The quest for consistency: What's wrong with the nodes of functional brain networks?

Onerva Korhonen

Twitter: @OnervaKorhonen

5.6.2019

What's wrong with the nodes of functional brain networks?

What's wrong with the nodes of functional brain networks?

- Network: a model of connections and interactions
 - Internet, public transport, social networks

- Network: a model of connections and interactions
 - Internet, public transport, social networks
- Nodes: network's basic elements
 - Web pages, stops, people

- Network: a model of connections and interactions
 - Internet, public transport, social networks
 - **Nodes:** network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships

- Network: a model of connections and interactions
 - Internet, public transport, social networks
- **Nodes:** network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships
 - Weights?

- Network: a model of connections and interactions
 - Internet, public transport, social networks
- Nodes: network's basic elements
 - Web pages, stops, people
- Links: connections between nodes
 - Web links, transport lines, social relationships
 - Weights?
 - Direction?

What's wrong with the nodes of functional brain networks?

Brain networks:

 Model for interactions in the brain

Why is the brain a network?

- Brain = a system of neurons
 - Separated neurons tend to reconnect
- Axon bundles connect brain areas
- Cognitive tasks require collaboration of brain areas

Network neuroscience

- Network neuroscience = applying network tools on the brain
- Two aims:
 - 1. Understand the healthy brain
 - 2. Find causes of diseases
- Broad scales:
 - Molecule neuron brain area human
 - Milliseconds years
- Different brain networks:
 - Structural: anatomic connections
 - Functional: temporal coactivation
 - Effective: causality

What's wrong with the nodes of functional brain networks?

Functional brain networks:

- Links = coactivation
- From fMRI data

Brain networks:

 Model for interactions in the brain

Functional magnetic resonance imaging (= fMRI) Fig: Wikimedia Commons / CC BY 4.0

Fig: Wikimedia Commons / OpenStax, under CC BY 4.0

- Based on magnetic properties of haemoglobin
- fMRI uses two magnetic fields:
 - 1. A strong static field aligns haemoglobin molecule spins
 - 2. A short pulse disturbes the alignment
- After the pulse, spins return to equilibrium, emitting a radio wave
- Different waves from oxygen-rich and oxygen-poor heamoglobin
 - => oxygen-rich areas localized
- Brain function requires oxygen
 - => high oxygen level = high activity
- Measurement unit = voxel

fMRI

 Connection between oxygen and activation not fully known

MEG/EEG

A direct measure of brain activity

fMRI

- Connection between oxygen and activation not fully known
- Measured in anatomical space

MEG/EEG

- A direct measure of brain activity
- Measured in sensor space => inverse transform needed

fMRI

- Connection between oxygen and activation not fully known
- Measured in anatomical space
- Very high spatial resolution (~mm)

MEG/EEG

- A direct measure of brain activity
- Measured in sensor space => inverse transform needed
- Lower spatial resolution

fMRI

- Connection between oxygen and activation not fully known
- Measured in anatomical space
- Very high spatial resolution (~mm)
- Low temporal resolution (~seconds)

MEG/EEG

- A direct measure of brain activity
- Measured in sensor space => inverse transform needed
- Lower spatial resolution
- Excellent temporal resolution (~ms)

fMRI

- Connection between oxygen and activation not fully known
- Measured in anatomical space
- Very high spatial resolution (~mm)
- Low temporal resolution (~seconds)

MEG/EEG

- A direct measure of brain activity
- Measured in sensor space => inverse transform needed
- Lower spatial resolution
- Excellent temporal resolution (~ms)

fMRI and MEG/EEG are complementary methods (although so far difficult to measure at the same time)

Functional brain networks: how-to?

Network from Nummenmaa et al. 2014, *Neurolmage*, by permission

What's wrong with the nodes of functional brain networks?

Nodes:

- No natural candidates above the neuronal scale
- Node selection affects network properties
- Regions of Interest (ROIs) or voxels?

Functional brain networks:

- Links = coactivation
- From fMRI data

Brain networks:

 Model for interactions in the brain

Voxels vs ROIs

Voxels:

- fMRI imaging resolution
- noisy signals?
- ~10.000 nodes
- large computational load

ROIs:

- collections of voxels
- defined by anatomy, function, connectivity, ...
- Homogeneous (= all voxels have same dynamics)?
- ROI time series to represent voxel dynamics:

$$X_I = \frac{1}{N_I} \sum_{i \in I} x_i$$

Violent?

