STAT 450 Final Examination:

Instructions: This is an open book exam. You may use notes, books and a calculator. I am permitting people access to their computers for the purpose of looking at their notes or the text or other material on line. I am permitting use of Wolfram alpha or maple or mathematica or R. I am NOT permitting communication with other people. The exam is out of 60. You should have 15 pages including this one and two pages for extra work. DON'T PANIC.

GRADE SHEET

la	5	1b	3				
2a	2	2b	3				
3a	5	3b	5				
4a	5	4b	2	4c	5	4d	3
5a	5	5b	6	5c	1	5d	2
ба	3	6b	5				

	[
m , 1	
Total	60

Student Number:

1. Suppose U_1, \ldots, U_n are independent and identically distributed with density

$$f(u; \lambda) = \begin{cases} \lambda^2 u e^{-\lambda u} & u > 0\\ 0 & \text{otherwise} \end{cases}$$

for some unknown parameter $\lambda > 0$.

(a) Find the likelihood, log-likelihood, and score functions.

[5 marks]

(b) Find the maximum likelihood estimator, $\hat{\lambda}$, of λ .

[3 marks]

- 2. Suppose X_1, \ldots, X_n are independent and identically distribution Normal (μ, σ^2) random variables.
 - (a) Use the central limit theorem (and the definition of the χ^2 distribution on n-1 degrees of freedom) to prove that

$$\sqrt{n}(s^2 - \sigma^2) \Rightarrow N(0, \psi^2)$$

and give a formula for ψ^2 . Here s is the sample standard deviation. [2 marks]

(b) Now prove that

$$\sqrt{n}\log(s/\sigma) \Rightarrow N(0,\tau^2)$$

and give a formula for τ .

[3 marks]

Student Number:

- 3. Suppose X has a $N(0, \sigma^2)$ distribution. Consider the null hypothesis that $\sigma = 1$ and the alternative that $\sigma = 2$.
 - (a) Find the critical region which minimizes $\alpha + \beta$, the sum of the probability of a Type I error and the probability of a Type II error. Give the simplest formula you can. [5 marks]

Student Number:

(b) For the region you found in the previous part what are the values of α and β ? Again, give the simplest formula possible; you don't need to get a calculator out to produce numerical values. [5 marks]

4. Suppose that x_1, \ldots, x_n are n constants (values of a non-random covariate). Suppose that Y_1, \ldots, Y_n are independent. The variable

$$U_i = x_i Y_i$$

has an Exponential distribution with rate λ .

(a) What is the Cramér-Rao lower bound for the variance of an unbiased estimate of λ ? [5 marks]

(b) Is there an estimate which achieves that lower bound?

[2 marks]

Student Number:

(c) Consider estimating $\mu = 1/\lambda$ using

$$\tilde{\mu} = aT$$

where

$$T = \sum x_i Y_i.$$

For what value of a is the MSE of $\tilde{\mu}$ minimized.

[5 marks]

Student Number:

(d) Give an explicit formula for the approximate standard error of the maximum likelihood estimator of λ . [3 marks]

Student Number:

5. Consider an experiment to compare two methods. We have two groups of subjects. In the first group Method 1 gives X_1 successes in n_1 trials. In the second group Method 2 gives X_2 successes in n_2 trials. Use the notation p_i for i = 1, 2 for the probability of success for each of the two methods. Define

$$\phi = \log \left(\frac{p_1/(1-p_1)}{p_2/(1-p_2)} \right).$$

(a) Find the maximum likelihood estimates, \hat{p}_1 , \hat{p}_2 and $\hat{\phi}$ of p_1 , p_2 and ϕ . [5 marks]

Student Number:

(b) Find approximate standard errors and estimated standard errors for $\log \{\hat{p}_1/(1-\hat{p}_1)\}$ and $\hat{\phi}$. [6 marks]

(c) Explain how to use the answers to the previous part to find confidence intervals for ϕ . [1 mark]

(d) Is there an unbiased estimate of ϕ ? Explain.

[2 marks]

Student Number:

- 6. Suppose X_1, \ldots, X_n are independent Bernoulli(α) variables. Let $X = \sum_i X_i$. Assume $n \geq 3$.
 - (a) Show that

$$P(X_1 = 1|X = k) = \frac{k}{n}$$

and

$$P(X_1 = 1, X_2 = 1 | X = k) = \frac{k(k-1)}{n(n-1)}$$

and

$$P(X_1 = 1, X_2 = 1, X_3 = 1 | X = k) = \frac{k(k-1)(k-2)}{n(n-1)(n-2)}$$

for $n \geq 3$.

[3 marks]

Student Number:

(b) Find the UMVUE of $\phi = \alpha(1 - \alpha)(2\alpha - 1)$.

[5 marks]

Student Number:

Extra Space

Student Number:

Extra Space