

FIG. 1

+

2/78

FIG. 2

FIG. 3

+

+

3/78

FIG. 4

+

FIG. 5

+

5/78

FIG. 6

+

FIG. 7

1 CCCAAACCC CCAAAACCC AAAACCCCTA TAAAAAAAGA AAAATTGAG
 51 GTAGTTTAGA ATAAAAATAT TATTCGGCGCA CAAATGGAGA TGATATTGA
 101 TTTGGATGAT ATAGAAAAT TACTCCCTAA TACATTCAC AGATATAGCA
 151 GCTCTTGATG TGACAAGAAA GGATGCAAAAT CATTGAAATTC TGCTCGAAA
 201 TCGCTTCAT TGACTTATCC AGAATGCGAA AAACAAATTAA AGTTCTACTT
 251 CTCGGAATGCA ATATTTTATA ACAGATTCTT CTGGAGAAAA TTAGTTTTAA
 301 AAAGCAGGAGA CCAAAAGAGTA GAAATGAAA CATTACTAAT GTTAAATAAT
 351 AATCAGGTTA TGAGGATTAT TCTATTTTTAG AGATCACTTC TTAAAGGAGCA
 401 TTATGGAGAA AATTACTTAA TAACTAAAAGG TAACAGTTT GGATTTATTC
 451 CCTAGCCAAC AATGATGAGT ATATTTAAATT CATATGAGAA TGAGTCAAAG
 501 GATCTCGATA CATCAGACTT CCAAAAGACAA ACTCGCTTAT AAAACCGCA
 551 AAAAGGTGTTG ATTAATCGAAC AGCAGAGAAA CTTAATGCGAT TTACTATTG
 601 TATGGTTTTT ATTACATATTG TTTTAGGTAT CGACGGTGA CTCCCGAGTC
 651 TTGGAGACATAT TGAAAGAACAT GTTACACACT GAAGGAATCA CAGTCTGAA
 701 AGTTCTGATG TGATGCCAT TATTTTGTA ATTAAATCTCA ATATATCTTAT
 751 CTCAAATTAA TGAGATGCTG TAGAAAACAA CCAAAATAAAC CATGCAAGTT
 801 TAATGGAAAT TAAGTGTAAAT CTTTGGGAA AATGCGCACAC TGAAATTATA
 851 TTGGGATTCAT AAAGCATAGA TACACAGGAT GCTTTAGAGAA CTGATTTAGC
 901 TTACACACAGA TTACCTGTT TGATTACTCT TGCTCATCTC TTATATCTT
 951 AAAAGAAGGCA GGCAGAAATG AAGAAAGACAT AAAGAAAGAG ATTTCAAAAT
 1001 TTGTTGATTC TTCTGTAACCG GGAAATTAACG ACAGAAATAT TAGCAACGAA
 1051 AAAGAAGAAG AGCTATCACA ATCTCGATTT TAAAGATT TTAAAGATT CAAAATTCC
 1101 AGGTAAAGAGA GATACATICA TIAAAATCTCA TATATTATAG TTTTTCTATT
 1151 CACAGCTTTG ATTTCTTTT ATCTTAACAA TATTTTTGAG TTAGCTGGA
 1201 GTAAAAGATA CTCAAATAGA GAGCGCTAG ACTGAGGTTA CTAGCTTAT
 1251 TCA-CATTCAT AGATCGACCT TCATATATCC AATACGATGA TAAGGAAACA
 1301 GCAGTCATCC TTTTTTAAAAA TACTGCTATG AGGACTAAAT TTTCAGAGTC
 1351 AAGRAATGCA GCGCAATCT TAATCAAAGA GAATTGCGTC GATATTGCA
 1401 ARGAATCGAA CTCTAAATCT TTGTTTAATA AGTATTACCA ATCTTGATTG
 1451 ATTGAAAGAGA TTGACGAGGC AACTGACAGC AGATCATTAA AGAAATAAA
 1501 GTAACTTTTA TTAAATTAGAG AATTAACAAAT ATTACTAATA TAGAGATCAG
 1551 CGATCTTCAA TTGACGAAAT AAAAGCTGAA CTAAAGTTAG ACAATAAAAA
 1601 ATACAAACCT TTGTCAAAT ATTGAGGAGA GAAAAGAAGA CCAGTTAGCA
 1651 AAGGAAAAAAT TAAGGCAATA AATTAATGAG TACAGAAAGT GAAGAAATAA
 1701 AAGATTATAT TTTCATAATA ATTATTGAGA AGAGGGGTTT TTGGGGTTT
 1751 GGGGTTTGG GG

FIG. 11

+

7/78

10054295 .041402

FIG. 8

+

1 AAAACCCCA AACCCTTTAG CCCCTTTAG AGCCCTGAG TTGGAAATAT
 51 AACCTCAGTA TTAATAAGCT CAGATTTTAA ATATTAATTA CAAAACCTAA
 101 ATGGAGGTG ATGTTGATATA TCAAGCTGAT AATCATGGCA TTCACTCAGC
 151 TCTTAAGACT TGTTGAGAAA TTAAAGAAGC TAAAACGTTG TACTCTTGGA
 201 TCCAGAAAGT TATTAGATGA AGAAATCAT CTCAAAGTC TTATAAAGAT
 251 TTAGAAAGATA TTAAATATG TGCAGACAGA AATAATTGTTG CTACTCCACG
 301 AGACTATAAT GAAGAAGATT TAAAGTTAT TGCAAGAAAA GAAGTATTTT
 351 CAACTGGACT AATGATCGA CTTATTGACA AATGCTTAAGT TGAACCTCTT
 401 TCATCAAGCG ATGTTTCAGA TAGACAAAAA CTTCATGAT TTGGATTICA
 451 ACTTAAGGG AATCAATTAG CAAAGACCCA TTATTAACA GCTCTTCAA
 501 CTCAAAAGCA GTATTTCTT CAAGACGAT GGAAACCAAGT TAGAGCAATG
 551 ATTTGAAATG AGCTCTTCGG ACATCTCTAC ACTAAATATT TAATATTCCA
 601 CGCAACTGAGA GAAGAACCT TGTTCAAT TTGGCGGGAT AACGTTTTG
 651 ATCATTTGAA AGTCACAGT AGTTTGCATA AAAAGAAAA AGGTGAGCA
 701 CGAGACATGA ATGAAACCTCG ATGTTGATCA ACCTGCAAAT ACAATGTCAA
 751 GAATGAGAAA GATCACTTTC TCAACAAACAT CAACTGCGG ATTGGAATA
 801 ATATGAAATC AAGAACCCAGA ATATTTTATT GCACTCATTT TAATGAAAT
 851 AACAATTCCT TCAAAAGAGA TGAGTTGAG AGTAACAAAA ACAATATTTC
 901 AGCGATGCC AGAGCTCAGA CGATATTCAC GAATATATTC AGATTTAATA
 951 GAATTAGAA GAAGGACTAA GATAAGGTG TGCAAAAAAT TGCCTACATG
 1001 CTTGAGAAAG TCAAGATTG TAACTTCAC TACTATTTAA CAAAATCTTG
 1051 TCCCTCTTCA GAAAATGGC GGGAAACGGAA ACAAAACAT GAAAACCTGA
 1101 TAATAAACAC TAGAGAAGAA AATGTCAGT ACTATGAGA GCTGTTTAC
 1151 TACACAACTG ATAATAAAATG CTCACACAA TTATTAATG ATTTCCTCA
 1201 CARATATACG CCCCCAAAGACT TTTTGACTGG AGAAACACGT AGAAATTTC
 1251 AAAAGAAAGT TAAGAACATA TGTTGAACTAA ACAAGCATGA ACTCATTAC
 1301 AAAAACCTTATG TCTGGAGAA GATCAATCA AGAGAAATAT CATGGATGCA
 1351 GGTGAGACCC TCTGCAAGC ATTITTTATA TTTTGATCAC GAAAACATCT
 1401 ACGCTTATTA GAAATTGTC CGATGGATAT TCGAGGATCT CGTCCTCTCG
 1451 CTGATTAGAT GATTTTCTA TGTCCCGAG CAAACAGAAA GTTACTCCAA
 1501 AACCTTATTAC TCAAGAGCA ATATTGGGA CGTCATTATG AAAATGTCAA
 1551 TCCGAGACTT AAAAGAGGA ACCCTTGGCT AGGTCCAAGA AAAAGAGGTT
 1601 GAGAAATGGA AAAAGTCGCT TGGATTGCA CCTGGAAAAAC TCAGACTAT
 1651 ACCGAAGAAA ACTACTTTG GTTCACATTAT GACTTTCAAT AGGAAGATTG
 1701 TAAATTTCAGA CCGGAAGACI ACAAAATTAA CTACAAATAC GAAGTATTG
 1751 AACTCTCACTA TAATGCTTA GACATTGAA AGATAGATOT TTAAAGATCC
 1801 TTTTGATTG GCTGTTTTA ATCATGATGA TGTAAATGAAA AAGTATGAGG
 1851 AGTTTGTGTTG CAATGGAAG CAAAGTGGAC ACCAAAACAT TTCTTTGCA
 1901 ACTATGGATA TCGAAAGATG ATATGATAGT GTAAACAGAG AAAAATCTATC
 1951 AACATTCTTA AAAACTACTA AATTACTTTC TTCAAGATTTC TGGAATTATG
 2001 CTGCACAAAT TCTAAAGAGA AAAGATAACA TGTATATCGA TTGGAAAAAC
 2051 TTTAGAAAGA AAAAGATGAA AGATTATTTT AGACAGAAAT TCCAGAAAGT
 2101 TGCACTTGA GGAGGACAAAT ATCCAAACCTT ATTCAGTGTG TTGAAATATG
 2151 AACAAATGAA CTAAATGCA AAAGAAAAT TAAATTGGA AGCAAAAGCAA
 2201 AGAAAATATT TTAAAGAAGA TAATCTACTT CAACCGATCA TTAAATATTG
 2251 CCAATATAAT TACATTAAC TTAATGGGA GTTTTATAAA CAAACAAAAG
 2301 GAATTCTCA AGGTCTTGTG GTTTCATCAA TTTTGTCACTC ATTATTTATT
 2351 GCAACATTAG AGGAAAGCTC CTTAGGATTC CTTAGAGATG AATCAATGAA

FIG. 9

2401 CCCCCTGAAAAT CCAAAATGTTA ATCTTCTTAAT GAGACTTACA GATGACTATC
 2451 TTTTGATTAC AACTCAAGAG ATAATGCG TATTGTTTAT TGAGAACCTTC
 2501 ATAAACGTTA GTCGTGGAAA TGGAATTTAA TTCATAATGAA AGAAACTACA
 2551 GACTAGTTT CCATTAAGTC CAAGCCAAATT TGCAAAATAC GGAATGGATA
 2601 GTGTTGAGGA GCAAAATATT GTTCAAGAATT ACTGCGATTG GATTGGCATC
 2651 TCAATTGATA TGAAAACATT TGTCTTTAATG CCAAAATATTAA ATCTTGAGAAAT
 2701 AGAAGGAATT CTGTGTACAC TCAATCTAAAC CATGCAAACA AAGAAAGCAT
 2751 CAATGTGGCT CAAGAAGAAA CTAAAGTCGT TTTAAATGAA TAACATTAC
 2801 CATTATTTTA GAAAGACGAT TACAACCGAA GACTTTGCCA ATAAAACCT
 2851 CAACAAGTTA TTATATTCAG GCGGTGACAA ATACATGCAA TGAGCCAAAG
 2901 AAATACAGGAG CCACTTTAAG AGAAACTTAG CTATGAGCAG TATGATGCAC
 2951 TTAGAGGTAT CTAAAATATT ATACTCTGTA ACCAGAGCAT TCTTTAAATA
 3001 CCTTGTGTGC AAATTTAAGG ATCAATTTT TGAGGAGGAG CATTATCCAG
 3051 ACTTTTCTCT TAGCACACTG AACGACTTTA TTGAATATT CGCACAAAAA
 3101 AAGTACATTTC TCAACAGATG TTGCGATGTC CTCAAGGCAA AAGAAGC
 3151 GCTAAAAAGT GACCAATGTC AATCTCTAA TCAATATGAT GCATAGTCGA
 3201 CTATTCTAAC TTATTTGGG AAGTTAATT TCAATTTCGG TCTTATATAC
 3251 TGGGGTTTGG GGGTTTTGGG GTTTGGGG

FIG. 9
(CONTINUED)

1 MEVDVDNQAD NHGIHSALKT CEEIKEAKTL YSWIQLVKIRC RNQSOSHVKD
 51 LEDIKIFQAQT NIVATPRDYN EEDFKVIARK EVFSTGLMIE LIDKCLVELL
 101 SSSDVSDRQE LQCFQFLKG NQLAKTHLLT ALSTQKQYFF QDEWNQVRAM
 151 IGNELFRHLY TKYLIFQRTS EGTLVQFCGN NVFDHLKVND KPDKKQKGGA
 201 ADNNEPRCCS TCKYVNKNKE DHFLNNINVE NWNNNMSRTR IFYCHTFNRN
 251 NQFQKKHGFV SNKNNNSAMD RAQTIPTNF RPNRIRKKLK DKVIEKIAYM
 301 LEVKVDPNFM YYLTKSCPLP ENWRERKQKI ENLINKTREB KSKYYEELES
 351 YTTDNKCVTQ FINEFFYVNL PKDFLTGRNR KNFQKKVKVY VELNKHELIH
 401 KNLLEKINT REISWMQVTEL SAKHFYYFDH ENIYVLUWKL RWIFEDLVVS
 451 LIRCFFYVTE QQRYSYSKITY YRKNIWDVIM KMSIADLKKE TLAEVQEKEV
 501 BEWKKSLSGF PGKLRLIPKK TTFRPIMTFN KKIVNSDRKT TLTTINTKLL
 551 NSHMLKTLR NRMFKDPFGF AVFNYDVMK KYEEFVCKWK QVGQPKLFFA
 601 TMDIEKCYDS VNRKLSTFL KTTKLLSSDF WIMTAQILKR KNINVIDDSKN
 651 FRKEMKDVF RQKFQKIALE GGQYPTLFSV LENEQNDLNA KRTLIVEAQ
 701 RNYFKKDNLN QPVINICQYN YINFNGKFKY QTKGIPQGLC VSSILSSFY
 751 ATLEESSLGK LRDESMPEN PVNVNLLMRLT DDYLJITTOE NNAVLPIEKL
 801 INVSRENGFK FNMKKLQTSF PLSPSKFAKY GMDSVBBQNI VQDYCDWIGI
 851 SIDMKTALAM PNINLRIEGI LCTLNLNMQT KKASMWLKKK LKSFLMNNIT
 901 HYFRKTITTE DFANKTLNLK FISGGYKYMQ CAKEYKDHFK KNLAMSMID
 951 LEVSKIYIVS TRAFFKYLVC NIKDTIFGEE HYPDFFLSTL KHFIEIFSTK
 1001 KYIFNRCMII LKAKEAKLKS DQCQSLIQYD A

FIG. 10

CCCCCAAAACCCAAAACCCAAAACCCCTATAAAAAGRAAAAATTGAGGTAGTTAGA
 1 +-----+-----+-----+-----+-----+-----+-----+-----+
 GGGGTTTGGGTTTGGGTTTGGGATATTTCCTTTAACTCCATCAAATCT 60
 a P Q N P K T P K P L * K K K K L R * F R -
 b P K T P K P Q N P Y K K R K N * G S L E -
 c P K P Q N P K T P I K K E K I E V V * K -
 AAAAAATATTATTCGGCACAATGGAGATGGATATTGGATGATAGAAAATT
 61 +-----+-----+-----+-----+-----+-----+-----+
 TTATTTATAAAGGGCTTACCTCTACCTAAACCTACTATATCTTTAA 120
 a N K I L P P H K W R W I L I W M I * K I -
 b I K Y Y S R T N G D G Y * F G * Y R K F -
 c * N I P A Q M E M D I D L D D I E N L -
 TACTTCCTAATACCAACAGTATAGCAGCTCTGTAGTGACAAGAAGGATGCAAA
 121 +-----+-----+-----+-----+-----+-----+-----+
 ATGAAGGATATGTAAGTTCATATCGTAGAGACATCACTGTTCTCTAGTTT 180
 a Y F L I H S T S I A A L V V T R K D A K -
 b T S * Y I Q Q V * Q L L * * Q E R M Q N -
 c L P N T F N K Y S S S C S D K K G C K T -
 CATTGAAATCTGGCTCGAAATCGCCTCATTGACTATTCAAAGTTGCAAAAACATTAG
 181 +-----+-----+-----+-----+-----+-----+-----+
 GTAACTTAGCGAGCTTAGCGGAAGTAAGTAACTGATAAGGTTCAACGTTTTGTTAATC 240
 a H * N L A R N R L H * L F Q S C K N N * -
 b I E I W L E I A F I D E Y S K V A K T I R -
 c L K S G K S P S L T I P K L Q K Q L E -
 AGTCTRACTTCGGATGCAAATCTTATAACGATTCTTCTTGAGAAAAATTAGTTAA
 241 +-----+-----+-----+-----+-----+-----+-----+
 TCAAGATGAAGAGGCCAGCTAGTTAGAAATATTGCTAAGAAGAACTCTTTAATCAAATT 300
 a S S T S R M Q I F I T I L S * E N * F * -
 b V L L L G C K S L * R F F L E K I S F K -
 c F Y F S D A N L Y N D S F L R K L V L K -
 AAAGCGGAGAGCAAAGACTAGAAATTGAAACATTACTATGTTAAATAAAATCAGGAA
 301 +-----+-----+-----+-----+-----+-----+-----+
 TTTGCCTCTCGTTCTCATCTTAACTTGTAAATGATTACAAATTATTAGTCATT 360
 a K A E S K E * K L K H Y * C L N K I R * -
 b K R R A K S R N * N I T N V * I K S G N -
 c S G E Q R V E I E T L L M F K * N Q V M -
 TGAGGATTATTCTATTTTTAGATCACTCTTAAGGAGCATTATGGAGAAAATTACTTA
 361 +-----+-----+-----+-----+-----+-----+-----+
 ACTCTAATAGATAAAAATCTAGTGAAAGAATTCTGTAATACCTCTTTAAATGAATT 420
 a * G L F Y F L D H F L R S I M E K I T * -
 b E D Y S I F * I T S * G A L W R K L L N -
 c R I I L F F R S L L K E H Y G E N Y L I -

