Fully Dynamic de Bruijn Graphs

Alan Kuhnle , Victoria Crawford, Yuanpu Xie , Zizhao Zhang, Ke Bo

April 10, 2017

Introduction

2 Data Structure

Implementation

Genome assembly: De-Bruijn graph

De-Bruijn graph:Reconstructing a string from a set of its k-mers

- Data structure method on genome assembly.
- 2 Consist of multiple K-mers which generated by genome sequence.
- 3 Same vertices, K-1 mers are glue together in the final step.

Fig. 1. The de Bruijn graph constructed from string ATGGAAGTCGATGGAAG, with k=7.

Advantages

 Next-generation sequencing (NGS) data usually comes with large volume and short size, which has large amount of repetitive regions.

Advantages

- Next-generation sequencing (NGS) data usually comes with large volume and short size, which has large amount of repetitive regions.
- Compared to 'overlap-consensus-layout' method, De Bruijn graph-based assembly approach handles the assembly of repetitive regions better

Application problem

- Using de Bruijn graph in practice is the high memory occupation for certain organisms
- human genome encoded in a de Bruijn graph with a k-mer size of 27 requires 15GB to store the node sequences
- Bulges and whirls occurs because of sequencing errors or repeats in the genome, which leads to the complexity of the graph increasing

How to solve the problem of complex graph and memory space inefficiency?

Fully Dynamic de Bruijn Graphs(Belazzougui et al. (2016))

Dynamic DB method trying to simplify the graph and make memory space more efficient

- Nodes and edges can be inserted and deleted efficiently
- k-mers are represented by integers using a combination of Karp-Rabin hashing and minimal perfect hashing.
- A partition of the graph into a forest allows efficient membership queries with no error.

- Implement the data structure from the paper.
- ② Evaluate our data structure on the E.coli and yeast DNA sequence data .
- 3 Compare our data structure with alternative data structure.

Hash function f

The hashing function we use is the combination of Karp-Rabin and minimal perfect hashing.

- The hashing function we use is the combination of Karp-Rabin and minimal perfect hashing.
- **2 Karp-Rabin**: Given a prime P and base r, a Rabin-Karp hash function f is a function defined over the space of all strings of length k such that $f(x_1...x_k) = (\sum_{i=1}^n x_i r^i) \bmod P$.

Hash function f

- The hashing function we use is the combination of Karp-Rabin and minimal perfect hashing.
- **2 Karp-Rabin**: Given a prime P and base r, a Rabin-Karp hash function f is a function defined over the space of all strings of length k such that $f(x_1...x_k) = (\sum_{i=1}^n x_i r^i) \bmod P$.
- **Minimal perfect hashing**: A minimal perfect hash function f for S is a function defined on the universe such that f is one-to-one on S and the range is $\{0, ..., n-1\}$.

Hash function f

- The hashing function we use is the combination of Karp-Rabin and minimal perfect hashing.
- **2 Karp-Rabin**: Given a prime P and base r, a Rabin-Karp hash function f is a function defined over the space of all strings of length k such that $f(x_1...x_k) = (\sum_{i=1}^n x_i r^i) \bmod P$.
- **Minimal perfect hashing**: A minimal perfect hash function f for S is a function defined on the universe such that f is one-to-one on S and the range is $\{0, ..., n-1\}$.

Lemma

Given a static set N of n k-tuples over an alphabet Σ of size σ , with high probability in O(kn) expected time we can build a function $f: \Sigma^k \longrightarrow \{0, \cdots, n-1\}$ with the following properties:

lacktriangle when its domain is restricted to N, f is bijective.

Lemma

Given a static set N of n k-tuples over an alphabet Σ of size σ , with high probability in O(kn) expected time we can build a function $f: \Sigma^k \longrightarrow \{0, \cdots, n-1\}$ with the following properties:

- \bullet when its domain is restricted to N, f is bijective.
- 2 we can store f in $O(n + logk + log \sigma)$

Lemma

Given a static set N of n k-tuples over an alphabet Σ of size σ , with high probability in O(kn) expected time we can build a function $f: \Sigma^k \longrightarrow \{0, \cdots, n-1\}$ with the following properties:

- \bullet when its domain is restricted to N, f is bijective.
- 2 we can store f in $O(n + \log k + \log \sigma)$
- 3 given a k-tuple v, we can compute f(v) in O(k) time.

Lemma

Given a static set N of n k-tuples over an alphabet Σ of size σ , with high probability in O(kn) expected time we can build a function $f: \Sigma^k \longrightarrow \{0, \cdots, n-1\}$ with the following properties:

- \bullet when its domain is restricted to N, f is bijective.
- 2 we can store f in $O(n + log k + log \sigma)$
- **3** given a k-tuple v, we can compute f(v) in O(k) time.
- given u and v, such that suffix of u of length k-1 is the prefix of v of length, or vice versa, we can compute f(v) in O(1) time if we already computed f(u).

