2023-24 学年泛函分析 期末考试 (回忆版)

2023.12.26

-. (10 分)($p83\ 1.6.9$)

设 $\{e_n\}_{n=1}^{\infty}, \{f_n\}_{n=1}^{\infty}$ 是 Hilbert 空间 $\mathscr X$ 中的两个正交规范集, 满足条件

$$\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1.$$

求证: $\{e_n\}$ 和 $\{f_n\}$ 两者中一个完备蕴含另一个完备.

证明. 不妨设 $\{e_n\}_{n\in\mathbb{N}}$ 是完备的,若 $\{f_n\}_{n\in\mathbb{N}}$ 不完备,故 $\exists x \in \mathcal{X}, x \neq \theta$,使得 $\forall i \in \mathbb{N}, (x, f_i) = 0$. 又由书上定理知 $\{e_n\}_{n\in\mathbb{N}}$ 完备,从而对于 x 有 Parseval 等式成立,即有

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2 = \sum_{n=1}^{\infty} |(x, e_n - f_n)|^2.$$

由此以及 Cauchy-Schwarz 不等式知

$$||x||^2 \le \sum_{n=1}^{\infty} ||x||^2 ||e_n - f_n||^2 < ||x||^2,$$

矛盾. 故 $\{f_n\}_{n\in\mathbb{N}}$ 完备.

(10 分)(p47 1.4.7)

设 \mathscr{X} 是 B^* 空间. 求证: \mathscr{X} 是 B 空间, 必须且仅须对 $\forall \{x_n\}_{n=1}^{\infty} \subset \mathscr{X}, \sum_{n=1}^{\infty} \|x_n\| < \infty \iff \sum_{n=1}^{\infty} x_n$ 收敛.

证明. 必要性. 对于任意 $\{x_n\}_{n=1}^{\infty} \subset \mathcal{X}$,考虑对于 $\forall n \in \mathbb{N}$,令 $S_n := \sum_{i=1}^n x_i$,下证 $\{S_n\}_{n \in \mathbb{N}}$ 是 \mathcal{X} 中的基本列.

对 $\forall m \in \mathbb{N}, \forall p \in \mathbb{N}$, 由范数的三角不等式, 有

$$||S_m - S_{m+p}|| = \left|\left|\sum_{i=m}^{m+p} x_i\right|\right| \le \sum_{i=m}^{m+p} ||x_i||.$$

又 $\sum_{i=1}^{\infty} ||x_i|| < \infty$,知 $\sum_{i=m}^{\infty} ||x_i|| \to 0, m \to \infty$,故

$$||S_m - S_{m+p}|| = ||\sum_{i=m}^{m+p} x_i|| \le \sum_{i=m}^{m+p} ||x_i|| \le \sum_{i=m}^{\infty} ||x_i|| \to 0, m \to \infty,$$

即 $\{S_n\}_{n\in\mathbb{N}}$ 为 \mathscr{X} 中的基本列. 又 \mathscr{X} 为 B 空间, 故 $\sum_{n=1}^{\infty}x_n$ 收敛.

充分性. 设 $\{x_n\}$ 是 $\mathscr X$ 中的基本列,则对 $\forall k \in \mathbb{N}, \exists N_k \in \mathbb{N}$,使得对 $\forall n, m > N_k$ 有

$$||x_n - x_m|| < \frac{1}{2^k}.$$

故可取 $\{x_n\}_{n\in\mathbb{N}}$ 的子列 $\{x_{n_k}\}_{k\in\mathbb{N}}$ 使得对 $\forall k\in\mathbb{N}$,

$$||x_{n_k} - x_{n_{k+1}}|| < \frac{1}{2^k}.$$

因此
$$\sum_{k=1}^{\infty} ||x_{n_k} - x_{n_{k+1}}|| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty.$$

由条件知, $\sum_{k=1}^{\infty} (x_{n_k} - x_{n_{k+1}})$ 收敛, 故 $\{x_{n_k}\}_{k \in \mathbb{N}}$ 收敛.

