Classification vs Regression.

Students who might need early intervention is a classification problem because the output that we will get is Boolean expression whether student need or does not need early intervention.

Exploring the Data.

Total number of students: 395 Number of students who passed: 265 Number of students who failed: 130

Number of features: 30

Graduation rate of the class: 67.09%

Preparing the Data.

```
Feature column(s):-
['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 's tudytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'free time', 'goout', 'Dalc', 'Walc', 'health', 'absences']
Target column: passed
Feature values:-
   school sex age address famsize Pstatus Medu Fedu
                                                                                             Mjob
                                                                                                                  Fjob \
        GP F 18 U
                                                  GT3 A 4 4 at_home
                F 17
1
         GP
                                       U
                                                  GT3
                                                                   T
                                                                            1 1 at_home
2
                  F
                        15
                                                  LE3
                                                                   T
                                                                                      1 at_home
                                                                                                                other
                                                                            1 1 at_nome other
4 2 health services
                                    U
         GP
                 F 15
                                                  GT3
                                                                   T
3
4
                  higher internet romantic famrel freetime goout Dalc Walc health \
       . . .
0
                                                  no
                                                                                       3
                                                                                                  4 1
      . . .
                    ves
                                     no
                                                                     5
1
                                     yes
                                                                                        3
                                                                                                   3
                                                                                                                                3
      . . .
                                     yes
yes
no
                    yes
2
                                                                                        3
                                                                                                   2
                                                                                                           2
                                                                                                                    3
                                                                                                                                3
                                                        no
      . . .
                                                                     3
3
                       yes
                                                       yes
                                                                                        2
                                                                                                           1
                                                                                                                    1
                                                                                                                                5
                      yes
                                                        no
   absences
0
             6
               4
2
             10
3
               2
[5 rows x 30 columns]
Processed feature columns (48):-
['school_GP', 'school_MS', 'sex_F', 'sex_M', 'age', 'address_R', 'address_U', 'famsize_GT3', 'famsize_LE3', 'Pstatus_A', 'Pstatus_T', 'Medu', 'Fedu', 'Mjob_at_home', 'Mjob_health', 'Mjob_other', 'Mjob_services', 'Mjob_teacher', 'Fjob_at_home', 'Fjob_health', 'Fjob_other', 'Fjob_services', 'Fjob_teacher', 'reason_course', 'reason_home', 'reason_other', 'reason_reputation', 'guardian_father', 'guardian_mother', 'guardian_other', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences']
```

Training and Evaluating Models.

I chose the following models:

- 1) K Neighbors Classifier
- 2) Logistic Regression
- 3) Support Vector Classification

Because each of them can solve Classification problem. Each model has its own advantages and disadvantages.

Test name	Advantages	Disadvantages		
	Simplicity	Poor run time performance when training set is large		
IZ Ni a i ala la a ua	Effectiveness	Very sensitive to irrelevant or redundant features		
K Neighbors Classifier	Good classification performance	Computation cost is high		
Classifier	Robust to noisy training data			
	Effective to large training data			
Logistic	Simplicity	Requires huge amount of data to get stable, meaningful results.		
Regression	Low computation cost			
	Effective in high dimensional spaces.	If number of features is greater than number of samples this method gives poor performance		
SVC	Effective in cases where number of dimensions is greater than the number of samples.	Do not directly provide probability estimates		
	Memory efficient.			
	Versatile			

Test name	Training time (secs)	Prediction time (secs)	F1 score for training set	Prediction time (secs)	F1 score for test set	Training set size	Testing set size
KNeighborsCl assifier	0.001	0.004	0.87012987	0.006	0.76082004 6		
LogisticRegre ssion	0.002	0.001	0.92	0.001	0.76388888 9	100	295
SVC	0.002	0.001	0.893081761	0.003	0.78646934 5		

Test name	Training time (secs)	Prediction time (secs)	F1 score for training set	Prediction time (secs)	F1 score for test set	Training set size	Testing set size
KNeighborsCl assifier	0.001	0.005	0.852348993	0.007	0.75352112 7		
LogisticRegre ssion	0.005	0.001	0.845360825	0.001	0.78832116 8	200	195
SVC	0.004	0.003	0.888157895	0.003	0.78807947		

Test name	Training	Prediction	F1 score for	Prediction	F1 score for	Training	Testing
rest name	time (secs)	time (secs)	training set	time (secs)	test set	set size	set size
KNeighborsCl	0.001	0.011	0.064000550	0.005	0.75912408		
assifier	0.001	0.011	0.864988558	0.005	8		
LogisticRegre	0.005	0.001	0.850574713	0.001	0.75912408	300	95
ssion	0.005	0.001	0.650574715	0.001	8	300	95
SVC	0.008	0.006	0.002116002	0.002	0.77551020		
SVC	0.008	0.006	0.883116883	0.002	4		

Average								
Test name	Training time (secs)	Prediction time (secs)	F1 score for training set	Prediction time (secs)	F1 score for test set			
KNeighborsClassi fier	0.001	0.006666667	0.862489141	0.006	0.757821753			
LogisticRegressio n	0.004	0.001	0.871978512	0.001	0.770444715			
SVC	0.004666667	0.003333333	0.888118846	0.002666667	0.783353006			

Choosing the Best Model.

SVC model has the highest average score. However, it has the worst training time and average performance time. So if we have limited resources I do not think that it is the best model however in given problem I think that accuracy is more important than computational time. Therefore, I think that SVC model is the best model that I can choose for solving given problem. However, if we had limited resources and computational time mattered for us, I would choose Logistic Regression because it is more balanced.

The best model is SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=2, gamma=0.0, kernel='poly', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) 0.903225806452

SVM takes the data and find the line that is maximum from all the data points in dataset.

Since the data can be complicated, we cannot draw a straight line to separate the data. Therefore, in some cases we need to add some new things ("features", "dimensions") that will help us to draw a straight line to separate the data instead of circle, square, islands etc. These functions, which helps us to do it, are named kernels.

The models final f1 scores for training set: 0.889908256881 The models final f1 scores for test set: 0.782608695652