第09讲: 向量组的线性表示

目的与要求:理解向量组的"线性表示"、"等价"等概念,强化求解线性方程组的方法。

重 点:向量组的线性表示(求解线性方程组)。

难 点:向量组之间线性表示的矩阵形式。

一、向量及其运算

● 向量:只有一个列或一个行的矩阵.

列向量:
$$\alpha = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

行向量: $\alpha^T = (a_1, \dots, a_n)$.

【注】除特别声明之外,向量均指列向量。

$$ullet$$
 单位坐标向量: $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$,..., $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

线性运算:数乘运算、加法运算
 kα,kα+lβ,

其中 α , β 为 n 元列向量,k,l ∈ R.

● 线性组合: 设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 为n元列向量, $k_1,\cdots,k_r\in R$,则称

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r$$
,

为向量 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 的一个**线性组合**,称 k_1,\cdots , k_r 为组合系数.

二、向量及向量组的线性表示

● 线性表示: $\alpha_1,\alpha_2,\dots,\alpha_r,\beta$ 为n 元列向量,若存在 $k_1,\dots,k_r \in R$,使得

$$\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r$$
,

则称向量 β 可由向量 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表示.

例如:设
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$

则由 $\alpha_1 + \alpha_3 = 2\alpha_2$ 得到, α_1 , α_2 , α_3 中任何一个向量都可有其余两个向量线性表示;

又如:对于任意n元列向量 $\alpha = (a_1, \dots, a_n)^T$,有

$$\alpha = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + a_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix},$$

即任意 n 元向量都可由 n 元单位坐标向量线性表示;

再如:
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 不能由 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 线性表示. 即方程组 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 无解.

例 1 设
$$A = (\alpha_1, \alpha_2, \alpha_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 4 \\ 2 & 3 & 0 \end{bmatrix}, \beta = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix},$$
证明

β可由α1,α2,α3线性表示,并求其表示。

【**方法**】构造 $Ax = \beta$,可用初等行变换化(A, β) 为行最简形,并求出其解,既证明了 β 可由 α_1 , α_2 , α_3 线性表示,同时也得到其表示结果.

解:(A,β) =
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 0 \\ 2 & 1 & 4 & 3 \\ 2 & 3 & 0 & 1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 1 & -2 & -1 \end{bmatrix}$$

由此得到 r(A) = r(A,b) = 2, 即 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,若记最后的行最简形为 $(\beta_1, \beta_2, \beta_3, \gamma)$,则 $\gamma = 2\beta_1 - \beta_2 + 0\beta_3$,

容易验证:
$$\beta=2\alpha_1-\alpha_2+0\alpha_3$$
.【验】

【注】上述通过 $\gamma = 2\beta_1 - \beta_2 + 0\beta_3$,得到 $\beta = 2\alpha_1 - \alpha_2 + 0\alpha_3$, 其正确性表述如下:

 $(\alpha_1, \alpha_2, \alpha_3, \beta) \xrightarrow{r} (\beta_1, \beta_2, \beta_3, \gamma),$ 表明方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$ 与 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = \gamma$ 同解,所以,其表示系数是一样的.

● 一组向量由另一组向量线性表示:

设 A 组: α_1 , α_2 , …, α_r , 记 $A = (\alpha_1, \alpha_2, \dots, \alpha_r)$, B 组: β_1 , β_2 , …, β_s , 记 $B = (\beta_1, \beta_2, \dots, \beta_s)$, 若 B 组的每一个向量都可由 A 组的向量线性表示,则称 B 组可由 A 组线性表示.

即存在 k11, k21, …, kr1 使得

$$\beta_1 = k_{11}\alpha_1 + k_{21}\alpha_2 + \cdots + k_{r1}\alpha_r$$
,

存在 k₁₂,k₂₂,…,k_{r2} 使得

$$\beta_2 = k_{12}\alpha_1 + k_{22}\alpha_2 + \cdots + k_{r2}\alpha_r$$
,

.

