g	GE Energy	Functional Testing Specification
	Parts & Repair Services Louisville, KY	LOU-GED-DS3800DFXD

Test Procedure for a DS3800DFXD

REV.	DESCRIPTION	SIGNATURE	REV. DATE
Α	Initial release	Steve Pharris	7/01/2010
В	Improved reliability of test	Steve Pharris	5/02/2014
С			

© COPYRIGHT GENERAL ELECTRIC COMPANY

Hard copies are uncontrolled and are for reference only.

PROPRIETARY INFORMATION – THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF GENERAL ELECTRIC COMPANY AND MAY NOT BE USED OR DISCLOSED TO OTHERS, EXCEPT WITH THE WRITTEN PERMISSION OF GENERAL ELECTRIC COMPANY.

PREPARED BY Steve Pharris	S. Pharris	REVIEWED BY	Charlie Wade
DATE 07/01/2010	DATE 5/2/2014	DATE	DATE 7/1/2010

	g	
LOU-GED-DS3800DFXD	GE Energy	Page 2 of 5
REV. B	Parts & Repair Services	
	Louisville, KY	

1. SCOPE

1.1 This is a functional testing procedure for a DS3800DFXD.

2. STANDARDS OF QUALITY

2.1 Refer to the current revision of the IPC-A-610 standard for workmanship standards.

3. APPLICABLE DOCUMENTS

- **3.1** The following document(s) shall form part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue shall apply.
 - **3.1.1** Check board's electronic folder for more information

4. **ENGINEERING REQUIREMENTS**

- 4.1 Equipment Cleaning
 - **4.1.1** Equipment should be clean and free of debris prior to applying power unless performing an initial check. Refer to site specific SRA's for cleaning guidelines.
- **4.2** Equipment Inspection
 - **4.2.1** Equipment should be visually inspected for any defects prior to applying power. This inspection should include the following as a minimum:
 - 4.2.1.1 Wires broken, cracked, or loosely connected
 - 4.2.1.2 Terminal strips / connectors broken or cracked
 - 4.2.1.3 Components visually damaged
 - 4.2.1.4 Capacitors bloated or leaking
 - 4.2.1.5 Solder joints damaged or cold
 - 4.2.1.6 Circuit board burned or de-laminated
 - 4.2.1.7 Printed wire runs / Traces burned or damaged

5. EQUIPMENT REQUIRED

5.1 The following equipment is required to perform the process requirements. Equipment may be substituted provided that all accuracy's and test ratios are equivalent or better.

Qty	Reference #	Description
1		Fluke 87 DMM (or Equivalent)
1		Millivolt Source
2		Tenma dual Power Supply
1		180 Ohm Resistor

g

LOU-GED-DS3800DFXD REV. B

GE Energy Parts & Repair Services Louisville, KY

Page 3 of 5

6. TESTING PROCESS

6.1	Setup

- **6.1.1** Set power supplies for 15VDC and 28VDC
- **6.1.2** Connect +15VDC to positive side of C38
- 6.1.3 Connect –15VDC to negative side of C39
- **6.1.4** Connect +5VDC to positive side of C37
- **6.1.5** Connect +28VDC to JD19
- **6.1.6** Connect <u>all</u> commons together
- **6.1.7** Connect common to positive side of C39 AND negative side of C37
- 6.1.8 Connect 180 ohm resistor in series with output of millivolt source
- **6.1.9** Connect other side of resistor to JD6

6.2 Testing Procedure

- **6.2.1** Voltage tolerances should be < (+- 5%)
- **6.2.2** Apply power
- 6.2.3 Verify 0VDC at JA1
- 6.2.4 Connect JD3 to Com
- **6.2.5** Increase millivolt source to 4VDC
- **6.2.6** Verify JA1 = 28VDC
- **6.2.7** Verify JA2 = 0VDC
- 6.2.8 Connect JD4 to Com
- **6.2.9** Verify JA2 = 28VDC
- **6.2.10** Verify JA3 = 0VDC
- 6.2.11 Connect JD1 to Com
- **6.2.12** Verify JA3 = 28VDC
- **6.2.13** Verify JA4 = 28VDC
- 6.2.14 Connect JD5 to Com
- **6.2.15** Verify JA4 = 0VDC
- 6.2.16 Connect JD2 to Com
- **6.2.17** Verify JA4 = 28VDC
- **6.2.18** Verify JA8 = 1
- 6.2.19 Connect JD7 to Com
- **6.2.20** Verify JA8 = 0
- **6.2.21** Verify JA7 = 1

