## PROJECT REPORT AND PRESENTATION

**Project Title: Movie Analysis** 

Team Members: Jainam Chhadwa Krupa Shah Hitaishi Joshi

#### ORIGINAL WORK STATEMENT

We the undersigned certify that the actual composition of this proposal was done by us and is original work.

| Typed Name     | Signature             |  |  |  |  |
|----------------|-----------------------|--|--|--|--|
| Jainam Chhadwa | Jainam Nikhil Chhadwa |  |  |  |  |
| Krupa Shah     | Krupa Nilesh Shah     |  |  |  |  |
| Hitaishi Joshi | Hitaishi Vijay Joshi  |  |  |  |  |

#### **Executive Summary:**

Our research focused on leveraging PySpark for a comprehensive analysis of a movie's dataset, aiming to predict whether a movie is considered good or bad on IMDB based on its IMDB score. The dataset encompasses various features such as director information, movie duration, cast details, budget, and more. The target variable, IMDB score high, is dichotomized, with movies having a score greater than 7 considered as good.

Our analysis involved both supervised and unsupervised machine learning techniques implemented through PySpark. In the supervised phase, we built predictive models to classify movies as good or bad based on the provided features. The unsupervised phase focused on exploring patterns and relationships within the data without explicit target labels. We used the clustering technique to get the clusters of movies which are similar in nature.

This study serves to provide insights into the factors influencing movie ratings, aiding filmmakers, producers, and industry professionals in understanding the dynamics that contribute to a movie's success on platforms like IMDB. The significance lies in its potential to guide decision-making processes in the film industry, leading to more informed choices in production and marketing strategies. In essence, our findings showcased the feasibility of predicting a movie's performance on platforms like IMDB with a 72% accuracy. This predictive capability empowers filmmakers with valuable foresight, enabling them to gauge the potential reception of their creations even before their debut. Additionally, our investigation illuminated the efficacy of clustering akin movies to personalize recommendations, enhancing user engagement and satisfaction on streaming platforms. Furthermore, our analysis uncovered nuanced relationships between actors, directors, and movies, underscoring the pivotal role of collaboration in a movie's trajectory toward success. Through our rigorous analysis, we have endeavored to discern the genre combinations that yield the highest IMDB ratings for movies, recognizing that a movie often encompasses multiple genres. We gain valuable insights that the combination of animation and drama genre has the highest average IMDB rating of 7.3.

### **Data Description:**

The dataset was obtained from Kaggle, and it includes information on **28** variables for each movie. These variables cover diverse aspects, ranging from the technical details of the movie-making process (e.g., duration, budget) to social media-related metrics (e.g., Facebook likes for actors and directors). **The sample size is (3598) and the number of variables is (28).** 

The meta data describing the columns is as follows:

| Sr. No. | Column Name               | Description                                                  | Туре        |  |
|---------|---------------------------|--------------------------------------------------------------|-------------|--|
| 1.      | color                     | Indicates whether the movie is in color                      | Categorical |  |
| 2.      | director_name             | The name of the movie director                               | String      |  |
| 3.      | num_critic_for_reviews    | The number of critic reviews for the movie                   | Numeric     |  |
| 4.      | duration                  | The duration of the movie in minutes                         | Numeric     |  |
| 5.      | director_facebook_likes   | The number of Facebook likes for the director's page         | Numeric     |  |
| 6.      | actor_3_facebook_likes    | The number of Facebook likes for the third actor in the cast | Numeric     |  |
| 7.      | actor_2_name              | The name of the second actor in the cast                     | String      |  |
| 8.      | actor_1_facebook_likes    | The number of Facebook likes for the lead actor in the cast  | Numeric     |  |
| 9.      | gross                     | The gross revenue generated by the movie                     | Numeric     |  |
| 10.     | genres                    | The genre(s) of the movie                                    | Categorical |  |
| 11.     | actor_1_name              | The name of the lead actor in the cast                       | String      |  |
| 12.     | movie_title               | The title of the movie                                       | String      |  |
| 13.     | cast_total_facebook_likes | The total number of Facebook likes for the entire cast       | Numeric     |  |
| 14.     | actor_3_name              | The name of the third actor in the cast                      | String      |  |
| 15.     | facenumber_in_poster      | The number of faces in the movie poster                      | Numeric     |  |
| 16.     | plot_keywords             | Keywords describing the movie's plot                         | String      |  |
| 17.     | movie_imdb_link           | The IMDb link for the movie                                  | String      |  |
| 18.     | language                  | The language of the movie                                    | Categorical |  |

