Haute école suisse d'agronomie HESA

Technische Parameter Modell Agrammon

Tierkategorien, Stickstoffausscheidungen der Tiere, Emissionsraten, Korrekturfaktoren

Entwurf vom 27.04.2009

Inhalt

1.	Lie	erkate	gorien, Stickstoffausscheidung und Anteil löslicher Stickstoff in den Ausscheidunge	en 2
2.	Em	nissio	nsraten	5
2	2.1	Tier	haltung	5
	2.1	1.1	Weide	5
	2.1	.2	Stall und Laufhof	5
2	2.2	Hof	düngerlagerungdüngerlagerung	7
2	2.3	Hof	düngerausbringung	7
2	2.4	Pfla	nzenbau (Mineraldünger, Recyclingdünger, Emissionen der landw. Nutzfläche)	8
3.	Ko	rrektu	ırfaktoren	8
(3.1	Milo	chleistung von Milchkühen	8
;	3.2	Fütt	terung	8
	3.2	2.1	Milchkühe	8
	3.2	2.2	Schweine	9
(3.3	Stal	II	11
	3.3	3.1	Rindvieh	11
	3.3	3.2	Schweine	11
	3.3	3.3	Geflügel	11
(3.4	Lau	fhof	12
;	3.5	Wei	ide	12
(3.6	Hof	düngerlagerungdüngerlagerung	13
	3.6	6.1	Abdeckung der Güllegrube	13
	3.6	6.2	Häufigkeit Aufrühren von Gülle	13
	3.6	3.3	Abdeckung des Lagers von Geflügelmist oder -kot	13
;	3.7	Hof	düngerausbringung	13
	3.7	⁷ .1	Basis zur Berechnung der Ausbringverluste	13
	3.7	7.2	Ausbringtechnik Gülle	14
	3.7	7.3	Berücksichtigung von Tageszeit und Witterung bei der Ausbringung von Gülle	14
	3.7	⁷ .4	Berücksichtigung der Jahreszeit bei der Ausbringung von Gülle und Mist	14
	3.7	7.5	Einarbeitung von Mist von Rindern oder Schweinen nach der Ausbringung	14
	3.7	7.6	Einarbeitung von Geflügelmist nach der Ausbringung	15
4.	Ab	kürzu	ngen	15
5.	Re	feren	zliste	16

1. Tierkategorien, Stickstoffausscheidung und Anteil löslicher Stickstoff in den Ausscheidungen

	Tierkategorie		Anfall	Anteil N _{lös}	Grundlage ¹
			kg N _{tot} /Jahr	%	
	Rindvieh				
1.	Milchkühe	Vollgülle	115	60	Flisch et al. (2009)
2.	(bei Milchleis- tung von	Gülle kotarm (Produktion Gülle und Mist)	65.6	70	Flisch et al. (2009)
3.	6500 kg pro	Mist (Produktion Gülle und Mist)	49.5	46.7	Flisch et al. (2009)
4.	Jahr)	Laufstallmist (Tiefstreu / Tretmist)	115	60	Flisch et al. (2009)
5.	Aufzuchtrinder	Vollgülle	25.0	60	Flisch et al. (2009)
6.	1. Jahr	Gülle kotarm (Produktion Gülle und Mist)	14.3	70	Flisch et al. (2009)
7.		Mist (Produktion Gülle und Mist)	10.8	46.7	Flisch et al. (2009)
8.		Laufstallmist (Tiefstreu / Tretmist)	25.0	60	Flisch et al. (2009)
9.	Aufzuchtrinder	Vollgülle	40.0	60	Flisch et al. (2009)
10.	2. Jahr	Gülle kotarm (Produktion Gülle und Mist)	22.8	70	Flisch et al. (2009)
11.		Mist (Produktion Gülle und Mist)	17.2	46.7	Flisch et al. (2009)
12.		Laufstallmist (Tiefstreu / Tretmist)	40.0	60	Flisch et al. (2009)
13.	Aufzuchtrinder	Vollgülle	55.0	60	Flisch et al. (2009)
14.	3. Jahr	Gülle kotarm (Produktion Gülle und Mist)	31.4	70	Flisch et al. (2009)
15.		Mist (Produktion Gülle und Mist)	23.7	46.7	Flisch et al. (2009)
16.		Laufstallmist (Tiefstreu / Tretmist)	55.0	60	Flisch et al. (2009)
17.	Masttiere	Vollgülle	33.0	60	Flisch et al. (2009)
18.	(Rindvieh- mast)	Gülle kotarm (Produktion Gülle und Mist)	19.8	70	Flisch et al. (2009)
19.	dot,	Mist (Produktion Gülle und Mist)	13.2	46.7	Flisch et al. (2009)
20.		Laufstallmist (Tiefstreu / Tretmist)	33.0	60	Flisch et al. (2009)
21.	Mastkälber	Vollgülle	13.0	60	Flisch et al. (2009)
22.		Gülle kotarm (Produktion Gülle und Mist)	7.4	70	Flisch et al. (2009)
23.		Mist (Produktion Gülle und Mist)	5.6	46.7	Flisch et al. (2009)
24.		Laufstallmist (Tiefstreu / Tretmist)	13.0	60	Flisch et al. (2009)
25.	Mutter- und	Vollgülle	80.0	60	Flisch et al. (2009)
26.	Ammenkühe	Gülle kotarm (Produktion Gülle und Mist)	45.6	70	Flisch et al. (2009)
27.		Mist (Produktion Gülle und Mist)	34.4	46.7	Flisch et al. (2009)
28.		Laufstallmist (Tiefstreu / Tretmist)	80.0	60	Flisch et al. (2009)
29.	Mutterkuh-	Vollgülle	34.0	60	Flisch et al. (2009)
30.	kälber	Gülle kotarm (Produktion Gülle und Mist)	20.4	70	Flisch et al. (2009)
31.		Mist (Produktion Gülle und Mist)	13.6	46.7	Flisch et al. (2009)
32.		Laufstallmist (Tiefstreu / Tretmist)	34.0	60	Flisch et al. (2009)

