<u>Prüfungsteilneh</u>	mer Prüfungstermin	Einzelprüfungsnummer
Kennzahl:	Herbst	t
Arbeitsplatz-Nr.:	2010	46113
F C4		·· · · · · · · · · · · · · · · · · · ·
Erste St	aatsprüfung für ein Lehramt — Prüfungsaufgal	
Erste St		
	— Prüfungsaufgab	
Fach: Einzelprüfung:	— Prüfungsaufgah	

Bitte wenden!

Thema Nr. 1

Aufgabe 1

Chomsky-Hierarchie

- a) Zeigen Sie jeweils durch Angabe einer Sprache, dass die Typ 3-Sprachen echt in der Menge der Typ 2-Sprachen, sowie die Typ 2-Sprachen echt in der Menge der Typ 1-Sprachen enthalten sind.
- b) Gegeben sei die Sprache

 $L = \{x \in \{0, 1, 2, 3\}^* \setminus \{\varepsilon\} \mid x \text{ (als Zahl im Dezimalsystem gelesen) ist } nicht \text{ durch 3 teilbar}\}.$

Ordnen Sie die Sprache L in die Chomsky-Hierarchie ein und beweisen Sie Ihre Aussage durch Angabe eines akzeptierenden Automaten.

Aufgabe 2

Endliche Automaten

Gegeben sei der folgende deterministische, endliche Automat D:

- a) Konstruieren Sie aus D einen Minimalautomaten D_{min} .
- b) Geben Sie explizit die Sprache an, die der Automat D bzw. D_{min} akzeptiert.
- c) Geben Sie einen regulären Ausdruck für diese Sprache an.

Aufgabe 3

Pumping Lemma und Satz von Myhill-Nerode

Sei $\Sigma = \{a, b, c\}$ ein Alphabet und seien die folgenden beiden kontextfreien, nicht-regulären Sprachen über Σ gegeben:

$$L_1 = \{ a^m b^n c^n \mid m \ge 0, n \ge 1 \}$$

$$L_2 = L_1 \cup \{ b, c \}^*$$

- a) Geben Sie eine kontextfreie Grammatik für L_1 an.
- b) Zeigen Sie, dass L_2 die Behauptung des Pumping Lemma für reguläre Sprachen erfüllt.
- c) Geben Sie den Satz von Myhill-Nerode an.
- d) L_2 ist eine nicht-reguläre Sprache. Dies kann nach Teil b) dieser Aufgabe nicht mit dem Pumping Lemma gezeigt werden. Beweisen Sie nun mit Hilfe des Satzes von Myhill-Nerode, dass L_2 nicht-regulär ist. [Hinweis: Es reicht, unendlich viele nicht-äquivalente Wörter $z \in \Sigma^*$ zu finden.]

Aufgabe 4

Berechenbarkeit

Sei eine Funktion f gegeben, die für jede Eingabe $w \in \{0,1\}^*$ das Wort $w' \in \{0,1\}^*$ berechnet, das aus w entsteht, indem man jedes Vorkommen von 0 durch 00 ersetzt.

Beispiel: f(00101) = 00001001

- a) Geben Sie eine deterministische Turing-Maschine M an, die f berechnet. Beschreiben Sie dabei die Bedeutung der Zustände bzw. Übergänge Ihrer Turing-Maschine informell.
- b) Geben Sie den Ablauf von M für die Eingabe 01 an.
- c) Bestimmen Sie Laufzeit- und Speicherplatzkomplexität von M in O-Notation.

Thema Nr. 2

Annahmen:

Sie dürfen als bekannt und bewiesen voraussetzen:

Die Sprache $\{a^n b^n \mid n \ge 1\}$ ist nicht regulär.

Die Sprache $\{a^n b^n c^n \mid n \ge 1\}$ ist nicht kontextfrei.

Um zu zeigen, dass eine Sprache L regulär (kontextfrei) ist, reicht die Angabe einer entsprechenden Beschreibung (Automat, Grammatik, regulärer Ausdruck). Sie müssen nicht mehr zeigen, dass Ihre Beschreibung korrekt ist und genau die vorgegebene Sprache beschreibt.

Aufgabe 1: reguläre Mengen

Sei L die Menge aller Worte über dem Alphabet {a,b}, bei denen das zweite und das zweitletzte Zeichen gleich sind.

Beachten Sie auch die kurzen Worte.

Beschreiben Sie L

- a) durch einen regulären Ausdruck
- b) durch einen deterministischen endlichen Automaten A.

Aufgabe 2: regulär oder nicht

L besteht aus der Menge aller Worte über dem Alphabet {a,b}, bei denen die Anzahl von a's gerade und die Anzahl der b's ungerade ist.

Ist die Sprache L regulär oder nicht? Begründen Sie Ihre Antwort.

Aufgabe 3:

Sei PAL = $\{w \mid w = w^{rev}, w \in \{a,b\}^*\}$, w^{rev} ist w gespiegelt oder rückwärts gelesen.

- a) Geben Sie alle Worte bis zur Länge 5 von PAL an.
- b) Klassifizieren Sie PAL:
- Ist PAL regulär? Begründen Sie Ihre Entscheidung.
- Ist PAL kontextfrei? Begründen Sie Ihre Entscheidung.
- Ist PAL rekursiv aufzählbar (positiv semi-entscheidbar)? Begründen Sie Ihre Entscheidung.

Aufgabe 4:

Konstruieren Sie eine Turingmaschine M für die Sprache $L=\{a^n\ b^n\ c^n\ |\ n\geq 1\}$

Welche Zeit-Komplexität hat Ihre Turingmaschine M? Welche Speicher-Komplexität hat Ihre Turingmaschine M?

Aufgabe 5:

Das Feedback-Arc-Set Problem (FAS)

Gegeben: Ein gerichteter Graph G = (V, E) mit Knotenmenge V und Kantenmenge E und eine Zahl k.

Problem: Gibt es eine Teilmenge von höchstens k Kanten F, F \subseteq E, $|F| \le k$,

so dass der Graph $G' = (V, E \setminus F)$ keinen Zyklus mehr enthält?

Warum ist dieses Problem in NP? Erläutern Sie dies.

Hinweis: Es ist nicht gefragt, dass FAS NP-hart ist. Das hat R. Karp 1970 gezeigt.