

Proposta de Teste Intermédio n.º 2 Matemática A - 12.º Ano

"O Binómio de Newton é tão belo como a Vénus de Milo. O que há é pouca gente a dar por isso." Álvaro de Campos

	GRUPO I – ITE	ENS DE ESCOLHA M ÚLTIPLA		
1. Seia x um número rea		quação $^{x^2}C_x - ^{x^2+1}C_{49-x}$:	$=-x^2C_{r+1}$?	
		4-03-00 -X -49-X	-2,71	
A uma	B duas	C três	D quatro	
2. Um código de acesso são seguidos de mais qua		rica é constituído por três let	ras, seguidas de três algarismos que	
	só admite as letras do conju emplo de código é ABB — 4		M, R, S} e os algarismos do conjunto	
Alguns destes códigos sa	atisfazem as seguintes condi	ições:		
• têm exactamente qu	uatro letras iguais e não têm	mais letras repetidas;		
• os algarismos são to	odos iguais.	10		
Quantos são estes código	os?	<i>S</i>		
A 15 120	100	B 378 000		
C 529 200	2	D 13 230 00	00	
Exercício extra:	1			
	estes códigos, qual é a probabilida agem, arredondado às décimas.	ade de ter as letras todas distintas	e a soma dos algarismos ser 8? Apresente o	
		que as letras do código são vogais entativa. Apresente o resultado na fo	s e que os algarismos são distintos. Qual é a rma de fracção irredutível.	
		experiência aleatória. Sejam) = 0,2. Qual pode ser o val	A e B dois acontecimentos possíveis or de $P(\bar{A} B)$?	
A 0,4	B 0,6	C 0,8	D 0,9	

4. A distribuição de probabilidades de uma variável aleatória *X* é dada pela tabela:

x_i	1	2	3	4
$P(X=x_i)$	$\frac{5}{n!}$	$\frac{1}{2p}$	$\frac{6}{p^2}$	$\frac{15}{n!}$

 $(n \ {
m e} \ p \ {
m designam} \ {
m números} \ {
m reais} \ {
m positivos})$

Sabe-se que $P(1 < X \le 3) = \frac{5}{6}$. O valor de n e o valor médio da variável aleatória X são, respectivamente:

- **A** 5 e $\frac{23}{9}$
- **B** $4 e^{\frac{25}{8}}$ **C** $5 e^{\frac{25}{8}}$

- **5.** Considere o desenvolvimento de $\left(\frac{x^3}{y} \sqrt[3]{y}\right)^n$, com $y \neq 0$ e $n \in \mathbb{N}_0$. Um dos termos deste desenvolvimento tem parte literal igual a $x^{30}y^{-8}$.

Escolhendo, simultaneamente e ao acaso, três dos termos deste desenvolvimento, qual é a probabilidade do produto dos seus coeficientes ser negativo?

GRUPO II – ITENS DE RESPOSTA ABERTA

1. Na figura está representado num referencial o.n. Oxyz um sólido [ABCDEFGHIJLMNQ]. O sólido é constituído por um prisma heptagonal e por uma pirâmide heptagonal. O polígono [HIJLMNP] é simultaneamente base do prisma e da pirâmide.

Sabe-se que:

- a face [AGQH] está contida no plano xOz;
- a face [DEML] é paralela ao plano xOz;
- as faces [FNQG] e [BCJI] s\u00e3o paralelas ao plano yOz;
- Os pontos A, D, L e H têm a mesma abcissa;
- Os pontos B, F, N e I têm a mesma ordenada;
- A base [ABCDEFG] está contida no plano xOy.

1.1. Escolhem-se, simultaneamente e ao acaso dois vértices do sólido. Qual é a probabilidade de definirem uma diagonal espacial do sólido? Apresente o resultado na forma de fracção irredutível.

