25 - Lo spazio L¹

₩ Definizione: Uguaglianza quasi ovunque

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Siano $f, g: T \to X$ due funzioni fortemente m-misurabili.

f e g sono uguali quasi ovunque su T quando f(t)=g(t) per quasi ogni $t\in T$; in tal caso, si scrive $f\stackrel{\mathrm{q.o.}}{=}g$.

Q Osservazione

L'uguaglianza quasi ovunque è una relazione di equivalenza.

\mathfrak{R} Notazione: $L^1(T,X)$

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Si denota con $L^1(T, X)$ l'insieme quoziente delle funzioni integrabili secondo Bochner, modulo la relazione di uguaglianza quasi ovunque.

Q Osservazione

 $L^1(T,X)$ è uno spazio vettoriale, con le operazioni indotte da quelle tra funzioni integrabili secondo Bochner.

Proposizione 25.1: Norma su $L^1(T,X)$

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\|\cdot\|_{L^1(T,X)}:L^1(T,X) o\mathbb{R}$ la mappa definita ponendo

 $f\mapsto \|f\|_{L^1(T,X)}:=\int_T \|f(t)\|\,dt$, per ogni $f\in L^1(T,X)$.

 $\|\cdot\|_{L^1(T,X)}$ è una norma su $L^1(T,X)$.

Dimostrazione

La nonnegatività $\|\cdot\|_{L^1(T,X)}$ viene dalla nonnegatività di $\|\cdot\|$ e dalla monotonia dell'integrale di Lebesgue.

L'assoluta omogeneità di $\|\cdot\|_{L^1(T,X)}$ segue dall'assoluta omogeneità di $\|\cdot\|$ e dalla linearità dell'integrale di Lebesgue.

La sub-additività di $\|\cdot\|_{L^1(T,X)}$ segue dalla sub-additività di $\|\cdot\|$ e dalla monotonia dell'integrale di Lebesgue.

La definita positività di $\|\cdot\|_{L^1(T,X)}$ segue dalla definita positività di $\|\cdot\|$ e dal fatto che una funzione a valori reali misurabile, nonnegativa e con integrale di Lebesgue nullo, è uguale quasi ovunque alla funzione identicamente nulla.

Sia $T\in\mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Lo spazio normato $(L^1(T,X), \|\cdot\|_{L^1(T,X)})$ è di Banach.

幕 Richiamo: Teorema della convergenza monotona di Beppo-Levi

Sia $T \in \mathscr{L}_p$.

Sia $\{f_n: T \to [0; +\infty]\}_{n \in \mathbb{N}}$ una successione non decrescente di funzioni misurabili;

sia dunque $f: T \to [0; +\infty]$ il limite puntuale di $\{f_n\}_{n \in \mathbb{N}}$ (che esiste essendo $\{f_n\}_{n \in \mathbb{N}}$ non decrescente, ed è misurabile in quanto limite puntuale di funzioni misurabili).

Si ha $\lim_n \int_T f_n(t) dt = \int_T f(t) dt$.

早 Richiamo: Finitezza quasi ovunque delle funzioni nonnegative sommabili

Sia $T \in \mathscr{L}_p$.

Sia $f: T \to [0; +\infty]$ una funzione sommabile.

Allora, $f(t) < +\infty$ per quasi ogni $t \in T$.

Osservazioni preliminari

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ una successione di Cauchy;

si supponga che essa ammetta un'estratta $\{\mathbf{x}_{n_k}\}_{k\in\mathbb{N}}$, convergente a un certo $\tilde{\mathbf{x}}\in E$.

Dimostrazione

Sia $\{f_n\}_{n\in\mathbb{N}}\subseteq L^1(T,X)$ una successione di Cauchy; si provi che essa converge.

Essendo di Cauchy, essa ammette un'estratta $\{f_{n_k}\}_{k\in\mathbb{N}}$ tale che $\|f_{n_{k+1}}-f_{n_k}\|_{L^1(T,X)}<\frac{1}{2^k}$, ossia $\int_T \|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X dt<\frac{1}{2^k}$, per ogni $k\in\mathbb{N}$;

ne segue che $\sum\limits_{k=1}^{+\infty}\int_T\|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X\,dt<1.$

Si nota ora che la successione di funzioni $\left\{T \to [0; +\infty] : t \mapsto \sum_{k=1}^N \|f_{n_{k+1}}(t) - f_{n_k}(t)\|\right\}_{n \in \mathbb{N}}$ soddisfa le ipotesi del teorema di Beppo-Levi.

