Electricidade

Capítulo 5. Métodos Gerais de Análise

Pedro Guimarães . 2010. psg@isep.ipp.pt

Métodos Gerais de Análise

- Análise de circuitos
 - Para que serve ? Qual o objectivo ?
 - Calcular a tensão e a corrente em cada elemento do circuito.
 - Lei de Ohm

$$V = R \cdot I$$

Leis de Kirchhoff

Métodos Gerais de Análise - Circuitos Mistos

Método da resistência equivalente

 Utilizada em circuitos formados por diversas resistências ligadas em série e paralelo, alimentadas por uma única fonte de alimentação E

Passos

- 1º Passo: Calcular a resistência equivalente do circuito vista dos terminais da fonte única.
- 2º Passo: Calcular a corrente que passa pela fonte, por aplicação da lei de Ohm (dividindo o valor da f.e.m. da fonte pelo valor da resistência obtido no passo anterior).
- 3º Passo: Aplicando criteriosamente as leis de Kirchhoff e de Ohm, calcular todas as outras tensões e correntes

Método da resistência equivalente

Exemplo

■ 1º Passo : Calcular a resistência equivalente do circuito vista dos terminais da fonte única.

$$R_{equivalente} = \{ [(2+4)//6] + 5 \} / / 8 + 2 = 6 \Omega$$

■ 2º Passo: Calcular a corrente que passa pela fonte, por aplicação da lei de Ohm.

$$I_{fonte} = \frac{12V}{6\Omega} = 2A$$

■ 3º Passo: Aplicação das leis de Kirchhoff e de Ohm

Pedro Guimarães - ISEP

- 1º Passo: Identificar as incógnitas fictícias
- Escolher **M malhas linearmente independentes** no circuito, preferencialmente fazendo a escolha ideal de malhas.

$$M = R - (N-1)$$

- N número de nós
- R número de ramos
- Escolha ideal de malhas: malhas que cobrem áreas não sobrepostas do diagrama do circuito e que, no conjunto, cobrem toda a área do diagrama (o seu número é sempre igual a M= R-(N-1)
- Atribuir a cada malha uma corrente fictícia de circulação (sem existência física), designada por corrente de malha (I₁₁, I₂₂, ..., I_{MM}), atribuindo um sentido.

_ 2º Passo: Resolver o sistema - base (Forma analítica) _

- Estabelecer as M equações de malha, em função das correntes de malha.
- Resolver este sistema-base de M equações a M incógnitas.

$$I_{11}(R_A + R_B) - I_{22} \cdot R_B - I_{33} \cdot 0 = E_1$$

$$-I_{11} \cdot 0 - I_{22} \cdot R_E + I_{33} (R_F + R_E) = -E_2$$

- 2º Passo: Resolver o sistema - base (Forma matricial)

Construir a matriz de forças electromotrizes e resistências

$$\begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \end{bmatrix} = \begin{bmatrix} R_{11} & -R_{12} & -R_{13} \\ -R_{21} & R_{22} & -R_{23} \\ -R_{31} & -R_{32} & R_{33} \end{bmatrix} \begin{bmatrix} I_{11} \\ I_{22} \\ I_{33} \end{bmatrix}$$

$$R_{ii}$$
 $(1 \le i \le M)$

- São os coeficientes da diagonal principal da matriz do sistema.
- Representam a resistência própria da malha i, ou seja, a soma de todas as resistências pertencentes à malha i.
- Têm sempre sinal positivo

$$R_{ij} = R_{ji}$$
 Estes dois coeficientes representam ambos a resistência comum entre as malhas i e j (soma de todas as resistências pertencentes, simultaneamente, às malhas i e j).

$$\begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \end{bmatrix} = \begin{bmatrix} R_A + R_B & -R_B & 0 \\ -R_B & R_C + R_D + R_B + R_E & -R_E \\ 0 & -R_E & R_E + R_F \end{bmatrix} \begin{bmatrix} I_{11} \\ I_{22} \\ I_{33} \end{bmatrix}$$

 E_i

- Representam a soma algébrica das f.e.ms.
- Da malha i (cada f.e.m. Aparece com o sinal + ou **conforme o seu sentido coincida ou não com o sentido de circulação** da corrente I_{ii}, ou seja, com o sentido arbitrado de circulação na malha).

