

LKS32AT085 Datasheet

© 2021, 版权归凌鸥创芯所有 机密文件, 未经许可不得扩散

1 概述

1.1 功能简述

LKS32AT085 是集成 32 位 Cortex-M0 内核的车规级 MCU, 集成了常用电机控制系统所需要的 所有模块。

● 性能

- > 96MHz Cortex-M0 内核
- ▶ 集成自主指令集电机控制专用 DSP
- ▶ 超低功耗休眠模式,低功耗休眠电流 10uA
- ▶ 汽车级工作温度范围
- ▶ 超强抗静电和群脉冲能力
- ▶ 通过 AEC-Q100 检测认证

存储器

- ▶ 64kB Flash, 带加密功能
- > 8kB RAM

● 工作范围

- ▶ 2.2V~5.5V 电源供电,内部集成 1 个 LDO,为数字部分电路供电
- ➤ 工作温度: -40~125°C

时钟

- ▶ 内置 4MHz 高精度 RC 时钟, -40~105°C范围内精度在±1%之内, 105~125°C范围内精度在 ±1.5%之内
- ▶ 内置低速 32KHz 低速时钟, 供低功耗模式使用
- ▶ 可外挂 4MHz 外部晶振
- ▶ 内部 PLL 可提供最高 96MHz 时钟

外设模块

- ▶ 两路 UART
- ▶ 一路 SPI, 支持主从模式
- ▶ 一路 IIC,支持主从模式
- ▶ 一路 CAN(部分型号不带 CAN),建议使用外部晶振作为参考时钟
- ▶ 2 个通用 16 位 Timer, 支持捕捉和边沿对齐 PWM 功能

- ▶ 2 个通用 32 位 Timer,支持捕捉和边沿对齐 PWM 功能;支持正交编码输入,CW/CCW 输入,脉冲+符号输入
- ▶ 电机控制专用 PWM 模块,支持 8 路 PWM 输出,独立死区控制
- ▶ Hall 信号专用接口,支持测速、去抖功能
- ▶ 硬件看门狗
- ▶ 最多 4 组 16bit GPIO。P0.0/P0.1/P1.0/P1.1 4 个 GPIO 可以作为系统的唤醒源。P0.15 ~ P0.0 共 16 个 GPIO 可以用作外部中断源输入。

● 模拟模块

- ▶ 集成 1 路 12bit SAR ADC, 同步双采样, 3Msps 采样及转换速率, 最多支持 13 通道
- ▶ 集成 4 路运算放大器,可设置为差分 PGA 模式
- ▶ 集成两路比较器,可设置滞回模式
- ▶ 集成 12bit DAC 数模转换器
- ▶ 内置±2°C温度传感器
- ▶ 内置 1.2V 0.5%精度电压基准源
- ▶ 内置 1 路低功耗 LDO 和电源监测电路
- ▶ 集成高精度、低温飘高频 RC 时钟
- ▶ 集成晶体起振电路

1.2 性能优势

- ▶ 高可靠性、高集成度、最终产品体积小、节约 BOM 成本;
- ▶ 内部集成 4 路高速运放和两路比较器,可满足单电阻/双电阻/三电阻电流采样拓扑架构的不同需求;
- ▶ 内部高速运放集成高压保护电路,可以允许高电压共模信号直接输入芯片,可以用最简单的电路拓扑实现 MOSFET 电阻直接电流采样模式;
- ➤ 应用专利技术使 ADC 和高速运放达到最佳配合,可处理更宽的电流动态范围,同时兼顾高速小电流和低速大电流的采样精度;
- ▶ 整体控制电路简洁高效, 抗干扰能力强, 稳定可靠;
- ▶ 单电源 2.2V~5.5V 供电,确保了系统供电的通用性;

