

S.No		GPU (Graphics Processing Unit)	ASIC (Application-Specific Integrated Circuit)	Neuromorphic Processor	Photonic Computing (Optical)	Memristor-based Computing	Quantum Processor	Graphene-based Computing	Cryogenic Computing (Superconducting Chips)
	int Years ated Wider Availability	Widespread. Continuous new generations.	Widespread in cloud; growing in enterprise.	commercial adoption in	3-7 years for more widespread compute;	7.5 5-10 years for significant commercial products.	5-10+ years for practical, fault-tolerant systems	7-12 years for commercial products; early prototypes	12.5 10-15+ years for broader practical applications
1	Main Area Catered	General-purpose Al acceleration (cloud to edge), high-performance	Optimized Al acceleration for specific workloads, reducing TCO for	Energy-efficient computing, neuromorphic	High-speed data processing and interconnects, especially	memory compute for Al and	Future-forward problem-solving for classically	emerging. Ultra-low-power electronics for AI, edge computing, general-	High-performance processing in niche,
2	Technological Difference	computing. Parallel digital processors (CUDA/OpenCL), optimized for matrix operations (tensor cores). Von Neumann architecture.	hyperscalers. Custom-designed chips optimized for specific AI workloads (e.g., matrix multiplication, neural network layers).	Spiking neural networks (SNNs). Event-driven, inmemory computing.	for Al. Photons for computation and data transmission. Replaces electrons with light for speed & energy efficiency.	Non-volatile memory elements (memristors) with resistance changes, enabling in-memory analog compute.	Quantum-mechanical phenomena (superposition, entanglement) for computation. Qubits instead of bits.	purpose processing. Graphene's high electron mobility and thermal conductivity for ultra-fast, low-power transistors and interconnects. Beyond CMOS.	demanding environments. Superconductors (e.g., Josephson junctions) at near absolute zero. Eliminates electrical resistance for ultra-fast/low- power.
3	Performance Metrics	~4000 TFLOPS FP8 (NVIDIA H100). High latency for complex models.	~400 TOPS (AWS Trainium). Lower latency for specific workloads.	~10 TOPS (Intel Loihi). Low latency for event-driven tasks.	~100-1000 TOPS (projected for compute). Sub-ns latency for interconnects.	~10-100 TOPS (projected). Low latency for analog compute.	~100-1000 qubits (e.g., IBM Heron).	~10-100 TOPS (projected). Sub-ns latency for interconnects.	~1000 TOPS (projected). Ultra-low latency due to superconductivity.
4	Primary Use Cases	Al Training (large models), Al Inference, Scientific Simulation, Graphics, HPC, Data Analytics.	Al Inference (Cloud & Edge), Custom Al Training, Domain-specific Al acceleration (e.g., video analytics, recommender systems).	processing, Low-power inference, Robotics, Continuous learning.	Ultra-fast Al inference, High bandwidth interconnects, Telecom, LiDAR, Specialized linear algebra acceleration.	Edge computing, Non-volatile memory, Brain-	Optimization problems, Drug Discovery, Materials Science, Complex System Simulation, Cryptography.	Ultra-low-power Al inference, High-speed interconnects, Flexible electronics, Wearables, Next-gen data centers.	Extreme performance HPC, Quantum Computing control, Ultra-low noise sensing, Scientific research.
5	Best Environment (On- Premise vs. Cloud)	Cloud-based preferred due to high setup costs (~\$30k/unit, cooling/power). Onpremise for large organizations with dedicated data centers. ~70% cloud, ~30% onpremise.	Cloud-based dominates due to hyperscaler optimization. On-premise growing for specialized enterprise (~\$10k-\$50k/unit). ~80% cloud, ~20% on-premise.	On-premise for edge deployments due to low-power (~1W). Cloud-based for hybrid setups. ~60% on-premise, ~40% cloud.	Cloud-based for interconnects due to high integration costs (~\$10k-\$100k). On-premise for specialized HPC/telecom. ~75% cloud, ~25% on-premise.	On-premise for edge devices due to low-power (~1-10W). Cloud-based for data center memory. ~50% on-premise, ~50% cloud (projected).	Cloud-based dominates due to high costs (~\$1M- \$10M/system) and complex infrastructure. ~90% cloud, ~10% on-premise.	On-premise for edge devices due to low-power (~1-5W). Cloud-based for interconnects. ~60% on-premise, ~40% cloud (projected).	On-premise in specialized research facilities due to extreme cooling costs (~\$1M-\$10M). ~95% onpremise, ~5% cloud.
