TD T4: Second principe et bilans d'entropie

Exercice 1: Entropie d'un gaz parfait \star

Le dioxyde de carbone a une capacité thermique molaire à volume constant, pour une température T (en Kelvins) comprise entre 273 K et 500 K donnée par:

$$C_{Vm}(T) = 23.83 + 22.15.10^{-3}T \text{ (en J.mol}^{-1}\text{.K}^{-1})$$

- 1) Etablir, à une constante près, l'entropie de ce gaz en fonction de T et V.
- 2) Calculer la variation d'entropie du système constitué de 1 mole de ce gaz, lorsque qu'on amène sa température de 298 K à 400 K, le volume restant constant.

Exercice 2: Cycle monotherme *

Un gaz parfait décrit l'évolution du cycle ABC: l'évolution de A à B est adiabatique et réversible; l'évolution BC est isotherme et réversible; l'évolution CA est isochore. Les évolutions BC et CA ont lieu au contact d'un thermostat, dont la température est T_0 .

On donne $P_A=1$ bar; $V_A=2L$; $T_A=290K$; $V_B=1L$; R=8,314 J.K⁻¹.mol⁻¹. Le fluide est un gaz parfait de coefficient $\gamma=1,4$.

- 1) Représenter ce cycle dans un diagramme de Clapeyron.
- 2) Calculer le nombre de moles du fluide et T_0 .
- 3) Calculer l'entropie reçue par le système sur un cycle, notée S_e , en supposant qu'il est parcouru dans le sens $A \to B \to C$. En déduire l'entropie crée sur ce chemin au cours d'un cycle. Que peut on en déduire sur le sens réel de parcours du cycle?
- 4) Calculer numériquement le travail reçu par le système quand le cycle est parcouru dans le sens thermodynamiquement permis. Ce cycle est-il alors nécessairement moteur ou récepteur?

Exercice 3: Détente d'un gaz parfait **

Une mole de gaz parfait est contenue dans un cylindre bon conducteur de chaleur, mis en contact avec un thermostat de température T_0 =300K. On envisage différentes manières de faire passer ce gaz de manière isotherme du volume V_1 au volume V_2 = $2V_1$, par trois procédés différents. Pour chacun d'entre eux on demande de calculer la variation d'entropie ΔS , l'entropie échangée S_e et l'entropie S_c .

- 1) On déplace le piston fermant le cylindre de manière lente (à chaque instant $p = p_{ext}$ et $T = T_0$).
- 2) Le cylindre est divisé en deux compartiments de même volume V_1 , séparés par une vitre. Le premier compartiment contient le gaz, l'autre du vide. On brise alors la vitre.
- 3) On réduit brusquement la pression sur le piston $(p_{ext} = p_2)$, et on laisse l'équilibre thermique s'établir ensuite. (On pourra négliger les échanges thermiques entre le gaz et le thermostat durant le mouvement du piston, supposé très rapide).

Exercice 4: Echange thermique et irréversibilité **

On enferme dans un calorimètre isolant et de capacité thermique négligeable deux masses d'eau m identiques initialement aux températures $T_1 = 90$ °C et $T_2 = 20$ °C.

- 1) Déterminer la température du système une fois l'équilibre thermique atteint.
- 2) Déterminer la variation d'entropie de l'ensemble au cours de la transformation (on donne c_{eau} =4.17 J.K⁻¹.kg⁻¹).
- 3) Etudier le signe de l'expression obtenue et commenter.

Exercice 5: Compression isotherme de l'air **

Comme première étape de la liquéfaction de l'air, on réalise une compression isotherme et réversible de 1 kg d'air de l'état $E_1(p_1=1\,bar;\,T_1=290\,K;\,u_1=368\,kJ.kg^{-1};\,s_1=4,40\,kJ.K^{-1}.kg^{-1})$ à l'état $E_2(p_2=200\,bars;\,T_2=290\,K;\,u_2=338\,kJ.kg^{-1};\,s_2=2,68\,kJ.K^{-1}.kg^{-1})$ dans un compresseur fermé. (u et s représentent l'énergie interne et l'entropie de l'air par unité de masse)

- 1) En utilisant les deux principes de la thermodynamique, calculer le transfert thermique Q et le travail W reçus par l'air dans le compresseur au cours de cette transformation.
- 2) Comparer Q et W avec les valeurs Q' et W' qu'on aurait obtenu en adoptant pour l'air le modèle du gaz parfait de masse molaire $M=29\,g.mol^{-1}$

Exercice 6: Peut-on chauffer un solide de manière presque réversible? $\star\star\star$

On considère un solide de masse m=1,0 kg, de capacité thermique $c_m=10J.kg^{-1}.K^{-1}$, se trouvant initialement à la température $T_1=273K$, placé dans une grande quantité d'eau (constituant un thermostat), à la température $T_2=373K$. L'ensemble forme un système supposé isolé.

- 1) Lorsque l'équilibre thermodynamique est atteint, quelle est la température du solide? Quelle est la température de l'eau?
- 2) Déterminer les variations d'entropie ΔS_{solide} et ΔS_{eau} lors de ce processus, en fonction de m, c_m , T_1 et T_2 ; puis faire l'application numérique.
- 3) En déduire la variation d'entropie de l'ensemble solide+eau notée ΔS_{Ω} lors de ce processus; faire l'application numérique. Commenter le résultat sachant que Ω est un système isolé.
- 4) On découpe la transformation précédente en une infinité de transformations infinitésimales au cours desquelles on élève la température du solide de T à $T+\Delta T$ (avec $\Delta T\ll T$) par contacts successifs avec n thermostats de température très proches les unes des autres, notée $T_i=T_1+i\Delta T$. Montrer que, pour une étape intermédiaire entre les températures T_i et $T_i+\Delta T$, on peut écrire:

$$\Delta S_{\Omega} = mc_m \left(\ln \left(1 + \frac{\Delta T}{T_i} \right) - \frac{\Delta T}{T_i + \Delta T} \right)$$

- 5) En effectuant un développement limité de ce résultat au premier ordre en ΔT , montrer que ΔS_{Ω} est proportionnel à $\left(\frac{\Delta T}{T_i}\right)^2$ pour cette transformation élémentaire.
- 6) Montrer que la variation totale d'entropie de l'univers pour la transformation totale (de T_1 à T_2) vérifie:

$$\Delta S_{\Omega} \leqslant \frac{A}{n}$$

où A est une constante à déterminer et n le nombre total de thermostats.

7) Conclusion: comment faut-il s'y prendre en pratique pour chauffer un solide d'une manière qui tend vers la réversibilité?