武 汉 大 学 计 算 机 学 院《数字逻辑》期末考试试题(B卷)参考答案 2007—2008 学年第二学期(闭卷考试)

一、填空题(每空1份,共17分)

解答:

- 1, $(17.5)_{10}=(10001.1)_2=(21.4)_8=(11.8)_{16}$
- 2, $[x]_{\mathbb{R}}=1.1100$, $[x]_{\mathbb{R}}=1.0011$, $[x]_{\mathbb{R}}=1.0100$
- 3, 9721, 10000101
- 4、组合逻辑电路,时序逻辑电路
- 5、可,可
- 6, 1

7, 111, 001, 010

- 8、补,反
- 9, 11

- 10,00
- 二、完成下列各题(每小题10分,共20分)
 - 1、解答

$$AB + A\overline{B} + \overline{A}B + \overline{A}\overline{B} = A(B + \overline{B}) + \overline{A}(B + \overline{B}) = A + \overline{A} = 1$$

- 2、解答
- (1) 先作出函数的四变量卡诺图
- (2) 具简与一或式为

$$F = AC + \overline{A}\overline{C}$$

(3) 具简或一与式为

$$F = (A + \overline{C})(\overline{A} + C)$$

- 三、分析题(每小题12分,共24分)
 - 1、解答
 - ① 逐级写出输出函数表达式

$$\begin{split} P_1 &= \overline{ABC}, P_2 = A \cdot P_1 = A \cdot \overline{ABC} \\ P_3 &= B \cdot P_1 = B \cdot \overline{ABC} \quad P_4 = C \cdot P_1 = C \cdot \overline{ABC} \\ F &= \overline{P_2 + P_3 + P_4} = \overline{A \cdot \overline{ABC} + B \cdot \overline{ABC} + C \cdot \overline{ABC}} \\ &= \overline{\overline{ABC}(A + B + C)} = ABC + \overline{A}\overline{B}\overline{C} \end{split}$$

② 列其值表

输入 ABC	输出F
000	1
001	0
010	0
011	0
100	0
101	0
110	0
111	1

③ 功能说明

由真值表可知,当输入 ABC 取值相同,同为 000 或同为 111 时,输出 F为 1,否则 F为 0,该电路可检查输入是否一致。

2. 解答

① 输出函数和激励函数表达式

$$Z = xy_2y_1$$
 电路属 Mealy 模型

$$J_2 = k_2 = 1$$
 $c_2 = y_1$ $(cp_2 = y_1)$
 $J_1 = k_1 = 1$ $c_1 = x$ $(cp_1 = x)$

② 列次态真值表,作状态表和状态图

输入	现态		激励函数	输出	次态	
X	<i>y</i> 2 <i>y</i> 1	J_2k_2	C_2 J_1 k_1	C_1	Z	$y_2^{m+1}y_1^{n+1}$
1	0 0	1 1	1 1	\	0	0 1
1	0 1	1 1	1 1	\downarrow	0	1 0
1_	1 0	1 1	1 1	\downarrow	0	1 1
1	1 1	1 1	1 1	\downarrow	1	0 0

状态表

现在 y2y1	次真 y2 ⁿ⁺¹ y1 ⁿ⁺¹ / Z
0 0	0 1/0
0 1	1 0/0
1 0	1 1/0
1 1	0 0/1

- ③ 电路功能: 异步模 4 加 1 计数器,输出 Z 表示进位
- 四、设计与应用题(每小题13分,共39分)

1. 解答: 设初(A/0)

原始状态图如下

原始状态表

现态	次	输出	
	<i>x</i> =0	<i>x</i> =1	製山
A	Α	В	0
В	A	C C	0
C	D		0
D	Α	Е	0
E	Α	В	1

2、解答

(1) 设 A_i 为被加数, B_i 为加数, C_{i-1} 为低位来的进位, S_i 为本位和, C_i 为本位向高位的进位。列真值表如下:

X/A	输入			输出		
Ai	B_{i}	C_{i-1}	Si	C_{i}		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

(4) 画逻辑图

(2) 写输出函数的最小项表达式如下:

$$S_i = \sum m(1,2,4,7)$$

 $C_i = \sum m(3,5,6,7)$

(3) 变换表达式形式

$$S_{i} = \overline{\overline{m}_{1} \cdot \overline{m}_{2} \cdot \overline{m}_{4} \cdot \overline{m}_{7}}$$

$$C_{i} = \overline{\overline{m}_{3} \cdot \overline{m}_{5} \cdot \overline{m}_{6} \cdot \overline{m}_{7}}$$

3、解答

(1) 列次态和输出函数真值表

	输入			次态		激励函数				
X	y ₂	y 1	y_2^{n+1}	y_1^{n+1}	Z	D_2	D_1			
0	0	0	0	1	0	0	1			
0	0	1	1	1	0	1	1			
0	1	1	1	0	1	1	0			
0	1	0	0	0	1	0	0			
1	0	0	1	0	0	1	0			
1	0	1	1	0	0	1	0			
1	1	1	0	1	0	0	1			
1	1	0	1	1	1	1	1			
1	1	0	1	1	1	1)			

(2) 求激励函数和输出函数

$$D_2 = x\bar{y}_1 + \bar{x}y_1 + x\bar{y}_2(\bar{y}_2y_1)$$

$$D_1 = \overline{x} \ \overline{y}_2 + xy_2 = \overline{x \oplus y_2}$$

$$Z = \overline{x}y_2 + y_2\overline{y}_1 = y_2\overline{xy}_1$$

(3) 画逻辑电路图(略)