- 1. Let $g(x) = x^5 + 3x 2$, and let g^{-1} denote the inverse of g. Then $(g^{-1})'(2)$ is equal to:
- A) $\frac{1}{83}$ B) $\frac{1}{8}$
- C) 1
- D) 8
- E) 83
- 2. Let $f(x) = \frac{1}{4}x^3 + x 1$, and let f^{-1} denote the inverse of f. Then $(f^{-1})'(3)$ is equal to:

- A) $\frac{4}{31}$ B) $\frac{1}{6}$ C) $\frac{1}{4}$ D) $\frac{1}{3}$ E) $\frac{35}{4}$
- 3. Let $f(x) = x^5 + x$. Find the value of $\frac{d}{dx}f^{-1}(x)$ at x = 2.
- A) 81

- B) 6 C) $\frac{1}{81}$ D) $\frac{1}{6}$ E) $-\frac{1}{6}$
- 4. Let $h(x) = x^3 + 2x 1$, and let h^{-1} denote the inverse of h. Then $\left(h^{-1}\right)'(2)$ is equal to:

- A) 14 B) 5 C) $\frac{1}{5}$ D) $\frac{1}{9}$ E) $\frac{1}{14}$
- 5. If f(4) = 5 and $f'(4) = \frac{2}{3}$, then calculate: $(f^{-1})'(5)$.
- A) $\frac{1}{5}$ B) $\frac{1}{4}$ C) $\frac{2}{3}$ D) $\frac{3}{2}$

- 6. If g(7) = 3 and $g'(3) = \frac{5}{6}$ and $g'(7) = \frac{3}{4}$, then $(g^{-1})'(3) = ?$
- A) $\frac{3}{4}$ B) $\frac{5}{6}$ C) $\frac{6}{5}$ D) $\frac{4}{3}$ E) $\frac{1}{7}$

- 7. Let $f(x) = 3x^4 + x$ and let g be the inverse function of f. What is the value of g'(2)?
- A) $\frac{1}{2}$ B) $-\frac{1}{11}$ C) $\frac{1}{11}$ D) $\frac{1}{13}$ E) $-\frac{1}{13}$

8. Let $f(x) = x^5 + 1$ and let g be the inverse function of f. What is the value of g'(0)?

- *A*) −1
- B) $\frac{1}{5}$
- C) 1
- D) g'(0) does not exist

E) g'(0) cannot be determined from the given information

9. The following table shows the values of differentiable functions f and g.

Х	f	f'	g	g'
1	2	1 -	-3	5
		2		
2	3	1	0	4
3	4	2	2	3
4	6	4	3	1
				2

If $H(x) = f^{-1}(x)$, then H'(3) equals

- A) $-\frac{1}{16}$ B) $-\frac{1}{8}$ C) $-\frac{1}{2}$ D) $\frac{1}{2}$

- E) 1

10. The following table shows the values of differentiable functions f and g.

X	f	f'	g	g'
-1	1	-2	-1	6
	$\overline{2}$			
0	1	-1	3	5
1	2	3	4	4
2	3	4	7	3

If $H(x) = f^{-1}(x)$, then H'(1) equals

- A) 1
- B) 0 C) undefined D) $\frac{1}{2}$ E) -1

11. Let $f(x) = x^3 - \frac{4}{x}$ and let f^{-1} denote the inverse of f. Then $(f^{-1})'(6)$ is equal to:

- A) $\frac{1}{13}$ B) $\frac{1}{6}$ C) $\frac{1}{12}$ D) $-\frac{1}{12}$ E) $-\frac{1}{6}$

12. Let $h(x) = \sqrt{x-4}$ and let h^{-1} denote the inverse of h. Then $\left(h^{-1}\right)'(2)$ is equal to:

- A) $\frac{1}{4}$ B) $\frac{1}{8}$ C) 8 D) 4 E) $\frac{1}{2}$

13. Let $f(x) = \sin x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, and let g be the inverse function of f. What is the value of $g'\left(\frac{1}{2}\right)$?

