DISCHARGE DEVICE FOR FILLING LIQUID CRYSTAL

Patent Number:

JP6265915

Publication date:

1994-09-22

Inventor(s):

MINAFUJI HIROTADA; others: 03

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Requested Patent:

Application Number: JP19930051902 19930312

Priority Number(s):

IPC Classification:

G02F1/1341; G02F1/13

EC Classification:

Equivalents:

Abstract

PURPOSE:To provide the discharger for filling a liquid crystal which can shorten the time for filling Mg liquid crystal and can improve quality by dropping the liquid crystal in compliance with a target value on one sheet of a substrate as the discharger for filling the liquid crystal for interposing the liquid crystal between two pairs of transparent substrates with electrodes constituting a liquid crystal display element. CONSTITUTION: A piston 12 in a syringe 11 is directly coupled by means of a ball screw 13 and a pulse motor 14 and the required displacement is controlled by the pulse motor 14, by which the liquid crystal 16 is discharged with good accuracy. The replenishment of the liquid crystal 16 into the syringe 11 is executed by replenishing the liquid crystal 16 from a replenishing port 22 through a filling pipe 21 from a hermetic container 19 which is completely hermetically sealed to avoid intrusion of dust, etc., and, therefore, the replenishment is completed in a short time. The productivity is thus improved and the intrusion of the dust, etc., is prevented.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平6-265915

(43)公開日 平成6年(1994)9月22日

(51) Int.Cl.5

饑別記号

101

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/1341

8507-2K

1/13

9315-2K

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号

特願平5-51902

(22)出願日

平成5年(1993)3月12日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 皆藤 裕祥

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 寺田 稔

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 西本 直樹

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

最終頁に続く

(54)【発明の名称】 液晶充填用吐出装置

(57)【要約】

【目的】 液晶表示素子を構成する二枚の電極付きの透 明基板間に液晶を介在させるための液晶充填用吐出装置 に関し、一枚の基板上に液晶を目標値通り滴下し、かつ 液晶充填時間の短縮と品質の向上を図ることが可能な液 晶充填用吐出装置を提供することを目的とする。

【構成】 シリンジ11内のピストン12をボールネジ 13とパルスモータ14とで直結し、必要押出し量をパ ルスモータ14で制御することで液晶16を精度よく吐 出させることができる。又シリンジ11内へ液晶16を 補充するには、ゴミ等の混入を避けるために完全密封さ れた密閉容器19より充填管21を経て補充口22より 補充される構成のために短時間で補充が完了でき、生産 性の向上とゴミなどの混入を防止することができる。

1

【特許請求の範囲】

【請求項1】 下端に吐出用ノズルを備え内部に充填された液晶の定量吐出を行うシリンジと、このシリンジに組込まれたピストンに一端が結合されたスライドブロックと、このスライドブロックに設けたネジ部と螺合したポールネジを回転させて上記スライドブロックを介してピストンを駆動させるパルスモータと、上記シリンジに終端部が接続され密閉容器に充填されて圧送される液晶をシリンジ内へ充填する充填管と、上記密閉容器内にガスを導入する導入口と、上記充填管の経路の途中に設け 10 られた電磁弁よりなる液晶充填用吐出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は薄形、軽量、低消費電力ディスプレイー用として利用される液晶表示素子の製造工程において、同素子内に液晶物質を充填するのに使用される液晶充填用吐出装置に関するものである。

[0002]

【従来の技術】近年、液晶表示パネルは薄形、軽量、低 消費電力のディスプレーとして時計、電卓等の小型表示 20 セルからパソコン、ワープロなどの大型表示素子、更に ワークステーションなどの高精細度大型表紙素子として 広衛囲に用途が拡大している。

[0003] これら液晶表示素子は、一般に図3にその構成断面図を示すように、パターン状の透明電極1,1 Aをそれぞれの表面に有する二枚の電極付きの透明基板2,2 Aを相対向させ、その隙間(以下、ギャップという)に液晶3と、このギャップを決めるためのスペーサを介在させて周辺部をシール剤4で固着し、その両表面に偏光板5,5 Aを設けて構成している。

【0004】このような液晶表示素子を作成するために 従来の液晶充填用吐出装置は、二枚の電極付きの透明基 板2,2 A間に液晶3を介在させるため図4に示すよう に液晶注入口4Aを設けた電極付きの透明基板2と同2 Aを貼合わせてサンドイッチ型構造の透明電極基板6を 作成し、これを図5で示すように真空容器7内の液晶溜 め8に浸漬させた状態で真空容器7内を大気に戻すこと により、上記注入口4Aから液晶3を注入するように構 成されたものであった。

[0005]

【発明が解決しようとする課題】しかしながら上記従来の構成では、真空容器7内で注入口4Aを液晶溜め8の液晶3に浸漬させた状態で毛細管現象を利用するのに減圧と加圧を行うために液晶3の注入に時間がかかり、大型パネル用の場合になると60分以上にもなることがあり、生産性が悪いという課題を有していた。又、液晶溜め8にゴミ等が混入し、不良の原因となる等の品質面の課題をも有していた。

【0006】本発明は上記従来の課題を解決し、生産性 の向上と品質の安定化を図った液晶充填用吐出装置を提 50

供することを目的とするものである。

[0007]

【課題を解決するための手段】上記課題を解決するために本発明による液晶充填用吐出装置は、下端に吐出用ノズルを備え内部に充填された液晶の定量吐出を行うシリンジと、このシリンジに組込まれたピストンに一端が結合されたスライドブロックと、このスライドブロックに設けたネジ部と螺合したボールネジを回転させて上記スライドブロックを介してピストンを駆動させるパルスモータと、上記シリンジに終端部が接続され密閉容器に充填されて圧送される液晶をシリンジ内へ充填する充填管と、上記密閉容器内にガスを導入する導入口と、上記充填管の経路の途中に設けられた電磁弁よりなる構成としたものである。

