LMD (Grupos D y E del GII)

RELACIÓN DE EJERCICIOS DEL TEMA 1

CURSO 2021-2022

- Recordemos de teoría que un álgebra de Boole es un conjunto A en el que hay dos elementos distinguidos 0 y 1, y sobre el cual se han definido dos operaciones binarias denotadas por ∨ y ∧ y una operación monaria denotada por − de modo que se verifica el siguiente conjunto de axiomas:
 - 1. Leyes conmutativas: $\forall a, b \in \mathcal{A}, \ a \lor b = b \lor a, \ a \land b = b \land a.$
 - 2. Leyes asociativas: $\forall a, b, c \in \mathcal{A}, \ a \lor (b \lor c) = (a \lor b) \lor c, \ a \land (b \land c) = (a \land b) \land c.$
 - 3. Leyes distributivas: $\forall a, b, c \in \mathcal{A}$, $a \land (b \lor c) = (a \land b) \lor (a \land c)$, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.
 - 4. Leves de los elementos identidad: $\forall a \in \mathcal{A}, \ a \lor \mathbf{0} = a, \ a \land \mathbf{1} = a.$
 - 5. Leves de complementos: $\forall a \in \mathcal{A}, \ a \vee \overline{a} = 1, \ a \wedge \overline{a} = 0$.

Demuestre que las propiedades siguientes son consecuencia de los axiomas anteriores:

- 6. Propiedades de idempotencia: $\forall a \in \mathcal{A}, \ a \lor a = a, \ a \land a = a.$
- 7. Propiedades de los elementos identidad: $\forall a \in \mathcal{A}, \ a \lor \mathbf{1} = \mathbf{1}, \ a \land \mathbf{0} = \mathbf{0}.$
- 8. Propiedades de absorción: $\forall a, b \in \mathcal{A}$, $a \lor (a \land b) = a$, $a \land (a \lor b) = a$.
- 9. Caracterización del elemento complementario:

Si $a,b \in \mathcal{A}$, entonces

$$a \lor b = 1$$

 $a \land b = 0$ $\Leftrightarrow b = \overline{a}.$

- 10. Propiedad de involución ó de doble complemento: $\forall a \in \mathcal{A}, \ \overline{\overline{a}} = a$.
- 11. Propiedades de De Morgan: $\forall a, b \in \mathcal{A}, \ \overline{a \lor b} = \overline{a} \land \overline{b}, \ \overline{a \land b} = \overline{a} \lor \overline{b}.$
- 2. Basándose en los axiomas de álgebra de Boole y en sus consecuencias inmediatas, demuestre las siguientes identidades:
 - *a*) $(a \vee \overline{(b \wedge c)}) \wedge \overline{b} = \overline{b}$.
 - *b*) $a \lor b \lor (a \land c) \lor (b \land c) = a \lor b$.
 - *c*) $a \lor b = a \lor (\overline{a} \land b)$.
 - *d*) $\overline{(a \wedge (b \vee c)) \vee (\overline{a} \wedge \overline{b})} = \overline{b} \wedge (\overline{a} \vee \overline{c}).$
 - *e*) $(a \wedge b) \vee (\overline{a} \wedge c) \vee (b \wedge c) = (a \wedge b) \vee (\overline{a} \wedge c)$.
 - *f*) $(a \wedge b) \vee (a \wedge \overline{b}) \vee (\overline{a} \wedge b) \vee (\overline{a} \wedge \overline{b}) = \mathbf{1}$.
- 3. El orden implícito de un álgebra de Boole $\mathcal A$ es la relación binaria R definida sobre $\mathcal A$ tal que para cualesquiera dos elementos $a,b\in\mathcal A$, aRb si y sólo si $a\vee b=b$ (ó equivalentemente, $a\wedge b=a$). Demuestre que R efectivamente es una relación de orden sobre $\mathcal A$.
- 4. Demuestre que en cualquier álgebra de Boole se verifica que:
 - a) a < b si y sólo si $\overline{b} < \overline{a}$.
 - b) $a \le b$ si y sólo si $a \wedge \overline{b} = \mathbf{0}$.
 - c) Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
 - *d*) $a \le b \implies a \lor (c \land b) = (a \lor c) \land b$.
- 5. Si \mathcal{A} es un álgebra de Boole y $a \in \mathcal{A}$, demuestre que las afirmaciones siguientes son equivalentes:
 - a) a es un átomo.
 - b) Para todo $b \in \mathcal{A}$, se verifica que $a \le b$ ó $a \le \overline{b}$, pero no ambas desigualdades.
 - c) Para todo $b \in \mathcal{A}$, se verifica que $a \wedge b = a$ ó $a \wedge b = \mathbf{0}$, pero no ambas igualdades.
- 6. Sean \mathcal{A} un álgebra de Boole y $a \in \mathcal{A}$. Justifique que a es un átomo si y sólo si \overline{a} es un coátomo.
- 7. Si \mathcal{A} es un álgebra de Boole cuyos átomos son $a_1, \ldots, a_n, a_{n+1}, \ldots, a_m$, demuestre que

