Exercise 2(F)

1. Evaluate
$$\oint_C \frac{z^2}{(z-1)^2(z+2)} dz \text{ where } C: |z| = 3.$$

2. Evaluate
$$\oint_C \frac{dz}{z^4 + 1}$$
 where C is the circle $x^2 + y^2 = 2x$.

3. Evaluate
$$\int_{C} \frac{dz}{\sinh z}$$
 where $C: |z| = 2$.

4. Evaluate
$$\int_{C} \frac{z^3}{(z-1)^2(z-3)} dz \text{ where } C: |z| = 2.$$

5. Evaluate
$$\oint_C \tanh z \, dz$$
 where $C: |z| = 2$.

Answers

1.
$$2\pi i$$

$$2. \quad \frac{-\pi i}{\sqrt{2}}$$

3.
$$\pi i$$

$$4. \quad \frac{-7\pi i}{2}$$

5.
$$4\pi i$$

SUMMARY

- Arc is considered as a set of all points of a closed finite interval under continuous mapping. • Arc is considered as a set of all points of a closed finite action of the point of curve or arc, then the point z(t) = x(t) + iy(t), $a \le t \le b$ be a continuous curve or arc, then the point z(a) is
- Closed curve: Let z(t) = x(t) + iy(t), $a \ge t \ge 0$ to a called a simple closed curve or z(q) is called initial point and z(b) the terminal point of curve C is called a simple closed curve or z(q) is • Smooth Curve: A continuous differentiable curve (arc) is said to be a smooth curve. Geometrically,
- a smooth curve has a tangent at every point whose direction is determined by arg z'(t). • Contour: A piecewise smooth closed curve is called contour.
- Contour: A piecewise smooth closed curve contained in that region contained in that region contains
 Simply connected regions: A region R in which every closed curve contained in that region contains
- only those points that lie inside R. only those points that he inside A.

 Geometrically, a simply connected domain has no holes inside for if a simple closed curve should surround a hole, then the curve could not be shrunk beyond the hole.
- Line integral

The generalization of a real integral to the definite integral of complex function over a real integral. If f(z) is an analytic function and f'(z) is continuous at each point within and on a simple $c|_{0 \le e_0}$ curve C, then $\oint f(z)dz = 0$.

• Cauchy-Groursat theorem: Let f(z) be analytic in a simply connected domain D and let C be any closed curve contained in D, then $\oint_C f(z)dz = 0$.

If f(z) is analytic in a region R and A and B are two points in that region, then $\int_{0}^{B} f(z) dz$ is independent of the path joining P and Q lying entirely in R.

- Morera's theorem: Let f(z) be continuous in simply connected domain D and $\oint f(z)dz = 0$ where C is a simple closed curve, then f(z) is analytic in D.
- ullet Fundamental theorem of integral calculus: Let f(z) be an analytic function in a simply connected domain D and G(z) is the integral function of f(z), i.e., g'(z) = f(z),

then $\int_a^b f(z) dz = \int_a^b g'(z) dz = \left[g(z)\right]_a^b = g(b) - g(a)$, where a and b are in D.

• Cauchy's integral formula: If f(z) is analytic within and on a closed curve C and a is any point within C, then $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-a} dz$.

Let f(z) be analytic in a simply connected domain D, a be any point in D, and C be any simple closed curve in D enclosing a point z = a, then f(z) has derivatives of all order in D which are also

analytic in D. Further,
$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz$$

- Louville's theorem: If f(z) is analytic and bounded for all values of z, then f(z) must be constant.
- Taylor's theorem: Let f(z) be analytic at all points within a circle C with centre z_0 and radius r. Then for every point z within C, we have

