

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	LTVIP2024TMID24997
Project Title	Cereal Analysis Based on Ratings by using Machine Learning Techniques
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	De	escrip	otion	l										
		calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
Data Overview	count	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000
	mean	106.883117	2.545455		159.675325			6.922078		28.246753	2.207792			42.665705
	std	19.484119	1.094790	1.006473			4.278956	4.444885			0.832524	0.150477		14.047289
	min	50.000000	1.000000	0.000000	0.000000				-1.000000	0.000000	1.000000	0.500000		18.042851
	25%	100.000000	2.000000		130.000000		12.000000	3.000000		25.000000	1.000000	1.000000		33.174094
	50%	110.000000	3.000000	1.000000			14.000000	7.000000	90.000000	25.000000	2.000000	1.000000		40.400208
	75% max	110.000000	3.000000 6.000000		210.000000				120.000000 330.000000	25.000000	3.000000	1.000000		50.828392 93.704912
	IIIAA	100.000000	0.000000	J.000000	320.000000	14.000000	23.000000	13.000000	330.00000	100.00000	3.000000	1.00000	1.00000	55.704512
Univariate Analysis	225 220 220 125 15 15 15 10 10 10 10 11 11	2		3		5	6	8 6	0 50	200	150		250	300

data.fillna(data.mean(), inplace=True)

Data Transformation	<pre>from sklearn.preprocessing import StandardScaler # Normalize numerical features scaler = StandardScaler() numerical_features = data.select_dtypes(include=['int64', 'float64']).columns data[numerical_features] = scaler.fit_transform(data[numerical_features])</pre>
Feature Engineering	<pre># One-hot encode categorical variables data = pd.get_dummies(data, columns=['mfr', 'type'], drop_first=True)</pre>
Save Processed Data	<pre># Save the cleaned and processed data for future use data.to_csv('processed_cereal.csv', index=False)</pre>