Mathématiques

PROBLEME

On note f la fonction définie pour tout x > 0 par $f(x) = \ln(x) - x \ln\left(1 + \frac{1}{x}\right)$

- **1.** Etude de *f* :
 - a) Somme, produit et composée de fonctions usuelles, f est dérivable sur \mathbb{R}_+^* et $\forall x > 0$,

$$f'(x) = \frac{1}{x} - \ln\left(1 + \frac{1}{x}\right) + \frac{x}{x^2} \cdot \frac{1}{1 + 1/x} = \boxed{\frac{1}{x} + \frac{1}{x+1} - \ln\left(1 + \frac{1}{x}\right)}$$

b) Pour les mêmes raisons f' est dérivable sur \mathbb{R}_+^* et $\forall x > 0$,

$$f''(x) = -\frac{1}{x^2} - \frac{1}{(x+1)^2} + \frac{1}{x^2} \cdot \frac{1}{1+1/x} = -\frac{1}{x^2} - \frac{1}{(x+1)^2} + \frac{1}{x(x+1)}$$

Après mise au même dénominateur :

$$f''(x) = -\frac{x^2 + x + 1}{x^2 (x+1)^2}$$

c) Le numérateur de cette dernière expression est un trinôme sans racines réelles (discriminant négatif). Il est donc de signe constant, et on en déduit sans souci que :

$$f'$$
 est strictement décroissante sur $]0, +\infty[$

- d) Les trois termes de l'expression de f' sont tous évidemment de limite nulle en $+\infty$, donc $\lim_{x\to +\infty} f'(x)=0$ Comme f' est continue strictement décroissante sur $]0,+\infty[$, on en déduit (un raisonnement par l'absurde le montrerait rigoureusement) que f' est strictement positive sur $]0,+\infty[$
- e) Etudions les "limites aux bornes" de f:
 - * En 0: on a $\forall x > 0$,

$$f(x) = \ln x - x \ln \frac{x+1}{x} = \ln x - x \ln (x+1) + x \ln x$$

Comme $\lim_{x\to 0} \ln x = -\infty$ et $\lim_{x\to 0} x \ln x = 0$ (classique), on en déduit $\lim_{x\to 0} f(x) = -\infty$

* $\underline{\operatorname{En} + \infty}$: posons $y = \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$. Alors

$$f(x) = \ln\left(\frac{1}{y}\right) - \frac{\ln(1+y)}{y} = -\ln(y) - \frac{\ln(1+y)}{y}$$

Or $\lim_{y\to 0} \ln y = -\infty$ et $\lim_{y\to 0} \frac{\ln\left(1+y\right)}{y} = 1$ (taux de variation), donc : $\lim_{x\to +\infty} f\left(x\right) = +\infty$

On a ainsi le tableau de variations de f:

x	0		$+\infty$
f'(x)		+	
f(x)	$-\infty$	7	+∞

f) Vérifions que f(2) < 0 < f(3): on calcule :

$$f(2) = \ln 2 - 2 \ln \frac{3}{2} = \ln 2 - 2 \ln 3 + 2 \ln 2 = 3 \ln 2 - 2 \ln 3 = \ln \frac{2^3}{3^2} = \ln \frac{8}{9} < 0$$

PCSI 1 2019/2020

De même

$$f(3) = \ln 3 - 3 \ln \frac{4}{3} = \ln 3 - 3 \ln 4 + 3 \ln 3 = \ln \frac{3^4}{4^3} = \ln \frac{81}{64} > 0$$

- **2.** Réciproque de f:
 - a) f est donc continue strictement croissante, et vérifie $\lim_{0} f = -\infty$ et $\lim_{+\infty} f = +\infty$. On en déduit que f réalise ainsi une bijection de $]0, +\infty[$ sur \mathbb{R} , dont on note g la réciproque.
 - b) Montrons que g est strictement croissante su \mathbb{R} : si y < y', on pose $x = g\left(y\right)$ et $x' = g\left(y'\right)$ de sorte que

$$f(x) = y$$
 et $f(x') = y'$

Si on avait $x\geqslant x'$, alors par stricte croissance de f on aurait $f\left(x\right)\geqslant f\left(x'\right)$ soit y>y' contradiction. On en déduit donc x< x', c'est à dire $g\left(y\right)< g\left(y'\right)$, CQFD.

