Simulink Project

System Modelling For Magneto Active Elastomers

- Parag Pathak

What are MAEs? (Recap)

- MAEs consist of magnetic particles, such as micron-size iron particles, dispersed in an elastomeric matrix.
- They can undergo large deformations when excited by a magnetic field.
- Uses include tunable vibration absorbers, damping components, noise barrier system and sensors.

Fig. 1. (a) SEM image with 200 times magnification of MRE prepared in 800 mT (Chen et al., 2007); (b) SEM image with 1600 times magnification of MRE prepared in 800 mT (Chen et al., 2007); (c) schematic representation of the idealized layered microstructure considered in this work. (a) MRE (800 mT) X200. (b) MRE (800 mT) X1600. (c) Idealized MRE.

Theoretical model of Magneto elastomers

- The deformation gradient (**) is a function of first Piola stress (**) with proportionality constant (**).
- The magnetic intensity (H) is a function of magnetic field
 (B) with proportionality constant
 (H).
- Note: This is a simplified format.
 Refer (1,2) for full details

Instability Limit

- While the heterogeneity provides access to the tailored and enhanced coupled behaviour, it is
 also a source for the development of microstructural instabilities.
- The instability phenomenon historically has been considered as a failure mode, which is to be predicted and avoided.
- The magnetic field values have a certain limit which depends on the deformation of the MAE.

$$B < \left[\left(\lambda^4 - 1 + \frac{\check{G}}{\overline{G}} \right) \left(1 - \frac{\check{\mu}}{\overline{\mu}} \right)^{-1} \check{\mu} \overline{G} \right]^{1/2}.$$

Loading condition

Displacement field

$$x_1 = \lambda x_1^0$$
 , $x_2 = \frac{x_2^0}{\lambda}$, $x_3 = x_3^0$

Deformation gradient, Magnetic field

$$\mathbf{F} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad , \quad \mathbf{B}_{out}^{0} = \begin{bmatrix} 0 & B^{0} & 0 \end{bmatrix}$$

Free vibrations

 The behaviour of an MAE was studied under free oscillations. The system was allowed to oscillate freely.
 This was compared to a simscape model system.

Simulink Model

Simscape Model

Forced vibrations

 Output signal was isolated from the input signals

Conclusions

- 1. The MAEs could be tuned to remove noise and isolate the output from the input.
- 2. The equilibrium point can be adjusted by applying a magnetic field.
- 3. The only limitations are saturation and the stability limits for MAEs which need to be tuned for the desired output range.

References

- Pathak, P., Arora, N., & Rudykh, S. (2022). Magnetoelastic instabilities in soft laminates with ferromagnetic hyper elastic phases. International Journal of Mechanical Sciences, 213, 106862.
- Bertoldi, K., & Gei, M. (2011). Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 59(1), 18-42.
- Rudykh, S., & Debotton, G. (2011). Stability of anisotropic electroactive polymers with application to layered media. Zeitschrift für angewandte Mathematik und Physik, 62(6), 1131-1142.
- Galipeau, E. (2012). Non-linear homogenization of magnetorheological elastomers at finite strain.
- Rudykh, S., & Bertoldi, K. (2013). Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach. Journal of the Mechanics and Physics of Solids, 61(4), 949-967.
- Rudykh, S., Bhattacharya, K., & DeBotton, G. (2014). Multiscale instabilities in soft heterogeneous dielectric elastomers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2162), 20130618.
- Goshkoderia, A., & Rudykh, S. (2017). Stability of magneto-active composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Composites Part B: Engineering, 128, 19-29.

Backup slides

General Solution form

•
$$\dot{u}_1(x_1, x_2) = v_1(x_2)e^{ik_1x_1}$$

•
$$\dot{u}_2(x_1, x_2) = v_2(x_2)e^{ik_1x_1}$$

•
$$\dot{B}_1(x_1, x_2) = \mathcal{B}_1(x_2)e^{ik_1x_1}$$

•
$$\dot{B}_2(x_1, x_2) = \mathcal{B}_2(x_2)e^{ik_1x_1}$$

•
$$\dot{p}(x_1, x_2) = q(x_2)e^{ik_1x_1}$$

Substitute into Incremental Constitutive relations

$$\mathcal{A}_{iklj} \frac{\partial v_k}{\partial x_j \partial x_l} + \mathcal{M}_{ijk} \frac{\partial \dot{B}_k}{\partial x_j} - \frac{\partial \dot{p}}{\partial x_i} = 0$$

$$\epsilon_{isp} \left(\mathcal{M}_{i,jk} \frac{\partial v_j}{\partial x_k \partial x_n} + \mathcal{H}_{ij} \frac{\partial \dot{B}_j}{\partial x_n} \right) = 0$$

