# **Maths** & **Probability**

Introduction to Machine Learning (CSC462)

# Basics of Linear Algebra

#### **Vectors and Matrices**

• Vectors (column vectors and row vectors) and their transposes

$$\mathbf{a} = egin{bmatrix} a_1 \ a_2 \ a_3 \end{bmatrix}, \quad \mathbf{a}^ op = egin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}, \quad \mathbf{b}^ op = egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

- We will assume vectors of be column vectors (unless specified otherwise)
- Vector with all 0s except a single 1 is called elementary vector (or "one-hot" vector in ML)
- Matrix and its transpose (shown for  $3 \times 3$  matrices)

$$\mathbf{A} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad \mathbf{A}^{\top} = egin{bmatrix} a_{11} & a_{21} & a_{31} \ a_{12} & a_{22} & a_{32} \ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

- ullet For a symmetric matrix (must be square)  ${f A}={f A}^{ op}$
- Diagonal and identity matrices have nonzeros only along the diagonals
- Should know the basic rules of vector addition, matrix addition, etc (won't list here)

#### **Inner Product**

• Inner product (or dot product) of two vectors  $\mathbf{a} \in \mathbb{R}^D$  and  $\mathbf{b} \in \mathbb{R}^D$  is a scalar

$$c = \mathbf{a}^{\top} \mathbf{b} = \sum_{d=1}^{D} a_d b_d$$

- Inner product is a measure of similarity of two vectors
- Inner product is zero if **a** and **b** are orthogonal to each other
- Inner product of two vector of unit length is the same as cosine similarity
- A more general form of inner product:  $c = \mathbf{a}^{\top} \mathbf{M} \mathbf{b}$  (here **M** is  $D \times D$ )
  - M can be diagonal or full matrix
  - For identity M, it becomes the standard inner product
- Euclidean distance between two vectors can be also written in terms of an inner product

$$d(\mathbf{a}, \mathbf{b}) = \sqrt{(\mathbf{a} - \mathbf{b})^{\top} (\mathbf{a} - \mathbf{b})} = \sqrt{\mathbf{a}^{\top} \mathbf{a} + \mathbf{b}^{\top} \mathbf{b} - 2\mathbf{a}^{\top} \mathbf{b}}$$

# Orthogonal/Orthonormal Vectors and Matrices

• A set of vectors  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N$  is called orthogonal if

$$\mathbf{a}_i^{\mathsf{T}} \mathbf{a}_j = 0 \quad \forall i \neq j$$

• Moreover, a set of orthogonal vectors  $a_1, a_2, \ldots, a_N$  is called orthonormal if

$$\mathbf{a}_i^{\top} \mathbf{a}_i = 1 \quad \forall i$$

- A matrix with orthonormal columns is called orthogonal
- ullet For a square orthogonal matrix  $oldsymbol{A}$ , we have  $oldsymbol{A}oldsymbol{A}^{ op}=oldsymbol{A}^{ op}oldsymbol{A}=oldsymbol{I}$

# Matrix-Vector/Matrix-Matrix Product as Inner Product

• Important to be conversant with these. Some basic operations worth keeping in mind

• We can 'post-mulitply' a matrix by a column vector: 
$$Ax = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_1^T x_1 \\ a_2^T x_2 \\ a_3^T x_3 \end{bmatrix}$$
• We can 'pre-multiply' a matrix by a row vector: 
$$x^T A = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} x^T a_1 & x^T a_2 & x^T a_3 \end{bmatrix}$$
• In general, we can multiply matrices A and B when the number of columns in A matches the number of rows in B: 
$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & a_1^T b_3 \\ a_2^T b_1 & a_2^T b_2 & a_2^T b_3 \\ a_3^T b_1 & a_3^T b_2 & a_3^T b_3 \end{bmatrix}$$

• We routinely encounter such operations in many ML problems

#### **Outer Product**

• Outer product of of two vectors  $\mathbf{a} \in \mathbb{R}^D$  and  $\mathbf{b} \in \mathbb{R}^D$  is a matrix. For 3-dim vectors, we'll have

$$\mathbf{C} = \mathbf{a}\mathbf{b}^{\top} = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$
 (note:  $\mathbf{C}$  is a rank-1 matrix)

