第11回 共和分過程と共和分検定(7.5.3)

村澤 康友

2023年12月18日

今日のポイント

4.1 共和分ベクトルが既知 4

4.2 共和分ベクトルが未知(p. 236) . . . 4

1.	$\{y_t\}$ が $\mathrm{I}(d)$ で $\{oldsymbol{lpha}'y_t\}$ が $\mathrm{I}(d-b)$ なら $\{y_t\}$ を (d,b) 次の共和分過程, $oldsymbol{lpha}$ を共和		5 今日のキーワード	4
	分ベクトルといい、 $CI(d,b)$ と書く、線形		6 次回までの準備	4
	独立な共和分ベクトルの数を共和分階数という.	(1 行列の階数	
2.	共和分する変数間の線形モデルを共和分		1.1 線形独立	
	回帰モデルという.		$oldsymbol{x}_1,\dots,oldsymbol{x}_n$ をベクトル, $lpha_1,\dots,lpha_n$ をスカラーと	-
3.	$T ightarrow \infty$ で $1/\sqrt{T}$ より速く推定量が母数	[する.	
	に確率収束する性質を超一致性という.		定義 $oldsymbol{1}.$ $lpha_1oldsymbol{x}_1+\dots+lpha_noldsymbol{x}_n$ を $oldsymbol{x}_1,\dots,oldsymbol{x}_n$ の線用	<i>3</i> ,
	共和分ベクトルの OLS 推定量は超一致性		結合という.	
	をもつ.			
4.	共和分回帰の残差の ADF 検定で共和分の		定義 2. $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0_n \Longrightarrow \alpha_1 = \cdots = \alpha_n$	=
	有無を検定する手法を Engle-Granger の)	$lpha_n=0$ なら $oldsymbol{x}_1,\dots,oldsymbol{x}_n$ は線形独立という.	
	2 段階法という.		定義 $oldsymbol{3}$. $lpha_1oldsymbol{x}_1+\cdots+lpha_noldsymbol{x}_n=oldsymbol{0}_n$ 以タ	1
			の $(lpha_1,\ldots,lpha_n)'$ が存在するなら $oldsymbol{x}_1,\ldots,oldsymbol{x}_n$ は線用	
目次			従属という.	
1	行列の階数	1	1.2 階数	
1.1	線形独立	1	$m{A}$ を $m imes n$ 行列とする.	
1.2	階数	1	定義 4. A の線形独立な行の数を A の 行階数 と	-
2	共和分	2	いう.	
2.1	和分過程と長期均衡(p. 236)	2	定義 5. A の線形独立な列の数を A の 列階数 と	_
2.2	共和分過程(p. 236)	2	いう.	
3	共和分回帰	2	定理 1. 行階数=列階数.	
3.1	共和分回帰モデル(p. 236)	2	証明. 省略.	
3.2	OLS 推定量	3		
			定義 $oldsymbol{6}$. $oldsymbol{A}$ の線形独立な行または列の数を $oldsymbol{A}$ の関	占
	Engle-Granger の共和分検定		数という.	

注 1. rk(A) と書く.

2 共和分

2.1 和分過程と長期均衡 (p. 236)

経済理論や会計上の恒等式によって、しばしば経済時系列の間に長期均衡関係や一定の比率(Great Ratios)が生じる.例えば

- 1. 予測値と実績値(合理的期待仮説)
- 2. 所得と消費(ライフ・サイクル=恒常所得仮説)
- 3. マクロの所得・消費・投資(国民所得勘定)
- 4. 生産量・資本ストック・労働投入(生産関数)
- 5. マネーストックと物価(貨幣数量説)
- 6. 名目金利とインフレ率(フィッシャー方程式)
- 7. 短期金利と長期金利(金利の期間構造)
- 8. 現物価格と先物価格(裁定取引)
- 9.2国の物価水準と為替レート(購買力平価説)

これらの時系列が I(1) だと見せかけの回帰の可能性もあり、長期均衡関係の検証は注意を要する.

例 1. 1960 年~1982 年のアメリカのマクロの所得 と消費の対数系列(図 1).

2.2 共和分過程 (p. 236)

 $\{y_t\}$ を N 変量確率過程とする.

定義 7. $\{y_t\}$ が $\mathrm{I}(d)$ で $\{\alpha'y_t\}$ が $\mathrm{I}(d-b)$ なら $\{y_t\}$ を (d,b) 次の共和分過程, α を共和分ベクトルという.

注 2. CI(d,b) と書く. CI(1,1) が特に重要.

注 3. α が共和分ベクトルなら任意の $c \neq 0$ について $c\alpha$ も共和分ベクトル. 通常は長さを 1 にするか特定の成分を 1 として基準化する.

注 4. 基準化しても共和分ベクトルは 1 つとは限らない.

定義 8. 線形独立な共和分ベクトルの数を**共和分階** 数という.

定理 2. $\{y_t\}$ が CI(1,1) で共和分階数 = N なら $\{y_t\}$ は I(0).

証明.復習テスト.

3 共和分回帰

3.1 共和分回帰モデル (p. 236)

簡単化のため $\{x_t\}$ をランダム・ウォークとし, $\{y_t\}$ と $\{x_t\}$ に線形モデルを仮定する.すなわち任意の t について

$$\Delta x_t = u_t$$

$$y_t = \beta x_t + v_t$$

$$\left\{ \begin{pmatrix} u_t \\ v_t \end{pmatrix} \right\} \sim \text{WN}(\boldsymbol{\Sigma})$$

 $-\beta x_t + y_t = v_t$ より $\beta \neq 0$ なら $\{x_t, y_t\}$ は CI(1,1) で共和分ベクトルは $(-\beta, 1)$. β の推定を考える.

