See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6541688

Giant Heterometallic Cu 17 Mn 28 Cluster with T d Symmetry and High-Spin Ground State

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · MARCH 2007

Impact Factor: 12.11 · DOI: 10.1021/ja065707l · Source: PubMed

CITATIONS READS
128 71

8 AUTHORS, INCLUDING:

Wei-Xiong Zhang
Sun Yat-Sen University

83 PUBLICATIONS 3,792 CITATIONS

SEE PROFILE

Motohiro Nakano

Osaka University

174 PUBLICATIONS 4,369 CITATIONS

SEE PROFILE

Ming-Liang Tong

Sun Yat-Sen University

280 PUBLICATIONS 12,143 CITATIONS

SEE PROFILE

David Hendrickson

University of California, San Diego

599 PUBLICATIONS **25,889** CITATIONS

SEE PROFILE

Published on Web 01/17/2007

Giant Heterometallic $Cu_{17}Mn_{28}$ Cluster with T_d Symmetry and High-Spin **Ground State**

Wen-Guo Wang,† Ai-Ju Zhou,† Wei-Xiong Zhang,† Ming-Liang Tong,*,† Xiao-Ming Chen,† Motohiro Nakano, Christopher C. Beedle, and David N. Hendrickson*, and David N. Hendrickson*,

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, Department of Applied Chemistry, Osaka University, Suita 565-0871, Osaka, Japan, and Department of Chemistry and Biochemistry-0358, University of California at San Diego, La Jolla, California 92093-0358

Received August 7, 2006; E-mail: tongml@mail.sysu.edu.cn; dhendrickson@ucsd.edu

Since the 1990s, manganese clusters with large spin ground states have received increasing attention mainly due to their singlemolecule magnet behavior.^{1,2} A number of high nuclearity homometallic manganese complexes from Mn₁₆ to Mn₈₄ have been explored to date.^{3–11} However, the rational synthesis of high nuclear heterometallic manganese clusters remains a challenge. Triethanolamine (teaH₃) is a potentially versatile ligand, and several polynuclear complexes have been recently reported. 12 Enlightened by the facile reactions of zerovalent copper with Co^{II}/Zn^{II}/Cd^{II}/Pd^{II} salts and aminoalcohols,13 we tried to extend such reactions into a new synthetic route to heterometallic manganese clusters. We report herein the synthesis, structure, and magnetic properties of a giant heterometallic $Cu^{I}_{4}Cu^{II}_{13}Mn^{II}_{4}Mn^{III}_{12}Mn^{IV}_{12}$ cluster, $[Cu_{17}Mn_{28}O_{40} (tea)_{12}(HCO_2)_6(H_2O)_4] {\:\raisebox{0.5ex}{\text{\circle*{1.5}}}} 36H_2O$ (1). To our knowledge, 1 is the largest manganese teaH3 cluster and unprecedented with five metal oxidation states.

The reaction of copper powder, Mn(OAc)₂•4H₂O, and teaH₃ in a 1:2:1 ratio in N,N'-dimethylformamide (DMF) (30 mL) at 85 °C gave a dark green solution from which dark block crystals of 1 were slowly deposited after several months. The in situ generated formate ligand arises from hydrolysis of DMF which has been previously documented.14

The crystal structure of 115 contains a giant [Cu₁₇Mn₂₈O₄₀]⁴²⁺ core of T_d symmetry with 4 Cu^I ions, 13 Cu^{II} ions, 4 Mn^{II} ions, 12 Mn^{III} ions, 12 Mn^{IV} ions, 28 μ_4 - O^{2-} , and 12 μ_3 - O^{2-} ions. Each μ_4 -O²⁻ ion joins three Mn ions and one Cu ion (2Mn^{III} + Mn^{II} + Cu^{II} or $2Mn^{IV} + Mn^{III} + Cu^{I}$ or $3Mn^{IV} + Cu^{II}$), while each μ_3 -O²⁻ ion joins one MnIV ion and two MnIII ions. There are five metal oxidation states of Mn2+, Mn3+, Mn4+, Cu+, and Cu2+ in 1, which were established by consideration of bond lengths, bond valence sum (BVS) calculations,16 charge considerations, and the observation of Jahn-Teller (JT) distortions for the Mn^{III} centers. The [Cu₁₇-Mn₂₈O₄₀1⁴²⁺ core is surrounded by 12 tea³⁻ groups, 6 HCO₂⁻ groups, and 4 aqua ligands into a neutral cluster (Figure 1).

