LSTM Time Series Predictor for COVID-19

Sophie Zheng (sz374)

github: <a href="https://github.com/sophiezheng0711/LSTM-Covid-Predictor">https://github.com/sophiezheng0711/LSTM-Covid-Predictor</a>

**Section 1: Introduction** 

COVID-19 has been arguably the biggest life-changer for our generation. It has made 2020 void of vacation, reunions, parties, gatherings, etc. Visiting the John Hopkins COVID website has become a daily routine, making us wonder: when will this disaster end?

Using existing data on COVID-19 in the United States (From January 2020 to November 2020), I decided to use machine learning to predict the number of cases of COVID-19 in the US. I am using an LSTM (Long Short-Term Memory) RNN (Recurrent Neural Network) architecture. LSTMs are generally known for predicting the stock market prices and completing the given sentence, and are widely used in fields such as NLP(Natural Language Processing). Due to the limited knowledge of the virus the current world possesses, no known model is able to accurately predict the number of cases of COVID-19. Therefore, this project only aims to predict a fairly accurate trend. I am using Python and Pytorch, which is a commonly-used module for Deep Learning.

**Section 2: Background** 

In this section, I will introduce the background of Deep Neural Networks (DNNs) and LSTMs related to this project.

2.1: DNN

DNNs, or Deep Neural Networks, is a neural network with multiple layers between the input and output. The intuition behind this is when data is not clearly linearly separable (or,

1

either "black" or "white"), we take the data to higher dimensions by analyzing more features to attempt to separate the data. Like this intuition, DNNs are commonly used to train classifiers. A common algorithm used in the training of these networks is backpropagation, which computes the gradient of the loss function (in other words, the penalty for the model) and efficiently updates the weights of the model. There are many choices for the loss function. In our case, we chose the Mean Squared Error (MSE) loss, which is defined as follows:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Where Y is the true value of the sample, and  $\hat{Y}$  is the predicted value by the model. This is a common method to evaluate estimated parameters, very similar to the MLE methods we learned in class. This also looks very similar to the sample variance formula. In addition, we need to choose an optimizer for the model. There are many of these, and I will not go into detail in this paper. Common ones are Stochastic Gradient Descent, Adam, and Adagrad. We will use Adam (Adaptive Moment Estimation) for our model. This optimizer is known for its adaptive trait and its minimal needs for hyperparameter optimization.

### 2.2: LSTM

Long Short-term Memory (LSTM) is a Recurrent Neural Network (RNN, a type of DNN) architecture. It can not only process single data points, but also sequences of data. A common LSTM is composed of an input gate, an output gate, and a forget gate. In Pytorch terminology, that is an input layer, lstm layers, dropout layers, and an output layer.



LSTMs are more focused on the order of data than normal RNNs. Thus, they excel on jobs such as text sentiment analysis, and time series predictions--which is why we chose LSTM to predict COVID-19.

# **Section 3: Data and Preprocessing**

We will be using the time series COVID-19 US dataset provided by spdin (see [data\_source] in Appendix). The data roughly looks like the image below:

|    | Α        | В    | C    | D     | E    | F         | G            | Н           | 1          | J          | K             | L       | M       | N       | 0      |
|----|----------|------|------|-------|------|-----------|--------------|-------------|------------|------------|---------------|---------|---------|---------|--------|
| 1  | UID      | iso2 | iso3 | code3 | FIPS | Admin2    | Province_Sta | Country_Reg | Lat        | Long_      | Combined_K    | 1/22/20 | 1/23/20 | 1/24/20 | 1/25/2 |
| 2  | 84001001 | US   | USA  | 840   | 1001 | Autauga   | Alabama      | US          | 32.5395275 | -86.644082 | Autauga, Ala  | 0       | 0       | 0       |        |
| 3  | 84001003 | US   | USA  | 840   | 1003 | Baldwin   | Alabama      | US          | 30.7277499 | -87.722071 | Baldwin, Alal | 0       | 0       | 0       |        |
| 4  | 84001005 | US   | USA  | 840   | 1005 | Barbour   | Alabama      | US          | 31.868263  | -85.387129 | Barbour, Ala  | 0       | 0       | 0       |        |
| 5  | 84001007 | US   | USA  | 840   | 1007 | Bibb      | Alabama      | US          | 32.9964206 | -87.125115 | Bibb, Alabam  | 0       | 0       | 0       |        |
| 6  | 84001009 | US   | USA  | 840   | 1009 | Blount    | Alabama      | US          | 33.9821092 | -86.567906 | Blount, Alaba | 0       | 0       | 0       |        |
| 7  | 84001011 | US   | USA  | 840   | 1011 | Bullock   | Alabama      | US          | 32.1003053 | -85.712655 | Bullock, Alab | 0       | 0       | 0       |        |
| 8  | 84001013 | US   | USA  | 840   | 1013 | Butler    | Alabama      | US          | 31.753001  | -86.680575 | Butler, Alaba | 0       | 0       | 0       |        |
| 9  | 84001015 | US   | USA  | 840   | 1015 | Calhoun   | Alabama      | US          | 33.7748373 | -85.826304 | Calhoun, Ala  | 0       | 0       | 0       |        |
| 10 | 84001017 | US   | USA  | 840   | 1017 | Chambers  | Alabama      | US          | 32.9136008 | -85.390727 | Chambers, A   | 0       | 0       | 0       |        |
| 11 | 84001019 | US   | USA  | 840   | 1019 | Cherokee  | Alabama      | US          | 34.1780598 | -85.60639  | Cherokee, Al  | 0       | 0       | 0       |        |
| 12 | 84001021 | US   | USA  | 840   | 1021 | Chilton   | Alabama      | US          | 32.8504413 | -86.717326 | Chilton, Alab | 0       | 0       | 0       |        |
| 13 | 84001023 | US   | USA  | 840   | 1023 | Choctaw   | Alabama      | US          | 32.0222734 | -88.265644 | Choctaw, Ala  | 0       | 0       | 0       |        |
| 14 | 84001025 | US   | USA  | 840   | 1025 | Clarke    | Alabama      | US          | 31.6809986 | -87.835486 | Clarke, Alaba | 0       | 0       | 0       |        |
| 15 | 84001027 | US   | USA  | 840   | 1027 | Clay      | Alabama      | US          | 33.2698419 | -85.858361 | Clay, Alabam  | 0       | 0       | 0       |        |
| 16 | 84001029 | US   | USA  | 840   | 1029 | Cleburne  | Alabama      | US          | 33.676792  | -85.520059 | Cleburne, Ala | 0       | 0       | 0       |        |
| 17 | 84001031 | US   | USA  | 840   | 1031 | Coffee    | Alabama      | US          | 31.3993283 | -85.98901  | Coffee, Alaba | 0       | 0       | 0       |        |
| 18 | 84001033 | US   | USA  | 840   | 1033 | Colbert   | Alabama      | US          | 34.6984745 | -87.801685 | Colbert, Alab | 0       | 0       | 0       |        |
| 19 | 84001035 | US   | USA  | 840   | 1035 | Conecuh   | Alabama      | US          | 31.434017  | -86.9932   | Conecuh, Ala  | 0       | 0       | 0       |        |
| 20 | 84001037 | US   | USA  | 840   | 1037 | Coosa     | Alabama      | US          | 32.9369015 | -86.248477 | Coosa, Alaba  | 0       | 0       | 0       |        |
| 21 | 84001039 | US   | USA  | 840   | 1039 | Covington | Alabama      | US          | 31.2477854 | -86.450509 | Covington, A  | 0       | 0       | 0       |        |
| 22 | 84001041 | US   | USA  | 840   | 1041 | Crenshaw  | Alabama      | US          | 31.729418  | -86.315931 | Crenshaw, A   | 0       | 0       | 0       |        |
| 23 | 84001043 | US   | USA  | 840   | 1043 | Cullman   | Alabama      | US          | 34.130203  | -86.86888  | Cullman, Ala  | 0       | 0       | 0       |        |
| 24 | 84001045 | US   | USA  | 840   | 1045 | Dale      | Alabama      | US          | 31.4303712 | -85.610957 | Dale, Alabam  | 0       | 0       | 0       |        |
| 25 | 84001047 | US   | USA  | 840   | 1047 | Dallas    | Alabama      | US          | 32.326881  | -87.108667 | Dallas, Alaba | 0       | 0       | 0       |        |
| 26 | 84001049 | US   | USA  | 840   | 1049 | DeKalb    | Alabama      | US          | 34.4594686 | -85.807829 | DeKalb, Alab  | 0       | 0       | 0       |        |
| 27 | 84001051 | US   | USA  | 840   | 1051 | Elmore    | Alabama      | US          | 32.5978541 | -86.144153 | Elmore, Alab  | 0       | 0       | 0       |        |
| 28 | 84001053 | US   | USA  | 840   | 1053 | Escambia  | Alabama      | US          | 31.1256789 | -87.159187 | Escambia, Al  | 0       | 0       | 0       |        |

