

Image Analysis & Computer Vision Visual analysis in sport events: Tennis

Mihai-Viorel Grecu Paolo Riva Michelangelo Stasi

Visual Analysis in sports: Why the interest?

Improved performance through statistics analysis

Significant positive economic impact

Higher quality communication approach of sports analysis

Improved understanding of the sport for viewers

Visual Analysis in Tennis: Motivation?

4th most popular sport: 1 billion fans

Staggering increase in popularity over 1 year: 43% - 49%

Visual Analysis in Tennis: Goal of the project

Trajectory computation of a tennis player through a monocular video

Ball trajectory computation and statistics

Visual Analysis in Tennis: Goal of the project

- 1. Homography identification from the field to the image
- 2. Human Pose estimation implementation
- 3. Dynamics of the feet of the tennis players identification
- 4. Step points collection

Homography + Tennis player trajectory tracking + Ball tracking

HOMOGRAPHY IDENTIFICATION AND COMPUTATION

OPENCY LIBRARY

HUMAN POSE ESTIMATION OPEN POSE

HUMAN DETECTION

HUMAN POSE ESTIMATION
MEDIAPIPE POSE

TENNIS BALL TRACKING YOU ONLY LOOK ONCE

TRACKNET TRACE

Homography

HOMOGRAPHY IDENTIFICATION AND COMPUTATION

OPENCY LIBRARY

$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

X' = projection of X in a homogenous coordinate plane-> same information, but in transformed perspective

$$\sum_{i} \left(x_{i}' - \frac{h_{11}x_{i} + h_{12}y_{i} + h_{13}}{h_{31}x_{i} + h_{32}y_{i} + h_{33}} \right)^{2} + \left(y_{i}' - \frac{h_{21}x_{i} + h_{22}y_{i} + h_{23}}{h_{31}x_{i} + h_{32}y_{i} + h_{33}} \right)^{2}$$

Back projection error minimized through: cv2FindHomography function \Rightarrow finds H between the source and destination plane

Tennis player trajectory tracking

HUMAN POSE ESTIMATION OPEN POSE

- Pulls features from the entire frame
- Confidence maps for each of the 27 body parts of the human pose skeleton
- Body part association
- Human pose skeleton assemble

Tennis player trajectory tracking

HUMAN POSE ESTIMATION
OPEN POSE

HUMAN DETECTION

+

HUMAN POSE ESTIMATION

MEDIAPIPE POSE

- Bounding box computation for human
- 32 Landmarks prediction (single shot approach) + linking
- Pose refinement
- Temporal filtering to smooth out jitter or noise
- Mapping of the keypoints

Ball trajectory tracking

TENNIS BALL TRACKING YOU ONLY LOOK ONCE

Bounding boxes prediction

In a single shot

- Class probabilities computation
- Use of a threshold to keep the highest confidence box

Ball trajectory tracking

TENNIS BALL TRACKING YOU ONLY LOOK ONCE

- Probability-like detection heatmap for object tracking
- Upsampling to recover the information loss = pixel-wise prediciton
- Use of a threshold to keep the highest confidence box

Our Implementation

Our Implementation

Homography Computation

Automatic Homography Computation

Hough Transform and Probability Hough Transform

First approach:

- Selecting points manually
- Map selected points with real field vertices

Automatic Homography Computation

Hough Transform and Probability Hough Transform

Second approach:

- Selecting points manually automatically
- Map selected points with real field vertices

Probability Hough Transform

Dilating lines:
The lines with most intersections

get a fill mask command

Eroding Lines

Automatic Homography Computation

Hough Transform and Probability Hough Transform

Second approach:

- Selecting points manually automatically
- Map selected points with real field vertices

Hough Transform: Threshold – 300 px

Find intersections

Our Implementation

Human Detection & Human Pose Estimation

Our implementation

Human detection & Human Pose Estimation

HUMAN POSE ESTIMATION
OPEN POSE

HUMAN DETECTION
+
HUMAN POSE ESTIMATION
MEDIAPIPE POSE

Human Pose Estimation - OpenPose

Implementation of the human pose estimation method in a straight-forward, out-of-the-box ready approach.

On the other hand, in terms of computational time and noise seen on the output, the model was performing poorly especially in high noise – high movement scenarios, which made the implementation not the most suitable for our case.

Human Pose Estimation - MediaPipe

Built-in model more accurate and faster than OpenPose model, even if more complex. Two problems :

- The multi-object detection is possible but really slow if treated in a standard way;
- For efficiency, the estimation has to be done on specific regions of the frame

Human Detection - MediaPipe

Less effort demanding than the Human Pose Estimation. Pre-trained model implemented through MediaPipe library called *EfficientDet_Lite0*. Who is the player at the top of the frame and who is the one at the bottom?

