PROJECT: PARAMETER IDENTIFICATION OF THE GOLDAK HEAT SOURCE IN WELDING SIMULATIONS

Youness El Houssaini

University of Strasbourg, UFR math & info, CSMI 2, Strasbourg

Florian Dittmann, Dipl. -Ing.

Fraunhofer institute for Mechanics of materials, IWM, Freibourg

2021-01-28, Strasbourg

Context?

Where and What?

Organization Chart

Fraunhofer Institute for Mechanics of Materials IWM

Woehlerstraße 11, 79108 Freiburg, Germany

Executive Director: Prof. Dr. Peter Gumbsch (Assistant: Monika Ebling -200)
Deputy Directors: Dr. Rainer Kübler, Prof. Dr. Chris Eberl (Assistant: Emanuele Oppermann -486)
Strategy Staff: Thomas Götz -153, Prof. Dr. Christian Elsässer -286

Date January 18, 2021

business units	Manufacturing Processes Dr. Dirk Helm -158	Tribology Prof. Dr. Matthias Scherge -206 +49 721 204327-12	Component Safety and Lightweight Construction Dr. Michael Luke -338 and Dr. Silke Sommer -266	Assessment of Materials and Lifetime Concepts Dr. Christoph Schweizer -382	Administrative Infrastructure	Technical Infrastructure Dr. Rainer Kübler -213	
groups	Powder Technology and Fluid Dynamics Dr. Torsten Kraft -248	Wear Protection and Advanced Ceramics Dr. Andreas Kailer -247	Fatigue and Fracture Mechanics Dr. Michael Luke -338 and Dr. Igor Varfolomeev -210	Microstructure and Residual Stresses Dr. Johannes Preußner -101	Finances and Contracts Nina Halaczinsky -487	Mechanical Workshop Stefan Frei -345	
	Forming Processes Dr. Alexander Butz -369	Multiscale Modeling and Tribosimulation Prof. Dr. Michael Moseler -332	Crash Safety and Damage Mechanics Dr. Silke Sommer -288 and Frank Huberth -472	Lifetime Concepts and Thermomechanics Dr. Christoph Schweizer -382	Human Resources and Travel Management Kerstin A. Drüsedau -140	Facility Management Manuel Birkle -219	
	Glass Forming and Machining Tobias Rist 430	Polymer Tribology and Biomedical Materials Dr. Raimund Jaeger -284	Composite Materials PD Dr. Jörg Hohe -340	Materials Modeling Dr. Daniel Urban -378	Public Relations and Visitor Management Katharina Hien -154	IT Services Klaus Merkel -217	
'		Tribological and Functional Coatings Bernhard Blug -180	Meso- and Micromechanics Dr. Thomas Straub -537			Scientific IT Dr. Heiko Hafok -311	
		Triboconditioning and -analytics (Location Karlsruhe) Prof. Dr. Matthias Scherge +49 721 204327-12				Occupational Safety Rainer Kübler -213	

Development work is carried out on mechanism-based material models for a wide range of applications with which to describe the deformation and failure behavior of components under thermal and mechanical loads.

Email: name.surname@iwm.fraunhofer.de Phone +49 761 5142-...

Why?

The Eschede **derailment** occurred on 3 June 1998, near the village of Eschede in the Celle district of Lower Saxony, **Germany**, when a high-speed **train** derailed and crashed into a road bridge. 101 people were killed and 88 were injured.

Welding process?

Definition

Welding is a fabrication **process** whereby two or more parts are fused together by means of heat, pressure or both forming a join as the parts cool. **Welding** is usually used on metals and thermoplastics but can also be used on wood.

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{\rho C_p}{k} \frac{\partial T}{\partial t}$$

Moving heat sources is a topic in transient heat transfer that is applicable to engineering problems, particularly welding engineering. In the early 20th Century, welding engineers began studying moving heat sources, both empirically and theoretically.

Goldak heat source model

Implemented to the <u>Abaqus simulation</u> via USER subroutine DFLUX Double-ellipsoidal heat source by Goldak.

Gaussian distribution of the power density Q(x, y, z) where Q_0 is the maximum value of the power density at the center

$$Q(x, y, z) = \begin{cases} Q_0 exp\left(-\left(\frac{x^2}{b^2} + \frac{y^2}{c^2} + \frac{z^2}{a_f^2}\right)\right); x \ge 0 \\ Q_0 exp\left(-\left(\frac{x^2}{b^2} + \frac{y^2}{c^2} + \frac{z^2}{a_r^2}\right)\right); x < 0 \end{cases}$$

Abaqus software

Abaqus FEA is a software suite for finite element analysis and computer-aided engineering.

