Import libraries

In [2]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [3]: data = pd.read_csv(r"C:\Users\user\Downloads\2015.csv")
 data

Out[3]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fre
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6
								•••	
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.′
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.3
158 rows × 12 columns									

158 rows × 12 columns

```
In [4]: | data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 158 entries, 0 to 157
        Data columns (total 12 columns):
                                             Non-Null Count Dtype
             Column
         ---
         0
             Country
                                                             object
                                             158 non-null
             Region
                                             158 non-null
                                                             object
         1
         2
             Happiness Rank
                                             158 non-null
                                                             int64
         3
             Happiness Score
                                             158 non-null
                                                             float64
         4
             Standard Error
                                             158 non-null
                                                             float64
         5
             Economy (GDP per Capita)
                                             158 non-null
                                                             float64
         6
                                             158 non-null
                                                             float64
         7
             Health (Life Expectancy)
                                             158 non-null
                                                             float64
         8
                                                             float64
             Freedom
                                             158 non-null
         9
             Trust (Government Corruption) 158 non-null
                                                             float64
         10 Generosity
                                             158 non-null
                                                             float64
         11 Dystopia Residual
                                             158 non-null
                                                             float64
        dtypes: float64(9), int64(1), object(2)
        memory usage: 14.9+ KB
In [6]: data.columns
Out[6]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
                'Standard Error', 'Economy (GDP per Capita)', 'Family',
                'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruptio
        n)',
                'Generosity', 'Dystopia Residual'],
              dtype='object')
```

EDA and visualization

In [7]: sns.pairplot(data)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1884d737790>


```
In [11]: sns.distplot(data['Dystopia Residual'])
```

Out[11]: <AxesSubplot:xlabel='Dystopia Residual', ylabel='Density'>

In [15]: sns.heatmap(data1.corr())

Out[15]: <AxesSubplot:>

model building

```
In [16]: x = data1[['Happiness Rank', 'Happiness Score',
                  'Standard Error', 'Economy (GDP per Capita)', 'Family',
                  'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)',
                  'Generosity']]
          y = data1['Dystopia Residual']
In [17]: | from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4)
In [18]: | from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
          lr.fit(x_train,y_train)
Out[18]: LinearRegression()
In [19]: print(lr.intercept )
          -0.0008287282561960652
          coeff = pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [20]:
          coeff
Out[20]:
                                     Co-efficient
                                        0.000002
                      Happiness Rank
                      Happiness Score
                                       1.000081
                        Standard Error
                                       -0.000111
              Economy (GDP per Capita)
                                       -1.000286
                                       -0.999908
                              Family
                Health (Life Expectancy)
                                       -0.999682
                            Freedom
                                       -0.999731
           Trust (Government Corruption)
                                       -0.999853
                           Generosity
                                       -0.999870
```

```
In [21]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[21]: <matplotlib.collections.PathCollection at 0x188583049a0>

In [22]: print(lr.score(x_test,y_test))

0.999999732573885

In []: