Microbial Bile Acid Metabolism Shapes T Cell Responses During Inflammation

Oriana Miltiadous

2023-08-07

Contents

1	Inti	roduction: load the datasets	5		
	1.1	Load packages	5		
	1.2	Load datasets	5		
2	Analyze the effect of UDCA administration on the bile acid pool (supplementary figure 5) 7				
	2.1	Plot ursodiol exposure and secondary BAs concentrations $\ \ldots \ \ldots$	9		
	2.2	Plot correlation of ursodiol with other bile acid pools: plot conjugated UDCA (tauroursodeoxycholic_acid+glycoursodeoxycho	cid),		
	2.3	Create correlation plots to evaluate association of UDCA with all individual BAs	11		
3	Create the bile acid pools (figure 4, supplementary figure 6,8) 15				
	3.1	Create BA pools first for peri-GVHD-onset timepoint	15		
	3.2	Create BA pools for peri-engraftment timepoint	19		
4	Evaluate T cell modulatory BAs in patients with GVHD vs controls (figure 4) 23				
	4.1	30xoLCA	23		
	4.2	isoLCA	24		
	4.3	isoDCA	25		
	44	OMCA	26		

4 CONTENTS

5		otgun metagenomic sequencing: Evaluate genes of interest ure 5, supplement figure 10)	29
	5.1	BSH	29
	5.2	Bai operon gene	31
	5.3	Bile acid related bacteria	34
6	Cre	ate landscape of all peri-GVHD-onset samples (figure 5)	37
	6.1	Define sample order from higher nonUDCA secondary BAs to lower	37
	6.2	GI GVHD plot	37
	6.3	SBA plot	38
	6.4	A-diversity plot	39
	6.5	Bile acid related genes	40
	6.6	Microbiome composition	41
	6.7	Add all plots together	43
7	Div	ersity, bai operon and domination	45
	7.1	Evaluate correlation of a-diversity and bai oper on sum $\ \ldots \ \ldots$	45
	7.2	Identify patients with monodomination by 16S $$	46
	7.3	Domination and a-diversity	47
	7.4	Domination and bai operon	48
	7.5	SBAs and domination	48
8	Eva	luation of UDCA exposure and clinical outcomes	51
	8.1	Prepare the patient outcome table	51
	8.2	Evaluate ursodiol exposure and overall survival	52
	8.3	Evaluation of cumulative incidences	54

Chapter 1

Introduction: load the datasets

1.1 Load packages

```
library(janitor)
library(readxl)
library(tidyverse)
library(ggpubr)
library(data.table)
```

1.2 Load datasets

```
#patient cohort
cohort_BAS<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/cohort_BAS.csv")
ursodiol<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/ursodiol.csv")

#metabolomics data
#concentrations
conc_all_filtered<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/conc_all_filtered_combined_table<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/filtered#annotations
ba_families<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/ba_families.csv")

#16s data</pre>
```

counts_samples <-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/countasv_annotation_blast_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/asv_alpha_all<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/asv_alpha_asv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_insv_annotation_blast_color_ag<-read_csv("/

#shotqun data

BSH_metalphlan <-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/BSH_mbai_genes_clean<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/taxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/taxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/taxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/taxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bai_gtaxa_bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/bas_later<-read_csv("/Volumes/vandenbrinklab/Oriana/BAs_pub

#ursodiol cohort: double check that it's ok to share
patients_urso_CIF<- read_csv("/Volumes/vandenbrinklab/Oriana/BAs_published_datasets/patients_urso_cif*</pre>