BUDT737: Enterprise Cloud Computing and Big Data

| 19. | country                | he country where the movie was produced                       | Categorical |
|-----|------------------------|---------------------------------------------------------------|-------------|
| 20. | content_rating         | The content rating of the movie                               | Categorical |
| 21. | budget                 | The budget of the movie                                       | Numeric     |
| 22. | title_year             | The year the movie was released                               | Numeric     |
| 23. | actor_2_facebook_likes | The number of Facebook likes for the second actor in the cast | Numeric     |
| 24. | aspect_ratio           | The aspect ratio of the movie                                 | Numeric     |
| 25. | movie_facebook_likes   | The number of Facebook likes for the movie's page             | Numeric     |
| 26. | IMDB_user_reviews      | The number of user reviews on IMDb                            | Numeric     |
| 27. | IMDB_user_votes        | The number of user votes on IMDb                              | Numeric     |
| 28. | IMDB_score             | The IMDb score of the movie                                   | Numeric     |

### **Sample Data:**

| 1  | А     | В           | C          | D        | E           | F          | G           | Н          | - 1      | J         | K            | L           | M             | N           | 0        | P           | Q         | R         | S       |    |
|----|-------|-------------|------------|----------|-------------|------------|-------------|------------|----------|-----------|--------------|-------------|---------------|-------------|----------|-------------|-----------|-----------|---------|----|
| 1  | color | director_n  | num_critic | duration | director_fa | actor_3_fa | actor_2_na  | actor_1_fa | gross    | genres    | actor_1_     | namovie_t   | itlecast_tota | l_actor_3_n | facenumb | plot_keywo  | movie_im  | language  | country | CO |
| 2  | Color | Eric Leight | 145        | 82       | 2 0         | 388        | D.B. Sweer  | 1000       | 1.38E+08 | Adventure | Alfre Wo     | oc Dinosau  | ır 294        | Della Ree   | s 1      | egg iguan   | http://ww | / English | USA     | PG |
| 3  | Color | Ron Howar   | 175        | 110      | 2000        | 636        | T.J. Thyne  | 1000       | 2.6E+08  | Comedy    | F Clint Hov  | va How the  | G 4146        | Molly Shar  | 1 0      | box office  | http://ww | / English | USA     | PG |
| 4  | Color | John Woo    | 237        | 123      | 610         | 653        | Dougray Sc  | 10000      | 2.15E+08 | Action Ad | Tom Crui     | s(Mission   | : In 11930    | Richard R   | 0        | cure miss   | http://ww | / English | USA     | PG |
| 5  | Color | Wolfgang F  | 231        | 130      | 249         | 461        | Mary Elizal | 784        | 1.83E+08 | Action Ad | Karen All    | eı The Perf | fec 2684      | Bob Gunto   | 0        | death fish  | http://ww | / English | USA     | PG |
| 6  | Color | Roland Em   | 192        | 142      | 776         | 1000       | Adam Bald   | 13000      | 1.13E+08 | Action Dr | Heath Le     | d The Pati  | rio1 19454    | Tom Wilki   | r 1      | american    | http://ww | / English | USA     | R  |
| 7  | Color | Dominic Se  | 175        | 127      | 57          | 3000       | Angelina Jo | 12000      | 1.02E+08 | Action Cr | i Nicolas (  | Ca Gone in  | Si) 29069     | Robert Du   | ١ 1      | auto theft  | http://ww | / English | USA     | PG |
| 8  | Color | Ridley Sco  | 265        | 171      | . 0         | 695        | Connie Nie  | 3000       | 1.88E+08 | Action Dr | a Djimon H   | lo Gladiato | or 652:       | Oliver Ree  | 0        | battlefield | http://ww | / English | USA     | R  |
| 9  | Color | Mark Dinda  | 141        | 78       | 3 10        | 253        | Wendie Ma   | 558        | 89296573 | Adventure | Eartha Ki    | tt The Emp  | per 2039      | John Fiedl  | € 1      | antidote c  | http://ww | / English | USA     | G  |
| 10 | Color | Bibo Berge  | 82         | 89       | 10          | 442        | Rosie Pere  | 2000       | 50802661 | Adventure | Frank We     | ell The Roa | dt 3372       | Elton John  | 1        | adventure   | http://ww | / English | USA     | PG |
| 11 | Color | Robert Zer  | 185        | 130      | 0           | 568        | Amber Val   | 11000      | 1.55E+08 | Drama Fa  | a Harrison   | F What Lie  | es 12890      | Miranda C   | 0        | ghost hau   | http://ww | / English | USA     | PG |
| 12 | Color | McG         | 181        | 94       | 368         | 466        | LL Cool J   | 13000      | 1.25E+08 | Action Ad | r Bill Murra | y Charlie'  | s A 15419     | Kelly Lync  | r 0      | booty shal  | http://ww | / English | USA     | PG |
| 13 | Color | Paul Verho  | 180        | 119      | 719         | 423        | Kim Dicker  | 833        | 73209340 | Action Ho | Greg Gru     | nl Hollow N | 4a 2356       | Joey Slotn  | i 0      | experimen   | http://ww | / English | USA     | R  |

