Жорданова нормална форма на линеен оператор и матрица

Определение 1. Тритгълна матрица

$$J_1(\lambda_1) = \begin{pmatrix} \lambda_1 & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_1 & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_1 \end{pmatrix} \in M_{n_1 \times n_1}(F),$$

в която диагоналните елементи

$$J_1(\lambda_1)_{i,i} = \lambda_1 \quad \exists a \quad \forall 1 \leq i \leq n_1$$

са равни на $\lambda_1 \in F$, а върху правата, успоредна на главния диагонал и намираща се непосредствено над него стоят единици

$$J_1(\lambda_1)_{i,i+1} = 1$$
 $\exists a \quad \forall 1 \leq i \leq n_1 - 1$

се нарича Жорданова клетка.

Блочно-диагонална матрица

$$J = \begin{pmatrix} J_1(\lambda_1) & 0 & \dots & 0 & 0 \\ 0 & J_2(\lambda_2) & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & J_{k-1}(\lambda_{k-1}) & 0 \\ 0 & 0 & \dots & 0 & J_k(\lambda_k) \end{pmatrix} \in M_{n \times n}(F),$$

 $n=n_1+\ldots+n_k$, чиито диагонални блокове $J_i(\lambda_i)$ са Жорданови клетки се нарича Жорданова матрица.

Ще докажем, че ако всички характеристични корени $\lambda_1, \ldots, \lambda_k$ на линеен оператор $\varphi: V \to V$ в крайномерно пространство V над поле F принадлежат на F, то съществува базис v_1, \ldots, v_n на V, в който матрицата на φ е Жорданова. Ще казваме, че v_1, \ldots, v_n е Жорданов базис за $\varphi: V \to V$.

Нека $A \in M_{n \times n}(F)$ е матрица, чиито всички характеристични корени $\lambda_1, \ldots, \lambda_k$ принадлежат на F. Тогава съществува обратима матрица $T \in M_{n \times n}(F)$, така че $J = T^{-1}AT$ е Жорданова. По-точно, фиксираме базис $e = (e_1, \ldots, e_n)$ на n-мерно пространство V над F и разглеждаме оператора $\varphi : V \to V$ с матрица A спрямо e. Тогава всички характеристични корени $\lambda_1, \ldots, \lambda_k$ на φ принадлежат на F и съществува Жорданов базис $v = (v_1, \ldots, v_n)$ на V, в който матрицата J на φ е Жорданова. Ако $T \in M_{n \times n}(F)$ е матрицата на прехода от базиса e към базиса v = eT на V, то $J = T^{-1}AT$ и матрицата A е подобна на Жордановата матрица J.

Ще установим, че Жордановата матрица J на $\varphi:V\to V$ е еднозначно определена с точност до реда на Жордановите си клетки, доказвайки че броят $N_r(\lambda_i)$ на Жордановите клетки $J_r(\lambda_i)\in M_{r\times r}(F)$ с размер $r\in\mathbb{N}$ и диагонален елемент λ_i не зависи от избора на Жорданов базис на V.

Твърдение 2. За произволен линеен оператор $\varphi: V \to V$ в крайномерно пространство V над поле F съществува $m \in \mathbb{N}$, така че

$$V = \ker(\varphi^m) \oplus \operatorname{im}(\varphi^m)$$

е директна сума на ядрото и образа на $\varphi^m: V \to V$.

Доказателство. Да забележим, че образите на $\varphi^s:V\to V,$ $s\in\mathbb{N}$ образуват нерастяща редица

$$V \supseteq \operatorname{im}(\varphi) \supseteq \operatorname{im}(\varphi^2) \supseteq \ldots \supseteq \operatorname{im}(\varphi^s) \supseteq \operatorname{im}(\varphi^{s+1}) \supseteq \ldots,$$

защото за произволен вектор $v \in V$ можем да представим $\varphi^{s+1}(v) = \varphi^s \varphi(v) \in \operatorname{im}(\varphi^s)$. Съответната редица от размерности

$$\dim(V) \ge \operatorname{rk}(\varphi) \ge \operatorname{rk}(\varphi^2) \ge \dots \ge \operatorname{rk}(\varphi^s) \ge \operatorname{rk}(\varphi^{s+1}) \ge \dots$$

е нерастяща и съществува $m \in \mathbb{Z}^{\geq 0}$ с $\mathrm{rk}(\varphi^m) = \mathrm{rk}(\varphi^{m+1})$. Подпространството $\mathrm{im}(\varphi^{m+1})$ съвпада с $\mathrm{im}(\varphi^m)$, защото $\mathrm{im}(\varphi^{m+1})$ и $\mathrm{im}(\varphi^m)$ имат равни размерности

$$\dim\operatorname{im}(\varphi^m)=\operatorname{rk}(\varphi^m)=\operatorname{rk}(\varphi^{m+1})=\dim\operatorname{im}(\varphi^{m+1}).$$

Без ограничение на общността ще считаме, че $m \in \mathbb{Z}^{\geq 0}$ е минималното неотрицателно цяло с $\operatorname{im}(\varphi^m) = \operatorname{im}(\varphi^{m+1})$. С индукция по $k \in \mathbb{N}$, оттук следва

$$\operatorname{im}(\varphi^m) = \operatorname{im}(\varphi^{m+k}),$$

защото прилагането на φ^{k-1} към $\operatorname{im}(\varphi^m) = \varphi^m(V) = \varphi^{m+1}(V) = \operatorname{im}(\varphi^{m+1})$ дава $\operatorname{im}(\varphi^{m+k-1}) = \varphi^{m+k-1}(V) = \varphi^{m+k}(V) = \operatorname{im}(\varphi^{m+k})$. Комбинирайки с индукционното предположение $\operatorname{im}(\varphi^m) = \operatorname{im}(\varphi^{m+k-1})$ получаваме $\operatorname{im}(\varphi^m) = \operatorname{im}(\varphi^{m+k})$.

