

AA 279 A – Space Mechanics Lecture 1: Notes

Simone D'Amico, PhD Assist. Prof., Aeronautics and Astronautics (AA) Director, Space Rendezvous Laboratory (SLAB) Satellite Advisor, Stanford Space Student Initiative (SSI)

Table of Contents

- Course introduction
- Brief historical review
- Kepler's and Newton's laws
- → N-Body and 2-Body problem

Reading for this week

→ Bate 1.1-1.6, 1.11

→ Montenbruck 1-2.1.3

→ Vallado 1.1-1.3.4

JPL astrodynamicist Rich Purnell has the answer... possibly

Simone D'Amico in the clean room ... with the PRISMA satellites

Course Introduction (1)

Definition of Astrodynamics (from Griffin and French, 1991)

Astrodynamics is the study of the motion of man-made objects in space, subject to both natural and artificially induced forces

- This definition combines features of
 - Celestial mechanics (motion of celestial objects)
 - Orbital dynamics (orbit motion of all objects)
 - Attitude dynamics (orientation of objects in space)

Course Introduction (2)

- → Why AA279A?
 - Entry point into "Astro"
 - Language of space mechanics
 - Fundamentals of spacecraft motion
 - Simulation of "real-world" orbits

- After AA279A?
 - → AA279B: Advanced Space Mechanics
 - → AA279C: S/C Attitude Determination&Control
 - → AA279D: Distributed Space Systems

Course Introduction (3)

According to our definition, Astrodynamics' birthdate is October 4, 1957

→ Today, several thousands man-made satellites orbit the Earth...

...together with countless pieces of space debris, but how do they move?

Most Popular Orbits

Sun-synchronous orbit

500-1500 km

Sweet spot over the pole that lets the satellite stay in one time...

Molniya orbit (semi-synch)

1000x40000 km

Combines high inclination and eccentricity to maximize viewing time over high latitudes...

Geostationary orbit (geo-synch)

35800 km

Sweet spot over the equator that lets the satellite stay over one place...

GNSS constellations (semi-synch)

20000 km

Multiple suitably shifted orbits that repeat twice every day and let a minimum number of satellites always visible from any point...

Brief historical review (Ancient Greece)

Thales (Turkey, 624-546 BC)

- Astronomy
- Length of the year
- Predicted eclipses
- Earth is a sphere

Eratosthenes (Libya, 276-194 BC)

- Estimate Earth's radius (1%)
- Based on Sun's light rays and simple geometry

Pythagorous (Greece, 570-495 BC)

- Geometry
- Earth and comets around Sun
- Earth rotates about its own axis
- Each planet emits musical note

Hipparcus (Turkey, 190-120 BC)

- Spherical trigonometry
- Farth is center of universe
- Cataloged 1000 stars by brightness
- Excentric and epicycle

Euclid (Egypt, 330-275 BC)

- Geometry (writings were lost)
- Conic sections
- Apollonius: Excentric and epicycle
- Aristarchus: Earth around Sun

Caesar (Italy, 100-44 BC)

- Julian calendar in 46 BC
- 365.25 days
- Leap day every four years
- Error of 11 minutes/year

Brief historical review (Roman Empire)

Ptolemy (Egypt, 90-168 AD)

- 13-volume work
- "The Mathematical Collection" or the "Almagest"
- Earth-centered solar system
- Final refinements of excentric and epicycle
- Extremely complex theory which "served" the purpose

Brief historical review (Revolution)

Copernicus (Poland, 1473-1543 AD)

- Astronomer
- Sun-centered heliocentric theory
- New numbers and data, details on planetary motion
- Small epicycles still necessary to match observations

Galileo Galilei (Italy, 1564-1642 AD)

- Astronomer, Mathematician, Physicist
- Scientific method through empirical observations (telescope)
- Observed Jupiter's moons and planets
- Defended heliocentric view (and circular motion)

Tycho Brahe (Denmark, 1546-1601 AD)

- Last major "naked eye" Astronomer
- Placed supernovae and comets outside atmosphere
- Copious accurate observations...
- ...left to his assistant...

Kepler's Laws (What?)

Johannes Kepler (Germany, 1571-1630 AD)

- Mathematician, Astronomer
- Used Tycho's observations to devise a kinematics theory of planetary orbits which also applies to satellites
- Three laws of planetary motion

- Planetary orbits are ellipses with Sun at one focus. [1609]
- II) Radius vector to each planet sweeps out equal areas in equal times. [1609]
- III) $T^2 \propto a^3$, being T =time to orbit around Sun a =mean distance to Sun [1619]

Newton's Laws (Why?)

Isaac Newton (England, 1642-1727 AD)

- Physicist, Mathematician
- Began developing theories while "taking a break from college" (University of Cambridge)
- Father of infinitesimal calculus (with Leibniz)
- Three laws of **dynamics** motion and gravitation [1687]

- Bodies in uniform motion stay in uniform motion unless acted on by external force.
- II) Leibniz notation: $\vec{F} = \frac{d}{dt}(m\vec{v})$
- III) To every action there is always equal and opposite reaction.

