数学软件介绍 第 1 页

# 第三节 Matlab 基础

## 3.1 矩阵的生成

1) 直接输入 2) 函数生成 3) 文本文件

# ● 简单数组

MATLAB 的运算事实上是以数组 (array) 及矩阵 (matrix) 方式在做运算,而这二者在 MATLAB 的基本运算性质不同,数组强调元素对元素的运算,而矩阵则采用线性代数的运算方式。

宣告一变数为数组或是矩阵时,如果是要个别键入元素,须用中括号[]将元素置于其中。数组为一维元素所构成,而矩阵为多维元素所组成,例如

```
x=[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8];
                                    %一维 1x8 数组
 x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8; 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \end{bmatrix}
                 % 二维 2x8 矩阵,以";"或回车分隔各行的元素,以","或空格
分隔各列的元素
  x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix} 
                                     % 二维 2x8 矩阵,各列的元素分二行键入
        4 5 6 7 8 9 10 11];
                   % x 的第三个元素
  x(3) 
                   % x 的第一、二、五个元素
  x([1 2 5]) 
                   % x 的第前五个元素
  x(1:5) 
     ans = 1
                     2
                          5
                   % x 的第十个元素后的元素
 » x(10:end)
                          7 10
                                      8
     ans = 8
                                           11
                   % x 的第十个元素和第二个元素的倒排
 » x(10:-1:2)
                    7
                          4 6
                                            5
     ans = 8
                                      3
 \Rightarrow x(find(x>5))
                   % x 中大于 5 的元素
                   %给 x 的第四个元素重新给值
 x(4)=100
  x(3) = [] 
                    % 删除第三个元素
```

% 加入第十六个元素

### ● 建立数组(向量)

x(16)=1

上面的方法只适用于元素不多的情况,但是当元素很多的时候,则须采用以下的方式: » x=(0:0.02:1); % 以:起始值=0、增量值=0.02、终止值=1 的矩阵(用":"生成)

» x=linspace(0,1,100);

% 利用 linspace,以区隔起始值=0 终止值=1 之间的元素数目=100(线性等分向量)

| »a=[]              | %空矩阵                        |
|--------------------|-----------------------------|
| » zeros(2,2)       | %全为0的矩阵                     |
| » ones(3,3)        | %全为1的矩阵                     |
| » rand(2,4);       | % 随机矩阵                      |
| »a=1:7, b=1:0.2:5; | %更直接的方式                     |
| »c=[b a];          | %可利用先前建立的数组 a 及数组 b , 组成新数组 |

数学软件介绍 第 2 页

» a=1:1:10;

» b=0.1:0.1:1;

» a+b\*I

%复数数组

### ● 子矩阵

通过一个矩阵产生另一个矩阵的方法(上面已经有例子) 假如一个矩阵 A

则 A (m1:m2,n1:n2)

## 3.2 矩阵的运算

#### ● 经典的算术运算符。

| 运算符 | MATLAB 表达式 |           |
|-----|------------|-----------|
| 加   | +          | a+b       |
| 减   | -          | a-b       |
| 乘   | *          | a*b       |
| 除   | / 或 \      | a/b 或 a\b |
| 幂   | ۸          | a^h       |

» a=1:1:10;

» b=0:10:90;

» a+b

» a.\*b %注意这里 a 后加了个".",表示数组相乘,是元素对元素的乘积

» a\*b %表示矩阵相乘,要求矩阵 a 的列数与矩阵 b 的行数一致

» a/b %矩阵右除 inv(a)\*b

» a\b %矩阵左除 a\*inv(b)

» a./b %数组右除,数组中对应元素相除, a(i,j)/b(i,j)

» a.\b %数组左除,数组中对应元素相除 b(i,j)/a(i,j)

» a^b %矩阵乘方,涉及到特征值和特征向量的求解。

说明:在这里特别要注意一下有没有加点"."之间的区别,这些算术运算符所运算的两个阵列是否需要长度一致。

%数组乘方, a 和 b 中对应元素的乘方, 即 a(i,j)的 b(i,j)次方。

## ● 矩阵转置运算

» a.^b

通过在矩阵变量后加'的方法来表示转置运算

» a=1:1:10;

» b=0:10:90;

» a'

» c=a+b\*i;

» c'

### 3.3 矩阵函数

数学软件介绍 第 3 页

● MATLAB 常用数学函数

基本数学函数一般都可以作为矩阵函数。如三角函数、指数对数函数等。

- » a=1:1:10;
- » b=0:10:90;
- » sin(a)
- » exp(b)
- » sign(a)
- » mean(b)
- 求矩阵的长度的函数
  - » A=[10, 2, 12; 34, 2, 4; 98, 34, 6];
  - » size(A) % 矩阵 A 的行列大小 3\*3
  - » length(A) % 返回 size(A) 中的最大值
- 矩阵的几种基本变换操作
- 1) 通过在矩阵变量后加'的方法来表示转置运算
  - » A=[10,2,12;34,2,4;98,34,6];
  - » A'
- 2) 矩阵求逆 inv(A): 返回矩阵 a 的逆阵。
  - » A=[1 2 3; 4 5 6; 7 8 9];
  - » inv(A)
- 3) 矩阵求伪逆 pinv(A):
  - » A=[1 2 3; 4 5 6; 7 8 0; 2 5 8];

