Cake-Cutting Algorithms

Ausgewählte Folien zur Vorlesung

Wintersemester 2009/2010

Dozent: Prof. Dr. J. Rothe Heinrich-Heine-Universität Düsseldorf

http://ccc.cs.uni-duesseldorf.de/~rothe/cake

Literatur

- Jack Robertson and William Webb: "Cake-Cutting Algorithms: Be Fair if You Can", A K Peters, 1998
- Steven J. Brams and Alan D. Taylor: "Fair Division: From Cake-Cutting to Dispute Resolution", Cambridge University Press, 1996

Die Spieler

Doro

Edith

Felix

Gábor

Holger

. . .

Die Lemberger Schule

(1892-1945)

Bronisław Knaster (1893 - 1990)

"It may be stated incidentally that if there are two (or more) partners with different estimations, there exists a division giving to everybody more than his due part; the fact disproves the common opinion that differences in estimations make fair division difficult."

– Hugo Steinhaus

Vier Methoden für zwei Spieler

Szenario:

Mutti

möchte
den
Kuchen
gerecht
aufteilen
zwischen:

Claudia

und Felix

Vier Methoden für zwei Spieler

- Mutti schneidet den Kuchen in zwei Stücke, die sie für gleich hält, und gibt Claudia und Felix je ein Stück.
- Mutti schneidet den Kuchen in zwei Stücke, Claudia und Felix werfen eine Münze, um zu entscheiden, wer zuerst wählen darf.
- Methode 3: Claudia schneidet den Kuchen in zwei Stücke und Claudia darf zuerst wählen.
- Methode 4: Claudia schneidet den Kuchen in zwei Stücke und Felix darf zuerst wählen.

Cut and Choose

zwischen

und

Edith

Schritt 1: Eine der Spielerinnen schneidet den Kuchen in zwei Stücke, die nach ihrer Bewertung gleich sind.

Schritt 2: Die andere Spielerin wählt eines der beiden Stücke; das andere geht an die Schneiderin.

Doesn't Cut It Method

zwischen

Claudia

Doro

Edith

Schritt 1: Claudia schneidet den Kuchen X in zwei Stücke, X_1 und X_2 mit $X = X_1 \cup X_2$, so dass

$$v_{\mathbf{C}}(X_1) = \frac{1}{3}$$

 $v_{\mathbf{C}}(X_2) = \frac{2}{3}$

Schritt 2: Doro schneidet das Stück X_2 in zwei Stücke, X_{21} und X_{22} mit $X_2 = X_{21} \cup X_{22}$, so dass

$$egin{array}{ll} oldsymbol{v_D}(X_{21}) &= (1/2) \cdot oldsymbol{v_D}(X_2) \ oldsymbol{v_D}(X_{22}) &= (1/2) \cdot oldsymbol{v_D}(X_2) \end{array}$$

Schritt 3: Die drei Spielerinnen wählen jeweils ein Stück in der folgenden Reihenfolge:

- 1. Edith (wählt aus X_1 , X_{21} und X_{22});
- 2. Claudia (wählt aus den beiden übrigen Stücken);
- 3. Doro (nimmt das letzte Stück).

Dubins & Spanier: Moving-Knife-Protokoll (proportionale Aufteilung unter *n* Spielern)

Definition 1 Eine Aufteilung des Kuchens $X = \bigcup_{i=1}^{n} X_i$, wobei X_i die Portion des i-ten Spielers ist, heißt proportional, falls für alle i, $1 \le i \le n$, gilt:

$$\boldsymbol{v}_i(X_i) \geq \frac{1}{n}.$$

Schritt 1: • Ein Messer wird kontinuierlich von links nach rechts über den Kuchen geschwenkt.

- Der erste Spieler, der denkt, das Stück links vom Messer ist 1/n wert, ruft "Halt!"
- Das Stück wird geschnitten und dem Rufer gegeben. Dieser scheidet damit aus.

Schritt 2, 3, ..., n-1: Wiederhole Schritt 1 mit den übrigen Spielern und dem restlichen Kuchen.

Schritt *n*: Es ist noch ein Spieler übrig. Dieser erhält das restliche Stück.

Ein Cake-cutting-Protokoll hat ...

Regeln

sind Anweisungen, die ohne Kenntnis der Maße der Spieler erzwungen werden können (deren Befolgung man also kontrollieren kann).

