Gentle introduction to delimited continuations

Дмитрий Косарев

19 ноября 2018 г.

Обзор

- call-with-current-continuation (callCC)
- ✓ shift/reset
- **✓** Примеры
- Предикативный полиморфизм
 - Импредикативный полиморфизм
 - СРS-преобразование
 - prompt
 - cupto
 - Через монады [DPJS07]

Что такое продолжение (continuation)?

Continuation

Это остаток вычисления

- Текущее вычисление: внутри []
- Остаток вычисления: снаружи []

Пример:
$$3+[5*2]-1$$

- Текущее вычисление: 5*2
- Остаток вычисления: 3+[⋅] −1

"Если дали значение для "дырки" $[\cdot]$, то прибавить 3 и вычесть 1", т.е. fun x \to 3 + x - 1.

Что такое продолжение (continuation)?

Continuation

Это остаток вычисления

Продолжения можно потерять по мере вычисления. Например: 3+[5*2]-1

- Заменим [·] на raise Abort: 3+[raise Abort]—1
- ullet Теряющееся продолжение 3+[\cdot] -1 является текущим

Разграниченные продолжения (continuation)?

Continuation

Это остаток вычисления

Синтаксис

$$\texttt{reset} \ (\underline{\texttt{fun}} \ () \ \to \ \texttt{M})$$

Например: reset (fun () → 3 + [5*2]) − 1

- Текущее вычисление: 5*2
- Текущее разграниченное продолжение: 3+[·]

Shift

Синтаксис

shift
$$(\underline{\text{fun}} \ \text{k} \rightarrow \text{M})$$

- забывает текущее продолжение
- сохраняет забытое как k
- и исполняет М

Например:

reset (
$$\underline{\text{fun}}$$
 () \rightarrow 3 + [$\underline{\text{shift}}$ ($\underline{\text{fun}}$ k \rightarrow M)]) - 1 ψ
reset ($\underline{\text{fun}}$ () \rightarrow [$\underline{\text{shift}}$ ($\underline{\text{fun}}$ k \rightarrow M)]) - 1
где k = reset ($\underline{\text{fun}}$ () -> 3 + [$\underline{\cdot}$])

Полученными продолжениями можно не пользоваться

$$\mathtt{shift} \ (\underline{\mathtt{fun}} \ _ \ \to \ \mathtt{M})$$

- Сохраненное продолжение просто отбрасывается
- Очень похоже на исключения

Пример:

reset (
$$\underline{\text{fun}}$$
 () \rightarrow 3 + [$\underline{\text{shift}}$ ($\underline{\text{fun}}$ _ \rightarrow 2)]) - 1

 \downarrow

reset ($\underline{\text{fun}}$ () \rightarrow 2) - 1

 \downarrow
 \downarrow

2 - 1

 \downarrow

1

Упражнение

Дан список чисел, нужно их перемножить, а если встретился ноль, то сразу вернуть ноль.

Вызывать функцию будем так:

```
\texttt{reset} \ (\underline{\texttt{fun}} \ () \ \to \ \texttt{times} \ [1; \ 2; \ 0; \ 4])
```

Ответ на упражнение

Дан список чисел, нужно их перемножить, а если встретился ноль, то *сразу* вернуть ноль.

```
# let rec times lst = match lst with \mid [] \rightarrow 1 \mid 0 :: t1 \rightarrow shift (\underline{fun} \rightarrow 0) \mid h :: t1 \rightarrow h * times t1;; times : int list \Rightarrow int = \langle \underline{fun} \rangle # reset (\underline{fun} () \rightarrow times [1;2;0;4]);; -: int = 0 # reset (\underline{fun} () \rightarrow times [1;2;3;4]);; -: int = 24
```

Как сохранять продолжения

```
\texttt{shift } \big( \underline{\texttt{fun}} \ \texttt{k} \ \to \ \texttt{k} \big)
```