_

 $^{^{1}}$ Die Referenz gilt nur für den Anfall. Für den Anteil $N_{l\tilde{o}s}$: vgl. Dokumentation Technische Parameter Modell Agrammon

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

	Tierkategorie			Einheit	Grundlage
	Schweine			•	
33.		Ausscheidungen Anteil N _{lös}	70	% N _{tot}	Expertenschätzung ²
34.	der ersten Besamung	Vollgülle	20.0	kg N _{tot} / Jahr	Flisch et al. (2009)
35.		Mistsysteme	20.0	kg N _{tot} / Jahr	Flisch et al. (2009)
36.	Säugende Sauen	Ausscheidungen Anteil N _{iös}	70	% N _{tot}	Expertenschätzung ²
37.		Vollgülle	42.0	kg N _{tot} / Jahr	Flisch et al. (2009)
38.		Mistsysteme	42.0	kg N _{tot} / Jahr	Flisch et al. (2009)
39.	Abgesetzte Ferkel bis 25 kg	Ausscheidungen Anteil N _{lös}	70	% N _{tot}	Expertenschätzung ²
40.		Vollgülle	4.6	kg N _{tot} / Jahr	Flisch et al. (2009)
41.		Mistsysteme	4.6	kg N _{tot} / Jahr	Flisch et al. (2009)
42.	Eber	Ausscheidungen Anteil N _{lös}	70	% N _{tot}	Expertenschätzung ²
43.		Vollgülle	18.0	kg N _{tot} / Jahr	Flisch et al. (2009)
44.		Mistsysteme	18.0	kg N _{tot} / Jahr	Flisch et al. (2009)
45.		Ausscheidungen Anteil N _{lös}	70	% N _{tot}	Expertenschätzung ²
46.	Remonten vor der ersten Besamung	Vollgülle	13.0	kg N _{tot} / Jahr	Flisch et al. (2009)
47.		Mistsysteme	13.0	kg N _{tot} / Jahr	Flisch et al. (2009)
	Geflügel				
48.	Legehennen	Ausscheidungen Anteil N _{iös}	60.0	% N _{tot}	Modellrechnung ³
49.		Hennenmist, -kot ⁴	0.80	kg N _{tot} / Jahr	Flisch et al. (2009)
50.	Junghennen	Ausscheidungen Anteil N _{lös}	60	% N _{tot}	Modellrechnung ³
51.		Junghennenmist, -kot ⁴	0.34	kg N _{tot} / Jahr	Flisch et al. (2009)
52.	Mastpoulets	Ausscheidungen Anteil N _{iös}	60	% N _{tot}	Reidy et al. (2009)
53.		Mist	0.45	kg N _{tot} / Jahr	Flisch et al. (2009)
54.	Masttruten	Ausscheidungen Anteil N _{lös}	60	% N _{tot}	Reidy et al. (2009)
55.		Mist	1.4	kg N _{tot} / Jahr	Flisch et al. (2009)
56.	Anderes Geflügel	Ausscheidungen Anteil N _{iös}	60	% N _{tot}	Reidy et al. (2009)
57.		Mist	0.6	kg N _{tot} / Jahr	Flisch et al. (2009)

-

² Expertenschätzung H. Menzi, P. Spring (SHL Zollikofen) basierend auf Canh (1998)

³ Modellrechnungen basierend auf pers. Mitteilung R. Zweifel, Aviforum, Zollikofen; Reidy et al. (2009)

⁴ Mist fällt in Systemen mit Kotgrube oder Bodenhaltung, Kot in Systemen mit Kotband an.

Berner Fachhochschule Haute école spécialisée bernoise

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

	Tierkategorie			Einheit	Grundlage
	Pferde und übrige Equide	n			
58.	Pferde >3 Jahre	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
59.		Mist	44.0	kg N _{tot} / Jahr	Flisch et al. (2009)
60.	Pferde <3 Jahre	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
61.		Mist	42.0	kg N _{tot} / Jahr	Flisch et al. (2009)
62.	Maultiere, Maulesel	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
63.	. Mist		25.1	kg N _{tot} / Jahr	Agridea, BLW (2007)
64.	/ - /	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
65.	Esel	Mist	15.7	kg N _{tot} / Jahr	Agridea, BLW (2007)
	Kleinwiederkäuer				
66.	Mastschafe	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
67.		Mist	15.0	kg N _{tot} / Jahr	Flisch et al. (2009)
68.	. Milchschafe Ausscheidungen Anteil N _{lös}		40	% N _{tot}	Menzi et al. (1997a)
69.	. Mist		21.0	kg N _{tot} / Jahr	Flisch et al. (2009)
70.	Ziegen	Ausscheidungen Anteil N _{lös}	40	% N _{tot}	Menzi et al. (1997a)
71.		Mist	16.0	kg N _{tot} / Jahr	Flisch et al. (2009)

