Київський національний університет імені Т. Шевченка Факультет комп'ютерних наук та кібернетики

Структурна теорія цифрових автоматів

Проектування комбінаційних схем на мікросхемах різного ступеню інтеграції

Варіант 11

Виконав студент групи IC-31 A.C. ХОМА

1 Представлення булевої функції.

$$a_1 = 1$$
, $a_2 = 1$, $a_3 = 0$, $a_4 = 1$, $a_5 = 0$, $a_6 = 0$, $a_7 = 0$

x_4	x_3	x_2	x_1	y	\bar{y}
0	0	0	0	1	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	1
1	1	1	1	0	1

Табл. 1: Представлення булевої функції

2 Побудова МДНФ для y та \bar{y} . Представити функцію у всіх восьми нормальних формах.

ДДНФ: $f(x_4,x_3,x_2,x_1)=\overline{x_1x_2x_3x_4}$ \vee $\overline{x_1}x_2\overline{x_3}x_4$ \vee $x_1x_2\overline{x_3}x_4$ \vee $x_1\overline{x_2}x_3\overline{x_4}$ \vee $\overline{x_1}x_2\overline{x_3}x_4$ \vee $\overline{x_1}x_2\overline{x_3}x_4$ \vee $x_1\overline{x_2}x_3x_4$ \vee $x_1\overline{x_2}x_3x_4$ \vee $x_1\overline{x_2}x_3x_4$

ДДНФ: $\overline{f}(x_4, x_3, x_2, x_1) = x_1 \overline{x_2 x_3 x_4} \lor \overline{x_1 x_2} x_3 \overline{x_4} \lor \overline{x_1} x_2 x_3 \overline{x_4} \lor x_1 x_2 x_3 \overline{x_4} \lor x_1 \overline{x_2} \overline{x_3} x_4 \lor \overline{x_1 x_2} x_3 x_4 \lor \overline{x_1} x_2 x_3 x_4 \lor x_1 x_1 x_2 x_3 x_4 \lor x_1 x_2 x_3 x_$

Діаграма Вейча для $f(x_4, x_3, x_2, x_1)$

Діаграма Вейча для $\overline{f}(x_4,x_3,x_2,x_1)$

$$\begin{bmatrix} x_3 \\ x_4 \\ \hline 1 \\ \hline \end{bmatrix} \begin{bmatrix} x_2 \\ \hline \\ x_1 \\ \hline \end{bmatrix}$$

МДНФ:
$$f(x_4, x_3, x_2, x_1) = \overline{x_1 x_3} \lor x_2 \overline{x_3 x_4} \lor x_1 \overline{x_2} x_3$$

МДНФ:
$$\overline{f}(x_4, x_3, x_2, x_1) = x_1 \overline{x_3} \lor x_2 x_3 \lor x_1 x_2 x_4 \lor x_1 \overline{x_2} \overline{x_3}$$

$$\overline{x_1x_3} \lor x_2\overline{x_3x_4} \lor x_1\overline{x_2}x_3 \quad (AND/OR) \quad (1)$$

$$\overline{(\overline{x_1x_3})} \wedge \overline{(x_2\overline{x_3x_4})} \wedge \overline{(x_1\overline{x_2}x_3)} \quad (AND - NOT/AND - NOT) \quad (2)$$

$$\overline{(x_1 \vee x_3) \wedge (\overline{x_2} \vee x_3 \vee x_4) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})} \quad (OR/AND - NOT) \quad (3)$$

$$\overline{(x_1 \lor x_3)} \lor \overline{(\overline{x_2} \lor x_3 \lor x_4)} \lor \overline{(\overline{x_1} \lor x_2 \lor \overline{x_3})} \quad (OR - NOT/OR) \quad (4)$$

$$\overline{(\overline{x_1}x_3)} \lor (x_2x_3) \lor (x_1x_2x_4) \lor (x_1\overline{x_2x_3}) \quad (AND/OR - NOT) \quad (5)$$

