Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Циклический код

Циклический код — это линейный код, такой, что для любого кодового слова $(a_0, a_1 \dots, a_{n-1})$ слово $(a_{n-1}, a_0 \dots, a_{n-2})$ также является кодовым.

Т.е. циклический сдвиг кодового слова также является кодовым словом.

Циклический код

Например, [7,4,3]-код Хемминга эквивалентен циклическому коду с проверочной матрицей

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Алгебраическое определение циклических кодов

Сопоставим слову

$$(a_0, \dots, a_{n-1}) \in \mathbb{F}_q^n$$

многочлен

$$f \coloneqq a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in \mathbb{F}_q[x]$$

Тогда слову $(a_{n-1}, a_0 ..., a_{n-2})$ отвечает многочлен

$$a_{n-1} + a_0 x + a_1 x^2 + \dots + a_{n-2} x^{n-1} = x \cdot f - a_{n-1} (x^n - 1)$$

Алгебраическое определение циклических кодов

Перейдём в кольцо $\mathbb{F}_q[x]/(x^n-1)$.

Слову
$$(a_0,\dots,a_{n-1})$$
 отвечает элемент кольца $f=a_0+a_1x+a_2x^2+\dots+a_{n-1}x^{n-1}$,

а слову
$$(a_{n-1}, a_0 \dots, a_{n-2})$$
 отвечает элемент $x \cdot f - a_{n-1}(x^n-1) \stackrel{\text{в кольце}}{=} x \cdot f$

Вывод: циклический сдвиг слова эквивалентен умножению соответствующего многочлена на x в кольце $\mathbb{F}_q[x]/(x^n-1)$.

Алгебраическое определение циклических кодов

Циклический код — это подмножество C кольца $\mathbb{F}_q[x]/(x^n-1)$, такое, что

- $f_1, f_2 \in C \implies \forall \alpha, \beta \in \mathbb{F}_q \quad \alpha f_1 + \beta f_2 \in C$
- $f \in C \implies x \cdot f \in C$

Циклический код — идеал кольца

Утверждение.

Для любого ц.к.
$$C \subseteq \mathbb{F}[x]/(x^n-1)$$
 выполнено $f \in C \implies \forall g \in \mathbb{F}[x]/(x^n-1)$ $f \cdot g \in C$

Доказательство: утверждение непосредственно следует из алгебраического определения ц.к.

Циклический код — идеал кольца

Утверждение.

Любой циклический код $C \subseteq \mathbb{F}[x]/(x^n-1)$ может быть представлен в виде

$$\{f \cdot g \mid f \in \mathbb{F}[x]/(x^n - 1)\}$$

для некоторого фиксированного многочлена g.

Циклический код — идеал кольца

Доказательство:

Пусть
$$C$$
 — ц.к. Рассмотрим $g_0 \in C$, такой, что $\deg g_0 = \min_{g \in C} \deg g$

Тогда любой многочлен $f \in \mathcal{C}$ кратен g_0 . Действительно, поделим f на g_0 с остатком:

$$f(x) = g_0(x) \cdot \tilde{f}(x) + r(x)$$

где $\deg r < \deg g_0$.

Ho $r = f - \tilde{f} \cdot g_0 \in C$, а значит $r \equiv 0$.

Единственность порождающего многочлена

Нормированный многочлен — это многочлен с коэффициентом 1 при мономе старшей степени.

Утверждение.

В любом ц.к. ненулевой нормированный многочлен минимальной степени единственен.

Этот многочлен называется порождающим многочленом циклического кода.

Единственность порождающего многочлена

Доказательство:

Допустим, что в коде $\,C\,$ нашлись два разных нормногочлена минимальной степени:

$$g_1(x) = x^l + \cdots$$
$$g_2(x) = x^l + \cdots$$

Но тогда $(g_1 - g_2) \in \mathcal{C}$ и $\deg(g_1 - g_2) < l$ — это противоречит минимальности l.

Критерий существования циклического кода

Теорема.

Нормногочлен $g \in \mathbb{F}[x]/(x^n-1)$ может быть порождающим многочленом циклического кода т. и т.т., когда он является делителем многочлена (x^n-1) в кольце $\mathbb{F}[x]$.

