1 Доказателство на задача 9, че ${\mathcal C}$ е пълна решетка

$$M \subseteq C, P = \bigcup \{X \mid (X,Y) \in M\}, S = (LU(P), U(P)) \stackrel{?}{=} \sup M.$$

- Да проверим, че S е горна граница. Нека $m \in M$, значи $m = (X_m, Y_m)$, където $X_m \subseteq P$. Но LU е повдигаща, значи $P \subseteq LU(P)$, откъдето $X_m \subseteq LU(P)$ и значи $m \preceq S$.
- Да проверим, че S е точна горна граница. Нека $T = (X_T, Y_T)$ е горна граница за M, т.е. за всеки елемент $m = (X_m, Y_m) \in M : m \leq T$, т.е. $X_m \subseteq X_T$. Но $P = \cup \{X_m \mid m \in M\}$, значи $P \subseteq X_T$. Тогава $U(P) \supseteq U(X_T) = Y_T$, значи $S \preceq T$.

2 Доказателство на задача 10, че f(a) запазва \sup

$$f(a) = (L(\{a\}), U(\{a\}))$$

Нека $B \subseteq A$, $\sup B = b^*$. Искаме $f(b^*) \stackrel{?}{=} \sup f[B]$. От предишната задача $\sup f[B] = (LU(P), U(P))$, където $P = \bigcup \{X \mid (X,Y) \in f[B]\} = \bigcup \{L(\{b\}) \mid b \in B\}$. Ще докажем, че десните части на двата разреза съвпадат.

- (\to) Нека $x \in U(\{b^*\})$, т.е. $b^* \leq x$. Но b^* е горна граница за B, значи x е горна граница за всяко $b \in B$ и значи е горна граница и за всяко $L(b), b \in B$, откъдето $x \in U(P)$.
- (\leftarrow) Нека сега $x \in U(P)$, т.е. ($\forall b \in B$)($\forall l \leq b$)($l \leq x$). Оттук в частност ($\forall b \in B$)($b \leq x$), т.е. x е горна граница за B. Но $b^* = \sup B$ и значи $b^* \leq x \implies x \in U(\{b^*\})$.

3 Доказателство на задача 11.3, че A е гъсто в $\mathcal C$

Нека $(X_1,Y_1) \prec (X_2,Y_2)$ в \mathcal{C} . Тогава $X_1 \subset X_2$. Ако $X_2 \setminus X_1$ се състои от поне два елемента, използваме линейността и гъстотата на A за да намерим елемент $c \in A$ строго между тях, за който $(X_1,Y_1) \prec f(c) = (L(\{c\}),U(\{c\})) \prec (X_2,Y_2)$.

Нека сега $X_2 \setminus X_1 = \{a\}$. Първо да видим, че a е горна граница за X_1 . Наистина, ако допуснем, че за някое $c \in X_1, a \le c$, то $(\forall u \in U(X_1))(a \le c \le u)$, значи $a \in LU(X_1) = X_1$, което е противоречие.

В случай, че a не е точна горна граница за X_1 , избираме нова, по-малка горна граница $b \in U(X_1), b < a$ и използваме линейността и гъстотата на A аналогично на предишния случай.

Нека сега разгледаме случая $a=\sup X_1$. Понеже a е горна граница за $X_1,a\in U(X_1)=Y_1$. Но за произволен елемент $y\in Y_1$ имаме, че той е горна граница за X_1 и значи не слиза под точната горна граница: $a\leq y$. Но $y\in Y_1$ беше произволен, значи a е долна граница за $Y_1:a\in L(Y_1)$. Но $L(Y_1)=X_1$, защото са компоненти на разрез, и значи $a\in X_1$, което е противоречие.