SECTION B

Part I

			Marks
1.	(a)	(i) The mass number of a ¹³ C atom is greater than that of a ¹² C atom. / The mass number of a ¹² C atom is 12 while the mass number of a ¹³ C atom is 13. / A ¹³ C atom has one more neutron than a ¹² C atom. / A ¹² C atom has 6 neutrons while a ¹³ C atom has 7 neutrons.	1
		(ii) Let x be the percentage abundance of 12 C. $12 \times + 13 (1 - x) = 12.011$ x = 0.989 = 98.9%	2
	(b)	Similarity: Both diamond and graphite have a giant covalent structure.	1
		Difference: In diamond, each carbon atom forms 4 covalent bonds with other carbon atoms. In graphite, each carbon atom forms 3 covalent bonds with other carbon atoms.	1
		As there are no delocalised electrons in diamond, it is a poor conductor of electricity. As there are delocalised electrons in graphite, it is a good conductor of electricity.	1
	(c)	N C C N	1
2.	(a)	in the presence of air / oxygen and water	1
	(b)	phenolphthalein	1
	(c)	 Iron loses electrons / is oxidised to form iron(II) ions / Fe²⁺(aq) ions. Fe²⁺(aq) ions react with potassium hexacyanoferrate(III) to form a blue colour. 	1
	(d)	Y > iron > X No blue colour is observed / No rusting occurs in set-up 2, which implies that Y loses electrons / is oxidised more readily than iron / Y gives sacrificial protection for iron. Blue colour is observed / Rusting occurs in set-up 1, which implies that iron loses electrons / is oxidised more readily than X.	1

Marks 1 3. (a) voltmeter / multimeter (b) To complete the circuit / balance the charges in the two half cells / allow the flow of ions between 1 the two half cells. $AgNO_3(aq) / Ag^+(aq)$ reacts with $KCl(aq) / Cl^-(aq)$ to form water-insoluble AgCl(s), which 1 (c) (i) will block the ion flow in the salt bridge. 1 saturated / concentrated potassium nitrate solution / KNO₃(aq) (d) (i) Under using the same metal-metal ion in half-cell A, the voltage of chemical cell 3 is the greatest positive value / the highest. 1 (ii) +1.15-(-0.46) = +1.611 (iii) $Ag^+(aq) + e^- \rightarrow Ag(s)$ 2 No. of moles of H = 3.09 / 1.0 = 3.094. (a) (i) No. of moles of N = 14.42 / 14.0 = 1.03No. of moles of S = 33.06 / 32.1 = 1.03No. of moles of O = 49.43 / 16.0 = 3.09Mole ratio of H: N: S: O = 3:1:1:3The empirical formula of sulphamic acid is H₃NSO₃. 1 (ii) Let the molecular formula be (H₃NSO₃)_n. $(3 \times 1.0 + 14.0 + 32.1 + 3 \times 16.0) \times n = 97.1$ n = 1The molecular formula of sulphamic acid is H₃NSO₃. 1 No. of moles of NaOH that reacted with the H₂SO₄(aq) (b) (i) $= 2 \times 0.202 \times 24.80 / 1000 = 0.010$ (ii) No. of moles of NaOH that reacted with the sulphamic acid $= 0.150 \times 100.0 / 1000 - 0.010 = 0.005$ 1 (iii) No. of moles of the sulphamic acid that reacted with NaOH(aq) = 0.486 / 97.1 = 0.005Mole ratio of H_3NSO_3 : NaOH = 0.005: 0.005 = 1:1 The basicity of sulphamic acid is 1. / Sulphamic acid is a monobasic acid. 1 (c) $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(l)$

				Marks
			tional distillation erent hydrocarbons evaporate and condense as different fractions at different temperatures.	1 8
	(b)	(i)	cracking	1
		(ii)	Prevent sucking back of water as sudden cooling may break the hot boiling tube.	1
		(iii)	ii) The gas mixture contains alkenes which react with Br ₂ (aq) to give colourless products.	
		(iv)	 Kerosene vaporises quickly without being cracked. The broken unglazed porcelain is not hot enough and so cannot function as a catalyst for cracking of kerosene. 	1
6.	(a)	(i)	NH ₃ (aq) and FeSO ₄ (aq)	1
		(ii)	iron(II) hydroxide	1
	(b)	(i)	Mg(NO ₃) ₂ (aq) and Na ₂ CO ₃ (aq)	1
		(ii)	$Mg^{2+}(aq) + CO_3^{2-}(aq) \rightarrow MgCO_3(s)$	1
	(c)	H ₂ SO	O ₄ (aq) and Na ₂ CO ₃ (aq)	1
7.	(a)	(i)	H 	1
			H CI	
		(ii)	 C-H bonds are polar because carbon and hydrogen have different electronegativities. C-Cl bonds are polar because carbon and chlorine have different electronegativities. 	1
		(iii)	Dichloromethane is a polar molecule, because the polarities of C-H bonds and C-Cl bonds do not cancel out each other.	1
	(b)	•	There are weak van der Waals' forces between dichloromethane molecules. There are strong hydrogen bonds between ethanol molecules.	1 1

