Fast arithmetics for Artin-Schreier extensions

L. De Feo joint work with Éric Schost

École Polytechnique, Paris, France

December 19, 2008 University of Western Ontario, London

Artin-Schreier

Definition (Artin-Schreier polynomial)

 \mathbb{K} a field of characteristic p, $\alpha \in \mathbb{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

 \mathbb{K} finite. $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$.

If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \dots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 ${\cal P}$ an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\begin{vmatrix} p \\ \mathbb{U}_{k-1} \\ \vdots \\ \vdots \\ \mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\begin{vmatrix} p \\ \mathbb{U}_{0} = \mathbb{F}_{p^{d}} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})} \end{vmatrix}$$

Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$ is defined by $(\alpha_0,\ldots,\alpha_{k-1})$ over $\mathbb{U}_0.$

ANY extension of degree p can be expressed this way

Motivations

- p-torsion points of abelian varieties;
- Isogeny computation [Couveignes '96].

Size, complexities

$$\#\mathbb{U}_i = p^{p^i d}$$

 \mathbb{U}_k

Optimal representation

All common representations achieve it: $O(p^i d \log p)$

 \mathbb{U}_{k-1}

Complexities in \mathbb{F}_p -operations

optimal: $O(p^id)$ quasi-optimal: $\tilde{O}(i^ap^id)$

addition

almost-optimal:

 $\tilde{O}(i^a p^{i+b} d)$

suboptimal: $\tilde{O}(i^a p^{i+b} d^c)$

too bad:

 $\tilde{O}\left(i^a(p^{i+b})^e d^c\right)$

naive multiplication

FFT multiplication

Multiplication function M(n)

FFT: $M(n) = O(n \log n \log \log n)$,

Naive:

 $\mathsf{M}(n) = O(n^2).$

Plan

- Representation
- 2 Arithmetics
- 3 Implementation
- Applications and benchmarks

Representation matters!

\mathbb{U}_k

\mathbb{U}_{k-1}

Multivariate representation of $v \in \mathbb{U}_i$

$$v = X_0^{d-1} X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1} X_1^{p-1} \cdots X_i^{p-2} + \cdots$$

Univariate representation of $v \in \mathbb{U}_i$

- $\bullet \ \mathbb{U}_i = \mathbb{F}_p[x_i],$
- $v = c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{p^i d-1} x_i^{p^i d-1}$ with $c_i \in \mathbb{F}_p$.

How much does it cost to...

- Multiply?
- Express the embedding $\mathbb{U}_{i-1} \subset \mathbb{U}_i$?
- Express the vector space isomorphism $\mathbb{U}_i = \mathbb{U}_{i-1}^p$?
- Switch between the representations?

A primitive tower

 \mathbb{U}_k

 \mathbb{U}_{k-1}

 \mathbb{U}_1

 \mathbb{U}_0

Definition (Primitive tower)

A tower is primitive if $\mathbb{U}_i = \mathbb{F}_p[X_i]$.

In general this is not the case. Think of $P_0 = X^p - X - 1$.

Theorem (extends a result in [Cantor '89])

Let
$$x_0 = X_0$$
 such that $\mathrm{Tr}_{\mathbb{U}_0/\mathbb{F}_p}(x_0)
eq 0$, let

$$P_0 = X^p - X - x_0$$

 $P_i = X^p - X - x_i^{2p-1}$

with x_{i+1} a root of P_i in \mathbb{U}_{i+1} .

Then, the tower defined by (P_0, \ldots, P_{k-1}) is primitive.

Some tricks to play when p = 2.

Computing the minimal polynomials

We look for Q_i , the minimal polynomial of x_i over \mathbb{F}_p

Algorithm [Cantor '89]

• $Q_0 = Q$

easy, easy,

 $Q_1 = Q_0(X^p - X)$

Let ω be a 2p-1-th root of unity,

• $q_{i+1} = \prod_{j=0}^{2p-2} Q_i(\omega^j X)$

not too hard¹,

• $Q_{i+1} = q_{i+1}(X^p - X)$

easy.

¹No need to factor Φ_{2p-1} , one can simply work modulo it.

Complexity

$$O\left(\mathsf{M}(p^{i+2}d)\log p\right)$$

Plan

- Representation
- 2 Arithmetics
- Implementation
- Applications and benchmarks

Level embedding

\mathbb{U}_k \mathbb{U}_{k-1} \mathbb{U}_0

Push-down

Input $v \dashv \mathbb{U}_i$. **Output** $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

Lift-up

Input $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$, **Output** $v \dashv \mathbb{U}_i$ such that $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

$$v = v_0 + \dots + v_{p-1} x_i^{p-1}$$

Complexity function L(i)

It turns out that the two operations lie in the same complexity class, we note L(i) for it:

$$L(i) = O\left(pM(p^{i}d) + p^{i+1}d\log_{n}(p^{i}d)^{2}\right)$$

Push-down

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

- Reduce v modulo $x_i^p x_i T^{2p-1}$ by a divide-and-conquer approach,
- $oldsymbol{\circ}$ each of the coefficients of x_i has degree in x_{i-1} less than $2\deg(v)$,
- reduce each of the coefficients.

