

X

X

HAI927I - Projet image 12.2:

X

Christal

MAURIN Christina - COQUERON Solal

Master 2 Informatique IMAGINE

X

Qu'est-ce que le débruitage en photographie?

Notre objectif!

Prise de vue

Photo bruitée

Filtrage

Photo débruitée

Méthode avec × réseau de neurones

État de l'art: Méthodes traditionnelles

Plusieurs type de bruit :

Gaussien

Chromatique

Poivre et Sel

Plusieurs type de filtres :

1/16 x	1	2	1
	2	4	2
	1	2	1

1/9 x

 $W(i,j) = e^{-\frac{(i-x)^2 + (j-y)^2}{2s^2}} \cdot e^{-\frac{(I(i,j) - I(x,y))^2}{2r^2}}$

Gaussien

e remplacé par médiane de [a,i] Médian

Moyenneur

Bilatéral

Laplacien

×

+ EPDFP: Efficient Poisson Denoising for Photography

X

Méthodes traditionnelles: EPDFP

Papier: Efficient poisson denoising for photography

- Bruits liées aux capteurs d'images (bruit de photon)
- Transformation en image avec photons par pixels
- Transformation du bruit de poisson en bruit gaussien
- Appliquer un filtre classique
- Transformations inverses pour avoir l'image débruitée

Résultats obtenus

0.02

75

75

Nous avons beaucoup trop de possibilités à tester pour pouvoir toutes les afficher, voici donc quelques exemples significatifs

PSNR: 29.50 dB SSIM: 0.86 RMSE: 8.54 SNR: 23.72 dB BRISQUE: 28.59

Ajout bruit gaussien

PSNR: 26.25 dB SSIM: 0.60 RMSE: 14.43 SNR: 19.15 dB BRISQUE: 46.66

Image originale

PSN SSII RM SNF BRI

PSNR: 27.04 dB SSIM: 0.78 RMSE: 11.91 SNR: 20.83 dB BRISQUE: 14.43

On peut aussi utiliser des images en niveaux de gris

État de l'art : Réseaux de neurones

Méthodes existantes:

Méthode essayée :

Méthode retenue :

Architecture du réseau de neurones Multi-Stage Progressive Image Restoration

- **Encodeur** capture informations à différentes échelles
- **Décodeur** restaure l'image en utilisant ces informations

Original Resolution Processing: Traitement de l'image à sa résolution d'origine → préservation des détails spatiaux fins

3 étapes

Crossed-Stage Feature Fusion : propagation des caractéristiques contextualisées à plusieurs échelles

X

Resultats obtenus MPRNet Denoising

Image originale

Ajout bruit gaussien

Filtrage MPRNet

PSNR: 24.04 dB SSIM: 0.78 RMSE: 16.01 SNR: 18.48 dB **BRISQUE: 46.02**

Améliorations:

Rapidité d'exécution sur des images capturées par des APNs à grande résolution

Cela fonctionne mais beaucoup trop lent (Sony a6400 : 4000 x 6000)

Correction de légers bugs et création d'un exécutable

Lancement de l'application via Qt Creator

Changement des paramètres du modèle (MPRNet)

En résumé:

Progression gratifiante au fil des semaines

Nouvelles connaissances

Amélioration visuelle des algorithmes

Construction
Interface Interactive

Merci pour votre attention!

Annexe: métriques 2

Moyenne des résultats sur le SIDD small dataset

	Gaussien	Bilateral (9,75,75)	Median (3)	Moyenneur (3)	Papier	MPRNet
PSNR (dB)	33.86	34.29	33.08	33.57	30.25	34.76
SNR (dB)	22.43	22.86	21.74	22.17	18.95	23.35
SSIM	0.85	0.85	0.78	0.81	0.73	0.88
RMSE	5.81	5.62	6.57	6.09	8.98	5.22
BRISQUE	22.84	31.21	25.27	14.01	46.34	26.77

PSNR : mesure la qualité de la reconstruction d'un signal par rapport au bruit présent SNR : mesure la puissance d'un signal par rapport à la puissance du bruit l'accompagnant

SSIM : mesure la similarité structurelle entre deux images

RMSE : mesure l'erreur moyenne entre les valeurs prédites et les valeurs réelles

BRISQUE : se base sur des caractéristiques statistiques pour estimer la qualité perçue d'une image sans image de référence

Annexe: MPRNet modèle pré-entraîné "denoising"

Patch size : 256x256 → Taille de chaque sous-région extraite pour entraîner le modèle

Batch size : 16 → Nombre d'itérations avant de mettre à jour les poids

Nombre d'epochs : 400 000 → Nombre de fois que l'ensemble des données d'entraînement est présenté au modèle

Optimisateur Adam : 0.0002 à **0.000001** \rightarrow Ajustement des poids avec diminution au fil de l'entraînement et donc convergence efficace

X

Annexe : résultats filtrés

×

×

Annexe: Poster

