Asymptotic theory

Stochastic convergence

Stochastic convergence

Let $x_1, x_2, ...$ be a sequence of a scalar random variable that converge to a random variable x. Both x_N and x are defined on probability space $(\Omega, \mathcal{F}, Pr)$. Let us denote the cumulative distribution functions of x_N and x by F_N and F respectively.

Questoin: What if x is a fixed, real number?

Stochastic convergence

Let $x_1, x_2, ...$ be a sequence of a scalar random variable that converge to a random variable x. Both x_N and x are defined on probability space $(\Omega, \mathcal{F}, Pr)$. Let us denote the cumulative distribution functions of x_N and x by F_N and F respectively.

Questoin: What if x is a fixed, real number?

Convergence in probability

The sequence x_n converges in probability to x if for every $\epsilon > 0$

$$\lim_{n\to\infty} \Pr(|x_n-x|<\epsilon)=1$$

It is abbreviated as

$$p \lim x_n = x$$

or

$$x_n \rightarrow^p x$$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Sum rule: $p \lim (x_n + y_n) = c + d$
- Product rule: $p \lim x_n y_n = cd$
- Ratio rule: $p \lim x_n/y_n = c/d$, if $d \neq 0$

- Inverse rule: if A is square and non-degenerated then $p \lim_{n \to \infty} X_n^{-1} = A^{-1}$
- Product rule: $p \lim X_n Y_n = AB$

- Inverse rule: if A is square and non-degenerated then $p \lim X_n^{-1} = A^{-1}$
- Product rule: $p \lim X_n Y_n = AB$

- Inverse rule: if A is square and non-degenerated then $p \lim X_n^{-1} = A^{-1}$
- Product rule: $p \lim X_n Y_n = AB$

- Inverse rule: if A is square and non-degenerated then $p \lim X_n^{-1} = A^{-1}$
- Product rule: $p \lim X_n Y_n = AB$

Convergence almost surely

The sequence x_N converges almost surely or with a probability one to x if for every $\epsilon > 0$

$$Pr(\lim_{N\to\infty}|x_N-x|<\epsilon)=1$$

It is abbreviated as

$$x_N \rightarrow^{a.s.} x$$

Sometimes it is called a strong convergence.

Convergence in distribution

The sequence x_N converges in distribution to x if for every real number c

$$\lim_{N\to\infty}F_N(c)=F(c)$$

It is abbreviated as

$$x_N \rightarrow^d x$$

Sometimes it is called a weak convergence.

Remark: It does not require convergence of p.d.f.s

If $x_n \to^d x$ and $p \lim y_n = c$, then

$$x_n + y_n \to^d X + c$$

•
$$x_n y_n \rightarrow^d cx$$

•
$$x_n/y_n \rightarrow^d x/c$$
, if $c \neq 0$

If $x_n \to^d x$ and $p \lim y_n = c$, then

•
$$x_n + y_n \rightarrow^d x + c$$

•
$$x_n y_n \rightarrow^d cx$$

•
$$x_n/y_n \rightarrow^d x/c$$
, if $c \neq 0$

If $x_n \to^d x$ and $p \lim y_n = c$, then

•
$$x_n + y_n \rightarrow^d x + c$$

•
$$x_n y_n \rightarrow^d cx$$

•
$$x_n/y_n \rightarrow^d x/c$$
, if $c \neq 0$

Convergence properties

- Suppose x is a fixed, real number ther

$$x_N \to^p x \Leftrightarrow x_N \to^d x$$

Convergence properties

- Suppose x is a fixed, real number ther

$$x_N \to^p x \Leftrightarrow x_N \to^d x$$

Convergence properties

- Suppose x is a fixed, real number then

$$x_N \to^p x \Leftrightarrow x_N \to^d x$$

Slutsk'y theorem

If $g: R \rightarrow R$ is a continuous functions then

•
$$x_N \rightarrow^p x \Rightarrow g(x_N) \rightarrow^p g(x)$$

•
$$x_N \to^d x \Rightarrow g(x_N) \to^d g(x)$$

•
$$x_N \rightarrow^{a.s.} x \Rightarrow g(x_N) \rightarrow^{a.s.} g(x)$$

where

$$\lim g(x_N) = g(\lim x_N)$$

Suppose $x_n \rightarrow^d N(\alpha, \sigma^2)$

- if $\hat{\alpha}_n \to^d \alpha \in R$, does $\hat{\alpha}_n$ converge in probability?
- $p \lim \hat{\alpha} = \alpha$, what is the asymptotic distribution of $x_n \hat{\alpha}$?
- $p \lim \hat{\sigma}^2 = \sigma^2$, what is $p \lim 1/\sqrt{\hat{\sigma}^2}$ and the asymptotic distribution of $(x_n \hat{\alpha})/\sqrt{\hat{\sigma}^2}$?

