Computer Networks

Physical Layer

Last week in Computer Networks

The four goals of reliable transfer

correctness ensure data is delivered, in order, and untouched

timeliness minimize time until data is transferred

efficiency optimal use of bandwidth

fairness play well with concurrent communications

Here is one correct, timely, efficient and fair transport mechanism

ACKing full information ACK

retransmission after timeout after k subsequent ACKs

window management additive increase upon successful delivery multiple decrease when timeouts

More details later when we see TCP

Examples

Go-back-N and Selective Repeat

Go-Back-N (GBN)

already ack'ed

not usable

usable, not

a simple sliding window protocol using <u>cumulative ACKs</u>

goal receiver should be as simple as possible

receiver delivers packets in-order to the upper layer receiver wnd size is 1

sender use a single timer to detect loss, reset at each new ACK

upon timeout, resend all WND packets starting with the lost one

GBN in action

Selective Repeat (SR)

avoid unnecessary retransmissions by <u>using per-packet ACKs</u>

goal avoids unnecessary retransmissions

receiver ACK each packet, in-order or not buffer out-of-order packets

sender use per-packet timer to detect loss

upon loss, only the lost packet

SR - windows

SR in action

Physical Layer

Application Presentation Session Transport Network Data Link **Physical**

- Function:
 - Get bits across a physical medium
- Key challenge:
 - How to represent bits in analog
 - Ideally, want high-bit rate
 - But, must avoid desynchronization

Key challenge

- Digital computers
 - 0s and 1s
- Analog world
 - Amplitudes and frequencies

Simple transmission - baseband

- Bit 1: voltage or current strength
- Bit 0: no voltage

Transmission of "b"

More than one bit is needed for tranmitting char "b"

Transmission of "b" in a real world

Poor reception – a typical pattern at the receiver

Fundamentals – Singals

medium, some backgrownid is dequired how buch signals can be analyzed/treated mathematically

Hirst: Fourier's subboard

Any periodic function g(t) with the period Tocasebe written as a (possibly infinite) summer of reincend redsine dosinients in the office of the effective seare functions with lest eighten but in the lest eight end to the lest end t

where $f = \frac{1}{1}$ is the base frequency, a_n and b_n where is the base frequency, and are and b_n constants, representing the amplitudes of nth sine and cosine harmonics. c is a constant.

Fundamental – Terms of the Fourier series

Application

- A digital signal is not periodic
 - E.g. the ASCII code of "b" is 8 bits long

- Use a trick: Suppose waveform is repeated infinitely often,
- For "b", resulting in a periodic waveform with period 8 bit times

Fundamentals - Attenuation

- \blacksquare Attenuation α
 - * Reating of transmitter (P()) and reserved (P), power
 - " High attenuation = tillite power are iver
 - -Mading the understanding significal t
 - *Typically given inchedialel

$$\alpha[in dB] = 10exiBet[dB] (deciBel [dB])$$

- ☐ It dependsoon
 - Physical meetiliom
 - Distance boetween escheden and reciever
 - · · · · · · opthers

Fundamentals - Attenuation

- In reality
 - Attenuation is not uniform, depends on frequency
 - Not all frequencies pass through a medium
 - Phase shifting
 - Different frequencies have different signal propagation speed
 - Frequency-based disortion

Symbols and bits

- Use more symbols than 0 and 1 in the channel
- Example:
 - Having 4 symbols:
 A(00),B(01),C(10),D(11)
 - Symbol rate: (BAUD)
 - Transmitted symbols per sec
 - Data rate (bps):
 - Transmitted bits per sec

Example: A 600 Baud modem with 16 symbols, one can reach data rate of 2400 bps.

Physical media – wired 1/1

- Magnetic storage e.g. never underestimate the power of a truck of hard disks
- Twisted pair telephone networks; double copper wire, both analog and digital; UTP and STP
- Coaxial cable Higher speed and larger distance than with twisted pair; analog (75 Ω) and digital (50 Ω)

Physical media – wired 2/2

Optical cable – parts: light source, media and detector; light impulse
 1 bit, no light impulse = 0 bit;

(Tanenbaum)

Optical cables:

- Erequency Herediate ere es so cord of its wild bations from Etaki ere aromagnetic electromagnetic wave.
 - Notation:
 - Measured in: Hertz(Hz)
- Wavelength hitheidistance between successive crests at a wave
 - Notation:χλ
- Speed of lights ignorial propagation speed of the city of all physical and a speed of lights are propagation of the city of th
 - $media_{ation} c$

