ECE 4643

POWER ELECTRONICS

Laboratory: 1

AC-DC Uncontrolled Power Converter

Author 1: Riashad Siddique 3674132

Author 2: Muhammad Naufil Waleed Khan 3522929 Instructor: Dr. S. A. Saleh

October 6, 2019

Contents

1	Objective	3				
2	1ϕ full wave rectifier	3				
	2.1 Voltage and Current waveforms	4				
	$2.1.1$ 200Ω	4				
	2.1.2 DC motor	5				
	2.2 Harmonic Analysis of the waveforms	6				
	$2.2.1 200\Omega$	6				
	2.2.2 DC motor					
3	3ϕ full wave rectifier					
	3.1 Voltage and Current waveforms	11				
	$3.1.1$ 200Ω					
	3.1.2 DC motor					
	3.2 Harmonic Analysis of the waveforms	13				
	$3.2.1 200\Omega$					
	3.2.2 DC Motor	15				
4	Calculations and Questions 17					
5	Discussions and Conclusion	18				

List of Figures

1	I ϕ full wave recther	3
2	V_{in} vs I_{in} for 200Ω	4
3	V_{out} vs I_{out} for 200Ω	4
4	V_{in} vs I_{in} for DC motor	5
5	V_{out} vs I_{out} for DC motor	5
6	V_{in} Harmonics for 200Ω	6
7	V_{out} Harmonics for 200Ω	6
8	I_{in} Harmonics for 200Ω	7
9	I_{out} Harmonics for 200Ω	7
10	V_{in} Harmonics for DC motor	8
11	V_{out} Harmonics for DC motor	8
12	I_{in} Harmonics for DC motor	9
13	I_{out} Harmonics for DC motor	9
14	3ϕ Full wave rectifier	10
15	V_{in} vs I_{in} for 200Ω	11
16	V_{out} vs I_{out} for 200Ω	11
17	V_{in} vs I_{in} for DC motor	12
18	V_{out} vs I_{out} for DC motor	12
19	V_{in} Harmonics for 3ϕ 200 Ω	13
20	V_{out} Harmonics for $3\phi \ 200 \ \Omega$	13
21	I_{in} Harmonics for $3\phi \ 200 \ \Omega \ \dots \dots \dots \dots \dots \dots \dots \dots$	14
22	I_{out} Harmonics for $3\phi \ 200 \Omega \ \dots \dots \dots \dots \dots \dots \dots$	14
23	V_{in} Harmonics for 3ϕ DC motor	15
24		15
25	I_{in} Harmonics for 3ϕ DC motor	16
26	I_{out} Harmonics for 3ϕ DC motor	16
List	of Tables	
1	Load power factor calculation	17
2	Load efficiency	
3	Load power loss	17

1 Objective

The objective of this experiment is to investigate the performance of single phase and three phase full wave rectifiers while supplying different load types. We will investigate the input and output harmonics of the AC-DC converter. We will record the efficiency of the system as well as the power factor of the full wave rectifier for the 1ϕ and 3ϕ systems.

2 1ϕ full wave rectifier

The circuit for the 1ϕ full wave rectifier used in the lab is given in the Figure 1. In this experiment the DAM is used to monitor and record the input output voltages and current. The power and reactive power reading is also recorded from the DAM. Different harmonics for both input and output will be observed for both voltages and currents, which is expected due to the diodes involved in the rectification process. The experiment will be first conducted using a $200\,\Omega$ pure resistive load. Later, the resistive will be removed and it will be replaced using a DC motor. In the case of the resistive load the input voltage has to be increased to $60\,\mathrm{V}$ from $0\,\mathrm{V}$. While for the DC motor the input voltage is increased to a value of $110\,\mathrm{V}$

For the 1ϕ full wave rectifier, the circuit is setup in the following configuration

Figure 1: 1ϕ full wave rectfier

2.1 Voltage and Current waveforms

2.1.1 200Ω

Input voltage vs the input current waveform for the $200\,\Omega$ is given in the following figure.

Figure 2: V_{in} vs I_{in} for $200\,\Omega$

Output voltage vs the output current waveform for the 200Ω is given in the following figure.

Figure 3: V_{out} vs I_{out} for 200Ω

2.1.2 DC motor

Input voltage vs the input current waveform for the DC motor is given in the following figure.

Figure 4: V_{in} vs I_{in} for DC motor

Output voltage vs the output current waveform for the DC motor is given in the following figure.

Figure 5: V_{out} vs I_{out} for DC motor

2.2 Harmonic Analysis of the waveforms

2.2.1 200Ω

Harmonic analysis for the input voltage in the case of $200\,\Omega$

Figure 6: V_{in} Harmonics for 200Ω

Harmonic analysis for the output voltage in the case of $200\,\Omega$

Figure 7: V_{out} Harmonics for $200\,\Omega$

Harmonic analysis for the input current in the case of $200\,\Omega$

Figure 8: I_{in} Harmonics for $200\,\Omega$

Harmonic analysis for the output current in the case of $200\,\Omega$

Figure 9: I_{out} Harmonics for $200\,\Omega$

2.2.2 DC motor

Harmonic analysis for the input voltage in the case of DC motor

Figure 10: V_{in} Harmonics for DC motor

Harmonic analysis for the output voltage in the case of DC motor

Figure 11: V_{out} Harmonics for DC motor

Harmonic analysis for the input current in the case of DC motor

Figure 12: I_{in} Harmonics for DC motor

Harmonic analysis for the output current in the case of DC motor

Figure 13: I_{out} Harmonics for DC motor

3 3ϕ full wave rectifier

The circuit for the 3ϕ full wave circuit is taken from the lab manual and given in the page below. The circuit is connected as shown in the figure below. Using the DAM we will monitor the input and output waveforms and harmonics of the voltage and load. The experiment will be conducted as the same as previous. It will be repeated for a $200\,\Omega$ and then later for a DC motor.