В частност, $\operatorname{im}(\varphi^m) = \operatorname{im}(\varphi^{2m})$ и за произволен вектор $v \in V$ съществува $w \in V$, така че $\varphi^m(v) = \varphi^{2m}(w)$. В резултат, $\varphi^m(v - \varphi^m(w)) = \overrightarrow{\mathcal{O}}$, откъдето $v - \varphi^m(w) \in \ker(\varphi^m)$. Представянето

$$v = [v - \varphi^m(w)] + \varphi^m(w) \in \ker(\varphi^m) + \operatorname{im}(\varphi^m)$$

за произволен вектор $v \in V$ доказва, че

$$V = \ker(\varphi^m) + \operatorname{im}(\varphi^m)$$

е сума на ядрото и образа на $\varphi^m: V \to V$.

По Теоремата за размерността на сума и сечение,

$$\dim V = \dim \ker(\varphi^m) + \dim \operatorname{im}(\varphi^m) - \dim(\ker(\varphi^m) \cap \operatorname{im}(\varphi^m)) =$$

$$= d(\varphi^m) + \operatorname{rk}(\varphi^m) - \dim(\ker(\varphi^m) \cap \operatorname{im}(\varphi^m)),$$

където $d(\varphi^m) := \dim \ker(\varphi^m)$ е дефектът на φ^m , а $\operatorname{rk}(\varphi^m) := \dim \operatorname{im}(\varphi^m)$ е рангът на φ^m . От друга страна, Теоремата за ранга и дефекта на $\varphi^m : V \to V$ изисква

$$d(\varphi^m) + \operatorname{rk}(\varphi^m) = \dim V,$$

така че

$$\dim(\ker(\varphi^m)\cap\operatorname{im}(\varphi^m))=0\quad \text{if}\quad \ker(\varphi^m)\cap\operatorname{im}(\varphi^m)=\{\overrightarrow{\mathcal{O}}\}.$$

Това доказва, че сумата

$$V = \ker(\varphi^m) \oplus \operatorname{im}(\varphi^m)$$

е директна и завършва доказателството на твърдението.

Твърдение 3. Нека $\varphi: V \to V$ е линеен оператор в крайномерно пространство V над поле F, чишто всички характеристични корени $\lambda_1, \ldots, \lambda_k, \ k \le n$ принадлежат на F и $\psi_i := \varphi - \lambda_i \mathrm{Id}$ за $1 \le i \le k$. Тогава съществуват $m_i \in \mathbb{N}$, така че

$$V = \ker(\psi_1^{m_1}) \oplus \ldots \oplus \ker(\psi_k^{m_k})$$

е директна сума на φ -инваринтните подпространства $\ker(\psi_i^{m_i})$, върху които операторът $\varphi: \ker(\psi_i^{m_i}) \to \ker(\psi_i^{m_i})$ има единствена собствена стойност λ_i .

Доказателство. По Лемата на Фитинг съществува $m_1 \in \mathbb{N}$, така че

$$V = \ker(\psi_1^{m_1}) \oplus \operatorname{im}(\psi_1^{m_1}).$$

Твърдим, че подпространствата $\ker(\psi_1^{m_1})$ и $\operatorname{im}(\psi_1^{m_1})$ са φ -инвариантни. Наистина, от

$$\varphi \psi_1 = \varphi(\varphi - \lambda_1 \mathrm{Id}) = \varphi^2 - \lambda_1 \varphi = (\varphi - \lambda_1 \mathrm{Id}) \varphi = \psi_1 \varphi$$

следва

$$\varphi \psi_1^{m_1} = \psi_1^{m_1} \varphi.$$

Ако $v \in \ker(\psi_1^{m_1})$, то $\psi_1^{m_1}(\varphi(v)) = \varphi(\psi_1^{m_1}(v)) = \varphi(\overrightarrow{\mathcal{O}}) = \overrightarrow{\mathcal{O}}$, така че $\varphi(\ker(\psi_1^{m_1})) \subseteq \ker(\psi_1^{m_1})$ и $\ker(\psi_1^{m_1})$ е φ -инвариантно подпространство на V. Аналогично, за всяко $\psi_1^{m_1}(u) \in \operatorname{im}(\psi_1^{m_1})$ е в сила $\varphi(\psi_1^{m_1}(u)) = \psi_1^{m_1}\varphi(u) \in \operatorname{im}(\psi_1^{m_1})$, откъдето $\varphi(\operatorname{im}(\psi_1^{m_1})) \subseteq \operatorname{im}(\psi_1^{m_1})$ и $\operatorname{im}(\psi_1^{m_1})$ е φ -инвариантно подпространство на V.

По предположение, всички характеристични корени $\lambda_1, \dots, \lambda_k$ на $\varphi: V \to V$ принадлежат на F, така че $\lambda_1, \dots, \lambda_k$ са собствените стойности на $\varphi: V \to V$. Ако $v_1 \in V$ е собствен вектор на $\varphi: V \to V$, отговарящ на собствената стойност λ_1 , то твърдим че $v_1 \in \ker(\psi_1^{m_1})$ и v_1 е собствен вектор на $\varphi: \ker(\psi_1^{m_1}) \to \ker(\psi_1^{m_1})$. Наистина, от $\varphi(v_1) = \lambda_1 v_1$ следва $\psi_1(v_1) = \varphi(v_1) - \lambda_1 v_1 = \overrightarrow{\mathcal{O}}$, така че $v_1 \in \ker(\psi_1) \subseteq \ker(\psi_1^{m_1})$. Ако $v \in \ker(\psi_1^{m_1}) \setminus \{\overrightarrow{\mathcal{O}}\}$ е собствен вектор на $\varphi: \ker(\psi_1^{m_1}) \to \ker(\psi_1^{m_1})$, отговарящ на собствена стойност $\lambda \in F$, то твърдим, че $\lambda = \lambda_1$. По-точно, от $\varphi(v) = \lambda v$ следва $\psi_1(v) = (\lambda - \lambda_1)v$, така че $\overrightarrow{\mathcal{O}} = \psi_1^{m_1}(v) = (\lambda - \lambda_1)^{m_1}v$ за ненулевия вектор v изисква $\lambda = \lambda_1$.

