Problem 2.1

Assume that the current distribution of the dipole is a triangle distribution, where the equivalent capacitors have been phased.

 $G = 8 \cos \alpha = 8 \times 8.8 \cos 2 \times 10^{-12} \times 1.5 \approx 1.06 \times 10^{-10} F$ $C_2 = 8 \frac{A}{h} = 8.8 \sin 4 \times 10^{-12} \times \frac{7 \times 1.5^2}{4} \approx 1.56 \times 10^{-11} F$ $C \cos \alpha = G + G_2 = 12.16 \times 10^{-11} F$

With the total capacitance, the equivalent leagth of the segment line of t can be obtained,

where the character impedence of the monopole is. $\frac{2h}{a} - 1 = 341.0852$

Therefore, t & 13.71 m.

The equivalent full length of the dipole is then, $d = t + l = 17.71 \, \text{m}$.

The wad impedance is,

The input impedance 75,

The analyzation of the matching network is required first the calculation of the radiation resistor, and having resonance, where In \$2} =0.

$$\frac{t}{h} = \frac{13.71}{4} \approx 3.42$$

According to the figure above, Rrad × 1.2. The imaginary of part of the resistor can be caculated as.

where, L=+h=17.71

Therefore, Xa = -372.1752

The radiation resterer is then Za= 1-j372.17 [52].

The marching reactance shall therefore be an inductance with value of,

$$L = \frac{20m}{w} \approx 2.97 \times 10^{-5}H$$
$$= 29.7 \text{ M}$$

Problem 2.2

With the antenna gain of 10 dB, the values of angle &, scale factor t and relative spacing o can be obtained using the figures.

Therefore, $\alpha = 11.10$, $\alpha = 0.21$

The bandwidth factor Ba can be obtained also using figure, which is approximately 1.2.

The number of the elements can then be calculated, $N = 1 + \frac{\log \frac{\text{fmin}}{\text{Bafmax}}}{\log C} = 1 + \frac{\log \frac{150 \times 10^6}{1.2 \times 300 \times 10^6}}{\log 0.95}$ $\approx 18.07 = 19$

$$lmax = \frac{\Delta min}{4} = \frac{C}{4 fmin} = \frac{3 \times 10^8}{4 \times 150 \times 10^6} = 0.5m.$$

$$lmin = \frac{\lambda max}{4 Ba} = \frac{C}{4 fmax Ba} \approx 0.21 m.$$

Using the equations of

$$\frac{U-1}{U} = \frac{Y_1-1}{Y_1} = Z = 0.95$$

$$\frac{U}{Y_1} = \frac{1.8114.0.2035}{1.8114.0.2035}$$

the legens and spacings can be easily obtained.

i	l _i [m]	r _i [m]
19	1.00	2.46
18	0.95	2.33
17	0.90	2.22
16	0.86	2.11
15	0.81	2.00
14	0.77	1.90
13	0.74	1.81
12	0.70	1.72
11	0.66	1.63
10	0.63	1.55
9	0.60	1.47
8	0.57	1.40
7	0.54	1.33
6	0.51	1.26
5	0.49	1.20
4	0.46	1.14
3	0.44	1.08
2	0.42	1.03
1	0.40	0.98

Assume that P TS a point in the for field, the electric field of point P can be described as,

$$E(P) = E(P) + E_{2}(P)$$

$$\int E(P) = -j \frac{2\omega}{2\pi\lambda} \cdot e^{-jkr} \cdot I_{1} \cdot e^{j\vec{q}_{2}r} \cdot \underbrace{hett}_{1}$$

$$E_{2}(P) = -j \frac{2\omega}{2\pi\lambda} \cdot e^{-jkr} \cdot I_{2} \cdot e^{j\vec{q}_{2}r} \cdot \underbrace{hett}_{2}$$

