

Analytical Geometry and Linear Algebra I, Lab 9

Conic sections (2nd order curve equation):

- a) Parabola
- b) Ellipse

Questions from the class

No questions for today

Questions for today

- How can I work with general form of 2nd order curve equation?
- How it relates with cone?
- What forms of equation do we have?

mmP

The greatest progress in the study of conics by the ancient Greeks is due to *Apollonius of Perga* (died c. 190 BCE), whose eight-volume **Conic Sections or Conics**. More info here.

Books 5-7 are only available in an Arabic translation (9th century)

1654 edition of Conica

Elliptic Cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Traces

In plane z = p: an ellipse

In plane y = q: a hyperbola

In plane x = r: a hyperbola

In the xz – plane: a pair of lines that intersect at the origin In the yz – plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines.

Some definitions, which can be helpful

Eccentricity, Directrix

Eccentricity is a measure of how much a conic section deviates from being circular.

It is a constant ration between distance from focal to point on the curve and from the point on the curve to directrix.

Linear eccentricity, Latus Rectrum, Focal parameter

The **linear eccentricity** is the distance between the center and the focus (or one of the two foci).

The **latus rectum** is the chord parallel to the directrix and passing through the focus (or one of the two foci).

The **focal parameter** is the distance from the focus (or one of the two foci) to the directrix.

Forms:

- Canonical $2py = x^2$
- General $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, where either A = 0 or C = 0, not both

• Parametric
$$\begin{cases} x = \sqrt{2}pt \\ y = pt^2 \end{cases}$$

Properties:

• Vertex
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Center Not defined
- Eccentricity ecc = 1
- Linear Eccentricity Not defined

• Foci
$$F = \begin{pmatrix} 0 \\ \frac{p}{2} \end{pmatrix}$$

- Latus Rectum (length of chord)
 2p
- Focal parameter p
- Discriminant $\mathfrak{D} = B^2 4AC = 0$
- Directrix eq. $y = -\frac{p}{2}$

Parabola
$$y = x^2$$
, $p = \frac{1}{2}$

• Tangent eq. $yy_{tangent} = p(x + x_{tangent})$

•
$$r = |\overline{FM}| = \sqrt{(x - \frac{p}{2})^2 + y^2}$$

 △MFD is isosceles, where MD – tangent to M

From general to canonical form

When B = 0

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$
 — General form.

Example of transformation from general to canonical form:

$$16x^{2} + 25y^{2} - 32x + 50y - 359 = 0 \Rightarrow$$

$$(16x^{2} - 32x) + (25y^{2} + 50y) - 359 = 0 \Rightarrow$$

$$16(x^{2} - 2x) + 25(y^{2} + 2y) = 359 \Rightarrow$$

$$16(x^{2} - 2x + 1) + 25(y^{2} + 2y + 1) = 350 + 16 + 25 \Rightarrow$$

$$16(x - 1)^{2} + 25(y + 1)^{2} = 400 \Rightarrow$$

$$\frac{(x - 1)^{2}}{25} + \frac{(y + 1)^{2}}{16} = 1$$

Find the foci, latus rectum, vertices and directrices of the following parabola:

$$y^2 + 4x - 2y + 3 = 0$$
.

Answer

i.

$$y^{2} + 4x - 2y + 3 = 0$$

$$y^{2} - 2y = -4x - 3$$

$$y^{2} - 2y + 1 = -4x - 3 + 1$$

$$\Rightarrow (y - 1)^{2} = -4\left(x + \frac{1}{2}\right)$$

Take $x + \frac{1}{2} = X$, y - 1 = Y. Shifting the origin to the point $\left(\frac{-1}{2}, 1\right)$ the equation of the

parabola becomes $y^2 = -4X$.

 $\therefore \text{ Vertex is } \Big(\frac{-1}{2},1\Big) \text{, latus rectum is 4, focus is } \Big(\frac{-3}{2},1\Big) \text{ and foot of the directrix is } \Big(\frac{1}{2},1\Big).$

The equation of the directrix is $x = \frac{1}{2}$ or 2x - 1 = 0.

Find the equations of the tangent and normal to the parabola $y^2 = 4(x-1)$ at (5, 4).

Answer

$$y^2 = 4(x-1)$$

Differentiating with respect to x,

$$2y\frac{dy}{dx} = 4 \Rightarrow \frac{dy}{dx} = \frac{4}{2y} = \frac{2}{y}$$

$$\left(\frac{dy}{dx}\right)_{\text{at}(5,4)} = \frac{2}{4} = \frac{1}{2} = \text{Slope of the tangent at } (5,4)$$

 \therefore The equation of the tangent at (5, 4) is $y - 4 = \frac{1}{2}(x - 5)$.

2y - 8 = x - 5 or x - 2y + 3 = 0. The slope of the normal at (5, 4) is -2.

 \therefore The equation of normal at (5, 4) is y-4=-2(x-5) or 2x+y=14.

An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ one of whose vertices is at the vertex of the parabola. Find its side.

Answer

The coordinates of *B* are $B(r \cos 30^\circ, r \sin 30^\circ), \left(\frac{\sqrt{3}}{2}r, \frac{r}{2}\right)$.

Since this point lies on the parabola $y^2 = 4ax$, then

$$\frac{r^2}{4} = 4a \cdot \frac{r}{2} \sqrt{3} \qquad \therefore r = 8a\sqrt{3}$$

Find the equation of a parablola that has a line x = 8 for a directrix and point F(7; 0) for a focus.