Нека $v_i \in V \setminus \{\overrightarrow{\mathcal{O}}\}$ е собствен вектор на $\varphi: V \to V$, отговарящ на собствена стойност λ_i за някое $2 \le i \le k$. Твърдим, че $v_i \in \operatorname{im}(\psi_1^{m_1})$. За целта да забележим, че от $\varphi(v_i) = \lambda_i v_i$ следва $\psi_1(v_i) = (\lambda_i - \lambda_1)v_i$. Следователно

$$(\lambda_i - \lambda_1)^{m_1} v_i = \psi_1^{m_1} (v_i) \in \operatorname{im}(\psi_1^{m_1})$$

с $(\lambda_i - \lambda_1)^{m_1} \neq 0$ и понеже $\operatorname{im}(\psi_1^{m_1})$ е подпространство на V, получаваме

$$v_i = \frac{1}{(\lambda_i - \lambda_1)^{m_1}} \psi_1^{m_1}(v_i) \in \operatorname{im}(\psi_1^{m_1}).$$

Ако $v \in \operatorname{im}(\psi_1^{m_1}) \setminus \{\overrightarrow{\mathcal{O}}\}$ е собствен вектор на $\varphi : \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$, отговарящ на собствена стойност λ , то от $v \in V$ следва, че λ е собствена стойност на $\varphi : V \to V$ и $\lambda \in \{\lambda_1, \dots, \lambda_k\}$. Ако $\lambda = \lambda_1$, то съгласно доказаното по-горе $v \in \ker(\psi_1^{m_1})$, откъдето $v \in \operatorname{im}(\psi_1^{m_1}) \cap \ker(\psi_1^{m_1}) = \{\overrightarrow{\mathcal{O}}\}$. Противоречието доказва, че собствените стойности на $\varphi : \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$ са $\lambda_2, \dots, \lambda_k$.

С индукция по k, от разлагането $V = \ker(\psi_1^{m_1}) \oplus \operatorname{im}(\psi_1^{m_1})$ в директна сума на φ -инвариантни подпространства $\ker(\psi_1^{m_1})$, $\operatorname{im}(\psi_1^{m_1})$ с единствена собствена стойност λ_1 на $\varphi : \ker(\psi_1^{m_1}) \to \ker(\psi_1^{m_1})$ и собствени стойности $\lambda_2, \ldots, \lambda_k$ на $\varphi : \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$

следва доказваното твърдение, стига да установим, че ако $\varphi: V \to V$ има единствена собствена стойност λ_1 , то

$$V = \ker(\psi_1^{m_1})$$
 за някое $m_1 \in \mathbb{N}$.

Допускаме противното. Тогава в разлагането $V = \ker(\psi_1^{m_1}) \oplus \operatorname{im}(\psi_1^{m_1})$ от Лемата на Фитинг имаме $\operatorname{im}(\psi_1^{m_1}) \neq \{\overrightarrow{\mathcal{O}}\}$. Произволен собствен вектор $v_1 \in V \setminus \{\overrightarrow{\mathcal{O}}\}$ на $\varphi : V \to V$, отговарящ на собствена стойност λ_1 принадлежи на $\ker(\psi_1) \subseteq \ker(\psi_1^{m_1})$, така че и $\ker(\psi_1^{m_1}) \neq \{\overrightarrow{\mathcal{O}}\}$. Ако e_1, \ldots, e_s е базис на $\ker(\psi_1^{m_1})$ и e_{s+1}, \ldots, e_n е базис на $\operatorname{im}(\psi_1^{m_1})$, то матрицата $A \in M_{n \times n}(F)$ на $\varphi : V \to V$ спрямо базиса $e_1, \ldots, e_s, e_{s+1}, \ldots, e_n$ на V е

$$A = \left(\begin{array}{cc} A_1 & \mathbb{O}_{s \times (n-s)} \\ \mathbb{O}_{(n-s) \times s} & A_2 \end{array}\right),$$

където $A_1 \in M_{s \times s}(F)$ е матрицата на $\varphi : \ker(\psi_1^{m_1}) \to \ker(\psi_1^{m_1})$ спрямо базиса e_1, \dots, e_s на $\ker(\psi_1^{m_1})$, а $A_2 \in M_{(n-s)\times(n-s)}(F)$, е матрицата на $\varphi : \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$ спрямо базиса e_{s+1}, \dots, e_n . Храктеристичният полином

$$(x - \lambda_1)^n = f_A(x) = f_{A_1}(x)f_{A_2}(x)$$

на A е произведение на характеристичните полиноми $f_{A_1}(x), f_{A_2}(x)$ на A_1 и A_2 от степен $\deg f_{A_1}(x) = s \geq 1$, $\deg f_{A_2}(x) = n - s \geq 1$. Следователно $\lambda_1 \in F$ е корен на $f_{A_2}(x) = 0$, а оттам и характеристичен корен на $\varphi: \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$. Оттук, λ_1 е собствена стойност на $\varphi: \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$ и съществува собствен вектор $v_1 \in \operatorname{im}(\psi_1^{m_1}) \setminus \{\overrightarrow{\mathcal{O}}\}$ на $\varphi: \operatorname{im}(\psi_1^{m_1}) \to \operatorname{im}(\psi_1^{m_1})$. Но тогава $v_1 \in V \setminus \{\overrightarrow{\mathcal{O}}\}$ е собствен вектор на $\varphi: V \to V$, отговарящ на единствената собствена стойност λ_1 и $v_1 \in \ker(\psi_1^{m_1})$ съгласно доказаното по-горе. В резултат, $v_1 \in \operatorname{im}(\psi_1^{m_1}) \cap \ker(\psi_1^{m_1}) = \{\overrightarrow{\mathcal{O}}\}$ е противоречие, доказващо $\operatorname{im}(\psi_1^{m_1}) = \{\overrightarrow{\mathcal{O}}\}$ и $V = \ker(\psi_1^{m_1})$, ако $\varphi: V \to V$ има единствена собствена стойност λ_1 .

