Hypothesis Testing

Why do we need inferential statistics?

Descriptive Statistics

- Organise
- Summarise
- Simplify
- Describe and present data

Inferential Statistics

- Generalise from samples to populations
- Hypothesis testing
- Make predictions

Inferential statistics allow us to *infer* or generalize observations made with samples to the larger population from which they were selected.

What is a Hypothesis?

Research Question (ideas)

A specific testable statement (that guides an experiment)

What Is a Real Hypothesis?

- A hypothesis is an educated guess, based on observation.
- Usually, a hypothesis can be supported or refuted through experimentation or more observation.
- A hypothesis can be disproven, but not proven to be true.

Research Question – Is online teaching effective?

Hypothesis Statement – Students taught offline perform better than students taught online

(ASSUMPTION) – based on previous studies, observations, experiences, etc.

Null Hypothesis and Alternative Hypothesis

Students taught online vs offline perform equally well on exams

Students taught offline perform better than students taught online

You perform experiments to check if the Ho holds true or not. By disproving the Ho you accept the HA

Students taught online perform better than students taught offline

Variables in a hypothesis

Hypothesis Statement – Students taught offline perform better than students taught online

not changed by the other variables you are trying to measure

Value is changed or affected by the independent variable/s

Exam performance

Individuals with more years of education have higher income

Ho – No relationship between years of education and income

H₁ - Individuals with more years of education have higher income

Leopards are stronger than Tigers

Ho – Leopards and Tigers are equally strong, no difference

H₁ – Tigers are stronger than Leopards

H2 – Leopards are stronger than Tigers

Exercise effects on anxiety

Ho - Exercise has no effect on anxiety

H₁ - Exercise lowers anxiety

H₂ – Exercise increases anxiety

IV – Exercise (exercising, not exercising)

DV – anxiety levels

Directionality in a hypothesis

This prediction is typically based on past research, accepted theory, extensive experience, or literature on the topic.

Else your statistical outcome can be misleading, by ignoring other outcomes e.g. Does a technical degree impart technical skills?

High quality of engineering education leads to higher technical skills

Ho – Quality of engineering education has no effect on technical skills

H1 - High quality of engineering education leads to higher technical skills

Confidence Intervals

Confidence Level	α (level of significance)	$Z_{a_{/_2}}$
99%	1%	2.575
95%	5%	1.96
90%	10%	1.645

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

CI = confidence interval

 \bar{x} = sample mean

z = confidence level value

sample standard deviation

n = sample size

Hypothesis testing

General Rule: Use two-tailed test.

Only if direction is known from prior studies (justified reason), use one-tail test.

Criterion (α) for significance – 5% (0.05) for most behavioural studies (95 % CI)

If $p > 0.05 \rightarrow$ Accept the Ho

If $p \le 0.05 \rightarrow \text{Reject the Ho & accept HA}$

One-tailed vs two-tailed test

When is a one-tailed test NOT appropriate?

• Choosing a one-tailed test for the sole purpose of attaining significance is not appropriate.

 Choosing a one-tailed test after running a two-tailed test that failed to reject the null hypothesis is not appropriate, no matter how "close" to significant the two-tailed test was.

 Using statistical tests inappropriately can lead to invalid results that are not replicable and highly questionable—a steep price to pay to show significance in your results

Exercise effects on anxiety

- Ho Exercise has no effect on anxiety
- H₁ Exercise lowers anxiety
- H₂ Exercise increases anxiety?

When $p \le .05$, we reject the null hypothesis - there is a **'significant'** difference between the two groups.

When p > .05, we retain the null hypothesis – there is less difference between the groups.

HO - Exercise has no effect on anxiety

H2 - Exercise increases anxiety

Another Directional Hypothesis

You have a new drug to treat pain that is cheaper than the existing drug and you only want to confirm if the new drug is less effective than the existing drug

Whether the new drug is similar or better than the existing drug does not matter.

Ho - Null hypothesis - No difference between new drug and existing drug to treat pain

H1 - Alternate hypothesis – Is the new drug less effective than the existing drug

• Ho, HA, IV, DV, one or two tailed test?

- Smoking is injurious to the lungs
- Videogaming can lower attention span
- Does repetition in advertising improve sales?
- Air pollution is more fatal than COVID19
- Is there a difference in leadership style between men and women?

