Corrigé (succinct) du contrôle continu du 2 décembre 2019

Exercice 1. Soit n et p deux entiers naturels non nuls tels que $p \le n$, $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension n. On note $\|\cdot\|$ la norme associée au produit scalaire $\langle \cdot, \cdot \rangle$. Soit u_1, \ldots, u_p des vecteurs non nuls de E, orthogonaux deux à deux.

1. Montrer que ces vecteurs forment une famille libre de E.

Les vecteurs u_1, \ldots, u_p étant orthogonaux deux à deux, on a

$$\forall (i,j) \in \{1,\dots,p\}^2, \ \langle u_i,u_j \rangle = \begin{cases} 0 & \text{si } i \neq j \\ \|u_i\|^2 & \text{sinon} \end{cases}.$$

Soit des réels $\lambda_1, \ldots, \lambda_p$ tels que $\sum_{i=1}^p \lambda_i u_i = 0_E$. En prenant le produit scalaire de cette relation avec le vecteur u_j , pour j appartenant à $\{1, \ldots, p\}$, il vient $\lambda_j ||u_j||^2 = 0$, d'où $\lambda_j = 0$ car le vecteur u_j est non nul. On montre ainsi que chacun des scalaires $\lambda_1, \ldots, \lambda_p$ est nul et la famille de vecteurs est donc libre.

2. Montrer que $||u_1 + \cdots + u_p||^2 = ||u_1||^2 + \cdots + ||u_p||^2$.

Procédons par récurrence sur l'entier p. Si p est égal à 2 et que les vecteur u_1 et u_2 forment une famille orthogonale, alors on a

$$||u_1 + u_2||^2 = ||u_1||^2 + 2\langle u_1, u_2 \rangle + ||u_2||^2 = ||u_1||^2 + ||u_2||^2,$$

puisque $\langle u_1, u_2 \rangle = 0$. Supposons à présent que le résultat est vrai pour toute famille de p vecteurs, avec $2 \le p \le n-1$. Étant donné p+1 vecteurs u_1, \ldots, u_{p+1} non nuls et orthogonaux deux à deux, la famille de deux vecteurs $\{u_1 + \cdots + u_p, u_{p+1}\}$ est orthogonale, puisque

$$\langle u_1 + \dots + u_p, u_{p+1} \rangle = \langle u_1, u_{p+1} \rangle + \dots + \langle u_p, u_{p+1} \rangle = 0,$$

et on a par conséquent

$$||u_1 + \dots + u_{p+1}||^2 = ||u_1 + \dots + u_p||^2 + ||u_{p+1}||^2 = ||u_1||^2 + \dots + ||u_p||^2 + ||u_{p+1}||^2.$$

Exercice 2. Montrer que

$$\forall P \in \mathbb{R}[X], \left(\int_{-1}^{1} tP(t) dt \right)^{2} \leq \frac{2}{3} \int_{-1}^{1} (P(t))^{2} dt.$$

L'application $\langle \cdot \, , \cdot \rangle$ de $\mathbb{R}[X] \times \mathbb{R}[X]$ dans \mathbb{R} définie par $\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) \, \mathrm{d}t$ est un produit scalaire sur $\mathbb{R}[X]$. En effet, pour tout triplet (P,Q,R) de $(\mathbb{R}[X])^3$ et tout réel λ , on a, par linéarité de l'intégrale et distributivité de la multiplication par rapport à l'addition,

$$\langle \lambda P + Q, R \rangle = \lambda \langle P, R \rangle + \langle Q, R \rangle$$

L'application est donc linéaire à gauche. Elle est aussi symétrique en vertu de la commutativité de la multiplication, et donc linéaire à droite. La forme quadratique associée $q(P) = \langle P, P \rangle$ est positive, par positivité de l'intégrale, et définie car

$$\forall P \in \mathbb{R}[X], \langle P, P \rangle = \int_{-1}^{1} (P(t))^2 dt = 0 \Rightarrow \forall t \in [-1, 1], \ (P(t))^2 = 0 \Leftrightarrow P = 0,$$

car un polynôme non nul ne peut avoir une infinité de racines.

L'inégalité de l'énoncé découle alors de l'inégalité de Cauchy-Schwarz pour ce produit scalaire, en prenant un élément quelconque P de $\mathbb{R}[X]$ et Q(X) = X:

$$\left| \int_{-1}^1 t P(t) \, \mathrm{d}t \right| \leq \sqrt{\int_{-1}^1 t^2 \, \mathrm{d}t} \sqrt{\int_{-1}^1 (P(t))^2 \, \mathrm{d}t} = \sqrt{\frac{2}{3}} \sqrt{\int_{-1}^1 (P(t))^2 \, \mathrm{d}t}.$$

Exercice 3. Les deux questions de cet exercice sont indépendantes.

1. On considère sur \mathbb{R}^2 la forme quadratique

$$\forall x \in \mathbb{R}^2, \ q(x) = x_1^2 - x_2^2.$$

Montrer qu'il existe une base formée de vecteurs isotropes pour q. Quel est l'ensemble des vecteurs de \mathbb{R}^2 isotropes pour q?

On vérifie que la famille $\{(1,1),(1,-1)\}$ est une base de \mathbb{R}^2 formée de vecteurs isotropes pour q. Le cône isotrope de q est l'ensemble des vecteurs $x=(x_1,x_2)$ de \mathbb{R}^2 tels que $|x_1|=|x_2|$.

2. Soit E un espace vectoriel sur le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et q une forme quadratique sur E. On suppose qu'il existe deux vecteurs u et v de E non colinéaires et isotropes pour q. On note F le sous-espace vectoriel engendré par u et v. Montrer que s'il existe un vecteur w de F isotrope pour q et non colinéaire à u et à v, alors tous les vecteurs de F sont isotropes pour q.

