[Paper review 7]

Expecation Propagation for Approximate Bayesian Inference

(Thomas P Minka, 2001)

[Contents]

- 0. Abstract
- 1. Introduction
- 2. ADF
- 3. Expectation Propagation

0. Abstract

Expectation Propagation: (1) + (2)

- (1) ADF (Assumed-Density Filtering)
- (2) Loopy belief propagation

approximates the belief states by only retaining expectations (such as mean, variance) and iterates until these expectations are consistent!

Lower computational cost than ...

• Laplace's method, variational bayes, MC

1. introduction

Bayesian Inference: require large computational expense

Expectation Propagation (EP):

- "one-pass, sequential" method for computing an approximate posterior distribution
- weakness of ADF: information discarded previously may turn out to be important later!

2. ADF (Assumed-Density Filtering)

goal: to compute "approximate posterior"

also called..."online Bayesian Learning", "moment matching", "weak marginalization"...

applicable when we have postulated a joint pdf p(D, x)

(D: observed, x: hidden)

find out posterior over x (= $P(x\mid D)$) and evidence (= P(D))

Example

have observation from Gaussian distribution (embedded in a sea of unrelated clutter)

(w : ratio of clutter)

$$p(\mathbf{y} \mid \mathbf{x}) = (1 - w)\mathcal{N}(\mathbf{y}; \mathbf{x}, \mathbf{I}) + w\mathcal{N}(\mathbf{y}; \mathbf{0}, 10\mathbf{I})$$

$$\mathcal{N}(\mathbf{y}; \mathbf{m}, \mathbf{V}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{m})^{\mathrm{T}}\mathbf{V}^{-1}(\mathbf{y} - \mathbf{m})\right)}{\left|2\pi\mathbf{V}\right|^{1/2}}$$

d dimensional vector x has Gaussian prior :

• $p(\mathbf{x}) \sim \mathcal{N}\left(\mathbf{0}, 10\mathbf{I}_d\right)$

joint pdf of x and D ($% \mathbf{y}_{1},\ldots,\mathbf{y}_{n}\}$):

• $p(D, \mathbf{x}) = p(\mathbf{x}) \prod_i p(\mathbf{y}_i \mid \mathbf{x})$

How does it work?

[STEP 1] to apply ADF, re-express the joint-pdf as below

• $p(D, \mathbf{x}) = \prod_i t_i(\mathbf{x})$, where $t_0(\mathbf{x}) = p(\mathbf{x})$ and $t_i(\mathbf{x}) = p(\mathbf{y}_i \mid \mathbf{x})$.

[STEP 2] choose an approximating family

- $q(\mathbf{x}) \sim \mathcal{N}\left(\mathbf{m}_x, v_x \mathbf{I}_d\right)$
- (choose a "spherical Gaussian")

[STEP 3] incorporate the terms t_i into the approximate posterior

- initial q(x) = 1
- ullet at each step, move from old $q^{\setminus i}(\mathbf{x})$ to a new $q(\mathbf{x})$
- Incorporating the prior term is trivial ! $\hat{p}(\mathbf{x}) = \frac{t_i(\mathbf{x})q^{\setminus i}(\mathbf{x})}{\int_{\mathbf{x}} t_i(\mathbf{x})q^{\setminus i}(\mathbf{x})d\mathbf{x}}$
- (each step produces normalizing factor.

in this case,
$$Z_i=(1-w)\mathcal{N}\left(\mathbf{y}_i;\mathbf{m}_x^{\setminus i},\left(v_x^{\setminus i}+1\right)\mathbf{I}\right)+w\mathcal{N}\left(\mathbf{y}_i;\mathbf{0},10\mathbf{I}\right)$$
)

[STEP 4] minimize KL-Divergence

- $D(\hat{p}(\mathbf{x})||q(\mathbf{x}))$
- subject to the constraint that q(x) is in the approximating family

- 1. Initialize $\mathbf{m}_x = \mathbf{0}$, $v_x = 100$ (the prior). Initialize s = 1 (the scale factor).
- 2. For each data point \mathbf{y}_i , update (\mathbf{m}_x, v_x, s) according to

$$s = s^{\setminus i} \times Z_i$$

$$r_i = 1 - \frac{1}{Z_i} w \mathcal{N}(\mathbf{y}_i; \mathbf{0}, 10\mathbf{I})$$

$$\mathbf{m}_x = \mathbf{m}_x^{\setminus i} + v_x^{\setminus i} r_i \frac{\mathbf{y}_i - \mathbf{m}_x^{\setminus i}}{v_x^{\setminus i} + 1}$$

$$v_x = v_x^{\setminus i} - r_i \frac{(v_x^{\setminus i})^2}{v_x^{\setminus i} + 1} + r_i (1 - r_i) \frac{(v_x^{\setminus i})^2 ||\mathbf{y}_i - \mathbf{m}_x^{\setminus i}||^2}{d(v_x^{\setminus i} + 1)^2}$$

Intuitive Interpretation

- for each data point, compute r (= probability of not being clutter)
- make a update to $x(m_z)$
- change our confidence! (in the estimate v_x)

BUT, depends on the order in which data is processed (because the clutter probability r depends on the current estimate of x)

3. Expectation Propagation

novel interpretation of ADF

(original ADF) treat each observation term t_i exactly o approximate posterior that includes t_i (new interpretation) approximate t_i with \tilde{t}_i o using an exact posterior with \tilde{t}_i

define approximation term \tilde{t}_i as...

- ratio of NEW & OLD posterior
- $ilde{t}_i(\mathbf{x}) = Z_i rac{q(\mathbf{x})}{q^{i_i}(\mathbf{x})}$ (multiplying this with OLD posterior gives q(x))
- (still in the same family! (exponential family))

EP Algorithm

- 1. Initialize the term approximations \tilde{t}_i
- 2. Compute the posterior for \mathbf{x} from the product of \tilde{t}_i :

$$q(\mathbf{x}) = \frac{\prod_{i} \tilde{t}_{i}(\mathbf{x})}{\int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}}$$
(9)

- 3. Until all \tilde{t}_i converge:
 - (a) Choose a \tilde{t}_i to refine
 - (b) Remove \tilde{t}_i from the posterior to get an 'old' posterior $q^{i}(\mathbf{x})$, by dividing and normalizing:

$$q^{\setminus i}(\mathbf{x}) \propto \frac{q(\mathbf{x})}{\tilde{t}_i(\mathbf{x})}$$
 (10)

- (c) Combine $q^{\setminus i}(\mathbf{x})$ and $t_i(\mathbf{x})$ and minimize KL-divergence to get a new posterior $q(\mathbf{x})$ with normalizer Z_i .
- (d) Update $\tilde{t}_i = Z_i q(\mathbf{x})/q^{i}(\mathbf{x})$.
- 4. Use the normalizing constant of $q(\mathbf{x})$ as an approximation to p(D):

$$p(D) \approx \int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}$$
 (11)