Obliczenia naukowe Sprawozdanie z listy 3

Wrocław, 26 listopada 2017

1.1 Opis problemu

Należy napisać funkcję rozwiązującą równanie f(x)=0, poprzez metodę bisekcji.

1.2 Rozwiązanie

Rozwiązanie jest oparte o algorytm podany na wykładzie.

Dane wejściowe:

f - funkcja f(x)

a, b – końce przedziału początkowego

delta, epsilon – dokładność obliczeń

Wyniki:

(r,v,it,err) – czwórka, gdzie

r - przybliżenie pierwiastka równania <math>f(x) = 0

v – wartość f(r)

it – liczba wykonanych iteracji

err – sygnalizacja błędu: 0 – brak błędu, 1 - funkcja nie zmienia znaku

1.3 Zasada działania

- 1. Sprawdzamy czy dana funkcja, zmienia znak w podanym przedziale. Jeśli nie zwracamy komunikat o błędzie.
- 2. Obliczamy x = (a+b)/2 i sprawdzamy czy f(x) = 0, jeśli tak to kończymy i x jest naszym rozwiązaniem. Jeśli nie, to dzielimy przedział [a,b] na dwa mniejsze [a, x] i [x, b].
- 3. Wybieramy ten przedział w którym funkcja zmienia znak i przechodzimy do punktu 2.

1.4 Wyniki testu i analiza

funkcja	[a,b]	X ₀	$f(x_0)$	iteracje
\mathbf{X}^2	[-1.0, 1.0]	error	error	error
x ² -2	[-2.0, 0.0]	-1.414215087890625	4.314817488193512e ⁻⁶	16
sin(x)	[-4.0, -2.0]	-3.1416015625	8.908910206643689e ⁻⁶	11

Metoda bisekcji nie proadzi sobie ze znalezieniem zera dla x², ponieważ nie zmienia się znak. Liczę operacji porównam z kolejnymi przykładami. Warto zauważyć, że wyznaczona liczba pi jest stosunkowo dokładna, tz. różnica jest w dziesięciotysięcznej części.

2.1 Opis problemu

Należy napisać funkcję rozwiązującą równanie f(x)=0, poprzez metodę Newtona.

2.2 Rozwiązanie

Rozwiązanie jest oparte o algorytm podany na wykładzie.

Dane wejściowe:

f, pf – funkcja f(x) dla której poszukujemy rozwiązania, pochodna funkcji f(x)

x0 – przybliżenie początkowe

delta, epsilon – dokładność obliczeń

maxit – maksymalna dopuszczalna liczba iteracji

Wyniki:

(r,v,it,err) – czwórka, gdzie

r - przybliżenie pierwiastka równania <math>f(x) = 0

v – wartość f(r)

it – liczba wykonanych iteracji

err – sygnalizacja błędu:

0 – metoda zbieżna,

1 – nie osiągnięto wymaganej dokładności w maxit iteracji,

2 – pochodna bliska zeru

2.3 Zasada działania

Zasada działania programu:

Przybliżenie początkowe (w tym przypadku jest to x0). Z punktu startowego wyprowadzamy styczną. Odcięta punktu przecięcia stycznej z osią OX jest pierwszym przybliżeniem rozwiązania (które ozn. x1). Jeśli dane rozwiązanie nie osiągnęło naszego przybliżenia to x_1 traktujemy jako nowy punkt startowy.

Kolejne przybliżenia rozwiązania obliczamy za pomocą wzoru rekurencyjnego $x_k+1=x_k-f'(x_k)$ gdzie x_k to kolejne punkty startowe. Funkcja zwraca błąd gdy f'(x)=0.

2.4 Wyniki testu i analiza

funkcja	x0	X ₀	$f(x_0)$	iteracje
X ²	-1.0	0.001953125	3.814697265625e ⁻⁶	9
x ² -2	-2.0	-1.4142156862745099	6.007304882871267e ⁻⁶	3
sin(x)	-4.0	-3.1415923871630587	-2.6642673457455806e ⁻⁷	3

Metoda Newtona natomiast jest już w stanie obliczyć punkt zerowy x². Wszystkie zadania wykonała znacznie szybciej niż metoda bisekcji. Dodatkowo obliczone pi ma większą dokładność niż w metodzie bisekcji, różnica jest na części milionowej.

3.1 Opis problemu

Należy napisać funkcję rozwiązującą równanie f(x)=0, poprzez metodę siecznych.

3.2 Rozwiązanie

Rozwiązanie jest oparte o algorytm podany na wykładzie.

