From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing

Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap Kamps

连晓颖 2019-10-21

Contents

Introduction

Standalone Neural Ranking Model (SNRM)

Experiments

Conclusion

1 Introduction

Motivation

Main Idea

1.1 Motivation

- 现有的检索模型(Learning to Rank & Nerual Model)
 - 大都是多阶段排序模型,在前一个阶段过滤出的文档基础上进行重排序
 - 前一个阶段成了这些模型的瓶颈,误差在阶段间具有传递性
 - 最相关的文档没能在第一阶段被发现,则之后的阶段都不能弥补
 - 重排序阶段生成的特征都是稠密特征
 - 非0位置少,不适合直接建立倒排索引,同一个文档会几乎会出现在每一个索引上
- 本文提出的模型
 - 单阶段: 避免误差传递
 - 高维稀疏: 便于构建倒排索引, 检索效率几乎和传统词项模型一致
 - 可计算相关性: Query(Q)和Document(D)之间向量内积

1.2 Main Idea

- 词项表示(蓝线)
 - 近似符合ZipFian分布
- 稠密表示(红线)
 - 随着表示维度的增加,倒排表的大小还是整个文档集的大小
- 稀疏表示 (绿线)
 - 甚至比词项表示的倒排表还要更 小些

2 Standalone Neural Ranking Model (SNRM)

- Objectives
- Loss Function
- Network Architecture
 - Training Time
 - Inference Time
 - Sub-network
- Training Data: Weak Supervision

2.1 Objectives

• 相关性

• Pairwise Hinge Loss $\mathcal{L} = \max\{0, \epsilon - y_i \left[\psi(\phi_O(q_i), \phi_D(d_{i1})) - \psi(\phi_O(q_i), \phi_D(d_{i2})) \right] \}$

• 稀疏性

- 稀疏比越大,稀疏性越高 sparsity ratio $(\vec{v}) = \frac{\text{total number of zero elements in } \vec{v}}{|\vec{v}|}$ 最大化稀疏比等价于最小化LO(令 $0^0 = 0$) $L_0(\vec{v}) = \sum_{i=1}^{|\vec{v}|} |\vec{v}_i|^0$
- 由于LO不可导,无法采用端到端的训练方法,因而用L1替代
- 由于使用了Relu激活函数(Relu(x) = max(0, x)), 会使得很多非正值变为0

2.2 Loss Function

- 对于第i个训练样本的Loss为 $\mathcal{L}(q_i,d_{i1},d_{i2},y_i)+\lambda L_1(\phi_Q(q_i)||\phi_D(d_{i1})||\phi_D(d_{i2}))$
 - 第一项: pairwise hinge Loss
 - 第二项: L1, "||" 代表向量连接Q和D1, D2的向量表示
- λ控制向量的稀疏性, 越大则越稀疏
 - 但不能过大,过大会导致出现很多0元素,使检索模型的性能下降
 - 换言之,只要有足够的0元素保证模型的性能稳定就行
- Q, D1和D2的表示维度都比较高, 在本文的实验中达到了20000维

2.3 Network Architecture (Training Time)

2.3 Network Architecture (Inference Time)

2.3 Network Architecture (Sub-network)

- Q应该比D含有更少的非0项,更少的 非零项使得查询时合并的次数更少
 - 与输入长度挂钩, N-gram, 均值池化聚合
 - |q|-n+1 << |d|-n+1

$$\phi_D(d) = \frac{1}{|d|-n+1} \sum_{i=1}^{|d|-n+1} \phi_{\text{ngram}}(w_i, w_{i+1}, \dots, w_{i+n-1})$$

- 训练参数应足够被放入GPU中
 - FC层维度先减小再增加
- Q和D的高维稀疏向量应该在同一个语义空间里
 - 参数共享 ϕ_{n-gram}

2.4 Training Data: Weak Supervision

- 弱监督: 用程序生成弱标签数据
 - 收集大量的Query
 - 用现有的检索模型检索每一个Query (eg: Query likelihood)
 - 从查询列表里采样一个相关文档,从整个数据集里负采样一个不相关的 文档,得到一个训练样本 $(q_i, d_{i1}, d_{i2}, y_i)$
 - 标签是Query likelihood概率值之差的符号 $y_i = \text{sign}(p_{QL}(q_i|d_{i1}) p_{QL}(q_i|d_{i2}))$

