1 解答解説のページへ

 \triangle ABC の辺 AB, BC, CA を 2:1 に内分する点をそれぞれ A', B', C' とし, \triangle A'B'C' の辺 A'B', B'C', C'A' を 2:1 に内分する点をそれぞれ A", B", C" とする。 このとき直線 AA", BB", CC" は \triangle ABC の重心で交わることを証明せよ。

2

解答解説のページへ

2 つの放物線 $C: y = \frac{1}{2}x^2$, $D: y = -(x-a)^2$ を考える。a は正の実数である。

- (1) C上の点 $\mathbf{P}\left(t, \frac{1}{2}t^2\right)$ におけるCの接線lを求めよ。
- (2) l がさらに D と接するとき、l を C と D の共通接線という。 2 本の(C と D の) 共通接線 l_1 , l_2 を求めよ。
- (3) 共通接線 l_1 , l_2 とCで囲まれた図形の面積を求めよ。

3a

解答解説のページへ

p を実数とする。方程式 $x^4+(8-2p)x^2+p=0$ が相異なる 4 個の実数解をもち、 これらの解を小さい順に並べたとき、それらは等差数列をなすとする。この p を求め よ。 3b 解答解説のページへ

袋の中に赤と白の玉が 1 個ずつ入っている。「この袋から玉を 1 個取り出して戻し、出た玉と同じ色の玉を袋の中に 1 個追加する」という操作を N 回繰り返した後、赤の玉が袋の中に m 個ある確率を $p_N(m)$ とする。

- (1) $p_3(m)$ を求めよ。
- (2) 一般のNに対し $p_N(m)$ を求めよ。

1

問題のページへ

点 A, B, C の位置ベクトルをそれぞれ \vec{a} , \vec{b} , \vec{c} と表す。 A', B', C'は, それぞれ辺 AB, BC, CA を 2:1 に内分する点なので, 同様な記法をとると,

$$\vec{a'} = \frac{1}{3}(\vec{a} + 2\vec{b}), \ \vec{b'} = \frac{1}{3}(\vec{b} + 2\vec{c}), \ \vec{c'} = \frac{1}{3}(\vec{c} + 2\vec{a})$$

さらに, A", B", C"は, それぞれ辺 A'B', B'C', C'A'を2:1に内分する点なので,

$$\vec{a''} = \frac{1}{3}(\vec{a'} + 2\vec{b'}), \ \vec{b''} = \frac{1}{3}(\vec{b'} + 2\vec{c'})$$

$$\vec{c''} = \frac{1}{3}(\vec{c'} + 2\vec{a'})$$

まとめると、
$$\vec{a''} = \frac{1}{3} \left\{ \frac{1}{3} (\vec{a} + 2\vec{b}) + \frac{2}{3} (\vec{b} + 2\vec{c}) \right\} = \frac{1}{9} (\vec{a} + 4\vec{b} + 4\vec{c})$$

 $\vec{b''} = \frac{1}{9} (4\vec{a} + \vec{b} + 4\vec{c})$ 、 $\vec{c''} = \frac{1}{9} (4\vec{a} + 4\vec{b} + \vec{c})$

さて、 \triangle ABC の重心を G とすると、 $\vec{g} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c})$ となり、

$$\overrightarrow{AA''} = \frac{1}{9}(\vec{a} + 4\vec{b} + 4\vec{c}) - \vec{a} = \frac{4}{9}(-2\vec{a} + \vec{b} + \vec{c})$$

$$\overrightarrow{AG} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c}) - \vec{a} = \frac{1}{3}(-2\vec{a} + \vec{b} + \vec{c})$$

よって、 $\overrightarrow{AA''} = \frac{4}{3}\overrightarrow{AG}$ となり、点 G は AA'' を 3:1 に内分する。

同様に, $\overrightarrow{BB''} = \frac{4}{3} \overrightarrow{BG}$, $\overrightarrow{CC''} = \frac{4}{3} \overrightarrow{CG}$ となり,直線 AA",BB",CC" は G で交わる。

[解説]

平面上のベクトルについての基本問題です。なお、 $\vec{a''} = \frac{1}{9}(\vec{a}+4\vec{b}+4\vec{c})$ の式を見て、 $\vec{g} = \frac{1}{4}(\vec{a}+3\vec{a''})$ が発見できれば、記述量を減らすことができます。

2

問題のページへ

(1) $C: y = \frac{1}{2}x^2$ より y' = x となり、 $P(t, \frac{1}{2}t^2)$ における接線 l の方程式は、 $y - \frac{1}{2}t^2 = t(x - t)$ 、 $y = tx - \frac{1}{2}t^2 \cdots$ ①

(2) $D: y = -(x-a)^2 \ge l$ の共有点は、 $-(x-a)^2 = tx - \frac{1}{2}t^2$ から、

$$x^{2} + (t - 2a)x + a^{2} - \frac{1}{2}t^{2} = 0$$

 $D \ge l$ が接するので、判別式の値が $0 \ge 5$

$$(t-2a)^2-4(a^2-\frac{1}{2}t^2)=0$$

$$3t^2 - 4at = 0$$
, $t = 0$, $\frac{4}{3}a$

よって、共通接線 l_1 、 l_2 の方程式は、①より、

$$y = 0$$
, $y = \frac{4}{3}ax - \frac{8}{9}a^2 \cdots 2$

(3) ②と x軸との交点は、 $\frac{4}{3}ax - \frac{8}{9}a^2 = 0$ から、 $x = \frac{2}{3}a$

すると、 l_1 、 l_2 と C で囲まれた図形の面積 S は、

$$S = \frac{1}{2} \int_0^{\frac{4}{3}a} x^2 dx - \frac{1}{2} \left(\frac{4}{3} a - \frac{2}{3} a \right) \cdot \frac{1}{2} \left(\frac{4}{3} a \right)^2 = \frac{1}{6} \left[x^3 \right]_0^{\frac{4}{3}a} - \frac{8}{27} a^3$$
$$= \frac{32}{81} a^3 - \frac{8}{27} a^3 = \frac{8}{81} a^3$$

