Soluzioni foglio 6

Pietro Mercuri

17 novembre 2018

Esercizio 1. Dati i sottospazi vettoriali U e W di uno spazio vettoriale V sul campo K, determinare la dimensione e una base di $U, W, U \cap W, U + W$. Dire inoltre se la somma è diretta.

1.

$$V = \mathbb{R}^{3}, \quad K = \mathbb{R},$$

$$U : \left\{ x - y + 3z = 0, \right.$$

$$W : \left\{ \begin{aligned} x + 2y - z &= 0 \\ y + 2z &= 0. \end{aligned} \right.$$

2.

$$V = \mathbb{R}^3, \quad K = \mathbb{R},$$

 $U : \{x + 3y + 3z = 0,$
 $W : \{y + 5z = 0.$

3.

$$V = \mathbb{R}^3, \quad K = \mathbb{R},$$

$$U = L_{\mathbb{R}} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 7 \\ 2 \end{pmatrix} \right\},$$

$$W : \begin{cases} 3x - y + 2z = 0 \\ x + z = 0. \end{cases}$$

4.

$$V = \mathbb{R}^4, \quad K = \mathbb{R},$$

$$U = L_{\mathbb{R}} \left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} \right\},$$

$$W : \left\{ \begin{aligned} x_1 + x_2 - x_3 &= 0\\ x_2 + x_4 &= 0. \end{aligned} \right.$$

5.

$$V = \mathbb{R}^4, \quad K = \mathbb{R},$$

$$U : \begin{cases} x_1 + x_2 - 3x_4 = 0 \\ 2x_1 - x_2 - x_3 - x_4 = 0 \\ x_1 + x_2 = 0, \end{cases}$$

$$W = L_{\mathbb{R}} \left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 8 \\ 9 \\ 10 \end{pmatrix} \right\}.$$

6.

$$V = \mathbb{R}^4, \quad K = \mathbb{R},$$

$$U : \begin{cases} x_1 - x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 = 0 \\ x_1 + 4x_4 = 0, \end{cases}$$

$$W : \begin{cases} 2x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_2 + 4x_3 - x_4 = 0. \end{cases}$$

Soluzione esercizio 1. 1. Risolvendo il sistema lineare omogeneo da-

to dalle equazioni cartesiane di
$$U$$
, si ottiene che $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix} \right\}$

è una base di U e, quindi $\dim_{\mathbb{R}}(U)=2$. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane di W, si ottiene che

$$\left\{ \begin{pmatrix} -5 \\ 2 \\ -1 \end{pmatrix} \right\}$$
è una base di W e, quindi $\dim_{\mathbb{R}}(W) = 1$. Sappiamo che

il sottospazio somma U+W è generato dall'unione dei generatori dei

due sottospazi
$$U$$
 e W , quindi $U+W=L_{\mathbb{R}}\left\{\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}-3\\0\\1\end{pmatrix},\begin{pmatrix}-5\\2\\-1\end{pmatrix}\right\}$

Ma questa non è necessariamente una base. Sia A la matrice le cui colonne sono tali generatori, si ha che $\det(A) = -10 \neq 0$, quindi

$$\operatorname{rg}(A) = 3 = \dim_{\mathbb{R}}(U + W) e \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -5 \\ 2 \\ -1 \end{pmatrix} \right\}$$
è una base

di U+W. Quindi, usando la formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U\cap W)=\dim_{\mathbb{R}}(U)+\dim_{\mathbb{R}}(W)-\dim_{\mathbb{R}}(U+W)=2+1-3=0$ e quindi $U\cap W=\{\mathbf{0}\}$ e non ammette basi. Inoltre la somma è diretta e $U\oplus W=\mathbb{R}^3$, poiché $\dim_{\mathbb{R}}(U+W)=3=\dim_{\mathbb{R}}(\mathbb{R}^3)$.

ne di U, si ottiene che $\left\{ \begin{pmatrix} -3\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix} \right\}$ è una base di U e, quindi dim $\mathbb{R}(U) = 2$. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane di W, si ottiene che $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-5\\1 \end{pmatrix} \right\}$ è una base di W e, quindi dim $\mathbb{R}(W) = 2$. Sappiamo che il sottospazio somma U + W è generato dall'unione dei generatori dei due sottospazi U e W, quindi $U + W = L_{\mathbb{R}} \left\{ \begin{pmatrix} -3\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-5\\1 \end{pmatrix} \right\}$. Ma questa non è necessariamente una base. Sia A la matrice le cui co- $\begin{pmatrix} 1&0&0&-5\\1&0&0&-5 \end{pmatrix}$

2. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesia-

- questa non è necessariamente una base. Sia A la matrice le cui colonne sono tali generatori, si ha che $A \sim \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -12 \end{pmatrix}$ e quindi
- $\operatorname{rg}(A) = 3 = \dim_{\mathbb{R}}(U+W)$. Quindi una base di U+W è formata dalle prime tre colonne di A (quelle che corrispondono ai pivot
- della matrice a scalini equivalente), cioè: $\left\{ \begin{pmatrix} -3\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$.
- Usando la formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U \cap W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) \dim_{\mathbb{R}}(U+W) = 2+2-3=1$ e quindi la somma non è diretta. Una base di $U \cap W$ si trova considerando il sistema lineare omogeneo delle equazioni cartesiane di U e di W considerate tutte contemporaneamente, cioè $\begin{cases} x+3y+3z=0 \\ y+5z=0 \end{cases}$. Risolvendolo si ot-
- tiene che una base di $U \cap W$ è $\left\{ \begin{pmatrix} 12 \\ -5 \\ 1 \end{pmatrix} \right\}$. Inoltre $U + W = \mathbb{R}^3$, poiché $\dim_{\mathbb{R}}(U + W) = 3 = \dim_{\mathbb{R}}(\mathbb{R}^3)$.
- 3. Sia A la matrice le cui colonne sono i generatori dati di U, allora $A \sim \begin{pmatrix} 1 & 3 & 1 \\ 0 & -7 & 7 \\ 0 & 0 & 0 \end{pmatrix}$ e quindi una base di U è formata dalle prime due colonne di A (quelle che corrispondono ai pivot della matrice a scalini equivalente), cioè: $\left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \right\}$. Quindi $\dim_{\mathbb{R}}(U) = 2$. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane di W, si ottiene che $\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$ è una base di W e, quindi

- $\dim_{\mathbb{R}}(W)=1$. Sappiamo che il sottospazio somma U+W è generato dall'unione dei generatori dei due sottospazi U e W, quindi
- $U+W=L_{\mathbb{R}}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \right\}$. Ma questa non è necessaria-
- mente una base. Sia B la matrice le cui colonne sono tali generatori, si ha che $det(B) = 11 \neq 0$, quindi $rg(B) = 3 = dim_{\mathbb{R}}(U + W)$ e
- $\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \right\}$ è una base di U+W. Quindi, usando la

formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U \cap W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) - \dim_{\mathbb{R}}(U+W) = 2+1-3 = 0$ e quindi $U \cap W = \{\mathbf{0}\}$ e non ammette basi. Inoltre la somma è diretta e $U \oplus W = \mathbb{R}^3$, poiché $\dim_{\mathbb{R}}(U+W) = 3 = \dim_{\mathbb{R}}(\mathbb{R}^3)$.

- 4. Sia A la matrice le cui colonne sono i generatori dati di U, allora
 - $A \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ e quindi una base di U è formata dalle prime tre

colonne di A (quelle che corrispondono ai pivot della matrice a sca-

lini equivalente), cioè: $\left\{\begin{pmatrix}1\\1\\1\\0\end{pmatrix},\begin{pmatrix}1\\1\\0\\1\end{pmatrix},\begin{pmatrix}1\\0\\1\\1\end{pmatrix}\right\}. \text{ Quindi } \dim_{\mathbb{R}}(U)\,=\,3.$

Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesia-

ne di W, si ottiene che $\left\{\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}1\\-1\\0\\1\end{pmatrix}\right\}$ è una base di W e, quin-

di $\dim_{\mathbb{R}}(W)=2$. Sappiamo che il sottospazio somma U+W è generato dall'unione dei generatori dei due sottospazi U e W, quindi

$$U+W=L_{\mathbb{R}}\left\{\begin{pmatrix}1\\1\\1\\0\end{pmatrix},\begin{pmatrix}1\\1\\0\\1\end{pmatrix},\begin{pmatrix}1\\0\\1\\1\end{pmatrix},\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}1\\-1\\0\\1\end{pmatrix}\right\}. \text{ Ma questa non è}$$

necessariamente una base. Sia B la matrice le cui colonne sono ta-

li generatori, si ha che $B \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$, quindi rg(B) =

