MA 108B PROBLEM SET 3 SOLUTIONS

PROBLEM 1 (WHEEDEN-ZYGMUND CHAPTER 2 PROBLEM 14)

We consider the pair of functions on [-1, 1] given by

$$f(x) = \begin{cases} 0, & -1 \le x < 0 \\ 1, & 0 \le x \le 1 \end{cases} \qquad \phi(x) = \begin{cases} 0, & -1 \le x \le 0 \\ 1, & 0 < x \le 1 \end{cases}$$

We have already seen in the example on page 34 of the textbook that the Riemann–Stieltjes integral $\int_{-1}^{1} f \,d\phi$ does not exist. For any partition $\Gamma = \{-1 = x_0 < \cdots < x_m = 0\}$ of [-1,0] we compute

$$S_{\Gamma} = \sum_{i=1}^{m} f(\xi_i) [\phi(x_i) - \phi(x_{i-1})] = 0$$

since ϕ is constant on [-1,0]. Similarly, for partitions Γ of [0,1] we get

$$S_{\Gamma} = \sum_{i=1}^{m} f(\xi_i) [\phi(x_i) - \phi(x_{i-1})] = f(\xi_1) = 1.$$

Since the above sums do not depend on the partition, the Riemann–Stieltjes integral exists.

PROBLEM 2 (WHEEDEN-ZYGMUND CHAPTER 2 PROBLEM 16)

We first consider the two simplest cases of a jump singularity. Let $c \in [a, b]$ and consider the functions

$$f_c^+(x) = \begin{cases} 0, & a \le x < c \\ 1, & c \le x \le b \end{cases} \qquad f_c^-(x) = \begin{cases} 0, & a \le x \le c \\ 1, & c < x \le b \end{cases}$$

Now suppose ϕ is a function of bounded variation which is continuous at c. Let $\Gamma = \{a = x_0 < x_1 < \cdots < x_n = b\}$ be any partition. Then there is an i such that $c \in [x_{i-1}, x_i]$. Then for any selection of intermediate points ξ_i there is a $y \in \{x_{i-1}, x_i, x_{i+1}\}$ such that

$$S_{\Gamma}(f_c^{\pm}, \phi) = \sum_{i=1}^m f_c^{\pm}(\xi_i) [\phi(x_i) - \phi(x_{i-1})] = \phi(b) - \phi(y).$$

Since ϕ is continuous at c and $|c-y| < 2|\Gamma|$ we see that $\int_a^b f \, d\phi$ exists and equals $\phi(b) - \phi(c)$. We now consider the general case where f has jump discontinuities at finitely many points c_1, \ldots, c_k (and ϕ continuous at each c_i). Then we can write f as

$$f = g + \sum_{j=1}^{k} d_j f_{c_j}^+ + \sum_{j=1}^{k} e_j f_{c_j}^-$$

with some coefficients d_j , e_j and a continuous function g. To see this, start with c_1 . If $f(c_1) = f(c_1-) \neq f(c_1+)$ then set $d_1 = 0$, $e_1 = f(c_1+) - f(c_1)$. Similarly if $f(c_1) = f(c_1+) \neq f(c_1-)$ then set $d_1 = f(c_1) - f(c_1-)$, $e_1 = 0$. Finally if all three numbers are different, then set

 $d_1 = f(c_1) - f(c_1), e_1 = f(c_1) - f(c_1)$. The function $f - d_1 f_{c_1}^+ - e_1 f_{c_1}^-$ only has jump discontinuities at c_2, \ldots, c_k . Proceed iteratively.

From the simple case above and Theorem 2.16 we conclude that

$$\lim_{|\Gamma| \to 0} S_{\Gamma} \left(\sum_{j} d_{j} f_{c_{j}}^{+} + \sum_{j} e_{j} f_{c_{j}}^{-}, \phi \right)$$

exists, and by Theorem 2.24 so does $\lim_{|\Gamma|\to 0} S_{\Gamma}(g,\phi)$. Evoking again Theorem 2.16 we can conclude that $\int_a^b f \,d\phi$ exists.

PROBLEM 3 (WHEEDEN-ZYGMUND CHAPTER 3 PROBLEM 3)

With $D_0 = [0,1] \times [0,1]$ let D_k be the set of points remaining after k steps of the process and set $D = \bigcap_k D_k$. The set D_k is a union of 4^k closed squares, each of area 9^{-k} , i.e. $D_k = \bigcup_{j=1}^{4^k} Q_j^k$. Thus D_k is closed and as an intersection of closed sets, D is closed. By Theorem 3.18 (or Theorem 3.14) it is measurable. Since $|D| \leq |D_k| \leq 4^k 9^{-k}$ for all $k \geq 1$, it holds that |D| = 0.

Let $a_j^k, b_j^k, c_j^k, d_j^k$ be the corners of Q_j^k . Then each of these points will be the corner of some cube of D_{k+1} and thus $a_j^k, b_i^k, c_j^k, d_i^k \in D$. In particular D is not empty.

