Introduzione a MATLAB

Principali comandi MATLAB utili per il corso di

Fondamenti di Automatica 01AYS Politecnico di Torino

Sistemi dinamici LTI

1. Simulazione a tempo continuo

Definizione del sistema

- Per creare sistemi dinamici lineari tempo invarianti LTI, a tempo continuo, si possono seguire due strade:
 - un modello ingresso-stato-uscita può essere definito a partire dalla forma in variabili di stato, cioè dalle matrici A, B, C, D;
 - > un modello ingresso-uscita può essere definito a partire dalla funzione di trasferimento del sistema.

Modello ingresso-stato-uscita

Partendo dalla rappresentazione in variabili di stato

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

- si definiscono le matrici A, B, C, D;
- > a partire dalle matrici A, B, C, D si definisce l'oggetto sistema con il comando:

$$>> SYS = ss(A,B,C,D)$$

✓ Si può definire D=0 per creare una matrice nulla della dimensione appropriata.

Modello ingresso-uscita (1)

- Definizione "polinomiale" della funzione di trasferimento:
 - si definiscono i polinomi che rappresentano il numeratore ed il denominatore;
 - > si definisce la funzione di trasferimento con il comando tf(num,den).
- tf crea la funzione di trasferimento a partire dai vettori num e den:

```
>> SYS = tf(NUM, DEN)
```

✓ num, den sono i vettori contenenti i coefficienti delle potenze di s in ordine decrescente:

$$num=[3\ 2\ 1] \qquad equivale\ a: \qquad num=\ 3s^2+2s+1$$

Modello ingresso-uscita (2)

- Definizione "simbolica" della funzione di trasferimento:
 - > si definisce direttamente la variabile s:

```
>> s=tf('s')
>> fdt=(1+s)/(3*s^2+5*s-2)
```

Legami fra le rappresentazioni (1)

 Per calcolare la funzione di trasferimento di un sistema a partire dalla sua rappresentazione in variabili di stato si utilizza il comando SS2TF:

```
>> [NUM, DEN] = ss2tf(A,B,C,D,k)
```

- ✓ I vettori num e den contengono i coefficienti delle potenze decrescenti di s.
- ✓ Per i sistemi MIMO è possibile calcolare la k-esima colonna della matrice di trasferimento.
- Per i sistemi SISO, non occorre specificare k.

Legami fra le rappresentazioni (2)

 Per calcolare la funzione di trasferimento di un oggetto sistema SYS di tipo SISO si utilizza il comando tfdata:

```
>>[NUM, DEN] = tfdata(SYS,'v')
```

✓ I vettori riga num e den contengono i coefficienti delle potenze di s in ordine decrescente.

Simulazione (1)

 LSIM simula la risposta di un sistema LTI ad un ingresso arbitrario.

Per tracciare la risposta del sistema SYS all'ingresso definito da U (matrice degli ingressi) e T (vettore del tempo) si utilizza:

```
>> lsim(SYS,U,T)
```

ove U ha tante colonne quanti sono gli ingressi e la k-esima riga di U contiene i campioni degli ingressi all'istante T(k).

Ad esempio:

```
>> T = 0:0.01:5;
>> U = sin(T);
>> lsim(SYS,U,T)
```

Simulazione (2)

Per simulare sistemi con stato iniziale assegnato X0:

```
>> lsim(SYS,U,T,X0)
```

 Per riportare l'andamento della risposta di più sistemi LTI su un unico grafico:

```
>> lsim(SYS1,SYS2,...,U,T,X0)
```

Simulazione (3)

 Per memorizzare l'evoluzione dell'uscita YS ed il vettore dei tempi TS:

```
>>[YS,TS] = lsim(SYS,U,T)
```

 Per memorizzare l'evoluzione degli stati XS, dell'uscita YS ed il vettore dei tempi TS:

```
>> [YS, TS, XS] = lsim(SYS, U, T)
```

✓ In questi ultimi due casi non viene tracciato alcun grafico. Naturalmente i grafici desiderati possono essere visualizzati con il comando plot, come nell'esempio seguente.

Simulazione (4): esempio

Esempio

```
>>SYS=ss(A,B,C,D);
>>[YS,TS,XS]=lsim(SYS,U,T,X0);
>>figure(1),plot(TS,XS)
>>figure(2),plot(TS,YS)
```

Simulazione (5)

Risposta di sistemi LTI ad ingressi canonici:

- <u>risposta al gradino</u>:
 - step(SYS) simula la risposta al gradino con scelta automatica del numero di istanti temporali e della durata della simulazione;
 - ✓ step(SYS,TFINAL) simula la risposta al gradino da t=0 a t=TFINAL, con scelta automatica degli istanti temporali intermedi;
 - ✓ step(SYS,T) simula la risposta al gradino rispetto al vettore del tempo T precedentemente definito;
 - ✓ step(SYS1,SYS2,T) riporta l'andamento della risposta al gradino di più sistemi su un singolo grafico rispetto al vettore del tempo T precedentemente definito;

Simulazione (6)

✓ [Y,T] = step(SYS) memorizza l'evoluzione dell'uscita Y ed il vettore dei tempi T.

