QF602 Derivatives: Homework #3

ChanJung Kim

February 28, 2019

Part 3 - Convexity Correction

Present value of CMS product

To calculate PV of leg receiving CMS10y semi-annually over the next 5 years, we need to find SABR paramters at different expiries in order to price each CMS rate. To this end, cubic spline interpolation is used between $\alpha \nu$, ρ of $1y \times 10y$, $5y \times 10y$ and $10y \times 10y$ SABR models we have calibrated. Sine there was no expiry lower than 1y for us to interpolate, parameters for 0.5y expiry follows those of 1y expiry.

Interpolation profiles are given as follow:

Figure 1: Interpolation of SABR parameters - CMS10Y

After interpolating all the SABR parameters, static replication is used to price each CMS rate and PV is the sum of the discounted values of all CMS rates, multiplied by the day count fraction. Here goes the mathematical form:

$$PV_{CMS10y} = D(0,6m) \times 0.5 \times E^{T}[S_{6m,10y6m}(6m)]$$

$$+ D(0,1y) \times 0.5 \times E^{T}[S_{1y,11y}(1y)]$$

$$+ \dots + D(0,5y) \times 0.5 \times E^{T}[S_{5y,15y}(5y)]$$

$$= 0.213606$$

Similarly, for CMS2y processed quarterly, $\alpha \nu$, ρ can be interpolated between $1y \times 2y$, $5y \times 2y$, $10y \times 2y$, whose profiles are demonstrated below:

In addition to SABR interpolation, due to quarterly arrangement, more discrete OIS discount rates and Libor discount rates are interpolated based on DF calculated in Section 1. After getting all the inputs, we

Figure 2: Interpolation of SABR parameters - CMS2Y

can calculate PV of CMS2y as follow:

$$PV_{CMS2y} = D(0, 3m) \times 0.25 \times E^{T}[S_{3m,2y3m}(3m)]$$

$$+ D(0, 6m) \times 0.25 \times E^{T}[S_{6m,2y6m}(6m)]$$

$$+ \dots + D(0, 10y) \times 0.25 \times E^{T}[S_{10y,12y}(10y)]$$

$$= 0.504841$$

CMS VS Par Swap Rate

Through trial and error, we found out that the CMS rates can become unlikely large numbers or even drop below par swap rate when upper bound for payer swaption integral is set as a large number or infinity. To figure out the optimal upper bound that not only covers most of the cases but generates plausible CMS rates, we calculated pure f(K) in CMS rate formula by setting the payoff function as constant 1. When the upper bound is 0.85, no value exceeded 1, and CMS rates converged on reasonable readings.

Figure 3: Coverage of Integral inside of CMS rate when Upper Bound is 0.85

Tables presented below show CMS rates for each maturity and tenor.

Tenor	CMS Rate
1x1	0.032787
x2	0.034371
1x3	0.034913
1x5	0.035680
1x10	0.039031

Figure 4: CMS rates

Comparing CMS rates with forward swap rates of corresponding expiry and tenor which are derived from Part 1, we can recognise that the difference between CMS and forward swap rate increases as the expiry lengthens. It means that the longer expiry becomes, the greater the magnitude of convexity correction grows. On the contrary, the influence of tenor on the convexity correction is irregular. This phenomenon is presumed to be a result of volatility smile.

Figure 5: Delta Profile for Up-and-In Barrier Option of Given Condition