Since D is closed it remains to show that every point of D is a limit point of D in order for D to be perfect (and thus uncountable). Let $x \in D$, then for any $k \ge 1$ by the definition of D, there exists a cube $Q_{j_k}^k$ with $x \in Q_{j_k}^k$. To construct a sequence of points x_k in D that converges to x, choose for example

$$x_k = \begin{cases} a_{j_k}^k, & x \neq a_{j_k}^k \\ b_{j_k}^k, & x = a_{j_k}^k \end{cases}.$$

As seen above $x_k \in D$ and $|x - x_k| \le \operatorname{diam}(Q_j^k) = 3^{-k} \sqrt{2}$. Thus $x_k \to x$.

To show that $D = C \times C$ we note that $D_k = C_k \times C_k$. This is easy to see and can be proved formally by induction: For k = 1, the statement clearly is true. Now let $x = (x_1, x_2) \in D_{k+1}$. Then x is in one of the four corner subsquares of some cube $x \in Q_{j_0}^k$ of D_k . The projection of $Q_{j_0}^k$ onto the x-axis lies by the induction hypotheses in C_k . Since x is in one of the corner subsquares, x_1 is in either the first third or the last third of the projection onto the x-axis and thus by definition in C_{k+1} . Similarly $x_2 \in C_{k+1}$ and arguing backwards we also see that $x = (x_1, x_2) \in D_{k+1}$ if $x_1 \in C_{k+1}$ and $x_2 \in C_{k+1}$. Finally,

$$D = \bigcap_{k} D_{k} = \bigcap_{k} (C_{k} \times C_{k}) = \left(\bigcap_{k} C_{k}\right) \times \left(\bigcap_{k} C_{k}\right) = C \times C.$$

PROBLEM 4 (WHEEDEN-ZYGMUND CHAPTER 3 PROBLEM 4)

Fix θ . With $D_0 = [0,1]$ let D_k be the set of points remaining after k steps of the process and set $D = \bigcap_k D_k$. The set D_k is a union of 2^k closed intervals, each of length $(\frac{1-\theta}{2})^k$, i.e. $D_k = \bigcup_{j=1}^{2^k} I_j^k$. Thus D_k is closed and as an intersection of closed sets, D is closed. By Theorem 3.18 (or Theorem 3.14) it is measurable. Since $|D| \leq |D_k| \leq 2^k (1-\theta)^k 2^{-k} = (1-\theta)^k$ for all $k \geq 1$, it holds that |D| = 0 (Note that $\lim_{k \to \infty} (1-\theta)^k = 0$).

Let a_j^k, b_j^k be the endpoints of I_j^k . Then each of these points will be the endpoint of some interval of D_{k+1} and thus $a_j^k, b_j^k \in D$. In particular D is not empty.

Since D is closed it remains to show that every point of D is a limit point of D in order for D to be perfect (and thus uncountable). Let $x \in D$, then for any $k \ge 1$ by the definition of D, there exists an interval $I_{j_k}^k$ with $x \in I_{j_k}^k$. To construct a sequence of points x_k in D that converges to x, choose for example

$$x_k = \begin{cases} a_{j_k}^k, & x \neq a_{j_k}^k \\ b_{j_k}^k, & x = a_{j_k}^k \end{cases}.$$

As seen above $x_k \in D$ and $|x - x_k| \le \operatorname{diam}(I_j^k) = (1 - \theta)^k 2^{-k}$. Thus $x_k \to x$.

PROBLEM 5 (WHEEDEN-ZYGMUND CHAPTER 3 PROBLEM 18)

First note that for any *n*-dimensional interval $I = \{x : a_i \le x_i \le b_i \ i = 1, \dots, n\}$, clearly

$$|I|_e = v(I) = \prod_{i=1}^n (b_i - a_i) = \prod_{i=1}^n (b_i + h - a_i - h) = v(I_h) = |I_h|_e.$$

Let $S = \{I_k\}$ be a countable cover of E consisting of intervals. Then $S' = \{(I_k)_h\}$ is a countable cover of E_h consisting of intervals and $\sigma(S) = \sum_k v(I_k) = \sum_k v((I_k)_h) = \sigma(S')$. Thus for any cover S of E there is a cover S' of E_h with $\sigma(S) = \sigma(S')$ and by the definition of the outer Lebesgue measure we conclude $|E|_e \geq |E_h|_e$. Noting that $E = (E_h)_{-h}$ and repeating the argument yields $|E_h|_e \geq |E|_e$ and thus $|E|_e = |E_h|_e$.

If E is measurable then for $\varepsilon > 0$ there exists an open G with $E \subset G$ and $|G - E|_e < \varepsilon$. The set G_h is open (for a formal argument note that $G_h = f^{-1}(G)$ for the continuous function f(x) = x - h) and $E_h \subset G_h$. Furthermore $G_h - E_h = (G - E)_h$ and thus $|G_h - E_h|_e = |G - E|_e < \varepsilon$, so E_h is measurable.