

MORPHORM

Simulation-Driven Design

University of Utah November 28, 2023

PRESENTED BY

Miguel A. Aguilo, PhD (<u>maguilo@morphorm.com</u>) <u>www.morphorm.com</u>

MORPHORM DRIVING DIGITAL ENGINEERING INNOVATION

Motivation

Structural Engineering

Could we use simulationdriven design (SDD) to engineer better structures?

Note: Collaboration with Prof. Kurt Maute

Heat Exchanger Design

Optimized solar PV cell is 3.5% more efficient than the baseline cell

MORPHORM DRIVING DIGITAL ENGINEERING INNOVATION

Trial & Error

Structural Design

Young's Modulus = 200e9 Pa

Poisson's Ratio = 0.3

H = 4.5 m

L = 10 m

L = 10 m

W = 2 m

P = 1e4 Pa

Step 1: Build Attributed Geometry Model

Step 2: Build Attributed Volume Mesh Model

Step 4: Run Simulation & Analyze Results

Workflow

MORPHORM DRIVING DIGITAL ENGINEERING INNOVATION

Automation

Structural Design

Young's Modulus = 200e9 Pa

Poisson's Ratio = 0.3

H = 4.5 m

L = 10 m

L = 10 m

W = 2 m

P = 1e4 Pa

Step 2: Build Attributed Volume Mesh Model

Step 4: Solve Simulation-Driven Design Optimization Problem

Step 5: Build Geometry Model

Workflow

MORPHORM

Problem Formulation

Problem Formulation

Find a structural design that <u>maximizes</u> structural rigidity and <u>meets</u> the mass budget requirement.

Optimization Problem Statement

Design* = arg maximize Structural Stiffness Design

subject to

Governing Equations Are Satisfied

Structural Mass - Mass Requirement ≤ 0

Problem Formulation

Find a structural design that <u>maximizes</u> structural rigidity and <u>meets</u> the mass budget requirement.

Optimization Problem Statement

$$Design^* = \arg \underset{Design}{\text{minimize}} \frac{1}{2} \mathbf{u^T} (Design) \mathbf{f}$$

subject to

$$\mathbf{R}(\mathbf{u}(\mathrm{Design}), \mathrm{Design}) = \mathbf{K}(\mathrm{Design})\mathbf{u} - \mathbf{f} = \mathbf{0}$$

$$\mathbf{G}(\mathrm{Design}) = \mathrm{Mass}(\mathrm{Design}) - \mathrm{Mass} \; \mathrm{Req.} \leq \mathbf{0}$$

MORPHORM

Design Requirements

Enforce Local Design Requirements

Minimize Mass & Constraint Local Von Mises Stress

Will the Problem Formulation Impact Results?

Trends

Opportunity

PROPOSAL

HARDWARE ABSTRACTION

INTELLIGENT DESIGN TOOL

REAL-TIME DISCOVERY

MULTI-PHYSICS EXPLORATION

BUILT-IN RELIABILITY

MORPHORM DRIVING DIGITAL ENGINEERING INNOVATION Thank You

Simulation-Driven Design www.morphorm.com

