# Lecture 7: More on equilibria and regret

#### Admin

HW1: email me your teammates if your submission did not include it

- Students who submitted individually will get a penalty of 20%
- Students who submit individually for HW2 will receive a score of zero

#### Quiz 1 is due **today**

Project topics are due in a few days (assignment opened on canvas)

PSA: Possible internship opportunity at MIT-IBM Watson AI lab (not affiliated with me!): <a href="https://forms.gle/H6dNSywXCjDDyBsq7">https://forms.gle/H6dNSywXCjDDyBsq7</a>

# The story so far...





Nash **Correlated Stackelberg** (leader-follower) q1=1000 q2=1000 q1(5000-q1-q2-c1), q2(5000-q1-q2-c2)

**Game Structure** 

**Payoff Structure** 

**Equilibrium/Solution Concept** 

#### Recall the definition of general-sum Nash

If there are n players, profile  $(x_1, x_2, ... x_n) \in \Delta_{m_1} \times \Delta_{m_2} \times ... \Delta_{m_n}$ 

- $u_i(x_i, x_{-i}) \ge u_i(x_i', x_{-i})$  for all  $x_i' \in \Delta_{m_i}$  (equivalently, for any pure action)
- No player can do strictly better by unilaterally deviating

#### Weaknesses

• Hard to compute  $\rightarrow$  do people really play according to Nash?

# Correlated Equilibrium

If there is intelligent life on other planets, in a majority of them they would have discovered correlated equilibrium before Nash equilibrium.

-Roger Myerson (2017)

#### Chicken Game

Exactly three Nash

(C, D), (D, C) and (C=2/3, D=1/3)

|             | Dare | Chicken out |
|-------------|------|-------------|
| Dare        | 0, 0 | 7, 2        |
| Chicken out | 2, 7 | 6, 6        |

A game of Chicken

What is the social welfare for each of them?

- Want to avoid (D, D) but get (C, C) as much as possible,
- But incentive constraints make this hard
  - If you knew your opponent was chickening out, you will want to dare

What if there was some kind of device/mechanism that assures us that if we were to chicken out, our opponent is also likely to chicken?

#### Enter the mediator

#### Assume access to a **trusted mediator**

|             | Dare | Chicken out |
|-------------|------|-------------|
| Dare        | 0, 0 | 7, 2        |
| Chicken out | 2, 7 | 6, 6        |

A game of Chicken



"I will sample joint actions  $(a_1,a_2)$  from this publicly known joint distribution and suggest to you privately what to do"

| 0   | 1/3 |
|-----|-----|
| 1/3 | 1/3 |

Observe: this cannot be written as the outer product of 2 distributions

Both P1 and P2: Given I was told to play  $a_i$ , should I stick to the recommendation? Or play something else?

Q: Are there joint distributions over actions that players are incentivized to play if recommended? (incentive compatible). Yes! Nash would do it. But are there more?

Mediator can **correlate** actions!

#### A possible equilibrium

|             | Dare | Chicken out |
|-------------|------|-------------|
| Dare        | 0, 0 | 7, 2        |
| Chicken out | 2, 7 | 6, 6        |

A game of Chicken



Suppose  $a_1 = D$  was drawn

1/3 1/3

Should I play C instead of D?



$$P(a_2 = C) = 1$$

P1

⇒ If don't swap, guaranteed to get 7 👍



 $\Rightarrow$  If swap, then get 6

# A possible equilibrium

P1

|             | Dare | Chicken out |
|-------------|------|-------------|
| Dare        | 0, 0 | 7, 2        |
| Chicken out | 2, 7 | 6, 6        |

A game of Chicken



Suppose  $a_1 = C$  was drawn

0 1/3 1/3 1/3

Should I play D instead of C?

What is the posterior distribution of my opponent's actions (assume they follow recommendation?)

$$P(a_2 = C) = P(a_2 = D) = 0.5$$
  
 $\Rightarrow$  If don't swap, get 4  $\Rightarrow$  If swap, get 3.5

By symmetry, P2 is also incentivized to stick to recommendation

# A social welfare optimum solution

|             | <b>D</b> are | Chicken out |
|-------------|--------------|-------------|
| Dare        | 0, 0         | 7, 2        |
| Chicken out | 2, 7         | 6, 6        |

A game of Chicken

| 0   | 1/4 |
|-----|-----|
| 1/4 | 1/2 |

Exercise: show that both players are incentivized to stick to their recommended actions

