Contents

Basic Information

Overview:2

Installation:3

Input:4

DPMJET:8

Output10

Class Diagram12

File Descriptions13

Recent Updates:

v276: Added two new optional parameters (BSLOPE DEFINITION and BSLOPE_VALUE) for the $p_{\tt T}$ spectrum ('bslope') for proton targets or incoherent production on nuclei

v275: Added $\gamma\gamma$ to axion channel as two-photon channel 88, per S. Knapen et al., arXiv:1607.07083 v273: "Baseline" version, described in arXiv:1607.03838)

Overview:

The eSTARlight Monte Carlo models photon-Pomeron interactions in electron-ion collisions. The physics approach for the photon-Pomeron interactions is described in Lomnitz and Klein, arXiv:1803.06420 (2018).

eSTARlight has several input files, all of which are expected to be in the same directory as the estarlight code. User-specified input parameters are read from a file named "slight.in"; these parameters are described below in Input.

The simulated events are written to an ASCII file named "slight.out", which is described below in Output.

Installation:

To obtain the latest version:
-git clone git@github.com:mlomnitz/eSTARlight.git

Alternatively:

- -Visit https://estarlight.hepforge.org/trac/browser
- -Download the trunk [click on the download symbol in the Size column]
- -Unpackage the zip file. The trunk/ represents <PathToSource>

To build eSTARlight:

- First create your build directory <BUILDDIR> (e.g. mkdir bin)
- \$ cd <BUILDDIR>
- \$ cmake <PathToSource>
- \$ make

This creates an executable file, e starlight, in the build directory.

To clean the build:

- \$ make clean

To run eSTARlight, a configuration file, slight.in, is needed. Examples of

slight.in may be found in the config/ directory.

To run:

\$./e starlight

Enabling Pythia:

To simulate the $\eta,~\eta',~$ and η_c channels, you need Pythia v8.2 or higher to handle their decays. To enable Pythia support you need to run cmake with the option -DENABLE_PYTHIA=ON and have \$PYTHIADIR pointing to the top directory of Pythia8. [Note: when building Pythia, be sure to enable shared libraries(.so). ./configure --enable-shared before compiling Pythia.]

- \$ setenv PYTHIADIR /my/local/pythia8
- \$ cmake <PathToSource> -DENABLE PYTHIA=ON

Note: v8.2+ is necessary since the Pythia directory structure changed[trunk/cmake_modules/FindPythia8.cmake depends on the structure layout], libhapdfdummy was removed, and Standalone:allowResDec was removed.

To enable DPMJET, please see the passage on DPMJET

Input:

The input parameters are listed below with typical values for e-Au collisions at the proposed eRHIC collider. Optional parameters are denoted with *, and <u>Legacy parameter</u> is used to indicate options in the set up file that have been inherited from STARLight but might not be accurately implemented in eSTARlight.

baseFileName	# The name of the output files. eSTARlight will copy the input slight.in to baseFileName.in, and produce output files baseFileName.txt and baseFileName.out. (slight)
BEAM_1_Z = 1	# Charge of beam one projectile. For electron-ion collisions, beam 1 must be the electron
$BEAM_1_A = 0$ $BEAM_2_Z = 79$	<pre># Atomic number of beam one projectile (0 for e). # Charge of beam two projectile (Au = 79).</pre>
BEAM_2_A = 197	# Atomic number of beam two projectile (Au = 197).
BEAM_1_GAMMA = 35295	<pre># Lorentz boost for beam one projectile(pz>0). These are 18 GeV electrons.</pre>
BEAM_2_GAMMA = 106.6	# Lorentz boost for beam two projectile(pz<0). These are 100 GeV/n Au ions.
$W_MAX = -1$	# Maximum value for the gamma-pomeron center of mass energy, in GeV. Setting W MAX = -1 tells
	eSTARlight to use the default value specified in
	inputParameters.cpp (recommended for single meson production). For single mesons, the default W MAX
	is the particle mass plus five times the width.
	For lepton pairs, the default W_MAX is given by
	$2\hbar c\sqrt{\frac{\gamma_1\gamma_2}{R_1R_2}}$. These are defined in
EL MEDI 1	src/inputParameters.cpp
$W_{MIN} = -1$	#Min value of w. Minimum value for the gamma- pomeron center of mass energy, W, in GeV. Setting
	$W_MIN = -1$ tells eSTARlight to use the default
	<pre>value specified in inputParameters.cpp (recommended for single meson production). The</pre>
	default W MIN is the larger of the kinematic limit
	(e.g. $2m_{\pi}$ for ρ decays) or the particle mass minus five times the width.
W N BINS = 40	#Bins W maximum and minimum values for W and the
	number of w bins in the lookup tables.
RAP_MAX = 8.	# <u>Legacy parameter:</u> Maximum rapidity of produced particle. Mostly left over from STARlight implementation.
RAP N BINS = 80	# Legacy parameter: Number of rapidity bins used
	in the cross section calculation. Mostly left over
	from STARlight implementation.

CUT_PT* = 0	# Specifies whether the user chooses to place restrictions on the transverse momentum of the
PT_MIN* = 1.0	<pre>decay products. 0= no, 1 = yes. (0) # If a transverse momentum cut is applied, this specifies the minimum value produced, in GeV/c. (1.0)</pre>
PT_MAX* = 3.0	# If a transverse momentum cut is applied, this specifies the maximum value produced, in GeV/c. (3.0)
CUT_ETA* = 0	# Specifies whether the user chooses to place restrictions on the pseudorapidity of the decay products. 0= no, 1 = yes. (0)
$ETA_MIN* = -10$	# If a pseudorapidity cut is applied, this specifies the minimum value produced. (-10)
ETA_MAX* = 10	# If a pseudorapidity cut is applied, this specifies the maximum value produced. (10)
PROD_MODE = 12	#PROD_MODE=12: Coherent photonuclear vector meson production assuming narrow resonances.
	<pre>PROD_MODE=13: Coherent photonuclear vector meson production assuming wide resonances. This option should in be used for exclusive \$\rho^0\$ production.</pre>
N EVENTS = 10	#Number of events produced.
PROD PID = 443013	# This selects the channel to be produced, in PDG
_	notation. Currently supported options are list below.
RND SEED = 34533	# Seed for random number generator.
MIN_GAMMA_Q2*	# Specifies whether the user desires to set a
	minimum value for the photon mass. By default,
	eSTARlight will set this to physical limit $Q_{min}^2 = m_e^2 k^2 / E_e(E_e - k)$.
MAX_GAMMA_Q2*	# Specifies whether the user desires to set the
	maximum value for the photon mass. By default the
	value is set to $Q^2_{max} = 4E_e(E_e - k)$ with the added
	requirement that the individual photons satisfy
THE CANNA OF DINC+	longitudinal coherence $l_c = 2k/(Q^2 + M_V^2)$
INT_GAMMA_Q2_BINS*	# Specifies whether the user desires to change the
	number of Q^2 bins used when preparing the look-up tables, the default value is 400.
QUANTUM_GLAUBER = 1	# Species whether a quantum or classical Glauber
	extarpolation is to be used for nuclear targets. 1
	= Quantum Glauber, 0 = Classical Glauber.
SELECT_IMPULSE_VM = 0	# Species whether the impulse approximation is to
_	be used. 1 = Use impulse approximation, 0 = don't.
BREAKUP_MODE = 5	# Legacy parameter: Specifies the way nuclear
	break-up is handled. At present incoherent production is not accurately modeled in eSTARlight
	and it has no meaning in proton targets.
INTERFERENCE = 0	# Legacy parameter: Specifies whether interference
	based on the ambiguity of which nucleus emits the
	photon is included, never needed for asymmetric
	collisions such as eX. $0 = interference off, 1 = interference off, 2 = interference off, 3 = interference of$
	interference on.

<pre>IF_STRENGTH = 1.</pre>	# <u>Legacy parameter</u> : If interference is turned on, specifies the percentage of interference. The range is -1.0 - 1.0.; 1 is the standard value for ion-ion collisions, while -1.0 is expected for proton-antiproton collisions. (1)
<pre>INT_PT_MAX = 0.24</pre>	# Legacy parameter: Used only when the interference option above is turned on. This specifies the maximum transverse momentum considered, in GeV/c. (0.24)
INT_PT_N_BINS = 120	# Legacy parameter: Used only when the interference option above is turned on. This specifies the number of bins in transverse momentum to use. (120)
INT_PT_WIDTH = 0	# <u>Legacy parameter:</u> Used only when the interference option above is turned on. This specifies the width of bins in transverse momentum to use. (0)
XSEC_METHOD* = 0	# Legacy parameter: Determines which method is used to calculate the cross-section for $\gamma\gamma$ cross-sections. XSEC_METHOD=0 is faster, but works only for symmetric collisions (<i>i.e.</i> with identical nuclei). XSEC_METHOD=1 always works, but is slower. (0)
BSLOPE_DEFINITION*=0	# Legacy parameter: Used for proton and nucleon (i. e. incoherent nuclear) collisions to set the t-spectrum, dN/dt=exp(-bt). When BSLOPE_DEFINITION=1, then the slope is determined by BSLOPE_VALUE (below). When BSLOPE_DEFINITION=2, the slope is calculated as a function of \(\gamma \text{p} \) center of mass energy per the H1
	analysis, Eur. Phys. J. C46, 585 (2006): b=4.63/GeV ² + 4α ln(W _{γp} /90 GeV) The default value, BSLOPE_DEFINITION=0 has no effect. Note that this affects the t-slope only; it does
BSLOPE_VALUE*	not affect the total cross-section # Legacy parameter: WHEN BSLOPE_DEFINITION=1, this determines the exponential slope for dN/dt=exp(- BSLOPE_VALUE*t)

The following parameters are used only when interfacing with the PYTHIA and/or DPMJET interfaces:

MIN_GAMMA_ENERGY = 6 #Allows the user to set the minimum photon energy (in GeV) in the rest frame of the target nucleus. The default is 6.0 GeV and it should never be set below this value since DPMJET was not designed to handle low energy interactions.

MAX GAMMA ENERGY = 600000

#Allows the user to set the maximum photon energy (in GeV) in the rest frame of the target nucleus. The default is 60000.0 GeV.

PYTHIA_PARAMS = "" #Used to supply input parameters to the PYTHIA interface. This takes a string to pass on semi-

colon separated parameters to PYTHIA 6. eg:
"mstj(1)=0;paru(13)=0.1" (the default is a blank
string " ")

PYTHIA_FULL_EVENT_RECORD = 1

#Determines whether the full event record from
PYTHIA is written to slight.out. true = yes,
false = no (false). The additional information
added is as follows: daughter production vertex (x
[mm], y [mm], z [mm], t [mm/c]), mother1, mother2,
daughter1, daughter2, PYTHIA particle status code.
PYTHA 8 Particle Properties page describes in more
detail the properties of mother, daughter, and
status code designations.

Channels of Interest:

Pomeron-Photon Channels

At present only the photon-pomeron channels have been included in eSTARlight (production modes 12 and 13). The channels included are:

jetset id	particle
113	rho0
223	omega
333	phi
443011	J/psi> e+e-
443013	J/Psi> mu+mu-
444011	Psi(2S)> e+e-
444013	Psi(2S)> mu+mu-
553011	Upsilon(1S)> e+e-
553013	Upsilon(1S)> mu+mu-
554011	Upsilon(2S)> e+e-
554013	Upsilon(2S)> mu+mu-
555011	Upsilon(3S)> e+e-
555013	Upsilon(3S)> mu+mu-
913	rho0 + direct pi+pi- (with interference). The direct
	pi+pi- fraction is from the ZEUS results, EPJ C2 p247 (1998)
999	four-prong final states (rho'-like to pi+pi-pi+pi-)

DPMJET:

Simulation of photonuclear interactions with eSTARlight is possible through an interface with DPMJet. These interfaces can be enabled through options passed to cmake during the configuration process. [Depreciated: Using Pythia 6 as a substitute for DPMJet]

The gfortran compiler is required to use the photonuclear interfaces.

----- 1.1. Obtaining and installing DPMJet -----

The DPMJet package can be obtained by contacting the authors as explained here: http://sroesler.web.cern.ch/sroesler/dpmjet3.html

Once you have the code proceed with these steps:

Change the line containing the OPT variable in the DPMJet Makefile:

OPT = -c -C -std=legacy -O -O3 -g -fexpensive-optimizations -funroll-loops -fno-automatic -fbounds-check -v -fPIC

----- 64-bit -----

 $\,$ Make sure that all -m32 options are removed from the Makefile.

Unfortunately, the DPMJet package depends on a floating point exception trap implementation, and only a 32-bit version of that is included in the package, which needs to be replaced. An example implementation can be found here:

http://www.arsc.edu/arsc/support/news/hpcnews/hpcnews376/

Under "Fortran Floating Point Traps for Linux" there is a code example. A file based on this, fpe.c, can be found in the external/ directory in eSTARlight. Move that to your DPMJet directory to replace the original file and run:

\$ gcc -o fpe.o fpe.c

Note: if the above command returns the following error: /usr/lib/../lib64/crt1.o: In function `_start': (.text+0x20): undefined reference to `main' /tmp/ccs2CQsd.o: In function `enable_exceptions_': fpe.c:(.text+0xe): undefined reference to `feenableexcept'

collect2: error: ld returned 1 exit status

Try: gcc fpe.c -Wall -g -c

feenable except is a gcc extension and gcc may need all of the headers present.

----- End 64-bit -----

Then in the DPMJet directory run:

\$ make

Note: When compiling at RCAS(BNL), needed to change g77 \rightarrow gfortran, needed to install fluka and setenv FLUPRO /path/to/fluka, and modify phojet before compiling. The changes for phojet is at line 29875, from:

PRINT LO, 'PHO DIFSLP: ERROR: this option is not installed !'

to:

WRITE (LO, '(/1X, A, I2)')

- & 'PHO DIFSLP:ERROR: this option is not installed
- & !', ISWMDL(13)

----- 1.2. Compiling eStarlight with DPMJet interface -----

To enable the compilation of the DPMJet interface please follow these steps:

CMake uses an environment variable DPMJETDIR to locate the DPMJet object files, so define it.

\$ export DPMJETDIR=<path to dpmjet>

Then create a build directory for eSTARlight

\$ mkdir <build-dir>

and change into it

\$ cd <build-dir>

Run CMake with the option to enable DPMJet

\$ cmake <path-to-estarlight-source> -DENABLE_DPMJET=ON

Then build it

\$ make

Note: When compiling at RCAS(BNL), needed to add the gfortran library to the CMakeLists.txt and left it there.

----- 1.3. Running eSTARlight with DPMJet interface ------

To run eSTARlight with the DPMJet interface a couple of files are needed in the directory where you want to run eSTARlight.

The files needed are:

slight.in (eSTARlight config file. An example suitable for
DPMJet can be found in config/slight.in.dpmjet)
my.input (DPMJet config file. An example can be found in
config/my.input)
dpmjet.dat (Can be found in the DPMJet source directory)

In the slight.in file the relevant production modes (PROD_MODE) for DPMJET is:

5: A+A single excitation6: A+A double excitation7: p+A single excitation

In addition the minimum and maximum gamma energies must be set. These must be within the interval set in the my.input file.

To run:

\$./e_starlight < my.input
[DPMJET reads from direct input/interactive]</pre>

Output

eSTARlight outputs an ASCII file named slight.out.

For each event, a summary line is printed, with the format

EVENT: n ntracks nvertices,

where n is the event number (starting with 1), ntracks is the number of tracks in the event, and nvertices is the number of vertices in the event (eSTARlight does not produce events with more than one vertex).

EVENT line is followed by a description of the vertex, with the format

VERTEX: x y z t nv nproc nparent ndaughters,

where x, y, z and t are the 4-vector components of the vertex location, nv is the vertex number, nproc is a number intended to represent physical process (always set to 0), nparent is the track number of parent track (0 for primary vertex) and ndaughters is the number of daughter tracks from this vertex.

This is followed by a line describing the kinematics of the photon in the reference frame where the target (p or A) is at rest.

GAMMA: k Q2,

where k is the energy of the photon and Q2 is the invariant mass of the virtual photon.

This is followed by information related to the scattered target (X = p or A) which emerges from the collision.

t: event t ,

where, as expected, event_t is the four momentum transfer squared at the target vertex.

TARGET: px py pz E,

where px, py and pz are the three vector components of the scattered target three vector and E is it's energy.

The information related to the scattered target is followed by the scattered electron or source.

SOURCE: px py pz E,

where, again, px, py and pz are the components of the outgoing electron three vector and E is it's energy.

This is followed by a series of lines describing each of the daughter tracks emanating from this vertex. Each track line has the format

TRACK: GPID px py pz nev ntr stopv PDGPID,

where GPID is the Geant particle id code, px, py and pz are the three vector components of the track's momentum, nev is the event number, ntr is the number of this track within the vertex (starting with 0), stopy is the vertex number where track ends (0 if track does not terminate within the event), and PDGPID is the Monte Carlo particle ID code endorsed by the Particle Data Group.

File Descriptions

Readme.pdf

[This file.] provides information on the installation, operation, and construction of STARlight.

CMakeLists.txt

controls STARlight compilation. For details, please see above in Installation. This is the default/supported compilation method.

Makefile

A sample Makefile for compilation on *nix systems. This file is not actively supported. Please use CMake.

starlightconfig.h.in

passes on some compiler settings; such as enabling the Pythia/DPMJet sections within the source code.

starlightDoxyfile.conf

Doxygen configuration file.

CMake Modules:

FindPythia8.cmake

used by CMake to find the Pythia 8 files needed to compile STARlight with Pythia 8 dependent options enabled. It searches for: Pythia.h, Index.xml, libpythia8

FindPythia6.cmake

used by CMake to find the Pythia 6 files needed to compile STARlight with Pythia 6 dependent options enabled. It searches for: libPythia6. Pythia 6 functionality has been deprecated.

FindDPMJet.cmake

used by CMake to find the DPMJET files needed to compile STARlight with DPMJET dependent options enabled. It searches for: dpmjet3.0-5.0, pythia6115dpm3v1.0, and phojet1.12-35c4.0

FindROOT.cmake

used by CMake to find the ROOT files needed to compile STARlight with ROOT dependent options enabled. It searches for: root-config. root-config is then used to set the rest of the paths/options needed to enable ROOT within STARlight.

CommonMacros.cmake

A collection of useful cmake macos.

FindLHAPDF.cmake

used by CMake to find the LHAPDF dependent options enabled. This was necessary for older versions of Pythia8, but this is no longer the case. However, this file is being kept in the

distribution for users that would like to re-enable it. It searches for: Pythia.h and libhhapdfdummy

Config files:

my.input

A sample DPMJET configuration file.

slight.in

A sample STARlight input file, to select the desired final state and associated options. The section $\underline{\text{Input}}$ has more information.

slight.in.dpmjet

A sample slight.in file to use the DPMJET options (eg: PROD MODE = 5, 6, 7, and MIN_GAMMA_ENERGY, and MAX_GAMMA_ENERGY.).

slight.in.ee rhic

A sample slight.in file for e+e- production by Au-Au at top RHIC energies

slight.in.jpsi lhc

A sample slight.in file for \mbox{J}/ψ production by Pb-Pb at the LHC.

slight.in.pPb lhc

A sample slight.in file for \mbox{J}/ψ production by p-Pb at the LHC.

slight.in.rho rhic

A sample slight.in file for $\boldsymbol{\rho}$ production by Au-Au at top RHIC energies.

dpmjet:

dpmjetint.f

This is a DPMJET library, used in the CMakeLists.txt file to link when enabling DPMJET.

external:

fpe.c

corrects for the floating point trap differences between 32 and 64-bit. The DPMJET section has more information.

pythia6:

pythiainterface.h

interfaces Pythia6 with STARlight. Pythia 6 functionality has been deprecated.

utils:

Ana.C

This macro runs Analyze.cxx, which takes as input an ASCII STARlight output file, slight.out, and creates a standard set of histograms, which are stored in histograms.root

Analyze.cxx

This macro reads in a starlight output file and creates histograms of the p_T and rapidity of the daughters, as well as the p_T, rapidity and mass of the parent. It assumes there are only 2 daughter tracks that are electrons, muons, or pions. The histograms for the daughter particles are called fPt2, fPt2, fRap1, and fRap2. Parent histograms are created for each possible daughter species (e.g., parent p_T histograms are created with the names fPtE1, fPtMu, and fPtPi), but only the ones corresponding to the actual daughter particle are filled. The histograms are saved in a file called histograms.root.

To use this Analyze.cxx, modify the file Ana.C to call your input file (as downloaded, it calls slight.out) and the number of events you wish to process (as downloaded, it processes 20 events). Then open root and type ".x Ana.C".

Analyze.h

The header file for Analyze.cxx and Ana.C.

AnalyzeTree.cxx

This macro reads the starlight.root file produced by ConvertStarlightAsciiToTree.C, which contains TLorentzVectors for the parents and a TClonesArray of TLorentzVectors for the daughters. It creates histograms of the p_T and rapidity of the daughters, as well as the p_T, rapidity and mass of the parent. While the parents may have been created as the vector sum of any number of daughter particles, this macro currently produces histograms for only the first two daughter particles. The daughter histograms are called D1Pt, D2Pt, D1Rapidity, and D1Rapidity. Parent histograms are named ParentPt, ParentRapidity, and ParentMass. The histograms are stored in starlight_histos.root.