Chapter 2

Analyze the effect of UDCA administration on the bile acid pool (supplementary figure 5)

```
#summarize bile acid pools
both_conc<- cohort_BAS %>% select(-ursodiol)%>%
  left_join(conc_all_filtered) %>% clean_names()
*prep dataset prepping each BA depending on its classifications
both_conc_pools<-both_conc %>%
  gather("bile_acid", "value", names(.)[8]:names(.)[ncol(.)]) %>%
  select(-gi_gvhd, -later, -periengr) %>%
  left_join(ba_families) %>%
  filter(bile_acid!="beta_muricholic_acid") %>% #removing because it's not measured in all sample
  filter(bile_acid!="omega_muricholic_acid") %>% #removing because it's not measured in all samp
  mutate(primary_pool=ifelse(prim_vs_sec=="Primary", value, 0)) %>%
  mutate(secondary_pool=ifelse(prim_vs_sec=="Secondary", value, 0)) %>%
  mutate(sulfated_pool=ifelse(sulfated=="Y", value, 0)) %>%
  mutate(conjugated_pool=ifelse(amidated=="Y" & sulfated=="N", value, 0)) %>%
  mutate(unconjugated_pool=ifelse(amidated=="N" & sulfated=="N", value, 0)) %>%
  mutate(secondary_nonUDCA=ifelse(prim_vs_sec=="Secondary" & udca=="N", value, 0)) %>%
  mutate(total_BAs=value) %>%
  mutate(total_nonUDCA_pool=ifelse(udca=="N", value, 0)) %>%
  mutate(glycine_pool=ifelse(glycine=="Y" & sulfated=="N", value, 0)) %%
  mutate(taurine_pool=ifelse(taurine=="Y" & sulfated=="N", value, 0)) %>%
```

```
mutate(taurine_SBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Secondary" & sulfated=="!"
mutate(taurine_PBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Primary" & sulfated=="N"
mutate(glycine_SBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Secondary" & sulfated=="N"
mutate(glycine_PBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Primary" & sulfated=="N",
select(-colnames(ba_families), -value)

both_conc_pools_final<-both_conc_pools %>%
group_by(sampleid) %>%
summarise(across(where(is.numeric), sum)) %>%
left_join(ursodiol)

#rearrange ursodiol
both_conc_pools_final$ursodiol <-factor(both_conc_pools_final$ursodiol,
levels=c("Y","2-3w","3-4w","1-2m", "N"))</pre>
```

##Evaluation of ursodiol exposure and UDCA concentration

```
ursodiol_BAs<-both_conc %>%
 left_join(ursodiol)
#rearrange ursodiol
ursodiol BAs$ursodiol <-factor(ursodiol BAs$ursodiol,
                           levels=c("Y","2-3w","3-4w","1-2m", "N"))
ursodiol_BAs %>%
  ggplot(aes(x=ursodiol, y=log10(`ursodeoxycholic_acid`), color=ursodiol)) +
  geom_boxplot(width=0.2, outlier.shape =NA, lwd=.7)+
 geom_jitter(width=0.2, alpha=0.2)+
 theme_classic() +
 xlab("ursodiol exposure")+
  stat_compare_means(comparisons=list( c("Y", "2-3w"),c("3-4w", "Y"), c("Y", "1-2m"),
                                       c("3-4w", "2-3w"), c("1-2m", "2-3w"), c("N", "2-3w")
                                       c("1-2m", "3-4w"), c("N", "3-4w"),
                                       c("N", "1-2m")
  ),
  #label="p.signif",
 method="wilcox.test",
 correct=FALSE)+
 scale color manual(values=c("#a6611a", "#bf812d", "#dfc27d", "#80cdc1", "#018571"))+
 theme(legend.position="none")
```

2.1. PLOT URSODIOL EXPOSURE AND SECONDARY BAS CONCENTRATIONS9

2.1 Plot ursodiol exposure and secondary BAs concentrations

2.2 Plot correlation of ursodiol with other bile acid pools: plot conjugated UDCA (taurour-sodeoxycholic_acid+glycoursodeoxycholic_acid), TBAs (total_BAs), PBAs (primary_pool), SBAs (secondary_pool), nonUDCA total BAs (total_nonUDCA_pool), nonUDCA SBAs (secondary_nonUDCA), secondary/primary ratio (SP_ratio)

```
both_conc_pools_final %>%
  mutate(SP_ratio=secondary_pool/primary_pool) %>%
  mutate(SP_ratio_nonUDCA=secondary_nonUDCA/primary_pool) %>%
  left_join(both_conc %>% select(sampleid, glycoursodeoxycholic_acid, tauroursodeoxychoggplot(aes(y=log10(`ursodeoxycholic_acid`+2.5), x=log10(secondary_pool+2.5)))+
  geom_point(size=0.8, alpha=0.4)+
  geom_smooth(method="lm")+
  stat_cor(method = "pearson")+
  #ylab("log10(UDCA)")+
```

```
#xlab("log10(PS_nonUDCA)")+
theme_classic()
```


2.3 Create correlation plots to evaluate association of UDCA with all individual BAs

```
library(corrplot)

precor_data<- filtered_combined_table %>%
    column_to_rownames("sampleid")
cor_data<-cor(precor_data, use = "complete.obs")

corrplot(cor_data)</pre>
```


2.3.1 Visualization of significant correlations of UDCA with individual BAs (R>0.4)

14CHAPTER 2. ANALYZE THE EFFECT OF UDCA ADMINISTRATION ON THE BILE ACID POC

Chapter 3

Create the bile acid pools (figure 4, supplementary figure 6,8)

