University of Texas, Dallas Department of Electrical and Computer Engineering

CE/EEDG 6325: VLSI Design

ARITHMETIC LOGIC UNIT OPERATIONS

Submitted by
Dhruvi Shah (DDS200004)
Navya Bandari (NXB210004)
Naga Mutya Kumar Kumtsam (NXK210028)

DESCRIPTION

The project is to design and simulate arithmetic logic unit operations. The *input1* and *input2* are two 32-bits inputs. The 32-bits output *out* stores the result of the performed operation. The 1-bit output Cout stores the carry and borrow outputs for addition and subtraction operations. The 4-bit sel line decides the operation to be performed.

The following operations are designed in this ALU

- 1.Addition
- 2. Subtraction
- 3.Logical AND
- 4. Logical OR
- 5. Division
- 6. Comparison and Equality
- 7.Logical XOR

VERILOG CODE

```
module PROJECT_1_A (input1, input2, reset, clk, sel, out, c_out); input [31:0] input1, input2; input reset; input clk; input[3:0] sel; output[31:0] out; output c_out; reg[31:0] out; reg c_out; always@(posedge clk)
```

```
begin
//Implementing D-FlipFlop. If the reset signal is 1,c out will be reset
if(reset)
\{out, c out\} = 33'b0;
else
begin
  case(sel)
   // Arithmetic Addition
              4'b0000: begin \{c \text{ out,out}\} = input1 + input2; end
   // Arithmetic Subtraction
              4'b0001: begin {c out,out} = input1 - input2; end
   //Logical AND Operation. 'c out' is not used so it is initialised as 0
              4'b0010: begin out = input1 & input2; c out = 1'b0; end
   //Logical OR Operation. 'c out' is not used so it is initialised as 0
              4'b0011: begin out = input1 | input2; c out = 1'b0; end
   // Arithmetic Division
              4'b0100: begin {c out,out} = input1 / input2; end
   // Comparison Operations where 'out' is not used to initialised to 16'd0
              4'b0101: begin c out = (input1>input2) ? 1'b1:1'b0; out = 16'd0; end
              4'b0110: begin c out = (input1<input2) ? 1'b1:1'b0; out = 16'd0; end
              4'b0111: begin c out = (input1 == input2) ? 1'b1:1'b0; out = 16'd0; end
   //Logical XOR Operation. 'c out' is not used so it is initialised as 0
              default : begin out = input1 ^ input2; c out = 1'b0; end
  endcase
end
end
Endmodule
```

TESTBENCH

```
module PROJECT 1 TB;
reg[31:0] input1,input2;
reg clk,reset;
reg[3:0] sel;
wire[31:0] out;
wire c out;
integer i;
PROJECT 1 A DUT(input1,input2,reset,clk,sel,out,c out);
     initial begin
   #0
          \#0 \text{ sel} = 4'b0000;
  reset = 0;
   clk = 0;
end
always begin
   #5 \text{ clk} = !\text{clk};
 end
always@(posedge clk)
   begin
       for(i = 0; i \le 16; i = i+1)
        begin
             #20; sel = sel + 4'b0001;
        end
   end
```

Endmodule

SIMULATION WAVEFORM

Addition

sel: (0000)

reset:0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Subtraction

sel: (0001)

reset: 0 clk: 1

Behavioural Code Simulation

Mapped Code Simulation

Logical AND

sel: (0010)

reset:0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Logical OR

input 2:11111000011111111111111111111111

sel: (0011)

reset: 0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Division

sel: (0100)

reset: 0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Comparison Operations

Greater:

sel: (0101)

reset:0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Lesser

sel: (0110)

reset: 0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Equality

sel: (0111)

reset: 0

clk:1

Behavioural Code Simulation

Mapped Code Simulation

Logical XOR

input 2:1111100001111111111111111111111111

sel: (1000)

reset: 0

clk: 1

Behavioural Code Simulation

Mapped Code Simulation

CELL REPORT

Information: Updating graph... (UID-83)

Report: cell

Design: PROJECT_1_A Version: L-2016.03-SP3

Date: Sun Sep 12 21:45:36 2021

Attributes:

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic

Cell	Reference	Library	Area Attributes
C16	nand2	library	1.000000
C19	nand2	library	1.000000
C23	nand2	library	1.000000
C32	nand2	library	1.000000
C42	nand2	library	1.000000
C45	nand2	library	1.000000
C313	nand2	library	1.000000
C314	nand2	library	1.000000
C315	nand2	library	1.000000
C316	nand2	library	1.000000
C317	nand2	library	1.000000
C318	nand2	library	1.000000
C319	nand2	library	1.000000
C320	nand2	library	1.000000

C321	nand2	library	1.000000
C322	nand2	library	1.000000
C323	nand2	library	1.000000
C324	nand2	library	1.000000
C325	nand2	library	1.000000
out_reg[0]	dff	library	7.000000 n
out_reg[1]	dff	library	7.000000 n
out_reg[2]	dff	library	7.000000 n
out_reg[3]	dff	library	7.000000 n
out_reg[4]	dff	library	7.000000 n
out_reg[5]	dff	library	7.000000 n
out_reg[6]	dff	library	7.000000 n
out_reg[7]	dff	library	7.000000 n
out_reg[8]	dff	library	7.000000 n
out_reg[9]	dff	library	7.000000 n
out_reg[10]	dff	library	7.000000 n
out_reg[11]	dff	library	7.000000 n
out_reg[12]	dff	library	7.000000 n
out_reg[13]	dff	library	7.000000 n
out_reg[14]	dff	library	7.000000 n
out_reg[15]	dff	library	7.000000 n
out_reg[16]	dff	library	7.000000 n
out_reg[17]	dff	library	7.000000 n
out_reg[18]	dff	library	7.000000 n
out_reg[19]	dff	library	7.000000 n
out_reg[20]	dff	library	7.000000 n
out_reg[21]	dff	library	7.000000 n
out_reg[22]	dff	library	7.000000 n
out_reg[23]	dff	library	7.000000 n
out_reg[24]	dff	library	7.000000 n
out_reg[25]	dff	library	7.000000 n
out_reg[26]	dff	library	7.000000 n
out_reg[27]	dff	library	7.000000 n
out_reg[28]	dff	library	7.000000 n
		-	

out_reg[29]	dff	library	7.000000 n	
out_reg[30]	dff	library	7.000000 n	
out_reg[31]	dff	library	7.000000 n	
Total 4278 cells			7303.000000	