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{(z - z_0)^2}{2!} f''(z_0) + \dots + \frac{f''(z_0)}{n!} (z - z_0)^n + \dots$$

$$= f(z_0) + \sum_{n=1}^{\infty} \frac{(z - z_0)^n}{n!} f''(z_0)$$

• Laurent's series: If f(z) is analytic inside and on the boundary of a ring shaped region R bounded by two concentric circles C_1 and C_2 of radii r_1 and r_2 $(r_1 > r_2)$ respectively having centre at a, then

$$f(z) = a_0 + a_1(z-a) + a_2(z-a)^2 + \dots + a_{-1}(z-a)^{-1} + a_{-2}(z-a)^{-2} + \dots$$
$$= \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} a_{-n}(z-a)^{-n}$$

where

$$a_n = \frac{1}{2\pi i} \oint_{C_1} (\frac{f(z)}{(z-a)^{n+1}}) dz$$
 $n = 0,1,2,...$

$$a_{-n} = \frac{1}{2\pi i} \oint_{C_2} \left(\frac{f(z)}{(z-a)^{-n+1}} \right) dz \qquad n = 1, 2, 3, \dots$$

• Singularity: Singularity of a function f(z) is a point at which the function ceases to be regular (analytic).

A zero of an analytic function f(z) is a value of z such that f(z) = 0.

Isolated singularity: If z = a is the only singular point of f(z) within the neighbourhood of the point z = a, it is called *isolated singularity*.

Non-isolated singularity: If more than one singular point exist within the neighbourhood of z = a, then z = a is said to be non-isolated singularity of f(z).

Removable singularity: If the principal part of Laurent's series contains no terms, then the point $z = z_0$ is called removable singularity.

Essential singularity: If the principal part of Laurent's series contains infinite number of terms of $(z-z_0)$, then $z=z_0$ is called essential singularity.

Isolated essential singularity: If z = a is an essential singular point and z = a is the limit point of zeros of f(z), then z = a is called isolated essential singularity.

Non-isolated essential singularity: If z = a is an essential singular point of f(z) and z = a is the limit point of poles, then z = a is called non-isolated essential singularity.

• Poles of f(z): If $Lt_{z\to z_0}f(z)=\infty$, then z=a is a pole of f(z).

A pole of order one is called simple pole.

A pole of order two is called double pole.

- Residues: The coefficient of $(z-z_0)^{-1}$ in the Laurent's expansion of f(z) about an isolated singularity of z = a is called *residue* of f(z) at z = a.
- Cauchy's residue theorem: Let C be a simple closed curve and f(z) be analytic on and inside C except at a finite number of singularities $z_1, z_2, ..., z_n$ lying inside C, then $\oint f(z)dz = 2\pi i \sum_{i=1}^{n} Res(z_k) = 2\pi i \text{ (sum of residues of } f(z) \text{ at its singular points)}$

OBJECTIVE QUESTIONS

1. Expand $\frac{1}{z(z-2)}$ when |z| < 2.

(A)
$$\frac{-1}{2z} \left(1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + \dots \right)$$

(C)
$$\frac{1}{2z}(1+\frac{z}{2}+\frac{z^2}{4}+\frac{z^3}{8}+...)$$

(B)
$$\frac{-1}{2z}(1+\frac{z}{2}+\frac{z^2}{4}+\frac{z^3}{8}+\ldots)$$

(D)
$$\frac{-1}{2z}(1+\frac{2z}{2}+\frac{3z^2}{4}+\frac{4z^3}{8}+\ldots)$$

2. Expand the function $f(z) = \frac{z-1}{z}$ as Laurent's series for |z-1| > 1.

(A)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(z+1)^n}$$

(B)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(z-1)^{n+1}}$$

(C)
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(z-1\right)^n}$$

(D)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2z-1)^n}$$

3. Expand ze^z by Taylor's series about z = 1.

(A)
$$ez[1+(z-1)+\frac{(z-1)^2}{2!}+\frac{(z-1)^3}{3!}+\ldots]$$

(B)
$$ez \left[1 + (z+1) + \frac{(z+1)^2}{2!} + \frac{(z+1)^3}{3!} + \dots \right]$$