Assuming both active and passive anternas have currents have a constant discribution, and as the point P is very for away from the dipries, the value relations can be considered as satisfied as below,

$$\frac{\left|hetf1\right|}{\left|hetf2\right|} \approx \frac{\left|I_{1}\right|}{\left|I_{2}\right|} \approx \frac{0.48}{0.5} = 0.24$$

Then the function of the electric field can be combined as,

$$\begin{split} & E(P) = -j\frac{2\omega}{\lambda r\lambda}\left(\underset{netti\cdot e^{-jkr_{1}}L_{1}e^{j\Phi_{L1}}}{\operatorname{hetti\cdot e^{-jkr_{1}}L_{1}e^{j\Phi_{L1}}}} + \underset{netti\cdot e^{-jkr_{1}}L_{1}e^{j\Phi_{L1}}}{\operatorname{hetti\cdot e^{-jkr_{1}}L_{1}e^{j\Phi_{L1}}}} \left[1 + \frac{|\underset{netti\cdot}{hetti\cdot}|}{|\underset{netti\cdot}{hetti\cdot}|} \cdot \frac{|I_{\lambda l}|}{|L_{l}|} \cdot e^{-jkr_{2}-r_{1}}\right] \\ & = E_{1}(P) \cdot \left(1 + 0.0176 \cdot e^{+jk\alpha l\cos\theta + (\Phi_{L2} - \Phi_{L1})}\right) \end{split}$$

Therefore,

$$AF = 1 + 0.0576 \times e^{-\frac{1}{3}(kanon\theta + \Phi_n - \Phi_n)}$$
 $\theta \in [0, \pi]$

$$P(\hat{f}) = \underbrace{I}_{\text{th}} \hat{f} \cdot \hat{f} \cdot \underbrace{J}_{\text{e}}(\underline{r}') \hat{f}$$

$$= (\hat{\theta}\hat{\theta} + \hat{\varphi}\hat{\varphi}) \cdot \hat{g} \cdot \underbrace{J}_{\text{th}} \underbrace{I}_{\text{l}}(z) \cdot e^{-jk\hat{r}\cdot\hat{z}\cdot\hat{z}} dz.$$

$$= (\hat{\theta}\hat{\theta} + \hat{\varphi}\hat{\varphi}) \cdot \hat{g} \cdot |\underline{I}| \cdot \underbrace{e^{j\hat{q}}}_{\text{th}} e^{j\hat{q}} \cdot \underbrace{J}_{\text{th}} \underbrace{e^{jk\hat{z}\cos\theta} dz.}$$

$$= (\hat{\theta}\hat{\theta} + \hat{\varphi}\hat{\varphi}) \cdot \hat{g} \cdot |\underline{I}| \cdot e^{j\hat{q}} \cdot l; sine(\underbrace{j}_{\text{th}} k\cos\theta).$$

$$= (-\sin\theta) \cdot \hat{\theta} \cdot |\underline{I}| \cdot l, sine(\underbrace{j}_{\text{th}} k\cos\theta).$$

The analyzation of the radration pattern is then,

$$\frac{|E(P)|}{\max[E(P)]} = \frac{|E_1(P)|}{\max|E(P)|} \cdot |AF|$$

1.06 sind

In (x, y) plane, where $\theta = \frac{\chi}{2}$, $Q \in [0, 2\pi]$.

In (x, 2) plane, where le=0, O ∈ [0, x].

In (y, z) phase, where $(z = \frac{\pi}{2})$, $\partial \in [0, \pi]$, the pattern is simpler with the one in (x, z) plane.

The front - co-back ratio is,

Problem 2.4

$$\text{Er.eff} = \frac{\mathcal{E}r+1}{2} + \frac{\mathcal{E}r-1}{2} \left[1 + 12 \frac{\mathcal{W}}{L}\right]^{-\frac{1}{2}} \approx 0.07$$

$$\text{fres} = \frac{C}{\sqrt{\mathcal{E}r.eff} \cdot dg} \approx 1.70 \, \text{GHz}.$$