 $4=\dim_{\mathbb{R}}(U+W)$. Quindi una base di U+W è formata dalle prime quattro colonne di B (quelle che corrispondono ai pivot della ma-

trice a scalini equivalente), cioè:
$$\left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} \right\}. \text{ Quin-}$$

di, usando la formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U \cap W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) - \dim_{\mathbb{R}}(U + W) = 3 + 2 - 4 = 1$ e quindi la somma non è diretta. Una base di $U \cap W$ si trova uguagliando le equa-

zioni parametriche dei due sottospazi
$$\begin{pmatrix} t_1+t_2+t_3\\t_1+t_2\\t_1+t_3\\t_2+t_3 \end{pmatrix} = \begin{pmatrix} s_1+s_2\\-s_2\\s_1\\s_2 \end{pmatrix}.$$

Da questo segue che
$$\begin{cases} t_1 = -2h \\ t_2 = h \\ t_3 = 0 \\ s_1 = -2h \\ s_2 = h \end{cases}$$
 con $h \in \mathbb{R}$ e sostituendo t_1, t_2, t_3 nelle $t_3 = 0$

equazioni parametriche di U (oppure sostituendo s_1, s_2 nelle equazioni

parametriche di
$$W$$
) si ottiene che $\left\{ \begin{pmatrix} 1\\1\\2\\-1 \end{pmatrix} \right\}$ è una base di $U \cap W$.

Inoltre $U + W = \mathbb{R}^4$, poiché $\dim_{\mathbb{R}}(U + W) = 4 = \dim_{\mathbb{R}}(\mathbb{R}^4)$.

5. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane

di
$$U$$
, si ottiene che $\left\{\begin{pmatrix}1\\-1\\3\\0\end{pmatrix}\right\}$ è una base di U e, quindi $\dim_{\mathbb{R}}(U)=1.$

Sia A la matrice le cui colonne sono i generatori dati di W, allora

$$A \sim \begin{pmatrix} 1 & 5 & 9 \\ 0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
e quindi una base di W è formata dalle prime due

colonne di ${\cal A}$ (quelle che corrispondono ai pivot della matrice a scalini

equivalente), cioè:
$$\left\{\begin{pmatrix}0\\1\\2\\3\end{pmatrix}, \begin{pmatrix}4\\5\\6\\7\end{pmatrix}\right\}$$
. Quindi $\dim_{\mathbb{R}}(W)=2$. Sappiamo

che il sottospazio somma U+W è generato dall'unione dei generatori

dei due sottospazi
$$U$$
 e W , quindi $U+W=L_{\mathbb{R}}\left\{\begin{pmatrix}1\\-1\\3\\0\end{pmatrix},\begin{pmatrix}0\\1\\2\\3\end{pmatrix},\begin{pmatrix}4\\5\\6\\7\end{pmatrix}\right\}$

Ma questa non è necessariamente una base. Sia B la matrice le cui

- colonne sono tali generatori, si ha che $B \sim \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 9 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, quindi $\operatorname{rg}(B) = 2$
- $3=\dim_{\mathbb{R}}(U+W).$ Quindi una base di U+W è formata dalle prime tre colonne di B (quelle che corrispondono ai pivot della matrice a
- scalini equivalente), cioè: $\left\{ \begin{pmatrix} 1 \\ -1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix} \right\}. \text{ Quindi, usando la}$

formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U \cap W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) - \dim_{\mathbb{R}}(U+W) = 1+2-3=0$ e quindi $U \cap W = \{\mathbf{0}\}$ e non ammette basi. Inoltre la somma è diretta ma $U \oplus W \subsetneq \mathbb{R}^4$, poiché $\dim_{\mathbb{R}}(U+W) = 3 < 4 = \dim_{\mathbb{R}}(\mathbb{R}^4)$.

- 6. Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane
 - di U, si ottiene $\left\{ \begin{pmatrix} -8\\13\\-6\\2 \end{pmatrix} \right\}$ che è una base di U e, quindi $\dim_{\mathbb{R}}(U) = 1$.

Risolvendo il sistema lineare omogeneo dato dalle equazioni cartesiane

- di W, si ottiene $\left\{ \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\1\\0\\2 \end{pmatrix} \right\}$ che è una base di W e, quindi
- $\dim_{\mathbb{R}}(W)=2$. Sappiamo che il sottospazio somma U+W è generato dall'unione dei generatori dei due sottospazi U e W, quindi U+W=
- $L_{\mathbb{R}}\left\{ \begin{pmatrix} -8\\13\\-6\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\1\\0\\2 \end{pmatrix} \right\}$. Ma questa non è necessariamente una

base. Sia A la matrice le cui colonne sono tali generatori, si ha che

 $A \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ quindi $\operatorname{rg}(A) = 2 = \dim_{\mathbb{R}}(U+W).$ Quindi una base di

U+Wè formata dalle prime due colonne di A (quelle che corrispondono

ai pivot della matrice a scalini equivalente), cioè: $\left\{ \begin{pmatrix} -8\\13\\-6\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix} \right\}.$

