→ Slope Fields.

Slope fields are used to visualize the shape of different solutions to a differential equation. This is particularly useful when a differential equation does not have an analytical solution. Here, we are given the system of differential equations:

$$\frac{dB}{dt} = r_b B(t) - k B(t) P(t)$$

and

$$\frac{dP}{dt} = -d_p P(t) + kB(t)P(t)$$

where r_b , d_p and k are constants.

We are asked to plot a slope field for B vs P. Let us take P as the y-axis and B as the x-axis.

Using the chain rule, we have

$$\frac{dP}{dB} = \frac{\frac{dP}{dt}}{\frac{dB}{dt}} = \frac{-d_pP + kBP}{r_bB - kBP}$$

Now, let us run a code which will output our slope as a vector. When our slope is m, the corresponding vector is $\hat{i} + m \cdot \hat{j}$. We will consider $r_b = 0.8$, $d_p = 1.6$ and k = 1.2.

Let us find the slope fields at the grid $B \times P \in [-0.5, 0.5] \times [-0.5, 0.5]$, at every 0.2 interval. At each point, we will output the following:

- 1. slope *m*
- 2. direction $\hat{i} + m\hat{j}$
- 3. the arctan(m)

This program can be cuztomized with different grid sizes, partitions on each axis , and different values of r_b , d_p , k.

```
import math

# Function to calculate the slope field at a given point (B, P)
def slope(B, P, r_b, d_p, k):
   numerator = (d_p * P) + (k * B * P)
   denominator = (r_b * B) - (k * B * P)
   try:
    return numerator / denominator
   except ZeroDivisionError:
    return math.nan

import numpy as np
```

```
gap = (upper_limit - lower_limit)/partitions
output = []
for i in range(0, partitions+1):
   output.append(lower_limit + i*gap)
return output
```

from tabulate import tabulate

```
def print slope field(
   lower limit b = -0.5,
   upper limit b = 0.5,
   partitions b = 5,
   lower limit p = -0.5,
   upper limit p = 0.5,
   partitions p = 5,
   r b = 0.8,
   dp = 1.6,
   k = 1.2):
   output = []
   b points = coordinates(lower limit b, upper limit b, partitions b)
   p points = coordinates(lower limit p, upper limit p, partitions p)
   for b in b points:
        for p in p points:
            slp = slope(b, p, r b, d p, k)
            direction = (1, slp)
            # angle in degree
            angle = math.atan(slp)*180.0/math.pi
            output.append(["{0:.2f}".format(b), "{0:.2f}".format(p), direction, "{0
   print(tabulate(output, headers = ['B', 'P', 'vector', 'angle wrt B axis in degr
```

print_slope_field()

В	P	vector	angle wrt B axis in degree
-0.5	-0.5	(1, 0.7142857142857143)	35.54
-0.5	-0.3	(1, 0.5172413793103448)	27.35
-0.5	-0.1	(1, 0.21739130434782605)	12.26
-0.5	0.1	(1, -0.2941176470588238)	-16.39
-0.5	0.3	(1, -1.3636363636363638)	-53.75
-0.5	0.5	(1, -4.9999999999999)	-78.69
-0.3	-0.5	(1, 1.4761904761904765)	55.89
-0.3	-0.3	(1, 1.0689655172413794)	46.91
-0.3	-0.1	(1, 0.4492753623188406)	24.19
-0.3	0.1	(1, -0.6078431372549026)	-31.29
-0.3	0.3	(1, -2.8181818181818197)	-70.46
-0.3	0.5	(1, -10.33333333333333)	-84.47
-0.1	-0.5	(1, 5.285714285714288)	79.29
-0.1	-0.3	(1, 3.8275862068965525)	75.36
-0.1	-0.1	(1, 1.6086956521739133)	58.13
-0.1	0.1	(1, -2.1764705882352966)	-65.32
-0.1	0.3	(1, -10.090909090909095)	-84.34
-0.1	0.5	(1, -37.0)	-88.45

0.1	-0.5	(1,	-6.142857142857138)	-80.75
0.1	-0.3	(1,	-4.448275862068962)	-77.33
0.1	-0.1	(1,	-1.8695652173913024)	-61.86
0.1	0.1	(1,	2.5294117647058827)	68.43
0.1	0.3	(1,	11.72727272727271)	85.13
0.1	0.5	(1,	42.9999999999964)	88.67
0.3	-0.5	(1,	-2.3333333333333333)	-66.8
0.3	-0.3	(1,	-1.6896551724137925)	-59.38
0.3	-0.1	(1,	-0.7101449275362317)	-35.38
0.3	0.1	(1,	0.960784313725491)	43.85
0.3	0.3	(1,	4.4545454545455)	77.35
0.3	0.5	(1,	16.3333333333333)	86.5
0.5	-0.5	(1,	-1.5714285714285716)	-57.53
0.5	-0.3	(1,	-1.1379310344827585)	-48.69
0.5	-0.1	(1,	-0.4782608695652173)	-25.56
0.5	0.1	(1,	0.6470588235294124)	32.91
0.5	0.3	(1,	3.00000000000000004)	71.57
0.5	0.5	(1,	10.9999999999996)	84.81

✓ 0s completed at 22:58

• ×