INFO 131, partiel, 18 Nov 2014

RÉPONDEZ AUX 23 QUESTIONS DANS L'ORDRE; MENTIONNEZ LE NUMÉRO DE LA QUESTION DEVANT CHAQUE REPONSE (EVENTUELLEMENT VIDE).

VOUS AVEZ DROIT A TOUS VOS DOCUMENTS PERSONNELS.

TOUT INSTRUMENT ELECTRONIQUE EST INTERDIT.

ECRIVEZ LISIBLEMENT. MERCI!

IL Y A 23 QUESTIONS, NUMEROTEES DE 1 A 23.

Question 1 – Déroulez l'algorithme d'Euclide pour calculer le PGCD de 325 et 240 (en utilisant la division euclidienne, et pas la soustration). Dans la dernière ligne, a ou b est nul, et la case r est vide. Entourez la valeur du pgcd. Le tableau solution a 7 lignes (sans compter la ligne a, b, r).

a	b	r
325	240	

Question 2 – Soient $a \ge b > 0$ deux entiers donnés. L'algorithme d'Euclide étendu calcule g le PGCD de a et b ainsi que les plus petits entiers u, v tels que au + bv = g. Dans la programmation récursive, la fonction est récursivement appelée sur a' = b, et $b' = a \mod b$; elle rend g', u' et v' tels que $a'u' + b'v' = g' = \mathsf{PGCD}(a',b')$. Donnez, sans démonstration, les formules pour calculer g,u,v en fonction de g',u',v'. Vous pouvez utiliser g le quotient (entier) de g par g.

Question 3 – Déroulez l'algorithme d'Euclide étendu (ou Bézout) pour a=325 et b=240. u et v sont tels que au+bv=g=PGCD(a,b); $r=a \mod b$, et $q=\lfloor \frac{a}{b}\rfloor$ est le quotient entier de la division de a par b Dans la dernière ligne, a ou b est nul, et les cases q et r sont vides.

a	b	r	q	g	u	v
325	240					

Question 4 – Citez les noms de 3 algorithmes optimaux de tri

Question 5 – Un étudiant programme une méthode de tri. Son programme met 1 seconde pour trier 100 mille éléments (10^5), et 4 secondes pour trier 200 mille éléments (2×10^5). Notons n le nombre d'éléments à trier. La complexité de son algorithme est en ?

$$\square$$
 $O(n^2)$

$$\square$$
 $O(n)$

 $\square O(n \log n)$ ☐ autre, laquelle? Question 6 – Quel est l'ordre de grandeur du nombre de comparaisons effectuées par un algorithme optimal de tri (qui n'utilise que des comparaisons entre 2 éléments) **Question 7** – Donnez les formules nécessaires pour le calcul récursif de a^n ($a \in \mathbb{R}, n \in \mathbb{N}$). N'oubliez pas le ou les cas terminaux. Question 8 – Citez les noms de 3 algorithmes calculant les plus courts chemins dans un graphe Question 9 – La difficulté d'un problème NP vient ☐ de ce qu'il y a beaucoup de candidats (de solutions potentielles) ☐ générer un candidat prend beaucoup de temps ☐ tester si un candidat est solution prend beaucoup de temps Question 10 – Y a t-il des problèmes impossibles à résoudre en informatique? ☐ oui; proposez en deux. non. Il y a seulement des problèmes difficiles, qui nécessitent beaucoup de temps pour être résolus. Question 11 – Un tableau contient n entiers triés par ordre croissant; combien de comparaisons nécessite la méthode optimale (sans utiliser d'autre structure de données) pour décider si le tableau contient un entier donné Question 12 – Quelle structure de données utiliser pour répondre en temps constant à la requête précédente? Question 13 – Un tableau, trié, contient n entiers; combien de comparaisons nécessite la méthode optimale pour trouver le nombre maximum dans le tableau qui est inférieur (strictement) à un nombre donné, ou pour détecter qu'il n'existe pas **Question 14** – La méthode la plus rapide pour calculer le n ième terme de la suite de Fibonacci, F_n (rappel : $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$ quand n > 1) nécessite \square $O(\log n)$ opérations sur des entiers \square O(n) opérations sur des entiers \square $O(F_n)$ opérations sur des entiers

Question 15 - Le calcul rapide du membre droit de

$$(F_k, F_{k-1}) = (F_1, F_0) \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{k-1}$$

permet de calculer F_k , le k ième terme de la suite de Fibonacci. Pour calculer K_n , où K_0 , K_1 sont donnés, et $K_n = aK_{n-1} + bK_{n-2}$ quand n > 1, avec a et b donnés, quelle formule matricielle utiliseriez-vous?

Question 16 – Pour calculer G_n , où G_0 , G_1 sont donnés, et $G_n = g_0 + g_1G_{n-1} + g_2G_{n-2}$ quand n > 1, avec g_0 , g_1 et g_2 donnés, quelle formule matricielle utiliseriez-vous?

Question 17 – L'arbre de Fibonacci T_4 est dessiné ci-dessus. T_0 est une feuille portant l'étiquette 0, T_1 est une feuille portant l'étiquette 1; pour n > 1, T_n est un noeud binaire, dont le fils gauche est T_{n-2} et dont le fils droit est T_{n-1} . Donnez une formule récursive pour le nombre total de noeuds (feuilles ou noeuds internes), noté t_n , de T_n , pour n > 1.

Question 18 – (suite) Donnez une formule récursive pour définir u_n le nombre de feuilles étiquetées 1 de T_n . Que constatez-vous?

Question 19 – (suite) Donnez une formule récursive pour définir z_n le nombre de feuilles étiquetées 0 de T_n .

Question 20 – (suite) Remplissez le tableau suivant, où u_n est le nombre de feuilles étiquetées 1 de T_n , z_n le nombre de feuilles étiquetées 0 de T_n , et t_n le nombre de noeuds (feuilles ou non) de T_n .

n	0	1	2	3	4	5	6	7	8	9
t_n										
u_n										
z_n										

Question 21 – (suite) Donnez la formule matricielle pour calculer rapidement t_n .

Question 22 – Le temps d'exécution d'un algorithme est T(n) pour une donnée de taille n, où T(1)=1 et T(n)=3T(n/2)+n. Prouvez en quelques lignes, par récurrence sur k, que $T(2^k)=3^{k+1}-2^{k+1}$. La formule est vraie pour k=0, ce qui permet d'amorcer la récurrence.

Question 23 – (suite) La complexité d'un algorithme est $T(2^k) = 3^k, n = 2^k$. Déduisez-en la complexité de T(n) en fonction de n; vous la prouverez en une ligne; les valeurs numériques de $\log_2 3$, ou autre, ne sont pas demandées.