Reservoir Computing : de la théorie à la pratique avec **ReservoirPy**

Séries temporelles : Classification

Statistiques vs Machine learning

Problème de taille :

Les méthodes de ML généralisent mieux avec plus de données

Conclusion de la compétition Makridakis 3 :

Statistiques > Machine learning (sur la prédiction)

Le coût du deep learning en terme d'énergie

ChatGPT (GPT-3)

284 MWh

Le coût du deep learning en terme d'énergie

ChatGPT (GPT-3)

4 MWh

 $(20W \times 23 \text{ ans})$

Comment apprendre de manière plus économe ? (en calcul, en énergie, en données)

L'entraînement de réseaux de neurones classiques

Réseaux « feed-forward »

Réseaux récurrents

L'entraînement de réseaux de neurones classiques

Réseaux « feed-forward »

Réseaux récurrents

→ C'est coûteux !

Le **Reservoir Computing**

Le **Reservoir Computing**

• Régression linéaire

Très peu de paramètres appris, simple régression linéaire

De l'informatique non-conventionnelle

• Moteurs : l'entrée

• Le bac d'eau : le réservoir

• La caméra : le read-out

• La surface de l'eau : l'état du réservoir

Un kernel trick temporel

On applique une fonction non-linéaire complexe qui projette les entrées dans un espace de grande dimension

→ Le problème est rendu linéaire !

Ici, le réservoir transforme le signal d'entrée $(\ldots,u_{t-2},u_{t-1},u_t)$ dans un espace de haute dimension (l'état des neurones)

→ Le read-out peut appliquer une régression linéaire !

Echo State Network (ESN) Un tas de neurones

x(t)

Echo State Network (ESN)
Un tas de neurones interconnectés

$$x(t) = Wx(t-1)$$

Echo State Network (ESN) Entrées du réservoir

$$x(t) = Wx(t-1) + W_{in}u(t)$$

Echo State Network (ESN) Non-linéarité

$$x(t) = -f(Wx(t-1) + W_{in}u(t))$$

16

Echo State Network (ESN) Neurones à fuite

$$x(t) = rac{1}{ au} f(Wx(t-1) + W_{in}u(t)) + (1 - rac{1}{ au})x(t-1)$$

Echo State Network (ESN) La couche de sortie (read-out)

$$x(t) = rac{1}{ au} f(Wx(t-1) + W_{in}u(t)) + (1 - rac{1}{ au})x(t-1)$$

Echo State Network (ESN)

$$x(t) = rac{1}{ au} f(Wx(t-1) + W_{in}u(t)) + (1 - rac{1}{ au})x(t-1)$$

Echo State Network et LSTM

Performances similaires mais :

- les réservoirs généralisent avec moins de données
- les réservoirs sont bien plus rapides à entraîner

Quel outil Python pour le reservoir computing ?

ReservoirPy: un module Python pour le reservoir computing

Libre et open-source (licence MIT)

Basé sur l'écosystème NumPy / SciPy

Entièrement documenté

Maintenu à jour

Une architecture en nœuds Création de nœuds

```
from reservoirpy.nodes import Reservoir, Ridge
reservoir = Reservoir(units=100, lr=0.9, sr=0.9)
```


Une architecture en nœuds Création de nœuds

```
from reservoirpy.nodes import Reservoir, Ridge

reservoir = Reservoir(units=100, lr=0.9, sr=0.9)
readout = Ridge(ridge=0.001)
```


Une architecture en nœuds Création de modèle

```
from reservoirpy.nodes import Reservoir, Ridge

reservoir = Reservoir(units=100, lr=0.9, sr=0.9)
readout = Ridge(ridge=0.001)

model = reservoir >> readout
```


Une architecture en nœuds Entraînement

```
from reservoirpy.nodes import Reservoir, Ridge
reservoir = Reservoir(units=100, lr=0.9, sr=0.9)
                                                                            mod
readout = Ridge(ridge=0.001)
model = reservoir >> readout
                                                                                       Ridge
                                                                  Reservoir
from reservoirpy.datasets import mackey_glass
X = mackey_glass(2500)
model.fit(X[:500], X[1:501], warmup=100)
```


Une architecture en nœuds Prédiction t+1

```
from reservoirpy.nodes import Reservoir, Ridge
reservoir = Reservoir(units=100, lr=0.9, sr=0.9)
                                                                            model
readout = Ridge(ridge=0.001)
model = reservoir >> readout
                                                                                      Ridge
                                                                  Reservoir
from reservoirpy.datasets import mackey_glass
X = mackey_glass(2500)
model.fit(X[:500], X[1:501], warmup=100)
Y_pred = model.run(X[501:-1])
```


Une bibliothèque riche

• Possibilité de feed-back

• Créer des modèles complexes

• Interface pour R

Perspectives

Implémentation de fonctionnalités

- Intégration de nouvelles méthodes
- Calculs sur GPU
- Interfaçage scikit-learn, PyTorch, ...

Aspect communautaire

- Rédaction de tutoriels
- Implémentation de papiers

Ouverts aux suggestions et nouveaux cas d'applications !

