Qiskit Fall Fest 2025

量子フーリエ変換 量子位相推定

今村宗一郎

理学系研究科物理学専攻藤堂研M2

imamura-soichiro524@g.ecc.u-tokyo.ac.jp https://soichiro524.github.io/ja/about

IBM

前半の講義とこの資料について

この資料は、以下のスライドに発展的な補足を付け加えたものです。 https://github.com/quantum-

tokyo/introduction/blob/main/src/courses/utility-scalequantum-computing/5 quantum-phase-estimation.pdf

まず前半では、量子フーリエ変換(QFT)と量子位相推定(QPE)を扱います。QFTは原理を理解していただけると嬉しいですが、あくまでアルゴリズムの一部として使うと思うので、細かいコーディングまでは触れません。以下のnotebookも少し見ますが、流し見程度になると思います。

https://github.com/quantum-

tokyo/introduction/blob/main/src/courses/utility-scalequantum-computing/quantum-phase-estimation-ja.ipynb ハッカソンに臨むにあたり、QFTやQPEがどのような武器として使 えるのか、というところを意識しながら聞いてもらえると良いかと思 います。

発展的な補足も付け加えています。すでにQFTやQPEをご存知の方はそちらを見ていただけると面白いかもしれません。

後半にはプロンプトの話をします。

目次

- 1.量子位相推定(QPE)の目的
- 2. **量子フーリエ変換**(QFT)
- 3. 量子位相推定アルゴリズムの実装

p.27以降に発展的な補足を追加しました

目次

- 1.量子位相推定(QPE)の目的
- 2. **量子フーリエ変換**(QFT)
- 3.量子位相推定アルゴリズムの実装

量子位相推定(Quantum Phase Estimation)の目的

量子位相推定(QPE)は、ユニタリ行列 U とその固有状態 $|\psi\rangle$ に対し、固有値に紐づいた実数値 θ を求めるアルゴリズムである。

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

*U*はユニタリ行列 → その固有値は絶対値1の複素数

応用

- ・ ハミルトニアンのエネルギー固有値と固有状態の数値計算
- Shor**のアルゴリズム**: QPEと根本は同じ!

QPEの全体像

位相推定アルゴリズムは、 $|\psi\rangle$ で初期化したレジスタのほかにn量子ビットの計算レジスタを用意し、以下の量子回路として実装する。

- 1. 計算ビットすべてにアダマールゲートを施す。
- 2. 制御Uゲートを $|\psi\rangle$ に施す。
- 3. **計算ビットに逆QFTを施す**。
- 4. 計算ビットを測定する。

目次

- 1.量子位相推定(QPE)の目的
- 2. **量子フーリエ変換**(QFT)
- 3.量子位相推定アルゴリズムの実装

量子フーリエ変換(Quantum Fourier Transformation)

量子フーリエ変換(QFT)は、バイナリ整数の計算基底を離散フーリエ変換のような形式へ変換する量子アルゴリズムである。

$$U_{QFT}|j\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle$$

n ビット整数j の量子状態 $|j\rangle$ に対するQFT

(古典) 離散フーリエ変換: $F(k) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{2\pi i k \frac{x}{N}} f(x)$

Shor**の**アルゴリズムやQPEなど、主要なアルゴリズム**の重要なサブルーチン** 高速な実装は $O(n\log n)$ が知られている

▶ 古典は指数時間かかる → 量子計算で指数的加速(ただし観測できない)

n ビット整数 k を、バイナリ表現として $k = k_{n-1}k_{n-2} ... k_1k_0$ (2) と書くとき、 $|j\rangle$ に対しQFTを実行した後の状態はテンソル積表現で書ける。

$$\begin{split} U_{QFT}|j\rangle &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{2^{n-1} k_{n-1} + 2^{n-2} k_{n-2} + \dots + 2k_1 + k_0}{2^n}} |k_{n-1} k_{n-2} \dots k_1 k_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} \bigotimes\nolimits_{l=0}^{n-1} \left(e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} \bigotimes\nolimits_{l=0}^{n-1} \left(\sum\nolimits_{k_l \in \{0,1\}} e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i j \frac{2^{n-1}}{2^n}} |1\rangle) \otimes (|0\rangle + e^{2\pi i j \frac{2^{n-2}}{2^n}} |1\rangle) \otimes \dots \otimes (|0\rangle + e^{2\pi i j \frac{2^0}{2^n}} |1\rangle) \end{split}$$