- Возвращаем продолжение сразу и как есть
- А потом его можно вызывать!

```
Пример: reset (\underline{\text{fun}} () \rightarrow 3 + [...] - 1)

# \underline{\text{let}} f = reset (\underline{\text{fun}} () \rightarrow 3 + shift (\underline{\text{fun}} k \rightarrow k) - 1) ;;

f : int \underline{=} int = \underline{<\text{fun}}>

# \underline{\text{ft}} f 10;;

- : int = 12

# \underline{\text{let}} f x = reset (\underline{\text{fun}} () \rightarrow 3 + shift (\underline{\text{fun}} k \rightarrow k) - 1) x;;

f : int \rightarrow int = \underline{<\text{fun}}>

# f 10;;

- : int = 12
```

Упражнение

$$\texttt{shift} \ \big(\underline{\texttt{fun}} \ \texttt{k} \ \to \ \texttt{k}\big)$$

Вот identity для списка:

```
 \begin{array}{l} \textit{(* id : 'a list } \rightarrow \textit{ 'a list *)} \\ \underline{\texttt{let} \ \texttt{rec}} \ \texttt{id lst} = \underline{\texttt{match}} \ \texttt{lst with} \\ & | \ [] \ \rightarrow \ [] \\ & | \ \texttt{h} :: \ \texttt{tl} \ \rightarrow \ \texttt{h} \ :: \ \texttt{id tl}; \\ \end{array}
```

Внесите изменение в строчке, чтобы извлечь продолжение, если функция вызывается вот так:

$$\texttt{reset} \ (\underline{\texttt{fun}} \ () \ \to \ \texttt{id} [1;2;3]) \ ;;$$

Что это продолжение делает?

Решение упражнения

```
 \begin{array}{lll} (*\ id\ :\ 'a\ list\ \rightarrow\ 'a\ list\ *) \\ \hline \underline{let\ rec}\ id\ lst\ =\ \underline{match}\ lst\ \underline{with} \\ & |\ []\ \rightarrow\ shift\ (\underline{fun}\ k\ \rightarrow\ k) \\ & |\ h\ ::\ tl\ \rightarrow\ h\ ::\ id\ tl;; \\ id\ :\ int\ list\ =>\ int\ list\ =<\underline{fun}> \\ \end{array}
```

Решение упражнения

```
(* id : 'a list \rightarrow 'a list *)
let rec id lst = match lst with
  | [] \rightarrow shift (fum k \rightarrow k)
  | h :: tl \rightarrow h :: id tl;;
id : int list => int list = <fum>
# let append123 = reset (fum () \rightarrow id[1;2;3]) ;;
append123 : int list => int list = <fum>
# append123 [4;5;6];;
  - : int list = [1;2;3;4;5;6]
```

Композиция

Fix c callCC и delimCC

```
\begin{array}{l} \underline{\text{let}} \ k = \text{callCC} \ \left(\underline{\text{fun}} \ x \ \rightarrow \ c\right) \ \underline{\text{in}} \\ \\ \underline{\text{let}} \ \text{fix0} \ f = \\ \\ \text{reset} \ \left(\underline{\text{let}} \ x = \text{shift} \ \left(\underline{\text{fun}} \ c \ \rightarrow \ c \ c\right) \ \underline{\text{in}} \\ \\ f \ \left(\underline{\text{fun}} \ a \ \rightarrow \ x \ x \ a\right) \end{array}
```

Answer types

```
\begin{array}{lll} \underline{\text{let}} & \underline{\text{rec}} & \text{append lst} = \underline{\text{match}} & \text{lst} & \underline{\text{with}} \\ & | & [] & \rightarrow & \text{shift} & (\underline{\text{fun}} & k & \rightarrow & k) \\ & | & h & :: & \text{tl} & \rightarrow & h & :: & \text{append tl};; \\ \\ \underline{\text{let}} & & \text{append123} = \text{reset} & (\underline{\text{fun}} & () & \rightarrow & \text{append} & [1;2;3]) & ;; \end{array}
```

```
1::2::3::\bullet : \text{ 'a list} \\ \Downarrow \text{ shift} \\ \lambda xs \to 1::2::3::xs : \text{ 'a list } \to \text{ 'a list}
```

Новый вид записи типов:

```
'a list / 'a list 
ightarrow 'a list / ('a list 
ightarrow 'a list)
```

т.е. \forall 'а функция по значению с типом 'a list возвращает 'a list в непосредственном контексте; однако, в процессе тип результата (answer type) текущего контекста модифицируется до 'a list \rightarrow 'a list.