FIG. 12

11/78

FIG. 12
(CONTINUED)

TTACACAGATTACCTGTTTACTCTTCATCTCITATACTTAAAGAAGAGCA
 901 AATGTTGCTTAAGGACAAAACAATAGAGAACGGAGTAGAGAAATATAGAANNTTCTCGT
 a L Q Q I T C F D Y S C S S L I S L K E A -
 b Y N R L P V L I T L A H A L L Y L * K K Q -
 c T T D Y L F F * L L L D I S Y I F F K R S R -
 GGCAGAATGAAAAGAGACTAAAGAAGAGATTCTAAATTTGTTGATTCTCTGTGAA
 961 CGCGCTTACTTCTCTGATTCTTCTCTAAAGTTTAAACAACTAAGAACAGATTTG
 a G E M K R R L K K E I S K F V D S S V T -
 b A K * K E D * R K R F Q N L L I L * P -
 c R N E K K T K E R D F K I C * F F C R N -
 GGAATTAAACAAAGAATATTAGCACGAAAGAGAGAGAGCTATCACAACTCTGATT
 1021 CCTTAATGTTGTTCTTATACTGTTGCTTTCTCTCTGATAGTGTGAGGACTAAG
 a G I N N K N I S N E K E E E L S Q S * F -
 b E L T T R I L S A N E K K K S Y H N P D S -
 c N * Q Q E Y * Q R K R R R A I T I L I L -
 TTAAAGATTCAAAATCCAGGTAAAGAGAGATACATTCTAAATTCATATATTATAG
 1081 AATTCTAAAGTTTAAAGGTCATCTCTCTGATGAACTTAAAGTATATAATAC
 a L K S I S K I P G K R D T F I K I H I L * -
 b * R F Q K F Q V R E I H S L K F I Y Y S -
 c K D F K N S R * E R Y I H * N S Y I I V -
 TTTTCATTTCACAGCTGTTATTTCTTATCTTAAACATATTTTGATTGCTGGAA
 1141 AAAAAAGTAAAGTGTGCGACAATAAAAGAAAATAGAATTGTTATAAAAACATCGACCTT
 a F F I S Q O L L F S F I L T I F F D * L E -
 b F S F H S C C Y F L L S * Q Y F L I S W K -
 c F H F T A V I F F Y L N N I F * L A G S -
 GTAAAAAGTATCAAATAAGAGAGGGCTAGACTGAGGTAACTTAGCTTATTCTACATTCA
 1201 CATTTTCATAGTTTATCTCTCGCGATCTGACTCCATTGAATCGAATAAGTGTAAAGT
 a V K S I K * E K R * T E V T * L I H I H -
 b * K V S N N K R S A L R * L S L F T F I -
 c K K Y Q I R E A L D * G N L A Y S H S * -
 AGATCGACCTTCATATATCCAACTACGATGATAAGGAAACAGCAGTCATCGTTTAAAGA
 1261 TCTAGCTGAGTATAGGTTATGCTACTATTCCTTGTGCTGAGTAGGCAAAATTTT
 a R S T F I Y P I R * * G N S S H P F * K -
 b D R P S Y I Q Y D D K E T A V I R F K N -
 c I D L H I S N T M I R K Q Q S V L K I -
 TAGTGTCTATGAGGACTAAATTTTAGGTCAGTCAAGAAATGGAGCGGAAATCTTAACTAA
 1321 ATACGATACCTCTGATTTAAACATCTCAGTTCTTACCTCGCTGAGTAGAATTTT
 a * C Y E D * I F R V K K W S R N L N Q K -
 b S A M R T K F L E S R N G A E I L I K K -
 c V J * G L N F * S O R M E P K S * S K R -

FIG. 12
(CONTINUED)

GAATTGCGTCGATATTGCAAAGAACGAACTCTAAATCTTCGITAATAAGTATTACCA
 1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440
 CTTAACGGCAGCTATAAGCTTTCTTCGCTTGAGATTAGAAAGCAATTATTCATAATGGT
 a E L R R Y C K R I E L * I F R * * V L P -
 b N C V D I A K E S N S K S F V N K Y Y Q -
 c I A S I L Q F N R T L N L S L I S T N -
 ATCTTGATTGATTGAAGAGATTGACGAGGCAACTGCACAGAAGATCATTAAGAAATAAA
 1441 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1500
 TAGAACTAACTAACTCTCTACTGCTCGITGAGCTGTCTCTAGTAATTCTCTTATT
 a I L I D C R D * R G N C T E D H * R N K -
 b S * L I E E I D E A T A Q K I I K E I K -
 c L D * L K R L T R Q L H R R S L K K * S -
 GTAACTTTATTAACTTAGAGAATAAACTAAATTACTAATATAGAGATCAGCGATCTCAA
 1501 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1560
 CATTGAAAATAATTAACTCTTATTGATTAACTGTTAGTCTAGTCGCTAGAAGTT
 a V T F I N * R I N * I T N I E I S D L Q -
 b * L L I R E * T K L L I * R S A I F N -
 c N F Y * L E N K L N Y * Y R D Q R S S I -
 TTGACGAAATAAAAGCTGACTAAAGTTAGACAATAAAACATAACCTTGGTCAAAT
 1561 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1620
 AACCTGCTTTATTCGACTGATTCTCAATTCTGTATTCTTATGTTGGAACAGTTTA
 a L T K * K L N * S * T I K N T N L G Q N -
 b * R N K S * T K V R Q * K I Q T L V K I -
 c D E I K A E L K L D N K K Y K P W S K Y -
 ATTGAGGAAGGAAAAGAACGAGCTTAGCAAAAGAAAAATAAGGAATAAAATAATGAA
 1621 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1680
 TAATCTCTTCTTCTCTGGTCAATCTGGTTCTTCTTATTCGTTATTCTTACT
 a I E E G K E D Q L A K E K I R Q * I K * -
 b L R K E K K T S * Q K K K * G N K * N E -
 c * G R K R P V S K R K N K A I N K M S -
 GTACAGAAAGTGAAGAAATAAAAGATTATTTTCTAAATAATTATGAAAAGGGGTT
 1681 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1740
 CATGTCTTCACTCTTCTTCTAAATAAAAAGTTAAATAACTTTCTCCCCAA
 a V Q K * R N K R F I F F F N N L L K R G V -
 b Y R S E E I K D F F S I N I Y * K E G F -
 c T E V K K * K I Y F F Q * F I E K R G F -
 TTGGGGTTTGGGGTTTGGG
 1741 -----+-----+-----+-----+-----+-----+-----+-----+ 1762
 AACCCCAAAACCCCAAAACCC
 a L G F W G F G -
 b W G F G V L G -
 c G V L G F W -

FIG. 12
(CONTINUED)

2 EVDVQNOADNHGIIHSALKTCEEIKEAKTLYSWIJKVIRCRNQSQSHYKDL 51
 19 ELELEMQENQNQDIQVRVK...IDDPKQY..LNVNTAACLLQEGSYYYQDK 62
 52 EDIKIFQAQTNIVATPRDYNEEDFKVIARKEVP..STGLMIELIDKCLVELL 100
 63 DERRYIITKALL...EVAESDPEFICQLAVVYIRNELYIRTTNYIVAF. 107
 101 SSSDVSDRQKLQCFGFQLKGQNLAKATHLTLASTQKQYFFQDEWNQVRAM 150
 108CVVHKTQDFIEKYFNKAFLLPNDLLEVCEFAQVLYI 144
 151 IGNELPFLHLYTKYLIFQRTSEGTLVQPCGNVFDHLKVNDKFDKKOKGG 200
 145 FDATERFKNLY.....LDRILSQDIRKELETFRKCLQRQCRVSKF 181
 201 ADMNE...PRCCSTCKYINVKNEKDHFHNNINVPNWNMKSRTIFYCHF 247
 182 SEFNEYOLQGRYCTES..QRKKTMFRLSVTNKQXWDQTKKK..... 220
 248 NRNNQQFFKKHEFVSNKNNSIAMDRAQTIPTNIFRPNPIRKKLKDVKIEKI 297
 221 .RKENLILTQAIKESEDDKSRKETG...DIMMVEDAIAKLPAPVMKCI 264
 298 AYMLEKVKDGPNFNYLTKSCPLPENWRERKQKJENLINKTREEXSKYEE 347
 265 AKRNQNAMEK.....KHMKAPKIPNSTLESKYLTIFKD 294
 348 LFSYTDTDNKCVTQFINFOFFYNIILPKDFLTGRNRKFQKKVKKYVELNKHE 397
 295 LIKFCHTISEP....KERVYKILGKVKYPKTEEBYKAAFGDSASAPFN.PE 338
 398 LIHKNLLLEKINTREISWMQVETSAKHFYYFDHENIYVLWKLRLWIFEDL 447
 339 LAGKRMKIEKSKTWENELSAKGNTAEVWDMNLISSNQLPYMAMLRNLSN.. 386
 448 VVSLLRCCFFYVTBQQKSYSKTYYYRKNIWDMKMSIADLKKTETLAEVQE 497
 387ILKAGVSD..... 394
 498 KEVEEWKKSLGFAPGKLRLLIPKKTTFRPIMTFNKKLVNSDRKTTKLTTNT 547
 395TTHS 398
 548 KLLNSHMLKTLKKNRMFKDLPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597
 399 IVINK.....ICEPKAVENSKM 415
 598 FFATMDIEKCYDSVNREKLSTPLKTTKLSSDFWIMTAQILKRKNNIVID 647
 416 F..PLQFFSAIEAVN.EAVTKGPKAKK...RENNMLKGQIEAVKE..VVE 457
 648 SKNPKRKEMKDYFRQKFQKIALLEGQGYPTLPSVLENBQNDLNAKKTLIVE 697
 458 KTDEEKKDM.....ELEQTEEGEFVKVNEGIGKQYINSTELAIK 496
 698 AKQRNYFKKDNLQPVINICQNYINFNGKFYKOTKGIPQGLCVSSILSS 747
 497 IAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVGL 546
 748 FYYATLESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAPLF 797
 547 MVKQRCEKSSFYIFSSSPSSOCNKCYLEVL..... 576

FIG. 13

798 EKLINVSRENGFKPNMKK..LQTSPPLSPSKFAKYGMDSVEEQNIVQDYCD 846
 577PGDELRPSMQKLQEKGKLGGS..TDPFYECIDEWTKNKTHVD 617
 847 WIGISIDMKTALALMPNINLRIEGILCTLNLMOTKKASMWLKKLKSPLM 896
 618 NIVILSDOMIAEGYSDINVRGSSIVNSI.....KKYKDEVN 653
 897 NNITHYPRKTITTEDPANKTLNLKFISGGYKYMCAKEYKD.HFKKNLAM 945
 654 PNIKIF..AVDLEGYG.....KCLNLGDEFNENNYIKIFGM 687
 946 SSMIDLEVSKIIYSVTRAFFKYLVCNIKUTIFGBEHYPDFFLSTLKHPIE 995
 688 SDSI.....LKFISAKQGGA.....NNVE 706
 996 IFSTTKYIIFNRVC 1008
 707 VI..KNPALQKIG 717

FIG. 13
(CONTINUED)

132 LSTQKQYFFQDEWNQVRAMIGNEL.FRHLYTKYLIFQRTSE..GTLVQFC 178
 1 MSRRNQ.....KKPQAPIGNETNLDLDFVLQNLLEVYKSQIEHYKTQQQI 43
 179 GNNVFDHVKVNDKFDKKQKGGAADMNEPRCCSTCKYNVNEKDHDPLNNIN 228
 44 KEEDLKLKLPKNQDDGNGSNDDDBE.....NNSNKQZELLRRVN 84
 229 VPKWNNMSRTRIFYCTHONRNQPFKKHEFVSNKNNISAMDRAQTIFTN 278
 85QIKQVQVQLIKK..VGSKVEKDNLNLNEDENKN 114
 279 IFRPNRIRKKLKDVKIHKAYMLEKVDPNFTYLTKSCPLPENWRERKQ 328
 115 GLSEQQVKEEQLRTITEQVVKYQNLVFNMDYQLDLNESQGHRRHRETDY 164
 329 KIRNLINKTREEKSKYYEELFSYTTDNKCVTQFINE.FFYNILPKDFLTG 377
 165 DTEKWPEISHDQK.....NYVSITYANQKTSYCWNLKDYFNK 200
 378 RNRKNPQKKVVKYVETLNKHIELHKNLLLEKINTNREISNMQVETSAKHFYY 427
 201 NNYYDHLNVSIRNLE..TEAEFYAFPDFSQTIKLTNNSYQTVNID..... 242
 428 FDHENIYVLWKLRLRWI..FEDLVVSLIRCFYYVTEQQKSYSKTYYRKNI 475
 243 VNPDNNLCL1ALLNLFLLSLERPNILNIRSSY..TRQYQNFKEKIGELLETI 290
 476 WDVIIMKMSIAIDLKKTLEAEOKEVEEEWKSLGPAGPKLRLIPKTTFRP 525
 291 FAVVFSHR.....HLQGIGHLQVPCBAPQYLVNSSSQISVKSQSQLQ 330
 526 IMTFNKKIVNSDRKTTKLTTNTKLLNSHMLMLKTLKNRMPKDPPGFVAFNY 575
 331 VYSFSTDKLVD..TNKQDYFKFLQEFPRLTHVSQQAI PVSATNAVNL 378

FIG. 14

576	DDVMKMKYEEFVCKWKQVGQPKLF.	FATMDIEKCYDS..VNREK	615
379	NVLKKVKH	A NLNLVSPTQFNDFPYFVNQLHLKLEPGLBNPLTQK	426
516	LSTFL.	KTTKLLSSDFWIMTAQILKRKNNI..VIDSKNFRKEMK	657
427	LENL LLSI	QKSNLKPLRLNFTYTYAQETSRKQILKQATTINKLNKLNNQ	476
558	DYFRQKFQKIALEGQGQYPTLFSVLEN..EQNDLNNAKKTLLIVEAKQRNYFK	705
477	BETPETKDTEPSESTSGM KFFDHLSLTLEDEDFSVN..LQATEQIY..	520
706	KDNLLQPVINICQNYNINFNGFKYQTKGI	PQGLCVSSILFSSYYATLEE	755
521	.DSLHKLLIRSTNLKKFKLSSYKYE	MESKIMDTFDIDLKNI.	YETLNN	564
756	SSLGFLRDES	MNPVNPNVNLMLRTDDYLLITTQENNAVLFIEKLINVR	305
565LKRCVSNISNP	HGNISYEITN.	KDSTFYKFKLTLNQE	500
806	ENGPKFNMMKLQLTQSFPPLSPSKPAKYGMDSVEE	QNIVODYCWDIGISIDMK	855
601	LQHAKYTTFK..QNEPQFNNVKS	AKIESSSLSELDIDSICKSIA	CKNLQ	648
856	TLALMPNINLRLEGILCTLNLNMQT..KKASMNLLK..	KLKSLFMNNITH	901
649	NVNI.	IASLILYPPNNIQKNFNFNKPNLFFFQKOFQPKLNLENVSINC	691
902	YFRKTI.	TTEDFANKTLNKLFISSGGYKYMCAKEYKDHEKKNLAMSSM	948
692	ILDQHILINSI	SEIFLENKKNKIKAFILKRYLLQQYLDYT	TKLFKTLQQLPEL	741
949	IDLEVKSIYSVT.	RAFFKYLWCNICKDT..IFGEEHY	982
742	NQVYINQOQLEELT	VSEVHKVWENHKQKAFYEP	LCFIEKCESQTTQLIDF	791
983	PDFFLS	TLKHFIIEIFSTK	YIPNRVCMLKAKEAKLKSQDCQCSLIQ	1028
792	DQNTVSSDSD	I KKLK ILES I SE SKY HYLRLNLPQS	S QSS LIKSEN EEEI QELLK	840

