Instituto Tecnológico de Buenos Aires

22.85 - Sistemas de Control

Trabajo de Laboratorio $N^{\circ}1$: Phase-Locked Loop (PLL) o Lazo de Enganche de Fase

Grupo 1

Máspero, Martina	57120
Mestanza, Joaquín Matías	58288
Nowik, Ariel Santiago	58309
Panaggio Venerandi, Guido Martin	56214
Parra, Rocío	57669
Regueira, Marcelo Daniel	58300

 $\begin{array}{c} Profesor \\ {\rm Nasini,\ V\'ictor\ Gustavo} \end{array}$

Presentado: xx/09/2019

${\rm \acute{I}ndice}$

Ejercicio 1: Prelaboratorio	2
Ejercicio 2: factor de amortiguamiento considerando los filtros	2

Ejercicio 1: Prelaboratorio

Se pidió analizar distintas transferencias (en la sección Prelaboratorio) del diagrama en bloques del circuito provisto por la cátedra.

Figura 1: Diagrama en bloques del circuito

a) Modulador (VCO)

$$\frac{\theta(s)}{V_{in}(s)} = \frac{K_0}{s} \tag{1}$$

b) Demodulador (PLL)

$$\frac{V_f(s)}{\theta(s)} = \frac{s \cdot K_d \cdot F(s)}{s + K_0 K_d F(s)} \tag{2}$$

c) Filtros pasabajos: $F_1(s)$ y $F_2(s)$

Como F_1 es F_2 con $R_6=0$, se analiza primero F_2 .

$$F_2(s) = \frac{1 + \frac{s}{\frac{1}{R_6 \cdot C_6}}}{1 + \frac{s}{\frac{1}{(R_5 + R_6) \cdot C_6}}}$$
(3)

$$F_1(s) = \frac{1}{1 + \frac{s}{\frac{1}{R_5 \cdot C_6}}} \tag{4}$$

d) $F_0(s)$

$$F_0(s) = \frac{1}{1 + \frac{s}{\frac{1}{B_0 \cdot C_7}}} \tag{5}$$

Ejercicio 2: factor de amortiguamiento considerando los filtros

$$\frac{V_f(s)}{\theta(s)} = \frac{1 + \left(\frac{s}{\frac{1}{(\sqrt{C_6 \cdot R_6}}}\right)^2}{\left(\frac{s}{\omega_0}\right)^2 + 2\xi\omega_0 + 1} \tag{6}$$

$$\omega_0 = \sqrt{\frac{K_d K_0}{C_6 \cdot (R_5 + R_6)}} \tag{7}$$

$$\xi = \frac{(R_6 \cdot C_6 \cdot K_d \cdot K_0 + 1)\sqrt{C_6 \cdot (R_5 + R_6)}}{2 \cdot (K_d \cdot K_0)^{\frac{3}{2}}}$$
(8)