Полиморфизм по answer type (1/2)

Произвольные функции с типом S $\;\to\;$ T должны рассматриваться как полиморфные функции с типом S/'a $\;\to\;$ T/'a.

Рассмотрим (как бы мономорфную) функцию $\underline{\text{let}}$ add1 x=1+x

```
reset (\underline{\text{fun}} () \rightarrow add1 x; ()) reset (\underline{\text{fun}} () \rightarrow add1 x; \underline{\text{true}})
```

Два типа int/unit \to int/unit и int/unit \to int/unit (анти)унифицируются до int/'а \to int/'a.

Полиморфизм по answer type (2/2)

Первый shift начинает конструирование префиксов, возвращая [] : 'a list list.

Второй shift выражает consing и применяется два раза: 1) к пустому списку чтобы получить текущий ответ и 2) чтобы сконструировать список длинных префиксов.

Продолжение к используется два раза в разных контекстах

- ullet 'a list / 'a list list ightarrow 'a list / 'a list list
- ullet 'a list / 'a list o 'a list / 'a list

Пару слов про Prompt и STLC

STLC обладает свойством strong normalization: последовательность редукций любого терма завершается. С добавлением delimCC-yже нет.

```
\begin{array}{lll} \underline{\text{let}} \text{ loop ()} = \\ \underline{\text{let}} \text{ p = new\_prompt ()} & \underline{\text{in}} \\ \underline{\text{let}} \text{ delta ()} = \text{shift p (}\underline{\text{fun}} \text{ f v } \rightarrow \text{ f v v) ()} & \underline{\text{in}} \\ \text{push\_prompt p (}\underline{\text{fun}} \text{ ()} \rightarrow \underline{\text{let}} \text{ r = delta ()} & \underline{\text{in}} \\ & \underline{\text{fun}} \text{ v } \rightarrow \text{ r} \\ \text{) delta ;;} \end{array}
```

Выводится тип loop : unit \to 'a, но по сути это функция $\underline{\mathrm{fun}}$ () \to omega и она виснет.

Типобезопасный printf

```
let int x = string_of_int x
let str (x:string) = x
let % to_str = shift (fun k \rightarrow fun x \rightarrow k (to_str x))
let sprintf p = reset p
sprintf (fun () \rightarrow "Hello world!")
sprintf (fun () \rightarrow "Hello" ^{\circ} % str ^{\circ} "!") "world"
sprintf (fun () \rightarrow "The value" ^{\circ} % str ^{\circ} " is " ^{\circ} % int) "x" 4
```

У sprintf "зависимое" поведение с типом (unit / string ightarrow string / 'a) ightarrow 'a. Без полиморфизма так нельзя было.

19 ноября 2018 г.

State monad (1/2)

```
Создание:
reset (fun () \rightarrow M) 3
Доступ к состоянию:
# let get () =
     shift (fun k \rightarrow fun state \rightarrow k state state) ;;
get : unit \Rightarrow 'a = \leq fun\Rightarrow
Запускаем вычисление:
# let run_state thunk =
     reset (fun k \rightarrow let result = think () in
                         fun state \rightarrow result) 0 ::
run_state : (unit => 'a) => 'b = <fun>
```

State monad (2/2)

```
Работаем с состоянием (пример):
\# let tick () =
      \texttt{shift } (\underline{\texttt{fun}} \ \texttt{k} \ \to \ \underline{\texttt{fun}} \ \texttt{state} \ \to \ \texttt{k} \ () \ (\texttt{state+1}) \ ) \ ;;
tick : unit => unit = <fun>
\# run_state (fun () \rightarrow
       tick ();
                                                 (* state = 1 *)
       tick ();
                                                 (* state = 2 *)
        let a = get() in
       tick ();
                                                 (* state = 3 *)
       get() - a);;
- : int = 1
```