3.1 Create BA pools first for peri-GVHD-onset timepoint

```
later<- cohort BAS %>%filter(later=="Y") %>%
  filter(ursodiol=="Y") %>%
  select(sampleid, GI_GVHD) %>%
  left_join(conc_all_filtered)
#prep dataset prepping each BA depending on its classifications
later_pools<-later %>%
  gather("bile_acid", "value", names(.)[5]:names(.)[ncol(.)]) %>%
  left_join(ba_families) %>%
  mutate(primary_pool=ifelse(prim_vs_sec=="Primary", value, 0)) %>%
  mutate(secondary_pool=ifelse(prim_vs_sec=="Secondary", value, 0)) %>%
  mutate(sulfated_pool=ifelse(sulfated=="Y", value, 0)) %>%
  mutate(conjugated_pool=ifelse(amidated=="Y" & sulfated=="N", value, 0)) %%
  mutate(unconjugated_pool=ifelse(amidated=="N" & sulfated=="N", value, 0)) %>%
  mutate(secondary_nonUDCA=ifelse(prim_vs_sec=="Secondary" & udca=="N", value, 0)) %>%
  mutate(total_BAs=value) %>%
  mutate(total_nonUDCA_pool=ifelse(udca=="N", value, 0)) %>%
  mutate(glycine_pool=ifelse(glycine=="Y" & sulfated=="N", value, 0)) %%
  mutate(taurine_pool=ifelse(taurine=="Y" & sulfated=="N", value, 0)) %>%
```

```
mutate(taurine_SBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Secondary" & sulfated=="!"
mutate(taurine_PBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Primary" & sulfated=="N"
mutate(glycine_SBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Secondary" & sulfated=="N"
mutate(glycine_PBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Primary" & sulfated=="N", select(-colnames(ba_families), -value)

#replace NAs with 0 to be able to add sums
later_pools[is.na(later_pools)]<-0

later_pools_final<-later_pools %>%
    #gather("bile_acid", "value", names(.)[2]:names(.)[ncol(.)]) %>%
#summarise(sum_group=sum(value))
group_by(sampleid) %>%
summarise(across(where(is.numeric), sum))
```

3.1.1 Plot: TBAs (total_BAs), PBAs (primary_pool), SBAs (secondary_pool), nonUDCA SBAs (secondary_nonUDCA), conjugated (conjugated_pool), unconjugated (unconjugated_pool), sulfated (sulfated pool)

```
later_pools_final %>%
  left_join(cohort_BAS) %>%
 mutate(GI_GVHD=ifelse(GI_GVHD=="Y", "GVHD", "CTRL")) %>%
 mutate(sp_ratio=secondary_pool/primary_pool) %>%
 mutate(sp_nonUDCA_ratio=secondary_nonUDCA/primary_pool) %>%
 mutate(unconj_conj=unconjugated_pool/conjugated_pool) %>%
  ggplot(aes(x=GI_GVHD, y=log10(unconj_conj), colour=GI_GVHD))+
  geom_boxplot(width=0.2, lwd=0.8, outlier.shape = NA) +
  geom_jitter(width=0.3, alpha=0.3, size=2.5)+
 ylab("log10(unconj_conj)")+
 xlab("")+
 theme classic()+
  stat_compare_means(comparisons=list(c("CTRL", "GVHD")),
                     method="wilcox.test",
                     correct=FALSE)+
  scale color manual(values=c("dodgerblue4", "red3"))+
  theme(legend.position="none")
```

3.1. CREATE BA POOLS FIRST FOR PERI-GVHD-ONSET TIMEPOINT17

3.1.2 Create pies

dataset_pre<-later_pools_final %>%

```
gather("BA_pool", "value", names(.)[2]:names(.)[ncol(.)]) %>%
  left_join(cohort_BAS %>%
              select(sampleid, GI_GVHD, later, ursodiol)) %>%
  filter(later=="Y") %>%
  filter(ursodiol=="Y") %>%
  select(-ursodiol, -later) %>%
  group_by(GI_GVHD, BA_pool) %>%
  summarise(ave_pool=ave(value)) %>% slice(1)
## Joining with `by = join_by(sampleid)`
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## i Please use `reframe()` instead.
## i When switching from `summarise()` to `reframe()`, remember that `reframe()`
     always returns an ungrouped data frame and adjust accordingly.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
## `summarise()` has grouped output by 'GI_GVHD', 'BA_pool'. You can override
## using the `.groups` argument.
```

```
dataset_pre2<-dataset_pre %>%
  #filter(BA_pool=="primary_pool"|BA_pool=="secondary_nonUDCA") %>% #to evaluate nonUD
  #filter(BA_pool=="primary_pool"|BA_pool=="secondary_pool") %>% #to evaluate total se
  filter(BA_pool=="glycine_pool"|BA_pool=="taurine_pool"|BA_pool=="sulfated_pool"|BA_p
  rename(group=BA_pool) %>%
 rename(value=ave_pool) %>%
 ungroup() %>%
  group_by(GI_GVHD) %>%
 mutate(sum_value=sum(value)) %>%
 mutate(perc=value/sum_value) %>%
 mutate(labels = scales::percent(perc)) %>%
  ungroup()
#only run below when evaluating glycine/taurine conjugation as wel
#define order of piechart for glycine/taurin conjugation
dataset_pre2$group <- factor(dataset_pre2$group, levels = c("glycine_pool", "taurine_p
cp<-coord_polar(theta="y")</pre>
cp$is_free<-function()TRUE</pre>
ggplot(dataset_pre2, aes(x="", y=perc, fill=group))+
 geom_bar(stat="identity", width=1)+cp+
  facet_wrap(.~GI_GVHD, scales="free")+
  geom_text(aes(label = labels),
            position = position_stack(vjust = 0.5)) +
  theme_void()+
  theme(axis.ticks=element_blank(),
        axis.title=element_blank(),
        axis.text.y=element_blank())+
  scale_fill_manual(values=c("green4", "chartreuse3", "dodgerblue2", "purple2")) #to eval
```


