UFRJ / Escola Politécnica / DEL – Primeiro Período de 2009 CPE-723 – Otimização Natural (Parte II - Simulated Annealing)

Prova Parcial – 29 de abril de 2009

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 10 pontos). Tempo de prova: 2 horas.

1. (Algoritmo de Metropolis)

a) Escreva um algoritmo para gerar vetores aleatórios N-dimensionais conforme a seguinte função densidade de probabilidade. Defina as constantes e variáveis que você julgar necessárias.

$$p_{\mathbf{X}}(\mathbf{x}) = \begin{cases} Ke^{-(x_1^2 + x_2^2 + \dots + x_N^2)}, \text{ se } x_i \in [-1, 1] \\ \\ 0, \text{ caso contrário.} \end{cases}$$

b) Utilize o algoritmo para avaliar a integral a seguir:

$$F = \int_{x \in \mathcal{C}} W(\mathbf{x}) e^{-(x_1^2 + x_2^2 + \dots + x_N^2)} d\mathbf{x},$$

onde
$$C = {\mathbf{x} | x_i \in [-1, 1], i = 1, ..., N}$$

c) Execute manualmente as primeiras cinco iterações do seu algoritmo, para o caso em que $W(x) = x^2$ e os vetores \mathbf{x} são simplesmente valores escalares $x \in [-1, 1]$. Para isto, estão disponíveis as sequências de números aleatórios binários e uniformes a seguir:

	V.A. Binária	V.A. Uniforme		V.A. Binária	V.A. Uniforme
01	-1	0.95	11	-1	0.62
02	-1	0.23	12	+1	0.79
03	+1	0.61	13	-1	0.92
04	+1	0.49	14	+1	0.74
05	-1	0.89	15	-1	0.18
06	+1	0.76	16	+1	0.41
07	+1	0.46	17	+1	0.94
08	-1	0.02	18	+1	0.92
09	+1	0.82	19	-1	0.41
10	+1	0.44	20	-1	0.89

2. (Simulated Annealing) Considere um problema de otimização representado pela função custo a seguir:

$$\begin{array}{c|cc} x & J(x) \\ \hline 1 & 0.3 \\ 2 & 0.1 \\ 3 & 0.1 \\ 4 & 0.2 \\ \end{array}$$

- a) Calcule os fatores de Boltzmann $e^{-J(\mathbf{x})/T}$, para T=1.0 e para T=0.1.
- b) Considerando T=0.1, execute manualmente cinco iterações do algoritmo de Metropolis. Use as sequências de números aleatórios apresentadas no item (c) da Questão 1.
- c) Calcule as matrizes de transição \mathbf{M} para T=1.0 e para T=0.1. Calcule os vetores invariantes destas matrizes e compare-os com os resultados do item (a).

3. (Simulated Annealing)

- a) Explique, através de um pseudo-código, o funcionamento do algoritmo S.A. básico para um problema de otimização discreta que tem L estados possíveis (onde L é um número muito alto). Defina as constantes e variáveis que você julgar necessárias.
- b) Explique o que ocorre quando há dois estados diferentes, digamos x_1^* e x_2^* , sendo que em ambos os estados (e somente em ambos) o custo mínimo é atingido: $J(x_1^*) = J(x_2^*) = J_{min}$.
- 4. (Deterministic Annealing) A figura a seguir representa quatro vetores reais, \mathbf{x}_1 a \mathbf{x}_4 , marcados sobre o plano \mathbb{R}^2 . Estes quatro vetores serão agrupados em duas "classes", conforme a posição dos centróides de cada classe: \mathbf{y}_1 e \mathbf{y}_2 . A distância quadrática entre dois vetores é definida como $d_{\mathbf{x}\mathbf{y}} = (x_1 y_1)^2 + (x_2 y_2)^2$ e os vetores \mathbf{x}_i são atribuídos às classes \mathbf{y}_j conforme as probabilidades condicionais $p(\mathbf{y}_j|\mathbf{x}_i) = \exp(-d_{\mathbf{x}_i\mathbf{y}_j}/T)$, onde i = 1, 2, 3, 4 e j = 1, 2. O parâmetro T ("temperatura") controla a incerteza com a qual a partição é feita. O objetivo deste problema é caracterizar a dependência entre a posição relativa (d) dos centróides e a temperatura T.

a) Usando as posições iniciais de y_1 e y_2 indicadas na figura, complete a matriz de probabilidades condicionais a seguir. Neste item, considere T = 5 e d = 1.

$p(\mathbf{y} \mathbf{x})$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
\mathbf{y}_1				
\mathbf{y}_2				

Usando a matriz acima, calcule os novos vetores y_1 e y_2 , atualizados para a iteração seguinte.

- b) As probabilidades do item (a) e as novas posições dos centróides podem ser escritas como funções de d e T. Escreva a expressão atualizada de \mathbf{y}_1 em função de d(k) e T genéricos. Mostre então que d(k+1) = f(d(k), T), descrevendo a função f(.).
- c) (Item opcional) Encontre a faixa de temperaturas de transição (T_1,T_2) , acima das quais tem-se $d \simeq 0$ e abaixo das quais tem-se $d \simeq 1.5$.