MAB298-Elements of Topology: Problem Sheet 5 Connectedness

- 1. Let X be a topological space, A and B connected (pathwise connected) subsets of X. Let $A \cap B \neq \emptyset$. Prove that $A \cup B$ is connected (resp. pathwise connected).
- 2. Let A be a connected subset of a topological space X. Prove that its closure \bar{A} is also connected.
- 3. Does the connectedness of $A \cup B$ and $A \cap B$ imply that of A and B?
- 4. Prove that if A is a proper nonempty subset of a connected space X, then $\partial A \neq \emptyset$.
- 5. Prove that X is disconnected if and only if there is a continuous surjection $f: X \to S^0$, where S^0 is a discrete two-point space.
- 6. Which of the following spaces are connected?
 - 1) [0,1] with discrete topology;
 - 2) [0, 1] with indiscrete topology;
 - 3) \mathbb{R} the topology $\tau = \{\emptyset, \mathbb{R}, (a, +\infty), a \in \mathbb{R}\};$
 - 4) the set of all $n \times n$ -matrices;
 - 5) the set O(2) of orthogonal 2×2 -matrices:

$$O(2) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : A^{-1} = A^{\top} \right\},\,$$

6) the set of all real triangular 2×2 matrices

$$\left\{ A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\};$$

7) the set of all real triangular 2×2 matrices with positive determinant

$$\left\{ A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : \det A > 0 \right\};$$

- 8) $\{x^2 + y^2 z^2 = a\}$ in \mathbb{R}^3 (consider 3 cases a = -1, 0, 1);
- 9) $(x^2 + y^2 1)(x^2 + y^2 4) = 0$ in \mathbb{R}^2 ;
- 10) $(x^2 + y^2 4)((x 1)^2 y^2 1) = 0$ in \mathbb{R}^2 .
- 7. Using the connectedness concept, prove that [0,1), [0,1], \mathbb{R} , S^1 (circle), S^2 (sphere) are pairwise nonhomeomorphic.
- 8. Prove that a circle is not homeomorphic to any subset of \mathbb{R} .
- 9. Prove that the set $\{xy=0\} \subset \mathbb{R}^2$ is not homeomorphic to \mathbb{R} . If we remove the point (0,0) from $\{xy=0\}$, then this space splits into four components, where after removing any point from \mathbb{R} we get always two components only.