(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-204541

(43)公開日 平成6年(1994)7月22日

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 31/04

7376-4M

H01L 31/04

F

審査請求 未請求 請求項の数7

(全18頁)

(21)出願番号

特願平4-347458

(22)出願日

平成 4年(1992)12月28日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 松山 深照

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 斉藤 恵志

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 狩谷 俊光

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(74)代理人 弁理士 福森 久夫

最終頁に続く

(54) 【発明の名称】光起電力装置

(57)【要約】

【目的】 本発明は、光起電力装置の光電変換効率を向上させるようにした光起電力装置を提供することを目的とする。

【構成】 光入射側に表面保護層101が積層されており、該表面保護層101中には、屈折率が該表面保護層とは異なった凹凸構造を有する光散乱層102が少なくとも1層形成されている。

【効果】 光散乱層102により、光起電力装置に入射する光を散乱させると、半導体層104内の光路長が実質的に延長され、光起電力装置の短絡電流が向上し、光電変換効率が向上する。また、半導体層による光の吸収が増大するので、半導体層を薄くすることができ、光起電力装置の光劣化を抑制でき、製造コストを低減できる。

【特許請求の範囲】

٠.

【請求項1】 半導体層の光入射側に表面保護層が積層 されて成る光起電力装置において、該表面保護層中に は、屈折率が該表面保護層とは異なり、かつ、凹凸構造 を有する少なくとも1層の光散乱層を形成したことを特 徴とする光起電力装置。

【請求項2】 前記光散乱層は、光入射方向に対して表 面側に凹凸構造を有することを特徴とする請求項1に記 載の光起電力装置。

【請求項3】 前記光散乱層は、光入射方向に対して裏 10 面側に凹凸構造を有することを特徴とする請求項1に記 載の光起電力装置。

【請求項4】 前記光散乱層は、光入射方向に対して表 面と裏面の両側に凹凸構造を有することを特徴とする請 求項1に記載の光起電力装置。

【請求項5】 前記凹凸構造は、表面粗さRmaxの値 が 0. 0 5 μ m から 1 0 0 μ m の間にあることを特徴と する請求項1から請求項4までのいずれか1項に記載の 光起電力装置。

【請求項6】 前記表面保護層を形成する物質の屈折率 20 ない。 と前記光散乱光層を形成する物質の屈折率との差が0. 1以上であることを特徴とする請求項1から請求項5ま でのいずれか1項に記載の光起電力装置。

【請求項7】 前記半導体層に対して光入射光側と反対 側に光散乱用の光反射層が形成されたことを特徴とする 請求項1から請求項6までのいずれか1項に記載の光起 電力装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光起電力装置に係り、 特に入射光の有効利用を図って安定した出力特性の向上 をさせるための光起電力装置に関する。

[0002]

【従来の技術】光起電力を生じる半導体層と電極を有す る光起電力装置にあっては、光電変換効率を向上させる ための手法として、光起電力装置に入射する光を散乱さ せて半導体層中の光路長を実質的に長くし、もって、半 導体層での吸収光量を増やすことにより短絡電流を増大 させるという手法が知られている。

【0003】この場合、光起電力装置に入射する光を散 40 乱させるための光起電力装置の構成としては、ガラス基 板等の透明基板上に凹凸構造を有する透明電極を形成し たもの、基板上に凹凸構造を有する光反射層を設けたも の、さらには半導体基板を用いてその表面に凹凸構造を 形成したもの等が知られている。

【0004】これらの構成のうち、基板としてガラス基 板と半導体基板を用いたものは、光入射側の表面で光を 散乱させるものであり、光反射層に凹凸を形成するもの は、光入射の裏面で光を散乱させる構造になっている。

【0005】このうち、光入射側の表面で光を散乱させ 50

る構成であってガラス基板を用いるものの場合は、半導 体層に対し基板側から光を入射させるので、半導体層の 形成以前に凹凸構造を有する透明電極が形成されてお り、概ね300℃以上の比較的高い温度で凹凸構造が形 成されている。

[0006]

【発明が解決しようとする課題】しかしながら、半導体 層に対して基板とは反対側から光を入射させるタイプの 光起電力装置では、基板上に薄膜半導体層を形成してか ら、光を散乱させる構造を形成することになるので、基 板温度を半導体層の形成温度以上に上げることができ ず、ガラス基板の場合のように凹凸構造を有する透明電 極を形成することは困難であった。

【0007】他方、透明電極に反射防止層としての機能 を兼用させる構成の場合には、広い波長範囲で反射率を 低下させるので、透明電極の光学的膜厚 (nd)を2/ 4 (λは反射率を極小にする波長)程度にまで薄くする ことが多い。かかる構成の場合は、透明電極が薄過ぎ て、光を散乱させるための凹凸構造を形成するには適さ

【0008】また、半導体基板を用いて、半導体表面に 光を散乱させるための凹凸構造を形成する構成の場合 は、半導体自体を処理するので、デリケートな取扱いが 必要であり、製造工程が増加して製造コストの大幅な増 大の原因となる。

【0009】このように、ガラス基板を用いて半導体層 に対し基板側から光を入射させるタイプ以外の光起電力 装置では、光入射側の表面で光を散乱させる構成とする ことは、困難であったり、あるいは製造コストの点で問 題があった。

【0010】しかるに、一般電力供給を始めとして各種 の用途に使用可能であって低コストの光起電力装置を実 用化するためには、ガラス基板以外のステンレス基板や 合成樹脂フィルム等の低コスト基板を用いる光起電力装 置の光電変換効率を向上させることが望まれており、そ の結果、ガラス基板以外の低コスト基板を用いた光起電 力装置であっても、光入射側の表面で光を散乱させる構 造を有する構成のものが望まれていた。

【0011】本発明は、上記従来技術の課題を解決する べくなされたものであり、半導体層に対し基板とは反対 側から光を入射させるタイプの光起電力装置、又は半導 体基板を用いた光起電力装置に適用され、光入射側の表 面で光を散乱させる構造を有し、かつ、光電変換効率を 安定して向上させ得るようにした光起電力装置を提供す ることを目的とする。

[0012]

【課題を解決するための手段】上記目的を達成するべ く、請求項1の発明は、半導体層の光入射側に表面保護 層が積層されて成る光起電力装置において、該表面保護 層中には、屈折率が該表面保護層とは異なり、かつ、凹

凸構造を有する少なくとも1層の光散乱層を形成したこ とを特徴とする。

【0013】請求項2の発明は、請求項1の発明におい て、前記光散乱層は、光入射方向に対して表面側に凹凸 構造を有することを特徴とする。

【0014】請求項3の発明は、請求項1の発明におい て、前記光散乱層は、光入射方向に対して裏面側に凹凸 構造を有することを特徴とする。

【0015】請求項4の発明は、請求項1の発明におい て、前記光散乱層は、光入射方向に対して表面と裏面の 10 両側に凹凸構造を有することを特徴とする。

【0016】請求項5の発明は、請求項1から請求項4 までの発明において、前記凹凸構造は、表面粗さRma xの値が 0.05μ mから 100μ mの間にあることを 特徴とする。

【0017】請求項6の発明は、請求項1から請求項5 までの発明において、前記表面保護層を形成する物質の 屈折率と前記光散乱層を形成する物質の屈折率との差が 0. 1以上であることを特徴とする請求項1に記載の光 起電力装置。

【0018】請求項7の発明は、請求項1から請求項6 までの発明において、前記半導体層に対して光入射方向 と反対側に光散乱用の光反射層が形成されたことを特徴 とする。

[0019]

【作用】請求項1~請求項4の発明によれば、光入射側 の表面保護層中に、凹凸構造を有する光散乱層が設けら れているので、光起電力装置に入射した光が、表面保護 層中で散乱された後に半導体層に入射し、半導体層中で の光路長が延びて、半導体層による光の吸収が増大して 30 短絡電流が増大し、光電変換効率を向上させることがで きる。

【0020】この場合、請求項5の発明のように、前記 凹凸構造を有する光散乱層を、該表面保護層中に複数形 成すれば、入射光の散乱がより増大し、さらに半導体層 による光の吸収が増大して短絡電流が増大し、光起電力 装置の光電変換効率をさらに向上できる。

【0021】また、請求項6の発明にれば、前記光散乱 層を形成する物質の屈折率について、前記表面保護層を 形成する物質の屈折率との差を0.1以上にすることに 40 より、入射光の散乱が増大するので、半導体層による光 の吸収が増大して短絡電流が増大し、前記光電変換効率 をさらに向上できる。

【0022】さらに、請求項7の発明によれば、光起電 力装置に入射する光が入射側と反射側の両側で散乱さ れ、半導体層によるより一層の光吸収の増加、これによ る短絡電流の増大、光電変換効率の向上を実現できる。

