Защита памяти

Введение

- 1. Защита памяти по граничным адресам
- 2. Защита памяти с помощью ключей
- 3. Защита с помощью уровней привилегий *(Itanium)*

Знать: состав и взаимодействие необходимых аппаратных и программных средств для каждого способа защиты памяти, их достоинства и недостатки.

Защита памяти

- **Уметь:** построить аппаратурную поддержку для заданного способа защиты памяти.
- <u>Помнить:</u> процессор прекращает выполнение текущей команды, откладывая операцию с памятью при возникновении запроса на прерывание по защите памяти.

• Литература:

 Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. Учебник для вузов. – СПб.: Питер, 2004. – 668 с. (с. 269-271).

Введение

- При мультипрограммном режиме работы ЭВМ в памяти одновременно находится несколько программ. Для исключения негативного взаимного влияния программ предусматриваются специальные меры.
- В простейшем случае каждая программа может иметь собственное изолированное адресное пространство, что исключит ее взаимодействие с другими программами.
- Однако особенности организации вычислительных процессов в ЭВМ требуют определенных контролируемых взаимодействий между программами. Например, взаимодействие программ пользователей и программ операционной системы.

Полномочия и защищенность программ

Полномочия Р1 по отношению к другим программам

Чт	3п	Вып	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Защищенность программы Р2 от других программ

Чт	3п	Вып	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

1. Защита памяти по граничным адресам

Оценка и модификация способа защиты памяти по граничным адресам

Достоинства:

- простота аппаратной поддержки,
- малое время проверки корректности адреса.

Недостаток: необходимость хранения программы в связной области памяти.

Модификация для случая использования сегментной организации памяти.

2. Защита памяти с помощью ключей

- Предполагается использование страничной организации памяти. Выделяется два множества: страниц и программ.
- Каждой программе присваивается уникальный код, называемый ключом программы.
- Каждая страница также имеет свой ключ.
- При этом в процессе выделения программе памяти назначаемым ей страницам задается ключ, совпадающий с ключом программы.
- Особую роль имеют ключи с нулевым кодом. Нулевой ключ считается совпадающим с любым другим ключом. Поэтому если программа имеет нулевой ключ, то ей доступны все страницы. А страница с нулевым ключом доступна всем программам.

Сравнение ключей программ и страниц

- При каждом обращении к памяти ключ текущей программы сравнивается с ключом страницы, к которой идет обращение.
- При совпадении ключей обращение считается корректным, в противном случае вырабатывается сигнал запроса на прерывание по защите памяти.
- Защиту памяти с помощью ключей иллюстрирует схема, где NPP номер физической страницы; d адрес объекта на странице; KPR ключ текущей программы; LS* логическая схема определения равенства ключей с учетом нулевых кодов.

Схема защиты памяти с помощью ключей

3. Защита с помощью уровней привилегий

- Четыре уровня привилегий с номерами 0...3 обеспечивают управление доступом к привилегированным командам, системным регистрам и системным областям памяти.
- Непривилегированные команды и регистры приложений могут быть доступны на любом уровне.
- Системные инструкции и регистры доступны только на уровне привилегий 0.

Механизм защиты памяти на основе привилегий

- Процессор содержит код текущего уровня привилегий (CPL) в специальном поле (cpl) регистра слова состояния процессора (PSR) (64 разряда).
- CPL может быть модифицирован только операционной системой.
- Механизм защиты виртуальной памяти, управляющий доступом к памяти основан на сопоставлении текущего уровня привилегий (CPL) и уровня привилегий (PL) страницы, к которой идет обращение.
- Пример управления доступом к страницам с использованием полей характеризующих страницу: AR – прав доступа, уровня привилегий страницы (PL) в зависимости от текущего уровня привилегий (CPL) показан в таблице.

Управление доступом к страницам

AR	PL	CPL			
		3	2	1	0
0	3	R	R	R	R
	2	ı	R	R	R
	1	1	1	R	R
	0	1	ı	-	R
1	3	RX	RX	RX	RX
	2	1	RX	RX	RX
	1	ı	ı	RX	RX
	0	1	ı	1	RX
2	3	RW	RW	RW	RW
	2	1	RW	RW	RW
	1	-	ı	RW	RW
	0	1	ı	1	RW
3	3	RWX	RWX	RWX	RWX
	2	ı	RWX	RWX	RWX
	1	ı	ı	RWX	RWX
	0	_	_	_	RWX
4	3	R	RW	RW	RW
	2	_	R	RW	RW
	1	_	_	R	RW
	0	_	_	_	RW

AR	PL	CPL			
		3	2	1	0
5	3	RX	RX	RX	RWX
	2	1	RX	RX	RWX
	1	-	اً	RX	RWX
	0	1	ı	1	RWX
6	3	RWX	RW	RW	RW
	2	1	RWX	RX	RW
	1	1	ı	RWX	RW
	0	ı	ı	ı	RW
7	3	X	X	X	RX
	2	XP2	X	X	RX
	1	XP1	XP1	X	RX
	0	XP0	XP0	XP0	RX

R — разрешено чтение, W — запись, а X — исполнение (код в странице рассматривается как программа); Pn,— установка нового текущего уровня привилегий (CPL) в PSR (при выполнении привилегированных команд п=0...3, а при выполнении команд пользователя n=3 только).