Duality I

Dual vector space

 \mathbb{U}_i^* the space of \mathbb{F}_p -linear forms over \mathbb{U}_i

Multiplication

Let $v \in \mathbb{U}_i$, multiplication by v is a linear application $\mathbb{U}_i \to \mathbb{U}_i$ with matrix M_v :

$$\left(\begin{array}{c} M_v \end{array} \right) \left(x \right) \; \mapsto \; \left(vx \right)$$

Transposed multiplication

Let $v \in \mathbb{U}_i$, $\ell \in \mathbb{U}_i^*$, transposed multiplication $v \cdot \ell$ is the linear form

$$\left(\begin{array}{ccc} v \cdot \ell \end{array} \right) \left(x \right) \; = \; \left(\begin{array}{ccc} \ell \end{array} \right) \left(\begin{array}{ccc} M_v \end{array} \right) \left(x \right) \; \mapsto \; \left(\begin{array}{ccc} \ell \end{array} \right) \left(vx \right) \; = \; \ell(vx)$$

hence M_v^T is the linear application computing $v \cdot \ell$ from ℓ .

Duality II

Change of basis

Vector spaces $V^B = V^D$ with bases B and D.

$$M: V_B \to V_D$$
$$M^T: V^{D^*} \to V^{B^*}$$

 ${\cal M}^T$ is the dual change of basis.

Push-down

Push-down is a change of basis $P: \mathbb{U}_i^U \to \mathbb{U}_i^D$

U = polynomial basis in x_i D = bivariate basis in x_i, x_{i-1}

hence $P^T: \mathbb{U}_i^{D^*} \to \mathbb{U}_i^{U^*}$.

Truncated power series

 P^T sends linear forms $\ell \in \mathbb{U}_i^{D^*}$ onto the basis U^* :

$$\ell(1), \quad \ell(x_i), \quad \ell(x_i^2), \quad \dots, \quad \ell(x_i^{p^i d - 1})$$

These can be seen as the first coefficients of a formal power series ([Shoup '99]):

$$\sum\nolimits_{j>0}\ell(x_i^j)Z^j$$

Lift-up

Trace formulas [Pascal, Schost '06, Rouillier '99]

Let $\ell \neq 0$ in $\mathbb{U}_i^{D^*}$, let $v_D \in \mathbb{U}_i^D$, then

is in $\mathbb{F}_p(Z)$. Then the image of v_D in \mathbb{U}_i^U is

$$\frac{\sum_{j>0} v_D \cdot \ell(x_i^j) Z^j}{\sum_{j>0} \ell(x_i^j) Z^j} = \frac{N(Z)}{D(Z)}$$

$$v_U = \frac{\operatorname{rev}(N)(x_i)}{\operatorname{rev}(D)(x_i)}.$$

Transposition principle (see [Bürgisser, Clausen, Shokrollahi])

- ullet We don't bother computing the matrices M_v and P,
- we use transposition principle instead.
- ullet computing $v_D \cdot \ell$ is transposed multiplication in \mathbb{U}^D_i ,
- computing the power series is transposed Push-down.

Lift-up

Lift-up

Input
$$v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$$

Output $v \dashv \mathbb{U}_i$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$

- $\bullet \ \, \mathsf{Chose} \,\, \mathsf{a} \,\, \mathsf{linear} \,\, \mathsf{form} \quad \, \ell \in \mathbb{U}_i^*,$
- \bullet compute $\ell_v = v \cdot \ell$,
- \bullet compute $P_1(Z) = \mathsf{Push}\text{-}\mathsf{down}^T(\ell)$,
- compute $P_v(Z) = \mathsf{Push}\text{-}\mathsf{down}^T(\ell_v)$,
- \bullet compute $V_1 = P_1(Z) \cdot \operatorname{rev}(Q_i)(Z) \mod Z^{p^i d 1}$,
- compute $V_v = P_v(Z) \cdot \operatorname{rev}(Q_i)(Z) \mod Z^{p^i d 1}$,
- return $\operatorname{rev}(V_v)(x_i) / \operatorname{rev}(V_1)(x_i)$.

Other operations, Isomorphism

Other operations

 \mathbb{U}_k

 \mathbb{U}_{k-1}

 \mathbb{U}_1

 \mathbb{U}_0

By divide and conquer, we give efficient routines for most operations in \mathbb{U}_i :

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1} ;
- combine the results;
- lift-up.

It works fairly well for

- inversion,
- traces,
- iterated frobenius,
- p-th roots,
- ...

Isomorphism [Couveignes '00]

- Let $(\alpha_0, \ldots, \alpha_{k-1})$ define another tower over \mathbb{U}_0 ,
- factoring $X^p X \alpha_i$ in \mathbb{U}_{i+1} gives an isomorphism.
- Couveignes gives a fast factoring algorithm for this case,
- this way fast arithmetics can be brought to this new tower.

