EC 651: Operating Systems

Course	Course title	Credits			Total	CIE	SEE	Total
code		L	T	P	Credits	Marks	Marks	Marks
EC 651	Operating Systems	3	0	0	3	50	50	100

Course outcome: At the end of the course, the student should be able to

- 1. Describe principles of computer architecture, structure & functionalities of different Operating Systems.
- 2. Analyze and evaluate different algorithms with their core functionalities to improve system performance.
- 3. Describe various memory management techniques with hardware support.
- 4. Describe resource allocation methods to avoid deadlock.
- 5. Describe different security threats and different techniques to counter attack them for different file systems.
- 6. Implement algorithms as a team member for Operating system functions using programming languages, document and give an effective presentation.

UNIT 1:

Introduction and Overview of Operating Systems: Computer system overview , Goals and Operation of an O.S., Evolution of OS Classes of operating systems, Structure of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel-based operating systems, microkernel based OS.

08 Hours

UNIT 2:

Process Management: Process concept, Programmer view of processes, OS view of processes, Interacting processes, Threads. Fundamentals of scheduling, Long-term scheduling, Medium and short term scheduling, Real time scheduling, Case studies.

08 Hours

UNIT 3:

Memory Management: Memory allocation preliminaries, Contiguous and noncontiguous allocation to programs, Memory allocation for program controlled data, kernel memory allocation, Case studies.

Virtual Memory: Virtual memory using paging, Demand paging, Page replacement, Page replacement policies, Memory allocation to programs, Page sharing.

08 Hours

UNIT 4:

File Management, Deadlock and File Security Techniques: File organization , File sharing , File system security. Deadlocks in resource allocation , deadlock detection & resolution , dead lock prevention , deadlock avoidance. Computer security concepts, Access control and intrusion detection, Case studies. **08Hours**

UNIT 5:

Device Drivers and Inter-process Communication: Devices and their characteristics , input output management, ,Disk scheduling algorithm and policies ,Establishing interprocess communication. **08 Hours**

Self-Learning Components: Case studies of algorithms to improve the core functions of operating system.

Text Books:

- 1. **D.M.Dhamdhare,** "Operating Systems "A Concept based Approach", TMH, 3rd Ed, 2006.
- 2. **Willaim Stallings,** "Operating System Internals and Design Systems", Pearson Education, 6th Ed,2009.
- 3. Pramod chanrdra "An introduction to operating systems concepts and practice ",PHI, 3^{rd} Ed ,2010
- 4. **Silberschatz and Galvin,** "Operating Systems Concepts", John Wiley, 8th Edition, 2001.

E-Resource:

- 1. https://onlinecourses.nptel.ac.in/noc17 cs29/student/home
- 2. http://www.uobabylon.edu.iq/download/M.S20132014/Operating System Concepts, 8th Edition[A4]