Loss distributions modeling features of **actuar**

Christophe Dutang ISFA, Université Claude Bernard Lyon 1

Vincent Goulet École d'actuariat, Université Laval

Mathieu Pigeon École d'actuariat, Université Laval

1 Introduction

One important task of actuaries is the modeling of claim amounts distributions for ratemaking, loss reserving or other risk evaluation purposes. Package **actuar** offers a large number of functions related to loss distributions modeling. Some complement the many tools already part of base R, while others provide support for entirely untouched procedures common in Actuarial Science. The following subsections detail the following **actuar** features:

- 1. introduction of 18 additional probability laws and functions to get raw moments, limited moments and the moment generating function;
- 2. fairly extensive support of grouped data;
- 3. calculation of the empirical raw and limited moments;
- 4. minimum distance estimation using three different measures;
- 5. treatment of coverage modifications (deductibles, limits, inflation, coinsurance).

2 Probability laws

R already includes functions to compute the probability density function (pdf), the cumulative distribution function (cdf) and the quantile function

of a fair number of probability laws, as well as functions to generate variates from these laws. For some root foo, the functions are named dfoo, pfoo, qfoo and rfoo, respectively.

The **actuar** package provides d, p, q and r functions for all the probability laws useful for loss severity modeling found in Appendix A of Klugman et al. (2004) and not already present in base R, excluding the inverse Gaussian and log-t but including the loggamma distribution (Hogg and Klugman, 1984). For reference, Appendix A lists the pdf and cdf of these distributions.

Tables 1–3 list the supported distributions classified by families. Each table details the names of the distributions as given in Klugman et al. (2004), the root name of the R functions and the names of the arguments corresponding to each parameter in the parametrization of Klugman et al. (2004). One will note that by default all functions (except those for the Pareto distribution) use a rate parameter equal to the inverse of the scale parameter. This differs from Klugman et al. (2004) but is better in line with the functions for the gamma, exponential and Weibull distributions in base R

In addition to the d, p, q and r functions, the package provides m, lev and mgf functions to compute, respectively, theoretical raw moments

$$m_k = E[X^k], \tag{1}$$

theoretical limited moments

$$E[(X \wedge x)^k] = E[(\min X, x)^k]$$
 (2)

and the moment generating function

$$M_X(t) = \mathbf{E}[e^{tX}],\tag{3}$$

when it exists. Every probability law of Tables 1–3 is supported, plus the following ones: beta, exponential, chi-square, gamma, lognormal, normal (except lev), uniform and Weibull of base R and the inverse Gaussian distribution of package **SuppDists** (Wheeler, 2006). The m and lev functions are especially useful with estimation methods based on the matching of raw or limited moments; see Subsection 5 for their empirical counterparts. The mgf functions come in handy to compute the adjustment coefficient in ruin theory; see the "risk" vignette.

In addition to the 17 distributions of Tables 1–3, the package provides support for a family of distributions deserving a separate presentation. Phase-type distributions (Neuts, 1981) are defined as the distribution of the time until absorption of continuous time, finite state Markov processes with m transient states and one absorbing state. Let

$$\mathbf{Q} = \begin{bmatrix} \mathbf{T} & \mathbf{t} \\ \mathbf{0} & 0 \end{bmatrix} \tag{4}$$

Table 1: Supported distributions from the Transformed Beta family, root name of the R functions and argument name corresponding to each parameter in the parametrization of Klugman et al. (2004).

Distribution name	Root (alias)	Arguments
Transformed beta	trbeta (pearson6)	shape1 (α) shape2 (γ) shape3 (τ) rate $(\lambda = 1/\theta)$ scale (θ)
Burr	burr	shape1 ($lpha$) shape2 (γ) rate ($\lambda=1/ heta$) scale ($ heta$)
Loglogistic	llogis	shape (y) rate $(\lambda = 1/\theta)$ scale (θ)
Paralogistic	paralogis	shape (α) rate $(\lambda = 1/\theta)$ scale (θ)
Generalized Pareto	genpareto	shape1 ($lpha$), shape2 ($ au$), rate ($\lambda=1/ heta$) scale ($ heta$)
Pareto	pareto (pareto2)	shape (α) scale (θ)
Inverse Burr	invburr	shape1 (au) shape2 (y) rate $(\lambda = 1/\theta)$ scale (θ)
Inverse Pareto	invpareto	shape ($ au$) scale ($ heta$)
Inverse paralogistic	invparalogis	shape (au) rate $(\lambda = 1/\theta)$ scale (θ)

Table 2: Supported distributions from the Transformed Gamma family, root name of the R functions and argument name corresponding to each parameter in the parametrization of Klugman et al. (2004).