- A) $\frac{2}{\sqrt{3}}$ B) $\frac{\sqrt{3}}{2}$ C) $\frac{1}{2}$ D) 2 E) $\frac{6}{\pi}$

14. Let $g(x) = 2x^3 - x^2 + 1$. Find the value of $\frac{d}{dx}g^{-1}(x)$ at x = 13.

- A) $\frac{1}{20}$ B) $\frac{1}{13}$ C) 13 D) 20

- E) $\frac{1}{5}$

15. If h(2) = -3, $h'(2) = \frac{1}{4}$, $h'(-3) = \frac{1}{3}$. Compute $(h^{-1})'(-3)$

- A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) 4 D) 3 E) $-\frac{1}{3}$

Answers

- 1. B
- 2. C
- 3. D 4. C
- 5. D
- 6. D

- 7. B
- 8. B
- 9. E
- 10. E
- 11. A
- 12. D

- 13. A
- 14. A
- 15. C

Derivatives of Trig Inverse

7. Find the derivative of each of the following functions.

(a)
$$f(x) = \sin^{-1} 2x$$

(b)
$$f(x) = \tan^{-1}(3x)$$

(c)
$$y = \sin^{-1}\left(\frac{1}{3}x\right)$$

(d)
$$y = \tan^{-1}\left(\frac{3}{4}x\right)$$

(e)
$$f(x) = 6\sin^{-1}(4x)$$

(f)
$$f(x) = -5 \tan^{-1}(7x)$$

(g)
$$y = \tan^{-1}\left(e^{2x}\right)$$

(h)
$$v = e^{\tan^{-1}(11x)}$$

(i)
$$f(x) = -9\sin^{-1}(x^4)$$

(j)
$$f(x) = \sin^{-1}(\sqrt{x})$$

(j)
$$f(x) = \sin^{-1}(\sqrt{x})$$
 (k) $y = \tan^{-1}(x^2 + 2)$

(i)
$$y = 4\sin^{-1}(3x-1)$$

(m)
$$f(x) = \tan^{-1}(\sin x)$$

(m)
$$f(x) = \tan^{-1}(\sin x)$$
 (n) $f(x) = \left[\sin^{-1} x\right]^3$

(o)
$$y = 3x^5 \sin^{-1}(x^5)$$

(p)
$$y = x^2 \tan^{-1} \left(\frac{1}{x^2} \right)$$
 (q) $y = \sin^{-1} (\cos x)$

$$(q) y = \sin^{-1}(\cos x)$$

(r)
$$f(x) = \sin^{-1}\left(\sqrt{1-x^2}\right)$$

7. (a) $\frac{2}{\sqrt{1-4x^2}}$ (b) $\frac{3}{1+9x^2}$ (c) $\frac{1}{\sqrt{9-x^2}}$ (d) $\frac{12}{16+9x^2}$ (e) $\frac{24}{\sqrt{1-16x^2}}$ (f) $\frac{-35}{1+49x^2}$

(b)
$$\frac{3}{1+9x^2}$$

(c)
$$\frac{1}{\sqrt{9-x^2}}$$

(d)
$$\frac{12}{16+9x^2}$$

(e)
$$\frac{24}{\sqrt{1-16x^2}}$$
 (f

(g)
$$\frac{2e^{2x}}{1+e^{4x}}$$
 (h) $\frac{11e^{\tan^{-1}11x}}{1+121x^2}$ (i) $\frac{-36x^3}{\sqrt{1-x^8}}$ (j) $\frac{1}{2\sqrt{x}\sqrt{1-x}}$ (k) $\frac{2x}{5+4x^2+x^4}$ (l) $\frac{12}{\sqrt{6x-9x^2}}$ (m) $\frac{\cos x}{1+\sin^2 x}$

$$\frac{2x}{+4x^2+x^4}$$
 (I) $\frac{12}{\sqrt{6x-9x^2}}$ (m) $\frac{\cos x}{1+\sin^2 x}$

(n)
$$\frac{3(\sin^{-1}x)^2}{\sqrt{1-x^2}}$$
 (e

(n)
$$\frac{3(\sin^{-1}x)^2}{\sqrt{1-x^2}}$$
 (o) $15x^4\sin^{-1}(x^5) + \frac{15x^9}{\sqrt{1-x^{10}}}$ (p) $2x\tan^{-1}(x^{-2}) - \frac{2x^{-1}}{1+x^{-4}}$ (q) $\frac{-\sin x}{|\sin x|}$ (r) $\frac{-x}{|x|\sqrt{1-x^2}}$

