Sia $A \in GL(n, \mathbb{R})$ e definiamo $\forall X \in \mathfrak{M}(n, \mathbb{R})$,

$$S_A(X) = {}^t X A - {}^t A X$$

Dire per quali A, S_A è diagonalizzabile e per questi valori calcolare polinomio minimo e caratteristico.

- 1. Supponendo che S_A sia diagonalizzabile, ovvero che esista una base di autovettori tali che ${}^tXA {}^tAX = \lambda X$, dimostrare che per $\lambda \neq 0$ deve necessariamente essere ${}^tX = -X$ (Se X è autovettore).
- 2. Dedurne quindi che $S_A \mid_{\text{Sym }(n,\mathbb{R})} \equiv 0$ (poiché le simmetriche devono essere tutte contenute nell'autospazio relativo a 0, cioè nel Kernel).
- 3. Mostrare ora che questa ipotesi implica che A sia simmetrica e che debba essere AX = XA per ogni X simmetrica.
- 4. Dedurne che le uniche matrici possibili sono $A = \mu I$.
- 5. Dimostrare che per $A = \mu I$, S_A è effettivamente diagonalizzabile e calcolarne polinomio minimo e caratteristico.

SOLUZIONE

1. Supponiamo che esiste una base di autovettori e vediamo che proprietà devono avere gli autovettori X.

$${}^tXA - {}^tAX = \lambda X \implies {}^tXA = ({}^tA + \lambda I)X \implies {}^tX = ({}^tA + \lambda I)XA^{-1}$$

Siccome ${}^tXA = ({}^tA + \lambda I)X$, trasponendo si ottiene ${}^tAX = {}^tX(A + \lambda I)$ e sostituendo tX si ha ${}^tAX = ({}^tA + \lambda I)XA^{-1}(A + \lambda I) \implies X = (I + \lambda^tA^{-1})X(I + \lambda A^{-1})$

Ora sviluppando i conti a destra e semplificando le due X si ha $\lambda({}^tA^{-1}X + XA^{-1}) = -\lambda^{2t}A^{-1}XA^{-1}$ da cui moltiplicando per tA a sinistra e per A a destra, e (supponiamo $\lambda \neq 0$) dividendo per λ si ottiene $(XA + {}^tAX) = -\lambda X$

Usando ora l'ipotesi di X autovettore si ha $(XA+^tAX)=-\lambda X=-(^tXA-^tAX)=-^tXA+^tAX\Longrightarrow XA=-^tXA$ e moltiplicando a destra per A^{-1} si ottiene $X=-^tX$, da cui si deduce che se X è autovettore per $\lambda\neq 0$, allora X è una matrice antisimmetrica

2. Ora possiamo dedurne che se X è un autovettore e sta nelle matrici simmetriche, allora è un autovettore relativo a 0 (Se fosse relativo a $\lambda \neq 0$ sarebbe anche antisimmetrica quindi X sarebbe la matrice nulla, che non è un autovettore).

Mostriamo ora che Sym $(n,\mathbb{R})\subseteq V_0$: per ipotesi $(S_A$ diagonalizzabile) $V=V_0\oplus V_{\lambda_1}\oplus\ldots\oplus V_{\lambda_n}$. Inoltre V= Asym $(n,\mathbb{R})\oplus$ Sym (n,\mathbb{R}) . Allora, sia Y una matrice simmetrica. Usando $X\in V$, otteniamo che X si scrive in modo unico come $X=M_{0S}+M_{0A}+M_{\lambda_1}+\ldots+M_{\lambda_n}$ con $M_{0A}\in V_0\cap \text{Asym }(n,\mathbb{R}),M_{0S}\in V_0\cap \text{Sym }(n,\mathbb{R}),M_{\lambda_i}\in V_{\lambda_i}$.