Fatta questa osservazione, si ottiene che

$$1 > \sum\limits_{k=1}^{+\infty} \int_T \|f_{n_{k+1}}(t) - f_{n_k}(t)\|_X \, dt$$
 Per quanto visto prima

$$=\lim_N\sum_{k=1}^N\int_T\|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X\,dt$$
 Per definizione di $\sum_{k=1}^{+\infty}\int_T\|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X\,dt$

$$=\lim_N \int_T \sum_{k=1}^N \|f_{n_{k+1}}(t) - f_{n_k}(t)\|_X \, dt$$
 Per linearità dell'integrale di Lebesgue

$$=\int_T \lim_N \sum_{k=1}^N \|f_{n_{k+1}}(t) - f_{n_k}(t)\|_X \, dt$$
 Applicando il teorema di Beppo-Levi

$$=\int_T\sum_{k=1}^{+\infty}\|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X\,dt$$
 Per definizione di $\sum_{k=1}^{+\infty}\|f_{n_{k+1}}(t)-f_{n_k}(t)\|_X$

Ne segue che la funzione $T o [0; +\infty]: t \mapsto \sum_{k=1}^{+\infty} \|f_{n_{k+1}}(t) - f_{n_k}(t)\|$ è sommabile.

Per il secondo richiamo fatto, ne viene che $\sum_{k=1}^{+\infty} \|f_{n_{k+1}}(t) - f_{n_k}(t)\| < +\infty$ per quasi ogni $t \in T$; cioè, la serie $\sum \|f_{n_{k+1}}(t) - f_{n_k}(t)\|$ converge per quasi ogni $t \in T$.

Ciò significa che la serie $\sum (f_{n_{k+1}}(t) - f_{n_k}(t))$ converge assolutamente per quasi ogni $t \in T$; essendo X completo in quanto spazio di Banach, l'assoluta convergenza di una serie ne implica la convergenza, per cui la serie $\sum (f_{n_{k+1}}(t) - f_{n_k}(t))$ converge per quasi ogni $t \in T$;

Sia allora f:T o X la funzione definita ponendo

$$f(t)=f_{n_1}(t)+\sum\limits_{k=1}^{+\infty}\left(f_{n_{k+1}}(t)-f_{n_k}(t)
ight)$$
 per ogni $t\in T$ tale che $\sum\left(f_{n_{k+1}}(t)-f_{n_k}(t)
ight)$ converga, e ponendo $f(t)=0$ altrimenti.

Si ha $\lim_k f_{n_k}(t) = f(t)$ per quasi ogni $t \in T$;

infatti, per i $t \in T$ per cui $\sum (f_{n_{k+1}}(t) - f_{n_k}(t))$ converge (che sono quasi tutti, per quanto visto prima), si ha

$$f(t) = f_{n_1}(t) + \sum_{k=1}^{+\infty} \left(f_{n_{k+1}}(t) - f_{n_k}(t) \right) \quad \text{Per definizione di } f$$

$$= f_{n_1}(t) + \lim_{N} \sum_{k=1}^{N} \left(f_{n_{k+1}}(t) - f_{n_k}(t) \right) \quad \text{Per definizione di } \lim_{N} \sum_{k=1}^{N} \left(f_{n_{k+1}}(t) - f_{n_k}(t) \right)$$

$$= f_{n_1}(t) + \lim_{N} \left(f_{n_{N+1}}(t) - f_{n_1}(t) \right) \quad \text{Essendo la sommatoria } \sum_{k=1}^{N} \left(f_{n_{k+1}}(t) - f_{n_k}(t) \right) \text{ telescopica}$$

$$egin{aligned} &\lim_N f_{n_{N+1}}(t) \ &= \lim_N f_{n_N}(t). \end{aligned}$$

Inoltre, f è integrabile secondo Bochner. Infatti:

- f_{n_1} è integrabile secondo Bochner in quanto $f_{n_1} \in L^1(T,X)$ per costruzione di $\{f_n\}_{n \in \mathbb{N}}$;
- La mappa $t\mapsto \sum_{k=1}^{+\infty} \left(f_{n_{k+1}}(t)-f_{n_k}(t)\right)$, definita su quasi ogni $t\in T$, è misurabile in quanto limite puntuale di funzioni misurabili ([Proposizione 22.1]), e $t\mapsto \left\|\sum_{k=1}^{+\infty} \left(f_{n_{k+1}}(t)-f_{n_k}(t)\right)\right\|$ è sommabile, essendo $+\infty > \int_T \sum_{k=1}^{+\infty} \left\|f_{n_{k+1}}(t)-f_{n_k}(t)\right\| dt \geq \int_T \left\|\sum_{k=1}^{+\infty} \left(f_{n_{k+1}}(t)-f_{n_k}(t)\right)\right\| dt$, per quanto visto prima e per le proprietà dell'integrale di Lebesgue e dell'assoluta convergenza in spazi di Banach.

Segue allora l'integrabilità di f secondo Bochner, essendo quasi uguale alla somma tra le due mappe prese in esame.

Infine, si osserva che per ogni $k \in \mathbb{N}$ e per ogni $t \in T$ vale

$$\left|\|f_{n_{k+1}}(t)\|-\|f_{n_1}(t)\|
ight|\leq \|f_{n_{k+1}}(t)-f_{n_1}(t)\|$$
 Per la seconda disuguaglianza triangolare

$$=\left\|\sum_{i=1}^{k}f_{n_{i+1}}(t)-f_{n_{i}}(t)
ight\|$$
 Essendo tale sommatoria telescopica

$$\leq \sum\limits_{i=1}^{k} \|f_{n_{i+1}}(t) - f_{n_i}(t)\|$$
 Per sub-additività della norma

$$\leq \sum\limits_{i=1}^{+\infty} \|f_{n_{i+1}}(t) - f_{n_i}(t)\|$$
 Essendo limite di una serie a termini nonnegativi

da cui si ricava che

$$\|f_{n_{k+1}}(t)\| \leq \|f_{n_1}(t)\| + \sum\limits_{i=1}^{+\infty} \|f_{n_{i+1}}(t) - f_{n_i}(t)\|$$
, per ogni $k \in \mathbb{N}$ e per ogni $t \in T$;

la mappa $t\mapsto \|f_{n_1}(t)\|+\sum_{i=1}^{+\infty}\|f_{n_{i+1}}(t)-f_{n_i}(t)\|$ è sommabile in quanto f_{n_1} è integrabile secondo Bochner e per quanto osservato prima su $\sum_{i=1}^{+\infty}\|f_{n_{i+1}}(t)-f_{n_i}(t)\|$.

Allora, $\{f_{n_k}\}_{k\in\mathbb{N}}$ soddisfa le ipotesi del teorema di convergenza dominata ([Proposizione 24.7]), da cui segue allora che

$$\lim_n \int_T \|f_{n_k}(t) - f(t)\| \, dt = 0.$$

Dunque, la successione $\{f_{n_k}\}_{k\in\mathbb{N}}$ converge a f in $L^1(T,X)$; essendo $\{f_n\}_{n\in\mathbb{N}}$ di Cauchy, dall'osservazione preliminare segue che l'intera successione $\{f_n\}_{n\in\mathbb{N}}$ converge a f in $L^1(T,X)$.

La tesi è dunque acquisita.

₩ Definizione: Funzione di Carathéodory

Sia $T \in \mathscr{L}_p$.

Sia Y uno spazio topologico.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \times Y \rightarrow X$ una funzione.

f si dice di Carathéodory quando:

- $f(\cdot, y)$ è misurabile per ogni $y \in Y$;
- $f(t, \cdot)$ è continua per ogni $t \in T$.

Lemma 25.3: Misurabilità della composizione a destra di una funzione di Carathéodory con una funzione misurabile con immagine separabile

Sia $T \in \mathscr{L}_p$.

Sia (Y, d) uno spazio metrico.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \times Y \to X$ una funzione di Carathéodory.

Sia $u: T \to Y$ una funzione misurabile, con u(T) separabile.

Sia $g:T o \mathbb{R}^m$ la funzione definita ponendo g(t)=fig(t,u(t)ig) per ogni $t\in T.$

g è misurabile.

Dimostrazione

Essendo u misurabile con immagine separabile per ipotesi, per la [Proposizione 22.2] esiste una successione $\{u_n: T \to Y\}_{n \in \mathbb{N}}$ di funzioni misurabili, con $u_n(T)$ al più numerabile per ogni $n \in \mathbb{N}$, convergente puntualmente in T a u.

Per ogni $n\in\mathbb{N}$, si definisca allora $g_n:T o\mathbb{R}^m$ ponendo $g_n(t)=fig(t,u_n(t)ig)$ per ogni $t\in T$.

Si fissi ora $n \in \mathbb{N}$.

Essendo al più numerabile, si ponga $u_n(T) = \{y_{n,k}\}_{k \in \mathbb{N}}$.

Allora, per ogni $k\in\mathbb{N}$ e per ogni $t\in u_n^{-1}(y_{n,k})$ si ha $f\big(t,u_n(t)\big)=f(t,y_{n,k});$ cioè, $(g_n)_{|u_n^{-1}(y_{n,k})}=f(\cdot,y_{n,k})_{|u_n^{-1}(y_{n,k})},$ per ogni $k\in\mathbb{N}.$

Poiché $f(\cdot,y_{n,k})$ è misurabile per ipotesi, ne viene che $(g_n)_{|u_n^{-1}(y_{n,k})}$ è misurabile, per ogni $k \in \mathbb{N}$; essendo $\{u_n^{-1}(y_{n,k}) \mid k \in \mathbb{N}\}$ una partizione di T per definizione di $\{y_{n,k}\}_{k \in \mathbb{N}}$, ne viene che g_n è misurabile.

g è limite puntuale di $\{g_n\}_{n\in\mathbb{N}}$ per costruzione di $\{u_n\}$; essendo g_n misurabile per ogni $n\in\mathbb{N}$, ne viene che g è misurabile, come si voleva.

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $(E, \|\cdot\|_E)$ uno spazio normato.

Sia $Y \subseteq E$ aperto.

Sia $\mathbf{y}_0 \in Y$.

Sia $f: T \times Y \to X$ una funzione tale che:

- $f(\cdot, \mathbf{y})$ sia fortemente μ -misurabile per ogni $\mathbf{y} \in Y$;
- $f(t, \cdot)$ sia G-derivabile in \mathbf{y}_0 per ogni $t \in T$.

Allora, $f'_{\mathbf{v}}(\cdot, \mathbf{y}_0)(\mathbf{v})$ è fortemente μ -misurabile per ogni $\mathbf{v} \in E$.

Dimostrazione

Fissati $t \in T$ e $\mathbf{v} \in E$, si ha per ipotesi che

$$\lim_{\lambda o 0} rac{f(t, \mathbf{y}_0 + \lambda \mathbf{v}) - f(t, \mathbf{y}_0)}{\lambda} = f'_{\mathbf{y}}(t, \mathbf{y}_0)(\mathbf{v}).$$

Fissata quindi una successione $\{\lambda_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}\smallsetminus\{0\}$ tale che $\lim_n\lambda_n=0$, si ha

$$f_{\mathbf{y}}'(t,\mathbf{y}_0)(\mathbf{v}) = \lim_n rac{f(t,\mathbf{y}_0 + \lambda_n \mathbf{v}) - f(t,\mathbf{y}_0)}{\lambda_n}$$
 per ogni $t \in T$ e $\mathbf{v} \in E$.

Per ogni $\mathbf{v} \in E$ e per ogni $n \in \mathbb{N}$, la mappa $t \mapsto \frac{f(t, \mathbf{y}_0 + \lambda_n \mathbf{v}) - f(t, \mathbf{y}_0)}{\lambda_n}$ è misurabile essendo $f(\cdot, \mathbf{y})$ misurabile per ogni $\mathbf{y} \in Y$;

ne segue che $f'_{\mathbf{y}}(\cdot, \mathbf{y}_0)(\mathbf{v})$ è misurabile per ogni $\mathbf{v} \in E$ per la [Proposizione 22.4], in quanto limite puntuale di funzioni fortemente μ -misurabili.

🖹 Teorema 25.5: Derivazione sotto il segno di integrale

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $(E, \|\cdot\|_E)$ uno spazio normato separabile.

Sia $Y \subseteq E$ aperto e convesso.

