## **SINGAPORE POLYTECHNIC**

### 2021/2022 SEMESTER ONE END-SEMESTER TEST

#### **EP0604 FURTHER MATHEMATICS**

Time Allowed: 1 hour 30 minutes

### **Instructions to Candidates**

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This examination paper consists of FOUR printed pages.
- 3. Answer **ALL** the questions.
- 4. Give all non-exact answers to 3 significant figures.
- 5. A mathematical formulae and tables card is provided for reference.

#### **Additional Formulae**

**Absolute value Inequalities**: (i) |x-a| < k is equivalent to -k < x-a < k

(ii) 
$$|x-a| > k$$
 is equivalent to  $x-a > k$  or  $x-a < -k$ 

## **VECTOR EQUATION OF A LINE**

$$r = r_0 + \lambda v$$
 ,  $\lambda \in \mathbb{R}$ 

where

 $r = \langle x, y, z \rangle$  is the position vector of any point on the line,

 $\underline{r}_0 = \langle x_0, y_0, z_0 \rangle$  is the position vector of a known point on the line,

 $v = \langle a, b, c \rangle$  is a non-zero vector parallel to the line.

# PARAMETRIC EQUATIONS OF A LINE

$$x = x_0 + \lambda a$$
,  $y = y_0 + \lambda b$ ,  $z = z_0 + \lambda c$  where  $\lambda \in \mathbb{R}$ 

#### **EQUATION OF A PLANE**

The plane in  $\mathbb{R}^3$  that passes through the point  $P_0(x_0, y_0, z_0)$  and is normal to the non-zero vector

 $\underline{n} = \langle a, b, c \rangle = a\underline{i} + b\underline{j} + c\underline{k}$  has equations:

$$n \bullet \overrightarrow{P_0 P} = 0$$
 or  $r \bullet n = r_0 \bullet n$ 

In vector form:  $n \cdot \overrightarrow{P_0P} = 0$  or  $r \cdot n = r_0 \cdot n$ In point-normal form:  $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ 



1. The sum of a geometric progression is given by

$$a + ar^{1} + ar^{2} + ... + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$$
 for  $n \in \mathbb{Z}^{+}$ .

Prove the above formula using mathematical induction.

(15 marks)

- 2. (a) The area of an object is given by  $A = \int_0^1 x^5 \ln(x^3 + 1) dx$ .
  - (i) Use the substitution  $u = x^3 + 1$  to show that

$$A = \frac{1}{3} \int_{1}^{2} (u - 1) \ln u \ du \ . \tag{4 marks}$$

(ii) By using integration by parts, or otherwise, find the value of A. (6 marks)

(b) Find 
$$\int \frac{2^x}{\left(2^x + 1\right)^2} dx$$
 (5 marks)

3. (a) Figure 1 shows sketches of the graphs of  $y = 2 - e^{-x}$  and y = x. These graphs intersect at x = a.



Figure 1

(i) Write down an equation satisfied by x = a.

Do not attempt to solve the equation.

(2 marks)

- (ii) Write down an integral which is equal to the area of the shaded region R. (3 marks)
- (iii) Show that the result in part (ii) is  $2a + \frac{1}{e^a} \frac{a^2}{2} 1$ . (5 marks)

- 3. (b) A wine bottle stopper is modeled by the function  $y = \frac{x}{12}\sqrt{36 x^2}$ . Find the volume of the stopper when it is rotated  $2\pi$  radians about the *x*-axis between x = 0 and x = 6. (10 marks)
- 4. (a) Given  $\overrightarrow{PQ} = \underline{i} + 2\underline{j} + 2\underline{k}$ , find

(i) 
$$|\overrightarrow{PQ}|$$
. (2 marks)

- (ii) A unit vector in the direction of  $\overrightarrow{PQ}$ . (2 marks)
- (iii) Find the force  $\overrightarrow{F_1}$  which has a magnitude of 9N in the direction of  $\overrightarrow{PQ}$ . (2 marks)
- (iv) Given another force  $\overrightarrow{F_2} = a\underline{i} + 15\underline{i}$  and both  $\overrightarrow{F_1}$  and  $\overrightarrow{F_2}$  together move an object from point P to point Q with a total work done of 51 J. Find the value of a. (4 marks)
- (b) The line L passes through the points P(1, -2,4) and Q(3,2,10).

(i) Find 
$$\overrightarrow{PQ}$$
 (2 marks)

- (ii) Find the parametric equations of the line through P and Q. (3 marks)
- (iii) Determine whether R(4,4,13) lies on the line through P and Q. (5 marks)

(Please Turn Over)

2021/2022/S1 Page **3** of **5** 

5. A plane  $\prod$  contains a line  $L_1$ :  $\underline{r} = (\underline{i} + 2\underline{j} + 3\underline{k}) + \lambda(\underline{i} + 4\underline{j} - 2\underline{k})$  and a point P(4, -4, 3), as shown in figure 2.



- (a) Find a vector which is perpendicular to the plane  $\Pi$ . (5 marks)
- (b) Using the vector in (a) and the point P(4,-4,3), find equation of the plane  $\Pi$ . (3 marks)
- (c) The vector equation of a line,  $L_2$ , is given by  $\langle 1,4,3 \rangle + \mu \langle 1,3,-2 \rangle$ . Find the point of intersection of the plane  $\Pi$  and the line  $L_2$  (7 marks)
- 6. (a) Find the range of values of x for which  $0 < x^2 + 4x$  and  $x^2 + 4x \le 6x + 3$ . (7 marks)
  - (b) Sketch, on the same diagram, the graphs of y = |x-2| and y = |2x-3| for  $0 \le x \le 2$ . Hence or otherwise, solve the inequality of  $|x-2| \ge |2x-3|$ . (8 marks)

~END OF PAPER~

2021/2022/S1 Page 4 of 5

# **Answers**

1 Step 3 need to prove: 
$$a + ar^1 + ar^2 + ... + ar^{n-1} + ar^n = \frac{a(1 - r^{n+1})}{1 - r}$$

- (a)(i) change the limits using  $u = x^3 + 1$  (ii)  $\frac{1}{12}$  (b)  $-\frac{1}{\ln 2(2^x + 1)} + C$ 2

(b) 
$$-\frac{1}{\ln 2(2^x+1)} + C$$

3 (a)(i) 
$$2 - e^{-x} = x$$

(ii) 
$$\int_0^a (2 - e^{-x} - x) dx$$

(b) 
$$7.2\pi$$
 or  $22.6$  unit<sup>3</sup>

(ii) 
$$\frac{1}{3}(\underline{i} + 2\underline{j} + 2\underline{k})$$

(ii) 
$$\frac{1}{3}(\underline{i} + 2\underline{j} + 2\underline{k})$$
 (iii)  $(3\underline{i} + 6\underline{j} + 6\underline{k}) N$  (iv)  $a = -6$ 

(iv) 
$$a = -6$$

(b)(i) 
$$2i + 4i + 6k$$

$$x = 1 + 2\lambda \dots (1) \qquad x = 3 + 2\lambda$$

(ii) 
$$y = -2 + 4\lambda...(2)$$
 Or  $y = 2 + 4\lambda$ 

$$z = 4 + 6\lambda \dots (3) \qquad z = 10 + 6\lambda$$

(b) (iii) Subst Q(4,4,13) into (1), (2) and (3) give the same  $\lambda = \frac{3}{2}$ . Hence Q lies on the given line.

5 (a) 
$$2i + j + 3k$$

(b) 
$$2x + y + 3z = 13$$

(c) 
$$(3,10,-1)$$

6 (a) 
$$0 < x \le 3$$

