W209 Data Visualization and Communication

Summer 2020, Section 4 - Assignment 2

Cristopher Benge cris.benge@berkeley.edu

A brief review of cs.AI, cs.LG, and stat.ML papers on arXiv.org (1993 - 2019)

School of Information, Graduate Studies University of California, Berkeley United States June 27, 2020

Contents

1	Intr	oduction	2
	1.1	Abstract	3
	1.2	Code Book	3
		1.2.1 Data Augmentation	4
	1.3	Hypothesis Formation	4
		1.3.1 Initial Hypotheses	5
2	Expl	loratory Data Analysis	6
	2.1	H_1 : Abstract Length Trends	7
		2.1.1 Visual Exploration of Data	7
	2.2		12
	2.3	H_3 : Authorship Count	13
Bi	bliog	raphy	14
Appendix			15

Section 1 Introduction

1.1 Abstract

arXiv® is a free distribution service and an open archive for scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics [1]. This paper aims to highlight initial hypotheses from, and exploratory data analysis of, arXiv papers published between 1999 and 2019. At the time of this analysis, arXiv contained 1,723,249 scholarly articles and was growing at a rate of ≈ 14.7 k paper submissions per month. Data for this project was sourced via an offline, complete download of the arXiv metadata for papers [2]. As the interest of the program for which this paper is written primarily surrounds the activities of machine learning, only three key arXiv subject classes were reviewed: {cs.AI, cs.LG, stat.ML}. The total number of unique paper metadata samples evaluated was 103,195.

1.2 Code Book

The native format provided by arXiv is a collection of JSON documents stored in a hierarchical folder structured, organized by paper category, class, and year published. A moderate amount of data processing was required to get the raw data into a baseline format useful for our analysis; the details of this processing are outside the scope of this document but are fully detailed in our public GitHub repository [3]. Following our minimal pre-processing, the basic elements to conduct our initial investigation into the patterns present in machine learning papers emerge (table 1.1).

Pos	Variable	Description
1	abstract	The article abstract
2	acm_class	1998 ACM Computing Classification System class
3	arxiv_id	arXiv identifier
4	author_text	comma-separated list containing author(s)
5	categories	comma-separated list containing paper categories
6	comments	comments; often a reference to additional information resources
7	created	date the paper was created
8	doi	Digital Object Identifier for journal articles
9	num_authors	number of paper authors
10	num_categories	number of categories paper is classified under
11	primary_cat	primary category of paper
12	title	The article title
13	updated	date article was updated (if any)

Table 1.1: arXiV Metadata Code Book

ArXiv does not conduct or require peer reviews for articles they host. Desirable elements missing from the metadata include: a references section for the article, the body text, figures, and tables, and a list of other journals and academic conferences the paper has been submitted to (including any peer reviews completed).

1.2.1 Data Augmentation

The following columns were removed from the final analysis as they were either mostly sparse, contained information not useful for our task, or both: {acm_class, arxiv_id, comments, doi, updated}. The column categories was parsed and split into more useful columns before being removed. Additionally, several new columns were created to support the analysis (table 1.2).

Туре	Variable	Description
bool	category_cs_AI	Indicates if paper is in category cs.AI
bool	category_cs_LG	Indicates if paper is in category cs.LG
bool	category_stat_ML	Indicates if paper is in category stat.ML
int	abstract_word_count	Total count of all strings values between space characters.
int	abstract_unique_word_count	Distinct count of all string values between space characters.
int	title_word_count	Total count of all string values between space characters.
int	abstract_sentence_count	Total count of sentences (tokenized by spaCy [4])
str	abstract_clean	Abstract with lemmatization, stop words, numbers, and punctuation re-
		moved.

Table 1.2: arXiv Augmented Data

1.3 Hypothesis Formation

The first step in understanding our data begins with the humble approach of observing the raw data in tabular form and paying special attention to anything that might seem relevant or warranting further investigation. Our data source for this analysis is in CSV format and consists of 103,195 rows and 15 columns. We note that there appears a heterogeneous mix of text, date, numeric, boolean, and integer data types. Further, it is apparent that categorical, ordinal, and discrete variables are available in this dataset. Figure 1.1 serves as an example of the raw data tabular view available in Tableau Desktop®.