# Correlated Equilibrium (2 players)

$$\sum_{j\in[m]} u_1(i,j) \cdot z(i,j) \geq \sum_{j\in[m]} u_1(k,j) \cdot z(i,j) \qquad \forall i\in[n], k\in[n]$$
 
$$\sum_{i\in[n]} u_2(i,j) \cdot z(i,j) \geq \sum_{i\in[n]} u_2(i,k) \cdot z(i,j) \qquad \forall j\in[m], k\in[m]$$
 
$$\sum_{i\in[n]} \sum_{j\in[m]} z(i,j) = 1 \qquad \text{Not } \Delta_n \times \Delta_m!!!$$
 
$$z_{i,j} \geq 0 \qquad \forall i\in[n], j\in[m]$$
 
$$\sum_{j\in[m]} u_1(i,j) \cdot z(j|i) \geq \sum_{j\in[m]} u_1(k,j) \cdot z(j|i) \qquad \forall i\in[n], k\in[n]$$

Posterior distribution over opponent playing *j* if *i* was recommended

# Coarse Correlated Equilibrium

Same as CE, but only deviate **before** observing recommendation

 Imagine players having to sign a binding contract to accept the recommended action drawn from some joint distribution





Both P1 and P2: Assuming the other player pledges to follow the distribution, should I play something else over pledging to follow this distribution?

#### Formula for CCE

$$\sum_{i \in [n]} \sum_{j \in [m]} u_1(i,j) \cdot z(i,j) \ge \sum_{i \in [n]} \sum_{j \in [m]} u_1(k,j) \cdot z(i,j) \qquad \forall k \in [n]$$

$$\sum_{i \in [n]} \sum_{j \in [m]} u_1(i,j) \cdot z(i,j) \ge \sum_{i \in [n]} \sum_{j \in [m]} u_2(i,k) \cdot z(i,j) \qquad \forall k \in [m]$$

$$\sum_{i \in [n]} \sum_{j \in [m]} z(i,j) = 1$$

$$z_{i,j} \ge 0 \qquad \forall i \in [n], j \in [m]$$

#### Nash as a rank-constrained CE

Another way of writing a Nash  $(x^*, y^*)$ 

- Solution can be interpreted as finding the **joint** distribution via the outer product  $z = x^*y^T$
- Consider the following structural constraints



We need to add incentive constraints (next slide)

#### What if we just drop the rank 1 constraint?

#### Gives rise to correlated equilibrium (CE)

If we were to deviate to action k when recommended i



Don't deviate

Deviate to action k

Suppose P1 was recommended action i

#### Or Coarse Correlated Equilibrium (CCE)



Of course, need to consider other player's incentive (symmetric)

# Properties of correlated eqm

#### $CCE \supseteq CE \supseteq Nash$

- Every Nash is a CE which is also a CCE
- Nash is CE with rank 1 constraint on z
- CCE constraints can be derived from CE

$$\sum_{j \in [m]} u_1(i,j) \cdot z(i,j) \geq \sum_{j \in [m]} u_1(k,j) \cdot z(i,j) \qquad \forall i \in [n], k \in [n]$$
 
$$\downarrow \text{ sum over all possible i}$$
 
$$\sum_{i \in [n]} \sum_{j \in [m]} u_1(i,j) \cdot z(i,j) \geq \sum_{i \in [n]} \sum_{j \in [m]} u_1(k,j) \cdot z(i,j) \qquad \forall k \in [n]$$

#### CE/CCE can be found in poly time

- Just linear feasibility constraint
- Objective is still "free", can optimize for e.g., social welfare

#### Optional:

(C)CE can be seen as a zero-sum game between mediator and deviators

Classical definition of a CE based on signals from mediator

- Players receive signals from mediator (signals between players are correlated), conditions their action (possible randomized) on signal
- Strategically equivalent to mediator recommending the action directly
  - Bypass mapping from signal to conditional strategy.
  - Instance of the *revelation principle*



Mediator need not be an "individual", can be a signaling device

Examples: Traffic lights(?)

# Equilibrium and Regret

"What did it cost?" — "Everything."

-Thanos, Avengers: Infinity War

# Recall: no-regret learning in 2p0s games

Average iterates converge to NE in 2p0s games

• Basic argument: saddle-point residual approaches 0 as  $T \to \infty$ 

We don't get a NE in general-sum games. Why?

$$\max_{y} \sum_{\tau=1}^{t} \langle x^{(\tau)}, Ay \rangle - \langle x^{(\tau)}, Ay^{(\tau)} \rangle \leq R_{1}$$

$$\min_{x} \sum_{\tau=1}^{t} \langle x^{(\tau)}, Ay^{(\tau)} \rangle - \langle x, Ay^{(\tau)} \rangle \leq R_{2}$$
Taking averages and summing

These look approximate like incentive compatible constraints Why can't we use the same argument to obtain Nash?

