Blockchain Innovation Program Tutorial Framework

POWERED BY

Blockchain Innovation Program Tutorial Framework

The Blockchain Innovation Program is a designed as an intensive 10-week programme which will provide students with educational and entrepreneurial support for them to develop a comprehensive understanding of what's involved in Bitcoin Application Development. The programme will see the students complete the three bitcoin primitive courses Hash Functions, Merkle Trees, and Digital Signatures before they complete the newly refactored Introduction to Bitcoin Development.

Educators from the Bitcoin SV Academy team will prescribe weekly resource and question packs to stimulate the students to develop a deeper consideration for what is involved in creating a scalable Bitcoin application. The students will attend fortnightly tutorials where their answers to the question pack will be evaluated and discussed in greater detail.

Live session #1

Hash Functions	 Hash Functions and Hash Tables Content Addressed Distributed Data Structures
	Efficient Provable Data Possession for Hybrid Clouds

Course pre-requisite: Hash Functions (primitives)

Worksheet to complete prior to the live session: Week 1 – Hash Functions

Live session #2

Merkle Trees	GitHub MerkleDAG
	 ForkBase: Immutable, Tamper-evident Storage
	Substrate for Branchable Applications
	 Merkle-CRDTs - MerkleDAGs meet CRDTs
	 Merkle²: A Low Latency Transparency Log System
Digital Signatures	Digital Signatures
	 Legitimating Technologies: Digital Signatures Case
	Study.
	Segwit, Mixing and Law
	SigHash Flags

Course pre-requisite: Merkle Trees and Digital Signatures (Primitives)

Worksheet to complete prior to the live session: Week 2 Merkle Trees and Week 3 Digital Signatures.

Live session #3

Data and Databases	- What is DDasC2
Data and Databases	What is DBaaS?
	 SQL vs NoSQL
	What is Cloud Storage?
	What is Object Storage?
	Block vs File Storage
	What is a Load Balancer?
	Kubernetes vs Docker
API led Event-Driven &	API vs SDK
Microservices Architectures	What is API Management?
	What is a REST API?
	What is an API Gateway?
	What is Event Driven Architecture?
	What are Microservices?
	 Architecting a Cloud Native API Solution.
	 Blockchain Enabled Trustless API Marketplace
	 Unofficial API and Browser Extension Development
	for Augmenting Student Resources

Course pre-requisite: Bitcoin Development Chapter 1

Worksheet to complete prior to the live session: Week 4 Data and Databases and API led

Event-Driven & Week 5 Microservices Architectures

Live session #4

Debunking the Blockchain	 Myths of Decentralisation On Decentralisation The Wizard of Blockchain Cost Performance Trade-Off Evaluation in
Trilemma, CAP Theorem &	Microservices impacted by the CAP Theorem
Application Scalability	Limitations
Working Blockchain & Overlay Networks	 A Survey and Comparison of P2P Overlay Network Schemes. Virtual Networking Explained What is a Content Delivery Network Mandala Network SPV Working Blockchain

Course pre-requisite: Bitcoin Development Chapter 2&3

Worksheet to complete prior to the live session: Week 6 Debunking the Blockchain Trilemma, CAP Theorem & Week 7 Application Scalability and Working Blockchain & Overlay Networks.

Live session #5

Intro to Git and Github	 Git and GitHub for Beginners Git and GitHub for Beginners Getting Started with OpenSSH Key Management. Setting up an Nx monorepo with Angular Setting up CI/CD with Github Actions and Vercel
Constructing Transactions & Script	 Introduction to Bitcoin Transactions MintBlue API, SDK and Integrations

Course pre-requisite: Bitcoin Development Chapter 4-5

Worksheet to complete prior to the live session: Week 8 Intro to Git and Github and Week 9 Constructing Transactions and Bitcoin Script.

Live session #6

Metanet	Metanet Overlay
	 Dagda
	 The Birth of Ontology & the DAG
	 Tutorial on directed Acyclic Graphs
	 A.N.N.E preview.
End of programme	 Feedback on project completed by students
	 Wrap up of the programme

Course pre-requisite: Bitcoin Development Chapter 6

Worksheet to complete prior to the live session: Week 10 Metanet

Blockchain Innovation Program Worksheets

Week 1 Hash Functions

1. Hash Tables and Hash Functions

- a. What are the benefits of a Hash Table over an array?
- b. What type of mathematical operation is leveraged to create Hash Tables from an n=x data set?
- c. What is a collision in the hash table?
- d. What are some techniques to perform collision resolution in a Hash Table?
- e. What is linear probing?
- f. What is the load factor?
- g. Some examples of where hashing is used are?

2. Content-addressed distributed data structures [SpeakeasyJS]

- a. How can an address be related to the content of a particular file?
- b. What are the benefits of using a hash function to create the address of content?
- c. How is it that the graph of a git repository can be called a Merkle DAG?
- d. How is the content addressability of the block header implicated in the Proof of Work process for Bitcoin?
- e. How can hash functions be used to create efficient snap shots within file systems?

Efficient Provable Data Possession for Hybrid Clouds (Introduction, 2.4, Conclusion)

https://cse.buffalo.edu/~hongxinh/papers/CCS10.pdf

- a. How can hybrid cloud models effectively provide dynamic scalability of service and data?
- b. How do Hash Functions lead to an economisation of data for verification?
- c. How might the blockchain fit into the model demonstrated in figure 1?