

Pontifícia Universidade Católica do Paraná

Plano de Ensino

Escola/Campus:	Escola Politécnica/Curitiba				
Curso:	Bacharel	ado em Ciênci	a da Computação (BCC)	Ano/Semestre:	2024/1
Código/Nome da disciplina:	Arquitet	Arquitetura de Sistemas Distribuídos, Paralelos e Concorrentes (ASDPC)			
Carga Horária:	120 hora	120 horas-aula			
Requisitos:	Programação Distribuída, Paralela e Concorrente				
Créditos:		Período: 7	Turma: U		Turno: Manhã e Noite
Professor Responsável:	Luiz Augusto de Paula Lima Jr.				

1. Ementa:

Esta disciplina, de natureza teórico-prática, é ofertada no sétimo período do Bacharelado em Ciência da Computação e destina-se a estudantes que desejam projetar e desenvolver aplicações distribuídas, paralelas e concorrentes usando algoritmos e plataformas distribuídas avançadas satisfazendo às requisições do sistema final visado, inclusive na presença de falhas. Mais especificamente, ao final da disciplina, o estudante será capaz de projetar e implementar algoritmos distribuídos, paralelos e concorrentes sobre diferentes classes de plataformas desenvolvendo, desta maneira, aplicações eficientes e robustas, mesmo em cenários reais suscetíveis a falhas. Para o melhor aproveitamento da disciplina é necessário conhecimento prévio de aspectos básicos de programação distribuída, paralela e concorrente.

2. Relação com disciplinas precedentes e posteriores

Esta disciplina é parte integrante do eixo de programação do curso, fornecendo a base conceitual e tecnológica necessária para a programação de sistemas computacionais complexos e de grande porte. Ela possui como pré-requisito a disciplina de Programação Distribuída, Paralela e Concorrente (3º período) empregando os resultados de aprendizagem desta última e contribuindo com as disciplinas de Complexidade de Algoritmos (7º. Período), porém considerando algoritmos distribuídos, paralelos e concorrentes e de Avaliação de Desempenho de Sistemas (8º. Período), na validação experimental de resultados obtidos analiticamente.

3. Temas de estudo

- **TE01** Conceitos Fundamentais (heterogeneidade e interoperabilidade, tendências, paradigmas e tunelamento)
- TE02 Coordenação Distribuída de Processos
- TE03 Middleware (princípios, classes, estudos de casos)
- **TE04** Algoritmos Distribuídos (projeto, análise e implementação)
- TE05 Computação na Presença de Falhas

4. Resultados de Aprendizagem

Competência	Elemento de Competência	Resultado de Aprendizagem	Temas de Estudo
Projetar infraestrutura computacional sustentável, com segurança e dependabilidade, considerando tecnologias, estrutura organizacional e plano diretor de tecnologia da informação, implantando e monitorando sua execução de forma ética e resiliente.	Planejar infraestrutura computacional sustentável e compartilhada para sistemas computacionais a partir de suas especificações	RA1. Projetar algoritmos distribuídos, paralelos e concorrentes eficientes de acordo com os requisitos da aplicação e com as condições do ambiente computacional	TE04
	Implantar a infraestrutura computacional, com domínio do processo de aquisição ou contratação de componentes de hardware e software, bem como do processo de instalação, configuração e integração desses componentes, levando em conta os preceitos éticos do relacionamento comercial	RA2. Desenvolver sistemas computacionais distribuídos, paralelos e concorrentes usando plataforma adequada de acordo com os requisitos da aplicação e com as condições do ambiente computacional	TE03
	Manter a infraestrutura computacional em conformidade com a sua especificação	RA3. Aplicar técnicas de coordenação distribuída de processos e tolerância a faltas para a concepção de aplicações corretas, eficientes e robustas	TE01 TE02 TE05

