Deterministic Finite State Automata

Burak Ekici

February 28 - March 4, 2022

Outline

A Ouick Recap

•00000

- 1 A Quick Recap
- 2 Chomsky Hierarchy

A Ouick Recap

000000

• alphabet is finite set; its elements are called symbols or letters

000000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ

strings over $\Sigma = \{0, 1\} : 0$ 0110

A Ouick Recap

000000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$

A Ouick Recap

000000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$

A Ouick Recap 000000

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\varepsilon\}$)

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$

Definitions

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\varepsilon\}$)
- language over Σ is subset of Σ^*

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$ languages over Σ :

• $\{\varepsilon, 0, 1, 00, 01, 10, 11\}$ (all strings having at most two symbols)

A Ouick Recap

00000

Definitions

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- length |x| of string x is number of symbols in x
- empty string is unique string of length 0 and denoted by ε
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\varepsilon\}$)
- language over Σ is subset of Σ^*

strings over $\Sigma = \{0, 1\} : 0 \quad 0110$ languages over Σ :

- $\{\varepsilon, 0, 1, 00, 01, 10, 11\}$ (all strings having at most two symbols)
- {x | x is valid program in some machine language}

000000

• string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz) \quad \forall x, y, z \in \Sigma^*$$

Deterministic Finite State Automata

000000

• string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz) \quad \forall x, y, z \in \Sigma^*$$

Deterministic Finite State Automata

• empty string is identity for concatenation:

$$\varepsilon x = x \varepsilon \quad \forall x \in \Sigma^*$$

000000

• string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz) \quad \forall x, y, z \in \Sigma^*$$

Deterministic Finite State Automata

• empty string is identity for concatenation:

$$\varepsilon x = x \varepsilon \quad \forall x \in \Sigma^*$$

• x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)

000000

• string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz) \quad \forall x, y, z \in \Sigma^*$$

• empty string is identity for concatenation:

$$\varepsilon x = x \varepsilon \quad \forall x \in \Sigma^*$$

Deterministic Finite State Automata

- x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- $x^n (x \in \Sigma^*, n \in \mathbb{N})$:

$$x^0 = \varepsilon$$
 $x^{n+1} = x^n$

000000

• string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz) \quad \forall x, y, z \in \Sigma^*$$

Deterministic Finite State Automata

• empty string is identity for concatenation:

$$\varepsilon x = x \varepsilon \quad \forall x \in \Sigma^*$$

- x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- $x^n (x \in \Sigma^*, n \in \mathbb{N})$:

$$x^0 = \varepsilon$$

 $x^{n+1} = x^n x$

• $\#a(x)(a \in \Sigma, x \in \Sigma^*)$ denotes number of a's in x

Definitions $(A, B \subseteq \Sigma^*)$

 $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

Deterministic Finite State Automata

union

A Quick Recap

000000

 $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

Deterministic Finite State Automata

intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

A Ouick Recap

000000

union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

complement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

A Ouick Recap

000000

union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

complement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

 \triangle set concatenation $AB := \{xy \mid x \in A \text{ and } y \in B\}$

Definitions $(A, B \subseteq \Sigma^*)$

A Ouick Recap

000000

① union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

② intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

6 complement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

4 set concatenation $AB := \{xy \mid x \in A \text{ and } y \in B\}$

⑤ powers $A^n (n \in \mathbb{N})$ $A^0 = \{ \epsilon \}$ $A^{n+1} = AA^n$

000000

union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

② intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

6 complement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

4 set concatenation $AB := \{xy \mid x \in A \text{ and } y \in B\}$

5 powers $A^n (n \in \mathbb{N})$ $A^0 = \{ \epsilon \}$ $A^{n+1} = AA^n$

(a) asterate A* is union of all finite powers of A

 $A^* := \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots = \{x_1 x_2 \cdots x_n \text{ and } x_i \in A \text{ for all } 1 \le i \le n\}$

Deterministic Finite State Automata

Definitions $(A, B \subseteq \Sigma^*)$

union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

② intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

Somplement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

 \triangle set concatenation $AB := \{xy \mid x \in A \text{ and } y \in B\}$

5 powers $A^n (n \in \mathbb{N})$ $A^0 = \{ \epsilon \}$ $A^{n+1} = AA^n$

(a) asterate A* is union of all finite powers of A

$$A^* := \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots = \{x_1 x_2 \cdots x_n \text{ and } x_i \in A \text{ for all } 1 \le i \le n\}$$

Deterministic Finite State Automata

 \bigcirc plus A^+ is union of all finite powers of A except ε

$$A^+ = AA^* := \bigcup_{n \geqslant 1} A^n$$

000000

union $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$

② intersection $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$

6 complement $\sim A := \Sigma^* - A := \{x \in \Sigma^* \mid x \notin A\}$

4 set concatenation $AB := \{xy \mid x \in A \text{ and } y \in B\}$

5 powers $A^n (n \in \mathbb{N})$ $A^0 = \{ \epsilon \}$ $A^{n+1} = AA^n$

(a) asterate A* is union of all finite powers of A

$$A^* := \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots = \{x_1 x_2 \cdots x_n \text{ and } x_i \in A \text{ for all } 1 \le i \le n\}$$

Deterministic Finite State Automata

 \bigcirc plus A^+ is union of all finite powers of A except ε

$$A^+ = AA^* := \bigcup_{n \ge 1} A^n$$

 $2^A := \{Q \mid Q \subseteq A\}$ 8 power set

Example

A Quick Recap

000000

• substrings of 011: 0, 1, 01, 11, 011, ε

Example

A Ouick Recap

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ε

Example

A Ouick Recap

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ε

A Ouick Recap

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ε
- $(011)^3 = 011011011 \neq 011^3$

A Ouick Recap

- substrings of 011: 0, 1, 01, 11, 011, ε
- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- #1(011011011) = 6 $#0(\varepsilon) = 0$

A Ouick Recap

```
• substrings of 011: 0, 1, 01, 11, 011, ε
```

- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- #1(011011011) = 6 $#0(\varepsilon) = 0$
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$

A Ouick Recap

```
• substrings of 011: 0, 1, 01, 11, 011, ε
```

- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- #1(011011011) = 6 $#0(\varepsilon) = 0$
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

A Ouick Recap

```
• substrings of 011: 0, 1, 01, 11, 011, ε
```

- prefixes of 011: 0, 01, 011, ε
- suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- #1(011011011) = 6 $#0(\varepsilon) = 0$
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $\{1,01\}^3 = \{111,0111,1011,01011,1101,01101,10101,010101\}$

