## Quiz 13 CHEM 3PA3; Fall 2018

This quiz has 10 problems worth 10 points each. There are 10 bonus points....

1. Sketch the effective nuclear charge felt by an electron r units from the nucleus for the Beryllium dication, Be<sup>2+</sup>. Clearly specify the appropriate limits as  $r \to 0$  and  $r \to +\infty$ .

This is a 2-electron atom. Near the nucleus, an electron feels the entire nuclear charge (+4). Far from the nucleus, the electron "sees" the nucleus (+4 charge) and the other electron (which is closer to the nucleus almost certainly (-1 charge) for a total charge of +3. The other electron can be assumed to be in 1*s*-like orbital (the electron that is far away makes the electron that is close to the nucleus feel like it is in a 1-electron atom) so the effective nuclear charge decays relatively quickly, on a length scale similar to the radius of the *s*-type orbital (which is about  $\frac{1}{4}$  the size it was in a hydrogen atom). So a rough sketch would be:



2,3. Write the electronic Schrödinger equation and the nuclear Schrödinger equation for a N-electron P-atom molecule. You may use atomic units.

**Electronic Schrödinger Equation:** 

$$\left(\sum_{i=1}^{N} - \frac{1}{2} \nabla_{i}^{2} + \frac{1}{2} \sum_{A=1}^{P} \sum_{\substack{B=1 \\ B \neq A}}^{P} \frac{Z_{A} Z_{B}}{|\mathbf{R}_{A} - \mathbf{R}_{B}|} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{A=1}^{P} \sum_{i=1}^{N} \frac{-Z_{A}}{|\mathbf{r}_{i} - \mathbf{R}_{A}|}\right) \psi_{el} \left(\mathbf{r}_{1} \dots \mathbf{r}_{N} | \mathbf{R}_{1} \dots \mathbf{R}_{P}\right)$$

$$= E\left(\mathbf{R}_{1} \dots \mathbf{R}_{P}\right) \psi_{el} \left(\mathbf{r}_{1} \dots \mathbf{r}_{N} | \mathbf{R}_{1} \dots \mathbf{R}_{P}\right)$$

**Nuclear Schrödinger Equation:** 

$$\left(\sum_{A=1}^{P} -\frac{1}{2}\nabla_{A}^{2} + E(\mathbf{R}_{1}, \mathbf{R}_{2}, ..., \mathbf{R}_{P})\right) \chi_{\text{nuc}}(\mathbf{R}_{1}, \mathbf{R}_{2}, ..., \mathbf{R}_{P}) = E_{\text{total}} \chi_{\text{nuc}}(\mathbf{R}_{1}, \mathbf{R}_{2}, ..., \mathbf{R}_{P})$$

| Name | Student # |
|------|-----------|
|------|-----------|

## 4. What are the term symbols for the [Ar]4s<sup>2</sup>3d<sup>1</sup>4p<sup>1</sup> excited state (Titanium)?

The 3d electron has L=2 and  $S=\frac{1}{2}$  and the 4p electron has L=1 and  $S=\frac{1}{2}$ . The possible choices of orbital angular momentum then range from  $L=\left|L_1-L_2\right|,\ldots,L_1+L_2=1,2,3$  and the choices of spin-angular momentum range from  $S=\left|S_1-S_2\right|,\ldots,S_1+S_2=0,1$ .

5. What is the predicted order of the states according to Hund's rules.

So the states are  ${}^{3}F_{,}{}^{3}D_{,}{}^{3}P_{,}{}^{1}F_{,}{}^{1}D_{,}{}^{1}P$  in Hunds rule order. If we add on the *J* values, we have  ${}^{3}F_{,}{}^{3}F_{,}{}^{3}F_{,}{}^{3}D_{,}{}^{3}D_{,}{}^{3}D_{,}{}^{3}D_{,}{}^{3}P_{,}{}^{3}P_{,}{}^{3}P_{,}{}^{3}P_{,}{}^{1}F_{,}{}^{1}D_{,}{}^{1}P_{,}{}^{1}$ .

## 6. What is the predicted order of states according to the Kutzelnigg-Morgan and Russell-Meggers rules?

According to the Kutzelnigg-Morgan and Russell-Meggers rules, the L=2 states have odd parity and the L=1 and L=3 states have even parity. Moreover,  $L_{\rm opt}=\frac{2+1}{\sqrt{2}}=2.12$ . So the predicted order of states is  ${}^{1}D, {}^{3}D, {}^{3}F, {}^{3}P, {}^{1}F, {}^{1}P$ .