			Marks
8.	(a)	Energy released from the reaction = $1.0 \times (50.0 + 50.0) \times 4.20 \times 6.8 \div 1000 = 2.856 \text{ kJ}$ Enthalpy change of neutralisation = $-2.856 \div (1.0 \times 50 \div 1000) = -57.12 \text{ kJ mol}^{-1}$	2
	(b)	All acids and alkalis used in experiments 1 to 4 completely dissociate in water.	1
	(c)	Enthalpy change for the reaction = $-50.10 - (-57.12)$ = $+7.02 \text{ kJ mol}^{-1}$	2
9.	Che	smical knowledge Silver can be obtained by heating silver oxide alone / directly. Lead can be obtained by heating a mixture of lead(II) oxide and carbon / charcoal / coke. Aluminium can be obtained by electrolysis of aluminium oxide in molten state. The more reactive a metal is / The higher the position of a metal in the metal reactivity series is, the more difficult the extraction method of the metal is.	4
	Con	nmunication mark	1

Part II

Marks

1

10. (a)

(b) A, because it takes the shortest time for the reaction to finish / the initial rate of the reaction is the highest.

1

(c) 60 cm^3

1

1. LiAlH4, dry ether	2. H ⁺ (aq)
OR	
NaBH ₄	
	OR

Marks 1

(b) dehydration

1

(c) R:

1

(d) S:

1

1

2

(e)

Q	R
	OH OH

12. (a) propane-1,2,3-triol

1

(b)
$$\begin{array}{ccc} O & & O \\ \parallel & \parallel & \\ C_{15}H_{31}-C-O^{-}Na^{+} \end{array}$$

1

(c) (i) There are no two distinct liquid layers after the mixture has rested for a long time. / One persistent milky layer is formed.

ne 1

(ii) • The ionic head (COO⁻) of product **B** dissolves in water / is hydrophilic, while the hydrocarbon tail (C₁₅H₃₁) dissolves in oil / is hydrophobic.

1

1

• By shaking, the oil breaks up into oil droplets. The repulsion between the negative charges on the oil droplets prevents the oil droplets from joining together again.

			<u>Marks</u>
13.	(a)	• Al ₂ O ₃ is a basic oxide and reacts with HCl(aq) to form AlCl ₃ and H ₂ O. / Al ₂ O ₃ (s) + 6HCl(aq) \rightarrow 2AlCl ₃ (aq) + 3H ₂ O(1)	1
		• Al ₂ O ₃ is an acidic oxide and reacts with NaOH(aq) to form NaAl(OH) ₄ / NaAlO ₂ and H ₂ O. / Al ₂ O ₃ (s) + 2NaOH(aq) + 3 H ₂ O(l) \rightarrow 2NaAl(OH) ₄ (aq)	1
		Aluminium oxide is both an acidic oxide and a basic oxide.	1
	(b)	Both S ₈ and Cl ₂ have a simple molecular structure and there are weak van der Waals' forces between their respective molecules.	1
		The molecular size of S ₈ is larger than that of Cl ₂ and the van der Waals' forces between S ₈ molecules are stronger than those between Cl ₂ molecules.	1
14.	Che	emical knowledge	5
	Obs	servable change in both cases: The equilibrium mixture changes from pink to blue / becomes more intense in blue.	
	Add •	dition of NaCl(s): When the concentration of Cl ⁻ (aq) ions increases, the equilibrium position shifts to the right. The equilibrium constant / K_c remains unchanged.	
	Incr	rease in the temperature: As the forward reaction is endothermic, an increase in temperature favours the endothermic side of reaction and the equilibrium position shifts to the right. The equilibrium constant $/ K_c$ increases.	,