- Matrix rank: Linearly indep. number of rows/columns
- Matrix multiplications can also be written as a sum of outer products (sum of rank-1 matrices)

$$\mathbf{A}\mathbf{B}^{ op} = \sum_{k=1}^K \boldsymbol{a}_k \boldsymbol{b}_k^{ op}$$

where  $\mathbf{a}_k$  and  $\mathbf{b}_k$  denote the k-th column of  $\mathbf{A}$  (size:  $D \times K$ ) and  $\mathbf{B}$  (size:  $D \times K$ ), respectively,

#### Linear Combination of Vectors as a Matrix-Vector Product

• Linear combination of a set of  $D \times 1$  vectors  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_N$  is another vector of the same size

$$\mathbf{c} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots \alpha_N \mathbf{b}_N$$

- The  $\alpha_n$ 's are scalar-valued combination weights
- ullet The above can also be compactly written in the matrix-vector product form  ${f c}={f B}lpha$

where  $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_N]$  is a  $D \times N$  matrix, and  $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_N]^{\top}$  is an  $N \times 1$  column vector

- ullet Note that  $oldsymbol{c}$  can be also seen as a linear transformation of lpha using  $oldsymbol{\mathsf{B}}$
- Such matrix-vector product are very common in ML problems (especially in linear models)

#### **Vector and Matrix Norms**

- Roughly speaking, for a vector x, the norm is its "length"
- Some common norms:  $\ell_2$  norm (Euclidean norm),  $\ell_1$  form,  $\ell_\infty$  norm,  $\ell_p$  norm ( $p \ge 1$ )

$$||\mathbf{x}||_{2} = \sqrt{\sum_{n=1}^{N} x_{n}^{2}}, \quad ||\mathbf{x}||_{1} = \sum_{n=1}^{N} |x_{n}|, \quad ||\mathbf{x}||_{\infty} = \max_{1 \le n \le N} |x_{n}|, \quad ||\mathbf{x}||_{p} = \left(\sum_{n=1}^{N} |x_{n}|^{p}\right)^{1/p}$$

- Note: The square of  $\ell_2$  norm is the inner product of the vector with itself  $||x||_2^2 = \mathbf{x}^{\top} \mathbf{x}$
- ullet Note:  $||oldsymbol{x}||_p$  for p < 1 technically not a norm (doesn't satisfy all the formal properties of a norm)
  - Nevertheless it is often used in some ML problems (has some interesting properties)
- Norms for a matrix **A** (say of size  $N \times M$ ) can also be defined, e.g.,
  - Frobenius norm:  $||\mathbf{A}||_F = \sqrt{\sum_{i=1}^N \sum_{j=1}^M A_{ij}^2} = \sqrt{\mathsf{trace}(\mathbf{A}^\top \mathbf{A})}$
  - Many matrix norms can be written in terms of in terms of the singular values of A

# **Hyperplanes**

- An important concept in ML, especially for understanding classification problems
- Divides a vector space into two halves (positive and negative halfspaces)



- Assuming 3-dim space, it can be defined by a vector  $\mathbf{w} = [w_1, w_2, w_3]$  and scalar b
- w is the vector pointing outward to the hyperplane
- b is the real-valued "bias" if the hyperplane doesn't pass through the origin

# Some other things you should know about..

- Eigenvalues, rank, etc. for matrices
- Trace of matrix
- Determiant of matrix (and relation to eigenvalues etc)
- Inverse of matrices
- Positive definite and positive semi-definite matrices (non-negative eigenvalues)
- "Matrix Cookbook" (will provide link) is a nice source of many properties of matrices