Поради φ -инвариантността на подпространствата $V_i = \ker(\psi_i^{m_i})$ за $\psi_i := \varphi - \lambda_i \mathrm{Id}$, $1 \leq i \leq k$, матрицата $A \in M_{n \times n}(F)$ на $\varphi : V \to V$ спрямо обединение на базиси на V_i е от вида

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_k \end{pmatrix},$$

където A_i е матрицата на $\varphi:V_i\to V_i$ спрямо избрания базис. Достатъчно е докажем съществуването на Жорданов базис за линеен оператор $\psi_o:W\to W$ с единствена собствена стойност λ в крайномерно пространство W, за да получим съществуването на Жорданов базис за линеен оператор $\varphi:V\to V$ в крайномерно пространство V, чиито всички характеристични корени принадлежат на основното поле F. Разглежданията за ψ_o се свеждат до разсъжденията за линейния оператор $\psi:=\psi_o-\lambda \mathrm{Id}:W\to W$ с единствена собствена стойност 0, защото матриците \mathcal{A}_ψ и \mathcal{A}_{ψ_o} на ψ и ψ_o спрямо произволен базис на W са свързани с равенството $\mathcal{A}_\psi=\mathcal{A}_{\psi_o}-\lambda E_n$ за $n=\dim(W)$. По този начин, съществуването на Жорданов базис се свежда до следното

Твърдение 4. Ако $\psi: W \to W$ е линеен оператор с единствена собствена стойност 0 в n-мерно пространство W над поле F, то съществува базис на W, в който матрицата J на $\psi: W \to W$ е Жорданова.

$$J_i(0) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix} \in M_{n_i \times n_i}(F)$$

отговаря на линейно независими вектори $v_i^{(n_i)}, v_i^{(n_i-1)}, \dots, v_i^{(1)},$ върху които ψ действа по правилото

 $\psi\left(v_i^{(j)}\right) = v_i^{(j-1)}$ за $\forall 1 \leq j \leq n_i$ и $v_i^{(0)} := \overrightarrow{\mathcal{O}}_W.$

Подреждаме тези вектори в редица

Ако

$$J = \begin{pmatrix} J_1(0) & 0 & \dots & 0 & 0 \\ 0 & J_2(0) & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & J_{t-1}(0) & 0 \\ 0 & 0 & \dots & 0 & J_t(0) \end{pmatrix}$$

за някое $t \in \mathbb{N}$, то търсеният Жорданов базис на W е от вида

Ще докажем съществуването на Жорданов базис с индукция по $\dim(W) = n_1 + \ldots + n_t = n$. Ако $\dim(W) = 1$, то произволен ненулев вектор $w_1 \in W \setminus \{\overrightarrow{\mathcal{O}}_W\}$ е собствен и образува Жорданов базис на W. В общия случай, съществуването на собствен вектор $w_1 \in W \setminus \{\overrightarrow{\mathcal{O}}_W\}$, отговарящ на единствената собствена стойност 0 на $\psi: W \to W$ дава $w_1 \in \ker(\psi)$, така че $\ker(\psi) \neq \{\overrightarrow{\mathcal{O}}_W\}$ и $\operatorname{im}(\psi) \subset W$, $\operatorname{im}(\psi) \neq W$ е собствено ψ -инвариантно подпространство на W. Следователно $\dim\operatorname{im}(\psi) < \dim(W) = n$ и по индукционно предположение съществува Жорданов базис на $\operatorname{im}(\psi)$ от вида (1). За всеки от векторите $v_i^{(n_i)} \in \operatorname{im}(\psi)$, $1 \leq i \leq t$ избираме $v_i^{(n_i+1)} \in W$ с $\psi\left(v_i^{(n_i+1)}\right) = v_i^{(n_i)}$. Ако е нужно, допълваме линейно независимите вектори $v_1^{(1)}, \ldots, v_t^{(1)} \in \ker(\psi)$ до базис $v_1^{(1)}, \ldots, v_t^{(1)}, v_{t+1}^{(1)}, \ldots, v_s^{(1)}$ на $\ker(\psi)$. Твърдим, че

$$B = \left\{ v_i^{(j)} \mid 1 \le i \le t, \quad 1 \le j \le n_i + 1 \right\} \cup \left\{ v_{t+1}^{(1)}, \dots, v_s^{(1)} \right\}$$

е Жорданов базис на W. Броят на тези вектори е

$$\dim \operatorname{im}(\psi) + t + [\dim \ker(\psi) - t] = \operatorname{rk}(\psi) + d(\psi) = n,$$

така че е достатъчно да установим линейната независимост на B, за да получим че B е Жорданов базис и да докажем твърдението. За целта разглеждаме линейна комбинация

$$\sum_{i=1}^{t} \sum_{j=2}^{n_{i}+1} \mu_{i,j} v_{i}^{(j)} + \sum_{i=1}^{s} \mu_{i,1} v_{i}^{(1)} = \overrightarrow{\mathcal{O}}_{W}$$
 (2)

на векторите от B, която е равна на нулевия вектор $\overrightarrow{\mathcal{O}}_W$ на W. Отделяме от тази линейна комбинация събираемите $\mu_{i,1}v_i^{(1)}\in\ker(\psi)$ от ядрото на ψ и действаме с ψ върху нея. Получаваме

$$\overrightarrow{\mathcal{O}}_W = \sum_{i=1}^t \sum_{j=2}^{n_i+1} \mu_{i,j} v_i^{(j-1)} = \sum_{i=1}^t \sum_{j=1}^{n_i} \mu_{i,j+1} v_i^{(j)} \in \operatorname{im}(\psi).$$

По предположение, векторите $v_i^{(j)}$ за $1 \leq i \leq t, \, 1 \leq j \leq n_i$ са линейно независими, така че $\mu_{i,j+1}=0$ за всички $1 \leq i \leq t, \, 1 \leq j \leq n_i$ и (2) приема вида

$$\sum_{i=1}^{s} \mu_{i,1} v_i^{(1)} = \overrightarrow{\mathcal{O}}_W.$$

Понеже $v_1^{(1)}, \ldots, v_s^{(1)}$ е базис на $\ker(\psi)$, оттук следва $\mu_{i,1} = 0$ за всички $1 \le i \le s$, така че B е линейно независима система вектори, а оттам и Жорданов базис на W.

