K-Means

Presentation by Berk Sudan

K-Means Simulation

Ref: https://github.com/vinhkhuc/VanillaML

Flow Chart

Ref: Doç. Dr. Songül Varlı, Introduction to Data Mining Lecture Slides, 2018

Fails on Concave Shapes

Fails on Spectral Shapes

A Clustering Example

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

A Clustering Example

Ref: Doç. Dr. Songül Varlı, Introduction to Data Mining Lecture Slides, 2018

Brainstorming

- What if there is so many **outliers**?
- What if there is so many **clusters**?
- What if there is so many **dimensions/features**?

Many Outliers

Ref: https://stats.stackexchange.com/questions/160260/anomaly-detection-based-on-clustering

End of Presentation

Presented by Berk Sudan