Per- and poly-fluorinated chemicals in branded waterproof clothing, footwear, hiking and camping equipment

Kevin Brigden, Manfred Santen, David Santillo

Greenpeace Research Laboratories Technical Report 01-2016, January 2016

Contents

	1. Introduction	2
	2. Materials and methods	2
3.	Results and Discussion	4
	3.1 Jackets	7
	3.1 Trousers	9
	3.2 Footwear	11
	3.3 Backpacks	13
	3.4 Sleeping bags	14
	3.5 Tents	16
	3.6 Rope	16
	3.7 Glove	17
	4. Conclusions	17
	5. References	19
	Appendix 1. Concentrations of PFCs in all articles tested	21
	Jackets	21
	Trousers	25
	Footwear	29
	Backpacks	33
	Sleeping bags, tents, rope and glove	37
	Appendix 2. Analysis of 2 separate sections of the same material from a number of articles	41
	Appendix 3. Analysis of material from 3 articles in duplicate	51

Greenpeace Research Laboratories School of Biosciences Innovation Centre Phase 2 Rennes Drive University of Exeter Exeter EX4 4RN, UK

1. Introduction

Finished textile products can contain certain hazardous chemicals used during their manufacture, either because of their use as components of materials incorporated within the product or due to residues remaining from the use within processes employed during manufacture.

This study follows on from, and extends, research recently published by Greenpeace that identified a range of hazardous chemicals in textile products sold by major brands, including per- and polyfluorinated chemicals in certain items (Brigden et al. 2012, 2013; Greenpeace 2011, 2012a, 2012b, 2012c, 2013a, 2013b, 2013c, 2014a, 2014b). This study extends this work to include a set of 40 items intended for outdoor use, including clothing, footwear, hiking and camping products purchased in October-November 2015, which included articles sold by 11 different major brands and purchased in 19 countries/regions around the world. Details of the analyses carried out and information on the various chemicals quantified in this study are provided within this report.

2. Materials and methods

The 40 products were purchased in October and November 2015 either at the flagship stores of the brands, or other stores authorised to sell the branded products, or ordered online. The products included clothing items (jackets and trousers), footwear articles, as well as hiking and camping equipment including backpacks, sleeping bags, tents, a rope and a glove. While still in the store, purchased products were immediately sealed in individual identical clean polyethylene bags. Sealed bags containing the products were sent to an independent accredited laboratory for analysis. A summary of the number of products of each type, and the country of sale, is given in Table 1, with details of the individual articles provided in Appendix 1.

Product type Country of sale	jacket	trouser	footwear	backpack	sleeping bag	tent	rope	glove
Austria	J-Wolfskin					J-Wolfskin		
Chile	Columbia				North Face	3 44 611 51111		
China Mainland	Coldinible			Arc'teryx, Vaude	Northrace			
Hong Kong		Patagonia	North Face					
Taiwan	Patagonia	Arc'teryx						
Denmark		Haglöfs		Haglöfs				
Finland	Haglöfs			_				
Germany	Vaude			J-Wolfskin, Columbia	Mammut			
Hungary				North Face				
Italy	Salewa	Salewa	Patagonia					
Korea	Blackyak			Patagonia				
Norway	Norrona		Haglöfs					
Russia		Columbia, J-Wolfskin	J					
Slovakia			Mammut	Mammut				
Slovenia		Mammut	Salewa					
Sweden	Arc'teryx, North Face							
Switzerland	Mammut					North Face	Mammut	
Turkey			Columbia, J-Wolfskin					
UK		North Face						North Face
TOTAL	11	8	7	8	2	2	1	1

Table 1. Summary of the different types of products and the country of sale. J-Wolfskin=Jack Wolfskin

40

For each of the 40 articles, a section was analysed for a range of per- and poly-fluorinated compounds (PFCs). For some articles, one or more additional sections of different material from the article were separately analysed. Details of the part, or parts, of each article that were analysed, along with the individual PFCs quantified in each sample and their detection limits in individual samples are given in Appendix 1. A sample was cut from each article where there was no printing or labelling. Two separate analyses were carried out on each sample. One portion was extracted with methanol using Soxhlet extraction, the extract purified using solid phase extraction (SPE), and a range of ionic PFCs were quantified using high performance liquid chromatography (HPLC) combined with tandem mass spectrometry (HPLC-MS/MS). A second portion was extracted with methyl tertiary butyl ether (MTBE) using ultrasonic extraction and a range of volatile neutral PFCs were quantified using gas chromatography-mass spectrometry (GC-MS).

The two separate analyses carried out were:

- (1) analysis for a range of long chain and short chain ionic PFC compounds, predominantly perfluorosulfonates (PFSAs, including perfluorooctane sulfonate or PFOS), and perfluorinated carboxylic acids (PFCAs, including perfluorooctanoic acid or PFOA).
- (2) analysis for a range of long chain and short chain volatile PFCs which are used as precursors during manufacturing processes, consisting of certain fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs, also known as polyfluorinated acrylates), and N-alkyl perfluorosulfonamides.

For both sets of PFCs (ionic and volatile), both long chain versions and short chain versions were quantified. The term "long chain PFCs" refers to carbon chain lengths C8 and higher in the case of PFCAs and to carbon chain lengths C6 and higher in the case of PFSAs, as well as to substances such as long chain fluorotelomer compounds that have the potential to degrade to form long-chain PFCAs or PFSAs. Short chain PFCs refers to PFCAs or PFSAs with shorter chain lengths than these, or substances that have the potential to degrade to short chain PFCAs or PFSAs, including certain other long chain fluorotelomer compounds (OECD-UNEP 2013).

Fluorotelomer alcohols (FTOHs) and fluorotelomer acrylates (FTAs) can act as sources of PFCAs. Fluorotelomer alcohol (FTOHs) can be transformed into PFCAs either through biotransformation (Frömel & Knepper 2010, Butt *et al.* 2013), or abiotically in the atmosphere (Young & Mabury 2010). 6:2 FTOH can give rise to C6 compounds including PFHxA, while 8:2 FTOH can give rise to C8 compounds including PFOA, and similarly, 10:2 FTOH can yield C10 compounds, including PFDA. In addition, FTOHs are volatile and can be released from products under ambient conditions (Greenpeace 2013c, Langer et al. 2010, Schlummer et al. 2013). Humans occupationally exposed to high levels of 8:2 FTOH have been found to have relatively high concentrations of PFOA in their blood (Nilsson *et al.* 2013). In addition, there are indications that biotransformation can form intermediate products in the body that can be more harmful than the PFCA end product (Rand & Mabury 2012).

For a number of articles, a separate section of the same material from the article was subsequently analysed to gain an understanding of the variability in PFC concentrations for different parts of a fabric. This repeat analysis was carried out for ionic PFCs (4 jacket, 3 trouser, 5 footwear, 1 backpack

and 1 tent samples) and for volatile PFCs (5 jacket, 3 trouser, 6 footwear, 2 backpack, 2 sleeping bag and 1 tent samples). Details of these samples are given in Appendix 2.

A range of additional quality control checks were carried out including the analysis of blanks and the determination of the recovery of a range of deuterated and ¹³C labelled ionic and volatile PFC standards. To check reproducibility of the extraction process, for each of 3 articles that were found to contain a wide range of ionic and volatile PFCs at relatively moderate to high concentrations (1 trouser, 1 backpack and 1 sleeping bag), a section of material was cut into multiple small pieces which were mixed and then separated into two approximately equal portions, which were analysed as 2 separate samples. Details of the three samples analysed in duplicate are given in Appendix 3.

3. Results and Discussion

The results for the various product categories are presented in the following sections. All results from the analyses of the individual articles are provided in Appendix 1.

One or more PFC was detected in material from 36 of the 40 articles, though the PFC concentrations and the composition of the PFCs present varied greatly between individual articles. Volatile PFCs were not detected as commonly as ionic PFCs, most notably for backpacks, though where volatile PFCs were detected they were generally found in considerably higher concentrations than ionic PFCs in the same article. A summary of the number of articles in which ionic and/or volatile PFCs were detected is given in Table 2, together with the range and median of the total concentrations by area of ionic PFCs in the various articles, and the same for volatile PFCs. Details of the concentrations of individual PFCs in all articles, both by mass (ng/kg) and by area (μ g/m²), are given in Appendix 1, and are discussed by product type in the relevant sections below. Representations of the total ionic PFC and total volatile PFC concentrations are given in Figure 1a/b, together with a breakdown of individual ionic PFCs (Figure 2a/b) and individual volatile PFCs (Figure 3a/b).

				Ionic PFCs			volatile PFCs	
Article type	No. of articles	No. in which PFCs were detected	No. of articles in which detected	total conc. range (μg/m²)	total conc. median (μg/m²)	No. of articles in which detected	total conc. range (μg/m²)	total conc. median (μg/m²)
jacket	11	9	9	ND - 684	5.16	8	ND - 640	72
trousers	8	8	7	ND - 75.5	42.1	8	46 – 700	150
footwear	7	7	7	ND – 195	19.4	6	ND - 3100	1200
backpack	8	7	7	ND - 14.4	0.79	2	ND - 97	0
sleeping bag	2	2	2	0.17-12.0	0.83	2	31 – 67	51
tent	2	2	2	ND - 2.24	0.07	2	ND-57	0
glove	1	0	0	ND	-	0	ND	-

Table 2. Summary of articles in which PFCs were detected, together with the ranges and medians of the total concentrations by area for ionic PFCs and volatile PFCs ($\mu g/m^2$). The rope sample is not included as data are available only by mass (ng/kg). ND – not detected. Range and median values were calculated using both sets of data for those samples from which two sections of equivalent fabric were analysed.

The data for the duplicate analysis on three samples demonstrates acceptable reproducibility for the extraction and analysis method. For two samples (backpack BP05 and sleeping bag SB02), the difference between concentrations in the two duplicates was below 140%. For the third sample

(Trouser TRO4), the difference between concentrations in the two duplicates was below 175% for all but one analyte (see Appendix 3 for details).

The data for the repeat analysis of two equivalent sections from a number of articles demonstrated that, in most cases, the concentrations of PFCs in the two sections were in good agreement. Where the concentration of all PFCs differed between the two sections by up to a factor of 2, the average concentration is given. For those materials where the concentration of one or more PFCs differed between the two sections by a factor of 3 or more, the data for both sections are presented and discussed separately (see Appendix 1 for details). For the samples where data for different section of the same fabric differed by a factor of 3 or more, the differences clearly reflect real variations in concentrations between different parts of the same fabric and do not result from the testing method, as confirmed by quality control checks (see Appendix 3).

Figure 1a. Comparison of total ionic PFC concentrations and total volatile PFC concentrations by area $(\mu g/m^2)$ for all samples except rope

Figure 1b. Comparison of total ionic PFC concentrations and total volatile PFC concentrations by area ($\mu g/m^2$) for all samples except rope, with an expanded axis (0-500 $\mu g/m^2$)

Figure 2a. Details of ionic PFC concentrations by area ($\mu g/m^2$) for all samples except rope

Figure 2b. Details of ionic PFC concentrations by area ($\mu g/m^2$) for all samples except rope, with an expanded axis (0-100 $\mu g/m^2$)

Figure 3a. Details of volatile PFC concentrations by area $(\mu g/m^2)$ for all samples except rope

Figure 3b. Details of volatile PFC concentrations by area (μ g/m²) for all samples except rope, with an expanded axis (0-800 μ g/m²)

3.1 Jackets

Overall, for the samples from the 11 jackets, the volatile PFCs were the dominant PFCs by concentration. One or more volatile PFC was detected in a sample of fabric from a jacket sold by all but three brands (Vaude, J01; Salewa, J11; Jack Wolfskin, J12). The Jack Wolfskin jacket was labelled as '100% fluorocarbon free'. Similarly, no ionic PFCs were detected in the Vaude jacket (J01) or the

Jack Wolfskin jacket (J12), though the Salewa jacket (J11) had one of the highest concentrations of total ionic PFCs in jacket samples, as discussed below.

Of the other jackets, by far the most commonly detected volatile PFC was the short chain 6:2 FTOH, being the only volatile PFC in 6 jackets (Mammut, Norrona, Columbia, Haglöfs, Arc'teryx and The North Face), with the Patagonia jacket (J10) containing 6:2 FTOH and a relatively low concentration of 10:2 FTOH (6.7 μ g/m², 3.9% of the total volatile PFC concentration).

Amongst all the jacket samples, the Norrona jacket (J03) had by far the highest concentration of 6:2 FTOH, and of total volatile PFCs, (630 $\mu g/m^2$), almost four times higher than the 6:2 FTOH concentration in the two samples with the next highest concentrations (Mammut, J02, 170 $\mu g/m^2$; Patagonia, J10, 180 $\mu g/m^2$).

In contrast, 6:2 FTOH was not detected in the inner fabric of the Blackyak jacket (J04), though this did contain the long chain 8:10 FTOH ($56 \mu g/m^2$) and 10:2 FTOH ($15 \mu g/m^2$).

No volatile PFCs were detected in the outer lining of the Blackyak jacket (J05). For all other jackets, only samples of the outer fabric were analysed.

In addition to the volatile PFCs, ionic PFCs were detected in all but 2 jackets (Vaude, J01; Jack Wolfskin, J12). As noted above, no volatile PFCs were detected in these 2 jackets. In addition, only relatively low concentrations of two ionic PFCs were detected in a The North Face jacket (J09), namely PFHxA (0.18 μ g/m²) and PFOA (0.11 μ g/m²).

Though the ionic PFC concentrations were notably lower than those of the volatile PFCs, these are still significant results. The highest total ionic PFC concentrations (both short and long chain) were found in samples from the Norona jacket (J03, 99.9 $\mu g/m^2$) and the Patagonia jacket (J10a, 97.4 $\mu g/m^2$ and J10b, 684 $\mu g/m^2$), followed by the Salewa jacket (J11, 62.4 $\mu g/m^2$), consisting of 14% (J03), 35% (J10a), 79% (J10b), and 100% (J11) of the total PFC concentrations for these samples, respectively.

The compositions of ionic PFCs in these three jackets were quite different to each other. For the Norona jacket (J03), by far the predominant ionic PFCs were short chain PFCAs; the C6 compound (76.4 μ g/m² PFHxA), which was present together with the C4 (1.72 μ g/m² PFBA), C5 (10.6 μ g/m² PFPA) and C7 (9.97 μ g/m² PFHpA) PFCAs, as well as lower concentrations of the short chain C4 sulfonate (0.22 μ g/m² PFBS) and long chain PFCAs (including 0.67 μ g/m² PFOA).

In contrast, for the Patagonia jacket (J10), the short chain C4 sulfonate (PFBS) was the predominant ionic PFC, at 28.9 μ g/m² in one section (J10a) and at 673 μ g/m² in the other (J10b). As seen for the Norona jacket (J03), the Patagonia jacket (J10) also contained relatively high concentrations of short chain PFCAs, including the C4 PFBA (18.2 μ g/m² J10a, 4.95 μ g/m² J10b), C6 PFHxA (25.1 μ g/m² J10a, 4.27 μ g/m² J10b) and C7 PFHpA (21.2 μ g/m² J10a, 0.91 μ g/m² J10b), and to a lesser extent the C5 PFPA (3.79 μ g/m² J10a, 1.04 μ g/m² J10b).

The composition was very different again for the Salewa jacket (J11). As for the Patagonia jacket (J10), the short chain C4 sulfonate (PFBS) was the predominant ionic PFC, at 31.6 μ g/m².

Overall, the range of concentrations of ionic PFCs in the jacket samples was generally similar to those of trousers and footwear, and generally higher than those in backpacks, sleeping bags and tents. A similar pattern was seen for volatile PFCs, other than that the range of concentrations in the footwear samples was generally higher than for jackets samples

Two reports previously published by Greenpeace in 2012 and 2013 included results from the analysis of PFCs in a number of waterproof coats that were purchased in the year of publication in both cases (Greenpeace 2012c, 2013c). As in the current study, both ionic and volatile PFCs were commonly detected in waterproof jackets from both previous studies. Similarly, where volatile PFCs were detected they were present at considerably higher concentrations than ionic PFCs, as was the case in the current study.

Concentrations of volatile PFCs in the current study were in a similar range (ND – 630 μ g/m²) to those in the 2012 report (up to 464 μ g/m²), but generally lower than those from the 2013 report (48.9-2090 μ g/m²). For the 2012 study, both long and short chain volatile PFC compounds were detected across all the products. While the pattern was similar for the 2013 report, short chain volatiles PFCs were more prevalent than long chain versions.

Another study published in 2015, for products purchased in 2010, also detected both short and long chain volatile FTOHs, though in this case long chain versions (8:2 FTOH and 10:2 FTOH) dominated over short chain (6:2 FTOH), with concentrations above 100 μ g/m² for both 8:2 FTOH and 10:2 FTOH (Kotthoff *et al.* 2015).

This trend from 2010 to 2013 continues with the current study, in which both short and long chain volatile PFCs were detected, but short chain versions were considerably more prevalent than long chain ones, which were detected in only 2 of the 12 jackets analysed.

Overall, total ionic PFC concentrations were somewhat higher in the current study (ND – 684 $\mu g/m^2$) than in the study from 2012 (0.58 – 10.96 $\mu g/m^2$) and that from 2013.

In addition, for the jackets from the 2012 and 2013 reports, both long and short chain ionic PFCs were commonly detected, being dominated by PFCAs, with the long chain PFOA being a predominant compound in many cases. In contrast, ionic PFCs detected in the current study were predominantly short chain PFCs. Furthermore, short chain sulfonates (PFSAs) were detected in many samples (especially the C4 PFBS), and these were the predominant ionic PFCs for some samples, with very high concentrations in two cases (28.9-672 $\mu g/m^2$). The long chain acid, PFOA, was detected in most samples, though at lower concentrations (0.07 – 0.67 $\mu g/m^2$) than those generally found in the 2012 (0.2-5.0 $\mu g/m^2$) and 2013 (0.1-6.3 $\mu g/m^2$) reports.

3.1 Trousers

As for the jacket samples, the volatile PFCs were the dominant PFCs by concentration. One or more volatile PFC was detected in all samples of trouser fabric. The highest total volatile PFC concentration was found in the Jack Wolfskin trousers (TR04, 530 $\mu g/m^2$), though some other samples also had high total volatile PFC concentrations, especially the Arc'teryx trousers (TR06, 270 $\mu g/m^2$).

The most commonly detected volatile PFC was the short chain 6:2 FTOH, identified in all but 1 sample (TR05, Patagonia), and was generally the PFC with the highest concentration in each sample, with the Arc'teryx trousers (TR006) containing the highest 6:2 FTOH concentration (270 μ g/m²). 6:2 FTOH was the only volatile PFC detected in 4 samples (TR02, Mammut; TR06, Arc'teryx; TR07, Haglöfs; TR08, Salewa), with 2 other samples containing around 90% FTOH and with the long chain acrylate 8:2 FTA as a minor component (TR01, The North Face; TR03, Columbia).

The composition for the Jack Wolfskin trousers (TR04) was somewhat different. Three telomer alcohols were detected, the short chain 6:2 FTOH, and the long chain 8:2 FTOH and 10:2 FTOH, with 8:2 FTOH concentration being slightly higher than the other two (240 μ g/m²).

