

量化金融分析师(AQF®)全国统一考试 模拟题

适用场次: 2024年9月

使用本模拟题, 您应该遵守:

- 1. 本模拟题仅提供给参加 2024 年 9 月份 AQF 全国统一考试的考生,考生仅可以出于准备个人考试的目的查阅和打印本模拟题;
- 2. 严禁出于任何目的的复制、网络发布和传播、抄袭本模考题内容,如有违反,可能导致违纪或违法行为;
- © 版权所有,侵权必究。

量化金融标准委员会

Standard Committee of Quantitative Finance

量化金融分析师(AQF®)全国统一考试模拟题

说明:本场考试中的代码都应采用 Python 3.X 版本作答。

- 1. 单选题(每题 2 分,本部分共 40 分): 只有一个正确答案,选对得 2 分,选错或不选得 0 分。
- **1.1.** Python3 的标准数据类型中,列表和元组有什么不同()
- A. 列表是可变的,元组是不可变的。
- B. 列表支持数字,元组不支持数字。
- C. 列表可以绘图,元组不可以绘图。
- D. 列表可以嵌套,元组不可以嵌套。

参考答案: A

1.2. Python 中,运行以下代码,可以获得()

```
stock_info = {'code': '000001', 'name': '平安银行', 'industry': '银行'} stock_info['name']
```

- A. 'name'
- B. '平安银行'
- C. '000001
- D. '银行'

参考答案: B

- 1.3. 以 55 元购买一股 X 公司股票,一年之后,收到了 2 元红利,以 58 元卖出股票,你的持有期回报是多少?
- A. 3.45%
- B. 8.62%
- C. 9.09%
- D. 5.45%

参考答案: C

- 1.4. 某交易员现有两个未完成的限价单。在正常交易时间内,第一个限价单成交的概率为 0.40,第二个限价单成交的概率为 0.50,两个订单都成交的概率为 0.10。则两个订单中 至少有一个成交的概率是()
- A. 0.2
- B. 0.3
- C. 0.8
- D. 0.9

参考答案: C

1.5. 某控制结构如下,如果输入 P=7,则会输出()

- A. 9
- B. 10
- C. 11
- D. 以上都不对

参考答案: C

1.6. 在投资过程中,基本面分析和技术分析都是重要的分析方法。某量化研究员正在研究 多因子策略,并整理了一系列候选因子如下,请问哪个属于技术面因子类型()

- A. PB 因子
- B. EBIT 因子
- C. VR 因子
- D. ROA 因子

参考答案: C

- 1.7. 假如 x 是一个数组,以下哪一代码表示查看数组的维度?
- A. print(x.shape)
- B. print(x.size)
- C. print(x.reshape())
- D. print(x.T)

参考答案: A

- 1.8. 在 CAPM 模型中,股票的超额收益率是指()
- A. 股票的总收益率减去无风险收益率
- B. 股票的总收益率减去市场收益率
- C. 股票的期望收益率减去无风险收益率
- D. 股票的期望收益率减去市场收益率

参考答案: A

- **1.9.** 现有变量 data,数据类型为 numpy.ndarray,具体数据如下: data = np.array([0.2, 0.2, 1.3, 0.8, 0.6, 1.1])以下无法将该一维数组转换为列表数据的是()
- A. data.list()
- B. data.tolist()
- C. [i for i in data]
- D. list(data)

参考答案: A

1.10. 机器学习技术目前已经越来越多地应用到量化投资领域,下图为某机器学习模型的

原理,则该图展示的机器学习模型最有可能是()

- A. 逻辑回归
- B. 决策树
- C. 随机森林
- D. 线性回归

参考答案: A

- 1.11. 7月1日,一位投资者买入两份小麦期货,每份期货规模为100吨小麦。初始保证金为每份合约3,000美元,维持保证金为每份合约1,500美元。7月1日,期货价格为173美元/吨,7月2日,价格上涨为179.75美元,则该投资者在7月2日的保证金账户余额为()
- A. 1,350美元
- B. 2,300美元
- C. 4,650美元
- D. 7,350美元