【0023】図1は、本発明に係る代表的な光起電力装 置の構成を示すものである。同図において、101は表 4は半導体層、105は集電電極、106は裏面電極、 107は基板、108は裏面保護層である。

【0024】 (表面保護層) 表面保護層101は、光起 電力装置を外部環境から保護するために形成されたもの であり、光起電力装置の表面に形成される。材料として は、合成樹脂等の中から耐候性のある材料を適宜材料を 選択すればよい。ただし、光入射側表面に形成する場合 は、耐候性に加えて、光起電力装置の感度のある波長の 光に対する透過率が好ましくは80%以上、より好まし くは平均90%以上、最適には平均95%以上であるこ とが望ましい。また、長期間屋外に放置しても、透過率 の低下が少ないことが望ましい。

【0025】また、表面保護層101は、機能別に上部 透明材と充填材、接着剤に分けられることがある。

【0026】表面保護層101の具体的な材料として は、上部透明材としては、ガラス、アクリル、ポリカー ボネート、FRP、あるいはPVF(ポリビニルフロラ イド)等のフッ素樹脂、シリコーン樹脂等が好適に用い られ、充填材としては、シリコーン樹脂、PVB (ポリ 20 ビニルブチラール)、EVA (エチレンビニルアセテー ト)等が好適に用いられる。

【0027】また、表面保護層101は、通常、フィル ム状の前記材料を脱気して光起電力素子に貼合わせた り、材料を加熱して溶融するか溶剤に溶かして塗布する ことにより形成される。

【0028】また、本発明の光起電力装置には、光散乱 層と表面保護層の密着性を向上させるために、シリコー ン樹脂、PVB(ポリビニルブチラール)、EVA(エ チレンビニルアセテート) 等のように、加熱して溶融す るか溶剤に溶かして塗布することのできる材料が最適で ある。

【0029】また、溶融した表面保護層材料を急冷する か、あるいは、溶剤に溶かした表面保護層材料の溶剤を 急速に乾燥させることによって、光散乱層近傍の表面保 護層の屈折率を増大させることができる。これは、光散 乱層近傍の表面保護層に応力がかかるためと考えられ る。

【0030】 (光散乱層) 本発明において、光散乱層1 02は、凹凸構造を有し層状を成すものであり、表面保 護層101中に設けられる光散乱層102は、1層でも 複数層でもよい。ここで、前記凹凸構造は、光入射方向 に対し光散乱層の表面側、裏面側のいずれに設けられて も良く、表面側と裏面側の両面に設けられても良い。

【0031】前記凹凸の大きさは、最大表面粗さRma xで好ましくは $0.1\mu m$ から $100\mu m$ 、より好まし くは0. 2 μmから50 μm、最適には0. 5 μmから $10 \mu m$ が望ましい。

【0032】また、光散乱層102は、表面保護層10 1中の層厚方向の、表面近傍から透明電極103の近傍 面保護層、102は光散乱層、103は透明電極、10 50 のいずれの位置に形成されても良い。ただし、透明電極

6

103の近傍1μm以内には形成しないことが望ましい。これは反射防止層を兼ねる透明電極103と光散乱層102を近づけ過ぎると反射防止条件を損なう恐れがあるからである。

٠;

【0033】さらに、光散乱層102の材料は、その屈 折率が表面保護層101の屈折率と好ましくは0.1以上、より好ましくは0.2以上、最適には0.3以上で あることが望ましい。また、光散乱層102の材料については、波長400nmから1000nmの光の透過率が、好ましくは平均80%以上、より好ましくは平均9100%以上、最適には平均95%以上であることが望ましい。

【0034】特に、表面保護層101として好適な材料は、屈折率が約1.5であるものが多いので、光散乱層102の材料としては、屈折率で1.0から1.4、あるいは1.9から2.5であるものが望ましい。この範囲の屈折率を持つ物質は、波長400nmから1000nmの光の透過率も前述の値を満たすもが多く好適である。屈折率で2.5を越えるものは光の散乱能は良いが、波長400nmから1000nmの光の透過率が前20述の値が得られないものが多いので好適ではない。

【0035】さらに、光散乱層102の材料は表面保護層101の材料との密着性に優れ、化学的に安定であって、表面保護層101の材料と熱膨張係数の近いものが望ましい。

【0036】また、光散乱層102の材料の具体例としては、ZnS, TiO₂, Ta₂O₅, CeO₂, ZrO₂, Sb₂O₃, Nd₂O₃, In₂O₃, SiC, Si₃N₄, SiO, La₂O₃, SnO₂, ZnO, CdO, Cd₂SnO₄, ThO₂, MgO, PbF₂, Al₂O₃, NdF₃, LaF₃, MgF₂, LiF, Na₃AlF₆, NaF, CaF₂等、あるいはこれらの化合物を混合したものが好適である。

【0037】さらに、これらの光散乱層の材料の中でも、表面保護層101として好適に用いられる前述の材料は、屈折率が約1.5であるものが多いことから、ZnO、ZnS、TiO、、In、O、、SnO、MgF、、CaF、が特に好適に用いられる。さらに、これらの材料と、表面保護層としてシリコーン樹脂、PVB(ポリビニルブチラール)、EVA(エチレンビニルアセテート)を組み合わせれば、密着性及び化学的安定性に優れた特性を示するので、最も好適に用いられる。

【0038】また、光散乱層102の形成方法としては、蒸着法、CVD法、スプレー法、スピンオン法、デップ法等が好適に用いられる。これらの形成方法の中でも、表面保護層101として、シリコーン樹脂、PVB(ポリビニルブチラール)、EVA(エチレンビニルアセテート)といった合成樹脂を用いる場合には、表面保護層の耐熱性が低いため、光散乱層形成時に基板温度を表面保護層の耐熱温度以上に高くすることができない。

そこで、比較的低い基板温度で光散乱層を形成可能な手法としては、加熱蒸着法、DCマグネトロンスパッタ、RFマグネトロンスパッタ、MOCVD、反応性イオンプレーティング、イオンビームスパッタリング等、あるいは加熱温度の低いスプレー法が特に好適に用いられる。

【0039】また、前述の蒸着法における光散乱層の好適な形成条件としては、基板温度は、好ましくは室温から250℃が望ましく、使用するガスの流量は、好ましくは0.1sccmから1slmが望ましく、蒸着中の反応容器内の圧力は、加熱蒸着法においては、好ましくは10-6Torrが望ましく、スパッタ法においては、好ましくは1mTorrから1Torrが望ましい。

【0040】さらに、光散乱層102の凹凸構造を設ける場合には、前述の形成方法において、表面が凹凸構造になるような形成条件を適宜選択するか、あるいは、平坦な層を形成した後、サンドブラスト法、ドライエッチング法、ウェットエッチング法等の方法により表面を凹凸化することによって得られる。かかる形成の手法以外には、表面保護層101の表面を上述の方法によって凹凸化した後、光散乱層102を形成するようにしても良く、さらには、凹凸構造を有する表面保護層の上に光散乱層を形成しても良い。

【0041】なお、前記凹凸構造を光散乱層102の光入射方向に対し両面側に設ける場合には、前述の両方の方法を用いれば良い。

【0042】また、表面保護層101の中に光散乱層102を形成する方法としては、表面保護層101を形成30した後、凹凸構造を有する光散乱層102を形成し、その後もう一度表面保護層101を形成する方法、あるいは、シート状の表面保護層材料に予め光散乱層102を形成してから、光起電力素子の形成された基板107に接着して、表面保護層101を形成する方法などがある。また、シート状の表面保護層材料に予め光散乱層102を形成する場合には、光散乱層102を光入射側にして接着することもできるし、表面保護層材料を光入射側にして接着することもできる。この接着方向を適宜選択することによって、凹凸構造を光散乱層102の光入40射方向に対し表面側に設けるか、裏面側に設けるかを選択することができる。

【0043】(透明電極)本発明において、透明電極103は光を透過する、光入射側の電極であると共に、その膜厚を最適化することによって反射防止膜としての役割を兼ねさせることができる。透明電極103は半導体層の吸収可能な波長領域において高い透過率を有することと、抵抗率が低いことが要求される。好ましくは、550nmにおける透過率が、80%以上、より好ましくは、85%以上であることが望ましい。

【0044】また、抵抗率は好ましくは、5×10⁻³Ω

c m以下、より好ましくは、 $1 \times 10^{-3} \Omega$ c m以下であることが望ましい。その材料としては、I n. O。、S n O,、I T O(I n. O。+S n O,)、I n O、C d O、C d,S n O,、T i O,、T a,O。、B i,O,、M o O,、N a,WO。等の導電性酸化物あるいはこれらを混合したものが好適に用いられる。また、これらの化合物に、導電率を変化させる元素(ドーパント)を添加しても良い。

٠;

【0045】導電率を変化させる元素(ドーパント)としては、例えば透明電極103がZnOである場合には、Al, In, B, Ga, Si, F等が、また、In, O, の場合には、Sn, F, Te, Ti, Sb, Pb等が、またSnO, の場合には、F, Sb, P, As, In, Tl, Te, W, Cl, Br, I等が好適に用いられる。

【0046】また、透明電極103の形成方法としては、蒸着法、CVD、スプレー法、スピンオン法、デップ法等が好適に用いられる。

【0047】(半導体層)本発明に用いられる半導体層 104は、結晶質のもの、多結晶質のもの、非結晶質のもの、それらを併用したものに大別され、薄膜あるいは バルクの形態で用いられる。また、半導体層 104の材料としては、Si, C, Ge等のIV族元素を用いたもの、あるいはSiGe, SiC, SiSn等のIV族合金を用いたもの、あるいはGaAs, InSb, GaP, GaSb, InP, InAs等のIII-V族元素を用いたもの、あるいはZnSe, CdTe, ZnS, ZnTe, CdS, CdSe, CdTe等のII-VI族元素を用いたもの、あるいはCuInSe, 等のI-III-VI, 族元素を用いたもの、あるいはCuInSe, 等のI-III-VI, 族元素を用いたもの、あるいはそれらを併用したものが用いられる。

【0048】また、以上の半導体材料の中で、本発明の 光起電力装置に特に好適に用いられる半導体材料として は、a-Si:H(水素化アモルファスシリコン)、a -Si:F, a-Si:H:F, a-SiGe:H, a-SiGe:F, a-SiGe:H:F, a-SiC:H, a-SiC:F, a-SiC:H:F等のIV族及 びIV族合金系非晶質半導体材料あるいは、多結晶質S i:H、多結晶質Si:F,多結晶質Si:H:F等い わゆる【V族及び【V族合金系多結晶半導体材料が挙げ られる。これは、特にIV族及びIV族合金系非晶質半 導体材料を用いて、半導体層を形成する場合、半導体層 の好適な膜厚は、0.1μmから2.0μmの間であ り、半導体層がこのように 2. 0 μ m以下の薄膜である 場合、光閉じこめ効果により、本発明の光散乱層による 光の散乱による、半導体層による光吸収の増大の効果が 顕著になると考えられるからである。

【0049】また、半導体層は価電子制御及び禁制帯幅制御を行うことができる。具体的には半導体層を形成する際に価電子制御剤又は禁制帯幅制御剤となる元素を含50

む原料化合物を単独で、又は前記堆積膜形成用原料ガス 又は前記希釈ガスに混合して成膜空間内に導入してやれば良い。

【0050】また、半導体層104は、価電子制御によって、少なくともその一部が、p型およびn型にドーピングされ、少なくとも一組のpn接合あるいは少なくとも一組のpin接合を形成する。つまり、pn接合あるいはpin接合を複数積層した、いわゆるスタックセルの構成をとることもできる。

【0051】また、半導体層104の形成方法としては、マイクロ波プラズマCVD法、RFプラズマCVD法、光CVD法、熱CVD法、MOCVD法などの各種CVD法によって、あるいはEB蒸着、MBE、イオンプレーティング、イオンビーム法等の各種蒸着法、スパッタ法、スプレー法、印刷法などを用いて形成される。以下、本発明の光起電力装置に特に好適なIV族及びIV族合金系非晶質半導体材料を用いた半導体層について、さらに詳しく述べる。

【0052】 i 型層 (真性半導体層)

特に、IV族及びIV族合金系非晶質半導体材料を用いた光起電力素子において、pin接合に用いるi型層は 照射光に対してキャリアを発生輸送する重要な層である。

【0053】i型層としては、僅かp型、僅かn型の層も使用できるものである。

【0054】 I V族及び I V族合金系非晶質半導体材料 には、上述したように、水素原子(H, D) 又はハロゲン原子(X) が含有され、これが重要な働きを持つ。

ぼ元素を用いたもの、あるいはCuInSe,等のI III-VI,族元素を用いたもの、あるいはそれらを 30 はハロゲン原子(X)は、i型層の未結合手を補償する 働きをし、i型層でのキャリアの移動度と寿命の積を向上させるものである。またp型層/i型層、n型層/i型層の各界面の界面準位を補償する働きをし、光起電力装置に特に好適に用いられる半導体材料としては、a-Si:H(水素化アモルファスシリコン)、a-Si:F,a-Si:Ge:H,a-Si:Ge:H,a-Si:Ge:H:F,a-Si:C:

H,a-Si:C:F,a-Si:C:H:F等のIV族及

【0056】特に、p型層/i型層、n型層/i型層の各界面側で水素原子及び/又はハロゲン原子の含有量が多く分布しているものが好ましい分布形態として挙げられ、該界面近傍での水素原子及び/又はハロゲン原子の含有量はバルク内の含有量の1.1~2倍の範囲が好ましい範囲として挙げられる。更にシリコン原子の含有量に対応して水素原子及び/又はハロゲン原子の含有量が変化していることが好ましいものである。

【0057】 i 型層の層厚は、光起電力素子の構造 (例 えばシングルセル、ダブルセル、トリプルセル)及び i 型層のバンドギァプに大きく依存するが、0.05~1.0μmが最適な層厚として挙げられる。

【0058】さらに具体的には、例えば、本発明の光起

電力装置に好適な、i型の水素化アモルファスシリコン (a-Si:H) としては、光学的バンドギャップ (E g) が、1.60eV~1.85eV、水素原子の含有 量 (C_f) が、1.0~25.0%、AM1.5、10 OmW/cm²の疑似太陽光照射下の光電導度 (σp) が、1.0×10⁻⁸S/cm以上、暗電導度 (σd) が、1.0×10⁻⁹S/cm以下、コンスタントフォト メソッド法 (CPM) によるアーバックテイルの傾き が、55meV以下、電子スピン共鳴(ESR)による 未結合手の密度は10¹⁷/cm³以下のものである。 【0059】また、例えば、本発明の光起電力装置に好 適な、i型の水素化アモルファスシリコンゲルマニウム (a-SiGe:H) としては、光学的バンドギャップ (Eg) が、1.35eV~1.70eV、水素原子の 含有量 (C_R) が、1.0~20.0%、AM1.5、 100mW/cm² の疑似太陽光照射下の光電導度 (σ p) が、1. 0×10⁻⁷ S/c m以上、暗電導度 (σ d) が、1.0×10⁻⁵ S/cm以下、コンスタントフ

る未結合手の密度は10¹⁷/cm³以下のものである。 【0060】例えば、以上のような特性を有するIV族及びIV族合金系非晶質半導体材料を用いることによって、光キャリアの輸送特性が向上して、長波長光の感度が向上し、本発明の光散乱層による光の散乱による、半導体層による光吸収の増大の効果が、相乗効果により強調され、光起電力装置の特性がさらに向上する。これは、前述のような特性を有することにより、半導体層中のいわゆる局在準位が低減し、光散乱層によって光が散乱されて、半導体層を通過する光路長が延びた場合に光30キャリアが再結合することなく、有効に収集されることにより、光起電力装置の長波長光の感度の増大効果が顕著になると考えられる。

オトメソッド法 (CPM) によるアーバックテイルの傾

きが、60me V以下、電子スピン共鳴 (ESR) によ 20

【0061】p型層又はn型層

p型層又はn型層も、本発明の光起電力装置の特性を左右する重要な層である。

【0062】p型層又はn型層の非晶質材料 (aーと表示する) (微結晶材料 (μcーと表示する) も非晶質材料の範ちゅうに入ることは言うまでもない。) としては、例えばaーSi:H, aーSi:HX, aーSi 40 C:H, aーSiC:HX, aーSiGe:H, aーSiGeC:H, aーSiO:H, aーSiN:H, aーSiON:HX, aーSiOCN:HX, μcーSiCHX, μcーSiCHX, μcーSiCHX, μcーSiCHX, μcーSiGE:H, μcーSiOCH, μcーSiGECH, μcーSiOH, μcーSiGECH, μcーSiOH, μcーSiGECH, μcーSiOHX, μcーSiON:HX, μcーSiON:HX, μcーSiON:HX, μcーSiON:HX, μcーSiON:HX, 等にp型の価電子制御剤 (周期率表第III族原子 B, Al, Ga, In, Tl) やn型の価電子制御剤 (周期率表第V族原子 P, As, Sb, Bi) を高濃度に添加した材料が挙 50

げられ、多結晶材料(poly—と表示する)としては、例えばpoly—Si:H, poly—Si:H X, poly—SiC:HX, poly—SiGe:H, poly—SiC:HX, poly—SiGe:H, poly—Si, poly—SiC, poly—SiGe, 等にp型の価電子制御剤(周期率表第III族原子 B, Al, Ga, In, Tl)やn型の価電子制御剤(周期率表第V族原子 P, As, Sb, Bi)を高濃度に添加した材料が挙げられる。