A Ouick Recap 000000

```
    substrings of 011: 0, 1, 01, 11, 011, ε

• prefixes of 011: 0, 01, 011, \varepsilon
• suffixes of 011: 1, 11, 011, \epsilon
• (011)^3 = 011011011 \neq 011^3
• #1(011011011) = 6 #0(\varepsilon) = 0
• \{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}
• \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}
• \{1,01\}^3 = \{111,0111,1011,01011,1101,01101,10101,010101\}
• \{1,01\}^* = \{\varepsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}
```

A Ouick Recap 000000

```
• prefixes of 011: 0, 01, 011, \varepsilon
• suffixes of 011: 1, 11, 011, \epsilon
• (011)^3 = 011011011 \neq 011^3
• #1(011011011) = 6 #0(\varepsilon) = 0
```

- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $\{1,01\}^3 = \{111,0111,1011,01011,1101,01101,10101,010101\}$
- $\{1,01\}^* = \{\varepsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}$
- $2^{\{1,01\}} = \{\emptyset, \{1\}, \{01\}, \{1,01\}\}$

Some Useful Properties

A Quick Recap

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

Some Useful Properties

- $\{\varepsilon\}A = A\{\varepsilon\} = A$
- $\emptyset A = A\emptyset = \emptyset$

A Ouick Recap

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

•
$$\emptyset A = A\emptyset = \emptyset$$

A Ouick Recap

•
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

Some Useful Properties

- $\{\varepsilon\}A = A\{\varepsilon\} = A$
- $\emptyset A = A\emptyset = \emptyset$

A Ouick Recap

- $\sim (A \cup B) = (\sim A) \cap (\sim B)$
- $\sim (A \cap B) = (\sim A) \cup (\sim B)$

Some Useful Properties

- $\{\varepsilon\}A = A\{\varepsilon\} = A$
- $\emptyset A = A\emptyset = \emptyset$

A Ouick Recap

- $\sim (A \cup B) = (\sim A) \cap (\sim B)$
- $\sim (A \cap B) = (\sim A) \cup (\sim B)$
- $A^{m+n} = A^m A^n$

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

•
$$\emptyset A = A\emptyset = \emptyset$$

A Ouick Recap

•
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

•
$$\sim (A \cap B) = (\sim A) \cup (\sim B)$$

•
$$A^{m+n} = A^m A^n$$

•
$$A*A* = A*$$

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

•
$$\emptyset A = A\emptyset = \emptyset$$

A Ouick Recap

•
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

•
$$\sim (A \cap B) = (\sim A) \cup (\sim B)$$

•
$$A^{m+n} = A^m A^n$$

•
$$A*A* = A*$$

•
$$A^{**} = A^*$$

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

•
$$\emptyset A = A\emptyset = \emptyset$$

A Ouick Recap

•
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

•
$$\sim (A \cap B) = (\sim A) \cup (\sim B)$$

•
$$A^{m+n} = A^m A^n$$

•
$$A*A* = A*$$

•
$$A^{**} = A^*$$

•
$$A^* = \{\varepsilon\} \cup AA^* = \{\varepsilon\} \cup A^*A$$

•
$$\{\varepsilon\}A = A\{\varepsilon\} = A$$

•
$$\emptyset A = A\emptyset = \emptyset$$

A Ouick Recap

•
$$\sim (A \cup B) = (\sim A) \cap (\sim B)$$

•
$$\sim (A \cap B) = (\sim A) \cup (\sim B)$$

•
$$A^{m+n} = A^m A^n$$

•
$$A*A* = A*$$

•
$$A^{**} = A^*$$

•
$$A^* = \{\varepsilon\} \cup AA^* = \{\varepsilon\} \cup A^*A$$

•
$$\emptyset^* = \{\varepsilon\}$$

Outline

- 1 A Quick Recap
- 2 Chomsky Hierarchy

Deterministic Finite State Automata

Outline

- 1 A Quick Recap
- 2 Chomsky Hierarchy
- 3 Deterministic Finite State Automata

Definitions

A Ouick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

① Q: finite set of states

Definitions

A Ouick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

finite set of states ① Q:

 2Σ : input alphabet

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

1 Q: finite set of states

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

①
$$Q = \{1, 2, 3, 4\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

$$\bigcirc Q = \{1, 2, 3, 4\}$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

δ	а	b
1	2	1
_	_	_

- 2

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

000000000000000

1 Q: finite set of states

 Σ : input alphabet

(a) $\delta: Q \times \Sigma \rightarrow Q:$ transition function $4s \in O$: start state

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Deterministic Finite State Automata

000000000000000

1 Q: finite set of states

 Σ : input alphabet

transition function

 \P $s \in Q$: start state

⑤ *F* ⊆ *Q* : final (accept) states

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

- 2 3
- 4

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- $\triangle s = 1$

- 4

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

000000000000000

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$

 \bullet $\delta: Q \times \Sigma \to Q$

4 s = 1

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

Deterministic Finite State Automata

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1**6** $F = \{4\}$

- 2 3

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3, 4\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$4 s = 1$$

 $5 F = \{4\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3, 4\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$4s = 1$$

 $5F = \{4\}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3, 4\}$$

$$\delta: Q \times \Sigma \to Q$$

4
$$s = 1$$

$$4s = 1$$

 $5F = \{4\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
- 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- 2 3
- 4

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

Deterministic Finite State Automata

- 3

Definitions

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

0 0 : finite set of states

 Σ : input alphabet

transition function

 $4 s \in Q$: start state ⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Deterministic Finite State Automata

000000000000000

Example (Unfolding of the multistep function $\widehat{\delta}$)

Let x = abbaab over the alphabet $\Sigma = \{a, b\}$

A Ouick Recap

$$\delta(\widehat{\delta}(q_0, abbaa), b)$$

first recursive call

Deterministic Finite State Automata

A Ouick Recap

$$\delta(\widehat{\delta}(q_0, abbaa), b)$$

 $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$

first recursive call second recursive call

Deterministic Finite State Automata

A Ouick Recap

$$\begin{array}{l} \delta(\widehat{\delta}(q_0,abbaa),b) \\ \delta(\delta(\widehat{\delta}(q_0,abba),a),b) \\ \delta(\delta(\delta(\widehat{\delta}(q_0,abb),a),a),b) \end{array}$$

first recursive call second recursive call third recursive call

Deterministic Finite State Automata

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\widehat{\delta}(q_0, abb), a), a), b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call

Deterministic Finite State Automata

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\widehat{\delta}(q_0, abb), a), a), b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call

Deterministic Finite State Automata

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\widehat{q}_0, \boldsymbol{\varepsilon}), a), b), b), a), a), b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(q_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(a_1,b),b),a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)$ $\delta(\delta(\delta(\delta(q_2,b),a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$ assuming $\delta(q_1, b) = q_2$

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)$ $\delta(\delta(\delta(\delta(g_2,b),a),a),b)$ $\delta(\delta(\delta(a_3,a),a),b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$ assuming $\delta(q_1, b) = q_2$ assuming $\delta(a_2,b)=a_3$