记 $x_0 := \lim_{k \to \infty} x_{n_k}$, 因 $\{x_n\}_{n \in \mathbb{N}}$ 是 \mathscr{X} 中的基本列, 故对 $\forall \varepsilon \in (0, \infty), \exists N \in \mathbb{N}$, 使得对 $\forall n, m > N$ 有

$$||x_n - x_m|| < \frac{\varepsilon}{2}. \quad (*)$$

又对上述 ε , $\exists k_0 \in \mathbb{N}$, 使得 $n_{k_0} > N$, 使得

$$||x_{n_{k_0}} - x_0|| < \frac{\varepsilon}{2}.$$

由此以及 (*) 式知, 对 $\forall n > N$, 有

$$||x_n - x_0|| \le ||x_n - x_{n_{k_0}}|| + ||x_{n_{k_0}} - x_0|| < \varepsilon.$$

故 $\lim_{n\to\infty} x_n = x_0$. 因此 \mathscr{X} 完备.

三. (10 分)(p11 1.1.6)

设 M 是 (\mathbb{R}^n, ρ) 中的有界闭集, 映射 $T: M \to M$ 满足: $\rho(Tx, Ty) < \rho(x, y) (\forall x, y \in M, x \neq y)$. 求证: T 在 M 中存在唯一的不动点.

证明. 对 $\forall x \in M, f(x) := \rho(x, Tx)$. 由 \mathbb{R}^n 中的三角不等式和题设知 f 在 M 上连续. 因 M 是 \mathbb{R}^n 中的有界闭集, 故 M 为紧集. 于是存在 $x_0 \in M$ s.t.

$$\rho(x_0, Tx_0) = f(x_0) = \min_{x \in M} f(x) = \min_{x \in M} \rho(x, Tx).$$

若 $f(x_0) = 0$, 则 x_0 为不动点. 若 $\rho(x_0, Tx_0) > 0$, 则由题设知

$$\rho(Tx_0, T^2x_0) < \rho(x_0, Tx_0) = \min_{x \in M} \rho(x, Tx).$$

这与 $\rho(x_0, Tx_0)$ 是最小值矛盾! 故 x_0 为 T 在 M 上不动点.

如果 $x_1 \neq x_0$ 均为 f 在 M 上不动点. 则 $\rho(x_0, x_1) = \rho(Tx_0, Tx_1) < \rho(x_0, x_1)$,矛盾! 故 x_0 为 T 在 M 上的唯一不动点.

四. (15 分)(p121 2.3.11)

设 \mathcal{X} , \mathcal{Y} 是 B 空间, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是满射的. 求证: 如果在 \mathcal{Y} 中 $y_n \to y_0$, 则 $\exists C > 0$ 与 $x_n \to x_0$, 使得 $Ax_n = y_n$, 且 $\|x_n\| \leqslant C\|y_n\|$.

证明. 由于 A 是满射知 $\exists x_0 \in \mathscr{X}$, 使得 $Ax_0 = y_0$.

又由于开映射定理, $\exists \delta_0 \in (0, \infty)$ 使得

$$B(y_0, \delta_0) \subset A(B(x_0, 1)).$$

对 $\forall n \in \mathbb{N}$, 若 $y_n = y_0$, 则令 $x_n := x_0$.

若 $y_n \neq y_0$, 则 $||y_n - y_0|| > 0$, 从而由范数的齐次性和 A 的线性性知,

$$B(y_0, 2||y_n - y_0||) \subset A\left(B\left(x_0, \frac{2||y_n - y_0||}{\delta_0}\right)\right).$$

由于 $y_n \in B(y_0, 2 ||y_n - y_0||)$, 故 $\exists x_n \in \mathcal{X}$, 使得

$$y_n = Ax_n, \ \exists \ \|x_n - x_0\| < \frac{2\|y_n - y_0\|}{\delta_0}.$$

又 $y_n = y_0$ 时,

$$||x_n - x_0|| = 0 = \frac{2||y_n - y_0||}{\delta_0}.$$

从而对 $\forall n \in \mathbb{N}$ 有

$$||x_n - x_0|| \le \frac{2}{\delta_0} ||y_n - y_0||.$$

若 $y_0 = \theta$, 则 $x_0 = \theta$, 则上式即为

$$||x_n|| \leqslant \frac{2}{\delta_0} ||y_n||, \forall n \in \mathbb{N},$$

从而 $x_n \to \theta, n \to \infty$, 即 $\{x_n\}_{n \in \mathbb{N}}, x_0 := \theta$ 满足题目要求.

