MAE 311 - INFERÊNCIA ESTATÍSTICA

4a. Lista de Exercícios - 2o. semestre de 2009

Profa. Mônica Carneiro Sandoval

1. Sejam X_1, \ldots, X_n a.a. da v.a. X com distribuição normal de média μ e variância σ^2 , $\mu \in \Re$, $\sigma^2 > 0$ conhecido. Considere o intervalo de confiança (IC)

$$[\bar{X} - z_{\alpha/2}\sigma/\sqrt{n}; \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}],$$

onde $z_{\alpha/2}$ é o quantil de ordem $1-\alpha/2$ da distribuição normal padrão.

- a) Obtenha o tamanho da amostra em função do comprimento do IC. Qual é o menor tamanho da amostra para que o IC de coeficiente de confiança $\gamma = 95\%$ tenha comprimento de no máximo 2 unidades se $\sigma^2 = 36$?
- b) Se foi observado $\sum_{i=1}^{n} x_i/n = 23$, n é o valor obtido em a), $\gamma = 95\%$ e $\sigma^2 = 36$, qual é o IC resultante?
- **2.** Sejam X_{i1}, \ldots, X_{in_i} observações independentes de distribuições normais de média μ_i e variância σ_i^2 , para $i = 1, 2; \mu_1, \mu_2 \in \Re, \sigma_1^2, \sigma_2^2 > 0$ conhecidos.
- a) Obtenha um IC para $\mu_1 - \mu_2$ com coeficiente de confiança γ .
- b) Se $n_1 = n_2 = n/2$, $\sigma_1 = 10$ e $\sigma_2 = 20$, qual é o menor valor de n para que o IC de coeficiente de confiança $\gamma = 95\%$ tenha comprimento de no máximo 2 unidades?
- c) Se $n_1 = n_2 = n/2$, onde n é o valor obtido em b), $\sigma_1 = 10$ e $\sigma_2 = 20$ e foram observados $\sum_{i=1}^{n_1} x_{i1}/n_1 = 12$ e $\sum_{i=1}^{n_2} x_{i2}/n_2 = 11$, obtenha o IC de coeficiente de confiança $\gamma = 95\%$. Você pode concluir que as médias μ_1 e μ_2 são diferentes?
- **3.** Seja X_1, \ldots, X_n uma amostra aleatória da variável aleatória X com função densidade de probabilidade dada por

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

- a) Encontre o estimador de máxima verossimilhança de $\theta/(1+\theta)$.
- b) Obtenha um intervalo de confiança aproximado para $\theta/(1+\theta)$, com coeficiente de confiança γ (0 < γ < 1).
- **4.** Sejam X_1, \ldots, X_n uma a.a. da v.a. X com distribuição de Poisson de parâmetro $\theta, \theta > 0$.
- a) Obtenha um IC para θ com coeficiente de confiança aproximadamente γ ($a < \gamma < 1$).
- b) Obtenha um IC para P[X=0] com coeficiente de confiança aproximadamente γ ($a<\gamma<1$).
- c) Se $n = 100, \sum_{i=1}^{n} X_i = 52 \text{ e } \gamma = 98\%$, obtenha os ICs em a) e b).
- **5.** Sejam X_1, \ldots, X_n uma a.a. da v.a. X com distribuição Gama (α, β) e função densidade de probabilidade

$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

onde $\Gamma(.)$ é a funcção. Admita que α é conhecido. Obtenha um IC para β com coeficiente de confiança γ . Qual é o IC se $\sum X_i = 22, n = 30$ e $\gamma = 95\%$?

- **6.** Sejam X_1, \ldots, X_n observações independentes de distribuições exponenciais de médias $\alpha \beta^1, \ldots, \alpha \beta^n$, respectivamente, $\alpha > 0$ e $\beta > 0$.
- a) Mostre que $X_i/(\alpha\beta^i)$ tem distribuição exponencial de média 1.
- b) Supondo que β é conhecido, construa um intervalo de confiança para α com coeficiente de confiança γ .
- 7. Exercício 5.3
- 8. Exercício 5.4
- 9. Exercício 5.5
- **10.** Exercício 5.6
- 11. Exercício 5.7
- 12. Exercício 5.8
- 13. Exercício 5.9
- **14.** Exercício 5.10