Mechanics of Materials: Key Formulas, Notations, and Units

Your Name Here

January 19, 2025

Contents

1	Not	ation and Units	3										
2	Stress and Strain 3												
	2.1	Normal Stress	3										
	2.2	Shear Stress	3										
	2.3	Normal Strain	4										
3	Stress-Strain Relationships 4												
	3.1	Hooke's Law	4										
	3.2	Shear Modulus	4										
	3.3	Generalized Hooke's Law	4										
4	Torsion 4												
	4.1	Torsional Stress	4										
	4.2	Angle of Twist	5										
	4.3	Thin-Walled Tubes (Average Shear Stress)											
	4.4	Power in Torsion	5										
5	Bea	m Bending	5										
	5.1	Bending Stress	5										
	5.2	Unsymmetric Bending	5										
	5.3	Transverse Shear Stress											
	5.4	Deflection (Curvature)	6										

6	Con	nbined Stresses															6						
	6.1	Principal Stresses															6						
	6.2	Maximum Shear Stress															6						
	6.3	Stress Transformation						•		•			•	•		•	6						
7	Mol	ar's Circle															7						
	7.1	Center and Radius								•						•	7						
8	Ene	rgy Methods															7						
	8.1	Axial Strain Energy															7						
	8.2	Torsional Strain Energy															7						
	8.3	Strain Energy for Shear															7						
9	Thi	n-Walled Pressure Vessels															7						
	9.1	Cylinders															7						
	9.2	Spheres			•			•		•						•	8						
10	Additional Formulas										8												
	10.1	Euler's Buckling Formula for	Co	lu	m	ns											8						
		Thermal Expansion Stress .															8						
	10.3	Secant Formula (Advanced)								•		•	•	•		•	8						
11	Dyn	namic Effects															8						
	11.1	Impact Loading															8						
	11.2	Vibration and Resonance			•											•	9						
12		gue Analysis															9						
	12.1	S-N Curve															9						
	12.2	Miner's Rule for Cumulative l	Da	ma	ag	е		•		•		•				•	9						
13	Adv	vanced Topics in Plasticity															10						
	13.1	Ramberg-Osgood Equation .															10						
	13.2	Strain Hardening															10						
	13.3	Plastic Collapse Load															10						

1 Notation and Units

Symbol	Description [Units]
\overline{P}	Axial load [N]
A	Cross-sectional area [m ²]
L	Length of the member [m]
E	Young's modulus [Pa]
G	Shear modulus [Pa]
V	Shear force [N]
T	Torque [Nm]
J	Polar moment of inertia [m ⁴]
M	Bending moment [Nm]
I	Area moment of inertia [m ⁴]
γ	Shear strain [dimensionless]
heta	Angle of twist [rad]
y	Distance from neutral axis [m]
σ_x, σ_y	Normal stresses in x and y directions [Pa]
$ au_{xy}$	Shear stress in xy plane [Pa]
ν	Poisson's ratio [dimensionless]
α	Coefficient of thermal expansion $[K^{-1}]$
σ_z	Normal stress in z direction [Pa]

2 Stress and Strain

2.1 Normal Stress

$$\sigma = \frac{P}{A} \tag{1}$$

This equation relates the normal stress to the applied axial load and the cross-sectional area.

2.2 Shear Stress

$$\tau = \frac{V}{A} \tag{2}$$

Shear stress is calculated as the shear force divided by the area over which it acts.

2.3 Normal Strain

$$\varepsilon = \frac{\Delta L}{L} \tag{3}$$

Normal strain is the ratio of change in length to the original length.

3 Stress-Strain Relationships

3.1 Hooke's Law

$$\sigma = E\varepsilon \tag{4}$$

This linear relationship describes how stress is proportional to strain within the elastic limit.

3.2 Shear Modulus

$$\tau = G\gamma \tag{5}$$

Shear stress is directly proportional to shear strain, with G as the proportionality constant.

3.3 Generalized Hooke's Law

$$\varepsilon_x = \frac{1}{E} \left(\sigma_x - \nu (\sigma_y + \sigma_z) \right) \tag{6}$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G} \tag{7}$$

These equations account for the effect of Poisson's ratio in multi-axial stress states.

4 Torsion

4.1 Torsional Stress

$$\tau = \frac{Tr}{J} \tag{8}$$

Here, r is the radial distance from the center of the shaft.

4.2 Angle of Twist

$$\theta = \frac{TL}{GJ} \tag{9}$$

The angle of twist is proportional to the torque and length, inversely to the shear modulus and polar moment of inertia.

4.3 Thin-Walled Tubes (Average Shear Stress)

$$\tau_{\text{avg}} = \frac{T}{2tA_m} \tag{10}$$

where t is the thickness of the tube wall and A_m is the mean area enclosed by the centerline of the tube's cross-section.

4.4 Power in Torsion

$$P = T\omega = 2\pi f T \tag{11}$$

This equation shows how power is related to torque and rotational speed or frequency.

5 Beam Bending

5.1 Bending Stress

$$\sigma = \frac{My}{I} \tag{12}$$

Bending stress varies linearly with the distance from the neutral axis.

5.2 Unsymmetric Bending

$$\sigma = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} \tag{13}$$

$$\tan \alpha = \frac{I_z}{I_y} \tan \theta \tag{14}$$

These equations account for bending in two directions, where α is the angle between the neutral axis and the x-axis.

