Fuzzy Relations

Fuzzy Relations

- Crisp relations
- Operations on crisp relations
- Examples on crisp relations
- Fuzzy relations
- Operations on fuzzy relations
- Examples on fuzzy relations

Crisp relations

Order pairs:

Suppose, A and B are two (crisp) sets. Then Cartesian product denoted as $A \times B$ is a collection of order pairs, such that

$$A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$$

Note:

$$(1) A \times B \neq B \times A \qquad (2) |A \times B| = |A| \times |B|$$

(3) $A \times B$ provides a mapping from $a \in A$ to $b \in B$.

A particular mapping so mentioned is called a relation

Crisp relations

Example:

Consider the two crisp sets A and B as given below.

$$A = \{1, 2, 3, 4\} B = \{3, 5, 7\}.$$

Then,
$$A \times B = \{(1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7), (4,3), (4,5), (4,7)\}$$

Let us define a relation as $R = \{(a,b)|b = a+1, (a,b) \in A \times B\}$ Then, $R = \{(2,3), (4,5)\}$ in this case.

Crisp relations

We can represent the relation R in a matrix form as follows.

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix}$$

Operations on crisp relations

Suppose, R(x, y) and S(x, y) are the two relations defined over two crisp sets $x \in A$ and $y \in B$

- Union: $R(x,y) \cup S(x,y) = max(R(x,y),S(x,y));$
- Intersection: $R(x,y) \cap S(x,y) = min(R(x,y),S(x,y));$
- Complement: $\overline{R(x,y)} = 1 R(x,y)$

Example: Operations on crisp relations

Suppose, R(x, y) and S(x, y) are the two relations defined over two crisp sets $x \in A$ and $y \in B$

- Find the following
- $R \cup S$
- $R \cap S$
- *R*

Composition of two crisp relations

Given R is a relation on X, Y and S is another relation on Y, Z. Then, $R \circ S$ is called a composition of relation on X and Z which is defined as follows.

$$R \circ S = \{(x, z) | (x, y) \in R \text{ and } (y, z) \in S \text{ and } \forall y \in Y\}$$

Max-Min Composition

Given the two relation matrices R and S, the max-min composition is defined as $T = R \circ S$;

$$T(x,z) = max\{min\{R(x,y),S(y,z) \text{ and } \forall y \in Y\}\}$$

Composition: Composition

Example: Given
$$X = \{1, 3, 5\}; Y = \{1, 3, 5\}; R = \{(x, y)|y = x + 2\};$$

 $S = \{(x, y)|x < y\}$

Here, R and S is on $X \times Y$.

Thus, we have
$$R = \{(1,3), (3,5)\}, S = \{(1,3), (1,5), (3,5)\}$$

$$R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad and \qquad S = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 1 \\ 5 & 0 & 0 & 0 \end{bmatrix}$$

Using max-min composition
$$R \circ S = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 5 & 0 & 0 \end{bmatrix}$$

Fuzzy relations

- Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp set X1, X2, ..., Xn
- Here, n-tuples (x1, x2, ..., xn) may have varying degree of memberships within the relationship.
- The membership values indicate the strength of the relation between the tuples.

Fuzzy relations

Example:

 $X = \{ typhoid, viral, cold \}, Y = \{ running nose, high temp, shivering \}$

The fuzzy relation R is defined as

		and a second	<i></i>	
typhoid [0.1	0.9	0.8	1
R = viral	0.2	0.9	0.7	
cold	0.9	0.4	0.6	

running nose high temperature shivering

Fuzzy Cartesian product

Suppose

- A is a fuzzy set on the universe of discourse X with $\mu_A(x)|x \in X$
- B is a fuzzy set on the universe of discourse Y with $\mu_B(y)|y\in Y$

Then $R = A \times B \subset X \times Y$; where R has its membership function given by $\mu_R(x,y) = \mu_{AxB}(x,y) = min\{\mu_A(x),\mu_B(y)\}$

Fuzzy Cartesian product

Example:

$$A = \{(a1, 0.2), (a2, 0.7), (a3, 0.4)\}$$
 and $B = \{(b1, 0.5), (b2, 0.6)\}$

$$R = A \times B = \begin{bmatrix} a_1 & 0.2 & 0.2 \\ a_2 & 0.5 & 0.6 \\ a_3 & 0.4 & 0.4 \end{bmatrix}$$

Operations on Fuzzy relations

Let R and S be two fuzzy relations on $A \times B$.

