Zadanie A. Ciąg bez luk

Limit czasowy: 10 sekund Na ocenę: dostateczną

Dany jest n wyrazowy ciąg a_1, a_2, \ldots, a_n liczb całkowitych dodatnich mieszczących się w zakresie typu int. Żadna z podanych liczb nie powtarza się w tym ciągu. Należy utworzyć taki n wyrazowy ciąg liczb b_1, b_2, \ldots, b_n , aby były spełnione obydwa następujące warunki:

- 1. $\{b_1, b_2, \dots, b_n\} = \{1, 2, \dots, n\},\$
- 2. dla każdego $1 \le i \le n$, jeśli a_i jest k-tym najmniejszym elementem zbioru $\{a_1, a_2, \dots, a_n\}$, to $b_i = k$.

Wejście

Dane umieszczone są w kolejnych wierszach. W pierwszym jest liczba n ($1 \le n \le 1000$), a w kolejnych n wierszach znajdują się wyrazy ciągu $\{a_i\}$.

Wyjście

Na wyjściu mamy n liczb. Umieszczone są kolejno b_1, b_2 i tak dalej, każda w oddzielnym wierszu.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
7	2
2	5
8	7
13	1
1	4
5	3
4	6
12	

Zadanie B. Wyrażenie regularne

Limit czasowy: 10 sekund

Na ocenę: dobrą, jeśli rozwiązano też zadanie A

Korzystając ze standardowych bibliotek, zadanie to można rozwiązać tylko w języku C++. Naszym celem jest sprawdzenie, które z podanych wyrazów pasują do danego wyrażenia regularnego.

Wejście

Dane wejściowe znajdują się w kolejnych wierszach. W pierwszym mamy liczbę n ($1 \le n \le 100$) oraz wyrażenie regularne, w kolejnych n wierszach znajdują się poszczególne wyrazy.

Wyjście

W każdym z *n* wierszy ma się znaleźć odpowiedź (TAK lub NIE), w zależności od tego, czy dany wyraz pasuje do regexa.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
3 a*(b c)	TAK
aaac	TAK
b	NIE
aaabc	

Zadanie C. Suma trzech liczb

Limit czasowy: 10 sekund

Na ocenę: bardzo dobrą, jeśli rozwiązano też zadania A i B

Przedstaw podaną liczbę nieparzystą n większą od 6 i mniejszą od 1000 jako sumę trzech liczb pierwszych, n=a+b+c, gdzie $a \le b \le c$. Jeśli dla danego n, takiego przedstawienia można dokonać na kilka sposobów, to wskaż ten, w którym iloczyn $a \cdot b \cdot c$ jest największy. Na przykład liczbę 9 można przedstawić na dwa sposoby: 9=2+2+5 oraz 9=3+3+3. W rozwiązaniu należałoby podać 3,3,3, ponieważ $3 \cdot 3 \cdot 3 > 2 \cdot 2 \cdot 5$.

Wejście

Nieparzysta liczba całkowita n ($7 \le n < 1000$).

Wyjście

Trzy liczby całkowite dodatnie a, b, c (oddzielone przecinkami), takie że $a \le b \le c$ i a + b + c = n i a jest pierwsza i b jest pierwsza i c jest pierwsza, a ich iloczyn $a \cdot b \cdot c$ jest możliwie największy.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
17	5,5,7