# Modern Synchronization Techniques for Reliable Communication

Theresh Babu Benguluri and G V V Sharma\*

10

10-2

10

10

10-

10<sup>-6</sup>

#### **CONTENTS**

| 1   | Time Offset: Gardner TED       |                              | 1 |
|-----|--------------------------------|------------------------------|---|
|     | 1.1                            | Plots                        | 1 |
| 2   | Frequency Offset: LR Technique |                              | 1 |
|     | 2.1                            | Plots                        | 2 |
| 3   | Phase                          | Offset: Feed Forward Maximum |   |
| Lik | elihood (                      | (FFML)technique              | 2 |
|     | 3 1                            | Plots                        | 2 |

## References

1. TIME OFFSET: GARDNER TED

Let the mth sample in the rth received  $\alpha$ time slot be

$$Y_k(m) = X_k + V_k(m), \quad k = 1, ..., N, m = 1,$$

where  $X_k$  is the transmitted symbol in the slot and  $V_k(m) \sim \mathcal{N}(0, \sigma^2)$ . The decision for the kth symbol is

$$U_k = Y_{k-1} \left( \frac{M}{2} \right) [Y_k(M) - Y_{k-1}(M)]$$

## A. Plots

2. Frequency Offset: LR Techniqui

Let the frequency offset be  $\Delta f$  [1]. Ther

$$Y_k = X_k e^{j2\pi\Delta f kM} + V_k, \quad k = 1, \dots, N$$

From (2.1),

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta fkM} + X_k^* V_k$$
  
$$\implies r_k = e^{j2\pi\Delta fkM} + \bar{V}_k$$



 $\frac{Eb}{N0}$ (dB)

Fig. 1: SNR VS BER with different time offsets

\*The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

Where N is the length of the received signal. For large centre frequency, the following yields a good

(2.5)





From (3.1),

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta\phi kM} + X_k^* V_k \tag{3.2}$$

$$\implies r_k = e^{j2\pi\Delta\phi kM} + \bar{V}_k \tag{3.3}$$

where

$$r_k = Y_k X_k^*, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (3.4)

 $\hat{\phi}$  can be written as:

$$\hat{\phi}_k = arg(r_k) \tag{3.5}$$

This equation gives the final estimation of phase

$$\hat{\theta}_f^{(p)}(l) = \hat{\theta}_f^{(p)}(l-1) + \alpha SAW[\hat{\theta}_f^{(p)}(l) - \hat{\theta}_f^{(p)}(l-1)]$$
 (3.6)

Where SAW is a saw tooth non-linearity and  $\alpha \le 1$ 

## A. Plots

#### References

- [1] M. Luise and R. Reggiannini:'Carrier frequency recovery in all-digital modems for burst mode transmissions,' IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 1169-1178, Feb/Mar/Apr
- [2] U. Mengali and A. N. D'Andrea: synchronization Techniques for Digital Receivers,' New York: Plenum, 1997.



#### A. Plots

The number of pilot symbols is P = 18. The codes for generating the plots are available at

Fig. 5 shows the variation of the error in the offset estimate with respect to the offset  $\Delta f$  when the SNR = 10 dB. Similarly Fig. ?? shows the variation of the error with respect to the SNR for  $\Delta f = 5MHz$ .

