Week 3 — Multiple linear regression, transformations, and model building

Introduction to Statistical Thinking and Data Analysis

MSc in Epidemiology / Health Data Analytics

Autumn 2022

24 October 2022

This week

Time	Session	Topic
Mon 24 Oct 9:30–10:30	Problem Set Review	Problem Set 2: Linear regression
Mon 24 Oct 10:45–12:30	Lecture	Multiple linear regression, transformations, and model building
Mon 24 Oct 13:30–15:30	Applied Statistics Lab	Project 1: performing the analysis
Wed 26 Oct 9:30-11:00	Small group tutorial (Epi)	Problem Set 3
Wed 26 Oct 15:30–17:00	Small group tutorial (HDA)	Problem Set 3

Announcements

- We plan to start posting email questions + responses also on Blackboard discussion board when they may be of wider interest
- We will aim to post problem set solutions at end of Friday (instead of Sunday)
- Working on creating annotated R script examples for problem set solutions

Learning objectives

- Define and interpret the correlation coefficient r and r^2 , and understand the difference between the correlation coefficient and regression coefficient.
- Use multiple regression to describe, to adjust, and to predict.
- Interpret interactions and decide when to include interaction terms in multiple regression.
- Know why and when to transform outcome and exposure variables in linear regression.
- Develop a model building strategy to identify which and how many variables to include in a model.

Readings

- Kirkwood and Sterne:
 - Chapter 10: Linear regression and correlation
 - Chapter 11: Multiple regression
 - Chapter 12: Regression diagnostics
 - Chapter 13: Transformations
 - Chapter 29: Regression modelling
 - Sections 29.5, 29.7, 29.8
 - Chapter 38: Strategies for analysis
 - Sections 38.5–38.8

Analysis of Variance (ANOVA)

Analysis of variance

How many hours per day do users of different phone manufacturers spend on TikTok?

Sample n = 10 iPhone users and n = 10
 Samsung users

	Mean
iPhone	3.54
Samsung	3.24

Difference: 0.3

Pooled SE: 0.097

t-statistic: 3.149 on 18 degrees of freedom

p-value: 0.005

Analysis of variance

Is the mean number of hours per day on TikTok different by users of different leading phone manufacturers?

 Sample n = 10 of each iPhone, Samsung, Huawei, and Motorola users

Mean hours per day:

3.54 hr 3.24 hr 3.36 hr 3.34 hr

Imperial College London Option: Linear regression w/ categorical

```
> summary(lm(hours per day ~ manufacturer, data = phones))
Call:
lm(formula = hours per day ~ manufacturer, data = phones)
Residuals:
    Min
              10 Median
                                       Max
-0.54936 -0.10078 -0.00318 0.14492 0.35915
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               0.07151 49.538 < 2e-16
                    3.54223
manufacturersamsung -0.30628  0.10112 -3.029  0.00452 **
                    -0.18321 0.10112 -1.812 0.07837 .
manufacturerhuawei
manufacturermotorola -0.20136
                               0.10112 -1.991
                                                0.05408 .
               0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Signif. codes:
Residual standard error: 0.2261 on 36 degrees of freedom
Multiple R-squared: 0.2089, Adjusted R-squared: 0.143
F-statistic: 3.168 on 3 and 36 DF, p-value: 0.03594
```

- Informs about mean hours per day vs. iPhone users
- Does not answer question is there a difference in the mean across all four groups

Analysis of variance

Is the mean number of hours per day on TikTok different by users of different leading phone manufacturers?

$$s^2 = \frac{SS}{df} = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Decompose the variance & degrees of freedom:

Group: squared differences between group mean and overall population mean

$$s^{2} = \frac{SS}{df} = \frac{SS_{\text{group}} + SS_{\text{res}}}{df_{\text{group}} + df_{\text{res}}}$$

Residual: difference between each observation and group mean

sum squares/df

	Sum Sq.	d.f.	Mean Sq.
Group	0.486	4 groups - 1 3	0.162
Residual	1.841	36	0.051
Total	2.327	39	