Types of Errors in hypothesis testing

Decision from statistical tests

Reject Ho

Accept Ho

Correct Decision

Sensitivity/Power 1- β

Type 2 Error
"False Negative"

Type 1 Error "False Positive" α

Correct Decision
Specificity

1-α

Observe difference when none exists

Overreacting!

Fail to find a difference when there is one *Underreacting!*

Sample size it too small (high variability)

Type I error

(false positive)

- Choosing one-tailed instead of two-tailed test
- Wrong statistical test

Power

- Power the probability that your test will find a statistically significant difference when such a difference actually exists.
- In other words, power is the probability that you will reject the null hypothesis when you should (and thus avoid a Type II error).
- It is generally accepted that power should be .8 or greater; that is, you should have an 80% or greater chance of finding a statistically significant difference when there is one.

Power

Power is calculated using statistical software. You need to know –

- What type of test you plan to use (e.g., independent t-test, paired t-test, ANOVA, correlation, regression, etc.)
- The alpha value or significance level you are using (usually 0.05 or 0.01)
- The expected effect size
- The sample size you are planning to use

As your sample size increases, so does the power of your test.

- larger sample means that you have collected more information -- which makes it easier to correctly reject the null hypothesis when you should.
- A power value is between 0 and 1.
- If the power is less than 0.8, you typically need to increase your sample size.

Effect Size

E.g. you evaluate the effect of a group discussion on student knowledge using pre and post tests on 500 students. The mean score on the pre test was 83 out of 100 while the mean score on the post test was 84.

• What if you simply found a statistical difference by virtue of a large sample size (> 1000 or 10000)?

 If you calculate the effect size – you get a standard method to defining the importance of the statistical difference

Cohen's d effect size interpretation

< 0.1 = trivial effect

0.1 - 0.3 = small effect

0.3 - 0.5 = moderate effect

> 0.5 = large difference effect

Effect Size

- Effect size is a quantitative measure of the *strength of a phenomenon*.
- Effect size emphasizes the size of the difference or relationship
- Examples:
 - the correlation between two variables (specifically r²)
 - r=.1 weak, r=.5 moderate, r=.7 strong, r=.9 very strong
 - the regression coefficient in a regression (B₀, B₁, B₂)
 - · Relative to model and field
 - the mean differences in t tests (use Cohen's D)
 - d = .2 is small; r = .5 is medium; r = .8 is large
 - The mean differences in ANOVA (use eta)
 - · .01 is small, .06 medium, .14 large

Cohen's Effect size = (Meantreatment – Meancontrol)

Standard deviation pooled

$$d = \frac{\overline{x} - \overline{x}}{S}$$

Basic formula for sample size - Continuous data

Number of samples per group (n) =
$$\frac{2 x (Z_{(1-\alpha/2)} + Z_{\beta})^2 x \sigma^2}{\Delta^2}$$

Where Δ = size of difference, minimal effect of interest

 $\alpha = \text{significance level (eg 0.05)}$

β = power, probability of detecting a significant result (typically 80%, 90%)

 σ = SD of data

Z_p = points on normal distribution to give required power and significance

DV: Anxiety level

IV: Exercise

Do people who exercise have lower levels of anxiety?

Does exercise lower anxiety?

Experimental group

Control group

Exercise

Anxiety level

Between groups

(this does not allow you to measure change)

Within group/Repeated measures (crossover design)

- Participant fatigue
- Longer experimental duration
- Carry over effects

Mixed design
Between groups & Within groups

FAKE

Anxiety levels

	Exercise	No -Exerci
	20	24
	23	35
	25	41
	30	21
	35	38
	29	23
	37	37
	24	44
	29	32
	31	33
	26	34
	28	42
Mean	28.08333	33.66667
SD	4.680782	7.261007

Normality?

Kolmogorov–Smirnov test (n>=50)

OR

Shapiro–Wilk test (n<50)

The null hypothesis for normality \rightarrow data is normally distributed

Parametric vs non-parametric

T-Test Example

People who exercise have lower levels of anxiety

Anxiety levels

	Exercise	No -Exerci
	20	24
	23	35
	25	41
	30	21
	35	38
	29	23
	37	37
	24	44
	29	32
	31	33
	26	34
	28	42
Mean	28.08333	33.66667
SD	4.680782	7.261007

