

A MODEL-DRIVEN GENERATOR TO AUTOMATE THE CREATION OF HMIS FOR THE CERN GAS CONTROL SYSTEMS

T. Bato, G. Thomas, F. Varela, CERN, Geneva, Switzerland tamas.bato@cern.ch, geraldine.thomas@cern.ch, fernando.varela.rodriguez@cern.ch **THPHA163**

The gas control systems (GCS) of the LHC Experiments (ATLAS, ALICE, CMS, LHCb) consist of hundreds of operational user interfaces (UI), trends and navigation. The maintenance and evolution of all these UIs, e.g. if a new device is added to the plant, can be very heavy.

For those reasons, the decision was taken to automate the generation of these Uls.

A model driven approach is applied to produce the supervision layer of the plants where:

- A plant is always made of gas systems (i.e. sub-detector of an Experiment)
- A gas control system is hierarchically organized and made of gas modules
- o The gas modules are standardised and homogeneous blocks, modelled by templates

The process

All plants have a variable file XML file format Specifies all the installed gas modules

Each gas module is configured by one variable file Currently more than 200 files for all deployed GCSs

	Variable	Description		ATLAUX	ATLCSC	ATLMDT	ATLRPC		ATLT	FC AT	LTGC	ATLTR	T		
	subdetector	System Name		AUX	CSC	MDT	RP	С	TFC	TFC TGC		TRT			
	has_Mixer	standard module optional (option valid? 1=yes, 0=no)		0	1	1	1		0		1	1			
	has_Pump	star	dard												
		mop (optic 1=ye sta mop (optic 1=ye sta mop (optic 1=ye sta mop)		Variable	e	Descript	ion	ATL	RPC	ATLT	RT A	TLCSC	ATLTGC	ATLMDT	
			wago_node_nb			Number wago no				1		1	1	1	
	has_Distribution		double_mfc			is double MFC present? (1=Yes 0=No)		:	1	1		0	0	1	
				gas_line	Number of Mixer gas lines		3	3	3		3	2	3		
				Liquid_line		Number of liquid line		(0	0		0	2	3	

Visualization of the variables. ATLAS experiment modules and Mixer module variables

Inputs of the generator

<variable name="yPos">40</variable>

</if>

</if>

</if>

</for> </rules>

</panel>

System templates

Describes the plant with generation rules Currently 33 system template files for all deployed GCSs

<template>SubdetectorOverviewTemplate.xml</template> <output>{panels_dir}/{prfx}_GasSystemOverview.xml</output> <variable type="integer" name="xPos">20</variable> <variable type="integer" name="yPos">40</variable> <rules> <set_property item="PanelHeader" prop="FileName">gcsSynopticHeader.pnl</set_property> <set dollar ref="PanelHeader" name="\$sTitle">"{subdetector} modules"</set dollar> <rename dollar param param name=".*" match="GCSPrefix" replace="{prfx}"/> <for variable="c module" in="modules"> <if variable="has_{c_module}" value="true"> <if variable="c module" value="Purifier"> <for variable="c_pur" in="1:{Purifier_count}"> <add modul position="{xPos},{yPos}'</pre> panel="{prfx}\{prfx}_{c_mod}{c_pur}Summary.xml"/> <variable name="yPos">{yPos}+195</variable> <if expr="yPos > 810"> <variable name="xPos">{xPos}+420</variable> <variable name="yPos">40</variable> </for> <if expr="c_module != Analysis and c_module != Purifier"> <add modul position="{xPos},{yPos}" panel="{prfx}\{prfx}_{c_module}Summary.xml"/> <variable name="yPos">{yPos}+195</variable> <if expr="yPos > 810"> <variable name="xPos">{xPos}+420</variable>

Example of a user interface generation rule

Pre-defined SCADA templates modified during the generation

process

XML file format

Non static elements attached with control scripts

Currently 150 different panel template files for all deployed GCSs

Generation

- Step 1: Processing the rules and variables that describe the plant
- Step 2: Generation of the user interfaces
- Step 3: Generation of navigation and trending files

> java -jar gc.jar -t .\System.xml -i .\LHCb_variables.xml -o .\XMLGeneratorOutput/javaOutput 14:06:51.113 [main] INFO ProcessMonitor - Generation was successful 14:06:51.114 [main] INFO ProcessMonitor - Creating windowTree and trendTree 14:06:51.118 [main] INFO Postprocessor - Writing LHCb`s window and trend trees... 14:06:51.118 [main] INFO Postprocessor - Reading and processing navigation file: Inputs\LHCb.nav 14:06:51.125 [main] INFO Postprocessor - Reading and processing WindowTree file: Inputs\LHCb.wt 14:06:51.192 [main] INFO Postprocessor - Reading and processing trends file: Inputs\LHCb.tds 14:06:51.233 [main] INFO Postprocessor - Reading and processing trendTree file: Inputs\LHCb.tt 14:06:52.373 [main] INFO ProcessMonitor - Generation finished!

Output views and navigation

About the user interface generation

30 gas supervision systems are generated User interfaces and window tree for navigation Trends and trend tree for navigation

A medium-sized gas control system is composed of a total of ~500 files.

More than 400 input files available, including system templates with generation rules and variables

Benefits

A modification on a template or a variable file is a onetime process

Changes propagate to all user interfaces

The generation takes half a minute

Effort required for the maintenance and generation is much lower than following a manual approach

Same look & feel for the monitoring and control on the four LHC Experiments

Industrial Controls and Safety Systems Group (ICS)