

Asignatura Redes de Computadoras

Departamento de Electrónica Facultad de Ingeniería Universidad de Buenos Aires

"Dispositivos de Internetworking"

Ing. Marcelo Utard Septiembre de 2009

Agenda

- Introducción
 - Funcionalidades requeridas
 - Dispositivos de Internetworking
- Repeaters & Hubs
- Bridges & LAN Switches
- Routers
- Proxies & Gateways
- Comparación de dispositivos
- Conclusiones
- Bibliografía

Introducción Dispositivos de Internetworking

Introducción

Funcionalidades requeridas

- Regenerar señales (x atenuación)
 - Para extender el alcance
- Adaptar ≠ velocidades (bit rates)
- Evitar colisiones excesivas (en Ethernet)
- Multiplexar & Conmutar tráfico
 - para compartir los enlaces
 - para distribuir los PDUs (tramas, paquetes)

Introducción Funcionalidades requeridas

- Interconectar redes remotas (via WAN)
- Segmentar tráfico
- Encaminar paquetes hacia el destino
- Adaptar ≠ MTUs
- Seleccionar el mejor camino alternativo

Introducción Funcionalidades requeridas

- Adaptar protocolos de ≠ arquitecturas
- Controlar el acceso perimetral
- Hacer cache de contenidos
- Priorizar en funcion de la QOS

Introducción Dispositivos de Internetworking

- Repeaters/Hubs
- Bridges/Switches
- Routers
- Gateways/Proxies

Intermediate Systems - OSI

Introducción Dispositivos de Internetworking

Un mismo dispositivo suele soportar multiples funcionalidades o mecanismos de internetworking.

- Hub-Switches
- LAN Switches Layer 2 & 3
- Multiprotocol Bridge-Routers
- Access Servers/Switches
- Media Gateway Routers

Repeaters & Hubs

Son Intermediate Systems de capa 1 (OSI)

Repeaters & Hubs

- Regeneran la señal (con mínimo delay)
- Adaptan ≠ medios físicos (PHY/PMD)

- No adaptan ≠ velocidades
- No evitan colisiones

Bridges & LAN Switches

Son Intermediate Systems de capa 2 (OSI)

Application			Application	
Presentation			Presentation	
Session			Session	
Transport			Transport	
Network			Network	
Data Link	Data Link		Data Link	
Physical	Physical	Physical	Physical	
	Dr	anhi	W/ANN/	

Bridges & LAN Switches

- Store & forward
 - Regeneran la señal
 - Adaptan ≠ medios físicos (PHY/PMD)
 - Separan Collision domains
 - Adaptan ≠ velocidades
- Internetworking LAN to LAN
 - MAC Addressing & Frames forwarding
- Transparent bridging
 - Filtering (Forwarding table, Learning)
 - Flooding de Broadcasts & Unknown frames

Bridges & LAN Switches

- Spaning Tree Protocol STP
- Protocol translation (LAN to LAN)
- VLANs Broadcast domains
- Introducen mayor delay & jitter
- No seleccionan el mejor camino
- No adaptan ≠ MTUs
- No escala

Son Intermediate Systems de capa 3 (OSI)

Router

- Store & forward
 - Regeneran la señal
 - Adaptan ≠ medios físicos (PHY/PMD)
 - Evitan colisiones
 - Separan Collision domains
 - Adaptan ≠ velocidades
- Internetworking entre redes LAN & WAN
 - IP Addressing & Packet Forwarding

- Destination Address Based Routing
 - Routing Table
 - Seleccionan el mejor camino alternativo
 - No propagan Broadcasts
 - Separan Broadcast domains
- Fragmentación & Reensamblado
 - Adaptan ≠ MTUs

- Routing protocols
- Policy Based Routing
- Packet filtering firewalls
- QOS & Priorizacion de tráfico
- Traffic shapping
- Traffic compression&acceleration

- Introducen mayor delay & jitter
- No son transparentes
- Son más complejos y costosos

Proxies/Gateways

Son Intermediate Systems de capa 7(OSI)

Application	
Presentation	
Session	
Transport	
Network	
Data Link	
Physical	

Appli	ication		
Presentation	Presentation		
Session	Session		
Transport	Transport		
Network	Network		
Data Link	Data Link		
Physical	Physical		

Application	
Presentation	
Session	
Transport	
Network	
Data Link	
Physical	

Gateway

Proxies/Gateways

- Adaptan protocolos de capas superiores (5/Sesion, 6/Presentacion y 7/Aplicacion)
- Internetworking entre ≠ Arquitecturas
- Application Proxies
- Application Gateway Firewalls
- Cache Proxy Servers

Universidad de Buenos Aires / Facultad de Ingeniería

Tabla comparativa

	Hub	Bridge/ Switch	Rout	Gatewa y/Proxy
Regenera la señal		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Adapta ≠ velocidades Evita colisiones Es transparente	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Segmenta tráfico			$\sqrt{}$	V
Selecciona mejor camino Adapta ≠ MTU				
Control perimetral			$\sqrt{}$	$\sqrt{}$
Cache & control contenidos Adapta ≠ arquitecturas Escala			$\sqrt{}$	$\sqrt{}$
Delay & Jitter	Bajo	Medio	Medi	Alto
Complejidad & Costo	Bajo	Medio	Alto	Alto
Dispositivos de Internetwo	orking			21

Conclusiones

- Hub-Switches:
 - ideales para SOHO
- LAN Switches:
 - ideales para redes locales corporativas
- Routers:
 - ideales para interredes via WAN,
 - y para packet filtering firewalls.
- Gateways/Proxies:
 - ideales para adaptar ≠ arquitecturas
 - o para application firewalls,
 - o para hacer content cache.

Bibliografía

- "Internetworking with TCP/IP; Vol. I: Principles, Protocols and Architecture, 5th. Edition", Douglas E. Comer, Prentice Hall 2006
- "Internetworking Technologies Handbook",
 M. Ford, H.K.Lew, S. Spanier, T. Stevenson,
 Cisco Press 1997
- Apuntes de la materia 66.62 Redes de Computadoras (www.fiuba6662.com.ar)

Muchas gracias por su atención

Ing. Marcelo Utard

