Analyzing the Boltzmann's equation. Mathematical connections and applications of  $\kappa$  formula regarding the Zeros of Riemann Zeta Function, String Theory and Ramanujan Mathematics.

Michele Nardelli<sup>1</sup>, Antonio Nardelli<sup>2</sup>

#### **Abstract**

In this research thesis we analyze the Boltzmann's equation. We describe the possible mathematical connections and applications of  $\kappa$  formula regarding the Zeros of Riemann Zeta Function, the String Theory and the Ramanujan Mathematics.

<sup>&</sup>lt;sup>1</sup> M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" - Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

<sup>&</sup>lt;sup>2</sup> A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici – **Sezione Filosofia - scholar of Theoretical Philosophy** 

**Ludwig Eduard Boltzmann** (1844-1906)



**Vesuvius landscape with gorse – Naples** 



https://www.pinterest.it/pin/95068242114589901/

We want to highlight that the development of the various equations was carried out according an our possible logical and original interpretation

From:

Complex Analysis in Number Theory – 22.11.1994 - *Anatoly A. Karatsuba* 

We have that:

Dirichlet's series define the main generating functions of the multiplicative number theory.

Definition 1. A Dirichlet's series is an expression

$$f(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s},\tag{1.1}$$

where a(n) are complex numbers (coefficients of the Dirichlet's series)  $s = \sigma + it$ ,  $\sigma$  and t are real numbers,  $i^2 = -1$ .

**Example 1. Riemann's zeta-function**  $\zeta(s)$ . For Re s > 1 the  $\zeta(s)$  function is defined by a Dirichlet series of the form

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (1.2)

Since for Re  $s \geq \sigma_0 > 1$  the series in (1.2) converges absolutely and uniformly, it follows, according to Weierstrass' theorem, that for Re s > 1 the function  $\zeta(s)$  is an analytic function. For Re s > 1 Euler's identity (I.1) is valid for  $\zeta(s)$ .

**Example 12.** For Re s > 1 the Davenport-Heilbronn function f(s) (see [42, 209, 95]) is defined by the Dirichlet series

$$f(s) = \sum_{n=1}^{\infty} \frac{r(n)}{n^s},$$

where 
$$r(1) = 1$$
,  $r(2) = \varkappa$ ,  $r(3) = -\varkappa$ ,  $r(4) = -1$ ,  $r(5) = 0$ ,  $r(n+5) = r(n)$ ,  $\varkappa = \frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}$ .

**Theorem.** Suppose that G(s) is an entire function of finite order, P(s) is a polynomial,  $f(s) = G(s)P^{-1}(s)$ , and the series  $f(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$  is absolutely convergent for  $\operatorname{Re} s > 1$ . Further suppose that

(3) 
$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)f(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)g(1-s),$$

where the series  $g(1-s) = \sum_{n=1}^{\infty} b(n)n^{-1+s}$  is absolutely convergent for  $\operatorname{Re} s < -\alpha < 0$ . Then

$$f(s) = C\zeta(s),$$

where C is a constant.

Note that (3) is even weaker than (2). The question naturally arises: does a functional equation of the type (2) determine the location of the zeros of the corresponding function? It turns out that this is not the case. A simple counterexample is given by the following function f(s), which was introduced by Davenport and Heilbronn [3] in 1936:

(4) 
$$f(s) = \frac{1 - i\kappa}{2} L(s, \chi_1) + \frac{1 + i\kappa}{2} L(s, \overline{\chi}_1),$$

where  $\kappa = (\sqrt{10 - 2\sqrt{5}} - 2)/(\sqrt{5} - 1)$  and  $\chi_1 = \chi_1(n)$  is the Dirichlet character modulo 5 with

$$\chi_1(2) = i$$
,  $i^2 = -1$ ,  $L(s, \chi_1) = \sum_{n=1}^{\infty} \chi_1(n) n^{-s}$ ,  $\operatorname{Re} s > 0$ .

For Res > 0 the function f(s) has the following representation as a Dirichlet series:

(5) 
$$f(s) = \sum_{n=1}^{\infty} r(n)n^{-s},$$

where r(n) = r(m) if  $n \equiv m \pmod{5}$ , and r(1) = 1,  $r(2) = \kappa$ ,  $r(3) = -\kappa$ , r(4) = -1, r(5) = 0. In addition, f(s) satisfies the functional equation

(6) 
$$g(s) = g(1-s), \qquad g(s) = \left(\frac{\pi}{5}\right)^{-s/2} \Gamma\left(\frac{s+1}{2}\right) f(s).$$

(4) 
$$f(s) = \frac{1 - i\kappa}{2} L(s, \chi_1) + \frac{1 + i\kappa}{2} L(s, \overline{\chi}_1),$$

where  $\kappa = (\sqrt{10 - 2\sqrt{5}} - 2)/(\sqrt{5} - 1)$  and  $\chi_1 = \chi_1(n)$  is the Dirichlet character modulo 5 with

$$\chi_1(2) = i$$
,  $i^2 = -1$ ,  $L(s, \chi_1) = \sum_{n=1}^{\infty} \chi_1(n) n^{-s}$ ,  $\operatorname{Re} s > 0$ .

From:

### On the Zeros of the Davenport Heilbronn Function

S. A. Gritsenko - Received May 15, 2016 - ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2017, Vol. 296, pp. 65–87.

We have:

Let

$$\varkappa = \frac{\sqrt{10 - 2\sqrt{5} - 2}}{\sqrt{5} - 1}$$

and  $\chi_1$  be a character modulo 5 such that  $\chi_1(2) = i$ .

The Davenport–Heilbronn function f(s) is defined by the equality

$$f(s) = \frac{1 - i\varkappa}{2} L(s, \chi_1) + \frac{1 + i\varkappa}{2} L(s, \overline{\chi}_1), \quad \text{where} \quad L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

The function f(s) satisfies the Riemann-type functional equation

$$g(s) = g(1-s),$$
 where  $g(s) = \left(\frac{\pi}{5}\right)^{-s/2} \Gamma\left(\frac{s+1}{2}\right) f(s),$ 

but there is no Euler product for it.

$$(\sqrt{10 - 2\sqrt{5}} - 2)/(\sqrt{5} - 1) = \kappa$$

**Input:** 

$$\frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1}$$

**Decimal approximation:** 

0.2840790438404122960282918323931261690910880884457375827591626661

 $0.28407904384... = \kappa$ 

**Alternate forms:** 

$$\frac{1}{4} \left( \sqrt{10 - 2\sqrt{5}} - 2\sqrt{5} + \sqrt{5(10 - 2\sqrt{5})} - 2 \right)$$

$$\frac{1}{4} \left(1+\sqrt{5}\,\right) \! \left(\! \sqrt{10-2\,\sqrt{5}} \right. \\ \left. -2\right)$$

$$\frac{1}{2}\left(-1-\sqrt{5}+\sqrt{2(5+\sqrt{5})}\right)$$

Minimal polynomial:

$$x^4 + 2x^3 - 6x^2 - 2x + 1$$

**Expanded forms:** 

$$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}-1} - \frac{2}{\sqrt{5}-1}$$

$$\frac{1}{4}\sqrt{10-2\sqrt{5}} + \frac{1}{4}\sqrt{5(10-2\sqrt{5})} + \frac{1}{2}(-1-\sqrt{5})$$

For 
$$((((\sqrt{10-2}\sqrt{5})-2))/((\sqrt{5-1})))) = 8\pi G$$
;  $G = 0.011303146014$ 

Indeed:

$$(((((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1}))))/(8\pi)$$

# **Input:**

$$\frac{\sqrt{10-2\sqrt{5}} -2}{\sqrt{5} -1} \\ 8 \pi$$

#### **Result:**

$$\frac{\sqrt{10 - 2\sqrt{5}} - 2}{8\left(\sqrt{5} - 1\right)\pi}$$

# **Decimal approximation:**

 $0.01130314\overline{60140052147973750129442035744685760313920017808594909667$ 

...

0.01130314... = g (gravitational coupling constant)

# **Property:**

$$\frac{-2+\sqrt{10-2\sqrt{5}}}{8\left(-1+\sqrt{5}\right)\pi}$$
 is a transcendental number

### **Alternate forms:**

$$\frac{\sqrt{10-2\sqrt{5}} - 2\sqrt{5} + \sqrt{5(10-2\sqrt{5})} - 2}{32\pi}$$

$$-\frac{1+\sqrt{5}\,-\sqrt{2\big(5+\sqrt{5}\,\big)}}{16\,\pi}$$

$$\frac{-1 - \sqrt{5} + \sqrt{2(5 + \sqrt{5})}}{16\pi}$$

### **Expanded forms:**

$$-\frac{1}{16 \pi}-\frac{\sqrt{5}}{16 \pi}+\frac{\sqrt{10-2 \sqrt{5}}}{32 \pi}+\frac{\sqrt{5 \left(10-2 \sqrt{5}\right)}}{32 \pi}$$

$$\frac{\sqrt{10-2\sqrt{5}}}{8(\sqrt{5}-1)\pi} - \frac{1}{4(\sqrt{5}-1)\pi}$$

# **Series representations:**

$$\frac{\sqrt{10-2\sqrt{5}}-2}{(8\pi)\left(\sqrt{5}-1\right)} = \frac{-2+\sqrt{9-2\sqrt{5}}}{8\pi\left(-1+\sqrt{4}\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\right)(9-2\sqrt{5})^{-k}}$$

$$\frac{\sqrt{10-2\sqrt{5}}-2}{(8\pi)(\sqrt{5}-1)} = \frac{-2+\sqrt{9-2\sqrt{5}}\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (9-2\sqrt{5})^{-k}}{k!}}{8\pi\left(-1+\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)}$$

$$\frac{\sqrt{10-2\sqrt{5}}-2}{(8\pi)\left(\sqrt{5}-1\right)} = \frac{-2+\sqrt{z_0}\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (10-2\sqrt{5}-z_0)^k z_0^{-k}}{k!}}{8\pi\left(-1+\sqrt{z_0}\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5-z_0)^k z_0^{-k}}{k!}\right)}$$

for (not  $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$ )

We note that:

$$(((\sqrt{10-2}\sqrt{5})-2))/((\sqrt{5-1})))*((2 i (sqrt(5) - 1) t + sqrt(5) - 1)/(2 (sqrt(2 (5 - sqrt(5))) - 2)))$$

### **Input:**

$$\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1} \times \frac{2\,i\left(\sqrt{5}-1\right)t+\sqrt{5}-1}{2\left(\sqrt{2\left(5-\sqrt{5}\right)}-2\right)}$$

i is the imaginary unit

#### **Exact result:**

$$\frac{\left(\sqrt{10-2\sqrt{5}}-2\right)\left(2i\left(\sqrt{5}-1\right)t+\sqrt{5}-1\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{2\left(5-\sqrt{5}\right)}-2\right)}$$

### **Plot:**



# Alternate form assuming t>0:

$$\frac{i\sqrt{10-2\sqrt{5}}t}{\sqrt{2(5-\sqrt{5})}-2} - \frac{2it}{\sqrt{2(5-\sqrt{5})}-2} + \frac{\sqrt{5(10-2\sqrt{5})}}{2(\sqrt{5}-1)\left(\sqrt{2(5-\sqrt{5})}-2\right)} - \frac{\sqrt{10-2\sqrt{5}}}{2(\sqrt{5}-1)\left(\sqrt{2(5-\sqrt{5})}-2\right)} - \frac{\sqrt{5}}{(\sqrt{5}-1)\left(\sqrt{2(5-\sqrt{5})}-2\right)} + \frac{1}{(\sqrt{5}-1)\left(\sqrt{2(5-\sqrt{5})}-2\right)}$$

#### **Alternate forms:**

$$\frac{1}{8} \left( 1 + \sqrt{5} \right) \left( 2 \, i \, \sqrt{2 \left( 3 - \sqrt{5} \, \right)} \, \, t + \sqrt{5} \, - 1 \right)$$

$$\frac{1}{2}(1+2it)$$

$$\frac{1}{2} + it$$

1/2+it = real part of every nontrivial zero of the Riemann zeta function

#### **Derivative:**

$$\frac{d}{dt} \left( \frac{\left(\sqrt{10 - 2\sqrt{5}} - 2\right) \left(2i\left(\sqrt{5} - 1\right)t + \sqrt{5} - 1\right)}{\left(\sqrt{5} - 1\right) \left(2\left(\sqrt{2\left(5 - \sqrt{5}\right)} - 2\right)\right)} \right) = i$$

### **Indefinite integral:**

$$\int \frac{\left(\sqrt{10 - 2\sqrt{5}} - 2\right) \left(2i\left(\sqrt{5} - 1\right)t + \sqrt{5} - 1\right)}{\left(\sqrt{5} - 1\right) \left(2\left(\sqrt{2\left(5 - \sqrt{5}\right)} - 2\right)\right)} dt = \frac{t}{2} + \frac{it^2}{2} + \text{constant}$$

# And again:

$$(((\sqrt{(10-2\sqrt{5})-2)})((2x)))*((2 i (sqrt(5) - 1) t + sqrt(5) - 1)/(2 (sqrt(2 (5 - sqrt(5))) - 2)))$$
  
=  $(1/2+it)$ 

### **Input:**

$$\frac{\sqrt{10-2\sqrt{5}}-2}{2x} \times \frac{2i(\sqrt{5}-1)t+\sqrt{5}-1}{2(\sqrt{2(5-\sqrt{5})}-2)} = \frac{1}{2}+it$$

i is the imaginary unit

#### **Exact result:**

$$\frac{\left(\sqrt{10-2\sqrt{5}}-2\right)\left(2\,i\left(\sqrt{5}-1\right)t+\sqrt{5}-1\right)}{4\left(\sqrt{2\left(5-\sqrt{5}\right)}-2\right)x}=\frac{1}{2}+i\,t$$

### Alternate form assuming t and x are real:

$$\frac{\sqrt{5}-1}{x}=2$$

### **Alternate form:**

$$\frac{(\sqrt{5}-1)(1+2it)}{4x} = \frac{1}{2} + it$$

# Alternate form assuming t and x are positive:

$$2x + 1 = \sqrt{5}$$

# **Expanded forms:**

$$\frac{i\sqrt{5(10-2\sqrt{5})}t}{2\left(\sqrt{2(5-\sqrt{5})}-2\right)x} - \frac{i\sqrt{10-2\sqrt{5}}t}{2\left(\sqrt{2(5-\sqrt{5})}-2\right)x} - \frac{i\sqrt{5}t}{\left(\sqrt{2(5-\sqrt{5})}-2\right)x} + \frac{it}{\left(\sqrt{2(5-\sqrt{5})}-2\right)x} + \frac{\sqrt{5(10-2\sqrt{5})}}{4\left(\sqrt{2(5-\sqrt{5})}-2\right)x} - \frac{\sqrt{10-2\sqrt{5}}}{4\left(\sqrt{2(5-\sqrt{5})}-2\right)x} - \frac{\sqrt{5}}{2\left(\sqrt{2(5-\sqrt{5})}-2\right)x} + \frac{1}{2\left(\sqrt{2(5-\sqrt{5})}-2\right)x} = \frac{1}{2} + it$$

$$\frac{i\sqrt{5}\ t}{2\,x} - \frac{i\,t}{2\,x} + \frac{\sqrt{5}}{4\,x} - \frac{1}{4\,x} = \frac{1}{2} + i\,t$$

**Solutions:** 

$$t=\frac{i}{2}\;,\quad x\neq 0$$

$$x = \frac{\sqrt{5}}{2} - \frac{1}{2}$$

**Input:** 

$$\frac{\sqrt{5}}{2} - \frac{1}{2}$$

**Decimal approximation:** 

0.6180339887498948482045868343656381177203091798057628621354486227

...

$$0.6180339887... = \frac{1}{\phi}$$

Solution for the variable x:

$$x = \frac{-2i\sqrt{5}\ t + 2it - \sqrt{5}\ + 1}{-2 - 4it}$$

**Implicit derivatives:** 

$$\frac{\partial x(t)}{\partial t} = \frac{2\left(-1+\sqrt{5}\,-2\,x\right)x}{\left(-1+\sqrt{5}\,\right)\left(-i+2\,t\right)}$$

$$\frac{\partial t(x)}{\partial x} = \frac{\left(-1 + \sqrt{5}\right)(-i + 2t)}{2\left(-1 + \sqrt{5} - 2x\right)x}$$

### From Wikipedia:

In <u>statistical mechanics</u>, **Boltzmann's equation** (also known as **Boltzmann-Planck equation**) is a probability equation relating the <u>entropy</u> S, also written as  $S_B$ , of an ideal gas to the quantity W, the number of real <u>microstates</u> corresponding to the gas's <u>macrostate</u>:

$$S=k_{
m B}\ln W$$

where  $k_{\rm B}$  is the Boltzmann constant (also written as simply k) and equal to 1.38065 × 10<sup>-23</sup> J/K.

