Statistical Method

Univariate Data

Estimation for Statistical Modeling

Week08: October 23, 2022

Statistical inference

Statistical inference is the process of drawing conclusions about a certain population based on a subset of the data.

- Assume an underlying model.
- Use estimation methods to estimate the model parameters or a quantity of interest.
- Onstruct the confidence intervals for the model parameters or the quantity of interest.
- Perform the hypothesis testing and draw the statistical conclusion.

Methods of estimation in statistical method

Point estimation: (Chapter 5.3)

- Method of moments estimation (MME)
- Least square estimation (LSE)
- Maximum likelihood estimation (MLE)
- Bayesian estimation (BE)
 - Maximum a posteriori estimation (MAP)
 - (Optional) Expectation of the posterior distribution, which is obtained by Markov Chain Monte Carlo (MCMC)

Interval Estimation:

- By normal approximation (Chapter 5.3.5)
- By Bootstrapping method (Chapter 7.2)

Optimization problem

The estimation is an application of optimization.

The procedure is as follows:

- Problem definition and definition of decision variables
- Specify the objective function
- Theoretical derivation / efficient algorithms (numerical approaches) to obtain the possible solutions
- Verify the solutions are appropriate and suitable for further conclusion.

Optimization problem: Example

Find the minimum of $(x-1)^2$.

- Problem definition and definition of decision variables $\min f(x) = (x-1)^2$, and the decision variable is x.
- Specify the objective function $\min_{x \in R} f(x) = (x 1)^2$.
- Theoretical derivation / efficient algorithms (numerical approaches)
 - Theoretical method: $f'(x) = 2(x-1) = ^{let} 0$, and x = 1.
 - Efficient algorithm: by the Brent optimization in optim(), the minimum is 4.930381e-32 at x=1.
- Verify the solutions are appropriate and suitable for further conclusion.
 - Theoretical method: f''(x) = 2 > 0 and f(1) = 0 is a minimum at x = 1.
 - Efficient algorithm: Draw the corresponding graph.

Verification

Estimation method: Purpose

Assume that the random samples X are from a the distribution $F(x; \theta)$.

- MME: Use information of data to fit the characteristic of the assumed distribution.
- LSE: Use the squared loss to minimize the error, $\sum_{i=1}^{n} (Obs_i Fitted_i)^2$
- MLE: Likelihood function, which is a concept of the joint distribution of data with unknown parameters.
- BE: Posterior distribution of unknown parameters, which needs to give prior distributions for parameters first.
 - Maximum a posteriori estimation (MAP)
 - Expectation of the posterior distribution

Method	Purpose
MME	Match the theoretical moments with data.
LSE	Match data to the expected values with the minimum loss.
MLE	Let the joint possibilities of all data to be largest.
MAP	With prior knowledge, let the joint possibilities of data to be largest

Estimation method: objective function

Assume that the random samples X are from a the distribution $F(x; \theta)$. The collected data is $\{x_i, i = 1, ..., ...\}$.

Method	Objective function
MME	$E_{\theta}(X) = \frac{1}{n} \sum_{i=1}^{n} x_i, \ E_{\theta}(X^2) = \frac{1}{n} \sum_{i=1}^{n} x_i^2,, \ E_{\theta}(X^m) = \frac{1}{n} \sum_{i=1}^{n} x_i^m$
LSE	$\min_{\theta} \sum_{i=1}^{n} (g(x_i) - Fitted_i)^2$.
MLE	$\max_{\boldsymbol{\theta}} f(x_1, \dots, x_n; \boldsymbol{\theta}) = \text{independent } \max_{\boldsymbol{\theta}} \prod_{i=1}^n f(x_i; \boldsymbol{\theta}).$
MAP	Given prior knowledge $\pi(\boldsymbol{\theta})$, $\max_{\boldsymbol{\theta}} f(x_1, \dots, x_n; \boldsymbol{\theta}) \times \pi(\boldsymbol{\theta})$

Model assumptions

Let X be a random variable with the following properties:

- 1. $F_{\theta}(x)$ and $f_{\theta}(x)$ are the cdf and pdf of random variable X.
- 2. Let $X_1, \ldots, X_n \sim F_{\theta}(\cdot)$, and they are independent and they have the identical distribution $F_{\theta}(\cdot)$. (iid)

Given a dataset, the values of θ in the distribution $F_{\theta}(\cdot)$ are unknown.

