

Statistical Sciences

DoSS Summer Bootcamp Probability Module 1

Ichiro Hashimoto

University of Toronto

July 8, 2024

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Graduate-level probability

- Abstract (measure theory);
- Laws and properties;
- Rely on construction and inference...

Roadmap

Figure: Roadmap

Outline

- Measurable spaces
 - ▶ Sample Space
 - \triangleright σ -algebra
- Probability measures
 - \triangleright Measures on σ -field
 - Basic results
- Conditional probability
 - ▶ Bayes' rule

Today

- Modele 2

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\} = \Omega$
- Roll a die: $\{1, 2, 3, 4, 5, 6\} \sim \Omega$

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: {1,2,3,4,5,6}

Event

An event is a collection of possible outcomes (subset of the sample space).

Examples:

- Get head when tossing a coin: $\{H\}$ $\subset \{H,1\}$ = A
- Get an even number when rolling a die: $\{2,4,6\}$ $\subset \{(1,2,3,4,5,6\}\}$ = Ω

Let
$$X =$$
 the number of H

$$|P(X=0) = |P(X=2) = \sqrt{q}$$

$$|P(X=1) = \sqrt{2}$$

ex2) Let
$$X \sim N(\mu, \sigma^2)$$
 gaussian

Dansity $p(\chi) = \frac{1}{\sqrt{2}\pi} \exp\left(-\frac{(\chi - \mu)^2}{2\sigma^2}\right)$

$$\int_{\infty}^{\infty} p(x) dx = |$$

$$\mathbb{E} X = \int_{-\infty}^{\infty} \gamma \, p(x) \, dx = \mu$$

Discrute case. $P(x \le he) = \sum_{k \le he} P(x=k)$ assury x and tokes in teger values $P(x \le he) = \sum_{k \le he} P(x=k)$ for supplied,

 $\mathbb{E} \times \frac{\sum_{k=-\infty}^{\infty} h \mathbb{P}(X=k)}{\sum_{k=-\infty}^{\infty} h \mathbb{P}(X=k)}$

Continuity case $p(x \le x) = \int_{-\infty}^{\infty} p(2) d2$ $p(x) dx = \int_{-\infty}^{\infty} p(x) dx$

 $\mathbb{E} \times = \int_{-\infty}^{\infty} \chi p(x) dx$

Question Is there on my to explain them in a unified way?

Observation_
If AnB = \$\phi\$, then \(\phi(AUB) = \mathbb{P}(A) + \mathbb{P}(B).
For a discrete case. { X = 12} cre disjoint.
(= () () () () () () () () ()
B-t for continuous case,
p(x=x)=0 for any 7
un courteble sun
Therefore.
contradiction?
un counteble som is problemetic.
let's focus on countable sum

Measurable spaces

σ -algebra

A σ -algebra (σ -field) $\mathcal F$ on Ω is a non-empty collection of subsets of Ω such that

- (i) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, \longrightarrow can pleased is also in \mathcal{F}
- (ii) If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. I comtable unson of substs of \mathcal{F}

Remark:
$$\varnothing, \Omega \in \mathcal{F}$$
(If) Lt $A \in \mathcal{F}$.

By GO

$$A \cup A^{C} \in \mathcal{F}$$

$$= \Omega$$
50 $\Omega \in \mathcal{F}$.

By (i) again, DE & F. So, & EF.

Construction of Probability Theory Outline.

- () Pefine the collection of subsuts of a, F (or algebra)
 on which we can define. "Probability measure",
- 2) Petere probability measure as a Smother $[P:F] \longrightarrow [0,1]$ which has "contable addition?"
- 3) (1, F, IP) is called "Probability triple".

 Suple o-algebra probability

 spece measure

Measures on σ -field

A function $\mu:\mathcal{F}\to R^+\cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Measures on σ -field

A function $\mu: \mathcal{F} \to R^+ \cup \{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Properties:

- Monotonicity: $A \subseteq B \Rightarrow \mu(A) \le \mu(B)$
- Subadditivity: $A \subseteq \bigcup_{i=1}^{\infty} A_i \quad \Rightarrow \quad \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- Continuity from below: $A_i \nearrow A \Rightarrow \mu(A_i) \nearrow \mu(A)$
- Continuity from above: $A_i \searrow A$ and $\mu(A_i) < \infty \Rightarrow \mu(A_i) \searrow \mu(A)$

Proof of continuity from below:

UNIVERSITY OF TORONTO

By counteble additivity
$$M(A) = M(O, B_C) = O$$

TORONTO

$$(A) = \mathcal{M}(\mathcal{O}_{G}, \mathcal{B}_{G}) = \mathcal{I}_{G} \mathcal{M}(\mathcal{B}_{G})$$

July 8, 2024 8/14

Note that
$$A_c = A_{c-1} \cup B_c$$
 implies

disjort union.

