Contention management for Deterministic Networking

DAVID. Université de Versailles Saint Quentin

July 11, 2017

Problematic

- Latency critical application (C-RAN,).
- Stochastic networks could not ensure a low latency.
- NP-hard

- Contention in the fronthaul network
- Need to guarantee the latency

Model

- Network : Directed Graph
- \bullet RRH / BBU \to set of vertices A (Antennas) and C (Computation)
- \bullet Physical Delay of a link \to Weight on arcs

Model

Slotted time

The time is discrete.

- ullet Slot $o 1 \mu$ s.
- Step by step.

Message sending

Block of one or several slots used by the messages.

Latency

Latency

- 3 factors increases the latency
 - The physical delay of the links (not alterable).
 - The time before inserting a messages in the network.
 - **1** The buffering time of the messages in the network.

Collisions

Optical ring

Model

Waiting only at the insertion

Insertion

Deterministic policy

An harder topology

Parameters

Broadcast and select Policy

Parameters

Length of the ring	20km	100 slots
Number of nodes	3 -10	
Duration of a slot	1μ s	-
Bandwidth	100 Gbps	-
Period	1ms	1000 slots
Capacity of a packet	100 kb	-
Flow of an antenna	-	0,5 packet/Every 1000 slots

Optical ring problematic

• We got two kinds of traffic : CRAN - high priority, Best effort

 We want to observe the behavior of the ring and analyze the latency of CRAN

 We will try to find some methods to decrease the CRAN latency without increasing the Best effort latency too much

Two kinds of messages

CRAN messages

- Periodicity
- Representing 50% of a packet capacity

Best effort

- Custom generation
- Representing 0.5% of a packet capacity

- Higher variance (27)
- More realistic generation

Loads

Best effort load

 $\mathsf{Load}_{\mathsf{Best}\;\mathsf{Effort}}\;=\mathsf{Average}\;\mathsf{number}\;\mathsf{of}\;\mathsf{messages}\;\mathsf{generated}\cdot 0.005\cdot \#\mathsf{Best}\;\mathsf{effort}\;\mathsf{flows}$

High priority traffic load

$$\mathsf{Load}_{\mathsf{CRAN}} \ = 0.5 \cdot 2 \cdot \frac{\mathsf{Number \ of \ antennas \ on \ the \ ring}}{\mathit{Period}}$$

Those loads are lower bounds.

Packing policy

Figure: Without distinction

Minimum Fill rate β before sending.

Packing policy

Figure: Absolute priority

Packing policy

Figure: Mixed priority

No priority Distribution

Absolute Priority Distribution

Absolute Priority Distribution

20 / 25

Deterministic sending

Control of the contention: reserving slots on routes.

Problem

Problem

Find some time at which send the messages from the BBU/RRH, such that there is no collisions in the network.

NP-hard

On topology with restricted parameters.

Main ideas

No buffering in BBU

- Greedy Policy: ensure a solution for small loads
- Shortest-Longest : ensure a solution for similar length of routes
- Exhaustive search : optimal solutions for few routes

Allowing buffers in BBU

Two greedy parts:

Way forward

Multiple random sendings

Way backward

- Greedy Algorithm
- Adapted scheduling algorithm

Deterministic vs Stochastic

Future work

- Adapt the previous algorithms to the ring.
- Study the impact of reservation on the best effort traffic.