#### **Research Questions:**

Let us delve into why we are executing this project. Let us look at some of the research questions that this project answers-

- 1. The first objective of our research endeavors to illuminate the nuanced relationship between directors, genres, and audience reception by determining the average IMDB rating associated with each director across the spectrum of genres they have contributed to. This investigation seeks to uncover the distinctive impact of directors within specific genres, offering insights into their storytelling prowess and cinematic execution across diverse narrative landscapes. By discerning patterns in directorial influence and genrespecific ratings, our analysis aims to provide valuable guidance for industry stakeholders, enabling informed decisions regarding directorial assignments, genre exploration, and strategic collaborations.
- 2. The second objective is to delve into the relationship between concatenated genre names and IMDB ratings using SQL queries in PySpark. By concatenating genre names and analyzing their impact on IMDB ratings, we aim to identify genre combinations associated with higher ratings. This analysis provides valuable insights into audience preferences and tastes, informing content creators and filmmakers about the most effective genre combinations to maximize audience engagement and IMDB ratings.
- 3. The third objective is to predict whether an IMDB rating will be high or not based on various factors. For this we are going to use a supervised learning model. By training a predictive model on features such as director information, movie duration, cast details, budget, and more, we aim to classify movies into categories of high or low IMDB ratings. This analysis enables filmmakers, producers, and industry professionals to anticipate the potential success of a movie based on its characteristics before its release. By understanding the factors that contribute to high IMDB ratings, stakeholders can make informed decisions regarding production strategies, marketing efforts, and resource allocation, ultimately maximizing the likelihood of achieving favorable ratings and audience reception.
- 4. The fourth objective is to investigate relationships between actors, movies and directors using graph frame analysis. By constructing a graph that connects actors, movies, and directors based on their interactions and collaborations, we aim to uncover patterns and

insights into the dynamics of the film industry. This analysis enables us to identify influential actors and directors, explore collaboration networks within the industry, and understand the impact of these relationships on movie success. Through PySpark's graph processing capabilities, this investigation offers valuable insights into the complex network of relationships within the film industry, empowering stakeholders to make informed decisions and strategic partnerships to enhance movie production and distribution.