Example 1:

Example 1: MME (1)

Assume the data X is from $N(\mu, \sigma^2)$ or $Gamma(\alpha, \lambda)$.

- Problem definition and definition of decision variables The decision variables for the normal distribution are (μ, σ^2) and for the gamma distribution are (α, λ) .
- Specify the objective function
 - Normal distribution: $E(X) = \mu$ and $E(X^2) = \sigma^2 + \mu^2$.
 - Gamma distribution: $E(X) = \alpha/\lambda$ and $E(X^2) = \alpha/\lambda^2 + \alpha^2/\lambda^2$.
- Theoretical derivation / efficient algorithms (numerical approaches)
 - Normal distribution: $\hat{\mu}_{MME} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\hat{\sigma}_{MMF}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \hat{\mu}_{MMF}^2$.
 - Gamma distribution: $E(X) = \alpha/\lambda$ and $E(X^2) = \alpha/\lambda^2 + \alpha^2/\lambda^2$.
- Verify the solutions are appropriate and suitable for further conclusion. Draw the corresponding graph.

Example 1: LSE (2)

Assume the data X is from $N(\mu, \sigma^2)$ or $Gamma(\alpha, \lambda)$.

Fitting a distribution

- Problem definition and definition of decision variables (μ, σ^2) and (α, λ) .
- Specify the objective function
 - Normal distribution: $\min_{\mu} \sum_{i=1}^{n} (x_i \mu)^2$. (What about σ^2 ?)
 - Gamma distribution: $\min_{(\alpha,\lambda)} \sum_{i=1}^{n} (x_i \alpha/\lambda)^2$.
- Theoretical derivation / efficient algorithms (numerical approaches)
 - Normal distribution: $\hat{\mu}_{LSE} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\hat{\sigma}_{LSE}^2 = ?$.
 - Gamma distribution: $\frac{\hat{\alpha}}{\lambda_{LSF}} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- Verify the solutions are appropriate and suitable for further conclusion. Draw the corresponding graph.

Example 1: MLE (3)

Assume the data X is from $N(\mu, \sigma^2)$ or $Gamma(\alpha, \lambda)$.

- Problem definition and definition of decision variables (μ, σ^2) and (α, λ) .
- Specify the objective function
 - Normal distribution: $\max_{(\mu,\sigma^2)} \prod_{i=1}^n f(x_i; \mu, \sigma^2)$.
 - Gamma distribution: $\max_{(\alpha,\lambda)} \prod_{i=1}^n g(x_i; \alpha, \lambda)$.
- Theoretical derivation / efficient algorithms (numerical approaches)
 - Normal distribution: $\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$ and $\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$.
 - Gamma distribution: $\hat{\lambda}_{MLE} = \hat{\alpha}_{MLE}/\bar{x}$ and $\hat{\alpha}_{MLE}$ is obtained numerically.
- Verify the solutions are appropriate and suitable for further conclusion. Draw the corresponding graph.

Example 1: MLE code for normal distribution

```
### Numerical method ###
likelihood.normal <- function(par, data){
 mu <- par[1]
  sig2 \leftarrow par[2]
  joint <- dnorm(data, mean = mu, sd = sqrt(sig2))</pre>
  return(prod(joint))
  return(sum(log(joint)))
  return(-sum(log(joint)))
likelihood.normal(c(1, 2), x)
optim(c(2, 1), likelihood.normal, data = x, control=list(fnscale=-1))
optim(c(2, 1), likelihood.normal, data = x)
```

Example 1: MLE result for normal distribution

Example 1: MLE code for gamma distribution

```
### MLE- gamma ###
likelihood.gamma <- function(par, data){
  alpha <- par[1]</pre>
  lambda <- par[2]</pre>
  joint <- dgamma(data, shape = alpha, rate = lambda)
  #return(prod(ioint))
  #return(sum(log(joint)))
  return(-sum(log(joint)))
likelihood.gamma(c(8, 4), x)
mle.gamma \leftarrow optim(c(8, 4), likelihood.gamma, data = x)
```

