दैनिक जीवन में रसायन

अभ्यास प्रश्न

बहुविकल्पीय प्रश्न

- 1. निम्न में से कौन-सा पदार्थ दर्द निवारक (पीड़ाहारी) है-
- (1) ऐस्पिरिन
- (2) पेनिसिलिन
- (3) इण्डिगो
- (4) सैकरीन।
- 2. इक्वैनिल एक उदाहरण है-
- (1) पीड़ाहारी का
- (2) प्रशांतक औषधि का
- (3) प्रतिरोधी
- (4) प्रतिजैविक।
- 3. निम्न में से कौन-सा पदार्थ प्रतिजैविक नहीं है-
- (1) ऐम्पिसिलीन
- (2) स्ट्रेप्टोमाइसिन
- (3) क्लोरैम्फेनिकॉल
- (4) क्लोरफेनिरामिन।
- 4. निम्न में कौन-सा पदार्थ पूतिरोधी है-
- (1) पैरासिटामॉल
- (2) ल्यूमीनल
- (3) डेटॉल
- (4) प्रोमेथजिन।
- 5. सल्फा औषधियाँ होती हैं-
- (1) पीड़ाहारी
- (2) प्रतिजैविकी

- (3) प्रशांतक
- (4) प्रतिहिस्टैमिन।

6. निम्न में कौन-सा प्रतिअम्ल है-

- (1) गॉसीपॉल
- (2) कीनॉल
- (3) ओमेप्रेजॉल
- (4) डेटॉल।

7. निम्न में कौन-सा समूह वर्ण मूलक है-

- (1) -CH₃
- **(2)** -OH
- (3) -NR₂
- (4) N = N-

8. क्रोमोजेन होते हैं-

- (1) क्रोमोफोर युक्त यौगिक
- (2) ऐल्केन
- (3) कृत्रिम मधुरक कर्मक
- (4) उपर्युक्त में से कोई नहीं।

9. सोडियम बेन्जोएट है-

- (1) कृत्रिम मधुरक कर्मक
- (2) खाद्य रंग
- (3) परिरक्षक
- (4) प्रतिऑक्सीकारक।

10. सैकरीन है-

- (1) परिरक्षक
- (2) कृत्रिम मधुरक कर्मक
- (3) खाद्य रंग
- (4) प्रतिऑक्सीकारक।

11. अपमार्जक होते हैं-

- (1) प्राकृतिक पदार्थ
- (2) दुर्बल अम्ल तथा प्रबल क्षार के लवण

- (3) संश्लेषित पदार्थ (4) क्षारीय। 12. ज्वरनाशी दवाओं का उपयोग किया जाता है-(1) दर्द निवारण में
- (2) बुखार उतारने में
- (3) मलेरिया नियन्त्रण में
- (4) अन्य हानिकारकों को नष्ट करने में।

13. निम्न में से कौन-सा पदार्थ ज्वरनाशी नहीं है-

- (1) पैरासिटामॉल
- (2) ऐस्पिरिन
- (3) क्लोरैम्फेनिकॉल
- (4) फिनेसिटीन।

14. साबुन तथा अपमार्जकों को किस प्रकार की श्रेणी में सम्मिलित किया गया है-

- (1) पृष्ठ सक्रिय
- (2) पृष्ठ अक्रिय
- (3) जल में विलेय
- (4) जल में अविलेय।

15. सैकरीन शक्कर से कितने गुना मीठी होती है?

- **(1)** 100
- **(2)** 200
- (3) 300
- (4) 600.

16. अपमार्जक के जलीय विलयन की pH लगभग होती है-

- **(1)** 8-9
- **(2)** 5-6
- **(3)** 7
- **(4)** 11-14.

17. कृत्रिम मधुरक कर्मक है-

- (1) सैकरीन
- (2) सोडियम सैकरीन

- (3) कार्बामेट
- (4) उपर्युक्त सभी।

18. खाद्य परिरक्षक के रूप में प्रयुक्त होते हैं-

- (1) C₆H₅COONa
- (2) K₂S₂O₅
- (3) CH₃COONa
- (4) (1) व (2) दोनों।

19. कृत्रिम मधुरक कर्मक का उदाहरण है-

- (1) शर्करा
- (2) फ्रक्टोस
- (3) शहद
- (4) सैकरीन।

20. फीनॉल को 1% विलयन को कहते हैं-

- (1) रोगाणुनाशक
- (2) पूतिरोधी
- (3) प्रतिजैविक
- (4) ज्वरनाशी।

21. फीनॉल का 0.2% विलयन कहलाता है-

- (1) रोगाणुनाशक
- (2) प्रतिरोधी
- (3) प्रतिजैविक
- (4) ज्वरनाशी।

22. पैरासिटामॉल है

- (1) पृतिरोधी
- (2) ज्वरनाशी
- (3) प्रतिजैविक
- (4) रोगाणुनाशी।

23. ऐस्पिरिन का रासायनिक नाम है-

- (1) मेथिल सैलिसिलेट
- (2) ऐसीटिल सैलिसिलिक अम्ल

- (3) सोडियम सैलिसिलेट
- (4) सैलिसिलिक अम्ल।

24. 2-ऐसीटॉक्सी बेन्जोइक अम्ल है-

- (1) प्रतिहिस्टैमिन
- (2) पूतिरोधी
- (3) प्रतिजैविक
- (4) दर्दनाशक।

25. इकैनिल उदाहरण है-

- (1) प्रशांतक औषधि का
- (2) प्रतिजैविक का
- (3) ज्वरनाशी का
- (4) पीड़ाहारी का।

26. ऐस्पिरिन है-

- (1) पूतिरोधी
- (2) ज्वरनाशी
- (3) नारकोटिक
- (4) प्रतिमलेरिया।

27. क्लोरैम्फेनिकॉल है-

- (1) प्रशांतक
- (2) ब्रॉड स्पेक्ट्रम प्रतिजैविक
- (3) नार्कोटिक
- (4) प्रति मलेरिया।

28. निम्न में से कौन प्रतिजैविक नहीं है-

- (1) पेनिसिलीन
- (2) सल्फा औषधि
- (3) क्लोरैम्फेनिकॉल
- (4) बाइथायोनल।

29. पैरासिटामॉल औषध की सही संरचना है-

30. निम्न यौगिक का प्रयोग होता है-

- (1) प्रतिजैविक
- (2) एनालजेसिक
- (3) पेस्टिसाइड
- (4) एण्टीसैप्टिक।

31. निम्न में से कौन एण्टीबायोटिक का उदाहरण है-

- (1) टैरामाइसिन
- (2) ऐस्पिरिन
- (3) पैरासिटामॉल
- (4) क्लोरोक्किन।

32. टायफाइड के इलाज में निम्न में से कौन औषध के रूप में प्रयोग होता है-

- (1) पेनिसिलिन
- (2) क्लोरैम्फेनिकॉल
- (3) टैरामायसिन
- (4) सल्फाडायजीन।

33. सैलोल का प्रयोग होता है-

- (1) प्रतिजैविक
- (2) ज्वरनाशी

- (3) (1) व (2) दोनों
- (4) (1), (2) में से कोई नहीं।

34. क्लोरोक्किन है-

- (1) एनालजेसिक
- (2) एण्टीपायरेटिक
- (3) एण्टीबायोटिक
- (4) प्रशांतक।

35. आर्सेनिक औषध का प्रयोग निम्न में से किसके इलाज में होता है?