Beispiel

- "Felix, schneide den Kuchen in zwei Stücke und gib eines davon Holger!"
- ,,Holger, iss es auf!"

Strategien

sind Empfehlungen an die Spieler, nach ihren Maßen Entscheidungen so zu treffen, dass ihnen ein fairer Anteil am Kuchen garantiert wird.

Beispiel

- "Felix, schneide den Kuchen in zwei nach deinem Maß gleichwertige Stücke!"
- "Holger, bewerte beide Stücke nach deinem Maß und wähle dann eines von größtem Wert!"

Banach & Knaster: Last-Diminisher-Protokoll (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X) = 1$ sei. Setze N := n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\boldsymbol{v}_1(S_1) = 1/N$.

Schritt 2: p_2, p_3, \ldots, p_n geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. Dabei sei $S_{i-1}, 2 \le i \le n$, das Stück, das p_i von p_{i-1} bekommt.

- Ist $v_i(S_{i-1}) > 1/N$, so schneidet p_i etwas ab und gibt S_i mit $v_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Der letzte Spieler, der etwas davon abgeschnitten hatte, erhält S_n und scheidet aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in $p_1, p_2, \ldots, p_{n-1}$ und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 2 gilt. Diese beiden, p_1 und p_2 , spielen "Cut and Choose".

Fink: Lone-Chooser-Protokoll (proportionale Aufteilung unter *n* Spielern)

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i mit $\mathbf{v}_i(X) = 1$ sei.

Runde 1: p_1 und p_2 spielen "Cut and Choose", wobei p_1 beginnt und das Stück S_1 und p_2 das Stück S_2 erhält, $X = S_1 \cup S_2$, so dass $\mathbf{v}_1(S_1) = 1/2$ und $\mathbf{v}_2(S_2) \ge 1/2$.

Runde 2: p_3 teilt S_1 mit p_1 und S_2 mit p_2 so:

- p_1 schneidet S_1 in S_{11} , S_{12} und S_{13} , so dass $\mathbf{v}_1(S_{11}) = \mathbf{v}_1(S_{12}) = \mathbf{v}_1(S_{13}) = 1/6$.
- p_2 schneidet S_2 in S_{21} , S_{22} und S_{23} , so dass $\boldsymbol{v}_2(S_{21}) = \boldsymbol{v}_2(S_{22}) = \boldsymbol{v}_2(S_{23}) \geq 1/6$.
- p_3 wählt ein bestes Stück aus $\{S_{11}, S_{12}, S_{13}\}$ und ein bestes Stück aus $\{S_{21}, S_{22}, S_{23}\}$.

:

Runde n-1: Für $i, 1 \le i \le n-1$, hat p_i ein Stück X_i mit $\mathbf{v}_i(X_i) \ge 1/(n-1)$ und schneidet X_i in n Stücke $X_{i1}, X_{i2}, \ldots, X_{in}$ mit $\mathbf{v}_i(X_{ij}) \ge 1/n(n-1)$.

Spieler p_n wählt für jedes $i, 1 \le i \le n-1$, eines dieser Stücke von größtem Wert nach seinem Maß \boldsymbol{v}_n .

Beispiel: Maße in der Boxendarstellung

Selfridge-Conway-Protokoll (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X, Spieler Felix, Gábor und Holger.

Schritt 1: Felix schneidet X in drei gleiche Stücke (nach seinem Maß). Gábor sortiert diese als X_1, X_2, X_3 mit:

$$v_{\mathbf{F}}(X_1) = v_{\mathbf{F}}(X_2) = v_{\mathbf{F}}(X_3) = \frac{1}{3}
 v_{\mathbf{G}}(X_1) \ge v_{\mathbf{G}}(X_2) \ge v_{\mathbf{G}}(X_3)$$

Schritt 2: Ist $v_{\mathbf{G}}(X_1) > v_{\mathbf{G}}(X_2)$, so schneidet Gábor von X_1 etwas ab, so dass er $X_1' = X_1 - R$ erhält mit

$$\boldsymbol{v}_{\mathbf{G}}(X_1') = \boldsymbol{v}_{\mathbf{G}}(X_2).$$

Ist $v_{\mathbf{G}}(X_1) = v_{\mathbf{G}}(X_2)$, so sei $X'_1 = X_1$.