n ビット整数 k を、バイナリ表現として $k = k_{n-1}k_{n-2} \dots k_1k_0$ (2) と書くとき、 $|j\rangle$ に対しQFTを実行した後の状態はテンソル積表現で書ける。

$$\begin{split} U_{QFT}|j\rangle &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{2^{n-1} k_{n-1} + 2^{n-2} k_{n-2} + \dots + 2k_1 + k_0}{2^n}} |k_{n-1} k_{n-2} \dots k_1 k_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} \bigotimes\nolimits_{l=0}^{n-1} \left(e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} \bigotimes\nolimits_{l=0}^{n-1} \left(\sum\nolimits_{k_l \in \{0,1\}} e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i j \frac{2^{n-1}}{2^n}} |1\rangle) \otimes (|0\rangle + e^{2\pi i j \frac{2^{n-2}}{2^n}} |1\rangle) \otimes \dots \otimes (|0\rangle + e^{2\pi i j \frac{2^0}{2^n}} |1\rangle) \end{split}$$

k を2進数表現

n ビット整数 k を、バイナリ表現として $k = k_{n-1}k_{n-2} \dots k_1k_0$ (2) と書くとき、 $|j\rangle$ に対しQFTを実行した後の状態はテンソル積表現で書ける。

$$\begin{split} U_{QFT}|j\rangle &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{2^{n-1} k_{n-1} + 2^{n-2} k_{n-2} + \dots + 2k_1 + k_0}{2^n}} |k_{n-1} k_{n-2} \dots k_1 k_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} \bigotimes\nolimits_{l=0}^{n-1} \left(e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} \bigotimes\nolimits_{l=0}^{n-1} \left(\sum\nolimits_{k_l \in \{0,1\}} e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \end{split}$$

$$= \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i j \frac{2^{n-1}}{2^n}} |1\rangle) \otimes (|0\rangle + e^{2\pi i j \frac{2^{n-2}}{2^n}} |1\rangle) \otimes \cdots \otimes (|0\rangle + e^{2\pi i j \frac{2^0}{2^n}} |1\rangle)$$

n ビット整数 k を、バイナリ表現として $k = k_{n-1}k_{n-2} ... k_1k_0$ (2) と書くとき、 $|j\rangle$ に対しQFTを実行した後の状態はテンソル積表現で書ける。

$$\begin{split} U_{QFT}|j\rangle &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i j \frac{2^{n-1} k_{n-1} + 2^{n-2} k_{n-2} + \dots + 2k_1 + k_0}{2^n}} |k_{n-1} k_{n-2} \dots k_1 k_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} \bigotimes_{l=0}^{n-1} \left(e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} \bigotimes_{l=0}^{n-1} \left(\sum_{k_l \in \{0,1\}} e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \end{split}$$

$$k_l \in \{0,1\} \mathcal{O}$$
 和の積へ分解

$$= \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i j \frac{2^{n-1}}{2^n}} |1\rangle) \otimes (|0\rangle + e^{2\pi i j \frac{2^{n-2}}{2^n}} |1\rangle) \otimes \cdots \otimes (|0\rangle + e^{2\pi i j \frac{2^0}{2^n}} |1\rangle)$$

n ビット整数 k を、バイナリ表現として $k = k_{n-1}k_{n-2} ... k_1k_0$ (2) と書くとき、 $|j\rangle$ に対しQFTを実行した後の状態はテンソル積表現で書ける。

