NOMBRE: Mariana Ortega del Río

SECCIÓN: 2

Nº LISTA: 73

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2019

Tarea 2 – Respuesta Pregunta 1

1. Sea $\sum = \{\varphi_1, \dots, \varphi_m\}$ un conjunto de fórmulas con variables p_1, \dots, p_n en lógica proposicional y φ una fórmula proposicional cualquiera. Si \sum es satisfacible, existe una valuación v_1, \dots, v_n tal que:

$$\sum (v_1, \dots, v_n) = 1$$

Entonces, para que $\sum \models \varphi$ se debe cumplir que $\varphi(v_1,\ldots,v_n)=1$ para esta valuación. Así, para que $\sum \nvDash \varphi$ se necesitaría un caso donde $\sum (v_1,\ldots,v_n)=1$, pero $\varphi(v_1,\ldots,v_n)=0$. Como φ sólo puede valer 0 o 1, en el caso de que φ valga 1, se debe cumplir que su negación $\neg \varphi$ valga 0, lo que hace que se cumpla $\sum \nvDash \neg \varphi$ ya que cuando cuando $\sum (v_1,\ldots,v_n)=1$ se tendría $\neg \varphi=0$, lo que no cumle con la consecuencia lógica. Por tanto, si existe una valuación que satisface \sum entonces para toda fórmula proposicional se tiene que $\sum \nvDash \varphi$ o $\sum \nvDash \neg \varphi$.

2. Dado un conjunto finito de variables proposicionales $P = \{p_1, p_2, \dots, p_n\}$ y \sum un conjunto de fórmulas propocionales, se dice que \sum es una cadena de P si es de la forma:

$$\sum \{p_1, p_1 \to p_2, p_2 \to p_3, \dots, p_{n-1} \to p_n\}$$

Se sabe que si φ es una fórmula con variables en P y se cumple que $\sum \models \varphi$, entonces existe una valuación v_1, \ldots, v_n para la cual se cumple que $\sum (v_1, \ldots, v_n) = 1$ donde φ en esa valuación vale 1. Al inspeccionar la estructura de una cádena nos damos cuenta que la única forma en que la cadena tome valor 1 es cuando todas las variables proposicionales de P valen 1. Esto se debe a que la cadena representa una conjunción entre $p_1, p_1 \to p_2, \ldots, p_{n-1} \to p_n$ y por tanto si tomamos el caso donde $p_1 = 1$ debemos tener que $p_2 = 1$ para que $p_1 \to p_2$ y entonces como $p_2 = 1$ necesitamos que $p_3 = 1$ para que sea verdadero que $p_2 \to p_3$ y así en adelante. En cualquier caso de la tabla de verdad donde alguna variable tome el valor de 0 se obtendrá que \sum es falso.

Por tanto, como hay solo una valuación donde \sum se hace 1 y φ sólo puede tomar valores 0 o 1, se tiene que cumplir que $\sum \models \varphi$ o bien $\sum \models \neg \varphi$ debido a que si $\varphi = 1$ entonces se cumple que $\sum \models \varphi$ o bien si $\varphi = 0$ se cumple que $\sum \models \neg \varphi$, cumpliendo en ambos casos la consecuencia lógi

NOMBRE: Mariana Ortega del Río SECCIÓN: 2

Nº LISTA: 73

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2019

Tarea 2 – Respuesta Pregunta 2

Aquí va la respuesta a la pregunta 2.