5. Mapa Mental

6. Metodologia e Avaliação

Alinhamento Construtivo					
Resultado de aprendizagem	Indicadores de desempenho	Processos de Avaliação	Métodos ou técnicas empregados**		
RA1. Projetar algoritmos distribuídos, paralelos e concorrentes eficientes de acordo com os requisitos da aplicação e com as condições do ambiente computacional	ID1.1: Identifica algoritmo distribuído adequado para a solução de um problema computacional específico ID1.2: Analisa a complexidade/eficiência de algoritmo distribuído ID1.3: Implementa algoritmo distribuído usando plataformas adequadas ID1.4: Compõe algoritmos distribuídos fundamentais para a solução de problemas complexos	PBL individual, com avaliação formativa e feedback coletivo Avaliação somativa individual e feedback PjBL em equipe, com avaliação somativa e feedback no momento da defesa	Aula expositiva dialogada PBL/PjBL Exercícios Será utilizado o ambiente virtual de aprendizagem para organização do material didático e para a interação com os estudantes.		
RA2. Desenvolver sistemas computacionais distribuídos, paralelos e concorrentes usando plataforma adequada de acordo com os requisitos da aplicação e com as condições do ambiente computacional	ID2.1: Implementa sistema distribuído possivelmente heterogêneo usando diferentes classes de middlewares ID2.2: Utiliza recursos de plataformas distribuídas, paralelas e concorrentes na construção de sistemas distribuídos ID2.3: Integra e configura componentes de um sistema distribuído de acordo com os requisitos e as condições de um sistema computacional	PBL individual, com avaliação formativa e feedback coletivo Avaliação somativa individual e feedback PjBL em equipe, com avaliação somativa e feedback no momento da defesa	Aula expositiva dialogada PBL/PjBL Exercícios Será utilizado o ambiente virtual de aprendizagem para organização do material didático e para a interação com os estudantes.		
RA3. Aplicar técnicas de coordenação distribuída de processos e tolerância a faltas para a concepção de aplicações corretas, eficientes e robustas	ID3.1: Utiliza corretamente ferramentas de coordenação distribuída de processos em um sistema distribuído ID3.2: Aplica técnicas de tolerância a falta de forma a melhorar robustez do sistema	PBL individual, com avaliação formativa e feedback coletivo Avaliação somativa individual e feedback PjBL em equipe, com avaliação somativa e feedback no momento da defesa	Aula expositiva dialogada PBL/PjBL Exercícios Será utilizado o ambiente virtual de aprendizagem para organização do material didático e para a interação com os estudantes.		

PBL: *Problem-Based Learning* ⇒ trabalho prático de curta duração, feito individualmente **PjBL**: *Project-Based Learning* ⇒ trabalho prático de longa duração, feito em equipe

Para a aprovação na disciplina é necessário obter uma média ponderada – M, conforme tabela abaixo – maior ou igual a 7,0 pontos. Será oportunizada uma recuperação parcial para estudantes que não atingirem média 7,0 ao longo semestre. Só terão direito a esta recuperação parcial estudantes que tiverem entregue todos trabalhos previstos na disciplina (excluindo-se TDE). Após o término do semestre, ainda haverá a semana estendida de recuperação. Têm direito a esta recuperação final somente estudantes com média M, tal que $4,0 \le M < 7,0$. Todas as recuperações serão por RA em que o estudante não atingiu nota mínima 7,0, e a nota obtida será truncada em 7,0 pontos. Caso seja necessária recuperação final, a nota final máxima do estudante será limitada a 7,0 pontos após a aplicação da ponderação por RA.

Abaixo, a tabela com os trabalhos (T_i), TDE e avaliações somativas (S_i) e a sua contribuição para cada RA, e a ponderação de cada RA na média final M.