FIG. 14
(CONTINUED)

FIG. 15

1 MEMDIDLDDIENL.....LPNTFNKYSSSCSDKKGCKTLKSGSKSPS...	42
491 IELAIAKIAVNKLDEIKGHTAIIFSDVSGSMSTSMSGAKKYGSVRTCLEC	540
43 .LTIPKLOKO.....LEFYFSDANLYNDSFLRKLVLSGEQRVEIETLL	85
541 ALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL.EVDLPGDELRPSMQKLL	589

FIG. 16

telomerase p43	LQKQLE PF ESDANLYNDFIRKLVLKSGEQR E IETLLM
human La	ICHQ UEY FFGDFNLPRDKF FIKE QOI. KLDEGWVPLEIMIK
Xenopus LaA	ICEI EY FFGDHNLPRDKF FIK QOI. LLDDGWVPLETMIK
Drosophila La	ILR VEY FFGDANLNRF PIRE QIGKNEDGW PL SLVLT
S. c. Lhp1p	CLK QEV FFSEFNFPYDR FIR TAAEK.NDGW W PISTIAT

FIG. 18

1 aactcattta attacaattt taatcaacaa gattgataaa aagcgtaaa taaaacccaa
 61 tagatataat tttagaaatgg attagaaatgg aatggaaattt gaaaadcaact aagcacata
 121 gaaaaaaaggc gaaaatattgtt ggtggaaact tgaatagtag atgcaaaaaaa acaaaaatgaa
 181 tatataatggt aagggttaaga ttgacatggc taagcaatat ctcgtggaaacg tcactgcac
 241 atggttttgtt taggaaggta gtttactacta agataaaatg gaaaaggat atatcatcac
 301 taagaoactt ctggaggcttgc ttggacttgc ttccggatgc atctgcgttgc tgccgtatca
 361 catccgtatgaa gacttataa tcggaaactact cactaaactatc attgtagcat ttgtgttgt
 421 ccacaaaggact actcaacatc ttccatggaa gttactcaac aaagcgatggat ttttgcctaa
 481 tgacttactgtt ggatgttgc aatttgcataa gtttcttcat atttttgtat caactgtt
 541 caaaaaatttg ttccatggta ggttactctt attagatattt cgtaaaggac tcactttccg
 601 taatgtttttt ccaaaggatgg cttcaacaa gttttcttgc ttcaacaaatc acactttgg
 661 taatgtttttt actgttatccc aatgtttttt aatcaatgtt ctttacccatc ctttttttttcc
 721 caatggaaatgg gttttttttt cttatggaaatgg gggaaaatgg aatcttttttcc
 781 gggaaatggat ggttttttttgc ttatggatcca gagaaaaatgg gggatccatc tggatccat
 841 agatgcataatc aaggctttaa aaccggcgttgc ttttttttttgc ttttttttttgc
 901 catggatccatc cacatggaaatcc ctttttttttgc ttttttttttgc
 961 gagcttcggatccatc aatggatccatc aatggatccatc aatggatccatc
 1021 gatcccttgc ttatggatccatc aatggatccatc aatggatccatc
 1081 tgatccatcgc ctttttttttgc ttttttttttgc
 1141 aacatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1201 ttcaatccatc aatccatccatc aatccatccatc aatccatccatc
 1261 cgggtttttccatc aatccatccatc aatccatccatc aatccatccatc
 1321 tgatccatcgc aatggatccatc aatggatccatc aatggatccatc
 1381 agttactaaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1441 agaaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1501 aaccggatccatc aatggatccatc aatggatccatc aatggatccatc
 1561 cattggatccatc aatggatccatc aatggatccatc aatggatccatc
 1621 tggatccatc aatggatccatc aatggatccatc aatggatccatc
 1681 gtatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1741 acgttgttgc aatggatccatc aatggatccatc aatggatccatc
 1801 ttacttgc aatggatccatc aatggatccatc aatggatccatc
 1861 agagaaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1921 aaaaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 1981 atattccatc aatggatccatc aatggatccatc aatggatccatc
 2041 tggatccatc aatggatccatc aatggatccatc aatggatccatc
 2101 taatccatc aatggatccatc aatggatccatc aatggatccatc
 2161 aatccatc aatggatccatc aatggatccatc aatggatccatc
 2221 ctttgccttgc aaaaaatggatccatc aatggatccatc aatggatccatc
 2281 ctcaaaaaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 2341 atttaatggatccatc aatggatccatc aatggatccatc aatggatccatc
 2401 aaaaatggatccatc aatggatccatc aatggatccatc aatggatccatc

FIG. 19

	Motif A	Motif B	Motif C	Motif D	Motif E
Consensus	h--hDh--h-h	h--+Q--SP			
telomerase p123	GQPPLFFATMDIERCYDSUNREKULSTFLKTKL-100-KPYQOTKGIPQQLCVSISLSSPFYATLEESSLGFL				
Dong (L1NS)	KNRNLHCTYDIIKCAFOSTPHENWLOTEIYKIN-28-KQIAIKKGIGYQODSLSLNFCCLANPUSGHOLANDR				
al. S. C. (group 1)	FGSNNWPREVDIJKCFITISHLTLIKEKRYTSD-26-HVPGPRVCVQAPISPALCNANLRLDRAGLA				
HIV-RT	LKKKSTVILDGAYASVPLDEDRKYTAIFP-7-GIRYQVNVLPKQNGKSPAFQSMTKILEPFRQN				
1.8543..12	VLPELYMMKPDVKSCYDSLPRAMECRLKALKN-68-KCYIREDGLPQSSILSAPTVIDLVDLLEPYSEFK				
Consensus	h--YIDDhbb	h-h-h--K			
telomerase p123	-14-LFLFLDILLIPTQQNN-0-AVIFIEKJLNGSNGKFKAHKKLT-23-QNYCDWGSQI				
Dong (L1NS)	-16-HLYMD-DKRYANDKE-0-NKLLDITTFSDINQGQDCKCT-25-KGLTKYIGQO				
al. S. C. (group 1)	-55-YVRYADDLILGVGUSNN-2-KLKRDLNNTLNS-LGDTINEEKT-1-ETPARFUGYNI				
HIV-RT	-4-IVYOMD-DIYVSHLEIG-1-IRTKIELRQHLLRWGLTTDEKHO-0-EPPFTWNGYEL				
1.8543..12	-8-IILKLAADPLIISTDQQQ.....VINKELKANGFQYNAKRN-41-IRSKSKSGIPR				

FIG. 17

MEIENNNAQQPKAEKLWWELELEMQENQNDIQVRKIDDPKQYL
VNNTAACCQLLSSGQSYYQDKDERRYITKALLEVAESDFPFCQIA
VYIRNELRTTNYIIVACFWVHNKTQPIFEKYFKNVALKFLPNLD
LECEVFACQVLYFIIDATEFKNFLYLRLLSDQIRKELTFRCLQC
VRKSFSEFNEYQLGYKCTESQRKTTMFKRFLYSLVNTQKNDQDTKK
RKENLLTTLQKA1KSEDESK3KRTEDJIMVNEDEA1KALPCKAVMKK
AKRNQANMKHMKKA1KIPN1STLESVKYTFKD1KCH1SPEVMMK
YKLIGKQYKPTEEBVEKAAPGDSASAPFPNPELAGKRMKIE1SKTW
ELASSENKGNTAWEVDNL1NSNQLPYMLARNLNSLN1KAGVSDT
HSTVINK1CEPKAVENSMKFPLQFSA1EAVNEAVTKGPKKRR
ENMNLKGQ1EAVKEVKEFTDEEKKDMQE1TEOEGFBVNGE1B
QY1NS1ELIA1KAVGNLND1E1KGHTA1F1DSVGSMSTMSGGAA
KKYGSVRTCLCBAVLGLVMKORCEKSSFY1FSSPSOCNCY1L
EVLPDGLSRPMQK1LQKXGKLGGDFTF1EC1DWT1KNTV1H
DNTV1LSMDM1AEGYSDINVRGSS1NS1IKYKDEDVNP1KI1FA
FDLVEGQYGC1LNLGEFNNENNY1K1FGMSDSILKF1SIKQGGAM
VE1VKNP1ALQ1KQGOK

FIG. 20

MSRRNKKQEPQAPIGNETLNFVLDLVEYKSSQEEHYYTQQQOII
EDELLKLKFKQDODGSNSDDDEBNENNSKQOLLELRVNNIOKQ
OQVLKIVKGVEKVKDLNLNEKDKNQSSQVEKEORLTTEEE
VQXVQNLVFNMDYQOLDLNESGHRRERTDYDTEKFVPSHDQ
KNVYSIYANQYTSQCYWLKVDPYNNVHNSLNRLETAEFPY
AFPDFFSQTQ1LKTLSNTVYDFTVNDNMLCILARFLLSLERF
NLIIRNRSSTYRNQNKFGELLETTVPPFVSHRHLQHLOQV
CEAOPLVNSSLSSOLSKVGSLOVSYPSDTLKLVDTNVKYDQPK
LQEPPHDFVHSSQAGPVATNAVENNLVLLKVGKHANLNV1S1
TOFNPDPYVHNLQHLEFGLPELNPTQKQLLENLLSTSKSQH
KPLRNLNTVYQATVQESRKTQIQLQATIKNNKNQNEETBTKH
BTSPSTSGMFKEHDLSELTLEDVSNNQATOBYEDSLHKL1L
RSTNKLTKFLSYKEMEKSMDTFID1LKNYETYNNLRCVSNN
SPNPHISYELNTDSTPKFLTLNQLOHAKYTPKNEQEFQNT
NNSKAKISSLSSLESLEDISLCKTASCKNLQNVN1SILSNP
NICKONPKNPLKHFQCPOLNLNENNSINLDLHNLINS1SEF
LNENKKIKAFPLKRYQQYLQYDFTKFLTQOLQDQYDQFV
OLELTTSEVIKWHQWENH1QKQYDFTYBCLPECIKESSQTLQID
ONTVSDS1KDKL1S1LESIESEKHYTHLNRPSQSSSLIENEI
ELLACKDCEGKVLYWVYKPKLCPGTQYDYNDSRW

FIG. 22

MKL1FEPFTQPLDCLLIDLQLGTSKNTVADNENLKGCHGGNLDLEIITTCFGPKA
PNPSKRLA1CPLDLSKNTVADNENLKGCHGGNLDLEIITTCFGPKA
ARNEDDVNNSLFCFSHANVNTLLKGAAWNKMPHSLVGTYAFV DLL
NTTYVQFNGQFFTQIVGNCRNEPHLPKPKWVQRS SSSATQAQ
QLTEPVTQNKFLHNLINNSSSPFYSSSNTQKLDLREAP
IPTFTNLV1KPIQKLRVNRNLTQKLQKLRRHHKRNQVLSNLSNCPP
EVFTLDSLHSLRSQSPKERVLKPI IIVLQKLQLOPEMGS KKNKG
IIKNNLQKQKLSLPLNGLYQPPFDSSLKLLRDKFWI FDSI WTPK
NENLNQLQALICPISWFLRQIPLKIQTTFYCTEISSTVTFV
HDWTNKLTT PTFIVF EYKTYL VENNCRHNRSNHNNS KMR
IPKSNNSREPRI A IPI CRGADEEB TTYI KEHNNKAQIPTQK LIE
LNRKNTPSFTK1YQSP TQADIREKFKQRLLKKFNNVLELY FMR
FDFTKSYCDS I PRMECMRILKDAD KNEENGFPVRSQYFNTN'JGV
KLNFNVNSASRPVKEPYLIDVNRTVHLNSD01VNEEMI FKTAA
LWEDVKYTCIREDLGFLQGSSLSAPIVLDYLVDDLFYSEKFQKASPS
QDTL1KLQADDFL1I STDQQV0 IN1XKLAMGGQPKQYANAKRD
ILAVSSQSSDVTI YQCPAMHI FVKELEWBVKHSTSMMNPYHFRSKS
SKG1 FRTSLI SLSRQYKQH1TDTLNLSNTVLMQD1HVNWKNISE
CYSKAFPKDLIS NTV1QNMQRYQPKSFPLR1 IEMTVS CPGC ITKCDPLI
YEVRFTI LNLNGFLBLSNSNTSKPKDN1 ILLRKSIQHQLQAYIYT
HIVN.

FIG. 23

1 tcaatactat taattaataa ataaaaaaaaa gcaaaactaca aaaaaaatgt caaggcgta
 61 ctaaaaaaaag ccataggcctc ctataggcaa tgaaacaaat ctigatttg tattacaaaa
 121 tctagaagt tacaaaaaccg agttggaca ttataaagcc tagtagtaat agatccaaa
 181 ggaggatctc aagctttttaa aacttcaaaaa tttaaaggat gatggaaact ctggcaacg
 241 tggatgtatg gaaagaaaaa actcaataaa ataaaaaaag ttatthaaggaa gactcaatta
 301 gattaagtag caagtttaat tgataaaaaa agttggctc aaggtagaga aagattgaa
 361 ttgaacggaa gatgaaacca aaagaatgg actttctgaa tagaaagtga aagagggta
 421 attaaagaacg attactgaa aataggttaa ttatthaataa ttatgttta acatggacta
 481 coagttagat tttaatggaa gtggggccca tagaaagcac aagaagaaaa cagatgtatg
 541 tactgaaaaat tggttggaa ttatccatgc ccaaaaaaaa ttatgtatcaa tttagccaa
 601 cttaaaagaca tcataatgtt gggttgcattt agatattttt aataaaaaaca attatgtatc
 661 ttttaatgtg aogatcaact tactgaaaaaa tgagccgca ttctatgcct ttatgtatt
 721 ttccaaaaacaa atcaaaatcc ttatcaatcc ttatgactg gttaatcatag acgttaattt
 781 tgataaaat atcttgtatcc ttccatgtatc tagattttta ttatccatgt aagattccaa
 841 tatttttgaat ataaatgtt ctatccaaacg aatttttttt aattttggaa aaattttgtga
 901 gatatctgaa atatcttgc cttgtttttt ttccatccgc cacttacaaag gattttttt
 961 acaaggatct tcggagggct ttatcaatattt agttactcc tcatcataaa tttaggttta
 1021 agatgtatca ttataggat actttttctc tacacactt aatattgtt acactaaacaa
 1081 agtccaaatg tattttttt tttatataaagc attccctgtt ttgactcatg taatgtatg
 1141 ggctatcccc ttatgttgc cttaacgcgtt aatgttttca ttttttttttttttttttt
 1201 caaggatgtc atctttttt tagttttttt cccttacccaa ttcaatttttt attttttttt
 1261 tggttaattttaa taacatttgc aattttttttt tagttttttt ttgtttttttt ttttttttt
 1321 aaaggatggaa atctttttt tagttttttt aatataaaaaa aatctttttt ttttttttt
 1381 aaaccttttc acctacgtt cttaaagaaaaa cttccaaaaaa aatctttttt ttttttttt
 1441 aacatcaaaat atctttttt aatataaaaaa aatctttttt tttttttttt ttttttttt
 1501 aactccaaacg gaaaggcccccc ttgtttttttt ttgtttttttt tttttttttt ttttttttt
 1561 gttttttttttt ttatgtatgc ttatgtatgc ttatgtatgc ttatgtatgc ttatgtatgc
 1621 atctt
 1681 aaaggatggaa atggatcacat ttatcatgtt ttatcatgtt ttatcatgtt ttatcatgtt
 1741 taaaaggatgc totgttt
 1801 taaaaggatctt acttt
 1861 gtatactttt aattt
 1921 ttctctcatat gaagatgtatgc aatgttttttttttttttttttttttttttttttttttttt
 1981 aaattt
 2041 ttcttt
 2101 aaatgtatctc atcaactgtt ttcttt
 2161 agaaaaaaat aaaaatataat aagcatccatc ttggaaaaaaa ttttttttttttttttttt
 2221 ttcttgattttt acttt
 2281 cattaattttt acaatt
 2341 ccacaaggaa aaaaatggatcc atgttttttttttttttttttttttttttttttttttttt
 2401 cccttt
 2461 aagatctata ttctgtatgc agttatccatc ttatgtatgc ttatgtatgc ttatgtatgc
 2521 cagttt
 2581 aggttt
 2641 cgatttataat ttcatatgtatgc ttatgtatgc ttatgtatgc ttatgtatgc ttatgtatgc
 2701 tgaatatttttcc ttgttt
 2761 atatatttttta gtt
 2821 aaaaaatccg

