1	Enable
1	V-Li	nk Disconnect Cycle for HALT cycle
	0	
	1	Enable
0	V-Li	nk Disconnect Cycle for STPGNT Cycle
	0	Disabledefault
	1	Enable

Device (Offset 48 – NB/SB V-Link Configuration (18h)RW
7	Reserved always reads 0
6	Rest Bus Width Supported
	0 Not Supported default
	1 Supported
5	16-bit Bus Width Supported
	0 Not Supported default
	1 Supported
4	8-Bit Bus Width Supported
	0 Not Supported
	1 Supporteddefault
3	4x Rate Supported
	0 Not Supported
	1 Supporteddefault
2	2x Rate Supported
	0 Not Supporteddefault
	1 Supported
1-0	Reserved always reads 0
Device (O Offset 49 – SB V-Link Capability (18h)
7-6	Reserved always reads 0
5	16-bit Bus Width SupportedRO
	0 Not Supported default
	1 Supported
4	8-Bit Bus Width SupportedRO
	0 Not Supported
	1 Supporteddefault
3	4x Rate SupportedRO
	0 Not Supported
	1 Supported default
2	2x Rate SupportedRO
	0 Not Supported default
	1 Supported
1-0	Reserved always reads 0
Device (O Offset 4A – SB Downlink Status (88h)RO
7-4	DnCmd Max Request Depth (0=1 DnCmd)def = 8
3-0	DnCmd Write Buffer Size (doublewords) def = 8
Device (O Offset 4C-4B – SB Uplink Command (8280h) RW
	UpCmd P2C Write Buffer Size (max lines)def = 8
11-8	UpCmd P2P Write Buffer Size (max lines) $def = 2$
7-4	UpCmd Max Request Depth (0=1 UpCmd)def = 8
3-0	Reservedalways reads 0

Device	0 Offset 4D – SB V-Link Bus Timer (44h)RW	Device	0 Offset 4E – CCA Master Priority (00h)RW
7-4	Timer for Normal Priority Requests from SB	7	Reservedalways reads 0
	0000 Immediate	6	LAN / NIC High Priority
	0001 1*4 VCLKs		0 Low prioritydefault
	0010 2*4 VCLKs		1 High priority
	0011 3*4 VCLKs	5	Reservedalways reads 0
	0100 4*4 VCLKsdefault	4	USB High Priority
	0101 5*4 VCLKs		0 Low prioritydefault
	0110 6*4 VCLKs		1 High priority
	0111 7*4 VCLKs	3	Reservedalways reads 0
	1000 8*4 VCLKs	2	IDE High Priority
	1001 16*4 VCLKs		0 Low prioritydefault
	1010 32*4 VCLKs		1 High priority
	1011 64*4 VCLKs	1	AC97-ISA High Priority
	11xx Own the bus for as long as there is a request		0 Low prioritydefault
3-0	Timer for High Priority Requests from SB		1 High priority
	0000 Immediate	0	PCI High Priority
	0001 1*2 VCLKs		0 Low prioritydefault
	0010 2*2 VCLKs		1 High priority
	0011 3*2 VCLKs	Davis	0 Officet AE CD V Link Mice Control (00k) DW
	0100 4*2 VCLKsdefault	·	0 Offset 4F – SB V-Link Misc Control (00h) RW
	0101 5*2 VCLKs	7	Upstream Command High Priority
	0110 6*2 VCLKs		0 Disable high priority up commands default
	0111 7*2 VCLKs		1 Enable high priority up commands
	1000 8*2 VCLKs	6-1	Reservedalways reads 0
	1001 16*2 VCLKs	0	Down Cycle Wait for Up Cycle Write Flush
	1010 32*2 VCLKs		(Except Down Cycle Post Write)
	1011 64*2 VCLKs		0 Disabledefault
	11xx Own the bus for as long as there is a request		1 Enable

Host CPU Control

Device	0 Offset 50 - Request Phase Control (00h)RW	Device	0 Offset 52 - CPU Interface Advanced Ctrl (00h)RW
7	CPU Hardwired IOQ (In Order Queue) Size	7	CPU RW DRAM 0WS for Back-to-Back Pipeline
	Default via inverse of VAD2 strap. This register can		Access
	be written 0 to restrict the chip to one level of IOQ.		0 Disabledefault
	0 1-Level		1 Enable
	1 8-Level	6	HREQ High Priority
6	GTL Pullup		0 Disabledefault
	Default via inverse of VAD3 strap.		1 Enable
	0 Disabledefault	5-4	Reservedalways reads 0
	1 Enable	3	Write Retire Policy After 2 Writes
5	Reserved always reads 0		0 Disabledefault
4-0	Dynamic Defer Snoop Stall Count		1 Enable
	a occ 4.54 CDVII 4 C D 1 C 4 1 (AAI) DVV	2	CPU 133 / DRAM 100 Fast Cycle Conversion
	0 Offset 51 – CPU Interface Basic Control (00h)RW		0 Disabledefault
7	Reservedalways reads 0		1 Enable
6	Read Around Write	1	Consecutive Speculative Read
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5	IOW Always Retry	0	Speculative Read
	0 Snoop Stall default		0 Disabledefault
	1 Retry Immediately		1 Enable
4	CPU to PCI Read Defer	D	0 Office 52 CDU Ashironting Control (02h) DW
	0 Disabledefault		0 Offset 53 – CPU Arbitration Control (03h) RW
_	1 Enable		Host Timer $default = 0$
3	Two Defer / Retry Entries	3-0	BPRI Timer (units of 4 HCLKs)default = 3
	0 Disabledefault	Dovico	0 Offset 54 – CPU Frequency (00h) RW
_	1 Enable		
2	Two Defer / Retry Entries Shared	/-6	CPU Frequency (VAD1-0 strap)
	0 Each entry is dedicated to 1 CPUdefault		00 66
	1 Each entry is shared by 2 CPUs		01 100
1	PCI Master Pipelined Access	7 0	1x 133
	0 Disabledefault	5-0	Reserved always reads 0
	1 Enable		
0	Reserved always reads 0		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies Pro266 BIOS porting guide for details).

