- 1. Sean U y W subespacios de V tales que $\dim U = 5$, $\dim W = 5$, y $\dim V = 7$. Encuentre las posibles dimensiones de $U \cap W$.
- 2. Determine una base para la suma $W_1 + W_2$ de los subespacios

$$W_1 = \{ p \in \mathbb{P}_3 / p'(1) = p(1) = 0 \}$$

$$W_2 = \{ p \in \mathbb{P}_3/(x^2 - 1) \text{ es factor de } p \}$$

3. Sea $W_1 = \langle u_1, u_2, u_3 \rangle, W_2 = \langle v_1, v_2, v_3 \rangle$ donde

$$u_1 = [1 - 1201]$$

$$u_2 = [0 - 1201]$$

$$u_3 = [21 - 101]$$

$$v_1 = [-1 - 1201]$$

$$v_2 = [2 - 1201]$$

$$v_3 = [12 - 111]$$

Determine bases para W_1+W_2 y $W_1\cap W_2$

4. Considere los espacios de $P_3[\mathbb{R}]$

$$V = \langle 1 + x^3, 1 + x + x^2, 2x - x^2, 2 + 3x^2 \rangle, \quad W = \langle 1 + 3x^2 - x^3, 1 + 4x + x^2 - x^3, 2x - x^2 \rangle$$

Demuestre que $W\subset V$ y encuentre un subespacio $U\subset V$ tal que

$$V = W \oplus U$$