Physical Chemistry (Chem 132A)

Lecture 24 Monday, December 4

Homework 9 Due on Saturday, December 9 Last homework of the quarter

Reminder: FINAL EXAM, DEC. 15,

8—10AM

Relationship between reaction mechanisms and rate laws when overall reaction is not an elementary step??

Steady State Approximation

The rate of formation of an intermediate is set equal to the rate it is used up by a subsequent reaction

Unimolecular Reactions

$$A \longrightarrow P$$

Cyclo-
$$C_3H_6(g)$$
 \longrightarrow $CH_3CH=CH_2(g)$

Rate = $k_r[cyclo-C_3H_6]$ ---observation

How does this reaction occur?

Lindemann-Hinshelwood Mechanism

$$\mathbf{A} + \mathbf{A} \longrightarrow \mathbf{A}^* + \mathbf{A} \qquad \frac{d[A^*]}{dt} = k_a [A]^2$$

$$\mathbf{A} + \mathbf{A}^* \longrightarrow \mathbf{A} + \mathbf{A} \qquad \frac{d[A^*]}{dt} = -k_a^{'} [A][A^*]$$

$$\mathbf{A}^* \longrightarrow \mathbf{P} \qquad \frac{d[A^*]}{dt} = -k_b [A^*]$$

Use Steady State Approximation on [A*]

$$\frac{d[A^*]}{dt} = k_a [A]^2 - k_a [A] [A^*] - k_b [A^*]_{ss} = 0$$

$$[A^*]_{ss} = \frac{k_a [A]^2}{k_b + k_a [A]}$$

$$\frac{d[P]}{dt} = k_b [A^*]_{ss} = \frac{k_a k_b [A]^2}{k_b + k_a [A]}$$

If the decay of A* to P is the slow step then:

$$k_a'[A][A^*] > k_b[A^*]$$

$$k_a'[A] > k_b$$

$$\frac{d[P]}{dt} = \frac{k_a k_b}{k_a'} [A] = k_r [A]$$

So it looks like it is First Order

Simple Collision Theory Picture

For a Bimolecular Reaction:

$$A + B \longrightarrow P$$

Rate = $k_r[A][B]$ proportional to # collisions

collisions $\sim v_{mean} \sim (T/M)^{1/2}$

Should also be proportional to cross section σ

And the number densities of A and B

Rate $\sim \sigma (T/M)^{1/2}[A][B]$

Also expect there to be a positive activation energy

So: Rate $\sim \sigma (T/M)^{1/2} e^{-E'/RT} [A][B]$ k $\sim \sigma (T/M)^{1/2} e^{-E'/RT}$

Also expect a "steric factor" $k \sim P \sigma (T/M)^{1/2} e^{-E'/RT}$

Gas collision rate

$$Z_{AB} = \sigma \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_A^2[A][B]$$

$$\sigma = \pi d^2$$

$$d = \frac{1}{2}(d_A + d_B)$$

$$\mu = \frac{m_A m_B}{m_A + m_B}$$

Energy Dependence

Write the cross section σ as an energy dependent quantity

 $\sigma(E) = 0$ if the "collision energy" < threshold value

Energy Dependence of Reaction

$$Z_{AB} = \sigma \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_A^2[A][B]$$
 Collision rate

Energy Requirement for reaction

$$\sigma = \sigma(E)$$

And
$$\sigma(E) = 0$$
 if $E < E_a$

$$\sigma(E)$$
 = geometrical σ for $E \ge E_a$

$$\frac{d[A]}{dt} = -\sigma(E)v_{rel}N_A[A][B]$$

Assume Boltzmann distribution of energies

$$\frac{d[A]}{dt} = -\left\{\int_{0}^{\infty} \sigma(E) v_{rel} f(E) dE\right\} N_{A}[A][B]$$

$$k_r = \left\{ \int_0^\infty \sigma(E) v_{rel} f(E) dE \right\} N_A$$

$$k_r = \left\{ \int_0^\infty \sigma(E) v_{rel} f(E) dE \right\} N_A$$

$$f(v)dv = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} v^2 e^{-\mu v^2/kT} dv$$

