Number Theory

Numbers and Sets - natural numbers – divides — $\exists k \text{ st } b = ka$ - factor - divisor - divisible – prime — only factor are 1 and n- composite - prime counting function $\pi(x)$ — # primes $\leq x$ **Lemma 1.1.** n > 1, then n has prime factor **Theorem 1.2.** \exists *infinitely many primes* - highest common factor / greatest common divisor - coprime / relatively prime - Euclid's algorithm Proposition 1.3. Euclid's algorithm works **Theorem 1.4** (Bezout). $a, b, c \in \mathbb{N}$, then $\exists m, n \text{ st } am + bn = c \iff (a, b) \mid c$ **Proposition 1.5.** p prime, $p \mid ab$, then $p \mid a$ or $p \mid b$

Proof. assume $p \nmid a$, then Bezout

Theorem 1.6 (Fundamental Theorem of Arithmetic). $n \in \mathbb{N}$, then n can be factorised as product of primes uniquely (up to reordering)

Proof. Existence: induction

Uniqueness: $p_1 \mid q_1 \cdots q_k$

- congruent to b modulo $n - n \mid a - b$

Lemma 1.7. n > 1, (a, n) = 1, then $\exists m \text{ st } am \equiv 1 \text{ (multiplicative inverse mod } n)$

Proof. Bezout

- unit —— invertible elements
- multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ or $(\mathbb{Z}/n\mathbb{Z})^*$ —— group of unit
- Euler totient function $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$

Fact. $\phi(p) = p - 1$

Theorem 1.8 (Fermat-Euler). n > 1, (a, n) = 1, then $a^{\phi}(n) \equiv 1 \pmod{n}$

Proof. Langrange's

Corollary 1.9 (Fermat's Little Theorem). $a^{p-1} \equiv 1 \pmod{p}$

Theorem 1.10 (Chinese remainder theorem). $m_1, m_2 > 1$, $(m_1, m_2) = 1$, $a_1, a_2 \in \mathbb{Z}$, then $\exists n$ $st \begin{cases} n \equiv a_1 \pmod{m_1} \\ n \equiv a_2 \pmod{m_2} \end{cases}$, unique up to modulo $m_1 m_2$

Fact. extend to more congruences as long as pairwise coprime

Fact. $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}$

Corollary 1.11. In addition, $(a_1, m_1) = 1, (a_2, m_2) = 1, then (n, m_1 m_2) = 1$

Fact. $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^{\times}$

- multiplicative f(mn) = f(m)f(n) whenever m, n coprime
- totally multiplicative f(mn) = f(m)f(n) for all m, n

Corollary 1.12. ϕ Euler function multiplicative

Proof.
$$(\mathbb{Z}/m_1m_2\mathbb{Z})^{\times} = (\mathbb{Z}/m_1\mathbb{Z})^{\times} \times (\mathbb{Z}/m_2\mathbb{Z})^{\times}$$

Lemma 1.13. p prime, $k \in \mathbb{N}$, then $\phi(p^k) = p^{k-1}(p-1)$

Proof. direct counting $p^k - p^{k-1}$

 $\sum_{d|n} \phi(d)$

Lemma 1.14. $n \in \mathbb{N}$, then $\sum_{d|n} \phi(d) = n$

Proof. prove multiplicity, then work on p^k

Corollary 1.15. f multiplicative $\Rightarrow \sum_{d|n} f(d)$ multiplicative

- $d(n) = \tau(n) = \sum_{d|n} 1 = \#$ divisors
- $-\sigma(n) = \sum_{d|n} d = \text{sum of divisors}$

Theorem 1.16 (Lagrange Theorem). p prime, $f(x) = a_n x^n + \cdots + a_1 x + a_0$, $a_n \nmid p$, then $f(x) \equiv 0 \pmod{p}$ at most n solutions

Proof. induction, $(x - x_0)g(x) \equiv 0 \pmod{p}$, $\mathbb{Z}/p\mathbb{Z}$ no zero divisor