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

2. Emissionsraten

2.1 Tierhaltung

2.1.1 Weide

	Tierkategorie	ER	Einheit	Grundlage
72.	Rindvieh	8.3	% TAN	Bussink (1992, 1994)
73.	Schweine (Freilandhaltung)	20.0	% TAN	Sommer et al. (2001a)
74.	Pferde und übrige Equiden, Kleinwieder- käuer	12.5	% TAN	vgl. Dokumentation Technische Parameter Modell Agrammon ⁵

2.1.2 Stall und Laufhof

Stall

	Tierkategorie	System	ER	Einheit	Grundlage
75.	Rindvieh	Laufställe	18.3	% TAN	Monteny (2000)
76.	(alle Tierkategorien)	Anbindeställe	6.7	% TAN	UNECE (2007) vgl. Dokumentation Technische
77.		Tiefstreu / Tretmist	18.3	% TAN	Parameter Modell Agrammon
78.		Mehrfläche (nicht belegte Stallplätze) in Laufställen	pro 10% Mehrfläche: 5% Zunahme der Emission bis max. 50% Mehrfläche		
79.	Schweine (alle Tierkategorien)	Konventionelle Ställe	24.3	% TAN	Keck (1997a) vgl. Dokumentation Technische
80.		Labelställe	48.6	% TAN	Parameter Modell Agrammon
81.		Tiefstreu	15.7	% TAN	
82.	Legehennen; Jung- hennen	Mist (Kotgrube, Bodenhaltung)	50.0	% TAN/UAN	EAGER Workshop Januar 2008, UNECE (2007)
83.	Legehennen; Jung- hennen, anderes Geflügel	Kot (Kotbandent- mistung)	25.0	% TAN/UAN	EAGER Workshop Januar 2008
84.	Mastpoulets, Masttruten, anderes Geflügel	Mist	20.0	% TAN/UAN	Reidy et al. (2009)
85.	Pferde und übrige Equiden	Pferdemist	27.5	% TAN	vgl. Dokumentation Technische Parameter Modell Agrammon
86.	Kleinwiederkäuer	Tiefstreu	27.5	% TAN	

 $^{^{\}rm 5}$ Wird zu einem späteren Zeitpunkt auf der Agrammon Homepage aufgeschaltet.

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

Laufhof

	Tierkategorie	System	ER/TP	Einheit	Grundlage
87.	Rindvieh	Laufhof	70	% TAN _{excr}	Keck (1997b), Misselbrook et al. (2001)
		Laufhof Laufstall			
88.		Fütterung im Stall, Aufent- haltsdauer 1-2 h/Tag	10	Anfall Ausscheidungen Laufhof in % ⁶	vgl. Dokumen- tation Techni-
89.			0	Reduktion Ausscheidung im Stall in %	sche Parame- ter Modell Agrammon
90.		Fütterung (Grundfutter) teil- weise im Laufhof, Aufent-	20	Anfall Ausscheidungen Laufhof in % ⁶	, rigitaliinion
91.		haltsdauer 3-4 h/Tag	0	Reduktion Ausscheidung im Stall in %	
92.		Fütterung (Grundfutter) ganz im Laufhof, Aufenthaltsdauer	60	Anfall Ausscheidungen Laufhof in % ⁶	
93.		>10 h/Tag	30	Reduktion Ausscheidung im Stall in %	
		Laufhof Anbindestall			
94.		Fütterung im Stall, Aufent- haltsdauer 1-4 h/Tag	10	Anfall der Ausscheidungen im Laufhof in % an denjeni-	vgl. Dokumen- tation Techni-
95.		Fütterung (Grundfutter) teil- weise im Laufhof, Aufent- haltsdauer 3-4 h/Tag	20	gen Tagen, an welchen sich die Tiere im Laufhof aufhal- ten	sche Parameter Modell Agrammon
96.	Legehennen, Junghennen, Mastpoulets, Masttruten, anderes Geflügel	Freilandauslauf	70	% TAN _{excr}	Menzi et al. (1997c)
97.	Legehennen	Freilandauslauf	12	Anfall der Ausscheidungen	
98.	Junghennen	Freilandauslauf	12	im Freilandauslauf in % an denjenigen Tagen, an wel-	
99.	Mastpoulets, Masttruten, anderes Geflügel	Freilandauslauf	4	chen sich die Tiere im Frei- landauslauf aufhalten	
100.	Pferde und übrige Equiden	Laufhof	35	% TAN _{excr}	vgl. Dokumen- tation Techni- sche Parame- ter Modell Agrammon

-

 $^{^{6}}$ Anfall der Ausscheidungen im Laufhof in % an denjenigen Tagen, an welchen sich die Tiere im Laufhof aufhalten