参考答案: D

- **1.12.** 线性回归模型通常利用判定系数 (R-Squared) 来判断模型拟合度。此时,如果在模型中增加一个特征,则下面哪个说法是正确的?
- A. 如果 R-Squared 增加,则这个特征有意义
- B. 如果 R-Squared 减小,则这个特征无意义
- C. 仅看 R-Squared 单一指标,无法确定这个特征是否有意义
- D. 以上说法都不对

参考答案: C

- 1.13. 以下数据类型中,更新频率最慢的是()
- A. 公司 ESG 评级数据
- B. 十档行情数据
- C. 日成交量数据
- D. 股票分时图数据

参考答案: A

- **1.14.** 李明, AQF, 某 FOF 基金经理,希望通过指标了解某策略运行过程中策略达到净值 高点后可能出现的最大损失程度,以此评估购入某量化基金产品后可能出现的最大损失,则 他应该了解量化基金产品的以下哪项指标()
- A. 波动率
- B. 下行偏差
- C. 最大回撤率
- D. 基金管理规模

参考答案: C

- 1.15. 下列不属于无监督学习算法的是()
- A. K均值聚类
- B. 主成分分析
- C. 决策树
- D. 流形学习

参考答案: C

- **1.16.** 李明,某量化研究员,在使用 Jupyter Notebook 编写策略代码的过程中,他可以使用以下哪个魔法命令的功能来查看一个 cell 运行所花费的平均时间?
- A. %matplotlib inline
- B. %time?
- C. %whos
- D. %timeit

参考答案: D

- 1.17. 数据处理中,对于数据缺失,通常不会进行的是()
- A. 判断
- B. 删除
- C. 填充
- **D.** 保留

参考答案: D

- 1.18. 以下关于基本面分析的论述错误的是()
- A. 对于具体的个股而言,影响其价位高低的主要因素在于企业本身的内在素质,包括财务 状况、经营情况、管理水平、技术能力、市场大小、行业特点、发展潜力等一系列因素。
- B. 对于企业的偿债能力分析,利息保障倍数指标能够有效分析企业的资金风险,便于提前预警。
- C. 对于企业的营运能力分析,一般包括应收帐款周转率和应付帐款周转率两种。
- D. 市销率是最近两年在国际资本市场新兴起来的市场比率,主要用于创业板的企业或高科技企业。在 NASDAQ 市场上市的公司不要求有盈利业绩,因此无法用市盈率对股票投资的价值或风险进行判断,而用该指标进行评判。

参考答案: C

- 1.19. 李明, AQF, 某量化基金经理, 在进行量化策略回测过程中, 需要计算每日收益率。已知每日收盘价数据存储在变量 close 中, 数据类型为 pandas.Series。则下列代码中可以正确计算每日收益率的是()
- A.close/close.shift(0) 1
- B.close/close.shift(-1) 1
- C.close/close.shift(1) 1
- D.close.pct_change(-1)

参考答案: C

1.20. 李明, AQF, 某量化基金经理, 在进行蒙特卡洛模拟时想要产生 500 行 5 列服从

标准正态分布的随机数,以下选项不正确的是()

A. numpy.random.randn(500, 5)

B. numpy.random.random((500, 5))

<pre>C. numpy.random.normal(size=(500, 5))</pre>
<pre>D. numpy.random.standard_normal((500, 5))</pre>
参考答案: B
2. 多选题(每题 2 分,本部分共 20 分):有 2-5 个正确答案,全部选对得 2 分,少选得
1分,选错或不选得 0 分。
2.1. Python3 中有六个标准的数据类型,以下不属于标准数据类型的是()
A. While
B. For
C. Number
D. Tuple
E. Dictionary
参考答案: AB
2.2. Python3 的标准数据类型中,以下不属于可变数据类型的是()
A. Number
B. Tuple
C. Set
D. String
E. List
参考答案: ABD
2.3. 以下选项中,符合 Python 语言变量命名规则的是()
A2023
B. keyword88_
C. PRINT_2023