Sia $f: T \times Y \to X$ tale che:

- $f(\cdot, \mathbf{y})$ sia integrabile secondo Bochner per ogni $\mathbf{y} \in Y$;
- $f(t,\cdot)$ sia di classe C^1 in Y per ogni $t\in T$.
- Per ogni $\mathbf{y} \in Y$, esistano $r_{\mathbf{y}} > 0$ e $M_{\mathbf{y}} : T \to \mathbb{R}$ sommabile, tali che $\sup_{\mathbf{w} \in \overline{B}(\mathbf{y}, r_{\mathbf{y}})} \|f_{\mathbf{y}}'(t, \mathbf{w})\|_{\mathcal{L}(Y, X)} \le M_{\mathbf{y}}(t)$ per ogni $t \in T$.

Sia $F: Y \to X$ la funzione definita ponendo $F(\mathbf{y}) = \int_T f(t, \mathbf{y}) d\mu$ per ogni $\mathbf{y} \in Y$ (ben definita essendo $f(\cdot, \mathbf{y})$ integrabile secondo Bochner per ogni $\mathbf{y} \in Y$ per ipotesi)

Si hanno i seguenti fatti:

- $f'_{\mathbf{y}}(\cdot, \mathbf{y})(\mathbf{v})$ è integrabile secondo Bochner per ogni $\mathbf{y} \in Y$ e per ogni $\mathbf{v} \in E$;
- F è di classe C^1 in Y;
- $F'(\mathbf{y})(\mathbf{v}) = \int_T f'_{\mathbf{y}}(t,\mathbf{y})(\mathbf{v}) \, d\mu$ per ogni $\mathbf{y} \in Y$ e per ogni $\mathbf{v} \in E$.

Q Osservazioni preliminari

• Sia X uno spazio topologico.

Sia $A \subseteq X$.

Sia $f:A o\mathbb{R}$ una funzione continua.

Sia $D \subseteq A$ un insieme denso in A.

Si ha
$$\sup_{x \in A} f(x) = \sup_{x \in D} f(x)$$
.

• Sia $T \in \mathscr{L}_p$.

Sia $\{f_n: T o \mathbb{R}\}_{n \in \mathbb{N}}$ una successione di funzioni misurabili.

Si supponga che $\sup_{n\in\mathbb{N}}f_n(t)<+\infty$ per ogni $t\in T;$

sia dunque $f:T o\mathbb{R}$ la funzione definita ponendo $f(t)=\sup_{n\in\mathbb{N}}f_n(t)$ per ogni $t\in T.$

f è misurabile.

Dimostrazione

Poiché f soddisfa le ipotesi del [Lemma 25.4], $f'_{\mathbf{v}}(\cdot, \mathbf{y})(\mathbf{v})$ è fortemente μ -misurabile.

Si fissino ora $\mathbf{y} \in Y$ e $\mathbf{v} \in E$;

sia $\{\lambda_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}\setminus\{0\}$ una successione convergente a 0;

sia $t \in T$.,

Essendo $f(t,\cdot)$ di classe C^1 , applicando il teorema di Lagrange ([Teorema 11.7]) si ottiene che

$$f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})\in\overline{\mathrm{conv}}\left\{f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\lambda_n\mathbf{v})\mid \mu\in[0;1]
ight\}$$
, da cui

$$rac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n}\in\overline{\mathrm{conv}}\left\{f'_{\mathbf{y}}(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\mid\mu\in[0;1]
ight\}$$
, per ogni $n\in\mathbb{N}$.

Poiché $\left\{f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\mid \mu\in[0;1]\right\}\ni f_{\mathbf{y}}'(t,\mathbf{y})(\mathbf{v})$, dalla [Proposizione 11.6] segue che

$$\left\|rac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n}-f_\mathbf{y}'(t,\mathbf{y})(\mathbf{v})
ight\|\leq \mathrm{diam}\,ig\{f_\mathbf{y}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\mid \mu\in[0;1]ig\}.$$

Poiché $\lambda_n \to 0$, si ha $\lambda_n < \frac{r_{\mathbf{y}}}{\|\mathbf{v}\|_E}$, ossia $\|\lambda_n \mathbf{v}\|_E < r_{\mathbf{y}}$, per ogni $n \ge \nu$, per qualche $\nu \in \mathbb{N}$.