%3个未知量的4个方程

- » pinv(A)
- 4) 矩阵翻转:

左右反转:矩阵关于垂直轴沿左右方向进行列维翻转

fliplr(A)

- » A=[1 4; 2 5; 3 6];
- » fliplr(A)

上下反转:矩阵关于水平轴沿上下左右方向进行列维翻转

flipud(A)

- A=[14; 25; 36];
- » flipud(A)
- 5) 旋转90度

rot90(A)

例: » A=[1 4; 2 5; 3 6];

» rot90(A)

6) 矩阵的特征值

[U,V]=eig(A): 返回方阵 A 所有特征值组成的矩阵 U 和特征向量组成的矩阵 V 例: » A=[6 12 19; -9 -20 -33; 4 9 15];

 $\gg [U,V]=eig(A)$ 

7) 取出上三角和下三角

triu(A):取上三角阵

tril(A): 取下三角阵

数学软件介绍 第 4 页

[L,U]=lu(A): 作 LU 分解(Gauss 消去法),L 为主对角线元素都为 1 的上三角矩阵,U 为一个下三角矩阵

例: » A=[1 5 2; 3 4 6; 5 3 2];

» triu(A)

» tril(A)

> [L,U]=lu(A)

8) 正交分解: QR 分解, Q 为正交矩阵, R 为上三角矩阵

[Q,R]=qr(A)

例: » A=[1 2; 5 7; 7 3; 9 1];

 $\gg [Q,R]=qr(A)$ 

9) 奇异值分解: [U,S,V]=svd(A), 矩阵 U 和 V 是正交矩阵, S 为 A 的奇异值矩阵。

例: » A=[9 4; 6 8; 2 7];

= [U,S,V] = svd(A)

10) 求矩阵的范数

norm(A,1) 计算矩阵 A 的 1 范数

norm(A,2) 计算矩阵 A 的 2 范数

norm(A,inf) 计算矩阵 A 的无穷范数

例: » A=rand(3);

> norm(A,1)

> norm(A,2)

» norm(A,inf)

11) 求矩阵的行列式的值 det(A)

例: » A=[1 2 3; 4 5 6; 7 8 9]

» det(A)

## 3.4 基本二维绘图命令

MATLAB 不但擅长于矩阵相关的数值运算,也适合用在各种科学可视化(Scientific visualization)。下面介绍 MATLAB 基本二维和三维的各项绘图命令,包含一维曲线及二维曲面的绘制、打印及保存。

● plot 是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的 x 及 y 坐标。下例可画出一条正弦曲线:

» x=linspace(0, 2\*pi, 100);

% 100 个点的 x 坐标

 $y=\sin(x)$ ;

% 对应的 y 坐标

 $\gg$  plot(x,y);

- 若要画出多条曲线,只需将坐标对依次放入 plot 函数即可:
  - $\Rightarrow$  plot(x, sin(x), x, cos(x));
- 若要改变颜色,在坐标对后面加上相关字符串即可:
  - $\Rightarrow$  plot(x, sin(x), 'c', x, cos(x), 'g');

数学软件介绍 第 5 页

● 若要同时改变颜色及线型(Line style),也是在坐标对后面加上相关字符串即可: » plot(x, sin(x), 'co', x, cos(x), 'g\*');

plot 绘图函数的参数

| 字符 | 颜色  | 字符 | 图线型态 |
|----|-----|----|------|
|    | 黄色  |    | 点    |
| k  | 黑色  | 0  | 圆    |
| w  | 白色  | X  | X    |
| b  | 蓝色  | +  | +    |
| g  | 绿色  | *  | *    |
| r  | 红色  | -  | 实线   |
| С  | 亮青色 |    | 点线   |
| m  | 锰紫色 |    | 点虚线  |
|    |     |    | 虚线   |

- 图形完成后,我们可用 axis([xmin,xmax,ymin,ymax])函数来调整坐标轴的范围:» axis([0, 6, -1.2, 1.2]);
- MATLAB 也可对图形加上各种注解与处理:

» xlabel('Input Value');
» y label('Function Value');
» title('Two Trigonometric Functions');
» legend('y = sin(x)','y = cos(x)');
» grid on;
% x 轴注解
% y 轴注解
% 图形注解
% 显示格线

● 用 subplot 来同时画出数个小图形于同一个窗口之中:

» subplot(2,2,1); plot(x, sin(x)); %把窗口分成 2\*2 个子窗口,在第一个子窗口绘图

» subplot(2,2,2); plot(x, cos(x));» a 第二个子窗口绘图» subplot(2,2,3); plot(x, sinh(x));» a 第三个子窗口绘图» subplot(2,2,4); plot(x, cosh(x));» 在第四个子窗口绘图

