CSC165H1, Problem Set 3

Youngsin Ryoo

Question 1

a) i. Proof by induction on n:

Define $P(n): \sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$ Want to show: $\forall n \in \mathbb{N}, P(n)$ is true.

Base case: Prove that P(0) is true. On the left hand side, $\sum_{k=1}^{0} k^3 = 0$ On the right hand side, $(\frac{0(0+1)}{2})^2 = 0$

So $\sum_{k=1}^{0} k^3 = (\frac{0(0+1)}{2})^2 = 0$, i.e., P(0) is true. **Induction Hypothesis**: Let $n = j \in \mathbb{N}$, and assume that P(j) is true.

i.e., we assume that $\sum_{k=1}^{j} k^3 = (\frac{j(j+1)}{2})^2$ Now let n=j+1. We want to show that P(j+1) is true. i.e., want to show that $\sum_{k=1}^{j+1} k^3 = (\frac{(j+1)(j+2)}{2})^2$

$$\sum_{k=1}^{j+1} k^3 = \sum_{k=1}^{j} k^3 + (j+1)^3$$

$$= (\frac{j(j+1)}{2})^2 + (j+1)^3 \qquad \text{(by the induction hypothesis)}$$

$$= \frac{j^2(j+1)^2}{4} + (j+1)^3 \qquad \text{(by arithmetic)}$$

$$= \frac{(j+1)^2}{4}(j^2 + 4(j+1)) \qquad \text{(factor out } \frac{(j+1)^2}{4})$$

$$= \frac{(j+1)^2}{4}(j+2)^2 \qquad \text{(since } j^2 + 4(j+1) = (j+2)^2)$$

$$= (\frac{(j+1)(j+2)}{2})^2$$

ii. Proof by induction on n:

Define $P(n): \sum_{k=1}^{n} k! \cdot k = (n+1)! - 1$

Want to show: $\forall n \in \mathbb{N}, P(n)$ is true.

Base case: Prove that P(0) is true.

On the left hand side, $\sum_{k=1}^{0} k! \cdot k = 0$, since 0 < 1On the right hand side, (0+1)! - 1 = 1! - 1 = 1 - 1 = 0So $\sum_{k=1}^{0} k! \cdot k = (0+1)! - 1 = 0$, i.e., P(0) is true. Induction Hypothesis: Let $n = j \in \mathbb{N}$, and assume that P(j) is true i.e., we assume that $\sum_{k=1}^{j} k! \cdot k = (j+1)! - 1$ Now let n = j + 1. We want to show that P(j+1) is true. i.e., want to show that $\sum_{k=1}^{j+1} k! \cdot k = (j+1+1)! - 1 = (j+2)! - 1$

$$\sum_{k=1}^{j+1} k! \cdot k = \sum_{k=1}^{j} k! \cdot k + (j+1)! \cdot (j+1)$$

$$= (j+1)! - 1 + (j+1)! \cdot (j+1) \qquad \text{(by the induction hypothesis)}$$

$$= (j+1)! (1+j+1) - 1 \qquad \text{(factor out } (j+1)!)$$

$$= (j+1)! (j+2) - 1$$

$$= (j+2)! - 1$$

b) Proof by induction on n:

Define P(n): n is expressible as a sum of 3's and/or 5's, i.e., $\exists a, b \in \mathbb{N}, n = 3a + 5b$ Want to show: $\forall n \in \mathbb{N}, n \geq 10 \implies P(n)$

Base case: Prove that P(10), P(11), P(12) are true

P(10): Let $a = 0, b = 2, 10 = 5 + 5 = 3 \times 0 + 5 \times 2$, so P(10) is true

P(11): Let $a = 2, b = 1, 11 = 3 + 3 + 5 = 3 \times 2 + 5 \times 1$, so P(11) is true

P(12): Let $a = 4, b = 0, 12 = 3 + 3 + 3 + 3 = 3 \times 4 + 5 \times 0$, so P(12) is true.

