Capítulo 2 - Noções básicas de probabilidade

Conceição Amado, Ana Pires e M. Rosário Oliveira

2.1 Experiências aleatórias. Espaço de resultados. Acontecimentos

"Sempre que aplicamos matemática a fim de estudar alguns fenómenos de observação, devemos essencialmente começar por construir um modelo matemático (determinístico ou não) para esses fenómenos. "Neyman, J.

Definição: Um modelo que estipula que as condições sob as quais uma experiência é realizada determinam o resultado dessa experiência denomina-se modelo determinístico.

Exemplos: equação do movimento uniforme: $s(t) = v \times t$; lei de Ohm: $V = R \times I$.

Definição: Denomina-se modelo probabilístico quando a realização de uma dada experiência sob determinadas condições irá ter vários resultados possíveis, aos quais, se possível, vamos associar um número a que chamaremos probabilidade desse acontecimento.

Exemplos: fenómenos meteorológicos; euromilhões; lançamento de uma moeda . . .

Definição: Uma experiência aleatória é a realização de um fenómeno aleatório.

Características:

- (i) os resultados particulares são imprevisíveis mas é possível des-crever o conjunto dos resultados possíveis;
- (ii) apesar dos resultados particulares serem imprevisíveis é possív observar um padrão de regularidade ao fim de um grande número de realizações. (Repetibilidade)

Exemplos:

- jogos de azar:
 - ► lançamento de uma moeda; Szzhea, Ceo le
 - ► lançamento de um dado; x = h 1,2,3,4,5,6 €
 - escolha de uma carta num baralho.
- energia consumida numa reacção química;
- roduzidas em série. Szahidafeitussa, "na defeitussa" de peças produzidas em série.

Definição: Denomina-se por resultado possível ou elementar a toda e qualquer informação que pode ser registada como resultado de uma experiência aleatória.

Definição: Chama-se espaço de resultados ao conjunto de todos os resultados possíveis de uma experiência aleatória.

Representa-se geralmente por Ω ou S.

- A formulação de um modelo probabilístico associado a uma experiência aleatória inicia-se pela definição do espaço de resultados;
- Cada resultado elementar é representado por um e um só elemento de Ω ;
- Os elementos de Ω podem ser números, atributos ou uma combinação de elementos quantitativos e qualitativos;
- \triangleright Ω pode ser finito, infinito numerável ou infinito não numerável.

Exemplos:

Experiência	Ω
E ₁ lançamento de moeda	$\Omega_1 = \{cara, coroa\}$
E ₂ lançamento de dado	$\Omega_2=\{\; oldsymbol{\cdot}\;$, $oldsymbol{\cdot}\;$, $oldsymbol{\cdot}\;$, $oldsymbol{\cdot}\;$, $oldsymbol{\cdot}\;$, $oldsymbol{\cdot}\;$
E ₃ duração de chamada telefónica	$\Omega_3 = [0, +\infty[$
E ₄ classificação de uma peça	$\Omega_{4} = \{ \text{defeituosa}, \text{ n\~ao defeituosa} \} =$
	$= \{d, \; n\}$
E ₅ obs. sucessiva de peças até encontrar uma defeituosa	$\Omega_5 = \{\text{d, nd, nnd, nnnd, } \ldots\}$

Definição: Um acontecimento é um subconjunto do espaço de resultados de uma experiência aleatória.

- Em geral, os acontecimentos, são representados pelas primeiras letras maiúsculas do alfabeto latino.
- Alguns acontecimentos especiais. Seja $\Omega = \{\omega_1, \omega_2, \cdots, \omega_k, \cdots\}$ um espaço de resultados, então define-se acontecimento:
 - ightharpoonup elementar como sendo qualquer conjunto $\{\omega_i\}, \quad i=1,2,\cdots;$
 - ightharpoonup certo se contém todos os elementos de Ω ;
 - ▶ impossível se não contém nenhum elemento de Ω (conjunto \emptyset).