To use Analyzetree.cxx, first run ConvertStarlightAsciiToTree.C to produce the starlight.root file. If needed, modify the file AnalyzeTree.h to call your input file (as downloaded, it calls starlight.root). Then open root and type .x AnaTree.C .

AnalyzeTree.h

The header file for AnalyzeTree.cxx.

AnaTree.C

compiles and runs AnalyzeTree.cxx, which takes as input the starlight.root file produced by ConvertStarlightAsciiToTree.cxx output histograms are stored in starlight histos.root

ConvertStarlightAsciiToTree.C

reads a starlight output file (default name slight.out) and creates a root file with TLorentzVectors for the parent and a TClonesArray of TLorentzVectors for the daughter particles. The output is stored in a root file (default name starlight.root) with one branch labeled "parent" and the other labeled "daughters". Any number of daughter tracks can be accommodated. Daughter species currently accommodated are: electrons, muons, charged or neutral pions, charged or neutral kaons, and protons.

To use AnaTree.C, open root and then type .x ConvertStarlightAsciiToTree.C("inputfilename", "outputfilename") The root file produced can be examined in a root TBrowser.

A macro to read this root file and make some standard plots is also provided. This macro is called AnalyzeTree.cxx; it can be compiled and run with the AnaTree.C macro by opening root and typing .x AnaTree.C()

Source Files:

beam.cpp

generates the beam class, which inherits from the nucleus class (cf. nucleus.cpp). The object represents an accelerated nucleus, or a beam.

Functions:

beam::beam
beam::~beam

beambeamsystem.cpp

represents the colliding system of interest.

Functions:

beamBeamSystem::beamBeamSystem
beamBeamSystem::~beamBeamSystem
beamBeamSystem::probabilityOfBreakup

beamBeamSystem::generateBreakupProbabilities
beamBeamSystem::probabilityOfHadronBreakup
beamBeamSystem::probabilityOfPhotonBreakup

bessel.cpp

calculate modified Bessel functions of the first and second $\ensuremath{\mathsf{kind}}$.

Functions:

bessel::besI0
bessel::dbesk0
bessel::dbesk1
bessel::besI1

eventchannel.cpp

inherits from readLuminosity. It is a base for class for functions to produce events that is overloaded by other classes (Gammagammaleptonpair, Gammagammasingle, Gammaavectormeson, starlightDpmJet, and starlightPythia).

Functions:

eventfilewriter.cpp

writes event information in the output file.

Functions:

eventFileWriter::eventFileWriter
eventFileWriter::~eventFileWriter
eventFileWriter::writeEvent

filewriter.cpp

The base class for eventFileWriter, which is writes event information in the output file.

Functions:

fileWriter::fileWriter()
fileWriter::~fileWriter()
fileWriter::open
fileWriter::open(filename)
fileWriter::close

gammaaluminosity.cpp

contains the photonNucleusLuminosity class, which inherits from photonNucleusCrossSection. It calculates the differential cross-section for gamma-A interactions.

Functions:

photonNucleusLuminosity::photonNucleusLuminosity
photonNucleusLuminosity::~photonNucleusLuminosity
photonNucleusLuminosity::photonNucleusDifferentialLuminosi
ty //Calculates and outputs the differential luminosity
photonNucleusLuminosity::pttablegen // Calculates the pt
spectra for VM production with interference per S. Klein
and J. Nystrand, Phys. Rev Lett. 84, 2330 (2000).
photonNucleusLuminosity::vmsigmapt //calculates th effect
of the nuclear form factor on the pt spectrum, for use in
interference calculations. It calculates the cross section
suppression SIGMAPT(PT) as a function of pt. The input pt
values come from pttable.inc
photonNucleusLuminosity::nofe //calculates the 'photon
density'd^2N gamma/db^2

gammaavm.cpp

is responsible for classes Gammaavectormesion,
Gammaanarrowvm, and Gammaawidevm. Both Gammaanarrowvm and
Gammaawidevm inherit from Gammaavectormeson, which inherits
from eventChannel. The classes are responsible for
generating and decaying the vector mesons produced by photonnucleus interactions.

Functions:

Gammaavectormeson::Gammaavectormeson Gammaavectormeson::~Gammaavectormeson Gammaavectormeson::pickwy //responsible for selecting the events center of mass energy and rapidity Gammaavectormeson::twoBodyDecay // This routine decays a particle into two particles of mass mdec, taking spin into account Gammaavectormeson::fourBodyDecay // decays a particle into four particles with isotropic angular distribution Gammaavectormeson::getDaughterMass //returns the daughter particles mass, & the final particles id... Gammaavectormeson::getTheta //This depends on the decay angular distribution Gammaavectormeson::getWidth Gammaavectormeson::getMass Gammaavectormeson::getSpin //it's a VM, returns 1 Gammaavectormeson::momenta // calculates momentum and energy of vector meson given W and Y, without interference. Gammaavectormeson::pTgamma //finds the photon pT Gammaavectormeson::vmpt // calculates momentum and energy of a vector meson given W and Y, including interference. It gets the pt distribution from a lookup table. produceEvent pseudorapidity Gammaanarrowvm::Gammaanarrowvm Gammaanarrowvm::~Gammaanarrowvm Gammaanarrowvm::gammaaincoherentvm Gammaawidevm::Gammaawidevm Gammaawidevm::~Gammaawidevm

gammagammaleptonpair.cpp

inherits from eventChannel. It calculates the lepton pair's cross-section and generates and decayes the lepton pairs.

Functions:

Gammagammaleptonpair::Gammagammaleptonpair Gammagammaleptonpair::~Gammagammaleptonpair Gammagammaleptonpair::twoLeptonCrossSection // calculates section for 2-particle decay, per, see STAR Note 243, Eq. 9. It calculates the 2-lepton differential cross section Gammagammaleptonpair::twoMuonCrossSection // gives the two muon cross section as a function of Y&W, per G.Soff et. al Nuclear Equation of State, part B, 579 Gammagammaleptonpair::pickw // Picks a w for the 2- photon calculation. Gammagammaleptonpair::picky // Picks a y given a W Gammagammaleptonpair::pairMomentum // calculates px,py,pz,and E given w and y Gammagammaleptonpair::pp 1 // For beam 1, returns a random momentum drawn from from pp 1(E) distribution Gammagammaleptonpair::pp 2 // For beam 2, returns a random momentum drawn from from pp 2(E) distribution Gammagammaleptonpair::twoBodyDecay //decays a particle into two particles of mass mdec, taking spin into account

```
Gammagammaleptonpair::thetalep // calculates the cross-
section as a function of angle for a given W and Y, for
the production of two muons or taus, per Brodsky et al.
PRD 1971, 1532 equation 5.7
Gammagammaleptonpair::produceEvent //returns the vector
with the decay particles inside
Gammagammaleptonpair::calculateTable //calculates the
tables that are used elsewhere in the Monte Carlo the tau
decay follows V-A theory, 1 - 1/3 \cos(\text{theta}) the energy of
each of the two leptons in tau decay is calculated using
formula 10.35 in "Introduction to elementary particles by
D. Griffiths," which assumes that the mass of the electron
is 0. The maximum electron energy in in such a system is
0.5 * mass of the tau
Gammagammaleptonpair::tauDecay
                                // assumes that the
tauons decay to electrons and calculates the directons of
the decays
Gammagammaleptonpair::getMass
Gammagammaleptonpair::getWidth
Gammagammaleptonpair::getSpin
```

gammagammasingle.cpp

inherits from eventChannel. It calculates the cross-section for single mesons and generates and decays the single mesons from gamma-gamma interactions. It also generates single mesons which are then decayed by Pythia 8.