Quindi, usando la formula di Grassmann, si ottiene che $\dim_{\mathbb{R}}(U \cap W) = \dim_{\mathbb{R}}(U) + \dim_{\mathbb{R}}(W) - \dim_{\mathbb{R}}(U+W) = 1+2-2=1$ e quindi la somma non è diretta. Una base di $U \cap W$ si trova uguagliando le equazioni

parametriche dei due sottospazi
$$\begin{pmatrix} -8t_1\\13t_1\\-6t_1\\2t_1 \end{pmatrix} = \begin{pmatrix} s_1-2s_2\\-2s_1+s_2\\s_1\\2s_2 \end{pmatrix}.$$
 Da que-

sto segue che $\begin{cases} t_1=h\\ s_1=-6h \text{ con } h\in\mathbb{R} \text{ e sostituendo } t_1 \text{ nelle equazioni}\\ s_2=h \end{cases}$

parametriche di U (oppure sostituendo s_1, s_2 nelle equazioni parame-

triche di W) si ottiene che $\left\{ \begin{pmatrix} -8\\13\\-6\\2 \end{pmatrix} \right\}$ è una base di $U \cap W$. Inoltre

 $U+W \subsetneq \mathbb{R}^4$, poiché $\dim_{\mathbb{R}}(U+W)=3<4=\dim_{\mathbb{R}}(\mathbb{R}^4)$. In effetti si osserva che $U \subsetneq W$ e quindi $U \cap W=U$ e U+W=W.

Esercizio 2. Determinare le funzioni lineari soddisfacenti le condizioni date.

1.

$$f: \mathbb{R}^2 \to \mathbb{R},$$

 $f(1,1) = 2,$
 $f(1,2) = -2;$

2.

$$f: \mathbb{R}^2 \to \mathbb{R},$$

 $f(-1,0) = 5,$
 $f(1,1) = 5;$

3.

$$f: \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(1,2) = (1,1),$
 $f(2,4) = (1,1);$

4.

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(2,2) = (1,0),$
 $f(5,-1) = (3,2);$

5.

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(1,-1) = (2,3),$
 $f(-2,2) = (-4,-6);$

6.

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(\sqrt{2}, 1) = (2, 1),$
 $f\left(-2, \frac{1}{5}\right) = (2, 1);$

7.

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(1,2) = (1,1),$
 $f(1,1) = (1,2);$

8.

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $f(1,1,1) = (1,1),$
 $f(0,2,1) = (2,-1).$

Soluzione esercizio 2. 1. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2,$$
$$\begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = -2,$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} a_{11} + a_{12} = 2 \\ a_{11} + 2a_{12} = -2, \\ a_{11} = 6 \\ a_{12} = -4. \end{cases}$$

Quindi la funzione esiste ed è unica ed è

$$A = \begin{pmatrix} 6 & -4 \end{pmatrix},$$

cioè

$$f: \mathbb{R}^2 \to \mathbb{R},$$

 $f(x,y) = 6x - 4y.$

2. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = 5,$$
$$\begin{pmatrix} a_{11} & a_{12} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 5,$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases}
-a_{11} = 5 \\
a_{11} + a_{12} = 5, \\
a_{11} = -5 \\
a_{12} = 10.
\end{cases}$$

Quindi la funzione esiste ed è unica ed è

$$A = \begin{pmatrix} -5 & 10 \end{pmatrix},$$

cioè

$$f: \mathbb{R}^2 \to \mathbb{R},$$

 $f(x,y) = -5x + 10y.$

3. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} a_{11} + 2a_{12} = 1 \\ 2a_{11} + 4a_{12} = 1 \\ a_{21} + 2a_{22} = 1 \\ 2a_{21} + 4a_{22} = 1. \end{cases}$$

Ma questo sistema è impossibile, quindi non esistono funzioni lineari soddisfacenti le condizioni richieste.

4. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} 2a_{11} + 2a_{12} = 1\\ 5a_{11} - a_{12} = 3\\ 2a_{21} + 2a_{22} = 0\\ 5a_{21} - a_{22} = 2, \end{cases}$$
$$\begin{cases} a_{11} = \frac{7}{12}\\ a_{12} = -\frac{1}{12}\\ a_{21} = \frac{1}{3}\\ a_{22} = -\frac{1}{3}. \end{cases}$$

Quindi la funzione esiste ed è unica ed è

$$A = \begin{pmatrix} \frac{7}{12} & -\frac{1}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix},$$

cioè

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

$$f(x,y) = \left(\frac{7}{12}x - \frac{1}{12}y, \frac{1}{3}x - \frac{1}{3}y\right).$$

5. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -6 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} a_{11} - a_{12} = 2 \\ -2a_{11} + 2a_{12} = -4 \\ a_{21} - a_{22} = 3 \\ -2a_{21} + 2a_{22} = -6, \end{cases}$$

$$\begin{cases} a_{11} = 2 + t \\ a_{12} = t \\ a_{21} = 3 + s \\ a_{22} = s, \end{cases}$$

con $t, s \in \mathbb{R}$. Il sistema è indeterminato e ammette ∞^2 soluzioni, quindi esistono infinite funzioni lineari che soddisfano le condizioni richieste che dipendono dalla scelta di due parametri secondo la relazione

$$A = \begin{pmatrix} 2+t & t \\ 3+s & s \end{pmatrix},$$

con $t, s \in \mathbb{R}$, cioè

$$f: \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(x,y) = ((2+t)x + ty, (3+s)x + sy),$

con $t, s \in \mathbb{R}$.

6. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} -2 \\ \frac{1}{5} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} \sqrt{2}a_{11} + a_{12} = 2\\ -2a_{11} + \frac{1}{5}a_{12} = 2\\ \sqrt{2}a_{21} + a_{22} = 1\\ -2a_{21} + \frac{1}{5}a_{22} = 1, \end{cases}$$

$$\begin{cases} a_{11} = \frac{4(\sqrt{2} - 10)}{49}\\ a_{12} = \frac{10(4\sqrt{2} + 9)}{49}\\ a_{21} = \frac{2(\sqrt{2} - 10)}{49}\\ a_{22} = \frac{5(4\sqrt{2} + 9)}{49}. \end{cases}$$

Quindi la funzione esiste ed è unica ed è

$$A = \begin{pmatrix} \frac{4(\sqrt{2}-10)}{49} & \frac{10(4\sqrt{2}+9)}{49} \\ \frac{2(\sqrt{2}-10)}{49} & \frac{5(4\sqrt{2}+9)}{49} \end{pmatrix},$$

cioè

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

$$f(x,y) = \left(\frac{4(\sqrt{2} - 10)}{49}x + \frac{10(4\sqrt{2} + 9)}{49}y, \frac{2(\sqrt{2} - 10)}{49}x + \frac{5(4\sqrt{2} + 9)}{49}y\right).$$

7. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} a_{11} + 2a_{12} = 1 \\ a_{11} + a_{12} = 1 \\ a_{21} + 2a_{22} = 1 \\ a_{21} + a_{22} = 2, \end{cases}$$
$$\begin{cases} a_{11} = 1 \\ a_{12} = 0 \\ a_{21} = 3 \\ a_{22} = -1. \end{cases}$$

Quindi la funzione esiste ed è unica ed è

$$A = \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix},$$

cioè

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

 $f(x,y) = (x, 3x - y).$

8. La matrice corrispondente alla funzione richiesta deve avere la forma

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}.$$

Quindi si deve avere che

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix},$$

e quindi è sufficiente risolvere il sistema

$$\begin{cases} a_{11} + a_{12} + a_{13} = 1 \\ 2a_{12} + a_{13} = 2 \\ a_{21} + a_{22} + a_{23} = 1 \\ 2a_{22} + a_{23} = -1, \end{cases}$$

$$\begin{cases} a_{11} = -1 + t \\ a_{12} = t \\ a_{13} = 2 - 2t \\ a_{21} = 2 + s \\ a_{22} = s \\ a_{23} = -1 - 2s, \end{cases}$$

 $\operatorname{con} t, s \in \mathbb{R}$. Il sistema è indeterminato e ammette ∞^2 soluzioni, quindi esistono infinite funzioni lineari che soddisfano le condizioni richieste che dipendono dalla scelta di due parametri secondo la relazione

$$A = \begin{pmatrix} -1+t & t & 2-2t \\ 2+s & s & -1-2s \end{pmatrix},$$

con $t, s \in \mathbb{R}$, cioè

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
,
 $f(x, y, z) = ((-1 + t)x + ty + (2 - 2t)z, (2 + s)x + sy + (-1 - 2s)z)$,
con $t, s \in \mathbb{R}$.

Esercizio 3. Considerare le seguenti matrici come applicazioni lineari. Scriverne l'espressione analitica esplicitando il dominio e il codominio. Calcolare la dimensione dell'immagine e individuarne una base. Infine calcolare la dimensione del nucleo e individuarne una base.