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

2.2 Hofdüngerlagerung

	Tierkategorie		ER/TA	Einheit	Grundlage
101.	Rindvieh	Vollgülle/Gülle	6	g N/m²/Tag	vgl. Dokumentation Technische Parameter Modell Agrammon
102.		Mist	30	% TAN	EAGER Workshop Januar 2008
103.	Schweine	Gülle	8	g N/m²/Tag	vgl. Dokumentation Technische Parameter Modell Agrammon
104.		Mist	50	% TAN	EAGER Workshop Januar 2008
105.	Legehennen, Jung-	Mist	25	% TAN	EAGER Workshop Januar 2008
106.	hennen, anderes Geflügel	Kot	25	% TAN	EAGER Workshop Januar 2008
107.	Mastpoulets, Masttruten	Mist	10	% TAN	Reidy et al. (2009)
108.	Pferde und übrige Equiden, Kleinwie- derkäuer	Mist	30	% TAN	vgl. Dokumentation Technische Parameter Modell Agrammon
109.	Alle Tierkategorien	Netto-Mineralisierung N _{org} zu TAN in Gülle	10	% N _{tot}	Dämmgen et al. (2006)
110.		Netto-Immobilisierung von TAN im Mist	40	% TAN	Dämmgen et al. (2006)

2.3 Hofdüngerausbringung

	Tierkategorie	Hofdünger	ER	Einheit	Grundlage
111.	Rindvieh	Vollgülle/Gülle	50	% TAN	Sommer et al. (2001b), Sogaard et al. (2002), Menzi et al. (1998), Menzi et al. (1997a)
112.		Mist	80	% TAN	EAGER Workshop Januar 2008
113.	Schweine	Vollgülle/Gülle	40	% TAN	Sogaard et al. (2002)
114.		Mist	80	% TAN	EAGER Workshop Januar 2008
115.	Geflügel	Mist von Legehennen, Junghennen und anderes Geflügel	30	% TAN	Rhode und Karlsson (2002), Menzi et al. (1997b)
116.		Kot von Legehennen, Junghennen und anderes Geflügel	30	% TAN	Menzi et al. (1997b)
117.		Mist von Mastpoulets, Masttruten	65	% TAN	Reidy et al. (2009)
118.	Pferde und übrige Equiden, Kleinwiederkäuer	Mist	70	% TAN	vgl. Dokumentation Technische Parameter Modell Agrammon
119.	Alle Tierkategorien	Gärgülle	53	% TAN	Messner (1988)

2.4 Pflanzenbau (Mineraldünger, Recyclingdünger, Emissionen der landw. Nutzfläche)

	Kategorie	ER	Einheit	Grundlage
120.	Harnstoff	15	% N _{tot}	Van der Weerden und Jarvis (1997)
121.	Übrige mineralische N-Dünger	2	% N _{tot}	
122.	Kompost und festes Gärgut von gewerblich-industriellen Anlagen	80	% TAN	vgl. Dokumentation Technische Parameter Modell Agrammon
123.	Flüssiges Gärgut von gewerblich-industriellen Anlagen	60	% TAN	
124.	Landwirtschaftliche Nutzfläche	2	kg NH ₃ -N / ha LN und Jahr	Schjoerring und Mattsson (2001)

3. Korrekturfaktoren

3.1 Milchleistung von Milchkühen

	Milchleistung	KF**	Einheit	Grundlage
125.	Milchleistung pro 1000 kg pro Jahr höher als 6500 kg*	2	%	Flisch et al. (2009)
126.	Milchleistung pro 1000 kg pro Jahr weniger als 6500 kg	-10	%	Flisch et al. (2009)

^{*} Basiswert Milchleistung: 6500 kg pro Jahr

3.2 Fütterung

3.2.1 Milchkühe

Korrektur der N-Ausscheidung bei Fütterung von Heu, Silage, Kartoffeln und Futterrüben

	Sommerfütterung*	KF**	Einheit	Grundlage
127.	Heu/Emd	-5	%	Berechnet mit Hilfe der Standardration, welche
128.	Maissilage	-8	%	zur Berechnung der N-Ausscheidungen in Flisch et al. (2009) verwendet wurde
129.	Maiswürfel	-4	%	(111, 111

^{*} Dauer der Sommerfütterung: 200 Tage (Anteil 55 % des Jahres)

^{**} KF positiv: Zunahme der N-Ausscheidung, KF negativ: Reduktion der N-Ausscheidung

	Winterfütterung*	KF**	Einheit	Grundlage
130.	Grassilage	2.7	%	Berechnet mit Hilfe der Standardration, welche
131.	Maissilage	-1.6	%	zur Berechnung der N-Ausscheidungen in Flisch et al. (2009) verwendet wurde
132.	Maiswürfel	-1.4	%	(
133.	Kartoffeln	1.0	%	
134.	Futterrüben	1.9	%	

^{*} Dauer der Winterfütterung: 165 Tage (Anteil 45 % des Jahres)

^{**} KF positiv: Zunahme der N-Ausscheidung, KF negativ: Reduktion der N-Ausscheidung

^{**} KF positiv: Zunahme der N-Ausscheidung, KF negativ: Reduktion der N-Ausscheidung

Schweizerische Hochschule für Landwirtschaft SHL Haute école suisse d'agronomie HESA

Berechnung der prozentualen Veränderung der N-Ausscheidung bei Fütterung von Kraftfutter mittels Regression

		a+	b*x	Grundlage
135.	Sommerfütterung	1.04	-0.04	vgl. Dokumentation Technische Parameter Modell
136.	Maissilage	1.01	-0.005	Agrammon

