## **Geometry Formulas**

| Triangle                     | Formula                                        |
|------------------------------|------------------------------------------------|
| Pythagorean Theorem          | $a^2 + b^2 = c^2$                              |
| 45º-45º-90º Phenomenon       | $h=x\sqrt{2}$                                  |
| 45 45 50 Thenomenon          | $x: x: x\sqrt{2}$                              |
| 30º-60º-90º Phenomenon       | $b = x\sqrt{3}$                                |
|                              | $x: x\sqrt{3}: 2x$                             |
| Perimeter                    | S <sub>1</sub> +S <sub>2</sub> +S <sub>3</sub> |
| Area of any Triangle         | $\frac{1}{2}(BH)$                              |
| Area of any Thangle          | 2 (511)                                        |
| Area of Isosceles Triangle   | $\frac{1}{2}(leg)^2$                           |
| Area of isosceles Triangle   | $\frac{1}{2}^{(leg)}$                          |
| Area of Bight Triangle       | 1,,,,,                                         |
| Area of Right Triangle       | $\frac{1}{2}(L_1 \cdot L_2)$                   |
| Area of Favilatoral Triangle | $s^2\sqrt{3}$                                  |
| Area of Equilateral Triangle | 4                                              |

| Square                               | Formula                            |
|--------------------------------------|------------------------------------|
| Perimeter                            | 4S                                 |
| Area #1                              | S <sup>2</sup>                     |
| Area #2                              | $^{1}/_{2}$ Diagonal $^{2}$        |
| Relationship between Side & Diagonal | $D = S^2$ $S = \frac{D}{\sqrt{2}}$ |

| Rectangle                            | Formula                           |
|--------------------------------------|-----------------------------------|
| Perimeter                            | 2(L+W)                            |
| Area #1                              | $L \cdot W$                       |
| Relationship between Side & Diagonal | $Length^2 + Width^2 = Diagonal^2$ |

| Parallelogram | Formula     |
|---------------|-------------|
| Perimeter     | 2(L+W)      |
| Area          | $B \cdot H$ |

| Rhombus   | Formula                      |
|-----------|------------------------------|
| Perimeter | 4 <i>S</i>                   |
| Area #1   | $B \cdot H$                  |
| Area #2   | $\frac{1}{2}(d_1 \cdot d_2)$ |

| Trapezoid | Formula                                     |
|-----------|---------------------------------------------|
| Perimeter | $B_1 + B_2 + S_1 + S_2$                     |
| Area      | $\frac{1}{2}(Base_1 + Base_2) \cdot Height$ |

| Circumference    | Formula                    |
|------------------|----------------------------|
| Circumference #1 | $\pi d$                    |
| Circumference #2 | $2\pi r$                   |
| Diameter         | $\frac{C}{\pi}$            |
| Radius           | $\frac{\mathcal{C}}{2\pi}$ |

| Arc of Circle          | Formula                                                                                  |
|------------------------|------------------------------------------------------------------------------------------|
| Arc Length (Central)   | $rac{Degrees\ of\ Central\ Angle}{360^{	ext{o}}}\cdot C$                                |
| Arc Length (Inscribed) | $\frac{2 \cdot Degrees \ of \ Inscribed \ Angle}{360^{\underline{o}}} \cdot \mathcal{C}$ |
|                        |                                                                                          |



| Arc of Circle                                   | Formula                                             |
|-------------------------------------------------|-----------------------------------------------------|
| Arc Measure (Intersecting Chords) [1]           | $< P = < Q = \frac{\widehat{AC} + \widehat{BD}}{2}$ |
| Arc Measure (Intersecting Secants/Tangents) [2] | $< C = \frac{\widehat{AD} + \widehat{BD}}{2}$       |
| Perimeter of Sector of Circle                   | Arc Measure + 2r                                    |

| Circle            | Formula             |
|-------------------|---------------------|
| Area of Circle #1 | $\pi r^2$           |
| Area of Circle #2 | $\pi \frac{d^2}{4}$ |

| Sector of Circle | Formula                                                                           |
|------------------|-----------------------------------------------------------------------------------|
| Area of Sector   | $rac{\textit{Degrees of Central Angle}}{360^{\circ}} \cdot \textit{Area Circle}$ |

| Rectangular Solids         | Formula                      |
|----------------------------|------------------------------|
| Area of Front & Back Faces | $2(Length \cdot Height)$     |
| Area of Top & Bottom Faces | $2(Length \cdot Width)$      |
| Area of Front & Back Faces | 2(Width · Height)            |
| Total Surface              | 2(LH + LW + WH)              |
| Diagonal                   | $D = \sqrt{L^2 + W^2 + H^2}$ |

| Cube         | Formula                                  |
|--------------|------------------------------------------|
| Area of Cube | $6S^2$                                   |
| Volume       | $S^3$                                    |
| Diagonal     | $D = S\sqrt{3}$ $S = \frac{D}{\sqrt{3}}$ |

| Cylinder                            | Formula                        |
|-------------------------------------|--------------------------------|
| Area of Top & Bottom Circular Bases | $\pi r^2 + \pi r^2 = 2\pi r^2$ |
| Lateral Surface Area                | $2\pi rh$                      |
| Total Surface Area                  | $2\pi r^2 + 2\pi rh$           |
| Volume                              | $\pi r^2 h$                    |

| Cone           | Formula                |
|----------------|------------------------|
| Surface Area   | $\pi r l + \pi r^2$    |
|                | 1/3 (area of Cylinder) |
| Volume of Cone | $\frac{1}{3}\pi r^2 h$ |

| Sphere       | Formula              |
|--------------|----------------------|
| Surface Area | $4\pi r^2$           |
| Volume       | $\frac{4}{3}\pi r^3$ |

| Coordinate geometry | Formula                                  |
|---------------------|------------------------------------------|
| Distance            | $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$   |
| Mid-point           | $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ |
| General Form        | y = mx + b                               |
| Slope               | $\frac{y_1 - y_2}{x_1 - x_2}$            |