МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА» (Самарский университет)

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Рекоменловано редакционно-издательским советом федерального государственного автономного образовательного учреждения образования «Самарский национальный исследовательский университет имени академика С.П. Королева» в качестве методических указаний для студентов Самарского университета, обучающихся по программам высшего образования по специальностям 24.05.01 Проектирование, производство и эксплуатация ракет ракетно-космических комплексов, Проектирование авиационных и ракетных двигателей, 24.05.07 Самолето- и вертолетостроение и направлениям подготовки 13.03.03 Энергетическое машиностроение, 15.03.04 Автоматизация технологических процессов и производств, 23.03.01 Технология транспортных процессов, 24.03.01 Ракетные комплексы и космонавтика, 24.03.04 Авиастроение, 24.03.05 Двигатели летательных аппаратов, 25.03.02 Техническая эксплуатация авиационных электросистем и пилотажно-навигационных комплексов

> Составители: Л.В. Коломиец, Н.Ю. Поникарова

С А М А Р А Издательство Самарского университета 2017

УДК 519.6 (075) ББК 22.193я7

Составители: Л.В. Коломиец, Н.Ю. Поникарова

Рецензент канд. техн. наук, доц. Т.А. Баяндина

Метод наименьших квадратов: метод. указания / сост.: Π .В. Коломиец, Н.Ю. Поникарова. — Самара: Изд-во Самарского университета, 2017. — 32 с.

Методические указания составлены в соответствии с действующей программой по курсу высшей математики для студентов инженерно-технических специальностей Самарского национального исследовательского университета.

Указания содержат краткие теоретические сведения, примеры выполнения расчетных работ и варианты индивидуальных заданий по теме «Метод наименьших квадратов».

Предназначены для подготовки студентов первого курса к выполнению расчетных работ по разделу «Функции нескольких переменных».

УДК 519.6 (075) ББК 22.193я7

СОДЕРЖАНИЕ

1 Общие положения метода наименьших квадратов	4
1.1 Линейная функция $y = ax + b$	7
1.2 Степенная функция $y = \beta \cdot x^a$	11
1.3 Показательная функция $y = \beta \cdot e^{ax}$	12
1.4 Квадратичная функция $y = ax^2 + bx + c$	13
2 Образец решения задания	15
Варианты индивидуальных заданий	25
Список литературы	30

1 Общие положения метода наименьших квадратов

Пусть две величины x и y связаны табличной зависимостью, полученной, например, из опытов.

х	X_1	x_2	 \mathcal{X}_n
У	y_1	y_2	 \mathcal{Y}_n

На плоскости xOy данной таблице соответствует n точек $M_i(x_i,y_i)$, где i=1,2,3,...,n. Точки M_i называют экспериментальными точками (Рисунок 1).

Требуется установить функциональную зависимость y = f(x) между переменными x и y по результатам экспериментальных исследований, приведенных в таблице.

Применение интерполяции в данном случае нецелесообразно, так как значения y_i в узлах x_i получены экспериментально и поэтому являются сомнительными (в ходе эксперимента возникает неустранимая погрешность, обусловленная неточностью измерений). Кроме того, совпадение значений в узлах не означает совпадения характеров поведения исходной и интерполирующей функций. Поэтому необходимо найти такой метод подбора эмпирической формулы, который не только позволяет найти саму формулу, но и оценить погрешность подгонки.

В общем случае искомая функция y = f(x) будет зависеть не только от x, но и от некоторого количества параметров:

$$y = f(x, a, b, ...)$$
.

Постановка задачи

Найти аппроксимирующую функцию

$$y = f(x, a, b, \dots) \tag{1}$$

такую, чтобы в точках $x=x_i$ она принимала значения по возможности близкие к табличным, то есть график искомой функции должен проходить как можно ближе к экспериментальным точкам. Вид функции (1) может быть известен из теоретических соображений или определяться характером расположения экспериментальных точек M_i на плоскости xOy.

