Pseudocode conventions as followed by CLRS*

Following excerpt of pseudocode will be referenced throughout the conventions guide.

```
INSERTION-SORT(A)

1: for j = 2 to A.length

2: key = A[j]

3: // Insert A[j] to the sorted sequence A[1..j-1]

4: i = j - 1

5: while i > 0 and A[i] > key

6: [i+1] = A[i]

7: i = i - 1

8: A[i+1] = key
```

- Indentation indicates block structure. For example, the body of the **for** loop that begins on line 1 consists of lines 2–8, and the body of the **while** loop that begins on line 5 contains lines 6–7 but not line 8. Our indentation style applies to **if-else** statements¹ as well. Using indentation instead of conventional indicators of block structure, such as **begin** and **end** statements, greatly reduces clutter while preserving, or even enhancing, clarity.²
- The looping constructs **while**, **for**, and **repeat-until** and the **if-else** conditional construct have interpretations similar to those in C, C++, Java, Python, and Pascal.³ In this book, the loop counter retains its value after exiting the loop, unlike some situations that arise in C++, Java, and Pascal. Thus, immediately after a **for** loop, the loop counter's value is the value that first exceeded the **for** loop bound. We used this property in our correctness argument for insertion sort. The **for** loop header in line 1 is **for** j = 2 **to** A.length, and so when this loop terminates, j = A.length + 1 (or, equivalently, j = n + 1, since n = A.length). We use the keyword

 $^{^{*}\}mathrm{T.H.}$ Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd Ed., McGraw Hill, 2001

¹In an **if-else** statement, we indent **else** at the same level as its matching **if**. Although we omit the keyword **then**, we occasionally refer to the portion executed when the test following **if** is true as a **then clause**. For multiway tests, we use **elseif** for tests after the first one.

²Each pseudocode procedure in this book appears on one page so that you will not have to discern levels of indentation in code that is split across pages.

³Most block-structured languages have equivalent constructs, though the exact syntax may differ. Python lacks **repeat-until** loops, and its **for** loops operate a little differently from the **for** loops in this book.

to when a for loop increments its loop counter in each iteration, and we use the keyword downto when a for loop decrements its loop counter. When the loop counter changes by an amount greater than 1, the amount of change follows the optional keyword by.

- The symbol "//" indicates that the remainder of the line is a comment.
- A multiple assignment of the form i = j = e assigns to both variables i and j the value of expression e; it should be treated as equivalent to the assignment j = e followed by the assignment i = j.
- Variables (such as i, j, and key) are local to the given procedure. We shall not use global variables without explicit indication.
- We access array elements by specifying the array name followed by the index in square brackets. For example, A[i] indicates the *i*th element of the array A. The notation ".." is used to indicate a range of values within an array. Thus, A[1..j] indicates the subarray of A consisting of the j elements A[1], A[2], ..., A[j].
- We typically organize compound data into *objects*, which are composed of *attributes*. We access a particular attribute using the syntax found in many object-oriented programming languages: the object name, followed by a dot, followed by the attribute name. For example, we treat an array as an object with the attribute *length* indicating how many elements it contains. To specify the number of elements in an array A, we write A.length.

We treat a variable representing an array or object as a pointer to the data representing the array or object. For all attributes f of an object x, setting y = x causes y.f to equal x.f. Moreover, if we now set x.f = 3, then afterward not only does x.f equal 3, but y.f equals 3 as well. In other words, x and y point to the same object after the assignment y = x.

Our attribute notation can "cascade." For example, suppose that the attribute f is itself a pointer to some type of object that has an attribute g. Then the notation x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned y = x.f, then x.f.g is the same as y.g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the special value NIL.

• We pass parameters to a procedure **by value**: the called procedure receives its own copy of the parameters, and if it assigns a value to a parameter, the change is **not** seen by the calling procedure. When objects are passed, the pointer to the data representing the object is copied, but the object's attributes are not. For example, if x is a parameter of a called procedure, the assignment x = y within the called procedure is not

visible to the calling procedure. The assignment x.f = 3, however, is visible. Similarly, arrays are passed by pointer, so that a pointer to the array is passed, rather than the entire array, and changes to individual array elements are visible to the calling procedure.

- A **return** statement immediately transfers control back to the point of call in the calling procedure. Most **return** statements also take a value to pass back to the caller. Our pseudocode differs from many programming languages in that we allow multiple values to be returned in a single **return** statement.
- The boolean operators "and" and "or" are *short circuiting*. That is, when we evaluate the expression "x and y" we first evaluate x. If x evaluates to FALSE, then the entire expression cannot evaluate to TRUE, and so we do not evaluate y. If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the value of the entire expression. Similarly, in the expression "x or y" we evaluate the expression y only if x evaluates to FALSE. Short-circuiting operators allow us to write boolean expressions such as " $x \neq NIL$ and x.f = y" without worrying about what happens when we try to evaluate x.f when x is NIL.
- The keyword **error** indicates that an error occurred because conditions were wrong for the procedure to have been called. The calling procedure is responsible for handling the error, and so we do not specify what action to take.