Języki formalne i kompilatory

Gramatyki atrybutowane Przykład translacji

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Przykład:

słowo wejściowe: $aaa = a^3$

słowo wyjściowe: $aaaaaaaaa = a^9$

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Przykład:

słowo wejściowe: $aaa = a^3$

słowo wyjściowe: $aaaaaaaaa = a^9$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Przykład:

słowo wejściowe: $aaa = a^3$

słowo wyjściowe: $aaaaaaaaa = a^9$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Ile atrybutów należy przewidzieć?

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n > 0\}$

Przykład:

słowo wejściowe: $aaa = a^3$

słowo wyjściowe: $aaaaaaaaa = a^9$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Niezbędna wiedza: $(k+1)^2 = k^2 + 2k + 1$

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n > 0\}$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Niezbędna wiedza:
$$(k+1)^2 = k^2 + 2k + 1$$

Ilu atrybutów potrzebujemy?

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n > 0\}$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Niezbędna wiedza:
$$(k+1)^2 = k^2 + 2k + 1$$

Ilu atrybutów potrzebujemy?

<u>Dwóch.</u> Jeden będzie faktycznie przeczytanym do danego momentu łańcuchem liter a (odpowiednik k), drugi będzie łańcuchem liter a o długości równej kwadratowi liczby dotychczas przeczytanych liter a (odpowiednik k^2).

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Założenie: parsing odbywa się metodą bottom-up

Należy wykorzystać mechanizm gramatyk S-atrybutowanych

Jaką gramatykę zaproponować, aby najłatwiej wykorzystać mechanizm gramatyk S-atrybutowanych przy parsingu bottom-up? (Aby móc czytając słowo litera po literze od razu "liczyć" i wyznaczać wartości atrybutów)

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Jaką gramatykę zaproponować, aby najłatwiej wykorzystać mechanizm gramatyk S-atrybutowanych przy parsingu bottom-up? (Aby móc czytając słowo litera po literze od razu "liczyć" i wyznaczać wartości atrybutów)

$$S \rightarrow L$$

$$L \rightarrow La$$

$$L \rightarrow a$$

Wejście: słowo należące do $\{a^n \mid n > 0\}$

Wyjście: odpowiadające mu słowo z języka $\{a^{n^2} \mid n>0\}$

Jaką gramatykę zaproponować, aby najłatwiej wykorzystać mechanizm gramatyk S-atrybutowanych przy parsingu bottom-up? (Aby móc czytając słowo litera po literze od razu "liczyć" i wyznaczać wartości atrybutów)

$$S \rightarrow L$$

$$L \rightarrow L_1 a$$

$$L \rightarrow a$$

Trzeba odróżnić od siebie wystąpienia poszczególnych symboli nieterminalnych w poszczególnych produkcjach

$S \rightarrow L$	$S.t \leftarrow L.t$
$L \rightarrow L_1 a$	$L.t \leftarrow L_1.t \parallel L_1.p \parallel L_1.p \parallel 'a'$ $L.p \leftarrow L_1.p \parallel 'a'$
$L \rightarrow a$	L.t ← 'a' L.p ← 'a'

gdzie: - operator konkatenacji tekstów

Dana jest gramatyka opisująca język wyrażeń (wykorzystujących operatory: mnożenia (*) i dodawania (+) oraz operandy *a*, *b* i *c*) zapisanych w odwrotnej notacji polskiej:

$$S \rightarrow SS + |SS*|a|b|c$$

Zbudować parser LL(1) dla języka generowanego przez powyższą gramatykę. Gramatykę trzeba będzie odpowiednio przekształcić przed rozpoczęciem budowy parsera. Przeprowadzić symulację działania parsera dla słowa:

$$abc+a*+$$

oraz narysować drzewo wyprowadzenia.

