CS7.302 Computer Graphics

Module: Introduction

G S Ragavendra P. J. Narayanan Spring 2025

What is Computer Graphics?

- Techniques (mathematics, physics, algorithms) to generate realistic images on the computer
- How?
 - Representations ("models") of the world of interest
 - Algorithms to produce ultra-realistic images based on underlying physics
 - Do all of it fast to please users
- Computational Process:

Abstract – Represent – Process – Reproduce

 Digital or computer revolution: Applying this successfully to different areas of human interest

Digitial or Computer Revolution

- Changed the world greatly in the past 20-30 years!
- How? "Digitize" different things/concepts/ideas/...
 - Digital preservation, replication, etc., are very cheap
- Initially: Ease tediums or difficulty of activities
 - Aircraft design, payroll, Efficient book-keeping, etc.
- Later: Improve and transform the process
 - Electronic account-books to networked banks to online banking to virtual money to ...
- Enablers: Digital Representation, Efficienty Processing and Manipulation, Quick Communication
- And ... reversing the digitization process

Some Computational Processes

- Music: Digitize using microphones and analog-to-digital conversion, process to remove noise, store/transmit as MP3 files, playback using D-to-A and speakers
 - Similarly, Video, Teleconferencing, etc.
- Weather prediction: Capture parameters from locations, apply metereological models, process at different levels of detail, predict
 - Drug design, molecular dynamics, more science
- Computer games: World and its rules set by designer, some aspects controlled by players, interaction with objects according to rules, show results to players
 - Several simulations, Virtual Reality, etc.

What's this?

Producing Realistic Images

- Represent physical world using basic "primitives"
 - Basic geometric shapes and objects
 - Efficiency vs utility: Use simple and useful primitives
 - Break up complex scenes into available components
 - Efficiency: Smallness in size and ease of operation
- Process of image generation from the representation
 - Ape the best that we know: Human eyes
 - (Digital) Cameras approximate the eye in our world
 - Pin-hole camera model approximates the eye conceptually
 - Mathematics of pin-hole cameras known
 - Apply pin-hole camera computationally

- Transform a primitive to a camera image correctly
 - Apply pin-hole camera model on the primitive
 - A series of computations to map primitive to image
 - Paint the picture based on physical properties of objects
- Apply the same to the scene consisting of primitives
 - Evaluate how multiple primitives interact or interfere
 - Paint the physically correct picture of the whole scene
- Do all this efficiently
 - Millions of primitives. High resolution images
 - Complex objects with fine structure and properties
 - Update image fast for application. Real-time for games!

Graphics Process

Some Questions and Concerns

- What geometric primitives to use?
 - Geometric shapes exist. Economy & Utility important
- How do we represent them on the computer?
- How do we create representations of real-world objects?
- How do we manipulate the computer-resident world?
 - Change shape, size, appearance, etc.
- How do we produce images or views of scenes?
 - Realism is important
- How do we do all these efficiently and quickly?

Application Areas

- User interfaces
- Computer aided design (Civil/Mech/VLSI)
- Visualization of scientific & engineering data
- Art
- Virtual Reality
- Entertainment: Great computer games!
- Special effects in movies. Whole movies themselves!!

...

Quick History

- Whirlwind Computer (1950) from MIT had computer driven CRTs for output.
- SAGE air-defense system (mid 50s) had CRT, lightpen for target identification.
- Ivan Sutherland's Sketchpad (1963): Early interactive graphics system.
- CAD/CAM industry saw the potential of computer graphics in drafting and drawing.
- GE's DAC system (1964), Digitek system, etc.
- Systems were prohibitively expensive and difficult to use.

- Special display processors or image generators were used for high-end graphics.
- Workstations by Silicon Graphics: early eighties.
- Graphics was expensive, escoteric, and hence rare!
- A parallel: Computing became "popular" only after massproduced personal computers became a reality in mid 80s. Before that, bulky, expensive, and rare devices.
- Circle of Computing Revolution: *More users* lead to *greater revenues/returns* which affords *more research* which result in *better/cheaper computers* which in turn bring *yet more users*. And this continues!!

