

ARGOMENTI DELLA LEZIONE

- Memorie di massa
- ☐ Digital preservation

Digital preservation

Memorie di massa

Generalità

- ☐ Le **memorie di massa** sono nate per l'archiviazione di grandi quantità di dati
- ☐ Quando consentono la memorizzazione di documenti digitali in maniera permanente sono chiamate memorie persistenti (o, più in generale, dispositivi digitali di conservazione)
- □ Il numero di dati archiviabili, la **capacità**, varia molto in base alla tipologia del dispositivo: MB (10⁶ byte, dischi ottici di prima generazione CD), GB (10⁹ byte, memorie a stato solido) o TB (10¹² byte, nastri e dischi magnetici)
- ☐ Anche il **tempo di accesso** al dato varia dalla struttura fisica del dispositivo (più rapido se ha componenti elettriche; più lento se ha componenti meccaniche)

Classificazione per tipologia di accesso

- Le memorie di massa possono essere classificabili in accordo al metodo di accesso ai dati:
 - accesso sequenziale (ad esempio il nastro magnetico): per acquisire un dato è necessario scorrere tutti quelli che lo precedono
 - accesso diretto (es.: il disco magnetico e la memoria a stata solido): è possibile reperire un dato all'indirizzo, l'area, in cui risiede
 - ad accesso facilitato o indicizzato (es.: supporti ottici) in cui si raggiunge il dato spostandosi dapprima ad una posizione prossima a dove esso risiede e poi avviene il suo reperimento mediante una scansione sequenziale (come la ricerca di una parola in un dizionario)

Classificazione per materiale costituente

- Le memorie di massa possono essere classificate anche in relazione alla tipologia di materiale di composizione :
 - Magnetico
 - Nastro
 - ☐ Disco
 - Ottico
 - ☐ CD, DVD, BR, HD (ologramma)
 - ☐ A stato solido

A stato solido

Ottico

Magnetico

Classificazione per materiale costituente

DIGITAL PRESERVATION

Generalità

- ☐ Un **documento digitale** è una collezione di dati organizzata secondo un determinato formato
- ☐ Un **supporto digitale** è la memoria persistente su cui è archiviato il documento digitale
- ☐ Un supporto digitale con al suo interno memorizzato un documento digitale ed una descrizione dello stesso (metadati) è detto oggetto digitale

DIGITAL PRESERVATION

Definizione

- Con lo sviluppo dell'informatica si è avviata la de-materializzazione dei documenti che ha prodotto documenti originali digitali (born digital document) e documenti digitali derivati da originali analogici (reformatted digital document)
- □ Per garantire l'accesso a lungo termine a questi dati si è sviluppato il campo dell'informatica che si occupa della conservazione permanente dei dati digitali (digital preservation)

Definizione del Library of Congress

Digital preservation combines policies, strategies and actions to ensure access to reformatted and born digital content regardless of the challenges of media failure and technological change. The goal of digital preservation is the accurate rendering of authenticated content over time

DIGITAL PRESERVATION

Aspetti da curare

- ☐ La digital preservation si occupa, tra l'altro, di garantire
 - ☐ Accesso ai dati nel tempo
 - ☐ Autenticità, ricerca, descrizione
 - ☐ Conservazione dei dati
 - ☐ Tecniche di migrazione, emulazione e impacchettamento
 - ☐ Supporti digitali affidabili

NASTRO MAGNETICO Struttura

- ☐ Il nastro magnetico è costituito da uno strato di particelle magnetiche depositate su un supporto flessibile
- Le componenti principali sono:
 - Rivestimento Dorsale: rivestimento di protezione (opzionale)
 - Base o Substrato: supporto flessibile di materiale plastico (poliestere: PET, PEN, PVC)
 - Strato Magnetico: livello in cui sono memorizzate le informazioni digitali
 - Ossidi di ferro (richiede un legante)
 - ❖ Metallo Evaporato (ME): leghe di nichel e cobalto
 - Metallo Particolato (MP): leghe di ferro, nichel e cobalto
 - Legante (PVC, PU, PE) (escluso in ME e MP)