Критерий существования циклического кода: достаточность

Доказательство $g(x^n-1) \Rightarrow \exists \mu. \kappa.$

Пусть $g(x) | (x^n - 1)$.

Положим

$$C\coloneqq\{fg,\ \mathrm{гдe}\,f\in\mathbb{F}[x]/(x^n-1)\}$$

Очевидно, С — циклический код.

Осталось доказать, что g — порождающий многочлен кода C, то есть что в C любой ненулевой многочлен имеет степень $> \deg g$, либо равен const $\cdot g$.

Критерий существования циклического кода: достаточность

Рассмотрим произвольный многочлен $\tilde{g} \in \mathcal{C}$.

Имеем $\tilde{g} = fg$ для некоторого $\mathbb{F}[x]/(x^n-1)$.

Тогда в кольце $\mathbb{F}[x]$ для тех же самых f и \tilde{g} и некоторого s выполнено равенство

$$\tilde{g} = f \cdot g + s \cdot (x^n - 1)$$

По условию, $(x^n-1)=r\cdot g$ для некоторого $r\in \mathbb{F}[x]$, следовательно

$$\tilde{g} = f \cdot g + sr \cdot g = (f + sr) \cdot g$$

Критерий существования циклического кода: достаточность

Итак, в кольце $\mathbb{F}[x]$ для некоторых f,r,s имеем $\tilde{g}=(f+sr)\cdot g$

Возможны случаи:

- $(f+sr)\equiv 0$ тогда $\tilde{g}\equiv 0$
- $(f + sr) \equiv \text{const} \neq 0$ тогда $\tilde{g} = \text{const} \cdot g$
- $\deg(f+sr) \geq 1$ тогда $\deg \tilde{g} > \deg g$

Критерий существования циклического кода: необходимость

Доказательство $\exists \mu. \kappa. \Rightarrow g \mid (x^n - 1)$

Пусть C — циклический код в $\mathbb{F}[x]/(x^n-1)$ с порождающим многочленом g.

Поделим в кольце $\mathbb{F}[x]$ с остатком (x^n-1) на g: $x^n-1=f\cdot g+r$

где $\deg r < \deg g$.

Тогда в кольце $\mathbb{F}[x]/(x^n-1)$ имеем $r=(-f)\cdot g\in \mathcal{C}$

Отсюда $r \equiv 0$, то есть $g|(x^n - 1)$.

Утверждение.

Пусть порождающий многочлен циклического кода $C \subseteq \mathbb{F}_q[x]/(x^n-1)$ имеет вид

$$c_0 + c_1 x + \dots + c_{\alpha - 1} x^{\alpha - 1} + x^{\alpha}$$

Тогда, если рассматривать C как подпространство \mathbb{F}_q^n , то $\dim C = n - \alpha$ и порождающая матрица кода имеет вид

$$\begin{pmatrix} c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & \dots & 0 \\ 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 \end{pmatrix}$$

Доказательство:

Очевидно, что строки матрицы

$$\begin{pmatrix} c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & \dots & 0 \\ 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 \end{pmatrix}$$

линейно независимы и её ранг равен $(n-\alpha)$.

Остаётся доказать равенство $\dim C = n - \alpha$.

Для произвольного
$$f \in \mathbb{F}_q[x]/(x^n-1)$$
 положим $\mathcal{C}_f \coloneqq \{f+h \mid h \in \mathcal{C}\}.$

Докажем, что если
$$f_1 \neq f_2$$
 и $\deg f_i < \alpha$, то $\mathcal{C}_{f_1} \cap \mathcal{C}_{f_2} = \emptyset$

Допустим, что $C_{f_1} \cap C_{f_2} \neq \emptyset$. Это означает, что $f_1 + h_1 = f_2 + h_2$ для некоторых $h_1, h_2 \in \mathcal{C}$.

Тогда $f_1 - f_2 = h_2 - h_1 \in C$.

Но тогда из условия $\deg(f_1-f_2)<\alpha$ вытекает, что $f_1-f_2\equiv 0$ — противоречие.

