

DFTAR ISI

DFTAR ISI	•••
DELAR ISI	11
DI I AIX 101	

Contoh Perhitungan manual

Pada penelitian ini cari terlebih dahulu bobot untuk setiap criteria dengan menggunakan metode *entropy*

Tabel 6.4 Data Alternatif

alternatif	Urgensi	Plan Start Date	qty	setup_time	Standard_time
Operasi 1	1	5	4	0,1	0,3
Operasi 2	2	5	2	0,5	0,9
Operasi 3	1	3	2	0,2	0,4
Operasi 4	1	4	2	0,2	0,7
Operasi 21	2	5	1	0,2	0,3

Pada data alternatif di tabel 6.4 tersebut lakukan normalisasi data dengan cara cari nilai total dari baris setiap kriteria seperti berikut

Tabel 6.5 Data nilai total dari setiap alternatif

	Urgensi	Plan Start Date	qty	setup_time	Standard_time
$\sum_{j=1}^{m} X_{ij}$	7	22	11	1,2	2,6

Dimana X_{ij} merupakan nilai untuk setiap kolom setelah nilai total di temukan maka nilai pada tabel 6.4 tersebut dapat di hitung menggunakan rumus berikut :

$$P_{ij} \ = \frac{X_{ij}}{\sum_{j=1}^m X_{ij}} \ , \ j=1,\ldots,m, \quad i=1,\ldots,n \label{eq:pij}$$

Contoh : $P_{urgensi,operasi\ 1}=\frac{1}{7}=0,142857143$ begitupula untuk setiap data alternatif pada tabel 6.4. berikut merupakan data hasil normalisasi :

Tabel 6.6 Data Hasil Normalisasi

alternatif	Llegansi	Plan Start	atri	Satur tima	Standard
anemam	Urgensi	Date	qty	Setup time	time
Operasi 1	0,142857143	0,227272727	0,363636364	0,083333333	0,115384615
Operasi 2	0,285714286	0,227272727	0,181818182	0,416666667	0,346153846
Operasi 3	0,142857143	0,136363636	0,181818182	0,166666667	0,153846154
Operasi 4	0,142857143	0,181818182	0,181818182	0,166666667	0,269230769
Operasi 21	0,285714286	0,227272727	0,090909091	0,166666667	0,115384615

Kemudian setelah itu cari nilai $h_0 = (\ln m)^{-1}$ dimana m merupakan jumlah alternatif karena alternatif pada contoh ini ada lima maka $h_0 = (\ln(5))^{-1} = 0.621334935$ setelah itu lakukan perhitungan pada $p_{ij} . \ln p_{ij}$ contoh $p_{urgensi, operasi 1} . \ln p_{urgensi, operasi 1} = 0.142857143 * ln <math>(0.142857143) = -0.277987164$ begitu juga seterusnya untuk kolom yang lain maka hasilnya sebagai berikut :

Tabel 6.7 Hasil Perhitungan p_{ij} . $\ln p_{ij}$

alternatif	Urgensi	Plan Start Date	qty	setup_time	Standard_time
Operasi 1	-0,277987164	-0,336728305	-0,36785488	-0,20707555	-0,24917126
Operasi 2	-0,357932277	-0,336728305	-0,3099542	-0,364778641	-0,367224909
Operasi	-0,277987164	-0,271695022	-0,3099542	-0,298626578	-0,287969566

3					
Operasi 4	-0,277987164	-0,309954199	-0,3099542	-0,298626578	-0,353280951
Operasi 21	-0,357932277	-0,336728305	-0,21799048	-0,298626578	-0,24917126

Setelah data telah di hitung keseluruhan cari nilai total dari data-data tersebut berikut merupakan data nilai total Hasil Perhitungan p_{ij} . $\ln p_{ij}$

Tabel 6.8 Nilai Total Hasil Perhitungan p_{ij} . $\ln p_{ij}$

	Urgensi	Plan Start Date	qty	setup_time	Standard time
$\sum_{j=1}^{m} p_{ij} \cdot \ln p_{ij}$	-1,54982605	-1,59183414	-1,51570795	-1,46773393	-1,50681795

Setelah itu lakukan perhitugan entropy dengan menggunakan rumus berikut :

$$h_i \; = -h_0 \sum_{j=1}^m p_{ij} \; . \ln p_{ij} \; , i = 1, \ldots, n, \label{eq:hi}$$

Contoh untuk kriteria urgensi $h_i = -0.621334935 * -1.54982605 = 0.962961065$ begitu pula untuk kriteria-kriteria yang lainnya.