# Multivariate Calculus and Optimization

# **Multivariate Calculus and Optimization**

- Most of ML problems boil down to solving an optimization problem
- We will usually have to optimize a function  $f: \mathbb{R}^D \to \mathbb{R}$  w.r.t some variable  $\mathbf{w} \in \mathbb{R}^D$
- Gradient of f w.r.t. w denotes the direction of steepest change at w, and is defined as

$$abla f = egin{bmatrix} rac{\partial f}{\partial w_1} \ dots \ rac{\partial f}{\partial w_0} \end{bmatrix} \qquad ext{where} \quad [
abla f]_i = rac{\partial f}{\partial w_i}$$

• For multivariate functions  $f: \mathbb{R}^D \to \mathbb{R}^M$ , we can likewise define the Jacobian matrix

$$\mathbf{J}_f = \begin{bmatrix} \frac{\partial f_1}{\partial w_1} & \cdots & \frac{\partial f_1}{\partial w_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M}{\partial w_1} & \cdots & \frac{\partial f_M}{\partial w_D} \end{bmatrix} \quad \text{where} \quad [\mathbf{J}_f]_{ij} = \frac{\partial f_i}{\partial w_j}$$

• Can also define second derivatives (called Hessian): derivative of gradient/Jacobian

#### **Taking Derivatives**

- Optimization in ML problems requires being able to take derivatives (i.e., doing Calculus)
- What makes it tricky is that usually we are no longer doing optimization w.r.t. a single scalar variable but w.r.t. vectors or sometimes even matrices (thus need vector/matrix calculus)
- For some functions, derivatives are easy (can even be done by hand)
- Perhaps the most common, easy ones include derivatives of linear and quadratic functions

$$\nabla_{\mathbf{w}}[\mathbf{x}^{\top}\mathbf{w}] = \mathbf{x}$$

$$\nabla_{\mathbf{w}}[\mathbf{w}^{\top}\mathbf{X}\mathbf{w}] = (\mathbf{X} + \mathbf{X}^{\top})\mathbf{w} \text{ (where } \mathbf{X} \text{ is } D \times D \text{ matrix)}$$

$$\nabla_{\mathbf{w}}[\mathbf{w}^{\top}\mathbf{X}\mathbf{w}] = 2\mathbf{X}\mathbf{w} \text{ (if } \mathbf{X} \text{ is symmetric matrix)}$$

- The "Matrix Cookbook" contains many derivative formulas (you can use that as a reference even if you don't know how to compute derivative by hand)
- For more complicated functions, thankfully there exist tool that allow automatic differentiation
- But you should still have a good understanding of derivatives and be familiar with at least some basic results like the above (and some others from the Matrix Cookbook)

#### **Convex Functions**

• Convex functions have a unique optima



- Optimizing convex functions is usually easier than optimizing non-convex ones
- More on this when we look at optimization for ML later during the semester

# Basics of Probability

and Probability Distributions

#### **Random Variables**

- Informally, a random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous





- Some examples of discrete r.v.
  - A random variable  $X \in \{0,1\}$  denoting outcomes of a coin-toss
  - ullet A random variable  $X \in \{1,2,\ldots,6\}$  denoteing outcome of a dice roll
- Some examples of continuous r.v.
  - A random variable  $X \in (0, 1)$  denoting the bias of a coin
  - A random variable X denoting heights of students in a class
  - ullet A random variable X denoting time to get to your hall from the department

#### **Discrete Random Variables**

- For a discrete r.v. X, p(x) denotes the probability that p(X = x)
- p(x) is called the probability mass function (PMF)

$$p(x) \geq 0$$

$$p(x) \leq 1$$

$$\sum p(x) = 1$$



#### **Continuous Random Variables**

- For a continuous r.v. X, a probability p(X = x) is meaningless
- Instead we use p(X = x) or p(x) to denote the probability density at X = x
- ullet For a continuous r.v. X, we can only talk about probability within an interval  $X \in (x, x + \delta x)$ 
  - $p(x)\delta x$  is the probability that  $X \in (x, x + \delta x)$  as  $\delta x \to 0$



• The probability density p(x) satisfies the following

$$p(x) \ge 0$$
 and  $\int_{x} p(x)dx = 1$  (note: for continuous r.v.,  $p(x)$  can be  $> 1$ )