Popular Graphics

- Graphics became "popular" only after mass-produced Graphics Processing Units (GPUs) or graphics accelerators came into existence.
- Graphics Accelerators: on board hardware to speed up graphics computations.
- Accelerators were expensive until end nineties!
- Very high end performance is available economically today. Getting part of the CPU chip these days.
- Computer Games provide the fuel for fast growth

Graphics Programming

- Device dependent graphics in early days.
- 3D Core Graphics system was specified in SIGGRAPH 77. (Special Interest Group on Graphics)
- GKS (Graphics Kernel System): 2D standard.
 ANSI standard in 1985.
- GKS-3D: 1988.
- PHIGS: Programmer's Hierarchical Interactive Graphics System. (ANSI 1988)

- OpenGL: current ANSI standard.
 - Evolved from SGI's GL (graphics library).
 - Window system independent programming.
 - GLUT (utility toolkit) for the rest.
 - Popular. Many accelerators support it.
- DirectDraw/Direct3D: Microsoft's attempt at it!
- WebGL: OpenGL to be used for web programming that is now gaining popularity
- OpenGL ES: Slightly reduced version for mobile devices, which will be the prime computing platform
- Desirable: High level toolkits.

Course Content

- 2D & 3D Graphics: Concepts, Mathematics, Hierarchical Modelling, Algorithms. Practice in OpenGL.
- Representation: Lines & Curves, Surfaces, Solids.
- Drawing algorithms: Primitives, visibility, efficienty
- Lighting and Shading: Simluating the physics of image generation

Ray Tracing: If we get time

Background Required

- Good programming skills in C/C++.
- Geometry: Points, vectors, matrices, transformations, etc.
- Data structures.
- Java for Web or Mobile graphics
- Good imagination. Ability to visualize in 3D

Text Books and Reference

- Interactive Computer Graphics by Edward Angel and Shreiner
- Computer Graphics with OpenGL by Hearn and Baker,
 Third edition. Indian Edition available.

- Computer Graphics: Principles & Practice by Foley, van Dam, Feiner, Hughes. Indian Edition available.
- OpenGL Programming Guide by Neider, et. al.

Course Management

- Homework assignments, Programming assignments, lab test, mid-term test, final exam
- Weightages of different components:
 - \approx 40% for the final exam
 - \approx 50% for the assignments
 - \approx 10% for quiz

- Subject to change
- This course involves a lot of fun programming! Enjoy it!
- Several students do much more in assignments than asked for. Let your creative juices flow!!

Graphics Process

Graphics Process

- Model the desired world in your head.
- Represent it using natural structures in the program.
 Convert to standard primitives supported by the API
- Processing is done by the API. Converts the primitives in stages and forms an image in the framebuffer
- The image is displayed automatically on the device

How to Draw A House?

Drawing A House

Compose using basic shapes

```
// Main part
drawRectangle(v1, v2, v3, v4);
drawTriangle(v2, v3, v5); // Roof
drawRectangle(...); // Door
drawRectangle(...); // Window
drawRectangle(...); // Chimney
drawCircle(...); // Sun
```


That's all there is, really!

Graphics Primitives

- Graphics is concerned with the appearance of the 3D world to a camera
- Only outer surface of objects important, not interiors!!
- Hence, uses only 1D and 2D primitives
- Points: 2D or 3D. (x, y) or (x, y, z).
- Lines: specified using end-points
- Triangles/Polygons: specified using vertices
- Why not circles, ellipses, hyperbolas?

Graphics Attributes

- Colour, Point width.
- Line width, Line style, Line Colour.
- Fill, Fill Pattern.

- Line: Give two endpoints
- Triangle: Give three vertices
- Point is the most basic primitive

Point Representation

- A point is represented using 2 or 3 numbers (x, y, [z]) that are the projections on to the respective coordinate axes.
 - Could also be reprsented as a 2 or 3 vector P.
- Fundamental shape-defining primitive in most Graphics APIs. Everything else is built from it!
- Represented using byte, short, int, float, double, etc.
- The scale and unit are application dependent.
 Could be angstroms or lightyears!
- Points undergo transformations:
 Translations, Rotations, Scaling, Shearing.