3.2.2 Schweine

Standardgehalte des Futters

	Tierkategorie		Einheit	Grundlage	
137.	Galtsauen/Eber	14.5	% Rohprotein	Rohprotein Gehalt von Stan-	
138.	Säugende Sauen	16.5	% Rohprotein	dardfutter nach Flisch et al. (2009)	
139.	Absetzferkel	17.5	% Rohprotein		
140.	Mastschweine	17.0	% Rohprotein		
141.	Galtsauen/Eber	12.5	MJ VES	VES Gehalt von Standardfutter	
142.	Säugende Sauen	12.5	MJ VES	nach Agridea, BLW (2009)	
143.	Absetzferkel	13.5	MJ VES		
144.	Mastschweine	13.5	MJ VES		

Reduktion der N-Ausscheidung pro Gramm Reduktion des Rohproteingehalts des Futters

	Tierkategorie	KF*	Einheit	Grundlage
145.	Galtsauen	-0.54	%	Agridea, BLW (2009)
146.	Eber	-0.52	%	
147.	Säugende Sauen	-0.70	%	
148.	Abgesetzte Ferkel	-0.72	%	
149.	Mastschweine	-0.80	%	

^{*} KF negativ: Reduktion der Ammoniakemissionen

Minimaler N-Anfall

	Tierkategorie		Einheit	Grundlage
150.	Galtsauen	17.5	kg N _{tot} / Jahr	Minimal mögliche Ausscheidung
151.	Eber	15.5	kg N _{tot} / Jahr	nach LBL, SRVA, BLW (2003) ⁷
152.	Säugende Sauen	35.3	kg N _{tot} / Jahr	
153.	Abgesetzte Ferkel	3.8	kg N _{tot} / Jahr	
154.	Mastschweine	10.9	kg N _{tot} / Jahr	

⁷ Wird angepasst, sobald eine revidierte Version von Agridea, BLW (2009) vorliegt.

● ● ● Haute école spécialisée bernoise
■ Schweizerische Hochschule
für Landwirtschaft SHL
Haute école suisse d'agronomie HESA

Berechnung des Futteranteils pro Mastphase am Gesamtverzehr über die gesamte Mastdauer bei Phasenfütterung der Mastschweine

	2-Phasenfütterung		Einheit	Grundlage	
155.	55. Anteil des Futters von Phase 1 am Gesamtverzehr über die gesamte Mastdauer		%	vgl. Dokumentation Technische Parameter Modell Agrammon	
156.	Anteil des Futters von Phase 2 64.1 % am Gesamtverzehr über die gesamte Mastdauer		%		

	3-Phasenfütterung		Einheit	Grundlage
157.	Anteil des Futters von Phase 1 am Gesamtverzehr über die gesamte Mastdauer	15.1	%	vgl. Dokumentation Technische Parameter Modell Agrammon
158.	Anteil des Futters von Phase 2 am Gesamtverzehr über die gesamte Mastdauer	32.1	%	
159.	Anteil des Futters von Phase 3 am Gesamtverzehr über die gesamte Mastdauer	52.8	%	

3.3 Stall

3.3.1 Rindvieh

	Tierkategorie	Emissionsmindernde Massnahme	KF*	Einheit	Grundlage
160.		Gerillter Boden und ge- zahnter Kotschieber im Laufstall	-25	%	Emissionsmindernde Massnahme (Kategorie 1) nach UNECE (2007) für Stallsysteme mit Teilspaltenböden

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.3.2 Schweine

Korrektur der Ammoniakemissionen für Stallsysteme mit Teilspaltenböden

	Tierkategorie	Emissionsmindernde Massnahmen	KF*	Einheit	Grundlage
161.	Schweine	mit Kotschieber; Betonspaltenboden	-40	%	Emissionsmindernde
162.		mit Kotschieber; Metallspaltenboden	-50	%	Massnahmen (Kate- gorie 1) nach UNECE
163.		mit Spülkanälen; keine Belüftung	-50	%	(2007) für Stallsyste-
164.		mit Spülkanälen; Belüftung	-60	%	me mit Teilspaltenbö- den
165.		mit Spülrinnen/-rohren; keine Belüftung	-60	%	
166.		mit Spülrinnen/-rohren; Belüftung	-60	%	
167.		mit Güllekanal/geneigten Seitenwänden/ Betonspaltenboden	-60	%	
168.		mit Güllekanal/geneigten Seitenwänden/ Metallspaltenboden	-65	%	

^{*} KF negativ: Reduktion der Ammoniakemissionen

Korrektur der Ammoniakemissionen von Ställe mit Abluftreinigung

	Tierkategorie	Abluftreinigung: Typ	KF*	Einheit	Grundlage
169.	Schweine	Chemischer Wäscher	-90		Emissionsmindernde Massnahmen (Kate-
170.		Biowäscher	-70	%	gorie 1) nach UNECE (2007)

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.3.3 Geflügel

Korrektur der Ammoniakemissionen von Ställen in Abhängigkeit des Tränkesystems

	Tierkategorie	Tränkesystem	KF*	Einheit	Grundlage
171.	Geflügel	Tränkenippel	0	%	Basisvariante
172.		Wasserbehälter	20	%	vgl. Dokumentation Technische Parameter Modell Agrammon