Для отыскания коэффициентов a,b,... в функции (1) применяется метод наименьших квадратов, который состоит в следующем. Между искомой функцией и табличными значениями в точках x_i наблюдаются отклонения. Обозначим их $\Delta y_i = f(x_i,a,b,...) - y_i$, где i=1,2,3,...,n. Выбираем значения коэффициентов a,b,... так, чтобы сумма квадратов отклонений принимала минимальное значение:

$$S(a,b,...) = \sum_{i=1}^{n} (\Delta y_i)^2 = \sum_{i=1}^{n} [f(x_i,a,b,...) - y_i]^2 \to \min (2)$$

Сумма S(a,b,...) является функцией нескольких переменных. *Необходимый* признак экстремума функции нескольких переменных состоит в том, что обращаются в нуль частные производные:

$$S'_a = 0, \quad S'_b = 0, \dots$$
 (3)

План решения задачи

- 1) Выбираем функцию y = f(x, a, b, ...).
- 2) Для отыскания коэффициентов a,b,... составляем систему уравнений (3).
- 3) Решая систему уравнений (3), находим значения коэффициентов a,b,\dots
- 4) Подставляя a,b,... в уравнение (1), получаем искомую функцию y=f(x,a,b,...).

5) По достаточному признаку экстремума функции нескольких переменных следует убедиться в постоянстве знака дифференциала второго порядка этой функции: $d^2S>0$ при любых приращениях аргументов da, db,...

Такая проверка делается в теоретической части метода наименьших квадратов и на практике не повторяется.

6) Обычно рассматривают несколько видов функций y=f(x,a,b,...) и выбирают ту функцию, для которой суммарная погрешность $\sum_{i=1}^n \left[f\left(x_i,a,b,...\right) - y_i \right]^2$ окажется наименьшей.

Рассмотрим несколько случаев подбора аппроксимирующей функции y = f(x, a, b, ...).

1.1 Линейная функция

$$y = ax + b. (4)$$

Решение

Составим функцию двух переменных и найдем, при каких значениях a,b эта функция принимает минимальное значение:

$$S(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to \min.$$
 (5)

По необходимому признаку экстремума частные производные функции (5) должны быть равны нулю:

$$\begin{cases} S'_{a}(a,b) = \sum_{i=1}^{n} 2(ax_{i} + b - y_{i}) \cdot x_{i} = 0, \\ S'_{b}(a,b) = \sum_{i=1}^{n} 2(ax_{i} + b - y_{i}) \cdot 1 = 0. \end{cases}$$
(6)

Преобразуем уравнения системы (6) следующим образом:

$$\begin{cases}
\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}\right) \cdot b = \sum_{i=1}^{n} x_{i} \cdot y_{i}, \\
\left(\sum_{i=1}^{n} x_{i}\right) \cdot a + n \cdot b = \sum_{i=1}^{n} y_{i}.
\end{cases}$$
(7)

Таким образом, получается система линейных уравнений с двумя неизвестными a и b. Коэффициенты при неизвестных a и b (соответствующие суммы) находятся из исходной табличной зависимости и являются постоянными для данной выборки. При различных значениях x_i главный определитель этой системы отличен от нуля:

$$\Delta = \begin{vmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{vmatrix} = n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2 \neq 0.$$

Следовательно, система линейных уравнений (7) имеет единственное решение, которое находится по формулам Крамера:

$$a = \frac{\Delta_a}{\Delta} = \frac{n \cdot \sum_{i=1}^n x_i \cdot y_i - \sum_{i=1}^n x_i \cdot \sum_{i=1}^n y_i}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2},$$

$$b = \frac{\Delta_b}{\Delta} = \frac{1}{n} \cdot \sum_{i=1}^n y_i - a \cdot \frac{1}{n} \cdot \sum_{i=1}^n x_i.$$

Подставим найденные значения a и b в уравнение (4), и получим искомую линейную функцию y = ax + b.

Убедимся, что в стационарной точке $M_{\scriptscriptstyle 0}(a,b)$ функция $S\left(a,b\right)$ имеет минимум.

Достаточным условием того, что функция двух переменных принимает минимальное значение, является постоянство знака второго дифференциала этой функции: $d^2S(a,b) > 0$ при любых приращениях аргументов da, db.