FIG. 21

2011-04-10 05:50:56

+

21/78

Oxytricha
EuplotesLCVSYISSLSSFYANLEENALQFLRKESMDPEKPTNLLMRLT
LCVSSILSSFYATLEESSILGFLRDESMNPENPNVNLLMRLT

FIG. 24

ATTTATACTCATGAAAATCTTATTGAGTTCATTCAGAACAGCTTGACATTGATCTACA
 GACCAACAGTACTTACAAGAAAATTAAATGTGGTCACTTCATGGCTCGATGAAAAT
 TCTAFACTACTGTGTTCCGACTACCAAATTAAAGAAAATAGCATTACCATGCCTTCCTGG
 TGACTTAAAGCCAAACAGCTCATGGTCACTTCATGGCTCGATGAAAAT
 ATACAACAAACGTAACATTTGGCTATAAAATAGCTAGAAAATGAAGATGTCAACAATAG
 TCTTTTGTGTCATGGCTTGAGTACTGGTAAAGGGCTGCTGGAAAAT
 GTTCCACAGTGTGGTGTGCGTACATACGCTTGTGATGTTAATGATCAATTACAGATAAT
 TCAATTAAATGGGCACTGGTGTGAGTACAGATGTAACGAACTCTCATCT
 GCGGCCCCAAATGGTGTGCGTACATCTCATCTCATCTCGCAACTGCTGCCAATCAAACAA
 ACTTACAGAACAGTACACAATTAAACAAATTCTTACACAGCTCAATAATTAAATCTCTTC
 TTTTTTCTTATAGCAAGATCTCTTCTCATCATCTCATCTAAAGACTAACTGACTTT
 GAGAGAAAGCTATTTCCTCCAAATTGGTTAAATTCCTCAGAGACTAAAGGTAGGAAT
 TAATTAAAGGAGTACATGGCTTGTGAAATTATTCATGTTGAGTGTGCTTGTGTT
 GAATAGTATTGTGCCACCATGGAGGACCGTATTGGACTTGTGCTTGTGAGTAGGCA
 ATCACCAAAAGGAACGAGTCTGGAAATTATTCATGTTTACAGAAAGTTTACCCCA
 AGAAATGTTGGCTCAAGAAAATTATCAGAATCTAAATTCTTATT
 AAGTTTACCCCTTAAATGGTTATTGACATTTCATGGTGTGAAAAAGGTTAAAGGTTAA
 GGATTTCGGTGTGTTCATTTCTGATATTGGTCACTTCAAGCACAAATTGAAAATT
 GAATATTGTTGGCAGTGTGTTCATTTCTGCTTATAGCAACATTCTCCAAATTAT
 ACAGACTTTTTACTGCAACAAATTCTCTCATGCAATTGGTTACTTACAGACA
 TGAACTTGGAAATAACTTATCACCCCTTATCTGTAAGAATATTAAAGACGTACTTAGT
 CGAAAGTGTGAGTACATGGTGTGAACTTACAGCTGCTTGTGCAATTCTACATAGCAA
 AATGGAGGAAITATCACAAAAAAAGCTAATATGAGTTCAAGGTTAGGATCTGGCATCCATCGAC
 AGGGCGACGCGAAGAAGAAATTCAAAATTAAAGGAGAATCACAAAAAGCTGATCTCCAGCC
 CACTCAAAAATTTCAGAATCTTCAAGAACAAAGGCCGACTAGTTTACTAAATA
 TTCTCCAACCCAAATTACTGGCTACCTCAAAAGTAACTGAGCTTAAAGGAAATT
 GAATATTGTTCTACAGACTTTTCTGATGAAATTCTCTGCTTATAGCAACATTCTCCAAATTAT
 ACATACCAAAAGGATGGAAATGATGGAGAATCTCAAGGAGTCTGGCTTAAAGGAAATT
 TTTCGTTAGATCTCAATTCTCAACCAAACTGAGCTTACAGGTGTGAGTTTAAAGGTT
 TGTTAACGGTACAGCAGAGTACCAAAACCTTATGAGCTTACATAGATAATGTTGAGGACGGT
 TCATTATCAAATCAGGATGTTATAAGAGATGGAAATATTAAAACAGCTTT
 GTGGGGTGAAGATACTGCTACATTAGAGAAGATGGTTTTTCTAGGGCTCTAGTTTATC
 TGCTCCGGATCGTTGATTGGTGTGACGATCTTCTGGAGTTTATAGCGAGTTTAAAGC
 CAGTCTTACAGGACACCTTAAATTAAACCTGGCTGACGATTCTTATAATCACAC
 AGACCAACAGCAAGTGTCAATACTCAAAAAGCTGTCATGGCGGATTTCAAAATATAA
 TCGGAAGGCAATAGAGACAAAATTGGCTGAACTGCTTCAACATGAGTGTGATACGGT
 TATTCAATTGGTGCATGCACTATTTGTTAAAGAATTGGAAAGTTGGAAACATTCAAG
 CACAAATGAAATAATTCTCATTCCTGCAAAATTCTGTTAAAGGATATTTCGAAGGTTAA
 AGGGCTTTAACACTAGAAATCTTATAAAACATTGACACAAATTAAATCAACAAA
 CACCGTCTCATGCAAAATTGATCATGGTAAAGAACATTTCGGAATGTTATAATCTGC
 TTTTAAGGATCTATCAATTAAATGTTAGCAGGAAATATGCAATTCTGTTCTACAAAC
 CATCATGAAATGACAGTCAGCAGCGTTGTCACAAATTACGAAATGATCCTTAAATCGAGT
 TGAGGTACGATTCACTTATGAACTGGATTGGAAAGCTTATCTCAACACATCTCAA
 ATTAAAGATAATATCATTCTTGTGAGAAAGGAAATTCAACACTTGCAGC

FIG. 26

+

	human	tez1	EST2	p123	Motif 0
	ISLEIENLIGERSNAKMCGLSDFERKROIPEAETIYLNNSFLIPILQSFVTESSDLENR LKDFRNUFSTD--TWEPKNEFNENALACIISNLPRQLPKICQPFYCEIISTUTT- TRELSM沃QET-SANGHYYDFHEN-IVLNKLRLTIEDLVSLRUFFVTEQOQSTSK	AKFHLWANSVVYVLLSFFPVYTBTFQRNR AKFHLWANSVVYVLLSFFPVYTBTFQRNR			

					*
	human	tez1	EST2	p123	Motif 1
	LFFYRKSVWSKLQSIGIRQHLKRVOLRDVEAEVQHREARPALLTSRLRFTRPKD- TVIFRDKIWLLCRLPFLF1-KCNNEFEKCNENENRDIQK-TTF IVYFRIDTWNKLITPFLF1IVEFKTYLVEVNCFENENRNTLS--NFMNSKORLTPKCSNEF TYYKRNDIMVIMKNS-AJDKETLAEVQEKEVWKS-LGTAPOCRRLTPKK--TTF				

					*
	human	tez1	EST2	p123	Motif 2
	RPTVNDYVGARTPRERKAERUTSRVIALF-SVAYERA RLITIN-LRKFLIKNGSNKOMLYSTQTLRPAISLKHLINEESSGIPNLLEVYMKLTF RITAIPRGADEEETTYKENEHNKAQPOKLEYRNKSTSTSKLYSEPTOJARIKEF RPTMTENKTKVNSDRKTYKPLTTNTKLNSHLMLKTKN-RMFKEPFGFAVENYDDVPMCKY				

					*
	human	tez1	EST2	p123	Motif 3 (A)
	KDOLLKHMFGK-KKYFVRDIDKSCYDRKQDLMFRVKK-KLADPEFVIRKXATHATHS KORLAKKENNULPELYMKEDVSCDSPRBCKMRILKD-ALMNENGGRPSOSYFENTN EEFCRMKOWGOPLKFFPATDIEKCIDSVARBLSTFLKTRLLSSDFWINTAQILLKRN				

					*

FIG. 25

AKFLHWLMSVYVVELRSFFYVTETTFQKNRLFFYRKSWSKLQSIGIRQHLKR
VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMVDYVGARTFRREK
RAERLTSRVKALFSVLNYERA

FIG. 27

GCCAAGTCTGCACGGCTGATGAGTGTGTA CGTCGTCGAGCTGCTCAGGTC
TTCTCTTATGTCAGCGAACGACAGCTTTCAAAAGAACAGGCTTTCTAC
GGAAAGAGTGTCTGGAGCAACTGCAAGCATTTGAATCAGACAGCACTTGAG
AGGGTGCAGCTGCGGAGCAGCTGCGGAGCAGGGTCAAGCAGCATGGGAAGC
CAGGGCCGCCCTGCTGACGCTCAGACTCCGCTTCATCCCAAAGCTCGACGGGC
TGCGGCCATTGAGCATGAGCTACGTCGTTGGAGGCCAGAACGTTCCCGAGA
GAAAAGAGGGCGAGCCTCTCACCTCGAGGGTAAGGCACGTGTCAGCTGCT
CAACTACGAGCGGGCGG

FIG. 28

MTEHHTPKSRLRFLRLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRS
DVTSFISFLHSTVVGFDSPKDEGVQFSSPKCSQSELAVVVKQMPDFE
RRRNLLMKGFSMNHDFRAHMHVNGVQNDLVSTF
PNVLISILESKNWQLLIEIIGSDAMHYILSCKSIPEALPN
DNYLQISGIPLFPKNNVFEETVSKKRKR
TIETSITQNKSARKEVSWNSISISRFISIYRSSYKKFKQDLYN
LNLHSICDRTNTVHMWLQNWIFPRQFG
LINAQVKQLHKV1PLVSQSTVPPKRLLKVPPLIEQTA
KRLHRISLSKVYNHYCPYIDTHDDEKILS
YSLKPNVFAFLRSILVRVPKLIWGNQRIPEIILKD
LETFKLXSLRYESFSLRYLMSNIKISEI
EWLVLGKRSNAKMCLSDPEKRKQIAFABFYI
WLYNSFIIPILOQSFYITESSDLRNR
TVYFRKDIWKLLCR
PFTSMKMEA
PEKINENNVRMDTQKTTLP
PAVIRLLPKKNTFRLI
TNLRKRFLIKMG
GSNKMLVSTN
QTLP
RVA
SILKH
LINE
ESSG
IP
FNL
LEV
YMKL
LT
FKD
LL
KHM
FGR
KKY
FVR
DI
KSC
YDR
I
QDLM
FRI
VKKL
KDP
EFV
IRKY
AT
I
HAT
SDR
ATK
NFV
SEAF
SY
PDM
VPE
KVV
QLS
MTS
DTL
FVD
FV
WT
KSS
SET
F
KML
KEH
L
SGH
IV
K
IGNS
QY
L
Q
KV
G
T
POGS
I
LSS
FL
CH
FY
MED
L
IDE
YLS
FT
KK
GS
VL
L
RV
V
DD
FL
F
IT
VN
KK
DA
K
FL
NL
L
SR
G
F
E
K
H
NF
S
T
S
L
E
K
T
V
I
N
F
E
N
S
N
G
I
I
N
N
T
F
N
E
S
K
K
R
M
P
F
G
F
S
V
N
M
R
S
L
D
T
L
L
A
C
P
K
I
D
E
A
L
F
N
S
T
V
S
E
L
T
K
H
M
G
K
S
F
Y
K
I
L
R
S
L
A
S
P
A
Q
W
F
V
I
D
I
T
H
N
S
K
F
N
S
C
C
N
I
Y
R
L
G
Y
S
M
C
M
R
A
Q
A
Y
L
K
R
M
D
I
I
P
O
R
M
P
I
T
D
L
L
N
V
I
G
R
E
I
W
K
K
L
A
E
I
L
G
Y
T
S
R
R
F
L
S
S
A
E
V
K
W
L
F
C
L
G
M
R
D
G
L
K
P
S
F
K
Y
H
P
C
F
E
Q
L
I
Y
Q
F
Q
S
L
T
D
L
K
P
L
R
P
V
L
R
Q
V
L
F
H
R
R
I
A
D

FIG. 29

FIG. 30

FIG. 30
(CONTINUED)

EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	FFY.TE. .S.YYRK. IN. .-KL. .-.-.F. .K .-.-.V. .-	50
EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	NVCRNNS- KEVEKKRL- KIQEENNS- K. E. .-.-.	79 78 92 100
EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	TSNNSNNH RUEFENNE FRIEFLPCRG --GPAFKGS RUEPKRPT-- SPPQPKQPSK-- F. GNL SUPLPKM. --	43 44 44 44
EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	KEVKEENNS- KVEEKLIPED OLIVNLQILDS- K. K LN.N..L..S	129 120 130 150
EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	ADEEFTYK ENKHNIAOPT OKLEYEANK RETSFETKLYS PTOADRIKS IYNSDKRTY LTCTNTKLANS HUMLTAKT- DMFK -DGPFAVEN DQKRNK-- LALNQNLIDS QLVNLTAKD- .Q.L..LNK- .-.. .-.. .-.. .-..	157 158 158 186
EST2	pep	Euplotes	pep	Trans of tetrahymen	Consensus	FQBLINNEN NVL-.-. YD-DVURK EFCVKWKH NK-OISSLRKA QFIEPVYHL RCPJFPMTD IRCEYD .K. .-XKF. .F. .KWK. .G .P. .LFF. T.D .-.. CYD	157 158 158 186

FIG. 31

S-1: FFY VTE TTF QKN RLF FYR KSV WSK
 S-2: ROH LKR VQL RDV SEA EVR QHR EA
 S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q
 A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS
 A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIG. 32

RECORDED BY: GUY A. VAN DER

Poly 4

5'-	t	a	a	g	c	c	t	c	g
	cag	acc	aaa	gga	att	cca	taa	gg	-3'
	Q	T	K	G	I	P	Q	G	

4 (B')

5 (c')

3'-	D	D	Y	L	L	I	T
	ctg	ctg	atg	gag	gag	tag	tgg
	a	a	a	a	a	a	
			t	t	t	t	
				c	c		

Poly 1

FIG. 34

+

28/78

FIG. 33A

FIG. 33B

+

FIG. 35

SC_p103	DGLFOSSASATIVDLYDDILEYSSIFKAFSP-----QDTLKLAKDAFLIS
SP_M2	SILSSLFCHYMTTLEDEYLISFTK-----GSVLLRVV
PA_p123	KGIPOOLCVTSYLSFYAALEENAOFLRKSEEMDPEKEETNLMLRLT
Ot	LCVTSYLSFYAALEENAOFLRKSEEMDPEKEETNLMLRLT

Q K V G I P Q G
caa aaa qtt ggt atc cct cag gg..... <---Actual Genomic Sequence.

FIG. 36

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TGT TTA CGA
 CTT CTA AAC TAA CTA CTT ATG GAT AGC AAA TGC TTT TTC AAC ATG CAC AAC AAT GCT
 E D L I D B Y L S F T K K G S V L L R

GTA GTC gac gac tac ctc ctc atc acc
 CAT CTG CTG CTG atg gag gag tag tag
 V V D D Y L L I T
 <----- CTG CTG ATG gag gag tag tag
 a a a a a a a a
 a a a a a a a a
 t t t t t t t t
 C C
Poly 1

.....gac gat ttc ctc ttt ata aca..... <---Actual Genomic Sequence
 D D F L P I T

FIG. 36
(CONTINUED)

+

32/78

FIG. 37

+

FIG. 38

+

34/78

FIG. 39

+

J.00354295 : 0441102

+

35/78

FIG. 40

+

卷之三

S.P.	Tez1p	(429)	WLYNSFLIPILQOSFEVITTSSSDILNRTNEYFKEIDIN	..(35)...	Motif O
S.C.	Bst2p	(366)	WLFLQLQPKIQTIFCIEUSSSTVLTIVFEDHTW	..(35)...	
E.A.	P123	(441)	WIFEDLVSLRCLVEQTEQKSYSYKTVN...*	..(35)...	
*	*	*	*	*	*
S.P.	Tez1p		Motif 1	Motif 2	K
S.C.	Bst2p		p hh b K	b h R	
E.A.	P123		AUTLILKK-->TEFLILTN-LIKR	..(61)...	
*	*	*	GKURLILKK-->TEFRPMTENKKV	..(61)...	
S.P.	Tez1p		Motif 3 (A)	AF	
S.C.	Bst2p		h bhd	GY h	
E.A.	P123		KERFLRDIDKISKSCQDMLRIVK	..(89)...	
*	*	*	ELYTFMRDVSQSDSFIRMECRILK	..(75)...	
*	*	*	YKFLPATMDFGTYNSVREKLSTFLK	..(107)...	
S.P.	Tez1p		Motif 4 (B')	PP hh	h
S.C.	Bst2p		YLQRKVGPQSSITLSFCIFYMDDLDYLSF	..(6)...	
E.A.	P123		YIREGLDFQFQSSILAPVFLVDTDLLETFSEF	..(8)...	
*	*	*	YKQTKGIPQGLCYSSISFTATLLESSLGF	..(14)...	
S.P.	Tez1p		Motif 5 (C)	Y	Motif 6 (D)
S.C.	Bst2p		PDhhb	Gh h	ck h
E.A.	P123		VLLRVRDFLFTIVNKDAKKFLNLSLRGEEFHNTSSTEKTIVNENS	..(1)...	
*	*	*	LIIKLAADFLLTIDQOVTNTKLAMGFOQYNKNAH	..(1)...	
S.P.	Tez1p		LLMFLTDLTITQENAVLFTIEKLINVSRENGFKMNLQTSPLS	..(1)...	
S.C.	Bst2p		*	*	*
E.A.	P123		*	*	*

FIG. 41

A.

Sp_Tip1p	1	- - - - -	M T E H H T P K S R I L R F L E N Q Y V Y L C T	24
Sc_Est2p	1	- - - - -	M E V D V D N Q A D N H G I H S A L K T C E E I K E A K T I L Y S W	33
Ea_p123	1	M E V D V D N Q A D N H G I H S A L K T C E E I K E A K T I L Y S W	33	
Sp_Tip1p	25	L N D Y V Q L V L R G S P A S S Y S N I C E R R S D V Q T S F S	57	
Sc_Est2p	8	I Q D K L D I D I D Q T N - I S T Y K - - E N L K C G H F N G L D	35	
Ea_p123	34	I Q D K L D I D I D Q T N - I S T Y K - - E N L K C G H F N G L D	35	
Sp_Tip1p	58	I F [H S T V V G F D S K P D E G V Q F S S P K C S Q S I E L I A N	90	
Sc_Est2p	36	E I L T C F A L P N S R - K I A L P C L P G D L S H K A Y I D H	67	
Ea_p123	62	E I L T C F A L P N S R - K I A L P C L P G D L S H K A Y I D H	67	
Sp_Tip1p	91	V V K Q M F D E S F E R R R - N L L M K G E S M M H E D F R A M H	122	
Sc_Est2p	68	C I Y L L T G E L Y N - N V L T F G Y K I A R N E D - - -	83	
Ea_p123	95	C I Y L L T G E L Y N - N V L T F G Y K I A R N E D - - -	83	
Sp_Tip1p	123	V N G V Q N D L V S T F P N Y L I S I L E S K N W Q L L E I L G	155	
Sc_Est2p	94	- - - V N N S L F C H S A I N V N V T L L K G A A W K M F H S L V G	123	
Ea_p123	123	- - - V N N S L F C H S A I N V N V T L L K G A A W K M F H S L V G	123	
Sp_Tip1p	156	S D A M H Y L L S K G S I F E A L P N D N Y L Q I S G L P L E F K N	188	
Sc_Est2p	124	T Y A F V D L L I N Y T V I Q F N - G Q F F T Q I V G N R C N E P	156	
Ea_p123	153	T Y A F V D L L I N Y T V I Q F N - G Q F F T Q I V G N R C N E P	156	
Sp_Tip1p	189	N V F E E T V S K K R K R T I E I S T Q N - - K S A R K E V S	218	
Sc_Est2p	156	H L P P K W V Q - R S S S S A T A A Q I - - K Q L T E P V T	183	
Ea_p123	186	H L P P K W V Q - R S S S S A T A A Q I - - K Q L T E P V T	183	
		L K V N D K F D K - K Q K G G A A D M N E P R C C S T C K Y N V K	217	

A.	Sp_Tip1p	219	WNSISISRFSSIFYRSSYYKKFKQDLYFNLHSSLCD	251
Sc_Est1p	184	N-----DHFLNNNNNVPWNWNMKMSRTRL	200	
Ea_p123	218	NEK-----	248	
Sp_Tip1p	252	RNTVHMWLQWIEPRQFGLINAFOQVKQQLHKVPL	284	
Sc_Est1p	201	-----YSKLPLPSSS-----	273	
Ea_p123	249	R-----NNQFLKEKKHFVSNKNNSAMDRAGT	275	
Sp_Tip1p	285	V-----QSITYVVPKRLKKVYPLIEQTAKRLHRS	313	
Sc_Est1p	224	TNT-----LVKTPQRLLKVRINLTQKLLKRLN	313	
Ea_p123	276	FTNIFRFRNRIRKKLKDVKYEKIAYMLEKVKDFN	308	
Sp_Tip1p	314	LSKVYVNHYCPTYIDTHDEKILSYSLKPNA	342	
Sc_Est1p	253	YVSILNSICPPLEGTVLDLSHLSRQSPKER	282	
Ea_p123	309	FNYYLTKSCPLPENWRERKQKIEENLNKTEREEK	341	
Sp_Tip1p	343	-----VFAFLRSITLVRVFPKL	359	
Sc_Est1p	283	-----VLFKIVVLLQKLLPQE	289	
Ea_p123	342	SKYYEEELFSYTDDNKCVTQFENEFFYNILPKDF	374	
Sp_Tip1p	360	WGQNQRILFEIILKDKDLTEFLKLSRYESFSLHYLMS	382	
Sc_Est1p	300	FGSKNGKQKLNKLNLLSPLHNGYLPHDPSL	332	
Ea_p123	375	LTKRNLKFQKVVVYELNKHNLKLLK	406	
Sp_Tip1p	393	NIKISEIIEWLVLGKRSNAKMCSDFELKRKQI	425	
Sc_Est1p	333	KLRLKDFRWLFISS-----DIWFTHNFENLNQI	425	
Ea_p123	407	KINTREISWMQVETS-AKHFYYFDHEN-IVLVW	437	

FIG. 42
(CONTINUED)

+

Sp_Tip1p	426	E F I Y W L Y N S F T I P T L Q S F F Y I T E S S D L R N R T V Y 488	Sp_Est1p	363	C F I S W L F R Q L T K P L I Q T F Y C T I S S T V T - V Y 384	Sc_Est1p	438	K L L R W T I E D L V V S L U R C E F Y V I T E Q Q K S Y S T V Y 470
Sp_Tip1p	459	F R K D T W K L L C R P F I T S M K M E A F E K I N N V R M D 481	Sc_Est1p	395	F R H D T W M N K L T I P F I V E Y E K I Y V E N N V C R H N S 477	Sc_Est1p	471	Y R K N T L W D V I M K W S L A D L K K T E L V Q E K E V E E W 503
Sp_Tip1p	492	T Q K T T L P P A V I R L L P K K - I N T F R L I T N L R K R F L 522	Sc_Est1p	428	Y T L S N F N H S K M R I T P K S S N I E F R I A I P C R G A D 480	Sc_Est1p	471	E a _ p 123 504 K K S L G F A P P G K L R L P K K - T T F R P I M T F N K K I V 534
Sp_Tip1p	523	I K M G S N K K M L V S I N Q T L R P V A S I L K H L I N E - - 552	Sc_Est1p	461	E E E - - F T I Y K E N H K N A Q P T Q K L L E Y L R N K R P T 491	Sc_Est1p	535	N S D - - R K T T K L T T N T K L L N S H L M L K T L K N R - M F 564
Sp_Tip1p	563	E S S G I P F N L E V Y M K L L T F K K D L L K H R M F G R - K K 584	Sc_Est1p	492	S F T K L Y S P T Q I A D R I K E F Q R L L K K F N N V L I P E L 524	Sc_Est1p	565	K D P F G F A V F N Y D D V M K K Y E E F V C K K W Q V G Q P K L L 587
Sp_Tip1p	585	Y F V R I D I K S C Y D R I K Q D D L M F R I V K K K L K D P E - F 616	Sc_Est1p	525	Y F M K F D I V K S C Y D S I P R I M E C M R I L K D A L K N E N G F 557	Sc_Est1p	598	F F A T T M D J E K C Y D S V N R E K L S T F L K T K L L S S D F 630
Sp_Tip1p	617	V L R K Y A T I H A T S D R A T K N - - - - - 634	Sc_Est1p	568	V F R S Q Y F F N T N T G - - - - - 570	Sc_Est1p	631	W I M T A Q I V D S K N F R K K E M K D Y F R Q K 663
Sp_Tip1p	648	- - - - - 666	Sc_Est1p	631	- - - - - 666	Sc_Est1p	631	- - - - - 666

FIG. 42
(CONTINUED)

+

FIG. 42
(CONTINUED)

+

FIG. 42
(CONTINUED)

+

B.	Sp_Tip1p	1	- - - - -	- - - - -	MTEHHHTPKRSRILRFLLENQYVYVLC	24
	Sc_Est2p	1	- - - - -	- - - - -	-MKLFEF	7
	Ea_p123	1	M EV D V D N Q A D N H I S A L K T C E I K E A K T LY S W	33		
Sp_Tip1p	25	LNDYVQLVLRGSPASSNSICERLRSQTSFS	57			
Sc_Est2p	6	QDKLDLQTN - - STYK -- ENLKCGHFNGL	35			
Ea_p123	34	IQKVIRCRNQSQ - - SHYK -- DLEDIKIFQAQN	61			
Sp_Tip1p	58	IFLHSSTVVGFDSPKDEGVQFSSPKCSQSEL	90			
Sc_Est2p	36	EILTTCFALPNSR-KIALPCLPGDLSHKAVID	67			
Ea_p123	62	IVATPRDYNEEDFKVIARKEVFSTGLMIELIDK	94			
Sp_Tip1p	91	VVKQMFD E SFERR - NLLMMKG F SMNHEDFRAMH	122			
Sc_Est2p	68	C-IYLLTGELYN - - NVLTFGYKIARNED	93			
Ea_p123	95	CLVELLSSSDVSDRQKLQCFQQLKGNNQ - - -	122			
Sp_Tip1p	123	VNGVQNDLVSTFPNYLISILESKNWQLLIEIG	155			
Sc_Est2p	94	- - VNNNSLFCHSANVNNTLLKGAAWKMFHSLVY	123			
Ea_p123	123	- - LAKTHLLTALSTQKQYFFQDEWNQVRAMIG	155			
Sp_Tip1p	156	SDAMHY _{LL} SKGSI F EALPNDNYLQISIGIPLFKN	186			
Sc_Est2p	124	TYAFVDFL _{LL} INYTIQFLFQRTSEGTLVQ	155			
Ea_p123	153	NELFR _{LL} YTYYKLLFQRTSEGTLVQFCGNNVNFDH	185			
Sp_Tip1p	189	NVVEFTVSKKRKRTTTSITQN - - KSAKREVS	218			
Sc_Est2p	156	HLPPKWWQ - - SRSSTSATAAQI	155			
Ea_p123	186	KLVNDKFKD - - KQKGGAAADMNEPRCCSTCKYNYVK	217			

FIG. 42
(CONTINUED)

4

+

FIG. 42
(CONTINUED)

+

44/78

B.							
Sp_Tip1p	426	EF I YWL YN S F I I P I L Q S F F Y I T E S S D L R N R T V Y	458				
Sc_Est2p	363	C F I S W L F R Q L I P K I Q T F F Y C T E I S S T V T - I V Y	394				
Ea_p123	438	K L R M I F D L V V S L I R C F F Y V T E Q Q K S Y S K T V Y	470				
Sp_Tip1p	459	F R K D I W K L L C R P F I T S M K M E A F E K I N E N N V R M D	491				
Sc_Est2p	395	F R H D T W N K L I T P F I V E Y F K T Y L V E N N V C R N H N S	427				
Ea_p123	471	Y R K N I W D V I M K M S I A D L K K E T L A E V Q E K E V E E W	503				
Sp_Tip1p	492	T Q K T T L P P A V I R L L P K K - N T F R L I T N L R K R F L	522				
Sc_Est2p	428	Y T L S N F N H S K M R I P K K S - N N E F R I I A I P C R G A D	460				
Ea_p123	504	K K S I G F A P G K L R L I P K K - T T F R P I I M T F N K K I V	534				
Sp_Tip1p	523	I K M G S N K K M L V S T N Q T L R P V A S I [K H] I N E - -	552				
Sc_Est2p	461	EE E - - F T I Y K E N H K N A I Q P T Q K I L E Y L R N K R P T	491				
Ea_p123	535	N S D - - R K T T K L T T N T N K L L N S H L M L K T L K N R - M F	564				
Sp_Tip1p	553	E S S G I P F N L E V Y M K L L T F K K D L L K H R M F G R - K K	584				
Sc_Est2p	492	S F T K I Y S P T Q I A D R I K F Q R L L K K F N N V L P E L	524				
Ea_p123	565	K D P F G F A V F V N Y D D V M K K Y E E F V C K W K Q V G Q P K L	597				
Sp_Tip1p	585	Y F V R I D I K S C Y D R I K Q D L M F R I V K K K L K D P E - F	616				
Sc_Est2p	525	Y F M K F D V K S C Y D S I P R M E C M R I L K D A L K N E G F	557				
Ea_p123	598	F E A T M D I E K C Y D S V N R E K L S T F L K T T K L L S S D F	630				
Sp_Tip1p	617	V I R K Y A T I H A T S D R A T K N - - - - -	634				
Sc_Est2p	558	F V R S Q Y F F N T N G - - - - -	570				
Ea_p123	631	W I M T A Q I L K R K N N I V I D S K N F R K K E M K D Y F R Q K	663				

FIG. 42
(CONTINUED)

+

FIG. 42
(CONTINUED)

B.	Sp_Tip1p	850	<chem>[L][A][S][F][A][Q][V][F][I][D][I][T][H][N][S][K][F][N][S][C][C][N][I][Y][R][L][G][Y][S][M][C][M][R]</chem>	882
	Sc_Est2p	773	<chem>[L][N][S][T][N][T][V][L][M][D][H][V][K][N][I][S][E][G][I][T][T][E][D][F][A][N][K][L][F][I][S][G][Y][K]</chem>	783
	Ea_p123	895		- - -
	Sp_Tip1p	883	<chem>A[Q][A][Y][L][K][R][M][K][D][I][F][P][Q][R][M][F][I][T][D][L][I][N][V][I][G][R][K][W][K][K]</chem>	915
	Sc_Est2p	794	<chem>- - - [Y][K][S][A][F][K][D][L][S][I][N][P][H][S][F][L][Q][R][I][E][M]</chem>	821
	Ea_p123	928	<chem>Y[M][Q][C][A][K][Y][K][D][H][F][K][N][L][A][M][S][M][I][D][L][E][V][S][K][I][Y][S][V]</chem>	960
	Sp_Tip1p	916	<chem>L[A][E][I][L][G][Y][T][S][R][R][F][L][S][A][E][V][K][W][L][F][C][L][G][M][R][D][G][K][P][S]</chem>	948
	Sc_Est2p	822	<chem>T[V][S][G][C][P][I][T][K][C][D][P][L][I][E][Y][E][V][R][F][T][I][L][N][G][F][L][E][S][L][S][S][N]</chem>	864
	Ea_p123	961	<chem>T[R][A][F][F][K][Y][L][V][C][N][I][K][D][T][I][F][G][E][E][H][Y][P][D][F][F][L][S][T][L][K][H][F]</chem>	983
	Sp_Tip1p	949	<chem>F[K][Y][H][P][C][F][E][Q][L][I][Y][Q][F][Q][S][L][T][D][L][I][K][P][L][R][P][V][I][R][Q][V][L][F]</chem>	981
	Sc_Est2p	865	<chem>T[S][T][S][I][I][I][L][R][K][E][I][Q][H][L][Q][A][Y][Y]</chem>	877
	Ea_p123	994	<chem>I[E][F][S][T][K][Y][I][E][N][R][V][C][M][I][L][K][A][K][E][A][K][L][K][S][D][Q][C]</chem>	1022
	Sp_Tip1p	982	<chem>L[H][R][I][A][D][I][Y][H][I][V][N][D]</chem>	988
	Sc_Est2p	878		
	Ea_p123	1024		1031

FIG. 42
(CONTINUED)

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

FIG. 43

FIG. 44

FIG. 45

FIG 46

卷之三

+

51/78

FIG. 46
(CONTINUED)

+

52/78

FIG. 46
(CONTINUED)

