

KING SAUD UNIVERSITY

COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Final Exam 1439/1440 H.

First Semester

Time Allowed - 3 Hours

St. Name:	St. ID:	Section:
		50011021

<u>ملاحظات</u> :

- 1- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة). علمًا بأن عدد الأسئلة (٥)، وعدد الصفحات (٢).
 - 2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
 - 3- لا يسمح بتدوال الآلة الحاسبة بين الطلاب.
 - 4- لا يسمح باستخدام آلة حاسبة قابلة للبرمجة أو آلة حاسبة ترسم دوال.

Question 1:

(13 Marks)

- A) Solve the following inequality, and write your answer in an interval notation 2x 4 < 6.
- B) Use the definition of the limit to prove that $\lim_{x\to 2}(x+4)=6$.
- C) Evaluate each of the following limits (if exist):

1)
$$\lim_{x\to 1} (3x + 5)$$

$$2) \lim_{x \to 0} \frac{\sin(4x)}{3x}$$

3)
$$\lim_{x \to 5} \frac{x^2 - 8x + 15}{x - 5}$$

4)
$$\lim_{x \to 2} \frac{x-2}{\sqrt{x+2}-2}$$

5)
$$\lim_{x \to 0} x^2 \cos \left(\frac{1}{x^2}\right)$$

6)
$$\lim_{x \to \infty} \sin \left(\frac{\pi x + 2}{2x + 1} \right)$$

Question 2:

(6 Marks)

- A) Prove that, if f(x) = mx + c where m and c are real numbers, then f'(x) = m.
- B) Discuss the continuity of $f(x) = \begin{cases} \frac{x^2 4}{x 2} &, & x \neq 2 \\ & & \text{at } x = 2 \\ -2 &, & x = 2 \end{cases}$
- C) The position of a particle is given by the equation $s(t) = 3t^3 + 2t^2 + 7$, where s in meters and t in seconds.
 - 1- What is the velocity of the particle after 3 seconds?
 - 2- What is the acceleration of the particle after 5 seconds?

Find the derivative $\frac{dy}{dx}$ for each of the following:

A)
$$y = x^5 + x^3 + x^2 + 7$$

B)
$$y = (x^2 + x)^{25}$$

C)
$$y = \frac{\sin x}{x+1}$$

D)
$$y = x^2 \tan^{-1}(3x)$$

E)
$$y = \cos^3 x^2 + \tan \left(\frac{\pi}{3}\right)$$

$$F) x^2 + y^2 = \sin(xy)$$

Question 4:

(7 Marks)

- A) Show that the function $f(x) = x^2 4x + 5$ satisfies the conditions of the mean value theorem on the interval [0,2], then find the number c that satisfies the conclusion of the theorem.
- B) Let $f(x) = x^2$. Find the absolute extrema of f in [3,5].
- C) What are the dimensions of a rectangle with perimeter equals 100 cm which has maximum area?
- D) Let $f(x) = \frac{x^2}{x^2 9}$. Find the vertical asymptote(s), if exist.

Question 5:

(5 Marks)

For the function $f(x) = x^4 - 4x^3 + 10$, find the following (if any):

- A) The critical numbers of f.
- B) The interval(s) on which f is increasing and decreasing.
- C) The local extrema of f.
- D) The interval(s) on which f is concave upward or downward.
- E) Sketch the graph of f.

Good Luck

KING SAUD UNIVERSITY COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Final Exam alternative 1439/1440 H.

First Semester

Time Allowed - 3 Hours

St. Name:	St. ID:	Section:

<u>ملاحظات</u> :

- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة).
 علمًا بأن عدد الأسئلة (٥)، وعدد الصفحات (٢).
 - 2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
 - لا يسمح بتدوال الآلة الحاسبة بين الطلاب.
 - 4- لا يسمح باستخدام آلة حاسبة قابلة للبرمجة أو آلة حاسبة ترسم دوال.