Table 5. System Memory Map

Spac	e Start	<u>Size</u>	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	5 768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	5 784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	8 816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	8 832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	8 864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB		00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFEFFF	
Init	4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Device	0 Offset 55 – DRAM Control (00h)RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	DQS Input DLL Adjustment
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjustment
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
	1 Enable
2	DQS Output
	0 Disabledefault
	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
	0 Disabledefault
	1 Enable
0	Write Recovery Time
	0 1Tdefault
	1 2T

Device (Offset 59-58 - DRAM MA Map Type (2222h). RW
15-13	Bank 5/4 MA Map Type (see table below)
12	Bank 5/4 1T Command Rate
	0 2T Commanddefault
	1 1T Command
11-9	Bank 7/6 MA Map Type (see table below)
8	Bank 7/6 1T Command Rate
	0 2T Commanddefault
	1 1T Command
7-5	Bank 1/0 MA Map Type (see table below)
4	Bank 1/0 1T Command Rate
	0 2T Commanddefault
	1 1T Command
3-1	Bank 3/2 MA Map Type (see table below)
0	Bank 3/2 1T Command Rate
	0 2T Commanddefault
	1 1T Command

Table 6. MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	256Mb	8-bit Column Address
110	256Mb	9-bit Column Address
110	<u>2301110</u>	y-on Column Address
111	256Mb	10/11-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B – Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C – Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D – Bank 3 Ending (HA[31:24]) (01h)	
Offset 5E – Bank 4 Ending (HA[31:24]) (01h)	
Offset 5F – Bank 5 Ending (HA[31:24]) (01h)	
Offset 56 – Bank 6 Ending (HA[31:24]) (01h)	
Offset 57 – Bank 7 Ending (HA[31:24]) (01h)	

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (00h)......RW 7-6 DRAM Type for Bank 7/6

- 5-4 DRAM Type for Bank 5/4
- 3-2 DRAM Type for Bank 3/2
- DRAM Type for Bank 1/0
 - 00 SDR SDRAM......default
 - 01 -reserved- (do not program)
 - 10 DDR SDRAM
 - 11 -reserved-

Table 7. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

MA:	<u>14</u>	<u>13</u>	<u>12</u>	<u>11</u>	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	<u>4</u>	3	2	1	0	
<u>16Mb</u>		24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
(000)				13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
64/128Mb																x16 (14,8)
2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
001		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
4K page	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
010		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
8K page	14	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
<u>256Mb</u>																
2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
101		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
4K page	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
110		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
111		28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

Device		et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow RAM	Control 3 (00h) RW
7-6		00h-CFFFFh	7-6	E0000h-EFFFFh		
	00	Read/write disabledefault		00	Read/write disable	default
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
	11	Read/write enable		11	Read/write enable	
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh	
	00	Read/write disabledefault		00	Read/write disable	default
		Write enable		01	Write enable	
		Read enable		10	Read enable	
		Read/write enable		11	Read/write enable	
3-2		0h-C7FFFh	3-2	Mem	ory Hole	
	00	Read/write disabledefault				default
	01	Write enable		01	512K-640K	
	10	Read enable		10	15M-16M (1M)	
		Read/write enable			14M-16M (2M)	
1-0		0h-C3FFFh	1-0		Mapping Control	
	00	Read/write disabledefault			SMM	Non-SMM
	01	Write enable			Code Data	Code Data
	10	Read enable		00	DRAM DRAM	PCI PCI
	11	Read/write enable		01	DRAM DRAM	DRAM DRAM
				10	DRAM PCI	PCI PCI
D	A Acc.	-4 (2) Ch - 4 DAM C 4 12 (00h) DW		10	DICTIVITY I CI	101 101
		et 62 - Shadow RAM Control 2 (00h)RW		11	DRAM DRAM	DRAM DRAM
	DC0	00h-DFFFFh				
	DC0	00h-DFFFFh Read/write disabledefault				
	DC0 00 01	00h-DFFFFh Read/write disabledefault Write enable				
	00 01 10	00h-DFFFFh Read/write disabledefault Write enable Read enable				
7-6	00 01 10 11	O0h-DFFFFh Read/write disabledefault Write enable Read enable Read/write enable				
	00 01 10 11 D80 0	O0h-DFFFFh Read/write disabledefault Write enable Read enable Read/write enable O0h-DBFFFh				
7-6	00 01 10 11 D80 0	O0h-DFFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01	O0h-DFFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10	Oth-DFFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10	Oth-DFFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10 11 D400	Oth-DFFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10 11 D400 00	Oth-DFFFh Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01	Read/write disable default Write enable Read enable Read/write enable Oh-DBFFFh Read/write disable default Write enable Read enable Read enable Read/write disable default Write enable Read/write enable Read/write enable Oh-D7FFFh Read/write disable default Write enable				
7-6	DC00 00 01 10 11 D800 01 10 11 D400 00 01 10 11 D400	Oth-DFFFh Read/write disable				
7-6 5-4 3-2	DC00 00 01 10 11 D800 01 10 11 D400 00 01 11 D410 11	Read/write disable				
7-6	DC00 00 01 10 11 D800 00 01 10 11 D400 00 01 10 11 D0000	Oth-DFFFh Read/write disable				
7-6 5-4 3-2	DC00 00 01 10 11 D800 01 10 11 D400 01 11 D000 00	Oth-DFFFh Read/write disable				
7-6 5-4 3-2	DC00 00 01 10 11 D800 01 10 11 D400 01 10 11 D000 01 00 01	Read/write disable default Write enable Read enable Read/write enable Read/write disable default Write enable Read/write disable default Write enable Read enable Read/write disable default Write enable Read/write enable Read/write disable default Write enable Read/write disable default Write enable				
7-6 5-4 3-2	DC00 00 01 10 11 D800 01 10 11 D400 01 11 D000 01 11 D10 00 01 11 D10 00	Oth-DFFFh Read/write disable				