Example 1: MLE result for gamma distribution

Example 1: Comparison between normal and gamma distribution

>

Example 1: Comparison between normal and gamma distribution

```
Two-sample Kolmogorov-Smirnov test
data: x and Ref.N
D = 0.1, p-value = 0.9259
alternative hypothesis: two-sided
> ks G
       Two-sample Kolmogorov-Smirnov test
data: x and Ref G
D = 0.1331, p-value = 0.6644
alternative hypothesis: two-sided
> round(est.norm[1,],4)
    mu.hat sig2.hat obj.value
MLE 2.0555 0.1823
                    -17.037
> round(est.gamma[1,],4)
    alpha.hat lambda.hat obj.value
      20.7964
                 10.1169
                           -18.176
```


$$X_1, \ldots, X_n \sim Log.Normal(\mu, \sigma)$$

How to write a code for obtaining the MLE?

- function(...) + dlnorm(...) + optim (...)
- function(...) + mle(...)
- fitdistr(...)

Example: Lognormal distribution

```
> librarv(stats4)
> minuslogl <- function(mu, sigma) {</pre>
   densities <- dlnorm(new data$TV, meanlog=mu, sdlog=sigma)
+ -sum(log(densities))
+ }
> mle(minuslogl, start=list(mu=10, sigma=5))
Ca11:
mle(minuslog1 = minuslog1, start = list(mu = 10, sigma = 5))
Coefficients:
      mu sigma
2.4096583 0.7777092
```

- > library(MASS)
- > fitdistr(new_data\$TV, densfun="lognormal")
 meanlog sdlog
 - 2.409656712 0.777709043
 - (0.003504225) (0.002477861)

Exercise

$$X_1, \ldots, X_n \sim Exp(\lambda)$$
 (rate parameter)

- MME:
- LSE:
- MLE:

Short summary for Estimation

Objective function:

- LSE: $\sum_{i=1}^{n} (Obs_i Fitted_i)^2$
 - linear: y = a, y = a + bx, ...
 - nonlinear: $y = ae^{bx}$,...
- MLE: Likelihood function, which is a concept of the joint distribution of data with unknown parameters.

Statistical inference

Example:

Given the data, use the following steps to show if the mean of the population is 0.

- Assume an underlying model.
- Use estimation methods to estimate the model parameters or a quantity of interest.
- Onstruct the confidence intervals for the model parameters or the quantity of interest. (by theory or bootstrapping)
- Perform the hypothesis testing and draw the statistical conclusion. $H_0: \mu=0$.

Let the data be from N(0,1). We draw the two data sets with size 50, and the histograms are as follows:

Under $\sigma=1$, use the two sets to estimate the value of μ . (how to code the likelihood and the estimation?)

$$\hat{\mu}_1 = 0.09, \ \hat{\mu}_2 = -0.11.$$

Which is a good guess, 0.09 or -0.11? (the estimates depend on samples.)

Let's draw 50 observations from N(0,1) 1000 times, and obtain 1000 MLEs of μ . (Note: the true value of μ is 0.)

Interval estimation

The interval estimation could be defined by an interval constructed by $100 \times (1-\alpha)\%$ cases of sampling. We say that the true value of μ is located between the interval. $\mu \in \mathsf{CI}_{50} = [-0.29, 0.27].$

Let's draw 200 observations from N(0,1) 1000 times, and obtain 1000 MLEs of μ . (Note: the true value of μ is 0.) The interval estimation is $\mu \in \text{Cl}_{200} = [-0.14, 0.14]$. (comparison with $\text{Cl}_{50} = [-0.29, 0.27]$.)

Which is better?

The formulation of confidence interval (CI)

• Model assumption: Let $X_1, \ldots, X_n \sim F_{\theta}(\cdot)$, and they are independent and they have the identical distribution $F_{\theta}(\cdot)$.