	Exercise	No -Exercise
Mean	28.08333333	33.66666667
Variance	23.90151515	57.51515152
Observations	12	12
Pooled Variance	40.70833333	
Hypothesized Mean Diff	0	
df	22	
t Stat	-2.143519905	
P(T<=t) one-tail	0.021690748	
t Critical one-tail	1.717144374	
P(T<=t) two-tail	0.043381495	
t Critical two-tail	2.073873068	

$$t=rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

 \bar{x}_1 : Mean value of the first group

 $ar{x}_2$: Mean value of the second group

 $n_1:$ Size of the first group

 n_2 : Size of the second group

 $oldsymbol{s_1}$: Standard deviation of the first group $oldsymbol{s_2}$: Standard deviation of the second group

Cohen's Effect size = (Meantreatment - Meancontrol) Standard deviation pooled

Cohen's d = (33.66 - 28.083) / 6.107782 =**0.913097**

Cohen's d effect size interpretation

< 0.1 = trivial effect

0.1 - 0.3 = small effect

0.3 - 0.5 = moderate effect

> 0.5 = large difference effect

t(df=22) = -2.14, p=0.04, d = 0.9

Critical value $\alpha = 0.05$

df= 22

Statistic	df	Explanation		
ANOVA: Mean Sum of Squares Within (MSW)	N - k	N: total # of all data		
ANOVA: Mean Sum of Squares Between (MSB)	k - 1	points k: # of groups		
χ^2	n - 1	n: Sample Size		
χ^2 test for Goodness of Fit	n - 1	k: # of categories		
χ^2 test for Independence	(r-1)(c-1)	r: # of rows, c: #columns n: Sample Size		
χ² test for Variance	n - 1			
F	n ₁ – 1 and n ₂ - 1	n ₁ and n ₂ : Sizes of the 2 Samples		
t	n - 1	n: Sample Size		
1-Sample t-test, and Paired t-test	n - 1			
2 (Independent)-Sample t-test	n ₁ + n ₂ - 2	n ₁ and n ₂ : Sizes of the 2 Samples		

Table T Critical Values of the t D	Distribution
------------------------------------	--------------

df	One-Tail = .4 Two-Tail = .8	.25 .5	.1 .2	.05 .1	.025 .05	.01 .02	.005 .01	.0025 .005	.001 .002	.0005 .001
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.214	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.78
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.583
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.31
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.14
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.07
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.01
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.96
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.92
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.88
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.79
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.76
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.74
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.72
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.70
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.67
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.640
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.55
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
20	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
000	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Source: From Biometrika Tables for Statisticians, Vol. 1, Third Edition, edited by E. S. Pearson and H. O. Hartley, 1966, p. 146. Reprinted by permission of the Biometrika Trustees.

Independent Samples T-Test

t-value

$$t=rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

 $ar{x}_1$: Mean value of the first group

 $ar{x}_2$: Mean value of the second group

 n_1 : Size of the first group

 n_2 : Size of the second group

 s_1 : Standard deviation of the first group

 $oldsymbol{s_2}$: Standard deviation of the second group

For equal sample size

$$df = (n1 + n2 - 2)$$

For unequal sample size

degrees of freedom, df =
$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

Cohen's Effect size = (Meantreatment – Meancontrol)

Standard deviation pooled

Paired Samples T-Test

Paired Samples t-tests

 $| \ ar{x}_1 :$ Mean value of the first group

second group

roup

of the first group

of the second group

$t = \frac{\Sigma(X_{pre} - X_{post})}{SE_{diff}}$						$ar{x}_2:$ Mean $n_1:$ Size of $n_2:$ Size of	value of the so the first group the second gr
$t = \frac{\overline{d}}{\sqrt{s^2/n}}$	t-Test: Paired	d Two Sample	for Means	t-Test: Two-S	ample Assun		ard deviation of the de
*		Variable 1	Variable 2		Variable 1	Variable 2	
	Mean	28.0833333	33.6666667	Mean	28.0833333	33.6666667	
	Variance	23.9015152	57.5151515	Variance	23.9015152	57.5151515	
	Observations	12	12	Observations	12	12	
	Pearson Corr	0.06701871		Pooled Varia	40.7083333		
	Hypothesized	0		Hypothesized	0		
	df	11		df	22		
	t Stat	-2.2120964		t Stat	-2.1435199		
	P(T<=t) one-	0.02451926		P(T<=t) one-	0.02169075		
	t Critical one	1.79588482		t Critical one	1.71714437		
	P(T<=t) two-	0.04903853		P(T<=t) two-1	0.0433815		
	t Critical two	2.20098516		t Critical two	2.07387307		

Cohen's Effect size = Meandifference $SD \\ {\it difference}$