Пусть

$$f_1, \dots, f_{q^{\alpha}} \in \mathbb{F}_q[x]/(x^n - 1)$$

— всевозможные многочлены степени $< \alpha$.

Так как
$$C_{f_i}\cap C_{f_j}=\emptyset$$
 при $i\neq j$, то
$$\left|C_{f_1}\right|+\cdots+\left|C_{f_q\alpha}\right|\leq \left|\mathbb{F}_q[x]/(x^n-1)\right|=q^n$$

Очевидно, $\left|C_{f_i}\right|=\left|C\right|$ для каждого i, а значит $\left|C\right|\leq rac{q^n}{q^\alpha}=q^{n-\alpha}$

Следовательно, $\dim C \leq n - \alpha$.

Доказанное утверждение:

Если код ${\it C}$ имеет порождающий многочлен

$$c_0 + c_1 x + \dots + c_{\alpha - 1} x^{\alpha - 1} + x^{\alpha}$$

то порождающая матрица кода ${\it C}$ имеет вид

$$\begin{pmatrix} c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & \dots & 0 \\ 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & c_0 & c_1 & \dots & c_{\alpha-1} & 1 \end{pmatrix}$$

Следствие.

Код C можно представить в виде

$$\{f \cdot g \mid f \in \mathbb{F}[x]/(x^n - 1), \deg f < n - \alpha\}$$

Утверждение.

У любого циклического кода существует порождающая матрица канонического вида.

(Т.е. любой ц.к. допускает систематическое кодирование.)

Замечание.

Важно, что *сам* код допускает систематическое кодирование. Не нужно переходить к эквивалентному коду.

Доказательство:

Пусть g — порождающий многочлен, $\deg g = \alpha$.

Поделим многочлены x^{α} , $x^{\alpha+1}$, ..., x^{n-1} с остатком на g:

$$x^{\alpha} = h_0 \cdot g + r_0$$

$$\vdots$$

$$x^{n-1} = h_{n-\alpha-1} \cdot g + r_{n-\alpha-1}$$

Перепишем:

$$h_0 \cdot g = x^{\alpha} - r_0$$

$$\vdots$$

$$h_{n-\alpha-1} \cdot g = x^{n-1} - r_{n-\alpha-1}$$

Имеем

$$h_0 \cdot g = x^{\alpha} - r_0$$

$$\vdots$$

$$h_{n-\alpha-1} \cdot g = x^{n-1} - r_{n-\alpha-1}$$

Каждый из многочленов $h_i \cdot g$ принадлежит C и имеет вид $x^{\alpha+i} + c_{i,\alpha-1}x^{\alpha-1} + c_{i,\alpha-2}x^{\alpha-2} + \cdots + c_{i,0}$

где $c_{i,i}$ — некоторые коэффициенты.

Многочлены $h_i \cdot g$ принадлежат C и имеют вид $x^{\alpha+i} + c_{i,\alpha-1} x^{\alpha-1} + c_{i,\alpha-2} x^{\alpha-2} + \cdots + c_{i,0}.$

Составим из их коэффициентов порождающую матрицу кода ${\cal C}$, она будет иметь вид

$$\begin{pmatrix} c_{0,0} & \dots & c_{0,\alpha-1} & 1 & 0 & \dots & 0 \\ c_{1,0} & \dots & c_{1,\alpha-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ c_{n-\alpha-1,0} & \dots & c_{n-\alpha-1,\alpha-1} & 0 & 0 & \dots & 1 \end{pmatrix}$$

Итак, у кода ${\it C}$ есть порождающая матрица вида

$$\begin{pmatrix} c_{0,0} & \dots & c_{0,\alpha-1} & 1 & 0 & \dots & 0 \\ c_{1,0} & \dots & c_{1,\alpha-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ c_{n-\alpha-1,0} & \dots & c_{n-\alpha-1,\alpha-1} & 0 & 0 & \dots & 1 \end{pmatrix}$$

Т.к. код C циклический, то можно циклически переставить столбцы в этой матрице, и получится искомая матрица вида $(I|\tilde{G})$, где I — единичная матрица порядка $(n-\alpha)$.