The other exception for trouser fabric was the Patagonia trousers (TR05), for which the longer chain telomer alcohols 8:2 FTOH and 10:2 FTOH were detected, at notably lower concentrations than 6:2 FTOH in the other samples. In addition, the corresponding long chain fluorotelomer acrylates 8:2 FTA and 10:2 FTA were also found, at similar concentrations to the alcohols.

In addition to the volatile PFCs, ionic PFCs were detected in all but 1 sample (TR07, Haglöfs). Though the ionic PFC concentrations were notably lower than those of the volatile PFCs, these are still significant results.

For three samples, the ionic PFCs were dominated by the presence of the short chain (C4) sulfonate, PFBS. These were the Arc'teryx trousers (TR06, $51 \, \mu g/m^2$), the Mammut trousers (TR02, $36 \, \mu g/m^2$), and the Jack Wolfskin trousers (TR04 $21 \, \mu g/m^2$). The Mammut trousers (TR02) also contained a relatively low concentrations of the long chain C8 sulfonate, PFOS (0.17 $\, \mu g/m^2$).

These three samples also contained appreciable amounts of the C4 and C6 short chain PFCAs, PFBA and PFHxA. In addition, the Jack Wolfskin trousers (TR04) also contained higher concentrations of the long chain compounds PFOA (C8, 12.2 μ g/m²), PFDA (C10, 8.78 μ g/m²) and PFDoA (C12, 4.47 μ g/m²), as well as relatively lower concentrations of a range of other long chain PFCAs.

PFBS was not detected in the Patagonia trousers (TR05), though a wide range of short and long chain PFCAs were, from the short chain C4 compound PFBA to the long chain C14 compound PFTeA, with the predominant compound being the long chain C8 compound PFOA (2.47 μ g/m²).

Short chain ionic PFCs were also detected in the Salewa trousers (TR08), though at generally lower concentrations, with the main compound being the C4 PFBA (1.63 μ g/m²).

As mentioned above, no ionic PFCs were detected in the Haglöfs trousers (TR07), and the Columbia trousers (TR03) contained only relatively low concentrations of the short chain PFHxA (0.41 μ g/m²) and the long chain PFOA (0.20 μ g/m²). Similarly, The North Face trousers (TR01) contained the short chain PFHxA (0.44 μ g/m²) and two long chain compounds PFOA (0.58 μ g/m²) and PFDA (0.13 μ g/m²).

Overall, the range of concentrations of ionic PFCs in the trouser samples was generally similar to those of jackets and footwear, and generally higher than those in backpacks, sleeping bags and tents. A similar pattern was seen for volatile PFCs, other than that the range of concentrations in the footwear samples was generally higher than for trouser samples.

Two previous Greenpeace studies each analysed one waterproof trouser product, one purchased in 2012 (Greenpeace 2012c) and the other in 2013 (Greenpeace 2014a). The composition of PFCs for these two articles was somewhat different to that found in the current study. No volatile PFCs were detected in one study (Greenpeace 2014a), and only the long chain fluorotelomer acrylate 8:2 FTA $(25.6 \,\mu\text{g/m}^2)$ detected in the other (Greenpeace 2012c).

Furthermore, one item in a previous study had a high concentration of the long chain (C6) sulfonate PFHxS (542 $\mu g/m^2$ and 64.2 $\mu g/m^2$ in two separate portions from the same article), a compound that was not detected in the current study. One of the portions also contained the short chain (C4) sulfonate PFBS (2.10 $\mu g/m^2$), though this was at a notably lower concentration compared to those samples containing PFBS in the current study (21 to 51 $\mu g/m^2$) (Greenpeace 2014a). This item also contained the short chain C6 and C4 PFCAs, at concentrations within the range found in the current study.

Similarly, for the other trouser article previously reported, a number of PFCAs were detected within the ranges found in the current study, including PFOA at $2.31 \,\mu\text{g/m}^2$ (Greenpeace 2012c).

A 2015 paper reporting results for products purchased in 2010 did detect long chain FTOHs, though at lower concentrations than generally found in the current study, as well as both short and long chain ionic PFCAs at similar concentrations to the current study. No ionic sulfonates were detected (Kotthoff et al. 2015).

3.2 Footwear

As for jacket and trouser samples, volatile PFCs were generally the dominant PFCs by concentration for footwear samples. The Patagonia boot (F10) was the only footwear article in which no volatile PFCs were detected in any sample.

Where detected, the total concentrations of volatile PFCs were notably higher in most samples than for other types of product. 8 samples had a total volatile PFC concentration of over 1000 $\mu g/m^2$, representing articles from Haglöfs, Salewa, Mammut, The North Face, Jack Wolfskin and Columbia. One sample from the Haglöfs boot (F02) had the highest total volatile PFC concentration amongst all samples tested from all product types (3100 $\mu g/m^2$), almost exclusively composed of long chain volatile PFCs.

For each of 2 samples (F08, The North Face; F11, Columbia), volatile PFCs were present at over 1000 $\mu g/m^2$ in one section of fabric (F08a, F11a) but not detected in the second equivalent section of fabric in each case (F08b, F11b). Quality control checks confirm that such differences reflect real variations in concentrations between different parts of the same fabric.

For those samples in which volatile PFCs were detected, the short chain 6:2 FTOH was either the predominant or only volatile PFC detected, with the exception of 2 of the 3 samples from the Haglöfs boot (F02, outer part; F03, inner part). 6:2 FTOH was detected in one or more sample from all brands with the exception of Patagonia, and was detected at over $1000 \, \mu g/m^2$ in one sample from each of the Salewa, The North Face, Jack Wolfskin and Columbia footwear.

Examples of long chain volatile PFCs, including telomer alcohols (8:2 FTOH and 10:2 FTOH) and fluorotelomer acrylates (8:2 FTA and 10:2 FTA) were detected in all samples from the Haglöfs (F01-F03) and Mammut (F05) footwear, with a relatively low amount in one sample from the The North Face boot (F07).

Ionic PFCs were detected in all footwear samples except one from Haglöfs (F03), though concentrations were generally considerably lower than volatile PFCs in the same sample. The total volatile PFC concentration was over 400 times that of the total ionic PFC concentration for 2 samples (F01, Haglöfs; F04, Salewa), though the total concentrations of ionic & volatile PFCs in the Salewa sample were amongst the lower examples from footwear.

For a Jack Wolfskin sample (F09), the equivalent ratio between volatile and ionic PFCs was approximately 100. Lower, but still significant, differences were seen between the total volatile PFC and total ionic PFC concentrations for samples from Mammut (F05), The North Face (F07, F08a) and Columbia (F11a).

Across footwear samples, the concentrations and composition of ionic PFCs varied greatly between individual samples. Examples of both short and long chain ionic PFCs were found, including examples of each with relatively high concentrations.

The highest concentration of ionic PFCs was for the short chain (C4) sulfonate, PFBS, in one section from a sample of the The North Face boot (F08b, 195 $\mu g/m^2$), with the concentration in the second section of this fabric (F08a) being 22.5 $\mu g/m^2$). A high concentration of PFBS was also found in a sample from the Columbia shoe (F11, 52.7 $\mu g/m^2$) and from the Jack Wolfskin boot (F09b, 19.8 $\mu g/m^2$; F09a 3.62 $\mu g/m^2$), and to a lesser extent in the Mammut boot (F05, 1.50 $\mu g/m^2$).

At least one samples from each of The North face, Columbia and Mammut footwear (though not the Jack Wolfskin boot) also contained the equivalent C4 PFCA (PFBA) in appreciable concentrations (between 5.99 and 10.9 $\mu g/m^2$).

Though PFBS was not detected in the Haglöf boot samples, one of these (F02) did contain PFBA in an appreciable concentration (4.39 $\mu g/m^2$), together with a range of other short chain and long chain ionic PFCAs, including the highest concentration of the long chain PFOA found in any footwear sample (18.3 $\mu g/m^2$).

Similarly, the Mammut sample (F05) also contained a wide range of short chain and long chain ionic PFCAs, from C4 (PFBA) to C14 (PFTeA), including the second highest PFOA concentration amongst footwear samples (12.7 $\mu g/m^2$).

The concentration by area of PFOA in the Haglöf sample (F02) was the highest amongst all samples of all product types, with that for the Mammut sample (F05) being the third highest.

PFOA was also detected above 1 $\mu g/m^2$ in a number of other samples, including from Haglöfs (F01, 1.83 $\mu g/m^2$), Jack Wolfskin (F09a, 3.53 $\mu g/m^2$; F09b, 4.99 $\mu g/m^2$), Patagonia (F10, 2.88 $\mu g/m^2$) and Columbia (F11, 1.23 $\mu g/m^2$). Similarly, the Salewa sample (F04) contained PFOA (1.80 $\mu g/m^2$) as well as the equivalent long chain sulfonate, PFOS (at 1.07 $\mu g/m^2$). Lower levels of PFOA were also detected in two The North face samples (F07, F08a) at 0.223 and 0.813 $\mu g/m^2$ respectively.

Other examples of short chain (PFHxA) and long chain (PFDA) ionic PFCs were also detected in a number of samples at between 1-2 $\mu g/m^2$.

Two additional ionic PFCs were detected in samples from the North Face shoe, HPFHpA (1.13 $\mu g/m^2$) and 6:2 FTS (0.251 $\mu g/m^2$ and 2.03 $\mu g/m^2$). These PFCs were detected in only a small number of samples across all product types in this study and in lower concentrations, with the exception of 6:2 FTS in one jacket (J11, 23.6 $\mu g/m^2$).

In a previous Greenpeace study (Greenpeace 2014a), ionic PFCs were detected in three footwear samples within the range of concentration found in the current study, though in the lower part of the range (2.23-19.7 $\mu g/m^2$). In that study, short chain (C4) PFCs dominated, as was the case for a number of samples in this study, though one sample from the previous study contained the long chain PFOS at 0.855 $\mu g/m^2$.

In contrast to this study, volatile PFCs were detected in only 1 of the 3 samples, and at lower concentrations than volatile PFCs in the current study (390 $\mu g/m^2$ total volatile PFCs). Only long chain volatile PFCs were detected.

It should be noted, however, that the footwear tested in the previous study was intended for normal everyday use rather than being intended for hiking.

3.3 Backpacks

A total of 14 samples were analysed, from 8 individual backpacks. Volatile PFCs were detected in three samples, the outer fabric from the Jack Wolfskin backpack (BP01), and both the bottom fabric (BP05) and blue outer fabric blue (BP06) from the Mammut backpack. No volatile PFCs were detected in samples from the other 6 backpacks

The long chain 8:2 FTOH was the only volatile PFC detected in the outer fabric of the Jack Wolfskin backpack (BP01), at 37 μ g/m². For the 2 samples from the Mammut backpack, 8:2 FTOH was also detected in both, at 72 μ g/m² in the bottom fabric (BP05) and 54 μ g/m² in the outer fabric (BP06). The two samples from the Mammut backpack also contained the long chain 10:2 FTOH at 23 μ g/m² and 15 μ g/m² in the bottom fabric (BP05) and outer fabric (BP06), respectively.

The total concentration of volatile PFCs in the bottom fabric (BP05) of the Mammut backpack was 12 times the total ionic PFC concentration, and 60 times great in the outer fabric (BP06). No ionic PFCs were detected in the outer fabric of the Jack Wolfskin backpack (BP01) which contained a volatile PFC.

One or more ionic PFC was detected in 11 of the 14 samples, with examples from all but one backpack. No ionic, and no volatile PFCs, were detected in the Haglöfs backpack (BP14). Also, only a relatively low amount of a single compound, the long chain PFOA, was detected in the outer fabric of the Arc'teryx backpack (BP09, $0.14~\mu g/m^2$), and similarly only PFOA was detected in the belt fabric of the Jack Wolfskin backpack, though at a moderately higher concentration (BP02, $0.79~\mu g/m^2$). Similarly, a relatively low amount of PFOA was detected in the The North Face backpack (BP11, $0.09~\mu g/m^2$), together with a slightly higher level of the short chain PFHxA ($0.18~\mu g/m^2$).

A number of short and long chain ionic PFCs were detected in the Columbia backpack (BP12 & BP13), all at relatively low to moderate concentrations, with individual PFCs in the range 0.09-0.44 μ g/m² (including 0.44 μ g/m² of the long chain PFOA in the light blue outer fabric (BP12).

For both samples from the Vaude backpack (BP07 & BP08), a single ionic PFC was detected, the long chain PFOA, at $1.1 - 1.2 \mu g/m^2$.

The composition for the Mammut backpack samples (BP05 & BP06) was somewhat different. Both samples contained the long chain PFOA, at 4.24 μ g/m² (bottom fabric, BP05) and 1.16 μ g/m² (blue outer fabric, BP06) respectively. In addition, other long chain PFCs were detected in the bottom fabric (BP05), namely the C10 (PFDA) and C12 (PFDoA) compounds, at 2.40 μ g/m² and 1.43 μ g/m², respectively.

In contrast, one fabric from the Patagonia backpack (BP04a, BP04b) contained the short chain sulfonate PFBS (BP04a 9.42 $\mu g/m^2$, BP04b 3.18 $\mu g/m^2$). This PFC was note detected in any of the other backpack samples, and the concentration in one of the Patagonia backpack samples (BP04a) was the highest of any ionic PFC in all backpack samples. This sample (BP04a) also contained other short chain PFCAs, including the C4 PFBA (3.98 $\mu g/m^2$), as well as a low to moderate concentrations of the long chain C8 PFCA (PFOA, 0.29 $\mu g/m^2$) and C8 PFSA (PFOS 0.09 $\mu g/m^2$).

The total ionic PFC concentrations for one fabric from the Patagonia backpack (BP04a, BP04b) and one from the Mammut backpack (BP05) were more than 5 times the total ionic PFC concentrations in all samples from all other backpacks.

Volatile and ionic PFCs were less commonly detected in backpack samples and, where detected, were present at generally lower concentrations compared to jackets, trousers, footwear. Where detected, volatile PFC concentrations were similar to those for sleeping bag and tent samples, though volatile PFCs were less frequently detected in backpack samples. Where detected, total ionic PFC concentrations were generally similar to those for sleeping bags and higher than those for tent samples.

No previous data for PFCs in backpack fabric could be found for comparison.

3.4 Sleeping bags

For one of the two sleeping bags (SB02 & SB03, The North Face), a range of long and short chain ionic PFCs, predominantly long chain PFCAs, as well as long chain volatile PFCs, were detected in both the outer (SB02) and inner (SB03) fabric, with higher concentrations in the outer fabric. For the outer fabric (SB02), the total volatile PFCs concentration was 92% of the total PFC concentration, with an equivalent figure of 98% for the inner fabric (SB03).

Of the PFCAs, the predominant compounds were the long chain C8 PFOA and C10 PFDA compounds for both the outer (SB02) and inner (SB03) fabric:

• The outer fabric (SB02) contained PFOA (7.10 μ g/m², 59% of total ionic PFCs) and PFDA (2.84 μ g/m², 24% of total ionic PFCs);

• The inner fabric (SB03) contained PFOA (0.36 μ g/m², 43% of total ionic PFCs) and PFDA (0.20 μ g/m², 24% of total ionic PFCs).

Other long chain PFCAs were also detected in both fabrics, including the C12 PFDoA.

Other ionic PFCs were also detected in the inner fabric of this sleeping bag (SB03), though at relatively low concentrations, namely HPFHpA ($0.07~\mu g/m^2$) and 6:2~FTS ($0.02~\mu g/m^2$). Overall in this study, neither of these two PFCs were detected in the majority of samples, with 6:2~FTS being found in only two jackets (J07 & J11) and two footwear samples (F07 & F08), at similar or somewhat higher concentrations, and with a notably higher concentration of 6:2~FTS for one jacket (J11, $23.6~\mu g/m^2$).

The predominant volatile PFCs were the long chain telomer alcohols, 8:2 FTOH (52 $\mu g/m^2$ and 35 $\mu g/m^2$ in the outer and inner fabric respectively) and 10:2 FTOH (15 $\mu g/m^2$ and 12 $\mu g/m^2$ in the outer and inner fabric respectively). For both the outer and inner fabric, the concentrations of 8:2 FTOH and 10:2 FTOH were in a ratio of approximately 3:1, with these FTOHs composing 100% and 90% of the total volatiles concentration for the outer and inner fabric, respectively. Two long chain FTAs were also detected in the inner fabric; 8:2 FTA (3.3 $\mu g/m^2$) and 10:2 FTA (1.5 $\mu g/m^2$), at between 8 to 10 times less concentrations compared to the equivalent alcohols (8:2 FTOH and 10:2 FTOH).

The composition of individual volatile PFCs for both samples reflects that of ionic PFCs, with the C8 compound dominating, followed by the C10, and with the relative proportions of C8 and C10 compounds being in a similar ratio for both volatile and ionic PFCs. This suggests a link between the origin of the ionic and the volatile C8 and C10 compounds.

For the other sleeping bag (SB01, Mammut), only a single volatile PFC and a single ionic PFC were detected in the outer fabric. By far the predominant compound was the short chain volatile PFC, 6:2 FTOH (41 μ g/m²), at a similar concentration to that of the main FTOH (the long chain 8:2 FTOH, 52 μ g/m²) in the The North Face sleeping bag outer fabric (SB02). The ionic PFC in the Mammut sleeping bag, the short chain PFHpA, was present at a relatively low concentration (0.17 μ g/m²).

The outer fabric from the The North Face sleeping bag (SB02) contained the highest concentration of PFOA by mass (157000 ng/kg) of all samples from all 40 products. In addition, the total ionic concentration by mass was one of the highest. Furthermore, the total volatile concentrations by mass for the three sleeping bag samples were some of the highest of all samples, especially for the outer fabric of the The North Face sleeping bag (SB02, 1500 μ g/kg). In addition, the individual concentrations of the long chain telomer alcohols, 8:2 FTOH and 10:2 FTOH, in the The North Face samples (SB02, SB03) were some of the highest concentrations by mass of all samples.

Though concentrations between individual samples varied greatly within different product types, some comparison can be made with other types of product. The range and median concentrations for both ionic and volatile PFCs in the three sleeping bag samples were similar to those for backpack samples. In contrast, concentrations of ionic and volatile PFCs in sleeping bags were generally lower than those in jackets, trousers and footwear, but generally higher than those in tent samples.

No previous data for PFCs in sleeping bag fabric could be found for comparison.

3.5 Tents

For one of the two tents (TE05-TE07, Jack Wolfskin), volatile PFCs were detected in two of the three fabrics samples analysed. Two long chain FTOHs were detected in the inner fabric (TE06), 8:2 FTOH (34 $\mu g/m^2$) and 10:2 FTOH (8.8 $\mu g/m^2$), as well as two long chain FTAs, 8:2 FTA (10 $\mu g/m^2$) and 10:2 FTA (3.7 $\mu g/m^2$). The FTA concentrations were between 2 to 3 times lower than the concentrations of the equivalent alcohols (8:2 FTOH and 10:2 FTOH). For the outer fabric (TE05), the only volatile PFC detected was 8:2 FTOH (12 $\mu g/m^2$).