Add Governing relations

$$abla\cdot\dot{\pmb{B}}=0$$
 , $abla imes\dot{\pmb{H}}=0$, $abla\cdot\dot{\pmb{\tau}}=\pmb{0}$ Incompressibility

$$\nabla \cdot \boldsymbol{v} = 0$$

Second order System

$$\Rightarrow v_1' - w_1 = 0$$

$$-ik_1q + k_1^2(C_{1122} + C_{1221} - C_{1111})v1 + C_{1212}v_1'' + ik_1B_{112}B_2 + B_{121}B_1' = 0$$

$$ik_1v_1 + v_2' = 0$$

$$iq' + ik_1^2C_{2121}v_2 + (C_{1221} + C_{1122} - C_{2222})k_1v_1' + k_1(B_{121} - B_{222})\Delta_1 = 0$$

$$ik_1B_1 + B_2' = 0$$

$$B_{121}v_1'' + (B_{112} + B_{121} - B_{222})k_1^2v_1 + A_{11}\Delta_1' - iA_{22}k_1\Delta_2 = 0$$

First order system

$$\Rightarrow v'_1 - w_1 = 0$$

$$+C_{1212}w'_1 + B_{121}\Delta'_1 + k_1^2(C_{1122} + C_{1221} - C_{1111})v_1 + ik_1B_{112}\Delta_2 - ik_1q = 0$$

$$v'_2 + ik_1v_1 = 0$$

$$+B_{121}w'_1 + A_{11}\Delta'_1 + (B_{112} + B_{121} - B_{222})k_1^2v_1 - iA_{22}k_1\Delta_2 = 0$$

$$\Delta'_2 + ik_1\Delta_1 = 0$$

$$+iq' + (C_{1221} + C_{1122} - C_{2222})k_1w_1 + ik_1^2C_{2121}v_2 + k_1(B_{121} - B_{222})\Delta_1 = 0$$

General solution for single medium

First Order system

General Solution

 $Z \rightarrow Eigenvalue matrix (V)$

Add Interface conditions for change in medium

B-H Interface Conditions (2 eqns)

$$N \cdot [B] = 0$$
 , $N \times [H] = 0$

Displacement Continuity (2 eqns)

$$\llbracket v \rrbracket = \mathbf{0}$$

Traction Continuity (2 eqns)

$$[T] \cdot N = 0$$

General form

$$Q_a y_a = Q_b y_b$$

$$\Rightarrow y_b = (Q_b^{-1} Q_a) y_a$$

Apply Bloch-Floquet condition to the K-Matrix

K-Matrix expressions

Eigen value constraint

• Eigen value problem

$$y_h = Ky_0 = e^{ik_2h}y_0$$
$$\Rightarrow Ky_0 = \zeta_i y_0$$

Eigen value Constraint

$$\zeta_i = e^{ik_2h}$$

$$\Rightarrow |\zeta_i| = 1$$

Instability condition

Substitute Eigen value constraint in expression

Eigen value problem

$$y_h = Ky_0 = e^{i(\phi)}y_0$$
$$\Rightarrow Ky_0 = \zeta_i y_0$$

 $\phi = k_2 h$ (k_2 Periodicity) $\phi = 0^\circ$, 180°, 360°

Eigen value Constraint

$$f_{B_m}(\lambda, k_1) = |K - \zeta I|$$

$$\Rightarrow f_{B_m}(\lambda_{cr}, k_{1cr}) = 0$$

$$\forall k_1, \zeta = 1, -1$$

New Instability condition

Three cases of instability

• Macroscopic long wave Instability: $\phi = 0^{\circ}$

$$k_2 h = \frac{k_2 h^0}{\lambda} = 0$$

• Microscopic anti-symmetric Instability: $\phi=180^\circ$ $k_2h^0=\lambda\pi$

• Microscopic periodic Instability: $\phi = 360^{\circ}$ $k_2h^0 = \lambda 2\pi$

 $D_b^{-0.1} \parallel \lambda_{cr}^{-} = 0.889$, k1_{min} = 0.1 , k1_{max} = 0.2 \parallel zoom -0 , θ_0^{-} -360 (Macro) γ_{0} =0 , γ_{1} =1 , γ_{2} =0 || c_m -0.3 , μ_{b} -2.5 , m_s μ_{0b} -0.85 1.2 20 $f_{B_m}(\lambda, k_1) = |K - \zeta I|$ 18 $B_m = 0.1, \zeta = 1, \phi = 0^{\circ}, 360^{\circ}$ 1.1 16 14 12 λ 10 8.0 0.7 0.6 0.5 10 8 6

