ENGR122 Assignment 3

Dimitrios Mitsotakis, SMS, Victoria University of Wellington

DUE: 1pm 10 August 2018

- 1. If $A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} -7 & 1 \\ 0 & 4 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$ and $E = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & -1 \end{pmatrix}$ find if possible
 - (a) A + D, C A and D E
 - (b) AB, BA, CA, AC, DA, DB, BD, EB, BE and AE
 - (c) 7C, -3D and kE where k is a scalar.
- 2. Given that $A^2 = A \cdot A$ find A^2 and A^3 when $A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$.
- 3. Find AB and BA where

$$A = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 4 \\ 5 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 3 & 4 \\ 1 & 3 & 5 \end{pmatrix}$$

4. If
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -7 & 0 \\ 0 & 2 & 5 \\ 3 & 4 & 5 \end{pmatrix}$ find A^{T} , B^{T} , AB and $(AB)^{T}$. Deduce that

$$(AB)^T = B^T A^T$$

5. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
(a) find A^{-1} .

- (b) Find a, b such that $A + aA^{-1} = bI$
- 6. Given

$$A = \begin{pmatrix} 3 & 7 & 6 \\ -2 & 1 & 0 \\ 4 & 2 & -5 \end{pmatrix}$$

find |A|

7. Use Cramer's rule to solve the system

$$2x - 3y + z = 0$$
$$5x + 4y + z = 10$$
$$2x - 2y - z = -1$$

8. Use Gaussian elimination to solve the system:

$$2x + y - 3z = -5$$
$$x - y + 2z = 12$$
$$7x - 2y + 3z = 37$$

9. Find the inverse of the matrix

$$A = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 3 & 4 \\ -1 & 1 & 3 \end{pmatrix}$$

using elimination.

10. Find the eigenvalues and the eigenvectors of the matrix

$$A = \begin{pmatrix} 5 & 6 \\ 2 & 1 \end{pmatrix}$$

The marks are 16,4,10,8,10,10,10,12,10,10 for questions 1-10. Total is 100.

1