10 【0063】特に、光入射側のp型層又はn型層には、 光吸収の少ない結晶性の半導体層かバンドギャップの広 い非晶質半導体層が適している。

【0064】p型層への周期率表第III族原子の添加量およびn型層への周期率表第V族原子の添加量は0. 1~50at%が最適量として挙げられる。

【0065】またp型層又はn型層に含有される水素原 子(H, D) 又はハロゲン原子は、p型層又はn型層の 未結合手をを補償する働きをしp型層又はn型層のドー ピング効率を向上させるものである。p型層又はn型層 へ添加される水素原子又はハロゲン原子は0.1~40 a t%が最適量として挙げられる。特にp型層又はn型 層が結晶性の場合、水素原子又はハロゲン原子は0.1 ~8at%が最適量として挙げられる。更にp型層/i 型層、n型層/i型層の各界面側で水素原子又はハロゲ ン原子の含有量が多く分布しているものが好ましい分布 形態として挙げられ、該界面近傍での水素原子及び/又 はハロゲン原子の含有量はバルク内の含有量の1.1~ 2倍の範囲が好ましい範囲として挙げられる。このよう にp型層/i型層、n型層/i型層の各界面近傍での水 素原子又は/ハロゲン原子の含有量を多くすることによ って該界面近傍の欠陥準位や機械的歪を減少させること ができ本発明の光起電力素子の光起電力や光電流を増加 させることができる。

【0066】光起電力素子のp型層又はn型層の電気特性としては、活性化エネルギーが0.2 e V以下のものが好ましく、0.1 e V以下のものが最適である。また、比抵抗としては、100 Ω cm以下が好ましく、1 Ω cm以下が最適である。さらには、p型層及びn型層の層厚は1~50nmが好ましく、3~10nmが最適である。

【0067】本発明の光起電力装置の半導体層として、 好適なIV族及びIV族合金系非晶質半導体層を形成す るために、最も好適な製造方法は、マイクロ波プラズマ CVD法であり、次に好適な製造方法は、RFプラズマ CVD法である。

【0068】マイクロ波プラズマCVD法は、減圧状態にできる堆積室(真空チャンバー)に原料ガス、希釈ガス等の材料ガスを導入し、真空ポンプによって排気しつつ、堆積室の内圧を一定にして、マイクロ波電源によって発振されたマイクロ波を、導波管によって導き、誘電

体窓(アルミナセラミックス等)を介して前記堆積室に 導入して、材料ガスのプラズマを生起させて分解し、堆 積室内に配置された基板上に、所望の堆積膜を形成する 方法であり、広い堆積条件で光起電力装置に適用可能な 堆積膜を形成することができる。

【0069】本発明の光起電力装置用の半導体層を、マ イクロ波プラズマCVD法で、堆積する場合、堆積室内 の基板温度は100~450℃、内圧は0.5~30m Torr、マイクロ波パワーは0.01~1W/c m^3 、マイクロ波の周波数は $0.5\sim 10\,\mathrm{GHz}$ が好ま 10 。等のハロゲン化燐が挙げられる。このほか As , しい範囲として挙げられる。

【0070】また、RFプラズマCVD法で堆積する場 合、堆積室内の基板温度は、100~350℃、内圧 は、0.1~10torr、RFパワーは、0.01~ 5. 0W/cm²、堆積速度は、0. 1~30A/se cが好適な条件として挙げられる。

【0071】本発明の光起電力装置に好適なIV族及び IV族合金系非晶質半導体層の堆積に適した原料ガスと しては、シリコン原子を含有したガス化し得る化合物、 ゲルマニウム原子を含有したガス化し得る化合物、炭素 原子を含有したガス化し得る化合物、窒素原子を含有し たガス化し得る化合物、酸素原子を含有したガス化し得 る化合物等、及び該化合物の混合ガスを挙げることがで きる。

【0072】具体的にシリコン原子を含有するガス化し 得る化合物としてはSiH。,SizH。,SiF。, $\mbox{SiFH}_{\mbox{\scriptsize 3}}$, $\mbox{SiF}_{\mbox{\scriptsize 2}}$ $\mbox{H}_{\mbox{\scriptsize 4}}$, $\mbox{SiF}_{\mbox{\scriptsize 3}}$ $\mbox{H}_{\mbox{\scriptsize 8}}$, SiD4, SiHD3, SiH2 D2, SiH3 D, S $i F D_3$, $S i F_1$ D_2 , $S i D_3$ H, $S i_3$ D 3 H3, 等が挙げられる。

【0073】具体的にゲルマニウム原子を含有するガス 化し得る化合物としてはGeH,, GeD,, Ge F_4 , $\text{GeF}H_3$, GeF_1 H_2 , GeF_3 H, GeH D_{3} , $G\,e\,H_{2}$ D_{2} , $G\,e\,H_{2}$ D, $G\,e_{2}$ H_{8} , $G\,e\,D$ 。等が挙げられる。

【0074】具体的に炭素原子を含有するガス化し得る 化合物としてはCH, , CD, , C, H, , , , (nは 整数) C。 H, 。 (n は整数), C, H, , C, H, , CO₂, CO等が挙げられる。

【0075】窒素含有ガスとしてはN₂, NH₃, ND 40 3, NO, NO₂, N₂ Oが挙げられる。

【0076】酸素含有ガスとしてはO₂, CO, C O₁, NO, NO₂, N₂ O, CH₃ CH₂ OH, CH 。OH等が挙げられる。

【0077】また、価電子制御するためにp型層又はn 型層に導入される物質としては周期率表第【I【族原及 び第V族原子が挙げられる。

【0078】第111族原子導入用の出発物質として有 効に使用されるものとしては、具体的にはホウソ原子導 入用としては、B₂ H₈ , B₄ H₁₀ , B₅ H₉ , B₅ H 50 11, B₆ H₁₀, B₆ H₁₂, B₆ H₁₄等の水素化ホウ素、 BF₃ , BCl₃ , 等のハロゲン化ホウ素等を挙げるこ とができる。このほかにAICl。, GaCl。, In Cl₃, TlCl₃ 等も挙げることができる。特にB₂ H₈, BF₃ が適している。

【0079】第V族原子導入用の出発物質として有効に 使用されるのは、具体的には燐原子導入用としてはPH 3 , P₂ H₄ 等の水素化燐、PH₄ I , PF₃ , P F_{5} , $PC\,l_{3}$, $PC\,l_{5}$, $PB\,r_{3}$, $PB\,r_{5}$, PIAsF3, AsCl3, AsBr3, AsF5, SbH $_3$, SbF $_3$, SbF $_5$, SbCl $_3$, SbCl $_5$, B i H₃ , B i C l₃ , B i B r₃ 等も挙げることができ る。特にPH₃, PF₃が適している。

【0080】また、前記ガス化し得る化合物をHi, H e, Ne, Ar, Xe, Kr等のガスで適宜希釈して堆 積室に導入しても良い。

【0081】特に、微結晶半導体やaーSiC:H等の 光吸収の少ないかバンドギャップの広い層を堆積する場 合は水素ガスで2~100倍に原料ガスを希釈し、マイ クロ波パワー、あるいはRFパワーは比較的高いパワー を導入するのが好ましいものである。

【0082】 (集電電極) 本発明において、集電電極1 05は、透明電極103の抵抗率を充分に低くできない 場合に必要に応じて透明電極103上の一部分に形成さ れ、電極の抵抗率を下げ、光起電力素子の直列抵抗を下 げる働きをする。その材料としては、金、銀、銅、アル ミニウム、ニッケル、鉄、クロム、モリブデン、タング ステン、チタン、コバルト、タンタル、ニオブ、ジルコ 30 ニウム等の金属、又はステンレス等の合金、あるいは粉 末状金属を用いた導電ペーストなとが挙げられる。そし てその形状は、できるだけ半導体層への入射光を遮らな いように、例えば図4のように枝状に形成される。

【0083】また、光起電力装置の全体の面積の中で、 集電電極の占める面積は、好ましくは15%以下、より 好ましくは10%以下、最適には5%以下が望ましい。 【0084】また、集電電極のパターンの形成には、マ スクを用い、形成方法としては、蒸着法、スパッタ法、 メッキ法、印刷法などが用いられる。

【0085】(裏面電極、光反射層)本発明に用いられ る裏面電極106は光入射方向に対し半導体層の裏面に 配される電極であり、材料としては、金、銀、銅、アル ミニウム、ニッケル、鉄、クロム、モリブデン、タング ステン、チタン、コバルト、タンタル、ニオブ、ジルコ ニウム等の金属又はステンレス等の合金が挙げられる。 なかでもアルミニウム、銅、銀、金などの反射率の高い 金属が特に好ましい。反射率の高い金属を用いる場合に は、裏面電極に半導体層で吸収しきれなかった光を再び 半導体層に反射する光反射層の役割を兼ねさせることが できる。