Distribution name	Root (alias)	Arguments
Transformed gamma	trgamma	shape1 (α) , shape2 (τ) rate $(\lambda = 1/\theta)$, scale (θ) ,
Inverse transformed gamma	invtrgamma	shape1 (α) , shape2 (τ) rate $(\lambda = 1/\theta)$, scale (θ) ,
Inverse gamma	invgamma	shape (α) , rate $(\lambda = 1/\theta)$, scale (θ)
Inverse Weibull	invweibull (lgompertz)	shape (τ) , rate $(\lambda = 1/\theta)$, scale (θ)
Inverse exponential	invexp	rate ($\lambda = 1/\theta$) scale (θ)

Table 3: Other supported distributions, root name of the R functions and argument name corresponding to each parameter in the parametrization of Klugman et al. (2004).

Distribution name	Root (alias)	Arguments
Loggamma ¹	1gamma	shapelog (α) ratelog (λ)
Single parameter Pareto	pareto1	shape (α) min (θ)
Generalized beta	genbeta	shape1 (α) shape2 (β) shape3 (τ) rate $(\lambda = 1/\theta)$ scale (θ)

¹ See Hogg and Klugman (1984).

be the transition rates matrix (or intensity matrix) of such a process and let $(\boldsymbol{\pi}, \pi_{m+1})$ be the initial probability vector. Here, **T** is an $m \times m$ non-singular matrix with $t_{ii} < 0$ for $i = 1, \ldots, m$ and $t_{ij} \ge 0$ for $i \ne j$, $\mathbf{t} = -\mathbf{Te}$ and \mathbf{e} is a column vector with all components equal to 1. Then the cdf of the time until absorption random variable with parameters $\boldsymbol{\pi}$ and **T** is

$$F(x) = \begin{cases} 1 - \boldsymbol{\pi} e^{\mathrm{T}x} \mathbf{e}, & x > 0 \\ \boldsymbol{\pi}_{m+1}, & x = 0, \end{cases}$$
 (5)

where

$$e^{\mathbf{M}} = \sum_{n=0}^{\infty} \frac{\mathbf{M}^n}{n!} \tag{6}$$

is the *matrix exponential* of matrix **M**.

The exponential, the Erlang (gamma with integer shape parameter) and discrete mixtures thereof are common special cases of phase-type distributions.

The package provides d, p, r, m and mgf functions for phase-type distributions. The root is phtype and parameters π and T are named prob and rates, respectively. For the package, function pphtype is central to the evaluation of the probability of ruin; see ?ruin and the "risk" vignette.

The core of all the functions presented in this subsection is written in C for speed. In almost every respect, they behave just like the base R functions. The matrix exponential C routine is a simplified version of expm() from package **Matrix** (Bates and Maechler, 2007).

3 Grouped data

Grouped data is data represented in an interval-frequency manner. Typically, a grouped data set will report that there were n_j claims in the interval $(c_{j-1},c_j]$, $j=1,\ldots,r$ (with the possibility that $c_r=\infty$). This representation is much more compact than an individual data set (where the value of each claim is known), but it also carries far less information. Now that storage space in computers has almost become a non issue, grouped data has somewhat fallen out of fashion, to the point that the material on grouped data present in the first edition of Klugman et al. (1998) has been deleted in the second edition Klugman et al. (2004).

