9. An Energy Generation Case Study

Data Science for OR - J. Duggan

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

1/27

Transmission System (2017)

Generation Information

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

3 / 27

Sample Data

Accessing Data

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

5 / 27

Processing Dates - lubridate

Date component	Accessor
Year	year()
Month	month()
Week	week()
Day of year	yday()
Day of month	mday()
Day of week	wday()
Hour	hour()
Minute	minute()
Second	second()
Time zone	tz()

Extracting information

```
ener$DateTime[1]

## [1] "2017-01-29 UTC"

year(ener$DateTime[1])

## [1] 2017

wday(ener$DateTime[1])

## [1] 1
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

7 / 27

Adding New Columns

```
ener <- ener %>% mutate(Date=ymd(DateTime),
                        HourOfDay=hour(DateTime),
                        MinuteOfDay=minute(DateTime),
                        DayOfWeek=wday(DateTime,label=T))
## Warning: All formats failed to parse. No formats found.
glimpse(ener)
## Observations: 2,784
## Variables: 12
                 <dttm> 2017-01-29 00:00:00, 2017-01-29 00:15:
## $ DateTime
                 <dbl> 3834, 3785, 3708, 3634, 3581, 3552, 349
## $ Demand
## $ Generation <dbl> 4041, 4041, 4130, 4181, 4211, 4278, 413
                 <dbl> 449, 505, 521, 492, 538, 561, 484, 474;
## $ Wind
                 <dbl> 552, 548, 544, 543, 555, 531, 545, 551,
## $ CO2
## $ NetImports
                 <dbl> -145, -200, -294, -419, -503, -598, -51
```

Split out date and time (need for join later)

```
ener <- ener %>% separate(DateTime,c("Date","Time"),
                           sep=" ", remove=F) %>%
        mutate(Date=ymd(Date))
glimpse(ener)
## Observations: 2,784
## Variables: 13
                  <dttm> 2017-01-29 00:00:00, 2017-01-29 00:15:
## $ DateTime
                  <date> 2017-01-29, 2017-01-29, 2017-01-29, 20
## $ Date
                  <chr> "00:00:00", "00:15:00", "00:30:00", "00
## $ Time
                  <dbl> 3834, 3785, 3708, 3634, 3581, 3552, 349
## $ Demand
## $ Generation <dbl> 4041, 4041, 4130, 4181, 4211, 4278, 413
                  <dbl> 449, 505, 521, 492, 538, 561, 484, 474,
## $ Wind
                 <dbl> 552, 548, 544, 543, 555, 531, 545, 551,
## $ CO2
## $ NetImports <dbl> -145, -200, -294, -419, -503, -598, -51
## $ EWIC
                  <dbl> -33, -108, -183, -258, -333, -379, -374
                     9. An Energy Generation Case Study
Data Science for OR - J. Duggan
```

Plot time series

```
ggplot(data = ener,aes(x=DateTime, y=Generation)) +
  geom_line() + xlab("Date") + ylab("Generation") +
  ggtitle("Monthly Generation Data")
```

Monthly Generation Data

Extract value for 1/2/2017

Generation Data for Feb 1st 2017

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

11 / 27

Wind Generation v CO2 Emissions

```
ggplot(data = ener) +
  geom_point(aes(x=Wind,y=CO2,colour=DayOfWeek))+
  xlab("Wind Generation") + ylab("CO2 Emissions")
```


Data Science for OR - J. Duggan

9. An Energy Generation Case Study

Linking weather to wind generation

Monthly Data

Please choose a monthly data report from any station by clicking one of the links below:

- 1 Athenry
- 2 Ballyhaise
- 3 Belmullet
- 4 Carlow Oakpark
- 5 <u>Baldonnel Casement</u> Aerodrome
- 6 Claremorris
- 7 Cork Airport
- 8 <u>Dublin Airport</u>
- 9 Dunsany
- 10 Fermoy Moorepark
- 11 Finner
- 12 Gurteen Agri College
- 13 Johnstown

- 14 Knock Airport
- 15 Mace Head
- 16 Malin Head
- 17 Markree
- 18 Mount Dillon
- 19 Mullingar
- 20 Newport
- 21 Phoenix Park
- 22 Roches Point
- 23 Shannon Airport
- 24 Sherkin Island
- 25 Valentia Observatory

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

13 / 27

Sample Data

Daily Data

Weather Station Data - From 13/03/2015 to 12/03/2017

Please Select a Station and Date from the menu on the right.

REPORTS FROM MACE HEAD (A)

Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Maximum Gust (if >= 34 knots)	Sunshine (hours)
31/1/2017	0	10.3	7.3	5.8	10		

Select Station & Date

Station

Mace Head (A)

Date

31/01/2017

Go ->

Synoptic Stations

2011

http://www.met.ie

Mace Head Daily Data

Date	Rainfall	MaxTemp	MinTemp	GrassMinTemp	AVRWind	MaxWindGust
27/01/17	7.9	8.7	4.3	-0.7	11.6	
28/01/17	3.5	8	4.5	2.9	12.6	
29/01/17	4.7	9	4.9	3.7	9.8	
30/01/17	7.8	11.2	7.1	5.8	14.3	
31/01/17	0	10.3	7.3	5.8	10	
01/02/17	0.6	10.2	6.1	5.2	20	38
02/02/17	4.9	11.2	7.4	6.4	20.8	45
03/02/17	2.2	8.5	3.6	2.1	19.5	46
04/02/17	5.3	6.5	1.8	-1.3	10.7	

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

15 / 27

Weather Data

```
wd <- read_excel("../../datasets/energy/Mac Head Wind Data.xls
wd <- mutate(wd,Date=ymd(Date))
slice(wd,1:7)</pre>
```