6	Public Availability	Widely available (e.g., NVIDIA H100, AMD MI300) for purchase or via cloud (AWS, Azure, GCP).	Cloud-based as a service (Google TPUs, AWS Trainium/Inferentia, Azure Maia); some on-prem (Cerebras, Groq).	Available for researchers (Intel Loihi/Hala Point, IBM TrueNorth/NorthPole) and emerging commercial products.	Early commercial products emerging (e.g., Lightmatter, Ayar Labs), often for specialized data center or HPC interconnects.	R&D and specialized prototypes. Some academic/industry partnerships.	Cloud-based access (IBM Quantum Experience, Google Quantum AI, AWS Braket); limited on-prem.	Research labs and early prototypes (e.g., graphene transistors, interconnects).	Research labs & specialized facilities due to extreme cooling requirements.
7	How they Complement Each Other	Foundational training for models run on ASICs and neuromorphic chips.	Efficient inference of models trained on GPUs; paired with CPUs for broader systems.	Neuromorphic inference for efficient deployment of GPU/ASIC-trained models at the edge.	Photonic interconnects enhance data flow for GPUs/ASICs. Optical compute offloads specific tasks.	Memristors enable efficient in-memory compute for GPUs/ASICs or neuromorphic architectures.	Quantum could train or optimize classical AI models; classical chips manage quantum control.	Graphene enhances transistor efficiency in GPUs/ASICs or enables low- power neuromorphic/photonic systems.	Ultra-fast classical control for quantum systems; future HPC building blocks.
8	Will they be Competitors?	Yes, ASICs compete with GPUs for specific AI inference tasks, especially in cloud.	Yes, ASICs offer better price/performance/watt than GPUs for specific AI acceleration. Widespread in	Yes, for energy-efficient edge inference; less for general-purpose training. Niche. Used in research,	Can compete for specific accelerator functions (e.g., matrix math) and highbandwidth interconnects. Niche. Gaining traction in	Can compete with traditional memory and digital AI accelerators for efficiency. Very Niche. Mostly in	Not directly today. Quantum could solve some Al problems faster, but for different problem types. Very Niche. Primarily for	Yes, could compete with GPUs/ASICs for low-power, high-speed applications, especially in edge and wearables.	Not direct competitors to most AI chips; serve different purposes.
9	How Widely Used?	Extremely Widespread. Dominant for deep learning.	hyperscalers. Growing	specific edge deployments (e.g., Intel Loihi for robotics).	data centers for interconnects; compute still experimental.	university labs, R&D for future memory and compute.	research, early commercial pilots, and proof-of-concept.	Extremely Niche. Limited to academic research and early industrial pilots.	Extremely Niche. Limited to high-end scientific research facilities.
10	Already in Market?	mature products (NVIDIA H100/B200, AMD MI300) available.	TPUs, AWS Inferentia/Trainium, Cerebras WSE, Groq LPU, Microsoft Maia).	Yes, but primarily for R&D/early adopters (Intel Loihi/Hala Point, IBM NorthPole).	Yes, for interconnects (e.g., co-packaged optics), compute still in early stages.	No , not yet in widespread commercial products. Prototypes exist.	Yes, via cloud services for select users. Physical machines for major research.	No , primarily in R&D. Early prototypes (e.g., graphene transistors) emerging.	No , not for general computing. Lab use only.
11	Market Outlook	Massive Growth. Dominant for Al training; strong for inference. Market value soaring.	Strong Growth. Increasing share of AI accelerator market, especially in cloud/edge inference.	Market to reach ~\$1.32B by	Strong Growth. Silicon Photonics market to surpass \$50B by 2035. Driven by data centers & Al.	High Growth Potential. Significant growth for in- memory compute and non- volatile memory.	Significant Future Growth. Market to exceed \$300B by 2030. Early-stage, long-term impact.	High Growth Potential. Graphene electronics market to reach \$5B by 2035. Driven by low-power electronics and wearables.	Long-term potential. Early- stage research; market for components (cryostats) growing due to quantum computing.
12	Hardware Fit	General server hardware (PCIe slots); requires specific cooling/power for high-end.	Specific server/system integration; often PCIe cards or integrated in cloud infrastructure.	Specific neuromorphic hardware; not plug-and-play with standard CPU/GPU systems.	Integrated into standard silicon (hybrid) for interconnects; dedicated optical compute requires new systems.	Integrated into CMOS (hybrid) for memory or in- memory compute; may require new architectures.	Specialized quantum computers (cryogenic systems, vacuum chambers, control electronics).	Integrated into CMOS for transistors/interconnects; may require new fabrication processes.	Extreme cryogenic cooling systems; not compatible with standard hardware.