• Discrimant given by the center of the frame wrt to its height

Noise: storing the previous detection, which is updated when the distance with the new detection is below a certain threshold. Regions on which to compute Human Pose Estimation given by the extreme points reached. Each player has its own area.

Human Pose Estimation - MediaPipe

To determine whether a player was moving or not, we check if the two feet are static or not. At each frame for each foot we check if the previous **rectified** position is at a distance greater than a certain threshold; if it is, then the foot is moving, otherwise it is static.

- Previous position updated every 5 frames
- Threshold of 5 pixels

Our Implementation

Ball Detection

Ball Detection: YOLOv8

Early-stage model testing

- Most used solution for object detection
- Many versions available in terms of suitability
 - No Hardware or Software restrictions → *yolov8x.pt*
- Selection of the object through label filtering → *sports_ball*

Ball trajectory detection

YoloV8x Performance Test

0: 384x640 7 persons, 1 chair, 1690.3ms

Speed: 1.0ms preprocess, 1690.3ms inference, 2.0ms postprocess per image

Total Frames: 382

Frames where a tennis ball was detected: 68

Percentage of frames where a tennis ball was detected: 17.80%

Ball trajectory detection

TrackNet Model implementation

- ~ 80% accuracy
- Multi-frame detection
- Trained specifically for our scenario
- Trajectory detection

Ball trajectory detection

Tennis Ball detection

TRACE interface

```
lass BallDetector:
  def init (self, save state, out channels-2):
  def detect ball(self, frame):
      # Save frame dimensions
      if self video width is None:
          self.video width - frame.shape[1]
          self.video height = frame.shape[0]
      self last frame = self before last frame
      self before last frame - self current / ame
      self.current frame = frame.copy()
      if self last frame is not None/
          frames = combine three frames(self.current frame, self.before last frame, self.last frame,
                                        self.model input width, self.model input height)
          frames = (torch.from numpy(frames) / 255).to(self.device)
          # Inference (forward pass)
          x, y = self.detector.inference(frames)
          if x is not Nones
              # Rescale the indices to fit frame dimensions
              x = int(x * (self.video width / self.model input width))
              y = int(y * (self.video_height / self.model_input_height))
              # Check distance from previous location and remove outliers
              if self.xy coordinates[-1][0] is not Mone:
                  if np.linalg.norm(np.array([x,y]) - self.xy_coordinates[-1]) > self.threshold_dist:
                      x, y - None, None
          self.xy coordinates = np.append(self.xy coordinates, np.array([[x, y]]), axis=0)
```

Ball trajectory estimation

Frame Computation

Computed by processBallTrajectory:

- Default 0.5 threshold on heatmap
- Error detection:
 - In-sequence (200px thr.)
 - Out-of-sequence (100px thr.)
- Marking of points to-interpolate

Ball trajectory estimation

Interpolation

Interpolation Domain

- Existing ball positions
- Interpolation results

Interpolate missing values:

- Spline Interpolation
- Dinamic window to use known ball positions around players
- Spline realisticly represents ball behaviour here

Ball trajectory estimation

Interpolation Result

Our Implementation

Racket Hit Detection

Racket Hit Detection

to appr 65 seaton

Filtering Ball Trajectory: Savitzky – Golay Filter

Racket Hit Detection

Filtering Ball Trajectory: Savitzky – Golay Filter

Detected gradient sign changes

Outer loop

```
for i in velocity_changes:
    append_flag = False
    min_player_distance = float('inf')
    max_wrist_velocity_sum = 0
    frame_ball_closest_to_player = i

for j in range(max(0, i - window_around_shot), min(len(ball_positions_array), i + window_around_shot)):
    radiuses = [height_values_top[j] * radius_multiplier, height_values_bot[j] * radius_multiplier]
    if j >= len(ball_positions_array):
        break
    ball_pos = ball_positions_array[j]
    if np.array_equal(ball_pos, np.array([0, 0])):
        break
```

