Extremal sequences avoiding a fractional power

Eric Rowland

Hofstra University

joint work with Jeff Shallit and Lara Pudwell

New York Combinatorics Seminar CUNY Graduate Center, 2018–12–7

Periodic sequences

Periodic sequences are simple.

Natural vague question:

What are the simplest non-periodic sequences?

A square is a nonempty word of the form ww.

Squares on a 2-letter alphabet

Axel Thue (1863-1922)

Are squares avoidable on a 2-letter alphabet? Are there arbitrarily long square-free words on $\{0,1\}$?

Choose an order on $\{0,1\}$ and try to construct one:

Squares on a 3-letter alphabet

Are squares avoidable on $\{0, 1, 2\}$?

 $01020102 \times 0210120102012021020102101201020120210\cdots$

Theorem (Thue 1906)

There exist arbitrarily long square-free words on 3 letters.

The backtracking algorithm builds the lexicographically least sequence.

Open problem (Allouche–Shallit, *Automatic Sequences* §1.10)

Characterize the lex. least square-free sequence on $\{0, 1, 2\}$.

Infinite alphabet

On an infinite alphabet, the backtracking algorithm doesn't backtrack.

Are squares avoidable on $\mathbb{Z}_{\geq 0} = \{0, 1, 2, \dots\}$? Yes. 01020103010201040102010301020105 \cdots

Theorem (Guay-Paquet–Shallit 2009)

Let
$$\varphi(n) = 0 (n + 1)$$
.

The lexicographically least square-free sequence on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

$$arphi(0)=01$$

$$arphi^2(0)=0102$$

$$arphi^3(0)=01020103$$

$$\vdots$$

$$arphi^\infty(0)=01020103010201040102010301020105\cdots$$

Integer powers

More generally, let $a \ge 2$. Let $\varphi(n) = 0^{a-1}(n+1)$. The lexicographically least a-power-free sequence on $\mathbb{Z}_{\ge 0}$ is $\varphi^{\infty}(0)$.

$$\bm{s}_5 = 00001000010000100001000020000100001\cdots$$

$$egin{array}{lll} {f s}_5 = 00001 & & & & & & & & & & & & \\ 00001 & & & & & & & & & & \\ 00001 & & & & & & & & & \\ 00001 & & & & & & & & & \\ 00002 & & & & & & & & \\ 00001 & & & & & & & \\ & & & & & & & & \\ \end{array}$$

 \mathbf{s}_5 satisfies a recurrence reflecting the base-5 representation of n. Such a sequence is called $\frac{5}{regular}$.

Fractional powers

 $011101 = (0111)^{3/2}$ is a $\frac{3}{2}$ -power.

If |x| = |y| = |z|, then $xyzxyzx = (xyz)^{7/3}$ is a $\frac{7}{3}$ -power.

Definition

A word w is an $\frac{a}{b}$ -power if

$$w = v^e x$$

where $e \ge 0$ is an integer, x is a prefix of v, and $\frac{|w|}{|v|} = \frac{a}{b}$.

Notation

For $\frac{a}{b} > 1$, let $\mathbf{s}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free sequence on $\mathbb{Z}_{\geq 0}$.

We assume gcd(a, b) = 1 from now on.

Avoiding 3/2-powers

 $\boldsymbol{s}_{3/2} = 001102100112001103100113001102100114001103\cdots$

$$s(6n+5)=s(n)+2$$

Theorem (Rowland-Shallit 2012)

The sequence $\mathbf{s}_{3/2}$ is 6-regular.

Why 6?

k-regular sequences

An integer sequence $s(n)_{n\geq 0}$ is k-regular if the set

$$\{s(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r \le k^e - 1\}$$

is contained in a finite-dimensional Q-vector space.

Analogously: $s(n)_{n\geq 0}$ is constant-recursive if $\{s(n+r)_{n\geq 0}: r\geq 0\}$ is contained in a finite-dimensional \mathbb{Q} -vector space.

Is the value of *k* unique?

No; a 2-regular sequence is also 4-regular, and vice versa.

But almost: If k and ℓ are multiplicatively independent and $s(n)_{n\geq 0}$ is both k-regular and ℓ -regular, then $\sum_{n\geq 0} s(n)x^n$ is the power series of a rational function whose poles are roots of unity [Bell 2006].

So the value of k gives structural information.

The interval $\frac{a}{b} \geq 2$

$$\mathbf{s}_{5/2} = 00001000010000100001000020000100001 \cdots = \mathbf{s}_5$$

Theorem

If $\frac{a}{b} \geq 2$, then $\mathbf{s}_{a/b} = \mathbf{s}_a$.

Proof (one direction).