- (1) पीलिया में
- (2) टायफाइड में
- (3) साइफिलिसे में
- (4) कॉलेरा में।

36. मलेरिया के इलाज के लिए कारगर औषध है-

- (1) कुनैन
- (2) ऐस्पिरिन
- (3) सैलोल
- (4) एनालजेसिक।

37. हेरोइन व्युत्पन्न होता है-

- (1) मार्फीन का
- (2) निकोटीन का
- (3) कोकीन का
- **(4)** कैफीन का।

38. पेनिसिलीन की खोज सर्वप्रथम की थी-

- (1) ए. फ्लेमिंग
- (2) एल. पाश्चर
- (3) जी. थॉमसान
- (4) ए. नोबेल।

39. निम्न में से कौन-सी औषध ज्वरनाशी नहीं है-

- (1) नोवेलजीन
- (2) ऐस्पिरिन

- (3) पैरासिटामॉल
- (4) इरगापायरिन।

40. AIDS के विरुद्ध कार्य करने वाली औषध है-

- **(1)** एनोविड-E
- (2) AZT
- (3) BHA
- (4) LSD.

41. क्लोरोजाइलिनोल है-

- (1) 4-क्लोरो-3, 5-डाइमेथिल फीनॉल
- (2) 3-क्लोरो-4, 5-डाइमेथिल फीनॉल
- (3) 4-क्लोरो-2, 5-डाइमेथिल फीनॉल
- (4) 5-क्लोरो-3, 4-डाइमेथिल फीनॉल।

42. निम्न में से कौन 'morning after pill' की तरह प्रयोग होती है-

- (1) नॉरएथिनड़ान
- (2) एथिनाइलऐस्ट्राडाइऑल
- (3) मिफेस्टिोन
- (4) बाइथियोनल।

43. टी. बी. के इलाज में प्रयुक्त होने वाला प्रतिजैविक है-

- (1) पेनिसिलिन
- (2) क्लोरैम्फेनिकॉल
- (3) टेट्रासाइक्लिन
- (4) स्ट्रेप्टोमाइसिन।

44. निम्न दिये गये संरचना सूत्र को कहते हैं-

- (1) पेनिसिलिन-F
- (2) पेनिसिलिन-G

- (3) पेनिसिलिन-K
- (4) एम्पीसिलिन।

45. निम्न यौगिक किस तरह प्रयोग होता है-

- (1) एक प्रति ज्वलनकारी यौगिक
- (2) दर्दनाशक
- (3) नींद दिलाने वाला
- (4) पूतिरोधी।

46. एक विस्तृत स्पेक्ट्रम एण्टीबायोटिक है-

- (1) पैरासिटामॉल
- (2) पेनिसिलिन
- (3) ऐस्प्रिन
- (4) क्लोरैम्फेनिकॉल।

47. क्लोरीन युक्त कृत्रिम मिठास पैदा करने वाला यौगिक जो देखने और स्वाद में सर्करा जैसा है और कुर्किंग तापमान पर स्थिर है-

- (1) ऐस्पार्टेम
- (2) सैकरीन
- (3) सुक्रोलोस
- (4) ऐलिटैम।

48. एमोक्सिलीन किसका अर्द्ध-संश्लेषित परिष्करण है-

- (1) पेनिसिलिन
- (2) स्ट्रेप्टोमाइसिन
- (3) टेट्रासाइक्लिन
- (4) क्लोरैम्फेनिकॉल।

49. नॉवाल्जिन एक सामान्य है।

- (1) पीड़ाहारी
- (2) प्रतिजैविक

- (3) ज्वरनाशी
- (4) प्रतिमलेरियल।

50. सेटिल टाइमेथिल अमोनियम ब्रोमाइड अपमार्जक लोकप्रिय है।

- (1) ऋणायनी अपमार्जक
- (3) अनायनित अपमार्जक
- (2) धनायनी अपमर्जाक
- (4) मीठा उत्पन्न करने वाला।

उत्तरमालाः

1. (1)	2. (2)	3, (4)	4. (3)	5, (2)	6. (3)	7, (4)	8, (1)	9. (3)	10, (2)
11. (3)	12. (2)	13. (3)	14. (I)	15. (4)	16. (3)	17. (4)	18. (4)	19. (4)	20. (1)
21. (2)	22. (3)	23. (2)	24. (4)	25. (1)	26. (2)	27. (2)	28. (4)	29. (2)	30. (2)
31. (I)	32. (2)	33. (1)	34. (3)	35. (3)	36. (1)	37. (1)	38. (1)	39. (4)	40. (2)
41. (f)	42. (3)	43. (4)	44. (2)	45. (2)	46. (4)	47. (3)	48. (1)	49. (1)	50. (2)

अति लघुत्तरात्मक प्रश्न

प्रश्न 1. साबुनीकरण किसे कहते हैं?

उत्तर: वसा या तेलों की सोडियम या पोटैशियम हाइड्रॉक्साइड की अभिक्रिया से साबुन तथा ग्लिसरॉल प्राप्त होते हैं। साबुन निर्माण की यह क्रिया (Saponification) कहलाती है।

$$CH_2 - O - COR$$
 | $CH_2 - OH$ | $CH - O - COR$ | $CH - OH$ | $CH - OH$ | $CH_2 - O - COR$ | $CH_2 - OH$ | $CH_2 - OH$ | $CH_2 - OH$ | $CH_2 - OH$ | $CH_3 - OH$ | CH_3

प्रश्न 2. कठोर तथा मृदु साबुन किसे कहते हैं?

उत्तर: संतृप्त वसीय अम्लों के सोडियम लवण कठोर साबुन (Hard Soaps) कहलाते हैं। जबकि असंतृप्त वसीय अम्लों के पोटैशियम लवण मृदु साबुन (Soft Soaps) कहलाते हैं।

प्रश्न 3. अपमार्जक किसे कहते हैं?

उत्तर: लम्बी श्रृंखला वाले हाइड्रोकार्बन तथा सल्फ्यूरिक अम्ल या सल्फोनिक अम्लों के व्युत्पन्न अपमार्जक (Detergents) कहलाते हैं।

उदाहरणार्थ:

 $CH_3 - (CH_2)_{10}CH_2 - O - SO_2 - O^-Na^+$ सोडियम लॉरिल सल्फेट

प्रश्न 4. जैव अपघटनीय तथा जैव अनपघटनीय अपमार्जक क्या होते हैं?

उत्तर: वे अपमार्जक जो सूक्ष्म जीवों की उपस्थिति में सरल अणुओं में अपघटित हो जाते हैं, जैव अपघटनीय (Biodegradable) अपमार्जक कहलाते हैं, जबिक वे अपमार्जक जो सूक्ष्म जीवों की उपस्थिति में सरल अणुओं में अपघटित नहीं होते हैं, जैव अनपघटनीय अपमार्जक (Non biodegradable detergetns) कहलाते हैं।

प्रश्न 5. एक धनायनिक अपमार्जक का उदाहरण दीजिए।

उत्तर:

सेटिल टाइ मेथिल अमोनियम ब्रोमाइड

प्रश्न 6. वर्णमूलक किसे कहते हैं? इसके उदाहरण दीजिए।

उत्तर: कार्बनिक यौगिकों में सामान्यत: रंग केवल तब पाया जाता है जब उनमें कोई असंतृप्त या बहुबन्ध उपस्थित हो। ऐसे समूहों को वर्णमूलक (Chromophores) कहा जाता है।

