1 Portada

1 Introducción

- 1. Dentro del tema encontrarás los epígrafes de contenido, con subepígrafes para una mejor comprensión.
- 2. Todos los temas han sido elaborados siguiendo el criterio de facilidad de exposición.
- 3. Los contenidos incluyen, en este sentido, cinco tipos de llamadas de atención que agilizan y facilitan la comprensión de los mismos:

Tenga en cuenta que...

Recuerde...

Definición

Ley

Introducción

Tenga en cuenta que...

Tenga en cuenta que este curso tiene un componente práctico muy fuerte. Es labor del alumno practicar todos los ejemplos y ejercicios planteados.

"A programar se aprende programando"

1 Portada

Aprendizaje No Supervisado

Se trata de herramientas cuyo objetivo es entender los datos, sin una variable objetivo (o supervisor), y organizarlos en grupos de manera natural.

Mientras que, recuérdese, que, por otro lado, el aprendizaje supervisado consiste en predecir o estimar una variable objetivo (o respuesta) desde varios inputs (predictores).

El **Clustering** es una las técnicas más utilizadas en Aprendizaje No Supervisado, otra es el PCA (Principal Component Analysis).

En general, es difícil determinar el número de clusters óptimo, o grupos naturales en los que se organizan los datos.

Outline del Clustering

Clasificar las observaciones de una matriz de datos X (p.e. un DataFrame de R) en grupos homogéneos.

- 1. Las observaciones dentro de cada grupo deben ser similares.
- 2. Las observaciones de diferentes grupos deben ser diferentes.
- 3. Se mide la **similaridad** o **proximidad** a través de **distancias**.
- 4. No conocemos a *priori* el grupo al que pertenecen las observaciones.
- 5. Tampoco conocemos a *priori* el número de grupos.

4

Cluster Analysis

Aplicaciones del Clustering

Marketing

Organizar los clientes en diferentes perfiles (según su consumo, edad, etc.) para ofrecer campañas de publicidad dirigidas.

<

• • • • • • •

Pagina slider 2

Finanzas:

Clasificar compañías según su rendimiento en los mercados financieros.

Organizar pacientes en grupos de tratamiento.

Pagina slider 4

Seguros:

Identificar grupos de asegurados con altos costes de siniestros.

Pagina slider 5

Redes Sociales:

Identificar comunidades.

Pagina slider 6

Genética:

Selección genética.

Pagina slider 7

Otras:

Sistemas de recomendación, detección de anomalías, análisis de imagen, grupos de resultados de búsqueda, etc.

Cluster Analysis

Idea principal del Clustering

Pagina slider 2

Ideas Básicas

El Clustering estudia datos para los cuales el número de grupos es desconocido e indefinido.

- Necesitamos poner el foco en distancias intra-cluster, para incrementar la similaridad.
- Y también hay que tener en cuenta la distancia <u>inter-cluster</u>, para disminuir la similaridad.

Por tanto, la única información que usa el clustering son **similaridades**.

Ejemplo 1

Ejemplo 2

Popups

Intra-cluster

- Cómo de cerca están los datos unos de otros.
- Se denomina coloquialmente distancia o medida de similaridad.

Inter-cluster

- Cómo de cerca están los clusters entre sí.
- Se denomina comúnmente la función linkage.

¿Qué clientes son más similares?

ID	Gender	Age	Salary	Balance
1	F	27	21000	550
2	М	51	64000	900
3	М	53	75000	825
4	F	32	55000	1100
5	М	45	50000	875
6	F	37	45000	650

¿Qué documentos son más similares?

Donde Term1, Term2, ... son variables que expresan la frecuencia de aparición de diferentes términos en los diferentes documentos (Doc1, Doc2,...).

	Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
Doc 1	0	2	0	0	1	0
Doc 2	3	5	4	3	0	0
Doc 3	3	0	0	0	3	4
Doc 4	0	0	0	3	0	4
Doc 5	2	1	2	3	0	1
Doc 6	1	4	2	1	2	0

Información complementaria

Ejemplo 1: popup_658

boton

Ejemplo 2: popup_659

Variables/Features

Las variables o *features* que incluímos en el análisis pueden tener gran impacto en la solución.