Inoltre sappiamo che $M_{\lambda_1}+\ldots+M_{\lambda_n}\in V_{\lambda_1}\oplus V_{\lambda_n}\subseteq \operatorname{Asym}(n,\mathbb{R})$ quindi $M_{0A}+M_{\lambda_1}+\ldots+M_{\lambda_n}=0$ (perché le simmetriche e le antisimmetriche sono in somma diretta) $\Longrightarrow X\in V_0$, quindi $S_A\mid_{\operatorname{Sym}(n,\mathbb{R})}\equiv 0$.

- 3. Usando il fatto appena dimostrato, notiamo che I è simmetrica e che quindi deve valere $S_A(I)=0$, ovvero $A-{}^tA=0$, quindi A è simmetrica.
 - Si può quindi scrivere, $\forall X \in \text{Sym}$ $0 = {}^tXA {}^tAX = XA AX$, ovvero A commuta con tutte le matrici simmetriche.
- 4. Usiamo il fatto che A è simmetrica diagonalizzandola ortogonalmente. Sia $N \in O(n)$ una matrice tale che $NAN^{-1}=D$ diagonale.

Moltiplichiamo ora la relazione AX = XA a destra per N^{-1} e a sinistra per N, ottenendo $NAXN^{-1} = NXAN^{-1}$. Inoltre notiamo che l'applicazione $R(Y) = N^{-1}YN = {}^tNYN$ manda matrici simmetriche

in matrici simmetriche ed è biggettiva, quindi la relazione $\forall X \in \operatorname{Sym} \quad NAXN^{-1} = NXAN^{-1}$ equivale ad avere $\forall Y \in \operatorname{Sym} \quad NAN^{-1}YNN^{-1} = NN^{-1}YNAN^{-1} \implies DY = YD$.

Ci siamo quindi ridotti a cercare quali matrici diagonali ${\it D}$ commutano con tutte le matrici simmetriche.

Facciamo ora un po' di conti in notazione di Einstein. Siccome D è diagonale vale $D_{ij} = \delta_{ij}D_{ij}$ dove con δ_{ij} si intende la delta di Kronecker. Cerchiamo quali matrici $X \in \mathfrak{M}(n,\mathbb{R})$ commutano con una matrice diagonale fissata.

$$DX = XD \implies D_{ik}X_{kj} = X_{ik}D_{kj} \implies \delta_{ik}D_{ik}X_{kj} = X_{ik}\delta_{kj}D_{kj} \implies D_{ii}X_{ij} = X_{ij}D_{jj} \quad \forall i, j$$

Quindi $\forall i, j$ si hanno le due alternative $X_{ij} = 0$ oppure $D_{ii} = D_{jj}$. Ciò significa che se la matrice D ha almeno due autovalori distinti non può commutare con tutte le matrici simmetriche (infatti per commutare sarebbero obbligate ad avere il numero zero in opportune celle). Ma allora la matrice D ha tutti gli autovalori uguali, ovvero $D = \mu I$.

Allora $A=N^{-1}DN=N^{-1}\mu IN=\mu I$ quindi le uniche matrici che commutano con le matrici simmetriche sono i multipli dell'identità.

5. Se $A = \mu I$, abbiamo $S_{\mu}(X) = \mu({}^t X - X)$, $\mu \neq 0$ ($A = 0 \notin GL(n, \mathbb{R})$). Si considerino ora le matrici simmetriche e quelle antisimmetriche.

Se $Y \in \operatorname{Sym}(n,\mathbb{R})$ si ha $S_{\mu}(Y) = \mu({}^tY - Y) = 0$, quindi $S_{\mu} \mid_{\operatorname{Sym}} \equiv 0$. Se $Y \in \operatorname{Asym}(n,\mathbb{R})$ si ha $S_{\mu}(Y) = \mu({}^tY - Y) = -2\mu Y$, quindi $S_{\mu} \mid_{\operatorname{Asym}} \equiv 2\mu \mathrm{id}$.

 S_{μ} è quindi diagonalizzabile $\forall \mu$ e si ha quindi che:

$$\chi_{S_{\mu}}(t) = t^{\frac{n(n+1)}{2}} (t - 2\mu)^{\frac{n(n-1)}{2}}$$
$$m_{S_{\mu}}(t) = t(t - 2\mu)$$