3D Coordinates

Vector P

- Cartesian: (x, y, z)

- Polar: (ρ, θ, ϕ)

$$-z = y = x = x = 0$$

$$ho =
ho =
ho$$

– Elevation: θ , Azimuthal: ϕ

3D Coordinates

Vector P

- Cartesian: (x, y, z)

- Polar: (ρ, θ, ϕ)

$$-z = \rho \cos \theta,$$

$$y = \rho \sin \theta \sin \phi$$

$$x = \rho \sin \theta \cos \phi$$

$$- \rho^2 = x^2 + y^2 + z^2,$$

$$\phi = \tan^{-1}(y/x),$$

$$\theta = \tan^{-1}(\sqrt{x^2 + y^2}/z)$$

– Elevation: θ , Azimuthal: ϕ

Translation

- Translate a point $\mathbf{P} = (x, y, [z])$ by (a, b, [c]).
- Point's coordinates become P' = (?,?,?).
- In vector form, $\mathbf{P}' = ?$.

Translation

- Translate a point $\mathbf{P} = (x, y, [z])$ by (a, b, [c]).
- Points coordinates become $\mathbf{P}' = (x + a, y + b, [z + c])$.
- In vector form, $\mathbf{P}' = \mathbf{P} + \mathbf{t}$, where $\mathbf{t} = (a, b, [c])$.
- Distances, angles, parallelism are all maintained.

2D Rotation

- Rotate about origin CCW by θ .
- -x'=?, y'=?
- Matrix notation: P' = R P

$$\left[\begin{array}{c} x \\ y \end{array}\right]' = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

2D Rotation

– Rotate about origin CCW by θ .

$$-x' = ?, y' = ?$$

- Matrix notation: P' = R P

$$\left[\begin{array}{c} x \\ y \end{array}\right]' = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

2D Rotation

- Rotate about origin CCW by θ .
- $-x' = x\cos\theta y\sin\theta,$ $y' = x\sin\theta + y\cos\theta.$

- Matrix notation: P' = R P

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Rotation: Observations

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Orthonormal: $\mathbf{R}^{-1} = \mathbf{R}^{\mathbf{T}}$
- Rows: vectors that
 rotate to coordinate axes
- Cols: vectors coordinate axes rotate to
- Invariants: distances, angles, parallelism.

3D Rotations

- Rotation could be about any axis in 3D! What does it mean?
 - Distance of each point to the axis of rotation remains same.
 - Each points moves in a circle on a plan perpendicular to the axis of rotation, with the centre on the axis
- About Z-axis: Just like 2D rotation case. Z-coordinates don't change anyway.
- X-Y coordinates change exactly the same way as in 2D.
- CCW +ve, looking into the **arrowhead:** $\mathbf{R}_{\mathbf{z}}(\theta) = ??$

3D Rotations

- Rotation could be about any axis in 3D!
- About Z-axis: Z-coordinates don't change anyway

$$\mathbf{R_z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- CCW +ve; orthonormal; length preserving
- Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....

3D Rotations

$$\mathbf{R_y} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad \mathbf{R_x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

- CCW +ve; orthonormal
- Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....
- Rotation about an arbitrary axis, for example, [1, 1, 1]^T ?? Coming soon

Non-uniform Scaling

Scale along X, Y, Z directions by s, u, and t.

$$\bullet \ x' = s \ x, \ y' = u \ y, \ z' = t \ z.$$

• We are more comfortable with P' = SP or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} s & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & t \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

 Invariants: parallelism, ratios of lengths in any direction (Angles also for uniform scaling.)

Shearing

Add a little bit of x to y or other combinations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & x_y & x_z \\ y_x & 1 & y_z \\ z_x & z_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- One of $x_y, x_z, y_x, y_z, z_x, z_y \neq 0$. Rectangles can become parallelograms, but not general quadrilaterals
- Invariants: parallelism, ratios of lengths in any direction.

Reflection

Negative entries in a matrix indicate reflection.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Reflection needn't be about a coordinate axis alone

Summary of Transformations

- Translation: New coordinates P' = P + t
- Rotation: P' = R P
- Scaling: P' = SP
- Shearing: $P' = S_h P$
- Reflection: $P' = R_f P$
- Each is a matrix-vector product, except

General Transformation

- Rotation, scaling, shearing, and reflection: Matrix-vector product. Vectors get tranformed into other vectors
- Translation alone is a vector-vector addition
- Sequence of: Translation, rotation, scaling, translation and rotation: $\mathbf{P}' = \mathbf{R_2} \left[\mathbf{S} \ \mathbf{R_1} \left(\mathbf{P} + \mathbf{t_1} \right) + \mathbf{t_2} \right]$
- If translation is also a matrix-vector product, we can combine above transformations into a single matrix: $P' = R_2 T_2 S R_1 T_1 P = M P$
- How? Answer: homogeneous coordinates!

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- $[x \ y \ w]^{\mathsf{T}} \equiv (x/w, \ y/w)$.
- Simplest value of w is obviously 1
- Translate $\begin{bmatrix} x & y \end{bmatrix}^T$ by $\begin{bmatrix} a & b \end{bmatrix}^T$ to get $\begin{bmatrix} x+a & y+b \end{bmatrix}^T$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- Translate $\begin{bmatrix} x & y \end{bmatrix}^T$ by $\begin{bmatrix} a & b \end{bmatrix}^T$ to get $\begin{bmatrix} x+a & y+b \end{bmatrix}^T$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Now, translation is also: P' = T P, a matrix-vector product and a linear operation.

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- $\bullet [x \ y \ w]^{\mathsf{T}} \equiv (x/w, \ y/w).$
- Now, translation is also: P' = T P
- For a point: Rotation followed by translation followed by scaling, followed by another rotation: $P' = R_2 STR_1 P$.
- Similarly for 3D. Points represented by: $[x \ y \ z \ w]^T$.
- All matrices are 3×3 in 2D. Last row is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.
- All matrices are 4×4 in 3D. Last row is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.

CS7.302

Homogeneous Representation

- Convert to a 4-vector with a scale factor as fourth. $(x, y, z) \equiv [kx \ ky \ kz \ k]^{\mathsf{T}}$ for any $k \neq 0$.
- Translation, rotation, scaling, shearing, etc. become linear operations represented by 4×4 matrices.
- What does $[x \ y \ z \ 0]^T$ mean?
- [a b c d]^T could be a point or a plane. Lines are specified using two such vectors, either as join of two points or intersection of two planes!

Transformation Matrices: Rotations

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R_y} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{R_z} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 CCW +ve; orthonormal; length preserving; rows give direction vectors that rotate onto each axis; columns

CS7.302

Translation, Scaling, Composite

$$\mathbf{T}(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{S}(a,b,c) = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- A sequence of transforms can be represented using a composite matrix: $\mathbf{M} = \mathbf{R_x T R_y S T} \cdots$
- Operations are not commutative, but are associative.
- RT and TR??

Rotation and Translation

$$\bullet \ \mathbf{T}_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

and

$$\mathbf{R}_{4\times4} = \left| \begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right|$$

•
$$\mathbf{T} \mathbf{R} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = ?$$

•
$$\mathbf{R} \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = ?$$

Rotation and Translation

$$\bullet \ \mathbf{T}_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

and

$$\mathbf{R}_{4\times4} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ \mathbf{T} \ \mathbf{R} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

•
$$\mathbf{R} \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R} \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

•
$$\mathbf{TR} = \mathbf{R} \ \mathbf{T}$$
 if: (a) $\mathbf{R} = \mathbf{I}$ or (b) $\mathbf{T} = \mathbf{I}(\mathbf{t} = \mathbf{0})$ or (c) $\mathbf{Rt} = ?$

Rotation and Translation

•
$$T_{4\times4}=\left[egin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array}
ight]$$
 and $R_{4\times4}=\left[egin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array}
ight]$

$$\bullet \ T \ R = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right] = \left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ R \ T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

- TR = RT if: (a) $\mathbf{R} = \mathbf{I}$ or (b) $\mathbf{t} = \mathbf{0}$ or (c) $\mathbf{R}\mathbf{t} = \mathbf{t}$
- When is Rt = t? t is an eigenvector of R
- Question: Are transformations commutative?

