Ejercicio 2 - Entrega 2 - Grafos

Enzo Giannotta

22 de abril de 2023

0.1. Ejercicio 2 - Entrega 2

Ejercicio 0.1.1. Demuestre o de un contraejemplo: un grafo es bipartito si y solo si ningún par de vértices adyacentes tienen la misma distancia con algún otro vértice.

Solución. Sugerencia: sugiero modificar un poco el enunciado para que no haya ambigüedad. Es decir, si G es un grafo conexo entonces probaremos que, es bipartito si y solo si no existen dos vértices adyacentes distintos a igual distancia de otro vértice (llamemos a esta propiedad Q). Para el caso no conexo, simplemente se puede probar que G es bipartito si y solo si cada componente cumple la propiedad Q, pues en general si tomamos dos vértices adyacentes x,y luego la distancia a cualquier punto z que no esté en la misma componente que x,y está a distancia ∞ , es decir, trivialmente $d(x,z) = \infty = d(y,z)$. Recíprocamente, un grafo no conexo que cumple la propiedad Q no es muy divertido, pues si tiene al menos dos vértices, no pueden ser adyacentes (i.e. no tiene aristas) porque de lo contrario habría un tercer vértice en otra componente, en particular a igual distancia ∞ de ambos.

Supongamos que G es conexo y bipartito. Sea $A \cup B = V(G)$ una partición tal que no hay vértices adyacentes en $A \neq \emptyset$ y $B \neq \emptyset$. Probemos que no existen vértices adyacentes con la misma distancia a otro punto. Sean x,y dos vértices adyacentes, en particular podemos suponer luego de permutar los nombres, que $x \in A$ e $y \in B$. Sea $v \in V(G)$ un vértice, entonces $v \in A$ o $v \in B$, sin pérdida de generalidad supongamos que $v \in A$. Como G es conexo, existen caminos

$$P_1 = P_{v,x} : x_0 = v, x_1, \dots, x_r = x$$
 y $P_2 = P_{v,y} : y_0 = v, y_1, \dots, y_s = y$

de longitud mínima, es decir r = d(x,v) y s = d(y,v). Por un lado podemos probar recursivamente que r es par: como $x_0 \in A$ y x_1 es adyacente, debe ser que $x_1 \in B$, idénticamente x_2 es adyacente a x_1 , luego $x_2 \in A$, etc, es decir que $x_i \in A$ si y solo si i es par. Esto dice que como $x_r \in A$, r es par. Análogamente, podemos ver que $y_i \in B$ si y solo si i es impar, con lo cual s es impar. Luego, $s \neq r$.

Recíprocamente, supongamos que un grafo conexo G no tiene un par de vértices adyacentes a la misma distancia de otro. Veamos que es bipartito, para eso construyamos una bipartición explícitamente. Sea v un vértice de G fijo, definimos la siguiente partición: consideremos como A al conjunto de los vértices a distancia par de v, y B al de los vértices a distancia impar de v. Estos conjuntos claramente particionan a G, luego nos falta ver que no hay vértices x, y adyacentes, en A o en B. En efecto, por el absurdo supongamos que x, y son adyacentes y están en el mismo conjunto (ver la Figura 0.1). Por hipótesis $d(x,v) \neq d(y,v)$, sin pérdida de generalidad supongamos que d(x,v) < d(y,v). Pero también, al estar ambos x, y en A o en B, se tiene que d(x,v) y d(y,v) tienen la misma paridad. Consecuentemenete, $d(x,v) \leq d(y,v) - 2$. Ahora, consideremos un camino P_{xv} entre x y v que realice la distancia entre ambos; tenemos que y no pertenece a P_{xv} , ya que de lo contrario se tendría que $d(y,v) \leq d(x,v)$; con lo cual tenemos un camino yxP_{xv} de longitud d(x,v) + 1 < d(y,v), entre y y v. Imposible.

Figura 1: Ilustración del absurdo: dos vértices adyacentes dentro del mismo conjunto azul.