

Testing PI:formulalist

Only texformulas are referenced

Formulas used in this site

$\sqrt[3]{\frac{x^3+y^3}{2}}$	fl Welcome, Page1
$\frac{\sum_{k=1}^{N} k^2}{a}$	f2 <u>Welcome</u>
$\left egin{array}{ccc} x_{11} & x_{12} \ x_{21} & x_{22} \ x_{31} & x_{32} \ \end{array} ight $	f3 <u>Welcome</u>
$B(t) = \sum_{i=0}^{n} B_i^n t^i (1-t)^{n-i} P_i$	f4 Welcome, Page1
$N_{x}(\phi,\beta) = \frac{1}{r_{x}}cos^{2-n1}(\phi)cos^{2-n2}(\beta)$ $N_{y}(\phi,\beta) = \frac{1}{r_{y}}cos^{2-n1}(\phi)sin^{2-n2}(\beta)$ $N_{x}(\phi,\beta) = \frac{1}{r_{x}}sin^{2-n1}(\phi)$	Surface normals Welcome
$B(t) = \sum_{i=0}^{n} B_i^n \cdot t^i (1-t)^{n-i} P_i$	Bezier again Page1
$ A = \sqrt{\sum_{k=1}^{n} (a_k)^2}$	Vector length Page2
$\sum f(x)$	Simple sum Page3
$B(t) = \sum_{i=0}^{n} B_i^n t^i (1-t)^{(n-i)} P_i$	Bezier from mathml Page3
$\sum f(x)$	Simple sum Page4
$\frac{12}{a+4}$ $\sqrt{25}$	Simple fraction Page4
V23	Square root

Content file for this page

_content/pagelist.xml