Allora, per ogni $\mu \in [0;1]$ e per ogni $n \geq \nu$ si ha

$$\|\mu \lambda_n \mathbf{v}\|_E < r_{\mathbf{y}}$$
 Essendo $\mu \in [0;1]$

$$\implies \mathbf{y} + \mu \lambda_n \mathbf{v} \in \overline{B}(\mathbf{y}, r_{\mathbf{y}})$$

$$\implies \|f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})\|_{\mathcal{L}(E,X)} \leq M_{\mathbf{y}}(t)$$
 Per ipotesi su $r_{\mathbf{y}}$ e $M_{\mathbf{y}}$

$$\implies \|f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\| \leq \|\mathbf{v}\|_E M_{\mathbf{y}}(t) \quad \text{In quanto } \|f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\| \leq \|f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})\|_{\mathcal{L}(E,X)} \cdot \|\mathbf{v}\|_E, \text{ per la disuguaglianza fondamentale delle norme di operatori lineari continui}$$

Ne viene che $\{f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v})\mid \mu\in[0;1]\}\subseteq\overline{B}(\mathbf{0}_X,\|\mathbf{v}\|_EM_{\mathbf{y}}(t))$ per ogni $n\geq\nu$.

Essendo il secondo insieme chiuso e convesso ed avendo $\frac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n} \in \overline{\operatorname{conv}}\left\{f_{\mathbf{y}}'(t,\mathbf{y}+\mu\lambda_n\mathbf{v})(\mathbf{v}) \mid \mu \in [0;1]\right\}$, per ogni $n \in \mathbb{N}$, ne segue che

$$\left\| \frac{f(t,\mathbf{y} + \lambda_n \mathbf{v}) - f(t,\mathbf{y})}{\lambda_n} \right\| \leq \|\mathbf{v}\|_E M_{\mathbf{y}}(t) \text{ per ogni } n \geq \nu;$$

tale disuguaglianza vale per ogni $t \in T$, e la funzione maggiorante è sommabile essendo $M_{\mathbf{v}}$ sommabile per ipotesi.

Inoltre, la funzione $\frac{f(\cdot,\mathbf{y}+\lambda_n\mathbf{v})-f(\cdot,\mathbf{y})}{\lambda_n}$ è fortemente misurabile per ogni $n\in\mathbb{N}$, essendo $f(\cdot,\mathbf{w})$ fortemente μ -misurabile per ogni $\mathbf{w}\in Y$ in quanto integrabile secondo Bochner per ipotesi; evidentemente, vale anche $\lim_n \frac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n} = f'_{\mathbf{y}}(t,\mathbf{y})(\mathbf{v})$ per ogni $t\in T$, in quanto $f(t,\cdot)$ è di classe C^1 in Y, ed essendo $\lambda_n\to 0$.

Allora, valgono le ipotesi del teorema di convergenza dominata ([Proposizione 24.7]), da cui viene che $f'_{\mathbf{y}}(t,\mathbf{y})(\mathbf{v})$ è integrabile secondo Bochner, acquisendo così il primo punto;

sempre per tale proposizione, vale

$$\lim_n \int_T rac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n}\,d\mu = \int_T f'_\mathbf{y}(t,\mathbf{y})(\mathbf{v})\,d\mu.$$

D'altra parte, si ha $\int_T \frac{f(t,\mathbf{y}+\lambda_n\mathbf{v})-f(t,\mathbf{y})}{\lambda_n} d\mu = \frac{F(\mathbf{y}+\lambda_n\mathbf{v})-F(\mathbf{y})}{\lambda_n}$ per definizione di F e per linearità dell'integrale di Bochner; si ha dunque

$$\lim_n rac{F(\mathbf{y} + \lambda_n \mathbf{v}) - F(\mathbf{y})}{\lambda_n} = \int_T f'_{\mathbf{y}}(t, \mathbf{y})(\mathbf{v}) \, d\mu.$$

L'operatore $\mathbf{v} \mapsto \int_T f_{\mathbf{y}}'(t, \mathbf{y})(\mathbf{v}) d\mu$ è lineare per linearità della derivata e dell'integrale di Bochner; esso è anche continuo, in quanto per ogni $\mathbf{v} \in E$ si ha