Дифференциал второго порядка функции S(a,b) имеет вид:

$$d^{2}S(a,b) = S_{aa}'' \cdot da^{2} + 2S_{ab}'' \cdot da \, db + S_{bb}'' \cdot db^{2} =$$

$$= \left(2\sum_{i=1}^{n} x_{i}^{2}\right) da^{2} + 2\left(2\sum_{i=1}^{n} x_{i}\right) da \, db + (2n) db^{2}.$$

Второй дифференциал является квадратичной формой второго порядка от переменных da и db. Квадратичная форма принимает только положительные значения при $da \neq 0$ и $db \neq 0$, если соответствующая ей матрица положительно определена.

Матрица квадратичной формы дифференциала второго порядка (матрица Гессе) будет иметь вид:

$$M = \begin{pmatrix} S_{aa}'' & S_{ab}'' \\ S_{ab}'' & S_{bb}'' \end{pmatrix} = \begin{pmatrix} 2 \cdot \sum_{i=1}^{n} x_i^2 & 2 \cdot \sum_{i=1}^{n} x_i \\ 2 \cdot \sum_{i=1}^{n} x_i & 2n \end{pmatrix}.$$

Найдем ее главные миноры:

$$H_{1} = S_{aa}'' = 2 \cdot \sum_{i=1}^{n} x_{i}^{2} > 0,$$

$$H_{2} = \begin{vmatrix} S_{aa}'' & S_{ab}'' \\ S_{ab}'' & S_{bb}'' \end{vmatrix} = \begin{vmatrix} 2 \cdot \sum_{i=1}^{n} x_{i}^{2} & 2 \cdot \sum_{i=1}^{n} x_{i} \\ 2 \cdot \sum_{i=1}^{n} x_{i} & 2n \end{vmatrix} =$$

$$= 4n \cdot \sum_{i=1}^{n} x_{i}^{2} - 4 \cdot \left(\sum_{i=1}^{n} x_{i}\right)^{2} = 2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i} - x_{j})^{2} > 0.$$

Так как главные миноры матрицы Гессе положительны, то по Сильвестра критерию матрица положительно квадратичная форма дифференциала $d^2S(a,b)$, соответствующая этой матрице, принимает только положительные значения. Из условия $d^2S(a,b)\!>\!0\,$ следует, что $M_{_0}(a,b)\,$ – точка минимума функции $S\left(a,b
ight)$. Итак, коэффициенты a и b, найденные с помощью метода наименьших квадратов, всегда определяют именно минимум функции S(a,b). Более того, так как функция S(a,b) имеет единственную точку $M_0(a,b)$, минимум функции стационарную является наименьшим значением S(a,b).

Если коэффициенты линейной функции найдены, можно вычислить суммарную погрешность:

$$S(a,b) = \sum_{i=1}^{n} [(ax_i + b) - y_i]^2$$
.

Метод наименьших квадратов для линейной функции широко применяется при обработке данных не только в теории измерений, но и в математической статистике при нахождении статистических оценок параметров и построении уравнения линейной регрессии, в эконометрике при нахождении трендов, а также в других прикладных дисциплинах.

1.2 Степенная функция

$$y = \beta \cdot x^a \,. \tag{8}$$

Решение

Прологарифмируем по основанию $\boldsymbol{\mathcal{C}}$ функцию (8) и получим новое уравнение:

$$ln y = a \cdot ln x + ln \beta.$$
(9)

Обозначим $Y = \ln y$, $X = \ln x$, $b = \ln \beta$.

Тогда равенство (9) примет вид Y = aX + b, где переменные X и Y связаны следующей табличной зависимостью:

$X = \ln x$	$X_1 = \ln x_1$	$X_2 = \ln x_2$	 $X_n = \ln x_n$
$Y = \ln y$	$Y_1 = \ln y_1$	$Y_2 = \ln y_2$	 $Y_n = \ln y_n$

Таким образом, задача $\,2\,$ свелась к задаче $\,1.\,$ Решая эту задачу, находим значения коэффициентов $\,a\,$ и $\,b\,$. Учитывая, что $\,b=\ln\beta\,$, находим $\,\beta=e^b\,$.

Подставим найденные значения a и β в уравнение (8) и получим искомую степенную функцию $y = \beta \cdot x^a$.

Суммарная погрешность равна
$$S(a,b) = \sum_{i=1}^{n} \left[\beta \cdot x_{i}^{a} - y_{i} \right]^{2}$$
.

