

Ayudantía 6 - Teoría de conjuntos

27 de septiembre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

1. Conjuntos y Producto Cartesiano

- 1. Sean A, B y C conjuntos no vacíos. ¿Son ciertas las siguientes afirmaciones? Demuestre o dé un contraejemplo.
 - a) $A \times B = B \times A$ si y sólo si A = B
 - b) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 2. Definimos la diferencia simétrica entre dos conjuntos A y B como:

$$A\Delta B = A \setminus B \cup B \setminus A$$

Demuestre que si A, B y C son no vacíos, se cumple que.

Si
$$A\Delta C = B\Delta C$$
 entonces $A = B$

Solución

- 1. a) (\leftarrow) Dado que A=B, es claro que $A\times B=A\times A$. Similarmente, también se cumple que $A\times A=B\times A$. Por lo tanto, $A\times B=B\times A$.
 - (\rightarrow) Dado que $A \times B = B \times A$, demostraremos que $A \subseteq B$ y $B \subseteq A$:
 - (⊆) Sea $a \in A$. Como $B \neq \emptyset$, existe $b \in B$ tal que $(a,b) \in A \times B$. Como $A \times B = B \times A$, tenemos que $(a,b) \in B \times A$, y por lo tanto $a \in B$.
 - (⊇) Análoga a lo anterior.
 - b) Mostraremos la igualdad demostrando ambas contenciones:
 - $A \times (B \setminus C) \subseteq (A \times B) \setminus (A \times C)$: Sea $(x, y) \in A \times (B \setminus C)$. Por definción de producto cartesiano, sabemos que $x \in A$ y que $y \in B \setminus C$, y por definición de diferencia de conjuntos,

sabemos que $y \in B$ e $y \notin C$. Luego, $(x, y) \in A \times B$ y $(x, y) \notin A \times C$, por lo tanto $(x, y) \in (A \times B) \setminus (A \times C)$.

- $(A \times B) \setminus (A \times C) \subseteq A \times (B \setminus C)$: Sea $(x,y) \in (A \times B) \setminus (A \times C)$. Por definición de diferencia de conjuntos, sabemos que $(x,y) \in A \times B$ y $(x,y) \notin A \times C$, y por definición de producto cartesiano, sabemos que $x \in A$ e $y \in B$. Más aún, necesariamente $y \notin C$ (pues en otro caso $(x,y) \in A \times C$), y entonces $y \in B \setminus C$. Concluimos que $(x,y) \in A \times B \setminus C$.
- 2. Dado que $A\Delta C = B\Delta C$, demostraremos que $A\subseteq B$ y $B\subseteq A$:
 - (\subseteq) Sea $x \in A$. Consideremos dos casos:
 - $x \notin C$: tenemos que $x \in A \setminus C$, y entonces $x \in A \setminus C \cup C \setminus A$. Luego, por definición de diferencia simétrica, se cumple que $x \in A \Delta C$, y entonces $x \in B \setminus C$. Esto significa que $x \in B \setminus C \cup C \setminus B$, y como $x \notin C$, necesariamente $x \in B \setminus C$. Concluimos que $x \in B$.
 - $x \in C$: tenemos que $x \notin A \setminus C$ y que $x \notin C \setminus A$. Luego, $x \notin A \Delta C$, y entonces $x \notin B \Delta C$. Por definición de diferencia simétrica, esto último implica que $x \notin C \setminus B$ y como $x \in C$, necesariamente $x \in B$.
 - (\supseteq) Análoga a la anterior.

2. Teoría de Conjuntos

Dado un conjunto A, definimos

$$\mathcal{T}(A) = \{ X \in \mathcal{P}(A) \mid X = \emptyset \lor A \backslash X \text{ es finito} \}$$

Recuerde que $\mathcal{P}(A)$ es el conjunto potencia de A.

Demuestre que:

- 1. $\varnothing \in \mathcal{T}(A)$
- 2. $A \in \mathcal{T}(A)$
- 3. $\bigcup \mathcal{T}(A) \in \mathcal{T}(A)$
- 4. Si \mathcal{X} es un subconjunto finito de $\mathcal{T}(A)$, entonces $\bigcap \mathcal{X} \in \mathcal{T}(A)$.

