Zadanie nr 1 - uczenie i testowanie neuronu liniowego z wieloma wzorcami treningowymi

Inteligentna Analiza Danych

Karol Kazusek - 254189, Sebastian Zych - 25426414.10.2024

1 Cel zadania

Celem zadania była implementacja neuronu liniowego, a następnie analiza wpływu różnych ilości wzorców treningowych na wyniki działania neuronu. Naszym zadaniem było kilkukrotne przeprowadzenie algorytmu treningowego przy użyciu losowych zestawów danych i startowch wag neuronwów, a następnie wyciągnięcie wniosków na temat jego efektywności. Dodatkowo, celem było sprawdzenie, czy algorytm uczący skutecznie trenował neuron na danym zbiorze treningowym oraz czy trening był efektywny dla każdego z trzech przypadków.

2 Wstęp teoretyczny

Sztuczne neurony i sieci neuronowe czerpią inspirację z natury, a konkretnie z biologicznych neuronów oraz sieci neuronowych obecnych w mózgach i układach nerwowych ludzi i zwierząt. Choć niektóre typy sztucznych sieci próbują naśladować naturalne procesy, większość współczesnych rozwiązań działa na odmiennych zasadach, dostosowanych do specyficznych zadań i wymagań technicznych. Sztuczny neuron Rys. 1. jest to uproszczoną wersją swojego biologicznego odpowiednika, służącą do przetwarzania informacji, lecz jego funkcjonalność jest znacznie bardziej schematyczna niż w przypadku naturalnych neuronów.

Rysunek 1: Model sztucznego neuronu

Neuron skałada się z: Wektora wejściowego

$$\mathbf{x} = [x_1, x_2, \dots, x_N] \tag{1}$$

i wag

$$\mathbf{w} = [w_1, w_2, \dots, w_N] \tag{2}$$

Wyjście jest obliczane przy pomocy wzoru:

$$\sum_{i=1}^{N} w_i x_i = w_1 x_1 + w_2 x_2 + \ldots + w_N x_N = y$$
(3)

gdzie:

- y wyjście neuronu,
- w_i i-ta waga,
- x_i *i*-te wejście,
- n liczba wejść.

Jako funkcję aktywacji wykorzystamy funkcję liniową o postaci:

$$f(x) = a \cdot x \tag{4}$$

Neuron o takiej charakterystyce nazywamy Neuronem liniowy Rys. 2. to jeden z najprostszych typów sztucznych neuronów. Jego działanie polega na obliczeniu sumy ważonej wejść (sygnałów).

Rysunek 2: Model sztucznego neuronu liniowego

3 Eksperymenty i wyniki

3.1 Eksperyment nr 1

3.1.1 Założenia

Analiza wektora wag neuronu w kontekście wielokrotnego zastosowania algorytmu treningowego, w którym liczba wag neuronu N jest mniejsza niż liczba próbek treningowych M (czyli N < M).

Tabela 1: Założenia parametrów wyjściowych - eksperyment nr 1

Parametr	Wartość
Liczba wag neuronu (N)	5
Liczba wzorców treningowych (M)	10
Zakres wartości wag neuronu	[-1, 1]
Liczba epok (K)	14000
Krok treningowy	0.8

Tabela 2: Założenia wag dla eksperymentu nr 1

Neruron	Wagi początkowe neuronu
1	$ \left[0.7022602 \ 0.01750665 \ 0.79466921 \ 0.92162914 \ 0.90279926 \right] $
2	$[0.41036501\ 0.54634851\ 0.1133011\ 0.26291431\ 0.10229738]$
3	$[0.35029543\ 0.53505635\ 0.51316328\ 0.62997295\ 0.84010926]$
4	$[0.09378692\ 0.3522956\ 0.81628097\ 0.48155047\ 0.33005786]$
5	$ \begin{bmatrix} 0.97057748 \ 0.33640186 \ 0.21091255 \ 0.69016781 \ 0.7327417 \ \end{bmatrix} $

3.1.2 Przebieg

Algorytm treningowy dla neuronu liniowego został uruchomiony, korzystając z parametrów przedstawionych w Tabeli 1. Za każdym razem wykorzystano ten sam zbiór danych treningowych wygenerowane losowo. Wartości wag były inicjowane losowo przy uruchomieniu.