Ionic PFCs were also detected in the two samples in which FTOHs were found, with total concentrations of ionic PFCs in the inner fabric (TE06, 0.58 $\mu g/m^2$) and outer fabric (TE05, 2.10 $\mu g/m^2$) constituting 1% and 15% of the total PFC concentration in these two fabrics, respectively. For the inner fabric (TE06) and outer fabric (TE05), the total volatile PFC concentration was 98 times and 5.7 times the total ionic PFC concentration in each sample, respectively.

Of the ionic PFCs, the long chain compound, PFOA, was the main compound in both the inner fabric (TE06) and outer fabric (TE05), at 0.35 $\mu g/m^2$ and 0.68 $\mu g/m^2$, respectively, with the outer fabric (TE05) also containing another long chain compound, PFDA, at a slightly lower concentration (0.56 $\mu g/m^2$).

The ionic PFCs in the Jack Wolfskin tent samples were dominated by short and long chain PFCAs, though a long chain sulphonamide, PFOSA, was also detected in the outer fabric (TE05, $0.13~\mu g/m^2$). This was the only sample from this whole study in which this PFC was detected.

For the other tent (TE01-TE04, The North Face), the inner fabric (TE02) contained one volatile PFC, the short chain 6:2 FTOH (37 $\mu g/m^2$), constituting over 99.7% of the total PFC concentration. This compound is the shorter chain version of the FTOHs detected in the samples from the Jack Wolfskin tent (TE05, TE06). No volatile PFCs were detected in the other three samples from the The North Face tent (TE01, TE03, TE04). A relatively low concentration of a single short chain ionic PFC was also detected in the inner fabric (TE02, 0.09 $\mu g/m^2$ PFHxA). PFOA, the long chain equivalent of PFHxA, was detected at a similar level in the outer composite fabric (TE03, 0.04 $\mu g/m^2$ PFOA), with no ionic PFCs being detected in either the outer fabric (TE01) or the inner fabric (bottom) (TE04).

Though concentrations between individual samples varied considerably, especially for ionic PFCs, some comparison can be made with other types of product. Volatile PFCs were generally less prevalent in the tent samples compared to those from other types of product, with the exception of backpacks. Similarly, concentrations of ionic PFCs were generally far lower in the tent samples than those found in other types of product, with the possible exception of sleeping bags, though only 3 sleeping bag samples were analysed.

No previous data for PFCs in tent fabric could be found for comparison.

3.6 Rope

Three short chain PFCAs were detected in the sample of climbing rope (R01, Mammut), including PFBA (2570 ng/kg), PFPA (2350 ng/kg) and PFHxA (6510 ng/kg), as well as one short chain telomer alcohol, 6:2 FTOH (646 μ g/kg). As the rope did not contain flat fabric, data are not given by area

(μ g/m²). As for other items in which both volatile and ionic PFCs were detected, the concentration of 6:2 FTOH was considerably higher than the total concentration of ionic PFCs (57 times higher).

Comparing with other types of products, the concentration by mass of 6:2 FTOH (the only volatile PFC detected) was in the range of FTOH concentrations by mass for jackets, trousers, footwear and sleeping bags, and somewhat higher than concentrations of FTOHs in samples from backpacks and tents. Long chain telomer alcohols, identified in many examples of the other product types, were not detected in the rope sample. The total ionic PFC concentration by mass in the rope (11400 ng/kg = $11.4 \mu g/kg$) was in the range of equivalent concentrations of other product types.

It should be noted, however, that only a single sample of rope was analysed, and the PFC composition of other equivalent rope products could vary significantly, as was seen for other types of product. For each of the other types of product, there were individual examples with either a notably lower or higher concentration of total ionic PFCs. For volatile PFCs, the total concentration in many examples from other types of products were similar to that found in the rope, though again there were examples with either a lower or higher total volatile PFC concentration for many types of product. It is, therefore, not possible to make any general comparison between climbing rope and other types of products in terms of the PFC content.

No previous data for PFCs in climbing rope could be found for comparison

3.7 Glove

No PFCs were detected in the Glove (GL01). Though not directly comparable, PFCs were previously reported in waterproof gloves purchased in 2013 in a previous Greenpeace investigation, including PFOS (9.5 $\mu g/m^2$) in one glove and high concentrations of FTOHs in another (1900 $\mu g/m^2$) (Greenpeace 2013b).

Similarly, a 2015 report for products purchased in 2010 found the long chain sulfonate, PFOS, at over $100 \, \mu g/m^2$ as well as FTOHs, predominantly the long chain 8:2 FTOH and 10:2 FTOH at over $10 \, \mu g/m^2$ (Kotthoff et al. 2015)

4. Conclusions

This study has demonstrated the presence of PFCs within a broad range of outdoor products. Ionic and/or volatile PFCs of some type were detected in all of the products analysed, with the exception of 2 of the 11 Jackets (Vaude, J01 and Jack Wolfskin jacket, J12), 1 of the 8 backpacks (Haglöfs, BP14) and the one glove sample. For both ionic and volatile PFCs, concentrations varied considerably between individual articles within each product group, and also across all samples as a whole. In general, for articles in which both ionic and volatile PFCs were detected, volatile PFCs were present in considerable higher concentrations than ionic PFCs. For other articles, concentrations of volatile PFCs were higher than concentrations of ionic PFCs found the article, or than those typically found in other articles of the same type of product.

There were, however, examples for which neither ionic nor volatile PFCs were detected, including 2 jackets (Vaude, J01; Jack Wolfskin, J12), a backpack (Haglöfs, BP14), and the glove (The North Face, G01).

Specific volatile PFCs can degrade into specific ionic PFCs, including PFCAs. For example, 8:2 FTOH can give rise to the C8 PFCA, PFOA. For all samples, where a telomer alcohol (FTOH) and the corresponding PFCA were both detected (for example 8:2 FTOH and PFOA), the FTOH concentration was always higher than that of the corresponding PFCA, and often considerably higher. There was, however, no other consistent relationship between the FTOH concentration and that of the corresponding PFCA.

For 9 of the 11 brands included in this study, one or more article from each brand had a notably high concentration of at least one ionic PFC. In addition, one or more article from each brand had a notably high concentration of at least one volatile PFC. For Blackyak, this was also the case for volatile PFCs, but not for ionic PFCs. Although some ionic PFCs were detected in the Blackyak jacket, equivalent articles from other brands had considerably higher concentrations of ionic PFCs.

For Vaude, no volatile PFCs were detected in any of the 3 samples from 2 articles. Similarly, only a single ionic PFC, the long chain PFOA, was detected in the 2 samples from the Vaude backpack. The PFOA concentrations were significant, being just over $1 \mu g/m^2$, and in the range for other backpack samples, though some other backpack samples had notably higher total ionic PFC concentrations.

It should be noted, however, that some brands were represented by more samples than others in this study, either due to a greater number of articles or a greater number of separate materials analysed compared to others brands. It is not possible, therefore, to directly compare the brands products as a whole on the basis of this study.

As well as the two sub groups of ionic and volatile compounds, PFCs can also be distinguished as either short chain or long chain compounds. Ionic PFCs can be either short chain or long chain, and volatile PFCs can be either short chain or long chain (see Section 2 for details).

For jackets, both ionic and volatile PFCs were predominantly short chain compounds. One sample had by far the highest concentration of the ionic C4 compound PFBS of all products in the study. Though one jacket had high concentration of long chain volatile PFCs (8:2 FTOH and 10:2 FTOH; Blackyak), for all other jackets only the short chain compound, 6:2 FTOH, was present when volatile PFC were detected

This pattern further supports a shift in the type of PFCs in jackets over time compared to what was discovered in previous Greenpeace reports from 2012 and 2013 (Greenpeace 2012c, 2013c) and a paper from another research group from 2015 based on products purchased in 2010 (Kotthoff et al. 2015). Both short and long chain compounds were represented in jackets from these studies, with long chain compounds being the predominant ionic PFCs. Similarly, long chain volatile FTOHs were predominant in the products purchased in 2010 (Kotthoff et al. 2015), while short chain versions were more represented in the 2013 Greenpeace study. The current study suggests that a shift towards greater use of short chain PFCs continues, for both volatile and ionic compounds.

For trousers, backpacks and footwear, the current study found that both short and long chain ionic PFCs were similarly represented, though there was one notably high concentration of short chain (C4) ionic PFCs in one backpack (Patagonia).

The pattern, however, was somewhat different for volatile PFCs. Greater, though not exclusive, prevalence of short chain volatile PFCs was seen for trouser and footwear samples, though only long chain volatile PFCs were detected in backpack samples, with no volatile PFCs being detected in most backpack samples.

As for jackets, the current study does further support a shift towards short chain PFCs in trousers. Both short and long chain PFCs were similarly represented in a single article in a 2012 Greenpeace report (Greenpeace 2012c) and another report for products purchased in 2010, with only long chain volatile FTOHs detected in the 2010 item (Kotthoff et al. 2015). In contrast, the ionic PFCs identified were exclusively short chain compounds in a single article purchased in 2013, in which no volatile PFCs were detected (Greenpeace 2014a).

In contrast, short chain (C4) ionic PFCs dominated in footwear samples from one previous study, while both long and short chain ionic PFCs were found in the current study, which does not reflect a shift towards short chain PFCs for footwear, though this is based on only three samples in the previous study which may not have been representative of footwear in general sold at the time (Greenpeace 2014a). In this previous study, however, only 3 footwear articles were tested, and these were intended for normal everyday use rather than being intended for hiking, and so not directly comparable to the current study.

Both short and long chain ionic PFCs were similarly represented for sleeping bag and tent samples, though with only 2 articles for each product type it is difficult to draw any conclusions from these data regarding a pattern in the use of short or long chain compounds. For the rope sample, only short chain versions of both ionic and volatile PFCs were detected, though only a single article was tested.

5. References

Brigden K, Santillo D & Johnston P (2012). Nonylphenol ethoxylates (NPEs) in textile products, and their release through laundering. Greenpeace Research Laboratories Technical Report 01/2012, 14pp. http://www.greenpeace.to/greenpeace/wp-

content/uploads/2012/03/Dirty_Laundry_Product_Testing_Technical Report 01-2012.pdf

Brigden, K., Wang, M., Hetherington, S., Santillo, D. & Johnston, P. (2013) Hazardous chemicals in a selection of textile products manufactured in Shishi City & Huzhou City during 2013. Greenpeace Research Laboratories Technical Report 05-2013, December 2013. http://www.greenpeace.to/greenpeace/?p=1684

Butt, C.M., Muir, D.C., Mabury, S.A. (2013) Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review. Environmental Toxicology & Chemistry 33(2): 243-267

Frömel, T., & Knepper, T.P. (2010) Biodegradation of fluorinated alkyl substances. Reviews of Environmental Contamination and Toxicology 208: 161–177

Greenpeace (2011). Dirty Laundry 2: Hung Out to Dry - Unravelling the toxic trail from pipes to products,

- pp32.
- http://www.greenpeace.org/international/Global/international/publications/toxics/Water%202011/Textilema nufacture China.pdf
- Greenpeace (2012a). Toxic Threads: The Big Fashion Stitch-Up http://www.greenpeace.org/international/en/publications/Campaign-reports/Toxics-reports/Big-Fashion-Stitch-Up/
- Greenpeace (2012b) Dirty Laundry: Reloaded How big brands are making consumers unwitting accomplices in the toxic water cycle, pp48. http://www.greenpeace.org/international/en/publications/Campaignreports/Toxics-reports/Dirty-Laundry-Reloaded/
- Greenpeace (2012c) Chemistry for any weather: Greenpeace tests outdoor clothes for perfluorinated toxins; http://www.greenpeace.org/romania/Global/romania/detox/Chemistry%20for%20any%20weather.pdf
- Greenpeace (2013a) Greenpeace: Bademoden mit gefährlichen Chemikalien belastet (German). https://www.greenpeace.de/presse/presseerklaerungen/greenpeace-bademoden-mit-gefaehrlichenchemikalien-belastet
- Greenpeace (2013b) Schadstoffe in G-Star Produkten (German) https://www.greenpeace.de/themen/endlager-umwelt/schadstoffe-g-star-produkten
- Greenpeace (2013c). Chemistry for any weather II. December 2013. http://m.greenpeace.org/italy/Global/italy/report/2013/toxics/ExecSummary_Greenpeace%20Outdoor%20Report%202013 1.pdf
- Greenpeace (2014a). A little story about the monsters in your closet. http://www.greenpeace.org/eastasia/publications/reports/toxics/2014/little-story-monsters-closet/
- Greenpeace (2014b). A Red Card for sportswear brands: Hazardous chemicals found in World Cup merchandise. http://www.greenpeace.org/international/en/publications/Campaign-reports/Toxics-reports/detox-football/
- Langer, V., Dreyer, A., Ebinghaus, R. (2010) Polyfluorinated compounds in residential and nonresidential indoor air. Environmental Science & Technology 44(21): 8075-81
- Nilsson, H., Kärrman, A., Rotander, A., van Bavel, B., Lindström, G., Westberg, H. (2013) Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans. Environment International 51: 8-12
- OECD-UNEP (2013) Synthesis paper on per- and polyfluorinated chemicals (PFCs). OECD/UNEP Global PFC Group, Organisation for Economic Cooperation and Development (OECD) & United Nations Environment Program (UNEP). http://www.oecd.org/env/ehs/risk-management/synthesis-paper-on-per-and-polyfluorinated-chemicals.htm
- Rand, A.A., Mabury, S.A. (2012) In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences. Environmental Science & Technology 46(13): 7398-406
- Schlummer, M., Gruber, L., Fiedler, D., Kizlauskas, M., Müller, J. (2013) Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure. Environment International 57-58: 42-9
- Young, C.J. & Mabury, S.A. (2010) Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. Reviews of Environmental Contamination and Toxicology (208): 1–109

Appendix 1. Concentrations of PFCs in all articles tested **Jackets**

Total ionic PFCs	H4PFOS; 6:2 FTS	H2PFDA	нРҒНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	lonic PFCs (ng/kg)	Place of sale	Country of production	Part analysed	Product name		Brand	Sample code
	^	^	^	^		^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^)	Ger		bac		Fjc	Va	
	< 3970	< 5290	< 5290	< 5290	< 529	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 2650	< 3970	< 2650	< 3970	< 3970	< 3970		Germany	China	back part	llei	Fjordan	Vaude	J01
30300	< 1010	< 1450	< 1340	< 1340	< 336	< 671	< 671	< 671	< 671	< 671	< 671	< 671	2020	16600	1740	3940	< 1010	< 671	< 1010	< 1010	6000		Switzerland	Turkey	back part	Hooded	Nordwand	Mammut	J02
714000	< 769	< 1030	< 1030	< 1030	< 513	< 513	< 513	< 513	< 513	2200	762	4820	71300	546000	75500	12300	< 769	< 513	< 769	< 769	1540		Norway	China	back part	pro pro	Lofoten	Norrona	J03 (i)
9830	< 528	< 704	< 704	< 704	< 352	< 352	< 352	1240	< 352	1900	< 352	2320	< 352	1310	< 352	3060	< 528	< 352	< 528	< 528	< 528		Korea	Vietnam	inner		U-Jade # 1	Blackyak	J04
34400	< 746	< 995	< 995	< 995	< 498	< 498	< 498	< 498	< 498	681	< 498	1090	< 498	3410	601	17300	< 746	< 498	< 746	< 746	11300		ä	am	outer		# 1	/ak	J05 (i)
4050	< 796	< 1440	< 1060	< 1060	< 531	< 531	< 531	< 531	< 531	< 531	< 531	531	< 531	< 531	< 531	< 531	< 796	2620	< 796	897	< 796		Chile	Vietnam	back part	dCLIOII	Alpine	Columbia	J06
147000	1730	< 1640	< 1130	< 1130	< 565	< 565	< 565	< 565	< 565	1130	< 565	2280	17400	106000	9770	7790	< 847	< 565	< 847	< 847	1300		Finland	China (Mainland)	back part		LI.M III	Haglöfs	J07 (i)
51800	< 2450	< 5780	< 1250	< 1250	< 625	< 625	< 625	< 625	< 625	< 625	< 625	625	12300	25100	3480	5700	< 938	< 625	< 938	< 938	4620		Sweden	China (Mainland)	back part		Alpha SL	Arc'teryx	J08
2000	< 658	< 4810	< 877	< 877	< 439	< 439	< 439	< 439	< 439	< 439	< 439	744	< 439	1260	< 439	< 439	< 658	< 439	< 658	< 658	< 658		Sweden	Bangladesh	back part	Stratos	Women	The North Face	J09
792000	< 714	< 3860	< 952	< 952	< 476	< 476	< 476	< 476	< 476	581	< 476	1580	172000	204000	30800	148000	< 714	< 476	< 714	< 714	235000		Taiwan	Vietnam	mixed materials	SOPER ALPINE	PATAGON	Patagonia	J10a
5560000	< 3410	< 4550	< 4550	< 4550	< 2270	< 2270	< 2270	< 2270	< 2270	< 2270	< 2270	< 2270	7400	34700	8430	40200	< 3410	< 2270	< 3410	< 3410	5470000		van	nam	naterials	ALPINE	PATAGONIA MEN'S	gonia	J10b
480000	182000	< 966	< 966	< 966	< 483	< 483	< 483	< 483	557	< 483	< 483	1270	632	4730	1440	44900	< 725	525	< 725	< 725	244000		Italy	Vietnam	back part	AC N	Ultar GTX	Salewa	J11
ı	< 1050	< 1590	< 1390	< 1390	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 697	< 1050	< 697	< 1050	< 1050	< 1050		Austria	unknown	back part		Amply 3in1	Jack Wolfskin	J12

Table A1a. Details of all jacket articles and concentrations of ionic PFCs* by mass (ng/kg). (i) average of 2 equivalent samples, see Appendix 2.

