The group G is isomorphic to the group labelled by [72, 42] in the Small Groups library. Ordinary character table of $G \cong C3 \times S4$:

	1a	2a	3a	2b	4a	3b	6a	3c	6b	12a	3d	6c	3e	6d	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1
χ_3	1	-1	1	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	E(3)	-E(3)
χ_4	1	-1	1	1	-1	E(3)	-E(3)	E(3)	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$
χ_5	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)
χ_6	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_7	2	0	-1	2	0	2	0	-1	2	0	2	0	-1	2	0
χ_8	2	0	-1	2	0	$2 * E(3)^2$	0	$-E(3)^2$	$2*E(3)^2$	0	2 * E(3)	0	-E(3)	2 * E(3)	0
χ_9	2	0	-1	2	0	2 * E(3)	0	-E(3)	2 * E(3)	0	$2 * E(3)^2$	0	$-E(3)^2$	$2 * E(3)^2$	0
χ_{10}	3	-1	0	-1	1	3	-1	0	-1	1	3	-1	0	-1	1
χ_{11}	3	1	0	-1	-1	3	1	0	-1	-1	3	1	0	-1	-1
χ_{12}	3	-1	0	-1	1	$3*E(3)^2$	$-E(3)^2$	0	$-E(3)^2$	$E(3)^{2}$	3 * E(3)	-E(3)	0	-E(3)	E(3)
χ_{13}	3	-1	0	-1	1	3 * E(3)	-E(3)	0	-E(3)	E(3)	$3 * E(3)^2$	$-E(3)^2$	0	$-E(3)^2$	$E(3)^2$
χ_{14}	3	1	0	-1	-1	$3 * E(3)^2$	$E(3)^{2}$	0	$-E(3)^2$	$-E(3)^2$	3 * E(3)	E(3)	0	-E(3)	-E(3)
χ_{15}	3	1	0	-1	-1	3 * E(3)	E(3)	0	-E(3)	-E(3)	$3*E(3)^2$	$E(3)^{2}$	0	$-E(3)^2$	$-E(3)^2$

Trivial source character table of $G \cong C3 \times S4$ at p = 3:

Normalisers N_i		I	$\overline{\mathrm{V}_{1}}$		N_2				N_3		N_4	N	5
p-subgroups of G up to conjugacy in G	P_1				P_2				P_3		P_4	P_{ξ}	5
Representatives $n_j \in N_i$					1 <i>a</i>	2a	2b	4a	1a	2a	1a	1a	$\overline{2a}$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15}}$	9	3	-3	-3	0	0	0	0	0	0	0	0	0
	9	-3	-3	3	0	0	0	0	0	0	0	0	0
		-3	9	-3	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	9	3	9	3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$		1	-1	-1	3	1	-1	-1	0	0	0	0	0
	3	-1	-1	1	3	-1	-1	1	0	0	0	0	0
	3	-1	3	-1	3	-1	3	-1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	1	3	1	3	1	3	1	0	0	0	0	0
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	3	-3	3	-3	0	0	0	0	3	-3	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	3	3	3	3	0	0	0	0	3	3	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	6	0	6	0	0	0	0	0	0	0	3	0	0
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

$$P_5 = Group([(1, 2, 3), (5, 7, 6)]) \cong C3 \times C3$$

$$N_1 = Group([(5,6), (1,2,3), (5,6,7), (4,5)(6,7), (4,6)(5,7)]) \cong C3 \times S4$$

$$N_2 = Group([(5,6),(1,2,3),(5,6,7),(4,5)(6,7),(4,6)(5,7)]) \cong C3 \times S4$$

 $P_2 = Group([(1,2,3)]) \cong C3$

 $P_3 = Group([(5,7,6)]) \cong C3$

 $P_4 = Group([(1, 2, 3)(5, 7, 6)]) \cong C3$

 $N_3 = Group([(5,7,6),(1,2,3),(6,7)]) \cong C3 \times S3$

 $N_4 = Group([(1, 2, 3)(5, 7, 6), (5, 7, 6)]) \cong C3 \times C3$

 $N_5 = Group([(5,7,6),(1,2,3),(5,7)]) \cong C3 \times S3$