Functions:

```
Gammagammasingle::Gammagammasingle
Gammagammasingle::~Gammagammasingle
Gammagammasingle::singleCrossSection // calculates the
cross-section in the narrow-width approximation, per STAR
Note 243, Eq. 8
Gammagammasingle::pickw // picks a w for the 2-photon
calculation.
Gammagammasingle::picky
Gammagammasingle::parentMomentum // calculates
px,py,pz,and E given w and y
Gammagammasingle::pp 1 // For beam 1, returns a random
momentum drawn from from pp(E) distribution
Gammagammasingle::pp 2
                       // For beam 2, returns a random
momentum drawn from from pp(E) distribution
Gammagammasingle::twoBodyDecay //decays a particle into
two particles of mass mdec, taking spin into account
Gammagammasingle::produceEvent
Gammagammasingle::getMass
Gammagammasingle::getSpin
```

incoherentPhotonNucleusLuminosity.cpp

is responsible for the incoherentPhotonNucleusLuminosity class and inherits from photonNucleusCrossSection. It houses the differential luminosity calculation for incoherent gamma-A interactions.

Functions:

incoherentPhotonNucleusLuminosity::incoherentPhotonNucleus Luminosity $\verb|incoherentPhotonNucleusLuminosity:: \verb|`-incoherentPhotonNucleusLuminosity|| \\$

incoherentPhotonNucleusLuminosity::incoherentPhotonNucleus
DifferentialLuminosity

incoherentPhotonNucleusLuminosity::nofe //Function for the
calculation of the "photon density".

incoherentVMCrossSection.cpp

inherits from photonNucleusCrossSection. It calculates the cross-section for incoherent photon-nucleus interactions.

Functions:

incoherentVMCrossSection::incoherentVMCrossSection incoherentVMCrossSection::~incoherentVMCrossSection incoherentVMCrossSection::crossSectionCalculation // calculates the vector meson cross section assuming a narrow resonance. For reference, see STAR Note 386.

inputParameters.cpp

sets and stores STARlight's input parameters.

Functions:

inputParameters::inputParameters
inputParameters::~inputParameters
inputParameters::init
inputParameters::configureFromFile

inputParameters::configureFromFile

inputParameters::print
inputParameters::write

inputParameters::parameterValueKey

inputParser.cpp

parses the input files and stores the information in the inputParameters.

Functions:

inputParser::inputParser()
inputParser::~inputParser()
inputParser::parseFile
inputParser::parseString
inputParser::addIntParameter
inputParser::addVintParameter
inputParser::addFloatParameter
inputParser::addDoubleParameter
inputParser::addBoolParameter
inputParser::addStringParameter
inputParser::printParameterInfo
inputParser::validateParameters

lorentzvector.cpp

holds Lorentz 4-vectors.

Functions:

lorentzVector::lorentzVector
lorentzVector::~lorentzVector
SetXYZT

main.cpp

the "main" file/function-where the program starts.

narrowResonanceCrossSection.cpp

inherits from photonNucleusCrossSection. It calculates the cross-section for narrow resonance vector mesons.

Functions:

narrowResonanceCrossSection::narrowResonanceCrossSection narrowResonanceCrossSection::~narrowResonanceCrossSection narrowResonanceCrossSection::crossSectionCalculation // calculates the vector meson cross section assuming a narrow resonance, per STAR Note 386.

nBodyPhaseSpaceGen.cpp

is responsible for the kinematics used in the four-prong decays.

Functions:

```
nBodyPhaseSpaceGen::nBodyPhaseSpaceGen
nBodyPhaseSpaceGen::~nBodyPhaseSpaceGen
nBodyPhaseSpaceGen::setDecay // sets decay constants and
prepares internal variables
nBodyPhaseSpaceGen::generateDecay// generates event with
certain n-body mass and momentum and returns event weight
general purpose function
nBodyPhaseSpaceGen::generateDecayAccepted// generates full
event with certain n-body mass and momentum only, when
event is accepted (return value = true) this function is
more efficient, if only weighted evens are needed
nBodyPhaseSpaceGen::pickMasses// randomly choses the (n -
2) effective masses of the respective (i + 1)-body systems
nBodyPhaseSpaceGen::calcWeight// computes event weight (=
integrand value) and breakup momenta uses vector of
intermediate two-body masses prepared by pickMasses()
nBodyPhaseSpaceGen::calcEventKinematics// calculates
complete event from the effective masses of the (i + 1)-
body systems, the Lorentz vector of the decaying system,
and the decay angles uses the break-up momenta calculated
by calcWeight()
nBodyPhaseSpaceGen::estimateMaxWeight// calculates maximum
weight for given n-body mass
nBodyPhaseSpaceGen::print
```

nucleus.cpp

defines the basis properties of a nucleus such as radius, form factor, and thickness.

Functions:

```
nucleus::nucleus
nucleus::~nucleus
nucleus::init
nucleus::nuclearRadius
nucleus::formFactor
nucleus::dipoleFormFactor
nucleus::thickness// calculates the nuclear thickness
function per Eq. 4 in Klein and Nystrand, PRC 60
```

photonNucleusCrossSection.cpp

calculates the cross-section for coherent photon-Nucleus interactions.

Functions:

photonNucleusCrossSection::photonNucleusCrossSection

```
photonNucleusCrossSection::~photonNucleusCrossSection
           photonNucleusCrossSection::getcsgA // returns the cross-
            section for photon-nucleus interaction producing vector
           mesons
           photonNucleusCrossSection::photonFlux
                                                    // gives the
           photon flux as a function of energy Egamma for arbitrary
           nuclei and gamma. The first time it is called, it
           calculates a lookup table which is used on subsequent
            calls. It returns dN gamma/dE (dimensions 1/E), not dI/dE
            energies are in GeV, in the lab frame
           photonNucleusCrossSection::nepoint// gives the spectrum of
           virtual photons, dn/dEgamma, for a point charge q=Ze
           sweeping past the origin with velocity gamma, integrated
           over impact parameter from bmin to infinity, per Eq. 15.54
           of Jacksons Classical Electrodynamics
           photonNucleusCrossSection::sigmagp// gives the gamma-
           proton --> VectorMeson cross section. Wgp is the gamma-
           proton CM energy. Unit for cross section: fm**2
           photonNucleusCrossSection::sigma A// Nuclear Cross Section
           sig N, sigma A in (fm**2)
           photonNucleusCrossSection::sigma N// Nucleon Cross Section
            in (fm**2)
           photonNucleusCrossSection::breitWigner// uses simple
            fixed-width s-wave Breit-Wigner without coherent
           backgorund for rho' (PDG '08 eq. 38.56)
pythiadecayer.cpp
      links Pythia 8 and STARlight, and initalizes Pythia 8.
      Functions:
           pythiaDecayer::pythiaDecayer
           pythiaDecayer::~pythiaDecayer
           pythiaDecayer::init
           pythiaDecayer::addParticle
           pythiaDecayer::execute
randomgenerator.cpp
      STARlight's random number generator, using the same algorithm
      as ROOTs TRANDOM3 class. It is based on M. Matsumoto and T.
      Nishimura, Mersenne Twistor: A 623-dimensionally
      equidistributed uniform pseudorandom number generator. For
      more information see
      http://www.math.keio.ac.jp/~matumoto/emt.html
      Functions:
           randomGenerator::SetSeed
           randomGenerator::Rndom
readinluminosity.cpp
      reads in the luminosity tables from slight.txt, which is
      generated in the early stages of the program.
      Functions:
            readLuminosity::readLuminosity
            readLuminosity::~readLuminosity
           readLuminosity::read
```