Sample n = 10 of each iPhone, Samsung, Huawei, and Motorola users

Mean hours per day: 3.54 hr 3.24 hr 3.36 hr 3.34 hr

F-statistic

$$F = \frac{\text{Between-group mean square}}{\text{Within-group (residual) mean square}}$$

- With degrees of freedom:
 - df1 = between-group d.f.
 - df2 = within-group d.f. residual group freedom
- Assuming null hypothesis that all means are equal, F-statistic follows an <u>F-</u> <u>distribution</u>
- P-value based on tail of the F-disitribution

F-distribution with $df_1=3$ and $df_2=36$ degrees of freedom

	Sum Sq.	d.f.	Mean Sq.	F-stat	p-value
Group	0.486	3	0.162	3.168	0.0356
Residual	1.841	36	0.051		
Total	2.327	39			

F-test in R

```
> fit <- lm(hours_per_day ~ manufacturer, data = phones)</pre>
> anova(fit)
Analysis of Variance Table
Response: hours_per_day
            Df Sum Sq Mean Sq F value Pr(>F)
manufacturer 3 0.4860 0.16200 3.1684 0.03594 *
Residuals 36 1.8407 0.05113
Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 (), 1
```

ANOVA in linear regression output

```
Call:
lm(formula = hours_per_day ~ manufacturer, data = phones)
Residuals:
              1Q Median
    Min
                               3Q
                                       Max
-0.54936 -0.10078 -0.00318 0.14492 0.35915
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                 3.54223 0.07151 49.538 < 2e-16
(Intercept)
manufacturersamsung -0.30628 0.10112 -3.029 0.00452 **
manufacturerhuawei -0.18321 0.10112 -1.812 0.07837 .
manufacturermotorola -0.20136 0.10112 -1.991 0.05408 .
               0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Signif. codes:
Residual standard error: 0.2261 on 36 degrees of freedom
Multiple R-squared: 0.2089, Adjusted R-squared: 0.143
F-statistic: 3.168 on 3 and 36 DF, p-value: 0.03594
```

same as anova output

Correlation and coefficient of determination (R²)

Correlation coefficient

- Regression coefficient (β_1) : average change in outcome y for a one unit change in x.
 - Depends on the units of x and y
- Correlation coefficient (r): <u>strength</u> of <u>linear</u> association between two variables.
 - Number of standard deviations that y changes for each standard deviation change in x.
- r is between -1 and 1
 - $-r=0 \rightarrow$ no correlation; regression slope also = 0
 - 0 < r < 1 → positive correlation; β₁ > 0
 - −1 < r < 0 → negative correlation; β₁ < 0
- Two datasets can have the same β_1 , but different r.
 - More spread around the regression line → lower absolute correlation.
 - If we standardize x and y, then $\beta_1 = r$
 - But uncommon; usually most interested in interpreting β_1 on natural scale.

Correlation coefficient

Subject	Weight (kg)	Plasma volume (L)
1	58.0	2.75
2	70.0	2.86
3	74.0	3.37
4	63.5	2.76
5	62.0	2.62
6	70.5	3.49
7	71.0	3.05
8	66.0	3.12

mean(Weight) =
$$66.88$$
 SD(Weight) = 5.42 mean(Plasma) = 3.003 SD(Plasma) = 0.311 $r = 0.759$

Plasma = 0.0857 + 0.0436 * Weight SD(Weight) * β_1 = 5.42 * 0.0436 = 0.236 SD(Plasma) * r = 0.311 * 0.759 = 0.236

Coefficient of determination

- Coefficient of determination— R^2 : measures of the proportion of the total variation in the data that has been explained by the regression.
 - Always between 0 and 1.
- Defined by Analysis of Variance (ANOVA):

$$R^{2} = \frac{SS_{Total} - SS_{Residual}}{SS_{Total}} = \frac{SS_{Regression}}{SS_{Total}}$$

• For simple linear regression, coefficient of determination is equal to square of correlation (r^2) .