Schritt 3: Aus $\{X'_1, X_2, X_3\}$ wählen

Holger, Gábor und Felix

(in dieser Reihenfolge) je ein Stück. Wenn **H**olger es nicht schon genommen hat, muss **G**ábor X_1' nehmen.

Schritt 4 (nur falls es $R \neq \emptyset$ gibt): Entweder Gábor oder Holger hat X'_1 . Nenne diesen Spieler **P**, den anderen **Q**.

 ${f Q}$ schneidet den Rest R in drei Stücke R_1,R_2,R_3 mit

$$v_{\mathbf{Q}}(R_1) = v_{\mathbf{Q}}(R_2) = v_{\mathbf{Q}}(R_3) = (1/3) \cdot v_{\mathbf{Q}}(R),$$

die von den Spielern P, Felix und Q (in dieser Reihenfolge) gewählt werden.

Selfridge-Conway-Protokoll: Beispiel

Der Grad der garantierten Neidfreiheit

Definition 2 Für $n \geq 1$ Spieler ist der Grad der garantierten Neidfreiheit ("degree of guaranteed envy-freeness", kurz: DGEF) eines proportionalen Cake-cutting-Protokolls definiert als die maximale Zahl der Neidfrei-Relationen, die in jeder durch dieses Protokoll erzeugten Aufteilung existieren (sofern sich die Spieler an die Regeln und Strategien des Protokolls halten).

- Der Begriff DGEF ist auf proportionale Protokolle eingeschränkt, da sonst die erreichte Fairness übertrieben werden könnte.
- Geeignete Regeln/Strategien eines Protokolls können die Fairness im Sinn des DGEF erhöhen, wohingegen ihr Fehlen riskiert, dass der DGEF eines proportionalen Cake-cutting-Protokolls auf die untere Schranke n fällt.
- "Geeignet" heißt: Die Spieler sollten nach Möglichkeit die noch zuzuweisenden Stücke/Portionen bewerten, um Neidrelationen zu verhindern, bevor sie entstehen.

Einige Aussagen zum DGEF

- **Satz 3** 1. Jedes neidfreie Cake-cutting-Protokoll für $n \ge 1$ Spieler hat einen DGEF von n(n-1).
 - 2. Sei d(n) der DGEF eines proportionalen Cake-cutting-Protokolls für $n \geq 2$ Spieler. Es gilt:

$$n \le d(n) \le n(n-1).$$

Lemma 4 Verlangen die Regeln/Strategien eines proportionalen Cake-cutting-Protokolls für $n \geq 2$ Spieler von keinem Spieler, die Portion irgendeines anderen Spielers zu bewerten, so ist sein DGEF gleich n.

Satz 5 Das Last-Diminisher-Protokoll hat einen DGEF von $\frac{n(n-1)}{2} + 2.$

Satz 6 *Das Lone-Chooser-Protokoll hat einen DGEF von n.*

Bemerkung 7 Das Protokoll von Lindner und Rothe (2009), eine "parallele" Variante des Last-Diminisher-Protokolls, hat einen DGEF von

$$\left\lceil \frac{n^2}{2} \right\rceil + 1$$

und damit den besten bekannten DGEF unter allen endlich beschränkten Cake-cutting-Protokollen.

Außerdem ist es proportional und "strategiesicher".

Grundlegende Annahmen

- Der Kuchen $X = [0,1] \subseteq \mathbb{R}$ ist ein inhomogenes, unendlich teilbares Gut (oder eine solche Ressource).
- Jeder Spieler p_i hat ein individuelles, privates Maß (eine solche Bewertungsgfunktion)

$$\boldsymbol{v}_i: \{X' \mid X' \subseteq X\} \rightarrow [0,1],$$

das die folgenden Axiome erfüllt:

- 1. Normalisierung: $v_i(\emptyset) = 0$ und $v_i(X) = 1$.
- 2. **Positivität:** Für alle Stücke X', $\emptyset \neq X' \subseteq X$, gilt:

$$\boldsymbol{v}_i(X') > 0.$$

Alternativ: Nicht-Negativität: Für alle Stücke X', $\emptyset \neq X' \subseteq X$, gilt:

$$\boldsymbol{v}_i(X') \geq 0.$$

3. **(Endliche) Additivität:** Für alle $A, B \subseteq X, A \cap B = \emptyset$, gilt:

$$\mathbf{v}_i(A \cup B) = \mathbf{v}_i(A) + \mathbf{v}_i(B).$$

4. **Teilbarkeit:** Für alle $B \subseteq X$ und alle α , $0 \le \alpha \le 1$, existiert ein $A \subseteq B$, so dass gilt:

$$\boldsymbol{v}_i(A) = \alpha \cdot \boldsymbol{v}_i(B).$$

Weitere Annahmen

- Wir betrachten hier nur endliche Cake-cutting-Protokolle, keine Moving-Knife-Protokolle.
- Schnitte macht ein Spieler ausschließlich anhand seines Maßes, ohne andere Spieler zu konsultieren.
- Hält sich ein Spieler nicht an die vorgeschlagene Strategie des Protokolls, so riskiert er dadurch seinen gerechten Anteil, nicht aber den anderer Spieler.
- Als Schnitte gezählt werden:
 - Schnitte und Markierungen,
 - nicht aber sonstige Entscheidungen/Bewertungen.

Modified Last-Diminisher-Protokoll

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\boldsymbol{v}_i, 1 \leq i \leq n$, das Maß von p_i mit $\boldsymbol{v}_i(X) = 1$ sei. Setze N := n.

Schritt 1: p_1 schneidet vom Kuchen ein Stück S_1 mit $\boldsymbol{v}_1(S_1) = 1/N$.

Schritt 2: $p_2, p_3, \ldots, p_{n-1}$ geben dieses Stück von einem zum nächsten, wobei sie es ggf. beschneiden. S_{i-1} , $2 \le i \le n-1$, sei das Stück, das p_i von p_{i-1} bekommt.

- Ist $v_i(S_{i-1}) > 1/N$, $2 \le i \le n-1$, so schneidet p_i etwas ab und gibt S_i mit $v_i(S_i) = 1/N$ weiter.
- Ist $v_i(S_{i-1}) \leq 1/N$, $2 \leq i \leq n-1$, so gibt p_i das Stück $S_i = S_{i-1}$ weiter.
- Ist $v_n(S_{n-1}) \ge 1/N$, so scheidet p_n mit S_{n-1} aus.
- Ist $v_n(S_{n-1}) < 1/N$, so scheidet der letzte Spieler, der etwas davon abgeschnitten hatte, mit S_{n-1} aus.

Schritt 3: Setze die Reste zusammen zum neuen Kuchen $X := X - S_n$, benenne ggf. die im Spiel verbliebenen Spieler um in p_1, p_2, \dots, p_{n-1} und setze n := n - 1.

Schritt 4: Wiederhole die Schritte 1 bis 3, bis n = 1 gilt.

$\frac{\textbf{Anzahl der Schnitte in verschiedenen}}{\textbf{Protokollen für } n \textbf{ Spieler}}$

Protokoll	2	3	4	5	6	• • •	n
Last Diminisher	1	4	8	13	19	• • •	$\frac{n^2+n-4}{2}$
Modified Last Diminisher	1	3	6	10	15		$\frac{n^2-n}{2}$
Lone Chooser (ohne ESG)	1	5	23	119	719	• • •	n!-1
Lone Chooser (mit ESG)	1	5	14	30	55	• • •	$\frac{(n-1)n(2n-1)}{6}$

Even & Paz: Divide-and-Conquer-Protokoll

Gegeben: Kuchen X = [0, 1], Spieler p_1, p_2, \dots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i mit $\mathbf{v}_i(X) = 1$ sei.

Schritt 1: Ist n = 1, so erhält p_1 den ganzen Kuchen.

Schritt 2: Ist n = 2k für ein $k \ge 1$, so:

2(a): teilen $p_1, p_2, \ldots, p_{n-1}$ den Kuchen mit parallelen Schnitten im Verhältnis k : k nach ihrem Maß:

2(b): p_n wählt:

- entweder das Stück A links vom k-ten Schnitt (falls $\boldsymbol{v}_n(A) \geq k/n = 1/2$ von X)
- \bullet oder andernfalls das Stück X-A.

2(c): Mittels Divide & Conquer für k Spieler:

- teilt p_n das gewählte Stück mit den ersten k-1 Spielern, deren Schnitt in dieses hineinfällt;
- teilen die k übrigen Spieler das andere Stück.