● MATLAB 还有其他各种二维绘图函数,以适合不同的应用,详见下表。

| Bar      | 长条图      |
|----------|----------|
| Errorbar | 图形加上误差范围 |
| Fplot    | 较精确的函数图形 |
| Polar    | 极坐标图     |
| Hist     | 累计图      |
| Rose     | 极坐标累计图   |
| Stairs   | 阶梯图      |
| Stem     | 针状图      |
| Fill     | 实心图      |
| Feather  | 羽毛图      |
| Compass  | 罗盘图      |

数学软件介绍 第 6 页

Quiver 向量场图

以下我们针对每个函数举例。

● 当数据点数量不多时,条形图是很适合的表示方式:

» close all;

% 关闭所有的图形窗口

- x=1:10;
- » y=rand(size(x));
- $\gg$  bar(x,y);
- 如果已知数据的误差量,就可用 errorbar 来表示。下例以单位标准差来做数据的误差量:
  - x = linspace(0,2\*pi,30);
  - $y = \sin(x)$ ;
  - = std(y)\*ones(size(x));
  - » errorbar(x,y,e)
- 对于变化剧烈的函数,可用 fplot 来进行较精确的绘图,会对剧烈变化处进行较密集的 取样,如下例:
  - » fplot('sin(1/x)', [0.02 0.2]);

% [0.02 0.2]是绘图范围

- 若要产生极坐标图形,可用 polar:
  - » theta=linspace(0, 2\*pi);
  - $= \cos(4*theta);$
  - » polar(theta, r);
- 对于大量的数据,我们可用 hist 来显示数据的分布情况和统计特性。下面几个命令可用来验证 randn 产生的高斯随随机数分布:
  - x=randn(5000, 1);
- % 产生 5000 个 m=0, s=1 的高斯随机数
- $\Rightarrow$  hist(x,20);
- % 20 代表长条的个数
- rose 和 hist 很接近,只不过是将数据大小视为角度,数据个数视为距离,并用极坐标绘制表示:
  - » x=randn(1000, 1);
  - > rose(x);
- stairs 可画出阶梯图:
  - » x=linspace(0,10,50);
  - $y = \sin(x).*\exp(-x/3);$
  - » stairs(x,y);
- stems 可产生针状图,常被用来绘制数位讯号:
  - » x=linspace(0,10,50);
  - $y=\sin(x).*\exp(-x/3);$
  - » stems(x,y);
- fill 将数据点视为多边行顶点,并将此多边行涂上颜色:
  - » x=linspace(0,10,50);

数学软件介绍 第 7 页

```
» y=sin(x).*exp(-x/3);
» fill(x,y,'b'); % 'b'为蓝色
```

● feather 将每一个数据点视复数,并以箭号画出:

```
\Rightarrow theta=linspace(0, 2*pi, 20);
```

- $> z = \cos(\text{theta}) + i * \sin(\text{theta});$
- » feather(z);
- compass 和 feather 很接近,只是每个箭号的起点都在圆点:
  - » theta=linspace(0, 2\*pi, 20);
  - $> z = \cos(\text{theta}) + i * \sin(\text{theta});$
  - » compass(z);

## 3.5 基本三维绘图命令

在科学可视化(Scientific visualization)中,三维空间的立体图是一个非常重要的技巧。 下面介绍 MATLAB 基本三维空间的各项绘图命令。

● mesh 和 plot 是三度空间立体绘图的基本命令, mesh 可画出立体网状图, surf 则可画出立体曲面图, 两者产生的图形都会依高度而有不同颜色。下列命令可画出由函数形成的立体网状图:

» x=linspace(-2, 2, 25);» y=linspace(-2, 2, 25);% 在 x 轴上取 25 点% 在 y 轴上取 25 点

» [xx,yy]=meshgrid(x, y); % xx 和 yy 都是 21x21 的矩阵

» zz=xx.\*exp(-xx.^2-yy.^2); % 计算函数值, zz 也是 21x21 的矩阵

» mesh(xx, yy, zz); % 画出立体网状图

● surf 和 mesh 的用法类似:

» x=linspace(-2, 2, 25);» y=linspace(-2, 2, 25);% 在 x 轴上取 25 点% 在 y 轴上取 25 点

» [xx,yy]=meshgrid(x, y); % xx 和 yy 都是 21x21 的矩阵

» zz=xx.\*exp(-xx.^2-yy.^2); % 计算函数值, zz 也是 21x21 的矩阵

» surf(xx, yy, zz); % 画出立体曲面图

- meshc 同时画出网状图与等高线:
  - x = [x,y,z] = peaks;
  - > meshc(x,y,z);
  - » axis([-inf inf -inf inf -inf inf]);
- surfc 同时画出曲面图与等高线:
  - » [x,y,z]=peaks;
  - » surfc(x,y,z);
  - » axis([-inf inf -inf inf -inf inf]);