 $_{\rm b}$ -0.1 || $\lambda_{\rm cr}$ =0.612 , k1 $_{\rm min}$ =3.4 , k1 $_{\rm max}$ =3.5 || zoom -0 , $heta_{
m 0}$ -180 (Micro180) $\gamma_{\rm 0}$ =0 , $\gamma_{\rm 1}$ =1 , $\gamma_{\rm 2}$ =0 $\,$ || $\,$ c $_{\rm m}$ -0.3 , $\mu_{\rm b}$ -2.5 , $\rm m_{s}\mu_{\rm 0b}$ -0.85 1.2 20 $f_{B_m}(\lambda, k_1) = |K - \zeta I|$ 18 $B_m = 0.1, \zeta = -1, \phi = 180^{\circ}$ 1.1 16 14 12 λ 10 8.0 0.7 0.6 0.5 6 10 8

Sample Plot : | Eigen value | vs λ , k_1

$B_m vs \lambda_{cr}$

Transition point from macroscopic to microscopic

Transition point Analysis

• The transition from macroscopic instability to microscopic depends on where the two curves (0° and 180°) intersect.

$$\Rightarrow$$
 $G_m=1$, $\mu_0=1$, $\mu_{
m m}=1$, $h^0=1$

Non-dimentional numbers

Magnetic field

$$\overline{\mathcal{B}}_S = \frac{B}{m_S \mu_0}$$
 , $\overline{\mathcal{B}}_m = \frac{B}{\sqrt{G_m \mu_0}} = B$

Wavenumber normalization

$$\bar{k}_1 = k_1 h^0$$
 , $\bar{k}_2 = k_2 h^0$

Shear ratio

$$\Gamma = \frac{G_f}{G_m} = 10$$

Permeability ratio

$$\mu = \frac{\mu_f}{\mu_m} = 2.5$$

• Saturation co-efficient

$$\eta = \frac{m_s \mu_0}{\sqrt{G_m \mu_0}}$$

Volume fractions

$$c_m = \frac{h_m}{h}$$
 , $c_f = \frac{h_f}{h}$

Initial Susceptibilities

$$\chi = \frac{\mu_0 M}{B} = \frac{\mu - 1}{\mu}$$

Energy model

• Linear Magnetic: Neo-Hookean + Magnetic Energy.

$$\Psi(\mathbf{F}, \mathbf{B}^{0}) = \frac{G_{m}}{2} (I_{1} - 3) + \frac{1}{2\mu_{0}\mu J} (\gamma_{0}\mathbf{I}_{4} + \gamma_{1}I_{5} + \gamma_{2}\mathbf{I}_{6})$$

$$\Rightarrow \gamma_{0} + \gamma_{1} + \gamma_{2} = 1$$

Additional Invariants :Ψ'(I₄, I₅, I₆)

$$I_{4} = \mathbf{B^{0}} \cdot \mathbf{B^{0}}$$

$$I_{5} = \mathbf{FB^{0}} \cdot \mathbf{FB^{0}}$$

$$I_{6} = \mathbf{CB^{0}} \cdot \mathbf{CB^{0}}$$
at $\mathbf{F} = \mathbf{I}$, $I_{4} = I_{5} = I_{6} = I_{m}$

$$\Psi'(\mathbf{I_{4}}, I_{5}, \mathbf{I_{6}}) = \Psi(I_{m})$$

$$(\gamma_{0}\mathbf{I_{4}} + \gamma_{1}I_{5} + \gamma_{2}\mathbf{I_{6}}) = I_{m}$$

Eigen value expressions

Sample Γ Coefficients (Dielectric case)

Table 1Material constants of DE model (13).