- Ogni particella magnetica ha un verso di magnetizzazione dovuto alla posizione dei propri poli (positivo e negativo nord e sud)
- Un insieme di particelle definiscono un dominio
- Un dominio, a causa della natura dei componenti ferromagnetici di cui è costituito, può mutare il verso di magnetizzazione se sottoposto ad un campo magnetico esterno
- ☐ Il dominio una volta sottoposto al campo magnetico mantiene il verso di orientamento indotto (coercività del materiale)
 - ☐ Il verso di orientamento può essere alterato da campi magnetici esterni elevati, dall'innalzamento della temperatura, dalle particelle adiacenti ai domini

Nastro non magnetizzato

Nastro magnetizzato

NASTRO MAGNETICO Principio di funzionamento

- ☐ La **scrittura** delle informazioni avviene modificando l'orientamento dei domini grazie ad un **elettromagnete** (*inductive head*)
 - ☐ La corrente inviata lungo la spira, per le leggi di Faraday e Maxwell, crea un campo magnetico che influenza l'orientamento dei domini sottostanti all'elettromagnete

Principio di funzionamento (prima generazione)

- ☐ La **lettura** delle informazioni si realizza leggendo le variazioni del campo magnetico
 - ☐ Un esempio di segnale binario si ha considerando ogni coppia di **flusso riverso**, cioè con domini aventi orientamento opposto ai confini, RR individua un 1; il passaggio da un flusso non riverso ed uno riverso, NR, codifica uno 0

Principio di funzionamento (ultima generazione)

- Attualmente per le testine di scrittura-lettura si usa la tecnologia:
 - MR (magneto-resistenza) incisione dei dati in orizzontale con elettromagnete di ridotte dimensioni
 - ☐ Si utilizzano come particelle magnetiche degli ossidi di ferro
 - ☐ GMR (magneto-resistenza gigante) incisione dei dati in verticale grazie ad un elettromagnete monopolo e lettura con testina GMR (registrazione perpendicolare)
 - ☐ Si utilizza come materiale magnetico un composto di Ferro e Bario (BaFe)

Organizzazione logica (prima generazione)

☐ Lo strato magnetico è suddiviso in **tracce** (o piste), su cui risiedono i domini, e **blocchi** (porzioni di tracce)

Organizzazione logica (prima generazione)

- ☐ I file, nel vecchio formato, erano scritti/letti in maniera sequenziale
- ☐ Erano presenti opportuni marcatori di limitazione:
 - BOT: inizio del nastro
 - **EOT**: fine del nastro
 - EOF: fine del file
 - EOD: fine dei dati

File 1

File 2

File 3

NASTRO MAGNETICO Codice per il rilevamento di errori (prima generaz)

- ☐ Si usano gli ECC per rilevare eventuali errori nei blocchi
 - Nei vecchi nastri si usava il doppio bit di parità
 - L'errore, anche nei nuovi metodi, può essere corretto immediatamente

Organizzazione logica (nuova generazione)

- ☐ Il **blocco nel nuovo formato (LTO)** è strutturato in:
 - ☐ Un preambolo di sincronizzazione (segnala al controller del disco che si leggeranno dati)
 - ☐ Un marcatore di inizio utile per far indicare la controller il punto del nastro)
 - ☐ I dati
 - ☐ L'indirizzo del blocco (per sapere dove risiedono i dati)
 - ☐ Delle informazioni ridondanti per il rilevamento e la correzione di errori

Tipologie correnti

- ☐ Esistono diverse **tipologie di nastri magnetici digitali**:
 - ❖ SDL: Super Digital Linear Tape
 - ❖ SAIT: Super Advanced Intelligent Tape
 - **❖ LTO: Linear Tape Open (STANDARD AFFERMATO)**

	SDL	LTO-8	SAIT
Capacità (GB)	300	12000	1000
Data Rate (MB/sec)	36	120	160
Numero di tracce	640	896	1152
Lunghezza nastro (m)	630	824	855

Digital preservation

- Lunga **aspettativa di vita** in condizione termo-igrometriche ideali (circa 60 anni a 23°C-50% U.R. o 23°C- 20%U.R)
- ☐ Grande **capacità** di archiviazione
- ☐ Elevata **affidabilità progettuale**: possibilità di correggere in tempo reale le informazioni errate
- ☐ Basso rischio di **obsolescenza tecnologica**
- Ideale per la conservazione dei dati offline (cioè che non richiedono un accesso in tempo reale)
- Costi di manutenzione ridotti