En appliquant ce résultat à l'inégalité $f\left(2\right) < 0 < f\left(3\right)$, on obtient $2 < g\left(0\right) < 3$

c) Courbes $\mathcal C$ et $\mathcal C'$ de f et de g (elles sont symétriques par rapport à la droite $\Delta:y=x$)

- **3.** On note φ la composée de g et de \ln , c'est-à-dire : $\forall x > 0, \ \varphi(x) = g(\ln(x))$
 - a) L'étude rapide sur $[0, +\infty[$ de $h: x \to x \ln(1+x)$, de dérivée $h': x \to 1 \frac{1}{x+1} = \frac{x}{x+1} > 0$ montre que celle-ci est strictement croissante sur $[0, +\infty[$. Comme h(0) = 0, on en déduit qu'elle est positive sur $[0, +\infty[$, i.e. $\forall x \geqslant 0$, $\ln(1+x) \leqslant x$
 - b) Soit x > 0. Substituons $\frac{1}{x} > 0$ à x dans l'inégalité précédente : $0 \le \ln\left(1 + \frac{1}{x}\right) \le \frac{1}{x}$. Il vient

$$0 \leqslant x \ln\left(1 + \frac{1}{x}\right) \leqslant 1$$

Mais alors.

$$\begin{cases} f(x) = \ln x - x \ln \left(1 + \frac{1}{x}\right) \\ x \ln \left(1 + \frac{1}{x}\right) \geqslant 0 \end{cases} \Rightarrow f(x) \leqslant \ln x$$

Par ailleurs

$$\begin{cases} f\left(ex\right) = \ln\left(ex\right) - ex\ln\left(1 + \frac{1}{ex}\right) = 1 + \ln x - ex\ln\left(1 + \frac{1}{ex}\right) \\ ex\ln\left(1 + \frac{1}{ex}\right) \leqslant 1 \quad \text{(encadrement précédent en } ex \text{)} \end{cases}, \Rightarrow f\left(ex\right) \geqslant 1 + \ln x - 1 = \ln x$$

Finalement

$$f(x) \leqslant \ln x \leqslant f(ex)$$

c) On applique g dont on a montré la croissance sur \mathbb{R} : $\forall x > 0$, $g(f(x)) \leq g(\ln x) \leq g(f(ex))$, soit

$$x \leqslant \varphi\left(x\right) \leqslant ex$$

- d) De l'encadrement 2,71 < e < 2,72 on tire donc facilement $\varphi(10) \leqslant 10e < 28$
- e) Un calcul mené plus haut aboutit très vite à $\forall x > 0, f(x) = (x+1) \ln(x) x \ln(x+1)$
- f) Soit x > 0. Alors on a les équivalences (ln est strictement croissante sur \mathbb{R}_+^*):

$$x^{x+1} > 10(x+1)^x \iff (x+1)\ln x > \ln 10 + x\ln(x+1) \iff f(x) > \ln 10$$

En composant par la fonction strictement croissante g, il vient donc

$$x^{x+1} > 10(x+1)^x \Longleftrightarrow \varphi(x) > 10$$

4. Encore une fonction : soit $a \in [e, +\infty]$. On pose $f_a: [a, +\infty[\longrightarrow \mathbb{R}$

Produit de fonctions dérivables (usuelles) sur $[a, +\infty[$, f_a l'est aussi et $\forall x \geqslant a$

$$f'_{a}(x) = \ln(a) a^{x} x^{-a} - a a^{x} x^{-a-1} = a^{x} x^{a-1} (\ln(a) x - a)$$

Comme $a \ge e$, $\ln(a) \ge 1$ et donc $a \ln(a) \ge a$. Il va sans dire que $a^x x^{a-1} > 0$, donc $f'_a(x) \ge 0$ et ne s'annule qu'éventuellement en a. $\underline{f_a}$ est ainsi strictement croissante sur $[a,+\infty[$ De plus $\forall x\geqslant a,\, f_a\,(x)=e^{x\ln a-a\ln x}.$ Or

$$x \ln a - a \ln x = x \left(\ln a - a \frac{\ln x}{x} \right)$$

Comme $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ et $\ln a \geqslant 0$ on en déduit $\lim_{x\to +\infty} x \ln a - a \ln x = +\infty$ et

$$\lim_{x \to +\infty} f_a\left(x\right) = +\infty$$

5. Soient p et q deux entiers supérieurs ou égaux à 28 tels que p^q et q^p aient le même nombre de chiffres dans le système de numération décimal. On cherche à montrer que p=q.

On suppose par l'absurde que p > q, i.e. $p \ge q + 1$ puisque p et q sont entiers.

- a) Par croissance de la fonction f_q sur $[q, +\infty[$, on a $p \geqslant q+1 \geqslant q \Rightarrow f_q(p) \geqslant f_q(q+1)$
- b) Or $q \ge 28$, et la majoration de $\varphi(10)$ obtenue en 3.d) assure $q > \varphi(10) = g(\ln(10))$.

