Sécurité des réseaux IPSec

A. Guermouche

Plan

1. Introduction

Plan

1. Introduction

Pourquoi?

- * Premier constat sur l'aspect critique de la sécurité dans internet en 1994 (RFC 1636).
- * Multiplications des attaques de type spoofing (usurpation d'indentité) et d'écoute clandestine du contenu du trafic.
- ⋆ Nécessité de concevoir des mécanismes d'autentificatione et de chiffrement pour IP.

Applications et Propriétés

Quelques applications:

Sécuriser une connexion de sucursale sur Internet. Établir un réseau privé virtuel sécurisé.

Accès distant sécurisé sur internet. Accès sécurisé à un réseau distant (pour bénificier des services offerts par ce réseau).

Autenticité des paquets reçus. IPSec peut être utilisé pour assurer l'autentification lors des communications entre les machines concernées.

Avantages:

- * Possibilité d'utilisation uniquement sur des communications spécifiques (sans perturber les autres communications).
- * IPSec est au-dessous de la couche de transport (TCP, UDP); il est donc transparent aux applications (possibilité d'accroître la sécurité sans modifier les applications de plus haut niveau).
- * Une fois mis en place, IPSec est transparent aux utilisateurs.

IPSec (1/2)

IPSec est décrit dans les RFC 2401, 2402, 2406 et 2408. IPSec fournit :

- * Un protocole de d'authentification indiqué par l'en-tête d'authentification (AH (Authentication Header).
 - Contrôle d'accès.
 - Authentification de l'origine des données.
 - Rejet de paquets rejoués.
- ★ Un protocole combiné chiffrement authtification (ESP (Encapsulating Security Payload)).
 - ► Confidentialités (chiffrement).
 - Confidentialités limitée au flot du trafic.

IPSec (2/2)

	АН	ESP (chiffrement)	ESP (chiffrement + authentification)
Contrôle d'accès	Х	X	X
Intégrité hors connexion	Х		X
Authentication de l'origine des données	Х		x
Rejet des paquets rejoués	Х	X	x
Confidentialité		X	x
Confidentialité du flot du traffic		x	x

Table: Services d'IPSec.

Paramètres d'associations de sécurité

- * Une association de sécurité (AS) est une relation en sens unique entre un emetteur et un destinataire qui garantit les services de sécurité pour le trafic généré.
- ⋆ Des services de sécurité sont alloués à une AS pour utiliser AH ou ESP mais pas les deux.
- Une AS est définie par trois paramètres : Index de paramètre de sécurité (IPS). Une chaîne binaire assignée à cette AS et ayant une signification locale.

Adresse IP de destination.

Identification du protocole de sécurité. Il indique si l'association est AH ou ESP.

- * Plusieurs AS peuvent être combinées.
- * Les associations entre AS et type de trafic se font par le biais d'une base de donnée de politique de sécurité (SPD (Security Policy Database)).

Mode d'utilisation (1/3)

Mode transport.

- Assure la proptection pour les protocoles de la couche transport (information utile d'un paquet IP)
- * ESP chiffre (et optionnellement authentifie) uniquement l'information utile du paquet IP (l'en-tête reste inchangé).
- * AH authentifie l'information utile IP et des parties de l'en-tête IP.

Mode tunnel.

- * Assure la protection du paquet IP tout entier.
- * Après l'ajout des champs AH ou ESP le paquet entier est traité comme l'information utile du paquet IP externe.
- Une (ou les deux) extrémité de l'AS doit être une passerelle de sécurité (firewall, passerelle implémentant IPSec, . . .).

Mode d'utilisation (2/3)

	Mode Transport	Mode Tunnel
AH	Authentifie l'information	Authentifie le paquet IP en-
	utile IP + certains champs	tier + certains champs de
	de l'en-tête IP	l'en-tête externe
ESP	Chiffre l'information utilse IP	Chiffre tout le paquet IP
ESP (avec authentification)	Chiffre l'information utile IP et authentifie l'information utile IP	Chiffre et authentifie le pa- quet tout entier

Table: Fonctionnalité des modes tunnel et transport.

Mode d'utilisation (3/3)

Figure: Portée de l'authentification AH.

Mode d'utilisation (3/3)

Figure: Portée de l'authentification et du chiffrement ESP.

- * L'en-tête d'authentification assure :
 - ▶ l'intégrité des données
 - l'authentification des paquets IP.
- * L'authentification est basée sur l'utilisation d'un code d'authentification de message (MAC, *Message Authentication Code*).
- * AH permet entre autre de détecter le rejeu.
- * AH doit supporter HMAC-MD5-96 et HMAC-SHA-1-96.

Authentification de messages

Plusieurs algorithmes d'authentification de messages existent :

- ⋆ Authentification à l'aide d'une clé secréte (MAC).
 - Authentification du message basée sur une clé secréte partagée par l'emetteur et le récepteur.
 - Mécanisme coûteux pour des messages de petite taille.
- * Fonctions de hachage.
 - ► Construire un résumé du message et l'envoyer.
- * Fonctions de hachage sécurisées (SHA-1, MD5, ...).
 - Fonctions vérifiant des propriétés de robustesse (telles que l'"impossibilité" de deviner le contenu d'un message à partir de son résumé).

Solution retenue est l'authentification à l'aide de HMAC :

- ★ Combiner MAC et des fonctions de hachage sécuriées (SHA-1).
- Avantages: Rapidité du mécanisme d'authentification, plusieurs algorithmes de hachages cryptographiques sont disponibles.

