2019-2020 学年第 1 学期微积分 1-1 参考答案

一、填空题(每小题3分,共15分)

1.
$$\frac{4}{3}$$
; 2. $x = 0$; 3. $C_n^2 2^{n-1} e^4$; 4. $-\frac{1}{3} (e-1)$; 5. $(1, +\infty)$

二、计算题(每小题8分, 共32分)

1.求极限
$$\lim_{x\to 0} \frac{(1+x)^x - 1}{\ln(1+x) + \ln(1-x)}$$
.

解 由等价无穷小,

原式 =
$$\lim_{x\to 0} \frac{e^{x\ln(1+x)}-1}{\ln(1-x^2)} = \lim_{x\to 0} \frac{x\ln(1+x)}{-x^2} = \lim_{x\to 0} \frac{x^2}{-x^2} = -1.$$

2. 设方程
$$e^{xy} + \frac{1}{\sqrt{3}} \int_1^y \sqrt{4-t^2} dt = 1$$
可确定函数 $y = y(x)$, 求 $\frac{dy}{dx}|_{x=0}$, $\frac{d^2y}{dx^2}|_{x=0}$.

解 易知当x=0时, y=1. 方程两边同时对x求导, 得

$$e^{xy}(y+xy')+\frac{1}{\sqrt{3}}\sqrt{4-y^2}y'=0.$$
 (1)

将
$$x = 0$$
, $y = 1$ 代入(1)式,解之得 $\frac{dy}{dx}|_{x=0} = -1$.

再对(1)式两边同时对x求导,得

$$e^{xy}(y+xy')^2 + e^{xy}(y'+y'+xy'') + \frac{1}{\sqrt{3}} \frac{-y}{\sqrt{4-y^2}} (y')^2 + \frac{1}{\sqrt{3}} \sqrt{4-y^2} y'' = 0.$$

将
$$x = 0$$
, $y = 1$, $y'(0) = -1$ 代入上式,解之得 $\frac{d^2y}{dx^2}|_{x=0} = \frac{4}{3}$.

3.计算不定积分 $\int \frac{x \ln x}{(x^2-1)^2} dx$.

解 原式 =
$$-\frac{1}{2}\int \ln x \, d(x^2 - 1)^{-1} = -\frac{1}{2}(x^2 - 1)^{-1} \ln x + \frac{1}{2}\int \frac{1}{(x^2 - 1)x} \, dx$$

= $-\frac{1}{2}(x^2 - 1)^{-1} \ln x + \frac{1}{4}\int \left(\frac{1}{x - 1} - \frac{2}{x} + \frac{1}{x + 1}\right) dx$
= $-\frac{1}{2}(x^2 - 1)^{-1} \ln x + \frac{1}{4}(\ln(x - 1) - 2\ln x + \ln(x + 1)) + C$

4.计算定积分
$$\int_0^2 x^2 \sqrt{2x-x^2} dx$$
.

解原式 =
$$\int_0^2 x^2 \sqrt{1 - (x - 1)^2} dx = \int_{-1}^1 (t + 1)^2 \sqrt{1 - t^2} dt$$
 (奇偶性)
= $2\int_0^1 (t^2 + 1)\sqrt{1 - t^2} dt = 2\int_0^{\frac{\pi}{2}} (\sin^2 \theta + 1)\cos^2 \theta d\theta$
= $2\int_0^{\frac{\pi}{2}} (1 - \sin^4 \theta) d\theta = 2(\frac{\pi}{2} - \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}) = \frac{5\pi}{8}$.

三、解答题(每小题10分,共20分)

1. 设函数
$$g(x)$$
 二阶可导且 $g(0) = 1$, $g'(0) = 2$, $g''(0) = 1$, 并设 $f(x) = \begin{cases} \frac{g(x) - e^{2x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

求 f'(0), 并讨论 f'(x) 在 x = 0 处的连续性.

解 由定义,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{g(x) - e^{2x}}{x^2} = \lim_{x \to 0} \frac{g'(x) - 2e^{2x}}{2x}$$

$$= \lim_{x \to 0} \frac{g'(x) - 2 + 2 - 2e^{2x}}{2x} = \lim_{x \to 0} \frac{g'(x) - 2}{2x} + \lim_{x \to 0} \frac{2 - 2e^{2x}}{2x} = -\frac{3}{2} \quad \dots \dots 6$$

所以
$$f'(x) = \begin{cases} \frac{x(g'(x) - 2e^{2x}) - (g(x) - e^{2x})}{x^2}, & x \neq 0 \\ -3/2, & x = 0 \end{cases}$$
. 因为

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{x(g'(x) - 2e^{2x}) - (g(x) - e^{2x})}{x^2} = \lim_{x \to 0} \frac{g'(x) - 2e^{2x}}{x} - \lim_{x \to 0} \frac{g(x) - e^{2x}}{x^2} = -\frac{3}{2}$$

所以 f'(x) 在 x = 0 处连续.