```
## # A tibble: 7 x 7
                 Rainfall MaxTemp MinTemp GrassMinTemp AVRWind
##
     Date
##
     <date>
                    <dbl>
                             <dbl>
                                      <dbl>
                                                     <dbl>
                                                             <dbl>
  1 2017-01-27
                       7.9
                               8.7
                                        4.3
                                                      -0.7
                                                               11.6
##
                                                               12.6
## 2 2017-01-28
                       3.5
                                        4.5
                                                       2.9
                               8
## 3 2017-01-29
                       4.7
                                        4.9
                                                       3.7
                                                                9.8
                               9
## 4 2017-01-30
                       7.8
                              11.2
                                        7.1
                                                       5.8
                                                               14.3
## 5 2017-01-31
                              10.3
                                        7.3
                                                       5.8
                                                               10
                       0
## 6 2017-02-01
                              10.2
                                        6.1
                                                       5.2
                                                              20
                       0.6
                                                       6.4
  7 2017-02-02
                       4.9
                              11.2
                                        7.4
                                                              20.8
```

Select Required Columns - Generation

```
gd <- select(ener,DateTime,Date,Wind) %>%
      arrange(DateTime)
slice(gd, 1:7)
## # A tibble: 7 x 3
    DateTime
##
                         Date
                                    Wind
     <dttm>
                         <date> <dbl>
##
## 1 2017-01-29 00:00:00 2017-01-29
                                      449
## 2 2017-01-29 00:15:00 2017-01-29
                                      505
## 3 2017-01-29 00:30:00 2017-01-29
                                      521
## 4 2017-01-29 00:45:00 2017-01-29
                                     492
## 5 2017-01-29 01:00:00 2017-01-29
                                      538
## 6 2017-01-29 01:15:00 2017-01-29
                                      561
## 7 2017-01-29 01:30:00 2017-01-29
                                      484
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

17 / 27

Select Required Columns - Weather

10

20

20.8

```
wd1 <- select(wd,Date,AVRWind) %>%
     arrange(Date)
slice(wd1,1:7)
## # A tibble: 7 x 2
          AVRWind
##
    Date
                 <dbl>
##
    <date>
## 1 2017-01-27 11.6
## 2 2017-01-28
                 12.6
                  9.8
## 3 2017-01-29
## 4 2017-01-30
                  14.3
```

5 2017-01-31

6 2017-02-01

7 2017-02-02

Approach

Need to find the average generation by wind from grid data

```
avr_wd1 <- gd %>% group_by(Date) %>%
  summarise(AvrWindGeneration=mean(Wind))
slice(avr wd1,1:7)
## # A tibble: 7 x 2
              AvrWindGeneration
##
     Date
##
     <date>
                             <dbl>
## 1 2017-01-29
                              431.
                             1726.
## 2 2017-01-30
## 3 2017-01-31
                              330.
## 4 2017-02-01
                             2047.
## 5 2017-02-02
                             2647
## 6 2017-02-03
                             1050.
## 7 2017-02-04
                              591.
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

19 / 27

Join the tables

```
join_t <- left_join(avr_wd1,wd1)</pre>
## Joining, by = "Date"
slice(join t,1:7)
## # A tibble: 7 x 3
                 AvrWindGeneration AVRWind
##
     Date
                              <dbl>
                                      <dbl>
##
     <date>
## 1 2017-01-29
                               431.
                                        9.8
                                    14.3
## 2 2017-01-30
                              1726.
## 3 2017-01-31
                               330.
                                       10
## 4 2017-02-01
                              2047.
                                       20
                              2647
                                       20.8
## 5 2017-02-02
## 6 2017-02-03
                              1050.
                                       19.5
```

7 2017-02-04

591.

10.7

Plot Avr Wind Speed v Avr Wind Generation

```
ggplot(data = join_t) +
  geom_point(aes(x=AVRWind,y=AvrWindGeneration))+
  xlab("Average Wind Speed") + ylab("Average Generation")
```


Data Science for OR - J. Duggan

9. An Energy Generation Case Study

21 / 27

Visualise Linear Model

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

22 / 27

Generate Model

```
mod <- lm(data=join_t,AvrWindGeneration~AVRWind)
mod

##
## Call:
## lm(formula = AvrWindGeneration ~ AVRWind, data = join_t)
##
## Coefficients:
## (Intercept) AVRWind
## -280.8 106.7</pre>
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

23 / 27

Predicting Values

```
ggplot(data = join_t,aes(x=AVRWind,y=AvrWindGeneration)) +
  geom_point()+xlab("Average Wind Speed") +
  ylab("Average Generation")+geom_smooth(method="lm")
```



```
predict(mod, newdata = data.frame(AVRWind=25))
```

```
## 1
## 2386.727
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

Challenge

Generate linear models with the advertising data

```
adv <- read_excel("../../datasets/Advertising/AdvertisingData.
slice(adv,1:8)</pre>
```

```
## # A tibble: 8 x 4
       TV Radio Newspaper Sales
##
    <dbl> <dbl>
                    <dbl> <dbl>
##
                          22.1
## 1 230.
           37.8
                     69.2
                     45.1 10.4
    44.5
           39.3
## 2
## 3
    17.2 45.9
                     69.3 12
                     58.5 16.5
## 4 152.
           41.3
## 5 181. 10.8
                     58.4 17.9
                            7.2
## 6
      8.7 48.9
                     75
    57.5
           32.8
                     23.5 11.8
## 7
## 8 120.
           19.6
                     11.6
                           13.2
```

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

25 / 27

Visualise Relationship

Data Science for OR - J. Duggan

9. An Energy Generation Case Study

Summary

- Shows use of dplyr, ggplot2 and lm
- Linking data to explore relationships
- Building a simple linear model
- Predicting future values