Contents

Transp	position and conjugation	1
0.1.1	Transposition	1
0.1.2	Transpose rules	1
0.1.3	Conjugation	1
0.1.4	Conjugation rules	1
0.1.5	Conjugate transposition	2
	0.1.1 0.1.2 0.1.3 0.1.4	Transposition and conjugation 0.1.1 Transposition

0.1 Transposition and conjugation

0.1.1 Transposition

A matrix of dimensions m * n can be transformed into a matrix n * m by transposition.

$$B=A^T$$

$$b_{ij} = aji$$

0.1.2 Transpose rules

$$(M^T)^T = M$$

$$(AB)^T = B^T A^T$$

$$(A+B)^T = A^T + B^T$$

$$(zM)^T = zM^T$$

0.1.3 Conjugation

With conjugation we take the complex conjugate of each element.

$$B=\overline{A}$$

$$b_{ij} = \overline{a}_{ij}$$

0.1.4 Conjugation rules

$$\overline{(\overline{A})} = A$$

$$\overline{(AB)} = (\overline{A})(\overline{B})$$

$$\overline{(A+B)} = \overline{A} + \overline{B}$$

$$\overline{(zM)} = \overline{z}\overline{M}$$

0.1.5 Conjugate transposition

Like transposition, but with conjucate.

$$B=A^*$$

$$b_{ij} = \bar{a_{ji}}$$

Alternatively, and particularly in physics, the following symbol is often used instead

$$(A^*)^T = A^\dagger$$