# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(11)Publication number:

10-092985

(43)Date of publication of application: 10.04.1998

(51)Int.CI.

H01L 23/36

(21)Application number: 08-241805

(71)Applicant : NEC NIIGATA LTD

(22)Date of filing:

12.09.1996

(72)Inventor: YAMAUCHI MASATO

#### (54) HEAT SINK

#### (57)Abstract:

PROBLEM TO BE SOLVED: To realize an efficient natural heat dissipation requiring no forced air cooling through a motor fan by fitting the second base of a second heat sink made of a second material in a hole made in the central of the first base of a first heat sink made of a first material and securing the heat sinks in place.

SOLUTION: An aluminum heat sink 1 has a square base 12 planted with a large number of pins 4. The pin 4 has columnar shape so that cooling air can flow in from any direction. A tapered hole 3 is made in the center of the base 12 and fitted with the base 5 of a copper heat sink 2 having tapered outer circumference. In order to enhance cooling efficiency, pins 4a higher than the pin 4 on the heat sink 1 are planted on the base 5 of the copper heat sink 2 while being arranged radially. This structure realizes effective cooling and suppresses heating of an object to be cooled, e.g. a semiconductor chip, while suppressing cost increase.



#### LEGAL STATUS

[Date of request for examination]

12.09.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2845833

[Date of registration]

30.10.1998

[Number of appeal against examiner's decision of

rejection

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

## (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

### 特開平10-92985

(43)公開日 平成10年(1998)4月10日

(51) Int.Cl.6

H01L 23/36

識別配号

FΙ H01L 23/36

Z

審查請求 有 請求項の数5 OL (全5頁)

(21)出願番号

(22)出顧日

特顯平8-241805

平成8年(1996)9月12日

(71)出顧人 000190541

新四日本電気株式会社

新潟県柏崎市大字安田7546番地

(72)発明者 山内 真人

新潟県柏崎市大字安田7546番地 新潟日本

電気株式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 ヒートシンク

#### (57)【要約】

【課題】 ヒートシンクの一部を熱伝導率の高い材料に 置き換えて、冷却性能を向上させる。

【解決手段】 アルミニウム製ヒートシンクの中央部に 穴をあけ、熱伝導率の高い鋼製ヒートシンクを挿入し固 定する。アルミニウム製ヒートシンク、銅製ヒートシン クそれぞれには、上面に伸びる円柱形のピンが設けてあ り、銅製ヒートシンクのピンはアルミニウム製ヒートシ ンクのピンよりも高くしてあり、冷却性能を高めて・・ る。



#### 【特許請求の範囲】

【請求項1】 第1の材料からなる第1のヒートシンク の第1のベースの中央部に設けた穴に第2の材料からな る第2のヒートシンクの第2のベースを嵌め込み固定し たことを特徴とするヒートシンク。

【請求項2】 第1のベースの中央部に設けた穴はテー パ穴であり、第2のベースの外周面はテーパ状であるこ とを特徴とする請求項1記載のヒートシンク。

【請求項3】 第2のヒートシンクのベース底面からフ ィン先端までの高さは第1のヒートシンクのものより高 10 ンクによる放熱限界をおぎない、電動ファン等による強 いことを特徴とする請求項1または2記載のヒートシン ク。

【請求項4】 第2の材料は第1の材料より熱伝導率が 高いことを特徴とする請求項1,2または3記載のヒー トシンク。

【請求項5】 第1の材料はアルミニウムであり、第2 の材料は銅であることを特徴とする請求項1ないし4記 載のヒートシンク。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】 本発明は、ICチップやLS I チップなどの半導体チップを冷却するためのヒートシ ンクに関し、特にコンピュータ装置に用いられる半導体 チップを冷却するヒートシンクに関する。

#### [0002]

【従来の技術】近年、コンピュータ装置などは処理能力 の向上およびダウンサイジング化が進み、装置内部に搭 載される各種半導体チップも小型化される傾向にある。 このため、半導体チップは年々高集積化され消費電力が 増大し高発熱化する傾向にある。

