Chapter 11. 회귀분석

❖ 개요

- 개념
 - 상관관계분석: 두 변수가 서로 선형관계를 가지고 있는지를 판별하는 방법
 - 회귀분석: 중속변수와 독립변수들 간의 관계를 분석하는 것
 - 단순회귀분석: 독립변수가 한 개인 경우
 - 다중회귀분석: 독립변수가 두 개 이상인 경우
- 자료
 - 종속변수: 간격척도 혹은 비율척도(계량적 자료)
 - 독립변수: 간격척도, 비율척도, 명목척도
 - 독립변수가 명목척도인 경우 독립변수를 더미변수화 하여 처리한다.
- 가정
 - 독립변수와 종속변수간의 선형적 관계
 - 오차항의 일정한 분산과 정규성
 - 오차항의 독립성

❖ 최소제곱추정법

- 최소제곱법: 편차의 제곱합을 최소화하는 모수의 값을 찾아 모수의 추정값으로 사용하는 방법
 - 편차: 관측값과 예측된 값의 차이

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (yi - \beta_0 - \beta_1 x)^2$$

■ 최소제곱추정량: 편차의 제곱합을 최소화하는 모수의 추정값

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_1} = 0 \quad \Rightarrow \quad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = 0 \quad \Rightarrow \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 x$$

■ 추정된 회귀직선

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

❖ 단순선형회귀모형에서의 추론

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S_{xx}}\right)$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}x \sim N\left(\beta_{0}, \left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}\right)\sigma^{2}\right)$$

■ 표준화된 통계량

$$\frac{\hat{\beta}_{1} - \beta_{1}}{\sigma / \sqrt{S_{xx}}} \sim N(0,1) \quad \Rightarrow \quad \frac{\hat{\beta}_{1} - \beta_{1}}{s / \sqrt{S_{xx}}} \sim t(n-2)$$

$$\frac{\hat{\beta}_{0} - \beta_{0}}{\sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}}} \sim N(0,1) \quad \Rightarrow \quad \frac{\hat{\beta}_{0} - \beta_{0}}{s \sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}}} \sim t(n-2)$$

■ 신뢰구간

$$\beta_{1}: \hat{\beta}_{1} \pm t_{\alpha/2}(n-2) \frac{s}{S_{xx}}$$

$$\beta_{0}: \hat{\beta}_{0} \pm t_{\alpha/2}(n-2) s \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}}$$

- 검정통계량
 - $H_0: \beta_1 = \beta_{10}$ 일 때, 검정통계량: $t = \frac{\beta_1 \beta_1}{s / \sqrt{S_{xx}}} \sim t(n-2)$
 - $H_0: \beta_0 = \beta_{00}$ 일 때, 검정통계량: $t = \frac{\bar{\beta_0} \beta_0}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}} \sim t(n-2)$

❖ 예제: 광고비(독립변수)와 매출액(종속변수)

DATA adsales; INPUT company adver sales @@; CARDS; 01 11 23 02 19 32 03 23 36 04 26 46 05 56 93 06 62 99 07 29 49 08 30 50 09 38 65 10 39 70 11 46 71 12 49 89 ; RUN; PROC REG DATA=adsales; MODEL sales=adver; PLOT sales*adver; RUN;

- ❖ 적합된 회귀식
 - SALES = 3.28480 + 1.59716 * ADVER

Analysis of Variance

Source	DF	Sum of Squares	Mean Square		Pr > F
Model Error Corrected Total	1 10 11	6695.27457 146.97543 6842.25000	6695.27457 14.69754		<.0001
Root MS: Depende: Coeff V:	nt Mean	3.83374 60.25000 6.36305	R-Square Adj R-Sq	0.9785 0.9764	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.28480	2.88935	$\substack{1.14\\21.34}$	0.2821
ADVER	1	1.59716	0.07483		<.0001

