Zhengjun Zhang

1. The time plots of two series are shown below.

- (a) For each of the series, describe r_1 using the terms strongly positive, moderately positive, near zero, moderately negative, or strongly negative. Do you need to know the scale of measurement for the series to answer this?
- (b) Repeat part (a) for r_2 .

- 2. Simulate an AR(1) time series with n = 48 and with $\phi = 0.6$.
 - (a) Calculate the theoretical autocorrelations at lag 1 and lag 5 for this model.
 - (b) Calculate the sample autocorrelations at lag 1 and lag 5 and compare the values with their theoretical values. Use Equations (6.1.5) and (6.1.6) page 111, to quantify the comparisons.
 - (c) Repeat part (b) with a new simulation. Describe how the precision of the estimate varies with different samples selected under identical conditions.
 - (d) If software permits, repeat the simulation of the series and calculation of r_1 and r_5 many times and form the sampling distributions of r_1 and r_5 . Describe how the precision of the estimate varies with different samples selected under identical conditions. How well does the large-sample variance given in Equation (6.1.5) on page 111, approximate the variance in your sampling distribution?

- 3. Simulate an MA(2) time series of length n=36 with $\theta_1=0.7$ and $\theta_2=-0.5$.
 - (a) What are the theoretical autocorrelations for this model?
 - (b) Calculate and plot the sample ACF for your simulated series. How well do the values and patterns match the theoretical ACF from part (a)?
 - (c) Plot the theoretical partial autocorrelation function for this model. Plot sufficient lags until the correlations are negligible. (We do not have a formula for this PACF. Instead, perform a very large sample simulation, say n=1000, for this model and calculate and plot the sample PACF for this simulation.)
 - (d) Calculate and plot the sample PACF for your simulated series of part (a). How well do the values and patterns match the "theoretical" PACF from part (c)?

- 4. Simulate a mixed ARMA(1,1) model of length n = 100 with $\phi = 0.8$ and $\theta = 0.4$.
 - (a) Calculate and plot the theoretical autocorrelation function for this model. Plot sufficient lags until the correlations are negligible.
 - (b) Calculate and plot the sample ACF for your simulated series. How well do the values and patterns match the theoretical ACF from part (a)?
 - (c) Calculate and interpret the sample EACF for this series. Does the EACF help you specify the correct orders for the model?
 - (d) Repeat parts (b) and (c) with a new simulation using the same parameter values and sample size.
 - (e) Repeat parts (b) and (c) with a new simulation using the same parameter values but sample size n = 48.
 - (f) Repeat parts (b) and (c) with a new simulation using the same parameter values but sample size n = 200.