CB N°6 - SUITES NUMÉRIQUES - SUJET 1

1. Question de cours

Montrer (en utilisant uniquement la définition des limites) que si (u_n) et (v_n) sont des suites réelles admettant respectivement pour limites 0 et $+\infty$, alors la suite $(u_n + v_n)$ admet pour limite $+\infty$.

 ${\bf 2.}\,$ Établir la limite des suites suivantes, et justifier la réponse :

a.
$$u_n = \frac{\cos(\frac{1}{n})}{n}$$
 b. $v_n = \sum_{k=1}^n \frac{2}{k} - \frac{2}{k+1}$ **c.** $w_n = n \tan(\frac{2}{n})$ **d.** $x_n = \frac{-3^n + 2^n}{3^n + 2n}$

3. Expliciter les suites réelles suivantes en fonction de n:

a.
$$\begin{cases} u_0 = -1 \\ u_{n+1} = 3u_n - 4 & \forall n \in \mathbb{N} \end{cases}$$
b.
$$\begin{cases} u_0 = -1, & u_1 = 2 \\ u_{n+2} = u_{n+1} + 2u_n & \forall n \in \mathbb{N} \end{cases}$$
c.
$$\begin{cases} u_0 = -1, & u_1 = 1 \\ u_{n+2} = -4(u_{n+1} + u_n) & \forall n \in \mathbb{N} \end{cases}$$

4. Établir les variations et la convergence éventuelle des suites réelles suivantes :

a.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n^2 + 3u_n + 2 \end{cases}$$
 $\forall n \in \mathbb{N}$ **b.** $u_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{k}$, pour $n \ge 1$

5. On considère la suite (u_n) définie par :

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N} : u_{n+1} = \frac{2}{1 + u_n^2}$

- **a.** Montrer que $\forall n \in \mathbb{N}, \quad 0 \leq u_n \leq 2$.
- **b.** Établir la convergence des suites (u_{2n}) et (u_{2n+1}) .
- c. En admettant que

$$\forall x \in \mathbb{R}, \quad x^5 - 2x^4 + 2x^3 - 4x^2 + 5x - 2 = (x - 1)^3(x^2 + x + 2)$$

déduire des questions précédentes la convergence de la suite (u_n) ainsi que sa limite.

CB N°6 - Suites numériques - Sujet 2

1. Question de cours

Montrer (en utilisant uniquement la définition des limites) que si (u_n) et (v_n) sont des suites réelles admettant respectivement pour limites 1 et $+\infty$, alors la suite $(u_n \times v_n)$ admet pour limite $+\infty$.

2. Établir la limite des suites suivantes, et justifier la réponse :

a.
$$u_n = \frac{\sin(n^2)}{n}$$
 b. $v_n = \sum_{k=2}^n \frac{2}{k} - \frac{2}{k-1}$ **c.** $w_n = n \tan\left(\frac{1}{n^2}\right)$ **d.** $x_n = \frac{4^n - 3^n}{4^n + 3n}$

3. Expliciter les suites réelles suivantes en fonction de n:

a.
$$\begin{cases} u_0 = -1 \\ u_{n+1} = -2u_n + 3 & \forall n \in \mathbb{N} \end{cases}$$
b.
$$\begin{cases} u_0 = -2, & u_1 = 1 \\ u_{n+2} = -u_{n+1} + 2u_n & \forall n \in \mathbb{N} \end{cases}$$
c.
$$\begin{cases} u_0 = 1, & u_1 = 0 \\ u_{n+2} = -2(u_{n+1} + u_n) & \forall n \in \mathbb{N} \end{cases}$$

4. Établir les variations et la convergence éventuelle des suites réelles suivantes :

a.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = -u_n^2 + 3u_n - 2 \end{cases}$$
 $\forall n \in \mathbb{N}$ **b.** $u_n = \prod_{k=1}^n \frac{2k-1}{2k}$, pour $n \ge 1$

5. On considère la suite (u_n) définie par :

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N} : u_{n+1} = \frac{3}{2 + u_n^2}$

a. Montrer que $\forall n \in \mathbb{N}, \quad 0 \leq u_n \leq 2$.

b. Établir la convergence des suites (u_{2n}) et (u_{2n+1}) .

c. En admettant que

$$\forall x \in \mathbb{R}, \quad 2x^5 - 3x^4 + 8x^3 - 12x^2 + 17x - 12 = (x - 1)(x^2 + x + 3)(2x^2 - 3x + 4)$$

déduire des questions précédentes la convergence de la suite (u_n) ainsi que sa limite.