(C)
$$ez\left[1+(z-1)+\frac{(z-1)^2}{2}+\frac{(z-1)^3}{3}+...\right]$$
 (D) $ez[1+(z+1)+\frac{(z+1)^2}{2}+\frac{(z+1)^3}{3}+...]$

(D)
$$ez[1+(z+1)+\frac{(z+1)^2}{2}+\frac{(z+1)^3}{3}+...$$

4. Obtain the Taylor's series expansion of $f(z) = \frac{1}{z}$ about the point z = 1.

(A)
$$1+(z-1)+(z-1)^2+(z-1)^3+...$$

(B)
$$1-(z+1)+(z+1)^2-(z+1)^3+...$$

(C)
$$1-(z-2)+(z-3)^2-(z-4)^3+...$$

(D)
$$1-(z-1)+(z-1)^2-(z-1)^3+...$$

- The sum function of the series $\sum_{n=1}^{\infty} \frac{z^n}{n!}$ is
 - (A) exponential function

(B) logarithmic function

(C) sine function

- (D) cosine function
- 6. Expand f(z) = log (1 + z) in a Taylor's series about z = 0.

(A)
$$1+z+z^2+z^3+...$$

(B)
$$z + \frac{z^2}{2} + \frac{z^3}{3} + \dots$$

(C)
$$1-2z+3z^2-4z^3+...$$

(D)
$$-1-z-z^2-z^3-...$$

7. A necessary condition such that the series $\sum u_n$ is convergent is

(A) Lt u = 0

$$(A) \quad \underset{n\to 0}{Lt} u_n = 0$$

(B)
$$\underset{n\to\infty}{Lt} u_n = \infty$$

(C)
$$Lt u_n = 0$$

- 8. If the limit of a sequence exists, then it is unique and known as a
 - (A) divergent sequence

(B) infinite sequence

(C) convergent sequence

9. Expand $\frac{1}{(z-2)}$ when |z|<1.

(A)
$$\frac{-1}{2z} \left(1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + \dots \right)$$

(C)
$$\frac{1}{2} \left(1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + \dots \right)$$

(D) finite sequence

(B)
$$\frac{-1}{2} \left(1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots \right)$$

(D)
$$1 + \frac{2z}{2} + \frac{3z^2}{4} + \frac{4z^3}{8} + \dots$$

10. Laurent's series of the function $f(z) = \frac{e^z}{(z-1)^2}$ about z = 1 is

(A)
$$f(z) = e \left(\frac{1}{(z+1)^2} + \frac{1}{z+1} \frac{1}{2!} + \dots \right)$$

(C)
$$f(z) = \left(\frac{1}{(z-1)^2} + \frac{1}{z-1} \frac{1}{2!} + \dots\right)$$

(B)
$$f(z) = e^{\left(\frac{1}{(z-1)^2} + \frac{1}{z-1} \frac{1}{2!} + \dots\right)}$$

(D)
$$f(z) = \left(\frac{1}{(z+1)^2} + \frac{1}{z+1} \frac{1}{2!} + \dots\right)$$

11. Find the Laurent's series for $\frac{z}{(z+1)(z+2)}$ about z=-2.

(A)
$$\frac{2}{z+1} + 1 + (z+2) + (z-1)^2 + \dots$$

(C)
$$\frac{2}{z+1} + 1 + (z+2) + (z+1)^2 + ...$$

(B)
$$\frac{2}{z+1} + 1 + (z-2) + (z-1)^2 + \dots$$

(D)
$$\frac{2}{z-1} + 1 + (z+2) + (z+1)^2 + \dots$$

12. The value of z for which f(z) = 0 is called

- (A) pole of f(z)
- (C) singular point of f(z)

- (B) zero of f(z)
- (D) isolated singular point of f(z)

