

Environmental Contaminants in St. Lawrence Estuary→ Belugas on the Road to Extinction

Rationale:

Current contaminant monitoring relies on invasive beluga skin biopsies

Can we use the beluga skin microbiome instead?

Hypothesis:

The beluga skin microbiome changes as a function of beluga tissue contaminant concentrations, and can be used for less invasive swab-based monitoring of animal health

The Beluga Skin Microbiome is Distinct From the Seawater Microbiome

PCoA Plot of Sample Microbiomes

Beluga Skin Microbiome Changes Correlate with Some Contaminant Levels

Potential Phyla Biomarkers For All Contaminants

Pearson correlation of taxa abundance (y-axis) and blubber contaminant concentration (x-axis), with correction for multiple testing

Significance:

Potential utility of the beluga skin microbiome for non-invasive monitoring of contaminant exposure that warrants further study.

Potential Genera Biomarkers For Individual Contaminants

Thank You!

Caren Helbing Michael J. Allison

+ Raymond Lo & Justin Cook Brinkman Lab

Fisheries and Oceans Canada

Pêches et Océans Canada