53/78

33098 tataatacgccggatcttcattttgcagg C GCT AAC AGG TAT TTG CGG ATA GAT ATA 3155
 582 R K K V F V R D I
 33156 AAA TCC TGT TAT GAT CGA ATA AAG GAA GAT TTG ATG TTT CGG ATT GTT AAA AAG AAA CTC 3215
 592 K S C Y D R I K Q D L M P R I V K K K L
 33211 CCC GAA TTT GTA ATT CGA AGG TAT GCA ACC ATA CAT GCA ACT AGT GAC CGA GCT 3275
 612 K D P E F V I R Y A T I H A T S D R A
 33216 AGG TAT GAT CGC TTT GAT CGG TTT GAG GCG TTT GAT TCC TAT T 9aaatgttattttcatggaaattttacaaa 3343
 612 K D P E F V I R Y A T I H A T S D R A
 33276 AGA AAA AAC TTT GGT AGT GAG GCG TTT GAT TCC TAT T 9aaatgttattttcatggaaattttacaaa 643
 632 T K W P S E A F S Y F
 3344 atcctttttag TT GAT ATG GTG CCT TTG GAA AAA GTC GCG CAG TTA CTT TCT ATG AAA ACA 3405
 644 D M V P F E K V V Q L L S M K T
 33406 TCA GAT ACT TTG TTT GGT GAT TTT GTC ACC AAA AGT TCT TCT GAA ATT ATT TTT 3445
 660 S D T L P V D D Y V K T S S E S I
 33466 AAA ATG CTC AAC GAA CAT CTC TCT GGA CAC ATT GTT AAG GATaccatgtgaaatataaaaa 3532
 680 K M L K E H L S G H I V K
 33333 ctaatggaaactag ATA GGA ATT TCT CAA TAC CTT CAA AAA GTT GGT ATC CCT CAG GCC TCA 3593
 693 T I G S S Q Y L Q K W G T P Q G S
 33594 ATT CTG TCA TCT TTT TTG TGT ATT CAT ATT GAA GAT TTG ATT GAT GAA TAC CTA TCG 3653
 709 I L S P F S L C H F Y M E D L I D E Y L S
 33654 TTT ACG AAA AGG AAA GGA TCA GTG TTG TTA COA GTP GAC GAT TTC CTC TTT ATA ACA 3713
 729 F T K K K G S V L L R V D D F I T
 33744 GTT AAA AGG GAT GCA AAA ATT TTG AAT TTA TCT TTA AGA G 9tagtgtgtgttatcc 3776
 749 V N K K D A K K P L N L S T S L R G
 33778 taatgttcataaccctgttgcagg GA TTT GAG AAA AAC CAC ATT ATT TTG AGC AGC CTC GAG AAA ACA GTC 3840
 765 F P E K H N P S T S L E K T V
 33841 ATA AAC TTT GAA ATT AGT ATT GGG ATA ATA AAC ATT ACT ATT ATT ATT GAA AGC AGG AAA 3900
 784 T N P F N P F N P F N P F N E S K A A A A

FIG. 46
(CONTINUED)

+

FIG. 46
(CONTINUED)

FIG. 46
(CONTINUED)

1
met ser val tyr val val glu leu leu
GCCAAGTTCTGCCTGGCTG ATG AGT GTG TAC GTC GTC GAG CTG CTC

10
arg ser phe phe tyr val thr glu thr phe gln lys asn arg
AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG

30
leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile
CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT

40
gly ile arg gln his leu lys arg val gln leu arg glu leu ser
GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG

50
glu ala glu val arg gln his arg glu ala arg pro ala leu leu
GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG

60
thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro
ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG

70
ile val asn met asp tyr val val gly ala arg thr phe arg arg
ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA

80
100
glu lys ala glu arg leu thr ser arg val lys ala leu phe
GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC

110
ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly
AGC GTG CTC AAC TAC GAG CGG CGC CGG CCC GGC CTC CTG GGC

120
ala ser val leu gly leu asp asp ile his arg ala trp arg thr
GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC

130
150
phe val leu arg val arg ala gln asp pro pro pro glu leu tyr
TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG TAC

160
170
phe val lys val asp val thr gly ala tyr asp thr ile pro gln
TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG

180
asp arg leu thr glu val ile ala ser ile ile lys pro gln asn
GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC

190
200
thr tyr cys val arg arg tyr ala val val gln lys ala ala met
ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC ATG

FIG. 47

210
gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys
GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC

220
gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser
CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC

240
leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg
CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG

250
arg asp gly leu leu leu arg leu val asp asp phe leu leu val
CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG TTG GTG

270
thr pro his leu thr his ala lys thr phe leu arg thr leu val
ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC

280
arg gly val pro glu tyr gly cys val val asn leu arg lys thr
CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG AAG ACA

300
val val asn phe pro val glu asp glu ala leu gly qly thr ala
GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT

310
phe val gln met pro ala his gly leu phe pro trp cys gly leu
TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG

330
leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser
CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC TAC TCC AGC

340
tyr ala arg thr ser ile arg ala ser leu thr phe asn arg gly
TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC CGC GGC

360
phe lys ala gly arg asn met arg arg lys leu phe gly val leu
TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG

370
arg leu lys cys his ser leu phe leu asp leu gln val asn ser
CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC

390
leu gln thr val cys thr asn ile tyr lys ile leu leu leu gln
CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG

400
ala tyr arg phe his ala cys val leu gln leu pro phe his gln
GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

FIG. 47
(CONTINUED)

420

gln val trp lys asn pro his phe ser cys ala ser ser leu thr
 CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA

440

arg leu pro leu leu leu his pro glu ser gln glu arg arg asp
 CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT

450

val ala gly gly gln gly arg arg pro ser ala leu arg gly
 GTC GCT GGG GGC CAA GGG CGC CGC CGG CCC TCT GCC CTC CGA GGC

460

arg ala val ala val pro pro ser ile pro ala gln ala asp ser
 CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG

480

thr pro cys his leu arg ala thr pro gly val thr gln asp ser
 ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC

490

pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys
 CCA GAC GCA GCT GAG GAA GCT CCC GGG GAC GAC GCT GAC TGC

510

pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp
 CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC

520

his pro gly leu met ala thr arg pro gln pro gly arg glu gln
 CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG

540

thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly
 ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG

550

arg gly gly pro his pro gly leu his arg trp glu ser glu ala
 AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC

560

OP
 TGA GTGAGTGTTGGCGAGGCCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC
 CTGAGCGAGTGTCAGCCAAGGGCTGAGTGTCCAGCACACCTGCCTTCACTTCCCCAC
 AGGCTGGCGTTCGGCCACCCAGGGCCAGCTTCTCACCAGGAGCCGGCTTCCACT
 CCCCCATAGGAATAGTCATCCCCAGATTGCCATTGTTACCCCTGCCCTGCCCTTCC
 TTTGCCTTCCACCCCAACATTCAAGGGTGTGCCCTGTACACAGGCAGGACCCCTG
 AATTTGGAGTGACCAAGGGTGTGCCCTGTACACAGGCAGGACCCCTGACCTGGATGGG
 GTCCCTGTGGTCAAATTGGGGGAGGTGCTGTGGAGTAAAATCTGAATATATGAGTT
 TTTCAAGTTTGGAAAAAAAAAAAAAA

FIG. 47
(CONTINUED)

Motif -1							
Ep p123	...LVVSLIRCFYYVTEQQKSYSKT...						
Sp Tez1	...FIPILQSFFYITESSDLRNRT...						
Sc Est2	...LIPKIIQTFYYCTEISSTVTIV...						
Hs TCP1	...YVVELLRSFFYVTETTFQKNRL...						
consensus	FFY TE						
 Motif 0						K	
Ep p123	...KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...	p	hhh	K	hR	h	R
Sp Tez1	...QKTTLPAAVIRLLPKKN--TFRLLTNLRKRLF...						
Sc Est2	...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...						
Hs TCP1	...ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...				R	PK	I
consensus							
 Motif A						AF	
Ep p123	...PKLFATMDIEKCYDSVNREKLSTFLK...	h	hDh	GY	h		
Sp Tez1	...RKKYFVRIDIKSCYDRIKQDLMFRIVK...						
Sc Est2	...PELYFMKFVDVKSCYDSIPIRMECMRLK...						
Hs TCP1	...PELYFVVKVDVTGAVIDTIPQDRLTEVIA...//...		F	D	YD		
consensus							
 Motif B						hPQG	pS hh
Ep p123	...NGKFKYKQTKGIPPGGLCVSSILSSFYYA...						
Sp Tez1	...GNSQYLOKVGIPQGSILSSFLCHFYME...						
Sc Est2	...EDKCYIREDGGLFQGSSLASAPIVDLVDD...						
Hs TCP1	...RATSYVQCQGIPQGSILSTLLCSCLYG...			G	QG	S	
consensus							
 Motif C						Y	
Ep p123	...PNVNLLMRLLTDYLLITIQENN...	h	F	DD	hhh		
Sp Tez1	...KKGSVLLRVVVDLFLFITVNKKD...						
Sc Est2	...SQDTLILKLADDFLIISTDQQQ...						
Hs TCP1	...RRDGLLLRLVVDPLLVTPHLTH...			DD	L		
consensus							
 Motif D						Gh	h cK
Ep p123	...NVSRENGFKFNMKKL...						
Sp Tez1	...LNLSLRGFEKHNFST...						
Sc Est2	...KKLAMGGFQKYNAKA...						
Hs TCP1	...LRTLVRGVPEYGCVV...						
consensus	G						

FIG. 48

FIG. 49

1 GCAGCGCTGC GTCTCTGCTGC GCACGTGGGA AGCCCTGGCC CGGGCACCC
 51 CGCGATGCC GCGCGTCCTC CGCTGCCGAG CGTGGCCCTC CCTGCTGCC
 101 AGCCACTACC GCGAGGTGCT GCGCTGGCC AGTTGCTGC GGCGCTGGG
 151 GCCCCAGGG TGCGCGCTG TGCAAGCCGG GGACCCGGCG GCTTTCGCG
 201 CGNTGGCTGC CCANTGCTG TGTCGGCTG CCTGGGANNG ANGCNC
 251 CCCGGCCCG CTCCTCTCC CGAAGTGTCC TGCCTGAANG ANCTGGTGGC
 301 CGGAGTGTG CANANGCTG GCGGANCCGG CGGAAANAAC GTGCTGCC
 351 TCGGCTTGCG GCTGCTGAC GGGGCCCGGG GGGGCCCCCCC CGAGGCC
 401 ACCACAGCC TGCGCAGCTA CCTGCCAAC ACGGTACCG ACCCACTGCC
 451 GGGGAGCGGG GCGTGGGGGC TGCTGCTGC CGCGTGGGC GACGACGTG
 501 TGTTGCTGCTTG CGTCGGCTNT TTGTCGTTGTT GGNTCCAGC
 551 TGCGCCCTACG ANGTGGCGC GCGCCGCTG TACCACTCC CGCGCTCNAC
 601 TCAGGGCCGG CCCCGCCAC AGCCTANTGG ACCGAANGC GCTGCGGATC
 651 CAACGGCCCT GGAAACATCA CGTCAGGGAG GCGGGGGTCC CCTGGGCTG
 701 CGACGGCCGG GTGCGGAGAG GCGGGGGGAG AGTGGCAGCC GAAGTGTGCC
 751 GTTGGCCCAAAG AGGCCAGGG TGTCGGCTG CCTTGACCG GACGCC
 801 CGGTGGCA GGGGCTTGG GCCCACCCGG CGAGGACGCC TGGACCCAGT
 851 GACCGTGGTT CTGTCGTTG GTCACCTGCC AGACCCGGCG AAAGAAC
 901 CTCTTGGAG GTGCTGGCTC CGACCGCCCG CCACCTCCAC CCATCGTGG
 951 GCGCCACCA CGACCGCCCG CCCCATCTCA CATCGGCCG ACCACCTCT
 1001 GGACACCCCG TTGCTCCCCG GTGACCCCG AGACCAAGCA CCTCCCTAC
 1051 TCCTCAGGCC ACAAGNACAC TGCGNCCTC TTCCCTACTC AATATATCTG
 1101 AGGCCAGCC TGACTGGCTG TCGGGAGTT CGTGGAGACA NTCTTTCTGG
 1151 TTCCAGGCC TGGATGCCAG GATTCCCCG AGTTGCCCG GCTGCC
 1201 GCGNACTGG CAATGCGGC CCCCTGTTCT GGAGCTGCTT GGAAGAAC
 1251 CGCAGTCCCG CTACGGGGTG TTCCCTCAAGA CGCAGTCCC GCTGCGAGCT
 1301 GCGCAGTCCCG CAGCAGCCGG TGTCGTTGCC CGGGAGAACG CCCAGGGCTC
 1351 TGTGGCGGCC CCGCAGGGAG AGAACACAC ACCCCCCCTC CCTGGTGCAG
 1401 CTGCTGCCCG AGACACAGAG CCCCTGGCAG GTGTACCGCT TCGTGGGCC
 1451 CTGCTGCCCG CGCTGGTGC CGCTGGCCCT CTGGGGCTCC AGGCCAAC
 1501 AACGCCGCTT CCTCAGGAAC ACCAAGAAGT TCATCTCCCT GGGGAAGCAT
 1551 GCGCAAGCTCT CGTCGAGGA GCTGACCTGG AAGATGAGCG TGCGGAGCT
 1601 CGCTTGGCTC CGCAGGAGCC CAGGGGTTGG CTGTCGTTCC CGCCGAGAC
 1651 ACCGCTGCC TGAGGAGAT CTGGCAAGT TCCCTGCACTG GCTGATGAGT
 1701 GTGTCAGCTG CGAGCTGCTC CGCTCTTCTT TTATATGTC CGGAGAAC
 1751 GTTTCAAAG AACAGGCTCA TTCTCTACCA GAAGAGTGTG TGAGGCAAGT
 1801 TGCAAGCAT TGGAAATCAGA CGACCTTGA AGAGGGTGC CGTCGGGAG
 1851 CTGTCGGAAAG CAGAGGTGAG CGACCATCGG GAAGCCAGGC CGGCCCTGCT
 1901 GACGTCCAGA CTCCCTCTCA TCCCCAACGG TGAGGGCTG CGGGCATTTG
 1951 TGAACATGGA CTACGTCCTG GGAGCCAGGA CGTTCGGCAG AGAAAAGAGG
 2001 GCGGAGCTCT TCACCTCGAG GGTCAGGCA CTGTTCAAGC TGTCAACTA
 2051 CGAGGGGGCG CGGGGCCCGG GCTCTCTGG CGCTCTGTG CTGGGCTGG
 2101 ACGATATCCA CAGGGCTCTG CGCACCTTCG TGTCGCTGT CGGGGCCAG
 2151 GACCGCCCG CGTAGCTTA CTTGTCAAG GTGGATGTA CGGGCGGTA
 2201 CGACACCATC CCCAGGACA GGTCACCGA GGTCATGCC AGCATCATCA
 2251 AACCCAGAA CACGTACTGC GTGCGCTGGT ATGCCGTGTT CGAGAAC
 2301 GCCCATGGC ACGTCGGCAA GGCTCTCAAG AGCCACGCTCT CTACCTTGAC
 2351 AGACCTCCAG CGGTACATGC GACAGTGTGG GGTCACCTG CAGGAAACA
 2401 GCCCGCTGAG GGATGCCGTC GTCATCGAGC AGAGCTCCCTC CCTGAATGAG
 2451 GCCAGCAGTG GCCTCTCGA CGTCTCTTA CGCTTCATGT GCCACCCAGC

FIG. 50

2501 CGTGCGCATC AGGGGAAAGT CCTAACGTCCA GTGCCAGGGG ATCCCGCAGG
 2551 GCTCCATCT CTCCACGCTG CTCTGCAGCC TGTGCTACGG CGACATGGAG
 2601 AACAAAGCTGT TTGGGGGAT TCGCGGGAC GGGCTGCTCC TGCCTTGGT
 2651 GGATGATTTC TTGTTGGTGA CACCTCACCT CACCCACGG AAAACCTTCC
 2701 TCAGGACCCCT GGTCGGAGGT GTCCCTGAGT ATGGCTCGGT GTGGAACTTG
 2751 CGGAAGACAG TGGTGAACCTT CCGTGTAGAA GACGAGGCC TGGGTGCA
 2801 GGCTTTGTTG CAGATGCCGG CCCACGCCCT ATTCCCCCTGG TCGGGCCTGC
 2851 TGCTGGATAC CCGGACCCCTG GAGGTGCAAGA GCGACTACTC CAAGCTATGCC
 2901 CGGACCTCCA TCAGAGCCAG TCTCACCTT AACCGCGCTG TCAAGGCTGG
 2951 GAGGAACATG CGTGCACAAAC TCTTTGGGT CTTGCGGCTG AAGTGTACA
 3001 GCCCTGTTCTT GGATTTGCAG GTGAACAGCC TCCAGACGGT GTGCAACAC
 3051 ATCTACAAAGT CCCTCCCTGCT GCAGGGCTAC AGGTTTCACG CATGTTGCT
 3101 GCAGCTCCCA TTTCATCAGG AAAGTTTGAA GAACCCCCAAC TTTTTCTCTGC
 3151 GCGTCATCTC TGACACCGCC TCCCTCTGCT ACTCCATCTC GAAGGCAAAG
 3201 AACCGAGGGG TGTCGGTGGG GGCCAAAGGC GCGGCCGGCC CTCTGCCCTC
 3251 CGAGGCCCTG CAGTGGCTGTG GCCACCAAGG ATTCTCTGCTC AAAGCTACTC
 3301 GACACCGTGT CACCTACGTG CCACTCTGG GGTCACTCAG GACAGCCAG
 3351 ACGCAGCTGA GTCGGAACCTT CCGGGGGACG ACGCTGACTG CCTGGAGGC
 3401 CGCAGCCAC CCAGGCACTGC CCTCAGACCTT CAAGACCATC CTGGACTGAT
 3451 GGCCACCCCG CCACAGCCAG GCGGAGAGCA GACACCCAGCA GCCCTGTAC
 3501 GCCGGGCTCTC AGCTCCCAAG GAGGGAGGGC CGGCCACAC CGAGGCCCGC
 3551 ACCGCTGGGA GTCTGAGGCC TGAGTGAATC TTGGCCGAG GCTGCGATGT
 3601 CCGGCTGAAG GCTGAGTGTG CGGGCTGAGGC CTGAGCGAGT GTCCAGCCAA
 3651 GGGCTGAGTG TCCAGCAAC CTGCGCTCTT CACTTCCCAC CAGGCTGCG
 3701 CTCGGCTCCA CCCAGGGGCC AGCTTTCTC CACCAAGGAGC CGGGCTTCCA
 3751 CTCCCCACAT AGGAATAGTC CATCCCCAGA TTGCGCATTG TTCACCCCTC
 3801 GCCCTGCCCC CCTTGTGCTT CCACCCCCAC CATCCAGGTG GAGACCCCTGA
 3851 GAAGGACCCCTT GGGAGCTCTC GGAATTGGAG GTGACCAAAG GTGTCAGTT
 3901 TACACAGGCC AGGACCTCTG ACCTGGATGG GGTCCTCTGT GGGTCAAATT
 3951 GGGGGAGGGT GCTGTGGGAG TAAATACTG AATATATGAG TTTTCAGTT
 4001 TTGAAAAAAA AAAAAAAA AAAAAAAA