8. Sean $(A_1, \vee, \wedge, -), \dots, (A_n, \vee, \wedge, -)$ álgebras de Boole. Sobre el conjunto $A_1 \times \dots \times A_n$ definimos las siguientes operaciones:

$$(x_1, \dots, x_n) \lor (y_1, \dots, y_n) = (x_1 \lor y_1, \dots, x_n \lor y_n),$$

$$(x_1, \dots, x_n) \land (y_1, \dots, y_n) = (x_1 \land y_1, \dots, x_n \land y_n),$$

$$\overline{(x_1, \dots, x_n)} = (\overline{x_1}, \dots, \overline{x_n}).$$

- a) Compruebe que $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$, respecto de las operaciones anteriores, es un álgebra de Boole cuyos elementos cero y uno son, respectivamente, $(\mathbf{0}, \dots, \mathbf{0})$ y $(\mathbf{1}, \dots, \mathbf{1})$. El álgebra de Boole $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$ se denomina el álgebra de Boole producto cartesiano de las álgebras de Boole $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$.
- b) Describa la relación de orden implícito en el álgebra de Boole $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$.
- c) Determine los átomos y los coátomos del álgebra de Boole $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$.
- 9. Si k es un número entero positivo, denotamos por D(k) el conjunto de los divisores positivos de k, es decir, $D(k) = \{d \in \mathbb{N} : d|k\}$. Sean n un entero positivo, p_1, \ldots, p_n números primos distintos y $m = p_1 \cdots p_n$. Definimos sobre el conjunto D(m) las siguientes operaciones:

$$a \lor b = \operatorname{mcm}(a,b)$$
, es decir, el mínimo común múltiplo de a y b , $a \land b = \operatorname{mcd}(a,b)$, es decir, el máximo común divisor de a y b , $\overline{a} = \frac{m}{a}$.

Justifique que D(m) con las operaciones anteriores es un álgebra de Boole. Determine el orden implícito, los átomos y los coátomos.

10. Constate que el conjunto de divisores positivos D(210) es un álgebra de Boole y evalúe las siguientes expresiones:

$$14\vee(15\wedge10),\quad \overline{14}\wedge21,\quad \overline{(\overline{6}\vee5)}\vee10,\quad \overline{\overline{(3\vee10)}\vee2}.$$

Represente los elementos 21 y 70 como supremo de átomos y como ínfimo de coátomos.

- 11. Encuentre un número natural n sabiendo que el conjunto D(n) de los divisores positivos de n es un álgebra de Boole con las operaciones usuales (véase el Ejercicio 9), y que 462 y 798 son dos coátomos. Además, obtenga todos los x ∈ D(n) tales que 154 ∨ x = 1254.
- 12. En el álgebra de Boole $\mathcal{P}(\{1,2,3,4,5\})$, escriba el elemento $\{1,3,4\}$ como supremo de átomos y como ínfimo de coátomos.
- 13. Sea $f: \mathcal{A}_1 \to \mathcal{A}_2$ un isomorfismo de álgebras de Boole. Demuestre que $f(\mathbf{0}) = \mathbf{0}$ y $f(\mathbf{1}) = \mathbf{1}$.
- 14. Supongamos que \mathcal{A}_1 y \mathcal{A}_2 son álgebras de Boole cada una con n átomos. ¿Cuántos isomorfismos distintos se pueden definir de \mathcal{A}_1 en \mathcal{A}_2 ?
- 15. ¿Para cuántos números naturales n tales que $1 \le n \le 10^{1000}$ se verifica que existe algún álgebra de Boole de n elementos?
- 16. Sea \mathcal{A} un álgebra de Boole cuyos átomos son a_1, a_2, a_3, a_4, a_5 y sea el elemento