数学软件介绍 第 8 页

- contour3 画出曲面在三维空间中的等高线:
  - » contour3(peaks, 20);
  - » axis([-inf inf -inf inf -inf inf]);
- contour 画出曲面等高线在 XY 平面的投影:
  - » contour(peaks, 20);
- plot3 可画出三维空间中的曲线,也可同时画出两条三维空间中的曲线
  - » t=linspace(0,20\*pi, 501);
  - » plot3(t.\*sin(t), t.\*cos(t), t);
  - » t=linspace(0, 10\*pi, 501);
  - » plot3(t.\*sin(t), t.\*cos(t), t, t.\*sin(t), t.\*cos(t), -t);

## 3.6 语句、变量和表达式

● 语句形式 变量=表达式

输入一个语句并以回车结束,则在工作区显示计算结果,语句以";"结束,只进行计算但不显示结果。太长的表达式可以用续行号...将其延续到下一行。一行可以写几个语句,它们之间用逗号或句号分开。

- 变量 由字母、数字和下划线组成,最多 31 个字符,区分大小写字母,第一个字符必须 是字母。不需要类型说明和维数语句。
- 几个特殊的量 pi 圆周率(4)π; eps 最小浮点数; Inf 正无穷大; NaN 不定值 I, j 虚数单位
- 字符串 用单引号括起来的字符集

## 3.7 函数

- 标量函数 sin cos tan cot sec csc asin acos sinh cosh sqrt exp log log10 abs floor ceil fix sign real imag angle rats
- 向量函数 max min sum length mean median prod (乘积) sort (从小到大排列) 例 a=[4, 3.1,-1.2,0.6]; b=min(a), c=sum(a), e=sort(a)

## 3. 8 程序设计

- Matlab 有两种工作方式: 1)人机交互的命令行指令操作方式, 2)进行控制流的程序设计,即编制一种可存储的以 M 为扩展名的文件(简称 M 文件),在 Matlab 下执行该程序
- 命令式 M 文件: 就是将 Matlab 的命令按顺序编制成一个文本文件
- 函数式 M 文件: 主要用来定义函数子程序,它由 function 起头,后跟的函数名必须与文件名相同,它有输入输出元(变量),可进行变量传递。

例 计算第 n 个 Fibonnaci 数的函数文件 fibfun. m

function f=fibfun(n)

```
if n>2
```

```
f=fibfun(n-1)+fibfun(n-2);
```

else f=1;

end

数学软件介绍 第9页

# 3. 9 控制语句

循环语句 for 循环: for v=s1:s2:s3 %(s1-循环变量初值, s2-循环变量增量, s3-循环变量终值 执行语句 end 例 求 1+2+···+100(sum100. m) mysum=0; for i=1:1:100 mysum=mysum+i; end mysum while 循环: while 逻辑变量 循环体语句 end 例 求 1+2+···+100(sum100w. m)

mysum=0;

i=1;

while (i<=100)</pre>

mysum=mysum+i; i=i+1;

end

mysum

选择语句

if 逻辑变量 条件语句组

end

if 逻辑变量

条件语句组1

else

条件语句组2

end

if 逻辑变量 1

条件语句组1

elseif 逻辑变量 2

条件语句组2

elseif 逻辑变量 n

条件语句组 n

else

条件语句组 n+1

数学软件介绍 第 10 页

end

```
例 符号函数 (fhfun.m)
           [1, x > 0]
     sign = \begin{cases} 0, x = 0 \end{cases}
function f=fhfun(x)
if x>0
  f=1;
elseif x==0
  f=0;
else
  f=-1;
end
3.10 人机交互语句
● 输入语句 input: A=input(提示字符串), A=input(提示字符串, 's')
● 键盘输入命令: keyboard
● 中断命令: break
   例 鸡兔同笼,头 36,脚 100,鸡兔各几? (jt.m)
i=1;
while 1
  if (i+(100-i*2)/4)==36
     break
  end
  i=i+1;
end
a1=i
a2=36-i
   3.11 在科学计算中的应用
    ● 数值微分
       diff(x)-x=[x_1, x_2, ..., x_n], diff(x)=[x_2-x_1, ..., x_n-x_{n-1}]
       y'=dy/dt=diff(y)/dt-dt=x_{i+1}-x_i
    ● 数值积分
       Simpson 法求积: quad(f, a, b, tol)
       Newton-cots 求积: quad8(f, a, b, tol)
       梯形公式求积: trapz(x,y)
       例 卫星轨道长度 l = 4 \int_0^{\pi/2} (a^2 \sin^2 t + b^2 \cos^2 t)^{\frac{1}{2}} dt, a=6371+2384, b=6731+439
       wxfun.m
function y=wxfun(t)
a=8755;b=6810;
```

 $y = sqrt(a^2 * sin(t).^2 + b^2 * cos(t).^2);$ 

数学软件介绍 第 11 页

t=0:pi/10:pi/2;y1=wxfun(t);11=4\*trapz(t,y1) 12=4\*quad(@wxfun,0,pi/2,1e-6)