^{**} KF positiv: Zunahme der Ammoniakemissionen

Korrektur der Ammoniakemissionen von Geflügelställen mit Kotbandentmistung

	Tierkategorie	Entmistungsintervall	KF*	Einheit	Grundlage
173.	Legehennen,	Weniger als 2 mal pro Monat	0	%	Empirische Annahme,
174.	Junghennen	2 mal pro Monat	20	%	Grundlage Menzi et al. (1997a)
175.		3 bis 4 mal pro Monat	-20	%	,
176.		Mehr als 4 mal pro Monat	-40	%	

^{*} KF positiv: Zunahme der Ammoniakemissionen, KF negativ: Reduktion der Ammoniakemissionen

Korrektur der Ammoniakemissionen von Ställen mit Abluftreinigung

	Tierkategorie	Abluftreinigung: Typ	KF*	Einheit	Grundlage
177.	Geflügel	Chemischer Wäscher	-70	%	Angepasst nach UNECE (2007)
178.		Biowäscher	-70	%	

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.4 Laufhof

Korrektur der Ammoniakemissionen in Abhängigkeit der Laufhofoberfläche

	Tierkategorie	Oberfläche Laufhof	KF*	Einheit	Grundlage
179.	,	erde und dere Oberfläche unbefestigt		%	Basisvariante
180.	andere Equiden			-50 % Empirische Annahme Reid 50% von TAN wird durch of fläche absorbiert	
181.	Rindvieh	Oberfläche perforiert	-80	%	Empirische Annahme Reidy/Menzi: 80% Reduktion auf perforierter Oberfläche
182.	Rindvieh, Pferde und andere Equiden	Weide als Winteraus- lauf	-90	%	Empirische Annahme Reidy/Menzi: Verluste wie auf Weide

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.5 Weide

Reduktion der Stallemissionen an Weidetagen

	Tierkategorie	Weidedauer	KF*	Einheit	Grundlage
183.	Rindvieh, Pferde und andere	<5 Stunden/Tag	0	%	Nach Menzi et al. (1997a)
184.	Equiden sowie Kleinwieder- käuer	5 bis 12 Stunden/Tag	-20	%	Nach Menzi et al. (1997a)
185.		12 bis 22 Stunden/Tag	-50	%	Nach Menzi et al. (1997a)
186.		≥22 Stunden/Tag	-100	%	Nach Menzi et al. (1997a)

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.6 Hofdüngerlagerung

3.6.1 Abdeckung der Güllegrube

	Abdeckung der Güllegrube	KF*	Einheit	Grundlage
187.	Keine Abdeckung	0	%	Basisvariante (UNECE, 2007)
188.	Fest (Beton, Holz)	-90	%	Abgeleitet aus UNECE (2007)
189.	Perforiert	-40	%	Empirische Annahme Reidy/Menzi
190.	Folien / Folienzelt	-60	%	Dokumentation Technische Parameter Modell
191.	Schwimmfolie	-80	%	Agrammon
192.	Natürliche Schwimmschicht	-40	%	UNECE (2007)

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.6.2 Häufigkeit Aufrühren von Gülle

	Häufigkeit Aufrühren von Gülle	KF*	Einheit	Grundlage
193.	max. 2 mal jährlich	-10	%	Grundlage DeBode (1990), Sommer et al. (1993),
194.	3-6 mal pro Jahr	-5	%	Menzi et al. (1997a), Schwimmschicht nimmt nicht proportional zum Rühren ab
195.	7-12 mal pro Jahr	0	%	Basisvariante
196.	13-20 mal pro Jahr	10	%	Empirische Annahme Reidy/Menzi, ca. 2% TAN
197.	21-30 mal pro Jahr	20	%	Verlust pro Aufrühren
198.	>30 mal pro Jahr	30	%	

^{*} KF positiv: Zunahme der Ammoniakemissionen, KF negativ: Reduktion der Ammoniakemissionen

3.6.3 Abdeckung des Lagers von Geflügelmist oder -kot

	Abdeckung	KF*	Einheit	Grundlage
199.	Keine Abdeckung	0	%	Basisvariante
200.	Abdeckung	-40	%	Empirische Annahme Reidy/Menzi, 50% der Wir- kung der festen Gülleabdeckung nach UNECE (2007)

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.7 Hofdüngerausbringung

3.7.1 Basis zur Berechnung der Ausbringverluste

	Parameter		Einheit	Grundlage	
201.	Menge	30	m ³ pro Gabe und ha	Menzi und Katz (1997)	
202.	TAN Gehalt der Gülle	1.15	kg TAN / m ³	Flisch et al. (2009)	
203.	Sättigungsdefizit der Luft	4.2	%	Menzi et al. (1998)	

3.7.2 Ausbringtechnik Gülle

	Ausbringtechnik Gülle	KF*	Einheit	Grundlage
204.	Prallteller/Werfer	0	%	Basisvariante UNECE (2007)
205.	Schleppschlauch	-30	%	UNECE (2007)
206.	Gülledrill	-70	%	UNECE (2007)
207.	tiefe Injektion	-80	%	UNECE (2007)
208.	Schleppschuhe	-50	%	Frick und Menzi (1997)

