CSE 122

AVL trees Wyk Chapter 9.1

Trees and balance

- balanced tree: One whose subtrees differ in height by at most 1 and are themselves balanced.
 - A balanced tree of N nodes has a height of ~ log₂ N.
 - A very unbalanced tree can have a height close to N.
 - The runtime of adding to / searching a BST is closely related to height.
 - Some tree collections (e.g. TreeSet)
 contain code to balance themselves
 as new nodes are added.

height = 4 (balanced)

Some height numbers

- Observation: The shallower the BST the better.
 - Average case height is O(log N)
 - Worst case height is O(N)
 - Simple cases such as adding (1, 2, 3, ..., N), or the opposite order, lead to the worst case scenario: height O(N).
- For binary tree of height *h*:
 - max # of leaves: 2^{h-1}
 - max # of nodes: 2^h 1
 - min # of leaves: 1
 - min # of nodes: h

Calculating tree height

- Height is max number of nodes in path from root to any leaf.
 - height(null) = 0
 - height(leaf) = ?
 - height(A) = ?
 - Hint: it's recursive!
 - height(leaf) = 1
 - height(A) = 1 + max(height(left), height(right))

AVL trees

- AVL tree: a binary search tree that uses modified add and remove operations to stay balanced as its elements change
 - one of several kinds of auto-balancing trees
 - invented in 1962 by two Russian mathematicians
 - (Adelson-Velskii and Landis)
 - A-V & L proved that an AVL tree's height is always O(log N).
 - basic idea: When nodes are added to / removed from the tree, if the tree becomes unbalanced, repair the tree until balance is restored.
 - rebalancing operations are relatively efficient (O(1))
 - overall tree maintains a balanced O(log N) height, fast to add/search

Balance factor

- **balance factor**, for a tree node *T* :
 - = height of T's right subtree minus height of T's left subtree.
 - BF(T) = Height(right) Height(left)
 - (the tree at right shows BF of each node)
 - an AVL tree maintains a "balance factor" in each node of 0, 1, or -1
 - i.e. no node's two child subtrees differ in height by more than 1
 - it can be proven that the height of an AVL tree with N nodes is O(log N)

AVL tree examples

- Two binary search trees:
 - (a) an AVL tree
 - (b) <u>not</u> an AVL tree (unbalanced nodes are darkened)

(a)

(b)

Which are valid AVL trees?

Tracking subtree height

- Many of the AVL tree operations depend on height.
 - Height can be computed recursively by walking the tree; too slow.
 - Instead, each node can keep track of its subtree height as a field:

AVL add operation

- For all AVL operations, we assume the tree was balanced before the operation began.
 - Adding a new node begins the same as with a typical BST, traversing left and right to find the proper location and attaching the new node.
 - But adding this new node may unbalance the tree by 1:

AVL add cases

- Consider the lowest node k_2 that has now become unbalanced.
 - The new offending node could be in one of the four following grandchild subtrees, relative to k_2 :
 - 1) Left-Left, 2) Left-Right, 3) Right-Left, 4) Right-Right

Key idea: rotations

- If a node has become out of balance in a given direction, *rotate* it in the opposite direction.
 - rotation: A swap between parent and left or right child, maintaining proper BST ordering.

Right rotation

- right rotation (clockwise): (fixes Case 1 (LL))
 - left child k_1 becomes parent
 - original parent k₂ demoted to right
 - k_1 's original right subtree B (if any) is attached to k_2 as left subtree

Right rotation example

• What is the balance factor of k_2 before and after rotating?

Right rotation steps

- 1. Detach left child (11)'s right subtree (27) (don't lose it!)
- 2. Consider left child (11) be the new parent.
- 3. Attach old parent (43) onto right of new parent (11).
- 4. Attach new parent (11)'s old right subtree (27) as left subtree of old parent (43).

Left rotation

- **left rotation** (counter-clockwise): (fixes Case 4 (RR))
 - right child k_2 becomes parent
 - original parent k₁ demoted to left
 - k_2 's original left subtree B (if any) is attached to k_1 as left subtree

Left rotation steps

- 1. Detach right child (65)'s left subtree (51) (don't lose it!)
- 2. Consider right child (65) be the new parent.
- 3. Attach old parent (43) onto left of new parent (65).
- 4. Attach new parent (65)'s old left subtree (51) as right subtree of old parent (43).

Problem cases

• A single right rotation does not fix Case 2 (LR).

(Similarly, a single left rotation does not fix Case 3 (RL).)

Left-right double rotation

- left-right double rotation: (fixes Case 2 (LR))
 - 1) left-rotate k_3 's left child ... reduces Case 2 into Case 1
 - 2) right-rotate k₃ to fix Case 1

Left-right rotation example

• What is the balance factor of k_1 , k_2 , k_3 before and after rotating?

Right-left double rotation

- right-left double rotation: (fixes Case 3 (RL))
 - 1) right-rotate k_1 's right child ... reduces Case 3 into Case 4
 - 2) left-rotate k₁ to fix Case 4

AVL add example

- Draw the AVL tree that would result if the following numbers were added in this order to an initially empty tree:
 - **2**0, 45, 90, 70, 10, 40, 35, 30, 99, 60, 50, 80