1.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix};$$

$$2. \ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix};$$

$$3. \ A = \begin{pmatrix} 1 & 5 & 5 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix};$$

4.
$$A = \begin{pmatrix} 1 & -2 & -\sqrt{2} \\ 0 & 0 & 0 \\ -1 & 2 & \sqrt{2} \end{pmatrix};$$

5.
$$A = \begin{pmatrix} 3 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \\ 4 & 2 & 1 & 2 \end{pmatrix};$$

$$6. \ A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & -1 \end{pmatrix};$$

7.
$$A = \begin{pmatrix} -1 & 0 & 6 & 0 \\ 0 & -1 & 0 & 0 \\ 6 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix};$$

$$8. \ A = \begin{pmatrix} -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 0 & -2 \end{pmatrix};$$

9.
$$A = \begin{pmatrix} 0 & 7 & 0 & 7 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

Soluzione esercizio 3. Sia $f \colon V \to W$ una funzione lineare, nell'esercizio verrà usata la formula

$$\dim(\operatorname{Im} f) + \dim(\ker f) = \dim V,$$

e il fatto che

$$\dim(\operatorname{Im} f) = \operatorname{rg} A,$$

dove A è la matrice associata a f.

1. La funzione associata è

$$f \colon \mathbb{R}^3 \to \mathbb{R}^3,$$

 $f(x_1, x_2, x_3) = (x_1, x_1, x_1 + x_2 + x_3).$

Poiché rg $A=2=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=3$, allora $\dim_{\mathbb{R}}(\ker f)=1$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime due colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\},\,$$

e quindi una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{\begin{pmatrix}1\\1\\1\end{pmatrix}, \begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\},\,$$

e quindi una base di ker f su \mathbb{R} è $\left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}$.

2. La funzione associata è

$$f: \mathbb{R}^3 \to \mathbb{R}^3,$$

 $f(x_1, x_2, x_3) = (x_1 + x_3, x_2, x_1 + x_3).$

Poiché rg $A=2=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=3$, allora $\dim_{\mathbb{R}}(\ker f)=1$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime due colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\},\,$$

e quindi una base di
$$\operatorname{Im} f$$
 su \mathbb{R} è $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\},\,$$

e quindi una base di ker f su \mathbb{R} è $\left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$.

3. La funzione associata è

$$f: \mathbb{R}^3 \to \mathbb{R}^3,$$

 $f(x_1, x_2, x_3) = (x_1 + 5x_2 + 5x_3, 5x_2, -x_3).$

Poiché rg $A=3=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=3$, allora $\dim_{\mathbb{R}}(\ker f)=0$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le tre colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix} \right\},\,$$

e quindi una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}5\\5\\0\end{pmatrix},\begin{pmatrix}5\\0\\-1\end{pmatrix}\right\}$. Inoltre si ha

$$\ker f = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\},\,$$

e quindi non esiste una base di ker f su \mathbb{R} .

4. La funzione associata è

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
,
 $f(x_1, x_2, x_3) = \left(x_1 - 2x_2 - \sqrt{2}x_3, 0, -x_1 + 2x_2 + \sqrt{2}x_3\right)$.

Poiché rg $A = 1 = \dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V = 3$, allora $\dim_{\mathbb{R}}(\ker f) = 2$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché la prima colonna è linearmente indipendente (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\},\,$$

e quindi una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} \sqrt{2}\\0\\1 \end{pmatrix} \right\},$$

e quindi una base di ker f su \mathbb{R} è $\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} \sqrt{2}\\0\\1 \end{pmatrix} \right\}$.

5. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
,
 $f(x_1, x_2, x_3, x_4) = (3x_1 + x_2 + x_4, 2x_1 - x_3, x_1 + x_2 + x_3 + x_4, 4x_1 + 2x_2 + x_3 + 2x_4)$.

Poiché rg $A=2=\dim_{\mathbb{R}}(\mathrm{Im}f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}}V=4$, allora $\dim_{\mathbb{R}}(\ker f)=2$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime due colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 3\\2\\1\\4 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix} \right\},\,$$

e quindi una base di Imf su \mathbb{R} è $\left\{ \begin{pmatrix} 3\\2\\1\\4 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix} \right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\},\,$$

e quindi una base di ker f su \mathbb{R} è $\left\{\begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}\right\}$.

6. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^4,$$

 $f(x_1, x_2, x_3, x_4) = (3x_1 + x_2, 6x_1 + 2x_2, x_3 + 2x_4, 2x_3 - x_4).$

Poiché rg $A = 3 = \dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V = 4$, allora $\dim_{\mathbb{R}}(\ker f) = 1$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché la prima, la terza e la quarta colonna sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 3 \\ 6 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ -1 \end{pmatrix} \right\},\,$$

e quindi una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 3 \\ 6 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ -1 \end{pmatrix} \right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} -\frac{1}{3} \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\},\,$$

e quindi una base di ker f su \mathbb{R} è $\left\{ \begin{pmatrix} -\frac{1}{3} \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}$.

7. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^4,$$

 $f(x_1, x_2, x_3, x_4) = (-x_1 + 6x_3, -x_2, 6x_1 - x_3, -x_4).$

Poiché rg $A=4=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=4$, allora $\dim_{\mathbb{R}}(\ker f)=0$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le quattro colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} -1\\0\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 6\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} \right\},$$

e quindi una base di Im
$$f$$
 su \mathbb{R} è $\left\{ \begin{pmatrix} -1\\0\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 6\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} \right\}.$

Inoltre si ha

$$\ker f = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\},\,$$

e quindi non esiste una base di ker f su \mathbb{R} .

8. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^4,$$

 $f(x_1, x_2, x_3, x_4) = (-2x_1 - 2x_4, x_3, x_2, -2x_1 - 2x_4).$

Poiché rg $A=3=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=4$, allora $\dim_{\mathbb{R}}(\ker f)=1$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime tre colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} -2\\0\\0\\-2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\},$$

e quindi una base di $\mathrm{Im} f$ su $\mathbb R$ è $\left\{\begin{pmatrix} -2\\0\\0\\-2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}\right\}.$ Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\},\,$$

e quindi una base di ker f su \mathbb{R} è $\left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$.

9. La funzione associata è

$$f \colon \mathbb{R}^5 \to \mathbb{R}^5,$$

 $f(x_1, x_2, x_3, x_4, x_5) = (7x_2 + 7x_4, x_3, 2x_3, x_1 + x_5, x_2 + x_3 + x_4).$

Poiché rg $A=3=\dim_{\mathbb{R}}(\operatorname{Im} f)$ (vedi soluzione esercizio 6 del foglio 1) e $\dim_{\mathbb{R}} V=5$, allora $\dim_{\mathbb{R}}(\ker f)=2$. Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime tre colonne sono linearmente indipendenti (vedi soluzione esercizio 6 del foglio 1), si ha

$$\operatorname{Im} f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\},\,$$

e quindi una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\}$. Inoltre si ha

$$\ker f = \operatorname{span}_{\mathbb{R}} \left\{ \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\},\,$$

e quindi una base di ker
$$f$$
 su \mathbb{R} è $\left\{\begin{pmatrix}0\\-1\\0\\1\\0\end{pmatrix},\begin{pmatrix}-1\\0\\0\\1\end{pmatrix}\right\}$.

Esercizio 4. Considerare gli spazi W delle soluzioni dei sistemi lineari seguenti come nuclei di applicazioni lineari. Scrivere l'espressione analitica di tali funzioni esplicitando il dominio e il codominio e la matrice associata delle funzioni lineari che hanno W come nucleo. Calcolare la dimensione del nucleo e individuarne una base. Infine calcolare la dimensione dell'immagine e individuarne una base.

1.
$$S: \begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 - 3x_2 = 0; \end{cases}$$

2.
$$S: \begin{cases} -x_1 - x_2 = 0 \\ x_2 + x_3 = 0 \\ x_1 - x_3 - x_4 = 0; \end{cases}$$

3.
$$S:$$

$$\begin{cases} 5x_1 - 2x_2 = 0 \\ x_1 + 3x_3 - 6x_4 = 0; \end{cases}$$

4.
$$S: \begin{cases} x_1 + 2x_2 - x_5 = 0 \\ x_3 + x_4 = 0; \end{cases}$$

5.
$$S: \begin{cases} 3x_1 - x_7 = 0 \\ 2x_2 + 3x_3 = 0 \\ x_1 + x_6 - 2x_7 = 0. \end{cases}$$

Soluzione esercizio 4. Sia $f\colon V\to U$ una funzione lineare, nell'esercizio verrà usata la formula

$$\dim(\operatorname{Im} f) + \dim(\ker f) = \dim V,$$

e il fatto che

$$\dim(\operatorname{Im} f) = \operatorname{rg} A$$
,

dove A è la matrice associata a f. Si pone inoltre $W = \ker f$.

