# Лабораторная работа № 3

# **Исследование криптографических шифров на основе** перестановки символов

**Цель**: изучение и приобретение практических навыков разработки и использования приложений для реализации перестановочных шифров (работа рассчитана на 4 часа аудиторных занятий).

#### Задачи:

- 1. Закрепить теоретические знания по алгебраическому описанию, алгоритмам реализации операций зашифрования/расшифрования и оценке криптостойкости перестановочных шифров.
- 2. Ознакомиться с особенностями реализации и свойствами различных перестановочных шифров на основе готового программного средства (L\_LUX).
- 3. Разработать приложение для реализации указанных преподавателем методов перестановочного зашифрования/расшифрования.
- 4. Выполнить исследование криптостойкости шифров на основе статистических данных о частотах появления символов в исходном и зашифрованном сообщениях.
- 5. Оценить скорость зашифрования/расшифрования реализованных способов шифров.
- 6. Результаты выполнения лабораторной работы оформить в виде описания разработанного приложения, методики выполнения экспериментов с использованием приложения и результатов эксперимента.

# 3.1 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Сущность перестановочного шифрования состоит в том, что, исходный текст (M) и зашифрованный текст (C) основаны на использовании одного и того же алфавита, а тайной или ключевой информацией является алгоритм перестановки.

Шифры перестановки относятся к классу *симметричных*. Элементами текста могут быть отдельные символы (самый распространённый случай), пары, тройки букв и так далее.

Классическими примерами перестановочных шифров являются *анаграммы*. Анаграмма (от греч. ανα – «снова» и γράμμα – «запись») – литературный приём, состоящий в перестановке букв (или звуков), что в результате дает другое слово или словосочетание, например: проездной – подрезной, листовка вокалист, апельсин – спаниель.

В классической криптографии шифры перестановки делятся на два подкласса:

- шифры *простой* или *одинарной перестановки* при зашифровании символы открытого текста  $M_i$  перемещаются с исходных позиций в новые (в шифртексте  $C_i$ ) один раз,
- шифры сложной или множественной перестановки при зашифровании символы открытого текста  $M_i$  перемещаются с исходных позиций в новые (в шифртексте  $C_i$ ) несколько раз.

### 3.1.1. Шифры одинарной перестановки

## 3.1.1.1. Шифры простой перестановки

Среди шифров рассматриваемого подкласса иногда выделяют иифры простой перестановки (или перестановки без ключа). Символы открытого текста  $M_i$  перемешиваются по каким-либо правилам. Формально каждое из таких правил может рассматриваться в качестве ключа.

<u>Пример 1</u>. Простейшим примером является запись открытого текста в обратной последовательности. Так, если  $M_i$  = «шифр перестановки», то  $C_i$  = «иквонатсереп рфиш». Если переставляются в соответствующем порядке пары букв, то  $C_i$  = «киованстрепе фрши». При более длинных сообщениях можно таким же образом перемещать целые слова или блоки слов.

Подобную перестановку можно трактовать как транспозицию.

В общем случае для использования *шифров одинарной перестановки* используется таблица, состоящая из двух строк: в первой строке записываются буквы, во второй — цифры J. Строки состоят из n столбцов. Буквы составляют шифруемое сообщение. Цифры  $J=j_1,j_2,...,j_n$ , где  $j_1$ — номер позиции в зашифрованном сообщении первого символа открытого текста, где  $j_2$ — номер позиции в зашифрованном сообщении второго символа открытого текста и т. д. Таким образом, порядок следования цифр определяется используемым правилом (ключом) перестановки символов открытого текста для получения шифрограммы.

Если предположить, что некоторое сообщение  $M_i$  состоит из букв от  $m_1$  до  $m_n$ , то рассматриваемую таблицу можно представить как показано ниже (таблица 3.1).

Таблица 3.1. Общий вид таблицы для шифра одинарной перестановки

| $m_1$ | $m_2$ | ••• | $m_{\rm n}$ |
|-------|-------|-----|-------------|
| $j_1$ | $j_2$ | ••• | $j_n$       |

В первую строку таблицы 3.1 могут записываться также числа в порядке возрастания от 1 до n. Понятно, что эти числа соответствуют позициям букв в открытом тексте.

Процедура расшифрования также основана на использовании таблиц перестановки. Эти таблицы строятся на основе таблиц вида 3.1.

<u>Пример 2</u>. Пусть  $M_i$  = «кибервойны», здесь n=10. Далее принимаем правило (ключ) перестановки:  $j_1$ =5,  $j_2$ =3,  $j_3$ =1,  $j_4$ =6,  $j_5$ =4,  $j_6$ =2,  $j_7$ =10,  $j_8$ =7,  $j_9$ =8,  $j_{10}$ =9.

Составим таблицу для зашифрования сообщения в форме табл. 3.1.

Таблица 3.2

| К | И | б | e | р | В | 0  | й | Н | Ы |
|---|---|---|---|---|---|----|---|---|---|
| 5 | 3 | 1 | 6 | 4 | 2 | 10 | 7 | 8 | 9 |

Представим эту таблицу только числами.

Таблица 3.3.

| 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 |
|---|---|---|---|---|---|----|---|---|----|
| 5 | 3 | 1 | 6 | 4 | 2 | 10 | 7 | 8 | 9  |

В соответствии с принятым ключом зашифрованное сообщение будет иметь вид:  $C_i$  = «бвиркейныо».

 $\underline{\text{Мом сообщении длиной } n}$  символов всего существует  $\underline{n}$ ! Неповторяющихся ключей.

Для расшифрования сообщения, следуя логике рассмотренных процедур зашифрования, нам нужно также составить таблицу, первой строкой которой будет зашифрованный текст (таблица 3.4.). Здесь применяется примерно такой же подход, как и в шифрах подстановки.

Таблица 3.4.

| б | В | И | р | К | e | й | Н | Ы | 0  |
|---|---|---|---|---|---|---|---|---|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Таблицу 3.4 дополним 3-ей строкой, числа в столбцах которой соответствуют первой строке таблицы 3.3, одновременно составляя неизменную пару: 1 соответствует 3, 2-6 и т.д. (см. табл. 3.5).

Таблица 3.5

| б | В | И | р | К | e | й | Н | Ы  | O  |
|---|---|---|---|---|---|---|---|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |
| 3 | 6 | 2 | 5 | 1 | 4 | 8 | 9 | 10 | 9  |

Теперь расшифрованному сообщению «бвиркейныо» будет соответствовать обратная перестановка: символы первой строки таблицы 3.5 нужно расположить в порядке в соответствии с 3-й строкой: 1 - «к», 2 - «и» и т. д.

Для использования на практике рассмотренный метод зашифрования/расшифрования не очень удобен. При больших значениях *п* приходится работать с таблицами, состоящими из большого числа столбцов. Кроме того, для сообщений разной длины необходимо создавать разные таблицы перестановок.

Следует также отметить сходство рассмотренных алгоритмов зашифрования/расшифрования и алгоритмов перемежения, которые изучались и анализировались в лабораторной работе №7 из [1].

## 3.1.1.2. Шифры простой блочной перестановки

Указанные шифры строятся по тем же правилам, что и шифры простой перестановки. Блок должен состоять из 2-х или более символов. Если общее число таких символов в сообщении не кратно длине сообщения, то последний блок можно дополнить произвольными знаками.

<u>Пример 3.</u> Пусть  $M_i$  = «кибервойны», примем длину блока, равную 2. Для зашифрования построим таблицу (табл. 3.6).

Таблица 3.6

| ки | бе | рв | ой | НЫ |
|----|----|----|----|----|
| 5  | 1  | 4  | 2  | 3  |

В соответствии с табл. 3.6 получим  $C_i$  = «беойнырвки». Расшифрование производится по правилам, схожим с правилами для шифров простой перестановки.

# 3.1.1.3. Шифры маршрутной перестановки

Основой современных шифров рассматриваемого типа является геометрическая фигура. Обычно прямоугольник или прямоугольная матрица. В ячейки этой фигуры по определенному маршруту (слева-направо, сверху-вниз или каким-либо иным образом) записывается открытый текст. Для получения

шифрограммы нужно записать символы этого сообщения в иной последовательности, т.е. по иному маршруту (см. аналогию с методами перемежения/деперемежения данных в лабораторной работе №7 [1]).

**Шифр Скитала (Сцитала).** Известно, что в V веке до н. э. в Спарте существовала хорошо отработанная система секретной военной связи. Для этого использовался специальный жезл «скитала» (греч.  $\sigma$ к $\sigma$ ) первое, вероятно, простейшее криптографическое устройство, реализующее метод перестановки (рис. 3.1).



