

»Лекционен курс

»Интелигентни системи

Евристично търсене

Евристично (Информирано) търсене

За разлика от сляпото търсене при евристичното търсене разполагаме с допълнителна информация, която ни позволява да категоризираме възлите по отношение на "благонадеждност" за намиране на (добро) решение. Така може да селектираме възлите-наследници и само някои от тях да се приемат в границата, т.е. само те могат да бъдат разширявани в бъдеще. Евристичното търсене възниква в резултат на усилията за справяне с неблагоприятните ефектите на "комбинаторния взрив".

Съществуват два базови методи за евристично търсене:

Лакомо търсене;

А* търсене.

За резултатно използване на методите за търсене от изключително значение е оценка на тяхната "комплексност".

Евристично (Информирано) търсене

- » Необходимо ни е знание за това, кой възел да бъде разширен най-напред
- » Обикновено това знание доставя някаква оценъчна функция
- » Търсенето, използващо такава функция се нарича първо най-добро търсене
- » Съществуват различни методи, които се различават по използваната функция

Подходи

- » Понеже целта е да се намери решение с най-малки разходи методите обикновено използват някакво оценъчно измерване на разходите
 - > Което се опитваме на минимираме
- » Различни подходи:
 - + Първи: "Лакомо търсене" (greedy search)
 - + Опитва да разшири възела, който е най-близко до целта
 - + Втори: "Евристично търсене на най-добрия път А*"
 - + Опитва да разшири възела, лежащ на пътя в най-малко разходи

Лакомо търсене

- » Минимиране разходи за достигане до цел
 - > Един от най-простите методи
- » Идея:
 - > Възелът, който е оценен като най-близък до целта се разширява първо
- » За много проблеми тези разходи могат да се оценят
 - > Но не могат да бъдат оценени точно
- » Оценъчната функция се нарича евристична или евристика
 - h(n) = оценени разходи за най-евтиния път от междинен възел n до един целеви възел
 - h може да бъде произволна (зависима от приложението)
 функция с h(n) = 0, ако n е цел

Пример: път от С3 до С13 👔 Съществува ли добра евристина функция?

Разстояния по въздушна линия (до С13)

Град	Км
C1	380
C2	374
C3	366
C4	329
C5	253
C6	244
C7	241
C8	242
C9	178
C10	193

<u> </u>				
Град	Км			
C11	160			
C12	98			
C13	0			
C14	77			
C15	80			
C16	151			
C17	161			
C18	199			
C19	226			
C20	234			

Търсене на път

75

120

C17

C14

Търсене на път

Пример: път от С3 до С13

Пример: път от С3 до С13

Защо "лакомо" търсене

- Методът предпочита да прави най-голямата възможна стъпка ("хапка") за достигане целта без да се безпокои дали това е най-доброто в дългосрочна перспектива
- » Въпреки това (че лакомията се счита за един от седемте гряха) в много случаи методът дава добри резултати
 - > Намира бързо решения
 - > Въпреки, че не винаги са оптимални

Недостатъци на лакомото търсене

- » Бързо намира решения, въпреки, че не винаги са оптимални
- » Податлив на грешен старт
- Ако не сме предпазливи може да влезем в безкраен цикъл
- » Същите недостатъци като търсене първо в дълбочина

Недостатъци

Как работи методът в този случай?

А*: минимиране пълните разходи за път

- » Лакомото търсене минимира разходите до целта h(n)
 - > Така съкращава разходите за търсене
 - > Обаче, то не е оптимално и непълно
- » Търсенето с еднакви разходи минимира разходите за достигнатия път g(n)
 - > То е оптимално и пълно
 - > Обаче, може да бъде много неефективно
- » Можем ли да комбинираме двата метода?
 - > Да използваме предимствата им

А*: минимиране пълните разходи за път

- f(n) = g(n) + h(n)
 - Оценени разходи на най-евтиното решение през п
- » Ако се опитваме да намерим най-евтиното решение, тогава първо възела с най-малка стойност на **f**
- » Приятен метод
 - Можем да докажем пълнота и оптималност при просто ограничение за h
- » Първо най-добро търсене, което използва като оценъчна функция f се нарича **A***

A*

- Фронтът се обработва като сортиран списък в нарастващ ред на текущите евристични оценки на пътищата
- \square Ако фронтът е $[\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n]$
 - избира се р₁
 - > пътищата $\mathbf{p_1}'$, $\mathbf{p_1}''$, ..., $\mathbf{p_1}^{(k)}$, които разширяват $\mathbf{p1}$ се добавят към фронта и той се сортира в нарастващ ред на оценките на пътищата $[\mathbf{q_1}, \mathbf{q_2}, \ldots, \mathbf{q_{n+k}}]$
 - > на следващата стъпка се обработва първо пътя с найдобра текуща оценка, т.е. \mathbf{q}_1

$$f = g + h$$

Стъпки на А* търсене

Оптималност на А*

- » Допустима оценъчна функция: h наричаме допустима (оптимистична)
 - > Aко h(s) ≤ от минималните разходи от s до един целеви възел за всички s ∈ s
- » **Консистентна оценъчна функция:** h наричаме консистентна (монотонна)
 - > Ако за всеки възел n и всеки негов наследник n' е в сила $h(n) \le c(n,a,n') + h(n')$
 - > Една форма на неравенство на триъгълника
 - + Тук триъгълникът е образуван от n, n'и G_n
- » **А*** притежава следните свойства:
 - > При търсене в дърво **A*** е оптимален, когато h(n) е допустима
 - > При търсене в граф A^* е оптимален, когато h(n) е консистентна

Оптималност на А*

- » Първа стъпка: когато h(n) е консистентна, тогава стойностите на f(n) по дължината на произволен път не е намаляваща (монотонно нарастваща)
 - > Доказателство: следва директно от дефиницията на консистентност $f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$
- » Втора стъпка: когато A* избира за разширение възел n, тогава е намерен оптималният път към този възел
 - > Ако това не е така, тогава трябва да съществува друг граничен възел n', през който минава оптималният път
 - > Понеже f по дължината на пътя не е намаляваща, тогава n' би имал по-малки f-разходи от n + Следователно ще бъде първо избран n'

Влияние на евристиката

- » В много случаи са възможни повече от една евристични функции
- » Да предположим, че съществуват две евристични функции h_1 и h_2
 - $> h_1 \le h_2$
 - > Коя е по-ефективната?

 h_2 по-ефективна от h_1

Сравнителна характеристика на информираните методи за търсене

Метод	Оптималност	Пълнота	Ефективност
Търсене с еднакви разходи	да	да	не
Лакомо търсене	не	не	да
A*	да	да	да