- 7 -

- D. 2023?
- E. 2023_PRINT

参考答案: ABC

解析:标识符可以由字母、数字、下画线(_)组成,其中数字不能放在首位。标识符不能是 Python 关键字,但可以包含关键字。标识符不能包含空格。

- 2.4. 下列关于债券交易策略的说法中正确的是()
- A. 卖出凸性策略是购买凸性小的债券, 卖出凸性大的债券
- B. 久期管理策略在预期利率下降时,增加组合久期获得收益
- C. 持有到期策略属于被动管理策略
- D. 骑乘收益率曲线的投资者会购买比要求的期限稍短的债券
- E. 消极的债券组合管理策略将市场价格假定为公平的均衡交易价格

参考答案: ABE

- **2.5.** 李明,某量化研究员,在量化交易策略的回测过程中,他发现回测收益往往会出现高于实盘收益,可能导致这种情况的原因有()
- A. 回测印花税率高于实际印花税率
- B. 使用了未来函数
- C. 策略模型过拟合或过度优化
- D. 在交易过程中低估了交易成本
- E. 存在幸存者偏差

参考答案: BCDE

- **2.6.** 数据清洗是量化策略开发过程中不可缺少的一个环节,其结果质量直接关系到策略回测的准确度。因此,在数据分析之前,研究员往往会花费大量的时间来进行数据清洗工作。以下数据清洗的做法,正确的有()
- A. 数据录入过程、数据整合过程都可能会产生重复数据,为保持数据完整不应随意删除
- B. 对于量级相差大的数据进行 z-score 标准化处理
- C. numpy 中可以使用 fillna 方法替换缺失值数据
- D. 在适当情况下,可以使用某个变量的样本均值、中位数或众数代替无效值和缺失值

E. 对于数据中的离群值,单独进行标准化处理

参考答案: BC

- **2.7.** 在投资过程中,基本面分析和技术分析都是重要的分析方法。某量化交易员正在研究 多因子策略,并整理了一系列候选因子如下,请问哪些属于技术面因子类型 ()
- A. PB 因子
- B. CCI 因子
- C. WR 因子
- D. MACD 因子
- E. ROA 因子

参考答案: BCD

- 2.8. 关于基本面多因子模型,正确的是()
- A. 基本面多因子模型的基本假设是具有不同 "属性" 的股票,在市场上应该有不同的收益率:
- B. 基本面多因子模型主要解释变量是可观察到的股票(上市公司)自身的基本属性,比如市盈率、市值大小等;
- C. 基本面多因子模型的主要分析方法是进行横截面分析,以确定股票收益率对因子的敏感性(因子载荷)。
- D. 基本面多因子模型的主要分析方法是进行时间序列分析,以确定股票收益率对因子的敏感性(因子载荷)。
- E. 在实际操作中,基本面多因子模型效果要明显好于其他两类模型,是现在的多因子模型研究的主流;

参考答案: BCE

- A. np.all(arr<0)
- B. np.any(arr<0)</pre>

C. np.where(arr<0)</pre>

D. np.all(np.where(arr<0,True,False))</pre>

E. np.sign(arr<0)</pre>

参考答案: AD

2.10. 李明,AQF,某量化研究员通过历史模拟的方法计算 VaR,得出 50ETF 一日 99%和 95%的 VaR 值分别是-0.0518 和-0.0265,分别存储在变量 VaR_1 和 VaR_5 中,以下打印此结果的代码正确的是()

A. f'50ETF 一日 95%的 VaR 为{VaR 5*100:.2f}%, 99%的 VaR 为{VaR 1*100:.2f}%'

B. '50ETF 一日 95%的 VaR 为%0.2f%%, 99%的 VaR 为%0.2f%%' % (VaR_5*100, VaR_1*100)

C. '50ETF 一 日 95% 的 VaR 为 {:.2f}% , 99% 的 VaR{:.2f}%'.format(VaR_5*100,VaR_1*100)

D. '50ETF 一日 95% 的 VaR 为 %0.2f%%', 99% 的 VaR 为 %0.2f%%' % (VaR_5*100,VaR_1*100)

E. f'50ETF 一日 95%的 VaR 为{VaR_5*100:.2f}%%, 99%的 VaR 为{VaR_1*100:.2f}%%' 参考答案: ACD

- 3. 解答题(每题 4 分,本部分总计 40 分):按步骤、得分点给分。
- 3.1. 假设有一张面值为 1,000 元的公司债券,以 8%的息票率每半年付息一次,付息时间分别为 1 月 1 日和 7 月 1 日。如果当前时间点为 2023 年 4 月 1 日,而债券将于 2033 年 7 月 1 日到期,市场要求回报率为 5%,计算出这只债券的净价为是?