3.2 Create BA pools for peri-engraftment timepoint

```
periengr_conc<- cohort_BAS %>%filter(periengr=="Y") %>%
  filter(ursodiol=="Y") %>%
  select(sampleid, GI_GVHD) %>%
  left_join(conc_all_filtered) %>%
  select(-`beta_muricholic_acid`, -`omega_muricholic_acid`) #remove since it is not measured in a
#prep dataset prepping each BA depending on its classifications
periengr_pools<-periengr_conc %>%
  gather("bile_acid", "value", names(.)[3]:names(.)[ncol(.)]) %>%
  left_join(ba_families) %>%
  mutate(primary_pool=ifelse(prim_vs_sec=="Primary", value, 0)) %>%
  mutate(secondary_pool=ifelse(prim_vs_sec=="Secondary", value, 0)) %>%
  mutate(sulfated_pool=ifelse(sulfated=="Y", value, 0)) %>%
  mutate(conjugated_pool=ifelse(amidated=="Y" & sulfated=="N", value, 0)) %>%
  mutate(unconjugated_pool=ifelse(amidated=="N" & sulfated=="N", value, 0)) %>%
  mutate(secondary_nonUDCA=ifelse(prim_vs_sec=="Secondary" & udca=="N", value, 0)) %%
  mutate(total BAs=value) %>%
  mutate(total_nonUDCA_pool=ifelse(udca=="N", value, 0)) %>%
```

```
mutate(glycine_pool=ifelse(glycine=="Y" & sulfated=="N", value, 0)) %>%
mutate(taurine_pool=ifelse(taurine=="Y" & sulfated=="N", value, 0)) %>%
mutate(taurine_SBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Secondary" & sulfated=="""
mutate(taurine_PBA_pool=ifelse(taurine=="Y" & prim_vs_sec=="Primary" & sulfated=="N"
mutate(glycine_SBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Secondary" & sulfated=="N"
mutate(glycine_PBA_pool=ifelse(glycine=="Y" & prim_vs_sec=="Primary" & sulfated=="N", select(-colnames(ba_families), -value)

#replace NAs with 0 to be able to add sums
periengr_pools[is.na(periengr_pools)]<-0

#final table with each group sum
periengr_pools_final<-periengr_pools %>%
    group_by(sampleid) %>%
    summarise(across(where(is.numeric), sum))
```

3.2.1 Plot BA pools and GVHD; can plot total BAs (total_BAs), PBAs (primary_pool), SBAs (secondary_pool), nonUDCA SBAs (secondary_nonUDCA), conjugated (conjugated_pool), unconjugated (unconjugated_pool), sulfated_pool, secondary/primary ratio and secondary*/primary ratio

```
periengr_pools_final %>%
  left_join(cohort_BAS) %>%
 mutate(GI_GVHD=ifelse(GI_GVHD=="Y", "GVHD", "CTRL"))  %>%
 mutate(sp_ratio=secondary_pool/primary_pool) %>%
 mutate(sp_nonUDCA_ratio=secondary_nonUDCA/primary_pool) %>%
  ggplot(aes(x=GI_GVHD, y=log10(sulfated_pool), colour=GI_GVHD))+
  geom_boxplot(width=0.2, lwd=0.8, outlier.shape = NA) +
  geom_jitter(width=0.3, alpha=0.3, size=2.5)+
  #ylab("log10(sulfated_pool)")+
  xlab("")+
  theme classic()+
  stat_compare_means(comparisons=list(c("CTRL", "GVHD")),
                     method="wilcox.test",
                     correct=FALSE)+
  scale color manual(values=c("dodgerblue4", "red3"))+
  theme(legend.position="none")
```


