21. Предельный переход под знаком интеграла по параметру при условии Лебега, предельный переход под знаком интеграла по параметру в случае равномерной сходимости.

Предельный переход при условии Лебега

Пусть (X,A,μ) — пространство с мерой, \tilde{Y} — метрическое пространство, $Y\subset \tilde{Y}, f:X\times Y\to \mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$ (где у фиксирован) . Если при почти всех $x\in X$ $f(x,y)\underset{y\to y_0}{\longrightarrow} g(x)$, и существует $\Phi\in L(X,\mu)$ и окрестность V_{y_0} , такие что $|f(x,y)|\leq \Phi(x)$ для почти всех x и $y\in V_{y_0}\cap Y$,

то
$$g\in L(X,\mu)$$
 и $\lim_{y o y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)=\int_X \lim_{y o y_0} f(x,y)d\mu(x).$

Смысл

Эта теорема обобщает теорему Лебега о мажорированной сходимости для интегралов, зависящих от параметра. Условие гарантирует, что функции $f(\cdot,y)$ "не слишком быстро растут" при $y \to y_0$, что позволяет менять порядок предела и интеграла. Пример применения — исследование непрерывности интегралов от параметрических семейств.

Предельный переход при равномерной сходимости

Пусть (X,A,μ) — пространство с мерой, $\mu X<+\infty$, $f:X\times Y\to \mathbb{R}$, $f(\cdot,y)\in L(X,\mu)$, и $f(\cdot,y)\underset{y\to y_0}{\Longrightarrow}g$ (равномерно на X): Тогда $g\in L(X,\mu)$ и $\lim_{y\to y_0}\int_X f(x,y)d\mu(x)=\int_X g(x)d\mu(x)$.

Смысл

Если семейство функций $f(\cdot,y)$ сходится к g равномерно (т.е. "одинаково быстро" для всех x), то интеграл от предела равен пределу интегралов. Это частный случаи теоремы 1, где мажорантой служит 1+|g| (так как $\mu X<+\infty$). Используется, например, при доказательстве непрерывности интегралов Фурье.

Равномерная сходимость

Семейство $\{f(\cdot,y)\}_{y\in Y}$ равномерно сходится к g на X, если $\sup_{x\in X}|f(x,y)-g(x)|\underset{y\to y_0}{\longrightarrow}0.$ Обозначение: $f(\cdot,y)\rightrightarrows g.$

Смысл

Равномерная сходимость — более строгое условие, чем поточечная, но зато она гарантирует сохранение свойств (непрерывности, интегрируемости) при предельном переходе. Например, если f(x,y) — непрерывные функции и $f \rightrightarrows g$, то g тоже непрерывна. В контексте интегралов это позволяет избежать "патологий", когда предельная функция неинтегрируема.

22. Локальная непрерывность интеграла по параметру, глобальная непрерывность интеграла по параметру.

Локальная непрерывность интеграла по параметру в точке

Пусть (X,A,μ) — пространство с мерой, Y — метрическое пространство, $f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ $f(\cdot,y)\in L(X,\mu)$, $y_0\in Y$, при почти всех $x\in X$ функция $f(x,\cdot)$ непрерывна в точке y_0 , и f удовлетворяет локальному условию Лебега в точке y_0 (т.е. существует окрестность V_{y_0} и функция $\Phi\in L(X,\mu)$ такие, что для почти всех $x\in X$ и всех $y\in V_{y_0}\cap Y$ выполняется $|f(x,y)|\leq \Phi(x)$). Тогда интеграл $I(y)=\int_X f(x,y)\,d\mu(x)$ непрерывен в точке y_0 .

Смысл:

Эта теорема гарантирует, что если подынтегральная функция f(x,y) непрерывна по параметру y в точке y_0 для почти всех x и ограничена "контролирующей" функцией $\Phi(x)$, то интеграл I(y) тоже будет непрерывным в y_0 . Это важно, например, при исследовании зависимостей интегралов от параметров, таких как время или координаты, в физике или теории вероятностей.

Глобальная непрерывность интеграла по параметру на множестве

Пусть X — компакт в \mathbb{R}^n , μ — мера Лебега, Y — метрическое пространство, $f\in C(X imes Y)$. Тогда интеграл $I(y)=\int_X f(x,y)\,d\mu(x)$ принадлежит C(Y) (т.е. непрерывен на Y).

Смысл:

Если f непрерывна на произведении компакта X и метрического пространства Y, то интеграл I(y) будет непрерывным на всём Y. Это следует из компактности X и непрерывности f, что позволяет избежать проблем с расходимостями. Например, это применяется в задачах, где параметр y меняется в широких пределах, а X — ограниченная область.

Различие

Оба результата (локальный и глобальный) опираются на идею контроля роста f(x,y): в первом случае — через локальную мажоранту, во втором — через глобальную ограниченность, обеспечиваемую компактностью X.

Локальное условие Лебега и его роль

$$\exists \Phi \in L(X,\mu), \exists V_{y_0}:$$
 при почти всех $x \in X \ orall y \in \dot{V}_{y_0} \cap Y \ |f(x,y)| \leq \Phi(x).$

Смысл:

Это условие требует, чтобы значения f(x,y) в окрестности точки y_0 не превосходили некоторую интегрируемую функцию $\Phi(x)$. Оно нужно для применения теоремы Лебега о мажорируемой сходимости, которая позволяет "переставлять" пределы и интегралы. Без такого условия интеграл I(y) может терять непрерывность, даже если f(x,y) непрерывна по y.