We consider W equal to the some values of partition numbers

p(8192) =

11814398741285991099712493978603439585598592633358236518755559154739 05892636341722762111648746675

$$p(8192) = W$$

from:

$$S = k_B \; ln \; W$$

1.38e-23

 $\ln(118143987412859910997124939786034395855985926333582365187555591547\\3905892636341722762111648746675)$ 

# **Input interpretation:**

 $1.38 \times 10^{-23} \log($ 

1 181 439 874 128 599 109 971 249 397 860 343 958 559 859 263 335 823 651 875 · . 555 915 473 905 892 636 341 722 762 111 648 746 675)

log(x) is the natural logarithm

### **Result:**

```
3.05277... \times 10^{-21}
3.05277... \times 10^{-21}
```

Or also:

 $1.38e-23 \ln(1.1814398741285991 \times 10^{9}6)$ 

# **Input interpretation:**

$$1.38 \times 10^{-23} \, log \big( 1.1814398741285991 \times 10^{96} \big)$$

log(x) is the natural logarithm

#### **Result:**

$$3.05277... \times 10^{-21}$$
  
 $3.05277... \times 10^{-21}$ 

From the Hawking radiation calculator, inserting this entropy value, we obtain the mass, the radius and the temperature:

M = 3.39232E-19

R = 5.03816E-46

T = 3.61686E41

E = 3.05277E-21

From the Ramanujan-Nardelli mock modular formula, we obtain:

 $sqrt(((1/((((4*1.962364415e+19)/(5*0.0864055^2)))*1/(3.39232e-19)* sqrt((-((((3.61686e+41*4*Pi*(5.038116e-46)^3-(5.038116e-46)^2))))))/((6.67*10^-11)))))))$ 

# **Input interpretation:**

$$\sqrt{\left(1/\left(\frac{4\times1.962364415\times10^{19}}{5\times0.0864055^2}\times\frac{1}{3.39232\times10^{-19}}\right.\right.}$$

$$\sqrt{-\frac{3.61686\times10^{41}\times4\pi\left(5.038116\times10^{-46}\right)^3-\left(5.038116\times10^{-46}\right)^2}{6.67\times10^{-11}}}\right)}$$

#### **Result:**

1.6180847012124207309712900681003477940946410821165073311537474853

1.6180847.... result that is a very good approximation to the value of the golden ratio 1.618033988749...

p(4096) =6927233917602120527467409170319882882996950147283323368445315320451

 $6.92723391760212 \times 10^{6}$ 

 $1.38e-23 \ln(6.92723391760212 \times 10^{66})$ 

Input interpretation:  $1.38 \times 10^{-23} \log(6.92723391760212 \times 10^{66})$ 

log(x) is the natural logarithm

### **Result:**

 $2.12390... \times 10^{-21}$  $2.12390...*10^{-21}$  From the entropy value, we have that:

M = 2.82955E-19

R = 4.20235E-46

T = 4.33622E41

E = 2.12390E-21

and, as above:

# **Input interpretation:**

$$\sqrt{\left(1/\left(\frac{4\times1.962364415\times10^{19}}{5\times0.0864055^2}\times\frac{1}{2.82955\times10^{-19}}\right)\right)}$$

$$\sqrt{-\frac{4.33622\times10^{41}\times4\pi\left(4.20235\times10^{-46}\right)^3-\left(4.20235\times10^{-46}\right)^2}{6.67\times10^{-11}}}$$

#### **Result:**

1.6180781925207858848250587104900130629681494731626244730560357603

...

1.61807819252.... result that is a very good approximation to the value of the golden ratio 1.618033988749...

 $p(1024) = 61847822068260244309086870983975 = 6.184782206826024 \times 10^{\circ}31$ 

 $1.38e-23 \ln(6.184782206826024 \times 10^31)$ Input interpretation:  $1.38 \times 10^{-23} \log(6.184782206826024 \times 10^{31})$ log(x) is the natural logarithm **Result:**  $1.01019... \times 10^{-21}$ 1.01019...\*10<sup>-21</sup> We have that: M = 1.95143E-19R = 2.89819E-46T = 6.28749E41E = 1.01019E-21and: 

# **Input interpretation:**

$$\sqrt{\left(1/\left(\frac{4\times1.962364415\times10^{19}}{5\times0.0864055^2}\times\frac{1}{1.95143\times10^{-19}}\right)\right)}$$

$$\sqrt{-\frac{6.28749\times10^{41}\times4\pi\left(2.89819\times10^{-46}\right)^3-\left(2.89819\times10^{-46}\right)^2}{6.67\times10^{-11}}}$$

#### **Result:**

1.6180800038216759997206634558092356807056488514748670658751823297

...

1.618080003821.... result that is a very good approximation to the value of the golden ratio 1.618033988749...

Now, we consider all the previous results and other partition numbers. We perform the following calculations:

p(12)

## **Input interpretation:**

$$log\left(\frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(77)}\right)$$

log(x) is the natural logarithm

#### **Result:**

49.910120... 49.910120...

p(24)

# **Input interpretation:**

$$log\left(\frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(1575)}\right)$$

log(x) is the natural logarithm

#### **Result:**

49.382538...

49.382538...

p(48)

$$Ln[((((((((((((((10-2\sqrt{5})-2))/((\sqrt{5}-1)))/(1.38e-23\ln(147273)))))]$$

# **Input interpretation:**

$$log\left(\frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(147\,273)}\right)$$

log(x) is the natural logarithm

#### **Result:**

48.902329...

48.902329....

p(96)

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23}\log(118114304)} \right)$$

log(x) is the natural logarithm

#### **Result:**

48.456400...

48.456400...

#### Mean:

(49.910120+49.382538+48.902329+48.456400) =**196.651387** 

1/4(49.910120+49.382538+48.902329+48.456400)

# **Input interpretation:**

$$\frac{1}{4}$$
 (49.910120 + 49.382538 + 48.902329 + 48.456400)

#### **Result:**

49.16284675

49.16284675

Furthermore, we have:

p(8)

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23}\log(22)} \right)$$

log(x) is the natural logarithm

#### **Result:**

50.250362...

50.250362...

p(64)

### **Input interpretation:**

$$log\left(\frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(1741630)}\right)$$

log(x) is the natural logarithm

#### **Result:**

48.713705...

48.713705...

80 1/Ln[(((( $((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1}))$ )/(1.38e-23 ln(1741630))))]

# **Input interpretation:**

$$80 \times \frac{1}{\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} \log(1741630)} \right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6422483132872894499242047788043166997451339868448208416769058787

1.64224831.... $\approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$ 

p(1024)

### **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} log(6.184782206826024\times 10^{31})} \right)$$

log(x) is the natural logarithm

#### **Result:**

47.085645...

47.085645...

76 1/ (((Ln[((((( $(\sqrt{10-2}\sqrt{5})-2)$ )/(( $\sqrt{5}-1$ )))/(1.38e-23 ln(6.184782206826024 × 10^31))))])))

### **Input interpretation:**

$$76 \times \frac{1}{\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} \log(6.184782206826024 \times 10^{31})} \right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6140800448879718407611806465561952242718063594687461036069354352

...

1.614080044.... result that is a very good approximation to the value of the golden ratio 1.618033988749...

p(4096)

### **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} log(6.92723391760212\times 10^{66})} \right)$$

log(x) is the natural logarithm

#### **Result:**

46.342528...

46.342528...

# **Input interpretation:**

$$75 \times \frac{1}{\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} \log(6.92723391760212 \times 10^{66})} \right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6183839...

1.6183839... result that is a very good approximation to the value of the golden ratio 1.618033988749...

p(8192)

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}} - 2}{\sqrt{5} - 1}}{1.38 \times 10^{-23} \ log \left( 1.1814398741285991 \times 10^{96} \right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.979736...

45.979736...

76 1/Ln[(((( $((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1}))$ )/(1.38e-23 ln(1.1814398741285991 × 10^96))))]

### **Input interpretation:**

$$\frac{1}{\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(1.1814398741285991\times10^{96})} \right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6529020...

1.6529020... result that is quite near to the 14th root of the following Ramanujan's class invariant  $Q = \left(G_{505}/G_{101/5}\right)^3 = 1164.2696$  i.e. 1.65578...

### Indeed, from:

$$G_{505} = P^{-1/4}Q^{1/6} = (\sqrt{5} + 2)^{1/2} \left(\frac{\sqrt{5} + 1}{2}\right)^{1/4} (\sqrt{101} + 10)^{1/4} \times \left((130\sqrt{5} + 29\sqrt{101}) + \sqrt{169440 + 7540\sqrt{505}}\right)^{1/6}.$$

Thus, it remains to show that

$$(130\sqrt{5} + 29\sqrt{101}) + \sqrt{169440 + 7540\sqrt{505}} = \left(\sqrt{\frac{113 + 5\sqrt{505}}{8}} + \sqrt{\frac{105 + 5\sqrt{505}}{8}}\right)^3,$$

which is straightforward.

$$\sqrt[14]{\left(\sqrt{\frac{113+5\sqrt{505}}{8}}+\sqrt{\frac{105+5\sqrt{505}}{8}}\right)^3}=1,65578\dots$$

p(16384)

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23} log(3.4400033735581529\times10^{137})} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.620949...

45.620949...

# **Input interpretation:**

$$75 \times \frac{1}{\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} \log(3.4400033735581529 \times 10^{137})} \right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6439816...

$$1.6439816... \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$$

p(32768)

### **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} \log (1.995113433740810573664245427\times 10^{196})} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.265195... 45.265195...

### **Input interpretation:**

$$73 \times \frac{1}{\log \left(\frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log(1.995113433740810573664245427\times10^{196})}\right)}$$

log(x) is the natural logarithm

#### **Result:**

1.6127181337225981392843101684648417983312098903836399583991569302

...

1.6127181337.... result that is a very good approximation to the value of the golden ratio 1.618033988749...

#### Mean:

$$(50.250362 + 48.713705 + 47.085645 + 46.342528 + 45.979736 + 45.620949 + 45.265195) = 329.25812$$

1/7(50.250362 + 48.713705 + 47.085645 + 46.342528 + 45.979736 + 45.620949 + 45.265195)

# **Input interpretation:**

$$\frac{1}{7}$$
 (50.250362 + 48.713705 + 47.085645 + 46.342528 + 45.979736 + 45.620949 + 45.265195)

#### **Result:**

47.036874285714285714285714285714285714285714285714285714285

# Repeating decimal:

47.03687428571 (period 6) 47.03687428571

General mean of the two sequences:

$$1/2((1/7(50.250362 + 48.713705 + 47.085645 + 46.342528 + 45.979736 + 45.620949 + 45.265195) + 1/4(49.910120 + 49.382538 + 48.902329 + 48.456400)))$$

### **Input interpretation:**

$$\frac{1}{2} \left( \frac{1}{7} \left( 50.250362 + 48.713705 + 47.085645 + 46.342528 + 45.979736 + 45.620949 + 45.265195 \right) + \frac{1}{4} \left( 49.910120 + 49.382538 + 48.902329 + 48.456400 \right) \right)$$

#### **Result:**

48.099860517857142857142857142857142857142857142857142857142

### **Repeating decimal:**

48.099860517857142 (period 6)  $48.09986... \approx 48$ 

Now, we take the same previous expression, but attributing to  $\Omega$  an inverse value to that of before. We obtain the following expressions:

$$Ln[(((((((((((((((10-2\sqrt{5})-2))/((\sqrt{5-1})))/(1.38e-23 ln(1/22)))))]$$

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} \log(\frac{1}{22})} \right)$$

log(x) is the natural logarithm

#### **Result:**

50.250362... + 3.1415927... i

#### **Polar coordinates:**

r = 50.3485 (radius),  $\theta = 0.0624375$  (angle) 50.3485

### **Polar forms:**

 $50.3485 (\cos(0.0624375) + i \sin(0.0624375))$ 

$$50.3485 e^{0.0624375 i}$$

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} log \left(\frac{1}{1741630}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

48.713705... + 3.1415927... *i* 

#### **Polar coordinates:**

r = 48.8149 (radius),  $\theta = 0.0644018$  (angle) 48.8149

#### **Polar forms:**

 $48.8149 (\cos(0.0644018) + i \sin(0.0644018))$ 

 $48.8149 e^{0.0644018 i}$ 

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}} - 2}{\sqrt{5} - 1}}{1.38 \times 10^{-23} log \left( \frac{1}{6.184782206826024 \times 10^{31}} \right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

47.085645... + 3.1415927... *i* 

#### **Polar coordinates:**

r = 47.1903 (radius),  $\theta = 0.0666221$  (angle) 47.1903

#### **Polar forms:**

 $47.1903 (\cos(0.0666221) + i \sin(0.0666221))$ 

 $47.1903 e^{0.0666221 i}$ 

### **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} log \left(\frac{1}{6.92723391760212\times 10^{66}}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

46.342528... + 3.1415927... i

#### **Polar coordinates:**

r = 46.4489 (radius),  $\theta = 0.0676871$  (angle) 46.4489

#### **Polar forms:**

 $46.4489 (\cos(0.0676871) + i \sin(0.0676871))$ 

 $46.4489 e^{0.0676871 i}$ 

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} \log \left(\frac{1}{1.1814398741285991\times 10^{96}}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.979736... + 3.1415927... i

#### **Polar coordinates:**

r = 46.0869 (radius),  $\theta = 0.0682196$  (angle) 46.0869

#### **Polar forms:**

 $46.0869 (\cos(0.0682196) + i \sin(0.0682196))$ 

 $46.0869 e^{0.0682196 i}$ 

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} \log \left(\frac{1}{3.4400033735581529\times 10^{137}}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.620949... + 3.1415927... *i* 