DISCO MAGNETICO Struttura

- ☐ Il disco magnetico è costituito da uno strato di particelle magnetiche depositato su un supporto fisso
- Le componenti principali sono:
 - Base o Substrato: supporto rigido (miscela vetrosa o ceramica) con presenza di legante
 - Strato Magnetico: particelle magnetiche contenenti le informazioni digitali.
 - Ossido di ferro
 - Metallo Evaporato (ME): leghe di nichel e cobalto
 - Metallo Particolato (MP): leghe di ferro, nichel e cobalto
 - BaFe
- Più dischi magnetici (da 2 a 3), il sistema di movimentazione, il controller interno e le testine sono sigillati, a tenuta stagna, all'interno di una custodia metallica: il tutto forma un hard disk drive

DISCO MAGNETICO

Principio di funzionamento

- ☐ I dati sono rappresentati da porzioni magnetiche (**dominio**) in cui le particelle hanno un determinato orientamento
- La scrittura e la lettura delle informazioni avviene modificando o leggendo l'orientamento dei domini
- Nei nuovi dischi si usano testine GMR che consentono la registrazione perpendicolare (offre maggiore capacità) per cui si analizza il dominio considerando il suo magnetismo in verticale

Ossidi di ferro in MP

DISCC Organ

DISCO MAGNETICO

Organizzazione logica

- Lo strato magnetico è suddiviso idealmente in **tracce** concentriche su cui sono disposte le informazioni digitali
- Ogni traccia è organizzata in **settori** (corrisponde ad un arco di una traccia)
- Più settori contigui formano un aggregato o cluster
- La quantità dei dati nei settori può essere a densità costante (quindi nei settori in periferia ci sono più dati rispetto ai settori prossimi al centro) o a densità variabile (in questo caso ogni settore ha la stessa quantità di dati, quindi i domini saranno più grandi nei settori esterni e più compatti in quelli interni)

DISCO MAGNETICO Organizzazione logica

- Ogni disco, o piatto, ha due facce o superfici
- Le stesse tracce su dischi differenti definiscono un **cilindro**
- Su ogni faccia del disco insiste una testina di lettura e scrittura
- ☐ Il movimento delle testine sullo stesso piatto è, di solito, coordinato
- ☐ Il movimento delle testine può essere radiale o trasversale

A Second

DISCO MAGNETICO

Organizzazione logica

- L'organizzazione e la distribuzione del file sul disco è gestito dal **file system**
- La scrittura è di tipo causale (si scrive sul primo settore libero) eccetto quando si memorizzano le pagine della memoria virtuale in cui si predilige una scrittura sequenziale: si scrive su settori contigui per minimizzare i tempi di caricamento in memoria

Per comodità sono scritti in maniera sequenziale anche filmati o contenuti musicali per non creare interruzioni durante il flusso

A Second

I dati disposti su ogni traccia sono organizzati in:

che bloccano il funzionamento della macchina

DISCO MAGNETICO

Organizzazione logica

dati disposti sa ogini traccia sono organizzati in:
☐Preambolo: informano il sistema dell'inizio del blocco dati lungo il settore
☐ Sicronizzazione: consente di calibrare le testine
□Indirizzo del blocco: contiene il numero di traccia e di settore
□ Dati
☐ECC: codici di rilevamento e correzione errore
☐NB: gli errori non si risolvono quando si individuano riscrivendo il blocco, ma
sono corretti dal controller del disco quando sono letti e prima di essere trasferiti
in memoria. La correzione di blocchi errati avviene grazie a dei software specifici

DISCO MAGNETICO Organizzazione logica nuovi dischi magnetici 4K

DISCO MAGNETICO

Tipologie

- ☐ Esistono diverse **tipologie di dischi magnetici**:
 - ❖ Hard Disk Desktop: dimensione 3,5" e capacità 2 TB
 - ❖ Hard Disk Notebook: dimensioni 2,5" e capacità 1TB
 - ❖ Microdrivers: dimensioni 1,8" e capacità 320 GB
 - ❖ Hard Disk esterni: dimensione 3,5" e capacità 2TB
- **☐ RAID** (Redundant Array Inexpensive Disks)
 - Molti dischi indipendenti vengono visti come un unico disco logico
 - I dati sono distribuiti su più dischi e vi si accede in parallelo
 - Configurazioni standard RAID0-RAID5; sistemi proprietari: RAID6 e RAID7
 - Prestazioni vs Affidabilità