- **1.2.** Escolhendo, simultaneamente e ao acaso três vértices do sólido, qual é a probabilidade de definirem um plano perpendicular a Ox ou perpendicular a Ox? Apresente o resultado na forma dizima com quatro casas decimais.
- **1.3.** Dispõe-se de dez cores (amarelo, azul, encarnado, preto, branco, verde, roxo, laranja, rosa e castanho) para colorir o sólido. Pretende-se que sejam respeitadas as seguintes condições:
 - cada face é pintada de uma só cor;
 - a base [ABCDEFG] só pode ser pintada de preto, branco ou azul;
 - cada uma das sete faces do sólido, perpendiculares a xOy, é pintada de amarelo, branco, verde ou roxo, não podendo serem pintadas todas com a mesma cor;
 - duas faces laterais do sólido, oblíquas a xOy, não podem ser pintadas com a mesma cor.

De quantas maneiras diferentes pode ser pintado o sólido?

Uma resposta a este problema é $3 \times ({}^4A'_7 - 4) \times {}^{10}A_5$. Numa pequena composição explique porquê.

- 1.4. Considere o seguinte jogo:
 - um jogador, escolhe, simultaneamente e ao acaso, três dos 16 pontos marcados na figura (incluído a origem);
 - se os três vértices escolhidos estiverem marcados com uma vogal, o jogador ganha 6 pontos;
 - se entre os três vértices escolhidos apenas um ou apenas dois estiverem marcados com uma vogal, o jogador ganha 2 pontos;
 - se entre os três vértices escolhidos nenhum estiver marcado com uma vogal, o jogador perde 1 ponto.

Qual é a pontuação média por cada jogada?

Exercício Extra: Considere a figura anterior nas mesma condições do enunciado e considere ainda que:

- o ponto Q pertence ao plano xOz e tem abcissa -4;
- uma equação que define o plano $QJL \ \'e \ 2x + 8y + 15z = 82;$
- uma equação que define o plano CDL é x + 4y 26 = 0.
- a) Mostre que uma condição que define a recta JL é $\frac{26-x}{4}=y$ \land z=2.
- b) Escreve uma equação do plano perpendicular à recta JL que contém o ponto Q.
- c) Sejam R e S os pontos de intersecção da recta JL com os planos xOz e QGF, respectivamente. Determine o volume da pirâmide [RPSQ].
- **d)** Mostre que $\overrightarrow{HQ} \cdot \overrightarrow{QF} = -24$.

2. Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis $(A \subset S \in B \subset S)$, tal que $P(A \cup B) \mid (A \cup \overline{B}) = \frac{P(A)}{P(B) \times (1 + P(A))}$.

Mostre que A e B são acontecimentos independentes se e só se B e \overline{B} forem equiprováveis.

- 3. Num grupo de amigos, todos licenciados em Matemática ou em Engenharia, sabe-se que:
 - 40% das mulheres e $\frac{3}{5}$ dos homens são licenciados em Matemática;
 - o número de mulheres é metade do número de amigos licenciados em Matemática.

Escolhe-se ao acaso um destes amigos.

- 3.1. Qual é a probabilidade ser mulher? Apresente o resultado na forma de fracção irredutível.
- **3.2.** Qual é a probabilidade de ser homem, sabendo que é licenciado em Engenharia? Apresente o resultado na forma de percentagem.
- **4.** Numa escola a variável aleatória X: «altura dos alunos da escola» segue uma distribuição normal de valor médio 1,65 metros. Sabe-se que P(X < 1,50) = p, com $p \in \mathbb{R}$.

Sabendo que numa amostra de seis alunos dessa escola, a probabilidade de exactamente três terem altura entre 1,65 metros e 1,80 metros é 27,648%, determine o valor de p. Apresente o resultado na forma de dízima.

SOLUCTONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. B 2. C Exercício Extra: a) $\approx 0.4\%$ b) $\frac{1}{7680}$ 3. B 4. A 5. D

GRUPO II - ITENS DE RESPOSTA ABERTA

1.1. $\frac{38}{91}$ 1.2. ≈ 0.1841 1.4. 0.85 pontos por jogada.

Exercício Extra:

) -4x + y = 16 c) 150

3.1. $\frac{3}{11}$ 3.2. 64%

4. 0.1