PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI.

16 luglio 2020

Esercizio 1

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z che riceve sequenze del tipo $a_0a_1a_2a_3$. In corrispondenza dell'ultimo bit della sequenza, la rete restituisce 1 se vale la seguente relazione, 0 altrimenti:

$$(a_0 = NOT \ a_2) \ AND \ ((a_0 \ XOR \ a_3) = (a_1 \ XOR \ a_2))$$

Dopo aver elaborato una sequenza, la rete passa a quella successiva, considerando che il primo bit della sequenza successiva coincide con l'ultimo di quella precedente.

t:	0	1	2 3 4	5 6 7	8 9 10	11 12 13
X(t):	0	1	1 0 0	0 0 1	1 1 1	0 0
Z(t):	0	0	$0 \ \ 1 \ \ 0$	$0 \mid 0 \mid 0$	$0 \mid 0 \mid 0$	$\begin{array}{c cccc} 0 & 0 & \dots \\ 0 & 1 & \dots \end{array}$

Nell'esempio riportato, dall'istante t=0 all'istante t=3 la rete riceve la sequenza 0110 e restituisce 1 in corrispondenza di t=3 in quanto si ha $a_0=\mathbf{NOT}$ $a_2=0$ e contemporaneamente $(a_0\ \mathbf{XOR}\ a_3)=(a_1\ \mathbf{XOR}\ a_2)=1$. Dall'istante t=3 all'istante t=6 la rete riceve la sequenza 0000 e restituisce 0 in corrispondenza di t=6 in quanto si ha $(a_0\ \mathbf{XOR}\ a_3)=(a_1\ \mathbf{XOR}\ a_2)=0$ ma $a_0=0$ e $\mathbf{NOT}\ a_2=1$. Dall'istante t=6 all'istante t=9 la rete riceve la sequenza 0111 e restituisce 0 in corrispondenza di t=9 in quanto si ha $a_0=\mathbf{NOT}\ a_2=0$ ma $(a_0\ \mathbf{XOR}\ a_3)=1$ e $(a_1\ \mathbf{XOR}\ a_2)=0$.