Question 1:

(13 Marks)

- A) Solve the following inequality, and write your answer in an interval notation |3x + 2| > 9.
- B) Use the definition of the limit to prove that $\lim_{x\to -3} (-x-8) = -5$.
- C) Evaluate each of the following limits (if exist):

1)
$$\lim_{x \to 4} \left(\frac{2x+1}{2x} \right)$$

$$-2) \lim_{x \to 0} \left(\frac{\sin(x)}{4x} + \frac{\sin(x)}{5} \right)$$

3)
$$\lim_{x \to \infty} \tan \left(\frac{\pi x + 2}{x + 1} \right)$$

4)
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{2x^2}$$

5)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$$

6)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$

Question 2:

(6 Marks)

A) Prove that,
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$$
.

B) Discuss the continuity of
$$f(x)=\begin{cases} \frac{x^3-3x^2}{x-3} &, & x<3\\ & & \text{at } x=3 \,. \end{cases}$$
 at $x=3$.

C) The position of a particle is given by the equation $s(t) = 2t^3 - t^2 + 3$, where s in meters and t in seconds, what are the velocity and acceleration of the particle after 4 seconds?

Question 3:

(9 Marks)

A- Find the derivative $\frac{dy}{dx}$ for each of the following:

A)
$$y = x^6 + x^5 + 2$$

B)
$$y = x^4 \sin^{-1}(x^3) + \cos\left(\frac{\pi}{3}\right)$$

C)
$$y = (\cos^2(x^5) + \sin^2(x^2))^5$$
 D) $xy + y^2 = \sin(xy + 4)$

$$D) xy + y^2 = \sin(xy + 4)$$

B- Suppose that f and g are differentiable functions at x = 2 and that

$$f(2) = -3$$
, $f'(2) = 5$, $g(2) = 1$, $and g'(2) = -4$

Find
$$\frac{d}{dx} \left(\frac{x + g(x)}{x^2 - f(x)} \right) \Big|_{x=2}$$
.

Question 4:

(7 Marks)

- A) Show that the function $f(x) = x^3 3x^2 + x$ satisfies the conditions of the mean value theorem on the interval [0,2], then find the number c that satisfies the conclusion of the theorem.
- B) Let $f(x) = x^3$. Find the absolute extrema of f in [-2, 4].
- C) What are the dimensions of a rectangle with perimeter equals 120 cm which has maximum area?
- D) Let $f(x) = \frac{x^2}{\sqrt{x^2 \Omega}}$. Find the horizontal asymptote(s), if exist.

Question 5:

(5 Marks)

For the function $f(x) = x^5 - 5x$, find the following (if any):

- A) The critical numbers of f.
- B) The interval(s) on which f is increasing and decreasing.
- C) The local extrema of f.
- D) The interval(s) on which f is concave upward or downward.
- E) Sketch the graph of f.

Good Luck

KING SAUD UNIVERSITY COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Final Exam alternative 1439/1440 H.

First Semester

Time Allowed - 3 Hours

St. Name:	St. ID:	Section:

ملاحظات:

- 1- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غبر معتمدة).
 - علمًا بأن عدد الأسئلة (٥)، وعدد الصفحات (٢).
 - 2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
 - 3- لا يسمح بتدوال الآلة الحاسبة بين الطلاب. 4- لا يسمح باستخدام ألة حاسبة قابلة للبرمجة أو ألة حاسبة ترسم دوال.

Question 1:

(13 Marks)

- A) Solve the following inequality, and write your answer in an interval notation $\left|3x+2\right|>9.$
- B) Use the definition of the limit to prove that $\lim_{x \to -3} (-x 8) = -5$.
- C) Evaluate each of the following limits (if exist):

1)
$$\lim_{x \to 4} \left(\frac{2x+1}{2x} \right)$$

2)
$$\lim_{x \to 0} \left(\frac{\sin(x)}{4x} + \frac{\sin(x)}{5} \right)$$

3)
$$\lim_{x \to \infty} \tan \left(\frac{\pi x + 2}{x + 1} \right)$$

4)
$$\lim_{x\to 0} \frac{1-\cos^2 x}{2x^2}$$

5)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$$

6)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$

Question 2:

(6 Marks)

A) Prove that,
$$\frac{d}{dx} \left(\cos^{-1} x\right) = -\frac{1}{\sqrt{1-x^2}}$$
, $-1 < x < 1$.