13. The zero of $f(z) = \frac{(z-1)^3}{2}$ is

(A) z = 0

6

- (C) $z = \infty$

14. The function $f(z) = \frac{1}{z-1}$ at $z = \infty$ is known as

- (A) pole of f(z)
- (C) singular point of f(z)
- 15. The zeros of $\sin z$ are
 - (A) $\pm n\pi$, $n \in \mathbb{Z}$
 - (C) $\pm n\pi$, $n \in \mathbb{Z}$.
- 16. The zeros of e^z are
 - (A) no zeros
- 17. The isolated singular points of $\frac{e^2}{r^2+1}$ are
 - (A) z = 0 and 1
 - (C) z = i and -i

(B) z = 1

- (D) z = 2
- (B) zero of f(z)
- (D) isolated singular point of f(z)
- (B) $(2n+1)\pi/2, n \in \mathbb{Z}$
- (D) $\pm 2n\pi$, $n \in \mathbb{Z}$
- (B) ∞
- (D) 1
- (B) z = -1 and 1
- (D) z = 0 and i

18.
$$f(z) = e^{1/z}$$
 at $z = 0$ is called

- (A) pole of f(z)
- (C) essential singular point of f(z)
- (B) zero of f(z)
- (D) isolated essential singular point of f(z)
- - (A) pole of order m
 - (C) essential singular point of f(z)
- (B) zero of order m
- (D) isolated singular point of f(z)

- 20. A pole of order one is called
 - (A) removable singularity
 - (C) essential singular point of f(z)
- (B) simple pole
- (D) isolated singular point of f(z)
- 21. The function f(z) is not defined at z = a but $Lt_{z\to a}f(z)$ exists, then z = a is called
 - (A) removable singularity
 - (C) essential singular point of f(z)
- (B) simple pole
- (D) isolated singular point of f(z)
- 22. If $f(z) = \begin{cases} \frac{\sin z}{z}, z \neq 0 \text{ and } f(0) = 0 \text{, then } z = 0 \text{ is called} \end{cases}$
 - (A) removable singularity
 - (C) essential singular point of f(z)
- 23. $f(z) = z^3$ at $z = \infty$ is called
 - (A) simple pole
 - (C) essential singularity
- 24. $f(z) = e^z$ at $z = \infty$ is called
 - (A) simple pole
 - (C) essential singularity

- (B) simple pole
- (D) isolated singular point of f(z)
- (B) pole of order 3

(B) pole of order 3

(D) isolated singular point

(D) isolated singular point

- 25. $f(z) = \frac{1 \cos z}{z}$ at z = 0 is called
 - (A) removable singularity
 - (C) essential singular point of f(z)
- (B) simple pole
- (D) isolated singular point of f(z)

- 26. $\sec \frac{1}{z}$ at z = 0 is
 - (A) removable singularity
 - (C) non-isolated essential singular point
- 27. $\sin \frac{1}{1-z}$ at z = 1 is
 - (A) removable singularity
 - (C) non-isolated essential singular point
- 28. The poles of $f(z) = \frac{z}{(z+1)(z+2)}$ are
 - (A) z = -1 and -2 are simple poles
 - (C) z = -1 and 2 are simple poles
- 29. The poles of $\frac{1-e^{2z}}{z^4}$ are
 - (A) z = 0 is a simple pole
 - (C) z = 0 is a pole of order 3

- (B) simple pole
- (D) isolated essential singular point
- (B) simple pole
- (D) essential singular point
- (B) z = 1 and -2 are simple poles
- (D) z = 1 and 2 are simple poles
- (B) z = 0 is a pole of order 2
- (D) z = 0 is a pole of order 4