Exemplos:

```
E<sub>1</sub>: A_1 = \{\text{cara}\}

E<sub>2</sub>: A_2 = \{\text{n.}^\circ\text{de pontos inferior a 3}\} = \{ \boxdot, \circlearrowleft \}

(definição em compreensão) (definição em extensão)

E<sub>3</sub>: A_3 = \{\text{duração inferior a 30 unidades}\} = [0,30[ = [0,30]])

E<sub>4</sub>: A_4 = \{\text{d}\}

Ext. E<sub>1</sub>= Rougal moods, Rilea, Colon, A=\{\text{dot}, \text{for a colon, for a
```

Definição: Espaço de acontecimentos de uma experiência aleatória, \mathscr{A} , é o conjunto de todos os acontecimentos definidos num espaço de resultados.

Definição: Dada uma experiência aleatória, diz-se que <u>ocorreu</u> o acontecimento A se e só se ao realizar a experiência (uma única vez) o resultado obtido é um elemento de A.

Considere-se E_2 ,

- se o dado for lançado e sair \Box pode dizer-se que ocorreu A_2 ;
- se o dado for lançado e sair \odot pode dizer-se que não ocorreu A_2 .

Mais exemplos...

- E6 = Lançamento de dois dados, com faces numeradas de 1 a 6, com o objectivo de registar os números das faces voltadas para cima.
 - $\Omega = \{(\boxdot, \boxdot), (\boxdot, \boxdot), \ldots, (\boxminus, \boxminus)\}$ é o espaço de resultados e $\#\Omega = 36$.
 - O resultado (⊡, ⊡) é um acontecimento elementar/possível.
 - O acontecimento A="ocorrer faces iguais" é representado por $A = \{(\boxdot, \boxdot), (\boxdot, \boxdot), \ldots, (\boxminus, \blacksquare)\}.$
- E7 = Lançamento de dois dados, com faces numeradas de 1 a 6, com o objectivo de registar a soma dos números das faces voltadas para cima.
 - O espaço de resultados é $\Omega = \{2, 3, \dots, 12\}$ e $\#(\Omega) = 11$.
 - O acontecimento A="a soma das faces ser múltiplo de 3", que corresponde à ocorrência dos pares (\boxdot, \bigcirc) , (\boxdot, \bigcirc) é representado por $A = \{3, 6, 9, 12\}$. Se lançarmos os dados e sair (\boxdot, \bigcirc) dizemos que A se realizou.

Operações com acontecimentos (\Leftrightarrow operações com conjuntos):

- complementação (\overline{A}) ;
- união $(A \cup B)$;
- intersecção ($A \cap B$);
- diferença $(A \backslash B)$

Rever:

- diagramas de Venn;
- propriedades das operações (comutativas, associativas, distributivas, elementos neutros, elementos absorventes, leis de De Morgan, dupla negação).

Definição: Dois acontecimentos A e B dizem-se mutuamente exclusivos se não puderem ocorrer simultaneamente, ou seja, se $A \cap B = \emptyset$.

2.2 Noção de probabilidade. Interpretações de Laplace, frequencista e subjectivista.

Axiomas e teoremas decorrentes

A probabilidade é uma medida que pretende quantificar a "possibilidade" de ocorrência de cada acontecimento.

A noção de probabilidade é um conceito complexo, no entanto pode-se adiantar algumas das suas interpretações.

Dado um acontecimento A, pertencente a um determinado Ω , represente-se por P(A) a probabilidade desse acontecimento se realizar, a qual é traduzida por um número real no intervalo [0,1]. $P:A \longrightarrow [0,1]$ Interpretação/definição clássica ou de Laplace:

Dado um espaço de resultados com N elementos cuja ocorrência (por questões de simetria/indiferença) é igualmente possível, a probabilidade de qualquer acontecimento A é dada por

$$P(A) = \frac{\#A}{N} = \frac{\text{n.}^{\circ}\text{de casos favoráveis a } A}{\text{n.}^{\circ}\text{de casos possíveis}}$$

$$\Rightarrow \text{Rever cálculo combinatório.}$$

$$Ex: E \ge \text{longul dada (equilibrada)}$$

$$N \ge 6, A = 4 \text{ sour farte } 4 \times 4.6 \text{ to } 4.6 \text{ to$$

Limitação

A definição clássica não pode ser aplicada quando:

- o espaço de resultados tem um número infinito de elementos;
- os elementos não são igualmente possíveis.
- ⇒ São necessárias outras interpretações de probabilidade!