$$\alpha = \overline{(\overline{a}_1 \wedge (a_2 \vee a_5))} \wedge (a_1 \vee a_2 \vee a_4).$$

Se pide expresar:

- a) a como supremo de átomos y como ínfimo de coátomos.
- b) $\overline{\alpha}$ como supremo de átomos y como ínfimo de coátomos.
- 17. Si a y b son dos átomos distintos pertenecientes a un álgebra de Boole \mathcal{A} de cinco átomos, ¿cuántos elementos x pertenecientes a \mathcal{A} existen tales que $a \lor x = b \lor x$?
- 18. Sea \mathcal{A} el conjunto cuyos elementos son \mathbb{R} , \emptyset y los subconjuntos de \mathbb{R} que se obtienen como unión de un número finito de algunos intervalos de la forma siguiente,

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}, \ [a,\infty) = \{x \in \mathbb{R} : a \le x\}, \ (-\infty,b) = \{x \in \mathbb{R} : x < b\},\$$

donde $a,b \in \mathbb{R}$ y a < b. Justifique que \mathcal{A} es un álgebra de Boole con las operaciones usuales de unión, intersección y complemento respecto de \mathbb{R} . Determine, si existen, los átomos y los coátomos de \mathcal{A} .

- 19. Dado un conjunto X, un subconjunto de X se dice que es *cofinito*, si su complementario en X es finito. Si suponemos además que X es no vacío, sea $\mathcal{A}(X)$ la colección formada por los subconjuntos de X que son finitos ó cofinitos.
 - a) Demuestre que $\mathcal{A}(X)$ es un álgebra de Boole con las operaciones usuales de unión, intersección y complemento respecto de X.
 - b) Determine, si existen, los átomos y los coátomos de $\mathcal{A}(X)$.
 - c) ¿A qué se reduce el álgebra de Boole $\mathcal{A}(X)$ cuando el conjunto X utilizado para construirla es finito?
- 20. Sea \mathcal{A} un álgebra de Boole finita.
 - a) Supongamos que $x \in \mathcal{A} \setminus \{\mathbf{0}\}$ y que a_1, \dots, a_n son los átomos de \mathcal{A} menores o iguales que x. Demuestre que $x = a_1 \vee \dots \vee a_n$. (Sugerencia: Considere el elemento $y = a_1 \vee \dots \vee a_n$, razone que $y \leq x$, y use el método de demostración por reducción al absurdo para probar que $x \leq y$.)
 - b) Si a, a_1, \ldots, a_n son átomos de $\mathcal{A}, x = a_1 \vee \cdots \vee a_n$ y $a \leq x$, demuestre que existe algún a_i tal que $a = a_i$.
 - c) Deduzca de los dos apartados anteriores que todo elemento $x \in \mathcal{A} \setminus \{\mathbf{0}\}$ se expresa de manera única, salvo el orden de los elementos intervinientes, como $x = a_1 \vee \cdots \vee a_n$, donde a_1, \ldots, a_n son los átomos de \mathcal{A} menores o iguales que x.
- 21. Denotamos por \mathcal{F}_n el conjunto de las funciones booleanas en n variables, es decir, el conjunto formado por todas las aplicaciones $f: \mathbb{B}^n \to \mathbb{B}$. Sean f_0 y f_1 los elementos de \mathcal{F}_n tales que $f_0(\alpha) = \mathbf{0}$ y $f_1(\alpha) = \mathbf{1}$, para todo $\alpha \in \mathbb{B}^n$. Compruebe que \mathcal{F}_n es un álgebra de Boole con los elementos cero y uno dados por f_0 y f_1 , respectivamente, y las operaciones $f \vee g$, $f \wedge g$ y \overline{f} , donde