Consistency of Regions of Interest as nodes of fMRI functional brain networks

Korhonen, O., Saarimäki, H., Glerean, E., Sams, M., & Saramäki, J. 2017. *Network Neuroscience*

Research questions

- What should nodes of brain networks depict?
 - ROIs or voxels?
- Are ROIs functionally homogeneous?

Methods

- Two sets of resting-state fMRI data:
 - 13 in-house subjects
 - 28 subjects from ABIDE I initiative
- 215 time points (~6 min)
- ROIs from three atlases:
 - HO: anatomical
 - AAL: anatomical
 - Brainnetome: connectivity-based
- Connectivity investigated at voxel and ROI levels

How correlated are voxels of a ROI?

How homogeneous are ROIs?

- Spatial consistency
- = measure of functional homogeneity:

$$\varphi_{spat}(I) = \frac{1}{N_I(N_I - 1)} \sum_{i,i' \in I} C(x_i, x_{i'})$$

- Straightforward to calculate
- Easy to interpret

Does consistency predict connectivity?

Does consistency predict connectivity?

Does consistency predict connectivity?

Does consistency tell about ROI's functional role?

Conclusions

- ROIs are not always functionally homogeneous
- Strong ROI-level correlations between low-consistency ROIs may be spurious
- Does a low spatial consistency tell about
 - a) A bad ROI definition
 - b) High noise level
 - c) Inactivity of the ROI?

Regions of Interest as nodes of dynamic functional brain networks

Ryyppö. E., Glerean, E., Brattico, E., Saramäki, J., & Korhonen, O. 2018, Network Neuroscience

Research questions

- ROIs as nodes of dynamic brain networks?
- Temporal behaviour of spatial consistency?

Methods

- Two sets of fMRI data:
 - Music listenig (13 subjects)
 - Resting-state (28 subjects)
- ROIs:
 - Brainnetome
 - HO
 - AAL
- Time windows: 80 samples (160s), 50% overlap
- For each ROI, we build "closest neighborhoods" (35 strongest links of ROI)

Measures

- Spatial consistency φ_{spat} : functional homogeneity of ROI
- Spatiotemporal consistency: time-dependence of φ_{spat}

$$\varphi_{st}(I) = \frac{N_t(N_t - 1)}{2\sum_{t < t'} \frac{\left|\varphi_{spat}(I, t) - \varphi_{spat}(I, t')\right|}{\varphi_{spat}(I, t)}}$$

Network turnover: changes in local network structure

$$\delta_{network}(I) = 1 - \mu_t^{Jaccard}(I)$$

Spatial consistency changes in time

Spatial consistency changes in time

Turnover in network neighborhoods

Turnover in network neighborhoods

ROIs have rich internal connectivity structure

ROIs have rich internal connectivity structure

ROIs have rich internal connectivity structure

Intra-ROI modules

Network topology?

Conclusions

- Spatial consistency changes in time
 - Reflects activation?
- ROIs have time-dependent internal structure
 - Relates to network topology?
- Do brain networks have stable nodes?

On-going work: Multilayer brain networks with flexible nodes

with Tarmo Nurmi, Maria Hakonen, Iiro Jääskeläinen & Mikko Kivelä

 Based on multilayer networks (= different connections in the same network)

1. Layers = time windows

 Based on multilayer networks (= different connections in the same network)

1. Layers = time windows

ROIs optimized inside layers for maximal consistency

 Based on multilayer networks (= different connections in the same network)

- 1. Layers = time windows
- ROIs optimized inside layers for maximal consistency
- 3. Interlayer links = Pearson correlation

 Based on multilayer networks (= different connections in the same network)

- 1. Layers = time windows
- ROIs optimized inside layers for maximal consistency
- Interlayer links = Pearson correlation
- 1. Intralayer links = spatial overlap

General conclusions

- It's not trivial to construct a functional brain network
 - Know your methods!
- Currently used nodes are not functionally homogeneous
 - Data lost in averaging
 - Risk of spurious connectivity?
- Homogeneity changes in time
 - Changes relate to function?
- Low homogeneity isn't a technical flaw
 - ⇒ Can't be fixed by new static nodes
 - ⇒ Flexible nodes needed!

