GAL - Domande d'Esame

Fabio Ferrario @fefabo

2023/2024

Indice

1	Domande Aperte	3
2	Domande Chiuse	4
	2.1 Algebra Lineare	4

Capitolo 1

Domande Aperte

SOTTOSPAZI VETTORIALI

- 1. Determinare la dimensione e trovare una base del sottospazio: $R=\{(x,y,z)\in\mathbb{R}^3:y-x=2z\}$
- 2. Completare la base del punto precedente ad una base di \mathbb{R}^3 con un vettore v ortogonale a T.

Risposta:

<u>1</u>

1. Prendiamo l'equazione che ci da: y-x=2z. è chiaramente l'equazione di un piano (quindi con dimensione =2). In ogni caso, la parametrizziamo:

Capitolo 2

Domande Chiuse

2.1 Algebra Lineare

 $\frac{1}{2}$ Se devo verificare che n vettori $v_i \in \mathbb{R}^m$ siano linearmente indipendenti, cosa posso fare?

- (a) Creo una matrice con v_i come vettori riga che abbia determinante non nullo
- (b) Creo una matrice con v_i come vettori riga e cerco una sottomatrice quadrata di ordine n Invertibile
- (c) Cerco una combinazione lineare dei vettori v_i che mi dia il vettore nullo
- (d) Creo una matrice con v_i come vettori colonna e verifico che il rango di questa matrice sia m

Risposta: b, perchè se ho una sottomatrice di ordine n invertibile allora il suo determinante è zero. Per il teorema dei minimi, significa che il rango della matrice è $almeno\ n$, quindi è massimo e tutti i suoi vettori sono linearmente indipendenti.

Se la somma di tre numeri positivi è 120, qual'è il massimo valore possibile tra il loro prodotto?

(a) $30^2 \cdot 80$

(b) $240^2 \cdot 30$

(c) 30^4

(d) $1600 \cdot 40$

Risposta: La somma dei tre numeri positivi è 120, e supponiamo che i tre numeri siano x, y, e z. L'equazione della somma è espressa come:

$$x + y + z = 120$$

Per massimizzare il prodotto, distribuiremo i numeri in modo che siano il più possibile vicini, il che si verifica quando sono tutti uguali. Quindi, possiamo assegnare a ciascun numero il valore di $\frac{120}{3} = 40$. Il prodotto massimo sarà quindi:

$$P = x \cdot y \cdot z = 40 \cdot 40 \cdot 40 = 64000$$

Pertanto, il massimo valore possibile del prodotto è 64000, ovvero la risposta d.