	Complex Integration 187
30. The pole of $\frac{e^{2z}}{z^2 + \pi^2}$ are	
(A) $z = \pi i$ (C) $z = \pm \pi i$ 31. If the power series $\sum a^n z^n$ converges for $ z < R$ (A) radius of convergence	(B) circle of convergence
32 If the power series $\sum a^n z^n$ converges for $ z < R$ (A) radius of convergence	and diverges for $ z > R$, then $ z = R$ is called
(C) limit of convergence 33. The Taylor's series approximation that exists for	 (B) circle of convergence (D) boundary of convergence f(z) is
(A) analytic(C) analytic everywhere except origin	(B) singular(D) non-analytic
34. Taylor's series expansion of $f(z) = \frac{1}{z}$ about the	e point $z = 1$ is valid for
(A) z-1 < 2	(B) $ z-1 < 1$
(C) z-1 < 3	(D) $ z+1 < 2$
35. The expansion $\sum (-1)^n \frac{z^{2n+1}}{(2n+1)!}, z < \infty$ repres	ents
(A) $\sin z$	(B) $\cos z$
(C) $\sinh z$	(D) $\cosh z$
36. The expansion $\sum \frac{z^{2n+1}}{(2n+1)!}, z < \infty$ represents	
(A) $\sin z$	(B) $\cos z$
(C) $\sinh z$	(D) $\cosh z$
37. The expansion $\sum \frac{z^{2n}}{(2n)!}$, $ z < \infty$ represents	
(A) $\sin z$	(B) $\cos z$
(C) $\sinh z$	(D) $\cosh z$
38. The expansion $\sum (-1)^n \frac{z^{2n}}{(2n)!}, z < \infty$ represent	nts
(A) $\sin z$	(B) $\cos z$
(C) sinh -	(D) cosh z

39. The expansion $1 + \sum_{n=0}^{\infty} (n+1)|z+1|^n = \text{represents for } |z+1| < 1$

40. The expansion $1 + \sum_{n=0}^{\infty} (n+1)|z-2|^n = \text{represents for } |z-2| < 1$

(B) z

(D) $\frac{1}{z^2}$

(A) $\sin z$

(C) $\frac{1}{z}$

(A)
$$\frac{1}{z^2}$$
 about $z=2$

(B)
$$\frac{1}{z^2}$$
 about $z = -2$

(C)
$$\frac{1}{z^2}$$
 about $z = 1$

(D)
$$\frac{1}{z^2}$$
 about $z = -1$

41. The Taylor's series expansion for $f(z) = \sinh z$ about $z = \pi i$ is

(A)
$$\sin(z-\pi i)$$

(B)
$$\sinh(z-\pi i)$$

$$(A) \sin(z - \pi i)$$

(D)
$$coh(z - \pi i)$$

(C) $\cos(z-\pi i)$

42. The Taylor's series expansion for $f(z) = \cosh z$ about $z = \pi i$ is

(A)
$$\sin(z-\pi i)$$

(B)
$$\sinh(z - \pi i)$$

(C)
$$\cos(z-\pi i)$$

(D)
$$-\cosh(z - \pi i)$$

43. Expand f(z) = log (1 - z) as a Taylor's series about z = 0.

(A)
$$1+z+z^2+z^3+...$$

(B)
$$-z + z^{2/2} + z^{3/3} + \dots$$

(C)
$$1-2z+3z^2-4z^3+...$$

(D)
$$-1-z-z^2-z^3-...$$

44. The expansion
$$\frac{1}{\sqrt{2}} \left[1 + \left(z - \frac{\pi}{4} \right) - \frac{1}{2} \left(z - \frac{\pi}{4} \right)^2 - \frac{1}{6} \left(z - \frac{\pi}{4} \right)^3 + \dots \right]$$