3.2.2 Create pies

```
dataset_pre<-periengr_pools_final %>%
      gather("BA_pool", "value", names(.)[2]:names(.)[ncol(.)]) %>%
      left_join(cohort_BAS %>% select(sampleid, GI_GVHD, ursodiol)) %>%
      filter(ursodiol=="Y") %>%
      group_by(GI_GVHD, BA_pool) %>%
      summarise(ave_pool=ave(value)) %>% slice(1)
dataset_pre2<-dataset_pre %>%
      filter(BA_pool=="primary_pool"|BA_pool=="secondary_nonUDCA") %>% #to evaluate nonUDCA secondary
       #filter(BA_pool=="primary_pool"|BA_pool=="secondary_pool") %>% #to evaluate total secondary
       \#filter(BA\_pool == "glycine\_pool" | BA\_pool == "taurine\_pool" | BA\_pool == "sulfated\_pool" | BA\_pool == "unconstant" | BA\_pool == "sulfated\_pool" | BA\_pool == "unconstant" | BA\_pool == "sulfated\_pool" | BA\_pool == "unconstant" | BA\_pool == "unconstant" | BA\_pool == "sulfated\_pool" | BA\_pool == "unconstant" | BA\_pool == "uncons
      rename(group=BA_pool) %>%
      rename(value=ave_pool) %>%
      ungroup() %>%
      group_by(GI_GVHD) %>%
      mutate(sum_value=sum(value)) %>%
      mutate(perc=value/sum_value) %>%
      mutate(labels = scales::percent(perc)) %>%
      ungroup()
#only run to evaluate glycine/taurine conjugation
```


Chapter 4

Evaluate T cell modulatory BAs in patients with GVHD vs controls (figure 4)

4.1 3oxoLCA

4.2 isoLCA

4.3. ISODCA 25

4.3 isoDCA

4.4 OMCA

4.4. OMCA 27

28CHAPTER 4. EVALUATE T CELL MODULATORY BAS IN PATIENTS WITH GVHD VS CONTR

Chapter 5

Shotgun metagenomic sequencing: Evaluate genes of interest (figure 5, supplement figure 10)

5.1 BSH

5.1.1 Evaluate BSH abundance at peri-GVHD onset

5.1.2 Evaluate BSH abundance at peri-engraftment time point

5.2 Bai operon gene

5.2.1 Evaluate correlation of bai operon gene sum and nonUDCA secondary BAs

```
bai_genes_clean %>%
  distinct(sampleid, bai_operon_sum ) %>%
  inner_join(both_conc_pools_final) %>%
  ggplot(aes(x=log(secondary_nonUDCA), y=log(bai_operon_sum+0.05)))+
  geom_point(alpha=0.6)+
  stat_cor(method="pearson")+
  geom_smooth(method="lm")+
  theme_classic()+
  ylab("bai operon log10(cpm)")+
  xlab("SBAs* log10(pmol/mg)")
```


5.2.2 Bai operon gene sum in peri-GVHD onset

5.2.3 Bai operon individual gene abundance

5.3 Bile acid related bacteria

5.3.1 Eggerthella lenta

5.3.2 Ruminococcus gnavus

Chapter 6

Create landscape of all peri-GVHD-onset samples (figure 5)

6.1 Define sample order from higher nonUDCA secondary BAs to lower

```
samples_key<-BSH_metalphlan %>% distinct(sampleid) %>%
  left_join(later_pools_final %>% select(sampleid, secondary_nonUDCA)) %>%
  left_join(cohort_BAS) %>%
  filter(later=="Y") %>%
  arrange(desc(secondary_nonUDCA)) %>%
  left_join(ursodiol) %>% filter(ursodiol2=="Y")

level_order <- samples_key$sampleid</pre>
```

6.2 GI GVHD plot

```
gi_gvhd_plot<-cohort_BAS %>%
filter(later=="Y") %>%
ggplot((aes(x = factor(sampleid, levels = level_order), y = 1, fill = GI_GVHD))) +
geom_raster(color = "black", size = 0.5) +
theme_classic()+ theme(axis.text.x=element_blank())+
```

```
xlab("")+
ylab("")+
scale_fill_manual(values=c("white", "dodgerblue4"))+
theme(axis.text.y = element_blank())+
theme(legend.position = "none") #only for plotting reasons
gi_gvhd_plot
```


6.3 SBA plot

```
sba_plot<-ggplot(samples_key, aes(x=factor(sampleid, level=level_order), y=log10(second geom_point(size=3)+theme_classic()+
   ylab("log(SBAs*)")+
   theme(axis.text.x=element_blank())+
   xlab("")
sba_plot</pre>
```