参考答案:

首先计算 2023 年 1 月 1 日的价值:

N = 21, I/Y = 2.5, PMT = 40, FV = $1000 \rightarrow PV = -1,242.77$ 随后计算 2023 年 4 月 1 日的价值,即全价:

 $1,242.77 \times (1 + 2.5\%)^{0.25 \times 2} = 1,258.21$

最后, 计算净价:

$$1,258.21 - 40 \times \frac{90}{180} = 1,238.21$$

3.2. 假设去年某公司支付每股股利为 1.1 元,预计在未来日子里该公司股利按每年 5%的速率增长。假定要求收益率为 8%,目前该公司的股票每股价格为 35.5 元,你建议当前持有该股票的投资者出售股票吗?(要求写出分析步骤)

参考答案:

利用 DDM 永续增长模型,该公司股票估值为 1.1*(1+0.05)/(0.08-0.05)=38.5 元,当前股票价格为 35.5 元,因此股票被低估,建议持有该股票的投资者继续持有该股票。

3.3. 李明, AQF, 某量化研究员,在策略研究的过程中,生成了一系列日期数据 dates=pd.Series(['20230301', '20230302', '20230303', ...],但是日期的数据 类型为字符串,不方便之后时间序列数据的处理,请你帮他把日期格式改为 datetime 格式。

参考答案:

dates = pd.to_datetime(dates, format='%Y%m%d')

3.4. 李明, AQF, 某量化研究员, 获得了某股票 2022 年的价格数据存储于变量 k_df 中, 数据类型为 pandas.DataFrame, 部分数据如下:

date	open	high	low	close	volume
2022/1/17	16. 24306	16. 53573	16. 14551	16. 45768	5679.0
2022/1/18	16. 52597	16. 88693	16. 50646	16. 76011	6789. 0
2022/1/19	16. 59426	16. 9162	16. 49671	16. 6528	3567.0
2022/1/20	16. 71133	16. 85766	16. 53573	16. 73084	7897. 0
2022/1/21	16. 58451	16. 63329	16. 22355	16. 25282	3210.0
2022/1/24	16. 39915	16. 51622	16. 12599	16. 37964	4982.0
2022/1/25	16. 37964	16. 39915	16. 11624	16. 28208	8901.0

在研究策略的过程中,他希望计算出成交量 20 日的滚动之和,以便观察成交的活跃程度, 并将计算的结果存储在变量 k_df 新的一列"vol"中,请写出相应代码。

参考答案:

k_df['vol'] = k_df['volume'].rolling(20).sum()

3.5. 李明, AQF, 某量化基金经理, 在进行策略研究时需要了解各行业情况, 他把股票信息存储于变量 stock_data 中, 数据类型为 pandas.DataFrame, 存储数据为股票当天的市盈率数据(pe ratio)、负债权益比数据(debt to equity ratio)、行业分类

(industry)。部分数据如下:

	pe_ratio	debt_to_equity_ratio	industry
Stock1	31.72	0.82	Energy
Stock2	10.48	5.12	Energy
Stock3	21.69	2.56	Auto
Stock4	11.81	3.43	Auto

请使用 gruopby, 找出 pe 均值最大的行业, 将该行业的名称保存在变量 pe_max_industry 中。(已完成的第三方库导入: import numpy as np 和 import pandas as pd)

参考答案:

```
pe_data = stock_data.groupby('industry')['pe_ratio'].mean()
pe_max_industry = pe_data.idxmax()
```