 A string of nucleotides has an alphabet of size 4, so we can look at that string as a number written in base 4. For example, we can denote A as 0, C as 1, G as 2, and T as 3.

- A string of nucleotides has an alphabet of size 4, so we can look at that string as a number written in base 4. For example, we can denote A as 0, C as 1, G as 2, and T as 3.
- If we set P as 13. "ATTC" can be hashed to $(4^4 \cdot 0 + 4^3 \cdot 3 + 4^2 \cdot 3 + 4^1 \cdot 1) \mod 13$.

- A string of nucleotides has an alphabet of size 4, so we can look at that string as a number written in base 4. For example, we can denote A as 0, C as 1, G as 2, and T as 3.
- If we set P as 13. "ATTC" can be hashed to $(4^4 \cdot 0 + 4^3 \cdot 3 + 4^2 \cdot 3 + 4^1 \cdot 1) \mod 13$.
- Similarly, "TTCG" can be computed by $4^4 \cdot 3 + 4^3 \cdot 3 + 4^2 \cdot 1 + 4^1 \cdot 2 \mod 13$.

- A string of nucleotides has an alphabet of size 4, so we can look at that string as a number written in base 4. For example, we can denote A as 0, C as 1, G as 2, and T as 3.
- If we set P as 13. "ATTC" can be hashed to $(4^4 \cdot 0 + 4^3 \cdot 3 + 4^2 \cdot 3 + 4^1 \cdot 1) \mod 13$.
- Similarly, "TTCG" can be computed by $4^4 \cdot 3 + 4^3 \cdot 3 + 4^2 \cdot 1 + 4^1 \cdot 2 \mod 13$.
- Suppose we only have two k-mers, one qualified minimal perfect hashing function f needs to ensure that f("ATTC") = 0 and f("TTCG") = 1 or f("ATTC") = 1 and f("TTCG") = 0.

Lemma

If N is dynamic then we can maintain a function f as described in 1 except that:

• the range of f becomes $\{0, \dots, 3n-1\}$.

Lemma

- the range of f becomes $\{0, \dots, 3n-1\}$.
- ② when its domain is restricted to N, f is injective.

Lemma

- the range of f becomes $\{0, \dots, 3n-1\}$.
- ② when its domain is restricted to N, f is injective.
- **3** the space bound for f is $O(n(loglogn + loglog\sigma))$ bits with high probability.

Lemma

- **1** the range of f becomes $\{0, \dots, 3n-1\}$.
- ② when its domain is restricted to N, f is injective.
- **3** the space bound for f is $O(n(loglogn + loglog\sigma))$ bits with high probability.
- \bullet insertions and deletions take O(k) amortized expected time.

Lemma

- **1** the range of f becomes $\{0, \dots, 3n-1\}$.
- ② when its domain is restricted to N, f is injective.
- **3** the space bound for f is $O(n(loglogn + loglog\sigma))$ bits with high probability.
- lacktriangledown insertions and deletions take O(k) amortized expected time.
- \odot the data structure may work incorrectly with very low probability (inverse polynomial in n).

Representation of edges in de Bruijn graph

1 The edges (E) of G are stored in two binary matrices, IN and OUT, each of size $n \times |\Sigma|$. These two matrices are used to maintained the IN and OUT edge of each vertex. We can move each vertex forward and backward using this information.

Representation of edges in de Bruijn graph

- **1** The edges (E) of G are stored in two binary matrices, IN and OUT, each of size $n \times |\Sigma|$. These two matrices are used to maintained the IN and OUT edge of each vertex. We can move each vertex forward and backward using this information.
- 2 The IN and OUT matrices can be constructed as:

$$(u = ba_1 \dots a_{k-1}, v = a_1 a_2 \dots a_{k-1} c) \in E$$

 $\iff OUT(f(u), c) = 1, IN(f(v), b) = 1.$

Example of IN and OUT matrices

Here is a simple de bruijin graph:

Example of IN and OUT matrices

Here is a simple de bruijin graph:

Suppose f(AGG) = 0, f(GGC) = 1, f(GCT) = 2, the *IN* and *OUT* matrices can be initialized as:

Example of IN and OUT matrices

IN	Α	G	С	Т
0(AGG)	0	0	0	0
1(GGC)	1	0	0	0
2(GCT)	0	1	0	0

OUT	А	G	С	T
0(AGG)	0	0	1	0
1(GGC)	0	0	0	1
2(GCT)	0	0	0	0

(a)

In order to detect false positives in our data structure maintaining a reasonable memory usage. Our strategy is to sample a subset of nodes for which we store the plain-text k-tuple and connect all the unsampled nodes to the sampled ones.

