NASA TECHNICAL NOTE

NASA TN D-4494

0.1

LOAN COPY: RETURN 10
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON A BLUNT LIFTING-ENTRY BODY AT MACH 3.71

by W. Douglas Morris and Lana M. Couch Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . APRIL 1968

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON A BLUNT LIFTING-ENTRY BODY AT MACH 3.71

By W. Douglas Morris and Lana M. Couch

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON A BLUNT LIFTING-ENTRY BODY AT MACH 3.71

By W. Douglas Morris and Lana M. Couch Langley Research Center

SUMMARY

An experimental investigation has been conducted to determine the pressure distribution on a blunted $15^{\rm O}$ half-cone—wedge lifting-entry body. The tests were conducted at a Mach number of 3.71 and Reynolds numbers per foot of 2.81×10^6 and 4.68×10^6 (Reynolds numbers per meter of 9.22×10^6 and 15.35×10^6). The angle-of-attack range was from $-40^{\rm O}$ to $40^{\rm O}$, and the angle-of-sideslip range was from $-10^{\rm O}$ to $10^{\rm O}$. A modified Newtonian method was compared with the data and, in general, found to predict the trends as well as the magnitude over the angle-of-attack and angle-of-sideslip ranges.

INTRODUCTION

Much interest has been shown in lifting-entry configurations which can be used to evaluate economically new heat shields, control systems, and other concepts which are related to manned and unmanned planetary-entry flight. One configuration being considered for this task is a blunted half-cone—wedge body.

In order to evaluate the body aerodynamics and pressure distributions on the body during the supersonic portion of the trajectory, ground tests have recently been conducted. The pressure investigation was conducted in the Langley Unitary Plan wind tunnel at a Mach number of 3.71 to determine the longitudinal and radial pressure distributions. The tests covered an angle-of-attack range of -40° to 40° and an angle-of-sideslip range of -10° to 10° . The experimental pressure distributions were compared with pressure distributions computed from modified Newtonian theory. A derivation of the modified Newtonian method used is included in an appendix.

SYMBOLS

- a radius of sphere, inches (meters)
- C_p pressure coefficient, local pressure minus free-stream pressure divided by free-stream dynamic pressure

$\vec{i}, \vec{j}, \vec{k}$	unit coordinate vectors					
M	free-stream Mach number					
$N_{ m Re}$	unit Reynolds number, based on free-stream conditions, per foot (per meter)					
\vec{n}	unit vector normal to surface					
P_t	free-stream stagnation pressure, pounds/foot 2 (newtons/meter 2)					
R	base radius of cone, inches (meters)					
s	distance measured along midline surface from orifice 1 (positive on top surface, negative on bottom surface), inches (meters)					
\vec{v}	unit wind vector					
x,y,z	rectangular Cartesian coordinates, inches (meters)					
α	angle of attack, degrees					
β	angle of sideslip, degrees					
E	wedge half-angle, degrees					
η	angle between unit vector normal to surface and unit wind vector, degrees					
$ heta_{f c}$	cone half-angle, degrees					
σ	longitudinal spheric cutoff angle, degrees					
ϕ	body radial cutoff angle, degrees					
ϕ ,	radial measurement of orifice locations taken around longitudinal axis and measured from top-surface midline, degrees					
Subscripts	:					

average av

conditions at base of body

b

max maximum

APPARATUS AND TEST CONDITIONS

The investigation was conducted in the high Mach number test section of the Langley Unitary Plan wind tunnel, described in reference 1. This variable-pressure, continuous-flow tunnel has an asymmetrical sliding-block nozzle that permits a continuous variation in the test-section Mach number from 2.30 to 4.65. The tunnel stagnation temperature was approximately 150° F (338.9° K). Oil-flow photographs were obtained for angles of attack of 0° and 40° at a sideslip angle of 0°. Ultraviolet lighting was used on the model and the model was coated with a mixture of fluorescent dye and lubricating oil. Pressure measurements were obtained for the following test conditions:

	M	$ m N_{ m Re}$		β, deg	α , deg
	141	per foot	per meter	p, deg	(*)
İ	3.71	$2.81 imes 10^6$	$9.22 imes 10^6$	0	$0, \pm 2, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25, \pm 30, \pm 35, \text{ and } \pm 40$
	3.71	2.81 imes 106	9.22×10^6	5	$0, \pm 2, \pm 5, \pm 10, \pm 15, -20, \pm 30, 35, \text{ and } 40$
	3.71	$2.81 imes 10^6$	$9.22 imes 10^6$	10, -5, and -10	$0, \pm 2, \pm 5, \pm 10, \pm 15, -20, \pm 30, 35, \text{ and } \pm 40$
	3.71	$4.68 imes 10^6$	15.35×10^6	0	0, 10, 20, 30, 35, and 40

^{*}The negative values of α were obtained by rolling the model 180°.

The model used in the investigation and shown in figures 1 and 2 was a lifting-entry configuration which consisted of a spherical nose segment, a flat triangular top plate with wedge sides, and conical lower surfaces. The model was constructed of 0.25-inch-thick (6.35-mm) aluminum alloy and was supported by a sting at the base. The overall length was 11.135 inches (283 mm) with a base width and height of 6.600 inches (168 mm) and 5.692 inches (145 mm), respectively.

Relative to the vertical plane of symmetry, the model was instrumented with static-pressure orifices of 0.050-inch (1.27 mm) inside diameter on one-half of the model and on the base. (See fig. 2(b) for details of orifice installation and table I for orifice locations.) The pressures were measured by electrical transducers, and each electrical output was recorded on digital self-balancing potentiometers. The tunnel free-stream static and stagnation pressures were measured on precision mercury manometers.

ACCURACY

The accuracy of the precision manometers is within 0.5 lb/ft² (23.94 N/m²). Therefore, the accuracy of the pressure measurements is limited to that of the electrical transducer (0.5 percent of full-scale deflection). The maximum deviation in Mach number of the 4- by 4-foot (1.22- by 1.22-meter) test section through the range of tests is ± 0.05 . The accuracy of both angle of attack and angle of sideslip is $\pm 0.10^{\circ}$.

METHOD OF PREDICTIONS

A modified Newtonian expression was compared with the experimental data. The expressions for the pressure coefficients used for the various parts of the body are as follows (see appendix for derivation):

(a) For the half-cone,

$$C_{p} = C_{p,max}(\sin \theta_{c} \cos \alpha \cos \beta - \cos \theta_{c} \sin \beta \sin \phi - \sin \alpha \cos \beta \cos \phi \cos \theta_{c})^{2}$$
 (1)

(b) For the spherical-nose segment,

$$C_p = C_{p,\max}(\cos\alpha\cos\beta\cos\beta\cos\sigma - \sin\beta\sin\alpha\sin\phi - \sin\alpha\cos\beta\sin\alpha\cos\phi)^2 \qquad (2)$$

(c) For the wedge section,

$$C_{p} = C_{p,\max}(\cos\alpha\cos\beta\sin\epsilon - \sin\beta\cos\epsilon)^{2}$$
 (3)

(d) For the top surface,

$$C_{p} = C_{p,\max}(\sin \alpha \cos \beta)^{2}$$
(4)

Equations (1) and (2) were taken from reference 2. However, in the present investigation, $C_{\rm p,max} = 1.7846$ (at M = 3.71) has been used. This value, obtained from reference 3, was also used to normalize the experimental data.

RESULTS AND DISCUSSION

Oil-flow photographs of the model are presented in figure 3; schlieren photographs, in figure 4; and the effects of angle-of-attack and angle-of-sideslip variations on the pressure distribution, in figures 5 to 11. The data presented have been compared with a modified Newtonian method and, in general, found to agree in trend and magnitude with the

predicted values. The data shown in the figures are considered typical, and a complete list of the data obtained throughout the range of test variables is presented in tables II and III.

Oil-Flow Studies

Typical oil-flow photographs are presented in figure 3 for the model at angles of attack of 0° and 40° at an angle of sideslip of 0° . The light areas indicate the presence of oil, and the dark regions indicate the lack of oil. The flow field over the surface of the flat top at $\alpha = 0^{\circ}$, as indicated in figure 3(a), is apparently similar to that obtained over the leeward surface of a delta wing. (See ref. 4.) The coiled-vortex sheets, induced at the juncture of the spherical segments and wedge sides with the flat top, are formed as a result of flow separation from the model surface. This separation occurs along the entire length of the top of the cylindrical edge and is evidenced by the ridge of accumulated oil along this edge. In the vicinity of the spherical segment, the ridge of oil along the edge is seen as a narrow white band. However, farther aft, this ridge of oil shows up in the photograph as a dark band, which is actually a shadow cast by the ridge. The ridge of oil along the entire length of the cylindrical edge could easily be seen during the wind-tunnel test. Also in figure 3(a), the opposite cylindrical edge shows an accumulation of oil along its entire length. The vortex sheets reattach on each side of the longitudinal midline on the flat top. (See sketch in fig. 3(a).) The vortex sheets are indicated in the photograph by the darker areas. Inboard of the vortex attachment line, the flow appears to have a spanwise velocity component directed toward and merging with the flow along the top midline (center line of top flat plate). Although the results of reference 4 indicated velocity components parallel to the center line within this region, the present model is considerably more complex and deviations from the results of reference 4 might be expected. The magnitude of this spanwise velocity component cannot be ascertained because of the angle from which the photographs were obtained. Outboard of the coiled vortex sheet there is a spanwise velocity component directed toward the leading edge. This result is in agreement with reference 4. A second flow separation occurs as this spanwise flow approaches the leading edge; however, it is not clearly visible in the photographs, but could be seen during the test. Along the center line there is a dark streak that appears to be due to the accumulation of oil at the front of the pressure orifices, thereby preventing the oil behind the orifices from being replenished.

Schlieren Photographs

Schlieren photographs of the model at angles of attack of 0^{0} , 15^{0} , and 40^{0} at an angle of sideslip of 0^{0} are shown in figure 4. Throughout the angle-of-attack range, a shock wave originates directly behind the spherical segments at each end of the conicalnose region (fig. 4(a)). Both shock waves are apparently due to a localized separation and

reattachment in this region. In figure 4(b), the regions of large density gradients, above the boundary layer on the flat surface of the model, that occur throughout the range of angles of attack are believed to be associated with vortex formations, as discussed previously in the oil-flow description. At angles of attack of $\pm 40^{\circ}$ (see fig. 4(c) for $\alpha = 40^{\circ}$), the model nose is in close proximity to the tunnel-wall boundary layer; and, as a result, these data could have been influenced by the boundary layer.

Pressure Distributions

The pressure distributions along the midline of the body surface in the vertical plane of symmetry are shown in figure 5(a) for negative angles of attack and in figure 5(b) for positive angles of attack. (The model in these tests was at an angle of sideslip of $0^{\rm O}$.) For the negative angle-of-attack range (fig. 5(a)), the stagnation point remains on the spherical segment adjacent to the flat top. However, with an increasing positive angle of attack (fig. 5(b)), the stagnation point shifts from the spherical segment to the conical nose and is located on the spherical segment adjacent to the half-cone at $\alpha \approx 30^{\rm O}$ and $40^{\rm O}$.

The longitudinal pressure distributions on the conical nose and wedge sides of the model at angles of sideslip of 0^{O} and -10^{O} are shown in figure 6. Figure 6(a) presents the pressure data for an angle of attack of 0^{O} ; figure 6(b) presents the data for an angle of attack of 30^{O} . The values of the pressure coefficients are presented only for x/R < 1.0 since the magnitudes remain approximately constant for $x/R \ge 1.0$. A comparison of the two parts of figure 6 indicates that the effect of varying the angle of attack on the pressure is negligible for a constant value of sideslip and z/R location.

The pressure distributions on the conical portions of the body are presented in figures 7 and 8 for angles of attack of $0^{\rm O}$ and $30^{\rm O}$ and for angles of sideslip of $0^{\rm O}$ and $-10^{\rm O}$. The distribution on the orifice ray $45^{\rm O}$ from the midline of the nose is shown in figure 7; the distribution on the orifice ray $45^{\rm O}$ from the midline of the half-cone is shown in figure 8.

The cross-sectional pressure-coefficient distribution at selected body stations is shown in figure 9 for angles of attack of -30° , 0° , and 30° for a sideslip angle of 0° ; the variation with sideslip angles of 0° and -10° at an angle of attack of 0° is indicated in figure 10.

Figure 11 presents the average value of base-pressure coefficients for various angles of attack and sideslip. The values represent the average of the base-orifice readings. For comparison, the value of the empirical relation is as follows:

$$\frac{C_{p,b}}{C_{p,max}} = \frac{-1/M^2}{C_{p,max}}$$

This expression has previously been used to approximate the base pressure for blunt bodies. (See ref. 5.)

CONCLUDING REMARKS

An experimental investigation has been conducted to determine the pressure distribution on a blunted $15^{\rm O}$ half-cone—wedge lifting-entry body. The tests were conducted at a Mach number of 3.71 and Reynolds numbers per foot of 2.81×10^6 and 4.68×10^6 (Reynolds numbers per meter of 9.22×10^6 and 15.35×10^6). The angle-of-attack range was from $-40^{\rm O}$ to $40^{\rm O}$, and the angle-of-sideslip range was from $-10^{\rm O}$ to $10^{\rm O}$. A modified Newtonian method was compared with the data. For most of the pressure measurements, the method predicted not only the trend but also the magnitude of the data over the body for the ranges of angles of attack and sideslip.

