

SelfGNN with Hard Negative Sampling

Project by Faith Cramer, Jeffrey Yuan, Zihan Zhao, Sharon Lin

Table of contents

01

Introduction

02

Objectives

03

Methodology

04

Experiment Setup

05

Results

06

Conclusion

01 Introduction

Motivation

- **Sequential recommendation** aims to predict users' future behavior based on their historical interaction patterns.
- Traditional sequential recommenders focus on single user sequences, overlooking collaborative patterns between users.
- Conventional GNNs operate on static data, and are incapable of distinguishing between short-term and long-term user behaviors
- Existing self-supervised learning (SSL) methods depends heavily on high-quality data, while real-world data is often noisy
- The need to integrate temporal dynamics, collaborative signals, and self-supervised learning under noisy conditions.

What is SelfGNN?

- Novel framework* that captures dynamic user interests
- Combine instance-level
 collaborative graph learning
 with interval-level sequential
 attention modeling
- Demonstrate consistent and robust performance gains over SOTA baselines across multiple datasets

*Liu, Y., Xia, L. and Huang, C., 2024, July. Selfgnn: Self-supervised graph neural networks for sequential recommendation.

Key Components of SelfGNN

- Short-term Collaborative Graphs Encoding: constructs time-based user-item graphs and uses GNNs (LightGCN) to capture high-order collaborative patterns in recent user behavior
- Multi-level Long-term Sequential Learning: models long-term user preferences at interval and instance levels using GRU and self-attention, enabling temporally-aware user representations
- **Personalized Self-Augmented Learning for Denoising**: Aligns short- and long-term predictions using a user-specific denoising to suppress noisy short-term behaviors and enhance robustness

02 Objectives

Improvements to SelfGNN

- Liu et al. highlights that future extensions of SelfGNN should aim to more accurately capture short-term behavioral characteristics to improve recommendation performance
- Current framework reduces user-specific noise but does not explicitly distinguish similar but non-interacted items from items that users interact with
- Use contrastive learning, specifically hard negative sampling, to train model to distinguish between relevant / similar but irrelevant items, enhancing precision of short-term user representations

Hard Negative Sampling

- Selects top-K non-interacted items most similar to a user's short-term embedding, using cosine similarity to prioritize informative negatives over random ones
- Incorporate InfoNCE contrastive loss into model's loss function to train the model to pull the user's short-term embedding closer to the true next item (positive), while pushing it away from highly similar but non-interacted items (hard negatives)

Project Objectives

- Familiarize ourselves with SelfGNN codebase and replicate results
 of Liu et al. on Amazon, Gowalla, Movielens, and Yelp datasets
- Develop HardGNN by integrating hard negative sampling into the SelfGNN framework to strengthen the discriminative power of short-term user representations
- Tune hyperparameters related to hard negative sampling and evaluate performance of HardGNN on all four datasets
- Conduct ablation studies to analyze the impact of individual hyperparameter settings on model performance

03 Methodology

Hard Negative Sampling Strategy

- Given user u and positive items i find negative items j
- Step 1: Obtain Relevant Embeddings
 - \circ Learned preference embeddings $\boldsymbol{e_u}$ and item embeddings $\boldsymbol{e_i}$
- Step 2: Calculate Similarity
 - For user preferences, calculate similarity with negative items

$$\sin(\boldsymbol{e}_{u},\boldsymbol{e}_{j}) = \frac{\boldsymbol{e}_{u}\cdot\boldsymbol{e}_{j}}{|\boldsymbol{e}_{u}||\boldsymbol{e}_{j}|}$$

- Step 3: Select Top K Hardest Negatives
 - Rank negatives by similarity to positive items
 - Select Top-K items with highest similarity score

InfoNCE Contrastive Loss

- Contrastive learning is a self-supervised learning technique that aims to pull semantically similar (positive) samples together and push dissimilar (negative) samples apart in the embedding space
- InfoNCE is a popular contrastive loss function that distinguishes positive samples from a set of negative samples

$$\mathcal{L}_{\text{InfoNCE}}(\boldsymbol{q}, \boldsymbol{k}^+, \{\boldsymbol{k}_i^-\}) = -\log \frac{\exp(\sin(\boldsymbol{q}, \boldsymbol{k}^+)/\tau)}{\exp(\sin(\boldsymbol{q}, \boldsymbol{k}^+)/\tau) + \sum_{j=1}^{N-1} \exp(\sin(\boldsymbol{q}, \boldsymbol{k}_j^-)/\tau)}$$