$$(f\vee g)(a_1,\ldots,a_n)=f(a_1,\ldots,a_n)\vee g(a_1,\ldots,a_n),$$

$$(f \wedge g)(a_1,\ldots,a_n) = f(a_1,\ldots,a_n) \wedge g(a_1,\ldots,a_n),$$

y

$$\overline{f}(a_1,\ldots,a_n)=\overline{f(a_1,\ldots,a_n)}$$

para todo $(a_1, \ldots, a_n) \in \mathbb{B}^n$. Determine el orden implícito en el álgebra de Boole \mathcal{F}_n .

- 22. Escriba la forma normal disyuntiva en términos de variables para cada una de las funciones booleanas siguientes:
 - a) $f(x,y,z) = \sum m(2,4,5,6)$.
 - b) $f(x, y, z) = (\overline{x} + y\overline{z}) \cdot (xy\overline{z} + x\overline{y}).$
 - c) $f(x,y,z) = (x+\overline{y}+z)(\overline{x}+y+z)(x+\overline{y}+\overline{z}).$
 - d) $f(x,y,z) = \prod M(0,1,4,5)$.
- 23. Escriba la forma normal conjuntiva en términos de variables para cada una de las funciones booleanas siguientes:
 - a) $f(x,y,z) = \prod M(1,4,7)$.
 - b) $f(x, y, z) = (\overline{xy} + \overline{z}) + x\overline{yz}$.
 - c) $f(x,y,z) = x\overline{y} + yz + \overline{x}z$.
 - d) $f(x,y,z) = \sum m(1,2,6)$.
- 24. Calcule la forma normal disyuntiva y la forma normal conjuntiva de la función booleana

$$f(x_1, x_2, x_3, x_4, x_5) = \overline{(x_1 + \overline{x}_2 + x_4)} \cdot (x_2 + \overline{x}_3 \cdot x_5) + x_1.$$

25. Obtenga la forma normal disyuntiva y la forma normal conjuntiva de la función booleana

$$f(x,y,z,t) = [(x+t) \downarrow (\bar{y}+z)] + [z\bar{t} \oplus (y \uparrow x)].$$

26. Demuestre que toda función booleana se puede expresar usando (tantas veces como sea necesario) la constante **0** y/o el operador booleano → dado por la tabla siguiente:

а	b	$a \rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

A continuación, represente el operador booleano NAND en términos sólo de operadores \rightarrow y/o constantes 0.

- 27. ¿Verifica el operador NAND la propiedad asociativa? ¿Y el operador NOR? ¿Y el operador \rightarrow ?
- 28. Sea la función booleana $f(x, y, z) = \overline{xy + z} + x\overline{z}$.
 - a) Exprese f usando sólo operadores del conjunto $\{\rightarrow, \mathbf{0}\}$.
 - b) Obtenga el polinomio de Gegalkine de f.
- 29. Defina cada una de las funciones booleanas siguientes mediante una expresión booleana:

$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = \begin{cases} \overline{x}_1 x_3 x_6 & \text{si } x_2 x_6 = \overline{x}_3 + x_5 \\ x_2 x_4 \overline{x}_5 x_7 & \text{en otro caso} \end{cases}$$

$$g(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = \begin{cases} \overline{x}_1 + x_4 & \text{si } x_2 x_6 \le \overline{x}_3 + x_5 \\ \overline{x}_2 + x_7 & \text{en otro caso} \end{cases}$$

