Theoretical modeling of the collective tunneling of a Wigner necklace

Dominik Szombathy, ^{1, 2} Miklós Antal Werner, ^{1, 2} Cătălin Paşcu Moca, ^{1, 3} and Gergely Zaránd ^{1, 2} ¹Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary ²MTA-BME Quantum Dynamics and Correlations Research Group, Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary ³Department of Physics, University of Oradea, 410087, Oradea, Romania (Dated: December 8, 2022)

10⁰

To be written.

INTRODUCTION

FIG. 3: Experimental and theoretical calculation of the tunnel splitting in the quartic potential

FIG. 2: Experimental and theoretical calculation of the tunnel splitting in the quartic potential

FIG. 4: Comparison between the theoretical and the experimental polarization

SUPMAT FIGURES

FIG. 5: Perpendicular tunnel splitting factors for 1,3,5 and 7 particles

FIG. 6

FIG. 7