❖ 종속변수에 대한 예측

$$E(y \mid x = x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N \left(\hat{\beta}_0 + \hat{\beta}_1 x_0, \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right) \sigma^2 \right)$$

• σ^2 를 모르는 경우

$$\frac{\left(\hat{\beta}_{0} + \hat{\beta}_{1}x_{0}\right) - \left(\beta_{0} + \beta_{1}x_{0}\right)}{s\sqrt{\frac{1}{n} + \frac{\left(x_{0} - \bar{x}\right)^{2}}{S_{xx}}}} \sim t(n-2)$$

• 종속변수에 대한 신뢰구간

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} (n-2) s \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$$

❖ 예제: 광고비(독립변수)와 매출액(종속변수)

단순 회귀분석 DATA adsales; INPUT company adver sales @@; CARDS; 01 11 23 02 19 32 03 23 36 04 26 46 05 56 93 06 62 99 07 29 49 08 30 50 09 38 65 10 39 70 11 46 71 12 49 89 ; RUN; PROC REG DATA=adsales; MODEL sales=adver/P CLM ALPHA=0.01; RUN;

□ PROC REG DATA=A: MODEL SALES=ADVER / P CLM ALPHA=0.01;

RUN QUIT:

Output Statistics

0bs	Dependent Variable	Predicted Value	Std Error Mean Predict	99% CL Mea	n Residual
1 2 3 4 5 6 7 8	23.0000 32.0000 36.0000 46.0000 93.0000 99.0000 49.0000	20.8535 33.6307 40.0194 44.8108 92.7255 102.3084 49.6023 51.1995	2.1522 1.6674 1.4571 1.3221 1.8815 2.2601 1.2139 1.1852	28.3462 3: 35.4013 4: 40.6206 4: 86.7625 9: 95.1456 10: 45.7550 5: 47.4434 5:	7.6744 2.1465 8.9153 -1.6307 4.6374 -4.0194 9.0011 1.1892 8.6884 0.2745 9.4712 -3.3084 3.4496 -0.6023 4.9556 -1.1995
9 10 11 12	65,0000 70,0000 71,0000 89,0000	63.9767 65.5739 76.7539 81.5454	1.1204 1.1345 1.3501 1.4901	61.9784 6 72.4752 8	7.5275 1.0233 9.1693 4.4261 1.0327 -5.7539 6.2678 7.4546

Sum of Residuals Sum of Squared Residuals Predicted Residual SS (PRESS) 146.97543 210.84863

❖ 잔차분석

- 오차에 대한 가정
 - $E(\varepsilon_i) = 0$
 - 독립성: \mathcal{E}_i 는 독립
 - 등분산성: $Var(\varepsilon_i) = \sigma^2$
 - 정규성: $\varepsilon_i \sim N(0,1)$
- 잔차

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

- 표준화 잔차
 - 표본의 크기가 충분히 클 때, 근사적으로 서로 독립이며 정규분포를 따른다.
 - 0을 중심으로 -2와 2사이에 랜덤하게 분포

❖ 예제: 광고비(독립변수)와 매출액(종속변수)

표준화 잔차와 잔차도표 출력

```
DATA adsales;
INPUT company adver sales @ @;
CARDS;
01 11 23 02 19 32 03 23 36 04 26 46 05 56 93
06 62 99 07 29 49 08 30 50 09 38 65 10 39 70
11 46 71 12 49 89
;
RUN;

PROC REG DATA=adsales GRAPHICS;
MODEL sales=adver/R;
OUTPUT OUT=regout STUDENT=std_r;
PLOT STUDENT.*adver;
RUN;
```