प्रश्न 7. वर्णवर्द्धक से क्या अभिप्राय है? इनके उदाहरण दीजिए।

उत्तर: कुछ संतृप्त समूह ऐसे होते हैं जो अकेले यौगिक को रंग प्रदान करने में असमर्थ होते हैं, परन्तु किसी वर्णमूलक समूह युक्त यौगिक में प्रविष्ट करवा दिए जाने पर यौगिक को रंग प्रदान करने योग्य बना देते हैं अथवा उसका रंग गहरा कर देते हैं। ऐसे समूह वर्णवर्द्धक (Auxochromes) कहलाते हैं।

प्रश्न 8. मॉडेण्ट रंजक क्या होते हैं? इसके उदाहरण दीजिए।

उत्तर: मॉडेंट रंजक: (Moderate Dyes) रंग बन्धक या मॉडेन्ट रंजक मुख्यतः ऊनी वस्तों के रंजन में प्रयुक्त किए जाते हैं। इनमें पहले कपड़े को किसी निश्चित धातु आयन के विलयन में डुबोया जाता है उसके बाद रंजक विलयन में डुबोते हैं जिससे धातु आयन एवं रंजक के मध्य उपहसंयोजक बन्ध बन जाता है। इस प्रका रंजक रेशों का बन्धन द्वारा जुड़ जाते हैं। इस प्रकार के रंजकों की महत्त्वपूर्ण विशेषता यह होती है कि एक ही रंजक भिन्न-भिन्न धातु आयनों के साथ भिन्न-भिन्न रंग प्रदान करता है।

उदाहरणार्थ: एलिजरीन रंजक ऐल्युमिनियम आयनों के साथ गुलाबी रंग देता है जबकि बेरीयम आयनों के साथ नीला रंग प्रदान करता है।

एरिजरीन-Al रंजक (गुलाबी)

प्रश्न 9. ट्राइफेनिलमेथेन रंजक क्या होते हैं? इनके उदाहरण दीजिए।

उत्तर: ट्राइफेनिल मेथेन रंजक (Triphenyl Methane Dyes): ये रंजक ट्राइफेनिल मेथेन के ऐमीनो व्युत्पन्न है। इस वर्ग के अनेक रंजक आते हैं उदाहरणस्वरूप मेलेकाइट हरा एक बहुत उपयोगी रंजक है जो ऊन तथा रेशम को सीधा रंगता है और सूती कपड़ों को रंगने के लिए टेनिन से मॉडेंन्ट करके रंगा जा सकता है।

प्रश्न 10. वेट रंजक क्या होते हैं? इनके उदाहरण दीजिए।

उत्तर: वेट रंजक (Wet dyes): ये सम्भवत: प्राचीनतम ज्ञात रंजक है। इनमें अविलेयशील रंजक को पहले उसके विलेयशील रंगहीन रूप में बदलकर रेशों को भिगोया जाता है। अब उसे वायु में सुखाया जाता है। जिससे उसका ऑक्सीकरण हो जाता है। रंगहीन विलेयशील रूप ऑक्सीकृत होकर रंगीन अविलेयशील रूप में आ जाता है।

उदाहरणार्थ: इण्डिगो रंजक

लघुत्तरात्मक प्रश्न

प्रश्न 1. साबुन क्या होते हैं? एक उदाहरण दीजिए।

उत्तर: उच्च वसीय अम्लों जैसे-स्टीयरिक अम्ल, पामिटिक अम्ल, ओलियक अम्ल आदि के सोडियम तथा पोटैशियम लवण साबुन (Soaps) कहलाते हैं।

उदाहरणार्थ: सोडियम पामिटेट (C₁₅H₃₁COONa)

प्रश्न 2. साबुन तथा अपमार्जक में अन्तर समझाइए।

उत्तर: साबुन तथा अपमार्जक में अन्तर

क्र, सं	साबुन	अपमार्जक
1.	ये दुर्बल क्षार (स्टीयरिक अम्ल, पामिटिक अम्ल) तथा	ये प्रबल अम्ल (प्रतिस्थापित सल्फोनिक अम्ल, पामिटिक अम्ल)
	प्रबल श्वार (सोडियम हाइड्रॉक्साइड) के लवण होते हैं।	तथा प्रबल क्षार (सोडियम हाइड्रॉक्साइड) के लवण हैं।
2.	साबुन का जलीय विलयन क्षारीय होता है।	इनका जलीय विलयन उदासीन होता है।
3.	इनके द्वारा रेशमी तथा ऊनी वस्त्रों की सफाई नहीं की जा	सभी प्रकार के रेशों की सफाई की जा सकती है।
	सकती है।	
4.	कठोर जल में उपस्थित Ca ²⁺ व Mg ²⁺ आयन सानुन द्वारा	अपमार्जक अवश्वेप नहीं बनाते हैं फलस्वरूप कठोर जल में भी
	अवक्षेपित हो जाते हैं।	उपयोगी हैं।

प्रश्न 3. मिशेल निर्माण द्वारा साबुन तथा अपमार्जक की क्रिया समझाइए।

उत्तर: साबुन के अणु के दो भाग होते हैं। एक अध्रुवीय (nonpolar) भाग, जो कार्बन की एक लम्बी श्रृंखला होती है। दूसरा ध्रुवीय (polar) भाग, जो कार्बोक्सिलेट समूह होता है। साबुन के अध्रुवीय भाग को पूँछ (tail) तथा ध्रुवीय भाग को हैड (head) कहते हैं।

साबुन या अपमार्जक के अणु का अध्रुवीय भाग जल में अविलेय (hydrophobic) तथा तेलों में विलेय होता है। साबुन या अपमार्जक को जल में घोलने पर साबुन के अणु द्रव की सतह पर एक विशेष अणुक पर्त बना लेते हैं जिसमें साबुन का हैड भाग जल में डूबा रहता है जबिक टेल भाग जल के बाहर रहता है। यह रचना मिशेल (micelle) कहलाती है। मिशेल में साबुन के अणु का टेल भाग अन्दर की ओर तथा हैड भाग जल की ओर होता है। जब गन्दे कपड़ों को इसमें डुबोया जाता है तो धूल-मिट्टी के कण मिशेल में चले जाते हैं। साथ-ही-साथ तेल तथा ग्रीस आदि की चिकनाई मिशेल में चले जाते हैं। यह पूरी संरचना जल में विलेय होती है जिसके कारण यह जल के साथ बह जाती है तथा कपड़े साफ हो जाते हैं।

प्रश्न 4. "साबुन रहित साबुन क्या होते हैं?" उदाहरण द्वारा समझाइए।

उत्तर: अपमार्जक (detergents) साबुन रहित साबुन कहलाते हैं, क्योंकि ये साबुन नहीं होते हैं लेकिन साबुन के समान कार्य करते हैं।

उदाहरणार्थ:

$$CH_3 - (CH_2)_{10} CH_2 - O - SO_2 - \overline{O}Na$$

सोडियम लॉरिल सल्फेट (अपमार्जक)

प्रश्न 5. धनायनी, ऋणायनी एवं उदासीन अपमार्जकों को सक्दाहरण समझाइए।

उत्तर:

धनायनी अपमार्जक (Cationic Detergents): धनायनी अपमार्जक ऐमीनों के ऐसीटेट, क्लोराइड या ब्रोमाइड ऋणायनों के साथ बने चतुष्क लवण होते हैं। इनमें धनायनी भाग में लम्बी हाइड्रोकार्बन शृंखला होती है तथा नाइट्रोजन अणु पर एक धन आवेश होता है। अतः इन्हें धनायनी अपमार्जक कहते हैं। सेटिलाइमेथिल अमोनियम ब्रोमाइड एक प्रचलित धनायनी अपमार्जक है जो केश कंडीशनरों में डाला जाता है। धनायनी अपमार्जकों में जीवाणुनाशक गुण होते हैं तथा यह महँगे होते हैं। इसलिए इनके सीमित उपयोग हैं।

