

Indian Institute of Technology Bhubaneswar School of Infrastructure

Subject Name: Solid Mechanics Subject Code: CE2L001

Problem Sheet No. 2 Date: September 12, 2025

Instructions:

Provide neatly labelled diagrams whenever necessary.

Notations:

Zeroth-order tensors or scalars are represented by small letters. For eg. a

First-order tensors or vectors are represented by bold small letters. For eg. a.

Second-order tensors are represented by bold capital letters. For eg. A.

- 1. Show that the dot product of two vectors \boldsymbol{u} and \boldsymbol{v} can be interpreted as the magnitude of \boldsymbol{u} times the component of \boldsymbol{v} in the direction of \boldsymbol{u} .
- 2. Write the following in index notation: \mathbf{v} , $\mathbf{v} \cdot \mathbf{e}_1$, $\mathbf{v} \cdot \mathbf{e}_k$.
- 3. The work done by a force, represented by a vector f in moving an object a given distance is the product of the component of force in the given direction times the distance moved. If the vector u represents the direction and magnitude (distance) the object is moved, show that the work done is equivalent to $f \cdot u$.
- 4. Explain the concepts and physical significance of zeroth, first, second, third, and fourth-order tensors through equations, figures, and examples.
- 5. Explain the concepts and physical significance of gradient and divergence of first-, second-, and third-order tensor fields using equations, figures, and examples.
- 6. Explain the concepts and physical significance of inner product (scalar product) and outer product (dyadic product) of first and second order tensors using equations, figures, and examples.
- 7. Prove that the dot product is commutative, $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.

- 8. Evaluate $\boldsymbol{u} \cdot \boldsymbol{v}$ where $\boldsymbol{u} = \boldsymbol{e}_1 + 3\boldsymbol{e}_2 2\boldsymbol{e}_3$ and $\boldsymbol{v} = 4\boldsymbol{e}_1 2\boldsymbol{e}_2 + 4\boldsymbol{e}_3$.
- 9. Prove that for any vector \mathbf{u} , one can write $\mathbf{u} = (\mathbf{u} \cdot \mathbf{e}_1) \mathbf{e}_1 + (\mathbf{u} \cdot \mathbf{e}_2) \mathbf{e}_2 + (\mathbf{u} \cdot \mathbf{e}_3) \mathbf{e}_3$.
- 10. Find the projection of the vector $\mathbf{u} = \mathbf{e}_1 2\mathbf{e}_2 + 2\mathbf{e}_3$ on the vector $\mathbf{v} = 4\mathbf{e}_1 4\mathbf{e}_2 + 7\mathbf{e}_3$.
- 11. Find the angle between the vector $\mathbf{u} = 3\mathbf{e}_1 + 2\mathbf{e}_2 6\mathbf{e}_3$ on the vector $\mathbf{v} = 4\mathbf{e}_1 3\mathbf{e}_2 + \mathbf{e}_3$.
- 12. Show that $\delta_{ij}a_ib_j$ is equivalent to $\mathbf{a} \cdot \mathbf{b}$.
- 13. Show that $\det[\mathbf{A}] = \epsilon_{ijk} A_{1i} A_{2j} A_{3k} = \epsilon_{ijk} A_{i1} A_{j2} A_{k3}$.
- 14. Verify that $\epsilon_{kij}\epsilon_{kpq} = \delta_{ip}\delta_{jq} \delta_{iq}\delta_{jp}$ and hence show that $\epsilon_{ijk}\epsilon_{ijp} = 2\delta_{pk}$.
- 15. Evaluate or simplify the following expressions:
 - (i) δ_{kk} .
 - (ii) $\delta_{ij}\delta_{ij}$.
 - (iii) $\delta_{ij}\delta_{jk}$.
 - (iv) $\epsilon_{1jk}\delta_{3j}v_k$.
 - (v) $\delta_{ij}\delta_{jk}\delta_{kp}\delta_{pi}$.
 - (vi) $\epsilon_{mjk}\epsilon_{njk}$.
- 16. If e is a unit vector and a an arbitrary vector, show that $a = (a \cdot e) e + e \times (a \times e)$.
- 17. Verify that: $\mathbf{e}_i \times \mathbf{e}_j = \epsilon_{ijm} \mathbf{e}_m$. Hence, by dotting each side with \mathbf{e}_k , show that $\epsilon_{ijk} = (\mathbf{e}_i \times \mathbf{e}_j) \cdot \mathbf{e}_k$.
- 18. Show that $\mathbf{u} \times \mathbf{v} = \epsilon_{ijk} u_i v_j \mathbf{e}_k$.
- 19. Show that $A_{ij} = \epsilon_{ijk} a_k$ is skew-symetric i.e., $A_{ji} = -A_{ij}$, where ϵ_{ijk} is the standard permutation symbol.
- 20. Show that $(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{a} \times \boldsymbol{b}) = (\boldsymbol{a} \cdot \boldsymbol{a})(\boldsymbol{b} \cdot \boldsymbol{b}) (\boldsymbol{a} \cdot \boldsymbol{b})^2$.
- 21. Show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.
- 22. Show that $(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{d}) = (\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d}) (\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c}).$
- 23. Show that $\nabla \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot (\nabla \times \boldsymbol{a}) \boldsymbol{a} \cdot (\nabla \times \boldsymbol{b})$.
- 24. Show that $\nabla^2 \boldsymbol{a} = \nabla(\nabla \cdot \boldsymbol{a}) \nabla \times (\nabla \times \boldsymbol{a})$.

