1. Unidad 1: Espacios vectoriales

- 1. Realice las demostraciones de aquellas proposiciones vistas en clase que se dejaron como ejercicio.
- 2. Determine si los siguientes conjuntos son espacios vectoriales con el campo y operaciones dadas. En caso afirmativo, demuestre que se cumplen los 10 axiomas, en caso contrario, indique todos los axiomas que no se cumplen con un contraejemplo:
 - a) Polinomios de grado menor o igual que n con coeficientes reales no negativos, el campo real y las operaciones usuales.
 - b) Conjunto de las funciones $f \in C[a, b]$ tales que $|f(t)| \le 1$ para todo $t \in [0, 1]$.
 - c) Las funciones reales pares de variable real en el campo \mathbb{R} con las operaciones usuales.
 - d) $< \mathbb{R}^2, \mathbb{R}, \oplus, \cdot>$, donde el producto por escalar es el usual pero la suma \oplus se define como:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \oplus \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \end{pmatrix}.$$

e) $< \mathbb{R}^2, \mathbb{R}, \oplus, \cdot>$, donde el producto por escalar es el usual pero la suma \oplus se define como:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \oplus \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 + y_1 + 1 \\ x_2 + y_2 + 1 \end{pmatrix}.$$

 $f) < \mathbb{R}^2, \mathbb{R}, +, \odot >$, donde la suma de vectores es la usual pero el producto por escalar \odot se define como:

$$\lambda \odot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} 2\lambda x_1 \\ 2\lambda x_2 \end{pmatrix}.$$

- g) Las matrices 2×2 con entradas reales y determinante nulo, junto con el campo real y las operaciones usuales.
- 3. Demuestre que las matrices simétricas de orden $m \times n$ con entradas en \mathbb{K} y operaciones usuales forman un espacio vectorial.
- 4. Demuestre que \mathbb{C} con el campo \mathbb{R} y las operaciones usuales es un espacio vectorial.
- 5. Demuestre que $\mathbb C$ con el campo $\mathbb C$ y las operaciones usuales es un espacio vectorial.

- 6. Verifique cuál de los siguientes conjuntos W son subespacios del espacio vectorial V:
 - a) $W = \{(x, y) \in \mathbb{R}^2 : x \ge y\} \text{ con } V = \mathbb{R}^2.$
 - b) $W = \{(x, y) \in \mathbb{R}^2 : x = ay\} \text{ con } V = \mathbb{R}^2 \text{ y } a \in \mathbb{R} \text{ fijo.}$
 - c) $W = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\} \text{ con } V = \mathbb{R}^3 \text{ y } a, b, c \in \mathbb{R} \text{ fijos.}$
 - d) $W = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0\} \text{ con } V = \mathbb{R}^3.$
- 7. Verifique cuál de los siguientes conjuntos W son subespacios del espacio vectorial $V = \mathbb{K}^n$:
 - a) $W = \{(x_1, \dots, x_n) \in \mathbb{K}^n : a_1 x_1 + \dots + a_n x_n = 0\} \text{ con } a_1, \dots, a_n \in \mathbb{K} \text{ fijos.}$
 - b) $W = \{(x_1, \dots, x_n) \in \mathbb{K}^n : x_1 = 0\}.$
 - c) $W = \{(x_1, \dots, x_n) \in \mathbb{K}^n : x_1^2 + \dots + x_n^2 = 1\}.$
 - d) $W = \{(x_1, \dots, x_n) \in \mathbb{K}^n : x_1 = x_n\}.$
- 8. Verifique cuál de los siguientes conjuntos W son subespacios del espacio vectorial $V = P(\mathbb{K})[x]$, donde cada elemento de V se expresa de la forma $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ con $n \ge 0$:
 - a) $W = \{p(x) \in V : p'(x) \text{ es constante}\}\$, donde p'(x) es la derivada de p(x).
 - b) $W = \{p(x) \in V : n \le 5 \text{ y } a_n = 1\}.$
 - c) $W = \{p(x) \in V : n = 3 \text{ y } a_n = 1\}.$
 - d) $W = \{p(x) \in V : a_0 = 3a_n\}.$
 - e) $W = \{p(x) \in V : p(0) = 1\}.$
 - f) $W = \{p(x) \in V : p(x) = 0 \text{ o } grad(p(x)) \le 2\}.$
 - g) $W = \{p(x) \in V : p(x) = 0 \text{ o } a_0 + \ldots + a_n = 0\} \text{ con } n \le 3.$
- 9. Sea $V = \mathcal{M}_{n \times n}(\mathbb{K})$, con $n \ge 2$, como espacio vectorial sobre \mathbb{K} . Verifique cuáles de los conjuntos W son subespacios de V:
 - a) $W = \mathcal{M}_{n \times n}(\mathbb{K})^* = \{ A \in V : A \text{ es invertible } \}.$
 - $b)\ \ W=\{A\in V: A \ {\rm es \ triangular \ superior} \ \}.$
 - c) $W = \{A \in V : A \text{ es diagonal } \}.$
 - d) $W = \{A \in V : AB = BA\}$, donde $B \in V$ es una matriz fija.
 - e) $W = \{A \in V : A^2 = A\}$ (Una matriz A que cumple $A^2 = A$ se dice ser **idempotente**).