• Union:
$$\mu_{RUS}(a,b) = max\{\mu_{R}(a,b), \mu_{S}(a,b)\}$$

• Intersection:
$$\mu_{R \cap S}(a,b) = min\{\mu_R(a,b), \mu_S(a,b)\}$$

• Complement:
$$\mu_{\bar{R}}(a,b) = 1 - \mu_{R}(a,b)$$

• Composition:
$$T = R \circ S$$

$$\mu_{R \circ S} = \max_{y \in Y} \{ \min(\mu_R(x, y), \mu_S(y, z)) \}$$

Operations on Fuzzy relations: Example

Example:
$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3),$$

$$R = \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \begin{bmatrix} 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{bmatrix} \qquad and \qquad S = \begin{matrix} y_1 \\ y_2 \end{matrix} \begin{bmatrix} 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{bmatrix}$$

$$R \circ S = \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \begin{bmatrix} 0.5 & 0.4 & 0.5 \\ 0.5 & 0.8 & 0.9 \\ 0.6 & 0.6 & 0.7 \end{bmatrix}$$

 $\mu_{R \circ S}(x_1, y_1) = max\{min(\mu_R(x_1, y_1), \mu_S(y_1, z_1)), min(\mu_R(x_1, y_2), \mu_S(y_2, z_1))\}\$ $= max\{min(0.5, 0.6), min(0.1, 0.5)\} = max\{0.5, 0.1\} = 0.5 \text{ and so on.}$

Fuzzy relation: An example

Consider the following two sets *P* and *D*, which represent a set of paddy plants and a set of plant diseases. More precisely

 $P = \{P_1, P_2, P_3, P_4\}$ a set of four varieties of paddy plants

 $D = \{D_1, D_2, D_3, D_4\}$ of the four various diseases affecting the plants.

In addition to these, also consider another set $S = \{S_1, S_2, S_3, S_4\}$ be the common symptoms of the diseases.

Let, R be a relation on $P \times D$, representing which plant is susceptible to which diseases, which is stated as

$$R = \begin{bmatrix} P_1 & D_2 & D_3 & D_4 \\ P_1 & 0.6 & 0.6 & 0.9 & 0.8 \\ P_2 & 0.1 & 0.2 & 0.9 & 0.8 \\ P_3 & 0.9 & 0.3 & 0.4 & 0.8 \\ P_4 & 0.9 & 0.8 & 0.4 & 0.2 \end{bmatrix}$$

Fuzzy relation: An example

Also, consider T be the another relation on $D \times S$, which is given by

$$S = \begin{bmatrix} S_1 & S_2 & S_3 & S_4 \\ D_1 & 0.1 & 0.2 & 0.7 & 0.9 \\ D_2 & 1.0 & 1.0 & 1.4 & 0.6 \\ D_3 & 0.0 & 0.5 & 0.9 \\ D_4 & 0.9 & 1.0 & 0.8 & 0.2 \end{bmatrix}$$

Obtain the association of plants with the different symptoms of the disease using max-min composition S_1 S_2 S_3 S_4

$$R \circ S = \begin{cases} P_1 \\ P_2 \\ P_3 \\ P_4 \end{cases} \begin{bmatrix} 0.8 & 0.8 & 0.8 & 0.9 \\ 0.8 & 0.8 & 0.8 & 0.9 \\ 0.8 & 0.8 & 0.8 & 0.9 \\ 0.8 & 0.8 & 0.7 & 0.9 \end{bmatrix}$$