# **Polar coordinates:**

r = 45.729 (radius),  $\theta = 0.0687544$  (angle) 45.729

#### **Polar forms:**

 $45.729 (\cos(0.0687544) + i \sin(0.0687544))$ 

 $45.729\,e^{0.0687544\,i}$ 

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times10^{-23}\log\left(\frac{1}{1.995113433740810573664245427\times10^{196}}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

45.265195... + 3.1415927... i

#### **Polar coordinates:**

r = 45.3741 (radius),  $\theta = 0.069293$  (angle) 45.3741

#### **Polar forms:**

 $45.3741 (\cos(0.069293) + i \sin(0.069293))$ 

 $45.3741 e^{0.069293 i}$ 

Mean:

$$1/7(50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741)$$

$$(50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741) =$$
**329.9926**

$$1/7(50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741)$$

### **Input interpretation:**

$$\frac{1}{7}$$
 (50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741)

#### **Result:**

47.1418

47.1418

We have also:

$$Ln[(((((((((((((10-2\sqrt{5})-2))/((\sqrt{5}-1)))/(1.38e-23\ln(1/77))))]$$

### **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} log \left(\frac{1}{77}\right)} \right)$$

### **Result:**

49.910120... + 3.1415927... *i* 

### **Polar coordinates:**

r = 50.0089 (radius),  $\theta = 0.0628621$  (angle) 50.0089

### **Polar forms:**

 $50.0089 (\cos(0.0628621) + i \sin(0.0628621))$ 

 $50.0089 e^{0.0628621 i}$ 

 $Ln[(((((((((((((10-2\sqrt{5})-2))/((\sqrt{5}-1)))/(1.38e-23\ln(1/1575)))))]$ 

# **Input interpretation:**

$$\log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38\times 10^{-23} \log \left(\frac{1}{1575}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

49.382538... + 3.1415927... i

#### **Polar coordinates:**

r = 49.4824 (radius),  $\theta = 0.0635319$  (angle) 49.4824

### **Polar forms:**

 $49.4824 (\cos(0.0635319) + i \sin(0.0635319))$ 

49.4824 e<sup>0.0635319 i</sup>

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\,\sqrt{5}}\,\,-2}{\sqrt{5}\,\,-1}}{1.38\times 10^{-23}\,log\!\left(\frac{1}{147\,273}\right)} \right)$$

log(x) is the natural logarithm

#### **Result:**

48.902329... + 3.1415927... *i* 

#### **Polar coordinates:**

r = 49.0031 (radius),  $\theta = 0.064154$  (angle) 49.0031

# **Input interpretation:**

$$log \left( \frac{\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}}{1.38 \times 10^{-23} log \left(\frac{1}{118114304}\right)} \right)$$

log(x) is the natural logarithm

### **Result:**

```
48.456400... + 3.1415927... i
```

# **Polar coordinates:**

```
r = 48.5581 (radius), \theta = 0.0647428 (angle) 48.5581
```

# **Polar forms:**

```
48.5581 (\cos(0.0647428) + i \sin(0.0647428))
```

```
48.5581 e^{0.0647428 i}
```

### Mean

$$(50.0089+49.4824+49.0031+48.5581) =$$
**197.0525**

$$1/4 (50.0089 + 49.4824 + 49.0031 + 48.5581)$$

# **Input interpretation:**

$$\frac{1}{4}$$
 (50.0089 + 49.4824 + 49.0031 + 48.5581)

### **Result:**

49.263125 49.263125

The general mean of the two sequences is:

1/2((1/7(50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741) + 1/4(50.0089 + 49.4824 + 49.0031 + 48.5581)))

# **Input interpretation:**

$$\frac{1}{2} \left( \frac{1}{7} \left( 50.3485 + 48.8149 + 47.1903 + 46.4489 + 46.0869 + 45.729 + 45.3741 \right) + \frac{1}{4} \left( 50.0089 + 49.4824 + 49.0031 + 48.5581 \right) \right)$$

#### **Result:**

48.2024625

 $48.2024625 \approx 48$ 

### Thence:

49.16284675

47.03687428571

 $48.09986... \approx 48$ 

49.263125

47.1418

 $48.2024625 \approx 48$ 

# General Mean

 $48.2024625 \approx 48$ 

 $48.09986... \approx 48$ 

#### From

1/(48.2024625 \*1/48.09986)

# **Input interpretation:**

$$\frac{1}{48.2024625 \times \frac{1}{48.09986}}$$

#### **Result:**

0.9978714261745445058953160328686527166532207768430917818773262880

...

0.997871426.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{5}}} \approx 0.9991104684$$

$$1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

and to the Omega mesons ( $\omega/\omega_3$  | 5+3 |  $m_{u/d}=255-390$  | 0.988-1.18 ) Regge slope value (0.988) connected to the dilaton scalar field  $0.989117352243=\phi$ 

 $A_1^{**}$  above the two low-lying pseudo-scalars. (bound states of gluons, or 'glueballs')

$$A_1^{**}$$
 | 0.943(39) [2.5] | 0.988(38) | 0.152(53)  
 $A_4$  | 1.03(10) [2.5] | 0.999(32) | 0.035(21)

(**Glueball Regge trajectories -** *Harvey Byron Meyer*, Lincoln College -Thesis submitted for the degree of Doctor of Philosophy at the University of Oxford Trinity Term, 2004)

Note that

$$\sqrt[32]{\zeta(2) - 1}$$

$$\sqrt[32]{\frac{\pi^2}{6} - 1}$$

=  $0.9863870313564812915... (\pi^2/6 - 1)^1/32$ 

We know that  $\alpha$ ' is the Regge slope (string tension). With regard the Omega mesons, the values are:

$$\omega \quad | \ 6 \quad | \ m_{u/d} = 0 - 60 \qquad | \ 0.910 - 0.918$$
 
$$\omega/\omega_3 \quad | \ 5 + 3 \quad | \ m_{u/d} = 255 - 390 \quad | \ 0.988 - 1.18$$
 
$$\omega/\omega_3 \quad | \ 5 + 3 \quad | \ m_{u/d} = 240 - 345 \quad | \ 0.937 - 1.000$$
 
$$\Psi \quad | \ 3 \quad | \ m_c = 1500 \quad | \ 0.979 \quad | \ -0.09$$

1/(48.2024625 \*0.0207900813)

where

0.0207900813016919383964942933305834985798295462814236881354748225

...

# **Input interpretation:**

#### **Result:**

0.9978714262557532783068617461638217392795249176291380787238208031

0.997871426....as above

1/(48.2024625 - 48.09986)

# **Input interpretation:**

1 48.2024625 – 48.09986

### **Result:**

9.7463512097658439121853756000097463512097658439121853756000097463

9.7463512097...

# Repeating decimal:

9.746351209765843912185375600009 (period 30)

### From which:

1/6\*1/(48.2024625 - 48.09986)

# **Input interpretation:**

$$\frac{1}{6} \times \frac{1}{48.2024625 - 48.09986}$$

### **Result:**

1.6243918682943073186975626000016243918682943073186975626000016243

1.624391868.... result that is a good approximation to the value of the golden ratio 1.618033988749...

# **Repeating decimal:**

 $1.\overline{624391868294307318697562600001}$  (period 30)

From:

# **Inflationary Imprints on Dark Matter**

Sami Nurmi, Tommi Tenkanen and Kimmo Tuominen - arXiv:1506.04048v2 [astro-ph.CO] 4 Nov 2015

We have that:

The evolution of number density of the singlet scalar is determined by the Boltzmann equation

$$\dot{n}_{s} + 3Hn_{s} = \int d\Pi_{h} d\Pi_{s_{1}} d\Pi_{s_{2}} (2\pi)^{4} \delta^{4}(p_{h} - p_{s_{1}} - p_{s_{2}})$$

$$\times \left( |\mathcal{M}|_{h \to ss}^{2} f_{h} (1 + f_{s}) (1 + f_{s}) - |\mathcal{M}|_{ss \to h}^{2} f_{s} f_{s} (1 + f_{h}) \right),$$
(2.2)

where  $d\Pi_i = d^3k_i/((2\pi)^3 2E_i)$ ,  $\mathcal{M}$  is the transition amplitude and  $f_i$  is the usual phase space density of particle i. The Higgs particles are assumed to be in thermal equilibrium, and in the usual approximation one assumes that Maxwell-Boltzmann statistics can be used instead of Bose-Einstein,  $f_h \simeq e^{-E_h/T}$ .

Setting  $f_s = 0$  on the right hand side of Eq. (2.2) the singlet abundance, produced at low temperatures by thermal Higgs particles only, then becomes [34]

$$\Omega_{\rm s}h^2 \approx 1.73 \times 10^{27} \frac{m_{\rm s}\Gamma_{h\to ss}}{m_{\rm h}^2} = 1.73 \times 10^{27} \frac{m_{\rm s}}{m_{\rm h}^2} \left(\frac{\lambda_{\rm sh}^2 \nu^2}{32\pi m_{\rm h}} \sqrt{1 - 4m_{\rm s}^2/m_{\rm h}^2}\right) . \tag{2.3}$$

In the limit,  $m_s \ll m_h$ , this yields a parametric estimate for the coupling sufficient to produce a sizeable dark matter abundance

$$\lambda_{\rm sh} \simeq 10^{-11} \left(\frac{\Omega_{\rm s} h^2}{0.12}\right)^{1/2} \left(\frac{{\rm GeV}}{m_{\rm s}}\right)^{1/2} .$$
 (2.4)

 $m_{\rm s} \lesssim 50 \ {\rm GeV} \quad \lambda_{\rm sh} \lesssim 10^{-7}.$ 

$$\Omega_{\rm s}h^2 \approx 1.73 \times 10^{27} \frac{m_{\rm s}\Gamma_{h\to ss}}{m_{\rm h}^2} = 1.73 \times 10^{27} \frac{m_{\rm s}}{m_{\rm h}^2} \left(\frac{\lambda_{\rm sh}^2 \nu^2}{32\pi m_{\rm h}} \sqrt{1 - 4m_{\rm s}^2/m_{\rm h}^2}\right) \tag{2.3}$$

1.73e+27\*(50/125.1^2) ((((((10^-7)^2\*1^2))/(32Pi\*125.1)\*sqrt(1-(4\*(50^2)/(125.1^2)))))

# **Input interpretation:**

$$1.73 \times 10^{27} \times \frac{50}{125.1^2} \left( \frac{\left(\frac{1}{10^7}\right)^2 \times 1^2}{32 \pi \times 125.1} \sqrt{1 - 4 \times \frac{50^2}{125.1^2}} \right)$$

### **Result:**

$$2.64065... \times 10^6$$
  
 $2.64065... \times 10^6$ 

Now, for  $((((\sqrt{10-2}\sqrt{5})-2))/((\sqrt{5-1})))) = \kappa = 8\pi G$ ; G = 0.011303146014

We observe that:

 $[((((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1})))1/(0.011303146014)]$ 

# **Input interpretation:**

$$\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1} \times \frac{1}{0.011303146014}$$

### **Result:**

25.132741229...  $\approx 8\pi$ 

 $(0.28407904384\ 1/(0.011303146014))$ 

# **Input interpretation:**

$$0.28407904384 \times \frac{1}{0.011303146014}$$

#### **Result:**

25.132741228693464881219042173120068481493474583013557096211108009

25.13274122....

where  $0.28407904384 = \kappa$  and 0.011303146014 = g = gravitational coupling constant

and:

$$1/8*[((((\sqrt{(10-2\sqrt{5})-2)})((\sqrt{5-1}))))1/(0.011303146014)]$$

# **Input interpretation:**

$$\frac{1}{8} \left( \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1} \times \frac{1}{0.011303146014} \right)$$

### **Result:**

3.1415926536...

 $3.1415926536...\approx \pi$ 

$$1.73e+27*(50/125.1^2)$$
 (((((((10^-7)^2\*1^2))/((4[((((\sqrt{10-2\sqrt{5}})-2))/((\sqrt{10-2\sqrt{5}})-2))/((\sqrt{10-2\sqrt{5}})-2))/((\sqrt{10-2\sqrt{5}})-2))/((\sqrt{10-2\sqrt{5}})-2))/(125.1^2)))))

### **Input interpretation:**

$$1.73 \times 10^{27} \times \frac{50}{125.1^2} \left( \frac{\left(\frac{1}{10^7}\right)^2 \times 1^2}{\left(\frac{\sqrt{\frac{10-2\sqrt{5}}{-2}}}{4 \times \frac{\sqrt{5}-1}{0.011303146014}}\right) \times 125.1} \sqrt{1-4 \times \frac{50^2}{125.1^2}} \right)$$

#### **Result:**

$$2.64065... \times 10^6$$
  
 $2.64065... \times 10^6$ 

From:

$$\Gamma_{s_0 \to hh}^{(2)} = \frac{\lambda_{\rm sh}^2}{64\pi} \frac{s_0^2}{m_{\rm s}} \sqrt{1 - \left(\frac{m_{\rm h}}{m_{\rm s}}\right)^2} .$$
(4.12)

$$m_{\rm s} \lesssim 50 \ {\rm GeV} \quad \lambda_{\rm sh} \lesssim 10^{-7}.$$

$$((10^{-7})^{2})/(64Pi*50)*sqrt(1-(125.1/50)^{2})$$

# **Input:**

$$\frac{\left(\frac{1}{10^7}\right)^2}{64\,\pi}\times\frac{1}{50}\,\sqrt{1-\left(\frac{125.1}{50}\right)^2}$$

### **Result:**

$$2.28136... \times 10^{-18} i$$

### **Polar coordinates:**

$$r = 2.28136 \times 10^{-18}$$
 (radius),  $\theta = 1.5708$  (angle)

### **Polar forms:**

$$2.28136 \times 10^{-18} (\cos(1.5708) + i \sin(1.5708))$$

$$2.28136 \times 10^{-18} e^{1.5708 i}$$

$$\frac{\sqrt{1 - \left(\frac{125.1}{50}\right)^2} \left(\frac{1}{10^7}\right)^2}{50 (64 \pi)} = \frac{\sqrt{-6.26} \sum_{k=0}^{\infty} (-6.26)^{-k} \left(\frac{1}{2} \atop k\right)}}{320 000 000 000 000 000 000 \pi}$$

$$\frac{\sqrt{1 - \left(\frac{125.1}{50}\right)^2 \left(\frac{1}{10^7}\right)^2}}{50 (64 \pi)} = \frac{\sqrt{-6.26} \sum_{k=0}^{\infty} \frac{e^{-1.83418 k} \left(-\frac{1}{2}\right)_k}{k!}}{320 000 000 000 000 000 000 \pi}$$

$$\frac{\sqrt{1 - \left(\frac{125.1}{50}\right)^2} \left(\frac{1}{10^7}\right)^2}{50 (64 \pi)} = \frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s = -\frac{1}{2} + j} (-6.26)^{-s} \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{640 000 000 000 000 000 000 \pi \sqrt{\pi}}$$

 $((10^{-7})^{2})/(8[((((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1}))))1/(0.011303146014)])*1/50*sqrt(1-(125.1/50)^{2})$ 

