

18MAB102T Advanced Calculus and Complex Analysis

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING AND TECHNOLOGY, SRMIST, KATTANKULATHUR, TAMIL NADU, INDIA. Regulation 2018

Contents

UNI	[T I	1
	Evaluation of double integration:Cartesian coordinates	1
	Evaluation of double integration:Polar coordinates	11
	Evaluation of double integral by changing the order of integration	19
	Tutorial1	31
	Area as Double integral	41
	Conversion from Cartesian to polar in double integrals	53
	Tutorial2	57
	Triple integration in Cartesian coordinates	67
	Volume as Triple integral	74
	Tutoriol2	90

A double integral is evaluated by repeated single variable	
integration integrate with respect to one veriable treating the	
integration, integrate with respect to one variable treating the	
other variable as constant.	
Order of integration:	
Case 1:	
If the region $R = \{(x, y) a \le x \le b, c \le y \le d\}$ where	
a, b, c, d are constants, then	
$\int \int_{R} f(x,y) dx dy = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dx \right] dy$ constants, the order immaterial.	of x and y are der of integration is
$= \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$	
Case 2:	
If the region $R = \{(x, y) a \le x \le b, \ g(x) \le y \le h(x) \}$ where	
a, b are constants, then	
Here the limits f	for x are constants
and the limits for	y are functions of
$b \mid h(x)$	te first with respect
$\int \int_{R} f(x,y) dx dy = \int_{a}^{b} \left[\int_{g(x)}^{h(x)} f(x,y) dy \right] dx$ to y and then into	egrate with respect
to x .	
Case 3:	
If the region $R = \{(x, y) g(y) \le x \le h(y), c \le y \le d, \}$ where	
c,d are constants, then	
Here the limits f	for y are constants
	x are functions of
$\int_{d} h(y)$ y , so we integrate	e first with respect
$\int \int_{R} f(x,y) dx dy = \int_{c}^{d} \int_{g(y)}^{h(y)} f(x,y) dx dy$	egrate with respect
to y.	

Eva	aluation of double integration: Cartesian coordinates	Solving Tip!
Vorking	Procedure:	
Step1:	Write I=the given integral.	
Step2:	See the limits of the integral and decide the case from order of integration.	
Step3:	Perform the inside integration according to the order.	
Step4:	Upper limit minus lower limit substitution:Put a minus between the two brackets. Fill up in the first bracket as a substitution of the upper limit where ever the integrated variable occurred and Do the same for the lower limit in the second bracket.	
Step5:	Double integral reduced to a single integral. Integrate it!	
Step6:	Perform the step4 that, Upper limit minus lower limit substitution	
Step7:	Simplification	

Evaluation of double integration: Cartesian coordinates	Solving Tip!
1.Evaluate $\int_{0}^{1} \int_{0}^{1} dx dy$	
Solution:	
Let $I = \int_0^1 \int_0^1 dx dy$	
$= \int_{0}^{1} \left[\int_{0}^{1} dx \right] dy$	Since limits are constants, we can take integration first with respect to any variable and then integrate with respect to the rest of the variable.
$= \int\limits_0^1 \left[x\right]_0^1 dy$	We taken the first integration with respect to \boldsymbol{x}
$= \int_{0}^{1} \left[(1) - (0) \right] dy$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\int\limits_{0}^{1}\left[1\right] dy$	simplification
$=\int\limits_0^1 dy$	Integrate with respect to y
$= [y]_0^1$	
=[(1)-(0)]	upper limit and lower limit substitution
= 1	simplification

Evaluation of double integration: Cartesian coordinates	Solving Tip!
2.Evaluate $\int\limits_0^1\int\limits_0^2 x(x+y)dxdy$	
Solution:	
Let $I = \int_0^1 \int_0^2 x(x+y)dxdy$	
$= \int_{0}^{1} \left[\int_{0}^{2} (x^2 + xy) dx \right] dy$	Since limits are constants, we can take integration first with respect to any variable and then integrate with respect to the rest of the variable.
$= \int_{0}^{1} \left[\frac{x^3}{3} + \frac{x^2}{2} y \right]_{0}^{2} dy$	We taken the first integration with respect to x
$= \int_{0}^{1} \left[\left(\frac{2^{3}}{3} + \frac{2^{2}}{2} y \right) - \left(\frac{0^{3}}{3} + \frac{0^{2}}{2} y \right) \right] dy$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$= \int_0^1 \left[\frac{8}{3} + 2y \right] dy$	simplification
	Integrate with respect to y
$= \left[\frac{8}{3}.y + 2.\frac{y^2}{2}\right]_0^1$	
$= \left[\left(\frac{8}{3} \cdot 1 + 1 \right) - \left(\frac{8}{3} \cdot 0 + 0^2 \right) \right]$	upper limit and lower limit substitution
$=\frac{11}{3}$	simplification

Evaluation of double integration: Cartesian coordinates	Solving Tip!
3.Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$	
Solution:	
Let $I = \int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{1 - x^2}\sqrt{1 - y^2}}$	
	Since limits are constants, we can
$=\int_{0}^{1} \frac{1}{\sqrt{1-y^2}} \left[\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx \right] dy$	take integration first with respect to any variable and then integrate with
$0 \sqrt{1-y^2} \left[0 \sqrt{1-x^2} \right]$	respect to the rest of the variable.
1 1	We taken the first integration with
$= \int_{0}^{1} \frac{1}{\sqrt{1-y^2}} \left[\sin^{-1} x \right]_{0}^{1} dy$	respect to x
1 1	Instead of x, put the upper limit
$= \int_{0}^{1} \frac{1}{\sqrt{1-y^{2}}} \left[\left(\sin^{-1} 1 \right) - \left(\sin^{-1} 0 \right) \right] dy$	substitution minus put the lower limit substitution
$^{rac{1}{lpha}}$ 1 $^{ m r}\pi$ 7	simplification
$= \int_{0}^{1} \frac{1}{\sqrt{1-y^2}} \left[\frac{\pi}{2} - 0 \right] dy$	Simplification
$= \frac{\pi}{2} \int_{0}^{1} \frac{1}{\sqrt{1 - y^2}} dy$	Take out the constant term
	Integrate with respect to y
$=\frac{\pi}{2}\left[\sin^{-1}y\right]_0^1$	
π [(· -1 a) (· -1 a)]	upper limit and lower limit
$= \frac{\pi}{2} \left[\left(\sin^{-1} 1 \right) - \left(\sin^{-1} 0 \right) \right]$	substitution
$=\frac{\pi}{2}\frac{\pi}{2}$	simplification
$=\frac{\pi^2}{4}$	simplification
Note:	
We have an another method $I = \int_0^1 \frac{dx}{\sqrt{1-x^2}} \cdot \int_0^1 \frac{dy}{\sqrt{1-y^2}}$	If the limits are constants and integrand is variable separable.

Evaluation of double integration: Cartesian coordinates	Solving Tip!
4.Evaluate $\int\limits_0^1 \int\limits_0^{x^2} (x^2+y^2)dydx$	
Solution:	
Let $I = \int_{0}^{1} \int_{0}^{x^2} (x^2 + y^2) dy dx$	
$= \int_{0}^{1} \left[\int_{0}^{x^2} (x^2 + y^2) dy \right] dx$	Since one of the limit is variable(Here in x), we can take integration first with respect to the absent variable(i.e, y) and then integrate with respect to the rest of the variable(i.e., x).
$= \int_{0}^{1} \left[x^{2}y + \frac{y^{3}}{3} \right]_{0}^{x^{2}} dx$	Integrate, first with respect to y
$= \int_{0}^{1} \left[\left(x^{2}x^{2} + \frac{(x^{2})^{3}}{3} \right) - \left(x^{2}(0) + \frac{(0)^{3}}{3} \right) \right] dx$	$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}$
$= \int_0^1 \left[x^4 + \frac{x^6}{3} \right] dx$	Instead of x , put the upper limit substitution minus put the lower limit substitution
$= \left[\frac{x^5}{5} + \frac{x^7}{21} \right]_0^1$	Integrate with respect to x
$= \left[\left(\frac{1}{5} + \frac{1}{21} \right) - \left(\frac{0}{5} + \frac{0}{21} \right) \right]$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\frac{1}{5}+\frac{1}{21}$	simplification
$= \frac{21+5}{105}$ $= \frac{26}{105}$	

Evaluation of double integration:Cartesian coordinates	Solving Tip!
LEARNING TIME EXCERCISE	
1.Evaluate $\int_{0}^{1} \int_{1}^{2} dx dy$ Solution:	
Let $I = \int_{0}^{1} \int_{1}^{2} dx dy$	
$=\int\limits_0^1 \left[\qquad ight] dy$	Since limits are constants, we can take integration first with respect to any variable and then integrate with respect to the rest of the variable.
$=\int_{0}^{1}$ dy	We taken the first integration with respect to \boldsymbol{x}
$= \int_{0}^{1} [(2) - (1)] dy$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\int\limits_0^1 dy$	simplification
$=\int_{0}^{1}dy$	Integrate with respect to y
$=[\]_0^1$	
$= [(\) - (\)]$	upper limit and lower limit substitution
=1	simplification

Evaluation of double integration: Cartesian coordinates	Solving Tip!
2.Evaluate $\int_{0}^{1} \int_{1}^{2} xy dx dy$	
Solution:	
Let $I = \int_{0}^{1} \int_{1}^{2} xy dx dy$	
$=\int\limits_0^1 y\left[\qquad ight] dy$	Since limits are constants, we can take integration first with respect to any variable and then integrate with respect to the rest of the variable.
$=\int\limits_0^1 y\left[\right]_1^2 dy$	We taken the first integration with respect to \boldsymbol{x}
$= \int_{0}^{1} y \left[\left(\frac{2^{2}}{2} \right) - \left(\frac{1}{2} \right) \right] dy$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\int_{0}^{1}$ dy	simplification
$=\frac{3}{2}\int_{0}^{1}ydy$	Take out the constant and integrate with respect to y
$=\frac{3}{2}\left[\right]_0^1$	
$=\frac{3}{2}\left[\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\right]$	upper limit and lower limit substitution
$=\frac{3}{4}$	simplification

