Name - Jaya Mahar Course - BTech (CSE) Sec - B idssignment 1

Os 1. What do you undissland by a Sympthotic notation Define diff. asymptotic notation with example

Asymptotic notation are the mathematical notations used to describe the sunning time of an algo when the iffortends towards a particular Value or a limiting Value. There are mainly 3 ssymplotic notation.

big -0 - notation

· It represents the upper bound of running time of an algo.

This notation is Called as upper bound of the galgo Or a work lass of an algo.

 $O(g(n)) = \begin{cases} f(n): \text{ these luist + ve Constant } c \leq h_o \end{cases}$ Such that $0 \le f(n) \le (g(n))$ for all $n \ge n_0$, where

c>0 & n>no

 $f(n) = 3 \log n + 100$ $g(n) = \log n$ 3 log n + 100 Ls C = 1 < 0 & m>2

(undifined at m = 1)

n = no of i/b

(c* log (n)

(ii) Big omega (-2) notation

an algorithm

· This notation is known as lower bound of an algo

• Ω (g (n)) = $\{f(n): Here exist feoritive Constant$ <math>C & no Such that $0 \le (g(n)) \le f(n) + n$, $n \ge n_0$

eg

f(m) = 3m+2 $g(m) \le f(m)$ [c = Constant, g(m) = m] $em \le 3m+2$ $em \le 3m+2$ $em \le 2$ $m(c-3) \le 2 \Rightarrow m \le 2$ $em \le 2$

f(n) cg(n) | no n = no & if

If we assume C = 4Hen mo = 2C = 4, mo = 2

(111) Theter (0) not action

* It represents the supper & lover bound of summing time of an algo.

"This is known as light bounds of an algo, or an average case of algo.

• O $(g(n)) = \{ f(n) : \text{thuse linst positive Constant} \\ C_1 l C_2 l n_0 \text{ Such that} \\ 0 \le c_1 * g(n) \le f(n) \le c_2 * g(n) + n > n_0 \}$

 $f(m) = 5n^{3} + 16n^{2} + 3n + 8$ $5n^{3} \leq (n^{3} + 16n^{2} + 3n + 8 \leq (5 + 16 + 3 + 8)n^{3}$ $5n^{3} \leq f(n) \leq 32n^{3}$ $c_{1} = 5, c_{2} = 32, m_{0} = 1$

f(n) 0 (n3)


```
182. what should be the dime complexity:
      for (i=1 ton) { i=i+2}
ans = i=2, 4,8, 16, ---- Kth cterm ---- n
         9n = 1(2)K-1
         n= 2 1-1
        Jog2 n = (K-1) Jlog2 2
           K= clog2n+1
            0(n)= dogn
0837 T(n)= (3T(n-1) if n>0, otherwise 13
Ons> T(n)= 3T(n-1)
                T(n-1)=3T(n-2)
       T(n)=3x3T(n-2)
                  T(n-2)=3T(n-3)
       T(n)=3x3x3T (n-3)
       T(n)= 33T (n-3)
                  T(n-3) = 37(n-4)
       T(n)=33x37 (n-4)
      T(n) = 3^4 \times T(n-4)
       general form: -
         T(n) = 31 T (n-i) - --- (i) [T(0)=1]
         T(n-i)=T(0)
          n-i = 0
            n=i
```

lutting
$$n=i$$
 win $(4p^n i)$;

$$T(n)=3^n T(n-n)$$

$$T(n)=3^n T(0)$$

$$T(n)=3^n T(0)$$

$$T(n)=0(3^n)$$

(034) $T(n)=(2T(n-1)-1, if n>0, otherwise 1)$

$$T(n)=2T(n-1)-1$$

$$T(n)=2 X(2T(n-2)-1)-1$$

$$T(n)=2^2 T(n-2)-2-1$$

$$T(n)=2^2 T(n-3)-1-2-1$$

$$T(n)=2^3 T(n-3)-2^2-2-1$$

$$T(n)=2^3 T(n-3)-2^2-2-1$$

$$T(n)=2^3 T(n-4)-2^3-2^2-2-1$$

$$T(n)=2^5 T(n-4)-2^3-2^2-2-1$$

$$T(n)=2^5 T(n-1)-(2^{i-1}+2^{i-2}+\dots+1)$$

$$T(n-i)=T(0)$$

$$n-i=0$$

$$T(n)=2^n T(0)-(1+2+2^2+2^3+\dots+1)$$

$$T(n)=2^n T(0)-(1+2+2^2+2^3+\dots+1)$$

$$T(n)=2^n T(0)-(1+2+2^2+\dots+1)$$

$$T(n)=2^n T(0)-(1+2+2^2+\dots+1)$$

$$T(n)=2^{n}-2^{n-1}+1$$

$$T(n)=2^{n-1}(2-1)+1$$

$$T(n)=0(2^{n})$$

Obs) what should be the TC of:

while $(s <= n)$

(i++;