Interval estimation

• If there exist sample statistics $L_n = g_L(X_1, \ldots, X_n)$ and $U_n = g_U(X_1, \ldots, X_n)$, then (L_n, U_n) is called the $100(1 - \alpha)\%$ confidence interval for θ , which satisfying

$$Pro\{L_n < \theta < U_n\} = 1 - \alpha.$$

A general (approximated) form is expressed as

$$\theta \in [L_n, U_n] = [t - c\sigma_T, t + c\sigma_T],$$

where $\hat{\theta} = h(x_1, \dots, x_n)$ is a function of data and $\sigma_{\hat{\theta}}$ is the standard error of $\hat{\theta}$.

Simple example (σ^2 is known)

Let

$$X_1,\ldots,X_n \sim N(\mu,\sigma^2),$$

Interval estimation

where σ^2 is known (ex. $\sigma = 1$).

- (Theory) The estimator of μ is $\bar{X} = \sum_{i=1}^{n} X_i / n$.
- The sampling distribution of $\hat{\mu}$ is

$$\hat{\mu} = \bar{X} \sim N(\mu, \sigma^2/n).$$

The CL is constructed as

$$1 - \alpha = Pro\{L_n < \mu < U_n\} = Pro\left\{-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right\},\,$$

where $L_n = \bar{X} - z_{\alpha/2}\sigma/\sqrt{n}$ and $U_n = \bar{X} + z_{\alpha/2}\sigma/\sqrt{n}$.

Sampling distribution (example)

Sampling distribution of MLE

000000000000000000

Effect of sample size on CIs

Interval estimation 000000000000000000

Simulation code (True value is in the CI)

Interval estimation

```
> N < -30
> include <- rep(NA, 10000)</pre>
> for(i in 1:10000){
  Y \leftarrow rnorm(N)
+ vbar <- mean(Y)</pre>
+ se <- 1/sqrt(N)
    Ln \leftarrow ybar - qnorm(0.975, 0, 1) * se
    Un <- ybar + qnorm(0.975, 0 ,1) * se
+
    idx <- sum(c((Ln < 0), (Un > 0)))
    include[i] \leftarrow ifelse(idx == 2, 1, 0)
> mean(include)
[1] 0.9496
```

However,...

The **exact** sampling distribution of an estimator is not easily derived. Two possible ways are as follows:

- Bootstrapping.
- Need some approximated or asymptotic theory.

Bootstrapping (non-parametric way)

Given a dataset, the procedure of the non-parametric Bootstrapping:

- Re-sample the dataset with the same length.
- Calculate the value of the estimator.
- Repeat Steps 1-2 B times.
- Oraw and find the quantiles of the bootstrapped values of the estimator.

Bootstrapping (parametric way)

Given a dataset, the procedure of the non-parametric Bootstrapping:

- Generate the dataset from the "given distribution" with the same length as the collected data.
- Calculate the value of the estimator.
- Repeat Steps 1-2 B times.
- Oraw and find the quantiles of the bootstrapped values of the estimator.

Simple example by the non-parametric Bootstrapping method (σ^2 is known)

```
290 ### Non-parametric Bootstrapping sampling distribution ###
 291 set seed(1024)
                                                                                                                                    S Publish -
 292 data.collected <- rnorm(100, 0, 1)
     est.collected <- optim(0, likelihood.mu, sd = 1, data = data.collected,
                                                                                                          Sampling distribution of MLE
 294
                             method = "Brent". lower = -10, upper = 10)
 295 est <- est.collectedSpar
 296
297 np.mu.hat.100 <- rep(NA, 1000)
 298-for(j in 1:1000){
       dataY <- sample(data.collected, length(data.collected), replace = TRUE)
       esty <- optim(0, likelihood.mu, sd = 1, data = datay,
 300
 301
                      method = "Brent", lower = -10, upper = 10)
 302
       np.mu.hat.100[i] <- estY$parl
 303 - }
 304
 305 quantile(np.mu.hat.100, c(0.025, 0.975))
 306 Ln <- est + gnorm(0.025) * sqrt(var(np.mu.hat.100))
 307 Un <- est + gnorm(0.975) * sgrt(var(np.mu.hat.100))
 308 c(Ln. Un)
 309
 310 4
Console Terminal × Background Jobs
> quantile(np.mu.hat.100, c(0.025, 0.975))
      2.5%
-0.2088754 0.1878363
> Ln <- est + gnorm(0.025) * sgrt(var(np.mu.hat.100))</pre>
> Un <- est + gnorm(0.975) * sgrt(var(np.mu.hat.100))</p>
> c(Ln. Un)
[1] -0.2122330 0.1732376
```

