Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans:

Optimal value of alpha for Ridge regression =5

Optimal value of lasso for Ridge regression =0.0001

On doubling value of alpha, r2 score remains the same.

But the coefficients are changed , lowered a little on increasing alpha . This is because on increasing alpha , penalty is more due to which coefficients tend to 0.

Coefficients before and after doubling alpha in ridge regression:

Before doubling alpha				After doubling alpha		
	Features	Ridge_coeff		Features	Ridge_coeff	
19	OverallQual_10	0.161404	19	OverallQual_10	0.127584	
23	OverallQual_9	0.136908	23	OverallQual 9	0.123191	
6	total_bathrooms	0.127582	6	total bathrooms	0.123165	
12	GarageArea	0.103656	12	-	0 099088	
40	MasVnrArea	0.069091	43	3	0.070863	
43	Fireplaces	0.068456	40	·	0.064875	
17	LotArea	0.063765	-			
30	LotFrontage	0.062478	30	_ourronnage	0.059124	
34	OverallQual_8	0.056401	34		0.056485	
54	Neighborhood_StoneBr	0.051053	17	LotArea	0.053387	
25	BedroomAbvGr	0.039772	54	Neighborhood_StoneBr	0.045353	
58	total_porche	0.034302	47	BsmtExposure_Gd	0.035125	
47	BsmtExposure_Gd	0.032168	25	BedroomAbvGr	0.035002	
62	Exterior2nd_ImStucc	0.025774	58	total_porche	0.032258	
52	MasVnrType_Stone	0.025456	52	MasVnrType_Stone	0.029323	
46	Condition1_Norm	0.024721	46	Condition1_Norm	0.023699	
36	Street_Pave	0.022367	63	LotConfig_CulDSac	0.020918	

Coefficients before and after doubling alpha in lasso regression:

Before doubling alpha				After doubling alpha		
	Features	Lasso_coeff		Features	Lasso_coeff	
19	OverallQual_10	0.243985	19	OverallQual_10	0.233046	
23	OverallQual_9	0.160010	23	OverallQual_9	0.161911	
6	total_bathrooms	0.130787	6	total_bathrooms	0.130977	
12	GarageArea	0.110509	12	GarageArea	0.112216	
17	LotArea	0.090197	17	LotArea	0.079767	
40	MasVnrArea	0.069203	34	OverallQual_8	0.066158	
			43	Fireplaces	0.064780	
34	OverallQual_8	0.062692	40	MasVnrArea	0.060709	
30	LotFrontage	0.062261	30	LotFrontage	0.059299	
43	Fireplaces	0.062237	54	Neighborhood_StoneBr	0.046892	
54	Neighborhood_StoneBr	0.051385	25	BedroomAbvGr	0.039242	
25	BedroomAbvGr	0.044083	58	total_porche	0.028629	
58	total_porche	0.030808	47	BsmtExposure_Gd	0.023542	
36	Street_Pave	0.024868	46	Condition1_Norm	0.021456	
47	BsmtExposure Gd	0.024209	52	MasVnrType_Stone	0.020551	
68	Exterior1st BrkFace	0.022892	68	Exterior1st_BrkFace	0.018610	
46	_	0.022550	63	LotConfig_CulDSac	0.017526	
46	Condition1_Norm	0.022550				

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans:

R2 value for both is same i.e 84% in train set and 79% on test set.

But Lasso regression helps in feature selection, i.e by pushing some coeffecients to exactly 0 value unlike ridge regression. Therefore I will apply lasso regression.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Top 5 predictors in current lasso model:

- 1. OverallQual_9
- 2. total_bathrooms
- 3. OverallQual_10
- 4. GarageArea
- 5. LotArea

After excluding these predictors, The r2 value dropped to 69%. 5 most predictors now are:

- 1. MasVnrArea
- 2. LotFrontage
- 3. Fireplaces
- 4. Neighborhood StoneBr
- 5. BedroomAbvGr

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans:

To make the model robust and generalizable, we need to make the model simple.

- 1. Simpler models are more generic and perform better for unseen data.
- 2. Simpler models have low variance. The model coefficients don't change much when there is change in training data.
- 3. Simpler models have high training errors, but complex models tend to overfit.
- 4. We use regularization to make models simple. Regularisation will add penalty term to cost function whichg will tend the coefficients towards 0.

In terms of accuracy a robust and generalized model means the accuracy will be the same on train and test sets. There won't be much deviation which means model will not overfit.