

November 2016

Part 1:

- Basics of spatial data
- Coordinate systems
- Data management

Part 2:

- MAUP
- Working with data in different geographies

Please ask questions as I go along!

Spatial data types

- 2 types of spatial data
 - Vector
 - Discrete data
 - Eg. Points, lines, polygons
 - Raster
 - Continuous data
 - Eg. Images, maps
- Both handled in GIS systems (Arc, QGIS)
- Types of analysis possible varies per data type

Spatial data types - vectors

Point

Line

Polygon

- Attributes
- Geometry

Spatial data types - vectors

- Points
 - Single x,y coordinate
- Lines (polylines)
 - A series points (x,y coordinates)
- Polygons
 - A single line
 - Start and end coordinates are the same

Spatial data types - raster's

- Continuous data
- Raster resolution: compromise between detail and storage size

Coordinate systems

- A way of specifying a location on earth
 - E.g. X, Y, H
- Thousands of coordinate systems globally
 - Each has a unique SRID
 - Spatial Reference ID
- Geographic and Projected systems
- Each coordinate system has its own datum for height

How do you model the Earth's surface?

Coordinate Sys. - Geographic

- Based on a model of the surface
 - the ellipsoid
- Latitude & longitude
 - Angular measurements
- Global
- Can include height

Coordinate Sys. - Projected

- Based on 2 dimensional projection of the surface
 - Will always be distortions
 - Global or local
- Eastings & Northings
- E.g. Mercator and Transverse Mercator (UTM)

Coordinate Sys. - GB

WGS84

- Geographic system
- SRID: 4326
- GPS data
- 51.758786, -1.2537852

OSGB36

- Projected system
 - Easting & Northing
- SRID: 27700
- Datum: Newlyn
- 451601, 206941 (SP)

Coordinate Sys. - conversions

- Data can be converted between coordinate systems
 - Can introduce errors though
- Most GIS systems/tools should allow conversions
 - Arc: Project tool
 - QGIS: Define projection when saving as new layer

Data management

Shapefiles

- Store vector data
- Points, lines and polygons
- 4 core files: .dbf, .shp, .shx, .sbn
- May also include others: e.g. .prj

Data management

- Geodatabase's Arc only
 - A folder for shapefiles
 - Feature class = shapefile
 - Feature dataset = sub-folder
 - Contains feature class's
 - All with the same coordinate system

- □ ☐ A_Folder
 - □ A_Personal_Geodatabase.mdb
 - ☐ 🖶 A_Feature_Dataset
 - A_Point_Feature_Class_Inside_A_Dataset
 - A Polygon Feature Class Inside A Dataset
 - A_Polyline_Feature_Class_Inside_A_Dataset
 - A_Point_Feature_Class
 - A_Polygon_Feature_Class
 - A_Polyline_Feature_Class
 - A_Raster_Dataset
 - □ S A_Toolbox
 - ⊕ S

 A_Toolset
 - ☐ 🙀 A_CAD_Feature_Dataset.dxf
 - A Annotation
 - MultiPatch
 - Point
 - Polygon
 - Polyline
 - A_Point_Shapefile.shp
 - A_Polygon_Shapefile.shp
 - A_Polyline_Shapefile.shp

Editing data (digitizing)

- Editing/Adding points/lines/polygons
 - Best done in a GIS package, but can be programmed
 - Editor toolbar in ArcMap
 - Edit button in QGIS
 - Move and modify existing features
 - Create new features
 - Snapping

Editing data

- Adding attributes
 - Can be done from attribute tables
 - Column data types restrict data stored e.g. ArcGIS:

Data type	Data ranges	Size
Short integer	-32,768 to 32,767	2
Long integer	-2,147,483,648 to 2,147,483,647	4
Float	Approx3.4E38 to 1.2E38	4
Double	Approx2.2E308 to 1.8E308	8
text	Text	
date	Dates	

Editing data

- Editing attributes
 - Manually
 - Need to be in 'editing mode'
 - Field calculator
 - Create more complex updates
- Calculating geometry
 - Area, length etc.
 - QGIS: Field calculator
 - Arc: Calculate geometry

Common spatial processes

- Buffers
- Clip
- Intersect
- Tabular data
- Selections
- Joins

Buffers

- How to do a buffer
 - Create a polygon around existing features of a set distance
- Dissolving buffers
- Multiple (ring) buffers

What does clip do?