Device	0 Offset 64 - DRAM Timing for All Banks (E4h)RW
7	Precharge Command to Active Command Period
	$0 T_{RP} = 2T$
	1 $T_{RP} = 3T$ default
6	Active Command to Precharge Command Period
Ü	0 Tras = 5T
	$1 \text{TRAS} = 6\text{T} \dots \text{def}$
5-4	CAS Latency
5-4	SDR DDR
	00 1T -
	01 2T 2T
	10 3T 2.5Tdefault 11 - 3T
2	Reservedalways reads 0
3 2	ACTIVE to CMD
2	0 2T
1.0	1 01
1-0	Bank Interleave
	00 No Interleavedefault
	01 2-way
	10 4-way
	11 Reserved
	For 16Mb SDRAMs bank interleave is always 2-way
Device	0 Offset 65 - DRAM Arbitration Timer (00h) RW
7-4	AGP Timer (units of 4 MCLKs) default = 0
3-0	CPU Timer (units of 4 MCLKs) default = 0
ъ.	a occ 466 DDAMA 114 41 C 4 1601 DW
	0 Offset 66 - DRAM Arbitration Control (00h)RW
7	SDR – Feedback Clock Select
	DDR - DQS Input Delay Setting
	0 Auto (Rx67 reads DLL calibration result)def
_	1 Manual (Rx67 reads DQS input delay)
6	DDR - DQS Output Delay Setting
	0 Autodefault
	1 Manual
5-4	Arbitration Parking Policy
	00 Park at last bus ownerdefault
	01 Park at CPU
	10 Park at AGP
	11 -reserved-
3-0	AGP / CPU Priority (units of 4 MCLKs)

	0 Offset 67 – DDR Strobe Input Delay (00h) RW DDR:
7-0	$\overline{\mathbf{DQS}}$ Input Delaydefault = 0
	(if Rx66[7]=0, read DLL calibration result)
	SDR:
7-3	Reservedalways reads 0
2	MD Latch Clock Select
	0 Internal clockdefault
	1 External feedback clock
1-0	MD Latch Delay
Device	0 Offset 68 - DDR Strobe Output Delay (00h) RW
7-0	DDR DQS Output Delay default = 0

Device 0 Offset 69 - DRAM Clock Select (00h).....RW

- 7 CPU Operating Frequency Faster Than DRAM
 - 0 CPU Same As or Equal to DRAM......default
 - 1 CPU Faster Than DRAM by 33 MHz

6 DRAM Operating Frequency Faster Than CPU

- 0 DRAM Same As or Equal to CPU.....default
- 1 DRAM Faster Than CPU by 33 MHz

Rx68[1-0]	Rx69[7-6]	<u>CPU / DRAM</u> 66 / 66 (def)
00	01	66 / 100†
01	10	100 / 66
01	00	100 / 100
01	01	100 / 133†
1x	10	133 / 100
1x	00	133 / 133

†Rx53[6] must also be set to 1 for DRAM > CPU

5 Dynamic CKE

0	Disabledefault
1	Enable

- 4 Reservedalways reads 0
- 3 DRAM 8K Page Enable
 - 0 Disabledefault
 - 1 Enable

2 DRAM 4K Page Enable

- 0 Disabledefault
- 1 Enable
- 1 DIMM Type
 - 0 Unbuffereddefault
 - 1 Registered
- 0 Multiple Page Mode
 - 0 Disabledefault
 - 1 Enable

Device 0 Offset 6A - Refresh Counter (00h)......RW

7-0 Refresh Counter (in units of 16 MCLKs)

00 DRAM Refresh Disabled default

01 32 MCLKs

02 48 MCLKs

03 64 MCLKs

04 80 MCLKs

05 96 MCLKs

... ..

The programmed value is the desired number of 16-MCLK units minus one.

7	Fast Read to Write turn-around	7-6	SDRAM A Drive – SRASA/SCASA/SWEA, MAA
	0 Disabledefault		00 Lowest default
	1 Enable		01
6	Page Kept Active When Cross Bank		10
	0 Disabledefault		11 Highest
	1 Enable	5-4	SDRAM B Drive – SRASB/SCASB/SWEB, MAB
5	Burst Refresh		00 Lowest default
	0 Disabledefault		01
	1 Enable		10
4	CKE Function		11 Highest
	0 Disabledefault	3-2	DDR DQS Drive
_	1 Enable		00 Lowest default
3	Reserved always reads 0		01
2-0	SDRAM Operation Mode Select		10
	000 Normal SDRAM Modedefault	4.0	11 Highest
	001 NOP Command Enable	1-0	MD/MECC/CAS/CKE Early Clock Select
	010 All-Banks-Precharge Command Enable		00 Latestdefault
	(CPU-to-DRAM cycles are converted		01
	to All-Banks-Precharge commands).		10 11 Earliest
	011 MSR Enable		11 Earnest
	CPU-to-DRAM cycles are converted to commands and the commands are driven on	Device	0 Offset 6D - Drive Control 2 (00h)RW
	MA[14:0]. The BIOS selects an appropriate	7-6	Early Clock Select for SCMD, MA Output (for 1T
	host address for each row of memory such that	, 0	Command)
	the right commands are generated on		00 Latestdefault
	MA[14:0].		01
	100 CBR Cycle Enable (if this code is selected,		10
	CAS-before-RAS refresh is used: if it is not		11 Earliest
	CAS-before-RAS refresh is used; if it is not selected, RAS-Only refresh is used)	5-4	
	selected, RAS-Only refresh is used)	5-4	DQM Drive
	selected, RAS-Only refresh is used) 101 Reserved	5-4	DQM Drive
	selected, RAS-Only refresh is used)	5-4	DQM Drive 00 Lowestdefault
	selected, RAS-Only refresh is used) 101 Reserved	5-4	DQM Drive 00 Lowest
	selected, RAS-Only refresh is used) 101 Reserved	5-4 3-2	DQM Drive 00 Lowest default 01 10
	selected, RAS-Only refresh is used) 101 Reserved		DQM Drive 00 Lowest
	selected, RAS-Only refresh is used) 101 Reserved		DQM Drive 00 Lowest
	selected, RAS-Only refresh is used) 101 Reserved		DQM Drive 00 Lowest default 01 10 11 Highest RAS# Drive 00 Lowest default
	selected, RAS-Only refresh is used) 101 Reserved		DQM Drive 00 Lowest default 01 10 11 Highest RAS# Drive 00 Lowest default 01
	selected, RAS-Only refresh is used) 101 Reserved		DQM Drive 00 Lowest default 01 10 11 Highest RAS# Drive 00 Lowest default 01 10

01 10

11 Highest

00 Lowest......default

7 ECC / EC Mode Select 0 ECC Checking and Reporting.......default 1 ECC Checking, Reporting, and Correcting 6 Perform Read-Modify-Write for Partial Write 0 Disabledefault 1 Enable 5 Enable SERR# on ECC / EC Multi-Bit Error 0 Don't assert SERR# for multi-bit errorsdef

- 4 Enable SERR# on ECC / EC Single-Bit Error
 - 0 Don't assert SERR# for single-bit errorsdef1 Assert SERR# for single-bit errors
- 3 ECC / EC Enable Bank 7/6 (DIMM 3)
 - 0 Disable (no ECC or EC for banks 7/6)...default
 - 1 Enable (ECC or EC per bit-7)
- 2 ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Device	0 Offset 6F - ECC Status (00h)RWC
7	Multi-bit Error Detected write of '1' resets
6-4	Multi-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the multi-bit error.
3	Single-bit Error Detected write of '1' resets
2-0	Single-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the single-bit error.