Langley Research Center,

National Aeronautics and Space Administration, Langley Station, Hampton, Va., November 22, 1967, 124-08-03-18-23.

APPENDIX

MODIFIED NEWTONIAN PRESSURE COEFFICIENTS FOR SEGMENTS OF THE HALF-CONE—WEDGE BODY

In order to calculate the pressure coefficient on each segment, the composite body was divided as shown in figure 1. The derivation for the pressure coefficients on the conical and spherical surfaces may be found detailed in reference 2.

The expression for the modified Newtonian pressure coefficient is

$$C_p = C_{p,max} \cos^2 \eta$$

where η is defined as the angle between the unit vector normal to the surface and the unit wind vector. If the body surface is described by

$$f = g(x,y,z)$$

then the unit vector normal to the surface is defined by

$$\vec{n} = \frac{\nabla f}{\left|\nabla f\right|} = \frac{\frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}}{\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2}}$$

The unit wind vector in terms of the body axis is defined as follows:

$$\vec{V} = -\cos \alpha \cos \beta \vec{i} - \sin \beta \vec{j} - \sin \alpha \cos \beta \vec{k}$$

Taking the dot product of the unit normal and wind vectors gives, by definition,

$$\vec{\mathbf{n}} \cdot \vec{\mathbf{V}} = |\vec{\mathbf{n}}| |\vec{\mathbf{V}}| \cos \eta = \cos \eta$$

In the following derivations, \vec{V} is defined as above.

APPENDIX - Continued

Half-Cone

Figure A1.- Coordinate system of half-cone.

The surface equation for the half-cone is as follows (see fig. A1):

$$f(x,y,z) = -x^2 tan^2 \theta_C + y^2 + z^2$$

where

$$x = x$$

$$y = -R \sin \phi$$

$$z = -R \cos \phi$$

The unit vector normal to the surface is

$$\vec{n} = \cos \theta_{c} \left(\tan \theta_{c} \vec{i} - \sin \phi \vec{j} - \cos \phi \vec{k} \right)$$

Therefore, by definition,

$$\vec{n} \cdot \vec{V} = \cos \eta$$

= -($\sin \theta_{\rm c} \cos \alpha \cos \beta$ - $\cos \theta_{\rm c} \sin \beta \sin \phi$ - $\sin \alpha \cos \beta \cos \phi \cos \theta_{\rm c}$)

and the modified Newtonian pressure coefficient for the half-cone is

 $C_{p} = C_{p,\max}(\sin \theta_{c} \cos \alpha \cos \beta - \cos \theta_{c} \sin \beta \sin \phi - \sin \alpha \cos \beta \cos \phi \cos \theta_{c})^{2}$

APPENDIX - Continued

Spherical-Nose Segment

Figure A2.- Coordinate system of spherical-nose segment.

The surface equation for the spherical-nose segment is as follows (see fig. A2):

$$f(x,y,z) = -x^2 - y^2 - z^2 + a^2$$

where

$$x = a \cos \sigma$$

 $y = -a \sin \sigma \sin \phi$
 $z = -a \sin \sigma \cos \phi$

The unit vector normal to the surface is

$$\vec{n} = \frac{-\left(\vec{xi} + \vec{yj} + \vec{zk}\right)}{\sqrt{\vec{x^2} + \vec{y^2} + \vec{z^2}}}$$

and taking the dot product of \vec{n} and \vec{V} gives

$$\vec{n} \cdot \vec{V} = \frac{x \cos \alpha \cos \beta + y \sin \beta + z \sin \alpha \cos \beta}{\sqrt{x^2 + y^2 + z^2}}$$

Therefore, the modified Newtonian pressure coefficient for the spherical-nose segment is

$$C_p = C_{p,\max}(\cos\,\alpha\,\cos\,\beta\,\cos\,\sigma - \sin\,\beta\,\sin\,\sigma\,\sin\,\phi - \sin\,\alpha\,\cos\,\beta\,\sin\,\sigma\,\cos\,\phi)^2$$

APPENDIX - Concluded

Wedge Section

Figure A3.- Coordinate system of wedge section.

The surface equation for the wedge section is as follows (see fig. A3):

$$f(x,y,z) = -x \tan \epsilon + y$$

and the unit vector normal to the surface is

$$\vec{n} = -\sin \epsilon \vec{i} + \cos \epsilon \vec{j}$$

Taking the dot product of the unit vector normal to the surface and the wind vector yields

$$\vec{n} \cdot \vec{V} = \cos \alpha \cos \beta \sin \epsilon - \sin \beta \cos \epsilon$$

Therefore, the theoretical pressure coefficient is

$$C_p = C_{p,\max}(\cos\,\alpha\,\cos\,\beta\,\sin\,\epsilon\,\,-\,\sin\,\beta\,\cos\,\epsilon)^2$$

Flat Top Surface

Figure A4.- Coordinate system of flat top surface.

The surface equation for the top surface is as follows (see fig. A4):

$$f(x,y,z) = z$$

The unit normal vector is $\vec{n} = \vec{k}$. The dot product of the unit vector normal to the surface and the wind vector yields

$$\vec{n} \cdot \vec{V} = -\sin \alpha \cos \beta$$

Therefore, the modified Newtonian pressure coefficient for the flat top surface is

$$C_p = C_{p,max}(\sin \alpha \cos \beta)^2$$

REFERENCES

- 1. Anon.: Manual for Users of the Unitary Plan Wind Tunnel Facilities of the National Advisory Committee for Aeronautics. NACA, 1956.
- 2. Wells, William R.; Armstrong, William O.: Tables of Aerodynamic Coefficients
 Obtained From Developed Newtonian Expressions for Complete and Partial Conic
 and Spheric Bodies at Combined Angles of Attack and Sideslip With Some Comparisons With Hypersonic Experimental Data. NASA TR R-127, 1962.
- 3. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rept. 1135, 1953. (Supersedes NACA TN 1428.)
- 4. Murray, William M., Jr.; and Stallings, Robert L., Jr.: Heat-Transfer and Pressure Distributions on 60° and 70° Swept Delta Wings Having Turbulent Boundary Layers. NASA TN D-3644, 1966.
- 5. Stallings, Robert L., Jr.: Experimentally Determined Local Flow Properties and Drag Coefficients for a Family of Blunt Bodies at Mach Numbers From 2.49 to 4.63. NASA TR R-274, 1967.

TABLE I.- PRESSURE-ORIFICE LOCATIONS

Orifice	Location	s/R	z/R	x/R	Ø', deg (*)
12345678	Midline - nose	0.000 082 200 320 450 610 800	0.120 .210 .300 .400 .520 .650	0.092 .140 .190 .250 .320 .390 .490	180 180 180 180 180 180
9 10 11 12	Midline - lower surface	890 990 -1.710 -2.500 -3.280	.920 .970 1.150 1.360 1.560	.790 .560 .650 1.350 2.100 2.860	180 180 180 180 180
13 14 15 16 17 18	Midline - upper surface	.098 .200 .350 .690 1.320 2.080	. 037 . 000 . 000 . 000 . 000	.130 .220 .380 .710 1.350 2.100	0 0 0
19 20 21 22 23 24	Top surface	2.840	.000	2.860 .710 1.350 2.100 2.860	0 38 66 75 79
25 26 27 28 29	Spherical segment Cylindrical edge		. 064 . 037 . 037 . 037 . 037 . 037	.153 .220 .380 .710 1.350 2.100	45 53 68 78 82
30 J	Conical nose		.037 .120 .120	2.860 .120 .220	84 90 90
31 32 33 34 35 36 37 38	Wedge side		. 120 . 120 . 120 . 120	. 380 . 560 . 710 . 920	90 90 90 90
37 38 39 40	Conical nose		.207 .210 .210	. 147 . 277 . 380	90 115
41 42 43	Wedge side Conical nose		.210 .210 .210 .260	.560 .710 .920 .200	112 108 104
44 45 46 47	Wedge side		.300 .300 .300	. 380 . 560 . 710	137 129 125
48 49 50	Conical nose		. 300 . 370 . 370 . 370	.920 .270 1.350 2.100	119 119 111
51 52 53 54	Wedge side		.370 .400 .400 .400	2.860 .440 .560	106 143
53 54 55 56 57 58 59	Conical nose		.400 .480 .520	.710 .920 .345 .530	139 132
58 59 60 61	Wedge side Conical nose		.520 .520 .610 .720	.710 .920 .420 .710	148 142 158
62 63 64	> Wedge side		. 720 . 720 . 720	.920 1.350 2.100	153 144 134
65 66 67 68	Conical nose Spherical segment		. 720 . 820 . 870 . 900	2.860 .560 .500 .610	126 168
69 70	Conical lower surface		1.030 1.170 1.310	1.350 2.100 2.860	160 156 153
71 72 73 74 75 76 77 78 79 80			.191 .227 .370 .720	3.466 3.466 3.466 3.466	
76 77 78	Base		1.108 1.270 1.500	3.466 3.466 3.466	
80 81			1.270 .720 .227	3.466 3.466 3.466	

^{*}Orifice 1 lies on longitudinal axis; values of Ø' marked with dashes were not measured.

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, and $C_{\rm p,max} = 1.7646$

(a) α ≈ -40°

			$c_{p}/c_{p,max}$ at β of:		
0181	-10°	-5°	0°	5°	10°
Orifice	p _t = 4510.0 psf	p _t = 4511.1 psf	p _t = 4512.3 psf		p _t = 4513.9 psf
	$= 215.9 \text{ kN/m}^2$	= 216.0 kN/m ²	= 216.0 kN/m ²		= 216.1 kN/m ²
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	0.57706 .14300 .13029 .11970 .11970 .12182 .09853 .02004 .04545 .04757 .04122 .03487 1.00054 .50931 .53472 .53895 .53683 .55684 .58130 .58533 .58765 .64906 .58342 .56012 .54318 .50931 .47331 .45637 .46908 .24040 .21075 .20652 .20652 .19170 .20017 .20040 .211499 .21522 .24218 .18296 .19565 .20622 .24218 .18296 .19565 .20622 .24418 .18507 .22949 .24641 .25275 .19988 .2011 .21468 .22314 .18507 .22949 .24641 .25275 .19988 .20199 .21045 .21630 .19353 .19888 .2011 .21688 .19988 .20199 .21045 .21630 .19555 .20622 .21468 .22314 .25277 .23160 .16181 .03067 .009513 .02643 .02643 .02643 .02643 .03701 .03912 .0411 .03912 .04124 .03912 .04116 .11059 .02643 .02643 .03701 .03912 .04116 .03912	0,59960 .14911 .13430 .12161 .12584 .10258 -0.1797 .04535 -04547 -03912 -03278 1.03740 .52557 .54672 .55095 .54672 .55095 .54676 .55541 .55095 .54676 .55541 .55095 .46656 .48327 .46656 .48327 .46656 .48327 .46656 .14065 .14065 .14065 .14065 .14065 .14276 .15430 .15642 .14276 .13430 .15642 .14276 .13653 .13430 .15642 .14276 .13653 .13430 .15642 .14276 .13653 .13430 .15642 .14276 .13653 .13430 .15642 .14276 .13653 .13430 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653 .13653 .15642 .14276 .13653	0.61027 .15337 .12376 .12376 .12376 .12376 .12799 .104720179704547028540391203489 1.05025 .53624 .55105 .55528 .55105 .55528 .55105 .54682 .54258 .5412 .52557 .44105 .40509 .40366 .38394 .34163 .29933 .27617 .30990 .12376 .03760 .07934 .11107 .09203 .08991 .08155 .07934 .11107 .09203 .08991 .08155 .07934 .11107 .09203 .08991 .08157 .083577 .083577 .083577 .083577 .08414 .08760 .087760 .087760 .08787 .08568 .08557 .08568 .08557 .08568 .08557 .08568 .08557 .08568 .08557 .08780 .08780 .08780 .08780 .08780 .08780 .08780 .08780 .08780 .08780 .08780 .09414 .087299 .08145 .08720 .08780 .08780 .08780 .08780 .08781 .08780 .08787 .08568 .08557 .08568 .08557 .08568 .08557 .08568 .08557 .08568 .08557 .08700 .08780 .09414 .087299 .00528 .025912 .04124 .04124 .04124 .04124 .05912		0.60551 .15747 .13421 .12564 .122576 .12787 .10039 -0.01799 -0.01547 -0.0125 -0.03913 1.04955 .55066 .55164 .54220 .55586 .55164 .554220 .55586 .55164 .55286 .55164 .55286 .55164 .55286 .55164 .55286 .55164 .55286 .50838 .46610 .43862 .42171 .26950 .26316 .29471 .23568 .19552 .15956 .13633 .19129 .05368 .01583 .00526 .00737 .00315 .05177 .03063 .02429 .01372 -00108 .03908 .04120 .03063 .01583 .00526 .00737 .00315 .00742 .02429 .01372 .00742 .02429 .01583 .00737 .00315 .00742 .02429 .01583 .00737 .00315 .00742 .02429 .01583 .00737 .00315 .00742 .02429 .01583 .00737 .00315 .00742 .02429 .01583 .00737 .00315 .00742 .02429 .01583 .00926 .01160 .02429 .01583 .00949 .00160 .00737 .005068 .01160 .00425 .04356 .05915 .05915 .05915 .05915 .05908 .03908 .03490 .11507 .03068 .03702 .03913

