PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

LECTURE SLIDES Lecture 04 (August 01, 2019)

Independence

Observe that $P(B_1|W)=9/34<1/2=P(B_1)$, whereas $P(B_2|W)=5/17>1/6=P(B_2)$. Thus the "occurrence of one event is making the occurrence of a second event more or less likely".

Def: Let A and B be two events. They are said to be

- a) negatively associated if $P(A \cap B) < P(A)P(B)$,
- b) positively associated if $P(A \cap B) > P(A)P(B)$,
- c) independent if $P(A \cap B) = P(A)P(B)$.

- ▶ If P(B) = 0 then A and B are independent.
- ▶ If P(B) = 1 then A and B are independent.
- ▶ In particular any event A is independent of S and ϕ .

Theorem: If A and B are independent, so are A and B^c , A^c and B, A^c and B^c .

Def: A countable collection of events $E_1, E_2, ...$ are said to be pairwise independent if E_i and E_j are independent for $i \neq j$.

Def: A finite collection of events E_1, E_2, \ldots, E_n are said to be independent(or mutually independent) if for any sub-collection E_{n_1}, \ldots, E_{n_k} of E_1, E_2, \ldots, E_n ,

$$P\left(\bigcap_{i=1}^k E_{n_k}\right) = \prod_{i=1}^k P(E_{n_i}).$$

Def: A countable collection of events E_1, E_2, \ldots are said to be independent if any finite sub-collection are independent.

Remarks

- ▶ To verify the independence of $E_1, E_2, ..., E_n$ we must check $2^n n 1$ conditions. For example, for n = 3, the conditions that need to be checked are
- $P(E_1 \cap E_2) = P(E_1)P(E_2), P(E_1 \cap E_3) = P(E_1)P(E_3), P(E_2 \cap E_3) = P(E_2)P(E_3), P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2)P(E_3).$
- ► Independence implies pairwise independence.
- ▶ Pairwise independence does not imply independence in general. Example 1: Let $S = \{HH, HT, TH, TT\}$. Suppose all elementary events are equally likely. Let $E_1 = \{HH, HT\}$, $E_2 = \{HH, TH\}$ and $E_3 = \{HH, TT\}$. Then E_1, E_2, E_3 are pairwise independent but not independent because

$$1/4 = P(E_1 \cap E_2 \cap E_3) \neq P(E_1)P(E_2)P(E_3) = 1/8$$
.

▶ $P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2)P(E_3)$ is also not sufficient. Example 1: Let $S = \{(i,j) : i = 1, ..., 6, j = 1, ..., 6\}$. Suppose all elementary events are equally likely. Define $E_1 = \{1 \text{st roll is } 1, 2 \text{ or } 3\}$, $E_2 = \{1 \text{st roll is } 3, 4 \text{ or } 5\}$ and $E_3 = \{S \text{um of the rolls is } 9\}$.

Def: Given an event C two events A and B are said to be conditionally independent if $P(A \cap B|C) = P(A|C)P(B|C)$. Example 2: A box contains two coins: a fair coin and one fake two-headed coin (P(H)=1). You choose a coin at random and toss it twice. Define the following events.

A= First coin toss results in a H. B= Second coin toss results in a H. C= Coin 1 (regular) has been selected.

Then A and B are conditionally independent given C. Are A and B independent?