Complex Variables I – Problem Set 4

Due at 5 pm on Friday, Oct 6, 2023 via Gradescope

Problem 1

Let A be a connected open set in \mathbb{C} , $f:A\to\mathbb{C}$ is holomorphic. Suppose |f(z)| is constant in A. Prove that f(z) is a constant function.

Problem 2

Let f(z) be holomorphic in the disk |z-1| < 1, and suppose that $f'(z) = \frac{1}{z}$, f(1) = 0. Prove that $f(z) = \log z$ in the disk, where \log is the branch that takes value in $A_{-\pi} = \{z : -\pi < \operatorname{Im} z < \pi\}$.

Problem 3

- 1. Verify that the function $u(x,y) = \sin x \cosh y$ is harmonic in \mathbb{R}^2 .
- 2. Find the harmonic conjugate v of u such that v(0,0) = 3.

Problem 4

Find the general form of a holomorphic function f(z) whose real parts only depend on |z|. Hint: the real part of a holomorphic function is harmonic.

Problem 5

Find the following line integral.

- 1. $\int_C \log z dz$, here C is the unit circle oriented counterclockwise, and log is the branch which takes value in $A_0 = \{z : 0 \le \text{Im } z < 2\pi\}$.
- 2. $\int_C \frac{1}{z} dz$, here C is the line segment from $\frac{-\sqrt{3}-i}{2}$ to $\frac{1+\sqrt{3}i}{2}$.

Problem 6

Consider a function f which is holomorphic in the open unit disk centered at the origin D(0,1), and f satisfies

$$\forall z \in D(0,1), |f'(z)| \le M,$$

for some M > 0. Show that for every $z_1, z_2 \in D(0,1), |f(z_1) - f(z_2)| \le M|z_1 - z_2|$.

Problem 7 - bonus

Let $f:\mathbb{C}\to\mathbb{R}$ be a continuous real valued function such that $|f(z)|\leq 1$ for all $z\in\mathbb{C}$. Show that

$$\left| \int_C f(z) dz \right| \le 4,$$

where C is the unit circle oriented counterclockwise.

(Note: this question will not count in the homework grade.)

Remember to justify your answers and acknowledge collaborations and outside help!