Simple example by the parametric Bootstrapping method $(\sigma^2 \text{ is known})$

```
315 ### Parametric Bootstrapping sampling distribution ###
                                                                                        de - / Zoom - Spect - O /
                                                                                                                                S- Publish
 316
317 p.mu.hat.100 <- rep(NA, 1000)
                                                                                                       Sampling distribution of MLE
 318-for(j in 1:1000){
 319
       dataY <- rnorm(100, est, 1)
 320
       estY <- optim(0, likelihood.mu, sd = 1, data = dataY,
 321
                     method = "Brent". lower = -10. upper = 10)
       p.mu.hat.100[j] <- estY$par
 322
 323-}
 324
 325 quantile(p.mu.hat.100, c(0.025, 0.975))
 326 Ln <- est + gnorm(0.025) * sgrt(var(p.mu.hat.100))
 327 Un <- est + qnorm(0.975) * sqrt(var(p.mu.hat.100))
 328 c(Ln. Un)
 329
 330 par(mfrow = c(1, 1))
 331 hist(p.mu.hat.100, probability = TRUE, xlab = "MLE of mu",
          main = "Sampling distribution of MLE", ylim = c(0, 3))
> quantile(p.mu.hat.100, c(0.025, 0.975))
      2.5%
                97.5%
-0 2281404 0 1733398
> Ln <- est + gnorm(0.025) * sgrt(var(p.mu.hat.100))
> Un <- est + gnorm(0.975) * sgrt(var(p.mu.hat.100))
> c(Ln. Un)
[1] -0.2182050 0.1792096
```

Statistical inference

Statistical inference is the process of drawing conclusions about a certain population based on a subset of the data.

- Assume an underlying model.
- Use estimation methods to estimate the model parameters or a quantity of interest.
- Onstruct the confidence intervals for the model parameters or the quantity of interest.
- Perform the hypothesis testing and draw the statistical conclusion.

Exercise: σ^2 is unknown

Assume a dataset be random samples from a normal distribution N(0,1).

- The estimator of μ is $\bar{X} = \sum_{i=1}^{n} X_i / n$.
- The sampling distribution of $\hat{\mu}$ is

$$\hat{\mu} = \bar{X} \sim N(\mu, S^2/n),$$

where S^2 is the sample variance.

The CI is constructed as

$$L_n = \bar{X} - z_{\alpha/2} S / \sqrt{n},$$

and

$$U_n = \bar{X} + z_{\alpha/2} S / \sqrt{n}$$
.

ullet Try to use the bootstrapping method for construct the CIs for $\mu.$

Exercise: Sepal width of Iris

Given the sepal width of iris data, use the following steps to show if the mean of sepal width is 3.

- Assume an underlying model.
- Use estimation methods to estimate the model parameters or a quantity of interest.
- Construct the confidence intervals for the model parameters or the quantity of interest. (by theory or bootstrapping)
- Perform the hypothesis testing and draw the statistical conclusion. $H_0: \mu = 3.$

Constructed by the asymptotic theory

The asymptotic theory for the **maximum likelihood estimator** of a model parameter is as follow:

$$\hat{\theta}_{MLE} \sim^d N(\theta, I^{-1}(\theta))$$
 as $n \to \infty$,

where

$$I(\theta) = E\left\{ \left[\frac{dI(\theta)}{d\theta} \right]^2 \right\} = E\left\{ -\frac{dI^2(\theta)}{d\theta^2} \right\},\,$$

 $I(\theta)$ is the log-likelihood function of θ and $I(\theta)$ is called Fisher information.

