KF School of Computing and Information Sciences Florida International University

CNT 4403 Computing and Network Security

Access Control – User Authentication

Dr. Kemal Akkaya

E-mail: kakkaya@fiu.edu

User Authentication

- ☐ Fundamental security building block
 - > Basis of access control & user accountability
- □ Is the process of verifying an identity claimed by or for a system entity
- ☐ Has two steps:
 - > Identification specify identifier
 - > Verification bind entity (person) and identifier

Many Ways to Prove Who You Are

- **☐** What you know
 - > Passwords
 - ➤ Secret key
- **☐** Where you are
 - > IP address
- **□** What you are
 - > Biometrics
- What you have
 - > Secure tokens
- □ A combination of these can also be used

Password-Based Authentication

- Widely used user authentication method
 - Authenticates ID of user logging and
 - ✓ that the user is authorized to access system.
 - √ determines the user's privileges
 - √ is used in discretionary access control
- ☐ How is the password communicated?
 - Eavesdropping risk
- **☐** How is the password stored?
 - ➤ In the clear? Encrypted? Hashed?
- ☐ How does the system check the password?
- ☐ How easy is it to guess the password?
 - Easy-to-remember passwords tend to be easy to guess
 - Password file is difficult to keep secret

Other Aspects

□ Usability

- Hard-to-remember passwords?
- Carry a physical object all the time?

Denial of service

- > Stolen wallet
- Attacker tries to authenticate as you, account locked after three failures
- "Suspicious" credit card usage

□ Social engineering

Passwords in the Real World

- ☐ First step after any successful intrusion: install sniffer or keylogger to steal more passwords
 - > Second step: run cracking tools on password files
 - ✓ Usually on other hijacked computers
 - ➤ In Mitnick's "Art of Intrusion", 8 out of 9 exploits involve password stealing and/or cracking

☐ Real-life Examples:

- From high school pranks...
 - ✓ Students in California change grades
 - Different authentication for network login and grade system, but teachers were using the same password (very common)
- > ...to serious cash
 - ✓ English accountant uses co-workers' password to steal \$17 million for gambling
- > ...to identity theft
 - ✓ Helpdesk employee uses passwords of a credit card database to sell credit reports to Nigerian scammers

Password Authentication

☐ Basic Scheme

- Store user name and corresponding password in clear text
- Problem: Anyone who has access to the password file can get the password.
- ☐ Instead of user password, store H(password)
- When user enters password, compute its hash and compare with entry in password file
 - System does not store actual passwords!
 - Difficult to go from hash to password!
 - ✓ Do you see why hashing is better than encryption here?

UserID	Password
kfong	kennyISgreat
mehdi	SALEM
georgia	w2R?Dq7y

UserID	Password Hash
kfong	H(kennyISgreat)
mehdi	H (SALEM)
georgia	H(w2R?Dq7y)

Password Authentication

☐ Dictionary Attack is possible with Hashing approach

- > i.e., Attacker can pre-compute H(word) for every word in the dictionary
 - this only needs to be done <u>once!!</u>
 - ✓ This is an <u>offline</u> attack
 - ✓ Once password file is obtained, cracking is instantaneous

☐ Salting is the solution for this problem

- > The system generates a random string each time a password is reset
- The salt is stored in the file and concatenated with the password before hashed
 - ✓ With salt, attacker must compute hashes of all dictionary words once for each combination of salt value and password

UserID	Salt	Password Hash
kfong	DCFV	<pre>H(kennyISgreat,DCFV)</pre>
mehdi	PLRE	H(SALEM, PLRE)
georgia	ACCW	H(w2R?Dq7y,ACCW)

UNIX-Style Passwords

UNIX Passwords

☐ Uses a hash function called Crypt

- Encrypt NULL string using password as the key
 - ✓ Truncates passwords to 8 characters!
- Artificial slowdown: run DES 25 times
- Can instruct modern UNIXes to use MD5 hash function or Blowfish

Password Checking

(a) Loading a new password

Password Security Risks

- ☐ Keystroke loggers
 - Hardware: KeyGhost, KeyShark, others
 - Software (spyware)
- Shoulder surfing
- ☐ Same password at multiple sites
- □ Broken implementations
- Social engineering
- □ Offline dictionary attack
- ☐ Popular password attack
- □ Password guessing against single user

Default Passwords

- □ 52 letters, 10 digits and 32 punctuation symbols: 94⁸ ≈ 6 quadrillion possible 8-character passwords
- ☐ Examples from Mitnick's "Art of Intrusion"
 - ➤ U.S. District Courthouse server: "public" / "public"
 - ➤ NY Times employee database: pwd = last 4 SSN digits
 - "Dixie bank": break into router (pwd="administrator"), then into IBM AS/400 server (pwd="administrator"), install keylogger to snarf other passwords
 - √ "99% of people there used 'password123' as their password"
- ☐ U. of Michigan: 5% of passwords were "goblue"
 - How many passwords on this campus involve "panthers", "gopanthers",etc.?

