ISYE 6420A/MSA Homework 3

Due February 19, 2020

1. Consider the Bayesian model

$$y|\theta_1, \theta_2 \sim N(\theta_1 + \theta_2, 1),$$

 $\theta_i \sim^{iid} N(0, 1).$

for i = 1, 2. Suppose y = 1 is observed. Then, find the marginal posterior distributions of θ_1 and θ_2 . (Hint: (i) regression. (ii) If \mathbf{I}_n is an $n \times n$ identity matrix and \mathbf{J}_n is an $n \times n$ matrix of 1's, then $(\mathbf{I}_n + b\mathbf{J}_n)^{-1} = \mathbf{I}_n - \frac{b}{1+nb}\mathbf{J}_n$. (iii) If $\boldsymbol{\theta}$ follows a multivariate normal distribution, then the marginal distribution of θ_i is a normal distribution with the corresponding mean and variance).

- 2. Consider the coin example discussed in the class and perform the following simulation. Simulate the weights of 10 coins from $\theta_i \sim N(5.67,.01^2)$ for $i=1,\cdots,10$. Simulate 10 measurements from $y_i|\theta_i \sim N(\theta_i,.02^2)$. Compute the total error sum of squares $SSE^{EB} = \sum_{i=1}^{10} (\theta_i \hat{\theta}_i^{EB})^2$ and $SSE^{MLE} = \sum_{i=1}^{10} (\theta_i y_i)^2$. Repeat this 1000 times and plot the densities of the two quantities SSE^{EB} and SSE^{MLE} , and make comments. (Include your R code with the solutions).
- 3. Let

$$y_i | \theta_i \sim^{ind} Poisson(\theta_i)$$

 $\theta_i \sim^{iid} Exp(\lambda)$

for i = 1, ..., n. $(p(\theta) = \lambda e^{-\lambda \theta})$. Find the empirical Bayes estimator of θ_i , i = 1, ..., n.

4. Consider the Bayesian model:

$$x_i | \phi_i \sim^{ind} N(0, \phi_i)$$

$$\frac{1}{\phi_i} \sim^{iid} Exp(\lambda),$$

for $i = 1, \dots, n$. Find the empirical Bayes estimator of ϕ_i , $i = 1, \dots, n$. Evaluate the expressions as far as possible.