- 30. Obtenga el polinomio de Gegalkine de la función booleana $f(x, y, z, t) = \begin{cases} yt \oplus z & \text{si } x = 0 \\ (y \downarrow \overline{z}) + t & \text{si } x = 1 \end{cases}$
- 31. Exprese el operador NAND en función del operador NOR, y viceversa.
- 32. Para la función booleana $f(x_1, x_2, x_3, x_4, x_5) = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$, ¿cuántos mintérminos aparecen en su forma normal disyuntiva? ¿Y para la función booleana $g(x_1, x_2, x_3, x_4, x_5) = x_1 \oplus x_2 \oplus x_3 \oplus x_4$?
- 33. Sean $f: \mathbb{B}^4 \to \mathbb{B}$ y $g: \mathbb{B}^4 \to \mathbb{B}$ las funciones booleanas definidas por:

$$f(x,y,z,t) = \sum m(0,2,3,6,8,11,14) \quad \text{y} \quad g(x,y,z,t) = \sum m(3,5,6,10,11,13,14).$$

Obtenga la forma normal disyuntiva de cada una de las funciones booleanas siguientes: f+g, $f \cdot g$, \overline{f} , \overline{g} , $f \to g$, $g \to f$, $f \leftrightarrow g$, $f \uparrow g$, $f \downarrow g$ y $f \oplus g$.

- 34. Para cada una de las funciones booleanas siguientes, encuentre una expresión minimal como suma de productos de literales:
 - a) $f(x_1, x_2, x_3, x_4) = \sum m(0, 4, 5, 7, 8, 10, 14, 15).$
 - b) $f(x_1, x_2, x_3, x_4, x_5) = \sum m(0, 2, 4, 7, 10, 12, 13, 18, 23, 26, 28, 29).$
 - c) $f(x_1, x_2, x_3, x_4, x_5, x_6) = \sum m(0, 2, 6, 7, 8, 10, 12, 14, 15, 41).$
- 35. Obtenga una expresión minimal como producto de sumas de literales para la función booleana

$$f(x,y,z,t) = \prod M(0,1,2,3,6,9,14).$$

- 36. Sea $f: \mathbb{B}^4 \to \mathbb{B}$ la función booleana tal que $f(a_3, a_2, a_1, a_0) = \mathbf{1}$ si, y sólo si, el número natural escrito en binario como $(a_3a_2a_1a_0)_2$, es múltiplo de 3 ó de 4. Encuentre una expresión minimal de f como suma de productos de literales.
- 37. Sea $f: \mathbb{B}^4 \to \mathbb{B}$ la función booleana tal que $f(a_3, a_2, a_1, a_0) = 1$ si, y sólo si, el número natural escrito en binario como $(a_3a_2a_1a_0)_2$, es múltiplo de 3 ó de 5. Encuentre una expresión minimal de f como suma de productos de literales.
- 38. Consideramos la función booleana $f: \mathbb{B}^5 \to \mathbb{B}$ tal que $f(a_4, a_3, a_2, a_1, a_0) = \mathbf{1}$ si, y sólo si, el número natural escrito en binario como $(a_4a_3a_2a_1a_0)_2$, es primo. Obtenga una expresión minimal como suma de productos de literales para f.

- 39. Sea la función booleana $f(x,y,z,t) = \sum m(0,1,5,8,9,12,13,14)$. De las afirmaciones siguientes, establezca las que son correctas:
 - a) f tiene exactamente cuatro implicantes primos, de los cuales sólo dos son esenciales.
 - b) La expresión $xy\bar{z}$ es un implicante primo de f, aunque no es esencial.
 - c) f tiene exactamente dos expresiones minimales como suma de productos de literales.
 - d) f tiene exactamente tres implicantes primos, cada uno de los cuales es esencial.
 - e) f tiene sólo una expresión minimal como producto de sumas de literales.
- 40. Sea la función booleana $f(x,y,z) = (\overline{x} \cdot y) \uparrow (x \to (z \downarrow \overline{y}))$. De las afirmaciones siguientes, determine las que son correctas:
 - a) En el polinomio de Gegalkine de f no aparece la constante 1.
 - b) f tiene una expresión minimal como suma de productos de literales, en la cual no aparece la variable z.
 - c) $f(x,y,z) = \overline{(x+\overline{y}+z)\cdot(x+\overline{y}+\overline{z})}$.
 - d) En la forma normal disyuntiva de f hay exactamente tres sumandos.
 - *e*) $f(x,y,z) = 1 \oplus yz \oplus xyz$.