Definição: Dada uma experiência aleatória que se realizou n vezes, e um acontecimento A, chama-se frequência relativa do acontecimento A, ao quociente

$$f_n(A) = \frac{n(A)}{n}$$

onde n(A) representa o número de vezes que se observou o acontecimento A (ou seja, é a frequência absoluta de A).

Exemplo: Imagine-se uma experiência aleatória só com dois resultados possíveis mas que não sejam necessariamente igualmente possíveis. Pode ser o caso do lançamento de uma moeda em que não se tem a certeza de que a moeda é equilibrada ou a experiência E₄ da Secção 2.1 (classificação de peças em defeituosas ou não defeituosas).

Repetindo a experiência um número muito elevado de vezes observa-se que a frequência relativa dos acontecimentos elementares (que são só dois, neste caso), tende a estabilizar à medida que o número de repetições cresce (embora a sequência particular de valores seja imprevisível).

Nota 1: Programa (copy/paste no R)

```
n<-3000 ## n = número de repetições
p<-0.2 ## p = verdadeiro valor de P(A)
k<-10 ## k = número de sequências
aux<-rbinom(n,1,p)
plot(cumsum(aux)/(1:n),type="l",ylim=c(0,1),xlab="n",ylab="fn(A)",col="blue")
abline(h=p,lty=2,col=2)
for (i in 1:10){
aux<-rbinom(n,1,p)
if (interactive()) {cat("\nCarregue em <Return> para continuar: ")
readline()}
lines(cumsum(aux)/(1:n),col="blue")
}
```

Exemplo (cont.): O gráfico seguinte mostra 10 sequências de frequências relativas (fictícias) cada uma correspondendo a 3000 realizações de uma experiência aleatória com o verdadeiro valor de P(A) = 0.2. 1

¹Simulação com números pseudo-aleatórios. Código na Nota 1.

Interpretação/definição frequencista:

A probabilidade do acontecimento A, P(A), é o "limite" para o qual tende a frequência relativa, $f_n(A)$, quando $n \to \infty$.

Limitação: A definição frequencista não pode ser aplicada quando

- não é possível repetir a experiência um número muito elevado de vezes;
- não é possível repetir a experiência exactamente nas mesmas condições.

Exemplo:

Qual a probabilidade de ganhar o Totobola com uma única aposta?

- ► Há 3¹³ = 1594323 casos possíveis, mas não são igualmente possíveis! Inviabiliza a interpretação de Laplace
- Os jogos entre as mesmas equipas não correspondem a repetições nas mesmas condições do próximo jogo, nem são em número suficientemente elevado! Inviabiliza a interpretação frequencista

⇒ São necessárias outras interpretações de probabilidade!

Interpretação/definição subjectivista ou subjectiva:

Admite-se que cada pessoa pode atribuir a cada acontecimento um número — a que chama "probabilidade do acontecimento" — e que expressa o <u>seu</u> grau de credibilidade <u>pessoal</u> em relação à ocorrência do acontecimento.

A probabilidade subjectiva de um dado acontecimento pode variar de indivíduo para indivíduo, mas deve ser coerente para o mesmo indivíduo.

A coerência é garantida pela definição axiomática.

- Os axiomas são inspirados em propriedades verificadas pelas interpretações anteriores (clássica e frequencista) e a sua verificação é exigida no caso da interpretação sujectivista;
- Consoante a situação, é razoável admitir qualquer uma das interpretações.

