(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 28. Juli 2005 (28.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/069394 A1

- (51) Internationale Patentklassifikation⁷: H01L 41/083, 41/053
- (21) Internationales Aktenzeichen: PCT/EP2004/053004
- (22) Internationales Anmeldedatum:

18. November 2004 (18.11.2004)

- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:

102004002133.3 15. Januar 2004 (15.01.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): WALTER, Gerhard [DE/DE]; Gottlieb-Eisele-Str. 4, 70839 Gerlingen (DE). MANN, Armin [DE/DE]; Vaihinger Str. 16, 71634 Ludwigsburg (DE).
- (74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH; Postfach 30 02 20, 70442 Stuttgart (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: PIEZOELECTRIC ACTUATOR

(54) Bezeichnung: PIEZOELEKTRISCHER AKTOR

- (57) Abstract: Known piezoelectric actuators comprise ceramic layers and electrode layers, a respective outer cover layer being located on the ends of the piezoelectric actuators and said ceramic layers and outer cover layers having a respective predefined dielectric constant. The rapid switching of the actuator causes significant electromagnetic interference, which must be reduced by complex measures that are performed in the control unit or electric lines. To reduce the electromagnetic interference in the inventive device, the interference capacity between the actuator and the actuator housing that is electrically grounded is reduced. According to the invention, the outer cover layers (16, 17) have a lower relative dielectric constant than the ceramic layers (2) between the outer cover layers (16, 17).
- Es sind bereits (57) Zusammenfassung: piezoelektrische Aktoren bekannt mit Keramikschichten und Elektrodenschichten, wobei an den stirnseitigen Enden des Piezoaktors jeweils eine äussere Deckschicht angeordnet ist und wobei die Keramikschichten und die äusseren Deckschichten jeweils eine vorbestimmte Dielektrizitätskonstante aufweisen. Durch das schnelle Beschalten des Aktors entstehen erhebliche elektromagnetische Störungen, die durch aufwendige Massnahmen am Steuergerät oder an Elektroleitungen verringert Bei der erfindungsgemässen werden müssen. Vorrichtung werden die elektromagnetischen Störungen verringert, indem die Störkapazität zwischen dem Aktor und dem mit elektrischer

Masse verbundenen Aktorgehäuse verringert wird. Erfindungsgemäss wird vorgeschlagen, dass die äußeren Deckschichten (16,17) eine geringere relative

WO 2005/069394 A1

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

5

35

10 Piezoelektrischer Aktor

Stand der Technik

Die Erfindung geht aus von einem piezoelektrischen Aktor 15 nach der Gattung des Hauptanspruchs. Es sind schon Piezoaktoren, beispielsweise aus der DE 198 38 862 A1, bekannt mit piezoelektrischen Keramikschichten, die übereinander zu einem Multilayerstapel geschichtet angeordnet sind, wobei die piezoelektrischen 20 Keramikschichten Elektrodenschichten aufweisen, wobei zwischen den piezoelektrischen Keramikschichten jeweils eine Elektrodenschicht vorgesehen ist, wobei an den stirnseitigen Enden des Piezoaktors jeweils eine äußere Deckschicht angeordnet ist und wobei die piezoelektrischen 25 Keramikschichten und die äußeren Deckschichten jeweils eine vorbestimmte Dielektrizitätszahl aufweisen. Die äußeren Deckschichten dienen als sogenannte passive Schichten u.a. der Isolation und des Toleranzausgleichs und bestehen aus unpolarisierter Piezokeramik. Die äußeren Deckschichten sind 30 mechanisch bearbeitet, um koplanare Oberflächen zu erzeugen und weisen eine größere Schichtdicke auf als die piezoelektrischen Keramikschichten zwischen den äußeren Deckschichten. Piezoaktoren werden von einem Steuergerät mit hoher Frequenz

vorteilhaft getaktet angesteuert. Durch die schnellen

WO 2005/069394

PCT/EP2004/053004

- 2 -

Schaltvorgänge entstehen erhebliche elektromagnetische Störungen, die durch aufwendige Maßnahmen am Steuergerät oder an den elektrischen Zuleitungen der Piezoaktoren verringert werden müssen. Beispielsweise werden zur Entstörung Entstördrosseln und/oder Entstörkondensatoren an Steckeranschlüssen, sogenannte Snubber-Netzwerke an den Schaltelementen, schaltflankenbegrenzende Maßnahmen oder abgeschirmte und/oder verdrillte elektrische Zuleitungen zu den Piezoaktoren eingesetzt.