A Ouick Recap

$$\begin{split} &\delta(\widehat{\delta}(q_0,abbaa),b)\\ &\delta(\widehat{\delta}(\widehat{q}_0,abbaa),a),b)\\ &\delta(\delta(\widehat{\delta}(\widehat{q}_0,abba),a),b)\\ &\delta(\delta(\delta(\widehat{\delta}(q_0,ab),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,ab),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\widehat{\delta}(\widehat{\delta}(q_0,a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\widehat{\delta}(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(\delta(q_0,\epsilon),a),b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)\\ &\delta(\delta(\delta(\delta(q_3,a),a),b)\\ &\delta(\delta(\delta(q_4,a),b)\\ &\delta(\delta(q_4,a),b)\\ \end{split}$$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$ assuming $\delta(q_1, b) = q_2$ assuming $\delta(a_2,b)=a_3$ assuming $\delta(q_3, a) = q_4$

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)$ $\delta(\delta(\delta(\delta(g_2,b),a),a),b)$ $\delta(\delta(\delta(q_3,a),a),b)$ $\delta(\delta(q_4,a),b)$ $\delta(q_5,b)$

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$ assuming $\delta(a_1,b)=a_2$ assuming $\delta(q_2, b) = q_3$ assuming $\delta(q_3, a) = q_4$ assuming $\delta(q_4, a) = q_5$

A Ouick Recap

 $\delta(\widehat{\delta}(q_0, abbaa), b)$ $\delta(\delta(\widehat{\delta}(q_0, abba), a), b)$ $\delta(\delta(\delta(\delta(g_0,abb),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(g_0,ab),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(g_0,\varepsilon),a),b),b),a),a),b))$ $\delta(\delta(\delta(\delta(\delta(\delta(g_0,a),b),b),a),a),b)$ $\delta(\delta(\delta(\delta(\delta(q_1,b),b),a),a),b)$ $\delta(\delta(\delta(\delta(q_2,b),a),a),b)$ $\delta(\delta(\delta(q_3,a),a),b)$ $\delta(\delta(q_4,a),b)$ $\delta(q_5,b)$ 96

first recursive call second recursive call third recursive call fourth recursive call fifth recursive call sixth recursive call

Deterministic Finite State Automata

assuming $\delta(q_0, a) = q_1$ assuming $\delta(a_1,b)=a_2$ assuming $\delta(q_2, b) = q_3$ assuming $\delta(q_3, a) = q_4$ assuming $\delta(q_4, a) = q_5$ assuming $\delta(a_5, b) = a_6$ A Ouick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

0 0 : finite set of states

 Σ : input alphabet

transition function

 $4 s \in Q$: start state \bigcirc $F \subseteq Q$: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

 $\widehat{\delta}(q, \varepsilon) := q$ $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Deterministic Finite State Automata

00000000000000000

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

A Ouick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

0 0 : finite set of states 2Σ :

input alphabet transition function

 $4 s \in Q$: start state

⑤ *F* ⊂ *O* : final (accept) states

• $\hat{\delta}: O \times \Sigma^* \to O$ is inductively defined by

 $\widehat{\delta}(q, \varepsilon) := q$ $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Deterministic Finite State Automata

00000000000000000

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

• string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s, x) \notin F$

 $\in L(M)$

Example (DFAs → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3
 - 4

- $\notin L(M)$
- 2 3

A Ouick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

1 Q: finite set of states

 Σ : input alphabet

transition function

 $4 s \in Q$: start state **⑤** *F* ⊂ *O* : final (accept) states

• $\hat{\delta}: O \times \Sigma^* \to O$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Deterministic Finite State Automata

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

• string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s, x) \notin F$

• language accepted by M is given by $L(M) := \{x \mid \widehat{\delta}(s, x) \in F\}$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **6** $F = \{4\}$

- - 2 3

 - 4

 $\in L(M)$

Deterministic Finite State Automata

- - $\notin L(M)$
- 2 3

$$L(M) := \{x \mid$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- $\bigcirc Q = \{1, 2, 3, 4\}$
- $\Sigma = \{a, b\}$
- $\triangle s = 1$
- **6** $F = \{4\}$

- - 2 3

 - 4

 $\in L(M)$

Deterministic Finite State Automata

00000000000000000

- - $\notin L(M)$

 $L(M) := \{x \mid x \text{ contains } aba \text{ as substring}\}$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

①
$$Q = \{1, 2, 3\}$$

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

Deterministic Finite State Automata

$$\bigcirc Q = \{1, 2, 3\}$$

$$\ \ \ \Sigma = \{a,b\}$$

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

Deterministic Finite State Automata

- ① $Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\begin{array}{c|cccc}
\delta & a & b \\
1 & 1 & 2 \\
2 & 3 & 3 \\
3 & 3 & 3
\end{array}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

Deterministic Finite State Automata

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

$$\mathbf{a} s = 1$$

5
$$F = \{2\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

$$\Sigma = \{a, b\}$$

$$\mathbf{a} = \mathbf{b}$$

5
$$F = \{2\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

6
$$F = \{2\}$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

$$\Sigma = \{a, b\}$$

$$5 = 1$$

14/31

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

$$\mathbf{a} s = 1$$

5
$$F = \{2\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$5 = \{2\}$$

Deterministic Finite State Automata

A Ouick Recap

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$S = 1$$

 $S = \{2\}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$5 = \{2\}$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

$$\mathbf{a} s = 1$$

6
$$F = \{2\}$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$4 s = 1$$

 $5 F = \{2\}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

$$\mathbf{a} = \mathbf{b}$$

5
$$F = \{2\}$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$4 s = 1$$

 $5 F = \{2\}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

$$\mathbf{a} s = 1$$

6
$$F = \{2\}$$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$F = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$5 = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$5 = 1$$

L	1	2
2	3	3
3	3	3

 $\in L(M)$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

L	1	2
2	3	3
3	3	3

 $\in L(M)$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$5 = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

4)
$$s = 1$$

5) $F = \{2\}$

1	1	2
2	3	3
3	3	3

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$5 = 1$$

 $\in L(M)$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

$$\begin{array}{c|cccc} \delta & a & b \\ \hline 1 & 1 & 2 \\ \end{array}$$

т	т.	
2	3	3
3	3	3

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

$$\begin{array}{c|cccc} \delta & a & b \\ \hline 1 & 1 & 2 \\ \end{array}$$

 $\in L(M)$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{a} s = 1$$

$$5 = \{2\}$$

Deterministic Finite State Automata

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

6
$$F = \{2\}$$

a a b b a
$$\notin L(M)$$

 $\in L(M)$

3

Deterministic Finite State Automata

Example (DFA → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

$$\mathbb{Q} = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = \mathbf{1}$$

$$5 = \{2\}$$

a a b b a
$$\notin L(M)$$

Deterministic Finite State Automata

$$L(M) := \{x \mid$$

 $\in L(M)$

Example (DFA → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

$$\mathbb{Q} = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = 1$$

a a b b a
$$\notin L(M)$$

Deterministic Finite State Automata

$$L(M) := \{x \mid x = a^n b, n \ge 0\}$$

 $\in L(M)$

Deterministic Finite State Automata

A Quick Recap

The DFA M is correct with respect to predefined specs.

