	4.0 VU Teil 1	Theoretische Informa WS 2017	ntik und Logik 21. März 2018	
Matrikeln	ummer	Familienname	Vorname	Gruppe
	$(\underline{\mathbf{a}}^n\underline{\mathbf{c}}^n)^5 \mid n \geq 0$ dass L nicht reg	g 0}. Beweisen Sie mit Higulär ist.	ilfe des Pumping Lemm	as für regulär (8 Punkte
$-\varepsilon \in L$ $- ext{Für je}$	edes Symbol $a \in$	ne L ist definiert als die kle Σ gilt $a \in L$. so ist auch $awa \in L$.	einste Menge, für die gilt	:
a) Geber	n Sie die Sprach	ne an, die durch obige indu	ıktive Definition spezifizi	ert ist. (1 Punkt)
b) Geber	n Sie eine konte	xtfreie Grammatik mit höc	hstens 5 Produktionen ar	$A, \operatorname{die} L \operatorname{erzeug}$ (3 Punkte
c) Trans form.	formieren Sie d	ie unter b) erhaltene konte	xtfreie Grammatik in Ch	omsky Norma
				(6 Punkte
ŕ	oder widerlegen	Sie: ob es für die von einer Turin	nomaschine akzentierte S	prache I. gens
		matik gibt, die L erzeugt.		(6 Punkt
Antworten bei leicht fe	. (Zwei Punkte	genden Aussagen richtig og für jede richtige Antwort ründung, keinen Punkt für	mit richtiger Begründun	g, einen Pun
Begr	ündung:	NP . Dann gilt: A ist ents	□ r	ichtig \Box falsc
Begr	ündung:	Komplement endlich ist, is $ \begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	□ r	ichtig \Box falsc
	$B \subseteq \Sigma$ und A ündung:	$1 \leq_p B$. Dann gilt auch $\overline{A} \leq_p B$	=	ichtig \Box falsc

(6 Punkte)

1.) Sei $L=\{(\underline{\mathtt{a}}^n\underline{\mathtt{c}}^n)^5\mid n\geq 0\}$. Beweisen Sie mit Hilfe des Pumping Lemmas für reguläre Sprachen, dass L nicht regulär ist.

(8 Punkte)

indirekter Beneis. Annahme: List regular dann muss für L das Pumping Lemma mit Konstante un gelten

 $w = (am cm)^5$

w= xy2 mit 1xy1 ≤ m and 1y1>0

also bestent xy nur aus d

also gilt for i = 0

W: = Xy' 2 = 5

 $W_0 = X_1 = a^{m-|Y|} c^m (a^m c^m)^{+} \notin L$

daher kann L nicht vegolär sein

3.) Beweisen oder widerlegen Sie:

Es ist nicht entscheidbar, ob es für die von einer Turingmaschine akzeptierte Sprache L genau eine unbeschränkte Grammatik gibt, die L erzeugt.

(6 Punkte)

P = { L | L wird von Genav einer unbeschränkten Gramma tik erzeugf }

Pist eine triviale Eigenschaft nach dem Satz von Rice, da jede Sprache von unendlich vielen Grammatiken erzeugt werden kann.

Daher ist nach dem Satz von Rice die Eigenschaft Pentscheidbar

		4.) Geben Sie an, ob die Antworten. (Zwei Pubei leicht fehlerhafter fehlende Begründunge	nkte für jede ric Begründung, kei	htige Antwort mi	t richtiger Be	gründung, e	inen Punkt		
	Sei $A \leq_p B$ und $B \in \mathbf{NP}$. Dann gilt: A ist entscheidbe Begründung: — Jede Sprache, deren Komplement endlich ist, ist entscheidbe Begründung:					ĭ richtig □ falsch heidbar.			
		Begründung:	und $A \leq_p B$. Dann gilt auch $\overline{A} \leq_p \overline{B}$.						
						(1	6 Punkte)		
1)	Wenn	A Sp B NP und	und	BENF	, do	ann	ist	auch	
			da	NP	C Sr	CC	folgt,	da 5_	5
	A 1	E Srec							
2)	Jede	endliche	Sprac	ho is	it e	intsc	hoid	par,	
	das	endliche Lomple.	ment	jedev	la de	1+50	heio	d bare	
	Spro	Behaupt	ung	sche d	bav,	a	50 9	otimm[
3									