$$\int \vec{E} \cdot \vec{dA} = \frac{Q}{E_0} \leftarrow flux$$
closed surface

$$\frac{1}{2} \frac{1}{2} \frac{1$$

Q=PsA
$$\int \vec{E} \cdot d\vec{s} = PsA$$
 $\vec{E} = \frac{Ps}{260}$ $\int \vec{E} \cdot d\vec{s} = PsA$ $\int \vec{E} \cdot d\vec{s} + \int \vec{E} \cdot d\vec{s}$ $\int \vec{E} \cdot d\vec{s} + \int \vec{E} \cdot d\vec{s}$ $\int \vec{E} \cdot d\vec{s} + \int \vec{E} \cdot d\vec{s} +$

$$f_v = \frac{Q}{V}$$

Show Ex=0, Ey= $\frac{Por}{360}$
inside covity.

$$\vec{E}_{2} = \frac{r_{2}f}{3\epsilon_{0}}(-\hat{r})$$

$$\frac{1}{E_{tot}} = \frac{1}{E_{t}} + \frac{1}{E_{t}}$$

$$= \frac{1}{13E_{tot}} - \frac{1}{13E_{tot}} + \frac{1}{13E_{tot}}$$

$$= \frac{1}{13E_{tot}} - \frac{1}{13E_{tot}}$$