1.3 Показательная функция

$$y = \beta \cdot e^{ax}. \tag{10}$$

Решение

Прологарифмируем по основанию $\boldsymbol{\mathcal{C}}$ функцию (10) и получим новое уравнение:

$$ln y = ax + ln \beta.$$
(11)

Обозначим $Y = \ln y$, $b = \ln \beta$.

Тогда равенство (11) примет вид Y = ax + b, где переменные x и Y связаны следующей табличной зависимостью:

X	X_1	$\boldsymbol{\mathcal{X}}_2$	 \mathcal{X}_n
$Y = \ln y$	$Y_1 = \ln y_1$	$Y_2 = \ln y_2$	 $Y_n = \ln y_n$

Таким образом, задача 3 свелась к задаче 1. Решая эту задачу, находим значения коэффициентов a и b.

Учитывая, что $b = \ln \beta$, находим $\beta = e^b$.

Подставим значения коэффициентов a и β в уравнение (10) и получим искомую показательную функцию $y = \beta \cdot e^{ax}$.

Суммарная погрешность равна
$$S(a,b) = \sum_{i=1}^{n} \left[\beta \cdot e^{ax_i} - y_i \right]^2$$
.

1.4 Квадратичная функция

$$y = ax^2 + bx + c. (12)$$

Решение

Составим функцию трех переменных и найдем, при каких значениях a,b,c эта функция принимает минимальное значение:

$$S(a,b,c) = \sum_{i=1}^{n} (ax_i^2 + bx_i + c - y_i)^2 \to \min.$$
 (13)

Функция S(a,b,c) будет принимать минимальное значение, если частные производные $S_a'(a,b,c)$, $S_b'(a,b,c)$ и $S_c'(a,b,c)$ обращаются в нуль:

$$\begin{cases} S'_{a}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot x_{i}^{2} = 0, \\ S'_{b}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot x_{i} = 0, \\ S'_{c}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot 1 = 0. \end{cases}$$
(14)

Преобразуем уравнения системы (14) следующим образом:

$$\begin{cases} \left(\sum_{i=1}^{n} x_{i}^{4}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}^{3}\right) \cdot b + \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot c = \sum_{i=1}^{n} x_{i}^{2} \cdot y_{i}, \\ \left(\sum_{i=1}^{n} x_{i}^{3}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot b + \left(\sum_{i=1}^{n} x_{i}\right) \cdot c = \sum_{i=1}^{n} x_{i} \cdot y_{i}, \\ \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}\right) \cdot b + n \cdot c = \sum_{i=1}^{n} y_{i}. \end{cases}$$

Получили систему трех линейных уравнений с тремя неизвестными a,b,c. Аналогично случаю двух переменных, эта система имеет единственное решение. Кроме того, можно доказать, что коэффициенты, найденные с помощью метода наименьших квадратов, всегда определяют именно минимум функции S(a,b,c).

Решая систему уравнений, найдем значения коэффициентов a, b, c. Подставим найденные значения a, b, c в уравнение (9), и получим искомую квадратичную функцию $y = ax^2 + bx + c$.

Суммарная погрешность равна

$$S(a,b,c) = \sum_{i=1}^{n} (ax_i^2 + bx_i + c - y_i)^2.$$

2 Образец решения задания

Дана таблица значений некоторой функциональной зависимости, полученной из n=6 опытов.

\mathcal{X}_{i}	1	2	3	4	5	6
y_i	1,0	1,5	3,0	4,5	7,0	8,5

Задание:

- 1. Методом наименьших квадратов по данной табличной зависимости найти аппроксимирующую функцию в виде:
 - 1.1 линейной функции y = ax + b;
 - 1.2 степенной функции $y = \beta \cdot x^a$;
 - 1.3 показательной функции $y = \beta \cdot e^{ax}$;
 - 1.4 квадратичной функции $y = ax^2 + bx + c$.

Промежуточные вычисления вести с точностью до 0,0001.

Значения параметров a, b, c округлить до 0,01.

- 2. Построить в плоскости xOy графики полученных функций и нанести экспериментальные точки.
 - 3. Сравнить полученные результаты.