FIG. 50
(CONTINUED)

+

100051495 - 041100

GCAGCGCTGCGTCTGCTGCGCACGTGGGAAGGCCCTGGCCCGGCCACCCCCGGATGCG
 1 -----+-----+-----+-----+-----+-----+-----+-----+ 60
 CGTCGCGACGCGAGGACGACGCGCTGCACCCCTGGGACCGGGGGCGGTGGGGCGCTACCG

 a A A L R P A A H V G S P G P G H P R D A -
 b Q R C V L L R T W E A L A P A T P A M P -
 c S A A S C C A R G K P W P R P F P P R C R -

 GCGCGCTCCCGCTGCGAGCGCTGGCCTGCTGCTGCGCAGGCCACTACCGCGAGGTGCT
 61 -----+-----+-----+-----+-----+-----+-----+ 120
 CGCGCGAGGGGGCGACGGCTCGGACCGCGAGGGACCGACGGTGTGATGGCGCTCACCGA

 a A R S P L P S R A L P A A Q P L P R G A -
 b R A P R C R A V R S L L R S H Y R E V L -
 c A L P A A E P C A P C C C A A T T A R C C -

 GCGCGCTGGCCACGTCTGCGGCGCTGGGGGCCAGGGCTGGCGCTGGCGAGCGCG
 121 -----+-----+-----+-----+-----+-----+-----+ 180
 CGGGGACGGCTGCAAGCACCGCGCGACCCCGGGTCCCGACCGCGACCGTGTGCGCC

 a A A G H V R A A P G A P G L A A G A A R -
 b P L A T F V R R L G P Q G W R L V Q R G -
 c R W P B R S C G A W G P R A G G W C S A G -

 GGACCGGGGGCTTCCGCGCGNTGGTGGCCCANITGCTGCGTGCCTGCGCTGGGANGN
 181 -----+-----+-----+-----+-----+-----+-----+ 240
 CCTGGGGCCCGCAAAGGCGCGCNACACCGGGTACAGNACCAACACCGACGGGACCCCTNCN

 a G P G G F P R ? G G P ? ? G V R A L G ? -
 b D P A A F R A ? V A ? C ? V C V P W ? ? -
 c T R R L S A R W W P ? A W C A C P G ? ? -

 ANGGCNGCCCCCGCGCCCTCCCTCGCCAGGTGCTCTGCGTAANGANCTGGTGGC
 241 -----+-----+-----+-----+-----+-----+-----+ 300
 TNCCGNGGGGGGGGGGGGGGGGGAGGGAAAGGGCGCTCACAGGACGGACTCTINGAACACCG

 a ? A A P R R P L L P P G V L P E ? ? G G -
 b ? P P A A P S F R Q V S C L ? ? L V A -
 c G ? P P P P P S A R C P A * ? ? W W P -

 CGAGGTGCTGCAANANGCTGTGCGANCGGGCGCGAAANAACTGTGCTGGCCTCGGGCTCG
 301 -----+-----+-----+-----+-----+-----+-----+ 360
 GGCTCACGAGCTNTGCAACGCTNGCGCCGCGCTNTTGACAGACCGGGAGCCGAAGCG

 a P S A A ? A V R ? R R E ? R A G L R L R -
 b R V L ? ? L C A ? R G A ? N V L A F G F A -
 c E C C ? ? C A ? A A R ? T C W P S A S R -

 GCTGCTGGACGGGGCCCAGGGGGCCCCCCCAGGGCTTCAACCCAGCGCTGCGCAGCTA
 361 -----+-----+-----+-----+-----+-----+-----+ 420
 CGACGACCTGCCCCGGGGCCCGGGGGGGGCGCTCGGAAGTGTGGTGCAGCGCTCGAT

 a A A G R G P R G P P R G L H H Q R A Q L -
 b L L D G A R G G P P P E A F T T S V R S Y -
 c C W T G P A G A P P R P S P P A C A A -

 CCTGCCCCAACACGGTGACCGAACGACTGCGGGGGAGCGGGGGCTGCGTGC
 421 -----+-----+-----+-----+-----+-----+-----+ 480
 GGACGGGTGTGCGCACTGGCTGGCTGCGTGAACGCCCCCTGCCCCCGACCCCGACGACGGC

 a P A Q H G D R T A G E R G V G A A A A -
 b L P N T V T D A L R G S G A W G L L L R -
 c C P T R * P T H C G G A G R G G G C C C A -

FIG. 51

+

a P R G R R R A G S P A G T L R ? ? C A G -
 b R V G G D D L V V H L L A R C A ? F V L V -
 c A W A T T C W F T C W H A A R ? L C W W -

 541 G G N T C C C A G G T G C G C T A C C A N G T G T G O G G G C C G C G C T G T A C C A G C T C G G G C T G C N A C -
 CC N A G G T C G A C G C G G A T G G T N C A C A C G C C G G C G C G A C A T G G T C G A G G C C C G A C G N T G + 600

 a G S Q L R L P ? V R A A A V P A R R C ? -
 b ? P S C A Y ? V C G P P L Y Q L G A A T -
 c ? P A A P T ? C A G R R C T S S A L ? L -

 601 T C A G G C C G G C C C C G G C A C C G C T A N T G G A C C G A A N G C G T C T G G G A T C C A A C G G G C T -
 A G T C C G G C C G G G G G G T G C G A T N A C C T G G C T T N G C G A C C T A G G T T G C C C G A + 660

 a S G P A P A T R ? W T R ? R L G S N G P -
 b Q A R P P P H A ? G P E ? V W D D P T G L -
 c R P G P R H T L ? D P ? A S G I Q R A W -

 661 G G A C C C T A G G G T C A G G G A G G C C G G G T C C C C T G G G C T G C C A G G C C C G G G T C C G A G G A G + 720
 C C T T G G T A T C G C A G T C C T C G G C C C A G G G G A C C G G A C G G T C G G G C C C A C G G T C C T C C T C

 a G T I A S G R P G S P W A A S P G C E E -
 b E P * R Q G G R G P P G L P A P P G A R R R -
 c N H S V R E Q V G P L G C Q P R V R G G G -

 721 G G C C G G G G C G T G C C A C C G A A T C T C C C G T T G C C C A A G A G G C C C A G G C G T G G C C T G C -
 C G G G C C C C G G T C A C G G T C G G C T T C A G A C G G C R A C G G T T C T C G G G T C C G C A C C G G C A G + 780

 a A R G Q C C Q P K S A V A Q E A Q A W R C -
 b R G G S A S R K S P L P K R P R R G A A A -
 c A G A V P A E V C R C P R G P G V A L P -

 781 C C C T G A G C C G G S A G G G A C C C C G T T G G C A G G G G T T C T G G G C C C A C C C G G C A G G C G C -
 G G G A C T C G G G C T C G C C T G G G G A A C C C G T C C C C C A G G A C C C G G G T G G G C C G G T C T G G + 840

 a P * A G A D A R W A G V L G P P G Q D A -
 b P E P E R T P V P V G Q G S W A H P G R T P -
 c L S R S G R P L G R G P G P T R A G R L -

 841 T G G A C C G A G T G A C G G T G G T T C T G T G G G T G T C A C C T G C C A G A C C G G C G A A G A A G C C A C + 900
 A C C T G G C T C A T G G C A C C A A A G A C A C C A C A C G T G G A C G G T C T G G G C C G G T T C T T C G G T G

 a W T E * P W F L C G V T C Q T R R R S H -
 b G P S D R G C V V S V P A R P A E E A T -
 c D R V T V V S V W C H L P D P P K K P P -

 901 C T C T T G G A G G G T G C G T C T C T G G C A C G G G C C A C T C C C A C C C A T C C G T G G G C C C A G C A + 960
 G A G A A A C C T C C C A C G G A G A G A C C G T G G G T G G G T G G G T A G G C A C C G G G G G T C G T

 a L F G G C A L W H A P L P P I R G P P A -
 b S L E G A L S G T R H S H P S V G R Q H -
 c L W R V R S L A R A T P T H P W A A S T -

 961 C C A C G G G G C C C C C A T C C A C A T C C G G G C C A C C A G T C T G G A C A C G C C T T G T C C C C G + 1020
 G G T G C G C C C G G G G G T A G G T G T A G G C G C G G T G T G C A G G A C C C T G T G C G G A A C A C G G G G C

FIG. 51
(CONTINUED)

FIG. 51
(CONTINUED)

+

a S C G P A C A G W C P Q A S G A P G T T -
 b R A G L P A P A G A P R P L G L Q A Q R -
 c V R A C L R R L V P P G L W G S R H N E -

1501 AACGCCGCTCCTCAAGAACCCAGAAGTCATCCTCCCTGGGGAAAGCATGCCAAGCTCT
 TTGCAGCGAAGGAGTCCCTGTGGTCTTCAGTAGAGGGACCCCTTGATCGGTTGAGGA 1560

a N A A S S G T P R S S S P W G S M P S S -
 b T P L P Q E H Q E V H L P G E A C Q A L -
 c R R F L R N T K K F I S L G K H A K L S -

1561 CGCTGCAGGACTGACGTGGAGATGAGGCTGCGGGACTGCCCTTGCTGCCAGGAGCC
 GGCAGCTCCCTGACTGCACCTTACTCGCACGCCCTGAGCGAACCGAGGGCTCGG 1620

a R C R S * R G R * A C G T A L G C A G A -
 b A A G A D V E D E R A G L R L A Q E P -
 c L Q E L T W K M S V R D C A W L R R S P -

1621 CAGGGGTTGGCTGTGTTCCGGCCCGAGGACCCGCTGCGTGAGGAGATCTGGCCAAGT
 GTCCCCAACCGACACAGGGCGCTCGGAGCAGCCACTCTAGGACCGGTTCA 1680

a Q G L A V F R P Q S T V C V R R S W P S -
 b R G W L C S G R R A P S A * G D P G Q V -
 c G V G C V P A A E H R L R E E I L A K F -

1681 TCCCTGCACTGGCTGATGAGTGTGTAAGTGCTGAGCTGGCTAGGTCTTCTTATGTCA
 AGGACGTGACGACTACTCACATCGCAGCTCGAGTCCAGAAAGAAAATACAGT 1740

a S C T G * V C T S S S C S G L S F M S -
 b P A L A D E C V R R R A Q V F L L C H -
 c L H W M S V Y V R V E L L R S F F Y V T -

1741 CGGAGACACGGTTCAAAAGACAGGGCTCTTCTACCGGAGAGTGCTCTGGACCAAGT
 GCTCTGGCTGAGTCTTCTGAGCTGAGAAAGATGGCTCTCACAGACCTGGTCA 1800

a R R P R F K R T G S F S T G R V S G A S -
 b G D H V S K E Q A L F L P E E C L E Q V -
 c E T T F Q K N R R L F F Y R K S V W S K L -

1801 TGCAAAGCATGGAAATCAGACAGCACTTGAGAGGGCTGCAGCTGGGGAACTTGCGGAG
 ACGTTTGTAACTCTTGTGCTGAGACTCTCCACGTCAGCCCTGACAGACCTTC 1860

a C K A L E S D S T * R G C S C G S C R K -
 b A K H W N Q T A E E G A A A G A V G S -
 c Q S I G I R Q H L K R V Q L R E L S E A -

1861 CAGAGGTCAAGCAGCACTGGGAGCCAGGCCGCCCTGCTGAGCTCCAGACTCGCTTC
 GTCTCCAGTCCGTCGTAAGCCCTTGCGTCAGGGAGACAGCTGAGGTCTGAGGCGAAGT 1920

a Q R S G S I G K P G P P C * R P D S A S -
 b R G Q A A S G S Q A R P A D V Q T P L H -
 c E V R Q H R E A R P A L L T S R L R F I -

1921 TCCCCAAGGCTGACGGGCTGCGGGATTGTGACATGGACTACGTCGTTGGAGCCAGA
 AGGGGTTCCGACTGCCGAGCCGGCTAACACTTGATCTGAGCAGCACCCCTCGGTCTT 1980

FIG. 51
(CONTINUED)

+

FIG. 51
(CONTINUED)

FIG. 51
(CONTINUED)

69/78

A T T P A M P G P P S E P V S P S T A A -
 R L L Q L C P D L H O Q S Q S H Q P R L -
 D Y S S Y A R T S I R A S L T F N R G F -
 TCAAGGCTGGAGGAACATCGCTGCAGAACCTCTTGGGCTTGCGGCTGAAGTGTACA
 2941 AGTCGACCCCTCTTGTAGCGAGGTTGAGAACCCAGAACAGCGACTTCACAGTG
 S R L G G T C V A N S L G S C G * S V T -
 Q G W E E H A S Q T L W G L L A A E V S Q -
 K A G R N M R R K L F G V L R L K C H S -
 GCCTGTTCTGGATTTGCAAGGTGAAACAGCTCCAGACGGTGTGACCCAACATCTACAGA
 3001 CGGAAACAGCTAACCTGCTTCAACTGTGGAGGCTGCCAACAGCTGGTTGTAGATGTTCT
 A C F W I C R * T A S R R C A P T S T R -
 P V S S G F Q A G E Q P P D G V W H Q H L Q D -
 L F L D L Q V N S L Q T V C T N I Y K I -
 TCCCTCTGCTGCAGCGTACAGGTTTACAGCATGTGCTGACAGCTCCCATTCTACAGC
 3061 AGGAGAGCACGACTCGCATGTCCAAGATGCTACACAGCAGCTGGGGTAAAGTAGCTG
 S S C C R R T G F T H V C C S S H F I S -
 P P A A G V Q V S R M C A A P I S S A -
 L L Q A Y R F H A C V L Q L P F H Q Q -
 AAGTTTGGAGAACCCACATTCTGCGCTCATCTGACAGGCTCCCTCTGCT
 3121 TTCAACACCTTCTGGGTTGTAAGAGGACGGCAGTAGAGACTGTGGCGAGGAGAGA
 K F G R T P H F S C A S S L T R P P S A -
 S L E E P H I F P A R H L * H G L P P L L -
 V W K N P T F F L R V I S D T A S L C Y -
 ACTCATCTGAAAGCCAAAGAACCGAGGGATGTCGCTGGGGCCAAAGGGCGCCGCCGCC
 3181 TGAGGTAGGACTTCTGGTTCTGGCTCATCGACGCCCGGTTCTCCGCGCCGCCGCC
 T P S * K P R T Q G C R W G P R A P P A -
 L H P E S Q E R R D V A G G Q O G R R R P -
 S I L K A K N A G M S L G A K G H A A G P -
 CTCTGGCCCTGGAGCGCTCCGACAGTCACCGACACGGCTGGTGTGCTAAGGAGCAGTCTGAG
 3241 GAGACGGAGGAGCTCCGACAGTCACCGACACGGCTGGTGTGCTAAGGAGCAGTCTGAG
 L C P P R P C S G C A T K H S C S S * L -
 S A L R G R A V A V P P S I P A Q A D S -
 L P S E A V Q W L C H Q A F P L L K L T R -
 GACAGCTGGTGTACCTACAGTGGCACTCTGGGTCAGTCAGGACAGCCAGACGGAGCTGA
 3301 CTGTCGACAGTGGATGACCGTGAAGAACCCAGTAGGTCTGGCTCTGGGTCAGT
 D T V S P T C H S W G H S G Q P R R S * -
 T P C F H L R A T P G P V T Q D S P P D A A E -
 H R V T Y V P L L G S L R T A Q T Q L S -
 GTCCGGAGCTCCGGAGCAGCTGACTGCGCTGAGGAGCCAGACCAACCCGGAGCTG
 3361 GAGGAGCTGGAGGAGCTCCGGAGCAGCTGACTGCGCTGAGGAGCCAGACCAACCCGGAGCTG

