Microeconomics 1

Session 9: Intertemporal choices and markets

Johan Hombert

HEC Paris, 2020

Road map

Time preference

Debt markets

Endowment economy

Production economy

Evidence

Time preference

Q. Do you prefer to eat a delicious chocolate today or in one year?

Time preference

- Q. Do you prefer to eat a delicious chocolate today or in one year?
- ▶ People usually prefer immediate utility over delayed utility
 - Uncertainty of human life
 - Excitement of immediate consumption
 - Discomfort of deferring available gratification
 - Underestimate future needs
 - etc.

Discounted utility

► Simple representation of time preference: discounted utility

$$U(c_0,...,c_T) = u(c_0) + \beta u(c_1) + ... + \beta^T u(c_T)$$

- $ightharpoonup \beta \le 1$ is the time discount factor
- ► Implicit assumptions
 - Time-separable and stationary
 - Exponential discounting

Discounted utility

► Simple representation of time preference: discounted utility

$$U(c_0,...,c_T) = u(c_0) + \beta u(c_1) + ... + \beta^T u(c_T)$$

- $ightharpoonup \beta \le 1$ is the time discount factor
- ► Implicit assumptions
 - Time-separable and stationary
 - Exponential discounting
- Q. A more patient individual has higher or lower beta?

Discounted utility

► Simple representation of time preference: discounted utility

$$U(c_0,...,c_T) = u(c_0) + \beta u(c_1) + ... + \beta^T u(c_T)$$

- \triangleright $\beta \le 1$ is the time discount factor
- ► Implicit assumptions
 - Time-separable and stationary
 - Exponential discounting
- Q. A more patient individual has higher or lower beta? higher

Road map

Time preference

Debt markets

Endowment economy

Production economy

Evidence

Debt markets

▶ Financial instrument to move resources across time: debt

► Total world credit: \$200 tn = 2.5x GDP

to firms: \$80 tn

to governments: \$70 tn

to households: \$50 tn

(excl. credit to financial sector to avoid double counting)

[source: BIS]

- Who are the lenders? → Other households and firms (mostly through financial institutions)
- Examples of debt instruments: loans, bonds, bank deposits, etc.

Debt markets

► Term structure of nominal interest rates, Euro Area [source: ECB]

Debt markets

► Real interest rate, France [source: AFT]

Road map

Time preference

Debt markets

Endowment economy

Production economy

Evidence

Model

- ▶ Two periods t = 0, 1
- Agents i=1,...,N have preferences $U_i=u(c_{i0})+\beta u(c_{i1})$ with u(.) increasing concave, time discount factor $\beta<1$
- Agents receive endowment of non-storable consumption good: y_{it} for agent i at date t
- ▶ NB: riskless endowment economy
 - Deterministic y_{it} (no risk)
 - Exogenous y_{it} (no production choice)
 - We'll relax both assumptions later

Autarky

Suppose no financial instruments

▶ Good non storable \Rightarrow $c_{i0} = y_{i0}$ and $c_{i1} = y_{i1}$ for all agents i

Q: This allocation is Pareto optimal: true or false?

Autarky

Suppose no financial instruments

▶ Good non storable $\Rightarrow c_{i0} = y_{i0}$ and $c_{i1} = y_{i1}$ for all agents i

Q: This allocation is Pareto optimal: true or false?

► False: Pareto improvement

• Agents with high y_{i1}/y_{i0} consume more at date 0 and less at date 1

• Agents with low y_{i1}/y_{i0} consume less at date 0 and more at date 1

Need a debt instrument

Debt market

- Debt instrument: risk-free bond
 - Lend 1 unit of consumption at date 0, get back 1 + r units at date 1
 - Borrow 1 unit of consump at date 0, pay back 1 + r units at date 1
 - r: interest rate determined in equilibrium

Q: The market with a risk-free bond is complete: true or false?

Debt market

- ▶ Debt instrument: risk-free bond
 - Lend 1 unit of consumption at date 0, get back 1+r units at date 1
 - Borrow 1 unit of consump at date 0, pay back 1 + r units at date 1
 - r: interest rate determined in equilibrium

Q: The market with a risk-free bond is complete: true or false?

