Spectra of non-periodic signals

Mohammed Muqeeth EE16B026 Electrical Engineering IIT Madras

April 28, 2018

Abstract

Here we look at how to get spectrum of non-periodic signals. we will learn to use hamming window to supress gibbs phenomena

1 Introduction

- If we obtain the spectrum of $sin(\sqrt{2}t)$ using fft .we get spikes but they do not decay fast. The samples which are taken and repeated to obtain dft have large discontinuity at 2π i.e samples when repeated dont actually replicate $sin(\sqrt{2}t)$.
- In order to supress discontiuity at 2π we multiply the signal with hamming function . The result is shown in below figures.
- When dft is now calculated for this new function we get spectrum with two peaks with fastly decaying amplitude nearby.

Figure 1: To obtain spectrum of $sin(\sqrt{2}t)$

2 Spectrum of $cos^3(\omega_0 t)$

• The number of samples taken are 256 in between -4π to 4π . The hamming window function used for mod(n) less than (N-1)/2.

$$w[n] = 0.54 + 0.46\cos(\frac{2\pi n}{N-1})$$

- The spectrum with and without hamming function are plotted in below figure.
- since it is peroidic with irrational multiple of π . The rational multiples of π taken for samples results not in a complete period but a part of it therfore it results in discontiuity when repeated.
- In order to supress discontinuity we use hamming window.

Figure 2: Spectrum of $cos^3(\omega_0 t)$ without hamming window for $\omega_0 = 0.86$

3 Spectrum of $cos(\omega_0 t + \delta)$ for arbitary ω_0 and δ .

- The arbitary values of ω_0 , δ are chosen using rand function. The spectrum of resulting has two peaks
- The addition of guassian noise is done to the function using randn(sizeof(samples)). The resulting spectrum has two peaks at $\pm \omega_0$.
- When plot are taken for various values of ω_0 , δ we can make conclusion on how hamming function helps us supress gibbs phenomena.

Figure 3: Spectrum of $cos(\omega_0 t + \delta)$ with and without noise for arbitary ω_0, δ

4 Dft of $cos(16(1.5 + \frac{t}{2\pi})t)$

• The time is sampled from $-\pi$ to π in 1024 steps. It results in the chirped signal whose frequency continuously changes from 16 to 32 rad/s. The dft of the signal is done with above time step.

- The 1024 samples of $cos(16(1.5 + \frac{t}{2\pi})t)$ are broken into 16 samples which are 64 samples wide.
- The Dft of each sample is extracted and stored in array Y.

• This plot shows how signal frequency varies with time.

Figure 5: Surface plot of $cos(16(1.5 + \frac{t}{2\pi})t)$ showing how frequency varies continuouly with time