Tabel 6.9 Nilai h_i untuk setiap kriteria

	Urgensi	Plan Start Date	qty	setup_time	Standard time
h_i	0,962961065	0,989062158	0,941762301	0,911954365	0,936238629

Selanjutnya cari nilai $d_i=1-h_i$ sebagai contoh $d_{urgensi}=1-0.962961065=0.037038935$ begitupula untuk kriteria yang lainnya. Maka hasilnya sperti berikut :

Tabel 6.10 Nilai d_i untuk Setiap Kriteria

	Urgensi	Plan Start Date	qty	setup_time	Standard time
$1-h_i$	0,037038935	0,010937842	0,058237699	0,088045635	0,063761371

Cari nilai total d_i dengan cara menambahkan nilai d_i pada setiap kriteria sehingga di peroleh hasil 0,258021 selanjutnya masukan nilai d_i pada rumus berikut :

$$W_i = \frac{d_i}{\sum_{s=1}^n d_i}, i = 1, \dots, n$$

Contoh:
$$W_{urgensi} = \frac{0.037038935}{0.258021} = 0.143549812$$

Tabel 6.11 Nilai Bobot Untuk Setiap Kriteria

	Urgensi	Plan Start	qty	setup time	Standard
		Date	qty	setup_time	time
W	0,143549812	0,042391206	0,225708722	0,34123374	0,24711652

Setelah melakukan perhitungan *entropy* dilanjutkan dengan perhitungan *promethee* atau implementasi metode *promethee* sebagai berikut:

Pada tabel 6.4 tentukan terlebih dahulu nilai maksimal dan nilai minimum dari data alternatif kemudian nilai maksimum kurangi nilai minimum pada semua kriteria maka hasilnya seperti berikut:

Tabel 6.12 Nilai Maksimum Minimum Alternatif

	Urgensi	Plan Start Date	qty	setup_time	Standard time
MAX	2	5	4	0,5	0,9
MIN	1	3	1	0,1	0,3
MAX-MIN	1	2	3	0,4	0,6

Kemudian lakukan normalisasi matrix keputusan dengan menentukan nilai *benefit* dan nilai *cost* untuk setiap kriteria berikut merupakan rumus untuk nilai *cost*

$$R_{ij} = \frac{\left[X_{ij} - \min\left(X_{ij}\right)\right]}{\max(X_{ij}) - \min\left(X_{ij}\right)}$$

Sedangkan untuk kriteria yang bernilai benefit menggunakan rumus :

$$R_{ij} = \frac{\left[\max\left(X_{ij}\right) - X_{ij}\right]}{\max(X_{ij}) - \min\left(X_{ij}\right)}$$

Contoh untuk urgensi = $R_{urgensi\ operasi1} = \frac{(1-1)}{1}$ begitu pula seterusnya untuk kriteria yang lainnya

Tabel 6.13 Data Hasil Normalisasi

alternatif	Urgensi	Plan Start	qty	Setup	Standard_time
		Date		time	
Operasi 1	0	1	1	1,0	1
Operasi 2	1	1	0,333333333	0	0
Operasi 3	0	0	0,333333333	0,75	0,833333333
Operasi 4	0	0,5	0,333333333	0,75	0,333333333
Operasi 21	1	1	0	0,75	1

Menentukan preferensi dengan yaitu dengan cara mengurangi nilai setiap operasi atau alternatif kecuali dengan alternatif yang sama atau alternatif itu sendiri

Tabel 6.14 Data Fungsi Preferensi

alternatif	Urgensi	Plan Start	qty	Setup	Standard_tim
		Date		time	e
op1 - op2	-1	0	0,666666667	1,0	1
op1 - op3	0	1	0,666666667	0,3	0,166666667
op1 - op4	0	0,5	0,666666667	0,3	0,666666667
op1 -	-1	0	1	0,3	0
op21					
op2 - op1	1	0	-0,666666667	-1,0	-1
op2 - op3	1	1	0	-0,75	-0,833333333
op2 - op4	1	0,5	0	-0,75	-0,333333333
op2 -	0	0	0,333333333	-0,75	-1
op21					
op3 -op1	0	-1	-0,666666667	-0,25	-0,166666667
op3 -op2	-1	-1	0	0,75	0,833333333
op3 -op4	0	-0,5	0	0	0,5
op3 -	-1	-1	0,333333333	0	-0,166666667
op21					
op4 -op1	0	-0,5	-0,666666667	-0,25	-0,666666667
op4 -op2	-1	-0,5	0	0,75	0,333333333
op4 -op3	0	0,5	0	0	-0,50
op4 -	-1	-0,5	0,333333333	0	-0,666666667

op21					
op21-op1	1	0	-1	-0,25	0
op21-op2	0	0	-0,333333333	0,75	1
op21-op3	1	1	-0,333333333	0	0,166666667
op21-op4	1	0,5	-0,333333333	0	0,666666667