Commutativity

- Translations are commutative: $T_1T_2 = T_2T_1$
- Scaling is commutative: $S_1S_2 = S_2S_1$
- Are rotations commutative? $R_1R_2 \stackrel{?}{=} R_2R_1$
- Rotation and Scaling commute? $SR \stackrel{?}{=} RS$
- What would be an example?
 Consider the effect on Z-axis of:

Commutativity

- Translations are commutative: $T_1T_2 = T_2T_1$
- Scaling is commutative: $S_1S_2 = S_2S_1$
- Are rotations commutative? $R_1R_2 \neq R_2R_1$
- Rotation and Scaling commute. SR = RS
- Consider the effect on Z-axis of $\mathbf{R_x(90)R_y(90)}$ and $\mathbf{R_y(90)R_x(90)}$
- $RT \neq TR$. (If translation is not parallel to rotation axis)
- Consider: $\mathbf{R}(\pi/4)$ and T(5,0). Where does the origin (0,0) go in \mathbf{TR} and \mathbf{RT} ?

TR and RT

TR keeps it on X axis to (5,0). **TR** takes it to $(\frac{5}{\sqrt{2}},\frac{5}{\sqrt{2}})$.

Objects Away from Origin

- Object "translates" when rotated or scaled!!
- Default: Perform these
 about the origin
- How do we transform points "in place"?
- Rotate or scale about the centroid of the object. Or about an arbitrary point
- How?

Transformations About A Point

- Rotating about point P
 - Align P with origin
 - Rotate/scale about origin
 - Translate back
- Rotation:

$$\mathbf{R}_{\mathbf{C}}(\theta) = \mathbf{T}(\mathbf{C}) \mathbf{R} \mathbf{T}(-\mathbf{C})$$

• Scaling:

$$\mathbf{S}_{\mathbf{C}}() = \mathbf{T}(\mathbf{C}) \; \mathbf{S}() \; \mathbf{T}(-\mathbf{C})$$

• A transformation M:

$$\mathbf{M}_{\mathbf{C}} = \mathbf{T}(\mathbf{C}) \ \mathbf{M} \ \mathbf{T}(-\mathbf{C})$$

Object

• Object has a coordinate frame of its own.

Object and Translation

Object, Translation, Rotation

$$P' = P$$

$$\mathbf{P}' = \mathbf{R} \ \mathbf{P}$$

Understanding Transformations

R, T Operations on Points

• T(5,0) R($\pi/4$): Impact on a point:

```
- R(\pi/4): (Point stays at (0, 0))
- T(5, 0): (Point goes to (5, 0))
```

• $\mathbf{R}(\pi/4)$ **T(5,0)**: Impact on the point:

```
- T(5,0): (Point moves to (5,0))
- R(\pi/4). (Point rotates about origin)
```

 All points on the shape undergo the same motions and get new coordinates

Relating Coordinate Frames

• T(5,0) and $R(\pi/4)$

Start: Black axes

Next: Blue axes

Last: Red axes

$$ullet$$
 $\mathbf{P}'=egin{array}{c|c|c} \mathrm{Black} & \mathbf{Blue} \\ \hline \mathbf{T} & \mathbf{R} & \mathbf{P} \end{array}$

R, T Operaions on Frames

• T(5,0) R($\pi/4$): Impact on coordinate frame:

```
- T(5,0): (Origin shifted to (5,0))
- R(\pi/4). (Axes rotated at new origin)
```

• $\mathbf{R}(\pi/4)$ **T(5,0)**: Impact on coordinate frame:

```
- R(\pi/4): (Axes rotate by 45 degrees))
- T(5,0). (Point moves to (\mathbf{5},\mathbf{0}) in new axes)
```

 Frames move around, giving new coordinates to points on objects!!

CS7.302