存在 k_{1s},k_{2s},…,k_{rs} 使得

$$\beta_s = k_{1s}\alpha_1 + k_{2s}\alpha_2 + \cdots + k_{rs}\alpha_r$$

改写为矩阵形式:

$$(eta_1\,,\,eta_2\,,\cdots,\,eta_s)=(lpha_1\,,\,lpha_2\,,\cdots,\,lpha_r)egin{bmatrix} k_{11} & k_{12} & \cdots & k_{1s} \ k_{21} & k_{22} & \cdots & k_{2s} \ dots & dots & dots \ k_{r1} & k_{r2} & \cdots & k_{rs} \end{bmatrix}.$$

即存在
$$K = (k_{ij})_{r \times s}$$
,使得
$$(\beta_1, \beta_2, \dots, \beta_s) = (\alpha_1, \alpha_2, \dots, \alpha_r)K.$$

◎ 向量组 B 可由向量组 A 组线性表示 ⇔⇒ 矩阵方程 AX = B 有解 ⇔⇒ r(A) = r(A,B). 例 2 设 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_1$,且 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) K$,则矩阵 K = .

解:
$$(\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
,

即矩阵
$$K = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

例 3 设
$$P$$
, Q 为 3 阶方阵,且 $P^{T}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$,

$$P = (\alpha_1, \alpha_2, \alpha_3), Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3),$$
则 $Q^TAQ =$ ____.

解:
$$Q = (\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 记作 PR ,则

$$Q^{T}AQ = R^{T}(P^{T}AP)R = R^{T}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}R$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

三、向量组的等价关系

● 两个向量组等价:它们可以互相线性表示。

定理 设有两个向量组:

$$A$$
组: α_1 , α_2 , ..., α_r , 记 $A = (\alpha_1, \alpha_2, ..., \alpha_r)$, B 组: β_1 , β_2 , ..., β_s , 记 $B = (\beta_1, \beta_2, ..., \beta_s)$,

(1) B 组可由 A 组线性表示 \iff 存在 K 使得 AK = B 即 AX = B 有解 $\iff r(A) = r(A,B)$;

- (2) 若 B 组可由 A 组线性表示,则 $r(A) = r(A,B) \ge r(B)$;
- (3) A 组与B 组等价 ←→

AX = B 与 BY = A 同时有解

$$\iff \begin{vmatrix} r(A) = r(A,B) \\ r(B) = r(B,A) \end{vmatrix}$$

$$\iff r(A) = r(B) = r(A,B).$$

【注r(A,B) = r(B,A),因为 $(A,B) \xrightarrow{c} (B,A)$.

例 4 设向量组
$$A$$
: $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$,

$$B: \beta_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \beta_2 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}, \beta_3 = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}.$$
证明 A 组与 B 组等价.

解:记 $A = (\alpha_1, \alpha_2, \alpha_3), B = (\beta_1, \beta_2, \beta_3),$ 则

$$(A,B) = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 3 & 6 & 4 \end{bmatrix} \xrightarrow{r_3 - 2r_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 & 0 \end{bmatrix}$$

r(A) = 3 = r(A,B),即B组可由A组线性表示;

$$r(B) = 3 = r(A,B) = r(B,A),$$

即 A 组也可由 B 组线性表示,从而 A 组与 B 组等价.

【注】证明 A 组等价于 B 组,只需证明 r(A) = r(B) = r(A,B),

本例的解答过程是为了强调两向量组等价概念.

【练习】设
$$A: \alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

$$B: \beta_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \beta_2 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}, 将 \beta_1, \beta_2$$
 组用 A 组线性表示.

[解](A,B) =
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & 2 & 3 & 6 \end{bmatrix} \xrightarrow{r_3 - 2r_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$$

容易验证 $\beta_1 = \alpha_1 + \alpha_2 - \alpha_3$, $\beta_2 = -\alpha_1 + 2\alpha_2 + \alpha_3$.