Решение

1.1 Найдем зависимость y от x в виде линейной функции y = ax + b .

Выберем значения коэффициентов a и b так, чтобы сумма квадратов отклонений $S(a,b) = \sum_{i=1}^n (\Delta y_i)^2 = \sum_{i=1}^n (ax_i + b - y_i)^2$ была минимальной.

Функция S(a,b) будет принимать минимальное значение, если обращаются в нуль частные производные S_a' и S_b' :

$$\begin{cases} S'_a(a,b) = \sum_{i=1}^n 2(ax_i + b - y_i) \cdot x_i = 0, \\ S'_b(a,b) = \sum_{i=1}^n 2(ax_i + b - y_i) \cdot 1 = 0. \end{cases}$$

Преобразуем уравнения системы:

$$\begin{cases}
\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}\right) \cdot b = \sum_{i=1}^{n} x_{i} \cdot y_{i}, \\
\left(\sum_{i=1}^{n} x_{i}\right) \cdot a + n \cdot b = \sum_{i=1}^{n} y_{i},
\end{cases} \tag{14}$$

где
$$\sum_{i=1}^{6} x_i = 21$$
, $\sum_{i=1}^{6} y_i = 25,5$, $\sum_{i=1}^{6} x_i^2 = 91$, $\sum_{i=1}^{6} x_i \cdot y_i = 117$.

Тогда система уравнений (14) примет вид:

$$\begin{cases} 91a + 21b = 117, \\ 21a + 6b = 25, 5. \end{cases}$$

Решим систему уравнений по формулам Крамера:

$$a = \frac{\Delta_1}{\Delta}, \quad b = \frac{\Delta_2}{\Delta}$$

где

$$\Delta = \begin{vmatrix} 91 & 21 \\ 21 & 6 \end{vmatrix} = 105, \quad \Delta_1 = \begin{vmatrix} 117 & 21 \\ 25, 5 & 6 \end{vmatrix} = 166, 5,$$

$$\Delta_2 = \begin{vmatrix} 91 & 117 \\ 21 & 25.5 \end{vmatrix} = -136,5.$$

Тогда
$$a = \frac{\Delta_1}{\Lambda} = 1,59$$
 и $b = \frac{\Delta_2}{\Lambda} = -1,30$.

Следовательно, искомая линейная функция будет иметь вид:

$$y = 1,59x - 1,30$$
.

1.2 Найдем зависимость y от x в виде степенной функции $y = \beta \cdot x^a$.

Прологарифмируем равенство $y=\beta\cdot x^a$ по основанию ${\cal C}$ и получим $\ln\,y=a\cdot \ln\,x+\ln\,\beta$.

Обозначим $Y = \ln y$, $X = \ln x$, $b = \ln \beta$.

Тогда получим линейную функцию Y = aX + b, где переменные X и Y связаны следующей табличной зависимостью:

$X = \ln x$	0	0,6931	1,0986	1,3863	1,6094	1,7918
$Y = \ln y$	0	0,4055	1,0986	1,5041	1,9459	2,1401

Таким образом, данная задача свелась к задаче 1.1.

Система (14) имеет вид:

$$\begin{cases}
\left(\sum_{i=1}^{n} \ln^{2} x_{i}\right) \cdot a + \left(\sum_{i=1}^{n} \ln x_{i}\right) \cdot b = \sum_{i=1}^{n} \ln x_{i} \cdot \ln y_{i}, \\
\left(\sum_{i=1}^{n} \ln x_{i}\right) \cdot a + n \cdot b = \sum_{i=1}^{n} \ln y_{i},
\end{cases} (15)$$

Найдем коэффициенты системы (15):

$$\sum_{i=1}^{6} \ln x_i = 6,5792, \qquad \sum_{i=1}^{6} \ln y_i = 7,0942,$$
$$\sum_{i=1}^{6} \ln^2 x_i = 9,4099, \qquad \sum_{i=1}^{6} \ln x_i \cdot \ln y_i = 10,5395.$$

Система уравнений (15) будет иметь вид:

$$\begin{cases} 9,4099 \ a + 6,5792 \ b = 10,5395, \\ 6,5792 \ a + 6 \ b = 7,0942. \end{cases}$$