On en déduit par stricte croissance de f sur $]0, +\infty[$:

$$f(q) > \ln 10 \iff (q+1)\ln(q) - q\ln(q+1) > \ln 10$$

$$\iff \ln \frac{q^{q+1}}{(q+1)^q} > \ln 10$$

$$\iff \frac{q^{q+1}}{(q+1)^q} > 10$$

Finalement:

$$q^{q+1} > 10 (q+1)^q$$

c) L'inégalité du a) se traduit alors par

$$f_q(p) \geqslant \frac{q^{q+1}}{(q+1)^q} > \frac{10(q+1)^q}{(q+1)^q} = 10$$

d) Ainsi $f_q\left(p\right)>10,$ ce qui s'écrit $\frac{q^p}{p^q}>10$ ou encore $\boxed{q^p>10p^q}$

Cette inégalité contredit l'hypothèse selon laquelle p^q et q^p ont le même nombre de chiffres décimaux, puisque la multiplication par 10 en ajoute 1.

Il s'ensuit que l'hypothèse p > q n'est pas tenable, ce qui permet de conclure à

$$p = q$$

EXERCICE

Soit n un entier naturel non nul et f la fonction définie par :

$$\forall x \in \mathbb{R}, f(x) = \sum_{k=0}^{n-1} \left\lfloor \frac{x+k}{n} \right\rfloor$$

1. Soit $x \in [0,1[$. Alors $\forall k \in [[0,n-1]]$, $\frac{k}{n} \leqslant \frac{x+k}{n} < \frac{1+k}{n}$, donc $0 \leqslant \frac{x+k}{n} < 1$. Il s'ensuit $\left\lfloor \frac{x+k}{n} \right\rfloor = 0$.

Par sommation on a alors $\sum_{k=0}^{n-1} \left| \frac{x+k}{n} \right| = 0$: $\boxed{f \text{ est nulle sur } [0,1[])}$

2. Soit $x \in \mathbb{R}$: alors

$$f\left(x+1\right) = \sum_{k=0}^{n-1} \left\lfloor \frac{x+1+k}{n} \right\rfloor \stackrel{\text{changement}}{\underset{\text{d'indice}}{=}} \sum_{k=1}^{n} \left\lfloor \frac{x+k}{n} \right\rfloor = \sum_{k=0}^{n-1} \left\lfloor \frac{x+k}{n} \right\rfloor + \left\lfloor \frac{n+k}{n} \right\rfloor - \left\lfloor \frac{k}{n} \right\rfloor$$

Comme $\left| \frac{n+k}{n} \right| = \left| 1 + \frac{k}{n} \right| = 1 + \left| \frac{k}{n} \right|$, il s'ensuit que

$$f(x+1) = f(x) + 1.$$

- **3.** Montrons par récurrence que $\forall p \in \mathbb{N}, \ H\left(p\right) : \forall x \in \mathbb{R}, \ f\left(x+p\right) = f\left(x\right) + p$:
 - H (0) est une banalité.
 - Soit $p \in \mathbb{N}$. Si H(p) est vraie alors $\forall x \in \mathbb{R}, \ f(x+p+1) \stackrel{\text{Q.2.}}{=} f(x+p) \stackrel{H(p)}{=} f(x)$ CQFD.

Ainsi, si $p \in \mathbb{N}$ et $x \in [p, p+1]$, alors en posant t = x - p, on a $t \in [0, 1]$, donc

$$f(x) = f(t+p) = f(t) + p \stackrel{Q.1.}{=} p$$

 $f\left(x\right)=f\left(t+p\right)=f\left(t\right)+p\overset{\mathrm{Q.1.}}{=}p$ $\boxed{f\text{ est donc constante égale à }p\text{ sur }[p,p+1[}$

4. On voit ainsi que f coïncide avec la fonction partie entière sur \mathbb{R}_+ : $\forall x \ge 0, \ f(x) = |x|$.

Mais si $p \in \mathbb{N}$, en substituant x - p à x dans $\forall x \in \mathbb{R}$, f(x + p) = f(x) + p, il vient

$$f(x-p) = f(x) - p$$

Donc si $x \in [-p, -p+1[$, en posant $t = x+p \in [0, 1[$ on obtient f(x) = f(t-p) = f(t) - p = -p.

L'expression trouvée sur \mathbb{R}_+ est ainsi valable aussi sur \mathbb{R}_- : en conclusion :

$$\forall x \in \mathbb{R}, \ f(x) = \lfloor x \rfloor$$