Still, grouped data remains in use in some fields of actuarial practice and also of interest in teaching. For this reason, **actuar** provides facilities to store, manipulate and summarize grouped data. A standard storage method is needed since there are many ways to represent grouped data in the computer: using a list or a matrix, aligning the n_j s with the c_{j-1} s or with the c_j s, omitting c_0 or not, etc. Moreover, with appropriate extraction, replacement and summary functions, manipulation of grouped data becomes similar to that of individual data.

First, function grouped.data creates a grouped data object similar to — an inheriting from — a data frame. The input of the function is a vector of group boundaries c_0, c_1, \ldots, c_r and one or more vectors of group frequencies n_1, \ldots, n_r . Note that there should be one group boundary more than group frequencies. Furthermore, the function assumes that the intervals are contiguous. For example, the following data

Group	Frequency (Line 1)	Frequency (Line 2)
(0, 25]	30	26
(25, 50]	31	33
(50, 100]	57	31
(100, 150]	42	19
(150, 250]	65	16
(250, 500]	84	11

is entered and represented in R as

```
> x <- grouped.data(Group = c(0, 25, 50, 100, 150,
+ 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84),
+ Line.2 = c(26, 33, 31, 19, 16, 11))
```

Object x is stored internally as a list with class

> class(x)

[1] "grouped.data" "data.frame"

With a suitable print method, these objects can be displayed in an unambiguous manner:

> X

	(Group	Line.1	Line.2
1	(0,	25]	30	26
2	(25,	50]	31	33
3	(50,	100]	57	31
4	(100,	150]	42	19
5	(150,	250]	65	16
6	(250,	500]	84	11

Second, the package supports the most common extraction and replacement methods for "grouped.data" objects using the usual [and [<- operators. In particular, the following extraction operations are supported.

i) Extraction of the vector of group boundaries (the first column):

```
> x[, 1]
[1] 0 25 50 100 150 250 500
```

ii) Extraction of the vector or matrix of group frequencies (the second and third columns):

iii) Extraction of a subset of the whole object (first three lines):

Notice how extraction results in a simple vector or matrix if either of the group boundaries or the group frequencies are dropped.

As for replacement operations, the package implements the following.

i) Replacement of one or more group frequencies:

ii) Replacement of the boundaries of one or more groups:

It is not possible to replace the boundaries and the frequencies simultaneously.

Finally, the package defines methods of a few existing summary functions for grouped data objects. Computing the mean

$$\sum_{j=1}^{r} \left(\frac{c_{j-1} + c_j}{2} \right) n_j \tag{7}$$

is made simple with a method for the mean function:

188.0 108.2

Higher empirical moments can be computed with emm; see Subsection 5.

The R function hist splits individual data into groups and draws an histogram of the frequency distribution. The package introduces a method for already grouped data. Only the first frequencies column is considered (see Figure 1 for the resulting graph):

$$> hist(x[, -3])$$

Histogram of x[, -3]

Figure 1: Histogram of a grouped data object

R has a function ecdf to compute the empirical cdf of an individual data set,

$$F_n(x) = \frac{1}{n} \sum_{j=1}^n I\{x_j \le x\},\tag{8}$$

where $I\{\mathcal{A}\}=1$ if \mathcal{A} is true and $I\{\mathcal{A}\}=0$ otherwise. The function returns a "function" object to compute the value of $F_n(x)$ in any x.

The approximation of the empirical cdf for grouped data is called an ogive (Klugman et al., 1998; Hogg and Klugman, 1984). It is obtained by joining the known values of $F_n(x)$ at group boundaries with straight line segments:

$$\tilde{F}_{n}(x) = \begin{cases}
0, & x \leq c_{0} \\
\frac{(c_{j} - x)F_{n}(c_{j-1}) + (x - c_{j-1})F_{n}(c_{j})}{c_{j} - c_{j-1}}, & c_{j-1} < x \leq c_{j} \\
1, & x > c_{r}.
\end{cases} (9)$$

The package includes a function ogive that otherwise behaves exactly like ecdf. In particular, methods for functions knots and plot allow, respec-

Figure 2: Ogive of a grouped data object

tively, to obtain the knots c_0, c_1, \dots, c_r of the ogive and a graph (see Figure 2):

```
> Fnt <- ogive(x)
> knots(Fnt)
```

