Solutions - Practice Exam Questions - Tutorial 3

```
1. (a) \{(4,2),(4,3),(5,2),(5,3)\}

(b) \emptyset

(c) \{(\emptyset,2),(\emptyset,3),(\{6\},2),(\{6\},3)\}

(d) It's just \mathbb{P}(B) i.e. \{\emptyset,\{4\},\{5\},\{4,5\}\}\}

(e) \{\emptyset,\{4\},\{5\},\{6\},\{4,5\},\{4,6\},\{5,6\},\{4,5,6\}\}\}

(f) \{((2,4),6),((3,4),6),((2,5),6),((3,5),6)\}

(g) \{(\emptyset,\emptyset),(\{4\},\emptyset),(\{5\},\emptyset),(\{4,5\},\emptyset)\}

(h) E \setminus A is equal to \{\{2,3\},\emptyset\} so (E \setminus A) \times A is equal to \{(\{2,3\},2),(\{2,3\},3),(\emptyset,2),(\emptyset,3)\}\}
```

3.
$$B \mid A = B = \{ \emptyset \}$$
.

 $P(B \mid A) = P(B) = \{ \emptyset, B \}$
 $= \{ \emptyset, \{ \emptyset \} \} \}$
 $= \{ \emptyset, \{ \emptyset \} \} \}$
 $= \{ \emptyset, \{ \emptyset \} \} \}$
 $= \{ \emptyset, \{ \emptyset \} \}$
 $= \{ \emptyset, \{ \emptyset \} \} \}$
 $= \{ \emptyset, \{ \emptyset \} \}$
 $= \{ \emptyset, \{$

4. (a) $A = \{1\}, B = \{2\}$. Observe that $\{1, 2\} \in \mathbb{P}(A \cup B)$ but $\{1, 2\} \notin \mathbb{P}(A) \cup \mathbb{P}(B)$.

(b) The property is $(A \subseteq B) \vee (B \subseteq A)$.

To prove this, I need to prove that for all sets A and B, $M \Leftrightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) \cup \mathbb{P}(B)$.

I first prove the \Rightarrow direction. So let A and B be arbitrary sets. Assume that M holds. If $A \subseteq B$, then $\mathbb{P}(A \cup B) = \mathbb{P}(B)$. Now, note that $A \subseteq B \Rightarrow \mathbb{P}(A) \subseteq \mathbb{P}(B)$. (Can you see why?) Hence, $\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(B)$. Summarizing, if $A \subseteq B$ then both sides evaluate to $\mathbb{P}(B)$ so the claim holds. The analysis is symmetrical if $B \subseteq A$.

I now prove the \Leftarrow direction. To do this, I will prove the contrapositive: I will show that if M is not true, then $\mathbb{P}(A \cup B) \neq \mathbb{P}(A) \cup \mathbb{P}(B)$. Now, if M does not hold, then $A \not\subseteq B \land B \not\subseteq A$. So A contains some element x that B does not, and B contains some element y that A does not (and $x \neq y$). Observe that $\{x,y\} \subseteq A \cup B$, so $\{x,y\} \in \mathbb{P}(A \cup B)$. However, $\{x,y\} \not\subseteq A$, so $\{x,y\} \notin \mathbb{P}(A)$. Similarly, $\{x,y\} \not\subseteq B$, so $\{x,y\} \notin \mathbb{P}(B)$. Hence, $\{x,y\} \notin \mathbb{P}(A) \cup \mathbb{P}(B)$. Hence, $\mathbb{P}(A \cup B) \neq \mathbb{P}(A) \cup \mathbb{P}(B)$ (because one side contains $\{x,y\}$ and the other doesn't).

5. (a)

Symmetric: no, e.g. n=0, y=3. Le Rave 2(0)-2(3)=-6=3 but 2(3)-2(0) = 6 \$3 Reflexive? You, because 2x-2x=0 and 0 = 3. Transifice? No: take x=2, y=1, z=0. Deget 2(2)-2(1) 53 V 2(1)-2(0) 53~ 2(2)-2(0) \$3. (HOW I got her? I wasn't sure at first so 1 Storted by trying to prove it true. I assumed niky and yill, background, notnecessary to wite this onan exam So 2x-2y ≤3 and 2y-22 ≤3. I tried to simplify this, dividing everything by 2 to get: n-y 51.5 and y-2 51.5. NOW, money are integers so this implies n-y = 1 and y-2 = 1 Adding these irequalities, I get NOW, nKz mean "Lx-22 53" which is equivalent to We know x-2 = 2, so if the claim is false than # a Counterexample must have the form N-Z = 2. Which gave me a clue to find N=2, y=1, Z=0.)

(b)

```
Take eg n=-1. Is n=1?

Take eg n=-1. Is n=1?

That is, is -1 \ge |-1|?

That is, is -1 \ge |-1|?

The example, 3R-2 because 3 \ge |-2|

but -2R/3 because 3 \ge |-2|

The example, 3R-2 because 3 \ge |-2|

but -2R/3 because -2 \ne |3|

Assume n \ge |9|

and n \ge |9|

Nou, n \ge |9| \implies n \ge 0.

Y n \ge |9| \implies n \ge 0.

(c)

Nou, combine n \ge 9 and 9 \ge |2|

And we get n \ge 7.
```

```
Reflexive?
 Let n E I. Is it true that 2-2+1 is natural?
                  Yes, because n-n+1 = 1
      So it is reflexive.
Symmetric?
   No. Let n=10 and y=4.
             clearly, 10-4+1=7 and 7 EN
             but 4-10+1 = -5 and -5 & N
    So not symmetric.
Transitive?
  Let n,y, 2 be abitrary integers such that
         nRy and yRz. Need to show nRz.
  nRy => n-y+1 is natural
 NOW,
    => x-y+1 7,1
     => n-y 70
     => 279.
 yRz => y-z+1 is natural
       =7 y-Z+1 7 1
       => 4-2 70
        => 37/2
Combining 2271 y and y712 maget 2712.
 NOW, 27/2
   =7 2-270
    => x -Z+17/1
   => n-Z+1 is natural (because natural)
                  meaning 2. 2 is integer). So year fransitive!
```

6.

7. There are two equivalence classes: (1) All integers ≥ 0 and (2) All integers ≤ -1 .

If you want to know why these are the equivalence classes, observe firstly that (1) and (2) together partition \mathbb{Z} . Next, observe that if you take any two integers x and y, both ≥ 0 , then $(x+\frac{1}{2})>0$ and $(y+\frac{1}{2})>0$, so $(x+\frac{1}{2})(y+\frac{1}{2})\geq 0$. Similarly, if you take any two integers x and y, both ≤ -1 , then $(x+\frac{1}{2})<0$ and $(y+\frac{1}{2})<0$, so $(x+\frac{1}{2})(y+\frac{1}{2})\geq 0$. Now, suppose you take (without loss of generality) an integer $x\geq 0$ and an integer $y\leq -1$. We observe that $(x+\frac{1}{2})>0$ and $(y+\frac{1}{2})<0$, so $(x+\frac{1}{2})(y+\frac{1}{2})<0$ i.e. x and y are not related. In other words, everything in (1) is mutually related, everything in (2) is mutually related, but nothing in (1) is related to anything in (2).