LFTC

Miguel de Campos R. Moret Abigail Sayury Nakashima

August 13, 2025

1 Aula 02

1.1 Descreva as linguagens denotadas pelas ER's abaixo sobre o alfabeto $\Sigma = \{0, 1\}$.

$a - 0|10^*$

A linguagem é composta por cadeias que contêm apenas o símbolo 0 ou que iniciam com 1 seguido de qualquer quantidade (inclusive zero) de 0's.

$b - (0|1)0^*$

A linguagem é composta por cadeias que iniciam com 0 ou com 1 e são seguidos por qualquer quantidade (inclusive zero) de 0's.

$c - (0011)^*$

A linguagem é composta por cadeias compostas por qualquer quantidade (inclusive zero) da substring "0011".

$\mathbf{d} - (0|1)^* \mathbf{1} (0|1)^*$

A linguagem é composta por cadeias que contem pelo menos um 1.

e - 0*11*0

A linguagem é composta por cadeias que iniciam com qualquer quantidade (inclusive zero) de 0's, segiodos por pelo menos um 1, finalizando com um único símbolo 0.

f - 0(0|1)*0

A linguagem é composta por cadeias que iniciam e terminam com 0.

$\mathbf{g} - (\epsilon + \mathbf{0})(\epsilon | \mathbf{1})$

A linguagem é composta por 4 cadeias diferentes: uma cadeia sem símbolos ("vazia"), uma cadeia composta por um único 0, uma cadeia composta por um único 1 e uma cadeia composta por um 0 seguido por um 1.

h - (000*|1)*

A linguagem é composta por cadeias que não contêm 0's sozinhos (eles estão sempre em grupos de 2+).

$\mathbf{i} - (0^*|0^*11(1|00^*11)^*)(\epsilon|00^*)$

A linguagem de todas as cadeias em que cada bloco de 1's tem comprimento pelo menos 2.

- 1.2 Sobre o $\Sigma = \{a, b\}$, defina expressoes regulares que representam as linguagens cujas sentencas estao descritas a seguir
 - Possuem comprimento maior ou igual a 3; (a|b)(a|b)(a|b)(a|b)*
 - Possuem comprimento menor ou igual a 3; $*(a|b|\epsilon)(a|b|\epsilon)(a|b|\epsilon)$
 - Possuem comprimento diferente a 3; $((a|b|\epsilon)(a|b|\epsilon))|((a|b)(a|b)(a|b)(a|b)*)$
 - Possuem comprimento par; $((a|b)(a|b))^*$
 - Possuem comprimento impar; $(a|b)((a|b)(a|b))^*$
- 1.3 Fazer o conjunto de exercícios da seção 3.1 do livro do HOPCROFT, páginas 96 e 97.
- 1.3.1 Escreva expressões regulares correspondentes às seguintes linguagens:
 - a) O conjunto de strings sobre o alfabeto $\{a, b, c\}$ que contém pelo menos um a e um b. ((c|a|b)*a(c|a|b)*b(c|a|b)*)|((c|a|b)*b(c|a|b)*a(c|a|b)*).

 - c) O conjunto de strings 0's e 1's com no máximo um par de 1's consecutivos. $(0|10)^*(11)?(0|01)^*$

1.3.2 Escreva expressões regulares correspondentes às seguintes linguagens:

- a) O conjunto de todos os strings de 0's e 1's tais que todo par de 0's adjacentes aparece antes de qualquer par de 1's adjacentes. (1*(01)*)*(00)*(0*(10)*)*(11)*(1*(01)*)*
- **b)** O conjunto de strings 0's e 1's cujo número de 0's é divisível por 5. (1*01*01*01*01*0)(1*01*01*01*01*0)*

1.3.3 Escreva expressões regulares correspondentes às seguintes linguagens:

- a) O conjunto de todos os strings 0's e 1's que não contêm 101 como um substring.
- b) O conjunto de todos os strings com um número igual de 0's e 1's, tais que nenhum prefixo tenha dois 0's a mais que os 1's, nem dois 1's a mais que os 0's.
- c) O conjunto de strings de 0's e 1'scujo número de 0's é divisível por 5 e cujo número de 1's é par. ((11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0)*

1.3.4 Forneça descrições em português das linguagens correspondedentes às seguintes expressões regulares:

- a) $(1 + \epsilon)(00^*)^*0^*$. Linguagem de todas as cadeias com $\Sigma = \{0, 1\}$ que são ou vazias, ou contém somente zeros, ou possuem um único 1 seguido por múltiplos (ou nenhum) 0's.
- b) $(0^*1^*)^*000(0+1)^*$. Linguagem de todas as cadeias com $\Sigma = \{0,1\}$ que contêm "000" como substring.
- c) $(0+10)^*1^*$. Linguagem de todas as cadeias com $\Sigma = \{0,1\}$ que contêm pares 11 somente no final da cadeia.

1.3.5 No Exemplo 3.1, destacamos que \emptyset é uma das duas linguagens cujo fechammento é finito. Qual é a outra?

A outra linguagem é ϵ