TECHNISCHE UNIVERSITÄT BERLIN

Fakultät II - Mathematik

Lutz Schwartz WS 2001/2002 Stand: 25. Februar 2002

Lösungen zur Klausur vom 18.02.2002 (Verständnisteil) Analysis II für Ingenieure

1. Aufgabe (10 Punkte)

	notwendig		hinreichend	
Bedingung	ja	nein	ja	nein
f ist integrierbar.		Х		Х
Alle $\frac{\partial f_i}{\partial x_j}$ existieren und sind stetig.		X	X	
Alle $\frac{\partial f_i}{\partial x_j}$ existieren.	X			X
Es existiert eine Matrix $A \in \mathbb{R}^{2\times 3}$ mit $\lim_{\vec{\Delta x} \to 0} \frac{f(\vec{w} + \vec{\Delta x}) - f(\vec{w}) - A\vec{\Delta x}}{ \vec{\Delta x} } = 0$ für $\vec{w} = (4, -1, 3)$.	X			X
Alle f_i sind stetig.	X			Х

2. Aufgabe (10 Punkte)

Die Funktion f ist als Produkt von 2π -periodischen Funktionen selbst 2π -periodisch, denn $\cos t$ ist 2π -periodisch und $\sin 2t$ ist π -periodisch, also insbesondere auch 2π -periodisch.

Daher lassen sich die Integrationsgrenzen verschieben:

$$\int_{\pi}^{3\pi} f(t) dt = \int_{\pi}^{3\pi} f(t - 2\pi) dt = \int_{\pi - 2\pi}^{3\pi - 2\pi} f(t) dt = \int_{-\pi}^{\pi} f(t) dt.$$

Da $\cos t$ eine gerade und $\sin 2t$ eine ungerade Funktion ist, ist f als deren Produkt ungerade und das Integral von f verschwindet über dem Integrationsintervall $[-\pi, \pi]$.

3. Aufgabe (10 Punkte)

Da \vec{v} ein Potentialfeld ist, mit Potential f, kann das Integral als Potentialdifferenz zwischen Anfangs- und Endpunkt

der Kurve berechnet werden:

$$\int_{\vec{\gamma}} \vec{v} \cdot d\vec{s} = f(\vec{\gamma}(0)) - f(\vec{\gamma}(2\pi))$$

$$= f(0, 0, 1) - f(0, 4\pi^2, 1)$$

$$= 3 - (-4\pi^2 + 3) = 4\pi^2.$$

4. Aufgabe (10 Punkte)

a) Notwendige Bedingung für die Existenz eines Potentials ist die Wirbelfreiheit des Vektorfeldes, d.h. rot $\vec{v} = \vec{0}$. Für $\vec{x} = (x, y, z) \in \mathbb{R}^3$ berechnen wir

$$\operatorname{rot}_{\vec{x}}\vec{v} = \begin{pmatrix} \frac{\partial v_3}{\partial y}(\vec{x}) - \frac{\partial v_2}{\partial z}(\vec{x}) \\ \frac{\partial v_1}{\partial z}(\vec{x}) - \frac{\partial v_3}{\partial x}(\vec{x}) \\ \frac{\partial v_2}{\partial x}(\vec{x}) - \frac{\partial v_1}{\partial y}(\vec{x}) \end{pmatrix} = \begin{pmatrix} 1 - 1 \\ 0 - 0 \\ 3x^2 - 3x^2 \end{pmatrix} = \vec{0}.$$

Da \vec{v} auf ganz \mathbb{R}^3 definiert ist, also auf einer offenen und konvexen Menge, ist die Bedingung auch hinreichend,

und somit besitzt \vec{v} wirklich ein Potential.

b) Notwendige Bedingung für die Existenz eines Vektorpotentials ist die Quellenfreiheit div $\vec{v}=0$.

Für $\vec{x} = (x, y, z) \in \mathbb{R}^3$ berechnen wir

$$\operatorname{div}_{\vec{x}}\vec{v} = \frac{\partial v_1}{\partial x}(\vec{x}) + \frac{\partial v_2}{\partial y}(\vec{x}) + \frac{\partial v_3}{\partial z}(\vec{x}) = 6xy + 0 + 0 \neq 0.$$

Also besitzt \vec{v} kein Vektorpotential.