Even & Paz: Divide-and-Conquer-Protokoll Fortsetzung

Schritt 3: Ist n = 2k + 1 für ein $k \ge 1$, so:

3(a): teilen $p_1, p_2, \ldots, p_{n-1}$ den Kuchen mit parallelen Schnitten im Verhältnis k : k + 1 nach ihrem Maß:

- **3(b):** p_n wählt entweder das Stück A links vom k-ten Schnitt (falls $\boldsymbol{v}_n(A) \geq k/n = k/(2k+1)$ von X)
 - \bullet oder andernfalls das Stück X-A.
- **3(c):** Hat p_n das Stück A gewählt, so teilt er es mittels Divide & Conquer für k Spieler mit den ersten k-1 Spielern, deren Schnitt in A fällt;
 - Hat p_n das Stück X A gewählt, so teilt er es mit Divide & Conquer für k + 1 Spieler mit den ersten k Spielern, deren Schnitt in X A fällt.
 - In beiden Fällen teilen die k+1 bzw. k übrigen Spieler das jeweils andere Stück mittels Divide & Conquer für k+1 bzw. k Spieler.

Anzahl der Schnitte in Divide & Conquer für n Spieler

n	Methode	D(n)
1	Kein Schnitt nötig	0
2	Cut & Choose	1
3	2 Schnitte reduzieren auf Fälle 2 & 1	3
4	3 Schnitte reduzieren auf Fälle 2 & 2	3+1+1=5
5	4 Schnitte reduzieren auf Fälle 2 & 3	4+1+3=8
6	5 Schnitte reduzieren auf Fälle 3 & 3	5 + 3 + 3 = 11
7	6 Schnitte reduzieren auf Fälle 3 & 4	6 + 3 + 5 = 14
8	7 Schnitte reduzieren auf Fälle 4 & 4	7 + 5 + 5 = 17
9	8 Schnitte reduzieren auf Fälle 4 & 5	8 + 5 + 8 = 21
10	9 Schnitte reduzieren auf Fälle 5 & 5	9 + 8 + 8 = 25
•	:	:
\overline{n}	n-1 Schnitte reduzieren	$nk - 2^k + 1$
	auf Fälle $\lceil \frac{n}{2} \rceil$ & $\lfloor \frac{n}{2} \rfloor$	$\left \min k = \lceil \log n \rceil \right $

Das Viertel-Protokoll für Drei

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, Doro und Edith mit den Maßen $v_{\mathbf{C}}$, $v_{\mathbf{D}}$ und $v_{\mathbf{E}}$.

Schritt 1: Claudia schneidet $X = X_1 \cup X_2$, so dass gilt:

$$v_{\mathbf{C}}(X_1) = 1/3$$
 und $v_{\mathbf{C}}(X_2) = 2/3$.

Schritt 2: (a) Gilt $v_D(X_2) \ge 1/2$ und $v_E(X_1) \ge 1/4$, dann

- geht X_1 an **E**dith, und
- Claudia und **D**oro teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) \ge 1/4$.

- **(b)** Gilt $v_{\mathbf{D}}(X_2) \ge 1/2$ und $v_{\mathbf{E}}(X_1) < 1/4$, dann
 - geht X_1 an Claudia, und
 - Doro und Edith teilen sich X_2 mit Cut & Choose.

Analog wird der symmetrische Fall behandelt:

$$v_{\mathbf{E}}(X_2) \ge 1/2$$
 und $v_{\mathbf{D}}(X_1) < 1/4$.

Bemerkung: Gilt also $v_{\mathbf{D}}(X_2) \ge 1/2$ oder $v_{\mathbf{E}}(X_2) \ge 1/2$, so ist unser Ziel erreicht.

- (c) Gilt $v_D(X_2) < 1/2$ und $v_E(X_2) < 1/2$, dann
 - geht X_2 an Claudia, und
 - Doro und Edith teilen sich X_1 mit Cut & Choose.

Minimale Anzahl von Schnitten, die jedem Spieler einen proportionalen Anteil garantiert

Definition 8 Sei F(n) die minimale Anzahl von Schnitten, für die ein endliches Cake-cutting-Protokoll jedem der n Spieler einen proportionalen Anteil garantiert.

