Gambit Paged Memory Management Unit

Features

- 512 entry, 8-way associative TLB
- variable page table depth, subset address translation
- address short-cutting for larger page sizes (16MB)
- 16kB page size
- 52-bit address translations
- 52-bit bus mastering for table lookup
- automatic periodic hardware clearing of page accessed bit

Operation

The PMMU translates virtual to physical addresses by looking up the translation in a TLB (translation lookaside buffer). Address translation takes two clock cycles to perform. During the first clock cycle it is determined if the access is valid. If the access is a valid access then the input address is transferred to output on the second clock cycle, otherwise an error signal is set active.

The PMMU will automatically walk the page tables on a TLB miss and update the TLB with an address translation. If the translation is not available a page fault is generated. Walking the page tables depends on the number of levels selected by the PTA (page table address) register. More levels to traverse take more memory cycles. Address translation may be shortcut at 16MB pages if indicated in the page table entry.

The PMMU will also periodically reset the accessed bits of page table entries during idle access times, to support the clock algorithm. The update is triggered by an externally provided signal. This signal should be connected to an interval timer (PIT) circuit.

Pages are 16kB in size. Each page contains 1024, 208-bit page table entries or 2048, 104-bit page directory entries.

Since there are only 64 entries at the 4th level of page tables, the lower five bits of the address space identifier may also be used to locate the table. This allow the entire 16kB page to be useful.

Protection Mechanisms

A protection key of all zeros will allow any process to access the page. Otherwise the process must contain a key matching the key specified for the page or a privilege violation exception will occur.

Read, write, or execute accessibility is set independently for each processor operating level.

For executable pages the privilege level of the page must match the processor's current privilege level or a privilege violation will occur. For data pages the privilege level must be lower or equal to (numerically greater than or equal) to the processor's privilege level.

Read, write or execute violations will occur if the access type is not appropriate for the current operating level.

Paged MMU Mapping

PMMU Placement

PMMU acts like a bus bridge and sits between the CPU and the rest of the system so that it may generate bus master signals while walking page tables without using an extra memory port.

Page Table Entry

The following layout shows the page table entry structure as stored in memory.

51		39	38	26	25	24	23	20	19	16	15	12	11	8	7	4	2 1	0
			Physical Page Number ₃₈									DU	U A ₃		~8		T ₂	P
			Virtual Page Number ₃₈															
	Share Count ₁₃		Privilege Level ₁₃		U	S	CR	WX	CR	WX	CR	WX	CR	WX	CR	WX	CRV	WX
	Reference Counter ₂₆ Protection Key ₂₀																	

Word	Bit				
0	0		P	Page present	1 = page present in memory
	1 to 2		T	Entry type	1 = page directory entry, 2 = page table entry
	3 to 10			reserved	
	11		A	1 = accessed	
	12		U	undefined usage	available for use by OS
	13		D	1 = dirty	set if the page is written to
	14 to 51		PPN	physical page number	
1	0 to 13			reserved	
	14 to 51		VPN	virtual page number	
2	0	J	X_{u}	1 = executable	
	1	User	W_{u}	1 = page writeable	
	2	٠,	R_u	1 = readable	
	3		C_{u}	1 = cachable	Ignored for executable pages which are always cached
	4 to 7)		supervisor	
	8 to 11	Other		supervisor	
	12 to 15	ř		supervisor	
	16 to 19			hypervisor	
	20	N e	X_{m}		
	21	1ac	$W_{\rm m}$		
	22	Machin e	$R_{\rm m}$		
	23	_	$C_{\rm m}$		
	24		S	1 = shortcut translation	Translation shortcut bit eg (16MiB pages)
	25		U	undefined usage	available for use by OS
	26 to 38		PL	Privilege Level	
	39 to 51		SC	Share Count	number of times page is shared
3	0 to 19		PK	Protection Key	process must have a matching key in its collection for access
	20 to 25			reserved	
	26 to 51		RC	Reference Counter	
Ì					

Page Directory Entry

51 14	13	11	10	3	2 1	0
Page Number ₃₈	Ι	OUA3	~	8	T_2	P
Virtual Page Number ₃₈						

Hardware Interface

Port	Bits	Dir.	Description								
rst_i	1	I	resets the core								
clk_i	1	I	clock input								
clock_tick_i	1	I	This input is meant to be driven by a timing source and is used								
			for hardware clearing of the accessed bit in page table entries.								
cyc_o	1	О	bus master cycle valid strobe								
stb_o	1	О	bus master data strobe								
lock_o	1	O	not used								
ack_i	1	I	bus master transfer acknowledge								
we_o	1	О	bus master write transaction enable - may be masked off if page								
			is read-only								
sel_o	8	O	bus master byte lane select								
padr_o	52	O	bus master address output (physical address)								
dat_i	104	I	bus master data input								
dat_o	104	O	bus master data output								
invalidate	1	I									
invalidate_all	1	I	invalidates all entries in the TLB								
pta	52 I physical address of page table in memory. The page table should										
			be 16kB aligned. Low order bits select table depth. Each level								
			covers 2048 times the lower level memory range.								
			PTA bits Address								
			[9:8] Space								
			0 16MB root page table only								
			1 32GB two level table								
			2 64TB three table levels								
			3 128XB four table level								
asid_i	8	I	I address space identifier								
page_fault 1 O			activated when a page is not present								
pl_i	13	I									
ol_i	3	I	operator level input (machine level (0) bypasses address								
			mapping)								
icl_i	1	I	indicates an instruction cache load is taking place								
cyc_i	1	I	indicates a bus cycle is active								
stb_i	1	I	indicates data is strobed								

ack_o	1	О	acknowledge
we_i	1	I	indicates a write cycle is taking place
sel_i	8	I	byte lane selects
vadr_i	52	I	virtual address to translate
cac_o	1	0	page is not cachable
prv_o	1	0	privilege violation
exv_o	1	0	execute violation
rdv_o	1	0	read violation
wrv_o	1	О	write violation
keys_i	20*8	I	process keys