法律声明

- □ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。
 - 微信订阅号:小象
 - 新浪微博: ChinaHadoop

卷积神经网络一高级篇

主讲人: 李伟

纽约城市大学博士 主要研究深度学习,计算机视觉,人脸计算 多篇重要研究文章作者,重要会议期刊审稿人 微博ID:weightlee03 (相关资料分享) GitHub ID:wiibrew (课程代码发布)

结构

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

期待目标

- □ 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算
- □ 2. 了解VGG, GoogLeNet, ResNet等复杂 ImageNet模型的结构特点,简单设计思想
- □3. 针对特殊数据,特殊任务设计的神经网络 结构
- □ 4. 深度剖析VGG tf代码, 学会对已有模型进行参数读取,目标预测,特征提取。

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

□背景介绍

ImageNet Challenge: 1000 类 物体, 每 类 1000 张 图 片

传统方法思路:

- 1. 图片特征提取
- 2. 机器学习分类

□背景介绍

2010年冠军

Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu

LiangLiang Cao, Zhen Li, Min-Hsuan Tsai, Xi Zhou, Thomas Huang

Tong Zhang

□背景介绍

2011年冠军: Xerox Lab

1.特征提取

2.Fisher 压缩

3.SVM分类

Low-level feature extraction ≈ 10k patches per image

SIFT: 128-dim \(\)
 color: 96-dim \(\)

reduced to 64-dim with PCA

FV extraction and compression:

- N=1,024 Gaussians, R=4 regions \Rightarrow 520K dim x 2
- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

□ AlextNet结构

□ AlextNet结构

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

□ AlextNet结构

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

□ AlextNet结构

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

□参数计算

☐ MAX Pool3: 6x6x256

□ FC1: 4096->4096x36x256=37,748,736

□ FC2: 4096 ->4096x4096=16,777,216

☐ Final: 1000->1000x4096=4,096,000

□ 大约6千万参数

影响

□ 深度学习开始标志

Imagenet classification with deep convolutional neural networks

A Krizhevsky, I Sutskever, GE Hinton - Advances in neural ..., 2012 - papers.nips.cc Abstract We trained a large, deep convolutional neural network to classify the 1.3 million high-resolution images in the LSVRC-2010 ImageNet training set into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 39.7\% and 18.9\% which is considerably better than the previous state-of-the-art results. The neural network, which has 60 million parameters and 500,000 neurons, consists of five convolutional ... Cited by 10149 Related articles All 97 versions Cite Save

- □卷积神经网络的基本构成
- 卷积层+池化层+全连接层
- □ 第一个base model

花朵种类, 鸟类种类识别

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

□ VGG:

Visual Geometry Group

Department of Engineering Science, University of Oxford

参数个数:

138m - 60m

识别率 (top5):

7.3% - 15.3%

□ VGG结构

INPUT: [224x224x3]

CONV3-64: [224x224x64] CONV3-64: [224x224x64]

POOL2: [112x112x64]

CONV3-128: [112x112x128]

CONV3-128: [112x112x128]

POOL2: [56x56x128]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

POOL2: [28x28x256]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

POOL2: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

POOL2: [7x7x512]

FC: [1x1x4096]

FC: [1x1x4096]