13	Estimated Research/Market Investment Scale	Billions to Tens of Billions USD Annually.	Billions to Tens of Billions USD Annually.	Hundreds of Millions USD Annually.	Billions USD Annually.	Hundreds of Millions USD Annually.	Billions USD Annually.	Hundreds of Millions USD Annually.	Hundreds of Millions USD Annually.
14	Main Companies & Chips	NVIDIA (H100, B200, Blackwell), AMD (MI300, MI350), Intel (Gaudi).	Google (TPU), AWS (Inferentia, Trainium), Microsoft (Maia), Meta (MTIA), Cerebras (WSE), Groq (LPU), Tenstorrent.		Lightmatter (Envise), Ayar Labs (TeraPHY), Celestial AI, Intel, Broadcom.	IBM, Intel, Samsung, Micron, Crossbar, Weebit Nano, 4DS Memory.	IBM (Condor, Heron), Google (Sycamore, Trillium), Quantinuum (H1 series), Microsoft (Majorana 1).	Graphenea, Grolltex, IBM, Samsung, MIT (research), Paragraf (early transistors).	IBM, Google, Microsoft, Intel (for quantum control components).
15	Emerging Players	Graphcore (IPU), SambaNova (SN40L).	SambaNova (Cardinal), d- Matrix (Corsair), Mythic (AMP).	SynSense (Speck), GrAl Matter Labs (NeuronFlow).	Optalysys , QuiX Quantum (photonic quantum).	Knowm, Adesto Technologies.	IonQ (Aria), Rigetti (Aspen), D-Wave (Advantage).	Black Semiconductor, Versarien (graphene interconnects).	Oxford Instruments (cryogenic systems), Quantum Circuits Inc.
16	Software Ecosystem	Mature: CUDA, cuDNN, TensorRT, PyTorch, TensorFlow. Proprietary + open-source.	TensorFlow (Google TPU), ONNX, proprietary frameworks (AWS, Cerebras).	Emerging: Lava (Intel), SpiNNaker, limited PyTorch support.	Limited : Proprietary SDKs (Lightmatter). Emerging ONNX support.	Early : Custom frameworks in R&D. Limited standard support.	Qiskit (IBM), Cirq (Google), PennyLane. Mostly open- source.	Early : Custom tools for graphene circuits. No standard frameworks.	Limited : Custom control software for quantum/HPC. Proprietary.
17	Scalability and Cost	Highly scalable in data centers (PCIe, DGX systems). ~\$30k/unit (H100).	Scalable in cloud/enterprise. ~\$10k- \$50k/unit (e.g., Cerebras WSE).	· ·	Scalable for interconnects; compute less so. ~\$10k-\$100k for early systems.	Potentially scalable for memory. Costs TBD (prototypes ~\$1k-\$10k).	Low scalability (specialized systems). ~\$1M-\$10M/system.	Scalable for interconnects; compute TBD. ~\$1k-\$10k (projected).	Low scalability due to cooling. ~\$1M-\$10M for cryostats.
18	Energy Efficiency Metrics	~0.5-1 TOPS/W (e.g., NVIDIA H100: ~700W for ~4000 TFLOPS FP8). High power for training.	~2-5 TOPS/W (e.g., AWS Inferentia: ~100W for ~400 TOPS). Optimized for inference.	~10-50 TOPS/W (e.g., Intel Loihi: ~1W for ~10 TOPS). Highly efficient for edge.	~5-20 TOPS/W for compute; interconnects reduce system-level power by ~50%.	memory compute. Prototypes show promise.	Not comparable (qubits-based). Power dominated by cryogenic cooling (~25kW/system).	50-200 TOPS/W due to graphene's low resistance. Early R&D estimates.	~100 TOPS/W possible due to zero resistance, but high cooling costs.
19	Environmental Impact	High: ~700W/chip, ~1-2 kg CO2e/TFLOP (data center scale). IT: Highly useful for AI	Moderate: ~100W/chip, ~0.5-1 kg CO2e/TOP.	Low : ~1W/chip, ~0.01-0.1 kg CO2e/TOP.	Low: ~50W for interconnects, ~0.1-0.5 kg CO2e/TOP.	Very Low: ~1-10W (projected), ~0.01-0.1 kg CO2e/TOP.	High: ~25kW/system due to cooling, ~10-100 kg CO2e/operation.	Very Low: ~1-5W (projected), ~0.01-0.05 kg CO2e/TOP.	High: ~10-50kW/system for cooling, ~10-100 kg CO2e/operation.