- 25. Prove the following identities
 - (i) $\nabla \times (\nabla \phi) = 0$, where ϕ is a scalar.
 - (ii) $\nabla \cdot (\nabla \times \boldsymbol{a}) = 0$, where \boldsymbol{a} is a vector.
- 26. Show that $(\mathbf{A}\mathbf{a}) \cdot (\mathbf{B}\mathbf{b}) = \mathbf{a} \cdot (\mathbf{A}^T \mathbf{B}) \mathbf{b}$.
- 27. Show that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$.
- 28. The density distribution throughout a material is given by $\rho = 1 + \boldsymbol{x} \cdot \boldsymbol{x}$.
 - (i) What sort of function is this?
 - (ii) The density is given in symbolic notation write it in index notation.
 - (iii) Evaluate the gradient of ρ .
 - (iv) Give a unit vector in the direction in which the density is increasing the most.
 - (v) Give a unit vector in any direction in which the density is not increasing.
 - (vi) Take any unit vector other than the base vectors and the other vectors you used above and calculate $d\rho/dx$ in the direction of this unit vector.
 - (vii) Evaluate and sketch all these quantities for the point (2,1).

In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation.

- 29. Consider the scalar field defined by $\phi = x^2 + 3yx + 2z$.
 - (i) Find the unit normal to the surface of constant ϕ at the origin (0,0,0).
 - (ii) What is the maximum value of the directional derivative of ϕ at the origin?
 - (iii) Evaluate $d\phi/dx$ at the origin if $d\mathbf{x} = ds (\mathbf{e}_1 + \mathbf{e}_2)$.
- 30. If $\mathbf{u} = x_1 x_2 x_3 \mathbf{e}_1 + x_1 x_2 \mathbf{e}_2 + x_1 \mathbf{e}_3$, determine $\operatorname{div} \mathbf{u} := \nabla \cdot \mathbf{u}$ and $\operatorname{curl} \mathbf{u} := \nabla \times \mathbf{u}$.
- 31. Determine the constant a so that the vector $\mathbf{v} = (x_1 + 3x_2) \mathbf{e}_1 + (x_2 x_3) \mathbf{e}_2 + (x_1 + ax_3) \mathbf{e}_3$ is solenoidal.
- 32. Show that $\delta_{ij}A_{ij} = \operatorname{tr}(\mathbf{A})$.
- 33. Show that the dyad is a linear operator, in other words, show that $(\mathbf{u} \otimes \mathbf{v})(\alpha \mathbf{w} + \beta \mathbf{x}) = \alpha(\mathbf{u} \otimes \mathbf{v})\mathbf{w} + \beta(\mathbf{u} \otimes \mathbf{v})\mathbf{x}$.
- 34. Show that $\frac{1}{2}\nabla(\boldsymbol{u}\cdot\boldsymbol{u}) = (\nabla\boldsymbol{u})^T\boldsymbol{u}$.
- 35. When is $\mathbf{a} \otimes \mathbf{b} = \mathbf{b} \otimes \mathbf{a}$?
- 36. Consider the dyadic (tensor) ($\mathbf{a} \otimes \mathbf{a} + \mathbf{b} \otimes \mathbf{b}$). Show that this tensor orthogonally projects every vector \mathbf{v} onto the plane formed by \mathbf{a} and \mathbf{b} (sketch a diagram).