▶ True: no risk \rightarrow only possible transaction = move resources between date 0 and date 1 \rightarrow achieved by risk-free bond

Equilibrium definition

- Equilibrium: all agents maximize and markets clear
- ▶ Agent *i* chooses (c_{i0}, c_{i1}, b_i) to max $u(c_{i0}) + \beta u(c_{i1})$ subject to

date 0 budget constraint:
$$c_{i0} + b_i \leq y_{i0}$$

date 1 budget constraint:
$$c_{i1} \le y_{i1} + (1+r)b_i$$

Market clearing

for bond:
$$\sum_{i=1}^{N} b_i = 0$$

for consumption good at date t = 1, 2: $\sum_{i=1}^{N} c_{it} = \sum_{i=1}^{N} y_{it}$

► Consolidate sequential budget constraints by eliminating b_i

$$\Rightarrow$$
 inter-temporal budget constraint: $c_{i0} + \frac{c_{i1}}{1+r} \le y_{i0} + \frac{y_{i1}}{1+r}$

- Interest rate: relative price of date 1 consump. / date 0 consump.
- LHS: date 0 price of intertemporal consumption
- RHS: date 0 price of intertemporal income
- First order conditions
 - w.r.t. c_{i0} : $u'(c_{i0}) \lambda_i = 0$ where $\lambda_i =$ multiplier of inter-temporal BC
 - w.r.t. c_{i1} : $\beta u'(c_{i1}) \frac{\lambda_i}{1+r} = 0$

► FOC
$$\Rightarrow$$
 $u'(c_{i0}) = (1+r)\beta u'(c_{i1})$

Intuition

• LHS: MU of 1 unit of consumption at date 0

 RHS: MU of saving 1 unit at date 0, lending it, and consuming the proceeds at date 1

"Euler equation"

► Euler equation holds for all agents

 \Rightarrow The intertemporal marginal rate of substitution $\frac{\beta u'(c_{i1})}{u'(c_{i0})}$ is equalized across all agents and is equal to $\frac{1}{1+r}$

- Analogy with static case
 - With several goods: MRS between goods is equalized across agents and equal to relative good prices (studied with Tristan)
 - With several states of nature: MRS between states is equalized across agents and equal to relative state prices (studied with Bruno)

QUIZ

Q. For a given intertemporal income $y_{i0} + \frac{y_{i1}}{1+r}$, an individual's consumption at date 0...

QUIZ

Q. For a given intertemporal income $y_{i0} + \frac{y_{i1}}{1+r}$, an individual's consumption at date 0... does not depend on her date 0's income

"Permanent income hypothesis"

- Solve with CRRA utility: $u(c) = (c^{1-\gamma} 1)/(1-\gamma)$
 - $\gamma \geq 0$: relative risk aversion
 - IMRS $\frac{\beta u'(c_{i1})}{u'(c_{i0})}=\beta\left(\frac{c_{i1}}{c_{i0}}\right)^{-\gamma}$ is a decreasing fcn of consump growth
- ► FOC ⇒ consumption growth is equalized across agents

$$\frac{c_{i1}}{c_{i0}} = [(1+r)\beta]^{1/\gamma}$$
 for all i

Market clearing

Equilibrium interest rate is determined by market clearing

Aggregate FOC across agents:
$$\sum_{i=1}^{N} c_{i1} = [(1+r)\beta]^{1/\gamma} \sum_{i=1}^{N} c_{i0}$$

- Market clearing for good at each date t=1,2: $\sum_{i=1}^{N} c_{it} = \sum_{i=1}^{N} y_{it} \equiv C_t$
- NB: mkt clearing for good implies mkt clearing for debt (Say's Law). Proof: aggregate inter-temporal budget constraints across agents

$$\Rightarrow$$
 Equilibrium interest rate: $1 + r = \beta^{-1} \left(\frac{C_1}{C_0}\right)^{\gamma}$

QUIZ

Q1. The equilibrium interest rate is higher when...

Q2. The equilibrium interest rate is higher when...