^{*} KF negativ: Reduktion der Ammoniakemissionen

3.7.3 Berücksichtigung von Tageszeit und Witterung bei der Ausbringung von Gülle

	Massnahme	KF*	Einheit	Grundlage
209.	Ausbringen der Gülle nach 18h00	-20	% pro m ³	Menzi et al. (1997a)
	Ausbringen an heissen Tagen			
210.	häufig	10	%	Menzi et al. (1997a)
211.	manchmal	0	%	Basisvariante
212.	selten	-10	%	Menzi et al. (1997a)
213.	nie	-20	%	Menzi et al. (1997a)

^{*} KF positiv: Zunahme der Ammoniakemissionen, KF negativ: Reduktion der Ammoniakemissionen

3.7.4 Berücksichtigung der Jahreszeit bei der Ausbringung von Gülle und Mist

	Massnahme	KF*	Einheit	Grundlage
214.	Ausbringung im Sommer (Juni, Juli, August)	15	•	Dokumentation Technische
215.	Ausbringung von September bis und mit Mai	-5	% pro m ³ oder t	Parameter Modell Agram- mon

^{*} KF positiv: Zunahme der Ammoniakemissionen, KF negativ: Reduktion der Ammoniakemissionen

3.7.5 Einarbeitung von Mist von Rindern oder Schweinen nach der Ausbringung

	Zeitpunkt der Einarbeitung nach dem Ausbringen	KF*	Einheit	Grundlage
216.	innerhalb von 1 Stunde	-90	%	UNECE (2007)
217.	innerhalb von 4 Stunden	-70	%	UNECE (2007)
218.	innerhalb von 8 Stunden**	-50	%	UNECE (2007)
219.	innerhalb von 1 Tag	-35	%	UNECE (2007)
220.	innerhalb von 3 Tagen	-30	%	Menzi et al. (1997b)
221.	innerhalb von mehr als 3 Tagen	-10	%	Menzi et al. (1997b)
222.	Keine Einarbeitung	0	%	Basisvariante

^{*} KF negativ: Reduktion der Ammoniakemissionen

^{**} gemäss UNECE (2007) Einarbeitung innerhalb von 12 Stunden

Haute école spécialisée bernoise
 Schweizerische Hochschule für Landwirtschaft SHL

Haute école suisse d'agronomie HESA

3.7.6 Einarbeitung von Geflügelmist nach der Ausbringung

	Zeitpunkt der Einarbeitung nach dem Ausbringen	KF*	Einheit	Grundlage
223.	innerhalb von 1 Stunde	-95	%	UNECE (2007)
224.	innerhalb von 4 Stunden	-80	%	UNECE (2007)
225.	innerhalb von 8 Stunden**	-70	%	UNECE (2007)
226.	innerhalb von 1 Tag	-55	%	UNECE (2007)
227.	innerhalb von 3 Tagen	-30	%	Menzi et al. (1997b)
228.	innerhalb von mehr als 3 Tagen	-10	%	Menzi et al. (1997b)
229.	Keine Einarbeitung	0	%	Basisvariante

^{*} KF negativ: Reduktion der Ammoniakemissionen

4. Abkürzungen

ER	Emissionsrate
KF	Korrekturfaktor
N	Stickstoff
NH ₃ -N	Ammoniakstickstoff
N _{lös}	Löslicher Stickstoff (Ammonium und Nitrat)
N _{org}	Organischer Stickstoff
N _{tot}	Gesamtstickstoff
TAN	Englisch: T otal A mmoniacal N itrogen (NH ₃ -N + NH ₄ -N). TAN ist dem löslichen Stickstoff gleichzusetzen, da der Gehalt an Nitrat in den Hofdüngern sehr niedrig ist.
TAN _{excr}	Ausgeschiedener löslicher Stickstoff
UAN	Harnsäure Stickstoff (engl. Uric Acid Nitrogen)
VES	Verdauliche Energie Schwein

