Zadanie: DRE

Drewno

XI obóz informatyczny, grupa średnia, dzień?. Dostępna pamięć: 16 MB.

??.09.2015

W Bajtocji drewno stało się niesłychanie cennym surowcem. Król Bajtocji postanowił ściąć i sprzedać większość drzew ze swoich n lasów. Zamierza rozkazać, aby ścinać drzewa w niektórych lasach, pozostawiając co k-te drzewo (przykładowo dla k=2 w lesie złożonym z 5 drzew pozostawione beda dwa drzewa o "numerach" 2 i 4).

Król opracował m różnych wariantów swoich rozkazów. W i-tym wariancie król chce, by w lasach o numerach od a_i do b_i (włącznie) wyciąć jak najwięcej drzew, ale tak, by zostawić w tych lasach łącznie co najmniej D_i drzew. Jakie k_i dla każdego rozkazu powinien wybrać król?

Wejście

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą n $(1 \le n \le 10^4)$, oznaczającą liczbę lasów. Drugi wiersz wejścia zawiera ciąg n liczb całkowitych l_1, l_2, \ldots, l_n $(1 \le l_i \le 10^4)$, gdzie l_i oznacza liczbę drzew w i-tym lesie. Trzeci wiersz wejścia zawiera liczbę m $(1 \le m \le 500\,000)$, oznaczającą liczbę wariantów żądań króla. Następnych m wierszy zawiera po trzy liczby: a_i, b_i, D_i $(1 \le a_i \le b_i \le n, 1 \le D_i \le 10^{18})$, które określają poszczególne warianty rozkazów, których wydanie rozważa król.

Wyjście

Wyjście powinno składać się z m wierszy. Wiersz i-ty zawiera jedną liczbę całkowitą k_i — odpowiedź dla i-tego wariantu rozkazu. W przypadku, gdy poprawnych jest wiele odpowiedzi, program powinien zwrócić największą z nich. W przypadku, gdy nie da się znaleźć odpowiedniego k_i , program powinien wypisać -1.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
5	10
10 10 10 2 3	2
3	-1
1 3 1	
4 5 2	
4 4 3	

Wyjaśnienie do przykładu: W pierwszym wariancie mamy ścinać drzewa tak, by pozostało jedno lub więcej, k=11 daje 0 drzew, więc wybieramy k=10 i trzy drzewa. W drugim wariancie pozostawiając co drugie drzewo, zostanie dokładnie 1+1=2 drzewa i k=2 jest jedyną taką liczbą. W trzecim wariancie nie da się wybrać k, które spełnia warunki zadania, ponieważ suma drzew w lesie numer 4 jest mniejsza niż 3.

1/1 Drewno