Association Rule Mining

Dr. Abhijnan Chakraborty
Department of Computer Science & Engg.,
Indian Institute of Technology Kharagpur

https://cse.iitkgp.ac.in/~abhijnan

Frequent Itemsets are Everywhere

Frequent Itemsets are Everywhere

Special offers and product promotions

- Prime Savings: 10% Instant Discount up to Rs.1750 with HDFC Bank Debit/Credit Cards (EMI) on Minimum puchase of Rs.5000. Here's how
- Prime Savings: Flat Rs.500 Instant Discount with HDFC Bank Debit Cards (Non-EMI) on Minimum puchase of Rs.5000. Here's how
- Prime Savings: 10% Instant Discount up to Rs.1250 with HDFC Bank Credit Cards (Non-EMI) on Minimum puchase of Rs.5000. Here's how >
- \bullet Get GST invoice and save up to 28% on business purchases. Sign up for free Here's how ${}^{\checkmark}$

Frequently bought together

+

Total price: ₹328.00

Add all three to Cart

Definition: Frequent Itemset

- □ Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- \square Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- □ Support
 - Fraction of transactions that contain an itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$
- □ Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Butter, Eggs
3	Milk, Diaper, Butter, Coke
4	Bread, Milk, Diaper, Butter
5	Bread, Milk, Diaper, Coke

Association Rule Mining

☐ Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Butter, Eggs
3	Milk, Diaper, Butter, Coke
4	Bread, Milk, Diaper, Butter
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} → {Butter},
{Milk, Bread} → {Eggs, Coke},
{Butter, Bread} → {Milk},
```

Implication means co-occurrence, not causality!

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:{Milk, Diaper} → {Butter}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Butter, Eggs
3	Milk, Diaper, Butter, Coke
4	Bread, Milk, Diaper, Butter
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

$$\{Milk, Diaper\} \Rightarrow \{Butter\}$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Butter})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Butter})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- ☐ Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support $\geq minsup$ threshold
 - confidence ≥ minconf threshold

☐ Brute-force approach:

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds
- ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Butter, Eggs
3	Milk, Diaper, Butter, Coke
4	Bread, Milk, Diaper, Butter
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Butter} (s=0.4, c=0.67)

{Milk, Butter} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Butter} \rightarrow {Milk} (s=0.4, c=0.67)

{Butter} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Butter} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Butter} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Butter}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

☐ Two-step approach:

1. Frequent Itemset Generation

Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- ☐ Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim O(NMw) => Expensive since M = 2^d!!!$

Reducing Number of Candidates

□ Apriori principle:

- If an itemset is frequent, then all its subsets must also be frequent
- □ Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TID	Items
1	Bread, Milk
2	Butter, Bread, Diaper, Eggs
3	Butter, Coke, Diaper, Milk
4	Butter, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Butter	3	
Diaper	4	
Eggs	1	

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41

TID	Items
1	Bread, Milk
2	Butter, Bread, Diaper, Eggs
3	Butter, Coke, Diaper, Milk
4	Butter, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered,
$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning, $6 + 6 + 4 = 16$

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Bread, Butter }
{Bread,Diaper}
{Butter, Milk}
{Diaper, Milk}
{Butter,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Butter, Bread}	2
{Bread,Diaper}	3
{Butter,Milk}	2
{Diaper,Milk}	3
{Butter,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Bread,Butter}	2
{Bread,Diaper}	3
{Milk,Butter}	2
{Milk,Diaper}	3
{Butter,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

