คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานก๊าซธรรมชาติผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

- 1. เครื่องยนต์ปั่นไฟ
- 2. ถังบรรจุก๊าซธรรมชาติ
- 3. วาล์วเปิดก๊าซ
- 4. เซนเซอร์วัดอัตราการไหลของก๊าซ
- 5. ตู้ควบคุม
- 6. หน้าจอแสดงผล
- 7. Emergency Switch
- 8. สวิตซ์ เปิด-ปิด เครื่อง

หน้าจอแสดงผลและควบคุม

- 1. ปรับระดับความร้อน
- 2. แสดงผลอัตราการใช้ก๊าซธรรมชาติ
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- แสดงผลค่าทางไฟฟ้า
 แรงดันไฟฟ้า (โวลต์)
 กระแสไฟฟ้า (แอมป์)
 กำลังไฟฟ้า (วัตต์)
 พลังงานไฟฟ้า (วัตต์ ชั่วโมง)
- 5. แสดงผลการจับเวลา
- 6. แสดงผลอุณหภูมิและความชื้น

Web application

- 1. ปุ่มปรับระดับความร้อน
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอัตราการใช้ก๊าซธรรมชาติ (กิโลกรัม/นาที) และความร้อน (จูล)
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าก๊าซธรรมชาติ

หลักการและทฤษฏี

ก๊าซธรรมชาติ ประกอบด้วยก๊าซหลายชนิด ได้แก่ ก๊าซมีเทนก๊าซอีเทนก๊าซโพรเพน และก๊าซบิวเทน เมื่อจะนำมาใช้ต้องแยกก๊าซออกจากกันเสียก่อน

- ก๊าซมีเทน ใช้ผลิตไฟฟ้า ใช้ในโรงงานอุตสาหกรรม และใช้กับรถยนต์ ซึ่งก็คือก๊าซCNG หรือ NGV
- ก๊าซอีเทน + โพรเพน ใช้เป็นวัตถุดิบในโรงงานปิโตรเคมี
- ก๊าซโพรเพน + บิวเทนใช้ในโรงงานปิโตรเคมีและอุตสาหกรรมอื่น ๆ และใช้เป็นก๊าซหุงต้ม (LPG) ที่เรารู้จักนั่นเอง

ก๊าซหุงต้ม (Liquefied Petroleum Gas) มีชื่อทางการว่าก๊าซปิโตรเลียมเหลว หรือก๊าซแอลพีจี หมายถึง "ก๊าซไฮโดรคาร์บอนเหลว คือ โพรเพน โพรพิลีนบิวเทนหรือบิวทีลีนอย่างใดอย่างหนึ่งหรือหลาย อย่างผสมกันก็ได้โดยก๊าซโพรเพนและบิวเทนเป็นสารไฮโดรคาร์บอนประเภทอิ่มตัวมีการเผาไหม้สมบูรณ์ เผา ไหม้ดี ไม่เกิดเขม่าส่วนก๊าซโพรพิลีนและบิวทีลีนเป็นสารไฮโดรคาร์บอนไม่อิ่มตัวเมื่อเผาไหม้จะเกิดเขม่า หรือ เผาไหม้ไม่สมบูรณ์อย่างไรก็ตามก๊าซปิโตรเลียมเหลวหรือแอลพีจีที่ใช้กันทั่วไปจะมีโพรเพน (C_3H_8) กับบิวเทน (C_4H_{10}) เพียงสองอย่างเท่านั้นที่เป็นส่วนประกอบหลักโดยอาจมีอัตราส่วนระหว่าง โพรเพนกับบิวเทน ตั้งแต่ 20:80 ไปจนถึง 70:30

ก๊าซโพรเพนและบิวเทนในสภาพปกติ ณอุณหภูมิและความดันของบรรยากาศ จะอยู่ในสถานะก๊าซ เมื่ออัดก๊าซดังกล่าวด้วยความดันสูง หรือลดอุณหภูมิให้ต่ำลงเพียงพอก๊าซทั้งสองก็จะเปลี่ยนสภาวะจากก๊าซ เป็นของเหลวซึ่งก๊าซแอลพีจีหรือก๊าซปิโตรเลียมเหลว จะมีที่มาจาก 2 แหล่ง ได้แก่

- 1) ได้จากกระบวนการกลั่นน้ำมันดิบในโรงกลั่นน้ำมันซึ่งจะได้ก๊าซโพรเพนและบิวเทนประมาณ 1-2% ของกระบวนการกลั่นน้ำมันดิบ (สัดส่วนของก๊าซโพรเพนประมาณ 20% และบิวเทน 80%)
- 2) ได้จากกระบวนการแยกก๊าซธรรมชาติซึ่งจะมีก๊าซโพรเพนและบิวเทนในก๊าซธรรมชาติ ประมาณ 6-10% ของกระบวนการแยกก๊าซธรรมชาติ(สัดส่วนของก๊าซโพรเพนประมาณ 60% และบิวเทน 40%)

