Лабораторная работа №5

Модель эпидемии (SIR)

Горяйнова А.А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Горяйнова Алёна
- студентка
- Российский университет дружбы народов

Цель работы

Построить модель SIR в xcos и OpenModelica.

- 1. Реализовать модель SIR в в *xcos*;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где eta – скорость заражения, u – скорость выздоровления.

Зафиксируем начальные данные:

$$\beta=1,\,\nu=0,3,s(0)=0,999,\,i(0)=0,001,\,r(0)=0.$$

Рис. 1: Задание переменных окружения в хсоѕ

Реализация модели в xcos

Рис. 2: Модель SIR в хсоs

Рис. 3: Задание начальных значений в блоках интегрирования

Set Integral block parameters	
Initial Condition	.001
With re-initialization (1:yes, 0:no)	0
With saturation (1:yes, 0:no)	0
Upper limit	1
Lower limit	-1
	ОК Отменить

Рис. 4: Задание начальных значений в блоках интегрирования

Рис. 5: Задание конечного времени интегрирования в хсоз

Рис. 6: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Рис. 7: Модель SIR в xcos с применением блока Modelica

Рис. 8: Параметры блока Modelica для модели SIR

Рис. 9: Параметры блока Modelica для модели SIR

Рис. 10: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Упражнение

```
parameter Real I 0 = 0.001;
  parameter Real R 0 = 0:
  parameter Real S_0 = 0.999;
  parameter Real beta = 1:
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
 Real i(start=I 0);
 Real r(start=R 0);
equation
 der(s)=-beta*s*i;
  der(i)=beta*s*i-nu*i;
  der(r)=nu*i;
```

Упражнение

oMEdit -)	/становки С	имуляции - lab5_1	?	×
Устанс	вки С	имуляции - lab5_1		
Основное		ная Синуляция Translation Flags Флаги Синуляции Вывести		^
Интервал С Начальное	, .	0	secs	
Конечное В	Время: Интервалов:	30 S00	secs	
○ Interva		0.002	secs	
Интегриров	вание			
Метод:	dassl		~ [2	
Точность: Якобиан:	Точность: 18-6			
Настройк	и			~
		on inside model i.e., experiment annotation		
Save transla	ation flags insi	de model i.e.,OpenModelica_commandLineOptions annotation		
Save simula	ition flags insi	de model i.e.,OpenModelica_simulationFlags annotation		
Симулирова	эть			
		OK	Отме	на

Рис. 11: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Рис. 12: Модель SIR с учетом демографических процессов в хсоs

Рис. 13: График модели SIR с учетом демографических процессов

Puc. 14: Модель SIR с учетом демографических процессов в xcos с применением блока Modelica

••••	Set Modelica generic block parameters		
	Input variables:	["beta";"mu";"nu"]	
	Input variables types:	["E";"E";"E"]	
	Output variables:	["s";"i";"r"]	
	Output variables types:	["E";"E";"E"]	
	Parameters in Modelica:		
	Parameters properties:		
	Function name:	generic	
		ОК Отменить	

Рис. 15: Параметры блока Modelica для модели SIR с учетом демографических процессов

Рис. 17: График модели SIR с учетом демографических процессов

parameter Real I_0 = 0.001; parameter Real R_0 = 0; parameter Real S_0 = 0.999;

```
parameter Real beta = 1;
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
  Real i(start=I 0);
 Real r(start=R 0);
equation
  der(s) = -beta*s*i + mu*i + mu*r;
  der(i)=beta*s*i-nu*i - mu*i;
  der(r)=nu*i - mu*r:
```


Рис. 18: График модели SIR с учетом демографических процессов

$$\beta = 1, \nu = 0.3, \mu = 0.1$$

Рис. 19: График модели SIR с учетом демографических процессов

$$\mu = 0.3$$

Рис. 20: График модели SIR с учетом демографических процессов

$$\mu = 0.9$$

Рис. 21: График модели SIR с учетом демографических процессов

$$\beta = 1, \nu = 0.1, \mu = 0.1$$

Рис. 22: График модели SIR с учетом демографических процессов

$$\mu = 0.9$$

Рис. 23: График модели SIR с учетом демографических процессов

$$\beta = 4, \nu = 0.3, \mu = 0.2$$

Рис. 24: График модели SIR с учетом демографических процессов

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica.