

Project Report

Master of Computer Application

Semester – II

Machine Learning Theory and Practice

Project title: Laptops Price Prediction

By SHIVANGI PATHAK Reg. No.:2411022250027

Department of Computer Application
Alliance University
Chandapura - Anekal Main Road, Anekal
Bengaluru - 562 106
March 2025

Laptops Price Prediction

Introduction:

In today's technology-driven world, laptops have become essential for personal and professional use. With a wide range of specifications, brands, and features available, predicting laptop prices has become an interesting and valuable task. **Laptop price prediction** involves using **machine learning techniques** and **data analysis** to estimate the cost of a laptop based on its specifications, such as processor type, RAM, storage, display size, GPU, and brand

Data Preprocessing

Data preprocessing is a crucial step in machine learning that ensures the dataset is clean, structured, and ready for analysis. It improves model accuracy and helps in better price predictions.

Steps in Data Preprocessing

1. Data Collection

Gather laptop data from sources like **e-commerce websites**, manufacturer catalogs, or datasets from Kaggle.

The dataset should include features like **brand**, **processor**, **RAM**, **storage**, **GPU**, **screen size**, **operating system**, **and price**.

2. Handling Missing Data

Identify missing values in the dataset.

Fill missing values using.

Mean/Median for numerical data (e.g., missing RAM size).

Mode for categorical data (e.g., missing brand or OS)..

Drop rows/columns if they contain too many missing values.

3. Handling Duplicate Data

Check for duplicate rows and remove them to avoid bias in training.

Data Preprocessing and Preparation for Laptops Price Prediction:

- Importing Essential Libraries
- Loading the Dataset
- Identifying Missing Values
- Handling Missing Values with Mean Imputation
- Detecting Outliers in the Data
- Removing Outliers for Clean Data
- Applying Label Encoding to Categorical Features
- Analyzing Correlations Among Variables
- Evaluating Outcome Proportionality
- Separating Features and Target Variable
- Normalizing and Standardizing the Features
- Building and Implementing Linear Regression Model

1.Importing the necessary libraries

import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import mean_squared_error, r2_score

Code Explanation:

pandas: A powerful library for data manipulation and analysis. It helps handle tabular data using Data Frame objects.

NumPy: Essential for numerical computations. It provides support for arrays, mathematical functions.

sklearn.preprocessing (LabelEncoder, StandardScaler): Tools for preparing data for machine learning. LabelEncoder converts categorical labels to numerical form, and StandardScaler normalizes features by scaling them.

sklearn.linear_model (LinearRegression): Implements linear regression, a popular algorithm for predicting numeric values based on input features.

matplotlib.pyplot (plt): A plotting library for creating static, interactive, and animated visualizations in Python.

seaborn (sns): Built on matplotlib, it simplifies data visualization by providing a high-level interface for creating attractive plots.

mean_squared_error: It calculates the average of the squared differences between the actual values and the predicted values.

r2_score: It measures the proportion of variance in the target variable that is predictable from the features.

2.Load the Laptops Price Prediction Dataset

df=pd.read_csv('/content/data.csv')
df

Code Explanation:

- pd. read_csv('/content/data.csv'): It uses the pandas library to load data from a CSV file located at /content/data.csv into a Data Frame (df). A Data Frame is a tabular structure similar to a spreadsheet or SQL table.
- df: Displays the loaded Data Frame so you can visually inspect the data.