(A)
$$\sin z$$
 about $z = \frac{\pi}{4}$

(B)
$$\sin z$$
 about $z = \frac{\pi}{2}$

(C)
$$\sin z$$
 about $z = \frac{\pi}{3}$

(D)
$$\sin z$$
 about $z = \pi$

45. The expansion
$$\left[(z-1) - \frac{1}{2} (z-1)^2 + \frac{1}{3} (z-1)^3 + \dots \right] =$$

(A)
$$\log z$$
 about $z = 0$

(B)
$$\log z$$
 about $z = 1$

(C)
$$\log z$$
 about $z = -1$

(D)
$$\log z$$
 about $z = 2$

46. The expansion
$$\left[(z+1) - \frac{1}{2} (z+1)^2 + \frac{1}{3} (z+1)^3 + \dots \right] =$$

(A)
$$\log z$$
 about $z = 0$

(B)
$$\log z$$
 about $z = 1$

(C)
$$\log z$$
 about $z = -1$

(D)
$$\log z$$
 about $z = 2$

47. The Laurent's expansion for
$$f(z) = \frac{(z-1)}{z}$$
, where $|z-1| > 1$ is

(A)
$$\sum \frac{\left(-1\right)^n}{\left(z-1\right)^n}$$

(B)
$$\sum \frac{(-1)^{2n}}{(z-1)^n}$$

(C)
$$\sum \frac{(1)}{(z-1)^n}$$

(D)
$$\sum \frac{\left(-1\right)^n}{\left(z+1\right)^n}$$

48. The series $1-z+z^2-z^3+...$ is equal to (A) $\frac{1}{1}$

(C)
$$\frac{1}{z}$$

(B)
$$\frac{1}{1+z}$$

(D)
$$\frac{1}{z+2}$$

49. The series $1 + z + z^2 + z^3 + ...$ is equal to

$$(A) \quad \frac{1}{1-z}$$

(C)
$$\frac{1}{7}$$

50. The residue of
$$f(z)$$
 at $z = a$ is given by

(A)
$$\frac{1}{2\pi i} \int_C f(z) dz$$

(C)
$$2\pi i \int_C f(z) dz$$

51. The residue of
$$e^{1/z}$$
 at $z = 0$ is

$$(C)$$
 -1

52. The poles of the function
$$\frac{z}{\cos z}$$
 are

(A)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

(C)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

53. The poles of the function
$$\cot z$$
 are

(A)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

(C)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

54. The poles of the function
$$\tan z$$
 are

(A)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

(C)
$$\pm n\pi$$
, $n \in \mathbb{Z}$

55. The residue of cot z at
$$z = n\pi$$
 is

$$(C) -1$$

56. The residue of
$$f(z) = \frac{z}{(z-1)(z+2)}$$
 at $z=1$ is

(A)
$$z = \frac{-1}{3}$$

(C)
$$z = \frac{2}{3}$$

57. Residue of
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 at $z = -1$ is

$$(C) -1$$

58. Residue of
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 at $z = -2$ is

$$(C) -1$$

(B)
$$\int_C f(z)dz$$

(B) $\frac{1}{1+7}$

(D) $\frac{1}{z+2}$

(D)
$$\frac{1}{2\pi} \int_C f(z) dz$$

(B)
$$(2n+1)\pi/2, n \in \mathbb{Z}$$

(D)
$$\pm 2n\pi$$
, $n \in \mathbb{Z}$

(B)
$$(2n+1)\pi/2, n \in \mathbb{Z}$$

(D)
$$\pm 2n\pi$$
, $n \in \mathbb{Z}$

(B)
$$(2n+1)\pi/2, n \in \mathbb{Z}$$

(D)
$$\pm 2n\pi$$
, $n \in \mathbb{Z}$

$$(D)$$
 n

(B)
$$z = \frac{1}{3}$$

(D)
$$z = \frac{-2}{3}$$

59. The residue of
$$\frac{1-e^{2z}}{z}$$
 at $z=0$ is

$$(C)$$
 -1

(C) -1

60. The residue of $\frac{e^{2z}}{z^2 + \pi^2}$ at $z = -\pi i$ is

(B) $z = -\pi i$

