6.9 (Conversions between feet and meters) Write a module that contains the following two functions:

```
# Converts from feet to meters
def footToMeter(foot):
# Converts from meters to feet
def meterToFoot(meter):
```

The formulas for the conversion are:

```
foot = meter / 0.305
meter = 0.305 * foot
```

Write a test program that invokes these functions to display the following tables:

Feet	Meters	I	Meters	Feet
1.0	0.305		20.0	66.574
2.0	0.610		26.0	81.967
9.0	2.745		60.0	196.721
10.0	3.050		66.0	213.115

6.11 (Financial application: compute commissions) Write a function that computes the commission, using the scheme in Exercise 5.39. The header of the function is:

def computeCommission(salesAmount):

Write a test program that displays the following table:

Sales Amount	Commission
10000	900.0
15000	1500.0
95000	11100.0
100000	11700.0

*6.18 (*Display matrix of 0s and 1s*) Write a function that displays an *n*-by-*n* matrix using the following header:

def printMatrix(n):

Each element is 0 or 1, which is generated randomly. Write a test program that prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