B) Discuss the continuity of
$$f(x) = \begin{cases} \frac{x^3 - 3x^2}{x - 3}, & x < 3 \\ 6, & x > 3 \end{cases}$$
 at $x = 3$

C) The position of a particle is given by the equation $s(t) = 2t^3 - t^2 + 3$, where s in meters and t in seconds, what are the velocity and acceleration of the particle after 4 seconds?

Question 3:

(9 Marks)

A- Find the derivative $\frac{dy}{dx}$ for each of the following:

A)
$$y = x^6 + x^5 + 2$$

B)
$$y = x^4 \sin^{-1}(x^3) + \cos\left(\frac{\pi}{3}\right)$$

C)
$$y = (\cos^2(x^5) + \sin^2(x^2))^5$$
 D) $xy + y^2 = \sin(xy + 4)$

D)
$$xy + y^2 = \sin(xy + 4)$$

B- Suppose that f and g are differentiable functions at x = 2 and that

$$f(2) = -3$$
, $f'(2) = 5$, $g(2) = 1$, $and g'(2) = -4$

Find
$$\frac{d}{dx} \left(\frac{x + g(x)}{x^2 - f(x)} \right) \Big|_{x=2}$$
.

Question 4:

(7 Marks)

- A) Show that the function $f(x) = x^3 3x^2 + x$ satisfies the conditions of the mean value theorem on the interval [0,2], then find the number c that satisfies the conclusion of the theorem.
- B) Let $f(x) = x^3$. Find the absolute extrema of f in [-2, 4].
- C) What are the dimensions of a rectangle with perimeter equals 120 cm which has maximum area?
- D) Let $f(x) = \frac{x^2}{\sqrt{x^2 0}}$. Find the horizontal asymptote(s), if exist.

Question 5:

(5 Marks)

For the function $f(x) = x^5 - 5x$, find the following (if any):

- A) The critical numbers of f.
- B) The interval(s) on which f is increasing and decreasing.
- C) The local extrema of f.
- D) The interval(s) on which f is concave upward or downward.
- E) Sketch the graph of f.

Good Luck

KING SAUD UNIVERSITY

COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Final Exam 1438/1439 H.

First Semester

Time Allowed - 3 Hours

St. Name:	St. ID:	Section:	

<u>ملاحظات</u> :

1- اكتب خطوات الحل بالتفصيل لجميع الأسنلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة).

علمًا بأن عدد الأسئلة (٦)، وعدد الصفحات (٢).

- 2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
- 3- لا يسمح بتدوال الآلة الحاسبة بين الطلاب.

Question 1:

(4 Marks)

A) Solve the following inequality, and write your answer in interval notation

$$\left|2x-6\right| \leq 4$$

B) Use definition of limit to show that $\lim_{x\to 1} (2x + 3) = 5$.

Question 2:

(12 Marks)

Evaluate each of the following limits (if exist):

1)
$$\lim_{x \to 1} (2x + 4)^2$$

2)
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}$$

3)
$$\lim_{x \to 0} \frac{\sqrt{x+9}-3}{x}$$

4)
$$\lim_{x \to 0} \frac{x^2 - 2x}{x}$$

5)
$$\lim_{x \to \infty} \left[1 + \cos \left(\frac{3}{2x + 1} \right) \right]$$

6)
$$\lim_{x \to 2} \frac{4x + 3}{x - 2}$$

Question 3:

(6 Marks)

- A) Prove that if a function f is differentiable at a, then f is continuous at a.
- B) Discuss the continuity of $f(x) = \begin{cases} x+3 & , & x \le 0 \\ \frac{\sin(6x)}{2x} & , & x > 0 \end{cases}$ at x = 0.
- C) The position of a particle is given by the equation $s(t) = \frac{t-1}{t+1}$, where s is measured in meters and t in seconds. What is the acceleration of the particle after 3 seconds?

