Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет цифровых трансформаций

Дисциплина:

«Телекоммуникационные системы и технологии»

ПРАКТИЧЕСКАЯ РАБОТА №4

«Проектирование локальной сети в среде моделирования»

Выполнили:
Гаджиев С. И., Васильков Д. А., Лавренов Д. А. М3304
Проверила:
Дяченко Екатерина Олеговна
(отметка о выполнении)
(подпись)

Санкт-Петербург 2024 г.

Цель работы:

Сформировать навыки работы в среде моделирования сети Cisco Packet Tracer.

Получить опыт проектирования сети, ее структурирования на канальном уровне и конфигурирования сетевых инфраструктурных сервисов.

Требования:

Для выполнения работы необходима установленная среда моделирования Cisco Packet Tracer

Порядок выполнения работы:

Часть 1. Установка среды моделирования

- 1) Зарегистрируйтесь на сайте https://www.netacad.com.
- 2) Скачайте и установить Cisco Packet Tracer.
- 3) По возможности познакомитесь с материалами глав 1 и 2 встроенной справки к Cisco Packet Tracer, посвященной основам работы с программой.

Часть 2. Проектирование и реализация

- 1) Познакомитесь с условиями задачи.
- 2) Разработайте план, включающий:
 - а. Порядок подключения оборудования
 - b. Физические линии связи, с учетом расстояний
 - с. Номера VLAN для всех групп компьютеров
- 3) В Cisco Packet Tracer соберите физическую модель сети.
- 4) Проведите настройку коммутаторов, сервера и других устройств.
- 5) Проведите проверку настройки сети

Описание задачи

- 1) Некой организации требуется объединить в единую сеть оборудование (компьютеры, принтеры, Web камеры), установленное в нескольких помещениях.
- 2) Используются следующие помещения:

- а. Центральный офис с 18 рабочими станциями и одним сетевым принтером
- b. Аппаратная в непосредственной близости от центрального офиса для установки сервера и коммуникационного оборудования центрального офиса.
- с. Дополнительный офис с 4-я компьютерами и одним принтером, удаленный от аппаратной по кабельной трассе на 350 метров. Для соединения дополнительного офиса и аппаратной использование VPN по открытой сети, например Интернет, невозможно по организационным причинам, а установка промежуточных повторителей или коммутаторов невозможна по техническим.
- 3) В дополнительном офисе должен быть установлен точка доступа WiFi.
- 4) В качестве канального протокола используются протоколы семейства FastEthernet;
- 5) В качестве сетевого протокола стек TCP\IP (IP v 4);
- 6) Компьютеры должны быть разделены на следующие логические группы:
 - а. Группа 10 компьютеры центрального офиса и клиенты, подключенные к WiFi в дополнительном офисе.
 - b. Группа 20 компьютеры и принтеры дополнительного офиса.
 - с. Группа 30 IP камеры, установленные в помещении центрального офиса, в аппаратной и дополнительном офисе.
 - d. Группа 40 сервер (на нем следует настроить DHCP- сервер).
- 7) Адрес сервера статический. Адреса рабочих станций, принтеров и IP камер динамические (DHCP).
 - а. Группа 10: 10.10.0.0/24
 - b. Группа 20: 10.20.0.0/24
 - с. Группа 30: 10.30.0.0/24
 - d. Группа 40: 10.40.0.0/24
 - е. Адрес сервера: 10.40.0.1
- 8) Имеется следующее сетевое оборудование:
 - а. Коммутатор Cisco 2960-24TT (2 шт)
 - b. Коммутатор Cisco 3560-24PS (1 шт)

- с. Повторитель-медиаконвертер Repeater-PT (2шт)
- d. Точка доступа WiFi AccessPoint PT (1 шт)
- e. Web-камеры 3 шт.
- f. Сетевые принтеры, компьютеры, ноутбуки в нужном количестве
- g. Сервер 1 шт.
- h. Коммуникационные модули в нужном количестве.

ХОД РАБОТЫ:

План проекта:

- 1. Порядок подключения оборудования:
 - Центральный офис подключен к основному коммутатору (Cisco 2960-24TT) для рабочих станций и сетевого принтера.
 - В аппаратной устанавливается сервер и коммутаторы Cisco 2960-24TT и Cisco 3560-24PS.
 - Дополнительный офис подключается к коммутатору Cisco 3560-24PS
 через медиаконвертеры для расширения сети на 350 метров.
 - Точка доступа WiFi подключается к коммутатору в дополнительном офисе.
- 2. Физические линии связи и расстояния:
 - Центральный офис и аппаратная связаны напрямую через коммутаторы.
 - Связь между аппаратной и дополнительным офисом осуществляется через медиаконвертеры на расстояние 350 метров.
 - В центральном офисе используются стандартные патч-корды Ethernet для подключения рабочих станций и принтера.
 - В дополнительном офисе к коммутатору подключаются компьютеры, точка доступа WiFi и принтер.
- 3. Номера VLAN для всех групп устройств:
 - о Группа 10 (Центральный офис + клиенты WiFi) VLAN 10.
 - о Группа 20 (Дополнительный офис) VLAN 20.
 - Группа 30 (IP-камеры) VLAN 30.
 - Группа 40 (Сервер) VLAN 40.

Артефакты:

1. Файл модели

LaboratoryWork4.pkt

2. Команды IOS, необходимые, для конфигурирования коммутаторов сети до конечного 4 состояния.

