Analytická - kuželosečky – cvičení 3:

- 1. Určete S a r kružnice k: $x^2 + y^2 2x + 6y = 0$, pokud existuje.
- 2. Určete průsečíky $k: x^2 + y^2 2x + 6y = 0$ s p: y = 2x, pokud existují.
- 3. Určete d tak, aby p: y = 2x + d byla tečnou $k: x^2 + y^2 2x + 6y = 0$. Určete bod dotyku.
- 4. Napište rovnice tečen ke $k: x^2 + y^2 + 4x 10y 140 = 0$ v bodech $k \cap q$, kde q: x = 3
- 5. *Ved'te bodem M[2; 1] tečny ke $k: (x 5)^2 + (y 10)^2 = 9$.
- 6. *Určete body dotyku tečen z O[0; 0] ke $k: x^2 + y^2 + 10x + 10y + 49 = 0$
- 7. Určete průnik k_1 a k_2 :
 - $k_1: x^2 + y^2 2y 4 = 0$; $k_2: x^2 + y^2 + 4x 6 = 0$
 - k_1 : $x^2 + y^2 4x 2y + 3 = 0$; k_2 : $x^2 + y^2 4x 4y + 7 = 0$; v každém průsečíku určete tečny obou kružnic a úhel, který svírají.
- 8. Napište rovnici kružnice, která prochází středy stran $\triangle ABC$, A[1;5], B[3;9], C[5;-3]. Určete její další průsečíky s jeho stranami.
- 9. Napište rovnici kružnice, která má S[5; 4] a dotýká se p: 5x 12y 29 = 0.
- 10. Napište rovnici kružnice, která prochází M[2; 4] a dotýká se souřadnicových os.
- 11. Určete S[m; n] kružnice s r = 3cm, která se dotýká přímek y = 2x; $y = \frac{1}{2}x$.
- 12. Pro která $p \in R$ je $k: x^2 + y^2 2x + 8y + p = 0$ kružnice? Určete p, aby
 - procházela počátkem
 - dotýkala se *x*
 - dotýkala se y
- 13. Určete středy k_1 : $x^2 + y^2 5x 10 = 0$ a k_2 : $x^2 + y^2 + 5y 40 = 0$; $k_1 \cap k_2$.