Konvergenzbegriffe in der Wahrscheinlichkeitstheorie

Warum schwache Konvergenz nicht genügt – pfadweises Zusammenwachsen und praktische Beispiele

Oliver Dürr

May 25, 2025

Der naive Zufallsbegriff – "Black Box"

- Jeder Knopfdruck liefert eine Zahl.
- ▶ Viele Knopfdrücke ⇒ eine empirische Verteilung.
- ▶ Die *Zufallsquelle* (das ω aus (Ω, \mathcal{F}, P)) bleibt unsichtbar.

Konvergenz in Wahrscheinlichkeit

Definition

$$X_n \xrightarrow{P} X \iff \forall \varepsilon > 0 : P(|X_n - X| > \varepsilon) \longrightarrow 0.$$

Beispiel: empirische Verteilungsfunktion Für i.i.d. X_1, \ldots, X_n mit Verteilungsfunktion F:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(X_i \le x)} \implies F_n(x) \xrightarrow{P} F(x)$$
 (f.j. fixes x).

Intuition

Der Schätzer $F_n(x)$ wird mit wachsendem n wahrscheinlich beliebig nah an die wahre Verteilungsfunktion F(x) heranrücken.

Zentraler Grenzwertsatz (i.i.d.-Version)

Seien
$$X_1, X_2, \ldots$$
 i.i.d. mit $E[X_i] = \mu$ und $Var(X_i) = \sigma^2 < \infty$.

$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

- $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- ► Konvergenz in Verteilung Zufallsstreuung bleibt erhalten.

Gesetz der großen Zahlen – einfache Version

Für dieselben i.i.d. X_i :

$$\bar{X}_n \xrightarrow{\mathsf{P}} \mu.$$

Lesart

Mit wachsendem n liegt der Stichprobenmittelwert mit hoher Wahrscheinlichkeit beliebig nah am Erwartungswert μ .

Gesetz der großen Zahlen – formale Version

$$P(|\bar{X}_n - \mu| > \varepsilon) \longrightarrow_{n \to \infty} 0, \quad \forall \varepsilon > 0.$$

Kurzform vs. Ereignis-Sprache

$$P(\underbrace{\{\omega: |\bar{X}_n(\omega) - \mu| > \varepsilon\}}_{\text{"zu weit weg"}}) \to 0.$$

- ▶ Die Differenz zu einer **Zufallsvariable** $Z \equiv \mu$ wird klein.
- Schreibweise ohne ω ist nur Abkürzung das Ereignis lebt in Ω.

Intuition: Zufall \rightarrow Verteilung (Black-Box-Bild)

- Naive Sicht: Ein Knopfdruck \rightarrow eine Zahl. Viele Knopfdrücke \Rightarrow Häufigkeiten \approx Verteilung.
- ▶ Unsichtbar bleibt der **Master-Zufall** $\omega \in \Omega$. Eine Zufallsvariable ist nur die deterministische Abbildung $X(\omega)$.

Zentraler Punkt: Ob zwei Variablen gemeinsam konvergieren, hängt davon ab, ob sie denselben ω teilen.

Intuition: Zufall → Verteilung (Black-Box-Bild)

- Naive Sicht: Ein Knopfdruck \rightarrow eine Zahl. Viele Knopfdrücke \Rightarrow Häufigkeiten \approx Verteilung.
- ▶ Unsichtbar bleibt der **Master-Zufall** $\omega \in \Omega$. Eine Zufallsvariable ist nur die deterministische Abbildung $X(\omega)$.

Zentraler Punkt: Ob zwei Variablen gemeinsam konvergieren, hängt davon ab, ob sie denselben ω teilen.

Zwei Konvergenzbegriffe – Definitionen

Konvergenz in Verteilung (schwach)

$$X_n \xrightarrow{d} X \iff F_{X_n}(x) \to F_X(x)$$
 für alle Stetigkeitspunkte x .

Konvergenz in Wahrscheinlichkeit

$$X_n \xrightarrow{P} X \iff \forall \varepsilon > 0 : P(|X_n - X| > \varepsilon) \to 0.$$

Hierarchie a.s. $\Rightarrow P \Rightarrow d$

Merke

P vergleicht Pfade auf demselben ω ; d vergleicht bloß Randverteilungen.

Beispiel 1 – Empirische Verteilungsfunktion

 X_1, \ldots, X_n i.i.d., Verteilungsfunktion F. $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(X_i \le x)}$. $F_n(x) \xrightarrow{P} F(x)$ für jedes feste x.

Stärkere Glivenko-Cantelli-Aussage: $\sup_{x} |F_n(x) - F(x)| \xrightarrow{a.s.} 0$.

Beispiel 2 – Zentraler Grenzwertsatz

$$(X_i)$$
 i.i.d., $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.
$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{d}{\to} \mathcal{N}(0, 1).$$

Schwach \Rightarrow Zufallsstruktur (Varianz 1) bleibt.

LLN – einfache Version

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu.$$

Pfaddeutung: Für fast jedes ω liegt \bar{X}_n irgendwann ε -nah an μ .

LLN - formale Version

$$P(|\bar{X}_n - \mu| > \varepsilon) \to 0 \quad (\forall \varepsilon > 0).$$

Kurzform für $P\{\omega: |\bar{X}_n(\omega) - \mu| > \varepsilon\} \to 0.$

Kopplung vieler MCMC-Ketten

Quadratisches Potential $V(k)=k^2$, gemeinsamer RNG-Strom. Startwerte verschieden \to Meeting-Zeit τ_{\max} .

$$\forall i,j: \ |X_t^{(i)} - X_t^{(j)}| \xrightarrow{\mathsf{P}} 0 \quad \Longrightarrow \quad X_t^{(i)} \xrightarrow{\mathsf{P}} Z, \ Z \sim \pi(k) \propto e^{-k^2}.$$

Zwei RNG-Streams – Seed-Effekt

Unterschiedliche Seeds

 X_n, Y_n Uniform(0,1).

$$P(|X_n - Y_n| > \varepsilon) \not\to 0 \quad \Rightarrow \quad X_n \not\overset{P}{\to} Y_n.$$

Gemeinsamer Seed

$$X_n = Y_n \ \forall n \ \Rightarrow \ \text{sofort} \ X_n \xrightarrow{P} Y_n.$$

Gleiche Randverteilungen \neq Pfadnähe.

Take-aways

- Schwache Konvergenz: nur Randverteilungen.
- **Notice** Konvergenz in Wahrscheinlichkeit: Pfade auf gleichem ω .
- ► Kopplungstricks zeigen den Unterschied praktisch (MCMC, Seeds).
- ▶ Burn-in: notwendig, aber unabhängig von Pfadverschmelzung.