BC0209-Fenômenos Eletromagnéticos Segundo quadrimestre de 2016

Prof. José Kenichi Mizukoshi

Aula 11 (versão 13/07/2016)

Problemas da parte I do curso

Problemas Propostos

A lei de Coulomb

Problemas Propostos

Aula 1

P2 A Fig. ao lado mostra um arranjo entre quatro partículas carregadas, com ângulo $\theta=30,0^\circ$ e distância d=2,00 cm. A partícula 2 possui carga $q_2=+8,00\times 10^{-19}$ C; partículas 3 e 4 possuem cargas $q_3=q_4=-1,60\times 10^{-19}$ C. (a) Qual é a distância D entre a origem e a partícula 2 se a força eletrostática líquida sobre a partí-

cula 1 devido a outras partículas é zero? (b) Se as partículas 3 e 4 forem movidas para mais perto do eixo x, mas mantendo a simetria sobre esse eixo, seria o valor requerido de D maior que, menor que ou seria o mesmo que o obtido na parte (a)?

Resp. (a) D=1.92 cm; (b) O novo valor de D deve ser menor.

Campo elétrico de uma distribuição linear de

Cargas Problemas Propostos

Aula 2

P3 Na Fig. ao lado, uma haste fina de vidro forma um semicírculo de raio $r=5{,}00$ cm. Carga é uniformemente distribuída ao longo da haste, com $+q=4{,}50$ pC na metade superior e $-q=-4{,}50$ pC na metade inferior. Qual o campo elétrico \vec{E} em P, o centro do semicírculo?

Resp.
$$\vec{E} = (20.6 \text{ N/C})(-\hat{\jmath})$$

Lei de Gauss

Problemas Propostos

Aula 3

P2 A Fig. ao lado mostra uma superfície gaussiana fechada na forma de um cubo de aresta 2,00 m. Ela está localizada em uma região onde existe um campo elétrico não-uniforme dado por $\vec{E} = [(3,00x+4,00)\,\hat{\imath}+6,00\,\hat{\jmath}+7,00\,\hat{k}]$ N/C, onde x está em metros. Qual é a carga líquida contida no interior do cubo?

Resp.
$$q = \varepsilon_0 \Phi = 2{,}13 \times 10^{-10}$$
 C.

Problemas Propostos

Aula 4

P2 Na Fig. ao lado, uma esfera sólida de raio a é concêntrica a uma casca esférica condutora de raio interno b e raio externo c. A esfera possui uma carga q>0 uniformemente distribuída, enquanto que a casca possui carga líquida -q. (a) Qual é a carga líquida sobre a superfície interna e externa da casca? (b) Encontre a magnitude do campo elétrico em função da distância radial r.

Resp. (a) -q na superfície interna e 0 na superfície externa; (b) $E=\frac{qr}{4\pi\varepsilon_0a^3}$, para $r< a; E=\frac{q}{4\pi\varepsilon_0r^2}$, para a< r< b; E=0, para r>b.

Potencial Elétrico

Problemas Propostos

Aula 5

P2 Duas partículas carregadas estão mostradas na Fig. (a) abaixo. A partícula 1, com carga q_1 , está fixa em um local a uma distância d da origem. A partícula 2, com carga q_2 , pode-se mover ao longo do eixo x. A Fig. (b) dá o potencial elétrico líquido V na origem devido às duas partículas em função da coordenada x da partícula 2. A escala do eixo x é definida por $x_s=16,0$ cm. O gráfico possui uma assíntota de $V=5,76\times 10^{-7}$ V quando $x\to\infty$. Encontre q_2 em termos de e, a carga fundamental.

Resp. $q_2 = -32e$.

O capacitor esférico

Problemas Propostos

Aula 7

P1 (a) Obtenha a capacitância de um capacitor esférico que consiste em uma casca esférica condutora de raio b e carga -Q que é concêntrica com uma esfera condutora menor de raio a e carga +Q (veja figura ao lado); (b) Qual a capacitância do capacitor esférico no limite em que $b \gg a$?

$$-Q$$

Resp. (a)
$$C = \frac{4\pi\varepsilon_0 ab}{b-a}$$
; (b) $C \approx 4\pi\varepsilon_0 a$.

Associação de capacitores; energia armazenada em capacitores

Aulas 7 e 8

A Fig. ao lado exibe uma bateria de 12,0 V e 3 capacitores descarregados de capacitâncias $C_1=4,00~\mu\text{F}$, $C_2=6,00~\mu\text{F}$ e $C_3=3,00~\mu\text{F}$. A chave é posicionada para à esquerda até que o capacitor 1 seja completamente carregado. Então, a chave é posicionada para à direita. (a) Quais são as cargas nos capacitores enquanto a chave se

encontra à direita? (b) Obtenha a energia total em cada um dos capacitores para cada posição da chave. A energia total se conserva?

Resp. (a)
$$q_1' = 3.20 \times 10^{-5}$$
 C, $q_2' = q_3' = 1.60 \times 10^{-5}$ C; (b) $U_1 = 2.88 \times 10^{-4}$ J, $U_2 = U_3 = 0$ J, $U_1' = 1.28 \times 10^{-4}$ J, $U_2' = 0.213 \times 10^{-4}$ J, $U_3' = 0.427 \times 10^{-4}$ J.

Leis de Kirchhoff

Problemas Propostos

Aulas 10

Considere o circuito da figura ao lado. O amperímetro (considerado ideal) mede uma corrente de 1,50 A no sentido mostrado na figura.

- (a) Qual o valor da fem \mathcal{E} ? A polarização mostrada na figura está correta?
- (b) Qual a corrente no resistor de 15,0 Ω ?

Resp. (a) $\mathcal{E} = 52,3$ V. A polarização mostrada na figura está correta; (b) $I_3 = 0,330$ A, de cima para baixo.