This dataset is updated until 11/23/2020. As stated in Section 1, we are only interested in the total confirmed cases in the US daily, we do not need columns 1 to 11. We also do not need the division between states and counties, as we are only interested in the total amount daily.

Keeping this in mind, we begin preprocessing the data.

```
df = pd.read_csv("./data/time_series_covid19_confirmed_US.csv")
df = df.iloc[:, 11:]
df.isnull().sum().sum()
daily_cases = df.sum(axis=0)
daily_cases.index = pd.to_datetime(daily_cases.index)
daily_cases = daily_cases.diff().fillna(daily_cases[0]).astype(np.int64)
daily_cases.head()
```

As shown above, we first read in the data, then we delete the unnecessary columns. Then we sum across all rows, and we reformat the data. The data is also given in cumulative sums across the days, and we only want the daily increase. In addition, we need to divide the dataset into a training set and a test set, where the training set is "learning material" for our LSTM model, and the test set is our evaluation criteria. In this model, I set the test data size to 60, and the rest will be training data. In addition, given the "short-term" nature of LSTM models, we would like to further divide the training and testing data into smaller "windows". We do so by the following code:

```
def preprocess(raw, lookback):
    xs = []
    ys = []
    for i in range(len(raw) - lookback - 1):
        x = raw[i:(i+lookback)]
        y = raw[i+lookback]
        xs.append(x)
        ys.append(y)
    return np.array(xs), np.array(ys)

test_data_size = 60
lookback = 4
train_data = daily_cases[:-test_data_size]
test_data = daily_cases[-test_data_size:]
scaler = MinMaxScaler()
scaler = scaler.fit(np.expand_dims(train_data, axis=1))
```

```
train_data = scaler.transform(np.expand_dims(train_data, axis=1))
test_data = scaler.transform(np.expand_dims(test_data, axis=1))
```

After preprocessing, the data looks like this:



Here, we also need to normalize the data so that it ranges from 0 to 1. This is to aid any use of activation functions like ReLU and tanh. Here, we use the MinMaxScaler function provided by scipy, a commonly used statistical analysis tool for Python. Eventually, after training, we will have to revert this operation so that real data values are displayed instead of normalized ones.