Figure 1.1: EDA: Raw arXiv Data

HYPOTHESIS FORMATION - CONTD.

The presence of the Created column signifies, apodictically, an opportunity for the evaluation of arXiv paper data over time. By itself, this raises a number of interesting areas worthy of investigation regarding the behavior and trend of AI/ML papers for the calendar years spanning 1999 - 2019. It is also clear from figure 1.1, and from a more thorough review of the raw data, that papers can span multiple categories though they only possess a single primary category attribute value.

In addition to two text-based representations for papers abstracts, Abstract and Abstract Clean, Several discrete value attributes are provided to help quantify abstract data; these attributes range from word counts - both unique and, ostensibly, raw - to sentence counts per abstract. The aforementioned text-based columns appear to be both raw and processed (i.e. lemmatized, stop-words removed, digits removed, etc.) versions of the abstract. Title text and word count appear to be available in raw form only with no further processing.

Key categorical data appears to be available in two forms: attribute Primary Cat appears to provide a single label value for the papers' primary thematic area while attributes {category cs AI, category cs LG, category stat ML} provide a boolean indicator. It is evident from this schema layout as well as the values present that any paper possesses one and only one primary category, but permits a 1:N relationship with subcategories.

1.3.1 Initial Hypotheses

Given this information, there are several hypotheses that via instinct, but will require further visual investigation of the data to evaluate:

- *H*₁: : Abstract Word Count will be essentially unchanged over time.
- H_2 : The majority of papers in subcategory cs. AI also have a Primary Cat value of cs.AI
- H_3 : : The Num Authors attribute will be essentially unchanged over time.

The key intuition operative for H_1 and H_3 is that the number of authors and length of abstracts in paper submissions are not changing in a meaningful way over time (though surely the topics and areas of interest assuredly are). For H_2 , a quick glance of papers in subcategory cs.AI tended to fall in primary category of "cs.AI" as well. This seemed to hold for cs.LG and stat.ML based on cursory observation of the raw examples.

Section 2 Exploratory Data Analysis

2.1 H_1 : Abstract Length Trends

 H_1 expresses the authors' belief that there exists no discerning behavioral pattern in the academic community publishing papers in the Artificial Intelligence and Machine Learning with respect to authorship of paper abstracts, and in particular: their overall length in words. Succinctly stated, we believe that paper abstract length with remain relatively stable over time.

2.1.1 Visual Exploration of Data

Our visual exploration of the data was conducted with Tableau Desktop, ver. 2020.2.1. The final workbook for H_1 can be viewed online at : ArXiV Papers - Length of Abstract Over Time.

Step 1 of 5

Visual exploration of the data began with dragging the relevant variables, Created and Abstract Word Count, to the worksheet surface, setting the grain of the Created date to *by month*, and specifying an aggregation of mean average for the word count. By default, Tableau selected a line chart to depict these data as seen in figure 2.1 below.

Figure 2.1: H_1 : Visual Exploration, Step 1 of 5

This view depicts the mean average paper abstract length [in word count] in the Y axis, and the date of paper publication along the X axis. It is immediately clear that the amount of variance has drastically changed over time - with lower variance in the more contemporaneous papers. This views shows that an interesting trend might be present, however it is difficult in this view to assess much about the characteristics of any potential trend. This is particularly exacerbated by the higher variance from 1993-2010, which makes it difficult to visually estimate the overall running trend.

Step 2 of 5

Reviewing the data as a scatter plot seemed a more intuitive path; however, Tableau would not permit conversion to this format due to the columns dimension being expressed as a dimension rather than a measure. To get around this issue, a "circles" marker type was selected rather than line. Further, the step 1 visual 2.1 did not make it easy to discern which month was under consideration, so modification to the X axis format was applied. Additionally, a gradient color scheme was applied to indicate density of word count over time.

Figure 2.2: H_1 : Visual Exploration, Step 2 of 5

With these few changes, the visual apprehension of a trend in abstract word count is emerging as it seems to show that the *average is both increasing and the variance is decreasing*. Fascinating! This could be due to a number of potential conditions, such as sparse representation of pre-2010 papers, data collection issues that did not account for format of older papers, the emergence of regulatory influences such as social norms or industry guidance, etc. Though improved, the second view is lacking in communicating trend statistics and there exists some question about the relative sparsity of pre-2010 papers in the dataset left, unfortunately, to the viewers imagination.

