Supplementary Information

Halpin et al., Molecular determinants of TRAF6 binding specificity suggest that native interaction partners are not optimized for affinity

Extended methods

Stepwise protocol for amplicon generation of Illumina substrates

Sorted pools from the enrichment and nonbinder experiments were grown overnight in 10 mL LB + 25 μ g/mL chloramphenicol (OD600 > 1.0) and then plasmid DNA from each pool was isolated (QIAprep miniprep kit using manufacturer's instructions). The resulting DNA pools were subjected to the following procedure (see Figure S3):

1. PCR1 amplified the variable region of the bulk plasmid DNA and attached a 5' top strand overhang containing 12 nt of flanking DNA and a TCCACC Mmel recognition sequence. Mmel cuts 20 nt 3' of its recognition site on the top strand and 18 nt 5' on the bottom strand. The Mmel site appended in PCR1 in our construct was designed such that Mmel digestion results in a bottom strand 3' overhang of 'AG' to match the overhang of our DNA adapters. If other adapter is chosen, make sure to generate the appropriate overhang. The top strand 3' primer appends both a 9 nt unique identifier (UID) and a 6 nt index sequence. The appended UIDs in our analysis were not used in this work. After 5 cycles at T_a = 60 °C, the next 20 cycles were run at T_a = 66 °C such that only full-length fragments were reproduced. Phusion High-Fidelity Polymerase in HF Buffer was used (0.5 μL Phusion/50 μL reaction) for all PCR steps. The 6 nt index sequences that we used are indicated in Table S1. PCR products were purified with the Zymo DNA Clean and Concentrate Kit (Genesee).

PCR Recipe:	Thermal Cycler:	
10 μL Phusion HF Buffer 5X	1. 3 min	98 °C
1 μL dNTPs (10 mM each dNTP)	2. 30 sec	98 °C
1.1 μL PCR1a fwd primer (10 μM)	3. 30 sec	60/66 °C*
1 μL PCR1a rev primer (10 μM)	4. 30 sec	72 °C
10 μL Ligated DNA template	5. Repeat steps 2–4	14X
1 μL Phusion Polymerase	6. 3 min	72 °C
25 μL water	7. Hold	4 °C
50 μ total		

^{*:} After 5 cycles with T_a = 60 °C, add 1.5 μ L PCR1b reverse primer (10 μ M) and resume with T_a = 66 °C

2. MmeI (NEB) was used as in the NEB instructions to cleave PCR1 products. The resulting DNA fragments should have a ~200 ng PCR1 product, and are used as input DNA for each digestion in the following recipe:

Digestion Recipe:

9 µL PCR1 product

2 μL CutSmart 10X buffer

 $1 \mu L SAM$

6 μL water

2 μL Mmel (4U)

20 μL total

Thermal Cycler:

1. 60 min 37 °C

2. 20 min 80 °C (heat deactivation)

3. Hold 4 °C

T4 DNA Ligase (NEB) was used to anneal adapters (Table S1) assigned by pool identity. The adapters, which contain both the 5' Illumina forward sequencing primer sequence and a 5' 5-nt barcode, each having a 'TC' top-strand 3' overhang for annealing to the designed 'AG' bottom-strand 3' overhang left by Mmel cleavage of purified PCR1 products. Ligated products were then run on a 1% Agarose gel containing 10 μ L GelGreen/100 mL total gel volume and bands ~117 nt were excised and purified with the Zymoclean Gel DNA Recovery Kit. Purified products were eluted in 20 μ L water.

Ligation Recipe:

Thermal Cycler:

 $15~\mu L$ Mmel-digested DNA 1.~30~min $25~^{\circ}C$

2 μL T4 DNA Ligase Buffer 10X 2. 10 min 65 °C (heat deactivation)

 $2 \mu L$ DNA Adapter (6 μM) 3. Hold 4 °C

1 μL T4 DNA Ligase (400 U)

20 μL total

3. PCR2 amplifies the purified ligated amplicons to add the 5' Illumina anchor sequences to each strand of the amplicon. PCR2 products were purified with the Zymo DNA Clean and Concentrator Kit, and eluted in 20 µL water. Selected samples were then sent for Sanger sequencing (QuintaraBio) to monitor amplicon quality and appropriate barcoding.

