

## 3. Solving ODEs with Fourier Series

<u>Course</u> > <u>Unit 1: Fourier Series</u> > <u>and Signal Processing</u>

> 3. Application of Fourier series

## 3. Application of Fourier series

**Problem 3.1** Suppose that f(t) is an odd periodic function of period  $2\pi$ . Find the periodic function x(t) of period  $2\pi$  that is a solution to

$$\ddot{x} + 50x = f(t)$$

Think of f(t) as the input signal, and the solution x(t) as the system response (output signal).

**Special case:** What is the system response to the input signal  $\sin{(nt)}$ ? In other words, what is a solution to

$$\ddot{x} + 50x = \sin{(nt)}$$

with the same (smallest) period as  $\sin{(nt)}$ ?

**Solution:** First find the response to  $e^{int}$  , and then take the imaginary part. In other words, we first solve

$$\ddot{z}+50z=e^{int}.$$

The characteristic polynomial is  $P\left(r
ight)=r^2+50$  , so by ERF, the system response to  $e^{int}$  is

$$z=rac{1}{P\left(in
ight)}e^{int}=rac{1}{50-n^{2}}e^{int}.$$

The complex gain is  $\frac{1}{50-n^2}$ . Then

$$x=\operatorname{Im}\,\left(rac{1}{50-n^2}e^{int}
ight)=rac{1}{50-n^2}{
m sin}\,(nt)$$

is the system response to  $\sin{(nt)}$ . This explains all the rows of the table below except the last row.

| Input Signal                 | System Response                            |
|------------------------------|--------------------------------------------|
| $e^{int}$                    | $rac{1}{50-n^2}e^{int}$                   |
| $\sin nt$                    | $rac{1}{50-n^2} \sin nt$                  |
| $\sin t$                     | $rac{1}{49}{\sin t}$                      |
| $\sin 2t$                    | $rac{1}{46}{ m sin}2t$                    |
| $\sin 3t$                    | $rac{1}{41}{\sin 3t}$                     |
| <u>:</u>                     | <b>:</b>                                   |
| $\sum_{n\geq 1} b_n \sin nt$ | $\sum_{n\geq 1}\frac{1}{50-n^2}b_n\sin nt$ |

## 3. Application of Fourier series

## Show all posts Clarify meaning "same (smallest) period" The last part of the problem statement says: "....with the same (smallest) period as sin(nt)?". I don't understand what this is asking. 3 The last part of the problem statement says: "....with the same (smallest) period as sin(nt)?". I don't understand what this is asking.

© All Rights Reserved