Theorem 1.17. p prime, $(\mathbb{Z}/p\mathbb{Z})$ cyclic

Proof. $d \mid p-1, S_d = \{a : \text{order } d\}, x^d-1 \equiv 0 \text{ at most } d \text{ solution, then either } 0 \text{ or } \phi(d) \text{ solution, but } \sum \phi(d) = p-1$

- primitive root

Lemma 1.18. p prime, then \exists primitive root g st $g^{p-1} = 1 + bp$ where (b, p) = 1

Proof. primitive root a, then a or a + p

Lemma 1.19. p > 2 prime, $j \in \mathbb{N}$, then \exists primitive root $g \mod p$ st $g^{p^{j-1}(p-1)} \not\equiv 1 \pmod{p^{j+1}}$

Proof. induction, same g expansion

Theorem 1.20. p > 2 prime, $j \in \mathbb{N}$, then $(\mathbb{Z}/p^j\mathbb{Z})^{\times}$ cyclic

Proof. induction

Proof. False for p = 2, $(\mathbb{Z}/8\mathbb{Z})^{\times}$

2 Quadratic residue

- quadratic residue —— (a, n) = 1, \exists solution for $x^2 \equiv a \pmod{n}$
- quadratic non-residue

Lemma 2.1. p odd prime, then \exists exactly $\frac{p-1}{2}$ quadratic residues modulo p

Proof. Method 1: pair a, -a, then at most $\frac{p-1}{2}$, then no duplicate Method 2: primitive root

– Legendre symbol $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ quadratic residue modulo } p \\ -1 & \text{if } a \text{ quadratic non-residue modulo } p \\ 0 & \text{if } (a,p) > 1 \end{cases}$

Theorem 2.2 (Euler's criterion). p odd prime, then $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}$

Proof. $p \mid a$ trivial, $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$, primitive root g, $a = g^{2i}$ give $\frac{p-1}{2}$ sol, so rest are non-residue

Corollary 2.3. p prime, $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{ab}{p}\right)$ (total multiplicative)

Proof. p=2 trivial, p>2 follows from Euler's criterion

Corollary 2.4. p odd prime, then $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

Proof. Euler criterion $\Rightarrow \equiv$, but both $\in \{0, \pm 1\}$

– $\langle b \rangle$ — p odd prime, lies in $\left[-\frac{p}{2}, \frac{p}{2} \right]$

Proposition 2.5 (Gauss' lemma). p odd prime, (a,p)=1, then $\left(\frac{a}{p}\right)=(-1)^{\nu}$ where $\nu=\#\left\{k:k\in[1,\frac{p-1}{2}],\langle ka\rangle<0\right\}$

Proof. $\langle a \rangle, \dots, \left\langle \frac{p-1}{2} a \right\rangle$ are $\pm 1, \dots, \pm \left(\frac{p-1}{2} \right)$ in some order

Corollary 2.6. p odd prime, then $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$

Theorem 2.7 (Law of Quadratic Reciprocity). p, q odd primes, then $\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\left(\frac{p}{q}\right)$

Proof. write $\langle bq \rangle = bq - cp$, then count (b,c) in $[0,\frac{p}{2}] \times [0,\frac{q}{2}]$

– Jacobi symbol $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_k}\right) - \cdots - n = p_1 \cdots p_k$

Fact. $\left(\frac{a}{n}\right) = 1 \not\Rightarrow a \text{ quadratic residue}$

Lemma 2.8.

