An Introduction to Gaussian Process Regression

Eric Schearer

Intelligent Control Systems

Overview

- 1. What is regression?
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

Overview

- 1. What is regression?
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

$$y = f(\mathbf{x}) + \epsilon$$

$$f(\mathbf{x})$$

scalar function that we are trying to find

$$\mathbf{x} \in \mathbb{R}^{D \times 1}$$

vector of inputs to the function

D

dimension of the input space

y

scalar measured output of the function, a continuous variable

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

normally distributed measurement noise

$$y = f(\mathbf{x}) + \epsilon$$

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i=1,\ldots,n\} = (X,\mathbf{y})$$
 training set

n

number of samples

$$\mathbf{y} \in \mathbb{R}^{n \times 1}$$

column vector of the series of measured outputs

$$X \in \mathbb{R}^{D \times n}$$

design matrix with columns that are the individual input vectors

Given:

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\} = (X, \mathbf{y})$$
 training set

$$\mathbf{X}_{f{st}}$$
 new input

Predict:

$$y_st$$
 new output

$$p(y_st)$$
 distribution of the new output

Linear Model

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{w}$$

$$\mathbf{w} \in \mathbb{R}^{D imes 1}$$
 vector of parameters

$$\mathbf{x} = \begin{bmatrix} 1 & x \end{bmatrix}^{\top}$$

Overview

- 1. What is regression?
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

Inverse Dynamics of the Human Arm

Given: shoulder and elbow joint angles, velocities, and accelerations Predict: shoulder and elbow joint torques to drive arm along a trajectory 9

Complexity

Identifiability?

Two Approaches

- 1. Restrict the possible functions
 - maybe not flexible enough
 - maybe overfit
- 2. Consider all functions with some more likely than others
 - How in the world are you going to compute this?
 - Gaussian processes to the rescue

Overview

- 1. What is regression?
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

14

A function is a collection of a random variables A vector might be a finite representation of a function.

Draw a Function from a Gaussian Process

$$m(x) = 0 \qquad \text{mean function}$$

$$\mathbf{m} = \begin{bmatrix} m(x_1) & \dots & m(x_n) \end{bmatrix} \mathbf{k}(\mathbf{x}, \mathbf{x}') \qquad \text{mean vector}$$

$$k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right) \qquad \qquad \text{covariance function}$$

$$K = \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \text{covariance matrix}$$

$$\mathbf{f} = \mathbf{mvnrnd}(\mathbf{m}, \mathbf{K})$$

$$m(x) = 0$$
 $k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right)$

$$\mathbf{m} \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}$$

$$m(x) = 0$$
 $k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right)$

$$\mathbf{m} \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}$$

$$m(x) = 0$$
 $k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right)$

$$\mathbf{m} \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}$$

$$m(x) = 0$$
 $k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right)$

$$\mathbf{m} \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}$$

$$m(x) = 0$$
 $k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right)$

$$\mathbf{m} \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}$$

Gaussian Process e.g $\times \sim N(m, \sigma)$

Definition:

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$\text{drawn from function} \quad \text{Covariance} \quad \text{function} \quad m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

mean function

covariance function

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$$

Squared Exponential Covariance Function

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

mean function

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})] = 0$$

covariance function

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$$

$$k(\mathbf{x},\mathbf{x}') = p_1 e^{-\frac{(\mathbf{x}-\mathbf{x}')^\top(\mathbf{x}-\mathbf{x}')}{2p_2^2}}$$
 hyperparameters

P2 is the length scale

P1 is the magnitude or

P1 is the scale

Vertical scale

Changing the Length Scale

$$k(\mathbf{x}, \mathbf{x}') = p_1 e^{-\frac{(\mathbf{x} - \mathbf{x}')^{\top} (\mathbf{x} - \mathbf{x}')}{2p_2^2}}$$

Changing the Length Scale

nice length scale

length scale too short

100

$$k(\mathbf{x}, \mathbf{x}') = p_1 e^{-\frac{(\mathbf{x} - \mathbf{x}')^{\top} (\mathbf{x} - \mathbf{x}')}{2p_2^2}}$$

Changing the Vertical Scale

 $k(\mathbf{x}, \mathbf{x}')$

Overview

- 1. What is regression?
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

Given:

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\} = (X, \mathbf{y})$$
 training set

