Riemann-integrál

Elméleti áttekintés

Riemann-integrál

1. Megjegyzés (A Riemann-integrál geometriai jelentése). $Az \int_a^b f(x)dx$ Riemann-integrál annak a tartománynak az **előjeles területe**, melyet az y = f(x) görbe, az x-tengely, valamint az x = a és y = b egyenletű egyenes határol.

1. Tétel (Newton–Leibniz). Legyen $f:[a,b] \to \mathbb{R}$ egy folytonos függvény és jelölje $F:[a,b] \to \mathbb{R}$ az f függvény egy primitív függvényét. Ekkor

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

2. Tétel (Parciális integrálás tétele). Legyenek $f,g:[a,b]\to\mathbb{R}$ olyan differenciálható függvények, melyek deriváltjai Riemann-integrálhatóak. Ekkor

$$\int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b - \int_a^b f'(x)g(x)dx.$$

3. Tétel (Helyettesítéses integrálás tétele). Legyen $\varphi: [a,b] \to [A,B]$ egy olyan szigorúan monoton növekedő, folytonosan differenciálható függvény, melyre $\varphi(a) = A$ és $\varphi(b) = B$. Ha az $f: [\varphi(a), \varphi(b)] \to \mathbb{R}$ függvény folytonos, akkor

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t)dt.$$

Improprius integrálok

1. Definíció. Legyen a valós, b pedig bővített valós szám, úgy, hogy a < b teljesül. Legyen továbbá $f: [a,b] \to \mathbb{R}$ egy olyan függvény, mely minden $x \in [a,b[$ esetén Riemann-integrálható az [a,x] intervallumon. Értelmezzük az $F: [a,b] \to \mathbb{R}$ függvényt az

$$F(x) = \int_{a}^{x} f(t)dt \qquad (x \in [a, b[)$$

formulával. Ha az F függvénynek a b pontban létezik és véges a baloldali határértéke, akkor azt mondjuk, hogy az $\int_{0}^{b} f(x)dx$ improprius integrál konvergens és ebben az esetben

$$\int_{a}^{b} f(x)dx = \lim_{x \to b^{-}} F(x).$$

1

2. Definíció. Legyen a bővített valós, b pedig valós szám, úgy, hogy a < b teljesül. Legyen továbbá $f:]a,b] \to \mathbb{R}$ egy olyan függvény, mely minden $x \in]a,b]$ esetén Riemann-integrálható az [x,b] intervallumon. Értelmezzük az $F:]a,b] \to \mathbb{R}$ függvényt az

$$F(x) = \int_{x}^{b} f(t)dt \qquad (x \in]a,b])$$

formulával. Ha az F függvénynek az a pontban létezik és véges a jobboldali határértéke, akkor azt mondjuk, hogy az $\int\limits_{a}^{b} f(x)dx$ improprius integrál konvergens és ebben az esetben

$$\int_{a}^{b} f(x)dx = \lim_{x \to a+} F(x).$$

3. Definíció. Legyenek a,b bővített valós számok úgy, hogy a < b. Legyen továbbá $f:]a,b[\to \mathbb{R}$ egy olyan függvény, mely az]a,b[intervallum minden zárt részintervallumán Riemann-integrálható. Tegyük fel, hogy van olyan $c \in]a,b[$, mely esetén az

$$\int_{a}^{c} f(x)dx \qquad \text{és az} \qquad \int_{c}^{b} f(x)dx$$

improprius integrálok konvergensek. Ebben az esetben azt mondjuk, hogy az $\int_a^b f(x)dx$ improprius integrál is konvergens és

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Feladatok

Riemann-integrál

1. Feladat.

A Newton-Leibniz-formula felhasználásával számítsuk ki az alábbi Riemann-integrálokat.