Проверочный многочлен

Пусть g — порождающий многочлен кода C.

Так как $g|(x^n-1)$, то в кольце $\mathbb{F}[x]$ имеем $x^n-1=g\cdot h$

для некоторого $h \in \mathbb{F}[x]$.

Многочлен h(x) называется проверочным многочленом кода \mathcal{C} .

Для любого $f \in C$ в кольце $\mathbb{F}[x]/(x^n-1)$ выполнено равенство $f \cdot h = 0$.

Утверждение.

Пусть проверочный многочлен циклического кода $C \subseteq \mathbb{F}[x]/(x^n-1)$ имеет вид

$$h_0 + h_1 x + \dots + h_{n-\alpha} x^{n-\alpha}$$

Тогда, если рассматривать C как обычный линейный код, то его проверочная матрица будет иметь вид

$$\begin{pmatrix} h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & \dots & 0 \\ 0 & h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & h_{n-\alpha} & \dots & h_1 & h_0 \end{pmatrix}$$

Доказательство:

Пусть проверочный многочлен циклического кода

$$C \subseteq \mathbb{F}[x]/(x^n-1)$$
 имеет вид

$$h_0 + h_1 x + \dots + h_{n-\alpha} x^{n-\alpha}$$

Для любого многочлена

$$c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C$$

в кольце $\mathbb{F}[x]/(x^n-1)$ выполнено равенство

$$(c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) \cdot (h_0 + h_1 x + \dots + h_{n-\alpha} x^{n-\alpha}) = 0$$

Для удобства формально введём $h_{n-\alpha+1} = h_{n-\alpha+2} = \cdots = 0.$

В кольце $\mathbb{F}[x]/(x^n-1)$ выполнено равенство

$$0 = (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) \cdot (h_0 + h_1 x + \dots + h_{n-1} x^{n-1})$$

$$=\sum_{m=0}^{2n-2} x^m \sum_{i=0}^m c_i h_{m-i}$$

В $\mathbb{F}[x]/(x^n-1)$ выполнено $x^{n+t}=x^t$, отсюда

$$\sum_{m=0}^{2n-2} x^m \sum_{i=0}^{m} c_i h_{m-i} = \sum_{m=0}^{n-1} x^m \sum_{i=0}^{m} c_i h_{m-i} + \sum_{m=0}^{n-1} x^m \sum_{i=m+1}^{n-1} c_i h_{m+n-i}$$

В кольце $\mathbb{F}[x]/(x^n-1)$ выполнены равенства

$$0 = \sum_{m=0}^{n-1} x^m \sum_{i=0}^{m} c_i h_{m-i} + \sum_{m=0}^{n-1} x^m \sum_{i=m+1}^{n-1} c_i h_{m+n-i}$$

Отсюда при каждом $m \in \{0, \dots, n-1\}$ должно быть выполнено

$$\sum_{i=0}^{m} c_i h_{m-i} + \sum_{i=m+1}^{n-1} c_i h_{m+n-i} = 0$$

При каждом $m \in \{0, ..., n-1\}$ должно быть выполнено

$$\sum_{i=0}^{m} c_i h_{m-i} + \sum_{i=m+1}^{n-1} c_i h_{m+n-i} = \sum_{i=0}^{n-1} c_i h_{(m-i) \bmod n} = 0$$

При $m \in \{n - \alpha, ..., n - 1\}$ уравнения

$$\sum_{i=0}^{n-1} c_i h_{(m-i) \bmod n} = 0$$

как раз и задаются матрицей

$$\begin{pmatrix} h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & \dots & 0 \\ 0 & h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & h_{n-\alpha} & \dots & h_1 & h_0 \end{pmatrix}$$

Доказали, что кодовые слова удовлетворяют системе, задаваемой матрицей

$$\begin{pmatrix} h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & \dots & 0 \\ 0 & h_{n-\alpha} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & h_{n-\alpha} & \dots & h_1 & h_0 \end{pmatrix}$$

То, что эта матрица проверочная (т.е. никакие «лишние» слова не удовлетворяют системе), следует из того, что её ранг равен α , а размерность кода равна $(n-\alpha)$.

