

Notas dos slides

APRESENTAÇÃO

O presente conjunto de slides pertence à coleção produzida para a disciplina Introdução ao Processamento Paralelo e Distribuído ofertada aos cursos de bacharelado em Ciência da Computação e em Engenharia da Computação pelo Centro de Desenvolvimento Tecnológico da Universidade Federal de Pelotas

Os sildes disponibilizados complementam as videoaulas produzidas e tratam de pontos específicos da disciplina. Embora tenham sido produzidos para ser assistidos de forma independente, a sequência informada reflete o encadeamento dos assuntos no desenvolvimento do conteúdo programático previsto para a disciplina.

Notas da videoaula

DESCRIÇÃO

Nesta videoaula são apresentados os conceitos fundamentais da construção de Sistemas Distribuídos e de seus modelos arquiteturais.

OBJETIVOS

Nesta videoaula o aluno compreenderá os principais conceitos associados aos Sistemas Distribuídos e poderá identificar diferentes modelos arquiteturais empregados para construí-los.

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Leslie Lamport

A quo

Um **Sistema Distribuído** consiste em uma coleção de <u>elementos de computação autônomos</u> (chamados nós) que se mostra, aos seus usuários, como um <u>sistema único e coerente</u>.

- Nós podem ser tanto dispositivos de hardware como processos em software
- sistema único e coerente: esta percepção, por parte dos usuários (pessoas ou mesmo mesmo aplicações), requer colaboração entre os nós.

Verbum pro verbo

- Coleção de nós autônomos
- Rede sobreposta (overlay network)
- Sistema coerente
- Transparência
- Middleware

Coleção de nós autônomos

- Poder de decisão distribuído
- Inexistência de um relógio global
- Devem ser tratadas questões sobre sincronização e coordenação
- Gerência dos membros
- Segurança em identificar identidade dos interlocutores

Rede Sobreposta

- Em uma rede que representa um sistema distribuído, os nós são formados por processos e os links representam os possíveis canais de comunicação entre eles utilizando protocolos de camadas inferiores.
 - Camadas de rede, oferecendo serviços
- Estruturada: a rede tem uma estrutura determinada e os nós conhecem seus vizinhos (anel, árvore...).
- Não estruturada: Não existe um padrão nas conexões.

Sistema Coerente

- A coleção de nós como um todo opera da mesma forma, não importa onde, quando, e como ocorre a interação entre um usuário e o sistema.
- Um usuário não sabe exatamente onde sua computação está sendo realizada;
- A localização exata dos dados pode ser irrelevante para a aplicação;
- Se existe ou não replicação de dados, isso não é visto pela aplicação.

9

Transparência

Requisito desejado, mas nem sempre é possível esconder falhas, assim como sua recuperação normalmente é de difícil promoção. Na prática, não é possível esconder completamente do usuário final a ocorrência de falhas.

Middleware

O Sistema Operacional dos sistemas distribuídos!

Contém os componentes e funcionalidades necessárias a todo sistemas, sem necessidade de implementações individuais.

O Sistema Operacional dos sistemas distribuídos!

Provê:

- Compartilhamento de recursos
- Transparência da distribuição
- Abertura
- Escalabilidade

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

 Transparência de distribuição

Transparência	Esconde	
Acesso	diferenças na representação dos dados e na forma como são realizados os acessos.	
Localização	a localização física do objeto.	
Relocação	a possibilidade de movimentação de um objeto enquanto estiver em uso.	
Migração	a possibilidade de um objeto alterar sua localização.	
Replicação	que um objeto pode ser replicado.	
Concorrência	o uso compartilhado de um mesmo objeto.	
Falha	falhas e recupera o objeto caso uma falha ocorra.	

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

• Transparência de

distribuição

Transparência		
Acesso	diferenças na representaçã	mo são realizados os acessos
Localização	a localização física do ob	
Relocação	a possibilidade de m	enquanto estiver em uso.
Migração	a possibilidade d	lização.
Replicação	que um objeto	
Concorrência	o uso comp	
Falha	falhas e	corra.

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

 Transparência de distribuição A TRANSPARÊNÇIA Ê LEGAL, MAS OBTÊ:LA É MUÎTO Dîficil as vezes, à meta nem deve ser atingi-la!

- É impossível esconder as latências das comunicações
- Garantir total transparência às falhas é impossível
 - o Algum objeto está lendo ou falhou?
 - O servidor procedeu a operação antes, durante ou após executar uma operação?
- Mais transparência, maior custo
 - Réplicas, ok, mas tem custo em recursos de processamento e atualização do master

O Sistema Operacional dos sistemas distribuídos!

Provê:

 Transparência de distribuição A TRANSPARÊNÇIA E LEGAL, MAS OBTE-LA É MUITO Difígil as vézes, à méta nem deve ser atingi-lai

Expor a distribuição pode ter impactos positivos:

- A informação de localização pode ser útil na identificação de serviços próximos.
- Permite explorar recursos em função do fuso horário.
- Permite que os usuários interpretem atrasos nas respostas às suas requisições, identificando situações de falha.

