Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям: k_1 — стоимость постройки; k_2 — время в пути до центра города; k_3 — количество людей, подвергающихся шумовым воздействиям. Оценки альтернатив по критериям приведены в таблице. Установите на множестве альтернатив отношение Парето

Таблица исходных данных

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	$oldsymbol{k_3}$ (тыс.чел.)
x	170	40	20
y	170	50	10
Z	190	45	10

Варианты ответов:

	x	y	Z
x	-	0	1
y	0	-	0
Z	0	0	-

	x	у	Z
x	ı	0	0
y	0	ı	0
Z	0	0	-

1.

2.

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям: k_1 — стоимость постройки; k_2 — время в пути до центра города; k_3 — количество людей, подвергающихся шумовым воздействиям. Оценки альтернатив по критериям приведены в таблице. Установите на множестве альтернатив Мажоритарное отношение

Таблица исходных данных

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
x	170	40	20
y	170	50	10
Z	190	45	10

Варианты ответов:

	x	y	Z
\boldsymbol{x}	-	0	1
у	0	-	0
Z	0	0	-

				_
	x	y	Z	
x	-	0	0	
у	0	-	0	
7	1	O	_	

2.

Пусть X представляет собой множество абитуриентов, принимающих участие в конкурсных экзаменах при поступлении в технический вуз, оценки которых по трем дисциплинам в пятибалльной шкале приведены в таблице

A.G. 17711011011	Дисциплина		
Абитуриенты	Математика	Физика	Литература
x	5	3	4
y	5	4	3
Z	4	5	3

Пусть веса критериев (дисциплин) $c_1=5, c_2=3, c_3=2.$

По методу ЭЛЕКТРА определите индекс согласия превосходства (доминирования) $oldsymbol{x}$ над $oldsymbol{y}$

Пусть X представляет собой множество абитуриентов, принимающих участие в конкурсных экзаменах при поступлении в технический вуз, оценки которых по трем дисциплинам в пятибалльной шкале приведены в таблице

A.G. 17711011011	Дисциплина		
Абитуриенты	Математика	Физика	Литература
x	5	3	4
у	4	4	4
Z	4	5	3

Пусть веса критериев (дисциплин) $c_1=5, c_2=3, c_3=2.$

По методу ЭЛЕКТРА определите индекс согласия превосходства (доминирования) $oldsymbol{x}$ над $oldsymbol{y}$

Пусть X представляет собой множество абитуриентов, принимающих участие в конкурсных экзаменах при поступлении в технический вуз, оценки которых по трем дисциплинам в пятибалльной шкале приведены в таблице

A.G. 17711011011	Дисциплина		
Абитуриенты	Математика	Физика	Литература
x	5	3	4
у	4	4	4
Z	4	5	3

Пусть веса критериев (дисциплин) $c_1=5, c_2=3, c_3=2.$

По методу ЭЛЕКТРА определите индекс согласия превосходства (доминирования) $oldsymbol{y}$ над $oldsymbol{z}$

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ — стоимость постройки; $m{k_2}$ — время в пути до центра города; $m{k_3}$ — количество людей, подвергающихся шумовым воздействиям.

Значимость критериев представлена соответственно величинами: 6; 3; 1. Оценки альтернатив по критериям приведены в таблице. Определите индексы согласия доминирования альтернатив по методу «Электра»

Таблица исходных данных

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
\boldsymbol{x}	170	40	20
y	170	50	10
Z	190	45	10

Варианты ответов:

1.

	x	y	Z
x	-	0, 9	0, 9
у	0, 7	-	0, 7
Z	0, 1	0,4	ı

2.

	x	y	Z
x	ı	0, 7	0, 1
у	0, 9	-	0,4
Z	0,9	0, 7	1

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ — стоимость постройки; $m{k_2}$ — время в пути до центра города; $m{k_3}$ — количество людей, подвергающихся шумовым воздействиям. Значимость критериев представлена соответственно величинами: **6**; **3**; **1**. Оценки альтернатив по критериям приведены в таблице. Определите индекс согласия доминирования альтернативы $m{y}$ над $m{x}$ по методу «Электра»

Таблица исходных данных

Площадки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
\boldsymbol{x}	170	40	20
y	170	50	10
Z	190	45	10

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ — стоимость постройки; $m{k_2}$ — время в пути до центра города; $m{k_3}$ — количество людей, подвергающихся шумовым воздействиям. Значимость критериев представлена соответственно величинами: **6**; **3**; **1**. Оценки альтернатив по критериям приведены в таблице. Определите индекс согласия доминирования альтернативы $m{z}$ над $m{x}$ по методу «Электра»