^{**} gemäss UNECE (2007) Einarbeitung innerhalb von 12 Stunden

5. Referenzliste

- Agridea, BLW. 2007. Wegleitung Suisse-Bilanz, Änderungen 2007 / 2008
- Agridea, BLW. 2009. Weisungen zur Berücksichtigung von nährstoffreduziertem Futter in der Suisse-Bilanz. Zusatzmodul 6: Lineare Korrektur nach Futtergehalten, Zusatzmodul 7: Import/Export-Bilanz. Auflage 1.2, Jan. 2009.
- Borka, G. 1998. Modelluntersuchung zur Bestimmung der Ammoniakemissionen aus Rinderexkrementen im Stallbereich. Diss. ETH Nr. 12830.
- Bussink, D.W. 1994. Relationships between ammonia volatilization and nitrogen-fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertilizer Research 38(2), 111-121.
- Bussink, D.W. 1992. Ammonia volatilization from grassland receiving nitrogen-fertilizer and rotationally grazed by dairy-cattle. Fertilizer Research 33(3), 257-265.
- Canh, T.T. 1998. Ammonia emission from excreta of growing-finishing pigs as affected by dietary composition. Dissertation. Wageningen.
- Dämmgen, U., Lüttich, M., Haenel, H.-D., Döhler, H., Eurich-Menden, B., Osterburg, B. 2006. Berechnungen der Emissionen aus der deutschen Landwirtschaft Nationaler Emissionsbericht (NIR) 2007 für 2005 Methoden und Daten (GAS-EM). Federal Agricultural Research Centre (FAL), Institute of Agroecology, Bundesallee 50, 38116 Braunschweig, Germany.
- DeBode, M.J.C. 1990. Vergleich der Ammoniakemissionen aus verschiedenen Flüssigmistlagersystemen. In: Ammoniak in der Umwelt. Hrsg.: KTBL und VDI, Münster, 34:1-13.
- Flisch, R., Sinaj, S., Charles, R., Richner, W. 2009. Grundlagen für die Düngung im Acker- und Futterbau Kapitel 11-14. Agrarforschung 16(2), 50-71.
- Keck, M. 1997a. Beeinflussung von Raumluftqualität und Ammoniakemission aus der Schweinehaltung durch verfahrenstechnische Massnahmen. Forschungsbericht Agrartechnik, 299. Institut für Agrartechnik, Universität Hohenheim.
- Keck, M. 1997b. Ammonia emission and odour thresholds of cattle houses with exercise yards. In: Voermans, J.A.M. and Monteny, G.J. (Eds): Ammonia and odour emissions from animal production facilities, Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 349-354.
- Kulling, D.R., Menzi, H., Sutter, F., Lischer, P., Kreuzer, M. 2003. Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutrient Cycling in Agroecosystems 65(1), 13-22.
- LBL, SVRA, BLW. 2003. Weisungen zur Berücksichtigung von Ökofuttern in der Suisse-Bilanz. Auflage 1.0, Januar 2003.
- Loretz, C., Hauser, R. 1997. Behornte Ziegen im Laufstall? Zusätzliche Fressplätze reduzieren Probleme der rangtiefen Tiere. FAT-Berichte 606.
- Menzi, H, Katz, P.E. 1997. A differentiated approach to calculate ammonia emissions from animal husbandry. In: Voermans, J.A.M. and Monteny, G.J. (Eds): Ammonia and odour emissions from animal production facilities, Proc. International Symposium, Vinkeloord, NL, 6-10 October 1997, 35-42.

- ● Haute école spécialisée bernoise
 Schweizerische Hochschule
 für Landwirtschaft SHL
 Haute école suisse d'agronomie HESA
- Menzi, H., Frick, R., Kaufmann, R. 1997a. Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Schriftenreihe der FAL 26. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich Reckenholz, 107 S.
- Menzi, H., Katz, P. E., Fahrni, M., Neftel, A., Frick, R. 1998. A simple empirical model based on regression analysis to estimate ammonia emissions after manure application. Atmospheric Environment 32(3), 301-307.
- Menzi, H., Keller, M., Katz, P., Fahrni, M., Neftel, A. 1997b. Ammoniakverluste nach der Anwendung von Mist. Agrarforschung 4(8), 328-331.
- Menzi, H., Shariatmadari, H., Meierhans, D., Wiedmer, H. 1997c. Nähr- und Schadstoffbelastung von Geflügelausläufen. Agrarforschung 4(9), 361-364.
- Messner, H. 1988. Düngewirkung anaerob fermentierter und unbehandelter Gülle, Fakultät für Landwirtschaft und Gartenbau der Technischen Universität München.
- Misselbrook, T. H., Webb, J., Chadwick, D. R., Ellis, S., Pain, B. F. 2001. Gaseous emissions from outdoor concrete yards used by livestock. Atmospheric Environment 35(31), 5331-5338.
- Monteny, G.J. 2000. Modelling of ammonia emissions from dairy cow houses. Thesis Wageningen University.
- Reidy, B., Webb, J., Misselbrook, T.H., Menzi, H., Luesink, H.H., Hutchings, N.J., Eurich-Menden, B., Doher, H., Dammgen, U. 2009. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems. Atmospheric Environment 43(9): 1632-1640.
- Schjoerring, J. K., Mattsson, M. 2001. Quantification of ammonia exchange between agricultural cropland and the atmosphere: measurements over two complete growth cycles of oilseed rape, wheat, barley and pea. Plant and Soil 228(1), 105-115.
- Sommer, S.G., Christensen, B.T., Nielsen, N.E., Schjorring, J.K. 1993. Ammonia volatilization during storage of cattle and pig slurry effect of surface cover. Journal of Agricultural Science 121, 63-71.
- Sommer, S.G., Sogaard, H.T., Moller, H. B., Morsing, S. 2001a. Ammonia volatilization from sows on grassland. Atmospheric Environment 35(11), 2023-2032.
- Sommer, S.G., Hutchings, N.J., Carton, OT. 2001b. Ammonia losses from field applied animal manure. DIAS Report No. 60.
- Sogaard, H.T., Sommer, S.G., Hutchings, N.J., Huijsmans, J.F.M., Bussink, D.W., Nicholson, F. 2002. Ammonia volatilization from field-applied animal slurry the Alfam Model. Atmospheric Environment 36(20), 3309-3319.
- UNECE. 2007. Guidance document on control techniques for Preserving and abating emissions of ammonia. United Nations Economic and Social Council, Geneva, Switzerland (http://daccessdds.un.org/doc/UNDOC/GEN/G07/237/85/PDF/G0723785.pdf?OpenElement)
- Vanderweerden, T.J., Jarvis, S.C. 1997. Ammonia emission factors for N fertilizers applied to two contrasting grassland soils. Environmental Pollution 95(2), 205-211.