Zahl n der Spieler	1	2	3	4	5	6	7	8
D(n) in Divide & Conquer	0	1	3	5	8	11	14	17
Obere Schranke für $F(n)$	0	1	3	4	6	8	13	15

Zahl n der Spieler	9	10	11	12	13	14	15	16
D(n) in Divide & Conquer	21	25	29	33	37	41	45	49
Obere Schranke für $F(n)$	18	21	24	27	33	36	40	44

 \bullet Für fettgedruckte Einträge ist der angegebene Wert von F(n) optimal.

Welcher Anteil am Kuchen kann jedem Spieler mit k Schnitten garantiert werden?

Definition 9 Sei M(n,k) der größte Anteil am Kuchen, der jedem der n Spieler mit k Schnitten in einem endlichen Cakecutting-Protokoll garantiert werden kann.

Anzahl	Spieler									
Schnitte	2	3	4	5	6	7	8	• • •	n	
n-1	1/2	1/4	1/6	1/8	1/10	1/12	1/14	• • •	1/(2n-2)	
n		1/3	1/4	1/6	1/8	1/10	1/12	• • •	1/(2n-4)	
n+1				1/5	1/7	1/9	1/11		1/(2n-5)	
n+2					1/6	1/8	1/10		?	

ullet Für fettgedruckte Einträge ist der angegebene Wert von M(n,k) optimal.

• Leere Felder:

Kann jedem von n Spielern mit k Schnitten ein Anteil von 1/n garantiert werden, so auch mit mehr als k Schnitten.

Kuhn á la Dawson: Lone-Divider-Protokoll

Gegeben: • Kuchen X = [0, 1], Spieler p_1, p_2, \ldots, p_n , wobei $\mathbf{v}_i, 1 \le i \le n$, das Maß von p_i sei.

- Je weiter links ein Spieler in dieser Reihenfolge steht, desto höher sein Rang.
- Der Spieler mit Rang n heißt der *Divider* (seine Identität ist bekannt), die anderen sind die *Choosers* (ihr Rang wird erst nach Schritt 2 enthüllt).

Schritt 1: Der *Divider* teilt X in n Stücke vom Wert 1/n.

Schritt 2: Die *Choosers* markieren akzeptable Stücke (vom Wert $\geq 1/n$), jeder mindestens eines. Dabei kennt kein *Chooser* die Markierungen der anderen *Choosers*.

Schritt 3: (a) Ist die Menge \mathcal{D} aller *Choosers* entscheidbar, so führe die Entscheidbare Allokationsprozedur aus.

- **(b)** Ist \mathcal{D} nicht entscheidbar, so bestimme (Tafel!):
 - ullet die Menge $\mathcal{C}\subseteq\mathcal{D}$ aller Conflicting Choosers und
 - die Menge $\mathcal{D} := \mathcal{D} \mathcal{C}$ der *Decidable Choosers*.

Fall 1: Ist $\mathcal{D} = \emptyset$, so führe die Maximale Neuaufteilungsprozedur aus.

Fall 2: Ist $\mathcal{D} \neq \emptyset$, so führe die **Partielle Neuaufteilungsprozedur** aus.

Kuhn á la Dawson: Lone-Divider-Protokoll Entscheidbare Allokationsprozedur

Schritt 1: Hat ein $p_i \in \mathcal{D}$ genau ein Stück als akzeptabel markiert oder ist nur noch ein solches Stück für $p_i \in \mathcal{D}$ übrig, so erhält p_i dieses Stück. Setze $\mathcal{D} := \mathcal{D} - \{p_i\}$. Wiederhole diesen Schritt, solange dies möglich ist.

Schritt 2: Ist $\mathcal{D} \neq \emptyset$, so wählt der Spieler p_i von höchstem Rang in \mathcal{D} ein für ihn akzeptables Stück, so dass

$$\mathcal{D} := \mathcal{D} - \{p_i\}$$

bzgl. der noch übrigen Stücke immer noch entscheidbar ist. Gehe zu Schritt 1.

Schritt 3: Das letzte noch übrige Stück erhält der Divider.