spectrum.cpp

sets up functions needed to make cross-section calculations for general photonuclear interactions modeled with DPMJET.

Functions:

spectrum::spectrum
spectrum::generateKsingle
spectrum::generateKdouble
spectrum::drawKsingle
spectrum::drawKdouble

spectrum::generateBreakupProbabilities

spectrum::getFnSingle
spectrum::getFnDouble

spectrum::getTransformedNofe

sprectrumprotonnucleus.cpp

sets up functions needed to make cross-section calculations for general photonuclear interactions modeled with DPMJET.

Functions:

spectrumProtonNucleus::spectrumProtonNucleus
spectrumProtonNucleus::generateBreakupProbabilities
spectrumProtonNucleus::getSigma

starlight.cpp

initializes and then produces and decays events.

Functions:

starlight::starlight
starlight::~starlight

starlight::init

starlight::produceEvent

starlight::luminosityTableIsValid
starlight::createEventChannel

starlightdpmjet.cpp

hosts the class starlightDpmJet which inherits from the eventChannel class. It includes methods to generate diffractive events with DPMJET.

Functions:

starlightDpmJet::starlightDpmJet
starlightDpmJet::init
starlightDpmJet::produceEvent
starlightDpmJet::produceSingleEvent
starlightDpmJet::produceDoubleEvent

starlightparticle.cpp

is a container to store particle information.

Functions:

starlightParticle::starlightParticle
starlightParticle::~starlightParticle

starlightparticlecodes.cpp

 ${f c}$ onverts jetset particle numbers to the corresponding GEANT code.

Functions:

starlightParticleCodes::jetsetToGeant

starlightpythia.cpp

inherits from the eventChannel class. It includes methods to calculate diffractive events with Pythia6. Pythia 6 functionality has been deprecated.

Functions:

starlightPythia::starlightPythia
starlightPythia::~starlightPythia
starlightPythia::init
starlightPythia::produceEvent

starlightStandalone.cpp

is used by Main.cpp and in turn calls methods from the starlight class.

Functions:

starlightStandalone::starlightStandalone
starlightStandalone::~starlightStandalone
starlightStandalone::init
starlightStandalone::run
starlightStandalone::boostEvent

twophotonluminosity.cpp

inherits from beamBeamSystem, and is responsible for calculating the two photon luminosity table based on W and Y.

Functions:

twoPhotonLuminosity::twoPhotonLuminosity
twoPhotonLuminosity::~twoPhotonLuminosity
twoPhotonDifferentialLuminosity
twoPhotonLuminosity::D2LDMDY
twoPhotonLuminosity::D2LDMDY_Threaded
twoPhotonLuminosity::integral
twoPhotonLuminosity::radmul
twoPhotonLuminosity::integrand
twoPhotonLuminosity::Nphoton

upcevent.cpp

stores the final event information.

Functions:

upcEvent::upcEvent
upcEvent::operator=
upcEvent::operator+
upcEvent::boost

vector3.cpp

is a container for 3D-vectors.

Functions:

vector3::vector3
vector3::~vector3
vector3::SetVector

wideResonanceCrossSection.cpp

inherits from photnNucleusCrossSection. It is responsible for calculating the cross-section of vector mesons with a wide resonance (eg. Rho).

Functions:

wideResonanceCrossSection::wideResonanceCrossSection
wideResonanceCrossSection::~wideResonanceCrossSection

```
wideResonanceCrossSection::crossSectionCalculation //
calculates the cross-section assuming a wide(Breit-Wigner)
resonance.
```

Include Files:

```
beam.h //This class includes a single beam of nucleons
            Included in files
                  beambeamsystem.h
                  twophotonluminosity.h
                  beam.cpp
                  gammaaluminosity.cpp
                  incoherentPhotonNucleusLuminosity.cpp
                  spectrumprotonnucleus.cpp
                  twophotonluminosity.cpp
            Functions
                  beam
                  \simbeam
                  rapidity
                  photonFlux
                  setBeamLorentzGamma
      beambeamsystem.h //This class covers a coliding beam system
            Included in files
                  eventchannel.h
                  gammaaluminosity.h
                  gammaavm.h
                  gammagammasingle.h
                  incoherentPhotonNucleusLuminosity.h
                  photonNucleusCrossSection.h
                  starlightpythia.h
                  twophotonluminosity.h
                  beambeamsystem.cpp
                  gammaaluminosity.cpp
                  incoherentPhotonNucleusLuminosity.cpp
                  spectrum.cpp
                  spectrumprotonnucleus.cpp
                  twophotonluminosity.cpp
            Functions
                  beamBeamSystem
                  ~beamBeamSystem
                  cmsBoost
                  beamLorentzGamma
                  beam1
                  beam2
                  probabilityOfBreakup
                  init
                  generateBreakupProbabilities
                  probabilityOfHadronBreakup
                  probabilityOfPhotonBreakup
      bessel.h
            Included in files
```

beam.cpp
beambeamsystem.cpp

```
bessel.cpp
            gammaaluminosity.cpp
            incoherentPhotonNucleusLuminosity.cpp
            photonNucleusCrossSection.cpp
            twophotonluminosity.cpp
      Functions
            besT0
            dbesk0
            dbesk1
            besI1
eventchannel.h
      Included in files
            gammaavm.h
            gammagammaleptonpair.h
            gammagammasingle.h
            starlight.h
            starlightdpmjet.h
            starlightpythia.h
            eventchannel.cpp
            starlight.cpp
      Functions
            eventChannel
            ~eventChannel
            nmbAttempts ///< returns number of attempted events</pre>
            nmbAccepted ///< returns number of accepted events</pre>
            produceEvent
            transform ///< Lorentz-transforms given 4-vector</pre>
            pseudoRapidity ///< calculates pseudorapidity for
            given 3-momentum
eventfilewriter.h
      Included in files
            eventfilewriter.cpp
            main.cpp
            starlight.cpp
            starlightStandalone.cpp
      Functions
            eventFileWriter
            writeEvent /** Write an UPC event to file */
            writeFullPythiaInfo /** Set if we want to write full
            pythia information */
filewriter.h
      Included in files
            eventfilewriter.h
            eventfilewriter.cpp
            filewriter.cpp
            main.cpp
            starlight.cpp
            starlightStandalone.cpp
      Functions
            fileWriter
            ~fileWriter
            open //opens the file
            setFileName//set the filename we're writing to
```

```
gammaaluminosity.h
```

Included in files

gammaaluminosity.cpp
starlight.cpp

Functions

gammaavm.h

Included in files

gammaavm.cpp
starlight.cpp

Functions

Gammaavectormeson \sim Gammaavectormeson produceEvent pickwy momenta pTgamma vmpt twoBodyDecay fourBodyDecay getMass getWidth getTheta getSpin getDaughterMass pseudoRapidity Gammaanarrowvm ~Gammaanarrowvm Gammaawidevm ~Gammaawidevm Gammaaincoherentvm ~Gammaaincoherentvm

gammagammaleptonpair.h

Included in files

gammagammaleptonpair.cpp
starlight.cpp

Functions

Gammagammaleptonpair ~Gammagammaleptonpair twoLeptonCrossSection calculateTable produceEvent twoMuonCrossSection pickw picky pairMomentum pp_1 pp_2

twoBodyDecay thetalep tauDecay getMass getWidth getSpin gammagammasingle.h Included in files gammagammasingle.cpp starlight.cpp Functions Gammagammasingle ~Gammagammasingle singleCrossSection produceEvent pickw picky parentMomentum twoBodyDecay thephi getMass getWidth getSpin incoherentPhotonNucleusLuminosity.h Included in files incoherentPhotonNucleusLuminosity.cpp starlight.cpp Functions incoherentPhotonNucleusLuminosity ~incoherentPhotonNucleusLuminosity incoherentPhotonNucleusDifferentialLuminosity nofe incoherentVMCrossSection.h Included in files gammaavm.cpp incoherentVMCrossSection.cpp **Functions** incoherentVMCrossSection ~incoherentVMCrossSection crossSectionCalculation inputParameters.h Included in files beam.h gammaaluminosity.h incoherentPhotonNucleusLuminosity.h readinluminosity.h starlightpythia.h beam.cpp beambeamsystem.cpp

incoherentPhotonNucleusLuminosity.cpp

gammaaluminosity.cpp

inputParameters.cpp
nucleus.cpp
readinluminosity.cpp
starlight.cpp
starlightStandalone.cpp
twophotonluminosity.cpp

Functions

parameterlist add validationKey parameterbase toString operator<< parameter operator= ptr value name required setValue setName setRequired inputParameters ~inputParameters init configureFromFile baseFileName beam1Z beam1A beam2Z beam2A beamLorentzGamma beam1LorentzGamma beam2LorentzGamma maxW minW nmbWBins maxRapidity nmbRapidityBins ptCutEnabled ptCutMin ptCutMax etaCutEnabled etaCutMin etaCutMax productionMode nmbEvents prodParticleId ${\tt randomSeed}$ beamBreakupMode interferenceEnabled interferenceStrength maxPtInterference nmbPtBinsInterference ptBinWidthInterference

coherentProduction
incoherentFactor

minGammaEnergy maxGammaEnergy pythiaParams pythiaFullEventRecord xsecCalcMethod prodParticleType prodParticleDecayType interactionType protonEnergy setBaseFileName setBeam1Z setBeam1A setBeam2Z setBeam2A setBeamLorentzGamma setBeam1LorentzGamma setBeam2LorentzGamma setMaxW setMinW setNmbWBins setMaxRapidity setNmbRapidityBins setPtCutEnabled setPtCutMin setPtCutMax setEtaCutEnabled setEtaCutMin setEtaCutMax setProductionMode setNmbEvents setProdParticleId ${\tt setRandomSeed}$ setBeamBreakupMode setInterferenceEnabled setInterferenceStrength setMaxPtInterference setNmbPtBinsInterference setPtBinWidthInterference setCoherentProduction setIncoherentFactor setMinGammaEnergy setMaxGammaEnergy setPythiaParams setPythiaFullEventRecord ${\tt setXsecCalcMethod}$ setProdParticleType setProdParticleDecayType setInteractionType setProtonEnergy setParameter print write parameterValueKey instance

inputParser.h

Included in files

```
inputParameters.h
            inputParameters.cpp
            inputParser.cpp
      Functions
            inputParser
            inputParser
            parseFile/** Parse a file */
            parseString
            addIntParameter
            addUintParameter
            addFloatParameter
            addDoubleParameter
            addBoolParameter
            addStringParameter
            printParameterInfo
            validateParameters
            parameter
            operator==
            operator<
            printParameterInfo
            addParameter
lorentzvector.h
      Included in files
            nBodyPhaseSpaceGen.h
            starlightparticle.h
            lorentzvector.cpp
      Functions
            lorentzVector
            ~lorentzVector
            SetXYZT
            SetPxPyPzE
            GetPx
            GetPy
            GetPz
            GetE
            operator +=
            operator -=
            M2
            BoostVector
            Boost
            operator <<
narrowResonanceCrossSection.h
      Included in files
            narrowResonanceCrossSection.cpp
            gammaavm.cpp
      Functions
            narrowResonanceCrossSection
            ~narrowResonanceCrossSection
            crossSectionCalculation
nBodyPhaseSpaceGen.h
      Included in files
            gammaavm.h
```

nBodyPhaseSpaceGen.cpp

Functions

Factorial breakupMomentum nBodyPhaseSpaceGen ~nBodyPhaseSpaceGen setDecay random generateDecay generateDecayAccepted setMaxWeight maxWeight normalization eventWeight maxWeightObserved resetMaxWeightObserved estimateMaxWeight eventAccepted daughter daughters nmbOfDaughters daughterMass intermediateMass breakupMom cosTheta phi print operator << pickMasses calcWeight pickAngles calcEventKinematics eventAccepted

nucleus.h

Included in files

beam.h
beambeamsystem.h
twophotonluminosity.h
gammaaluminosity.h
incoherentPhotonNucleusLuminosity.cpp
nucleus.cpp
spectrumprotonnucleus.cpp
starlightdpmjet.cpp
starlightpythia.cpp
twophotonluminosity.cpp

Functions

nucleus
~nucleus

init
Z
A
nuclearRadius
formFactor
dipoleFormFactor
thickness

```
00
            rho0
            woodSaxonSkinDepth
            fritiofR0
            rws
photonNucleusCrossSection.h
      Included in files
            gammaaluminosity.h
            incoherentPhotonNucleusLuminosity.h
            incoherentVMCrossSection.h
            narrowResonanceCrossSection.h
            wideResonanceCrossSection.h
            gammaavm.cpp
            photonNucleusCrossSection.cpp
      Functions
            photonNucleusCrossSection
            ~photonNucleusCrossSection
            slopeParameter///< returns slope of t-distribution</pre>
            [(GeV/c)^{-2}]
            getChannelMass ///< returns mass of the produced</pre>
            system [GeV/c^2]
            getBNORM
            luminosity//< returns luminosity [10^{26} cm^{-2}]</pre>
            sec^{-1}]
            getbbs///< returns beamBeamSystem</pre>
            vmPhotonCoupling ///< vectormeson-photon coupling</pre>
            constant f v / 4 pi (cf. Eq. 10 in KN PRC 60 (1999)
            014903)
            getDefaultC
            maxPhotonEnergy///< returns max photon energy in lab</pre>
            frame [GeV] (for vectormesons only)
            crossSectionCalculation
            getcsqA
            photonFlux
            sigmagp
            sigma A
            sigma N
            breitWigner
            nepoint
pythiadecayer.h
      Included in files
            gammagammasingle.h
            pythiadecayer.cpp
      Functions
            pythiaDecayer
            ~pythiaDecayer
            init// Initialize
            addParticle// Add particle to current event
            execute// Execute event and return starlight type
            event
            pythiaDecayer
            operator==
```