Résumé

Un paradigme :

- pour des **séries temporelles**
- qui sépare récurrence et apprentissage
- économique

Un outil :

- accessible
- flexible
- maintenu

Démonstration

https://paul.bernard-candaele.com/phimeca/

Séances de questions

Dépôt GitHub

https://github.com/reservoirpy/reservoirpy

Contributeurs ReservoirPy

Paul BERNARD - Paul.Bernard@inria.fr Xavier HINAUT - Xavier.Hinaut@inria.fr Nathan TROUVAIN - Nathan.Trouvain@inria.fr

(nría_

Compléments

Library	Language	Main dependency	Last activity	Package	Doc.	Tests	Off.	On.	Fb.	Model type	Deep
PyRCN	Python 3	Scikit-learn	Nov 2022	pip	√	✓	√	х	х	ESN	√
EchoTorch	Python 3	PyTorch	Sep. 2021	pip	✓	✓	✓	x	×	ESN, Conceptors	✓
★Res.Comp.jl ³	Julia	Julia	Sept 2023	Pkg	✓	✓	√	х	Х	ESN	х
Pytorch-esn	Python 3	Pytorch	Feb 2022	Х	Х	Х	√	х	Х	ESN	√
DeepESN	Matlab	Matlab	Feb. 2019	Matlab	✓	?	✓	Х	Х	ESN	✓
RCNet	C#	C#	Aug. 2021	x	partial	х	✓	x	×	ESN, LSM	х
LSM	Python 3	Nest	Nov. 2020	Х	Х	Х	√	Х	Х	LSM	х
Oger	Python 2	mdp	2012 (obsolete)	×	x	✓	✓	✓	✓	LSM, ESN	✓
<pre>★reservoirpy (this package)</pre>	Python 3	Numpy	Sept 2023	pip	✓	✓	√	✓	√	ESN	✓

Table 1: Comparative table of some open source software for Reservoir Computing. This table might not be exhaustive. **Doc.** Complete documentation. **Off.** Offline learning strategies included. **On.** Online learning strategies included. **Fb.** Feedback and delayed connections. **Deep** The software allows the design of complex models where basic RC elements such as reservoirs and readouts can be stacked to form so-called "deep" networks.

Compléments

Optimisation des hyper-paramètres

https://github.com/reservoirpy/ reservoirpy/blob/master/tutorials/4-Understand and optimize hyperparameter s.ipynb

Compléments

Publications avec ReservoirPy

HAL publica	IAL publications related to this software 🕝						
HAL id 🕝	HAL citation						
hal- 03699931	Nathan Trouvain, Xavier Hinaut. reservoirpy: A Simple and Flexible Reservoir Computing Tool in Python. 2022. (hal-03699931)						
hal- 02595026	Nathan Trouvain, Luca Pedrelli, Thanh Trung Dinh, Xavier Hinaut. ReservoirPy: an Efficient and User-Friendly Library to Design Echo State Networks. ICANN 2020 - 29th International Conference on Artificial Neural Networks, Sep 2020, Bratislava, Slovakia. (hal-02595026v2)						
hal- 03533731	Nathan Trouvain, Xavier Hinaut. Reservoir Computing: théorie, intuitions et applications avec ReservoirPy. Plate-Forme Intelligence Artificielle (PFIA), Jun 2021, Bordeaux, France. (hal-03533731)						
hal- 03203318	Xavier Hinaut, Nathan Trouvain. Which Hype for my New Task? Hints and Random Search for Reservoir Computing Hyperparameters. <i>ICANN 2021 - 30th International Conference on Artificial Neural Networks</i> , Sep 2021, Bratislava, Slovakia. (hal-03203318v2)						
hal- 03482372	Silvia Pagliarini, Arthur Leblois, Xavier Hinaut. Canary Vocal Sensorimotor Model with RNN Decoder and Low-dimensional GAN Generator. ICDL 2021- IEEE International Conference on Development and Learning, Aug 2021, Beijing, China. (hal-03482372)						
hal- 03203374	Nathan Trouvain, Xavier Hinaut. Canary Song Decoder: Transduction and Implicit Segmentation with ESNs and LTSMs. <i>ICANN</i> 2021 - 30th International Conference on Artificial Neural Networks, Sep 2021, Bratislava, Slovakia. pp.7182, <10.1007/978-3-030-86383-8_6). <h style="color: blue;">(hal-03203374v2)</h>						
hal- 03761440	Nathan Trouvain, Nicolas P. Rougier, Xavier Hinaut. Create Efficient and Complex Reservoir Computing Architectures with ReservoirPy. SAB 2022 - FROM ANIMALS TO ANIMATS 16: The 16th International Conference on the Simulation of Adaptive Behavior, Sep 2022, Cergy-Pontoise / Hybrid, France. (hal-03761440)						
tel- 03946773	Xavier Hinaut. Reservoir SMILES: Towards SensoriMotor Interaction of Language and Embodiment of Symbols with Reservoir Architectures. Artificial Intelligence [cs.Al]. Université de Bordeaux (UB), France, 2022. (tel-03946773)						
hal- 03628290	Subba Reddy Oota, Frédéric Alexandre, Xavier Hinaut. Cross-Situational Learning Towards Robot Grounding. 2022. (hal-03628290v2)						
hal- 03780006	Xavier Hinaut, Nathan Trouvain. ReservoirPy: Efficient Training of Recurrent Neural Networks for Timeseries Processing. EuroSciPy 2022 - 14th European Conference on Python in Science, Aug 2022, Basel, Switzerland. (hal-03780006)						
hal- 03945994	Nathan Trouvain, Xavier Hinaut. Reservoir Computing: traitement efficace de séries temporelles avec ReservoirPy. Dataquitaine 2022, Feb 2022, Bordeaux, France. (hal-03945994)						

