Differentiation Rules

1.
$$\frac{d}{dx}(cx) = c$$

2.
$$\frac{d}{dx}(u \pm v) = u' \pm v'$$
 10. $\frac{d}{dx}(a^x) = \ln a \cdot a^x$

3.
$$\frac{d}{dv}(u \cdot v) = uv' + u'v$$

$$4. \ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

5.
$$\frac{d}{dx}(u(v)) = u'(v)v'$$

$$6. \ \frac{d}{dx}(c)=0$$

$$7. \ \frac{d}{dx}(x) = 1$$

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$9. \ \frac{d}{dx}\left(e^{x}\right)=e^{x}$$

10.
$$\frac{d}{dx}(a^x) = \ln a \cdot a^x$$

11.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

12.
$$\frac{d}{dx} (\log_a x) = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$13. \ \frac{d}{dx} \left(\sin x \right) = \cos x$$

$$14. \ \frac{d}{dx}(\cos x) = -\sin x$$

$$15. \ \frac{d}{dx}\left(\csc x\right) = -\csc x \cot x$$

16.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

17.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$19. \ \frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

21.
$$\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$$

22.
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}$$

23.
$$\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

24.
$$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

Integration Rules

1.
$$\int c \cdot f(x) \ dx = c \int f(x) \ dx$$

2.
$$\int f(x) \pm g(x) \ dx = \int f(x) \ dx \pm \int g(x) \ dx$$

3.
$$\int 0 dx = C$$

$$4. \int 1 dx = x + C$$

5.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C, \ n \neq -1$$

$$6. \int e^x dx = e^x + C$$

$$7. \int a^x dx = \frac{1}{\ln a} \cdot a^x + C$$

$$8. \int \frac{1}{x} dx = \ln|x| + C$$

9.
$$\int \cos x \, dx = \sin x + C$$

$$10. \int \sin x \, dx = -\cos x + C$$

11.
$$\int \tan x \, dx = -\ln|\cos x| + C$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

13.
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

$$14. \int \cot x \, dx = \ln|\sin x| + C$$

15.
$$\int \sec^2 x \, dx = \tan x + C$$

$$16. \int \csc^2 x \, dx = -\cot x + C$$

17.
$$\int \sec x \tan x \, dx = \sec x + C$$

$$18. \int \csc x \cot x \, dx = -\csc x + C$$

19.
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

20.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C$$

21.
$$\int \frac{1}{x\sqrt{x^2-a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{|x|}{a} \right) + C$$

The Unit Circle

Definitions of the Trigonometric Functions

Unit Circle Definition

$$\csc \theta = \frac{1}{v} \quad \sec \theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

Right Triangle Definition

$$\sin \theta = \frac{O}{H}$$
 $\csc \theta = \frac{H}{O}$

$$\cos \theta = \frac{A}{H} \quad \sec \theta = \frac{H}{A}$$

$$\tan \theta = \frac{O}{A} \quad \cot \theta = \frac{A}{O}$$

Common Trigonometric Identities

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$
$$\tan^2 x + 1 = \sec^2 x$$
$$1 + \cot^2 x = \csc^2 x$$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \csc\left(\frac{\pi}{2} - x\right) = \sec x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \sec\left(\frac{\pi}{2} - x\right) = \csc x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x$$

Double Angle Formulas

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Even/Odd Identities

Sum to Product Formulas

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\sin x - \sin y = 2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right) \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\cos x + \cos y = 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \qquad \tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

