Обзор литературы по Tensor SSA

1 Статьи с теорией тензорных разложений

1.1 A Multilinear Singular Value Decomposition

Базовая теория по **HOSVD** (определения, свойства).

1.2 On the Best Rank-1 and Rank- $(R_1, R_2, ..., R_N)$ Approximation of Higher-Order Tensors

Про наилучшее приближение тензора меньшими рангами, описание алгоритма **HOOI**, некоторые его свойства.

1.3 Tensor SVD: Statistical and Computational Limits

Рассматривается точность приближения **HOOI** произвольного тензора по его зашумлённому варианту при различных случаях отношения минимального сингулярного числа тензора к уровню шума (SNR).

1.4 Factorization strategies for third-order tensors и Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging

В основном теория по трёхмерным тензорам, вводится определение ${f TSVD}$ и его свойства.

2 Tensor SSA с использованием HOSVD или HOOI

2.1 Exponential data fitting using multilinear algebra: the singlechannel and multi-channel case

Рассматривается задача оценки параметров комплексного сигнала (одномерный и многомерный случаи), состоящего из суммы комплексных экспонент с близкими частотами. Приводится описание и обоснование тензорной модификации алгоритма **ESPRIT** с применением **HOOI**. Проводится численное сравнение этой модификации с базовым **ESPRIT**. Выявлено преимущество тензорного метода по точности оценки параметров сигнала, причём с увеличением уровня шума, преимущество увеличивается.

Траекторным тензором одномерного ряда X с параметрами I,L:1 < I,L < N, I+L < N+1 считается тензор $\mathcal X$ размера $I \times L \times J,$ J=N-I-L+2, элементы которого удовлетворяют равенству

$$\mathcal{X}_{ilj} = x_{i+l+j-2}$$
 $i \in \overline{1:I}, l \in \overline{1:L}, j \in \overline{1:J}.$

Визуализация на рисунке 1.

Рис. 1: Траекторный тензор одномерного ряда в HOSVD-SSA.

Траекторным тензором многомерного ряда X с длиной окна L: 1 < L < N считается тензор $\mathcal X$ размерности $L \times K \times P, \ K = N - L + 1,$ элементы которого удовлетворяют равенству

 $\mathcal{X}_{lkp} = x_{l+k-1}^{(p)}$ $l \in \overline{1:L}, k \in \overline{1:K}, p \in \overline{1:P}.$

Визуализация на рисунке 2.

Алгоритм заключается в нахождении наилучшего приближения траекторного тензора ряда с n-рангами (R, R, R) с помощью алгоритма **HOOI**. R задаётся равным числу экспонент с различными показателями входящих в сигнал. Затем оценка строится по матрице сингулярных векторов одного из направлений (1-го направления в одномерном случае, и 3-го в многомерном) тем же способом, что и в базовом **ESPRIT**.

Рис. 2: Траекторный тензор многомерного ряда в HOSVD-MSSA.

2.2 Exponential data fitting using multilinear algebra: the decimative case

Рассматривается задача оценки параметров одномерного комплексного сигнала (только одномерный случаи), состоящего из суммы экспоненциально-модулированных гармоник с близкими частотами. Исследуется алгоритм HTLSDstack: модификация ESPRIT, в которой по одномерному ряду строится D прореженных рядов длины M = N/D (считается, что длина ряда N делится на D нацело). Затем они считаются отдельными каналами одного многомерного ряда, и применяется многомерный вариант ESPRIT. Это уменьшает трудоёмкость алгоритма при небольшом уменьшении точности. Предлагается тензорная модификация этого алгоритма: HO-HTLSDstack, в которой к полученному многомерному ряду применяется тензорная модификация многомерного **ESPRIT** из 2.1.

Исходный ряд X длины N разбивается на D прореженных подрядов $X^{(d)}$ длины M так, что $x_m^{(d)} = x_{(m-1)D+d}$. Другими словами, в ряд с номером d входит каждый D-й элемент исходного ряда, начиная с x_d . По полученному многомерному ряду строится траекторный тензор так же, как в 2.1. Затем ищется наилучшее приближение этого тензора с n-рангами $(R, \min(R, M), R')$, где R задаётся равным числу экспонент с различными показателями входящих в сигнал, а $R' \leq \min(R, D)$. Авторы утверждают, что если частоты гармоник близки, то выбор $R' < \min(R, D)$ улучшает точность оценки параметров.

Для оценки параметров используются сингулярные векторы 1-го направления полученного разложения аппроксимирующего тензора.

Численно показано, что тензорный вариант (HO-HTLSDstack) с выбором R'=1 оказывается точнее HTLSDstack во всех тестах, причём преимущество увеличивается с увеличением уровня шума. Также в одном тесте HO-HTLSDstack сравнивается с базовым ESPRIT и так же оказывается более точной. Во всех тестах рассматривался случай близких частот.

Кроме того, авторы показывают, что метод HO-HTLSDstack меньше чем на порядок более трудоёмкий, чем HTLSDstack, но на порядок менее трудоёмкий, чем базовый

ESPRIT.

Графики со сравнением методов по точности и трудоёмкости, приведённые в статье, указаны на рисунке 3.

Рис. 3: Сравнение HTLS (ESPRIT), HTLSDstack и HO-HTLSDstack по точности оценки параметров и по трудоёмкости.

3 Tensor SSA с использованием $(L_r, L_r, 1)$ -разложения

3.1 Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank- $(L_r, L_r, 1)$ Terms

Приводится теоретическая информация про разложение в сумму тензоров с n-рангами $(L_r, L_r, 1)$, в частности определение и условия единственности.

Рассматривается задача выделения сигнала в многомерном ряде

$$Y = MS + N,$$

где \mathbf{Y} — наблюдаемый ряд, \mathbf{S} — искомый сигнал, \mathbf{M} — коэффициенты линейных комбинаций, с которыми сигнал составляет наблюдаемый ряд, \mathbf{N} — шум. Траекторный тензор ряда определяется так же, как в 2.1.

Для модели, в которой сигнал составляют суммы произведений полиномов и комплексных экспонент, доказаны условия единственности $(L_r, L_r, 1)$ -разложения траекторного тензора ряда.

Метод заключается в построении траекторного тензора по ряду \mathbf{Y} , аппроксимации этого тензора меньшими n-рангами (но бо́льшими, чем n-ранги самого сигнала), и применении $(L_r, L_r, 1)$ -разложения к этой аппроксимации. Далее по этому разложению можно построить оценку \mathbf{S} .

Проводятся численные сравнения точности выделения сигнала предложенным методом при различных выборах параметров рангов аппроксимации и L_r . Сравнения с другими методами выделения сигнала не проводится.

4 Tensor SSA с использованием CPD

4.1 Tensor based singular spectrum analysis for nonstationary source separation