$\lim_{W\to 7} H(e^{jw}) = \lim_{W\to 7} \frac{j_1 e^{j_1 j_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 7} H(7) = \frac{1}{3} \int_{\mathbb{R}^{n}} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 7} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{W\to 8} \frac{j_1 e^{j_1 n_2}}{j_1 e^{j_1 n_2} - w_1} = 10$ $\lim_{W\to 8} \lim_{$

$$|X(R)| = \sum_{n=0}^{N-1} |X(n)| e^{\frac{j2nnk}{N}}$$

$$|X(n)| = \sum_{n=0}^{N-1} |X(n)| e^{\frac{$$

$$X_{1}(n) = G_{5}(\frac{2mn K_{1}}{N}), \quad X_{1}(K) = \sum_{k=0}^{N-1} Y_{1}(n) e^{-\frac{1}{N}(n)} e^{-\frac{1}{N}} X_{1}(n) e^{-\frac{1}{N}(n)} e^{-\frac{1}{N}} X_{1}(n) e^{-\frac{1}{N}(n)} e^{-\frac{1}{N}} X_{1}(n) e^{-\frac{1}{N}(n)} e^{-\frac{1}{N}} X_{1}(n) e^{-\frac{1}{N}(n)} e^{-\frac{1}{N}(n$$

.4 J'm x(1) 70 6/12 XEN] = 0 , n < 0, n 7, 5, 12 - , رنن $X[K] = \sum_{N=0}^{N-1} x(n) e^{-\frac{1}{2NKN}}$ $X[K] = \sum_{N=0}^{N-1} x(n) e^{-\frac{1}{2NKN}}$ => SCH] = XEH] + [S(NO) - X(NO)] e - 1 n 1/100 المنال طام، عال عالم مرام وسي ١ ، وباد، له م مراه م من المنظاب ع ليم أبداماك يدم ناي شاره به ١١٥ اطلق مالله، بين طعا ,ح ١١٥ الست. ا عال الله الله عن ما تعن هم هستم . " مام ها زير را مي مي كنيم. ا۔ در نعلم متان کار ایما رادر طرن ای که مصری کاست، در نعل می سرس دیر نعام می کسیم. SCK+1] = XCK+1) + [SCH-7-XCHO] = 12nKho = SCK+1] = 8CK+1] = 0 SCK+1] = 0 SCK+ (111-11) - 6 215 2011 - 6 215 2011 - 6 215 2011 - 6 215 2011 - 6 215 2011 - 6 215 2011 - 6 2011 | (SCK-11) = - j 2 TNC SCK) = - j 2 TNC SIZ -> ho -- - 512 /h (SCK-117) -> MG = JS12 /h (SCK-117) ج اسفا عاست عرب است ، ، برما کما لم مستنبی اے، دنبال اسر می عبت

. 5 dim hens=(1/8) nucho, wh = 211/6, K= 0, 1, 2, --... 15 G(K) = Hiedu) Stin = 30K K=0, ---, 15 g(N) = I DFT (G(K)) Herebul = DT FT (($\frac{1}{3}$) N N -> g [n] - [[] h [n-mN]] RN(n) -, y [n] = [[[] (]) U (n-mN)] RN(n) U(n-mN) collins, g[n] = [[] (1/3)^1-mN] RN(n), $\sum_{m=-\infty}^{\infty} \left(\frac{1}{3}\right)^{n-m} N = \sum_{m=-\infty}^{\infty} \left(\frac{1}{3}\right)^{n} \left(\frac{1}{3}\right)^{m} - \left(\frac{1}{3}\right)^{m} \sum_{m=-\infty}^{\infty} \left(\frac{1}{3}\right)^{m} = \sum_{m=-\infty}^{\infty} \left(\frac{1}{3}\right)$ $= \left(\frac{1}{3}\right)^{n} = \left(\frac{1}{3}\right)^{n} = \left(\frac{1}{3}\right)^{n} = \left(\frac{1}{3}\right)^{n}$ سا ارسات مدانع را سل ۱۳۱۵ را به فرست را بد بدان الماسم. $\int \left[\left(\frac{1}{3} \right)^{n} - \frac{1}{1 - \left(\frac{1}{3} \right)^{N}} \right] \mathcal{R}_{N}(n) , \quad \mathcal{R}_{N}(n) = \begin{cases} 1 & \forall n < N \\ 0 & 0, \omega \end{cases}$ رست سود مرانی مسامه مه در از می و و و و و و و و از ایم عاسات سید ا را سَال مى سُون

Cxy cn] = [y cm] x [n+m] = [y [-m] x [n-m] = y [-n] * x [n] $X(n) * X_{2}(n) = \sum_{K=-\infty}^{\infty} X_{1}(K) X_{2}(n-K) \frac{DTT}{DTT}, \sum_{K=-\infty}^{\infty} \sum_{K=-\infty}^{\infty} X_{1}(K) X_{2}(n-K) e^{-j\omega h}$ $= \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} \sum_{n=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega n} = \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{n=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ $= \chi_{(\kappa)} \sum_{K=-\infty}^{\infty} \chi_{(\kappa)} e^{-j\omega k} = \chi_{(\kappa)} e^{-j\omega k}$ X[-n] DTXT X (e-in) xm X(e-in) = X*(e) x += b DTTT (Cxy(N)) = Cxy(e)") = Ytein, K(cin) QED/ PUDIN (who ++) عرام مراسر امد الله عدرت مساله طامع داست ، تساله عدام ما ما ما الله عدرت مساله طامع داست ، تساله عدام الله عدرت JEn] to cith < 50 Cxy [n] to Nix nx N2 الم لذب بها فيه از ما ذاري در درس مَسْنِل ما . في ها ي دانع آثر سي سُنِل درماره [ط ، من مندر والتم ما لمرتمفيل رسی درباز، در ای می آن . که در اسان در دربازه دهم مده کا مشار ضوادیدداست سندا: N1=0+0=0, N2=100+60-1-1=148 -, CXy(n) 7, CXN (148 جے) درا بلجا عمل دندالی سام سے کا دانش (م) وید (م) پر تسر روش سادہ ساز میں در فرس ملاحظہ (ج سرم مد منط حبرس از مريد. عمرا Alà وان است مد ۱-۹ مد ۱ مد ۱ مد و مدر نقاط عنول طای (۱۲۸ ، (۱۹۵۸ ک ترارات ما زلانی رویسان انجام سنود می بادستد. به منعا ۱۰-۱۰ مرا طرا معد بر وران (۱۲) به درستی بازیابی نش درست مطابق حزید درسی اندرست کنیم و نیم در مدر عدم ریایت شط مالی دینمه

م صوا ده مشردارم بر ان فقط لم ت ۱-۱۹ منه د جار + وزمنه مفاهند شد و نونه ما مزاند.

Scanned by CamScanner