1

Matrix Theory Assignment 3

Hrithik Raj

Abstract—This document contains the solution to problem No.66 from Lines and Planes

1 Problem Statement

In \triangle ABC, AD is the perpendicular bisector of BC. Show that \triangle ABC is an isosceles triangle in which AB = AC.

2 Solution

Fig. 0

Consider the above $\triangle ABC$. Given that AD is the perpendicular bisector of BC. So, BD = DC and $\angle ADB = \angle ADC = 90$. Since D is the midpoint of BC

$$\mathbf{D} = (\mathbf{B} + \mathbf{C}) / 2$$

$$2\mathbf{D} = (\mathbf{B} + \mathbf{C})$$

$$(\mathbf{B} - \mathbf{D}) = (\mathbf{D} - \mathbf{C})$$

$$\|\mathbf{B} - \mathbf{D}\| = \|\mathbf{D} - \mathbf{C}\| \quad (2.0.1)$$

Since, AD is the perpendicular bisector of BC

$$(\mathbf{A} - \mathbf{D})^{T} (\mathbf{B} - \mathbf{C}) = (\mathbf{B} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{D}) = 0$$

$$(\mathbf{A} - \mathbf{D})^{T} (\mathbf{B} - \mathbf{D} + \mathbf{D} - \mathbf{C}) = 0$$

$$(\mathbf{A} - \mathbf{D})^{T} (\mathbf{B} - \mathbf{D}) + (\mathbf{A} - \mathbf{D})^{T} (\mathbf{D} - \mathbf{C}) = 0$$

$$\implies (\mathbf{A} - \mathbf{D})^{T} (\mathbf{B} - \mathbf{D}) = (\mathbf{A} - \mathbf{D})^{T} (\mathbf{D} - \mathbf{C}) = 0$$

$$(2.0.2)$$

$$(\mathbf{B} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{D}) = 0$$

$$(\mathbf{B} - \mathbf{D} + \mathbf{D} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{D}) = 0$$

$$[(\mathbf{B} - \mathbf{D})^{T} + (\mathbf{D} - \mathbf{C})^{T}] (\mathbf{A} - \mathbf{D}) = 0$$

$$(\mathbf{B} - \mathbf{D})^{T} (\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{D}) = 0$$

$$\implies (\mathbf{B} - \mathbf{D})^{T} (\mathbf{A} - \mathbf{D}) = (\mathbf{D} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{D}) = 0$$

$$(2.0.3)$$

Find the length of AB,

$$||\mathbf{A} - \mathbf{B}||^2 = (\mathbf{A} - \mathbf{B})^T (\mathbf{A} - \mathbf{B})$$

$$= (\mathbf{A} - \mathbf{D} + \mathbf{D} - \mathbf{B})^T (\mathbf{A} - \mathbf{D} + \mathbf{D} - \mathbf{B})$$

$$= [(\mathbf{A} - \mathbf{D})^T + (\mathbf{D} - \mathbf{B})^T][(\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{B})]$$

$$= (\mathbf{A} - \mathbf{D})^T (\mathbf{A} - \mathbf{D}) + (\mathbf{A} - \mathbf{D})^T (\mathbf{D} - \mathbf{B}) + (\mathbf{D} - \mathbf{B})^T (\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{B})^T (\mathbf{D} - \mathbf{B})$$
(2.0.4)

From Eq (2.0.2) and Eq (2.0.3),

$$(\mathbf{A} - \mathbf{B})^{T} (\mathbf{A} - \mathbf{B})$$

$$= (\mathbf{A} - \mathbf{D})^{T} (\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{B})^{T} (\mathbf{D} - \mathbf{B})$$

$$\implies ||\mathbf{A} - \mathbf{B}||^{2} = ||\mathbf{A} - \mathbf{D}||^{2} + ||\mathbf{D} - \mathbf{B}||^{2} \quad (2.0.5)$$

Similarily, find the length of AC

$$||\mathbf{A} - \mathbf{C}||^2 = (\mathbf{A} - \mathbf{C})^T (\mathbf{A} - \mathbf{C})$$

$$= (\mathbf{A} - \mathbf{D} + \mathbf{D} - \mathbf{C})^T (\mathbf{A} - \mathbf{D} + \mathbf{D} - \mathbf{C})$$

$$= [(\mathbf{A} - \mathbf{D})^T + (\mathbf{D} - \mathbf{C})^T][(\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{C})]$$

$$= (\mathbf{A} - \mathbf{D})^T (\mathbf{A} - \mathbf{D}) + (\mathbf{A} - \mathbf{D})^T (\mathbf{D} - \mathbf{C}) + (\mathbf{D} - \mathbf{C})^T (\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{C})^T (\mathbf{D} - \mathbf{C})$$
(2.0.6)

From Eq (2.0.2) and Eq (2.0.3)

$$(\mathbf{A} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{C})$$

$$= (\mathbf{A} - \mathbf{D})^{T} (\mathbf{A} - \mathbf{D}) + (\mathbf{D} - \mathbf{C})^{T} (\mathbf{D} - \mathbf{C})$$

$$\implies ||\mathbf{A} - \mathbf{C}||^{2} = ||\mathbf{C} - \mathbf{D}||^{2} + ||\mathbf{D} - \mathbf{A}||^{2} \quad (2.0.7)$$

Eq (2.0.1), Eq (2.0.5) and Eq (2.0.7)

$$\|\mathbf{A} - \mathbf{B}\|^2 = \|\mathbf{A} - \mathbf{C}\|^2$$
 (2.0.8)

Since the lengths AB and AC are equal, We can conclude that the \triangle ABC is an isosceles triangle with AB = AC.

Latex codes:

https://github.com/Hrithikraj2/ MatrixTheory_EE5609/tree/master/ Assignment 3/latex