23: Правило Лейбница дифференцирования интеграла по параметру в случае абсолютной суммируемости

(!сверить!)

Условия применимости правила Лейбница

Пусть функция $f(x,\alpha)$ определена на $[a,b] imes [\alpha_1,\alpha_2]$, интегрируема по x на [a,b] для любого $lpha\in [\alpha_1,\alpha_2]$, и её частная производная $\frac{\partial f}{\partial lpha}$ существует и абсолютно суммируема (т.е. $\int_a^b \left|\frac{\partial f}{\partial lpha}\right| dx < \infty$).

Тогда, то для $lpha \in [lpha_1, lpha_2]$ справедливо:

$$rac{d}{dlpha}\left(\int_a^b f(x,lpha)\,dx
ight)=\int_a^b rac{\partial f(x,lpha)}{\partiallpha}\,dx.$$

Смысл:

Правило позволяет менять порядок дифференцирования и интегрирования. Это полезно, когда интеграл зависит от параметра α , и нужно найти его производную. Например, в физике или теории вероятностей такие ситуации встречаются часто.

Важность абсолютной суммируемости и условий

Абсолютная суммируемость $\frac{\partial f}{\partial \alpha}$ (т.е. $\int_a^b \left| \frac{\partial f}{\partial \alpha} \right| dx < \infty$) обеспечивает равномерную сходимость интеграла, что позволяет применять теоремы о перестановке пределов. Без этого условия производная под интегралом может "вести себя плохо" — например, интеграл может расходиться или производная может не существовать. Абсолютная суммируемость — это способ "контролировать" поведение функции, чтобы все операции были законны.

Условия гарантируют, что интеграл можно "дифференцировать под знаком интеграла". Абсолютная суммируемость производной нужна, чтобы обеспечить равномерную сходимость и избежать проблем при перестановке операций дифференцирования и интегрирования.

24 Правило Лейбница дифференцирования интеграла по параметру в отсутствии абсолютной суммируемости. Интегрирование интеграла по параметру

(!сверить!)

1) Случай постоянного множества интегрирования

Пусть (X,\mathbb{A},μ) — пространство с мерой, $Y=\langle c,d\rangle\subset\mathbb{R}, f:X\times Y\to\mathbb{R}$, при всех $y\in Y$ функция $f(\cdot,y)\in L(X,\mu)$, при почти всех $x\in X$ функция $f(x,\cdot)$ дифференцируема на Y, $y_0\in Y$, и производная f'_y удовлетворяет локальному условию Лебега в точке y_0 . Тогда интеграл $I(y)=\int_X f(x,y)d\mu(x)$ дифференцируем в точке y_0 и выполняется равенство:

$$I'(y_0)=\int_X f_y'(x,y_0)d\mu(x).$$

Смысл:

Это правило позволяет "выносить" производную по параметру y из-под знака интеграла по x, когда пределы интегрирования фиксированы. Для этого нужно, чтобы подынтегральная функция была "достаточно хорошей": интегрируемой по x при каждом y, дифференцируемой по y почти всюду по x, а её производная по y должна удовлетворять условию, гарантирующему возможность предельного перехода (локальное условие Лебега). Это фундаментальный результат для анализа интегралов, зависящих от параметра.

2) Случай переменного множества интегрирования

Пусть функции f(x,y) и её частная производная $\frac{\partial f}{\partial y}$ интегрируемы на прямоугольнике $[\alpha,\beta] imes[c,d]$, где отрезок $[\alpha,\beta]$ содержит все значения функций a(y), b(y), а функции a(y), b(y) дифференцируемы на [c,d]. Тогда интеграл $I(y)=\int_{a(y)}^{b(y)}f(x,y)dx$ дифференцируем по y на [c,d] и справедлива формула:

$$rac{d}{dy}I(y) = f(b(y),y)\cdot b'(y) - f(a(y),y)\cdot a'(y) + \int_{a(y)}^{b(y)} rac{\partial f}{\partial y}(x,y) dx.$$

Смысл:

Эта формула учитывает **два эффекта** при дифференцировании интеграла с переменными пределами a(y) и b(y): 1) Изменение *площади* под кривой из-за изменения подынтегральной функции по параметру y (последний интеграл с производной). 2) Изменение *самой области* интегрирования из-за движения границ a(y) и b(y) (первые два слагаемых). Они показывают, как "добавляется" площадь при движении правой границы b(y) и "вычитается" площадь при движении левой границы a(y).

3) Отсутствие абсолютной суммируемости

Интегрирование интеграла по параметру не требует абсолютной суммируемости подынтегральной функции или её производной в случае постоянных пределов интегрирования. Достаточно выполнения локального условия Лебега на производную f_y' в точке дифференцирования y_0 .

Смысл:

Локальное условие Лебега (существование интегрируемой мажоранты для f_y' в некоторой окрестности точки y_0) является ключевым ослаблением по сравнению с требованием абсолютной суммируемости на всем Y. Это означает, что для вычисления производной $I'(y_0)$ достаточно контролировать поведение производной f_y' лишь вблизи этой конкретной точки y_0 , а не на всём интервале. Это делает теорему применимой в более широком классе задач.

