Tema 1: Arquitectura Web.

- 1. Introducción.
 - 1. Componentes semánticos de la Web.
 - ∠ URI
 - ∠ HTTP
 - ∠ HTML
- 2. Componentes software de la WEB (Arquitectura Web).
 - Cliente
 - 2. Servidor
 - 3. Proxie
- 3. Arquitectura de las Aplicaciones Web

IST - 2006 Arquitectura Web

1. Introducción.

La Web.

- - Universo de información interconectada, accesible a través de internet.
- ✓ Propuesta por Tim Berners-Lee (1989).
- Ha tenido mayor difusión que otros servicios contemporáneas (Archie, Gopher, WAIS), gracias sobre todo a uno de sus elementos: el HTML.
 - Hipertexto.
- En el 2001 había más de un billón de URLs accesibles al público, repartidas entre más de 30 millones de servidores.

IST - 2006

Arquitectura Web

1. Introducción.

1.1 Componentes semánticos de la Web

- URI: Uniform Resource Identifier.
 - ∠ Identifica los recursos web para su acceso y manipulación.
- - ∠ Lenguaje de marcas.
 - Provee una representación estándar de los documentos hipertexto en formato ASCII.
 - Permite formatear texto, integrar imágenes, referenciar otros documentos, etc.
- HTTP: Hypertext Transfer Protocol.
 - Protocolo que permite a los componentes web (cliente, servidores, etc) comunicarse de una forma estándar y bien definida.
 - ✓ Define el formato y el significado de los mensajes intercambiados entre componentes web.

ST - 2006 Arguitectura Web

Introducción. Componentes semánticos de la Web.

Codificación URI

- ✓ Identifica de forma única el recurso.
- ∠2 Tipos:
 - ∠URN: Uniform Resource Name.
 - ✓ Identifica de forma única el recurso, independientemente de donde resida (RFC 2141).
 - El mismo recurso situado en máquinas diferentes poseen el mismo identificador.
 - ∠URL: Uniform Resource Locator.
 - ∠La forma más común de identificar el recurso.
 - ≤Señala exactamente donde se encuentra el recurso.
 - - ≤ esquema + servidor + nombre del recurso.

- 2006 Arquitectura Web

Introducción.

1.1 Componentes semánticos de la Web.

URI

Sintáxis:

- ≤ esquema://[usuario];[password]@<maquina>:[puerto]/<cam
 ino>;[parametros]?[consulta]#[sección]
- Esquema: protocolo (http, https, file, ftp, news, mailto, ..).
- ∠ Usuario:password: para recursos de acceso restringido
- Máquina: nombre del servidor
- ∠ Puerto: número del puerto donde escucha el servidor.
- ∠ Camino: Directorio virtual y nombre del recurso.
- Parámetros: pares nombre=valor utilizados por algunos esquemas.
- Consulta: pares nombre=valor separados por &, utilizados en algunas aplicaciones web.
- ✓ Sección: nombre de una parte del recurso.

Ejemplos:

- ★ http://www.hardware.com:2000/pc/check.cgi?item=1273&model=B
- ftp://jose:suclave@www.hardware.com/informacion.txt

ST - 2006

Arquitectura Web

5

1. Introducción.

1.1 Componentes semánticos de la Web.

Conjunto de caracteres de la URL

- ∠ La URL ha sido diseñada para ser portable.
- ∠ Los caracteres especiales incluidos en la URL son transformados antes de ser enviados:
 - ✓ los caracteres de letras y números de la tabla ASCII estándar se dejan intactos.
 - ∠ Los espacios en blanco son sustituidos por +.
 - ∠ Los caracteres especiales son sustituidos por su valor hexadecimal con el prefijo '%'.
 - ∠ Los caracteres con un significado especial ("+", "&", "=", ";", "/", "?", "#", etc.) son también sustituidos por su código hexadecimal.

Núñez & Cía. & N%FA%Flez+%26+C%EDa.