[1] 0 20 55 110 160 250 500

> Fnt(knots(Fnt))

[1] 0.00000 0.07309 0.17608 0.36545 0.50498 0.72093 1.00000

> plot(Fnt)

4 Data sets

This is certainly not the most spectacular feature of **actuar**, but it remains useful for illustrations and examples: the package includes the individual dental claims and grouped dental claims data of Klugman et al. (2004):

```
> data(dental)
> dental
 [1] 141
                      40 351 259 317 1511 107 567
            16
                 46
> data(gdental)
> gdental
             cj nj
1
       (0,
            25] 30
2
     (25,
            50] 31
3
     (50, 100] 57
4
     (100, 150] 42
5
     (150, 250] 65
6
     (250, 500] 84
7
    (500, 1000] 45
8
   (1000, 1500] 10
   (1500, 2500] 11
10 (2500, 4000]
```

5 Calculation of empirical moments

The package provides two functions useful for estimation based on moments. First, function emm computes the kth empirical moment of a sample, whether in individual or grouped data form:

```
> emm(dental, order = 1:3)
[1] 3.355e+02 2.931e+05 3.729e+08
> emm(gdental, order = 1:3)
[1] 3.533e+02 3.577e+05 6.586e+08
```

Second, in the same spirit as ecdf and ogive, function elev returns a function to compute the empirical limited expected value — or first limited moment — of a sample for any limit. Again, there are methods for individual and grouped data (see Figure 3 for the graphs):

```
> lev <- elev(dental)
> lev(knots(lev))

[1] 16.0 37.6 42.4 85.1 105.5 164.5 187.7 197.9 241.1
[10] 335.5

> plot(lev, type = "o", pch = 19)
> lev <- elev(gdental)
> lev(knots(lev))
```


Figure 3: Empirical limited expected value function of an individual data object (left) and a grouped data object (right)

[1] 0.00 24.01 46.00 84.16 115.77 164.85 238.26 299.77 [9] 324.90 347.39 353.34

> plot(lev, type = "o", pch = 19)

6 Minimum distance estimation

Two methods are widely used by actuaries to fit models to data: maximum likelihood and minimum distance. The first technique applied to individual data is well covered by function fitdistr of package MASS (Venables and Ripley, 2002).

The second technique minimizes a chosen distance function between theoretical and empirical distributions. Package **actuar** provides function **mde**, very similar in usage and inner working to fitdistr, to fit models according to any of the following three distance minimization methods.

1. The Cramér-von Mises method (CvM) minimizes the squared difference between the theoretical cdf and the empirical cdf or ogive at their knots:

$$d(\theta) = \sum_{j=1}^{n} w_j [F(x_j; \theta) - F_n(x_j; \theta)]^2$$
 (10)

for individual data and

$$d(\theta) = \sum_{j=1}^{r} w_j [F(c_j; \theta) - \tilde{F}_n(c_j; \theta)]^2$$
(11)

for grouped data. Here, F(x) is the theoretical cdf of a parametric family, $F_n(x)$ is the empirical cdf, $\tilde{F}_n(x)$ is the ogive and $w_1 \ge 0$, $w_2 \ge 0$,... are arbitrary weights (defaulting to 1).

2. The modified chi-square method (chi-square) applies to grouped data only and minimizes the squared difference between the expected and observed frequency within each group:

$$d(\theta) = \sum_{j=1}^{r} w_j [n(F(c_j; \theta) - F(c_{j-1}; \theta)) - n_j]^2,$$
 (12)

where $n = \sum_{j=1}^{r} n_j$. By default, $w_j = n_j^{-1}$.

3. The layer average severity method (LAS) applies to grouped data only and minimizes the squared difference between the theoretical and empirical limited expected value within each group:

$$d(\theta) = \sum_{j=1}^{r} w_{j} [LAS(c_{j-1}, c_{j}; \theta) - L\tilde{A}S_{n}(c_{j-1}, c_{j}; \theta)]^{2},$$
 (13)

where LAS(x, y) = E[$X \wedge y$] – E[$X \wedge x$], LÃS $_n(x, y)$ = $\tilde{E}_n[X \wedge y]$ – $\tilde{E}_n[X \wedge x]$, and $\tilde{E}_n[X \wedge x]$ is the empirical limited expected value for grouped data.

