Sistemas Distribuídos Comunicação em SD

Questões

 Porque os tradicionais mecanismos de comunicação entre processos utilizados em sistemas centralizados não podem ser utilizados em sistemas distribuídos?
 Como é possível permitir a comunicação entre processos em um sistema distribuído?

Introdução: Comunicação em Sistemas Distribuídos

- A diferença mais importante entre Sistemas Distribuídos e Sistemas Centralizados é a Comunicação Interprocesso (Interprocess Communication – IPC);
- Sistemas Centralizados
 - o memória compartilhada;
- Sistemas Distribuídos
 - o não existe memória compartilhada;
 - o Comunicação Interprocesso reformulada
 - Permitir que os processos se comuniquem para troca de dados ou acessos a recursos ou serviços em processadores remotos.

Introdução: Comunicação Interprocessos

- Sistema Distribuído é baseado na Troca de Mensagens (Message Passing);
- Exemplo:
 - Quando um Processo-A quer se comunicar com um Processo-B,
 o Processo-A constrói uma mensagem no seu próprio espaço de endereçamento (address space);
 - Em seguida, o Processo-A executa uma chamada de sistema (system call) que faz com que o sistema operacional pegue essa mensagem e envie pela rede para o Processo-B;
- Quais são os desafios (acordos e regras) necessários que permitem que os Processos A e B se comuniquem?

of, Emerson Paduan: emerson@paduan.dev.br

Protocolos: Conceitos Básicos

- Conjunto de regras, procedimentos e formatos para garantir a comunicação entre duas entidades geograficamente distintas
 - A seqüência de mensagens que devem ser trocadas;
 - O formato dos dados nas mensagens.
 - O ISO (International Standard Organization), desenvolveu um modelo de referência
 - diversos níveis envolvidos
 - o que deve ser tratado em cada nível;
 - Open Systems Interconnection Reference Model, ISO OSI ou, simplesmente, Modelo OSI.

Protocolos: Desafios

- Roteamento:
 - Prover o caminho mais eficiente para um pacote, através da aplicação de algoritmos de roteamento
- Controle de Congestionamento:
 - Evitar a degradação na vazão da rede através de atrasos no envio de pacotes;
 - Informar aos participantes da rota do pacote sobre o congestionamento.
- Internetworking:
 - Integrar diversos tipos de redes, endereçamento, protocolos, componentes de ligação (roteadores, bridges, hubs, switches).

Comunicação Interprocessos: Camadas de Serviços

Applications, services

Middleware

Operating system

Computer and network hardware

Prof. Emerson Paduan: emerson@paduan.dev.br

Comunicação Interprocessos: Modelo Cliente-Servidor

- A ideia é estruturar o sistema operacional como um grupo de processos cooperativos chamados:
 - Servidores: Oferecem serviços aos usuários;
 - o Clientes: Usam os serviços provido pelos Servidores.
- Uma máquina pode executar:
 - o Um único ou múltiplos processos clientes;
 - Um único ou múltiplos processos servidores;
 - o Ou uma combinação das alternativas anteriores.

Comunicação Interprocessos: Modelo Cliente-Servidor

Processos Clientes acionando individualmente Processos Servidores:

Client

Server

Process: Computer:

Troca de Mensagem: Endereçamento

• Endereçamento Máquina Processo:

- Não é transparente
 - se um servidor não estiver disponível teremos recompilação para poder realizar o serviço em outro servidor.

Prof. Emerson Paduan: emerson@paduan.dev.br

Troca de Mensagem: Endereçamento

• Endereçamento Aleatório:

 Broadcast gera carga extra de comunicação no sistema.

Troca de Mensagem: Endereçamento

• Endereçamento usando um Servidor de Nomes:

Problemas ????

Prof Emercon Paduan: emercon@naduan dev br

Troca de Mensagem: Primitiva Send

- Primitivas Bloqueadas (Síncronas):
 - Primitivas vistas até agora (send e receive) são chamadas primitivas bloqueadas.
 - Enquanto a mensagem está sendo enviada ou recebida, o processo permanece bloqueado (suspenso).

Troca de Mensagem: Primitiva Send

- Primitivas Não Bloqueadas (Assíncronas):
 - Quando um send é executado o controle retorna ao processo antes da mensagem ser enviada;
 - O processo que executa o send pode continuar processando enquanto a mensagem está sendo enviada.

Prof. Emerson Paduan: emerson@paduan.dev.bi

Troca de Mensagem: Primitiva Send

- Algumas Considerações:
 - A escolha do tipo de primitiva a ser usado (bloqueada ou não bloqueada) é feita pelo projetista do sistema;
 - O processo que executa o send não pode modificar o buffer de mensagem até a mensagem ter sido enviada;
 - Existem dois modos para o processo ficar sabendo que a mensagem já foi enviada:
 - Send com cópia desperdício do tempo de CPU com a cópia extra;
 - Send com interrupção torna a programação mais difícil e não portável

Questões

 Como implementar no cliente mecanismos de tolerância a falhas relacionados às chamadas enviadas aos servidores?

Troca de Mensagem: Confiabilidade das Primitivas

Mensagens de ACK individual

- 1: Requisição (Cliente para Servidor) 2: ACK (Kernel para Kernel)
- 3: Resposta (Servidor para Cliente) 4: ACK (Kernel para Kernel)

Troca de Mensagem: Implementação

- Detalhes de como a passagem de mensagem é implementada depende das escolhas feitas durante o projeto;
- Algumas considerações:
 - Há um tamanho máximo do pacote transmitido pela rede de comunicação;
 - Mensagens maiores precisam ser divididas em múltiplos pacotes que são enviados separadamente;
 - Alguns dos pacotes podem ser perdidos ou chegar na ordem errada;
 - Solução: Atribuir a cada mensagem o número da mensagem e um número de seqüência.

Troca de Mensagem: Implementação

- O acknowledgment pode ser para cada pacote individual ou para a mensagem como um todo;
 - No primeiro caso na perda de mensagem, somente um pacote precisa ser re-transmitido, mas na situação normal requer mais pacotes na rede de comunicação;
 - No segundo caso há a vantagem de menos pacotes na rede mas a desvantagem da recuperação no caso de perda de mensagem é mais complicada;
- Conclusão: A escolha de um dos dois métodos depende da taxa de perdas na rede.

Protocolo Cliente/Servidor

Código	Tipo	De	Para	Significado
REQ	Requisição	Cliente	Servidor	Solicitação de Serviço
REP	Resposta	Servidor	Cliente	Resposta à solicitação
ACK	Confirmação	Cliente Servidor	Servidor Cliente	A última mensagem chegou
AYA	Are You Alive?	Cliente	Servidor	Testa se o servidor está ativo
IAA	I Am Alive	Servidor	Cliente	Servidor ativo
TA	Try Again	Servidor	Cliente	Não posso atender
AU	Address Unknown	Servidor	Cliente	Não há processos com este endereço

Prof. Emerson Paduan: emerson@paduan.dev.br

24

Protocolo Cliente/Servidor

Protocolo Usado na Comunicação Cliente-Servidor (a)

Protocolo Usado na Comunicação Cliente-Servidor (b)

	REQ		
	ACK	Servidor	
Cliente	REP		
	ACK		

Prof. Emerson Paduan: emerson@paduan.dev.br

Protocolo Cliente/Servidor

Protocolo Usado na Comunicação Cliente-Servidor (c)

Protocolo Usado na Comunicação Cliente-Servidor (d)

