HW10

4.26: a) $\{(1, 1 \ 1)\}$ rank ## = 1 , does not span \mathbb{R}^3 b) $\{(1 \ 0 \ 0), (0 \ 0 \ 1)\}$ rank = 1, does not span \mathbb{R}^3 c) $\{(0 \ 1 \ 0), (0 \ 0 \ 1)\}$ rank = 3 , spans \mathbb{R}^3 d) $\{(1 \ 1 \ 1), (1 \ 0 \ -1), (4 \ 4 \ 1)\}$ $A = \begin{pmatrix} 1 \ 3 \ 4 \\ 1 \ -1 \ 1 \end{pmatrix}$ Rirefy $\begin{pmatrix} 1 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \end{pmatrix}$ rank = 3, spans \mathbb{R}^3 e) $\{(1 \ 2 \ 1), (1 \ 0 \ -1), (1 \ 4 \ 0)\}$ $A = \begin{pmatrix} 1 \ 3 \ 4 \\ 1 \ 0 \ 4 \end{pmatrix}$ rrefy $\begin{pmatrix} 6 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix}$ rank = 3, spans \mathbb{R}^3

4.1.1 a) $\{X \mid Xi \geq 0\}$ \rightarrow does not hold the for scalar multiplication, since $Xi \in X \geq 0$, Let $\alpha = -1$, $\alpha \times i \notin X$.

e) $\{X \mid \sum_{j=1}^{n} x_{j} = 1\}$ \Rightarrow does not hold the for scalar multiplication, since $x_{j} \in X \stackrel{>}{=} I$, Let $\alpha = -1$, $\alpha \times_{j} \notin X$.

3: $A = \begin{pmatrix} 1 & 2 & 1 & 1 & 5 \\ -2 & -4 & 0 & 4 & -2 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 2 & 2 & 0 & -2 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Since Axx, Axx, Axx are linear combinations of Axx, Axx, they are in the span of Axx, Axx.

R(A) = span ((2), (3))

 $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 5 \\ -2 & -4 & 0 & 4 & -2 \\ 1 & 2 & 3 & 4 & 4 \end{pmatrix} \xrightarrow{\text{KREF}} \begin{pmatrix} 1 & 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

from our reduced matrix:

X+3x440=0 ×2+2x,+0x,-3x4+x5=0 7+3x440=0 ×3+3x4+4x5=0

x1 = -2x1 +2x4 -x5 X = -3xy + 4x5 $N(A) = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \times_{1} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \times_{4} + \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \times_{5}$