IST - 2006

Arquitectura We

2. Componentes software de la Web.

Arquitectura Cliente/Servidor

- El modelo cliente-servidor es una aquitectura software que involucra uno o más clientes solicitando servicios a uno o más servidores.
- El cliente puede ser un proceso corriendo en un computadora o en un dispositivo como una PDA o un teléfono móvil.
- El servidor puede ser un proceso corriendo en un computadora (normalmente de altas prestaciones).
- En la arquitectura Web actual aparecen además elementos que se sitúan en medio (proxies, cachés)
- ∠ Beneficios:
 - ✓ Usabilidad/flexibilidad/interoperabilidad/ escalabilidad.

ST - 2006 Arquitectura Web

2. Componentes software de la Web.

2.1 Clientes

- Originan el trafico web.
 - Envían las peticiones y reciben las respuestas.
- ∠ Los navegadores (Netscape, IE, etc).
 - ∠ Las peticiones están dirigidas por el usuario.
 - Repiten peticiones al mismo objeto cuando navegan por un site.
 - ∠ Utilizan caches de memoria y disco.
- Robots (spiders, y agentes inteligentes).
 - ∠ Las peticiones son automatizadas.
 - La velocidad y carga está limitada por la velocidad de proceso, y por la velocidad de la red.

ST - 2006 Arquitectura Web 9

2. Componentes software de la Web. 2.1 Clientes

Funciones de los navegadores

- Construyen y mandan la petición HTTP
- Reciben, interpretan y presentan la respuesta.
 - ∠ La apariencia final depende de los parámetros de configuración
 - ∠ Algunos recursos precisan aplicaciones de ayuda para visualizars e
 ∠ Código MIME
- Proporcionan el interfaz para conectarse y utilizar otros servicios: mail, news, ftp, etc.
- - ≤ Sirve recursos guardados en la caché sin conectarse al servidor.
 - ∠ Consistencia:
 - ≤ Fuerte: revalida siempre el recurso conectándose al servidor.
 - Débil: se basa en los parámetros HTTP, y en los parámetros de configuración, para decidir si es necesario revalidar el recurso.

ST - 2006

Arquitectura Web

1.

2. Componentes software de la Web. 2.1 Clientes

Spiders

- Robots dedicados a la búsqueda automática de información.
 - Parten de la página principal de un sitio web, y examinan los enlaces embebidos que encuentran.
 - Las peticiones están espaciadas en el tiempo para no sobrecargar el servidor.
- La información se utiliza posteriormente en aplicaciones de búsqueda (google, yahoo).
- Los recursos dinámicos (CGI, PHP, etc.) no son indexados.
- Algunos sitios web no desean ser indexados:
 - ∠ Controlan el acceso de robots.
 - ∠ Los recursos HTML incluyen una directiva META:
 - <pre

IST - 2006

Arquitectura Web

2. Componentes software de la Web.

2.2 Servidores

- Programa que contesta y genera la respuesta HTTP a las peticiones de recursos web por parte del cliente
 - ∠ Involucra múltiples servidores, scripts, bases de datos, ...
- - ≤ Se conecta con el cliente.
 - ∠ Recibe el mensaje HTTP de la petición.
 - ∠ Procesa el mensaje HTTP.
 - ∠ Localiza y envía el resultado (en forma de mensaje HTTP)
- ∠ Los servidores de altas prestaciones, además:
 - Tratan múltiples peticiones:
 - ≤ hilos para manejar cada conexión.
 - ✓ Generan dinámicamente contenido: ASP, PHP, JSP
 - Caché.
- ∠ Los más populares son Apache e IIS.

T 2006 Arquitacture Web

2. Componentes software de la Web. 2.2 Servidores

Manejo de las peticiones

- ∠ Los servidores proveen acceso a los recursos:

 ∠
 - Estáticos.
 - ✓ Dinámicos (scripts que generan la respuesta dinámicamente).
- Pasos:
 - ∠ Lee e interpreta el mensaje de petición (método, URL, cookies,...)
 - ≤ Localiza físicamente el recurso apuntado en la URL
 - ∠ Determina si el cliente está autorizado (controla el acceso)
 - ✓ Genera el mensaje de respuesta y lo transmite (cookies)
 - Registra la operación en un fichero de log
- - Autenticación.
 - ∠ Piden al usuario que se identifique (login y password)
 - ≤ La información se incluye en la cabecera del mensaje.
 - Autorización.
 - ≤ Comprueba en su lista de acceso si el usuario está autorizado.

