HOMEWORK 1: DUE FRIDAY SEPTEMBER 15

Problem 1: (Isomorphism; 10 points) Choose two of the four isomorphism theorems for modules (Theorem 4 in Chapter 10.2) and prove them. (This can be done pretty quickly by using the corresponding isomorphism theorems for groups.)

Problem 2: (Torsion; 10 points) First, do Dummit and Foote Chapter 10.1 Problem 8. Then find the torsion submodules for the \mathbb{Z} -module $\mathbb{Z} \times \mathbb{Z}/6$ and for any finite-dimensional k[x]-module where k is a field.

Problem 3: (Simplicity 1; 10 points) A module is called *simple* if its only submodules are {0} and itself.

- (1) Show that the only simple finite-dimensional $\mathbb{C}[x]$ -modules are one-dimensional. (Hint: Use the fact that any $n \times n$ matrix with entries in \mathbb{C} has an eigenvector.)
- (2) Let $M := \mathbb{C}^2$ be a $\mathbb{C}[x]$ -module where the action of x is given by the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Find all submodules of M.

Problem 4: (Simplicity 2; 10 points) Let R be a ring and M an R-module.

- (1) Suppose that $f: M \longrightarrow M$ is an R-module homomorphism. Show that f is a bijection if and only if there is an R-module homomorphism $g: M \longrightarrow M$ so that $f \circ g = g \circ f = \mathrm{id}$. (You may use that, if S_1 and S_2 are sets, a map $f: S_1 \longrightarrow S_2$ is a bijection if and only if there is a map $g: S_2 \longrightarrow S_1$ so that $f \circ g = \mathrm{id}_{S_2}$ and $g \circ f = \mathrm{id}_{S_1}$.)
- (2) Show that if M is a simple R-module, then $\operatorname{End}_R(M)$ is a division ring, i.e. for every nonzero R-module homomorphism $f: M \longrightarrow M$ there is another R-module homomorphism $g: M \longrightarrow M$ so that $f \circ g = g \circ f = \operatorname{id}$. (Hint: Using the first part, you just need to show that f is a surjection and an injection. Relate this to $\operatorname{im}(f)$ and $\operatorname{ker}(f)$.)
- (3) Find an example of a simple two-dimensional $R := \mathbb{R}[x]$ -module M. Produce a ring isomorphism from $\operatorname{End}_R(M)$ to \mathbb{C} .

Problem 5: (Annihilation; 10 points) Dummit and Foote Chapter 10.2 Problems 4 and 5.

Bonus Problem: (Opposites; 10 points) Given a ring R, the opposite ring R^{op} is the ring with all the same elements, where addition is defined identically, but for which $x \cdot^{op} y := y \cdot x$ where \cdot is multiplication in R and \cdot^{op} is multiplication in R^{op} . Take R as a left Rmodule and show that $\operatorname{Hom}_{R-Mod}(R,R)$ is isomorphic to R^{op} as a ring. (Hint: Consider the map that sends an element r of R^{op} to the function $\phi: R \longrightarrow R$ given by $\phi(x) = xr$.) Show that if $R = \operatorname{Mat}_{n \times n}(k)$ is the ring of $n \times n$ matrices with entries in a field k, then $R^{op} \cong R$ where the isomorphism is given by sending a matrix to its transpose.

Honors Problem: Let D be a division algebra over \mathbb{R} , i.e. D is a ring that contains \mathbb{R} in its center and so that every nonzero element has a multiplicative inverse. Suppose that D is not isomorphic to \mathbb{R} .

- (1) Let F be a maximal subset of commuting (under multiplication) elements of D. Show that F is isomorphic as a ring to \mathbb{C} . Use the fundamental theorem of algebra, which says that the only fields containing \mathbb{R} are \mathbb{R} itself and \mathbb{C} .
- (2) Consider D as an F-vector space with scalar multiplication given by multiplication on the left. Let d be any element of F so that $d^2 = -1$. Let $T: D \longrightarrow D$ be the linear map given by T(x) = xd. Show that the only eigenvalues of T are $\pm i$. If D^+ (resp. D^-) is the +i (resp. -i) eigenspace, then show that $D = D^+ \oplus D^-$ as an F-vector space. (Hint: Use that for $x \in D$, $x = \frac{x + dxd}{2} + \frac{x - dxd}{2}.$ (3) Show that $D^+ = F$.
- (4) Show that if D^- contains a nonzero element e then, letting $S: D \longrightarrow D$ be given by S(x) = xe, S produces a bijection from D^- to D^+ . Show, moreover, that, up to scaling by an element of the copy of \mathbb{R} in the center, we may choose e so that $e^2 = -1$. (Hint: Note that $\mathbb{R} + \mathbb{R} \cdot e$ is isomorphic to \mathbb{C} as in part 1.)
- (5) Conclude that D is isomorphic as a ring to \mathbb{C} or \mathbb{H} , where \mathbb{H} is the algebra of quaternions.