- (i) n odd, $a, b \in \mathbb{Z}$, then $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$
- (ii) $m, n \text{ odd}, a \in \mathbb{Z}, \text{ then } \left(\frac{a}{mn}\right) = \left(\frac{a}{m}\right) \left(\frac{a}{n}\right)$

Lemma 2.9. n odd, then $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$ and $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$

Proof. count $p_i \equiv -1 \pmod{4}$ and $p_i \equiv \pm 3 \pmod{8}$

Theorem 2.10 (LQR for Jacobi symbol). $m, n \ odd, \ then \left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \left(\frac{n}{m}\right)$

Proof. consider $\prod_i \prod_j (-1)^{\frac{p_i-1}{2} \frac{q_j-1}{2}}$, count $p_i, q_j \equiv -1 \pmod{4}$

3 Binary Quadratic Forms

- binary quadratic form $f(x,y) = ax^2 + bxy + cy^2$

Notation. (a,b,c) or $\begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$

Fact. $f = (x, y) \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

– unimodular substitution —— $\begin{cases} X = px + qy \\ Y = rx + sy \end{cases} , \, ps - qr = 1$

Fact. Equivalently, $\begin{pmatrix} X \\ Y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$ where $A \in SL_2(\mathbb{Z})$

– equivalent —— $(a,b,c) \sim (a',b',c')$ or $f \sim f'$ if related to unimodular substitution

Fact. $T \sim A^{\top}TA$ where $A \in SL_2(\mathbb{Z})$

- discriminant $disc(f) = b^2 - 4ac$

Lemma 3.1. $f \sim f'$, then $\operatorname{disc}(f) = \operatorname{disc}(f')$

Proof.
$$T = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$$
, then $\operatorname{disc}(f) = -4 \det(T)$ and $\operatorname{disc}(f') = -4 \det(A^{\top}TA)$

Lemma 3.2. $\exists BQF f, \operatorname{disc}(f) = d \iff d \equiv 0, 1 \pmod{4}$

Proof.
$$(\Rightarrow)$$
 $d = b^2 - 4ac$
 (\Leftarrow) $(1,0,-\frac{d}{4})$ and $(1,0,\frac{1-d}{4})$

- positive definite $f(x,y) \ge 0$ for all x,y
- negative definite $f(x, y) \leq 0$ for all x, y
- indefinite f(x,y) > 0 and f(x',y') < 0 for some x,y,x',y'

Lemma 3.3. f BQF, disc(f) = d, $a \neq 0$,

- (i) d < 0, a > 0, then f positive definite
- (ii) d < 0, a < 0, then f negative definite
- (iii) d > 0, then f indefinite

Proof. $4af(x,y) = (2ax + by)^2 - dy^2$ d < 0, trivial, equality iff x = y = 0d > 0, $4af(x,y) = 4a^2(x - \theta_+ y)(x - \theta_- y)$, $\theta_{\pm} = -\left(\frac{b \pm \sqrt{d}}{2a}\right)$

$$-S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, S: (a, b, c) \mapsto (c, -b, a)$$

$$-T_{\pm} = \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}, T_{\pm} : (a, b, c) \mapsto (a, b \pm 2a, a \pm b + c)$$

- reduced — positive definite BQF, $-a < b \le a < c$ or $0 \le b \le a = c$

Lemma 3.4. every positive define $BQF \sim reduced$ form

Proof. apply S, T_{\pm}

Lemma 3.5. f reduced positive definite BQF, coprime x, y or x = y = 0, then 0, a, c, a - |b| + c smallest integers represented by f

Proof. $x, y \in \{0, \pm 1\}$, if $|x| \ge |y| > 0$, then $f \ge a - |b| + c$, similarly for $|y| \ge |x|$

Theorem 3.6. (Uniqueness) every positive define $BQF \sim unique \ reduced \ form$

Proof. smallest represented int $\Rightarrow a = a'$, then 2nd smallest $\Rightarrow c = c'$, by disc, $b = \pm b'$, (a,b,c),(a,-b,c) both reduced $\Rightarrow \begin{cases} f(\pm 1,0) \\ f(0,\pm 1) \end{cases}$ match $\begin{cases} f'(\pm 1,0) \\ f'(0,\pm 1) \end{cases}$, then $\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so b=0

Proposition 3.7. d < 0 fixed, then finite reduced form with $\operatorname{disc}(f) = d$

Proof. $b^2 < ac$ bound a, hence |b|, then c uniquely determined through disc

- class number of d, h(d) — # reduced form with $\operatorname{disc}(f) = d$

Lemma 3.8. $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, then x', y' coprime $\iff x, y$ coprime