# **Input interpretation:**

$$\frac{\left(\frac{1}{10^7}\right)^2}{8\left(\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}}\right.-2}\times\frac{1}{0.011303146014}\right)\times\frac{1}{50}\sqrt{1-\left(\frac{125.1}{50}\right)^2}$$

### **Result:**

 $2.28136... \times 10^{-18} i$ 

### **Polar coordinates:**

$$r = 2.28136 \times 10^{-18}$$
 (radius),  $\theta = 1.5708$  (angle)  $2.28136 \times 10^{-18}$ 

### **Polar forms:**

$$2.28136 \times 10^{-18} (\cos(1.5708) + i \sin(1.5708))$$

$$2.28136 \times 10^{-18} e^{1.5708 i}$$

 $((10^{-7})^{2})/(8[((((\sqrt{10-2}\sqrt{5})-2))((\sqrt{5-1})))1/(0.011303146014)])*1/50*sqrt(1-(125.1/50)^{2})/[1.73e+27*(50/125.1^{2})((((((10^{-7})^{2}1^{2}1^{2}))/(32Pi*125.1)*sqrt(1-(4*(50^{2})/(125.1^{2})))))]$ 

# **Input interpretation:**

$$\begin{split} \frac{\left(\frac{1}{10^{7}}\right)^{2}}{8\left(\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}\times\frac{1}{0.011303146014}\right)} \times \frac{1}{50}\times\\ \sqrt{1-\left(\frac{125.1}{50}\right)^{2}}\\ 1.73\times10^{27}\times\frac{50}{125.1^{2}}\left(\frac{\left(\frac{1}{10^{7}}\right)^{2}\times1^{2}}{32\pi\times125.1}\,\sqrt{1-4\times\frac{50^{2}}{125.1^{2}}}\right) \end{split}$$

#### **Result:**

 $8.63936... \times 10^{-25} i$ 

# **Polar coordinates:**

$$r = 8.63936 \times 10^{-25}$$
 (radius),  $\theta = 1.5708$  (angle)  $8.63936 \times 10^{-25}$ 

### **Polar forms:**

$$8.63936 \times 10^{-25} (\cos(1.5708) + i \sin(1.5708))$$

$$8.63936 \times 10^{-25} e^{1.5708 i}$$

# Dividing this expression with the previous

$$1.38 \times 10^{-23} \log \bigl(1.1814398741285991 \times 10^{96}\bigr)$$

we obtain:

 $1.38e-23 \ln(1.181439e+96)1/(((((10^{-7})^{2})/(8[(((\sqrt{10-2}\sqrt{5})-2))/((\sqrt{5-1})))1/(0.0113031)])1/50 \operatorname{sqrt}(1-(125.1/50)^{2})/[1.73e+27(50/125.1^{2})(((((10^{-7})^{2}1^{2}1^{2}))/(32Pi^{2}125.1)\operatorname{sqrt}(1-(4(50^{2})/(125.1^{2})))))])))$ 

# **Input interpretation:**

$$\frac{1}{8\left(\frac{\frac{1}{10^{7}}\right)^{2}}{8\left(\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}\times\frac{1}{0.0113031}\right)}\times\frac{1}{50}\times\frac{\sqrt{1-\left(\frac{125.1}{50}\right)^{2}}}{1.73\times10^{27}\times\frac{50}{125.1^{2}}\left(\frac{\left(\frac{1}{10^{7}}\right)^{2}\times1^{2}}{32\pi\times125.1}\sqrt{1-4\times\frac{50^{2}}{125.1^{2}}}\right)}$$

log(x) is the natural logarithm

#### **Result:**

### **Polar coordinates:**

$$r = 3533.57$$
 (radius),  $\theta = -1.5708$  (angle)  $3533.57$ 

### **Polar forms:**

$$3533.57 (\cos(-1.5708) + i \sin(-1.5708))$$

$$3533.57 e^{-1.5708 i}$$

$$[1.38e-23 \ln(1.181439e+96)1/(((10^{-7})^{2})/(8[((\sqrt{10-2}\sqrt{5})-2))/((\sqrt{5-1}))1/(0.0113031)])1/50 sqrt(1-(125.1/50)^{2})/[1.73e+27(50/125.1^{2})(((10^{-7})^{2}1^{2}))/(32Pi^{1}25.1)sqrt(1-(4(50^{2})/(125.1^{2}))))])^{1/17}$$

# **Input interpretation:**

$$1.38 \times 10^{-23} \log(1.181439 \times 10^{96}) \times$$

$$\frac{1}{8\left(\frac{\frac{1}{10^{7}}\right)^{2}}{8\left(\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}\times\frac{1}{0.0113031}\right)} \times \frac{1}{50} \times \frac{\sqrt{1-\left(\frac{125.1}{50}\right)^{2}}}{1.73\times10^{27}\times\frac{50}{125.1^{2}}\left(\frac{\left(\frac{1}{10^{7}}\right)^{2}\times1^{2}}{32\pi\times125.1}\sqrt{1-4\times\frac{50^{2}}{125.1^{2}}}\right)} \right)^{2}}$$
17)

log(x) is the natural logarithm

### **Result:**

1.61013... – 0.149201... *i* 

# **Polar coordinates:**

r = 1.61703 (radius),  $\theta = -0.0923998$  (angle)

1.61703 result that is a very good approximation to the value of the golden ratio 1.618033988749...

### **Polar forms:**

 $1.61703 (\cos(-0.0923998) + i \sin(-0.0923998))$ 

 $1.61703 \, e^{-0.0923998 \, i}$ 

In more detail, the corresponding Boltzmann equation for singlet particles (4.5) in the quartic regime  $T \gtrsim T_{\text{trans}}$  is given by,

$$\frac{dY_{\rm s}^{(4)}}{dT} = -\frac{K_1\left(\frac{m_{\rm h}}{T}\right)}{K_2\left(\frac{m_{\rm h}}{T}\right)} \frac{\Gamma_{h\to sh}^{(4)}}{H s_{\rm b} T} n_{\rm h} - \frac{\Gamma_{s_0\to ss}^{(4)}}{H s_{\rm b} T} n_{\rm s_0} , \qquad (5.8)$$

where  $Y_s \equiv n_s/s_b$  denotes the singlet number density normalized by the entropy density of the bath  $s_b$  and where we used  $\dot{T} \simeq -HT$ , which is an excellent approximation above the EW scale. With the rates given in Eqs. (4.7), (4.9) and (4.10), the solution of Eq. (5.8) is

$$Y_{\rm s}^{(4)}(T) = \left(4 \times 10^4 \lambda_{\rm sh}^2 \lambda_{\rm s}^{-5/8} \left(\frac{r}{0.1}\right)^{3/4} + 5 \times 10^2 \lambda_{\rm s}^{1/2} \left(\frac{r}{0.1}\right)\right) \frac{\rm GeV}{T}.$$
 (5.9)

$$\lambda_{\rm sh} \lesssim 10^{-7}$$
.

$$r = 10^{-8}$$
  $\lambda_s = 10^{-6}$ 

$$[(4*10^4*(10^-7)^2*(10^-6)^(-5/8)*((10^-8)/(0.1))^0.75)+5*10^2*sqrt(10^-6)*((10^-8)/(0.1))]$$

### **Input interpretation:**

$$4\times 10^4 \left(\frac{1}{10^7}\right)^2 \left(\frac{1}{10^6}\right)^{\!-5/8} \left(\frac{1}{10^8\times 0.1}\right)^{\!0.75} + 5\times 10^2 \, \sqrt{\frac{1}{10^6}} \, \times \frac{1}{10^8\times 0.1}$$

#### **Result:**

$$5.00126... \times 10^{-8}$$
  
 $5.00126... \times 10^{-8}$ 

$$(((1/((2*sqrt[(4*10^4*(10^-7)^2*(10^-6)^(-5/8)*((10^-8)/(0.1))^0.75)+5*10^2*sqrt(10^-6)*((10^-8)/(0.1)))])))^1/16$$

### **Input interpretation:**

$$\begin{array}{c} & & 1 \\ \\ 2\sqrt{4\times10^4\left(\frac{1}{10^7}\right)^2\left(\frac{1}{10^6}\right)^{\!-5/8}\left(\frac{1}{10^8\times0.1}\right)^{\!0.75} + 5\times10^2\,\sqrt{\frac{1}{10^6}\,\times\frac{1}{10^8\times0.1}}} \end{array}$$

#### Result:

1.6193449813917199660927920136656863880454756114919017365627767336

• • •

1.61934498139..... result that is a very good approximation to the value of the golden ratio 1.618033988749...

 $(2*0.9568666+1/2*(((\sqrt{(10-2\sqrt{5})-2)})((\sqrt{5-1})))))(((\sqrt{(10-2\sqrt{5})-2}))((\sqrt{5-1})))^8 1/[(4*10^4*(10^-7)^2*(10^-6)^((-5/8)*((10^-8)/(0.1))^0.75)+5*10^2*sqrt(10^-6)*((10^-8)/(0.1))] -16+0.6556795+0.9991104$ 

# **Input interpretation:**

$$\frac{\left(2 \times 0.9568666 + \frac{1}{2} \times \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1}\right) \left(\frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1}\right)^{8} \times }{1} }{4 \times 10^{4} \left(\frac{1}{10^{7}}\right)^{2} \left(\frac{1}{10^{6}}\right)^{-5/8} \left(\frac{1}{10^{8} \times 0.1}\right)^{0.75} + 5 \times 10^{2} \sqrt{\frac{1}{10^{6}} \times \frac{1}{10^{8} \times 0.1}} } - \frac{16 \times 0.6556705 \times 0.0001104}{10^{8} \times 0.1}$$

16 + 0.6556795 + 0.9991104

#### **Result:**

1729.1020734324660280384078747294494609904177534281926414319493518

• •

1729.102073...

This result is very near to the mass of candidate glueball  $f_0(1710)$  scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

# **Input interpretation:**

$$\left( 2 \times 0.95686 + \frac{1}{2} \times \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1} \right) \left( \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1} \right)^{8} \times \frac{1}{4 \times 10^{4} \left( \frac{1}{10^{7}} \right)^{2} \left( \frac{1}{10^{6}} \right)^{-5/8} \left( \frac{1}{10^{8} \times 0.1} \right)^{0.75} + 5 \times 10^{2} \sqrt{\frac{1}{10^{6}} \times \frac{1}{10^{8} \times 0.1}} \right)^{-5/8} \left( \frac{1}{10^{8} \times 0.1} \right)^{-5/8} \left( \frac{1}{10^{8} \times 0.1}$$

### **Result:**

1.6438209887018387562791634044596645926833103317372749536308079854

...

$$1.6438209887...$$
  $\approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$ 

### **Observations**

We note that, from the number 8, we obtain as follows:

8<sup>2</sup>

64

$$8^2\!\times\!2\!\times\!8$$

1024

$$8^4 = 8^2 \times 2^6$$

True

$$8^4 = 4096$$

$$8^2 \times 2^6 = 4096$$

$$2^{13} = 2 \times 8^4$$

True

$$2^{13} = 8192$$

$$2 \times 8^4 = 8192$$

We notice how from the numbers 8 and 2 we get 64, 1024, 4096 and 8192, and that 8 is the fundamental number. In fact  $8^2 = 64$ ,  $8^3 = 512$ ,  $8^4 = 4096$ . We define it "fundamental number", since 8 is a Fibonacci number, which by rule, divided by the previous one, which is 5, gives 1.6, a value that tends to the golden ratio, as for all numbers in the Fibonacci sequence

# "Golden" Range



Finally we note how  $8^2 = 64$ , multiplied by 27, to which we add 1, is equal to 1729, the so-called "Hardy-Ramanujan number". Then taking the 15th root of 1729, we obtain a value close to  $\zeta(2)$  that 1.6438 ..., which, in turn, is included in the range of what we call "golden numbers"

Furthermore for all the results very near to 1728 or 1729, adding  $64 = 8^2$ , one obtain values about equal to 1792 or 1793. These are values almost equal to the Planck multipole spectrum frequency 1792.35 and to the hypothetical Gluino mass

# Mathematical connections with some sectors of String Theory

From:

**Modular equations and approximations to \pi** - *Srinivasa Ramanujan* Quarterly Journal of Mathematics, XLV, 1914, 350 – 372

We have that:

Hence

$$\begin{array}{rcl} 64g_{22}^{24} & = & e^{\pi\sqrt{22}} - 24 + 276e^{-\pi\sqrt{22}} - \cdots, \\ 64g_{22}^{-24} & = & 4096e^{-\pi\sqrt{22}} + \cdots, \end{array}$$

so that

$$64(g_{22}^{24} + g_{22}^{-24}) = e^{\pi\sqrt{22}} - 24 + 4372e^{-\pi\sqrt{22}} + \dots = 64\{(1+\sqrt{2})^{12} + (1-\sqrt{2})^{12}\}.$$

Hence

$$e^{\pi\sqrt{22}} = 2508951.9982...$$

Again

$$G_{37} = (6 + \sqrt{37})^{\frac{1}{4}},$$

$$64G_{37}^{24} = e^{\pi\sqrt{37}} + 24 + 276e^{-\pi\sqrt{37}} + \cdots,$$
  

$$64G_{27}^{-24} = 4096e^{-\pi\sqrt{37}} - \cdots,$$

so that

$$64(G_{37}^{24}+G_{37}^{-24})=e^{\pi\sqrt{37}}+24+4372e^{-\pi\sqrt{37}}-\cdots=64\{(6+\sqrt{37})^6+(6-\sqrt{37})^6\}.$$

Hence

$$e^{\pi\sqrt{37}} = 199148647.999978...$$

Similarly, from

$$g_{58} = \sqrt{\left(\frac{5 + \sqrt{29}}{2}\right)},$$

we obtain

$$64(g_{58}^{24}+g_{58}^{-24})=e^{\pi\sqrt{58}}-24+4372e^{-\pi\sqrt{58}}+\cdots=64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}.$$

Hence

$$e^{\pi\sqrt{58}} = 24591257751.99999982\dots$$

From:

# An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$T e^{\gamma_E \phi} = -\frac{\beta_E^{(p)} h^2}{\gamma_E} e^{-2(8-p)C + 2\beta_E^{(p)} \phi}$$

$$16 \, k' \, e^{-2 \, C} = \frac{h^2 \left( p + 1 - \frac{2 \, \beta_E^{(p)}}{\gamma_E} \right) e^{-2 \, (8 - p) \, C + 2 \, \beta_E^{(p)} \, \phi}}{(7 - p)}$$

$$(A')^{2} = k e^{-2A} + \frac{h^{2}}{16(p+1)} \left(7 - p + \frac{2\beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p)C + 2\beta_{E}^{(p)}\phi}$$

we have obtained, from the results almost equals of the equations, putting

4096 
$$e^{-\pi\sqrt{18}}$$
 instead of

$$_{e}$$
 - 2 (8 -  $p$ )  $C$  + 2  $\beta_{E}^{(p)} \phi$ 

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C,  $\beta_E$  and  $\phi$  correspond to the exponents of e (i.e. of exp). Thence we obtain for p = 5 and  $\beta_E = 1/2$ :

$$e^{-6C+\phi} = 4096e^{-\pi\sqrt{18}}$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 642, while -6C+ $\phi$  is equal to  $\pi\sqrt{18}$ . From this it follows that it is possible to establish mathematically, the dilaton value.

