

Preet Kanwal

Department of Computer Science & Engineering

Unit 1

Preet Kanwal

Department of Computer Science & Engineering

Automata Formal Languages and Logic Unit 1 - Minimization of DFA

Minimization of DFA (Table Filling Algorithm)

- In converting an NFA to a DFA, the DFA's states correspond to set of NFA states.
- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.
- Minimization of a DFA ensures that the resulting DFA (after minimization) has the least possible states.
- The advantages of having a minimal DFA are: Faster Execution: The more the number of states the more time the DFA will take to process a string, hence minimization ensures faster execution.

Unit 1 - Minimization of DFA

Minimization of DFA (Table Filling Algorithm)

Step I: Eliminate Unreachable States

Step II: Mark Distinguishable Pair of States (Final, Non-Final States)

Step III: If there are any Unmarked pairs (M, N) make the following Check: if $\delta(M, a) = X$ and $\delta(N, a) = Y&& (X, Y)$ is marked then, Mark (M, N) also.

Repeat Step III until no new states can be marked.

Step IV: Combine all the unmarked pairs and make them a single state in the minimized DFA.

Unit 1 - Minimization of DFA

PES UNIVERSITY ON LINE

Example 1:Minimize the following DFA.

Unit 1 - Minimization of DFA

Solution:

Final Table

q1	X			
q2	X			e.
*q3	X	X	X	
*q4	X	X	X	
	q0	q1	q2	* q3

Minimized DFA

States merged:

- {q1, q2}
- {q3, q4}

Unit 1 - Minimization of DFA

Example 2: Minimize the following DFA.

Unit 1 - Minimization of DFA

Solution:

Final Table

*q1	X				
q2		X			
*q3	X		X		
q4		X		X	
*q5	X		x		X
	q0	*q1	q2	*q3	q4

Minimized DFA

States merged:

- {q0,q4}, {q0, q2} and {q2, q4}
- {q1,q5}, {q1,q3} and {q3,q5}

Unit 1 - Minimization of DFA

PES UNIVERSITY ONLINE

Example 3: Minimize the following DFA.

Unit 1 - Minimization of DFA

Solution:

Final Table

q1	Χ				
q2		X			
q3 q4	X	X	X		
q4	Χ	Χ	Χ		
q5	Χ	X	X		Χ
	q0	q1	q2	q3	q4

Minimized DFA

States merged:

- {q0, q2}
- {q3, q5}

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724