Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- \bullet LATEX packages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.0 - dev

Commit: d918f10d@feature/self_documenting_models

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

1 Connections in design mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)
to collector:out1_solar thermal collector:in1	5.000	35.000

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

label	H2O (3)
to collector:out1_solar thermal collector:in1	1.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{H2O}} - x_{\text{H2O,spec}} \tag{3}$$

2 Components in design mode

2.1 Components of type SolarCollector

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{4}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (5)

2.1.2 Inputs specified

label	Q(6)	pr (7)	energy_group (8)
solar thermal collector	8000.000	0.990	True

Table 3: Parameters of components of type SolarCollector

label	E	eta_opt	lkf_lin	lkf_quad	A	Tamb
solar thermal collector	900.000	0.900	1	0.005	10	10

Table 4: Parametergroup energy_group

2.1.3 Equations applied

$$0 = \dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in}) - \dot{Q} \tag{6}$$

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{7}$$

$$0 = \dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in})$$

$$- A \cdot \left[E \cdot \eta_{\rm opt} - \alpha_1 \cdot (T_{\rm m} - T_{\rm amb}) - \alpha_2 \cdot (T_{\rm m} - T_{\rm amb})^2 \right]$$

$$T_{\rm m} = \frac{T_{\rm out} + T_{\rm in}}{2}$$
(8)