# Rewarding batters for baserunner advancement A ridge-regressed Rasch model

Scott Powers

Stanford University

Saberseminar 2015



#### Background

- Allen (2014): LHB singles more valuable than RHB singles
  - because if runner is on 1B, he more likely gets to 3B
  - LHBs undervalued by  $\sim$  \$300,000/year on average
  - RHBs overvalued by  $\sim$  \$150,000/year on average
- This observation has been made before
  - Pakin (1993)
  - James (1997)
- But no one quantified its value before Allen (2014)
- Today: Extend Allen's work to evaluate individual players

# Singles spray charts (2014)





Images created with Bill Petti's Spray Chart Comparison tool Portraits from Baseball-Reference.com

# Singles spray charts (2014)





Images created with Bill Petti's Spray Chart Comparison tool Portraits from Baseball-Reference.com

# Probabilistic baserunning model

- For each single with a runner on 1B, observe:
  - B<sub>i</sub>: the batter
  - R<sub>i</sub>: the runner on 1B
  - $H_i$ : handedness of  $B_i$  (L or R)
  - z<sub>i</sub>: vector of additional covariates to control for (e.g. indicators of full count, two outs, home team)
  - $Y_i = \left\{ egin{array}{ll} 1 & \mbox{if } R_i \mbox{ safely reaches third or home} \\ 0 & \mbox{otherwise} \end{array} \right.$

Model (logistic regression):

$$P(Y_i = 1) = \frac{e^{\alpha + \beta_{B_i} + \rho_{R_i} + \theta_{H_i} + \zeta^T z_i}}{1 + e^{\alpha + \beta_{B_i} + \rho_{R_i} + \theta_{H_i} + \zeta^T z_i}} = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

.

### Illustrative example

$$\alpha = -1.52$$
 
$$\beta_{\mathsf{Morse}} = -0.01$$
 
$$\rho_{\mathsf{Pence}} = +0.42$$
 
$$\theta_{\mathsf{R}} = +0.00$$



$$P(Y=1) = \frac{e^{-1.52 - 0.01 + 0.42 + 0.00}}{1 + e^{-1.52 - 0.01 + 0.42 + 0.00}} = \frac{e^{-1.11}}{1 + e^{-1.11}} = 24.7\%$$

# Fitting the model

$$\begin{split} &(\hat{\alpha}, \hat{\beta}, \hat{\rho}, \hat{\theta}, \hat{\zeta}) = \\ &\arg\min\left\{-\sum_{i=1}^{n}\log P(y_{i}|\eta_{i}) + \lambda\left(||\beta||_{2}^{2} + ||\rho||_{2}^{2} + ||\theta||_{2}^{2} + ||\zeta||_{2}^{2}\right)\right\} \end{split}$$

- Solve this optimization problem with R package glmnet (coordinate descent)
- $\lambda$  is regularization parameter, chosen via cross-validation
- Benefit of regularization: regression to the mean

# 1<sup>st</sup>-to-3<sup>rd</sup> advancement: estimated vs. observed





### Implications for wOBA

|       | Actual | Theoretical breakup |             |               |
|-------|--------|---------------------|-------------|---------------|
| Event | Total  | Getting on          | Moving over | Inning killer |
| OUT   | -0.27  | -0.01               | -0.10       | -0.16         |
| BB    | 0.30   | 0.24                | 0.06        | _             |
| 1B    | 0.46   | 0.25                | 0.21        | _             |
| 2B    | 0.75   | 0.41                | 0.34        | _             |
| 3B    | 1.03   | 0.61                | 0.42        | _             |
| HR    | 1.40   | 1.00                | 0.40        | _             |

from tangotiger.net

$$\textit{wOBA}_{\textit{naive}} \propto .57*\textit{BB} + .73*1\textit{B} + 1.02*2\textit{B} + 1.30*3\textit{B} + 1.67*\textit{HR}$$

# Implications for wOBA

|       | Actual |            | Theoretical breakı | ıp            |
|-------|--------|------------|--------------------|---------------|
| Event | Total  | Getting on | Moving over        | Inning Killer |
| OUT   | -0.25  | -0.00      | -0.09              | -0.16         |
| BB    | 0.30   | 0.24       | 0.06               |               |
| 1B    | ???    | 0.25       | .09 + .06 + 0.13   |               |
| 2B    | ???    | 0.40       | .14+0.27           | _             |
| 3B    | 1.01   | 0.59       | 0.42               | _             |
| HR    | 1.40   | 1.00       | 0.40               | _             |

$$wOBA_{ ext{Miguel Cabrera}} \propto .55*BB + .70*1B + .99*2B + 1.26*3B + 1.65*HR$$
  $wOBA_{ ext{Willie Bloomquist}} \propto .55*BB + .68*1B + .97*2B + 1.26*3B + 1.65*HR$ 