3.1.3 Rezultat

Tabela 3: Rezultaty eksperymentu nr $1\,$

Neruron	Wagi końcowe neuronu		
1	[1.10044389 5.19383826 0.27373934 1.73954117 -4.72341669]		
${f 2}$	$[1.10044389\ 5.19383826\ 0.27373934\ 1.73954117\ -4.72341669]$		
3	$[1.10044389\ 5.19383826\ 0.27373934\ 1.73954117\ -4.72341669]$		
4	$[1.10044389\ 5.19383826\ 0.27373934\ 1.73954117\ -4.72341669]$		
5	[1.10044389 5.19383826 0.27373934 1.73954117 -4.72341669]		

Tabela 4: Wyniki 1 neuronu z wykorzystaniem zbioru treningowego jako wektory wejściowe neuronu wytrenowanego:

Numer przypadku	Klasyfikacja neurona	R. klasyfikacja
1	1.62866269	1
2	0.75101212	1
3	0.88028287	0
4	2.23147244	1
5	1.40843858	1
6	2.43287648	1
7	2.78033059	0
8	4.54720541	1
9	4.44872991	0
10	3.10839639	1

3.2 Eksperyment nr 2

Analiza wektora wag neuronu w kontekście wielokrotnego zastosowania algorytmu treningowego, w którym liczba wag neuronu N jest równa liczbie próbek treningowych M (czyli N=M).

Tabela 5: Założenia parametrów wyjściowych - eksperyment nr 2

Parametr	Wartość
Liczba wag neuronu (N)	5
Liczba wzorców treningowych (M)	5
Zakres wartości wag neuronu	[-1, 1]
Liczba epok (K)	14000
Krok treningowy	0.8

Tabela 6: Założenia wag dla eksperymentu nr 2

Neruron	Wagi początkowe neuronu		
1	$ \begin{bmatrix} 0.25718081 \ 0.23160417 \ 0.12374798 \ 0.2100194 \ 0.43299329 \end{bmatrix} $		
2	$\begin{bmatrix} 0.9268277 \ 0.03963894 \ 0.59703405 \ 0.13471647 \ 0.06900094 \end{bmatrix}$		
3	$[0.30719827\ 0.43147593\ 0.11097351\ 0.13570207\ 0.27112304]$		
$oldsymbol{4}$	$ \begin{bmatrix} 0.63129549 \ 0.00481451 \ 0.72005156 \ 0.74442693 \ 0.73818147 \end{bmatrix} $		
5	$[0.23434677\ 0.5381695\ 0.76920115\ 0.57128691\ 0.6599291\]$		

3.2.1 Przebieg

Algorytm treningowy dla neuronu liniowego został uruchomiony, korzystając z parametrów przedstawionych w Tabeli 5. Za każdym razem wykorzystano ten sam zbiór danych treningowych wygenerowane losowo. Wartości wag były inicjowane losowo przy uruchomieniu.

3.2.2 Rezultat

Tabela 7: Rezultaty eksperymentu nr 2

Neruron	Wagi końcowe neuronu		
1	[1.75545992 0.72352631 -0.45735995 0.30204395 -0.62659508]		
${f 2}$	$[\ 1.75545992\ 0.72352631\ -0.45735995\ 0.30204395\ -0.62659508]$		
3	[1.75545992 0.72352631 -0.45735995 0.30204395 -0.62659508]		
4	$[\ 1.75545992\ 0.72352631\ -0.45735995\ 0.30204395\ -0.62659508]$		
5	$\begin{bmatrix} 1.75545992 \ 0.72352631 \ -0.45735995 \ 0.30204395 \ -0.62659508 \end{bmatrix}$		