Определители системы:

$$\Delta = \begin{vmatrix} 9,4099 & 6,5792 \\ 6,5792 & 6 \end{vmatrix} = 13,1735, \quad \Delta_1 = \begin{vmatrix} 10,5395 & 6,5792 \\ 7,0942 & 6 \end{vmatrix} = 16,5628,$$

$$\Delta_2 = \begin{vmatrix} 9,4099 & 10,5395 \\ 6,5792 & 7,0942 \end{vmatrix} = -2,5858.$$

Тогда
$$a = \frac{\Delta_1}{\Delta} = 1,26$$
 и $b = \frac{\Delta_2}{\Delta} = -0,20$.

Учитывая, что $b=\ln \beta$, находим $\beta=e^b=e^{-0.20}=0.82$, и получаем искомую степенную функцию $y=0.82\cdot x^{1.26}$.

1.3 Найдем зависимость y от x в виде показательной функции $y = \beta \cdot e^{ax}$.

Прологарифмируем равенство $y = \beta \cdot e^{ax}$ по основанию e и получим $\ln y = ax + \ln \beta$.

Обозначим $Y = \ln y$, $b = \ln \beta$.

Тогда получим линейную функцию Y = ax + b, где переменные x и Y связаны следующей табличной зависимостью:

X	1	2	3	4	5	6
$Y = \ln y$	0	0,4055	1,0986	1,5041	1,9459	2,1401

Таким образом, задача свелась к задаче 1.1.

Система (14) имеет вид:

$$\begin{cases}
\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}\right) \cdot b = \sum_{i=1}^{n} x_{i} \cdot \ln y_{i}, \\
\left(\sum_{i=1}^{n} x_{i}\right) \cdot a + n \cdot b = \sum_{i=1}^{n} \ln y_{i},
\end{cases} \tag{15}$$

Коэффициенты системы (15):

$$\sum_{i=1}^{6} x_i = 21, \quad \sum_{i=1}^{6} \ln y_i = 7,0942$$
$$\sum_{i=1}^{6} x_i^2 = 91, \quad \sum_{i=1}^{6} x_i \cdot \ln y_i = 32,6933.$$

Система уравнений (15) будет иметь вид:

$$\begin{cases} 91 \, a + 21 \, b = 32,6933, \\ 21 \, a + 6 \, b = 7,0942. \end{cases}$$

Определители системы:

$$\Delta = \begin{vmatrix} 91 & 21 \\ 21 & 6 \end{vmatrix} = 105, \qquad \Delta_1 = \begin{vmatrix} 32,6933 & 21 \\ 7,0942 & 6 \end{vmatrix} = 47,1816,$$

$$\Delta_2 = \begin{vmatrix} 91 & 32,6933 \\ 21 & 7,0942 \end{vmatrix} = -40,9871.$$

Тогда
$$a = \frac{\Delta_1}{\Delta} = 0,45$$
 и $b = \frac{\Delta_2}{\Delta} = -0,39$.

Учитывая, что $b=\ln \beta$, находим $\beta=e^b=e^{-0.39}=0.68$. Получаем искомую показательную функцию $y=0.68\cdot e^{0.45x}$.

1.4 Найдем зависимость y от x в виде квадратичной функции $y = ax^2 + bx + c$.

Выберем коэффициенты a, b и c так, чтобы сумма квадратов отклонений $S(a,b,c)=\sum_{i=1}^n (ax_i^2+bx_i+c-y_i)^2$ была минимальной.

Функция S(a,b,c) будет принимать минимальное значение, если частные производные $S_a'(a,b,c)$, $S_b'(a,b,c)$, $S_c'(a,b,c)$ обращаются в нуль:

$$\begin{cases} S'_{a}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot x_{i}^{2} = 0, \\ S'_{b}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot x_{i} = 0, \\ S'_{c}(a,b,c) = \sum_{i=1}^{n} 2(ax_{i}^{2} + bx_{i} + c - y_{i}) \cdot 1 = 0. \end{cases}$$

