Projeto Final de Laboratório de Sistemas Digitais

Universidade de Aveiro

Olha Buts, André Correia

Projeto Final de Laboratório de Sistemas Digitais

Dept. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

Olha Buts, André Correia (112920) o.buts@ua.pt, (87818) amcorreia@ua.pt

29 de maio de 2023

Conteúdo

1	Introdução	1
	Desenvolvimento do Sistema Digital 2.1 Arquitetura do Sistema	
3	Manual de Utilizador	7
4	Conclusões	8

Lista de Figuras

2.1	Diagrama Lógico do Sistema.	•
2.2	Abstração do Diagrama Lógico do Sistema.	٠
2.3	Diagrama de Estados da FSM de Controlo	4
2.4	Diagrama de Estados da FSM Principal	4
2.5	Testbench da FSM de Controlo	ļ
2.6	Testbench da FSM Principal	ļ
2.7	Testbench do Top-Level do Sistema	ļ

Introdução

Os alunos da Unidade Curricular de Laboratórios de Sistemas Digitais (*LSD*, código 40333) da Licenciatura em Engenharia de Computadores e Informática (*LECI*, código 8316) da Universidade de Aveiro (*UA*) foram propostos ao desenvolvimento de um Projeto Final que contempla três componentes: desenvolvimento do sistema digital de uma Máquina Automática de Fazer Pão (Projeto Número 8, Versão 2), criação de um relatório do desenvolvimento anteriormente referido, e defesa do projeto perante um Juri.

O sistema digital da Máquina Automática de Fazer Pão deve ser modelado em Very High Speed Integrated Circuits Hardware Description Language (VHSIC-HDL, ou VHDL) e testado numa Field-Programmable Gate Array (FPGA). Neste sentido, a máquina desenvolvida apresenta dois modos de operação principal: Fazer Pão Caseiro (Modo 1), ou Fazer Pão Rústico (Modo 2) – sendo que ambos os modos apresentam a possibilidade de adição de um tempo extra inicial, ou adição de um tempo extra final (que aumenta o tempo total de cozedura do pão). Apesar de cada um destes modos ser caracterizado por diferentes parâmetros temporáis, ambos partilham a mesma pipeline, ou procedimento de 'fazer pão' (o amassar da massa, o descanso da massa para levedar, e a cozedura no final).

Relativamente ao documento, este apresenta o relatório do desenvolvimento do sistema digital da Máquina Automática de Fazer Pão (Versão 2 do Projeto 8) de acordo com as competências adquiridas na Unidade Curricular de LSD. Neste sentido, o documento divide-se em quatro componentes, sendo estas a arquitetura do sistema digital (descrição conceptual do sistema), a implementação efetuada para a anterior arquitetura (representação gráfica do sistema digital), os métodos de validação usados (simulações efetuadas sobre a implementação da arquitetura), e por fim, um manual de utilizador da máquina como um todo (em ambiente de desenvolvimento através de uma FPGA) – sendo o foco da arquitetura e da implementação as Máquinas de Estados Finitos (MEF, ou FSM em Inglês).

Desenvolvimento do Sistema Digital

O desenvolvimento e implementação do sistema digital desta máquina passa por três fases: arquitetura (desenho lógico de todo o funcionamento do sistema), implementação (em VHDL, usando o programa Intel[®] Quartus[®] Prime) e uma posterior validação (testes via *testbenches* em VHDL e via uso normal, numa ótica de utilizador).

2.1 Arquitetura do Sistema

Nesta secção aborda-se a estrutura do sistema digital através de uma descrição conceptual da lógica que gerou o produto final (em ambiente de desenvolvimento por via de FPGA). Neste sentido, a arquitetura aplicada neste projeto divide-se em duas zonas que estão intrinsecamente interligadas:

- Zona de controlo do sistema, responsável maioritariamente pelos *inputs* por exemplo:
 - Conjunto (físico / hardware) de keys.
 - Conjunto de switches.
 - Comportamento (lógico) de start/stop.
 - Comportamento de reset do sistema.
- Zona de controlo do procedimento de 'fazer pão', responsável pela maior parte do *output*, e por toda a funcionalidade de 'fazer pão', por exemplo:
 - Comportamento de cada etapa do processo de amassar, levedar e cozer o p\(\tilde{a}\)o.
 - Output do estado atual da máquina, assim como de informações ao utilizador, através de componentes físicos tais como o *Liquid-Crystal Display* (LCD) e os 7-Segment Displays da FPGA.

Estas duas zonas de controlo são ambas compostas por elementos lógicos *standard*, assim como por controladores costumizados (as FSM). Estas FSM caracterizamse por serem comunicantes, o que possibilita comportamentos que interligam simultâneamente a lógica das duas zonas de controlo – destacando-se o caso da possibilidade de adicionar um tempo extra de cozedura (no final do processo de 'fazer pão').