Hard Disk 3,5"

Hard Disk 2,5"

MicroDrives

RAID

DISCO MAGNETICO

RAID: Redundant Array of Independent Disks

Più sistemi interagiscono con insiemi di dischi

Massima ridondanza dei dati: I blocchi di un disco sono replicati nel secondo I blocchi di k-1 dischi contengono i dati, l'ultimo disco ha un blocco con i relativi ECC dei k-1 blocchi dati Se si corrompe un blocco del disco si può ricostruire l'informazione (un disco è "sprecato" per la parità)

I blocchi contenenti gli ECC sono distribuiti nei vari dischi (si evita di usare un disco dedicato esclusivamente alla parità)

A Second

DISCO MAGNETICO Digital presentation

Digital preservation

Medio-bassa aspettativa di vita (elevata mortalità entro i primi sei mesi e dopo il terzo anno di uso continuativo)
Grande capacità di archiviazione
Medio-bassa affidabilità progettuale : possibilità di correggere le informazioni errate con routine di rilevamento e correzione errore Incremento dell'affidabilità progettuali mediante sistemi ridondanti come i RAID
Medio rischio di obsolescenza tecnologica ma elevato rischio di obsolescenza tecnologica nella stessa famiglia (ogni anno HD con capacità superiore)
Strategia valida per la conservazione dei dati on line (che richiedono un accesso continuo)

- I supporti ottici, la cui lettura e scrittura dei dati avviene tramite un raggio laser, hanno una struttura a strati di materiali eterogenei
- Le componenti principali sono:
 - **Substrato**: policarbonato
 - Strato dati: colorante organico (a base di cianina, ftalocianina,...)
 - Strato riflettente: leghe di argento, alluminio, oro
 - Strato protettivo: polimero (UV protettivo)

DISCO OTTICO Principio di funzionamento

- Nei dischi ottici i dati sono rappresentati da **pit** (depressioni) e **land** (spianate)
 - I dati sono disposti lungo una traccia a forma di spirale il cui inizio è nella parte interna e la fine lungo la periferia. La traccia è organizzata in settori. Più settori contigui formano un blocco
 - I supporti ottici nacquero per la conservazione di musica (e poi con i DVD contenuti multimediali). Per questo i dati sono letti a velocità uniforme e quindi pit e land devono essere letti con una velocità lineare costante. Per far questo si ha una densità dei dati costante (pit che individuano un preciso gruppo di valori prossimi al centro sono più piccoli rispetto agli analoghi disposti lungo la periferia) La velocità di rotazione di un CD diminuisce man mano che la testina si sposta dall'interno verso l'esterno. All'interno la velocità di rotazione è di 530 giri/minuto per ottenere la velocità di scorrimento desiderata (120 cm/sec), mentre all'esterno deve scendere a 200 giri/minuto

DISCO OTTICO Principio di funzionamento

- In lettura un raggio laser segue la traccia, la luce polarizzata è riflessa dallo strato riflettente: l'alternanza di pit e land provoca una variazione dell'intensità luminosa. Un foto-diado converte le variazioni in segnali digitali
- ☐ La transazione tra area depressa e spianata (land) individua un 1-logico (la lunghezza della spianata o dell'area depressa è uno 0-logico)
- ☐ I pit possono avere lunghezza variabile da 3T (individua 3 zero consecutivi) a 11T (individuano 11 zeri consecutivi) [vedi modulazione del segnale]

DISCO OTTICO Principio di funzionamento

- □ La scrittura del disco, dopo aver prodotto il file ISO che riscrive il file secondo lo standard ISO [vedi modulazione del segnale], avviene in tre modi:
 - Per i **supporti di sola lettura (**CD ROM, DVD ROM, BR ROM) si imprimono i pit su un disco master (in vetro o zinco) e poi si effettua uno stampo versando la base in policarbonato allo stato fuso
 - Per i supporti registrabili una volta (CD-R, DVD-R, BR-R) si brucia una pellicola organica grazie ad un dispositivo noto come masterizzatore. La fusione della pellicola, che copre lo strato riflettente, produce delle aree riflettenti: ripetendo così la condizione di opacità e riflettività dei pit e land
 - Per i **supporti riscrivibili più volte** (CD-RW, DVDRW, BR-RW) si usa del materiale cristallino variando l'intensità di un laser lo stato cristallino (0) non riflettente è fuso e riportato ad uno stato amorfo (0) riflettente