Therefore
$$M(B_{\overline{0}}) = M(A_{\overline{0}}) - M(A_{\overline{0}})$$

Therefore
$$M(B_{0}) = M(B_{0}) = M(B_{0})$$

Thus $\sum_{i=1}^{n} M(B_{0}) = M(B_{1}) + \sum_{i=2}^{n} (M(A_{i}) - M(A_{i}))$
 $= M(A_{1}) + M(A_{0}) - M(A_{1})$

This
$$\sum_{(i)} \mathcal{M}(B_r) = \mathcal{M}(B_1) + \sum_{(i=2)} \mathcal{M}(A_r) \mathcal{M}(A_r)$$

$$= \mathcal{M}(A_1) + \mathcal{M}(A_n) - \mathcal{M}(A_1)$$

$$= M(A_1) + M(A_n) - M(A_1)$$

$$= M(A_n)$$

So,
$$\sum_{n\to\infty}^{\infty} \mathcal{M}(B_r) = \lim_{n\to\infty} \mathcal{M}(A_n)$$

This,
$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Ac & A

Proof of continuity from above:

$$\int_{C}^{\infty} A_{i} = A$$

$$Bc = Ac - Ac$$

Then Bc

= $\mu(A_1) - \mu(A_1)$

Remark:
$$\mu(A_i) < \infty$$
 is vital

Remark:
$$\mu(A_i) < \infty$$
 is vital. $\mu(B_u) = \mathcal{M}(\mathcal{L}_{i,u}^{\infty} B_i) = \mathcal{M}(A_i \setminus A_i)$

Note that $M(B_n) = M(A_1 \setminus A_n) \stackrel{\checkmark}{=} M(A_1) - M(A_n)$ Thus $\lim_{m \to \infty} \left(M(A_1) - M(A_n) \right) = M(A_1) - M(A_1) - M(A_1) \stackrel{\checkmark}{=} M(A_1) = M(A_1) = M(A_1) \stackrel{\checkmark}{=} M(A_1) \stackrel{}{=} M(A_1) \stackrel{\checkmark}{=} M(A_1) \stackrel{}{=} M(A_1)$

Summy (D, F, P) probability triple.

" Countable additivity" is the key.

Question (On F, P)

provides unified theory?

Observation

X: Q -> IR vandam variable.

$$\Omega = \left\{ x \in \mathbb{R} \right\}$$

$$= \bigcup_{\tilde{c}^{2} \infty} \left\{ x \in (\tilde{c}, \tilde{c}^{+1}) \right\}$$

137 company additionary $|z| p(Q) = \sum_{i=0}^{\infty} p(x \in (i, i+1))$

$$Q = \bigcup_{\vec{i} = -\infty}^{\infty} \left\{ X \in \left(\frac{\vec{i}}{n}, \frac{\vec{ct}}{n} \right) \right\}$$

be cones finer as m 100

Approximation of Expectation $EX = \lim_{n \to \infty} \frac{\partial}{\partial x} \cdot \frac{\partial x} \cdot \frac{\partial}{\partial x}$

This looks similar to Riemannian integral

Difference hetween Riemannian Integral Riemannian integral Measure theory P(XE(&, 571))

$$EX = \lim_{n \to \infty} \frac{\partial}{\partial n} R(x \in (\mathbb{R}, \frac{\partial n}{\partial n})) = \int_{\Omega} x dn$$

EX =
$$\sum_{i=1}^{\infty} k_i \mathbb{P}(X=k_0)$$
 discrete once.

Examples:

$$\Omega = \{\omega_1, \omega_2, \cdots\}, \ A = \{\omega_{a_1}, \cdots, \omega_{a_i}, \cdots\} \Rightarrow \mu(A) = \sum_{j=1}^{\infty} \mu(\omega_{a_j}).$$
 Therefore, we only need to define $\mu(\omega_j) = p_j \geq 0$. If further $\sum_{i=1}^{\infty} p_i = 1$, then μ is a probability measure.

• Toss a coin:

• Roll a die:

Original problem:

- What is the probability of some event *A*?
- P(A) is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A?
- $P(A \mid B)$ is the conditional probability of the event A given B.

11 / 14

Original problem:

- What is the probability of some event *A*?
- P(A) is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Example:

• Roll a die: $P({2} | \text{even number})$

(□ ト 4 酉 ト 4 豆 ト 4 酉 ト 4 回 ト 4

11 / 14

Bayes' rule

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

Remark: Does conditional probability $P(\cdot \mid B)$ satisfy the axioms of a probability measure?

12 / 14

Multiplication rule

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Generalization:

Law of total probability

Let A_1,A_2,\cdots,A_n be a partition of ω , such that $P(A_i)>0$, then

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B \mid A_i)$$

Problem Set

Problem 1: Prove that for a σ -field \mathcal{F} , if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Problem 2: Prove monotonicity and subadditivity of measure μ on σ -field.

Problem 3: (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? (Assumptions: the host will not open the door we picked and the host will only open

the door which has a goat.)