(A)
$$z = \pi i$$

(C) $z = \pm \pi i$

(D) $z = \frac{i}{2\pi}$

61. The residue of $\frac{e^{2z}}{z^2 + \pi^2}$ at $z = \pi i$ is

 $(A) z = \frac{i}{\pi}$

(B) $z = \frac{-i}{\pi}$

(C) $z = \frac{i}{2\pi}$

(D) $z = \frac{-i}{2\pi}$

62. The residue of $\frac{1-e^{2z}}{z^4}$ at z=0 is

(A) -4/3

(B) 4/3

(C) 3/4

(D) -3/4

63. The residue of $e^z z^{-5}$ at z = 0

(A) -1/24

(B) 1/24

(C) 2/24

(D) -3/4

64. Residue of $\frac{ze^z}{(z-3)^2}$ is

(A) $4e^2$

(B) $4e^{3}$

(C) $2e^2$

(D) $5e^2$

65. The residue of $\frac{e^{iz}}{z^2+1}$ at z=-i is

(A) z = ie/2(C) z = ie/3

(B) z = -ie/2

(D) z = ie/4

66. The residue of $z\cos\frac{1}{z}$, at z=0 is

(A) -4/3

(B) 4/3

(C) 1/2

(D) -1/2

67. The residue of $\frac{z - \sin z}{z^2}$ at z = 0 is

(A) 0

(B) 1

(C) -1 68. Residue of $\frac{1 - e^{2z}}{z^4}$ at z = 0 is

(D) 2

(A) 0

(C) $\frac{-4}{2}$

(B) 1

(D) 2

69. $\int_{C} \frac{1}{(z^2+4)^2} dz$, where C: |z|=1 is

- (A) 0
- (C) $\frac{-4}{3}$

- (B) 1
- (D) 2
- 70. The value of $\int_{C} \frac{z}{z(z-1)(z-2)} dz$ over the circle |z|=3 is
 - (A) 0

(B) 1

(C) -1

- (D) 2
- 71. The value of $\int_{0}^{1} \frac{1}{z} e^{z} dz$ over the circle |z| = 3 is
 - (A) 2πi

(B) $-\pi i$

(C) πi

- (D) $-2\pi i$
- 72. The value of $\int_{C} \frac{2e^{z}}{z(z-3)} dz$ over the circle |z|=2 is
 - (A) $2\pi i/3$

(B) $-\pi i/3$

(C) $4\pi i/3$

- (D) $-4\pi i/3$
- 73. The value of $\int \frac{e^z}{(z-3)^2} dz$ over the circle |z-1|=1 is
 - (A) $2\pi i/3$

(B) 0

(C) $4\pi i/3$

- (D) $-4\pi i/3$
- 74. The value of $\int \frac{z+1}{z(z-2)} dz$ over the circle |z| = 1.5 is
 - (A) $2\pi i$

(B) $-\pi i$

(C) 4πi

(D) $-4\pi i$

- 75. Residue of ze^z at z = 0 is
 - (A) 0

(B) 1

(C) $\frac{-1}{2}$

(D) $\frac{1}{2}$

- 76. Residue of tan z at $z = \frac{\pi}{2}$ is
 - (A) 0

(B) 1

(D) 2

- (C) -1 77. Residue of $\frac{\cos z}{z}$ at z = 0
 - (A) 0

(B) 1

(C) -1

- (D) 2
- 78. Residue of $\frac{e^z}{\sin z + z \cos z}$ at z = 0 is
 - (A) $\frac{2}{3}$

(B) 1

(C) $\frac{-1}{2}$

- (D) $\frac{1}{2}$
- 79. The limit point of the poles of f(z) is

- (A) removable singularity
- (C) non-isolated essential singular point
- (B) simple pole
- (D) isolated essential singular point

Answer

MIISW							
1. B	2. C	3. A	4. D	5. A	6. B	7. D	
9. B	10. B	11. A	12. A	13. B	14. B	15. A	'8· C
	18. C	19. A	20. B	21. A	22. A	23. B	16. A
17. C	26. C	27. D	28. A	29. C	30. C	31. A	24. C
25. A	34. B	35. A	36. C	37. D	38. B	39. D	32. B 40. A 48. B
33. A 41. B	42. D	43. B	44. A	45. B	46. C	47. A	40. A
	50. A	51. B	52. B	53. A	54. B	55. B	48. B
49. A			60. D	61. C	62. A	63. B	56. B
57. C	58. D	59. A			70. A		64. B
65. A	66. D	67. A	68. C	69. A		71. A	72. D
73. B	74. B	75. A	76. C	77. B	78. D	79. C	D