# LambdaNetworks: Modeling Long-Range Interactions Without Attention

Irwan Bello

ICLR 2021

2021.03.29 윤주열

### Long-range Interaction

Allow long-range interaction without materializing attention maps

Instead offer a summarization of the context termed "Lambda"



# Lambda Layers

Notations

| Name                                                                                                                                                                                                                                                                                                                                                                                                     | Description                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| k ,  v                                                                                                                                                                                                                                                                                                                                                                                                   | query, value depth                                               |
| $oldsymbol{X} \in \mathbb{R}^{ n  	imes d} \ oldsymbol{C} \in \mathbb{R}^{ m  	imes d}$                                                                                                                                                                                                                                                                                                                  | inputs<br>context                                                |
| $egin{aligned} oldsymbol{Q} &= oldsymbol{X} oldsymbol{W}_Q \in \mathbb{R}^{ n  	imes  k } \ oldsymbol{K} &= oldsymbol{C} oldsymbol{W}_K \in \mathbb{R}^{ m  	imes  k } \ oldsymbol{V} &= oldsymbol{C} oldsymbol{W}_V \in \mathbb{R}^{ m  	imes  v } \ \sigma(oldsymbol{K}) &= \operatorname{softmax}(oldsymbol{K}, \operatorname{axis}=m) \ oldsymbol{E}_n \in \mathbb{R}^{ m  	imes  k } \end{aligned}$ | queries keys values normalized keys relative position embeddings |
| $egin{aligned} oldsymbol{\lambda}^c &= ar{oldsymbol{K}}^T oldsymbol{V} \in \mathbb{R}^{ k  	imes  v } \ oldsymbol{\lambda}^p_n &= oldsymbol{E}^T_n oldsymbol{V} \in \mathbb{R}^{ k  	imes  v } \ oldsymbol{\lambda}_n &= oldsymbol{\lambda}^c + oldsymbol{\lambda}^p_n \in \mathbb{R}^{ k  	imes  v } \end{aligned}$                                                                                     | content lambda  position lambdas  lambdas                        |

### Lambda Layers

#### Computation

| Name                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| k , v                                                                                                                                                                                                                                                                                                                                                                                                      | query, value depth                                               |
| $oldsymbol{X} \in \mathbb{R}^{ n  	imes d} \ oldsymbol{C} \in \mathbb{R}^{ m  	imes d}$                                                                                                                                                                                                                                                                                                                    | inputs<br>context                                                |
| $egin{aligned} oldsymbol{Q} &= oldsymbol{X} oldsymbol{W}_Q \in \mathbb{R}^{ n  	imes  k } \ oldsymbol{K} &= oldsymbol{C} oldsymbol{W}_K \in \mathbb{R}^{ m  	imes  k } \ oldsymbol{V} &= oldsymbol{C} oldsymbol{W}_V \in \mathbb{R}^{ m  	imes  v } \ \sigma(oldsymbol{K}) &= \operatorname{softmax}(oldsymbol{K}, \operatorname{axis} = m) \ oldsymbol{E}_n \in \mathbb{R}^{ m  	imes  k } \end{aligned}$ | queries keys values normalized keys relative position embeddings |
| $egin{aligned} oldsymbol{\lambda}^c &= ar{oldsymbol{K}}^T oldsymbol{V} \in \mathbb{R}^{ k  	imes  v } \ oldsymbol{\lambda}^p_n &= oldsymbol{E}^T_n oldsymbol{V} \in \mathbb{R}^{ k  	imes  v } \ oldsymbol{\lambda}_n &= oldsymbol{\lambda}^c + oldsymbol{\lambda}^p_n \in \mathbb{R}^{ k  	imes  v } \end{aligned}$                                                                                       | content lambda position lambdas lambdas                          |

$$m{\lambda}_n = \sum_m (ar{m{k}}_m + m{e}_{nm}) m{v}_m^T = \underbrace{ar{m{K}}^T m{V}}_{ ext{content lambda}} + \underbrace{m{E}_n^T m{V}}_{ ext{position lambda}} \in \mathbb{R}^{|k| imes |v|}$$

$$oldsymbol{y}_n = oldsymbol{\lambda}_n^T oldsymbol{q}_n = (oldsymbol{\lambda}^c + oldsymbol{\lambda}_n^p)^T oldsymbol{q}_n \in \mathbb{R}^{|v|}$$