Definição axiomática (axiomática de Kolmogorov):

As probabilidades dos acontecimentos pertencentes ao conjunto dos acontecimentos definidos em Ω , designado por \mathscr{A} (ver Obs. 1), é um número satisfazendo os três **Axiomas** seguintes:

Axioma 1 (não negatividade)
$$-P(A) \ge 0$$
, $\forall_A \in \mathscr{A}$

Axioma 2 (normalização) –
$$P(\Omega) = 1$$

Axioma 3 (sigma-aditividade)
$$\mathcal{P}\left(\bigcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P(A_i),$$

$$\forall_{A_1,A_2,...\in\mathscr{A}: A_i\cap A_j=\emptyset, \ (i\neq j)} \quad \text{(ver Obs. 2)}$$

Detalhes técnicos:

- Obs. 1 Se Ω for discreto \mathscr{A} pode conter todos os subconjuntos de Ω , caso contrário é necessário impor restrições;
- Obs. 2 Para mais detalhes sobre sigma-aditividade ver, por exemplo, Bauer, H. (2001), *Measure and Integration Theory*, Berlin: de Gruyter

Teoremas (Resultados) decorrentes dos Axiomas:

Os axiomas permitem estabelecer um conjunto de resultados para determinar probabilidades de acontecimentos resultantes de operações entre acontecimentos (mas é sempre necessária uma "base" de partida, obtida através de uma das interpretações anteriores).

Resultado 1:
$$P(\overline{A}) = 1 - P(A)$$

Demonstração: $A \cup \overline{A} = \Omega$, $A \cap \overline{A} = \emptyset$

pelo Axioma 3,
$$P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$$

pelo Axioma 2, $P(\Omega) = 1$ $\Rightarrow P(A) + P(\overline{A}) = 1$

Resultado 2:
$$P(\emptyset) = 0$$

Demonstração: consequência do Resultado 1 e do Axioma 1, pois $\emptyset = \overline{\Omega}$

Resultado 3: Se $A \subset B$ então $P(A) \leq P(B)$

Demonstração: Se $A \subset B$, pode escrever-se

$$B = A \cup (B \setminus A)$$
 e

$$A \cap (B \setminus A) = \emptyset$$

pelo Axioma 3,
$$P(B) = P(A) + P(B \setminus A)$$

pelo Axioma 2, $P(B \setminus A) \ge 0$

logo
$$P(B) \ge P(A)$$

B=B/A UAMB e mrefred/ exclusions

Obs.: Notar que para A e B genéricos (isto é, A não necessariamente contido em B), se tem $P(B \backslash A) = P(B) - P(A \cap B)$

(Exercício: demonstrar!)

Resultado 4: $\forall_{A,B}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Demonstração: Pode escrever-se $A \cup B = A \cup B \setminus A$ e como

$$A \cap B \setminus A = \emptyset$$

Usando:

Axioma 3: $P(A \cup B) = P(A) + P(B \setminus A)$

Resultado anterior: $P(B \setminus A) = P(B) - P(A \cap B)$

logo dá o resultado pretendido, pois

$$A \setminus BA \cap BB \setminus A$$

$$P(A \cup B) = P(A) + P(B \setminus A) = P(A) + P(B) - P(A \cap B).$$

Resultado 5: dados três acontecimentos A, B e C, quaisquer

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) -$$

$$-P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

$$+P(A \cap B \cap C)$$

Demonstração: Escrever $A \cup B \cup C = (A \cup B) \cup C$ e aplicar o resultado anterior.

Resultado 6: Dados k acontecimentos, A_1, A_2, \ldots, A_k , quaisquer

$$P(A_1 \cup \cdots \cup A_k) = P\left(\bigcup_{i=1}^k A_i\right) = \sum_{i=1}^k P(A_i) - \sum_{i< j=1}^k P(A_i \cap A_j) + \cdots + (-1)^{k+1} P(A_1 \cap \cdots \cap A_k)$$

Demonstração: Faz-se por indução, aplicando o Resultado 4.

2.3 Probabilidade condicionada

Cálculo de probabilidades quando há alguma informação adicional sobre o resultado de uma experiência.