Induction Hypothesis: Let $n = k \in \mathbb{N}$. Assume $k \ge 10$ and that P(k) is true. i.e., Assume that k is expressible as a sum of 3's and/or 5's, i.e., $\exists a_0, b_0 \in \mathbb{N}, k = 3a_0 + 5b_0$. Let n = k + 3, we want to show that P(k+3) is true

i.e., want to show that $\exists a, b \in \mathbb{N}, k+3 = 3a+5b$

Let $a = a_0 + 1, b = b_0,$

$$k + 3 = 3a_0 + 5b_0 + 3$$
 (since $k = 3a_0 + 5b_0$ by the induction hypothesis)
= $3(a_0 + 1) + 5b_0$
= $3a + 5b$ (since $a = a_0 + 1, b = b_0$)

c) i. Want to show: P(2) is true i.e., want to show: $\forall x_1, x_2 \in \mathbb{R}^{\geq 0}, x_1 x_2 \leq (\frac{x_1 + x_2}{2})^2$ Let $x_1, x_2 \in \mathbb{R}^{\geq 0}$. Want to show $x_1x_2 \leq (\frac{x_1+x_2}{2})^2$:

$$\left(\frac{x_1 + x_2}{2}\right)^2 = \frac{(x_1 + x_2)^2}{4}$$

$$\geq \frac{(x_1 + x_2)^2 - (x_1 - x_2)^2}{4}$$
(Since $(x_1 - x_2)^2 \geq 0$, $(x_1 + x_2)^2 \geq (x_1 + x_2)^2 - (x_1 - x_2)^2$)
$$= \frac{4x_1x_2}{4}$$
(by arithmetic)
$$= x_1x_2$$

So,
$$x_1 x_2 \le (\frac{x_1 + x_2}{2})^2$$

ii. **PART 1**. Prove for each $n \geq 2$, if P(2) and P(n) are true, then P(2n) is also true.

Let $n \in \mathbb{N}$ and $n \geq 2$.

Assume P(2) and P(n) are true.

Want to show P(2n).

i.e. Want to show: $x_1 \cdots x_{2n} \leq (\frac{x_1 + \cdots + x_{2n}}{2n})^{2n}$ where $x_1, \dots, x_{2n} \in \mathbb{R}^{\geq 0}$

$$x_{1} \cdots x_{2n} = x_{1} \cdots x_{n} x_{n+1} \cdots x_{2n}$$

$$\leq \left(\frac{x_{1} + \cdots + x_{n}}{n}\right)^{n} \left(\frac{x_{n+1} + \cdots + x_{2n}}{n}\right)^{n}$$
(Since $P(n)$ is true by the assumption.)
$$\leq \left(\frac{\left(\frac{x_{1} + \cdots + x_{n}}{n}\right)^{n} + \left(\frac{x_{n+1} + \cdots + x_{2n}}{n}\right)^{n}}{2}\right)^{2}$$
(Since $P(2)$ is true by the assumption.)
$$= \left(\frac{\left(\frac{x_{1} + \cdots + x_{n}}{n}\right)^{n} + \left(\frac{x_{n+1} + \cdots + x_{2n}}{n}\right)^{n}}{2}\right)^{2}$$

$$= \left(\frac{\left(x_{1} + \cdots + x_{n}\right)^{n} + \left(x_{n+1} + \cdots + x_{2n}\right)^{n}}{2n^{n}}\right)^{2}$$

$$\leq \left(\frac{\left(x_{1} + \cdots + x_{n} + x_{n+1} + \cdots + x_{2n}\right)^{n}}{2n^{n}}\right)^{2}$$
(Since $x_{1}, \cdots, x_{2n} \in \mathbb{R}^{\geq 0}$ and $n \in \mathbb{N}$)
$$= \frac{\left(x_{1} + \cdots + x_{n} + x_{n+1} + \cdots + x_{2n}\right)^{2n}}{2n^{2n}}$$
(By arithmetic)
$$= \left(\frac{x_{1} + \cdots + x_{2n}}{2n}\right)^{2n}$$

Therefore, P(2n) is true.

PART 2. Prove that $P(2^m)$ is true for all $m \in \mathbb{N}$, where $m \ge 1$.

We'll prove this using an induction on m.