 $s = s + i$;

funt $f(t + t)$;

 $s = s + i$;

funt $f(t + t)$;

 $s = s + i$;

$$n = H2 + 3 + 4 + - - - K \text{ with}$$

$$n = \underbrace{K}_{2} (2(1) + (K-1)1)$$

$$2n = K [2 + K-1]$$

$$2n = K^{2} + K \Rightarrow 2n = (K + \frac{1}{2})^{2} - (\frac{1}{2})^{2}$$

$$2n + (\frac{1}{2})^{2} = (K + \frac{1}{2})^{2}$$

$$K + \frac{1}{2} = \sqrt{2n + (\frac{1}{2})^{2}}$$

$$K = \sqrt{2n + (\frac{1}{2})^{2}} - \frac{1}{2}$$

$$T(n) = T(K)$$

$$T(n) = T(K)$$

$$T(n) = 0\sqrt{n}$$

dos dince, i is moving your 1 to to with clinear gerowth

```
7. Time Complexity of
  Void femilion (int n)
     int i, j, k, Count = 0;
    for lisn/2; ilsm; i++)
    for lj=1; j(=n; j=j*2)
    for (u=1; k=n; k=k*2)
    count ++;
   o (n logn logn)
   0 (n (logn)2)
S. Timo Complexity of
    function (unit n)
```

$$T(n) = T(n-1) + n^2$$
 $T(n) = T(n-2) + n^2 + (n-1)^2$
 $T(n) = T(n-3) + n^2 + (n-1)^2 + (n-2)^2$
 $(n-2)^2$

genual term

$$T(n) = T(n-i) + n^{2} + (n-1)^{2} + (n-2)^{2} + --- (n-i)^{2}$$

$$T(n-i) = T(i)$$

$$n = i+1 \Rightarrow n-1=i$$

$$T(n) = T(n-(n-1)) + n^{3} + (n-1)^{2} + (n-2)^{2} + ---- + (n-(n-1))^{2}$$

$$T(n) = T(i) = n^{2} + (n-1)^{2} + (n-2)^{2} + ----1^{2}$$

$$T(n) = 1 + 1^{2} + 2^{2} + 3^{2} + ----+n^{2}$$

$$T(n) = n + (n+1)(2n+1)$$

$$6$$

$$T(n) = c(n^{3})$$
Osq. (i=0 to n) \(c \)

\(\text{for (i=0 to n) } \(c \)
\(\text{for (i=0 to n) } \(c \)
\(\text{for (i=1 ; j <=n; j=j+i)} \)
\(\text{funit f ("\pm");}

ones o (nota)

77

Os10) For the funn nk & an, what is the asymptotic violation blue these function? Assume that K>=1 &a>1 were constants. Find out the value of c & no for what vielation holds. dres of c>1 then the exponential ch you outgrows any term, so that consider is:

nx is o (cm)

```
ONI. What is the T.C of code & why?
    wid from (unt n) {
    unt j=1, i=0;
     while (i<n) &
        i=i+j;
        J++; 24
ons > i=0,1,3,6,10,15, ---
     j=1,2,3,4,5,6----
     do, i will you on till n & youreal formula
     for Kth town is n = K(K+1)
        :. T. C = O(Vn)
 OSIZ Write de recurrence relation for recursure function that
   of program what will be the space complexity of this frageam
 & why?
one > T(n)= T(n-1)+T(n-2)+C
             T(n-2) \approx T(n-1)
       T(n1=2T(n-1)+C
                  (1-1) = 2T(n-2) + C
         T(n)=2(2T(n-2)+c)+c
        T(n)=2^2 T(n-2)+2c+c
                  (7(n-2)=27(n-3)+C
        T(n) = 2^3 (2T (n-3)+C)+2C+C
         T(n)=2^3 (T(n-3)+2^2C+2C+C)
        djeneral Jenn . -
```

$$T(n) = 2^{i} T(n-i) + (2^{o}+2^{i}+2^{2}+......2^{i-1}) c$$

$$n-i=0$$

$$[n=i]$$

$$T(n) = 2^{n} T(0) + (2^{o}+2^{i}+2^{e}+.....2^{n-1}) c$$

$$T(n) = 2^{n} (1) + 2^{o} (2^{n-1}-1) c$$

$$T(n) = 2^{n} (1+c)-c$$

$$T(n)=2^{n}(1+c)-c$$

$$\int T(n)=0(2^{n})$$
file (6)

The max depth is perfortional to N, whence the space comp. of Libonacci recurcise is O(n).