ทั้งนี้ คุณภาพของก๊าซแอลพีจีขึ้นอยู่กับความหนาแน่นของก๊าซแอลพีจีด้วยโดยทั่วไป ณ อุณหภูมิ 15.5 องศาเซลเซียส ความหนาแน่นของก๊าซแอลพีจีมีค่าประมาณ 0.54 กิโลกรัมต่อลิตร (ซึ่งเป็นค่าความ หนาแน่นเฉลี่ยของก๊าซแอลพีจีที่กรมธุรกิจพลังงานใช้เป็นค่าอ้างอิงสำหรับการคำนวณ) ซึ่งความหนาแน่นที่มี ค่าน้อยกว่า 0.54 กิโลกรัมต่อลิตรจะเป็นก๊าซคุณภาพที่ดีกว่าก๊าซที่มีค่าความหนาแน่นที่สูงกว่า 0.54 กิโลกรัม ต่อลิตรดังนั้นก๊าซปิโตรเลียมเหลวในสถานะที่เป็นของเหลวจะเบากว่าน้ำ (ความหนาแน่นของน้ำเท่ากับ 1 กิโลกรัมต่อลิตร) ถ้าเกิดมีก๊าซรั่วขึ้นในขณะที่อุณหภูมิโดยรอบในขณะนั้นต่ำมากและก๊าซปิโตรเลียมเหลวเกิด

ไหลลงไปในรางระบายน้ำ คูคลองก๊าซปิโตรเลียมเหลวก็จะลอยไปกับน้ำซึ่งอาจจะทำให้เกิดอัคคีภัยในท้องที่ ห่างไกลจากบริเวณที่ก๊าซปิโตรเลียมเหลวรั่วออกไปได้นอกจากนี้อุณหภูมิยังมีผลต่อค่าความหนาแน่น คือ เมื่อ อุณหภูมิเพิ่มขึ้น ความหนาแน่นของสารเมื่ออยู่ในสถานะของเหลวจะลดลง

ก๊าซ LPG ใช้เป็นก๊าซหุงต้ม มีลักษณะดังนี้

- ไม่มีสี ไม่มีกลิ่น แต่ผู้ผลิตเติมสารประกอบซัลเฟอร์ (เอธิลเมอร์แคปแทน : C₂ H₅ SH) ซึ่งมีกลิ่นฉุน เพื่อใช้เตือนภัยเมื่อเกิดก๊าซรั่ว สามารถละลายยางธรรมชาติได้ดี ใสกว่าน้ำประมาณ 10 เท่า
- ตัวก๊าซหุงต้ม (LPG) เองไม่เป็นพิษ แต่ถ้าเกิดเผาไหม้ไม่สมบูรณ์ ก็จะเกิดก๊าซคาร์บอนมอนนอกไซด์ และถ้าสูดดมเข้าไปมากๆ ก๊าซจะเข้าไปแทนที่ออกซิเจนในร่างกาย จะทำให้มึนงง เวียนศีรษะ และ อาจเสียชีวิตได้
- LPG หนักกว่าอากาศ เมื่อเกิดก๊าซรั่ว จะลอยต่ำลงสู่พื้น (เบากว่าน้ำประมาณ 0.5 เท่า และหนักกว่า อากาศประมาณ 1.5-2 เท่า)
- ก๊าซหุงต้ม (LPG) เหลว 1 ลิตร ขยายตัวเป็นไอได้ประมาณ 250 ลิตร (250 เท่า) ดังนั้นควรบรรจุ ก๊าซในถังไม่เกิน 85 % ของปริมาตรถังเพื่อให้มีที่ว่างในการขยายตัวของก๊าซ
- จุดเดือดต่ำประมาณ –17 องศาเซลเซียส (1 atm, 14.7 psi) เมื่อออกสู่บรรยากาศภายนอกจะ ระเหยกลายเป็นไอทันทีเมื่อก๊าซรั่วไหลจะเห็นเป็นหมอก หรือ ควันสีขาวและเกล็ดน้ำแข็ง เนื่องจาก ความชื้นรอบๆ บริเวณได้รับความเย็นจัดขณะก๊าซระเหย
- ติดไฟได้เมื่อมีประกายไฟหรือแหล่งความร้อนที่อุณหภูมิประมาณ 500 องศาเซลเซียส
- ติดไฟง่าย มีอุณหภูมิของเปลวไฟสูง ประมาณ 1,900 °C เป็นเชื้อเพลิงที่ดี เหมาะกับงานที่ต้องการ ความร้อนสูงเช่น การหลอมโลหะ
- ก๊าซหุงตั้ม (LPG) 1 ลิตร = 0.54 กก. หรือ 1 กก. = 1.85 ลิตร (สถานะของเหลว)
- ค่าออกเทนนัมเบอร์ค่าประมาณ 100-115 ซึ่งสูงกว่าน้ำมันเบนซิน จึงสามารถใช้กับรถยนต์ได้
- ค่าความร้อนของการเผาไหม้
 - 11,700 11,900 กิโลแคลอรี่/กิโลกรัม
 - 21,000 21,400 บีทียู/ปอนด์
 - 44,000 45,000 ปีที่ยู/กิโลกรัม