Each Cu^I ion is coordinated in a tetrahedral geometry by three μ_4 -O²⁻ ions and one aqua ligand. The Cu^{II} ions have two different coordination environments: the central Cu1 ion is coordinated in a perfect tetrahedral environment by $4 \mu_4$ -O²⁻ ions (Cu-O = 1.975-(11) Å), while each of the outer 12 symmetry-related Cu3 ions is coordinated in a distorted trigonal bipyramidal environment by three alkoxo O atoms in the plane $(O-Cu3-O = 102.9(3)-127.58(17)^{\circ})$ and one amino N atom and one μ_4 -O²⁻ ion at the axial positions $(N1-Cu3-O4 = 172.6(3)^{\circ})$. Each tea³⁻ ligand acts in a $\mu_4:\eta^1:\eta^2$: $\eta^2:\eta^2$ mode to cap an outer Cu^{II} atom and bridge one Mn^{II} and two

Figure 1. Molecular structure (a) and coordination environments (b) of 1. H atoms and lattice water molecules have been omitted for clarity. Symmetry: (a) -y, x, -z; (b) y, -x, -z; (c) -x, -y, z; (d) -y, -x, z; (e) -z, -x, y; (f) x, z, y; (g) -x, y, -z; (h) y, z, x; (i) z, x, y; (j) y, x, z; (k) -y,

Figure 2. The adamantane-like Mn₂₈ cluster containing six [Mn^{IV}₂Mn^{III}₂O₄] and four [MnIV3MnIIO4] cubanes via sharing all MnIV atoms. Atom color code: Mn^{IV}, dark yellow; Mn^{III}, navy blue; Mn^{II}, magenta; O, red.

Mn^{III} ions. There are three oxidation states for the manganese ions, which is uncommon for the manganese clusters.^{8,10,17} All Mn centers are six-coordinate (Figure S1), through interactions with five μ_4 - ${\rm O}^{2-}$ ions and one $\mu_3{\rm -O}^{2-}$ ion for Mn1 in an essentially octahedral geometry (average Mn1-O = 1.904 Å), one μ_4 -O²⁻ ion, two μ_3 -O²⁻ ions, two formate O atoms, and one alkoxide O atom for Mn2 in a tetragonally elongated octahedral geometry (Mn2-O2 and Mn2-O7 = 2.221(6) and 2.143(8) Å constituting the JT axis), and three μ_4 -O²⁻ ions and three alkoxide O atoms for Mn3 forming a distorted trigonal prism (average Mn3-O = 2.190 Å), respectively.

The most striking structural feature is that all the 28 Mn ions are bridged by the 28 μ_4 -O²⁻ and 12 μ_3 -O²⁻ ions into 6 Mn^{III}₂- $Mn^{IV}_{2}O_{4}$ cubanes $(Mn-O-Mn = 93.6(2)-102.5(2)^{\circ})$ and $4 Mn^{II}$ - $Mn^{IV}_3O_4$ cubanes $(Mn^{II}-O-Mn^{IV}, Mn^{IV}-O-Mn^{IV} = 97.5(3)-$ 99.9(3)°), which are further joined to be a cubane-based manganese cage via sharing all the 12 Mn^{IV} ions (Figure 2). Such a structure is unprecedented in the known high nuclearity Mn clusters. Finally, the connectivity of the [Cu₁₇Mn₂₈O₄₀]⁴²⁺ core can be precisely

Sun Yat-Sen University.

[§] Osaka University. ‡ University of California at San Diego.