#### A word about notation..

- p(.) can mean different things depending on the context
  - p(X) denotes the distribution (PMF/PDF) of an r.v. X
  - p(X = x) or p(x) denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)
- The following means drawing a random sample from the distribution p(X)

$$x \sim p(X)$$

# **Joint Probability Distribution**

Joint probability distribution p(X, Y) models probability of co-occurrence of two r.v. X, YFor discrete r.v., the joint PMF p(X, Y) is like a table (that sums to 1)

$$\sum_{x} \sum_{y} p(X = x, Y = y) = 1$$

$$X \qquad x \qquad p(X=x, Y=y)$$

$$Y \qquad p(X,Y) \qquad y$$

For continuous r.v., we have joint PDF p(X, Y)

$$\int_X \int_Y p(X=x, Y=y) dx dy = 1$$

# **Marginal Probability Distribution**

- Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes
- For discrete r.v.'s:  $p(X) = \sum_{y} p(X, Y = y)$ ,  $p(Y) = \sum_{x} p(X = x, Y)$
- For discrete r.v. it is the sum of the PMF table along the rows/columns



- For continuous r.v.:  $p(X) = \int_{Y} p(X, Y = y) dy$ ,  $p(Y) = \int_{X} p(X = x, Y) dx$
- Note: Marginalization is also called "integrating out" (especially in Bayesian learning)

# **Conditional Probability Distribution**

- Probability distribution of one r.v. given the value of the other r.v.
- Conditional probability p(X|Y=y) or p(Y|X=x): like taking a slice of p(X,Y)
- For a discrete distribution:



- For a continuous distribution<sup>1</sup>:



<sup>&</sup>lt;sup>1</sup>Picture courtesy: Computer vision: models, learning and inference (Simon Price)

#### **Some Basic Rules**

- Sum rule: Gives the marginal probability distribution from joint probability distribution
  - For discrete r.v.:  $p(X) = \sum_{Y} p(X, Y)$
  - For continuous r.v.:  $p(X) = \int_{Y} p(X, Y) dY$
- Product rule: p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)
- Bayes rule: Gives conditional probability

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- For discrete r.v.:  $p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{x \in p(X|Y)p(Y)}}$
- For continuous r.v.:  $p(Y|X) = \frac{p(X|Y)p(Y)}{\int_{Y} p(X|Y)p(Y)dY}$
- Also remember the chain rule

$$p(X_1, X_2, ..., X_N) = p(X_1)p(X_2|X_1)...p(X_N|X_1, ..., X_{N-1})$$

# **CDF** and Quantiles

- Cumulative distribution function (CDF):  $F(x) = p(X \le x)$
- $\alpha \leq 1$  quantile is defined as the  $x_{\alpha}$  s.t.

$$p(X \le x_{\alpha}) = \alpha$$

# Independence

 $\bullet$  X and Y are independent  $(X \perp \!\!\! \perp Y)$  when knowing one tells nothing about the other

$$p(X|Y = y) = p(X)$$

$$p(Y|X = x) = p(Y)$$

$$p(X,Y) = p(X)p(Y)$$

$$X$$

$$p(X,Y) = p(Y)$$

- $X \perp \!\!\! \perp Y$  is also called marginal independence
- Conditional independence  $(X \perp \!\!\! \perp Y|Z)$ : independence given the value of another r.v. Z

$$p(X, Y|Z = z) = p(X|Z = z)p(Y|Z = z)$$

# **Expectation**

• Expectation or mean  $\mu$  of an r.v. with PMF/PDF p(X)

$$\mathbb{E}[X] = \sum_{x} xp(x) \qquad \text{(for discrete distributions)}$$

$$\mathbb{E}[X] = \int_{x} xp(x)dx \qquad \text{(for continuous distributions)}$$

- Note: The definition applies to functions of r.v. too (e.g.,  $\mathbb{E}[f(X)]$ )
- **Note:** Expectations are always w.r.t. the underlying probability distribution of the random variable involved, so sometimes we'll write this explicitly as  $\mathbb{E}_{p()}[.]$ , unless it is clear from the context
- Linearity of expectation

$$\mathbb{E}[\alpha f(X) + \beta g(Y)] = \alpha \mathbb{E}[f(X)] + \beta \mathbb{E}[g(Y)]$$