En este punto es necesario recurrir al conocimiento de la posible aplicación del analista, su creatividad y expertise.

Un buen análisis exploratorio suele ser de ayuda. Por ejemplo: en un dataset de banca, las variables asociadas con los atributos socio-económicos (como income/balance/risk) se pueden usar para la segmentación; y el resto de variables, como las características de los clientes (profesión, región en la que viven, etc) pueden ayudar a describir los grupos que devuelve el clustering.

Herramientas

Métodos de Partición Métodos Jerárquicos Machine Learning

Dividen las observaciones en un número de grupos pre-especificado.

Objetivo

Objetivo

Agrupar observaciones similares basándose en alguna distancia (similaridad) entre observaciones:

- K -means: Los objetos dentro de cada cluster se encuentran lo más cerca posible entre sí, y lo más lejos posible de los objetos de otros clusters. Cada cluster se caracteriza por un centroide.
- Métodos basados en modelos: Mezclas de distribuciones estadísticas.

Pestaña 2: Métodos Jerárquicos

Comienzan con clústeres con una sola observación y unen los clústeres en pasos iterativos posteriores.

Pestaña 3: Machine Learning

Otros modelos se basan en técnicas de Machine Learning.

Información complementaria

K- Means

Cluster Analysis: Métodos de Partición

- 1. Es necesario fijar previamente el número de grupos, K.
- 2. Al final del algoritmo de clustering cada observación va a uno de estos grupos.
- 3. La herramienta más popular de partición: K -means.

K-means

K-means

- La métrica de distancia es la Euclídea (la distancia natural en nuestro espacio tridimensional).
- Proporciona una solución razonable.
- Es muy rápido.

Información complementaria

boton

K-means: popup_661

K-means

Cluster Analysis: K -means

- Asigna aleatoriamente cada observación a uno de los K grupos.
- Calcula las K medias de cada muestra (centroide) de las observaciones de cada grupo.

Ilustración animada 1

Ilustración animada 2

Pagina slider 2

- Asigna cada observación al grupo con la media más cercana (usando la norma euclídea).
- Repite los dos pasos anteriores hasta que no cambian los grupos.

Ilustración animada 1: http://shabal.in/visuals/kmeans/1.html

botor

Ilustración animada 2:

https://eravila.files.wordpress.com/2015/10/kmeans04.gif

10

K-means

Cluster Analysis: Ejemplo

Dataset sencillo: 75 puntos en 2D


```
### Partition methods
install.packages("cluster")
library(cluster)

# easy data set, just for slides
ruspini <- ruspini[sample(1:nrow(ruspini)),]

plot(ruspini,main="")</pre>
```

K-means

11

Recuerde...

Se utiliza la librería cluster para realizar el análisis de clustering. Además del dataset ruspini, contenido en la misma.

2

K-means

Cluster Analysis: Ejemplo

Estandarizar (Restar la media y dividir por la desviación estándar) las variables.


```
# Prepare Data
Ruspini <- scale(ruspini) # standardize variables
# This may prevent one attribute with a large range to dominate
# the others for the distance calculation
plot(Ruspini,main="")</pre>
```

Consideremos que hay dos grupos.


```
fit.kmeans <- kmeans(Ruspini, centers=2, nstart=20) # 2 cluster solution fit.kmeans
plot(Ruspini, col=fit.kmeans$cluster)
points(fit.kmeans$centers, pch=3, cex=2) # this adds the centroids
text(fit.kmeans$centers, labels=1:2, pos=2) # this adds the cluster
```

En alta dimensionalidad, es útil dibujar los clusters en las primeras componentes principales

plot the points using the first principal components (useful in dimension>2)
clusplot(Ruspini, fit.kmeans\$cluster,color=TRUE,shade=TRUE,lines=0)

La descomposición en componentes principales es un concepto complicado que no se describirá en detalle pero baste decir que reducen la dimensionalidad del dataset, y son combinaciones de las variables que buscan explicar la mayor proporción de variabilidad del dataset. En el caso que nos ocupa las dos primeras componentes principales son idénticas a las dos variables del problema.

