

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FO Box 1430 Alexandria, Virginia 22313-1450 www.tepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/583,849	10/02/2006	Johanna Buchert	Q95483	8184
23373 7590 06/08/2009 SUGHRUE MION, PLLC 2100 PENNSYLVANIA AVENUE, N.W.			EXAMINER	
			CALANDRA, ANTHONY J	
SUITE 800 WASHINGTON, DC 20037		ART UNIT	PAPER NUMBER	
			1791	
			MAIL DATE	DELIVERY MODE
			06/08/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/583.849 BUCHERT ET AL Office Action Summary Examiner Art Unit ANTHONY J. CALANDRA 1791 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 26 March 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-6 and 8-30 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-6 and 8-30 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 3/26/2009.

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Art Unit: 1791

Detailed Office Action

The communication dated 3/26/2009 has been entered and fully considered.

Claim 7 has been canceled. Claims 1, 4, 6, 8-10, 16, 19, 20, 21, 24, and 25 have been amended. Claims 27-30 are new. Claims 1-6 and 8-30 are currently pending.

Response to Arguments

ODP rejections

The double patenting rejection towards the '340 application has been withdrawn based upon the abandonment of said application.

Claim objections

In light of amendment the objections to claims 7, 18, and 24 has been withdrawn.

112 1st rejections

In light of the applicant's arguments the 112 1st enablement rejection of claim 25 have been withdrawn

112 2nd rejections

In light of arguments the rejections to claims 6 and 8 has been withdrawn.

In light of amendment the rejection to claim 16 has been withdrawn.

Art Unit: 1791

In light of amendment the rejections towards claims 20, 21 and 25 have been withdrawn.

The applicant traverses the examiner's rejection of claim 19 arguing that 0.0001 to 10 mg protein/g dry matter is a separate range from the enzyme dosage and therefore is not narrower range of enzyme dosage (1-100,000 nkat/g of pulp).

Both ranges measure the amount of enzyme on pulp. If the activity of the enzyme is known, for instance, 1 mg of enzyme is equivalent to 100 nkat. This would then allow the conversion of 1-100,000 nkat/g of pulp to 0.01-1,000 mg protein/g pulp which is a different range. However, the examiner agrees with the applicant's point that the person of ordinary skill in the art may want to limit both ranges as independent variables (i.e. there are enzyme strengths that the applicant can exclude using both of the above limitations), hence, the examiner has withdrawn the argument to there being a broad/narrow range.

The examiner has not withdrawn the rejection to claim 22 based the value nkat/g. The applicant still gives an undefined explanation for how this is calculated. The applicant states that "The determination of the enzyme activities has been carried out in the examples in the same conditions (pH, temperature) using standard activity measurements in the conditions in which the enzyme treatments of the materials have been effected".

This is in contrast to an art such as PEDERSON which specifically describes how to calculate the laccase enzyme activity in the publication:

Art Unit: 1791

"(37) Laccase activity as defined herein is determined on the basis of spectrophotometric measurements of the oxidation of syringaldazin under aerobic conditions. The intensity of the violet colour produced in the oxidation reaction is measured at 530 nm.

(38) The analytical conditions are: 19 .mu.M syringaldazin, 23.2 mM acetate buffer, pH 5.5, 30.degree. C., reaction time 1 minute, shaking. 1 laccase unit (LACU) is the amount of enzyme that catalyses the conversion of 1 .mu.M of syringaldazin per minute under these conditions".

In contrast the instant specification gives no applicable temperature or pH. The applicant's explanation in the arguments does not clear up the deficiencies as the arguments state that the activity value is based off of each experimental pH/temperature combination. In general activity values are measured in comparison to a standard set of assay conditions not a set of conditions which changes based on variable temperatures/pH's [see e.g. Units of Enzyme Activity pg. 319 #1]. Since the Applicant gives variable temperatures/pHs that can be used, the definition of nkat/g is also necessarily variable and indefinite.