FC: [1x1x1000]

```
(not counting biases)
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CDNV3-64. [224x224x94] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: 112x642 membry: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

□ VGG作用

结构简单:同AlexNet结构类似,均为卷积层, 池化层,全连接层的组合

性能优异:同Alexnet提升明显,同GoogleNet, ResNet相比,表现接近

选择最多的基本模型:方便进行结构的优化,设计,SSD,RCNN,等其他任务的基本模型 (base model)

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多分辨率识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

[From Stanford cs231n]

□ Inception 结构发展

All we need is to find the optimal local construction and to repeat it spatially.

结构问题是什么?

1x1 卷积的好处?

□ Inception 结构发展

All we need is to find the optimal local construction and to repeat it spatially.

结构问题是什么?参数暴增 1x1 卷积的好处?减少参数

□ 结构细节

□ 特点 参数总数,5m 没有全连接

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

□ Inception 结构发展 - Inception v4

反超了ResNet 3.1% error on top 5.

□ 全卷积结构 (FCN)

一般的神经网络: 卷积层(CNN)+全连接层(FC)

全卷积网络:没有全连接层

特点:

1. 输入图片大小无限制

2. 空间信息有丢失

3. 参数更少, 表达力更强

[内容参考 https://www.quora.com/What-are-the-advantages-of-Fully-Convolutional-Networks-over-CNNs]

提纲

- □ 1.AlexNet:现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Research

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

训练:8GPU,三周

与VGG对比:层数8倍,速度更快

Research

⊘ICCV15

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

□ 结构特性

□ 为什么ResNet有效?

□ 为什么ResNet有效?

□ 1.前向计算:低层卷积网络高层卷积网络信息融合;层数越深,模型的表现力越强 [1]

□ 2.反向计算:导数传递更直接,越过模型, 直达各层

[1] Benefits of depth in neural networks by Matus Telgarsky.

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

DeepFace: 结构化图片的特殊处理

□人脸识别:通过观察人脸确定对应身份,在 应用中更多的是确认(verification)。

□ 人脸识别数据特点:

- □ 结构化:所有人脸,组成相似,理论上能够实现对齐
- □ 差异化:相同位置,形貌(appearance)不同

- □ 人脸识别数据特点:
- 1. 结构化: 所有人脸, 组成相似, 理论上能够实现对齐
- 2. 差异化:相同位置,形貌(appearance)不同
- □ 一般神经网络处理人脸识别的问题:
- 1. 卷积核同整张图片卷积运算,卷积核参数共享,不同局部特性对参数影响相互削弱
- 2. 解决方法:不同区域,不同参数

- □ 不同局部,不同参数
- 1. 人脸对准
- 二维对准:
- 二维矩阵(R,T)运算

三维对准:

三维标准模版映射

三维投影二维

- □ 不同局部,不同参数
- 2. 局部卷积
- □ 每个卷积核固定 某一区域,不移动
- □ 不同区域之间不 共享卷积核
- □ 卷积核参数由固定区域数据确定

□识别效果

Method	Accuracy ± SE	Protocol
Joint Bayesian [6]	0.9242 ± 0.0108	restricted
Tom-vs-Pete [4]	0.9330 ± 0.0128	restricted
High-dim LBP [7]	0.9517 ± 0.0113	restricted
TL Joint Bayesian [5]	0.9633 ± 0.0108	restricted
DeepFace-single	0.9592 ± 0.0029	unsupervised
DeepFace-single	0.9700 ± 0.0028	restricted
DeepFace-ensemble	0.9715 ± 0.0027	restricted
DeepFace-ensemble	0.9735 ± 0.0025	unrestricted
Human, cropped	0.9753	

□全局部卷积连接的缺陷

- 1. 预处理:大量对准,对对准要求高,原始信息可能丢失
- 2. 卷积参数数量很大,模型收敛难度大,需要 大量数据 (Facebook 数据不公开)
- 3. 模型可扩展性差,基本限于人脸计算

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6.U-Net:图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

□图片生成网络

通过卷积神经网络生成特殊类型的图片 图片所有pixel需要生成,多目标回归

☐ U-Net
Conv-Fc-Conv

Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer International Publishing.

□ VGG U-Net

[Noh, H., Hong, S. and Han, B., 2015. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1520-1528).]

□ 卷积-逆卷积; 池化-反池化(增维)

Convolution-Deconvolution; Pooling-Unpooling

□ 反池化; 记住原有位置, 不是resize

□ 逆卷积

实质:有学习能力

的上采样

名字疑问?

□ 卷积-逆卷积(带参数的上采样)

Convolution-Deconvolution (Convolution transpose)

正常卷积:

步长: 2

卷积核: 3x3

输出: 2x2

Dot product between filter and input

□ 煮积-逆蒸积(带参数的上采样)

Convolution-Deconvolution (Convolution transpose) $f_{(2,3)}b$

逆卷积:

步长: 2

春积核:3x3

输出: 4x4

Input: 2 x 2

有学习能力上采样,好处? 生成图片更好的连贯性,更好 的空间表达能力。

□图片分割图生成

提纲

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □ 7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

实例运行一解剖VGG

- □1.观察模型参数
- □ 2.观察图片中间层 (hidden layers) 特征图
- □ 3.运用模型进行预测

实例运行一解剖VGG

- □课程中提到Tflearn地址
- □ https://github.com/wiibrew/tflearn

总结

- □ 1.AlexNet: 现代神经网络起源
- □ 2. VGG: AlexNet增强版
- □ 3. GoogLeNet: 多维度识别
- □ 4. ResNet: 机器超越人类识别
- □ 5. DeepFace: 结构化图片的特殊处理
- □ 6. U Net: 图片生成网络
- □7. 实例:解剖VGG,用模型进行模型参数可视化,特征提取,目标预测

下节预告

- □ 1. 自主设计神经网络
- □ 2. Fine-tunning 现有模型
- □ 3. 基于VGG模型,网络采集图片数据,进行相应分类器的训练

总结

- □有问题请到课后交流区
 - □问题答疑: http://www.xxwenda.com/
 - ■可邀请老师或者其他人回答问题

- □ 讲师微博: weightlee03, 每周不定期分享DL 资料
- □ GitHub ID: wiibrew (课程代码发布)