IST - 2006

Arquitectura Web

14

2. Componentes software de la Web. 2.2 Servidores

Recursos dinámicos

- ∠Dos tipos:
 - ✓ Scripts de servidor (PHP, ASP, JSP)
 - ✓ Ficheros HTML que incluyen macros que el servidor (un módulo) interpreta para insertar la información precisa.
 - ≤El servidor reconoce este tipo de recursos por la extensión
 - ∠Programas independientes (CGI, Servlets)
 - ∠Programa separado del servidor que genera la respuesta.
 - - Módulos software en el mismo proceso (Servlets).

IST - 2006

Arquitectura Web

2. Componentes software de la Web. 2.2 Servidores

Servidores complejos (II)

- Algunos sitios web tienen un conjunto amplio de máquinas servidoras actuando como un único servidor.
 - Cluster de máquinas.
 - ✓ No son necesariamente servidores virtuales.
- Servidor frontal:
 - ∠ Caché, direcciona las peticiones, balancea la carga
- Servidores de contenido:
 - Algunas veces diferenciados de acuerdo al tipo de petición (HTML, imágenes, consulta, búsqueda).
- Servidores de bases de datos.
 - ✓ Información que contribuye a la parte dinámica.

ST - 2006 Arguitectura Web 17

2. Componentes software de la Web. 2.3 Proxies

Intermediarios Web

Proxy

- Programa que actúa a la vez como servidor y cliente, situándose en medio de los dos.
- ∠ Las peticiones son servidas internamente o pasadas a otro servidor.

Pasarela

- ✓ Un servidor que actúa como intermediario de algún otro servidor.
- A diferencia del proxy, una pasarela proxy recibe peticiones como si fuera el servidor original.

🗷 Túnel

- Programa intermediario que actúa como un túnel no controlado, permitiendo tráfico no-HTTP a través de conexiones HTTP
- ∠ Un vez activo, un túnel no es considerado como parte de la comunicación HTTP, aunque haya sido activado por la petición HTTP.
- El túnel deja de existir cuando la comunicación se cierra.

IST - 2006

Arquitectura Web

2. Componentes software de la Web. 2.3 Proxies

El proxy

- ✓ Intermediario web situado entre el cliente y el servidor para reducir comunicación no deseada.
 - A veces forma parte de los mecanismo de seguridad.
 - ∠ La mayoría de veces actúan como caches.
- Realizan simultáneamente el papel de servidor y cliente:

2. Componentes software de la Web. 2.3 Proxies

Funciones del proxy

- Caché:

 - ∠ Comparte accesos con otros clientes.
- Filtra las peticiones y las respuestas (seguridad).
 - Filtra las peticiones a ciertos sitios web.
- Guardan el anonimato.
 - Los servidores no conocen la IP del cliente.
- Transforman las peticiones y las respuestas.
 - ∠ Puede trasformar la petición para ajustarse a capacidades que comparte con el servidor (pe. Algoritmos de compresión).
 - Puede ajustar la respuesta a las capacidades del cliente.
- Actúan también de pasarelas a otros sistemas no-HTTP.

IST - 2006

Arquitectura Web

2. Componentes software de la Web. 2.3 Proxies

Cachés

- Cuando actúan como caches gestionan las peticiones en la parte de los clientes.
 - El navegador envía la petición a la caché.
 - ∠ La Caché devuelve el recurso si está almacenado localmente y está actualizado.
 - ≤ Basado en los campos URL, ETag, fecha.
 - En caso contrario, la caché pasa la solicitud al servidor
 - ≤ Si está pasado de fecha, la caché valida el recurso
- ∠ Diferencia con el resto de proxies:
 - ∠ Algunas peticiones no llegan al servidor origen.

2. Componentes software de la Web. 2.3 Proxies

Beneficios de las cachés

- Los Proxies que actúan como caches explotan las peticiones anteriores de un grupo de clientes.
- ∠ Las cachés benefician a clientes, a servidores, y a la red.
 - Ancho de banda: Reducen la utilización de la red

 - Especialmente útiles en entornos con restricciones en el ancho de banda (pe. en enlaces internacionales)
 - ∠ Velocidad: Reducen el tiempo de espera.
 - ∠ Cuanto m ás próximo está la caché del cliente, más rápido es el tiempo de respuesta.
 - ∠ Carga del servidor: Partes de las peticiones son resueltas por la caché
- Empíricamente, las caches mejoran en un 50% la velocidad de respuesta y reducen en un 40% la cantidad de bytes transmitidos.

IST - 2006

Arquitectura Web

3. Arquitectura de las aplicaciones Web

Aplicaciones Web

- Una aplicación web es proporcionada por un servidor web y utilizada por usuarios que se conectan desde cualquier punto vía clientes web (navegadores).
- Definición:
 - Son aplicaciones basadas en el modelo Cliente/Servidor que gestionan servidores web, y que utilizan como interfaz páginas web
 - ∠ La colección de páginas son en una buena parte dinámicas (ASP, PHP, etc.), y están agrupadas lógicamente para dar un servicio al usuario.
 - El acceso a las páginas está agrupado también en el tiempo (sesión).
 - Ejemplos: venta de libros, reserva de billetes, etc.

ST - 2006 Arguitectura Web 23

3. Arquitectura de las aplicaciones Web

Componentes de una aplicación Web

- ∠ Lógica de negocio.
 - ∠ Parte más importante de la aplicación.
 - ∠ Define los procesos que involucran a la aplicación.
 - ∠ Conjunto de operaciones requeridas para proveer el servicio.
- Administración de los datos.
- Interfaz:
 - ∠ Los usuarios acceden a través de navegadores, móviles, PDAs, etc.
 - Funcionalidad accesible a través del navegador.
 - ∠Limitada y dirigida por la aplicación.

ST - 2006 Arquitectura Web 24

3. Arquitectura de las aplicaciones Web

Modelo de capas

- ∠ Las aplicaciones web se modelizan mediante lo que se conoce como modelo de capas.
 - Una capa representa un elemento que procesa o trata información.
- Tipos:
 - ✓ Modelo de dos capas: La información atraviesa dos capas entre la interfaz y la administración de los datos.
 - - El más habitual es el modelo de tres capas.

IST - 2006 Arquitectura Web 25

3. Arquitectura de las aplicaciones Web.

Modelo de dos Capas.

- Gran parte de la aplicación corre en el lado del cliente (fat client).
- Capas:
 - Cliente (fat client):
 - ∠La lógica de negocio está inmersa dentro de la aplicación que realiza el interfaz de usuario, en el lado del cliente.
 - Servidor:
 - Administra los datos.
- Limitaciones.
 - Es difícilmente escalable
 - ✓ Número de conexiones reducida
 - Alta carga de la red.
 - ∠ La flexibilidad es restringida
 - La funcionalidad es limitada.

Cliente Lógica de negocio

Servidor Datos

IST - 2006

Arquitectura Web

3. Arquitectura de las aplicaciones Web.

Modelo de tres Capas (I)

- Diseñada para superar las limitaciones de las arquitecturas ajustadas al modelo de dos capas
- Introduce una capa intermedia (la capa de proceso) entre presentación y los datos
 - ∠ Los procesos pueden ser manejados de forma separada al interfaz de usuario y a los datos
 - ∠ La capa intermedia centraliza la lógica de negocio, haciendo la administración más sencilla.
- Pueden integrar datos de múltiples fuentes
- ∠ Las aplicaciones web actuales se ajustan a este modelo.

IST - 2006 Arquitectura Web 27

3. Arquitectura de las aplicaciones Web.

Modelo de tres Capas (II)

- ∠ Capas:
 - ∠ Capa de presentación (parte en el cliente y parte en el servidor)
 - Recoge la información del usuario y la envía al servidor (cliente)
 - ≤ Manda información a la capa de proceso para su procesado
 - ∠ Recibe los resultados de la capa de proceso
 - Generan la presentación
 - ✓ Visualizan la presentación al usuario (cliente)
 - Capa de proceso (servidor web)
 - Recibe la entrada de datos de la capa de presentación
 - ≤ Interactúa con la capa de datos para realizar operaciones
 - Manda los resultados procesados a la capa de presentación
 - ∠ Capa de datos (servidor de datos)
 - Almacena los datos
 - Recupera datos
 - ✓ Mantiene los datos
 - Asegura la integridad de los datos

IST - 2006

Arquitectura Web