Figure 3. Plot of reduced magnetization $(M/N\beta)$ versus H/T for 1 in the temperature range of 1.8-4.0 K (5 kG (orange), 10 kG (dark green), 20 kG (brown), 30 kG (dark red), 40 kG (teal), 50 kG (dark blue), 60 kG (green), 70 kG (red)). Solid lines represent best theoretical fit. Inset illustrates $\chi_{\rm m}T$ versus T plot for complex 1 from 1.8 to 300 K (1 kG (black), 10 kG (red), 50 kG (blue)).

Figure 4. AC magnetic measurements for 1 at $H_{ac} = 5$ G and $H_{dc} = 0$.

described by noting that the central Cu1 ion connects four MnII-Mn^{IV}₃O₄ cubanes into a tetrahedral array. Six Mn^{III}₂Mn^{IV}₂O₄ cubanes are located on the midlines of the six edges of the tetrahedron and connect the four Mn^{II}Mn^{IV}₃O₄ cubanes via the 12 MnIV corners into an adamantane-like cage. Each of the four [CuI-(H₂O)] groups (on 3-fold axes) connects three Mn^{III}₂Mn^{IV}₂O₄ cubanes, and the outer 12 CuII ions connect the Mn₂₈ cluster via the remaining μ_4 -O²⁻ sites.

DC magnetic susceptibility data were collected in fields ranging from 70 to 1 kG in the temperature range of 1.8-300 K (Figure 3). The reduced magnetization (M) versus H/T data cannot be fit to one state experiencing axial zero-field splitting $D\hat{S}_z^2$ (in fact, T_d symmetry does not allow this). The χT versus T data (inset Figure 3) taken at fields of less than 1 kG show a maximum of \sim 325 cm³ mol^{-1} K. This suggests a $S = \frac{51}{2}$ ground state in small fields, which is reasonable given that the Mn^{III}···Mn^{III}, Mn^{IV}···Mn^{IV}, and Mn^{III}· ··Mn^{IV} interactions within the cubane units are expected to be ferromagnetically coupled, while the Mn^{II}···Mn^{IV}, Cu^{II}···Mn^{III}, and Cu^{II} ···Mn^{IV} interactions are antiferromagnetic which would give S $= 12S_{\text{Mn(IV)}} + 12S_{\text{Mn(III)}} - 4S_{\text{Mn(II)}} - 13S_{\text{Cu(II)}} = \frac{51}{2}$. The non-superimposability of isofields in the reduced magnetization versus H/T plot usually indicates the presence of axial zero-field interactions. However, we have fit all the data (solid lines in Figure 3) assuming that there is a $S = \frac{63}{2}$ excited state lying 5 K above the $S = \frac{51}{2}$ ground state. The fit is quite good, and it is important to emphasize that the model has no zero-field splitting for either of the states. This is consistent with the T_d symmetry that precludes the $D\hat{S}_{z}^{2}$ term in the spin Hamiltonian. High-frequency EPR studies have been initiated to verify the two spin state model.

AC magnetic susceptibility data for 1 (Figure 4) do show a frequency-dependent out-of-phase signal; however, only the onset of the signal is seen. Lower temperature AC data or micro-SQUID data are needed to establish whether this interesting complex 1 functions as a single-molecule magnet.

In summary, we have established an approach to generate a giant heterometallic mixed-valent CuI/CuII/MnII/MnIII/MnIV cluster which contains an unprecedented adamantane-like Mn₂₈ core connected wholly by Mn₄O₄ cubane units and exhibits unusual magnetic properties.

Acknowledgment. This work was supported by the NSFC (Nos. 20525102 & 20471069), the FANEDD of China (200122), the Scientific and Technological Project of Guangdong Province (04205405), and the NSF (U.S.A.).