6.4 A-diversity plot

```
adiv_pre<-cohort_BAS %>%
 filter(later=="Y") %>%
 left_join(asv_alpha_all) %>% #add a-diversity
  inner_join(samples_key) %>%
  arrange(desc(secondary_nonUDCA)) %>%
          mutate(rank = 1:nrow(.))
adiv_plot \leftarrow ggplot(adiv_pre, aes(x = rank, y = simpson_reciprocal)) +
  geom_point(size=3) +
  geom_smooth(method = "loess") +
  theme_classic() +
 ylab("a-diversity") +
  #xlab("sampleid") +
 theme(axis.text.x = element_blank()) +
 xlab("") +
 scale_x_discrete(limits = adiv_pre$rank[order(-adiv_pre$rank)])
adiv_plot
```


6.5 Bile acid related genes

```
bai_genes_clean$sampleid <-gsub("FMT_", "FMT.", bai_genes_clean$sampleid)</pre>
ba_genes_pre<-samples_key %>%
  select(sampleid, GI_GVHD, secondary_nonUDCA) %>%
  left_join(BSH_metalphlan %>%
              select(sampleid, cpm, KOID)) %>%
  rename(gene=KOID) %>%
  mutate(gene=ifelse(gene=="K01442", "BSH", NA)) %>%
  distinct() %>%
  spread(key=gene, value=cpm, fill=0)
operon_genes_pre<-samples_key %>%
  left_join(bai_genes_clean) %>%
  select(sampleid, cpm, gene) %>%
  distinct() %>%
  spread(key=gene, value=cpm, fill=0)
pre_bai_plot<-ba_genes_pre %>%
  left_join(operon_genes_pre) %>%
  select(-GI_GVHD, -secondary_nonUDCA) %>%
```


6.6 Microbiome composition

```
setDT(asv_annotation_blast_color_ag)
asv_color_base_set = unique(asv_annotation_blast_color_ag[,.(color_label_group,color_base)])
color_base_set_asv_carT = asv_color_base_set$color_base
names(color_base_set_asv_carT) = asv_color_base_set$color_label_group;
gg = ggplot(asv_color_base_set, aes(color_label_group,y=1,fill=color_label_group)) + geom_tile()
    scale_fill_manual(values = color_base_set_asv_carT) +
```

```
theme_classic() +
  theme(axis.text.x = element_text(angle=60,hjust = 1)) +
  theme(legend.position = "none")
#color_set_asv_carT maps each distinct taxonomic group to its corresponding color.
asv_color_set = unique(asv_annotation_blast_color_ag[,.(color,color_label_group_disting)
color_set_asv_carT = asv_color_set$color
names(color_set_asv_carT) =asv_color_set$color_label_group_distinct;
setDT(counts_samples)
setDT(asv_annotation_blast_color_ag)
m = merge(counts_samples[,.(asv_key,sampleid,
                         count, count relative, count total)],
          asv_annotation_blast_color_ag[,.(asv_key,color_label_group_distinct)]);
sample_composition <- m %>%
  left_join(cohort_BAS %>% select(PID, sampleid)) %>%
  left_join(cohort_BAS) %>%
  filter(later=="Y")
m1<-sample_composition %>%
  group_by(sampleid, color_label_group_distinct) %>%
  inner_join(samples_key) %>%
  mutate(sampleid = fct_reorder(sampleid, desc(secondary_nonUDCA)))
m1$color_label_group_distinct = factor(m1$color_label_group_distinct,levels = sort(uni-
gg_composition = ggplot(m1,
                        aes(x=factor(sampleid, levels=level_order),
                            y=count relative,
                            fill=color_label_group_distinct) ) +
  geom_bar(stat = "identity",position="fill",width = 1) +
  theme_classic() +
  theme(axis.text.x = element_blank(),
        axis.text.y = element_blank(),
        legend.position = "none") +
  xlab("")+
  scale_fill_manual(values = color_set_asv_carT);
print(gg_composition)
```


6.7 Add all plots together

$44 CHAPTER\ 6.\ CREATE\ LANDSCAPE\ OF\ ALL\ PERI\ GVHD-ONSET\ SAMPLES\ (FIGURE\ 5)$

Chapter 7

Diversity, bai operon and domination

7.1 Evaluate correlation of a-diversity and bai operon sum

```
data_ba<- asv_alpha_all %>%
  inner_join(bai_genes_clean %>% distinct(sampleid, bai_operon_sum)) %>%
  left_join(cohort_BAS) %>%
  filter(ursodiol=="Y")

data_ba %>%
ggplot(aes(x=log10(simpson_reciprocal), y=log10(bai_operon_sum+0.01)))+
  geom_point(alpha=0.6)+
  stat_cor(method="pearson")+
  geom_smooth(method="lm")+
  theme_classic()+
  ylab("bai operon log10(cpm)")+
  xlab("a-diversity")
```