 I_{ii}

- São as M incógnitas fictícias que pretendemos calcular.
- Representam a corrente fictícia de cada malha.

$$\begin{bmatrix} E_1 \\ 0 \\ -E_2 \end{bmatrix} = \begin{bmatrix} R_A + R_B & -R_B & 0 \\ -R_B & R_C + R_D + R_B + R_E & -R_E \\ 0 & -R_E & R_E + R_F \end{bmatrix} \begin{bmatrix} I_{11} \\ I_{22} \\ I_{33} \end{bmatrix}$$

 Calcular a intensidade das malhas aplicando o método de Cramer

$$\begin{bmatrix} E_1 \\ 0 \\ -E_2 \end{bmatrix} = \begin{bmatrix} R_A + R_B & -R_B & 0 \\ -R_B & R_C + R_D + R_B + R_E & -R_E \\ 0 & -R_E & R_E + R_F \end{bmatrix} \begin{bmatrix} I_{11} \\ I_{22} \\ I_{33} \end{bmatrix}$$

$$I_{11} = \begin{vmatrix} E_1 & -R_B & 0 \\ 0 & R_C + R_D + R_B + R_E & -R_E \\ -E_2 & -R_E & R_E + R_F \end{vmatrix}$$

$$R_A + R_B & -R_B & 0 \\ -R_B & R_C + R_D + R_B + R_E & -R_E \\ 0 & -R_E & R_E + R_F \end{vmatrix}$$

3º Passo: Obter as correntes nos ramos

- Em cada ramo a corrente real será igual à soma algébrica das correntes de malha que passam por esse ramo.
- A corrente em cada ramo será a soma algébrica das correntes fictícias que passam nesse ramo. Se for feita a escolha ideal de malhas, é fácil constatar que:
 - Cada ramo só pode pertencer a **uma ou a duas malhas** (conforme for um ramo da periferia ou do interior do diagrama do circuito, respectivamente).
 - Se pertencer a duas malhas, os sentidos arbitrados para as duas correntes fictícias são contrários.

Pedro Guimarães – ISEP 12

Exercício

■ Calcular a intensitade de corrente que circula na resistência de $2k\Omega$.

– Resumo ——

- Um resultado positivo da corrente significa que o sentido arbitrado está correcto e portanto deve ser mantido
- Um resultado negativo de corrente significa que o sentido arbitrado está incorrecto e, portanto dever ser invertido.

- Nos ramos comuns a duas malhas, a corrente total corresponde à soma algébrica das correntes fictícias encontradas, já com o sentido corrigido
- Com as correntes nos ramos determinadas, calcula-se as tensões nos diversos bipolos receptores do circuito.

Pedro Guimarães – ISEP 18

1. No circuito abaixo, determinar as correntes e tensões em todos os bipolos

Dados:
$$E_1 = 20 \text{ V}$$

 $E_2 = 10 \text{ V}$
 $E_3 = 5 \text{ V}$
 $R_1 = R_3 = R_5 = 100 \Omega$
 $R_2 = R_4 = 330 \Omega$

2. Determinar as correntes e as tensões em todos os bipolos do circuito ao lado pelo método mais adequado

Dados:
$$E_1 = E_3 = 20 \text{ V}$$

 $E_2 = E_4 = 10 \text{ V}$
 $R_1 = R_2 = 22 \Omega$
 $R_3 = R_4 = 47 \Omega$

3. Determine as correntes e as tensões em todos os bipolos do circuito da figura seguinte

Dados:
$$E_1 = E_3 = E_5 = 9 \text{ V}$$

 $E_2 = E_4 = 6 \text{ V}$
 $R_1 = R_3 = R_5 = R_7 = R_9 = 100 \Omega$
 $R_2 = R_4 = R_6 = R_8 = R_{10} = 200 \Omega$

