COPYRIGHT RESERVED

Voc(S-V) — BCA (DSE – 1)

2023

Time: 3 hours

Full Marks: 70

Pass Marks: 32

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer from all the Groups as directed.

Group – A (Compulsory)

(Objective Type Questions)

- Choose the correct option in each of the following:
 - (a) Least Cost method is connected with:
 - (i) Assignment problem

(Turn over)

XH - 15/3

- (iii) Transportation problem (iii) PERT
- (iv) None of these
- (b) Game theory models are classified by:
 - (i) Number of players
 - (ii) Sum of all play offs
 - (iii) Number of strategies
 - (iv) All of these
- (c) What happens when maximin and minimax values of the game are same?
 - (i) No solution exists
 - (ii) Solution is mixed
 - (iii) Saddle point exists
 - (iv) None of these
- (d) PERT stand for:
 - (i) Performance Evaluation Review Technique

(ii) Programme Evaluation Review
Technique
(iii) Programme Evaluation Research
Technique
(iv) None of these
(e) In a network diagram, activity is denoted by:
(i) Node
(ii) Arrow
(iii) Triangle
(iv) None of these
2. Fill in the blanks of the following: $1 \times 5 = 5$
(a) Rank of a unit matrix I_3 is equal to 3
(b) Every square matrix has arow canonical form.
(c) When the total demand is not equal to
supply then the transportation problem is said
to be
XH - 15/3 (3) (Turn over)

- (d) Key element is also known as _____element.
- (e) The number of time estimates involved in PERT problem is _____

Group - B

(Short-answer Type Questions)

Answer any four questions of the following:

$$5 \times 4 = 20$$

- 3. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 4 \\ 3 & 4 & 9 & 8 \\ -1 & 2 & -2 & 4 \end{bmatrix}$
- 4. Determine whether the vectors are linearly independent or dependent?

$$v_1 = (1, 1, 1, -2)$$

 $v_2 = (3, 1, 1, 2)$

$$v_3 = (1, 5, 1, 4)$$

5. Show that the intersection of two convex sets is also a convex sets.

$$XH - 15/3$$

Solve the follow	wing 2 × 2 game	$\frac{32-12}{12-8}$
Player B	Stragegy I	Strategy II
Player A		
Stragegy I	4	2
Stragegy II	6	8

- Explain PERT and CPM with examples.
- Explain with examples of the following:
 - (a) Local and Global optima
 - (b) Extreme points

Group - C

(Long-answer Type Questions)

Answer any four questions of the following:

$$10 \times 4 = 40$$

Solve the LPP using simplex method: 9.

Max
$$Z = 5x_1 + 3x_2$$

Subject to $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

$$XH - 15/3$$
 (5)

Max
$$Z = 2x + 5y$$

Subject to $x + 2y \le 20$
 $2x + y \le 10$
 $x, y \ge 0$

11. Obtain the initial basic feasible solution of the given transportation problem by Vogel's Approximation method, whose cost and requirement table is given below:

Destination Origin	D	D ₂	D ₃	D ₄	Supply
01	11:	13	17	14	250
O ₂	16	18	14	10	300
O ₃	21	24	13	10	400.
Demand	200	225	275	250	

12. Solve the Assignment problem using Hungarian method. Assign the jobs for different machines so as to minimize the total cost:

Machines Jobs	1A 16	В	C	D
1	2	5	3	7
2	2	8	9	5
3	3	7	2	8
4	1	5	3	1

13. Write the augmented matrix and solve the linear system:

$$3x - 5y - 4z = -5$$

$$2x - y - 9z = -4$$

$$-3x + 6y + 7z = 3$$

14. Draw a network diagram to represent the project.

Also, identify the critical path:

Activity Predecessor Duration (in days)

A -

B A 4

XH - 15/3 (7) (Turn over)

Activity Predecessor Duration (in days) C A 2 D B 5 E C 1 F C 2 G D, E 4 H F, G 3

XH - 15/3 (500)

(8)

Voc(S-V) — BCA (DSE - 1)