Therefore when PEDERSEN when gives a specific point of 3 LACU/g which equals 50 $^{\circ}$ nkat/g (1U = 16.67 nkat [see e.g. Units of Enzyme Activity pg. 320 #5]) and falls with the instant claimed ranges of claims 19 and 27 the examiner cannot be sure if the teaching of PEDERSON anticipates/makes obvious said ranges.

Art Rejections

Art Unit: 1791

Applicant argues that BARTHOLOMEW is towards the chemical polymerization of a conductive polymer to a pigment and that the pigment can be separately used to coat the fibers. Therefore the process is not an in situ process. Applicant further argues that the polymerization chemicals such as APS do not ever contact the fibers and thus the phenolic groups cannot be oxidized. Applicant alleges for at least the reasons above the rejections towards BARTHOLOMEW should be withdrawn.

The examiner disagrees with the applicant's description of the prior art of BARTHOLOMEW, the mixing of the fibrous material, conductive monomers, and chemical oxidant does occur in situ [paragraph 6 lines 20-30 and also the abstract].

At station 1, fibrous based materials and a monomer precursor of a conductive polymer are suspended in an aqueous solution to form a slurry. Polymerization into conductive polymers occurs with the introduction of a chemical oxidant at station 2 inducing polymerization on the fibrous based material. Web formation into an electrically conductive polymeric fibrous based material is formed by conventional papermaking techniques at station 3.

Therefore the reaction occurs in situ contrary to the applicant's argument. The oxidant does contact the fiber contrary to the applicant's arguments. It is not even clear to the examiner where the term pigment is even mentioned in BARTHOLOMEW or the methods that the applicant's describe occur as an alternative embodiment in BARTHOLOMEW.

Art Unit: 1791

Art rejections in view of PEDERSON

Applicant argues that the results of the instant claims cannot be achieved without adding a primer and points to the specification pg. 15 Table 1. The applicant argues that PEDERSON only teaches adding single acid components and not adding a primer and then monomers.

PEDERSON teaches ferulic acid in the examples but also teaches aromatic amines [column 9 lines 30-47] including phenylene diamine. The phenylene diamine will both bond to the fiber and act as a monomer forming polyaniline derivative polymer when radicalized. The bifunctional substance and the monomer can be the same till instant claim 11. Therefore when using phenylene diamine and an enzymatic oxidant PEDERSON both meets the instant claims and is similar to example 4 of the specification in which an aniline and a laccase are mixed together with the fiber.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 19 and 27 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 19 and 27 are rejected based on the indefinite definition of nkat/g. The applicant still gives an undefined explanation for how this is calculated. The applicant states that "The

Art Unit: 1791

determination of the enzyme activities has been carried out in the examples in the same conditions (pH, temperature) using standard activity measurements in the conditions in which the enzyme treatments of the materials have been effected".

This is in contrast to an art such as PEDERSON which specifically describes how to calculate the laccase enzyme activity in the publication:

- " (37) Laccase activity as defined herein is determined on the basis of spectrophotometric measurements of the oxidation of syringaldazin under aerobic conditions. The intensity of the violet colour produced in the oxidation reaction is measured at 530 nm.
- (38) The analytical conditions are: 19 .mu.M syringaldazin, 23.2 mM acetate buffer, pH 5.5, 30.degree. C., reaction time 1 minute, shaking. 1 laccase unit (LACU) is the amount of enzyme that catalyses the conversion of 1 .mu.M of syringaldazin per minute under these conditions".

In contrast the instant specification gives no applicable temperature or pH. The applicant's explanation in the arguments does not clear up the deficiencies as the arguments state that the activity value is based off of each experimental pH/temperature combination. In general activity values are measured in comparison to a standard set of assay conditions not a set of conditions which changes based on variable temperatures/pH's [see e.g. Units of Enzyme Activity pg. 319 #1]. Since the Applicant gives variable temperatures/pHs that can be used, the definition of nkat/g is also necessarily variable and indefinite.