注: 若直接使用 $\lim_{x\to 0} g''(x) = 1$, (1)(2)小问各扣1分.

2.若方程 $x^2 = ae^x (a \neq 0)$ 有唯一解, 试求a的取值范围.

解由
$$x^2 = ae^x$$
得, $a = x^2e^{-x}$. 令 $f(x) = x^2e^{-x}$,

则当
$$f'(x) = (2x - x^2)e^{-x} = 0$$
时, $x = 0$ 或 $x = 2$.

列表如下:

X	$(-\infty, 0)$	0	(0, 2)	2	$(2, +\infty)$
f'(x)	_	0	+	0	_
f(x)		0		$4e^{-2}$	

$$\coprod_{x\to-\infty} f(x) = +\infty, \lim_{x\to+\infty} f(x) = 0.$$

故当 $4e^{-2} < a < +\infty$ 时,有唯一解.

四、应用题(每小题10分,共20分)

- 1.设空间中有点M(1,1,1)及直线 $l: \frac{x}{1} = \frac{y-1}{2} = \frac{z}{1}$.
- (1)求经过点M与直线l的平面方程;
- (2)求直线1绕z轴旋转一周所成的旋转曲面方程.

解 (1)设平面上任意点
$$P(x,y,z)$$
,则 $\begin{vmatrix} x-1 & y-1 & z-1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 0$,故平面方程为 $x-z=0$ 5分

(2)由
$$\frac{x}{1} = \frac{y-1}{2} = \frac{z}{1}$$
得 $x = z$, $y = 2z+1$, 故直线 l 绕 z 轴旋转一周所成的旋转曲面方程为
$$x^2 + y^2 = z^2 + (2z+1)^2 = 5z^2 + 4z + 1 \qquad10$$
分

2.设曲线 $y = \sin^4 x$ ($0 \le x \le \pi$) 与 x 轴围成的图形为S, (1)求 S 的面积 A; (2)若S 绕 y 轴旋转一周, 求旋转体的体积 V.

五、证明题(第一小题6分,第二小题7分,共13分)

1. 设函数 f(x) 在区间[0,1]上可导,且 $f(1) = 3\int_0^{\frac{1}{3}} x f(x) dx$,证明存在 $\xi \in (0,1)$,使得 $f'(\xi) = -\frac{f(\xi)}{\xi}.$

证明 由积分中值定理知, $f(1) = 3 \int_0^{\frac{1}{3}} x f(x) dx = \xi f(\xi) (\xi \in [0, \frac{1}{3}]).$

作函数 g(x) = x f(x), 则 $g(\eta) = \eta f(\eta) = f(1) = g(1)$, 由罗尔定理知存在 $\xi \in (\eta, 1)$, 使得 $g'(\xi) = 0$, 即 $f'(\xi) = -\frac{f(\xi)}{\xi}$.

- 2. 设有方程 $e^x + x^{2n+1} = 0$, 证明:
- (1)对任意正整数n,方程有唯一实根 x_n ;
- (2)极限 $\lim_{n\to\infty}x_n$ 存在,并求其值.

证明 (1)令
$$f_n(x) = e^x + x^{2n+1}$$
,则 $f'_n(x) = e^x + (2n+1)x^{2n} > 0$,故 $f_n(x)$ 严格单增. 且
$$f_n(-1) = e^{-1} - 1 < 0, \ f_n(0) = 1 > 0$$

故由零点存在定理知存在唯一 x_n ,使得 $f_n(x_n)=0$,即方程有唯一实根 $x_n\in (-1,0)......3$ 分

(2)若
$$x_{n+1} \ge x_n$$
,则 $0 = e^{x_{n+1}} + x_{n+1}^{2n+3} \ge e^{x_n} + x_n^{2n+3} = e^{x_n} + x_n^{2n+1} \cdot x_n^2 > e^{x_n} + x_n^{2n+1} = 0$,矛盾. 所以 $x_{n+1} < x_n$,因此 $\lim_{n \to \infty} x_n$ 存在,设 $\lim_{n \to \infty} x_n = a$.

曲
$$e^{x_n} + x_n^{2n+1} = 0$$
 得 $e^{x_n} = (-x_n)^{2n+1}$,取对数 $x_n = (2n+1)\ln(-x_n)$,即 $\frac{1}{2n+1} = \frac{\ln(-x_n)}{x_n}$.