Theory Of Computation **CSC3113**

Pre-Requisite

- Basic Mathematical Concepts
- **Sets, Graphs, Relations, and Languages**
- Definitions, Theorems, and Proofs

Computer Science Department American International University-Bangladesh Mashiour Rahman **Assistant Professor**

Assumed Background

- # Sets / Sequences
- Functions / Relations
- Equivalence relations / Partitions
- Graphs
- Types of proof
- ☐ Proof by construction
- ☐ Proof by contradiction
- Proof by induction

 \blacksquare Subset: $A \subseteq B$, Every element of A is an element of B.

☐ Proper Subset: If A is a subset of B and not equal to B.

Multiset: {7} and {7,7} are different as mitisets but identical as sets.

 \blacksquare Infinite set: natural numbers N = $\{1,2,3,\ldots\}$ and integers Z = $\{\ldots,-2,-1,0,1,2,\ldots\}$, contains infinitely many elements.

Empty set: Set with 0 members, written as Ø.

 \clubsuit [n] rule about $n\}$: A set containing elements according to some rule.

T $|n| = m^2$ for some $m \in \mathbb{N}$ means the set of perfect squares.

Cardinality of a set: the number of elements in it.

★ Set Operations:

■ Compliment: A, is the set of all elements under consideration that are not in A.

\blacksquare Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$, the set we get by combining all the elements of in $A = \{x : x \in A \text{ or } x \in B\}$, the set we get by combining all the elements of in $A = \{x \in A \text{ or } x \in B\}$.

elements of all the sets in S. example, $\bigcup S=\{a,b,c,d\}$ if $S=\{\{a,b\},\{b,c\},\{c,d\}\}$.

 $S=\{x:x\in P \text{ for some set } P\in S\}$ is the set whose elements are the

\blacksquare Intersection: $A \cup B = \{x : x \in A \text{ and } x \in B\}$, the set of elements that are in both $A \cap B$ example: $\{7, 21\} \cap \{9, 5, 7\} = \{7\}$.

elements of all the sets in S. example, $\bigcap S=\{c,d\}$ if $S=\{\{a,c,d\},\{c,d\},\{b,c,d\}\}\}$. $\supset S = \{x : x \in P \text{ for each set } P \in S\}$ is the set whose elements are the

- **\blacksquare** Two sets A and B are equal, written as A = B, if $A \subseteq B$ and $B \subseteq A$.
- **\square** Difference of two sets A and B, written A-B, is the set of all elements of A that are not elements of B. That is, $A - B = \{x : x \in A \text{ and } x \notin B\}$.
- **\blacksquare** Two sets are *disjoint* if they have no element in common. That is, $A \cap B = \phi$.
- if $A = \{0, 1\}$, then the power set of $A = \{\phi, \{0\}, \{1\}, \{0,1\}\}$. **#** *Power Set*: Power set of a set A is the set of all subsets of A.
- \blacksquare A partition of a nonempty set A is a subset Π of 2^A such that,
- Each element of II is empty.
- Distinct numbers of II are disjoint.
- \square () $\Pi = A$.
- **\square** Example, $\{\{a, b\}\{c\}\{d\}\}\}$ is a partition of $\{a, b, c, d\}$.

- **#** Sequence: a list of object in some order.
- \blacksquare (7, 21, 57) is a sequence of 7, 21, and 57.
- \blacksquare Order matters, so (7, 21, 57) is not the same as (21, 7, 57).
- \blacksquare Repetition is allowed, so (7, 21, 57) is not the same as (7, 21, 7, 57).
- Tuple: Finite sequence.
- K-Tuple: A sequence with k elements.
- # Pair: A 2-tuple is called a pair.
- wherein the first element is a member of A and the second element is a member of B. \blacksquare Cartesian product/cross product of A and B, written A \times B, is the set of all pairs

If
$$A = \{1,2\}$$
 and $B = \{x, y, z\}$,
 $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$
 $A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}$

- # A function maps an input to an output.
- **#** Also called *mapping*, written as $\mathcal{E}(a) = b$, meaning, if \mathcal{E} is a function whose output value is b when the input value is a.
- **★** *Domain*: the set of possible inputs.
- # Range: the set of outputs.
- K. The notation for saying that f is a function with domain D and range R is au: D
- \bigstar *k-ary function*: a function with *k* arguments (*arity* of a function).
- **T** Input: $(a_1, a_2, \dots a_k)$, a k-tuple (argument).
- **\Box** unary function if k=1
- **\Box** binary function if k=2

 \blacksquare Relation: a property whose domain is a set of k tuples, A^k for a set A.