【0086】また、裏面電極の形状は平坦であっても良いが、光を散乱する凹凸形状を有することがより好ましい。光を散乱する凹凸形状を有することによって、半導体層で吸収しきれなかった長波長光を散乱させて半導体層内での光路長を延ばし、光起電力素子の長波長感度を向上させて短絡電流を増大させ、光電変換効率を向上させることができる。光を散乱する凹凸形状は、凹凸の山と谷の高さの差がRmaxで0.2μmから2.0μmであることが望ましい。

【0087】ただし、基板が裏面電極を兼ねる場合には、裏面電極の形成を必要としない場合もある。

【0088】また、裏面電極の形成には、蒸着法、スパッタ法、メッキ法、印刷法などが用いられる。また裏面電極を光を散乱する凹凸形状に形成する場合には、形成した金属あるいは合金の膜をドライエッチングするかあるいはウエットエッチングするかあるいはサンドプラストするかあるいは加熱すること等によって形成される。また基板を加熱しながら前述の金属あるいは合金を蒸着することにより光を散乱する凹凸形状を形成することもできる。

【0089】(基板)本発明に用いられる基板107の 材料としては、導電性材料あるいは絶縁性材料のいずれ を用いることもできる。導電性材料としては、モリブデ ン、タングステン、チタン、コバルト、クロム、ニッケ ル、鉄、銅、タンタル、ニオブ、ジルコニウム、アルミ ニウム金属又はそれらの合金での板状体、フィルム体が 挙げられる。なかでもステンレス鋼、ニッケルクロム合 金及びニッケル、タンタル、ニオブ、ジルコニウム、チ タン金属及び/又は合金は、耐蝕性の点から特に好まし い。また、絶縁性材料としては、ポリエステル、ポリエ 30 チレン、ポリカーボネート、セルローズアセテート、ポ リプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、 ポリスチレン、ポリアミド等の合成樹脂のフィルム又は シート、あるいはガラス、セラミック、石英等の無機絶 縁性材料の板状体を用いることもできる。また導電性材 料に絶縁性材料をコーティングしたものを用いることも できる。

【0090】また、例えば結晶質の半導体層を用いる場合には、結晶半導体そのものを基板として用い、基板1 07を特に必要としない場合もある。

【0091】(裏面保護層)本発明において、裏面保護層108は光起電力装置の裏面を保護するためにあり、その材料としては、合成樹脂等の中から耐候性のある材料を適宜材料を選択すればよい。

【0092】また、形成方法としては、通常、フィルム 状の前記材料を脱気して光起電力素子に貼合わせたり、 材料を加熱して溶融するか溶剤に溶かして塗布すること により形成される。

【0093】本発明の光起電力装置の製造手順は以下の通りである。

【0094】光起電力装置を構成する各層の形成方法は、上述の通りである。また、各層の形成順序は、まず基板107を洗浄し、その上に裏面電極106を形成し、続いて、半導体層104、透明電極103、集電電極105をその順序で形成し、次に不図示の出力の取り出し電極を形成して、最後に裏面保護層108と光散乱層102を内部に形成した表面保護層101を形成する。

【0095】ただし、基板107に代えて、半導体層1 10 04を基板として用いる場合には、前記順序とは異なる 順序で、製造する場合もある。

【0096】また、複数の基板上に形成された光起電力 装置を直列あるいは並列に接続する場合、又は基板を補 強するために、平板上の支持体の上に集電電極まで形成 された基板を貼り付けた後、表裏に保護層を形成する場 合もある。

[0097]

40

【実施例】以下、実施例にて本発明を詳述するが、本発明はこれによって限定されるものではない。

20 【0098】(実施例1)図2は、本発明の光起電力装置一例を示す断面図である。図2の光起電力装置は、半導体層として、アモルファスシリコン(以下a—Siと略記する。)およびアモルファスシリコンゲルマニウム(以下a—SiGeと略記する。)を用いたものである。

【0099】図2において、201a,201b,201cは表面保護層であり、その機能別に上部透明材201aと接着層201b,201cに分けられる。また202は光散乱層、203は透明電極、204a,204b,204cは半導体層、205は集電電極、206は裏面電極、207は基板、208a,208bは接着層、208cは裏面保護層である。また、209は透明導電層、210は絶縁層である。本実施例において、透明導電層209は、裏面電極209が半導体層204に拡散することを防止して、光起電力装置の製造の歩留まりを向上させる働きおよび裏面電極209による光の散乱を増大させる働きがある。

【0100】以下の工程で、図2に示す構成の光起電力 装置を作製した。

【0101】まず、基板207として、表面がRmaxで0.1 μm以下で、厚さ0.7mmで10cm角のSUS304のステンレス基板を洗浄し、裏面電極206として公知のRFスパッタ法によってAgを平均0.4 μm形成した。このとき基板を380℃に加熱しながらスパッタリングを行うことにより、Rmaxで0.6μmの光を散乱する凹凸形状を作製した。

【0102】次に、図3に示したDCマグネトロンスパッタ装置を用いて、酸化亜鉛(ZnO)を 0.4μ m形成した。

50 【0103】図3において、301は真空容器であり、

加熱板303が絶縁性を有する支持部302にて支持さ れている。加熱板303にはヒーター306と熱電対3 04が埋設され、温度コントローラー305によって所 定の温度に制御される。基板308は基板押さえ309 にて支持される。基板308に対向してターゲット31 0が配されるが、該ターゲット310はターゲット台3 11に設置され裏面にマグネット312を持ちプラズマ 空間320に磁場を形成できるようになっている。スパ ッタ中加熱されるターゲットを冷却するために冷却水導 入パイプ313より冷却水をターゲットの裏面に導入す 10 る。導入された水はターゲットを冷却した後、冷却水排 出パイプより排出される。

【0104】前記ターゲット310は、酸化亜鉛のパウ ダーに亜鉛を混合して焼結したものである。また金属亜 鉛からなるターゲットを用いることもできる。

【0105】前記ターゲット310にはターゲット台3 11を介してスパッタ電源314よりDC電圧が印加さ れる。該スパッタ電源から供給されるDC電流は、好ま しくは0.01A以上、更に好ましくは0.1A以上に 設定される。本発明者の実験によれば、スパッタに供給 20 する電流は大きい方が作製される酸化亜鉛層による光の 吸収が少なく、光起電力装置の光電変換効率、とりわけ 発生電流が大きくなるようである。このことはRF型ス パッタ法を用いて該酸化亜鉛層の形成を行なった場合で も同様であり、RF電力を大きくして作製した光起電力 装置はRF電力がより小さい場合の光起電力装置よりも 発生電流の点で有利であった。

【0106】315はRF高周波電源であり、必要に応 じて基板側に高周波を印加して、基板表面を粗面化する ことなどに用いられる。基板表面の粗面化は、DCスパ 30 ッタの前に行われ、DCスパッタにより形成する膜の基 板への密着性を向上させることを目的としている。

【0107】スパッタガスは、マスフローコントローラ 一316もしくは317を介してアルゴンガス及び酸素 ガスが各々供給される。もちろん、該スパッタガスに他 のガス、例えばSiF、やNF。ガス等を混合すること によって形成される酸化亜鉛層にフッ素のドーピングを 重ねて行なうことも可能である。該アルゴンガスの流量 は、好ましくは1sccm乃至1slm、該酸素ガスの 流量は、好ましくは0. 1 s c c m 乃至 1 0 0 s c c m 40 とされる。

【0108】また、真空容器301に取り付けられた真 空計318にて内部圧力がモニターできる。真空容器3 01全体は、不図示の排気系に接続されたメインバルブ 319を介して真空状態とされる。スパッタを開始する 前のバックグラウンドの内部圧力は、好ましくは10-4 Torr以下、更に好ましくは10-5Torr以下とさ れ、スパッタ中の内部圧力は、1mTorr以上1To rr以下とされる。

よって、RF髙周波を基板側に印加することができる。 【0110】以上に示した条件を保って酸化亜鉛層の形 成を開始し、該酸化亜鉛層の層厚が所望の値に達した 後、スパッタ電源からの電力の供給、スパッタガスの供 給を適宜停止し、適宜基板を冷却した後、真空容器内を 大気リークして酸化亜鉛層を形成した基板を取り出す。 【0111】酸化亜鉛(ZnO)は、上記のように構成 されたDCマグネトロンスパッタ装置により形成した。 【0112】この後、13.56MHzのRF高周波を

電極に印加して原料ガスを減圧下でプラズマ状態にして 分解する公知のいわゆるグローディスチャージ法 (GD 法) によって、以下の各半導体層を形成した。

【0113】まず、基板を300℃に加熱しながら、H 2 で希釈した、モノシラン (SiH.) とフォスフィン (PH₃)を分解して、n型a-Si層204cをZn Oまで形成された基板の上に20nm形成した。