Table A1b.	Total ionic PFCs	H4PFOS; 6:2 FTS	H2PFDA	нРЕНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	Ionic PFCs (μg/m²)	Brand	Sample code
Details of all lacket articles and concentrations of ionic PFCs* by area (ug/m²). (i) average	-	<0.44	<0.59	<0.59	<0.59	<0.06	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.29	<0.44	<0.29	<0.44	<0.44	<0.44		Vaude	J01
ll iacket art	4.88	<0.16	<0.23	<0.22	<0.22	<0.05	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.33	2.67	0.28	0.63	<0.16	<0.11	<0.16	<0.16	0.97		Mammut	J02
icles and co	100	<0.07	<0.14	<0.14	<0.14	<0.07	<0.07	<0.07	<0.07	<0.07	0.31	0.11	0.67	9.97	76.4	10.6	1.72	<0.11	<0.07	<0.11	<0.11	0.21		Norrona	J03 (i)
oncentratio	0.89	<0.05	<0.06	<0.06	<0.06	<0.03	<0.03	<0.03	0.11	<0.03	0.17	<0.03	0.21	<0.03	0.12	<0.03	0.28	<0.05	<0.03	<0.05	<0.05	<0.05		Blackyak	J04
ns of ionic	4.54	<0.10	<0.13	<0.13	<0.13	<0.07	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	0.14	<0.07	0.45	0.08	2.29	<0.10	<0.07	<0.10	<0.10	1.49		yak	J05 (i)
PFCs* bv a	0.70	<0.13	<0.24	<0.17	<0.17	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09	<0.09	<0.09	<0.09	<0.09	<0.13	0.43	<0.13	0.15	<0.13		Columbia	J06
area (ug/m	12.7	0.15	<0.14	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	0.10	<0.05	0.20	1.50	9.15	0.84	0.67	<0.07	<0.05	<0.07	<0.07	0.11		Haglöfs	J07 (i)
²). (i) aver:	5.98	<0.28	<0.67	< 0.14	<0.14	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.07	1.42	2.90	0.40	0.66	< 0.11	<0.07	<0.11	< 0.11	0.53		Arc'teryx	J08
ge of 2 equivalent samples, see Appendix 2.	0.29	<0.09	<0.68	<0.12	<0.12	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.11	<0.06	0.18	<0.06	<0.06	<0.09	<0.06	<0.09	<0.09	<0.09		The North Face	J09
valent sam	97.5	<0.09	<0.50	<0.12	<0.12	<0.06	<0.06	<0.06	<0.06	<0.06	0.07	<0.06	0.19	21.2	25.1	3.79	18.2	<0.09	<0.06	<0.09	<0.09	28.9		Patagonia	J10a
ples, see A	684	<0.42	<0.56	<0.56	<0.56	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.91	4.27	1.04	4.95	<0.40	<0.28	<0.40	<0.40	673		onia	J10b
nnendix 2	62.2	23.6	<0.13	<0.13	<0.13	<0.06	<0.06	<0.06	<0.06	0.072	<0.06	<0.06	0.16	0.08	0.61	0.19	5.82	<0.09	0.07	<0.09	<0.09	31.6		Salewa	J11
	-	<0,167	<0,253	<0,221	<0,221	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,111	<0,167	<0,111	<0,167	<0,167	<0,167		Jack Wolfskin	J12

lable Alb. Details of all Jacket afficies and concentrations of former Press by afea (µ8/1117). (1) average of z equivalent samples, see Appendix 2.

Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/kg)	Brand		Sample code
-	1	-	-	< 12	< 12	< 12	< 12	< 60	< 180	< 240	< 60	< 24	< 24	< 24	g)		Vaude	J01
1100		1100	-	< 10	< 10	< 10	< 10	< 52	< 160	1100	< 52	< 21	< 21	< 21			Mammut	J02
4600	1	4600		< 10	< 10	< 10	< 10	< 49	< 146	4600	< 50	< 20	< 20	< 20			Norrona	J03 (i)
870	1	870		< 13	< 13	< 13	< 13	190	680	< 270	< 67	< 27	< 36	< 27			Blackyak	J04
-	1	-		< 10	< 10	< 10	< 10	< 57	< 140	< 190	< 48	< 19	< 19	< 19			yak	J05 (i)
270	1	270		< 9	< 9	< 9	< 9	< 47	< 142	270	< 47	< 19	< 19	< 19			Columbia	30c
1600	1	1600		< 11	< 11	< 11	< 11	< 53	< 158	1600	< 53	< 21	< 21	< 21			Haglöfs	J07 (i)
850	1	850	1	< 11	< 11	< 11	<11	< 54	< 162	850	< 54	< 22	< 22	< 22			Arc'teryx	308
500	1	500	-	< 10	< 10	< 10	< 10	< 52	< 157	500	< 52	< 21	< 21	< 21		Face	The North	J09
1500	1	1500	-	< 9	< 9	< 9	< 9	53	< 132	1400	< 49	< 20	< 20	< 20			Patagonia	J10 (i)
-	1	-	-	< 10	< 10	< 10	< 10	< 50	< 151	< 212	< 50	< 20	< 20	< 20			Salewa	J11 (i)
	1			< 10	< 10	< 10	< 10	< 48	< 150	< 190	< 48	< 19	< 19	< 19		Wolfskin	Jack	J12

Table A2a. Details of all jacket articles and concentrations of volatile PFCs* by mass (µg/kg). (i) average of 2 equivalent samples, see Appendix 2.

-	-	190	72	100	130	46	-	71	630	170	-	Total volatile PFCs
	-		-	-	-	-	-	-	-	-	-	Sum FOSAs/Es
ı		190	72	100	130	46	1	71	630	170	1	Sum FTOHs
1	1	1	1	1		-	1	-	-	1	1	Sum FTAs
<1.5	<1.3	<1.1	<1.5	<1.3	<0.89	<1.5	<1.3	<1.1	<1.4	<1.5	<1.3	EtFOSA
<1.5	<1.3	<1.1	<1.5	<1.3	<0.89	<1.5	<1.3	<1.1	<1.4	<1.5	<1.3	MeFOSA
<1.5	<1.3	<1.1	<1.5	<1.3	<0.89	<1.5	<1.3	<1.1	<1.4	<1.5	<1.3	EtFOSE
<1.5	<1.3	<1.1	<1.5	<1.3	<0.89	<1.5	<1.3	<1.1	<1.4	<1.5	<1.3	MeFOSE
<7.1	<6.3	6.7	<7.6	<6.5	<4.3	<8.1	<7.2	15	<6.8	<8.0	<6.5	10:2 FTOH
<22	<19	<17	<23	<20	<13	<24	<18	56	<20	<25	<19	8:2 FTOH
<28	<27	180	72	100	130	46	<24	<22	630	170	<26	6:2 FTOH
<7.1	<6.3	<5.6	<7.6	<6.5	<4.3	<8.1	<6.1	<5.6	<6.9	<8.0	<6.5	4:2 FTOH
<2.8	<2.5	<2.3	<3.1	<2.7	<1.7	<3.3	<2.4	<2.2	<2.8	<3.2	<2.6	10:2 FTA
<2.8	<2.5	<2.3	<3.1	<2.7	<1.7	<3.3	<2.4	<3.0	<2.8	<3.2	<2.6	8:2 FTA
<2.8	<2.5	<2.3	<3.1	<2.7	<1.7	<3.3	<2.4	<2.2	<2.8	<3.2	<2.6	6:2 FTA
												Volatile PFCs (μg/m²)
Wolfskin			Face									Brand
Jack	Salewa	Patagonia	The North	Arc'teryx	Haglöfs	Columbia	Blackyak	Blac	Norrona	Mammut	Vaude	
J12	J11 (i)	J10 (i)	90L	J08	J07 (i)	J06	J05 (i)	J04	J03 (i)	J02	J01	Sample code

Table A2b. Details of all jacket articles and concentrations of volatile PFCs* by area ($\mu g/m^2$). (i) average of 2 equivalent samples, see Appendix 2.

Trousers

/ 000
< 698
< 930
< 930
< 930
< 465
857
675
2420
666
7160
1670
20500
2480
6280
1420
1050
< 698
< 465
< 698
< 698
< 698
Hong Kong
Vietnam
leg
TORRENTSHELL
Patagonia
TR05
TR06 (I) Arc'teryx Beta AR Men's mixed materials China (Mainland) Taiwan 183000 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 853 < 8

Table A3a. Details of all trouser articles and concentrations of ionic PFCs* by mass (ng/kg). (i) average of 2 equivalent samples, see Appendix 2; (ii) average of 2 homogenised samples, see Appendix 3.

:	Total ionic PFCs	H4PFOS; 6:2 FTS	H2PFDA	нРЕНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	Ionic PFCs (μg/m²)	Brand	Sample code
	1.15	<0.13	<0.17	<0.17	<0.17	<0.09	<0.09	<0.09	<0.09	<0.09	0.13	<0.09	0.58	<0.09	0.44	<0.09	<0.09	<0.13	<0.09	<0.13	<0.13	<0.13		The North Face	TR01
	45.90	<0.13	<0.17	<0.17	<0.17	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.11	0.22	2.11	0.18	7.38	<0.13	0.17	<0.13	<0.13	35.70		Mammut	TR02 (i)
	0.61	<0.14	<0.18	<0.18	<0.18	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.20	<0.09	0.41	<0.09	<0.09	<0.14	<0.09	<0.14	<0.14	< 0.14		Columbia	TR03
	53.5	<0.10	<0.13	<0.13	<0.13	<0.07	0.25	<0.07	4.47	0.32	8.78	0.64	12.2	0.40	2.46	0.76	1.99	<0.10	<0.07	<0.10	<0.10	21.2		Jack W	TR04a (i)
	43.8	<0.09	<0.12	<0.12	<0.12	<0.06	<0.06	<0.06	4.13	0.36	10.2	0.74	14.9	1.79	3.14	1.29	2.16	<0.09	<0.06	<0.09	<0.09	5.04		Jack Wolfskin	TR04b/c (ii)
•	5.4	<0.08	<0.11	<0.11	<0.11	<0.06	0.1	0.08	0.29	0.08	0.86	0.20	2.47	0.30	0.76	0.17	0.13	<0.08	<0.06	<0.08	<0.08	<0.08		Patagonia	TR05
	65.7	<0.24	<1.48	<0.32	<0.32	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	4.91	0.42	8.93	<0.24	<0,159	<0.24	<0.24	51.4		Arc'teryx	TR06 (i)
	-	<0.23	<0.31	<0.31	<0.31	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.23	<0.16	<0.23	<0.23	< 0.23		Haglöfs	TR07
	2.13	<0.36	<0.48	<0.48	<0.48	0.25	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	0.25	1.63	<0.36	<0.24	<0.36	<0.36	<0.36		Salewa	TR08

Table A3b. Details of all trousers articles and concentrations of ionic PFCs* by area (μg/m²). (i) average of 2 equivalent samples, see Appendix 2; (ii) average of 2 homogenised samples, see Appendix 3.

Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (µg/kg)	Brand		Sample code
810	-	700	110	< 11	< 11	< 11	< 11	< 55	< 160	700	< 55	< 22	110	< 22		Face	The North	TR01
400	-	400	-	< 10	< 10	< 10	< 10	< 52	< 160	400	< 52	< 21	< 21	< 23			Mammut	TR02 (i)
690	-	650	35	< 8	^ 8	^ 8	^ 8	< 42	< 130	650	< 42	< 17	35	< 17			Columbia	TR03
4700	-	4700	1	<11	<11	<11	<11	1100	2100	1500	< 54	< 22	< 22	< 22		Wolfskin	Jack	TR04 (i)
420	-	250	170	< 10	< 10	< 10	< 10	79	170	< 210	< 52	72	100	< 21			Patagonia	TR05
880		880		< 10	< 10	< 10	< 10	< 52	< 160	880	< 52	< 21	< 21	< 21			Arc'teryx	TR06 (i)
570	-	570	-	< 9	< 9	< 9	< 9	< 45	< 140	570	< 45	< 18	<18	< 18			Haglöfs	TR07
510	ı	510	1	< 9	< 9	< 9	< 9	< 44	< 140	510	< 59	< 24	< 24	< 24			Salewa	TR08

Table A4a. Details of all trousers articles and concentrations of volatile PFCs* by mass (µg/kg). (i) average of 2 equivalent samples, see Appendix 2.

١,	,-	,-								_	_			_		_		
Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/m²)	Brand		Sample code
174		150	24	<2.4	<2.4	<2.4	<2.4	<12	<37	150	<12	<4.9	24	<4.9		Face	The North	TR01
66	-	66	0.0	<1.7	<1.7	<1.7	<1.7	<8.7	<26	66	<8.7	<3.5	<3.5	<3.8			Mammut	TR02 (i)
150		140	7.8	<1.8	<1.8	<1.8	<1.8	<9.3	<28	140	<9.3	<3.8	7.8	<3.8			Columbia	TR03
540		540	-	<1.3	<1.3	<1.3	<1.3	130	240	170	<6.2	<2.5	<2.5	<2.5		Wolfskin	Jack	TR04 (i)
45		27	19	<1.1	^ 1.	<1.1	<1.1	8.6	18	<22	<5.6	7.8	11	<2.3			Patagonia	TR05
270		270	-	<3.0	<3.0	<3.0	<3.0	<16	<48	270	<15	<6.4	<6.4	<6.4			Arc'teryx	TR06 (i)
150		150	-	<2.4	<2.4	<2.4	<2.4	<12	<36	150	<12	<4.8	<4.8	<4.8			Haglöfs	TR07
56	-	56	-	<0.99	<0.99	<0.99	<0.99	<4.9	<15	56	<6.5	<2.6	<2.6	<2.6			Salewa	TR08

Table A4b. Details of all trousers articles and concentrations of volatile PFCs* by area (μg/m²). (i) average of 2 equivalent samples, see Appendix 2.

Footwear

42000	OTC#	12300	(a) (i) 2000	DOODET	<u> </u>	70400	710	717 04300 - 1030 - 1030 - 113	1020	-	04500	Table 70 D	
47000	4010	12200	0600	100000	27000	20/00	713	35600	1630		64300	7360	Total ionic PECs
< 1050	< 1340	< 636	< 746	< 13900	2060	1160	< 750	< 655	< 588	< 862	< 794	< 758	H4PFOS; 6:2 FTS
< 2780	< 1790	< 847	< 3280	< 65500	< 3620	< 7820	< 1000	< 873	< 957	< 1150	< 1370	< 1390	H2PFDA
2430	< 1790	< 847	< 995	< 18500	< 1230	5200	< 1000	< 873	< 784	< 1150	< 1060	< 1010	НРЕНРА
< 1400	< 1790	< 847	< 995	< 18500	< 1230	< 1520	< 1000	< 873	< 784	< 1150	< 1060	< 1010	PF-3,7-DMOA
< 702	< 446	< 424	< 498	< 463	< 617	< 758	< 500	< 437	< 392	< 575	< 529	< 505	PFOSA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	773	< 392	< 575	1720	< 505	PFTeA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	< 437	< 392	< 575	711	< 505	PFTrA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	1390	< 392	< 575	2500	< 505	PFDoA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	852	< 392	< 575	722	< 505	PFUnA
< 702	1170	865	800	< 9260	< 617	< 758	< 500	4030	< 392	< 575	6470	< 505	PFDA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	2470	< 392	< 575	1650	< 505	PFNA
802	3740	2150	1520	< 9260	824	1030	< 500	8580	1020	< 575	17500	2360	PFOA
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	1100	< 392	< 575	5330	< 505	PFHpA
1020	< 893	723	550	< 9260	1180	6890	< 500	1390	< 392	< 575	18800	< 505	PFHxA
< 702	< 893	< 424	< 498	< 9260	< 617	2470	< 500	< 437	< 392	< 575	4690	< 505	PFPA
5220	< 893	< 424	< 498	< 9260	11000	2300	712	4030	< 392	< 575	4190	< 505	PFBA
< 1050	< 1340	< 636	< 746	< 13900	< 926	< 1140	< 750	< 655	< 588	< 862	< 794	< 758	PFDS
< 702	< 893	< 424	< 498	< 9260	< 617	< 758	< 500	< 437	605	< 575	< 529	< 505	PFOS
< 1050	< 1340	< 636	< 746	< 13900	< 926	< 1140	< 750	< 655	< 588	< 862	< 794	< 758	PFHpS
< 1050	< 1340	< 636	< 746	< 13900	< 926	< 1140	< 750	< 655	< 588	< 862	< 794	< 758	PFHxS
34300	< 1340	8530	1560	198000	22800	1330	< 750	1010	< 588	< 862	< 794	< 758	PFBS
													lonic PFCs (ng/kg)
Turkey	(Online shop)	ć,	idincy		(ong	Hong Kong		Slovakia	Slovenia		Norway		Place of sale
Vietnam	+		Tk		inland)	China (Mainland)		(Mainland)	Romania		Romania		production
	China	am	Vietnam					China					Country of
leather-fabric- mix	grey material	bric-mix	leather-fabric-mix	with foam	outer part with foam	inner part	leather outer part	mixed leather/fabric	leather part	inner part	outer part	suede part	Part analysed
waterproof	C												Product name
women's Redmond™ low	Foot Tractor Wading Boots	TEXAPORE N	ALL TERRAIN TEXAPORE MEN		3 HIKE MID GTX	Men's HEDGEHOG	3	Redburn Mid GTX Men	Condor Evo GTX	T men	Haglöfs Grym HI GT men	Hagl	
Columbia	Patagonia	olfskin	Jack Wolfskin		:h Face	The North		Mammut	Salewa		Haglöfs		Brand
F11 (i)	F10	F09b	F09a	F08b	F08a	F07	F06	F05	F04 (i)	F03	F02 (i)	F01	Sample code

Table 5a. Details of all footwear articles and concentrations of ionic PFCs* by mass (ng/kg) (i) average of 2 equivalent samples, see Appendix 2

	idiv 2	(i) average of 2 equivalent samples see Appendix 2	alent sample	ge of 2 equiv	۳	warea liig/m	unic DECo* h	ntrations of i	י שחל החהם	twear article	aile of all foo	Table ASh Details of all footwear articles and concentrations of ionic DECs* by area (119/m)	u u
67.3	3.78	28.5	10.3	195	37.4	4.41	0.96	38.0	2.87	ı	65.8	1.83	Total ionic PFCs
<1.61	<1.03	<1.48	<1.73	<13.7	2.03	0.25	<1.02	<0.97	<1.04	<0.31	<0.83	<0.59	H4PFOS; 6:2 FTS
<4.27	<1.38	<1.97	<7.61	<64.6	<3.57	<1.69	<1.35	<1.29	<1.69	<0.41	<1.44	<1.08	H2PFDA
3.73	<1.38	<1.97	<2.31	<18.3	<1.21	1.130	<1.35	<1.29	<1.38	<0.41	<1.11	<0.78	НРЕНРА
<2.15	<1.38	<1.97	<2.31	<18.3	<1.21	<0.33	<1.35	<1.29	<1.38	<0.41	<1.11	<0.78	PF-3,7-DMOA
<1.08	<0.34	<0.98	<1.16	< 0.46	<0.61	<0.16	<0.68	<0.65	<0.69	<0.21	<0.55	<0.39	PFOSA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.6	<0.16	<0.68	1.15	<0.69	<0.21	0.18	<0.39	PFTeA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	<0.16	<0.68	<0.65	<0.69	<0.21	0.75	<0.39	PFTrA
<1.08	<0.69	<0.98	<1.16	<9.14	< 0.61	<0.16	<0.68	2.06	<0.69	<0.21	2.62	<0.39	PFDoA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	<0.16	<0.68	1.26	<0.69	<0.21	0.76	<0.39	PFUnA
<1.08	0.900	2.01	1.86	<9.14	<0.61	<0.16	<0.68	5.98	<0.69	<0.21	6.78	<0.39	PFDA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	<0.16	<0.68	3.66	<0.69	<0.21	1.73	<0.39	PFNA
1.23	2.88	4.99	3.53	<9.14	0.81	0.22	<0.68	12.7	1.80	<0.21	18.4	1.83	PFOA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	<0.16	<0.68	1.63	<0.69	<0.21	5.59	<0.39	PFHpA
1.57	<0.69	1.68	1.28	<9.14	1.16	1.49	<0.68	2.06	<0.69	<0.21	19.7	<0.39	PFHxA
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	0.53	<0.68	<0.65	<0.69	<0.21	4.91	<0.39	PFPA
8.02	<0.69	<0.98	<1.16	<9.14	10.9	0.50	0.96	5.98	<0.69	<0.21	4.39	<0.39	PFBA
<1.61	<1.03	<1.48	<1.73	<13.7	<0.91	<0.25	<1.02	<0.97	<1.04	<0.31	<0.83	<0.59	PFDS
<1.08	<0.69	<0.98	<1.16	<9.14	<0.61	<0.16	<0.68	<0.65	1.07	<0.21	<0.55	<0.39	PFOS
<1.61	<1.03	<1.48	<1.73	<13.7	<0.91	<0.25	<1.02	<0.97	<1.04	<0.31	<0.83	<0.59	PFHpS
<1.61	<1.03	<1.48	<1.73	<13.7	<0.91	<0.25	<1.02	<0.97	<1.04	<0.31	<0.83	<0.59	PFHxS
52.7	<1.03	19.8	3.62	195	22.5	0.29	<1.02	1.50	<1.04	<0.31	<0.83	<0.59	PFBS
													lonic PFCs (μg/m²)
Columbia	Patagonia	olfskin	Jack Wolfskin		th Face	The North		Mammut	Salewa		Haglöfs		Brand
F11 (i)	F10	F09b	F09a	F08b	F08a	F07	F06	F05	F04 (i)	F03	F02 (i)	F01	Sample code

