Krzysztof Pszeniczny nr albumu: 347208 str. 1/2 Seria: 8

1 Zadanie

1.1 Część a

Dowód. Załóżmy nie wprost, że taki punkt nie istnieje. Niech ℓ będzie symetralną odcinka PQ. Niech teraz $\mathcal{B} = \{A \cap (PR \cup RQ) | R \in \ell\}$. Skoro dla każdego punktu R przynajmniej jeden z odcinków PR, RQ nie jest rozłączny z A, to znaczy, że w szczególności jest to prawda dla punktów $R \in \ell$.

Stąd \mathcal{B} jest niepustą rodziną niepustych zbiorów. Ponadto, dla $R_1 \neq R_2$ zbiory $PR_1 \cup R_1Q$ i $PR_2 \cup R_2Q$ mają przecięcie równe: $\{P,Q\}$, lecz żaden z tych punktów nie należy do A, zatem \mathcal{B} jest rodziną parami rozłącznych zbiorów.

Niech więc $\psi: \mathcal{B} \to A$ będzie funkcją wyboru na \mathcal{B} . Jak już powiedzieliśmy, \mathcal{B} jest rodziną parami rozłącznych zbiorów, stąd ψ jest injekcją.

Jednak łatwo widać, że ψ daje nam także injekcję z ℓ w A. Istotnie, każdy element $\mathcal B$ jest jednoznacznie wyznaczony przez $R \in \ell$. Formalnie: niech $\hat \psi: \ell \to A$ daną jako $\hat \psi(R) = \psi(A \cap (PR \cup RQ))$. Wtedy $\hat \psi$ jest injekcją. Gdyby bowiem dla pewnych $R_1 \neq R_2$ było $\hat \psi(R_1) = \hat \psi(R_2)$, to mielibyśmy, że $\psi(A \cap (PR_1 \cup R_1Q)) = \psi(A \cap (PR_2 \cup R_2Q))$, jednak lewa strona należy do $PR_1 \cup R_1Q$, zaś prawa do $PR_2 \cup R_2Q$, a są to zbiory rozłączne. Stąd mamy, że $\mathfrak C = |\ell| \leqslant |A| \leqslant \aleph_0$, co jest sprzecznością.

1.2 Część b

Niech $R = \{\{(T,V)|T,V \in \pi \land T \neq V\}|\pi \in L\}$, zaś $\psi:R \to \mathbb{R}^3 \times \mathbb{R}^3$ będzie funkcją wyboru na R, natomiast $K = \{X|\exists_{t \in R} \ (\psi(t) = (X,Y) \lor \psi(t) = (Y,X))\}$ Innymi słowy: z każdej prostej z L. wybieramy dwa różne punkty i czynimy z nich zbiór K. Oczywiście $K \subseteq \mathcal{L}$. Łatwo teraz widać, że ponieważ L był przeliczalny, to R także, stąd i K.

Lemat 1. Dla dowolnych stałych $\alpha, \beta, \gamma \in \mathbb{R}$ nie wszystkich równych 0, istnieje płaszczyzna o równaniu $\alpha x + \beta y + \gamma z = r$ dla pewnego $r \in \mathbb{R}$ rozłączna z K.

Dowód. Niech teraz $\tau: \mathbb{R} \to P(\mathbb{R}^3)$ będzie funkcją zadaną jako: $\tau(r) = p$ łaszczyzna $\alpha x + \beta y + \gamma z = r$.

Udowodnię, że istnieje takie r, że $\tau(r) \cap K = \emptyset$. Przypuśćmy bowiem przeciwnie, że dla każdego $r \in \mathbb{R}$ zbiór $\tau(r) \cap K$ jest niepusty. Postępując tak jak w części a, oznaczmy $\mathcal{B} = \{\tau(r) \cap K | r \in \mathbb{R}\}$ – jest to niepusta rodzina niepustych, parami rozłącznych¹.

Niech teraz $\varphi: \mathcal{B} \to K$ będzie funkcją wyboru na \mathcal{B} . Widzimy jednak, że daje nam ona funkcję injektywną $\hat{\varphi}: \mathbb{R} \to K$ daną jako $\hat{\varphi}(r) = \varphi(\tau(r) \cap K)$. Gdyby bowiem dla pewnych $r_1, r_2 \in \mathbb{R}$ takich, że $r_1 \neq r_2$ zachodziło $\hat{\varphi}(r_1) = \hat{\varphi}(r_2)$, to z definicji $\hat{\varphi}$ byłoby $\varphi(\tau(r_1) \cap K) = \varphi(\tau(r_2) \cap K)$, ale lewa strona należy do $\tau(r_1)$, zaś prawa do $\tau(r_2)$, zaś są to zbiory rozłączne.

