Analiza zmęczeniowa - projekt modelowania ustrojów maszyn

Analiza zmęczeniowa konstrukcji polega na porównaniu uzyskanych wyników z obliczeń MES z krzywą zmęczenia danego materiału - stal S315. Pierwszą czynnością jest odczyt wartości σ_A dla analizowanego obiektu - wynik ten został odczytany z obliczeń Max Principal.

Rys 1 - wyniki Max Principal

Aby utworzyć krzywą Goodmana należy obliczyć wartość uśrednioną naprężeń:

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

Wartości σ_{max} oraz σ_{min} odczytane zostały z wyników wg hipotezy wytężeniowej Hubera-Misesa i wynoszą:

$$\sigma_{max} = 155,36 \, [MPa]$$

$$\sigma_{min} = 0 [MPa]$$

Zatem:

$$\sigma_m = \frac{155,36+0}{2} = 77,675 \ [MPa]$$

Dane te oraz punkty charakterystyczne użytego materiału (dla stali S315 R_m=590 MPa) pozwalają na stworzenie krzywej Goodmana:

σ_m [MPa]	σ_A [MPa]
77,675	156,18
590	0

Tabela 1 - dane do krzywej Goodmana

Wykres 1 - krzywa Goodmana

Odczyt z wykresu dla wartości σ_m =0:

$$\sigma_A = 179,86 \, [MPa]$$

Tą wartość można porównać z wykresem wytrzymałości zmęczeniowej dla materiału stal S315. Wykres taki jest bardzo ciężko znaleźć. Wynik ten można porównać z przykładowym wykresem wiedząc że dla naprężeń 167,5 MPa (dwukrotnie mniejsze od granicy plastyczności dla tego materiału) konstrukcja jest w stanie wytrzymać 10⁷ liczby cykli obciążeniowych. Jeśli na pokazanym poniżej wykresie zwrócimy uwagę na krzywą oznaczoną jako Level 1, oraz biorąc pod uwagę że:

$$\sigma_A = 179,86 MPa = 12,46 ksi$$

widać że dla takich naprężeń konstrukcja jest w stanie wytrzymać większą liczbę cykli niż wymagane w projekcie 10⁶. Pogrubioną linią zaznaczono obliczone dane, rzut na oś X jest przewidywaną wartością cykli dla krzywej level 1.

Rys 2 - wykres wytrzymałości zmęczeniowej dla stali

Filip Solarczyk, 205476