Double Patenting

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. A nonstatutory obviousness-type double patenting rejection

Art Unit: 1791

is appropriate where the conflicting claims are not identical, but at least one examined application claim is not patentably distinct from the reference claim(s) because the examined application claim is either anticipated by, or would have been obvious over, the reference claim(s). See, e.g., In re Berg, 140 F.3d 1428, 46 USPQ2d 1226 (Fed. Cir. 1998); In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and In re Thorington, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) or 1.321(d) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent either is shown to be commonly owned with this application, or claims an invention made as a result of activities undertaken within the scope of a joint research agreement.

Effective January I, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

Claims 1-5, 8-10, and 12-26 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-4, 6-10, 12, 13, 15-22, and 24 of copending Application No. 10/583339. Although the conflicting claims are not identical, they are not patentably distinct from each other because the instant claims claim binding an agent to pulp using an oxidative process. The copending claims claim binding a modifying substance to cellulose using an oxidant and then contacting the modified cellulose with a hydrophobic polymer. The modifying substance can both be electrically conductive and act as a modifier. The instant claims state that the bi-functional substance and the monomer can be the same substance [copending claim 12].

Instant claims 1, 2, 7-10 and 12 see copending claims 1, 6-10.

Instant claim 3 see copending claim 3.

Instant claim 4 see copending claims 2 and 3.

Instant claim 5 see copending claim 4.

As for instant claim 13, the copending claims teach pulp fibers. Pulp fibers are either produced in chemical, mechanical, or chemimechanical (semi-chem) processes and therefore instant claim 13 is obvious in view of the copending application.

Instant claims 14, 16-19 see copending claims 12, 13, and 15-17

As for instant claim 20, 28 and 29 it is *prima facie* obvious to optimize pH and temperature. Enzymes are known to have optimum pH's in which they operate most effectively.

Instant claims 21-24 see copending claims 18-20.

Instant claim 25, see copending claim 21.

Instant claims 15 and 26 see copending claim 22.

Instant claim 27 see copending claim 24.

This is a <u>provisional</u> obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Claims 1-5 and 8-29 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-4, 6, and 8-20 of copending Application No. 10/583711. Although the conflicting claims are not identical, they are not patentably distinct from each other because the instant claims claim binding an agent to pulp using an oxidative process. The copending claims claim binding a modifying substance to cellulose using an oxidant and then contacting the modified cellulose with a hydrophobic polymer. The modifying substance can both be electrically conductive and act as a modifier.

Art Unit: 1791

substance [copending claim 12]. Alternatively the instant claims state a modifying agent can first be added and then a signaling agent can be bonded to the cellulose fiber. The copending claims state that conductivity is a signaling property.

Instant claims 1, 2, and 8-12 see copending claims 1, 2, 6, 8, 10 and 11.

Instant claim 3 see copending claim 4

Instant claim 4 see copending claims 3 and 4.

Instant claim 5 see copending claim 19.

Instant claims 7-10 see copending claims 8, 10 and 11.

As for instant claim 13, the copending claims teach pulp fibers. Pulp fibers are either produced in chemical, mechanical, or chemimechanical (semi-chem) processes and therefore instant claim 13 is obvious in view of the copending application.

Instant claims 14, 16-19 see copending claims 12-15.

Instant claims 20, 28 and 29 see copending claim 20. Further it is *prima facie* obvious to optimize pH and temperature. Enzymes are known to have optimum pH's in which they operate most effectively.

Instant claims 21-24 see copending claims 16-18.

Instant claim 25, see copending claim 12.

As for instant claims 15 and 26 it is prima facie obvious to change the sequence of adding ingredients.

Instant claim 27 see copending claim 23.