IV) Point mass k attracts point mass j by applying force F_{jk} in direction from j to k

$$F_{jk} = \frac{Gm_k m_j}{r_{kj}^2}$$

being $G = 6.67\underline{3} \cdot 10^{-20} \text{ [km}^3/\text{(kg} \cdot \text{s}^2\text{)]}$ $r_{jk} = \text{Distance from j to k}$

N-Body Problem (from Newton's laws)

- Defining vector from k to j

$$\vec{r}_{kj} = \vec{r}_j - \vec{r}_k$$

- Applying universal law of gravitation (IV.) between *k* and *j*

$$\vec{F}_{jk} = -\frac{Gm_k m_j}{r_{kj}^2} \hat{\vec{r}}_{kj} = -Gm_k m_j \frac{\vec{r}_{kj}}{r_{kj}^3}$$

- Totaling all forces on j due to N bodies

$$\sum \vec{F_j} = -Gm_j \sum_{\substack{k=1 \ k \neq j}}^N m_k \frac{\vec{r}_{kj}}{r_{kj}^3}$$
Gravity only

- Applying Netwons's (II.) law with constant mass for body j

$$\sum \vec{F_j} = \frac{d}{dt} (m_j \vec{v_j}) = m_j \frac{d^2}{dt^2} (\vec{r_j})$$
Acceleration

N-Body Problem (Equations of motion)

Resulting equation of motion is 2nd order non-linear differential equation for body j (N equations for N bodies).

$$\frac{d^2}{dt^2}(\vec{r}_j) = -G\sum_{\substack{k=1\\k\neq j}}^N m_k \frac{\vec{r}_{kj}}{r_{kj}^3}$$

Lagrangia, Italy (1736-1813 AD)

Euler, Switzerland (1707-1783 AD)

Analytic solutions available only in rare cases (N = 1, 2, 3). Solutions even rarer when non-gravitational effects considered. For $N \ge 3$ we rely on numerical integration.

- → In AA 279 A, we will consider only special cases which are of practical relevance
 - → Restricted Three-Body Problem (N = 3)
 - \neg Two-Body Problem (N = 2)

2-Body Problem (1)

- For body 1 (Earth)

$$\frac{d^2}{dt^2}(\vec{r}_1) = -G \sum_{\substack{k=1\\k\neq 1}}^N m_k \frac{\vec{r}_{k1}}{r_{k1}^3}$$

- For body 2 (Satellite)

$$\frac{d^2}{dt^2}(\vec{r}_2) = -G \sum_{\substack{k=1\\k\neq 2}}^{N} m_k \frac{\vec{r}_{k2}}{r_{k2}^3}$$

- Motion of body 2 w.r.t. to body 1

$$\frac{d^2}{dt^2}(\vec{r}_{12}) = \frac{d^2}{dt^2}(\vec{r}_2) - \frac{d^2}{dt^2}(\vec{r}_1) = -G(m_1 + m_2) \frac{\vec{r}_{12}}{r_{12}^3} - \sum_{k=3}^{N} Gm_k \left(\frac{\vec{r}_{k2}}{r_{k2}^3} - \frac{\vec{r}_{k1}}{r_{k1}^3}\right)$$

2-Body Problem (2)

 \neg When can we neglect contributions from $k \ge 3$ bodies?

$$\sum_{k=3}^{N} Gm_k \left(\frac{\vec{r}_{k2}}{r_{k2}^3} - \frac{\vec{r}_{k1}}{r_{k1}^3} \right) \longrightarrow 0$$
small or far away

2-Body Problem (3)

For N = 2, we are left with a 2^{nd} order nonlinear ordinary differential equation which has closed-form solutions for r_{12} .

$$\frac{d^2}{dt^2}(\vec{r}_{12}) = -G(m_1 + m_2) \frac{\vec{r}_{12}}{r_{12}^3}$$

Solutions are conic sections (circles, ellipses, hyperbolas, parabolas) about the center of mass of the 1-2 system (barycenter)

Example: The Earth and the Moon orbit each other in nearly circular ellipses with foci at the barycenter (27 days period)

2-Body Problem (4)

 \neg We are usually interested in man-made objects where $m_{\text{Satellite}} << m_{\text{Central body}}$

$$\frac{d^2}{dt^2}\vec{r} + \mu \frac{\vec{r}}{r^3} = 0$$

Fundamental Orbital Differential Equation

- In this case we drop the r_{12} notation and assume r being the position of the satellite w.r.t. the center of mass of the spherically symmetric central body
- The **gravitational parameter** μ is specific to a central body and can be measured more accurately than G or $m_{\text{Central body}}$ through laser distance measurements of artificial satellites

$$\mu_{\rm Earth} = 3.986 \ 10^5$$
 $\mu_{\rm Sun} = 1.327 \ 10^{11} \ {\rm km}^3/{\rm s}^2$
 $\mu_{\rm Moon} = 4.902 \ 10^3$

2-Body Problem (Solution)

Assumptions: Spherically symmetric bodies (point masses), only gravitational forces, inertial coordinate system, $m_{\text{Satellite}} << m_{\text{Central body}}$

$$\frac{d^2}{dt^2}\vec{r} + \mu \frac{\vec{r}}{r^3} = 0$$

Fundamental Orbital Differential Equation

$$\begin{cases} \vec{r}(t_0) \\ \vec{v}(t_0) \end{cases}$$

Inertial Position and Velocity

- \neg Orbital motion is governed by 2nd order nonlinear ordinary differential equation and is completely determined by initial conditions at particular time t_0 (6 Degrees of Freedom)
- In polar coordinates (r, v) the fundamental orbital differential equation is solved by the general equation of a conic section (this solution gives a shape, not the time evolution)

$$r(v) = \frac{p}{1 + e\cos v}$$

Conic Section in Polar Coordinates

Backup