Теорія інформації та кодування

Лекція 5. Кодування сигналів. Методи оптимального кодування. Вступ

Колісник М.О., к.т.н. доцент каф.503 Національний аерокосмічний університет XAI

Основні питання лекції

- Вступ
- Основні поняття теорії кодування. Цілі кодування
- Узгодження каналу та сигналу. Роль оптимального кодування

Що таке кодування?

сшивал	10-	2-ti xoò	сшивол	10-	2-li x0ò	симым	10-11	2-11 x0ò	символ	10-11	2-li x0ò
	ži xoò			ž xoò			xoò			ход	
	32	00100000	8	56	00111000	P	80	01010000	h	104	01101000
!	33	00100001	9	57	00111001	Q	81	01010001	i	105	01101001
"	34	00100010	:	58	00111010	Ř	82	01010010	i	106	01101010
#	35	00100011	;	59	00111011	S	83	01010011	k	107	01101011
\$	36	00100100	<	60	00111100	T	84	01010100	1	108	01101100
%	37	00100101	=	61	00111101	U	85	01010101	m	109	01101101
&	38	00100110	>	62	00111110	V	86	01010110	n	110	01101110
'	39	00100111	?	63	00111111	w	87	01010111	0	111	01101111
(40	00101000	@	64	01000000	X	88	01011000	р	112	01110000
)	41	00101001	A	65	01000001	Y	89	01011001	q	113	01110001
*	42	00101010	В	66	01000010	Z	90	01011010	r	114	01110010
+	43	00101011	С	67	01000011	1	91	01011011	s	115	01110011
,	44	00101100	D	68	01000100	1	92	01011100	t	116	01110100
-	45	00101101	E	69	01000101	1	93	01011101	u	117	01110101
	46	00101110	F	70	01000110	^	94	01011110	v	118	01110110
/	47	00101111	G	71	01000111		95	01011111	w	119	01110111
0	48	00110000	Н	72	01001000	,	96	01100000	х	120	01111000
1	49	00110001	I	73	01001001	a	97	01100001	у	121	01111001
2	50	00110010	J	74	01001010	b	98	01100010	z	122	01111010
3	51	00110011	K	75	01001011	С	99	01100011	{	123	01111011
4	52	00110100	L	76	01001100	d	100	01100100	i i	124	011111100
5	53	00110101	M	77	01001101	е	101	01100101	}	125	01111101
6	54	00110110	N	78	01001110	f	102	01100110	~	126	01111110
7	55	00110111	0	79	01001111	g	103	01100111		127	01111111

Основні визначення поняття код

Код:

- (1) правило, що описує відповідність знаків або їх поєднань одного алфавіту знакам або їх поєднанням іншого алфавіту;
- (2) знаки вторинного алфавіту, що використовуються для уявлення знаків чийого поєднань первинного алфавіту.

Кодування – переклад інформації, представленої у вигляді первинного алфавіту, у послідовність кодів.

Декодування - операція, обернена до кодування, тобто відновлення інформації у первинному алфавіті за отриманою послідовністю кодів.

Операції кодування та декодування називаються оборотними, якщо їхнє послідовне застосування забезпечує повернення до вихідної інформації без будь-яких її втрат.

Історія

У 1792 році Клод Шафа створив перший (серед непримитивних) телеграф. Геліограф

Перший електромагнітний телеграф створив у 1832 році російський учений Павло Львович Шилінг.

Колісник М.О., к.т.н. доцент каф.503 Національний аерокосмічний університет ХАІ

05.09.2022

Телеграфний апарат

05.09.2022

Код Морзе

- Код Морзе, «Морзянка» (Азбукой Морзе) спосіб знакового кодування (подання букв алфавіту, цифр, розділових знаків та інших символів послідовністю сигналів, наприклад, довгих і коротких: «тире» та «точок».
- За одиницю часу приймається тривалість однієї точки. Тривалість тире дорівнює трьом точкам. Пауза між елементами одного знака - одна точка, між знаками в слові - 3 точки, між словами - 7 точок.
- Названий на честь американського винахідника та художника Семюеля Морзе.
- Абетка Морзе нерівномірний телеграфний код

Код Морзе

- Код Морзе, «Морзянка» (Азбукою Морзе) спосіб знакового кодування (подання букв алфавіту, цифр, розділових знаків та інших символів послідовністю сигналів, наприклад, довгих і коротких: «тире» та «точок».
- За одиницю часу приймається тривалість однієї точки. Тривалість тире дорівнює трьом точкам. Пауза між елементами одного знака - одна точка,
- між знаками в слові 3 крапки, між словами 7 точок.
- Названо на честь американського винахідника та художника Семюеля Морзе.
- Абетка Морзе нерівномірний телеграфний код

Можливо, буде цікаво

- Найвідомишим телеграфним повідомленням є сигнал лиха «SOS» (Save Our Souls – врятуйте наші душі).
- Ось як він виглядає в коді азбуки Морзе:

■ Три точки позначають букву S, три тире - букву О. Дві паузи відокремлюють літери один від одного.

Трохи історії

Річард Хеммінг Праця, яка зробила його знаменитим, -- фундаментальне дослідження кодів виявлення та виправлення помилок, яку Хеммінг опублікував у 1950 році. У 1956 році він брав участь у роботі над одним із ранніх мейнфреймів ІВМ 650.