Question 4:

(12 Marks)

Find the derivative $\frac{dy}{dx}$ for each of the following functions:

$$1) y = \sin x + 2\cos x$$

2)
$$y = (3x^2 + 5x + 2)^{30}$$

3)
$$y = \sqrt{5x^2 + 7}$$

4)
$$y = x^2 \tan (3x)$$

5)
$$y = \tan^{-1}(4x)$$

6)
$$\frac{x^2 + y^2}{\sec x} = 1$$

Question 5:

(6 Marks)

- A) Given that $g(x) = 3x^2 + 5x + 1$, find the equation of the tangent line to the graph of g(x) at (1,9).
- B) Show that the function $f(x) = x^2 + x$ satisfies the conditions of the Mean Value Theorem on [-4,6]. Then find a number c that satisfies the conclusion of the theorem.
- C) The figure shows the graph of f'(x). Determine the local minimum and local maximum of the function f(x).

Question 6:

(10 Marks)

For the function $f(x) = x^4 - 4x^2$, find the following (if any):

- 1) The critical numbers of f.
- 2) The interval(s) on which f is increasing and decreasing.
- 3) The local extrema of f.
- 4) The interval(s) on which f is concave upward or downward.
- 5) Sketch the graph of f.

Good Luck

Page 2 of 2

the interval [1, 3].

KING SAUD UNIVERSITY COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Mid term "Alternative" Exam 1438/1439 H.

Second Semester

Time Allowed - 2 Hours

St. Name:	St. ID:	Section:
		ملاحظات :
<u>مدة).</u>	ر الإجابة <u>(الإجابة على ورقة الأسئلة غير معت</u>	1- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفة
		علمًا بأن عدد الأسئلة (٥)، وعدد الصفحات (٢).
		2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
		3- لا يسمح بتدوال الآلة الحاسبة بين الطلاب.
	م دوال.	 4- لا تستخدم آلة حاسبة قابلة للبرمجة أو آلة حاسبة ترسد
Question 1:		(5 Marks)
A) Determine	algebraically whether the funct	ion $f(x) = \left \frac{2x^4 + x^2}{\sin x} \right $ is even, odd, or
neither.		
B) Solve 1-	$-2\left 2x-3\right \ge -6$. •
Question 2:		(6 Marks)
A) Let $f(x)$	$=\frac{3}{\sqrt{x-4}}$, $g(x) = x^2 +$	-
1) $(f \circ g)$	(x)(x).	
$2)_{f} D_{f}, I$	D_g , and $D_{f \circ g}$.	
B) Show that	$f(x) = x^2 - 4x - 5, x >$	2 is a one-to-one function.
C) Find the ex	xact value of $\cos\left(2\cos^{-1}\left(\frac{4}{5}\right)\right)$, where $\cos\left(2\cos^{-1}\left(\frac{4}{5}\right)\right)$	vithout using calculator.
Question 3:		(4 Marks)
A) Use definit	tion of limit to show that $\lim_{x\to 0}$ (

B) Use the Intermediate Value Theorem to show that $f(x) = x^2 - \frac{9}{x} + 1$ has a zero in

. Question 4:

(9 Marks)

C) Evaluate each of the following limits (if exist):

1)
$$\lim_{x \to 1} \frac{x^2 + 4}{2x + 2}$$

2)
$$\lim_{x \to 0} x^6 \sin\left(\frac{1}{x^2}\right)$$

3)
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x^2 - 9}$$

4)
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x^2 - 4x + 3}$$

5)
$$\lim_{x \to \infty} \tan \left(\frac{\pi x - x}{x^2 + 5x} \right)$$

6)
$$\lim_{x \to \infty} \frac{x^2}{\sqrt{x-1}}$$

Question 5:

(6 Marks)

A) Let $f(x) = 3x^2 - 2$, then use the definition of derivative to find f'(x).