- 37. Draw a sketch to show the meaning of $\mathbf{u} \cdot (\mathbf{P}\mathbf{v})$, where \mathbf{P} is the projection tensor. What is the order of the resulting tensor?
- 38. Show that
 - (i) $(\boldsymbol{a} \otimes \boldsymbol{b})(\boldsymbol{c} \otimes \boldsymbol{d}) = (\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{a} \otimes \boldsymbol{d}).$
 - (ii) $(\boldsymbol{e}_i \otimes \boldsymbol{e}_i) = \boldsymbol{I}$.
 - (iii) $T(a \otimes b) = (Ta) \otimes b$.
 - (iv) $S(u \otimes v) = (Su) \otimes v$.
- 39. Consider the vector field $\mathbf{v} = x_1^2 \mathbf{e}_1 + x_3^2 \mathbf{e}_2 + x_2^2 \mathbf{e}_3$.
 - (a) find the matrix representation of the gradient of \mathbf{v} ,
 - (b) find the vector $(\operatorname{grad} \mathbf{v})\mathbf{v}$.
- 40. Show that the component T_{11} of a tensor T can be evaluated from $e_1 \cdot Te_1$, and that $T_{12} = e_1 \cdot Te_2$ (and so on, so that $T_{ij} = e_i \cdot Te_j$).
- 41. Consider two second-order tensors D and F given by

$$\boldsymbol{D} = 3\left(\boldsymbol{e}_1 \otimes \boldsymbol{e}_1\right) + 2\left(\boldsymbol{e}_2 \otimes \boldsymbol{e}_2\right) - \left(\boldsymbol{e}_2 \otimes \boldsymbol{e}_3\right) + 5\left(\boldsymbol{e}_3 \otimes \boldsymbol{e}_3\right),$$

$$F = 4(e_1 \otimes e_3) + 6(e_2 \otimes e_2) - 3(e_3 \otimes e_2) + (e_3 \otimes e_3),$$

where $\{e_i\}$ are the standard orthonormal Cartesian basis vectors. Compute the following:

- (i) \boldsymbol{DF} and (ii) $\boldsymbol{D}:\boldsymbol{F}$.
- 42. Consider the second-order tensor T given by

$$T = 3(\mathbf{e}_1 \otimes \mathbf{e}_1) - 4(\mathbf{e}_1 \otimes \mathbf{e}_2) + 2(\mathbf{e}_2 \otimes \mathbf{e}_1) + (\mathbf{e}_2 \otimes \mathbf{e}_2) + (\mathbf{e}_3 \otimes \mathbf{e}_3).$$

Determine the image of the vector $\mathbf{r} = 4\mathbf{e}_1 + 2\mathbf{e}_2 + 5\mathbf{e}_3$ when \mathbf{T} operates on it.

- 43. Expand the following terms
 - (a) B_{ii}
 - (b) C_{kkj}
 - (c) B_{mn}
 - (d) $a_i b_j A_{ij}$.

Are these the components of scalars, vectors or second order tensors?

44. Write $(a \otimes b) : (c \otimes d)$ in terms of components of four vectors. What is the order of the resulting tensor?

