Test: Statistics

1a. Let A and B be independent events, where $\mathrm{P}(A)=0.3$ and $\mathrm{P}(B)=0.6$

Find $P(A \cap B)$.

1b. Find $P(A \cup B)$.

1c. *Copy* the Venn diagram onto your answer sheet and shade the region that represents $A\cap B'$.

[1 mark]

1d. Find $P(A \cap B')$. [2 marks]

2a. A factory makes lamps. The probability that a lamp is defective is 0.05. A random sample of 30 lamps is tested.

Find the probability that there is at least one defective lamp in the sample. [4 marks]

2b. Given that there is at least one defective lamp in the sample, find the probability that there are at most two defective lamps. [4 marks]

3a. The following table shows the amount of fuel (y litres) used by a car to travel certain distances (x km).

Distance (x km)	40	75	120	150	195
Amount of fuel (<i>y</i> litres)	3.6	6.5	9.9	13.1	16.2

This data can be modelled by the regression line with equation y = ax + b.

Write down the value of a and of b. [2 marks]

3b. Explain what the gradient a represents. [1 mark]

3c. Use the model to estimate the amount of fuel the car would use if it is driven $110 \, \mathrm{km}$. [2 marks]

4a. The vectors $\mathbf{a}=\binom{4}{2}$ and $\mathbf{b}=\binom{k+3}{k}$ are perpendicular to each other.

Find the value of k. [4 marks]

4b. Given that c = a + 2b, find c. [3 marks]

5a. A standard die is rolled 36 times. The results are shown in the following table.

Score	1	2	3	4	5	6
Frequency	3	5	4	6	10	8

Write down the standard deviation.

[2 marks]

5b. Write down the median score.

[1 mark]

5c. Find the interquartile range.

[3 marks]

6a. Consider a function f(x) such that $\int_1^6 f(x) \mathrm{d}x = 8$

Find
$$\int_1^6 2f(x) dx$$

[2 marks]

6b. Find
$$\int_{1}^{6} (f(x) + 2) \, \mathrm{d}x$$

[4 marks]

7a. A van can take either Route A or Route B for a particular journey.

If Route A is taken, the journey time may be assumed to be normally distributed with mean 46 minutes and a standard deviation 10 minutes.

If Route B is taken, the journey time may be assumed to be normally distributed with mean μ minutes and standard deviation 12 minutes.

For Route A, find the probability that the journey takes ${\bf more}$ than ${\bf 60}$ minutes.

[2 marks]

7b. For Route B, the probability that the journey takes less than 60 minutes is 0.85.

Find the value of μ .

[3 marks]

- **7c.** The van sets out at 06:00 and needs to arrive before 07:00.
 - (i) Which route should it take?
 - (ii) Justify your answer.

[3 marks]

- **7d.** On five consecutive days the van sets out at 06:00 and takes Route B. Find the probability that
 - (i) it arrives before 07:00 on all five days;
 - (ii) it arrives before 07:00 on at least three days.

[5 marks]

8a. The weekly wages (in dollars) of 80 employees are displayed in the cumulative frequency curve below.

- (i) Write down the median weekly wage.
- (ii) Find the interquartile range of the weekly wages.

[4 marks]

8b. The box-and-whisker plot below displays the weekly wages of the employees.

Write down the value of

- (i) a;
- (ii) b;

(iii) c. [3 marks]

8c. Employees are paid \$ 20 per hour.

Find the median number of **hours** worked per week. [3 marks]

8d. Employees are paid \$20 per hour.

Find the number of employees who work more than 25 hours per week. [5 marks]