(a)
$$(c)$$
 (e) (g) $\int_{2}^{4} x^{3} dx$, $\int_{-4}^{6} \frac{1}{x^{2}} dx$, $\int_{-4}^{8} \frac{5}{x} dx$, $\int_{2}^{8} \frac{5}{x} dx$, $\int_{6}^{10} \frac{2}{x-3} dx$, (b) $\int_{2}^{7} \sqrt{x} dx$, $\int_{2}^{6} \frac{1}{\sqrt[3]{x}} dx$, $\int_{12}^{120} \frac{7}{x} dx$, $\int_{-1}^{20} \frac{2}{x-3} dx$,

2. Feladat. A Newton–Leibniz-formula felhasználásával számítsuk ki az alábbi Riemann-integrálokat.

(a)
$$\int_{0}^{\pi/4} \sin(x)dx$$
, (c) $\int_{-4}^{7} \frac{1}{1+x^2}dx$, (e) $\int_{2}^{6} 3^x dx$, $\int_{2}^{4} \sinh(x)dx$, (b) $\int_{0}^{2\pi} \cos(x)dx$, $\int_{2}^{4} e^x dx$ (f) $\int_{\frac{1}{2}}^{3} \frac{\cosh(x)}{2}dx$, $\int_{\frac{1}{2}}^{1} \frac{1}{\sin^2(x)}dx$,

3. Feladat. A parciális integrálás tételének felhasználásával számítsuk ki az alábbi Riemann-integrálokat.

(a)
$$(d)$$
 (g) (g)

A helyettesítéses integrálás tételének felhasználásával számítsuk ki az alábbi Riemann-integrálokat.

(a) (c) (e) (g)
$$\int_{1}^{2} (3x+4)^{3} dx, \qquad \int_{2}^{3} \frac{x^{2}}{\sqrt{x^{3}-2}} dx, \qquad \int_{-1}^{0} \frac{3}{e^{x+1}} dx, \qquad \int_{\frac{1}{2}}^{2} \frac{2x^{2}}{\sqrt{1+x^{2}}} dx,$$
(b) (f) (h)
$$\int_{2}^{3} \frac{1}{(2x+1)^{4}} dx, \qquad \int_{1}^{4} \frac{x}{\sqrt{5x-4}} dx, \qquad \int_{3}^{4} 3x^{2} \sqrt{x^{2}-1} dx,$$

Improprius integrálok

4. Feladat. Vizsgáljuk meg, hogy konvergensek-e az alábbi improprius integrálok.

(a)
$$\int_{2}^{+\infty} \frac{1}{x^{2}} dx,$$
(b)
$$\int_{-\infty}^{+\infty} \frac{2}{1+x^{2}} dx,$$
(c)
$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx,$$
(d)
$$\int_{0}^{+\infty} \frac{1}{25+x^{2}} dx,$$
(e)
$$\int_{-\infty}^{+\infty} \frac{2}{1+x^{2}} dx,$$
(i)
$$\int_{5}^{+\infty} \frac{2}{(x-3)(x+4)} dx,$$
(j)
$$\int_{3}^{+\infty} \frac{5}{(x-1)(x+5)} dx,$$
(i)
$$\int_{2}^{+\infty} 5e^{-2x} dx,$$
(j)
$$\int_{3}^{+\infty} \frac{5}{(x-1)(x+5)} dx,$$
(i)
$$\int_{2}^{+\infty} \frac{1}{(x-1)(x+5)} dx,$$
(i)
$$\int_{2}^{+\infty} \frac{1}{(x+1)(x-3)} dx,$$
(i)
$$\int_{2}^{+\infty} \frac{1}{(x+1)(x-3)} dx,$$
(i)
$$\int_{2}^{+\infty} \frac{1}{(x+1)(x-3)} dx,$$
(ii)
$$\int_{2}^{+\infty} \frac{1}{(x-2)^{3}} dx,$$
(ii)
$$\int_{2}^{+\infty} \frac{2}{(x-3)(x+4)} dx,$$
(iii)
$$\int_{2}^{+\infty} \frac{2}{(x-3)(x+4)} dx,$$
(iiii)
$$\int_{2}^{+\infty} \frac{2}{(x-3)(x+4)} dx,$$
(iiii)
$$\int_{2}^{+\infty} \frac$$