Evaluation of double integration: Cartesian coordinates	Solving Tip!
3.Evaluate $\int\limits_{0}^{1}\int\limits_{0}^{\sqrt{x}}(x^{2}+y^{2})dydx$	
Solution:	
Let $I = \int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$	
$= \int_{0}^{1} \left[\int_{x}^{\sqrt{x}} (x^2 + y^2) dy \right] dx$	Since one of the limit is variable(Here in x), we can take integration first with respect to the absent variable(i.e, y) and then integrate with respect to the rest of the variable(i.e., x).
$= \int_0^1 \left[x^2 y + \frac{y^3}{3} \right]_x^{\sqrt{x}} dx$	Integrate, first with respect to y
$= \int_{0}^{1} \left[\left(x^{5/2} + \frac{x^{3/2}}{3} \right) - \left(x^{3} + \frac{x^{3}}{3} \right) \right] dx$	$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}$
$= \int_{0}^{1} \left[x^{5/2} + \frac{x^{3/2}}{3} - \frac{4x^{3}}{3} \right] dx$	Instead of x , put the upper limit substitution minus put the lower limit substitution
$= \left[\frac{x^{7/2}}{7/2} + \frac{x^{5/2}}{3 \times 5/2} - \frac{4}{3} \frac{x^4}{4} \right]_0^1$	Integrate with respect to x
$= \left[\left(\frac{2}{7} + \frac{2}{15} \right) - \left(\frac{1}{3} \right) \right]$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\frac{30+14-35}{105}$	simplification
$=\frac{44-35}{105}$	
$=\frac{9}{105}=\frac{3}{35}$	

Evaluation of double integration: Cartesian coordinates Solving Tip! 4.Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$ **Solution:** Let $I = \int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$ Since one of the limit is variable(Here in x), we can take integration first with respect to the $= \int_{0}^{1} \left| \int_{0}^{\sqrt{1+x^2}} \frac{dy}{1+x^2+y^2} \right| dx$ absent variable(i.e, y) and then integrate with respect to the rest of the variable(i.e., x). $= \int_{0}^{1} \left| \int_{0}^{\sqrt{1+x^{2}}} \frac{dy}{y^{2} + (\sqrt{x^{2}+1})^{2}} \right| dx$ $\int \frac{dx}{\sqrt{x^2 + a^2}} = \frac{1}{a} \tan^{-1} \frac{x}{a}$ $= \int_{0}^{1} \left[\frac{1}{\sqrt{x^2 + 1}} \tan^{-1} \frac{y}{\sqrt{x^2 + 1}} \right]_{1}^{\sqrt{1 + x^2}} dx$ Integrate, first with respect to y $= \int_{0}^{1} \frac{1}{\sqrt{r^2 + 1}} \left[\tan^{-1} (1) - \tan^{-1} (0) \right] dx$ Instead of x, put the upper limit $=\frac{\pi}{4}\int_{0}^{1}\frac{1}{\sqrt{x^{2}+1}}dx$ substitution minus put the lower limit substitution Integrate with respect to x. $= \frac{\pi}{4} \left[\log \left(x + \sqrt{x^2 + 1} \right) \right]_0^1$ $\int_{a}^{b} \frac{1}{\sqrt{x^2 + 1}} dx = \frac{\pi}{4} \left[\log \left(x + \sqrt{x^2 + 1} \right) \right]_{a}^{b}$ $= \frac{\pi}{4} \left[\left(\log \left(1 + \sqrt{2} \right) \right) - \left(\log \left(1 \right) \right) \right]$ Instead of x, put the upper limit substitution minus put the lower limit substitution $= \frac{\pi}{4} \log \left(1 + \sqrt{2}\right)$ simplification

Problems based on Evaluation of double integration:Polar coordinates	Solving Tip!
If $f(r,\theta)$ is defined over the region R in polar coordinates, then the double integral of $f(r,\theta)$ over R is	
$\iint\limits_R f(r,\theta) dr d\theta = \int\limits_{\theta_1}^{\theta_2} \int\limits_{f_1(\theta)}^{f_2(\theta)} f(r,\theta) dr d\theta$	
Formulae:	
1. $\int_{0}^{\pi/2} \cos^{n} \theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1 \text{ if } n \text{ is odd and } n \ge 3$	
$2. \int_{0}^{\pi/2} \cos^n \theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2} \text{ if } n \text{is even and } n \ge 3$	
3. $\int_{0}^{\pi/2} \sin^{n} \theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1 \text{ if } n \text{ is odd and } n \ge 3$	
4. $\int_{0}^{\pi/2} \sin^{n} \theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2} \text{ if } n \text{ is even and } n \ge 3$	
5. $\int [f(x)]^n \cdot f'(x) dx = \frac{[f(x)]^{n+1}}{n+1}$	

Problems based on Evaluation of double integration:Polar coordinates		Solving Tip!
Working	Procedure:	
Step1:	Write I=the given integral.	
Step2:	See the limits of the integral and decide the case from order of integration.	
Step3:	Perform the inside integration according to the order.	
Step4:	Upper limit minus lower limit substitution:Put a minus between the two brackets. Fill up in the first bracket as a substitution of the upper limit where ever the integrated variable occurred and Do the same for the lower limit in the second bracket.	
Step5:	Double integral reduced to a single integral. Integrate it!	
Step6:	Perform the step4 that, Upper limit minus lower limit substitution	
Step7:	Simplification	

Problems based on Evaluation of double integration:Polar coordinates	Solving Tip!
1. Evaluate $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^2 dr d\theta$	
Let $I = \int\limits_{-\pi/2}^{\pi/2} \int\limits_{0}^{2\cos\theta} r^2 dr d\theta$	
$= \int_{-\pi/2}^{\pi/2} \left[\frac{r^3}{3} \right]_0^{2\cos\theta} d\theta$	$\int_{l}^{u} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{l}^{u}$
$= \int_{-\pi/2}^{\pi/2} \left[\left(\frac{2^3 \cos^3 \theta}{3} \right) - \left(\frac{0}{3} \right) \right] d\theta$	upper limit minus lower limit substitution
$= \int_{-\pi/2}^{\pi/2} \left[\frac{8\cos^3\theta}{3} - 0 \right] d\theta$	
$=\frac{8}{3}\int_{-\pi/2}^{\pi/2}\cos^3\theta d\theta$	Integrate with respect to θ
$= \frac{8}{3}.2 \int_{0}^{\pi/2} \cos^{3}\theta d\theta : \cos\theta \text{ is an even funtion.}$	
$=\frac{16}{3}.\frac{2}{3}.1=\frac{32}{9}$	For even function, $\int_{-a}^{a} f(x)dx = 2 \cdot \int_{0}^{a} f(x)dx$

Problems based on Evaluation of double integration:Polar coordinates	Solving Tip!
2. Evaluate $\int\limits_0^{\pi/2}\int\limits_0^{\cos\theta}r^2drd\theta$	
Let $I = \int_{0}^{\pi/2} \int_{0}^{\cos \theta} r^2 dr d\theta$	
$= \int_{0}^{\pi/2} \left[\frac{r^3}{3} \right]_{0}^{\cos \theta} d\theta$	$\int_{l}^{u} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{l}^{u}$
$= \int_{0}^{\pi/2} \left[\left(\frac{\cos^3 \theta}{3} \right) - \left(\frac{0}{3} \right) \right] d\theta$	upper limit minus lower limit substitution
$= \int_{0}^{\pi/2} \left[\frac{\cos^3 \theta}{3} - 0 \right] d\theta$	
$=\frac{1}{3}\int_{0}^{\pi/2}\cos^{3}\theta d\theta$	$\int_{0}^{\pi/2} \cos^{n} \theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1 \text{ if } n \text{ is odd.}$
$= \frac{1}{3} \cdot \frac{2}{3} \cdot 1 = \frac{2}{9}$	

Problems based on Evaluation of double integration:Polar coordinates	Solving Tip!
3. Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r\sin\theta dr d\theta.$	
Solution:	
$\therefore I = \int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r \sin\theta dr d\theta$	First integrate with respect to r
$= \int_{0}^{\pi} \left[\frac{r^2}{2} \right]_{0}^{a(1+\cos\theta)} \sin\theta d\theta$	$\int_{l}^{u} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{l}^{u}$
$= \int_{0}^{\pi} \left[\frac{a^2 (1 + \cos \theta)^2}{2} \right] \sin \theta d\theta$	
$= \frac{-a^2}{2} \int_0^{\pi} (1 + \cos \theta)^2 \cdot -\sin \theta d\theta$	$\int_{l}^{u} [f(x)]^{n} f'(x) dx = \left[\frac{[f(x)]^{n+1}}{n+1} \right]_{l}^{u}$
$= \frac{-a^2}{2} \left[\frac{(1+\cos\theta)^3}{3} \right]_0^{\pi}$	
$= \frac{-a^2}{2} \left[\left(\frac{(1+\cos \pi)^3}{3} \right) - \left(\frac{(1+\cos 0)^3}{3} \right) \right]$	
$= \frac{-a^2}{2} \left[\left(\frac{(1+(-1))^3}{3} \right) - \left(\frac{(1+1)^3}{3} \right) \right]$	
$= \frac{-a^2}{2} \left[(0) - \frac{2^3}{3} \right]$	
$=\frac{-a^2}{2}\left[-\frac{8}{3}\right]$	
$=\frac{4a^2}{3}$	

Evaluation of double integration:Polar coordinates

Solving Tip!

