David Parker Dr. Cassiano Langini

Introduction

Goal

Methods

Results

Discussion

Conclusion

References

Atomic partial charge prediction with graph neural networks

David Parker Dr. Cassiano Langini

May 31, 2023

David

Outline

Parker Dr. Cassiano Langini

- Introduction
- 2 Goal
- Methods
- Results
- Discussion
- Conclusion

David Parker Dr. Cassiano Langini

 ${\bf Introduction}$

Cour

Methods

nesuits

21004001011

Conclusion

References

Introduction

References

Atomic partial charge

Coulomb's law:

$$|F| = k_{\rm e} \frac{|q_1||q_2|}{r^2} \tag{1}$$

Where

- Coulomb constant: $k_e = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{C^2}$
- q_1 and q_2 are the charges in Coulombs (C)
- \bullet r is the distance between the charges in meters (m)

David Parker Dr. Cassiano Langini

Introduction

G . . 1

Methods

Results

Discussion

Conclusion

References

Atomic partial charge

Figure: Representation of the electronic charge distribution of a water molecule. The oxygen atom has a partial negative charge, while the hydrogen atoms have partial positive charges[2].

Partial charge calculation

Experimentally (Spectroscopy):

• X-ray diffraction, Nuclear magnetic resonance, UV-Vis, etc

Computationally: Tradeoffs speed VS accuracy

• Quantum mechanics calculations: Evolution of a system through time

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle \qquad F = \frac{\partial}{\partial t} p$$

Quantum counterpart of Newton's second law of motion

• Force fields: Calculations based on a set of parameters

David Parker Dr. Cassiano Langini

Introductio:

Goal

Methods

Results

Conclusion

References

Goal

David Parker Dr. Cassiano

Langini

Goal

Results

Discussion

Conclusion

References

Create a dataset of molecules and use the Charm General Force Field (CGenFF) to calculate partial charges for each atom

Train a graph neural network to predict atomic partial charges

David Parker Dr. Cassiano Langini

Introduction

0001

Methods

Results

Discussion

Conclusion

References

Methods

David Parker Dr. Cassiano Langini

Introduction

Methods

Roculte

Discussio

Conclusion

Reference

Can also be represented as a graph:

- Nodes with attributes
- Edges with attributes
- Global attributes

Figure: Data model for the mini-world

David Parker Dr. Cassiano Langini

Introduction

Goal

Methods

Result

Discussion

Conclusion

References

Molecular Dataset: mol2 file

```
@cTRIPOS>MOLECULE
0002bf2c5ea40c3014dbcc0182ea4598
50.52
SMALL
CeenEE charge negative mean/may 2 42094 / 30 403
           0.1212 0.064 -0.3102 N.pl3 0.0
                                                  -0.163
           4.9006 -0.7556 0.5231 N.4
                                                  -0.426
            6.9083 -1.2723 0.7106 H
                                                   0.090
@<TRIPOS>BOND
1131
2 1 10 1
51 21 49 1
52 21 50 1
@/TRIPOS-MOLECULE
24d10877593ae175c68f8d409e6df5ae
26.25
```

Figure: Example of a mol2 file. Each molecule begins with a @<TRIPOS>MOLECULE tag, then the different fields are separated by their own tags.

David Parker Dr. Cassiano Langini

Introduction

COUL

Methods

Results

Discussion

Conclusion

References

Molecular Dataset: Molecules

Figure: Distributions of different molecular properties in the dataset.

David Parker Dr. Cassiano Langini

Introductio:

Goai

Methods

Conclusion

References

Molecular Dataset: Atoms

Figure: Distributions of different atomic properties in the dataset.

David Parker Dr. Cassiano Langini

Introduction

.

Methods

Results

Discussio

Conclusion

References

Message-passing neural network

$$\mathbf{e}'_{k} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u} \right) \quad \overline{\mathbf{e}}'_{i} = \rho^{e \to v} \left(E'_{i} \right)$$

$$\mathbf{v}'_{i} = \phi^{v} \left(\overline{\mathbf{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u} \right) \qquad \overline{\mathbf{e}}' = \rho^{e \to u} \left(E' \right)$$

$$\mathbf{u}' = \phi^{u} \left(\overline{\mathbf{e}}', \overline{\mathbf{v}}', \mathbf{u} \right) \qquad \overline{\mathbf{v}}' = \rho^{v \to u} \left(V' \right)$$

$$m = 0 \qquad m = 1 \qquad m = 2 \qquad m = 3$$

Figure: Message-passing neural network. Three update functions ϕ and three aggregation functions ρ are used to update the edge, node and global attributes[1].

