PRICE LEVEL DETERMINATION IN A MONETARY ECONOMY

FISCAL AND MONETARY POLICY 2023

Piotr Żoch

December 4, 2023

PLAN

- We study how the price level (and inflation) is determined in a monetary economy.
- This will later serve us as a framework to study interactions of fiscal and monetary policy.
- We will start with a very simple environment and then gradually add more features.

ENDOWMENT ECONOMY

- We start with a simple economy in which every period there is an endowment of nonstorable goods y_t.
- For simplicity assume $y_t = y$ for all t.
- We denote the price level in period t by P_t .
- One unit of goods costs P_t units of account.
- There is a representative household that trades contingent claims (Arrow securities).
- The household maximizes $\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)$.
- No government expenditures,

NOMINAL INTEREST RATES

- Let $q_{t,t+1}$ be the real price (in goods) of a claim that pays one unit of goods in period t+1 in particular state of the world.
- The nominal contingent claim price is

$$Q_{t,t+1} = q_{t,t+1} \frac{P_t}{P_{t+1}}.$$

The nominal interest rate i_t satisfies

$$\frac{1}{1+i_t} = \mathbb{E}_t \, Q_{t,t+1}.$$

NOMINAL INTEREST RATES

- In this economy we have $c_t = y$.
- The SDF is constant and equal to β.
- The real interest rate is also constant r:

$$\frac{1}{1+r} = \beta.$$

- The nominal discount factor is $Q_{t,t+1} = \beta \frac{P_t}{P_{t+1}}$.
- Define $\Pi_{t+1} = \frac{P_{t+1}}{P_{+}}$.
- We obtain the Fisher equation

$$\frac{1}{1+i_t} = \frac{1}{1+r} E_t \frac{P_t}{P_{t+1}} = \frac{1}{1+r} E_t \frac{1}{\Pi_{t+1}} = \beta E_t \frac{1}{\Pi_{t+1}}.$$

FISHER EQUATION

 The usual formulation of the Fisher equation is obtained by linearization:

$$i_t = r + \mathbb{E}_t \, \pi_{t+1}$$
.

- We already used the constancy of the real interest rate.
- In general, the Fisher equation is

$$i_t = r_t + \mathbb{E}_t \, \pi_{t+1}.$$

 This is a no-arbitrage condition: you should be indifferent between two types of investment (real and nominal).

FISHER EQUATION

In this endowment economy

$$\frac{1}{1+i_t} = \beta E_t \frac{1}{\prod_{t+1}}$$

is the only equilibrium condition.

- What does it imply for the sequence of price levels $\{P_t\}_{t=0}^{\infty}$?
- In particular, we say that the level of inflation is unique or determinate in equilibrium if:
 - 1. There is a unique scalar P_0 in equilibrium.
 - 2. If Π^p rime and Π'' are two sequences that satisfy equilibrium conditions, then $\Pi' = \Pi''$.

- The question of determinacy may seem esoteric, but it is important.
- It boils down to the question of whether some policy can control prices.
- In this simple economy, the only available policy is the choice of the nominal interest rate.
- Suppose we have some target for the price level (or inflation rate) –
 can we achieve it by setting interest rates?

- Consider the simplest possible policy: interest rate peg.
- The central bank sets i_t = i for all t.
- We have

$$\frac{1}{1+i} = \beta E_t \frac{1}{\prod_{t+1}}.$$

- This determines $E_{t \frac{1}{\prod_{t+1}}}$ approximately the expected inflation rate.
- But it does not determine Π_{t+1} the actual inflation rate.

- What if we have perfect foresight?
- The Π_{t+1} is determined by the peg, but P_0 is not (because Π_0 is not)
- Conclusion: interest rate peg does not ensure price level determinacy.

- Consider a interest rate rule $i_t = r + \phi \pi_t$.
- We call these rules Taylor rules.
- Use the linearized Fisher equation $i_t = r + \mathbb{E}_t \pi_{t+1}$ to obtain

$$\phi\pi_t=\mathbb{E}_t\,\pi_{t+1}.$$

• If ϕ > 1 the only solution that does not diverge is π_t = 0 for all t.