Вызываем несколько раз

```
(* either : 'a \rightarrow 'a \rightarrow 'a *)
let either a b () = shift (fun k \rightarrow k a; k b)
\# reset (fun () \rightarrow
     let x = either 0 1 in
     print_int x
     print_newline ());;
0
-: unit = ()
```

Generate&test

$$(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$$

```
\# reset (fun () \rightarrow
    let p = either true false in
    let q = either true false in
    if (p||q) && (p || not q) && (not p || not q)
    then (print_string (string_of_bool p);
          print_string ", ";
          print_string (string_of_bool q);
          print_newline () );;
true, false
-: unit = ()
```

Дифференцирование парсеров (1/2)

Подробнее у Олега

```
type stream_req = ReqDone
                   ReqChar of int * (char option \rightarrow stream_req)
let stream_inv p = fun pos \rightarrow
  shift p (fun sk \rightarrow ReqChar (pos,sk))
val stream_inv : stream_req Delimcc.prompt 
ightarrow
                    int \rightarrow char option = <fun>
let cont str (RegChar (pos,k) as req) = filler str pos req;;
val cont : string \rightarrow stream_req \rightarrow stream_req = <fun>
let finish (ReqChar (pos,k)) = filler "" pos (k None);;
\underline{\text{val}} finish : stream_req \rightarrow stream_req = <fun>
```

Дифференцирование парсеров (2/2)

```
let rec filler buffer buffer_pos = function
    ReqDone \rightarrow ReqDone
    ReqChar (pos,k) as req \rightarrow
        let pos_rel = pos - buffer_pos in
       let =
          (* we don't accumulate already emptied buffers. We could. *)
          assert (pos_rel >= 0)
        in
        if pos_rel < String.length buffer then
          (* desired char is already in buffer *)
          filler buffer buffer_pos (k (Some buffer.[pos_rel]))
       else
          (* buffer underflow. Ask the user to fill the buffer *)
          req
val filler : string \rightarrow int \rightarrow stream_req \rightarrow stream_req = <func
```

Синтаксис для $\lambda_{let}^{s/r}$

• Значения

$$v ::= c \mid x \mid \lambda x.e \mid \text{fix } f.x.e$$

• Выражения

$$e ::= v \mid e_1e_2 \mid \mathcal{S}k.e \mid \langle e \rangle \mid \text{let } x = e_1 \text{ in } e_2 \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3$$

• Мономорфные типы

$$\alpha, \beta, \gamma, \delta ::= t \mid b \mid (\alpha/\gamma \rightarrow \beta/\delta)$$

• Полиморфные типы

$$A ::= \alpha \mid \forall t.A$$

• Evaluation context (e-context):

$$\mathsf{E} ::= [] \mid vE \mid Ee \mid \mathtt{let} \ x = E \ \mathtt{in} \ e \mid \mathtt{if} \ E \ \mathtt{then} \ e \ \mathtt{else} \ e \mid \langle E \rangle$$

• Pure e-context:

$$F ::= [\mid vF \mid Fe \mid \text{let } x = F \text{ in } e \mid \text{if } F \text{ then } e \text{ else } e]$$

RedEx:

R ::=
$$(\lambda x.e)v$$
 | let $x = F$ in e | if F then e else e | $\langle E \rangle$ | $\langle F[\mathcal{S}k.e] \rangle$

Правила редукции для $\lambda_{let}^{s/r}$

$$\begin{array}{ccccc} (\lambda x.e)v & \leadsto & e[v/x] \\ (\text{fix } f.x.e)v & \leadsto & e[\text{ fix } f.x.e/f][v/x] \\ & \langle v \rangle & \leadsto & v \\ & \langle F[\mathcal{S}k.e] \rangle & \leadsto & \langle \text{let } k = \lambda x. \langle F[x] \rangle \text{ in } e \rangle \\ & \text{let } x = v \text{ in } e & \leadsto & e[v/x] \\ & \text{if true then } e_1 \text{ else } e_2 & \leadsto & e_1 \\ & \text{if false then } e_1 \text{ else } e_2 & \leadsto & e_2 \end{array}$$