10

15

20

25

30

35

5

Vorteile der Erfindung

Der erfindungsgemäße piezoelektrische Aktor mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß auf einfache Art und Weise die elektromagnetischen Störungen verringert werden, indem die äußeren Deckschichten eine geringere Dielektrizitätszahl aufweisen als die piezoelektrischen Keramikschichten zwischen den äußeren Deckschichten. Auf diese Weise können die elektromagnetischen Störungen viel kostengünstiger und wirkungsvoller verringert werden als beim Stand der Technik.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen piezoelektrischen Aktors möglich.

Gemäß einer vorteilhaften Ausführung sind die äußeren Deckschichten entweder mit dem Aktor oder jeweils mit einem Deckel eines den Aktor umgebenden Zylinders verbunden.

In den Ausführungsbeispielen sind die äußeren Deckschichten vorteilhafterweise mit jeweils einer Elektrodenschicht benachbart oder an einer Keramikschicht angeordnet. Bei einer ersten vorteilhaften Ausführung sind die

WO 2005/069394 - 3 -

5

10

15

20

25

30

35

erfindungsgemäßen äußeren Deckschichten jeweils an einer Elektrodenschicht angeordnet. Hierbei werden die äußeren Keramikschichten eines piezoelektrischen Aktors nach dem Stand der Technik durch erfindungsgemäße äußere Deckschichten ersetzt. Hierbei ist kein Zusatzprozeß bei der Herstellung des Aktors notwendig. Bei einem Aktor nach dem Stand der Technik können die elektromagnetischen Störungen verringert werden, indem erfindungsgemäße äußere Deckschichten zusätzlich an den äußeren Keramikschichten des Aktors angeordnet werden. Dies erfordert einen Zusatzprozeß bei der Herstellung des Aktors oder vor der Montage des Aktors in sein Gehäuse.

PCT/EP2004/053004

Weiterhin vorteilhaft ist, wenn die äußeren Deckschichten aus einer piezoelektrischen Keramik hergestellt sind, da auf diese Weise kein Zusatzprozeß oder zusätzliche Bauteile bei der Herstellung des piezoelektrischen Aktors notwendig ist.

In einem vorteilhaften Ausführungsbeispiel ist die relative Dielektrizitätskonstante $\epsilon_{\rm r}$ der piezoelektrischen Keramik der äußeren Deckschichten durch Zumischen von geeigneten Zusatzstoffen oder durch eine andere Veränderung der Materialzusammensetzung verringert.

Auch vorteilhaft ist, wenn die äußeren Deckschichten jeweils durch Beschichten, Kleben oder Löten mit einer Keramikschicht verbunden sind, da dies besonders einfache Ausführungsformen sind.

Sehr vorteilhaft ist, wenn der Aktor an den äußeren Deckschichten zwischen zwei Deckeln auf Druck vorgespannt ist, wobei die Deckel jeweils eine der äußeren Deckschicht des Aktors zugewandte weitere Isolierschicht aufweisen, die eine geringere relative Dielektrizitätskonstante ε_r aufweist als die äußeren Deckschichten des Aktors. Auf diese Weise

- 4 -

können die elektromagnetischen Störungen verringert werden, ohne den piezoelektrischen Aktor nach dem Stand der Technik verändern zu müssen.

PCT/EP2004/053004

5

10

30

35

Zeichnung

WO 2005/069394

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.

Fig.1 zeigt einen piezoelekktischen Aktor gemäß einem ersten Ausführungsbeispiel, Fig.2 einen piezoelektrischen Aktor gemäß einem zweiten Ausführungsbeispiel und Fig.3 einen piezoelektrischen Aktor gemäß einem dritten

15 Ausführungsbeispiel.

Beschreibung der Ausführungsbeispiele

In Fig.1 ist schematisch ein piezoelektrischer Aktor 1
dargestellt, der aus einer Vielzahl von aufeinander
geschichteten Keramikschichten 2 zusammengesetzt ist, die
übereinander geschichtet einen sogenannten Multilayer-Stapel
bilden. Der piezoelektrische Aktor erstreckt sich dabei in
Richtung einer Aktorachse 6.

