

1

Last time ★ Counting supports function theory • How to use the inclusion/exclusion principle • How to use the pigeonhole principle

- :

Review: questions to ask when you count

- How big are the sets that are involved?
- · Are the sets involved disjoint?
- Is there inherent order? ≡ is this a permutation or a combination?
- · What process would construct an arbitrary element?
- Would the complement be easier to count?
- Does the inclusion / exclusion rule apply?

Fall 2023

CSCI 150

3/24

- 3

Review: counting rules (1)

Multiplication rule: If a process consists of k steps that can be performed respectively in n_1 , n_2 ,..., n_k ways, then the entire process can be performed in n_1n_2 ... n_k ways

For any integer $n \ge 1$ and any set *S* of *n* elements,

P(n,r): there are $\frac{n!}{(n-r)!}$ permutations of r elements from S

 $\mathcal{C}(n,r)$: there are $\frac{n!}{(n-r)!r!}$ combinations (ways to select) r elements from S

Addition rule: For any partition $\{A_1,A_2,\dots,A_n\}$ of a finite set A,

 $|A| = |A_1| + |A_2| + \dots + |A_n|$

Difference rule: For any finite set A and any subset B of A, |A-B| = |A| - |B|Complement rule: For any finite set $A \subseteq U$, $|A^C| = |U| - |A|$

Fall 2023

CSCI 150

Review: counting rules (2)

Inclusion/exclusion rules: $|A \cup B| = |A| + |B| - |A \cap B|$ and

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$\left| \bigcup_{i=1}^{n} A_{i} \right| =$$

$$\sum_{i=1}^{n} |A_{i}| - \sum_{\text{distinct } i,j=1}^{n} |A_{i} \cap A_{j}| +$$

$$\sum_{i=1}^{n} |A_i| - \sum_{\text{distinct } i,j=1}^{n} |A_i \cap A_j| + \sum_{i=1}^{n} |A_i \cap A_j \cap A_{kj}| + \dots + (-1)^{n-1} \left| \bigcap_{i=1}^{n} A_i \right|$$
distinct $i,j,k=1$

Pigeonhole principles:

For any function f from a finite set X with n elements to a finite set Y with m elements, if n>m, then f is not 1-to-1.

Let f be a function from a finite set X of n elements to a finite set Y of m elements, and $k \in \mathbb{Z}^+$. If $k < \frac{n}{m}$, then there is some $y \in Y$ that is the image of at least k+1 elements of X.

Fall 2023 CSCI 150 5/24

Today's outline

- · Permutations on multisets
- · Combinations from multisets

Fall 2023

CSCI 150

Repetition with limited quantities

- Multiset $S = \{q_1 \cdot x_1, q_2 \cdot x_2, ..., q_k \cdot x_k\}$ collection of $\sum_{i=1}^k q_i$ elements
 - k kinds of elements $x_1, x_2, ..., x_k$
 - Each kind x_i has some finite number q_i of identical copies letters in BANANA = $\{1 \cdot B, 3 \cdot A, 2 \cdot N\}$ multiple decks of cards
- Permutations $P(n; q_1, q_2, ..., q_k)$ of a multiset on k kinds of elements where kind i has a_i available copies

Permutations of BANANA has elements {B,A,N}

 $k = 3, q_1 = 1, q_2 = 3, q_3 = 2$ and we want to count P(6; 1,3,2)

6 distinct locations for the letters:

Choose the location for the B: C(6,1)

Choose the location for the A's: C(5.3)

Choose the location for the N's: C(2,2)

By the multiplication rule, that's $C(6,1) \cdot C(5,3) \cdot C(2,2)$

Does the order in which do this really matter?

Fall 2023

CSCI 150

7/24

Permutations and indistinguishable objects

Theorem: The number $P(n; q_1, q_2, ..., q_k)$ of distinguishable permutations of a multiset $S = \{q_1 \cdot x_1, q_2 \cdot x_2, \dots, q_k \cdot x_k\}$ with k kinds of elements x_1, x_2, \dots, x_k and q_i identical copies of kind x_i where $\sum_{i=1}^k q_i = n$, is $\frac{n!}{q_1!q_2!...q_k!}$ Proof: We must show that $P(n; q_1, q_2, ..., q_k) = \frac{n!}{q_1!q_2!...q_k!}$

There are $C(n, q_1)$ ways to position the x_1 's, and then $C(n - q_1, q_2)$ ways to position the x_2 's,..., $C(n-\sum_{i=1}^{j-1}q_i,q_j)$ ways to position the x_j 's,...,and finally $C(n - \sum_{i=1}^{k-1} q_i, q_k)$ ways to position the x_k 's.