É importante porque em muitos casos é mais fácil calcular probabilidades condicionadas do que não condicionadas

Exemplo: Considere-se o lançamento de um dado equilibrado com 6 faces $(\Omega = \{1, 2, 3, 4, 5, 6\})$, e os acontecimentos $P(116) = \frac{1}{6} = P(426)$

A - sai a face 2,
$$A = \{2\}$$

$$B$$
 - sai a face 1, $B = \{1\}$

$$C$$
 - sai face com número < 2 , $C = \{1, 2\}$

dado equilibrado
$$\Rightarrow P(A) = P(B) = \frac{1}{6}, P(C) = \frac{1}{3}.$$

Informação adicional: saiu face par (acontecimento D)

$$D = \{2,4,6\} \longrightarrow \text{espaço de resultados reduzido}$$

Sair for: $5^{2} = \frac{1}{2}, \frac{2}{4}, \frac{6}{6}$

2.3 (cont.)

Exemplo (cont.):

As probabilidades dos acontecimentos A, B e C, são alteradas em face da informação adicional de que ocorreu o acontecimento D!

Notação: representa-se por P(A|D) a probabilidade de A ocorrer sabendo que D ocorreu (pode ler-se probabilidade condicionada de A dado D).

É simples verificar que

no espaço reduzido
$$(D)$$

$$P(2|D) = P(A|D) = \frac{1}{3}$$

$$P(1|D) = P(B|D) = 0$$

$$P(h,2|D) = P(C|D) = \frac{1}{3}$$

no espaço original
$$(\Omega)$$

$$= \frac{P(A \cap D)}{P(D)} = \frac{1/6}{3/6} = \frac{1}{3}$$

$$= \frac{P(B \cap D)}{P(D)} = \frac{P(B \cap D)}{P(D)$$

2.3 (cont.)

Definição: A probabilidade condicionada do acontecimento A sabendo que ocorreu B (tal que P(B) > 0) é

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A probabilidade condicionada (sendo fixo o acontecimento condicionante, D, com P(D) > 0) é uma nova medida de probabilidade que verifica os Axiomas e os Resultados decorrentes destes.

A1.
$$P(A|D) \ge 0$$
 A2. $P(\Omega|D) = 1$

A3.
$$P\left(\bigcup_{i=1}^{+\infty} A_i | D\right) = \sum_{i=1}^{+\infty} P(A_i | D), \quad \forall_{A_1, A_2, \dots \in \mathscr{A}: A_i \cap A_j = \emptyset, \ (i \neq j)}$$

R1.
$$P(\overline{A}|D) = 1 - P(A|D)$$

R4.
$$P(A \cup B|D) = P(A|D) + P(B|D) - P(A \cap B|D)$$
 etc.

41: PCAID) >0 Derre: PCAID)=PCAND) >0 P(D) A2: P(2 D) = 1 Dern: PCDD = PCDD = 1 V A3: Se A1, ..., An, Sous acontecis AinAjeo titj $P(UA_i) = \sum_{i=1}^{\infty} P(A_i)$ P(U kilD) = P([U ki]nD) P(D) PD)

PD)

PD)

AinD c Ai

P(AinD)

P(D)

P(D)

$$\frac{P(A|B) = P(AnB)}{P(B)} = \frac{P(AnB)}{1 - P(B)}$$

2.4 Teoremas da probabilidade composta e da probabilidade total. Teorema de Bayes)

Muitas vezes P(A|B) é conhecida ou fácil de obter recorrendo ao espaço de resultados reduzido e a definição de probabilidade condicionada tem também grande aplicação no cálculo de probabilidades de intersecções, como é fácil de verificar se observarmos que: P(AIB) = P(AIB)

 \downarrow

P(B(A) = P(AB)

Lei das probabilidades compostas

(ou regra da multiplicação)

dados 2 acontecimentos tais que P(A) > 0 e P(B) > 0

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

2.4 (cont.)

Estas relações podem ser generalizadas e apresentadas no teorema seguinte.

Lei das probabilidades compostas (geral)

dados *n* acontecimentos tais que $P(\bigcap_{i=1}^{n-1} A_i) > 0$

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots \cdots P(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1})$$

2.4 (cont.)