 $\|\int_T f_{\mathbf{y}}'(t,\mathbf{y})(\mathbf{v}) d\mu\| \le \int_T \|f_{\mathbf{y}}'(t,\mathbf{y})(\mathbf{v})\| dt$ Per maggiorazione della norma dell'integrale di Bochner ([Proposizione 24.4])

 $\leq \int_T \|f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \|\mathbf{v}\|_E dt$ Per la disuguaglianza fondamentale delle norme di operatori lineari continui, e

per monotonia dell'integrale di Lebesgue

 $= \|\mathbf{v}\|_E \cdot \int_T \|f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \, dt$ Per linearità dell'integrale di Lebesgue

 $\leq \|\mathbf{v}\|_E \cdot \int_T \|M_{\mathbf{y}}(t)\|_{\mathcal{L}(E,X)} \, dt$ Per ipotesi su $M_{\mathbf{y}}$ e per monotonia dell'integrale di Lebesgue

e $\int_T \|M_{\mathbf{y}}(t)\|_{\mathcal{L}(E,X)} \, dt < +\infty$, per ipotesi su $M_{\mathbf{y}}$.

allora, F è G-derivabile in Y, e si ha $F'(\mathbf{y})(\mathbf{v}) = \int_T f'_{\mathbf{y}}(t,\mathbf{y})(\mathbf{v}) d\mu$ per ogni $\mathbf{v} \in Y$ e per ogni $\mathbf{v} \in E$.

Resta da mostrare la continuità di F' in Y.

Si fissi dunque nuovamente $\mathbf{y} \in Y$;

sia $\{\mathbf{y}_n\}_{n\in\mathbb{N}}\subseteq Y$ una successione convergente a \mathbf{y} .

Si provi che $\lim_n F'(\mathbf{y}_n) = F'(\mathbf{y})$.

Fissato $n \in \mathbb{N}$, per ogni $\mathbf{v} \in E$, si ha

$$\|F'(\mathbf{y}_n)(\mathbf{v}) - F'(\mathbf{y})(\mathbf{v})\| = \left\| \int_T f'_{\mathbf{y}}(t, \mathbf{y}_n)(\mathbf{v}) \, d\mu - \int_T f'_{\mathbf{y}}(t, \mathbf{y})(\mathbf{v}) \, d\mu \right\|$$
 Per legge di F'

$$f = \left\| \int_T f_{\mathbf{y}}'(t,\mathbf{y}_n)(\mathbf{v}) - f_{\mathbf{y}}'(t,\mathbf{y})(\mathbf{v}) \, d\mu
ight\|_{L^2(\mathbb{R}^d)}$$

Per linearità dell'integrale di Bochner

$$\leq \int_T \|f_{\mathtt{y}}'(t,\mathbf{y}_n)(\mathbf{v}) - f_{\mathtt{y}}'(t,\mathbf{y})(\mathbf{v})\|\,dt$$

Per maggiorazione della norma dell'integrale di

Bochner

$$\leq \int_T \|f_{\mathbf{y}}'(t,\mathbf{y}_n) - f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \cdot \|\mathbf{v}\|_E \, dt$$

Per la disuguaglianza fondamentale delle norme di operatori lineari continui, e per monotonia

dell'integrale di Lebesgue

$$\mathbf{v} = \|\mathbf{v}\|_E \cdot \int_T \|f_{\mathbf{y}}'(t,\mathbf{y}_n) - f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \, dt$$

Per linearità dell'integrale di Lebesgue

da cui segue che $||F'(\mathbf{y}_n) - F'(\mathbf{y})||_{\mathcal{L}(E,X)} \le \int_T ||f'_{\mathbf{y}}(t,\mathbf{y}_n) - f'_{\mathbf{y}}(t,\mathbf{y})||_{\mathcal{L}(E,X)} dt$ per ogni $n \in \mathbb{N}$ per definizione di $||F'(\mathbf{y}_n) - F'(\mathbf{y})||_{\mathcal{L}(E,X)};$

per acquisire la tesi, si provi allora che

$$\lim_n \int_T \|f_{\mathbf{y}}'(t,\mathbf{y}_n) - f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \, dt = 0.$$