**Рисунок 3.1 – Скитала [15]** 

Для зашифрования и расшифрования необходимо было иметь абсолютно одинаковые жезлы. На такой предмет наматывалась пергаментная лента. Далее на эту ленто построчно наносился текст. Для расшифрования ленту с передаваемым сообщением нужно было намотать так же, как и при нанесении открытого текста. Подобным образом работает шифр, который иллюстрирует пример на рисунке 3.5 в [2].

Следуя вышеприведенным рассуждениям, может отождествить скитала с таблицей размерами: k — количество столбцов, s — количество строк. Поскольку при регулярном обмене данными сообщения часто имеют разную длину, то оба этих параметра за неизменяющийся ключ взять неудобно. Поэтому обычно в качестве известного каждой стороне ключа выбирается один из них (часто это s), а второй вычисляется на основе известного и длины n сообщения  $M_i$ :

$$k = [(n-1)/s] + 1.$$
 (3.1)

При этом слагаемое в квадратных скобках должно быть целым числом [15].

Нетрудно себе представить аналогию между Скитала и таблицей, которая «намотана» на цилиндр.

При использовании шифра Скитала для формирования шифртекста сначала выбирается 1-ая буква открытого текста, затем (k+1)-буква, (2k+1)-буква и т.д., для некоторого k, равного числу букв в каждой строке скиталы. Значение k является постоянной величиной для данной скиталы,

*Организация маршрутной перестановки*. Уже упоминавшаяся маршрутная перестановка (записываем сообщение по строкам, считываем — по столбцам матрицы) можно усложнить и считывать не по столбцам, а по спирали (рис. 3.2,а), зигзагом (рис. 3.2,б), змейкой (рис. 3.2,в) или каким-то другим способом (см. рис. 3.2). Такие способы шифрования несколько усложняют процесс, однако усиливают криптостойкость шифра.



Рисунок 3.2 – Графическое представление методов маршрутной перестановки

Маршруты могут быть значительно более изощренными. Например, обход конем шахматной доски таким образом, чтобы в каждой клетке конь побывал один раз. Один из таких маршрутов был найден Л. Эйлером в 1759 г. Для примера на рис. 3.3 показан такой маршрут для обхода таблицы размером  $5 \times 4$ .

Не менее занимательным и не менее сложным является организация маршрутов на основе «магических квадратов» – квадратных матриц со вписанными в каждую клетку неповторяющимися последовательными числами от 1, сумма которых по каждому столбцу, каждой строке и каждой диагонали дает одно и то же число.

Создание новых оригинальных маршрутов приветствуется и поощряется при выполнении данной лабораторной работы.

## 3.1.1.4. Шифр вертикальной перестановки

Данный шифр является разновидностью шифра маршрутной перестановки. К особенностям вертикального шифра можно отнести следующие:

- количество столбцов в таблице фиксируется и определяется длиной ключа;
  - маршрут вписывания: слева-направо, сверху-вниз;
- шифрограмма выписывается по столбцам в соответствии с их нумерацией (ключом).



Рисунок 3.3 – Пример маршрута «обход конем»

Ключ может задавиться в виде текста (слова или словосочетания). Лексикографическое местоположение символов в ключевом выражении определяет порядок считывания столбцов.

<u>Пример 4</u>. Например, ключом является слово «крипто». Во-первых, это означает, что количество столбцов k в таблице должно быть равно длине ключа, т. е. -6. Если вспомним порядок букв из ключевого слова в алфавите, то последовательность считывания столбцов будет следующим: 2, 5, 1, 4, 6, 3.

Необходимо зашифровать сообщение  $M_i$  = «шифр вертикальной перестановки»; n=30.

Строим основную таблицу 5х6 (табл. 3.7), в которую по стокам будет записано исходное сообщение.

Считывая информацию из таблицы по столбцам в соответствии с ключом, получим шифрограмму  $C_i$  = «фтнрошелпава тириоевирьен кйск».

Таблица 3.7

| К | p | и | n | m | 0 |
|---|---|---|---|---|---|
| 2 | 5 | 1 | 4 | 6 | 3 |
| Ш | И | ф | р |   | В |

| e | p | T | И | К | a |
|---|---|---|---|---|---|
| Л | Ь | Н | 0 | й |   |
| П | e | p | e | c | T |
| a | Н | 0 | В | К | И |

### 3.1.2. Шифры множественной перестановки

Особенностью шифров данного подкласса является минимум двукратная перестановка символов шифруемого сообщения. В простейшем случае это может задаваться перемешиваем не только столбцов (как в примере 4), но и строк. Таким образом, этот случай соответствует использованию двух основных ключей: длина одного из них равна числу столбцов, другого — числу строк. К ключевой информацию мы можем относить также способы вписывания сообщения и считывания отдельных символов из текущего столбца матрицы.

<u>Пример 5</u>. Предположим, что (в продолжение к последнему примеру) вторым ключом будет «слово» или 5, 2, 3, 1, 4 (одинаковым буквам «о» мы присвоили последовательные числа).

Предыдущая таблица несколько видоизменится и примет следующий вид (табл. 3.8).

Таблица 3.8

| ключи |   | К | p | и | n | m | 0 |
|-------|---|---|---|---|---|---|---|
|       |   |   | 5 | 1 | 4 | 6 | 3 |
| С     | 5 | Ш | И | ф | p |   | В |
| Л     | 2 | e | p | T | И | К | a |
| 0     | 3 | Л | Ь | Н | 0 | й |   |
| в     | 1 | П | e | p | e | c | T |
| 0     | 4 | a | Н | 0 | В | К | И |

Для удобства отсортируем последовательно строки в соответствии с ключом (табл. 3.9).

Таблица 3.9

| ключи | К | р | и | n | m | 0 |
|-------|---|---|---|---|---|---|
|       | 2 | 5 | 1 | 4 | 6 | 3 |

| в | 1 | П | e | p | e | c | Т |
|---|---|---|---|---|---|---|---|
| Л | 2 | e | p | Т | И | К | a |
| 0 | 3 | Л | Ь | Н | 0 | й |   |
| 0 | 4 | a | Н | 0 | В | К | И |
| С | 5 | Ш | И | ф | p |   | В |

И столбцы – в соответствии с ключевым словом «слово».

Таблица 3.10

| ключи |   | и | К | 0 | n | p | m |
|-------|---|---|---|---|---|---|---|
|       |   | 1 | 2 | 3 | 4 | 5 | 6 |
| в     | 1 | e | T | p | e | c | П |
| Л     | 2 | И | a | Т | p | К | e |
| 0     | 3 | 0 |   | Н | Ь | й | Л |
| 0     | 4 | В | И | 0 | Н | К | a |
| С     | 5 | p | В | ф | И |   | Ш |

Получим итоговую шифрограмму  $C_i$  = «еиоврта ивртноферьнискйк пелаш».

Шифры гаммирования рассматриваются как самостоятельный класс. Такие шифры схожи с перестановочными тем, что в обоих случаях можно использовать табличное представление выполняемых операций на основе ключей. Вместе с тем, шифры гаммирования имеют много общего с подстановочными шифрами, поскольку на самом деле при зашифровании происходит подмена одних символов на другие.

Полезную информацию о классе рассмотренных шифров можно найти в [16, 17].

# 3.2 ПРАКТИЧЕСКОЕ ЗАДАНИЕ

Рекомендация! Перед выполнением практического задания целесообразно освежить практические навыки использования и особенностями функционирования программного средства  $L\_LUX$ , реализующего перестановочные (и другие) методы зашифрования/расшифрования текстовой информации и являющегося приложением на компакт-диске к [5].

Обратим внимание на использование «горячих» клавиш для реализации некоторых операций:

Ctrl + F3 – зашифрование на основе простой перестановки,

- Shift + F3 расшифрование на основе простой перестановки,
- Shift + Ctrl + F1 вывод гистограмм (частотных параметров символов) исходного и зашифрованного сообщений,
- Shift + Ctrl + F2 вывод гистограмм (частотных параметров символов) зашифрованного и расшифрованного сообщений.

