Written Assignment #5

1. Consider the game represented in normal form below.

	B: S1	B: S2	B: S3
A: S1	A = 5, B = 9	A = 3, B = 6	A = 1, B = -4
A: S2	A = 4, B = -4	A = 2, B = 2	A = -1, B = 6
A: S3	A = 0, B = 0	A = 2, B = -2	A = 0, B = 0

a. Indicate all the pure strategy Nash equilibria in the matrix.

If A chooses ...

S1: B chooses S1 S2: B chooses S3

S3: B chooses Either S1 or S3

If B chooses ...

S1: A chooses S1

S2: A chooses S1

S3: A chooses S1

This shows that the only pure strategy in this game is choosing (S1,S1)

b. Does Player A have a strictly dominant strategy? If yes, state what it is. If no, explain why not.

Player A does have a strictly dominant strategy, no matter what Player B chooses Player A will always go with option S1

c. Does Player B have a strictly dominant strategy? If yes, state what it is. If no, explain why not.

Player B does not have a strictly dominant strategy, their choices change depending on what Player A chooses.

d. What is the Pareto optimal outcome in this game?

The Pareto optimal outcome for this game is S1 due to the values given to Player A and B given are the highest value each player is given on the matrix.

e. Is this a zero-sum game?

This is not a zero-sum game, while sum outcomes can be seen as zero sum not all options are zero sum like S1 for A and B, A gains 5 while B gains 9 making the net profit not 0 but rather +14 which is good for the players but resulting in a non-zero-sum game.

2. Consider the game represented in normal form below.

	B: S1	B: S2
A: S1	A = 2, B = -2	A = -5, B = 5
A: S2	A = -3, B = 3	A = 4, B = -4

a. Calculate the mixed strategy Nash equilibrium for this game. Clearly indicate the probability associated with each strategy for each player. Suppose that Player B chooses S1 with probability p and S2 with probability (1-p) and vice versa ...

Player A Pure Strategy	Player B Pure Strategy
$S_1 = (2p) + (-3(1-p))$	$S_1 = (-2p) + (5(1-p))$
=2p+3p-3	=-2p-5p+5
=5p-3	= -7p + 5
$S_2 = (-5p) + (4(1-p))$	$S_2 = (3p) + (-4(1-p))$
= -5p - 4p + 4	=3p+4p-4
=-9p+4	=7p-4
$S_1 = S_2$	$S_1 = S_2$
5p - 3 = -9p + 4	-7p + 5 = 7p - 4
14p = 7	-14p = -9
_n 1	14p = 9
$p=\frac{1}{2}$	y = 9
	$p = \frac{14}{14}$

b. Calculate the expected payoffs for each player at the mixed strategy Nash equilibrium you calculated

Player A's Expected Payoff	Player B's Expected Payoff
5p - 3	7p-4
$\left \begin{array}{c} 1 \\ n-\frac{1}{2} \end{array} \right $	$n = \frac{9}{n}$
$p - \frac{1}{2}$	$p \equiv \frac{14}{14}$
$5(\frac{1}{2}) - 3$ $\frac{5}{3} - 3$	$7(\frac{9}{14}) - 4$ $\frac{63}{14} - 4$
$\frac{2}{5} - \frac{6}{2}$	
$-\frac{1}{2}$	$\frac{1}{2}$