

Gerard Romero, Chiara Marchisio, Pau Torren

Background

- Kluyveromyces lactis is a yeast commonly used in genetic studies and to produce lactic acid
- It is known as a petite-negative yeast which cannot live without its mitochondrial DNA
- Grows by glycolysis and major fermentable sources

(NCBI 2021)

Analysis Pipeline

Quality control

- FastQC was used to filter inaccurate reads
- The number of reads before and after the trimming was determined:
 - Before:
 - **26678609**
 - **27321822**
 - After:
 - **18841647**

Alignment

- HISAT2 was used to create a genome index and align the reads to it
- 2 reads were aligned, sense and antisense, here is a summary of results:

Paired Reads	18841647	100%
Aligned concordantly 0 times	314054	1.67%
Aligned concordantly exactly 1 time	18331162	97.29%
Aligned concordantly >1 times	196431	1.04%

Transcriptome assembly

- Reads were filtered according to whether they had a reference ID or not
- Summary of results:
 - Known transcripts: 5217
 - Novel transcripts: 205

FASTA conversion

 The files obtained were converted to FASTA format to ease further analysis

ORF Prediction

- A given Perl script was used to predict the longest ORF present in the transcriptome
- Random ORFs were also generated and used to compare the distribution with the predicted ORFs
- Wilcoxon test:

Known	p-value <0.001
Novel	p-value <0.001

Longest ORF

- Statistical analysis of known vs novel ORFs was performed.
- Wilcoxon test:
 - p-value < 0.001

Comparison and Statistics

- Some statystical analysis was performed between novel and known transcripts
- The level of expression of each transcript was determined by their TPMs

TPM

- Statistical analysis of known vs novel TPMs was performed.
- Wilcoxon test:
 - p-value < 0.001

Further analysis

Transcripts per chromosome

- ldentification of novel transcripts
 - 2.1 Pre-filtering
 - 2.2 BLASTX
 - 2.3 Post- BLASTx filtering
 - 2.4 Putative protein identification

Transcripts per chromosome

- Statistical analysis of the transcriptome distribution across chromosomes
- Kruskal-Wallis test:
 - p-value < 0.001
- Wilcoxon test with Bonferroni correction:
 - \circ 0.05/22 = 0.00227

Identification of novel transcripts

1. Pre-filtering

- Transcript ORF length pre-filtering >500 bp
- TPM filtering >25

2. BLASTx

- The identified transcripts were run against *S. cerevisiae* on BLASTx to identify corresponding proteins.
- Out of 3268 transcripts, 1800 were considered significant

3. Post BLASTx filtering

- From the obtained hits, those with the following parameters were kept:
 - %id and a coverage >70%
 - e-value < 0.001
- IGV was then used to discard already annotated transcripts

4. Putative protein identification

- After the filtering process, two proteins belonging to
 - S. cerevisiae were selected:

	S. cerevisiae	K. lactis
Name	PHO84	Pho84
Accession ID	NP_013583.1	QEU59767.1

	S. cerevisiae	K. lactis
Name	PPQ1	Ppq1
Accession ID	NP_015146.1	QEU61791.1

4. Putative protein identification

Putative origin of Ppq1:

Discussion

- The GFF file used was from 2016, so the putative proteins we obtained were in fact already annotated (2019) by other research groups (Varela et al. 2019)
- Some transcripts had overlapping issues on <u>IGV</u>

Conclusions

- In summary:
 - significant differences were found between known and novel transcripts in <u>ORF length</u> and <u>level of expression</u>
 - homogenous expression among chromosomes was found with the exception of mitochondrial genome
 - <u>putative proteins</u> were identified and discussed, along with their possible origin
- Possible limitation: the annotation of *K. lactis* genome may have some issues and needs to be checked

References

Geriroso/KLUYVEROMYCES_LACTIS: This repository contains the code used in the project of the kluyveromyces lactis. GitHub. Retrieved November 29, 2021, from https://github.com/Geriroso/Kluyveromyces_lactis.

Kluyveromyces lactis (ID 193) - Genome - NCBI. (2021). Retrieved 25 November 2021, from https://www.ncbi.nlm.nih.gov/genome/? term=kluyveromyces+lactis%5Borgn%5D

Varela, J. A., Puricelli, M., Ortiz-Merino, R. A., Giacomobono, R., Braun-Galleani, S., Wolfe, K. H., & Morrissey, J. P. (2019). Origin of Lactose Fermentation in Kluyveromyces lactis by Interspecies Transfer of a Neofunctionalized Gene Cluster during Domestication. Current biology: CB, 29(24), 4284–4290.e2. https://doi.org/10.1016/j.cub.2019.10.044

National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2021 Nov 29]. Available from: https://www.ncbi.nlm.nih.gov/

Thank you!

Any questions?