TABLE II.- TABULATION OF PRESSURE MEASUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $C_{p,max}$ = 1.7846 - Continued

(b) a ≈ -35°

1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 17 8 9 20 11 22 23 4 5 5 6 27 8 9 20 11 22 33 4 5 5 6 5 7 8 9 20 11 22 11 11 11 11 11 11 11 11 11 11 11	Orifice	Orifice
		-10°
		~5°
= 216.1 kN/m² 0.67996 .19987 .18085 .17237 .17872 .18718 .19968 .00528 .00528 .00124 -01165 -03278 -03489 1.00990 .41771 .43251 .445155 .44943 .44520 .43674 .44732 .44097 .43040 .42194 .41732 .34097 .43040 .42194 .41732 .35523 .30562 .25966 .2596	p _t = 4513.0 psf	$c_p/c_{p,max}$ at β of:
		5°
	10-	10°

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(c) $\alpha = -30^{\circ}$

${ m C_p/C_{p,max}}$ at ${ m f B}$ of:							
	-10°	-5°	00	5°	10°		
Orifice	p _t = 4509.0 psf	p _t = 4510.7 psf	p _t = 4514.3 psf	p _t = 4513.2 psf	p _t = 4512.6 psf		
	= 215.9 kN/m²	= 216.0 kN/m ²	≈ 216.1 kN/m²	= 216.1 kN/m ²	$= 216.1 \text{ kN/m}^2$		
123456789101121341561781921223425678293123345567829412344567829012234566666666666666666666666666666666666	0.72247 .25071 .24225 .24436 .25494 .26540 .21897 .00742 .03912 .04123 .04123 .04123 .04123 .04123 .04123 .35714 .33956 .35533 .35744 .35956 .35533 .35744 .36671 .37764 .38822 .39879 .60611 .43053 .41995 .40726 .39668 .39033 .55523 .23378 .22109 .22532 .22532 .225378 .22109 .22532 .225378 .22109 .22532 .225378 .22109 .22532 .225378 .22109 .22532 .225378 .22109 .22532 .225378 .22144 .21897 .23167 .23801 .26128 .25282 .21897 .22532 .22744 .22774 .23167 .23378 .22744 .22744 .22744 .22744 .22744 .23167 .23378 .22744 .22744 .23167 .23378 .22744 .22744 .23167 .23378 .22744 .22744 .23167 .23378 .22744 .22744 .23167 .23378 .22744 .22744 .23167 .23378 .22744	0.74777 .25914 .24856 .24645 .25914 .26971 .22741 .00953 .03912 .04124 .04124 .95507 .31414 .32260 .34375 .34163 .33952 .33529 .355644 .36490 .36702 .36913 .50874 .35856 .34375 .35856 .34375 .35856 .34375 .35874 .31414 .30144 .46009 .17241 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .14491 .15126 .15760 .15749 .19688 .14703 .14914 .15126 .15972 .19779 .16606 .17664 .18299 .15337 .15377 .15337 .15349	0.76438 .26536 .25056 .25056 .25056 .25056 .25056 .26536 .27593 .25153 .01162 .03913 .02856 .02654 .02654 .02654 .02433 .97372 .32034 .32034 .32034 .34571 .33597 .33514 .34571 .33597 .33514 .40492 .28862 .271.70 .28652 .23576 .22507 .37531 .12157 .09197 .08140 .07928 .16598 .09831 .09831 .09831 .09831 .09831 .09831 .09831 .09849 .09426 .14718 .09849 .09426 .14718 .09849 .09426 .14718 .09849 .09426 .14944 .10696 .14718 .09849 .09426 .14294 .10696 .14718 .09849 .09426 .14294 .10696 .14994 .09637	0.76727 .26778 .24873 .24873 .24873 .24873 .26355 .27201 .22757 .00745041230433404334043340433498104 .32916 .31858 .34186 .33974 .33551 .32281 .31011 .29953 .31858 .22757 .21064 .21910 .19794 .16831 .15137 .29953 .07941 .04767 .03285 .03073 .02862 .1298 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05625 .05633 .04954 .04954 .05165 .04954 .05165 .04954 .05165 .04954 .05165 .059377 .05382 .03704 .03915 .03915 .04126 .03888 .03168 .03282 .11290 .03282 .03784	0.75801 .27169 .25055 .26055 .26055 .26055 .26055 .26055 .26055 .26055 .26056 .26058 .22306 .00950 .00950 .03913 .03913 .03913 .03913 .03913 .03913 .33955 .33821 .33955 .33955 .33925 .35512 .33821 .29706 .28015 .26958 .24632 .17866 .16174 .15963 .14060 .11311 .09619 .25575 .05179 .01796 .00316 .00105 .00318 .09197 .03065 .03219 .01796 .0365 .03219 .03665 .03219 .0162 .06699 .01162 .06913 .09191 .09219 .09313 .094124 .04124 .03910 .03279 .11311 .03279 .11311 .03279 .11311 .03279 .11311 .03279 .11311 .03279 .11311		

TABLE II.- TABULATION OF PRESSURE MEASUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(d) a = -25°

[$c_p/c_{p,max}$ at β of:			
Orifice	-10°	-5°	00	5°	10°	
			p _t = 4501.6 psf			
			= 215.5 kN/m ²			
1			0.83450			
2 3 4			.34258 .33410			
4 5			.34258 .35742			
5 6 7 8 9			.36167			
8			.30018 .03090			
9			03271 02423			
11. 12			01787 00939			
13 14			.92143			
15 16			.24293 .22808			
16 17			.24929 .24929			
18			.24717			
19 20	i		.24717 .25141	İ		
21 22			.25777 .25353			
23 24			.25565			
25 26			.38499 .23869			
26 27			.21324 .22808			
28			.21960 .20264			
30			.19416			
31 32			.40831 .11995			
33 34			.09450 .08814	İ		
35			.08602			
37			.08390 .20264			
29 30 31 32 35 34 35 36 37 38 39 40			.10087			
40 41			.10087 .10087			
42			.12652			
43 44			. 18383 . 10104			
45 46			.10104			
47 48			.09892			
49			.18383 .10529			
50 51			.10953 .11590			
52			.09892 .09892			
54			.09892			
56 56			.09892			
57 58			.10104			
51 52 53 54 55 56 57 58 59 60			.09892 .19869			
	i		.09468			
62 63			.08831 .08406			
64 65			.09468 .10104			
66			.15199			
68			01995			
69 70			02632 03269	į		
71 72			03481 04118			
73			04330			
75			04330 04330			
76 77			.15199 .02038 01995 02652 03461 04118 04330 04330 04330 04330			
65 65 66 67 68 69 70 71 72 75 76 77 78 80			.11166 03481			
80			04330			
ot			04330			

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(e) $\alpha = -20^{\circ}$

${^{C}p}/{^{C}p}$, max at β of:					
	-10°	-5°	00	5°	10°
Orifice	p _t = 4512.4 psf	p _t = 4510.8 psf	p _t = 4513.3 psf	p _t = 4510.3 psf	p _t = 4510.8 psf
	= 216.1 kN/m ²	= 216.0 kN/m ²	= 216.1 kN/m ²	$= 216.0 \text{ kN/m}^2$	$= 216.0 \text{ kN/m}^2$
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3	0.84038 .40486 .41543 .41965 .42600 .42811 .36046 .05390 .02433 .03637 .03279 .79810 .16596 .15538 .16172 .17229 .17441 .17652 .19555 .20400 .20823 .54439 .29703 .27377 .29280 .29069 .28434 .27800 .61628 .22515 .22726 .24206 .24840 .25686 .36469 .22726 .24206 .24840 .25686 .36469 .22726 .24206 .24840 .25686 .36469 .22726 .24206 .24840 .25686 .36469 .22726 .24206 .36891 .24206 .36891 .24206 .36891 .24206 .36891 .24206 .36891 .24417 .24206 .36891 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .36991 .24417 .24206 .3702 .24090 .2092 .24417 .24206 .3702 .24090 .20938 .00527 .00515 .04124 .04336 .05988 .05987 .04336 .05988 .05998 .03490 .10886 .03702 .04336 .05936 .05936 .05936	0.87044 .41778 .42142 .43047 .43893 .43893 .56912 .05184 .02643 -01797 -02008 -02220 .62814 .17241 .15548 .16394 .17241 .17452 .17452 .17452 .17452 .17452 .17452 .17452 .1556 .19990 .20413 .44950 .24221 .21260 .22992 .23586 .23375 .22952 .23586 .23375 .22952 .15377 .15971 .16394 .17241 .29932 .15971 .16394 .18933 .28451 .16183 .15971 .16394 .18933 .28451 .16183 .15971 .16183 .16394 .18933 .28451 .16183 .15971 .16183 .16394 .18933 .28451 .16183 .16394 .18935 .28451 .16183 .16394 .18935 .28451 .16183 .15971 .16485 .16183 .16394 .18935 .28798 .16394 .29298 .16317 .17452 .18510 .16183	0.88935 . 42617 . 43040 . 43886 . 44732 . 44943 . 36176 . 005817 . 002432 . 01586 . 00317 . 00105 . 84916 . 17872 . 15603 . 17237 . 17237 . 17237 . 17237 . 17237 . 17237 . 17237 . 17237 . 17266 . 18085 . 18506 . 18506 . 18506 . 18506 . 18506 . 18506 . 18506 . 18506 . 18506 . 18506 . 10083 . 10083 . 10083 . 10083 . 10083 . 10083 . 10083 . 10083 . 10084 . 10064 . 10	0.89064 .42895 .42683 .43318 .444166 .37177 .05197 .02851 .02024 .02427 .02427 .85040 .18116 .15151 .15998 .17057 .17269 .15786 .16422 .16210 .15998 .27646 .14727 .11762 .11974 .12186 .11127 .10068 .34635 .07738 .05197 .04985 .04773 .04985 .04773 .04985 .04773 .05819 .058185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04762 .05185 .17878 .04127 .04764 .03700 .047355 .043	0.87897 .42837 .42839 .42939 .42627 .43685 .43262 .56492 .05607 .02431 .05066 .05277 .84724 .18934 .15761 .16396 .17242 .17454 .14915 .15127 .14492 .17454 .14915 .15127 .14492 .1107 .08569 .07954 .07536 .21261 .11107 .08569 .07954 .07536 .217396 .04973 .02857 .02223 .01800 .00953 .14281 .03069 .03704 .03699 .03867 .02655 .11738 .01808 .01385 .01385 .02020 .02447 .02443 .11388 .00961 .01996 .02020 .12597 .00961 .00909

TABLE II.- TABULATION OF PRESSURE MFAJUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER FOOT OF 2.81 \times 107 (REYNOLDS NUMBER PER

(f) $\alpha = -15^{\circ}$

1			$c_{ m p}/c_{ m p,max}$ at $_{ m \beta}$ of:			
	-10°	-5°	p p, max	5°	10°	
Orifice	p _t = 4509.8 psf	p _t = 4510.9 psf	p _t = 4512.5 psf	p _t = 4512.7 psf	p _t = 4513.9 psf	
	= 215.9 kN/m ²	= 216.0 kN/m ²	t = 216.1 kN/m ²	= 216.1 kN/m ²	= 216.1 kN/m²	
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	0.38962 .50670 .52151 .51940 .52151 .51940 .52151 .51728 .44112 .08782 .00950 .00527 .01573 .02008 .72461 .11552 .10051 .09628 .10051 .10474 .10897 .10474 .11320 .11520 .12245 .21264 .22745 .21264 .22745 .21264 .22745 .21264 .24255 .24255 .244377 .24639 .41362 .24255 .24265 .24265 .24265 .24275 .24649 .41562 .24649 .41562 .25495 .25283 .24860 .23168 .23168	0.91689 .51714 .52983 .52983 .52983 .52172 .45147 .08990 .01165 .00106 .00106 .00106 .00106 .00106 .14951 .10047 .09836 .10259 .10259 .10682 .10470 .11739 .12162 .12162 .12162 .141550 .19535 .16181 .17238 .18296 .17661 .17027 .55098 .16392 .17661 .17027 .55098 .16392 .17661 .17027 .55098 .16604 .17238 .16181 .16604 .17238 .16181 .16604 .17238 .16181 .16604 .17238 .16181 .16604 .17238 .16181 .16604 .17999 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .16790 .15945 .17021 .16790 .15945 .14889 .13822 .13410 .27988 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .082128 .08377 .043377 .043377 .043377 .043377 .043377 .043377 .043377 .043377	0.94226 .53194 .54040 .54675 .54675 .54675 .54675 .54675 .54675 .46426 .09624 .00951 .00106 .00741 .0741 .77506 .12574 .10047 .10259 .10047 .10259 .10047 .11105 .11516 .11528 .32890 .15335 .12162 .12374 .13431 .13431 .13431 .13431 .13431 .13431 .13431 .13431 .13431 .13608 .45791 .11739 .10259 .10047 .10259 .10047 .10259 .10047 .10259 .10470 .28871 .11316 .10682 .10259 .10259 .10259 .10259 .10276 .10055 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10488 .10655 .27821 .09430 .08794 .08371 .09430 .08794 .08371 .07947 .21922 .05618 .00936 .00311 .00734 .01138 .04334 .04334 .04334 .04334 .04334	0.93778 .53179 .53199 .53391 .53602 .54025 .54025 .53179 .45355 .09409 .00105 .00105 .00105 .00105 .00105 .00105 .12792 .09832 .09620 .10255 .106777 .09409 .10043 .08774 .08774 .08774 .08774 .08774 .060448 .05603 .22730 .06871 .06660 .06871 .06660 .06871 .06603 .22730 .06871 .06603 .22730 .06871 .06603 .05314 .05603 .05314 .05603 .05314 .05603 .05314 .05603 .05391 .21039 .05603 .05603 .05603 .05391 .20404 .04757 .05603 .05603 .05391 .20404 .04757 .05603 .05391 .20404 .04757 .05391 .05404 .04757 .05494 .054122 .04122 .04122 .04122 .04124 .04547 .04547 .04547 .04547	0.92694 .52952 .52952 .52959 .52959 .52741 .52318 .44708 .09405 .00954 .00954 .00951 .01377 .02011 .76628 .15210 .09327 .09616 .10039 .10462 .10673 .08959 .08559 .08559 .08559 .08559 .08559 .08559 .08559 .08559 .0856 .0956 .04754 .03908 .03486 .29064 .04965 .04486 .02851 .02649 .02	