## **Section 4: Model Construction and Training**

This LSTM model architecture is inspired by [model\_inspiration] in Appendix. It is a simple LSTM model consisting of 2 LSTM layers and 1 dense layer (or linear layer). Each LSTM consists of 32 hidden nodes. The input to the model is 1, as there is 1 number per day; the output of the model is 1, for the same reason. Thus, we construct our model with Pytorch as follows:

```
class CovidPredictor(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
```

```
super(CovidPredictor, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = torch.nn.LSTM(input_dim, hidden_dim, num_layers, dropout=0.2,
batch_first=True)
self.dense = torch.nn.Linear(hidden_dim, output_dim)

def forward(self, x):
   h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
   c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
   out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
   out = self.dense(out[:, -1, :])
   return out

model = CovidPredictor(input_dim=input_dim, hidden_dim=hidden_dim, num_layers=num_layers, output_dim=output_dim)
```

In addition, we need to define a loss function and an optimizer for this model. In our case, we chose the MSE function as the loss function, and Adam as the optimizer (with learning rate 0.01). Both are commonly used in Deep Learning.

```
loss_fn = torch.nn.MSELoss(size_average=True)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
```

This concludes the Model Construction of our model, and it's time for the training!

For training, we first allow our model to make the prediction. Then, we have to penalize/reward it for its prediction given the true answer. We then return this result to the model, and allow it to update the weights using backpropagation (described in Section 2). Pytorch makes this process extremely easy:

```
for epoch in range(epochs):
    output = model(x_train)
    training_pred = output.detach().numpy()
    loss = loss_fn(output, y_train)
    if epoch % 10 == 0 and epoch !=0:
        print("Epoch ", epoch, "MSE: ", loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

And this is it! Our model has been trained. It is ready to be tested!

#### **Section 5: Test Results**

As mentioned in Section 3, we need to reverse the normalization before we plot the predictions and analyze the results:

```
test_pred = scaler.inverse_transform(model(x_test).detach().numpy())
test_plot = scaler.inverse_transform(y_test.detach().numpy())
train_pred = scaler.inverse_transform(training_pred)
train_plot = scaler.inverse_transform(y_train.detach().numpy())
```

I decided to concatenate the training predictions and the test predictions to compare the model performance. After doing so, we use matplotlib, a common Python graph maker, to create the graphs:

```
plt.plot(np.concatenate((train_pred, test_pred)), label="prediction")
plt.plot(np.concatenate((train_plot, test_plot)), label="data")
plt.axvline(x=len(x_train), c='r', linestyle='--')
plt.legend()
plt.show()
```

After executing the code, we see that our model has predicted a fairly accurate trend of the number of cases of COVID-19. In the graph below, the blue line represents the prediction of the model, while the yellow line is the real data. The red dotted line divides the training data (left) and the test data (right). As we can see, our model is slightly overfit to the training data, since it's very accurate during the training phase, but not as much during the testing phase. This could be due to the small amount of data we have (COVID has been around for only a year), and the simple structure of our model.



### **Section 6: Conclusion**

Overall, our LSTM model successfully completed the task to approximate the trend of COVID-19. It is a shame that the number of cases in the US seems to be steadily increasing, but it is delightful to see our model's stunning performance in Section 5. LSTMs are known for good performance in time series predictions, like the stock market prices, airline passengers (see [LSTM\_inspiration] in Appendix), and now, COVID-19 predictions. Although not perfect, our model shows great potential for machine learning in the study of COVID-19, and the importance of statistical analysis in real-world problems.

## **Section 7: Appendix**

[LSTM\_inspiration]:

 $https://github.com/spdin/time-series-prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytorch/blob/master/Time\_Series\_Prediction-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-pytor-lstm-py$ 

ction\_with\_LSTM\_Using\_PyTorch.ipynb

[data\_source]:

https://github.com/CSSEGISandData/COVID-19/blob/master/csse\_covid\_19\_data/csse\_covid\_1

9\_time\_series/time\_series\_covid19\_confirmed\_US.csv

[model\_inspiration]:

https://www.kaggle.com/taronzakaryan/stock-prediction-lstm-using-pytorch

[lstm\_explanation]:https://en.wikipedia.org/wiki/Long\_short-term\_memory