Володимир Котельников. У 1941 році В. А. Котельников сформулював чітке положення про те, яким вимогам має задовольняти математично недешифрована система і дано доказ неможливості її дешифрування.

Клод Шеннон (1916 - 2001)

Кодування. Основні визначення (1)

Кодування – переклад інформації, поданої у вигляді первинного алфавіту, у послідовність кодів.

Декодування - операція, обернена до кодування, тобто. відновлення інформації у первинному алфавіті за отриманою послідовністю кодів.

Операції кодування та декодування називаються оборотними, якщо їхнє послідовне застосування забезпечує повернення до вихідної інформації без будь-яких її втрат.

Види кодування

Розрізняють три основні види кодування:

- ефективне,
- що коригує (завадостійке),
- Криптографічне.

Завданням ефективного кодування є підвищення швидкості передачі інформації та наближення її до пропускної спроможності каналів.

Завданням завадостійкого кодування є підвищення вірності передачі інформації шляхом виявлення та виправлення помилок.

Відповідно, розрізняють коди з виявленням та виправленням помилок

Завданням криптографічного кодування є:

- Забезпечення конфіденційності даних (запобігання несанкціонованому доступу до даних).
- Забезпечення цілісності даних гарантії того, що при передачі або зберігання дані не були модифіковані користувачем, які не мають на це права.
- Забезпечення автентифікації.

Цілі кодування

Під автентифікацією розуміється перевірка справжності суб'єктів (сторін при обміні даними, автора документів і т.д.) або справжності самої інформації.

Основні цілі кодування:

- скорочення надмірності інформації
- подання інформації та даних у найбільш зручному для ЕОМ вигляді
- зниження вимог до швидкості передачі за рахунок скорочення надмірності інформації
- скорочення обсягу пам'яті займаної файлами

У чому відмінність коду від шифру?

Шифр Цезаря

Шифр Цезаря, також відомий як шифр зсуву, код Цезаря або зсув Цезаря - один із самих простих та відомих методів шифрування.

Шифр названо на честь римського імператора Гая Юлія Цезаря, який використовував його для таємного листування зі своїми генералами.

Кожна літера в цьому шифрі замінюється іншою літерою віддаленої від першої на певну відстань. Наприклад, у шифрі зі зсувом 4 "А" замінюється "Д", "Б" - "Е", "В" - "Ж" і так далі.

Модель каналу передачі інформації

У схемі передачі повідомлень представлені всі види кодування та відповідні кодуючі пристрої на передавальній стороні (кодери) та декодуючі пристрої на приймальній стороні (декодери).

Скорочення:

К – криптографічний;

Е-ефективний;

3 - завадостійкий.

Кодування. Основні визначення (1)

- Нехай джерело видає деяке дискретне повідомлення а, яке можна розглядати як послідовність елементарних повідомлень аі (i=1,2,...l).
- Ці елементарні повідомлення будемо називати знаками, які сукупність {a,} - алфавітом джерела.
- **Кодування** полягає в тому, що кожен із знаків джерела замінюється своїм кодовим словом, яке представляє собою послідовність кодових символів.

32 1	пробел	48	0	64	@	80	P	96	*	112	р
33	1	49	1	65	Α	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	# \$ %	51	3	67	C	83	S	99	С	115	S
36	\$	52	4	68	D	84	T	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f ·	118	v
39	'	55	7	71	G	87	W	103	g	119	W
40	(56	8	72	Н	88	X	104	g h	120	X
41)	57	9	73	-1 1	89	Y	105	1	121	У
42	*	58	: -	74	J	90	Z	106	i	122	z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	1	124	ĺ
45	-	61	=	77	M	93]	109	m	125	}
46		62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	0.	95	0	111	0	127	

Windows 1251

128 Ђ	144 ħ	160	176	192 A	208 P	224 a	240 p
129 🗂	145 '	161 Ÿ	177 ±	193 5	209 C	225 6	241 c
130 ,	146 '	162 ÿ	178	194 B	210 T	226 в	242 T
131 ሰ	147 "	163 J	179 i	195 Г	211 У	227 г	243 y
132 .	148 "	164 ¤	180 r	196 Д	212 Ф	228 д	244 ф
133	149 •	165 ľ	181 μ	197 E	213 X	229 e	245 x
134 †	150 -	166	182 1	198 X	214 Ц	230 ж	246 ц
135 ‡	151 —	167 §	183 -	199 3	215 4	231 3	247 4
136	152	168 Ë	184 ë	200 И	216 Ш	232 и	248 ш
137 ‰	153 TM	169 ©	185 Nº	201 Й	217 Щ	233 й	249 щ
138 Љ	154 љ	170 €	186 €	202 K	218 Ъ	234 к	250 ъ
139 4	155 >	171 «	187 »	203 Л	219 Ы	235 л	251 ы
140 Њ	156 њ	172 -	188 j	204 M	220 Ь	236 м	252 ь
141 K	157 K	173 -	189 S	205 H	221 3	237 н	253 э
142 Ћ	158 ħ	174 ®	190 s	206 O	222 IO	238 o	254 ю
143 U	159 µ	175 Ĭ	191 ī	207 П	223 Я	239 п	255 я