This is a <u>provisional</u> obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Art Unit: 1791

Claims 1-5 and 8-29 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-4, 6, and 8-20 of copending Application No. 10/583712. Although the conflicting claims are not identical, they are not patentably distinct from each other because the instant claims claim binding an agent to pulp using an oxidative process. The copending claims claim binding a modifying substance to cellulose using an oxidant and then contacting the modified cellulose with a hydrophobic polymer. The modifying substance can both be electrically conductive and act as a modifier. The instant claims state that the bi-functional substance and the monomer can be the same substance [copending claim 12]. Alternatively the instant claims state a modifying agent can first be added and then a second agent can be bonded to the cellulose fiber. The copending claims state that conductivity is a signaling property.

Instant claims 1, 2, 6-11, and 12 see copending claims 1, 5, 12 and 15-18.

Instant claim 3 see copending claim 3.

Instant claim 4 see copending claims 2 and 3.

Instant claim 5 see copending claim 25.

As for instant claim 13, the copending claims teach pulp fibers. Pulp fibers are either produced in chemical, mechanical, or chemimechanical (semi-chem) processes and therefore instant claim 13 is obvious in view of the copending application.

Instant claims 14, 16-19 see copending claims 19-22.

Instant claim 20, 28 and 29 see copending claim 26. Further it is *prima facie* obvious to optimize pH. Enzymes are known to have optimum pH's in which they operate most effectively.

Application/Control Number: 10/583,849 Page 12

Art Unit: 1791

Instant claims 21-24 see copending claims 23, 28, and 29.

Instant claim 25, see copending claim 30.

Instant claims 15 and 26 see copending claim 31.

Instant claim 27 see copending claim 40.

This is a <u>provisional</u> obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Claim Rejections - 35 USC § 102 and 103

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- Determining the scope and contents of the prior art.
- Ascertaining the differences between the prior art and the claims at issue.
- Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.

Art Unit: 1791

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 1-6, 8, 9, 12-13, 15, and 21-26 are rejected under 35 U.S.C. 102(b) as anticipated by or, in the alternative, under 35 U.S.C. 103(a) as obvious over U.S. Patent 5,211,810 BARTHOLOMEW et al., hereinafter BART.

As for claims 1, 2, 8, 9, 12, 15, and 26 BART discloses a process of treating a cellulosic pulp with an oxidant and a conductive polymer as to bond the conductive polymer to the cellulose fiber [abstract]. BART discloses the use of cellulosic fibers including high kappa fibers which contain phenolic structural groups [column 3 lines 53-55 and column 6 Table 1]. BART discloses treating the fibers with an oxidant to initiate polymerization including ammonium persulfate and ferric chloride [column 4 lines 5-9]. BART discloses the monomers acetylene, aniline, pyrrole, paraphenylene, and thiophene all of which have at least two functional groups [column 3 lines 65-67]. As for claim 8, aniline contains a benzene ring with a NH2 group attached which the examiner has interpreted as a similar structural group to a substituted OH groups. Aniline is a benzene ring with a NH2 group and phenol is a benzene ring with a hydroxyl group. As for claim 9, aniline has an amine functional group. Pyrrole has a secondary amine group.

Art Unit: 1791

The added monomer polymerizes onto the fiber and the concentration of the monomer is controlled such that further polymerization of the conductive polymer occurs on the fiber [column 8 lines 9-15]. In the teachings of BART the bi-functional substance and the monomer are the same.

BART adds the bi-functional monomer and then adds the oxidizing agent [column 11, line 65 - column 12, line 10]. Examiner has interpreted the addition of the oxidant directly after the addition of the monomer/bi-functional agent, to be a simultaneous addition. Further since, the oxidized fiber is contacted with the bi-functional substance/monomer and the fiber is not oxidized until the oxidant is added the addition necessarily occurs simultaneously. Alternatively, it would have been prima facie obvious to change the order of addition of the reactants [see e.g. MPEP 2144.04 (IV) (C) Changes in Sequence of Adding Ingredients].

As for claims 3, 4, 23 and 24, BART discloses the oxidation agent of ammonium persulfate [column 8 lines 20-25].

As for claim 5, BART discloses the consistency of 1.9 to 3.7% which falls within the instant claimed range [column 7 lines 10-14].