 \mathbb{U}_0

Plan

- Representation
- 2 Arithmetics
- 3 Implementation
- 4 Applications and benchmarks

Engineering issues

Platform

Magma (native language, C)

- full support for field lattices,
- FFT multiplication,
- large library,
- transparent type-system,
- not open source.

Sage (Python, Cython, C++)

- Open source,
- future support for field lattices,
- transparent type-system,
- large library,
- large community,
- interfaces to NTL, Pari, and others.

NTL (C++)

- Open source,
- ullet optimised library for \mathbb{F}_2 ,
- support for transposed operations,
- no support for field lattices,
- FFT for p > 2 (via gmp), Karatsuba for p = 2,
- non-transparent type system (three different types for finite fields),
- relatively restricted library (no integer factorisation),
- a "one man library".
- "stubborn design".

Implementation in NTL

Adding transparency

- Use templates instead of native types for finite fields,
- add wrappers when necessary for compatibility.
- Implement resource localisation to work in field lattices.

Adding functionalities

- Pollard rho for integer factorisation,
- folklore algorithm for cyclotomic polynomials,
- elliptic curve addition (classic and Montgomery).

Conclusions

- NTL lacks a type : Field !
- Our implementation is not maintainable: every function in NTL needs to be wrapped, every change needs to be reflected.
- Few chances for future improvements.

Plan

- Representation
- 2 Arithmetics
- Implementation
- Applications and benchmarks

p^k -torsion

p-division

- In ordinary elliptic curves $E[p^k] \simeq \mathbb{Z}/p^k\mathbb{Z}$.
- Knowing a p^i -torsion point,
- ullet factorise the p-division polynomial to find a p^{i+1} -torsion point.

Make it Artin-Schreier [Voloch '90]

- By a change of variables we can factor an Artin-Schreier polynomial instead,
- using Couveignes' algorithm for the isomorphism, we can do it efficiently.

Isogeny interpolation

Computing an isogeny of degree ℓ between two curves E and F

The idea [Couveignes '96, '00]

- Compute enough $(p^k \sim \ell)$ torsion points in E and F,
- since the curves are isogenous, the towers are isomorphic,
- use the isomorphism algorithm to bring them to the same primitive tower,
- interpolate the isogeny over the points.

Fast interpolation [D.F. '07]

- ullet Use the same divide-and-conquer approach as for the arithmetics in \mathbb{U}_k ,
- throw some Galois-theory in,
- ullet the interpolation step can be done in $\tilde{O}(\ell^2)$.

Implementation

- Implementation in NTL for p = 2 (no FFT).
- ullet Benchmarks on two fields: $\mathbb{F}_{2^{101}}$ and $\mathbb{F}_{2^{1999}}$.
- ullet Up to 15 levels on a Intel Core 2 @2GHz, 4GB ram.

	$\mathbb{F}_{2^{101}}$	$\mathbb{F}_{2^{1999}}$	levels
Construction of Q_i	0:42	42:00	15
Push-down, lift-up	0:30	20:00	15
Couveignes '00	3:40:00		15
Couveignes '00	1:30:00	76:40:00	13

- ullet We are working on a new, faster, NTL implementation for any p;
- porting to a computer algebra platform is in study.

Benchmarks on isogenies

Over $\mathbb{F}_{2^{101}}\text{, on an AMD Athlon 64 X2 Dual Core Processor 4000+, 5GB ram$

Benchmarks on isogenies

Over $\mathbb{F}_{2^{101}}\text{, on an AMD Athlon 64 X2 Dual Core Processor 4000+, 5GB ram$

Bibliography

P. Bürgisser, M. Clausen, and A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren Math. Wiss. Springer-Verlag, 1997.

D. G. Cantor.

On arithmetical algorithms over finite fields. Journal of Combinatorial Theory, Series A 50, 285-300, 1989.

J.-M. Couveignes.

Computing ℓ -isogenies with the p-torsion.

Lecture Notes in Computer Science vol. 1122, pages 59-65, Springer-Verlag, 1996

J.-M. Couveignes.

Isomorphisms between Artin-Schreier tower.

Math. Comp. 69(232): 1625-1631, 2000.

L. De Feo.

Calcul d'isogénies.

Master thesis. http://www.lix.polytechnique.fr/~defeo

Bibliography

C. Pascal and É. Schost.

Change of order for bivariate triangular sets.

In ISSAC'06, pages 277-284. ACM, 2006.

F. Rouillier.

Solving zero-dimensional systems through the Rational Univariate Representation.

Appl. Alg. in Eng. Comm. Comput., 9(5):433-461, 1999.

V. Shoup.

Efficient computation of minimal polynomials in algebraic extensions of finite fields.

In ISSAC'99, ACM Press, 1999.

J.F. Voloch.

Explicit p-descent for Elliptic Curves in Characteristic p.

Compositio Mathematica 74, pages 247-58, 1990.