Горните разглеждания доказват следната

Теорема 5. Ако всички характеристични корени на линеен оператор $\varphi: V \to V$ в крайнонмерно пространство V над поле F принадлежат на основното поле F, то съществува Жорданов базис на V за φ , в който матрицата на φ е

$$J = \begin{pmatrix} J_1(\lambda_1) & 0 & \dots & 0 & 0 \\ 0 & J_2(\lambda_2) & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & J_{m-1}(\lambda_{m-1}) & 0 \\ 0 & 0 & \dots & 0 & J_m(\lambda_m) \end{pmatrix}$$

с Жорданови клетки

$$J_i(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_i & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_i & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_i \end{pmatrix} \in M_{n_i \times n_i}(F), \quad n_1 + \dots + n_m = n.$$

За да установим, че Жордановата матрица на $\varphi:V\to V$ е единствена с точност до реда на Жордановите клетки $J_i(\lambda_i)$ ще докажем, че броят $N_r(\lambda_i)$ на Жордановите клетки с размер r и диагонален елемент λ_i не зависи от избора на Жорданов базис на V. Да напомним, че Жордановите клетки $J_i(\lambda_i)$ задават действието на оператора $\varphi:\ker(\psi_i^{m_i})\to\ker(\psi_i^{m_i})$. Затова можем да считаме, че $\varphi:W\to W$ има единствена собствена стойност λ_i в W. Заменяйки φ и $\psi:=\varphi-\lambda_i\mathrm{Id}$, свеждаме разглежданията към следното

Твърдение 6. Нека $\psi: W \to W$ е линеен оператор с единствена собствена стойност 0 в п-мерно пространство W над поле F. Тогава за всяко $r \in \mathbb{N}$ броят $N_r = N_r(0)$ на Жордановите клетки с размер r и диагонален елемент 0 в Жорданова матрица на $\psi: W \to W$ е

$$N_r = \operatorname{rk}(\psi^{r+1}) - 2\operatorname{rk}(\psi^r) + \operatorname{rk}(\psi^{r-1}).$$

Доказателство. Съгласно Теоремата за ранга и дефекта на линейно изображение на крайномерно пространство,

$$\operatorname{rk}(\psi^{r+1}) - 2\operatorname{rk}(\psi^r) + \operatorname{rk}(\psi^{r-1}) =$$

$$= [n - d(\psi^{r+1})] - 2[n - d(\psi^r)] + [n - d(\psi^{r-1})] = 2d(\psi^r) - d(\psi^{r+1}) - d(\psi^{r-1}).$$

Твърдим, че първите r реда $\{v_i^{(j)} | 1 \le i \le t, \ 1 \le j \le r\}$ на Жордановия базис (1) образуват базис на $\ker(\psi^r)$. От една страна, $\psi\left(v_i^{(j)}\right) = v_i^{(j-1)}$ дава $\psi^r\left(v_i^{(j)}\right) = v_i^{(j-r)}$,

откъдето $\psi^r\left(v_i^{(j)}\right) = \overrightarrow{\mathcal{O}}_W$ за $\forall 1 \leq j \leq r, \ \forall 1 \leq i \leq t.$ Това доказва, че първите r реда на (1) и тяхната линейна обвивка се съдържат в $\ker(\psi^r)$. Обратно, ако $w \in \ker(\psi^r)$, то

$$w = \sum_{i=1}^{t} \sum_{j=1}^{n_i} x_{i,j} v_i^{(j)} = \sum_{i=1}^{t} \sum_{j=1}^{r} x_{i,j} v_i^{(j)} + \sum_{i=1}^{t} \sum_{j=r+1}^{n_i} x_{i,j} v_i^{(j)}$$

за координатите $x_{i,j} \in F$ на w спрямо Жордановия базис (1). По предположение,

$$\overrightarrow{\mathcal{O}}_W = \psi^r(w) = \sum_{i=1}^t \sum_{j=r+1}^{n_i} x_{i,j} v_i^{(j-r)}.$$

Векторите $\left\{v_i^{(j-r)}\,|\,1\leq i\leq t,\ r+1\leq j\leq n_i\right\}$ са линейно независими като част от Жордановия базис (1), откъдето $x_{i,j}=0$ за всички $1\leq i\leq t$ и $r+1\leq j\leq n_i$. Следователно

$$w = \sum_{i=1}^{t} \sum_{j=1}^{r} x_{i,j} v_i^{(j)} \in l\left(v_i^{(j)} \mid 1 \le i \le t, \ 1 \le j \le r\right),$$

така че $\ker(\psi^r)$ се съдържа, а оттам и съвпада с линейната обвивка на първите r реда на (1). Оттук следва, че дефектът $d(\psi^r) := \dim \ker(\psi^r)$ на $\psi^r : W \to W$ е равен на броя на векторите от Жордановия базис, които се намират в първите r реда. Разликата $d(\psi^r) - d(\psi^{r-1})$ е точно броят на векторите от Жордановия базис, които се намират в r-тия ред на (1) или броят на Жордановите клетки с размер $\geq r$ в Жорданова матрица на $\psi : W \to W$. Аналогично, $d(\psi^{r+1}) - d(\psi^r)$ е броят на Жордановите клетки с размер $\geq r + 1$ в Жорданова матрица на $\psi : W \to W$. Следователно

$$[d(\psi^r) - d(\psi^{r-1})] - [d(\psi^{r+1}) - d(\psi^r)] = 2d(\psi^r) - d(\psi^{r-1}) - d(\psi^{r+1})$$

съвпада с броя N_r на Жордановите клетки с размер r в Жорданова матрица на оператора $\psi:W\to W$.

