Class08 Machine Learing Mini Project

Yipeng Li

Breast Cancer Project

Today we are going to explore some data from the university of Wisconsin Cancer Center on Breast biopsy data.

```
wisc.data <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.data)</pre>
```

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness	_mean compa	ctness_mean co	oncavity_mean co	oncave.poi	nts_mean
842302	0.	11840	0.27760	0.3001		0.14710
842517	0.	08474	0.07864	0.0869		0.07017
84300903	0.	10960	0.15990	0.1974		0.12790
84348301	0.	14250	0.28390	0.2414		0.10520
84358402	0.	10030	0.13280	0.1980		0.10430
843786	0.	12780	0.17000	0.1578		0.08089
	symmetry_m	ean fractal	_dimension_mea	n radius_se te	kture_se p	erimeter_se
842302	0.2	2419	0.0787	1.0950	0.9053	8.589
842517	0.1	1812	0.0566	0.5435	0.7339	3.398
84300903	0.2	2069	0.0599	0.7456	0.7869	4.585
84348301	0.2	2597	0.0974	14 0.4956	1.1560	3.445
84358402	0.1	1809	0.0588	3 0.7572	0.7813	5.438
843786	0.2	2087	0.0761	0.3345	0.8902	2.217
	area_se sm	oothness_se	compactness_s	se concavity_se	concave.p	oints_se
842302	153.40	0.006399	0.0490	0.05373		0.01587

842517	74.08	0.005225	0.01308	0.01860	0.01340
84300903	94.03	0.006150	0.04006	0.03832	0.02058
84348301	27.23	0.009110	0.07458	0.05661	0.01867
84358402	94.44	0.011490	0.02461	0.05688	0.01885
843786	27.19	0.007510	0.03345	0.03672	0.01137
	symmetry_se	fractal_dime	nsion_se rad	ius_worst text	ure_worst
842302	0.03003		0.006193	25.38	17.33
842517	0.01389		0.003532	24.99	23.41
84300903	0.02250		0.004571	23.57	25.53
84348301	0.05963		0.009208	14.91	26.50
84358402	0.01756		0.005115	22.54	16.67
843786	0.02165		0.005082	15.47	23.75
	perimeter_wo	rst area_wor	st smoothnes	s_worst compac	tness_worst
842302	184	.60 2019	0.0	0.1622	0.6656
842517	158	.80 1956	3.0	0.1238	0.1866
84300903	152	.50 1709	0.0	0.1444	0.4245
84348301	98	.87 567	7.7	0.2098	0.8663
84358402	152	.20 1575	5.0	0.1374	0.2050
843786	103	.40 741	6	0.1791	0.5249
	concavity_wo	rst concave.	points_worst	symmetry_wors	t
842302	0.7	119	0.2654	0.460	1
842517	0.2	416	0.1860	0.275	0
84300903	0.4	504	0.2430	0.361	3
84348301	0.6	869	0.2575	0.663	8
84358402	0.4	000	0.1625	0.236	4
843786	0.5	355	0.1741	0.398	5
	<pre>fractal_dime</pre>	nsion_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402					
843786		0.12440			

Q. How many patient samples are in this dataset.

nrow(wisc.data)

[1] 569

There are 569 patients in this dataset.

Q. How many cancer (M) and non cancer (B) samples are there?

```
table(wisc.data[,1])
```

```
B M
357 212
```

Save the diagnosis for later use as a reference to compare how well we do with PCA etc.

```
diagnosis <- as.factor(wisc.data$diagnosis)
#diagnosis</pre>
```

Now exclude the diagnosis column from the data

```
wiscn <- wisc.data[,-1]
```

Q. How many "dismensions," variables", "columns" are there in this dataset?

```
ncol(wiscn)
```

[1] 30

Principal Component Analysis (PCA)

To perform PCA in R we can use the prcomp() function is takes as unput a numeric dataset and optional scale=FALSE/TRUE argument.

