Nama: Pratama Yoga Santosa

NIM: 1301170073

Kelas: IF 41 01

Laporan Tugas 2 Artificial Intelligence

GA for learning Decision Tree

1. Desain Kromosom

Desain kromosom yang saya gunakan dengan men-generate kromosom dengan panjang 15 yang berisi random nilai dari 0 dan 1. Panjang 15 didapat karena dari dataset, kita memiliki 15 bit untuk 1 rule nya.

2. Ukuran Populasi

Untuk ukuran populasi saya membuat dalam satu populasi, terdapat 10 individu, menurut saya ukurannya bebas.

3. Seleksi Orangtua

Menggunakan Teknik yang masih sama seperti tugas GA kemarin (Turnament).

4. Crossover

Pada crossover saya memilki 3 kondisi

- **Jika panjang 2 orangtuanya adalah 15**, saya melakukan pembagian 2 kromosom tersebut yang di simpan dalam temp, sehingga nanti ortu1 akan disambung dengan 2 pecahan dari ortu 2, begitu juga sebaliknya.
- **Jika panjang salah satunya 15**, anggap ortu1 15, ortu 2 kelipatan 15 tapi lebih dari 15. Sehingga saya memilih 2 titik pada ortu1, lalu pada ortu 2 saya tukar nilainya pada range 2 titik tersebut. Lalu pada ortu2 memotong kromosom pada 2 titik tersebut lalu menggabungkannya pada ortu1
- **Jika semuanya memiliki panjang lebih dari 15 dan kelipatan 15**, memilih 2 titik dari ortu1 (punya saya selalu di switch agar ortu1 selalu lebih pendek dari ortu2).

```
Randomly select 2 point p1 = \{1,12\} Generate possible crossover point for parent 2 p2 = \{1,12\} p2 = \{1,13\} p2 = \{1,14\} p2 = \{1,14\} p3 = \{1,14\}
```

Lalu mendapat titik – titik (titik1 dan titik2) yang bisa digunakan untuk crossover. Lalu memilih 1 dari titik - titik tersebut dan disimpan pada *titik3*. Lalu memilih titik potong ke tiga dan menghitung pasangannya jika dijumlah dengan gap hasilnya lebih dari batas atas ortu1 maka titik4 = titik3 - gap, jika dikurang dengan gap kurang dari 0 maka titik4 = titik3 + gap. Lalu memotong ortu1 dengan titik3 dan *titik4* dan memotong ortu2 pada titik yang disimpan pada idx. Setelah itu menyatukan ortu menjadi :

Nama: Pratama Yoga Santosa

NIM: 1301170073

Kelas: IF 41 01

```
New1 = Ortu1[:titik1] + ortu1[titik3:titik4] + ortu2[titik2+1:]
New2 = Ortu1[:titik3] + ortu2[titik1:titik2] + ortu1[titik4+1:]
```

Sehingga dari Teknik crossover ini, akan selalu menghasilkan individu dengan kelipatan 15, karena memang dari awal untuk 1 rule harus 15 karena untuk pengecekan pada dataset.

5. Mutasi

Untuk mutasi gennya saya memberi *chance* = 0.3 bagi setiap individu baru tersebut bermutasi setiap gennya, jika isi gennya 0 maka diganti 1, begitu juga sebaliknya.

6. Seleksi Individu

Untuk seleksi individunya, saya melakukan *General replacement* dengan mengganti setengah dari populasi lama yang terburuk dengan sebagian dari populasi individu yang terbaik. Sehingga ukuran populasi baru tetap sama dengan populasi awal.

7. Pemberhentian Populasi

Dalam pemberhentian populasinya, saya menggunakan datavalidasi yang akan berhenti jika terjadi overfit atau nilai dari akurasinya 100 dan sama 5 kali berturut -turut. Karena disini saya memecah datalatih menjadi 60 untuk dataset dan 20 untuk data validasi.

Untuk parameter – parameter yang menunjukan hasil optimum adalah, apabila saat akurasi dari kromosom 100% kemudian dari data validasi kita mendapatkan hasil 100 berturut turut, atau terdapat hasil validasi yang turun. Maka hasil kromosom sebelum data validasi turun adalah hasil terbaik.

Untuk hasil akhirnya saya menyimpannya pada hasil.csv

	1	Rendah	Siang	Hujan	Tinggi	Tidak
	2	Normal	Pagi	Hujan	Tinggi	Tidak
	3	Tinggi	Siang	Hujan	Normal	Tidak
	4	Rendah	Malam	Hujan	Rendah	Tidak
	5	Normal	Sore	Cerah	Normal	Tidak
	6	Tinggi	Siang	Rintik	Rendah	Tidak
	7	Rendah	Siang	Cerah	Rendah	Tidak
	8	Normal	Siang	Cerah	Rendah	Tidak
	9	Tinggi	Siang	Hujan	Rendah	Tidak
1	10	Tinggi	Sore	Cerah	Tinggi	Tidak
1	11	Normal	Siang	Cerah	Tinggi	Tidak
-	12	Rendah	Pagi	Berawan	Normal	Tidak
1	13	Rendah	Malam	Rintik	Tinggi	Tidak
1	14	Normal	Siang	Hujan	Normal	Tidak
4	15	Tinggi	Malam	Cerah	Tinggi	Tidak
1	16	Rendah	Malam	Berawan	Rendah	Tidak
1	17	Rendah	Sore	Rintik	Normal	Tidak
1	18	Tinggi	Siang	Cerah	Rendah	Tidak
4	19	Rendah	Malam	Rintik	Normal	Tidak