25. Свойства Г-функции Эйлера: определение, формула приведения, значения в натуральных и полуцелых точках, выражение для k-й производной, геометрические свойства.

Определение и базовые значения

Г-функция Эйлера задаётся интегралом:

$$\Gamma(p)=\int_0^{+\infty}x^{p-1}e^{-x}\,dx,\quad p>0.$$

Смысл:

Г-функция обобщает факториал на нецелые числа. Интегральное определение позволяет работать с дробными значениями, а базовые значения показывают связь с известными константами. Например, $\Gamma(1)=0!=1$, а $\Gamma(1/2)$ возникает в теории вероятностей и статистике.

Формула приведения и значения в специальных точках

Формула приведения:

$$\Gamma(p+1) = p\Gamma(p)$$
.

Значения в целых и полуцелых точках:

$$\Gamma(n+1)=n!, \quad \Gamma\left(n+rac{1}{2}
ight)=rac{(2n-1)!!}{2^n}\sqrt{\pi}, \quad n\in\mathbb{Z}_+.$$

Смысл:

Формула приведения позволяет вычислять Г-функцию рекуррентно, сводя задачу к меньшим значениям аргумента. Значения в целых точках совпадают с факториалом, а в полуцелых — выражаются через двойные факториалы и π , что полезно в квантовой механике и интегральных преобразованиях.

Производные и геометрические свойства

Производные Г-функции:

$$\Gamma^{(n)}(p) = \int_0^{+\infty} x^{p-1} e^{-x} \ln^n x \, dx.$$

Геометрические свойства:

- 1. $\Gamma(p)$ строго выпукла вниз на $(0, +\infty)$.
- 2. Имеет единственный минимум на (1,2).
- 3. $\Gamma(p)\sim rac{1}{p}$ при p o 0 и $\Gamma(p) o +\infty$ при $p o +\infty$.

Смысл:

Производные Г-функции выражаются через интегралы с логарифмическими множителями, что важно в анализе. Выпуклость и наличие минимума объясняют её "U-образный" график, а асимптотики помогают оценивать поведение на границах области определения (например, в теории вероятностей).

26. Связь между Г- и В-функцией

Определение В-функции (бета-функции Эйлера)

В-функция определяется как интеграл:

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} \, dx, \quad p,q>0.$$

Смысл:

В-функция описывает интеграл от произведения степенных функций на отрезке [0, 1]. Она часто используется в теории вероятностей (например, для бета-распределения) и в анализе для вычисления сложных интегралов. Параметры p и q контролируют форму подынтегрального выражения.

Связь между Г- и В-функциями

Для любых p,q>0 выполняется соотношение:

$$B(p,q) = rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Смысл:

Эта формула связывает В-функцию с гамма-функцией (Γ), которая обобщает факториал. Доказательство основано на замене переменных и манипуляциях с интегралами, включая теорему Тонёлли о порядке интегрирования. Связь упрощает вычисление В-функций через известные значения Γ -функции.

27. Формула Эйлера-Гаусса.

Формулировка формулы Эйлера-Гаусса

$$\Gamma(p) = \lim_{n o \infty} rac{n^p \cdot n!}{p(p+1)(p+2) \cdot \ldots \cdot (p+n)}, \quad p \in \mathbb{R} \setminus \mathbb{Z}_-.$$

- $\Gamma(p)$ гамма-функция, билет 25
- n! факториал числа n.
- n^p степенная функция.
- Знаменатель p(p+1)...(p+n) произведение линейных множителей.

Формула выражает гамма-функцию через предел последовательности, связывая факториал и степенную функцию. Она позволяет вычислять значения $\Gamma(p)$ для нецелых p, исключая отрицательные целые числа, где знаменатель обращается в ноль.

Условия применимости

Область определения:

Формула справедлива для всех $p \in \mathbb{R}$, кроме отрицательных целых чисел ($p \notin \mathbb{Z}_-$), так как при таких p знаменатель обращается в ноль для некоторого n.

Связь с факториалом:

При целых положительных $p=m\in\mathbb{N}$ формула сводится к $\Gamma(m)=(m-1)!$, согласуясь с классическим определением.

Смысл:

Формула Эйлера-Гаусса является альтернативным определением гамма-функции, подчеркивающим её связь с дискретными (факториал) и непрерывными (предел) математическими объектами.

28. Теорема о разложении функции в обобщенный степенной ряд. Ряды Лорана

Обобщенный степенной ряд

Обобщенным степенным рядом называется ряд вида:

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n,$$

где c_n — коэффициенты, a — центр разложения, z — комплексная переменная.

Это расширение обычного степенного ряда, которое включает отрицательные степени. Оно позволяет описывать функции, имеющие особенности (например, полюсы) в точке a. Используется в комплексном анализе для изучения поведения функций в окрестности особых точек.

Теорема о разложении в ряд Лорана

Если функция f(z) аналитична в кольце r < |z-a| < R, то она может быть представлена в виде ряда Лорана:

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n,$$

где коэффициенты c_n вычисляются по формуле:

$$c_n = rac{1}{2\pi i} \oint_{\gamma} rac{f(\zeta)}{(\zeta-a)^{n+1}} d\zeta,$$

а γ — произвольный контур внутри кольца.