In questo caso non viene tracciato alcun grafico.

✓ [Y,T,X] = step(SYS) memorizza l'evoluzione dell'uscita Y, degli stati X e del vettore dei tempi T.

In questo caso non viene tracciato alcun grafico.

Naturalmente i grafici desiderati possono essere visualizzati con il comando plot.

Simulazione (7)

- <u>risposta all'impulso</u>:
 - impulse(SYS) simula la risposta all'impulso con scelta automatica del numero di istanti temporali e della durata della simulazione;
 - ✓ impulse(SYS,TFINAL) simula la risposta all'impulso da t=0 a t=TFINAL, con scelta automatica degli istanti temporali;
 - impulse(SYS,T) simula la risposta all'impulso rispetto al vettore del tempo T precedentemente definito;
 - impulse(SYS1,SYS2,T) riporta l'andamento della risposta all'impulso di più sistemi su un singolo grafico rispetto al vettore del tempo T precedentemente definito;

Simulazione (8)

- ✓ [Y,T] = impulse(SYS) memorizza l'evoluzione dell'uscita Y ed il vettore dei tempi T.
 - In questo caso non viene tracciato alcun grafico.
- ✓ [Y,T,X] = impulse(SYS) memorizza l'evoluzione dell'uscita Y, degli stati X e del vettore dei tempi T.
 - In questo caso non viene tracciato alcun grafico.

Naturalmente i grafici desiderati possono essere visualizzati con il comando plot.

LTI viewer (1)

Itiview apre una finestra per la simulazione di sistemi LTI. Per visualizzare la risposta dei sistemi definiti in precedenza, si procede come mostrato nella figura seguente:

>> ltiview

LTI viewer (2)

 In questo modo si può selezionare il sistema desiderato (i sistemi devono essere definiti in precedenza).

LTI viewer (3)

 Selezionando Tools -> Viewer Configuration si può modificare l'ingresso applicato per la simulazione:

Sistemi dinamici LTI

2. Analisi di proprietà strutturali

Operazioni su matrici (1)

 rank(A): calcola il rango della matrice A (numero di righe o colonne linearmente indipendenti).
 rank(A,tol): numero dei valori singolari di A maggiori di tol.

```
>> K=rank(A)
```

Operazioni su matrici (2)

- L'operatore di divisione fra matrici è \
 - $> A \setminus B = (A)^{-1} B$.
 - \triangleright X = A\B calcola la soluzione dell'equazione A*X = B.
 - > Per ulteriori informazioni sul comando, basta digitare:
 - >> help mldivide

Raggiungibilità

- Per calcolare la matrice di raggiungibilità si utilizza il comando ctrb:
 - > R = ctrb(A,B) calcola la matrice di raggiungibilità definita come [B AB A^2B ...].
 - > R = ctrb(SYS) restituisce la matrice di raggiungibilità del sistema SYS precedentemente definito con il metodo delle variabili di stato.

Osservabilità

- Per calcolare la matrice di osservabilità si utilizza il comando obsv:
 - > 0 = obsv(A,C) calcola la matrice di osservabilità definita come [C; CA; CA^2...].
 - > 0 = obsv(SYS) restituisce la matrice di osservabilità del sistema SYS precedentemente definito con il metodo delle variabili di stato.

Sistemi dinamici LTI

3. Progetto del regolatore per sistemi SISO

Struttura del regolatore

Per progettare il regolatore è necessario posizionare opportunamente gli autovalori λ_i di (A-BK) ed (A-LC).

Posizionamento dei λ_i (A-BK)

Se il sistema è completamente raggiungibile, è possibile assegnare arbitrariamente tutti gli autovalori di (A-BK) definendo un vettore P contenente gli autovalori desiderati e utilizzando i comandi place ed acker:

```
>> K = place(A,B,P)
oppure
>> K = acker(A,B,P)
```

NB: non è possibile assegnare autovalori coincidenti con il comando place.

Posizionamento dei λ_i (A-LC)

Se il sistema è completamente osservabile, è possibile assegnare arbitrariamente tutti gli autovalori di (A-LC) per dualità, definendo un vettore P contenente gli autovalori desiderati e utilizzando i comandi place ed acker:

```
>> L = place(A',C',P)'

oppure

>> L = acker(A',C',P)'
```

NB: non è possibile assegnare autovalori coincidenti con il comando place.

Posizionamento degli autovalori

 Al termine, si consiglia di verificare sempre il corretto posizionamento degli autovalori con il comando:

```
>> P1 = eig(A-BK)
>> P2 = eig(A-LC)
```