Science des données II : tp5a

Indices de distance

Guyliann Engels & Philippe Grosjean

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

http://biodatascience-course.sciviews.org sdd@sciviews.org

Analyse multivariée : matrice de distance

En partant d'un tableau de type espèce/station, quelles sont les stations les plus similaires ? Ce type de questions nécessite l'utilisation d'outils liés à l'analyse multivariée.

	espece $_1$	espece_2	${\rm espece}_3$	espece_4
station_1	5	0	0	$\overline{}$
$station_2$	2	2	3	0
$station_3$	0	0	1	10
station_4	0	3	4	3

Le point de départ de nombreuses analyses multivariées est la matrice de distance.

Les différents indices

Différents indices de similarité et de disimilarité sont employés pour composer la matrice de distance.

- Similarité
 - Bray-Curtis : $S_{jk} = 1 \sum_{i=1}^{p} \frac{|y_{ij} y_{jk}|}{\sum_{i=1}^{p} (y_{ij} + y_{jk})}$
 - \blacksquare Canberra : $S_{jk}=1-\frac{1}{NZ}\sum_{i=1}^p\frac{|y_{ij}-y_{jk}|}{(y_{ij}+y_{jk})}$

Ces deux indices sont à privilégier lors de dénombrements d'espèces

- Dissimilarité
 - Distance euclidienne : $D_{ij} = \sqrt{\sum_{i=1}^{p} (y_{ij} y_{jk})^2}$
 - Manhattan : $D_{ij} = \sum_{i=1}^{p} |y_{ij} y_{jk}|$

Ces deux indices sont à privilégier lors de mesures environnementales

Calcul de matrices de distances

Calculez les matrices de dissimilarité entre les stations suivantes avec la distance euclidienne et l'indice de Bray-Curtis.

		J. C.		
	${\rm espece}_1$	espece_2	$espece_3$	espece_4
station_1	5	0	0	$\overline{}$
$station_2$	2	2	3	0
$station_3$	0	0	1	10
station_4	0	3	4	3
	N			200

Quels sont les deux stations les plus proches ? Selon Bray-Curtis ? Selon la distance euclidienne ?

Marphy & Marbio

Transect entre Nice et Calvi

- Etude sur 68 stations
 - Marphy comprend les mesures de température, de salinité, de fluorescence et de densité.
 - Marbio comprend le dénombrement de différents groupes au sein du zooplancton.

Les données se trouvent dans le package R pastecs Réaliser un projet afin d'étudier ce transect.

Employez la fonction ${\tt vegdist}()$ du package ${\tt vegan}$ afin de calculer vos matrices de distances sur les données proposées :

- marphy
- marbio

Pour faire appel à l'aide de la fonction, il suffit d'écrire cette dernière précédé d'un point d'interrogation (?vegdist) dans la console R. Employez un indice cohérent en fonction des données proposées.

 ${\rm N'oubliez}$ pas que les transformations mathématiques sont toujours intéressantes pour donner un impact relatif variable entre espèces abondantes et rares.

