

### MATEMÁTICAS

GEOMETRÍA EUCLIDIANA

## Demostraciones congruencias de triángulos

Alexander Mendoza 12 de junio de 2023

# Índice general

| 1 | De  | mostraciones | congruencias de triángulos                       | <b>2</b> |
|---|-----|--------------|--------------------------------------------------|----------|
|   | 1.1 | Demostracion | criterio de congruencia LLL                      | 2        |
|   | 1.2 | Demostración | del criterio de congruencia LAL usando como pos- |          |
|   |     | tulado ALA . |                                                  | 4        |

### Capítulo 1

## Demostraciones congruencias de triángulos

#### 1.1. Demostracion criterio de congruencia LLL

Dada la correspondencia entre el  $\triangle ABC$  y  $\triangle DEF$  tal que,  $\overline{AB} \cong \overline{AC}$ ,  $\overline{AC} \cong \overline{DF}$  y  $\overline{BC} \cong \overline{EF}$ , entonces,  $\triangle ABC \cong \triangle DEF$ .

**Demostración**. Para hacer la demostración haremos una construcción de la cual saldrán tres casos para demostrar. La construcción es la siguiente:

Sean  $\triangle ABC$  y  $\triangle DEF$  tal que,  $\overline{AB}\cong \overline{DE}$ ,  $\overline{AC}\cong \overline{DF}$  y  $\overline{BC}\cong \overline{EF}$ , luego sea  $G\in \mathcal{S}_{\overrightarrow{AC},\neg B}$  de modo que  $\angle CAG\cong \angle EDF$ , así sea H tal que  $\overline{AG}\cong \overline{DE}$ . Así  $\triangle AHC\cong \triangle DEF$ , esto debido a congruencia LAL con  $\overline{AH}\cong \overline{ED}$ ,  $\angle HAC\cong \angle EDF$  y  $\overline{DF}\cong \overline{AC}$ . Luego  $\overline{BH}\cap \overrightarrow{AC}=\{K\}$  esto por el PSP, intersección segmento puntos opuestos. Así tenemos tres casos para K.

**Caso 1.** Supongamos que A - K - C.



Si A-K-C, entonces  $\overline{AB}\cong \overline{AH}$  y  $\overline{BC}\cong \overline{CH}$  esto por transitividad de congruencia. Así  $\triangle ABH$  es isósceles, luego  $\angle ABK\cong \angle AHK$ , esto por definición de

triángulo isósceles. De manera similar  $\triangle BCH$  es isósceles y  $\angle CBK \cong \angle CHK$ . Luego  $K \in int \angle ABC$  y  $k \in int \angle AHC$  esto debido a la interestancia A-K-C y el teorema interior de ángulo, lado opuesto de triángulo. Así  $m \angle ABC = m \angle ABK + m \angle CBK$  y  $m \angle AHC = m \angle AHK + m \angle CHK$ . Por definición de congruencia de ángulos,  $\angle ABC \cong \angle AHC$ . Así  $\triangle ABC \cong \triangle AHC$  por criterio de congruencia LAL. Por transitividad de congruencia  $\triangle ABC \cong \triangle DEF$ .

Caso 2. Supongamos que A - C - K.



Si A-C-K, entonces  $\overline{AB}\cong \overline{AH}$  y  $\overline{CB}\cong \overline{CH}$  esto por transitividad de congruencia. Luego el  $\triangle ABH$  y el  $\triangle CBH$  son isósceles, lo que implica que  $\angle AHK\cong \angle ABK$  y  $\angle CHK\cong \angle CBK$  esto debido a definición de triángulo isósceles. Debido a que A-C-K sabemos que  $C\in int\angle AHK$  y  $C\in int\angle ABK$ , por lo tanto  $m\angle ABK=m\angle ABC+m\angle CBK$  y  $m\angle AHK=m\angle AHC+m\angle CHK$ , reemplazando ángulos congruentes tenemos que  $m\angle AHC=m\angle ABC$ . Luego por criterio de congruencia ALA tenemos que  $\triangle AHC\cong\triangle ABC$ . Así, por transitividad de congruencia, tenemos que  $\triangle ABC\cong\triangle EDF$ .

**Caso** 3. Supongamos que K - A - C.



De manera similar al anterior caso, si K-A-C, tenemos que  $\angle CHA \cong \angle CBA$  lo que nos deja con un criterio de congruencia LAL con  $\overline{AH} \cong \overline{BA}, \overline{CH} \cong \overline{CB}$  y  $\angle CHA \cong \angle CBA$ . Así  $\triangle CAH \cong \triangle CAB$ , y por transitividad de congruencia,

#### $\triangle CAH \cong \triangle FDE$ .

De esta manera hemos demostrado que en cualquiera de los casos los triángulos son congruentes, por lo tanto el criterio de congruencia LLL se cumple.

### 1.2. Demostración del criterio de congruencia LAL usando como postulado ALA

Sean el  $\triangle ABC$  y  $\triangle FED$  tal que  $\overline{BC}\cong \overline{ED}$ ,  $\angle ACB\cong \angle FDE$  y  $\overline{AC}\cong \overline{FD}$  formando un criterio de congruencia LAL. Luego sea  $G\in \mathcal{S}_{\overleftarrow{ED},F}$  tal que  $m\angle GED=m\angle ABC$ , luego sea  $F'\in \overrightarrow{DF}\cap \overrightarrow{EG}$ , así  $\angle F'ED\cong \angle ABC$ . Por el postulado de criterio de congruencia ALA,  $\triangle ABC\cong \triangle F'ED$ . Esta congruencia implica que  $\overline{F'D}\cong \overline{AC}$  y por transitividad de congruencia  $\overline{F'D}\cong \overline{FD}$ , lo cual implica que F'D=FD. Como  $F'\in \overrightarrow{DF}$ , esto ya que la totalidad de  $\overrightarrow{EG}$  está en  $\mathcal{S}_{\overrightarrow{ED},F}$  y en particular F' también lo está, entonces F'=F. Por lo tanto  $\triangle ABC\cong \triangle FED$ . Con esto demostramos la reciprocidad entre LAL y ALA.