Theoren

A Ouick Recap

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form a^nb s.t. $n \in \mathbb{N}$, rejecting all others.

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form $a^n b$ s.t. $n \in \mathbb{N}$, rejecting all others.

Deterministic Finite State Automata

Formally:
$$\widehat{\delta}(1,x) = \begin{cases} 1 & \Longleftrightarrow x \in L(a^*) \\ 2 & \Longleftrightarrow x \in L(a^*b) \\ 3 & \Longleftrightarrow x \in L(a^*b(a+b)^+) \end{cases}$$

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form $a^n b$ s.t. $n \in \mathbb{N}$, rejecting all others.

Deterministic Finite State Automata

Formally:
$$\widehat{\delta}(1,x) = \begin{cases} 1 & \iff x \in L(a^*) \\ 2 & \iff x \in L(a^*b) \\ 3 & \iff x \in L(a^*b(a+b)^+) \end{cases}$$

Proof.

We argue by mathematical induction on the length of x.

Theorem

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form a^nb s.t. $n \in \mathbb{N}$, rejecting all others.

Formally:
$$\widehat{\delta}(1,x) = \begin{cases} 1 & \iff x \in L(a^*) \\ 2 & \iff x \in L(a^*b) \\ 3 & \iff x \in L(a^*b(a+b)^+) \end{cases}$$

Proof.

We argue by mathematical induction on the length of x.

1 Base Case:
$$|x| = 0 \iff x = \varepsilon \quad \widehat{\delta}(1, \varepsilon) = 1 \iff \varepsilon \in L(a^*)$$

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form $a^n b$ s.t. $n \in \mathbb{N}$, rejecting all others.

Deterministic Finite State Automata

Formally:
$$\widehat{\delta}(1, x) = \begin{cases} 1 & \iff x \in L(a^*) \\ 2 & \iff x \in L(a^*b) \\ 3 & \iff x \in L(a^*b(a+b)^+) \end{cases}$$

Proof.

We argue by mathematical induction on the length of x.

1 Base Case: $|x| = 0 \iff x = \varepsilon \quad \widehat{\delta}(1, \varepsilon) = 1 \iff \varepsilon \in L(a^*)$

Given IH : M is correct on every $x \in \Sigma^*$ such that |x| = k with $k \ge 0$ 2 Step Case:

Show : *M* is correct on every *xv* for all $v \in \Sigma = \{a, b\}$ such that |xy| = k + 1

The DFA M is correct with respect to predefined specs. Namely, M accepts every string of the form $a^n b$ s.t. $n \in \mathbb{N}$, rejecting all others.

Deterministic Finite State Automata

Formally:
$$\widehat{\delta}(1,x) = \begin{cases} 1 & \iff x \in L(a^*) \\ 2 & \iff x \in L(a^*b) \\ 3 & \iff x \in L(a^*b(a+b)^+) \end{cases}$$

Proof.

We argue by mathematical induction on the length of x.

1 Base Case: $|x| = 0 \iff x = \varepsilon \quad \widehat{\delta}(1, \varepsilon) = 1 \iff \varepsilon \in L(a^*)$

Given IH : M is correct on every $x \in \Sigma^*$ such that |x| = k with $k \ge 0$ 2 Step Case:

Show : *M* is correct on every *xv* for all $v \in \Sigma = \{a, b\}$ such that |xy| = k + 1

 $: \widehat{\delta}(1,x) = \begin{cases} 1 & \Longleftrightarrow x \in L(a^*) \\ 2 & \Longleftrightarrow x \in L(a^*b) \\ 3 & \Longleftrightarrow x \in L(a^*b(a+b)^+) \end{cases}$

Formally:

Show : $\hat{\delta}(1, xy) = \begin{cases} 1 \iff xy \in L(a^*) \\ 2 \iff xy \in L(a^*b) \\ 3 \iff xy \in L(a^*b(a+b)^+) \end{cases}$

Deterministic Finite State Automata

0000000000000000

A Quick Recap

Proof. (cont'd)

①
$$\widehat{\delta}(1,x) = 1$$
 and $y = a$

Proof. (cont'd)

A Ouick Recap

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a)=1 \iff xa \in L(a^*)$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \quad \iff \quad xa \in L(a^*)$$

Deterministic Finite State Automata

0000000000000000

 $\widehat{\delta}(1,x)=1 \quad \text{and} \quad y=b$

Proof. (cont'd)

A Ouick Recap

 $\widehat{\delta}(1,x)=1 \quad \text{and} \quad y=a$ $\widehat{\delta}(1,x) = 1 \iff x \in L(a^*) \text{ (by IH)}$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

000000000000000000

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a^*b)$$

$$\widehat{\delta}(1, x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1, x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

$$\widehat{\delta}(1, x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1, x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\widehat{\delta}(1,x)=1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)} \qquad \qquad \delta(\widehat{\delta}(1,x),b)=2 \quad \Longleftrightarrow \quad xb \in L(a^*b)$$

$$\widehat{\delta}(1,x)=2$$
 and $y=a$

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a^*b)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a*b(a+b)^+)$$

Proof. (cont'd)

A Ouick Recap

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a*b)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata 000000000000000000

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a^*b)$$

§
$$\widehat{\delta}(1,x) = 2$$
 and $y = a$
 $\widehat{\delta}(1,x) = 2$ \iff $x \in L(a^*b)$ (by IH)

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a*b(a+b)^+)$$

$$\widehat{\delta}(1, x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1, x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH)}$$

$$\delta(1,x) = 2$$
 and $y = b$
 $\widehat{\delta}(1,x) = 2 \iff x \in L(a^*b) \text{ (by IH)}$ $\delta(\widehat{\delta}(1,x),b) = 3 \iff xb \in L(a^*b(a+b)^+)$

Proof. (cont'd)

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata 000000000000000000

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a*b)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 3 \iff xb \in L(a*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = a$$

Proof. (cont'd)

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a*b)$$

§
$$\widehat{\delta}(1,x) = 2$$
 and $y = a$
 $\widehat{\delta}(1,x) = 2$ \iff $x \in L(a^*b)$ (by IH)

