

PROFIT MAXIMIZING PRODUCTION ALLOCATION

Why

Suppose a manufacturer has raw materials, and production processes by which she can convert raw materials into finished goods. How should she *allocate* the raw materials among the finished goods to maximize revenue.

Model

We model the quantities of m raw materials available to the manufacturer by m real numbers, which we denote $q_1, \ldots, q_m \in \mathbf{R}_+$. We suppose that there is a correspondence, $f_i : \mathbf{R}_+ \to \mathbf{R}_+^m$, which models the quantities of the m raw materials that will be needed for the ith finished good. In other words, $f_i(x)$ is the *bill of materials* to produce quantity x of the ith finished good. We suppose finished good i can be sold for a price p_i per unit.

We formulate the following optimization problem. Given a supply of raw materials q_1, \ldots, q_m , find the quantities x_1, \ldots, x_n to

maximize
$$\sum_{i=1}^{n} p_i x_i$$
subject to
$$\sum_{i=1}^{n} f_i(x_i) \le q$$
and $x \ge 0$

This is sometimes called an allocation problem or manufacturing problem.

Linear simplication. In the case that f_i is modeled (or idealized) as a linear function, we obtain a linear optimization problem.

