T. Y. B. Tech (Computer Science and Engineering) Sem – VI

3. Database Engineering (PCC - CS603)

TEACHING SCHEME	EXAMINATION SCHEME
Theory: 4 Hrs./Week	Theory : ESE 70 Marks
	CIE 30 Marks
Tutorial:	Term work: 25 marks
Practical: 2 Hrs./Week	Practical : 50 Marks

Pre-requisites: Set Theory, Operating System, Data Structures.

Course Objectives

- 1. To understand fundamental concepts and algorithms of Database Systems.
- 2. To gain familiarity with SQL and DBMS.
- 3. To learn database design techniques.

Course Outcomes

- 1. Understand fundamentals of database management systems.
- 2. Represent logical design of database using E-R Diagram.
- 3. Analyze & construct good database design.
- 4. Apply SQL queries to design & manage the database.
- 5. Understand transactions, concurrency control and apply to database system.
- 6. Understand failures in database and appropriate recovery techniques.

UNIT NO.	UNIT Name and Contents	NO. OF LECTURES
1.	INTRODUCTION TO DATABASES [Text Book 1] Database System Applications, Purpose of Database Systems, View of Data, Database Languages, Database Users & Administrators, Structure of Relational Databases, Database Schema, Keys, Schema Diagrams, Relational Query Languages, Relational Operations.	8
2.	E-R MODEL AND DATABASE DESIGN [E-R Model: Text Book 1] [Normalization: Text Book 2] E-R Model: The Entity-Relationship Model, Mapping Constraints, Keys, Entity-Relationship Diagrams, Reduction to Relational Schemas, Extended ER features-Specialization, Generalization, Aggregation. Normalization: Data Redundancies & Update Anomalies, Functional Dependencies. Canonical Cover, The Process of Normalization, First Normal Form, Second Normal Form, Third	10

	Normal Form, Boyce-Codd Normal Form, Fourth Normal Form,		
	Fifth Normal Form.		
	STRUCTURED QUERY LANGUAGE (SQL) [Text Book 1]		
	Overview of the SQL Query Language, SQL Data Definition,		
3.	Basic Structure of SQL Queries, Additional Basic Operations,	8	
	Set Operations, Aggregate Functions, Nested sub Queries,		
	Modification of Databases, Join expression, Views.		
4.	DATA STORAGE & INDEXING [Text Book 1]		
	Physical storage media, File Organization, Organization of		
	records in File, Data Dictionary Storage, Database Buffer, Basic	8	
	Concepts indexing & hashing, Ordered Indices, B+ Tree Index		
	files, Multiple-Key Access, Static Hashing, Dynamic Hashing.		
	TRANSACTION MANAGEMENT [Text Book 1]		
5.	Transaction Concept, A Simple Transaction Model, Transaction		
	Atomicity and Durability, Transaction Isolation, Serializability, 9		
	Lock-Based Protocols, Timestamp-Based Protocols, Validation-		
	Based Protocols.		
6.	RECOVERY SYSTEM [Text Book 1]		
	Failure Classification, Storage, Recovery and Atomicity,	=	
	Recovery Algorithm, Failure with Loss of Nonvolatile Storage,	5	
	Remote Backup Systems.		

Term Work

Minimum 12 -14 Experiments based on the following topics.

- 1. Draw an E-R Diagram of any organization.
- 2. Reduce above mentioned E-R Diagram into tables.
- 3. Normalize any database from first normal form to Boyce-Codd Normal Form (BCNF).
- 4. Write a program of Database connectivity with any object oriented language.
- 5. Use DDL Queries to create, alter (add, modify, rename, drop) & drop Tables.
- 6. Use DML Queries to insert, delete, update & display records of the tables.
- 7. Create table with integrity constraints like primary key, check, not null and unique.
- 8. Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null.
- 9. Display the results of set operations like union, intersections & set difference.
- 10. Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join.
- 11. Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses.
- 12. Display the results using String operations.

- 13. Create & Update views for any created table.
- 14. Write java program to implement dense and sparse indexing
- 15. Write java program to implement B+ tree indexing.
- 16. Write java program to implement static hashing.
- 17. Study of NoSql.

Text Books

Sr. No.	Title	Author(s) Name	Publication & Edition	Units Covered
1	Database System Concepts	A. Silberschatz, H.F. Korth, S. Sudarshan	6 th Edition, McGraw Hill Education.	1,3,4,5,6
2	Database Systems - A practical approach to Design, Implementation and Management	Thomos Connolly, Carolyn Begg	3rd Edition, Pearson Education	2

Reference Books

Sr. No.	Title	Author(s) Name	Publication & Edition	Units Covered
1	Database Systems – Design, Implementation and Management	Rob & Coronel	5th Edition Thomson Course Technology	3
2	Fundamentals of Database Systems	Ramez Elmasri, Shamkant B. Navathe	4 th Edition, Pearson Education	2