- R^2 is distinct from hypothesis testing for regression coefficients.
 - High / low R^2 does not mean a model is 'good'/'bad'; they R^2 and inference for β 's answer different questions.

Correlation in R

```
> dat <- data.frame(subject = 1:8,</pre>
                 weight = c(58, 70, 74, 63.5,
                             62, 70.5, 71, 66),
                 plasma = c(2.75, 2.86, 3.37, 2.76,
                             2.62, 3.49, 3.05, 3.12)
> x <- dat$weight</pre>
> y <- dat$plasma</pre>
> xbar <- mean(x)</pre>
> ybar <- mean(y)</pre>
> r <- sum((x - xbar) * (y - ybar)) /
         sqrt(sum((x-xbar)^2) * sum((y - ybar)^2))
> r
[1] 0.7591266
> cor(dat$weight, dat$plasma)
[1] 0.7591266
## Coefficient of determination
> r^2
[1] 0.5762732
```

```
> summary(lm(plasma ~ weight, data = dat))
Call:
lm(formula = plasma ~ weight, data = dat)
Residuals:
    Min
              10 Median
-0.27880 -0.14178 -0.01928 0.13986 0.32939
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.08572 1.02400
                               0.084 0.9360
            0.04362
                      0.01527 2.857 0.0289 *
weight
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ()
Residual standard error: 0.2188 on 6 degrees of freedom
Multiple R-squared: 0.5763,
                              Adjusted R-squared: 0.5057
F-statistic: 8.16 on 1 and 6 DF, p-value: 0.02893
```

Body weight accounts for 57.6% of the total variation in plasma volume.

in plasma volume.

Multiple linear regression

Example: height and vegetable consumption

Data: random sample of 600 adults in the UK

Veg cons. =
$$\beta_0 + \beta_{height} \times height + \epsilon$$

Param.	Estim.	Std. err.	t-value	p-value	95% CI
eta_0	83.1503	3.6202	22.97	<0.001	(76.04–99.26)
eta_{height}	0.0603	0.0214	2.81	0.005	(0.018–0.103)
R ²	0.013				

Among population of adults in the UK:

- On average, consume 60g (0.06 kg) more vegetables each year per 1 cm taller height; 95% CI 18g to 103g.
- Strong evidence to reject null hypothesis of no association between vegetable consumption and height.
- Height explains about 1.3% of variation in vegetable consumption.

statistically significant relationship

Example: height and vegetable consumption

Data: random sample of 600 adults in the UK

300 men, 300 women

Param.	Estim.	Std. err.	t-value	p-value	95% CI
eta_0	4.669	4.136	1.129	0.259	(-3.45–12.79)
eta_{sex}	9.854	0.407	24.237	<0.001	(9.06–10.65)
eta_{height}	0.497	0.024	21.052	<0.001	(0.451–0.544)
R ²	0.503				

Among population of adults in the UK:

- Women eat around 9.9kg more vegetables per year,
 adjusted for height (95% CI 9.1–10.7kg)
- Additional 1 cm height associated with 498g (95% CI 451–544g) more veg consumption, adjusted for sex.
- Sex and height explain about 50% of the variation in annual vegetable consumption.

Multiple linear regression

- Examine dependency of outcome on <u>several</u> exposure variables, not just one.
- Two reasons for including additional exposure variables:
 - 1. Estimate an exposure effect after accounting for the effect of other variables—adjusting for confounding factors.
 - Example: Women were on average shorter and ate more vegetables than men of similar height → sex confounded the relationship between height and vegetable consumption
 - 2. Systematically explain additional variation in the data → reduce residual variation → decrease standard error of regression coefficient
 - Increases accuracy of coefficient estimate; likelihood that hypothesis will detect any real effect that exists
 - Only applies to linear regression (not, e.g., logistic or Poisson regression)
- What is the association between vegetable consumption and height, adjusted for effect of sex?
- What is the association between vegetable consumption and sex, adjusted for effect of height?
 - 'adjusted for' = having taken into account
 - Also often referred to as 'controlled for'; 'adjusted for' generally preferred language now.

