《Logic BERT》

YKY

July 30, 2020

Table of contents

- 1 BERT 的革命性意义:「闭环路训练」
- 2 BERT 的内部结构
- 3 BERT 的逻辑化4 Symmetric neural network
- 5 「集」结构 带来麻烦
- 6 Attention 是什么?
- 7 Attention 给逻辑 AI 的启发
- 8 "Attention is all you need"?
 - 应用:知识图谱 (knowledge graphs)
- 10 应用: content-addressable long-term memory

BERT 的革命性意义:「闭环路训练」

BERT 利用平常的文本 induce 出知识,而这 representation 具有 通用性 (universality):

换句话说:隐状态的 representation 压缩了句子的意思,而它可以应用在 别的场景下

- This implies that human-level AI can be induced from existing corpora, 而不需重复 像人类婴儿成长的学习阶段
- Such corpora can include items such as images, movies with dialogues / subtitles
- 这种训练方法是较早的另一篇论文提出,它并不属於 BERT 的内部结构

BERT 的内部结构

其实,BERT 也是混合了很多技巧 发展而成的:

- BERT 基本上是一个 seq-to-seq 的运算过程
- Seq-to-seq 问题最初是用 RNN 解决的
- 但 RNN 速度较慢,有人提出用 CNN 取代:

- CNN 加上 attention mechanism 变成 Transformer
- 我的目标是重复这个思路,但引入 symmetric NN 的结构

Symmetry in logic

- 词语 组成 句子, 类比於 逻辑中, 概念 组成 逻辑命题
- 抽象地说,逻辑语言可以看成是一种有2个运算的代数结构,可以看成是加法 △和乘法·,其中乘法是不可交换的,但加法可交换
- 例如:

$$A \wedge B \equiv B \wedge A$$

下雨 \wedge 失恋 \equiv 失恋 \wedge 下雨

- Word2Vec 也是革命性的;由 Word2Vec 演变成 Sentence2Vec 则比较容易,基本上只是向量的 延长 (concatenation);逻辑命题 类似於 sentence
- ullet 假设 全体逻辑命题的空间是 \mathbb{P} , 则 命题集合 的空间是 $2^{\mathbb{P}}$, 非常庞大
- 如果限制 状态 $\vec{x}=$ working memory 只有 10 个命题, \vec{x} 的空间是 \mathbb{P}^{10}/\sim 其中 \sim 是对称群 \mathfrak{S}_{10} 的等价关系。换句话说 $2^{\mathbb{P}}\cong\coprod_{n=0}^{\infty}\mathbb{P}^{n}/\mathfrak{S}_{n}$
- ullet $\mathbb{P}^n/\mathfrak{S}_n$ 虽然是 \mathbb{P}^n 的商空间,但 \mathfrak{S}_n -不变性 很难用神经网络实现

Symmetric neural network

- Permutation invariance can be handled by symmetric neural networks
- 我浪费了两年时间试图解决这问题, 却发现在 3 年前已经有两篇论文解决了 [PointNet 2017] [DeepSets 2017], 而且数学水平比我高很多
- Any symmetric function can be represented by the following form (a special case of the Kolmogorov-Arnold representation of functions):

BERT 的逻辑化

可以将 BERT 的 隐状态 变成 "set of propositions" 的形式, 方法是将 原来的 decoder 变成 sym NN:

- of the decoder

 原来的 encoder 可以照旧使用,, 因为它是一个 universal seq-2-seq mapping
- 因为后半部改变了,error propagation 会令 representation 也改变
 为为,并不是实际工程。
- 当然,这个想法有待实验证实 😝

Attention 是什么?

• 注意力 最初起源於 Seg2seg, 后来 BERT 引入 self-attention

• 在 Seq2seq 中, 编码器 (encoder) 由下式给出, 它将输入的词语 x_i 转化成 一连串的 隐状态 h_i :

 $h_t = \mathsf{RNN}_{encode}(x_t, h_{t-1})$

• 这些 h_i 可以综合成单一个 隐状态 $c = q(h_1, ..., h_n)$. • 这个 c 被「寄予厚望」,它浓缩了整个句子的意义

• 解码器 的结构类似,它的隐状态是 s_t ,输出 y_t :

换句话说, α_{ij} 选择 最接近 h_i 的 s_i

 $\alpha_{ii} = \operatorname{softmax}\{\langle s_i, h_i \rangle\}$

• 其中 α_{ij} 量度 输入/输出 的隐状态之间的 相似度,取其最大值:

 $c_i = \sum_j \alpha_{ij} h_j$

 $s_t = \mathsf{RNN}_{decode}(y_t, s_{t-1}, c_t)$ • 注意最后的 c_t 依赖时间,它是隐状态 h_i 的 加权平均:

(7)

(9)

(10)

Attention 给逻辑 AI 的启发

我这样理解 attention:

- 例如,翻译时,输入/输出句子中「动词」的位置可以是不同的
- ullet 当 解码器需要一个「动词」时,它的隐状态 s_t 含有「动词」的意思
- Attention 机制 找出最接近「动词」的 编码器的隐状态(可以 ≥ 1 个) $\sum h_j$,交给 解码器,这是一种 information retrieval
- 例如,将 M 件东西 映射 到 N 件东西,可以有 N^M 个 mappings,这是非常庞大的空间。但如果这些物件有 类别,而同类只映射到同类,则可以用 attention 简化 mappings
- 所以 attention 是一种 inductive bias,它大大地缩小 mapping 空间
- ullet 在逻辑的场景下,需要的 mapping 是 f: 命题集合 o 命题

"Attention is all you need"?

- 逻辑 attention 和 传统 attention 要求略有不同,这是关键的一步
- (applicable) 的 rules

不是「同类映射到同类」,而是要在庞大的 logic rules 空间中找到适用

- 隐状态 s_t 代表 "search state", 注意力 的目的是 选择 s_t 所需要的那些命题,交给 解码器
- 注意: 逻辑 attention 从 M 个命题中 选择 N 个命题,M>N. 这是 inductive bias. 而 Symmetric NN 的做法,只是要求 M 个命题 的 置换不变性,所以它浪费了资源在很多 "don't care" 的命题上
- 换句话说, selection 所带来的 bias 如果足够强,似乎不需要 symmetric.
 很巧合地,再次应验了 "attention is all you need" 这句话

应用:知识图谱 (knowledge graphs)

● 知识图谱 不能直接输入神经网络,它必需分拆成很多 edges,每个 edge 是一个 关系,也是一个 逻辑命题 ; 也可以说 "graphs are isomorphic to logic"

而这些 edges 似乎必需用 symmetric NN 处理,因为它们是 permutation invariant

应用: content-addressable long-term memory

以前 BERT 的隐状态 没有逻辑结构,我们不是很清楚它的内容是什么; 逻辑化之后,BERT 内部的命题可以储存在 长期记忆 中:

I • am • student

- 这种系统 已非常接近 strong AI, 而这是有赖 逻辑化 才能做到的
- Content-addressable memory 的想法来自 Alex Graves et al 的 Neural Turing Machine [2014]

References

- [1] Alex Graves, Greg Wayne, and Ivo Danihelka. "Neural Turing Machines". In: CoRR abs/1410.5401 (2014). arXiv: 1410.5401. URL: http://arxiv.org/abs/1410.5401.
- [2] Qi et al. "Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation". In: CVPR (2017). https://arxiv.org/abs/1612.00593.
- [3] Zaheer et al. "Deep sets". In: Advances in Neural Information Processing Systems 30 (2017), pp. 3391–3401.