Homework 3 for MATH 574

Due: Wednesday February 16

Problem 1

Show that the following sets are Borel and try to find a best possible upper bound on the level in the Borel hierarchy.

- (a) $\{\alpha \in \mathbb{N}^{\mathbb{N}} : \alpha \text{ is a permutation}\}$
- (b) $\{\alpha \in 2^{\mathbb{N}} : \lim_{n} (\alpha_0 + \dots + \alpha_{n-1}) / n \text{ exists and is rational} \}$

Problem 2

Let X, Y be topological spaces. A mapping $f: X \to Y$ is **Borel** if the preimage of any Borel set is Borel.

- (a) Suppose $f:[0,1] \to \mathbb{R}$ and there exists $F:[0,1] \to \mathbb{R}$ such that F is differentiable and F'=f. Show that f is Borel.
- (b) Suppose $f: X \to \mathbb{R}$ is *lower semicontinuous*, i.e. for all $\alpha \in \mathbb{R}$, $\{x: f(x) > \alpha\}$ is open. Show that f is Borel.

Problem 3

Show that every filter on a set X can be extended to an *ultrafilter* on X. (This requires the Axiom of Choice.)

Problem 4

Let $\mathcal U$ be an ultrafilter on $\mathbb N$, and let $(\mathfrak a_n)$ be a bounded sequence of real numbers. Show that there exists a real number $\mathfrak a$ such that

$$\forall \varepsilon > 0 \{n: |a_n - \alpha| < \varepsilon\} \in \mathcal{U}.$$

You can think of a as the U-limit of (a_n) .

Problem 5

A metric outer measure is an outer measure μ^* on a metric space X such that

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

whenever A and B are *positively separated*: $\inf\{d(x,y): x \in A, y \in B\} > 0$.

- (a) Show that if μ^* is a metric outer measure, then μ^* is stable under upper limits: If $A_1 \subseteq A_2 \subseteq \ldots$ and $A = \bigcup A_n$ is such that A_n and $A \setminus A_{n+1}$ are positively separated for all n, then $\mu^*(A) = \lim_n \mu^*(A_n)$.
- (b) Use (a) to show that for a metric outer measure, all Borel sets are measurable.