Communication mark

Paper 2

<u>Marks</u> 1

1

1

2

1

1

- 1. (a) (i) (1) Haber process
 - (2) It is a fertiliser. / It can increase the crop yield.
 - (ii) (1) concentrated sodium chloride solution / brine
 - (2) No toxic mercury will be produced by membrane electrolytic cells but toxic mercury may leak out from flowing mercury cells. / The operation of membrane electrolytic cells requires less energy than flowing mercury cells.
 - (iii) Yeast provides enzyme / catalyst.
 - (b) (i) botential energy reaction coordinate
 - (ii) $\frac{4\times60.0}{2\times58.0+5\times32.0} \times100\% = 87.0\%$
 - (iii) $CH_3OH + CO \rightarrow CH_3COOH$
 - (iv) HI is regenerated at the end of the reaction.
 - (v) (1) Toxic CH₃OH / CO and corrosive HI are used in Method 2 while these substances 1 are not used in Method 1.
 - (2) The atom economy is 100% in Method 2 but not in Method 1. / Method 2 has higher atom economy than Method 1.
 - (c) (i) Use a gas syringe to follow the change in the volume of the gaseous mixture at regular time intervals. / Use a pressure sensor connected to a data logger to follow the change in the pressure of the gaseous mixture at regular time intervals.
 - (ii) (1) a = 1
 - (2) $\log \frac{k2}{k1} = \frac{E\alpha}{2.3R} \left(\frac{1}{T1} \frac{1}{T2} \right)$ $\log \left(\frac{k}{4.29 \times 10^{-4}} \right) = \frac{108500}{2.3 (8.31)} \left(\frac{1}{318} \frac{1}{338} \right)$ $k = 4.88 \times 10^{-3} \text{ s}^{-1}$
 - (iii) (1) **B**
 - (2) An increase in temperature can increase the average kinetic energy of the molecules.

 There are more molecules having kinetic energy equal to or greater than the 1
 - There are more molecules having kinetic energy equal to or greater than the activation energy.
 - This will increase the effective collision frequency / the number of effective collisions per unit time.

Marks

1

1

1

- 2. (a) (i) When a rubber band is stretched, the polymer chains move only slightly without breaking the disulphur cross-linkages.
 - When the stretching force is removed, the polymer chains are still held together by the cross-linkages, and they return to their original position.
 - (ii) (1) NHCOCH₃ / acetylamino group
 - (2) There are hydrogen bonds between the polymer chains of chitin.
 - (iii) smectic phase
 - (b) (i) O 1 ester group / —C—O—
 - (ii) CH_3 1 HO—C—COOH
 - (iii) PLA is formed by joining up the monomer molecules repeatedly with the elimination of small molecules.
 - (iv) Corn starch is a renewable resource.
 - (v) PLA is non-toxic / biocompatible.
 - (vi) Not suitable, because PLA is a thermoplastic.
 - (vii) Because ethyl ethanoate molecules and PLA molecules are polar, while hexane molecules are non-polar. / The intermolecular attractions in ethyl ethanoate and PLA are similar while that in hexane is different.
 - (c) (i) 8
 - (ii) (1)
 - (2) A-B-C type packing 1
 - (iii) The deduction is incorrect. As the temperature increases, the iron metal expands on heating, so the density of iron at 1 450 °C is lower.
 - so the density of iron at 1 450 °C is lower.
 - (iv) (1) Kevlar

 It has a higher tensile strength than iron. 1

 It has a lower density than iron. 1
 - (2) There are more hydrogen bonds between the polymer chains of Kevlar than 1 those of nylon-6,6.
 - Kevlar has many benzene rings which restrict the movement between the polymer chains, but nylon-6,6 does not have.

- 3. (a) (i) Add 2,4-dinitrophenylhydrazine.
 Compound A forms a yellow / orange / red precipitate while compound B does not.
 - OR

Marks

1

2

1

- Add Na₂CO₃(aq) / NaHCO₃(aq). / Add deionised water and then add Mg(s).
- Compound B gives out a colourless gas while compound A does not.

- (iii) Any one of the following:
 - These solvents are immiscible with water.
 These solvents do not react with the organic compounds.

80.22%

- These solvents can dissolve more organic compounds than water can.
- These solvents have low boiling points / can evaporate easily.
- (b) (i) To ensure that all PbCO₃(s) and CuCO₃(s) have completely reacted with dilute HNO₃(aq).
 - (ii) A deep blue solution is formed.
 - (iii) (1) Washing is to remove water soluble impurities and drying is to remove water. 1
 To obtain a more accurate mass of Pb(OH)₂(s). 1
 - (2) lead(II) hydroxide / Pb(OH)₂
 - (3) Percentage by mass of PbCO₃ in the solid sample $= \frac{1.47}{(207.2+16.0 \times 2+1.0 \times 2)} \times (207.2+12.0+16.0 \times 3) \div 2.03 \times 100\%$
- (c) (i) The infra-red spectrum of the indoor air sample shows a strong absorption peak in the region from 1 680 cm⁻¹ to 1 800 cm⁻¹ corresponding to the carbonyl group / C=O bond of formaldehyde.
 - (ii) HCO⁺
 - (iii) (1) colorimeter
 - (2) The absorbance is directly proportional to the concentration of formaldehyde.
 - (3) From the graph, the concentration of formaldehyde in solution S is 0.25 mg dm^{-3} . 2 Mass of formaldehyde = $0.25 \times 0.03 = 0.0075 \text{ mg}$
 - (4) Concentration of formaldehyde in the indoor air sample $= 0.0075 / 0.1 = 0.075 \text{ mg m}^{-3} < 0.1 \text{ mg m}^{-3}$ Therefore, the quality of the air inside the room is good.
 - (5) Instrumental analytical methods are sensitive enough to measure very low levels of formaldehyde.