- **4**. Observe a figura seguinte em que : E₁= 24 V, E₂ = 12V, E₃=6V , r₁= 0,6 Ω , r₂= 0,5 Ω , r₃=0,4 Ω , R =2 Ω , R₁= 1,5 Ω , R₂= 2,3 Ω
 - a) Calcule as correntes no circuito. Indique, no final, os sentidos correctos das correntes
 - b) Calcule a diferença de potencial entre A e B
 - c) Calcule a potência dissipada em R
 - d) Indique os geradores e os receptores de força contra-electromotriz

R: a) 9,284 A; 7,032 A; 2,252 A; b) 4,5 V; c) 10,1 W; d) E₁, E₂ e E₃ são geradores

- **5**. O circuito representado tem os seguintes valores: E_1 = 3 V, E_2 = 6 V, E_3 = 9V , r_1 = 0,15 Ω , r_2 = 0,2 Ω , r_3 =0,35 Ω , R_1 = 0,3 Ω , R_2 = 0,4 Ω , R_3 = 0,5 Ω
- a) Calcule as correntes no circuito. Indique, no final, os sentidos correctos das correntes
- b) As quedas de tensão em R₁, R₂ e R₃
- c) A diferença de potencial entre A e B
- d) A potência dissipada em cada resistência
- e) A potência total dissipada no circuito

R: a) 5,29 A; 1,03 A; 4,26 A; b) 1,59 V; 0,41 V; 2,13 V; c) 5,38 V; d) 8,4 W; 0,42 W; 9,1 W; 4,2 W; 0,21 W; 6,4 W; e) 28,7 W

6. O circuito representado tem os seguintes valores: E₁= 9 V, E₂ = 2 V, E₃= 4,5V , E4= 6V, r_1 = 0,25 Ω , r_2 = 0,2 Ω , r_3 =0,15 Ω , r_4 = 0,1 Ω , R= 5 Ω

Calcule

- a) As correntes no circuito. Indique, no final, os sentidos correctos das correntes
- b) As tensões medidas pelos dois voltímetros.

F1 P F3

R: a) 2,91 A; 2,14 A; 0,77 A; b) 3,66 V; 10,7 V

 O teorema de Thevenin aplica-se nos casos em que desejamos simplificar um circuito complexo por um mais simples equivalente

■ O teorema de Thevenin aplica-se nos casos em que desejamos simplificar um circuito

complexo por um mais simples equivalente

Calculo de R_{TH}

Para calcularmos o R_{TH}, devemos considerar todos os geradores de tensão (entre os pontos A e
 B) em curto-circuito e o geradores de corrente em aberto, calculando assim a resistência equivalente entre os pontos A e B

 O teorema de Thevenin aplica-se nos casos em que desejamos simplificar um circuito complexo por um mais simples equivalente

Calculo de E_{TH}

Para calcular o E_{TH}, devemos utilizar os métodos estudados para obter uma tensão entre os pontos
 A e B (estes em vazio)

— Exemplo

■ No circuito abaixo, determine a corrente e tensão na resistência R_x :

Dados:
$$E_1$$
= 15 V
 E_2 = 10 V
 R_1 = 150 Ω
 R_2 = 100 Ω
 R_X = 1k Ω

 $V = R \cdot I$

■ Primeiro, retiramos R_X e calculamos a tensão E_{TH} entre A e B:

$$E_1 - E_2 = V_1 + V_2 \Rightarrow E_1 - E_2 = R_2 I + R_1 I$$

 $15 - 10 = (100 + 150)I \Rightarrow I = \frac{5}{250} = 20 \text{ mA}$

$$E_{TH} = E_2 + V_2$$

 $E_{TH} = 10 + 100.200 \times 10^{-3}$
 $E_{TH} = 12 \text{ V}$

■ De seguida substitui-se os geradores de tensão E₁ e E₂ por curto-circuitos e calcula-se a resistência R_{TH} entre A e B, visto pela resistência R_X

