EE-219 Project 1 Shrey Agarwal (004943082) Varun Saboo (505028591) February 12, 2018

Project 2: Clustering

Objective -

To find proper representations of the data, s.t. the clustering is efficient and gives out reasonable results.

To perform K-means clustering on the dataset, and evaluate the performance of the clustering.

To try different preprocess methods which may increase the performance of the clustering.

Dataset -

We work with "20 Newsgroups" dataset. It is a collection of approximately 20,000 documents, partitioned (nearly) evenly across 20 different newsgroups, each corresponding to a different topic. Each topic can be viewed as a "class".

TASK 1:

We perform TF-IDF on the documents by performing certain preprocessing steps such as stemming, word tokenizing, special characters removal and stopwords removal.

With min_df = 3, the dimension of the TF-IDF matrix is (7882, 16564), where 7882 are the total number of documents in 8 classes and 16564 are the unique tokens identified.

TASK 2:

After applying k-means clustering on the above dataset, we got the following results. With number of clusters = 2:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	109.23s	7484	0.426	0.460	0.443	0.444	0.426

TASK 3:

Preprocess the data:

Dimensionality reduction:

a. LSI (Latent Semantic Indexing):
After performing LSI on the TF-IDF matrix, following are the obtained results:

Figure 1: We can observe that the variance decreases as the no. of components increase.

Model with 1 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.24s	9	0.018	0.018	0.018	0.025	0.018

Model with 2 components:

init	time	inerti	a homo	comp	v-meas	ARI	AMI
k-means++	0.405	41	0.419	0.446	0.432	0.454	0.419

Model with 3 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0 23s	71	9 412	9 449	0 425	9 445	0 412

Model with 5 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.245	119	0.407	0.442	0.424	0.424	0.407

Model with 10 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.565	216	0.430	0.460	0.444	0.458	0.430

Model with 20 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.74s	363	0.423	0.455	0.439	0.445	0.423

Model with 50 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	1.34s	684	0.420	0.455	0.437	0.436	0.420

Model with 100 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	1.64s	1090	0.425	0.460	0.442	0.443	0.425

Model with 300 components:

ini	.t	time	inerti	a homo	comp	v-meas	ARI	AMI	_			
k-m	eans++	5.07s	2172	0.418	0.454	0.436	0.431	0.418	_			
	-0.50	Cor	ntingency	Table		- 350	0					
	-0.25											
	0.00			1306.0	0	- 300	0					
	0.25					- 250	0					
label						- 200	0					
True label	0.50					200	o					
	0.75 -	47.00		3932.0	0	- 150	0					
	1.00 -	47.00		3332.0		- 100	0					
	1.25 -											
	1.50 -0.50	-0.25 0.00 0.2	25 0.50 Predicted la	0.75 1.00 bel	1.25 1	500						
0.4		Homoge	eneity Sco	re				Complet	eness Sco	re		_
0.3						0.4 -						
	/					0.3 -						
0.2	1 /					0.2 -						
0.1	1/					0.1 -						
0.0	1	2 3 5	10 20	50 100	300	0.0	2 3	3 5	10 20	50	100	300
			sure Score					Adjusted F	Random In	dex		
0.4	- /					0.4 -						_
0.3	. /					0.3 -						
0.2												
0.2						0.2 -						
0.1	1 /					0.1						
0.0	i	2 3 5	10 20	50 100	300	i	2 3	5	10 20	50	100	300
		Adjusted Mu	tual Inform	nation								
0.4	1 /											
0.3	- /											
0.2	- /											
0.1	-											
0.0	1	2 3 5	10 20	50 100	300							

As we can observe from the contingency matrix as well as the 4 measures above, the best r value for LSI is 10. i.e, 10 components are best suitable to represent each document and cluster with maximum accuracy.

b. NMF (Non-Negative Matrix Factorization): After performing NMF on the TF-IDF matrix, following are the obtained results:

Model with 1 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.145	0	0.018	0.018	0.018	0.025	0.018

Model with 2 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-moans++	0 225	1	0 100	0 110	0.424	0 121	0 400

Model with 3 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.15s	3	0.384	0.417	0.400	0.406	0.384

Model with 5 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.17s	8	0.365	0.388	0.376	0.410	0.365

Model with 10 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0 485	18	0 046	0 058	0 051	0 043	0 046

Model with 20 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.70s	35	0.048	0.165	0.074	0.008	0.048

Model with 50 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.815	81	0.008	0.027	0.012	0.003	0.008

Model with 100 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	1.55s	159	0.000	0.000	0.000	-0.000	-0.000

As we can observe, the best r value is at r = 2. i.e, only 2 components/features are more than enough to best cluster the documents in two classes with maximum

accuracy.

The non-monotonic behavior can be explained by the following reasoning. The Curse of Dimensionality:

The distance to the nearest neighbor and the distance to the farthest neighbor tend to converge as the dimension increases. On the other hand, increasing the dimension of data representation provides intricate details which helps in distinguishing each data point. Hence, a proper balance needs to be found to represent data in best dimension space. Here, we observed that the clustering improved performance as we increase dimension but started performing worse for higher dimensions. Hence, it exhibits the non-monotonic behavior.

TASK 4:

Visualize the performance:

- a. We found that,
 - r=5 works best in case of LSI, and
 - r=2 works best in case of NMF.