$$\max_{y} \langle \frac{\sum_{\tau=1}^{t} x^{(\tau)}}{t}, Ay \rangle - \min_{x} \langle x, A \frac{\sum_{\tau=1}^{t} y^{(\tau)}}{t} \rangle \le \frac{R_1 + R_2}{t}$$

$$\max_{y} \sum_{\tau=1}^{t} \langle x^{(\tau)}, By \rangle - \langle x^{(\tau)}, By^{(\tau)} \rangle \le R$$

$$\max_{y} \sum_{\tau=1}^{t} \langle \frac{x^{(\tau)}}{t}, By \rangle - \langle \frac{x^{(\tau)}}{t}, B\frac{y^{(\tau)}}{t} \rangle \le R$$

$$1/t \qquad 1/t^{2}$$

Assume P2 and P1 play via no-regret algorithms. From P2's perspective since it is no-regret (P1 is the same), we have

We want to try to get 
$$\frac{x^{(\tau)}}{t} \approx x^*$$
,  $\frac{y^{(\tau)}}{t} \approx y^*$ 

Doesn't quite work..., isn't a straightforward division by t.

For 2p0s games we overcame this by summing this with the *other* player's incentive compatibility to give saddle point residual, requires payoff matrix being the same (or negated)

#### What if we talk about average of joint strategies?

$$\max_{y} \sum_{\tau=1}^{t} \langle \frac{x^{(\tau)}}{t} y^{\mathrm{T}}, B \rangle - \langle \underbrace{x^{(\tau)} y^{(\tau)}}^{\mathrm{T}}, B \rangle \leq \frac{R}{t}$$

Payoff if we switched to play y, P1 stays in  $\frac{\sum x^{(\tau)}}{t}$ 

Average payoff we got, also equal to average **joint** strategy

#### Seems to work!

$$\frac{R}{t} \rightarrow 0 \Rightarrow$$
 almost no incentive to deviate

# Self-play → average strategy gives CCE!

Average of product distributions give CCE (this is in general NOT rank 1)

$$\max_{y} \langle \sum_{\tau=1}^{t} \frac{x^{(\tau)} y^{\mathrm{T}}}{t}, B \rangle - \langle \sum_{\tau=1}^{t} \frac{x^{(\tau)} y^{(\tau)^{\mathrm{T}}}}{t}, B \rangle \le \frac{R}{t}$$

$$\sum_{\tau=1}^t x^{(\tau)} = \sum_{\tau=1}^t \sum_{j \in [m]} x^{(\tau)} y^{(\tau)^T}$$
 Because  $y^{\{(\tau)\}}$  is a distribution (sums to 1)

When *R* equal 0, exactly the CCE constraints!

# Can we get CE instead of just CCE?

Long story short, **yes**, just strengthen the regret minimizer

- So far, we have been dealing with **external** regret
- For CE we will require zero **internal** regret

External regret means we choose some a' for all our past actions

• Rock, Rock, Scissors, Paper, Rock → Rock, Rock, Rock, Rock, Rock

Internal regret means we choose a single  $a \rightarrow a'$ 

- $\circ$  Only change to a' if a was chosen initially
- Rock, Rock, **Scissors**, Paper, Rock → Rock, Rock, **Paper**, Paper, Rock

Swap regret means we have a mapping  $\phi(a) = a'$ 

- Every time we played a in the past, we play  $\phi(a)$  instead
- Rock, Rock, Scissors, Paper, Rock > Paper, Paper, Rock, Scissors, Paper
  - For  $\phi = \text{Rock} \rightarrow \text{Paper}$ , Scissors  $\rightarrow \text{Rock}$ , Rock  $\rightarrow \text{Paper}$

Can also switch to randomized actions, but often unnecessary to include. Why?

#### From External to swap regret minimizers

Exists a *generic* method that uses external regret minimizers to give swap regret minimizers

• Incurs swap regret an extra factor of |A|



**Figure 4.1.** The structure of the swap regret reduction.

Source: *Algorithmic Game Theory* 

# What about (C)CE in EFGs?

#### Many different variants defined differently

- NF(C)CE: Convert to normal form and solve for CE the usual way
  - Note: naively doing this is exponential sized!
- EF(C)CE: Extensive form (C)CE (Von Stengel and Forges, 2008)
  - Mediator reveals recommended actions incrementally at infosets (sealed recommendations)
  - Don't know what recommendations you can receive in future infosets
- In general, an entire family of equilibria can be constructed based on the concept of *hindsight rationality* (Morrill et. al., 2020)

#### Computationally, finding a CCE is easy

Just use CFR

Finding a CE is a different story...

# Leadership and Stackelberg Equilibrium

Let's go back to general-sum games...