Figure 14: 3ϕ Full wave rectifier

3.1 Voltage and Current waveforms

3.1.1 200Ω

Input voltage vs the input current waveform for the 3ϕ circuit with the $200\,\Omega$ is given in the following figure.

Figure 15: V_{in} vs I_{in} for $200\,\Omega$

Output voltage vs the output current waveform for the $3\phi~200\,\Omega$ is given in the following figure.

Figure 16: V_{out} vs I_{out} for 200Ω

3.1.2 DC motor

Input voltage vs the input current waveform for the DC motor is given in the following figure.

Figure 17: V_{in} vs I_{in} for DC motor

Output voltage vs the output current waveform for the DC motor is given in the following figure.

Figure 18: V_{out} vs I_{out} for DC motor

3.2 Harmonic Analysis of the waveforms

3.2.1 200Ω

Harmonic analysis for the input voltage in the case of $200\,\Omega$

Figure 19: V_{in} Harmonics for $3\phi~200\,\Omega$

Harmonic analysis for the output voltage in the case of $200\,\Omega$

Figure 20: V_{out} Harmonics for $3\phi~200\,\Omega$

Harmonic analysis for the input current in the case of $200\,\Omega$

Figure 21: I_{in} Harmonics for $3\phi~200\,\Omega$

Harmonic analysis for the output current in the case of $200\,\Omega$

Figure 22: I_{out} Harmonics for $3\phi~200\,\Omega$

3.2.2 DC Motor

Harmonic analysis for the input voltage in the case of DC motor

Figure 23: V_{in} Harmonics for 3ϕ DC motor

Harmonic analysis for the output voltage in the case of DC motor

Figure 24: V_{out} Harmonics for 3ϕ DC motor

Harmonic analysis for the input current in the case of DC motor

Figure 25: I_{in} Harmonics for 3ϕ DC motor

Harmonic analysis for the output current in the case of DC motor

Figure 26: I_{out} Harmonics for 3ϕ DC motor

4 Calculations and Questions

• Calculate the input power factor for both 1ϕ and 3ϕ converters for both load types.

Circuit	Load	Р	Q	A	PF
1ϕ	200Ω	17.16	-0.2	17.17	0.9994
Converter	DC motor	94.83	44.43	104.72	0.9055
3ϕ	200Ω	72.57	6.48	75.84	0.9568
Converter	DC motor	228.93	18.24	229.65	0.9968

Table 1: Load power factor calculation

• Calculate the efficiency as : $\eta = \frac{P_{dc}}{P_{in}}$ for both the 1ϕ and 3ϕ load types

Type	Load	P_{dc}	P_{in}	η
1ϕ	200Ω	16.71	17.16	0.9737
Converter	DC motor	90.00	94.83	0.9490
3ϕ	200Ω	69.62	72.57	0.9593
Converter	DC motor	219.90	228.93	0.9605

Table 2: Load efficiency

• Compare the efficiency of the 1ϕ and 3ϕ rectifiers and comment on the impact of load type on the obtained efficiency values

The three phase rectifier is more efficient than the single phase. For both load types the three phase efficiency is higher than the single phase. For both loads the efficiency of the three phase converter is higher than that of the single phase with a $200\,\Omega$ load.

• Calculate the power losses for both the 1ϕ and 3ϕ load types

Type	Load	P_{dc}	P_{in}	P_{loss}
1ϕ	200Ω	16.71	17.16	0.45
Converter	DC motor	90.00	94.83	4.83
3ϕ	200Ω	69.62	72.57	2.95
Converter	DC motor	219.9	228.93	9.03

Table 3: Load power loss

5 Discussions and Conclusion

 1ϕ and 3ϕ full wave rectifiers are individually tested in this experimental setup. Different types of voltages had different effects on the load setup of the experiment as the η of the whole system varied for the setup of the experiment. Increasing the voltage increased the efficiency of the experiment which is valid for the 3ϕ full wave rectifier while for the 1ϕ full wave rectifier it is not seen. From the table:3 it can be seen DC motor is having power losses which may origin from the motor core or due to the inductive behavior of the motor itself . We can see from the previous table:3 3ϕ full wave rectifiers are more efficient than the 1ϕ full wave rectifier in case of the DC motor . Switching the load to DC motor from the $200\,\Omega$ resistive load decreased the η for 1ϕ . Based on the experiment we can tell that the η of the full wave rectifiers is related to the applied voltage and type of load supplied by the rectifier circuit.