Multiple regression in R

Simple linear regression

```
> fit1 <- lm(veg ~ height, data = dat)</pre>
> summary(fit1)
Call:
lm(formula = veg ~ height, data = dat)
Residuals:
    Min
              10 Median
                               3Q
                                       Max
-12.5693 -2.9901 0.3621 3.2112 11.2556
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.15026 3.62024 22.968 < 2e-16 ***
height
            0.06034 0.02149 2.808 0.00514 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.528 on 598 degrees of freedom
```

Multiple R-squared: 0.01302, Adjusted R-squared: 0.01137

F-statistic: 7.887 on 1 and 598 DF, p-value: 0.005143

Multiple linear regression

```
> fit2 <- lm(veg ~ sex + height, data = dat)</pre>
> summary(fit2)
Call:
lm(formula = veg ~ sex + height, data = dat)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-8.7129 -2.2744 0.1207 2.1465 10.6118
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.66867
                      4.13555 1.129
                                         0.259
sexfemale 9.85417 0.40658 24.237 <2e-16 ***
                      0.02363 21.052 <2e-16 ***
height
            0.49747
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.217 on 597 degrees of freedom
Multiple R-squared: 0.5025, Adjusted R-squared: 0.5008
```

F-statistic: 301.5 on 2 and 597 DF, p-value: < 2.2e-16

Comparing multiple regression models

- Use ANOVA to test the null hypothesis that no association of veg consumption with sex, having already accounted for height.
- Reverse order: null hypothesis no association of veg consumption and height, having already accounted for sex.

Notes:

- Models must be 'nested'
 - All terms in model 1 must also be included in model 2
- For single additional variable, equivalent to ttest for the added term in multiple regression table.
 - t-statistic is square-root of the F-statistic
- More useful for categorical variables (multiple levels)
 - H0: all of the additional categories are = 0
 - H1: at least one of additional categories != 0

```
> fit1a <- lm(veg ~ height, data = dat)</pre>
> fit2 <- lm(veg ~ height + sex, data = dat)</pre>
> anova(fit1a, fit2)
Analysis of Variance Table
Model 1: veg ~ height
Model 2: veg ~ height + sex
  Res.Df
             RSS Df Sum of Sq
                                          Pr(>F)
     598 12260.0
     597 6179.7 1
                     6080.4 587.41 < 2.2e-16 ***
> fit1b <- lm(veg ~ sex, data = dat)</pre>
> fit2 <- lm(veg ~ sex + height, data = dat)
> anova(fit1b, fit2) compares model 1 and 2
Analysis of Variance Table
Model 1: veg ~ sex
Model 2: veg ~ sex + height
  Res.Df RSS Df Sum of Sq F
                                           Pr(>F)
     598 10767.2
     597 6179.7 1 4587.6 443.19 < 2.2e-16 ***
```

Interactions

Is the relationship between height and vegetable consumption different for women and men?

Veg cons. =
$$\beta_0 + \beta_{sex} \times [sex = F] + \beta_{height} \times height + \beta_{sexF,height} \times [sex = F] \times height + \epsilon$$

Param.	Estim.	Std. err.	t-value	p-value	95% CI
eta_0	-13.503	4.882	-2.766	0.006	(-23.09– -3.91)
eta_{sex}	62.272	8.085	7.703	<0.001	(46.39–78.15)
eta_{height}	0.601	0.028	21.551	<0.001	(0.547–0.656)
$eta_{sexF,height}$	-0.316	0.049	-6.491	<0.001	(-0.411– -0.220)
R ²	0.535				

- $\beta_{sexF,height}$: is the effect of the *interaction* between sex and height
 - Also called *effect modification*: sex modifies the effect of height on vegetable consumption.

