Article presentation / Lab1 experience

Mehdi Berrada & Selim Zighed

19/02/2025

Overview

Article Presentation

2 Lab1 Experience

Introduction

- *Title*: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- Author: Mingxing Tan & Quoc V. Le

Context

- Convolutional Neural Networks (CNNs) are widely used in image recognition.
- Higher accuracy is often achieved by scaling up CNNs. Scaling means increasing depth (layers), width (channels), or resolution (input image size).
- *Issue*: Scaling inefficiently increases computational cost and memory usage without proportional accuracy gains.
- *Problematic*: How can we scale CNNs more efficiently to improve accuracy while reducing computational cost?

State of The Art vs Suggested Solution

- Existing methods scale only one dimension at a time, leading to suboptimal efficiency.
- EfficientNet: Introduces Compound Model Scaling, a method that balances depth, width, and resolution, using a single scaling coefficient ϕ , and without changing layer operators in the baseline model.

Notations

- *FLOPs*: Floating Point Operations per Second to measure the computational cost of a deep learning model.
- ullet d : depth, $oldsymbol{w}$: width, $oldsymbol{r}$: resolution
- α, β, γ : Constants for scaling depth, width, and resolution.
- Compound Scaling Hypothesis : $d = \alpha^{\phi}, w = \beta^{\phi}, r = \gamma^{\phi}$

Problem formulation

Objective:

$$\max_{\phi} \quad \text{Accuracy} \left(N(\alpha^{\phi}, \beta^{\phi}, \gamma^{\phi}) \right)$$

Subject to:

$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$
 Memory $(N(\alpha^{\phi}, \beta^{\phi}, \gamma^{\phi})) \leq \text{target memory}$ FLOPs $(N(\alpha^{\phi}, \beta^{\phi}, \gamma^{\phi})) \leq \text{target FLOPs}$

Intuition

- Increasing depth (more layers) improves accuracy.
- Increasing width (more channels) enhances feature learning.
- Increasing resolution (input size) captures details.

EfficientNet Architecture

- Baseline Model EfficientNet-B0: Built using SE blocks, SiLU activation function ($SiLU(x) = x\sigma(x)$ and Depthwise Separable Convolutions (75% less computational costs); all suggested by NAS, Neural Architecture Search.
- Also uses normal convolution layers as well as MBConv layers with more attention and residuals, which lowers the convolution costs.

EfficientNet Architecture

Stage	Operator	Resolution	Channels
1	Conv3x3	224×224	32
2	MBConv1, k3x3	112×112	16
3	MBConv6, k3x3	112×112	24
4	MBConv6, k5x5	56×56	40
5	MBConv6, k3x3	28×28	80
6	MBConv6, k5x5	14×14	112
7	MBConv6, k5x5	14×14	192
8	MBConv6, k3x3	7×7	320
9	Conv1x1, Pooling, FC	7×7	1280

Table – EfficientNet-B0 Network Architecture

Scaling EfficientNet-B0 to EfficientNet-B7

Model	Input Res	Depth (α^{ϕ})	Width (β^{ϕ})	Params (M)
EffNet-B0 EffNet-B3	$\frac{224^2}{300^2}$	1.0 1.4	1.0 1.3	5.3 12
EffNet-B7	600^{2}	3.1	2.0	66

Table – Compound Scaling examples on EfficientNet-B0

Experimental Results

- ImageNet Benchmark Results: 84.3% for EffNet-B7 (top1 amongst the state of the art with 8.4x fewer params and 6.1x faster inference that the closest model).
- **2** Transfer Learning Performance:
 - CIFAR-100 : 91.7%
 - Oxford Flowers: 98.8%
 - Stanford Cars: 93.6%

Conclusion

- Lower Computational Cost \rightarrow Reduces AI training expenses.
- Scalable for Future Research → Inspired EfficientDet (object detection).

Model Used: ResNet18

Stage	Type	Layers	Output Size
Input	Image	-	$3\times 224\times 224$
Conv1	Conv2D 3×3	1	$64\times112\times112$
MaxPool	3×3	1	$64 \times 56 \times 56$
Stage 1	BasicBlock	2	$64 \times 56 \times 56$
Stage 2	BasicBlock	2	$128\times28\times28$
Stage 3	BasicBlock	2	$256\times14\times14$
Stage 4	BasicBlock	2	$512 \times 7 \times 7$
Global Pooling	AdaptiveAvgPool2D	1	$512 \times 1 \times 1$
FC Layer	Linear	1	10 (CIFAR-10)

Table – ResNet-18 Layers Breakdown

Feature Map Sizes in ResNet-18

Layer	Feature Map Size	Filters (Width)	
Input	$3\times 224\times 224$	-	
Conv1	$64\times112\times112$	64	
MaxPool	$64 \times 56 \times 56$	64	
Stage 1	$64 \times 56 \times 56$	64	
Stage 2	$128\times28\times28$	128	
Stage 3	$256\times14\times14$	256	
Stage 4	$512\times7\times7$	512	
Global Pooling	$512\times1\times1$	512	
FC Layer	10 (CIFAR-10)	-	

Table – Feature Map Sizes in ResNet-18

Total Parameters & Memory Usage

- Total Parameters: 11.18M
- Memory Usage: 106 MB
- Lightweight model \rightarrow Great for CIFAR-10
- Good accuracy/FLOPs trade-off compared to deeper ResNets (84.87% accuracy)

Fixed Training Params

 \bullet **Epochs**: 25

• Loss Function : Cross Entropy

Learning Rate Influence

Figure – Test accuracy values for different learning rates

Momentum Influence when Using SGD

Figure – Test accuracy values for different momentum values

Optimiser Influence

Optimiser	Accuracy	
Adam	84.87%	
SGD $(momentum = 0.9)$	74.01%	

Table – Accuracies per optimiser

Trade Off Accuracy/Size

Figure – Accuracy and Number of Parameters for ResNets

Other Idea: Compound Scaling Implementation

Scaling Factors Used:

- $\alpha = 1.2, \beta = 1.1, \gamma = 1.15$
- Different values of ϕ determine scaled versions of ResNet-18.

Model	Input Res	Depth (α^{ϕ})	$\mathbf{Width}\;(\beta^\phi)$	FLOPs (M
ResNet-18	32^{2}	1.0	1.0	1.8B
$(\phi = 1)$	36^{2}	1.2	1.1	2.4B
$(\phi = 2)$	48^{2}	1.4	1.2	3.1B

Table – Scaling ResNet-18 on CIFAR-10