Comparative static

▶ Higher agg consump growth $\frac{C_1}{C_0}$ ⇒ equilibrium interest rate is higher

• Intuition: agents want to borrow to consume more at date $0 \Rightarrow r \uparrow$

▶ Agents are more impatient (lower β) \Rightarrow eqm interest rate is higher

• Intuition: agents want to borrow to consume more at date $0 \Rightarrow r \uparrow$

Debt market

- ▶ Who lends and who borrows?
 - FOC $\Rightarrow rac{c_{i1}}{c_{i0}} = rac{C_1}{C_0}$ (indiv consump gwth = agg consump gwth)
 - Inter-temporal BC: $c_{i0} + \frac{c_{i1}}{1+r} \leq y_{i0} + \frac{y_{i1}}{1+r}$

$$\Rightarrow c_{i0} = \frac{y_{i0} + \frac{y_{i1}}{1+r}}{C_0 + \frac{C_1}{1+r}} C_0$$

- Position in bond: $b_i = y_{i0} c_{i0} = \left(\frac{c_1}{c_0} \frac{y_{i1}}{y_{i0}}\right) \frac{y_{i0}}{1 + r + \frac{c_1}{c_0}}$
- ▶ Agents with income growth below agg income growth: lend

Agents with income growth above agg income growth: borrow

Welfare

Q. The equilibrium allocation is Pareto optimal: true or false?

Welfare

Q. The equilibrium allocation is Pareto optimal: true or false?

True

Intuition: lending/borrowing gains from trade are exhausted in equilibrium

• First Welfare Theorem applies (complete markets, no externality)

Road map

Time preference

Debt markets

Endowment economy

Production economy

Evidence

Production

- ▶ Same model as before + each agent has access to a production technology
 - Invest k units of good at date $0 \to \text{generate } f(k)$ units of goods at date 1
 - f(.) is the production function: increasing and concave (decreasing return to scale)
 - Equivalence with cost function representation: to produce y units, need c(y) units $\to c(.) = f^{-1}(.)$
- ▶ Some agents have better technologies than others: $f_i(.) = z_i f(.)$

Equilibrium definition

- Equilibrium: all agents maximize and markets clear
- ▶ Agent *i* chooses $(c_{i0}, c_{i1}, k_i, b_i)$ to max $u(c_{i0}) + \beta u(c_{i1})$ subject to

date 0 budget constraint:
$$c_{i0} + k_i + b_i \le y_{i0}$$

date 1 budget constraint:
$$c_{i1} \le y_{i1} + z_i f(k_i) + (1+r)b_i$$

▶ Market clearing for bond: $\sum_i b_i = 0$

Market clearing for good at date 0:
$$\sum_i c_{i0} + \sum_i k_i = \sum_i y_{i0}$$

Market clearing for good at date 1: $\sum_i c_{i1} = \sum_i y_{i1} + \sum_i z_i f(k_i)$

Building the intuition

Q1. Agents with high date 0 endowment y_{i0} tend to...

Q2. Agents with high productivity z_i tend to...

Building the intuition

Q1. Agents with high date 0 endowment y_{i0} tend to...

lend but not to invest more

Q2. Agents with high productivity z_i tend to...

borrow to invest more

Consolidate budget constraint to eliminate b_i

$$\max_{c_{i0},c_{i1},k_i} u(c_{i0}) + \beta u(c_{i1})$$

s.t.
$$c_{i0} + \frac{c_{i1}}{1+r} \le y_{i0} + \frac{y_{i1}}{1+r} + \left(-k_i + \frac{z_i f(k_i)}{1+r}\right)$$

- Investment decision is independent from consumption decision
- FOC w.r.t. k_i : $z_i f'(k_i) = 1 + r$
 - LHS: marginal productivity of capital
 - RHS: marginal cost of capital

$$k_i = f'^{-1} \left(\frac{1+r}{z_i} \right)$$

• k_i is increasing in productivity z_i (by concavity of f(.))