1. La funzione associata è

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2x_1 - 3x_2).$

La matrice associata è

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 0 \end{pmatrix}.$$

Poiché $\dim_{\mathbb{R}} W = 1 = \dim_{\mathbb{R}} (\ker f)$ (vedi soluzione esercizio 7 del foglio 4) e $\dim_{\mathbb{R}} V = 3$, allora $\dim_{\mathbb{R}} (\operatorname{Im} f) = 2 = \operatorname{rg} A$. Una base su \mathbb{R} del nucleo di f è una base di W su \mathbb{R} (vedi soluzione esercizio 7 del foglio 4). Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime due colonne sono linearmente indipendenti una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \end{pmatrix} \right\}$.

2. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^3,$$

 $f(x_1, x_2, x_3, x_4) = (-x_1 - x_2, x_2 + x_3, x_1 - x_3 - x_4).$

La matrice associata è

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & -1 & -1 \end{pmatrix}.$$

Poiché $\dim_{\mathbb{R}} W = 1 = \dim_{\mathbb{R}} (\ker f)$ (vedi soluzione esercizio 7 del foglio 4) e $\dim_{\mathbb{R}} V = 4$, allora $\dim_{\mathbb{R}} (\operatorname{Im} f) = 3 = \operatorname{rg} A$. Una base su \mathbb{R} del

nucleo di f è una base di W su \mathbb{R} (vedi soluzione esercizio 7 del foglio 4). Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime tre colonne sono linearmente indipendenti una base di

$$\operatorname{Im} f \text{ su } \mathbb{R} \stackrel{\circ}{\text{e}} \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right\}.$$

3. La funzione associata è

$$f: \mathbb{R}^4 \to \mathbb{R}^2,$$

 $f(x_1, x_2, x_3, x_4) = (5x_1 - 2x_2, x_1 + 3x_3 - 6x_4).$

La matrice associata è

$$A = \begin{pmatrix} 5 & -2 & 0 & 0 \\ 1 & 0 & 3 & -6 \end{pmatrix}.$$

Poiché $\dim_{\mathbb{R}} W = 2 = \dim_{\mathbb{R}} (\ker f)$ (vedi soluzione esercizio 7 del foglio 4) e $\dim_{\mathbb{R}} V = 4$, allora $\dim_{\mathbb{R}} (\operatorname{Im} f) = 2 = \operatorname{rg} A$. Una base su \mathbb{R} del nucleo di f è una base di W su \mathbb{R} (vedi soluzione esercizio 7 del foglio 4). Poiché l'immagine di f è generata dalle colonne della matrice A e poiché le prime due colonne sono linearmente indipendenti una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\}$.

4. La funzione associata è

$$f \colon \mathbb{R}^5 \to \mathbb{R}^2,$$

 $f(x_1, x_2, x_3, x_4, x_5) = (x_1 + 2x_2 - x_5, x_3 + x_4).$

La matrice associata è

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

Poiché $\dim_{\mathbb{R}} W = 3 = \dim_{\mathbb{R}} (\ker f)$ (vedi soluzione esercizio 7 del foglio 4) e $\dim_{\mathbb{R}} V = 5$, allora $\dim_{\mathbb{R}} (\operatorname{Im} f) = 2 = \operatorname{rg} A$. Una base su \mathbb{R} del nucleo di f è una base di W su \mathbb{R} (vedi soluzione esercizio 7 del foglio 4). Poiché l'immagine di f è generata dalle colonne della matrice A e poiché la prima e la terza colonna sono linearmente indipendenti una base di $\operatorname{Im} f$ su \mathbb{R} è $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

5. La funzione associata è

$$f: \mathbb{R}^5 \to \mathbb{R}^3,$$

 $f(x_1, x_2, x_3, x_4, x_5) = (3x_1 - x_5, 2x_2 + 3x_3, x_1 + x_4 - 2x_5).$

La matrice associata è

$$A = \begin{pmatrix} 3 & 0 & 0 & 0 & -1 \\ 0 & 2 & 3 & 0 & 0 \\ 1 & 0 & 0 & 1 & -2 \end{pmatrix}.$$

Poiché $\dim_{\mathbb{R}} W = 2 = \dim_{\mathbb{R}} (\ker f)$ (vedi soluzione esercizio 7 del foglio 4) e $\dim_{\mathbb{R}} V = 5$, allora $\dim_{\mathbb{R}} (\operatorname{Im} f) = 3 = \operatorname{rg} A$. Una base su \mathbb{R} del nucleo di f è una base di W su \mathbb{R} (vedi soluzione esercizio 7 del foglio 4). Poiché l'immagine di f è generata dalle colonne della matrice A e poiché la prima, la terza e la quarta colonna sono linearmente indipendenti

una base di Im
$$f$$
 su \mathbb{R} è $\left\{ \begin{pmatrix} 3\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$.