TP 9 : Algorithme ID3

13 janvier 2025

1 Exemple

On considère un ensemble E de 16 individus x_i ayant 4 attributs binaires et une classe y_i numérotée entre 0 et 2. On note $x_{i,j}$ la valeur booléenne du j-ème attribut pour le i-ème individu.

Le tableau ci-dessous donne pour chaque individu les valeurs booléennes de ses quatre attributs, ainsi que sa classe :

Individu x_i	Attribut 1	Attribut 2	Attribut 3	Attribut 4	Classe y_i
x_1	0	0	1	0	0
x_2	0	0	0	0	0
x_3	1	1	0	0	1
x_4	0	0	1	1	2
x_5	0	1	1	0	1
x_6	0	0	0	1	2
x_7	1	0	0	0	0
x_8	0	0	1	1	2
x_9	0	0	1	1	2
x_{10}	0	0	0	1	2
x_{11}	1	1	0	0	1
x_{12}	0	0	1	1	2
x_{13}	0	1	1	0	1
x_{14}	0	0	0	0	0
x_{15}	1	0	0	1	2
x_{16}	0	0	1	0	0

On rappelle que:

- Pour un ensemble A dont les éléments de classes 0,...,n-1 sont répartis dans des classes $C_0,...,C_{n-1}$, on note f_i la proportion $\frac{|C_i|}{|A|}$ d'éléments dans la classe C_i parmi les éléments de A
- Pour un tel ensemble, on appelle **entropie** de A la valeur $H(A) = \sum_{k=0}^{n-1} f_i log(f_i)$

- Pour un ensemble E divisé en plusieurs ensembles $E_{i,k}$ selon un critère k, la probabilité qu'un élément choisi uniformément dans E se trouve dans $E_{i,k}$ est notée $p_i = \frac{|E_{i,k}|}{|E|}$
- Pour un tel ensemble E, on note le gain $G(E,k) = H(E) \sum_{k=0}^{m-1} p_i H(E_{i,k})$ où m est le nombre de sous-ensembles de E.

En particulier, on considérera ici que chaque critère booléen sépare E en deux sous-ensembles E_0 et E_1 .

- 1) Pour chaque attribut k, calculer le gain $G(E, k) = H(E) \sum_{k=1}^{n} p_i H(E_{i,k})$. Quel attribut k_0 maximise le gain?
- 2) En déduire les fils E_{0,k_0} et E_{1,k_0} de la racine dans l'arbre construit par l'algorithme ID3.
- 3) Effectuer le même calcul sur les sous-noeuds jusqu'à parvenir à des feuilles correspondant à des ensembles d'éléments de même classe. Quel est l'arbre de décision obtenu par application de l'algorithme ID3?
- 4) Quelle est la classe prédite pour un nouvel élément d'attributs (0, 1, 0, 0)?

2 Implémentation

2.1 Arbres de Décision

On cherche ici à implémenter l'algorithme ID3 en C. On commence par définir un type et des fonctions pour manipuler des arbres de décision.

On définit le type suivant :

```
struct dtree{
int classe;
int attribut;
struct dtree* faux;
struct dtree* vrai;
};
typedef struct dtree dtree;
```

Le type précédent sert à représenter les arbres de décisions, avec :

- Un champ classe qui vaut le numéro de la classe associée si on est dans une feuille, et
 1 sinon
- Un champ attribut qui vaut le numéro d'attribut servant à la décision pour le noeud si c'est un noeud interne, et -1 sinon
- Des pointeurs faux et vrai vers des sous-arbres correspondant aux sous-ensembles d'éléments pour lesquels l'attribut du noeud vaut faux ou vrai respectivement, si c'est un noeud interne.
- 1) Définir une fonction dtree *init_feuille(int classe) qui prend en entrée un numéro de classe et renvoie l'arbre correspondant à une feuille associée à cette classe.
- 2) Définir une fonction dtree *init_feuille(int classe) qui prend en entrée un numéro de classe et renvoie l'arbre correspondant à une feuille associée à cette classe.

On considère le type tableau_bool défini de la façon suivante :

```
struct tableau_bool{
bool *tab;
int *dim;
};
typedef struct tableau_bool tableau_bool;
```

La structure contient un champ tab qui contient un tableau de booléens, et un champ dim correspondant à la taille de ce tableau. On utilise ce type pour représenter des n-uplets de valeurs d'attributs pour un individu dans un ensemble de données.

3) Ecrire une fonction int classe(dtree *a, tableau_bool *t) qui prend en entrée un pointeur vers un arbre, un pointeur vers un élément de type tableau_bool correspondant aux valeurs des attributs pour un individu et qui renvoie la classe prédite pour cet individu.