Table 8. DIMM Module Configuration

Rx6B	Rx6E	Rx6E	Rx55				
[4]	[3-0]	[6]	[3]	DIMM	MECC	DQM	DQS#
CKE	ECC	RMW	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>Ena</u>	<u>Ena</u>	DQM	Configuration	Pins	<u>Pins</u>	Pins
1	1	0	1	DDR Only x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	0	0	0	DDR Only x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0] #
0	0	0	0	184-Pin DDR/SDR Mix	CKE[7-0]	DQM[8-0]	DQS[8-0]#
1	1	X	0	168-Pin SDR Only	MECC[7-0]	DQM[8-0]	CKE[7-0]
1	0	0	1	2 DDR + 2 SDR (SDR Installed)	CKE[7-0]	_	DQS[7-0]#
1	0	0	0	2 DDR + 2 SDR (DDR Installed)	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device	0 Offset 70 - PCI Buffer Control (00h)RW
7	CPU to PCI Post-Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5-4	PCI Master to DRAM Prefetch
	00 Always prefetchdefault
	x1 Prefetch disabled
	10 Prefetch only for enhance command
3-2	Reserved always reads 0
1	Delay Transaction
	0 Disabledefault
	1 Enable
0	Reserved always reads 0
Device	0 Offset 71 - CPU to PCI Flow Control 1 (48h)RWC
7	Retry Status
,	0 No retry occurred default

U	Reser	ved always reads 0
evice	0 Offse	t 71 - CPU to PCI Flow Control 1 (48h)RWC
7		Status
		No retry occurreddefault
	1	Retry occurred write 1 to clear
6	Retry	Timeout Action
		Retry Forever (record status only)
	1	Flush buffer for write
		or return all 1s for readdefault
5-4		Count and Retry Backoff
	00	Retry 2 times, backoff CPUdefault
		Retry 16 times
	10	Retry 4 times
	11	Retry 64 times
3	PCI B	
		Disable
	1	Enabledefault
2	Reser	
1		oatible Type 1 Configuration Cycle AD31
	0	Fix AD31default
	1	
0		L Control
		AD11, AD12default
	1	AD30, AD31

Device	0 Offset 73 - PCI Master Control 1 (00h)RWC
7	Reservedalways reads 0
6	PCI Master 1-Wait-State Write
	0 Zero wait state TRDY# response default
	1 One wait state TRDY# response
5	PCI Master 1-Wait-State Read
	0 Zero wait state TRDY# response default
	1 One wait state TRDY# response
4	WSC# (Write Snoop Complete)
	0 Disabledefault
	1 Enable
3-1	Reservedalways reads 0
0	PCI Master Broken Timer Enable
	0 Disabledefault
	1 Enable. Force into arbitration when there is no
	FRAME# 16 PCICLK's after the grant.

Jevice	<u> 0 Offset 75 - PCI Arbitration 1 (00h)RW</u>
7	Arbitration Mode
	0 REQ-based (arbitrate at end of REQ#)default
	1 Frame-based (arbitrate at FRAME# assertion)
6-4	CPU Latencyread only, reads Rx0D bits 2:1
3	Reservedalways reads 0
2-0	PCI Master Bus Time-Out
	(force into arbitration after a period of time)
	000 Disabledefault
	001 1x16 PCICLKs
	010 2x16 PCICLKs
	011 3x16 PCICLKs
	100 4x16 PCICLKs
	111 7x16 PCICLKs

	Pro266 DDR V-Link North Bridge
Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	I/O Port 22 Enable (South Bridge)
	0 CPU access to I/O address 22 is passed on to
	the PCI bus default
	1 CPU access to I/O address 22 is processed
	internally
6	Reserved always reads 0
5-4	Master Priority Rotation Control
	00 Disabledefault
	01 Grant to CPU after every PCI master grant
	10 Grant to CPU after every 2 PCI master grants
	11 Grant to CPU after every 3 PCI master grants
	With setting 01, the CPU will always be granted
	access after the current bus master completes, no
	matter how many PCI masters are requesting. With
	setting 10, if other PCI masters are requesting during
	the current PCI master grant, the highest priority
	master will get the bus after the current master
	completes, but the CPU will be guaranteed to get the
	bus after that master completes. With setting 11, if
	other PCI masters are requesting, the highest priority
	will get the bus next, then the next highest priority
	will get the bus, then the CPU will get the bus. In
	other words, with the above settings, even if multiple
	PCI masters are continuously requesting the bus, the
	CPU is guaranteed to get access after every master
	grant (01), after every other master grant (10) or after

01 REQ0# 10 REQ1# 11 REQ2#

every third master grant (11). **3-2 REQn# to REQ4# Mapping**

00 REQ4#.....default

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the Pro266.

This scheme is shown in the figure below.

Figure 4. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the Pro266 contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

31-16	Reserved always reads 0
15-8	Reserved (test mode status)RO
7	Flush Page TLB
,	0 Disable
	1 Enable
6-0	Reserved (always program to 0)RW
	For any master access to the Graphics Aperture range,
snoop w	vill not be performed.
Davisas	Offset 94 Cumbing American Size (00b)
7-0	O Offset 84 - Graphics Aperture Size (00h) RW
/-0	Graphics Aperture Size
	1111111 IM 11111110 2M
	11111110 2M 11111100 4M
	11111000 8M
	11110000 16M
	11100000 32M
	11000000 64M
	10000000 128M
	00000000 256M
Offset 8	B-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-2	Reservedalways reads 0
1	Graphics Aperture Enable
-	O D: 11

Disable......default

.....always reads 0

Note: To disable the Graphics Aperture, set this bit

to 0 and set all bits of the Graphics Aperture Size to

0. To enable the Graphics Aperture, set this bit to 1

and program the Graphics Aperture Size to the

Enable

desired aperture size.