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, and $c_{p,mex} = 1.7846$ - Continued

(g) $\alpha = -10^{\circ}$

1	$c_p/c_{p,max}$ at β of:						
	-10°	-5°	0°	5°	100		
Orifice	p _t = 4509.2 psf	p _t = 4511.0 psf	p _t = 4509.7 psf	p _t = 4512.2 psf	p _t = 4513.9 psf		
-	$= 215.9 \text{ kN/m}^2$	= 216.0 kN/m ²	$= 215.9 \text{ kN/m}^2$	$= 216.0 \text{ kN/m}^2$	= 216.1 kN/m ²		
1 2 3 4 5 6 7 8 9 10 11 12 14 5 6 7 8 9 2 12 23 24 5 6 7 8 29 20 11 22 33 33 35 37 8 39 6 11 2 3 4 4 4 4 5 5 15 25 5 5 5 7 8 5 9 6 6 16 25 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.91514 59564 61469 60411 60199 59988 51947 13227 009955 00743 00320 65796 07303 05821 05187 05187 05187 05187 051887 105188 105821 104975 104129 103071 101801 145177 1.9151 1.6189 1.66122 1.6401 1.9151 1.12804 1.65066 1.22748 1.22960 1.2587 1.46446 1.24653 1.24249 1.46658 1.24249 1.46658 1.24441 1.22960 1.21479 1.24864 1.24653 1.24441 1.22960 1.21479 1.24864 1.24653 1.24441 1.22960 1.21479 1.24864 1.24653 1.24441 1.22960 1.21479 1.24864 1.24653 1.24441 1.2588 1.25499 1.25287 1.24864 1.24653 1.24141 1.27866 1.8517 1.8505 1.7983 1.3862 1.06250 1.0700 1.09000 1.03700 1.09700 1.09700 1.09355 1.043355 1.043355	0.94655 .62293 .62297 .62293 .62297 .62293 .62081 .61658 .55197 .13432 .00953 .02010 .01587 .01587 .01587 .05606 .05183 .05183 .05183 .05183 .05183 .05183 .05183 .05183 .05183 .04972 .04972 .04972 .04972 .04977 .15124 .11952 .12165 .12375 .11740 .10259 .56570 .16605 .153366 .155366 .155366 .155366 .155366 .155366 .155970 .16605 .17028 .16182 .16182 .16182 .16182 .16182 .16182 .16184 .38765 .17003 .16580 .16369 .15312 .16791 .17214 .17003 .16791 .17214 .17003 .16980 .15512 .16791 .1717 .12777	0.96207 662976 663187 662976 663187 663999 663187 549322 1.3669 .00534 .02016 .02016 .02016 .02016 .02016 .02016 .02016 .02016 .03191 .05402 .05191 .05402 .05191 .05402 .05614 .05826 .29321 .11541 .08577 .08154 .08789 .09636 .09536 .09424 .10059 .10059 .100694 .10071 .10059 .100694 .10071 .100694 .10071 .100694 .10699 .101117 .09422 .04122	0.96652 .62990 .62779 .62355 .61720 .53465 .13450 .00536 .02017 .01594 .01362 .68283 .08157 .05617 .04981 .05193 .05193 .05495 .26765 .08369 .05495 .2765 .08368 .07734 .06252 .06252 .06252 .38008 .07734 .06675 .06675 .06675 .06675 .06675 .06675 .06675 .06580 .05905 .26788 .06675 .06675 .06580 .05905 .26788 .06675 .06582 .05905 .05802 .05803 .05169 .05169 .00944 .05169 .00944 .05169 .00944 .05169 .00944	0.9545 62686 61629 60994 60360 52115 13212 00950 01373 .00738 .00315 67760 .08772 .05813 .05178 .0364 .0364 .0364 .03064 .03064 .03064 .03064 .03064 .03064 .03064 .0368 .03487 .03698 .03487 .02681 .02683 .03792 .0384 .04124 .04336 .03698 .03702 .11098 .03490 .04124 .04336		

TABLE II. TABULATION OF PRESSURE MEASUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(h) $\alpha = -5^{\circ}$

1			$c_p/c_{p,max}$ at β of:		
	-10°	-5°	o°	5°	10°
rifice	p _t = 4510.0 psf	P _t = 4511.4 psf	P _t = 4510.6 psf	p _t = 4513.7 psf	p _t = 4512.9 psf
	= 215.9 kN/m²	$= 216.0 \text{ kN/m}^2$	= 216.0 kN/m ²	$= 216.1 \text{ kN/m}^2$	= 216.1 kN/m ²
1	0.92971 .69913 .69702 .68433	0.96105	0.97360 .72572 .71725 .70877	0.97773 .72615	0.968 62 .71881
2	.69913	.71576 .71153	. 72572 .71.725	. 72015 . 71347 . 70501	70187
4	.68433	.69885	.70877	.70501	.69129
5	.00221	.69673	.70877 .70242	.70079 .69656	.68917 .68282
7	.67375 .58491	.69039 .59523	.60920	.59931	.58543 .17049
7 8	.17030	.17233	.17701	.17650	.17049
9	.03280 .03492	.03065 .04334	.03082 .04142	.03275 .04332	.03076 .03499
11	.03280	.03488	.03718	.03486	.02864
12	.03069	.03700 .57832	.03718 .03718 .58378	.03486 .59508	.02864 .58755
13 14	.55318 .04338	.04545	.04565	.05177	.05193
15 16	.03069	.03065	.02870	.03063 .02429	.02652 .02017
16 17	.02434 .02011	.02642 .02431	.02235 .02235	.02429	.01806
18	.02222	.02219	.02235	.02218	.01806 .02017
19	.02222	.02219 .01797	.02235 .02023	.02218 .02429	.02017
20	00527	00528	.01176	.02218	.02017
22	.01376 00527 01374 02008	00107 01587 .32880	.00540 00307	.02006	.01806 .01806
23 24		01507	.25751	.20398	.15143
25	.15338	.1.1735	.25751 .08379	.06023	.03711 .02441
26 27	.12376	.08774 .07929	.04777	.04332 .03275	.02017
28	.10895	.07506	.04353	.03063	.02017
29	10299 .15338 .12376 .11742 .10895 .09415 .06676	.06448	.05836 .04777 .04353 .03718 .02870	.02852 .02429	.0 2 017 .01806
30 31	.65683	.05180 .56986	•4(149	.38579	.30598
32	.23164	.17051	·11980	.08137	.05193 .03288
33	.21049 .21472	.14695 .14484	.09438 .08591 .08379	.05177	.02441
35	.21261.	.14272	.08379	.04966	.02229 .02017
36	.21049 5hoh8	.14061 .45779	.07955 .37615	.04754 .30334 .06868	.24035
32 33 34 35 36 37 38 39 40	.54048 .24222	.17021	.11.133	.06868	.03288
39	.23164	.16175	.10497 .09862	.06657 .06234	.03499 .03076
41	.22953 .22953	.15752 .15330	.09226	.05389	.03076 .02229
42	.24645	.17418	.12172 .34816	.07941 .27623	.05815 .21676
43 44	.50664 .24645	.42553 .17207	.10902	.06248	.03066
45 46	.23799	.16573	.10691	.05824	.02855
46 47	.23799 .23587	. 16151 . 15940	.10056 .09844	.05613 .05189	.02643 .02432
48	.50452	.42553	.34816	.27623	.21464
49	.23799 .20837	.16573 .14461	.10268 .08786	.05613 .04555	.02855 .01797
51	.19568	.13405	.08151	.04131	.01586
52	.24645	.16573 .17418	.10268 .10902	.05401 .05824	.02220 .02220
54	.24857	.1.6996	.10691	.05824	.02432
55	.24222	.16573 .40863	.10268	.05613 .26354	.02432 .20407
57	.48548 .25280	.17207	.33335 .11114	.06248	.03066
50 51 52 53 54 55 56 57 58 59 60	.25280 .24645	.17629	.11114	.06036 .05824	.02643 .02432
59 60	.24645 .50452	.16785 .42553	.35028	.28047	.22098
61	.50452 .24010	. 1.6362	.10268	.05824	.02855 .01797
62 63	.21049 .18934	.14672 .12560	.09209 .07516	.04555 .03708	.00951
64	.18511	.12138	.06882	.03285	.00951
65	.18511	.12349 .34316	.07093 .27832	.03496 .21909	.01586 .17023
66 67	.40933 .15972	.12771	.09633	.06459	.04335
68	.08569	.06224	.03919 .04765	.02227	.00951 .01797
69 70	.09203 .09626	.06857 .06646	.04554	.02861	.01586
71	.10049	.06857	.04765	.02861 04123	.01586 03913
72 73	03700 04335	03704 04126	~.03700 ~.04123	04546	04124
74	04547	04126	04123	04758	04336
75	04547	04126 .03900	04334 03707	04758 .03496	04336 .03700
76 77	.03492 04124	03704	03700	04123	03913
77 78	.10895	.1.1082	.11114	.10904 03911	.11313 03490
79 80	03700 04335	03492 04126	04123	04546	04124
81	04335	04126	04123	04758	04124

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(i) $\alpha = -2^{\circ}$

	${ m c_p/c_{p,{ m max}}}$ at eta of:						
	-10°	-5°	o°	5°	100		
Orifice	p _t = 4509.4 psf	p _t = 4513.8 psf	p _{t.} = 4510.5 psf	p _t = 4512.3 psf	p _t = 4513.3 psf		
<u> </u>	$= 215.9 \text{ kN/m}^2$	$p_{t} = 216.1 \text{ kN/m}^{2}$	$= 216.0 \text{ kN/m}^2$	$p_t = 216.0 \text{ kN/m}^2$	$= 216.1 \text{ kN/m}^2$		
1			0.97254	0.97805	1		
2	0.92779 .75007	0.96276 .76830 .75562	.77783 .76302	.77926 .75812	0.96527 .76439 .74325		
3 4	.73737 .72679	.74716	75455	•75389	-73902		
5 6	.72679 .72468	.74716 .74082	· 75455 · 75243	.75177 .74754	.73690 .73268		
7 8	.61889 .19997	.62457 .20183	.64450 .20428	.63546 .20195	.62272 .19981		
9 1 0	.05186 .05398	.04964 .05598	.05190 .05825	.04969 .05815	.05180 .05391		
11 12	.05186	.05175 .05810	.05401 .05825	.05392 .05815	.05180 .05180		
13 14	.05398 .49406	-51888	.53021	.53819 .03489	.52968 .03700		
15	.02647	.02850 .01794	.03073 .01803	.01797	.01585		
16 17	.01166 .00955	.01582 .01371	.01592 .01380	.01374 .01374	.00951 .00316		
18 19	.00320 .00955	.00948 .00948	.01380 .01168	.00951 .00528	.00316 .01162		
20 21	00315 01584	.00314 00954	.00957 00313	.01374 .00740	.01374 .01162		
22	02854	01588 02223	00948 01160	.00317 00106	.00951 .00739		
23 24	03488 .36923	.30540	.24026	.18715	.13849 .02854		
25 26	.12803 .10052	.09826 .07289	.06883 .04978	.04758 .03277	.01796		
27 28	.08783 .07725	.05810 .04964	.03285 .02227	.01797 .00528	.0137 ⁴ .00951		
29 30	.05186 .04128	.03484 .02428	.01592 .00533	.00528 .00317	.00739 .00528		
31 32 33 34 35 36	.65062 .22959	.56961 .17224	.47518 .12174	.38804 .08564	.30766 .05603		
33	.20208 .19997	.14476 .13630	.09422 .08364	.05815 .04969	.03277 .02431		
35	.19785	.13208 .12996	.07941 .07729	.04335 .03912	.02219 .01585		
37	.19785 .56599	.48506	.39899	.32460	.25902		
38 39	.24017 .22959	.17224 .16378	.11327 .10904	.06872 .06661	.03488 .03700		
40 41	.22535 .22535	.15744 .15321	.10057 .09422	.06238 .05181	.03277 .02431		
42 43 44	.24017 .52791	.15720 .45068	.11751 .36724	.07733 .29327	.05391 .22942		
44 45	.24440 .23805	.17198 .16776	.11116	.06251 .06251	.03277 .03065		
46 47	.23382	.16353 .15931	.10269 .10057	.05828 .05405	.0285 ¹ 4 .02431		
48 49	.52579	.44857	.36936 .10057	.29539 .05616	.23153 .02642		
50	.22747	.15931 .13398	.07941	.03711	.01374		
52	.18939 .24440	.12764 .16776	.07306 .10692	.03283 .05828	.01162 .02642		
53 54	.2507 ⁴ .24651	.17620 .16987	.11116 .11116	.06251 .06251	.02854 .02854		
55 56	.24017 .50887	.16565 .43168	.10481 .35455	.05823 .28481	.02642 .22307		
51 52 53 54 55 56 57 58 59	.25286 .25498	.17620 .17831	.11539 .11539	.06887 .06463	.03488 .03065		
59 60	.24440 .52791	.16987 .44857	•10904 •37359	.06040 .30174	.02642		
61 62	.23170 .20420	.15931	.10481	.06251 .04558	.03065		
63	.18516	.12553	.07306	.03711	.01162		
6 ¹ 4 65 66	. 18939 . 19150	.12342 .12553	.0709 ⁴ .07306	.03499 .03711	.01162 .01796		
67	.41789 .17246	.35567 .13820	.29105 .10481	.23188 .07310	.18078 .05180		
68 69	.10264 .11533	.07697 .08541	.05401 .06036	.03076 .04134	.01796 .02642		
70 71	.12380 .13226	.08541 .09175	.05825 .06036	.03711	.02219		
72	03700 04335	03704 04127	03699 04123	03910 04334	03913 04124		
74	04546 04546	04127 04338	04123 04334	04334 04546	04336		
76	.03494	.03896	.03708	.03711	04336 .03911		
72 73 74 75 76 77 78 79	03912 .10899	03916 .11075	03911 .11116	03910 .11121	03913 .11312		
80	03700 04335	03493 04127	03488 04123	03699 04334	03490 04124		
81	04546	04127	04123	04334	04336		