若 $y_0 \neq \theta$, 则 $x_0 \neq \theta$. 由

$$||x_n - x_0|| \leqslant \frac{2}{\delta_0} ||y_n - y_0||, \forall n \in \mathbb{N}$$

知 $x_n \to x_0, n \to \infty$. 不妨设 $y_n \neq \theta, \forall n \in \mathbb{N}, \mathbb{Z}$

$$\frac{\|x_n\|}{\|y_n\|} \to \frac{\|x_0\|}{\|y_0\|}, n \to \infty.$$

从而 $\{\|x_n\|/\|y_n\|\}_{n\in\mathbb{N}}$ 为 $(0,\infty)$ 中的有界序列,此即 $\exists C \in (0,\infty)$ 使得 $\forall n \in \mathbb{N}, \frac{\|x_n\|}{\|y_n\|} \leqslant C \iff \|x_n\| \leqslant C\|y_n\|$. 故此时 $\{x_n\}_{n\in\mathbb{N}}, x_0$ 即满足题目要求.

五. (10 分)(p144 2.4.10)

设 \mathscr{X} 是 B^* 空间, $E \subset \mathscr{X}$ 是非空的均衡闭凸集, $\forall x_0 \in \mathscr{X} \setminus E$. 求证: $\exists f \in \mathscr{X}^*$ 及 $\alpha > 0$, 使得

$$|f(x)| < \alpha < |f(x_0)| (\forall x \in E).$$

证明. 首先将 \mathscr{X} 看成实 B^* 空间, 因 E 为非空闭凸集, 故由 Ascoli 定理知 $\forall x_0 \in \mathscr{X} \setminus E$, 存在非零 实值连续线性泛函 g 以及 $\beta \in \mathbb{R}$, 使得

$$g(x) < \beta < g(x_0), \forall x \in E.$$

故

$$\sup_{x \in E} g(x) \leqslant \beta < g(x_0).$$

现令 $f(x) := g(x) + ig(-ix), \forall x \in \mathcal{X}.$ 则 $f \in \mathcal{X}^*$.

事实上, 由于 g 的实线性性易知 f 也为实线性的, 且

$$f(ix) = g(ix) + ig(x) = i[g(x) + ig(-ix)] = if(x), \forall x \in \mathcal{X},$$

故 f 也是复线性的, 从而 $f \in \mathcal{X}^*$. 现设

$$f(x) = e^{i\theta} |f(x)|, \theta := \arg f(x),$$

则

$$|f(x)| = e^{-i\theta} f(x) = f(e^{-i\theta}x) = g(e^{-i\theta}x).$$

又由于 E 均衡, $\forall x \in E$, $e^{-i\theta}x \in E$, 由此知

$$|f(x)| = g(e^{-i\theta}x) \leqslant \sup_{x \in E} g(x).$$

对 $x \in E$ 取上确界有

$$\sup_{x \in E} |f(x)| \leqslant \sup_{x \in E} g(x) < g(x_0) \leqslant |g(x_0)| \leqslant |f(x_0)|.$$

取 $\alpha \in (\sup_{x \in E} |f(x)|, |f(x_0)|)$,则有

$$|f(x)| \le \sup_{x \in E} |f(x)| < \alpha < |f(x_0)|, \forall x \in E.$$

六. (15 分)(p177 2.5.8)

在 12 中定义算子

$$T:(x_1,x_2,\cdots,x_n,\cdots)\mapsto (x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n},\cdots),$$

求证: $T \in \mathcal{L}(l^2)$ 并求 T^* .