सेटिलट्राइमेथिल अमोनियम स्रोमाइड

ऋणायनी अपमार्जक (Anionic Detergents): ऋणायनी अपमार्जक लम्बी श्रृंखला वाले ऐल्कोहॉलों अथवा हाइड्रोकार्बनों के सल्फोनेटित व्युत्पन्न होते हैं। दीर्घ श्रृंखला वाली ऐल्कोहॉलों की सान्द्र सल्फ्यूरिक अम्ल से अभिक्रिया कराने से ऐल्किल हाइड्रोजन सल्फेट बनते हैं जिन्हें क्षार से उदासीन करने पर

ऋणायनी अपमार्जक बनते हैं। इसी प्रकार से ऐल्किल बेन्जीन सल्फोनेट, ऐल्किल बेन्जीन सल्फोनिक अम्लों को क्षार द्वारा उदासीन करने से प्राप्त होते हैं। ऋणायनी अपमार्जकों में अणु का ऋणायनी भाग शोधन क्रिया में शामिल होता है। ऐल्किल बेन्जीन सल्फोनेटों के सोडियम लवण ऋणायनी अपमार्जकों के महत्वपूर्ण वर्ग हैं। यह अधिकतर घरेलू उपयोग में काम आते हैं। ऋणायनी अपमार्जक दंतमंजन में भी इस्तेमाल किए जाते हैं।

 $CH_3(CH_2)_{10}CH_2OH \xrightarrow{H_2SO_4}$ लॉरिल ऐल्कोहॉल $CH_3(CH_2)_{10}CH_2OSO_3H \xrightarrow{NaOH(\omega_q)}$ लॉरिल हाइडोजन सल्फेट

CH₃(CH₂)₁₀ CH₂OSŌ₃Na सोडियम लॉरिल सल्फेट (ऋणायनी अपमार्जक)

सोडियम डोडेसिलबेन्जीन सल्फोनेट (ऋणायनी अपमार्जक)

प्रश्न 6. फिनॉल्फ्यैलीन किस श्रेणी का रंजक है। इसकी संरचना बनाइए।

'उत्तर: फिनॉल्फ्थेलीन थैलीन वर्ग का रंजक है।

फिनोल्फ्यैलीन

प्रश्न 7. निम्न रंजकों की संरचना दीजिए

- 1. मेथिल ऑरेन्ज
- 2. फ्लुओरोसीन
- 3. ऐलिंजरीन

उत्तर: 1. मेथिल ऑरेन्ज

$$Na^{+}\bar{O}_{3}S$$
 - $N = N$ - $N = N$ Me₂

2. फ्लुओरोसीन

3. ऐलिजरीन

प्रश्न 8. रंजक तथा वर्णक में अन्तर स्पष्ट कीजिए।

उत्तर: रंजक तथा वर्णक में मुख्य अन्तर यह है कि रंजक वे पदार्थ होते हैं जो जल या अन्य विलायकों में विलेय होते हैं जबकि वर्णक जल या अन्य विलायकों में अविलेय रहते हैं। अर्थात् वर्णक स्कन्दित होकर रंजन कार्य करते हैं जो पदार्थ पर परत बना लेते हैं। अन्य शब्दों में रंजक पदार्थों द्वारा विलयन से अवशोषित होकर रंजन करते हैं जबिक वर्णक पदार्थों पर परत बनाकर रंजन कार्य करते हैं।

रंजक एवं वर्णक (Dyes and pigments)

वे कार्बनिक यौगिक जिनका प्रयोग खाद्य पदार्थों, कागज, दीवारों व अन्य पदार्थों को रंगने के लिए किया जाता है रंजक (Dyes) कहलाते हैं। प्राचीनकाल में रेशों या वस्तुओं के रंगने के लिए पेड़-पौध एवं जैविक पदार्थों से रंजकों को प्राप्त किया जाता था। वर्णक तथा रंजक दोनों पदार्थों के उपयोग में कोई अन्तर नहीं होता है। दोनों में प्रमुख अन्तर यह है कि रंजक वे पदार्थ होते हैं जो जल या अन्य विलायकों में विलेयशील होते हैं। जबिक वर्णक वे पदार्थ होते हैं जो जल अथवा अन्य विलायकों में अविलेय होते हैं। अर्थात् वर्णक (pigments) स्कंन्दित होकर रंजन कार्य करते हैं। तथा अन्य पदार्थों पर परत बना देते हैं। रंजक पदार्थों द्वारा विलयन से अवशोषित होकर रंजन करते हैं। जबिक वर्णक पदार्थों पर परत बनाकर रंजक कार्य करते हैं। रंजक तथा वर्णक पदार्थों में प्रमुख अन्तर सारणी में प्रदर्शित है

रंजकों तथा वर्णकों में अन्तर

	गुण. (Properties)	रंजक (Dye)	चर्णक (Pigment)
1.	विलेयता (Solubility)	बहुत से विलायकों में विलेयशील	जल एवं अधिकांश विलायकों में अविलेय
2	प्रकाश संवेदन (Photo senstivity)	प्रकाश के सम्पर्क में रहने से फीके पड़ जाते हैं और रंग हल्का होने लगता है।	ये अपेक्षाकृत प्रकाश से कम प्रभावित होते हैं।
3.	संख्या (Number)	ये बहुत अधिक संख्या में होते हैं और अनेक वर्गों में वर्गीकृत किए जाते हैं।	ये संख्या में कम होते हैं एवं वर्गीकृत भी नहीं किए जाते हैं।
4.	ठरपाद प्रतिरोध (Product Resistance)	ये वर्णकों की तुलना में कम प्रतिरोधी होते हैं जैसे विलायकों से बहुत प्रभावित होते हैं।	इनका प्रतिरोध बहुत उच्च होता है जैसे विलायकों से अप्रभावी रहते हैं।
5.	रासायनिक संगठन (Chemical Composition)	ये कार्बनिक यौगिक होते हैं।	ये सामान्यत: अकार्बनिक यौगिक होते हैं। या भारी जहरीली धातुएँ होती हैं।
6.	स्थिरता (Stability)	ये बहुत अधिक स्थायी या स्थिर नहीं होते हैं।	ये उच्च स्थायित्व प्रदर्शित करते हैं।
7.	ण्यलन (Ignition)	ये ज्वलनशील होते हैं।	ज्यलनशील नहीं होते हैं।

प्रश्न ९. रंजकों के सामान्य लक्षण समझाइए।

उत्तर: रंजकों के सामान्य लक्षण (General Characteristics of Dyes): एक रंजक में निम्नांकित महत्त्वपूर्ण गुणधर्म होने चाहिए

- 1. इनमें कोई विशेष रंग होना चाहिए।
- 2. इनमें कपड़े या रेशे को सीधे या परोक्ष रूप से रंगने की क्षमता होनी चाहिए।

- 3. ये प्रकाश से अप्रभावित रहने चाहिए।
- 4. ये जल, तनु अम्ल-क्षारों, ताप, शुष्क धुलाई में प्रयुक्त विलायकों, साबुन, अपमार्जकों इत्यादि के प्रति प्रतिरोधी होने चाहिए।