Stąd mielibyśmy, że $\mathfrak{C} = |\mathbb{R}| \leq |K| \leq \aleph_0$, co jest sprzecznością. Mamy więc jednak, że istnieje takie $r \in \mathbb{R}$, że $\tau(r) \cap K = \emptyset$.

Lemat 2. Dla dowolnego przeliczalnego zbioru X prostych na płaszczyźnie π istnieje punkt $T \in \pi$, który nie należy do $\bigcup X - tj$. nie należy do żadnej z tych prostych.

Dowód. Niech ℓ będze prostą nienależącą do X: wszystkich prostych jest \mathfrak{C} , zaś $|X|=\aleph_0$, więc taka prosta istnieje. Twierdzę, że istnieje $R\in \ell$ takie, że $\ell\not\in \bigcup X$. Przypuścmy bowiem przeciwnie.

Niech teraz $\tau:\ell\to P(X)$ będzie zdefiniowane jako: $\tau(R)=\{\mu\in X|R\in\mu\}$. Łatwo widać, że dla $R_1,R_2\in\ell$ takich, że $R_1\neq R_2$ zbiory $\tau(R_1)$ oraz $\tau(R_2)$ są rozłączne. Gdyby bowiem istniała prosta $\mu\in X$ taka, że $\mu\in\tau(R_1)$ oraz $\mu\in\tau(R_2)$, to mielibyśmy, że $R_1\in\mu$, $R_2\in\mu$, ale dwa punkty jednoznacznie wyznaczają prostą, zatem $\mu=\ell$, zaś z założenia $\ell\not\in X$.

Stąd τ jest niepustą rodziną parami rozłącznych niepustych zbiorów. Niech $A=\{\tau(R)|R\in\ell\}$. Niech $\phi:A\to X$ będzie funkcją wyboru na A. Określmy $\hat{\phi}:\ell\to X$ jako $\hat{\phi}(R)=\phi(\tau(R))$. Twierdzę, że jest to injekcja. Gdyby bowiem dla $R_1,R_2\in\ell$ takich, że $R_1\neq R_2$ zachodziło, że $\hat{\phi}(R_1)=\hat{\phi}(R_2)$ to mielibyśmy z definicji, że $\phi(\tau(R_1))=\phi(\tau(R_2))$, lecz lewa strona należy do $\tau(R_1)$, zaś prawa do $\tau(R_2)$, zaś są to zbiory rozłączne – sprzeczność.

Termin: 2013-12-13

Stąd mamy, że $\mathfrak{C}=|\ell|\leqslant |X|=\mathfrak{K}_{\mathfrak{O}}$ – sprzeczność.

Bo dla $r_1 \neq r_2$, płaszczyzny $\tau(r_1)$ oraz $\tau(r_2)$ są oczywiście rozłączne.

nr albumu: 347208 str. 2/2 Seria: 8

Lemat 3. Dla dowolnego punktu $X \in \mathbb{R}^3 \setminus \mathcal{L}$ oraz dowolnej płaszczyzny $\pi \subseteq \mathbb{R}^3$ istnieje punkt $Y \in \pi$ taki, ze odcinek XY jest rozłączny z \mathcal{L} .

Dowód. Zauważmy, że możemy zrzutować wszystkie proste z L na płaszczyznę π czymś w rodzaju rzutu stereograficznego z punktu X: umieszczamy w punkcie X żarówkę i patrzymy, gdzie na płaszczyźnie π wypadnie cień prostych z X. Łatwo się przekonać (geometria z LO), że tak powstałe rzuty będą prostymi: mógłby to być punkt, gdyby X sam leżał na jakiejś prostej z L, ale tak nie jest.

Stąd stosujemy lemat 2 i mamy, że istnieje punkt Y na płaszczyźnie π , który nie należy do cienia, a zatem nasze "światło" z punktu X – tj. odcinek XY nie przecięło żadnej prostej z L.

Niech teraz π będzie płaszczyzną, o której mowa w lemacie 1. Niech teraz G będzie punktem, o którym mowa w lemacie 3 jako punkcie Y, gdy ustalimy w nim X = P zaś H będzie punktem, który daje ten sam lemat dla X = Q.