(ou seja são exaustivos e mutuamente exclusivos)

2.4 (cont.)

Teorema da probabilidade total

Se A_1 , A_2 , ..., A_m é uma partição de Ω tal que $P(A_i) > 0$, \forall_i , então

$$P(B) = P(B|A_1)P(A_1) + \cdots + P(B|A_m)P(A_m)$$

Teorema de Bayes

Se A_1 , A_2 , ..., A_m é uma partição de Ω tal que $P(A_i) > 0$, \forall_i , então para qualquer acontecimento B tal que P(B) > 0

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + \dots + P(B|A_m)P(A_m)}$$

Exercício

Exercéplo: Adrecita que rece cuédicos observas reve conjunto A de sentorios mem force ente. O médicos de me de decidir qual das possiveis doenças hon D2, D3 l'é à mais proservel.

De acordo com conhecemento a priori pour este propular eue risco: P(D1)=0-4, P(D2)=0-25 e P(D3)=0-35

P(AD)=0.8, P(AD)=0.6 e P(AD)=0.9

(a) Calcule Pus de veu reduciduo desta forfulent afresenter os sintomos A. (Resp.: P(A) = 0.785)

(b) Se un faciente desenvolve es sinfo mas A, qual das 3 é a dienço mois prossvé!?

Resp. PCD₁(A) = 0.408, PCD₂(A) = 0.191, PCD₃(A) = 0.401) (a) P(A) = P(A \cap D_1) + P(A \cap D_2) + P(A \cap D_3)

(b)
$$P(D_i | A) = P(A \cap D_i) = P(A | D_i) P(D_i)$$
 $P(A)$
 $P(A)$

Escercício: Nos parques medrestrians Ar, t2 pA3 a percentagerse de enfre-8as dedicadas ous sector textil são 10%, 40% e 25%, respectivos

Escolheredo une parque ao acaso « nele una cuefresa ao acaso qual a probabilidade de a cuefresa escolhida ser una cuefresa fertil?

ARB SOD rudef 180e P.

(i) P(B) >0, P(A|B) = P(A) (1)

(ii) P(A) >0, P(B|A) = P(B) (2)

2.5 Acontecimentos independentes

Definição: Dois acontecimentos A e B são independentes $(A \perp \!\!\! \perp B)$ se e só se

$$P(A \cap B) = P(A)P(B).$$

Observações:

- Esta definição é sempre válida.
- Se A é tal que P(A) = 0, então A é independente de qualquer outro acontecimento;
- ► Todo o acontecimento A é independente dos acontecimentos \emptyset e de Ω .
- ▶ se P(A) > 0 e P(B) > 0 e $A \cap B = \emptyset$ (A e B mutuamente exclusivos), então A e B não são independentes;
- Se $A \perp B$ então P(A|B) = P(A) e P(B|A) = P(B), para $A \in B$ tais que P(A) > 0 e P(B) > 0.
- ► Se $A \perp \!\!\!\perp B$ então $\overline{A} \perp \!\!\!\perp B$, $A \perp \!\!\!\perp \overline{B}$ e $\overline{A} \perp \!\!\!\!\perp \overline{B}$.

Exercício: demonstrar as afirmações anteriores.

2.5 (cont.)

Independência de mais do que dois acontecimentos

Definição: A_1 , A_2 , ..., A_n são acontecimentos mutuamente ou completamente independentes se para qualquer número inteiro $2 \le r \le n$ e qualquer grupo de r acontecimentos

$$A_{i_1}$$
, A_{i_2} , ..., A_{i_r}

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_r}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_r})$$

Por exemplo:

A, B e C são (mutuamente) independentes se

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

2.5 (cont.)

Definição: Dois acontecimentos são A e B são condicionalmente independentes em relação a um acontecimento C se

Observar que:

Independência entre A, B e C implica independência condicional mas não o contrário, i.e, a independência condicional não implica a independência no sentido corrente, a não ser quando $C = \Omega$.