Tabela 8: Wyniki 1 neuronu z wykorzystaniem zbioru treningowego jako wektory wejściowe neuronu wytrenowanego:

Numer przypadku	Klasyfikacja neurona	R. klasyfikacja
1	$1.00000000\mathrm{e}{+00}$	1
2	$1.000000000\mathrm{e}{+00}$	1
3	-4.62567283e-16	0
4	$1.000000000\mathrm{e}{+00}$	1
5	$1.000000000\mathrm{e}{+00}$	1

3.3 Eksperyment nr 3

Analiza wektora wag neuronu w kontekście wielokrotnego zastosowania algorytmu treningowego, w którym liczba wag neuronu N jest większa niż liczba próbek treningowych M (czyli N>M).

Tabela 9: Założenia parametrów wyjściowych - eksperyment nr 3

Parametr	Wartość
Liczba wag neuronu (N)	5
Liczba wzorców treningowych (M)	2
Zakres wartości wag neuronu	[-1, 1]
Liczba epok (K)	14000
Krok treningowy	0.8

Tabela 10: Założenia wag dla eksperymentu nr 3

Neruron	Wagi początkowe neuronu		
1	$ \begin{bmatrix} 0.042668 \ 0.24044789 \ 0.39155331 \ 0.72852958 \ 0.18479858 \end{bmatrix} $		
2	$ \begin{bmatrix} 0.82432786 \ 0.08099875 \ 0.74098371 \ 0.63442987 \ 0.18990254 \end{bmatrix} $		
3	$[0.47082526\ 0.67922145\ 0.38200882\ 0.77416749\ 0.02424662]$		
4	$ \begin{bmatrix} 0.63795142 \ 0.32744639 \ 0.56587628 \ 0.52658763 \ 0.81397631 \end{bmatrix} $		
5	$[0.44989125\ 0.83818744\ 0.62580719\ 0.2009764\ 0.86055305]$		

3.3.1 Przebieg

Algorytm treningowy dla neuronu liniowego został uruchomiony, korzystając z parametrów przedstawionych w Tabeli 9. Za każdym razem wykorzystano ten sam zbiór danych treningowych wygenerowane losowo. Wartości wag były inicjowane losowo przy uruchomieniu.

3.3.2 Rezultat

Tabela 11: Rezultaty eksperymentu n
r $\boldsymbol{3}$

Neruron	Wagi końcowe neuronu		
1	$[0.10632304\ 0.80405649\ 0.4017791\ 0.45961974\ 0.28680895]$		
2	$ \begin{bmatrix} 0.70692232 \ 0.59012639 \ 0.63854747 \ 0.09975784 \ 0.12163089 \end{bmatrix} $		
3	$[0.38247018\ 0.85732429\ 0.31598488\ 0.5082556\ -0.04300429]$		
4	$[0.43267451\ 0.5126257\ 0.42481907\ 0.06093346\ 0.64003502]$		
5	$[0.27104984\ 0.54160379\ 0.52762757\ 0.10003904\ 0.67356591]$		

Tabela 12: Wyniki 1 neuronu z wykorzystaniem zbioru treningowego jako wektory wejściowe neuronu wytrenowanego:

Numer przypadku	Klasyfikacja neurona	R. klasyfikacja
1	1	1
2	1	1

4 Wnioski

Wnioski z przeprowadzonych eksperymentów dowodzą, że

- Na wyjściu dla przypadku N < M wyniki znacznie różniły się od oczekiwanych wartości dla wzorców treningowych. Powód można znaleźć w nie dostatecznej ilości wag.
- Dla przypadku N = M oraz N > M wartość końcowych wag nie są zmienne. Oznacza to brak przeszkód w nauce wzorców oraz przewidywań wartości wag. W przypadku N < M nie jest w stanie skutecznie nauczyć wzorzec. Zwraca ona różne wartości wag.
- Dało się zaobserwować podobieństwo działania neuronu liniowego do problemu rozwiązywania układu równań z wieloma niewiadomymi.

Bibliografia