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(j) $\alpha = 0^{\circ}$

1			$c_p/c_{p,max}$ at β of:		
	-10°	-5°	00	5°	10°
Orifice	p _t = 4510.2 psf	p _t = 4512.9 psf	p _t = 4509.0 psf	p _t = 4513.5 psf	p _t = 4511.9 psf
	$= 215.9 \text{ kN/m}^2$	= 216.1 kN/m ²	= 215.9 kN/m ²	= 216.1 kN/m ²	= 216.0 kn/m ²
1 2 5 4 5 6 7 8 9 0 11 12 14 5 6 7 8 9 0 12 2 2 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4	= 215.9 kN/m² 0.92550 77954 76473 75204 75204 75204 75481 65146 21896 .06665 .06877 .06877 .06877 .07500 .45800 .01800 .00953 .00319 00950 00316 01162 02220 03066 03489 .55011 .11550 .06780 .07088 .07596 .05703 .02434 .65050 .22154 .19992 .19357 .18934 .18723 .58281 .24011 .22954 .22530 .22107 .22742 .55838 .21896 .3165 .22742 .55838 .21896 .3165 .22742 .55838 .21896 .31723 .22069 .22569 .22569 .22570 .21896 .31936 .31936 .31936 .31946 .38723 .3888 .39146 .38723 .24857 .24434 .23800 .23165 .22177 .23828 .21896 .31936 .31946 .38723 .24857 .24434 .23800 .23165 .22177 .23838 .21977 .115301 .14280 .157838 .25069 .25280 .24011 .55838 .25107 .14704 .15761 .19357 .19569 .41992 .17877 .115538 .03700 .045355 .045477 .045477 .045477 .045477 .045477 .045575 .044547	= 216.1 kN/m² 0.95881 .80447 .78755 .77698 .77487 .77064 .65647 .22515 .06658 .07081 .06870 .07293 .47887 .02007 .01161 .00950 .00738 .00527 .00516 .00742 .01799 .02433 .02644 .28647 .08561 .06024 .04533 .05064 .01796 .00738 .56767 .17230 .14270 .15213 .12578 .12156 .50424 .17230 .14270 .15213 .12578 .12156 .50424 .17230 .145993 .165993 .46560 .177415 .16993 .165993 .15269 .12558 .12769 .36000 .14670 .089812 .10235 .11080 .03493 .04126 .04126 .04126 .04126	= 215.9 kN/m² 0.97(1)99 .81089 .79182 .78122 .77(8)28 .65828 .22575 .06478 .06902 .06690 .07114 .48659 .02027 .00755 .00750 .00729 .47387 .11989 .109022 .07750 .07326 .06902 .41452 .11141 .10717 .09870 .09022 .11758 .38224 .11334 .10911 .10276 .10064 .38012 .09640 .07311 .06888 .10699 .11334 .111122 .10487 .36530 .11758 .11122 .10487 .36530 .11758 .11122 .06404 .07311 .07523 .29943 .11122 .06408 .07311 .07523 .29943 .11122 .064100 .06888 .07521 .07523 .29943 .11122 .064100 .06888 .07311 .07523 .29943 .11122 .064100 .06888 .07311 .07523 .29943 .11122 .064100 .06888 .07311 .07523 .29943 .11122 .064100 .06888 .07311 .07523 .29943 .11122 .064100 .06888 .07311 .07523 .29943 .11122 .064101 .03699 .04122 .04122	= 216.1 kN/m² 0.97559 81492 79167 78321 77687 65849 22723 .06657 .07080 .06868 .07291 .49359 .02429 .00103 .00526 .00738 .00526 .00738 .00519 -00742 -01165 .17438 .05909 .02429 .00319 -00742 -01165 .17438 .05909 .02429 .00319 -00954 -01165 .38789 .05811 .04543 .03909 .05486 .06688 .0624 .03177 .06868 .06234 .05177 .07925 .30756 .06868 .05445 .06023 .05960 .30968 .05388 .05486 .03274 .06445	= 216.0 kN/m² 0.96355 79855 778575 778471 76471 76471 76259 75856 653779 22107 06876 06665 06665 07088 48760 02646 00953 00107 - 01585 - 00739 00107 - 01585 - 00739 00107 - 01588 00107 - 00316 - 13011 02222 01588 00742 00319 - 00316 - 100527 - 30779 05607 03069 02222 01799 01376 26972 03492 03703 03280 02434 02422 02434 01165 01165 01165 01165 01165 02657 026069 02857 02646 23164 05915 03280 02434 01199 01588 01799 01588

Table II.- Tabulation of pressure measurement; at a reynolds number per foot of 2.81 \times 10⁶ (reynolds number per meter of 9.22 \times 10⁶), M = 3.71, AND $c_{p,max} = 1.7846$ - Continue-3

(k) $\alpha = 0^{\circ}$

	7		$c_p/c_{p,max}$ at β of:		I
	-10°	-5°	00	5°	10°
Orifice	p _t = 4505.0 psf	p _t = 4506.0 psf	p _t = 4506.8 psf	p _t = 4506.0 psf	p _t = 4506.6 psf
	$= 215.7 \text{ kN/m}^2$	$= 215.7 \text{ kN/m}^2$	$= 215.8 \text{ kN/m}^2$	$= 215.7 \text{ kN/m}^2$	= 215.8 kN/m ²
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 18 9 2 12 2 3 4 5 6 7 8 2 9 2 1 2 2 3 4 5 6 7 8 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.94139 .79527 .77635 .76139 .775715 .75272 .63644 .21926 .06679 .06679 .06679 .06679 .07102 .46491 .01808 .00749 .00537 .00945 .00537 .00945 .00216 .03063 .0368 .03714 .01808 .07314 .01808 .07314 .01808 .07314 .01808 .07314 .01808 .07314 .02867 .03698 .03614 .11973 .09008 .07314 .02867 .02867 .02867 .02889 .03614 .11973 .19621 .24891 .24044 .22985 .22777 .23944 .23522 .24577 .23944 .23522 .245777 .23944 .23522 .245777 .23944 .23522 .245777 .23944 .23522 .245777 .23944 .23522 .245777 .23944 .23522 .245777 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24577 .23944 .23522 .24576 .19090 .25000 .25844 .25000 .25844 .25000 .25844 .25000 .25849 .2989 .2356 .19990 .19512 .19934 .42518 .18457 .11705 .13180 .14446 .15502 .03494 .04338 .04338 .04338	0.96876 .81420 .79726 .78455 .78244 .77820 .65328 .22557 .06677 .07100 .06888 .07312 .48177 .02018 .01171 .00960 .00960 .00966 .00536 .00536 .00536 .00536 .00536 .00536 .00536 .00536 .00536 .00536 .00536 .00522 .01793 .02488 .02640 .29332 .08794 .06465 .04348 .03289 .01807 .00960 .57917 .17899 .14511 .13664 .13029 .12617 .51553 .17687 .17263 .16205 .15558 .16950 .47095 .17794 .17372 .16529 .16518 .47095 .17794 .17372 .16529 .16518 .47095 .17461 .17372 .16529 .16518 .47095 .15475 .12945 .12924 .17372 .16529 .16118 .47095 .17761 .12945 .12945 .12524 .17372 .16529 .16118 .47095 .15475 .12945 .12524 .17372 .16529 .16116 .17783 .16950 .45197 .18004 .18426 .17161 .47095 .16107 .14210 .12945 .12734 .13156 .36555 .14842 .09151 .09994 .0025 .11279 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840 .03840	0.97909 .81610 .79705 .76646 .78011 .78011 .67945 .22338 .06462 .07097 .06885 .07309 .49645 .02228 .01170 .00958 .00958 .00958 .009535 .00111 .01159 .01794 .02006 .23185 .06250 .04133 .02228 .00111 .00154 .48164 .12812 .09425 .08155 .07752 .07526 .42236 .11542 .11542 .11542 .10272 .09425 .12117 .38701 .11485 .11274 .10641 .10018 .07476 .07054 .11653 .11696 .11465 .11674 .11063 .11696 .11465 .11674 .1008 .07476 .07054 .11063 .11696 .11465 .116641 .37013 .1117 .11906 .11274 .38912 .10641 .37013 .11217 .11906 .11274 .38912 .10641 .07054 .07054 .07054 .07054 .07054 .07054 .07054 .07054 .07054 .07054 .07054 .07059 .07439 .04339 .04339 .04339 .04339 .04339 .04339 .05284 .04239	0.98255 .81935 .79503 .78967 .78331 .78119 .65402 .22375 .06478 .06902 .06690 .07114 .02451 .00967 .00755 .00967 .00755 .00943 .00331 .00543 .00937 .00729 .00941 .17923 .04146 .02662 .00967 .00305 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03505 .00941 .01153 .03506 .05662 .04782 .04782 .04782 .04588 .05777 .03669 .05418 .08096 .31282 .07042 .06831 .06640 .056620 .06620	0.97724 80785 80785 778032 777397 76550 77915 63846 21922 .06677 .06888 .06677 .06888 .09677 .06888 .09677 .00960 .00325 .00113 .00536 .01172 .00748 .00113 .00113 .00536 .01172 .00748 .00113 .00113 .00113 .00113 .00113 .00113 .00113 .00114 .00113 .00114 .00113 .00114 .00113 .00114 .00113 .00114 .00115 .00116 .00113 .00116 .00118 .00118 .00118 .00118 .00118 .00536 .00118 .00656 .07639 .0349 .02442 .02086 .0249 .02654 .0560 .0249 .02654 .0560 .02496 .03289 .02414 .00937

TABLE II.- TABULATION OF PRESSURE MEASUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(1) a = 2°

