Homework 3

PB17000297 罗晏宸

September 16 2019

1 Exercise 3.1

考虑文法

$$S \to (L) \mid a$$

$$L \to L, S \mid S$$

- (a) 建立句子 (a, (a, a)) 和 (a, ((a, a), (a, a))) 的分析树。
- **(b)** 为 (a) 的两个句子构造最左推导。
- (c) 为 (a) 的两个句子构造最右推导。
- (d) 这个文法产生的语言是什么?

解

- (a) 两个分析树分别如图1和图2所示。
- **(b)** 由分析树, 句子 (a, (a, a)) 的最左推导为

$$S \Rightarrow_{\operatorname{lm}} (L) \Rightarrow_{\operatorname{lm}} (L, S) \Rightarrow_{\operatorname{lm}} (S, S) \Rightarrow_{\operatorname{lm}} (a, S) \Rightarrow_{\operatorname{lm}} (a, (L))$$
$$\Rightarrow_{\operatorname{lm}} (a, (L, S)) \Rightarrow_{\operatorname{lm}} (a, (S, S)) \Rightarrow_{\operatorname{lm}} (a, (a, S))$$
$$\Rightarrow_{\operatorname{lm}} (a, (a, a))$$

图 1: 句子 (a, (a, a)) 的分析树

图 2: 句子 (a, ((a, a), (a, a))) 的分析树

句子 (a, ((a, a), (a, a))) 的最左推导为

$$S \Rightarrow_{\operatorname{lm}} (L) \Rightarrow_{\operatorname{lm}} (L, S) \Rightarrow_{\operatorname{lm}} (S, S) \Rightarrow_{\operatorname{lm}} (a, S) \Rightarrow_{\operatorname{lm}} (a, (L)) \Rightarrow_{\operatorname{lm}} (a, (L, S))$$

$$\Rightarrow_{\operatorname{lm}} (a, (S, S)) \Rightarrow_{\operatorname{lm}} (a, ((L, S))) \Rightarrow_{\operatorname{lm}} (a, ((L, S), S)) \Rightarrow_{\operatorname{lm}} (a, ((S, S), S))$$

$$\Rightarrow_{\operatorname{lm}} (a, ((a, S), S)) \Rightarrow_{\operatorname{lm}} (a, ((a, a), S)) \Rightarrow_{\operatorname{lm}} (a, ((a, a), (L)))$$

$$\Rightarrow_{\operatorname{lm}} (a, ((a, a), (L, S))) \Rightarrow_{\operatorname{lm}} (a, ((a, a), (S, S))) \Rightarrow_{\operatorname{lm}} (a, ((a, a), (a, S)))$$

$$\Rightarrow_{\operatorname{lm}} (a, ((a, a), (a, a)))$$

(c) 由分析树, 句子 (a, (a, a)) 的最右推导为

$$S \Rightarrow_{\operatorname{lm}} (L) \Rightarrow_{\operatorname{lm}} (L, S) \Rightarrow_{\operatorname{lm}} (L, (L)) \Rightarrow_{\operatorname{lm}} (L, (L, S)) \Rightarrow_{\operatorname{lm}} (L, (L, a))$$

$$\Rightarrow_{\operatorname{lm}} (L, (S, a)) \Rightarrow_{\operatorname{lm}} (L, (a, a)) \Rightarrow_{\operatorname{lm}} (S, (a, a))$$

$$\Rightarrow_{\operatorname{lm}} (a, (a, a))$$
句子 $(a, ((a, a), (a, a)))$ 的最右推导为

$$S \Rightarrow_{\operatorname{lm}} (L) \Rightarrow_{\operatorname{lm}} (L, S) \Rightarrow_{\operatorname{lm}} (L, (L)) \Rightarrow_{\operatorname{lm}} (L, (L, S)) \Rightarrow_{\operatorname{lm}} (L, (L, (L)))$$

$$\Rightarrow_{\operatorname{lm}} (L, (L, (L, S))) \Rightarrow_{\operatorname{lm}} (L, (L, (L, a))) \Rightarrow_{\operatorname{lm}} (L, (L, (S, a)))$$

$$\Rightarrow_{\operatorname{lm}} (L, (L, (a, a)) \Rightarrow_{\operatorname{lm}} (L, (S, (a, a)) \Rightarrow_{\operatorname{lm}} (L, ((L), (a, a))))$$

$$\Rightarrow_{\operatorname{lm}} (L, ((L, S), (a, a))) \Rightarrow_{\operatorname{lm}} (L, ((L, a), (a, a))) \Rightarrow_{\operatorname{lm}} (L, ((S, a), (a, a))))$$

$$\Rightarrow_{\operatorname{lm}} (L, ((a, a), (a, a))) \Rightarrow_{\operatorname{lm}} (S, ((a, a), (a, a)))$$

$$\Rightarrow_{\operatorname{lm}} (a, ((a, a), (a, a)))$$

(d) 这个文法描述的语言是"在配对括号内由逗号分割的二元组字符串,其中组的元素是 *a* 或一个由此语言描述的串"。

2 Exercise 3.2

考虑文法

$$S \rightarrow aSbS \mid bSaS \mid \varepsilon$$

(a) 为句子 abab 构造两个不同的最左推导,以此说明该文法是二义的。

解

(a) 句子 abab 的两个不同的最左推导如下:

$$S \Rightarrow_{\operatorname{lm}} aSbS \Rightarrow_{\operatorname{lm}} abS \Rightarrow_{\operatorname{lm}} abaSbS \Rightarrow_{\operatorname{lm}} ababS \Rightarrow_{\operatorname{lm}} abab$$
 $S \Rightarrow_{\operatorname{lm}} aSbS \Rightarrow_{\operatorname{lm}} abSaSbS \Rightarrow_{\operatorname{lm}} ababS \Rightarrow_{\operatorname{lm}} ababS$ 因此这个文法是二义的。

3 Exercise 3

阅读 ANSI C 语法中从 primary_expression 到 expression 的产生式,了解 C 语言表达式的语法定义,并设计如下表格给出其中 C 算符的优先级和结合性。

解 如表1所示。

表 1: C 语言算符的优先级与结合性(部分)

优先级	算符(组)	结合性
1	[]	
	()	左结合
	•	工 4 日
	->	

续表

优先级	算符(组)	结合性
2	- (负号)	右结合
	(type name)	
	++	
	*(取值)	
	& (取地址)	
	!	
	~	
	sizeof	
	/	左结合
3	*	
	%	
4	+	
	-	
5	<<	
	>>	
	<	
6	<=	
	>	
	>=	
7	==	
	!=	
8	&	
9	!	
10	I	
11	&&	
12	11	
13	?:	
14	=	右结合
	*=	但知百
	/=	

续表

优先级	算符(组)	结合性
14	%=	
	+=	
	-=	
	<<=	
	>>=	右结合
	=	
	& =	
	!=	
	=	
15	,	左结合

4 Exercise 4

阅读 ANSI C 语法中 declaration 相关产生式,给出如下声明的分析树:

解 声明的分析树如图3所示

图 3: 声明 void (*(*paa)[10])(int a); 的分析树