Data preferensi di normalisasi dengan ketentuan yang telah di sederhanakan yaitu jika nilai hasil pengurangan lebih kecil samadengan nol maka bernilai nol dan jika hasil pengurangan lebih bersar dari pada nol maka nilai tetap hasil pengurangan

Tabel 6.15 Data Fungsi Preferensi Hasil Normalisasi

alternatif	Urgensi	Plan Start	qty	Setup	Standard
		Date		time	time
op1 - op2	0	0	0,666667	1,0	1
op1 - op3	0	1	0,666667	0,3	0,166667
op1 - op4	0	0,5	0,666667	0,3	0,666667
op1 -op21	0	0	1	0,3	0
op2 - op1	1	0	0	0	0
op2 - op3	1	1	0	0	0
op2 - op4	1	0,5	0	0	0
op2 - op21	0	0	0,333333	0	0
op3 -op1	0	0	0	0	0
op3 -op2	0	0	0	0,75	0,833333
op3 -op4	0	0	0	0	0,5
op3 -op21	0	0	0,333333	0	0
op4 -op1	0	0	0	0	0

op4 -op2	0	0	0	0,75	0,333333
op4 -op3	0	0,5	0	0	0
op4 -op21	0	0	0,333333	0	0
op21-op1	1	0	0	0	0
op21-op2	0	0	0	0,75	1
op21-op3	1	1	0	0	0,166667
op21-op4	1	0,5	0	0	0,666667

Selanjutnya Hitung fungsi Preferensi Agregat dengancara mengkalikan bobot hasil *entropy* dengan data hasil normalisasi preferensi kemudian di cari nilai total dari setiap baris

Tabel 6.16 Data Fungsi Preferensi Agregat

alternatif	Urgensi	Plan	qty	Setup	Standar	Nilai
		Start		time	d time	Total
		Date				
op1 - op2	0	0	0,15047	0,3412	0,24711	0,73882
			2481	337	652	2741
op1 - op3	0	0,04239	0,15047	0,0853	0,04118	0,31935
		1206	2481	084	609	8209
op1 - op4	0	0,02119	0,15047	0,0853	0,16474	0,42172
		5603	2481	084	435	0866
op1 -op21	0	0	0,22570	0,0853	0	0,31101
			8722	084		7157
op2 - op1	0,14354	0	0	0	0	0,14354
	9812					9812
op2 - op3	0,14354	0,04239	0	0	0	0,18594

	9812	1206				1018
op2 - op4	0,14354	0,02119	0	0	0	0,16474
	9812	5603				5415
op2 - op21	0	0	0,07523	0	0	0,07523
			6241			6241
op3 -op1	0	0	0	0	0	0
op3 -op2	0	0	0	0,2559	0,20593	0,46185
				253	043	5738
op3 -op4	0	0	0	0	0,12355	0,12355
					826	826
op3 -op21	0	0	0,07523	0	0	0,07523
			6241			6241
op4 -op1	0	0	0	0	0	0
op4 -op2	0	0	0	0,2559	0,08237	0,33829
				253	217	7478
op4 -op3	0	0,02119	0	0	0	0,02119
		5603				5603
op4 -op21	0	0	0,07523	0	0	0,07523
			6241			6241
op21-op1	0,14354	0	0	0	0	0,14354
	9812					9812
op21-op2	0	0	0	0,2559	0,24711	0,50304
				253	652	1825
op21-op3	0,14354	0,04239	0	0	0,04118	0,22712
	9812	1206			609	7105
op21-op4	0,14354	0,02119	0	0	0,16474	0,32948
	9812	5603			435	9762

Setelah itu nilai total dari setiap alternatif di pindahkan kedalam tabel matrix sehingga menjadi seperti berikut :

