立体の見方と調べ方②

右の図の直方体で、線分 AG をこの直方体の という。BH, CE, DF も対角線である。	A B G
平面 P に対して、どの方向にも傾いていない直線 l を考えよう。このとき、 l は P との交点 O を通る上のどの直線にも になっている。このようなとき、直線 l は平面 P に	
平面 P と交わる直線 l がその交点 O を通る P 上の異なる 2 つの直線 m,n に垂直になっていれば、直線 l は平面 P に	
2 つの平面 P, Q が交わるとき、交線 l 上の点で、それぞれの平面上にひいた 2 つの垂線のつくる角を平面 P, Q のつくる $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	平面 P
2 つの平面 P, Q のつくる角が直角のとき、その 2 つの平面 P, Q は垂直であるといい、 と 表す。 平面 P に垂直な直線をふくむ平面は、平面 P に	P 90°

また、平面 ABEF, EFCD は平面 P に垂直な直線 EF をふくむから、平面 P に

1 つの点 A から平面 P にひいた垂線と、P との 交点を H とするとき、線分 AH の を、 点 A と という。

平行な平面について、一方の平面上の点ともう一 方の平面との距離は 。この距離 を という。

角柱や円柱では、2 つの底面は平行で、一方の底面ともう一方の底面との距離が、その角柱や円柱のである。角錐や円錐では、底面とそれに対する がその高さである。

下の図のように、点が動くこときる。さらに、面が動くことによっ		できる。また、線が動きる。	くことによって	がで
·				
角柱や円柱は、底面がそれと垂 その立体の であり、動	直な方向に動いてできいた距離が	きた立体とも考えられる	る。底面の周の動いたる	あとは、
			THE AND	
円柱や円錐は、それぞれ長方形 る。このとき、円柱や円錐の側面:			きた立体と考えること という。	ができ
高さ	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日	順点 A 母線 高さ B		
円柱や円錐のように、1 つの直線 図形を回転させてできる立体を う。球は、 をその 回転させてできた回転体である。	線を軸として平面 とい を軸として			
回転体を	平面で切ると、 とする			