

changqing@ecust.edu.cn

运算放大器

主要内容

- ▶ 运算放大器 (Op Amp) 及其外特性
- ▶ 理想运算放大器(Ideal Op Amp)及其外特性
- > 负反馈理想运算放大器电路分析

运算放大器(operational amplifier): 是高放大倍数的放大器

- ▶ 有源电路元件 (包含许多晶体管的集成电路)
- ▶ 多端器件
- ▶ 能完成数学运算(此例、加、减、微、积分等)
- ▶高增益、高输入电阻、低输出电阻的放大器

一、运算放大器(Op Amp)及其外特性

1. 电路符号

a: 反相输入端(inverting input),输入电压 u_。

b: 同相输入端 (noninverting input) ,输入电压 u₊。

o: 输出端 (output) ,输出电压 u_o 。

<u>+</u>: 公共端 (ground) 接地端。

A: 开环电压放大倍数(open-loop voltage gain)。

放大器的3个重要性质:

▶ 电压放大倍数: A=10的5次方

➤ 输入电阻:从ui两段向输出端看的等效电阻 M欧级

➤ 输出电阻: 从u0两端向输入端看的等效电阻。几十欧的量级

2. 运算放大器的外特性

 $-U_{\mathrm{ds}}$

 $0 U_{ds}$

近似特性

实际特性

 $u_{\rm d}$

期望 $u_0 = Au_d$

注意Ud的参考方向!

$$u_{\mathrm{d}} = u_{+} - u_{-}$$

运算放大器的外特性: 描述输出电压u_o和输入端电压u_d关系。

分三个区域讨论

- ① 线性工作区 $|u_{\rm d}| < U_{\rm ds}$,则 $|u_{\rm o}| = Au_{\rm d}$
- ② 正相饱和区 $u_d > U_{ds}$, 则 $u_o = U_{sat}$
- ③反相饱和区

$$u_{\rm d} < -U_{\rm ds}, \quad \text{if } u_{\rm o} = -U_{\rm sat}$$

这里 $U_{\rm ds}$ 是一个数值很小的电压。当 $U_{\rm sat}$ =13V ($U_{\rm sat}$) 般小于工作电源电压)、 $A=10^5$ 时, $U_{\rm ds}=0.13$ mV。

3. 运算放大器的端电流

 $i_{+}+i_{-}+i_{0}+i_{us+}+i_{us-}=0$

当放大器工作在线性区时,端电压关系式中不出现直流电源电压。在 电路符号中去掉电源端,以简化符号。

注意: 端电流仍是 $i_+ + i_- + i_0 + i_{us+} + i_{us-} = 0$

$$i_+ + i_- + i_o \not= 0$$

4. 电路模型

 $R_{\rm i}$: 运算放大器两输入端间的输入电阻,通常为 $10^6\Omega\sim 10^{13}\,\Omega$ 。

 R_{o} : 运算放大器的输出电阻,通常为 $10\Omega\sim100~\Omega$ 。

- 1.A非常大→允许的输入电压非常小,噪声明显
- 2.不同的Op Amp,A不同→设计的电路只能适用一个特定的运放
- 3. 温度不同, A也不同→ 运放无法正常工作

6. 负反馈放大器(inverting amplifier)

$$u_{o} = -\frac{AR_{f}}{(R_{f} + R_{1}) + AR_{1}} u_{i} \xrightarrow{\mathbf{A} \angle \mathbf{W} \mathbf{K}}$$

$$\frac{u_{\rm o}}{u_{\rm i}} = -\frac{R_{\rm f}}{R_{\rm l}}$$

7. 理想运算放大器

在线性放大区,将运放电路作如下的理想化处理:

- $(1) A \rightarrow \infty$
- $: u_0$ 为有限值,则 $u_d=0$,即 $u_+=u_-$,两个输入端之间相当于短路(虚短路);
- (2) $R_i \rightarrow \infty$, $R_o \rightarrow 0$, $i_{-}=0$, $i_{-}=0$ 。 即从输入端看进去,元件相当于开路(虚开路)。