प्रश्न 10. निम्न पर संक्षिप्त टिप्पणी कीजिए

- 1. सीधे रंजक
- 2. प्रकीर्णन रंजक
- 3. अन्तर्निहित रंजक

उत्तर:

1. सीधे रंजक (Direct Dyes): इन रंजकों को गर्म जलीय विलयन में रेशों को सीधे डुबो दिया जाता है फिर उन्हें बाहर निकालकर सुखा लिया जाता है। ये रंजक सीधे ही उपयोग में लाये जाते हैं, इसलिए इन्हें सीधे रंजक (Direct Dyes) कहते है। ये सूत, रेयॉन, ऊन, रेशम नाइलोन आदि के रंजकन में प्रयोग किए जाते हैं। उदाहरणार्थ-मार्टीयस पीला, कान्गो लाल आदि।

2. प्रकीर्णन रंजक (Scattering Dyes): इन रंजकों में निलम्बन से रंजक के सूक्ष्म कण कपड़े पर विसरित या प्रकीर्णित होकर फैल जाते हैं। इस प्रकार के रंजक पॉलिएस्टर, नाइलॉन, पॉलीऐक्रिलो

नाइट्राइल इत्यादि रेशों के रंजन में प्रयुक्त होते हैं। उदाहरणार्थ-ऐन्थ्रोक्विनोन रंजक।

ऐन्थ्रोक्विनोन रंजक

3. अन्तर्निहित रंजक (Inherent Dyes): अन्तर्निहित रंजक विलयन में अभिक्रिया द्वारा रंजन प्रक्रम के समय ही संश्लेषित किए जाते हैं। कपड़े या रेशे को एक क्रियाकारक वियतन में डुबोकर दूसरे क्रियाकारक विलयन में डुबोया जाता है जहाँ विलयन में ही रंजक संश्लेषित होकर कपड़े या रेशों के साथ बन्ध बनाते हैं। ये रंजक सामान्यतः पक्के नहीं होते हैं। उदाहरणार्थ-फीनॉल या नैफ्थॉल विलयन के साथ भीगे हुए रेशों को यदि डाइऐजोनियम लवणों के विलयन में डालते हैं तो रेशों की सतह पर युग्मन अभिक्रिया सम्पन्न हो जाती है और अविलेय ऐजोरंजके रेशों की सतह पर अधिशोषित हो जाते हैं। सूत, रेशम, पॉलिएस्टर, नाइलोन इत्यादि का रंजन इसी विधि से किया जाता है। ऐसे रंजकों को 'बफ रंग' भी कहते हैं क्योंकि ये अभिक्रिया कम ताप पर सम्पन्न होती हैं।

निबन्धात्मक प्रश्न

प्रश्न 1. साबुन क्या होते हैं? इन्हें किस प्रकार बनाया जाता है? इनकी अपमार्जन क्रिया समझाइए।

उत्तर: साबुन (Soaps): उच्च वसीय अम्लों जैसे-स्टीयरिक अम्ल, पामिटिक अम्ल, ओलियक अम्ल आदि के सोडियम या पोटैशियम लवण साबुन (Soaps) कहलाते हैं। संतृप्त वसा अम्लों के सोडियम लवण कठोर साबुन (Hard Soaps) कहलाते हैं। जबिक असंतृप्त वसा अम्ल के पोटैशियम लवण सामान्यत: मृदु साबुन (Soft Soaps) कहलाते हैं। साबुनों के निर्माण में वसा या तेलों का क्षारीय जल अपघटन कराया जाता है। वसा या तेल लम्बी कार्बन श्रृंखला युक्त कार्बोक्सिलिक अम्लों तथा ग्लिसरॉल से निर्मित ऐस्टर होते हैं। साबुन निर्माण की क्रिया साबुनीकरण (Saponification) कहलाती है।

हमारे देश में नारियल, मूंगफली, तिल, सोयाबीन, महुआ आदि से निकाले गये तेलों से अथवा इनके उत्प्रेरकीय हाइड्रोजनीकरण से प्राप्त वसाओं से साबुनों को प्राप्त किया जाता है। अनेक देशों में साबुन निर्माण के लिए जान्तव वसा (Animal fat) को प्रयोग भी होता है। तेल तथा वसायें लगभग समान संरचना युक्त कार्बनिक यौगिक है परन्तु तेलों से कार्बन श्रृंखलाओं में असंतृप्त बन्ध भी पाए जाते हैं। जबिक वसाओं में सभी श्रृंखलाएँ संतृप्त होती हैं। इसी कारण वसाओं में वरण्डर वाल्स बल अपेक्षाकृत प्रबल होते हैं। इसके परिणामस्वरूप कम ताप पर वसाएँस अवस्था में होती हैं लेकिन तेल द्रव अवस्था में होते हैं। उदाहरणार्थ:

साबुन निम्न प्रकार के होते हैं

- 1. कठोर साबुन ये सस्ते तेलों व वसाओं को NaOH के साथ अभिकृत करके प्राप्त किये जाते हैं। इनका उपयोग कपड़े धोने में किया जाता है।
- 2. मुलायम साबुन ये उत्तम प्रकार के तेलों या वसाओं की KOH के साथ क्रिया करके बनाए जाते हैं। इनका उपयोग नहाने के साबुन, शेविंग क्रीम तथा शैम्पू बनाने में किया जाता है। इन्हें और अधिक आकर्षक बनाने के लिए रंग और सुगन्ध डाले जाते हैं।
- 3. **पारदर्शक साबुन –** नहाने के साबुन को ऐल्कोहॉल में विलेय कर विलयन का वाष्पीकरण करने के पश्चात् पारदर्शक साबुन प्राप्त होते हैं। इनमें ग्लिसरॉल की कुछ मात्रा मिली रहती है।
- 4. औषधीय साबुन नहाने के साबुनों में औषधीय गुण वाले पदार्थ डाले जाते हैं। जैसे-कार्बीलिक साबुन, नीम का साबुन।
- 5. **समुद्री साबुन** ये साबुन समुद्री जल में भी झाग उत्पन्न करते हैं। जैसे, नारियल के तेल से बना साबुन।
- 6. शेविंग साबुन दाढ़ी बनाने के साबुन को जल्दी सूखने से बचाने के लिए इसमें ग्लिसरॉल तथा रेजिन नाम की गोंद झाली जाती है जिससे यह अच्छी तरह झाग देता है।
- 7. अविलेय धात्विक साबुन इन साबुनों को धातु लवण (Na तथा K के अतिरिक्त) तथा वसा की क्रिया से बनाते हैं। ये जल में अविलेय होते हैं। इसी कारण इनका उपयोग स्वच्छीकारक क्रिया में नहीं किया जाता है।

जैसे-कैल्शियम तथा मैग्नीशियम साबुन का उपयोग स्नेहक के रूप में, लीथियम साबुन का उपयोग ग्रीस बनाने में, जिक, कोबाल्ट, आयरन तथा निकिल साबुन का उपयोग जल अवरोधक चमड़ा बनाने में किया जाता है।

साबुन की शोधन क्रिया (Cleansing Action of Soap) साबुन का एक अणु दो भागों से मिलकर बना होता है

1. लम्बी हाइड्रोकार्बन श्रृंखला जो अध्रुवीय (nonpolar) होती है, पूँछ (Tail) कहलाती है।

2. जल में विलेय ध्रुवीय शीर्ष (Polar head)

उदाहरणार्थ:

सोडियम स्टीयरेट (C₁₇H₃₅COO+-Na+) में।

जब साबुन के विलयन में किसी गन्दै कपड़े या विलयन को डाला जाता है तो साबुन के अणु गोलाकार रूप में एकत्रित होकर मिशेल बनाता है। इसमें अध्रुवीय भाग तेलीय अशुद्धि या ग्रीस की ओर होता तथा ध्रुवीय भाग जल में विलेय रहता है।

कपड़े को रगड़ने या जल के साथ खंगालने पर ये मिशेल कपड़े की सतह से छूट जाते हैं और प्रक्रिया को दो तीन बार दोहराने पर सारे मिशेल छूटकर अलग हो जाते हैं और कपड़ा स्वच्छ हो जाता है। समान आयन निकट आने के कारण ये मिसेल एक-दूसरे को सदैव प्रतिकर्षित करते हैं। यह साबुन निर्मलन की क्रिया है।

प्रश्न 2. अपमार्जक क्या है? इनका वर्गीकरण कीजिए तथा अपमार्जन क्रिया समझाइए।

उत्तर: अपमार्जक (Detergents): लम्बी श्रृंखला वाले हाइड्रोजन तथा सल्फ्यूरिक अम्ल या सल्फोनिक अम्लों के व्युत्पन्न अपमार्जक (Detergents) कहलाते हैं। इनका उपयोग सर्वप्रथम 1920 से प्रारम्भ हुआ था। इन्हें साबुन विहीन साबुन (Soapless soap) कहा जाता है, क्योंकि ये साबुन नहीं होते हैं, लेकिन साबुन के समान कार्य करते हैं। वास्तव मेंअपमार्जक लम्बी हाइड्रोकार्बन श्रृंखला युक्त सल्फ्यूरिक अम्ल या सल्फोनिक अम्ल के लवण होते हैं।

इन अपमार्जकों के अणुओं में एक सिरा आयनिक (जल स्नेही) होता है। जिसे सिर या शीर्ष (Head) कहते हैं। जबिक शेष भाग एक लम्बी हाइड्रोकार्बन शृंखला होती है जो अध्रुवीय (जल विरोधी) होती है, जिसे पूँछ (Tail) कहते हैं। ये चिकनाई या तेलीय अशुद्धियों में विलेय होती हैं।

पूँछ (सहसंयोजक) शीर्ष (आयनिक) अपमार्जक की कार्य प्रणाली साबुन के समान होती है। आयनिक अशुद्धियाँ को जलस्नेही भाग घौलकर हटाता है। जबिक तेलीय अशुद्धियों को जल विरोधी भाग घुलकर अलग कर देता है। हाथ से रगड़ने या मशीन से हिलाने पर ये गन्दगी को छोटी-छोटी बूंदों के रूप में हटाकर कपड़े को साफ कर देते हैं।

(i) ऋणायनी अपमार्जक (Anionic Detergents): ऋणायनी अपमार्जक लम्बी शृंखला वाले ऐल्कोहॉलों अथवा हाइड्रोकार्बनों के सल्फोनेटित व्युत्पन्न होते हैं। दीर्घ शृंखला वाली ऐल्कोहॉलों की सान्द्र सल्फ्यूरिक अम्ल से अभिक्रिया कराने से ऐल्किल हाइड्रोजन सल्फेट बनते हैं जिन्हें क्षार से उदासीन करने पर ऋणायनी अपमार्जक बनते हैं। इसी प्रकार से ऐल्किल बेन्जीन सल्फोनेट, ऐल्किल बेन्जीन सल्फोनिक अम्लों को क्षार द्वारा उदासीन करने से प्राप्त होते हैं। ऋणायनी अपमार्जकों में अणु का ऋणायनी भाग शोधन क्रिया में शामिल होता है। ऐल्किल बेन्जीन सल्फोनेटों के सोडियम लवण ऋणायनी अपमार्जकों के महत्वपूर्ण वर्ग हैं। यह अधिकतर घरेलू उपयोग में काम आते हैं। ऋणायनी अपमार्जक दंतमंजन में भी इस्तेमाल किए जाते हैं।

CH₃(CH₂)₁₀CH₂OH H₂SO₄ लॉरिल ऐल्कोहॉल CH₃(CH₂)₁₀CH₂OSO₃H NaOH (aq) लॉरिल हाइड्रोजन सल्फेट

CH₃(CH₂)₁₀ CH₂OSŌ₃Na सोडियम लॉरिल सल्फेट (ऋणायनी अपमार्जक) CH₃(CH₂)₁₁— अपमार्जक) डोडेसिलबेन्जीन

(ii) धनायनी अपमार्जक (Cationic Detergents): धनायनी अपमार्जक ऐमीनों के ऐसीटेट, क्लोराइड या ब्रोमाइड ऋणायनों के साथ बने चतुष्क लवण होते हैं। इनमें धनायनी भाग में लम्बी हाइड्रोकार्बन शृंखला होती है तथा नाइट्रोजन अणु पर एक धन आवेश होता है। अतः इन्हें धनायनी अपमार्जक कहते हैं। सेटिलाइमेथिल अमोनियम ब्रोमाइड एक प्रचलित धनायनी अपमार्जक है जो केश कंडीशनरों में डाला जाता है। धनायनी अपमार्जकों में जीवाणुनाशक गुण होते हैं तथा यह महँगे होते हैं। इसलिए इनके सीमित उपयोग हैं।

सेटिलट्राइमेथिल अमोनियम ओमाइड

(iii) अन-आयनिक अपमार्जक (Non-ionic Detergents): ये अत्याधुनिक अपमार्जक होते हैं, जो उदासीन अणु युक्त होते हैं। इनमें अपमर्जान क्रिया के लिए आवश्यक जल स्नेही सिरा किसी आवेश द्वारा आवेशित होने के स्थान पर इस प्रकार का बहुक्रियात्मक समूह होता है। जो हाइड्रोजन बन्धन द्वारा जल में विलेय हो

जाता है। **उदाहरणार्थ:**

$$R = \bigcirc \bigcirc \bigcirc -CH_2 - CH_2O CH_2 - CH_2OH$$

इसी प्रकार पॉली हाइड्रॉक्सी ऐल्कोहॉलों के एस्टर भी अपमार्जक की भाँति व्यवहार क सकते हैं। उदाहरणार्थ:

प्रश्न 3. रंजकों के संरचनात्मक लक्षणों के लिए विट सिद्धान्त को समझाइए।

उत्तर: रंजकों के संरचनात्मक लक्ष (Structural Characters of Dyes): भौतिक तथा रासायनिक गुणों में समानता प्रदर्शित करने वाले कार्बनिक यौगिकों में रंग तथा रासायनिक संगठन में एक निश्चित सम्बन्ध होता है। उदाहराबेशी तथा लीवरमान ने रंग तथा रासायनिक संरचना के व्यवहार ही सर्वप्रथम व्याख्या करने का प्रयास किया था। 1876 में जर्मन रसायनज्ञ ओटोवित ने कार्बनिक पदार्थों में रंग और उनके संरचना के मध्य सम्बन्ध बताने के लिए वर्ण मूलक वर्ण वर्धक सिद्धान्त दिया था जिसमें विट सिद्धान्त के नाम से जाना जाता है। इस सिद्धान्त के मुख्य बिन्दु निम्नवत् है।