Kuhn á la Dawson: Lone-Divider-Protokoll Maximale Neuaufteilungsprozedur

- Es gibt mindestens zwei Stücke, die kein Spieler als akzeptabel markiert hat. Diese heißen *freie Stücke*.
- Schritt 1: (a) Der *Chooser* von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang.
 - (b) Möchte kein *Chooser* der *Selector* sein, so wird der *Chooser* von niedrigstem Rang zum *Selector* erklärt.
- **Schritt 2:** Der *Selector* wählt eines der freien Stücke aus, nennt es X_n und gibt es dem *Divider*, der mit X_n ausscheidet.
- Schritt 3: (a) Setze die übrigen Stücke zum neuen Kuchen $X := X X_n$ zusammen,
 - **(b)** setze n := n 1 und
 - (c) führe das Lone-Divider-Protokoll mit den verbliebenen Spielern von Beginn an aus.

Dabei hat der *Selector* nun den niedrigsten Rang und ist somit der neue *Divider*.

Kuhn á la Dawson: Lone-Divider-Protokoll Partielle Neuaufteilungsprozedur

- Stücke, die für keinen Conflicting Chooser in C akzeptabel sind, heißen freie Stücke.
- Stücke, die für einen Conflicting Chooser in C akzeptabel sind, heißen Konfliktstücke.
- **Schritt 1:** (a) Der *Chooser* in \mathcal{C} von höchstem Rang, der der *Selector* sein möchte, tauscht Platz und Rang mit dem *Chooser* von niedrigstem Rang in \mathcal{C} .
 - (b) Möchte kein *Chooser* in *C* der *Selector* sein, so sei der *Chooser* von niedrigstem Rang in *C* der *Selector*.
- Schritt 2: Seien k, ℓ und m die Parameter für \mathcal{C} (Tafel!). Der *Selector* wählt $\ell \leq \|\mathcal{C}\| 1$ freie Stücke aus, so dass \mathcal{D} auch dann noch entscheidbar ist, wenn weder diese ℓ Stücke noch Konfliktstücke gewählt werden dürfen.
- Schritt 3: Setze diese ℓ Stücke und die Konfliktstücke zum neuen Kuchen zusammen und teile ihn mit Lone-Divider unter den Spielern in \mathcal{C} (selber Rang!) auf. Der *Selector* ist mit niedrigstem Rang der neue *Divider*.
- Schritt 4: Teile die übrigen freien Stücke unter den Spielern aus \mathcal{D} und dem ursprünglichen Divider mit der Entscheidbaren Allokationsprozedur auf.

Steinhaus: Cut-Your-Own-Piece-Protokoll Felix' Markierungen

Felix

Steinhaus: Cut-Your-Own-Piece-Protokoll Gábors Markierungen

Gábor

Steinhaus: Cut-Your-Own-Piece-Protokoll Holgers Markierungen

Holger

Steinhaus: Cut-Your-Own-Piece-Protokoll Alle Markierungen von Felix, Gábor und Holger

Felix

Gábor

Holger

Steinhaus: Cut-Your-Own-Piece-Protokoll

Gegeben: Kuchen/Seegrundstück X = [0, 1], n Spieler.

- **Schritt 1:** Jeder Spieler macht n-1 Markierungen, um den Kuchen in n Stücke vom Wert jeweils 1/n nach seinem Maß aufzuteilen.
 - Diese n(n-1) Markierungen seien alle parallel.
 - Kein Spieler kennt die Markierungen der anderen Spieler.
- Schritt 2: (a) Das Stück zwischen linkem Rand und der am weitesten links liegenden Markierung geht an einen (beliebigen) Spieler, der dort markiert hat.

Dieser Spieler scheidet damit aus.

- (b) Entferne alle Markierungen dieses Spielers sowie alle am weitesten links liegenden Markierungen aller anderen Spieler.
- **Schritt 3:** Wiederhole Schritt 2 mit dem Rest des Kuchens und den übrigen Spielern, bis alle Markierungen entfernt sind.

Der letzte Spieler erhält das verbleibende Stück.

Steinhaus: Cut-Your-Own-Piece-Protokoll Felix' Stück

Steinhaus: Cut-Your-Own-Piece-Protokoll <u>Gábors Stück</u>

Steinhaus: Cut-Your-Own-Piece-Protokoll Holgers Stück

Stromquist: Moving-Knife-Protokoll (neidfreie Aufteilung unter drei Spielern)

Gegeben: Kuchen X = [0, 1], Spielerinnen Claudia, Doro und Edith mit den Maßen v_C , v_D und v_E .