$$\begin{split} U_{QFT}|j\rangle &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{k}{2^n}} |k\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} e^{2\pi i j \frac{2^{n-1} k_{n-1} + 2^{n-2} k_{n-2} + \dots + 2k_1 + k_0}{2^n}} |k_{n-1} k_{n-2} \dots k_1 k_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum\nolimits_{k=0}^{2^{n-1}} \bigotimes\nolimits_{l=0}^{n-1} \left(e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} \bigotimes\nolimits_{l=0}^{n-1} \left(\sum\nolimits_{k_l \in \{0,1\}} e^{2\pi i j \frac{k_l 2^l}{2^n}} |k_l\rangle \right) \\ &= \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2\pi i j \frac{2^{n-1}}{2^n}} |1\rangle) \otimes (|0\rangle + e^{2\pi i j \frac{2^{n-2}}{2^n}} |1\rangle) \otimes \dots \otimes (|0\rangle + e^{2\pi i j \frac{2^0}{2^n}} |1\rangle) \end{split}$$

逆量子フーリエ変換

QFTの実装に対応するユニタリ行列 U_{QFT} に対して、共役転置をとった行列は U_{OFT} の逆行列となり、これに対応する演算を**逆量子フーリエ変換**という。

$$U_{QFT}$$
はユニタリ $ightarrow$ $U_{QFT}^{\dagger}=U_{QFT}^{-1}$: 逆QFT

$$U_{QFT}^{-1}(U_{QFT}|j\rangle) = U_{QFT}^{-1}U_{QFT}|j\rangle = |j\rangle$$

逆QFTはQFTの計算結果をもとに戻す

QFTの実装

参考に、4量子ビット QFTの量子回路を示す。

4量子ビット QFTの量子回路 n量子ビットに対し、 $O(n^2)$ の実装

目次

- 1.量子位相推定(QPE)の目的
- 2. **量子フーリエ変換**(QFT)
- 3.量子位相推定アルゴリズムの実装

位相推定アルゴリズムは以下の手順で行われる。

【手順】

- 1. 計算ビットすべてにアダマールゲートを施す。
- 2. 制御Uゲートを $|\psi\rangle$ に施す。
- 3. **計算ビットに逆QFTを施す**。
- 4. 計算ビットを測定する。

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

1. 計算ビットすべてにアダマールゲートを施す。

$$|\psi\rangle|0\rangle^{\otimes n}$$

$$\to |\psi\rangle(H|0\rangle)^{\otimes n} = |\psi\rangle\{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\}^{\otimes n}$$

$$= |\psi\rangle\{\frac{1}{\sqrt{2^n}}(|0\rangle + |1\rangle)\otimes(|0\rangle + |1\rangle)\otimes...\otimes(|0\rangle + |1\rangle)\}$$

2. 制御Uゲートを $|\psi\rangle$ に施す。

$$|\psi\rangle\{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\}^{\otimes n}$$

上から j 番目の計算ビットに注目:

$$|\psi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}(|\psi\rangle|0\rangle + |\psi\rangle|1\rangle)$$

$$\rightarrow \frac{1}{\sqrt{2}}(|\psi\rangle|0\rangle + U^{2^{j}}|\psi\rangle|1\rangle) = \frac{1}{\sqrt{2}}(|\psi\rangle|0\rangle + e^{2\pi i\theta \times 2^{j}}|\psi\rangle|1\rangle)$$

$$= |\psi\rangle \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i\theta \times 2^{j}}|1\rangle)$$

制御Uゲート:制御ビットが1の ときのみ標的ビットにUをかける

$$U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$$

$$U^{2}|\psi\rangle = e^{2\pi i\theta}U|\psi\rangle = e^{2\pi i\theta \times 2}|\psi\rangle$$

$$\vdots$$

$$U^{k}|\psi\rangle = e^{2\pi i\theta \times k}|\psi\rangle$$

2. 制御Uゲートを $|\psi\rangle$ に施す。

上からj番目の計算ビットに注目: $|\psi\rangle\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i\theta\times 2^j}|1\rangle)$

j = 0,1,...,n-1の結果を統合する:

$$|\psi\rangle\{\frac{1}{\sqrt{2^n}}(|0\rangle+e^{2\pi i\theta\times 2^{n-1}}|1\rangle)\otimes(|0\rangle+e^{2\pi i\theta\times 2^{n-2}}|1\rangle)\otimes...\otimes(|0\rangle+e^{2\pi i\theta\times 2^0}|1\rangle)\}$$

