Today

• Let $H_q(p) = p \log_q \frac{q-1}{p} + (1-p) \log_q \frac{1}{1-p}$.

• Let $\operatorname{Vol}_q(r,n) = \operatorname{Volume}$ of Hamming ball

• Then $Vol_q(r, n) = q^{(H_q(p) + o(1))n}$.

- q-ary codes.
- Algebraic-geometry & Codes.
- Proof of concept.
- Statement of big claim.

• q-ary GV bound:

of radius r in \mathbb{F}_q^n .

Theorem: There exists an infinite family of q-ary codes of rate R and relative distance δ satisfying

$$R \ge 1 - H_q(\delta)$$

.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Understanding q-ary GV bound

• To get a sense of $H_q(\delta)$, fix $0<\delta<1$ and let $q\to\infty$. Get

$$R \ge 1 - \delta - H_2(\delta)/\log q - o(1/\log q)$$

• Contrast with Singleton (Project on to first k-1 coordinates) upper bound on rate:

$$R \leq 1 - \delta$$

- I.e., GV bound approaches Singleton bound at logarithmic rate in q.
- Is this best possible? RS codes achieve Singleton bound and q is pretty small!

3

 Today: Algebraic-geometry (AG) codes: Achieve

$$R \ge 1 - \delta - \frac{1}{\sqrt{q} - 1}$$

- Needs q square and prime power.
- Clearly better for large q.
- In fact, better for $q \ge 49$.

Algebraic-geometry codes

- Conceived by Goppa in late 70's early 80's.
- 1982 Surprising breakthrough ...
 - Due to Tsfasman, Vladuts, Zink.
 - Based on some prior work of Ihara.
 - Codes better than random for suff. large, but constant sized, alphabet.
- Almost unique in history of explicit constructions

 $\textcircled{\textbf{M}} \textbf{adhu Sudan, Fall 2002: Essential Coding Theory: MIT } 6.896$

AG code idea

- Don't evaluate poly on all points on plane.
- Ideally, don't use more than l points on line.
- Pragmatically, don't use much more than l points on line.
- But there exist other bad examples. Degree 2 curves, Degree 3 curves.
- So, don't use too many points on any (lowdegree) curve.
- How to find such points? Use points on some low-degree curve.

Motivation: Bivariate Codes

- Consider codes obtained by evaluations of bivariate polynomials Q(x,y) of deg. $\leq l$ in each variable.
- \bullet Gives $\left[q^2,l^2,\left(1-\frac{l}{q}\right)^2\right]_q$ code.
- \bullet Contrast w. $\left[q^2,l^2,q^2-l^2\right]_{q^2}$ RS code.
 - Bivariate alphabet smaller.
 - Distance smaller by 2l(q-l).
- Why this q l deficit?
 - On axis-parallel line l points zero imply q points zero.
 - For every line defect of q l.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Algebraic curves in the plane

Defn: Given a bivariate polynomial R(x,y) of total degree D, the set of points

$$\{(a,b) \in \Sigma^2 \mid R(a,b) = 0\}$$

is called an <u>algebraic curve</u> of degree ${\cal D}$ in the plane.

Basic result from algebraic geometry: Nice algebraic curves don't meet other nice algebraic curves very often.

Bezout's Thm: Curves R_1, R_2 of deg. D_1, D_2 share at most D_1D_2 common zeroes.

Example (stolen from Shokrollahi)

- Let q = 13 $R(x, y) = y^2 2(x 1)x(x + 1).$
- ullet Code obtained by evaluating (certain) polynomials at zeroes of R.
- Fact: There exist 19 zeroes of R.
- Legal polynomials: linear combinations of $\{1, x, y, x^2, xy, x^3\}$.
- If legal poly has 6 zeroes, then it is identically zero.
- Gives $[19,6,13]_{13}$ code. (RS would give $[19,6,14]_{19}$ code.)

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

1.0

Finding good curves

How to find R with large n?

- No general method.
- But some well-known curves do well. e.g. Hermitian curve for $q=r^2$:
 - $x^{r+1} y^r y = 0$
 - has $r^3 + 1$ points.
 - Gives $[r^3+1,\binom{r+2}{2},r^3+1-(r)(r+1)]_{r^2}$ code.

11

• Bivariate polys gave $[r^4,\binom{r+2}{2},r^4-r^3]_{r^2}.$

Codes from Planar Curves

- Generally:
 - Evaluating polys of deg. $\leq l$
 - At zeroes of R, irreducible, of degree D, with n zeroes.
 - Gives $[n,k,n-Dl]_q$ code,

$$\operatorname{for} k = \left\{ \begin{array}{ll} \binom{l+2}{2} & \text{if } l < D \\ \binom{l+2}{2} - \binom{l-D+2}{2} & \text{if } l \geq D \end{array} \right..$$

• Distance by Bezout's theorem.

Going to Higher Dimension

- So far, went from alphabet n to (at best) \sqrt{n} .
- To do better need more variables.
- General AG codes:
 - Pick m variables.
 - Put m-1 polynomial constraints.
 - Evaluate polynomials on zeroes.

"State-of-the-art" codes

[Garcia & Stichtenoth]

- $\bullet q = r^2$.
- Variables $x_1, \ldots, x_m, y_1, \ldots, y_m$.
- Constraints:

$$x_1^{r+1} = y_1^r + y_1.$$

$$x_2x_1 = y_1.$$

$$x_2^{r+1} = y_2^r + y_2.$$

$$\vdots$$

$$x_mx_{m-1} = y_{m-1}.$$

$$x_m^{r+1} = y_m^r + y_m.$$

• # zeroes $\geq (r^2 - 1)r^m$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

15

Keeping track of distance

- Bezout's theorem becomes weak.
- Polynomials ordered by "order".
 Order axioms:
 - $-\operatorname{ord}(f+g) \le \max\{\operatorname{ord}(f),\operatorname{ord}(g)\}.$
 - $-\operatorname{ord}(f*g) = \operatorname{ord}(f) + \operatorname{ord}(g).$
 - -f has at most ord(f) zeroes.
 - Polynomials of all except g orders exist.
 - -g = genus of curve.
 - Genus of Garcia-Stichtenoth curve $\leq (r+1)r^m$.
- AG codes follow.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

14

Summary: RS vs. AG

	RS	AG
Coordinates	\mathbb{F}_q	Points on curves
Messages	Polynomials	Polynomials
	$\deg < k$	$\underline{order} < k$
Encoding	Evaluations	Evaluations
Distance	n-k+1	n-k+1
Dimension	k	k- genus
Axioms	$zeroes \leq deg.$	$\sf zeroes \leq \sf order$
	Sum rule	Sum rule
	Product rule	Product rule
	dim. > deg.	dim. > order - g

Computational requirements

- Classical AG codes computable in $O(n^{30})$ time.
- Newer AG codes computable in $O(n^{17})$ time.
- ullet Rumors of $O(n^2)$ time computability.
- Belief in explicit constructions.

Some best known codes

Fix q=2. Given k and $d/n=\frac{1}{2}-\epsilon$, what is the best known code? (Will allow $\epsilon=\epsilon(n)$).

- Random code: $n = O(\frac{k}{\epsilon^2})$.
- RS \circ Hadamard: $n = \frac{k^2}{\epsilon^2}$.
- AG \circ Hadamard: $n = O(\frac{k}{\epsilon^3 \log(1/\epsilon)})$.
- [ABNNR]: $n = O(\frac{k}{\epsilon^3})$. (Polylog space constructible).

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896