Modulazione segnale e organizzazione logica

- □Ogni sequenza di 8 bit dati è modulata in una sequenza di 14 bit (EightToFourteen modulation) in cui la caratteristica e che ci sono almeno due e massimo undici simboli uguali contigui. I tre/undici simboli uguali corrispondono alla minima/massima dimensione del pit
- ☐I dati sono contenuti in **blocchi** costituiti da:
 - ☐ Dei bit di sincronizzazione che avvertono il lettore dell'inizio del blocco
 - ☐ Un header che contiene informazioni di identificazione del blocco
 - □ I dati
 - ☐ Dei bit supplementari degli errori di rilevamento e correzione errori (quest'ultimi non presenti se i contenuti sono di tipo audiovisivo)

VALORE	CODIFICA 8 TO 14 BIT
00000000	01001000100000
0000001	10000100000000
0000010	10010000100000
	•••

Organizzazione logica

- I dati hanno densità costante: un pit 3T in periferia ha lunghezza più grande rispetto a un pit 3T al centro
- ☐Grazie ad una tabella dei contenuti (TOC) contenuta nella parte centrale del disco e che riporta informazioni su dove sono posizionati i file: si può spostare il raggio laser sul settore iniziale e leggere il dato (accesso sequenziale avvantaggiato)

Title	Track	Start	Length	Read CRC	Test CRC	CRC
That Day	01	0:00:00.00	0:04:44.31	2084FE3C	6C8F6441	æ
Beauty on the Fire	02	0:04:44.31	0:04:21.23	B95989DE	B95989DE	OK
# Satelite	03	0:09:05.54	0:03:08.70	8F09D665	8F09D665	OK
Do You Love	04	0:12:14.49	0:04:43.50	A723EC75	A723EC75	OK
Wrong Impression	05	0:16:58.24	0:04:17.70	7932F889	81120738	#
≸ Goodbye	06	0:21:16.19	0:05:00.67	B45AD6EC	B45AD6EC	OK
Everything Goes	07	0:26:17.11	0:04:01.35	42F6397D	42F6397D	OK
# Hurricane	08	0:30:18.46	0:03:38.53	5DC1734C	5DC1734C	OK
Sunlight .	09	0:33:57.24	0:05:01.62	AC511AA8	ACS11AA8	OK
Talk in Tongues	10	0:38:59.11	0:03:29.50	BC1A1BAB	BC1A18AB	OK
Butterflies	11	0:42:28.61	0:04:56.18	7E7778AF	13DEF2A2	
Come September	12	0:47:25.04	0:04:11.12	B81D9E6D	B81D9E6D	OK

Tipologie

- Esistono diverse tipologie di dischi ottici:
 - Compact Disc CD-ROM, CD-R, CD-RW
 - Digital Versatile Disc: DVD-ROM, DVD±R, DVD±RW
 - ❖ Blue Ray Disc: BR-ROM,BR-R,BR-RW
 - Holografici

CD DOM	
CD-RUM	

DVD-ROM

	CD	DVD	BR
Capacità (GB)	0,7	8,54	50
Data rate (MB/sec)	0,15	1,35	36
Lunghezza d'onda (nm)	780	650	405
Apertura numerica	0,45	0,65	0,85
Dimensione pit (nm)	900	400	149

Tipologie: ottica di incisione

A Second

DISCO OTTICO

Digital preservation

Bassa aspettativa di vita per i supporti ottici registrati (R e RW) 1-3 anni Media aspettativa di vita per i supporti ottici pre-stampati (ROM) 20-40 anni ☐ Media capacità di archiviazione (Blu Ray 16GB) ☐ Inesistente affidabilità progettuale: correzione delle informazioni errate solo a livello software (se ne occupa il controllore del dispostivo ottico analizzando i dati e gli ECC) ☐ Alto rischio di **obsolescenza tecnologica** (si usano in ambito cinematografico e musicale) Strategia non valida per la conservazione dei dati a lungo termine