Reserved

AGP Control

Device 0 Offset A3-A0 - AGP Capability Identifier		
(0020C002h)RO		
Reserved always reads 00h		
Major Specification Revision always reads 2h		
Major rev of AGP spec that device conforms to (2.x)		
Minor Specification Revision always reads 0h		
Minor rev # of AGP spec that device conforms to		
Pointer to Next Item always reads C0 (last item)		
AGP ID (always reads 02 to indicate it is AGP)		
O OCC A A F A A A CD C(A A A TOO O COAL)		
0 Offset A7-A4 - AGP Status (1F000201h)RO		
Maximum AGP Requestsalways reads 1F†		
Waximum AG1 Requestsaiways icads 11		
Max # of AGP requests the device can manage (32)		
Max # of AGP requests the device can manage (32)		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s Supports SideBand Addressingalways reads 1		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s Supports SideBand Addressingalways reads 1		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved		
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved		

evice (0 Offse	et AB-A8 - AGP Command (00000000h). RW
31-24	Requ	est Depth (reserved for target) always reads 0s
23-10	Resei	rvedalways reads 0s
9	SideF	Band Addressing Enable
	0	Disabledefault
	1	Enable
8	AGP	Enable
	0	Disabledefault
	1	Enable
7-6	Resei	rvedalways reads 0s
5	4G E	nable
	0	Disabledefault
	1	Enable
4	Fast '	Write Enable
	0	Disabledefault
	1	Enable
3	Reser	rvedalways reads 0s
2	4X M	Iode Enable
	0	Disabledefault
	1	Enable
1	2X M	Iode Enable
	0	Disabledefault
	1	Enable
0	1X M	Iode Enable
	0	Disabledefault
	1	Enable

Device	e 0 Offset AC - AGP Control (08h)RW	Device	0 Offset AD
7	AGP Disable	7-5	Reserved
	0 Enabledefault	4	Choose Fir
	1 Disable		0 Last
6	AGP Read Synchronization		1 First
	0 Disabledefault	3-0	AGP Data
	1 Enable		
5	AGP Read Snoop DRAM Post-Write Buffer		
	0 Disabledefault	Dovice	0 Offset AF
	1 Enable	_	0 Offset AE
4	GREQ# Priority Becomes Higher When Arbiter is	7-6	Reserved
	Parked at AGP Master	5	4G Suppor
	0 Disabledefault		0 4G r
	1 Enable	4	1 4G s
3	2X Rate Supported (read also at RxA4[1])	4	Fast Write
	0 Not supported		0 Fast
	1 Supporteddefault	2	1 Fast Reserved
2	LPR In-Order Access (Force Fence)	3	
	0 Fence/Flush functions not guaranteed. AGP	2	4x Rate Su 0 4x R
	read requests (low/normal priority and high		0 4x R
	priority) may be executed before previously	1-0	Reserved
	issued write requestsdefault	1-0	Kesei veu
	1 Force all requests to be executed in order		
	(automatically enables Fence/Flush functions).		
	Low (i.e., normal) priority AGP read requests		
	will never be executed before previously		
	issued writes. High priority AGP read		
	requests may still be executed prior to		
_	previously issued write requests as required.		
1	AGP Arbitration Parking		
	0 Disable default		
	1 Enable (GGNT# remains asserted until either		
0	GREQ# de-asserts or data phase ready)		
0	AGP to PCI Master or CPU to PCI Turnaround		
	Cycle 0 2T or 3T Timing default		

Device	0 Offset AD - AGP Laten	cy Timer (02h) RW
7-5	Reserved	always reads 0
4	Choose First or Last Rea	
		default
	1 First ready chosen	
3-0	AGP Data Phase Latency	y $Timerdefault = 02h$
Device	0 Offset AE – AGP Miscel	llaneous Control (00h)RW
7-6	Reserved	always reads 0
5	4G Supported	•
	0 4G not supported	default
	1 4G supported	
4	Fast Write Supported	
	0 Fast Write not supp	orted default
	1 Fast Write supporte	
3	Reserved	always reads 0
2	4x Rate Supported	
	0 4x Rate not support	eddefault
	1 4x Rate supported	
1-0	Reserved	always reads 0

1 1T Timing

Device 0 Offset B0 – AGP Pad Control / Status (xxh) RW		
7	AGP 4x Strobe VREF Control	
	0 STB VREF is STB# and vice versa	
	1 STB VREF is AGPREFdefault	
6	AGP 4x Strobe & GD Pad Drive Strength	
	0 Drive strength set to compensation circuit	
	defaultdefault	
	1 Drive strength controlled by RxB1[7-0]	
5-3	AGP Compensation Circuit N Control Output.RO	
2-0	AGP Compensation Circuit P Control Output.RO	
Device 0 Offset B1 – AGP Drive Strength (63h)RW		
7-4	AGP Output Buffer Drive Strength N Ctrl def=6	
3-0	AGP Output Buffer Drive Strength P Ctrl def=3	

Device 0 Offset B2 – AGP Pad Drive / Delay Ctrl (08h) RW		
7	GD/GBE/GDS, SBA/SBS Control	
	1.5V (Bit-1 = 0)	
	0 SBA/SBS = no cap default	
	GD/GBE/GDS = no cap	
	1 $SBA/SBS = no cap$	
	GD/GBE/GDS = cap	
	3.3V (Bit-1 = 1)	
	0 SBA/SBS = \mathbf{cap} default	
	GD/GBE/GDS = no cap	
	$1 SBA/SBS = \mathbf{cap}$	
	GD/GBE/GDS = cap	
6-5		
4	GD[31-16] Staggered Delay	
	0 Nonedefault	
	1 GD[31:16] delayed by 1 ns	
3	GD / GDS / GDS# Slew Rate Control	
	0 Disable	
	1 Enabledefault	
2	GDS / GDS# Preamble Control	
	0 Disabledefault	
_	1 Enable	
1	AGP Bus Voltage	
	0 1.5Vdefault	
0	1 3.3V	
0	GDS Output Delay	
	0 None	
	1 GDS[1-0] & GDS[1-0]# delayed by 0.4 ns	
	Note: GDS1 & GDS1# will be delayed an additional Ins if bit-4 = 1	
	1118 11 UII -4 — 1	