2. 制御Uゲートを $|\psi\rangle$ に施す。

$$|\psi\rangle\{\frac{1}{\sqrt{2^n}}(|0\rangle+e^{2\pi i\theta\times 2^{n-1}}|1\rangle)\otimes(|0\rangle+e^{2\pi i\theta\times 2^{n-2}}|1\rangle)\otimes...\otimes(|0\rangle+e^{2\pi i\theta\times 2^0}|1\rangle)\}$$
 ここで、 $\varphi=2^n\theta$ とおくと、 $\theta=\varphi/2^n$ であるから、
$$|\psi\rangle\{\frac{1}{\sqrt{2^n}}(|0\rangle+e^{2\pi i\varphi\frac{2^{n-1}}{2^n}}|1\rangle)\otimes(|0\rangle+e^{2\pi i\varphi\frac{2^{n-2}}{2^n}}|1\rangle)\otimes...\otimes(|0\rangle+e^{2\pi i\varphi\frac{2^0}{2^n}}|1\rangle)\}$$

3. 計算ビットに逆QFTを施す。

$$|\psi\rangle\{\frac{1}{\sqrt{2^{n}}}(|0\rangle+e^{2\pi i\varphi\frac{2^{n-1}}{2^{n}}}|1\rangle)\otimes(|0\rangle+e^{2\pi i\varphi\frac{2^{n-2}}{2^{n}}}|1\rangle)\otimes...\otimes(|0\rangle+e^{2\pi i\varphi\frac{2^{0}}{2^{n}}}|1\rangle)\}$$

計算ビットの状態は、 $|\varphi\rangle = |2^n\theta\rangle$ に対しQFTをかけたものと同じ!

 \rightarrow QFT**の逆の**演算をすることで、 $| \varphi \rangle$ を得られる。

$$|\psi\rangle \otimes U_{QFT}^{-1}\{\frac{1}{\sqrt{2^{n}}}(|0\rangle + e^{2\pi i\varphi\frac{2^{n-1}}{2^{n}}}|1\rangle) \otimes (|0\rangle + e^{2\pi i\varphi\frac{2^{n-2}}{2^{n}}}|1\rangle) \otimes ... \otimes (|0\rangle + e^{2\pi i\varphi\frac{2^{0}}{2^{n}}}|1\rangle)\} = |\psi\rangle|2^{n}\theta\rangle$$

4. 計算ビットを測定する

 $|\psi\rangle|2^n\theta\rangle$ 計算ビットを測定し、 $2^n\theta$ を得る。

→測定された値を 2^n で割ることで、 θ (の近似値)を得る!

Qiskitを用いてQPEの実験をしてみよう。わかりやすく P ゲートを用いる。

$$P(\lambda)|0\rangle = |0\rangle \rightarrow \theta = 0$$

 $P(\lambda)|1\rangle = e^{i\lambda}|1\rangle \rightarrow \theta = \frac{\lambda}{2\pi}$

$$\lambda = \frac{5}{4}\pi \to \theta = \frac{5}{8} \quad |\psi\rangle = |1\rangle$$
 の実装

前ページの量子回路の測定結果は全て5であり、位相推定の結果として $\theta = 5/8$ を得る。

シミュレータでの実験結果

測定結果:
$$5 \rightarrow \theta = \frac{5}{2^3} = \frac{5}{8}$$

まとめ

量子位相推定(QPE)は、 $U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$ を満たす実数 θ を求めるアルゴリズムである。

• $U^{2^{j}}$ ゲートが高速に実装できるとき、多項式時間の計算量

- 逆QFTにより、位相の情報を計算基底として取り出し、一度の測定で解を得る
 - ▶ Shorのアルゴリズムなどでも用いられる方法
 - ▶ 主要なアルゴリズムの量子超越のカギになると期待

固有位相が2進数展開からずれているとき

FIG. 8: Comparison of the input state of QPE. Eqs. (A3) and (A7) are denoted as QPE and EPE, respectively. Eq. (A14) is plotted with several decay rates, a=0.05,0.1,0.2,0.3.