Table A5b. Details of all footwear articles and concentrations of ionic PFCs* by area ($\mu g/m^2$). (i) average of 2 equivalent samples, see Appendix 2

530 810	ű		1000								
	<u></u>		1300	600		750	700	860	3000	950	Total volatile PFCs
		1	1	ı	1	1	ı	ı	ı	ı	Sum FOSAs/Es
	530	-	1300	600		750	700	130	2300	950	Sum FTOHs
		1	1	1		,	1	730	670	0	Sum FTAs
9 < 9	< 9	< 10	< 13	< 12	< 9	< 9	< 9	< 12	<11	< 9	EtFOSA
9 < 9	< 9	< 10	< 13	< 12	< 9	< 9	< 9	< 12	<11	< 9	MeFOSA
9 < 9	< 9	< 10	< 13	< 12	< 9	< 9	< 9	< 12	<11	< 9	EtFOSE
9 < 9	< 9	< 10	< 13	< 12	< 9	< 9	< 9	< 12	<11	< 9	MeFOSE
130	< 44	< 50	< 65	95	< 44	81	< 44	130	740	130	10:2 FTOH
32 210	< 132	< 150	< 194	< 178	< 131	200	< 133	< 190	1600	280	8:2 FTOH
470	530	< 200	1300	500	< 175	470	700	< 250	< 220	540	6:2 FTOH
< 43	< 44	< 50	< 65	< 59	< 44	< 46	< 44	< 62	< 54	< 46	4:2 FTOH
.8 < 17	< 18	< 20	< 26	< 24	< 17	< 18	< 18	630	230	< 18	10:2 FTA
.8 <17	< 18	< 20	< 26	< 24	< 17	< 18	< 18	100	410	< 18	8:2 FTA
.8 <17	< 18	< 20	< 26	< 24	<17	< 18	< 18	< 25	33	< 18	6:2 FTA
											Volatile PFCs (µg/kg)
Jack Wolfskin Patagonia	Jack		The North Face	The Nor		Mammut	Salewa		Haglöfs		Brand
F09b F10 (i)	F09a	F08b	F08a	F07	F06	F05	F04 (i)	F03	F02 (i)	F01	Sample code

Table A6a. Details of all footwear articles and concentrations of volatile PFCs* by mass (µg/kg). (i) average of 2 equivalent samples, see Appendix 2

Sample code	F01	F02 (i)	F03	F04 (ii)	F05	F06	F07	F08a	F08b	F09a	F09b	F10 (i)	F11a	7 -
Brand		Haglöfs		Salewa	Mammut		The North	th Face		Jack Wolfskin	olfskin	Patagonia	Columbia	ďμ
Volatile PFCs (µg/m²)														
6:2 FTA	<15	34	<8.9	<35	<29	<23	<5.2	<26	<20	<48	<45	<14	<37	
8:2 FTA	<15	420	37	<35	<29	<23	<5.2	<26	<20	<48	<45	<14	<37	
10:2 FTA	<15	240	220	<35	<29	<23	<5.2	<26	<20	<48	<45	<14	<37	
4:2 FTOH	<38	<56	<22	<85	<73	<60	<13	<64	<49	<117	<110	<35	<91	
6:2 FTOH	450	<230	<89	1400	750	<240	110	1200	<200	1400	1300	<160	1700	
8:2 FTOH	230	1600	<68	<260	320	<180	<39	<190	<150	<350	550	<100	<270	
10:2 FTOH	110	770	46	<85	130	09>	21	<64	<49	<120	340	<47	<91	
MeFOSE	<7.5	<11	<4.3	<17	<14	<12	<2.6	<13	<9.9	<24	<24	<6.9	<17	
EtFOSE	<7.5	<11	<4.3	<17	<14	<12	<2.6	<13	<9.9	<24	<24	<6.9	<17	
MeFOSA	<7.5	<11	<4.3	<17	<14	<12	<2.6	<13	<9.9	<24	<24	<6.9	<17	
EtFOSA	<7.5	<11	<4.3	<17	<14	<12	<2.6	<13	<9.9	<24	<24	<6.9	<17	
Sum FTAs	0.0	690	260	-	-	-	-	-	-	-	-	-	-	
Sum FTOHs	790	2400	46	1400	1200	-	130	1200	-	1400	2200	1	1700	
Sum FOSAs/Es	ı			1	1	1	1			1	1		1	
Total volatile PFCs	790	3100	300	1400	1200	1	130	1200	1	1400	2200		1700	

Backpacks

-	5850 524 - 1200 7980		524		3140	6340	30100	30300	66500	556	1060	- 1060 556 66500 30300 30100 6340 3140	Total ionic PFCs
< 598		< 932	< 743	< 4120	< 3090	< 5240	< 4290	< 3280	< 628	< 728	< 617	< 893	H4PFOS; 6:2 FTS
< 2740		< 1240	< 990	< 15100	< 4120	< 6990	< 5710	< 13500	< 837	< 971	< 823	< 1190	H2PFDA
< 797		< 1240	< 990	< 5490	< 4120	< 6990	< 5710	< 4370	< 837	< 971	< 823	< 1190	нренра
< 797		< 1240	< 990	< 5490	< 4120	< 6990	< 5710	< 4370	< 837	< 971	< 823	< 1190	PF-3,7-DMOA
< 398		< 621	< 495	< 2750	< 2060	< 3500	< 2530	< 437	< 418	< 485	< 412	< 595	PFOSA
< 398		< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	< 418	< 485	< 412	< 595	PFTeA
< 398	_	< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	< 418	< 485	< 412	< 595	PFTrA
< 398		< 621	< 495	< 2750	< 2060	< 3500	5340	< 2180	< 418	< 485	< 412	< 595	PFDoA
< 398		< 621	< 495	< 2750	< 2060	< 3500	< 2530	< 2180	< 418	< 485	< 412	< 595	PFUnA
< 398		< 621	< 495	< 2800	< 2060	< 3500	8930	< 2180	< 418	< 485	< 412	< 595	PFDA
< 398		< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	< 418	< 485	< 412	< 595	PFNA
408		< 621	524	5850	3140	6340	15800	< 2180	1320	556	1060	< 595	PFOA
< 398	_	< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	634	< 485	< 412	< 595	PFHpA
789		< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	2260	< 485	< 412	< 595	PFHxA
< 398	^	< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	< 418	< 485	< 412	< 595	PFPA
< 398	^	< 621	< 495	< 2750	< 2060	< 3500	< 2860	15600	18400	< 485	< 412	< 595	PFBA
< 598	^	< 932	< 743	< 4120	< 3090	< 5240	< 4290	< 3280	< 628	< 728	< 617	< 893	PFDS
< 398	^	< 621	< 495	< 2750	< 2060	< 3500	< 2860	< 2180	432	< 485	< 412	< 595	PFOS
< 598	^	< 932	< 743	< 4120	< 3090	< 5240	< 4290	< 3280	< 628	< 728	< 617	< 893	PFHpS
598	^	< 932	< 743	< 4120	< 3090	< 5240	< 4290	< 3280	< 628	< 728	< 617	< 893	PFHxS
< 598	^	< 932	< 743	< 4120	< 3090	< 5240	< 4290	14700	43500	< 728	< 617	< 893	PFBS
													Ionic PFCs (ng/kg)
													Place of sale
ary	AnegunH	ainland)	China (Mainland)	(Mainland)	China (M	akia	Slovakia		Korea		any	Germany	
am	Vietnam	ainland)	China (Mainland)	nany	Germany	Philippines	Philip		Philippines		ıam	Vietnam	Country of production
als)	materials)					,							Part analysed
ed er	outer (mixed	inner	outer	outer (side)	outer (rigid)	outer (blue)	bottom	.om	bottom	outer	belt	outer	
0 W	5hadow 40+10	FL 30	Alpna FL 30	ulin 30	Bulir	Trion element 30	I rion ele	45L	ascensionist pack 45L	asce	IC 48 PACK	EDS DYNAMIC 48 PACK	Product name
orth	The North	eryx	Arc'teryx	ude	Vaude	Mammut	Man		patagonia		oltskin	Jack Wolfskin	Brand
11	BP11	BP10	BP09	BP08	BP07	BP06	BP05 (i)	BP04b	BP04a	BP03	BP02	BP01	Sample code

Table A7a. Details of all backpack articles and concentrations of ionic PFCs* by mass (ng/kg). (i) average of 2 homogenised samples, see Appendix 3.

Total ionic PFCs	H4PFOS; 6:2 FTS	H2PFDA	нРҒНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	Ionic PFCs (μg/m²)	Brand	Sample code
	S																					m²)		
	<0.15	<0.21	<0.21	<0.21	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.15	<0.10	<0.15	<0.15	<0.15		Jack Wolfskin	BP01
0.79	<0.46	<0.61	<0.61	<0.61	<0.31	<0.31	<0.31	<0.31	<0.31	<0.31	<0.31	0.79	<0.31	<0.31	<0.31	<0.31	<0.46	<0.31	<0.46	<0.46	<0.46		olfskin	BP02
0.08	<0.106	<0.141	< 0.141	<0.141	<0.070	<0.070	<0.070	<0.070	<0.070	<0.070	<0.070	0.08	<0.070	<0.070	<0.070	<0.07	< 0.11	< 0.11	< 0.11	<0.11	<0.11			BP03
14.4	<0.14	<0.18	<0.18	<0.18	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.29	0.14	0.49	<0.09	3.98	<0.14	0.09	<0.14	<0.14	9.42		patagonia	BP04a
0.79 0.08 14.4 6.56	<0.71	<2.92	<0.95	<0.95	<0.09	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	3.38	<0.71	<0.47	<0.71	<0.71	3.18			BP04b
	<1.15	<1.53	<1.53	<1.53	<0.68	<0.77	<0.77	1.43	<0.68	2.40	<0.77	4.24	<0.77	<0.77	<0.77	<0.77	<1.15	<0.77	<1.15	<1.15	<1.15		Mar	BP05 (i)
8.07 1.16 1.22	<0.96	<1.28	<1.28	<1.28	<0.64	<0.64	<0.64	<0.64	< 0.64	<0.64	<0.64	1.16	<0.64	< 0.64	<0.64	< 0.64	<0.96	< 0.64	<0.96	<0.96	<0.96		Mammut	BP06
1.22	<1.20	<1.60	<1.60	<1.60	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	1.22	<0.80	<0.80	<0.80	<0.80	<1.20	<0.80	<1.20	<1.20	<1.20		Va	BP07
1.10	<0.77	<2.84	<1.03	<1.03	<0.52	<0.52	<0.52	<0.52	<0.52	<0.53	<0.52	1.10	<0.52	<0.52	<0.52	<0.52	<0.77	<0.52	<0.77	<0.77	<0.77		Vaude	BP08
	<0.20	<0.27	<0.27	<0.27	<0.14	<0.14	<0.14	<0.14	< 0.14	<0.14	<0.14	0.14	<0.14	< 0.14	<0.14	<0.14	<0.20	< 0.14	<0.20	<0.20	<0.20		Arc'	BP09
0.14 - 0.270	<0.08	<0.11	<0.11	<0.11	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.08	<0.05	<0.08	<0.08	<0.08		Arc'teryx	BP10
0.270	<0.13	< 0.61	<0.18	<0.18	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09	<0.09	0.18	<0.09	<0.09	< 0.13	<0.09	<0.13	<0.13	< 0.13		The North Face	BP11
1.31	<0.13	<0.18	0.29	<0.18	<0.09	<0.09	<0.09	<0.09	<0.09	0.15	<0.09	0.44	<0.09	0.34	0.09	<0.09	<0.13	<0.09	<0.13	<0.13	< 0.13		Colı	BP12
0.13	<0.17	<0.23	<0.23	<0.23	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.13	<0.11	<0.11	<0.11	<0.11	<0.17	<0.11	<0.17	<0.17	<0.17		Columbia	BP13
	<0.45	<0.93	<0.59	<0.59	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.45	<0.30	<0.45	<0.45	<0.45		Haglöfs	BP14

Table A7b. Details of all backpack articles and concentrations of ionic PFCs* by area (µg/m²). (i) average of 2 homogenised samples, see Appendix 3.

	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (µg/kg)	Brand	Sample code
Table A8a. I	220	-	220	1	< 10	< 10	< 10	< 10	< 52	220	< 210	< 52	< 21	< 21	< 21		Jack Wolfskin	BP01
Details of al	-	-	-		< 10	< 10	< 10	< 10	< 49	< 150	< 200	< 49	< 20	< 20	< 20		olfskin	BP02
l backpack a	-	-	-	-	< 10	< 10	< 10	< 10	< 58	< 150	< 200	< 49	< 19	< 19	< 19		Patagonia	вР03
irticles and o	-	-	-	-	< 12	< 12	< 12	< 12	< 74	< 180	< 250	< 61	< 25	< 25	< 25		onia	BP04 (i)
Table A8a. Details of all backpack articles and concentrations of volatile PFCs* by mass (ug/kg). (i) average of 2 equivalent samples, see Appendix 2	340	-	340	1	< 10	< 10	< 10	< 10	80	260	< 200	< 50	< 20	< 20	< 20		Man	BP05 (i)
s of volatile F	370	-	370	-	< 11	< 11	< 11	< 11	80	290	< 230	< 56	< 23	< 23	< 23		Mammut	вР06
FCs* by mas	-	-	-	-	<11	<11	<11	<11	< 54	< 160	< 230	< 54	< 22	< 22	< 22		Va	вР07
:s (це/ke). (i)	-	-	-	1	< 9	< 9	< 9	< 9	< 45	< 130	< 180	< 45	< 18	< 18	< 18		Vaude	вР08
average of	-	-	-		< 9	< 9	< 9	< 9	< 44	< 130	< 180	< 44	< 18	< 18	< 18		Arc'	вр09
2 equivalent	-	-	-		< 11	< 11	< 11	< 11	< 53	< 160	< 210	< 53	< 21	< 21	< 21		Arc'teryx	BP10
samples, se	-	-	-	1	< 10	< 10	< 10	< 10	< 49	< 150	< 200	< 49	< 20	< 20	< 20		The North Face	BP11
2 Appendix 2	1	-	-		< 10	< 10	< 10	< 10	< 51	< 150	< 200	< 51	< 20	< 20	< 20		Colo	BP12
	-	-	-		< 10	< 10	< 10	< 10	< 50	< 150	< 200	< 50	< 20	< 20	< 20		Colombia	BP13
	-	-	-	-	< 9	< 9	< 9	< 9	< 43	< 130	< 170	< 43	< 17	< 17	< 17		Haglöfs	BP14

lable A&a. Details of all backpack articles and concentrations of volatile PFCs* " by mass (μg/kg). (I) average of ∠ equivalent samples, see Appendix ∠

	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/m²)	Brand	sample code	C
HON SINCT	37	-	37	-	<1.7	<1.7	<1.7	<1.7	<9.0	37	<36	<9.0	<3.6	<3.6	<3.6		Wolfskin	BP01	,
المخمناه مؤ	-	-	-	-	<6.6	<6.6	<6.6	<6.6	<32	<99	<130	<32	<13	<13	<13			2048	,
Table 10h Details of all backmark articles and concentrations of valatile DECax by area	-	-		1	<1.5	<1.5	<1.5	<1.5	<8.6	<22	<30	<7.3	<2.8	<2.8	<2.8			BP03	7
مهدندامد مصط	-	-			<2.6	<2.6	<2.6	<2.6	<16	<39	<54	<13	<5.4	<5.4	<5.4			BP04 (i)	777
	94	-	94	-	<2.8	<2.8	<2.8	<2.8	22	72	<57	<14	<5.7	<5.7	<5.7			Mammut	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ا دانداد، کو د	69	-	69	-	<2.1	<2.1	<2.1	<2.1	15	54	<44	<11	<4.4	<4.4	<4.4			ВР06	,
	_	-	-	-	<4.0	<4.0	<4.0	<4.0	<20	<59	<85	<20	<8.0	<8.0	<8.0		4 0000	BP07	2
/~/2\ /:\	-	-	-	-	<1.7	<1.7	<1.7	<1.7	<8.3	<25	<33	<8.3	<3.3	<3.3	<3.3			BP08	2
(/m²) (i) announce of a continuous translation of a specific of	-	-	-	-	<2.5	<2.5	<2.5	<2.5	<12	<36	<48	<12	<4.9	<4.9	<4.9		, and see y	Arc teny	,
+== ======	-	-			<1.0	<1.0	<1.0	<1.0	<5.0	<15	<20	<5.0	<2.0	<2.0	<2.0			BP10)
ممد مماهیمی	1	-	ı	-	<2.1	<2.1	<2.1	<2.1	<10	<31	<42	<10	<4.3	<4.3	<4.3		Face	BP11	,
ر بنالحمد مدد ۸	-	-	-	-	<1.3	<1.3	<1.3	<1.3	<6.7	<20	<27	<6.7	<2.6	<2.6	<2.6			BP12	,
		-			<2.4	<2.4	<2.4	<2.4	<12	<35	<47	<12	<4.7	<4.7	<4.7			BP13	,
	-	-			<3.7	<3.7	<3.7	<3.7	<18	<53	<71	<18	<7.0	<7.0	<7.0		1.06.00	BP14	,

Table A8b. Details of all backpack articles and concentrations of volatile PFCs* by area ($\mu g/m^2$). (i) average of 2 equivalent samples, see Appendix 2