By the multiplication rule this is $C(n,q_1) \cdot C(n-q_1,q_2) \cdot \cdot \cdot C(n-\sum_{i=1}^{k-1} q_i,q_k) = \frac{n!}{n!} \cdot \frac{(n-q_1)!}{n!} \cdot \frac{(n-q_1-q_2)!}{n!} \cdot \cdot \cdot \cdot \frac{(n-q_1-q_2-\cdots-q_{k-1})!}{n!}$ $(n-q_1)!q_1$ $(n-q_1-q_2)!q_2!$ $(n-q_1-q_2-q_3)!q_3!$ $\frac{(n-q_1)!q_1}{(n-q_1-q_2)!q_2!} \frac{(n-q_1-q_2-q_3)!q_3!}{(n-q_1-q_2-q_3)!q_3!}$

Indifferent to the order in which the kinds of elements are placed because multiplication is commutative

Fall 2023

CSCI 150

Examples (1)

How many ways are there to permute the letters in BANANA? $P(6;1,3,2) = \frac{6!}{1!3!2!} \ll P(6,6) = 6!$

$$P(6; 1,3,2) = \frac{6!}{1!3!2!} \ll P(6,6) = 6!$$

How many ways are there to permute the letters in MISSISSIPPI? $P(11;1,4,4,2) = \frac{11!}{1!\,4!\,2!}$

$$P(11; 1,4,4,2) = \frac{11!}{1!4!4!2!}$$

How many ways are there to roll a die 6 times and obtain a sequence of outcomes with one 1, three 5's, and two 6's?

$$P(6; 1,3,2) = \frac{6!}{1! \ 3! \ 2!}$$

How many numbers greater than 3,000,000 can be formed by arrangements of 1, 2, 2, 4, 6, 6, 6?

What's the first digit?

$$P(6; 1,2,2) + P(6; 1,2,3)$$

Fall 2023

CSCI 150

9/24

Examples (2)

How many ways can a deck of cards be broken up into a collection of 4 unordered piles of 13 cards?

Spread them out in a row and then label them with 13 1's, 13 2's, 13 3's, and 13 4's.

$$P(52; 13,13,13,13) = \frac{52!}{13! \, 13! \, 13! \, 13!}$$

How many ways can a deck of cards be broken up into 3 unordered piles of 8 cards and 4 piles of 7 cards?

$$P(52; 8,8,8,7,7,7,7) = \frac{52!}{8! \, 8! \, 8! \, 7! \, 7! \, 7! \, 7!}$$

How many ways are there to form a sequence of 10 letters from 4 A's, 4 B's, 4 C's, and 4 D's, if each letter must appear at least twice?

That means one of them is used 4 times and the others 2, or 2 of them are used 3 times and the others 2. But which ones?

4P(10; 4,2,2,2) +
$$C(4,2) \cdot P(10; 3,3,2,2) = 4 \cdot \frac{10!}{4!2!2!2!7!} + \frac{4!}{2!2!} \cdot \frac{10!}{3!3!2!2!}$$

Fall 2023

CSCI 150

Today's outline

- ✓ Permutations on multisets
- · Combinations from multisets

Fall 2023

11/24

11

r-combinations with repetition

CSCI 150

- $C(n,r) = \frac{n!}{(n-r)!r!}$ counts how to choose r elements from n distinct elements, that is, how many subsets of size r there are
- Let V(n, r) denote the number of r-combinations with unlimited repetition (multisets of size r) that can be built from a set of n distinct repeatable objects

How many ways can we distribute 7 identical cookies to 4 (distinct) kids? Here r=4 and n=7

• Stars and bars is a counting method for this kind of problem

Fall 2023

CSCI 150

12/24

12

Stars and bars for V(n,r)

People and animals are distinct

How many ways can we distribute 7 identical cookies to 4 (distinct) kids? Label each cookie with a kid's name – how many ways can that be done? Since the cookies are identical, a labelling like BBBBAAA has the same result as ABABABB and AABBBBA and many others

Alphabetical order would be distinct and count them as 1 cookies are ******* kids are ABCD

put A's cookies here | put B's here | put C 's here | put D's here Note that only 3 bars are needed to indicate 4 categories

- Represent the identical elements as n stars *****
- Use r-1 bars $| \ | \ |$ to separate the n identical items into r label groups

|*|| would give 3 cookies to A, 4 to B and none to the others ||******|* would give 6 cookies to C and 1 to D and none to the others

How many ways are there to arrange r-1 bars and n stars?