As for claim 6, BART discloses the conductive polymers of polyaniline and polypyrrole [column 8 lines 50-55]. BART also discloses the monomer acetylene and thiophene [column 7 lines 49-50]. The polymeric forms of these monomers are polyacetylene and polythiophene.

As for claim 13, BART discloses both low lignin chemical pulps and high lignin mechanical pulps (column 6 lines 55-62).

Art Unit: 1791

As for claim 21 and 22, BART discloses ammonium persulfate [column 4 lines 5-9].

Applicant states peroxide containing compounds are 'oxygen and oxygen containing compounds'.

Ammonium persulfate is a peroxide compound and similarly releases oxygen.

As for claim 25, it is not clear the steps or the amount of radiation emitted onto the fiber, or consistency of the fiber. As paper web/pulp are subjected to light on a paper machine, at least some light radiation (including UV) strikes the pulp/paper web capable of oxidizing a phenol group. Examiner notes peroxide with ultraviolet light forms hydroxyl radicals, an advanced oxidation process.

Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 5,211,810 BARTHOLOMEW et al., hereinafter BART.

As for claim 11, BART discloses multiple conductive monomers can be used to form and conductive polymer bound to the fiber [column 3 lines 65-67]. If a person of ordinary skill in the art were to use a mixture of the monomer disclosed by BART then the monomer and bifunctional substance would be different. In some cases the first monomer would act as a bifunctional substance while the second monomer would bond to the first monomer and act as the conductive polymer. Conversely, the second monomer would also bond to the fiber while the first monomer would bond to the second monomer and act as the conductive polymer. It is prima facie obvious to combine equivalents known for the same purpose [see e.g. MPEP 2144.06 (I) Combining Equivalents Known for the Same Purpose].

Art Unit: 1791

Claims 14, 16-20, 27-30 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 5,211,810 BARTHOLOMEW et al., hereinafter BART, In view of U.S. Patent 6,187,136 PEDERSON, hereinafter PEDERSON.

As for claim 14 and 16-18, BART discloses that the bonding of the conductive polymers is accomplished by oxidation using a chemical oxidant [abstract]. BART discloses that other oxidants can be used to promote polymerization [column 8 lines 15-25]. BART does not disclose using an oxidative enzyme. PEDERSON discloses using enzymes such as laccase and oxidase to oxidize lignocellulosic materials [column 6 lines 1-35]. At the time of the invention it would have been prima facie obvious to substitute the chemical oxidant of BART for the enzymatic oxidant of PEDERSON. A person of ordinary skill in the art would be motivated to do so PEDERSON discloses that either chemical or enzymatic agents can be used to bind substances to lignocellulosic materials [column 1 lines 64-67]. It is *prima facie* obvious to substitute equivalents known for the same purpose [see e.g. MPEP 2144.06 (II) Substituting Equivalents Known for the Same Purpose]. In the instant case both chemical and enzymatic oxidants are known to graft chemicals onto lignocellulosic fibers. A person of ordinary skill in the art would expect the enzymes of PEDERSON to graft the monomers of BART onto the fiber.

As for claim 19 and 27, PEDERSEN discloses 0.0001 - 10mg/g of dry matter which is the instant claimed range [column 6 lines 60-67]. The applicant claims an enzyme dosage nkat/g (nanokatal/g) which the examiner has interpreted as an enzyme activity on pulp. However, the applicant does not state what the defined assay conditions this enzyme activity is measured. At different temperatures an enzyme can have different activities. Therefore the examiner cannot determine the proper metes and bounds of patent protection desired by the applicant.

Art Unit: 1791

PEDERSEN discloses 0.02 LACU/g -2000 LACU/g [column 6 lines 40-47] of enzyme where an LACU is measured under disclosed conditions [column 6 lines 55-60]. PEDERSEN additionally gives a specific point of 3 LACU/g which equals 50 nkat/g and falls with the instant claimed ranges of claims 22 and 40 [column 10 line 10].

Until shown otherwise the examiner has interpreted these ranges to overlap with the instant claimed ranges [since the applicant fails to define the units].