Base Case: Let m = 1.

Since $P(2^1) = P(2)$, we know that P(2) is true from (i).

Inductive Step: Let $m = k \in \mathbb{N}$. Assume $k \geq 1$ and $P(2^k)$ is true.

Let m = k + 1. Want to show that $P(2^{k+1})$ is true.

$$P(2^{k+1}) = P(2^k 2^1)$$

By the assumption, $P(2^k)$ is true. Also, $2^k \in \mathbb{N}$ and $2^k \ge 2$ since $k \ge 1$. From PART 1, we know that $\forall n \ge 2$, if P(2) and P(n) are true, then P(2n) is true.

Then, because $P(2^k)$ and P(2) are true, $P(2^k2^1) = P(2^{k+1})$ is also true.

iii. Let $k \in \mathbb{N}$ and $k \geq 2$.

Assume P(k) is true.

Want to show P(k-1) is true.

i.e. Want to show: $\forall x_1, \dots, x_{k-1} \in \mathbb{R}^{\geq 0}, x_1 \cdots x_{k-1} \leq (\frac{x_1 + \dots + x_{k-1}}{k-1})^{k-1}$ Let $x_1, \dots, x_{k-1} \in \mathbb{R}^{\geq 0}$

$$x_1 \cdots x_k \le \left(\frac{x_1 + \cdots + x_k}{k}\right)^k$$
 (by the assumption)

Then, by multiplying $\frac{1}{k}$ to the power of both sides,

$$(x_1 \cdots x_k)^{\frac{1}{k}} \leq \left(\frac{x_1 + \cdots + x_k}{k}\right)$$

$$= \frac{1}{k} \left(\frac{x_1 + \cdots + x_{k-1}}{k-1}(k-1)\right) + \frac{x_k}{k} \qquad \text{(taking } \frac{x_k}{k} \text{ out)}$$

$$= \frac{1}{k} \left((k-1)\frac{x_1 + \cdots + x_{k-1}}{k-1} + x_k\right) \qquad \text{(taking } \frac{1}{k} \text{ out)}$$

$$= \frac{1}{k} \left((k-1)x_k + x_k\right) \qquad \text{(Since } x_k = \frac{(x_1 + \cdots + x_{k-1})}{k-1}\right)$$

$$= \frac{1}{k} \left((k-1+1)x_k\right) \qquad \text{(by arithmetic)}$$

$$= \frac{1}{k} (k \cdot x_k) \qquad \text{(by arithmetic)}$$

$$= x_k \qquad \text{(by arithmetic)}$$

Then, we have:

$$(x_1 \cdots x_k)^{\frac{1}{k}} \le x_k$$
$$(x_1 \cdots x_{k-1})^{\frac{1}{k}} (x_k)^{\frac{1}{k}} \le x_k$$
$$(x_1 \cdots x_{k-1})^{\frac{1}{k}} \le x_k^{\frac{k-1}{k}}$$

Then, by multiplying k to the power of both sides, we get:

$$(x_1 \cdots x_{k-1}) \le (x_k)^{k-1}$$

= $(\frac{x_1 + \cdots + x_{k-1}}{k-1})^{k-1}$ (Since $x_k = \frac{(x_1 + \cdots + x_{k-1})}{k-1}$)

Therefore, P(k-1) is true.

iv. Since we know that $P(n) \Longrightarrow P(n-1)$ for all $n \in \mathbb{N}$ where $n \geq 2$, when P(2) is true, P(1) is true. This case covers when n = 1.

Now we want to know why P(n) is true for all $n \in \mathbb{N}$ where n > 1.

We know that $P(2^m)$ is true for all $m \in \mathbb{N}$ where $m \ge 1$.

In other words, P(n) is true for every power m of 2, where $n = 2^m$.

Because $P(n) \implies P(n-1)$, P(n) is also true for the intervals that are between each power of 2 (i.e. the intervals that have not been covered by $P(2^m)$), recursively.

Then, P(n) covers both the power of 2 and the intervals between them as well. i.e. P(n) is true for all $n \in \mathbb{N}$ where $n \ge 1$.