Service anti-rejeu

Attaque par rejeu. Un attaquant obtient une copie d'un message valide et la transmet ultérieurement à la destination.

Fonctionnement:

- ★ Lorsqu'une nouvelle AS est établie, l'emetteur initialise un numéro d'ordre à zéro.
- ★ Chaque fois qu'un paquet est envoyé à cette AS, l'expéditeur incrémente la valeur et la place dans le champ numéro d'ordre de l'en-tête AH.
- ★ Le destinataire ne doit pas permettre au numéro d'ordre d'effectuer un cycle de 2³²-1 à 0 (pour éviter d'avoir plus d'un paquet valide avec le même numéro d'ordre).

Service anti-rejeu

Attaque par rejeu. Un attaquant obtient une copie d'un message valide et la transmet ultérieurement à la destination.

Fonctionnement:

- * Au niveau du récepteur :
 - Créer une fenêtre de réception des paquets IP (Les paquets peuvent arriver dans le désordre) de taille W.
 - Le numéro d'ordre le plus élevé jusqu'ici (N) est noté à l'extrémité droite de la fenêtre.
 - ► Pour n'importe quel paquet correctement reçu ayant un numéro d'ordre compris entre N-W+1 et N, la position correspondante est marquée.

Service anti-rejeu

Attaque par rejeu. Un attaquant obtient une copie d'un message valide et la transmet ultérieurement à la destination.

Fonctionnement:

- * Au niveau du récepteur :
 - À la réception d'un nouveau paquet :
 - Si le paquet est nouveau et si le code MAC est valide, la position correspondante est marquée.
 - Si le paquet reçu est à droite de la fenêtre et s'il est correctement authentifié, la fenêtre est avancée de sorte que le numéro d'ordre devienne la nouvelle valeur de N.
 - 3. Si le paquet n'est pas correctement authentifié ou s'il a un numéro d'ordre à gauche de la fenêtre, il est détruit.

ESP

ESP fournit:

- * des services de confidentialités.
- * un mecanisme anti-rejeu.
- * un mécanisme d'authentification.

ESP supporte différents algorithmes de cryptage :

- ⋆ 3DES
- ⋆ RC5
- * IDEA
- ⋆ CAST
- * Blowfish

* ..

Gestion des clé

- ★ La gestion des clés implique la détermination de la distribution des clés secrètes.
- ⋆ Une transmission classique nécessite 4 clés : deux paires de transmissions et de réceptions pour AH et ESP.
- ⋆ IPSec supporte deux types de gestions :
 - Manuelle. Un administrateur configure manuellement chaque système avec ses propres clés.
 - Automatique. Un système automatisé permet une création à la demande de clés pour les AS.
- ⋆ Le protocole de gestion de clés automatisé pour IPSec est ISAKMP/Oakley.
 - Protocole d'Oakley. Un protocole de détermination de clés basé sur l'algorithme de Diffie-Helman avec une sécurité ajoutée.
 - ISAKMP. Un protocole fournissant un cadre pour la gestion des clés, et des formats pour la négociations des attributs de sécurité.

Protocole de Diffie-Hellman

★ 2 paramètres doivent être connus par les deux paires : q (un grand nombre premier) et a une racine primaire de q.

rappel:

a est racine primaire de q \Leftrightarrow chaque autre entier, modulo q, est juste une puissance de a.

- ★ Les paires A et B tirent aléatoirement deux nombres X_A et X_B respectivement (ils correspondent aux clés privées de A et de B).
- * A transmet $Y_A = a^{X_A} mod q$ et B fait de même avec Y_B . (Y_A et Y_B sont les clés publiques de A et B)
- * La clé de session est alors calculée :

$$K = (Y_B)^{X_A} modq = (Y_A)^{X_B} modq = a^{X_A X_B} modq$$

Faiblesses de Diffie-Hellman

- * Pas d'authentification entre les deux extrémités de la communication : MIM.
- * Coût des calculs à réception du premier message : DOS.

Oakley:

- ⋆ Utilisation de cookies pour éviter les attaques par déni de service.
- * Les deux parties négocient un groupe (consiste à spécifier les paramètre globaux de Diffie-Hellman).
- * Authentification des échanges du protocole de Diffie Hellman.
- * Utilisation de nonces pour prévenir les attaques par rejeu.

Protocole d'Oakley

Exemple:

- (E) envoie un message en y incluant un cookie, le groupe à utiliser pour DH, et sa clé publique DH. De plus, il ajoute les algorithmes d'encryption, fonction de hachage et algorithmes d'authentification à disponible. Enfin, il y ajoute son identifiant et celui de (R) ainsi qu'un nonce ainsi qu'une signature générée à l'aide de clé privée DH de (E).
- (R) vérifie d'abord la signature. Il acquite le message en envoyant à (E) le contenu du message initial plus tout ce qui le concerne (l'algorithme sélectionné, le nonce, le cookie, . . .).
- ★ (E) vérifie la signature puis acquite le tout. Le nonce permet de détecter le rejeu.

ISAKMP: est le plus plus populaire des IKE (IPSec Key Exchange)

- * Protocole pour la négociation des associations de sécurité.
- ⋆ Utilise le protocole d'Oakley
- Nécessite deux phases : Une première pour créer un canal sécurisé pour le dialogue de la phase 2 où les vrais paramètres de sécurité sont négociés.

IPSec en pratique

Plusieurs implémentations sont disponibles :

- * NETKEY
- * KLIPS