Fall 2023 CSCI 150

13

A formula for V(n,r)

- How many ways are there to arrange r-1 bars and n stars?
- Can form r distinct categories with only r-1 bars

Use r-1 bars for r distinct kinds and n stars for identical objects

- That is n + r 1 symbols in all
- Since the stars are identical, just choose spots for them and then put the bars in the empty locations

V(n,r) = C(n+r-1,n)

How many ways can we distribute 7 identical cookies to 4 (distinct) kids?

$$n = 7, r = 4 \qquad (7 + 4 - 1)$$

$$(4 - 1)!7$$

Fall 2023

CSCI 150

14/24

Remember this?

How many outcomes are there when you roll 2 different colored dice?

If 2 identical dice are rolled, how many different outcomes are there? 1's | 2's | 3's | 4's | 5's | 6's

$$V(n,r) = C(n+r-1,n)$$

$$n = 2 \quad r = 6 \quad V(2,6) = C(2+6-1,2) = \frac{7!}{(6-1)! \, 2!}$$

Fall 2023

CSCI 150

15/24

15

Examples (3) V(n,r) = C(n+r-1,n)

How many ways are there to fill a box with a dozen donuts chosen from 5 different varieties with the requirement that at least 1 donut of each variety is picked? (The order of the donuts in the box is irrelevant.)

$$n = 12$$
 $n' = 7$ $r = 5$ $V(7,5) = C(7+5-1,7) = \frac{11!}{4!7!}$

How many ways are there to pick a collection of 10 balls from a pile of red balls, blue balls, and purple balls, if there must be at least 5 red balls?

$$n = 10$$
 $n' = 5$ $r = 3$ $V(5,3) = C(5+3-1,5) = \frac{7!}{2!5!}$

How many ways are there to pick a collection of 10 coins from very large piles of pennies, nickels, dimes and quarters?

$$n = 10$$
 $r = 4$ $V(10,4) = C(10 + 4 - 1,10) = \frac{13!}{3! \cdot 10!}$

If 10 identical dice are rolled, how many different outcomes are there?

$$n = 10$$
 $r = 6$ $V(10,6) = C(10 + 6 - 1,10) = \frac{15!}{5!10!}$

 6^3

How many outcomes are there when you roll 3 different colored dice?

CSCI 150

16/24

16

Fall 2023

Examples (4) V(n,r) = C(n+r-1,n)

How many ways are there to distribute 20 identical sticks of red licorice and 15 identical sticks of black licorice among 5 children?

$$n_1 = 20$$
 $n_2 = 15$

$$V(20,5) \cdot V(15,5) = C(20+5-1,20) \cdot C(15+5-1,15) = C(24,20) \cdot C(19,15)$$

How many integer solutions are there to $x_1 + x_2 + x_3 + x_4 = 12$ with $x_i \ge 0$? Distribute 12 1's into the 4 variables

$$n = 12$$
 $r = 4$ $V(12,4) = C(12 + 4 - 1,12) = C(15,12)$

How many solutions with $x_1 \ge 2$, $x_2 \ge 2$, $x_3 \ge 4$, $x_4 \ge 0$?

$$n = 12$$
 $n' = 4$ $r = 4$ $V(4,4) = C(4+4-1,4) = C(7,4)$

How many ways are there to pick 10 balls from large piles of identical red, white, and blue balls, plus 1 pink ball, 1 lavender ball, and 1 tan ball? How many of the singleton colors to use?

$$C(3,3) \cdot V(7,3) + C(3,2) \cdot V(8,3) + C(3,1) \cdot V(9,3) + C(3,0) \cdot V(10,3) = 1 \cdot C(7+3-1,7) + 3C(8+3-1,8) + 3C(9+3-1,9) + 1 \cdot C(10+3-1,10) = C(9,7) + 3C(10,8) + 3C(11,9) + C(12,10)$$

Fall 2023

CSCI 150

17/24

17

Examples (5) V(n,r) = C(n+r-1,n)

How many ways are there to distribute 5 identical apples, 6 identical oranges 6 identical pears, and 4 identical pineapples among 3 people?