```
If every subset is considered, {}^6C_1 + {}^6C_2 + {}^6C_3

6 + 15 + 20 = 41

With support-based pruning, 6 + 6 + 4 = 16
```

```
Itemset
{ Butter, Diaper, Milk}
{ Butter, Bread, Diaper}
{Bread, Diaper, Milk}
{ Butter, Bread, Milk}
```

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Bread,Butter}	2
{Bread,Diaper}	3
{Milk,Butter}	2
{Milk,Diaper}	3
{Butter,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{ Butter, Diaper, Milk}	2
{ Butter,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Butter, Bread, Milk}	1

TID	Items
1	Bread, Milk
2	Butter, Bread, Diaper, Eggs
3	Butter, Coke, Diaper, Milk
4	Butter, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Bread,Butter}	2
{Bread,Diaper}	3
{Milk,Butter}	2
{Milk,Diaper}	3
{Butter,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{ Butter, Diaper, Milk}	2
{ Butter,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Butter, Bread, Milk}	1

Apriori Algorithm

- \square F_k : frequent k-itemsets; C_k : candidate k-itemsets
- □ Algorithm
 - Let k=1
 - Generate F_1 = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate C_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in C_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in C_{k+1} by scanning the transaction database
 - ◆ Candidate Elimination: Eliminate candidates in C_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- □ Introduction of ordering: items can be sorted in lexicographic order
- ☐ Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- \Box $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - Merge($\underline{AB}C$, $\underline{AB}D$) = $\underline{AB}CD$
 - Merge ($\underline{AB}C$, $\underline{AB}E$) = $\underline{AB}CE$
 - Merge ($\underline{AB}D$, $\underline{AB}E$) = $\underline{AB}DE$
 - Do not merge (<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

Candidate Pruning

- \square Let $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$ be the set of frequent 3-itemsets
- \Box C₄ = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets generated (from previous slide)
- □ Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- \square After candidate pruning: $C_4 = \{ABCD\}$

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Bread,Butter}	2
{Bread,Diaper}	3
{Milk,Butter}	2
{Milk,Diaper}	3
{Butter,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Use of $F_{k-1}xF_{k-1}$ method for candidate generation results in only one 3-itemset. This is eliminated after the support counting step.

Alternate $F_{k-1} \times F_{k-1}$ Method

- \square Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- \Box $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - Merge (ABC, BCD) = ABCD
 - Merge (ABD, BDE) = ABDE
 - Merge (ACD, CDE) = ACDE
 - Merge (BCD, CDE) = BCDE

Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- \square Let $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$ be the set of frequent 3-itemsets
- \Box C₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- □ Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- \square After candidate pruning: $C_4 = \{ABCD\}$

Count Support of Candidate Itemsets

- Scan the database of transactions to determine the support of each candidate itemset
- Naïve counting:
 - For each candidate $I_i \in C_{k+1}$
 - For each transaction T_i in T
 - Check whether I_i appears in T_i
- This can be very slow if both $|C_{k+1}|$ and |T| are large

Count Support with a Data Structure

- A Better Approach
 - Organize the candidate patterns in C_{k+1} in a data structure
- Use the data structure to accelerate counting
 - Each transaction in T_i examined against the subset of candidates in C_{k+1} that might be contained in T_i

Support Counting based on Hashing

Naïve counting:

```
For each I_i \in C_{k+1}

For all T_j \in T

If I_i \subseteq T_j

Add to \sup(I_i)
```

Hashed counting:

```
For each T_j \in T

For I_i \in \text{hashbucket}(T_j, C_{k+1})

