CASE STUDY:

TITLE: - Predicting Diabetes in Patients

Problem Statement:

A healthcare provider wants to predict whether a patient is at risk of developing diabetes.

Dataset:

Pima Indians Diabetes Dataset (UCI Machine Learning Repository), containing patient details like glucose levels, blood pressure, BMI, and age.

Approach Using Rapid Miner:

- **1. Data Preprocessing**: Handle missing values, normalize features, and remove outliers.
- **2. Feature Selection**: Identify important variables like glucose concentration and insulin levels.
- **3. Modeling**: Train Decision Trees, Support Vector Machines (SVM), and Neural Networks.
- **4. Evaluation**: Compare models using AUC-ROC, precision, recall, and F1-score.

Outcome:

Achieved 80%+ accuracy in predicting diabetes risk, enabling early intervention.

Step 1: Importing Dataset

In the RapidMiner environment, click on the **Design** option at the top. On the left panel, import the **Pima Indians Diabetes Dataset**. If the dataset is in CSV format, use **"Read CSV"** to load it. Drag the dataset to the environment, connect it to the **output**, and run the process to verify data import.

Step 2: Converting Numerical to Binominal

Since the **Outcome** attribute has values **0** and **1**, it needs to be converted into a binominal type:

- 1. Search for "Numerical to Binominal" in the operators search bar.
- 2. Drag the operator to the environment.
- 3. Connect the dataset output to the **Numerical to Binominal** input.
- 4. In the **Parameters panel**, select **Outcome** as the attribute to convert.
- 5. Connect the output to **Results** and run to verify the conversion.

Step 3: Data Preprocessing-

After converting numerical to binominal, perform the following preprocessing steps:

Replacing Missing Values:

- 1. Search for "Replace Missing Values", drag it to the environment.
- 2. Connect the **Numerical to Binominal** output to **Replace Missing Values**.
- 3. In the **Parameters panel**, set missing values to be replaced with the **median**.

Normalize Data:

- 1. Search for "Normalize", drag it to the environment.
- 2. Connect the **Replace Missing Values** output to **Normalize**.
- 3. Choose **Min-Max Scaling** or **Z-Score Normalization** to bring numeric values into a standard range.

4. Connect the output to **Results** and observe the cleaned dataset.

Step 4: Set Role

- 1. Search for "**Set Role**" in the operators panel and drag it to the environment.
- 2. Connect the **preprocessed data output** to **Set Role**.
- 3. In the **Parameters panel**, click **"Edit List"**, set **attribute name** to "Outcome", and assign **target role** as "Label".
- 4. Click **Apply** and connect to the next step.

Step 5: Feature Selection

To improve model performance:

- 1. Search for "Weight by Information Gain", drag it to the environment, and connect it to Set Role output.
- 2. Run the process to check the most important features like **Glucose**, **BMI**, **Insulin**, **and Age**.
- 3. Use "Select Attributes" to keep only the top-ranked features.

Step 6: Selecting Attributes

- 1. Search for "Select Attributes", drag it to the environment.
- 2. Connect the Weight by Information Gain output to Select Attributes.
- 3. In the **Parameters panel**, manually select the **top-ranked features** based on their weights.
- 4. Connect the **Select Attributes output** to the next step.

Step 7: Splitting Data

To train and test the model:

- 1. Search for "Split Data", drag it to the environment.
- 2. Connect the **Select Attributes output** to **Split Data**.
- 3. In the **Parameters panel**, set **training data ratio** to **70% (0.7)** and testing data ratio to **30% (0.3)**.
- 4. The first output will be used for training, and the second output for testing.

Step 8: Model Training

- 1. From the operators search bar, add models like "Decision Tree", "SVM", and "Neural Network".
- 2. Connect the **training data output from Split Data** to the model input.
- 3. Connect the model output to **Apply Model**.
- A. Apply **Decision Tree** Model

Observe the **Decision Tree** in the statistics we can see the **Decision Tree**.

B. Apply **SVM** Model:

Observe the **SVM** Results

C. Observe the Neural Network

Observe the Neural Network

Step 9: Apply Model

- 1. Search for "Apply Model", drag it to the environment.
- 2. Connect the **trained model output** to **Apply Model**.
- 3. Also, connect the testing data output from Split Data to Apply Model.
- 4. Run the process and verify predictions.

Step 10: Measuring Performance

- 1. Search for "Performance (Binominal Classification)", drag it to the environment.
- 2. Connect Apply Model output to Performance.
- 3. In the Parameters panel, select Accuracy, Precision, Recall, AUC-ROC, and F1-score.
- 4. Connect **Performance output** to **Results** and run the process to view model performance.

Decision Tree Performance:

Accuracy → 70.87%

Precision → 58.90%

Recall \rightarrow 53.75%

 $F_measure \rightarrow 56.21\%$

SVM Performance:

Accuracy → 80.0%

Precision → 78.33%

Recall \rightarrow 58.75%

 $F_measure \rightarrow 67.14\%$

Neural Network Performance:

Accuracy → 78.26%

Precision → 72.06%

Recall \rightarrow 61.25%

 $F_measure \rightarrow 66.22\%$

Result:

After performing numerical to binominal conversion, replacing missing values, normalizing data, selecting important features, splitting data, training models, and evaluating performance, the final model achieves an accuracy of 70%+, providing an effective solution for predicting diabetes risk.

Outcome:

	Decision Tree	SVM	Neural Network
Accuracy	70.87	80.0	78.26
Precision	58.90	78.33	72.06
Recall	53.75	58.75	61.25
F_measure	56.21	67.14	66.22

	17
S	