【0003】これらの消費電力の大きな半導体チップは 冷却のため、放熱効果の高いアルミニウムなどを材料に したヒートシンクをセラミックパッケージ表面に接触さ せ、発生した熱を放熱させている。しかし、半導体チッ プの消費電力がより大きくなると、ヒートシンクによる 自然放熱が困難となり、ヒートシンクと電動ファンを組 み合せて冷却効率を高めている。

【0004】このようにヒートシンクに電動ファンを組 み合せることにより、部品点数の増加によるコストの上 昇、ファン回転による騒音の誘発及び装置の消費電力増 40 加を招いてしまう。

#### [0005]

【発明が解決しようとする課題】第1の問題点は、従来 から比較的多く使用されているアルミニウム製のヒート シンクによる自然放熱には限界があるということであ

【0006】その理由は、アルミニウムは熱伝導率が比 較的良好で、軽量であるという利点はあるが、銅などに 比べ熱伝導率が低いため、自然放熱性能に限界があるか らである。

【0007】第2の問題点は、高い冷却効率を得るため に高価な冷却用電動ファンを装着することで、コストの 上昇とファン回転による騒音を誘発してしまうことであ る~

【0008】その理由は、冷却用電動ファンの価格が高 いことにある。また、ファンが回転することによりモー タ音、フィンの風切り音が騒音となり、品質低下につな がりかねないことも理由である。

【0009】本発明の目的は、アルミニウム製ヒートシ 制空冷を行わなくても効率的な自然放熟を可能とするヒ ートシンクを提供することにある。

【0010】本発明の他の目的は、できる限りヒートシ ンクの製造コストを抑えることにある。

#### [0011]

【課題を解決するための手段】本発明のヒートシンク は、第1の材料からなる第1のヒートシンクの第1のベ - スの中央部に設けた穴に第2の材料からなる第2のヒ ートシンクの第2のベースを嵌め込み固定したことを特 徴とし、第1のベースの中央部に設けた穴はテーパ穴で あり、第2のベースの外周面はテーパ状であるように し、第2のヒートシンクのベース底面からフィン先端ま での高さは第1のヒートシンクのものより高いようにす ることができる。

【0012】上述の本発明のヒートシンクは、望ましく は第2の材料は第1の材料より熱伝導率が高いように し、例えば第1の材料はアルミニウムであり、第2の材 料は銅であるようにすることができる。

#### [0013]

【発明の実施の形態】次に本発明について図面を参照し 30 て説明する。

【0014】図1は、本発明の実施の形態のヒートシン クの斜視図、図2は図1におけるA-A断面図、図3は 図1のヒートシンクの分解斜視図、図4は図1のヒート シンクをCPU等の集積回路パッケージに搭載した時の 断面団である。

【0015】図において、中央部に銅ヒートシンク2が 設けられていることを除き、アルミヒートシンク1は一 般に使用されているアルミニウム製のヒートシンクと同 形状のもので、四辺形のベース12に多数のピン4が植 設されている。このピン4は冷却風がどの方向からでも 流入できるよう円柱形をしている。ベース12の中央部 にはテーパ穴3が設けられていて、テーパ穴3には外周 がテーパ状に形成された銅ヒートシンク2のベース5が 嵌め込まれている。

【0016】セラミックパッケージ6の下面の些部に半 導体集積回路チップでが実装され、この凹部にはキャッ プ8が設けられている。セラミックパッケージ6の上面 にはヒートシンクが戦置され、下面にはリード9が植設 50 されている。

【0017】銅ヒートシンク2には冷却効率を上げるた、めヒートシンク1のピン4よりも高いピン4aが放射状に配列されてベース5に植設されている。下側が広がるテーパ穴3に上側が細いテーパ状の外周面を有するベース5が上向けに押し込まれテーパ穴3の内面にベース5の外間が密着している。また、銅ヒートシンク2は、熱伝導率の高い銅を材料とし、ベース5の下面は、図4のチップ7が発生した熱を効率良く伝達するため、チップ7の面積より大きく、またヒラミックパッケージ6の表面との良好な接触を得るため、できるだけ表面粗さは小さくしてある。なお、ヒートシンク1と銅ヒートシンク2との固定は溶着又は接着の方法を用いる。