PythiaStarlight.h

```
Included in files
            starlight.cpp
      Functions
            pythiaStarlight
            init
            getPythia
randomgenerator.h
      Included in files
            eventchannel.h
            gammaavm.h
            gammagammasingle.h
            nBodyPhaseSpaceGen.h
            inputParameters.cpp
            randomgenerator.cpp
            spectrum.cpp
      Functions
            SetSeed
            Rndom
            randomGenerator
            instance
readinluminosity.h
      Included in files
            eventchannel.h
            gammaavm.h
            gammagammaleptonpair.h
            gammagammasingle.h
            readinluminosity.cpp
      Functions
            readLuminosity
            ~readLuminosity
            read
reportingUtils.h
      Included in files
            inputParser.h
            nBodyPhaseSpaceGen.h
            beam.cpp
            beambeam system.cpp
            inputParameters.cpp
            main.cpp
            nucleus.cpp
            photonNucleusCrossSection.cpp
            pythiadecayer.cpp
            starlight.cpp
            starlightStandalone.cpp
      Functions
            getClassMethod
            printErr
            printWarn
            printInfo
            svnVersion
            printSvnVersion
```

compileDir

printCompilerInfo

```
operator <<
pre>progressIndicator
trueFalse
yesNo
onOff
enDisabled
```

spectrum.h

Included in files

spectrumprotonnucleus.h
starlightdpmjet.h
spectrum.cpp
starlightdpmjet.cpp

Functions

spectrum // Spectrum must be constructed with beambeam system, default constructor disallowed generateKsingle // Generate a table of photon energy probabilities. Use NK+1 logarithmic steps between Et min and Eg max generateKdouble // Generate a 2-D table of photon energy probabilities. Use NK+1 x NK+1 logarithmic steps between Et min and Eg max drawKsingle // Get the energy of a single gamma @return energy of the gamma drawKdouble // Get the energy of a single gamma @param egamma1 variable passed by reference to get the energy of the frst gamma @param egamma2 variable passed by reference to get the energy of the second gamma @return energy of the gamma setBeamBeamSystem // Set the beam beam system setMinGammaEnergy //Set the minimum gamma energy setMaxGammaEnergy / Set the maximum gamma energy setBmin //Set minimum impact parameter setBMax //Set maximum impact parameter generateBreakupProbabilities //Generate the hadron breakup probability table getSigma ---1.05? getTransformedNofe getFnSingle getFnDouble

sprectrumprotonnucleus.h

Included in files

spectrumprotonnucleus.cpp
starlightdpmjet.cpp
starlightpythia.cpp

Functions

spectrumProtonNucleus
getNucleonNucleonSigma --- 7.35?
generateBreakupProbabilities
getSigma

starlight.h

Included in files

main.cpp
starlight.cpp

```
starlight
            ~starlight
            init
            produceEvent
            configFileName
            nmbAttempts
            nmbAccepted
            luminosityTableIsValid
            createEventChannel
starlightconstants.h
      Included in files
            eventchannel.h
            gammaavm.h
            gammagammasingle.h
            gammagammaleptonpair.h
            inputParameters.h
            nBodyPhaseSpaceGen.h
            photonNucleusCrossSection.h
            upcevent.h
            beam.cpp
            beambeamsystem.cpp
            gammaaluminosity.cpp
            gammagammaleptonpair.cpp
            gammagammasingle.cpp
            incoherentPhotonNucleusLuminosity.cpp
            incoherentVMCrossSection.cpp
            inputParameters.cpp
            narrowResonanceCrossSection.cpp
            nucleus.cpp
            photonNucleusCrossSection.cpp
            readinluminosity.cpp
            twophotonluminosity.cpp
            wideResonanceCrossSection.cpp
      Functions
            N/A
starlightdpmjet.h
      Included in files
            starlight.cpp
            starlightdpmjet.cpp
      Functions
            starlightDpmJet
            init
            produceEvent
            produceSingleEvent
            produceDoubleEvent
            setSingleMode
            setDoubleMode
            setMinGammaEnergy
            setMaxGammaEnergy
            setProtonMode
starlightlimits.h
```

starlightStandalone.cpp

Functions

```
Included in files
```

gammagammaleptonpair.h
readinluminosity.h
twophotonluminosity.h

Functions

N/A

starlightparticle.h

Included in files

pyhthiadecayer.h
upcevent.h
starlightparticle.cpp

Functions

starlightParticle ~starlightParticle setPdgCode getPdgCode setCharge getCharge setFirstParent getFirstParent setLastParent getLastParent setFirstDaughter getFirstDaughter setLastDaughter getLastDaughter getStatus setStatus

starlightparticlecodes.h

Included in files

setVertex
getVertex

eventfilewriter.cpp
starlightparticlescodes.cpp

Functions

jetsetToGeant//Converts a jetset code into a GEANT
codes

starlightpythia.h

Included in files

starlight.cpp
starlightpythia.cpp

Functions

starlightPythia
~starlightPythia
init
produceSingleEvent
produceDoubleEvent
produceEvent
setSingleMode
setDoubleMode
setMinGammaEnergy
setMaxGammaEnergy
setFullEventRecord

```
starlightStandalone.h
      Included in files
            main.cpp
            starlightStandalone.cpp
      Functions
            starlightStandalone
            ~starlightStandalone
            init
            configFileName
            eventDataFileName
            setConfigFileName
            setEventDataFileName
            boostEvent
twophotonluminosity.h
      Included in files
            starlight.cpp
            twophotonluminosity.cpp
      Functions
            twoPhotonLuminosity
            ~twoPhotonLuminosity
            twoPhotonDifferentialLuminosity
            D2LDMDY
            D2LDMDY Threaded
            integral
            radmul
            integrand
            Nphoton
upcevent.h
      Included in files
            eventchannel.h
            filewriter.h
            gammaavm.h
            pythiadecayer.h
            starlight.h
            starlightpythia.h
            starlight.cpp
            upcevent.cpp
      Functions
            upcEvent
            ~upcEvent
            addParticle
            addVertex
            addGamma
            getParticles
            getVertices
            getGammaEnergies
            operator=
            operator+
            boost
```

vector3.h

Included in files

$\frac{\texttt{lorentzvector.h}}{\texttt{vector3.cpp}}$

Functions

vector3
~vector3
GetVector
SetVector
operator +=
operator =
operator -=
X
Y
Z
Mag2
Mag
operator <<</pre>

wideResonanceCrossSection.h

Included in files

gammaavm.cpp
wideResonanceCrossSection.cpp

Functions

wideResonanceCrossSection
~wideResonanceCrossSection
crossSectionCalculation