NP - Hardness Proof

Viraj Parimi

August 2017

1 Problem Definition

Given a graph G(V, E) and a cost K, we need to identify a set of nodes S^* in G such that :-

$$Cost(S^*) \leq K$$

1

$$\arg\max_{G} Modularity(G) - Modularity(G(V/S^*))$$

2 Reduction Problem

We will use *Maximum Vertex Coverage - Bipartite Graphs*(MVC-B) for reduction. This problem states the following,

Given a bipartite graph $G=(V,E), V=V_L\cup V_R, V_L\cap V_R=\emptyset$ and positive integers b, c, check if there exists a subset of vertices $S\subseteq V$ with $\mid S\mid=b$ such that at least c edges are incident to nodes in S.

3 NP Completeness Proof

Given an instance of MVC-B with bipartite graph $G=(V,E),\ V=V_L\cup V_R,V_L\cap V_R=\emptyset$ and positive integers b, c. Now we construct out problem instance G'=(V',E') by connecting V_L,V_R to cliques K_L,K_R , respectively. We create an edge between all $\{(u,v)|u\in K_L,v\in V_L\}$ and all $\{(u,v)|u\in K_R,v\in V_R\}$. We choose the size of K_R,K_L in a way that when at least c edges are removed from E, A(Algorithm) will detect two communities $K_L\cup V_L,K_R\cup V_R$ (and exclude the removed vertices) and one community otherwise. Let k=b and,

$$a = \min_{S_L \in V_L, S_R \in V_R, |S_L| + |S_R| = b} Q(A(G'), Y')$$

where

$$Y' = \{K_L \cup V_L \setminus S_L, K_R \cup V_R \setminus S_R\}$$

¹Current proof works on unit cost formulation

$$Q = Modularity(A) - Modularity(B)$$

Now assume we have a solution S, |S| = k to our problem. As $Q(A(G'), A(G'[V' \setminus S]) \ge a, A(G'[V' \setminus S])$ must contain two communities. By construction, number of edges removed from E is at least c. If $S \subseteq V$ then we directly obtain the solution to MVC-B. If $\exists v \in S, v \notin V$, we can always find a vertex $u \in V, u \notin S$ and update S to S' = $S \cup \{u\} \setminus \{v\}$ while keeping the number of edges incident to S greater than c. Therefore, we have a solution S', |S'| = k = b for MVC-B.

Now assume we have a solution S, |S| = b to MVC-B. Then at least c edges in E are incident to vertices in S. If we remove all vertices in S, by construction, $A(G'[V' \setminus S))$ will output 2 communities, $K_L \cup V_L \setminus S'_L$ and $K_R \cup V_R \setminus S'_R$. Then we have,

$$Q(A(G'), A(G'[V' \setminus S]) \ge a$$

as a is the maximum Q value for communities in the form $\{K_L \cup V_L \setminus S_L, K_R \cup V_R \setminus S_R\}$. Therefore, we have a solution S, |S| = b = k for our problem.

4 Conclusion

Since our problem statement has a solution if and only if *Maximum Vertex coverage - Bipartite Graph* has a solution, hence our problem statement is NP-Complete.