(a very useful property, true even if X and Y are not independent)

Rule of iterated/total expectation

$$\mathbb{E}_{\rho(X)}[X] = \mathbb{E}_{\rho(Y)}[\mathbb{E}_{\rho(X|Y)}[X|Y]]$$

#### **Variance and Covariance**

• Variance  $\sigma^2$  (or "spread" around mean  $\mu$ ) of an r.v. with PMF/PDF p(X)

$$var[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation:  $std[X] = \sqrt{var[X]} = \sigma$
- For two scalar r.v.'s x and y, the **covariance** is defined by

$$cov[x, y] = \mathbb{E}\left[\left\{x - \mathbb{E}[x]\right\}\left\{y - \mathbb{E}[y]\right\}\right] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

• For vector r.v. x and y, the covariance matrix is defined as

$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}\left[\left\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\right\}\left\{\mathbf{y}^{T} - \mathbb{E}[\mathbf{y}^{T}]\right\}\right] = \mathbb{E}[\mathbf{x}\mathbf{y}^{T}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{T}]$$

- Cov. of components of a vector r.v. x: cov[x] = cov[x, x]
- Note: The definitions apply to functions of r.v. too (e.g., var[f(X)])
- Note: Variance of sum of independent r.v.'s: var[X + Y] = var[X] + var[Y]

#### **KL Divergence**

• KullbackLeibler divergence between two probability distributions p(X) and q(X)

$$\mathcal{K}L(p||q) = \int p(X) \log \frac{p(X)}{q(X)} dX = -\int p(X) \log \frac{q(X)}{p(X)} dX \qquad \text{(for continuous distributions)}$$

$$\mathcal{K}L(p||q) = \sum_{k=0}^{K} p(X=k) \log \frac{p(X=k)}{q(X=k)} \qquad \text{(for discrete distributions)}$$

- It is non-negative, i.e.,  $KL(p||q) \ge 0$ , and zero if and only if p(X) and q(X) are the same
- For some distributions, e.g., Gaussians, KL divergence has a closed form expression
- KL divergence is not symmetric, i.e.,  $\mathit{KL}(p||q) \neq \mathit{KL}(q||p)$

# **Entropy**

• Entropy of a continuous/discrete distribution p(X)

$$H(p) = -\int p(X) \log p(X) dX$$

$$H(p) = -\sum_{k=1}^{K} p(X=k) \log p(X=k)$$

- In general, a peaky distribution would have a smaller entropy than a flat distribution
- Note that the KL divergence can be written in terms of expetation and entropy terms

$$\mathit{KL}(p||q) = \mathbb{E}_{p(X)}[-\log q(X)] - \mathit{H}(p)$$

• Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.

# **Transformation of Random Variables**

Suppose y = f(x) = Ax + b be a linear function of an r.v. x

Suppose  $\mathbb{E}[{\pmb x}] = {\pmb \mu}$  and  $\mathsf{cov}[{\pmb x}] = {\pmb \Sigma}$ 

Expectation of y

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\mu} + \mathbf{b}$$

• Covariance of y

$$cov[y] = cov[Ax + b] = A\Sigma A^T$$

Likewise if  $y = f(x) = a^T x + b$  is a scalar-valued linear function of an r.v. x:

- $\bullet \ \mathbb{E}[y] = \mathbb{E}[\mathbf{a}^T \mathbf{x} + b] = \mathbf{a}^T \boldsymbol{\mu} + b$
- $var[y] = var[a^Tx + b] = a^T\Sigma a$

Another very useful property worth remembering

# **Common Probability Distributions**

**Important:** We will use these extensively to model **data** as well as **parameters** 

Some discrete distributions and what they can model:

- **Bernoulli:** Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses
- Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll
- Poisson: Non-negative integers, e.g., # of words in a document
- .. and many others

Some continuous distributions and what they can model:

- Uniform: numbers defined over a fixed range
  - Beta: numbers between 0 and 1, e.g., probability of head for a biased coin
  - **Gamma**: Positive unbounded real numbers
  - Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)
  - Gaussian: real-valued numbers or real-valued vectors
  - .. and many others

# Discrete Distributions

#### **Bernoulli Distribution**

- Distribution over a binary r.v.  $x \in \{0, 1\}$ , like a coin-toss outcome
- ullet Defined by a probability parameter  $p\in(0,1)$

$$P(x=1)=p$$

• Distribution defined as: Bernoulli(x; p) =  $p^x(1-p)^{1-x}$ 



- Mean:  $\mathbb{E}[x] = p$
- Variance: var[x] = p(1-p)

#### **Binomial Distribution**

- $\bullet$  Distribution over number of successes m (an r.v.) in a number of trials
- ullet Defined by two parameters: total number of trials (N) and probability of each success  $p\in(0,1)$
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as

Binomial(
$$m; N, p$$
) =  $\binom{N}{m} p^m (1-p)^{N-m}$ 



- Mean:  $\mathbb{E}[m] = Np$
- Variance: var[m] = Np(1-p)

#### Multinoulli Distribution

- Also known as the categorical distribution (models categorical variables)
- Think of a random assignment of an item to one of K bins a K dim. binary r.v.  $\boldsymbol{x}$  with single 1 (i.e.,  $\sum_{k=1}^K x_k = 1$ ): **Modeled by a multinoulli**

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\mathsf{length} = K}$$

- Let vector  $\mathbf{p} = [p_1, p_2, \dots, p_K]$  define the probability of going to each bin
  - $p_k \in (0,1)$  is the probability that  $x_k = 1$  (assigned to bin k)
  - $\sum_{k=1}^{K} p_k = 1$
- The multinoulli is defined as: Multinoulli(x; p) =  $\prod_{k=1}^{K} p_k^{x_k}$
- Mean:  $\mathbb{E}[x_k] = p_k$
- Variance:  $var[x_k] = p_k(1 p_k)$

#### **Multinomial Distribution**

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose  $x_k$  is count in bin k

$$0 \le x_k \le N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{K} x_k = N$$

- ullet Assume probability of going to each bin:  $oldsymbol{p} = [p_1, p_2, \dots, p_K]$
- ullet Multonomial models the bin allocations via a discrete vector  ${m x}$  of size  ${m K}$

$$\begin{bmatrix} x_1 & x_2 & \dots & x_{k-1} & x_k & x_{k-1} & \dots & x_K \end{bmatrix}$$

• Distribution defined as

Multinomial(
$$\boldsymbol{x}; N, \boldsymbol{p}$$
) =  $\binom{N}{x_1 x_2 \dots x_K} \prod_{k=1}^K p_k^{x_k}$ 

- Mean:  $\mathbb{E}[x_k] = Np_k$
- Variance:  $var[x_k] = Np_k(1 p_k)$
- Note: For N = 1, multinomial is the same as multinoulli

#### **Poisson Distribution**

- Used to model a non-negative integer (count) r.v. k
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- ullet Defined by a positive rate parameter  $\lambda$
- Distribution defined as

Poisson
$$(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$
  $k = 0, 1, 2, ...$ 



- Mean:  $\mathbb{E}[k] = \lambda$
- Variance:  $var[k] = \lambda$

#### The Empirical Distribution

 $\bullet$  Given a set of points  $\phi_1, \ldots, \phi_K$ , the empirical distribution is a discrete distribution defined as

$$p_{emp}(A) = \frac{1}{K} \sum_{k=1}^{K} \delta_{\phi_k}(A)$$

where  $\delta_{\phi}(.)$  is the **dirac function** located at  $\phi$ , s.t.

$$\delta_{\phi}(A) = egin{cases} 1 & ext{if } \phi \in A \ 0 & ext{if } \phi \in A \end{cases}$$

