Answer sheet for CME341 October, 2016 Midterm

Name:
Exam Number:
Change exam_dependent_seed to 8'H
Answers:
Q1: 16'H
Q2: 16'H
Q3a: 16'H
Q3b: 16'H
Q4: 16'H

CME341 - October, 2016 Midterm Material up to end of Assignment 5

Date: Wednesday, October 12, 2016

Time = 1.00 hours

Text Books, Notes and Computer Files Only

Before starting the exam make sure you have modified the second "initial" procedure in the test bench so that exam_dependent_seed is assigned the value on your answer sheet.

1. Redesign prototype "student_circuit" to implement a combinational logic circuit that has cct_output equal to zero while clear is high and equal to cct_input plus the unsigned 8-bit constant that has a decimal value of 119 when clear is low.

The accumulator output, i.e. $accumulator_output$, when $counter_full_bar$ is low

for seed = 8'HAA should be 16'HDB68.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

- (2) 2. Redesign prototype "student_circuit" again. This time design a combinational logic circuit that sets cct_output to zero while clear is high and while clear is low it does the following
 - If the most significant 3 bits of input cct_input is either 3'b111 or 3'b000, then cct_output should equal cct_input.
 - If the most significant 3 bits of cct_input, when treated as an unsigned number, are between 3 and 5, inclusive, then cct_output equals 255 cct_input.
 - Otherwise cct_output is that of cct_input with the positions of bits 0 and 7 exchanged, that is bit 7 of cct_output will equal bit 0 of cct_input and bit 0 of cct_output will equal bit 7 of cct_input. Bits 1 through 6 of cct_output will equal bits 1 through 6 of cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low

for seed = 8'HAA should be 16'H049B.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(2) 3. (a) Redesign prototype "student_circuit" again. This time the circuit must have an 8-bit counter called count_down. The counter is to be synchronously cleared when clear==1'b1 other wise it should count down by 1 on each rising edge of input clk.

The output, cct_output, is to be the exclusive-or of count_down and cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_is low

for seed = 8'HAA should be 16'FCF2.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(b) Modify counter count_down to count up by 1 if the most significant bit of cct_input is 1'b1. It should still count down by 1 if the most significant bit of the input is 1'b0.

cct_output is still to equal the exclusive-or of count_down and cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_is low

for seed = 8'HAA should be 16'H4688.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

4. Redesign prototype "student_circuit" again. This time design a sequential circuit that loads the ones complement (i.e. all bits inverted) of the 8-bit input cct_input into a register called delay on the positive edge of input clk and then makes the output the "exclusive-or" of cct_input and delay. The register delay is to be synchronously cleared when clear == 1'b1.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HFCF2.

(2)

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.