Step 3 of 5

To get around the scatter plot restriction, the date dimension was converted to a measure and the plot type was adjusted. Further, the question of data availability pre-2010 in plots 1 and 2 was addressed by drilling to the weekly grain. Finally, a bug was noted in the color gradient scheme used in plot 2 and a step function was used to classify points as low or high abstract length.

Figure 2.3: H₁: Visual Exploration, Step 3 of 5

This view gestures toward at least one potential problem with sparsity in paper data predating 2010, and could raise some concern about using that data to establish a trend when comparing with papers from 2010-2019. To improve on this view, the addition of trend line and p-value would help us further establish the presence of trend or lack thereof.

Step 4 of 5

The addition of a linear trendline and incorporation of an annotation containing basic analytical explanation of the trend further improves our understanding of the data. An overt, increasing trendline raises doubt in the authors' H_1 hypothesis and, along with an exceptionally low p-value \lesssim 0.0001, leaves little room for an argument supporting our initial hypothesis.

Figure 2.4: H₁: Visual Exploration, Step 4 of 5

At this stage, only a few minor complaints remain regarding the utility of the visualization for evaluating the truth value of the H_1 hypothesis: A moving average, projected with $+/-1\sigma$ banding would assist in getting a feel for a non-linear trend and would further solidify understanding of the change in abstract lengths over time.

Step 5 of 5 - Final Visual

Our final iteration of the visual clearly articulates a minor but unmistakable upward trend in length of abstract over time for papers in the cs.AI, cs.LG, and stat.ML categories. The interactive version of this visualization can be reviewed on this Tableau Public link.

Figure 2.5: H₁: Visual Exploration, Step 5 of 5

The author concludes that the data shows a trend in increase of abstract word count over time, and thus reject the H_1 hypothesis.

2.2 H_2 : Primary Category Assignments

Though a paper can be assigned to 1:N subcategories and are not required to be assigned to a matching primary category, H_2 expresses the authors' belief that the primary category for papers in the subcategory of cs. AI are predominately found in [super] category cs. AI. The author concludes that the data fails to reject the H_2 hypothesis. See figure 2.6 below.

Figure 2.6: H₂: Visual Exploration, Final

The interactive version of this visualization can be reviewed on this Tableau Public link.

2.3 H_3 : Authorship Count

Author attribution is a enviable and often coveted milestone for working academics and researchers - often with some emphasis to keep the "circle [of attribution] small." Given this, and after a quick visual inspection through the raw data, H_3 expresses skepticism that authorship numbers would fluctuation much from their historical baselines. It is, therefore, with some genuine surprise that a more thorough visual inspection of the data provides a very strong case for rejecting the H_3 hypothesis.. See figure 2.7 below.

Figure 2.7: H₃: Visual Exploration, Final

The interactive version of this visualization can be reviewed on this Tableau Public link.

Bibliography

- [1] C. University. (2020). Arxiv, [Online]. Available: https://arxiv.org/(visited on 06/27/2020).
- [2] S. R. Geiger. (2019). Arxiv archive: A tidy and complete archive of metadata for papers on arxiv.org, 1993-2019, [Online]. Available: https://github.com/staeiou/arxiv_archive/tree/v1.0.1 (visited on 06/27/2020).
- [3] C. D. Benge, R. Kulkarni, and A. Yadav. (2020). Arxiv.org ai/ml analysis, [Online]. Available: https://github.com/cbenge509/arxiv-ai-analysis (visited on 06/27/2020).
- [4] M. Honnibal and I. Montani, "spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing", spaCy ver 2.3.0, 2017.

Appendix

List of Figures

2.1 2.2 2.3 2.4	H_1 : Visual Exploration, Step 1 of 5
2.52.6	H_1 : Visual Exploration, Step 5 of 5
2.7	H_3 : Visual Exploration, Final
	List of Tables
1.1 1.2	arXiV Metadata Code Book