Seminár 30: Algebraické výrazy a rovnice VII – Kvadratické rovnice

Ciele

Precvičiť metódy používané pri práci s kvadratickými rovnicami a vzťahy medzi koreňmi rovnice

Úvodný komentár

Na začiatku seminára si spolu so študentami osviežime znalosti o kvadratických rovniciach, počte ich riešení a vzťahoch medzi reálnymi koreňmi a koeficientmi (Viètove vzorce). V čase konania seminára už študenti pravdepodobne budú mať za sebou preberanie tohto učiva na hodinách matematiky, takže by opakovanie nemalo zabrať priveľa času.

Úlohy a riešenia

Úloha 30.1. [B-57-I-5-N3] Nájdite všetky dvojice (a,b) reálnych čísel, pre ktoré má každá z rovníc $x^2 + (a-2)x + b - 3 = 0$, $x^2 + (a+2)x + 3b - 5 = 0$ dvojnásobný koreň.

Riešenie. Kvadratická rovnica má dvojnásobný koreň práve vtedy, ak jej diskriminant je rovný nule. Z tejto podmienky pre rovnice zo zadania dostávame

$$a^{2} - 4a - 4b + 16 = 0,$$

$$a^{2} + 4a - 12b + 24 = 0.$$
(1)

Odčítaním druhej rovnice od prvej máme po úprave a = b - 1. Dosadením tohto vzťahu do jednej z rovníc v 1 potom určíme možné hodnoty b, ktoré sú 3 a 7. K nim odpovedajúce hodnoty a sú tak 2 a 6 a teda hľadané dvojice reálnych čísel (a, b) sú (2, 3) a (6, 7).

Komentár. Jednoduchá úloha na úvod, v ktorej študenti aplikujú znalosti o závislosti medzi hodnotou diskriminantu a počtom riešení kvadratickej rovnice. Ten potom vedie na riešenie sústavy dvoch rovníc s dvomi neznámymi.

Úloha 30.2. [B-57-I-5] Určte všetky dvojice a,b reálnych čísel, pre ktoré má každá z kvadratických rovníc

$$ax^2 + 2bx + 1 = 0$$
, $bx^2 + 2ax + 1 = 0$

dva rôzne reálne korene, pričom práve jeden z nich je spoločný obom rovniciam.

Riešenie*. Zo zadania vyplýva, že $a \neq 0$, $b \neq 0$ (inak by rovnice neboli kvadratické) a $a \neq b$ (inak by rovnice boli totožné, a ak by mali dva reálne korene, boli by oba spoločné).

Označme x_0 spoločný koreň oboch rovníc, takže

$$ax_0^2 + 2bx_0 + 1 = 0$$
, $bx_0^2 + 2ax_0 + 1 = 0$.

Odčítaním oboch rovníc dostaneme $(a-b)(x_0^2-2x_0)=x_0(a-b)(x_0-2)=0$. Keďže $a\neq b$ a 0 zrejme koreňom daných rovníc nie je, musí byť spoločným koreňom číslo $x_0=2$. Dosadením do daných rovníc tak dostaneme jedinú podmienku 4a+4b+1=0, čiže

$$b = -a - \frac{1}{4}$$
.

Diskriminant druhej z daných rovníc je potom $4a^2-4b=4a^2+4a+1=(2a+1)^2$, takže rovnica má dva rôzne reálne korene pre ľubovoľné $a\neq -\frac{1}{2}$. Podobne diskriminant prvej z daných rovníc je $4b^2-4a=4b^2+4b+1=(2b+1)^2$. Rovnica má teda dva rôzne reálne korene pre ľubovoľné $b\neq -\frac{1}{2}$, čiže $a\neq \frac{1}{4}$

Z uvedených predpokladov však zároveň vyplýva $a \neq -\frac{1}{4} \ (b \neq 0)$ a $a \neq -\frac{1}{8} \ (a \neq b)$. $Z \'{a} ver$. Vyhovujú všetky dvojice $(a, -a - \frac{1}{4})$, kde $a \in \mathbb{R} \ \{-\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, 0, \frac{1}{4}\}$.

Komentár. V úlohe sa k správnemu riešeniu dostaneme pomocou vhodného odčítania dvoch rovníc (a potom vhodnou úpravou takto vzniknutej rovnice). Považujeme za vhodné študentov na tento "trik" upozorniť, keďže nájde uplatnenie nielen v nasledujúcej úlohe, ale aj v rôznych iných príkladoch.

Domáca práca