【0114】次に、基板を250℃に加熱しながら、H 2 を用いて希釈したモノシラン (SiH.) とゲルマン (GeH,) を分解して、真性a—SiGe層204b をその上に250nm形成した。このとき同じ成膜条件 でガラス基板上に真性 a 一SiGeを1μm堆積して評 価したところ、光学的バンドギャップ (Eg) が1.5 O e V であった。

【0115】また、真性a—SiGe層204bはn層 とp層の近傍30nmずつをa―SiGeからa―Si に連続的に組成の変化する、いわゆるバッファー層を設 けてある。次いで、基板を200℃に加熱しながら、H 2 で希釈した、モノシラン (SiH.) と3フッ化ボロ ン(BF。)を分解して、p型の微結晶シリコン層20 4 a を 5 n m 形成した。

【0116】次に、抵抗加熱蒸着法により、基板を17 O℃に加熱しながら、ITOを70nm蒸着し、透明電 極203を形成した。

【0117】次に、電子ビーム蒸着法により、マスクを 用いて、図4のようなパターンに、A1を蒸着して集電 電極205を形成した。

【0118】次に、裏面電極の端部と、集電電極の端部 に、不図示の取り出し電極を接続した。

【0119】次に、EVA (エチレンビニルアセテー ト)を80℃で、ホットメルトさせて、取り出し電極ま で形成した光起電力装置の表面に塗布し、150℃で1 時間加熱して、硬化させ、表面保護層201cを形成し た。

【0120】次に、図3に示した、DCマグネトロンス パッタ装置により、RF髙周波を基板側に印加しつつ、 EVAまで形成された基板を50℃に保持しながら、Z n O を 1. 5 μ m 形成した。

【0121】次に、2nOを水で3%に希釈したシュウ 酸で180秒エッチングして、Rmaxで1μm程度の 【0109】また、必要に応じて、高周波電源315に 50 凹凸構造を表面に形成し、光散乱層202を形成した。

【0122】次に、上部透明材201aとして光散乱層202の表面に厚さ40 μ mのPVFフィルムをEVA201bを塗布して接着した。これによって表面保護層の中に光散乱層202が形成された。

【0123】次に、基板207の裏面に絶縁層210として厚さ50μmのナイロンフィルムを、また裏面保護層として厚さ40μmのPVFフィルムをそれぞれの間にEVAを塗布して接着し、図2に示した本発明の光起電力装置を完成した。

【0124】以上の工程で10cm角のいわゆる単層型 10a-SiGe 光起電力装置を20個作製した。

【0125】その後、並列抵抗が1cm² あたり1KΩ以上の光起電力装置を、25℃で、ソーラーシミュレーターによって、AM1.5、100mw/cm² の疑似太陽光を照射して、開放電圧(Voc)、短絡電流(Jsc)、フィルファクター(FF)、光電変換効率

(n) 等の光起電力装置特性を測定し、平均値を求めた。表1は、光起電力装置特性の結果をまとめたものである。

【0126】但し、光起電力装置特性は後述する比較例 20 1の値で規格化してある。

【0127】また、光起電力装置の分光感度を測定し図5の実線で示した。図5において、縦軸は、光起電力装置に入射した光子数に対して、電流として取り出された割合(量子効率)を示す。

【0128】(比較例1) 実施例1において、光散乱層202を形成することなく、それ以外は実施例1と全く同様の手順で、10cm角のいわゆる単層型a一SiGe光起電力装置を20個作製した。

【0129】実施例1と同様に、光起電力装置特性を測 30 定し、平均値を求めた。

【0130】また、実施例1と同様に光起電力装置の分光感度を測定した。図5の鎖線で示す曲線は該比較例について示すものである。図5及び表1から明らかなように、本発明の、表面保護層中に凹凸構造を有する光散乱層を形成した光起電力装置によって、実施例1では比較例1に比べ、長波長領域の分光感度が向上し、短絡電流(Jsc)が向上して、光電変換効率(η)が向上した。

[0131]

【表1】

	実施例1	比較例1
光散乱層	光散乱層	光散乱層
の有無	有り	無し

Voc	0.999	1
Jsc	1. 072	1
FF	1. 002	1
η	1. 073	1

(実施例2)以下の工程で、図6に示した本発明の他の 一例の光起電力装置を作製した。

【0132】図6は、2組のPIN接合を積層した、スタック型の光起電力装置である。

【0133】図6において、601a、601b、60 1 c は表面保護層であり、その機能別に上部透明材60 1 a と接着層601b, 601cに分けられる。また、 602は光散乱層、603は透明電極、604a, 60 4b, 604c, 604d, 604e, 604fは半導 体層、605は集電電極、606は裏面電極、607は 基板、608a, 608bは接着層である。また、60 9は透明導電層、610は絶縁層、611は裏面保護層 の役割を兼ねた支持体である。本実施例において、透明 導電層609は、実施例1と同様の働きがある。

【0134】図6に示したように、本実施例の光起電力 装置では、光散乱層602の上下に凹凸が設けられてい る。

【0135】まず基板607として、表面がRmaxで 0.1μ m以下で、厚さ0.15mmで、幅32cm、長さ15mの、シート状のステンレス基板を洗浄し、送り出し用のロールと巻き取り用のロールの間で連続的に基板を移動させながら処理を行う、いわゆるロールツーロール法によって以下の処理を行った。

【0136】まず、13.56MHzの高周波を用いた公知のRFマグネトロンスパッタ装置によって、裏面電極606としてAgを平均 0.4μ m形成した。このとき基板を380℃に加熱しながらスパッタリングを行うことにより、Rmaxで 0.6μ mの光を散乱する凹凸形状を作製した。

【0137】次に、前述のRFスパッタ法により、透明 40 導電層609として、酸化亜鉛(ZnO)を0.4μm 形成した。

【0138】次に、グローディスチャージ法 (GD法) によって、以下の各半導体層を形成した。

【0139】まず、基板を300℃に加熱しながら、第 1のn型a-Si層604fを20nm形成した。

【0140】次に、基板を280℃に加熱しながら、第 1の真性a—SiGe層604eをその上に250nm 形成した。このとき同じ成膜条件でガラス基板上に真性 a—SiGeを1μm堆積して評価したところ、光学的

50 バンドギャップ (Eg) が1.46 e V であった。

【0141】また、真性a―SiGe層604eはn層 とp層の近傍30nmずつをa―SiGeからa―Si に連続的に組成の変化する、いわゆるバッファー層を設

【0142】次に、基板を260℃に加熱しながら、第 1のp型の微結晶シリコン層604dを5nm形成した。

けてある。

【0143】次に、基板を240℃に加熱しながら、第 2のn型a一Si層604cを20nm形成した。

【0144】次に、基板を240℃に加熱しながら、第 10 2の真性a — Si層604bをその上に220nm形成 した。

【0145】次に、基板を200℃に加熱しながら、第 2のp型の微結晶シリコン層604aを4nm形成した。

【0146】次に、図3と同様のDCマグネトロンスパッタ装置により、基板を170℃に加熱しながら、IT Oを70nm蒸着し、透明電極603を形成した。

【0147】次に、エッチングにより光起電力装置を1 【0159】実施例2と 0cm角に分離し、エッチングラインに沿って基板を切 20 定し、平均値を求めた。 断した。 【0160】表2から8

【0148】次に、電子ビーム蒸着法により、図4のようなパターンで、Alを蒸着して集電電極605を形成した。

【0149】次に、裏面電極の端部と、集電電極の端部 に、不図示の取り出し電極を接続した。

【0150】次に、裏面にRmaxで3μm程度の凹凸を設けたステンレス薄板に、EVA(エチレンビニルアセテート)を80℃で、ホットメルトさせて塗布して後、冷却してステンレス薄板から剥し、表面にRmax 30で2.0μm程度の凹凸を有するEVAのフィルムを形成した。

【0151】次に、不図示のMOCVD装置により、ジエチル亜鉛(DEZ)と H_1 Oを気化して導入し、前述の表面に凹凸を有するEVAのフィルム上に、室温でZnOを平均 $0.2\mu m$ 形成した。この場合、形成されたZnOの表面にはRmaxで $0.5\mu m$ 程度の凹凸ができた。

【0152】次に、支持体611である厚さ0.30mmの亜鉛メッキ鋼板の上にEVAを80℃でホットメル 40トさせて塗布し、その上に絶縁層610である厚さ50μmのナイロンフィルムを貼り付けて、その上にEVAを塗布し、その上に集電電極605まで形成した光起電力装置を貼り付けて、その上に前述の表面に2nOを形成したEVAフィルムを貼り付けて、さらにその上にEVAを塗布し、一番上に上部透明材601aとして厚さ40μmのPVFフィルムを貼り付けて、図6に示した層構成を形成した。

