

Graph Partition

Hanqing Zhu 07/15/2019

Graph Partition Problem

Example: Graph Partition Result

- Given
 - Graph G=(V,E), n=|V| vertices, E=edges
 - Possibly weights (W_V, W_E)
 - \Box Edge e = (u, v)
- ullet Objective: For a (k,v) partition problem , choose a partition $V=V_1\cup V_2\cup \cdots \cup V_k$
 - \Box The sum of vertices in each V_i is "about the same"
 - ullet The sum of all edge weights of edges connecting all different pairs V_i and V_j is minimized

Graph Partition Problem

- Graph Partition Problem Complexity
 - \Box Choose optimal partition : NP hard Problem
 - Heuristics and approximation algorithms are generally used
- METIS/ hMETIS → graph/hypergraph → edge-cut minimization
 - Multi-level methods
 - Idea:

Analogy to k-means Algorithm

- Target: To group the data into a few cohesive "cluster"
 - 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
 - Repeat until convergence: {

```
For every i, set c^{(i)}:=\arg\min_j||x^{(i)}-\mu_j||^2. For each j, set \mu_j:=\frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}. }
```

- For Graph Partition Problem:
 - How to define the **centroid** in graph?
 - How to define the "distance" between centroid and other node?

Diffusive Framework

- To start with an initial, often randomly chosen vertex(seed) per partition
- Then, all sub-domains grow simultaneously
- □ Last, all vertices of the graph → a partition, each component computes its new center
- Several ways can be used to implement the three steps
 - Randomly choose initial vertices?
 - Distribute initial evenly by using BFS to find a farthest seed from prior seed (serially search)

Learning bubble framework

Diffusive Mechanisms

The growth and seed determination process

- Realize the growth process via iterations of a diffusive process
 - diffuse into
- Two important properties required
 - "hill like" load contribution
 - Connectivity also affects load distribution (not only distance)

Diffusion scheme

- \Box Given G = (V, E) an unweighted, connected graph with n = |V| vertices
 - □ *A*: the adjacency matrix of the graph
 - **D**: the diagonal matrix D = diag(Ae), where vector $e = (1, ..., 1)^T$
 - \Box L: the Laplacian matrix L = D A
 - □ *M*: the diffusion matrix $M = I \alpha L$, $(0 < \alpha < 1, a constant param)$
- FOS scheme (first order scheme)
 - For each

$$f_{e=(u,v)}^{(i)} = \alpha \cdot \left(w_u^{(i)} - w_v^{(i)}\right)$$

$$w_v^{(i+1)} = w_v^{(i)} - \sum_{e=(v,*)} f_e^{(i)}$$

Diffusion with Constant Draining

- FOS/C scheme performs two operation
 - Origin diffusion step
 - Shift a small load amount $\delta > 0$ from all vertices of the graph to some selected source vertices (seed) $S \subset V$

$$d_v = \begin{cases} -\delta : v \notin S \\ \delta \cdot |V|/|S| - \delta : \text{ otherwise} \end{cases}$$

FOS/C scheme

$$f_{e=(u,v)}^{(i)} = \alpha \cdot \left(w_u^{(i)} - w_v^{(i)}\right)$$

$$w_v^{(i+1)} = w_v^{(i)} - \sum_{e=(v,*)} f_e^{(i)} + d_v$$

$$w^{(i+1)} = \mathbf{M}w^{(i)} + d.$$

- FOS/C Convergence state
 - Solve the linear system :

$$Lw = d$$

$$w^{(*)} = \mathbf{M}w^{(*)} + d$$

$$\Leftrightarrow (\mathbf{I} - \mathbf{M})w^{(*)} = d$$

$$\Leftrightarrow \alpha \mathbf{L}w^{(*)} = d$$

Result

- □ During the learning process, the partition centers are directed into areas which are dense regions with more load diffusing into → the partition boundaries tend to be in sparser regions → reduce the number of boundary vertices → improve the partition quality
- Run time is too long

Graph	Metis			Jostle			Bubble-FOS/C		
	Time	Cut	Boundary	Time	Cut	Boundary	Time	Cut	Boundary
biplane9	$0.03 \mathrm{\ s}$	670	1142	$0.15 \; { m s}$	647	1104	$7.10 \; s$	672	955
crack	$0.02 \mathrm{\ s}$	1041	1030	$0.06 \mathrm{\ s}$	1031	1018	$1.59 \mathrm{\ s}$	1017	1004
crack (dual)	$0.02 \mathrm{\ s}$	466	919	$0.08 \mathrm{\ s}$	450	893	$6.00 \mathrm{\ s}$	447	865
grid100x100	$0.03 \mathrm{\ s}$	584	1006	$0.09 \mathrm{\ s}$	549	992	$2.26 \mathrm{\ s}$	575	949
stufe10	$0.02 \mathrm{\ s}$	570	948	$0.15 \mathrm{\ s}$	546	919	$8.73 \mathrm{\ s}$	574	725
shock9	$0.07 \mathrm{\ s}$	1010	1663	$0.19 \ s$	909	1665	$15.21 \mathrm{\ s}$	961	1480
whitacker	$0.01 \mathrm{\ s}$	1005	992	$0.11 \mathrm{\ s}$	966	953	$1.60 \mathrm{\ s}$	966	957
whitacker (dual)	$0.01 \mathrm{\ s}$	528	1048	$0.11 \mathrm{\ s}$	515	1027	$5.43 \mathrm{\ s}$	493	973

Thank you