Exercice 1:

On désigne par E le \mathbb{R} -espace vectoriel \mathbb{R}^3 des vecteurs de la géométrie muni de sa structure euclidienne (c'est-à-dire muni du produit scalaire usuel défini par : $\forall (\overrightarrow{u}, \overrightarrow{v}) \in E^2, \overrightarrow{u}.\overrightarrow{v} = xx'+yy'+zz'$ si $\overrightarrow{u} = (x, y, z)$ et $\overrightarrow{v} = (x', y', z')$.

On rappelle que, si $\overrightarrow{u} \in E$, alors $\overrightarrow{u} \cdot \overrightarrow{u} = \|\overrightarrow{u}\|^2$ où $\|\overrightarrow{u}\|$ est la norme euclidienne de \overrightarrow{u} .

- 1. Soit $(\overrightarrow{u}, \overrightarrow{v})$ une famille libre de deux vecteurs de E. Soit $\overrightarrow{w} \in E \setminus \{\overrightarrow{0}\}$ tel que $\overrightarrow{u}.\overrightarrow{w} = 0$ et $\overrightarrow{v}.\overrightarrow{w} = 0$. On veut montrer que la famille $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est encore libre. Soit λ, μ et ν trois réels.
 - (a) Calculer $(\lambda.\overrightarrow{u} + \mu.\overrightarrow{v} + \nu.\overrightarrow{w}).\overrightarrow{w}$ (on donnera le résultat en fonction de ν et \overrightarrow{w} uniquement). On suppose $\lambda.\overrightarrow{u} + \mu.\overrightarrow{v} + \nu.\overrightarrow{w} = \overrightarrow{0}$. En déduire : $\nu = 0$.
 - (b) En déduire que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est bien une famille libre.
 - (c) On suppose ici seulement que $\overrightarrow{u} = (1, 3, -1)$ et $\overrightarrow{v} = (1, 1, 1)$. Justifier que $(\overrightarrow{u}, \overrightarrow{v})$ est libre et trouver un vecteur \overrightarrow{w} tel que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de \mathbb{R}^3 .
- 2. Soit $\overrightarrow{u} \in E$.
 - (a) Soit $F = {\overrightarrow{v} \in E, \overrightarrow{u}.\overrightarrow{v} = 0}$. Montrer que F est un sous-espace vectoriel de E.
 - (b) On suppose désormais que $\overrightarrow{u} = (2, 1, -1)$. Déterminer une équation cartésienne puis une base de F.
 - (c) Que peut-on dire de la famille formée de \overrightarrow{u} et des vecteurs de la base de F trouvée précédemment?

Exercice 2:

Soit E le \mathbb{C} -espace vectoriel \mathbb{C}^4 et F et G les sous-espaces vectoriels de E définis ci-dessous :

$$F = \left\{ (x, y, z, t) \in E, \left\{ \begin{array}{l} x - y + iz - t = 0 \\ ix + y + z + t = 0 \end{array} \right\}, G = \left\{ (a + b, a + b, 2b, a - b); (a, b) \in \mathbb{C}^2 \right\}.$$

On note $\overrightarrow{f_1}$, $\overrightarrow{f_2}$, $\overrightarrow{g_1}$, $\overrightarrow{g_2}$ les vecteurs de E définis ci-dessous :

$$\overrightarrow{f_1} = (1, i, -1, -2i + 1), \ \overrightarrow{f_2} = (-i, -2 - i, i, 1), \ \overrightarrow{g_1} = (1, 1, 4, -3), \ \overrightarrow{g_2} = (6, 6, 4, 2).$$

- 1. Déterminer une base et la dimension de chacun des sous-espaces vectoriels F et G ci-dessus.
- 2. Justifier que $(\overrightarrow{f_1}, \overrightarrow{f_2})$ est une base de F et $(\overrightarrow{g_1}, \overrightarrow{g_2})$ une base de G.
- 3. Vérifier que $F \cap G = \{\overrightarrow{0}\}.$
- 4. Montrer que $(\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{g_1}, \overrightarrow{g_2})$ est une base de E.

Exercice 3: Un drapeau de \mathbb{R}^4 .

Soit E le \mathbb{R} -espace vectoriel \mathbb{R}^4 . Soit $F = Vect \mathcal{F}$ où $\mathcal{F} = ((2, 1, 1, 0), (1, -1, 2, 0), (1, 0, 2, 1))$ et $G = \{(x, y, z, t) \in E, 2x + 3y - 4z - t = 0\}$.

- 1. Montrer que \mathcal{F} est libre. En déduire la dimension de F.
- 2. Trouver une équation cartésienne de F.
- 3. (a) Soit $\overrightarrow{u} = (1, 1, 1, 1)$. Vérifier que $\overrightarrow{u} \in F \cap G$.
 - (b) Déterminer une base de $F \cap G$.
- 4. En déduire une base de E formée de \overrightarrow{u} , d'un autre vecteur de $F \cap G$, d'un vecteur de G et d'un dernier vecteur de E.

Remarque

On dit que les sous-espaces vectoriels $\{\overrightarrow{0}\}$, $Vect(\overrightarrow{u})$, $F \cap G$, G et E forment un drapeau total de l'espace vectoriel E (les dimensions de $\{\overrightarrow{0}\}$, $Vect(\overrightarrow{u})$, $F \cap G$, G et E étant respectivement 0, 1, 2, 3 et 4).

$\{\overrightarrow{0}\}$	$Vect(\overrightarrow{u})$	$F \cap G$	G	E
$\{\overrightarrow{0}\}$	$Vect(\overrightarrow{u})$	$F \cap G$	G	
$\{\overrightarrow{0}\}$	$Vect(\overrightarrow{u})$	$F \cap G$		
$\{\overrightarrow{0}\}$	$Vect(\overrightarrow{u})$			
$\{\overrightarrow{0}\}$				