【0153】最後に、全体を150℃で1時間加熱して、接着層であるEVAを硬化させ、図6に示した光起 50

電力装置を完成した。

【0154】以上の工程で10cm角のいわゆるSi/ SiGe2スタック型光起電力装置を100個作製した。

【0155】また、並列抵抗が $1\,\mathrm{cm}^2$ あたり $1\,\mathrm{k}\,\Omega$ 以上の光起電力装置を、 $25\,\mathrm{C}$ で、ソーラーシミュレーターによって、AM1.5、 $100\,\mathrm{mW/cm}^2$ の類似太陽光を照射して、開放電圧($V\,\mathrm{oc}$)、短絡電流($J\,\mathrm{sc}$)、フィルファクター($F\,\mathrm{F}$)、光電変換効率(η)等の光起電力装置特性を測定し、平均値を求めた。

【0156】表2は光起電力装置特性の結果をまとめたものである。

【0157】但し、光起電力装置特性は後述する比較例 2の値で規格化してある。

【0158】(比較例2)実施例2において、光散乱層602を設けずに、それ以外は実施例2と全く同様の手順で、10cm角のいわゆるSi/SiGeの2層スタック型光起電力装置を100個作製した。

【0159】実施例2と同様に、光起電力装置特性を測 定し、平均値を求めた。

【0160】表2から明らかなように、表面保護層中に 凹凸構造を有する光散乱層を形成した本発明の光起電力 装置によって、特にSiGeセルの短絡電流(Jsc) が向上し、それによって全体の短絡電流(Jsc)とフィルファクター(FF)が向上し、光電変換効率(η) が向上した。

[0161]

【表2】

	実施例2	比較例2	
光散乱層 の有無	光散乱層 有り	光散乱層 無し	
Voc	1. 001	1	
Jsc	1.055	1	
FF	1.035	1	
η	1.093	1	

(実施例3)以下の工程で、図7に示した本発明のさら に他の一例の光起電力装置を作製した。

【0162】図7は、II—VI族元素の半導体層を用いた本発明の光起電力装置の一例である。

【0163】図7において、701a, 701b, 701 c は表面保護層であり、その機能別に上部透明材701aと接着層701b, 701c に分けられる。また702は光散乱層、703は透明電極、704aはn型C

d S 半導体層、704 b は p 型 C d T e 半導体層、706 a, 706 b は裏面電極、707は基板であり裏面保護層を兼ねる。

【0164】まず、基板701として、表面がRmaxで0. 1μ m以下で、厚さ0. 18mmで、幅32cm、長さ10mの、シート状のポリエチレンテレフタラート(PET)フィルムを基板として洗浄し、実施例2と同様のいわゆるロールツーロール法によって以下の処理を行った。

【0165】まず、図3に示したDCマグネトロンスパ 10 ッタ装置によって裏面電極706bとしてA1を0.3 μ m形成した。次に同様のDCマグネトロンスパッタ装置によって裏面電極706aとしてAuを20nm形成した。

【0166】そして、以下の工程で図7に示す光起電力 装置の半導体層を作製した。

【0167】まず基板を160℃に加熱しながら、真空 蒸着法により、p型のCdTe層704bを1.5 μm 形成した。

【0168】次に、基板を150℃に加熱しながら、真 20 空蒸着法により、n型のCdS層704aを0.1 μ m 形成した。

【0169】次に、図3と同様のDCマグネトロンスパッタ装置により、基板を170℃に加熱しながら、IT Oを200nm蒸着し、透明電極703を形成した。

【0170】その後、N₂ 雰囲気中で、120℃、1時間の加熱処理を施した。

【0171】次に、エッチングにより光起電力装置を10cm角に分離し、エッチングラインに沿って基板を切断した。

【0172】次に、透明電極の端部と、集電電極の端部 には不図示の取り出し電極を接続した。

【0173】次に、接着層701cとして、ポリビニルブチラール(PVB)を塗布した。次に、PVB上に反応性イオンプレーティング法により、室温でTiO₁を2μm形成した。

【0174】その後、CF、EO2、の混合ガスのプラズマによって、ドライエッチングすることにより、TiO2、の表面にRmaxで $0.6 \mu m$ の凹凸を形成し、光散 乱層 702を形成した。

【0175】次に、TiO.上に接着層701bとしてシリコーン樹脂を塗布し、上部透明材701aとして厚さ30μmのPVFフィルムを接着した。

【0176】以上の工程で図7の10cm角のいわゆる CdS/CdTe光起電力装置を200個作製した。

【0177】そして、並列抵抗が1 c m² あたり1 k Ω 以上の光起電力装置を、25℃で、ソーラーシミュレー ターによって、AM1.5、100mW/c m² の疑似 太陽光を照射して、開放電圧 (Voc)、短絡電流 (J sc)、フィルファクター (FF)、光電変換効率 (η)等の光起電力装置特性を測定し、平均値を求めた。表3は光起電力装置特性の結果をまとめたものである。

【0178】但し、光起電力装置特性は後述する比較例 3の値で規格化してある。

【0179】(比較例3)実施例3において光散乱層702を設けることなく、それ以外は実施例3と全く同様の手順で、10cm角のいわゆるCdS/CdTe光起電力装置を200個作製した。

【0180】実施例3と同様に、光起電力装置特性を測定し、平均値を求めた。

【0181】表3から明らかなように、表面保護層中に 凹凸構造を有する光散乱層を形成した本発明の光起電力 装置によって、短絡電流(Jsc)が向上し、光電変換 効率(η)が向上した。

[0182]

【表3】

30

	実施例3	比較例3	
光散乱層 の有無	光散乱層 有り	光散乱層 無し	
Voc	1.000	1	
Jзс	1. 077	1	
FF	1. 002	1	
η	1. 079	1	

(実施例4)以下の工程で、図8に示した本発明のさら に他の一例の光起電力装置を作製した。

【0183】図8は、半導体層として多結晶シリコンを 用いた本発明の光起電力装置の一例である。

【0184】図8において、801a,801b,801c,801d,801e,801fは表面保護層であり、その機能別に上部透明材801a,801c,801eと充填層801b,801d,801fに分けられる。また、802a,802bは光散乱層、803は反射防止層あるいは反射防止層を兼ねた透明電極、804a,804bは多結晶シリコン半導体基板であり、804aは半導体基板と反対の導電型に転換された部分である。また、806は裏面電極、808は裏面充填層、811は裏面保護層を兼ねた支持体、812は半導体基板の裏面パッシベーション層である。

【0185】まず、キャスティング法によって形成した 厚さ150μmのp型の多結晶シリコン基板を用意し、 基板表面を清浄にした後、イオン注入法によってその表 面804aをn・型に転換し、pn接合を形成した。

【0186】次に、pn接合を形成した多結晶シリコン 基板の表面に不図示の厚さ5 nmのSiO₂のパッシベ ーション層を形成した。

【0187】次に、多結晶シリコン基板の裏面に厚さ2 00nmのSi₃N₄のパッシベーション層を形成し

【0188】次に、パッシベーション層を形成した多結 晶シリコン基板の表面および裏面にTiとAgの集電電 極805および裏面電極806を形成した。

【0189】次に、反射防止層を兼ねる透明電極803 10 として、図3と同様のDCマグネトロンスパッタ装置に よって、基板温度 200℃でTa₂ O₅ を0. 2 μ m形 成した。

【0190】一方、厚さ30μmのポリイミドフィルム に、図3と同様のDCマグネトロンスパッタ装置によっ て、基板温度200℃でTa₂O₅を3.0μmの厚み で形成した。

【0191】その後、Ta, Os を水で5%に希釈した 酢酸で120秒エッチングして、 $Rmaxで1.5 \mu m$ 程度の凹凸構造を表面に形成し、光散乱層を形成した。

【0192】次に、厚さ1mmのA1板の支持体811 上に、透明電極まで形成した光起電力装置を、そしてそ の上に表面に凹凸を有するTa、O。を形成したポリイ ミドフィルムを2枚、最上部に上部透明材801aであ るPVFフィルムをそれぞれの間に充填層として、EV Aを塗布して貼り付けた。このとき、集電電極805お よび裏面電極806の端部に不図示の取り出し電極を形 成した。

【0193】そして、全体を150℃で1時間加熱し て、EVAを硬化させ、図8に示した本発明の光起電力 30 装置を完成した。

【0194】以上の工程で図8の10cm角の多結晶シ

リコン光起電力装置を50個作製した。

【0195】そして、並列抵抗が1cm² あたり1kΩ 以上の光起電力装置を、25℃で、ソーラーシミュレー ターによって、AM1.5、100mw/cm^t の疑似 太陽光を照射して、開放電圧 (Voc)、短絡電流 (J s c)、フィルファクター(FF)、光電変換効率

(η) 等の光起電力装置特性を測定し、平均値を求め た。表4は、光起電力装置特性の結果をまとめたもので ある。

【0196】但し、光起電力装置特性は後述する比較例 5の値で規格化してある。

【0197】 (比較例4) 実施例4において、光散乱層 802bを設けることなく、光散乱層を一層だけにし て、それ以外は実施例4と全く同様の手順で、10cm 角の多結晶シリコン光起電力装置を50個作製した。