For

 $\exp((-Pi*sqrt(18)))$  we obtain:

# **Input:**

$$\exp\left(-\pi\sqrt{18}\right)$$

### **Exact result:**

$$e^{-3\sqrt{2}\pi}$$

# **Decimal approximation:**

 $1.6272016226072509292942156739117979541838581136954016...\times10^{-6}$ 

# **Property:**

 $e^{-3\sqrt{2}\pi}$  is a transcendental number

# **Series representations:**

$$e^{-\pi \sqrt{18}} = e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k} {1/2 \choose k}}$$

$$e^{-\pi\sqrt{18}} = \exp\left[-\pi\sqrt{17}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right]$$

$$e^{-\pi\sqrt{18}} = \exp\left(-\frac{\pi \sum_{j=0}^{\infty} \text{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2\sqrt{\pi}}\right)$$

Now, we have the following calculations:

$$e^{-6C+\phi} = 4096e^{-\pi\sqrt{18}}$$

$$e^{-\pi\sqrt{18}} = 1.6272016...*10^{-6}$$

from which:

$$\frac{1}{4096}e^{-6C+\phi} = 1.6272016...*10^{-6}$$

$$0.000244140625 \ e^{-6C+\phi} = e^{-\pi\sqrt{18}} = 1.6272016... * 10^-6$$

Now:

$$\ln\left(e^{-\pi\sqrt{18}}\right) = -13.328648814475 = -\pi\sqrt{18}$$

And:

$$(1.6272016*10^{\circ}-6)*1/(0.000244140625)$$

Input interpretation: 
$$\frac{1.6272016}{10^6} \times \frac{1}{0.000244140625}$$

#### **Result:**

0.0066650177536

0.006665017...

Thence:

$$0.000244140625 e^{-6C+\phi} = e^{-\pi\sqrt{18}}$$

Dividing both sides by 0.000244140625, we obtain:

$$\frac{0.000244140625}{0.000244140625}e^{-6C+\phi} = \frac{1}{0.000244140625}e^{-\pi\sqrt{18}}$$

$$e^{-6C+\phi} = 0.0066650177536$$

# **Input interpretation:**

$$\exp\left(-\pi\sqrt{18}\right) \times \frac{1}{0.000244140625}$$

### **Result:**

0.00666501785...

0.00666501785...

# **Series representations:**

$$\frac{\exp(-\pi\sqrt{18}\,)}{0.000244141} = 4096 \exp\left(-\pi\sqrt{17}\,\sum_{k=0}^{\infty}17^{-k}\left(\frac{\frac{1}{2}}{k}\right)\right)$$

$$\frac{\exp(-\pi\sqrt{18})}{0.000244141} = 4096 \exp\left[-\pi\sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right]$$

$$\frac{\exp(-\pi\sqrt{18})}{0.000244141} = 4096 \exp\left(-\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma(-\frac{1}{2}-s)\Gamma(s)}{2\sqrt{\pi}}\right)$$

Now:

$$e^{-6C+\phi} = 0.0066650177536$$

$$\exp(-\pi\sqrt{18}) \times \frac{1}{0.000244140625} =$$

$$e^{-\pi\sqrt{18}} \times \frac{1}{0.000244140625}$$

$$= 0.00666501785...$$

From:

ln(0.00666501784619)

# **Input interpretation:**

log(0.00666501784619)

### **Result:**

-5.010882647757...

-5.010882647757...

# **Alternative representations:**

 $\log(0.006665017846190000) = \log_{\epsilon}(0.006665017846190000)$ 

 $\log(0.006665017846190000) = \log(a)\log_a(0.006665017846190000)$ 

 $\log(0.006665017846190000) = -\text{Li}_1(0.993334982153810000)$ 

$$\log(0.006665017846190000) = -\sum_{k=1}^{\infty} \frac{(-1)^k (-0.993334982153810000)^k}{k}$$

$$\log(0.006665017846190000) = 2 i \pi \left[ \frac{\arg(0.006665017846190000 - x)}{2 \pi} \right] + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.006665017846190000 - x)^k x^{-k}}{k} \text{ for } x < 0$$

$$\begin{split} \log(0.006665017846190000) &= \left\lfloor \frac{\arg(0.006665017846190000 - z_0)}{2\,\pi} \right\rfloor \log\left(\frac{1}{z_0}\right) + \\ &\log(z_0) + \left\lfloor \frac{\arg(0.006665017846190000 - z_0)}{2\,\pi} \right\rfloor \log(z_0) - \\ &\sum_{k=1}^{\infty} \frac{(-1)^k \; (0.006665017846190000 - z_0)^k \; z_0^{-k}}{k} \end{split}$$

# **Integral representation:**

$$\log(0.006665017846190000) = \int_{1}^{0.006665017846190000} \frac{1}{t} dt$$

In conclusion:

$$-6C + \phi = -5.010882647757...$$

and for C = 1, we obtain:

$$\phi = -5.010882647757 + 6 = \mathbf{0.989117352243} = \phi$$

Note that the values of  $n_s$  (spectral index) 0.965, of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243, are also connected to the following two Rogers-Ramanujan continued fractions:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi - 1)\sqrt{5} - \varphi + 1}} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

(http://www.bitman.name/math/article/102/109/)

The mean between the two results of the above Rogers-Ramanujan continued fractions is 0.97798855285, value very near to the  $\psi$  Regge slope 0.979:

$$\Psi$$
 3

$$\Psi$$
 3  $m_c = 1500$  0.979  $-0.09$ 

$$-0.09$$

Also performing the 512<sup>th</sup> root of the inverse value of the Pion meson rest mass 139.57, we obtain:

$$((1/(139.57)))^1/512$$

# **Input interpretation:**

$$10^{512} \sqrt{\frac{1}{139.57}}$$

### **Result:**

0.990400732708644027550973755713301415460732796178555551684...

0.99040073.... result very near to the dilaton value **0**. **989117352243** =  $\phi$  and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

From

AdS Vacua from Dilaton Tadpoles and Form Fluxes - J. Mourad and A. Sagnotti - arXiv:1612.08566v2 [hep-th] 22 Feb 2017 - March 27, 2018

We have:

$$e^{2C} = \frac{2\xi e^{\frac{\phi}{2}}}{1 \pm \sqrt{1 - \frac{\xi T}{3} e^{2\phi}}}$$

$$\frac{h^2}{32} = \frac{\xi^7 e^{4\phi}}{\left(1 \pm \sqrt{1 - \frac{\xi T}{3} e^{2\phi}}\right)^7} \left[\frac{42}{\xi} \left(1 \pm \sqrt{1 - \frac{\xi T}{3} e^{2\phi}}\right) + 5 T e^{2\phi}\right]. \quad (2.7)$$

For

$$T = \frac{16}{\pi^2}$$
$$\xi = 1$$

we obtain:

# **Input interpretation:**

$$\frac{2\,e^{0.989117352243/2}}{1+\sqrt{1-\frac{1}{3}\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}}}$$

#### **Result:**

0.83941881822... -1.4311851867... i

### **Polar coordinates:**

r = 1.65919106525 (radius),  $\theta = -59.607521917^{\circ}$  (angle)

1.65919106525..... result very near to the 14th root of the following Ramanujan's class invariant  $Q = (G_{505}/G_{101/5})^3 = 1164.2696$  i.e. 1.65578...

$$\frac{2e^{0.4945586761215000}}{1+\sqrt{1-\frac{16e^{1.978234704486000}}{3\pi^2}}\sum_{k=0}^{\infty}\left(\frac{3}{16}\right)^k\left(-\frac{e^{1.978234704486000}}{\pi^2}\right)^{-k}\left(\frac{1}{2}k\right)}$$

$$\frac{2e^{0.9891173522430000/2}}{1+\sqrt{1-\frac{16e^{2\times0.9891173522430000}}{3\pi^2}}}=$$

$$\frac{2e^{0.9891173522430000/2}}{2e^{0.4945586761215000}}$$

$$\frac{1+\sqrt{1-\frac{16e^{1.978234704486000}}{3\pi^2}}\sum_{k=0}^{\infty}\frac{\left(-\frac{3}{16}\right)^k\left(-\frac{e^{1.978234704486000}}{\pi^2}\right)^{-k}\left(-\frac{1}{2}\right)_k}{k!}}$$

$$\frac{2e^{0.9891173522430000/2}}{1+\sqrt{1-\frac{16e^{2\times0.9891173522430000}}{3\pi^2}}}=$$

$$\frac{2e^{0.4945586761215000}}{2e^{0.4945586761215000}}$$

$$1+\sqrt{20}\sum_{k=0}^{\infty}\frac{\left(-1^k\left(-\frac{1}{2}\right)_k\left(1-\frac{16e^{1.978234704486000}}{3\pi^2}-z_0\right)^kz_0^{-k}}{k!}}$$
for  $\left(\cot\left(z_0\in\mathbb{R} \text{ and } -\infty < z_0\leq 0\right)\right)$ 

From

$$\frac{h^2}{32} = \frac{\xi^7 e^{4\phi}}{\left(1 \pm \sqrt{1 - \frac{\xi T}{3} e^{2\phi}}\right)^7} \left[ \frac{42}{\xi} \left(1 \pm \sqrt{1 - \frac{\xi T}{3} e^{2\phi}}\right) + 5 T e^{2\phi} \right]$$

We obtain:

 $1/3*16/(Pi)^2*e^(2*0.989117352243)))+5*16/(Pi)^2*e^(2*0.989117352243)]$ 

# **Input interpretation:**

$$\frac{e^{4\times0.989117352243}}{\left(1+\sqrt{1-\frac{1}{3}\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}}\right)^7}$$
 
$$\left(42\left(1+\sqrt{1-\frac{1}{3}\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}}\right)+5\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}\right)$$

### **Result:**

50.84107889... -20.34506335... i

### **Polar coordinates:**

 $r = 54.76072411 \text{ (radius)}, \quad \theta = -21.80979492^{\circ} \text{ (angle)}$ 

54.76072411.....

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$e^{4 \times 0.9891173522430000} \right) / \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right)^7 =$$

$$\left( 2 \left( 40 \ e^{5.934704113458000} + 21 \ e^{3.956469408972000} \ \pi^2 + 21 \ e^{3.956469408972000} \ \pi^2 \right) \right)$$

$$\left( \pi^2 \left( 1 + \sqrt{-\frac{16 \ e^{1.978234704486000}}{3 \ \pi^2}} \right) \sum_{k=0}^{\infty} \left( \frac{3}{16} \right)^k \left( -\frac{e^{1.978234704486000}}{\pi^2} \right)^{-k} \left( \frac{1}{2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right) \right) \right)$$

$$\left( \left[ 42 \left[ 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right] + \frac{5 \times 16 \ e^{2 \times 0.9891173522430000}}{\pi^2} \right]$$

$$e^{4 \times 0.9891173522430000} \right] / \left[ 1 + \sqrt{1 - \frac{16 \ e^{2 \times 0.9891173522430000}}{3 \ \pi^2}} \right]^7 =$$

$$\left[ 2 \left[ 40 \ e^{5.934704113458000} + 21 \ e^{3.956469408972000} \ \pi^2 + 21 \ e^{3.956469408972000} \right]$$

$$\pi^2 \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left( -\frac{1}{2} \right)_k \left( 1 - \frac{16 \ e^{1.978234704486000}}{3 \ \pi^2} - z_0 \right)^k z_0^{-k}} \right] \right] /$$

$$\left[ \pi^2 \left[ 1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left( -\frac{1}{2} \right)_k \left( 1 - \frac{16 \ e^{1.978234704486000}}{3 \ \pi^2} - z_0 \right)^k z_0^{-k}}{k!} \right] \right]$$

$$\text{for (not } (z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$$

#### From which:

e^(4\*0.989117352243) / (((1+sqrt(1-1/3\*16/(Pi)^2\*e^(2\*0.989117352243)))))^7 [42(1+sqrt(1-

 $1/3*16/(Pi)^2*e^(2*0.989117352243))) + 5*16/(Pi)^2*e^(2*0.989117352243)]*1/34$ 

# **Input interpretation:**

$$\frac{e^{4\times0.989117352243}}{\left(1+\sqrt{1-\frac{1}{3}\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}}\right)^7} \\ \left(42\left(1+\sqrt{1-\frac{1}{3}\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}}\right)+5\times\frac{16}{\pi^2}\,e^{2\times0.989117352243}\right)\times\frac{1}{34}$$

#### **Result:**

1.495325850... – 0.5983842161... i

#### **Polar coordinates:**

r = 1.610609533 (radius),  $\theta = -21.80979492^{\circ}$  (angle)

1.610609533.... result that is a good approximation to the value of the golden ratio 1.618033988749...

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right) + \frac{5 \times 16 e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$e^{4 \times 0.9891173522430000} \right) / \left( 34 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right)^7 \right) =$$

$$\left( 40 e^{5.934704113458000} + 21 e^{3.956469408972000} \pi^2 + 21 e^{3.956469408972000} \pi^2 \right)$$

$$\sqrt{-\frac{16 e^{1.978234704486000}}{3 \pi^2}} \sum_{k=0}^{\infty} \left( \frac{3}{16} \right)^k \left( -\frac{e^{1.978234704486000}}{\pi^2} \right)^{-k} \left( \frac{1}{2} \right) /$$

$$\left( 17 \pi^2 \left( 1 + \sqrt{-\frac{16 e^{1.978234704486000}}{3 \pi^2}} \right) \sum_{k=0}^{\infty} \left( \frac{3}{16} \right)^k \left( -\frac{e^{1.978234704486000}}{\pi^2} \right)^{-k} \left( \frac{1}{2} \right) \right)^7 \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right) + \frac{5 \times 16 e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$e^{4 \times 0.9891173522430000} \right) / \left( 34 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right)^7 \right) =$$

$$\left( 40 e^{5.934704113458000} + 21 e^{3.956469408972000} \pi^2 + 21 e^{3.956469408972000} \pi^2 \right)$$

$$\sqrt{-\frac{16 e^{1.978234704486000}}{3 \pi^2}} \sum_{k=0}^{\infty} \frac{\left( -\frac{3}{16} \right)^k \left( -\frac{e^{1.978234704486000}}{\pi^2} \right)^{-k} \left( -\frac{1}{2} \right)_k}{k!} \right) /$$

$$\left( 17 \pi^2 \left( 1 + \sqrt{-\frac{16 e^{1.978234704486000}}{3 \pi^2}} \sum_{k=0}^{\infty} \frac{\left( -\frac{3}{16} \right)^k \left( -\frac{e^{1.978234704486000}}{\pi^2} \right)^{-k} \left( -\frac{1}{2} \right)_k}{k!} \right)^7 \right)$$

$$\left( \left( 42 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right) + \frac{5 \times 16 e^{2 \times 0.9891173522430000}}{\pi^2} \right) \right)$$

$$e^{4 \times 0.9891173522430000} \right) / \left( 34 \left( 1 + \sqrt{1 - \frac{16 e^{2 \times 0.9891173522430000}}{3 \pi^2}} \right)^7 \right) =$$

$$\left( 40 e^{5.934704113458000} + 21 e^{3.956469408972000} \pi^2 + 21 e^{3.956469408972000} \right)$$

$$\pi^2 \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left( -\frac{1}{2} \right)_k \left( 1 - \frac{16 e^{1.978234704486000}}{3 \pi^2} - z_0 \right)^k z_0^{-k}}{k!} \right) /$$

$$\left( 17 \pi^2 \left( 1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left( -\frac{1}{2} \right)_k \left( 1 - \frac{16 e^{1.978234704486000}}{3 \pi^2} - z_0 \right)^k z_0^{-k}}{k!} \right)^7 \right)$$

for (not  $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$ )

Now, we have:

$$e^{2C} = \frac{2\xi e^{-\frac{\phi}{2}}}{1 + \sqrt{1 + \frac{\xi \Lambda}{3} e^{2\phi}}},$$

$$\frac{h^2}{32} = \frac{e^{-4\phi}}{\left[1 + \sqrt{1 + \frac{\Lambda}{3} e^{2\phi}}\right]^7} \left[42\left(1 + \sqrt{1 + \frac{\Lambda}{3} e^{2\phi}}\right) - 13\Lambda e^{2\phi}\right].$$
(2.9)

For:

$$\xi = 1$$

$$\Lambda \simeq \frac{4\pi^2}{25}$$

$$\phi = 0.989117352243$$

From

$$e^{2C} = \frac{2 \xi e^{-\frac{\phi}{2}}}{1 + \sqrt{1 + \frac{\xi \Lambda}{3} e^{2\phi}}},$$

we obtain:

# Input interpretation:

$$\frac{2\,e^{-0.989117352243/2}}{1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}}$$

#### **Result:**

0.382082347529...

