12/4

Thursday, November 30, 2023 23:31

1. Determine the singular values of matrix algebraically and geometrically.

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

2. Determine a SVD of

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

Sketch how the unit circle is transformed under V^T , ΣV^T and $U\Sigma V^T$

- 3. If a square matrix is symmetric, what can you say about its eigenvalues and its singular values?
- 4. What can you say about the singular values of an orthogonal matrix? Explain this both geometrically and algebraically.
- 5. Consider an SVD of A given by $A=U\Sigma V^T$. What are the eigenvalues of AA^T ? Can you give an orthonormal eigenbasis of AA^T ? What conclusion can you draw on the relation between the eigenvalues of A^TA and AA^T ?
- 6. True or False
 - a. If the col vectors of A, which is a 2×2 matrix, are orthogonal, then the singular values of A are the norms of its column vectors.
 - b. Let $A,B\in M_2(\mathbb{R})$. Then AB,BA have the same singular values.
 - c. If $A\in M_2(\mathbb{R})$ has singular values 1,8, then there exists a unit vector w such that ||Aw||=5.

Please draw something like this vectors on the unit circle will be sigma_1 and. Use this to explain

Matrix is a scaling by factor
$$\sqrt{a^2+b^2}$$
 , therefore $\sigma_1=$

Non-zero eigenvalues of ${\cal A}$

B. F consider
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$