$$\overline{(\overline{x_1}x_3)} \wedge \overline{(x_2x_3)} \wedge \overline{(x_1x_2x_4)} \wedge \overline{(x_1\overline{x_2x_3})} \quad (AND - NOT/AND) \quad (6)$$

$$(x_1 \vee \overline{x_3}) \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee x_2 \vee x_3) \quad (OR/AND)$$
 (7)

$$\overline{(\overline{x_1} \vee \overline{x_3})} \vee \overline{(\overline{x_2} \vee \overline{x_3})} \vee \overline{(\overline{x_1} \vee \overline{x_2} \vee \overline{x_4})} \vee \overline{(\overline{x_1} \vee x_2 \vee x_3)} \quad (OR - NOT/OR - NOT) \quad (8)$$

3 Одержати операторні представленя функції, що можуть бути реалізовані на елементах 2OR-NOT/ 3AND, 2AND-NOT

Використаємо 5-ту нормальну форму щоб побудувати нашу булеву функцію використовуючи елементи 2OR-NOT та 3AND.

Використаємо 2-гу нормальну форму щоб побудувати нашу булеву функцію використовуючи елементи 2AND-NOT.

Визначити операторну форму, що забезпечує отримання комбінаційної схеми з максимальною швидкодією і мінімальними витратами обладнання

Складність по Квайну визначається як сумарне число входів усіх логічних елементів.

$$N = \sum_{i=1}^{r} \frac{m_i n_i}{14},$$

де r – число типів мікросхем, m_i – кількість мікросхем i-го типу, n_i – сумарне число виходів і входів.

Для першої схеми отримуємо $N=\frac{8*3}{14}+\frac{4*4}{14}=\frac{20}{7}$ Для другої схеми $N=\frac{15*3}{14}$

Час затримки сигналу визначається як шлях в схемі, що вимагає максимального часу для поширення сигналу.

Для першої схеми маємо $T = 1 * 24 + 4 * 20 = 104 \ ms$

Для другої схеми $T = 7 * 20 = 140 \ ms$

Як можна помітити перша схема є оптимальнішою по обом параметрам.

5 На елементах 3AND-NOT побудувати перетворювач кодів. У процесі проектування використовувати методи сумісної мінімізації системи булевих функцій. Для отриманої схеми обчислити складність по Квайну та час затримки.

Інформація													
	Вх	кід		Вихід									
0	0	0	0	0	0	1	1						
0	0	0	1	0	1	0	1						
0	0	1	0	0	1	0	1						
0	0	1	1	0	1	1	0						
0	1	0	0	0	1	1	1						
0	1	0	1	1	0	0	0						
0	1	1	0	1	0	0	1						
0	1	1	1	1	0	1	0						
1	0	0	0	1	0	1	1						
1	0	0	1	1	1	0	1						
1	0	1	0	1	1	0	1						
1	0	1	1	1	1	1	0						
1	1	0	0	1	1	1	1						
1	1	0	1	0	0	0	0						
1	1	1	0	0	0	0	1						
1	1	1	1	0	0	1	0						

Табл. 2: Представлення системи булевих функцій

ДДНФ $f_1\left(x_4,x_3,x_2,x_1\right)=\overline{x_4}x_3\overline{x_2}x_1\vee \overline{x_4}x_3x_2\overline{x_1}\vee \overline{x_4}x_3x_2x_1\vee x_4\overline{x_3}x_2x_1\vee x_4\overline{x_3}x_2x_1\vee x_4\overline{x_3}x_2\overline{x_1}\vee x_4\overline{x_1}\vee x_4\overline{x_1}\vee x_4\overline{x_2}x_2\overline{x_1}\vee x_4\overline{x_1}\vee x_4\overline{x_2}x_2\overline{x_1}\vee x_4\overline{x_1}\vee x_4\overline{x_2}x_2\overline{x_1}\vee$

ДДНФ $f_2(x_4, x_3, x_2, x_1) = \overline{x_4 x_3 x_2} x_1 \vee \overline{x_4 x_3} x_2 \overline{x_1} \vee \overline{x_4 x_3} x_2 x_1 \vee \overline{x_4} x_3 \overline{x_2 x_1} \vee x_4 \overline{x_3 x_2} x_1 \vee x_4 \overline{x_3} x_2 \overline{x_1} \vee x_4 \overline{x_3} \overline{x_2} \overline{x_1} \vee$