÷	Unn	named: 0.1	Unnamed: 0	brand	name	price	spec_rating	processor	CPU	Ram	Ram_type	ROM	ROM_type	GPU	display_size	resolution_width	resolution_height	
	0	0	0	HP	Victus 15- fb0157AX Gaming Laptop	49900	73.000000	5th Gen AMD Ryzen 5 5600H	Hexa Core, 12 Threads	8GB	DDR4	512GB	SSD	4GB AMD Radeon RX 6500M	15.6	1920.0	1080.0	٧
	1	1	1	HP	15s- fq5007TU Laptop	39900	60.000000	12th Gen Intel Core i3 1215U	Hexa Core (2P + 4E), 8 Threads	8GB	DDR4	512GB	SSD	Intel UHD Graphics	15.6	1920.0	1080.0	٧
	2	2	2	Acer	One 14 Z8- 415 Laptop	26990	69.323529	11th Gen Intel Core i3 1115G4	Dual Core, 4 Threads	8GB	DDR4	512GB	SSD	Intel Iris Xe Graphics	14.0	1920.0	1080.0	V
	3	3	3	Lenovo	Yoga Slim 6 14IAP8 82WU0095IN Laptop	59729	66.000000	12th Gen Intel Core i5 1240P	Cores (4P + 8E), 16 Threads	16GB	LPDDR5	512GB	SSD	Intel Integrated Iris Xe	14.0	2240.0	1400.0	٧
	4	4	4	Apple	MacBook Air 2020 MGND3HN Laptop	69990	69.323529	Apple M1	Octa Core (4P + 4E)	8GB	DDR4	256GB	SSD	Apple M1 Integrated Graphics	13.3	2560.0	1600.0	1
																	<u>""</u>	
					Vivobook				Hexa									

3. Finding missing values

print("Missing values:\n", df.isnull().sum())

Explanation:

- **df.isnull():** Creates a new DataFrame where each element is True if the corresponding value in df is missing (null), and False otherwise.
- **sum()**: Sums up the True values (which are considered as 1) for each column, giving the total count of missing values in every column.

Output:

```
Missing values:
Unnamed: 0.1
                       0
Unnamed: 0
brand
                      0
name
                      0
price
spec_rating
processor
CPU
                      0
Ram
Ram_type
                      0
ROM
                      0
ROM_type
                      0
GPU
display_size
                      0
resolution width
                      0
resolution_height
                      0
warranty
                      0
dtype: int64
```

4. Replace missing values with the mean

df.fillna(df.mean(numeric_only=True), inplace=True)
df

Code Explanation:

- **df.mean(numeric_only=True)**: Calculates the mean (average) of each numeric column in the DataFrame. The numeric_only=True parameter ensures that only numeric columns are considered for this calculation.
- **df.fillna:** Fills the missing (null) values in df with the calculated means for their respective columns.
- **inplace=True**: Updates the DataFrame df directly without creating a new copy.

	Unnamed: 0.1	Unnamed:	brand	name	price	spec_rating	processor	СРИ	Ram	Ram_type	ROM	ROM_type	GPU	display_size	resolution_width	resolution_height	
0	0	0	HP	Victus 15- fb0157AX Gaming Laptop	49900	73.000000	5th Gen AMD Ryzen 5 5600H	Hexa Core, 12 Threads	8GB	DDR4	512GB	SSD	4GB AMD Radeon RX 6500M	15.6	1920.0	1080.0	V
1	1	1	HP	15s- fq5007TU Laptop	39900	60.000000	12th Gen Intel Core i3 1215U	Hexa Core (2P + 4E), 8 Threads	8GB	DDR4	512GB	SSD	Intel UHD Graphics	15.6	1920.0	1080.0	٧
2	2	2	Acer	One 14 Z8- 415 Laptop	26990	69.323529	11th Gen Intel Core i3 1115G4	Dual Core, 4 Threads	8GB	DDR4	512GB	SSD	Intel Iris Xe Graphics	14.0	1920.0	1080.0	V
3	3	3	Lenovo	Yoga Slim 6 14IAP8 82WU0095IN Laptop	59729	66.000000	12th Gen Intel Core i5 1240P	12 Cores (4P + 8E), 16 Threads	16GB	LPDDR5	512GB	SSD	Intel Integrated Iris Xe	14.0	2240.0	1400.0	٧
4	4	4	Apple	MacBook Air 2020 MGND3HN	69990	69.323529	Apple M1	Octa Core (4P +	8GB	DDR4	256GB	SSD	Apple M1 Integrated	13.3	2560.0	1600.0	ı

5. Check the outlier

Box plots for detecting outliers

import pandas as pd
df = pd.read csv("laptop data.csv")

1. Drop columns with more than 40% missing values threshold = 0.4 # 40% threshold df = df.dropna(thresh=len(df) * threshold, axis=1)

2. Drop rows with more than 30% missing values row_threshold = 0.3 # 30% threshold df = df.dropna(thresh=len(df.columns) * row_threshold, axis=0)

3. Remove duplicate rows df = df.drop_duplicates()

Display the cleaned dataset
print(df.info())

Code Explanation:

- · dropna(thresh=len(df) * threshold, axis=1) \rightarrow Drops columns if more than 40% of their values are missing.
- · · dropna(thresh=len(df.columns) * row_threshold, axis=0) \rightarrow Drops rows if more than 30% of their values are missing.
- · drop_duplicates() → Removes identical rows to avoid data bias.