1	I		$c_p/c_{p,\text{max}}$ at β of:		
1.	-10°	-5°	00	50	10°
Orifice	p _t = 4509.3 psf	p _t = 4506.9 psf	p _t = 4506.9 psf	p _t = 4511.1 psf	p _t = 4505.0 psf
	= 215.9 kN/m ²	= 215.8 kN/m ²	= 215.8 kn/m ²	= 216.0 kN/m ²	= 215.7 kN/m^2
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.93363 .82343 .80436 .79164 .78952 .68740 .65601 .24277 .08171 .08171 .08183 .09019 .42890 .00734 .00330 .00518 .02649 .02649 .02649 .02649 .0365 .33813 .10502 .07535 .05628 .03721 .02277 .01589 .65813 .23641 .2038 .19191 .18555 .17919 .61151 .24489 .24065 .23770 .25377 .15689 .57197 .25377 .25377 .25377 .25377 .25375 .24110 .23478 .24110 .23478 .24110 .23478 .24110 .23478 .24110 .23478 .24110 .25478 .24110 .25478 .24110 .25478 .24110 .254796 .25007 .25375 .24110 .254796 .26007 .25375 .24110 .25478 .26007 .25375 .24110 .25478 .26007 .25375 .24110 .25478 .26007 .25375 .24110 .54688 .25796 .26007 .25379 .26007 .25379 .26007 .25379 .26007 .25379 .26007 .25379 .26007 .25379 .26007 .25379 .26007 .25399 .56554 .22213 .20317 .19685 .20106 .20738 .43499 .16945 .13262 .15259 .16945 .13262 .15259 .16945 .13262 .15259 .16945 .13362 .15259 .16945 .13968 .04591 .04551 .04551 .04551	0.96016 .84160 .82255 .81196 .80773 .80761 .67859 .25305 .08580 .08580 .08589 .09427 .44147 .01171 .00535 .00524 .00525 .00524 .00524 .01570 .02428 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .03064 .27422 .07734 .05193 .05064 .12768 .12597 .15684 .17260 .166947 .48563 .17969 .16737 .16104 .48563 .17969 .16737 .16104 .48563 .17969 .16737 .16104 .48563 .17969 .16104 .48563 .17969 .16104 .48563 .14207 .15894 .15894 .15894 .15894 .15894 .15894 .15894 .15894 .15894 .15894 .10624 .11467 .12100 .12943 .05497 .04340 .04551 .05880 .05708 .12310 .05497 .04340 .04540	0.97606 .34890 .82559 .81923 .81923 .81929 .81075 .67936 .24914 .08172 .08383 .09231 .45259 .01178 .00330 .00330 .00330 .00330 .00330 .00330 .00118 .00118 .00941 .02213 .02849 .21735 .05205 .0585 .01178 .00518 .01178 .00518 .01178 .00718 .01165 .01748 .07748 .07756 .06888 .45564 .11962 .11562 .11562 .10079 .09443 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .59809 .11716 .11505 .10871 .10026 .40020 .09181 .077069 .06838 .11927 .11082 .11505 .10857 .08547 .07914 .07703 .06800 .38330 .12138 .11927 .11082 .40231 .10257 .08547 .07914 .07703 .08125 .08125 .08125 .08125 .08125 .08126 .04548 .04548 .04548 .04548	97810 84699 82161 81526 80892 80680 67569 25061 .08553 .08565 .08776 .09199 .45997 .01586 .00529 .00517 .00106 -00106 -001163 -01198 .16813 .03278 .02099 -00106 -01163 -01798 .16813 .03278 .02009 -00106 -01586 -02009 -0721 .0316 -03586 -02009 -0721 .03278 .05606 .05816 .04547 .03912 .03278 .35655 .07085 .07296 .06239 .05604 .08080 .32293 .07638 .076396 .05293 .076396 .05293 .076360 .05975 .32503 .05343 .07637 .06806 .05975 .32503 .05343 .076396 .05293 .05654 .08080 .32293 .07638 .076396 .05293 .076396 .05298 .05604 .08080 .32293 .076396 .05293 .076396 .05293 .05659 .05258 .06817 .07027 .06606 .05975 .32503 .05343 .06396 .09975 .02588 .06817 .07027 .06817 .06396 .01240 .07870 .07870 .07870 .07870 .07870 .07870 .07870 .07838 .06396 .31240 .07870 .07838 .06396 .32291 .04342 .04342 .04342 .04342 .04342 .04342 .04342 .04342 .04342 .04342 .04342 .05500 .04131 .055500 .04131	0.97211 83886 81100 80464 79616 79192 65625 24287 08176 08176 08176 08187 09023 45486 01604 00120 00940 - 02848 - 02424 - 01576 00544 - 00092 - 00728 - 00940 - 12203 01604 00756 00120 - 00940 - 11223 01604 00756 00120 - 009516 - 00940 - 01152 - 31282 05632 026876 02028 01604 00756 28527 03512 03936 03688 02452 05581 02581 02581 02581 03588 02452 05581 0259 03048 03688 02452 05581 02599 03048 03686 02659 03088 02659 03088 02659 03088 02659 03088 02659 03088 02659 03088 03689

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $_{p,max}$ = 1.7846 - Continued

(m) a = 5°

			$C_p/C_{p,max}$ at β of:		
	-10°	-5°	00	5°	10°
Orifice	$p_t = 4508.9 \text{ psf}$	p _t = 4507.8 psf	p _t = 4506.0 psf	p _t = 4508.4 psf	p _t = 4505.3 psf
	= 215.9 kN/m ²	= 215.8 kN/m ²	= 215.7 kN/m ²	= 215.9 kN/m ²	= 215.7 kN/m ²
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.92893 .86962 .84844 .85149 .82725 .82090 .66322 .28499 .11130 .111977 .12824 .37396 .00520 .02003 .03909 .03698 .03698 .03698 .03698 .03698 .03698 .03599 .04121 .31041 .08800 .05834 .03504 .01598 .00579 .00097 .65568 .23839 .19603 .18544 .17908 .17061 .65450 .24475 .22922 .22556 .23464 .59485 .25571 .25149 .24686 .24475 .22992 .22556 .23464 .59485 .25571 .25149 .24686 .24475 .22992 .22556 .23464 .59485 .25571 .25149 .24686 .24475 .25294 .59684 .20726 .19462 .19251 .25149 .26413 .25771 .23284 .5968 .21147 .20515 .21568 .21147 .20515 .21568 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .21779 .44590 .16513 .18518 .20515 .21568 .21779 .44590 .16513 .18518 .20515 .21568 .21779 .44590 .16513 .18518 .20515 .21568 .21779 .44590 .16513 .18198 .20515 .21568	0.96207 .89434 .87106 .89624 .84989 .84142 .69961 .29321 .11329 .11541 .12387 .13446 .39057 .00111 .00325 .00323 .00101 .00325 .00323 .00101 .00326 .03276 .03276 .03276 .0329 .03276 .03699 .25511 .06461 .03921 .01381 .00101 .00947 .01371 .57664 .18102 .14292 .12811 .11964 .11117 .575664 .18102 .14292 .12811 .11964 .11117 .57576 .17891 .16409 .15774 .16943 .106409 .15774 .16943 .11600 .50870 .17997 .17154 .16100 .50870 .14205 .12518 .12507 .17786 .18629 .18418 .16943 .18629 .18418 .16943 .48763 .18629 .184786 .18593 .18498 .19494 .17786 .13150 .13782 .15257 .16311 .03498 .04341 .04541	0.98051 .90208 .87664 .86392 .85544 .84908 .70494 .29160 .10930 .11142 .11990 .13050 .401820009300305 .0011900305005170094002000030600348403484204504147 .0223900517020000263602848 .8449 .13050 .09234 .07750 .07114 .06267 .46117 .11990 .12202 .10718 .09870 .12122 .11489 .10434 .42300 .12533 .12122 .11489 .10434 .42300 .08956 .07057 .11700 .12333 .12122 .11489 .10434 .42300 .08956 .07057 .11700 .12333 .12122 .11667 .40400 .12755 .12333 .10856 .42300 .10223 .09167 .08956 .07057 .11700 .12333 .10856 .42300 .10223 .09167 .08956 .07057 .11700 .12333 .10856 .42300 .10235 .09167 .08956 .07057 .11700 .12333 .10856 .42300 .10223 .09167 .08956 .08534 .31115 .13810 .10012 .10645 .10128 .09499 .04539 .04539 .04539	0.97873 89831 87081 86022 85176 84330 69940 29100 11325 11325 11325 11327 13229 40527 .00532 -00532 -00534 -00102 .00321 -00314 -00949024300244002457 .0116701160026420306515557 .04541030650366503665036650366603650366603697 .0523 .04341 .03707 .0349537764 .07516 .07727 .06669 .05823 .08510 .34212 .07667 .07246 .06192 .34422 .05139 .05644 .05192 .34422 .05139 .05664 .05243 .07246 .06192 .34426 .07156 .077246 .06824 .06192 .34426 .07156 .07246 .06828 .06103 .04341 .03948 .08089 .07456 .07246 .066403 .05350 .05139 .04718 .04928 .25153 .10406 .077456 .07246 .07456 .074	0.96999 .88732 .88764 .884916 .84068 .83220 .68593 .28951 .11355 .11567 .12205 .13051 .40186 .00756 .00516 .00424 .03696 .03908 .03696 .03922 .00728 .01576 -01788 .11355 .01576 -01788 .11355 .00968 .00332 .00728 -01364 -01766 -01788 .11395 .00968 .00332 .00728 .00728 .01364 -01766 .01788 .11494 .06056 .03088 .01816 .01604 .00756 .30011 .03936 .04360 .05512 .02876 .05681 .07281 .02877 .277319 .02204 .00388 .010404 .03470 .03259 .02837 .277741 .03048 .26053 .04561 .03681 .03916 .04338 .04204 .04104 .04104 .04104 .04104 .04104 .04104 .04338 .04338 .04338 .04338 .04338 .04338 .04338 .04338 .04338 .04338

TABLE II.- TABULATION OF PRESSURE MEAR UNFIMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYNOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $C_{\rm p, max}$ = 1.7846 - Continued

(n) α = 10⁰

Orificial	1			$c_{\mathrm{p}}/c_{\mathrm{p,max}}$ at β of:		-
P ₁ = 1505.7 pet		-10°	-5°	-	5°	100
	Orifice	p _{t.} = 4506.7 psf	p _{t.} = 4506.2 psf	p _t = 4507.2 psf	p _{t.} = 4509.5 psf	p _{t.} = 4506.4 psf
1			-	= 215.8 kN/m ²	,	
1	1	0.90516	0.93484	0.96002	0.95259	0.94636
1		.93057	.95390 03061	.97061 0/.520	.96105 93356	.95060 92305
2	4	.89669	.91790	.93462	.92722	
7		.89034	.91155	.92827	.92088	.90186
9	6	.87975			.91030	
9	l å	. 74214				. 14/15
11	9 1	.16838	. 17051	.17046	.17021	.17072
12	1.0	.17473	.17686	.17469		
13	12		.21074	. 20856	.20827	
19	13	.29541	.30813	. 32287	.32035	.32119
17	14	01158	01158	00947		
17	16	03699		.00111	00952	03697
19	17	04546	01158	00947	01587	04544
20				01571		04544
21		03699				.00542
23	21	03910	03910	03699	03490	02425
24				03911	03490 03k90	
26	24	.27212	.22132	.17681	.13215	.09655
27						
28						
50	28	00525	0.'005	03064	03701	02425
1	29	00946	02428		03701	
52	30	01301	07052 .46644	05099 .48163	.38801	
57	32	.24243	.18321	. 1 3659	.09197	.06052
57	33		.14087			
57	35	.17050	.12395	.07097		
58	56	.15779	.10275	.06250	.03488	
1895	27 38					
\(\frac{1}{4} \) \(\frac{2}{2} \) \(\frac{2}{6} \) \(\frac{1}{6} \) \(39	.25730	.18533	. 13024	.07929	. 04568
1.2 .28671	40	.23825	.17262			
#3		.22,600	.16739		.08515	.05986
46	43	.62542	・54259	.45662	i .36756	
46					.08305	
48 .6; 342 .94470 .4;673 .56967 .29801 49 .70199 1,14299 .99163 .05143 .02403 50 1,1978 1,3155 .07476 .03668 .01550 51 1,1978 1,3566 .07476 .03668 .01159 52 .25414 1,18425 .12539 .07672 .04300 53 .76680 1,19077 .12961 .07672 .04300 54 .25622 1,18636 .12539 .07251 .03879 55 .28682 .16317 .10640 .06197 .05246 56 .60021 .51940 .43764 .35281 .28326 57 .25836 .18846 .13383 .08515 .05143 58 .22625 .18636 .12559 .07672 .04300 59 .22460 .15895 .10429 .05966 .02825 61 .20983 .15052 .10218 .06197	46	.24570	.17793	.12117	.07040	.03668
199						
0						
52	50	.19928	.13155	.07476		
55 .76680 .19077 .12961 .07672 .04300 .554 .25625 .18636 .12559 .07251 .03879 .03246 .56 .60021 .51540 .12559 .07251 .03826 .25826 .57 .25836 .18846 .13383 .08515 .05143 .58 .2662 .18636 .12539 .07672 .04300 .599 .22460 .15895 .10429 .05986 .02825 .60 .61287 .55416 .45451 .36736 .22961 .61 .20983 .15052 .10218 .06197 .03246 .62 .21827 .15474 .100218 .05775 .05036 .62 .22038 .15474 .10007 .05775 .03036 .63 .22038 .15474 .00007 .05775 .03036 .65 .25515 .16517 .10007 .05754 .02403 .65 .25515 .16517 .10007 .05554 .02403 .66 .46727 .59715 .33004 .26218 .20949 .68 .21827 .18023 .14438 .10623 .12438 .20949 .69 .24148 .18636 .14438 .10623 .08304 .69 .24148 .18636 .14438 .10623 .08304 .26218 .20949 .24148 .18636 .1446 .10412 .07461 .07040 .27315 .2165 .12651 .10126 .10412 .07461 .07040 .27315 .2219 .16126 .10412 .07461 .07040 .27315 .2219 .16126 .10412 .07461 .07040 .03680 .03880 .03889 .03688 .03889 .03668 .03879 .04531 .04539 .044330 .0368 .03879 .04539 .04531 .004530 .03680 .03880 .03889 .03668 .03879 .04531 .00430 .03676 .03676 .03676 .03650	27	.19920			.07672	
61	53	. 26680	. 19057	.12961	.07672	.04300
61	54 55	. 25625			.07251	
61	56	.60021	.51940	. 43764	. 35281	. 28326
61	57	. 25836		.13383	.08515	
61	59 59			.10429		.02825
62		.61287	.53416	.45451	. 36756	.29801
63			. 15052 . 15474			
64 .25095	63	.22038	. 15474	.10007	.05775	.03036
66		.23093		.09796	.05143	
67	66	.46727	. 39715		.26218	.20949
69	67	. 26258	.21798	.1.7392	.12941	.09990
70				.14450		
720349503496034950349803498 730455004551043390455104130 740476104551043390455104330 750476104551045500455104330 76 .03680 .03680 .03680 .03689 .03668 .03679 770433905919041280415005919 78 .12120 .12312 .12328 .12098 .12309 790391703708034950370803076 800476104551043590434104130	70	.27313	.21165	.14860	.10412	.06829
73	71	.27735		16126		
740476104551043390455104350 750476104551045500455104341 76 .03680 .03880 .03689 .03668 .03679 770433903919041280413003919 78 .12120 .12312 .12328 .12098 .12509 7903708037080370803076 800476104551045390434104130	73	04550	04551	04339	04551	04130
770433903919041280413003919 78 .12120 .12312 .12328 .12098 .12309 790391703708034950370803076 800476104551043390434104130	74	04761	04551.	04339	04551	041.30
770433903919041280413003919 78 .12120 .12312 .12328 .12098 .12309 790391703708034950370803076 800476104551043390434104130	76				.03668	
7903708034950370803706 800476104551043390434104130	77	04339	03919	04128	04130	03919
800476104551043390434104130	78 70					
810476104551043390455104130	80	04761	04551	04339	04341	04130
	81	04761	04551	04339	04551	04130