Consideremos ahora que existen 5 grupos.


```
# Assume now k=5 clusters and Euclidean distances
fit.kmeans <- kmeans(Ruspini, centers=5, nstart=20) # 5 cluster solution
fit.kmeans
plot(Ruspini, col=fit.kmeans$cluster)
points(fit.kmeans$centers, pch=3, cex=2) # this adds the centroids
text(fit.kmeans$centers, labels=1:5, pos=2) # this adds the cluster ID</pre>
```

K-means

Cluster Analysis: Ejemplo

plot the points using the first principal components (useful in dimension>2)
clusplot(Ruspini, fit.kmeans\$cluster,color=TRUE,shade=TRUE,lines=0)

Recuerde...

Practica el Ejemplo 08_import.R

¡No pierdas la pista a los ejemplos en la carpeta correspondiente!

Es importante practicar y entender todos los ejemplos, antes de lanzarse a realizar ejercicios.

Aprendizaje Supervisado

1 Portada

2 Aprendizaje Supervisado

Busca **predecir o estimar una variable objetivo** (o respuesta) o variable dependiente, utilizando el **resto de variables** como input o **variables independientes** (denominadas variables explicativas o predictores).

Pagina slider 2

Para ello utiliza la variable respuesta conocida en el dataset de entrenamiento como supervisor o referencia en el ajuste.

Pagina slider 3

El modelo final que emula el comportamiento de la variable objetivo en función de las variables independientes debe ser suficientemente generalizable, ya que llegado el caso, se utilizará para predecir la variable respuesta.

Pagina slider 4

Esto último se consigue evitando el sobreajuste, comportamiento indeseado cuando un modelo ajusta demasiado bien los datos de entrenamiento pero no da predicciones buenas cuando se utiliza en datos de entrada nuevos.

Pagina slider 5

Si la variable respuesta es continua nos encontramos ante un problema de regresión, si es discreta ante un problema de clasificación.

Regresión

Regresión Lineal

El modelo más sencillo de regresión es la regresión lineal.

Expresa la variable dependiente como combinación lineal de las variables independientes o predictores más un término constante.

Ecuación fundamental

Popups

Ecuación fundamental

La ecuación fundamental de la regresión lineal se expresa como:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

donde Y es la variable objetivo y $X_1,...,X_p$ son las variables independientes, todas de longitud N, que es el número de observaciones (dataset de N filas y p columnas)

Los coeficientes $\beta_1,...,\beta_p$ son los **coeficientes de la regresión** y expresan cuánto crece la variable respuesta cuando aumenta una unidad la variable predictora a la que multiplica, si se mantienen constantes las demás.

El término β_0 es el término constante o **intercept**.

Información complementaria

boton

Ecuación fundamental: popup_662

Regresión

Regresión Lineal: Ejemplo

Queremos aconsejar a una compañía sobre cómo mejorar las ventas de un determinado producto (en miles de unidades). Para conseguirlo, nos proporcionan un set de datos que contiene las ventas del producto en 200 mercados diferentes, junto con el presupuesto de publicidad en televisión, radio y periódicos en cada uno de tales mercados (en miles de dólares).

Gráficas

Resolución

Naturalmente, nuestro cliente no tiene la capacidad de incrementar las ventas de su producto directamente, pero sí tiene la capacidad de decidir qué presupuesto dedicar a cada uno de los canales de publicidad.

Regresión Lineal: Ejemplo

El dataset se puede cargar desde advertising.csv.

```
# Load dataset
advertising <- read.csv('advertising.csv', sep = ';', header = T, fileEncoding = 'utf-8')</pre>
```

El primer modelo consiste en una **Regresión Lineal Simple** de las Ventas (**Sales**) como variable objetivo frente al canal de publicidad de Televisión (**TV**) como único predictor.

```
# Single variable regression
lm_fit_sales_TV <- lm(Sales ~ TV, data = advertising)
lm_fit_sales_TV</pre>
```

El modelo resultante tiene como ecuación:

Sales = 7.03259 + 0.004754 * TV

Información complementaria

Gráficas: mi_curso/27.png

Resolución: popup_663

Regresión

Regresión Lineal: Ejemplo

Recuerde...

