Application of Derivatives

- If a quantity y varies with another quantity x, satisfying some rule y = f(x), then $\frac{dx}{dy} \text{ (or } f'(x) \text{ represents the rate of change of y with respect to x and } \\ \frac{dy}{dx} \bigg]_{x=x_0} \text{ (or } f'(x_0) \text{ represents the rate of change of y with respect to x at } x = x_0.$
- If two variables x and y are varying with respect to another variable t, i.e., if x=f(t) and y=g(t) then by Chain Rule

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ if } \frac{dx}{dt} \neq 0$$

- A function f is said to be increasing on an interval (a, b) if $x_1 < x_2$ in $(a,b) \Rightarrow f(x_1) < f(x_2)$ for all $x_1,x_2 \in (a,b)$. Alternatively, if f'(x) > 0 for each x in, then f(x) is an increasing function on (a, b).
- A function f is said to be decreasing on an interval (a, b) if $x_1 < x_2$ in $(a,b)\Rightarrow f\left(x_1\right)>f\left(x_2\right)$ for all $x_1,x_2\in(a,b)$. Alternatively, if $f'\left(x\right)>0$ for each x in, then f(x) is an decreasing function on (a, b).
- The equation of the tangent at (x_0, y_0) to the curve y = f(x) is given by $y y_0 = \frac{dy}{dx} \Big|_{(x_0, y_0)} (x x_0)$
- If $\frac{\mathrm{d}y}{\mathrm{d}x}$ does not exist at the point (x_0,y_0) , then the tangent at this point is parallel to the y-axis and its equation is $x=x_0$.
- If tangent to a curve y = f(x) at $x = x_0$ is parallel to x-axis, then $\frac{dy}{dx}\Big|_{x=x_0} = 0$

- Equation of the normal to the curve y = f(x) at a point (x_0, y_0) is given by $y y_0 = \frac{-1}{\frac{dy}{dx}}(x x_0)$
- If $\frac{dy}{dx}$ at the point (x_0, y_0) is zero, then equation of the normal is $x = x_0$.
- If $\frac{dy}{dx}$ at the point (x_0, y_0) does not exist, then the normal is parallel to x-axis and its equation is $y = y_0$.
- Let y = f(x), Δx be a small increment in x and Δy be the increment in y corresponding to the increment in x, i.e., $\Delta y = f(x + \Delta x) f(x)$. Then dy given by dy = f'(x) dx or $dy = \left(\frac{dy}{dx}\right) dx$ is a good approximation of Δy when $dx = \Delta$ is relatively small and we denote it by $dy \approx \Delta y$.
- A point c in the domain of a function f at which either f'(c) = 0 or f is not differentiable is called a critical point of f.
- **First Derivative Test:** Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then,
- (i) If f'(x) changes sign from positive to negative as x increases through c, i.e., if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.
- (ii) If f'(x) changes sign from negative to positive as x increases through c, i.e., if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.
- (iii) If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. In fact, such a point is called point of inflexion.

- **Second Derivative Test:** Let f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c. Then,
- (i) x = c is a point of local maxima if f'(c) = 0 and f''(c) < 0The values f(c) is local maximum value of f(c).
- (ii) x = c is a point of local minima if f'(c) = 0 and f''(c) > 0In this case, f(c) is local minimum value of f.
- (iii) The test fails if f'(c) = 0 and f''(c) = 0.

In this case, we go back to the first derivative test and find whether c is a point of maxima, minima or a point of inflexion.

• Working rule for finding absolute maxima and/or absolute minima

Step I: Find all critical points of f in the interval, i.e., find points x where either f'(x) = 0 or f is not differentiable.

- **Step 2:** Take the end points of the interval.
- **Step 3:** At all these points (listed in Step 1 and 2), calculate the values of f.

Step 4: Identify the maximum and minimum values of f out of the values calculated in Step 3.

This maximum value will be the absolute maximum value of f and the minimum value will be the absolute minimum value of f.