Алгоритъм за намиране на Жорданов базис за линеен оператор φ в крайномерно пространство над поле F, ако всички характеристични корени на φ са от основното поле F:

Съгласно Твърдение 3, ако $\psi_i := \varphi - \lambda_i \mathrm{Id}$, то съществуват $m_i \in \mathbb{N}$, така че $V = \ker(\psi_1^{m_1}) \oplus \ldots \oplus \ker(\psi_k^{m_k})$ е директна сума на своите φ -инвариантни подпространства $V_i := \ker(\psi_i^{m_i})$, в които $\varphi : \ker(\psi_i^{m_i}) \to \ker(\psi_i^{m_i})$ има единствена собствена стойност λ_i . Нека $A \in M_{n \times n}(F)$ е матрицата на $\varphi : V \to V$ спрямо някакъв базис на V. Тогава $B_i := A - \lambda_i E_n$, $1 \le i \le k$ са матриците на ψ_i спрямо този базис и $\dim(V_i)$ е алгебричната кратност на корена λ_i на характеристичния полином $f_{\varphi}(x) = f_A(x) = \det(A - xE_n)$ на $\varphi : V \to V$. Това следва от Твърдение 4, в което операторът $\psi : W \to W$ с единствена собствена стойност 0 и Жорданова матрица

$$J = \begin{pmatrix} J_1(0) & 0 & \dots & 0 & 0 \\ 0 & J_2(0) & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & J_{r-1}(0) & 0 \\ 0 & 0 & \dots & 0 & J_r(0) \end{pmatrix}$$

в m-мерно пространство W има характеристичен полином

$$f_{\psi}(x) = f_J(x) = \det(J - xE_m) = (-1)^m x^m$$

с единствен характеристичен корен $x_o = 0$, чиято алгебрична кратност е равна на размерността m на W.

Да напомним, че $V = \ker(\psi_i^{m_i}) \oplus \operatorname{im}(\psi_i^{m_i})$ за минималните естествени m_i , за които $\operatorname{rk}(\psi_i^{m_i}) = \operatorname{rk}(\psi_i^{m_i+1})$. Вземайки предвид $\operatorname{rk}(\psi_i^s) = \operatorname{rk}(B_i^s)$ за $\forall s \in \mathbb{N}$, избираме $m_i \in \mathbb{N}$ като минималното естествено число, за което $\operatorname{rk}(B_i^{m_i}) = \operatorname{rk}(B_i^{m_i+1})$. След това описваме подпространството $V_i = \ker(\psi_i^{m_i})$ като множеството от решения на хомогенната система линейни уравнения с матрица $B_i^{m_i}$.

Във всяко V_i разглеждаме редицата от подпространства

$$V_i \supset (V_i \cap \operatorname{im}(\psi)) \supset (V_i \cap \operatorname{im}(\psi_i^2)) \supset \ldots \supset (V_i \cap \operatorname{im}(\psi_i^{m_i-1}).$$

Тогава $V_i \cap \operatorname{im}(\psi_i^{m_i-1}) \subseteq \ker(\psi_i)$, защото за произволен вектор $\psi_i^{m_i-1}(v) \in V_i = \ker(\psi_i^{m_i})$, $v \in V$ имаме

$$\psi_i(\psi_i^{m_i-1}(v)) = \psi_i^{m_i}(v) \in \operatorname{im}(\psi_i^{m_i}) \cap \ker(\psi_i^{m_i}) = \{\overrightarrow{\mathcal{O}}_V\},\$$

съгласно инвариантността на $V_i = \ker(\psi_i^{m_i})$ относно ψ_i .

Започваме с избор на базис на $V_i \cap \operatorname{im}(\psi_i^{m_i-1})$.

За всяко $1 \le l \le m_i$, ако сме избрали Жорданов базис

$$\left\{ v_i^{(j)} \mid , 1 \le i \le s, \quad 1 \le j \le n_i \right\}$$

на $V_i\cap \mathrm{im}(\psi_i^l)$, то намираме вектори $v_i^{(n_i+1)}\in V_i$ с $\psi_i(v_i^{(n_i+1)})=v_i^{(n_i)}$ за всички $1\leq i\leq s$. Ако е необходимо, допълваме базиса на подпространството $\ker(\psi_i)\cap V_i\cap \mathrm{im}(\psi_i^l)$ до базис на подпространството $\ker(\psi_i)\cap V_i\cap \mathrm{im}(\psi_i^{l-1})$ на V_i . С избора на единствен вектор $v_i^{(n_i+1)}\in V_i$ с $\psi_i(v_i^{(n_i+1)})=v_i^{(n_i)}$ не губим "степени на свобода", защото множеството от решения на $B_ix=v_i^{(n_i)}$ е във взаимно еднозначно съответствие с множеството от решения на $B_ix=\overrightarrow{\mathcal{O}}$ и допълваме векторите $v_i^{(n_{i+1})}\in V_i\cap \mathrm{im}(\psi_1^{l-1})$ до базис на $\ker(\psi_i)\cap V_i\cap \mathrm{im}(\psi_1^{l-1})$.

Задача 7. Спрямо някакъв базис на линейното пространство V над числово поле F, операторът $\varphi:V\to V$ има матрица

(i)
$$A_1 = \begin{pmatrix} -2 & -1 & 1 \\ 5 & -1 & 4 \\ 5 & 1 & 2 \end{pmatrix}$$
, (ii) $A_2 = \begin{pmatrix} 4 & 1 & 1 & 1 \\ -1 & 2 & -1 & -1 \\ 6 & 1 & -1 & 1 \\ -6 & -1 & 4 & 2 \end{pmatrix}$.

 \mathcal{A} а се намери базис на V, в който матрицата J на φ е \mathcal{K} орданова, както и тази матрица J.