Zwischen den piezoelektrischen Keramikschichten 2 ist jeweils eine Elektrodenschicht 3 vorgesehen, die beispielsweise auf die Keramikschichten 2 mittels Siebdrucktechnik aufgedruckt sind. Die Keramikschichten 2 sind elektrisch nichtleitend und polarisierbar.

Gemäß dem ersten und zweiten Ausführungsbeispiel weist der Aktor 1 an seinen stirnseitigen Enden jeweils eine äußere Deckschicht 11 auf. Die äußeren Deckschichten 11 sind

beispielsweise mit dem Aktor 1 stoffschlüssig und/oder kraftschlüssig verbunden. Gemäß dem ersten Ausführungsbeispiel sind die äußeren Deckschichten 11 als äußere Keramikschichten 16 ausgebildet. Die äußeren Keramikschichten 16 werden auch als passive Schichten bezeichnet, da sie nur einseitig von einer Elektrodenschicht 3 benachbart sind und beispielsweise eine nicht polarisierte Keramik aufweisen. Die Keramikschichten 2 zwischen den äußeren Keramikschichten 16 sind dagegen polarisiert, jeweils zu zwei Elektrodenschichten 3 benachbart und werden daher als aktive Schichten bezeichnet.

Der piezoelektrische Aktor 1 ist beispielsweise quaderförmig oder zylinderförmig ausgebildet, wobei die Keramikschichten 2 beispielsweise quadratisch oder kreisförmig sind. Die Elektrodenschichten 3 sind aus elektrisch leitendem Material, beispielsweise Silberpalladium, Silber, Kupfer oder Gold, hergestellt und werden auch als Innenelektroden bezeichnet.

20

25

30

35

5

10

15

Die Elektrodenschichten 3 sind derart angeordnet, daß sie abwechselnd entweder von einer ersten Anschlußfläche 4 des Aktors 1 oder von einer der ersten Anschlußfläche 4 gegenüberliegenden zweiten Anschlußfläche 5 des Aktors 1 ausgehend in Richtung der Keramikschichten 2 verlaufen und bis nahe der jeweils gegenüberliegenden Anschlußfläche 4,5 reichen. Die von der ersten Anschlußfläche 4 ausgehenden Elektrodenschichten 3 sind mit einer ersten Außenelektrode 8 und die von der zweiten Anschlußfläche 5 ausgehenden Elektrodenschichten 3 sind mit einer zweiten Außenelektrode 9 elektrisch verbunden, wobei die Außenelektroden 8,9 beispielsweise in Form einer elektrisch leitenden Schicht an den Anschlußflächen 4,5 angeordnet sind. Zwischen den Außenelektroden 8,9 kann eine elektrische Spannung angelegt sein, die beispielsweise mittels eines elektronischen

WO 2005/069394 - 6 -

Steuergerätes 10 beispielsweise getaktet ein- oder abgeschaltet wird. Beim Anliegen einer Spannung zwischen den Außenelektroden 8,9 wird in bekannter Weise eine Längung des Aktors 1 um einen Hub bewirkt.

PCT/EP2004/053004

5

10

15

20

25

30

35

Der piezoelektrische Aktor 1 ist bekannterweise von einem mit elektrischer Masse verbundenen Zylinder 12, der ein Aktorgehäuse bildet, umgeben. Der Zylinder 12 ist beispielsweise als eine bekannte Rohrfeder ausgebildet. Zwischen dem Zylinder 12 und dem Aktor 1 kann eine elektrisch nicht leitende Vergußmasse zur Verbesserung der Wärmeableitung vorgesehen sein. Der Zylinder 12 ist stirnseitig jeweils mit einem Deckel 15 verschlossen, wobei die Deckel 15 stoffschlüssig und/oder kraftschlüssig mit dem Zylinder 12 verbunden sind. Der Zylinder 12 und die Deckel 15 sind beispielsweise aus Metall hergestellt.

Der Aktor 1 ist beispielsweise zwischen den Deckeln 15 auf Druck vorgespannt, d.h. der Zylinder 12 übt über die Deckel 15 eine Druckkraft auf den Aktor 1 aus, wobei die stirnseitigen Enden des Aktors 1 jeweils an einem der Deckel 15 anliegen.

Der Aktor 1 wird von dem Steuergerät 10 in Abhängigkeit von Betriebsparametern mit hoher Frequenz getaktet ein- oder ausgeschaltet, wobei durch sogenannte Störkapazitäten gegen Masse ungewollt Störströme und Störspannungen erzeugt werden. Die durch die Störkapazitäten hervorgerufenen elektromagnetischen Störungen führen zur Störung von elektrischen Vorrichtungen, beispielsweise des Radioempfangs, und müssen deshalb verringert werden.