LOU-GED-DS3800DFXD
REV. B

GE Energy
Parts & Repair Services
Louisville, KY

Page 4 of 5

- **6.2.22** Verify JA10 = 1
- 6.2.23 Connect JD8 to Com
- **6.2.24** Verify JA10 = 0
- **6.2.25** Verify JA9 = 1
- **6.2.26** Verify JD11 = 1
- 6.2.27 Connect JA11 to 5V
- 6.2.28 Connect JA12 to com
- **6.2.29** Verify JD11 = 0
- **6.2.30** Verify JD10 = 1
- 6.2.31 Connect JA13 to 5V
- 6.2.32 Connect JA14 to com
- **6.2.33** Verify JD10 = 0
- **6.2.34** Verify JD9 = 1
- 6.2.35 Connect JA15 to com
- **6.2.36** Verify JD9 = 0
- 6.2.37 Remove resistor from millivolt source output
- 6.2.38 Using millivolt source apply 1VDC to JA16
- **6.2.39** Verify JC5 = 1V
- 6.2.40 Increase millivolt source at JA16 in 1VDC increments to 5VDC and verify JC5 follows
- **6.2.41** Using millivolt source apply -5V to JA17
- **6.2.42** Verify JC4 = approx. -7.77V
- **6.2.43** Decrease millivolt source at JA17 in 1VDC increments to 0VDC and verify JC4 increases by 1VDC increments
- **6.2.44** Using millivolt source apply -5V to JA18
- **6.2.45** Verify JC4 = approx. 7.7V
- **6.2.46** Decrease millivolt source at JA18 in 1VDC increments to 0VDC and verify JC4 increases by 1VDC increments
- 6.2.47 Using millivolt source apply -5VDC to JA19
- 6.2.48 Adjust pot R83 for 7.5VDC at JC1
- 6.2.49 Decrease millivolt source at JA19 to -4VDC
- **6.2.50** Verify JC1 = approx. 8.5VDC
- 6.2.51 Decrease millivolt source at JA19 to -3VDC
- **6.2.52** Verify JC1 = approx. 9.5VDC
- **6.2.53** Decrease millivolt source at JA19 to -2VDC

g

LOU-GED-DS3800DFXD REV. B

GE Energy Parts & Repair Services Louisville, KY

Page 5 of 5

- **6.2.54** Verify JC1 = approx. 10.5VDC
- **6.2.55** Using millivolt source apply -5VDC to JA20
- **6.2.56** Verify JC1 = approx. –7.5VDC
- 6.2.57 Decrease millivolt source at JA20 to -4VDC
- **6.2.58** Verify JC1 = approx. –8.5VDC
- 6.2.59 Decrease millivolt source at JA20 to -3VDC
- **6.2.60** Verify JC1 = approx. -9.5VDC
- **6.2.61** Using millivolt source apply 4VDC to JD22
- **6.2.62** Set jumper to "100"
- **6.2.63** Verify JD23 = 10VDC
- **6.2.64** Move jumper to "500/250"
- **6.2.65** Verify JD23 = 8VDC
- **6.2.66** Move jumper to "550"
- **6.2.67** Verify JD23 = 7.2VDC
- **6.2.68** Move jumper to "600/150"
- **6.2.69** Verify JD23 = 6.6VDC
- **6.2.70** Move jumper to "315"
- **6.2.71** Verify JD23 = 6.3VDC
- **6.2.72** Move jumper to "700"
- **6.2.73** Verify JD23 = 5.6VDC
- **6.2.74** Move jumper to "750"
- **6.2.75** Verify JD23 = 5.2VDC
- **6.2.76** Move jumper to "100"
- **6.2.77** Verify JD24 = 10VDC
- 6.3 ***TEST COMPLETE ***

7. NOTES

7.1 None at this time.

8. ATTACHMENTS

8.1 None at this time.