Alternatively, at the time of the invention it would have been obvious to optimize the enzyme activity on pulp [2144.05 (II) (B) Optimization of ranges and result effective variables]. PEDERSEN clearly shows enzyme activity on pulp to be a result effective variable and therefore its optimization would have been obvious to a person of ordinary skill, absence evidence of unexpected results.

As for claims 20, 28, and 29 PEDERSON discloses the temperature range of 20-80 degrees C which is the instant claimed range, and discloses a pH of 4-9 which falls within the instant claimed range [column 8 lines 31 and line 48].

As for claims 21-24, PEDERSON discloses peroxide, a chemical oxidizing agent, can be used in combination with the enzyme [column 8 lines 4-10].

As for claim 30, BART discloses derivatives thereof [column 3 lines 54-67] but does not state any specific derivatives. PEDERSON discloses that derivatives such alkyl and alkoxy groups work on phenolic components and it would be expected that said derivative types would also work on aniline components [column 5 lines 13-20].

Art Unit: 1791

Claims 1-10, 12-18, 20-26 and 28-30, are rejected under 35 U.S.C. 102(b) as anticipated by U.S. Patent 6,187,136 PEDERSON et al., hereinafter PEDERSON.

As for claims 1, 2, 8-10 and 12, PEDERSON discloses a three step process where lignocellulose with phenolic groups is oxidized by way of an enzyme [abstract] and a bifunctional monomer is attached to the fiber [column 5 lines 13-50]. Subsequent to the bifunctional monomer being attached a strengthening agent including polyacrylate is added to the mixture [column 9 lines 5-10].

PEDERSON discloses that the bi-functional monomer can also be aromatic amines; aniline is an aromatic amine [column 9 lines 30-47]. In the case of combining using an aromatic amine, the amine will act as both a bi-functional monomer and as a polymer as it radicalizes in solution with the lignocellulose.

PEDERSON discloses phenylene diamine [column 9 lines 35-40] which has a plurality of functional groups including two second amine functional groups. Phenylene diamine contains a benzene ring with a NH2 group attached which the examiner has interpreted as a similar structural group to a substituted OH groups. PEDERSON also discloses phenolic compounds with carboxylic acid groups and one or more phenolic groups [column 5 lines 9-50].

As for claims 3, 4, 14 and 16-18, PEDERSON discloses using enzymes such as laccase and oxidase to oxidize lignocellulosic materials and modifying agents [column 6 lines 1-35].

As for claim 5, PEDERSON discloses a consistency of ~2% which falls within the instant claimed range [column 10 lines 14].

As for claim 6, the polymer of phenylene diamine [column 9 lines 35-40] is a derivative of aniline (one extra NH2 group) and will form polyaniline derivative when radicalized.

Art Unit: 1791

As for claim 13, PEDERSON discloses mechanical pulp [column 4 lines 57-67].

As for claims 15 and 26, PEDERSON discloses that the treatment can take place simultaneously or sequentially [column 4 lines 1-35].

As for claims 20, 28 and 29, PEDERSON discloses the temperature range of 20-80 degrees C which is the instant claimed range, and discloses a pH of 4-9 which falls within the instant claimed range [column 8 lines 31 and line 48].

As for claims 21-24, PEDERSON discloses peroxide, a chemical oxidizing agent, can be used in combination with the enzyme [column 8 lines 4-10].

As for claim 25, it is not clear the steps or the amount of radiation emitted onto the fiber, or consistency of the fiber. As paper web/pulp are subjected to light on a paper machine, at least some light radiation (including UV) strikes the pulp/paper web capable of oxidizing a phenol group. Examiner notes peroxide with ultraviolet light forms hydroxyl radicals, an advanced oxidation process.