Struttura

- L'architettura delle **memorie a stato solido** (o non volatile RAM, nvRAM) è una matrice in cui ad ogni intersezione di riga e colonna è presente una **cella di memoria**
- ☐ La matrice, corredata da un decodificatore di indirizzo e un codificatore dei valori, è realizzata in vari modi
 - □ Nel passato: con anelli magnetici (magnetic core memory); nuclei in ferrite (plated wire memory); valvole termoioniche; diodi (diode matrix RAM)
 - □ Nel presente: transistori (resistor, capacitor or transformer matrix RAM) e condensatori (CMOSFET)
 Ad oggi la tecnologia più usata è la NAND Flash

Cella di memoria

- Nelle comuni memorie a stato solido per archiviare l'informazione si usa il **transistore a**griglia fluttuante (floating-gate MOSFET, FGMOS; transistor flash; Floating Gate Tunnel Oxide cell, FLOTOX) che ha uno strato dielettrico, lo strato di intrappolamento della carica, situato tra lo strato di controllo e quello di attraversamento

 Semiconduttore

 (alluminio silicio policristallino siliciuro)

 Gilluminio silicio policristallino siliciuro)

 Control ga
- Il transistore a griglia fluttuante è un semiconduttore a base di silicio con una **entrata** (*source*) in cui si inviano gli elettroni lungo un substrato (*base*) fino a raggiungere una canale di **uscita** (*drain*)

L'informazione è custodita in una zona (la **griglia flottante**, *floating gate*) racchiusa entro due strati coperti da materiale isolante

Tra la griglia fluttuante e il substrato la zona di blocco prende anche il nome di **cunicolo** o **zona di tunnel** (*tunnel*) ed è la parte più soggetta a degrado

Cella di memoria

- In **scrittura** si applica un voltaggio di 7V al drain che induce gli elettroni nel settore della sorgente a muoversi verso la sua direzione
- Nel contempo si applica un voltaggio di 12V al control gate che consente il passaggio degli elettroni in movimento a rimanere intrappolati nell'area fluttante

Cella di memoria

- In **lettura** si applica un voltaggio di 1V al drain che induce gli elettroni nel settore della sorgente a muoversi verso la sua direzione
 - Il passaggio degli elettroni in movimento risulta più o meno fluido in base al numero di elettroni intrappolati nell'area flottante.

 Maggiori sono gli elettroni imprigionati superiore sarà l'ostacolo degli elettroni mobili ad attraversare la base (stato logico 0), viceversa il flusso di elettroni individua un 1
- In base al numero di elettroni presenti nel floating gate si può determinare una variazione di tensione di uscita consentendo, per una cella di memoria, di archiviare anche 2, 4 o 8 stati differenti (muti-data cell)

Cella di memoria

- In **cancellazione** si applica un voltaggio di -9V al control gate e uno di 6V alla sorgente. Questo induce gli elettroni imprigionati a rientrare nella sorgente
- ☐ La liberazione della zona flottante riporta la cella allo stato primordiale
- Di solito la cancellazione, per motivi progettuali, avviene su più celle di memoria adiacenti (un blocco)

Organizzazione fisica

- ☐ Le celle sono organizzate in pagine
 - Ciascuna pagina è formata da una serie di segmenti (chunck) a cui è associato il relativo codice di correzione
- Più pagine sono contenute in blocchi
- ☐ Una MSS può contenere più blocchi
- ☐ I dati sono recuperati con un accesso casuale (come una memoria dinamica RAM): si indica il blocco e la pagina e si preleva il dato
- Nelle MSS a tecnologia NAND Flash si può scrivere o leggere a pagine. La modifica o la cancellazione invece interviene sul blocco

Pagina 2112byte									
Chunk1	Spare areal			Chunk 3		Chunk4	Spare		
512byte	16byte	512byte	16byte	512byte	16byte	512byte	16byte		

Pagina 2112byte										
Chunk1	Chunk 2	Chunk3	Chunk4	Spare	Spare area?	Spare	Spare			
512byte	512byte	512byte	512byte		64byt	e				

Cancellazione di un blocco

- Quando il calcolatore invia una richiesta di cancellazione, le pagine dove risiedono i dati coinvolte nell'operazione sono segnate come **pagine non valide** (*invalid page*) e su tali pagine non è possibile memorizzare nuovi dati finché il blocco intero non è cancellato. Infatti a causa delle limitazioni progettuali e per motivi di efficienza la cancellazione può avvenire solo per blocchi e non per pagine o per celle
- Nel tempo, se i blocchi frammentati non sono cancellati, l'area di archiviazione esaurisce le pagine nelle quali scrivere nuovi dati. Il problema diventa particolarmente grave se i blocchi sono molto frammentati vale a dire quando una grande parte delle pagine all'interno di un blocco non sono valide