Лемма Вандермонда (A.—T. Vandermonde)

Имеет место формула Вандермонда:

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{r-1} & \lambda_2^{r-1} & \cdots & \lambda_r^{r-1} \end{vmatrix} = \prod_{1 \le i < j \le r} (\lambda_j - \lambda_i)$$

Из неё следует, что матрица невырождена при $\lambda_j \neq \lambda_i$.

Доказательство индукцией по r.

База:
$$r=1$$
. Очевидно: $\begin{vmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{vmatrix} = \lambda_2 - \lambda_1$.

Лемма Вандермонда

Индуктивный переход:

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_{1} & \lambda_{2} & \cdots & \lambda_{r} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_{1}^{r-1} & \lambda_{2}^{r-1} & \cdots & \lambda_{r}^{r-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ \lambda_{1} & \lambda_{2} - \lambda_{1} & \cdots & \lambda_{r} - \lambda_{1} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_{1}^{r-1} & \lambda_{2}^{r-1} - \lambda_{1}^{r-1} & \cdots & \lambda_{r}^{r-1} - \lambda_{1}^{r-1} \end{vmatrix} =$$

$$= \begin{vmatrix} \lambda_{2} - \lambda_{1} & \cdots & \lambda_{r} - \lambda_{1} \\ \lambda_{2}^{2} - \lambda_{1}^{2} & \cdots & \lambda_{r}^{2} - \lambda_{1}^{2} \\ \vdots & \cdots & \vdots \\ \lambda_{2}^{r-2} - \lambda_{1}^{r-2} & \cdots & \lambda_{r}^{r-2} - \lambda_{1}^{r-2} \\ \lambda_{2}^{r-1} - \lambda_{1}^{r-1} - \lambda_{1}^{r-3} & \cdots & \lambda_{r}^{r-2} - \lambda_{1} \lambda_{r}^{r-3} \\ \lambda_{2}^{r-1} - \lambda_{1} \lambda_{2}^{r-2} & \cdots & \lambda_{r}^{r-1} - \lambda_{1} \lambda_{r}^{r-2} \end{vmatrix} = \begin{vmatrix} \lambda_{2} - \lambda_{1} & \cdots & \lambda_{r} - \lambda_{1} \\ \lambda_{2}^{2} - \lambda_{1} \lambda_{2} & \cdots & \lambda_{r}^{2} - \lambda_{1} \lambda_{r}^{r-3} \\ \lambda_{2}^{r-1} - \lambda_{1} \lambda_{2}^{r-2} & \cdots & \lambda_{r}^{r-1} - \lambda_{1} \lambda_{r}^{r-2} \end{vmatrix} = \begin{vmatrix} \Gamma \\ \lambda_{2} & \lambda_{3} & \cdots & \lambda_{r} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_{2}^{r-2} & \lambda_{3}^{r-2} & \cdots & \lambda_{r}^{r-2} \end{vmatrix} = \prod_{1 \leq i < j \leq r} (\lambda_{j} - \lambda_{i})$$

Примитивный элемент

Рассмотрим поле \mathbb{F}_q , где $q=p^m$, p простое.

Известно, что множество $\mathbb{F}_q \setminus \{0\}$ образует циклическую группу по умножению.

Каждый образующий элемент этой группы (порядок которого равен (q-1)) называется *примитивным элементом поля*.

Иными словами, примитивный элемент — это такой $\lambda \in \mathbb{F}_q$, что $\{1,\lambda,\lambda^2,\dots,\lambda^{q-2}\}=\mathbb{F}_q\setminus\{0\}.$

Teopeма. (A.Hocquenghem'1959, R.C. Bose and D.K. Ray-Chaudhuri'1960)

Пусть λ — примитивный элемент \mathbb{F}_q , и $\delta \leq q$.

Пусть порождающий многочлен g кода $C \subseteq \mathbb{F}_q^n$ таков, что в \mathbb{F}_q среди его корней есть числа

$$\lambda^b, \lambda^{b+1}, \dots, \lambda^{b+\delta-2}$$

Тогда $d(C) \geq \delta$.