3 Experiments

Dataset

Sparsity and Efficiency

Effectiveness

Robustness to Collection Growth

3.1 Dataset

- 两个数据集: Robust(250个查询)、ClueWeb (200个查询)
- 每个数据集上采用二折交叉验证优化参数
- 弱监督数据集: AOL query logs (600万不同的查询)
- 评价标准: MAP@1000, P@20, nDCG@20, Recall@1000

ID	collection	queries (title only)	#docs	avg doc length	#qrels
Robust	TREC Disks 4 & 5 minus CR	TREC 2004 Robust Track, topics 301-450 & 601-700	528k	254	17,412
ClueWeb	ClueWeb 09 - Category B	TREC 2009-2012 Web Track, topics 1-200	50m	1,506	18,771

3.1 Sparsity and Efficiency

• 输出10000维时非0位的个数,的确生成了高维稀疏向量,Q要比D更稀疏

# Unique	Re	obust	ClueWeb		
latent terms	Mean	Std. dev.	Mean	Std. dev.	
per document	97.96	447.57	130.24	561.53	
per query	3.37	3.04	3.87	4.51	

• 每个查询的平均运行时间(ms),包括生成Q向量和检索评分的时间,和词项匹配模型的速度差不多

Method	Re	obust	ClueWeb		
	Mean	Std. dev.	Mean	Std. dev.	
QL	35.14	18.43	662.86	746.68	
SNRM	46.12	23.11	612.73	640.98	

• L1 norm下降,D和Q的稀疏比均上升

3.2 Effectiveness

Method	Robust			ClueWeb				
Triction .	MAP	P@20	nDCG@20	Recall	MAP	P@20	nDCG@20	Recall
QL	0.2499	0.3556	0.4143	0.6820	0.1044	0.3139	0.2294	0.3286
SDM	0.2524	0.3679^{1}	0.4242^{1}	0.6858	0.1078	0.3141	0.2320	0.3385^{1}
RM3	0.2865^{12}	0.3773^{12}	0.4295^{12}	0.7494^{12}	0.1068	0.3157	0.2309	0.3298
FNRM	0.2815^{12}	0.3752^{12}	0.4327^{12}	0.7234^{12}	0.1329^{123}	0.3351^{123}	0.2392^{13}	0.3426^{123}
CNRM	0.2801^{12}	0.3764^{12}	0.4341^{123}	0.7183^{12}	0.1286^{123}	0.3317^{123}	0.2337^{1}	0.3345^{13}
SNRM	0.2856^{12}	0.3766^{12}	0.4310^{12}	0.7481^{1245}	0.1290^{123}	0.3336^{123}	0.2351^{13}	0.3393^{135}
SNRM with PRF	0.2971^{123456}	0.3948^{123456}	0.4391^{123456}	0.7716^{123456}	0.1475^{123456}	0.3461^{123456}	0.2482^{123456}	0.3618^{123456}

- SNRM取 Top 1000 的结果要比FNRM [Dehghani et al., SIGIR '17] 和CNRM (卷积FNRM)取 Top 2000 还要好 (Recall)
- SNRM + PRF (伪相关度反馈扩展查询) 比所有的模型都要更好

3.3 Robustness to Collection Growth

• 在训练时随机从Robust数据集里去掉文档

% removal	MAP	P@20	nDCG@20	Recall
no removal 1% removal 5% removal	0.2971 0.2953 0.2776	0.3948 0.3953 0.3807^{∇}	0.4391 0.4401 0.4227	0.7716 0.7691 0.7349

- 去掉1%的文档(超过5k个): 模型表现基本不受影响
- 去掉5%的文档(超过26k个): 模型表现严重下降(可能是缺失了很多词汇导致)
- 说明在数据更新的情况下,模型需要定期增量训练

4 Conclusion

• SNRM是单阶段检索模型,有可能通过训练进一步提升Recall

• SNRM可以端到端训练

• SNRM可以通过PRF(伪相关度反馈)扩展查询,提升性能

Thank you!