PSALTer results panel

$$S = \iiint (\rho \, \varphi + \, h^{\alpha\beta} \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, (24 \, (1+\varphi) \, \partial_{\alpha} \partial^{\alpha} \varphi - 8 \, \partial_{\alpha} h^{\beta}_{\beta} \, \partial^{\alpha} \varphi + 8 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\beta}_{\alpha} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} - \partial_{\beta} h^{\chi}_{\chi} \, \partial^{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\chi} h^{\chi}_{\beta} - 2 \, \partial_{\beta} h_{\alpha\chi} \, \partial^{\chi} h^{\alpha\beta}) + \\ \alpha_{1} + (4 \, \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} \, \partial^{\beta} \partial^{\alpha} \varphi - 8 \, \partial_{\beta} \partial_{\alpha} \varphi \, \partial^{\beta} \partial^{\alpha} \varphi + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\alpha} h^{\chi}_{\beta} + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} - 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h_{\alpha\beta} + 4 \, \partial_{\alpha} \partial^{\alpha} \varphi \, (2 \, \partial_{\beta} \partial^{\beta} \varphi - \partial_{\chi} \partial_{\beta} h^{\beta\chi} + \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta}) - \partial_{\chi} \partial_{\beta} h^{\delta}_{\alpha} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\gamma} h^{\chi}_{\beta} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\chi}_{\beta} + 4 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\chi} h^{\chi}_{\alpha\beta} + 4 \, \partial^{\chi} \partial^{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial^{\chi} h^{\alpha\beta} + 4 \, \partial^{\chi} \partial^{\alpha} h^{\alpha\beta} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial^{\chi} \partial^{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha\beta} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\gamma} h^{\chi}_{\beta} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\chi}_{\beta} + 4 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\gamma} h^{\alpha\beta} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\alpha\beta} \, \partial^{\chi} \partial^{\gamma} h^{\alpha\beta} + 4 \, \partial^{\chi} \partial^{\alpha} h^{\alpha\beta} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial^{\chi} \partial^{\alpha} h^{\alpha\beta} \, \partial^{\chi} \partial^{\gamma} h^{\alpha\beta} \,$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0^+ $\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$1 \mathcal{T}^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

Massive spectrum

(No particles)

Massless spectrum

Unitarity conditions

$$\alpha_{.} > 0 \&\& \alpha_{.} > -6 \alpha_{.}$$