$$|\psi_{\rm in}^{\rm EPF}\rangle = \sqrt{\frac{2}{N_q}} \sum_{\tau=0}^{N_q-1} \sin \frac{\pi(\tau+1/2)}{N_q} |\tau\rangle_{n_q}.$$
 (A5)

https://arxiv.org/pdf/2505.08612

求めたい固有値が2進数展開からずれている時に、通常のQPEだと、真の値(図中のx=0)以外のところにも、確率のピークができてしまう。これは精度を求める際に問題になることがある。

通常のQPEでは、ancilla qubitにはアダマールゲートによって均等重ね合わせ状態を用意するが、左下のA5式のような状態に変更することで、真の値を中心とする場所以外のピークをなくすことができる(その代わり幅は少し広がってしまう)。Entangled Phase Estimation (EPE) と呼ばれるテクニックである。

<u>こちらの論文</u>のAppendix Aで議論されている。

Early-FTQC

- NISQ ←→ Early-FTQC ←→ FTQC
- 量子ビット数や量子回路の深さに制限がある

Katabarwa et al. (2024)

Quantum Phase Estimation (QPE)

- ユニタリ演算子の固有値を求める
 - $U|\psi\rangle = e^{i\phi}|\psi\rangle$
 - e.g.) もし $U = e^{-iHt}$ かつ $|\psi\rangle$ が Hの基底状態なら、 QPEで基底エネルギーが求まる.

手続き

- 位相をバイナリに展開 $\phi = (2\pi)0.j_1j_2...j_n$ $(j_i = 0,1)$
- 測定前のancilla qubit(補助系)の量子状態: $|j_1j_2...j_n\rangle$ ← 1回の測定で区別可能

Problems

- k ビットの精度で読み出すためにはk-qubit のancillaが必要
 - 1 qubitだけにしたい!

1. Iterative Phase Estimation (IPE)

Dobšíček et al. (2007)

Idea: 位相をバイナリに展開して末尾から1ビットずつ決める

$$U|\psi\rangle = e^{i2\pi\phi}|\psi\rangle, \phi = \sum_{j=1}^{m} \phi_j \ 2^{-j} \ (\phi_j = 0,1)$$

$$|0\rangle - H \qquad R_z(\omega_k) - H \qquad x_k$$

$$|\psi\rangle - \frac{n}{U^{2^{k-1}}} - \frac{n}{|\psi\rangle}$$

1.
$$(k=m)$$
 $\omega_m=0$ とする

測定前の状態: $\frac{1}{2}\{(1+e^{i2^k\pi\phi}|0\rangle)+(1-e^{i2^k\pi\phi}|1\rangle)\}\otimes|\psi\rangle$

1. Iterative Phase Estimation (IPE)

Dobšíček et al. (2007)

Idea: 位相をバイナリに展開して末尾から1ビットずつ決める

2.
$$\phi_{k+1},...,\phi_m$$
 が既知の時、

$$\omega_k = -2\pi \sum_{j=k+1}^m \phi_j \ 2^{k-1-j}$$
 とする

$$|0\rangle - H - R_z(\omega_k) - H - = x_k$$

$$|\psi\rangle - \frac{n}{U^{2^{k-1}}} - \frac{n}{U^{2^{k-1}}} - |\psi\rangle$$

$$j=\overline{k+1}$$
 測定前の状態: $\frac{1}{2}\{(e^{-i\omega_k/2}+e^{i(\omega_k/2+2^k\pi\phi)}|0\rangle)+(e^{-i\omega_k/2}-e^{i(\omega_k/2+2^k\pi\phi)}|1\rangle)\}\otimes |\psi\rangle$

$$P(x_k=0)=\cos^2\left(\pi\sum_{j=1}^k\phi_j\ 2^{(k-1)-j}
ight)=\cos^2(\pi\phi_k/2)$$
 ← ϕ_k を1回の測定で決定可能

$$= \pi \phi_1 2^{k-2} + \pi \phi_2 2^{k-3} + \ldots + \pi \phi_{k-1}^4 2^0 + \pi \phi_k 2^{-1}, \cos^2(\pi + \theta) = \cos^2(\theta)$$

2. Robust Phase Estimation (RPE)

Ni et al. (2023)

Idea: 求めたい値が存在する範囲を半分ずつに絞っていく

2. Robust Phase Estimation (RPE)

Ni et al. (2023)

Algorithm 1 An adapted version of RPE in [2]

Input: ϵ : target accuracy, η : upper bound of the failure probability, δ : upper bound for the noise in the initial state $|\psi\rangle$.