V-Link Control

Device 0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW V-Link Autocomp Output Value..... always reads 0 5 **Pullup Compensation Selection** 0 Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 3-2) **Pulldown Compensation Selection** Auto Comp (use values in bits 7-6)......default 1 Manual Comp (use values in bits 1-0) **Pullup Compensation Manual Setting** def = 03-2 **Pulldown Compensation Manual Setting** def = 0Device 0 Offset B5 – V-Link NB Drive Control (00h)....RW **Reserved** always reads 0 0 V-Link Slew Rate Control 0 Disabledefault 1 Enable Device 0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW V-Link Autocomp Output Value..... always reads 0 5 **Pullup Compensation Selection** 0 Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 3-2) **Pulldown Compensation Selection** 0 Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 1-0) 3-2 **Pullup Compensation Manual Setting** def = 0 **Pulldown Compensation Manual Setting** def = 0Device 0 Offset B9 - V-Link SB Drive Control (00h)RW Reserved always reads 0 0 V-Link Slew Rate Control Disabledefault Enable

DRAM Toggle Reduction

Device	0 Offset BF – DRAM Pad Toggle Reduction (00h)RW
7	MA / SCMD Pin Toggle Reduction
	0 Disabledefault
	1 Enable (MA and S command pins won't
	toggle if not accessed)
6	Slew Rate Control for MA / SCMD Group B
	0 Disabledefault
	1 Enable
5	Slew Rate Control for MA / SCMD Group A
	0 Disabledefault
	1 Enable
4	Reservedalways reads 0
3	DIMM #3 MAA / MAB Select
	0 MAAdefault
	1 MAB
2	DIMM #2 MAA / MAB Select
	0 MAAdefault
	1 MAB
1	DIMM #1 MAA / MAB Select
	0 MAAdefault
	1 MAB
0	DIMM #0 MAA / MAB Select
	0 MAAdefault
	1 MAB

Extended Power Management Control	Test Registers
Device 0 Offset C0 – Capability ID (01h)RO	Device 0 Offset F0-F2 – Test (Do Not Program)RW
Device 0 Offset C1 – Next Pointer (00h)RO	
Device 0 Offset C2 – Power Mgmt Capabilities 1 (02h)RO	
Device 0 Offset C3 – Power Mgmt Capabilities 2 (00h)RO	BIOS Scratch Registers
Device 0 Offset C4 – Power Mgmt Control/Status (00h)RW 7-2 Reserved always reads 0 1-0 Power State default 11 D3 hot default	Device 0 Offset F7-F3 – BIOS Scratch Registers RW 7-0 No hardware function
Device 0 Offset C5 – Power Management Status (00h) .RW	Back Door Registers
Device 0 Offset C6 – PCI to PCI Bridge Support Extensions (00h)RW	Device 0 Offset F9 – Back Door ControlRW
Device 0 Offset C7 – Power Management Data (00h)RW	Device 0 Offset FA – Back Door Max AGP Requests RW
	Device 0 Offset FB – Back Door RevisionRW
	Device 0 Offset FD-FC – Back Door Device IDRW

Device 1 Header Registers - PCI-to-PCI Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device 1	I Offs	<u>et 1-0 - Vendor ID (1106h)RO</u>
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device 1	1 Offs	et 3-2 - Device ID (B091h)RO
15-0		ode (reads B091h to identify the Pro266 PCI-to-
		Bridge device)
		et 5-4 – Command (0007h)RW
15-10		= : - = : : : : : : : : : : : : : : : :
9		Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
	1	the same agent default
	1	Fast back-to-back transactions allowed to
8	CED	different agents R# EnableRO
o	SEK 0	SERR# driver disabled default
	1	SERR# driver enabled
	-	R# is used to report parity errors if bit-6 is set).
7		ress / Data SteppingRO
•	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	ty Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5	VGA	A Palette Snoop (Not Supported)RO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette writes on PCI bus
á		(10-bit decode of I/O addresses 3C6-3C9 hex)
4		nory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
3	-	Bus masters may generate Mem Write & Inval ial Cycle MonitoringRO
3	Spec 0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	-	MasterRW
-	0	Never behaves as a bus master
	1	Enable to operate as a bus master on the
		primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory SpaceRW
	0	Does not respond to memory space
	1	Enable memory space accessdefault
0		SpaceRW
	0	r
	1	Enable I/O space accessdefault

Device	LOCC LE C CL L (D. D.) (02201) DIVIC
	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#)always reads 0
13	Signaled Master Abort
	0 No abort received
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
12	0 No abort received
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
10 /	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected always reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4	Supports New Capability listalways reads 0
3-0	Reserved always reads 0
3-0	iteset vedarways reads o
Device	1 Offset 8 - Revision ID (00h)RO (RW if Rx44[7]=1)
7-0	Pro266 Chip Revision Code (00=First Silicon)
	,
Device	1 Offset 0 Programming Interfect (10th) DO
	1 Offset 9 - Programming Interface (00h)RO
This reg	gister is defined in different ways for each Base/Sub-
Class C	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device.
	gister is defined in different ways for each Base/Sub-
Class Co 7-0	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device.
Class Co 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO
7-0 Device	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifier
7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO
7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge
7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control Cl	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifier
Class Control	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control Cl	gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifier
Class Control Tevice 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control Tevice 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control To Class Control To	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
Class Control	gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier

Device 1 Offset 18 - Primary Bus Number (00h)RW 7-0 Primary Bus Number default = 0 This register is read write, but internally the chip always uses bus 0 as the primary.	Device 1 Offset 37-34 - Capability Pointer (00000080h). RO Contains an offset from the start of configuration space. 31-0 AGP Capability List Pointeralways reads 80h
Device 1 Offset 19 - Secondary Bus Number (00h)RW	Device 1 Offset 3F-3E – PCI-to-PCI Bridge Control (0000h)
7-0 Secondary Bus Number default = 0	15-4 Reserved always reads 0
Note: AGP must use these bits to convert Type 1 to Type 0.	3 VGA-Present on AGP 0 Forward VGA accesses to PCI Bus default
Device 1 Offset 1A - Subordinate Bus Number (00h)RW	1 Forward VGA accesses to AGP Bus
7-0 Primary Bus Number default = 0	Note: VGA addresses are memory A0000-BFFFFh
Note: AGP must use these bits to decide if Type 1 to Type 1	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
command passing is allowed.	3DFh (10-bit decode). "Mono" text mode uses
	B0000-B7FFFh and "Color" Text Mode uses B8000-
Device 1 Offset 1B – Secondary Latency Timer (00h)RO	BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses
7-0 Reserved always reads 0	3Cx-3Dxh. If an MDA is present, a VGA will not
Device 1 Offset 1C - I/O Base (f0h)RW	use the 3Bxh I/O addresses and B0000-B7FFFh
7-4 I/O Base AD[15:12] default = 1111b	memory space; if not, the VGA will use those
3-0 I/O Addressing Capability default = 0	addresses to emulate MDA modes.
• • •	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1D - I/O Limit (00h)RW	O Forward all I/O accesses to the AGP bus if they are in the range defined by the I/O Base
7-4 I/O Limit AD[15:12]	and I/O Limit registers (device 1 offset 1C-
3-0 I/O Addressing Capability default = 0	1D)
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	default
15-0 Reservedalways reads 0	1 Do not forward I/O accesses to the AGP bus
Davice 1 Offcet 21 20 Memory Page (fff0h) DW	that are in the 100-3FFh address range even if
Device 1 Offset 21-20 - Memory Base (fff0h)RW 15-4 Memory Base AD[31:20] default = FFFh	they are in the range defined by the I/O Base
3-0 Reserved	and I/O Limit registers. 1-0 Reservedalways reads 0
·	·
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	•
15-4 Memory Limit AD[31:20] default = 0	
3-0 Reserved always reads 0	
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW	
15-4 Prefetchable Memory Base AD[31:20]default = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]	
$ \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int$	
3-0 Reserved always reads 0	

Device 1 Configuration Registers - PCI-to-PCI Bridge

AGP Bus Control

7	CPU-AGP Post	Write
	0 Disable	default
	1 Enable	
6	Reserved	always reads 0
5	CPU-to-AGP O	ne Wait State Burst Write
	0 Disable	default
	1 Enable	
4	AGP to DRAM	Prefetch
	0 Disable	default
	1 Enable	
3	CPU to AGP Po	
	0 Disable	default
	1 Enable	
2	MDA Present o	
		MDA accesses to AGPdefault
		MDA accesses to PCI
		lespite IO / Memory Base / Limit
		(Monochrome Display Adapter)
		nemory addresses B0000h-B7FFFh
		es 3B4-3B5h, 3B8-3BAh, and 3BFh
	,	3BC-3BE are reserved for printers.
		bit-3 is 0, this bit is a don't care
	`	are forwarded to the PCI bus).
1	AGP Master Re	
		defaul
	1 Enable	
0	AGP Delay Tra	
		defaul
	1 Enable	

Table 9. VGA / MDA Memory / IO Redirection

3E[3]	40[2]	<u>VGA</u>	<u>MDA</u>	Axxxx,	<u>B0000</u>	<u>3Cx,</u>	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	3Bx
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU to PCI Bursting Timeout
	0 Disable
	1 Enable default
2	Reserved always reads 0
1	Invalidate PCI/AGP Read Buffered Data (Read
	Caching Data) on CPU-to-PCI/AGP Cycle
	0 Disabledefault
	1 Enable
0	Reserved always reads 0
Device	1 Offset 42 - AGP Master Control (00h)RW
7	Reservedalways reads 0
6	AGP Master One Wait State Write
U	0 Disabledefault
	1 Enable
5	AGP Master One Wait State Read
3	0 Disabledefault
	1 Enable
4-0	Reservedalways reads 0

	1 Offset 43 - AGP Master Latency Timer (22h) RW				e Control (72h)RW
7-4	Host to AGP Time Slot	7			le to be QW Aligned
	0 Disable (no timer)		(if Rx45[6		
	1 16 GCLKs		0 Dis	able	default
	2 32 GCLKsdefault		1 Ena		
	•••	6			Transactions Into One Fast
	F 128 GCLKs		Write Bu	rst Transact	ion
3-0	AGP Master Time Slot		0 Dis		
	0 Disable (no timer)		1 Ena	ıble	default
	1 16 GCLKs	5			J Write Cycles To Memory
	2 32 GCLKsdefault				t Write Burst Cycles
			(if Rx45[6	[0] = 0	
	F 128 GCLKs		0 Dis		
					default
ъ.	1 Off (44 P 1 L P 1 4 C 4 L (201) PW	4	Merge	Multiple	CPU Write Cycles To
	1 Offset 44 – Backdoor Register Control (20h).RW				ry Offset 27-24 Into Fast
7	Rx8 Revision ID Writable				f Rx45[6] = 0)
	0 Disable (Device 1 Rx8 is RO)default			able	
_	1 Enable (Device 1 Rx8 is RW)				default
6	Reserved always reads 0	3			always reads 0
5	Power Management Capability Support	2			Max (No Slave Flow Control)
	0 Read Rx34 as 00				default
	1 Read Rx34 as 80default		1 Ena		
4	Rx1F-1E Reflect Status in Rx7-6	1		e Fast Back	to Back
	0 Rx1F-1E always read 0default			able	
_	1 Rx1F-1E read same as Rx7-6				default
3	Back Door Register for Rx83[2], D2 Support	0			ck 1 Wait State
	0 Disabledefault				default
•	1 Enable		1 Ena	ıble	
2	Back Door Register for Rx83[1], D1 Support				
	0 Disabledefault			CPU Write	
	1 Enable	Bits	Address	Address	
1	Back Door Register for Rx82[5], Device Specific	<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
	Initialization	x1xx	-	-	QW aligned, burstable
	0 Disabledefault	0000	-	-	DW aligned, nonburstable
	1 Enable	x010	0	0	n/a
0	Back Door Register for AGP Device ID	0010	0	1	DW aligned, non-burstable
	0 Disabledefault	x010	1	-	QW aligned, burstable
	1 Enable	x001	0	0	n/a
		x001	-	1	QW aligned, burstable
		0001	1	0	DW aligned, non-burstable
		x011	0	0	n/a
		x011	1	-	QW aligned, burstable
		x011	0	1	QW aligned, burstable
		1000	-	-	QW aligned, non-burstable
		1010	0	1	QW aligned, non-burstable
		1001	1	0	QW aligned, non-burstable