Interactions

Veg cons. =
$$\beta_0 + \beta_{sex} \times [sex = F] + \beta_{height} \times height + \beta_{sexF,height} \times [sex = F] \times height + \epsilon$$

Param.	Estim.	Std. err.	t-value	p-value	95% CI
eta_0	-13.503	4.882	-2.766	0.006	(-23.09– -3.91)
β_{sex}	62.272	8.085	7.703	<0.001	(46.39–78.15)
eta_{height}	0.601	0.028	21.551	<0.001	(0.547–0.656)
$eta_{sexF,height}$	-0.316	0.049	-6.491	<0.001	(-0.411– -0.220)
R ²	0.535				

- β_0 : The predicted vegetable consumption for men with height = 0cm is -13.5kg per year.
- β_{sex}: The predicted difference between female veg consumption and male veg consumption is 62.3kg per year when height = 0 (for both sexes)
- β_{height} : For men, vegetable consumption increases by 0.6kg for each cm height.
- β_{sexF,height}: For women, each cm increase in height is associated with <u>0.32kg less</u>
 <u>increase</u> in veg consumption than for men.
 - For women, vegetable consumption increases
 by 0.60 0.32 = 0.28 kg per cm increase in
 height

Interactions in R

Multiple regression with interaction

```
> fit3 <- lm(veg ~ sex + height + sex:height, data = dat)</pre>
> summary(fit1)
Call:
lm(formula = veg ~ height, data = dat)
Residuals:
    Min
              1Q Median
                               3Q
                                      Max
-12.5693 -2.9901 0.3621 3.2112 11.2556
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.15026 3.62024 22.968 < 2e-16 ***
height 0.06034 0.02149 2.808 0.00514 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.528 on 598 degrees of freedom
Multiple R-squared: 0.01302, Adjusted R-squared: 0.01137
F-statistic: 7.887 on 1 and 598 DF, p-value: 0.005143
```

Multiple linear regression

```
> fit2 <- lm(veg ~ sex + height, data = dat)</pre>
> summary(fit2)
Call:
lm(formula = veg ~ sex + height, data = dat)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-8.7129 -2.2744 0.1207 2.1465 10.6118
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.66867 4.13555 1.129
                                        0.259
sexfemale <u>9.85417</u> 0.40658 24.237 <2e-16 ***
            0.49747
                       0.02363 21.052 <2e-16 ***
height
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.217 on 597 degrees of freedom
Multiple R-squared: 0.5025, Adjusted R-squared: 0.5008
F-statistic: 301.5 on 2 and 597 DF, p-value: < 2.2e-16
```

Centering covariates

only include if there's a clear motivation behind why the confounder could affect

 Often 'centering' covariates at their mean makes results more interpretable.

E.g.: height = 0 -> height = mean(height)

```
> mean(dat$height)
[1] 168.2679
> dat$height c <- dat$height - mean(dat$height)</pre>
> fit3 c <- lm(veg ~ sex + height c + sex:height c, data=dat)</pre>
Call:
lm(formula = veg ~ sex + height c + sex:height c, data = dat)
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  87.69415
                              0.25663 341.720 < 2e-16 ***
sexfemale
                   9.14602
                              0.40811 22.411 < 2e-16 ***
height c
                   0.60141
                              0.02791 21.551 < 2e-16 ***
                              0.04864 -6.491 1.79e-10 ***
sexfemale:height c -0.31572
Residual standard error: 3.112 on 596 degrees of freedom
Multiple R-squared: 0.5354, Adjusted R-squared: 0.533
F-statistic: 228.9 on 3 and 596 DF, p-value: < 2.2e-16
```

- Estimate for height slope, sexfemale:height interaction, R^2 , and statistical inferences are unchanged.
- Intercept and sex coefficients are more interpretable:
 - β_0 : The predicted vegetable consumption for *men* with *height* = *168cm* is 87.7kg per year.
 - β_{sex} : For men and women both with height = 168cm, women consume 9.1kg more vegetables per year than men.