Таблица исходных данных

Площадки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
\boldsymbol{x}	170	40	20
y	170	50	10
Z	190	45	10

По критерию Байеса оцените альтернативу x_1

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	5	4	3	2
x_2	2	3	4	5
x_3	3	4	5	2
P	0,3	0,3	0,3	0,1

По критерию Байеса оцените альтернативу $oldsymbol{x}_2$

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	5	4	3	2
x_2	2	3	4	5
x_3	3	4	5	2
P	0,3	0,3	0,3	0,1

Пусть результаты предпочтений альтернатив в каждом состоянии внешней среды представлены в виде матриц парных сравнений. По критерию Байеса определите оценку для альтернативы x_1

$$e_1$$
: p_1 = 0,3

	x_1	x_2	x_3
x_1	1	1	1
x_2	0	1	0
x_3	0	1	1

$$e_3$$
: p_3 = 0, 3

	x_1	x_2	x_3
x_1	1	0	0
x_2	1	1	0
x_3	1	1	1

$$e_2$$
: p_2 = 0, 3

	x_1	x_2	x_3
x_1	1	1	1
x_2	0	1	0
x_3	1	1	1

$$e_4$$
: p_4 = 0, 1

	x_1	x_2	x_3
x_1	1	0	1
x_2	1	1	1
x_3	1	0	1

Пусть результаты предпочтений альтернатив в каждом состоянии внешней среды представлены в виде матриц парных сравнений. По критерию Байеса определите оценку для альтернативы x_2

$$e_1$$
: p_1 = 0,3

	x_1	x_2	x_3
x_1	1	1	1
x_2	0	1	0
x_3	0	1	1

$$e_3$$
: p_3 = 0,3

	x_1	x_2	x_3
x_1	1	0	0
x_2	1	1	0
x_3	1	1	1

$$e_2$$
: p_2 = 0, 3

	x_1	x_2	x_3
x_1	1	1	1
x_2	0	1	0
x_3	1	1	1

$$e_4$$
: p_4 = 0, 1

	x_1	x_2	x_3
x_1	1	0	1
x_2	1	1	1
x_3	1	0	1

Задана матрица Y исходов в терминах затрат .По критерию максимума уверенности в получении заданного результата оцените альтернативу x_2 при пороге $\alpha \leq 4$

$$P(y_{2j} \le 4 \mid x_2) =$$

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	5	4	3	2
x_2	2	3	4	5
x_3	3	4	5	2
P	0,3	0,3	0,3	0,1

Задана матрица Y исходов в терминах затрат .По критерию максимума уверенности в получении заданного результата оцените альтернативу x_2 при пороге $\alpha < 4$

$$P(y_{2j} < 4 \mid x_2) =$$

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	5	4	3	2
x_2	2	3	4	5
x_3	3	4	5	2
P	0,3	0,3	0,3	0,1

Задана матрица Y исходов в терминах затрат .По критерию Вальда определите лучшую альтернативу

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	2	3	4	5
<i>x</i> ₃	3	4	4	2

Задана матрица У исходов в терминах полезности .По критерию Вальда определите лучшую альтернативу

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	3	3	4	5
<i>x</i> ₃	3	4	4	2

Задана матрица Y исходов в терминах полезности .По критерию Гурвица определите оценку для альтернативы x_2 . Показатель пессимизма взять равным 0,5.

Альтернативы	Ситуации Е			
X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	3	3	4	5
<i>x</i> ₃	3	4	4	2

Из трёх претендентов на выборную должность по двум критериям необходимо выбрать достойного кандидата (молодого и опытного). Оценка претендентов через функцию принадлежности приведена в таблице. Кому дать предпочтение?

Фамилия	Молодой человек	Опыт работы
Иванов	0,6	0,6
Петров	0,7	0,5
Сидоров	0,5	0,7

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{H,\Pi}(x) = 1 - \sup_{y \in X} [\mu_R(y,x) - \mu_R(x,y)], \qquad x \in X$$

SUP — наибольшее положительное число (на сколько другие по максимому доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	-	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_1 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_1)$

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{H,\Pi}(x) = 1 - \sup_{y \in X} [\mu_R(y,x) - \mu_R(x,y)], \qquad x \in X$$

SUP — наибольшее положительное число (на сколько другие по максимому доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	1	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_3 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_3)$