"Extracts input features that overlay the clip features. Use this tool to cut out a piece of one feature class using one or more of the features in another feature class as a 'cookie cutter'".

Used to cut datasets down e.g. to your area of interest

- What does intersect do?
 - Returns the features which intersect, with overlaps forming new features

Useful for finding areas which fall within multiple ares

Selections

- Selecting a subset of a dataset
- Select By Attribute
 - Select features on a set of rules based on attribute values

Selections

- Select By Location
 - Select features based on their spatial location with regard to another layer
- Manual selection

- Join by data
 - Two files have identical columns
 - Arc: right-click on layer 'Join..'
 - QGIS: right-click on layer 'Properties'
- Spatial Join
 - Based on a rule

Join Data

Join lets you append additional data to this layer's attribute table so you can,

for example, symbolize the layer's features using this data.

Join data from another layer based on spatial location

1. Choose the rield in this layer that the join will be based on:

Show the attribute tables of layers in this list

What do you want to join to this layer?

Join attributes from a table Join attributes from a table ? X

•

▼ | 🛗

Tabular data

Use a join to add to another dataset with geography

- Tell the GIS what the spatial columns are
 - Arc: right-click 'Add XY'
 - QGIS: add a csv layer
 - Select columns with X and Y data in

Data management

Databases

- External to GIS systems
- Spatially enabled databases allow spatial and non-spatial data to be stored in a generic format
- GIS systems can connect directly e.g. QGIS
- Database stores all spatial information as well as attributes

e.g. Water Pumping stations

gid integer		unique_ref numeric(10,0)	name character varying(254)	county character varying(254)	postcode character varying(254)	geom geometry
1	286354	18229077	Pump (Disused)	Dumfries and Galloway	DG12	0101000020346C000000000002C64134100000007(
2	327397	18334772	Pump (Disused)	Cornwall	TR19	0101000020346C0000000000088C80041000000080
3	327402	18334782	Wind Pump	Cornwall	TR19	0101000020346C000000000000C0D900410000000080
4	328508	18341519	Pump	Devon	EX7	0101000020346C00000000000E0F811410000000B0
5	328510	18341527	Pump	Devon	EX7	0101000020346C000000000008CF81141000000030
6	328515	18341539	Pump	Devon	EX7	0101000020346C000000000000C8EF114100000005(
7	328533	18341569	Pumping House	Devon	EX7	0101000020346C0000000000014DC11410000000DC
8	583751	18334771	Wind Pump (Disused)	Cornwall	TR19	0101000020346C00000000000060BC004100000004(
9	669761	18334773	Wind Pump (Disused)	Cornwall	TR19	0101000020346C0000000000088C80041000000000
10	741245	18334759	Hydraulic Ram	Cornwall	TR19	0101000020346C0000000000038650041000000080
11	754037	18341524	Wind Pump	Devon	EX6	0101000020346C0000000000088F511410000000D0
12	327364	18334703	Pumping House	Isles of Scilly	TR24	0101000020346C00000000000030C6F540000000008(

Data sources

- Main spatial data sources
 - Ordnance survey
 - Open street map (volunteer generated)
 - Government departments (data.gov.uk etc.)
- Open source data v known data
 - Limitations of open source data
 - •
 - Advantages of open source data
 - •

Discussion (15mins)

- Data sources/reliability:
 - Volunteered data e.g. Open street map v open v commercial etc.
 - Data verification
- Data management:
 - Folders/databases?
 - Version control?
 - Is everyone using the same version?
 - How often should be data be updated?