- In order to detect false positives in our data structure maintaining a reasonable memory usage. Our strategy is to sample a subset of nodes for which we store the plain-text k-tuple and connect all the unsampled nodes to the sampled ones.
- ② More specifically, partition an undirected graph G into a forest \mathcal{F} where each $T \in \mathcal{F}$ with $\alpha \leq h(T) \leq 3\alpha$, where h(T) is the height of tree T.

More specifically, partition an undirected graph G into a forest \mathcal{F} where each $T \in \mathcal{F}$ with $\alpha \leq h(T) \leq 3\alpha$, where h(T) is the height of tree T.

More specifically, partition an undirected graph G into a forest \mathcal{F} where each $T \in \mathcal{F}$ with $\alpha \leq h(T) \leq 3\alpha$, where h(T) is the height of tree T.

De bruijn graph

De Bruijn graph and Forest

More specifically, partition an undirected graph G into a forest \mathcal{F} where each $T \in \mathcal{F}$ with $\alpha \leq h(T) \leq 3\alpha$, where h(T) is the height of tree T.

De Bruijn graph and Forest

More specifically, partition an undirected graph G into a forest \mathcal{F} where each $T \in \mathcal{F}$ with $\alpha \leq h(T) \leq 3\alpha$, where h(T) is the height of tree T.

Facts about de Bruijn graph and forests

① Given a static σ -aray kth-order de Bruijn graph G with n nodes, with high probability in $O(kn + n\sigma)$ time we can store G in $O(\sigma n)$ bits plus $O(klog\sigma)$ bits for each connected component in the underlying undirected graph, such that:

Facts about de Bruijn graph and forests

- ① Given a static σ -aray kth-order de Bruijn graph G with n nodes, with high probability in $O(kn + n\sigma)$ time we can store G in $O(\sigma n)$ bits plus $O(klog\sigma)$ bits for each connected component in the underlying undirected graph, such that:
- ② checking whether a node is in G takes $O(klog\sigma)$ time.

Facts about de Bruijn graph and forests

- Given a static σ -aray kth-order de Bruijn graph G with n nodes, with high probability in $O(kn + n\sigma)$ time we can store G in $O(\sigma n)$ bits plus $O(klog\sigma)$ bits for each connected component in the underlying undirected graph, such that:
- ② checking whether a node is in G takes $O(klog\sigma)$ time.
- 3 listing the edges incident to a node we are visiting takes $O(\sigma)$ time, and crossing an edge takes O(1) time.

• K-mer representation

- K-mer representation
- Hash function implementation

- K-mer representation
- Hash function implementation
- the BitArray class

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation
- Forest construction procedure

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation
- Forest construction procedure
- Membership query procedure

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation
- Forest construction procedure
- Membership query procedure
- Dynamic edges (Partially complete)

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation
- Forest construction procedure
- Membership query procedure
- Dynamic edges (Partially complete)
- Dynamic nodes (May not get to this)

- K-mer representation
- Hash function implementation
- the BitArray class
- IN, OUT, and forest implementation
- Forest construction procedure
- Membership query procedure
- Dynamic edges (Partially complete)
- Dynamic nodes (May not get to this)
- "Semi-dynamic De Bruijn Graph"

 Our program takes as input a fasta file and a kmer size, and constructs the data structure

- Our program takes as input a fasta file and a kmer size, and constructs the data structure
- \bullet We use KBF^1 library in order to read in all kmers of length K and $K{+}1$

- Our program takes as input a fasta file and a kmer size, and constructs the data structure
- ullet We use KBF 1 library in order to read in all kmers of length K and K+1
- Each kmer is represented as an 64 bit integer where pairs of consecutive bits represent letters A=00, C=01, G=10, and T=11.

- Our program takes as input a fasta file and a kmer size, and constructs the data structure
- ullet We use KBF 1 library in order to read in all kmers of length K and K+1
- Each kmer is represented as an 64 bit integer where pairs of consecutive bits represent letters A=00, C=01, G=10, and T=11.
- Example:

$$\underbrace{\frac{\text{Zeros}}{0000\cdots11100100}}_{\text{ZF}} = TGCA$$

¹https://github.com/Kingsford-Group/kbf

• Recall hash function f maps K-mer m to $\{0, ..., n-1\}$ where n is the number of kmers in the graph.

- Recall hash function f maps K-mer m to $\{0, ..., n-1\}$ where n is the number of kmers in the graph.
- Recall: the hash function is a minimal perfect hash function composed with a Karp-Rabin hash function.

- Recall hash function f maps K-mer m to $\{0, ..., n-1\}$ where n is the number of kmers in the graph.
- Recall: the hash function is a minimal perfect hash function composed with a Karp-Rabin hash function.
- How do we construct the Karp-Rabin hash function?

• For the prime P, pick the smallest prime greater than Kn^2 .