多重定积分的数值求解求双重定积分问题

$$I = \int_{y_m}^{y_M} \int_{x_m}^{x_M} f(x, y) dx dy$$

的 Matlab 函数为

y=dblquad ('fun', x\_m, x\_M, y\_m, y\_M, tol)

例 求

$$J = \int_{-1}^{1} \int_{-2}^{2} e^{\frac{-x^{2}}{2}} \sin(x^{2} + y) dx dy$$

function z=mydbl(x,y)

 $z=exp(-x.^2/2).*sin(x.^2+y);$ 

y=dblquad('mydbl', -2, 2, -1, 1)

y =

1.5746

● 常微分方程数值解法 求解微分方程初值问题

$$x' = f(t, x), x(t_0) = x_0$$

在区间[to, tf]的数值解的函数为

[t, x]=ode23('fun', [t₀, t₆], x₀, '选项')----2/3 阶RKF(Runge-Kutta-Felhberg)法 [t, x]=ode45('fun', [t₀, t₆], x₀, '选项')----4/5 阶RKF(Runge-Kutta-Felhberg)法 其中函数 fun 的编写格式如下:

function xdot=fun(t, x)

例 考虑著名的 Van der Pol 方程

$$y'' + \mu(y^2 - 1)y' + y = 0$$

令 $x_1 = y, x_2 = y'$ 则原方程变化为

$$x_1' = x_2, x_2' = -\mu(x_1^2 - 1)x_2 - x_1$$

function y=vdp\_eq(t,x,flag,mu)
y=[x(2);-mu\*(x(1).^2-1).\*x(2)-x(1)];
vdpl.m

h\_opt=odeset;x0=[-0.2;-0.7];t\_f=20;

mu=1;[t1,y1]=ode45('vdp\_eq',[0,t\_f],x0,h\_opt,mu);
mu=2;[t2,y2]=ode45('vdp\_eq',[0,t\_f],x0,h\_opt,mu);
plot(y1(:,1),y1(:,2),y2(:,1),y2(:,2))

数学软件介绍 第 12 页

例 食饵-捕食者模型

$$x'(t) = rx - axy, y'(t) = -dy + bxy$$
  
 $x(0) = x0, y(0) = y0$ 

其中 $\mathbf{x}(t)$ , $\mathbf{y}(t)$ 分别表示食饵和捕食者 $\mathbf{t}$ 时刻的数量. 求  $\mathbf{r}=1$ , $\mathbf{d}=0.5$ , $\mathbf{a}=0.1$ , $\mathbf{b}=0.02$ , $\mathbf{x}0=25$ , $\mathbf{y}0=2$ 时的数值解,并画出 $\mathbf{x}(t)$ , $\mathbf{y}(t)$ 的图形以及相图  $(\mathbf{x},\mathbf{y})$ .

```
function xdot=shier(t,x)
r=1;d=0.5;a=0.1;b=0.02;
xdot=diag([r-a*x(2),-d+b*x(1)])*x;
s_b.m
ts=0:0.1:15;x0=[25,2];
[t,x]=ode45('shier',ts,x0);
[t,x],
plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),
plot(x(:,1),x(:,2)),grid,xlabel('x1'),ylabel('x2')
```

### 3.12 优化计算

● 线性规划

linprog

求

 $\min_{x} f^{T} x$ ,

s.t.

 $Ax \leq b$ ,

 $Aeq \cdot x \leq beq$ ,

 $lb \le x \le ub$ .

linprog(f,A,B,Aeq,Beq,lb,ub)

linprog(f,A,B,Aeq,Beq,lb,ub,x0)

linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)

例 1 求解线性规划问题

vub=[]

$$\max z = cx$$

s. t. 
$$Ax \le b$$
$$x \ge 0$$

数学软件介绍 第 13 页

#### ● 无约束优化

fminunc

Find a minimum of an unconstrained multivariable function

$$\min_{x} f(x)$$

where x is a vector and f(x) is a function that returns a scalar. Syntaxx = fminunc(fun,x0)

unop.m
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)

#### • fmincon

Find a minimum of a constrained nonlinear multivariable function

$$\min_{x} f(x)$$

subject to

 $c(x) \leq 0$ ,

ceq(x) = 0,

 $A \cdot x \leq b$ ,

 $Aeq \cdot x = beq$ ,

 $lb \le x \le ub$ 

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions. Syntaxx = fmincon(fun,x0,A,b)

x = fmincon(fun, x0, A, b, Aeq, beq)

x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)