■ 잔차의 정규성 검토

```
히스토그램과 정규확률도표의 출력
DATA adsales:
INPUT company adver sales @@;
CARDS:
01 11 23 02 19 32 03 23 36 04 26 46 05 56 93
06 62 99 07 29 49 08 30 50 09 38 65 10 39 70
11 46 71 12 49 89
RUN:
PROC UNIVARIATE DATA=regout;
                                              정규 분포에 대한 모수
VAR std_r;
                                            모수
                                                    심볼
                                                            추정값
HISTOGRAM std_r/NORMAL;
RUN:
                                           평균
표준편차
                                                          -0.00709
                                                    Mu
                                                    Sigma
                                                          1.041073
                                            정규 분포에 대한 적합도 검정
                              검정
                                               -----통계량-----p-값--
                              Kolmogorov-Smirnov
                                                      0.12288172 Pr > D
                                                                          >0.150
                                               W-Sq
                                                      0.02181102 Pr > W-Sq
                              Cramer-von Mises
                                                                          >0.250
```

Anderson-Darling

A-Sq

>0.250

0.16412536 Pr > A-Sq

- 독립성 검토: Durbin-Watson 검정통계량 이용
 - DW 값이 2에 가까울수록 독립

Durbin-Watson 검정 **DATA** adsales: INPUT company adver sales @@; CARDS: 01 11 23 02 19 32 03 23 36 04 26 46 05 56 93 06 62 99 07 29 49 08 30 50 09 38 65 10 39 70 11 46 71 12 49 89 RUN: The REG Procedure PROC REG DATA=adsales: Model: MODEL1 MODEL sales=adver/DW; Dependent Variable: SALES RUN; Durbin-Watson D 2.470Number of Observations lst Order Autocorrelation -0.440

❖ 선형관계의 강도: 결정계수

- 선형모형이 어느정도 적합한가의 측도
- Y의 총 변동 중 선형회귀모형에 의하여 설명되는 변동부분

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

❖ 분산분석

- 선형 모형에 사용되는 계수들이 모두 0인지를 검정
- 귀무가설: 모든 계수 = 0 vs 대립가설: 0이 아닌 계수가 존재

연습문제1

❖ 음주운전자의 혈액 중 알코올 농도를 측정하기 위해 교통경찰관이 사용하는 디지털 측정기의 신뢰성을 알아보려고 한다. 15명의 음주 운전자에 대해 혈 액채취(y)와 디지털 측정기(x)에 의해 각각 알코올 농도를 측정하여 다음과 같은 데이터를 얻었다. X에 의한 y의 회귀직선식을 구하고 잔차분석을 실시 하여라.

X	Y	X	Y	X	Y
0.150	0.154	0.090	0.082	0.110	0.078
0.100	0.085	0.090	0.072	0.120	0.097
0.900	0.079	0.090	0.080	0.100	0.088
0.140	0.144	0.095	0.090	0.060	0.053
0.080	0.078	0.040	0.050	0.080	0.072

❖ 개요

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \cdots + \beta_k x_k + \varepsilon$$

- 다중회귀분석의 개념과 추정방식
 - 개념
 - 두 개 이상의 독립변수들과 하나의 종속변수의 관계를 분석하는 기법
 - 추정방식
 - 동시입력방식
 - 연구자가 고려하는 모든 독립변수들을 한꺼번에 포함하여 분석하는 방법
 - 독립변수들이 동시에 종속변수를 설명하는 정도를 알 수 있음
 - 단계선택방식
 - 종속변수에 영향력이 있는 변수들만을 회귀식에 포함시키는 방법
 - 영향력이 높은 변수의 순으로 회귀식에 포함
 - 포함된 독립변수들도 나중에 들어오는 변수 때문에 설명력이 낮아지면 회귀 식에서 제거되어 집
 - 설명력이 어느 정도 이상 되는 변수들로만 구성된 회귀식을 발견하는데 유용
- 자료 와 가정
 - 단순회귀분석과 동일

❖ 예제: 에어로빅 적합성을 알아보기 위해 31명으로부터 oxygen(산소섭취율, 종속변수), age(나이), weight(체중), runtime(1.5마일을 주행하는데 소요되는 시간), rstpulse(휴식중 맥박수), runpulse(주행중의 맥박수), maxpulse(주행중의 최대맥박수)을 측정한 자료