(q) (r) (s) (t)
$$\int_{-\infty}^{+\infty} \frac{1}{x \ln(x)} dx \int_{-\infty}^{+\infty} \frac{3x}{x^2 + x - 2} dx \int_{-\infty}^{+\infty} \frac{1}{1 + x^3} dx \int_{-\infty}^{+\infty} e^{-\alpha x} \cos(\beta x) dx$$

5. Feladat. Vizsgáljuk meg, hogy konvergensek-e az alábbi improprius integrálok.

(a) (c) (e) (g) (i)
$$\int_{0}^{5} \frac{1}{\sqrt{25 - x^{2}}} dx, \qquad \int_{0}^{1} \frac{1}{\sqrt{x}} dx, \qquad \int_{0}^{8} \frac{1}{\sqrt[3]{x}} dx \qquad \int_{-2}^{1} \frac{1}{\sqrt{1 - x}} dx, \qquad \int_{0}^{1} \ln(x) dx,$$
(b) (d) (f) (h) (j)
$$\int_{-1}^{1} \frac{1}{\sqrt{1 - x^{2}}} dx, \qquad \int_{-2}^{3} \frac{1}{\sqrt{|x|}} dx, \qquad \int_{-2}^{1} \frac{2x}{\sqrt{1 - x^{2}}} dx, \qquad \int_{0}^{1} \frac{3x}{(1 - x)(x + 2)} dx$$

6. Feladat. Döntsük el, hogy az alábbi improprius integrálok közül melyek konvergensek.

(a)
$$\int_{2}^{+\infty} \sin(x)dx$$
(b)
$$\int_{2}^{+\infty} \frac{1}{x + e^{x}} dx$$
(c)
$$\int_{3}^{+\infty} \frac{1}{x + e^{x}} dx$$
(d)
$$\int_{3}^{+\infty} \frac{e^{-x}}{x} dx$$
(f)
$$\int_{2}^{+\infty} \frac{\cos^{2}(x)}{x^{2}} dx$$
(g)
$$\int_{0}^{+\infty} x^{2} 2^{x} dx$$
(h)
$$\int_{0}^{+\infty} e^{-x} x^{n} dx$$
(n)
$$\int_{0}^{+\infty} e^{-x} x^{n} dx$$

Nehezebb feladatok

7. Feladat. Magyarázzuk meg, hogy az alábbi integrálok esetében az x változó megadott helyettesítése miért vezet hamis eredményre

(a)
$$\int_{-1}^{1} 1 dx \qquad t = x^{\frac{2}{3}}$$
 (b)
$$\int_{-1}^{1} \frac{1}{1+x^{2}} dx \qquad x = \frac{1}{t}$$

$$\int_{0}^{\pi} \frac{1}{1+\sin^{2}(x)} dx \qquad \operatorname{tg}(x) = t$$

8. Feladat. Bizonyítsuk be, hogy minden p > 0 esetén

$$\lim_{n \to \infty} \int_{n}^{n+p} \frac{\sin(x)}{x} = 0.$$

9. Feladat. Legyen $f: [0, +\infty[\to \mathbb{R} \text{ egy olyan folytonos függvény, melyre <math>\lim_{x \to \infty} f(x) = \alpha \text{ teljesül. Határozzuk meg a}$

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^{+\infty} f(x) dx$$

határértéket. Először tekintsük azt a speciális esetet, amikor az f függvény az arctg függvény.

10. Feladat. Tegyük fel, hogy az $\int_{a}^{+\infty} f(x)dx$ improprius integrál konvergens. Következik-e ebből, hogy $\lim_{x\to+\infty} f(x) = 0$?