Supporting Information Available: Synthesis details, additional plots, and an X-ray crystallographic file in CIF format for the structural determination of 1. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Gatteschi, D.; Sessoli, R. *Angew. Chem., Int. Ed.* **2003**, *42*, 268–297.
 (b) Aromí, G.; Brechin, E. K. *Struct. Bonding* **2006**, *122*, 1–67.
 (2) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting,
- .; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. **1993**, 115, 1804-1816.
- (3) Price, J. P.; Batten, S. R.; Moubaraki, B.; Murray, K. S. Chem. Commun. **2002**, 762-763.
- Brechin, E. K.; Sanudo, E. C.; Wernsdorfer, W.; Boskovic, C.; Yoo, J.; Hendrickson, D. N.; Yamaguchi, A.; Ishimoto, H.; Concolino, T. E.; Rheingold, X. A. L.; Christou, G. *Inorg. Chem.* **2005**, *44*, 502–511.
- Dendrinou-Samara, C.; Alexiou, M.; Zaleski, C. M.; Kampf, J. W.; Krik, M. L.; Kessissoglou, D. P.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2003,
- (6) Brockman, J. T.; Huffman, J. C.; Christou, G. Angew. Chem., Int. Ed. **2002**, 41, 2506-2508.
- Murugesu, M.; Raftery, J.; Wernsdorfer, W.; Christou, G.; Brechin, E. K. *Inorg. Chem.* **2004**, *43*, 4203–4209.
- (8) Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. **2004**, 126, 4766–4767.
- (a) Jones, L. F.; Brechin, E. K.; Collison, D.; Harrison, A.; Teat, S. J.; Wernsdorfer, W. Chem. Commun. 2002, 2974-2975. (b) Jones, L. F. Raftery, J.; Teat, S. J.; Collison, D.; Brechin, E. K. Polyhedron 2005, 24, 2443-2449
- (10) Soler, M.; Wernsdorfer, W.; Folting, K.; Pink, M.; Christou, G. J. Am. Chem. Soc. 2004, 126, 2156-2165
- Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.;
- Ed. 2005, 44, 892-896. (d) Rajaraman, G.; Murugesu, M.; Sanudo, E. C.; Soler, M.; Wernsdorfer, W.; Helliwell, M.; Muryn, C.; Raftery, J.; Teat, S. J.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2004, 126, 15445–15457. (e) Wittick, L. M.; Jones, L. F.; Jensen, P.; Moubaraki, B.; Spiccia, L.; Berry, K. L.; Murray, K. S. Dalton Trans. 2006, 1534–
- (13) (a) Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Skelton, B. (a) Marianianiova, v. G., vassilyeva, U. I., ROROZAY, v. N.; Skelton, B. W.; Reedijk, J.; Van Albada, G. A.; Sorace, L.; Gatteschi, D. New J. Chem. 2001, 25, 685–689. (b) Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Reedijk, J.; Van Albada, G. A.; Jezierska, J.; Skelton, B. W. Eur. J. Inorg. Chem. 2002, 2163–2169.
- (14) (a) Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: Oxford, 1988. (b) Murthy, N. N.; Mahroof-Tahir, M.; Karlin, K. D. J. Am. Chem. Soc. 1993, 115, 10404-10405.
- (15) Crystal data for 1: $C_{78}H_{230}Cu_{17}Mn_{28}N_{12}O_{128}$, 6003.24 g mol⁻¹, cubic $I\overline{4}3m$, a=20.3441(9) Å, V=8420.1(6) Å³, Z=2, $\rho=2.368$ g cm⁻³, T=123 K, $\mu=4.229$ mm⁻¹, F(000)=5998, $2\theta_{max}=56.0^{\circ}$, S=1.086. The structure was solved by direct methods and refined on F^2 to $R_1(wR_2)$ 0.0456 (0.1177) using 1758 reflections with $I \ge 2\sigma(I)$.
- (16) (a) Bond valence sum calculations for Mn^{II}, Mn^{III}, and Mn^{IV} ions gave oxidation state values of 2.193, 3.350, and 4.413, respectively, and Cu^I and CuII ions gave oxidation state values of 1.284 and 1.797-1.951, respectively. (b) Liu, W.; Thorp, H. H. Inorg. Chem. 1993, 32, 4102-
- (17) Sun, Z.; Gantzel, P. K.; Hendrickson, D. N. Inorg. Chem. 1996, 35, 6640-6641.

JA065707L