As for claim 30, PEDERSON discloses that the bi-functional monomer can also be aromatic amines; aniline is an aromatic amines [column 9 lines 30-47]. The polymer of phenylene diamine [column 9 lines 35-40] is a derivative of aniline (one extra NH2 group) and will form polyaniline derivative when radicalized. PEDERSON discloses that derivatives such alkyl and alkoxy groups work on phenolic components and it would be expected that said derivative types would also work on aniline components [column 5 lines 13-20].

Art Unit: 1791

Claims 19 and 27 are rejected under 35 U.S.C. 102(b) as anticipated by or, in the alternative, under 35 U.S.C. 103(a) as obvious over U.S. Patent 6,187,136 PEDERSON et al., hereinafter PEDERSON.

As for claim 19, PEDERSEN discloses 0.0001 - 10mg/g of dry matter which is the instant claimed range [column 6 lines 60-67]. The applicant claims an enzyme dosage nkat/g (nanokatal/g) which the examiner has interpreted as an enzyme activity on pulp. However, the applicant does not state what the defined assay conditions this enzyme activity is measured. At different temperatures an enzyme can have different activities. Therefore the examiner cannot determine the proper metes and bounds of patent protection desired by the applicant.

PEDERSEN discloses 0.02 LACU/g -2000 LACU/g [column 6 lines 40-47] of enzyme where an LACU is measured under disclosed conditions [column 6 lines 55-60]. Until shown otherwise the examiner has interpreted these ranges to overlap with the instant claimed ranges [since the applicant fails to define the units]. PEDERSEN additionally gives a specific point of 3 LACU/g which equals 50 nkat/g and falls with the instant claimed ranges of claims 22 and 40 [column 10 line 10].

Alternatively, at the time of the invention it would have been obvious to optimize the enzyme activity on pulp [2144.05 (II) (B) Optimization of ranges and result effective variables]. PEDERSEN clearly shows enzyme activity on pulp to be a result effective variable and therefore its optimization would have been obvious to a person of ordinary skill, absence evidence of unexpected results.

Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,187,136 PEDERSON et al., hereinafter PEDERSON.

Art Unit: 1791

As for claim 11, PEDERSON discloses multiple conductive monomers can be used to form and conductive polymer bound to the fiber [column 9 lines 30-46]. If a person of ordinary skill in the art were to use a mixture of the monomer disclosed by PEDERSON then the monomer and bi-functional substance would be different. In some cases the first monomer would act as a bi-functional substance while the second monomer would bond to the first monomer and act as the conductive polymer. Conversely, the second monomer would also bond to the fiber while the first monomer would bond to the second monomer and act as the conductive polymer. It is *prima facie* obvious to combine equivalents known for the same purpose [see e.g. MPEP 2144.06 (I) Combining Equivalents Known for the Same Purpose].

Claims 1-6, 8-11, 13-30 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,187,136 PEDERSON et al., hereinafter PEDERSON, in view of U.S. Patent 5,211,810 BARTHOLOMEW et al., hereinafter BART.

As for claim 1, 2, 8-11, PEDERSON discloses a three step process where lignocellulose with phenolic groups is oxidized by way of an enzyme [abstract] and a bi-functional monomer is attached to the fiber [column 5 lines 13-50]. Subsequent to the bi-functional monomer being attached a strengthening agent including polyacrylate is added to the mixture [column 9 lines 5-10]. PEDERSON discloses phenylene diamine [column 9 lines 35-40] which has a plurality of functional groups including two second amine functional groups. Phenylene diamine contains a benzene ring with a NH2 group attached which the examiner has interpreted as a similar structural group to a substituted OH groups. PEDERSON also discloses phenolic compounds with carboxylic acid groups and one or more phenolic groups [column 5 lines 9-50].

Art Unit: 1791

PEDERSON does not disclose adding the polyacrylate as a monomer and it is not clear if polyacrylate acts as a conductive polymer. BART discloses treating pulp with conductive monomers and with oxidative compounds [abstract]. At the time of the invention it would have been obvious to a person of ordinary skill in the art to follow the strengthening treatment of PEDERSON with the conductivity treatment of BART absence evidence of unexpected results. A person of ordinary skill in the art would be motivated to do so to have paper with increased both the increased strength of PEDERSON and conductive properties of BART [abstract]. Further, the person of ordinary skill in the art would expect the modifier added onto the pulp by PEDERSON to help attract and retain monomers and polymers of BART.