• The "weighted" version of the empirical distribution is

$$p_{emp}(A) = \sum_{k=1}^{K} w_k \delta_{\phi_k}(A)$$
 (where  $\sum_{k=1}^{K} w_k = 1$ )

and the weights and points  $(w_k, \phi_k)_{k=1}^K$  together define this discrete distribution

## Continuous Distributions

#### **Uniform Distribution**

• Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

$$Uniform(x; a, b) = \frac{1}{b - a}$$



- Mean:  $\mathbb{E}[x] = \frac{(b+a)}{2}$  Variance:  $var[x] = \frac{(b-a)^2}{12}$

#### **Beta Distribution**

- Used to model an r.v. p between 0 and 1 (e.g., a probability)
- ullet Defined by two **shape parameters** lpha and eta

$$\mathsf{Beta}(p;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$



- Mean:  $\mathbb{E}[p] = \frac{\alpha}{\alpha + \beta}$
- Variance:  $var[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these distributions)

#### **Gamma Distribution**

- Used to model positive real-valued r.v. x
- ullet Defined by a **shape parameters** k and a **scale parameter**  $\theta$

$$Gamma(x; k, \theta) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k \Gamma(k)}$$



- Mean:  $\mathbb{E}[x] = k\theta$
- Variance:  $var[x] = k\theta^2$
- Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both), or to model the inverse variance (precision) of a Gaussian (conjuate to Gaussian if mean known)

#### **Dirichlet Distribution**

• Used to model non-negative r.v. vectors  $\boldsymbol{p} = [p_1, \dots, p_K]$  that sum to 1

$$0 \le p_k \le 1, \quad \forall k = 1, \dots, K \quad \text{and} \quad \sum_{k=1}^K p_k = 1$$

- ullet Equivalent to a distribution over the K-1 dimensional simplex
- Defined by a K size vector  $\alpha = [\alpha_1, \dots, \alpha_K]$  of positive reals
- Distribution defined as

$$\mathsf{Dirichlet}(\boldsymbol{p};\alpha) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K p_k^{\alpha_k - 1}$$

- Often used to model the probability vector parameters of Multinoulli/Multinomial distribution
- Dirichlet is conjugate to Multinoulli/Multinomial
- **Note:** Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.'s gives an r.v. that is Dirichlet distributed.

#### **Dirichlet Distribution**

- For  $\mathbf{p} = [p_1, p_2, \dots, p_K]$  drawn from Dirichlet $(\alpha_1, \alpha_2, \dots, \alpha_K)$ 
  - Mean:  $\mathbb{E}[p_k] = \frac{\alpha_k}{\sum_{k=1}^K \alpha_k}$
  - Variance:  $var[p_k] = \frac{\alpha_k(\alpha_0 \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$  where  $\alpha_0 = \sum_{k=1}^K \alpha_k$
- Note:  $\boldsymbol{p}$  is a point on (K-1)-simplex
- Note:  $\alpha_0 = \sum_{k=1}^K \alpha_k$  controls how peaked the distribution is
- Note:  $\alpha_k$ 's control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of  $\alpha$ :



## Now comes the

Gaussian (Normal) distribution...

#### **Univariate Gaussian Distribution**

- Distribution over real-valued scalar r.v. x
- ullet Defined by a scalar **mean**  $\mu$  and a scalar **variance**  $\sigma^2$
- Distribution defined as

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



- Mean:  $\mathbb{E}[x] = \mu$
- Variance:  $var[x] = \sigma^2$
- Precision (inverse variance)  $\beta = 1/\sigma^2$

#### **Multivariate Gaussian Distribution**

- ullet Distribution over a multivariate r.v. vector  $oldsymbol{x} \in \mathbb{R}^D$  of real numbers
- Defined by a mean vector  $\mu \in \mathbb{R}^D$  and a  $D \times D$  covariance matrix  $\Sigma$

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$



- The covariance matrix  $\Sigma$  must be symmetric and positive definite
  - All eigenvalues are positive
  - $z^{\top}\Sigma z > 0$  for any real vector z
- Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the **precision matrix**  $\mathbf{\Lambda} = \mathbf{\Sigma}^{-1}$

#### Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full



# Some nice properties of the Gaussian distribution..

#### Multivariate Gaussian: Marginals and Conditionals

ullet Given  $m{x}$  having multivariate Gaussian distribution  $\mathcal{N}(m{x}|m{\mu},m{\Sigma})$  with  $m{\Lambda}=m{\Sigma}^{-1}$ . Suppose

$$egin{aligned} \mathbf{x} &= egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix}, & egin{pmatrix} oldsymbol{\mu} &= egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \ oldsymbol{\Sigma} &= egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}, & oldsymbol{\Lambda} &= egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix} \end{aligned}$$

The marginal distribution is simply

$$p(oldsymbol{x}_a) = \mathcal{N}(oldsymbol{x}_a | oldsymbol{\mu}_a, oldsymbol{\Sigma}_{aa})$$
 given by

The conditional distribution is given by

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Lambda}_{aa}^{-1})$$
$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b)$$

### Thus marginals and conditionals of Gaussians are Gaussians

#### Multivariate Gaussian: Marginals and Conditionals

• Given the conditional of an r.v. y and marginal of r.v. x, y is conditioned on

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$

 $\bullet$  Marginal of y and "reverse" conditional are given by

$$\begin{array}{rcl} p(\mathbf{x}|\mathbf{y}) &=& \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y}-\mathbf{b})+\mathbf{\Lambda}\boldsymbol{\mu}\},\mathbf{\Sigma}) \\ p(\mathbf{y}) &=& \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu}+\mathbf{b},\mathbf{L}^{-1}+\mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}}) \end{array}$$

where  $\mathbf{\Sigma} = (\mathbf{\Lambda} + \mathbf{A}^{\top} \mathbf{L} \mathbf{A})^{-1}$ 

- Note that the "reverse conditional" p(x|y) is basically the posterior of x is the prior is p(x)
- Also note that the marginal p(y) is the predictive distribution of y after integrating out x
  - Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handly for computing **marginal likelihoods**.

#### **Gaussians: Product of Gaussians**

Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

$$\begin{split} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \, \mathcal{N}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) &= \frac{1}{Z} \mathcal{N}(\mathbf{x}; \boldsymbol{\omega}, \mathbf{T}), \\ \text{where} \\ \mathbf{T} &= (\boldsymbol{\Sigma}^{-1} + \mathbf{P}^{-1})^{-1} \\ \boldsymbol{\omega} &= \mathbf{T}(\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{P}^{-1} \boldsymbol{\nu}) \end{split}$$

 $Z^{-1} = \mathcal{N}(\boldsymbol{\mu}; \boldsymbol{\nu}, \boldsymbol{\Sigma} + \mathbf{P}) = \mathcal{N}(\boldsymbol{\nu}; \boldsymbol{\mu}, \boldsymbol{\Sigma} + \mathbf{P})$ 

#### **Multivariate Gaussian: Linear Transformations**

ullet Given a  $oldsymbol{x} \in \mathbb{R}^d$  with a multivariate Gaussian distribution

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

ullet Consider a linear transform of  $oldsymbol{x}$  into  $oldsymbol{y} \in \mathbb{R}^D$ 

$$y = Ax + b$$

where **A** is  $D \times d$  and  $\mathbf{b} \in \mathbb{R}^D$ 

 $oldsymbol{ ilde{y}} \in \mathbb{R}^D$  will have a multivariate Gaussian distribution

$$\mathcal{N}(\mathbf{y}; \mathbf{A} oldsymbol{\mu} + \mathbf{b}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{ op})$$

#### **Some Other Important Distributions**

- ullet Wishart Distribution and Inverse Wishart (IW) Distribution: Used to model  $D \times D$  p.s.d. matrices
  - Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices
  - ullet For D=1, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.
- Normal-Wishart Distribution: Used to model mean and precision matrix of a multivar. Gaussian
  - Normal-Inverse Wishart (NIW): : Used to model mean and cov. matrix of a multivar. Gaussian
  - $\bullet$  For D=1, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)
- Student-t Distribution (a more robust version of Normal distribution)
  - Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details