	RA1	RA2	RA3
M	40%	40%	20%
T1	30%	20%	
T2		10%	20%
TDE	10%	10%	20%
S1		30%	30%
S2	60%	30%	30%

7. Cronograma de atividades

s	Data	Atividade Pedagógica	СН
1	19,21/2	Motivação e introdução à disciplina de ASDPC. Objetivos e tendências. Conceitos Fundamentais: heterogeneidade e interoperabilidade e aspectos de projeto. Introdução a Tolerância a Faltas.	6
2	26,28/2	Arquiteturas e Paradigmas de Comunicação (filtros, C/S, P2P, DSM). Fundamentos de comunicação. Pipes, ferramentas de comunicação básica (sockets). Experimentos e exercício prático e feedback.	6
3	4,6/3	Coordenação Distribuída de Processos Coordenação Distribuída de Processos na prática. Início TDE	6+2
4	11,13/3	Middlewares — princípios fundamentais e classificação Objetos Distribuídos: conceitos, arquitetura e experimentos	6+2
5	18,20/3	Objetos Distribuídos: desenvolvimento C/S básico. Objetos Distribuídos: aspectos avançados (NS, políticas e padrões). Início T1	6+2
6	25,27/3	OD: Exercícios adicionais e feedback	6+2
7	1,3/4	Web Services: conceitos e arquitetura Web Services-SOAP: experimentos e exercícios e feedback.	6+2
8	8,10/4	Web Services-REST Web Services-REST: experimentos e exercícios e feedback.	6+2
9	15,17/4	Defesas de Projeto T1 - Fim T1 Teste teórico somativo 1	6+2
10	22,24/4	MOM, DSM e Grid. O protocolo AMQP. AMQP: experimentos práticos e exercícios. Algoritmos Distribuídos: motivação — PjBL: broadcast - Fim TDE	6
11	29/4	Ambientes Computacionais Distribuídos: introdução, formalização e conceitos fundamentais. Feedback implementação do broadcast. Flooding e Wakeup Implementação prática. Exercício e feedback.	4
12	6,8/5	Percurso Distribuído. Computação distribuída em árvores: motivação e construção de spanning trees. Exercício e feedback. Início T2	6
13	13,15/5	Feedback implementação do algoritmo distribuído de construção de <i>spanning trees</i> . Tempo em Sistemas Distribuídos	6
14	20,22/5	Computação Distribuída na Presença de Falhas: Motivação via PBL. TMR. Replicação e Consistência de Dados e Consenso Distribuído	6
15	27,29/5	Defesas de Projeto T2 - Fim T2 Teste teórico somativo 2	6
16	3,5/6	Feedback e esclarecimento de dúvidas	6
17	10,12/6	Atividade de Recuração de RAs	6
18	17,19/6	Revisão, esclarecimento de dúvidas e preparação para recuperação final	6
	24/6	Recuperação da Semana Estendida	

8. Bibliografia

Todas as atividades contarão com o apoio de material preparado pelo professor sob a forma de slides, vídeos e exemplos de código disponibilizados no ambiente virtual de aprendizagem. Os seguintes livros poderão ser consultados na biblioteca da PUCPR pelos estudantes como fonte complementar:

8.1. Básica

- 1. TANENBAUM, A. S.; STEEN, M. Sistemas Distribuídos: Princípios e Paradigmas. 2a Edição, Prentice Hall, 2007.
- 2. COULOURIS, George; DOLLIMORE, Jean; KINDBERG, Tim. Sistemas Distribuídos: Conceitos e Projeto. Ed. Bookman, 2007.
- 3. ANDREWS, Gregory R. Foundations of multithreaded, parallel, and distributed programming. Massachusetts: Addison-Wesley, 2000. xx, 664 p. ISBN 0-201-35752-6.
- 4. LYNCH, Nancy A. Distributed Algorithms. San Francisco: M. Kaufmann 1997.

8.2. Complementar

- 1. SANTORO, N. Design and Analysis of Distributed Algorithms, John Wiley & Sons, 2006.
- 2. FOKKINK, W. Distributed Algorithms: An Intuitive Approach. The MIT Press, 2013.
- 3. BEN-ARI, M. **Principles of concurrent and distributed programming**. 2nd ed. Harlow, England: Addison-Wesley, 2006. xv, 361 p ISBN 0-321-31283-X (broch.).
- 4. Butenhof, D. R. (2006) Programming with POSIX Threads, Addison-Wesley, 2006.
- 5. Downey, A. B. The Little Book of Semaphores, Second Edition, 2016.

9. Acessibilidade

Não há necessidade de adaptação.

10. Adaptações para práticas profissionais

As atividades práticas previstas nesta disciplina podem ser feitas com acesso remoto a um servidor da PUCPR onde está instalado todo o software necessário para realizarem trabalhos, projetos e desenvolvimentos previstos.