Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

- Homework 1 is due Friday
- Slido poll questions in lecture will begin soon - initially just a trial run

Today's lecture

- Discriminant functions and approaches to multiclass problems (C > 2) (part 2)
 - One vs. Rest (OvR) (part 2)
 - One vs. One (OvO)
 - Maximal Value Method (MVM)
 - Summary

Computational complexity (part 1) deferred to Lecture 5.

2. Multiclass (C>2) problems

-> Can we pose a C-class problem (C>2) as a set of 2-class problem? Yes.

to define C 2-class problems.

Each 2-class problem:

Sk vs. 5

(e.g., hs. price decr.

vs. hs. price not decr.)

(cat vs. not cat)

[see plot below]

Combine results:

OVR Decision rule: $x \in \Gamma_k$ IFF $x \in \Gamma_k'$ AND $x \in \Gamma_j'$ $\forall j \neq k$.

our default OvR decision rule. Other OvR decision rules are possible.

OUR

Example: Consider a C=4-class problem with D=2 features assume: each 2-class classifier is linear. x5, price incr. Ov R method o S₂ price const. Δ S₃ price decr. Training dataset: 5 (vs. 5 (volatile 52 vs. 52 5, VS. S3 F. F. F. 54 vs. 54 indeterminate py 13, Ti, Ti

Apply 4 2-class problems: each S_{k}' us S_{k}' Γ_{i} is defined by: all $\underline{x} \in \{\Gamma_{i}' \text{ and } \overline{\Gamma_{i}'} \text{ and } \overline{\Gamma_{i}'} \text{ and } \overline{\Gamma_{i}'} \}$ (for our default Ov R decision rule.)

- Def: Given a dataset D. If all data points $\chi_i^{(k)}$ of class S_k be separated from all points of all other classes by a linear boundary, and this holds for all $k=1,2,\cdots,C$, then D is totally linearly separable.
- 2. In practice, for methods that can result in indeterminate regions, often an additional ad-hoc rule is used to classify the indeterminate points; for example:

For
$$x$$
 in indeterminate region,
 $x \in \Gamma_k$ iff $k = argmax \left[g(x) \right] \longrightarrow x \in \Gamma_k$
 $x \mapsto S_c' vs. S_c'$ $\Gamma_c' \circ \Gamma_c'$
 $x \mapsto S_c' vs. S_c'$ Ov R indeterminate $f(x) = f(x)$
 $f(x) = f(x$

3. Alternate DVR decision rules can also be used. For example, if there is a confidence measure for each binary classification result for a given point x:

Confidence
$$(S_k' given x)$$
 (from $S_k' vs S_k' classification of x)$

then final decision rule can be:

Examples of confidence measures:

(i) Confidence (
$$\Gamma_k$$
 given χ) = $g_k(\chi)^*$) Confidence in S_k' vs. S_k' result, (ii) Confidence (Γ_k given χ) = $P(S_k|\chi)$) for input point χ .

* Assumes scale of $g_i(\chi)$ is comparable to $g_k(\chi)$.

In this case we have:

(ii) One us. one (000) (or all us. all) (or all pairs)

The set of
$$S_k$$
 vs. S_i decisions. (all possible pairs)

Use discr. from $g_{kj}(\underline{x})$. Each 2-class problem:

 $g_{kj}(\underline{x}) = -g_{kj}(\underline{x})$
 $g_{kj}(\underline{x}) = -g_{kj}(\underline{x})$

Combine results:

Decision rule (0,00, default):

$$\underline{x} \in \Gamma_k \text{ iff } g_{kj}(\underline{x}) > 0 \text{ } \forall j \neq k.$$

Example: Consider a C=4-class problem with D=2 features

Same data as previous example.

At x1: can't be: [1, [2, [3, [4]]] indeterminate xS, decrease increase volatile

Comments (this example):

1. has indeterm. regions (smaller than over).

2. No errors on training data

Comments on OxO method

- 1. Def: If $\exists \frac{C(C-1)}{2}$ linear separating boundaries H_{kj} , such that H_{kj} separates all data points of S_k from all data points of S_j , $j \neq k$, then the data is pairwise linearly separable.
- 2. For any indeterminate points, an additional ad hoc rule can be used to classify them.
 - 3. An alternate decision rule for OxO;

Take vote: how many 1-class classifiers decided Sk over S; ?

x ∈ Tk if Sk has the largest number of votes.

(iii) Maximal Value Method (MVM)

- for the linear case, called a linear machine.
- is not based on a set of 2-class classifiers.

Let each class 5 have I discriminant function: gk (x)

Decision rule: $g_k(x) > g_j(x) + j \neq k \Rightarrow x \in \Gamma_k$ 1 . x: which gk(x) is largest?

Decision rule can also be expressed as:

 $x \in \Gamma_k$ iff $k = arg \max \{g_m(x)\}$ MVM decision rule

 \Rightarrow Decision boundary between Γ_k and Γ_i is: $g_k(x) = g_i(x)$

(some boundaries may be redundant)

Learn:

Train g (x), (=1,2,--, C) together

Predict: Compute gk(x), k=(,2,--,C

$$\frac{g_{i}(z)}{g_{c}(z)} \stackrel{\text{k}}{=} \operatorname{argmax} g_{k}(x) \longrightarrow \underbrace{z \in \Gamma_{k}}_{k}$$

$$*$$
 $H_{jk}: g_{j}(\underline{r})=g_{k}(\underline{r})$

1. Def: If there exists
$$g_i(x)$$
, $i=1,2,...,C$, such that $g_k\left[\frac{x}{x_m}\right] \geq g_j\left[\frac{x}{x_m}\right]$
 $\forall m=1,2,...,N_k$, $\forall j \neq k$, $\forall k$

with all $g_i(x)$ expressible as linear functions, then the dataset is linearly separable.

- 2. No indeterminate regions (if unlikely special cases are avoided, like $g_k(\underline{x}) = g_j(\underline{x})$ over some region).
 - 3. If gk(x) are linear Yk, then decision regions Tk are convex.

Yes

Summary of multiclass classification approaches

Method

Linear g (x) defines type of linear separability

OVR

0,0

MVM

Totally linearly separable Pairwise linearly separable Linearly separable

How powerful is each method?

- How large is the class of datasets that each method can fully separate

using linear g (x)?

- Venn diagram:

Can use any of the above 3 methods (OVR, OVO, MVM), by letting each gk(x) or each gk(x) be a nonlinear function of x.

(More later)