5.3 Transverse Shear Stress

$$\tau = \frac{VQ}{It} \tag{15}$$

Here, Q is the first moment of area about the neutral axis.

5.4 Deflection (Curvature)

$$\frac{d^2y}{dx^2} = \frac{M}{EI} \tag{16}$$

This differential equation describes how deflection relates to bending moment.

6 Combined Stresses

6.1 Principal Stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \tag{17}$$

Principal stresses are calculated to find the maximum and minimum normal stresses on a plane.

6.2 Maximum Shear Stress

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \tag{18}$$

This gives the maximum shear stress in a plane.

6.3 Stress Transformation

$$\sigma_x' = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \tag{19}$$

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta \tag{20}$$

These transformations help in analyzing stress on any rotated plane.

Mohr's Circle 7

7.1 Center and Radius

Center =
$$\frac{\sigma_x + \sigma_y}{2}$$
, Radius = $\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$ (21)

Note: Mohr's Circle is a graphical method used to determine stress states under transformation.

8 **Energy Methods**

8.1 Axial Strain Energy

$$U = \frac{1}{2} \frac{P^2 L}{EA} \tag{22}$$

Strain energy due to axial load.

8.2 Torsional Strain Energy

$$U = \frac{1}{2} \frac{T^2 L}{GJ} \tag{23}$$

Energy stored due to torsion.

8.3 Strain Energy for Shear

$$U = \int \frac{V^2}{2GA} dx \tag{24}$$

This is the strain energy due to shear forces along the length of a member.

Thin-Walled Pressure Vessels 9

9.1Cylinders

$$\sigma_1 = \frac{pr}{t} \tag{25}$$

$$\sigma_1 = \frac{pr}{t}$$

$$\sigma_2 = \frac{pr}{2t}$$
(25)

Valid for thin-walled cylinders where the wall thickness is small compared to the radius.

9.2 Spheres

$$\sigma_1 = \sigma_2 = \frac{pr}{2t} \tag{27}$$

For thin-walled spheres, both stresses are equal due to symmetry.

10 Additional Formulas

10.1 Euler's Buckling Formula for Columns

$$P_{cr} = \frac{\pi^2 EI}{L_e^2} \tag{28}$$

where L_e is the effective length of the column, accounting for end conditions.

10.2 Thermal Expansion Stress

$$\sigma = E\alpha\Delta T \tag{29}$$

where α is the coefficient of thermal expansion, and ΔT is the change in temperature.

10.3 Secant Formula (Advanced)

$$\sigma_{\text{max}} = \frac{P}{A} \left(1 + e \frac{r^2}{L^2} \sec\left(\frac{\pi L}{2r}\right) \right) \tag{30}$$

This formula is used for columns with eccentric loading. Here, e is the eccentricity of the load.

11 Dynamic Effects

11.1 Impact Loading

$$\sigma_{\text{impact}} = \sigma_{\text{static}} \cdot \left(1 + \sqrt{1 + \frac{2Eh}{g\sigma_{\text{static}}}} \right)$$
 (31)

where σ_{impact} is the stress under impact, σ_{static} is the static stress, h is the height from which the load is dropped, g is the acceleration due to gravity, and E is Young's modulus.

11.2 Vibration and Resonance

The natural frequency of a system can be calculated by:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{32}$$

where f_n is the natural frequency, k is the stiffness of the system, and m is the mass.

12 Fatigue Analysis

12.1 S-N Curve

The fatigue life of a material can often be described by the S-N curve:

$$N = C \left(\frac{\sigma_a}{\sigma_f}\right)^{-b} \tag{33}$$

where N is the number of cycles to failure, σ_a is the alternating stress, σ_f is the fatigue strength coefficient, C and b are material constants.

12.2 Miner's Rule for Cumulative Damage

For variable amplitude loading, the damage accumulation can be calculated using:

$$\sum \frac{n_i}{N_i} = D \tag{34}$$

where n_i is the number of cycles at stress level i, N_i is the number of cycles to failure at that stress level, and D is the cumulative damage (failure when $D \ge 1$).

13 Advanced Topics in Plasticity

13.1 Ramberg-Osgood Equation

For materials beyond their elastic limit, the stress-strain relationship can be modeled by:

$$\epsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{\sigma_0}\right)^n \tag{35}$$

where ϵ is the total strain, σ is the stress, E is Young's modulus, σ_0 is a reference stress (often yield stress), and n is the hardening exponent.

13.2 Strain Hardening

The true stress-true strain curve after yielding can often be approximated by:

$$\sigma = K\epsilon^n \tag{36}$$

where σ is the true stress, ϵ is the true strain, K is the strength coefficient, and n is the strain hardening exponent.

13.3 Plastic Collapse Load

For structures, the plastic collapse load can be determined by:

$$P_p = \sum (A_i \sigma_y) \tag{37}$$

where P_p is the plastic collapse load, A_i are areas of cross-section contributing to plastic deformation, and σ_y is the yield stress.

References

- [1] Gere, J. M., & Goodno, B. J. (2012). *Mechanics of Materials*. Cengage Learning.
- [2] Hibbeler, R. C. (2020). Mechanics of Materials. Pearson.
- [3] Timoshenko, S. (1955). Strength of Materials, Part I & II. D. Van Nostrand Company.

- [4] Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2015). *Mechanics of Materials*. McGraw-Hill Education.
- [5] MIT OpenCourseWare. Mechanics of Materials (3.11). https://ocw.mit.edu/courses/3-11-mechanics-of-materials-fall-1999/