Question 2

a) i. Want to find x in $(EA)_{16} = (x)_8$:

$$(EA)_{16} = A \times 16^{0} + E \times 16^{1}$$

= $10 \times 16^{0} + 14 \times 16^{1}$ (since $A = 10, E = 14$)
= $10 + 14 \times 16$ (by arithmetic)
= $(234)_{10}$ (by arithmetic)

$$(234)_{10} = 3 \times 8^2 + 5 \times 8^1 + 2 \times 8^0$$

So $(234)_{10} = (352)_8$
i.e., $(EA)_{16} = (352)_8$
Therefore, $x = 352$.

ii. Want to find x in $(755)_8 = (x)_2$:

$$(755)_8 = 7 \times 8^2 + 5 \times 8^1 + 5 \times 8^0$$

= $7 \times 64 + 40 + 5$ (by arithmetic)
= $(493)_{10}$

$$(493)_{10} = 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $(111101101)_2$

Therefore, x = 111101101.

iii. Want to find x in $(9009)_{10} = (x)_{16}$:

$$(9009)_{10} = 2 \times 16^3 + 3 \times 16^2 + 3 \times 16^1 + 1 \times 16^0$$

= (2331)₁₆

Therefore, x = 2331.

b) Want to show: Every fraction p/q (where $p,q \in \mathbb{N}, q \neq 0$, and gcd(p,q) = 1) has a base-b representation without repeating digits if and only if there exists an $m \in \mathbb{N}$ such that $q \mid b^m$.

Since it's bi-conditional, we will prove both sides.

PART 1. Let $p, q \in \mathbb{N}$. Assume that $q \neq 0$ and gcd(p,q) = 1

Let $b \in \mathbb{N}$ and suppose b > 2

Assume that $\frac{p}{a}$ has a base-b representation without repeating digits, i.e.,

$$\frac{p}{q} = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=1}^{m_1} \frac{y_i}{b^i}$$
 (where $a_i, y_i \in \{0, \dots, b-1\}$, from base b)

We want to show that $\exists m \in \mathbb{N}, q | b^m$ Let $m \geq m_1$

$$\frac{p}{q}(b^m) = b^m \left(\sum_{i=0}^{k-1} a_i b^i + \sum_{i=1}^{m_1} \frac{y_i}{b^i}\right)$$

$$= b^m \left(\sum_{i=0}^{k-1} a_i b^i\right) + \sum_{i=1}^{m_1} \frac{y_i}{b^i}(b^m)$$

$$= \sum_{i=0}^{k-1} a_i b^{i+m} + \sum_{i=1}^{m_1} y_i b^{m-i}$$

Since a_i, y_i, i are all integers, b and m are natural numbers.

Also, because $\forall i \in [0, k-1], i+m \geq 0, b^{i+m}$ is an integer.

Since we let $m \geq m_1$,

 $\forall i \in [i, m_1], m-i \geq 0$. So, b^{m-i} is an integer as well. Therefore, we know that $\sum_{i=0}^{k-1} a_i b^{i+m} + \sum_{i=1}^{m_1} y_i b^{m-i}$ is an integer. This means that $\frac{p \cdot b^m}{q}$ is also an integer. Therefore, we have:

$$b^{m}p = q(\sum_{i=0}^{k-1} a_{i}b^{i+m} + \sum_{i=1}^{m_{1}} y_{i}b^{m-i})$$

$$\implies q|b^{m}p \qquad (\text{Since } \sum_{i=0}^{k-1} a_{i}b^{i+m} + \sum_{i=1}^{m_{1}} y_{i}b^{m-i} \in \mathbb{Z})$$

Since $gcd(p,q) = 1, q \nmid p$,

$$\implies q|b^m$$

Therefore, q must divide b^m .

PART 2. Let $p, q \in \mathbb{N}$.

Assume $\exists m \in \mathbb{N}, \exists n \in \mathbb{Z}, b^m = qn$.