Смысл:

Эта теорема обобщает ряд Тейлора на случаи, когда функция не аналитична в точке a. Ряд Лорана разделяется на две части: регулярную (неотрицательные степени) и главную (отрицательные степени). Главная часть показывает тип особенности функции (например, полюс или существенную особенность).

Применение рядов Лорана

Ряды Лорана используются для:

- 1. Классификации особых точек (устранимые, полюсы, существенные особенности).
- 2. Вычисления вычетов функций в комплексном анализе.
- 3. Решения задач в физике и инженерии, где встречаются сингулярности.

Смысл:

Благодаря разложению в ряд Лорана можно понять, как ведет себя функция около "плохих" точек. Например, если в главной части конечное число членов, то это полюс; если

бесконечное — существенная особенность. Это важно для интегрирования таких функций и анализа их поведения.

29. Неравенства Коши для коэффициентов рядов Тейлора и Лорана

f(z)

это комплекснозначная функция, аналитическая (голоморфная) в кольцевой области $r < |z-z_0| < R$, где z_0 — центр кольца, а r и R — его внутренний и внешний радиусы.

Формула коэффициентов Тейлора

Если функция f(z) аналитична в круге $|z-z_0| < R$, то её коэффициенты Тейлора a_n в разложении

$$f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$$

выражаются через интеграл:

$$a_n = rac{1}{2\pi i} \oint_{|z-z_0| = r} rac{f(z)}{(z-z_0)^{n+1}} dz, \quad 0 < r < R.$$

Смысл:

Коэффициенты ряда Тейлора показывают, как функция "раскладывается" на степенные компоненты. Интегральная формула связывает значение функции на границе круга с её поведением внутри. Это позволяет оценивать коэффициенты через максимум функции на окружности.

Неравенства Коши для Тейлора

Если $|f(z)| \leq M$ для всех z, таких что $|z-z_0| = r$, то коэффициенты a_n удовлетворяют неравенству:

$$|a_n| \leq \frac{M}{r^n}.$$

Неравенства Коши ограничивают рост коэффициентов Тейлора: чем дальше от центра (больше r), тем быстрее должны убывать a_n . Это важно для анализа сходимости ряда и оценки "скорости" приближения функции её многочленами Тейлора.

Формула коэффициентов Лорана

Если f(z) аналитична в кольце $r<|z-z_0|< R$, то её коэффициенты Лорана c_n в разложении

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$

вычисляются как:

$$c_n = rac{1}{2\pi i} \oint_{|z-z_0|=
ho} rac{f(z)}{(z-z_0)^{n+1}} dz, \quad r <
ho < R.$$

Смысл:

Ряд Лорана обобщает Тейлора для функций с особенностями (например, полюсами). Коэффициенты c_n при n<0 отвечают за "сингулярную" часть, а при $n\geq 0$ — за регулярную. Интегральная формула аналогична Тейлору, но применяется в кольце.

Неравенства Коши для Лорана

Если $|f(z)| \leq M$ на окружности $|z-z_0| =
ho$, то коэффициенты Лорана удовлетворяют:

$$|c_n| \leq rac{M}{
ho^n}$$
 для всех $n \in \mathbb{Z}.$

Смысл:

Неравенства контролируют как главную (n<0), так и правильную ($n\geq0$) части ряда Лорана. Например, для полюса порядка k коэффициент c_{-k} будет доминировать, а остальные c_n убывают с ростом |n|. Это помогает классифицировать особенности функции.

30. Изолированные особые точки аналитических функций, их типы. Характеризация устранимой особой точки посредством лорановского разложения

Понятие изолированной особой точки

Точка z=a называется изолированной особой точкой функции f(z), если:

- 1. f(z) не аналитична в a,
- 2. Существует проколотая окрестность 0<|z-a|< R, где f(z) аналитична.

Смысл:

Особая точка — это место, где функция "ломается" (например, стремится к бесконечности). "Изолированная" означает, что вблизи этой точки других проблемных точек нет. Пример: $\frac{1}{z}$ в точке z=0.

Типы изолированных особых точек

Изолированные особые точки делятся на три типа:

- 1. Устранимая: $\lim_{z \to a} f(z)$ конечен.
- 2. Полюс: $\lim_{z o a} f(z) = \infty$.
- 3. Существенно особая: $\lim_{z\to a} f(z)$ не существует или бесконечен, но не стремится к конкретному ∞ .

Смысл:

Тип точки зависит от поведения функции при приближении к ней. Устранимую можно "починить" (например, доопределить), полюс — это "бесконечность" определённого порядка, а существенная особенность — хаотичное поведение (например, $e^{1/z}$ в нуле).

Характеризация устранимой особой точки через ряд Лорана

Точка z=a является устранимой особой точкой функции f(z) тогда и только тогда, когда в её лорановском разложении:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

отсутствуют отрицательные степени ($c_n=0$ для всех n<0).

Смысл:

Ряд Лорана — это "разложение" функции в окрестности особой точки. Если в нём нет членов с $\frac{1}{(z-a)^n}$, значит функция не "взрывается" в точке a, и её можно сделать аналитической, переопределив $f(a)=c_0$. Пример: $\frac{\sin z}{z}$ в нуле.

