西安邮电大学课程考试试题答案(B卷)

(2024——2025 学年第1学期)

课程名称: 数字电路与逻辑设计 D

考试专业、年级: 电子信息工程 2022 级

考核方式:(填写开卷或闭卷) 闭卷 可使用计算器(填写是或否)否

- 1											
	题号	_	=	三	四	五.	六	七	八	九	总分
	得分										
	评卷人										

得分: 一、填空题 (每题 2 分, 共 20 分)

- 1. 脉冲信号
- 2. 1101
- 3. 1.05
- 4. 只读存储器(ROM)和随机存取存储器(RAM)
- 5. 增加去抖动电路、使用同步电路
- 6. 可编程互联连线(Interconnect)
- 7. 真值表
- 8. 与门 (AND)
- 9. 0.05
- 10.0

得分: ____ 二、选择题 (每题 2 分, 共 20 分)

1-5: B B C D C 6-10: CABAC

得分: ____ 三、判断题 (每题 1 分, 共 10 分)

1-5: $\times \times \sqrt{\times}$

6-10: $\times \sqrt{\times} \sqrt{\sqrt{}}$

得分: _____ 四、化简题 (每题 5 分, 共 10 分)

$$Y = \overline{ABC} + \overline{ABC} + \overline{AC}$$

$$= \overline{AC} (\overline{B} + B) + \overline{AC}$$

$$= \overline{AC} + \overline{AC}$$

$$= \overline{A}$$

得分: ____ 五、设计题(10分)

列出输出表达式:
$$S = \overline{\overline{Y_1} \cdot \overline{Y_2} \cdot \overline{Y_4} \cdot \overline{Y_7}}$$
 $CO = \overline{\overline{Y_3} \cdot \overline{Y_5} \cdot \overline{Y_6} \cdot \overline{Y_7}}$ $= m_1 + m_2 + m_4 + m_7$ $= m_3 + m_5 + m_6 + m_7$ (4分)

列出真值表: (4)

Α	В	CI	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

根据真值表得出本设计实现的是一位二进制的全加器。(2分)

得分: ____ 六、分析题(10分)

列出状态转移表: (6分)

序号			原	状态				输出		
/1 3	Q) ⁿ ₃	Q_2^n	Q_1^n	Q_0^n	Q_3^{n+}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	()	1	0	0	0	1	0	1	0
1	()	1	0	1	0	1	1	0	0
2	()	1	1	0	0	1	1	1	0
3	()	1	1	1	1	0	0	0	0
4		l	0	0	0	1	1	0	0	1
5		l	1	0	0	1	1	0	1	1
6		l	1	0	1	1	1	1	0	1
7		l	1	1	0	1	1	1	1	1
8	:	l	1	1	1	0	0	0	0	1
9	()	0	0	0	0	1	0	0	0

计算 Y 的频率: (4分)

因为在 $0^{\sim}9$ 一共 10 个时钟周期内,Y 才完成一个时钟周期的转变,因此 Y 的频率为 CP 频率的 1/10,即:

 $10KHz \times 1/10 = 1KHz$

得分: ____ 七、分析题(10分)

状态方程:(5分)

$$Q_1^{n+1} = [A]CP \uparrow$$

$$Q^{n+1} = \left[J\overline{Q^n} + \overline{K}Q^n \right]$$

$$= \left[Q_1^n \overline{Q^n} + 0 \cdot Q^n \right] CP \downarrow$$

$$= \left[Q_1^n \overline{Q^n} \right] CP \downarrow$$

画波形图: (5分)

得分: _____ 八、设计题(10分)

分析图中基于 74LS195 的设计,实现了怎样的功能,写出分析过程,74LS195 真值表和逻辑图见试卷后。

列出状态转移表(8分)

序号		次态									
)1. 3	Q_3^n	Q_2^n	Q_1^n	Q_0^n		Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}		J K
0	0	0	1	0		0	1	0	1		1 0
1	0	1	0	1		1	0	1	0		1 0
2	1	0	1	0		0	1	0	0		0 1
3	0	1	0	0		1	0	0	1		1 0
4	1	0	0	1		0	0	1	1		0 1
5	0	0	1	1		0	1	1	0		1 0
6	0	1	1	0		1	1	0	1		1 0
7	1	1	0	1		1	0	1	1		0 1
8	1	0	1	1		0	1	1	1		0 1
9	0	1	1	1		0	0	1	0		1 0

→ 分析:实现了模值 M=10 的计数器 (2分)