Musimy najpierw wykonać usuwanie lewostronnej rekurencji, a potem dokonać lewostronnej faktoryzacji

$$S \rightarrow SS + |SS*|a|b|c$$

Po usunięciu lewostronnej rekurencji:

$$S \rightarrow aR \mid bR \mid cR$$

$$R \rightarrow S+R \mid S*R \mid \varepsilon$$

Po lewostronnej faktoryzacji:

$$S \rightarrow aR \mid bR \mid cR$$

$$R \rightarrow SV \mid \varepsilon$$

$$V \rightarrow +R \mid *R$$

	First	Follow	+	*	а	b	С	\$
S	<i>a, b, c</i>	\$,+,*			aR	bR	cR	
R	a, b, c, ε	\$,+,*	arepsilon	ε	SV	SV	SV	\mathcal{E}
V	+,*	\$,+,*	+R	* <i>R</i>				

Dodajmy jeszcze jedną produkcję, bo się później przyda

$$L \to S$$

$$S \to aR \mid bR \mid cR$$

$$R \to SV \mid \varepsilon$$

$$V \to +R \mid *R$$

Rozważamy wejście:

$$abc+a*+$$

Teraz będziemy chcieli przetłumaczyć nasze wejście do kodu trójadresowego.

Czyli naszym zadaniem jest stworzenie gramatyki L-atrybutowanej, umożliwiającej tłumaczenie testu w odwrotnej notacji polskiej do kodu trójadresowego, równocześnie z parsingiem, przy wykorzystaniu technologii top-down oraz zapisanie gramatyki atrybutowanej w postaci schematu tłumaczenia.

W których miejscach drzewa trzeba będzie drukować tłumaczenie?

Teraz będziemy chcieli przetłumaczyć nasze wejście do kodu trójadresowego.

W których miejscach drzewa trzeba będzie drukować tłumaczenie?

```
Wejście: abc+a*+
```

... czyli w notacji infiksowej: a+(b+c)*a

Tłumaczenie powinno wyglądać tak:

Teraz będziemy chcieli przetłumaczyć nasze wejście do kodu trójadresowego.

W których miejscach drzewa trzeba będzie drukować tłumaczenie?

Tłumaczenie powinno wyglądać tak:

$$t1 = b+c$$

$$t2 = t1*a$$

$$t3 = a+t2$$

Wejście: abc+a*+
...czyli w notacji infiksowej: a+(b+c)*a

Tłumaczenie powinno wyglądać tak:

$$t1 = b+c$$

$$t2 = t1*a$$

$$t3 = a+t2$$

W jaki sposób zapewnić posiadanie odpowiedniej informacji w odpowiednim momencie przetwarzania i tłumaczenia w technologii top-down?

W których miejscach drzewa wykonywać czynności związane z przetwarzaniem informacji?

$$L \rightarrow S$$

$$S \rightarrow aR$$

$$S \rightarrow bR$$

$$S \rightarrow cR$$

$$R \to SV$$

$$R \to \varepsilon$$

$$V \rightarrow +R$$

$$V \rightarrow *R$$

Operowanie danymi

```
L \rightarrow S \{L.f \leftarrow [result=pop();]\}
S \rightarrow a \{R.d \leftarrow [push(,a');]\} R
S \rightarrow b \{R.d \leftarrow [push(,b');]\} R
S \rightarrow c \{R.d \leftarrow [push(,c');]\} R
R \to SV
 R \to \varepsilon
      V \rightarrow + \{R.d \leftarrow [arg2 = pop(); arg1 = pop(); 
                                                                                                                                          w=new \ temp(); push(w); ?? R
     V \rightarrow * \{R.d \leftarrow \lceil arg2 = pop(); arg1 = pop();
                                                                                                                                           w=new \ temp(); push(w); ?? R
```

Tworzenie tłumaczenia

```
L \rightarrow S \{L.f \leftarrow [result=pop();]\}
S \rightarrow a \{R.d \leftarrow [push(,a');]\} \{R.t \leftarrow [nothing]\} R
S \rightarrow b \{R.d \leftarrow [push(,b');]\} \{R.t \leftarrow [nothing]\} R
S \rightarrow c \{R.d \leftarrow [push(,c');]\} \{R.t \leftarrow [nothing]\} R
R \to SV
R \to \varepsilon
   V \rightarrow + \{R.d \leftarrow \lceil arg2 = pop(); arg1 = pop();
                                                                                                  w=new temp(); push(w); ?
                                                                                                 \{R.t \leftarrow [print(w \| '= `\| arg1 \| '+ `\| arg2);]\} R
   V \rightarrow * \{R.d \leftarrow [arg2 = pop(); arg1 = pop(); 
                                                                                                    w=new temp(); push(w); 
                                                                                                   \{R.t \leftarrow [print(w \parallel '= `\parallel arg1 \parallel `*` \parallel arg2); ]\} R
```