5. The fifth objective is to group similar movies together based on their features. By clustering movies into cohesive groups, we aim to facilitate movie recommendations for users who prefer a particular movie. This approach allows for personalized recommendations tailored to individual preferences, enhancing user satisfaction and engagement with movie platforms.

#### Methodology:

In this project, we initiated a thorough data cleaning and preprocessing phase for the movie dataset, focusing on ensuring data integrity and quality. This involved addressing missing values, eliminating duplicates, and standardizing data formats. Notably, we imputed missing numeric values with their respective mean and median to mitigate potential biases or inaccuracies in the dataset, thereby enhancing the reliability of our subsequent analyses.

Following this, we delved into leveraging SQL using PySpark to glean insights from our dataset. We executed complex queries and extracted insights including identifying the highest average IMDB score for each director based on their movie genres. This allowed us to discern patterns in ratings corresponding to different directors. Additionally, we explored the highest IMDB ratings based on various genre combinations, shedding light on how different genres impact IMDB ratings.

In feature engineering, we employed various techniques to enrich the dataset and bolster model performance. This encompassed creating new features such as "popular actor 1" which was analyzing the percentage of the actor's popularity, providing insights into the significance of lead actor popularity. We also conducted transformations on existing features and encoded categorical variables. Through min-max scaling, one-hot encoding, vector assembly, and string indexing, we categorized our data, capturing complex relationships between features and the target variable, thereby enhancing the predictive power of our models.

For model selection and evaluation in supervised learning, we meticulously devised a robust framework. This entailed splitting the data into training and testing sets, selecting appropriate machine learning algorithms such as decision tree and random forest, and tuning hyperparameters. By evaluating model performance metrics, we identified the best-performing model for our specific problem domain. Furthermore, we planned to explore patterns using unsupervised learning models by creating clusters to discern similarities among movies. This approach enabled us to identify different clusters in which movies fall, providing valuable insights into movie categorization.

Finally, we focused on interpreting and communicating results effectively. Utilizing graph frames, we visualized data based on actors, directors and movies, mapping them with movies to empower stakeholders with actionable insights derived from our analysis.

#### **Results and Finding:**

Employing PySpark SQL, we delved into the dataset, uncovering broader insights and discerning patterns in ratings associated with diverse directors and genres. Through this exploration, we aimed to understand the factors influencing IMDB ratings, with a focus on identifying significant variables contributing to high ratings. The decision tree model can predict with a 72.44 % confidence whether a movie is going to have a high rating or not.

To enrich our dataset and enhance predictive power, we employed advanced feature engineering techniques. These methods enabled us to capture intricate relationships between features and the target variable, thereby improving the accuracy of our predictive models.

After thorough analysis, we have identified that movies often encompass multiple genres, and our research has unveiled the combinations that consistently yield favorable outcomes. Our findings reveal that the combination of animation and drama stands out as a noteworthy exemplar, boasting the highest average IMDB rating of 7.36. This insight underscores the potency of genre synergy in captivating audience interest and underscores the potential for strategic genre combinations to enhance a movie's reception and acclaim.

Furthermore, our research extended to analyzing the proficiency of directors across various genres, gauging their average IMDB scores within each genre. This endeavor serves to provide valuable insights not only to the directors themselves but also to producers and audiences alike. By discerning which directors excel in specific genres, stakeholders can make informed decisions regarding directorial assignments and genre selection, thereby increasing the likelihood of movie success and higher IMDB ratings. Lastly, we constructed a comprehensive graph frame that interconnects actors, directors, and movies. This initiative aimed to explore potential patterns of collaboration and preference among directors and actors. By investigating whether directors frequently collaborate with the same actors across multiple projects, we sought to validate the notion that such partnerships contribute to a director's success. Through this analysis, we aimed to provide empirical evidence to substantiate or debunk this widely held belief in the film industry. Overall, our project aims to provide valuable insights into the factors influencing movie ratings and to develop a robust predictive model for understanding the likelihood of a movie receiving a high IMDB rating.