- 45. Show that the components of the second-order identity tensor are given by $I_{ij} = \delta_{ij}$.
- 46. Show that
 - (a) $(\boldsymbol{u} \otimes \boldsymbol{v}) \boldsymbol{A} = (\boldsymbol{u} \otimes \boldsymbol{A}^T \boldsymbol{v})$
 - (b) $A : (BC) = (B^T A) : C = (AC^T) : B$.
- 47. For the second-order identity tensor, show that $\boldsymbol{I}^T = \boldsymbol{I}$.
- 48. Show that $tr(\boldsymbol{u} \otimes \boldsymbol{v}) = \boldsymbol{u} \cdot \boldsymbol{v}$.
- 49. Formally derive the index notation for the functions $\operatorname{tr} \mathbf{A}^2$, $\operatorname{tr} \mathbf{A}^3$, $(\operatorname{tr} \mathbf{A})^2$, $(\operatorname{tr} \mathbf{A})^3$.
- 50. Show that $\mathbf{A} : \mathbf{B} = \operatorname{tr} (\mathbf{A}^T \mathbf{B})$.
- 51. Prove that $(Ta \times Tb) \cdot Tc = (\det T) [(a \times b) \cdot c]$.
- 52. Show that $(A^{-1})^T : A = 3$.
- 53. Show that
 - (i) $S = \frac{1}{2} (\boldsymbol{a} \otimes \boldsymbol{b} + \boldsymbol{b} \otimes \boldsymbol{a})$ is a symmetric and $\boldsymbol{W} = \frac{1}{2} (\boldsymbol{a} \otimes \boldsymbol{b} \boldsymbol{b} \otimes \boldsymbol{a})$ a skew-symmetric tensor.
 - (ii) Show that the axial vector of tensor \boldsymbol{W} can be given by $\boldsymbol{w} = \frac{1}{2} (\boldsymbol{b} \times \boldsymbol{a})$.
 - (iii) $\operatorname{tr}(\boldsymbol{SW}) = 0$.
- 54. Find the spherical (volumetric) and deviatoric parts of the tensor \mathbf{A} for which $A_{ij} = 1$.
- 55. Explain the physical meaning of the matrices given below using figures and examples.

$$[\boldsymbol{Q}] = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad [\boldsymbol{Q}] = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad [\boldsymbol{Q}] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- 56. (i) Consider the tensor $S = 2(e_2 \otimes e_1 + e_1 \otimes e_2)$. Compute the principal variants of S.
 - (ii) Consider the tensor $\mathbf{S} = (\mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_2 \otimes \mathbf{e}_2) + 2(\mathbf{e}_2 \otimes \mathbf{e}_1 + \mathbf{e}_1 \otimes \mathbf{e}_2)$. Express \mathbf{S} in spectral form.
- 57. Find the eigen-values, (normalized) eigen-vectors and principal invariants of $T = I + e_1 \otimes e_2 + e_2 \otimes e_1$.
- 58. Show that
 - (i) the trace of a second-order tensor T, $\operatorname{tr}(T) = T_{ii}$ is an invariant.
 - (ii) $\boldsymbol{a} \cdot (\boldsymbol{T}\boldsymbol{a}) = T_{ij}a_ia_j$ is an invariant.

59. Consider a two-dimensional orthonormal basis $\{e_1, e_2\}$ in which a two-dimensional tensor T has the representation

$$T = T_{ij} e_i \otimes e_j$$
 $i, j = 1, 2,$

and the component matrix of T has values

$$[T] = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}.$$

Consider a second basis $\{e_1^*, e_2^*\}$ which is related to $\{e_1, e_2\}$ by

$$e_1^* = \frac{1}{2}e_1 + \frac{\sqrt{3}}{2}e_2, \qquad e_2^* = -\frac{\sqrt{3}}{2}e_1 + \frac{1}{2}e_2,$$

Find the value of T_{11}^* in the $\{e_1^*, e_2^*\}$ basis.