LEARNING TIME EXCERCISE

1. Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{2\cos\theta} r^2 dr d\theta$$

Let
$$I = \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} r^2 dr d\theta$$

$$=\int\limits_0^{\pi/2} \left[\quad \right]_0^{2\cos\theta} d\theta$$

$$= \int_{0}^{\pi/2} \left[\left(\right) - \left(\right) \right] d\theta$$

$$=\int\limits_0^{\pi/2} \left[\qquad \qquad \right] d\theta$$

$$=\frac{8}{3}\int_{0}^{\pi/2} \theta d\theta$$

$$= \frac{3}{3}.$$
$$= \frac{16}{9}$$

$$\int_{l}^{u} x^{n} dx = \left[\frac{x^{n+1}}{n+1} \right]_{l}^{u}$$

upper limit minus lower limit substitution

Integrate with respect to θ

Evaluation of	f double integration	n:Polar coordinates	Solving Tip!
2. Evaluate $\int_{0}^{\pi/2} \int_{0}^{\pi/2} s$	$\sin(\theta + \phi)d\theta d\phi$		
Let $I = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(\theta)$	$(heta+\phi)d heta d\phi$		
$=\int\limits_{0}^{\pi/2} [$	$\int_0^{\pi/2} d\phi$		$\int_{l}^{u} \sin(ax+b)dx = \left[\frac{-\cos(ax+b)}{a}\right]_{l}^{u}$
$=\int\limits_0^{\pi/2} \biggl[\Bigl($) – ($)\Big]d heta$	upper limit minus lower limit substitution
$=\int\limits_{0}^{\pi/2} [$	$]d\phi$		$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$
=[$ brack]_0^{\pi/2}$		Integrate with respect to θ
= [() – ()]	
= 0 + 1 + 1 - 1 $= 2$	- 0		

Evaluation of double integration:Polar coordinates	Solving Tip!
3. Evaluate $\int_{0}^{\pi/2} \int_{a\cos\theta}^{2a\cos\theta} r^2 dr d\theta$	
Let $I = \int_{0}^{\pi/2} \int_{a\cos\theta}^{2a\cos\theta} r^2 dr d\theta$	
$= \int_{0}^{\pi/2} \left[\int_{a\cos\theta}^{2a\cos\theta} d\theta \right]$	$\int_{l}^{u} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{l}^{u}$
$= \frac{1}{3} \int_{0}^{\pi/2} [() - ()] d\theta$	upper limit minus lower limit substitution
$=\frac{1}{3}\int_{0}^{\pi/2} \left[\right] d\theta$	
$=\frac{7a^3}{3}\int_0^{\pi/2} \left[\qquad \right] d\theta$	Integrate with respect to θ
$=\frac{7a^3}{3}.$	$\int\limits_0^{\pi/2} \sin^n\theta d\theta = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdot \cdot \cdot \frac{2}{3} \cdot 1 \text{ if } n \text{is odd and } n \geq 3$
$=\frac{14a^3}{9}$	

Eva	aluation of double integration: Change of order	Solving Tip!
Change of order of integration		
order of i	the double integration according to the limits i.e., by integration. This may sometimes be difficult to evaluate ge in the order of integration may makes the evaluation	
from the region maintegration of two do	g this we have to identify the region R of integration limits of the given double integral. Sometimes this ay split into two regions when we change the order of on and hence the given double integral will be the sum puble integrals. g Procedure:	
Step1:	Write I=the given integral and Identify the boundaries of the region.	
Step2:	Draw the geometrical representation of I and label it as 'Before the change of order'. In the region, draw a strip PQ which is parallel to the corresponding first integration's with respect to variable's axis and the end values of the PQ's are the curve's equation representation (in terms of that variable) of where the ends lie on the curve. i.e., the limits of inside integration is end values of PQ and outside integral's limits are the values in which PQ covers the region from where to where.	
Step3:	Find the point of intersections.	
Step4:	Draw the same diagram without strip and label it as 'After change the order'	

Eva	aluation of double integration: Change of orde	r	Solving Tip!
	In this region, change the position of the strip		
Step5:	as vertical(horizontal) when it is horizontal(vertical) before.		
	Write I= that mathematical representation for		
Step6:	this diagram. i.e., inside integral limits are the end values of the strip and outside integral		
	limits are the values from where to where we move the strip to cover the region.		
Step7:	Evaluate this integral by follow the steps which mentioned in either cartesian or polar		
	coordinates		

Evaluation of double integration: Change of order Solving Tip! 1. Change the order of integration and evaluate $\int\limits_{0}^{a}\int\limits_{x^{2}/a}^{2a-x}xydxdy.$ **Solution:** Let $I = \int_{0}^{a} \int_{x^2/a}^{2a-x} xy dy dx$ The region of integration is bounded by the lines Identify the boundaries of the $x = 0, x = a, ay = x^2, y = 2a - x.$ region In the given integral, first integrate with respect to y and then Draw the graph for "order of with respect to x. After changing the order we have to first integration" integrate with respect to x, then with respect to y. Given order of integration In the given integral, according to the limits, first integration with respect to y. ... we draw the strip PQ parallel to y axis **To find A:**Solve $y = x^2/a - - - (1)$ and y = 2a - x - - - (2)Find the point of intersections $\therefore \frac{x^2}{a} = 2a - x$ Use (1) in (2) $\Rightarrow x^2 = 2a^2 - ax$ It is quadratic. We use $x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2.4}$ $\Rightarrow x^2 + ax - 2a^2 = 0$ $\Rightarrow x = \frac{-a \pm \sqrt{a^2 - 4(1)(-2a^2)}}{2(1)}$ Here A = 1; B = a; $C = -2a^2$ $=\frac{-a\pm\sqrt{a^2+8a^2}}{2}$ Simplification

Evaluation of double integration: Change of order Solving Tip! $=\frac{-a\pm\sqrt{9a^2}}{2}=\frac{-a\pm3a}{2}=\frac{-4a}{2},\frac{2a}{2}=a$ Here the area lies on I quadrant. Substitute x value in (2), we get $(2) \Rightarrow y = 2a - a = a$ $\therefore A(a,a)$ To find B:Solve x = 0 - - (3) and y = 2a - x - - (4)Find the point of intersection \therefore (4) $\Rightarrow y = 2a - 0 = a$ Use (3) in (4) B(0,2a)After changing the order, first After change of order integrate with respect to x. So draw the strip parallel to x-axis. Here Q traverses on the two curves so that we divide the integral as two parts. $I = \iint_{CAB} xydxdy$ Since one end of the strip traverses on two curves, the region OAB $=\iint_{CAC} xydxdy + \iint_{CAB} xydxdy$ splits in to two regions OAC and CAB. For OAC, the strip PQ and for the $= \int_{0}^{a} \int_{0}^{\sqrt{ay}} xy dx dy + \int_{a}^{2a} \int_{0}^{2a-y} xy dx dy$ CAB, the strip PQ'. $= \int_{0}^{a} y \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{ay}} dy + \int_{a}^{2a} y \left[\frac{x^{2}}{2} \right]_{0}^{2a-y} dy$ $= \int_{0}^{a} y \left[\frac{ay}{2} \right] dy + \int_{a}^{2a} y \left[\frac{(2a-y)^{2}}{2} \right] dy$ $= \frac{a}{2} \int_{0}^{a} y^{2} dy + \frac{1}{2} \int_{a}^{2a} y \left[4a^{2} - 4ay + y^{2}\right] dy$ $= \underbrace{\frac{a}{2} \left[\frac{y^3}{3} \right]^a_{a} + \frac{1}{2} \int_{a}^{2a} \left[4a^2y - 4ay^2 + y^3 \right] dy}_{a}$

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Evaluation of double integration: Change of order

Solving Tip!

$$= \frac{a}{2} \left[\frac{y^3}{3} \right]_0^a + \frac{1}{2} \left[4a^2 \frac{y^2}{2} - 4a \frac{y^3}{3} + \frac{y^4}{4} \right]_a^{2a}$$

$$= \frac{a}{2} \left[\frac{a^3}{3} \right] + \frac{1}{2} \left[\left(8a^4 - \frac{32a^4}{3} + \frac{16a^4}{4} \right) - \left(2a^4 - \frac{4a^4}{3} + \frac{a^4}{4} \right) \right]$$

$$= \frac{a^4}{6} + \frac{1}{2} \left[\frac{5a^4}{12} \right]$$

$$= \frac{a^4}{6} + \frac{5a^4}{24} = \frac{3a^4}{8}$$

2. Change the order of integration in $I = \int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ and hence evaluate.

Solution:

Let
$$I = \int\limits_0^{4a} \int\limits_{x^2/4a}^{2\sqrt{ax}} dy dx$$

The region of integration is bounded by the curves $x^2=4ay$ and $y^2=4ax$.

In the given integral, first integrate with respect to y and then with respect to x. After changing the order we have to first integrate with respect to x, then with respect to y.

Given order of integration

Identify the boundaries of the region

Draw the graph for "order of integration"

In the given integral, according to the limits, first integration with respect to y. \therefore we draw the strip PQ parallel to y axis

Evaluation of double integration: Change of order	Solving Tip!
To find the intersection points: Solve $y = x^2/4a (1)$ and $y = 2\sqrt{ax} (2)$	Find the point of intersections
$\therefore 2\sqrt{ax} = \frac{x^2}{4a}$	Use (2) in (1)
$\Rightarrow 4ax = \frac{x^4}{16a^2}$	Squaring on both sides
$\Rightarrow 64a^3x = x^4$	Simplification
$\Rightarrow x^4 - 64a^3x = 0$	Simplification
$\Rightarrow x(x^3 - 64a^3) = 0$	Simplification
\Rightarrow either $x = 0$ or $(x^3 - 64a^3) = 0$	Simplification
For $x = 0, : (1) \Rightarrow y = (0)^2/4a = 0$	Substitution
CO(0,0)	One of the point of intersection
For $(x^3 - 64a^3) = 0$, $\Rightarrow x^3 = 64a^3$	Simplification
$\Rightarrow x^3 = (4a)^3$	Simplification
$\Rightarrow x = 4a$	Simplification
$\therefore (1) \Rightarrow y = (4a)^2/4a = 4a$	Substitution
A(4a,4a)	Simplification
After change of order $x = \frac{y^2}{4a}$ $Q x = 2\sqrt{ay}$	After changing the order, first integrate with respect to x. So draw the strip parallel to x-axis. Here the ends P and Q are representing the lower and upper limits of the inside integral and the outside integral limits are the values which the strip PQ moves from where to where for cover the region.

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Evaluation of double integration: Change of order	Solving Tip!
$\therefore I = \int_{0}^{4a} \int_{0}^{2\sqrt{ay}} dx dy$ $\frac{y^2}{4a}$	Integral representation for change of order
$=\int\limits_0^{4a} \left[\int\limits_2^{2\sqrt{ay}} dx \\ \frac{y^2}{4a} \right] dy$	
$= \int_{0}^{4a} \left[x\right] \frac{y^2}{4a} dy$	
$= \int_{0}^{4a} \left[\left(2\sqrt{ay} \right) - \left(\frac{y^2}{4a} \right) \right] dy$	
$= \left[2\sqrt{a}\frac{y^{3/2}}{3/2} - \frac{y^3}{12a}\right]_0^{4a}$	
$= \left[\left(2\sqrt{a} \frac{(4a)^{3/2}}{3/2} - \frac{(4a)^3}{12a} \right) - \left(2\sqrt{a} \frac{(0)}{3/2} - \frac{(0)^3}{12a} \right) \right]$	$\sqrt{a}(a^{3/2}) = a^{1/2} \cdot a^{3/2} = a^{\frac{1}{2} + \frac{3}{2}}$
$= \left[\frac{4}{3} \cdot (4)^{3/2} a^2 - \frac{16a^2}{3}\right]$	$= a^{\frac{4}{2}} = a^2$
$= \left[\frac{4}{3} \cdot (2)^3 a^2 - \frac{16a^2}{3} \right]$	$(4)^{3/2} = (\sqrt{4})^3 = 2^3 = 8$
$= \left[\frac{32a^2}{3} - \frac{16a^2}{3} \right]$	
$=\frac{16a^2}{3}$	
3. Evaluate $\int\limits_0^1\int\limits_x^{\sqrt{2-x^2}}\frac{x}{\sqrt{x^2+y^2}}dydx$ by changing the order of integration.	
Solution:	
Let $I = \int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2 + y^2}} dy dx$	
The region of integration is bounded by	
$x = 0, \ x = 1 \text{ and } y = x, y = \sqrt{2 - x^2}$	

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Evaluation of double integration: Change of order

Solving Tip!

$$y = \sqrt{2 - x^2} \Rightarrow y^2 = 2 - x^2 \Rightarrow x^2 + y^2 = 2$$

Which is the circle with center (0,0) and radius $\sqrt{2}$

In the given integral, first integrate with respect to y and then with respect to x. After changing the order we have to first integrate with respect to x, then with respect to y.