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base
- Test if this Karp-Rabin hash is injective on the set of K-mers

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base
- Test if this Karp-Rabin hash is injective on the set of K-mers
- If not injective, try a new base r.

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base
- Test if this Karp-Rabin hash is injective on the set of K-mers
- If not injective, try a new base r.
- Powers of $r: r, r^2, ..., r^K(modP)$ are precomputed and stored for use in Karp-Rabin computation

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base
- Test if this Karp-Rabin hash is injective on the set of K-mers
- If not injective, try a new base r.
- Powers of $r: r, r^2, ..., r^K(modP)$ are precomputed and stored for use in Karp-Rabin computation
- Even though P and powers can be stored in 64-bit integer, computation requires slow 128-bit arithmetic, for which we used Boost² library type.

- For the prime P, pick the smallest prime greater than Kn^2 .
- Pick a random number r in $\{1, ..., P\}$ for the base
- Test if this Karp-Rabin hash is injective on the set of K-mers
- If not injective, try a new base r.
- Powers of $r: r, r^2, ..., r^K (modP)$ are precomputed and stored for use in Karp-Rabin computation
- Even though P and powers can be stored in 64-bit integer, computation requires slow 128-bit arithmetic, for which we used Boost² library type.
- So now we have a Karp-Rabin hash function defined by r and P which hashes all of the kmers in our set to integers injectively.

• Recall: A minimal perfect hash function on a set A of size n is a hash function that maps elements of A injectively to the set $\{0, ..., n-1\}$.

- Recall: A minimal perfect hash function on a set A of size n is a hash function that maps elements of A injectively to the set $\{0, ..., n-1\}$.
- We use the BBHash³ library to build a minimal perfect hash function on the image of our kmers under the Karp-Rabin hash.

- Recall: A minimal perfect hash function on a set A of size n is a hash function that maps elements of A injectively to the set $\{0, ..., n-1\}$.
- We use the BBHash³ library to build a minimal perfect hash function on the image of our kmers under the Karp-Rabin hash.
- We store our base r, the prime P, and our MPHF object from BBHash, and we can now hash any kmer to $\{0, ..., n-1\}$.

- Recall: A minimal perfect hash function on a set A of size n is a hash function that maps elements of A injectively to the set $\{0, ..., n-1\}$.
- We use the BBHash³ library to build a minimal perfect hash function on the image of our kmers under the Karp-Rabin hash.
- We store our base r, the prime P, and our MPHF object from BBHash, and we can now hash any kmer to $\{0, ..., n-1\}$.
- Note that the hash function can hash any kmer, but is bijective when restricted to kmers that actually exist in our De Bruijn graph.

- Recall: A minimal perfect hash function on a set A of size n is a hash function that maps elements of A injectively to the set $\{0, ..., n-1\}$.
- We use the BBHash³ library to build a minimal perfect hash function on the image of our kmers under the Karp-Rabin hash.
- We store our base r, the prime P, and our MPHF object from BBHash, and we can now hash any kmer to $\{0, ..., n-1\}$.
- Note that the hash function can hash any kmer, but is bijective when restricted to kmers that actually exist in our De Bruijn graph.
- That completes the generation of the hash function.

³https://github.com/rizkg/BBHash

Construction of Hash function

```
1: procedure GENERATEHASH
    InputS, a set of n k-tuples over an alphabet \sum of size \sigma
       R = \max(\sigma, kn^2)
 2:
     P = getPrime(R)
 3:
      r = \text{randomNumber}(0, P - 1)
 4:
       f = rabinHash(r, P)
 5:
       while isInjective(f, S) is FALSE do
 6:
           r = \text{randomNumber}(0, P - 1)
 7:
           f = rabinHash(r, P)
8:
       end while
g.
       g = minimalPerfectHash(f(S));
10:
       return g \circ f;
11:
12: end procedure
```

Updating a Karp-Rabin value

• If we have a K-mer m, and its (Karp-Rabin) hash value f(m), suppose we want to move to a neighbor K-mer n and get its hash value f(n);

Updating a Karp-Rabin value

- If we have a K-mer m, and its (Karp-Rabin) hash value f(m), suppose we want to move to a neighbor K-mer n and get its hash value f(n);
- We can update the KR value in O(1) rather than recomputing from scratch.

Updating a Karp-Rabin value

- If we have a K-mer m, and its (Karp-Rabin) hash value f(m), suppose we want to move to a neighbor K-mer n and get its hash value f(n);
- We can update the KR value in O(1) rather than recomputing from scratch.
- For example, if n is an OUT-neighbor with letter last, and m starts with letter first:

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

Updating a Karp-Rabin value

- If we have a K-mer m, and its (Karp-Rabin) hash value f(m), suppose we want to move to a neighbor K-mer n and get its hash value f(n);
- We can update the KR value in O(1) rather than recomputing from scratch.
- For example, if n is an OUT-neighbor with letter last, and m starts with letter first:

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

• What is the problem with naively implementing this update?