理想运放的电路符号

二、含负反馈理想运算放大器电路的分析

1. 电压跟随器 (voltage follower)

 $u_{\rm o} = u_{\rm i}$

特点: ①输入电阻无穷大(虚断);

②输出电阻为零;

应用: 在电路中起隔离前后两级电路的作用。

可见,加入跟随器后,隔离了前后两级电路的相互影响。

2. 反相放大器

注意:

- (1) 当 R_1 和 R_f 确定后,为使 u_o 不超过饱和电压(即保证工作在线性区),对 u_i 有一定限制。
 - (2) 运放不能工作在开环状态(极不稳定,振荡在饱和), 一般工作在闭环状态,输出电压由外电路决定。

3. 同相放大器 (noninverting amplifier)

$$u_{+} = u_{-} = u_{i}$$

$$i_{+} = i_{-} = 0$$

$$u_{\rm i} = \frac{R_2}{R_1 + R_2} u_{\rm o}$$

$$u_{o} = \frac{R_{1} + R_{2}}{R_{2}} u_{i} = (1 + \frac{R_{1}}{R_{2}}) u_{i}$$

4. 加法器 (summing amplifier)

$$\begin{cases} u_{-} = u_{+} = 0 \\ i_{-} = i_{+} = 0 \\ i_{1} + i_{2} + i_{3} = i_{f} \end{cases}$$

$$\frac{u_{1}}{u_{0}} + \frac{u_{2}}{R_{1}} + \frac{u_{3}}{R_{2}} = -\frac{u_{0}}{R_{f}}$$

$$u_{o} = -\left(\frac{R_{f}}{R_{1}}u_{1} + \frac{R_{f}}{R_{2}}u_{2} + \frac{R_{f}}{R_{3}}u_{3}\right)$$

$$= R_1 = R_2 = R_3 = R_{\mathrm{f}}$$

则
$$u_0 = -(u_1 + u_2 + u_3)$$
 实现了加法运算

反相比例放大器

 R_{f}

$$u_{o} = -\frac{R_f}{R_1} u_i$$

$$u_{o} = (1 + \frac{R_{1}}{R_{2}})u_{1} - \frac{R_{f}}{R_{1}}u_{2}$$

$$\frac{u_{o}-u_{-}}{R_{f}} = \frac{u_{-}-u_{1}}{R_{1}}$$

$$u_{o} = -\frac{R_{f}}{R_{1}}u_{1} + (1 + \frac{R_{f}}{R_{1}})u_{1}$$

$$u_{o} = -\frac{R_{f}}{R_{1}}u_{1} + (1 + \frac{R_{f}}{R_{1}})u_{2}$$

$$u_{-} = u_{+} = \frac{R_{f}}{R_{1} + R_{f}} u_{2}$$

$$\frac{u_{1} - u_{-}}{R_{1}} = \frac{u_{-} - u_{o}}{R_{f}}$$

实现了减法运算。

含有理想运算放大器的电路分析

- ①根据理想运放的性质,抓住以下两条规则:
 - (a) 同相输入端端和反相输入端的输入电流均为零 ["虚断(路)"];
- (b)对于公共端(地),同相输入端的电压与 反相输入端的电压相等

["虚短(路)"]。

②合理地运用这两条规则,并与结点电压法相结合。

5. 运算放大器所吸收的瞬时功率

由"虚短"、"虚断",运放吸收的功率

$$p=u_{o}i_{o}$$

$$\frac{u_1}{R_1} = \frac{u_2}{R_1 + R_f}$$

由于 $u_2 = -R_L i_2$, $u_S = u_1$,图中红框所示二端口部分(由运放及线性非时变电阻 R_1 和 R_f 组成)吸收的功率为

 $i_a = 0$

$$p = u_1 i_1 + u_2 i_2 = u_2 \left(-\frac{u_2}{R_L}\right) = -\frac{1}{R_L} \left(u_S \frac{R_1 + R_f}{R_L}\right)^2$$

式中负号表明二端口向负载 R_L 输出功率。由于电阻 R_1 和 R_f 是无源的,故意味着运放向负载提供功率。因此,运算放大器是一种有源元件。