Optimization Theory

Name: Christian Jay Baguio

Section: DS2A

Childfair Company

The <u>Childfair</u> Company has three plants producing child push chairs that are to be shipped to four distribution centers. Plants 1, 2, and 3 produce 12, 17, and 11 shipments per month, respectively. Each distribution center needs to receive 10 shipments per month. The distance from each plant to the respective distributing centers is given below:

			Dista	nce					
		Distribution Center							
		1	2	3	4				
Plant	1 2 3	800 miles 1,100 miles 600 miles	1,300 miles 1,400 miles 1,200 miles	400 miles 600 miles 800 miles	700 miles 1,000 miles 900 miles				

The freight cost for each shipment is \$100 plus 50 cents per mile. How much should be shipped from each plant to each of the distribution centers to minimize the total shipping cost?

- (a) Formulate this problem as a transportation problem by constructing the appropriate parameter table.
- (b) Draw the network representation of this problem.
- (c) Obtain an optimal solution.

A. Formulate this problem as a transportation problem by constructing the appropriate parameter table.

			Distance								
			Distribution Center								
			1		2		3		4		
	1	L	800		1,300		400		700		
Plant	2	2	1,100		1,400		600		1,000		
	3	3	600		1,200		800		900		
		Freight									
			Distribution Center						Cost		
			1		2		3		4		
	1	\$	500	\$	750	\$	300	\$	450	\$	2,000
Plant	- :	\$	650	\$	800	\$	400	\$	600	\$	2,450
		\$	400	\$	700	\$	500	\$	550	\$	2,150
Alloc	ation	\$	1,550	\$	2,250	\$	1,200	\$	1,600		

B. Draw the network representation of this problem.

C. Obtain an optimal solution.

			Ship	ped				
		Distribution Center				Total		Produce
		1	2	3	4			
	1	0	0	2	10	12	=	12
Plant	2	0	9	8	0	17	=	17
	3	10	1	0	0	11	=	11
Total		10	10	10	10	20200	(Total sh	ipping cost)
		=	=	=	=			
Demand		10	10	10	10			