31. Специфика лорановских разложений в окрестности полюса и существенно особой точки

Лорановское разложение в окрестности полюса

Если функция f(z) имеет полюс порядка m в точке z_0 , то её лорановское разложение в проколотой окрестности $0<|z-z_0|< R$ имеет вид:

$$f(z) = \sum_{k=-m}^{\infty} c_k (z-z_0)^k,$$

где главная часть содержит конечное число членов ($c_{-m} \neq 0$).

Смысл:

В окрестности полюса функция "взрывается" до бесконечности, но делает это предсказуемо — как многочлен степени m в знаменателе. Лорановское разложение здесь отражает, что основное поведение функции определяется главной частью (отрицательные степени), а регулярная часть (неотрицательные степени) играет второстепенную роль.

Лорановское разложение в окрестности существенно особой точки

Если z_0 — существенно особая точка функции f(z), то её лорановское разложение в проколотой окрестности $0<|z-z_0|< R$ содержит бесконечное число отрицательных

степеней:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-z_0)^k.$$

Смысл:

В отличие от полюса, в существенно особой точке функция ведёт себя хаотично (по теореме Сохоцкого-Вейерштрасса она приближается к любому значению при $z \to z_0$). Бесконечная главная часть в разложении отражает эту "неуправляемость" — никакая конечная комбинация степеней не может описать поведение функции.

Теорема Сохоцкого-Вейерштрасса (для связи с существенно особыми точками)

Если z_0 — существенно особая точка функции f(z), то для любого комплексного числа w существует последовательность $z_n \to z_0$ такая, что $\lim_{n \to \infty} f(z_n) = w$.

Смысл:

Эта теорема показывает, что в окрестности существенно особой точки функция принимает значения, сколь угодно близкие к любому наперёд заданному числу (и даже к бесконечности). Это объясняет, почему лорановское разложение здесь должно содержать бесконечную главную часть — иначе поведение функции было бы "слишком простым".

Теорема Сохоцкого

Формулировка теоремы Сохоцкого

Теорема Сохоцкого утверждает, что если функция f(z) аналитична в проколотой окрестности точки z=a и имеет там существенную особенность, то для любого комплексного числа A (конечного или бесконечного) существует последовательность $\{z_n\}$, сходящаяся к a, такая что $\lim_{n \to \infty} f(z_n) = A$.

Смысл:

Эта теорема показывает, что в окрестности существенной особенности функция f(z) может принимать значения, сколь угодно близкие к любому наперед заданному комплексному числу.

Другими словами, поведение функции вблизи существенной особенности крайне нерегулярно и "хаотично". Теорема важна в комплексном анализе, так как описывает один из самых "диких" типов особенностей аналитических функций.

33. Два определения вычета. Теорема Коши о вычетах. Теорема о полной сумме вычетов.

Два определения вычета

Аналитическое определение:

Вычетом функции f(z) в изолированной особой точке z=a называется коэффициент c_{-1} в разложении Лорана функции f(z) в окрестности этой точки:

$$\operatorname{res}(f,a) = c_{-1} = rac{1}{2\pi i} \oint_{\gamma} f(z) \, dz,$$

где γ — замкнутый контур вокруг a, не содержащий других особых точек.

Интегральное определение:

Вычет — это величина, характеризующая поведение интеграла от f(z) вокруг особой точки. Формально:

$$\operatorname{res}(f,a) = rac{1}{2\pi i} \oint_{\gamma} f(z) \, dz.$$

Смысл:

Вычет показывает "вес" особенности функции в точке a. Первое определение связано с разложением в ряд Лорана, второе — с интегралом по контуру. Оба подхода эквивалентны и нужны для вычисления интегралов от комплексных функций.

Теорема Коши о вычетах

Пусть f(z) аналитична в области D, за исключением конечного числа изолированных особых точек z_1, z_2, \ldots, z_n , и γ — простой замкнутый контур в D, не проходящий через особые точки. Тогда:

$$\oint_{\gamma} f(z) \, dz = 2\pi i \sum_{k=1}^n \mathrm{res}(f,z_k) \cdot n(\gamma,z_k),$$

где $n(\gamma, z_k)$ — число оборотов контура γ вокруг точки z_k .

Смысл:

Теорема связывает интеграл по контуру с суммой вычетов внутри него. Это мощный инструмент для вычисления сложных интегралов: вместо интегрирования достаточно найти вычеты в особых точках.

Теорема о полной сумме вычетов

Если f(z) мероморфна в расширенной комплексной плоскости $\overline{\mathbb{C}}$ (т.е. имеет конечное число полюсов и не имеет других особенностей), то сумма всех вычетов (включая вычет на бесконечности) равна нулю:

$$\sum_{k=1}^n \operatorname{res}(f,z_k) + \operatorname{res}(f,\infty) = 0.$$

Вычет на бесконечности определяется как:

$$\operatorname{res}(f,\infty) = -rac{1}{2\pi i} \oint_{|z|=R} f(z) \, dz, \quad R\gg 1.$$

Смысл:

Теорема показывает "баланс" вычетов: если функция ведет себя хорошо на всей комплексной плоскости, то её особенности компенсируют друг друга. Например, это помогает вычислять вычеты на бесконечности, если известны остальные.