Suppose $x_n \rightarrow^d N(\alpha, \sigma^2)$

- if $\hat{\alpha}_n \to^d \alpha \in R$, does $\hat{\alpha}_n$ converge in probability?
- $p \lim \hat{\alpha} = \alpha$, what is the asymptotic distribution of $x_n \hat{\alpha}$?
- $p \lim \hat{\sigma}^2 = \sigma^2$, what is $p \lim 1/\sqrt{\hat{\sigma}^2}$ and the asymptotic distribution of $(x_n \hat{\alpha})/\sqrt{\hat{\sigma}^2}$?

Suppose $x_n \rightarrow^d N(\alpha, \sigma^2)$

- if $\hat{\alpha}_n \rightarrow^d \alpha \in R$, does $\hat{\alpha}_n$ converge in probability?
- $p \lim \hat{\alpha} = \alpha$, what is the asymptotic distribution of $x_n \hat{\alpha}$?
- $p \lim \hat{\sigma}^2 = \sigma^2$, what is $p \lim 1/\sqrt{\hat{\sigma}^2}$ and the asymptotic distribution of $(x_n \hat{\alpha})/\sqrt{\hat{\sigma}^2}$?

Asymptotic theory

Laws of Large Number and Central Limit Theorem

Laws of large numbers

Khinchine's Theorem

Let x_n be a sequence of i.i.d. random variables with $E(x_n) = \mu < \infty$. Then

$$\bar{x_N} := \frac{1}{N} \sum_{n=1}^N x_n \to^{\rho} \mu$$

Laws of large numbers

Chebyshev's Theorem

Let x_n be a sequence of independent random variables with $E(x_i) = \mu_i < \infty$ and $Var(x_i) = \sigma_i^2 < \infty$, such that $\bar{\sigma}_n^2 = 1/n^2 \sum_{i=1}^n \sigma_i^2 \to 0$, then

$$\bar{x_n} \rightarrow^p \bar{\mu_n}$$

Suppose, x_n is a sequence of independent random variables with $E(x_n) = \mu < \infty$ and $Var(x_n) \le c < \infty$ for some finite constant c.

- Are the conditions of Chebyshev's Theorem satisfied?
- What is the $p \lim \bar{x_N}$?

Suppose, x_n is a sequence of independent random variables with $E(x_n) = \mu < \infty$ and $Var(x_n) \le c < \infty$ for some finite constant c.

- Are the conditions of Chebyshev's Theorem satisfied?
- What is the $p \lim \bar{x_N}$?

Central Limit Theorem

Lindberg-Levy CLT

Suppose x_n be a sequence of independent random variables with finite means μ_i and a finite variances σ_i^2 . If no single element dominates

$$\lim_{n\to\infty} \max(\sigma_i^2)/(n^2\bar{\sigma}_n^2) = 0$$

and there exists a finite constant $\bar{\sigma}^2$

$$\bar{\sigma}^2 = \lim_{n \to \infty} \bar{\sigma}_i^2 < \infty$$

then

$$\sqrt{n}(\bar{x_n}-\bar{\mu}_n) \rightarrow^d N(0,\bar{\sigma}^2))$$

Central Limit Theorem

Lindberg-Levy CLT

Suppose x_n be a sequence of independent random variables with finite means μ_i and a finite variances σ_i^2 . If no single element dominates

$$\lim_{n\to\infty} \max(\sigma_i^2)/(n^2\bar{\sigma}_n^2) = 0$$

and there exists a finite constant $\bar{\sigma}^2$

$$\bar{\sigma}^2 = \lim_{n \to \infty} \bar{\sigma}_i^2 < \infty$$

then

$$\sqrt{n}(\bar{x_n} - \bar{\mu}_n) \rightarrow^d N(0, \bar{\sigma}^2))$$

Suppose x_n is a sequence of i.i.d. random variables with a mean μ and a finite variance σ^2 .

- Are the conditions of Lindberg-Levy CLT satisfied?
- Formulate the CLT.

$$\sqrt{n}(\bar{x_n} - \mu) \rightarrow^d N(0, \sigma^2)$$

Suppose x_n is a sequence of i.i.d. random variables with a mean μ and a finite variance σ^2 .

- Are the conditions of Lindberg-Levy CLT satisfied?
- Formulate the CLT.

$$\sqrt{n}(\bar{x_n} - \mu) \rightarrow^d N(0, \sigma^2)$$

Suppose x_n is a sequence of i.i.d. random variables with a mean μ and a finite variance σ^2 .

- Are the conditions of Lindberg-Levy CLT satisfied?
- Formulate the CLT.

$$\sqrt{n}(\bar{x_n}-\mu) \rightarrow^d N(0,\sigma^2)$$

Question

Suppose $x_n \sim N(\mu, \sigma^2)$ is a sequence of i.i.d. random variables. Let $\hat{\mu}_n = 1/n \sum_{i=1}^n x_i$.

