ESTI019 – Processamento Multimídia Laboratório Percepção Auditiva

QS2020 Prof. Mário Minami

1. Objetivos

- Constatar as características psicoacústicas de pessoas distintas de sensibilidade à intensidade, banda audível e mascaramento harmônico;
- Efetuar alguns procedimentos de medição e aferição acústicos e depois analisá-los.

2. Teste de Audiometria. (PIGEON, S., 2016)

• Use o áudio do seu computador.

Como temos uma sensibilidade diferente para cada faixa de frequência, podemos realizar vários testes de sensibilidade, para percorrer qual o nível de audição que nosso Sistema Auditivo capta, dependendo da frequência do sinal. Clique o link:

Online Hearing Test and Audiogram Printout

Ou digite a URL: http://hearingtest.online/

- a) Siga as instruções e salve em pdf o padrão audiométrico para ambas Orelhas (direita e esquerda).
- b) Refaça o experimento trocando por um fone de ouvido (pode ser envolvente), ou troque por uma caixa bluetooth se tiver uma e salve novamente os resultados.
- c) Compare as diferenças entre as medições, caso ocorram.

3. Teste de Faixa Audível

• Novamente, inicie usando o áudio do seu computador.

Assim como temos variabilidade na sensibilidade de intensidade sonora audível, também temos variabilidade na faixa de frequência à qual nosso sistema auditivo é perceptivo. Clique no link:

Hearing Test

Ou digite a URL: https://www.youtube.com/watch?v=H-iCZE1J8m0

a) Leia as instruções de ajuste de volume, mas não precisa usar ainda os fones de ouvido, do site em "Mostrar mais", ajuste o volume conforme indicado, e anote a frequência mínima audível $(f_{aM\acute{A}N})$ e a frequência máxima audível $(f_{aM\acute{A}N})$.

ESTI019 – Processamento Multimídia Laboratório Percepção Auditiva

QS2020 Prof. Mário Minami

- b) Apesar do nível do sinal ser sempre o mesmo, as frequências em que lhe parecer que o som é muito baixo e, também, onde parece que ele sobe mais.
- c) Repita o procedimento com um fone de ouvido, normal ou envolvente.
- d) Repita o procedimento com o seu aparelho celular, sem fone de ouvido.
- e) Por que ocorrem as diferenças?

4. Teste de Mascaramento de Tons Harmônicos

(Stanford University, 2016)

- Pode usar o som do computador ou seus fones, apenas registre qual utilizou.
- Use o notebook fornecido para o colab.
- Procure o limiar de atenuação em que os dois tons harmônicos, f_1 e f_2 , em passos de atenuação de 3dB:
- a) A harmônica $f_1 = 2$ kHz mascarando a $f_2 = 1200$ Hz; anotar a atenuação que f_1 "encobre" f_2 :

Aluno	Tom encobridor	Tom mascarado	Fator de Atenuação
Maria	2kHz	1.2kHz	••
	1.2kHz	2kHz	••
João			

- b) Repetir 4(a) para a harmônica $f_1 = 1200$ Hz mascarando a $f_2 = 2$ kHz, preenchendo a tabela;
- c) Alterar o script para tons em duas outras oitavas, abaixo e acima, por exemplo, $(f_1, f_2) = [600\text{Hz}, 1\text{kHz}]$ (abaixo) e $(f_1, f_2) = [2.4\text{kHz}, 4\text{kHz}]$ (acima) e preencher nova tabela.

ESTI019 – Processamento Multimídia Laboratório Percepção Auditiva

5. Relatório:

- a. Na página web do grupo, apresente todos os resultados obtidos, analisando-os e se, necessário efetuando comentários e discussões.
- Escreva as conclusões sobre os aspectos psicoacústicos para CADA um dos integrantes do grupo.
- c. Descrever outro teste psicoacústico que não foi realizado nesta experiência.
- d. Indique um trabalho que aborde algum novo resultado de percepção psicoacústica ainda não abordado nas aulas, colocando um hyperlink no site.

6. Referências

MOCK, J. E. (11 de May de 2001). *Physics 398 EMI*. Fonte: Course of Physics 398 EMI - University of Illinois - - Professor Steve Errede:

https://courses.physics.illinois.edu/phys406/sp2017/Student_Projects/Spring01/JMock/Jason_Mock_Paper.pdf

PIGEON, S. (20 de 08 de 2016). HearingTest.Online. Fonte: Hearing Test: http://hearingtest.online/

Stanford University. (14 de September de 2016). ASA 9 - Asymmetry Of Masking By Pulsed Tones. Fonte: Center for Computer Research in Music and Acoustics:

 $https://ccrma.stanford.edu/^malcolm/correlograms/index.html?22\%20Asymmetry\%20Of\%20Masking\%20By\%20Pulsed\%20Tones.html\\$