Draw the graph for "order of integration"

Given order of integration

In the given integral, according to the limits, first integration with respect to y. \therefore we draw the strip PQ parallel to y axis

The region of integration is OAB.

To find A, solve
$$y = x - - (1)$$
 and $x^2 + y^2 = 2 - - (2)$

$$(2) \Rightarrow x^2 + x^2 = 2$$

$$2x^2 = 2 \Rightarrow x = \pm 1$$

Use x value in (1), y = 1

And from the diagram, B is $(0, \sqrt{2})$

Since the point A is in I quadrant.

After changing the order, first integrate with respect to x. So draw the strip parallel to x-axis. Here Q traverses on the two curves so that we divide the integral as two parts.

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Evaluation of double integration: Change of order	Solving Tip!
$\therefore I = \iint_{OAC} \frac{x}{\sqrt{x^2 + y^2}} dx dy + \iint_{CAB} \frac{x}{\sqrt{x^2 + y^2}} dx dy$	
	Integral representation for change
	of order.
$= \int_{0}^{1} \int_{0}^{y} \frac{x}{\sqrt{x^{2} + y^{2}}} dx dy + \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2 - y^{2}}} \frac{x}{\sqrt{x^{2} + y^{2}}} dx dy$	
$= \frac{1}{2} \int_{0}^{1} \int_{0}^{y} (x^{2} + y^{2})^{-1/2} \cdot 2x dx dy + \frac{1}{2} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-y^{2}}} (x^{2} + y^{2})^{-1/2} \cdot 2x dx dy$	
$= \frac{1}{2} \int_{0}^{1} \left[\frac{(x^{2} + y^{2})^{1/2}}{1/2} \right]_{0}^{y} dy + \frac{1}{2} \int_{1}^{\sqrt{2}} \left[\frac{(x^{2} + y^{2})^{1/2}}{1/2} \right]_{0}^{\sqrt{2-y^{2}}} dy$	
$= \frac{1}{2} \int_{0}^{1} \left[\left(\frac{(y^2 + y^2)^{1/2}}{1/2} \right) - \left(\frac{(0 + y^2)^{1/2}}{1/2} \right) \right] dy$	
$+\frac{1}{2} \int_{1}^{\sqrt{2}} \left[\left(\frac{\left(\left(\sqrt{2-y^2} \right)^2 + y^2 \right)^{1/2}}{1/2} \right) - \left(\frac{(0+y^2)^{1/2}}{1/2} \right) \right] dy$	
$= \frac{1}{2} \int_{0}^{1} \left[\frac{(2y^{2})^{1/2}}{1/2} - \frac{y}{1/2} \right] dy$	
$+\frac{1}{2}\int_{1}^{\sqrt{2}} \left[\frac{(2-y^2+y^2)^{1/2}}{1/2} - \frac{y}{1/2} \right] dy$	
$= \int_{0}^{1} \left[(2y^{2})^{1/2} - y \right] dy + \int_{1}^{\sqrt{2}} \left[2^{1/2} - y \right] dy$	
$= \int_{0}^{1} \left[(\sqrt{2} - 1)y \right] dy + \int_{1}^{\sqrt{2}} \left[\sqrt{2} - y \right] dy$	
$= \left[(\sqrt{2} - 1) \frac{y^2}{2} \right]_0^1 + \left[\sqrt{2}y - \frac{y^2}{2} \right]_1^{\sqrt{2}}$	
$= \left[\left((\sqrt{2} - 1)\frac{1}{2} - 0 \right) \right] + \left[\left(\sqrt{2}\sqrt{2} - \frac{2}{2} \right) - \left(\sqrt{2}.1 - \frac{1}{2} \right) \right]$	
$= \frac{\sqrt{2} - 1}{2} + 2 - 1 - \left(\frac{2\sqrt{2} - 1}{2}\right)$	
$=\frac{\sqrt{2}-1+2-2\sqrt{2}+1}{2}=\frac{2-\sqrt{2}}{2}$	

Evaluation of double integration: Change of order **Solving Tip!** LEARNING TIME EXCERCISE 1. Change the order of integration and evaluate $\int\limits_{0}^{1}\int\limits_{x^{2}}^{2-x}xydxdy.$ **Solution:** Let $I = \int_{0}^{1} \int_{-\infty}^{2-x} xy dy dx$ The region of integration is bounded by the lines Identify the boundaries of the $x = 0, x = a, ay = x^2, y = 2a - x.$ region In the given integral, first integrate with respect to y and then Draw the graph for "order of with respect to x. After changing the order we have to first integration" integrate with respect to x, then with respect to y. Given order of integration In the given integral, according to the limits, first integration with respect to y. : we draw the strip PQ parallel to y axis **To find A:** Solve $y = x^2 - - - (1)$ and y = 2 - x - - - (2)Find the point of intersections $x^2 = 2 - x$ Use (1) in (2) $\Rightarrow x^2 = 2 - x$ It is quadratic. We use $x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$ $\Rightarrow x^2 + x - 2 = 0$ $\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(-2)}}{2(1)}$ Here A = 1; B = a; $C = -2a^2$

Evaluation of double integration: Change of order Solving Tip! $=\frac{-1\pm 3}{2}=\frac{-4}{2},\frac{2}{2}=1$ Here the area lies on I quadrant. Substitute x value in (2), we get $(2) \Rightarrow y = 2 - 1 = 1$ A(1,1)To find *B*:Solve x = 0 - - (3) and y = 2 - x - - (4)Find the point of intersection $(4) \Rightarrow y = 2 - 0 = 2$ Use (3) in (4) B(0,2)After changing the order, first After change of order integrate with respect to x. So draw the strip parallel to x-axis. Here Q traverses on the two curves so that we divide the integral as two parts. $I = \iint_{\Omega AB} xydxdy$ Since one end of the strip traverses on two curves, the region OAB $=\iint_{CAC} xydxdy + \iint_{CAB} xydxdy$ splits in to two regions OAC and CAB. For OAC, the strip PQ and for the $= \int_{0}^{1} \int_{0}^{\sqrt{y}} xy dx dy + \int_{1}^{2} \int_{0}^{2-y} xy dx dy$ CAB, the strip PQ'. $= \int_{0}^{1} y \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{y}} dy + \int_{1}^{2} y \left[\frac{x^{2}}{2} \right]_{0}^{2-y} dy$ $= \int_{0}^{1} y \left[\frac{y}{2} \right] dy + \int_{1}^{2} y \left[\frac{(2-y)^{2}}{2} \right] dy$ $= \frac{1}{2} \int_{0}^{1} y^{2} dy + \frac{1}{2} \int_{1}^{2} y \left[4 - 4y + y^{2}\right] dy$ $=\frac{1}{2}\left[\begin{array}{c} \\ \\ \\ \end{array}\right]^{1}+\frac{1}{2}\int\limits_{1}^{2}\left[\begin{array}{c} \\ \\ \end{array}\right]dy$ Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Evaluation of double integration: Change of order	Solving Tip!
$= \frac{1}{2} \begin{bmatrix} \\ \\ \end{bmatrix}_0^1 + \frac{1}{2} \begin{bmatrix} \\ \\ \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} \\ \\ \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \\ \\ \end{bmatrix}$	
$\begin{bmatrix} -\frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\$	
3	
$=\frac{3}{8}$ 2. Change the order of integration $\int\limits_0^a\int\limits_{\sqrt{ax}}^a\frac{y^2dxdy}{\sqrt{y^2-a^2x^2}}$	
$0\sqrt{ax}\sqrt{y^2-u^2x^2}$	
	Draw the geometrical representation for the given integral
	Draw the geometrical representation for the change of order
	Write the modified integral.

Tutorial-1

TUTORIAL PROBLEMS	Solving Tip!
1.Evaluate $\int\limits_0^3 \int\limits_0^2 xy(x+y)dxdy$	
Solution:	
Let $I = \int_{0}^{3} \int_{0}^{2} xy(x+y)dxdy$	Since limits are constants, we can take integration first with respect to inside variable and then integrate with respect to the rest of the variable.
$= \int_{0}^{3} \left[\int_{0}^{2} x^2 y + xy^2 dx \right] dy$	We taken the first integration with respect to x
$=\int_{0}^{3}\left[dy\right]$	$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}$
$= \int_{0}^{3} \left[\left(\right) - \left(\right) \right] dy$	Instead of x, put the upper limit substitution minus put the lower limit substitution
$=\int_{0}^{3}$ dy	simplification
$= \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]_0^3$	Integrate with respect to y
$= \left[\left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right]$	Instead of x, put the upper limit substitution minus put the lower limit substitution
=	simplification
= 30	

TUTORIAL PROBLEMS	Solving Tip!
2.Evaluate $\int\limits_0^1\int\limits_1^2(x^2y+y^2+6)dxdy$	
Solution:	
Let $I = \int_{0}^{1} \int_{1}^{2} (x^2y + y^2 + 6) dx dy$	
$= \int_{0}^{1} \left[\int_{1}^{2} (x^{2}y + y^{2} + 6) dx \right] dy$	
$= \int_{0}^{1} \left[\frac{x^{3}}{3}y + xy^{2} + 6x \right]_{1}^{2} dy$	
$\frac{1}{6}\left[\left(2^3,\ldots,2^3,\ldots\right)\right]$	
$= \int_{0}^{1} \left[\left(\frac{2^{3}}{3}y + 2y^{2} + 6(2) \right) - \left(\frac{1^{3}}{3}y + 1 \cdot y^{2} + 6(1) \right) \right] dy$	
$= \int_0^1 \left[\frac{7}{3}y + y^2 + 6 \right] dy$	
$=\left[\left(\begin{array}{cc} \end{array}\right)-\left(\begin{array}{cc} \end{array}\right) ight]$	
=	
$=\frac{15}{2}$	

