第三极环境国际科学大会

INTERNATIONAL SYMPOSIUM ON THIRD POLE ENVIRONMENT

2023.11.14-17 中国·重庆 CHONGQING, CHINA

Characteristics of Lake Ice Phenology in Tibetan Plateau and Analysis of Influencing Factors

Yifan Yu^{1,2} Yuqing Luo^{1,2} Shujin Wang^{1,2}

- ¹ Institute of Tibetan Plateau Research, Chinese Acadamy of Science(ITP,CAS)
- ² University of Chinese Academy of Science(UCAS)

Research Background

Lake Ice

- Long-term records exist
- Shorter ice duration
- Seasonal Ice-cover Lake: Typical characteristics of lakes in temperate regions of the Northern Hemisphere

Figure 1 Ice Duration of TP Lakes(Kropáček, et al, 2013)

Lake Ice on Tibetan Plateau(TP)

- Low latitude and high altitude
- Significant climate change
- Some lakes on TP don't have complete ice cover in winter already(Paikuco, Tangrayumco)
- More lakes to be ice-free in winter in the future

Figure 2 Change of ice within 2001-2020 (Blue shading indicates ice-free years); (a)Tangrayumco, (b) Paikuco

Can we investigate the meteorological conditions leading to winter ice-free status in lakes and the time required to attain this condition?

Research Methods

Field Observations

- Monitoring sites: Lake water temperature profiles; Lake level; Automatic Weather Stations.
- Time-lapse camera: Recording live images of lake ice phenology.

Dataset

- Global annual lake ice phenological dataset 2001-2020 (Wang, et al, 2022)
- A high-resolution near-surface meteorological forcing dataset for the Third Pole region 1979-2020 (He, et al, 2020)

Lake Paikuco in 2020

Results & Future Work

Meteorological Data Analysis

Figure 5 Meteorological Data; temperature(a) wind(b) srad(c) lrad(d)

Further Work

Base on previous **results**: **Meteorological:** Temp: 2021 > 2020Wind: 2021 > 2020Srad: 2021 < 2020 Lrad: 2021 > 2020

Correlation: Full Break-up Day—— Lrad > shum > temp and wind Full Freeze-up Day—— Srad.

Figure 8 RSA Experimental Actual V.s. Predicted

We will then: Selected Paikuco ice duration with downward longwave radiation, air temperature and wind speed for response

Correlation Analysis

Figure 6 Correlation between days of full break-up(a)/freeze-up(b) and meteorological elements

surface analysis.

Table 1 RSA Result of Ice Duration and Three Meteorological Elements						
Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	11085.35	3	3695.12	6.84	0.0052	significant
A-lrad	830.78	1	830.78	1.54	0.2368	
B-temp	139.72	1	139.72	0.2587	0.6195	
C-wind	101.32	1	101.32	0.1876	0.6720	
Residual	7021.59	13	540.12			
Cor Total	18106.94	16				