CS 4730 Algorithmic Game Theory

Homework #7

Student: Barak Barclay

Answers to homework problems:

- 1. For 0<= a <= 1, Nash flow = a For a > 1, Nash flow = 1/a
- 2. For 0<= a <= 1, total latency of a Nash flow = a
 For a > 1, total latency of a Nash flow = 1
- 3. For $0 \le a \le 1$, $\underline{x_H}^{Opt} = 1$ $\underline{x_L}^{Opt} = 0$

L =
$$x_H$$
 * ax_H + x_L
L = ax_H^2 + 1 - x_H
d/dx(L) = $2ax_H$ - 1 = 0
For a >= 1,
 x_H^{Opt} = 1/2a
 x_L^{Opt} = 1 - 1/2a

4. For $0 \le a \le 1$, L = a

$$L = 1/2a * a/2a + 1 - 1/2a$$

For a >= 1, L = 1 - 1/4a

- 5. $PoA(G^{a >= 0}) = 1/(1 1/4a)$ where a = 1 $PoA(G^{a >= 0}) = 4/3$
- 6. $PoA(G^{a >= 2}) = 1/(1 1/4a)$ where a = 2 $PoA(G^{a >= 2}) = 8/7$