detect_racket_hits

```
if (dist_right_top < max(radiuses[0]), default_minimum_radius) or
    dist_left_top < max(radiuses[0]), default_minimum_radius) or
    dist_left_top < max(radiuses[1]), default_minimum_radius) or
    dist_left_bot < max(radiuses[1]), default_minimum_radius):

if j > 0:
    wrist_velocity_right_top = np.linalg.norm(np.array(rightwrist_positions_top[j]) = np.array(rightwrist_positions_top[j - 1]))
    wrist_velocity_left_top = np.linalg.norm(np.array(leftwrist_positions_top[j]) = np.array(rightwrist_positions_top[j - 1]))
    wrist_velocity_left_top = np.linalg.norm(np.array(leftwrist_positions_top[j]) = np.array(rightwrist_positions_top[j - 1]))
    wrist_velocity_left_bot = np.linalg.norm(np.array(rightwrist_positions_bot[j]) = np.array(rightwrist_positions_bot[j - 1]))
    wrist_velocity_left_bot = np.linalg.norm(np.array(leftwrist_positions_bot[j]) = np.array(leftwrist_positions_bot[j - 1]))

    wrist_velocity_sum = wrist_velocity_right_top + wrist_velocity_left_top + wrist_velocity_right_bot + wrist_velocity_left_bot

    if wrist_velocity_sum > max_wrist_velocity_sum:
        max_wrist_velocity_sum = wrist_velocity_sum
        frame_ball_closest_to_player = j

append_flag = 1rue
```

Inner Loop

Our Implementation

Statistics and Performance

Statistics – Distance Travelled & Player's Trajectory

Computed starting from the moving feet detection:

- List of static centers
- Distance as the length of the graph containing all the static centers (in pixels)
- Conversion in meters using ratio computed when computing homography

```
if len(stationary points bot)!=0 :
        dist bot = 0
        cv2.circle(rectified_image, stationary_points_bot[0], 2, (125, 125, 125), cv2.FILLED)
        for z in range(1,len(stationary points bot)):
           cv2.circle(rectified_image, stationary_points_bot[z], 2, (125, 125, 125),cv2.FILLED)
           cv2.line(rectified image, stationary points bot[z-1], stationary points bot[z], (125,125,125), 3)
            dist_bot += np.linalg.norm(np.array(stationary_points_bot[z]) - np.array(stationary_points_bot[z-1]))/ratiopxpermtr
   dist_bot = np.trunc(dist_bot)
    cv2.putText(frame, "Bottom Player Distance: " + str(dist bot)+" m", (50,80), cv2.FONT HERSHEY SIMPLEX,0.5,(70,150,255), 1)
    if len(stationary points top)!=0 :
        dist top = 0
        cv2.circle(rectified_image, stationary_points_top[0], 2, (125, 125, 125), cv2.FILLED)
        for z in range(1,len(stationary points top)):
            cv2.circle(rectified_image, stationary_points_top[z], 2, (125, 125, 125), cv2.FILLED)
           cv2.line(rectified image, stationary points top[z-1], stationary points top[z], (125,125,125), 3)
            dist_top += np.linalg.norm(np.array(stationary_points_top[z]) - np.array(stationary_points_top[z-1]))/ratiopxpermtr
    dist_top= np.trunc(dist_top)
```

Statistics – Distance Travelled & Player's Trajectory

Statistics

Average Ball Speed between hits


```
# Pixel distance between the real centers in the transformed perspective (real)
distance = np.linalg.norm(center_start - center_end)
print(f"center_start: (center_start), center_end: (center_end)")
print(f"Distance: {distance}")

# Time difference in seconds
time_difference = (hit_end - hit_start) / frame_rate
print(f"time_difference: {time_difference}")

# Evaluate average speed of exchange
if time_difference != 0:
    speed = distance / time_difference
else:
    speed = 0
print(f"Speed: {speed}\n")

speeds.append(speed)
```

compute avg ballspeed
Computation between starting hit
and receiving hit

Result analysis

Performance and Tests

Result analysis

Tests

Australian Open

Wimbledon

Roland Garros

Result analysis

Performance

Warping issue due to external factors affecting the homography identification

Statistics

Computational Performance

Hardware Platform:

- CPU: AMD Ryzen 7 3700X 8-core
- GPU: AMD RX 470 4GB
- RAM: 16GB DDR4 3000MHz CL18
- ROM: 512GB M.2 NVMe SSD

Software Environment:

- Python version: 3.12.4 64bit
- OS: Windows 11 64bit

Conclusions

Summary

Conclusions

Factors adding difficulty & main challenges

MAIN CHALLENGES

- Dynamical selection of the frame areas where to estimate the human pose
- Automatic detection of movement associated to players' feet
- Ball Trajectory interpolation and Filtering
- Racket Hit detection through ball trajectory
- Automatic computation of the homography from field to image

- Low quality camera
- Motion blurring

- Low resolution
- Low framerates

Referees in the background

Environmental changes: shade Factors adding difficulty to the trajectory tracking of the tennis players