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

• First problem is that since f(m) was computed mod P, first term might be negative.

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

- First problem is that since f(m) was computed mod P, first term might be negative.
- Second problem is we can't use the ordinary division algorithm modulo P.

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

- First problem is that since f(m) was computed mod P, first term might be negative.
- Second problem is we can't use the ordinary division algorithm modulo P.
- Solution to second problem: precompute $r^{-1} \mod P$ and store it. (Requires generalized Euclidean algorithm)

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

- First problem is that since f(m) was computed mod P, first term might be negative.
- Second problem is we can't use the ordinary division algorithm modulo P.
- Solution to second problem: precompute $r^{-1} \mod P$ and store it. (Requires generalized Euclidean algorithm)
- Solution to first problem? Hint: What is P mod P?

$$f(n) = \frac{(f(m) - first \cdot r)}{r} + last \cdot r^{K}$$

- First problem is that since f(m) was computed mod P, first term might be negative.
- Second problem is we can't use the ordinary division algorithm modulo P.
- Solution to second problem: precompute $r^{-1} \mod P$ and store it. (Requires generalized Euclidean algorithm)
- Solution to first problem? Hint: What is P mod P?
- Add $(4P first \cdot r)$ to f(m), as this will always be nonnegative.

• How to store bits compactly?

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.
- Therefore, an array of bools wastes 7 unused bits for each stored bit.

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.
- Therefore, an array of bools wastes 7 unused bits for each stored bit.
- In order to make our data structure as compact as possible, we implemented a BitArray class that is used in multiple places.

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.
- Therefore, an array of bools wastes 7 unused bits for each stored bit.
- In order to make our data structure as compact as possible, we implemented a BitArray class that is used in multiple places.
- A BitArray essentially is an array of 32-bit ints where we access individual bits of data by bitwise operations.

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.
- Therefore, an array of bools wastes 7 unused bits for each stored bit.
- In order to make our data structure as compact as possible, we implemented a BitArray class that is used in multiple places.
- A BitArray essentially is an array of 32-bit ints where we access individual bits of data by bitwise operations.
- Each bit of an integer is treated as an element in the array and can be set, returned as a bool, etc..

- How to store bits compactly?
- In C++, bool type takes at least 1 byte.
- Therefore, an array of bools wastes 7 unused bits for each stored bit.
- In order to make our data structure as compact as possible, we implemented a BitArray class that is used in multiple places.
- A BitArray essentially is an array of 32-bit ints where we access individual bits of data by bitwise operations.
- Each bit of an integer is treated as an element in the array and can be set, returned as a bool, etc..
- This will slow data access down since multiple operations are required for each access, but much more memory efficient.

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{\text{}}$$

• Example with two ints (each containing 32 bits).

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{\text{}}$$

• access(33):

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{\text{}}$$

- access(33):
 - First computes int index: 33/32 = 1

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{\text{}}$$

- access(33):
 - First computes int index: 33/32 = 1
 - Next compute which bit in this int: $33 = 1 \pmod{32}$

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{\text{}}$$

- access(33):
 - First computes int index: 33/32 = 1
 - Next compute which bit in this int: $33 = 1 \pmod{32}$
 - To get value of this bit, shift it to right-most position and do bitwise AND with 1.

$$\underbrace{010\cdots}_{\text{int }0}\underbrace{101\cdots}_{}$$

- access(33):
 - First computes int index: 33/32 = 1
 - Next compute which bit in this int: $33 = 1 \pmod{32}$
 - To get value of this bit, shift it to right-most position and do bitwise AND with 1.
- With this class, only waste at most 31 bits in memory per instance of the class.

• IN and OUT are binary matrices of size n (number of kmers) by σ (the size of our alphabet, 4) that store edge information.

- IN and OUT are binary matrices of size n (number of kmers) by σ (the size of our alphabet, 4) that store edge information.
- The rows are hash values (representing each node) and the columns represent letters.

- IN and OUT are binary matrices of size n (number of kmers) by σ (the size of our alphabet, 4) that store edge information.
- The rows are hash values (representing each node) and the columns represent letters.
- We store all entries in single BitArray of size $n \cdot \sigma$.

- IN and OUT are binary matrices of size n (number of kmers) by σ (the size of our alphabet, 4) that store edge information.
- The rows are hash values (representing each node) and the columns represent letters.
- We store all entries in single BitArray of size $n \cdot \sigma$.
- So we guarantee to use only $n\sigma + 31$ bits of memory for each of IN,OUT.

- IN and OUT are binary matrices of size n (number of kmers) by σ (the size of our alphabet, 4) that store edge information.
- The rows are hash values (representing each node) and the columns represent letters.
- We store all entries in single BitArray of size $n \cdot \sigma$.
- So we guarantee to use only $n\sigma + 31$ bits of memory for each of IN,OUT.
- To construct, simply read through edge k+1-mers and set the correct index of each of IN, OUT.