The arguments of mde are a data set, a function to compute F(x) or $E[X \wedge x]$, starting values for the optimization procedure and the name of the method to use. The empirical functions are computed with ecdf, ogive or elev.

The expressions below fit an exponential distribution to the grouped dental data set, as per Example 2.21 of Klugman et al. (1998):

```
> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "CvM")

rate
0.003551

distance
0.002842
> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "chi-square")

rate
0.00364

distance
13.54
> mde(gdental, levexp, start = list(rate = 1/200),
+ measure = "LAS")
```

```
rate
0.002966
distance
694.5
```

It should be noted that optimization is not always that simple to achieve. For example, consider the problem of fitting a Pareto distribution to the same data set using the Cramér-von Mises method:

Working in the log of the parameters often solves the problem since the optimization routine can then flawlessly work with negative parameter values:

```
> pparetolog <- function(x, logshape, logscale) ppareto(x,
+ exp(logshape), exp(logscale))
> (p <- mde(gdental, pparetolog, start = list(logshape = log(3),
+ logscale = log(600)), measure = "CvM"))

logshape logscale
    1.581    7.128

distance
    0.0007905</pre>
```

The actual estimators of the parameters are obtained with

```
> exp(p$estimate)
logshape logscale
4.861 1246.485
```

This procedure may introduce additional bias in the estimators, though.

7 Coverage modifications

Let X be the random variable of the actual claim amount for an insurance policy, Y^L be the random variable of the amount paid per loss and Y^P be the random variable of the amount paid per payment. The terminology for the last two random variables refers to whether or not the insurer knows

Table 4: Coverage modifications for per-loss variable (Y^L) and per-payment variable (Y^P) as defined in Klugman et al. (2004).

Coverage modification	Per-loss variable	Per-payment variable	
Ordinary deductible (<i>d</i>)	$\begin{cases} 0, & X \le d \\ X - d, & X > d \end{cases}$	$\begin{cases} \text{undefined,} & X \le d \\ X - d, & X > d \end{cases}$	
Franchise deductible (<i>d</i>)	$\begin{cases} 0, & X \le d \\ X, & X > d \end{cases}$	$\begin{cases} \text{undefined,} & X \le d \\ X, & X > d \end{cases}$	
Limit (u)	$\begin{cases} X, & X \le u \\ u, & X > u \end{cases}$	$\begin{cases} X, & X \le u \\ u, & X > u \end{cases}$	
Coinsurance (α)	αX	αX	
Inflation (r)	(1+r)X	(1+r)X	

that a loss occurred. Now, the random variables X, Y^L and Y^P will differ if any of the following coverage modifications are present for the policy: an ordinary or a franchise deductible, a limit, coinsurance or inflation (see Klugman et al., 2004, Chapter 5 for precise definitions of these terms). Table 4 summarizes the definitions of Y^L and Y^P .

Often, one will want to use data Y_1^L, \ldots, Y_n^L (or Y_1^P, \ldots, Y_n^P) from the random variable Y^L (or Y^P) to fit a model on the unobservable random variable X. This requires to express the pdf or cdf of Y^L (or Y^P) in terms of the pdf or cdf of X. Function coverage of actuar does just that: given a pdf or cdf and any combination of the coverage modifications mentioned above, coverage returns a function object to compute the pdf or cdf of the modified random variable. The function can then be used in modeling like any other dfoo or pfoo function.

For example, let Y^P represent the amount paid by an insurer for a policy with an ordinary deductible d and a limit u - d (or maximum covered loss of u). Then the definition of Y^P is

$$Y^{P} = \begin{cases} \text{undefined,} & X < d \\ X - d, & d \le X \le u \\ u - d, & X \ge u \end{cases}$$
 (14)

and its pdf is

$$f_{Y^{p}}(y) = \begin{cases} 0, & y = 0\\ \frac{f_{X}(y+d)}{1 - F_{X}(d)}, & 0 < y < u - d\\ \frac{1 - F_{X}(u)}{1 - F_{X}(d)}, & y = u - d\\ 0, & y > u - d. \end{cases}$$
(15)

Assume X has a gamma distribution. Then an R function to compute the pdf (15) in any y for a deductible d=1 and a limit u=10 is obtained with coverage as follows:

```
> f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 1,
      limit = 10
> f
function (x, shape, rate = 1, scale = 1/rate)
ifelse(x == 0, 0, ifelse(0 < x & x < 9, do.call("dgamma", list(
    x + 1, shape = shape, rate = rate, scale = scale))/do.call("pgamma",
    list(1, shape = shape, rate = rate, scale = scale, lower.tail = FALSE)),
    ifelse(x == 9, do.call("pgamma", list(10, shape = shape,
        rate = rate, scale = scale, lower.tail = FALSE))/do.call("pgamma",
        list(1, shape = shape, rate = rate, scale = scale, lower.tail = FALSE)),
        0)))
<environment: 0x16ba710>
 > f(0, shape = 5, rate = 1) 
[1] 0
> f(5, shape = 5, rate = 1)
[1] 0.1343
> f(9, shape = 5, rate = 1)
[1] 0.02936
> f(12, shape = 5, rate = 1)
[1] 0
```

Note how function f is built specifically for the coverage modifications submitted and contains no useless code. For comparison purpose, the following function contains no deductible and no limit:

```
> g <- coverage(dgamma, pgamma)
> g
```

```
function (x, shape, rate = 1, scale = 1/rate)
ifelse(x == 0, 0, ifelse(0 < x & x < Inf, do.call("dgamma", list(
    x, shape = shape, rate = rate, scale = scale)), ifelse(x ==
    Inf, 0, 0)))
<environment: 0x1072d3c>
```

The vignette "coverage" contains more detailed pdf and cdf formulas under various combinations of coverage modifications.

References

- D. Bates and M. Maechler. *Matrix: A Matrix package for R*, 2007. R package version 0.999375-3.
- R. V. Hogg and S. A. Klugman. *Loss Distributions*. Wiley, New York, 1984. ISBN 0-4718792-9-0.
- S. A. Klugman, H. H. Panjer, and G. Willmot. *Loss Models: From Data to Decisions*. Wiley, New York, 1998. ISBN 0-4712388-4-8.
- S. A. Klugman, H. H. Panjer, and G. Willmot. *Loss Models: From Data to Decisions*. Wiley, New York, second edition, 2004. ISBN 0-4712157-7-5.
- M. F. Neuts. *Matrix-geometric solutions in stochastic models: an algorithmic approach*. Dover Publications, 1981. ISBN 978-0-4866834-2-3.
- W. N. Venables and B. D. Ripley. *Modern applied statistics with S.* Springer, New York, 4 edition, 2002. ISBN 0-3879545-7-0.
- B. Wheeler. *SuppDists: Supplementary distributions*, 2006. URL http://www.bobwheeler.com/stat. R package version 1.1-0.

A Probability laws

This appendix gives the pdf and cdf of the probability laws appearing in Tables 1–3 using the parametrization of Klugman et al. (2004) and Hogg and Klugman (1984).

In the following,

$$\Gamma(\alpha; x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t} dt, \quad \alpha > 0, x > 0$$

with

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

is the incomplete gamma function, whereas

$$\beta(a,b;x) = \frac{1}{\beta(a,b)} \int_{0}^{x} t^{a-1} (1-t)^{b-1} dt, \quad a > 0, b > 0, 0 < x < 1$$

with

$$\beta(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$
$$= \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

is the (regularized) incomplete beta function.

Unless otherwise stated all parameters are strictly positive and the functions are defined for x > 0.