证明. 对 $\forall x := \{x_k\}_{k \in \mathbb{N}} \in l^2$, 有

$$||Tx|| = \left(\sum_{k \in \mathbb{N}} \left| \frac{x_k}{k} \right|^2 \right)^{\frac{1}{2}} = \left(\sum_{k \in \mathbb{N}} \frac{1}{k^2} |x_k|^2 \right)^{\frac{1}{2}} \leqslant \left(\sum_{k \in \mathbb{N}} |x_k|^2 \right)^{\frac{1}{2}} = ||x||.$$

从而 $T \in \mathcal{L}(l^2)$, 且 $||T|| \leq 1$.

下求 T^* . 事实上, 由 Riesz 表示定理知 $(l^2)^* = l^2$, 从而 $T^* \in \mathcal{L}(l^2)$. 由 T^* 的定义知

$$(x, Ty) = \sum_{k \in \mathbb{N}} x_k \frac{\overline{y_k}}{k} = \sum_{k \in \mathbb{N}} \frac{x_k}{k} \overline{y_k}.$$

又

$$(T^*x, y) = \sum_{k \in \mathbb{N}} (T^*x)_k \overline{y_k}.$$

由 y 的任意性知,

$$(T^*x)_k = \frac{x_k}{k}, \forall k \in \mathbb{N}.$$

从而 $T: l^2 \to l^2, (x_1, x_2, \cdots, x_n, \cdots) \mapsto (x_1, \frac{x_2}{2}, \cdots, \frac{x_n}{n}, \cdots),$ 此即

$$T^* = T$$
.

七. (15 分)(p179 2.5.22)

设 \mathscr{X} 是自反的 B 空间, M 是 \mathscr{X} 中的有界闭凸集, $\forall f \in \mathscr{X}^*$, 求证: f 在 M 上达到最大值和最小值.

证明. 本题一个自然的假设是 $\mathscr X$ 是实的 B 空间, 从而 f 是实线性连续泛函.

令 $b := \sup_{x \in M} f(x)$. 则对 $\forall n \in \mathbb{N}, \exists x_n \in M$ 使得

$$b - \frac{1}{n} < f(x_n) \leqslant b.$$

由 M 有界以及 Eberlein-Smulian 定理知 M 是弱列紧的 (细节见习题 2.5.20), 故 $\{x_n\}_{n\in\mathbb{N}}\subset M$ 有弱收敛子列 $\{x_{n_k}\}_{k\in\mathbb{N}}$, 设 $x_{n_k} \rightharpoonup x_0, k \to \infty$.

下证 $x_0 \in M$. 反证法, 设 $x_0 \notin M$, M 为其上闭凸子集, 由 Ascoli 定理知 $\exists g \in \mathscr{X}^* \setminus \{\theta\}$ 以及 $\alpha \in \mathbb{R}$, 使得 $g(x) < \alpha < g(x_0), \forall x \in M$. 因此 $g(x_{n_k}) < \alpha < g(x_0)$, 故 $g(x_{n_k})$ 不收敛于 $g(x_0)$, 这与 $x_{n_k} \rightharpoonup x_0$ 矛盾! 从而 $x_0 \in M$.

故对 $\forall f \in \mathcal{X}^*$, 有 $f(x_{n_k}) \to f(x_0)$, 从而知,

$$f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = \sup_{x \in M} f(x).$$

同理得 $\exists x_1 \in M$, 使得 $f(x_1) = \inf_{x \in M} f(x)$.

八. (5分)

设 $X \in B$ 空间, $T: \mathcal{X} \to \mathcal{X}^*$ 是线性算子, 满足

$$\langle Tx, y \rangle = \langle Ty, x \rangle, \forall x, y \in \mathscr{X}.$$

证明 T 是有界算子.

九. (10分)

设 H 是 Hilbert 空间.

(i) 设 $\{x_n\} \subset H$ 满足对任意 $x \in H$ 有 $(x, x_n) \to 0, n \to \infty$, 证明

$$\sup\{\|x_n\|:n\in\mathbb{N}\}<\infty.$$

(ii) 设 $\{x_n\} \subset H$ 弱收敛到 $x \in H$, 证明存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$, 使得

$$\left\| \frac{\sum_{i=1}^k x_{n_i}}{k} - x \right\| \to 0, k \to \infty.$$