Device 1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW	Device 1 Offset 80 - Capability ID (01h)RO
15-0 PCI-to-PCI Bridge Device ID default = 0000	7-0 Capability IDalways reads 01h
	Device 1 Offset 81 – Next Pointer (00h)RO
	7-0 Next Pointer: Nullalways reads 00h
	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
	7-0 Power Mgmt Capabilitiesalways reads 02h
	Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
	7-0 Power Mgmt Capabilitiesalways reads 00h
	Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
	7-2 Reservedalways reads 0
	1-0 Power State
	00 D0default 01 -reserved-
	10 -reserved-
	11 D3 Hot
	Device 1 Offset 85 – Power Mgmt Status (00h)RO
	7-0 Power Mgmt Status default = 00
	Device 1 Offset 86 - P2P Br. Support Extensions (00h). RO
	7-0 P2P Bridge Support Extensions default = 00
	Device 1 Offset 87 – Power Management Data (00h) RO 7-0 Power Management Data default = 00

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Case operating temperature (T _C)	0	85	oС
Storage temperature (T _S)	-55	125	°C
Input voltage (V _{IN})	-0.5	$V_{RAIL} + 10\%$	Volts
Output voltage (V _{OUT})	-0.5	$V_{RAIL} + 10\%$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $\overline{T_C} = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} + /-5\%$, $V_{CORE} = 2.5V + /-5\%$, GND=0V

Symbol	Parameter	Min	Max	Unit	Condition
$V_{ m IL}$	Input low voltage	-0.50	0.8	V	
$ m V_{IH}$	Input high voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V_{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
${ m I}_{ m IL}$	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$

Power Characteristics

 $T_C = 0-85^{0}C$, $V_{RAIL} = V_{CC} + /-5\%$, $V_{CORE} = 2.5V + /-5\%$, GND = 0V

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CC}	Power supply current – VCC	475		mA	Max operation frequency
I _{CCGTL}	Power supply current – VCCGTL	10.5		mA	Max operation frequency
I_{CCVL}	Power supply current – VCCVL	32		mA	Max operation frequency
I_{CCM}	Power supply current – VCCM	32		mA	Max operation frequency
I _{CCAGP}	Power supply current – VCCAGP	2.4		mA	Max operation frequency
I_{CCQQ}	Power supply current – VCCQQ			mA	Max operation frequency
I _{SUS25}	Power supply current – VSUS25			mA	Max operation frequency
I_{CCAHCK}	Power supply current – AVCCHCK			uA	Max operation frequency
I _{CCAMCK}	Power supply current – AVCCMCK			uA	Max operation frequency
I_{CCADL1}	Power supply current – AVCCDL1			uA	Max operation frequency
I_{CCADL2}	Power supply current – AVCCDL2			uA	Max operation frequency
I _{MVREF}	Reference current – MVREF			uA	Max operation frequency
I _{GTLREF}	Reference current – GTLREF			uA	Max operation frequency
I _{AGPREF}	Reference current – AGPREF			mA	Max operation frequency
I_{VLREF}	Reference current – VLREF			uA	Max operation frequency
P_{D}	Power dissipation			W	Max operation frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 10. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
2.5V Power	2.375	2.625	Volts
3.3V Power	3.135	3.465	Volts
5V Reference	4.75	5.25	Volts
Case Temperature	0	85	oC.

Drive strength for each output pin is programmable. See (Device 0 Rx??) for details.

Table 11. AC Timing – V-Link Bus

Parameter	Setup	Hold	Min Delay	Max Delay	Unit
UPCMD	0.6	0.6			ns
DNCMD			1.0		
VBE#	0.6	0.6	1.0		
VAD[7:0]	0.6	0.6	1.0		

Table 12. AC Timing – CPU Front Side Bus

Parameter	Setup	Hold	Min Delay	Max Delay	Unit
Host Address Bus (HA)	1.6	0	1.2	3.5	ns
Host Data Bus (HD)	2.0	0	1.0	3.5	ns
ADS#	1.6	0	1.2	3.0	ns
DBSY#	1.6	0	1.2	3.0	ns
DRDY#	1.6	0	1.2	3.0	ns
HIT#	1.6	0	1.2	3.0	ns
HITM#	1.6	0	1.2	3.0	ns
HLOCK#	1.6	0	1.2	3.0	ns
HREQ[4:0]#	1.6	0	1.2	3.0	ns

Table 13. AC Timing – SDR Memory Interface

Parameter	Setup	Hold	Min Delay	Max Delay	Unit
MD / MECC (Rx67[1:0]=00)	1.00	1.0			ns
MD / MECC (Rx67[1:0]=01)	0.75	1.4			ns
MD / MECC (Rx67[1:0]=10)	0.20	2.0			ns
MD / MECC (Rx67[1:0]=11)	-0.40	2.9			ns
MD[63:32]			0.5	3.6	ns
MD[31:0]			0.4	3.5	ns
MECC			0.4	3.5	ns
CS[7:0]#			1.0	3.4	ns
SRASA#, SRASB#			0	3.2	ns
SCASA#, SCASB#			0	3.2	ns
SWEA#, SWEB#			0	3.2	ns
MAA, MAB			0	3.2	ns
DQM			0.4	3.5	ns

Table 14. AC Timing – DDR Memory Interface

Parameter	Setup	Hold	Min Delay	Max Delay	Unit
MD / MECC / DQS[8:0]#	-1.5	2.8	1.2		ns

Table 15. AC Timing – AGP Interface

Parameter	Setup	Hold	Min Delay	Max Delay	Unit
SBA[7:0]	0.5	0.5			ns
GD Bus			0.9		ns
GBE[3:0]#					ns

MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications - 552-Pin Ball Grid Array Package