• k_i does not depend on endowment (y_{i0}, y_{i1})

FOC w.r.t. consumption: $u'(c_{i0}) = (1+r)\beta u'(c_{i1})$

Equilibrium

▶ Suppose Cobb-Douglas production function: $f(k) = k^{\alpha}$, $\alpha \in (0,1)$

$$\Rightarrow k_i = \left(\frac{\alpha z_i}{1+r}\right)^{\frac{1}{1-\alpha}} \qquad \Rightarrow z_i f(k_i) = \left(\frac{\alpha}{1+r}\right)^{\frac{\alpha}{1-\alpha}} z_i^{\frac{1}{1-\alpha}}$$

► Market clearing for good

at date 0:
$$\sum_{i} c_{i0} = \sum_{i} y_{i0} - \sum_{i} \left(\frac{\alpha z_i}{1+r} \right)^{\frac{1}{1-\alpha}}$$
 (C0)

at date 1:
$$\sum_{i} c_{i1} = \sum_{i} y_{i1} + \sum_{i} \left(\frac{\alpha}{1+r} \right)^{\frac{\alpha}{1-\alpha}} z_{i}^{\frac{1}{1-\alpha}}$$
 (C1)

Suppose CRRA utility and aggregate FOC w.r.t. consump across i

$$1 + r = \beta^{-1} \left(\frac{\sum_{i} c_{i1}}{\sum_{i} c_{i0}} \right)^{1/\gamma}$$
 (FOC)

lacktriangle Substitute agg consump in (FOC) using (C0) and (C1) ightarrow pins down r

Road map

Time preference

Debt markets

Endowment economy

Production economy

Evidence

Consumption

- Implications of complete markets
 - IMRS of consumption is equalized across agents
 - Permanent income hypothesis: current consumption depends on intertemporal income not current income
- Empirically
 - People borrow when young, save when middle aged, dis-save when retired: consistent with complete markets
 - However, does consumption depend to current income?

Test: consumption response to cash windfalls

Consumption response to cash windfalls

➤ Souleles, 1999, "The Response of Household Consumption to Income Tax Refunds," *American Economic Review* [paper]

TABLE 5-THE MARGINAL PROPENSITY TO CONSUME

	Food	Strictly nondurables	Total consumption	Durables	Nonvehicular durables
Refund* $\pi_{(2 \text{ weeks})}$	0.027	0.045**	0.344**	0.294**	0.128**
Number of observations	(0.017) 7,622	(0.021) 7,622	(0.116) 7,525	(0.122) 7,525	(0.061) 7,525

Investment

- Implications of complete markets
 - Marginal product of investment $z_i f'(k_i)$ is equalized across agents
 - ⇒ More productive agents employ more capital
 - Investment does not depend on current income
 - \Rightarrow Productive agents borrow to invest
- Empirically
 - Do firms invest more when they become more productive?

Test: investment response to patent grants

Does investment depend on wealth?

Test: investment response to cash windfalls

Investment response to patent grants

- ▶ Kogan, Papanikolaou, Seru and Stoffman, 2017, "Technological Innovation, Resource Allocation and Growth," *Quarterly Journal of Economics* [paper]
 - Patent grant in year t = 0
 - Productivity growth $\log(z_{it}) \log(z_{i0})$ in years $t = 1, \dots, 5$

1	2	3	4	5
0.013	0.017	0.019	0.023	0.024
[2.34]	[2.29]	[2.78]	[3.50]	[4.31]

• Capital growth $log(k_{it}) - log(k_{i0})$ in years t = 1, ..., 5

1	2	3	4	5
0.010	0.020	0.028	0.033	0.038
[8.24]	[6.89]	[6.07]	[4.66]	[4.33]

Investment response to cash windfalls

- Barrot and Nanda, 2020, "The Employment Effects of Faster Payment: Evidence from the Federal Quickpay Reform," Journal of Finance [paper]
 - Faster payment to small business gov't contractors: $y_{i0} \uparrow$, $y_{i1} \downarrow$
 - Firm size growth after the reform

Some research topics

- ► Macro finance: debt markets and consumption/investment
- ► Household finance: households' consumption and financial decisions
- Corporate innovation and corporate investment
- ► Corporate finance: financing frictions and real effects