7.2 Identify patients with monodomination by 16S

```
#create dataset with asv
samples_asv<-cohort_BAS %>%
  filter(later=="Y") %>%
  select(sampleid) %>%
  inner_join(counts_samples %>%
               select(sampleid, asv_key, count, count_total)) %>%
  inner_join(asv_annotation_blast_ag %>%
               select(asv_key, kingdom, phylum, class, ordr, family, genus)) %>%
  mutate(relab=count/count_total) %>%
  group_by(sampleid, genus)
pathogens_pre<- samples_asv %>%
  filter(genus=="Enterococcus"|genus=="Streptococcus"|phylum=="Proteobacteria") %>%
  mutate(enterococcus=ifelse(genus=="Enterococcus", relab, 0)) %>%
  mutate(streptococcus=ifelse(genus=="Streptococcus", relab, 0)) %>%
  mutate(proteobacteria=ifelse(phylum=="Proteobacteria", relab, 0)) %>%
  mutate(enterococcus_dom=ifelse(enterococcus>=0.3, "Y", "N")) %>%
  mutate(streptococcus_dom=ifelse(streptococcus>=0.3, "Y", "N")) %>%
   mutate(proteobacteria_dom=ifelse(proteobacteria>=0.3, "Y", "N")) %>%
```

```
mutate(any_dom=ifelse(enterococcus_dom=="Y"|streptococcus_dom=="Y"|proteobacteria_dom=="Y", "Y'
group_by(sampleid) %>%
arrange(desc(any_dom)) %>% slice(1)
```

7.3 Domination and a-diversity

7.4 Domination and bai operon

7.5 SBAs and domination

```
pathogens_pre %>% inner_join(later_pools_final) %>%
   ggplot(aes(x=any_dom, y=log10(secondary_nonUDCA), color=any_dom))+
   geom_boxplot(width=0.2, lwd=0.8, outlier.shape = NA) +
```


Chapter 8

##

##

Censored

624

Evaluation of UDCA exposure and clinical outcomes

8.1 Prepare the patient outcome table

Other

100

386

GRM Relapse/PoD

191

```
patients_urso_CIF2$GRM_time <- patients_urso_CIF2$OS</pre>
patients_urso_CIF2$GRM_time[patients_urso_CIF2$relapse==T & patients_urso_CIF2$pod=="N
patients_urso_CIF2$GRM_time[patients_urso_CIF2$relapse==F & patients_urso_CIF2$pod=="Y
patients_urso_CIF2$GRM_time[patients_urso_CIF2$relapse==T & patients_urso_CIF2$pod=="Y
patients_urso_CIF2$TRM_time <- patients_urso_CIF2$OS</pre>
patients_urso_CIF2$TRM_time[patients_urso_CIF2$relapse==T & patients_urso_CIF2$pod=="N
patients_urso_CIF2$TRM_time[patients_urso_CIF2$relapse==F & patients_urso_CIF2$pod=="Y
patients_urso_CIF2$TRM_time[patients_urso_CIF2$relapse==T & patients_urso_CIF2$pod=="Y
patients_urso_CIF2 <- patients_urso_CIF2 %>%
  mutate(GRM_mortality_2yr = ifelse(GRM_time > 24,1,GRM_mortality),
         GRM_time_2yr = ifelse(GRM_time > 24,24,GRM_time),
         TRM_mortality_2yr = ifelse(TRM_time > 24,1,TRM_mortality),
         TRM_time_2yr = ifelse(TRM_time > 24,24,TRM_time),
         death_2yr = ifelse(OS > 24,FALSE,death),
         OS_2yr = ifelse(OS > 24,24,OS),
         GRM_mortality_2yr = factor(GRM_mortality_2yr,levels=1:4,labels=c("Censored","
         TRM_mortality_2yr = factor(TRM_mortality_2yr,levels=1:3,labels=c("Censored",
patients_urso_CIF2 <- patients_urso_CIF2 %>% mutate(donor_new=ifelse(donor_match=="MMR
```

8.2 Evaluate ursodiol exposure and overall survival

8.2.1 Univariable analysis

```
KM.OS <- survfit2(Surv(OS_2yr,as.numeric(death_2yr))~ursodiol2,data=patients_urso_CIF2
KM.OS %>% ggsurvfit() +
  add_censor_mark() +
  add_confidence_interval() +
  add_risktable(times=c(0,6, 12, 18, 24))
```