0.382082347529....

$$\frac{2 \, e^{-0.9891173522430000/2}}{1 + \sqrt{1 + \frac{(4 \, \pi^2) \, e^{2 \, \times 0.9891173522430000}}{3 \, \times 25}}} = 2 \, \left/ \left( e^{0.4945586761215000} \right) \right.$$

$$\left. \left( 1 + \sqrt{\frac{4 \, e^{1.978234704486000} \, \pi^2}{75}} \right) \sum_{k=0}^{\infty} \left( \frac{75}{4} \right)^k \left( e^{1.978234704486000} \, \pi^2 \right)^{-k} \left( \frac{1}{2} \right) \right) \right.$$

$$\frac{2 \, e^{-0.9891173522430000/2}}{1 + \sqrt{1 + \frac{(4 \, \pi^2) \, e^{2 \, \times 0.9891173522430000}}{3 \, \times 25}}} = 2 \, \left/ \left( e^{0.4945586761215000} \right) \right.$$

$$\left. \left( 1 + \sqrt{\frac{4 \, e^{1.978234704486000} \, \pi^2}{75}} \right) \sum_{k=0}^{\infty} \left( -\frac{75}{4} \right)^k \left( e^{1.978234704486000} \, \pi^2 \right)^{-k} \left( -\frac{1}{2} \right)_k \right) \right.$$

$$\frac{2 e^{-0.9891173522430000/2}}{1 + \sqrt{1 + \frac{(4 \pi^2) e^2 \times 0.9891173522430000}{3 \times 25}}} = \frac{2}{e^{0.4945586761215000} \left(1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(1 + \frac{4 e^{1.978234704486000 \pi^2}}{75} - z_0\right)^k z_0^{-k}}{k!}\right)}$$
for (not  $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$ )

### From which:

# **Input interpretation:**

$$1 + \frac{1}{4 \times \frac{2 e^{-0.989117352243/2}}{1 + \sqrt{1 + \frac{1}{3} (\frac{1}{25} (4 \pi^2))} e^{2 \times 0.989117352243}}}$$

### **Result:**

1.65430921270...

1.6543092..... We note that, the result 1.6543092... is very near to the 14th root of the following Ramanujan's class invariant  $Q = \left(G_{505}/G_{101/5}\right)^3 = 1164.2696$  i.e. 1.65578...

### Indeed:

$$\begin{split} G_{505} = P^{-1/4}Q^{1/6} = & (\sqrt{5} + 2)^{1/2} \left(\frac{\sqrt{5} + 1}{2}\right)^{1/4} (\sqrt{101} + 10)^{1/4} \\ & \times \left((130\sqrt{5} + 29\sqrt{101}) + \sqrt{169440 + 7540\sqrt{505}}\right)^{1/6}. \end{split}$$

Thus, it remains to show that

$$(130\sqrt{5} + 29\sqrt{101}) + \sqrt{169440 + 7540\sqrt{505}} = \left(\sqrt{\frac{113 + 5\sqrt{505}}{8}} + \sqrt{\frac{105 + 5\sqrt{505}}{8}}\right)^3,$$

which is straightforward.

$$\sqrt[14]{\left(\sqrt{\frac{113+5\sqrt{505}}{8}}+\sqrt{\frac{105+5\sqrt{505}}{8}}\right)^3}=1,65578\dots$$

$$\begin{split} 1 + \frac{1}{\frac{4\left(2\,e^{-0.9891173522430000/2}\right)}{1 + \sqrt{1 + \frac{\left(4\,\pi^2\right)e^2 \times 0.9891173522430000}{3 \times 25}}} = \\ 1 + \frac{e^{0.4945586761215000}}{8} + \frac{1}{8}\,e^{0.4945586761215000}\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}} \\ \sum_{k=0}^{\infty} \left(\frac{75}{4}\right)^k \left(e^{1.978234704486000}\,\pi^2\right)^{-k} \left(\frac{1}{2}\right)^k \\ k = 0 \end{split}$$

$$\begin{aligned} 1 + \frac{1}{\frac{4\left(2\,e^{-0.9891173522430000/2}\right)}{1+\sqrt{1+\frac{\left(4\,\pi^2\right)e^2\times0.9891173522430000}{3\times25}}}} = \\ 1 + \frac{e^{0.4945586761215000}}{8} + \frac{1}{8}\,e^{0.4945586761215000}\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}} \\ \sum_{k=0}^{\infty} \frac{\left(-\frac{75}{4}\right)^k \left(e^{1.978234704486000}\,\pi^2\right)^{-k} \left(-\frac{1}{2}\right)_k}{k!} \end{aligned}$$

$$\begin{aligned} 1 + \frac{1}{\frac{4\left(2\,e^{-0.9891173522430000/2}\right)}{1+\sqrt{1+\frac{\left(4\,\pi^2\right)e^2\times0.9891173522430000}{3\times25}}} &= 1 + \frac{e^{0.4945586761215000}}{8} + \\ \frac{1}{8}\,e^{0.4945586761215000}\,\sqrt{z_0}\,\sum_{k=0}^{\infty} \frac{\left(-1\right)^k\left(-\frac{1}{2}\right)_k\left(1 + \frac{4\,e^{1.978234704486000\,\pi^2}}{75} - z_0\right)^k\,z_0^{-k}}{k!} \\ &\text{for (not } \left(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0\right)) \end{aligned}$$

### And from

$$\frac{h^2}{32} \; = \; \frac{e^{\,-\,4\,\phi}}{\left[1\; +\; \sqrt{1\; +\; \frac{\Lambda}{3}\,e^{\,2\,\phi}}\,\right]^7} \; \left[42\left(1\; +\; \sqrt{1\; +\; \frac{\Lambda}{3}\,e^{\,2\,\phi}}\right) \; -\; 13\,\Lambda\,e^{\,2\,\phi}\right] \; .$$

we obtain:

### **Input interpretation:**

$$\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right)^7} \\ \left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right. -13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)$$

#### **Result:**

-0.034547055658...

-0.034547055658...

$$\begin{split} \left( \left[ 42 \left[ 1 + \sqrt{1 + \frac{\left( 4\,\pi^2 \right) e^{2 \times 0.9891173522430000}}{3 \times 25}} \right. - \frac{1}{25} \left( 4\,\pi^2 \right) 13\,e^{2 \times 0.9891173522430000} \right] \right) \\ e^{-4 \times 0.9891173522430000} \right] / \left[ 1 + \sqrt{1 + \frac{\left( 4\,\pi^2 \right) e^{2 \times 0.9891173522430000}}{3 \times 25}} \right]^7 = \\ - \left[ \left( 42 \left[ -25\,e^{1.978234704486000} + 52\,e^{3.956469408972000}\,\pi^2 \right. - \right. \\ \left. 25\,e^{1.978234704486000} \sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}} \right] \\ \sum_{k=0}^{\infty} \left( \frac{75}{4} \right)^k \left( e^{1.978234704486000}\,\pi^2 \right)^{-k} \left( \frac{1}{2} \right) \right) / \left( 25\,e^{5.934704113458000} \right. \\ \left. \left( 1 + \sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}} \right. \sum_{k=0}^{\infty} \left( \frac{75}{4} \right)^k \left( e^{1.978234704486000}\,\pi^2 \right)^{-k} \left( \frac{1}{2} \right) \right) \right] \end{split}$$

$$\left( \left\{ 42 \left( 1 + \sqrt{1 + \frac{(4\pi^2) \, e^{2 \times 0.9891173522430000}}{3 \times 25}} - \frac{1}{25} \left( 4\pi^2 \right) 13 \, e^{2 \times 0.9891173522430000} \right) \right)$$

$$e^{-4 \times 0.9891173522430000} \right) / \left( 1 + \sqrt{1 + \frac{(4\pi^2) \, e^{2 \times 0.9891173522430000}}{3 \times 25}} \right)^7 =$$

$$- \left( \left\{ 42 \left( -25 \, e^{1.978234704486000} + 52 \, e^{3.956469408972000} \, \pi^2 - \right) \right.$$

$$\left. 25 \, e^{1.978234704486000} \sqrt{\frac{4 \, e^{1.978234704486000} \, \pi^2}{75}} \right) / \left( 25 \, e^{5.934704113458000} \right) \right)$$

$$\left( 1 + \sqrt{\frac{4 \, e^{1.978234704486000} \, \pi^2}{75}} \sum_{k=0}^{\infty} \frac{\left( -\frac{75}{4} \right)^k \left( e^{1.978234704486000} \, \pi^2 \right)^{-k} \left( -\frac{1}{2} \right)_k}{k!} \right) \right)$$

$$\left( \left\{ 42 \left( 1 + \sqrt{1 + \frac{(4\pi^2) \, e^{2 \times 0.9891173522430000}}{3 \times 25}} - \frac{1}{25} \left( 4\pi^2 \right) 13 \, e^{2 \times 0.9891173522430000} \right) \right)$$

$$e^{-4 \times 0.9891173522430000} \right) / \left( 1 + \sqrt{1 + \frac{(4\pi^2) \, e^{2 \times 0.9891173522430000}}{3 \times 25}} \right)^7 =$$

$$- \left( \left\{ 42 \left( -25 \, e^{1.978234704486000} + 52 \, e^{3.956469408972000} \, \pi^2 - 25 \, e^{1.978234704486000} \right) \right.$$

$$\left. \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}}{k!} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}}{k!} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}}{k!} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}}{k!} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}}{k!} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^{1.978234704486000} \, \pi^2 - z_0 \right)^k \, z_0^{-k}} \right) \right) / \left( 25 \, e^{5.934704113458000} \right)$$

$$\left( 1 + \sqrt{z_0} \, \sum_{k=0}^{\infty} \frac{\left( -1 \right)^k \left( -\frac{1}{2} \right)_k \left( 1 + \frac{4 \, e^$$

#### From which:

## **Input interpretation:**

$$47 \left[ -\left[ \frac{1}{1} \right] \left( \frac{e^{-4 \times 0.989117352243}}{\left( 1 + \sqrt{1 + \frac{1}{3} \left( \frac{1}{25} \left( 4 \pi^2 \right) \right) e^{2 \times 0.989117352243}} \right)^{7} \right]$$

$$\left( 42 \left( 1 + \sqrt{1 + \frac{1}{3} \left( \frac{1}{25} \left( 4 \pi^2 \right) \right) e^{2 \times 0.989117352243}} \right) - 13 \left( \frac{1}{25} \left( 4 \pi^2 \right) \right) e^{2 \times 0.989117352243} \right) \right)$$

### **Result:**

1.6237116159...

1.6237116159.... result that is an approximation to the value of the golden ratio 1.618033988749...

$$-\left(47\left/\frac{1}{e^{-4\times0.9891173522430000}}\right(42\left(1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)-\frac{1}{25}\left(4\pi^2\right)13\,e^{2\times0.9891173522430000}\right)\right)\right/$$

$$\left(1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)=$$

$$\left(1974\left(-25\,e^{1.978234704486000}+52\,e^{3.956469408972000}\,\pi^2-\frac{25\,e^{1.978234704486000}}{75}\right)\right)\left(\frac{4\,e^{1.978234704486000}\,\pi^2}{75}\right)^{-k}\left(\frac{1}{2}\right)\right)\right/\left(25\,e^{5.934704113458000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-k}\left(\frac{1}{2}\right)\right)\right)\right/\left(25\,e^{5.934704113458000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-k}\left(\frac{1}{2}\right)\right)^7\right)$$

$$-\left(47\left/1\right/\left[e^{-4\times0.9891173522430000}\left\{42\left[1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right]-\frac{1}{25}\left(4\pi^2\right)13\,e^{2\times0.9891173522430000}\right]\right]\right/$$

$$\left(1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)=$$

$$\left(1974\left[-25\,e^{1.978234704486000}+52\,e^{3.956469408972000}\,\pi^2-\frac{25\,e^{1.978234704486000}}{75}\right]\right)^2$$

$$\left(1+\sqrt{\frac{4\,e^{1.978234704486000}}{k!}}+\frac{4\,e^{1.978234704486000}\,\pi^2}{\sqrt{5}}\right)^2/\left(25\,e^{5.934704113458000}\right)^2$$

$$\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^2\sum_{k=0}^{\infty}\frac{\left(-\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right)^7$$

$$-\left(47\left/1\right/\left(e^{-4\times0.9891173522430000}\left\{42\left[1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right]\right)^2\right)$$

$$\left(1+\sqrt{1+\frac{(4\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)=$$

$$\left(1974\left[-25\,e^{1.978234704486000}+52\,e^{3.956469408972000}\,\pi^2-25\,e^{1.978234704486000}\right]\right)^2/\left(25\,e^{5.934704113458000}\left(1+\sqrt{20}\,e^{2.0.9891173522430000}\right)\right)^2/\left(25\,e^{5.934704113458000}+52\,e^{3.956469408972000}\,\pi^2-25\,e^{1.978234704486000}\right)^2/\left(25\,e^{5.934704113458000}\left(1+\sqrt{20}\,e^{2.0.9891173522430000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}+52\,e^{3.956469408972000}\,\pi^2-20\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\left(1+\sqrt{20}\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.934704113458000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,e^{5.93470413486000}\right)^2/\left(25\,$$

# And again:

```
32((((e^(-4*0.989117352243) / [1+sqrt(((1+1/3*(4Pi^2)/25*e^(2*0.989117352243))))]^7 * [42(1+sqrt(((1+1/3*(4Pi^2)/25*e^(2*0.989117352243))))-13*(4Pi^2)/25*e^(2*0.989117352243))])))
```

# **Input interpretation:**

$$32\left[\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right)^7}\right.$$
 
$$\left.\left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right.-13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)\right]$$

#### **Result:**

-1.1055057810...