#### Основное задание.

- 1. Разработать авторское приложение в соответствии с целью лабораторной работы. Приложение должно реализовывать следующие операции:
  - выполнять зашифрование/расшифрование текстовых документов (объемом не менее 500 знаков) созданных на основе алфавита языка в соответствии с нижеследующей таблицей вариантов задания; при этом следует использовать шифры подстановки из третьего столбца данной таблицы;

#### Варианты задания

| Вариант | алфавит     | шифр                                          |
|---------|-------------|-----------------------------------------------|
| 1       | белорусский | 1. Маршрутная перестановка (маршрут: запись – |
|         |             | по строкам, считывание – по столбцам таблицы; |
|         |             | параметры таблицы – по указанию преподава-    |
|         |             | теля)                                         |
|         |             | 2. Множественная перестановка, ключевые       |
|         |             | слова – собственные имя и фамилия             |
| 2       | русский     | 1. Маршрутная перестановка (маршрут: по спи-  |
|         |             | рали; параметры таблицы – по указанию препо-  |
|         |             | давателя)                                     |
|         |             | 2. Множественная перестановка, ключевые       |
|         |             | слова – собственные имя и фамилия             |
| 3       | английский  | 1. Маршрутная перестановка (маршрут: зигза-   |
|         |             | гом; параметры таблицы – по указанию препо-   |
|         |             | давателя)                                     |
|         |             | 2. Множественная перестановка, ключевые       |
|         |             | слова – собственные имя и фамилия             |
| 4       | немецкий    | 1. Маршрутная перестановка (маршрут: змей-    |
|         |             | кой; параметры таблицы – по указанию препода- |
|         |             | вателя)                                       |
|         |             | 2. Множественная перестановка, ключевые       |
|         |             | слова – собственные имя и фамилия             |
| 5       | польский    | 1. Маршрутная перестановка (маршрут запись –  |
|         |             | по столбцам, считывание – по строкам таблицы; |
|         |             | параметры таблицы – по указанию преподава-    |
|         |             | теля)                                         |
|         |             | 2. Множественная перестановка, ключевые       |
|         |             | слова – собственные имя и фамилия             |

- формировать гистограммы частот появления символов для исходного и зашифрованного сообщений;
- оценивать время выполнения операций зашифрования/расшифрования (напоминание: во многих языках программирования есть встроенные методы для замеров времени; при отсутствии такового в используемом языке можно воспользоваться разностью двух дат (например, в миллисекундах: время после выполнения программы время до начала выполнения преобразования).

Ниже представлен (Листинг 3.1) пример кода программы (класса *Encryption*) для зашифрования сообщения на основе табличного представления сообщений.

```
class Encryption{
        private int[] key = null;
        public void SetKey(string[] _key)
             key=new int[_key.Length];
            for(int i=0;i<_key.Length;i++)</pre>
              key[i] = Convert.ToInt32(_key[i]);
        public string Encrypt(string input)
             for(int i=0;i<input.Length % key.Length;i++) input +=</pre>
input[i];
             string result = "";
             for(int i=0;i<input.Length;i+=key.Length)</pre>
                 char[] transposition = new char[key.Length];
                 for(int j=0;j<key.Length;j++)</pre>
                          transposition[key[j]-1]=input[i+j];
                 for(int j=0;j<key.Length;j++)</pre>
                          result += transposition[j];
             return result;
        public string Decrypt(string input)
             string result = "";
             for(int i=0;i<input.Length;i+=key.Length)</pre>
                 char[] transposition = new char[key.Length];
                 for(int j=0;j<key.Length;j++)</pre>
```

Листинг 3.1. Пример кода программы для зашифрования сообщения на основе табличного представления сообщений

При анализе полученных гистограмм можно сопоставить полученные данные с аналогичными результатами выполнения лабораторной работы №2 из [1] и лабораторной работы №2 настоящего пособия.

Если указанный в таблице язык исходного текста не известен разработчику программного средства, можно взять документ на требуемом языке и воспользоваться доступным электронным переводчиком (возникающие при этом отдельные семантические неточности не следует считать существенным недостатком выполняемого анализа).

2. Результаты оформить в виде отчета по установленным правилам.

# ВОПРОСЫ ДЛЯ КОНТРОЛЯ И САМОКОНТРОЛЯ

- 1. В чем заключается основная идея криптографических преобразований на основе шифров перестановки?
- 2. Привести классификационные признаки и дать сравнительную характеристику разновидностям перестановочных шифров.
- 3. Сколько разновидностей шифров, подобных шифру Цезаря, можно составить для алфавитов русского и белорусского языков?
- 4. Охарактеризовать криптостойкость перестановочных и подстановочных шифров.
- 5. Привести примеры дать характеристику перестановочным шифрам, не рассмотренным в материалах к данной лабораторной работе.
- 6. Имеются ли предпочтения в выборе размеров используемой таблицы для перестановочных шифров?
  - 7. Охарактеризовать основные методы взлома перестановочных шифров.