1. कार्बनिक यौगिकों में सामान्यत: रंग केवल व पाया जाता है जब इसमें कोई असंतृप्त (Unsaturated) या बहु (Multiple bond) उपस्थित हो। ऐसे मूलकों को वर्णमूलक कहा जाता है। जहाँ ये धर्म (क्रोमा) एवं वर्धक (फोरस) अर्थात् क्रोमोफोर समूह (Chromophore group) कहलाते हैं। यदि भाषा के लिए उत्तरदायी होते हैं।

उदाहरणार्थ: निम्न समूह वर्णवर्द्धवक (क्रोमोफोर) समूह कहलाते हैं

2. ऐसे यौगिक जिनमें वर्णमूलक समूह पाया जाता है वर्णजन (Chronogen) कहलाते हैं तथा किसी क्रोमोजन में क्रोमोफोर समूहों की संख्या जितनी अधिक होती है इनके रंग प्रदान करने की क्षमता उतनी ही अधिक होती है। कुछ क्रोमोफौर (वर्ण मूलक) समूह जैसे- -NO,-NO₂ – N = N- इत्यादि स्वयं ही रंग प्रदान करने में सक्षम होते हैं।

उदाहरणार्थ:

वर्णजन	वर्णमूलक	रंग
नाइट्रोबेन्जीन	NO ₂	पोला
ऐजोबेन्जीन	—N=N—	लाल

इसी प्रकार पॉलीईंनो C6H5 – (CH = CH)n – C6H5 में n के मान परिवर्तन से रंग परिवर्तन हो जाते हैं। जैसे n = 0, 1, 2 (रंगहीन)

n = 3 (पीला)

n = 5 (नारंगी)

n = 7 (कॉपर ब्रॉन्ज)

n = 11 काला बैगर्नी

3. कुछ संतृप्त समूह ऐसे होते हैं जो अकेले यौगिक को रंग प्रदान करने में असमर्थ होते हैं परन्तु किसी वर्णमूलक समूह युक्त यौगिक में प्रविष्ट होने पर यौगिक को रंग प्रदान करने योग्य बना देते हैं। अथवा उसका रंग गहरा कर देते हैं। ऐसे समूह वर्ण वर्द्धक (Auxochromes) कहलाते हैं।

उदाहरणार्थ:

—
$$\ddot{O}$$
H, — \ddot{O} R, — \ddot{N} H2, — \ddot{N} HR, — NR_2 , — \ddot{X} : — \ddot{S} H, — \ddot{S} R (वर्ण बर्द्धक समूह)

इसे निम्न उदाहरण द्वारा समझा जा सकता है। ऐजौबेन्जीन एक रंगहीन यौगिक है परन्तु इसमें -NH₂समूह प्रविष्ट कराने पर p-ऐमनोऐजौबेन्जीन प्राप्त होता है। जो कि पीले रंग का रंजक हैं।

यहाँ -N = N⁻ एक वर्णमूलक (क्रोमोफोर) समूह है जबिक -NH₂ एक वर्णवर्द्धक (ऑक्सोक्रोम) समूह हैं। आधुनिक सिद्धान्तों में संयोजकता बन्ध सिद्धान्त (Valance bond theory) एवं अणुकशक सिद्धान्त (Molecular orbital theory) के आधार पर रंजक का संरचनात्मक सम्बन्ध और भी स्पष्टतः समझा जा सकता है। ये सिद्धान्त आधुनिक क्राण्टम यान्त्रिकी (Modern quantum Mechanics) पर आधारित है जिनका अध्ययन आप उच्चतर कक्षाओं में कर सकेंगे।

प्रश्न 4. उपयोगिता के आधार पर रंजकों का वर्गीकरण कीजिए।

उत्तर: उपयोगिता के आधार पर रंजकों का वर्गीकरण (Classification of dyes on the basis of Utility): रंजकों का उपयोग कपड़े, रेशे, कागज, चमड़ा, दीवारों, खाद्य पदार्थों एवं अन्य पदार्थों के रंगने के लिए किया जाता है। उपयोगिता के आधार पर रंजक को निम्नवत् वर्गीकृत किया जाता है

1. सीधे रंजक (Direct Dyes): इन रंजकों को गर्म जलीय विलयन में रेशों को सीधे डुबो दिया जाता है फिर उन्हें बाहर निकालकर सुखा लिया जाता है। ये रंजक सीधे ही उपयोग में लाये जाते हैं, इसलिए इन्हें सीधे रंजक (Direct Dyes) कहते है। ये सूत, रेयॉन, ऊन, रेशम नाइलोन आदि के रंजकन में प्रयोग किए जाते हैं।

उदाहरणार्थ: मार्टीयस पीला, कानो लाल आदि।

$$OH \\ NO_2 \\ (मार्टीयस पीला)$$

$$NH_2 \\ N = N$$

$$SO_3H \\ (कान्मोरेड)$$

2. अम्लीय रंजक (Acidic Dyes): इन रंजकों का प्रयोग हल्के अम्लीय माध्यम में किया जाता है। ये सामान्यतः सल्फोनिक अम्ल या उसके लवण होते हैं। इनका प्रयोग ऊन, रेशम, नाइलोन के रंजन में किया जाता है। परन्तु ये सूत पर प्रभावी नहीं होते हैं।

उदाहरणार्थ: नारंगी-1 इस श्रेणी का रंजक है।

3. **क्षारीय रंजक (Basic Dyes):** इन रंजकों में आरीय ऐमीनो समूह (-NH₂) उपस्थित होते हैं, जो अम्ल में विलेयशील लवण बनाते हैं। इस प्रकार बने हुए धनायन भाग ऋणावेशित भाग के साथ संयुक्त होकर रंजन का कार्य करते हैं। नायलोन, पॉलिएस्टर आदि का रंजन इन रंजक से किया जाता है।

उदाहरणार्थ: ऐनिलीन यलो, मैलैकाइट ग्रीन आदि।

$$N = N$$
 NH₂ HCl ऐतिलीन यलो

4. प्रकीर्णन रंजक (Scattering Dyes): इन रंजकों में निलम्बन से रंजक के सूक्ष्म कण कपड़े पर विसरित या प्रकीर्णित होकर फैल जाते हैं। इस प्रकार के रंजक पॉलिऐस्टर, नाइलॉन, पॉलीऐक्रिलो नाइट्राइले इत्यादि देशों के रंजन में प्रयुक्त होते हैं।

उदाहरणार्थ: ऐन्थ्रोक्विनोन रंजक।

ऐन्थ्रोक्विनोन रंजक

5. रेशा-क्रियाशील रंजक (Fibre-active Dyes): ये रंजक सूत, रेशम तथा ऊन जैसे देशों के हाइड्रॉक्सी अथवा ऐमीनों समूह के साथ स्थायी रासायनिक बन्ध बनाकर जुड़ जाते हैं तथा इन्हें अनुरक्रमणीय स्थायी तथा पक्के रंग प्रदान करते हैं।

उदाहरणार्थ: प्रोशनलाल।

6. अन्तर्निहित रंजक (Inherent Dyes): अन्तर्निहित रंजक विलयन में अभिक्रिया द्वारा रंजन प्रक्रम के समय हीं संश्लेषित किए जाते हैं। कपड़े या रेशे को एक क्रियाकारक विचलन में दुबोकर दूसरे क्रियाकारक विलयन में दुबोया जाता है जहाँ विलयन में ही रंजक संश्लेषित होकर कपड़े या रेशों के साथ बन्ध बनाते हैं। ये रंजक सामान्यतः पक्के नहीं होते हैं।