A.1 Transformed Beta family

Transformed beta

$$f(x) = \frac{yu^{\tau}(1-u)^{\alpha}}{x\beta(\alpha,\tau)}, \qquad u = \frac{v}{1+v}, \qquad v = \left(\frac{x}{\theta}\right)^{y}$$
$$F(x) = \beta(\tau,\alpha;u)$$

Burr

$$f(x) = \frac{\alpha \gamma u^{\alpha} (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left(\frac{x}{\theta}\right)^{\gamma}$$
 $F(x) = 1 - u^{\alpha}$

Loglogistic

$$f(x) = \frac{yu(1-u)}{x}, \qquad u = \frac{v}{1+v}, \qquad v = \left(\frac{x}{\theta}\right)^y$$
 $F(x) = u$

Paralogistic

$$f(x) = \frac{\alpha^2 u^{\alpha} (1 - u)}{x}, \qquad u = \frac{1}{1 + v}, \qquad v = \left(\frac{x}{\theta}\right)^{\alpha}$$
 $F(x) = 1 - u^{\alpha}$

Generalized Pareto

$$f(x) = \frac{u^{\tau}(1-u)^{\alpha}}{x\beta(\alpha,\tau)}, \qquad u = \frac{v}{1+v}, \qquad v = \frac{x}{\theta}$$
$$F(x) = \beta(\tau,\alpha;u)$$

Pareto

$$f(x) = \frac{\alpha u^{\alpha}(1-u)}{x}, \qquad u = \frac{1}{1+v}, \qquad v = \frac{x}{\theta}$$
 $F(x) = 1 - u^{\alpha}$

Inverse Burr

$$f(x) = \frac{\tau y u^{\tau} (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta}\right)^{y}$$
$$F(x) = u^{\tau}$$

Inverse Pareto

$$f(x) = \frac{\tau u^{\tau}(1-u)}{x}, \qquad u = \frac{v}{1+v}, \qquad v = \frac{x}{\theta}$$
$$F(x) = u^{\tau}$$

Inverse paralogictic

$$f(x) = \frac{\tau^2 u^{\tau} (1 - u)}{x}, \qquad u = \frac{v}{1 + v}, \qquad v = \left(\frac{x}{\theta}\right)^{\tau}$$
$$F(x) = u^{\tau}$$

A.2 Transformed Gamma family

Transformed gamma

$$f(x) = \frac{\tau u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \qquad u = \left(\frac{x}{\theta}\right)^{\tau}$$
$$F(x) = \Gamma(\alpha; u)$$

Inverse transformed gamma

$$f(x) = \frac{\tau u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \qquad u = \left(\frac{\theta}{x}\right)^{\tau}$$
$$F(x) = 1 - \Gamma(\alpha; u)$$

Inverse gamma

$$f(x) = \frac{u^{\alpha}e^{-u}}{x\Gamma(\alpha)}, \qquad u = \frac{\theta}{x}$$
$$F(x) = 1 - \Gamma(\alpha; u)$$

Inverse Weibull

$$f(x) = \frac{\tau u e^{-u}}{x}, \qquad u = \left(\frac{\theta}{x}\right)^{\tau}$$
 $F(x) = e^{-u}$

Inverse exponential

$$f(x) = \frac{ue^{-u}}{x}, \qquad u = \frac{\theta}{x}$$
 $F(x) = e^{-u}$

A.3 Other distributions

Loggamma

$$f(x) = \frac{\lambda^{\alpha} (\ln x)^{\alpha - 1}}{x^{\lambda + 1} \Gamma(\alpha)}, \qquad x > 1$$

$$F(x) = \Gamma(\alpha; \lambda \ln x), \qquad x > 1$$

Single parameter Pareto

$$f(x) = \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, \qquad x > \theta$$
$$F(x) = 1 - \left(\frac{\theta}{x}\right)^{\alpha}, \qquad x > \theta$$

Although there appears to be two parameters, only α is a true parameter. The value of θ is the minimum of the distribution and is usually set in advance.

Generalized beta

$$f(x) = \frac{\tau u^{\alpha} (1 - u)^{\beta - 1}}{x \beta(\alpha, \beta)}, \qquad u = \left(\frac{x}{\theta}\right)^{\tau}, \qquad 0 < x < \theta$$
$$F(x) = \beta(\alpha, \beta; u)$$