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a^*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by I)}$$

$$\delta(1, x) = 2$$
 and $y = b$
 $\widehat{\delta}(1, x) = 2$ \iff $x \in L(a^*b)$ (by IH) $\delta(\widehat{\delta}(1, x), b) = 3$ \iff $xb \in L(a^*b(a+b)^+)$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 3 \quad \Longleftrightarrow \quad x \in L(a^*b(a+b)^+) \text{ (by IH)} \quad \delta(\widehat{\delta}(1,x),a) = 3 \quad \Longleftrightarrow \quad xa \in L(a^*b(a+b)^+)$$

Proof. (cont'd)

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a*b)$$

§
$$\widehat{\delta}(1,x) = 2$$
 and $y = a$
 $\widehat{\delta}(1,x) = 2$ \iff $x \in L(a^*b)$ (by IH)

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 2 \quad \Longleftrightarrow \quad x \in L(a^*b) \text{ (by IH}$$

$$\delta(1,x) = 2$$
 and $y = b$
 $\widehat{\delta}(1,x) = 2$ $\iff x \in L(a^*b)$ (by IH) $\delta(\widehat{\delta}(1,x),b) = 3$ $\iff xb \in L(a^*b(a+b)^+)$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 3 \quad \Longleftrightarrow \quad x \in L(a^*b(a+b)^+) \text{ (by IH)} \quad \delta(\widehat{\delta}(1,x),a) = 3 \quad \Longleftrightarrow \quad xa \in L(a^*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = b$$

Closure Properties

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),a) = 1 \iff xa \in L(a^*)$$

Deterministic Finite State Automata

$$\widehat{\delta}(1,x) = 1 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 1 \quad \Longleftrightarrow \quad x \in L(a^*) \text{ (by IH)}$$

$$\delta(\widehat{\delta}(1,x),b) = 2 \iff xb \in L(a^*b)$$

§
$$\hat{\delta}(1,x) = 2$$
 and $y = a$
 $\hat{\delta}(1,x) = 2$ \iff $x \in L(a^*b)$ (by IH)

$$\delta(\widehat{\delta}(1,x),a) = 3 \iff xa \in L(a^*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 2 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 2 \iff x \in L(a^*b) \text{ (by I)}$$

$$\delta(1,x)=2$$
 and $y=b$
 $\widehat{\delta}(1,x)=2$ \iff $x \in L(a^*b)$ (by IH) $\delta(\widehat{\delta}(1,x),b)=3$ \iff $xb \in L(a^*b(a+b)^+)$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = a$$

$$\widehat{\delta}(1,x) = 3 \quad \Longleftrightarrow \quad x \in L(a^*b(a+b)^+) \text{ (by IH)} \quad \delta(\widehat{\delta}(1,x),a) = 3 \quad \Longleftrightarrow \quad xa \in L(a^*b(a+b)^+)$$

$$\widehat{\delta}(1,x) = 3 \quad \text{and} \quad y = b$$

$$\widehat{\delta}(1,x) = 3 \quad \Longleftrightarrow \quad x \in L(a^*b(a+b)^+) \text{ (by IH)} \quad \delta(\widehat{\delta}(1,x),b) = 3 \quad \Longleftrightarrow \quad xb \in L(a^*b(a+b)^+)$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- **0** 0 =
- $2 \Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- $\triangle s =$

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

- $\bigcirc O =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\mathbf{A} s =$
- \bigcirc F =

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

Deterministic Finite State Automata

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

 $M \text{ start} \rightarrow \bigcirc \bigcirc \bigcirc$

- $\bigcirc O =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

Deterministic Finite State Automata

 $M = (Q, \Sigma, \delta, s, F)$

A Ouick Recap

 $M \text{ start} \rightarrow 1$

Deterministic Finite State Automata

00000000000000000

$$\bigcirc O =$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$\triangle s =$$

$$\bigcirc$$
 $F =$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

00000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

00000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

00000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

00000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

00000000000000000

- $\bigcirc O =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

b

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

b

Deterministic Finite State Automata

b

00000000000000000

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

b

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$abrac{1}{2}$$
 $s = 1$

$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

Deterministic Finite State Automata

b

00000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$abrac{1}{2}$$
 $s = 1$

6
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

b

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$5 = 1$$

 $5 = \{1\}$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

b

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

A Ouick Recap

b

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$5 = 1$$

$$M = (Q, \Sigma, \delta, s, F)$$

b

Deterministic Finite State Automata

b

00000000000000000

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$abrac{1}{2}$$
 $s = 1$

6
$$F = \{1\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

b

Deterministic Finite State Automata

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$5 = 1$$

 $5 = \{1\}$

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

а

b

Deterministic Finite State Automata

b

00000000000000000

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

Deterministic Finite State Automata

00000000000000000

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

①
$$Q = \{1, 2\}$$

②
$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

4
$$s = 1$$

$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

6
$$F = \{1\}$$

b

Deterministic Finite State Automata

00000000000000000

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \to Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

а

b

b

Deterministic Finite State Automata

00000000000000000

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

b

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

а

2

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

b

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{1\}$$

b

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

 $\in L(M)$

Closure Properties

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

⑤
$$F = \{1\}$$

2

b

Deterministic Finite State Automata

00000000000000000

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{1\}$$

b

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{1\}$$

b

b

Deterministic Finite State Automata

00000000000000000

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

2

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

$$F = \{1\}$$

b

Deterministic Finite State Automata

00000000000000000

$$L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

а

b

$$\bigcirc Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

$$F = \{1\}$$

b

Deterministic Finite State Automata

00000000000000000

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

а

①
$$Q = \{1, 2\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

⑤
$$F = \{1\}$$

b

b

Deterministic Finite State Automata

00000000000000000

$$I(M) = [x] \times s$$

 $L(M) := \{x \mid x \text{ contains even number of } bs \text{ over } \Sigma\}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- ① Q =
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$M \text{ start} \longrightarrow 1$$

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

Deterministic Finite State Automata

$$M = (Q, \Sigma, \delta, s, F)$$

$$M \text{ start} \longrightarrow 1$$
 2

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$\mathbf{A} s =$$

$$\mathbf{G} F =$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$M \text{ start} \longrightarrow 1$$
 $\longrightarrow 2$

Deterministic Finite State Automata

0000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$M \operatorname{start} \longrightarrow 1$$
 $\longrightarrow 1$ $\longrightarrow 1$

Deterministic Finite State Automata

0000000000000000

$$\bigcirc Q =$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$\mathbf{A} s =$$

$$\bigcirc F =$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$M \text{ start} \longrightarrow 1$$
 $\longrightarrow 1$ $\longrightarrow 1$

Deterministic Finite State Automata

0000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$M \text{ start} \longrightarrow 1$$
 $\longrightarrow 1$ $\longrightarrow 1$

Deterministic Finite State Automata

0000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

Deterministic Finite State Automata

0000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \to Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

000000000000000

- $\bigcirc Q =$
- $\Sigma = \{a, b\}$
- \bullet $\delta: Q \times \Sigma \rightarrow Q$
- $\triangle s =$
- \bigcirc F =

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$4 s = 1$$

 $5 F = {3}$

$$L(M)$$
:

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{3\}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

Deterministic Finite State Automata

0000000000000000

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{3\}$$

$$I(M) \cdot = \{x \mid x\}$$

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = 1$$

 $5 = {3}$

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

0000000000000000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{A} s = 1$$

$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

4
$$s = 1$$

$$5 = 1$$

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$a s = 1$$

$$F = \{3\}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$I(M) := \{x \mid x \in \Omega\}$$

Deterministic Finite State Automata

0000000000000000

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$6F = \{3\}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{A} s = 1$$

$$F = \{3\}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

Deterministic Finite State Automata

0000000000000000

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

0000000000000000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{A} s = 1$$

$$F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\Omega = 1$$

4
$$s = 1$$
 5 $F = \{3\}$

$$L(M)$$
:

Deterministic Finite State Automata

0000000000000000

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{A} s = 1$$

$$F = \{3\}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$I(M) := \{x \mid x \text{ cont}\}$$

Deterministic Finite State Automata

0000000000000000

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Deterministic Finite State Automata

0000000000000000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\delta: Q \times \Sigma \to Q$$

$$\mathbf{A} s = 1$$

$$6F = \{3\}$$

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$M = (Q, \Sigma, \delta, s, F)$$

2

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{A} s = \mathbf{1}$$

$$GF = \{3\}$$

3

Deterministic Finite State Automata

0000000000000000

$$L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$6F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$\mathbf{A} s = 1$$

$$6F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$5 = 1$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$5 = 1$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

①
$$Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\mathbf{a} s = 1$$

$$5 = 1$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\bullet$$
 $\delta: Q \times \Sigma \rightarrow Q$

$$F = \{3\}$$

a a b a b
$$\notin L(M)$$

Deterministic Finite State Automata

0000000000000000

 $L(M) := \{x \mid x \text{ contains } bb \text{ as substring } \}$

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Chomsky Hierarchy
- 4 Closure Properties

A Ouick Recap

regular sets are effectively closed under intersection

A Ouick Recap

regular sets are effectively closed under intersection

$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
 $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under intersection

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, S_3, F_3)$

A Ouick Recap

regular sets are effectively closed under intersection

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

A Ouick Recap

regular sets are effectively closed under intersection

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 := Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

$$\bigcirc F_3 := F_1 \times F_2$$

A Ouick Recap

regular sets are effectively closed under intersection

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$s_3 := (s_1, s_2)$$

regular sets are effectively closed under intersection

Proof. (closure under intersection)

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc O_3 := O_1 \times O_2 = \{(p, q) \mid p \in O_1 \text{ and } q \in O_2\}$$

$$\bigcirc F_3 := F_1 \times F_2$$

(a)
$$S_3$$
 := (S_1, S_2)
(b) $S_3((p, q), a)$:= $(\delta_1(p, a), \delta_2(q, a))$

$$\forall p \in Q_1, \forall q \in Q_2, \forall a \in \Sigma$$

regular sets are effectively closed under intersection

Proof. (closure under intersection)

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 := Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

$$\bigcirc F_3 := F_1 \times F_2$$

$$s_3 := (s_1, s_2)$$

$$\textcircled{4} \ \delta_3((p,q),a) \qquad := \quad (\delta_1(p,a),\delta_2(q,a)) \qquad \forall p \in Q_1, \ \forall q \in Q_2, \ \forall a \in \Sigma$$

$$\forall p \in Q_1, \forall q \in Q_2, \forall a \in \Sigma$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

A Ouick Recap

regular sets are effectively closed under intersection

Proof. (closure under intersection)

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

•
$$A \cap B := L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 := Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

$$\bigcirc F_3 := F_1 \times F_2$$

$$\textcircled{4} \ \delta_3((p,q),a) := (\delta_1(p,a),\delta_2(q,a)) \qquad \forall p \in Q_1, \forall q \in Q_2, \forall a \in \Sigma$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$
proof: induction on |x| next slide

proof of the claim

A Ouick Recap

claim: $\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$

claim: $\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

 $\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$ $\forall x \in \Sigma^*$ claim:

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_3}((p,q),y) = (\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y))$

claim: $\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$ $\forall x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_3}((p,q), y) = (\widehat{\delta_1}(p,y), \widehat{\delta_2}(q,y)))$

$$\widehat{\delta_3}((p,q),ya) = \delta_3(\widehat{\delta_3}((p,q),y),a)$$
 (by definition of $\widehat{\delta_3}$)

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_3}((p,q),y) = (\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y))$

$$\widehat{\delta_3}((p,q),ya) = \delta_3(\widehat{\delta_3}((p,q),y),a)$$
 (by definition of $\widehat{\delta_3}$)
$$= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a)$$
 (by induction hypothesis IH)

 $\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$ $\forall x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H: \widehat{\delta_3}((p,q),y) = (\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y))$

$$\widehat{\delta_3}((p,q),ya) = \delta_3(\widehat{\delta_3}((p,q),y),a)$$
 (by definition of $\widehat{\delta_3}$)
$$= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a)$$
 (by induction hypothesis IH)
$$= (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a))$$
 (by definition of δ_3)

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_3}((p,q),y) = (\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)))$

$$\begin{array}{lll} \widehat{\delta_3}((p,q),ya) & = & \delta_3(\widehat{\delta_3}((p,q),y),a) & \text{(by definition of } \widehat{\delta_3}) \\ & = & \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a) & \text{(by induction hypothesis IH)} \\ & = & (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a)) & \text{(by definition of } \widehat{\delta_3}) \\ & = & (\widehat{\delta_1}(p,ya),\widehat{\delta_2}(q,ya)) & \text{(by definitions of } \widehat{\delta_1} \text{ and } \widehat{\delta_2}) \end{array}$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_3}((p,q),\varepsilon)=(p,q)=(\widehat{\delta_1}(p,\varepsilon),\widehat{\delta_2}(q,\varepsilon))$$

Deterministic Finite State Automata

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_3}((p,q),y) = (\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)))$

$$\begin{array}{lll} \widehat{\delta_3}((p,q),ya) & = & \delta_3(\widehat{\delta_3}((p,q),y),a) & \text{(by definition of } \widehat{\delta_3}) \\ & = & \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a) & \text{(by induction hypothesis IH)} \\ & = & (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a)) & \text{(by definition of } \delta_3) \\ & = & (\widehat{\delta_1}(p,ya),\widehat{\delta_2}(q,ya)) & \text{(by definitions of } \widehat{\delta_1} \text{ and } \widehat{\delta_2}) \\ & = & (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) & \text{(by definitions of } \widehat{\delta_1} \text{ and } \widehat{\delta_2}) \end{array}$$