Beispielsweise wird zwischen dem Zylinder 12 und dem Aktor 1 eine erste Störkapazität C_1 gebildet, wobei die dem Zylinder 12 zugewandten Seitenflächen der Elektrodenschichten 3 eine

_

WO 2005/069394

PCT/EP2004/053004

- 7 -

erste Kondensatorplatte und der Zylinder 12 eine zweite Kondensatorplatte bilden. Der Raum zwischen dem Zylinder 12 und dem Aktor 1 bildet ein sogenanntes Dielektrikum.

Die erste Störkapazität C₁ ist jedoch klein und erzeugt nur geringe elektromagnetische Störungen, da die dem Zylinder 12 zugewandten Seitenflächen der Elektrodenschichten 3 wegen der geringen Dicke der Elektrodenschichten 3 klein und der Abstand zwischen dem Zylinder 12 und dem Aktor 1 groß ist.

Außerdem ist die sogenannte relative
Dielektrizitätskonstante ε_r des Dielektrikums zwischen dem Zylinder 12 und dem Aktor 1 gering. Die erste Störkapazität C₁ wird nicht durch die Erfindung beeinflußt.

Eine zweite Störkapazität C₂ besteht jeweils zwischen den Deckeln 15 und der dem jeweiligen Deckel 15 nächsten Elektrodenschicht 3, wobei der Deckel 15 eine erste Kondensatorplatte und die dem Deckel 15 nächste Elektrodenschicht 3 eine zweite Kondensatorplatte darstellt.

Das Dielektrikum der zweiten Störkapazität C₂ ist jeweils durch eine der äußeren Keramikschichten 16 gebildet, die zwischen dem Deckel 15 und der dem jeweiligen Deckel 15 nächsten Elektrodenschicht 3 angeordnet sind.

Die zweite Störkapazität C_2 hat im Gegensatz zu der ersten Störkapazität C_1 eine sehr hohe Störwirkung und berechnet sich aus der Formel

$$C_2 = \frac{\varepsilon_0 \cdot \varepsilon_{r16} \cdot A_{16}}{d_{16}}$$

30

35

, mit ϵ_0 als die Dielektrizitätskonstante im Vakuum, mit $\epsilon_{\rm r16}$ als die relative Dielektrizitätskonstante der äußeren Keramikschicht 16, A_{16} als Stirnfläche der äußeren Keramikschicht 16, und d_{16} als Dicke der äußeren Keramikschicht 16. Die Dicke der äußeren Keramikschicht 16

- 8 -

WO 2005/069394

5

10

15

20

entspricht dem Abstand zwischen dem Deckel 15 und der dem jeweiligen Deckel 15 nächsten Elektrodenschicht 3.

PCT/EP2004/053004

Zur Verringerung der Störkapazitäten C_2 kann jeweils die Fläche A_{16} und/oder die relative Dielektrizitätskonstante ϵ_{r16} des Dielektrikums verringert und/oder die Dicke d_{16} der äußeren Keramikschicht 16 erhöht werden.

Eine Erhöhung der Dicke d_{16} der äußeren Keramikschichten 16 ist aus Gründen des geringen Bauraums nur in engen Grenzen und damit nur mit sehr geringer Auswirkung möglich.

Eine nennenswerte Verringerung der Fläche A_{16} ist aus Gründen der mechanischen Festigkeit sowie der Leistung des Aktors nicht möglich.

Zur Verringerung der Störkapazität C_2 wird erfindungsgemäß die relative Dielektrizitätskonstante ε_{r16} der äußeren Deckschichten 11 derart verringert, daß die äußeren Deckschichten 11 eine geringere relative Dielektrizitätskonstante ε_{r16} aufweisen als die piezoelektrischen Keramikschichten 2 zwischen den äußeren Deckschichten 11.