【0018】図4に示すように中央部に半導体集積回路 チップ7が実装されたパッケージ6に図1のヒートシン クを搭載した場合は、ヒートシンクの中央部に設けられ た熱伝導率の高い銅シンク2により発熱体であるチップ 7を効果的に冷却することができる。

【0019】次に、図1~図4に示すヒートシンクと従来のアルミニウム製のヒートシンクとについて、冷却性能の比較のためそれぞれの熱抵抗値をコンピュータによ 20 る熱流体シミュレーションにより算出し、そのグラフを図7に示した。

【0020】従来のアルミニウム製のヒートシンクでは、風速0.6m/sで熱抵抗3.87℃/wであり、本発明の実施例では、風速0.6m/sで熱抵抗3.32℃/wとなった。この結果より、熱抵抗が小さい本発明がアルミニウム製のヒートシンクより冷却性能で優れていることが言える。

【0021】図5及び第6図はそれぞれ本発明他の実施の形態のヒートシンクの断面図及び分解斜視図である。 【0022】図において、図1~図4のヒートシンクと異なる点は、銅ヒートシンク22のベース25の外周に段差11を付加し、アルミヒートシンク21のベース32の中央部にベース25に合致する形状の段差穴10を設けた点である。銅ヒートシンク22のベース25は下面より段差穴10に挿入され、溶着又は接着により固定される。

【0023】なお、上述の2つの実施の形態において、 網ヒートシンクの材料を、銅に限らず銅以外の熱伝導率 の比較的良好な材料、例えば銀に変更してもよい。この 40 場合に、さらにアルミヒートシンクの材料を銅などに変 更しても本発明は適用できる。

【0024】また、ベース5、25をテーパ穴3、段差穴10へ圧入して固定するようにしてベース5、25をベース1、32に溶着も接着もしなくても済むようにもできる。

【0025】また、冷却風の向きが決まっていてヒートシンクに指向性を持たせてもよい場合はピン4、4aからなるフィンの代わりに板状のフィンを設けてもよい。 さらに放射状に配置されたピン4aの代わりにベース2 50 5の中央部に固定した1本のピンに複数のフランジを設けたようにしてもよい。

[0026]

【発明の効果】本発明はヒートシンクの中央部の第2の材料と中央部以外の部分の第1の材料を異なったものとすることにより、第1及び第2の材料の長所を有するヒートシンクを得ることができる。例えば、第1の材料にアンミニウムを用い、第2の材料に銅を用いた場合の効果を示せば次のとおりである。

【0027】第1の効果は従来のアルミ製ヒートシンクの放熟限界をおぎない、効率的な冷却が可能で、半導体チップ等の冷却対象の発熱を抑えることが可能である。

【0028】その理由は、アルミ製ヒートシンクの中央 部を熱伝導率の高い銅を材料とした銅ヒートシンクに置 き換えることで、半導体チップから発せられた熱を最も 近い位置で受熱し、効率的に放熱することが可能になる からである。

【9029】第2の効果は、冷却性能を向上させるが、 コストの上昇を抑えることが可能である。

【9030】その理由は、必要最小限の部分、つまりヒートシンク中央部のみを熱伝導率の高い銅にすることで、コストの上昇をできる限り抑えることができるからである。

### 【図面の簡単な説明】

【図1】本発明の実施の形態のヒートシンクの斜視図である。

【図2】図1のA-A断面図である。

【図3】図1に示すヒートシンクの分解斜視図である。

【図4】図1に示すヒートシンクをCPU等のパッケー 30 ジに搭載した状態の断面図である。

【図5】本発明の他の実施の形態のヒートシンクの**断面** 図である。

【図6】図5に示すヒートシンクの分解斜視図である。

【図7】図1に示すヒートシンクと従来のアルミ製ヒートシンクとのシミュレーションにより求めた熱抵抗を示す団である。

#### 【符号の説明】

- 1 アルミヒートシンク
- 2 銅ヒートシンク
- 0 3 テーパ穴
  - 4 ピン
  - 4 a ピン
  - 5 ベース
  - 6 セラミックパッケージ
  - 7 チップ
  - 8 キャップ
  - 9 リード
  - 10 段差穴
  - 11 段差
- 50 12 ベース