La instrucción para ajustar un modelo lineal en R es lm: Im(formula, data, subset, weights, ...)

Donde:

- formula es una descripción simbólica del modelo que se pretende ajustar.
- data es un data frame que contiene los datos con los que se pretende ajustar el modelo.
- subset es un vector opcional que especifica el subconjunto de observaciones que se van a usar en el proceso de ajuste.
- weights es un vector opcional de pesos que se van a usar en el proceso de ajuste del modelo. Por defecto weights=NULL

Regresión Lineal: Ejemplo

Un modelo más sofisticado puede tener en cuenta los tres canales de publicidad (TV, Radio, Newspaper) para describir las ventas (Sales) a través de una Regresión Lineal Múltiple.

```
# Multiple Linear Regression
lm_fit_sales_all <- lm(Sales ~ TV + Radio + Newspaper, data = advertising)
lm_fit_sales_all
```

```
> lm_fit_sales_all

Call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = advertising)

Coefficients:
(Intercept) TV Radio Newspaper
    2.938889    0.045765    0.188530    -0.001037
```

Resolución

Popups

Regresión Lineal: Ejemplo

El modelo resultante tiene como ecuación:

Sales = 2.938889 + 0.045765 * TV + 0.188530 * Radio - 0.001037 * Newspaper

Información complementaria

boton

Resolución: popup_664

Regresión

Regresión Lineal: Ejemplo

La función summary devuelve información avanzada sobre el modelo, no solo los coeficientes.

[Pulsa en las zonas destacadas de la imagen.]

Información complementaria

etiquetas imager

- Estadísticos sobre los residuos.Los residuos son la diferencia entre los valores de la variable objetivo y la salida del modelo.Cuánto más pequeños y centrados en torno a cero mejor ajuste del modelo a los datos.
- Estos asteriscos reflejan un test estadístico de relación entre los predictores y la variable de salida (p-valor). Si no hay asteriscos no hay una relación entre la variable predictora y la variable respuesta. En este caso, no se puede decir que Newspaper sea una variable significativa en el modelo, no influye en Sales.
- 3. Multiple y Adjusted R-squared cercanos a 1 significa que el rendimiento del modelo es bueno.

Clasificación

Recuerde...

Trabaja el Ejemplo 13_regression.R

¡No pierdas la pista a los ejemplos en la carpeta correspondiente!

Regresión Logística

El modelo más sencillo de clasificación es la **regresión logística**.

Busca modelizar problemas de clasificación en dos categorías, donde la **variable objetivo** es discreta y tiene solo **dos categorías posibles** (que se codifican por los valores **0 y 1**).

Es una técnica de clasificación estadística, en la que primero se predice la probabilidad de cada categoría

Lo que se modeliza ahora es la cantidad p/1-p, denominados los odds.

Un valor pequeño indica una probabilidad baja de que Y=1, mientras que un valor grande indica una alta probabilidad.

Pagina slider 3

Se puede relacionar con un problema de regresión lineal si se modeliza:

$$\operatorname{logit}(p) \equiv \operatorname{log} \ \frac{p}{1-p} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

donde p es la probabilidad de pertenencia a cada categoría y $X_1,...,X_p$ son las variables independientes, de longitud N, el número de observaciones (dataset de N filas y p columnas)

Pagina slider 4

Si incrementamos la variable X_i por una unidad, el logit(p) crece una cantidad igual a la β_i correspondiente.

Una vez que tenemos las probabilidades de pertenencia de cada clase se puede hacer, en el supuesto más sencillo, que:

$$Y = \begin{cases} 1 & \text{si } p \ge 0.5 \\ 0 & \text{si } p < 0.5 \end{cases}$$

10

Clasificación

Regresión Logística: Ejemplo

Utilizaremos el dataset **titanic.csv** que contiene datos de los pasajeros del Titanic, relacionados con su Sexo (**Sex**), Edad (**Age**), Tarifa de Embarque (**Fare**), Clase de Pasajero (**PClass**), entre otros, y la variable objetivo **Survived** que denota si el pasajero en cuestión sobrevivió o no (**1** ó **0**, resp).

