测度论中的上下极限

1

2024年2月5日

posed on 20210514 Def 1. (上极限和下极限) $\forall \{A_n\}_{n=1}^{\infty}$, 上极限是

$$\limsup_{n\to\infty}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k$$

下极限是

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

举例

$$A_1 = \{1, a\}$$

$$A_2 = \{0, b\}$$

$$A_3 = \{1, b\}$$

$$A_4 = \{0, b\}$$

在这个例子中,上极限 $\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k$ 取为 $\{0,1,b\}$,因为 $\{a\}$ 仅仅在 $\{A_1\}$ 中存在。因此,上极限可以理解为在 ** 无穷个 $\{A_j\}$ 中存在的元素的集合 **。

 $\{A_n\}$ 的上极限与单纯地对 $\{A_n\}$ 取交集区别: 单纯取交集,可能得到空集,因为不是都存在元素在每个集合中都存在,上极限只需要其中元素在无穷个集合中存在即可。于是,有定义:

$$\limsup_{n\to\infty} A_n = \{\omega | \omega 属于无穷多个A_n\}$$

下极限 $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$,此例中,n=1 时为空集; $n \geq 2$ 时是 $\{b\}$ 。因此,下极限是 $\{b\}$ 。下极限中没有 $\{0,1\}$,因为 $\{0,1\}$ 虽然存在于无穷多个集合中,但是同时也不存在于无穷多个集合中。下极限的元素,** 只在有限个集合中不存在 **。也说明了,下极限的元素一定是存在于无穷多的集合中,因此下极限的元素一定存在于上极限中,有定义:

$$\lim_{n\to\infty}\inf A_n = \{\omega | \omega \Xi \text{ σ-A}_n\}$$

并且

$$\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$$

Lemma 1(Borel-Cantelli 引理) 若 $\sum_{n=1}^{\infty} P(A_n) < \infty$, 则有

$$P(\limsup_{n\to\infty} A_n) = 0$$

若 $\{A_n\}$ 间相互独立, 则 $\sum_{n=1}^{\infty} P(A_n) = \infty$ 成立的充要条件为

$$P\left(\limsup_{n\to\infty} A_n\right) = 1$$

Note

这个引理在概率论的直观解释就是抛无限次硬币,出现无限次正面朝上的概率为 1,出现有限次反面朝上的概率为 0。

从测度论也很好理解:如果一系列独立事件发生的概率和小于无穷,那么这些事件中**无穷多次发生的事件的概率测度**必为0,否则这无限多个集合每个测度都不小于 ϵ ,加在一起就无穷大了;反之如果一系列独立事件发生的概率和趋向无穷,那么这些事件中**无穷多件发生的概率为1**。

记号: $A_n, i.o.$ (i.o. mean:infinitely often) 表示集合序列的 $\{A_n\}$ 的上极限。