As for claim 3, 4, 14 and 16-18, PEDERSON discloses using enzymes such as laccase and oxidase to oxidize lignocellulosic materials and modifying agents [column 6 lines 1-35].

As for claim 5, PEDERSON discloses a consistency of ~2% which falls within the instant claimed range [column 10 lines 14].

As for claim 6, BART discloses the conductive polymers of polyaniline and polypyrrole [column 8 lines 50-55]. BART also discloses the monomer acetylene and thiophene [column 7 lines 49-50]. The polymeric forms of these monomers are polyacetylene and polythiophene.

As for claim 13, PEDERSON discloses mechanical pulp [column 4 lines 57-67].

As for claims 15 and 26, PEDERSON discloses that the treatment can take place simultaneously or sequentially [column 4 lines 1-35].

As for claim 19 and 27, PEDERSEN discloses 0.0001 - 10mg/g of dry matter which is the instant claimed range [column 6 lines 60-67]. The applicant claims an enzyme dosage nkat/g (nanokatal/g) which the examiner has interpreted as an enzyme activity on pulp. However, the

Art Unit: 1791

applicant does not state what the defined assay conditions this enzyme activity is measured. At different temperatures an enzyme can have different activities. Therefore the examiner cannot determine the proper metes and bounds of patent protection desired by the applicant.

PEDERSEN discloses 0.02 LACU/g -2000 LACU/g [column 6 lines 40-47] of enzyme where an LACU is measured under disclosed conditions [column 6 lines 55-60]. Until shown otherwise the examiner has interpreted these ranges to overlap with the instant claimed ranges [since the applicant fails to define the units]. PEDERSEN additionally gives a specific point of 3 LACU/g which equals 50 nkat/g and falls with the instant claimed ranges of claims 22 and 40 [column 10 line 10].

Alternatively, at the time of the invention it would have been obvious to optimize the enzyme activity on pulp [2144.05 (II) (B) Optimization of ranges and result effective variables].

PEDERSEN clearly shows enzyme activity on pulp to be a result effective variable and therefore its optimization would have been obvious to a person of ordinary skill, absence evidence of unexpected results.

As for claims 20, 28 and 29, PEDERSON discloses the temperature range of 20-80 degrees C which is the instant claimed range, and discloses a pH of 4-9 which falls within the instant claimed range [column 8 lines 31 and line 48].

As for claims 21-24, PEDERSON discloses peroxide, a chemical oxidizing agent, can be used in combination with the enzyme [column 8 lines 4-10].

As for claim 25, it is not clear the steps or the amount of radiation emitted onto the fiber, or consistency of the fiber. As paper web/pulp are subjected to light on a paper machine, at least

Art Unit: 1791

some light radiation (including UV) strikes the pulp/paper web capable of oxidizing a phenol group. Examiner notes peroxide with ultraviolet light forms hydroxyl radicals, an advanced oxidation process.

As for claim 30, PEDERSON discloses that the bi-functional monomer can also be aromatic amines; aniline is an aromatic amines [column 9 lines 30-47]. The polymer of phenylene diamine [column 9 lines 35-40] is a derivative of aniline (one extra NH2 group) and will form polyaniline derivative when radicalized. PEDERSON discloses that derivatives such alkyl and alkoxy groups work on phenolic components and it would be expected that said derivative types would also work on aniline components [column 5 lines 13-20].

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Art Unit: 1791

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ANTHONY J. CALANDRA whose telephone number is (571) 270-5124. The examiner can normally be reached on Monday through Thursday, 7:30 AM-5:00 PM

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Steven Griffin can be reached on (571) 272-1189. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Anthony J Calandra/ Examiner, Art Unit 1791

/Eric Hug/ Primary Examiner, Art Unit 1791