Tabel 6.17 Tabel Matrix

	Operasi	Operasi 2	Operasi	Operasi	Operasi 21
	1		3	4	
Operasi 1		0,73882274	0,319358	0,42172	0,31101716
Operasi 2	0,14355		0,185941	0,164745	0,07523624
Operasi 3	0	0,46185574		0,123558	0,07523624
Operasi 4	0	0,33829748	0,021196		0,07523624
Operasi 21	0,14355	0,50304183	0,227127	0,32949	

Kemudian tentukan Leaving flow dan Entring Flow dari tabel matrix tersebut. Untuk mendapatkan nilai leaving flow dengancara menjumlahkan setiap kolom secara horizontal kemudian di kalikan dengan $\frac{1}{n-1}$ dimana n merupakan total alternatif dan untuk Entring flow yaitu dengan cara menjumlahkan data secara vertikal kemudian di kalikan dengan $\frac{1}{n-1}$ dimana n merupakan total alternatif maka hasilnya sebagai berikut :

Tabel 6.18 Data Leving Flow dan Entring Flow

Leving Flow	Entring Flow
0,44773	0,07177491
0,142368	0,51050445
0,165163	0,18840548
0,108682	0,25987858
0,300802	0,13418147

Setelah itu untuk menentukan hasil rangking langsung kurangi *Leving* Flow dengan Entring Flow maka hasilnya sebagai berikut :

Tabel 6.19 Data Rangking

Alternatif	Nilai outrangking	Urutan
Operasi 1	0,375955	1
Operasi 2	-0,36814	5
Operasi 3	-0,02324	3
Operasi 4	-0,1512	4
Operasi 21	0,166621	2

Bab 1 Apa itu Metode?

Adapun metode menurut arti katanya pada KBBI yaitu cara teratur yang digunakan untuk mencapai suatu pekerjaan agar tercapai sesuai dengan yang dikehendaki; cara kerja bersistem untuk memudahkan pelaksanaan suatu kegiatan guna mencapai tujuan yang ditentukan.

(https://www.google.com/amp/s/kbbi.web.id/metode.html) Sedangkan kalau dilihat dari asal bahasanya Metode berasal dari Bahasa Yunani methodos yang berarti cara atau jalan yang ditempuh. Sehubungan dengan upaya ilmiah, maka, metode menyangkut masalah cara kerja untuk dapat memahami objek yang menjadi sasaran ilmu yang bersangkutan. Fungsi metode berarti sebagai alat untuk mencapai tujuan, atau bagaimana cara melakukan atau membuat sesuatu. (https://id.m.wikipedia.org/wiki/Metode).

Metode juga dapat merujuk pada metode ilmiah, metode ilmu komputer dan metode mengajar. Adapun pada buku ini akan membahas tentang metode ilmiah tentang penentuan keputusan.

Metode untuk menentukan keputusan banyak sekali ragamnya seperti Saw, WP dan masih banyak lagi yang lainnya. Metode untuk menentukan keputusan tersebut dapat dikategorikan menjadi MCDM (multi criteria decision making) yang merupakan metode untuk menentukan keputusan dengan banyak kriteria untuk menentukan keputusan.

Metode Entropy

Merupakan metode yang digunakan untuk menentukan pembobolan yang
mana bobot tersebut dapat digunakan untuk metode yang lain. Untuk
menggunakan metode tersebut memiliki beberapa syarat yaitu :

A

В

C

D

merujuk pada syarat tersebut maka penggunaan metode Entropy sangat cocok digunakan pada jenis data yang ...

Rumus dan tahap tahapan menggunakan metode Entropy
Adapun dalam penerapan metode tersebut digunakan rumus berikut :
Rumus tersebut dapat dijelaskan yaitu
V
BM
Bnn
Untuk tahapan penggunaan metode ini dapat dilakukan dengan cara berikut :
A
В
Tool yang digunakan
XAMPP
Jelaskan cara instalasinya pada windows , Linux dan Mac OS
Editor text spesifikasi
Awal: apa yang terjadi di awal cerita?
Pertengahan: biasanya merupakan titik aksi tertinggi di dalam cerita.
Akhir: bagaimana akhir dari cerita tersebut?
Tips Reading Rainbow: Pikirkan kejadian apa saja yang paling penting di dalam cerita. Berhati-hatilah agar tidak menceritakan ulang seisi buku.

Sebagai gantinya, berikan detail yang cukup sehingga alurnya dapat dipahami oleh orang y

Penutup

Tips Reading Rainbow: Opini Anda sangat penting! Apa Anda akan merekomendasikan buku ini ke orang lain?