2

[8000]

【作用】この構成によりシリンジ内に充填された液晶は、このシリンジ内に組込まれたピストンをボールネジを介してバルスモータで駆動することによって必要な量を精度良く、かつ短時間で吐出することが可能になると共に、液晶を吐出したシリンジ内に密閉容器から液晶を圧送して充填することにより生産性を向上し、しかも液晶の中にゴミ等の異物が混入することのない信頼性の高いものとなる。

[0009]

【実施例】以下、本発明の一実施例による液晶充填用吐 出装置について図面を用いて説明する。

【0010】図1は同実施例による液晶充填用吐出装置の構成を示す正面断面図であり、同図において11は液晶16が内部に充填されたシリンジ、15はこのシリンジ 11の下端に結合された液晶16を吐出するための吐出用ノズル、12はシリンジ11内に組込まれたピストン、20は一端がピストン12に結合されたスライドブロック、13はスライドブロック20に設けたネジ部に螺合するボールネジ、14はこのボールネジ13を結合したパルスモータである。

【0011】19は上記シリンジ11内へ液晶16を補充するために設けられた密閉容器であり、この密閉容器19内には液晶16が充填されている。23はこの密閉容器19内に外部からNiガスなどの不活性ガスを導入するためのガス供給管、21は密閉容器19内に充填された液晶16を送り出すための充填管、17はこの充填管21の経路の途中に設けられた電磁弁、22はシリンジ11に設けられた補充口であり、上記充填管21の終端部をこの補充口22に連結している。

【0012】また、図2は本発明による液晶充填用吐出 装置を用いて液晶16を吐出する電極付きの透明基板の 構成を示す分解斜視図であり、同図において2,2Aは 電極付きの透明基板、4はシール剤である。

【0013】このように構成された本発明の液晶充填用 吐出装置の動作について以下に説明する。 .3

【0014】まず、図2に示す注入口を設けないシール 剤4を形成した電極付きの透明基板2を図1に示す同装 置の吐出用ノズル15の下部に配置し、上記シール剤4 で囲まれた枠内に液晶16を定量吐出するために制御部 (図示せず) でパルスモータ14を必要な量だけ回転させる。このパルスモータ14を必要な量だけ回転させる。このパルスモータ14を設合するネジ部を設けたスライドブロック20がポールネジ13の回転に伴い下降(パルスモータ14を逆回転させれば上昇)する。

【0015】上記スライドプロック20が下降することにより、スライドプロック20の一端に結合されたピストン12が下降し、シリンジ11内に充填された被晶16を下端に結合された吐出用ノズル15から吐出して上記電極付きの透明電極2の所定位置に充填するものである。

【0016】この時、吐出する液晶16の量はピストン12の移動量と相関がとれるためにパルスモータ14の回転を制御することによって液晶16の充填量を容易に調整することができるばかりでなく、極めて短時間で液 20晶16を充填することができる。

【0017】また、シリンジ11内へ液晶16を補充する場合には、電磁+17を切替えてガス供給管23より N_2 ガス18などの不活性ガスを圧送供給することにより密閉容器19内を加圧し、この密閉容器19内に充填された液晶16を充填管21を介して吐出し、この充填管21の終端部が結合された補充122よりシリンジ11内へ液晶16の補充を行うように構成している。

【0018】このように液晶16をシリンジ11内へ補充する構成とすることにより、液晶16の補充が極めて 30 短時間で行えるばかりでなく、液晶16は密閉容器19 の内部に閉じ込められた状態であるために、ゴミ等の不純物が混入することも無く信頼性の高い液晶充填を行うことができる。

[0019]

【発明の効果】以上のように本発明による液晶充填用吐 出装置は、目標値通りの液晶を精度良く所定位置へ滴下 することができると共に、液晶充填時間の大幅な短縮が 可能となる。又、シリンジ内への液晶の補充は補充口を 設けた構成とすることによって短時間で行うことができ るばかりでなく、完全密封された容器から液晶を補充す ることによりゴミ等の不純物の混入がなく品質の向上を 図ることが可能であり、生産性と品質を同時に向上させ ることが可能な貢献度の大きなものである。

【図面の簡単な説明】

【図1】本発明の一実施例における液晶充填用吐出装置 の構成を示す正面断面図

- 10 【図2】同実施例で使用する電極付きの透明基板の構成 を示す分解斜視図
 - 【図3】液晶表示素子の構成を示す断面図
 - 【図4】従来の液晶充填用吐出装置で使用する電極付き の誘明基板の構成を示す分解斜視図

【図 5 】従来の液晶充填用吐出装置の構成を示す正面断 面図

【符号の説明】

- 1 パターン状の透明電極
- 1A パターン状の透明電極
- 7 2 電極付きの透明基板
- 2A 電極付きの透明基板
- 3 液晶
- 4 シール剤
- 5 偏光板
- 5 A 偏光板
- 11 シリンジ
- 12 ピストン
- 13 ポールネジ
- 14 パルスモータ15 吐出用ノズル
- 16 液晶
- 17 電磁弁
- 18 N2ガス
- 19 密閉容器
- 20 スライドプロック
- 21 充填管
- 22 補充口
- 23 ガス供給管

[\overline{\text{Z}}]

22 横充口

23 万次铁枪管

16 液 晶

フロントページの続き

(72)発明者 北町 亨 大阪府門真市大字門真1006番地 松下電器 産業株式会社内