

Duck comics

When you don't use LSTM for a long sequence RNN:

Gradient Flow

Residual block

Dense block

RNNs

Recurrent Neural Networks: Standard Architecture

$$h_t = f_W(h_{t-1}, x_t)$$
 $ig|$ $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

RNNs

Recurrent Neural Networks: Unrolling → Same weights at every timestep!

Gradients

Recurrent Neural Networks: Gradient flow

Computing gradient of h₀ involves many factors of W (and repeated tanh)

Largest singular value > 1:

Exploding gradients

Largest singular value < 1: Vanishing gradients

LSTM

Long Short Term Memory: Mitigating the gradient problem

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Gated Recurrent Units

Similar to LSTM without output gate

Variables

- x_t: input vector
- h_t: output vector
- \hat{h}_t : candidate activation vector
- z_t: update gate vector
- r_t: reset gate vector
- W, U and b: parameter matrices and vector

Activation functions

Taken from here.

EN.601.482/682 Deep Learning

- σ_q : The original is a sigmoid function.
- φ_h: The original is a hyperbolic tangent.

$$z_t = \sigma_g(W_x x_t + U_z h_{t-1} + b_z)$$
 $r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r)$
 $\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h)$
 $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \hat{h}_t$