# Batters most overrated/underrated by wOBA

| Player        | Adjustment |
|---------------|------------|
| James Loney   | +.0032     |
| Robinson Cano | +.0026     |
| Eric Hosmer   | +.0024     |
| Joe Mauer     | +.0024     |
| Jed Lowrie    | +.0023     |
| 1             | '          |

| Rajai Davis        | 0030 |
|--------------------|------|
| Adeiny Hechavarria | 0033 |
| Danny Santana      | 0033 |
| Starling Marte     | 0034 |
| Dee Gordon         | 0037 |



# Batters most overrated/underrated by wOBA

| Player        | Adjustment |
|---------------|------------|
| James Loney   | +\$1.33M   |
| Robinson Cano | +\$1.08M   |
| Eric Hosmer   | +\$1.03M   |
| Joe Mauer     | +\$1.00M   |
| Jed Lowrie    | +\$0.96M   |
| '             | '          |

| Rajai Davis<br>Adeiny Hechavarria | -\$1.26M<br>-\$1.37M |
|-----------------------------------|----------------------|
| Danny Santana                     | -\$1.37M             |
| Starling Marte                    | -\$1.41M             |
| Dee Gordon                        | -\$1.54M             |



#### Conclusions

- Identified \$1.33M in surplus value for James Loney in 2014
  - Not accounted for anywhere else, publicly
- Results on 2014 data are consistent with Allen (2014)
  - But allow for results on individual players

#### Acknowledgments

- Konstantinos Balafas, Vihan Lakshman, Bob McMurray and Sam Nolen for comments that led to improvements
- Retrosheet
- TL Turocy (Chadwick)
- Max Marchi and Jim Albert (Analyzing Baseball Data with R)
- Jerome Friedman, Trevor Hastie, Noah Simon and Rob Tibshirani (glmnet)

sspowers@stanford.edu

#### References

- Allen D (2014). The single to right field: Why left-handed batters may be undervalued one Mike Trout Unit. Stanford University STATS 50 Final Projects. http://web.stanford.edu/class/stats50/finalprojects.html
- Dolinar S (2015). WAR diagram: position players. FanGraphs. Published May 15, 2015; accessed August 13, 2015.
- James B (1997). The Bill James Guide to Baseball Managers
- Pankin MD (1993). Subtle aspects of the game. SABR 23. http://www.pankin.com/markov/sabr23.htm
- Tango T (date unknown). How are runs really created. Accessed August 13, 2015. http://www.tangotiger.net/runscreated.html

# Backup slides

#### The dataset

- From Retrosheet play-by-play data
- All singles with a runner on 1B in 2014, excluding:
  - Plays with at least one error
  - Batted balls classified as popups
  - Plays when lead runner is thrown out
- Otherwise, anything goes
- < 5% of singles excluded</li>
- Sample size: n = 8571 singles; 641 batters; 671 runners

# Summary of results

| $\hat{\alpha} =$      | = - | 1.52 |
|-----------------------|-----|------|
| $\hat{	heta}_L$       | =   | 0.43 |
| $\hat{\zeta}_{home}$  | =   | 0.13 |
| $\hat{\zeta}_{2outs}$ | =   | 0.42 |
| 2<br>20uts,3—2        | =   | 1.24 |

| R                   | $\hat{ ho}_{R}$ |
|---------------------|-----------------|
| Elvis Andrus        | 0.73            |
| Dexter Fowler       | 0.73            |
| Rajai Davis         | 0.63            |
| Jackie Bradley, Jr. | 0.63            |
| Brian Dozier        | 0.62            |

. . .

| Chris Carter    | -0.49 |
|-----------------|-------|
| Billy Butler    | -0.53 |
| Pablo Sandoval  | -0.55 |
| Starlin Castro  | -0.61 |
| Victor Martinez | -0.73 |

#### Future work

- Consider baserunner advancement on outs
- Include identity of fielder as variable in regression
- Adjust WAR for baserunning