Databases Assignment 1

29 February 2020

14.

 $S\bowtie R$ keeps only one of the two duplicate column. While $S\bowtie_C R$ keeps both the column (or attributes).

For example, if S(A,B,C,D) and R(C,D,E) are relations, then

 $S \bowtie R$ gives $(S \bowtie R)(A, B, C, D, E)$, while

 $S\bowtie_{S.C=R.C\ AND\ S.D=R.D} R$ gives $(S\bowtie_{C} R)(A,B,S.C,S.D,R.C,R.D.E)$.

15.

1. $R \bowtie S$

- Minimum: 0
 When there is no common tuple on all common attributes of schemas of R and S.
- Maximum: nm Let's say, schemas of R and S have one common attribute. And that attribute always takes the same value (that is, all rows have same entry w.r.t that column).

2. $R \cup S$

- Minimum: 1
 When all rows of R and S are exactly same.
- Maximum: n + mWhen no two rows of R and S combined are same.

3. $\sigma_C(R) \times S$

- Minimum: 0 When $\sigma_C(R)$ returns zero tuples. That is, no row of R meets condition C.
- Maximum: nmWhen every row of R meets condition C.

4.
$$\pi_L(R) - S$$

• Minimum: 0 When $\pi_L(R)$ is a subset of S.

• Maximum: nWhen no row of $\pi_L(R)$ is present in S.

16

R and S are $R(A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_m)$ and $S(A_1, A_2, \ldots, A_n, C_1, C_2, \ldots, C_k)$. Other ways to write semijoin:

• $\pi_{A_1,A_2,...,A_n,B_1,B_2,...,B_m}$ $(R \bowtie S)$

• $(\pi_{A_1,A_2,\ldots,A_n}(R) \cap \pi_{A_1,A_2,\ldots,A_n}(S)) \bowtie R$

• $\pi_{R.A_1,R.A_2,...,R.A_n,R.B_1,R.B_2,...,R.B_m} (\sigma_{R.A_1=S.A_1,R.A_2=S.A_2,...,R.A_n=S.A_n}(R \times S))$