References

Message-passing neural network

Node features: Element type

- Preprocess layer: 2 linear layers with batch normalization and ReLU activation functions to embed the element type into an internal continuous representation.
- Edge function layer: several linear layers with batch normalization and ReLU activation functions to compute edge features based on the node features of the adjacent nodes.
- GNN layer: applies a convolution operation to update the node features using the edge features as weights.
- GRU layer: applies a gated recurrent unit to update the node features.
- Predict layer: 2 linear layers with batch normalization and ReLU activation functions, followed by a linear layer with a single output.

David Parker Dr. Cassiano Langini

Introduction

Goal

111001100

 ${\bf Results}$

Discussion

Conclusion

References

Results

David Parker Dr. Cassiano Langini

Introductio

Goal

Methods

Results

Discussion

Conclusion

References

Benchmarks

Figure: Benchmarks of GPU utilisation for different batch sizes.

David Parker Dr. Cassiano Langini

Introduction

Goal

Metho

Results

Discussio:

Conclusion

00110141011

Absolute errors

Figure: Distributions of the absolute errors of the predicted partial charges for each

type of atom.

18 / 28

David Parker Dr. Cassiano Langini

Introduction

Goal

Method

Results

Discussion

Conclusion

References

Root mean squared error

Figure: Root mean squared error for each type of atom.

David Parker Dr. Cassiano Langini

ntroduction

Method

Results

Discussio

C----1---:--

Concidino

Mean absolute error

Figure: Visualizations of the graphs with the highest and lowest MAE.

David Parker Dr. Cassiano Langini

Introduction

Method

Results

Discussio

Conclusio

Concrusio

Our results compared to the literature

Figure: Cumulative fraction of each type of atom as a function of the absolute error. Our results on the left, the results of the literature on the right[3].

David Parker Dr. Cassiano Langini

Introduction

Goar

Methods

Results

Discussion

Conclusion

References

Discussion

Introduction

0.001

Method

Discussion

Conclusion

References

Dataset generation

- The dataset is technically easy to generate:
 - SQL queries to extract the data from the database
 - Use a force field to compute the partial charges
- The hard part is to choose relevant molecules:
 - \bullet We chose drug-like molecules. Molecular weight around 300 g/mol, specific number of rotatable bonds, etc. (see Figure 4)

Parker Dr. Cassiano Langini

David

Introduction

Cour

Method

20000200

Discussion

Conclusion

References

- Choice of the model:
 - We went with a MPNN as introduced by Gilmer et al.[4]
- Achitechture of the model:
 - We would like to add physical constraints to the model, so that the predicted partial charges make more sense

David Parker Dr. Cassiano Langini

Introductio:

Goar

Methods

Discussion

Conclusion

References

Conclusion

Goal

resure

Discussion

Conclusion

References

Conclusion

- We have generated a dataset of 8000 molecules with partial charges
- We have trained a MPNN to predict the partial charges
- The model has a RMSE of 0.054
 - Elementary charge of a proton: 1.6×10^{-19} C

David Parker Dr. Cassiano Langini

Introduction

Goai

Methods

Posulte.

Discussion

Conclusion

o o no rabion

References

Acknowledgements

Thanks to Cassiano and Yi for the help and interesting discussions

A big thank you to Kurt and all of you for an exciting lecture!

Atomic

References

- [1] Peter W. Battaglia et al. Relational inductive biases, deep learning, and graph networks. 2018. arXiv: 1806.01261 [cs.LG].
- [2] Benjah-bmm27. Water. URL: https://commons.wikimedia.org/w/index.php?curid=1498405. (accessed: 2023-05-29).
- [3] Patrick Bleiziffer, Kay Schaller, and Sereina Riniker. "Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations". In: Journal of Chemical Information and Modeling 58.3 (2018). PMID: 29461814, pp. 579–590. DOI: 10.1021/acs.jcim.7b00663. eprint: https://doi.org/10.1021/acs.jcim.7b00663. URL: https://doi.org/10.1021/acs.jcim.7b00663.
- [4] Justin Gilmer et al. "Neural Message Passing for Quantum Chemistry". In: CoRR abs/1704.01212 (2017). arXiv: 1704.01212. URL: http://arxiv.org/abs/1704.01212.