Hence, following are the clusters with their decision boundary for the two methods.

b. 3 Methods:

i. Normalizing:

We performed scaling using sklearn "scale" to get unit variance and then normalized the data. Following are the results for LSI and NMF:

As we can observe, the performance has improved from 83.69% to 85.7% which is a good improvement.

ii. Logarithmic Transformation:

NMF Clusters afer Logarithmic Transformation

As we can observe, the performance has improved from 83.69% to 87.65% which is a very good improvement.

iii. Combination

 Normalization and then Log Transformation
 We perform normalization and then apply log transformation on NMF data to get the following results:

NMF Clusters after Normalizing and Logarithmic Transformation

As we can observe, the performance has improved from 83.69% to 88.80% which is higher than normalization or log transformation separately. Infact, it is the highest and best combination so far.

2. Log Transformation and then Normalization

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	0.185	0	0.489	0.490	0.489	0.597	0.489

NMF Clusters after Logarithmic Transformation and Normalizing

As we can observe, the performance has improved from 83.69% to 88.64% which is higher than normalization or log transformation separately.

TASK 5: Expand to 20 categories

We follow the same workflow as above with all 20 categories and produce following results and observations:

 We perform TF-IDF on the documents by performing certain preprocessing steps such as stemming, word tokenizing, special characters removal and stopwords removal.

With min_df = 3, the dimension of the TF-IDF matrix is (18846, 33158), where 18846 are the total number of documents in 20 categories and 33158 are the unique tokens identified.

2. After applying k-means clustering on the above dataset, we got the following results.

With number of clusters = 2:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	570.00s	17686	0.246	0.306	0.273	0.050	0.243

3. Preprocess the data:

Dimensionality reduction:

a. LSI (Latent Semantic Indexing):

After performing LSI on the TF-IDF matrix, following are the obtained results:

Figure 2: We can observe that the variance decreases as the no. of components increase. Interestingly, the variance is even more lesser than previous 8 categories.

Model with 1 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	6.53s	0	0.013	0.015	0.014	0.003	0.010

Model with 2 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	10.54s	9	0.152	0.162	0.157	0.043	0.150

Model with 3 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	10.64s	23	0.201	0.217	0.209	0.064	0.199

Model with 5 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	12.64s	61	0.199	0.221	0.209	0.061	0.197

Model with 10 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	12.95s	148	0.230	0.259	0.244	0.072	0.227

Model with 20 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	11.56s	334	0.264	0.299	0.280	0.081	0.261

Model with 50 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	15.05s	860	0.253	0.315	0.281	0.057	0.250

Model with 100 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	21.825	1560	0.248	0.326	0.282	0.052	0.246

Model with 300 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	42.33s	3461	0.261	0.354	0.300	0.053	0.259

As we can observe from the contingency matrix as well as the 5 measures above, the best r value for LSI is 20. i.e, 20 components are best suitable to represent each document and cluster with maximum accuracy. Although, the graph for completeness score and V-Measure are somewhat monotonic in nature, we consider all the measures and decide 20 to be the best value.

b. NMF (Non-Negative Matrix Factorization):
 After performing NMF on the TF-IDF matrix, following are the obtained results:

Model with 1 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	4.945	0	0.013	0.015	0.014	0.003	0.010

Model with 2 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	10.66s	0	0.143	0.154	0.149	0.041	0.141

Model with 3 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	8.95s	0	0.181	0.199	0.190	0.052	0.178

Model with 5 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	9.11s	1	0.174	0.191	0.182	0.049	0.171

Model with 10 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	6.06s	6	0.214	0.248	0.230	0.057	0.212

Model with 20 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	7.28s	19	0.227	0.281	0.251	0.049	0.225

Model with 50 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	11.42s	70	0.179	0.258	0.211	0.033	0.176

Model with 100 components:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	15.94s	158	0.102	0.149	0.121	0.016	0.099

As we can observe, the best r value is at r = 20. i.e, only 20 components/features are more than enough to best cluster the documents in two classes with maximum accuracy.

4. Visualize the performance:

a. We found that,

r=5 works best in case of LSI, and

r=2 works best in case of NMF.

Hence, following are the clusters with their decision boundary for the two methods:

b. 3 Methods:

i. Normalizing:

We performed scaling using sklearn "scale" to get unit variance and then normalized the data. Following are the results for LSI and NMF:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	11.565	10	0.243	0.283	0.262	0.067	0.241

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	10.31s	7	0.243	0.303	0.270	0.053	0.241

NMF Clusters afer Normalizing

ii. Logarithmic Transformation:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	18.65s	253625	0.302	0.304	0.303	0.156	0.299

NMF Clusters afer Logarithmic Transformation

iii. Combination

Normalization and then Log Transformation
 We perform normalization and then apply log
 transformation on NMF data to get the following results:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	12.30s	11	0.325	0.330	0.327	0.186	0.323

NMF Clusters afer Logarithmic Transformation and Normalizing

2. Log Transformation and then Normalization We apply log transformation on NMF data and then perform normalization to get the following results:

init	time	inertia	homo	comp	v-meas	ARI	AMI
k-means++	16.37s	176083	0.313	0.315	0.314	0.161	0.311

NMF Clusters afer Normalizing and Logarithmic Transformation

