CS621/CSL611 Quantum Computing For Computer Scientists

Quantum Search

Dhiman Saha Winter 2024

IIT Bhilai

Quantum Search

Applying Simon's Algorithm for Crypanalytic Attacks

Adversarial Models

- ullet Model Q_0 Classical attacks with classical computers
- ullet Model Q_1 Q_0+ Access to a quantum computer
- Model Q_2 Q_1 + superposition queries to a quantum cryptographic oracle (QCO)
- Model Q_3 Q_1 + superposition queries to a QCO with differences in a secret key

The Attack: Kuwakado and Morii

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $x \mapsto E_{k_1,k_2}(x) \oplus P(x)$
- $f(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2$
- $\bullet \ f(x) = f(x \oplus k_1)$
- $s = k_1$

The Attack: Kuwakado and Morii

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $\bullet \ \ x \mapsto E_{k_1,k_2}(x) \oplus P(x)$
- $f(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2$
- $\bullet \ f(x) = f(x \oplus k_1)$
- $s = k_1$

The Attack: Kuwakado and Morii

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $\bullet \ \ x \mapsto E_{k_1,k_2}(x) \oplus P(x)$
- $f(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2$
- $\bullet \ f(x) = f(x \oplus k_1)$
- $s = k_1$

The Attack: Kuwakado and Morii

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $x \mapsto E_{k_1,k_2}(x) \oplus P(x)$
- $f(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2$
- $f(x) = f(x \oplus k_1)$
- $s = k_1$

The Attack: Kuwakado and Morii

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $\bullet \ \ x \mapsto E_{k_1,k_2}(x) \oplus P(x)$
- $f(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2$
- $f(x) = f(x \oplus k_1)$
- $s = k_1$

Attack on FX Construction???

• $c = E_{k,k_1,k_2}(x) = E_k(m \oplus k_1) \oplus k_2$

Possible Attack ??

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $\bullet \ \ x \mapsto E_{k,k_1,k_2}(x) \oplus E_k(x)$
- $f(x) = E_k(x \oplus k_1) \oplus E_k(x) \oplus k_2$
- $f(x) = f(x \oplus k_1)$
- $s = k_1$

Attack on FX Construction???

• $c = E_{k,k_1,k_2}(x) = E_k(m \oplus k_1) \oplus k_2$

Possible Attack ??

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $x \mapsto E_{k,k_1,k_2}(x) \oplus E_k(x)$
- $f(x) = E_k(x \oplus k_1) \oplus E_k(x) \oplus k_2$
- $\bullet \ f(x) = f(x \oplus k_1)$
- $s = k_1$

Attack on LRW

•
$$c = E_k(p \oplus h(t)) \oplus h(t)$$

The Attack: Kaplan et. al.

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $f(x) = E_k(x \oplus h(t_0)) \oplus h(t_0) \oplus E_k(x \oplus h(t_1)) \oplus h(t_1)$
- $\bullet \ \ s=h(t_0)\oplus h(t_1)$

Attack on LRW

•
$$c = E_k(p \oplus h(t)) \oplus h(t)$$

The Attack: Kaplan et. al.

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $f(x) = E_k(x \oplus h(t_0)) \oplus h(t_0) \oplus E_k(x \oplus h(t_1)) \oplus h(t_1)$
- $\bullet \ \ s=h(t_0)\oplus h(t_1)$

Attack on LRW

•
$$c = E_k(p \oplus h(t)) \oplus h(t)$$

The Attack: Kaplan et. al.

- $f: \{0,1\}^n \mapsto \{0,1\}^n$
- $f(x) = E_k(x \oplus h(t_0)) \oplus h(t_0) \oplus E_k(x \oplus h(t_1)) \oplus h(t_1)$
- $\bullet \ \ s=h(t_0)\oplus h(t_1)$

• $y_R = R_2(R_1(x_L) \oplus x_R) \oplus x_L$

- $f: \{0,1\} \times \{0,1\}^n \mapsto \{0,1\}^n$
- $f(b,x) = R_2(x \oplus R_1(\alpha_b)), b \in \{0,1\}$
- $f(b,x) = f(b \oplus 1, x \oplus R_1(\alpha_0) \oplus R_1(\alpha_1))$
- $s=1||R_1(\alpha_0)\oplus R_1(\alpha_1)$

• $y_R = R_2(R_1(x_L) \oplus x_R) \oplus x_L$

- $f: \{0,1\} \times \{0,1\}^n \mapsto \{0,1\}^n$
- $f(b,x) = R_2(x \oplus R_1(\alpha_b)), b \in \{0,1\}$
- $f(b,x) = f(b \oplus 1, x \oplus R_1(\alpha_0) \oplus R_1(\alpha_1))$
- $s=1||R_1(\alpha_0)\oplus R_1(\alpha_1)$

• $y_R = R_2(R_1(x_L) \oplus x_R) \oplus x_L$

- $f: \{0,1\} \times \{0,1\}^n \mapsto \{0,1\}^n$
- $f(b,x) = R_2(x \oplus R_1(\alpha_b)), b \in \{0,1\}$
- $f(b,x) = f(b \oplus 1, x \oplus R_1(\alpha_0) \oplus R_1(\alpha_1))$
- $s=1||R_1(\alpha_0)\oplus R_1(\alpha_1)|$

• $y_R = R_2(R_1(x_L) \oplus x_R) \oplus x_L$

- $f: \{0,1\} \times \{0,1\}^n \mapsto \{0,1\}^n$
- $f(b,x) = R_2(x \oplus R_1(\alpha_b)), b \in \{0,1\}$
- $f(b,x) = f(b \oplus 1, x \oplus R_1(\alpha_0) \oplus R_1(\alpha_1))$
- $s=1||R_1(\alpha_0)\oplus R_1(\alpha_1)|$