Examen Parcial I **Procesos Estocásticos I**

Prof. Rafael Miranda Cordero

Aydte. Fernando Avitúa Varela

18 de septiembre 2023

Responda 3 de los siguientes problemas. Argumente cuidadosamente sus respuestas.

- 1. Responde las siguientes preguntas, explica con tus propias palabras y anota las ecuaciones correspondientes
 - ¿Qué es un proceso estocástico?
 - ¿Cuál es la propiedad de Markov?
 - ¿Qué es la función de transición?
 - ¿Qué es un proceso estacionario?
 - ¿Que establece la ecuación de Chapman-Kolmogorov?
 - ¿Cómo se define el tiempo de llegada T_y ?
- 2. Supón que tienes un ratón que está atrapado en un laberinto con cuatro cámaras como se puede observar en la Figura. El ratón tiene la misma probabilidad de **quedarse en su misma posición** o moverse a cada una de las cámaras que están a su lado (i.e.) no en diagonal.

Figura 1: Ratón encerrado en el laberinto. Notar que de la cámara 1 sólo se puede quedar en la misma cámara, acceder a la 2 y a la 3, pero no avanzar a la 4 y así para todas las cámaras, no se puede acceder a la que está en diagonal

a) ¿Cuál es su matriz de transición M_{ij} ?

- b) ¿Qué tipo de matriz es M? Es cierto que $M_{ij}^n=M_{ji}^n$?
- 3. Para la cadena de la ruina del jugador, con probabilidad p de ganar y espacio de estados $\{0,1,\ldots,d\}$ calcule:
 - a) La matriz de transición P.
 - b) $P^2, P^3 y P^4$.
 - c) ¿Puede dar una forma general para P^n ?
- 4. Para la cadena de Markov de dos estados haga lo siguiente.
 - a) Calcule $\mathbf{P}_1(T_0=n)$ para cada $n\in\mathbf{N}$
 - b) ¿Bajo que condiciones $\mathbf{P}_0(T_0=\infty)=0$ y $\mathbf{P}_1(T_0=\infty)=0$?
 - c) Calcule $\mathbf{E}[T_0]$ (¿Es posible que $\mathbf{E}[T_0] = \infty$?, si es así, ¿cuándo sucede esto?)

Sugerencia: Utilice esperanza condicional para calcular la esperanza de T_0 .