06	8a	A particle is moving in a straight line. Its displacement, x metres, from the	
		origin, O , at time t seconds, where $t \ge 0$, is given by $x = 1 - \frac{7}{t+4}$.	
		(i) Find the initial displacement of the particle.	1
		(ii) Find the velocity of the particle as it passes through the origin.	3
		(iii) Show that the acceleration of the particle is always negative.	1
		(iv) Sketch the graph of the displacement of the particle as a function of time.	2

(i) When
$$t = 0$$
, $x = 1 - \frac{7}{t+4}$
= $1 - \frac{7}{0+4}$
= $1 - 1.75$
= -0.75

Initially, at 0.75 m to the left of origin.

(ii) First, find when particle passes through origin, x = 0.

$$x = 1 - \frac{7}{t+4}$$

$$0 = 1 - \frac{7}{t+4}$$

$$\frac{7}{t+4} = 1$$

$$7 = t+4$$

$$t = 3$$

After 3 seconds, particle passes through O.

$$x = 1 - \frac{7}{t+4}$$

$$= 1 - 7(t+4)^{-1}$$

$$\frac{dx}{dt} = v = 7(t+4)^{-2}.1$$

$$= \frac{7}{(t+4)^2}$$

At
$$t = 3$$
, $v = \frac{7}{(3+4)^2}$
= $\frac{7}{49}$
= $\frac{1}{7}$

Particle moving at $\frac{1}{7}$ m/s when passing O.

(iii)
$$v = \frac{7}{(t+4)^2}$$
$$= 7(t+4)^{-2}$$
$$a = -14(t+4)^{-3}.1$$
$$= \frac{-14}{(t+4)^3}$$

As a < 0, for any value of t. This means that the acceleration is always negative.

(iv)

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

- Candidates are reminded that the concepts of distance and displacement are not interchangeable and marks were lost in part (i) for answers which were positive rather than negative.
- (ii) It should be stressed in relation to parts (i) and (ii) that the term 'initial' demands that t = 0 (not x = 0) whereas 'passing through the origin' implies that x = 0 (as opposed to t = 0). A common error in this part was to integrate rather than differentiate when producing a velocity formula. Candidates who differentiated correctly often then substituted t = 0 instead of the correct t = 3.
- (iii) Generally, this part was handled well if the correct velocity formula was obtained in part (ii).

HSC Worked Solutions projectmaths.com.au

(iv) In this part many candidates incorrectly sketched a straight line. Better responses not only displayed a hyperbolic shape but also fully addressed the issue of the horizontal asymptote.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/