| 4                |           |                    |
|------------------|-----------|--------------------|
| director_name    | genre     | highest_avg_score  |
| Jean-Marie Poiré | Comedy    | 5.8                |
| Mark Romanek     | Drama     | 7.0                |
| Danny Provenzano | Drama     | 5.4                |
| Bill Condon      | Drama     | 6.5                |
| Tom Tykwer       | Drama     | 7.5                |
| Nacho Vigalondo  | Horror    | 7.2                |
| Errol Morris     | War       | 7.5                |
| James Kerwin     | Drama     | 5.4                |
| Ian Sharp        | Action    | 6.5                |
| Hugh Hudson      | Adventure | 5.6                |
| Britt Allcroft   | Adventure | 3.6                |
| Michael Hoffman  | Drama     | 6.8000000000000001 |
| Paul Schrader    | Biography | 6.6                |
| Jake Kasdan      | Comedy    | 5.833333333333333  |
| Saul Dibb        | Biography | 6.9                |
| Nora Ephron      | Biography | 7.0                |
| Ronan Chapalain  | Sci-Fi    | 6.9                |
| Robert Luketic   | Comedy    | 5.95               |
| Martin Scorsese  | Drama     | 8.0                |
| François Ozon    | Drama     | 6.8                |
| +                | ·         | +                  |

| genre_combination    |                     |
|----------------------|---------------------|
| Animation, Drama     | 7.3666666666666666  |
| Animation, Comedy    | 7.3333333333333333  |
| Action, Adventure    | 7.1                 |
| Action, Adventure    | 6.95                |
| Adventure, Drama     | 6.936842105263159   |
| Action, Animation    | 6.933333333333334   |
| Adventure, Animat    | 6.88                |
| Drama                | 6.747131147540984   |
| Action, Adventure    | 6.673333333333335   |
| Adventure, Comedy    | 6.65                |
| Adventure, Animation | 6.6480000000000001  |
| Action, Adventure    | 6.611111111111111   |
| Comedy, Drama        | 6.477889447236179   |
| Adventure            | 6.4604166666666645  |
| Action, Adventure    | 6.423529411764707   |
| Action, Drama        | 6.37500000000000004 |
| Adventure, Animat    | 6.344               |
| Action, Adventure    | 6.2632530120481915  |
| Animation, Comedy    | 6.12222222222223    |
|                      | 6.090882352941176   |
| +                    | ++                  |

only showing top 20 rows

only showing top 20 rows



#### **Conclusion:**

In conclusion, our project represents a comprehensive endeavor to analyze movie data using PySpark, employing a range of methodologies to extract valuable insights into the determinants of IMDB ratings and movie success. Through the application of supervised learning models, we achieved a predictive accuracy of 72.44% in discerning whether a movie's IMDB rating would be high or low, thereby empowering filmmakers and industry professionals to make informed decisions regarding production strategies and resource allocation. Moreover, our exploration of unsupervised learning techniques enabled us to cluster similar movies together, facilitating personalized recommendations and enhancing user engagement on movie platforms.

Furthermore, our investigation into the intricate relationships between actors, directors, and movies uncovered compelling patterns and dynamics within the film industry, shedding light on collaboration networks and their impact on movie success. Leveraging graph frame analysis, we revealed valuable insights into the interconnectedness of industry stakeholders and their contributions to cinematic endeavors. Our research also underscored the significance of genre combinations in shaping audience reception, with the animation and drama genre emerging as a notable exemplar of success. Overall, our study contributes to a deeper understanding of the multifaceted dynamics driving the film industry, offering actionable insights for stakeholders to enhance decision-making processes and maximize the potential for movie success through data-driven strategies.