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

Tutorial Problems	Rough work!
3.Evaluate $\int\limits_{1}^{2}\int\limits_{3}^{4}(xy+e^{y})dxdy$	
Solution:	
	Answer $\frac{21}{4} + e^2 - e$
	4

TUTORIAL PROBLEMS	Solving Tip!
4.Evaluate $\int\limits_0^1\int\limits_0^{x^2}(x^2+y^2)dydx$	
Solution:	
Let $I =$	
=	Since one of the limit is variable, we can take integration first with respect to the absent variable and then integrate with respect to the rest of the variable.
$= \int_{0}^{1} \left[\right]_{0}^{x^{2}} dx$	Integrate, first with respect to y
$=\int_{0}^{1}\left[\frac{1}{dy}\right] dy$	$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}$
$= \int_{0}^{1} \left[\left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right] dy$	Instead of x , put the upper limit substitution minus put the lower limit substitution
$=\int_{0}^{1} dx$	simplification
	Integrate with respect to y
	Instead of x, put the upper limit substitution minus put the lower limit substitution
=	simplification
$=\frac{26}{105}$	

Tutorial Problems	Rough work!
5.Evaluate $\int\limits_0^1\int\limits_0^y e^{x/y}dxdy$	
Solution:	
	Answer $\frac{1}{2}(e-1)$

Tutorial Problems	Solving Tip!
6.Evaluate $\int\limits_{0}^{\pi/2}\int\limits_{0}^{\sin\theta}rdrd\theta$	
Solution:	
Let $I =$	Since limits are in polar, we can take integration first with respect to r and then integrate with respect to θ .
$= \int_{0}^{\pi/2} \left[\int_{0}^{\pi/2} d\theta \right] d\theta$	Integrate, first with respect to r
$=\int_{0}^{\pi/2} \left[\int_{0}^{2} d\theta \right]_{0}^{2}$	$\int_{a}^{b} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}$
$= \int_{0}^{\pi/2} \left[\left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right] d\theta$	Instead of x , put the upper limit substitution minus put the lower limit substitution
$=\int\limits_{0}^{\pi/2}d heta$	Integrate with respect to θ
=	$\int \sin^n \theta = \left\{ \begin{array}{l} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1 \text{ when n is odd} \\ \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2} \text{ when n is even} \end{array} \right.$
	Simplification
=	
$=\frac{\pi}{8}$	

Tutorial Problems	Solving Tip!
7.Evaluate $\int\limits_0^\pi \int\limits_0^{a(1+\cos\theta)} rdrd heta$	
Solution:	
Solution.	
	Answer $\frac{3\pi a^2}{4}$
	4

Tutorial Problems	Solving Tip!
8. Change the order of integration for $\int_{0}^{a} \int_{y}^{a} dx dy$	
Solution:	
The region of integration is bounded by	
	Answer $\int_{0}^{a} \int_{0}^{x} dy dx$

Tutorial Problems	Solving Tip!
9. Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$	
Solution:	
	Answer 1/24

Tutorial Problems	Solving Tip!
10. Change the order of integration and hence evaluate $\sqrt[3]{\sqrt{4-y}}$	
$\int\limits_{0}^{3} \int\limits_{1}^{\sqrt{4-y}} (x+y) dx dy.$	
Solution:	
	Answer 241/60

Problems	s based on Area as Double integral	Solving Tip!
Area a	s Double integral	
Double in	itegrals are used to obtain the area of bounded plane	
regions. 7	The area A of a bounded region R in Cartesian	
coordinat	es is $A = \iint\limits_R dx dy$	
Working	Procedure:	
Step1:	Draw a diagram for the required area.	
Step2:	Decide the strip for the order of integration.	
Step3:	Write I=the double integral representation.	
	Evaluate this integral by follow the steps	
Step4:	which mentioned in either Cartesian or polar	
	coordinates	

Problems based on Area as Double integral **Solving Tip!** 1. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using double integration. **Solution:** By the symmetry of the curve, the area of the ellipse is Step1 and Step2 $A=4\times$ area of the first quadrant Step3 and Step4 $=4\int\limits_{0}^{a}\int\limits_{0}^{b\sqrt{1-x^{2}/a^{2}}}dydx$ $=4\int_{0}^{a} [y]_{0}^{b\sqrt{1-x^{2}/a^{2}}} dx$ $=4\int\limits_0^a \left[b\sqrt{1-\frac{x^2}{a^2}}\right]dx$ $=4\int_{0}^{a} \left[b\sqrt{\frac{a^2-x^2}{a^2}} \right] dx$ $= \frac{4b}{a} \int_{0}^{a} \left[\sqrt{a^2 - x^2} \right] dx$ $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right)$ Upper limit minus lower limit $=\frac{4b}{a}\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)\right]_0^a$ substitution $= \frac{4b}{a} \left[0 + \frac{a^2}{2} \sin^{-1}(1) \right] = \frac{4b}{a} \left[\frac{a^2}{2} \cdot \frac{\pi}{2} \right] = \pi a b.$ Simplification

Problems based on Area as Double integral(Cartesian)

Solving Tip!

2. Find the area enclosed by the curves $y^2=4ax$ and

$$x^2 = 4ay.$$

The region is bounded by the curves $y^2 = 4ax - - - (1)$

$$x^2 = 4ay - - - (2)$$

Identify the region

Draw a diagram according to the given limits

To find the intersection points

Solve (1) and (2)

$$\therefore \frac{x^4}{16a^2} = 4ax$$

$$\Rightarrow x^4 = 64a^3x$$

$$\Rightarrow x^4 - 64a^3x = 0$$

$$\Rightarrow x(x^3 - 64a^3) = 0$$

$$\Rightarrow x = 0 \text{ or } (x^3 - 64a^3) = 0$$

$$\Rightarrow x = 0 \text{ or } x^3 = 64a^3$$

$$\Rightarrow x = 0 \text{ or } x^3 = (4a)^3$$

$$\Rightarrow x = 0 \text{ or } x = 4a$$

: when
$$x = 0$$
, $(1) \Rightarrow y = \frac{x^2}{4a} = \frac{0}{4a} = 0$

Solve the corresponding curves' equation

Problems based on Area as Double integral(Cartesian)	Solving Tip!
when $x = 4a$, $(1) \Rightarrow y = \frac{x^2}{4a} = \frac{(4a)^2}{4a} = 4a$	
	Write the mathematical
$\therefore \text{ Area } = \int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$	representation for the above
$0 x^2/4a$	diagram
$= \int_{0}^{4a} [y]_{x^{2}/4a}^{2\sqrt{ax}} dx$	
$= \int_{0}^{4a} [(2\sqrt{ax}) - (x^{2}/4a)] dx$	
$= \int_{0}^{4a} \left[2\sqrt{a}x^{1/2} - \frac{1}{4a}x^{2} \right] dx$	
$= \left[2\sqrt{a}\frac{x^{3/2}}{3/2} - \frac{1}{4a}\frac{x^3}{3}\right]_0^{4a}$	
$= \left[\left(2\sqrt{a} \frac{(4a)^{3/2}}{3/2} - \frac{1}{4a} \frac{(4a)^3}{3} \right) - \left(2\sqrt{a} \frac{0}{3/2} - \frac{1}{4a} \frac{0}{3} \right) \right]$	$(4a)^{3/2} = (4a)^{1+\frac{1}{2}} = 4a (4a)^{1/2}$
$= \left[\left(2\sqrt{a} \frac{(4a)(4a)^{1/2}}{3/2} - \frac{1}{4a} \frac{4a \cdot (4a)^2}{3} \right) \right]$	
$= \left[\frac{32a^2}{3} - \frac{16a^2}{3} \right] = \frac{16a^2}{3}$	

Problems based on Area as Double integral(Cartesian)

Solving Tip!

LEARNING TIME EXCERCISE

1. Find the area of the parallelogram whose vertices are $A(0,1),\,B(3,1),\,C(2,2),\,D(0,1)$

Solution:

From the diagram,

Required Area = $2 \times (area of triangle ABD)$

First we find the equations of AB and AD

Equation of AB joining A(1,0) and B(3,1) is

$$y = \frac{1}{2}(x-1) - - - (1)$$

Equation of AD joining A(1,0) and D(0,1) is

$$y = -(x+1) - - - (2)$$

Use the line joining between the points formule

$$A(x_1, y_1)$$
 $B(x_2, y_2)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Problems based on Area as Double integral(Cartesian)	Solving Tip!
Take a strip PQ parallel to x-axis with P on (2) and Q on (1)	See diagram
$\therefore (1) \Rightarrow x = -y + 1 \text{ and } (1) \Rightarrow x = 2y + 1$	
\therefore Required Area = $2 \times (\text{area of triangle ABD})$	
$=2\iint_{ABD}dxdy$	
$=2\int \int dxdy$	Write the corresponding limits
= 3 sq.units	

Problems	s based on Area as Double integral in Polar	Solving Tip!
Area a	s Double integral in Polar	
Double in	ategrals are used to obtain the area of bounded plane	
_	The area A of a bounded region R in polar coordinate	S
is $A = \iint_R$	$rdrd\theta$	
Working	Procedure:	
Step1:	Draw a diagram for the required area.	
	Draw the radial strip according to the end	
Step2:	points give the limits for inside integral and	
	rotate the strip from the x axis make the	
	angles. They are the outside integral limits.	
Step3:	Write I=the double integral representation.	
Step4:	Evaluate this integral by follow the steps	
•	which mentioned in the polar coordinates	

Problems based on Area as Double integral(Polar)

Solving Tip!

1. Find the area between $r=2\cos\theta$ and $r=4\cos\theta$

Solution:

From the diagram, r varies from $2\cos\theta$ to $4\cos\theta$ and

$$\theta$$
 varies from $\frac{-\pi}{2}$ to $\frac{\pi}{2}$

$$\therefore \mathbf{Area} = \int_{-\pi/2}^{\pi/2} \int_{2\cos\theta}^{4\cos\theta} r dr d\theta$$

$$=\int_{-\pi/2}^{\pi/2} \left[\frac{r^2}{2}\right]_{2\cos\theta}^{4\cos\theta} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \left[\left(\frac{4^2 \cos^2 \theta}{2} \right) - \left(\frac{2^2 \cos^2 \theta}{2} \right) \right] d\theta$$

$$= \int_{-\pi/2}^{\pi/2} [8\cos^2\theta - 2\cos^2\theta] d\theta = 6 \int_{-\pi/2}^{\pi/2} \cos^2\theta d\theta$$

$$= 6.2 \int_{0}^{\pi/2} \cos^2 \theta d\theta \qquad \qquad \because \cos^2 \theta \text{ is an even function.}$$

$$=12\frac{1}{2}\frac{\pi}{2}$$

$$=3\pi$$

Put
$$\frac{x}{r} = \cos \theta$$
 in $r = 2\cos \theta$

$$\Rightarrow r = 2\frac{x}{r}$$

$$\Rightarrow r^2 = 2x \quad \because x^2 + y^2 = r^2$$

$$\Rightarrow x^2 + y^2 = 2x \Rightarrow$$

 $x^2 + y^2 - 2x = 0$ which is a circle

with center (1,0) and radius=1

Similarly for $r = 4\cos\theta$

then we have a circle

 $x^2 + y^2 - 4x = 0$ with center (2,0) and radius=2.