34. Приемы отыскания вычетов

Определение вычета функции в изолированной особой точке

Вычетом функции f(z) в изолированной особой точке z=a называется коэффициент c_{-1} при $(z-a)^{-1}$ в разложении функции в ряд Лорана в окрестности этой точки. Обозначается:

$$\operatorname{res}_{z=a} f(z) = c_{-1}.$$

Смысл:

Вычет — это "вес" особенности функции в точке a. Он нужен для вычисления интегралов по замкнутым контурам (теорема о вычетах). По сути, вычет показывает, как сильно функция "закручивается" вокруг особой точки.

Теорема о вычетах (основная)

Если функция f(z) аналитична в области D, за исключением конечного числа изолированных особых точек z_1, z_2, \ldots, z_n , а C — простой замкнутый контур в D, не проходящий через особые точки, то:

$$\oint_C f(z)\,dz = 2\pi i \sum_{k=1}^n \operatorname{res}_{z=z_k} f(z).$$

Смысл:

Эта теорема связывает интеграл по контуру с суммой вычетов внутри него. Вместо трудоемкого вычисления интеграла можно просто найти вычеты в особых точках — это часто гораздо проще. Например, так считают интегралы в комплексном анализе или физике.

Правило вычисления вычета в полюсе первого порядка (простом полюсе)

Если z=a — полюс первого порядка функции f(z), то:

$$\operatorname{res}_{z=a} f(z) = \lim_{z o a} (z-a) f(z).$$

Если $f(z)=rac{arphi(z)}{\psi(z)}$, где arphi(a)
eq 0, а $\psi(z)$ имеет простой ноль в a, то:

$$\operatorname{res}_{z=a} f(z) = rac{arphi(a)}{\psi'(a)}.$$

Для простых полюсов вычет можно найти через предел или производную знаменателя. Это удобно, например, для дробно-рациональных функций. Метод работает, потому что в полюсе первого порядка "главная" особенность — это $\frac{1}{z-a}$, а её коэффициент легко выделить.

Вычет в устранимой особой точке

Если z=a — устранимая особая точка функции f(z), то:

$$\operatorname{res}_{z=a} f(z) = 0.$$

Смысл:

Устранимая особенность — это "дырка" в функции, которую можно "залатать" (доопределить). Ряд Лорана в такой точке не содержит отрицательных степеней (z-a), поэтому $c_{-1}=0$. Например, $\frac{\sin z}{z}$ в нуле имеет устранимую особенность, и её вычет равен нулю.

Метод выделения главной части для полюсов высшего порядка

Если z=a — полюс порядка m, то вычет находится через производные:

$$\operatorname{res}_{z=a} f(z) = rac{1}{(m-1)!} \lim_{z o a} rac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z)
ight).$$

Смысл:

Для кратных полюсов нужно "вытащить" коэффициент c_{-1} из ряда Лорана, раскрыв скобки и продифференцировав. Например, для полюса второго порядка (m=2) придется брать первую производную. Это аналог разложения в ряд Тейлора, но для отрицательных степеней.

Вычет в бесконечно удаленной точке

Вычетом функции f(z) на бесконечности называется:

$$\operatorname{res}_{z=\infty} f(z) = -rac{1}{2\pi i} \oint_{|z|=R} f(z) \, dz, \quad R\gg 1.$$

Если f(z) аналитична в окрестности ∞ , то:

$$\operatorname{res}_{z=\infty} f(z) = -c_{-1},$$

где c_{-1} — коэффициент при z^{-1} в разложении f(z) в ряд Лорана при |z|>R.

Бесконечность можно рассматривать как "особую точку". Вычет там связан с поведением функции при больших z. Например, для многочленов вычет на бесконечности нулевой, а для f(z)=1/z он равен -1. Это нужно для обобщения теоремы о вычетах на всю комплексную плоскость.

Вычисление тригонометрических интегралов с помощью вычетов

Общий вид интеграла и замена переменной

Формулировка:

Рассмотрим интеграл вида:

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) \, d\theta,$$

где R — рациональная функция от $\cos \theta$ и $\sin \theta$.

Теорема/замена:

С помощью замены $z=e^{i\theta}$ интеграл преобразуется в контурный интеграл по единичной окружности:

$$\oint_{|z|=1} R\left(rac{z+z^{-1}}{2},rac{z-z^{-1}}{2i}
ight)rac{dz}{iz}.$$

Смысл:

Замена позволяет свести тригонометрический интеграл к комплексному, где можно применить теорию вычетов. Это упрощает вычисление, так как рациональные функции часто имеют полюса, а вычеты в них легко найти.

Применение теоремы о вычетах

Формулировка:

Если подынтегральная функция f(z) имеет конечное число изолированных особых точек z_k внутри контура |z|=1, то:

$$\oint_{|z|=1} f(z)\,dz = 2\pi i \sum \mathrm{Res}(f,z_k).$$

Теорема:

Интеграл вычисляется как сумма вычетов в особых точках, умноженная на $2\pi i$.

Смысл:

Теорема о вычетах позволяет заменить трудоемкое интегрирование простой алгебраической операцией — суммированием вычетов. Особые точки (полюса) определяются знаменателем рациональной функции после замены.