Proof. $(x,y) \mid (x',y')$

- f represents n f BQF, $\exists x, y, f(x, y) = n$
- f properly represents n f BQF, $\exists x, y, f(x, y) = n$, (x, y) = 1

Fact. equivalent form properly represent the same numbers

Lemma 3.9. $n \in \mathbb{N}$, n properly represented by $f \iff f \sim f'$ which first coefficient n

 $\begin{array}{l} \textit{Proof.} \; \Leftarrow \; \text{trivial} \\ \Rightarrow \; \text{Bezout} \end{array}$

Theorem 3.10. $n \in \mathbb{N}$,

- (i) n properly represented by f, $\operatorname{disc}(f) = d$, then \exists solution to $\omega^2 \equiv d \pmod{4n}$
- (ii) if \exists solution to $\omega^2 \equiv d \pmod{4n}$, then $\exists f \text{ st } n \text{ properly represented by } f, \operatorname{disc}(f) = d$

Proof. f' first coefficient n, $\operatorname{disc}(f') = b^2 - 4nc = d$

Fact. h(d) = 1, then n properly represented by $f \iff \exists \text{ solution to } \omega^2 \equiv d \pmod{4n}$

Proposition 3.11 (Hensel's Lemma). f polynomial, p odd prime, $f(x_1) \equiv 0 \pmod{p}$, $f'(x_1) \not\equiv 0 \pmod{p}$, then $\exists x_r \ st \ f(x_r) \not\equiv 0 \pmod{p^r}$ for each $r \geq 1$

Proof. $x_r = x_{r-1} + \lambda p^{r-1}$

Theorem 3.12. $n = x^2 + y^2$ where $(x, y) = 1 \iff 4 \nmid n$ and all odd prime factors $p_i \equiv 1 \pmod{4}$

Proof. n properly represented $\iff \exists$ sol to $\omega^2 \equiv -4 \pmod{4n}$, then CRT, Hensel

Corollary 3.13. $n = x^2 + y^2 \iff each \ p_i \equiv 3 \pmod{4}$ occurs to even power

Theorem 3.14 (Langrange). every $n \in \mathbb{N}$ sum of four squares

4 Distribution of Primes

Theorem 4.1 (Dirichlet's theorem). n > 1, (n, a) = 1, then \exists infinite many primes $p \equiv a \pmod{n}$

Proposition 4.2. $x \ge 10$, then $\sum_{p \le x} \frac{1}{p} \ge \log \log x - \frac{1}{2}$

Proof.
$$\prod (1 - \frac{1}{p})^{-1} \ge \log x$$
, $\log \left(1 - \frac{1}{p}\right)^{-1} - \frac{1}{p} = \frac{1}{2p(p-1)}$

Fact. $\sum \frac{1}{p} = \log \log x + c + O(\frac{1}{\log x})$

Corollary 4.3. infinitely many primes

 $-\pi(x)$ — # primes $\leq x$

Proposition 4.4. $\pi \ge c \log x$ for some c > 0

Proof.
$$y = m^2 \prod p_i^{\alpha_i}$$

– Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ —— $\mathrm{Re}(s) > 1$

Lemma 4.5. Re(s) > 1,

- (i) $\sum \frac{1}{n^s}$ converges absolutely
- (ii) converges uniformly on $Re(s) \ge 1 + \delta$, hence analytic on Re(s) > 1

Proposition 4.6 (Euler product for ζ). Re(s) > 1, then $\zeta(s) = \prod_p (1 - p^{-s})^{-1}$

Proof.
$$\prod_{p \leq N} (1 + p^{-s} + \dots + p^{-Ms})$$
 where $p^M < N$, then uniform bound in $M, M \to \infty$, then $N \to \infty$