Pemenue: (i) Характеристичният полином на A_1 е

$$f_{A_1}(x) = \begin{vmatrix} -2-x & -1 & 1 \\ 5 & -1-x & 4 \\ 5 & 1 & 2-x \end{vmatrix} = \begin{vmatrix} -2-x & -1 & 1 \\ x^2 + 3x + 7 & 0 & 3-x \\ 3-x & 0 & 3-x \end{vmatrix} =$$

$$= (3-x) \begin{vmatrix} x^2 + 3x + 7 & 1 \\ 3-x & 1 \end{vmatrix} = (3-x)(x^2 + 4x + 4) = -(x+2)^2(x-3).$$

Характеристичният корен $\lambda_1=-2\in\mathbb{Q}\subseteq F$ е с алгебрична кратност 2, а характеристичният корен $\lambda_2=3\in\mathbb{Q}\subseteq F$ е с алгебрична кратност 1. Операторът $\psi_1:=\varphi-\lambda_1\mathrm{Id}=\varphi+2\mathrm{Id}$ има матрица

$$B_1 = A + 2E_3 = \begin{pmatrix} 0 & -1 & 1 \\ 5 & 1 & 4 \\ 5 & 1 & 4 \end{pmatrix}$$

спрямо дадения базис. Забелязваме, че матрицата

$$B_1^2 = \begin{pmatrix} 0 & 0 & 0 \\ 25 & 0 & 25 \\ 25 & 0 & 25 \end{pmatrix} = 25 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

е от ранг ${\rm rk}(B_1^2)=1,$ както и матрицата

$$B_1^3 = 25 \begin{pmatrix} 0 & 0 & 0 \\ 5 & 0 & 5 \\ 5 & 0 & 5 \end{pmatrix} = 125 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 5B_1^2.$$

Следователно първата стъпка към намиране на Жорданов базис на $\varphi:V\to V$ е намирането на Жорданов базис на $\varphi:V_1\to V_1$ за $V_1:=\ker(\psi_1^2)$. Описваме $V_1:=\ker(\psi_1^2)$ като пространството от решения на хомогенната линейна система с матрица B_1^2 и разглеждаме редицата от подпространства

$$V_1 \supset V_1 \cap \operatorname{im}(\psi_1)$$
.

Непосредствено се вижда, че

$$V_1 = \{(x_1, x_2, x_3)^t \in M_{3 \times 1}(F) \mid x_1 + x_3 = 0\},\$$

а образът $\operatorname{im}(\psi_1)$ на ψ_1 се поражда от вектор стълбовете на B_1 , така че $\operatorname{im}(\psi_1)$ има базис

$$\left(\begin{array}{c}0\\1\\1\end{array}\right),\left(\begin{array}{c}1\\0\\0\end{array}\right).$$

Хомогенната система линейни уравнения

$$\begin{vmatrix} x_2 & +x_3 & =0 \\ x_1 & & =0 \end{vmatrix}$$

има фундаментална система решения $(0, -1, 1)^t$, така че

$$\operatorname{im}(\psi_1) = \{(x_1, x_2, x_3)^t \in M_{3 \times 1}(F) \mid -x_2 + x_3 = 0\} = \{(x_1, x_2, x_2)^t \mid x_1, x_2 \in F\}.$$

Сечението

$$V_1 \cap \operatorname{im}(\psi_1) = \{(x_1, x_2, x_3)^t \in M_{3 \times 1}(F) \mid x_1 + x_3 = 0, -x_2 + x_3 = 0\} = \{x_2(-1, 1, 1)^t \mid x_2 \in F\}$$

е 1-мерно и се поражда от вектора

$$v_1^{(1)} = \begin{pmatrix} -1\\1\\1 \end{pmatrix} \in V_1 \cap \operatorname{im}(\psi_1).$$

Търсим $v_1^{(2)} \in V_1 = \ker(\psi_1^2)$, така че $\psi_1\left(v_1^{(2)}\right) = v_1^{(1)}$. Координатите на $v_1^{(2)} = (x_1, x_2, x_3)^t$ спрямо дадения базис са решение на системата линейни уравнения

$$B_1 \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{c} -1 \\ 1 \\ 1 \end{array} \right).$$

По-точно,

$$\begin{vmatrix} -x_2 & +x_3 & = 0 \\ 5x_1 & +x_2 & +4x_3 & = 0 \end{vmatrix},$$

откъдето

$$v_1^{(2)} = \begin{pmatrix} 1 - x_2 \\ x_2 \\ x_2 - 1 \end{pmatrix}$$
 за произволно $x_2 \in F$.

Избираме $x_2 = 0$ и получаваме

$$v_1^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Алгебричната кратност на характеристичния корен $\lambda_1=-2$ е 2, така че $\dim V_1=2$ и $v_1^{(1)},v_1^{(2)}$ е Жорданов базис на $V_1,$ в който φ има матрица

$$\left(\begin{array}{cc} -2 & 1 \\ 0 & -2 \end{array}\right).$$

Собствените вектори, отговарящи на собствената стойност $\lambda_2=3$ са ненулевите решения на хомогенната система линейни уравнения с матрица

$$B_2 := A - 3E_3 = \begin{pmatrix} -5 & -1 & 1 \\ 5 & -4 & 4 \\ 5 & 1 & -1 \end{pmatrix}.$$

Това са векторите

$$v_3=\left(egin{array}{c} 0 \ x_3 \ x_3 \end{array}
ight)$$
 за произволно $x_3\in F\setminus\{0\}.$

Следователно

$$v_1^{(1)} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \quad v_1^{(2)} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

е Жорданов базис на V, в който φ има матрица

$$J = \left(\begin{array}{rrr} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{array} \right).$$