Na Figura 2.1 visualiza-se o diagrama lógico completo do sistema, estando a azul destacada a zona de controlo do sistema (denominada doravante por FSM de Controlo), e a verde destacada a zona de controlo do procedimento de 'fazer pão' (doravante denominada por FSM Principal).

Figura 2.1: Diagrama Lógico do Sistema.

Assim, simplifica-se o circuito lógico através da abstração representada pela Figura 2.2 onde se destaca, conceptualmente, o sistema. Nesta Figura pode-se identificar que o sistema é constituído por duas FSM principais que controlam logicamente o conjunto de *inputs* e *outputs* fornecidos pela FPGA. A FSM de Controlo pode ser descrita pela responsabilidade dos mecanismos de *start/stop*, reset, temporizadores (ligados à lógica de adição de tempos extra no início, ou no final), e pela seleção do modo de programa (tipo de pão Caseiro, ou Rústico). A FSM Principal é reponsável por toda a *pipeline* de 'fazer pão' – isto é, os estados de amassar, levedar e cozer.

Figura 2.2: Abstração do Diagrama Lógico do Sistema.

2.2 Implementação do Sistema

Nesta secção ilustram-se alguns aspetos da implementação da arquitetura anteriormente apresentada, tais como os diagramas de estados das FSM de Controlo e FSM Principal.

Deste modo, começa-se por analisar o diagrama de estados da FSM de Controlo (ver Figura 2.3) onde se destaca a responsabilidade de iniciar a *pipeline* da FSM Principal, assim como a responsabilidade de pausar todo o procedimento – seja no momento de amassar, levedar, ou amassar o pão. Ainda pela Figura 2.3 se denota o controlo dos tempos extras (inicial, ou final).

Figura 2.3: Diagrama de Estados da FSM de Controlo.

Relativamente à FSM Principal, apesar desta conter uma interface que alimenta alguns sinais de input da FSM de Controlo (por exemplo, o sinal "newPrg"que indica que terminou o seu ciclo), denota-se uma responsabilidade quase total pela pipeline de amassar, levedar, e cozer o pão – onde a diferença entre o pão caseiro e rústico é no tempo de amassar (10s/15s, respetivamente) e de levedar (04s/08s); cozer (10s/10s) – sendo que os tempos específicos para cada tipo de pão (ou modo de operação) são alimentados por uma o sinal $Read\ Only\ Memory\ (ROM)$.

Figura 2.4: Diagrama de Estados da FSM Principal.

2.3 Validação do Sistema

Esta última secção do Desenvolvimento do Sistema Digital (capítulo 2) tem como objetivo abordar os procedimentos implementados para validação do sistema – com foco sobre a validação das FSM usando *testbenches* desenhadas em VHDL. Contudo, também se aplicou uma rotina de interação com a máquina na ótica do utilizador (num formato de desenvolvimento em FPGA) em cada nova versão da implementação.

Neste sentido, verifica-se na Figura 2.5 a correta transição de estados da FSM de Controlo quando aplicados diferentes valores nos seus inputs. É de se notar que esta FSM de Controlo tem como principais blocos lógicos *standard* dois temporizadores (que são responsáveis pelo tempo extra no inicio, ou no final), assim como um sinal proveniente da FSM Principal (que indica se o ciclo da *pipeline* terminou). Deste modo, a manipulação destes valores de acordo com comportamentos esperados – e outros aleatórios (*edge-cases* potencialmente problemáticos) – permite validar o bloco lógico como corretamente funcional.

Figura 2.5: Testbench da FSM de Controlo.

Relativamente à FSM Principal, como se verifica na Figura 2.6, aplicando a mesma metodologia de manipulação das entradas, obtem-se o comportamento esperado (correto) do bloco lógico.

Figura 2.6: Testbench da FSM Principal.

Por fim, indica-se a Figura 2.7 onde demonstra o teste efetuado ao sistema como um todo (*Top-Level*). Nesta Figura, verifica-se o correto comportamento da Máquina Automática de Fazer Pão – exatamente como analisado manualmente na FPGA.

Figura 2.7: Testbench do Top-Level do Sistema.

Manual de Utilizador

TIRAR FOTO DO MENU DE UTILIZADOR (INIT).

Conclusões

A arquitetura da Máquina Automática de Fazer Pão e a posterior implementação através de Máquinas de Estados Finitos Comunicantes, e toda a envolvente lógica digital, demonstrou atingir um nível de complexidade que necessita de procedimentos de desenvolvimento bem definidos desde o início do projeto.

Deste modo, é de importância realçar a necessidade de estratégias de desenvolvimento faseadas e de mecanismos de controlo, tais como versões de projeto, assim como metodologia em todas as etapas do projeto. Por se prever este nível de complexidade, esta equipa preparou um repositório (...)