Solución

- a) Por teorema, para todo conjunto A se tiene que $\varnothing \subseteq A$. Como $\mathcal{P}(A)$ es el conjunto de todos los subconjuntos de A, se tiene que $\varnothing \in \mathcal{P}(A)$. Por definición de $\mathcal{T}(A)$, $X \in \mathcal{P}(A) \land X = \varnothing) \to X \in \mathcal{T}(A)$, de lo que se concluye que $\varnothing \in \mathcal{T}(A)$.
- b) Como $\mathcal{P}(A)$ es el conjunto de todos los subconjuntos de A, se tiene que $A \in \mathcal{P}(A)$. Además, $A \setminus A = \emptyset$, y \emptyset es finito. Como $A \in \mathcal{P}(A) \wedge A \setminus A$ es finito, seconcluye que

 $A \in \mathcal{T}(A)$.

- c) El caso en que $\mathcal{T}(A) = \{\emptyset\}$ es trivial, ya que $\bigcup \mathcal{T}(A) = \emptyset \in \mathcal{T}(A)$.
- $\mathcal{P}(A)$ es el conjunto de todos los subconjuntos de A. Como todo $X \in \mathcal{T}(A)$ también es elemento de $\mathcal{P}(A)$, todos los elementos de cualquier X están también en A. Luego, al hacer una unión de cualquier par de conjuntos $X \in \mathcal{T}(A)$, se obtendrá un conjunto que solo tiene elementos de A, y consecuentemente será un elemento de $\mathcal{P}(A)$. Entonces, se tiene que, para cualquier $X_1, X_2 \in \mathcal{T}(A), X_1 \cup X_2 \in \mathcal{P}(A)$.

Por definicion de $\mathcal{T}(A)$ se tiene que $\forall X \in \mathcal{T}(A), X \neq \emptyset$ se cumple que $A \setminus X$ es finito. Sin pérdida de generalidad, digamos que $\mathcal{T}(A)$ es de la forma $\{X_1, X_2, ...\}$, con $X_1, X_2, ... \neq \emptyset$. Para cada X_i se tiene que $A \setminus X_i$ es finito. Como la operación diferencia entre dos conjuntos no agrega elementos, una concatenación de diferencias tampoco lo hace. Luego, si $A \setminus X_i$ es finito, $(A \setminus X_i) \setminus X_j$ para cualquier j también lo es. Además, por definición del operador diferencia, se tiene que $(A \setminus X_i) \setminus X_j = A \setminus (X_i \cup X_j)$.

Por otra parte, se tiene que $\bigcup \{\varnothing, X_1, ...\} = \bigcup \{X_1, ...\}$ ya que \varnothing no tiene elementos. Adicionalmente, es claro que $X_1 \cup X_2 \cup ... \in \mathcal{P}(A)$. Con ello,

$$A \setminus (X_1 \cup X_2 \cup ...) = ((A \setminus X_1) \setminus X_2) \setminus ...$$

es finito, por lo que se concluye que $X_1 \cup X_2 \cup ... = \bigcup \mathcal{T}(A) \in \mathcal{T}(A)$.

d) Podemos escribir $\mathcal{X} = \{B_1, B_2, ..., B_n\}$ con n > 0 y finito. Como $B_i \in \mathcal{T}(A)$ para todo i, se tiene que $\bigcap \mathcal{X} \in \mathcal{P}(A)$. Hay dos casos:

Caso 1: A es finito:

Este caso es trivial, ya que la operación diferencia no puede agregar elementos a un conjunto, por lo que $A\setminus(\bigcap \mathcal{X})$ necesariamente es finito.

Caso 2: A es infinito:

Notemos que para cualquier par de conjuntos A,B se tiene la siguiente equivalencia: $A \backslash B = A \cap B^c$

Para este caso, se tiene que

$$A \setminus (\bigcap \mathcal{X}) = A \setminus (B_1 \cap B_2 \cap \dots \cap B_n)$$

$$= A \cap (B_1 \cap B_2 \cap \dots \cap B_n)^c$$

$$= A \cap (B_1^c \cup B_2^c \cup \dots \cup B_n^c)$$

$$= (A \cap B_1^c) \cup (A \cap B_2^c) \cup \dots \cup (A \cap B_n^c)$$

$$= (A \setminus B_1) \cup (A \setminus B_2) \cup \dots \cup (A \setminus B_n)$$

La unión de un número finito de conjuntos finitos necesariamente es también un conjunto con un número finito de elementos. Como \mathcal{X} es un conjunto finito, es decir, n es finito, y $A \setminus B_i$ es finito por definión de $\mathcal{T}(A)$, entonces $A \setminus (\bigcap \mathcal{X})$ necesariamente es finito.