Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- Sample coalitions
- Transfer coalitions into feature space & get predictions by applying ML model
- Compute weights through kernel
- Fit a weighted linear model
- Return Shapley values

Step 1: Sample coalitions

• Sample K coalitions from the simplified feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0
hum	z ′ ⁽²⁾	1	0	0
temp	z ′ ⁽³⁾	0	1	0
WS	z ′ ⁽⁴⁾	0	0	1
hum, temp	$z'^{(5)}$	1	1	0
temp, ws	z ′(6)	0	1	1
hum, ws	z ' ⁽⁷⁾ z ' ⁽⁸⁾	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- $\mathbf{z}^{\prime(k)}$ is 1 if features are part of the k-th coalition, 0 if they are absent
- To calculate predictions for these coalitions, we need to define a function which maps the binary feature space back to the original feature space

			→					
Coalition	z ′ ^(k)	hum	temp	ws	x ^{coalition}	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0	x ^{∅}	Ø	Ø	Ø
hum	z ′ ⁽²⁾	1	0	0	x ^{{hum} }	51.6	Ø	Ø
temp	z ′ ⁽³⁾	0	1	0	x ^{temp}	Ø	5.1	Ø
ws	z ′ ⁽⁴⁾	0	0	1	x ^{ws}	Ø	Ø	17.0
hum, temp	z ′ ⁽⁵⁾	1	1	0	x ^{hum,temp}	51.6	5.1	Ø
temp, ws	z ′ ⁽⁶⁾	0	1	1	x ^{temp,ws}	Ø	5.1	17.0
hum, ws	z ′ ⁽⁷⁾	1	0	1	x ^{hum,ws}	51.6	Ø	17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	x ^{hum,temp,ws}	51.6	5.1	17.0

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- Define $h_x\left(\mathbf{z}'^{(k)}\right) = \mathbf{z}^{(k)}$ where $h_x: \{0,1\}^p \to \mathbb{R}^p$ maps 1's to feature values of observation \mathbf{x} for features part of the k-th coalition and 0's to feature values of a randomly sampled observation for features absent in the k-th coalition (feature values are permuted multiple times)
- Predict with ML model on this dataset \hat{f} : $\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right)$

	_				$h_{x}(\mathbf{z}^{\prime(k)})$				>	
Coalition	$\mathbf{z}'^{(k)}$	hum	temp	ws		$\mathbf{z}^{(k)}$	hum	temp	ws	$\hat{f}\left(h_{X}\left(\mathbf{z}^{\prime(k)}\right)\right)$
Ø	z ′ ⁽¹⁾	0	0	0		z ⁽¹⁾	64.3	28.0	14.5	6211
hum	z ′ ⁽²⁾	1	0	0		z ⁽²⁾	51.6	28.0	14.5	5586
temp	z ′ ⁽³⁾	0	1	0		z ⁽³⁾	64.3	5.1	14.5	3295
ws	z ′ ⁽⁴⁾	0	0	1		$\mathbf{z}^{(4)}$	64.3	28.0	17.0	5762
hum, temp	z ′ ⁽⁵⁾	1	1	0		z ⁽⁵⁾	51.6	5.1	14.5	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1		z ⁽⁶⁾	64.3	5.1	17.0	2900
hum, ws	z ′ ⁽⁷⁾	1	0	1		$z^{(7)}$	51.6	28.0	17.0	5411
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1		$\mathbf{z}^{(8)}$	51.6	5.1	17.0	2573

Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

see shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

Coalition	$\mathbf{z}'^{(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	${f z}'^{(7)}$	1	0	1	0.33
hum, temp, ws	$z'^{(8)}$	1	1	1	∞

 $[\]leadsto$ weights for empty and full set are infinity and not used as observations for the linear regression

 $[\]leadsto$ instead constraints are used such that properties (local accuracy and missingness) are satisfied

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_j

 $g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^{p} \phi_j z_j^{\prime(k)}$

and minimize by WLS using the weights
$$\pi_x$$
 of step 3

$$L\left(\hat{f},g,\pi_{X}\right) = \sum_{k=1}^{K} \left[\hat{f}\left(h_{X}\left(\mathbf{z}^{\prime(k)}\right)\right) - g\left(\mathbf{z}^{\prime(k)}\right)\right]^{2} \pi_{X}\left(\mathbf{z}^{\prime(k)}\right)$$

with
$$\phi_0 = \mathbb{E}(\hat{f})$$
 and $\phi_p = \hat{f}(x) - \sum_{j=0}^{p-1} \phi_j$ we receive a $p-1$ dimensional linear regression problem

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_j

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^{p} \phi_j z_j^{\prime(k)} \leadsto g\left(\mathbf{z}^{\prime(k)}\right) = 4515 + 34 \cdot z_1^{\prime(k)} - 1654 \cdot z_2^{\prime(k)} - 323 \cdot z_3^{\prime(k)}$$

$\mathbf{z}'^{(k)}$	hum	temp	ws	weight	ĥ
z ′ ⁽²⁾	1	0	0	0.33	4635
$z'^{(3)}$	0	1	0	0.33	3087
$\mathbf{z}'^{(4)}$	0	0	1	0.33	4359
$z'^{(5)}$	1	1	0	0.33	3060
$z'^{(6)}$	0	1	1	0.33	2623
$z'^{(7)}$	1	0	1	0.33	4450
	output				

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_x(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1$$
$$= \underbrace{\mathbb{E}(\hat{f})}_{\phi_0} + \phi_{hum} + \phi_{temp} + \phi_{ws} = \hat{f}(\mathbf{x}) = 2573$$