• The forest is stored as a BitArray and a map of root hash values to their kmers.

- The forest is stored as a BitArray and a map of root hash values to their kmers.
- Each node in the graph has 4 consecutive bits in the bit array.

- The forest is stored as a BitArray and a map of root hash values to their kmers.
- Each node in the graph has 4 consecutive bits in the bit array.
- The nodes are in the BitArray in order of their hash values.

- The forest is stored as a BitArray and a map of root hash values to their kmers.
- Each node in the graph has 4 consecutive bits in the bit array.
- The nodes are in the BitArray in order of their hash values.
- For each node, the first bit tells if that node is a root or not, the second tells whether the parent in the forest is accessed via IN or OUT, and the last two tells the letter that one needs to get to the parent.

- The forest is stored as a BitArray and a map of root hash values to their kmers.
- Each node in the graph has 4 consecutive bits in the bit array.
- The nodes are in the BitArray in order of their hash values.
- For each node, the first bit tells if that node is a root or not, the second tells whether the parent in the forest is accessed via IN or OUT, and the last two tells the letter that one needs to get to the parent.
- Example:

... Other nodes data ... 01001 ...
$$0 1 01$$
 ...

- The forest is stored as a BitArray and a map of root hash values to their kmers.
- Each node in the graph has 4 consecutive bits in the bit array.
- The nodes are in the BitArray in order of their hash values.
- For each node, the first bit tells if that node is a root or not, the second tells whether the parent in the forest is accessed via IN or OUT, and the last two tells the letter that one needs to get to the parent.
- Example:

... Other nodes data ... 01001 ...
$$0 1 01$$
 ...

• Using the data for the forest, and an initial kmer sequence, we can traverse the forest from any node up to its root.

- Using the data for the forest, and an initial kmer sequence, we can traverse the forest from any node up to its root.
- For example, suppose we have initial kmer "ATTGA", we hash it and find data 0011 in the forest for this kmer.

- Using the data for the forest, and an initial kmer sequence, we can traverse the forest from any node up to its root.
- For example, suppose we have initial kmer "ATTGA", we hash it and find data 0011 in the forest for this kmer.
- So that means our kmer is not a root (so a parent exists), its parent is accessed via an OUT edge, and the letter "T" is how we get to the parent.

- Using the data for the forest, and an initial kmer sequence, we can traverse the forest from any node up to its root.
- For example, suppose we have initial kmer "ATTGA", we hash it and find data 0011 in the forest for this kmer.
- So that means our kmer is not a root (so a parent exists), its parent is accessed via an OUT edge, and the letter "T" is how we get to the parent.
- Therefore the parent's kmer is "TTGAT"

- Using the data for the forest, and an initial kmer sequence, we can traverse the forest from any node up to its root.
- For example, suppose we have initial kmer "ATTGA", we hash it and find data 0011 in the forest for this kmer.
- So that means our kmer is not a root (so a parent exists), its parent is accessed via an OUT edge, and the letter "T" is how we get to the parent.
- Therefore the parent's kmer is "TTGAT"
- This is how we will do membership queries (explained more later).

• That was how the forest is stored, but how do we build it?

- That was how the forest is stored, but how do we build it?
- We want a forest that covers all of the nodes in our De Bruijn graph

- That was how the forest is stored, but how do we build it?
- We want a forest that covers all of the nodes in our De Bruijn graph
- Each tree should be between height α and 3α where $\alpha = k \log \sigma$.

- That was how the forest is stored, but how do we build it?
- We want a forest that covers all of the nodes in our De Bruijn graph
- Each tree should be between height α and 3α where $\alpha = k \log \sigma$.
- Each tree has a root, and the kmer of that root is stored.

- That was how the forest is stored, but how do we build it?
- We want a forest that covers all of the nodes in our De Bruijn graph
- Each tree should be between height α and 3α where $\alpha = k \log \sigma$.
- Each tree has a root, and the kmer of that root is stored.
- We do a breadth first search of the De Bruijn graph ignoring edge directions.

- That was how the forest is stored, but how do we build it?
- We want a forest that covers all of the nodes in our De Bruijn graph
- Each tree should be between height α and 3α where $\alpha = k \log \sigma$.
- Each tree has a root, and the kmer of that root is stored.
- We do a breadth first search of the De Bruijn graph ignoring edge directions.
- We break the graph up into trees in the desired height range as we go along.

Before this point, the forest has been initialized to be a BitArray of the correct size and an empty map of root kmers.

Before this point, the forest has been initialized to be a BitArray of the correct size and an empty map of root kmers.

 First, we choose a kmer in our De Bruijn graph that has not yet been explored.

