

Actividad individual 1. Visualización de evolución en tiempo

Alumna: Alvares Angelim, Erika Samara

Asignatura: Visualización de evolución en el tiempo

Profesor: Yosef Hassan Motero

Fecha de Entrega: 09 de mayo de 2025

Índice

1.	Identificación de Errores de Diseño en la Gráfica Original	
2. Ta	abla de Datos Reestructurada	,
3. Pı	ropuesta de Visualización Mejorada3	;

1. Identificación de Errores de Diseño en la Gráfica Original

Fuente: Elaboración propia

Figura 1: Gráfica Actividad

Response	2014 May	2018 Jan	2019 Mar
Good	19%	26%	34%
So-so	31%	40%	33%
Bad	37%	27%	25%
No-response	13%	7%	8%

Tabla 1: Actividad 1

La gráfica original presenta los siguientes problemas:

1.2. Uso incorrecto de un gráfico de líneas:

Las categorías ("Good", "So-so", "Bad", "No-response") son cualitativas, no cuantitativas continuas. Las líneas sugieren una progresión temporal continua, lo que es confuso para datos categóricos.

1.3. Inclusión de "No-response" en la comparación principal:

La categoría "No-response" no aporta información sobre la percepción económica, pero se visualiza junto a las respuestas relevantes, distrayendo el mensaje clave.

1.4. Falta de claridad en la evolución temporal:

Las líneas superpuestas dificultan comparar cómo cambia cada categoría entre años. Por ejemplo, es complejo ver si "Good" aumentó a expensas de "Bad" o "So-so".

1.5. Etiquetado insuficiente:

No hay valores numéricos en los puntos de datos, lo que obliga al lector a estimar porcentajes visualmente.

1.6. Escala temporal no uniforme:

Los intervalos entre 2014-2018 (4 años) y 2018-2019 (1 año) están representados con la misma separación, distorsionando la percepción del tiempo.

2. Tabla de Datos Reestructurada

Para facilitar la visualización, los datos se organizan en formato tidy data:

Año	Categoría	Porcentaje
2014 May	Good	19%
2014 May	So-so	31%
2014 May	Bad	37%
2014 May	No-response	13%
2018 Jan	Good	26%
2018 Jan	So-so	40%
2018 Jan	Bad	27%
2018 Jan	No-response	7%
2019 Mar	Good	34%
2019 Mar	So-so	33%
2019 Mar	Bad	25%
2019 Mar	No-response	8%

Tabla 2: Tabla de Datos Reestructurada

3. Propuesta de Visualización Mejorada

Gráfico de Barras Apiladas al 100% con Anotaciones

2014-2019 27% Categorías 31% Buena Regular 34% Mala Porcentaje de respuestas Sin respuesta 26% 37% 40% 25% 19% 2019-03 2014-05 2018-01

Percepción de la situación económica

Figura 2: Gráfica Propuesta 1

Nota: Desarrollada en Python (matplotlib/seaborn / pandas).

Características Clave de la Visualización:

2.1. Barras apiladas al 100%:

Cada barra representa un año, mostrando la proporción exacta de cada categoría. Ventajas:

- Comparación directa de la composición anual.
- Identificación visual de tendencias (ej: aumento progresivo de "Buena").

Fecha

2.2. Sistema de Colores Técnicos

Paleta basada en seaborn.color_palette("Paired"), optimizada para:

Categoría	Color (Hex)	Características Técnicas
Buena	#A6CEE3	Azul claro institucional, asociado a estabilidad
Regular	#1F78B4	Azul oscuro corporativo, neutral profesional
Mala 	#B2DF8A	Verde claro atenuado, reduce impacto visual de valores negativos
Sin respuesta	#33A02C	Verde oscuro con texto blanco, cumple WCAG AA

Tabla 3 : Sistema de Colores Técnicos

2.3. Etiquetas de Datos Inteligentes

- **Posicionamiento**: Centradas geométricamente en cada segmento.
- Contraste dinámico:
 - o Texto blanco automático para "Sin respuesta" (blanco = contraste).
 - o Texto gris oscuro en otras categorías (contraste).

2.4. Leyenda Interoperable

Diseñada para integración con herramientas BI:

- Códigos de color exportables: Valores HEX incluidos en metadatos.
- Orden lógico: Secuencia positiva → neutral → negativa → no-respuesta.

4. Ventajas de la Nueva Visualización

- Claridad: Muestra la evolución de cada categoría sin superposiciones.
- **Precisión**: Los porcentajes son directamente legibles.
- **Enfoque en el mensaje**: "No-response" se minimiza visualmente para destacar las tendencias económicas.
- **Profesionalismo**: Diseño limpio, paleta de colores accesible y etiquetado coherente.

Anexo: Código para Generar la Gráfica (Python con Matplotlib)

```
laport matplotlib.ppplot as pic
import pandsa as pd
import seaborn as sns
from matplotlib.colors import rgb_to_hsv, to_rgb
import matplotlib.patheffects as path_effects
                                                                                                                      ars = df_pivot[categories].plot.bar(
stacked=True, color=colors, ax-ax, width-0.75, edgecolor='white',
 plt.rcParams.update({
    'font.family': 'DejaVu Sans',
    'axes.titlesize': 14,
                                                                                                                        for cat_idx, categoria in enumerate(categories):
    valor = df_pivot.loc[fecha, categoria]
                                                                                                                             if valor < 5: # 0m
bottom += valor
                                                                                                                             continue

x = fecha_idx - 0.4 / 2 # Ajuste preciso de posición X
y = bottom + valor / 2
                                                                                                                   text_color = "white" if categoria -- "Sin respuesta" else

get_text_color(colors[cat_idx])
                                                                                                                            ax.text(
x, y, f'{valor:.0f}%', ha='center', va='center',
color-text_color, fontsize=10, fontweight='bold'
      bottom +- valor
df = pd.DataFrame(data)
df_pivot = df.pivot(index="Fecha", columns="Categoría", values="Porcentaje")
                                                                                                                   ax.set_xticklabels(df_pivot.index, rotation=0, fontsize=11, ha='center')
  def get_text_color(hex_color):
                                                                                                                   ax.set_ylabel("Porcentaje de respuestas", fontsize=12, labelpad=15)
ax.set_yticks([])
     rgb = to_rgb(hex_color)
hsv = rgb_to_hsv(rgb)
return '#333333' if hsv[2] < 0.7 else '#333333'
                                                                                                                   legend = ax.legend(
                                                                                                                        gend = ax.Tegend(
title="Categorias", bbox_to_anchor=(1.05, 0.9),
frameon=True, edgecolor='white', title_fontproperties={'weight': 'bold'}
fig.patch.set_facecolor('white')
ax.set_facecolor('white')
                                                                                                                    legend.get_frame().set_facecolor('#ffffff')
                                                                                                                   plt.savefig('percepcion_economica_final.png', dpi=300, bbox_inches='tight')
```

Figura 2: Código para Generar la Gráfica 1