คุณสมบัติของก๊าซแอลพีจีมีดังนี้

คุณสมบัติ		LPG
สถานะปกติ		ก๊าซ (หนักกว่าอากาศ)
จุดเดือด (องศาเซลเซียส)		-50 ถึง 0
อุณหภูมิจุดระเบิดในอากาศ (องศาเซลเซียส)		400
ช่วงติดไฟในอากาศ (ร้อยละโดยปริมาตร)	ค่าสูง	15
	ค่าต่ำ	1.5
ค่าออกเทน¹/	RON ² /	105
	MON ³ /	97

ที่มา: การปิโตรเลียมแห่งประเทศไทย

หมายเหตุ:

- 1. ค่าออกเทน (Octane number) หมายถึง หน่วยการวัดความสามารถ ในการต้านทานการน็อค ของเครื่องยนต์
- 2. RON (Research Octane Number) เป็นค่าออกเทนที่มีประสิทธิภาพต่อต้านการน็อคใน เครื่องยนต์หลายสูบที่ทำงานอยู่ในรอบของช่วงหมุนต่ำโดยใช้เครื่องยนต์ทดสอบมาตรฐานภายใต้ สภาวะมาตรฐาน 600 รอบ ต่อนาที
- 3. MON (Motor Octane Number) เป็นค่าออกเทนที่มีประสิทธิภาพต่อต้านการน็อคในเครื่องยนต์ หลายสูบในขณะทำงานที่รอบสูง โดยใช้เครื่องยนต์ทดสอบมาตรฐานภายใต้สภาวะมาตรฐาน 900 รอบต่อนาที

ประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานก๊าซหุงต้ม

ในการประเมินประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานก๊าซหุงต้มจะประเมินจากสัดส่วนระหว่าง พลังงานที่ได้จากก๊าซหุงต้ม กับ พลังงานไฟฟ้าที่ผลิตได้

ประสิทธิภาพของการผลิตไฟฟ้า = พลังงานที่ได้จากก๊าซหุงต้ม/พลังงานไฟฟ้าที่ผลิตได้ โดยที่

พลังงานที่ได้จากก๊าซหุงต้ม = (ปริมาณก๊าซหุงต้ม×ค่าความร้อนของก๊าซหุงต้ม)/1000

- พลังงานที่ได้จากก๊าซหุงต้มในหน่วย เมกะจูล (MJ)
- ปริมาณก๊าซหุงต้มในหน่วย ลบ.ม.
- ค่าความร้อนของก๊าซหุงต้ม คือ ค่าพลังงานความร้อนที่ได้จากการเผาก๊าซหุงต้มโดย ค่าความร้อนของก๊าซหุงต้มมีค่าเท่ากับ 96.3 เมกะจูล/ลบ.ม. โดยอ้างอิงที่ 1 atm (11.800 กิโลแคลอรี่/กิโลกรัมความหนาแน่น0.513 กิโลกรัมต่อ ลบ. ม.)

พลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (วัตต์) x เวลา (ชั่วโมง)

- พลังงานไฟฟ้าที่ผลิตได้ คือ พลังงานไฟฟ้าที่ผลิตได้จากเครื่องยนต์ ในหน่วย
 กิโลวัตต์-ชั่วโมง
- กำลังไฟฟ้า คือ กำลังไฟฟ้าที่ได้จากเครื่องยนต์ ในหน่วย วัตต์
- เวลา คือ จำนวนชั่วโมงที่ใช้ในการทดลอง (ชั่วโมง)

ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานก๊าซธรรมชาติ

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานก๊าซธรรมชาติ สามารถสรุปได้ดังตารางดังนี้