Wiemy, że odcinek PG oraz odcinek HQ są rozłączne z \mathcal{L} . Zauważmy jednak, że warunki na płaszczyznę π implikują, że żadna prosta z L nie jest podzbiorem π . Istotnie, gdyby pewne $\ell \in L$ było podzbiorem π , to w szczególności ponieważ $|\ell \cap K| \geqslant 2$, to do π należałyby punkty z K a nie należą.

Stąd jendnak widzimy, że zbiór $V=\{\ell\cap\pi|\ell\in L\}$ jest zbiorem złożonym z singletonów i być może zbioru pustego, stąd $\bigcup V$ jest przeliczalny. Na mocy części a zadania, zastosowanej dla płaszczyzny π oraz punktów H, G jako punktów P, Q z jej treści, istnieje punkt $R \in \pi$ taki, że HR oraz RG są rozłączne z | V|. To jednak oznacza, że odcinki HR i RG są rozłączne z \mathcal{L} , skąd łamana PGRHQ jest rozłączna z \mathcal{L} .

$\mathbf{2}$ Zadanie

Niech $\mathcal J$ będzie zbiorem wszystkich funkcji powracających. Mamy oczywiście, że $\mathcal J\subseteq\mathbb N^\mathbb N$, a zatem $|\mathcal J|\leqslant$ $|\mathbb{N}^{\mathbb{N}}| = \mathfrak{C}.$

Zdefiniujmy teraz funkcję $\psi: P(\mathbb{N}) \to \mathcal{J}$ w następujący sposób:

$$\psi(X)(n) = \begin{cases} n & \text{gdy } \lfloor \frac{n}{2} \rfloor \in X \\ n+1 & \text{gdy } \lfloor \frac{n}{2} \rfloor \not \in X \text{ oraz } n \text{ jest parzyste} \\ n-1 & \text{gdy } \lfloor \frac{n}{2} \rfloor \not \in X \text{ oraz } n \text{ jest nieparzyste} \end{cases}$$

Innymi słowy: dla $n \in X$ mamy f(2n) = 2n, f(2n+1) = 2n+1, zaś dla $n \notin X$ mamy f(2n) = 2n+1, f(2n + 1) = 2n.

Łatwo nawet widać, że $\psi(X) \circ \psi(X) = \mathrm{id}_{\mathbb{N}}$. Istotnie, niech $n \in \mathbb{N}$.

Gdy $\lfloor \frac{n}{2} \rfloor \in X$, mamy $\psi(X)(n) = n$, a zatem $\psi(X)(\psi(X)(n)) = n$. Gdy zaś $\lfloor \frac{n}{2} \rfloor \notin X$, to gdy n jest parzyste, to mamy $\psi(X)(n) = n+1$, lecz jednak wtedy $\lfloor \frac{n+1}{2} \rfloor = \lfloor \frac{n}{2} \rfloor \notin X$, 2 a zatem $\psi(X)(\psi(X)(n)) = \psi(X)(n+1) = 0$ n. Gdy zaś n jest nieparzyste, mamy $\psi(X)(n) = n - 1$, lecz jednak wtedy $\lfloor \frac{n-1}{2} \rfloor = \lfloor \frac{n}{2} \rfloor \notin X$, 3 a zatem $\psi(X)(\psi(X)(n)) = \psi(X)(n-1) = n.$

Stąd istotnie $\psi(X)$ jest funkcją powracającą.

Pokażemy, że ψ jest injekcją. Załóżmy, że dla $X,Y\subseteq\mathbb{N}$ mamy $\psi(X)=\psi(Y)$. Wtedy mamy, że dla każdego $n \in \mathbb{N}$ następujące warunki są równoważne:

- $n \in X$
- $\psi(X)(2n) = 2n$
- $\psi(Y)(2n) = 2n$
- $n \in Y$.

Stad mamy, że X = Y.

Zatem ψ jest injekcją, stąd $|\mathcal{J}| \ge |P(\mathbb{N})| = \mathfrak{C}$. Twierdzenie Cantora-Bernsteina daje teraz $|\mathcal{J}| = \mathfrak{C}$.

Termin: 2013-12-13

Podstawy matematyki

² Albowiem wtedy n=2kdla pewnego $k\in\mathbb{N},$ stąd $\lfloor\frac{2k+1}{2}\rfloor=k=\lfloor\frac{2k}{2}\rfloor$ 3 Albowiem wtedy n=2k+1dla pewnego $k\in\mathbb{N},$ stąd $\lfloor\frac{2k+1}{2}\rfloor=k=\lfloor\frac{2k}{2}\rfloor$