How People Use Passwords

- ☐ Write them down
- ☐ Use a single password at multiple sites

- Do you use the same password for Amazon and your bank account? myFIU? Do you remember them all?
- Make passwords easy to remember
 - "password", "Kevin123", "popcorn"
- ☐ Some services use "secret questions" to reset passwords
 - "What is your favorite pet's name?"
 - Paris Hilton's T-Mobile cellphone hack

Social Engineering

☐ Univ. of Sydney study

- ➤ 336 CS students emailed asking for their passwords
 ✓ Pretext: "validate" password database after suspected break-in
- ➤ 138 returned their passwords; 30 returned invalid passwords; 200 reset passwords (not disjoint)

☐ Treasury Dept. report (2005)

- Auditors pose as IT personnel attempting to correct a "network problem"
- ➤ 35 of 100 IRS managers and employees provide their usernames and change passwords to a known value
- □ Other examples: Mitnick's "Art of Deception"

Password Policies

☐ A strong password should meet the following guidelines:

- Should be at least 8-characters long (now 16 characters)
- Should have at least three of the following:
 - ✓ One or more uppercase letters (A-Z), one or more lowercase letter (a-z)
 - ✓ One or more digits (0-9), One or more special characters or punctuations marks (!@#\$%^&*,..;?)
- Should not consist of dictionary words
- Should never be the same as user name or contain the user name
- Should not consist of user's family member's names, birth dates, pet names, etc.
- > Should be changed regularly (e.g., every 60-90 days)
- ☐ Shared passwords should be forbidden
- □ Accounts and passwords should be reset as soon as they become invalid
- ☐ Limit the number of failed login attempts
- Never write down your password

Alternative: Token Authentication

☐ Object user possesses to authenticate, e.g.

- magnetic stripe card
- memory card
 - ✓ store but do not process data
 - √ used alone for physical access
- Smartcard
 - ✓ credit-card like
 - √ has own processor, memory, I/O ports
 - wired or wireless access by reader
 - may have crypto co-processor
 - ROM, EEPROM, RAM memory
 - ✓ executes response/challenge protocol to authenticate with reader/computer
- Cryptographic calculators
- Radio frequency identification (RFID) tags

Biometric Authentication

- □ Authenticate user based on one of their physical characteristics
- □ Advantages
 - Never lost or forgotten
- Disadvantages
 - > Cost
 - False positives/negatives
 - > Privacy
 - Security and size of template DBs
 - Revocation after forgery

Operation of a Biometric System

Biometric Accuracy

- ☐ Never get identical templates
- □ Problems of false match / false non-match
- ☐ FAR: False Acceptance Rate
- ☐ FRR: False Rejection Rate
- ☐ EER: Equal Error Rate
 - ➤ The threshold of the system set to the point at which EER occurs

Biometric Technologies

Remote User Authentication

- ☐ Authentication over network more complex
 - Problems of eavesdropping, replay
- ☐ Generally use challenge-response
 - User sends identity
 - Host responds with random number
 - User computes f(r,h(P)) and sends back
 - Host compares value from user with own computed value, if match user authenticated
- ☐ Protects against a number of attacks
 - Passwords are not sent over network (i.e., no eavesdropping)

Multi-factor Authentication

- □ Adding a second factor for authentication
- □ This is in addition to the main mechanism (password etc).
- ☐ Can be through text message, phone call, biometrics, cards, etc.
 - What is my FIU's multi-factor mechanism?
- ☐ If the password is compromised, second level authentication will fail.
- □ Became pretty common now
 - Usability is an important challenge here
 - ✓ Would you use a smart watch which can authenticate your type pattern?

Single Sign-On

- □ A mechanism that enables a user to authenticate once with a single password and gain access to resources from multiple systems
- ☐ Eliminates the need for memorizing multiple passwords
- ☐ E.g., Windows Live ID
 - Largest single sign-on service on the Web
 - Used by Hotmail, Xbox Live, Expedia, etc.