Every a-power $v^a = (v^b)^{a/b}$ is also an $\frac{a}{b}$ -power.

So $\mathbf{s}_{a/b}$ is a-power-free. Thus $\mathbf{s}_a \leq \mathbf{s}_{a/b}$ lexicographically.

It suffices to consider $1 < \frac{a}{b} < 2$.

s_{5/3} wrapped into 100 columns

$$\mathbf{s}_{5/3} = 000010100001010000101000010100001020000101 \cdots$$

s_{5/3} wrapped into 7 columns

$$\mathbf{s}_{5/3} = 000010100001010000101000010100001020000101 \cdots$$

Theorem

 $\mathbf{s}_{5/3} = \varphi^{\infty}(0)$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

s_{8/5} wrapped into 100 columns

s_{8/5} wrapped into 733 columns

$$\mathbf{s}_{8/5} = 00000001001000001001000000100110000000100 \cdots$$

Theorem

$\mathbf{s}_{8/5}=arphi^{\infty}(0)$ for the 733-uniform morphism

s_{7/4} wrapped into 100 columns

2018-12-7

s_{7/4} wrapped into 50847 columns

Theorem

 $\mathbf{s}_{7/4} = \varphi^{\infty}(0)$ for some 50847-uniform morphism $\varphi(n) = u(n+2)$.

s_{6/5} wrapped into 1001 columns

$$\mathbf{s}_{6/5} = 0000011111102020201011101000202120210110010\cdots$$

Introduce a new letter 0'.

Let
$$\tau(0') = 0$$
 and $\tau(n) = n$ for $n \in \mathbb{Z}_{\geq 0}$.

Theorem

There exist words u, v of lengths |u| = 1001 - 1 and |v| = 29949 such that $\mathbf{s}_{6/5} = \tau(\varphi^{\infty}(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n+3) & \text{if } n \geq 0. \end{cases}$$

s_{11/6} wrapped into 112 columns

We don't know the structure of $\mathbf{s}_{11/6}$.

Catalogue

For many sequences $\mathbf{s}_{a/b}$, there is a related k-uniform morphism. A k-uniform morphism generates a k-regular sequence.

<u>a</u> b	k
<u>3</u>	6
<u>5</u>	7
<u>8</u>	733
$\frac{7}{4}$	50847
<u>6</u> 5	1001
<u>11</u>	?

Question

Is every $\mathbf{s}_{a/b}$ k-regular for some k? How is k related to $\frac{a}{b}$?

A family related to $\mathbf{s}_{5/3}$

The interval $\frac{5}{3} \leq \frac{a}{b} < 2$

Theorem

Let $\frac{5}{3} \le \frac{a}{b} < 2$ and b odd. Let φ be the (2a - b)-uniform morphism

$$\varphi(n) = 0^{a-1} \cdot 1 \cdot 0^{a-b-1} \cdot (n+1)$$

for all $n \in \mathbb{Z}_{>0}$. Then $\mathbf{s}_{a/b} = \varphi^{\infty}(0)$.

- Show that φ preserves $\frac{a}{b}$ -power-freeness. That is, if w is $\frac{a}{b}$ -power-free then $\varphi(w)$ is $\frac{a}{b}$ -power-free. Since 0 is $\frac{a}{b}$ -power-free, it follows that $\varphi^{\infty}(0)$ is $\frac{a}{b}$ -power-free.
- ② Show that decrementing any term in $\mathbf{s}_{a/b}$ introduces an $\frac{a}{b}$ -power.

Other intervals

We have 30 symbolic $\frac{a}{b}$ -power-free morphisms, found experimentally.

Theorem

Let
$$\frac{3}{2} < \frac{a}{b} < \frac{5}{3}$$
 and $gcd(b,5) = 1$. The $(5a-4b)$ -uniform morphism

$$\varphi(n) = 0^{a-1} 1 0^{a-b-1} 1 0^{2a-2b-1} 1 0^{a-b-1} (n+1)$$

is $\frac{a}{b}$ -power-free.

Theorem

Let
$$\frac{6}{5} < \frac{a}{b} < \frac{5}{4}$$
 and $\frac{a}{b} \notin \{\frac{11}{9}, \frac{17}{14}\}$. The a-uniform morphism

$$\varphi(n) = 0^{6a-7b-1} \cdot 1 \cdot 0^{-3a+4b-1} \cdot 1 \cdot 0^{-8a+10b-1} \cdot 1 \cdot 0^{6a-7b-1} \cdot (n+1)$$

is $\frac{a}{b}$ -power-free.

