

Self-Supervised depth estimation

Aleksei Karpov

Moscow Institute of Physics and Technology

Introduction

- Training:
 - Model for depth prediction using only geometrical constraints during training
 - Data for training: stereo pairs or image sequences
 - Target: estimate nearby frame
 - Loss function: photometric reprojection error
 - Model predict depth and egomotion between two frames (for image sequences)

- Comparison with supervised
 - Easier data collection (not require LiDAR data)
 - Better generalization
 - Worse performance

Current architectures

- Fully convolutional networks for both networks
- U-Net based architectures for depth model:
 - Encoder: ResNet (Usually ResNet18 pretrained on ImageNet)
 - Decoder: Convolutional architecture
- ResNet for pose model
- Papers: monodepth2, ManyDepth
- CNN limitations:
 - Small receptive field
 - Poorly process global features

Novel architectures

Vision Transformers (ViT)

- Split image into patches
- Embed patches
- Add position encoding
- Feed vectors to Transformer
- Advantages:
 - Global receptive field
 - Achieved promising results for classification and segmentation
- Disadvantages:
 - High complexity
 - Position encoding is fixed-dimension vectors
- Original ViT paper
- ViT for supervised depth prediction

Vit improvements

- Progressive shrinking to reduce complexity
- Overlapped patches
- Conditional position encoding
- Spatially sparable self-attention
- Papers: PVTv1, PVTv2, Swin, Twins
- Main improvements:
 - Less complexity(comparable with ResNet18)
 - Better performance
 - More suitable for dense prediction tasks

ViT for self-supervised depth estimation

Vit Encoder

- Encoder based on PVT models
- Decoder contains CNN blocks
- Encoder weights pretrained on ImageNet
- Stable training process

Pure ViT model

- Encoder based on PVT model
- Encoder contains ViT blocks
- Encoder weights pretrained on ImageNet
- Unstable training process

Vit Middle

- Encoder is ResNet18
- Middle based on ViT
- Decoder contains CNN blocks
- Encoder weights pretrained on ImageNet
- Stable training process

Conclusion

• Current results:

- Overview current self-supervised depth estimation architectures
- Analyze Vision Transformer architectures
- Propose Transformer architecture for self-supervised depth estimation
- Novel architecture better process global features

• Future work:

- Train models with different ViT encoder architectures*
- Train models with various CNN and ViT combinations*
- Compare models performance
- Implement cost volume based depth estimator like <u>ManyDepth</u>