60. (i) Consider an orthonormal basis $\{e_i\}$, and define $E_{ij} := e_i \otimes e_j$ with the orthonormality property $E_{ij} : E_{kl} = \delta_{ik}\delta_{jl}$ where δ_{ij} is the Kronecker delta. Using this notation, the components C_{ijkl} of the fourth order tensor \mathbb{C} are defined as $C_{ijkl} = E_{ij} : \mathbb{C}E_{kl}$. Consider a fourth-order tensor with components

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right),$$

where λ and μ are given constants. Determine C_{1111} , C_{2222} , C_{3333} , C_{1212} , C_{2323} , C_{1313} , C_{1112} , C_{1222} and C_{1333} .

(ii) Given any second order skew-symmetric tensor Ω , there is a unique vector ω , called the axial vector of Ω such that

$$\Omega u = \omega \times u$$
 for all vectors u .

Show that the indicial notation components of Ω and ω are related by

$$\Omega_{ij} = -\epsilon_{ijk}\omega_k$$
 and $\omega_i = -\frac{1}{2}\epsilon_{ijk}\Omega_{jk}$,

where ϵ_{ijk} is the permutation symbol.

61. In two dimensions, any orthogonal tensor can be expressed as

$$\mathbf{R} = \cos\theta \, \mathbf{e}_1 \otimes \mathbf{e}_1 - \sin\theta \, \mathbf{e}_1 \otimes \mathbf{e}_2 + \sin\theta \, \mathbf{e}_2 \otimes \mathbf{e}_1 + \cos\theta \, \mathbf{e}_2 \otimes \mathbf{e}_2$$

- (i) Show that $\mathbf{R}^{\mathrm{T}}\mathbf{R} = \mathbf{I}$ (where \mathbf{I} is the second order identity tensor), i.e. prove that the inverse of an orthogonal tensor is its transpose.
- (ii) Show that |v| = |Rv| for all v; i.e. an orthogonal tensor does not change the length of a vector.
- 62. Establish the following identities:

(i)
$$(\boldsymbol{S} + \boldsymbol{F})^{\mathrm{T}} = \boldsymbol{S}^{\mathrm{T}} + \boldsymbol{F}^{\mathrm{T}}$$
.

(ii)
$$(\boldsymbol{S}\boldsymbol{F})^{\mathrm{T}} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{S}^{\mathrm{T}}$$
.

(iii)
$$\det(\alpha \mathbf{S}) = \alpha^3 \det \mathbf{S}$$
.

(iv)
$$|T|^2 = |\operatorname{sym} T|^2 + |\operatorname{skew} T|^2$$
.

- 63. (i) Consider a ball, B, of radius 4 centered at the origin. Using the divergence theorem, compute $\int_{\partial B} \boldsymbol{x} \cdot \boldsymbol{n} \, da$, where \boldsymbol{x} is the position vector and \boldsymbol{n} is the unit outward normal to the surface ∂B .
 - (ii) Use the divergence theorem to show that

$$\int\limits_R 5x_i x_j dv = \int\limits_{\partial R} x_i x_j x_k n_k \ da.$$

64. Establish the following identities using the divergence theorem:

(i)
$$\int_{\partial R} \boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{v} \ da = 0.$$

(ii)
$$\int_{\partial R} \boldsymbol{n} \times \boldsymbol{v} \ da = \int_{R} \operatorname{curl} \boldsymbol{v} \ dv$$
.

(iii)
$$\int_{\partial R} \boldsymbol{v} \otimes \boldsymbol{n} \ da = \int_{R} \operatorname{grad} \boldsymbol{v} \ dv$$
.

(iv)
$$\int_{\partial R} \mathbf{T} \mathbf{n} \otimes \mathbf{v} \ da = \int_{R} ((\operatorname{div} \mathbf{T}) \otimes \mathbf{v} + \mathbf{T} (\operatorname{grad} \mathbf{v})^{T}) \ dv.$$

(v)
$$\int_{\partial R} \boldsymbol{u}(\boldsymbol{v} \cdot \boldsymbol{n}) da = \int_{R} (\boldsymbol{u} \operatorname{div} \boldsymbol{v} + (\operatorname{grad} \boldsymbol{u})\boldsymbol{v}) dv$$
.