Sleeping bags, tents, rope and glove

-			5		-			-	-	•))
1	11400		5130	30300		568	1300	-	17500	266000	3770	Total ionic PFCs
< 728	< 694	< 904	< 701	< 566	< 3120	< 806	< 617	< 573	494	< 2080	< 968	H4PFOS; 6:2 FTS
< 971	< 926	< 1200	< 935	< 755	< 4170	< 1080	< 823	< 763	< 426	< 2780	< 1900	H2PFDA
< 971	< 926	< 1200	< 935	< 755	< 4170	< 1080	< 823	< 763	1560	< 2780	< 1290	нРЕНрА
< 971	< 926	< 1200	< 935	< 755	< 4170	< 1080	< 823	< 763	< 426	< 2780	< 1290	PF-3,7-DMOA
< 485	< 463	< 602	< 467	1880	< 417	< 538	< 412	< 382	< 2130	< 708	< 645	PFOSA
< 485	< 463	< 602	< 467	< 377	< 2080	< 538	< 412	< 382	< 213	< 1390	< 645	PFTeA
< 485	< 463	< 602	< 467	< 377	< 2080	< 538	< 412	< 382	< 213	< 1390	< 645	PFTrA
< 485	< 463	< 602	< 467	2650	< 2080	< 538	< 412	< 382	499	4360	< 645	PFDoA
< 485	< 463	< 602	< 467	607	< 2080	< 538	< 412	< 382	339	2070	< 645	PFUnA
< 485	< 463	< 602	912	8100	< 2080	< 538	< 412	< 382	4160	62900	< 645	PFDA
< 485	< 463	< 602	< 467	1220	< 2080	< 538	< 412	< 382	532	4760	< 645	PFNA
< 485	< 463	< 602	3090	9800	< 2080	568	< 412	< 382	7670	157000	< 645	PFOA
< 485	< 463	< 602	< 467	1760	< 2080	< 538	< 412	< 382	536	8980	3770	PFHpA
< 485	6510	< 602	1130	2790	< 2080	< 538	1300	< 382	1440	18600	< 645	PFHxA
< 485	2350	< 602	< 467	832	< 2080	< 538	< 412	< 382	< 213	5520	< 645	PFPA
< 485	2570	< 602	< 467	708	< 2080	< 538	< 412	< 382	285	2090	< 645	PFBA
< 728	< 694	< 904	< 701	< 566	< 3120	< 806	< 617	< 573	< 319	< 2080	< 968	PFDS
< 485	< 463	< 602	< 467	< 377	< 2080	< 538	< 412	< 382	< 213	< 1390	< 645	PFOS
< 728	< 694	< 904	< 701	< 566	< 3120	< 806	< 617	< 573	< 319	< 2080	< 968	PFHpS
< 728	< 694	< 904	< 701	< 566	< 3120	< 806	< 617	< 573	< 319	< 2080	< 968	PFHxS
< 728	< 694	< 904	< 701	< 566	< 3120	< 806	< 617	< 573	< 319	< 2080	< 968	PFBS
												lonic PFCs (ng/kg)
UK	Switzerland		Austria			Switzerland	Switz		le	Chile	Germany	Place of sale
Columbia	Switzerland		unknown			China (Mainland)	China (N		ainland)	China (Mainland)	China (Mainland)	Country of production
outer	rope	inner gauze	inner	outer	inner (bottom)	outer composite	inner	outer	inner	outer	outer	Part analysed
Men's Etip	9.8 Eternity Dry		Gossamer			Falus 2	ТаІ		opard	Snow Leopard	Alpine UL Winter	Product name
The North Face	Mammut		Jack Wolfskin			The North Face	The No		th Face	The North Face	Mammut	Brand
G01	RO1	TE07	TE06	TE05 (i)	TE04	TE03	TE02	TE01	SB03	SB02 (ii)	SB01	Sample code
Gloves	Rope				Tent					sleeping bag		ct type
										0.00	Color of Con	Copring Substitution

(ii) average of 2 homogenised samples, see Appendix 3. Table A9a. Details of all sleeping bag, tent, rope and glove articles and concentrations of ionic PFCs* by mass (ng/kg). (i) average of 2 equivalent samples, see Appendix 2;

Part	-0.11		<0.04	0.60	<0.04 2.10	- 40.21	0.04	0.09	<0.04	0.02	<0.09 12.0	<0.04 0.17	Total ionic PFCs	
	^^		<0.04	×0 08	<0 04	<0.21	80 N>	<0.04	<0.04	0.02	e0 0>	<0 04	H4PFOS; 6:2 FTS	
Part	<0	-	<0.05	<0.11	<0.05	<0.28	<0.08	<0.06	<0.06	<0.02	<0.13	<0.09	H2PFDA	
	<0	ı	<0.05	<0.11	<0.05	<0.28	<0.08	<0.06	<0.06	0.07	<0.13	<0.06	нРЕНрА	
Cottype Cottype Cotype	<0.	1	<0.05	<0.11	<0.05	<0.28	<0.08	<0.06	<0.06	<0.02	<0.13	<0.06	PF-3,7-DMOA	
Percy (pg/m²) Seo2 Teo1 Teo2 Teo3 Teo4 Teo5	<0.	1	<0.03	<0.05	0.13	<0.03	<0.04	<0.03	<0.03	<0.10	<0.03	<0.03	PFOSA	
tettype Seg1ing Day Seg1ing Day Seg3ing Tag0 Teg0 Teg0	<0.	ı	<0.03	<0.05	<0.03	<0.14	<0.04	<0.03	<0.03	<0.01	<0.06	<0.03	PFTeA	
Tent	<0.	1	<0.03	<0.05	<0.03	<0.14	<0.04	<0.03	<0.03	<0.01	<0.06	<0.03	PFTrA	
cit type Sign (iii) Sed (iii) Sed (iii) Sed (iii) Sed (iii) Fed (iii) TED2 TED3 TEO3 TEO5 (iii) TEO5 (iiii) TEO5 (iiii) TEO5 (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<0.	ı	<0.03	<0.05	0.18	<0.14	<0.04	<0.03	<0.03	0.02	0.20	<0.03	PFDoA	
cit type Se01 Se02 (ii) Se03 TE01 TE02 TE03 TE04 TE05 (i) TE05 (i) TE05 (i) TE05 (ii) TE05 (ii) TE05 (iii) TE05 (iiii) TE05 (iiii) TE05 (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<0.	1	<0.03	<0.05	0.04	<0.14	<0.04	<0.03	<0.03	0.02	0.09	<0.03	PFUnA	
tel type SeD	<0.	1	<0.03	0.10	0.56	<0.14	<0.04	<0.03	<0.03	0.20	2.84	<0.03	PFDA	
cit type Seo	<0.	1	<0.03	<0.05	0.08	<0.14	<0.04	<0.03	<0.03	0.03	0.22	<0.03	PFNA	
ct type SB01 Seping bag TE01 TE02 TE02 TE03 TE04 TE05 (i) TE06 TE07 R0pe Glk e code SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE06 TE07 R01 Glk FCS (µg/m²) The North Face Jack Wolfskin TE07 R01 The FCS (µg/m²) The North Face Jack Wolfskin TE07 R01 The FCS (µg/m²) The North Face Jack Wolfskin Te04 Te04 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 <td><0.</td> <td>ı</td> <td><0.03</td> <td>0.35</td> <td>0.68</td> <td><0.14</td> <td>0.04</td> <td><0.03</td> <td><0.03</td> <td>0.36</td> <td>7.10</td> <td><0.03</td> <td>PFOA</td>	<0.	ı	<0.03	0.35	0.68	<0.14	0.04	<0.03	<0.03	0.36	7.10	<0.03	PFOA	
ct type Sebing bag Sebing bag (ii) S803 (ii) S803 (ii) TE01 TE02 TE03 TE04 (iii) TE05 (ii) TE05 (iii) TE05 (iiii) TE05 (iiiiiii) TE05 (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<0.	ı	<0.03	<0.05	0.12	<0.14	<0.04	<0.03	<0.03	0.03	0.41	0.17	PFHpA	
ct type Seeping bag Seeping bag Tent Tent Tent Tent Tent Fope Glc le code SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE06 TE07 R01 Glc PFCS (µg/m²) The North Face The North Face The North Face Jack Wolfskin Mammut The I PFCS (µg/m²) The North Face Jack Wolfskin Mammut The North Face PFCS (µg/m²) The North Face Jack Wolfskin Mammut The North Face PFCS (µg/m²) The North Face Jack Wolfskin Mammut The North Face PFCS (µg/m²) The North Face Jack Wolfskin Mammut The North Face PFCS (µg/m²) The North Face Jack Wolfskin Acoust Wolfskin Mammut The North Face Jack Wolfskin Mammut </td <td><0.</td> <td>ı</td> <td><0.03</td> <td>0.13</td> <td>0.19</td> <td><0.14</td> <td><0.04</td> <td>0.09</td> <td><0.03</td> <td>0.07</td> <td>0.84</td> <td><0.03</td> <td>PFHxA</td>	<0.	ı	<0.03	0.13	0.19	<0.14	<0.04	0.09	<0.03	0.07	0.84	<0.03	PFHxA	
ct type Sepoing bag Sepoing bag TE01 TE02 TE03 TE04 TE05 (j) TE05	<0.	ı	<0.03	<0.05	0.06	<0.14	<0.04	<0.03	<0.03	<0.01	0.25	<0.03	PFPA	
ct type Sleeping bag Sleeping bag Sed (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE05 (i) TE05 (ii) TE07 R01 Glo le code SB01 SB02 (ii) SB03 TE01 TE03 TE03 TE04 TE05 (i) TE05 (ii) TE07 R01 Glo Jec (bg/m²) The North Face The North Face The North Face Jec North Face Jec Wolfskin Teos Wolfskin The I Jec (gg/m²) Jec Wolfskin Acout Acout Acout Acout Acout Teos Acout TEOS (ii) Acout Acout Teos Acout Acout <th cols<="" td=""><td><0.</td><td>1</td><td><0.03</td><td><0.05</td><td>0.05</td><td><0.14</td><td><0.04</td><td><0.03</td><td><0.027</td><td>0.01</td><td>0.09</td><td><0.03</td><td>PFBA</td></th>	<td><0.</td> <td>1</td> <td><0.03</td> <td><0.05</td> <td>0.05</td> <td><0.14</td> <td><0.04</td> <td><0.03</td> <td><0.027</td> <td>0.01</td> <td>0.09</td> <td><0.03</td> <td>PFBA</td>	<0.	1	<0.03	<0.05	0.05	<0.14	<0.04	<0.03	<0.027	0.01	0.09	<0.03	PFBA
ct type sleeping bag sleeping bag sleeping bag sleeping bag sleeping bag rest rest Tent tent tent tent fent fent <th< td=""><td><0.</td><td>1</td><td><0.04</td><td><0.08</td><td><0.04</td><td><0.21</td><td><0.06</td><td><0.04</td><td><0.04</td><td><0.02</td><td><0.09</td><td><0.04</td><td>PFDS</td></th<>	<0.	1	<0.04	<0.08	<0.04	<0.21	<0.06	<0.04	<0.04	<0.02	<0.09	<0.04	PFDS	
ct type sleeping bag sleeping bag sleeping bag reof decode Tent Tent Tent Tent Rope Glk le code SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE06 TE07 R01 G le code Mammut The North Face The North Face The North Face Jack Wolfskin Mammut The Intellectual Tent PFCS (µg/m²) v-CS (µg/m²) V-CO.04 <0.04 <0.05 <0.21 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	<0.	-	<0.03	<0.05	<0.03	<0.14	<0.04	<0.03	<0.03	<0.01	<0.06	<0.03	SOAA	
ct type sleeping bag	<0.	1	<0.04	<0.08	<0.04	<0.21	<0.06	<0.04	<0.04	<0.02	<0.09	<0.04	PFHpS	
ct type sleeping bag bage ping bag Tent Tent Tent Rope Glc le code SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE05 (ii) TE07 R01 G le code Mammut The North Face The North Face Jack Wolfskin Mammut The Interval Tent FCS (μg/m²) <0.04	<0.	ı	<0.04	<0.08	<0.04	<0.21	<0.06	<0.04	<0.04	<0.02	<0.09	<0.04	PFHxS	
ct type sleeping bag Tent Tent Rope	<0.		<0.04	<0.08	<0.04	<0.21	<0.06	<0.04	<0.04	<0.02	<0.09	<0.04	PFBS	
ct type sleeping bag Tent Tent Tent Rope Rope le code SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE06 TE07 R01 R01 Mammut Mammut<													Ionic PFCs (µg/m²)	
SB01 SB02 (ii) SB03 TE01 TE02 TE03 TE04 TE05 (i) TE06 TE07 R01	The Nor Face	Mammut		Jack Wolfskin	_		th Face	The Nor		th Face	The Nor	Mammut	Brand	
sleeping bag Tent Rope	G01	R01	TE07	TE06		TE04	TE03	TE02	TE01	SB03	SB02 (ii)	SB01	Sample code	
	Gloves	Rope				Tent					leeping bag	S	Product type	

Table A9b. Details of all sleeping bag, tent, rope and glove articles and concentrations of ionic PFCs* by area (μg/m²). (i) average of 2 equivalent samples, see Appendix 2; (ii) average of 2 homogenised samples, see Appendix 3.

١,														1						
- A10- Dataila af all alassi	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (µg/kg)	Brand		Sample code	Product type
	1100		1100		< 13	< 13	< 13	< 13	< 66	< 200	1100	< 66	< 26	< 26	< 34			Mammut	SB01	S
	1500		1500		<11	<11	< 11	< 11	340	1200	< 222	< 55	< 22	< 22	< 22			The North Face	SB02 (i)	sleeping bag
	1200	ı	1100	108	< 12	< 12	< 12	<12	270	790	< 247	< 62	34	74	< 25			th Face	SB03 (i)	
	-	-	-	-	< 10	< 10	< 10	< 10	< 49	< 150	< 200	< 49	< 19	< 19	< 19				TE01	
	520		520	-	<11	<11	<11	<11	< 63	< 160	520	< 53	< 21	< 21	<21			The North Face	TE02	
	-	ı	ı		<11	<11	< 11	< 11	< 66	< 170	< 220	< 55	< 22	< 22	< 22			h Face	TE03	
	-	ı	ı		<11	<11	< 11	< 11	< 56	< 170	< 230	< 56	< 23	< 23	< 23				TE04	Tent
/:/ ///	170	ı	170	ı	< 10	< 10	< 10	< 10	< 51	170	< 210	< 51	< 21	< 21	< 37			_	TE05 (i)	
	470	ı	350	110	< 9	< 9	< 9	< 9	72	280	< 180	< 45	30	83	< 36			Jack Wolfskin	TE06	
		ı	ı	0	< 11	< 11	< 11	< 11	< 53	< 160	< 210	< 53	< 21	< 21	< 21				TE07	
	650	-	650	-	< 9	< 9	< 9	< 9	< 45	< 134	650	< 45	< 18	< 18	< 18			Mammut	R01	Rope
· - · ^	1	ı	ı	1	< 10	< 10	< 10	< 10	< 52	< 157	< 209	< 52	< 21	< 21	< 21		Face	The North	G01	Gloves

Table A10a. Details of all sleeping bag, tent, rope and glove articles and concentrations of volatile PFCs* by mass (µg/kg). (i) average of 2 equivalent samples, Appendix 2

	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (µg/m²)	Brand		Sample code	Product type
	41	-	41		<0.49	<0.49	< 0.49	<0.49	<2.5	<7.6	41	<2.5	<0.98	<0.98	<1.3			Mammut	SB01	
	67	-	67	1	<0.48	<0.48	<0.48	<0.48	15	52	<9.8	<2.4	<0.97	<0.97	<0.97			The North Face	SB02 (i)	sleeping bag
	52	-	47	4.8	<0.5	<0.5	<0.5	<0.5	12	35	<11	<2.7	1.5	3.3	<1.1			th Face	SB03 (i)	
		-	-		<0.66	<0.66	<0.66	<0.66	<3.2	<9.9	<13	<3.2	<1.3	<1.3	<1.3				TE01	
	37		37	ı	<0.78	<0.78	<0.78	<0.78	<4.5	<11	37	<3.8	<1.5	<1.5	<1.5			The North Face	TE02	
	-		ı	ı	<0.75	<0.75	<0.75	<0.75	<4.5	<11	<15	<3.8	<1.5	<1.5	<1.5			h Face	TE03	
)	-	-		ı	<0.72	<0.72	<0.72	<0.72	<3.7	<11	<15	<3.7	<1.5	<1.5	<1.5				TE04	Tent
	12	-	12		<0.71	<0.71	<0.71	<0.71	<3.7	12	<15	<3.7	<1.5	<1.5	<2.6			_	TE05 (i)	
7) (.)	57		43	14	<1.1	<1.1	<1.1	<1.1	8.8	34	<22	<5.5	3.7	10	<4.4			Jack Wolfskin	TE06	
S	1	-	-	-	<0.50	<0.50	<0.50	<0.50	<2.4	<7.30	<9.6	<2.4	<0.95	<0.95	<0.95				TE07	
	-			ı	-	1	-			-	1			1	-			Mammut	R01	Rope
	-	1	1	1	3	۵	3	3	<16	<47	<63	<16	<6.3	<6.3	<6.3		Face	The North	G01	Gloves

Table A10b. Details of all sleeping bag, tent, rope and glove articles and concentrations of volatile PFCs* by area (μg/m²). (i) average of 2 equivalent samples, Appendix 2

perfluorotetradecanoate (PFTeA), perfluorooctane sulfonamide (PFOSA), perfluoro-3,7-dimethyloctanoate (PF-3,7-DMOA), 7H-dodecafluoroheptanoate (HPFHpA), 2H,2Hperfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA), perfluorotridecanoate (PFTrA), sulfonate (PFDS), perfluorobutanoate (PFBA), perfluoropentanoate (PFPA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), Perfluorodecanoate (H2PFDA), 2H,2H,3H,3H-Perfluoroundecanoate (H4PFUnA) lonic PFCs; Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorodecane

octansulfonamide (MeFOSA), N-ethylperfluoro-1-octanesulfonamide (EtFOSA) FTOH), 2-(N-methylperfluoro-1-octanesulfonamido)-ethanol (MeFOSE), 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol (EtFOSE), N-methylperfluoro-1-octanesulfonamido) Perfluoro-1-hexanol (4:2 FTOH), 1H,1H,2H,2H-Perfluoro-1-oktanol (6:2 FTOH), 1H,1H,2H,2H-Perfluoro-1-decanol (8:2 FTOH), 1H,1H,2H,2H-Perfluoro-1-dodecanol (10:2

^{*} Individual PFCs included the following;

Appendix 2. Analysis of 2 separate sections of the same material from a number of articles

Product type	Jacket	Jacket	Jacket	Jacket	Jacket	Jacket	Jacket	Jacket	Trouser	Trouser	Trouser	Trouser	Trouser	Trouser
Sample code	J03a	J03b	J05	J05b	J07a	J07b	J10a	J10b	TR02a	TR02b	TR04a	TR04b/c ⁽ⁱ⁾	TR06a	TR06b
Brand	Norrona	ona	Blackyak	yak	Haglöfs	öfs	Patagonia	onia	Mammut	mut	Jack Wolfskin	olfskin	Arc'teryx	eryx
Ionic PFCs (ng/kg)														
PFBS	1470	1600	15200	7310	1300	< 3380	235000	5470000	190000	233000	187000	44500	137000	229000
PFHxS	< 769	< 728	< 746	< 3390	< 847	< 3380	< 714	< 3410	< 769	< 566	< 862	< 765	< 853	< 732
PFHpS	< 769	< 728	< 746	< 3390	< 847	< 3380	< 714	< 3410	< 769	< 566	< 862	< 765	< 853	< 732
PFOS	< 513	843	< 498	< 2260	< 565	< 2250	< 476	< 2270	827	1220	< 575	< 510	< 569	< 488
PFDS	< 769	< 728	< 746	< 3390	< 847	< 3380	< 714	< 3410	< 769	< 566	< 862	< 765	< 853	< 732
PFBA	11700	12900	19100	15500	9580	5990	148000	40200	42800	44600	17600	19100	38800	24800
PFPA	91700	59200	601	< 2260	8440	11100	30800	8430	1450	652	6710	11400	2000	1010
PFHxA	536000	556000	4360	2450	134000	77800	204000	34700	12100	12900	21700	27800	21800	13200
PFHpA	62800	79700	< 498	< 2260	20200	14500	172000	7400	1230	1370	3530	15800	< 569	< 488
PFOA	4320	5320	1090	< 2260	2280	< 2250	1580	< 2270	526	791	108000	132000	< 569	1190
PFNA	769	754	< 498	< 2260	< 565	< 2250	< 476	< 2270	< 513	< 377	5670	6580	< 569	< 488
PFDA	2170	2230	681	< 2260	1130	< 2250	581	< 2270	< 513	< 377	77600	89700	< 569	< 488
PFUnA	< 513	< 485	< 498	< 2260	< 565	< 2250	< 476	< 2270	< 513	< 377	2790	3140	< 569	< 488
PFDoA	< 513	544	< 498	< 2260	< 565	< 2250	< 476	< 2270	< 513	< 377	39500	36500	< 569	< 488
PFTrA	< 513	< 485	< 498	< 2260	< 565	< 2250	< 476	< 2270	< 513	< 377	< 575	< 520	< 569	< 488
PFTeA	< 513	< 485	< 498	< 2260	< 565	< 2250	< 476	< 2270	< 513	< 377	2250	< 510	< 569	< 488
PFOSA	< 513	521	< 498	< 452	< 565	< 450	< 476	< 2270	< 513	< 377	< 575	< 510	< 569	< 488
PF-3,7-DMOA	< 1030	< 971	< 995	< 4520	< 1130	< 4500	< 952	< 4550	< 1030	< 755	< 1150	< 1020	< 1140	< 976
нРЕНрА	< 1030	< 971	< 995	< 4520	< 1130	< 4500	< 952	< 4550	< 1030	< 755	< 1150	< 1020	< 1140	< 976
H2PFDA	< 1030	< 971	< 995	< 4520	< 1640	< 8200	< 3860	< 4550	< 1030	< 755	< 1150	< 1020	< 5280	< 1770
H4PFOS; 6:2 FTS	< 769	< 728	< 746	< 3390	1730	< 3380	< 714	< 3410	< 769	< 566	< 862	< 765	< 853	< 732
Total ionic PFC	711000	720000	41000	25300	177000	109000	792000	5560000	249000	295000	472000	387000	200000	269000

Table A11a. Details of jackets and trouser articles and concentrations of ionic PFCs* by mass (ng/kg). (i) average of 2 homogenised samples, see Appendix 3.