- 10. Se dice que el espacio vectorial V es la **suma directa** de sus subespacios U y W, denotado por $V = U \oplus W$ si todo vector $v \in V$ puede escribirse de una y sólo una forma como v = u + w, con $u \in U$ y $w \in W$. Demuestre que V es la suma directa de sus subespacios U y W si y sólo si V = U + W y $U \cap W = \{0\}$.
- 11. Sean $A = \begin{bmatrix} 2 & -1 & 0 & 3 \\ -4 & 0 & 1 & -2 \\ 0 & 1 & 5 & -1 \end{bmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{R})$ y S el conjunto solución del sistema de ecuaciones lineales homogéneo AX = O. Encuentre un conjunto de vectores en \mathbb{R}^4 que generen al subespacio S.
- 12. Muestre que los vectores v = (1 + i, 2i) y w = (1, 1 + i) en \mathbb{C}^2 son linealmente dependientes sobre el campo \mathbb{C} pero linealmente independientes sobre el campo \mathbb{R} .
- 13. Exprese al polinomio sobre \mathbb{R} , $p(x) = x^2 + 4x 3$ como una combinación lineal de los polinomios $p_1(x) = x^2 2x + 5$, $p_2(x) = 2x^2 3x$, $p_3(x) = x + 3$.
- 14. Encuentre una condición a imponer sobre $a, b, c \in \mathbb{R}$ para que $w = (a, b, c) \in \mathcal{L}((1, -3, 2), (2, -1, 1))$.
- 15. Sea V el espacio vectorial de las funciones de \mathbb{R} en \mathbb{R} . Pruebe que $f, g, h \in V$ son linealmente independientes, donde $f(x) = \sin x$, $g(x) = \cos x$, h(x) = x.
- 16. Sea V un espacio vectorial de dimensión finita n. Pruebe que un conjunto de n+1 vectores distintos de V forman un conjunto linealmente dependiente.
- 17. Suponga que u, v y w son linealmente independientes. Pruebe que también lo son u+v, u-v y u-2v+w.
- 18. Sea V el conjunto de todas las matrices cuadradas $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tales que a+d=0. Entonces
 - a) Pruebe que V es un espacio vectorial real con las operaciones usuales de suma de matrices y producto de un escalar por una matriz de V.
 - b) Encuentre una base para V.
- 19. Proporcione ejemplos de dos subespacios W_1 y W_2 de \mathbb{R}^2 tales que $\mathbb{R}^2 = W_1 + W_2$ y $W_1 \cap W_2 = \{0\}$.
- 20. Sea $W = \{(x, y, z, w) \in \mathbb{K}^4 : 2x y + z + 5w = 0\}$. Pruebe que W es un subespacio de \mathbb{K}^4 y encuentre una base para W.
- 21. Sea $W_1 = \mathcal{L}((i, 1+i, 1), (0, 1-i, i))$ y $W_2 = \mathcal{L}((1, i, 1+i), (i, 0, 1-i))$ subespacios complejos de \mathbb{C}^3 . Encuentre una base para $W_1 + W_2$.
- 22. Sean $W = \mathcal{L}((-2,1,3),(6,-5,17),(1,-1,5))$ subespacio real de \mathbb{R}^3 , $B_1 = \{(3,-2,2),(0,-1,13)\}$ y $B_2 = \{(1,0,-8),(-6,4,-4)\}$. Pruebe que B_1 y B_2 son bases de W.

- 23. Pruebe que $W = \{(s+4t, t, s, 2s-t+r) \in \mathbb{K}^4 : s, t, r \in \mathbb{K}\}$ es un subespacio de \mathbb{K}^4 , encuentre una base para W y su dimensión.
- 24. Encuentre el vector de coordenadas de $x = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ en \mathbb{R}^3 con respecto a la base ordenada

$$B = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} \right).$$

- 25. Considere el espacio vectorial $P_3(\mathbb{R})[t]$.
 - a) Muestre que $S = \{1, 1-t, (1-t)^2, (1-t)^3\}$ es una base de $P_3(\mathbb{R})[t]$.
 - b) Encuentre el vector de coordenadas de $u = 2 3t + 3t^2 + 2t^3$ respecto a S.
- 26. Sea W el subespacio de \mathbb{C}^3 generado por los vectores $u_1=(1,0,i)$ y $u_2=(1+i,1,-1)$. Entonces
 - a) Pruebe que $S = \{u_1, u_2\}$ forma una base de W.
 - b) Los vectores $v_1 = (1, 1, 0)$ y $v_2 = (1, i, 1 + i)$ pertenecen a W y forman una base de W.
 - c) Encuentre las coordenadas de u_1 y de u_2 en la base ordenada $B = (v_1, v_2)$.