20	IT and OT Usefulness	training/inference, HPC, data analytics in cloud/data centers. OT: Moderately useful for edge AI (e.g., autonomous vehicles), limited by high power (~700W).	IT: Very useful for cloud- based AI inference/training, reducing TCO. OT: Useful for edge inference in industrial IoT, robotics (e.g., Groq LPU).	IT: Limited use in data centers; growing for edge inference in hybrid setups. OT: Highly useful for low-power, real-time processing in robotics, IoT (~1W).	IT: Very useful for data center interconnects, emerging for AI compute. OT: Moderately useful for high-speed LiDAR, telecom in industrial settings.	IT: Promising for in-memory computing in data centers. OT: Highly promising for low-power edge/IoT, but 5-10 years away.	optimization, cryptography	IT: Promising for low-power data center processors, interconnects. OT: Highly promising for wearables, IoT, but 7-12 years away.	IT: Useful for niche HPC, quantum control. OT: Minimal use due to cryogenic requirements.
21	CFO and CTO Decision	CFO: Favor cloud to avoid high upfront costs (~\$30k/unit). Evaluate TCO for on-premise if long-term Al training justifies. CTO: Use cloud for scalable	CFO: Prioritize cloud for cost efficiency (e.g., AWS Trainium). On-premise for high-volume workloads with ROI. CTO: Use cloud for rapid deployment; on-premise	CFO: Invest in on-premise for edge due to low operational costs (~1W). Cloud for R&D minimizes risk. CTO: Deploy on-premise for real-time edge AI; cloud	CFO: Choose cloud for interconnects to reduce setup costs (~\$10k-\$100k). On-premise for long-term HPC savings. CTO: Integrate photonic interconnects in cloud; test	CFO: Avoid large investments due to R&D phase; fund pilot projects for edge memory. Cloud for R&D. CTO: Test on-premise prototypes for edge Al;	CFO: Prioritize cloud access (e.g., AWS Braket) to avoid prohibitive costs (~\$1M-\$10M). Limit onpremise to research. CTO: Use cloud for algorithm development; on-	CFO: Fund R&D pilots for edge devices; avoid large-scale investment until commercialization (7-12 years). Cloud for simulations. CTO: Test on-premise	CFO: Limit on-premise investment due to high costs (~\$1M-\$10M). Fund research grants instead of cloud. CTO: Deploy on-premise in specialized labs for
21	Strategy Recommendation	Al; on-premise for custom HPC, low-latency inference. Invest in CUDA training. Strategy: Cloud-first; pilot on-premise clusters. Monitor next-gen GPUs.	ASICs for custom inference	for hybrid research. Explore	·	cloud for simulation. Build in-memory computing expertise. Strategy: Academic partnerships; focus on low-power edge for 5-10 year horizon.	premise for specialized research. Train on quantum frameworks (Qiskit). Strategy: Cloud platforms for experimentation; invest in quantum talent.	graphene prototypes for low power edge; cloud for R&D. Build graphene fabrication expertise. Strategy: Partner with startups (e.g., Paragraf); focus on wearables/IoT.	
22	Security Features by Default	IT: Limited inherent security. Relies on software-level security (e.g., CUDA memory isolation, TEEs). Vulnerable to side-channel attacks (~700W). OT: Minimal security due to high power, complex integration. Default: None intrinsic; depends on system-level measures.	IT: Moderate security. Some include custom security modules (e.g., secure enclaves, root of trust). OT: Limited security; some offer secure boot. Default: Basic secure boot/firmware isolation in some designs.	reduces side-channel risks. SNN randomness resists adversarial attacks. OT: Strong potential for edge security. Default: Low-power	IT: Moderate security. Light-based processing resists EMI attacks. Optical interconnects reduce interception risk. OT: Limited security due to complex integration. Default: EMI resistance, low interception risk.	Non-volatile memory, multi- level conductance (>16) enable PUFs for secure key generation. OT: Strong security for edge	enables QKD, quantum randomness for secure computation.	IT: High security potential. Inherent disorders enable robust PUFs for key generation, authentication. OT: Strong security for edge via PUFs. Default: PUFs, non-volatile memory.	Default: Cryogenic

subin@panicker.uk

Date: 04/06/2025