PCR Recipe:	Thermal Cycler:	
10 μL Phusion HF Buffer 5X	1. 3 min	98 °C
1 μL dNTPs (10 mM each dNTP)	2. 30 sec	98 °C
3.1.μL Fwd primer (10 μM)	3. 30 sec	66 °C
3.2.μL Rev primer (10 μM)	4. 30 sec	72 °C
10 μL Ligated DNA template	5. Repeat steps 2–4	14X
1 μL Phusion Polymerase	6. 3 min	72 °C
25 μL water	7. Hold	4 °C
50 μL total		

Supplementary Figures

Figure S1. Binding curves from single-clone FACS titrations. Mean PE fluorescence is plotted against TRAF6 concentration and fit to a standard binding equation (equation 1). The mean K_d^* from fitting each replicate independently and the associated standard error of the mean is shown above each graph.

Figure S2. Biolayer interferometry (BLI) measurements of TRAF6 monomer (in solution) binding to different peptides (on tip). (A) Binding signal is plotted against TRAF6 concentration and fit to a standard binding equation (equation 1). Error bars are the standard error of the mean of 3 replicate measurements. (B) Average dissociation constant from 3 independently-fit replicate binding curves. The error bars are the standard error of the mean. Note that the dissociation constant for the CD40 peptide is an approximation as the highest TRAF6 concentration used was only 150 μ M.

Figure S3. Schematic of amplicon preparation from sorted plasmid pools.

List of provided supplementary data files

Supplementary data file	Contents	column names	column description
		nro onrighment (MACClib)	read counts in MACSlib
		pre-enrichment (MACSlib)	(enrichment input)
		day_1	read counts after round 1
enrichment_rep1_readcounts.csv	merged read counts for enrichment replicate 1	day_2	read counts after round 2
ennennent_rep1_readcodnts.csv		day_3	read counts after round 3
		day_4	read counts after round 4
		day_5	read counts after round 5
		seq	nucleotide sequence
		pre-enrichment (MACSlib)	read counts in MACSlib
			(enrichment input)
		day_1	read counts after round 1
enrichment_rep2_readcounts.csv	merged read counts for	day_2	read counts after round 2
eninchinient_repz_readcounts.csv	enrichment replicate 2	day_3	read counts after round 3
		day_4	read counts after round 4
		day_5	read counts after round 5
		seq	nucleotide sequence
	sequences used in structural	Binders	48 binder peptide sequences
MD_sequences.xlsx	modeling studies	Nonbinders	41 nonbinder peptide sequences
		seq	nucleotide sequence
	enrichment replicate 1 - read counts after filtering*	AA_seq	amino acid sequence
		pre-enrichment (MACSlib)	read counts in MACSlib
		day_1	read counts after round 1
enrichment_rep1_readcounts-processed.csv		day_2	read counts after round 2
		day_3	read counts after round 3
		day_4	read counts after round 4
		day_5	read counts after round 5
	enrichment replicate 2 - read counts after filtering*	seq	nucleotide sequence
		AA_seq	amino acid sequence
		pre-enrichment (MACSlib)	read counts in MACSlib
		day_1	read counts after round 1
enrichment_rep2_readcounts-processed.csv		day_2	read counts after round 2
		day_3	read counts after round 3
		day_4	read counts after round 4
		day_5	read counts after round 5
	nonbinder pool - read counts		nucleotide sequence
nonbinder_readcounts-processed.csv	after filtering* final 1200 nonbinders	AA_seq	amino acid sequence
		read counts	read counts
final_binder_list.txt	final set of 236 binder sequences	N/A	amino acid sequence
Supplementary_Table_S3.xlsx	TRAF6 motifs in the human proteome with PSSM score	=	N/A

^{*}Filtering: Nucleotide sequences were collapsed to just the motif (*********CCT***GAA********) and then translated into amino acid sequence. Peptides which did not match the TRAF6 motif (xxxPxExxx) or which contained a "*" or "X" character were removed. Any sequences that didn't have a read count of 20 or more in at least one of the read count columns were removed.

Supplementary tables

Table S1. TRAF6 and peptide display constructs and index/barcode sequences used for multiplexing NGS samples.