FIG. 51
(CONTINUED)

a V G S S R G R R * L P W R P Q P T R H C -
 b S E A P G D D A D C P G G R S Q P G T A -
 c R K L P G T T L T A L E A A A N P A L P -

3421 CCTCAGACTCTAAGACCATCTGGACTGATGGGCCACAGCCAGGGAGAGCA
 GGAGTCTGAAGTTCTGGTAGGACCTGACTACCGGTGGGGGTGTCGGTCCGGCTCTCGT + 3480

a P Q T S R P S W T D G H P P T A R P R A -
 b L R L Q D H P G L M A T R P Q P G R E Q -
 c S D F K T I L D * W P P A H S Q A E S R -

GACACCCAGCAGCCCTGTCAGCCCGGGCTCTACGTCGGGAGGGAGGGGGCGGCCACAC
 3481 CTGTGGTCTGGGACAGTGCGGCCAGATGCAGGGTCCCCTCCCGCCGGGTGTG + 3540

a D T S S P V T P G S T S Q G G R G G G P H -
 b T P A Q L S R P L R P R E G G G A A H T -
 c H Q Q P C H A G L Y V P G R E G R P T P -

CCAGGGCCGACCCCTGGGACTGACTGAGGCCCTGACTGAGGTGTTGGCCGGGGCTCATGT
 3541 GGTCCGGGGCTGGGACCCCTGAGACTCOGACTCACTCACAAACCGCTCCGGACGTACA + 3600

a P G P H R W E S E A * V S V W P R P A C -
 b Q A R T A G S L R P E * V F G R G L H V -
 c R P A P L G V * G L S E C L A E A C M S -

CGGGCTGAGGCTGAGCTGTCGGCTGAGGCTCTGAGCTGAGCTGTCAGGCCAGGGCTGAGTC
 3601 GGGCGAGCTTCGAGCTCACAGGCCAACCTCGGACTCTGCTCACAGGGTGGTCCGGACATCAC + 3660

a P A E G * V S G * G L S E C P A K G * V -
 b R L K A P V S L P H R L A L G S T P G P -
 c G * R L S V R L R P E R V S S Q G L S V -

TCCAGCACCTGGCCGCTCTACCTCCCCACAGGCTGGGCTGGCTCAAGGCTCAACCCAGGGCC
 3661 AGGTCTGTGGACGGCAGAGTGTAGGGGGTGTCCGGACCCGGCCGAGGTGGGGTCCGGG + 3720

a S S T P A V F T S P Q A G A R L H P R A -
 b P A H L P S S L P H R L A L G S T P G P -
 c Q H T C R L H F P T G W R S A P P Q G Q -

AGCTTTCTCACCCAGGAGCCGGCTTCCACTCCCCACATAGGAATAGTCATCCCCAGA
 3721 TCGAAAAGGAGTGGCTCGGGGGAGGTGAGGGGGTGTATCCATTACAGGTAGGGGTCT + 3780

a S F S S P G A R L P L P T * E * S I P R -
 b A F P H Q E P G F H S P H R N S P S P D -
 c L F L T R S P A S T P H I G I V H P Q I -

TTGGCCATTGTTCAACCCCTGCGGCTTCCTTGCCTTCCACCCCCACATCCAGGTG
 3781 AAGCGGTAAACAAGTGGGGAGCGGGACGGAGAAAAGGTGGGGTGTAGGTCCAC + 3840

a F A I V H P S P C P P L P S T P T I Q V -
 b S P L F T P R P A L L C L P P P P S R W -
 c R H C S P L A L P S F A F H P H H P G G -

GAGACCCCTGAGAAGGACCCCTGGAGCTCTGGAAATTGGAGTGACCAAAGGTGTGCCCTG
 3841 CTCTGGGACTCTCTGGGACCCCTGAGACCCCTAACCTCACTGGTTCCACACGGGAC + 3900

FIG. 51
(CONTINUED)

a E T L R R T L G A L G I W S D Q R C A L -
 b R P * E G P W E L W E F G V T K G V P C -
 c D P E K D P G S S G N L E * P K V C P V -

TACACAGGCGAGGAACCTGACACTGGATGAGGTGCGCTTGTTGCAAAATTGGGGGGAGGT
 3901 ATGTGTCGCGCTCCGGAGCTGGACGTGGACCTAACCCCGAGGACACCCAGTTAACCCCCCTCCA + 3960

a Y T G E D P A P G W G G S L W V K L G G G G -
 b T Q A R T L H L D G G G P C G S N W G E V -
 c H R R G P C T W M G V P V G Q I G G R C -

GCTGTGGGAGGTAAAATACITGAAATAATGAGGTTTTTCAAGTTTGAAAAAAGAAAAAAA
 3961 CGACACCCCTCATTTATGACTTATATACTCAAAAGTCAAAACTTTTTTTTTTTTTT + 4020

a A V G V K Y * I Y E F F S F E K K K K K -
 b L W E * N T E Y M S F S V L K K K K K K K -
 c C G S K I L N I * V F Q F * K K K K K K K -

AAAAAAA
 4021 ----- 4029
 TTTTTTTT

a K K K -
 b K K -
 c K K -

FIG. 51
 (CONTINUED)

FIG. 52

1
met
GCAGCGCTGCGTCTGCTGCGCACGTGGAAGCCCTGGCCCGGCCACCCCCCGCG ATG

10
pro arg ala pro arg cys arg ala val arg ser leu leu arg ser
CCG CGC GCT CCC CGC TGC CGA GCC GTG CGC TCC CTG CTG CGC AGC

20
his tyr arg glu val leu pro leu ala thr phe val arg arg leu
CAC TAC CGC GAG GTG CTG CCG CTG GCC ACG TTC GTG CGG CGC CTG

30
gly pro gln gly trp arg leu val gln arg gly asp pro ala ala
GGG CCC CAG GGC TGG CGG CTG GTG CAG CGC GGG GAC CCG GCG GCT

40
phe arg ala leu val ala gln cys leu val cys val pro trp asp
TTC CGC GCG CTG GTG GCC CAG TGC CTC GTG TGC GTG CCC TGG GAC

50
ala arg pro pro pro ala ala pro ser phe arg gln val ser cys
GCA CGG CCG CCC CCC GCC GCC CCC TCC TTC CGC CAG GTG TCC TGC

60
70
leu lys glu leu val ala arg val leu gln arg leu cys glu arg
CTG AAG GAG CTG GTG GCC CGA GTG CTG CAG AGG CTG TGC GAG CGC

80
gly ala lys asn val leu ala phe gly phe ala leu leu asp gly
GGC GCG AAG AAC GTG CTG GCC TTC GCG TTC GCG CTG CTG GAC GGG

90
100
ala arg gly gly pro pro glu ala phe thr thr ser val arg ser
GCC CGC GGG GGC CCC CCC GAG GCC TTC ACC ACC AGC GTG CGC AGC

110
120
tyr leu pro asn thr val thr asp ala leu arg gly ser gly ala
TAC CTG CCC AAC ACG GTG ACC GAC GCA CTG CGG GGG AGC GGG GCG

130
140
trp gly leu leu leu arg arg val gly asp asp val leu val his
TGG GGG CTG CTG CGC CGC GTG GGC GAC GAC GTG CTG GTT CAC

150
160
leu leu ala arg cys ala leu phe val leu val ala pro ser cys
CTG CTG GCA CGC TGC GCG CTC TTT GTG CTG GTG GCT CCC AGC TGC

170
180
ala tyr gln val cys gly pro pro leu tyr gln leu gly ala ala
GCC TAC CAG GTG TGC GGG CCG CGC CTG TAC CAG CTC GGC GCT GCC

190
thr gln ala arg pro pro pro his ala ser gly pro arg arg arg
ACT CAG GCC CGG CCC CCG CCA CAC GCT AGT GGA CCC CGA AGG CGT

FIG. 53

200

leu gly cys glu arg ala trp asn his ser val arg glu ala gly
CTG GGA TGC GAA CGG GCC TGG AAC CAT AGC GTC AGG GAG GCC GGG

220

val pro leu gly leu pro ala pro gly ala arg arg arg gly gly
GTC CCC CTG GGC CTG CCA GCC CCG GGT GCG AGG AGG CGC GGG GGC

230

ser ala ser arg ser leu pro leu pro lys arg pro arg arg gly
AGT GCC AGC CGA AGT CTG CCG TTG CCC AAG AGG CCC AGG CGT CGC

250

ala ala pro glu pro glu arg thr pro val gly gln gly ser trp
GCT GCC CCT GAG CGG GAG CGG AGC CCC GTT GGG CAG GGG TCC TGG

260

ala his pro gly arg thr arg gly pro ser asp arg gly phe cys
GCC CAC CCG GGC AGG ACG CGT GGA CCG AGT GAC CGT GGT TTC TGT

270

val val ser pro ala arg pro ala glu glu ala thr ser leu glu
GTG GTG TCA CCT GCC AGA CCC GCC GAA GAA GCC ACC TCT TTG GAG

290

gly ala leu ser gly thr arg his ser his pro ser val gly arg
GGT GCG CTC TCT GGC ACG CGC CAC TCC CAC CCA TCC GTG GGC CGC

310

gln his his ala gly pro pro ser thr ser arg pro pro arg pro
CAG CAC CAC GCG GGC CCC CCA TCC ACA TCG CGG CCA CCA CGT CCC

320

trp asp thr pro cys pro pro val tyr ala glu thr lys his phe
TGG GAC ACG CCT TGT CCC CGG GTG TAC GCC GAG ACC AAG CAC TTC

340

leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu
CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA

350

leu ser ser leu arg pro ser leu thr gly ala arg arg leu val
CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG

370

glu thr ile phe leu gly ser arg pro trp met pro gly thr pro
GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC

380

arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro
CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC

400

leu phe leu glu leu leu gly asn his ala gln cys pro tyr gly
CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG

410

val leu leu lys thr his cys pro leu arg ala ala val thr pro
GTG CTC CTC AAG ACG CAC TGC CGG CTG CGA GCT GCG GTC ACC CCA

420

FIG. 53
(CONTINUED)

430
ala ala gly val cys ala arg glu lys pro gln gly ser val ala
GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG

440
ala pro glu glu glu asp thr asp pro arg arg leu val gln leu
GCC CCC GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG

460
leu arg gln his ser ser pro trp gln val tyr gly phe val arg
CTC CGC CAG CAC AGC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG

470
ala cys leu arg arg leu val pro pro gly leu trp gly ser arg
GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG

490
his asn glu arg arg phe leu arg asn thr lys lys phe ile ser
CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC

500
leu gly lys his ala lys leu ser leu gln glu leu thr trp lys
CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG

520
met ser val arg asp cys ala trp leu arg arg ser pro gly val
ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT

530
gly cys val pro ala ala glu his arg leu arg glu glu ile leu
GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG

550
ala lys phe leu his trp leu met ser val tyr val val glu leu
GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG

560
leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn
CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC

580
arg leu phe phe tyr arg lys ser val trp ser lys leu gln ser
AGG CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC

590
ile gly ile arg gln his leu lys arg val gln leu arg glu leu
ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG

610
ser glu ala glu val arg gln his arg glu ala arg pro ala leu
TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG

620
leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg
CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG

640
pro ile val asn met asp tyr val val gly ala arg thr phe arg
CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC

FIG. 53
(CONTINUED)

650

arg glu lys arg ala glu arg leu thr ser arg val lys ala leu
AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG

660

phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu
TTC AGC GTG CTC AAC TAC GAG CGG GCG CGG CCC GGC CTC CTG

670

gly ala ser val leu gly leu asp asp ile his arg ala trp arg
GGC GCC TCT GTG CTG GGC GAC GAT ATC CAC AGG GCC TGG CGC

680

thr phe val leu arg val arg ala gln asp pro pro pro glu leu
ACC TTC GTG CTC CGT GTG CGG GCC CAG GAC CCG CCT GAG GAC

690

tyr phe val lys val asp val thr gly ala tyr asp thr ile pro
TAC TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC

700

gln asp arg leu thr glu val ile ala ser ile ile lys pro gln
CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG

710

asn thr tyr cys val arg arg tyr ala val val gln lys ala ala
AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC

720

his gly his val arg lys ala phe lys ser his val ser thr leu
CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC TCT ACC TTG

730

thr asp leu gln pro tyr met arg gln phe val ala his leu gln
ACA GAC CTC CAG CGG TAC ATG CGA CAG TTC GTG GCT CAC CTG CAG

740

glu thr ser pro leu arg asp ala val val ile glu gln ser ser
GAG ACC AGC CCG CTG AGG GAT GCC GTC GTC ATC GAG CAG AGC TCC

750

ser leu asn glu ala ser ser gly leu phe asp val phe leu arg
TCC CTG AAT GAG GCC AGC AGT GGC CTC TTC GAC GTC TTC CTA CGC

760

phe met cys his his ala val arg ile arg gly lys ser tyr val
TTC ATG TGC CAC CAC GCC GTG CGC ATC AGG GGC AAG TCC TAC GTC

770

gln cys gln gly ile pro gln gly ser ile leu ser thr leu leu
CAG TGC CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC

780

cys ser leu cys tyr gly asp met glu asn lys leu phe ala gly
TGC AGC CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG

790

ile arg arg asp gly leu leu arg leu val asp asp phe leu
ATT CGG CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG

800

810

820

830

840

850

860

870

FIG. 53
(CONTINUED)

880

leu val thr pro his leu thr his ala lys thr phe leu arg thr
TTG GTG ACA CCT CAC CTC ACC AAC GCG AAA ACC TTC CTC AGG ACC

890

leu val arg gly val pro glu tyr gly cys val val asn leu arg
CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG AAC TTG CGG

910

lys thr val val asn phe pro val glu asp glu ala leu gly gly
AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC

920

thr ala phe val gln met pro ala his gly leu phe pro trp cys
ACG GCT TTT GGT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC

940

gly leu leu leu asp thr arg thr leu glu val gln ser asp tyr
GGC CTG CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC

950

ser ser tyr ala arg thr ser ile arg ala ser leu thr phe asn
TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC

970

arg gly phe lys ala gly arg asn met arg arg lys leu phe gly
GGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG

980

val leu arg leu lys cys his ser leu phe leu asp leu gln val
GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG

1000

asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu
AAC AGC CTC CAG ACC GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG

1010

leu gln ala tyr arg phe his ala cys val leu gln leu pro phe
CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT

1030

his gln gln val trp lys asn pro thr phe phe leu arg val ile
CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC

1040

ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn
TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC

1060

ala gly met ser leu gly ala lys gly ala ala gly pro leu pro
GCA GGG ATG TCG CTG GGG GCC AAG GGC GCC GGC CCT CTG CCC

1070

ser glu ala val gln trp leu cys his gln ala phe leu leu lys
TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG

1080

leu thr arg his arg val thr tyr val pro leu leu gly ser leu
CTG ACT CGA CAC CGT GTC ACC TAC GTG CCA CTC CTG GGG TCA CTC

FIG. 53
(CONTINUED)

```

1100
arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr
AGG ACA GCC CAG ACG CTG AGT CGG AAG CTC CGG GGG ACG ACG AGC

1120
leu thr ala leu glu ala ala asn pro ala leu pro ser asp
CTG ACT GCC CTG GAG GCC GCA AAC CCG GCA CTG CCC TCA GAC

1130      1132
phe lys thr ile leu asp OP
TTC AAG ACC ATC CTG GAC TGA TGGCCACCCGCCACAGCCAGGCCAGAGCAGA
CACCAGCAGCCCTGTCA CGCCGGCTCTACGTCCAGGGAGGGAGGGCGGCCAACACCC
AGGCCCGCACCGCTGGGAGTCTGAGGCCCTGAGTGTAGTGTGTTGCCAGGCCCTGCATGTCC
GGCTGAAGGCTGAGTGTCCGGCTGAGGCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCC
CAGCACACCTGCCGTCTTCACTCCCCACAGGTGGCGCTCGCTCCACCCCAGGCCAG
CTTTTCYTCA CACAGGAGCCCGTTCACTCCCCACATAGGAATAGTCATCCCCAGATT
CGCCATTGTTCACCCYTCGCCCTGCCYTCTTGCCTTCACCCCCACATCCAGGTGGA
GACCTGAGAAGGACCTGGAGCTCTGGGAATTGGAGTGACCAAAGGTGTGCCCTGTGA
CACAGGCGAGGACCCCTGCACCTGGATGGGGTCCCTGTGGGTCAAATTGGGGGAGGTGCA
TGTGGGAGTAAATACTGAATATATGAGTTTTCA GTTTTGTGAAAAAAA
AAAAAAAAAA

```

FIG. 53
(CONTINUED)

FIG. 54