OS13) Write freggeams which have T.C:-

u) n log n

void fun()

L

wit i,j;

for (i=1;i<=n;i++)

for (j=0;j<=n;j=j+2)

fountf("#");

funtf("h");

```
(11)
    Void fun (int m)
        uit i, j, k;
for li=0; i <= n; i++)
          for (j = 0; j = n; j++)
              for (K = 0; K = n; K++)
           kunt f ("#");
(111) log (log(n))
    void fun (int n)
        bool beine [n+1];
        memset (brime, true, Size of (prime));
for (int \beta = 2; \beta \neq \lambda \beta \leq n; \beta + +)
           if (prime [p] = = tsue
             for (int i= p*p; i <= n; i+=p)
              freine [i] = false;
        for (ina p = 2; p <= m; p++)
```

OSIS) T.C of:unt fun(unt n) & gor(int i=1; i <= n; i++) for (int j=1) j< n; j+=i) 11.some 0(1) task one for i=1, unner clock is executed in times for i=2, cinner doop is executed n/2 times for i=3, inner doch is executed n/3 times for i=n, inner look is executed n/n times Jobel time = n+n/2+n/3+ - --- - n/2 = n(+1/2+1/3+ --- 1/n) Th)= O(nlogn)

16. To of :for (int is 2; icsn; is fow(i, R)) // Some o (1) enforcessions Where h is a Constant Ollog (logn)) 18. Arrange in acc acides of rate of growth. (a) 100, log logn, logn, sootn, n, nlogn, n², 2 22, 4n, n! (b) 1, log (log(n)), Tlogn, logn, log (2n), log(n!), 2log(n) $n, 2n, 4n, n \log(n), n^2, 2(2^n), n!$ (c) 96, log n, log n, log (n!), 5n, nlog n, nlog n, 8n², 7n3, 82n, n! 19. Write linear Search Joseph Code ---Linear Search (A, key) Comp + 0, / 0 for l=1 to A length Comp - Comp +1 if A[i] = = key frint " (Element found)"

print " Element hot found"
print Comp

```
20. With pseudocode for
     Therative method of Insertion Sort -
     Insert Sort (A)
     for j= 2 to A. length
      key = = A[j]
     i's j-1
while i's & A[i] > key
       A [i+1] = A[c]
       l = i-1
      A[i+1] = key
kecursive Method -
   Insertion sort (A, M)
    of ne1
     seturn
    Insulion Sort (A, n-1)
    key = [n-1];
    while j ≥0 and A[j] > key
     ALj +1] = A[j]
     A [j+1] = key
- Insurtion 30st Considers one if eliment bes iteration & produces a
   padial Solution without Considering fether elements that's why
    it is Called Online soiling.
  Other Sorting algor that have been discussed in learthure are
 . Dubble Soil
                       · Merge Sort
                                           · Selection Sort
· Couriling Sost.
                       · Vuich Soit
                                           · Hap Soil
```

21. Complenity of all Sorting - - -

bubble soit	Best Can	dverage case $O(N^2)$	Worst Case
Selection Sort	$\Omega(N)$	0 (N2)	0(N2)
Insertion Sort	1 (N)	0 (N2)	O (N 2)
Merge Sort	a (NlogN)	o (N log N)	O (N kgN)
Heap Sort	s (N logN)	O(N logN)	O(NlegN)
Quick Sort	I(N log N)	o (NogN)	O(NtogN)
Counting sort	2 (N+k)	0 (N+W)	o (Nta)

22. Divide all sorting algo into ---

	In Place	Slable	Online
Bubble Sort	Yes	yes	yes
Insulian Sort	yes	yes	yes
Selection Sort	yes	No	yes
Merge Sort	No	yes	yes
Quick Sort	yes	No	yes
theap Sort	yes	ho	yes
Count Sort	No	yes	yes

frient "eliment not found"

Time Complenity - 0(1)

Space Complenity - 0(1)

Binary Search (Iterative) ->
Binary Search (A, beg, end, key)
While beg = end
mid = beg + (end - beg),

if mid = key
seturn mid

if A [mid] > key
beg = mid +1

if A [maid] > key

end = mid -1

seturn -

```
Teme Complenity - 0 ( cog 2 n)
     Space Complenity - 0(1)
   Binary Search (Recursive) ->
       Binary Seasch (A beg, end, key)
           if end > big
             mid = (keg + end)/2
          if A[mid] = = tem
             selven mid + 1
         else if A [mid ] ( tem
      Setun Binary Search [A, mid+1, end, key]
       llse
      setuen Binary Search [A, beg, mid+1, end)
       setum -1
      Time Complinity - O(logn)
      Space Complexity - 0 (1)
24. Write alussence selation for binary recursive Seaseh
           T(n) = T(n/2) + c
```