Analyzes the data table by logarithmic regression and draws the chart.

Logarithmic regression: y=A+Bln(x)

(input by clicking each cell in the table below)

	No.	x	у
	1	0.25	10
	2	0.5	15
data	3	0.75	21
	4	1	26
	5	1.2	29
	V	×	

Execute Clear	Store/Read	Print	10digit 🕶
---------------	------------	-------	-----------

function	value	
mean of x	0.645997005	
mean of y	20.2	
correlation coefficient r	0.9812401368	
Α	25.54293111	
В	12.22749469	

Guidelines for interpreting correlation coefficient r:

 $0.7 < |r| \le 1$ strong correlation 0.4 < |r| < 0.7 moderate correlation 0.2 < |r| < 0.4 weak correlation $0 \le |r| < 0.2$ no correlation

 $Logarithmic\ regression$

(1) $mean: \overline{\ln x} = \frac{\sum \ln x_i}{n}, \ \ \overline{y} = \frac{\sum y_i}{n}$

(2) trend line: $y = A + B \ln x$, $B = \frac{Sxy}{Sxx}$, $A = \bar{y} - B \overline{\ln x}$

(3) correlation coefficient : $r = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$

$$S_{xx} = \sum (\ln x_i - \overline{\ln x})^2 = \sum (\ln x_i)^2 - n \cdot \overline{\ln x}^2$$

$$S_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - n \cdot \overline{y}^2$$

$$S_{xy} = \sum (\ln x_i - \overline{\ln x})(y_i - ar{y}) = \sum \ln x_i y_i - n \cdot \overline{\ln x} ar{y}$$