Reference	γo	γ1	γ2
Ideal DE (Zhao et al., 2007)	0	1	0
Wissler and Mazza (2007)	0.00104	1.14904	-0.15008
Li et al. (2011)	0.00458	1.3298	-0.33438

Material Control Parameters

Matrix (neo-Hookean)

Material Control Parameters

Matrix (neo-Hookean)

Linear Model for Fiber Phase:

$$\mathcal{H}_{11} = \mathcal{H}_{22} = \frac{1}{\mu\mu_0}$$

$$\mathcal{A}_{ijkl} = J^{-1} F_{j\alpha} F_{l\beta} \left(\frac{\partial^2 \Psi(F, B^0)}{\partial F_{ij} \partial F_{kl}} \right)$$

$$\mathcal{M}_{ijk} = F_{j\alpha} F_{k\beta}^{-1} \left(\frac{\partial^2 \Psi(F, B^0)}{\partial F_{ij} \partial B_k^0} \right)$$

$$\mathcal{H}_{ij} = J F_{i\alpha}^{-1} F_{j\beta}^{-1} \left(\frac{\delta^2 \Psi(F, B^0)}{\partial B_i^0 \partial B_k^0} \right)$$

$$\mathcal{M}_{121}(B) = \mathcal{M}_{211}(B) = \frac{1}{\mu\mu_0}B$$

$$\mathcal{M}_{222}(B) = \frac{2}{\mu\mu_0}B$$

$$\mathcal{A}_{1111}(\lambda) = \mathcal{A}_{2121}(\lambda) = G_i \lambda^2$$

$$\mathcal{A}_{1212}(\lambda, B) = \mathcal{A}_{2222}(\lambda, B) = \frac{G_i}{\lambda^2} + \frac{B^2}{\mu \mu_0}$$

Linear Model for Fiber Phase: Γ Coefficients

$$\mathcal{H}_{11} = \mathcal{H}_{22} = \frac{1}{\mu \mu_0} \left(\frac{\gamma_0}{\lambda^2} + \gamma_1 + \gamma_2 \lambda^2 \right)$$

$$\mathcal{M}_{121}(B) = \mathcal{M}_{211}(B) = \frac{1}{\mu\mu_0} B \left(\frac{\gamma_0}{\lambda^2} + \gamma_1 + \gamma_2 \lambda^2 \right)$$

$$\mathcal{M}_{222}(B) = \frac{2}{\mu\mu_0} B \left(\gamma_1 + 2 \frac{\gamma_2}{\lambda^2} \right)$$

$$\mathcal{A}_{1111}(\lambda) = G_i \lambda^2$$

$$\mathcal{A}_{1221}(\lambda) = \mathcal{A}_{2112}(\lambda) = \frac{B^2}{\mu\mu_0}(\gamma_2\lambda^2)$$

$$\mathcal{A}_{2121}(\lambda) = G_i \lambda^2 + \frac{B^2}{\mu \mu_0} (\gamma_2 \lambda^2)$$

$$\mathcal{A}_{1212}(\lambda, B) = \frac{G_i}{\lambda^2} + \frac{B^2}{\mu\mu_0} \left(\gamma_1 + \gamma_2 \left(\frac{2}{\lambda^2} + \lambda^2 \right) \right)$$

$$\mathcal{A}_{2222}(\lambda, B) = \frac{G_i}{\lambda^2} + \frac{B^2}{\mu\mu_0} \left(\gamma_1 + \frac{6\gamma_2}{\lambda^2}\right)$$

B-H Relationships

Stress-Magnetization-Energy relationship

$$P = \frac{\partial \Psi(F, B^0)}{\partial F} - pF^{-T}$$

$$H^0 = \frac{\partial \Psi(F, B^0)}{\partial B^0}$$

B-H Relationships

	Linear Magnetic model	With Γ Coefficients
Magnetization	$\mu_0 \mathbf{M} = \mathbf{B} \chi = \mathbf{B} \frac{(\mu - 1)}{\mu}$	$\mu_0 \mathbf{M} = \mathbf{B} \chi' = \mathbf{B} \frac{(\mu' - 1)}{\mu'}$
Magnetic intensity	$\mu_0 \mathbf{H} = \frac{\mathbf{B}}{\mu} = \mathbf{B}(1 - \chi)$	$\mu_0 \mathbf{H} = \frac{\mathbf{B}}{\mu'} = \frac{\mathbf{B}}{\mu} \left(\frac{\gamma_2}{\lambda^2} + \gamma_1 + \gamma_0 \lambda^2 \right)$

Conclusions

- Instability can be of three types long wave microscopic, microscopic periodic and anti symmetric periodic. Transitions usually happen from long wave to antisymmetric microscopic.
- Higher γ_2 values lowers the λ_{cr} . Higher γ_0 values lowers the λ_{cr} for low magnetic fields, but this trend reverses for higher magnetic fields.
- Transitions happen at lower magnetic fields for higher γ_0 values and lower volume fraction of matrix c_m .