B) Find all vertical and horizontal asymptotes (if any) for $f(x) = \frac{2x-5}{x+3}$

C) Find the values of a and b such that the function $f(x) = \begin{cases} 2ax + 4b, & x > 1 \\ 3x + 2a, & x < 1 \\ 4, & x = 1 \end{cases}$ is continuous at every real number.

Good Luck

Page 2 of 2

KING SAUD UNIVERSITY

COMMON FIRST YEAR

BASIC SCIENCES DEPARTMENT

Math 101 Final Exam 1438/1439 H.

Second Semester

Time Allowed - 3 Hours

St. Name: St. ID:	Section:	
-------------------	----------	--

ملاحظات:

- اكتب خطوات الحل بالتفصيل لجميع الأسئلة داخل دفتر الإجابة (الإجابة على ورقة الأسئلة غير معتمدة).
 علمًا بأن عدد الأسئلة (٢)، وعدد الصفحات (٢).
 - 2- لا يسمح بالكتابة إلا بالقلم الأزرق فقط.
 - 3- لا يسمح بتدوال الألة الحاسبة بين الطلاب.
 - 4- لا تستخدم آلة حاسبة قابلة للبرمجة أو آلة حاسبة ترسم دوال.

Question 1:

(4 Marks)

A) Solve the following inequality, and write your answer in interval notation

$$\left|3x - 5\right| \ge 4$$

- B) Use the graph of the function to determine the following (if exists):
 - 1) The vertical asymptote(s).
 - 2) The horizontal asymptote(s).

Question 2:

(12 Marks)

Evaluate each of the following limits (if exist):

A)
$$\lim_{x \to 2} \sqrt{2x + 5}$$

B)
$$\lim_{x \to 1} \frac{x^2 - x}{3 - 3x}$$

C)
$$\lim_{x \to 0} \frac{1 + \sin(3x) - \cos x}{6x}$$

D)
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3}$$

E)
$$\lim_{x \to \infty} \cos \left(\frac{\pi x^2 + 2}{2x^2} \right)$$

F)
$$\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2}$$

Question 3:

(7Marks)

- A) Prove that $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$.
- B) Discuss the continuity of $f(x) = \begin{cases} \sin x &, & x \le 0 \\ x^2 1 &, & x > 0 \end{cases}$ at x = 0.
- C) The position of a particle is given by the equation

$$S(t) = t^5 - 10t^2 + 1 ,$$

where s in meters and t in seconds. Find the velocity of the particle when its acceleration is zero.

Question 4:

(12 Marks)

Find the derivative $\frac{dy}{dx}$ for each of the following:

$$A) y = x^3 + \sin x + 4$$

B)
$$y = x \sqrt[3]{(2x^2 - 5)^2}$$

C)
$$y = \left(\cos^{-1} x\right)^4$$

D)
$$y = \frac{x}{x + 1}$$

E)
$$y = 3 \cos(\sin(2x))$$

F)
$$x^2 + 3xy + y^2 = 2$$

Question 5:

(5 Marks)

- A) Let $f(x) = 3x^4 2x + 2$, find the equation of the tangent line to the graph at x = 1.
- B) If the function $f(x) = a\sqrt{x} + \frac{b}{\sqrt{x}}$ has a critical point at (1,4), find the values of a and b.

Question 6:

(10 Marks)

For the function $f(x) = x^3 - 3x + 2$, find the following (if any):

- A) The critical numbers of f.
- B) The interval(s) on which f is increasing and decreasing.
- C) The local extrema of f.
- D) The interval(s) on which f is concave upward or downward.
- E) Sketch the graph of f.

Good Luck

Page 2 of 2