Доказательство:

Рассмотрим произвольный $f(x) \in C$.

Найдётся многочлен $s(x) \in \mathbb{F}_q[x]/(x^n-1)$, такой, что $\deg s < n - \deg g$ и в кольце $\mathbb{F}_q[x]/(x^n-1)$ выполнено равенство $f(x) = s(x) \cdot g(x)$

Так как $\deg s + \deg g < n$, то это равенство выполнено и в кольце $\mathbb{F}_a[x]$.

В кольце $\mathbb{F}_a[x]$ справедливо равенство

$$f(x) = s(x) \cdot g(x)$$

Пусть λ^b , ..., $\lambda^{b+\delta-2}$ — различные корни g(x).

Они же будут корнями f.

Пусть
$$f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$
.

Вектор (c_0, \dots, c_{n-1}) удовлетворяет системе линейных уравнений с матрицей

$$\begin{pmatrix} 1 & \lambda^b & \cdots & \lambda^{b(n-1)} \\ 1 & \lambda^{b+1} & \cdots & \lambda^{(b+1)(n-1)} \\ \vdots & \vdots & \vdots \\ 1 & \lambda^{b+\delta-2} & \cdots & \lambda^{(b+\delta-2)(n-1)} \end{pmatrix}$$

Любой кодовый вектор удовлетворяет системе с матрицей

$$\widetilde{H} = \begin{pmatrix} 1 & \lambda^b & \cdots & \lambda^{b(n-1)} \\ 1 & \lambda^{b+1} & \cdots & \lambda^{(b+1)(n-1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda^{b+\delta-2} & \cdots & \lambda^{(b+\delta-2)(n-1)} \end{pmatrix}$$

(Это не обязательно проверочная матрица кода, но её можно дополнить до проверочной.)

Достаточно доказать, что любые $(\delta-1)$ столбцов матрицы \widetilde{H} линейно независимы.

$$\widetilde{H} = \begin{pmatrix} 1 & \lambda^b & \cdots & \lambda^{b(n-1)} \\ 1 & \lambda^{b+1} & \cdots & \lambda^{(b+1)(n-1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda^{b+\delta-2} & \cdots & \lambda^{(b+\delta-2)(n-1)} \end{pmatrix}$$

Выберем в \widetilde{H} произвольные столбцы i_1 , ..., $i_{\delta-1}$. Получим матрицу

$$\begin{pmatrix} \lambda^{b \cdot i_1} & \lambda^{b \cdot i_2} & \cdots & \lambda^{b \cdot i_{\delta-1}} \\ \lambda^{(b+1) \cdot i_1} & \lambda^{(b+1) \cdot i_2} & \cdots & \lambda^{(b+1) \cdot i_{\delta-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda^{(b+\delta-2) \cdot i_1} & \lambda^{(b+\delta-2) \cdot i_2} & \cdots & \lambda^{(b+\delta-2) \cdot i_{\delta-1}} \end{pmatrix}$$

Докажем, что матрица $\widetilde{H}_{i_1,\dots,i_{\delta-1}}$ невырождена. Имеем

$$\begin{vmatrix} \lambda^{b \cdot i_1} & \lambda^{b \cdot i_2} & \cdots & \lambda^{b \cdot i_{\delta-1}} \\ \lambda^{(b+1) \cdot i_1} & \lambda^{(b+1) \cdot i_2} & \cdots & \lambda^{(b+1) \cdot i_{\delta-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda^{(b+\delta-2) \cdot i_1} & \lambda^{(b+\delta-2) \cdot i_2} & \cdots & \lambda^{(b+\delta-2) \cdot i_{\delta-1}} \end{vmatrix} =$$

$$= \lambda^{b \cdot (i_1 + \cdots + i_{\delta-1})} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda^{i_1} & \lambda^{i_2} & \cdots & \lambda^{i_{\delta-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda^{(\delta-2) \cdot i_1} & \lambda^{(b-2) \cdot i_2} & \cdots & \lambda^{(\delta-2) \cdot i_{\delta-1}} \end{vmatrix}$$

По лемме Вандермонда, определитель последней матрицы не равен нулю.