Lemma 4.7. Re(s) > 1, then $\zeta(s) \neq 0$

Proof. $|\zeta(s) \times \prod_{p \le x} (1 - p^{-s})| \ge 1 - \sum_{n=x+1} n^{-\sigma} \ge \frac{1}{2}$

– Gamma function $\Gamma(z)=\int_0^\infty e^{-t}t^{z-1}dt$ —— for $\mathrm{Re}(z)>0$

Fact. $z\Gamma(z) = \Gamma(z-1)$

Fact. $\Gamma(n) = (n-1)!$

– completed ζ function $\Xi(s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$

Fact. $\Xi(s) = \Xi(1-s)$

- trivial zeros —— at s = -2, -4, -6, ...
- Mobius function $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \cdots p_k \text{ where } p_i \text{ distinct primes} \\ 0 & \text{if } n \text{ not square-free} \end{cases}$

- Mertans function $\sum_{n < x} \mu(n)$
- $-f \sim g \iff \lim \frac{f}{g} \to 1$

Theorem 4.8 (Prime Number Theorem). $\pi(x) \sim \frac{x}{\log x}$

Theorem 4.9 (Prime Number Theorem). $\pi(x) = \int_2^x \frac{dt}{\log t} + O(xe^{-c\sqrt{\log x}})$

- Von Mangoldt function $\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{otherwise} \end{cases}$
- $-\psi(x) = \sum_{1 \le n \le x} \Lambda(n)$

Fact. $\psi(x) \sim x$

– Dirichlet series for (a_n) —— $\sum \frac{a_n}{n^s}$

Lemma 4.10. if $\operatorname{Re}(s) > 1$, then $\frac{\zeta'(s)}{\zeta(s)} = -\sum \frac{\Lambda(n)}{n^s}$

Proof. $\zeta(s) = \prod (1 - p^{-s})^{-1}$, then differentiate $\log(\zeta(s))$

Fact. $\psi(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{\zeta'(0)}{\zeta(0)}$ where ρ all zeros of ζ

- $N\left(x,\sqrt{x}\right)$ # n not divisible by any prime $\leq \sqrt{x},\,1\leq n\leq x$
- $-A_i = \{n : i \mid n\}$

Proposition 4.11 (Legendre's formula). $x \ge 10$,

(i)
$$\pi(x) = \pi(\sqrt{x}) - 1 + N(x, \sqrt{x})$$

(ii)
$$N(x, \sqrt{x}) = \lfloor x \rfloor - \sum |A_i| + \sum |A_{i_1} \cap A_{i_2}| - \dots + (-1)^{\pi(\sqrt{x})} |\cap A_p|$$

Proof. trivial, -1 as not counting 1

Lemma 4.12. $n \in \mathbb{N}, \ \frac{2^{2n}}{2n} \le {2n \choose n} < 2^{2n}$

Proof.
$$2n\binom{2n}{n} \ge (1+1)^{2n} > \binom{2n}{n}$$

– primorial function $\prod_{p < x} p$

Lemma 4.13. $x \in \mathbb{R}, x \ge 1, then \prod_{p \le x} p \le 4^x$

Proof.
$$\prod_{k+2 \le p \le 2k+1} p \mid {2k+1 \choose k+1}, 2{2k+1 \choose k+1} = {2k+1 \choose k+1} + {2k+1 \choose k}$$

Theorem 4.14 (Bertrand's postulate). $n \in \mathbb{N}$, then $\exists p, n$

Proof.
$$\alpha(p, N) = v_p(N!)$$
, $\alpha(p) = \alpha(p, 2n) - 2\alpha(p, n)$
bound on power: $\alpha(p) \leq \frac{\log(2n)}{\log p}$, $p^{\alpha(p)} \leq 2n$
bound on larger prime: $p^2 > n$, $\alpha(p) \leq 1$
$$\frac{2n}{3} , $\alpha(p) = 0$
$$\begin{cases} T_1 = \prod_{p \leq \sqrt{2n}} p^{\alpha(p)} \leq (2n)^{\pi(2n)} \\ T_2 = \prod_{\sqrt{2n}$$$$