- What is the asymptotic distribution of $\hat{\mu}_n$ (use CLT)?
- Does it meter, if x_n does not have a normal distribution?

Question

Suppose $x_n \sim N(\mu, \sigma^2)$ is a sequence of i.i.d. random variables. Let $\hat{\mu}_n = 1/n \sum_{i=1}^n x_i$.

- What is the asymptotic distribution of $\hat{\mu}_n$ (use CLT)?
- Does it meter, if x_n does not have a normal distribution?

Limiting distribution of a function

Suppose $\sqrt{n}(x_n - \mu) \to^d N(0, \sigma^2)$ and if g(z) is a continuous and continuously differentiable function with $g'(z) \neq 0$, then

$$\sqrt{n}(g(x_n)-g(\mu)) \rightarrow^d N(0,g'(\mu)^2\sigma^2)$$

Question

Suppose $\sqrt{n}(x_n-1) \to^d N(0,5)$. What is the asymptotic distribution of $g(x_n)$, when

•
$$g(z) = z + 2$$

•
$$g(z) = z^2$$

Central Limit Theorem

Lindberg-Levy CLT

Let x_n be a sequence of K-dimensional i.i.d random variables with a mean μ and a covariance matrix Σ . Then

$$\sqrt{N}(\bar{x_N}-\mu) \rightarrow^{d} N(0,\Sigma)$$

Limiting distribution of a function

Suppose $\sqrt{n}(x_n - \mu) \to^d N(0, \Sigma)$ and if g(z) is a J continuous and continuously differentiable function with $G(z) = g'(z) \neq 0$, then

$$\sqrt{n}(g(x_n)-g(\mu)) \rightarrow^d N(0,G(\mu)'\Sigma G(\mu))$$

Question

Suppose $\sqrt{n}x_n \to^d N(0, I_2)$. What is the asymptotic distribution of $g(x_n)$, when

•
$$g(z) = z_1 + z_2$$

•
$$g(z) = [z_1, z_1 - z_2 + 1]'$$

Asymptotic theory

Asymptotic properties of estimators

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^d N(0,\Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, \Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^d N(0,\Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \to a.s. \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^d N(0,\Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, \Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \to a.s.$ β
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, \Sigma)$$

- $\hat{\beta}$ is unbias estimator of β if $E(\hat{\beta}) = \beta$
- $\hat{\beta}$ is (weakly) consistent if $\hat{\beta}_N \rightarrow^p \beta$
- $\hat{\beta}$ is strongly consistent if $\hat{\beta}_N \rightarrow^{a.s.} \beta$
- $\hat{\beta}$ is asymptotically normal if

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

Linear combination of estimators

Suppose $\hat{\beta}$ is an estimator of a $(K \times 1)$ vector β with

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- Let $A \neq 0$. What is the asymptotic distribution of $\sqrt{N}A(\hat{\beta} \beta)$?
- Suppose, $p \lim \hat{A} = A$. Does it change the previous result?

Linear combination of estimators

Suppose $\hat{\beta}$ is an estimator of a $(K \times 1)$ vector β with

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- Let $A \neq 0$. What is the asymptotic distribution of $\sqrt{N}A(\hat{\beta} \beta)$?
- Suppose, $p \lim \hat{A} = A$. Does it change the previous result?

Suppose K = 2 and $\beta = (2, 2)'$ and

$$\Sigma = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 3 \end{array} \right]$$

What is the asymptotic distribution of $\hat{\beta}_1 - \hat{\beta}_2$?

$$\sqrt{N}(\hat{\beta}_1 - \hat{\beta}_2) \rightarrow^d N(0,3)$$

Suppose K = 2 and $\beta = (2, 2)'$ and

$$\Sigma = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 3 \end{array} \right]$$

What is the asymptotic distribution of $\hat{\beta}_1 - \hat{\beta}_2$?

$$\sqrt{N}(\hat{\beta_1} - \hat{\beta_2}) \rightarrow^d N(0,3)$$

Delta method

Suppose $g(\beta)=(g_1(\beta),...,g_m(\beta))'$ is a vector-valued continuously differentiable function with $\partial g(\beta)/\partial \beta'\neq 0$ at β , then

$$\sqrt{N}(g(\hat{\beta}) - g(\beta)) \rightarrow^{d} N(0, \frac{\partial g(\beta)}{\partial \beta'} \Sigma \frac{\partial g(\beta)'}{\partial \beta})$$