【注】实质上是解矩阵方程 $(\alpha_1,\alpha_2,\alpha_3)X=(\beta_1,\beta_2)$,得

$$X = \begin{bmatrix} 1 & -1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$$
, X 的两个列分别表示 β_1 , β_2 的表示系数.

第 10 讲: 向量组的线性相关性

目的与要求:理解向量组的线性相关性概念、

理论,初步掌握研究向量组线性

相关性的推理方法。

重 点:线性相关性定义与定理的应用。

难 点:向量组的线性相关性理论分析。

【注】本节推理较多,是本课程比较难的一节!

一、有关理论复习

1. 矩阵的秩

- ① 定义:r(A) = A 的最高阶非零子式的阶数. 约定 r(O) = 0.
- ② 若 $A \neq 0$, 则 $r(A) \geqslant 1$;
- ④ 可逆方阵的秩 = 它的阶数;
- ⑤ 初等变换不改变矩阵的秩; \Rightarrow 若 P,Q 可逆,则 r(PAQ) = r(A);
- ⑥ $r(A,B) \ge r(A)$, $r(A,B) \ge r(B)$.

2. 方程组的解与矩阵的秩

① $A_{m \times n} x = 0$ 有非零解(有无穷多组解) $\iff r(A) < n$, 【有自由未知量】 其中n 为未知量的个数.

【逆否】 $A_{m \times n} x = 0$ 只有零解 $\iff r(A) = n$.

② $Ax = \beta$ 无解 \iff $r(A) < r(A,\beta)$,【有矛盾方程】 $Ax = \beta$ 有解 \iff $r(A) = r(A,\beta)$, $Ax = \beta$ 有惟一解 \iff $r(A) = r(A,\beta) = n$, $Ax = \beta$ 有无穷多组解 \iff $r(A) = r(A,\beta) < n$, 【有自由未知量】

其中 n 为未知量的个数.

③ AX = B 有解 $\iff r(A) = r(A,B)$.

- 3. 向量组线性表示与矩阵的秩
- ① β 可由 A 组线性表示 $\iff Ax = \beta$ 有解 $\iff r(A) = r(A, \beta);$
- ② B 组可由 A 组线性表示 $\iff \exists K, 使得 B = AK$ $\iff AX = B$ 有解 $\iff r(A) = r(A,B)$
- ③ B 组可由A 组线性表示 $\Rightarrow r(B) \leqslant r(A)$;
- ④ A 组与 B 组等价 $\iff r(A) = r(B) = r(A,B)$.

【补充命题】

证明: $r(AB) \leq min\{r(A), r(B)\}.$

【分析】要证 $r(AB) \leq min\{r(A), r(B)\}$,只要证明 $r(AB) \leq r(A)$ 及 $r(AB) \leq r(B)$.

 $\operatorname{pr}(B) = r(B^{T}) \geqslant r(C^{T}) = r(C) = r(AB),$

综上所述, $r(AB) \leq min\{r(A), r(B)\}.$

【例】设 α,β 为n元非零列向量,则 $r(\alpha\beta^T)=1$.

【证】: $\alpha\beta^T \neq 0$,: $r(\alpha\beta^T) \geq 1$;又 $r(\alpha\beta^T) \leq min\{r(\alpha), r(\beta)\}$ = $r(\alpha) = r(\beta) = 1$,故 $r(\alpha\beta^T) = 1$.

二、基本概念

- 定义 1 如果向量组 α_1 ,…, α_r ($r \ge 2$) 中至少有一个向量能由其余向量线性表示,则称 α_1 ,…, α_r 线性相关,否则称 α_1 ,…, α_r 线性无关.
- ◆ 约定:若向量 $\alpha \neq 0$,则称 α 线性无关.

$$如:\alpha = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \beta = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
可以互相线性表示,即 α, β 线

性相关.