Output:

6. Drop the outliers

```
import pandas as pd
import numpy as np
df = pd.read_csv("laptop_data.csv")
numerical_cols = df.select_dtypes(include=[np.number])
Q1 = numerical_cols.quantile(0.25)
Q3 = numerical_cols.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Filter out rows where any numerical column contains an outlier
df_filtered = df[~((numerical_cols < lower_bound) | (numerical_cols > upper_bound)).any(axis=1)]
print(df_filtered)
```

Explanation:

print("Outliers removed successfully.")

• Select only numerical columns using select_dtypes(include=[np.number]).

- Compute Q1 (25th percentile) and Q3 (75th percentile) to determine the IQR.
- Calculate lower and upper bounds for detecting outliers.
- Filter out rows where any numerical column contains values outside the IQR range.
- Return the cleaned dataset without outliers.

Outlier Detection:

- Data points lying outside a defined range are considered outliers
- The range is defined as (Q1 1.5 * IQR, Q3 + 1.5 * IQR)
- Any value less than Q1 1.5 is considered a lower outlier.
- Any value greater than Q3 + 1.5 is considered an upper outlier.

```
Unnamed: 0.1 Unnamed: 0 brand name price spec rating processor \
0
                 6 427 49900 73.000000
                                           79
1
                                          26
                 6 31 39900 60.000000
6
       6
                                           26
                 5 215 36790 60.000000
8
                 2 465 48990 64.000000
                                           34
10
       10
              10 11 394 49990 69.323529
           ... ... ... ...
       907
               996 5 225 63990 69.323529
                                              43
869
872
       910
               999
                    6 421 51990 65.000000
                                              79
875
       913
              1002 1 67 50990 65.000000
                                              32
880
       918
              1007
                     6 423 59990 64.000000
                                               79
        926
              1015
                     2 474 44990 69.323529
                                               58
888
  CPU Ram Ram_type ROM ROM_type GPU display_size resolution_width \
                            15.6
0
  13 4
            1 3
                   1 7
                                     1920.0
  12 4
            1 3
                   1 81
                            15.6
                                     1920.0
1
   12 4
            1 3
                   1 81
                            15.6
                                     1920.0
   3 4
           1 3
                   1 76
                            15.6
                                     1920.0
10 0 1
            1 3
                   1 70
                            15.6
                                     1920.0
         ... ...
               ... ...
            1 3
                    1 70
                             15.6
                                      1920.0
869 0 4
872 13 4
             1 3
                     1 6
                             15.6
                                      1920.0
             1 3
875 14 4
                     1 14
                             15.6
                                       1920.0
880 13 4
             1 3
                     1 20
                             15.6
                                      1920.0
888 12 4
             1 3
                     1 56
                             15.6
                                      1920.0
  resolution_height OS warranty
0
       1080.0 5
       1080.0 5
1
                   1
6
       1080.0 5
                   1
8
       1080.0 5
                   1
10
        1080.0 5
        ... ..
```

```
      869
      1080.0
      5
      1

      872
      1080.0
      5
      1

      875
      1080.0
      5
      1

      880
      1080.0
      5
      1

      888
      1080.0
      5
      1
```

[203 rows x 18 columns] Outliers removed.

7. Perform label encoding

```
label_encoder = LabelEncoder()
categorical_columns = df.select_dtypes(include=['object']).columns
for col in categorical_columns:
df[col] = label_encoder.fit_transform(df[col])
print(df)
print("Label encoding applied.")
```

Explanation:

Initialize Label Encoder:

- **label_encoder = LabelEncoder():**Creates an instance of LabelEncoder from sklearn , which converts categorical values into integer labels.
- categorical_columns = df.select_dtypes(include=['object']).columns Selects columns in the DataFrame () that have a data type of (usually indicating categorical data).
- for col in categorical_columns: df[col] = label_encoder.fit_transform(df[col]) Iterates through each categorical column, transforms its unique values into numerical labels using , and replaces the original column values with these encoded labels.

```
Unnamed: 0.1 Unnamed: 0 brand name price spec rating processor \
0
                 6 427 49900 73.000000
                                           79
1
                 6 31 39900 60.000000
                                          26
2
       2
                 1 291 26990 69.323529
                                           11
       5
5
                 1 105 39990 62.000000
                                           31
6
                 5 215 36790 60.000000
           ... ... ...
                     ...
                           ...
                    5 110 125699 75.000000
                                               54
       923
885
              1012
886
       924
              1013
                    1 77 49990 69.323529
                                              42
887
       925
              1014
                    1 64 56990 69.323529
                                              43
888
        926
              1015
                    2 474 44990 69.323529
                                               58
       929
              1018 2 339 129990 73.000000
891
```

```
CPU Ram Ram type ROM ROM type GPU display size resolution width \
0
  13 4
           1 3
                  1 7
                         15.6
                                  1920.0
           1 3
                          15.6
  12 4
                  1 81
                                  1920.0
           1 3 1 78
                          14.0
2
  11 4
                                  1920.0
5
  3 4
          1 3
                 1 78
                         14.0
                                  1920.0
6 12 4 1 3 1 81
                                  1920.0
                          15.6
        ... ...
              ... ...
           3 3 1 30
                          15.6
                                   1920.0
885 4 1
886 12 1
           5 3
                 1 70
                          14.0
                                  1920.0
           7 3
887 0 1
                  1 69
                          15.6
                                   1920.0
                           15.6
           1 3
                  1 56
888 12 4
                                   1920.0
891 5 1
           1 3
                  1 30
                          15.6
                                   1920.0
  resolution_height OS warranty
0
       1080.0 5
1
       1080.0 5
2
       1080.0 5
5
       1080.0 5
                 1
6
       1080.0 5
       ... .. ...
885
       1080.0 5
886
        1080.0 6
887
        1080.0 5
888
        1080.0 5
891
        1080.0 5
[608 rows x 18 columns]
```

8. Check correlation matrix

Label encoding applied.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("laptop_data.csv")
correlation_matrix = df.corr(numeric_only=True)
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="viridis", fmt=".2f", linewidths=1,
square=True, cbar=True)
plt.title("Laptop Features Correlation Heatmap", fontsize=14, fontweight='bold')
plt.xticks(rotation=45, ha="right")
plt.yticks(rotation=0)
# Show the heatmap
plt.show()
```

Improvements Over the Original Code:

df.corr(numeric_only=True) → Ensures that only numeric columns are used, preventing errors from non-numeric data.

cmap="viridis" → Uses a different color palette for better contrast.

linewidths=1 **and** square=True → Enhances visibility and maintains a neat square shape.

Rotated x-axis labels → Improves readability for datasets with long column names.

Bold and larger title → Makes the visualization more intuitive.

Output:

9. Check outcome proportionality

X_column = 'spec_rating' # Replace with your feature of interest (e.g., spec_rating)

```
y_column = 'price'
plt.figure(figsize=(10, 5))
sns.histplot(df["price"], bins=30, kde=True)
plt.title("Distribution of Price")
plt.xlabel("Price")
plt.ylabel("spec_rating")
plt.show()
```

Code Explanation:

X_column = 'spec_rating' and y_column = 'price': These lines define variables for the feature and target columns. However, they aren't directly used in the plot below.

plt.figure(figsize=(10, 5)):Sets the figure size to 10x5 inches for better visualization
sns.histplot(df["price"], bins=30, kde=True):Creates a histogram for the price column.

bins=30: Divides the data into 30 bins (intervals) for the histogram. **kde=True**: Adds a smooth KDE curve over the histogram to represent the data's probability density.

10. Separate independent and target variables

```
import pandas as pd
df = pd.read_csv("laptop_data.csv")
target_column = "price" # Ensure this column exists in the dataset
y = df[target_column] if target_column in df.columns else None
X = df.drop(columns=[target_column]) if y is not None else df.copy()
print("Independent Variables (X):")
print(X.head())
print("\nTarget Variable (y):")
print(y.head() if y is not None else "Target variable not found!")
```

Improvements Over the Original Code:

- Avoids Hardcoding Column Names Dynamically removes the price column instead of listing all independent variables.
- • Handles Missing Target Column Checks if the target column exists before selecting y.
- More Robust Works even if column names change in different datasets.

Code Explanation:

- X: Contains columns like brand, name, spec_rating, etc., which are features used as inputs for modeling.
- y: Stores the price column, which is the target variable the model will predict.
- print(X.head()): Displays the first 5 rows of the independent variables (X).
- print(y.head()): Displays the first 5 rows of the target variable (y).

