1 Cel ćwiczenia

Celem cwiczenia jest pomiar oporu elektrycznego pojedynczych rezystorów oraz układu rezystorów połaczonych szeregowo i równolegle z wykorzystaniem mostka pradu stałego (mostek Wheatstone'a).

2 Badanie rezystancji pojedynczych rezystorów o nieznanej wartości

2.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
1	152	480	520
2	620	506	494
3	430	504	496
4	2040	501	499
5	3030	502	498
6	13800	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

2.2 obliczenie rezystancji

korzystamy ze wzoru¹

$$R_x = R_n \frac{l_1}{l_2}$$

 R_x - opór badanego rezystora

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

_]	Rezystor	$R_x [\Omega]$
	1	140,3076
	2	635,0607
	3	436,9355
	4	$2048,\!1764$
	5	3054,3373
	6	13800.0000

https://pg.edu.pl/files/ftims/2021-03/cwiczenieE3.pdf (E3.8)

3 Badanie rezystancji układów rezystorów połączonych szeregowo

3.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
4 i 5	5000	508	492
4 i 2	2720	500	500
5 i 2	3780	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

3.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. 2.2 otrzymujemy:

Rezystor	$R_x [\Omega]$	Z teorii
4 i 5	5162,6016	5102,5137
4 i 2	2720,0000	2683,2371
5 i 2	3780,0000	3689,398

4 Badanie rezystancji układów rezystorów połączonych równolegle

4.1 pomierzone dane

Rezystor	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	$l_2 [\mathrm{mm}]$
4 i 5	1260	499	501
4 i 2	495	500	500
5 i 2	540	500	500

 R_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

4.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. 2.2 otrzymujemy:

Rezystor	$R_x [\Omega]$	Z teorii
4 i 5	1254,9700	1226.0300
4 i 2	$495,\!0000$	484,7560
5 i 2	540,0000	525,7470

5 Badanie drutów konstantanowych o różnej średnicy

5.1 pomierzone dane

d [mm]	$R_n [\Omega]$	$l_1 [\mathrm{mm}]$	l_2 [mm]
0,35	5	503	497
$0,\!50$	2	544	456
0,70	1	547	453
1,00	1	365	635

d - średnica drutu

 \mathcal{R}_n - opór wzorcowy mostka

 l_1 - położenie ślizgacza na skali milimetrowej listwy

5.2 obliczenie rezystancji

do obliczenia rezystancji korzystamy z tego samego wzoru co w pkt. $2.2\,$ otrzymujemy:

$$\begin{array}{c|cc} d \ [mm] & R_x \ [\Omega] \\ \hline 0,35 & 5,0603 \\ 0,50 & 2,3860 \\ 0,70 & 1,2075 \\ 1,00 & 0,5748 \\ \end{array}$$

- 5.3 Zależność R $=\!\!f(\frac{1}{d^2})$
- 5.4 obliczenie oporu właściwego konstantatu
- 6 Wnioski