又如:
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 7 \\ 8 \end{bmatrix}, 满足$$

$$\alpha_3=2\alpha_2-\alpha_1$$
,

即 $\alpha_1,\alpha_2,\alpha_3$ 线性相关。

再如:三维单位坐标向量 e1,e2,e3 线性无关.

定义 2 若存在不全为零的数 k_1, \dots, k_r 使得

$$k_1\alpha_1+\cdots+k_r\alpha_r=0,$$

则称 α_1 ,···, α_r 线性相关,否则称 α_1 ,···, α_r 线性无关.

◎定义1与定义2等价.

【证*】当r=1时,由定义1的约定可知,它与定义2等价。以下设 $r \ge 2$:

"1⇒2": 若 α_1 , …, α_r 线性相关, 由定义 1, 不妨设 α_1 可由 α_2 , …, α_r 线性表示, 即存在数 k_2 , …, k_r , 使得 $\alpha_1 = k_2\alpha_2 + \dots + k_r\alpha_r$,

 $\mathbb{P} \qquad 1_{\alpha_1} - k_2 \alpha_2 - \cdots - k_r \alpha_r = 0,$

根据定义 $2,\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性相关;

"2 \rightarrow 1": 若 α_1 ,…, α_r 线性相关,由定义 2,存在不 全为零的数 k_1 ,…, k_r , 使得

$$k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r=0,$$

不妨设 $k_1 \neq 0$,则 $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \cdots - \frac{k_r}{k_1}\alpha_r$,根据定义

 $1,\alpha_1,\cdots,\alpha_r$ 线性相关. ‡

二、理论分析及应用

- ◎ α_1 ,…, α_r ($r \ge 2$) 线性相关 $\Longleftrightarrow \alpha_1$,…, α_r 中至少有一个可由其余向量线性表示.
- \bigcirc α_1 , \cdots , α_r 线性相关 \iff 方程组 $x_1\alpha_1 + \cdots + x_r\alpha_r = 0$ 有非零解 \iff $r(\alpha_1, \cdots, \alpha_r) < r$.
- $\bigcirc \alpha_1$, …, α_r 线性无关 $\iff r(\alpha_1, \dots, \alpha_r) = r$ \iff 方程组 $x_1\alpha_1 + \dots + x_r\alpha_r = 0$ 只有零解.

【例 3】
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$, 判定 α_1 , α_2 , α_3 的线性

相关性.

【解】方法:用矩阵(α_1 , α_2 , α_3)的秩判定 α_1 , α_2 , α_3 的线性相关性.

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 3 & 7 \\ 3 & 4 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 6 \\ 0 & -1 & -5 \\ 0 & -2 & -10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

 $r(\alpha_1,\alpha_2,\alpha_3)=2$, 所以 $\alpha_1,\alpha_2,\alpha_3$ 线性相关.

【注】α1,α2,α3 中任意两个向量都线性无关.

 \bigcirc n 个 n 元列向量组 α_1 , \cdots , α_n 线性无关 $\Leftrightarrow |A| = |\alpha_1, \cdots, \alpha_n| \neq 0 \Leftrightarrow A$ 可逆.

如:3个3元列向量
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 线性无关.

显然
$$|\alpha_1, \alpha_2, \alpha_3|$$
 = $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{vmatrix}$ = $24 \neq 0$.

○ n+1 个 n 元向量必线性相关.

$$[:r(\alpha_1,\cdots,\alpha_{n+1}) \leqslant n < n+1]$$

例如:3 个 2 元列向量 $\begin{bmatrix}1\\2\end{bmatrix}$, $\begin{bmatrix}3\\4\end{bmatrix}$, $\begin{bmatrix}5\\6\end{bmatrix}$ 线性相关,因为

$$r(\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}) = 2 < 3.$$

◎ 含零向量的向量组必线性相关.

【: 零向量总能由其他向量线性表示】

◎ 两个向量线性相关 ←⇒ 它们的分量对应成比例 (即一个向量是另一个向量的若干倍).