[解 説]

微積分の頻出問題です。形式を変えて、センター試験にそのまま出題されても、違和感はありません。

3a

問題のページへ

方程式
$$x^4 + (8-2p)x^2 + p = 0$$
 ……①に対し、 $x^2 = t$ とおくと、
$$t^2 + (8-2p)t + p = 0$$
 ……②

①が相異なる 4 個の実数解をもつ条件は、②が異なる 2 つの正の解をもつことに対応する。この解を $t = \alpha$ 、 β ($\alpha < \beta$)とおくと、

$$D/4 = (4-p)^2 - p > 0 \cdots 3$$

 $\alpha + \beta = -(8-2p) > 0 \cdots 4, \quad \alpha\beta = p > 0 \cdots 5$

③より,
$$p^2-9p+16>0$$
となり, $p<\frac{9-\sqrt{17}}{2}$, $\frac{9+\sqrt{17}}{2}< p$

④より
$$p>4$$
となり、③④⑤をまとめると、 $p>\frac{9+\sqrt{17}}{2}$ ……⑥

このとき、①の解は、 $\pm \sqrt{\alpha}$ 、 $\pm \sqrt{\beta}$ となり、 $-\sqrt{\beta}$ 、 $-\sqrt{\alpha}$ 、 $\sqrt{\alpha}$ 、 $\sqrt{\beta}$ が等差数列をなすことより、

$$\sqrt{\beta} - \sqrt{\alpha} = 2\sqrt{\alpha}$$
, $\sqrt{\beta} = 3\sqrt{\alpha}$

よって、 $\beta = 9\alpha$ となり、45から、

$$\alpha + 9\alpha = -(8-2p) \cdots ?$$
, $\alpha \cdot 9\alpha = p \cdots ?$

⑦8
$$\xi$$
 9, $10\alpha = -8 + 18\alpha^2$, $9\alpha^2 - 5\alpha - 4 = 0$, $(9\alpha + 4)(\alpha - 1) = 0$

なお、この値は⑥を満たしている。

[解説]

複 2 次方程式の解の条件についての問題です。なお、⑦\$から α を消去して p の 2 次方程式をつくると、因数分解に時間がかかってしまいます。

3b

問題のページへ

(1) 赤玉と白玉の個数を, (赤,白)の順に記し,座標平面上の格子点を対応させると,右図のようになり,

$$p_{3}(1) = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{4}$$

$$p_{3}(2) = \frac{1}{2} \times \frac{2}{3} \times \frac{1}{4} + \left(\frac{1}{2} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3}\right) \times \frac{1}{2} = \frac{1}{4}$$

$$p_{3}(3) = \left(\frac{1}{2} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3}\right) \times \frac{1}{2} + \frac{1}{2} \times \frac{2}{3} \times \frac{1}{4} = \frac{1}{4}$$

$$p_{3}(4) = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{4}$$

なお, $m \ge 5$ のとき, $p_3(m) = 0$ である。

- (2) まず、 $m \ge N+2$ のとき、明らかに $p_N(m)=0$ である。 ここで、 $1 \le m \le N+1$ のとき、 $p_N(m)=\frac{1}{N+1}$ であることを、N について数学的 帰納法を用いて証明する。
 - (i) N=1のとき $p_1(1)=p_1(2)=\frac{1}{2}$ より、成立している。
 - (ii) N = k のとき $p_k(m) = \frac{1}{k+1}$ (1 $\leq m \leq k+1$)と仮定する。

N=k+1 のとき m=1 となるのは、(赤、白)=(1, k+1) で白を取り出す場合より、 $p_{k+1}(1)=\frac{k+1}{k+2}p_k(1)=\frac{k+1}{k+2}\cdot\frac{1}{k+1}=\frac{1}{k+2}$

N=k+1 のとき m=l (2 \leq l \leq k+1) となるのは、(赤、白)=(l, k+2-l) で白を取り出すか、(赤、白)=(l-1, k+3-l) で赤を取り出す場合より、

$$p_{k+1}(l) = \frac{k+2-l}{k+2} p_k(l) + \frac{l-1}{k+2} p_k(l-1) = \frac{k+2-l}{k+2} \cdot \frac{1}{k+1} + \frac{l-1}{k+2} \cdot \frac{1}{k+1}$$
$$= \frac{k+1}{k+2} \cdot \frac{1}{k+1} = \frac{1}{k+2}$$

N=k+1 のとき m=k+2 となるのは、(赤、白)=(k+1, 1) で赤を取り出す場合より、

$$p_{k+1}(k+2) = \frac{k+1}{k+2} p_k(k+1) = \frac{k+1}{k+2} \cdot \frac{1}{k+1} = \frac{1}{k+2}$$

以上より, $p_{k+1}(m) = \frac{1}{k+2}$ (1 $\leq m \leq k+2$) である。

[解説]

状態の推移を座標平面上の点を対応させて考えました。(2)の証明は、上の図を見ながら行いましたが、それでも注意力がかなり要求されます。