

BITS Pilani

Microprocessors & Interfacing

Programming Model

Dr. Gargi Prabhu Department of CS & IS

Control Word

Mode 1 (Strobed Input)

- Mode 1 operation causes port A and/or port B to function as latching input devices.
- This allows external data to be stored into the port until the microprocessor is ready to retrieve it.
- Port C is also used in mode 1 operation—not for data, but for control or handshaking signals that help operate either or both port A and port B as strobed input ports.
- The strobed input port captures data from the port pins when the strobe (STB') is activated.

Input control signal definitions

- **STB' (Strobe input)** If this lines falls to low, the data available at 8-bit input port is loaded into input latches.
- **IBF (Input buffer full)** If this signal rises to logic 1, it indicates that data has been loaded into latches, i.e. it works as an acknowledgement.
- INTR (Interrupt request) This active high output signal can be used to interrupt the CPU whenever an input device requests the service.

The INTR becomes a logic 1 when the STB' input returns to logic 1, and is cleared when the data are input from the port by the microprocessor

Input control signal definitions

- INTE The interrupt enable signal is neither an input nor an output; it is an internal bit programmed via the port PC4 (port A) or PC2 (port B) bit position.
- **PC7, PC6** The port C pins 7 and 6 are general-purpose I/O pins that are available for any purpose.

Internal structure: Strobed input o peration (mode 1) of the 82C55

Strobed input operation (mode 1) of the 82C55

Keyboard Interfacing Mode 1

Reading from Keyboard

```
; A procedure that reads the keyboard encoder and
; returns the ASCII key code in AL
      BIT5
            EQU
                  20H
      PORTC EQU
                  22H
      PORTA EQU
                  20H
      READ
            PROC NEAR
             .REPEAT
                                         ; poll IBF bit
                         AL, PORTC
                    TN
                    TEST AL, BIT5
             .UNTIL !ZERO?
                 AL.PORTA
                                         ; get ASCII data
             TN
            RET
      READ
            ENDP
```


Mode 1 Strobbed Output

- Whenever data are written to a port programmed as a strobed output port, the OBF' (output buffer full) signal becomes a logic 0 to indicate that data are present in the port latch.
- This signal indicates that data are available to an external I/O device that removes the data by strobing the ACK' (acknowledge) input to the port.
- The ACK' signal returns the OBF' signal to a logic 1, indicating that the buffer is not full.

Signal Definitions for Mode 1 Strobed Output

$\overline{\mathbf{OBF}}$	Output buffer full is an output that goes low whenever data are output
---------------------------	--

(OUT) to the port A or port B latch. This signal is set to a logic 1 whenever

the \overline{ACK} pulse returns from the external device.

 \overline{ACK} The acknowledge signal causes the \overline{OBF} pin to return to a logic 1 level.

The \overline{ACK} signal is a response from an external device, indicating that it has

received the data from the 82C55 port.

INTR Interrupt request is a signal that often interrupts the microprocessor

when the external device receives the data via the \overline{ACK} signal. This pin is

qualified by the internal INTE (interrupt enable) bit.

INTE Interrupt enable is neither an input nor an output; it is an internal bit

programmed to enable or disable the INTR pin. The INTE A bit is pro-

grammed using the PC_6 bit and INTE B is programmed using the PC_2 bit.

PC₄, PC₅ Port C pins PC₄ and PC₅ are general-purpose I/O pins. The bit set and reset

command is used to set or reset these two pins.

Internal Structure

(a)

Timing Diagram

lead

Example

Code

```
;A procedure that transfers an ASCII character from AH to the printer
; connected to port B
BIT1
      EQU
PORTC EOU
          63H
PORTB EQU 61H
CMD
      EOU
          63H
PRINT PROC
           NEAR
                                 ;wait for printer ready
      .REPEAT
             IN
                  AL, PORTC
             TEST AL, BIT1
      .UNTIL !ZERO?
      MOV AL, AH
                                 :send ASCII
      OUT
          PORTB, AL
      MOV AL, 8
                                 ; pulse data strobe
      TUO
          CMD, AL
      MOV AL, 9
           CMD, AL
      TUO
      RET
PRINT ENDP
```


Mode 2 Bidirectional Operation

- In mode 2, which is allowed with group A only, port A becomes bidirectional, allowing data to be transmitted and received over the same eight wires.
- Bidirectional bused data are useful when interfacing two computers.
- This mode is commonly employed in various applications such as interfacing with parallel communication devices, controlling input/output devices, and implementing communication protocols where bidirectional data transfer is required.

Signal Definition – Mode 2

INTR Interrupt request is an output used to interrupt the microprocessor for

both input and output conditions.

OBF Output buffer full is an output indicating that the output buffer contains

data for the bidirectional bus.

ACK Acknowledge is an input that enables the three-state buffers so that data

can appear on port A. If ACK is a logic 1, the output buffers of port A are at

their high-impedance state.

STB The **strobe** input loads the port A input latch with external data from the

bidirectional port A bus.

IBF Input buffer full is an output used to signal that the input buffer contains

data for the external bidirectional bus.

INTE Interrupt enable are internal bits (INTE1 and INTE2) that enable the

INTR pin. The state of the INTR pin is controlled through port C bits PC₆

(INTE1) and PC_4 (INTE2).

PC₀, PC₁, and PC₂ These pins are general-purpose I/O pins in mode 2 controlled by the bit set

and reset command.

The Bidirectional Bus

- The bidirectional bus is used by referencing port A with the IN and OUT instructions.
- To transmit data through the bidirectional bus, the program first tests the OBF' signal to determine whether the output buffer is empty.
- If it is, then data are sent to the output buffer via the OUT instruction.
- The external circuitry also monitors the signal to decide whether the microprocessor has sent data to the bus. As soon as the output circuitry sees a logic 0 on , it sends back the signal to remove it from the output buffer. The signal sets the bit and enables the three-state output buffers so that data may be read.

Internal Structure

Timing

Example

```
;A procedure transmits AH through the bidirectional bus
BIT7 EQU 80H
PORTC EQU 62H
PORTA EOU 60H
TRANS PROC NEAR
      . REPEAT
                                 :test OBF
             IN
                  AL, PORTC
            TEST AL, BIT7
      .UNTIL !ZERO?
                                 :send data
      MOV AL, AH
      OUT
          PORTA, AL
      RET
TRANS ENDP
```


Example

```
; A procedure that reads data from the bidirectional bus into AL
BIT5
      EQU 20H
PORTC EQU 62H
PORTA EQU 60H
      PROC NEAR
READ
       . REPEAT
                                  ;test IBF
             IN
                  AL, PORTC
             TEST AL, BIT5
       .UNTIL !ZERO?
          AL, PORTA
      IN
      RET
READ
      ENDP
```

innovate achieve lead

Mode Summary

		Mode 0			Mode 1			Mode 2
Port A		IN	OUT		IN	OUT		I/O
Port B		IN	OUT		IN	OUT		Not used
Port C	5	IN	OUT		INTR _B IBF _B STB _B INTR _A STB _A IBF _A I/O I/O	\overline{OBF}_B \overline{ACK}_B		I/O I/O I/O INTR STB IBF ACK OBF

Thank You