Funkcje

- 1. Która z podanych relacji jest funkcją? Dla każdej funkcji wyznacz jej dziedzinę i przeciwdziedzinę.
 - (a) $r = \{(1,2), (2,2), (2,4), (4,4), (4,8), (8,4)\},\$
 - **(b)** $r = \{(1,2), (2,2), (3,4), (4,8), (8,5)\},\$
 - (c) $r = \{(x, y) \subset \mathbb{Z} \times \mathbb{Z} : 2x + y = \max(\{x, 2\}\}),$
 - (d) $r = \{(x, y) \subset \mathbb{R} \times \mathbb{R} : |y| = 2^x\},$
 - (e) $r = \{(f,g) \subset F \times F : f = O(g)\}$, gdzie F jest zbiorem funkcji określonych w dziedzinie liczb naturalnych.
- 2. Niech P będzie zbiorem programów z jednym argumentem wywołania będącym liczbą całkowitą. W zbiorze P określamy relację r taką, że P_1 r P_2 wttw dla każdego $a \in \mathbb{Z}$, $Res(P_1(a)) = Res(P_2(a))$, gdzie Res(P(a)) jest zbiorem możliwych wyników programu P dla danej wejściowej a. Czy relacja r jest funkcją?
- 3. Niech P będzie programem z jednym argumentem wywołania będącym liczbą całkowitą. W zbiorze \mathbb{Z} określamy relację r taką, że a r b wttw Res(P(a)) = Res(P(b)), gdzie Res(P(a)) jest zbiorem możliwych wyników programu P dla danej wejściowej a. Czy relacja r jest funkcją? Jeśli tak określ jej własności (czy jest iniekcją, suriekcją, bijekcją).
 - (a) $P(n) = \{x := 100; \text{ for } i = 1 \text{ to } n \text{ do } x := |x/3|; i := i + 1; \text{ od } return \ x\},\$
 - (b) $P(n) = \{x := 100; for \ i = 1 \ to \ n \ do \ k := random(\{2,3,4\}); \ x := \lfloor x/k \rfloor; \ i := i+1; od \ return \ x\}.$
- 4. Niech A będzie następującym podzbiorem zbioru liczb całkowitych $A = \{-10, -9, \dots, 9, 10\}$ oraz niech P będzie programem takim, że dla każdego $n \in A$
 - $P(n) = \{X := \emptyset; \text{ for } i = -10 \text{ to } 10 \text{ do if } sgn(n) = sgn(i) \text{ then } X := X \cup \{i\}; \text{ fi } i := i+1; \text{ od } return X\}.$

Co oblicza program P? Wyznacz P(3). Określmy teraz funkcję $f:A\to P(A)$ taką, że f(n)=P(n). Czy f jest suriekcją, iniekcją, bijekcją?

5. Niech A będzie dowolnym zbiorem zapisanym w tablicy T (tzn. T[i] oznacza i-ty element zbioru A), a r relacją równoważności określoną w tym zbiorze. Ponadto niech P będzie programem takim, że dla każdego $n \in A$

 $P(n) = \{X := \emptyset; \text{ for } i = T[1] \text{ to } T[|A|] \text{ do if } (n,i) \in r \text{ then } X := X \cup \{i\}; \text{ fi } i := i+1 \text{ od } return X\}.$

Co oblicza program P? Czy funkcja $f:A\to P(A)$ taka, że f(n)=P(n) jest suriekcją, iniekcją, bijekcją?

6. Niech zbiór U będzie pewnym uniwersum, a zbiór A jego podzbiorem. Ponadto niech P_A będzie programem z jednym argumentem wywołania takim, że dla $a \in U$

$$P_A(a) = \{ if \ a \in A \ then \ x := 1 \ else \ x := 0 \ fi \ return \ x \}.$$

Co oblicza program P? Czy funkcja $f:U\to\{0,1\}$ taka, że f(a)=P(a) jest suriekcją, iniekcją, bijekcją?

- 7. Sprawdź, czy funkcja $f:X\to X$ jest suriekcją, iniekcją, bijekcją. Wyznacz obraz i przeciwobraz zbioru $A\subset X$
 - (a) $X = \mathbb{R}, f(x) = x^2 1, A = [0, 2),$
 - **(b)** $X = \mathbb{R}, f(x) = \log(1 + |x|), A = \{-9, 0, 10\}.$