Преобразуем уравнения системы следующим образом:

$$\begin{cases} \left(\sum_{i=1}^{n} x_{i}^{4}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}^{3}\right) \cdot b + \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot c = \sum_{i=1}^{n} x_{i}^{2} \cdot y_{i}, \\ \left(\sum_{i=1}^{n} x_{i}^{3}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot b + \left(\sum_{i=1}^{n} x_{i}\right) \cdot c = \sum_{i=1}^{n} x_{i} \cdot y_{i}, \\ \left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot a + \left(\sum_{i=1}^{n} x_{i}\right) \cdot b + n \cdot c = \sum_{i=1}^{n} y_{i}, \end{cases}$$
 где
$$\sum_{i=1}^{6} x_{i}^{4} = 2275, \qquad \sum_{i=1}^{6} x_{i}^{3} = 441, \qquad \sum_{i=1}^{6} x_{i}^{2} = 91, \\ \sum_{i=1}^{6} x_{i} = 21, \qquad \sum_{i=1}^{6} x_{i}^{2} \cdot y_{i} = 587, \end{cases}$$

$$\sum_{i=1}^{6} x_{i} \cdot y_{i} = 117, \qquad \sum_{i=1}^{6} y_{i} = 25, 5.$$

Тогда система уравнений примет вид:

$$\begin{cases} 2275 \, a + 441 b + 91 c = 587, \\ 441 \, a + 91 b + 21 c = 117, \\ 91 \, a + 21 b + 6 \, c = 25, 5. \end{cases}$$

Решим систему уравнений по формулам Крамера:

$$a = \frac{\Delta_1}{\Delta}$$
, $b = \frac{\Delta_2}{\Delta}$, $c = \frac{\Delta_3}{\Delta}$,

где $\Delta = 3920$, $\Delta_1 = 630$, $\Delta_2 = 1806$, $\Delta_3 = 784$.

Тогда a = 0.16, b = 0.46, c = 0.20.

Следовательно, искомая квадратичная функция будет иметь вид: $y = 0.16x^2 + 0.46x + 0.20.$

2. Построим в плоскости xOy графики полученных функций и нанесем экспериментальные точки (Рисунок 2).

Для этого составим таблицу значений полученных функций

x	1	2	3	4	5	6
У	1,0	1,5	3,0	4,5	7,0	8,5
y = 1,59 x - 1,30	0,29	1,88	3,47	5,06	6,65	8,24
$y = 0.82 \cdot x^{1.26}$	0,82	1,96	3,27	4,70	6,23	7,84
$y = 0,68 \cdot e^{0,45x}$	1,07	1,67	2,62	4,11	6,45	10,12
$y = 0.16x^2 + 0.46x + 0.20$	0,82	1,76	3,02	4,60	6,50	8,72

Рисунок 2 - Графики аппроксимирующих функций и экспериментальные точки

3. Сравним полученные результаты. Для этого найдем соответствующие суммарные погрешности

$$S(a,b) = \sum_{i=1}^{6} (\Delta y_i)^2.$$

$$S_1(a,b) = (1,0-0,29)^2 + (1,5-1,88)^2 + \dots = 1,36,$$

$$S_2(a,b) = (1,0-0,82)^2 + (1,5-1,96)^2 + \dots = 1,38,$$

$$S_3(a,b) = (1,0-1,07)^2 + (1,5-1,67)^2 + \dots = 3,24,$$

$$S_4(a,b) = (1,0-0,82)^2 + (1,5-1,76)^2 + \dots = 0,41.$$

Вывод:

В данной задаче лучшей аппроксимирующей функцией является квадратичная функция $y = 0.16x^2 + 0.46x + 0.20$.

Варианты индивидуальных заданий

Вариант 1

-						
х	2	3	4	5	6	7
у	100	190	270	400	500	690
Вари	ант 2					
х	10	20	30	40	50	60
у	1,06	1,33	1,52	1,68	1,81	1,91
Вари	ант 3					
х	3	5	7	9	11	13
у	26	76	150	240	360	500
Вари	ант 4					
х	2	6	10	14	18	22
у	3,1	6,7	9,5	11,9	14,0	15,5
Вари	ант 5					
х	1	3	5	7	9	11
у	2,0	10,1	22,6	37,1	54,5	73,2
Вари	ант 6					
х	1	4	7	10	13	16
у	3,0	7,6	11,2	13,8	17,1	19,5
Вари	ант 7					
х	3	5	7	9	11	13
у	3,5	4,4	5,7	6,1	6,5	7,3