We want to show: $p \neq 0 \land gcd(p,q) = 1 \Longrightarrow \exists k, m_1 \in \mathbb{Z}^+, \exists \ a_{k-1}, \dots, a_0, y_1, \dots, y_{m_1} \in \{0, 1, \dots, b-1\}, \frac{p}{q} = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=1}^{m_1} \frac{y_i}{b^i}$

Assume $p \neq 0 \land gcd(p, q) = 1$. Let us start with the assumption.

$$b^{m} = qn$$

$$pb^{m} = pqn$$

$$\frac{pb^{m}}{q} = pn$$
(multiply both sides by p)
(divide both sides by q)

Because $b^m \in \mathbb{N}$, $q \in \mathbb{N}$, and $b^m = qn$, we know that $n \in \mathbb{N}$.

Then, since $p \in \mathbb{N}$ and $n \in \mathbb{N}$, we know that $pn \in \mathbb{N}$.

Then by the fact that every natural number has a base-b representation, pn has a base b representation: $pn = \sum_{i=0}^{k_0-1} c_i b^i$, where $c_i \in \{0, 1, \dots, b-1\}$. We let the max of i to be $k_0 - 1$. Here, k_0 is a natural number and is always greater than m because we can always just add 0s to the representation to make it a valid base b representation. Let $m_1 = m$ and $k = k_0 - m$. Finally, we have pn:

$$pn = \sum_{i=0}^{k_0-1} c_i b^i \qquad \text{(where } c_i \in \{0, 1, \dots, b-1\})$$

$$\frac{pb^m}{q} = \sum_{i=0}^{k_0-1} c_i b^i \qquad \text{(Since } \frac{pb^m}{q} = pn)$$

$$\frac{p}{q} = \frac{1}{b^m} \sum_{i=0}^{k_0-1} c_i b^i \qquad \text{(divide both sides by } b^m \text{ to get } \frac{p}{q})$$

$$= \sum_{i=0}^{k_0-1} c_i b^{i-m}$$

$$= \sum_{i=0}^{m-1} c_i b^{i-m} + \sum_{i=m}^{k_0-1} c_i b^{i-m} \qquad \text{(Since } k_0 \text{ is always greater than } m)$$

$$= \sum_{i=0}^{m-1} c_{m-(m-i)} b^{-(m-i)} + \sum_{i=m}^{k_0-1} c_i b^{i-m} \text{(by manipulating the bounds and terms)}$$

$$= \sum_{i=0}^{m} c_{m-i} b^{-i} + \sum_{i=0}^{k_0-1-m} c_{m+i} b^i \qquad \text{(by manipulating the bounds and terms)}$$

Then, we have:

$$\frac{p}{q} = \sum_{i=1}^{m} c_{m-i}b^{-i} + \sum_{i=0}^{k_0 - m - 1} c_{m+i}b^{i}$$

where c_{m-i} , $c_{m+i} \in \{0, 1, \dots, b-1\}$, which is the same domain as where a_i and y_i in the "Want to show" statement belong to.

Then, finally, we have:

$$\frac{p}{q} = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=1}^{m_1} y_i b^{-i}$$
 (Since $m = m_1$ and $k_0 - m = k$)

So, we conclude that $\frac{p}{q}$ has no repeating digits.

Question 3

a) i. Translation of statement:

$$\forall \epsilon \in \mathbb{R}^+, n \in \mathcal{O}(n^{1+\epsilon})$$

Expanding the definition of big-oh:

$$\forall \epsilon \in \mathbb{R}^+, \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow n \le c \cdot n^{1+\epsilon}$$

Proof: Let $\epsilon \in \mathbb{R}^+$. Let c = 1. Let $n_0 = 1$. Let $n \in \mathbb{N}$ and assume $n \ge n_0$. We will show $n \le c \cdot n^{1+\epsilon}$ holds:

$$\begin{aligned} \epsilon &> 0 \\ 1 + \epsilon &> 1 \\ n^{1+\epsilon} &> n^1 & \text{(since } n \geq 1) \\ n &\leq 1 \cdot n^{1+\epsilon} \\ n &\leq c \cdot n^{1+\epsilon} & \text{(from } c = 1) \end{aligned}$$

ii. Expanded statement:

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow \log_2 n \le c \cdot n$$

Proof: Let c = 1. Let $n_0 = 1$. Let $n \in \mathbb{N}$. Assume $n \ge n_0$.