उदाहरणार्थः

फीनॉल या नैफ्थॉल विलयन के साथ भीगे हुए रेशों को यदि हाइऐजोनियम लवणों के विलयन में डालते हैं तो देश की सतह पर युग्मन अभिक्रिया सम्पन्न हो जाती है और अविलेय ऐओरंजक रेशों की सतह पर अधिशोषित हो जाते हैं। सूत, रेशम, पॉलिऐस्टर, नाइलोन इत्यादि का रंजन इस विधि से किया जाता है। ऐसे रंजकों को 'बफ रंग' भी कहते हैं क्योंकि ये अभिक्रिया कम ताप पर सम्पन्न होती हैं।

7. वेट रंजक (Wet Dyes): येसम्भवत: प्राचीनतम ज्ञात रंजक हैं। इनमें अविलेय रंजक को पहले विलेयशील रंगहीन रूप में परिवर्तित करके रेशों को भिगोया जाता है। अब उसे वायु में सुखाया जाता है जिससे उसका ऑक्सीकरण हो जाता है। रंगहीन विलयेशील रूप ऑक्सीकृत हो कर रंगीन विले यशील रूप में परिवर्तित हो जाता है।

उदाहरणार्थ:

इंडिगोरंजक इसी प्रकार का रंजक हैं ये रंजक मुख्यतः सूती कपड़ या रेशों के लिए उपयुक्त होते हैं।

8. मोर्डेन्ट रंजक (Modrate Dyes): रंग बन्धक या मॉडेंन्ट रंजक मुख्यतः ऊनी वस्त्रों के रंजन में प्रयुक्त किए जाते हैं। इनमें पहले कपड़े को किसी निश्चित धातु आयन के विलयन में डुबोया जाता है उसके बाद रंजब विलयन में डुबोते हैं जिससे धातु आयन एवं रंजक के मध्य उपसहसंयोजक (Coordinate bond) स्थापित हो जाता है। इस प्रकार रंजक रेशों पर बन्धन द्वारा जुड़ जाते हैं। इस प्रकार के रंजकों की महत्त्वपूर्ण विशेषता यह होती है कि एक ही रंजक भिन्न-भिन्न धातु आयनों के साथ भिन्न-भिन्न रंग प्रदान करते हैं।

उदाहरणार्थ: ऐलिजरीन रंजक ऐल्युमीनियम आयनों के साथ गुलाबी रंग देता है जबकि बेरियम आयनों के साथ नीला रंग प्रदान करता है।

ऐलिजरीन-Al रंजक (गुलाबी)

प्रश्न 5. संरचना के आधार पर रंजकों का वर्गीकरण कीजिए।

उत्तर: संरचना के आधार पर रंजकों का वर्गीकरण (Classification of Dyes on the basis of structure): रासायनिक दृष्टि से उपयोगिता के स्थान पर रंजक की संरचना के स्थान पर रंजक: की संरचना के आधार पर वर्गीकरण अधिक उचित है जिससे रंजन प्रणाली एवं और भी नए रंजकों के संश्लेषण का मार्ग प्रशस्त होता है। संरचना के आधार पर रंजकों का वर्गीकरण निम्न प्रकार किया जाता है

1. नाइट्रो एवं नाइट्रोसो रंजक (Nitro and Nitroso Dyes): ये सर्वाधिक प्राचीन ज्ञात रंजक हैं जिनमें नाइट्रो यो नाइट्रोसो समूह उपस्थिति होते हैं।

उदाहरणार्थ: पिक्रिक अम्ल, पक्का हरा - o आदि।

2. डाइफोनिल मेथेन रंजक (Diphenyl Methane Dyes): इन रंजक के मुख्य ढाँचा डाइफेनिलमेथेन होता है।

उदाहरणार्थ: ऑरेमीन – o इस श्रेणी का महत्त्वपूर्ण रंजक है। जो रेशम, ऊन, जूट, कागज तथा चमड़े आदि को रंगने में प्रयुक्त होता है।

3. ट्राइफेनिल मेथेन रंजक (Triphenyl Methane Dyes): ये रंजक ट्राइफेनिल मेथेन के ऐमीनो व्युत्पन्न होते हैं। इस वर्ग में अनकों रंजक आते हैं। उदाहरणार्थ:

मेलेकाइट ग्रीन एक अत्यधिक उपयोगी रंजक है। जो ऊन तथा रेशम को सीधे रंगता है। इससे सूती कपड़ों को टेनिन के साथ मोड़ेण्ट करके रंगा जा सकता है।

मैलेकाइट-ग्रीन

4. थैलीन एवं जेन्थेन रंजक (Pthaline and Xenthane Dyes): थैलिक ऐनहाइड्राइड तथा फोनॉलिक यौगिकों के संघनन से बने यौगिक थैलीन कहलाते हैं। इस श्रेणी में जेन्थीन वलय तन्त्र को भी लिया जाता है

उदाहरणार्थ: फिनोल्फ्थैलीन में थैलीन वलय तन्त्र होता है एवं फ्लुओरेसीन एक जैन्थीन व्युत्पन्न है।

फिनोल्फ्यैलीन

5. ऐजोरंजक (Azo Dyes): संश्लेषित रंजकों का यह सबसे बड़ा समूह है जिसमें लगभग सभी रंग के रंजक आ जाते हैं। इन रंजकों में वर्णमूलक समूह ऐजो समूह ($-N = N^{-}$) होता है। जबिक वर्णवर्द्धकों को रूप में -NH2, -NHR, -NR2, -OH इत्यादि होते हैं। लगभग सभी ऐजो रंजक पक्के रंग के होते हैं। उदाहरणार्थ:

मेथिल ऑरेन्ज, ऐनिलीन यलो, सुडान-1 आदि।

Na
$$O_3S$$
 — N = N — N Me₂

भेथिल ऑरिन्ज

N = N — NH₂

ऐनिलीन यलो

OH

N=N — NH₂

सुडान-1

6. इण्डिगो रंजक (Indigo Dye): इण्डिगौ रंजक या नौला सबसे प्राचीन कार्बनिक रंजक है। ब्रिटिश काल में 1906 में बंगाल विभाजन का एक प्रमुख कारण बना जहाँ किसानों को नील की खेती न करने का आन्दोलन किया था। इसे इण्द्धिगौरा (Indigophera) नामक पौधे से प्राप्त किया जाता हैं।

7. ऐन्याकिनोन रंजक (Anthraquinone Dyes): इनमें एन्ध्राक्विनोन नाभिक होता है। इस वर्ग में सर्वाधिक महत्त्वपूर्ण रंजक ऐलिजरीन है। जिसे मजीठ की जड़ों से प्राप्त किया जाता है। इस रंजक का प्रयोग मोडेण्ट रंजक के रूप में किया जाता है। जिसमें भिन्न-भिन्न धातु आयनों के साथ यह भिन्न रंग प्रदान करता है।

$$OH$$
 + Al^{3+} (गुलाबी) + Fe^{3+} (काला बैंगनी) + Cr^{3+} (भूस बैंगनी) + Ba^{2+} (नीला) + Mg^{2+} (बैंगनी)

8. विषम चक्रीय रंजक (Heterocyclic Dyes): इन रंजकों के अणुओं में कम-से-कम एक विषम चक्रीय वलय उपस्थित होती है। यह भी रंजकों का बहुत बड़ा समूह है तथा इस शृंखला में नए-नए रंजक का निर्माण / संश्लेषण जारी है।

उदाहरणार्थ: एक्रीफ्लेविन रंजक का प्रयोग कैलिको प्रिंटिंग, रंजन, कीटनाशी, चिकित्सा इत्यादि में उपयोग होता है।