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

Abertura

Expor a distribuição pode ter impactos positivos:

- A informação de localização pode ser útil na identificação de serviços próximos.
- Permite explorar recursos em função do fuso horário.
- Permite que os usuários interpretem atrasos nas respostas às suas requisições, identificando situações de falha.

7

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

- Abertura
- Capacidade de interação com outros sistemas.
- Conformidade com interfaces bem definidas
- Capacidade de interoperabilidade
- Suporte a portabilidade de aplicações
- Extensível

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

Escalabilidade

Três eixos:

- Quantidade de recursos: Tamanho
- Área de abrangência: Geográfica
- Gestão dos recursos: Administrativa

19

O Sistema Operacional dos sistemas distribuídos!

Provê:

- Escalabilidade
 - Tamanho

Em relação aos sistemas centralizados, o ganho se dá pela natural restrição dos recursos da central e pela distância (de rede) entre cada usuário e esta central.

O contraponto: mais recursos oferecidos, localizados mais próximos aos usuários.

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

- Escalabilidade
 - Geográfica

Os problemas em uma WAN não são os mesmos de uma LAN, envolvem maiores tempos de latência. A natureza da solução é diferente. Ex.:

- streaming de vídeo
- Broadcast vs. diretório de serviços

Middleware

O Sistema Operacional dos sistemas distribuídos!

Provê:

- Escalabilidade
 - Geográfica

Técnicas para escalar:

- Mascarar latências com comunicações assíncronas
- Mover parte da computação para próximo do usuário
- Uso de réplicas
- Caches e mirrors

Pesar. vantagens e desvantagens

Size **Administrative**

O Sistema Operacional dos sistemas distribuídos!

FIRST NAME MAARTEN
LAST NAME VAN STEEN
E-MAIL STEEN@CS.V

STEEN@CS.VU.NL

Provê:

- Escalabilidade
 - Geográfica

Técnicas para escalar

Trazendo a computação para perto do usuário

Server

Client

O Sistema Operaci

Provê:

- Escalabilidade
 - Geográfica

Técnicas para escalar

Caching de dados

Três tipos

HPC

Voltados ao High Performance Computing. Integração de aplicações

Atendem demandas de interoperabilidade entre várias aplicações.

Pervasivo

Ambiente onde os nós são pequenos (em termos de recursos), se deslocam e podem estar inseridos no ambiente.

Cluster

Implantados em uma LAN, são homogêneos em termos de SO e quase-homogêneos e em amplitude em termos de hw.

Implantados em uma WAN, são dispersos entre várias organizações geográfica. Grau de heterogeneidade grande (sw e hw).

Grid

Cloud

Os recursos são todos acessados via rede (Internet)..

HPC

Diferença: Grid e Cloud

Em uma grade, os recursos estão todos disponíveis e são acessados diretamente (não apenas hw, mas também os dados). Podem ser, e frequentemente são, utilizados recursos de virtualização dos recursos.

Em uma nuvem, todos os recursos são acessíveis via rede, não diretamente. A ideia é outsourcing.

Integração de aplicações

Fato seminal:

As aplicações são suportadas em servidores atendendo requisições de clientes. A integração básica se dá combinando as respostas de diferentes consultas, a diferentes servidores, provendo uma resposta coerente.

Questão tratada:

Permitir comunicação direta entre as aplicações.

Integração de aplicações

Exemplo:

Nas férias familiares, voo e hotel devem ser reservados de forma casada. Solução: transações aninhadas.

Pervasivo

Novas tecnologias oferecem dispositivos pequenos, com alta capacidade de processamento (em relação ao tamanho) e baixo consumo. Caracterizam-se pela mobilidade e por se misturar com o meio.

Computação ubiqua Computação móvel Rede de sensores Computação na névoa

Pervasivo

Computação ubiqua

- Distribuição: os dispositivos estão em rede e acessíveis de forma transparente
- Interção: altamente discreta
- Consciência de contexto: o sistema identifica o contexto em que o usuário se encontra para tomadas de decisões
- Autonomia: os dispositivos requerem pouca ou nenhuma intervenção humana e são capazes de se auto-gerenciar
- **Inteligência**: o sistema como um todo pode executar um grande espectro de ações e interações

34

Pervasivo

Computação móvel

- Envolvem o grande número de dispositivos que a sociedade moderna utiliza (smartphones, tables, vestíveis...)
- Considera que o dispositivo pode se deslocar, é necessário suporte à descoberta
- A comunicação é instável devido a natural instabilidade da rede face ao deslocamento e pontos de perda de conexão, devendo ser previsto tolerância a esta situação.

Pervasivo

Rede de sensores

- Redes com dezenas, centenas ou milhares de sensores interconectados
- Poucos recursos, executando uma (ou um conjunto) de atividades específicas.
- Fornecem dados para tomadas de decisão
- o O consumo energético é crítico

Pervasivo