- Anchor (q): User preference embedding from their sequence (e_u)
- Positive Key (k^+) : Embedding of the target positive item (e_i)
- Negative Keys $\{{f k}_i^-\}$: Embeddings of negative items (${m e}_i$)
- Tau (τ) : Temperature Hyperparameter

Integrating HNS and InfoNCE

The original SelfGNN loss is augmented with the InfoNCE loss

$$oldsymbol{L}_{\mathrm{Total}} = oldsymbol{L}_{\mathrm{Rec}} + \lambda \cdot oldsymbol{L}_{\mathrm{InfoNCE}}$$

• Lambda (λ) : Contrastive loss weight parameter

Research Questions

- How does HardGNN perform w.r.t top-k recommendation as compared with SelfGNN?
- What are the benefits of the components proposed in HardGNN?
- How do contrastive loss weight and number of hard negative samples impact HardGNN?

04 Experiment Settings

Datasets

- Amazon-book: users' ratings of Amazon books in 2014
- Gowalla: user geolocation check-in dataset from Gowala in 2009-10
- Movielens: users' ratings for movies from 2002 to 2009
- Unable to process Yelp dataset from source code given
- Split each dataset into test set (most recent interaction of each user), validation set (second most recent interaction), and training set (remaining interactions)

Evaluation Metrics

- Hit Rate (HR): measures whether the true next item appears in the top-N predicted results
- Normalized Discounted Cumulative Gain (NDCG): measures how high true item ranks in top-N predicted results, rewarding higher placements more
- Use N = 10 and 20

05 Results

Experimental Setup

- Perform **grid search** over number of hard negatives (3, 5, 7) and contrastive loss weights (0.2, 0.1, 0.01)
- Train each configuration for 25 epochs to efficiently identify best-performing combination for each dataset
- Retrain the model using selected hyperparameters for 100 epochs
- Evaluate final model performance on both top-10 and top-20 recommendations and compare with SelfGNN

Results

100 Training Epochs

Dataset	Amazon				Gowalla				Movielens			
Top N	Top 10		Top 20		Top 10		Top 20		Top 10		Top 20	
Metric	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG	HR	NDCG
SelfGNN	0.371	0.218	0.486	0.250	0.568	0.370	0.703	0.407	0.224	0.121	0.326	0.145
HardGNN	0.223	0.120	0.401	0.203	0.624	0.408	0.736	0.434	0.206	0.111	0.308	0.137

- HardGNN trained with best hyperparameters for each dataset (from gridsearch)
 - Amazon: K = 3, λ = 0.1
 - o Gowalla: K = 3, λ = 0.2
 - Movielens: K = 3, λ = 0.01

Ablation Studies

- Use the results from the grid search to investigate model performance across varying values of the two hard negative sampling parameters
 - The number of hard negatives k = (3, 5, 7) and the contrastive loss weight λ = (0.01, 0.1, 0.2)
- Examine how performance changes as K varies while holding λ constant
- Examine how performance changes as λ values while holding K constant

Effect of Contrastive Loss Weight

25 Training Epochs

Effect of # Hard Negative Samples

25 Training Epochs

06 Conclusion

Summary of Findings

- HardGNN (our solution) underperformed SelfGNN (original work)
 for Amazon and Movielens datasets
 - These datasets rely more on long-term signals, so emphasizing short-term behavior via hard negatives may disrupt model balance and hurt performance
- HardGNN outperformed Self GNN on Gowalla dataset, likely reflecting the benefits of hard negative sampling for the specific characteristics of this dataset
 - Gowalla is the sparsest dataset, where random negatives (e.g., distant or irrelevant locations) rarely offer meaningful learning signals
 - Hard negatives, being contextually similar but behaviorally distinct, provide more informative information for training

Future Work

- Improve the time and space efficiency of HardGNN implementation
- Conduct more extensive hyperparameter tuning and run grid search for more training epochs
- Train HardGNN to 150 epochs (instead of 100) and retrain 5 times (instead of once) to obtain p-values to align with original SelfGNN experimental setup

Thanks!

Questions?

Appendix