适用于有感 BLDC/无感 BLDC/有感 FOC/无感 FOC 及步进电机、永磁同步、异步电机等控制系统。

1.3 命名规则

	$\underline{LKS32} \ \underline{MC} \ \underline{080} \ \underline{R} \ \underline{8} \ \underline{T} \ \underline{8} \ \underline{XXX}$
Device series	
LKS32	= 32bit MCU
Product type	
MC	= Motor Control Applications
AT	= Automobile Applications
Device sub fai	mily
083/085/088 084D/086 087(A) 087C	= 2.2~5.5V,1 ADC,4 PGA,DSP = 2.2~5.5V,1 ADC,4 PGA,DSP,6N Driver = 2.2~5.5V,1 ADC,2 PGA = 2.2~5.5V,1 ADC,2 PGA, CAN
087D/087E	= 7.5~28V, 1 ADC,2 PGA,3P3N Driver
089	= 2.2~5.5V,1 ADC,2 PGA
Pin count	
L	= 16 pins
Н	= 20 pins
M	= 24 pins
K	= 32 pins
F	= 40 pins
С	= 48 pins
N	= 52 pins
R	= 64 pins
V	=100 pins
Z	=144 pins
Code size	
4	= 16Kbyte Flash Memory
6	= 32Kbyte Flash Memory
8	= 64Kbyte Flash Memory
В	=128Kbyte Flash Memory
С	=256Kbyte Flash Memory
D	=384Kbyte Flash Memory
Е	=512Kbyte Flash Memory
Package	
P	= TSSOP
T	= TQFP/LQFP
Q	= QFN
S	= SSOP
Н	= BGA
Temperature	range
6	= -40~85°
8	= -40~105°
9	= -40~125°
Options	
TR	= Tape and reel packing
P	= Engineering Samples

图 1-1 凌鸥创芯器件命名规则

1.4 系统资源框图

此处以 LKS32AT085C8Q9 为例,其他型号硬件资源细节,请参考选型表。

P 3_ 14 P0_15 P3_0 O O Global Analog Bus 8kB SRAM 64kB flash System Bus Sleep Timer Watch Dog Interrupt controller MCU SWD CMP (x2) PGA (x4) 12bit DAC Encoder(x2) Timer (x4) REF Temp sensor **Analog Resources Digital Resources** IIC Master/Slave SPI Master/Slave UART Tx/Rx (x2) I/O Multiplexer Peripheral Resources 4MHz Oscillator 96MHz PLL LDO15 POR/BOR External RST 32kHz Oscillator Xtal Oscillator Power & Reset System Clock Resources

LKS32AT085C8Q9 Resource Diagram

图 1-2 LKS32AT085C8Q9 系统资源框图

1.5 矢量正弦控制系统

图 1-3 LKS32AT085 矢量正弦控制系统简化原理图

2 管脚分布

2.1 管脚分布图及管脚说明

2.1.1 特别说明

下列引脚图中红色 PIN 脚内置上拉至 AVDD 的电阻: RSTN 引脚内置 100kΩ 上拉电阻,固定开启上拉 SWDIO/SWCLK 内置 10kΩ 上拉电阻,固定开启上拉 其余红色 PIN 脚内置 10kΩ 上拉电阻,可软件控制开启关闭上拉

UARTx_TX(RX): UART 的 TX 和 RX 支持互换。当 GPIO 第二功能选择为 UART, 且 GPIO_PIE 即输入使能时,可以作为 UART_RX 使用;当 GPIO_POE 使能时,可以作为 UART_TX 使用。一般同一 GPIO 不同时使能输入和输出,否则输入 PDI 会接收到 PDO 发出的数据。

SPI_DI(DO): SPI 的 DI 和 DO 支持互换, 当 GPIO 第二功能选择为 SPI, 且 GPIO_PIE 即输入使能时,可以作为 SPI_DI 使用; 当 GPIO_POE 即输出使能时,可以作为 SPI_DO 使用。一般同一 GPIO 不同时使能输入和输出,否则输入 PDI 会接收到 PDO 发出的数据。

2.1.2 LKS32AT085C8Q9

图 2-1 LKS32AT085C8Q9 管脚分布图

LKS32AT085C8Q9 与 LKS32AT081C8T8 引脚功能及编号完全一致,但引脚顺序不同; LKS32AT085C8Q9 的 1 脚位于芯片左侧边最下,顺时针顺序排布; LKS32AT081C8T8 的 1 脚在芯片的底边最左侧,逆时针顺序排布。

