ÁLGEBRA (Ciencias) – año 2020 PRÁCTICA 1

Lógica

- 1. Determinar si los siguientes enunciados son proposiciones. Justificar
 - a) Siete es mayor que doce.
 - b) Si 6 > 4 entonces 6 > 2
 - c) Qué número es?
 - d) De $2 + 3 \ge 5 + 4$ se deduce 3 > 4.
 - e) Cualquier rectángulo tiene cuatro lados.
 - $f) \ x > 2.$
- 2. Escribir las siguientes proposiciones en lenguaje simbólico. Indicar su valor de verdad.
 - a) 8 es par o 6 es impar
 - b) 8 es par y 6 es impar
 - c) Si 8 es impar y 6 es impar, entonces 8 < 6.
 - d) 10 es múltiplo de 5 pero no de 3.
- 3. Dadas la siguientes proposiciones, reescribirlas utilizando "necesario" y "suficiente".
 - a) Si un número es múltiplo de 3 entonces su cuadrado es múltiplo de 9.
 - b) Un número es múltiplo de 4 sólo si es divisible por 2.
 - c) Un número es múltiplo de 7 si es múltiplo de 21.

Enunciar los condicionales: recíproco, contrario y contrarrecíproco. Decir cuáles son equivalentes.

- 4. Construir las tablas de verdad de las siguientes fórmulas y clasificarlas en tautologías, contradicciones y contingencias.
 - $a) \sim p \rightarrow (q \lor \sim p)$
 - b) $((p \land q) \to p) \to q$
 - c) $(p \land q) \rightarrow \sim p$
 - $d) \ p \wedge (q \vee \sim p)$
 - $e) (\sim p \rightarrow q) \rightarrow (\sim q \rightarrow p)$
 - $f) \ ((p \wedge q) \vee (r \wedge \sim q)) \leftrightarrow ((\sim p \wedge \sim q) \vee (\sim r \wedge \sim q))$
- 5. Probar al menos una de las siguientes tautologías.
 - $a) \ (p \land (p \to q)) \to q$

(Modus Ponens)

b) $(\sim q \land (p \to q)) \to \sim p$

(Modus Tolens)

 $c) \ ((p \vee q) \wedge \sim p) \to q$

(Modus Tollendo Ponens) (Adición)

 $d) \ p \to (p \lor q)$ $e) \ (p \land q) \to p$

(Simplificación)

- 6. Probar al menos una de cada una de las siguientes equivalencias lógicas
 - a) Doble Negación:
 - $p \iff \sim (\sim p)$

- b) Leyes Conmutativas:
 - $\blacksquare \ p \wedge q \iff q \wedge p$
 - $p \lor q \iff q \lor p$
- c) Leyes Distributivas:
 - $\bullet \ (p \lor q) \land r \iff (p \land r) \lor (q \land r)$
 - \bullet $(p \land q) \lor r \iff (p \lor r) \land (q \lor r)$
- d) Leyes Asociativas:
 - $p \wedge (q \wedge r) \iff (p \wedge q) \wedge r$
 - $p \lor (q \lor r) \iff (p \lor q) \lor r$
- e) Leyes de De Morgan:
 - $\sim (p \land q) \iff \sim p \lor \sim q$
 - $\sim (p \lor q) \iff \sim p \land \sim q$
- 7. Simbolizar utilizando esquemas, cuantificadores y conectivos lógicos:
 - a) Todos los números son enteros.
 - b) Existen números impares o no todos los números son pares.
 - c) Para todo par de números, si son reales y su producto es uno entonces uno es el inverso del otro.
 - d) Para todo par de números reales, existe otro que es mayor que ambos.
 - e) Cualquier rectángulo tiene cuatro lados.
- 8. Escribir en lenguaje corriente las siguientes proposiciones, siendo el universo el conjunto de los números reales y los esquemas definidos como sigue:
 - p(x): x es par
 - q(x): x es divisible por 2
 - r(x) : x > 0
 - p(x,y): y > x
 - q(x,y): x+y=0
 - a) $(\forall x) (p(x) \to q(x))$
 - b) $(\exists y)(\forall x)(p(x,y))$
 - c) $(\forall x)(\exists y)(p(y,x+3))$
 - $d) (\forall x) (r(x) \rightarrow ((\exists y)(\sim r(y) \land q(x,y)))$
- Negar las proposiciones dadas de los dos ejercicios anteriores, obteniendo una forma equivalente.
- 10. a) Hallar universo y esquemas para que las siguientes proposiciones sean verdaderas
 - 1) $(\forall x)(p(x) \land q(x))$
 - 2) $(\exists x)(p(x) \land q(x))$
 - 3) $(\forall x)(p(x)) \to (\exists x)(q(x))$
 - 4) $(\exists x)(p(x)) \to (\forall x)(q(x))$
 - 5) $(\forall x)(\exists y)(p(x,y))$
 - 6) $(\exists y)(\forall x)(p(x,y))$
 - 7) $((\exists x)(p(x)) \land (\exists x)(q(x))) \rightarrow ((\exists x)(p(x) \land q(x)))$
 - b) Para las proposiciones dadas en el item anterior, hallar universo y esquemas para que sean falsas.

——Ejercicios de repaso—————

- 11. Sean p, q y r proposiciones. Determinar si son equivalentes las siguientes fórmulas: $(\sim p \to (q \land r))$; $(((\sim q \lor \sim r) \land \sim q) \to p)$
- 12. a) Definir el universo, los esquemas y simbolizar la siguiente proposición:

Para todo par de números reales, si su suma es 16~y su producto es 9 entonces uno de ellos es 5

- b) Negar la proposición anterior en forma simbólica y escribirla en lenguaje corriente. Justifique cada paso de la negación.
- 13. Sean $U = \{elastico, metal, pala\}$, p(x): i es una de las vocales de la palabra x, q(x): l es una de las consonantes de la palabra x . Determinar el valor de verdad de la proposición: $(\forall x) \ (p(x) \lor \sim q(x))$. Justifique