Trabalho 2

Modelos Compartimentais em Epidemiologia e Inferência Bayesiana

10 de fevereiro de 2022

Contexto

Um surto de uma doença infecciosa humana, transmitida por meio do contato entre indivíduos, foi constatado em uma determinada região com 182.416.221 habitantes (de acordo com o último censo demográfico). Praticamente todos os indivíduos parecem ser suscetíveis à infecção e, por meio de uma política de testagem rigorosa da população, o número de novos casos foi relatado diariamente durante os 100 primeiros dias desde que os primeiros casos foram diagnosticados. A figura a seguir mostra os dados coletados neste período.

Por se tratar de uma doença infecciosa desconhecida até então, medidas de controle farmacológicas não puderam ser colocadas em prática nesta população. A análise de dados clínicos dos pacientes revelou que alguns indivíduos se infectaram mais de uma vez neste período. Observou-se perda crescente de imunidade durante 30 dias, até que alguns indivíduos fossem eventualmente infectados novamente. Por outro lado, a doença causada pelo patógeno praticamente não causou mortes dentre os indivíduos infectados. Por fim, os dados clínicos também mostraram que a maioria dos indivíduos infectados recuperou-se da doença entre seis e oito dias desde a manifestação dos primeiros sintomas.

Gestores de saúde pública estão preocupados com o futuro da epidemia e a capacidade dos sistemas de saúde, uma vez que medidas de distanciamento social não têm tido grande adesão da população. Eles gostariam de conhecer a tendência futura do número de novos casos da doença, de forma a ter uma base científica para tomada de decisão acerca dos seguintes questionamentos:

- Quando o número de novos casos atingirá o seu menor patamar desde a aparente queda de infecções nos últimos dias? Neste dia, teríamos quantos novos indivíduos infectados e qual é o nível de credibilidade desta estimativa?
- Após atingir o menor patamar no número de casos diários, há chance de termos novo aumento no número de casos?
- Caso haja um novo aumento no número de casos, o período de imunidade relativamente curto poderia levar a um cenário ainda pior, em termos do número de novos casos diários, em relação aos dados conhecidos?

• A longo prazo, digamos a partir dos próximos seis meses desde o último dado relatado, haveria possibilidade de predizer o comportamento da curva de infectados diários?

Desenvolva um modelo para a evolução da doença para o cenário descrito que possibilite responder as questões anteriores. Derive as expressões dos pontos de equilíbrio endêmico do modelo adotado na sua análise e compare com os resultados obtidos a longo prazo com as simulações. Além disso, obtenha a expressão do número básico de reprodução do modelo e informe o valor estimado para os dados analisados, considerando devida margem de credibilidade.

Regras

- O trabalho é composto por (1) código-fonte, (2) relatório e (3) apresentação.
- O relatório deve ser elaborado em formato de artigo, com *template* livre e sem limite de páginas.
- O código-fonte pode ser implementado em qualquer linguagem de programação.
- Não é permitido o uso de bibliotecas que contenham implementações do método de amostragem adotado.
- Qualquer método de amostragem pode ser empregado, desde que devidamente descrito no relatório, incluindo as referências utilizadas.
- O relatório pode ser redigido em português ou inglês.
- Os trabalhos serão em dupla.
- As apresentações terão duração máxima de 12 minutos, com mais 3–5 minutos para perguntas.
- A nota final será definida por média aritmética simples entre código-fonte, relatório e apresentação. Cada aluno da dupla receberá a mesma nota.

Data das apresentações e envio do relatório e código-fonte: 23 de fevereiro de 2022.