【0198】実施例4と同様に、光起電力装置特性を測 定し、平均値を求めた。

【0199】(比較例5)実施例4において、光散乱層 802a、802bを設けずに、それ以外は実施例4と 全く同様の手順で、10cm角の多結晶シリコン光起電 力装置を50個作製した。

【0200】実施例4と同様に、光起電力装置特性を測 定し、平均値を求めた。

【0201】表4から明らかなように、表面保護層中に 凹凸構造を有する光散乱層を形成した本発明の光起電力 装置によって、短絡電流(Jsc)が向上し、光電変換 効率(η)が向上した。また、光散乱層を2層にするこ とによって、さらに短絡電流 (Jsc) が向上し、光電 変換効率(η)が向上した。

[0202]

【表4】

	実施例4	比較例4	比較例 5
光散乱層	光散乱層	光散乱層	光散乱層
Voc	0. 999	1.000	1
Jsc	1.083	1.052	1
FF	1. 001	1.001	1
η	1.083	1.053	1

(実施例5)以下の工程で、本発明のさらに他の一例の 光起電力装置を作製した。

【0203】本実施例は、図8の構成の光起電力装置に

して単結晶GaAsを用いた本発明の光起電力装置の一 例である。

【0204】まず、厚さ200µmのn型のGaAsウ おいて、光散乱層の表裏両面に凹凸を設け、半導体層と 50 エハーを用意し、MOCVD法によって、硫黄(S)を 25

【0205】次に、pn接合を形成したGaAsウエハーの表面に不図示の厚さ75nmのSi₃N₄の反射防止層を形成した。

【0206】次に、GaAsウエハーの裏面に厚さ20 10 0 n m の Si, N, のパッシベーション層を形成した。 【0207】次に、パッシベーション層を形成したGaAsウエハーの表面および裏面にTiとAgの集電電極805および裏面電極806を形成した。

【0208】一方、表面にRmaxで 5μ m程度の凹凸を設けたステンレス薄板に、PETを、ホットメルトさせて塗布した後、冷却してステンレス薄板から剝し、表面にRmaxで 2.0μ m程度の凹凸を有するPETフィルムを形成した。

【0209】そして、前述のPETフィルムに、反応性 20イオンプレーティングにより、基板温度 120℃でMg F, を 2μ m形成した。その後、NF。と0, の混合ガスのプラズマによって、ドライエッチングすることにより、Mg F, の表面にRmax で0. 6μ mの凹凸を形成した。これによって、表裏両面に凹凸を有するMgF, の光散乱層を形成した。

【0210】次に、厚さ1mmのA1板の支持体811上に、集電電極まで形成した光起電力装置を、そしてその上に表面に凹凸を有するMgF,を形成したPETフィルムを2枚、最上部に上部透明材801aであるPVFフィルムをそれぞれの間に充填層として、EVAを塗布して貼り付けた。このとき、集電電極805および裏面電極806の端部に不図示の取り出し電極を形成した。

【0211】そして、全体を150℃で1時間加熱して、EVAを硬化させ、図8に示した本発明の光起電力

装置を完成した。

【0212】以上の工程で、直径3インチのGaAs光起電力装置を20個作製した。

【0213】そして、並列抵抗が1 c m² あたり1 k Ω 以上の光起電力装置を、25℃で、ソーラーシミュレー ターによって、AM1. 5、100 mW/c m² の疑似 太陽光を照射して、開放電圧 (Voc)、短絡電流 (J sc)、フィルファクター (FF)、光電変換効率

(η)等の光起電力装置特性を測定し、平均値を求め た。光電変換効率(η)等の光起電力装置特性を測定 し、平均値を求めた。

【0214】光起電力装置特性の結果を第5表にまとめた。

【0215】但し、光起電力装置特性は後述する比較例7の値で規格化してある。

【0216】(比較例6)実施例5において、光散乱層802bを設けることなく、光散乱層を一層だけにして、それ以外は実施例5と全く同様の手順で、直径3インチのGaAs光起電力装置を20個作製した。

【0217】実施例5と同様に、光起電力装置特性を測 定し、平均値を求めた。

【0218】(比較例7)実施例5において、光散乱層802a、802bを設けずに、それ以外は実施例5と全く同様の手順で、直径3インチのGaAs光起電力装置を20個作製した。

【0219】実施例5と同様に、光起電力装置特性を測定し、平均値を求めた。

【0220】表5から明らかなように、表面保護層中に 凹凸構造を有する光散乱層を形成した本発明の光起電力 装置によって、短絡電流(Jsc)が向上し、光電変換 効率 (η) が向上した。また、光散乱層を2層にするこ とによって、さらに短絡電流(Jsc) が向上し、光電 変換効率 (η) が向上した。

[0221]

【表5】

	実施例 5	比較例6	比較例7
光散乱層	光散乱層 2層	光散乱層	光散乱層 無し

27
v

Voc	1.000	1.000	1
Jsc	1.064	1.039	1
FF	1. 001	1. 001	1
η	1.065	1. 040	1

[0222]

【発明の効果】以上説明したように、請求項1~請求項 4の発明によれば、光入射側の表面保護層中に、凹凸構 造を有する光散乱層が設けられているので、光起電力装 置に入射した光が、表面保護層中で散乱された後に半導 体層に入射し、半導体層中での光路長が延びて、半導体 層による光の吸収が増大して短絡電流が増大し、光電変 換効率を向上させることができる。

【0223】ここで、請求項5の発明によれば、前記凹 凸構造を有する光散乱層を、該表面保護層中に複数形成 すれば、入射光の散乱がより増大し、さらに半導体層に 20 よる光の吸収が増大して短絡電流が増大し、光起電力装 置の光電変換効率をさらに向上できる。

【0224】また、請求項6の発明にれば、前記光散乱 層を形成する物質の屈折率について、前記表面保護層を 形成する物質の屈折率との差を 0. 1以上にすることに より、入射光の散乱が増大するので、半導体層による光 の吸収が増大して短絡電流が増大し、前記光電変換効率 をさらに向上できる。

【0225】さらに、請求項7の発明によれば、光起電 力装置に入射する光が入射側と反射側の両側で散乱さ れ、半導体層によるより一層の光吸収の増加、これによ る短絡電流の増大、光電変換効率の向上を実現できる。

【0226】総じて、本発明によれば、半導体層中での 光路長が延びて、半導体層による光の吸収が増大するの で、半導体層の層厚を薄くできる。それよって、例え ば、半導体層として、アモルファス半導体を用いる場合 には、半導体層内の光誘起欠陥の生成が抑制され、光照 射による光起電力装置の光電変換効率の低下 (いわゆる 光劣化)が抑制される。

【0227】さらに、例えば半導体層として、結晶半導 40 体を用いる場合には、半導体基板の厚みの薄型化によ り、光起電力装置の軽量化、また、半導体材料の削減に よる、製造コストの低減に低減に貢献きる。

【図面の簡単な説明】

【図1】本発明による光起電力装置の概念的模式図であ

【図2】本発明の光起電力装置の一例を示す断面図であ る。

【図3】本発明の光起電力装置の光散乱層を形成するた めの製造装置の一例の断面図である。

【図4】本発明の光起電力装置の一例の概観図である。

【図5】本発明の光起電力装置の一例の分光感度を示し たグラフである。

【図6】本発明の光起電力装置の他の一例を示す断面図

【図7】本発明の光起電力装置のさらに他の一例を示す 断面図である。

【図8】本発明の光起電力装置のさらに他の一例を示す 断面図である。

【符号の説明】

101, 201, 601, 701, 801 表面保護

102, 202, 602, 702, 802 光散乱層

103, 203, 603, 703, 803 透明電極

104, 204, 604, 704, 804 半導体層

105, 205, 605, 805 集電電極 106, 206, 606, 706, 806 裏面電極

(光反射層)

107, 207, 607, 707 基板

108, 208, 608, 808 裏面保護層

209, 609 透明導電層

210, 610 絶縁層

6 1 1 支持体

301 真空容器

302 支持部

303 加熱板

304 熱電対

305 温度コントローラー

306 ヒーター

307 伝熱板

308 基板

309 基板押さえ

3 1 0 ターゲット

3 1 1 ターゲット台

3 1 2 マグネット

冷却水導入パイプ 3 1 3

3 1 4 スパッタ電源

3 1 5 高周波電源

316, 317 マスフローコントローラー

3 1 8 真空計

50 3 1 9 メインバルブ

30

320 プラズマ空間

401 光起電力装置の光入射面

402 取り出し電極

【図1】

【図2】

【図3】

【図4】

【図6】

【図7】

【図8】

フロントページの続き

(72)発明者 松田 高一

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 幸田 勇蔵

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 岡田 直人

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内