Вариант 8	3
-----------	---

-						
Х	2	5	8	11	14	17
у	2,1	1,3	1,0	0,9	0,8	0,72
Вариа	ант 9					
х	1	5	9	13	17	21
у	2,0	3,4	4,2	4,6	5,2	5,4
Вариа	ант 10					
X	3	4	5	6	7	8
у	13	31	64	105	170	252
Вариа	ант 11					
х	2	4	6	8	10	12
у	2,4	2,9	3,0	3,5	3,6	3,7
Вариа	ант 12					
х	10	14	18	22	26	30
у	4,2	4,5	4,8	5,1	5,2	5,4
Вариант	13					
х	1	16	13	46	61	76
у	0,5	4,0	6,9	8,8	10,9	12,1
Вариант	14					
х	5	15	25	35	45	55
у	2,2	2,4	2,6	2,7	2,8	2,9
	•					

Вари	ант 15					
X	1	2	3	4	5	6
у	2,0	0,68	0,44	0,24	0,12	0,14
Вари	ант 16					
X	2	3	4	5	6	7
y	2,0	4,3	8,1	12,1	18,1	36,2
Вари	ант 17					
х	2	5	8	11	14	17
у	4,8	8,8	12,1	15,0	17,4	19,7
Вари	ант 18					
х	5	7	9	11	13	15
у	5,6	9,2	13,6	18,3	23,5	29,1
Вари	ант 19					
X	25	40	55	70	85	100
y	2,4	3,2	3,8	4,3	4,7	5,1
Вари	ант 20					
X	2	3	4	5	6	7
y	2,8	2,4	2,0	1,5	1,3	1,2
Вари	ант 21					
X	21	32	43	54	65	76

7,1

7,6

8,1

8,5

5,4

y

6,3

Вариант 2	22
-----------	----

X	2	5	8	11	14	17		
у	1,6	24,9	102,8	266,8	549,0	982,0		
Вариа	ант 23							
X	100	150	200	250	300	350		
у	9,6	10,4	11,2	12,1	12,7	13,2		
Вариа	ант 24							
х	220	320	420	520	620	720		
У	5,2	5,2	5,4	5,6	5,8	6,1		
Вариа	Вариант 25							
х	10	35	60	85	110	135		
У	11,2	28,8	43,2	56,2	67,8	79,2		
Вариа	Вариант 26							
х	10	15	20	25	30	35		
У	10,8	18,4	27,1	36,6	46,6	57,2		
Вариа	Вариант 27							
х	2	4	6	8	10	12		
У	1,08	0,36	0,21	0,12	0,09	0,04		
Вариа	Вариант 28							
х	10	15	20	25	30	35		
У	4,30	3,30	2,68	2,25	1,90	1,70		
		•						

Вариант 29

х	10	20	30	40	50	60
у	1,08	1,31	1,53	1,69	1,80	1,92

Вариант 30

X	3	5	7	9	11	13
у	27	75	152	241	362	498

Список литературы

- 1. *Пискунов*, *H.С.* Дифференциальное и интегральное исчисления для втузов: учеб. пособие. В 2 т. / *H.С. Пискунов*. М.: Интеграл Пресс, 2001–2004.-584 с.
- 2. Беклемишев, Д.В. Курс аналитической геометрии и линейной алгебры: учебник для вузов / Д.В.Беклемишев. М.: ФИЗМАТЛИТ, 2009.-309 с.

Учебное издание

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Методические указания

Составители: *Коломиец Людмила Вадимовна*, Поникарова Наталья Юрьевна

Редактор А.В. Ярославцева Компьютерная вёрстка А.В. Ярославцевой

Подписано в печать 25.12.2017. Формат $60 \times 84~1/16$. Бумага офсетная. Печ. л. 2,0. Тираж 25 экз. 3аказ . Арт. 68/2017.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА» (Самарский университет) 443086 Самара, Московское шоссе, 34.

Изд-во Самарского университета. 443086 Самара, Московское шоссе, 34.