数学软件介绍 第 14 页

```
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
例 求
\min e^{x_1} (4x_1^2 + 2x_2^2 + 4x_1x_2 + 2x_2 + 1)
s.t.
x_1x_2 - x_1 - x_2 + 1.5 \le 0,
-x_1x_2-10 \le 0.
function f = objfun(x)
f = \exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);
    -x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];
cop.m
x0 = [-1,1];
                 % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x, fval] = \dots
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)
3.13 曲线拟合
已知一组数据(二维),即平面上的n个点(x_i, y_i),i = 1, \dots, n, x_i互不相同,寻求一个函
数 y = f(x, \alpha_1, \dots, \alpha_m), 使其在某种准则下与所有数据点最为接近。
1) 线性最小二乘法
  f(x) = a_1 r_1(x) + \dots + a_m r_m(x)
其中r_{k}(x)是事先选定的一组函数,a_{k}是待定系数。拟合准则是使n个点
```

 $(x_i, y_i), i = 1, \dots, n,$ 与  $y = f(x_i)$ 的距离的平方和最小(称为最小二乘准则),即求使

$$J(a_1, \dots, a_m) = \sum_{i=1}^n (f(x_i) - y_i)^2$$

数学软件介绍 第 15 页

达到最小的  $a_k$  ,  $k=1,\cdots,m$  . 令  $\frac{\partial J}{\partial a_k}=0$  ,  $k=1,\cdots,m$  ,可得出  $a_k$  ,  $k=1,\cdots,m$  ,满足的线性

方程组

$$R^T R a = R^T y$$

其中
$$a = (a_1, \dots, a_m)^T, y = (y_1, \dots, y_n), R = \begin{pmatrix} r_1(x_1), \dots, r_m(x_1) \\ \vdots, \dots, \vdots \\ r_1(x_n), \dots, r_m(x_n) \end{pmatrix}_{n \times m}$$

关键的一步是选取 $r_k(x)$ ,可根据机理分析或 $(x_i, y_i)$ , $i = 1, \dots, n$ ,的图形判断。

取  $r_{\iota}(x) = x^{\iota}$  , 为**多项式拟合,Matlab 命令**为

a=polyfit(x,y,m)

其中输入参数  $x = [x_1, \dots, x_n], y = [y_1, \dots, y_n], m$  为拟合多项式的次数,输出参数

$$a = [a_1, \dots, a_m, a_{m+1}]$$
 为拟合多项式  $y = a_1 x^m + \dots + a_m x + a_{m+1}$  的系数。

拟合多项式在x处的值可用 Matlab 命令y=polyval(a,x)计算

例 电阻问题 已知一对温度敏感的电阻的阻值和温度的一组数据如下

t(度) 20.5,32.7,51.0,73.0,95.7

R(欧姆) 765, 826, 873, 942,1032

拟合电阻 R 与温度 t 之间的关系

## Matlab 命令(dianzu.m)如下

t=[20.5,32.7,51.0,73.0,95.7];

r=[ 765,826,873,942,1032];

aa=polyfit(t,r,1);

a=aa(1)

b=aa(2)

y=polyval(aa,t);

plot(t,r,'k+',t,y,'r')

**例 血药浓度问题** 某人用快速静脉注射方式一次注入药物 300mg, 在一定时刻采集血样,测得 血药浓度如下:

t=0.25,0.5,1,1.5,2,3,4,6,8

c=19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01

拟合血药浓度随时间的变化规律。

利用机理分析 (一室模型) 可得

$$c(t) = \frac{d}{v}e^{-kt}$$

为拟合系数v,k,我们对上式取对数得

$$\ln c = \ln \frac{d}{v} - kt$$

数学软件介绍 第 16 页

记 
$$y = \ln c, a_1 = -k, a_2 = \ln \frac{d}{v}$$
,则问题化为由数据  $t_i, y_i = \ln c_i$  拟合直线

 $y = a_1 t + a_2$ 

用如下 Matlab 命令 (xueyao.m)

t=[0.25,0.5,1,1.5,2,3,4,6,8];

c=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];

y = log(c);

aa=polyfit(t,y,1);

a=aa(1)

b=aa(2)

k=-a

d=300;

v=d/exp(b)

cc=exp(b)\*exp(a\*t);

plot(t,c,'k+',t,cc,'r')

2) 非线性最小二乘拟合

记  $r_i(a) = y_i - f(x, a), r(a) = (r_1(a), \dots, r_n(a))$ , 拟合准则是  $r_i(a)$  的平方和最小,于是

问题化为如下的优化问题

$$\min R(a) = r(a)r^{T}(a)$$

(1)Matlab 命令为

Lsqnonlin('f',a0)

其中,f.m 是描述函数 R(a) 的函数文件名, a0 是初值

### 例 血药浓度问题

function f=ct(x)

t=[0.25,0.5,1,1.5,2,3,4,6,8];

c=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];

f=c-x(1)\*exp(x(2)\*t);

x0=[10,0.5]

lsqnonlin('ct',x0)

(2) lsqcurvefit('fun',a0,x,y,LB,UB)

其中, f.m 是描述函数 f(x,a) 的函数文件名, a0 是初

值, 
$$x = [x_1, \dots, x_n], y = [y_1, \dots, y_n]$$
 为数据

### 例 血药浓度问题

function f=xue(x, t)

f=x(1)\*exp(x(2)\*t);

t=[0.25,0.5,1,1.5,2,3,4,6,8];

c=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];

x0=[10,0.5]