Intanto, la funzione $||f'_{\mathbf{y}}(\cdot,\mathbf{y}_n)(\mathbf{v}) - f'_{\mathbf{y}}(\cdot,\mathbf{y})(\mathbf{v})||_{\mathcal{L}(E,X)}$ è misurabile per ogni $\mathbf{v} \in V$ e per ogni $n \in \mathbb{N}$, per la prima delle osservazioni preliminari;

infatti, essa è composizione di $\|\cdot\|_{\mathcal{L}(E,X)}$, continua, con la funzione $f'_{\mathbf{v}}(\cdot,\mathbf{y}_n)(\mathbf{v}) - f'_{\mathbf{v}}(\cdot,\mathbf{y})(\mathbf{v})$, misurabile in quanto integrabile secondo Bochner per il primo punto della tesi, già acquisito.

Si osserva ora che, essendo E separabile per ipotesi, anche $B(\mathbf{0}_E, 1)$ è separabile; allora, esiste una successione $\{\mathbf{v}_k\}_{k\in\mathbb{N}}\subseteq \overline{B}(\mathbf{0}_E,1)$ densa in $\overline{B}(\mathbf{0}_E,1)$.

Allora, per ogni $t \in T$ si ha

$$\|f'_{\mathbf{y}}(t,\mathbf{y}_n) - f'_{\mathbf{y}}(t,\mathbf{y})\|_{\mathcal{L}(E,X)} = \sup_{\mathbf{v} \in E, \ \|\mathbf{v}\|_E \le 1} \|f'_{\mathbf{y}}(t,\mathbf{y}_n)(\mathbf{v}) - f'_{\mathbf{y}}(t,\mathbf{y})(\mathbf{v})\|_{\mathcal{L}(E,X)}$$
 Per definizione di

$$\|f_{\mathbf{y}}'(t,\mathbf{y}_n) - f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)}$$

Per la prima osservazione preliminare

$$= \sup_{k \in \mathbb{N}} \|f_{\mathbf{y}}'(t, \mathbf{y}_n)(\mathbf{v}_k) - f_{\mathbf{y}}'(t, \mathbf{y})(\mathbf{v}_k)\|_{\mathcal{L}(E, X)}$$

Essendo $||f'_{\mathbf{y}}(\cdot,\mathbf{y}_n)(\mathbf{v}_k) - f'_{\mathbf{y}}(\cdot,\mathbf{y})(\mathbf{v}_k)||_{\mathcal{L}(E,X)}$ misurabile per ogni $k \in \mathbb{N}$ per quanto visto prima, segue dalla seconda osservazione preliminare che $||f'_{\mathbf{y}}(\cdot,\mathbf{y}_n) - f'_{\mathbf{y}}(\cdot,\mathbf{y})||_{\mathcal{L}(E,X)}$ è misurabile.

Infine, essendo $\mathbf{y}_n \to \mathbf{y}$, esiste $\nu \in \mathbb{N}$ tale che

$$\mathbf{y}_n \in \overline{B}(\mathbf{y}, r_{\mathbf{y}})$$
 per ogni $n \geq
u$;

per ogni $n \ge \nu$ si ha allora

 $\|f'_{\mathbf{y}}(t,\mathbf{y}_n) - f'_{\mathbf{y}}(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \le \|f'_{\mathbf{y}}(t,\mathbf{y}_n)\|_{\mathcal{L}(E,X)} + \|f'_{\mathbf{y}}(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \le 2M_{\mathbf{y}}(t)$ per ogni $t \in T$, per sub-additività delle norme, per costruzione di ν e per ipotesi su $M_{\mathbf{y}}(t)$.

La funzione maggiorante è sommabile per ipotesi su $M_{\mathbf{y}}(t)$.

Allora, la successione $\{\|f_{\mathbf{y}}'(\cdot,\mathbf{y}_n) - f_{\mathbf{y}}'(\cdot,\mathbf{y})\|_{\mathcal{L}(E,X)}\}_{n\in\mathbb{N}}$ soddisfa le ipotesi del teorema di convergenza dominata ([Proposizione 24.7]), per cui si ha

 $\lim_n \int_T \|f_{\mathbf{y}}'(t,\mathbf{y}_n) - f_{\mathbf{y}}'(t,\mathbf{y})\|_{\mathcal{L}(E,X)} \, dt = 0$, come si voleva.