ข้อดี	ข้อจำกัด
1. เป็นเชื้อเพลิงปิโตรเลียมที่นำมาใช้งานได้อย่างมี	1. ราคาก๊าซธรรมชาติไม่คงที่ผูกติดกับราคาน้ำมัน
ประสิทธิภาพสูง มีการเผาไหม้สมบูรณ์	ซึ่งผันแปรอยู่ตลอดเวลา
2. มีความปลอดภัยสูงในการใช้งาน เนื่องจากเบา	2. ประเทศไทยใช้ก๊าซธรรมชาติในสัดส่วนที่สูงมาก
กว่าอากาศ จึงลอยขึ้นเมื่อเกิดการรั่ว	จนเกิดความเสี่ยงของแหล่งพลังงาน
3. ก๊าซธรรมชาติส่วนใหญ่ที่ใช้ในประเทศไทยผลิต ได้เองจากแหล่งในประเทศ จึงช่วยลดการ นำเข้าพลังงานเชื้อเพลิงอื่นๆ และประหยัด เงินตราต่างประเทศได้มาก	3. กำลังสำรองก๊าซธรรมชาติในประเทศไทยมี ปริมาณจำกัด

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/naturalgas/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานก๊าซหุงต้ม
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างพลังงานที่ได้จากก๊าซหุงต้ม กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. เดินเครื่องยนต์ปั่นไฟด้วยน้ำมันเชื้อเพลิงเป็นเวลา 2 นาที เพื่อให้เครื่องยนต์ปั่นไฟ พร้อมทำงานจ่าย กระแสไฟฟ้า
- 2. ปิดวาล์วจ่ายน้ำมันจากถังน้ำมัน รอให้เครื่องยนต์ใช้น้ำมันที่มีค้างอยู่ในคาบูเรเตอร์จนหมด รอ ประมาณ 15 วินาทีค่อยๆ เปิดวาล์วจ่ายก๊าซชีวภาพเข้าไปที่เครื่องยนต์ โดยต้องระวังไม่ให้ เครื่องยนต์ดับ หลังจากน้ำมันในคาบูเรเตอร์หมด เครื่องยนต์จะเริ่มเกิดการสะดุด แล้วรีบเปิดวาล์ว จ่ายก๊าซชีวภาพเข้าไปที่เครื่องยนต์ปั่นไฟ ปรับเพิ่มระดับการจ่ายก๊าซชีวภาพจนทำให้เครื่องยนต์ ทำงานได้ราบเรียบ
- 3. ตั้งค่าโหลดทางไฟฟ้า พร้อมกับปรับวาล์วจ่ายก๊าซชีวภาพเพิ่มจนทำให้เครื่องยนต์ทำงานได้ราบเรียบ
- 4. เดินเครื่องยนต์ปั่นไฟเป็นเวลา 5 นาที แล้วจึงเริ่มบันทึกผลการทดลอง
- 5. ทำการบันทึกค่ามิเตอร์วัดปริมาตรก๊าซ แรงดันไฟฟ้ากระแสไฟฟ้าและกำลังไฟฟ้า โดยบันทึกข้อมูล เวลาพร้อมค่ามิเตอร์วัดปริมาตรก๊าซ แรงดันไฟฟ้ากระแสไฟฟ้าและกำลังไฟฟ้า
- 6. ตั้งค่าโหลดไฟฟ้าใหม่ และทำการทดลองซ้ำขั้นตอน 3 5

ตารางบันทึกผลการทดลอง

ครั้งที่	ปริมาตรก๊าซ (m³)		แรงดันไฟฟ้า <i>เ</i>	กระแสไฟฟ้า (A)	กำลังไฟฟ้า ที่อ่านค่าได้ (W)	ผลต่าง ปริมาตร ก๊าซ	จับ เวลา (Sec.)	อัตราการ สิ้นเปลือง เชื้อเพลิง	ค่าความร้อน เชื้อเพลิง (MJ/m³)	กำลังของ เชื้อเพลิง (W)	ประสิทธิภาพ ระบบผลิต ไฟฟ้า
	เริ่มจับเวลา	ผ่านไป 5 นาที			(11)	(m³)	(556)	(m³/s)	(,)	(- ()	(%)

หมายเหตุ : อัตราการสิ้นเปลืองเชื้อเพลิง (**ลบ.ม.**/วินาที) = ผลต่างปริมาตรก๊าซ (**ลบ.ม.**) / ผลต่างเวลา (วินาที)
กำลังของเชื้อเพลิง (วัตต์) = อัตราการสิ้นเปลืองเชื้อเพลิง (**ลบ.ม.**/วินาที) × ค่าความร้อนเชื้อเพลิง (เมกะจูล/**ลบ.ม.**)
ประสิทธิภาพระบบผลิตไฟฟ้า (%) = [กำลังไฟฟ้าที่จ่ายโหลด (วัตต์) / กำลังของเชื้อเพลิง (วัตต์)] × 100

การวิเคราะห์ผลการทดลอง	
	• •
	••
	••
	• •
	• •
	••
	•
	••
	• •
	•
des la constanción	
สรุปผลการทดลอง	
	••
	•
	••