Before this point, the forest has been initialized to be a BitArray of the correct size and an empty map of root kmers.

- First, we choose a kmer in our De Bruijn graph that has not yet been explored.
- Hash it to find its place in the forest.

Before this point, the forest has been initialized to be a BitArray of the correct size and an empty map of root kmers.

- First, we choose a kmer in our De Bruijn graph that has not yet been explored.
- Hash it to find its place in the forest.
- Store it as being a root, its IN/OUT and parent bits are left alone since it has no parent, and add its hash and kmer to the map.

De Bruijn breadth first search

 We use IN and OUT to find all neighbors in the De Bruijn graph.

- We use IN and OUT to find all neighbors in the De Bruijn graph.
- Get hash values of neighbors, find their places in the forest.

- We use IN and OUT to find all neighbors in the De Bruijn graph.
- Get hash values of neighbors, find their places in the forest.
- Store the letter and IN/OUT data to get to the parent (pink).

- We use IN and OUT to find all neighbors in the De Bruijn graph.
- Get hash values of neighbors, find their places in the forest.
- Store the letter and IN/OUT data to get to the parent (pink).
- Set the root bit to false, and don't store these kmers.

De Bruijn breadth first search

• Keep doing that until we get to a kmer that is of height $\alpha+1$ from the root (orange)

- Keep doing that until we get to a kmer that is of height $\alpha{+}1$ from the root (orange)
- Save the kmers of these, but don't store them in the forest just yet.

- Keep doing that until we get to a kmer that is of height $\alpha{+}1$ from the root (orange)
- Save the kmers of these, but don't store them in the forest just yet.
- If we get to a height over the maximum allowed, we can break off at this root and be sure the remaining tree's height is still above the minimum allowed.

De Bruijn breadth first search

• Once we get to a kmer that is of height greater than 3α from the root, we need a new tree.

- Once we get to a kmer that is of height greater than 3α from the root, we need a new tree.
- We have saved the kmer of the potential root found in the last part.

De Bruijn breadth first search

 In the forest data structure, set the potential node as a root and put its kmer in the map.

- In the forest data structure, set the potential node as a root and put its kmer in the map.
- Reset the height we are at for the new root.

- In the forest data structure, set the potential node as a root and put its kmer in the map.
- Reset the height we are at for the new root.
- Continue on until the entire De Bruijn graph has been visited.

The Entire Data Structure

 We have now constructed the hash function, IN and OUT, and the forest.

The Entire Data Structure

- We have now constructed the hash function, IN and OUT, and the forest.
- That was the entire data structure, we no longer need all those kmers.

 Suppose we have a nucleotide sequence of length k and we want to find if it exists

- Suppose we have a nucleotide sequence of length k and we want to find if it exists
- The only kmers that we have stored are the kmers of the roots in our tree.

- Suppose we have a nucleotide sequence of length k and we want to find if it exists
- The only kmers that we have stored are the kmers of the roots in our tree.
- How do we check the membership of that kmer?

Membership of "ATTC"

• First, hash the kmer we want to check the membership of to get i in $\{0, ..., n-1\}$

- First,
 hash the kmer we want
 to check the membership
 of to get i in {0, ..., n 1}
- Find the place corresponding to this hash value in the forest.

Membership of "ATTC"

 The forest stores the IN/OUT bit and the letter bits to figure out the parent

- The forest stores the IN/OUT bit and the letter bits to figure out the parent
- Using that, the kmer, and the hash value, do the hash update to find the parent kmer, the hash of the parent, and its place in the forest.

- The forest stores the IN/OUT bit and the letter bits to figure out the parent
- Using that, the kmer, and the hash value, do the hash update to find the parent kmer, the hash of the parent, and its place in the forest.
- Check IN and OUT whether such an edge exists. Return false if it doesn't.

- The forest stores the IN/OUT bit and the letter bits to figure out the parent
- Using that, the kmer, and the hash value, do the hash update to find the parent kmer, the hash of the parent, and its place in the forest.
- Check IN and OUT whether such an edge exists. Return false if it doesn't.
- Why would that possibly return false?

Membership of "ATTC"

• Keep doing this until we arrive at a root

- Keep doing this until we arrive at a root
- 2 The root has its kmer stored

- Keep doing this until we arrive at a root
- 2 The root has its kmer stored
- Compare the kmer we have from moving up the tree with the kmer that is stored

Membership Query

Membership of "ATTC"

- Keep doing this until we arrive at a root
- 2 The root has its kmer stored
- Compare the kmer we have from moving up the tree with the kmer that is stored
- If it matches, return true. Otherwise, return false.

Membership Query

Membership of "ATTC"

- Keep doing this until we arrive at a root
- The root has its kmer stored
- Compare the kmer we have from moving up the tree with the kmer that is stored
- If it matches, return true. Otherwise, return false.
- Which would take longer on average, membership queries that return true or queries that return false?

