

第九讲

微程序控制方式下模型机的设计实例

(=)

-- 模型机的指令译码器设计技术

4、微程序控制器

- 1. 控制存储器 CM: 读操作 128×24 位
- 2. 指令寄存器 IR: T3 打入

读出的 24 位微指令,在

每个微周期的 T2 节拍:

高 17 位送 µIR 保存并译

码,低7位送CMAR保

存。

4、微程序控制器

- 3. 指令译码(后继微地址转移控制电路) J1#--J5#, 译码控制
- 4. 微指令寄存器 µIR 和微指令译码器

址的转移控制逻辑指令译码及后继微地

符号说明:

 MA_6 , MA_{5} , MA_{4} , MA_{3} , MA_{2} , MA_{1} , MA_{0} 是地址寄存器的地址位信息, MA_{6} 是地址高位, MA_{0} 是地址低位;

SE6 #, SE5 #, SE4 #, SE3 #, SE2 #, SE1 #, SE0 #:

微地址寄存器的地址位置位信号,0一有效.

SEi#=0,则 MAi 置 1

SEi#=1,则 MAi 不变,维持原来的值

MAi 是微地址寄存器第 i 位地址:

模型机指令字段与译码器输出的关系 =0010000(10h)								(J1# 译码控制): 				设地址初值 				
J1#	J2# 微地		J4#	J5#	7	6	5	1 4	T ₃	1 2	SE5#	SE3#	SE2#	SE1	# SE	0#
0	1 10	1 H	1	1	0	0	0	0	X	X	1	1	1	1	1	
0	1 11	1 H	1	1	0	0	0	1	X	X	1	1	1	1	0	
					-	• •		-	••							
0	1 16	1 H	1	1	0	1	1	0	X	X	1	1	0	0	1	
0	1 17	1 H	1	1	0	1	1	1	X	X	1	1	0	0	0	
0	1 18	1 H	1	1	1	0	0	0	X	X	1	0	1	1	1	
0	1 19	1 H	1	1	1	0	0	1	X	X	1	0	1	1	0	
0	1 1 A l	1 H	1	1	1	0	1	0	X	X	1	0	1	0	1	
0	1	1	1	1	1	0	1	1	Χ	X	1	0	1	0	0	

微地址的逻辑表达式(J1#译码控制):

译码电路中: SE6 # = 1, SE4 # = 1; 微地址的第 MA_{6} , MA_{4} 位

是不变的;

当当 I₇I₆ ≠ 11 时;

SEO # = J1 # $\overline{+}$ I $_{\overline{4}}$; 当 SEO # = 0 时, $MA_0 = I_4 = 1$;

否则 MA₀ 不变;

SE1 # = J1 # + I_5 ; 当 SE1 # = 0 时, $MA_1 = I_5 = 1$;

否则 MA, 不变;

SE2 # = J1 # + I_6 ; 当 SE2 # = 0 时, $MA_2 = I_6 = 1$;

否则 MA_2 不变;

SE3 # = I1 # + I · 半 SE3 # = 0 时 MA = I = 1

微地址的逻辑表达式:

译码电路中: SE6 #=1, SE4 #=1; 微地址的第 MA_{6} , MA_{4} 位

是不变的;

当当 $I_7I_6 = 11$ 时;

SEO # = J1 # + I_2 ; 当 SEO # = 0 时, $MA_0 = I_2 = 1$;

否则 MA。不变;

SE1 # = J1 # + I₃; 当 SE1 # = 0 时, $MA_1 = I_3 = 1$;

否则 MA, 不变;

SE2 # = J1 # + I_4 ; 当 SE2 # = 0 时, $MA_2 = I_4 = 1$;

否则 MA_2 不变;

SE3 # = J1 # + I₅ : 当 SE3 # = 0 时, MA₅ = I₅ = 1

结合上述二个表达式再加上译码控制信号得:

(i=0, 1, 2, 3, 5)

模型机指令字段与译码器输出的关系(J2 译码控制):

