数学字体

1. Asana Math	
2. Cambria Math	1
3. Concrete Math	1
4. Erewhon Math	2
5. Euler Math	2
6. Fira Math	2
7. Garamond-Math	2
8. GFS Neohellenic Math	3
9. KpMath	3
10. Latin Modern Math	3
11. Lato Math	3
12. Libertinus Math	3
13. New Computer Modern Math	4
14. Noto Sans Math	4
15. OldStandard-Math	4
16. STIX Math	4
17. STIX Two Math	4
18. TeX Gyre Bonum Math	5
19. TeX Gyre DejaVu Math	5
20. TeX Gyre Pagella Math	5
21. TeX Gyre Schola Math	5
22. TeX Gyre Termes Math	6
23. XCharter Math	6
24 VITS Moth	6

1. Asana Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) e_z = \nabla \times a$$

2. Cambria Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

3. Concrete Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

4. Erewhon Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

5. Euler Math

$$\begin{split} 2\pi i [\text{Res } f(i) + \text{Res } f(-i)] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, dx - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, dx \\ & \iiint (\boldsymbol{\nabla} \cdot \boldsymbol{\alpha}) \, d\boldsymbol{V} = \oiint_{\boldsymbol{S}} \, \boldsymbol{\alpha} \cdot d\boldsymbol{S} \\ & \text{curl } \boldsymbol{\alpha} = \left(\frac{\partial \alpha_z}{\partial y} - \frac{\partial \alpha_y}{\partial z}\right) \! \boldsymbol{e}_x + \left(\frac{\partial \alpha_x}{\partial z} - \frac{\partial \alpha_z}{\partial x}\right) \! \boldsymbol{e}_y + \left(\frac{\partial \alpha_y}{\partial x} - \frac{\partial \alpha_x}{\partial y}\right) \! \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{\alpha} \end{split}$$

6. Fira Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_{S} \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e_z} = \nabla \times \mathbf{a}$$

7. Garamond-Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint \left(\nabla \cdot \boldsymbol{a} \right) \, \mathrm{d}V = \iint_{S} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

8. GFS Neohellenic Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_S \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_{\mathbf{z}}}{\partial y} - \frac{\partial a_{\mathbf{y}}}{\partial z}\right) \mathbf{e}_{\mathbf{x}} + \left(\frac{\partial a_{\mathbf{x}}}{\partial z} - \frac{\partial a_{\mathbf{z}}}{\partial x}\right) \mathbf{e}_{\mathbf{y}} + \left(\frac{\partial a_{\mathbf{y}}}{\partial x} - \frac{\partial a_{\mathbf{x}}}{\partial y}\right) \mathbf{e}_{\mathbf{z}} = \nabla \times \mathbf{a}$$

9. KpMath

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) e_z = \nabla \times a$$

10. Latin Modern Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\boldsymbol{\nabla} \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{\boldsymbol{S}} \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e_z} = \boldsymbol{\nabla} \times \boldsymbol{a}$$

11. Lato Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_S \mathbf{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e}_z = \nabla \times \mathbf{a}$$

12. Libertinus Math

$$2\pi i [\text{Res } f(i) + \text{Res } f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_{S} \mathbf{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

13. New Computer Modern Math

$$\begin{split} 2\pi i [\mathrm{Res}\ f(i) + \mathrm{Res}\ f(-i)] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \,\mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \,\mathrm{d}x \\ & \iiint (\boldsymbol{\nabla} \cdot \boldsymbol{a}) \,\mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S \end{split}$$
 curl $\boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \boldsymbol{\nabla} \times \boldsymbol{a} \end{split}$

14. Noto Sans Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \mathbf{a}) \, \mathrm{d}V = \oiint_{\mathbf{S}} \mathbf{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \mathbf{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \mathbf{e}_z = \nabla \times \mathbf{a}$$

15. OldStandard-Math

$$\begin{split} 2\pi i [\operatorname{Res}\,f(i) + \operatorname{Res}\,f(-i)] &= \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \,\mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \,\mathrm{d}x \\ & \iiint (\nabla \cdot \mathbf{a}) \,\mathrm{d}V = \oiint_S \mathbf{a} \cdot \mathrm{d}\mathbf{S} \end{split}$$

$$\operatorname{curl}\,\mathbf{a} &= \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \! \mathbf{e_x} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \! \mathbf{e_y} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \! \mathbf{e_z} = \nabla \times \mathbf{a} \end{split}$$

16. STIX Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

17. STIX Two Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

18. TeX Gyre Bonum Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{\mathbf{S}} \boldsymbol{a} \cdot \mathrm{d}\mathbf{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_{\mathbf{z}}}{\partial y} - \frac{\partial a_{\mathbf{y}}}{\partial z}\right) \boldsymbol{e_x} + \left(\frac{\partial a_{\mathbf{x}}}{\partial z} - \frac{\partial a_{\mathbf{z}}}{\partial x}\right) \boldsymbol{e_y} + \left(\frac{\partial a_{\mathbf{y}}}{\partial x} - \frac{\partial a_{\mathbf{x}}}{\partial y}\right) \boldsymbol{e_z} = \nabla \times \boldsymbol{a}$$

19. TeX Gyre DejaVu Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}\boldsymbol{S}$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_{\boldsymbol{x}} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_{\boldsymbol{y}} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_{\boldsymbol{z}} = \nabla \times \boldsymbol{a}$$

20. TeX Gyre Pagella Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot a) \, \mathrm{d}V = \oiint_S a \cdot \mathrm{d}S$$

$$\operatorname{curl} a = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) e_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) e_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) e_z = \nabla \times a$$

21. TeX Gyre Schola Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

22. TeX Gyre Termes Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i\right]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

23. XCharter Math

$$2\pi i \left[\operatorname{Res} f(i) + \operatorname{Res} f(-i) \right] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2 + 1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{\left[\ln(x+1) + 2\pi i \right]^2}{x^2 + 1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_{S} \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$

24. XITS Math

$$2\pi i [\operatorname{Res} f(i) + \operatorname{Res} f(-i)] = \int_{-1}^{+\infty} \frac{\ln^2(x+1)}{x^2+1} \, \mathrm{d}x - \int_{-1}^{+\infty} \frac{[\ln(x+1) + 2\pi i]^2}{x^2+1} \, \mathrm{d}x$$

$$\iiint (\nabla \cdot \boldsymbol{a}) \, \mathrm{d}V = \oiint_S \boldsymbol{a} \cdot \mathrm{d}S$$

$$\operatorname{curl} \boldsymbol{a} = \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \boldsymbol{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \boldsymbol{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \boldsymbol{e}_z = \nabla \times \boldsymbol{a}$$