Interaction of continuous covariates

Peru lung function data set (636 children aged 7 to 10 years)

 Estimate interaction between effect of height and age on lung function (FEV1)

```
> peru fit <- lm(fev1 ~ age*height, peru)</pre>
> summary(peru fit)
Call:
lm(formula = fev1 ~ age * height, data = peru)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.793279
                    1.956125
                                 1.939 0.05292 .
           -0.587443
                    0.216724 -2.711 0.00690 **
age
height
           -0.024679
                      0.015950 -1.547 0.12230
                      0.001755
                               3.133 0.00181 **
age:height
           0.005497
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
Residual standard error: 0.2275 on 632 degrees of freedom
Multiple R-squared: 0.4442,
                             Adjusted R-squared: 0.4416
F-statistic: 168.4 on 3 and 632 DF, p-value: < 2.2e-16
```

- For every 1 year older age, the effect of an additional cm of height on FEV1 is increased by 0.005 L/sec
- For each cm additional height, the effect of an additional year of age on FEV1 is increased by 0.005 L/sec
- Often useful / clearer to communicate slopes for indicative values:
 - At age 7, each cm height 0.016 L/sec FEV1
 - At age 8, each cm height -> 0.022 L/sec FEV1
 - At age 9, each cm height -> 0.028 L/sec FEV1
 - At age 10, each cm height -> 0.033 L/sec
 FEV1

Interaction of continuous covariates

Multiple regression (no interaction)

With age x height interaction

```
> lm(fev1 ~ age * height, data = peru)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.793279
                       1.956125
                                 1.939 0.05292 .
                                -2.711
                                        0.00690 **
           -0.587443
                       0.216724
age
height
           -0.024679
                       0.015950
                                -1.547 0.12230
                                3.133 0.00181 **
age:height
            0.005497
                       0.001755
```


Transformations

Linear regression assumptions

- 1. Linearity
- 2. Normality
- 3. Independence
- 4. Equal variance

Strategies for addressing assumption violations

- Check for errors in the data (coding, entry) resulting in outliers.
- Explore non-linear relationships between outcome and exposure variables.
 - Convert continuous variables to categorical.
 - Add quadratic term. allows us to capture curved r/s
- Conduct <u>sensitivity analysis</u> to check whether excluding outliers / alternative specifications change the key conclusions of the analysis.
- Use transformations of outcome or exposure variables.

rnorm()?

 Use robust standard errors or bootstrapping to derive CIs without requiring distributional assumptions (Chapter 30; Problem Set 3).

Log transformation

 Positively (right) skewed data: Triceps skinfold measurements of 440 men

Log transformation triceps skinfold measurement

Convenient properties:

- Log(y) ~ Normal() →
 y ~ Log-normal()
- $\log(y) = \beta_0 + \beta_1 x \rightarrow$ $y = e^{\dot{\beta}_0} e^{\beta_1 x}$
- "1 unit increase in x →
 e^{β₁} times increase in y"

Non-linear relationship

Fig. 13.4 Relationship between frequency of 6TG-resistant lymphocytes and age for 37 individuals drawn using (a) a linear scale, and (b) a logarithmic scale for frequency. Reprinted from Morley et al. Mechanisms of Ageing and Development 19: 21–6, copyright (1982), with permission from Elsevier Science.

Transformations: summary

- Unequal variance: variance increasing with mean is very common situation
 - Diagnose with residuals vs. fitted values—funnel shape.
 - Try logarithmic transformation of outcome variable (S.D. increases linearly with mean).
 - Reciprocal or square-root transformation for more/less severe.
- Non-linear relationship:
 - Diagnose with residual vs. fitted values—'U-shaped' pattern.
 - May be resolved by transforming either outcome or exposure variable (see Table 13.3)
 - Often becomes difficult to interpret: "a 1 unit increase in reciprocal of soda intake is associated with a 0.2 unit reduction in square-root of BMI"
- Goodness-of-fit tests (Shapiro-Wilk, chi-squared) tend to be not that useful for data sets of moderate size.
 - Very sensitive to detect some difference from Normal distribution; unclear practical importance for inference.

Table 13.3 Summary of different choices of transformations. Those removing positive skewness are called group A transformations, and those removing negative skewness group B.