Blocco 1										
A1	A2	А3	A4							
A5	B1	B2	В3							
C1	C2	С3	C4							
C5	C6	D1	D2							

Blocco 1										
INV	INV	INV	INV							
INV	B1	B2	В3							
C1	C2	С3	C4							
C 5	C6	D1	D2							

MEMORIA A STATO SOLIDO Sancellazione di un blocco (garbage collection)

- Per ridurre l'impatto negativo della frammentazione sullo spazio di archiviazione il controller della MSS esegue periodicamente il processo chiamato garbage collection. Il GC trova blocchi molto frammentati e recupera lo spazio sprecato a causa di pagine non valide
 - L'algoritmo GC identifica i blocchi frammentati attraverso un processo di scansione (*trim comand*), poi ricerca i blocchi liberi (*selected block*), e migra le pagine valide dei blocchi frammentati su di essi: cioè, ogni pagina valida è scritta in un nuovo blocco. Intanto il controllore mappa l'indirizzo fisico con quello logico, creando un indirizzo virtuale. L'algoritmo dopo aver liberato tutti gli spazi di un blocco frammentato lo si cancella e lo si accoda alla lista dei blocchi liberi

	Blocco 1 Blocco 1								Bloc	co 1				
A1	A2	А3	A4		INV	INV	INV	INV		free	free	free	free	
A5	B1	B2	В3		INV	B1	B2	В3		free	free	free	free	
C1	C2	СЗ	C4		C1	C2	СЗ	C4		free	free	free	free	
C5	C6	D1	D2		C5	C6	D1	D2		free	free	free	free	
	Blocco 2					Blocco 2				Blocco 2				
D3	free	free	free		D3	E1	E2	free		free	free	free	free	
free	free	free	free		free	free	free	free		free	free	free	free	
free	free	free	free		free	free	free	free		free	free	free	free	
free	free	free	free		free	free	free	free		free	free	free	free	
	Bloc	со 3			Blocco 3				Blocco 3					
free	free	free	free		free	free	free	free		B1	B2	ВЗ	C1	
free	free	free	free		free	free	free	free		C2	СЗ	C4	C5	
free	free	free	free		free	free	free	free		C6	D1	D2	D3	
free	free	free	free		free	free	free	free		E1	E2	free	free	

Garbage collection:

- ❖ condizione iniziale file A, B, C,D (sinistra)
- ❖ cancellazione file A e inserimento file E (centro);
- ❖esecuzione del comando trim: spostamento file B,C,D,E in blocco 3 e cancellazione Blocco 1 e Blocco 2 (destra)

Blocchi supplementari (overprovisioning)

- Ogni cella ha una durata di vita limitata; ogni volta che si scrive o si cancella (ciclo P/E) si degrada la zona di tunnel
- Per incrementare l'aspettativa di vita dei blocchi si usa l'overprovisioning che è uno spazio della MSS non allocato, funzionale a garantire un numero adeguato di celle sostituibili a quelle che raggiungono il limite del ciclo di programmazione e cancellazione, così da prolungare la vita della stessa MSS

200 GB

480 GB

400 GB

960 GB

800 GB

1800 GB

1600 GB

28%

7%

28%

7%

28%

14%

28%

Prevalenza di scrittura Prevalenza di lettura

Prevalenza di scrittura

Prevalenza di scrittura

Prevalenza di scrittura

Prevalenza di lettura

Prevalenza di lettura

256 GB

512 GB

512 GB

1024 GB

1024 GB

2048 GB

2048 GB

Digital preservation

- ☐ Bassa **aspettativa di vita** (in media 2-4 anni)
- ☐ Medio-alta capacità di archiviazione (1TB)
- ☐ Scarsa **affidabilità progettuale** (overprovisioning non sufficiente)
- ☐ Basso rischio di obsolescenza tecnologica
- Memoria di massa ottima per l'accesso a dati on-line in tempi rapidi
- ☐ Strategia ancora non matura per la conservazione dei dati a lungo termine