Remark: if $\partial g(\beta)/\partial \beta' = 0$ then

$$\sqrt{N}(g(\hat{\beta}) - g(\beta)) \rightarrow^p 0$$

Delta method

Suppose $g(\beta)=(g_1(\beta),...,g_m(\beta))'$ is a vector-valued continuously differentiable function with $\partial g(\beta)/\partial \beta'\neq 0$ at β , then

$$\sqrt{N}(g(\hat{\beta}) - g(\beta)) \rightarrow^{d} N(0, \frac{\partial g(\beta)}{\partial \beta'} \Sigma \frac{\partial g(\beta)'}{\partial \beta})$$

Remark: if $\partial g(\beta)/\partial \beta' = 0$ then

$$\sqrt{N}(g(\hat{\beta})-g(\beta))\to^p 0$$

Suppose the true parameter $\beta = 1$ is a single valued scalar and $\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, 2)$

What is an asymptotic distribution of $g(\hat{\beta}) = \hat{\beta}^3 + \hat{\beta}^2 - 2$?

$$\sqrt{N}(g(\hat{\beta}) - g(\beta)) = \sqrt{N}g(\hat{\beta}) \rightarrow^d N(0, 50)$$

Suppose the true parameter $\beta = 1$ is a single valued scalar and $\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, 2)$

What is an asymptotic distribution of $g(\hat{\beta}) = \hat{\beta}^3 + \hat{\beta}^2 - 2$?

$$\sqrt{N}(g(\hat{\beta}) - g(\beta)) = \sqrt{N}g(\hat{\beta}) \rightarrow^d N(0, 50)$$

Quadratic form

Suppose, Σ is nonsingular, $(K \times K)$ matrix and

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- What is the asymptotic distribution of $N(\hat{\beta} \beta)'\Sigma^{-1}(\hat{\beta} \beta)$?
- Suppose, $p \lim \hat{\Sigma} = \Sigma$. Does it change the previous result?

$$N(\hat{\beta} - \beta)'\Sigma^{-1}(\hat{\beta} - \beta) \rightarrow^d \chi^2(K)$$

Quadratic form

Suppose, Σ is nonsingular, $(K \times K)$ matrix and

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- What is the asymptotic distribution of $N(\hat{\beta} \beta)'\Sigma^{-1}(\hat{\beta} \beta)$?
- Suppose, $p \lim \hat{\Sigma} = \Sigma$. Does it change the previous result?

$$N(\hat{\beta} - \beta)'\Sigma^{-1}(\hat{\beta} - \beta) \rightarrow^d \chi^2(K)$$

Quadratic form

Suppose, Σ is nonsingular, $(K \times K)$ matrix and

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow^{d} N(0,\Sigma)$$

- What is the asymptotic distribution of $N(\hat{\beta} \beta)'\Sigma^{-1}(\hat{\beta} \beta)$?
- Suppose, $p \lim \hat{\Sigma} = \Sigma$. Does it change the previous result?

$$N(\hat{\beta} - \beta)'\Sigma^{-1}(\hat{\beta} - \beta) \rightarrow^d \chi^2(K)$$

Suppose, $\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, \Sigma)$, with a nonsingular, $(K \times K)$ matrix Σ .

• Find a matrix M such that a quadratic form of $A(\hat{\beta} - \beta)$ will converge to $\chi^2(K)$

What is the asymptotic distribution of a quadratic form of $A(\hat{\beta} - \beta)$, where A is a quadratic, nonsingular matrix?

$$N(\hat{\beta} - \beta)'A'(A\Sigma A')^{-1}A(\hat{\beta} - \beta) \rightarrow^{d} \chi^{2}(K)$$

Suppose, $\sqrt{N}(\hat{\beta} - \beta) \rightarrow^d N(0, \Sigma)$, with a nonsingular, $(K \times K)$ matrix Σ .

• Find a matrix M such that a quadratic form of $A(\hat{\beta} - \beta)$ will converge to $\chi^2(K)$

What is the asymptotic distribution of a quadratic form of $A(\hat{\beta} - \beta)$, where A is a quadratic, nonsingular matrix?

$$N(\hat{\beta} - \beta)'A'(A\Sigma A')^{-1}A(\hat{\beta} - \beta) \rightarrow^d \chi^2(K)$$

What happens if the matrix A is not quadratic, but has dimension $(M \times K)$, where M < K and rank(A) = M?

Similarly to the previous example, the quadratic form will have a χ^2 distribution. It will have *M* degrees of freedom.

$$N(\hat{\beta} - \beta)'A'(A\Sigma A')^{-1}A(\hat{\beta} - \beta) \rightarrow^d \chi^2(M)$$

What happens if the matrix A is not quadratic, but has dimension $(M \times K)$, where M < K and rank(A) = M?

Similarly to the previous example, the quadratic form will have a χ^2 distribution. It will have $\it M$ degrees of freedom.

$$N(\hat{\beta} - \beta)'A'(A\Sigma A')^{-1}A(\hat{\beta} - \beta) \rightarrow^d \chi^2(M)$$