(**p**)
$$2x \tan^{-1} \left(x^{-2}\right) - \frac{2x^{-1}}{1+x^{-4}}$$

q)
$$\frac{-\sin x}{|\sin x|}$$
 (r) $\frac{-x}{|x|\sqrt{1+x}}$

Inverse Functions and Their Derivatives

<u>Recall</u>: In general if y = f(x) and f is one – to – one, then $f^{-1}(x)$ denotes the inverse of f, and

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Note: "x" is really the y-value for some x-value for f(x)

Ex: If
$$f(2) = 5$$
 then $f^{-1}(5) = 2$

Trig Inverse Derivative Formulas:

$$\frac{d}{dx}\left(\sin^{-1}f(x)\right) = \frac{1}{\sqrt{1 - [f(x)]^{2}}} \cdot f'(x)$$

$$\frac{d}{dx}\left(\cos^{-1}f(x)\right) = -\frac{1}{\sqrt{1 - [f(x)]^{2}}} \cdot f'(x)$$

$$\frac{d}{dx}\left(\tan^{-1}f(x)\right) = \frac{1}{1 + [f(x)]^{2}} \cdot f'(x)$$

$$\frac{d}{dx}\left(\sec^{-1}f(x)\right) = \frac{1}{|f(x)|\sqrt{|f(x)|^{2} - 1}} \cdot f'(x)$$

$$\frac{d}{dx}\left(\cot^{-1}f(x)\right) = -\frac{1}{|f(x)|\sqrt{|f(x)|^{2} - 1}} \cdot f'(x)$$

$$\frac{d}{dx}\left(\cot^{-1}f(x)\right) = -\frac{1}{1 + [f(x)]^{2}} \cdot f'(x)$$

Examples:

Find $\frac{dy}{dx}$ for the following.

1.
$$y = \tan^{-1}(x)$$

2.
$$y = 2\cos^{-1}(x)$$
 3. $y = \sin^{-1}(2x)$

3.
$$y = \sin^{-1}(2x)$$

4.
$$y = \sec^{-1}(3x)$$

$$5. y = \tan^{-1}(x^3)$$

5.
$$y = \tan^{-1}(x^3)$$
 4. $y = \sin^{-1}(\frac{3}{t^2})$

The position of a particle is given by $x(t) = 4 \sin^{-1} \left(\frac{\sqrt{t}}{2} \right)$, determine the velocity of the particle at t = 3. Π. (Calculator)

Write the equation of the line tangent to $y = \tan^{-1}(x^2)$ at x = 1. (No Calculator) III.

Find the acceleration of a particle at $t = \frac{1}{2}$ if the position function is $x(t) = \cos^{-1}(x)$. (Calculator) IV.

Let f be defined by the function $f(x) = x^5 + 2x^3 + x - 1$ V.

1. Find f(1) and f'(1)

2. Find $f^{-1}(3)$ and $(f^{-1})(3)$

VI. If
$$g(3)=1$$
, $g(7)=3$, $g'(3)=\frac{5}{6}$, and $g'(7)=\frac{3}{4}$, then $(g^{-1})'(3)=?$

VII. Let
$$f(x) = \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, and let g be the inverse function of f. What is the value of $g'\left(\frac{1}{2}\right)$?

VIII. Let $f(x) = x^5 + 1$ and let g be the inverse of f.

- 1. What is the value of g'(0)?
- 2. What is the value of g'(1)?

IX. The following table shows the values of differentiable functions f and g.

x	f	f'	g	g'
1	2	$\frac{1}{2}$	- 3	5
2	3	-2	0	4
3	4	2	2	3
4	6	4	3	1
				2

1. If
$$H(x) = f^{-1}(x)$$
, then $H'(3) = ?$

2. If
$$H(x) = f^{-1}(x)$$
, then $H'(2) = ?$

3. If
$$H(x) = f^{-1}(x)$$
, then $H'(4) = ?$

4. Determine the equation of the tangent line to the curve of
$$H(x)$$
 at $x = 4$

5. If
$$J(x) = g^{-1}(x)$$
, then $J'(3) = ?$

6. If
$$J(x) = g^{-1}(x)$$
, then $J'(0) = ?$

7. Determine the equation of the tangent line to the curve of
$$J(x)$$
 at $x = 2$

8. Determine the equation of the normal line to the curve of
$$J(x)$$
 at $x = 3$

9. If
$$T(x) = g^{-1}[f(x)]$$
, then $T'(2) = ?$

Answers:

II.
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

$$2. \frac{dy}{dx} = -\frac{2}{\sqrt{1-x^2}}$$

II.
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$
 2. $\frac{dy}{dx} = -\frac{2}{\sqrt{1-x^2}}$ 3. $\frac{dy}{dx} = \frac{2}{\sqrt{1-4x^2}}$

4.
$$\frac{dy}{dx} = \frac{3}{|3x|\sqrt{9x^2-1}}$$

$$5. \frac{dy}{dx} = \frac{3x^2}{1+x^6}$$

4.
$$\frac{dy}{dx} = \frac{3}{|3x|\sqrt{9x^2-1}}$$
 5. $\frac{dy}{dx} = \frac{3x^2}{1+x^6}$ 6. $\frac{dy}{dx} = \frac{1}{\sqrt{1-(\pm)^2}} \cdot (-6t^{-3})$

I.
$$f(x) = x^{3} + 2x^{3} + x - 1$$

$$| f(x) = 3|; f'(x) = 5x^{4} + 6x^{2} + 1$$

$$| f(1) = 12|$$

$$f_{-1}(3) = 1$$
 $f_{-1}(3) = \frac{f_{+}(1)}{f_{-1}(3)}$

$$II. (q')'(3) = \frac{1}{q'[q'(3)]}$$

$$= \frac{1}{q'(7)}$$

III.
$$y = \sin x$$

$$y = \sin^{2} x$$

$$y = \sin^{2} x$$

$$y(x) = \sin^{2} x$$

$$\frac{\partial R}{\partial x} = \frac{f(x) = f(x)}{f(x)} = \frac{f'[f'(x)]}{f(x)} = \frac{f'[f'(x)]}{f(x)}$$

$$g'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$x = \frac{1}{(5)}$$
 $x = \frac{1}{(5)}$
 $x = \frac{1}{(5)}$

$$f(x) = \chi^{5} + 1$$
; $g = f^{-1}$

1.
$$d_{j}(0) = (\xi_{-j})_{j}(0) = \frac{\xi_{j}[\xi_{-j}(0)]}{1}$$

$$f^{-1}(0) \iff 0 = x^{s+1}$$

$$g'(0) = \frac{1}{f'(1)}$$
; $f'(\lambda) = 5x^4$

$$=\frac{1}{5(-1)^4}$$
 $=\frac{1}{5(-1)^4}$

2.
$$g'(1) = (f^{-1})'(1) = \frac{1}{f'[f^{-1}(1)]}$$

 $f^{-1}(1) = \frac{1}{f'[f^{-1}(1)]}$

$$f_{-1}(1) \Leftrightarrow \int_{-\infty}^{\infty} x = 0$$

$$\frac{1}{1} \cdot 1 \cdot H'(3) = \frac{1}{f'[f'(3)]}$$

$$= \frac{1}{f'(2)}$$

$$\frac{f[1]}{f'(2)} = \frac{f'(2)}{f'(3)} = \frac{1}{-2}$$

2.
$$H'(z) = \frac{1}{f'[f'(z)]}$$

$$= \frac{1}{f'(1)}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

5.
$$J'(3) = \frac{1}{9'[9'(3)]}$$

$$= \frac{1}{2}$$

$$(J'(3) = 2)$$

7.
$$5(z) = 3$$

$$5'(z) = \frac{1}{9[9'(z)]}$$

$$= \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}(x-2)$$

8.
$$J(3) = 4$$

 $J'(3) = 2$
 $J'(3) = 2$

9.
$$T'(x) = \frac{1}{g'[g'(f(x))]} \cdot f'(x)$$

$$T'(2) = \frac{1}{g'[g'(f(2))]} \cdot f'(x)$$

$$T'(2) = \frac{1}{g'[g'(3)]} \cdot (-2) = 2(-2)$$

$$= -4$$