ДДНФ $f_3\left(x_4,x_3,x_2,x_1\right)=\overline{x_4x_3x_2x_1}\vee \overline{x_4x_3}x_2x_1\vee \overline{x_4}x_3\overline{x_2x_1}\vee \overline{x_4}x_3x_2x_1\vee x_4\overline{x_3}x_2x_1\vee x_4\overline{x$

ДДНФ $f_4(x_4, x_3, x_2, x_1) = \overline{x_4 x_3 x_2 x_1} \lor \overline{x_4 x_3 x_2} x_1 \lor \overline{x_4 x_3} x_2 \overline{x_1} \lor \overline{x_4} x_3 \overline{x_2} x_1 \lor \overline{x_4} \overline{x_3} x_2 \overline{x_1} \lor \overline{x_4} \overline{x_3} x_2 \overline{x_1} \lor \overline{x_4} \overline{x_3} \overline{x_2} \overline{x_1$

Зробимо операцію склеювання.

	(0		1	:	2	,	3		4		5	(ĵ	7	7		8			9			10			11			1	2		14	15
	3	4	2	4	2	4	2	3	2	3	4	1	1	4	1	3	1	3	4	1	2	4	1	2	4	1	2	3	1	2	3	4	4	3
$\overline{x_1}$ (4)																																		
$\overline{x_1}$		*				*					*			*					*						*							*	*	
(1)																																		
$c_4\overline{x_3}$																	*			*			*			*								
3)																																		
x_1 (
x_2 :								*								*												*						*
(2)																																		
$\overline{x_3}x_2$					*		*																	*			*							
(2)																																		
$\overline{x_3}x_1\left(2\right)\overline{x_3}x_2\left(2\right)x_2x_1\left(3\right)x_4\overline{x_3}\left(1\right)$			*				*														*						*							
3																																		
$\overline{x_2x_1}$ (3)																																		
$\frac{x}{ x }$	*									*								*													*			
2 (4																																		
$\overline{x_4}x_3x_2\left(1\right)\left x_4\overline{x_2}x_1\left(1\right)\right \overline{x_3}\overline{x_2}\left(4\right)$		*		*															*			*												
(1)																																		
$2x_1$																																		
$x_4\overline{x}$																	*												*					
(1)																																		
$3x_2$																																		
$\overline{x_4}x$													*		*																			
1																																		
x_1 (
$\overline{x_4}x_3x_1\left(1\right)$												*			*																			
(2)																																		
$2x_{1}$																																		
$x_3\overline{x_2x_1}\left(2\right)$									*																					*				
	1	<u> </u>							<u> </u>					<u> </u>																<u> </u>			\Box	

МДНФ $f\left(x_4,x_3,x_2,x_1\right)=\overline{x_1}\left(4\right)\vee x_4\overline{x_3}\left(1\right)\vee x_2x_1\left(3\right)\vee \overline{x_3}x_2\left(2\right)\vee \overline{x_3}x_1\left(2\right)\vee \overline{x_2x_1}\left(3\right)\vee \overline{x_3x_2}\left(4\right)\vee x_4\overline{x_2x_1}\left(1\right)\vee \overline{x_4}x_3x_2\left(1\right)\vee \overline{x_4}x_3x_1\left(1\right)\vee x_3\overline{x_2}x_1\left(2\right)$

МДНФ
$$f_1(x_4, x_3, x_2, x_1) = x_4 \overline{x_3} \lor x_4 \overline{x_2} \overline{x_1} \lor \overline{x_4} x_3 x_2 \lor \overline{x_4} x_3 x_1$$

МДНФ
$$f_2\left(x_4,x_3,x_2,x_1\right)=\overline{x_3}x_2\vee\ \overline{x_3}x_1\vee\ x_3\overline{x_2x_1}$$