```
Independent Variables (X):
 Unnamed: 0.1 Unnamed: 0 brand
                                               name \
      0
          0 HP Victus 15-fb0157AX Gaming Laptop
          1 HP
                            15s-fq5007TU Laptop
1
      1
      2
            2 Acer
                            One 14 Z8-415 Laptop
            3 Lenovo Yoga Slim 6 14IAP8 82WU0095IN Laptop
            4 Apple MacBook Air 2020 MGND3HN Laptop
 spec_rating
                     processor
0 73.000000 5th Gen AMD Ryzen 5 5600H
                                           Hexa Core, 12 Threads
1 60.000000 12th Gen Intel Core i3 1215U Hexa Core (2P + 4E), 8 Threads
2 69.323529 11th Gen Intel Core i3 1115G4
                                           Dual Core, 4 Threads
3 66.000000 12th Gen Intel Core i5 1240P 12 Cores (4P + 8E), 16 Threads
```

```
4 69.323529
                     Apple M1
                                   Octa Core (4P + 4E)
 Ram Ram_type ROM ROM_type
                                         GPU display_size \
0 8GB DDR4 512GB SSD 4GB AMD Radeon RX 6500M
       DDR4 512GB
                     SSD
                             Intel UHD Graphics
1 8GB
2 8GB DDR4 512GB SSD
                            Intel Iris Xe Graphics
3 16GB LPDDR5 512GB SSD Intel Integrated Iris Xe
                                                 14.0
4 8GB DDR4 256GB SSD Apple M1 Integrated Graphics
 resolution_width resolution_height
                                    OS warranty
      1920.0
                  1080.0 Windows 11 OS
                  1080.0 Windows 11 OS
      1920.0
2
      1920.0
                  1080.0 Windows 11 OS
                                         1
      2240.0
                 1400.0 Windows 11 OS
3
      2560.0
                 1600.0
                           Mac OS
Target Variable (y):
0 49900
  39900
2 26990
3 59729
4 69990
Name: price, dtype: int64
```

11. Apply normalization and standardization

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler
# Normalization (Min-Max Scaling)
normalizer = MinMaxScaler()
df_normalized = pd.DataFrame(normalizer.fit_transform(df), columns=df.columns)
print("\nNormalized Data (First 5 Rows):\n", df_normalized.head())

# Standardization (Z-score Scaling)
scaler = StandardScaler()
df_standardized = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
print("\nStandardized Data (First 5 Rows):\n", df_standardized.head())
```

Code Explanation:

Normalization (Min-Max Scaling):

- What it Does: Rescales all feature values to fall within the range [0, 1].
- How:MinMaxScalar() computes each value as: $X_{\text{caled}} = \frac{X X_{\text{min}}}{X_{\text{min}}} X_{\text{min}}}$
- **Purpose**: Useful when features have different scales but you want them in the same range, e.g., for machine learning algorithms sensitive to data magnitude.

Standardization (Z-score Scaling):

• What it Does: Converts data to have a mean of 0 and a standard deviation of 1.

- **How**: StandardScaler() computes each value as: $S = \frac{X \mu}{\sigma}$ where (\mu) is the mean, and (\sigma) is the standard deviation.
- **Purpose**: Ensures data is centered and scaled, which is critical for models that assume normally distributed input (e.g., logistic regression, k-means clustering).