Membership Query

Membership of "ATTC"

- Keep doing this until we arrive at a root
- The root has its kmer stored
- Compare the kmer we have from moving up the tree with the kmer that is stored
- If it matches, return true. Otherwise, return false.
- Which would take longer on average, membership queries that return true or queries that return false?
- Queries that return true

Dynamic De Bruijn Graph

• We have (almost) implemented edge addition and removal.

Dynamic De Bruijn Graph

- We have (almost) implemented edge addition and removal.
- We have not implemented node addition and removal. The primary difficulty is having a dynamic hash function.

Dynamic De Bruijn Graph

- We have (almost) implemented edge addition and removal.
- We have not implemented node addition and removal. The primary difficulty is having a dynamic hash function.
- We rely on the library BBHash for our minimal perfect hash function, but we need a dynamic perfect hash function.

 Suppose that both trees are below the desired minimum height and we add an edge (dotted) between them in our De Bruijn graph.

- Suppose that both trees are below the desired minimum height and we add an edge (dotted) between them in our De Bruijn graph.
- We can combine the two trees into one by adding the new edge to our forest, changing the direction of some edges, and then getting rid of one of the roots.

• Now suppose that only one of the trees are below the desired minimum height and we add an edge (red).

- Now suppose that only one of the trees are below the desired minimum height and we add an edge (red).
- What we do depends on the height of the node in the edge from the taller tree.

- Now suppose that only one of the trees are below the desired minimum height and we add an edge (red).
- What we do depends on the height of the node in the edge from the taller tree.
- If the height is less than α , we can change the trees similar to before.

• If the height is greater than or equal to α , then we break off some part of the bigger tree into the smaller.

Removing Edges

• We can also remove edges from our De Bruijn data structure

Removing Edges

- We can also remove edges from our De Bruijn data structure
- If the edge is not in our tree, we don't need to do anything.

Removing Edges

- We can also remove edges from our De Bruijn data structure
- If the edge is not in our tree, we don't need to do anything.
- If the edge is in our tree, and we now have a tree that is too short, we use similar techniques as before to get trees in the appropriate range.

Adding and Removing Nodes

• We didn't get to implementing this part.

Adding and Removing Nodes

- We didn't get to implementing this part.
- The primary reason is that the minimal perfect hash function library we used, BBHash, isn't dynamic.

Adding and Removing Nodes

- We didn't get to implementing this part.
- The primary reason is that the minimal perfect hash function library we used, BBHash, isn't dynamic.
- We would need to implement our own dynamic perfect hash function (not minimal anymore).

Experiments'

Datasets:

Accession number	Туре	Read count	Read length
-	S288C ⁴	16	
ERA000206	E. coli	27 ·10 ⁶	100

Platform:

 Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz (18 cores) with 396 GB RAM

⁴http://www.yeastgenome.org/strain/S288C/overview () \ (

Live Demo

- We have developed a web-based demo to allow users do multiple types of comparisons, which makes the evaluation easier.
- The link is here: http://128.227.162.189:9999/. Visit and play with it!

Fully Dynamic de Bruijn Graph Running Demo This demo runs some examples and compare results.	
K value:	
20	
# of queries:	
1M	
Dataset:	
yeast	
Ga > View >	

Comparative Algorithms

- Bloom Filter: Standard Bloom filter
- **& KBF1:** One-sided Bloom filter that improves false postive rate three fold without using any additional storage.
- KBF2: Two-sided Bloom filter that improve FPR by an order of magnitude while using very little additional memory⁵.

Query k-mer Generation

• We generate query k-mers with three different values:

number of queries (million) 0.5 1 10

- 2 We use two ways to generate query k-mers
 - Muting one base of randomly extracted from the input k-mers
 - Purely-random *k*-mer generation. However, it does not result in obvious difference compared with the first one.

FDBG Data Structure Information

Table: The FDBG data structure information on E coli.

k	<i>k</i> -mers	RAM (MB)	Trees	Avg. height
20	770,956,037	1,485	5,492,320	48.14
24	784,990,222	1,519	6,412,386	50.45
27	783,739,686	1,517	6,532,142	47.28
30	776,321,600	1,505	6,752,622	48.46

RAM = IN and OUT matrices + forest + minimal perfect hashing

Populate time w.r.t k

Query Accuracy w.r.t k

Query Time w.r.t k

Query Time w.r.t tree height

Table: Query time w.r.t the tree height.

k	Avg. height	Query time (s)
20	48.14	6.69
24	50.45	7.51
27	47.28	6.43
30	48.46	6.93

Lower tree height gives rive to lower query time, because it needs fewer steps to trace the tree.

Query Time w.r.t number of queries

Conclusion

• We have tested the algorithms on two gene datasets and compare with three different methods.

End

Thanks and Questions?