Пример конфигурации коммутатора:

enable

configure terminal

vlan 10

name Central_Office

exit

vlan 20

name Remote_Office

exit

vlan 30

name IP Cameras

exit

vlan 40

name Server

exit

interface range fa0/1 - 24

switchport mode access

switchport access vlan 10

exit

interface fa0/24

switchport mode trunk

switchport trunk allowed vlan 10,20,30,40

exit

interface vlan 40

ip address 10.40.0.1 255.255.255.0

no shutdown

exit

3. Консольный вывод команд, показывающих конфигурацию IP и VLAN на коммутаторе Cisco 3560-24PS.

4. Документацию на сеть, где в табличных формах сведена информация о:

a. VLAN

VLAN	Название
10	Central_Office
20	Remote_Office
30	IP_Cameras
40	Server

b. IP адресах

Группа	IP адреса	Статус
10	10.10.0.0/24	Динамические
20	10.20.0.0/24	Динамические
30	10.30.0.0/24	Динамические
40	10.40.0.1	Статический

с. Коммутаторах

Модель	Количество
Cisco 2960-24TT	2
Cisco 3560-24PS	1

d. Физическом соединении коммутаторов

Коммутатор	Порт	Соединение
Cisco 2960-24TT	Fa0/1	Cisco 3560-24PS Fa0/20
Cisco 3560-24PS	Fa0/20	Cisco 2960-24TT Fa0/1

е. Именах и назначении портов

CentralOffice Multilayer Switch:

Порт	Назначение	Mode	VLAN
Fa0/1	Рабочая станция 1	Access	10
Fa0/2	Рабочая станция 2	Access	10
Fa0/3	Рабочая станция 3	Access	10
Fa0/4	Рабочая станция 4	Access	10
Fa0/5	Рабочая станция 5	Access	10
Fa0/6	Рабочая станция 6	Access	10
Fa0/7	Рабочая станция 7	Access	10
Fa0/8	Рабочая станция 8	Access	10
Fa0/9	Рабочая станция 9	Access	10
Fa0/10	Рабочая станция 10	Access	10
Fa0/11	Рабочая станция 11	Access	10
Fa0/12	Рабочая станция 12	Access	10
Fa0/13	Рабочая станция 13	Access	10
Fa0/14	Рабочая станция 14	Access	10
Fa0/15	Рабочая станция 15	Access	10
Fa0/16	Рабочая станция 16	Access	10
Fa0/17	Рабочая станция 17	Access	10
Fa0/18	Рабочая станция 18	Access	10

Fa0/19	Принтер	Access	10
Fa0/20	Central Office Switch 2960-24TT	Access	30
Fa0/21	-	Access	1
Fa0/22	-	Access	1
Fa0/23	-	Access	1
Fa0/24	-	Access	1
Ge0/1	Server	Trunk	1-1005
Ge0/2	Central Office Repeater-PT	Access	40

Понятийный минимум по работе:

1. Tag based VLAN, назначение, принцип работы.

Ответ: Tag based VLAN — это метод организации виртуальных локальных сетей (VLAN), который использует теги для идентификации трафика, принадлежащего различным VLAN. Тегирование происходит по стандарту IEEE 802.1Q, где в заголовок Ethernet добавляется 4-байтовый тег. Назначение — изолировать трафик разных VLAN на одном физическом канале, улучшая безопасность и управляемость. Принцип работы заключается в том, что коммутаторы считывают тег и направляют трафик в соответствующую VLAN.

Коммутатор L2

Ответ: Коммутатор L2 (Layer 2 switch) — это устройство, работающее на канальном уровне модели OSI. Он использует MAC-адреса для переключения кадров между портами. Коммутатор L2 создает таблицу MAC-адресов, связывая адреса с портами, что позволяет эффективно передавать трафик между устройствами в одной локальной сети без необходимости обработки IP-адресов.

3. Коммутатор L3

Ответ: Коммутатор L3 (Layer 3 switch) — это устройство, которое выполняет функции как коммутатора (L2), так и маршрутизатора (L3). Он способен обрабатывать IP-адреса и принимать решения о маршрутизации трафика между различными VLAN и сетями. Коммутатор L3 использует маршрутизацию на основе таблиц маршрутизации, что позволяет ему управлять трафиком между подсетями.

4. Медиаконвертер

Ответ: Медиаконвертер — это устройство, которое позволяет преобразовывать один тип физического носителя (например, медь) в другой (например, оптоволокно) для передачи данных. Он используется для увеличения расстояния передачи данных и обеспечения совместимости между различными типами сетевого оборудования.

5. WiFi Access Point

Ответ: WiFi Access Point (точка доступа Wi-Fi) — это устройство, которое создает беспроводную сеть и позволяет устройствам подключаться к проводной сети через Wi-Fi. Точка доступа обеспечивает связь между клиентами и сетью, передавая данные и предоставляя доступ к ресурсам сети.

6. Порты access и trunk

Ответ:

Access порт — это порт коммутатора, который принадлежит только одной VLAN. Он используется для подключения конечных устройств (например, компьютеров, принтеров) и не передает трафик других VLAN.

Trunk порт — это порт, который может передавать трафик нескольких VLAN. Обычно используется для соединения коммутаторов друг с другом или для подключения к маршрутизаторам. Trunk порты используют тегирование VLAN для различения трафика.

7. DHCP назначение, сущности (клиент, сервер, релей

Ответ: **DHCP** (Dynamic Host Configuration Protocol) — протокол, который автоматически присваивает IP-адреса и другие сетевые настройки устройствам в сети.

- **Клиент** устройство, запрашивающее настройки (например, IP-адрес) у DHCP-сервера.
- **Сервер** устройство, которое выдает IP-адреса и другую информацию (например, маску подсети, шлюз, DNS) клиентам.
- **Релей** устройство или служба, которые пересылают DHCP-запросы от клиентов к серверу, находящемуся в другой подсети. Это необходимо для обеспечения DHCP в распределенных сетях.