# Stackelberg equilibrium

Studied by von Stackelberg in the early-mid 1900s

Models leader-follower dynamics, handles general-sum games

- Players no longer make "moves" simultaneously
- In a general sense bilevel optimization
- Very frequently confused with EFGs, despite being very different



- Originally intended for market analysis
- "Appropriated" by the modern game theory community
- This portion will focus on the latter

#### Lots of applications

- Security games
- Also, an alternative to Nash or Correlated equilibrium for general-sum games



Heinrich Freiher von Stackelberg

# Stackelberg equilibrium

Two players, leader and follower

Leader commits to a distribution, follower best responds



Both players maximizing can have differing utilities

Could have multiple best-responses (in fact, usually, at equilibrium)

• Choice of tiebreaking can make a big difference, we usually tiebreak in favour of the leader, also known as the *Strong* Stackelberg Equilibrium

# Pure Strategy Commitments

| 5  | -4 |
|----|----|
| -5 | 2  |

| -3 | 1  |
|----|----|
| 4  | -1 |

If Leader player action 1, Follower plays action 2 (-3 < 1)

Leader gets payoff of -4

If Leader plays action 2, Follower plays action 1(4 > -1)

Leader gets payoff of -5

Best pure strategy commitment is to play action 1

Leader can do better by randomizing!

# Mixed Strategy Commitments









We typically assume strong equilibrium, i.e., tiebreaks in favour of leader

# Special cases of SSE

#### Fully cooperative

Highest possible payoff, no coordination issues (why?)

#### Fully competitive

Leader's strategy is same as zero-sum game (why?)

#### Relationship to Nash

Leader's payoff is no less than any mixed NE, but could be strictly higher (why?)

# A small nuance: tiebreaking rules

Strong Stackelberg eqm: break ties based on best leader payoff

• How is this justified?

What about the weak Stackelberg equilibrium?

- Why does or doesn't this make sense?
- [Illustrate by drawings]
- What about others? E.g., averaging?

# Multiple LP method

#### Assuming Strong Stackelberg equilibrium

- Follower best response is always deterministic (up to payoff equivalence)
- In matrix games, there are a finite number of deterministic best responses

Idea: split leader (mixed) strategy space into finitely many regions, one for each best response  $a_2$ 

- Each region is either empty or a polytope in leader's strategy space
- Polytope is defined by constraints on x such that some  $a_2 \in BR_2(x)$
- For each region, set objective to maximize leader payoff, subject to x lying inside polytope  $\rightarrow$  solve an LP



# Multiple LP method

Repeat for all  $j^* \in [m]$ 

$$\max_{x^{T}Ae_{j}^{*}} x^{T}Be_{j^{*}} \geq x^{T}Be_{j} \qquad \forall j \in [m]$$
 Best achievable commitment from leader that indices  $j^{*}$  as best response, **could be infeasible**! 
$$x \in \Delta_{n}$$

Example when  $j^* = 3$ 



Take maximums right at the end

• Guaranteed that at least one  $j^*$  has a feasible LP (why?)

# Stackelberg Security Games

r security resources, t targets, assign resources to targets optimally assuming attacker best responds to assignment

- Combinatorial explosion of number of possible assignments
- Idea: work in the space of coverage probabilities rather than individual actions

Table 1: Example payoffs for an attack on a target.

|          | Covered | Uncovered |
|----------|---------|-----------|
| Defender | 5       | -20       |
| Attacker | -10     | 30        |

#### ORIGAMI/ERASER algorithm

Essentially water filling



Figure 1: Visualizing a level coverage.

https://projects.iq.harvard.edu/files/teamcore/files/2009\_7\_teamcore\_computing\_aamas\_09.pdf

# Stackelberg Eqm in EFGs (I)

Payoffs are shown as (Company, Applicant), or (Leader, Follower)



\*AKA the Leader

Played between **Company** (C) and **Applicant** (A)\*AKA the follower

Applicant has an option of signing a 6-year contract with the company

After 3 years, company can decide to give a raise or otherwise

Image sources: https://www.pngitem.com/ https://www.dreamstime.com/

INTERLUDE 35

# Solving the Hiring Game

Payoffs are shown as (Company, Applicant), or (Leader, Follower)

#### A naïve solution

#### An optimal solution





INTERLUDE 36

# Stackelberg Eqm in EFGs (II)

Potential confusion: why follower moves "first" in the game tree?

- Yes, but leader commits to a random strategy.
- Follower best responds by choosing the optimal (deterministic) path through the tree given leader's randomization.

\*game is played as physical time passes



\*infinitely many possible commitments



\*Order that commitment to entire strategies are made

Some people, e.g., economists feel SE is subsumed by EFGs for this reason

#### **Computational Complexity**

- Perfect information without chance: poly-time algorithm using DP
- With chance: NP-hard, poly-time if allow for correlation between players
- Imperfect information games: NP-hard \*Why won't the multiple LP method run in poly time?
- For general SSE in EFGs, can use integer programs