Problems based on Area as Double integral(Polar)

Solving Tip!

2. Find the area of the cardioid $r=a(1+\cos\theta),$ using double integral. Solution:

It is symmetric about the initial line Ox.

 \therefore Area= 2 × (area above the initial line)

Take a radial strip OP.

So θ varies from 0 to π

r varies from 0 to $a(1 + \cos \theta)$

$$\therefore \text{ Area} = 2 \int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r dr d\theta$$

$$= 2 \int_{0}^{\pi} \left[\frac{r^{2}}{2} \right]_{0}^{a(1+\cos\theta)} d\theta$$

$$= 2 \int_{0}^{\pi} \left[\left(\frac{(a(1+\cos\theta))^{2}}{2} \right) - (0) \right] d\theta$$

$$= a^{2} \int_{0}^{\pi} \left[1 + \cos^{2}\theta + 2\cos\theta \right] d\theta$$

$$= a^{2} \int_{0}^{\pi} \left[1 + \frac{1+\cos 2\theta}{2} + 2\cos\theta \right] d\theta$$

$$= a^{2} \left[\theta + \frac{1}{2} \left(\theta + \frac{\sin 2\theta}{2} \right) + 2\sin\theta \right]_{0}^{\pi} d\theta$$

$$= a^{2} \left[\theta + \frac{\theta}{2} + \frac{\sin 2\theta}{4} + 2\sin\theta \right]_{0}^{\pi} d\theta$$

$$= a^{2} \left[\frac{3\theta}{2} + \frac{\sin 2\theta}{4} + 2\sin\theta \right]_{0}^{\pi} d\theta$$

$$= a^{2} \left[\left(\frac{3\pi}{2} + 0 + 0 \right) - (0) \right]$$

$$= \frac{3\pi a^{2}}{2}$$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$$

Problems based on Area as Double integral(Polar) **Solving Tip!** 3. Evaluate $\iint r \sin \theta dr d\theta$ over the cardioid $r = a(1 - \cos \theta)$ above the initial line. **Solution:** $r = a(1 - \cos \theta)$ To integrate first with respect to r, the limits are from r=0 to $r = a(1 - \cos \theta)$ and to cover the region of integration R, θ varies from 0 to π \therefore Required Area = $\iint_R r \sin \theta dr d\theta$ $= \int_{0}^{\pi} \int_{0}^{a(1-\cos\theta)} r\sin\theta dr d\theta$ $= \int_{0}^{\pi} \left[\int_{0}^{a(1-\cos\theta)} r dr \right] \sin\theta d\theta$ First integration with respect to r $= \int_{0}^{\pi} \left[\frac{r^2}{2} \right]_{0}^{a(1-\cos\theta)} \sin\theta d\theta$ $= \int_{0}^{\pi} \left[\left(\frac{(a(1-\cos\theta))^{2}}{2} \right) - \left(\frac{(0)^{2}}{2} \right) \right] \sin\theta d\theta$ $\int_{1}^{u} [f(x)]^{n} f'(x) dx = \left[\frac{[f(x)]^{n+1}}{n+1} \right]^{u}$ $=\frac{a^2}{2}\int_{0}^{\pi}(1-\cos\theta)^2.\sin\theta d\theta$ $= \frac{a^2}{2} \left[\left(\frac{(1 - \cos \pi)^3}{3} \right) - \left(\frac{(1 - \cos 0)^3}{3} \right) \right]$ $= \frac{a^2}{2} \left[\left(\frac{(1 - (-1))^3}{3} \right) - \left(\frac{(1 - 1)^3}{3} \right) \right]$

Prepared by Dr. Radhakrishnan. M, Asst. Prof., Department of Mathematics, SRMIST.

 $= \frac{a^2}{2} \left[\frac{(2)^3}{3} \right] = \frac{a^2}{2} \left[\frac{8}{3} \right] = \frac{4a^2}{3}$

Problems based on Area as Double integral(Polar)

Solving Tip!

4. Evaluate $\iint_A r^3 dr d\theta$, where A is the region between the circles $r=2\sin\theta$ and $r=4\sin\theta$.

Solution:

First integration with respect to r

Let $I = \int_{0}^{\pi} \int_{2\sin\theta}^{4\sin\theta} r^3 dr d\theta$ $= \int_{0}^{\pi} \left[\frac{r^4}{4} \right]_{2\sin\theta}^{4\sin\theta} d\theta$ $= \int_{0}^{\pi} \left[\left(\frac{4^4 \sin^4 \theta}{4} \right) - \left(\frac{2^4 \sin^4 \theta}{4} \right) \right] d\theta$ $= \int_{0}^{\pi} \left[64 \sin^4 \theta - 4 \sin^4 \theta \right] d\theta = 60 \int_{0}^{\pi} \sin^4 \theta d\theta$ $= 120 \int_{0}^{\pi/2} \sin^4 \theta d\theta \text{ since } f(\theta + \pi) = f(\theta)$ $= 120 \frac{3}{4} \frac{1}{2} \frac{\pi}{2}$

 $=\frac{45\pi}{2}$

Upper limit minus lower limit substitution

Simplification

Integration with respect to θ

$$\int\limits_0^{\pi/2} \sin^n\theta \, d\theta = \frac{n-1}{n}.\frac{n-3}{n-2}\cdots\frac{2}{3}.1 \text{ if } n \text{is odd and } n \geq 3$$

Problems based on Area as Double integral(Cartesian)

Solving Tip!

LEARNING TIME EXCERCISE

1. Find the area which is inside the circle $r=3a\cos\theta$ and outside the cardioid $r=a(1+\cos\theta)$.

Solution:

Eliminating r from $r = 3a \cos \theta$ and $r = a(1 + \cos \theta)$

$$\Rightarrow 3\cos\theta = 1 + \cos\theta$$

$$\Rightarrow 2\cos\theta = 1 \Rightarrow \cos\theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{-\pi}{3} \text{ or } \frac{\pi}{3}$$

 $3a\cos\theta = a(1+\cos\theta)$

 θ varies from $\frac{-\pi}{3}$ to $\frac{\pi}{3}$

Ans. πa^2

Problems based on Evaluation by transforming a double integration into polar coordinates

Solving Tip!

Transforming a double integration into polar coordinates

The given integral $\iint\limits_R f(x,y) dx dy$. The transformation to polar coordinates, by putting $x=r\cos\theta, y=r\sin\theta$ and

$$x^2 + y^2 = r^2, \ dxdy = rdrd\theta$$

$$\therefore \iint\limits_R f(x,y) dx dy = \iint\limits_R f(r,\theta) r dr d\theta$$

1. Transform into polar coordinate and evaluate

$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x}{x^2+y^2} dy dx.$$

Solution:

The region of integration is bounded by y = 0,

$$y = \sqrt{2x - x^2} \Rightarrow y^2 = 2x - x^2 \Rightarrow x^2 + y^2 - 2x = 0$$

which is the circle with centre (1,0) and radius r=1

and the x = 0, x = 2

General eqn. of the circle

 $x^2+y^2+2fx+2gy+d=0$ with centre (-f,-g) and radius $r=\sqrt{f^2+g^2-d}$ Draw the diagram. It is a upper semi circle. From the diagram, OP as a radial strip with the ends r=0 and the another end point lies on the circle

$$x^{2} + y^{2} - 2x = 0$$

$$\Rightarrow (x^{2} + y^{2}) - 2x = 0$$

$$\Rightarrow r^{2} - 2r\cos\theta = 0$$

$$\Rightarrow r(r - 2\cos\theta) = 0$$

$$\Rightarrow r = 0, r = 2\cos\theta$$

and which moves for cover the region from $\theta = 0$ and $\theta = \pi/2$

Problems based on Evaluation by transforming a double **Solving Tip!** integration into polar coordinates To change a polar coordinates, put $x = r \cos \theta$, $y = r \sin \theta$ and $x^2 + y^2 = r^2, \ dxdy = rdrd\theta$ $x^2 + y^2 - 2x = 0$ $\Rightarrow (x^2 + y^2) - 2x = 0$ $\Rightarrow r^2 - 2r\cos\theta = 0$ $\Rightarrow r(r-2\cos\theta)=0$ $\Rightarrow r = 0, r = 2\cos\theta$ Take a radial strip **OP**. : the limits of double integration: For r: r = 0 to $r = 2\cos\theta$ For θ : $\theta = 0$ to $\theta = \pi/2$ $\therefore I = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} \frac{r^{t}\cos\theta}{z^{2}} r^{t} dr d\theta$ $= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} \cos\theta dr d\theta$ $= \int_{0}^{\frac{\pi}{2}} \cos \theta \left[r\right]_{0}^{2\cos \theta} d\theta$ $= \int_{0}^{\frac{\pi}{2}} \cos \theta \left[(2\cos \theta) - (0) \right] d\theta$ $=\int_{0}^{\frac{\pi}{2}}\cos\theta\left[2\cos\theta\right]d\theta$ $=2\int_{0}^{\frac{\pi}{2}}\cos^{2}\theta d\theta$ $=2\int_{0}^{\frac{\pi}{2}} \left(\frac{1+\cos 2\theta}{2}\right) d\theta$ $\cos^2\theta = \frac{1 + \cos 2\theta}{2}$

Problems based on Evaluation by transforming a double integration into polar coordinates

Solving Tip!

$$= 2 \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$$

$$= \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{2}}$$

$$= \left[\left(\frac{\pi}{2} + \frac{\sin 2\frac{\pi}{2}}{2} \right) - (0 + 0) \right]$$

$$= \frac{\pi}{2}$$

 $\sin \pi = 0$ and $\sin 0 = 0$

2. By transforming into polar coordinates evaluate

$$\iint \frac{x^2y^2}{x^2+y^2} dx dy \text{ over the annular region between the circles}$$
 $x^2+y^2=4 \text{ and } x^2+y^2=16.$