다중 선형 회귀분석

DATA fitness;
INFILE 'C:\fitness.txt';
INPUT oxygen age weight runtime rstpulse runpulse maxpulse @@;
LABEL oxygen='산소섭취율' age='나이' weight='체중' runtime='1.5마일주행 시간' rstpulse='휴식중맥박수' runpulse='주행중맥박수' maxpulse='주행중최 대맥박수';
RUN;
PROC REG DATA=adsales;
MODEL oxygen=age weight runtime rstpulse runpulse maxpulse;
RUN;

Analysis of Variance

Source	DF	Sum of Squares	Mean Square		Pr > F
Model Error	6 24	722.54361 128.83794	120.42393 5.36825		<.0001
Corrected Total	30	851.38154			
Root MS: Depende: Coeff V:	nt Mean	2.31695 47.37581 4.89057	R-Square Adj R-Sq	0.8487 0.8108	

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE	Intercept 나이 체중 1.5마일주행시간 휴식중맥박수 주행중맥박수 주행중최대맥박수	1 1 1 1 1 1	102.93448 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.30322	12.40326 0.09984 0.05459 0.38456 0.06605 0.11985 0.13650	8.30 -2.27 -1.36 -6.84 -0.33 -3.08 2.22	<.0001 0.0322 0.1869 <.0001 0.7473 0.0051 0.0360

❖ 변수선택

- SFLECTION=
 - FOREWARD:하나씩 들어오기
 - SLENTRY=0.15
 - BACKWARD:하나씩 나가기
 - SLSTAY=0.15
 - STEPWISE: FOREWARD+BACKWARD
 - SLENTRY=,SLSTAY=

다중 선형 회귀분석

```
DATA fitness;
INFILE 'C:\fitness.txt';
INPUT oxygen age weight runtime rstpulse runpulse maxpulse @@;
LABEL oxygen='산소섭취율' age='나이' weight='체중' runtime='1.5마일주행
시간' rstpulse='휴식중맥박수' runpulse='주행중맥박수' maxpulse='주행중최
대맥박수';
RUN;

PROC REG DATA=adsales;
MODEL oxygen=age weight runtime rstpulse runpulse maxpulse/SELECTION=STEPWISE;
RUN;
```

Stepwise Selection: Step 4

Variable MAXPULSE Entered: R-Square = 0.8368 and C(p) = 4.8800

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	4 26 30	712.45153 138.93002 851.38154	178.11288 5.34346	33.33	<.0001
Variable	Parameter Estimate	Standard Error	Type II SS F V	alue Pr > F	
Intercept AGE RUNTIME RUNPULSE MAXPULSE	98.14789 -0.19773 -2.76758 -0.34811 0.27051	11.78569 0.09564 0.34054 0.11750 0.13362	22.84231 352.93570 6 46.90089	9.35 <.0001 4.27 0.0488 6.05 <.0001 8.78 0.0064 4.10 0.0533	

Bounds on condition number: 8.4182, 76.851

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

❖ 다중공선성

- 독립변수들 간의 완전한 또는 거의 완전한 선형종속의 관계를 의미
- 탐색방법
 - 분산확대인자(variance inflation: VIF):10보다 큰 경우 다중공선성이 있음
 - 다중공선성이 있는 경우: 변수선택, 능형회귀,주성분회귀 등...
 - 상태지수(condition index):100보다 큰 경우

다중 공선성진단

```
DATA fitness;
INFILE 'C:\fitness.txt';
```

INPUT oxygen age weight runtime rstpulse runpulse maxpulse @@;

LABEL oxygen='산소섭취율' age='나이' weight='체중' runtime='1.5마일주행시간' rstpulse='휴식중맥박수' runpulse='주행중맥박수' maxpulse='주행중최대맥박수';

RUN:

PROC REG DATA=adsales;

MODEL oxygen=age weight runtime rstpulse runpulse maxpulse/VIF COLLIN; RUN;

Talametel Patimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	Variance Inflation
Intercept AGE WEIGHT RUNTIME RSTPULSE RUNPULSE	Intercept 나이 체중 1.5마일주행시간 휴식중맥박수 주행중맥박수	1 1 1 1 1	102.93448 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963	12.40326 0.09984 0.05459 0.38456 0.06605 0.11985	8.30 -2.27 -1.36 -6.84 -0.33 -3.08	<.0001 0.0322 0.1869 <.0001 0.7473 0.0051	0 1.51284 1.15533 1.59087 1.41559 8.43727
MAXPULSE	추행중최대맥박수	i	0.30322	0.13650	2.22	0.0360	8.74385

Collinearity Diagnostics

Number	Eigenvalue	Condition Index
1	6.94991	1.00000
2	0.01868	19.29087
3	0.01503	21.50072
4	0.00911	27.62115
5	0.00607	33.82918
6	0.00102	82.63757
7	0.00017947	196.78560

❖ 최종모형

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 27 30	690.55086 160.83069 851.38154	230.18362 5.95669	38,64	<.0001
	MSE ndent Mean f Var	2.44063 47.37581 5.15165	R-Square Adj R-Sq	0.8111 0.7901	

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	111.71806	10.23509	10.92	<.0001	0
AGE	나이	1	-0.25640	0.09623	-2.66	0.0129	1.26661
RUNTIME	1.5마일주행시간	1	-2.82538	0.35828	-7.89	<.0001	1.24444
RUNPULSE	주행중맥박수	1	-0.13091	0.05059	-2.59	0.0154	1.35476

Collinearity Diagnostics

Number	Eigenvalue	Condition Index	Intercept	Proportion of AGE	Variation RUNTIME	BUNPULSE
1	3.97790	1.00000	0.00011565	0.00056585	0.00082368	0.00016363
2	0.01183	18.33958	0.00296	0.38305	0.49678	0.00697
3	0.00919	20.80033	0.03198	0.19423	0.42448	0.09749
4	0.00108	60.60078	0.96495	0.42215	0.07792	0.89538

연습문제 2

❖ 환경변화가 혈압에 미치는 장기적인 변화를 연구하기 위하여 안데스산맥의 고지대에서 도시로 이주해온 인디오들로부터 여러 특성들을 측정하였다. 다음의 데이터는 그 중 최고혈압(y)과 신체적 특성들인 나이(x1), 이주 후 경과 기간(x2,단위:년),몸무게(x3,단위:kg),복부피부두께(x4,단위:mm)등에 관한 결과이다. 다중 회귀분석을 수행하여라.

21	1	71	12.7	170 22	6	56.5	8	120
24	5	56	4.3	125 24	1	61	4.3	148
25	1	65	20.7	140 27	19	62	5.7	106
28	5	53	8	120 28	25	53	0	108
31	6	65	10	124 32	13	57	6	134
33	13	66.5	8.3	116 33	10	59.1	10.3	114
34	15	64	7	130 35	18	69.5	7	118
35	2	64	6.7	138 36	12	56.5	11.7	134
36	15	57	6	120 37	16	55	7	120
37	17	57	11.7	114 38	10	58	13	124
38	18	59.5	7.7	114 38	11	61	4	136
38	11	57	3	126 39	21	57.5	5	124
39	24	74	15.7	128 39	14	72	13.3	134
41	25	62.5	8	112 41	32	68	11.3	128
41	5	63.4	13.7	134 42	12	68	10.7	128
43	25	69	6	140 43	26	73	5.7	138
43	10	64	7	118 44	19	65	7.7	110
44	18	71	4.3	142 45	10	60.2	3.3	134
47	1	55	4	116 50	43	70	11.7	132
54	40	87	11.3	152				