Analysis of Algorithms

Homework 6 – P vs NP

Abraham Murciano & Elad Harizy

January 14, 2021

Question 1

Part A

We are to prove that if the languages \mathcal{L}_1 and \mathcal{L}_2 are in P, meaning that there automata that can tell us whether a word is in the language or not in polynomial time (O(n * k)) for some constant k, then $\mathcal{L}_1 \cup \mathcal{L}_2 \in P$.

Since \mathcal{L}_1 and \mathcal{L}_2 can be decided in polynomial time, their union can also, as explained in Part B.

Part B

We are told that the languages \mathcal{L}_1 , \mathcal{L}_2 can be decided in polynomial time using algorithms A_1 , A_2 respectively, with running times $O(n^{k_1})$, $O(n^{k_2})$. To decide their union, one would have to decide each one individually, and decide their union based on their logical disjunction. Thus the complexity of deciding their union is $O(n^{k_1} + n^{k_2})$, or $O(n^{\max(k_1, k_2)})$, which is polynomial.

Question 2

Part A

We must prove that if $\mathcal{L} \in P$ then $\forall k \in \mathbb{N}, \mathcal{L}^k \in P$. Meaning that for any constant k, we can decide the concatenation of the language to itself k times, in polynomial time.

We will use a lemma which states that if $\mathcal{L}_1, \mathcal{L}_2 \in P$, then $\mathcal{L}_1\mathcal{L}_2 \in P$. (Proof omitted.)

We will prove this by induction.

For
$$k = 0, \mathcal{L}^k = \mathcal{L}^0 = \{\varepsilon\} \in P$$
.

Assume that for $k = n, \mathcal{L}^k = \mathcal{L}^n \in P$.

Then for k = n + 1, $\mathcal{L}^k = \mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$. However we know that both \wedge and \mathcal{L}^n are in P, so using our lemma, their concatenation, \mathcal{L}^{n+1} must be in P.

Part B

Given that algorithm A_1 decides \mathcal{L} in $O(n^c)$ time, we are to find the complexity of an algorithm A_2 which decides \mathcal{L}^k for some constant k.

To decide \mathcal{L}^2 , the complexity would be $O((n^c)^2)$, or $O(n^{2c})$. This is because after each character, we must check if the remainder of the input is also in \mathcal{L} . So if we repeat this process k times, the algorithm results in a complexity of $O(n^{kc})$.