МДНФ
$$f_3(x_4, x_3, x_2, x_1) = \overline{x_2 x_1} \vee x_2 x_1$$

МДНФ
$$f_4(x_4, x_3, x_2, x_1) = \overline{x_1} \vee \overline{x_3 x_2}$$

Перетворимо МДНФ наших функцій в форму AND-NOT/AND-NOT

$$f_1\left(x_4,x_3,x_2,x_1\right) = \overline{\left(x_4\overline{x_3}\right)} \wedge \overline{\left(x_4\overline{x_2x_1}\right)} \wedge \overline{\left(\overline{x_4}x_3x_2\right)} \wedge \overline{\left(\overline{x_4}x_3x_1\right)}$$

$$f_2\left(x_4,x_3,x_2,x_1\right) = \overline{\left(\overline{x_3}x_2\right)} \wedge \overline{\left(\overline{x_3}x_1\right)} \wedge \overline{\left(x_3\overline{x_2}x_1\right)}$$

$$f_3(x_4, x_3, x_2, x_1) = \overline{\overline{(\overline{x_2x_1})} \wedge \overline{(x_2x_1)}}$$

$$f_4\left(x_4, x_3, x_2, x_1\right) = \overline{\overline{\left(\overline{x_1}\right)}} \wedge \overline{\left(\overline{x_3}\overline{x_2}\right)}$$

$$N = \frac{20 \times 4}{14}$$

$$T = 5 \times 20 = 100 ms$$

6 Побудувати схему для реалізації функції, якщо можна використовувати мультиплексори з двома керуючими входами.

Побудуємо розклад булевої фукнції по x_4x_3 , x_4x_2 , x_4x_1 , x_3x_2 , x_3x_1 , x_2x_1 . Помітимо що розклад по x_4x_3 мінімальний.

7 Побудувати перетворювач кодів з використанням елементів 3AND-NOT і дешифратора на чотири входи.

Інформація													
	Вх	кід		Вихід									
0	0	0	0	0	0	1	1						
0	0	0	1	0	1	0	1						
0	0	1	0	0	1	0	1						
0	0	1	1	0	1	1	0						
0	1	0	0	0	1	1	1						
0	1	0	1	1	0	0	0						
0	1	1	0	1	0	0	1						
0	1	1	1	1	0	1	0						
1	0	0	0	1	0	1	1						
1	0	0	1	1	1	0	1						
1	0	1	0	1	1	0	1						
1	0	1	1	1	1	1	0						
1	1	0	0	1	1	1	1						
1	1	0	1	0	0	0	0						
1	1	1	0	0	0	0	1						
1	1	1	1	0	0	1	0						

Табл. 3: Представлення системи булевих функцій

Тоді отримаємо наступне представлення наших булевих функцій.

 $f_1: 5, 6, 7, 8, 9, 10, 11, 12$

 $f_2: 1, 2, 3, 4, 9, 10, 11, 12$

 $f_3:0,3,4,7,8,11,12,15$

 $f_4:0,1,2,4,6,8,9,10,12,14$

Представимо їх в термах оператора 3AND-NOT.

 $f_1: \overline{\overline{5} \wedge \overline{6} \wedge \overline{7} \wedge \overline{8} \wedge \overline{9} \wedge \overline{10} \wedge \overline{11} \wedge \overline{12}$

 $f_2: \overline{\overline{1} \wedge \overline{2} \wedge \overline{3} \wedge \overline{4} \wedge \overline{9} \wedge \overline{10} \wedge \overline{11} \wedge \overline{12}$

 $f_3: \overline{0} \wedge \overline{3} \wedge \overline{4} \wedge \overline{7} \wedge \overline{8} \wedge \overline{11} \wedge \overline{12} \wedge \overline{15}$

 $f_4:\overline{\overline{0}\wedge\overline{1}\wedge\overline{2}\wedge\overline{4}\wedge\overline{6}\wedge\overline{8}\wedge\overline{9}\wedge\overline{10}\wedge\overline{12}\wedge\overline{14}$

$$N = \frac{32 \times 4}{14}$$

$$T = 5 \times 20 = 100ms$$