-1.1055057810....

We note that the result -1.1055057810... is very near to the value of Cosmological Constant, less  $10^{-52}$ , thence 1.1056, with minus sign

$$\left(32 e^{-4 \times 0.9891173522430000} \left(42 \left(1 + \sqrt{1 + \frac{(4 \pi^2) e^{2 \times 0.9891173522430000}}{3 \times 25}} \right) - \frac{1}{25} (4 \pi^2) 13 e^{2 \times 0.9891173522430000} \right) \right) \right) /$$

$$\left(1 + \sqrt{1 + \frac{(4 \pi^2) e^{2 \times 0.9891173522430000}}{3 \times 25}} \right)^7 = - \left( \left(1344 \left(-25 e^{1.978234704486000} + 52 e^{3.956469408972000} \pi^2 - \frac{25 e^{1.978234704486000} \sqrt{\frac{4 e^{1.978234704486000} \pi^2}{75}} \right) - \frac{1}{25} \left(\frac{75}{4}\right)^k \left(e^{1.978234704486000} \pi^2\right)^{-k} \left(\frac{1}{2} \left(\frac{1}{2}\right)^k\right) \right) / \left(25 e^{5.934704113458000} \left(1 + \sqrt{\frac{4 e^{1.978234704486000} \pi^2}{75}} \right) - \frac{1}{25} \left(\frac{75}{4}\right)^k \left(e^{1.978234704486000} \pi^2\right)^{-k} \left(\frac{1}{2} \left(\frac{1}{2}\right)^{\frac{1}{2}} \right) \right) \right)$$

#### And:

### **Input interpretation:**

$$-\left(32\left(\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right)^7}\right.\\ \left.\left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right)^{-1}\right)\right)^{\frac{1}{25}}$$

$$\left.13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)\right)^{\frac{1}{25}}$$

#### **Result:**

1.651220569...

1.651220569.... result very near to the 14th root of the following Ramanujan's class invariant  $Q = (G_{505}/G_{101/5})^3 = 1164.2696$  i.e. 1.65578...

$$-\left[\left(32\,e^{-4\times0.9891173522430000}\left(42\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right.\right.\right.\right.\\ \left.\left.\frac{1}{25}\left(4\,\pi^2\right)13\,e^{2\times0.9891173522430000}\right)\right]\right]\right]\right]$$

$$\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\Big)^5=$$

$$\left(4\,385\,270\,057\,140\,224\left(-25+52\,e^{1.978234704486000}\,\pi^2-25\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right.\right)^{-\frac{1}{2}}\right)$$

$$\sum_{k=0}^{\infty}\left(\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(\frac{1}{2}\right)^5\right)$$

$$\left(9\,765\,625\,e^{19.78234704486000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right.\right)^{-\frac{1}{2}}$$

$$\sum_{k=0}^{\infty}\left(\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(\frac{1}{2}\right)^{35}\right)$$

$$-\left(\left|32\,e^{-4\cdot0.9891173522430000}\right|42\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\cdot0.9891173522430000}}{3\times25}}\right.\right.\\ \left.-\frac{1}{25}\left(4\,\pi^2\right)13\,e^{2\cdot0.9891173522430000}\right)\right|\right)/\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\cdot0.9891173522430000}}{3\times25}}\right)^{7}\right)^{5}=\left(4.385\,270\,057\,140\,224\left(-25+52\,e^{1.978234704486000}\,\pi^{2}-25\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^{2}}{75}}\right)\right)/\left(9.765\,625\,e^{19.78234704486000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^{2}}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}\right)\right)/\left(1+\sqrt{1+\frac{(4\,\pi^{2})\,e^{2\cdot0.9891173522430000}}{k!}}\right)^{7}\right)^{5}=\left(4.385\,270\,057\,140\,224\left(-25+52\,e^{1.978234704486000}\,\pi^{2}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}\right)^{35}\right)$$

#### We obtain also:

```
-[32((((e^(-4*0.989117352243) / [1+sqrt(((1+1/3*(4Pi^2)/25*e^(2*0.989117352243))))]^7 * [42(1+sqrt(((1+1/3*(4Pi^2)/25*e^(2*0.989117352243))))-13*(4Pi^2)/25*e^(2*0.989117352243))]))]^1/2
```

## **Input interpretation:**

$$-\sqrt{\left|32\left(\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right)^7}\right.}\right.}$$

$$\left.\left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right.\right.\right.$$

$$\left.13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)\right|$$

#### **Result:**

- 0 1.0514303501... i

#### **Polar coordinates:**

 $r = 1.05143035007 \text{ (radius)}, \quad \theta = -90^{\circ} \text{ (angle)}$ 

1.05143035007

$$-\sqrt{\left(\left[32\,e^{-4\times0.9891173522430000}\left(42\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}\right.\right.\right.\right.}\right.}\right.$$
 
$$\left.-\sqrt{\left(\left[32\,e^{-4\times0.9891173522430000}\right]\right)\right/}$$
 
$$\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)=-\frac{8}{5}\,\sqrt{21}$$
 
$$\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^2+25\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right.}\right.$$
 
$$\left.-\sum_{k=0}^{\infty}\left(\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(\frac{1}{2}\right)\right/\left(e^{3.956469408972000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-k}\left(\frac{1}{2}\right)^7\right)}\right)^{\frac{1}{2}}$$

$$-\sqrt{\left(\left[32\,e^{-\frac{4}{3}\cdot0.9891173522430000}\left\{42\left[1+\sqrt{1+\frac{\left(4\,\pi^2\right)\,e^{2\times0.9891173522430000}}{3\times25}}\right.\right.\right.\right.}\right)^{2}} - \frac{1}{25}\left(4\,\pi^{2}\right)13\,e^{2\times0.9891173522430000}\right)\right)}/\left(1+\sqrt{1+\frac{\left(4\,\pi^{2}\right)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^{2}}\right) = -\frac{8}{5}\sqrt{21}$$

$$\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+25\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^{2}}{75}}\right]^{2}}\right)} - \frac{8}{5}\sqrt{21}$$

$$\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+25\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^{2}}{75}}\right]^{2}}\right)}$$

$$e^{3.956469408972000}\left[1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^{2}}{75}}\right]$$

$$-\sqrt{\left(\left[32\,e^{-\frac{4}{3}\times0.9891173522430000}\left\{42\left[1+\sqrt{1+\frac{\left(4\,\pi^{2}\right)\,e^{2\times0.9891173522430000}}{3\times25}}\right]\right]^{2}}\right)}$$

$$-\sqrt{\left(\left[1+\sqrt{1+\frac{\left(4\,\pi^{2}\right)\,e^{2\times0.9891173522430000}}{3\times25}}\right]^{2}}\right)}$$

$$-\frac{8}{5}\sqrt{21}\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+\frac{25\sqrt{20}}{5}}{2}\right]^{2}}\right)}$$

$$-\frac{8}{5}\sqrt{21}\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+\frac{25\sqrt{20}}{5}}{2}\right]^{2}}\right)}$$

$$-\frac{8}{5}\sqrt{21}\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+\frac{25\sqrt{20}}{5}\right]^{2}}\right)}$$

$$-\frac{8}{5}\sqrt{21}\sqrt{\left(\left[25-52\,e^{1.978234704486000}\,\pi^{2}+\frac{25\sqrt{20}}{5}\right]^{2}}\right)}$$

for (not  $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$ )

## **Input interpretation:**

$$-\left(1\left/\left(\sqrt{\left(32\left(\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right)^7}\right.\right.\right.\right.$$
 
$$\left.\left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)}e^{2\times0.989117352243}\right.\right.\right.$$
 
$$\left.13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)\right)\right)\right)$$

#### **Result:**

0.95108534763... i

#### **Polar coordinates:**

r = 0.95108534763 (radius),  $\theta = 90^{\circ}$  (angle)

0.95108534763

We know that the primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index  $n_s = 0.965 \pm 0.004$ , consistent with the predictions of slow-roll, single-field, inflation.

Thence 0.95108534763 is a result very near to the spectral index  $n_s$ , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1)\sqrt{5}} - \varphi + 1} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

$$-\left[1\left/\left(\sqrt{\left(\left(32\,e^{-4\times0.9891173522430000}\left(42\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}\right)-\frac{1}{25}\left(4\,\pi^2\right)13\,e^{2\times0.9891173522430000}\right)\right)\right/\right.}\right.\\ -\left.\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)\right)\right]=\\ -\left(5\left/\left(8\,\sqrt{21}\,\sqrt{\left(\left(25-52\,e^{1.978234704486000}\,\pi^2+25\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-2}}\right)}\right)\right)\right.\\ -\left.\left(\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(\frac{1}{2}\right)\right/\left(e^{3.956469408972000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-k}}\right)\right)\right)\right)$$

$$-\left(1\left/\left(\sqrt{\left(\left(32\,e^{-4\times0.9891173522430000}\left(42\left(1+\sqrt{1+\frac{\left(4\,\pi^2\right)e^{2\times0.9891173522430000}}{3\times25}\right)-\frac{1}{25}\left(4\,\pi^2\right)13\,e^{2\times0.9891173522430000}\right)\right)\right/}\right.\\ -\left(1+\sqrt{1+\frac{\left(4\,\pi^2\right)e^{2\times0.9891173522430000}}{3\times25}}\right)^7\right)\right)\right)=\\ -\left(5\left/\left(8\,\sqrt{21}\,\sqrt{\left(\left(25-52\,e^{1.978234704486000}\,\pi^2+25\,\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)}\right)-\frac{1}{25}\right)}\right)\right)\right)$$

$$\left(e^{3.956469408972000}\left(1+\sqrt{\frac{4\,e^{1.978234704486000}\,\pi^2}{75}}\right)^{-1}\left(-\frac{1}{2}\right)_k\right)}\right)$$

$$\sum_{k=0}^{\infty}\frac{\left(-\frac{75}{4}\right)^k\left(e^{1.978234704486000}\,\pi^2\right)^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right)^7\right)\right)\right)}{k!}$$

$$-\left[1\left/\left(\left|\left(32\,e^{-4\times0.9891173522430000}\left(42\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)-\frac{1}{25}\right)\right|\right)\right|$$

$$\left(4\,\pi^2\right)13\,e^{2\times0.9891173522430000}\right)\right|\right/$$

$$\left(1+\sqrt{1+\frac{(4\,\pi^2)\,e^{2\times0.9891173522430000}}{3\times25}}\right)^{7}\right)\right)\right)=$$

$$-\left[5\left/\left(8\,\sqrt{21}\,\sqrt{\left(\left(25-52\,e^{1.978234704486000}\,\pi^2+25\,\sqrt{z_0}\right)\right)}\right)\right|\right)$$

$$\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k\left(1+\frac{4\,e^{1.978234704486000}\,\pi^2}{75}-z_0\right)^k\,z_0^{-k}}{k!}\right)\right/$$

$$\left(e^{3.956469408972000}\left(1+\sqrt{z_0}\,\sum_{k=0}^{\infty}\right)\left(1+\frac{4\,e^{1.978234704486000}\,\pi^2}{75}-z_0\right)^k\,z_0^{-k}}\right)^{7}\right)\right)\right)$$

for (not  $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$ )

# From the previous expression

$$\frac{e^{-4\times0.989117352243}}{\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right)^7} \\ \left(42\left(1+\sqrt{1+\frac{1}{3}\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}}\right) -13\left(\frac{1}{25}\left(4\,\pi^2\right)\right)e^{2\times0.989117352243}\right)\right)$$

= -0.034547055658...

we have also:

$$1+1/(((4((2*e^{-0.989117352243/2)}))/((((1+sqrt(((1+1/3*(4Pi^2)/25*e^{-(2*0.989117352243)))))))))))))+(-0.034547055658)$$

# **Input interpretation:**

$$1 + \frac{1}{4 \times \frac{2 e^{-0.989117352243/2}}{1 + \sqrt{1 + \frac{1}{3} (\frac{1}{25} (4 \pi^2))} e^{2 \times 0.989117352243}}} - 0.034547055658$$

#### **Result:**

1.61976215705...

1.61976215705..... result that is a very good approximation to the value of the golden ratio 1.618033988749...

$$1 + \frac{1}{4(2e^{-0.9891173522430000/2})} - 0.0345470556580000 = \frac{1}{4(2e^{-0.9891173522430000})} - 0.0345470556580000 = \frac{1}{4(2e^{-0.9891173522430000})} - 0.0345470556580000 = \frac{1}{4(2e^{-0.98234704486000})} - \frac{1}{4(2e^{-0.9891173522430000})} - \frac{1}{4(2e^{-0.9891173522430000/2})} - \frac{1}{4(2e^{-0.9891173522430000/2})} - 0.0345470556580000 = \frac{1}{4(2e^{-0.9891173522430000/2})} - \frac{1}{4(2e^{-0.9891173522430000/2})} - \frac{1}{4(2e^{-0.9891173522430000})} - \frac{1}$$

$$1 + \frac{1}{\frac{4\left(2\,e^{-0.9891173522430000/2}\right)}{1+\sqrt{1+\frac{\left(4\,\pi^2\right)e^2\times0.9891173522430000}{3\times25}}}} - 0.0345470556580000 = \\ 0.9654529443420000 + \frac{e^{0.4945586761215000}}{8} + \\ \frac{1}{8}\,e^{0.4945586761215000}\,\sqrt{z_0}\,\sum_{k=0}^{\infty}\frac{\left(-1\right)^k\left(-\frac{1}{2}\right)_k\left(1+\frac{4\,e^{1.978234704486000\,\pi^2}}{75}-z_0\right)^k\,z_0^{-k}}{k!} \\ \text{for } \left(\text{not } \left(z_0\in\mathbb{R} \text{ and } -\infty < z_0\leq 0\right)\right)$$

#### From

## **Properties of Nilpotent Supergravity**

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 Sep 2015

### We have that:

Cosmological inflation with a tiny tensor—to—scalar ratio r, consistently with PLANCK data, may also be described within the present framework, for instance choosing

$$\alpha(\Phi) = i M \left( \Phi + b \Phi e^{ik\Phi} \right) . \tag{4.35}$$

This potential bears some similarities with the Kähler moduli inflation of [32] and with the polyinstanton inflation of [33]. One can verify that  $\chi=0$  solves the field equations, and that the potential along the  $\chi=0$  trajectory is now

$$V = \frac{M^2}{3} \left( 1 - a \phi e^{-\gamma \phi} \right)^2 . \tag{4.36}$$

We analyzing the following equation:

$$V \; = \; \frac{M^2}{3} \left( 1 \; - \; a \; \phi \; e^{-\gamma \; \phi} \right)^2 \; .$$

$$\phi = \varphi - \frac{\sqrt{6}}{k} ,$$

$$a = \frac{b\gamma}{e} < 0$$
,  $\gamma = \frac{k}{\sqrt{6}} < 0$ .

We have:

 $(M^2)/3*[1-(b/euler number * k/sqrt6) * (\phi- sqrt6/k) * exp(-(k/sqrt6)(\phi- sqrt6/k))]^2$  i.e.

