

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 8. Classification: Basic Concepts

- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Supervised vs. Unsupervised Learning (1)

- Supervised learning (classification)
 - u Supervision: The training data such as observations or measurements are accompanied by **labels** indicating the classes which they belong to
 - □ New data is classified based on the models built from the training set

Supervised vs. Unsupervised Learning (2)

รม่มีผู้สอน โม่มีจุดมุ่วนมายในกรเรียน Unsupervised learning (clustering)

The class labels of training data are unknown

☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- □ Classification → mane class naneque
 - Predict categorical class labels (discrete or nominal) ทางคบล่าอยู่กลุ่ม โพน
 - Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - □ Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- Model construction
 - □ Each sample is assumed to belong to a predefined class (shown by the **class label**)
 - ☐ The set of samples used for model construction is **training set**
 - □ Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing:
 - Test: Estimate accuracy of the model
 - ☐ The known label of test sample is compared with the classified result from the model
 - ☐ Accuracy: % of test set samples that are correctly classified by the model
 - ☐ Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- Model Deployment: If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

- □ Classification: Basic Concepts
- Decision Tree Induction

- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

नाया एवं ीनहन: है ती हैं हैं

ี พุ่นไม่ดูอุนใจ

Decision Tree Induction: An Example

■ Decision tree construction:

 A top-down, recursive, divide-andconquer process

// (, condie) ~		1000
Traiping data se	t: Who bu ys	com	outer?

Training data set. Who bags comparers					
income	student	credit_rating	buys_computer		
high	no	fair	no		
high	no	excellent	no		
high	no	fair	yes		
medium	no	fair	yes		
low	yes	fair	yes		
low	yes	excellent	no		
low	yes	excellent	yes		
medium	no	fair	no		
low	yes	fair	yes		
medium	yes	fair	yes		
medium	yes	excellent	yes		
medium	no	excellent	yes		
high	yes	fair	yes		
medium	no	excellent	no		
	high high high medium low low medium low medium medium medium	high no high no high no high no medium no low yes low yes medium no low yes medium yes medium yes medium yes medium no high yes	high no fair high no excellent high no fair medium no fair low yes fair low yes excellent low yes excellent medium no fair low yes fair medium yes fair medium yes fair medium yes fair medium yes excellent medium yes fair medium yes excellent medium yes fair medium yes fair medium yes excellent medium yes fair		

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

From Entropy to Info Gain: A Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - \Box Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \quad where \ p_i = P(Y = y_i)$$

- Interpretation
 - □ Higher entropy → higher uncertainty
 - Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- \square Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$
 frankonská freature

☐ Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

Class P: buy	ys_computer	= "yes"
--------------	-------------	---------

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

12

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