- 8. Niech f będzie relacją zdefiniowaną w zbiorze liczb rzeczywistych dodatnich, określoną wzorem: x f y wttw, gdy lg y=3x+1. Zbadaj, czy f jest funkcją. Jeśli tak, sprawdź czy jest to bijekcja i wyznacz $f^{-1}(A)$ dla A=[16,32]. Wyznacz $(f\circ f)(B)$ dla $B=\{1,2,4\}$.
- 9. Dana jest funkcja $f: \mathbb{Z} \to \mathbb{Z}$ taka, że $f(x) = \min(\{x, (-1)^x\})$. Wyznacz dziedzinę i przeciwdziedzinę tej funkcji. Sprawdź, czy jest ona iniekcją i czy jest suriekcją. Wyznacz obraz zbioru $A = \{-3, -1, 1, 3\}$ względem funkcji f.
- 10. Dana jest funkcja $f: \mathbb{R} \to \mathbb{R}$ taka, że $f(x) = \frac{2x+1}{x-1}$ dla $x \neq 1$ oraz f(1) = 2. Wyznacz dziedzinę i przeciwdziedzinę tej funkcji. Sprawdź, czy jest ona bijekcją. Jeśli tak wyznacz obraz zbioru $A = (-\infty, 2)$ względem funkcji f^{-1} .
- 11. Dana jest funkcja $f: P(\mathbb{R}) \times P(\mathbb{R}) \to P(\mathbb{R})$ taka, że $f(A, B) = A \cup B$. Sprawdź, czy jest to funkcja różnowartościowa. Wyznacz obraz zbioru $P(\{1\}) \times P(\{1,2\})$ względem funkcji f.
- 12. Dane jest odwzorowanie f. Sprawdź, czy jest ono bijekcją. Jeśli tak wyznacz funkcję odwrotną.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x \mod 4$,
 - **(b)** $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, f(x) = |x| x,$
 - (c) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 1,$
 - (d) $f: \mathbb{R} \to \mathbb{R}^+, f(x) = 2^x,$
 - (e) $f: \mathbb{R}^+ \to \mathbb{R}, f(x) = \lg x,$
 - (f) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y, x-y),
 - (g) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2, y)$.
- 13. Dane są funkcje $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 3^x, g: \mathbb{R} \to \mathbb{R}, g(x) = x^3, h: \mathbb{R} \to \mathbb{R}, h(x) = \max(\{3, x\} x).$ Wyznacz:
 - (a) $f \circ g$,
 - (b) $g \circ h$,
 - (c) $(f \circ g) \circ h$,
 - (d) $f \circ (g \circ h)$.
- 14. Rozważmy funkcję $f: X \to Y$ zadana w postaci następującego programu:
 - (a) $f(x) = \{if \ x \ mod \ 2 = 0 \ then \ return \ x; \ else \ return \ -x; \ fi\},$
 - **(b)** $f(x) = \{i := 1; s := 1; while i < x do i := i + 2; s := s + i; od return s\},$
 - (c) $f(x)=\{i:=0; s:=0; while i < x do i:=i+1; s:=s+1/i; od return s\}.$

Kolejno:

- \bullet ustal wartościowanie zbiorów $X,Y\subseteq\mathbb{Z}$ takie, że funkcja fjest bijekcją i Xjest zbiorem nieskończonym,
- \bullet wyznacz analitycznie funkcję odwrotną f^{-1} do funkcji fi zapisz ją w postaci odpowiedniego programu,
- podaj obraz i przeciwobraz zbioru $A = \{2, 3, 5, 7\}$ względem funkcji f oraz f^{-1} .
- 15. Niech $n \in \mathbb{N}_+$ i $f: \mathbb{N}^n \to \mathbb{N}^n \times \mathbb{N}$ będzie funkcją opisaną następującym programem, gdzie odpowiednio $A = (a_1, a_2, \dots, a_n)$ jest n-tką liczb naturalnych, której liczbę n składowych oznaczymy przez |A| oraz $A[i] = a_i$ jest i-tym elementem owej n-tki:

$$f(A) = \{i := 1; tmp := A[1]; while i < |A| do if tmp < A[i+1] then tmp = A[i+1]; fi$$

 $i := i+1; od return (A, tmp)\}.$

Kolejno:

- (a) wyznacz rezultat funkcji f((5,2,3,7,1)),
- (b) ustal, czy funkcja f jest bijekcją,

- (c) podaj przykład funkcji $g: \mathbb{N}^n \times \mathbb{N} \to \mathbb{N} \cup \{-1\}$ zapisanej w postaci programu, takiej, że jeżeli $a_1 = a_2 = \ldots = a_n$, to $(f \circ g)(A) = -1$, w przeciwnym przypadku $(f \circ g)(A) = \text{wartość}$ drugiej co do wielkości składowej n-tki A.
- 16. Niech $n \in \mathbb{N}_+$ i $f: \mathbb{N}^n \times \{1, 2, \dots, n\} \to \mathbb{N}^n \times \{1, 2, \dots, n\}$ będzie funkcją opisaną następującym programem, gdzie odpowiednio $A = (a_1, a_2, \dots, a_n)$ jest n-tką liczb naturalnych oraz $A[i] = a_i$ jest *i*-tym elementem owej *n*-tki:

$$f(A,n) = \{tmp := 0; if n > 1 then if A[n-1] > A[n] then tmp := A[n-1]; A[n-1] := A[n];$$

$$A[n] := tmp; \ fi \ (A, n) := f(A, n - 1); \ fi \ return \ (A, n) \}.$$

Kolejno:

- (a) wyznacz rezultat funkcji f((5,4,3,2,1),k), gdzie k=1,3,5,
- (b) ustal, czy funkcja f jest bijekcją,
- (c) podaj interpretacje n-krotnego złożenia funkcji $f \circ f \circ \ldots \circ f$, dla ustalonego n. Czy interpretacja ta jest inna niż (n-1)-krotnego złożenia rozważanej funkcji?
- 17. Udowodnij, że dla dowolnej funkcji f i dowolnych zbiorów A, B.
 - (a) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
 - (b) Jeśli $A \subseteq B$, to $f^{-1}(A) \subseteq f^{-1}(B)$.
- 18. Udowodnij, że złożeniem funkcji różnowartościowych jest funkcja różnowartościowa.
- 19. Niech f będzie funkcją ze zbioru X w zbiór Y. Zbadaj czy dla dowolnych $A, B \subseteq X$ i $C \subseteq Y$ zachodzi podana równość. Podaj przykład ilustrujący rozważaną równość lub kontrprzykład wskazujący, że równość nie zachodzi.
 - (a) $f(A \backslash B) = f(A) \backslash f(B)$,
 - **(b)** $f(A \cap f^{-1}(C)) = C \cap f(A)$.
- 20. Uzasadnij, że:
 - (a) $5n^3 + 100n = O(n^5)$.
 - **(b)** $4n^6 + n^3 + 21n^2 + n + 100 = \Theta(n^6)$.
- 21. Uporządkuj niemalejąco poniższy ciąg funkcji wg ich rzędów:
 - (a) $f_1(n) = 3n^2 + 7n + 5$, $f_2(n) = \lg n^2$, $f_3(n) = n!$,
 - **(b)** $f_1(n) = 100n^5 + 7$, $f_2(n) = \frac{3n^4 + 4n}{7n^3 + 1}$, $f_3(n) = \lg n^n$, $f_4(n) = (n+1)!$, $f_5(n) = n^n$, $f_6(n) = 10^{3n+1}$.
- 22. Które ograniczenia są prawdziwe. Odpowiedź uzasadnij.
 - (a) $2^{n+1} = O(2^n)$,
 - **(b)** $(n+1)^2 = O(n^2)$,
 - (c) $2^{2n} = O(2^n)$,
 - (d) $\log^{73} n = O(\sqrt{n}),$
 - (e) $40^n = O(n!)$,
 - (f) $40^n = O(2^n)$,
 - (g) (2n)! = O(n!),
 - (h) $\lg n^n = O(\lg n)$.
- 23. Określ, które z podanych ograniczeń funkcji f(n) są poprawne:
 - (a) $f(n) = \Theta((n^5 5n + 1)^8)$, $f(n) = O(\sqrt{n} \log n)$, $f(n) = \Omega(n!)$, gdzie $f(n) = (2n + 1)^{40}$,
 - **(b)** $f(n) = \Theta(n \lg n), f(n) = O(n^{\lg 4}), f(n) = \Omega(n\sqrt{n}), \text{ gdzie } f(n) = \lg n^{\sqrt{n}}.$

- 24. Niech T(Alg, n) będzie funkcją liczby operacji dominujących pewnego algorytmu Alg, dla danych rozmiaru n. Rozważmy program P(n) postaci:
 - (a) $P(n) = \{for \ i := 1 \ to \ n \ do \ Q(n) \ od \ R(n)\},$
 - (b) $P(n) = \{for \ i := 1 \ to \ n \ do \ for \ j := 1 \ to \ n \ do \ Q(n) \ od \ R(n) \ od \},$
 - (c) $P(n) = \{for \ i := 1 \ to \ \lfloor lgn^n \rfloor \ do \ for \ j := 1 \ to \ \lfloor lgn \rfloor \ do \ Q(n); \ R(n) \ od \ od \}.$

Które z poniższych zdań jest prawdziwe?

- jeżeli $T(Q,n) = O(n^2)$ i $T(R,n) = \Theta(n)$, to $T(P,n) = O(n^2 \lg n)$,
- jeżeli $T(Q,n) = \Omega\left(n^2\right)$ i $T(R,n) = O\left(n^3\right)$, to $T(P,n) = \Omega\left(2^{lgn}\right)$,
- jeżeli $T(Q,n) = \Theta(\sqrt{n})$ i $T(R,n) = \Omega(nlgn)$, to $T(P,n) = \Theta(n!)$.