Пример редукции в $\lambda_{let}^{s/r}$

```
prefix [1;2]
                \langle 1 :: \mathcal{S}k.(k[] :: \langle k(\text{visit [2]}) \rangle) \rangle
\sim \rightarrow
                \langle \text{let } \mathsf{k} = \lambda x. \langle 1 :: x \rangle \text{ in } k[] :: \langle k(\text{visit [2]}) \rangle \rangle
             \langle (\lambda x.\langle 1::x\rangle)  [] :: \langle (\lambda x.\langle 1::x\rangle)  (visit [2])\rangle \rangle
\sim \rightarrow
→+
           \langle [1] :: \langle (\lambda x. \langle 1 :: x \rangle)(2 :: \mathcal{S}k.(k[] :: (k(\text{visit}[])))) \rangle \rangle
             \langle [1] :: \langle \text{let } k = \lambda x. \langle (\lambda x. \langle 1 :: x \rangle)(2 :: x) \rangle \text{ in}
\rightsquigarrow
                                    k[]::\langle k(\text{visit} [])\rangle\rangle
                \langle [1] :: \langle (\lambda x. \langle (\lambda x. \langle 1 :: x \rangle)(2 :: x) \rangle) [] ::
\sim \rightarrow
                                 \langle (\lambda x. \langle (\lambda x. \langle 1 :: x \rangle)(2 :: x) \rangle) (\text{visit } []) \rangle \rangle
\leadsto^+ \langle [1] :: \langle [1;2] :: \langle (\lambda x. \langle (\lambda x. \langle 1::x \rangle)(2::x) \rangle)(\mathcal{S}h. []) \rangle \rangle
      \langle [1] :: \langle [1;2] :: let h = \lambda x. \langle (\lambda x. \langle 1 :: x \rangle)(2 :: x) \rangle \rangle \rangle  in [] \rangle \rangle
\sim \rightarrow
\rightsquigarrow \langle [1] :: \langle [1;2] :: [] \rangle \rangle

→<sup>+</sup> [[1]: [1:2]]
```

Вывод типов

$$\Gamma, \alpha \vdash e : \tau, \beta$$

В контексте Γ выражение e имеет тип τ и процесс вычисления e изменяет answer type с α на β .

При CPS-преобразовании тип у образа e был бы $(au^* o lpha^*) o eta^*.$

При добавлении типов хотелось бы сохранить type preservation property: при вычислении выражения тип не должен меняться.

Система типов

Мономорфная система типов для shift и reset есть у Danvy & Filinski [DF89].

Полиморфизм туда можно добавлять разными способами, ограничивая полиморфизм выражения let $x = e_1$ in e_2 .

- Value restriction: e_1 должно быть значением.
- "Слабые" типовые переменные: тип e_1 может быть обобщен (generalized) только когда он не связан с побочными эффектами.
- Полиморфизм по имени: вычисление e_1 откладывается до тех пор, когда x таки начнет использоваться в e_2 , это приводит к call-by-name семантике для e_1 .
- Pure выражения из [AK07] .

Pure выражения

Ограничим let $x = e_1$ in e_2 , чтобы e_1 было чисто от эффектов управления, т.е. являлось *pure*.

Pure \sim полиморфно по answer types.

$$\Gamma, \alpha \vdash e : \tau, \alpha$$

Примеры:

- значения
- ullet $\langle e
 angle$, т.к. все эффекты отделены reset'ом.

Обозначать будем так: $\Gamma \vdash_p e : \tau$.

Правила вывода типов (1/2)

 $A \succ au$: инстанциация полиморфных переменных из A какими-то мономорфными типами.

$$\mathsf{Gen}(\sigma,\Gamma) \sim \forall t_1...t_n.\sigma$$
, где $t_1...t_n = \mathsf{FTV}(\sigma) - \mathsf{FTV}(\Gamma)$.

$$\frac{(x:\sigma)\in\Gamma\quad\sigma\succ\tau}{\Gamma\vdash_p x:\tau} \text{ (var)}$$

$$\frac{\Gamma \vdash_p M : \tau}{\Gamma, \alpha \vdash_p M : \tau, \alpha} \text{ (exp)}$$

$$\frac{\Gamma \vdash M_1 : \tau_1 \qquad \Gamma, x : \operatorname{Gen}(\tau_1, \Gamma), \alpha \vdash M_2 : \tau_2, \beta}{\Gamma, \alpha \vdash \operatorname{let} \mathbf{x} = M_1 \text{ in } M_2 : \tau_2, \beta} \text{ (let)}$$