 $\label{titanic} \textbf{titanic} \leftarrow \textbf{read.csv('titanic.csv', header = T, stringsAsFactors = F, encoding = 'utf-8')}$

Algunos gráficos explicativos que estudian la distribución de Survived frente a variables categóricas.

Gráfico 1

Gráfico 2

Sobrevivieron más del triple de mujeres que hombres (75% female frente a menos del 25% male).

Sobrevivieron más del 60% de los pasajeros de primera (**Pclass = 1**), en torno al 50% de los de segunda (**Pclass = 2**), y el 25% de los de tercera (**Pclass = 3**).

Información complementaria

Popups

No se observan demasiadas diferencias en la distribuciones de **Fare** para los dos valores de **Survived** (salvo un pico pronunciado a tarifas bajas).

Respecto a la distribución de valores de **Age**, las diferencias en también son pequeñas cuando **Survived** = 0, 1.

Clasificación

Regresión Logística: Ejemplo

Probamos un modelo en el que describimos la probabilidad de supervivencia según las variables Sex, Pclass, Age, y Fare.

[Pulsa en la zona destacada de la imagen.]

Información complementaria

etiquetas imager

 La variable Fare no parece ser estadísticamente significativa. Podríamos no utilizarla en un segundo modelo.

Clasificación

Recuerde...

La instrucción para ajustar un modelo de regresión logística en R es: glm(formula, data, family = binomial(link = 'logit'), ...)

Donde:

- formula es una descripción simbólica del modelo que se pretende ajustar.
- data es un data frame que contiene los datos con los que se pretende ajustar el modelo.
- family = binomial(link = 'logit') refleja que el modelo lineal generalizado es de tipo regresión logística (problema binomial con función link logit).

Clasificación

Regresión Logística: Ejemplo

La salida del modelo son probabilidades, más precisamente logit(p), definido anteriormente.

Una manera de convertir las predicciones de probabilidad en predicciones de la variable objetivo (**Survived**) es establecer un corte, que puede ser 0.5. De manera que probabilidades de supervivencia mayores del 50% indican que ha sobrevivido.

 $\verb|titanic| survived_prediction| <- titanic| predictions| > 0.5$

Una vez hecho esto la manera de comprobar si el modelo es bueno es construir una matriz de confusión en la que se comparan las predicciones con los valores reales de la variable objetivo.

[Pulsa en las zonas destacadas de la imagen.]

Confusion matrix
table(titanic\$Survived, titanic\$survived_prediction)
> table(titanic\$Survived, titanic\$survived_prediction)

FALSE TRUE
0 472 77
1 100 242

El modelo acierta la supervivencia un 70% de las veces (aprox. 242/(242+100)). El modelo acierta la no supervivencia un 86% de las veces (aprox. 472/(472+77)).

- 1. Predicciones
- 2. Valores reales

15 Recuerda

Trabaja el Ejemplo 14_logistic_regression.R

¡No pierdas la pista a los ejemplos en la carpeta correspondiente!

Recuerde...

Cierre

- Hasta aquí se han visto algunas técnicas básicas de aprendizaje no supervisado y supervisado.
- De hecho, las que se han expuesto se relacionan más con las técnicas estadísticas clásicas pero existen multitud de técnicas del mundo del Machine Learning, como son los Árboles de Decisión, Random Forest, Redes Neuronales y Deep Learning, entre otras.
- 3. Profundizar en el lenguaje R, Python, en técnicas de análisis avanzadas, además de metodologías más complejas y tecnologías Big Data son el paso hacia la formación completa de un Data Scientist.

Información

Dónde encontrar esto y más

An Introduction to Statistical Learning with Applications in R:http://www-bcf.usc.edu/~gareth/ISL/

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R