Graphing Data

Data

Length (cm)	Total time (sec)	Period (sec)
0	0	0
20	10 (a)	1.061
40	17	1.7
60	14.59	1.854
80	19.11	18 ता
100	7.1.23	2.123

Slope of T^2 vs. L plot: $\frac{.044 \text{ cm}}{\$e^{-2}}$ (include units)

Questions

1) Calculation of g (include all steps)

3
$$\frac{0.04+132 \text{ m}^2}{\text{cm}^2} \cdot \frac{4 \text{ m}^2}{\text{g}^2}$$
 $\frac{3}{\text{cm}^2} \cdot \frac{4 \text{ m}^2}{\text{g}^2}$ $\frac{3}{\text{cm}^2} \cdot \frac{4 \text{ m}^2}{\text{g}^2}}$ $\frac{3}{\text$

%error = [1980-8901/correct value] x 100

2) Length of a 1.00 sec simple pendulum 4.1836%,

Show your work or provide an explanation for how the length was

Show your work, or provide an explanation for how the length was determined. — ?

Sec²
$$\times \frac{1}{\text{Sec}^2} \cdot \frac{1}{\text{Se}^2} \cdot \frac{1}{\text{Se}^2} \cdot \frac{1}{\text{Se}^2} \cdot \frac{1}{\text{Se}^2} \cdot \frac{1}{\text{Se}^2} \cdot$$