Output:

Normalized Data (First 5 Rows):

```
Unnamed: 0.1 Unnamed: 0 brand
                                 name price spec rating \
0
   0.000000 \quad 0.000000 \quad 0.3125 \quad 0.775510 \quad 0.324820
                                              1.000000
   0.000000
   2
                                              0.000000
3
   0.307692
   0.717195
            CPU Ram Ram type ROM ROM type
                                                GPU display_size \
 processor
                          0.0 0.0
0 0.612613 0.722222 1.00
                                   0.0 0.060976
                                                   0.0
1 0.135135 0.666667 1.00
                          0.0 0.0
                                   0.0 0.963415
                                                   0.0
2 0.135135 0.666667 1.00
                          0.0 0.0
                                   0.0 0.963415
                                                   0.0
3 0.207207 0.166667 1.00
                          0.0 0.0
                                                   0.0
                                   0.0 0.902439
4 0.225225 0.000000 0.25
                          0.0 0.0
                                   0.0 0.829268
                                                   0.0
 resolution_width resolution_height OS warranty
0
       0.0
                 0.0 0.0
                          0.0
       0.0
                 0.0 0.0
1
                          0.0
2
       0.0
                 0.0 0.0
                          0.0
3
       0.0
                 0.0 0.0
                          0.0
4
       0.0
                 0.0 0.0
                          0.0
Standardized Data (First 5 Rows):
 Unnamed: 0.1 Unnamed: 0 brand
                                  name
                                        price spec rating \
  -1.401712 -1.405221 -0.022882 0.929133 -0.155123
                                                 1.814140
  -1.398035 -1.401918 -0.022882 -1.445029 -0.954369 -1.944763
  -1.379649 -1.385402 -0.280936 -0.341883 -1.202934 -1.944763
  -1.372295 -1.378795 -1.055100 1.156956 -0.227854
                                                -0.788177
  -1.364941 -1.372189 1.267392 0.731286 -0.147930
                                                 0.751102
 processor
            CPU
                   Ram Ram type ROM ROM type
                                                 GPU \
0 1.236558 0.429152 0.756519
                              0.0 0.0
                                       0.0 -1.537691
1 -0.712194 0.267823 0.756519
                              0.0 0.0
                                       0.0 1.230337
                              0.0 0.0
2 -0.712194 0.267823 0.756519
                                       0.0 1.230337
3 -0.418042 -1.184141 0.756519
                              0.0 0.0
                                       0.0 1.043308
4 -0.344505 -1.668129 -1.309491
                              0.0 0.0
                                       0.0 0.818874
 display size resolution width resolution height OS warranty
                    0.0
                             0.0 0.0
                                      0.0
0 3.552714e-15
1 3.552714e-15
                    0.0
                             0.0 0.0
                                      0.0
                    0.0
                             0.0 0.0
                                      0.0
2 3.552714e-15
3 3.552714e-15
                    0.0
                             0.0 0.0
                                      0.0
4 3.552714e-15
                    0.0
                             0.0 0.0
                                      0.0
```

12. Implement the linear Regression

```
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error, r2 score
import pandas as pd
X = df[['Unnamed: 0.1', 'Unnamed: 0', 'brand', 'name', 'spec rating', 'processor',
    'CPU', 'Ram', 'Ram type', 'ROM', 'ROM type', 'GPU', 'display size',
    'resolution width', 'resolution height', 'OS', 'warranty']] # List of columns
y = df['price'] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X train, y train)
y pred = model.predict(X test)
mse = mean_squared_error(y_test, y_pred) # Mean Squared Error
r2 = r2 score(y test, y pred) # R-squared value
print("Mean Squared Error:", mse)
print("R-squared Value:", r2)
plt.scatter(y_test, y_pred, color="blue", alpha=0.5)
plt.plot([y test.min(), y test.max()], [y test.min(), y test.max()], color="red", linestyle="--",
linewidth=2)
plt.title("Actual vs Predicted Prices")
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.show()
```

Code Explanation:

- **1. Data Preparation:** You're selecting specific columns (X) as the features and price (Y) as the target variable from the DataFrame.
- 2. **Splitting the Dataset**: The train_test_split function divides the data into training (80%) and testing (20%) sets.
- 3. **Model Initialization**: The LinearRegression class is used to create a linear regression model
- 4. **Training the Model**: The fit method trains the model using the training data (X train,Y train).
- 5. Making Predictions: The predict method generates predictions for the test data (X test).
- 6. **Evaluating Performance**: Metrics such as Mean Squared Error (mse) and R-squared (r2) are calculated to assess the model's accuracy.

7. Finally, it prints out the error (how far predictions are from actual values) and the R-squared value.

Output:

Mean Squared Error: 311155786.8100262 R-squared Value: 0.4335467427935126