Answer

Collisions

Video

Ellipse

Forms:

- Canonical $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$
- **General** $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, where AC > 0
- Parametric $\begin{cases} x = a \cos(\alpha) \\ y = b \sin(\alpha) \end{cases}$

Properties:

• Vertex
$$\begin{pmatrix} \pm a \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ \pm b \end{pmatrix}$

- Center (0; 0)
- Eccentricity $0 \le ecc < 1$. $ecc = \sqrt{1 - \frac{b^2}{a^2}}$
- Linear Eccentricity $c = \sqrt{a^2 - b^2}$

• Foci
$$F = \begin{pmatrix} \pm c \\ 0 \end{pmatrix} = \begin{pmatrix} \pm (ecc \ a) \\ 0 \end{pmatrix}$$

- Latus Rectum (length of chord)
- Focal parameter $\frac{b^2}{\sqrt{a^2-b^2}}$
- Discriminant $\mathfrak{D} = B^2 4AC < 0$
- Directrix eq. $x = \pm \frac{a}{a}$

Parabola Ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$

- Tangent eq. $\frac{x_{tangent}x}{a^2} + \frac{y_{tangent}y}{b^2} = 1$
- $r_1 + r_2 = 2a$
- $r_{1,2} = |\overline{F_{1,2}M}| =$ $\sqrt{(x \pm c)^2 + v^2}$
- $\frac{r_1}{ds} = ecc$

Find the equation of the ellipse whose foci are (4,0) and (-4,0) and e=1/3

Answer

i. If the foci are (ae, 0) and (-ae, 0) then the equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$.

Here,
$$ae = 4$$
 and $e = \frac{1}{3}$.

$$a = \frac{4}{e} = 4 \times 3 = 12$$

$$b^2 = a^2(1 - e^2) = 144\left(1 - \frac{1}{9}\right) = 144 \times \frac{8}{9} = 128$$

$$\therefore$$
 The equation of the ellipse is $\frac{x^2}{144} + \frac{y^2}{128} = 1$.

Find the eccentricity, foci and the length of the latus rectum of the ellipse $9x^2 + 4y^2 = 36$

Answer

i. $9x^2 + 4y^2 = 36$ Dividing by 36, we get

$$\frac{9x^2}{36} + \frac{4y^2}{36} = 1$$

(i.e.)
$$\frac{x^2}{4} + \frac{y^2}{5} = 1$$

$$\therefore a^2 = 4, \ b^2 = 9.$$

This is an ellipse whose major axis is the *y*-axis and minor axis is the *x*-axis and centre at the origin.

∴
$$a^2 = b^2 (1 - e^2) \Rightarrow 4 = 9(1 - e^2)$$

∴ $9e^2 = 5$

Therefore, eccentricity =
$$e = \frac{\sqrt{5}}{3}$$

Therefore, foci are
$$\left(0,\pm\frac{be}{1}\right)$$
 (i.e.) $(0,\pm\sqrt{5})$.

Therefore, latus rectum =
$$\frac{2a^2}{b} = 2 \times \frac{4}{3} = \frac{8}{3}$$
.

The equation $25(x^2 - 6x + 9) + 16y^2 = 400$ represents an ellipse. Find the centre and foci of the ellipse. How should the axis be transformed so that the ellipse is represented by the $x^2 - y^2$

equation
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
?

Answer

$$25(x^2 - 6x + 9) + 16y^2 = 400$$
$$25(x - 3)^2 + 16y^2 = 400$$

Dividing by 400,
$$\frac{(x-3)^2}{16} + \frac{y^2}{25} = 1$$
; Take $x - 3 = X$, $y = Y$.

Then
$$\frac{X^2}{16} + \frac{Y^2}{25} = 1$$
.

The major axis of this ellipse is the Y-axis.

$$\therefore 16 = 25(1 - e^2) \Rightarrow 1 - e^2 = \frac{16}{25} \Rightarrow e^2 = 1 - \frac{16}{25} = \frac{9}{25}$$
$$\therefore e = \frac{3}{5}.$$

Centre is (3, 0). Foci are $(3, \pm ae)$ (i.e.) $(3, \pm 5 \times \frac{3}{5})$ (i.e.) (3, ± 3). Now

shift origin to the point (3, 0) and then rotate the axes through right angles. Then the equation of the ellipse becomes $\frac{x^2}{2s} + \frac{y^2}{16} = 1$.

Find the eccentricity of an ellipse given that:

- 1. its major axis subtends an angle of 120° at the endpoints of its minor axis;
- 2. the segment between a focus and the farthest vertex subtends an angle of 90° at the endpoints of its minor axis.

Answer

(6) The segment between a focus and the farthest writer subtend on angle of 30° at the endpoints of its minor axis $\mathcal{E} = \sqrt{1 - \frac{E^2}{\alpha^2}} = \frac{C}{\alpha}$ $\mathcal{E}^2 + \delta^2 + \delta^2 + \alpha^2 = (0 + C)^2$ $\mathcal{E}^2 + \delta^2 + \delta^2 + \alpha^2 = (0 + C)^2$ $\mathcal{E}^2 = 2\alpha$ $\mathcal{E}^2 = 3\alpha$ $\mathcal{E}^3 = 3\alpha$ $\mathcal{E}^3 = 3\alpha$ $\mathcal{E}^4 = 3\alpha$ $\mathcal{E}^3 = 3\alpha$ $\mathcal{E}^4 = 3\alpha$ $\mathcal{E}^3 = 3\alpha$ $\mathcal{E}^4 = 3\alpha$ $\mathcal{E}^4 = 3\alpha$ $\mathcal{E}^5 = 3\alpha$ $\mathcal{E}^6 = 3\alpha$ $\mathcal{E}^6 = 34\sqrt{3}$

Reference material

- Conics Section (Wiki)
- Conic sections (Khan Academy, full playlist, eng)