We generally always want to set scale=TRUE but let's make sure by checking if the mean and standard deviation values are different across these 30 columns.

```
round(colMeans(wiscn))
```

perimeter_mean	texture_mean	radius_mean
92	19	14
compactness_mean	smoothness_mean	area_mean
0	0	655
symmetry_mean	concave.points_mean	concavity_mean
0	0	0

```
fractal_dimension_mean
                                       radius_se
                                                                texture_se
                      0
                                                0
                                                                          1
          perimeter_se
                                                             smoothness_se
                                          area_se
                      3
                                               40
        compactness se
                                    concavity_se
                                                         concave.points_se
                      0
                            fractal dimension se
                                                              radius worst
            symmetry_se
                      0
                                                0
                                                                         16
         texture_worst
                                 perimeter_worst
                                                                area_worst
                     26
                                              107
                                                                        881
      smoothness_worst
                               compactness_worst
                                                           concavity_worst
                      0
                                                0
                                                                          0
                                  symmetry_worst fractal_dimension_worst
  concave.points_worst
                      0
                                                0
```

pca <- prcomp(wiscn, scale=TRUE)
summary(pca)</pre>

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC7 PC6 Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172 Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251 Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010 PC8 PC9 PC10 PC11 PC12 PC13 PC14 Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624 Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523 Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335 PC15 PC16 PC17 PC18 PC19 PC20 PC21 Standard deviation 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731 Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010 Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966 PC25 PC22 PC23 PC24 PC26 PC27 Standard deviation 0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987 Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005 Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997 PC29 PC30 Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

```
attributes(pca)
```



```
library(ggplot2)
x <- as.data.frame(pca$x)

ggplot(x, aes(PC1,PC2, col=diagnosis))+
   geom_point()</pre>
```


Q. How much variance is captured in the top 3 PCS

They capture 76%. of the total variance.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC.

```
pca$rotation["concave.points_mean",1]
```

[1] -0.2608538

attributes(pca)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

Combine PCA results with clustering.

We can use our new PCA variables (i.e. the scores along the PCs contained in t pca\$x) as input for other methods such as clustering.

```
# Hclust needs a distance matrix as input
d <- dist(pca$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get our cluster membership vector we can use the cutree() function and specify a height (h) or number of groups (k).

```
grps <- cutree(hc, h=80)
table(grps)

grps
    1      2
203 366</pre>
```

```
table(diagnosis)
```

```
diagnosis
B M
```

357 212

I want to find out how many diagnosis "M" and "B" are in eac grp?

```
table(diagnosis, grps)
```

```
grps
diagnosis 1 2
B 24 333
M 179 33
```

We can also plot our results using our clustering vector grps

```
#plot
plot(pca$x[,1], pca$x[,2], col=grps)
```



```
#ggplot
x <- as.data.frame(pca$x)

ggplot(x, aes(PC1,PC2, col=grps))+
   geom_point()</pre>
```


Q15. What is the specificity and sensitivity of our current results?

```
data <- table(diagnosis, grps)
data</pre>
```

```
grps
diagnosis 1 2
    B 24 333
    M 179 33

#sensitivity TP/(TP+EN)
sensitivity <- data[2,1]/(data[2,1]+data[2,2])
sensitivity</pre>
```

[1] 0.8443396

```
#specificity TN/(TN+FN)
specificity <- data[1,2]/(data[1,1]+data[1,2])
specificity</pre>
```

[1] 0.9327731

Preidiction

Q16. Which of these new patients should we prioritize for follow up based on your results?

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(pca, newdata=new)
npc</pre>
```

```
PC1
                    PC2
                               PC3
                                           PC4
                                                    PC5
                                                                PC6
                                                                           PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
           PC8
                     PC9
                               PC10
                                         PC11
                                                   PC12
                                                              PC13
                                                                       PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
         PC15
                    PC16
                                PC17
                                            PC18
                                                         PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
                     PC22
                                 PC23
                                           PC24
                                                        PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
            PC27
                        PC28
                                      PC29
                                                   PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

Draw the plot

```
plot(pca$x[,1:2], col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


Based on the plot, the patient 1's data points are staying together, which means his/her cells are pretty similar, so it is likely normal. However, the Patient 2's data points are seperate from each other, which means his/her cells are different from each other. This fits the feature of cancer. Thus, we should pay more attention to patient 2.