TRAF6 MATH-plus-coiled-coil construct - T6cc

MA – (BAP tag) – GGSS – HHHHHH – GSGSGSM – (human TRAF6 residues 310-504)

TRAF6 monomer construct - T6m

(human TRAF6 residues 350-501) - LE - HHHHHH

Peptides tested for cell-surface binding were displayed in an eCPX fusion construct with the following sequence:

(eCPX residues 1 - 183 from ref. [1]) -

MKKIACLSALAAVLAFTAGTSVAGGQSGQSGDYNKNQYYGITAGPAYRINDWASIYGVVGVGYGKFQTTEYPTYKHDTSDY GFSYGAGLQFNPMENVALDFSYEQSRIRSVDVGTWILSVGYRFGSKSRRATSTVTGGYAQSDAQGQMNKMGGFNLKYRY EEDNSPLGVIGSFTYTEKSRTAS-GGGSGGSDYKDDDDKGGGSGGGSGGSGGGSGRGS-PTNKAPHP-xxxPxExxx-PDDLPGSNT

ATGAAAAAATTGCATGTCTTTCAGCACTGGCCGCAGTTCTGGCTTTCACCGCAGGTACTTCCGTAGCTGGAGGGCAGT
CTGGGCAGTCTGGTGACTACAACAAAAACCAGTACTACGGCATCACTGCTGGTCCGGCTTACCGCATTAACGACTGGG
CAAGCATCTACGGTGTAGTGGGTTATGGTAAATTCCAGACCACTGAATACCCGACCTACAAACACGACACCA
GCGACTACGGTTTCTCCTACGGTGCGGGTCTGCAGTTCAACCCGATGGAAAACGTTGCTCTGGACTTCTCTTACGAGCA
GAGCCGTATTCGTAGCGTTGACGTAGGCACCTGGATTTTGTCTGTTGGTTACCGCTTCGGGAGTAAATCGCGTCGCGC
GACTTCTACTGTAACTGGCGGTTACGCACAGAGCGACGCTCAGGGCCAAATGAACAAAATGGGCGGTTTCAACCTGAA
ATACCGCTATGAAGAAGACAACAGCCCGCTGGGTGTGATCGGTTCTTTCACTTACACCGAGAAAAGCCGTACTGCAAG
CGGAGGAGGCAGTGGTGGTGGGAGCGATTACAAAGATGACGATGACAAAGGCGGCGGTAGTGGGGGAGGCAGTTG
TAGCGGCGGCCAGTCTGGCCGTGGTTCTCCCCACTAATAAGGCCCCCGCATCCCAAACAAGAACCTCAGGAAATCGATTT
CCCGGACGATCTGCCGGGTAGCAACACATGATAA

SUMO peptide construct used in BLI:

MAG – (BAP tag) – DTGGSS – (TEV cleavage site) – HHHHHHH – GSGSG – (SUMO) – GSGSGGSGSG – xxxPxExxx

Index and barcode sequences used to multiplex NGS samples

Index sequences: ATCACG, CGATGT, TTAGGC, TGACCA, ACAGTG, GCCAAT, CAGATC, ACTTGA, GATCAG
Barcode sequences: ACTCG, ACTGT, AATGC, AGTCA, ATACG, ATAGC, CGATC, CTAAG, CTCGA, CGAAT, CTGGT,
CGGTT, GACTT, GTTCA, GATAC, GAGCA, GATGA, GTCTG, TCGGA, TGACC, TACTG, TCCAG, TCGAC, TAGCT

Table S2. fastq file sample key

barcode file name	sample
barcode_0	enrichment - replicate 1 - day 1
barcode_1	enrichment - replicate 1 - day 2
barcode_2	enrichment - replicate 1 - day 3
barcode_3	enrichment - replicate 1 - day 4
barcode_4	enrichment - replicate 1 - day 5
barcode_6	enrichment - replicate 2 - day 1
barcode_7	enrichment - replicate 2 - day 2
barcode_8	enrichment - replicate 2 - day 3
barcode_9	enrichment - replicate 2 - day 4
barcode_10	enrichment - replicate 2 - day 5
barcode_20	MACSLib pool*
barcode_5	nonbinder pool

^{*}used as input for enrichment experiments

References

[1] J.J. Rice, A. Schohn, P.H. Bessette, K.T. Boulware, P.S. Daugherty, Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligands., Protein Sci. 15 (2006) 825–836. https://doi.org/10.1110/ps.051897806.