 \bigstar Relation, k-ary relation or k-ary relation on A is written as $R(a_1, a_2, \ldots, a_k)$.

 \blacksquare Binary relation: 2-ary relation. Customary infix notation aRb, where R is the relation between the elements a and b.

 $B \times A$ is simply the relation UI $A \times B$, denoted R^{-1} lacktriangle Inverse of a binary relation $\mathbb{R}\subseteq$ $\{(b, a) : (a, b) \in R\}.$

Equivalence relation: two objects being equal

\square reflexive: $\forall x$, xRx.

\square symmetric: $\forall xy$, xRy iff yRx

 \blacksquare transitive: $\forall xyz$, xRy and $yRz \Rightarrow xRz$

- # A graph consists of a finite set of vertices (nodes) with lines connecting some of them (edges). $\mathbb{G} = (\mathbb{V}, \mathbb{E})$.
- **t** degree of a node: the number of edges at a particular node.
- **#** path: a sequence of nodes connected by edges.
- simple path: a path that doesn't repeat any nodes.
- **I** cycle: a path starts and ends in the same node
- # tree: no cycle
- !eaves: nodes of degree 1 in a tree.
- root: special designated node.
- **#** in-degree and out-degree
- directed path
- directed acyclic graph (DAG)
- \blacksquare Sub Graph: Graph G is a subgraph of graph H, if the nodes of G are a subset of the nodes of H (i.e. $G.V \subseteq H.V$).
- **#** connected: every two nodes of a graph have a path between them.
- **I** strongly connected: every 2 nodes of a di-graph have a path between them.

Strings

- # Strings of characters.
- symbols from an alphabet. Example: $\Sigma_1 = \{0,1\}$, $\Sigma_2 = \{a, x, y, z\}$, $\Gamma = \{0,1, x, z\}$. # Alphabet: any finite set, \(\Sigma\) and \(\Gamma\) designate alphabets and a typewriter font for
- $\Sigma_1 = \{0,1\}$, then 01001 is a string over Σ_1 .
- \blacksquare Length of a string w: |w|.
- \blacksquare Empty string: ε .
- # String z is a substring of string w if z appears consecutively within w. Example: z=cad, w=abracadabra.
- \clubsuit If w=xv for some x, then v is a suffix of w; If w=vy for some y, then v is a prefix of w.
- written w^R , is the string obtained by writing w in the opposite order (i.e. $w_n w_{n-1} \dots w_1$). \blacksquare If w has length n, we can write $w = w_1 w_2 \dots w_n$ where each $w \in \Sigma$. Reverse of w,
- \blacksquare Concatenation of two strings x and y, written xy, is the string obtained by appending y to the end of x, as in $x_1 \ldots x_n y_1 \ldots y_n$. To concatenate a string with itself many
- times we use the superscript notation $xx \cdots x = x^k$.

- # A language is a set of strings.
- \blacksquare The set of all strings of all lengths, including the empty string, over an alphabet Σ is denoted by Σ^* .
- expect that shorter strings precede longer strings. Example: Lexicographic ordering of # Lexicographic ordering of strings is the same as the familiar dictionary ordering, all strings over the alphabet $\Sigma = \{0,1\}$ is $(\varepsilon,0,1,00,01,10,11,000,...)$.
- \bigstar A language L over the alphabet A is a subset of A^* . $L \subseteq A^*$.

- # convincing in an absolute sense
- f au The pigeonhole principle: there are ${
 m n}$ pigeonholes, ${
 m n}$ + ${
 m 1}$ or more pigeons, and every pigeon occupies a hole, then some hole must have at least two pigeons.
- Proof by construction: Prove a particular type of objects exists by constructing the object. Ħ
- Proof by contradiction: Assume a theorem is false and then show that this assumption leads to a false consequence. 口
- Proof by induction: A proof by induction has —
- A predicate: P,
- lack A A basis: $\exists k$, P(k) is true,
- An induction hypothesis: for some $n \ge k$, P(k), P(k+1), ..., P(n) are true.
- An inductive step: P(n+1) is true given the induction hypothesis.