Notons b la forme polaire de q. Soit w un vecteur de de F, isotrope pour q et non colinéaire à u et à v. Il existe alors des scalaires α et β non nuls tels que $w = \alpha u + \beta v$ et

$$0 = q(w) = \alpha^2 q(u) + 2\alpha\beta b(u, v) + \beta^2 q(v) = 2\alpha\beta b(u, v),$$

d'où b(u,v)=0. Il découle alors d'un calcul similaire au précédent que toute combinaison linéaire des vecteurs u et v, c'est-à-dire tout élément de F, est isotrope pour q.

Exercice 4. Soit n un entier naturel non nul. On définit l'application b de $\mathbb{R}^n \times \mathbb{R}^n$ dans \mathbb{R} par

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \ b(x,y) = \sum_{1 \le i < j \le n} (x_i - x_j)(y_i - y_j).$$

1. L'application b définit-elle un produit scalaire sur \mathbb{R}^n ?

L'application b est bilinéaire car constituée d'une somme de produits d'une forme linéaire en x par une forme linéaire en y. Elle est symétrique, par commutativité de la multiplication, et la forme quadratique associée,

$$\forall x \in \mathbb{R}^n, \ q(x) = \sum_{1 \le i < j \le n} (x_i - x_j)^2,$$

est positive. Elle n'est en revanche pas définie, car le vecteur (non nul) dont les coordonnées sont toutes égales à 1 est isotrope pour q.

2. Sa restriction à $F \times F$, où $F = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$, est-elle un produit scalaire?

Les vecteurs isotropes pour q sont ceux dont les coordonnées sont égales. Le seul vecteur de F satisfaisant cette condition est le vecteur nul. La restriction de l'application à F est donc un produit scalaire.

Exercice 5. On considère l'espace vectoriel $\mathbb{R}_2[X]$, muni du produit scalaire défini par

$$\forall (P,Q) \in (\mathbb{R}_2[X])^2, \ \langle P,Q \rangle = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).$$

Soit $F = \{ P \in \mathbb{R}_2[X] \mid P(0) = 0 \}.$

1. Déterminer une base orthonormale de F.

L'ensemble F est le noyau d'une forme linéaire non nulle sur $\mathbb{R}_2[X]$, c'est donc un hyperplan de dimension 3-1=2. On montre facilement qu'une base de F est donnée par la famille $\{X, X^2\}$. On applique le procédé de Gram-Schmidt à cette base pour obtenir une base orthonormée de F. On trouve ainsi

$$P_1 = \frac{X}{\|X\|} = \frac{X}{\sqrt{5}} \text{ et } P_2 = \frac{X^2 - \langle X^2, P_1 \rangle P_1}{\|X^2 - \langle X^2, P_1 \rangle P_1\|} = \frac{\sqrt{5}}{2} \left(X^2 - \frac{9}{5} X \right).$$

2. Déterminer la dimension et une base de F^{\perp} .

On a $\dim(F^{\perp}) = \dim(\mathbb{R}_2[X]) - \dim(F) = 1$ et

$$F^{\perp} = \{ P \in \mathbb{R}_2[X] \mid \forall Q \in F, \ \langle P, Q \rangle = 0 \} = \{ P \in \mathbb{R}_2[X] \mid \langle P, X \rangle = \langle P, X^2 \rangle = 0 \} = \{ P \in \mathbb{R}_2[X] \mid P(1) = P(2) = 0 \}.$$

On en déduit qu'une base de F^{\perp} est donnée par $\{(X-1)(X-2)\}$.

Exercice 6. Pour tout nombre réel a, soit q_a la forme quadratique sur \mathbb{R}^3 définie par

$$q_a(x) = a(x_1^2 + x_2^2 + x_3^2) - 2x_1x_2 - 2x_2x_3 - 2x_1x_3.$$

1. Pour quelles valeurs de a la forme quadratique q_a est-elle non dégénérée?

La matrice associée à la forme q_a est

$$\begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix},$$

dont le déterminant vaut $(a-2)(a+1)^2$. La forme est par conséquent non dégénérée pour tout réel a différent de -1 et 2.

2. Montrer que la forme quadratique q_a est définie positive si et seulement si a > 2.

Utilisons le critère de Sylvester. Les mineurs principaux de la matrice associée à q_a sont a, $\begin{vmatrix} a & -1 \\ -1 & a \end{vmatrix} = a^2 - 1$ et $(a-2)(a+1)^2$. La forme q_a est donc définie positive si et seulement si a > 0, |a| > 1 et a > 2, c'est-à-dire si a > 2.

3. Soit D la droite vectorielle engendrée par le vecteur (2,2,1). Trouver une base de l'orthogonal D^{\perp} de D pour q_0 . Les sous-espaces D et D^{\perp} sont-ils supplémentaires?

Notons b_0 la forme polaire de q_0 . On a

$$D^{\perp} = \{x \in \mathbb{R}^3 \mid \forall y \in D, \ b_0(x,y) = 0\} = \{x \in \mathbb{R}^3 \mid b_0(x,(2,2,1)) = 0\} = \{x \in \mathbb{R}^3 \mid -3x_1 - 3x_2 - 4x_3 = 0\},$$

et une base de D^{\perp} est donnée par $\{(1,-1,0),(-\frac{4}{3},0,1)\}$. Soit x un vecteur de $D\cap D^{\perp}$. Il existe alors un réel λ tel que $x=\lambda(2,2,1)$ et vérifiant $-3(2\lambda)-3(2\lambda)-4(\lambda)=-16\lambda=0$, d'où $\lambda=0$. Les sous-espaces D et D^{\perp} sont donc supplémentaires.