Dane wejściowe:

f – funkcja f(x) dla której poszukujemy rozwiązania

x0, x1 – przybliżenia początkowe

delta, epsilon – dokładność obliczeń

maxit – maksymalna dopuszczalna liczba iteracji

Wyniki:

(r,v,it,err) – czwórka, gdzie

r - przybliżenie pierwiastka równania <math>f(x) = 0

v – wartość f(r)

it – liczba wykonanych iteracji

err – sygnalizacja błędu:

0 – metoda zbieżna,

1 – nie osiągnięto wymaganej dokładności w maxit iteracji.

3.3 Zasada działania

Obliczając kolejne rozwiązania stosujemy rekurencyjny wzór

 $X_{n+1} = X_n + (f(X_n)(X_n - X_{n-1}) / (f(X_n) - f(X_{n-1})))$

obliczenia kontynuujemy do czasu aż osiągniemy pożądane przybliżenie $|x_n-x_{n-1}| \le \Delta$ lub $|f(x_n)| \le \epsilon$

3.4 Wyniki testu i analiza

funkcja	[x0,x1]	X ₀	$f(x_0)$	iteracje
\mathbf{x}^2	[-2.0,-1.0]	-0.0020263424518743665	4.1060637322682194e ⁻⁶	13
x ² -2	[-4.0,-3.0]	-1.4142135750814935	3.594477915314087e ⁻⁸	6

sin(x)	[-2.2,-2.0]	-3.1415923299478496	-3.2364194358958243e ⁻⁷	4
--------	-------------	---------------------	------------------------------------	---

Metoda siecznych wykonuje podobną liczbę iteracji co metoda stycznych. Jej przewagą jest to, że nie trzeba podawać w parametrach początkowych pochodnej funkcji, metoda sama oblicza jej przybliżenie.

4.1 Opis problemu

Należy obliczyć pierwiastki równania sin $x-(1/2x)^2=0$ stosując metody: bisekcji, Newtona i siecznych.

4.2 Rozwiązanie

Do obliczenia użyto funkcji z trzech pierwszych zadań, zadając parametry dla:

- 1. bisekcji z przedziałem początkowym [1,5, 2] i Δ = 1/2*10⁻⁵, ϵ = 1/2*10⁻⁵
- 2. Newtona z przybliżeniem początkowym $x_0 = 1,5$ i $\Delta = 1/2*10^{-5}$, $\epsilon = 1/2*10^{-5}$
- 3. siecznych z przybliżeniami początkowymi $x_0 = 1$, $x_1 = 2$ i $\Delta = 1/2*10^{-5}$, $\epsilon = 1/2*10^{-5}$

4.3 Wyniki programu i wnioski

metody	X	$\sin x - (\frac{1}{2}x)^2$	Liczba iteracji
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16
Newtona	1.933930573929843	-2.2423316314856834e-8	4
sicznych	1.933753644474301	1.564525129449379e-7	4

Liczba operacji używając metody bisekcji jest znacznie większa (^2).

5.1 Opis problemu

Należy metodą bisekcji znaleźć wartość x, dla którego przecinają się wykresy funkcji y = 3x i y = e^x . Należy zastosować dokładność $\Delta=1/2*10^{-4}$, $\epsilon=1/2*10^{-4}$

5.2 Rozwiązanie

Aby rozwiązać zadanie należy obliczyć $3x = e^x[3x - e^x = 0]$. Korzystając z metody bisekcji należy wcześniej dobrać odpowiednio przedziały (do czego użyłem kalkulatora).

Input:

$$3x - e^x = 0$$

5.3 Wyniki programu i wnioski

	[0,1]	[1,2]
x	0.619140625	1.5120849609375

Jak już wcześniej zauważyłem w metodzie bisekcji konieczne jest wcześniejsza analiza wykresu funkcji, aby dobrać przedziały gdzie funkcja zmienia znak. Należy zastosować dokładność $\Delta=1/2*10^{-5},~\epsilon=1/2*10^{-5}$

6.1 Opis problemu

Należy znaleźć miejsca zerowe funkcji $f(x) = e^{1-x}-1$ i $f(x) = xe^{-x}$ za pomocą metod z zadań 1-3.

6.2 Rozwiązanie

Aby odpowiednio dobrać przedziały należy najpierw przeanalizować wykresy.

Input:

$$e^{1-x}-1$$

Plots:

Input:

$$x\,\boldsymbol{e}^{-x}=0$$

Root plot:

6.3 Wyniki programu i wnioski

	f(x) = e 1 - x - 1	f(x) = xe -x
--	--------------------	--------------

bisekcji	1.0	0.0
Newtona	1.0	-3.198414689582009e ⁻¹¹
siecznych	0.9999999624498374	-2.5898726695688354e ⁻⁹

Wyniki jednoznacznie wskazują na przewagę metody bisekcji, najmniejszą dokładność zwróciła nam metoda siecznych.