Introduction

Particle Chain

Project Exten

Approach Network MCU

selectio Hardwa

Recult

Future Wor

Daisy Chain Protocol Development in Force-Guiding Particle Chains for Shape-Shifting Displays Development Board Implementation

Raoul Rubien rubienr@sbox.tugraz.at

Institute for Technical Informatics Graz University of Technology

5th August 2016

Particle Chain

Project Exten

Approach Network MCU selection Hardware

Evolution

r (esure

Future Worl

What this session covers

physical network structure MCU selection development board

Introduction Particle Chain

Limitations

Project Exte

Approacl Network MCU selection

Evolut

E . 14/

Underlying work

Force-Guiding particle Chains for Shape-Shifting Displays[1]

Figure 1: particle chain

Figure 2: folding a shape

chain is stretched in natural state shape Memory Alloy used as actuator (3) joints unlocked by actuators (2) force F_s folds chain

Limitations

Approach & limitation

current particle implements 1-Wire via power supply wires energy must be buffered before communication starts power must be switched off/on automatic chain position detection is costly

Idea

decouple communication from power supply (4) using a daisy-chain protocol, and actuator wires (3)

Figure 3: particle PCB

Figure 4: particle chain

Project Extent

Approach Network MCU selection Hardwar

Results

Future Wor

Project extent

particle board development easy accessible test points and transmission wires flexible and fast network assembly

Project constraints

reasonable low level MCU minimize number of components on particle PCB communication:

exploit SMA wires
decouple from power supply
small MCU package in final productive particle
single communication entry point to the network

Network

Network approach - I

exploit actuator wires also for communication

Project Exter

Approach Network

Hardwa

Results

Future Work

Network approach - II

linear network daisy chained participants

Advantages

- + simple to implement
- + no media access control
- + no loops
- + no dynamic routes

Disadvantages

- error detaches segment
- no recovery for segment

Figure 5: network topology

selection

MCU requirements - capabilities

three separate external interrupts self programmable EEPROM for firmware replication (future work) package size small package for productive particle bigger package for development board

MCU

selection

MCU memory requirements - upper bound estimation

Flash

 $\sim 4k$ SLOC expected max. firmware size: $\sim 4.0B$ estimated object code bytes per SLOC [2] flash usage estimation:

4k * 4B = \sim 16kB

SRAM

tx/rx buffers: 3 ports, 8byte 3 * 8B * 2 =16*B*

Manchester code decoding buffer with 2 flank time stamps per bit

 $3 * 8 * 2 * sizeof(uint16_t)B * 0.75 =$ 576*B* other global variables 200B

stack: max. 50 nested void function calls with $\sim (1 * uint8_t)$ argument

50 * (1 + 2)B =

SRAM estimation: \sim 950B

150*B*

selection

Candidates

candidates are all ATTiny20 family MCUs having

- > 16kB flash and
- > 1kB SRAM

Comparison of used MCUs

	ATTiny20 (proof of concept)	ATTiny1634
# pin change int.	sufficient	sufficient
EEPROM	no	yes
flash	2kB	16 <i>kB</i>
SRAM	128 <i>B</i>	1kB
small package	$3mm \times 3mm$	$4mm \times 4mm$
alternative pkg.	no	yes, SOIC

Hardware Evolution

The prototype

- not satisfying new requirements
- too small/unhandy for development

Figure 6: prototype

Version 1.0

linear chain of development particles

- + not mounted in chain mechanics
- but still time consuming assembly

Figure 7: Version 1.0

Particle Cha

Project Exter

Approach Network

Hardware

Evolution

Results

Future Wor

Version 1.1

Advantages

- + repetitive design
- + configurable network shape

Disadvantages

- costly soldering
- expensive connectors
- one faulty particle breaks whole $\ensuremath{\mathsf{PCB}}$

Figure 8: Version 1.1 - particle array PCB

Particle Chai

Project Exter

Approach Network MCU selection

Hardware Evolution

Result

Future Worl

Version 1.21

configurable network dimension easy extensible network faulty particles can be replaced cheaper higher particle density

Figure 9: pluggable particle

Figure 10: grid board

Project Exten

Approach Network MCU selection Hardwan

Results

Future Work

Results

Figure 11: network structure

Figure 12: pluggable particle module

Introduction
Particle Chain

Project Extent

Network
MCU
selection

Results

Future Wor

Project Exter

Approach Network MCU

Hardwai Evolutio

Results

Future Work

Future work

hardware

simplify development board enhance grid board communication protocol

Physical Layer: implement coding

Data Layer: fault detection

Network Layer: self enumeration, addressing,

synchronization, clock compensation

task scheduling (TDM of communication and tasks)

runtime compensation of RC-oscillator discrepancy

firmware replication: customize boot loader

Project Exten

Network
MCU
selection
Hardware

Results

Future Work

M. Lasagni and K. Römer, "Force-guiding particle chains for shape-shifting displays," *CoRR*, vol. abs/1402.2507, 2014.

J. Ganssle, Embedded systems.

Amsterdam Boston: Elsevier/Newnes, 2008.