Change variables using $E = 1/2\mu v^2$

$$f(E)dE = 2\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} E^{1/2} e^{-E/kT} dE$$

$$k_{r} = \left\{ \int_{0}^{\infty} \sigma(E) v_{rel} 2\pi \left(\frac{\mu}{2\pi kT} \right)^{3/2} E^{1/2} e^{-E/kT} dE \right\} N_{A}$$

$$k_{r} = \left\{ \int_{0}^{\infty} \sigma(E) \left(\frac{2E}{\mu} \right)^{1/2} 2\pi \left(\frac{\mu}{2\pi kT} \right)^{3/2} E^{1/2} e^{-E/kT} dE \right\} N_{A}$$

$$k_{r} = \left\{ \int_{0}^{\infty} \sigma(E) \left(\frac{2E}{\mu} \right)^{1/2} 2\pi \left(\frac{\mu}{2\pi kT} \right)^{3/2} E^{1/2} e^{-E/kT} dE \right\} N_{A}$$

$$k_r = \left(\frac{8}{\pi \mu kT}\right)^{1/2} \left(\frac{1}{kT}\right) \int_0^\infty E\sigma(E) e^{-E/kT} dE$$

$\sigma = 0$ unless $E > E_a$

$$k_r = \left(\frac{8}{\pi \mu kT}\right)^{1/2} \left(\frac{1}{kT}\right) \int_{E_a}^{\infty} E\sigma(E) e^{-E/kT} dE$$

$$k_r = \sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

There are various approximations for the functional form of $\sigma(E)$

$$k_r = \sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

	A/(dm³ m	$E_{\rm a}/({\rm kJmol^{-1}})$	
	Experiment	Theory	
2 NOCl→ 2 NO+2 Cl	9.4×10^{9}	5.9×10^{10}	102
$2 \text{ ClO} \rightarrow \text{Cl}_2 + \text{O}_2$	6.3×10^7	2.5×10^{10}	0
$H_2 + C_2 H_4 \rightarrow C_2 H_6$	$1.24{\times}10^6$	7.4×10^{11}	180
$K+Br_2 \rightarrow KBr+Br$	1.0×10^{12}	2.1×10^{11}	0

Introduce the Steric Factor

$$k_r = P\sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

	$A/(dm^3 mol^{-1} s^{-1})$		$E_{\rm a}/({\rm kJmol^{-1}})$	P
	Experiment	Theory		
2 NOCl→ 2 NO+2 Cl	9.4×10^{9}	5.9×10^{10}	102	0.16
$2 \text{ ClO} \rightarrow \text{Cl}_2 + \text{O}_2$	6.3×10^{7}	2.5×10^{10}	0	2.5×10^{-3}
$H_2 + C_2 H_4 \rightarrow C_2 H_6$	1.24×10^{6}	7.4×10^{11}	180	1.7×10^{-6}
$K+Br_2 \rightarrow KBr+Br$	1.0×10^{12}	2.1×10^{11}	0	4.8

What's Going on with $K + Br_2 = KBr + Br$

Diffusion Controlled Reactions In Solution

$$A + B \longrightarrow AB$$
 rate = $k_d[A][B]$

$$AB \longrightarrow A+B \text{ rate} = k'_d[AB]$$

$$AB \longrightarrow P$$
 rate = $k_a[AB]$

$$\frac{d[AB]}{dt} = k_d[A][B] - k_d[AB] - k_a[AB] = 0$$
 Steady Sta

O Steady State approximation

$$[AB]_{ss} = \frac{k_d[A][B]}{k_a + k_d}$$

$$\frac{dP}{dt} = k_a[AB] = \frac{k_a k_d}{k_a + k_d}[A][B]$$

$$\frac{dP}{dt} = k_a[AB] = \frac{k_a k_d}{k_a + k_d}[A][B]$$

If $k'_d \ll k_a$ called the diffusion controlled limit

And
$$k_r = k_d$$

For a diffusion controlled reaction in water

 $k_r \sim 10^9 \, m^3 mol^{-1} sec^{-1}$ Assumes a reaction "distance" of $\sim 100 nm$

Concentration profile for a diffusing reacting system starting with reactant in the plane x=0

Photochemistry

Light is another way to initiate a reaction

$$A + photon (hv) \longrightarrow A*$$

$$\mathbf{v} = \mathbf{c}/\lambda$$

Energy = hv

UV light $\sim 3.5 \text{ eV} = 337.7 \text{ kJ/mol}$ A few Bond enthalpies:

Br-CH₃ 293

O₂N-NO₂ 54

H-CH₃ 435

H-OH 492

$$R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$$

$$RT = 337 \text{ kJ/mol at } T = 40,534 \text{ K}$$

THE END

SEE YOU ON WEDNESDAY