Other intervals

Theorem 50. Let a, b be relatively prime positive integers such that $\frac{10}{9} < \frac{a}{b} < \frac{29}{26}$ and $\frac{a}{b} \neq \frac{39}{35}$ and gcd(b, 67) = 1. Then the (67a - 30b)-uniform morphism

 $\varphi(n) = 0^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{a-b-1} \cdot 10^{-26a+29b-1} \cdot 10^{28a-31b-1} \cdot 10^{2a-2b-1} \cdot 10^{-2a-2b-1} \cdot 10^{ 0^{a-b-1} \, 10^{-25a+28b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{3a-3b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{3a-3b-1} \, 10^{a-b-1} \, 10^{a-b$ $0^{-25a+28b-1} + 0^{10a-11b-1} + 0^{3a-3b-1} + 0^{10a-11b-1} + 0^{-8a+9b-1} + 0^{a-b-1} + 0^{10a-11b-1} + 0^{-a-b-1} + 0^{10a-11b-1} + 0^{-a-b-1} + 0^{-a-b-1}$ $0^{-25a+28b-1} \, 10^{10a-11b-1} \, 10^{-8a+9b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \, 10^{a-b-1} \, 10^$ $0^{10a-11b-1} + 0^{-25a+28b-1} + 0^{2a-2b-1} + 0^{2a-2b-1} + 0^{10a-b-1} + 0^{10a-11b-1} + 0^{3a-3b-1} + 0^{10a-11b-1} + 0^{2a-2b-1} + 0^{2a$ $0^{-25a+28b-1}10^{3a-3b-1}10^{10a-11b-1}10^{a-b-1}10^{a-b-1}20^{a-b-1}10^{10a-11b-1}1$ $0^{-25a+28b-1}10^{a-b-1}10^{a-b-1}20^{a-b-1}10^{2a-2b-1}10^{11a-12b-1}10^{10a-11b-1}1\\$ $0^{2a-2b-1}$, $0^{-24a+27b-1}$, $0^{2a-2b-1}$, 0^{a-b-1} , $0^{10a-11b-1}$, $0^{10a-11b-1}$, $0^{2a-2b-1}$, $0^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{-24a+27b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{-8a+9$ $0^{11a-12b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $0^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{28a-31b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{ 0^{10a - 11b - 1} \cdot 10^{-8a + 9b - 1} \cdot 10^{a - b - 1} \cdot 10^{10a - 11b - 1} \cdot 10^{-25a + 28b - 1} \cdot 10^{10a - 11b - 1} \cdot 10^{-8a + 9b - 1} \cdot 10^{-10a - 11b - 1} \cdot 10^{-10a -$ 0^{a-b-1} $10^{10a-11b-1}$ $10^{2a-3b-1}$ $10^{10a-11b-1}$ $10^{-25a+28b-1}$ $10^{2a-3b-1}$ $10^{10a-11b-1}$ $0^{a-b-1}10^{9a-10b-1}10^{-7a+8b-1}10^{10a-11b-1}10^{-25a+28b-1}10^{a-b-1}10^{9a-10b-1}1$ $0^{-7a+8b-1}10^{2a-2b-1}10^{a-b-1}10^{10a-11b-1}10^{10a-11b-1}10^{2a-2b-1}10^{a-b-1}1$ $0^{-25a+28b-1}$ $10^{3a-3b-1}$ $10^{10a-11b-1}$ $10^{10a-11b-1}$ $10^{3a-3b-1}$ $10^{-25a+28b-1}$ $10^{27a-30b-1}$ $10^{-25a+28b-1}$ 0^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{10a-11b-1}$ $10^{-8a+9b-1}$ 10^{a-b-1} $10^{10a-11b-1}$ 10^{a-b-1} $0^{2a-2b-1} \cdot 2^{a-b-1} \cdot 1^{a-2ba+2bb-1} \cdot 1^{a-2ba-1} \cdot 1^{a-2b-1} \cdot 1^{a-2b-1} \cdot 2^{a-b-1} \cdot 1^{a-2b-1} \cdot 1^{a-2b-1}$ $0^{3a-3b-1}$, $0^{-25a+28b-1}$, $0^{10a-11b-1}$, $0^{3a-3b-1}$, $0^{10a-11b-1}$, 0^{a-b-1} , 0^{a-b-1} 0^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ 10^{a-b-1} 10^{a-b-1} 20^{a-b-1} $10^{2a-2b-1}$ 10^{a-b-1} $0^{11a-12b-1} \, 10^{-25a+28b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 1$ $0^{-25a+28b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $10^{10a-11b-1}$ $10^{-8a+9b-1}$ $10^{11a-12b-1}$ $10^{10a-11b-1}$ $0^{-25a+28b-1} + 0^{27a-30b-1} + 0^{-24a+27b-1} + 0^{2a-2b-1} + 0^{a-b-1} + 0^{10a-11b-1} +$ $0^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b$ $0^{-25a+28b-1}$ $10^{28a-31b-1}$ $10^{-25a+28b-1}$ $10^{27a-30b-1}$ 10^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{-25a+28b-1}$ $0^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{$ $0^{3a-3b-1} + 0^{10a-11b-1} + 0^{a-b-1} + 0^{-26a+29b-1} + 0^{26a-31b-1} + 0^{-25a+28b-1} + 0^{10a-11b-1} + 0^{-26a+28b-1} + 0^{-26a-11b-1} + 0^{-26a+28b-1} + 0^{-26a-11b-1} + 0^{-26a-11b-1}$ $0^{a-b-1} \, 10^{9a-10b-1} \, 10^{-7a+8b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{-25a+28b-1} \, 1$ $0^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{3a-3b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a-2b-1} \cdot 10^{-25a-2b-1}$ $0^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{-25a+28b-1} \cdot 10^{-25a-20b-1} \cdot 10^{$ $0^{a-b-1} \, 10^{-25a+28b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \, 10^{10a-11b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \,$ $0^{a-b-1}10^{-25a+28b-1}10^{3a-3b-1}10^{10a-11b-1}10^{10a-11b-1}10^{3a-3b-1}10^{-25a+28b-1}1$ $0^{a-b-1}10^{a-b-1}20^{a-b-1}10^{10a-11b-1}10^{10a-11b-1}10^{a-b-1}10^{a-b-1}2$ $0^{a-b-1} \, 10^{2a-2b-1} \, 10^{-24a+27b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{2a-2b-1}$ $0^{a-b-1}10^{-25a+28b-1}10^{10a-11b-1}10^{2a-2b-1}10^{a-b-1}10^{10a-11b-1}10^{-8a+9b-1}1$ $0^{11a-12b-1}\,10^{-25a+28b-1}\,10^{10a-11b-1}\,10^{-8a+9b-1}\,10^{11a-12b-1}\,10^{2a-2b-1}\,10^{a-b-1}\,1$ 010a - 11b - 1 10 - 25a + 28b - 1 $10^{2a - 2b - 1}$ $10^{a - b - 1}$ $10^{10a - 11b - 1}$ $10^{10a - 11b - 1}$ $10^{-7a + 8b - 1}$ $10^{-7a + 8b - 1}$ $0^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{a-b$ $0^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{27a-30b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{27a-30b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a-28b-1} \cdot 10^{$ 0.10a - 11b - 1 1.010a - 11b - 1 1.02a - 3b - 1 1.0 - 25a + 28b - 1 1.0a - b - 1 1.09a - 10b - 1 (n + 1)