Let $J = \lceil \log_2(\epsilon^{-1}) \rceil$ and calculate N_s with the values of ϵ , η and δ according to (5). $\theta_{-1} = 0$.

for j = 0, 1, ..., J do

Run the circuit in Figure 1(b) for the real part and imaginary part of $\langle \psi | U^{2^j} | \psi \rangle$ for $\frac{N_s}{2}$ times each to generate Z_j as an estimation of $\langle \psi | U^{2^j} | \psi \rangle$.

Define a candidate set $S_j = \left\{\frac{2k\pi + \arg Z_j}{2^j}\right\}_{k=0,\dots,2^j-1}$.

 $\theta_j = \arg\min_{\theta \in S_j} |\theta - \theta_{j-1}|_{2\pi}$. \leftarrow オレンジの候補から青い領域を選ぶ

end for

Output: θ_J as an approximation to λ_0 .

Hadamard Test

2. Robust Phase Estimation (RPE)

Ni et al. (2023)

Lemma 1. Suppose the constant $\delta < 2\sqrt{3} - 3$ and let

$$\alpha(\delta) = \frac{\sqrt{3}}{2}(1 - \delta) - \delta > 0.$$

If the quantum state $|\psi\rangle$ satisfies $p_0 > 1 - \delta$ and

$$\left| Z_j - \langle \psi | U^{2^j} | \psi \rangle \right| < \alpha(\delta),$$

then

$$2^{j}\lambda_{0} \in \left(\arg Z_{j} - \frac{\pi}{3}, \arg Z_{j} + \frac{\pi}{3}\right) \mod 2\pi,$$

where $\arg Z_j$ is the principal argument of Z_j .

 λ_0 はorangオレンジの候補の内の1つの中 この間隔の長さを調べると、 青い領域はオレンジの候補のうちの 1つとしか重ならない

$$p_{m} = |c_{m}|^{2} = |\langle \psi | \psi_{m} \rangle|^{2}$$

$$\alpha(\delta) > |Z_{j} - \langle \psi | U^{2^{j}} | \psi \rangle| = |Z_{j} - p_{0} e^{i2^{j} \lambda_{0}} - \sum_{m=1}^{M} p_{m} e^{i2^{j} \lambda_{m}}|$$

$$\geq |Z_{j} - p_{0} e^{i2^{j} \lambda_{0}}| - \sum_{m=1}^{M} p_{m} \geq |Z_{j} - p_{0} e^{i2^{j} \lambda_{0}}| - \delta,$$

3. Quantum Complex Exponential Least Squares (QCELS) Ding & Lin (2023)

Idea: 非線形最小二乗問題を解く

RPEと同じ量子回路を用いるが、後処理が異なる

- 1. データセットを用意する: $\{(t_n,Z_n)\}_{n=0}^{N-1}$, where $\mathbb{E}[Z_n]=\langle \psi | U^{-t_n} | \psi \rangle$
- 2. 以下のような問題を解くことで、固有位相の近似値 $heta^*$ を得る

$$(r^*, \theta^*) = \operatorname{argmin}_{r \in \mathbb{C}, \theta \in \mathbb{R}} L(r, \theta), \text{ where } L(\theta) = \frac{1}{N} \sum_{n=0}^{N-1} |Z_n - r \exp(-it_n \theta)|^2$$

この問題は古典コンピュータで効率よく解ける

3. Quantum Complex Exponential Least Squares (QCELS) Ding & Lin (2023)

後半へ続く…