$$R_{TH} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_{TH} = \frac{(150) \cdot (100)}{150 + 100}$$

$$R_{TH} = 60 \Omega$$

 Com o gerador de Thévenin determinado, liga-se novamente R_X entre A e B e calcula-se a tensão V_X e I_X

$$V_{X} = \frac{R_{X}}{R_{TH} + R_{X}} \cdot E_{TH}$$

$$V_{X} = \frac{1000}{60 + 1000} \cdot 12$$

$$V_{X} = 11,32 \text{ V}$$

$$I_X = \frac{V_X}{R_X} = \frac{11,32}{1000}$$

 $I_X = 11,32 \text{ mA}$

<u>7.</u> Determine o equivalente de Thevenin entre os pontos A e B para o circuito da figura seguinte.

8. Determine o equivalente de Thevenin entre os pontos A e B para o circuito da figura seguinte.

9. Dado o circuito, determine a corrente e a tensão na carga R_L , pelo método de Thevenin, para cada um dos valores seguintes que ela pode assumir: R_{L1} = 100 Ω ; R_{L2} = 500 Ω ; R_{L3} = 1K5 Ω

Dados: $E_1 = 20 \text{ V}$ $E_2 = 40 \text{ V}$ $R_1 = 1 \text{ k}\Omega$ $R_2 = 470 \Omega$

28

Apêndice

Máquina de calcular

Pedro Guimarães – ISEP

Máquina de calcular

$$8I_1 + 4I_2 + 1I_3 = 7$$

 $2I_1 - 5I_2 + 6I_3 = 3$
 $3I_1 + 3I_2 - 2I_3 = -5$

	a1,1x1+a1,2x2+a1,3x3=				
	a1	a2	аз	b1	
1	8	4	1	7	
2	2	-5	6	3	
3	3	3	-2	- 5	

Solution X1=-56/15 X2=109/15 X3=39/5

Métodos para solução analítica de sistemas de equações—

Método das Substituições: Partindo de uma das equações do sistema, isola-se uma das incógnitas, substituindo-a em outras equações até que se chegue a uma equação com uma única incógnita, possibilitando a determinação dessa e das demais incógnitas.

Exemplo:

$$\begin{cases} x_1 - x_2 = -3 & (I) \\ 2.x_1 + 3.x_2 = 4 & (II) \end{cases}$$

Da equação *I*, tem-se:

$$x_1 = -3 + x_2$$

Substituindo x1 na equação II:
$$2.(-3+x2)+3.x2=4 \Rightarrow -6+2.x2+3.x2=4 \Rightarrow 5.x2=10 \Rightarrow x2=2$$

Substituindo x2 na equação I: $x_1 - 2 = -3 \Rightarrow x_1 = -1$

$$xi - 2 = -3 \Rightarrow xi = -1$$

Portanto, a solução do sistema é: $(x_1; x_2) = (-1; 2)$

$$(x_1; x_2) = (-1; 2)$$

Método das Adições: Multiplica-se uma ou mais equações por valores tais que a adição delas resulte em novas equações até que uma delas tenha uma única incógnita, possibilitando a determinação dessa e das demais incógnitas.