with 279 nonzero letters, locates words of length 5a-4b and is $\frac{a}{b}$ -power-free.

Coverage of $\frac{a}{b}$ -power-free morphisms

A family with a transient

The interval $\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$

Theorem

Let $\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$ and gcd(b, 6) = 1. Let

$$\varphi(0') = 0'0^{a-2} \, 1 \, 0^{a-b-1} \, 1 \, 0^{a-b-1} \, 1 \varphi(0)$$

and

$$\begin{split} \varphi(n) &= 0^{a-b-1} \cdot 10^{2a-2b-1} \cdot 10^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 1\\ &0^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{5a-6b-1} \cdot 1\\ &0^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 1\\ &0^{a-b-1} \cdot 10^{-3a+4b-1} \cdot 10^{5a-6b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 1\\ &0^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{2a-2b-1} \cdot 2\\ &0^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{3a-3b-1} \cdot 10^{-2a+3b-1} \cdot 10^{a-b-1} \cdot 10^{a-b-1} \cdot (n+2), \end{split}$$

for $n \in \mathbb{Z}_{\geq 0}$. Then $\mathbf{s}_{a/b} = \tau(\varphi^{\infty}(0'))$.

Sporadic rationals

The same proof technique applies to symbolic and explicit rationals...

```
\mathbf{s}_{8/5} is a 733-regular sequence.
```

 $\mathbf{s}_{7/4}$ is a 50847-regular sequence.

 $\mathbf{s}_{13/9}$ is a 45430-regular sequence.

 $\mathbf{s}_{17/10}$ is a 55657-regular sequence. etc.

Is there some way to understand these values?

s_{27/23} wrapped into 353 columns

There exist words u, v on $\{0,1,2\}$ of lengths |u|=353-1 and |v|=75019 such that $\mathbf{s}_{27/23}=\tau(\varphi^\infty(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n + 0) & \text{if } n \ge 0. \end{cases}$$

$$s(353n + 75371) = s(n)$$

s_{27/23} is a sequence on a finite alphabet!