- Dazu sind die äußeren Deckschichten 11 aus einem Material hergestellt, das eine geringere relative Dielektrizitätskonstante $\epsilon_{\rm r}$ als die Keramikschichten 2 zwischen den äußeren Deckschichten 11 aufweist.
- Bei diesem ersten Ausführungsbeispiel sind die äußeren Deckschichten 11 durch die äußeren Keramikschichten 16 gebildet, die aus einer piezoelektrischen Keramik hergestellt sind, deren relative Dielektrizitätskonstante £r beispielsweise durch Zumischen von geeigneten Zusatzstoffen oder durch eine andere geeignete Veränderung der

WO 2005/069394

- 9 -

PCT/EP2004/053004

Materialzusammensetzung verringert ist. Die Zusammensetzung der Keramik der äußeren Keramikschichten 16 ist gegenüber den übrigen Keramikschichten 2 unterschiedlich, aber ähnlich ausgebildet.

5

Die relative Dielektrizitätskonstante ε_r der äußeren Keramikschichten eines piezoelektrischen Aktors nach dem Stand der Technik ist gleich groß wie die relative Dielektrizitätskonstante ε_r der Keramikschichten zwischen den äußeren Keramikschichten.

10

15

Erfindungsgemäß werden die äußeren Keramikschichten eines piezoelektrischen Aktors nach dem Stand der Technik durch äußere Keramikschichten 16 ersetzt, die eine kleinere relative Dielektrizitätskonstante ϵ_{r16} aufweisen als die piezoelektrischen Keramikschichten 2 zwischen den äußeren Keramikschichten 16. Hierbei ist kein Zusatzprozeß bei der Herstellung des Aktors notwendig.

20

Die relative Dielektrizitätskonstante ε_{r16} der äußeren Deckschichten 11 ist beispielsweise um den Faktor 10 bis 100 mal kleiner als die relative Dielektrizitätskonstante ε_{r16} der Keramikschichten 2.

25

30

Durch die erfindungsgemäße Ausführung des piezoelektrischen Aktors können aufwendige Entstörmaßnahmen am Steuergerät 10 entfallen, beispielsweise eine Abschirmung der elektrischen Zuleitungen zum Aktor 1 oder des elektronischen Steuergerätes 10, oder sehr wirksam ergänzt werden, so daß die gleiche Entstörwirkung einfacher und kostengünstiger als beim Stand der Technik erreicht oder eine höhere Entstörwirkung bei gleich hohem Kostenaufwand wie beim Stand der Technik erzielt wird.

WO 2005/069394 PCT/EP2004/053004
- 10 -

Fig.2 zeigt einen piezoelektrischen Aktor gemäß einem zweiten Ausführungsbeispiel.

Bei dem piezoelektrischen Aktor nach Fig.2 sind die gegenüber dem piezoelektrischen Aktor nach Fig.1 gleichbleibenden oder gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet.

5

10

30

35

Der piezoelektrische Aktor nach Fig.2 unterscheidet sich von dem piezoelektrischen Aktor nach Fig.1 darin, daß an die äußeren Keramikschichten 16 des Aktors 1 jeweils eine zusätzliche Schicht aufgebracht ist, deren Dielektrizitätskonstante $\epsilon_{\rm r}$ geringer ist als die Dielektrizitätskonstante $\epsilon_{\rm r}$ der Keramikschichten 2 zwischen den zusätzlichen Schichten.

Bei dem zweiten Ausführungsbeispiel hat der piezoelektrische Aktor 1 äußere Keramikschichten 16, die wie beim Stand der Technik identisch wie die Keramikschichten 2 zwischen den äußeren Keramikschichten 16 zusammengesetzt sind und daher eine zumindest annähernd gleich große relative

Dielektrizitätskonstante ε_r haben wie die Keramikschichten 2 zwischen den äußeren Keramikschichten 16. Die äußeren Keramikschichten 16 gemäß dem zweiten Ausführungsbeispiel weisen beispielsweise eine größere Dicke als die Keramikschichten 2 zwischen den äußeren Keramikschichten 16 auf.

Erfindungsgemäß ist stirnseitig an die äußeren Keramikschichten 16 des Aktors 1 jeweils eine zusätzliche Isolierschicht 17 vorgesehen, deren relative Dielektrizitätskonstante $\epsilon_{\rm r17}$ kleiner ist als die relative Dielektrizitätskonstante $\epsilon_{\rm r2}$ der Keramikschichten 2. Die zusätzlichen Isolierschichten 17 sind beispielsweise mittels Beschichten, Kleben, Löten oder ähnlichem an den äußeren Keramikschichten 16 des Aktors 1 angeordnet und beispielsweise aus Glas, Quarz, Klebstoff, Lack, Lot,

Siliziumoxid-Keramik oder ähnlich geeigneten Werkstoffen hergestellt. Die zusätzliche Isolierschicht 17 besteht aus einem starren, unelastischen Material.