- **Schritt 1:** Ein Schiedsrichter schwenkt ein Schwert kontinuierlich von links nach rechts über den Kuchen und teilt ihn so (hypothetisch) in ein linkes Stück L und ein rechtes Stück R: $X = L \cup R$.
 - Jede der drei Spielerinnen hält ihr Messer parallel zum Schwert und bewegt es (während das Schwert geschwenkt wird) so, dass sie das rechte Stück nach ihrem Maß stets genau halbiert.
 - Das mittlere der drei Messer teilt R (hypothetisch) in zwei Stücke: $R = S \cup T$.
- Schritt 2: Die erste Spielerin, die denkt, L sei mindestens so gut wie sowohl S als auch T, ruft: "Halt!"
 - Das Schwert und das mittlere Messer schneiden an ihren Positionen.
 - Die Spielerin, die "Halt!" rief, erhält L.
 - \bullet Die Spielerin, deren Messer dem Schwert am nächsten und die noch im Spiel ist, erhält S.
 - Die letzte Spielerin erhält T.

Austin: Cut & Choose by Moving Knives (garantiert beiden Spielern genau 1/2 des Kuchens)

Gegeben: Kuchen X = [0, 1], Spieler Felix und Gábor mit den Maßen v_F und v_G .

Schritt 1: Ein Messer wird kontinuierlich von links nach rechts über den (rechteckigen) Kuchen geschwenkt, bis ein Spieler (sagen wir: Felix) "Halt!" ruft, weil das Messer den Kuchen dort in $X = A \cup B$ teilt mit

$$\mathbf{v}_{\mathbf{F}}(A) = \mathbf{v}_{\mathbf{F}}(B) = 1/2.$$

Schritt 2: Felix platziert nun ein zweites Messer über dem linken Rand des Kuchens und schwenkt beide Messer parallel und kontinuierlich von links nach rechts so über den Kuchen, dass zwischen ihnen nach seinem Maß stets genau 1/2 des Kuchens liegt.

Dieses (sich stetig verändernde) Stück heiße \hat{A} .

Schritt 3: • Sobald Gábor glaubt, dass

$$\boldsymbol{v}_{\mathbf{G}}(\tilde{A}) = 1/2$$

gilt, ruft er: "Halt!"

- Beide Messer schneiden an ihren Positionen.
- Gábor wählt entweder das Stück \tilde{A} oder $X \tilde{A}$.
- Felix erhält die andere Portion.

Brams, Taylor & Zwicker: Moving-Knife-Protokoll (neidfreie Aufteilung unter vier Spielern)

Gegeben: Kuchen X, Spieler Doro, Edith, Felix und Gábor mit den Maßen v_D , v_E , v_F und v_G .

Schritt 1: Mit dem Austin-Protokoll erzeugen Felix und Gábor vier für beide gleich gute Stücke (nach ihren Maßen), die **D**oro sortiert als X_1, X_2, X_3 und X_4 mit:

$$egin{array}{lll} m{v_D}(X_1) & \geq & m{v_D}(X_2) & \geq & m{v_D}(X_3) & \geq & m{v_D}(X_4), \\ m{v_F}(X_i) & = & m{v_G}(X_i) & = & 1/4 & & {
m für } 1 \leq i \leq 4. \end{array}$$

Schritt 2: Doro schneidet $X_1 = X_1' \cup R$ (wobei R leer sein kann), so dass gilt: $\mathbf{v}_{\mathbf{D}}(X_1') = \mathbf{v}_{\mathbf{D}}(X_2)$.

Schritt 3: Aus $\{X'_1, X_2, X_3, X_4\}$ wählen

Edith, Doro, Felix und Gábor

(in dieser Reihenfolge) je ein Stück. Wenn Edith es nicht schon genommen hat, muss **D**oro X'_1 nehmen.

Schritt 4 (nur falls $R \neq \emptyset$): Entweder Edith oder Doro hat X'_1 . Nenne diese Spielerin P, die andere Q.

Mit Austin schneiden **Q** und **F**elix den Rest R in vier Stücke R_1, R_2, R_3, R_4 , so dass für alle $i \in \{1, ..., 4\}$:

$$\boldsymbol{v}_{\mathbf{Q}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{Q}}(R) \text{ und } \boldsymbol{v}_{\mathbf{F}}(R_i) = (1/4) \cdot \boldsymbol{v}_{\mathbf{F}}(R).$$

P, Gábor, **Q**, Felix wählen ihr R_i in dieser Reihenfolge.