Predict:

$$y_st$$
 new output

$$p(y_st)$$
 distribution of the new output

Gaussian Process Regression

prior Gaussian process

Gaussian Process Regression

outputs You have observed Joint Prior Distribution

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X, X) + \sigma^2 I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right)$$

output you (for a new query) have not observed
$$(X,X) \in \mathbb{R}^{n \times n}$$

covariance of the training outputs with the training outputs

$$K(X, X_*) \in \mathbb{R}^{n \times n_*}$$

covariance of the training outputs with the test outputs

$$K(X_*, X) \in \mathbb{R}^{n_* \times n}$$

covariance of the test outputs with the training outputs

$$K(X_*, X_*) \in \mathbb{R}^{n_* \times n_*}$$

covariance of the test outputs with the test outputs

Predictive Distribution

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X, X) + \sigma^2 I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right)$$

condition the joint prior distribution on the training data (this operation is a property of Gaussians)

$$\begin{aligned} &\mathbf{f}_*|X,y,X_* \sim \mathcal{N}(\overline{\mathbf{f}}_*,\operatorname{cov}(\mathbf{f}_*)) \\ &\mathbf{f}_* = K(X_*,X) \left[K(X,X) + \sigma^2 I\right]^{-1} \mathbf{y} \\ &\operatorname{cov}(\overline{\mathbf{f}}_*) = \\ &K(X_*,X_*) - K(X_*,X)[K(X,X) + \sigma^2 I]^{-1}K(X,X_*) \end{aligned}$$

Mean of Predictive Distribution

 $\bar{f}_*(\mathbf{x}_*) = \frac{\mathbf{k}(\mathbf{x}_*, X)}{\mathbf{k}(\mathbf{x}_*, X)} \left[K(X, X) + \sigma^2 I \right]^{-1} \mathbf{y}$ $\bar{f}_*(\mathbf{x}_*) = \sum_{i=1}^n \alpha_i k(\mathbf{x}_*, \mathbf{x}_i) \xrightarrow{\text{doesn't, depend on } 1} \text{ vector of } \mathbf{x}_*$

linear combination of basis functions each centered at a training point

Covariance of Predictive Distribution

$$\mathrm{cov}(\overline{\mathbf{f}}_*) =$$

$$K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma^2 I]^{-1}K(X, X_*)$$

prior test point covariance

additional information gained from the training inputs

How to Pick the Hyperparameters

$$k(\mathbf{x}, \mathbf{x}') = p_1 e^{-\frac{(\mathbf{x} - \mathbf{x}')^{\top} (\mathbf{x} - \mathbf{x}')}{2p_2^2}} \qquad \theta = [p_1 \ p_2]$$

marginal likelihood or evidence of the data

$$p(\mathbf{y}|X,\theta) = \int p(\mathbf{y}|\mathbf{f},X,\theta) p(\mathbf{f}|X,\theta) d\mathbf{f}$$
 probability of the model
$$\log p(\mathbf{y}|X,\theta) = \text{outputs given, the inputs and the model}$$

$$-\frac{1}{2}\mathbf{y}^{\top}(K+\sigma^2I)^{-1}\mathbf{y} - \frac{1}{2}\log\left|K+\sigma^2I\right| - \frac{n}{2}\log2\pi$$
 model complexity normalization term

$$\underset{\theta}{\text{maximize}} \quad \log p(\mathbf{y}|X,\theta)$$

Incorporate Fixed Basis Functions

$$g(\mathbf{x}) = f(\mathbf{x}) + \mathbf{x}^{\mathsf{T}} \mathbf{w}$$

$$\mathbf{w} \sim \mathcal{N}(\mathbf{b}, B)$$

$$K_{x} = K(X_{x}, X_{x})$$

$$K = K(X, X)$$

prior parameter distribution

$$f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

zero-mean GP

$$g(\mathbf{x}) \sim \mathcal{GP}(\mathbf{x}^{\mathsf{T}}\mathbf{b}, k(\mathbf{x}, \mathbf{x}') + \mathbf{x}^{\mathsf{T}}B\mathbf{x})$$

combined GP

$$\bar{\mathbf{g}}(X_*) = X_*^{\top} \bar{\mathbf{w}} + K_*^{\top} K^{-1} (\mathbf{y} - X^{\top} \bar{\mathbf{w}})$$

mean of predictive distribution

parameterized model term

GP model term

Remember This

- 1. You get to write down an analytical expression for the distribution of your predicted output
- 2. You didn't have to solve a nonlinear optimization problem.

Inverse Dynamics of the Human Arm

Given: shoulder and elbow joint angles, velocities, and accelerations

Predict: shoulder and elbow joint torques to drive arm along a trajectory 37

Mean Predictions with Confidence Intervals of Joint Torques

W ~ N (m, o²)

Overview

VICW

Inear regression $f = W^T X$ $f = W^T X$

- 1. What is regression? GR
- 2. Why are some regression problems hard?
- 3. What is a Gaussian process?
- 4. How does Gaussian process regression work?
- 5. How does Gaussian process regression compare to other nonlinear regression methods?

Gaussian Process Regression and Other Nonlinear Regression Methods

Method	Number of Parameters/function complexity	Nonlinear optimization required with new data?	Model Selection	Analytical Predictive Distribution	Speed of computation
Gaussian process regression	low	not really	minimize ML	yes	slow for big data sets
Artificial neural networks	high	yes	ad hoc	no	fast
Radial basis functions	high	no	K-means clustering	yes	fast
Locally weighted regression	low	no	ad hoc	yes	fast