36. Вычисление несобственных интегралов от рациональных функций с помощью вычетов

Условия применимости метода вычетов

Для вычисления интеграла вида $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \, dx$, где P(x) и Q(x) — многочлены, должны выполняться условия:

- 1. Степень Q(x) должна быть хотя бы на 2 больше степени P(x): $\deg Q(x) \geq \deg P(x) + 2$.
- 2. Q(x) не имеет вещественных корней (знаменатель не обращается в ноль на действительной оси).

Смысл:

Это гарантирует сходимость интеграла. Если степень знаменателя недостаточно велика, интеграл может расходиться. Отсутствие вещественных корней у Q(x) упрощает применение теории вычетов, так как исключает особые точки на пути интегрирования.

Основная теорема (формула через вычеты)

Если условия выше выполнены, то:

$$\int_{-\infty}^{\infty} rac{P(x)}{Q(x)} \, dx = 2\pi i \cdot \sum_{\mathrm{Im}(z_k) > 0} \mathrm{Res}\left(rac{P(z)}{Q(z)}, z_k
ight),$$

где z_k — полюсы функции $rac{P(z)}{Q(z)}$ в верхней полуплоскости ($\mathrm{Im}(z_k)>0$).

Смысл:

Интеграл по вещественной оси заменяется суммой вычетов в особых точках верхней полуплоскости. Это следует из леммы Жордана и замкнутого контура, включающего полуокружность в верхней полуплоскости. Вычеты в нижней полуплоскости не учитываются, так как их вклад стремится к нулю.

37. Лемма Жордана. Вычисление преобразований Фурье с помощью вычетов

Формулировка леммы Жордана

Пусть функция f(z) аналитична в верхней полуплоскости ${
m Im}\,z\geq 0$, за исключением конечного числа особых точек, и удовлетворяет условию $|f(z)|\leq \frac{M}{|z|}$ при $|z|\geq R_0$, где M>0. Тогда для $\lambda>0$:

$$\lim_{R o\infty}\int_{C_R}f(z)e^{i\lambda z}dz=0,$$

где C_R — полуокружность |z|=R в верхней полуплоскости.

Смысл:

Лемма Жордана позволяет "отбрасывать" интегралы по бесконечно большим полуокружностям при вычислении несобственных интегралов с помощью теории вычетов. Это особенно полезно для преобразований Фурье, где часто возникают интегралы вида

 $\int_{-\infty}^{\infty}f(x)e^{i\lambda x}dx$. Условие $\lambda>0$ гарантирует затухание экспоненты на верхней полуплоскости.

Связь преобразования Фурье и вычетов

Если f(z) аналитична всюду, кроме изолированных особых точек z_k в верхней полуплоскости, и удовлетворяет условиям леммы Жордана, то:

$$\int_{-\infty}^{\infty} f(x) e^{i\lambda x} dx = 2\pi i \sum_{\mathrm{Im}\, z_k>0} \mathrm{res}\left(f(z) e^{i\lambda z}, z_k
ight).$$

Смысл:

Преобразование Фурье часто сводится к интегралу по вещественной оси, который можно вычислить через сумму вычетов в верхней полуплоскости. Лемма Жордана гарантирует, что вклад от "дуги на бесконечности" равен нулю, и интеграл определяется только особыми точками внутри контура. Это мощный инструмент для задач физики и техники, где преобразования Фурье встречаются часто.

38. Вычисление несобственных интегралов от аналитических функций с мнимым периодом

Понятие несобственного интеграла от аналитической функции

Несобственный интеграл от аналитической функции f(z) с мнимым периодом iT (где T>0) — это интеграл вида:

$$\int_{-\infty}^{+\infty} f(x)\,dx,$$

где f(z) аналитична в верхней полуплоскости ${
m Im}(z)\geq 0$, за исключением конечного числа особых точек, и удовлетворяет условию f(z+iT)=f(z).

Смысл:

Такой интеграл возникает при изучении периодических процессов в комплексной плоскости, например, в квантовой механике или теории сигналов. Мнимый период означает, что функция

повторяется при сдвиге вдоль мнимой оси. Интеграл вычисляется с помощью методов контурного интегрирования, учитывая периодичность.

Метод вычисления с помощью теоремы о вычетах

Если f(z) аналитична в верхней полуплоскости, кроме изолированных особых точек z_1,z_2,\dots,z_n , и убывает быстрее $\frac{1}{|z|}$ при $|z|\to\infty$, то:

$$\int_{-\infty}^{+\infty} f(x)\,dx = 2\pi i \sum_{k=1}^n \mathrm{Res}(f,z_k).$$

Для функций с периодом iT контур интегрирования выбирается как прямоугольник с высотой T.

Смысл:

Теорема о вычетах позволяет свести сложный интеграл к сумме вычетов в особых точках. Периодичность f(z) помогает выбрать подходящий контур, "накрывающий" один период. Это упрощает вычисления, особенно когда прямое интегрирование невозможно.

Условия сходимости и роль мнимого периода

Интеграл сходится абсолютно, если существует C>0 такое, что $|f(z)|\leq \frac{C}{|z|^2}$ для ${\rm Im}(z)\geq 0$ и $|z|\gg 1$. Периодичность f(z+iT)=f(z) гарантирует, что поведение функции повторяется на каждом "слое" комплексной плоскости.

