

Scikit-learn Random Forest Classifier

Random Forest Classifier介紹

- > 隨機森林 (Random Forest)
 - 通過在數據集的各個子樣本上訓練大量的決策樹,並 且使用平均數來提高預測準確性以及控制過度學習。
- > sklearn.ensemble.RandomForestClassifier 為Random Forest演算法的實作

Random Forest Classifier參數說明 機器學習實務

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

> Random Forest Classifier 類別常用參數

- n_estimators
- criterion
- max_depth
- min_samples_split
- max_features
- bootstrap

▶ 參數 n_estimators

> n_estimators : integer, optional (default=100)

✓森林中建立子樹的數量,較多的子樹可以讓模型有較好的性能,但是同時也會增加計算量。

n_estimators=100

n_estimators=10

参數 criterion

- > criterion : string, optional (default= "gini")
 - ✓即CART樹做劃分時對特徵的評價標準
 - ✓預設是基尼係數gini,另一個可選擇的標準是信息增益entropy,是用來選擇節點的最優特徵和切分點的兩個準則。

參數 min_samples_split

- > min_samples_split : int, float, optional (default=2)
 - ✓ 拆分內部節點所需的最少樣本數。
 - ✓如果為int,則將min_samples_split視為最小值。
 - ✓如果為float,則min_samples_split是一個分數, 而ceil(min_samples_split * n_samples) 是每個拆分的最小樣本數。

参數 max_depth

- > max_depth : integer or None, optional (default=None)
 - ✓樹的最大深度
 - ✓如果為None,在建立子樹的時候 不會限制子樹的深度,或者直到所有葉子都包含少於 min_samples_split個樣本。

參數 max_features

- > max_features : int, float, string or None, optional (default = "auto")
 - ✓ 尋找最佳分割時要考慮的特徵數量
 - ✓ 如果為int,則在每個拆分中考慮max_features功能
 - ✓ 如果為**float**,則max_features是一個分數, 並且在每個分割處均考慮int (max_features * n_features) 個特徵
 - ✓ 如果為"auto" · 則max_features = sqrt (n_features)
 - ✓ 如果為"**sqrt**",則max_features = sqrt (n_features) (與"auto"相同)
 - ✓ 如果為"log2",則max_features = log2 (n_features)
 - ✓ 如果為**None** · 則max_features = n_features

参數 bootstrap

- > bootstrap : boolean, optional (default=True)
 - ✓建立樹木時是否使用bootstrap樣本
 - ✓如果為True,則將隨機樣本的子集用於構建每個棵樹
 - ✓如果為False,則將整個數據集用於構建每棵樹

Random Forest Classifier函式說明 機器學習實務

> Random Forest Classifier 常用函式

- fit
- predict
- score

訓練 (fit)

- > 指令 fit(self, x, y, sample_weight=None)
- >參數
 - x:訓練輸入樣本
 - y:目標值(分類中的類標籤)
- >回傳:訓練後的random forest 物件.
- >說明:根據訓練集(x·y)建立一個森林樹木
- >範例程式

from sklearn.ensemble import RandomForestClassifier randomForest = RandomForestClassifier(n_estimators=100) randomForest.fit(X_train, y_train)

預測 (predict)

- > 指令 predict(self, x)
- >參數
 - x:輸入樣本
- >回傳:預測的類別
- > 範例程式

from sklearn.ensemble import RandomForestClassifier
randomForest = RandomForestClassifier(n_estimators=100)
randomForest.fit(x_train, y_train)
predictions = randomForest.predict(x_test)

評分 (score)

- > 指令 score(self, x, y, sample_weight=None)
- >參數
 - x:測試樣本
 - y: 測試樣本的正確答案
- >回傳:測試樣本的平均準確度
- >範例程式

fromsklearn.ensemble import RandomForestClassifier randomForest = RandomForestClassifier(n_estimators=100) randomForest.fit(x_train, y_train) accuracy = randomForest.score(x_test, y_test)

程式範例 (IRIS)

機器學習實務

>程式碼

import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn import datasets

#載入資料

iris = datasets.load_iris() X = iris.data[:, :2] # 只取前兩種特徵 Y = iris.target

建立 Random Forest Classifier

randomForest = RandomForestClassifier(n_estimators=100)

#進行訓練

randomForest.fit(X, Y)

#繪製座標軸

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # 單位間隔
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

程式範例 (IRIS)

機器學習實務

>程式碼

```
# 進行預測
Z = randomForest.predict(np.c_[xx.ravel(), yy.ravel()])
#繪製預測結果
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.<u>Paired</u>)
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel( 'Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
```


程式範例 (IRIS)

機器學習實務

>輸出結果