Solution:

To change to polar coordinates, put put $x=r\cos\theta,y=r\sin\theta$ and $x^2+y^2=r^2,\;\;dxdy=rdrd\theta$

$$\therefore \text{ given } x^2 + y^2 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 2$$

and
$$x^2 + y^2 = 16 \Rightarrow r^2 = 16 \Rightarrow r = 4$$

Take a radial strip OPQ, for the annular region r varies from 2 to 4 and θ varies from 0 to 2π .

$$\therefore I = \iint \frac{x^2 y^2}{x^2 + y^2} dx dy$$
$$= \int_0^{2\pi} \int_2^4 \frac{(r\cos\theta)^2 (r\sin\theta)^2}{r^2} r dr d\theta$$

conversion step

Problems based on Evaluation by transforming a double integration into polar coordinates	Solving Tip!
$= \int_{0}^{2\pi} \int_{2}^{4} r^{3} (\cos \theta \sin \theta)^{2} dr d\theta$	
$= \int_{0}^{2\pi} \int_{2}^{4} r^3 \left(\frac{\sin 2\theta}{2}\right)^2 dr d\theta$	$\sin 2\theta = 2\sin\theta\cos\theta$
$= \int_{0}^{2\pi} \int_{2}^{4} r^3 \left(\frac{\sin^2 2\theta}{4} \right) dr d\theta$	
$=\frac{1}{4}\int_{0}^{2\pi}\sin^{2}2\theta\left[\frac{r^{4}}{4}\right]_{2}^{4}d\theta$	Integrate w. r. to r
$= \frac{1}{4} \int_{0}^{2\pi} \sin^2 2\theta \left[\left(\frac{4^4}{4} \right) - \left(\frac{2^4}{4} \right) \right] d\theta$	limits substitution
$= \frac{1}{4} \int_{0}^{2\pi} \sin^2 2\theta \left[4^3 - 2^2 \right] dd\theta$	
$= \frac{1}{4} \int_{0}^{2\pi} \sin^2 2\theta [64 - 4] d\theta$	
$=\frac{1}{4}\int_{0}^{2\pi}\sin^{2}2\theta \left[60\right] d\theta$	
$=\frac{1}{4}\left[60\right]\int_{0}^{2\pi}\sin^{2}2\theta d\theta$	
$=15\int_{0}^{2\pi} \left[\frac{1-\cos 4\theta}{2} \right] d\theta$	$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$
$=\frac{15}{2}\int_{0}^{2\pi}(1-\cos 4\theta)d\theta$	
$=\frac{15}{2}\left[\theta-\frac{\sin 4\theta}{4}\right]_0^{2\pi}$	
$=\frac{15}{2}\left[\left(2\pi - \frac{\sin 8\pi}{4}\right) - \left(0 - \frac{\sin 0}{4}\right)\right]$	
$= \frac{15}{2}.2\pi = 15\pi$	

Tutorial-2

TUTORIAL PROBLEMS	Solving Tip!
1. Find the area of the circle $x^2+y^2=a^2$	
Solution	
	Draw a diagram

TUTORIAL PROBLEMS	Solving Tip!
2. Find by double integration, the area lying between the	
parabola $y = 4x - x^2$ and the line $y = x$.	
Solution	
	Draw a diagram
	Ans.9/2

TUTORIAL PROBLEMS	Solving Tip!
3. Find by, double integration, the area of one loop of the	
lemniscate $r^2=a^2\cos 2\theta$.	
Solution	
	Draw a diagram
	Ans. $\frac{a^2}{2}$
	2

TUTORIAL PROBLEMS	Solving Tip!
4. Evaluate $\iint\limits_A r^3 dr d heta$, where A is the area between circles $r=2\sin heta$ and $r=4\sin heta$	
Solution	
	Draw a diagram
	17 (2
	Ans. $45\pi/2$

TUTORIAL PROBLEMS	Solving Tip!
5. Find the area of the cardioid $r=a(1-\cos heta)$	
Solution	
	Draw a diagram
	Ans. $\frac{3\pi a^2}{2}$
	Ans. <u>2</u>

TUTORIAL PROBLEMS	Solving Tip!
6. Find the area of a loop of the curve in the first octant	
$r=a\sin3 heta$	
Solution	
	Draw a diagram
	$\pi a^2/12$

TUTORIAL PROBLEMS	Solving Tip!
7. Using double integral find the area enclosed by the curves	
$y=2x^2$ and $y^2=4x$.	
Solution	
	Draw a diagram
	2
	Ans. $\frac{2}{3}$

TUTORIAL PROBLEMS	Solving Tip!
8. Find the smaller of the areas bounded by $y=2-x$ and	
$x^2 + y^2 = 4$ using double integral.	
Solution	
	Draw a diagram
	$Ans.\pi - 2$

TUTORIAL PROBLEMS	Solving Tip!
9. Evaluate $\int\limits_0^\infty \int\limits_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	
Solution	
	$Ans.\pi/4$

TUTORIAL PROBLEMS	Solving Tip!
10. Evaluate $\int\limits_0^a\int\limits_0^{\sqrt{a^2-y^2}}(x^2+y^2)dxdy$ by changing into polar coordinates.	
Solution	
	$\mathrm{Ans.}\pi a^4/8$

Tri	ple integration in Cartesian coordinates	Solving Tip!
Triple	integration	
Working	Procedure:	
If all the	limits are constants i.e., $\int\limits_{z_l}^{z_u}\int\limits_{y_l}^{y_u}\int\limits_{x_l}^{x_u}f(x,y,z)dxdydz$	
Step1:	Write I =given integral	
Step2:	$I = \int_{z_l}^{z_u} \int_{y_l}^{y_u} \left[\int_{x_l}^{x_u} f(x, y, z) dx \right] dy dz$ First integrate with respect to inside integral variable and take upper limit and lower limit substitutions and then simplification reduces to the integral as double integral.	For a constant limits!!!
Step3:	$I = \int_{z_l}^{z_u} \left[\int_{y_l}^{y_u} g(y,z) dy \right] dz$ Do this integral by solving the double integral as before.	
$z_n h_n(z) q_n$	$\int f(x,y,z)dxdydz$	
Step1:	Write $I =$ given integral	
Step2:	$I = \int_{z_l}^{z_u} \int_{h_l(z)}^{h_u(z)} \int_{g_l(y,z)}^{g_u(y,z)} f(x,y,z) dx dy dz$ First integrate with respect to the absent variable and take upper limit and lower limit substitutions and then simplification reduces to the integral as double integral with variable limits.	For a variable limits!!!
Step3:	$I = \int\limits_{z_l}^{z_u} \left[\int\limits_{h_l(z)}^{h_u(z)} g(y,z) dy \right] dz \text{ Do this integral by}$ solving the double integral with varibale limits as before.}	

Triple integration in Cartesian coordinates	Solving Tip!
1. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x^{2}yzdxdydz$	
Solution:	
Let $I = \int_{0}^{1} \int_{0}^{2} \left[\int_{0}^{3} x^{2} dx \right] yz dy dz$	Step1
$= \int_0^1 \int_0^2 \left[\frac{x^3}{3} \right]_0^3 yz dy dz$	Step2
$= \int_{0}^{1} \int_{0}^{2} \left[\left(\frac{3^{3}}{3} \right) - \left(\frac{0}{3} \right) \right] yz dy dz$	Upper limit minus lower limit substitutions
$= \int_{0}^{1} \int_{0}^{2} [9 - 0] yz dy dz$	Simplifications
$=9\int\limits_0^1\left[\int\limits_0^2ydy\right]zdz$	
$=9\int_{0}^{1} \left[\frac{y^2}{2}\right]_{0}^{2} z dz$	
$=9\int_{0}^{1} \left[\left(\frac{2^{2}}{2} \right) - \left(\frac{0^{2}}{2} \right) \right] z dz$	
$=9\int_{0}^{1} [(2) - (0)] z dz$	
$=18\int_{0}^{1}zdz$	
$=18\left[\frac{z^2}{2}\right]_0^1$	
$=18\left[\left(\frac{1}{2}\right)-(0)\right]$	
$=18\left[\frac{1}{2}\right]$	
=9	

Triple integration in Cartesian coordinates	Solving Tip!
2. Evaluate $\int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x dz dx dy$	
Solution:	
$I = \int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x dz dx dy$	Step1
$= \int_{0}^{1} \int_{y^2}^{1} x \left[\int_{0}^{1-x} dz \right] dx dy$	First integration with respect to the absent limit
$= \int_{0}^{1} \int_{y^{2}}^{1} x \left[z\right]_{0}^{1-x} dx dy$	Upper limit minus lower limit substitutions
$= \int_{0}^{1} \int_{y^{2}}^{1} x \left[1 - x\right] dx dy$	Simplification
$= \int_{0}^{1} \int_{y^{2}}^{1} (x - x^{2}) dx dy$	Integrate with respect to absent variable from the limit i.e., \boldsymbol{x}
$= \int_{0}^{1} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{y^2}^{1} dy$	Upper limit minus lower limit substitutions
$= \int_{0}^{1} \left[\left(\frac{1}{2} - \frac{1}{3} \right) - \left(\frac{y^4}{2} - \frac{y^6}{3} \right) \right] dy$	Simplification and integrate with respect to y
$= \left[\frac{1}{6}y - \left(\frac{y^5}{10} - \frac{y^7}{21} \right) \right]_0^1$	
$= \left[\frac{1}{6} - \frac{1}{10} + \frac{1}{21}\right] = \frac{24}{210} = \frac{4}{35}$	

Triple integration in Cartesian coordinates	Solving Tip!
3. Show that $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}} = \frac{\pi^2}{8}$	
Solution:	
Let $I = \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}}$	
$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{\left(\sqrt{1-x^2-y^2}\right)^2-z^2}}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right)$
$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \left[\sin^{-1} \left(\frac{z}{\sqrt{1-x^2-y^2}} \right) \right]_{0}^{\sqrt{1-x^2-y^2}} dy dx$	
$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \left[\left(\sin^{-1}(1) \right) - \left(\sin^{-1}(0) \right) \right] dy dx$	
$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \left[\frac{\pi}{2} - 0\right] dy dx$	
$=\frac{\pi}{2}\int\limits_{0}^{1}\int\limits_{0}^{\sqrt{1-x^2}}dydx$	
$= \frac{\pi}{2} \int_{0}^{1} [y]_{0}^{\sqrt{1-x^{2}}} dx$	
$= \frac{\pi}{2} \int_{0}^{1} \left[\left(\sqrt{1 - x^2} \right) - (0) \right] dx$	
$=\frac{\pi}{2}\int\limits_0^1\sqrt{1-x^2}dx$	
$= \frac{\pi}{2} \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} \left(\frac{x}{1} \right) \right]_0^1$	$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right)$
$= \frac{\pi}{2} \left[\left(0 + \frac{1}{2} \sin^{-1}(1) \right) - \left(0 + \frac{1}{2} \sin^{-1}(0) \right) \right]$	
$= \frac{\pi}{2} \left[\frac{1}{2} \left(\frac{\pi}{2} \right) - (0) \right]$	
$=\frac{\pi^2}{8}$	