$$V(5,3) \cdot V(6,3) \cdot V(6,3) \cdot V(4,3) = C(7,5) \cdot C(8,6) \cdot C(8,6) \cdot C(6,4)$$

How many ways if each person gets at least one pear?

$$V(5,3) \cdot V(6,3) \cdot V(3,3) \cdot V(4,3) = C(7,5) \cdot C(8,6) \cdot C(5,2) \cdot C(6,4)$$

How many ways are there to distribute 18 chocolate donuts, 12 cinnamon donuts, and 14 powdered sugar donuts among 4 professors if each professor demands at least one donut of each kind?

$$V(14,4) \cdot V(8,4) \cdot V(10,4) = C(17,4) \cdot C(11,4) \cdot C(13,4)$$

How many integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = 28$ with $x_i \ge 0$?

$$n = 28$$
 $r = 4$ $V(28,4) = C(28 + 4 - 1,28) = C(31,28)$

with $x_i > 0$?

$$n = 23$$
 $r = 4$ $V(23,4) = C(23 + 4 - 1,23) = C(26,23)$

with $x_i > i$?

$$n = 8$$
 $r = 4$ $V(8,4) = C(8+4-1,4) = C(11,4)$

Fall 2023

CSCI 150

Examples (6) V(n,r) = C(n+r-1,n)

How many election outcomes (numbers of votes for each candidate, not who votes for whom) are possible if there are 3 candidates and 30 voters?

$$n = 30$$
 $r = 3$ $V(30,3) = C(30 + 3 - 1,30)$

If, in addition, one candidate receives a majority of the votes?

16 is a majority and who wins?

$$n = 14$$
 $r = 3$ $3V(14,3) = 3C(14 + 3 - 1,14)$

Fall 2023

CSCI 150

19/24

19

How to choose r elements from n

1.600 to 61.6666 7 6.61.161.16 11.61.17		
	Order matters	Order does not matter
No repetition	$P(n,r) = \frac{n!}{(n-r)!}$	$C(n,r) = \frac{n!}{(n-r)! r!}$
Repetition allowed	n^r	V(n,r) = C(n-1+r,n)
Fall 2023	CSCI 150	20/24

20

Examples (7) V(n,r) = C(n+r-1,n)

How many triples (i, j, k) are there where $1 \le i \le j \le k \le n$ and $n \in \mathbb{Z}^+$? They all have to be at least 1, so now we are down to n-3.

$$n' = n - 3$$
 $r = 3$ $V(n - 3,3) = C(n - 3 + 3 - 1, n - 3) = C(n - 1, n - 3)$

How many ways can you assign 300 students to 6 sections of a course? 6^{300}

How many ways can you assign 300 students to 6 sections of a course if there must be 50 in each class?

P(300; 50,50,50,50,50,50)

How many ways can you put 300 identical papers in 6 distinct boxes?

 $n = 300 \ r = 6 \ V(300,6) = C(300 + 6 - 1,300)$

How many ways can you put 300 identical papers in 6 distinct boxes so each box has at least 2 papers?

$$n = 300$$
 $n' = 288$ $r = 6$ $V(288,6) = C(288 + 6 - 1,288)$

Fall 2023 CSCI 150

21/24

21

Examples (8) V(n,r) = C(n+r-1,n)

How many ways can you distribute 23 **distinct** books to students Alice, Bob, Charles, Danielle, and Evita?

 5^{23}

How many ways if Alice and Bob get 7 books each and others get 3 each? P(23; 7,7,3,3,3)

How many ways if two students get 7 each and the others get 3 each? $C(5,2) \cdot P(23;7,7,3,3,3)$

How many ways can you distribute 23 **identical** books to students Alice, Bob, Charles, Danielle, and Evita?

n = 23 r = 5 V(23,5) = C(23 + 5 - 1,23)

How many ways if Alice and Bob get 7 books each and the others get 3 each?

n = 23 n' = 9 n'' = 0 V(0,5) = 1

How many ways if two students get 7 each and the others get 3 each? $C(5,2) \cdot 1$

Fall 2023

CSCI 150

23

What you should know ★ Counting supports function theory • Repetition counting employs identical objects • Repetition in combinations produces a multiset Next up: Polynomial counting Time to finish up that Opening sheet! Problem set 21,22 is due on Thursday, November 30 at 11PM Fall 2023 CSCI 150 24/24

24