Die äußere Deckschicht 11 ist bei dem zweiten Ausführungsbeispiel jeweils durch die zusätzliche Isolierschicht 17 gebildet.

Das Dielektrikum zwischen einem der beiden Deckel 15 und der dem jeweiligen Deckel 15 nächsten Elektrodenschicht 3 weist bei diesem zweiten Ausführungsbeispiel zwei Schichten auf, die äußere Keramikschicht 16 und die zusätzliche Isolierschicht 17. Dies entspricht einer Reihenschaltung von zwei Kapazitäten, so daß sich die Störkapazität C2 für das zweite Ausführungsbeispiel wie folgt berechnet

$$\frac{1}{C_2} = \frac{1}{\frac{\varepsilon_0 \cdot \varepsilon_{r16} \cdot A_{16}}{d_{16}}} + \frac{1}{\frac{\varepsilon_0 \cdot \varepsilon_{r17} \cdot A_{17}}{d_{17}}}$$

5

10

15

20

25

30

mit ε_0 als die Dielektrizitätskonstante im Vakuum, $\varepsilon_{\rm r16}$ als die relative Dielektrizitätskonstante der äußeren Keramikschichten 16, A_{16} als Stirnfläche der äußeren Keramikschichten 16 und d_{16} als die Dicke der äußeren Keramikschichten 16, $\varepsilon_{\rm r17}$ als die relative Dielektrizitätskonstante der zusätzlichen Isolierschicht 17, A_{17} als die Stirnfläche der zusätzlichen Isolierschicht 17 und d_{17} als die Dicke der zusätzlichen Isolierschicht 17.

Fig.3 zeigt einen piezoelektrischen Aktor gemäß einem dritten Ausführungsbeispiel.

Bei dem piezoelektrischen Aktor nach Fig.3 sind die gegenüber dem piezoelektrischen Aktor nach Fig.1 und Fig.2 gleichbleibenden oder gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet.

Der piezoelektrische Aktor nach Fig.3 unterscheidet sich von dem piezoelektrischen Aktor nach Fig.1 und Fig.2 darin, daß

- 12 -

20

25

30

WO 2005/069394 PCT/EP2004/053004

die zusätzliche Isolierschicht 17 nicht mit dem Aktor 1, sondern jeweils mit einem der Deckel 15 stoffschlüssig und/oder kraftschlüssig verbunden ist.

5 Erfindungsgemäß weisen die Deckel 15 jeweils die zusätzliche Isolierschicht 17 auf. Die zusätzliche Isolierschicht 17 ist als äußere Deckschicht 11 jeweils an einer der äußeren Keramikschicht 16 des Aktors 1 zugewandten Stirnseite der Deckel 15 vorgesehen. Die zusätzliche Isolierschicht 17 der 10 Deckel 15 hat gemäß dieser Ausführung beispielsweise eine gleiche große Stirnfläche wie die Keramikschichten 2 des Aktors 1 oder eine größere Stirnfläche als die Keramikschichten 2 des Aktors 1.

Die zusätzlichen Isolierschichten 17 sind beispielsweise mittels Beschichten, Kleben, Löten oder ähnlichem mit den Deckeln 15 des Zylinders 12 verbunden und beispielsweise aus Glas, Quarz, Klebstoff, Lack, Lot, Siliziumoxid-Keramik oder ähnlich geeigneten Werkstoffen hergestellt.

Gemäß dem dritten Ausführungsbeispiel hat der Aktor 1 wie in dem zweiten Ausführungsbeispiel äußere Keramikschichten 16, die beispielsweise identisch wie die Keramikschichten 2 zwischen den äußeren Keramikschichten 16 zusammengesetzt sind und daher eine zumindest annähernd gleiche relative Dielektrizitätskonstante $\epsilon_{\rm r}$ haben wie die Keramikschichten 2 zwischen den äußeren Keramikschichten 16.

Die Ausführung gemäß dem dritten Ausführungsbeispiel hat den Vorteil, daß der Aufbau des Aktors 1 unverändert bleibt und nur eine erfindungsgemäße Verbesserung an den Deckeln 15 des Zylinders 12 erfolgt.