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,mex} = 1.7846$ - Continue3

(o) a = 15°

			$C_{\mathrm{p}}/C_{\mathrm{p,max}}$ at β of:		
	-10°	-5°	0°	5°	10°
Orifice	pt = 4505.9 psf	p _t = 4505.8 psf	pt = 4508.4 psf	p _t = 4506.0 psf	p _t = 4506.9 psf
ļ	= 215.7 kN/m ²	$= 215.7 \text{ kN/m}^2$	= 215.9 kN/m ²	= 215.7 kN/m ²	= 215.8 kN/m ²
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 6 17 18 9 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 215.7 kN/m² 0.85862 .97085 .97601 .94331 .93907 .92637 .80569 .45210 .23402 .25943 .28060 .8272 .229790200502216043540475704757047570454504757045450475704581015810179302428 .62360 .24038 .19380 .17686 .16415 .14722 .67441 .25096 .26155 .24461 .22767 .22219 .64798 .26013 .26013 .26013 .26013 .26536 .21376 .	= 215.7 kN/m² 0.88623 .99210 .97728 .96457 .99610 .94552 .82482 .46274 .23617 .26793 .29334 .29129 .24040 -02216 -01793 -01369 -02851 -03910 -03910 -03910 -03910 -03910 -039487 -03910 -04545 -18747 .02866 -00099 -02216 -03063 -03487 -54320 -18111 -13877 -12594 -11124 -09642 -58978 -18111 -118747 -17900 -164177 -16544 -118376 -18459 -18411 -18876 -18459 -18444 -17610 -15288 -56652 -146555 -14444 -14233 -18876 -18494 -17610 -15288 -56652 -146555 -14444 -14233 -18876 -18494 -17610 -15288 -55366 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -17610 -15288 -55586 -15077 -16344 -16555 -17399 -1740 -04761 -04761 -04761	= 215.9 kN/m² 0.90685 -99996 -98303 -97457 -97033 -97033 -95975 -83701 -47090 -23811 -26986 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -29314 -2007 -01585 -00948 -02007 -02430 -02641 -03700 -04125 -04125 -04125 -04125 -04125 -04125 -04125 -04125 -04125 -03700 -03911 -04125 -05609 -13250 -09421 -08151 -07093 -06055 -50055 -12384 -13019 -12172 -111114 -12323 -47547 -13167 -12745 -11901 -10425 -48180 -09581 -08738 -08738 -12745 -11901 -10425 -10847 -10636 -10847 -10636 -10847 -10636 -10847 -10636 -10847 -10636 -10847 -10636 -10847 -10636 -10847 -10636 -10425 -10847 -10636 -10425 -10847 -10636 -10425 -10847 -10636 -10428 -19073 -19073 -20549 -21182 -03285 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550 -04550	= 215.7 kN/m² 0.90518 .99622 .97716 .96869 .96234 .96234 .95175 .82684 .46691 .23825 .26578 .28695 .28695 .25096020050200502005020050306303487039100369903910041220412204134 .37164 .09005036990412204134 .37164 .09005 .05829 .04770 .04135 .03076 .40763 .07734 .08158 .07728 .38660 .08728 .38660 .08728 .38660 .08728 .38660 .08728 .38660 .08728 .38660 .08728 .38986 .07464 .06199 .39081 .057777 .04934 .04725 .08096 .07674 .06199 .36973 .08728 .38849 .04725 .08888 .38449 .06410 .06620 .06620 .06620 .06620 .06620 .05988 .38449 .06410 .06620 .06620 .06620 .05988 .38149 .06410 .06620 .06620 .05988 .38149 .06410 .06620 .06620 .05988 .38149 .06410 .06620 .06551 .0388003919 .15052 .14819 .15052 .14819 .15052 .158840388003919 .150510458004581045810045810045810045970413004540	= 215.8 kN/m² 0.89116 .98651 .96532 .99684 .94837 .95989 .81275 .45888 .24062 .26593 .28300 .28088 .25129 -01790 -02425 -04353 -04756 -04766 -04544 -00730 -03061 -03273 -03273 -03273 -03273 -03273 -03273 -03273 -03601 -03613 -0361 -03613 -03705 -0361 -0361 -03673 -03995 -06951 -02872 -02425 -03465 -01813 -00775 -03273 -03995 -04143 -03508 -05998 -30891 -05154 -04099 -05677 -02854 -31524 -02623 -01990 -01779 -04521 -04099 -02834 -31524 -02623 -01990 -01779 -04521 -04099 -02834 -31102 -03466

TABLE II.- TABULATION OF PREJSURE MEASUREMENTS AT A REYNOLDS NUMBER PER FOOT OF 2.81 \times 106 (REYHOLDS NUMBER PER METER OF 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(p) $\alpha = 20^{\circ}$

			C _p /C _{p,max} at β of:		
rifice	-10 ⁰	-5°	o°	5 ⁰	10°
	ļ		pt = 4506.7 psf		
			= 215.8 kN/m ²		
1			0.83523 1.02365		
2 3 4 5 6 7 8 9 10			1.02365		
4			1.01306		
5.			1.00883 1.00248		
7			.90298		
8			.57272		
10			.32291 .38218		
11			.39277		
12			.39277 .18742		
13 14			02640		
15 16			02005 02005		
17			02852		
18 19			03487 03487		
20			0391.0		
21	1		04334 04546		
22 23			04546		
23 24			.11967		
25 26			.00324		
27 28			03699		
29			03910 04122		
30			04122 .42453		
31 32			.42453		
33			.09427		
34			.08580		
36			.07521 .06040	i	
50 51 52 53 54 55 56 57 58 59			.50286 .12391		
39			.13026		
40			.12179 .11120		,
41 42 43			.12119		
43 44			. 49044		
45 46			.13385 .12752		
46 47	į		.11697		
48			, 49888		
49			.10220		
51			.09798		
52			.12752 .12752		
54			.12119		
55 56			.10009 .47145		
57			.13174		
49 50 51 52 53 54 55 56 57 58 59 60			.11697 .10642		
60			.48411		
61 62			.11064		
			111.86		
64			.10853		
66			.36806		
67 68			. 10853 . 11275 . 36806 . 25834 . 24568 . 25201		
69			.25201		
70			. 26467 . 26467		
72			02862		
73			04128 - 04339		
75			04339 04550		
76			.03890		
63 65 66 67 68 69 70 71 73 74 75 76 77 78			03917 .12330		
79			03 ⁴ 95 0 ⁴ 339		
81			04339 04339		I

(q) a = 25°

			C /C		
1 -	-10°		C _p /C _{p,max} at β of:	5°	10
. Orifice	-10	_		2	10°
			p _t = 4506.8 psf		
		-	= 215.8 kN/m ²		
1 2 3 4 5 6 7 8 9 10			0.74841 1.01939		
3 4			1.02786		
5			1.02574		
7			1.02362		
9			.67432 .42451		
10			. 49438 . 49014		
1 12			.49014 .13660		
13 14 15 16			03064		
16			02005 02852		
17 18			03699 03699		
19 20			03911 04122		
l 21 i			04546		
22 23 24			04546 04757		
25			.09215 00735		
25 26 27			03064 03911		
28 29			04122 04122		
30 31			04334 .38853		
32			.11755		
34 34			.09426		
35 36			.07733		
30 31 32 33 34 35 36 37 38 39 40 41			.48591		
39 40			.12814		
41 42			.10908		
43 44			.49465		
45 46			.13385 .12541		i
47			.11486 .09798		
48 49			.50520 .11275		
50 51	İ		.10220 .10853		
52 53	!		.125 ⁴ 1		
54			.11486		
56			. 10431 . 47566		
49 50 51 52 53 54 55 56 57 58 59			.12963 .11064		
59 60			.1106 ¹ 4 .48832		
61 62			12110		
63 64			.11486		
65 66			.12752 .11486 .09587 .09587 .39126 .36686	1	
67			.30686		İ
69			71.570		
70 71			. 51539 . 31319 . 31319 02440 04128 04128 04128		
72 75			04420		
74 75			04128		
76 27			.03890		
78			.03890 03917 .12541		
62 63 65 65 66 67 70 71 72 73 74 75 76 77 78 81			03495 04128 04128		
81.			04128		

Table II.- Tabulation of Phessure measurements at a heynolds number per foot of 2.81 \times 106 (heynolds number per meter of 9.22 \times 106), M = 3.71, AND $C_{\rm p,max}$ = 1.7846 - Continued

(r) $\alpha = 30^{\circ}$

1	1		$C_p/C_{p,max}$ at β of:		
	-10°	-5°	00	5 ⁰	10°
Orifice	p _t = 4508.3 psf	p _{t.} = 4508.2 psf	p _t = 4506.5 psf	p _t = 4509.1 psf	p _t = 4506.5 psf
	= 215.9 kN/m ²	= 215.9 kN/m ²	= 215.8 kN/m ²	= 215.9 kN/m ²	T
1 2 3 4 5 6 7 8 9 10 11 2 15 14 5 6 6 7 8 9 10 11 2 13 14 5 6 6 7 8 9 10 11 2 13 14 5 6 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 10 12 13 14 5 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 6 7 10 12 13 14 5 7 10 12 13 14 5 7 10 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	I , I		-	_	= 215.8 kN/m² 0.64344 .97622 1.00378 1.01226 1.01226 1.01226 1.01438 .98470 .76638 .54594 .57551 .56289 .55442 .09446 -03484 -04544 -0458 -04544 -04120 -04544 -04120 -04756 .02451 -03060 -04352 -03908 -04332 -04544 -04120 -04756 .02587 .03657 .03908 -04358 .04037 .05577 .04102 .04558 .04067 .04558 .04077 .05579 .52168 .05157 .04102 .03258 .03047 .03258 .03047 .03258 .03047 .03258 .03047 .03528 .03691 .03917 .12121 .03917 .12121 .03917 .12121 .03917 .12121 .03917 .12121 .03917 .12121 .03917 .12121 .03917 .12121 .03919 .04128 .04138

Table II.- Tabulation of pressure measurements at a reynolds number per foot of 2.81 \times 106 (reynolds number PER meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Continued

(s) $\alpha = 35^{\circ}$

			$C_p/C_{p,max}$ at β of:		
	-10°	-5°	00	5°	10°
Orifice	p _t = 4506.4 psf	p _t = 4506.4 psf	Pt = 4509.2 psf	p _t = 4507.9 psf	p _t = 4506.7 psf
	$= 215.8 \text{ kN/m}^2$	= 215.8 kN/m ²	= 215.9 kN/m ²	= 215.8 kN/m ²	$= 215.8 \text{ kN/m}^2$
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	0.54735 94538 99620 99831 1.00255 1.00255 1.00255 1.00255 1.00255 1.00255 1.00255 1.00255 1.00255 1.00255 1.00257 0.83741 0.64898 0.66592 0.65745 0.6321 0.09617 0.09910 0.04757 0.04546 0.045	0.56429 9.77502 1.00890 1.01737 1.01948 1.01948 1.01948 1.02372 85223 65533 66285 67438 66803 .06040 -03910 -03699 -04334 -04546 -04122 -03910 -04969 -04969 -04969 -04969 -04969 -04969 -04969 -04969 -105626 -1150497 -116130 -55167 -166341 -159497 -16130 -55167 -16341 -1667 -16341 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -1667 -166	0.56814 98073 1.02093 1.02516 1.02728 1.02939 1.03151 .86224 .66123 .69509 .68874 .67816 .06245 -03912 -03277 -04123 -03912 -04123 -03912 -04758 -04969 -04763 -04763 -02642 -03912 -04123 -04123 -04123 -04123 -04123 -04123 -105777 -10633 -111477 -11266 -10633 -11477 -11266 -10633 -11477 -11266 -10633 -11477 -11266 -10633 -11477 -11266 -10633 -11477 -11266 -10635 -11687 -10635 -11687 -10635 -11687 -10635 -11689 -07681 -10789 -02020 -03707 -03707 -03707 -03707 -03707 -03707 -03707 -03707	0.57\62 .98307 1.025\40 1.025\40 1.025\40 1.025\40 1.025\40 1.027\52 .86033 .661.39 .681.39 .684.67 .67\409 .665\62 .06670 -0.05911 -0.45\46 -0.47\66 -0.45\46 -0.45\	0. 564-51 97115 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.00716 1.00927 1.009210 1.04933 1.04945 1.04945 1.04945 1.04944 1.03241 1.032