#### Time and Space Complexity

(ResNet-50 Baseline)

| Architecture                                                                                                      | Params (M) | Throughput | top-1 |
|-------------------------------------------------------------------------------------------------------------------|------------|------------|-------|
| $\mathbf{C} \to \mathbf{C} \to \mathbf{C} \to \mathbf{C}$                                                         | 25.6       | 7240 ex/s  | 76.9  |
| $\mathbf{L} \to \mathbf{C} \to \mathbf{C} \to \mathbf{C}$                                                         | 25.5       | 1880 ex/s  | 77.3  |
| $L \to L \to C \to C$                                                                                             | 25.0       | 1280 ex/s  | 77.2  |
| $L \to L \to L \to C$                                                                                             | 21.7       | 1160 ex/s  | 77.8  |
| $L \to L \to L \to L$                                                                                             | 15.0       | 1160 ex/s  | 78.4  |
| $\mathbf{C} \to \mathbf{L} \to \mathbf{L} \to \mathbf{L}$                                                         | 15.1       | 2200 ex/s  | 78.3  |
| $\mathbf{C} \to \mathbf{C} \to \mathbf{L} \to \mathbf{L}$                                                         | 15.4       | 4980 ex/s  | 78.3  |
| $\begin{array}{c} \textbf{C} \rightarrow \textbf{C} \rightarrow \textbf{C} \rightarrow \textbf{L} \\ \end{array}$ | 18.8       | 7160 ex/s  | 77.3  |

| Layer                                                                                                                                                             | Params (M)           | top-1                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|
| Conv (He et al., 2016) <sup>†</sup>                                                                                                                               | 25.6                 | 76.9                                      |
| Conv + channel attention (Hu et al., 2018c) <sup>†</sup>                                                                                                          | 28.1                 | 77.6 (+0.7)                               |
| Conv + linear attention (Chen et al., 2018)<br>Conv + linear attention (Shen et al., 2018)<br>Conv + relative self-attention (Bello et al., 2019)                 | 33.0<br>-<br>25.8    | 77.0<br>77.3 (+1.2)<br>77.7 (+1.3)        |
| Local relative self-attention (Ramachandran et al., 2019)<br>Local relative self-attention (Hu et al., 2019)<br>Local relative self-attention (Zhao et al., 2020) | 18.0<br>23.3<br>20.5 | 77.4 (+0.5)<br>77.3 (+1.0)<br>78.2 (+1.3) |
| Lambda layer ( $ u $ =4)                                                                                                                                          | 15.0<br>16.0         | 78.4 (+1.5)<br>78.9 (+2.0)                |

| Layer                            | Space Complexity       | Memory (GB) | Throughput       | top-1 |
|----------------------------------|------------------------|-------------|------------------|-------|
| Global self-attention            | $\Theta(blhn^2)$       | 120         | OOM              | OOM   |
| Axial self-attention             | $\Theta(blhn\sqrt{n})$ | 4.8         | 960  ex/s        | 77.5  |
| Local self-attention (7x7)       | $\Theta(blhnm)$        | -           | 440 ex/s         | 77.4  |
| Lambda layer                     | $\Theta(lkn^2)$        | 1.9         | 1160ex/s         | 78.4  |
| Lambda layer ( $ k $ =8)         | $\Theta(lkn^2)$        | 0.95        | <b>1640</b> ex/s | 77.9  |
| Lambda layer (shared embeddings) | $\Theta(kn^2)$         | 0.63        | 1210 ex/s        | 78.0  |
| Lambda convolution (7x7)         | $\Theta(lknm)$         | -           | 1100 ex/s        | 78.1  |

Table 4: The lambda layer reaches higher ImageNet accuracies while being faster and more memory-efficient than self-attention alternatives. Memory is reported assuming full precision for a batch of 128 inputs using default hyperparameters. The memory cost for storing the lambdas matches the memory cost of activations in the rest of the network and is therefore ignored. b: batch size, h: number of heads/queries, n: input length, m: context length, k: query/key depth, l: number of layers.

#### • Performance

| Architecture     | Params (M) | Train (ex/s) | Infer (ex/s) | ImageNet top-1 |
|------------------|------------|--------------|--------------|----------------|
| LambdaResNet-152 | 51         | 1620         | 6100         | 86.7           |
| EfficientNet-B7  | 66         | 170(9.5x)    | 980 (6.2x)   | 86.7           |
| ViT-L/16         | 307        | 180(9.0x)    | 640 (9.5x)   | 87.1           |

Table 5: Comparison of models trained on extra data. ViT-L/16 is pre-trained on JFT and fine-tuned on ImageNet at resolution 384x384, while EfficientNet and LambdaResNet are co-trained on ImageNet and JFT pseudo-labels. Training and inference throughput is shown for 8 TPUv3 cores.

| Architecture                                  | Params (M) | FLOPS (M) | top-1       |
|-----------------------------------------------|------------|-----------|-------------|
| MobileNet-v2                                  | 3.50       | 603       | 72.7        |
| MobileNet-v2 with 2 lightweight lambda blocks | 3.21       | 563       | <b>73.3</b> |

Table 17: Lambda layers improve ImageNet accuracy in a resource-constrained scenario. Replacing the 10-th and 16-th inverted bottleneck blocks with lightweight lambda blocks in the MobileNet-v2 architecture reduces parameters and flops by  $\sim 10\%$  while improving ImageNet accuracy by 0.6%.