(ii) Характеристичният полином на A_2 е

$$f_{A_2}(x) = \begin{vmatrix} 4-x & 1 & 1 & 1 \\ -1 & 2-x & -1 & -1 \\ 6 & 1 & -1-x & 1 \\ -6 & -1 & 4 & 2-x \end{vmatrix} = \begin{vmatrix} 4-x & 1 & 1 & 1 \\ -x^2 + 6x - 9 & 0 & x - 3 & x - 3 \\ 2+x & 0 & -2-x & 0 \\ -2-x & 0 & 5 & 3-x \end{vmatrix} =$$

$$= - \begin{vmatrix} -(x-3)^2 & x-3 & x-3 \\ 2+x & -2-x & 0 \\ -2-x & 5 & 3-x \end{vmatrix} = -(x-3)(x+2) \begin{vmatrix} -x+3 & 1 & 1 \\ 1 & -1 & 0 \\ -x-2 & 5 & 3-x \end{vmatrix} =$$

$$= -(x-3)(x+2) \begin{vmatrix} 4-x & 0 & 1 \\ 1 & -1 & 0 \\ 3-x & 0 & 3-x \end{vmatrix} = (x-3)(x+2) \begin{vmatrix} 4-x & 1 \\ 3-x & 3-x \end{vmatrix} =$$

$$= -(x-3)^{2}(x+2) \begin{vmatrix} 4-x & 1 \\ 1 & 1 \end{vmatrix} = -(x-3)^{2}(x+2)(3-x) = (x-3)^{3}(x+2).$$

Характеристичните корени $\lambda_1=3$ и $\lambda_2=-2$ са рационални числа и принадлежат на числовото поле F. Операторът $\psi_1:=\varphi-\lambda_1\mathrm{Id}=\varphi-3\mathrm{Id}$ има матрица

$$B_1 := A - 3E_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \\ 6 & 1 & -4 & 1 \\ -6 & -1 & 4 & -1 \end{pmatrix}$$

спрямо дадения базис. Образът $\operatorname{im}(\psi_1)$ съвпада с линейната обвивка на вектор стълбовете на B_1 и има базис

$$\left(\begin{array}{c}1\\-1\\0\\0\end{array}\right),\quad \left(\begin{array}{c}0\\0\\1\\-1\end{array}\right).$$

Хомогенната система линейни уравнения

има фундаментална система решения

така че $\operatorname{im}(\psi_1)$ е пространството от решения на

или

$$\operatorname{im}(\psi_1) = \{ (x_1, x_2, x_3, x_4) \mid x_1 + x_2 = 0, \quad x_3 + x_4 = 0 \} = \{ (-x_2, x_2, -x_4, x_4)^t \mid x_2, x_4 \in F \}.$$

Матрицата

има ранг 2, както и матрицата

$$B_1^3 = 25 \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 5 & 0 & -5 & 0 \\ -5 & 0 & 5 & 0 \end{pmatrix} = 125 \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} = -5B_1^2.$$

Следователно трябва да намерим Жорданов базис на φ -инвариантното подпространство $V_1 := \ker(\psi_1^2)$ на V, което е пространството от решения на хомогенната линейна система с матрица B_1^2 или

$$V_1 = \{(x_1, x_2, x_3, x_4)^t \in M_{4 \times 1}(F) \mid x_1 - x_3 = 0\} = \{(x_1, x_2, x_1, x_4)^t \mid x_1, x_2, x_4 \in F\}$$

Подпространството

$$V_1 \cap \operatorname{im}(\psi_1) = \{(x_1, x_2, x_3, x_4)^t \in M_{4 \times 1}(F) \mid x_1 - x_3 = 0, \ x_1 + x_2 = 0, \ x_3 + x_4 = 0\} = \{(-x_2, x_2, -x_2, x_2)^t \mid x_2 \in F\}$$

има базис

$$v_1^{(1)} = \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}.$$

Търсим вектор $v_1^{(2)} \in V_1$ с $\psi_1\left(v_1^{(2)}\right) = v_1^{(1)}$. По-точно,

$$v_1^{(2)} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

е решение на системата линейни уравнения

$$B_1 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

Пресмятаме, че

$$v_1^{(2)} = \left(egin{array}{c} x_3 \\ -2x_3 - x_4 - 1 \\ x_3 \\ x_4 \end{array}
ight)$$
 за произволни $x_3, x_4 \in F$.

Избираме $x_3 = x_4 = 0$ и фиксираме

$$v_1^{(2)} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

Алгебричната кратност на характеристичния корен $\lambda_1=3$ е 3, така че $\dim V_1=3$ и трябва да допълним вектора $v_1^{(1)}\in\ker(\psi_1)$ до базис на $\ker(\psi_1)$. Ядрото на ψ_1 е

пространството от решения на хомогенната система линейни уравнения $B_1x = \mathbb{O}_{4\times 1}$. По-точно,

$$\ker(\psi_1) = \{(x_3, -2x_3 - x_4, x_3, x_4)^t \mid x_3, x_4 \in F\}.$$

Векторът $v_1^{(1)}$ се получава за $x_3=-1,\,x_4=1.$ Полагането $x_3=1,\,x_4=0$ дава вектор

$$v_2^{(1)} = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix},$$

който заедно с $v_1^{(1)}$ образува базис на $\ker(\psi_1)$. Следователно $v_1^{(1)},\,v_1^{(2)},\,v_2^{(1)}$ е Жорданов базис на $\varphi:V_1\to V_1$, в който φ има матирица

$$\left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Собствените вектори на $\varphi: V \to V$, отговарящи на собствената стойност $\lambda_2 = -2$ са ненулевите решения на хомогенната система линейни уравнения с матрица

$$B_2 = A - (-2)E_4 = A + 2E_4 = \begin{pmatrix} 6 & 1 & 1 & 1 \\ -1 & 4 & -1 & -1 \\ 6 & 1 & 1 & 1 \\ -6 & -1 & 4 & 4 \end{pmatrix}.$$

Тези вектори са от вида $(0,0,-x_4,x_4)^t$ и принадлежат на правата, породена от

$$v_2 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

С това пресметнахме, че спрямо базиса

$$v_1^{(1)} = \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}, \quad v_1^{(2)} = \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}, \quad v_2^{(1)} = \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix}$$

на V, операторът $\varphi:V \to V$ има Жорданова матрица

$$J = \left(\begin{array}{cccc} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{array}\right).$$