Situation	Transformation			
Positively skewed distribution (group A)				
Lognormal	Logarithmic ($u = \log x$)			
More skewed than lognormal	Reciprocal $(u = 1/x)$			
Less skewed than lognormal	Square root ($u = \sqrt{x}$)			
Negatively skewed distribution (group B)				
Moderately skewed	Square $(u = x^2)$			
More skewed	Cubic ($u = x^3$)			
Unequal variation				
s.d. proportional to mean	Logarithmic ($u = \log x$)			
s.d. proportional to mean ²	Reciprocal $(u = 1/x)$			
s.d. proportional to $\sqrt{\text{mean}}$	Square root ($u = \sqrt{x}$)			
Non-linear relationship	Transform: y variable and/or x variable			
Y	Group A (y) Group B (x)			
	Group B (y) Group A (x)			
y x	Group A (y) Group A (x)			
× ×	Group B (y) Group B (x)			

Model building

What to include in my regression?

- 1. Any variables that are *confounders* of the relationship between the outcome and primary exposure of interest.
- 2. For linear regression (only): other variables that are clearly associated with the outcome → improves precision
 - But keep the number relatively small: interpretation becomes harder with large number of variables.
 - Rule of thumb, at least 10 observations per additional covariate. (Often much more for large or noisy data sets.)

like p val

- For hypothesis testing (e.g. RCTs): full analysis plan must be specified before you start.
- For observational studies (exploratory analysis): some model building required, but write down clear hypotheses and analysis plan before you start.
 - Usually involves sensitivity analysis: testing interactions, non-linear terms
- Avoid model selection procedures that involve choosing covariates based on looking at the data;
 - Including all covariates with univariate associations; e.g. p < 0.05, p < 0.2
 - 'Stepwise selection': recursively adding / remove variables until no further improvement in model fit

Imperial College London Why should we avoid stepwise models

- Over-optimistic results:
 - P-values for the selected variables tend to be small, Cls narrow and R2 high
 - Higher chance of spurious associations with increasing number of initial variables
- Regression coefficients tend to be larger and as a result perform poorly in test data
- Slight changes in data can lead to large in the variables selected in the final model
- Stepwise methods often used instead of expert knowledge and correct problem definition

Dangers of collinearity

Collinearity: high correlation between two exposure variables.

reduces ability to identify main exposure of interest as it is being mocked up by the other covariate

- Not possible to identify linearly independent association with each variable.
 - Only a linear combination of the covariates → biased coefficient estimates
- Can cause very large standard errors; spurious null association with the outcome

Table 29.11 Demonstration of the effect of collinearity, using data from the study of lung disease in children in Lima, Peru. Variable *newage* is variable *age* plus a random error whose standard deviation is given in the first column in the table.

s.d. of Correlation		Regression of height on <i>newage</i>	Regression of height on age and newage		
random error	between age and newage	Coefficient (s.e.) for <i>newage</i>	Coefficient (s.e.) for age	Coefficient (s.e.) for <i>newage</i>	Sum of coefficients
1	0.57	1.61 (0.20)	5.31 (0.33)	- 0.17 (0.20)	5.16
0.1	0.9904	5.06 (0.28)	6.81 (2.00)	- 1.66 (1.99)	5.15
0.01	0.9999	5.16 (0.28)	21.76 (19.94)	-16.62 (19.94)	5.14

Common pitfalls

Common pitfalls in (Kirkwood & Sterne, section 38.8)

1. Multiple comparisons:

- Even if there is no association between exposure and outcome, 1 in 20 comparisons to be statistically significant at 5% level.
- Try to minimize the number of hypothesis tests; if testing many, adjust for it.

2. Subgroup analyses:

- Be very cautious about interpreting apparent associations in subgroups of data, particularly when no evidence of overall association.
- Tempting to emphasise an 'interesting' finding in an otherwise null study!

3. Data-driven comparisons:

 Avoid choosing definitions for specifying exposure or outcome variable after running several analyses

Any questions?