Table II.- Tabulation of pressure measurements at a Reynolds number per foot of 2.81 \times 106 (Reynolds number per meter of 9.22 \times 106), M = 3.71, AND $c_{p,max} = 1.7846$ - Concluded

(t) $\alpha = 40^{\circ}$

1	c _p /c _{p,max} at β of:								
	-10°	-5°	0°	5°	10°				
Orifice	p _{t.} = 4507.2 psf	P _t = 4507.5 psf	p _t = 4507.7 psf	p _t = 4508.0 psf	p _t = 4508.1 psf				
	$= 215.8 \text{ kN/m}^2$	$= 215.8 \text{ kN/m}^2$	= 215.8 kn/m²	$= 215.8 \text{ kN/m}^2$	= 215.8 kN/m ²				
1	0.34663	0.35671	0.37994	0.39261	0.37189 .84642				
2	. 72810 . 85950	.80967 .84989	.77994 .94502	.84761 .92803	.93327				
3 4	.93156	.89434	.95984	.96612	.96505				
5 6	.93580 .97606	.98112 1.00864	.9894 7 1.02545	1.00210	.98623 1.00742				
7 8	1.02269	1.05520	1.06778	1.06347	1.04767				
8	.93580	.95149 .79062	.97042 .80111	.96612 .79893	.952 34 .78922				
9 10	.77897 .76413	.78427	.79264	.78412	. 76380				
11 12	•74930	•771.57	.78418	.76719 .75872	. 74685 . 73838				
13	.74506 .01390	.76311 .01804	.77571 .02015	.02226	.02446				
14	041.20	04546	04334	04334	04333				
15 16	04120 04332	04546 04546	04123 04546	04758 04758	04968 04757				
17	041.20	04757	04546	04546	04545				
18 19	04120 03908	04334 03911	04123 03911	04123 03911	04121 03909				
20	04332	04757	04758	04546	04121				
21. 22	04332 04120	04969 04334	04758 04334	04758 04546	04757 04545				
23	03697	03699	03699	03700	03697				
24	.04357 02637	.02651 03276	.01168 03699	.00110 03911	00943 04333				
25 26	03697	04122	04546	04758	04757				
27 28	03485	03911	04334 04123	04758 04546	04757 04757				
29	03273 02849	03699 03487	04123	04546	04545				
30	03061	03699	03911	03911	03697				
31 32	.27033 .13682	.24452 .09847	. 20428 . 06883	.17040 .04342	. 13250 . 02446				
32 33 34 35 36 37 38	.15589	.11,1,1,7	.07094	.03919	.01387				
34 35	.16013	.11117	.07094 .06459	.03919 .03496	.01387 .00539				
36	.16225	.10906	.06459	.03284	.01175				
37 38	.46319 .18980	.43926 .14292	.38206 .09634	.32066 .06035	.25961 .03082				
39 40	.20252	.15139	.10481	.06670	.03717				
40 41	.20252	.1.4504 .13869	.09846 .08787	.06035 .05189	.02870 .02234				
42	.22668	.16546	.12094	.08316	.05573				
43 44	.53051 .19925	.49245	.40750 .10619	.35736 .07051	.28140 .03886				
45	.20347	.14226	.09776	.05996	.02831				
46	.20980 .21824	.14226 .15280	.09355 .09987	.05363 .05785	.02199 .02620				
47 48	.57692	.53254	.44753	.37002	. 30249				
49	.23934	.16757	.11462 .10198	.07261 .04941	.04097 .01566				
50 51	.24145 .23934	. 16546 . 15913	.09144	.04519	.00933				
52	.20136	.14647	.09987 .09987	.06207 .05785	.03042 .02831				
54 54	.20347 .21613	.14647 .14858	.09987	.05785	.02620				
55	.22879 .58114	.16124	.11041 .42014	.06840 .35525	.03253 .28562				
53 54 55 56 57 58	.14228	.14858	.10408	.06629	.03675				
58 59	. 22668 . 2393 ¹ 4	.15913 .17179	.10619 .12094	.06418 .07894	.03253 .04729				
60	.61279	.53675	.45596	.38056	.30038				
61 62	. 26255 . 23301	.19500 .16124	.14201 .10619	.09793 .06418	.05995 .03253				
63	.20136	.13382	.08091	.04098	.00933				
64	.18870	. 12749 . 12538	.07880 .07880	.03887 .04098	.00933				
65 66	.18659 .63389	.53886	.43910	.35736	.01355 .28140				
67	.64233	.55363	.46439	.37845	.30038				
68 69	.66976 .64444	.58106 •55574	.50232 .46860	.41642 .38478	. 33834 . 30671				
70	.62756	.53886	. 455 9 6	.37002	.29827				
71 72	.62123 01385	.53464 01597	.45385 01812	.37002 022 3 0	.29616 02652				
73 74	03917	03495	03287	03707	03707				
74 75	0391 7 04128	03495 03706	03498 03498	03707 03707	03707 0370 7				
76	.03890	.04099	.04087	.03887	.03886				
77 78	03706 .12329	03284 .12116	03077 .12726	03496 .12113	03496 .12111				
79	03284	02862	02655	03074	03074				
80	04128	03495	03498	03707	03496				

Table III.- Tabulation of pressure measurements at a reynolds number per foot of 4.68 \times 106 (reynolds number per meter of 15.35 \times 106), M = 3.71, $c_{p,max}=1.7846$, and $\beta=0^{\circ}$

-	C _p /C _{p,max} at α of:							
	0°	100	200	30°	35°	140°		
Orifice	p _t = 7500.1 psf	p _t = 7500.1 psf	p _t = 7509.6 psf	p _t = 7509.6 psf	p _t = 7 500.1 psf	p _t = 7509.6 psf		
	= 359.1 kN/m ²	= 359.1 kN/m ²	= 359.6 kN/m ²	= 359.6 kN/m ²	= 359.1 kN/m ²	= 359.6 kN/m ²		
1	0.97197 .81280	0.94898 .96299	0.81939	0.63332 .96542	0.54795 .96815	0.33740 .81182		
2 3	.79370 .78352	.94007	1.01525 1.01144	1.01339 1.01847	1.00890	.90976		
5 6	.77970	.92861 .92224	1.00635 1.00126	1.02101	1.01526 1.01526	.92629 .96318		
6	.77970 .66382	.91333 .7 <u>7</u> 327	.99236 .89952	1.02355 1.00195	1.02036 1.02800	1.01024 1.05221		
7 8 9	.22070 .06281	.38493 .16975	•57775 •32720	• 77569 • 54943	.86628 .67528	.96827 .81182		
10	.07045	.17867	.39079 .40097	.61.044	.70457	.79910		
11 12	.06790 .07300	.20286 .21432	.40097	.60028 .59138	. 70075 .690 5 6	.78638 .78384		
13 14	.49320 .01697	.32000 01487	.17713 03018	.08421 03782	.05517 04160	.01180 04671		
15 16	.00933 .00806	01232 00214	02000	02511 04163	03396 04415	04544 04798		
17 18	.00806	00977 01614	02255 03145 03654	04290 04545	04160	04798 04417		
19	.00551 .00551 00213	01996	03527	04290	04033 04033	04035		
20 21	01741	03524 04033	04290 04544	04672 04799	04797 05052	05053 05053		
22 23	02123 02250	04161 04161	04671 04926	05053 05053	05179 04797	04544 03781		
24 25	23080	.17103 .02460	.11481 00093	.06133 02257	.04244	.00798 _ 04035		
26 27	.06026 .03862 .02079 .00806	.00296 02251	02763 03908	03909 04290	04288	04798 04671		
28	.00806	03397	04162	04290	04288 04415 04415 04415 04415	04417		
29 30	00086 00722 .48428	03651 03906	04290 04417	04290 04290	04288	04290 04035		
31 32	.11756	.48042 .12646	.42259 .11608	.34351 .09437	.30092 .08318	.19495 .05631		
33 34	.09337 .08191	.09208 .07935	.09319 .08428	.08675 .08166	.08191 .08064	.06903 .06903		
35	.07554 .07300	.06917 .06025	.07284 .06012	.07277 .06005	.07045 .06408	.06140 .06522		
32 33 34 35 36 37 38	.42698	.49061	.49890 .11862	.46427 .11471	. 44863 . 11247	.36666 .09193		
39	.11374 .11247	.12137 .12646	.12498	.1.1980	.11756	.09829		
40 41	.10101 .09464	.11628 .10736	.11862 .10972	.11344 .10073	.10865 .09592	.09320 .08557		
42 43	.10393 .38884	.10736 .10645 .45592	.10500 .49075	.10003 .48853	.10519 .48128	.10266 .41542		
44	.11026 .11026	.12544 .12417	.12903 .12523	.12407 .11521	.11912 .10899	.10012 .09 37 9		
45 46 47 48	.10519 .10013	.11911 .10645	.11385 .09614	.10382 .09623	•09759 •09886	.08873 .09759		
48	.38884	45972	.50087	.49865	. 49014	.44202 .11025		
50	.09506 .07227	.08619 .07479	.09741 .09741	.11015 .10035	.11152 .11026	.10139		
51 52	.06847 .10899	.07479 .12417	.09614 .12650	.10888 .11648	.10266 .11152	.08746 .09379		
53 54	.11406 .11279	.12671 .12291	.12650 .11765	.11521 .10382	.10899 .09759	.09253 .09379		
55 56	.10773	.10771 .44072	.09741 .47305	.10256 .46954	.10519 .46102	.10899 .43189		
57	.11532 .11532	.12924 .12291	.12650 .11259	.11521 .10129	.10899 .10139	.09633 .10266		
49 50 51 52 53 54 55 57 57 59 60	.11279	.10138	.10247 .48696	.10888	.11912 .47241	.11912 .45974		
61	.39137 .10139	.45592 .09758	.10626	.12154	.13052	.13685		
62 63 64	.08620 •07733	.09885	.11891 .11638	.12280 .08737	.11279 .07733	.09886 .07607		
64 65	.07354 .07354	.09632	.10879 .11132	.07725 .07598	.07480 .07354	.07353 .07353 .44835		
65 66 67	.29893 .10899	.33310 .17229	.37 ⁴ 39 .25803	.41386 .35692	. 42809 . 40783	.44835 .47114		
67 68 69	.06087 .07100	.14317 .13937	.24665 .25424	.37210	. 43569 . 42303	.50786 .46987		
70	.07100	.15076	.26942	.37590 .36831	.42050	. 45974 . 45848		
71 72	.07 ¹ +80 03916	.16596 03663	.26942 03160	.36324 02652	. 41543 02270	02144		
73 74	04423 04423	04423 04550	04425 04551	04297 04297	03790 03790	03537 03663		
75 76	04423 .00262	04550 .00135	04551 .00129	04297 .00132	03916 .00262	03663 .00389		
73 74 75 76 77 78	04170	04423	04425	04044 04941	03790 -05074	03537 .05074		
79 80	.05074 03916	.04947	.05061 04172	03918	03537	03283		
80 81	04423 04423	04550 04550	04551 04551	04297 04171	03790 03790	03663 03663		
		l	ı	ı	Į.	***		

Figure 1.- Exploded view of model to show relationship of parts.

(a) Coordinate systems and model dimensions. (Dimensions are in inches (millimeters).)

Figure 2.- Model description.

(b) Orifice identification.

Figure 2.- Concluded.

L-68-805

Figure 3.- Oil-flow photographs of the model at $\,M\,=\,3.71\,$ and $\,\beta\,=\,0^{0}.$

(b) $a = 40^{\circ}$.

Figure 3.: Concluded.

L-68-806

(a) $\alpha = 0^{\circ}$. L-68-807

Figure 4.- Schlieren photographs of the model at $\,M\,=\,3.71\,$ and $\,\beta\,=\,0^{o}.\,$

(b) $\alpha = 15^{\circ}$.

Figure 4.- Continued.

L-68-808

Figure 4.- Concluded.

L-68-809

Figure 5.- Variation of pressure-coefficient ratio along the midline of the upper and lower body surfaces in the vertical plane of symmetry for various angles of attack. $\beta=0^{\circ}$.

(b) Positive angle of attack.

Figure 5.- Concluded.

Figure 6.- Variation of the pressure-coefficient ratio on the model windward side for three z/R stations.

(b) $\alpha = 30^{\circ}$.

Figure 6.- Concluded.

Figure 7.- Variation of pressure-coefficient ratio in the nose region.

Figure 8.- Variation of pressure-coefficient ratio on the half-cone region of the body.

Figure 9.- Variation of pressure-coefficient ratio around the body at selected cross-sectional body stations for $\alpha=0^{0},~30^{0},~and~-30^{0}.~\beta=0^{0}.$

LH

Figure 9.- Concluded.

Figure 10.- Variation of pressure-coefficient ratio around the body at x/R = 0.71 and 2.86 for $\beta = 0^{\circ}$ and -10° . $\alpha = 0^{\circ}$.

Figure 11.- Variation of the average base-pressure-coefficient ratio with angle of attack for angles of sideslip of 00 and -100.

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICIAL BUSINESS

010 001 75 51 515 odio/ 0010/ SEA FURCE LIBERTS LABORATERY/SER, 7 Cont. To the Contract State of the Contract State

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546