Pre-processing (Modeling)

Abaqus/CAE or other products

Evaluation and Simulation (Value of Abaqus/Standard or Abaqus/Explicit or Abaqus/Explicit

Post-processing (Visualization)

Abaqus/CAE or other products

Problematic?

Abaqus simulation


```
Pre-processing (Modeling)

Abaqus/CAE or other products

Evaluation and Simulation (Visualization)

Abaqus/Standard or Abaqus/Explicit

Post-processing (Visualization)

Abaqus/CAE or other products
```



```
2
             SUBROUTINE DFLUX (FLUX, SOL, JSTEP, JINC, TIME, NOEL, NPT, COORDS, JLTYP,
           TEMP, PRESS, SNAME)
4
5
             INCLUDE 'ABA PARAM.INC'
 6
 7
             DIMENSION COORDS (3), FLUX (2), TIME (2)
             CHARACTER*80 SNAME
 8
9
10
      C The total absorbed power needs to be calibrated
    C with an intensity function QT
12
13
14
            XX = COORDS(2)
15
            YY = COORDS(3)
16
            ZZ = COORDS(1)
17
            TT = TIME(1)
18
19
20
      C
21
22
           Start angele phi [rad]
23
            phi start = 0.0
24
25
            IF ((JSTEP.EQ.1).OR.(JSTEP.EQ.2)) THEN
26
      C
27

    Lage

28
                QT = 1.6*14.0e3
29
           speed of weld sorurce [mm/sek]
30
                speed = 5.0
31
           Radius of welding circle [mm]
```

Parameters are estimated and modified manually on the Abaqus inputfile.f USER subroutine DFLUX written in Fortran.

Abaqus simulation

.inp

```
STEP 1:
     ********
     STEP, INC=10000
27 *HEAT TRANSFER
28 0.532, 196.84, ,
29 **
30 *MODEL CHANGE, REMOVE
31 W2_3d, W3_3d, W4_3d, W5_3d, W6_3d, W7_3d
33 *SRADIATE, OP=NEW
34 AIR HEAT EXCHANGE 1, R, 20.0, 0.8
35 **
36 *SFILM, OP=NEW
37 AIR_HEAT_EXCHANGE_1, F, 20.0, 25.0e-3
38 **
39 *DFLUX, OP=NEW
40 Rohr 3d, BFNU, 1.0
41 Rohr_HAZ_3d, BFNU, 1.0
42 W1 3d, BFNU, 1.0
43 **
44 *OUTPUT, FIELD, FREQ=1
45 *NODE OUTPUT
47 **
48 *END STEP
49 **
50 *****************
51 ** STEP 2:
52 ******************
53 *STEP, INC=50000
54 *HEAT TRANSFER, DELTMX=1000
55 0.1, 4803.16, 0.001, 200.0
```


Abaqus simulation

Pre-processing (Modeling)

Abaqus/CAE or other products

Evaluation and Simulation

Abaqus/Standard or Abaqus/CAE or other products

Post-processing (Visualization)

Abaqus/CAE or other products

.odb

Path

Objective

$$Q(x, y, z) = \begin{cases} Q_0 exp\left(-\left(\frac{x^2}{b^2} + \frac{y^2}{c^2} + \frac{z^2}{a_f^2}\right)\right); x \ge 0\\ Q_0 exp\left(-\left(\frac{x^2}{b^2} + \frac{y^2}{c^2} + \frac{z^2}{a_r^2}\right)\right); x < 0 \end{cases}$$

How to run this iterative approach automatically?