We will show $\log_2 n \le c \cdot n$ holds.

Fact 1 states that $\forall n \in \mathbb{Z}^+, n \leq 2^n$, since the n we picked is ≥ 1 , by subbing in the n we picked into fact 1 directly, we have:

$$n \leq 2^n$$
 (fact 1) $\log_2 n \leq \log_2 2^n$ (taking log base 2 of both sides, by fact 2) $\log_2 n \leq n$ (by log arithmetic) $\log_2 n \leq 1 \cdot n$ (from $c = 1$)

iii. Expanded statement:

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 2^n \leq c \cdot n!$$

Let c = 1. Let $n_0 = 4$.

Let $n \in \mathbb{N}$. Assume $n \geq n_0$

Want to show: $2^n \le c \cdot n!$

i.e., Want to show $2^n \le n!$

Proof by induction: Define $P(n): 2^n \le n!$

Base case: n=4

$$2^4 \le 4!$$

$$16 \le 24$$
 (base case holds.)

Inductive Step: Let $k \in \mathbb{N}$. Assume $k \geq 4$ and that P(k) holds. i.e., $2^k \leq k!$ We will show P(k+1):

P(k+1) means: $2^{k+1} \le (k+1)!$

from the induction hypothesis:

$$2^k \le k!$$

$$2 \cdot 2^k \le 2 \cdot k!$$

$$2^{k+1} \le (k+1) \cdot k!$$
 (from $k \ge 4 > 2$)

$$(k+1)k! = (k+1)!$$

Therefore:

$$2^{k+1} \le (k+1)!$$

b) $f(n) \in \mathcal{O}(\log_2 n)$ means:

$$\exists c_1, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow f(n) \le c_1 \cdot \log_2 n$$

 $2^{f(n)} \in \mathcal{O}(n^c)$ means:

$$\exists c_2, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow 2^{f(n)} \le c_2 \cdot n^c$$

Proof: Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume $f(n) \in \mathcal{O}(\log_2 n)$.

Let $c = c_1$. Let $c_2 = 1$. Let $n_1 = n_0$. Let $n \in \mathbb{N}$ and assume $n \ge n_1$. We will show: $2^{f(n)} \le c_2 \cdot n^c$

Using fact 3 and $f(n) \in \mathcal{O}(\log_2 n)$:

$$2^{f(n)} < 2^{c_1 \cdot \log_2 n}$$

$$2^{c_1 \cdot \log_2 n} = (2^{\log_2 n})^{c_1} = n^{c_1}$$

Therefore:

$$2^{f(n)} < n^{c_1}$$

Since $c = c_1$:

$$2^{f(n)} < n^c$$

Since $c_2 = 1$:

$$2^{f(n)} < c_2 \cdot n^c$$

c) Proof: Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume:

$$\exists n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq 1$$

Want to show:

$$\exists c, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow e^{f(n)} - 1 \le c \cdot f(n)$$

Let c=e-1. Let $n_1=n_0$ from the eventually dominated assumption. Let $n\in\mathbb{N}$. Assume $n\geq n_1$ (therefore $n\geq n_0$). We will show $e^{f(n)}-1\leq c\cdot f(n)$

Using the series given, substitute f(n) for x:

$$e^{f(n)} - 1 = f(n) + \frac{f(n)^2}{2!} + \frac{f(n)^3}{3!} + \cdots$$

$$= f(n)(1 + \frac{f(n)}{2!} + \frac{f(n)^2}{3!} + \cdots)$$

$$\leq f(n)(1 + \frac{1}{2!} + \frac{1}{3!} + \cdots)$$
(since $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow f(n) \le 1$ by the assumption)
$$= f(n)(\sum_{k=0}^{\infty} \frac{1}{k!} - 1)$$

$$= f(n)(e - 1)$$
 (from the definition of Euler's number, $e = \sum_{k=0}^{\infty} \frac{1}{k!}$)
$$= f(n)(c)$$

10