J1#	J2#	J3#	J4#	J5#	I ₇	I 6	I ₅	I ₄	I	I 2	SE5	#SE3	#SE2	#SE1	#SEO
1	0	_1_	1	1	Х	Х	Х	Х		0	1	1	1_	1	1
1	0	1	1	1	X	X	X	X	1	0	1	1	1	0	0 1 0
1	0	1	1	1	X	Χ	X	X	- 1	1	1	1	1	0	0

(J3 译码控制):

J1#	J2#	J3#	J4#	J5#	KA	KB	SE5	#SE3	#SE2	#SE1	#SE0
1	1	0	1	1	0	0	1	1	1	1	1
1	1	0	1	1	0	1	1	1	1	1	0
1	1	0	1	1	1	0	1	1	1	0	1
1	1	0	1	1	1	1	1	1	1	0	0

(J4 和 J5 译码控制):

J1#	J2#	J3#	J4#	J5#	FC	FΖ	INT	SE5	#SE3	#\$E2	#SE1	#SEO
1	1	1	0	1	0	0	X	1	1	1	1	1
1	1	1	0	1	0	1	X	1	1	1	1	0
1	1	1	0	1	0	0	X	1	1	1	0	1
1	1	1	0	1	0	0	X	1	1	1	0	0
1	1	1	1	0	X	X	0	1	1	1	1	1
1	1	1	1	0	X	Χ	1	1	1	1	1	0

微地址的逻辑表达式(J2# 译码控制):

SEO # = J2 # $\overline{\pm}$ I₂ ; 当 SEO # = 0 时, MA_0 = I₂ = 1;否则 MA_0 不变; SE1 # = J2 # $\overline{\pm}$ I₃ ; 当 SE1 # = 0 时, MA_1 = I₃ = 1;否则 MA_1 不变;

微地址的逻辑表达式(J3# 译码控制): SE0 # = J3 # \pm Ka; 当 SE0 # = 0 时, MA₀ = Ka = 1; 否

则 MA。不变; 一

SE1 # = J3 # + Kb ; 当 SE1 # = 0 时, MA_1 = Kb = 1;否则 MA_1 不变;

微地址的逻辑表达式(J4#译码控制):

SEO # = J4 # + FC ; 当 SEO # = 0 时, MA_0 = FC = 1; 否则 MA_0 不变;

SE1 # = J4 # + ZF ; 当 SE1 # = 0 时, $MA_1 = ZF = 1$; $A_2 = A_3 = A_4 =$


```
结合上述二个表达式再加上译码控制信号得:
J2# 译码控制:
SE0 \# = J2 \# + I_2;
SE1 \# = J2 \# + I_3;
J3# 译码控制 :__
SEO \# = J3 \# \pm Ka;
SE1 # = J3 # + Kb:
J4# 译码控制:
SE0 # = J4 # \pm FC;
SE1 # = J4 # + ZF;
J2# 译码控制:___
SE0 # = J5 # + INT;
```



```
结合上述所有表达式再加上译码控制信号得 SE0-SE6 的完整逻辑
表达式:
(J1#-J5# 为互斥信号) --
SE0 # = \overline{(J_1 + J_2 + J_3 + J_4 + J_5 + I_2(I_7 I_6)} + I_4(I_7 I_6)
I^{e})
        * (J_{1#}+J_{2} + +J_{3}+J_{4}+J_{5}+ + I_{2})
        * (J1#+J2 # +J3#+J4#+J5# + Ka)
        *(J1#±J2 #_+J3#+J4#+J5#_ + FC )— —
        *(J1#+J2 #_+J3#+J4#+J5#_+ INT);
SE1 # = _(J1#+J2 # +J3#+J4#+J5# +
                                       I_3(I_7I_6) + I_5
(|I_7|_6)
          (J<del>1#</del>+J<del>2 # +J3#+J4#+J5# 十</del>
        * (J1#+J2 # +J3#+J4#+J5# +
                                        Kb)
        *(J1#+J2 # +J3#+J4#+J5# + ZF)
```

SE2 # = $(J1#+J2 # +J3#+J4#+J5# + I_4(I_7I_6) + I_6(I_7I_6)$