CS 228 : Logic in Computer Science

S. Krishna

▶ If *L* is regular, so is \overline{L}

- ▶ If L is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - ▶ For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$

- ▶ If L is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - ▶ For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ► For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ► For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ► For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = \overline{L(A)}$

aaab

aaab

► aaab

► aaab

▶ aaab

aabba

aabba

aabba

► aabba

▶ aabba

► aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ► $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x),\hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F$$

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta_1}(q_0, x) \in F_1 \text{ and } \hat{\delta_2}(s_0, x) \in F_2$$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$ iff $\hat{\delta_1}(q_0, x) \in F_1$ and $\hat{\delta_2}(s_0, x) \in F_2$ iff $x \in L(A_1)$ and $x \in L(A_2)$

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ► $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a)=(\delta_1(q,a),\delta_2(s,a))$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $x \in L(A_1)$ or $x \in L(A_2)$

Closure properties in DFA -> Logic

- ▶ Union in DFA-> disjunction in logic
- ► Intersection in DFA—> conjunction in logic
- Complementation in DFA -> Negation in logic