Übung 4: Gezeiten

Ausgabe: 20. Januar 2021 Abgabe: 3. Februar 2021, 17 Uhr

Aufgabe 1: Gezeitenpotential

Bei bekannter Position eines gezeitenerzeugenden Himmelskörpers kann dessen Gezeitenpotential in einem beliebigen Raumpunkt bestimmt werden. Berechnen Sie für den Punkt P (Observatorium Schiltach) mit den sphärischen Koordinaten ($\lambda=8.33^\circ$, $\varphi=48.14^\circ$, $r=6366\,837\,\mathrm{m}$) das Gezeitenpotential v_{tid} sowie den Gezeitenvektor $\mathbf{g}_{\mathrm{tid}}$, welche durch den Mond – in den ersten k Tagen des Januars 2000 – jeweils um 12h U.T. erzeugt wurden.

k	$r_{\mathrm{Mond}}[\mathrm{km}]$	λ_{Mond} [°]	$arphi_{Mond}$ [°]
1	402 464.5	-58.03	-10.86
2	404 631.6	-47.34	-14.30
3	405 737.4	-36.38	-17.15
4	405 971.9	-25.11	-19.27
5	405 532.3	-13.55	-20.55
6	404 567.8	-1.80	-20.91
7	403 147.3	10.01	-20.34
8	401 256.7	21.74	-18.84
9	398 821.9	33.31	-16.49
10	395 753.5	44.68	-13.38
11	391 998.7	55.89	-9.63
12	387 588.2	67.04	-5.37
13	382 663.5	78.29	-0.76
14	377 476.8	89.83	4.03
15	372 366.1	101.87	8.76
16	367 711.9	114.59	13.16
17	363 889.4	128.12	16.88
18	361 225.6	142.44	19.57
19	359 967.3	157.35	20.92
20	360 259.0	172.45	20.78

Numerische Werte

Mondmasse $m_{\rm M}$	$7.35 \cdot 10^{22} \mathrm{kg}$
Gravitationskonstante G	$6.672 \cdot 10^{-11} \mathrm{m}^3\mathrm{kg}^{-1}\mathrm{s}^{-2}$
Erdradius $R_{\rm E}$	6378136.3 m

Table 0.1: Positionen des Mondes bezüglich eines erdfesten sphärischen Koordinatensystems

- a) Berechnen Sie die Zeitreihe der Koeffizienten $v_{2,m}^{\rm tid}$ vom Grad 2 des vom Mond erzeugten Gezeitenpotentials. Geben Sie explizit die Werte vom 15. Januar an.
- b) Berechnen Sie das vom Mond erzeugte Gezeitenpotential $v_{\rm tid}$ und geben Sie die Zahlenwerte für den 1. bis 5. Januar im Bericht an. Visualisieren Sie das Gezeitenpotential im Berechnungspunkt für das gesamte Zeitintervall im Januar.
- c) Berechen Sie den zugehörigen Gezeitenvektor \mathbf{g}_{tid} für den 20. Januar. Beschränken Sie sich dabei auf Terme vom Grad 2.

Aufgabe 2: Gezeitenkatalog HW95

Der Gezeitenkatalog HW95 (Hartmann und Wenzel, 1995) enthält 12935 Partialtiden der Sonne, des Mondes und einiger Planeten. Berücksichtigt man nur die vom Mond erzeugten Partialtiden vom Grad 2 und vernachlässigt die Partialtiden mit sehr kleinen Amplituden, so bleiben noch 201 Partialtiden übrig. Berechnen Sie daraus das vom Mond erzeugte Gezeitenpotential $v_{\rm tid}$ sowie den zugehörigen Gezeitenvektor $\mathbf{g}_{\rm tid}$ für denselben Beobachtungspunkt und dieselben Zeitpunkte wie in Aufgabe 1. Vergleichen Sie die Werte, die Sie in Aufgabe 1 und Aufgabe 2 erhalten haben. Eine Datei mit den 201 Partialtiden ist über Ilias erhältlich.

Literatur

T. Hartmann und H.G. Wenzel (1995) The HW95 tidal potential catalogue, Geophysical Research Letters, Vol. 2, No. 24, 3553–3556