eigenvectors of A' pertaining to the eigenvalues in H . Then U is closed with respect to the multiplication in M and the formation of adjoints. Thus N is a W*-subalgebra of M [Sakai (1971), Corollary 1.7.9.] and $T_{O}(t)' := T(t)'|_{N}$ is multiplicative (for this see D-III, Lemma 1.1).

Since $Q \in T^- \subseteq L(_W(M_\star))$ there exists an ultrafilter U on \mathbb{R}_+ such that $\lim_{U} \langle T(t) \, \psi, x \rangle = \langle Q \psi, x \rangle$ for all $x \in M$ and $\psi \in M_\star$. If $\eta \in H$ and $\psi_{\eta} \in M_\star$ such that $A \psi_{\eta} = \eta \psi_{\eta}$, then for all $x \in M$:

$$\langle \psi_{\eta}, x \rangle = \langle Q\psi_{\eta}, x \rangle = \lim_{U} \langle T(t)\psi_{\eta}, x \rangle = (\lim_{U} e^{\eta t}) \langle \psi_{\eta}, x \rangle$$

hence $\lim_{\ensuremath{\mathcal{U}}} \ e^{\ensuremath{\text{nt}}} = 1$. From this it follows that for all $\ensuremath{\psi}^{\ensuremath{\text{c}}} M_{\star}$ we have

$$\langle \psi, Q'(u_{\eta}) \rangle = \lim_{U} \langle \psi, T(t)'u_{\eta} \rangle =$$

$$= (\lim_{U} e^{\eta t}) \langle \psi, u_{\eta} \rangle = \langle \psi, u_{\eta} \rangle.$$

Hence $N \subseteq Q'(M)$.

For γ in the dual group of K and $x^{\xi}M$ we define x_{γ} by

$$\psi\left(\mathbf{x}_{\gamma}\right) := \int_{K} \langle \mathbf{S}\psi, \mathbf{x} \rangle \langle \mathbf{S}, \gamma \rangle * \ d\mathbf{m}\left(\mathbf{S}\right) \quad \left(\psi \in \mathbf{M}_{\star}^{+}\right) .$$

Then $x_{\gamma} \in M$ and $T(t)'x_{\gamma} = \langle QT(t), \gamma \rangle x_{\gamma}$. Therefore $x_{\gamma} \in N$. Thus the inclusion $Q'M \subseteq N$ is proved if we can show that Q'M belongs to the $\sigma(M,M_{\star})$ -closed linear span of $\{x_{\gamma}: \gamma \in K \ , x \in M\}$. For this it is enough to show that every linear form $\psi \in M_{\star}$ such that $\psi(x_{\gamma}) = 0$ for all $\gamma \in K$ satisfies $\psi(Qx) = 0$ for all $x \in M$. But if $\psi(x_{\gamma}) = 0$ then

$$\int_{K} \langle S\psi, x \rangle \langle S, \gamma \rangle \star dm(S) = 0 , \gamma \in K .$$

Since the map $(S \to \psi(Sx))$ is continuous on K and since the elements of K form a complete orthonormal basis in $L^2(K,dm)$, we obtain $\psi(Sx) = 0$ for all $S \in K$, in particular $\psi(Qx) = 0$ as desired.

Since the range of Q' is a W*-subalgebra of M it follows from [Takesaki (1979), Theorem III.3.4] that Q' is a completely positive, normal conditional expectation. Q' is faithful, i.e. $\ker(Q')$ \cap M₊ = {0} since $Q\phi = \phi$ for the faithful linear form ϕ .