## **Data Cleanup Exercises**

We want to analyse the dataset related to the field of "human resource". Here is some of the original dataset we collect:

| EmployeeID | Name  | Sex Age |    | Qualification |  |
|------------|-------|---------|----|---------------|--|
| 1          | John  | Male    | 24 | College       |  |
| 2          | Mary  | Female  |    | Bachelor      |  |
| 3          | Alice | Female  | 49 | College       |  |
| 4          | Shara | Femal   | 32 | Master        |  |
| 5          | Peter | Male    | 21 | Bachelor      |  |

• Replace male/female with proper datatype to facilitate data processing

| EmployeeID | Name  | Sex | Age | Qualification |  |
|------------|-------|-----|-----|---------------|--|
| 1          | John  |     | 24  | College       |  |
| 2          | Mary  |     |     | Bachelor      |  |
| 3          | Alice |     | 49  | College       |  |
| 4          | Shara |     | 32  | Master        |  |
| 5          | Peter |     | 21  | Bachelor      |  |

• Fill any missing age values with the average of the employees.

| EmployeeID | Name | Sex | Age | Qualification |  |
|------------|------|-----|-----|---------------|--|
| 1          | John |     | 24  | College       |  |

| 2 | Mary  |    | Bachelor |  |
|---|-------|----|----------|--|
| 3 | Alice | 49 | College  |  |
| 4 | Shara | 32 | Master   |  |
| 5 | Peter | 21 | Bachelor |  |

• Assume that we have only three types of qualifications. Suggest another way represent such kind of caterical data.

| EmployeeID | Name  | Sex | Age |  |  |
|------------|-------|-----|-----|--|--|
| 1          | John  |     | 24  |  |  |
| 2          | Mary  |     |     |  |  |
| 3          | Alice |     | 49  |  |  |
| 4          | Shara |     | 32  |  |  |
| 5          | Peter |     | 21  |  |  |

## **Outliers Detection**

The doctor of a school has measured the height of pupils in a 5th grade class. The result (in cm) is as follows:

| 130 | 132 | 138 | 153 | 133 | 110 | 132 | 129 | 135 | 134 | 136 | 133 | 133 | 134 | 135 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

• Which ones are outliers and why?

• The weight of those pupils was measured in kg and the results is as follows. Use the same technique to find the outliers.

| 37 | 40 | 39 | 51 | 41 | 30 | 39.5 | 38.5 | 41.5 | 37 | 39 | 38.5 | 37 | 40 | 41 |
|----|----|----|----|----|----|------|------|------|----|----|------|----|----|----|
|    |    |    |    |    |    |      |      |      |    |    |      |    |    |    |

<u>Hints:</u> Find the Mean (Q2). Q1 is the mean of the left-side data of Q1, Q3 is the mean of the right-side data of Q1. IQR = Q3-Q1.

• [Optional] We learned from Lecure 1 that data points that lie more than one standard deviation from the mean are considered outliers. Draw the box lot to intuitively understand the outliers as below figure.

