loop

 $26 \ 2015$

Contents

Here is a possible polynomial in 4 variables $\mathbf{x} = (\mathbf{x}_1, \dots \mathbf{x}_4)$ \mathbf{w}_1 is also a vector with 6 components $\mathbf{w}_1 = 1/2, -1/3, +0.25, -1$ \mathbf{w}_2 is something similar Polynomial is $(0.3(\mathbf{w}_1\{x\} + w_2\{x\})^2 - 0.75(w_3\{x\} + w_4\{x\})^2)^2$ this is sparse not in monomials but in terms like $\mathbf{w}_1\{x\}$ this is a quadratic function on a binary tree