November 2016

Modifiable areal unit problem

- Problems associated with changing between geographies
- Given the same data, you can get different results depending on how you aggregate it
- MISTRAL
 - buildings, super output areas, postcode areas, telephone exchange areas, local authority district areas, council areas, government office region areas, water resource zone areas, substations.....

Modifiable areal unit problem

2 aspects

Zone

- The shape of the zone's being used change
- E.g. from 2001 census boundaries to 2011 census boundaries
- E.g. electoral boundaries

Scale

- Different levels of scale are used for different results (or inputs in our case)
- E.g. local authority district (380+) areas and government office regions (11)

Modifiable areal unit problem

- There is no 'right' solution
- Each solution will give a different answer
- Need to think carefully
- Case by case basis
- Further reading
 - S. Openshaw (1984)
 - Fotheringham and Wong (1991)

Converting between geographies

- Area density values
 - Estimate values based on density and zone sizes
- Spatial interpolation
 - 'the procedure of predicting the value of attributes at unsampled sites from measurements made at locations within the same area (Burrough & McDonnel, 1998)

- Calculate the density of a variable for each zone in the data set
- Intersect the current data zones with the target data zones
- Calculate the areas of the resulting zones
- Calculate the values in each of the zones using the densities and areas
- Sum for the values for each target zone to get a total value

 Calculate the density of a variable for each zone in the data set

 Intersect the current data zones with the target data zones – attributes are copied as well

- Calculate the areas of the resulting zones
- Calculate the values in each of the zones using the densities and areas

 Sum for the values for each target zone to get a total value (dissolve function)

Values in new areas

Original areas and values

Limitations

- Assumes uniform distribution across the zone
- Assumes variable distribution is a function of the chosen parameter e.g. area

Advantages

- Quick method of switching between geographies
- Computationally simple

- Filling in gaps in data and generating a surface of values
- 3 common methods
 - IDW (Inverse distance weighted)*
 - TIN (Triangular Irregular Networks)
 - Global trend surfaces

Inverse Distance Weighted

- Based on distance from the unknown to the know
- Distance used to weight each know value's relationship for the unknown
- Weights used to estimate the unknown

Inverse Distance Weighted

$$Z(x_{j}) = \sum_{i=1}^{n} z(x_{i}) \bullet d_{ij}^{-r} / \sum_{i=1}^{n} d_{ij}^{-r}$$

Where:

 $Z(x_i) = Z(x, y)$ = the unknown point to be interpolated

 $z(x_i) = z(x, y)$ = the known points used to derive the interpolated point

 d_{ij}^{-r} = the distance between a known point and the unknown weighted by a reciprocal

Inverse Distance Weighted

The reciprocal for the weight calculation can vary

Networks

- What is a network (or graph)
 - A series of nodes and edges
 - Standard graph (undirected)
 - Directed graph:
 - Each edge has a direction set
 - Multigraph:
 - Multiple edges between the same node pair
 - E.g. one for each lane on a motorway

Networks - handling

- Database schema
 - Stores networks,
 dependencies and
 interdependencies
 - Python API
 - Import/export options

Example_Network_G1_Edges

EdgeID

Node_F_ID

Node_T_ID

Example_Network_G1_Edge_Geometry

FK3 Edge_GeomID

FK4 GraphID

PK GeomID

Example Graph G1

Help

- Plenty of help on the desktop software
- ArcMap help guides
 - www.
- QGIS help online
 - Eg:<u>http://docs.qgis.org/2.</u>2/en/docs/user manual/
 - Forums etc.

Questions I haven't answered

- Version control for spatial data
 - Discussed in discussion one
- Mapping objects to a point on a network
- Compute multi-modal commuting times between two points
- Division of areas in areas of influence
- Raster processes

Discussion (15mins)

- Converting between geographies
 - How to approach this
 - Can all cases be identified
- Network generation
 - Standardized methods
 - Standardized storage methods