 $V = (M^2)/3*[1-(b/euler\ number\ *\ k/sqrt6)\ *\ (\phi-\ sqrt6/k)\ *\ exp(-(k/sqrt6)(\phi-sqrt6/k))]^2$ 

For k = 2 and  $\phi = 0.9991104684$ , that is the value of the scalar field that is equal to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{5}}} \approx 0.9991104684$$

$$1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

we obtain:

 $V = (M^2)/3*[1-(b/euler\ number\ *\ 2/sqrt6)\ *\ (0.9991104684-\ sqrt6/2)\ *\ exp(-(2/sqrt6)(0.9991104684-\ sqrt6/2))]^2$ 

## **Input interpretation:**

$$V = \frac{M^2}{3} \left( 1 - \left( \frac{b}{e} \times \frac{2}{\sqrt{6}} \right) \left( 0.9991104684 - \frac{\sqrt{6}}{2} \right) \exp \left( -\frac{2}{\sqrt{6}} \left( 0.9991104684 - \frac{\sqrt{6}}{2} \right) \right) \right)^2$$

#### **Result:**

$$V = \frac{1}{3} \left( 0.0814845 \, b + 1 \right)^2 M^2$$

#### **Solutions:**

$$b = \frac{225.913 \left(-0.054323\,M^2 \pm 6.58545 \times 10^{-10}\,\sqrt{M^4}\,\right)}{M^2} \ \, (M \neq 0)$$

#### **Alternate forms:**

$$V = 0.00221324 (b + 12.2723)^2 M^2$$

$$V = 0.00221324 \left(b^2 M^2 + 24.5445 b M^2 + 150.609 M^2\right)$$

$$-0.00221324 b^2 M^2 - 0.054323 b M^2 - \frac{M^2}{3} + V = 0$$

## **Expanded form:**

$$V = 0.00221324 b^2 M^2 + 0.054323 b M^2 + \frac{M^2}{3}$$

# Alternate form assuming b, M, and V are positive:

$$V = 0.00221324 (b + 12.2723)^2 M^2$$

# Alternate form assuming b, M, and V are real:

$$V = 0.00221324 \, b^2 \, M^2 + 0.054323 \, b \, M^2 + 0.333333 \, M^2 + 0$$

#### **Derivative:**

$$\frac{\partial}{\partial b} \left( \frac{1}{3} \left( 0.0814845 \, b + 1 \right)^2 M^2 \right) = 0.054323 \left( 0.0814845 \, b + 1 \right) M^2$$

# **Implicit derivatives:**

$$\frac{\partial b(M,V)}{\partial V} = \frac{154317775011120075}{36961748(226802245 + 18480874b)M^2}$$

$$\frac{\partial b(M, V)}{\partial M} = -\frac{\frac{226\,802\,245}{18\,480\,874} + b}{M}$$

$$\frac{\partial M(b, V)}{\partial V} = \frac{154317775011120075}{2(226802245 + 18480874b)^2 M}$$

$$\frac{\partial M(b, V)}{\partial b} = -\frac{18480874 M}{226802245 + 18480874 b}$$

$$\frac{\partial V(b, M)}{\partial M} = \frac{2(226802245 + 18480874 \, b)^2 \, M}{154317775011120075}$$

$$\frac{\partial V(b,M)}{\partial b} = \frac{36961748 \left(226802245 + 18480874 \, b\right) M^2}{154317775011\, 120075}$$

### Global minimum:

$$\min\left\{\frac{1}{3}\left(0.0814845\,b+1\right)^2M^2\right\}=0\ \ \text{at}\ (b,\,M)=(-16,\,0)$$

#### Global minima:

$$\min\left\{\frac{1}{3}\,M^2\left(1-\frac{(b\,2)\left(0.9991104684-\frac{\sqrt{6}}{2}\right)\exp\left(-\frac{2\left(0.9991104684-\frac{\sqrt{6}}{2}\right)}{\sqrt{6}}\right)\right)^2}{e\,\sqrt{6}}\right\}=0$$
 for  $b=-\frac{226\,802\,245}{18\,480\,874}$ 

$$\min\left\{\frac{1}{3}M^{2}\left[1 - \frac{(b\ 2)\left(0.9991104684 - \frac{\sqrt{6}}{2}\right)\exp\left(-\frac{2\left(0.9991104684 - \frac{\sqrt{6}}{2}\right)}{\sqrt{6}}\right)\right]^{2}}{e\sqrt{6}}\right\} = 0$$
for  $M = 0$ 

From:

$$b = \frac{225.913 \left(-0.054323\,M^2 \pm 6.58545 \times 10^{-10}\,\sqrt{M^4}\,\right)}{M^2} \ \, (M \neq 0)$$

we obtain

 $(225.913 (-0.054323 \text{ M}^2 + 6.58545 \times 10^{-10} \text{ sqrt}(\text{M}^4)))/\text{M}^2$ 

## **Input interpretation:**

$$\frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \,\right)}{M^2}$$

#### **Result:**

$$\frac{225.913 \left(6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2\right)}{M^2}$$

# **Plots:**



# Alternate form assuming M is real:

-12.2723

-12.2723 result very near to the black hole entropy value  $12.1904 = \ln(196884)$ 

## **Alternate forms:**

$$-\frac{12.2723 \left(M^2-1.21228\times 10^{-8} \sqrt{M^4}\right)}{M^2}$$

$$\frac{1.48774\times 10^{-7}\,\sqrt{M^4}\,-12.2723\,M^2}{M^2}$$

# **Expanded form:**

$$\frac{1.48774\times 10^{-7}\,\sqrt{M^4}}{M^2} - 12.2723$$

# Property as a function:

**Parity** 

even

# Series expansion at M = 0:

$$\left(\frac{1.48774 \times 10^{-7} \sqrt{M^4}}{M^2} - 12.2723\right) + O(M^6)$$

(generalized Puiseux series)

## Series expansion at $M = \infty$ :

-12.2723

#### **Derivative:**

$$\frac{d}{dM} \left( \frac{225.913 \left( 6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2 \right)}{M^2} \right) = \frac{3.55271 \times 10^{-15}}{M}$$

## **Indefinite integral:**

$$\int \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \,\right)}{M^2} \, dM = \frac{1.48774 \times 10^{-7} \, \sqrt{M^4}}{M} - 12.2723 \, M + \text{constant}$$

### Global maximum:

$$\max \left\{ \frac{225.913 \left( 6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2 \right)}{M^2} \right\} = \frac{140119826723990341497649}{114175948492510000000000} \text{ at } M = -1$$

## Global minimum:

$$\min\left\{\frac{225.913\left(6.58545\times10^{-10}\sqrt{M^4}-0.054323\,M^2\right)}{\frac{M^2}{11417594849251\,000\,000\,000}}\right\} = \frac{140\,119\,826\,723\,990\,341\,497\,649}{11\,417\,594\,849\,251\,000\,000\,000}$$
 at  $M = -1$ 

#### Limit:

$$\lim_{M \to \pm \infty} \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} = -12.2723$$

# Definite integral after subtraction of diverging parts:

$$\int_0^\infty \left( \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} - -12.2723 \right) dM = 0$$

From b that is equal to

$$\frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2}$$

from:

**Result:** 

$$V = \frac{1}{3} \left( 0.0814845 \, b + 1 \right)^2 M^2$$

we obtain:

 $1/3~(0.0814845~((225.913~(-0.054323~M^2 + 6.58545 \times 10^{-10}~sqrt(M^4)))/M^2~) + 1)^2~M^2$ 

# **Input interpretation:**

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} + 1 \right)^2 M^2$$

**Result:** 

0

**Plots:** (possible mathematical connection with an open string)



(possible mathematical connection with an open string)



M = 2; M = 3

**Root:** 

M = 0

# Property as a function:

**Parity** 

even

Series expansion at M = 0:

$$O(M^{62194})$$

(Taylor series)

Series expansion at  $M = \infty$ :

$$1.75541 \times {10}^{-15} \; M^2 + O\bigg(\bigg(\frac{1}{M}\bigg)^{62\, 194}\bigg)$$

(Taylor series)

## Definite integral after subtraction of diverging parts:

$$\int_0^\infty \left( \frac{1}{3} M^2 \left( 1 + \frac{18.4084 \left( -0.054323 M^2 + 6.58545 \times 10^{-10} \sqrt{M^4} \right) \right)^2}{M^2} \right) - 1.75541 \times 10^{-15} M^2 \right) dM = 0$$

For M = -0.5, we obtain:

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} + 1 \right)^2 M^2$$

 $1/3 (0.0814845 ((225.913 (-0.054323 (-0.5)^2 + 6.58545 \times 10^{-10} \text{ sqrt}((-0.5)^4)))/(-0.5)^2) + 1)^2 * (-0.5^2)$ 

## **Input interpretation:**

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \left( -0.5 \right)^2 + 6.58545 \times 10^{-10} \sqrt{\left( -0.5 \right)^4} \right)}{\left( -0.5 \right)^2} + 1 \right)^2 \left( -0.5^2 \right)$$

#### **Result:**

 $-4.38851344947*10^{-16}$ 

For M = 0.2:

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 0.2^2 + 6.58545×10^-10 sqrt(0.2^4)))/0.2^2 ) + 1)^2 0.2^2

# **Input interpretation:**

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 0.2^2 + 6.58545 \times 10^{-10} \sqrt{0.2^4}\right)}{0.2^2} + 1\right)^2 \times 0.2^2$$

#### **Result:**

 $7.021621519159*10^{-17}$ 

For M = 3:

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 3^2 + 6.58545×10^-10 sqrt(3^4)))/3^2 ) + 1)^2 3^2

### **Input interpretation:**

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 3^2 + 6.58545 \times 10^{-10} \sqrt{3^4}\right)}{3^2} + 1\right)^2 \times 3^2$$

## **Result:**

 $1.579864841810872363256294820161116875\times 10^{-14}$ 

1.57986484181\*10<sup>-14</sup>

For M = 2:

$$\frac{1}{3} \left( 0.0814845 \times \frac{225.913 \left( -0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \, \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 2^2 + 6.58545×10^-10 sqrt(2^4)))/2^2 ) + 1)^2 2^2

# **Input interpretation:**

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 2^2 + 6.58545 \times 10^{-10} \sqrt{2^4}\right)}{2^2} + 1\right)^2 \times 2^2$$

#### **Result:**

7.021621519\*10<sup>-15</sup>

#### From the four results

we obtain, after some calculations:

# **Input interpretation:**

$$\sqrt{\left(\frac{1}{2\pi}\left(7.021621519\times10^{-15}+1.57986484181\times10^{-14}+\right.\right.}$$

$$7.021621519\times10^{-17}-4.38851344947\times10^{-16})\right)}$$

#### **Result:**

 $5.9776991059... \times 10^{-8}$ 

 $5.9776991059*10^{-8}$  result very near to the Planck's electric flow  $5.975498 \times 10^{-8}$  that is equal to the following formula:

$$\phi_{ ext{P}}^{E} = \mathbf{E}_{ ext{P}} l_{ ext{P}}^2 = \phi_{ ext{P}} l_{ ext{P}} = \sqrt{rac{\hbar c}{arepsilon_0}}$$

We note that:

 $\frac{1}{55}*(([(((1/[(7.021621519*10^{-15} + 1.57986484181*10^{-14} + 7.021621519*10^{-17} -4.38851344947*10^{-16})]))^{1}/7] - ((\log^{(5/8)}(2))/(2 2^{(1/8)} 3^{(1/4)} e \log^{(3/2)}(3))))))))))$ 

## **Input interpretation:**

$$\frac{1}{55} \left( (1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 4.38851344947 \times 10^{-16} \right) \right) \\ ^{ } \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 100000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 100000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 100000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 100000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 100000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} + 100000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} + 100000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left/ \left(7.021621519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left(7.02161519 \times 10^{-15} + 1000000 \right) \right) \\ - \left( 1 \left(7.02161519 \times 10^{-15} + 10000000 \right)$$

log(x) is the natural logarithm

#### **Result:**

1.6181818182...

1.61818182... result that is a very good approximation to the value of the golden ratio 1.618033988749...

From the Planck units:

Planck Length

$$l_{
m P}=\sqrt{rac{4\pi\hbar G}{c^3}}$$

5.729475 \* 10<sup>-35</sup> Lorentz-Heaviside value

Planck's Electric field strength

$$\mathbf{E}_{\mathrm{P}} = rac{F_{\mathrm{P}}}{q_{\mathrm{P}}} = \sqrt{rac{c^7}{16\pi^2arepsilon_0 \hbar\,G^2}}$$

1.820306 \* 10<sup>61</sup> V\*m Lorentz-Heaviside value

Planck's Electric flux

$$\phi_{
m P}^E = {f E}_{
m P} \, l_{
m P}^2 = \phi_{
m P} \, l_{
m P} = \sqrt{rac{\hbar c}{arepsilon_0}}$$

5.975498\*10<sup>-8</sup> V\*m Lorentz-Heaviside value

Planck's Electric potential

$$\phi_P = V_P = rac{E_P}{q_P} = \sqrt{rac{c^4}{4\piarepsilon_0 G}}$$

1.042940\*10<sup>27</sup> V Lorentz-Heaviside value

Relationship between Planck's Electric Flux and Planck's Electric Potential

$$\mathbf{E_P} * \mathbf{l_P} = (1.820306 * 10^{61}) * 5.729475 * 10^{-35}$$

**Input interpretation:** 

$$\frac{\left(1.820306 \times 10^{61}\right) \times 5.729475}{10^{35}}$$

### **Result:**

1042939771935000000000000000

## **Scientific notation:**

 $1.042939771935 \times 10^{27}$ 

 $1.042939771935*10^{27} \approx 1.042940*10^{27}$ 

Or:

$$\mathbf{E_P} * \mathbf{l_P}^2 / \mathbf{l_P} = (5.975498*10^{-8})*1/(5.729475*10^{-35})$$

# **Input interpretation:**

$$5.975498 \!\times\! 10^{-8} \!\times\! \frac{1}{\frac{5.729475}{10^{35}}}$$

### **Result:**

 $1.04293988541707573556041347592929544155441816222254220500133...\times 10^{27}$ 

 $1.042939885417*10^{27} \approx 1.042940*10^{27}$ 

# Acknowledgments

We would like to thank Professor **Augusto Sagnotti** theoretical physicist at Scuola Normale Superiore (Pisa – Italy) for his very useful explanations and his availability

#### References

Complex Analysis in Number Theory – 22.11.1994 - *Anatoly A. Karatsuba* 

## On the Zeros of the Davenport Heilbronn Function

S. A. Gritsenko - Received May 15, 2016 - ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2017, Vol. 296, pp. 65–87.

## **Inflationary Imprints on Dark Matter**

Sami Nurmi, Tommi Tenkanen and Kimmo Tuominen - arXiv:1506.04048v2 [astro-ph.CO] 4 Nov 2015

**Modular equations and approximations to \pi** - *Srinivasa Ramanujan* Quarterly Journal of Mathematics, XLV, 1914, 350 – 372

# An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

**AdS Vacua from Dilaton Tadpoles and Form Fluxes -** *J. Mourad and A. Sagnotti* - arXiv:1612.08566v2 [hep-th] 22 Feb 2017 - March 27, 2018

# **Properties of Nilpotent Supergravity**

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 Sep 2015