3.6. 李明, AQF, 某量化研究员, 想要选取因子符合特定条件的股票。因子数据如下:

factor_a = {'600000':0.02, '600004':0.04, '600005':0.08, '600006':0.01,

'600007':0.1, '600008':0.05, '600009':0.09, '600010':0.03}

factor_b = {'600000':13, '600004':2, '600005':6, '600006':12, '600007':7,
'600008':8, '600009':11, '600010':16}

研究员给出的条件为:因子 a 值不低于 0.04 且因子 b 值大于 10 的股票代码储存在一个名为 result 的列表中,当该列表中的股票达到 2 只时正常停止选取。请给出该过程的代码。

参考答案:

result = []

for code in factor_a.keys():

if len(result) >= 2:

break

if factor_a[code] <= 0.04 and factor_b[code] > 10:
 result.append(code)

3.7. 李明, AQF, 某量化基金经理在研究股票策略时, 获取了下列数据, 数据类型是pandas.DataFrame, 他想要筛选出符合下列条件的股票: 市净率大于 3、流动比率在 100 到 200 之间。并以列表的形式储存在变量 stock_lst 中,请写出该筛选过程的代码。

0 code	pb	current_ratio
--------	----	---------------

1	600567	5. 46	199. 53
2	000987	1. 98	23. 10
3	600812	3. 12	217.77
4	300230	2. 23	223. 08
5	000789	9. 11	79. 13
6	300113	2. 98	118.11

参考答案:

stock_lst = list(data['pb'] > 3) & ((data['current_ratio'] > 100)
& (data['current_ratio'] < 200))]['code'])</pre>

3.8. 李明, AQF, 某量化基金经理, 在量化回测的过程中, 获取了某股票的每日价格数据, 并将其存储在变量 data 中, 数据类型为 pandas.DataFrame, 部分数据如下:

date	open	close
2020-02-23	0.891	0.876
2020-02-24	0.876	0.876
2020-02-25	0.877	0.880
2020-02-28	0.878	0.872

现需编写一段代码用于计算该股票的收阳线的天数和收阴线的概率,并打印出来。

参考答案:

data['up']=data['close']-data['open']
print('收阳线天数为: ', len(data[data['up'] > 0]))
print('收阴线概率为: ', len(data[data['up'] < 0]) / len(data))</pre>

3.9. 李明,AQF,某量化研究员,为了进行策略研究,从数据平台上下载了某股票的部分 日交易数据,包括收盘价、交易量和成交均价,该数据储存在变量 stock_df 中,数据类型 为 pandas.DataFrame。

date	close	volume	vwap
2022-01-10	35. 22	1374600	36. 62
2022-01-11	36. 79	2108200	35. 83
2022-01-12	35. 55	1002400	36. 39
2022-01-13	36. 04	1872100	37. 66
2022-01-14	36. 38	1779200	36. 01
2022-01-17	35. 10	1395500	35. 73

为了进一步分析,他想先根据交易量和成交均价计算出成交金额,然后计算 60 日成交金额 的移动平均,并在该 DataFrame 中新增一列 amount_ma,将该计算结果储存在这一列中。请写出以上计算的相应代码。

参考答案:

3.10. 李明,AQF,某量化基金经理,正在分析股票价量策略。他获取了某股票的价量数据计算出了信号和收益,并挑选了策略对标的指数,并把这些数据和该指数数据存储于 data变量中,数据类型为 pandas.DataFrame,部分数据如下:

	position	return	index return
2022-01-04	0	NaN	NaN
2022-01-05	1	0.01586	0.00422
2022-01-06	0	0.02210	0.00814
2022-01-07	0	-0.01712	-0.00490
2022-01-08	1	0.02826	0.01233

其中,data 的行索引为 DatetimeIndex 数据类型,"position"列为策略的持仓信号,1 表示满仓持有,0 表示无持仓,"return"列表示根据收盘价算出的股票日收益率,"index return"列为指数的日收益率,李明现希望计算该策略相对该指数的累计超额收益,并存储于变量 data 新的一列"cum_hedge_r"中,请写出相应代码。

参考答案:

```
data['r'] = data['position'] * data['return']
data['hedge_r'] = data['r'].fillna(0) - data['index return'] .fillna(0)
data['cum_hedge_r'] = (1 + data['hedge_r']).cumprod()
```