#### • Performance

| Backbone         | $\mathrm{AP}^{bb}_{coco}$ | $\mathrm{AP}^{bb}_{s/m/l}$ | $\mathrm{AP}^{mask}_{coco}$ | $\mathrm{AP}^{mask}_{s/m/l}$ |
|------------------|---------------------------|----------------------------|-----------------------------|------------------------------|
| ResNet-101       | 48.2                      | 29.9 / 50.9 / 64.9         | 42.6                        | 24.2 / 45.6 / 60.0           |
| ResNet-101 + SE  | 48.5 (+0.3)               | 29.9 (+0.0) / 51.5 / 65.3  | 42.8 (+0.2)                 | 24.0 (-0.2) / 46.0 / 60.2    |
| LambdaResNet-101 | <b>49.4</b> (+1.2)        | 31.7 (+1.8) / 52.2 / 65.6  | <b>43.5</b> (+0.9)          | 25.9 (+1.7) / 46.5 / 60.8    |
| ResNet-152       | 48.9                      | 29.9 / 51.8 / 66.0         | 43.2                        | 24.2 / 46.1 / 61.2           |
| ResNet-152 + SE  | 49.4 (+0.5)               | 30.0 (+0.1) / 52.3 / 66.7  | 43.5 (+0.3)                 | 24.6 (+0.4) / 46.8 / 61.8    |
| LambdaResNet-152 | <b>50.0</b> (+1.1)        | 31.8 (+1.9) / 53.4 / 67.0  | <b>43.9</b> (+0.7)          | 25.5 (+1.3) / 47.3 / 62.0    |

Table 14: COCO object detection and instance segmentation with Mask-RCNN architecture on 1024x1024 inputs. We compare LambdaResNets against ResNets with or without squeeze-and-excitation (SE) and report Mean Average Precision (AP) for small, medium, large objects  $(AP_{s/m/l})$ . Using lambda layers yields consistent gains across all object sizes, especially small objects.

#### Ablation Study

Table 8: Ablations on the ImageNet classification task when using the lambda layer in a ResNet50 architecture. All configurations outpeform the convolutional baseline at a lower parameter cost. As expected, we get additional improvements by increasing the query depth |k| or intra-depth |u|. The number of heads is best set to intermediate values such as |h|=4. A large number of heads |h| excessively decreases the value depth |v| = d/|h|, while a small number of heads translates to too few queries, both of which hurt performance.

Params (M)

top-1

| Normalization                                | top-1 |
|----------------------------------------------|-------|
| Softmax on keys (default)                    | 78.4  |
| Softmax on keys & Softmax on queries         | 78.1  |
| L2 normalization on keys                     | 78.0  |
| No normalization on keys                     | 70.0  |
| No batch normalization on queries and values | 76.2  |

|   | Resi                    | Net base              | eline            | 25.6                                 | 76.9                                 |
|---|-------------------------|-----------------------|------------------|--------------------------------------|--------------------------------------|
|   | 8<br>8                  | 2<br>16               | 1<br>1           | 14.8<br>15.6                         | 77.2<br>77.9                         |
|   | 2<br>4<br>8<br>16<br>32 | 4<br>4<br>4<br>4<br>4 | 1<br>1<br>1<br>1 | 14.7<br>14.7<br>14.8<br>15.0<br>15.4 | 77.4<br>77.6<br>77.9<br>78.4<br>78.4 |
| , |                         |                       |                  |                                      |                                      |

Table 11: Impact of normalization schemes in the lambda layer. Normalization of the keys along the context spatial dimension m, normalization of the queries along the query depth k.

| Content      | Position     | Params (M) | FLOPS (B) | top-1 |
|--------------|--------------|------------|-----------|-------|
| $\checkmark$ | ×            | 14.9       | 5.0       | 68.8  |
| ×            | $\checkmark$ | 14.9       | 11.9      | 78.1  |
| $\checkmark$ | $\checkmark$ | 14.9       | 12.0      | 78.4  |

78.4 14.7 14.7 77.7 14.7 77.9 15.1 78.1 32 78.5 15.7 15.3 78.4 78.6 16.0 16.0 78.9

Table 9: Contributions of content and positional interactions. As expected, positional interactions are crucial to perform well on the image classification task.