8.2.2 Multivariable analysis

Characteristic	**HR**	**95% CI**	**p-value**
age	1.03	1.02, 1.04	<0.001
sex			
F	_	_	
M	0.95	0.79, 1.15	0.6
donor_match			
haplo		_	
haplo/MMUD	1.20	0.57, 2.51	0.6
MMRD	1.23	0.16, 9.28	0.8
MMUD	1.23	0.73, 2.07	0.4
MRD	0.74	0.45, 1.21	0.2
MUD	0.82	0.51, 1.32	0.4
graft			
BM	_	_	
CD34	0.89	0.60, 1.33	0.6
PBSC	1.15	0.80, 1.67	0.5
UCB	0.75	0.44, 1.28	0.3
intensity			
Ablative	_	_	
Nonablative	0.49	0.33, 0.73	<0.001
Reduced Intensity	1.00	0.74, 1.35	>0.9
ursodiol2			
N		_	
Y	0.69	0.55, 0.85	<0.001

8.3 Evaluation of cumulative incidences

8.3.1 Cumulative incidence of GVHD-related mortality

```
gray.test.GRM <- cuminc(Surv(GRM_time_2yr, GRM_mortality_2yr)~ursodiol2, data=patients]
gray.test.GRM %>% tbl_cuminc(times= c(6,12,18,24),outcome="GRM") %>%
  add_p() %>%
  add_n() %>%
  modify_caption("Outcome: GRM")

gray.test.GRM %>% ggcuminc(outcome="GRM") +
```

```
gray.test.GRM %>% ggcuminc(outcome="GRM") +
labs(
    x = "Months after HCT",
    y = "Cumulative Incidence (GRM)"
) +
```

Table 8.1: Outcome: GRM

Characteristic	**N**	**Time 6**	**Time 12**	**Time 18**	**Time 24**	*
ursodiol2	1,301					
N		7.2% (4.7%, 10%)	11% (7.8%, 15%)	14% (10%, 18%)	16% (12%, 20%)	
Y		3.8% (2.7%, 5.1%)	8.1% (6.5%, 9.9%)	10% (8.2%, 12%)	12% (9.8%, 14%)	

```
add_confidence_interval() +
add_risktable(times=c(0,6,12,18,24))
```


$8.3.2 \quad {\bf Cumulative \ incidence \ of \ Relapse/progression \ of \ disease }$

```
gray.test.GRM %>% tbl_cuminc(times= c(6,12,18,24),outcome="Relapse/PoD") %>%
add_p() %>%
add_n() %>%
modify_caption("Outcome: Relapse/PoD")
```

56CHAPTER 8. EVALUATION OF UDCA EXPOSURE AND CLINICAL OUTCOMES

Table 8.2: Outcome: Relapse/PoD

Characteristic	**N**	**Time 6**	**Time 12**	**Time 18**	**Time 24
ursodiol2	1,301				
N		12% (8.9%, 16%)	18% (14%, 23%)	22% (17%, 26%)	23% (18%, 28
Y		15% (13%, 17%)	24% (21%, 26%)	26% (24%, 29%)	28% (25%, 3

Table 8.3: Outcome: Other

Characteristic	**N**	**Time 6**	**Time 12**	**Time 18**	**Ti
ursodiol2	1,301				
N		4.7% (2.7%, 7.4%)	7.2% (4.7%, 10%)	8.8% (6.0%, 12%)	11% (7
Y		4.1% (3.0%, 5.4%)	5.0% (3.8%, 6.5%)	5.4% (4.1%, 7.0%)	5.6% (4

8.3.3 Cumulative incidence of mortality non-related to GVHD or relapse/progression of disease

```
gray.test.GRM %>% tbl_cuminc(times= c(6,12,18,24),outcome="Other") %>%
  add_p() %>%
  add_n() %>%
  modify_caption("Outcome: Other")
```

8.3.4 Multivariable analysis of GVHD-related mortality

fgmodel.GRM <- crr(Surv(GRM_time_2yr,GRM_mortality_2yr)~age+sex+donor_match+graft+inter
fgmodel.GRM %>% tbl_regression(exponentiate=TRUE) %>% bold_p()

Characteristic	**HR**	**95% CI**	**p-value**
age	1.02	1.01, 1.04	0.002
sex			
F			
M	0.77	0.56, 1.05	0.10
donor_match			
haplo	_		
haplo/MMUD	1.78	0.57, 5.59	0.3
MMRD	0.00	0.00, 0.00	<0.001
MMUD	1.52	0.65, 3.58	0.3
MRD	0.58	0.26, 1.28	0.2
MUD	0.74	0.35, 1.59	0.4
graft			
BM	_	_	
CD34	1.28	0.59, 2.79	0.5
PBSC	1.64	0.85, 3.16	0.14
UCB	0.88	0.36, 2.19	0.8
intensity			
Ablative	_	_	
Nonablative	0.95	0.53, 1.71	0.9
Reduced Intensity	1.25	0.75, 2.09	0.4
ursodiol2			
N			
Y	0.66	0.46, 0.94	0.022