 - Notation In vacuum: kb. $3*10^8 \frac{m}{s}$ In vacuum: kb.
 - In copper or optical cable: 2/3 x (yourum) In copper or optical cable: 2/3 x (yourum)
- Relationship h\f = c

Funamentals – wireless

Radio frequency transmission – simple; large distances; indoor and outdoor; frequency-dependent propagation properties

- Microwave transmission propagation along a straight line; attenuation; cheap
- Infrared and millimeter-wave small distances; cannot go through objects
- Visible light laser; high speed, cheap; weather conditions;

Internet in a cable TV network

Internet in a cable TV network

Already discussed...

Data transmission

Assumptions

We have two discrete signals, high and low, to encode 1 and 0

Amplitude and duration of signal must be significant.

3

1 | high signal, 0 | low signal

- Problem: long strings of 0 or 1 cause desynchronization
 - How to distinguish lots of 0s from no signal?
 - How to recover the clock during lots of 1s?

Problem: how to recover the clock during sequences of 0's or 1's?

 Clock drift is major problem – two different clocks never stay in perfect synchrony

Options to tell the receiver when to sample

- Relying on permanently synchronized clocks does not work
 - Explicit clock signal
 - Needs parallel transmission over some additional channel
 - Must be in synch with the actual data, otherwise pointless!
 - Useful only for short-range communication
 - Synchronize the receiver at crucial points (e.g., start of a character or of a block)
 - Otherwise, let the receiver clock run freely
 - Relies on short-term stability of clock generators (do not diverge too quickly)
 - 3. Extract clock information from the received signal itself
 - Self-clocked signals
 - Put enough information into the data signal itself so that the receiver can know immediately when a bit starts/stop

Non-Return to Zero Inverted (NRZI)

□ 1 🛮 make transition, 0 🖛 remain the same

Solves the problem for sequences of 1s, but not 0s

Ethernet examples: 10BASE-TX 100BASE-TX

- Good: Solves clock skew (every bit is a transition)
- Bad: Halves throughput (two clock cycles per bit)

4-bit/5-bit (100 Mbps Ethernet)

- Observation: NRZI works as long as no sequences of 0
- Idea: all 4-bit sequences as 5-bit sequences
 8-bit / 10-bit used in Gigabit wo trailing 0

4-bit	5-bit	4-bit	5-bit
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Tradeoff: efficiency drops to 80%

Signal transmission

baseband

- Baseband transmission directly puts the digital symbol sequences onto the wire
- At different levels of current, voltage, ... essentially, direct current (DC) is used for signaling
- Baseband transmission suffers from the problems discussed above
 - Limited bandwidth reshapes the signal at receiver
 - Attenuation and distortion depend on frequency and baseband transmissions have many different frequencies because of their wide Fourier spectrum

broadband

- Idea: get rid of the wide spectrum needed for DC transmission
- Use a sine wave as a carrier for the symbols to be transmitted
 - Typically, the sine wave has high frequency
 - But only a single frequency!
 - Pure sine waves has no information, so its shape has to be influenced according to the symbols to be transmitted
- The carrier has to be modulated by the symbols (widening the spectrum)
 - Three parameters that can be influenced Amplitude, Frequency, Phase

Digital baseband transmission

- Bring source information in digital form
 - E.g., sample and quantize an analog voice signal, represent text as ASCII
- Source encode: Remove redundant or irrelevant data
 - E.g., lossy compression (MP3, MPEG 4); lossless compression (Huffmann coding, runlength coding)
- Channel encode: Map source bits to channel symbols
 - Potentially several bits per symbol
 - May add redundancy bits to protect against errors
 - Tailored to channel characteristics
- Physical transmit: Turn the channel symbols into physical signals
- At receiver: Reverse all these steps

Digital broadband transmission

Three key properties used to carry information

 \blacksquare swhere A_s is the phitude of the frequential photometric and φ the phase.

Amplitude modulation

The thim eavy inging stynsing nonded anconded into the sine wave (carrier):

$$f_A(t) = s(t) * \sin(2\pi f t + \varphi)$$

- And psysignal and it partition
- □ ொற்று வேயி ஆர் ந்றி amplitude keying or
- *ଆର୍ମ୍ପର୍ଷ kହାପ୍ରମୟ*: amplitude ଝେଞ୍ଚମ୍ପର୍ମ୍ୟ ହେନ୍ତ୍ରମଣ୍ଡ ଜ୍ୟୁ

Frequency modulation

- The time and invited (a) s(t) haigs and sold the single (a) singl
 - analog signal: frequency modulation

 - Diaital sianal: frequency-shift

Illustration - AM & FM for analog signals

Phase modulation

The stigulation of the stigulati

$$f_P(t) = a * \sin(2\pi f t + s(t))$$

- Androgsingalar homes কেপি চিন্তা বিশ্ববাধান
 (মুলি সম্প্রাধ্য used)
- Digited signal homes bift ketting (directed et of phones et en phones)

Usage of multiple symbols

FSK withmutthiple values

- A receiver rean usus la hyite uitel wietind istinopaish hithase:
 - 4 symbooks/white e_4^{π} ; $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ Result Dartagration is it wise the symbol rate

 - Trechnique is traded Quadratence P brasek Shirt Keping (QPSK

Amilitude+Phrase modelination

- Methodscahberbindined
- Symbols are encoded by a discrete set of amlitude, phase,

 - E.g. 16 symbols
 E.g. 16 symbols
 Four times higher data rate than the symbol rate
 Four times higher data rate than the symbol rate
 Called as Quadrature Amplitude Modulation-16
 - Called as Quadrature Amplitude Modulation-16

Digital VS analog signals

- A sender has two principal options what types of signals to generate
 - It can choose from a finite set of different signals digital transmission
 - There is an infinite set of possible signals analog transmission
- Simplest example: Signal corresponds to current/voltage level on the wire
 - In the digital case, there are finitely many voltage levels to choose from
 - In the analog case, any voltage is legal
- More complicated example: finite/infinitely many sinus functions
 - In both cases, the resulting wave forms in the medium can well be continuous functions of time!
- Advantage of digital signals: There is a principal chance that the receiver can precisely reconstruct the transmitted signal

Static Channel Allocation

Multiplexing

Enabling multiple signals to travel through the same media at the same time

To this end, the channel is split into multiple smaller subchannels

A special device (multiplexer) is needed at the sender, transmitting signals to the proper subchannel

Space-Division Multiplexing

- Simplest way of multiplexing
- Wired example: point-to-point wire for each subchannel
- Wireless example: Different antennas for the subchannels

Frequency-Division Multiplexing

- Multiple signals are combined and transmitted over the channel
- Each signal is transmitted in different frequency ranges
- Typically used for analog transm
- Multiple implementations...

 $\leftarrow W_{ch} \rightarrow$

Frequency

Wavelength-Division Multiplexing

- Used for optical cables
- IR laser rays at different wavelengths

Time-Division Multiplexing

- Time is divided into not overlapping intervals
- Each time slot is assigned to a sender, exlusively.
- Empty slots may happen.

57

Frequency
Division
Multiple
Access

FDMA

Time
Division
Multiple
Access
TDMA

CDMA Analogy

- 10 people in a room.
 - 5 speak English, 2 speak Spanish, 2 speak Chinese, and 1 speaks Russian.
- Everyone is talking at relatively the same time over the same medium – the air.
- Who can listen to whom and why?
- Who can't you understand?
- Who can't speak to anyone else?

- Used by 3G and 4G cellular networks
- Each station can broadcast at any time in the full frequency spectrum
- The signals may interfere
 - Resulting in a linear combination of individual signals

Algorithm

- We assign a vector of length m to each station: v
 - Pairwise orthogonal vectors!!!
- Each bit is encoded by the chip vector of the sender or it's complement: v or -v
- If it sends bit 1, it transmits v
- If it sends bit 0, it transmits -v
- Result is a sequence of vectors of length m

- Interference
 - A sends a,-a,a,a
 - B sends b,b,-b,-b
 - After interference we receive: a+b,-a+b,a-b,a-b???

How to decode?

61

- Interference
 - A sends a,-a,a,a
 - B sends b,b,-b,-b
 - After interference we receive: a+b,-a+b,a-b,a-b???
- Decoding the message of A
 - Take the dot product by the sender's chip code
 - (a+b)a > 0 => 1
 - **■** (-a+b)a < 0 => 0
 - (a-b)a >0 => 1
 - (a-b)a > 0 => 1

If the dot product is

- <0: bit 0 was sent by A
- >0: bit 1 was sent by A
- =0: nothing was sent by A the channel is not used by A

Thank you...