Example: $(\sigma^2 \text{ is known})$

$$I(\mu) = n/\sigma^2,$$

 $\hat{\mu}_{MLE} = \bar{X} \sim N(\mu, \sigma^2/n).$

CI:
$$(L_n, U_n) = (\bar{X} - z_{\alpha/2}\sigma/\sqrt{n}, \bar{X} + z_{\alpha/2}\sigma/\sqrt{n})$$
.

Constructed by the asymptotic theory

The asymptotic theory for the maximum likelihood estimators of parameters is as follow:

$$\hat{\boldsymbol{\theta}}_{MLE} \sim^d N(\boldsymbol{\theta}, I^{-1}(\boldsymbol{\theta}))$$
 as $n \to \infty$,

where

$$I_{ij}(\boldsymbol{\theta}) = E\left\{ \left[\frac{\partial I(\boldsymbol{\theta})}{\partial \theta_i} \right] \left[\frac{\partial I(\boldsymbol{\theta})}{\partial \theta_j} \right] \right\} = E\left\{ -\frac{\partial I^2(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} \right\},$$

 $I(\theta)$ is the log-likelihood function of θ and $I(\theta)$ is called Fisher information matrix.

Constructed by the asymptotic theory

Example: $(\sigma^2 \text{ is unknown})$

$$I(\mu, \sigma^2) = \begin{bmatrix} n/\sigma^2 & 0\\ 0 & n/2\sigma^4 \end{bmatrix}$$
$$(\hat{\mu}_{MLE}, \hat{\sigma}_{MLE}^2)' \sim N((\mu, \sigma^2)', \Sigma),$$

where

$$\Sigma = \left[\begin{array}{cc} \sigma^2/n & 0\\ 0 & 2\sigma^4/n \end{array} \right]$$

CI:
$$\mu \in (L_n, U_n) = \left(\hat{\mu}_{MLE} - z_{\alpha/2}\hat{\sigma}_{MLE}/\sqrt{n}, \hat{\mu}_{MLE} + z_{\alpha/2}\hat{\sigma}_{MLE}/\sqrt{n}\right).$$

 $\sigma^2 \in (L_n, U_n) = \left(\hat{\sigma}_{MLE}^2 - z_{\alpha/2}\hat{\sigma}_{MLE}^2\sqrt{2/n}, \hat{\sigma}_{MLE}^2 + z_{\alpha/2}\hat{\sigma}_{MLE}^2\sqrt{2/n}\right).$

Using observed information matrix to approximate Fisher information matrix

Let X be the data from the distribution $f_{\theta}(x)$. Then, the observe information can be used to approximate the Fisher information:

$$I(\theta) = E\left\{-\frac{dI^2(\theta|\mathbf{X})}{d\theta^2}\right\} \approx \left\{-\frac{dI^2(\theta|\mathbf{X})}{d\theta^2}\right\},$$

where the size of data is large.

Approximated Fisher information matrix

$$I(\theta) = E\left\{-\frac{dI^2(\theta|\mathbf{X})}{d\theta^2}\right\} = \int_R -\frac{dI^2(\theta|\mathbf{X})}{d\theta^2}f_{\theta}(\mathbf{x})d\mathbf{x}.$$

We can use the Monte Carlo integration to approximate the integral.

- **1** Draw a dataset $(\mathbf{x}^{(i)})$ from the distribution $f_{\theta}(\mathbf{x})$.
- ② For the dataset, evaluate the value of $-\frac{dl^2(\theta|\mathbf{x}^{(i)})}{d\Omega^2}$.
- Repeat Steps 1 and 2 K times, and

$$I(\theta) = E\left\{-\frac{dI^2(\theta|\mathbf{X})}{d\theta^2}\right\} = \int_R -\frac{dI^2(\theta|\mathbf{X})}{d\theta^2} f_{\theta}(\mathbf{x}) d\mathbf{x} \approx \frac{1}{K} \sum_{i=1}^K -\frac{dI^2(\theta|\mathbf{x}^{(i)})}{d\theta^2}.$$