Triple integration in Cartesian coordinates	Solving Tip!
LEARNING TIME EXCERCISE	
1. Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dx dy dz$ Solution:	
$=\frac{5}{8}$	$e^{\log_e x} = x$

Triple integration in Cartesian coordinates	Solving Tip!
2. Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dx dy dz$	
Solution:	
	$e^{\log_e x} = x$
$= \frac{1}{9} (24 \log 2 - 19)$	

Triple integration in Cartesian coordinates	Solving Tip!
3. Show that $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \int_{0}^{\sqrt{a^2 - x^2 - y^2}} \frac{dz dy dx}{\sqrt{a^2 - x^2 - y^2 - z^2}} = \frac{\pi^2 a^2}{8}$	
Solution:	
Let $I = \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dzdydx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$	
	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right)$
$=\frac{\pi^2 a^2}{8}$	

Vol	ume as Triple integral	Solving Tip	!
Volum	ne as Triple Integral		
If V is the	e volume enclosed by the region D, then volume		
$V = \iiint_D e^{i\omega}$	dxdydz		
Working	Procedure:		
WOLKING	i roccuure.		
	Draw the diagram and decide the first octant		
Step1:	if the diagram is symmetric about the		
	coordinate planes.		
Step2:	Find the limits for the variables.		
Step3:	Solve the triple integral.		

Volume as Triple integral

Solving Tip!

1. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$, using triple integral.

Solution:

By the symmetry,

Volume = $8 \times \text{(volume of the sphere in I-octant)}$

$$= 8 \times \left[\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \int_{0}^{\sqrt{a^2 - x^2 - y^2}} dz dy dx \right]$$

$$= 8 \times \left[\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \left[\sqrt{a^{2}-x^{2}-y^{2}} \right] dy dx \right]$$

$$= 8 \times \left[\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \left[\sqrt{(\sqrt{a^{2}-x^{2}})^{2} - y^{2}} \right] dy dx \right]$$

$$= 8 \int\limits_0^a \left[\frac{y}{2} \sqrt{\left(\sqrt{a^2 - x^2}\right)^2 - y^2} + \frac{\left(\sqrt{a^2 - x^2}\right)^2}{2} \sin^{-1} \left(\frac{y}{\sqrt{a^2 - x^2}} \right) \right]_0^{\sqrt{a^2 - x^2}} dx$$

$$= 8 \int_{0}^{a} \left[\left(0 + \frac{\left(\sqrt{a^{2} - x^{2}}\right)^{2}}{2} \sin^{-1}(1) \right) - \left(0 + \frac{\left(\sqrt{a^{2} - x^{2}}\right)^{2}}{2} \sin^{-1}(0) \right) \right] dx$$

$$=8\frac{\pi}{4}\int_{0}^{a} (a^{2}-x^{2}) dx = 8\frac{\pi}{4} \left(a^{2}x - \frac{x^{3}}{3}\right)_{0}^{a}$$

$$= 2\pi \left[\left(a^3 - \frac{a^3}{3} \right) - \left(0 - \frac{0}{3} \right) \right]_0^a$$

$$=2\pi \left[\frac{3a^3 - a^3}{3} \right] = \frac{4}{3}\pi a^3$$

From the diagram, 4 parts in the top and 4 parts in the bottom, totally 8. We have to evaluate the volume in the first octant and multiply by 8 for getting the whole volume.

For the I-octant, for the z, from the 0 to the sphere surface

$$x^2 + y^2 + z^2 = a^2$$

After integrating with respect to z, it will be reduced to double integral. Now the region is circle $x^2 + y^2 = a^2 \Rightarrow y = \sqrt{a^2 - x^2}$

$$\therefore y = 0 \text{ and } y = \sqrt{a^2 - x^2}$$

After integrating it,

$$now x^2 = a^2 \Rightarrow x = +a$$

since in the I octant. Hence x=0 and x=a is the outside integral limits.

Volume as Triple integral

Solving Tip!

LEARNING TIME EXCERCISE

1. Find the volume of the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ by triple integral. Solution:

Since the ellipsoid is symmetric about the coordinate planes, the volume of the ellipsoid $= 8 \times$ volume in the first octant.

Volume of the first octant is bounded by the planes

$$x=0,y=0,z=0$$
 and the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$

$$\therefore \text{Volume} = 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^2}{a^2}}} c\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}$$

$$= 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} c\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} dy dx$$

$$= 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} \int_{0}^{c} \left[\sqrt{b^{2} \left(1 - \frac{x^{2}}{a^{2}}\right) - y^{2}} \right] dy dx$$

$$= \frac{8c}{b} \int_{0}^{a} \left[\frac{y}{2} \sqrt{b^{2} \left(1 - \frac{x^{2}}{a^{2}}\right) - y^{2}} \right]$$

$$+\frac{b^2\left(1-\frac{x^2}{a^2}\right)}{2}\sin^{-1}\frac{y}{b\sqrt{1-\frac{x^2}{a^2}}}\bigg]_0^{b\sqrt{1-\frac{x^2}{a^2}}}dx$$

Volume as Triple integral	Solving Tip!
$=2\pi bc\left[a-\frac{a}{3}\right]=\frac{4}{3}\pi abc$	
2. Find the volume of the tetrahedron bounded by the plane $x - y - z$	
$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.	
Solution:	
The region of integration is bounded by $x = 0, y = 0, z = 0$ and	
$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$	
$Volume = \iiint_{v} dz dy dx$	
$= \int_{0}^{a} \int_{0}^{b\left(1-\frac{x}{a}\right)} c\left(1-\frac{x}{a}-\frac{y}{b}\right) dz dy dx$	
=	
=	

Volume as Triple integral	Solving Tip!
$= c \int_{0}^{a} \int_{0}^{b\left(1-\frac{x}{a}\right)} \left[\left(\left(1-\frac{x}{a}\right) - \frac{y}{b}\right)\right] dy dx$	
$= c \int_{0}^{a} \left[\left(\left(1 - \frac{x}{a} \right) y - \frac{y^{2}}{2b} \right) \right]_{0}^{b \left(1 - \frac{x}{a} \right)} dx$	
$= c \int_0^a \left[\left(b \left(1 - \frac{x}{a} \right)^2 - \frac{b^2 \left(1 - \frac{x}{a} \right)^2}{2b} \right) - (0) \right] dx$	
$= \frac{bc}{2} \int_{0}^{a} \left[\left(1 - \frac{x}{a} \right)^{2} \right] dx$	
$= \frac{bc}{2} \left[\frac{1}{-1/a} \frac{\left(1 - \frac{x}{a}\right)^3}{3} \right]_0^a$	
$= \frac{bc}{2} \left[-\frac{a}{3} \left(1 - \frac{x}{a} \right)^3 \right]_0^a$	
$= \frac{bc}{2} \left[\left(-\frac{a}{3} \left(1 - \frac{a}{a} \right)^3 \right) - \left(-\frac{a}{3} \left(1 - 0 \right)^3 \right) \right]$	
$=\frac{bc}{2}\left[\frac{a}{3}\right]$	
$=\frac{abc}{6}$	

Tutorial-3

TUTORIAL PROBLEMS	Rough Work!
1. Find the volume of the portion of the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ which lies in the first octant using triple integral.	
Solution:	
	Ans. $\frac{\pi abc}{6}$

TUTORIAL PROBLEMS	Rough Work!
2. Find the volume bounded by the xy-plane, the cylinder	
$x^2 + y^2 = 1$ and the plane $x + y + z = 3$ using triple integral.	
Solution:	
	Ans. $\frac{1}{3\pi}(9\pi - 4)$
	3//

TUTORIAL PROBLEMS Rough Work! 3. Find the volume of the paraboloid $x^2+y^2=4z$ cut off z = 4.**Solution:** We have four parts. We consider the positive octant. Put $x = r\cos\theta$, $y = r\sin\theta$, z = z.: $x^2 + y^2 = r^2$ \therefore Paraboloid: $r^2 = 4z$ and plane z = 4. Hence the limits: $\frac{r^2}{4} \le z \le 4$ $0 \le r \le 4$ $0 \le \theta \le \frac{\pi}{2}$ $\therefore V = 4 \int_{0}^{\pi/2} \int_{0}^{4} \int_{r^{2}/4}^{4} r dr d\theta$

Ans. 32π

TUTORIAL PROBLEMS	Rough Work!
4. Find the volume cut off from the sphere $x^2 + y^2 + z^2 = a^2$	
by the cone $x^2 + y^2 = z^2$.	
Solution:	
	Ans. $\frac{2\pi a^3}{3}(2-\sqrt{2})$
	3 (2 (2)

TUTORIAL PROBLEMS	Rough Work!
5. Find the volume in the positive octant bounded by the	
plane $x + 2y + 3z = 4$ and the coordinate planes.	
Solution:	
	Ans. $\frac{16}{9}$

TUTORIAL PROBLEMS	Rough Work!
6. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ in the	
positive octant.	
Solution:	
	Ans. $\frac{\pi a^3}{6}$
	· ·

TUTORIAL PROBLEMS	Rough Work!
7. Find the volume of the tetrahedron bounded by the plane x y z	
$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ and the coordinate planes. Solution:	
Solution.	
	Ans.4

TUTORIAL PROBLEMS	Rough Work!
8. Find the volume of the cylinder $x^2 + y^2 = 4$ bounded by	
the plane $z=0$ and the surface $z=x^2+y^2+2$.	
Solution:	
	A 10
	Ans. 16π

TUTORIAL PROBLEMS	Rough Work!
9. Evaluate $\iiint_{V} dx dy dz$, where V is the volume enclosed by	
the cylinder $x^2 + y^2 = 1$ bounded by the planes $z = 0$,	
z=2-x.	
Solution:	
	4
	$Ans.2\pi - \frac{4}{3}$

TUTORIAL PROBLEMS	Rough Work!
10. Find the volume of the region bounded by the paraboloid	
$z = x^2 + y^2$ and the plane $z = 4$.	
Solution:	
	Ans. 8π