定理 3. $\{u_t, v_t\}$ が iid なら

$$cov(x_t, v_t) = cov(u_t, v_t)$$

証明. $E(v_t) = 0$ より

$$cov(x_t, v_t) = E(x_t v_t)$$

$$= E((x_{t-1} + u_t)v_t)$$

$$= E(x_{t-1}v_t) + E(u_t v_t)$$

$$= E(x_{t-1}v_t) + cov(u_t, v_t)$$

 $\{u_t, v_t\}$ は iid なので,繰り返し期待値の法則より第1項は

$$E(x_{t-1}v_t) = E(E(x_{t-1}v_t|x_{t-1}))$$

$$= E(x_{t-1} E(v_t|x_{t-1}))$$

$$= 0$$

注 5. したがって $cov(u_t, v_t) \neq 0$ なら説明変数と誤差項は相関をもつ. すなわち $E(y_t|x_t) \neq \beta x_t$.

定義 9. 共和分する変数間の線形モデルを**共和分回 帰モデル**という.

注 6. 条件付き期待値を与えるモデルでなく, どの変数を従属変数としてもよい.

図 1 1960 年~1982 年のアメリカのマクロの所得と消費の対数系列

3.2 OLS 推定量

 $x_0 := 0$ とすると, $t \ge 1$ について

$$x_t = \sum_{s=1}^t u_s$$

長さ T の時系列が与えられたときの β の OLS 推定量を b_T とする.

定理 4. $T \to \infty$ で $T(b_T - \beta)$ は分布収束.

証明. OLS 推定量は

$$b_{T} = \frac{\sum_{t=1}^{T} x_{t} y_{t}}{\sum_{t=1}^{T} x_{t}^{2}}$$

$$= \frac{\sum_{t=1}^{T} x_{t} (\beta x_{t} + v_{t})}{\sum_{t=1}^{T} x_{t}^{2}}$$

$$= \beta + \frac{\sum_{t=1}^{T} x_{t} v_{t}}{\sum_{t=1}^{T} x_{t}^{2}}$$

したがって

$$T(b_T - \beta) = \frac{(1/T)\sum_{t=1}^{T} x_t v_t}{(1/T^2)\sum_{t=1}^{T} x_t^2}$$

分子・分母を変形すると

$$\frac{1}{T} \sum_{t=1}^{T} x_t v_t = \sum_{t=1}^{T} \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{t} u_s \right) \frac{v_t}{\sqrt{T}}$$
$$\frac{1}{T^2} \sum_{t=1}^{T} x_t^2 = \sum_{t=1}^{T} \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{t} u_s \right)^2 \frac{1}{T}$$

これらは0でない確率変数に分布収束する(詳細は略)。

注 7. この例では $\beta=0$ なら $\{y_t\}$ は $\mathrm{I}(0)$ なので見せかけの回帰は生じない.

定義 10. $T \to \infty$ で $1/\sqrt{T}$ より速く推定量が母数 に確率収束する性質を**超一致性**という.

注 8. 通常の回帰と共和分回帰で OLS 推定量の性質は大きく異なる.

収束の速度 通常の回帰は $\sqrt{T}(b_T-\beta)$ が分布収束. 共和分回帰は $T(b_T-\beta)$ が分布収束 (超一致性).

説明変数と誤差項の相関 通常の回帰は一致性を失 う(内生性バイアス). 共和分回帰は超一致性 を失わない.

 $\beta = 0$ **の場合** 通常の回帰は一致性を失わない. 見せかけの回帰なら共和分回帰は一致性を失う.

したがって t 値は無意味.

例 2. CI(1,1) の原系列の散布図(図 2) と階差系列の散布図(図 3).

4 Engle-Granger の共和分検定

4.1 共和分ベクトルが既知

 $\{y_t\}$ が $\mathrm{CI}(1,1)$ か否かを検定したい. 共和分ベクトル α が既知なら $\{\alpha'y_t\}$ の単位根検定=共和分検定. すなわち共和分検定問題は

 $H_0: \{\boldsymbol{\alpha}' \boldsymbol{y}_t\} \sim I(1) \text{ vs } H_1: \{\boldsymbol{\alpha}' \boldsymbol{y}_t\} \sim I(0)$

4.2 共和分ベクトルが未知 (p. 236)

lpha が未知なら OLS 推定値 \hat{lpha} を用いて $\{\hat{lpha}'y_t\}$ の単位根検定を行う.

定義 11. 共和分回帰の残差の ADF 検定で共和分の有無を検定する手法を *Engle-Granger* **の** 2 **段階** 法という.

注 9. 共和分ベクトルの推定誤差のため、 τ 統計量の漸近分布は通常の ADF 検定と異なる。 また共和分回帰の定数項・トレンドの有無により、 τ 統計量の漸近分布は異なる。

注 10. 共和分回帰の従属変数の選択により残差が 異なるので τ 統計量の値も異なる.

5 今日のキーワード

線形結合, 線形独立, 線形従属, 行階数, 列階数, 階数, (d,b)次の共和分過程, 共和分ベクトル, 共和分階数, 共和分回帰モデル, 超一致性, Engle-Grangerの 2 段階法

6 次回までの準備

提出 宿題 11

復習 教科書第7章5.3節,復習テスト11

予習 教科書第7章5.3節

図 2 CI(1,1) の原系列の散布図

図 3 CI(1,1) の階差系列の散布図