Лабораторная работа №3

Арифметические команды центрального процессора

Цель работы: изучение арифметических команд центрального процессора для работы с целыми числами.

Теоретические сведения

Арифметико-логическое устройство центрального процессора содержит следующие основные команды для работы с целочисленной арифметикой:

- **ADD** <операнд_1>, <операнд_2>. Команда складывает два числа, помещённых в регистры или память. Результат записывается на место первого операнда: **операнд_1** = **операнд_1** + **операнд_2**.
- **ADC** <операнд_1>, <операнд_2>. Сложение чисел с учётом знака переноса. Команда складывает значения двух операндов со значением флага переноса CF.
- **ха**DD <операнд_1>, <операнд_2>. Команда сначала обменивает содержимое двух операндов, а затем складывает их и пересылает результат на место первого операнда.
- **INC** <операнд>. Команда выполняет инкремент содержимого регистра или ячейки памяти.
- **SUB** <onepaнд_1>, <onepaнд_2>. Команда выполняет вычитание значения второго операнда из первого и записывает результат на место первого операнда.
- **SBB** <операнд_1>, <операнд_2>. Команда вычитает из значения первого операнда значение второго операнда и флага CF: **операнд_1 = операнд_1 (операнд_2 + CF)**.
- **DEC** <операнд>. Выполняет уменьшение на единицу значения регистра или ячейки памяти.
- **MUL** <операнд>. Команда выполняет умножение содержимого регистра **AL/AX/EAX** на значение операнда **без учёта знака**. Местоположение результата зависит размерности операнда и представлено в следующей таблице:

Размер	Первый	Результат	Пример
операндов	множитель		
байт	AL	AX	MUL BL
слово	AX	DX:AX	MUL CX
двойное слово	EAX	EDX:EAX	MUL ESI

IMUL. Команда выполняет умножение чисел **с учётом** знака и имеет три формы:

1. **IMUL** <операнд_множитель>. Механизм работы данной команды похож на работу команды **MUL** с тем отличием, что произведение выполняется с учётом знака. Местоположение множителей и результата смотреть в вышеприведённой таблице.

- 2. **IMUL** <onepaнд_1>, <onepaнд_2>. Команда выполняет умножение значения первого операнда на значение второго. Результат записывается на место первого: **операнд 1 * операнд 2.**
- 3. **IMUL** <операнд_1>, <операнд_2>, <операнд_3>. Команда выполняет умножение второго и третьего операндов: **операнд_1 = операнд_2 * операнд_3**. Результат записывает на место первого операнда. Третий операнд может иметь только непосредственную адресацию.

DIV <операнд>. Команда выполняет деление без учёта знаков. Делимое задаётся неявно. Местоположение делимого и результат зависит от размерности операнда-делителя и определяется следующей таблицей:

Размер	Делимое	Частное	Остаток	Максимальное
операнда				частное
байт	AX	AL	AH	255
слово	DX:AX	AX	DX	65535
двойное слово	EDX:EAX	EAX	EDX	2 ³² -1

IDIV <операнд>. Команда выполняет деление с учётом знаков. Делимое задаётся неявно. Механизм работы данной команды похож на механизм работы команды DIV.

Команды изменения размерности и знака числа

Следующая группа команд расширяет число в два раза, сохраняя при этом его знак. Знак сохраняется за счёт копирования старшего (знакового) бита числа в старшую половину результирующего числа.

СВW. Команда расширяет байт до размерности слова, копируя старший бит регистра **AL** во все биты регистра **AH**.

CWD. Команда расширяет слово до размерности двойного слова, копируя старший бит регистра **AX** во все биты регистра **DX**.

CWDE. Команда расширяет слово до размерности двойного слова, копируя старший бит регистра **AX** во все биты старшей половины регистра **EAX**.

CDQ. Команда расширяет двойное слово до размерности учетверённого слова, копируя старший бит регистра **EAX** во все биты регистра **EDX**.

NEG <операнд>. Команда изменяет знак числа.

Задания для выполнения к работе

- 1. Написать программу для вычисления значения арифметического выражения согласно варианту задания. Все переменные, используемые в программе, требуется использовать как знаковые и расширять до размерности двойного слова. Результат должен быть записан в регистр **EAX**. Если результат содержит остаток от деления, оставить его в регистре **EDX**. Подобрать набор тестовых данных (не менее 3).
- 2. Написать программу для сложения или вычитания целых беззнаковых чисел большой размерности (размерность и операция зависят от варианта задания). Младшие байты при этом хранить по младшему адресу. Подобрать наборы тестовых данных (не менее 3). Для выполнения этого задания изучить теоретический материал главы «Вычитание и сложение операндов большой размерности», начиная со страницы 176 учебника Юрова «Assembler».

Пример выполнения первого задания:

#	$g^2 + \frac{r}{5} - 9^4$	<i>g</i> – word <i>r</i> – byte	сложение
IT	$\frac{3}{h}$	h – word	7 байт

Переменные g, r, h разместим в сегменте данных. Программа, вычисляющая значение этого выражения, имеет вид:

```
.386
.model flat, stdcall
option casemap: none
include d:\masm32\include\kernel32.inc
includelib
              d:\masm32\lib\kernel32.lib
.data
  g dw -102
  r db -1
  h dw 15
.code
start:
                  ; AX = g
 MOV AX, g
 CWDE
                    ; Расширение в регистре АХ слова до двойного в ЕАХ
                    ; EAX = EAX * EAX = g<sup>2</sup>
; EBX = EAX
 IMUL EAX
MOV EBX, EAX
MOV AL, r
 MOV AL, r
                    ; AL = r
                    ; Расширение до слова
 CBW
                    ; Расширение до двойного слова
 CWDE
 MOV ECX, 5
                   ; ECX = 5
 CDQ
                    ; Расширение перед делением до двойного слова, т.к.
                   ; следующая команда оперирует содержимым EDX.
 IDIV ECX ; EAX = EDX:EAX / 5 = r / 5
ADD EAX, EBX ; EAX = EAX + EBX = r / 5 + g^2
 SUB EAX, 9*9*9*9; EAX = EAX - 9^4 = r / 5 + g^2 - 9^4
 MOV EBX, EAX ; Копирование в EBX
 MOV AX, h
                    ; AX = h
                    ; Расширение h до двойного слова
 CWDE
 XCHG EAX, EBX
                   ; Обмен местами содержимого EAX и EBX
                    ; Расширение до двойного слова
 CDO
                   ; EAX = EDX:EAX / EBX = (r / 5 + g^2 - 9^4) / h
 IDIV EBX
 call ExitProcess; Выход из программы
end start
```

Тестовые данные

g	r	h	Частное (ЕАХ)	Остаток (ЕДХ)
-1000	50	100	000026CEh=	00000031h=
			9934	4 9
			FFFFF9ACh в	FFFFFFFFh в
			дополни-	дополни-
10	-100	4	тельном коде	тельном коде
			соответствует	соответствует
			-1620	-1

300	60	_1000	00000053h=	000001C3h=
300	60	-1000	83	451

При выполнении второго задания числа требуется хранить в виде последовательности байт следующим образом:

```
386
.model flat, stdcall
option casemap: none

include d:\masm32\include\kernel32.inc
includelib d:\masm32\lib\kernel32.lib

.data
  a db 2Ah, 03h, 12h, 0DE, 43h, 0E2h, 34h; 7 байт
  b db 15h, 0DDh, 34h, 4Bh, 57h, 7Fh, 0CDh; 7 байт
  r db 8 dup(?); Для результата резервируется на один байт больше
.code
start:
...
  push 0
  call ExitProcess; Выход из программы
end start
```

В некоторых случаях целесообразно складывать сразу по 2 или 4 байта для уменьшения количества операций.

Вариант	Выражение	Размер входных параметров	Операция Размерность (2-е задание)
1	$\frac{a+a^2+bd-1}{a-d/8}$	a – dword b – byte d – word	сложение 17 байт
2	$ab+ad+bd-\frac{a+1}{d}-1$	a – word b – word d – byte	вычитание 14 байт
3	$\frac{(x-3^4)^2+(y-4)^2+(z+5)^2}{4}$	x – word y – word z – word	сложение 30 байт
4	$\frac{abe+ab-\frac{b}{e}-1}{a+1+3^3}$	a – byte b – dword e – byte	вычитание 17 байт
5	$\frac{t+10^5}{s-2^5} + (r+1)^2$	t – dword r – word s – byte	сложение 16 байт
6	$((k+1)^2+1)^2-l/m+1$	k — word l — dword m — byte	вычитание 15 байт
7	$i^3+j^3-k^3+10^7/i$	i, j, k – word	сложение 21 байт
8	$(x+10)(y-5)(z-\frac{z}{3})-7^4$	x, y, z – word	вычитание 15 байт

9	$t_1(x-a) + \frac{t_2(x-a)^2}{2} + \frac{t_3(x-a)^3}{6}$	<i>t</i> – массив из 3 чисел типа byte <i>x</i> , <i>a</i> – word	сложение 17 байт
10	$\frac{\left(\frac{k}{m}+1\right)^3}{5}+9^4$	k – dword m – byte	вычитание 22 байта
11	$(r/s+5^5)^4-1$	r – dword s – byte	сложение 20 байт
12	$\frac{50i + 170j + 200k}{50 - 100k} + 11^3$	i, j, k – word	вычитание 19 байт
13	$ax + bx^2 + dx^3 - 14^3$	a, b, d – byte x – word	сложение 14 байт
14	$\frac{100}{a^2} - \frac{7^5}{b^2} + \frac{3^7}{d^2} - 1$	a, b, d – byte	вычитание 18 байт
15	$\frac{x^2 - y^2}{y^2} + 14^3 + xz$	x, y, z – byte	сложение 27 байт
16	$\frac{15^4}{x^2 + \frac{y}{z}} - \frac{9^5}{xz} - 1$	x, y, z – byte	вычитание 25 байт
17	$\left(\frac{p}{q}+1\right)^3-ps$	p – dword q – byte s – word	сложение 26 байт
18	$\frac{(n+500)^2}{(m-10)^3}r+1$	n — word m — byte r — word	вычитание 25 байт
19	$vt + \frac{gt^2}{2} - 5^6$	v – word t – dword g – word	сложение 25 байт
20	$fg + \frac{f}{10^6 h} - \frac{g^3}{h^2}$	f – word g – dword h – byte	вычитание 16 байт
21	$i^4 - j^4 + \frac{k^4}{2^4} + 1$	i, j, k – byte	Сложение 14 байт
22	$(x-500)^2 + \left(\frac{y}{4} + 200\right)^2 + z^2$	x, y, z – word	вычитание 15 байт
23	$(l-(m+1)^2)^2 + \frac{m}{n} + 7^6$	m – byte l – word n – byte	сложение 19 байт
24	$(7+a)^2 + ab - \frac{12c}{d} - 1$	a – dword b – word c – word d – byte	вычитание 26 байт
25	$\frac{(ce+30k)^2}{(ce-40k)^2} + \frac{5^{10}}{e}$	c, e, k – byte	сложение 28 байт