WO 2005/069394

- 13 -

PCT/EP2004/053004

5

15

20

25

30

35

10 Ansprüche

- Piezoelektrischer Aktor mit piezoelektrischen
 Keramikschichten, die übereinander zu einem
 Multilayerstapel geschichtet angeordnet sind, wobei
 zwischen den piezoelektrischen Keramikschichten jeweils
 eine Elektrodenschicht vorgesehen ist, wobei an den
 stirnseitigen Enden des Aktors jeweils eine äußere
 Deckschicht angeordnet ist und wobei die
 piezoelektrischen Keramikschichten und die äußeren
 Deckschichten jeweils eine vorbestimmte
 Dielektrizitätskonstante ε_r aufweisen, dadurch
 gekennzeichnet, dass die äußeren Deckschichten (11,16,17)
 eine geringere relative Dielektrizitätskonstante ε_r
 aufweisen als die piezoelektrischen Keramikschichten (2)
 zwischen den äußeren Deckschichten (11,16,17).
- Piezoelektrischer Aktor nach Anspruch 1, dadurch gekennzeichnet, dass die äußeren Deckschichten (11,16,17) mit dem Aktor (1) verbunden sind.
- 3. Piezoelektrischer Aktor nach Anspruch 1, dadurch gekennzeichnet, dass die äußeren Deckschichten (11,16,17) jeweils mit einem Deckel (15) eines den Aktor (1) umgebenden Zylinders (12) verbunden sind.

- 14 -

WO 2005/069394 PCT/EP2004/053004

- 4. Piezoelektrischer Aktor nach Anspruch 1, dadurch gekennzeichnet, dass die äußeren Deckschichten (16) mit jeweils einer Elektrodenschicht (3) benachbart sind.
- 5. Piezoelektrischer Aktor nach Anspruch 1, dadurch gekennzeichnet, dass die äußeren Deckschichten (17) jeweils an einer Keramikschicht (2) angeordnet sind.

10

15

20

- 6. Piezoelektrischer Aktor nach Anspruch 2, dadurch gekennzeichnet, dass die äußeren Deckschichten (16) aus einer piezoelektrischen Keramik hergestellt sind.
- 7. Piezoelektrischer Aktor nach Anspruch 4, dadurch gekennzeichnet, dass die relative Dielektrizitätskonstante ε_r der Keramik der äußeren Deckschicht (16) durch Zumischen von Zusatzstoffen verringert ist.
- 8. Piezoelektrischer Aktor nach Anspruch 3, dadurch gekennzeichnet, dass die äußeren Deckschichten (17) jeweils durch Beschichten, Kleben oder Löten mit einer Keramikschicht (2) verbunden sind.
- 9. Piezoelektrischer Aktor nach Anspruch 3, dadurch gekennzeichnet, dass die äußeren Deckschichten (17) jeweils aus Quarz, einem Glas, einem Klebstoff, einem Lack, einem Lot oder Siliziumoxid-Keramik hergestellt sind.
- 30 10.Piezoelektrischer Aktor nach Anspruch 3, dadurch gekennzeichnet, dass die äußeren Deckschichten (17) starr und unelastisch ausgebildet ist.

1/3

Fig. 1

2/3

Fig. 2

3/3

Fig. 3

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/053004

a. classification of subject matter IPC 7 H01L41/083 H01L41/053

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01L F02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
A	EP 1 233 461 A (CERAM TEC AG INNOVATIVE CERAMIC ENGINEERING) 21 August 2002 (2002-08-21) paragraph '0012! - paragraph '0015!; figures	1,2,4-7	
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 09, 31 October 1995 (1995-10-31) -& JP 07 154005 A (TOKIN CORP), 16 June 1995 (1995-06-16) abstract	1,2,5-7	
4	DE 101 63 005 A1 (DENSO CORP) 10 October 2002 (2002-10-10) figures 1,2,9; example 1	1,2,4,5	
	-/		

Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
21 March 2005	15/04/2005
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Köpf, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/053004

		PC1/EP2004/053004		
C.(Continu	etion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Toute water state No.		
Calegory -	onderen or document, with indication, where appropriate, or the relevant passages	Relevant to claim No.		
A	EP 0 144 655 A (NEC CORP) 19 June 1985 (1985-06-19) page 4, line 17 - page 5, line 5; figure 1 page 6, line 23 - page 7, line 24; figure 3 page 16, line 7 - line 12	1,2,4,6		
A	WO 03/026033 A (SIEMENS AG; FREUDENBERG HELLMUT ET AL) 27 March 2003 (2003-03-27) page 3, line 32 - page 5, line 12; figure	1,3,8-10		

INTENATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/053004

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1233461	Α	21-08-2002	DE EP JP US	10202574 1233461 2002252386 2003001463	A2 A	12-09-2002 21-08-2002 06-09-2002 02-01-2003
JP 07154005	Α	16-06-1995	NONE			
DE 10163005	A1	10-10-2002	JP US	2002203998 / 2002084872 /		19-07-2002 04-07-2002
EP 0144655	Α	19-06-1985	JP JP AU AU CA DE EP KR US	1464932 (60086880 / 63010596 E 564329 E 3445484 / 1239965 / 3468789 E 0144655 / 9000834 E 4633120 /	A B B2 A A1 D1 A1 B31	10-11-1988 16-05-1985 08-03-1988 06-08-1987 26-04-1985 02-08-1988 18-02-1988 19-06-1985 17-02-1990 30-12-1986
WO 03026033	A	27-03-2003	DE WO DE EP JP US	50202247	A1 D1 A1	22-05-2003 27-03-2003 17-03-2005 09-06-2004 27-01-2005 02-09-2004

INTERNATIONAL RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP2004/053004

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H01L41/083 H01L41/053

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ H01L \ F02M$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
EP 1 233 461 A (CERAM TEC AG INNOVATIVE CERAMIC ENGINEERING) 21. August 2002 (2002-08-21) Absatz '0012! - Absatz '0015!; Abbildungen	1,2,4-7
PATENT ABSTRACTS OF JAPAN Bd. 1995, Nr. 09, 31. Oktober 1995 (1995-10-31) -& JP 07 154005 A (TOKIN CORP), 16. Juni 1995 (1995-06-16) Zusammenfassung	1,2,5-7
DE 101 63 005 A1 (DENSO CORP) 10. Oktober 2002 (2002-10-10) Abbildungen 1,2,9; Beispiel 1	1,2,4,5
-/	
	CERAMIC ENGINEERING) 21. August 2002 (2002-08-21) Absatz '0012! - Absatz '0015!; Abbildungen PATENT ABSTRACTS OF JAPAN Bd. 1995, Nr. 09, 31. Oktober 1995 (1995-10-31) -& JP 07 154005 A (TOKIN CORP), 16. Juni 1995 (1995-06-16) Zusammenfassung DE 101 63 005 A1 (DENSO CORP) 10. Oktober 2002 (2002-10-10) Abbildungen 1,2,9; Beispiel 1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche 21. März 2005	Absendedatum des internationalen Recherchenberichts 15/04/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Köpf, C

Internationales Aktenzeichen
PCT/EP2004/053004

		004/053004
C.(Fortsetz Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Potr Agentich No
nategorie	Bozolomiang dor Verbrienthanding, Sowert enordement unter Angape der in betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 144 655 A (NEC CORP) 19. Juni 1985 (1985-06-19) Seite 4, Zeile 17 - Seite 5, Zeile 5; Abbildung 1 Seite 6, Zeile 23 - Seite 7, Zeile 24; Abbildung 3 Seite 16, Zeile 7 - Zeile 12	1,2,4,6
A	WO 03/026033 A (SIEMENS AG; FREUDENBERG HELLMUT ET AL) 27. März 2003 (2003-03-27) Seite 3, Zeile 32 - Seite 5, Zeile 12; Abbildung	1,3,8-10

INTERNATIONALER ECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/053004

		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
EP 1233461	A	21-08-2002	DE EP JP US	10202574 A 1233461 A 2002252386 A 2003001463 A	2 21-08-2002 06-09-2002	
JP 0715400	5 A	16-06-1995	KEI	NE		
DE 1016300	5 A1	10-10-2002	JP US	2002203998 A 2002084872 A	19-07-2002 1 04-07-2002	
EP 0144655	A	19-06-1985	JP JP AU AU CA DE EP KR US	1464932 C 60086880 A 63010596 B 564329 B2 3445484 A 1239965 A1 3468789 D1 0144655 A1 9000834 B1 4633120 A	26-04-1985 1 02-08-1988 1 18-02-1988 1 19-06-1985	
WO 0302603	3 A	27-03-2003	DE WO DE EP JP US	10144919 A1 03026033 A1 50202247 D1 1425804 A1 2005502469 T 2004169445 A1	27-03-2003 17-03-2005 1 09-06-2004 27-01-2005	