【不妨设 α 可由 β 线性表示, 即 $\alpha = k\beta$ 】

【例 4】设 α_1 , α_2 , α_3 线性无关, $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_1$, 讨论 β_1 , β_2 , β_3 的线性相关性。解法 ① 令 $x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = 0$, 则

 $(x_1+x_3)\alpha_1+(x_1+x_2)\alpha_2+(x_2+x_3)\alpha_3=0$ 由于 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,所以,必有

$$\begin{vmatrix}
x_1 + x_3 &= 0 \\
x_1 + x_2 &= 0 & \text{Pp} \\
x_2 + x_3 &= 0
\end{vmatrix}
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = 0$$
(*)

其系数行列式:

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{vmatrix} = 2 \neq 0,$$

r(A) = 3,即方程组(*)只有零解,从而 β_1 , β_2 , β_3 线性无关.

【注】可以用(*)的系数阵 A 的秩 r(A) = 3,即 A 可逆, $x = A^{-1}0 = 0$,从而(*)只有零解.

解法② 由 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_1$ 得

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

记上式为 B = AK, 易得|K| = 2(计算见解法①),即 K 可逆, 从而 r(B) = r(A) = 3, 故 β_1 , β_2 , β_3 线性无关.

又如:设 α_1 , α_2 , α_3 , α_4 为任意 4个列向量, $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_4$, $\beta_4 = \alpha_4 + \alpha_1$,则 β_1 , β_2 , β_3 , β_4 线性相关.

【证法①】由 $\beta_1 - \beta_2 + \beta_3 - \beta_4 = 0$ 得, β_1 , β_2 , β_3 , β_4 线性相关.

【证法②】由
$$(\beta_1,\beta_2,\beta_3,\beta_4)=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
,记

为 B = AK, 容易求出 r(K) = 3, 从而 $r(\beta_1, \beta_2, \beta_3, \beta_4) \leq min\{r(A), r(K)\} \leq 3 < 4$, 则 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性相关.

(研讨)

对于向量组 $\alpha_1, \dots, \alpha_r$, 构造向量组:

 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$,…, $\beta_r = \alpha_r + \alpha_1$,则 β_1 , β_2 ,…, β_r 的线性相关性如何?

【结论: 当r = 奇数时, β_1 , β_2 ,…, β_r 与 α_1 , α_2 ,…, α_r 的线性相关性相同;当r = 偶数时, β_1 , β_2 ,…, β_r 线性相关】

定理1 设 α_1 ,…, α_r 线性无关, α_1 ,…, α_r , β 线性相关,则 β 可由 α_1 ,…, α_r 唯一地线性表示。

【证法 1】记 $A = (\alpha_1, \dots, \alpha_r)$,则由 $\alpha_1, \dots, \alpha_r$ 线性无关及 $\alpha_1, \dots, \alpha_r$,多线性相关,得

$$r(A) = r \leqslant r(A, \beta) < r + 1,$$

从而, $r(A) = r(A,\beta) = r$ 等于" $Ax = \beta$ "的未知量个数,方程组 $Ax = \beta$ 有惟一解,即 β 可由 $\alpha_1, \dots, \alpha_r$ 惟一地线性表示.

【证法 2】(阅读) 由 α_1 ,…, α_r , β 线性相关可知,存在 k_1 , …, k_r ,k 不全为零,使得

$$k_1\alpha_1+\cdots+k_r\alpha_r+k\beta=0,$$

若 k=0,则 k_1 ,…, k_r 不全为零, $k_1\alpha_1$ 十… + $k_r\alpha_r=0$,这与 α_1 ,…, α_r 线性无关矛盾,所以,必有 $k\neq 0$,由此 得 $\beta=-\frac{k_1}{b}\alpha_1-\dots-\frac{k_r}{b}\alpha_r$ 即 β 可由 α_1 ,…, α_r 线性表示;

再证表示的唯一性:记 $A = (\alpha_1, \dots, \alpha_r)$,

设 $Ax = \beta$, $Ay = \beta$, 只需证明必有 x = y.