数学软件介绍 第 17 页

lsqcurvefit('xue',a0,t,c)

xuenon.m

t=[0.25,0.5,1,1.5,2,3,4,6,8];

c=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];

lsqcurvefit('xue',a0,t,c);

yy=xue(x,t);

plot(t,c,'k\*',t,yy,'r')

例 药物的吸收与排除(口服)

假设口服剂量为 d,中心室血药浓度数据为

t=0.083, 0.167, 0.25, 0.50, 0.75, 1.0, 1.5, 2.25, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0

c=10.9,21.1,27.3,36.4,35.5,38.4,34.8,24.2,23.6,15.7,8.2,8.3,2.2,1.8

由机理分析(吸收室-中心室模型)得,中心室的血药浓度

$$c(t) = \frac{d}{v} \frac{k}{k_1 - k} (e^{-kt} - e^{-k_1 t})$$

其中排除速率k和吸收速率 $k_1$ 由上述数据拟合

function f=xipai(x,t)

f=x(1)\*x(3)\*(exp(-x(2)\*t)-exp(-x(1)\*t))/(x(1)-x(2));

xipainon.m

t=[0.083,0.167,0.25,0.50,0.75,1.0,1.5,2.25,3.0,4.0,6.0,8.0,10.0,12.0];

c=[10.9,21.1,27.3,36.4,35.5,38.4,34.8,24.2,23.6,15.7,8.2,8.3,2.2,1.8];

x0=[1,0,40];

x=lsqcurvefit('xipai',x0,t,c);

yy=xipai(x,t);

plot(t,c,'k\*',t,yy,'r')

3.14 回归分析

回归分析主要是对拟合问题作统计分析,研究如下问题:①建立因变量y与自变量 $x_1, x_2, \cdots, x_m$ 之间的回归模型(经验公式)②对回归模型的可信度进行检验③判断每个

自变量  $x_i$  ( $i=1,2,\cdots,m$ ) 对 y 的影响是否显著④诊断回归模型是否适合这组数据⑤利用回归模型对 y 进行预报和控制.

3.14.1 多元线性回归

回归分析中最简单的形式

$$y = \beta_0 + \beta_1 x$$

其中x,y均为标量, $\beta_0,\beta_1$ 为回归系数,称为**一元线性回归.**一般地

$$y = \beta_0 + \beta_1 f_1(x_1, \dots, x_m) + \dots + \beta_m f_m(x_1, \dots, x_m)$$

其中  $f_i(j=1,\dots,m)$  是已知函数. 这里 y 对回归系数  $\beta = (\beta_0,\beta_1,\dots,\beta_m)$  是线性的,

称为**多元线性回归.** 特别,  $f_i = x_i (j = 1, \dots, m)$ , 则

数学软件介绍 第 18 页

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

MATLAB 实现

 $\bigcirc$ b=regress(y,x)

其中

$$y = (y_1, \dots, y_n)^T, x = \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix}$$

②[b,bint,r,rint,stats]=regress(y,x,alpha)

这里 alpha 为显著性水平(缺省时为 0.05), b,bint 为回归系数估计值和它们的置信区间, r,rint 为残差及其置信区间, stats 是用于检验回归模型的统计量,有三个值, 第一个是 $R^2$ ,

第二个是 F, 第三个是与 F 对应的概率 P, P < a 时拒绝  $H_0$  回归模型成立.

③rcoplot(r,rint)%残差及其置信区间图

### 例 合金强度与碳含量

下表是生产中收集的合金的强度 y 与其中的碳含量 x 的数据

| X | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.20 | 0.21 | 0.23 |
|---|------|------|------|------|------|------|------|------|------|------|------|------|
| у | 42.0 | 41.5 | 45.0 | 45.5 | 45.0 | 47.5 | 49.0 | 55.0 | 50.0 | 55.0 | 55.5 | 60.5 |

拟合y与x的函数关系,检验可信度,检查数据中有无异常点回归模型为

$$y = \beta_0 + \beta_1 x$$

Hjt.m

\_\_\_\_\_

x1=0.1:0.01:0.18;

 $x=[x1\ 0.2\ 0.21\ 0.23]';$ 

y=[42.0 41.5 45.0 45.5 45.0 47.5 49.0 55.0 50.0 55.0 55.5 60.5]';

x = [ones(12,1) x];

[b,bint,r,rint,stats]=regress(y,x);

b,bint,stats,rcoplot(r,rint)