If I_i \subseteq T_j

Add to \sup(I_i)
```

Which Candidates are Relevant?

Imagine 15 candidate itemsets of length 3:

Now, suppose we look for this transaction:

{1 2 3 5 6}

Here we depict only the candidates that appear in the transaction (10 out of 15)

Hash Tree for Itemsets in C_{k+1}

- A tree with fixed degree r
- Each itemset in C_{k+1} is stored in a leaf node
- All internal nodes use a hash function to map items to one of the r branches (can be the same for all internal nodes)
- All leaf nodes contain a lexicographically sorted list of up to max_leaf_size itemsets

Example Hash Tree

Candidate itemsets

$$h(p) = (p - 1) \mod 3$$

Important: itemsets are sorted!

Example Hash Tree (Cont.)

Example Hash Tree (Cont.)

Example Hash Tree (Cont.)

Checking which candidates might be in a transaction

Compare transaction against 11 out of 15 candidates

Summary: Efficient Frequent Itemsets

- $C_1 \leftarrow$ singletons, lexicographically sorted
- $F_1 \leftarrow$ elements in C_1 with support \geq minsup, obtained by direct counting
- k ← 1
- While F_k is not empty
 - Generate C_{k+1} by merging elements in F_k sharing a prefix of size k-1
 - Remove from C_{k+1} elements that do not have all of their subsets in F_k
 - Create hash tree for C_{k+1}
 - Pass all transactions in T by the hash tree to compute support for elements of C_{k+1}
 - F_{k+1} ← elements in C_{k+1} with support ≥ minsup, lexicographically sorted
- Return the union of F_1 , F_2 , ..., F_k

Rule Generation

- \square Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

□ If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- □ In general, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose $\{A,B,C,D\}$ is a frequent 4-itemset: $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
 - Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

Exercise: Apriori

FInd all rules of the form

$$\{a,b\} \rightarrow \{c\}$$

having:

support \geq 2/9 and confidence \geq 50%

Note: to generate only rules of the form $\{a,b\} \rightarrow \{c\}$, consider only itemsets of size 3

items
11, 12 , 15
12,14
12,13
11,12,14
11,13
12,13
11,13
11,12,13,15
11,12,13

Compact Representation of Frequent Itemsets

- In practice, the number of frequent itemsets produced from a transaction data set can be very large
- It is useful to identify a small representative set of frequent itemsets from which all other frequent itemsets can be derived
- Two such representations are
 - Maximal frequent itemsets
 - Closed frequent itemsets

Maximal Frequent Itemset

An itemset is maximal frequent if it is frequent and none of its immediate supersets is frequent

Closed Itemset

- ☐ An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- ☐ X is not closed if at least one of its immediate supersets has support count as X.

Closed Itemset

- □ An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- □ X is not closed if at least one of its immediate supersets has support count as X.

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
$\{A,C,D\}$	2
{B,C,D}	2
{A,B,C,D}	2

Maximal vs Closed Itemsets

TID	Items		null		Transaction Ids
טוו					·
1	ABC	124	123 1234	245	345
2	ABCD	A	В С	D	E
3	BCE				
4	ACDE	12 124 24	4 123 2	3	24 34 45 PF
5	DE	(AB) (AC) (AD)	AE BC [BD BE	CD CE DE DE
		12 2 ABD ABE		DE BCD	3 BCE BDE CDE
		ABCD	ABCE ABDE	ACDE	BCDE
		pported by ansactions	ABCDE)	

Maximal Frequent vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Pattern Evaluation

□ Association rule algorithms can produce large number of rules

- □ Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

 \square Given X \rightarrow Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

 support, confidence, Gini, entropy, etc.

Drawback of Confidence

Custo mers	Tea	Coffee	
C1	0	1	
C2	1	0	
C3	1	1	
C4	1	0	

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence \cong P(Coffee|Tea) = 150/200 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

Drawback of Confidence

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 150/200 = 0.75

but P(Coffee) = 0.8, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 650/800 = 0.8125

Drawback of Confidence

Custo mers	Tea	Honey	
C1	0	1	
C2	1	0	
C3	1	1	•••
C4	1	0	

	Honey	\overline{Honey}	
Tea	100	100	200
\overline{Tea}	20	780	800
	120	880	1000

Association Rule: Tea → Honey

Confidence \cong P(Honey|Tea) = 100/200 = 0.50

Confidence = 50%, which may mean that drinking tea has little influence whether honey is used or not

So rule seems uninteresting

But P(Honey) = 120/1000 = .12 (hence tea drinkers are far more likely to have honey

Measure for Association Rules

- ■So, what kind of rules do we really want?
 - Confidence $(X \rightarrow Y)$ should be sufficiently high
 - ◆ To ensure that people who buy X will more likely buy Y than not buy Y
 - Confidence($X \rightarrow Y$) > support(Y)
 - ◆ Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
 - Is there any measure that capture this constraint?
 - Answer: Yes. There are many of them.

Statistical Relationship between X and Y

 $\Box \text{The criterion} \\ \text{confidence}(X \rightarrow Y) = \text{support}(Y)$

is equivalent to:

- -P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$ (X and Y are independent)

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ are positively correlated

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ are negatively correlated

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$
 lift is used for rules while interest is used for itemsets
$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	150	50	200
Tea	650	150	800
	800	200	1000

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.8

 \Rightarrow Interest = 0.15 / (0.2×0.8) = 0.9375 (< 1, therefore is negatively associated)

So, is it enough to use confidence/Interest for pruning?

There are lots of measures proposed in the literature

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11} + f_{00}}{f_{1+} + f_{+1} + f_{0+} + f_{+0}} \times \frac{N - f_{1+} + f_{+1} - f_{0+} + f_{+0}}{N - f_{11} - f_{00}}$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
 - Hidden variables may cause the observed relationship to disappear or reverse its direction!
- Proper stratification is needed to avoid generating spurious patterns

- □ Recovery rate from Covid
 - Hospital A: 80%
 - Hospital B: 90%
- □ Which hospital is better?

- □ Recovery rate from Covid
 - Hospital A: 80%
 - Hospital B: 90%
- □ Which hospital is better?
- □ Covid recovery rate on older population
 - Hospital A: 50%
 - Hospital B: 30%
- □ Covid recovery rate on younger population
 - Hospital A: 99%
 - Hospital B: 98%

- □ Covid-19 death: (per 100,000 of population)
 - County A: 15
 - County B: 10
- Which state is managing the pandemic better?

- □ Covid-19 death: (per 100,000 of population)
 - County A: 15
 - County B: 10
- Which state is managing the pandemic better?
- □ Covid death rate on older population
 - County A: 20
 - County B: 40
- □ Covid death rate on younger population
 - County A: 2
 - County B: 5

Thank You

Slides Courtesy

- 1. Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar
- 2. Prof. Carlos Castillo, UFB Barcelona