$$\cos x - \cos y = -2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

Power-Reducing Formulas

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

$$\sin(-x) = -\sin x$$

$$\tan(-x) = -\tan x$$

$$\csc(-x) = -\csc x$$

$$\sec(-x) = \sec x$$

$$\cot(-x) = -\cot x$$

Product to Sum Formulas

$$\sin x \sin y = \frac{1}{2} \left(\cos(x - y) - \cos(x + y) \right)$$

$$\cos x \cos y = \frac{1}{2} \left(\cos(x - y) + \cos(x + y) \right)$$

$$\sin x \cos y = \frac{1}{2} \left(\sin(x + y) + \sin(x - y) \right)$$

Angle Sum/Difference Formulas

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Areas and Volumes

Triangles

$$h = a \sin \theta$$

Area =
$$\frac{1}{2}bh$$

Law of Cosines:
$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

Right Circular Cone

Volume =
$$\frac{1}{3}\pi r^2 h$$

$$\pi r \sqrt{r^2 + h^2} + \pi r^2$$

Parallelograms

Area =
$$bh$$

Right Circular Cylinder

Volume =
$$\pi r^2 h$$

$$2\pi rh + 2\pi r^2$$

Trapezoids

Area =
$$\frac{1}{2}(a+b)h$$

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area =
$$4\pi r^2$$

Circles

Area =
$$\pi r^2$$

Circumference = $2\pi r$

General Cone

Area of Base =
$$A$$

Volume =
$$\frac{1}{3}Ah$$

Sectors of Circles

 $\boldsymbol{\theta}$ in radians

Area =
$$\frac{1}{2}\theta r^2$$

$$s = r\theta$$

General Right Cylinder

Area of Base =
$$A$$

Algebra

Factors and Zeros of Polynomials

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of the equation p(x) = 0. Furthermore, (x - a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula

If $p(x) = ax^2 + bx + c$, and $0 \le b^2 - 4ac$, then the real zeros of p are $x = (-b \pm \sqrt{b^2 - 4ac})/2a$

Special Factors

$$x^{2} - a^{2} = (x - a)(x + a) x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2}) (x + y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \dots + nxy^{n-1} + y^{n} (x - y)^{n} = x^{n} - nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} - \dots \pm nxy^{n-1} \mp y^{n}$$

Binomial Theorem

$$(x+y)^2 = x^2 + 2xy + y^2 (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 (x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

$$(x-y)^2 = x^2 - 2xy + y^2 (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 (x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$$

Rational Zero Theorem

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, then every *rational zero* of p is of the form x = r/s, where r is a factor of a_0 and s is a factor of a_n .

Factoring by Grouping

$$acx^{3} + adx^{2} + bcx + bd = ax^{2}(cs + d) + b(cx + d) = (ax^{2} + b)(cx + d)$$

Arithmetic Operations

$$ab + ac = a(b + c)$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \left(\frac{a}{b}\right)\left(\frac{d}{c}\right) = \frac{ad}{bc}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$$

$$\frac{a - b}{c - d} = \frac{b - a}{d - c}$$

$$\frac{ab + ac}{a} = b + c$$

Exponents and Radicals

$$a^0=1, \ a \neq 0$$
 $(ab)^x=a^xb^x$ $a^xa^y=a^{x+y}$ $\sqrt{a}=a^{1/2}$ $\frac{a^x}{a^y}=a^{x-y}$ $\sqrt[n]{a}=a^{1/n}$ $\left(\frac{a}{b}\right)^x=\frac{a^x}{b^x}$ $\sqrt[n]{a^m}=a^{m/n}$ $a^{-x}=\frac{1}{a^x}$ $\sqrt[n]{ab}=\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}$ $(a^x)^y=a^{xy}$ $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Additional Formulas

Summation Formulas:

$$\sum_{i=1}^{n} c = cn$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Trapezoidal Rule (Area):

$$\int_{a}^{b} f(x) \ dx \approx \frac{\Delta x}{2} \big[f(x_1) + 2 f(x_2) + 2 f(x_3) + ... + 2 f(x_n) + f(x_{n+1}) \big]$$
 with Error $\leq \frac{(b-a)^3}{12 n^2} \big[\max \big| f''(x) \big| \big]$

Simpson's Rule (Area):

$$\int_a^b f(x) \ dx \approx \frac{\Delta x}{3} \big[f(x_1) + 4 f(x_2) + 2 f(x_3) + 4 f(x_4) + \ldots + 2 f(x_{n-1}) + 4 f(x_n) + f(x_{n+1}) \big]$$
 with Error $\leq \frac{(b-a)^5}{180n^4} \big[\max \big| f^{(4)}(x) \big| \big]$

Arc Length:

$$L=\int_a^b\sqrt{1+f'(x)^2}~dx$$

$$S=2\pi\int_a^bf(x)\sqrt{1+f'(x)^2}~dx$$
 (where $f(x)\geq 0$)
$$S=2\pi\int_a^bx\sqrt{1+f'(x)^2}~dx$$
 (where $a,b\geq 0$)

Surface of Revolution:

Force Exerted by a Fluid:

Work Done by a Variable Force:

$$W = \int_a^b F(x) \ dx$$
 $F = \int_a^b w \, d(y) \, \ell(y) \ dy$

Taylor Series Expansion for f(x):

$$p_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Maclaurin Series Expansion for f(x), where c = 0:

$$p_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

Summary of Tests for Series:

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
<i>n</i> th-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} r^n$	r < 1	$ r \geq 1$	$Sum = \frac{1}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		$Sum = b_1 - L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{(an+b)^p}$	p > 1	$ ho \leq 1$	