	Total ionic PFC	H4PFOS; 6:2 FTS	H2PFDA	HРҒНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	lonic PFCs (μg/m²)	Brand	Sample code	Product type
		S																					m²)			
	99.5	<0.11	<0.14	<0.14	<0.14	<0.07	<0.07	<0.07	<0.07	<0.07	0.3	0.11	0.6	8.79	75	12.8	1.64	<0.11	<0.07	<0.11	<0.11	0.21		Norrona	J03a	Jacket
	101	<0.10	<0.14	<0.14	<0.14	0.07	<0.07	<0.07	0.08	<0.07	0.31	0.11	0.74	11.20	77.8	8.28	1.82	<0.10	0.12	<0.10	<0.10	0.22		ona	J03b	Jacket
00	5.43	<0.10	<0.13	<0.13	<0.13	<0.07	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	0.14	<0.07	0.58	0.08	2.53	<0.10	<0.07	<0.10	<0.10	2.01		Blac	Ј05а	Jacket
	3.34	<0.45	<0.60	<0.60	<0.60	<0.06	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	0.32	<0.30	2.05	<0.45	<0.30	<0.45	<0.45	0.97		Blackyak	J05b	Jacket
-0.0	15.5	0.15	<0.14	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	0.10	<0.05	0.2	1.75	11.6	0.73	0.83	<0.07	<0.05	<0.07	<0.07	0.11		Ha	Ј07а	Jacket
	9.45	<0.29	<0.71	<0.39	<0.39	<0.04	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	<0.19	1.25	6.72	0.96	0.52	<0.29	<0.19	<0.29	<0.29	<0.29		Haglöfs	J07b	Jacket
	97.4	<0.09	<0.47	<0.12	<0.12	<0.06	<0.06	<0.06	<0.06	<0.06	0.07	<0,06	0.19	21.2	25.1	3.79	18.2	<0.09	<0.06	<0.09	<0.09	28.9		Pata	J10a	Jacket
	684	<0.42	<0.56	<0.56	<0.56	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.91	4.27	1.04	4.95	<0.42	<0.28	<0.42	<0.42	673		Patagonia	J10b	Jacket
	42.1	<0.13	<0.17	<0.17	<0.17	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.09	0.21	2.04	0.25	7.23	<0.13	0.14	<0.13	<0.13	32.1		Mar	TR02a	Trouser
	49.8	<0.10	<0.13	<0.13	<0.13	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.13	0.23	2.18	0.11	7.54	<0.10	0.21	<0.10	<0.10	39.4		Mammut	TR02b	Trouser
	53.5	<0.10	<0.13	<0.13	<0.13	<0.07	0.25	<0.07	4.47	0.32	8.78	0.64	12.2	0.4	2.46	0.76	1.99	<0.10	<0.07	<0.10	<0.10	21.2		Jack \	TR04a	Trouser
	43.8	<0.09	<0.12	<0.12	<0.12	<0.06	<0.06	<0.06	4.13	0.36	10.2	0.74	14.9	1.79	3.14	1.29	2.16	<0.09	<0.06	<0.09	<0.09	5.04		Jack Wolfskin	TR04b/c ⁽ⁱ⁾	Trouser
-	56.1	<0.24	<1.48	<0.32	<0.32	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	6.12	0.56	10.9	<0.24	<0.16	<0.24	<0.24	38.5		Arc	TR06a	Trouser
-	9-56	<0.21	<0.50	<0.27	<0.27	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.33	<0.14	3.71	0.28	6.96	<0.21	<0.14	<0.21	<0.21	64.3		Arc'teryx	TR06b	Trouser

Table A11b. Details of jackets and trouser articles and concentrations of ionic PFCs* by area (μg/m²). (i) average of 2 homogenised samples, see Appendix 3.

	Total ionic PFC	H4PFOS; 6:2 FTS	H2PFDA	нРҒНрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	lonic PFCs (ng/kg)	Brand	Sample code	Product type
•		TS	^																				/kg)		F	В
	62100	< 676	< 1310	< 901	< 901	< 450	2900	893	2800	673	5580	1640	15300	5530	18000	4740	4070	< 676	< 450	< 676	< 676	< 676		Haglöfs	F02a	Boot
۲.	65300	< 794	< 1370	< 1060	< 1060	< 529	< 529	< 529	2190	770	7350	1660	19700	5130	19600	4630	4300	< 794	< 529	< 794	< 794	< 794		ifs	F02b	Boot
Details of	1630	< 588	< 957	< 784	< 784	< 392	< 392	< 392	< 392	< 392	< 392	< 392	1020	< 392	< 392	< 392	< 392	< 588	605	< 588	< 588	< 588		Salewa	F04a	Boot
Details of footwear hashash and tent articles and consentrations		< 7810	< 15500	< 10400	< 10400	< 521	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 5210	< 7810	< 5210	< 7810	< 7810	< 7810		ewa	F04b	Boot
hacknack a	37900	2060	< 3620	< 1230	< 1230	< 617	< 617	< 617	< 617	< 617	< 617	< 617	824	< 617	1180	< 617	11000	< 926	< 617	< 926	< 926	22800		The Nor	F08a	Boot
nd tant art	198000	< 13900	< 65500	< 18500	< 18500	< 463	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 9260	< 13900	< 9260	< 13900	< 13900	198000		The North Face	F08b	Boot
hac and o	4430	< 746	< 3280	< 995	< 995	< 498	< 498	< 498	< 498	< 498	800	< 498	1520	< 498	550	< 498	< 498	< 746	< 498	< 746	< 746	1560		Jack Wolfskin	F09a	Boot
oncontrati	12300	< 636	< 847	< 847	< 847	< 424	< 424	< 424	< 424	< 424	865	< 424	2150	< 424	723	< 424	< 424	< 636	< 424	< 636	< 636	0.538		olfskin	F09b	Boot
	33500	< 1050	< 2780	2430	< 1400	< 702	< 702	< 702	< 702	< 702	< 702	< 702	802	< 702	1020	< 702	6440	< 1050	< 702	< 1050	< 1050	22800		Columbia	F11a	Shoe
~ DECc* hv	49800	< 5510	< 7350	< 7350	< 7350	< 368	< 3680	< 3680	< 3680	< 3680	< 3680	< 3680	< 3680	< 3680	< 3680	< 3680	4000	< 5510	< 3680	< 5510	< 5510	45800		mbia	F11b	Shoe
of ionic DECs* by mass (na/ka)	66500	< 628	< 837	< 837	< 837	< 418	< 418	< 418	< 418	< 418	< 418	< 418	1320	634	2260	< 418	18400	< 628	432	< 628	< 628	43500		pata	BP04a	Backpack
	30300	< 3280	< 13500	< 4370	< 4370	< 437	< 2180	< 2180	< 2180	< 2180	< 2180	< 2180	< 2180	< 2180	< 2180	< 2180	15600	< 3280	< 2180	< 3280	< 3280	14700		patagonia	BP04b	Backpack
-	32400	< 566	< 755	< 755	< 755	1880	< 377	< 377	2650	607	9140	1220	10800	1760	2790	832	708	< 566	< 377	< 566	< 566	< 566		Jack \	TE05a	Tent
	15900	< 4310	< 10800	< 5750	< 5750	< 2870	< 2870	< 2870	< 2870	< 2870	7050	< 2870	8800	< 2870	< 2870	< 2870	< 2870	< 4310	< 2870	< 4310	< 4310	< 4310		Jack Wolfskin	TE05b	Tent

Table A12a. Details of footwear, backpack and tent articles and concentrations of ionic PFCs* by mass (ng/kg)

	Total ionic PFC	H4PFOS; 6:2 FTS	H2PFDA	нрғнрА	PF-3,7-DMOA	PFOSA	PFTeA	PFTrA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPA	PFBA	PFDS	PFOS	PFHpS	PFHxS	PFBS	lonic PFCs (μg/m²)	Brand	Sample code	Product type
_	65.1	<0.71	<1.37	<0.94	<0.94	<0.47	3.04	0.94	2.94	0.71	5.85	1.72	16.0	5.8	18.9	4.97	4.27	<0.71	<0.47	<0.71	<0.71	<0.71		Haglöfs	F02a	Boot
Table A12b	68.6	<0.83	<1.44	<1.11	<1.11	<0.55	<0.55	<0.55	2.30	0.81	7.71	1.74	20.7	5.38	20.6	4.85	4.51	<0.83	<0.55	<0.83	<0.83	<0.83		löfs	F02b	Boot
	2.87	<1.04	<1.69	<1.38	<1.38	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	1.8	<0.69	<0.69	<0.69	<0.69	<1.04	1.07	<1.04	<1.04	<1.04		Salewa	F04a	Boot
footwear	1	<13.8	<27.4	<18.4	<18.4	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<9.2	<13.8	<9.2	<13.8	<13.8	<13.8		ewa	F04b	Boot
Details of footwear, backnack and tent articles and concentrations	37.4	2.03	<3.57	<1.21	<1.21	<0.61	<0.61	<0.61	<0.61	< 0.61	<0.61	<0.61	0.81	<0.61	1.16	<0.61	10.9	< 0.91	<0.61	< 0.91	< 0.91	22.5		The North Face	F08a	Boot
and tent art	195	<13.7	<64.6	<18.3	<18.3	<0.46	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<9.14	<13.7	<9.14	<13.7	<13.7	195		th Face	F08b	Boot
ticles and c	10.3	<1.73	<7.61	<2.31	<2.31	<1.16	<1.16	<1.16	<1.16	<1.16	1.86	<1.16	3.53	<1.16	1.28	<1.16	<1.16	<1.73	<1.16	<1.73	<1.73	3.62		Jack Wolfskin	F09a	Boot
oncentrati	28.5	<1.48	<1.97	<1.97	<1.97	<0.98	<0.98	<0.98	<0.98	<0.98	2.01	<0.98	4.99	<0.98	1.68	<0.98	<0.98	<1.48	<0.98	<1.48	<1.48	19.8		olfskin	F09b	Boot
	51.4	<1.61	<4.27	3.73	<2.15	<1.08	<1.08	<1.08	<1.08	<1.08	<1.08	<1.08	1.23	<1.08	1.57	<1.08	9.89	<1.61	<1.08	<1.61	<1.61	35		Columbia	F11a	Shoe
c PFCs* hv	76.4	<8.46	<11.3	<11.3	<11.3	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	<5.65	6.14	<8.46	<5.65	<8.46	<8.46	70.3		mbia	F11b	Shoe
of ionic PFCs* by area (ug/m²)	14.4	<0.14	<0.18	<0.18	<0.18	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.29	0.14	0.49	<0.09	3.98	<0.14	0.09	<0.14	<0.14	9.42		pata	BP04a	Backpack
12)	6.56	<0.71	<2.92	<0.95	<0.95	<0.09	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	3.38	<0.71	< 0.47	<0.71	<0.71	3.18		patagonia	BP04b	Backpack
	2.23	<0.04	<0.05	<0.05	<0.05	0.13	<0.03	<0.03	0.18	0.04	0.63	0.08	0.75	0.12	0.19	0.06	0.05	<0.04	<0.03	<0.04	<0.04	<0.04		Jack V	TE05a	Tent
	1.10	<0.3	<0.75	<0.4	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	0.49	<0.2	0.61	<0.2	<0.2	<0.2	<0.2	<0.3	<0.2	<0.3	<0.3	<0.3		Jack Wolfskin	TE05b	Tent

Table A12b. Details of footwear, backpack and tent articles and concentrations of ionic PFCs* by area (μg/m²)

Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (µg/kg)	Brand	Sample code	Product type
. 4600 4500 - 1300 1900 1400 1500	1	4600	ı	<11	<11	<11	<11	< 68	< 170	4600	< 57	< 23	< 23	< 23		Norrona	J03a	Jacket
4500	1	4500	1	< 10	< 10	< 10	< 10	< 49	< 150	4500	< 50	< 20	< 20	< 20			J03b	Jacket
:	,	ı	-	< 10	< 10	< 10	< 10	< 57	< 140	< 190	< 48	< 19	< 19	< 19		Blackyak	J05a	Jacket
<u>:</u>	1	1	-	< 10	< 10	< 10	< 10	< 49	< 150	< 190	< 49	< 19	< 19	< 19			J05b	Jacket
1300		1300		< 11	< 11	< 11	< 11	< 53	< 160	1300	< 53	< 21	< 21	< 21		Haglöfs	J07a	Jacket
1900	1	1900	-	< 10	< 10	< 10	< 10	< 51	< 150	1900	< 51	< 20	< 20	< 20			J07b	Jacket
1400	1	1400	-	< 9	< 9	< 9	< 9	53	< 130	1300	< 44	< 18	< 18	< 18		Patagonia	J10a	Jacket
1500		1500		< 10	< 10	< 10	< 10	< 49	< 150	1500	< 49	< 20	< 20	< 20			J10b	Jacket
		1		< 10	< 10	< 10	< 10	< 50	< 150	< 210	< 50	< 20	< 20	< 20		Salewa	J11a	Jacket
		1	-	< 10	< 10	< 10	< 10	< 49	< 150	< 200	< 49	< 20	< 20	< 20			J11b	Jacket
420	1	420	-	< 10	< 10	< 10	< 10	< 52	< 160	420	< 52	< 21	< 21	< 21		Mammut	TR02a	Trouser
380		380	-	< 10	< 10	< 10	< 10	< 52	< 160	380	< 52	< 21	< 21	< 23			TR02b	Trouser
3300	1	3300	-	< 11	< 11	< 11	< 11	1000	1200	1000	< 54	< 22	< 22	< 22		Jack Wolfskin	TR04a	Trouser
- 420 380 3300 6100		6100		< 10	< 10	< 10	< 10	1300	2900	1900	< 50	< 20	< 20	< 20		'n	TR04b/c ⁽ⁱ⁾	Trouser
840		840	1	< 10	< 10	< 10	< 10	< 52	< 160	840	< 52	< 21	< 21	< 21		Arc'teryx	TR06a	Trouser
920	1	920	-	< 10	< 10	< 10	< 10	< 51	< 150	920	< 51	< 21	< 21	< 27			TR06b	Trouser

Table A13a. Details of jackets and trouser articles and concentrations of volatile PFCs* by mass (μg/kg). (i) average of 2 homogenised samples, see Appendix 3.

Table	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/m²)	Brand	Sample code	Product type
Table A13b Dataile of include and trouver articles and concentrations of volatile DECat by a	640	1	640		<1.5	<1.5	<1.5	<1.5	<9.4	<24	640	<7.9	<3.2	<3.2	<3.2		Norrona	Ј03а	Jacket
اد مؤ زعدادها	630	-	630	-	<1.4	<1.4	<1.4	<1.4	<6.8	<20	630	<6.9	<2.8	<2.8	<2.8		ona	J03b	Jacket
	-	-	-	-	<1.3	<1.3	<1.3	<1.3	<7.2	<18	<24	<6.1	<2.4	<2.4	<2.4		Blackyak	J05a	Jacket
cor articles	-	-	-	-	<1.3	<1.3	<1.3	<1.3	<6.2	<18	<25	<6.2	<2.4	<2.4	<2.4		cyak	J05b	Jacket
and conc	110	1	110	1	<0.89	<0.89	<0.89	<0.89	<4	<13	110	<4.3	<1.7	<1.7	<1.7		Haglöfs	J07a	Jacket
`n+m+iono	150	-	150	-	<0.81	<0.81	< 0.81	< 0.81	<4.2	<13	150	<4.2	<1.6	<1.6	<1.6		löfs	J07b	Jacket
ا در اعداله ا	180	ı	180		<1.1	<1.1	<1.1	<1.1	6.7	<17	170	<5.6	<2.3	<2.3	<2.3		Patagonia	J10a	Jacket
****	190	ı	190	-	<1.3	<1.3	<1.3	<1.3	<6.2	<19	190	<6.2	<2.5	<2.5	<2.5		onia	J10b	Jacket
	-	ı			<1.3	<1.3	<1.3	<1.3	<6.3	<19	<27	<6.3	<2.5	<2.5	<2.5		Salewa	J11a	Jacket
(:)	-	•	-	-	<1.3	<1.3	<1.3	<1.3	<6.1	<18	<25	<6.1	<2.5	<2.5	<2.5		wa	J11b	Jacket
م ملا ٦ مم	69	ı	69	•	<1.7	<1.7	<1.7	<1.7	<8.7	<26	69	<8.7	<3.5	<3.5	<3.5		Mammut	TR02a	Trouser
م المحمدة	63		63	-	<1.7	<1.7	<1.7	<1.7	<8.7	<26	63	<8.7	<3.8	<3.8	<3.8		mut	TR02b	Trouser
200000000000000000000000000000000000000	370	-	370		<1.3	<1.3	<1.3	<1.3	110	140	120	<6.2	<2.5	<2.5	<2.5		Jack W	TR04a	Trouser
ron (u.g/m²) (i) oversage of a homogenised camples see A homogenised	710		710	ı	<1.1	<1.1	<1.1	<1.1	150	340	220	<5.7	<2.3	<2.3	<2.3		Jack Wolfskin	TR04b/c ⁽ⁱ⁾	Trouser
ن	250	1	250	ı	<3	۵	<3	<3	<16	<48	250	<16	<6.4	<6.4	<6.4		Arc'teryx	TR06a	Trouser
	280	1	280		3	۵	3	3	<15	<47	280	<15	<6.4	<6.4	<8.2		eryx	TR06b	Trouser

Table A13b. Details of jackets and trouser articles and concentrations of volatile PFCs* by area (µg/m²). (i) average of 2 homogenised samples, see Appendix 3.

	Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/kg)	Brand	Sample code	Product type
Tahle	-	-	-	-	< 10	< 10	< 10	< 10	< 67	< 150	< 230	< 50	< 20	< 20	< 20		Patagonia	F10a	Boot
Table A13a Details of footwear articles and concentrations of volatile PECs* by	-	-	-	ı	< 10	< 10	< 10	< 10	< 50	< 150	< 200	< 49	< 20	< 20	< 20		gonia	F10b	Boot
ails of foot	3000	-	2400	650	< 11	< 11	< 11	< 11	770	1600	< 220	< 54	240	390	21		Haglöfs	F02a	Boot
wear articl	3000	-	2300	700	< 10	< 10	< 10	< 10	700	1600	< 200	< 51	230	430	44		löfs	F02b	Boot
non bac se	810	-	810	-	< 9	< 9	< 9	< 9	< 44	< 133	810	< 44	< 18	< 18	< 18		Salewa	F04a	Boot
centration	640	-	600	38	< 10	< 10	< 10	< 10	< 52	< 160	600	< 52	< 21	38	< 21		ewa	F04b	Boot
s of volatile	1300	-	1300	1	< 13	< 13	< 13	< 13	< 65	< 194	1300	< 65	< 26	< 26	< 26		The North Face	F08a	Boot
PEC«* hv	-	-	-	-	< 10	< 10	< 10	< 10	< 50	< 150	< 200	< 50	< 20	< 20	< 20		rth Face	F08b	Boot
mass fila/ka	530	-	530	-	< 9	< 9	< 9	< 9	< 44	< 130	530	< 44	< 18	< 18	< 18		Jack Wolfskin	F09a	Boot
à)	810	-	810	-	< 9	< 9	< 9	< 9	130	210	470	< 43	< 17	< 17	< 17		olfskin	F09b	Boot
	860	-	860	1	< 9	< 9	< 9	< 9	< 47	< 140	860	< 47	< 19	< 19	< 19		Columbia	F11a	Shoe
	-	-	-		< 10	< 10	< 10	< 10	< 47	< 140	< 190	< 47	< 19	< 19	< 19		nbia	F11b	Shoe

Table A13a. Details of footwear articles and concentrations of volatile PFCs* by mass ($\mu g/kg$)

C20 C20 C40 C40 C40 C37 C37 C26 C20 C48 C45 C37 C37 C64 C49 C120 C110 C91 C91 1200 C20 1400 1300 1700 C370 C190 C150 C350 550 C270 C270 C64 C49 C120 340 C91 C91 C43 C49 C120 340 C91 C91 C13 C9.9 C24 C24 C17 C19 C10 C9.0 C17 C19 C19	<pre></pre>	740 <85 <10 <17 <10 <17 <10 <17 <10 <17 <10 <17 <10 <17 <10 <17 <10 <17 <100 1600 <100 1600	790 740 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 210 20 2500 2400 3000 3100	<6.9 <6.9 <6.9 <6.9	46.946.946.946.9	MeFOSA EtFOSA Sum FTAs Sum FTOHs Sum FOSAs/Es Total volatile PFCs
CO CAO CAO C20 C48 C45 C49 C120 C110 C49 C120 C110 C40 C120 C120 C49 C120 C120 C49 C120 C120 C49 C24 C24 C59 C24 C24 C59 C24 C24 C6 C24 C24 C7 C24 C24 C7 C24 C24 C7 C24 C24 C7 C24 C24 C8 C24 <t< th=""><th></th><th></th><th>2</th><th><6.9 <6.9 <6.9 <6.9</th><th>46.9 46.9 46.9</th><th>MeFOSA EtFOSA Sum FTAs Sum FTOHs</th></t<>			2	<6.9 <6.9 <6.9 <6.9	46.9 46.9 46.9	MeFOSA EtFOSA Sum FTAs Sum FTOHs
CO CAO CAO C20 C48 C45 C49 C120 C110 C49 C120 C110 C49 C120 C110 C49 C120 C120 C49 C120 C120 C49 C120 C120 C49 C24 C24 C50 C24 C24 C60 C24 C24 C7 C24 C24 C7 C24			N .	<6.9 <6.9 <6.9 <6.9	6.96.96.9789911123456969699699111223455696990000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000<	MeFOSA EtFOSA Sum FTAs Sum FTOHs
< 20				<6.9 <6.9 <6.9 <6.9	<6.9 <6.9 <6.9	MeFOSA EtFOSA Sum FTAs
<20				<6.9 <6.9 <6.9	<6.9 <6.9 <6.9	MeFOSA EtFOSA
<20				<6.9 <6.9 <6.9	<6.9 <6.9	MeFOSA
<20				<6.9	<6.9 <6.9	_
<20				<6.9	<6.9	EtFOSE
<20						MeFOSE
<20				<34	<47	10:2 FTOH
<20	<300 <1)0 <260	1700 1600	<100	<100	8:2 FTOH
<20	1200 12	10 1600	<230 <210	<140	<160	6:2 FTOH
<20 <48 <45 <20 <48 <45 <20 <48 <45	<100 <	<53 <85	<56 </td <td><34</td> <td><35</td> <td>4:2 FTOH</td>	<34	<35	4:2 FTOH
<20 <48 <45	<40 <	230 <35	250 23	<14	<14	10:2 FTA
CH2 042	70 <	440 <35	400 44	<14	<14	8:2 FTA
20 20 20	<40 <	46 <35	22 '	<14	<14	6:2 FTA
						Volatile PFCs (μg/m²)
The North Face Jack Wolfskin Columbia	Salewa The	Sal	Haglöfs	gonia	Patagonia	Brand
F08a F08b F09a F09b F11a F11b	F04b F08a	F04a	F02a F02b	F10b	F10a	Sample code
Boot Boot Boot Shoe Shoe	Boot Boot	Boot	Boot Boot	Boot	Boot	Product type

Table A13b. Details of footwear, backpack and tent articles and concentrations of volatile PFCs* by area ($\mu g/m^2$)

	Backpack	Backpack	Backpack	Backpack	sleeping	sleeping	sleeping	sleeping	Tent	Tent
Product type					bag	bag	bag	bag		
Sample code	BP04a	BP04b	BP05a	BP05b/c ⁽ⁱ⁾	SB02a	SB02b/c ⁽ⁱ⁾	SB03a	SB03b	TE05a	TE05b
Brand	Patagonia	gonia	Man	Mammut	The No	The North Face	The North Face	th Face	Jack Wolfskin	olfskin
Volatile PFCs (μg/kg)										
6:2 FTA	< 25	< 20	< 20	< 20	< 22	< 21	< 25	< 23	< 37	< 20
8:2 FTA	< 25	< 20	< 20	< 20	< 22	< 21	74	35	< 21	< 20
10:2 FTA	< 25	< 20	< 20	< 20	< 22	< 21	34	< 21	< 21	< 20
4:2 FTOH	< 61	< 51	< 50	< 51	< 55	< 51	< 62	< 51	< 51	< 51
6:2 FTOH	< 250	< 210	< 200	< 210	< 200	< 210	< 250	< 210	< 210	< 200
8:2 FTOH	< 180	< 150	260	250	1200	1200	790	550	170	< 150
10:2 FTOH	< 74	< 51	83	76	370	320	270	110	< 51	< 51
MeFOSE	< 12	< 10	< 10	< 10	< 11	< 10	< 12	< 10	< 10	< 10
EtFOSE	< 12	< 10	< 10	< 10	< 11	< 10	< 12	< 10	< 10	< 10
MeFOSA	< 12	< 10	< 10	< 10	< 11	< 10	< 12	< 10	< 10	< 10
EtFOSA	< 12	< 10	< 10	< 10	< 11	< 10	< 12	< 10	< 10	< 10
Sum FTAs	1	1	-	-	-	-	110	35		1
Sum FTOHs			340	330	1600	1500	1100	660	170	1
Sum FOSAs/Es	1		-	-	-	-	•		-	1
Total volatile PFCs	ı	ı	340	330	1600	1500	1200	700	170	ı

Table A13a. Details of backpack, sleeping bag and tent articles and concentrations of volatile PFCs* by mass (µg/kg). (i) average of 2 homogenised samples, see Appendix 3

Total volatile PFCs	Sum FOSAs/Es	Sum FTOHs	Sum FTAs	EtFOSA	MeFOSA	EtFOSE	MeFOSE	10:2 FTOH	8:2 FTOH	6:2 FTOH	4:2 FTOH	10:2 FTA	8:2 FTA	6:2 FTA	Volatile PFCs (μg/m²)	Brand	Sample code	Product type
															2)		В	Вас
-	-			<2.6	<2.6	<2.6	<2.6	<16	<39	<54	<13	<5.4	<5.4	<5.4		Patagonia	BP04a	Backpack
-	-	-	-	<2.2	<2.2	<2.2	<2.2	<11	<33	<44	<11	<4.3	<4.3	<4.3		onia	BP04b	Backpack
97	-	97	-	<2.8	<2.8	<2.8	<2.8	23	74	<57	<14	<5.7	<5.7	<5.7		Mar	BP05a	Backpack
93	1	93	1	<2.8	<2.8	<2.8	<2.8	22	71	<58	<14	<5.7	<5.7	<5.7		Mammut	BP05b/c ⁽ⁱ⁾	Backpack
67	1	67	1	<0.5	<0.5	<0.5	<0.5	16	51	<9.8	<2.4	^1	<1	<1		The No	SB02a	sleeping bag
67	-	67	-	<0.44	<0.44	<0.44	<0.44	14	53	<9.1	<2.3	<0.92	<0.92	<0.92		The North Face	SB02b/c ⁽ⁱ⁾	sleeping bag
52	-	47	4.8	<0.52	<0.52	<0.52	<0.52	12	35	<11	<2.7	1.5	3.3	<1.1		The North Face	SB03a	sleeping bag
30	1	29	1.5	<0.44	<0.44	<0.44	<0.44	4.8	24	<9.2	<2.2	<0.92	1.5	<1		th Face	SB03b	sleeping bag
12	-	12		<0.71	<0.71	<0.71	<0.71	<3.7	12	<15	<3.7	<1.5	<1.5	<2.6		Jack Wolfskin	TE05a	Tent
-	-	-		<0.71	<0.71	<0.71	<0.71	<3.7	<11	<15	<3.7	<1.4	<1.4	<1.4		olfskin	TE05b	Tent

Table A13b. Details of backpack, sleeping bag and tent articles and concentrations of volatile PFCs* by area (µg/m²).(i) average of 2 homogenised samples, see Appendix 3.

Appendix 3. Analysis of material from 3 articles in duplicate

	w mass inalka	of ionic DECs* h	ncentrations o	articles and co	Table A13a Details of all articles and concentrations of ionic DECs* by mass (ng/kg)	Table 013a
234000	300000	29000	34000	369000	404000	Total ionic PFC
< 2080	< 1790	< 3790	< 4290	< 714	< 765	H4PFOS; 6:2 FTS
< 2780	< 2380	< 5050	< 5710	< 952	< 1020	H2PFDA
< 2780	< 2380	< 5050	< 5710	< 952	< 1020	нРЕНрА
< 2780	< 2380	< 5050	< 5710	< 952	< 1020	PF-3,7-DMOA
< 708	< 607	< 2860	< 2530	< 476	< 510	PFOSA
< 1390	1270	< 2530	< 2860	< 476	< 510	PFTeA
< 1390	< 1190	< 2530	< 2860	< 486	< 520	PFTrA
4410	4300	5010	5670	35900	37000	PFDoA
1930	2210	< 2530	2930	2900	3380	PFUnA
60400	65300	8780	9070	87700	91700	PFDA
4070	5440	< 2530	< 2860	6350	6810	PFNA
134000	180000	15300	16300	128000	136000	PFOA
7760	10200	< 2530	< 2860	13200	18400	PFHpA
15100	22000	< 2530	< 2860	28300	27300	PFHxA
4600	6440	< 2530	< 2860	11300	11600	PFPA
1590	2590	< 2530	< 2860	17000	21300	PFBA
< 2080	< 1790	< 3790	< 4290	< 714	< 765	PFDS
< 1390	< 1190	< 2530	< 2860	< 476	< 510	PFOS
< 2080	< 1790	< 3790	< 4290	< 714	< 765	PFHpS
< 2080	< 1790	< 3790	< 4290	< 714	< 765	PFHxS
< 2080	< 1790	< 3790	< 4290	38600	50400	PFBS
						Ionic PFCs (ng/kg)
th Face	The North Face	nmut	Mammut	olfskin	Jack Wolfskin	Brand
SB02b	SB02a	BP05b	BP05a	TR04c	TR04b	Sample code
ng bag	Sleeping bag	pack	backpack	ıser	trouse	Product type

Table A13a. Details of all articles and concentrations of ionic PFCs* by mass (ng/kg)

10.6	13.6	7.80	9.10	41.8	46.6	Total
<0.09	<0.08	<1.02	<1.15	<0.08	<0.09	H4PFOS; 6:2 FTS
<0.13	<0.11	<1.36	<1.53	<0.11	<0.12	H2PFDA
<0.13	<0.11	<1.36	<1.53	<0.11	<0.12	НРЕНрА
<0.13	<0.11	<1.36	<1.53	<0.11	<0.12	PF-3,7-DMOA
<0.03	<0.03	<0.68	<0.68	<0.05	<0.06	PFOSA
<0.06	0.06	<0.68	<0.77	<0.05	<0.06	PFTeA
<0.06	<0.05	<0.68	<0.77	<0.06	<0.06	PFTrA
0.20	0.20	1.35	1.52	4.06	4.19	PFDoA
0.09	0.10	<0.68	0.79	0.33	0.38	PFUnA
2.73	2.95	2.36	2.44	9.93	10.4	PFDA
0.18	0.25	<0.68	<0.80	0.72	0.77	PFNA
6.06	8.15	4.11	4.38	14.5	15.4	PFOA
0.35	0.46	<0.68	<0.80	1.49	2.08	PFHpA
0.68	1.00	<0.68	<0.80	3.20	3.90	PFHxA
0.21	0.29	<0.68	<0.80	1.27	1.31	PFPA
0.07	0.12	<0.68	<0.80	1.92	2.41	PFBA
<0.09	<0.08	<1.02	<1.15	<0.08	<0.09	PFDS
<0.06	<0.05	<0.68	<0.80	<0.05	<0.06	PFOS
<0.09	<0.08	<1.02	<1.15	<0.08	<0.09	PFHpS
<0.09	<0.08	<1.02	<1.15	<0.08	<0.09	PFHxS
<0.09	<0.08	<1.02	<1.15	4.37	5.71	PFBS
						lonic PFCs (μg/m²)
th Face	The North Face	າmut	Mammut	olfskin	Jack Wolfskin	Brand
SB02b	SB02a	BP05b	BP05a	TR04c	TR04b	Sample code
ng bag	Sleeping bag	backpack	back	ser	trouser	Product type

Table A13b. Details of all articles and concentrations of ionic PFCs* by area (μg/m²)

9)	hy mass finally	volatile DECc*	contrations of	ticles and con-	Table A11a Details of all articles and concentrations of volatile DECs* by mass (11g/kg)	Table 01/1a
1800	1300	300	350	8700	3500	Total volatile PFCs
1	1	1	-	-	1	Sum FOSAs/Es
1800	1300	300	350	8700	3500	Sum FTOHs
1	ı	ı	-	ı	ı	Sum FTAs
< 10	< 10	< 10	< 10	< 10	< 10	EtFOSA
< 10	< 10	< 10	< 10	< 10	< 10	MeFOSA
< 10	< 10	< 10	< 10	< 10	< 10	EtFOSE
< 10	< 10	< 10	< 10	< 10	< 10	MeFOSE
350	280	74	78	1600	930	10:2 FTOH
1400	1000	230	270	4700	1200	8:2 FTOH
< 200	< 210	< 210	< 200	2400	1400	6:2 FTOH
< 49	< 51	< 51	< 50	< 50	< 50	4:2 FTOH
< 20	< 21	< 20	< 20	< 20	< 20	10:2 FTA
< 25	< 21	< 20	< 20	< 20	< 20	8:2 FTA
< 20	< 21	< 20	< 20	< 20	< 20	6:2 FTA
						Volatile PFCs (µg/kg)
th Face	The North Face	nmut	Mammut	olfskin	Jack Wolfskin	Brand
SB02b	SB02a	BP05b	BP05a	TR04c	TR04b	Sample code
ng bag	Sleeping bag	pack	backpack	ser	trouser	Product type

Table A14a. Details of all articles and concentrations of volatile PFCs* by mass ($\mu g/kg$)

2)		******	J	عدد احدد احداد	T-bl- 224b D-t-il6 - IIt-il	T-61- 0116
77	57	98	98	980	410	Total volatile PFCs
1	1	-	-	-	-	Sum FOSAs/Es
77	57	86	98	980	410	Sum FTOHs
ı	ı	1	-	-	-	Sum FTAs
<0.4	<0.4	<2.8	<2.8	<1.1	<1.1	EtFOSA
<0.4	<0.4	<2.8	<2.8	<1.1	<1.1	MeFOSA
<0.4	<0.4	<2.8	<2.8	<1.1	<1.1	EtFOSE
<0.4	<0.4	<2.8	<2.8	<1.1	<1.1	MeFOSE
15	12	21	22	180	110	10:2 FTOH
62	45	65	76	530	140	8:2 FTOH
<8.7	<9.1	<58	<57	270	160	6:2 FTOH
<2.2	<2.6	<14	<14	<5.7	<5.7	4:2 FTOH
<0.9	<0.9	<5.7	<5.7	<2.3	<2.3	10:2 FTA
<1.1	<0.9	<5.7	<5.7	<2.3	<2.3	8:2 FTA
<0.9	<0.9	<5.7	<5.7	<2.3	<2.3	6:2 FTA
						Volatile PFCs (µg/m²)
th Face	The North Face	ımut	Mammut	olfskin	Jack Wolfskin	Brand
SB02b	SB02a	BP05b	BP05a	TR04c	TR04b	Sample code
g bag	Sleeping bag	pack	backpack	ser	trouser	Product type

Table A14b. Details of all articles and concentrations of volatile PFCs* by area (μg/m²)