CS-210 Homework 1

M.Shozab Hussain Student ID: 23100174

October 4, 2020

- 1. (a) $\exists x \ P(x)$
 - (b) $\exists x [S(x) \land P(x)]$
 - (c) $\forall x [P(x) \rightarrow \neg R(x)]$
 - (d) $\forall x \left[\neg P(x) \land R(x) \right]$
 - (e) $\exists x \ [P(x) \land R(x)]$
 - (f) $\forall x [(P(x) \land T(x)) \rightarrow Q(x)]$
- 4. (a) Statement: "If P is a square, then P is a rectangle" (True)
 - (b) Converse: "If P is a rectangle, then P is a square" (False)
 - (c) Contrapositive: "If P is not a rectangle, then P is not a square" (True)
 - (d) Inverse: "If P is not a square, then P is not a rectangle" (False)

All statements are not true.

$$[(P \lor Q) \land (\neg P \lor R)] \rightarrow (Q \lor R) \qquad (\text{Implication Law})$$

$$\neg[(P \lor Q) \land (\neg P \lor R)] \lor (Q \lor R) \qquad (\text{De Morgan's Law})$$

$$(\neg (P \lor Q) \lor \neg (\neg P \lor R)) \lor (Q \lor R) \qquad (\text{Associate Law})$$

$$(\neg (P \lor \neg P) \lor \neg (Q \lor R)) \lor (Q \lor R) \qquad (\text{Negation Law})$$

$$(F \lor \neg (Q \lor R)) \lor (Q \lor R) \qquad (\text{Negation Law})$$

$$\neg(Q \lor R) \lor (Q \lor R) \qquad (\text{Negation Law})$$

$$\neg(Q \lor R) \lor (Q \lor R) \qquad (\text{Negation Law})$$

$$(\text{Negation Law}) \qquad (\text{Negation Law})$$

7.

P	Q	R	$\neg R$	$(Q \vee R)$	$[P \to (Q \lor R)]$	$(P \rightarrow Q)$	$[\neg R \to (P \to Q)]$
T	Т	Т	F	Τ	Τ	Τ	T
Т	Т	F	Т	Τ	Τ	T	T
Т	F	Т	F	Τ	Τ	F	T
Т	F	F	Т	F	F	F	F
F	Т	Т	F	Τ	Τ	Τ	T
F	Т	F	Т	Τ	Τ	Τ	T
F	F	Т	F	Τ	Т	Т	Т
F	F	F	Τ	F	Τ	Т	Т

The truth values for $[P \to (Q \lor R)]$ and $[\neg R \to (P \to Q)]$ are same, hence the statement is true.

8. (a)
$$(P \to R) \lor (Q \to R) \equiv [(P \land Q) \to R]$$

$$(P \to R) \lor (Q \to R) \qquad \qquad \text{(Implication Law)}$$

$$(\neg P \lor R) \lor (\neg Q \lor R) \qquad \qquad \text{(Associative Law)}$$

$$(\neg P \lor \neg Q) \lor (R \lor R) \qquad \qquad \text{(Idempotent Law)}$$

$$(\neg P \lor \neg Q) \lor (R) \qquad \qquad \text{(De Morgan's Law)}$$

$$\neg (P \land Q) \lor (R) \qquad \qquad \text{(Implication Law)}$$

$$(P \land Q) \to R \qquad \text{(L.H.S = R.H.S hence, equivalent)}$$

(b)
$$(P \land (Q \lor R)) \equiv [(P \land Q) \lor (P \land R)]$$

$$(P \land (Q \lor R))$$
 (Distributive Law)
 $(P \land Q) \lor (P \land R)$ (L.H.S = R.H.S hence, equivalent)

$$\begin{aligned} &(c) \ \neg [\neg [(P \lor Q) \land R] \lor \neg Q] \equiv (Q \land R) \\ & \text{Starting with L.H.S} \\ & \neg [\neg [(P \lor Q) \land R] \lor \neg Q] \qquad (\text{De Morgan's Law}) \\ & \neg (\neg [(P \lor Q) \land R]) \land \neg (\neg Q) \qquad (\text{Double Negation Law}) \\ & ((P \lor Q) \land R) \land Q \qquad (\text{Commutative Law}) \\ & (R \land (P \lor Q)) \land Q \qquad (\text{Distributive Law}) \\ & ((R \land P) \lor (R \land Q))) \land Q \qquad (\text{Commutative Law}) \\ & Q \land ((R \land P) \lor (R \land Q)) \qquad (\text{Distributive Law}) \\ & (Q \land R \land P) \lor (R \land Q \land Q) \qquad (\text{Idempotent Law}) \\ & (Q \land R \land P) \lor (R \land Q) \qquad (\text{Commutative Law}) \\ & (R \land Q) \lor (R \land Q \land P) \qquad (\text{Domination Law}) \\ & (Q \land R) \qquad (\text{L.H.S} = \text{R.H.S hence, equivalent}) \\ \end{aligned}$$

 $P \vee [R \vee (F) \wedge (T \vee \neg Q)]$

 $P \vee [R \wedge (T \vee \neg Q)]$

(Identity Law)

(L.H.S = R.H.S)

- 12. (a) F when x = 1 and y = -1 x is not equal to y because $-1 \neq 1$. (x = y) is (F) hence, $\neg(x = y)$ is (T). Similarly, x^2 is equal to y^2 because $(-1)^2 = 1^2$ $(x^2 = y^2)$ is (T) hence $\neg(x^2 = y^2)$ is (F)Hence, the whole is expression is going to be (F)
 - (b) F when x = 7 and y = 1.9129If we take x = 7 then for $(x = y^3)$ to be True, $y = \sqrt[3]{7}$. However since $\sqrt[3]{7}$ is not an integer this statement is (F).
 - (c) F when x = 2 and y = 0.5If we take x = 2 then $(\frac{1}{2} = y)$, since y must be an integer and can't be a fraction therefore it can never have a value that can equal $\frac{1}{2}$.
 - (d) T
 - (e) F when x = 2 and y = 3 (xy = y) is (F) when x = 2 and y = 3.
 - (f) F when x = 0 and y = 0($x^3 \neq y^2$) is (F) when x = 0 and y = 0.

13. (a)
$$\neg \forall x \ \forall y \ P(x,y)$$

 $\exists x \ \exists y \ \neg p(x,y)$

(b)
$$\neg \forall x \; \exists y \; (P(x,y) \lor Q(x,y))$$

 $\exists x \; \forall y \; \neg (P(x,y) \lor Q(x,y)) \; \text{(De Morgan's Law)}$
 $\exists x \; \forall y \; (\neg P(x,y) \land \neg Q(x,y))$

(c)
$$\neg \forall x \ (\forall y \ P(x,y) \land \exists y \ Q(x,y))$$

 $\exists x \ \neg (\forall y \ P(x,y) \land \exists y \ Q(x,y))$ (De Morgan's Law)
 $\exists x \ (\neg \forall \ P(x,y) \lor \neg \exists y \ Q(x,y)$ (De Morgan's Law)
 $\exists x \ (\exists y \ \neg P(x,y) \lor \forall y \ \neg Q(x,y)$

(d)
$$\neg(\exists x \; \exists y \; \neg P(x,y) \land \forall x \; \forall y \; Q(x,y))$$
 (De Morgan's Law) $\neg(\exists x \; \exists y \; \neg P(x,y)) \lor \neg(\forall x \; \forall y \; Q(x,y))$ $\neg \exists x \; \exists y \; \neg P(x,y) \lor \neg \forall x \; \forall y \; Q(x,y)$ $\forall x \; \forall y \; P(x,y) \lor \exists x \; \exists y \; \neg Q(x,y)$