Proof. (closure under intersection (cont'd))

statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

Proof. (closure under intersection (cont'd))

statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3$$

(by definition of acceptance)

statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3$$

$$\iff$$
 $\widehat{\delta_3}((s_1,s_2),x) \in F_1 \times F_2$

(by definition of acceptance) (by definition of s_3 and F_3)

statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3$$

$$\iff$$
 $\widehat{\delta_3}((s_1, s_2), x) \in F_1 \times F_2$

$$\iff$$
 $(\widehat{\delta_1}(s_1,x),\widehat{\delta_2}(s_2,x)) \in F_1 \times F_2$

(by definition of acceptance)

Deterministic Finite State Automata

(by definition of s_3 and F_3) (by claim proven in slide 21) statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3$$

$$\iff \widehat{\delta_3}((s_1,s_2),x) \in F_1 \times F_2$$

$$\iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in F_1 \times F_2$$

$$\iff$$
 $\widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2$

(by definition of acceptance)

Deterministic Finite State Automata

(by definition of s_3 and F_3)

(by claim proven in slide 21) (by definition of product) statement: $L(M_3) = L(M_1) \cap L(M_2)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3$$

$$\iff \widehat{\delta_3}((s_1, s_2), x) \in F_1 \times F_2$$

$$\iff (\widehat{\delta_1}(s_1,x),\widehat{\delta_2}(s_2,x)) \in F_1 \times F_2$$

$$\iff$$
 $\widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2$

$$\iff$$
 $x \in L(M_1)$ and $x \in L(M_2)$

(by definition of acceptance)

Deterministic Finite State Automata

(by definition of s_3 and F_3)

(by claim proven in slide 21)

(by definition of product)

(by definition of acceptance)

statement:
$$L(M_3) = L(M_1) \cap L(M_2)$$

$$\begin{array}{ll} \forall x \in \Sigma^*, \, x \in L(M_3) & \iff & \widehat{\delta_3}(s_3, x) \in F_3 \\ & \iff & \widehat{\delta_3}((s_1, s_2), x) \in F_1 \times F_2 \\ & \iff & (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in F_1 \times F_2 \\ & \iff & \widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2 \\ & \iff & x \in L(M_1) \text{ and } x \in L(M_2) \\ & \iff & x \in L(M_1) \cap L(M_2) \end{array}$$

(by definition of acceptance) (by definition of s_3 and F_3) (by claim proven in slide 21) (by definition of product) (by definition of acceptance) (by definition of intersection)

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring}\}$

Example (intersection)

 M_3 start \longrightarrow A

$$A = (1, 1)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring}\}$

Deterministic Finite State Automata

$$A = (1, 1)$$

 $B = (2, 2)$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring}\}$

Example (intersection)

A Ouick Recap

$$A = (1, 1)$$

 $B = (2, 2)$

$$B = (2, 2)$$

$$C = (2, 1)$$

$$D = (1, 3)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring}\}$

(1, 1)

Deterministic Finite State Automata

$$B = (2, 2)$$

 $C = (2, 1)$

$$D = (1,3)$$

$$D = (1,3)$$
$$E = (1,2)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring} \}$

Deterministic Finite State Automata

$$A = (1, 1)$$

 $B = (2, 2)$
 $C = (2, 1)$

$$D = (1,3)$$

$$E = (1, 2)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring} \}$

Deterministic Finite State Automata

$$A = (1, 1)$$

$$B = (2, 2)$$

$$C = (2, 1)$$

$$D = (1, 3)$$

$$E = (1, 2)$$

$$F = (2, 3)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring} \}$

Deterministic Finite State Automata

$$A = (1, 1)$$

$$B = (2, 2)$$

$$C = (2, 1)$$

$$D = (1, 3)$$

$$E = (1, 2)$$

$$F = (2, 3)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring} \}$

Deterministic Finite State Automata

$$A = (1, 1)$$

$$B = (2, 2)$$

$$C = (2, 1)$$

$$D = (1, 3)$$

$$E = (1, 2)$$

$$F = (2, 3)$$

 $L(M_1) \cap L(M_2) = L(M_3) := \{x \mid x \text{ contains even number of } bs \text{ and } bb \text{ as substring} \}$

A Quick Recap

regular sets are effectively closed under complement

A Ouick Recap

regular sets are effectively closed under complement

Proof. (closure under complement)

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

A Ouick Recap

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $\sim A := \Sigma^* A$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under complement

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

•
$$\sim A := \Sigma^* - A$$
 for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $\sim A := \Sigma^* A$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $\sim A := \Sigma^* A$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $\sim A := \Sigma^* A$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

 - $\bigcirc s_2 := s_1$
 - $\emptyset \delta_2(p,a) := \delta_1(p,a) \quad \forall p \in Q_1, \forall a \in \Sigma$

A Ouick Recap

regular sets are effectively closed under complement

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

•
$$\sim A := \Sigma^* - A$$
 for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

$$Q F_2 := Q_1 - F_1$$

$$s_2 := s_1$$

• obvious claim:
$$\widehat{\delta_2}(p, x) = \widehat{\delta_1}(p, x) \quad \forall x \in \Sigma^*$$

Proof. (closure under complement (cont'd))

statement: $L(M_2) = \Sigma^* - L(M_1)$

A Ouick Recap

statement: $L(M_2) = \Sigma^* - L(M_1)$

A Ouick Recap

$$\forall x \in \Sigma^*, x \in L(M_2) \iff \widehat{\delta_2}(s_2, x) \in F_2$$

(by definition of acceptance)

statement:
$$L(M_2) = \Sigma^* - L(M_1)$$

$$\forall x \in \Sigma^*, \, x \in L(M_2) \quad \iff \quad \widehat{\delta_2}(s_2, x) \in F_2 \\ \iff \quad \widehat{\delta_1}(s_2, x) \in F_2$$

(by definition of acceptance) (by the obvious claim in slide 24)

statement: $L(M_2) = \Sigma^* - L(M_1)$

A Ouick Recap

$$\begin{array}{ll} \forall x \in \Sigma^*, \, x \in L(M_2) & \Longleftrightarrow & \widehat{\delta_2}(s_2, x) \in F_2 \\ & \Longleftrightarrow & \widehat{\delta_1}(s_2, x) \in F_2 \\ & \Longleftrightarrow & \widehat{\delta_1}(s_1, x) \in Q_1 - F_1 \end{array}$$

(by definition of acceptance) (by the obvious claim in slide 24) (by definitions of s_2 and F_2)

statement:
$$L(M_2) = \Sigma^* - L(M_1)$$

$$\forall x \in \Sigma^*, x \in L(M_2) \iff \widehat{\delta_2}(s_2, x) \in F_2 \qquad \text{(by definition of acceptance)} \\ \iff \widehat{\delta_1}(s_2, x) \in F_2 \qquad \text{(by the obvious claim in slide 24)} \\ \iff \widehat{\delta_1}(s_1, x) \in Q_1 - F_1 \qquad \text{(by definition of } s_2 \text{ and } F_2) \\ \iff \widehat{\delta_1}(s_1, x) \in Q_1 \text{ and } \widehat{\delta_1}(s_1, x) \notin F_1 \qquad \text{(by definition of set difference)}$$

statement:
$$L(M_2) = \Sigma^* - L(M_1)$$

$$\begin{array}{ll} \forall x \in \Sigma^*, \, x \in L(M_2) & \iff & \widehat{\delta_2}(s_2, x) \in F_2 \\ & \iff & \widehat{\delta_1}(s_2, x) \in F_2 \\ & \iff & \widehat{\delta_1}(s_1, x) \in Q_1 - F_1 \\ & \iff & \widehat{\delta_1}(s_1, x) \in Q_1 \text{ and } \widehat{\delta_1}(s_1, x) \notin F_1 \\ & \iff & x \notin L(M_1) \end{array}$$

(by definition of acceptance) (by the obvious claim in slide 24) (by definitions of s_2 and F_2) (by definition of set difference) (by definition of acceptance)

Theoren

A Quick Recap

regular sets are effectively closed under union

Theoren

A Ouick Recap

regular sets are effectively closed under union

Proof. (closure under union)

 $A \cup B = \sim ((\sim A) \cap (\sim B))$

A Quick Recap

regular sets are effectively closed under union

A Ouick Recap

regular sets are effectively closed under union

$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

$$B = L(M_2)$$
 for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

A Ouick Recap

regular sets are effectively closed under union

$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$

$$B = L(M_2)$$
 for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

A Ouick Recap

regular sets are effectively closed under union

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 = Q_1 \times Q_2 := \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

A Ouick Recap

regular sets are effectively closed under union

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 = Q_1 \times Q_2 := \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

A Ouick Recap

regular sets are effectively closed under union

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $A \cup B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, S_3, F_3)$
 - $\bigcirc Q_3 = Q_1 \times Q_2 := \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

regular sets are effectively closed under union

Proof. (closure under union – explicit construction)

```
• A = L(M_1) for DFA M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)
• B = L(M_2) for DFA M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)
```

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc O_3 = O_1 \times O_2 := \{(p,q) \mid p \in O_1 \text{ and } q \in O_2\}$$

§
$$s_3 := (s_1, s_2)$$

$$\forall p \in Q_1, \forall q \in Q_2, \forall a \in \Sigma$$

regular sets are effectively closed under union

Proof. (closure under union – explicit construction)

•
$$A = L(M_1)$$
 for DFA $M_1 = (Q_1, \Sigma, \delta_1, S_1, F_1)$
• $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2)$

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc O_3 = O_1 \times O_2 := \{(p,q) \mid p \in O_1 \text{ and } q \in O_2\}$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 $\forall x \in \Sigma^*$

regular sets are effectively closed under union

Proof. (closure under union – explicit construction)

```
 A = L(M_1) \quad \text{for DFA} \quad M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1) 
 B = L(M_2) \quad \text{for DFA} \quad M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)
```

•
$$A \cup B = L(M_3)$$
 for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$

$$\bigcirc Q_3 = Q_1 \times Q_2 := \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$$

$$s_3 := (s_1, s_2)$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$
 $\forall x \in \Sigma^*$

proof: induction on |x| – skipped (follows exact same steps with that is given at slide #21)

Proof. (closure under union – explicit construction (cont'd))

statement: $L(M_3) = L(M_1) \cup L(M_2)$

A Ouick Recap

statement:
$$L(M_3) = L(M_1) \cup L(M_2)$$

A Ouick Recap

$$\forall x \in \Sigma^*, \, x \in L(M_3) \quad \Longleftrightarrow \quad \widehat{\delta_3}(s_3, x) \in F_3$$

$$\begin{array}{lll} \text{statement:} & L(M_3) = L(M_1) \cup L(M_2) \\ \forall x \in \Sigma^*, \, x \in L(M_3) & \Longleftrightarrow & \widehat{\delta_3}(s_3, x) \in F_3 \\ & \Longleftrightarrow & \widehat{\delta_3}((s_1, s_2), x) \in (F_1 \times Q_2) \cup (Q_1 \times F_2) \end{array}$$

A Ouick Recap

$$\begin{array}{lll} \text{statement:} & L(M_3) = L(M_1) \cup L(M_2) \\ \forall x \in \Sigma^*, \, x \in L(M_3) & \iff & \widehat{\delta_3}(s_3, x) \in F_3 \\ & \iff & \widehat{\delta_3}((s_1, s_2), x) \in (F_1 \times Q_2) \cup (Q_1 \times F_2) \\ & \iff & (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) \cup (Q_1 \times F_2) \\ \end{array}$$

```
statement: L(M_3) = L(M_1) \cup L(M_2)
\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3
                                         \iff \widehat{\delta_3}((s_1, s_2), x) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                          \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                          \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) or (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (Q_1 \times F_2)
```

```
statement: L(M_3) = L(M_1) \cup L(M_2)
\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3
                                            \iff \widehat{\delta_3}((S_1, S_2), X) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                             \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                            \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) or (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (Q_1 \times F_2)
                                            \iff \left(\widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in Q_2\right) or \left(\widehat{\delta_1}(s_1, x) \in Q_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2\right)
```

```
statement: L(M_3) = L(M_1) \cup L(M_2)
\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3
                                           \iff \widehat{\delta_3}((S_1, S_2), X) \in (F_1 \times O_2) \cup (O_1 \times F_2)
                                           \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                           \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) or (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (Q_1 \times F_2)
                                           \iff \left(\widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in Q_2\right) or \left(\widehat{\delta_1}(s_1, x) \in Q_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2\right)
                                           \iff x \in L(M_1) or x \in L(M_2)
```

```
statement: L(M_3) = L(M_1) \cup L(M_2)
\forall x \in \Sigma^*, x \in L(M_3) \iff \widehat{\delta_3}(s_3, x) \in F_3
                                          \iff \widehat{\delta_3}((S_1, S_2), X) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                          \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) \cup (Q_1 \times F_2)
                                          \iff (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (F_1 \times Q_2) or (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x)) \in (Q_1 \times F_2)
                                          \iff \left(\widehat{\delta_1}(s_1, x) \in F_1 \text{ and } \widehat{\delta_2}(s_2, x) \in Q_2\right) or \left(\widehat{\delta_1}(s_1, x) \in Q_1 \text{ and } \widehat{\delta_2}(s_2, x) \in F_2\right)
                                          \iff x \in L(M_1) or x \in L(M_2)
                                          \iff x \in L(M_1) \cup L(M_2)
```