由 $A(x-y) = Ax - Ay = \beta - \beta = 0$ 及 r(A) = r =未知量个数,必有 x-y = 0,即 x = y.

定理 2 若 α_1 ,…, α_r 线性相关,则 α_1 ,…, α_r , α_{r+1} 必线性相关。

【证明】因为 $r(\alpha_1, \dots, \alpha_r) < r$,所以 $r(\alpha_1, \dots, \alpha_r, \alpha_{r+1}) < r+1$,

即 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}$ 线性相关.

【**逆否命题**】若 α_1 ,…, α_r , α_{r+1} 线性无关,则 α_1 ,…, α_r 必 线性无关。

题 简言之:"整体无关"⇒"部分无关"; "部分相关"⇒"整体相关".

【例题与练习】

1. 设
$$\alpha_1 = \begin{bmatrix} 2 \\ 0 \\ t \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 0 \\ -4 \\ 5 \\ -2 \end{bmatrix}$, 讨论 α_1 , α_2 , α_3 的

线性相关性.

解:为计算方便,我们用 $\alpha_1,\alpha_2,\alpha_3$ 构造矩阵 $[\alpha_2,\alpha_3,\alpha_1]$:

$$[\alpha_2, \alpha_3, \alpha_1] = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -4 & 0 \\ -1 & 5 & t \\ 1 & -2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & t - 3 \\ 0 & 0 & 0 \end{bmatrix}$$

当 t = 3 时, $r(\alpha_1, \alpha_2, \alpha_3) = 2$, $\alpha_1, \alpha_2, \alpha_3$ 线性相关; 当 $t \neq 3$ 时, $r(\alpha_1, \alpha_2, \alpha_3) = 3$, $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 2. 阅读并重证(p119, Eg. 3.)

设 α_1 , α_2 , α_3 线性相关, α_2 , α_3 , α_4 线性无关.则

- (1) α1 可由 α2,α3 线性表示;
- (2) α4 不能由 α1,α2,α3 线性表示.

证*: (1) 方法:用矩阵的秩证明(α_2,α_3) $x = \alpha_1$ 有解. 由 $\alpha_2,\alpha_3,\alpha_4$ 线性无关,得 $r(\alpha_2,\alpha_3) = 2 \leq r(\alpha_1,\alpha_2,\alpha_3)$, 又由 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,得 $r(\alpha_1,\alpha_2,\alpha_3) < 3$,故 $r(\alpha_1,\alpha_2,\alpha_3) = 2$,所以, α_1 可由 α_2,α_3 线性表示; (2) 方法:证明方程组($\alpha_1,\alpha_2,\alpha_3$) $x = \alpha_4$ 无解.

 $r(\alpha_1,\alpha_2,\alpha_3)=2$, $formula r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)\geqslant 3$,

所以, $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \alpha_4$ 无解,即 α_4 不能由 α_1 , α_2 , α_3 线性表示.

3. 设 β 可由 α_1 ,…, α_r 线性表示,但 β 不能由 α_1 ,…, α_{r-1} 线性表示,则 α_r 可由 α_1 ,…, α_{r-1} , β 线性表示.

证:令 $\beta = k_1\alpha_1 + \cdots + k_{r-1}\alpha_{r-1} + k_r\alpha_r$,
则 $k_r \neq 0$ (否则 β 可由 α_1 , $\cdots \alpha_{r-1}$ 线性表示),即
1 k_1 k_2 k_{r-1}

$$\alpha_r = \frac{1}{k_r} \beta - \frac{k_1}{k_r} \alpha_1 - \cdots - \frac{k_{r-1}}{k_r} \alpha_{r-1},$$

从而 α_r 可由 $\alpha_1, \dots, \alpha_{r-1}, \beta$ 线性表示.

预告: $p121 \sim 128$.