7-10. For each of the following orbitals, assign a symmetry label  $\{\sigma, \pi, \delta, ...\}, \{u, g\}, \{+, -\}$ . Assume that the orbitals are the atomic orbitals of the left and right atom in the separated-atom limit, and that the molecule is a homonuclear diatomic molecule. Assume that the bond axis is the z axis. Circle whether the orbital is bonding or antibonding.

| Orbital                                                                                           | Symmetry-Label | Bonding/Antibonding (circle one) |             |
|---------------------------------------------------------------------------------------------------|----------------|----------------------------------|-------------|
| $\psi_{2p_{y}}^{(l)}\left(\mathbf{r} ight)\!+\!\psi_{2p_{y}}^{(r)}\left(\mathbf{r} ight)$         | $1\pi_u^-$     | bonding                          | antibonding |
| $\psi_{3d_0}^{(l)}\left(\mathbf{r} ight)\!+\!\psi_{3d_0}^{(r)}\left(\mathbf{r} ight)$             | $6\sigma_g^+$  | bonding                          | antibonding |
| $\psi_{3d_{xy}}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_{xy}}^{(r)}\left(\mathbf{r}\right)$         | $1\delta_g^-$  | bonding                          | antibonding |
| $\psi_{_{3d_{xz}}}^{(l)}\left(\mathbf{r} ight)\!-\!\psi_{_{3d_{xz}}}^{(r)}\left(\mathbf{r} ight)$ | $5\pi_u^+$     | bonding                          | antibonding |



Bonus (10 points): What is the lowest-energy term symbol for the  $[Ar]4s^23d^7$  configuration (Cobalt)?

This is the same, essentially, as the Scandium example in quiz #8. The ground-state term is  ${}^4F$ . A representative Slater determinant (with maximum  $M_L = 3$  and  $M_S = \frac{3}{2}$ ) is  $\left| \cdots 3d_{+2}^{\uparrow} 3d_{+2}^{\downarrow} 3d_{+1}^{\uparrow} 3d_{-1}^{\downarrow} 3d_{-1}^{\uparrow} 3d_{-2}^{\uparrow} \right\rangle$ . It is a more than half-filled shell so the *J*-decorated ground-state term is  ${}^4F_{9/2}$ .

| Name                                                                                                                                                                                                                                                                                      | Student #                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                           | Quiz 13                                                                 |  |  |
| CHEM 3PA3; Fall 2018                                                                                                                                                                                                                                                                      |                                                                         |  |  |
| This quiz has 10 problems worth 10 points each. There are 10 bonus points  1. Sketch the effective nuclear charge felt by an electron $r$ units from the nucleus for the Beryllium dication, Be <sup>2+</sup> . Clearly specify the appropriate limits as $r \to 0$ and $r \to +\infty$ . |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
| 2,3. Write the electronic Schrödinger equ<br>P-atom molecule. You may use atom<br>Electronic Schrödinger Equation:                                                                                                                                                                        | nation and the nuclear Schrödinger equation for a N-electron nic units. |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                         |  |  |

**Nuclear Schrödinger Equation:** 

- 4. What are the term symbols for the [Ar]4s<sup>2</sup>3d<sup>1</sup>4p<sup>1</sup> excited state (Titanium)?
- 5. What is the predicted order of the states according to Hund's rules?
- 6. What is the predicted order of states according to the Kutzelnigg-Morgan and Russell-Meggers rules?
- 7-10. For each of the following orbitals, assign a symmetry label  $\{\sigma, \pi, \delta, ...\}, \{u, g\}, \{+, -\}$ . Assume that the orbitals are the atomic orbitals of the left and right atom in the separated-atom limit, and that the molecule is a homonuclear diatomic molecule. Assume that the bond axis is the z axis. Circle whether the orbital is bonding or antibonding.

| Orbital                                                                                           | Symmetry-Label | Bonding/Antibonding (circle one) |             |
|---------------------------------------------------------------------------------------------------|----------------|----------------------------------|-------------|
| $\psi_{2p_{y}}^{(l)}\left(\mathbf{r} ight)\!+\!\psi_{2p_{y}}^{(r)}\left(\mathbf{r} ight)$         |                | bonding                          | antibonding |
| $\psi_{3d_0}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_0}^{(r)}\left(\mathbf{r}\right)$               |                | bonding                          | antibonding |
| $\psi_{3d_{xy}}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_{xy}}^{(r)}\left(\mathbf{r}\right)$         |                | bonding                          | antibonding |
| $\psi_{_{3d_{xz}}}^{(l)}\left(\mathbf{r} ight)\!-\!\psi_{_{3d_{xz}}}^{(r)}\left(\mathbf{r} ight)$ |                | bonding                          | antibonding |

Bonus (10 pts): What is the lowest-energy term symbol for the [Ar]4s<sup>2</sup>3d<sup>7</sup> configuration (Cobalt)?