Work packages

Github project management

	2020									2021						
Name	Assignee	Oct			Nov			Dec					Jan			
		Week 42	Week 43	Week 44	Week 45	Week 46	Week 47		Week 48	Week 49	Week 50	Week 51	Week 52	Week 53	Week 01	Week 02
□ ue-projet-issues	(None)					repo	t_v0	Today	Data preparation	Continuous Integration	Optimization	Validation	use self hosted runne	rs Documentation	report viet issues	
#9 T-t profile extraction script	youness-elh								#9 T-t profile extra	tion script						
#10 Running abaqus jobs script	youness-elh								#10 Running abaqu	s jobs script						
#11 Objective function	youness-elh									#11 Objective function	ı					
#12 Algorithm	youness-elh										#12 Algorithm					
#13 install the action runner in the server	youness-elh												#13 install the action	runner in the server		
#14 Run first action on self hosted runner	youness-elh												#14 Run first action o	on self hosted runner		
#15 Ask for more models	youness-elh											#15 Ask for more mod	els			
#16 Sphinx/Antora	youness-elh													#16 Sphinx/Antora		
#17 Add gantt in the report	youness-elh							#17	Add gantt in the repor							
#18 Modeling the optimization problem	youness-elh								#18 Modeling the o	ptimization problem						
#19 Convergence and assessment of the algo	youness-elh													#19 Convergence and	assessment of the algo	
#20 Enhancements	youness-elh														#20 Enhancements	
#8 Workpackages + Gantt generation	youness-elh														#8 Workpackages + C	iantt generation
#4 Make a summary	youness-elh			#	4 Make a summary											
#6 Fill the project objective section	youness-elh			#	6 Fill the project objective section											
#5 Fill env & context subsection	youness-elh			#	S Fill env & context subsection											
#7 Problem compiling .tex file (related to issue #2)	prudhomm									#7 Problem compiling .tex	file (related to issue #2)					
#2 Continuous TeX Document Production with GitHub Actio	N: youness-elh			#	2 Continuous TeX Document Produ	ction with GitHu	b Actions									
#1 Start the first version template	youness-elh		_	#1 Start the first version	template											
#3 make a roadmap	youness-elh			#	3 make a roadmap											

Optimization algorithm

The cost function

The cost function of our optimization problem is:

$$Minimize_v Loss(Q)$$

With Loss(Q) =
$$\frac{1}{2} |Tsim - Tref|_{L^2}^2 + \frac{\alpha}{2} |Q|_{L^2}^2$$

- ✓ Is a regulation and penalization parameter.
- ✓ Tref is the reference temperature profile.
- ✓ Tsim is the simulation profile dependent on Q.

The algorithm

The chosen algorithm is based on the gradient descent method with the following key parameters:

- α is taken around e^{-16} .
- Gradient is approximated as $\nabla Loss(Q) = \frac{L(Q)^1 L(Q)^0}{Q^1 Q^0}$

The algorithm

The following sub loop was used to find the descent direction:

```
while ((count < max_iter_step) and (delta >=0)):
   print('-----')
   print('----Looking for descent direction for iteration '+str(count+1)+'-----')
   print('----\n')
   step /= 2.3
   Q = max(Q old - step*gradient,0)
   profiles = Abaqus(Q)
   L_new = Loss(Q,profiles,Targets)
   delta = L_new - Loss_list[-1]
   count +=1
   #save
   Q list.append(Q)
   Loss_list.append(L_new)
   delta_list.append(delta)
   step_list.append(step)
   Profiles list.append(profiles)
```


How to use:

Some results

Simulation time:

Simulation time

Reference profile:

First try

- step = 20 then step = step/10.3.
- $Q^{\circ} = 7321$ which goes to 18321 in the first step.
- $\nabla Loss(Q)^{\circ} \sim -550$

Loss evolution over iterations:

7.939960101075110026e+06

- 3.913946736285572872e+06
- 3.401935196144585498e+06
- 5.450714358963172417e+05
- 4.048547164426437812e+05
- 2.153708858484998718e+07
- 2.151098746989504620e+07
- 2.150845797562927380e+07
- 2.073616695963315293e+07
- 2.073592287261193991e+07
- 7.940604837914695032e+06

Loss evolution over iterations:

- 1.0000000000000000000e+00
- 7.3210000000000000000e+03
- 1.832103651581840677e+04
- 1.925196349847832607e+04
- 8.062871620759859798e+04
- 8.063315217826582375e+04
- 8.062914688436240249e+04
- 7.940063258435850730e+04
- 7.940024442592239939e+04
- 0.0000000000000000000e+00
- 0.0000000000000000000e+00

Best so far:

Relative loss error of: 9.51e-01

Outlook

Enhancement:

Using the tool to generate enough data to build:

- Regression model for one single use
- ANN model for versatile use (e.g the initial guess)
- To build a reduced basis out of the FE model

Programming:

- Using Gitlab runners instead of shared folders
- Enhancing the optimizer packages

Perspectives:

- Having a reliable model for more models
- Possibility of taking into account several parameters
- Including the mechanical behavior to the model.

Thank you for your attention

