Sampling of Hestistical Inference:
-> le and ge MPU (RP:). Every day you will get 50 RP: v
get 50 RP: v
-somme s'D. Variance.
-> Sampling Distribution of Mean:
-> Population: $M_{\overline{x}} = u$
-she size of sample needs to be none than 3
- Unit Wormel Distribution
N(0,1) $Z = \frac{\pi L - M}{\sigma / J \pi}$ -> Case 1: Standard Devicition is not known.
-> Case 1: Standard Deviction is not known.
-> lase Z: Sample is small size (n < 30)
- Stylest's t-Dist.

DSD - CO2 - 2024-07-15

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{n_i}{s_i} - \frac{n_i}{s_i} \right)^2$$

$$\frac{1}{s} = \frac{1$$

-> Conf Levels Cont Get a Gitical Val 0.8 80%. 1.28 50%. o- J 0-1 1.645 0.95 15/. 0.05 1.06 081. 0.98 0.02 2-33 99 (. 0.59 0.0(2.58 11.80(0.998 3·0 B 0.002 JJ· p· (. 2.999 0.001 3.21 -s Confidence Interval Estimate: Confidence standard Estimate Error > A sample of 11 circuits from a large normal population has a mean resistance of 2.20 strms. We know from past testing population 5.D is

We know from past taking provided site of the mean resistance of the population -> (n - 24/2 x 5/2 , I + Z -/ × 5 - $(2.20 - 1.96 \times \frac{0.35}{\sqrt{11}})$ $(2.20 + 1.96 \times \frac{0.35}{\sqrt{11}})$ -1 T is Af known: (Values less ten 20) $\left(-\frac{t}{n} - \frac{t}{n} \times \frac{s_1}{\sqrt{n}} \right)$ -s of is Af known: (Value en more than 30) $\left(\overline{h} - \overline{\xi_{y_1}} \lambda \frac{s_1}{\sqrt{n}}\right)$, IN + Zay2 x 51 -> 11 cincuits < 10 5, = 0:35 - shows n = 2.28 shows