-----

b =

27.0269

140.6194

bint =

22.3226 31.7313

111.7842 169.4546

stats =

0.9219 118.0670 0.0000

数学软件介绍 第 19 页



# 例 商品销售量与价格

某厂生产的一种商品的销售量y与竞争对手的价格 $x_1$ 和本厂的价格 $x_2$ 有关,某城

市的销售记录如下

|   |       |             |           |       |       |         |     | <br> |  |  |  |  |  |  |  |
|---|-------|-------------|-----------|-------|-------|---------|-----|------|--|--|--|--|--|--|--|
| Ĵ | $x_1$ | 120 140 190 | ) 130 155 | 175 1 | 25 1  | 45 180  | 150 |      |  |  |  |  |  |  |  |
| Ĵ | $x_2$ | 100 110 9   | 0 150 210 | 150 2 | 250 2 | 270 300 | 250 |      |  |  |  |  |  |  |  |
|   | y     | 102 100 120 | 77 46     | 93    | 26    | 69 65   | 85  |      |  |  |  |  |  |  |  |

试根据这些数据建立y与 $x_1$ 和 $x_2$ 的关系式,对得到的模型和系数进行检验

回归模型为  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ 

xljg.m

x1=[120 140 190 130 155 175 125 145 180 150]';

x2=[100 110 90 150 210 150 250 270 300 250]';

y=[102 100 120 77 46 93 26 69 65 85]';

x = [ones(10,1) x1 x2];

[b,bint,r,rint,stats] = regress(y,x);

b,bint,stats,rcoplot(r,rint)

检验结果模型不能用

数学软件介绍 第 20 页

### 3.14.2 多元二项式回归

MATLAB 的统计工具箱提供了一个作多元二项式回归的命令 rstool,它产生一个交互式画面,并输出有关信息.具体用法如下:

rstool(x,y,model,alpha)

其中 $x_{n\times m}$ ,  $y_{1\times n}$  为输入数据, alpha 为显著水平, model 选择如下:

'linear': 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$
 (线性模型)

'purequadratic': 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{i=1}^n \beta_{ij} x_j^2$$
 (纯二次)

'interaction': 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le j \ne k \le m} \beta_{jk} x_j x_k$$
 (交叉)

'quadratic': 
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le i,k \le m} \beta_{jk} x_j x_k$$
 (完全二次)

## 例 商品销售量与价格

某厂生产的一种商品的销售量y与竞争对手的价格 $x_1$ 和本厂的价格 $x_2$ 有关,某城

市的销售记录如下

| $x_1$ | 120 140 190 130 155 175 125 145 180 150 |
|-------|-----------------------------------------|
| $x_2$ | 100 110 90 150 210 150 250 270 300 250  |
| У     | 102 100 120 77 46 93 26 69 65 85        |

试根据这些数据建立y与 $x_1$ 和 $x_2$ 的关系式,对得到的模型和系数进行检验

选择纯二次模型,即

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$$

xljg1.m

x1=[120 140 190 130 155 175 125 145 180 150]';

x2=[100 110 90 150 210 150 250 270 300 250]';

y=[102 100 120 77 46 93 26 69 65 85]';

 $x=[x1 \ x2];$ 

rstool(x,y,'purequadratic')

3.14.3 非线性回归

非线性回归是指因变量 y 对回归系数  $\beta_0,\beta_1,\cdots,\beta_m$  (而不是自变量)是非线性的.MATLAB 的统计工具箱的如下命令可实现非线性回归:

nlinfit

nlparci

nlpredci

数学软件介绍 第 21 页

#### nlintool

### 例 化学反应速度与反应物含量

在研究化学动力学反应过程中,建立了一个化学反应速度与反应物含量的数学模型

$$y = \frac{\beta_1 x_2 - \frac{x_3}{\beta_5}}{1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_3}$$

其中 $\beta_1, \cdots, \beta_5$ 是参数, $x_1, x_2, x_3$ 是三种反应物的含量,y是反应速度.今测得一组数据,试由此

确定参数  $\beta_1, \dots, \beta_5$  ,并给出置信区间.

| 序号 |                                                                     |
|----|---------------------------------------------------------------------|
| y  | 8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13 |
| x1 | 470 285 470 470 470 100 100 470 100 100 100 285 285                 |
| x2 | 300 80 300 80 80 190 80 190 300 300 80 300 190                      |
| x3 | 10 10 120 120 10 10 65 65 54 120 120 10 120                         |

Huaxue1.m

function yhat=huaxue1(beta,x)

b1=beta(1);b2=beta(2);b3=beta(3);b4=beta(4);b5=beta(5);

x1=x(:,1);x2=x(:,2);x3=x(:,3);

yhat = (b1\*x2-x3/b5)./(1+b2\*x1+b3\*x2+b4\*x3);

huaxue.m

x1=[470 285 470 470 470 100 100 470 100 100 100 285 285]';

x2=[300 80 300 80 80 190 80 190 300 300 80 300 190]';

x3=[10 10 120 120 10 10 65 65 54 120 120 10 120];

y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]';

 $x=[x1 \ x2 \ x3];$ 

beta=[1 0.05 0.02 0.1 2];

[betahat,f,J]=nlinfit(x,y,'huaxue1',beta);

betaci=nlparci(betahat,f,J);

betaa=[betahat,betaci]

[yhat,delta]=nlpredci('huaxue1',x,betahat,f,J);

yy=[y,yhat,delta]