

Phase-Based Video Motion Processing

Experiments and final results

Marra, Tales Quintana, Gonzalo

Introduction

Available version: generates a grayscale motion magnified video.

- We test the algorithm with three types of additive noise: gaussian, uniform, salt and pepper.
- Implementation of the colored version of the algorithm: using the RGB and HSV image formats.
- Visualization of the coefficients of the steerable pyramid.

All the tests were done with the same input video.

Easy-to-test **demo** (see README file). We can choose the noise to add and the grayscale/colored version of the algorithm by a console application

Grayscale video

The algorithm can be directly implemented to grayscale videos

 α = 400 Huge magnification factor generates artifacts, as explained in the paper

Filters Visualizations

Spatial Filters Visualization

(As shown in the paper)

range: [-1.2e-01, 1.2e-01] dims: [17, 17] * 20

Filters Visualizations

After Filter Decomposition

(Applied to our test video)

Tests with noise ($\alpha = 40$) - Grayscale video

White Gaussian Noise (mean 0 and STD 20)

Tests with noise (α = 40) - Grayscale video

Equivalent to WGN with STD=20

Uniformly distributed noise (between -60 and 60)

Tests with noise ($\alpha = 40$) - Grayscale video

Salt and Pepper noise (with total noise probability 0.02)

Generating output color video

For obtaining an output color video, two alternatives were explored

- Running the MoMag algorithm for all three RGB components independently.
 Drawback: high computational cost (three times that of the gray scale image).
- 2) Change the video frames to the HSV format, and apply the MoMag algorithm only to the "Value" field. Advantage: no additional computational cost with relation to the gray scale image.

HSV format

Hue: dominant color as perceived by an observer.

Saturation: amount of white light

mixed with a hue.

Value: chromatic notion of

intensity.

Generating output color video ($\alpha = 40$)

Using **RGB format**: the real colors are maintained, but **artifacts** are produced. The maximum **magnification factor** without is **reduced**.

Using **HSV format**, colors are not fully maintained. However, artifacts are not added with respect to the original method and we can have **higher magnification factors**.

Tests with noise (α = 40) - HSV generated video