Правила вывода типов (2/2)

$$\frac{\Gamma, k: \forall t. (\tau/t \to \alpha/t), \gamma \vdash M: \gamma, \beta}{\Gamma, \alpha \vdash \mathcal{S}k. M: \tau, \beta} \text{ (shift)}$$

$$\frac{\Gamma, \gamma \vdash M : \gamma, \tau}{\Gamma, \alpha \vdash_p \langle M \rangle : \tau} \text{ (reset)}$$

$$\frac{\Gamma, x : \tau_1, \alpha \vdash M : \tau_2, \beta}{\Gamma \vdash_p \lambda x. M : (\tau_1/\alpha \to \tau_2/\beta)}$$
 (fun)

$$\frac{\Gamma, \gamma \vdash M_1 : (\tau_1/\alpha \to \tau_2/\beta), \delta \qquad \Gamma, \beta \vdash M_2 : \tau_1, \gamma}{\Gamma, \alpha \vdash M_1 M_2 : \tau_2, \delta} \text{ (app)}$$

Свойства системы типов (1/2)

Subject reduction

Если и $\Gamma; \alpha \vdash e_1 : \tau; \beta$ выводимо, и $e_1 \leadsto^+ e_2$, тогда $\Gamma; \alpha \vdash e_2 : \tau; \beta$. Аналогично, если $\Gamma \vdash_p e_1 : \tau$, то $\Gamma \vdash_p e_2 : \tau$

Слабая непротиворечивость системы типов (weak type soundness): правильно протипизированные программы работают хорошо.

Сильная непротиворечивость системы типов (strong type soundness): результат такого же типа, что исходный терм.

Прогресс и единственность разложения

Если выводится $\vdash_p \langle e \rangle : \tau$, то либо e просто значение, либо $\langle e \rangle$ можно единственным образом разложить в форму E[R], где E — контекст, а R — RedEx.

Из двух свойств следует непротиворечивость(soundness).

Свойства системы типов (2/2)

 $W':(\Gamma,e)\mapsto (\theta;\alpha, au,eta)$ как расширение НМ.

Principal type и вывод типов

Можно построить алгоритм W' для $\lambda_{let}^{s/r}$ такой что

- $lackbox{1}{}$ W' завершается
- ② Если W' вернул $(\theta; \alpha, \tau, \beta)$, то $\Gamma \theta; \alpha \vdash e : \tau, \beta$ выводимо. Кроме этого, для любых таких $(\theta'; \alpha', \tau', \beta')$, что $\Gamma \theta'; \alpha' \vdash e : \tau', \beta'$ выводимо, верно $(\Gamma \theta'; \alpha', \tau', \beta') \equiv (\theta; \alpha, \tau, \beta) \phi$ для некоторой подстановки ϕ .
- ullet Если W' завершился с ошибкой, то $\Gamma \theta; \alpha \vdash e : \tau, \beta$ не выводимо ни для каких $(\theta; \alpha, \tau, \beta)$.

Confluence & strong normalization

- lacktriangle Редукции \leadsto в $\lambda_{let}^{s/r}$ не зависят от порядка.
- $oldsymbol{2}$ Редукции \leadsto в $\lambda_{let}^{s/r}$ без fix всегда завершаются.

Конец

Дальше только список литературы

Gentle introduction to delimited continuations

19 ноября 2018 г.

Ссылки І

- Kenichi Asai and Yukiyoshi Kameyama, *Polymorphic delimited* continuations, Programming Languages and Systems (Berlin, Heidelberg) (Zhong Shao, ed.), Springer Berlin Heidelberg, 2007, pp. 239–254.
- Olivier Danvy and Andrzej Filinski, A functional abstraction of typed contexts, DIKU, University of Copenhagen (1989).
- R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry, *A monadic framework for delimited continuations*, J. Funct. Program. **17** (2007), no. 6, 687–730.