Смысл:

Мнимый период влияет на расположение особых точек и выбор контура. Если функция растёт или осциллирует слишком сильно, интеграл может расходиться. Условие убывания $\frac{C}{|z|^2}$ обеспечивает сходимость, а периодичность позволяет использовать симметрию для упрощения задачи.

39. Гладкие многообразия с краем (определение и примеры); отображение перехода, гладкость отображения перехода.

Определение гладкого многообразия с краем

Множество $M\subset\mathbb{R}^n$ называется главным k-мерным многообразием класса $C^{(r)}$ (или r-гладким), если для любой точки $x\in M$ существует окрестность V_x^M и регулярный гомеоморфизм $\varphi:\Pi_k\to V_x^M$ класса $C^{(r)}$, где Π_k — стандартный k-мерный куб $(-1,1)^k$ или полукуб $(-1,0]\times (-1,1)^{k-1}$. Точка x называется краевой, если φ задан на полукубе, а множество таких точек образует край ∂M .

Смысл.

Гладкое многообразие — это множество, которое локально выглядит как кусок \mathbb{R}^k или его "половина" (полукуб). Край ∂M состоит из точек, где локальные параметризации "обрываются", как край листа бумаги. Например, отрезок [0,1] — многообразие с краем $\{0,1\}$.

Примеры гладких многообразий

- 1. Открытое множество $G\subset \mathbb{R}^n$ многообразие без края ($\partial G=\varnothing$), так как любая точка имеет кубическую окрестность (например, тождественная параметризация).
- 2. Кривые (k=1) и гиперповерхности (k=n-1) частные случаи многообразий.

Смысл.

Простейшие примеры — это открытые шары или интервалы (без края) и отрезки/полосы (с краем). Многообразия обобщают понятие кривых и поверхностей на многомерные случаи, позволяя изучать их гладкую структуру.

Отображение перехода и его гладкость

Определение.

Пусть $M\in \mathbb{M}_{kn}^{(r)}$, U,V — стандартные окрестности с параметризациями $\varphi:\Pi\to U$ и $\psi:\Pi'\to V$. Если $W=U\cap V\neq\varnothing$, то отображение $L=\psi^{-1}\circ\varphi:W_1\to W_2$ (где $W_i=\varphi^{-1}(W)$) называется переходом между параметризациями.

Теорема (Регулярность перехода).

Отображение L принадлежит классу $C^{(r)}$ и является регулярным (его матрица Якоби невырождена).

Смысл.

При смене локальных координат (например, с декартовых на полярные) переход между ними должен быть гладким и обратимым. Это гарантирует, что вычисления (например, интегралы)

не зависят от выбора карт в атласе многообразия. Теорема показывает, что гладкость многообразия сохраняется при пересчёте координат.

40. Мера малого измеримого подмножества многообразия; независимость меры малого измеримогомножества от выбора параметризации; измеримое подмножество многообразия.

Мера малого измеримого подмножества многообразия

Пусть $M\in \mathbb{M}_{kn}^{(1)}$, $E\subset M$ — малое измеримое множество, содержащееся в стандартной окрестности U с параметризацией φ . Мера $\mu_M E$ определяется как:

$$\mu_M E = \int_{arphi^{-1}(E)} \sqrt{D_arphi} \, d\mu_k,$$

где $D_{\varphi}=\det((D_{i}\varphi,D_{j}\varphi))_{i,j=1}^{k}$ — определитель Грама матрицы Якоби φ .

Смысл:

Мера малого подмножества многообразия вычисляется через интеграл от корня определителя Грама, который отражает "искажение" объема при отображении из параметрического пространства \mathbb{R}^k в многообразие. Это обобщение понятия площади поверхности для произвольных k-мерных многообразий.

Независимость меры от выбора параметризации

Мера $\mu_M E$ малого измеримого множества E не зависит от выбора параметризации. Если φ и ψ — две параметризации одной окрестности, то:

$$\mu_M^{arphi}E=\mu_M^{\psi}E=\int_{arphi^{-1}(E)}\sqrt{D_{arphi}}\,d\mu_k=\int_{\psi^{-1}(E)}\sqrt{D_{\psi}}\,d\mu_k.$$

При замене параметризации $\varphi=\psi\circ L$ интеграл преобразуется по правилу замены переменных, а определители Грама согласуются через якобиан L. Это гарантирует, что мера инвариантна и корректно определена для любых координатных систем.

Измеримое подмножество многообразия

- 1. Множество $E\subset M$ называется малым измеримым, если оно содержится в стандартной окрестности U и $\varphi^{-1}(E)$ измеримо в \mathbb{R}^k .
- 2. Множество E измеримо, если представимо в виде $E = \bigcup_{\nu} E_{\nu}$ (счётное объединение дизъюнктных малых измеримых множеств). Мера $\mu_M E$ определяется аддитивно:

$$\mu_M E = \sum_
u \mu_M E_
u.$$

Смысл:

Измеримость позволяет разбивать сложные множества на простые "кусочки", для которых мера уже определена. Это аналогично конструкции меры Лебега в \mathbb{R}^n , но адаптировано для многообразий с помощью локальных параметризаций.