Exemplo:

$$\begin{cases} x_1 - x_2 = -3 & (1) \\ 2.x_1 + 3.x_2 = 4 & (II) \end{cases} \Rightarrow \begin{cases} x_1 - x_2 = -3 & (-2) \\ 2.x_1 + 3.x_2 = 4 \end{cases} \Rightarrow \begin{cases} -2.x_1 + 2.x_2 = 6 & (1) \\ 2.x_1 + 3.x_2 = 4 & (II) \end{cases}$$

Somando as equações
$$I \in II$$
, tem-se:
$$\begin{cases} 5.x2 = 10 & (III) \\ 2.xi + 3.x2 = 4 & (II) \end{cases}$$

Da equação III, tem-se:

$$5.x_2 = 10 \Rightarrow x_2 = 2$$

Substituindo x2 na equação II:

$$2x_1 + (3.2) = 4 \Rightarrow 2x_1 = -2 \Rightarrow x_1 = -1$$

Portanto, a solução do sistema é:

$$(x_1; x_2) = (-1; 2)$$

Métodos para solução matricial de sistemas de equações—

Matrizes de Sistemas Lineares

Considere o seguinte sistema linear genérico:

Esse sistema de equações pode ser representado matricialmente da seguinte forma:

$$\begin{bmatrix} a11 & a12 & . & a1j \\ a21 & a22 & . & a2j \\ . & . & . & . \\ ai1 & ai2 & . & aij \end{bmatrix} \quad \begin{bmatrix} x_1 \\ x_2 \\ . \\ x_j \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ . \\ b_i \end{bmatrix}$$
matriz II matriz III

Além dessa representação, interessa-nos também a *matriz* completa que corresponde à matriz incompleta acrescida de uma coluna com os termos independentes, conforme mostramos ao lado:

Em que:

aij = coeficiente das equações

 $b_1, b_2, ..., b_i = \text{termos independentes}$

 $x_1, x_2, ..., x_j = incógnitas$

Em que:

matriz $I \Rightarrow$ matriz de coeficientes ou matriz incompleta

matriz II \Rightarrow matriz de variáveis ou matriz de incógnitas

matriz III ⇒ matriz de termos independentes

$$\begin{vmatrix} a_{11} & a_{12} & . & a_{1j} & b_{1} \\ a_{21} & a_{22} & . & a_{2j} & b_{2} \\ . & . & . & . \\ a_{i1} & a_{i2} & . & a_{ij} & b_{i} \end{vmatrix} \Rightarrow \text{matriz completa}$$

Métodos para solução matricial de sistemas de equações—

Método de Solução por Determinantes

Calcula-se o determinante D da matriz incompleta:

Calculam-se os determinantes D_{xj} das matrizes incompletas, substituindo cada coluna de índice j pela matriz de termos independentes. Vejamos, como exemplo, esse procedimento para uma matriz 2×2 :

Matriz 2 x 2	b1 a12 b2 a22	⇒	$Dx_1 = +b_1.a_{22} - a_{12}.b_2$
	a11 b1 a21 b2	⇒	Dx2 = + a11.b2 - b1.a21

Calculam-se as variáveis xj por meio da seguinte expressão:

$$x_j = \frac{Dx_j}{D}$$

Exemplo

Exemplo: Sistema de Equações

$$\begin{cases} 3.x_1 - 2.x_2 = 0 \\ x_1 + 4.x_2 = 1 \end{cases}$$

Determinante da matriz incompleta:

Determinante de x1:

Determinante de x2:

Cálculo de x1 e x2:

Portanto, a solução do sistema é:

Sistema matricial

$$\begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} x \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} \Rightarrow D = (3)x(4) - (-2)x(1) = 12 + 2 \Rightarrow D = 14$$

$$\begin{vmatrix} 0 & -2 \\ 1 & 4 \end{vmatrix} \Rightarrow Dx_1 = (0)x(4) - (-2)x(1) = 0 + 2 \Rightarrow Dx_1 = 2$$

$$\begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} \Rightarrow Dx_2 = (3)x(1) - (0)x(1) = 3 - 0 \Rightarrow Dx_2 = 3$$

$$x_1 = \frac{Dx_1}{D} = \frac{2}{14} = 0,143$$
 e $x_2 = \frac{Dx_2}{D} = \frac{3}{14} = 0,214$

$$(x_1; x_2) = (0,143; 0,214)$$