表 2-1 LKS32AT085C8Q9 管脚说明

编号	名称	类型	功能说明
1	ADC_CH4/DAC_OUT/P0.0	输入/输出	ADC 通道 4/DAC 输出/P0.0,内置可软件开启的 10k

编号	名称	类型	功能说明
and J	-H4h	人王	上拉电阻
2	RSTN/P0.2	输入/输出	RSTN/P0.2, 默认作为 RSTN 使用,外部接一个 10nF~100nF 的电容到地即可,内部已有 100k 上拉 电阻。建议 PCB 上在 RSTN 和 AVDD 之间放一个 10k~20k 的上拉电阻,外部有上拉电阻的情况,RSTN 的电容固定为 100nF。
3	AVSS	地	系统地
4	AVDD	电源	芯片电源输入,电压范围 2.2~5.5V。片外去耦电容 建议≥1uF,并尽量靠近 AVDD 引脚
5	P3.2	输入/输出	P3.2
6	SCL/TIM2_CH0/ADC_CH7/P0.3	输入/输出	IIC 时钟/Timer2 通道 0/ADC 通道 7/P0.3
7	SDA/TIM2_CH1/ADC_CH8/P0.4	输入/输出	IIC 数据/Timer2 通道 1/ADC 通道 8/P0.4
8	ADC_CH9/P0.5	输入/输出	ADC 通道 9/P0.5
9	UART1_TX(RX)/TIM1_CH0/ P0.6	输入/输出	UART1_TX(RX)/Timer1 通道 0/P0.6,内置可软件开启的 10k 上拉电阻
10	UART1_TX(RX)/TIM1_CH1/ P0.7	输入/输出	UART1_TX(RX)/Timer1 通道 1/P0.7,内置可软件开启的 10k 上拉电阻
11	MCPWM_CH1P/TIM2_CH0/P2.11	输入/输出	电机 PWM 通道 1 高边/Timer2 通道 0/P2.11
12	MCPWM_CH1N/TIM2_CH1/ADC_TRIG2/P2.12	输入/输出	电机 PWM 通道 1 低边/Timer2 通道 1/ADC 触发信号 2/P2.12
13	HALL_IN0/TIM3_CH0/ADC_CH15/CMP0_IP1/P0.11	输入/输出	Hall 传感器 A 相输入/Timer3 通道 0/ADC 通道 15/ 比较器 0 同相端输入通道 1/P0.11
14	HALL_IN1/TIM3_CH1/ADC_CH16/CMP0_IP2/P0.12	输入/输出	Hall 传感器 B 相输入/Timer3 通道 1/ADC 通道 16/ 比较器 0 同相端输入通道 2/P0.12
15	HALL_IN2/ADC_CH17/CMP0_IP3/P0.13	输入/输出	Hall 传感器 C 相输入/ADC 通道 17/比较器 0 同相端 输入通道 3/P0.13
16	CMP0_OUT/MCPWM_BKIN1/SPI_CLK/TIM0_CH1/ ADC_TRIG0/SIF/ADC_CH10/CMP0_IP4/P0.14	输入/输出	比较器 0 输出/电机 PWM 终止信号 1/SPI 时钟 /Timer0 通道 1/ADC 触发信号 0/一线通/ADC 通道 10/比较器 0 同相端输入通道 4/P0.14
17	MCPWM_CH0P/UART0_TX(RX)/SPI_DI(D0)/TIM0_CH0 /ADC_TRIG1/CMP0_IN/P0.15	输入/输出	电 机 PWM 通 道 0 高 边 /UART0_TX(RX)/SPI_DI(D0)/Timer0 通道 0/ADC 触 发信号 1/比较器 0 反相端输入/P0.15
18	MCPWM_CH0N/UART0_TX(RX)/SPI_DI(D0)/P1.0	输入/输出	电 机 PWM 通 道 0 低 边 /UARTO_TX(RX)/SPI_DI(DO)/P1.0,内置可软件开启的 10k 上拉电阻
19	TIM3_CH1/ADC_CH5/P1.3	输入/输出	Timer3 通道 1/ADC 通道 5/P1.3, 内置可软件开启的 10k 上拉电阻
20	OPA0_IP/P3.5	输入/输出	运放 0 同相端输入/P3.5
21	OPA0_IN/P3.7	输入/输出	运放 0 反相端输入/P3.7
22	ADC_CH11/OPAx_OUT/LDO15/P2.7	输入/输出	ADC 通道 11/OPAx 输出/LDO15 输出/P2.7,内置可 软件开启的 10k 上拉电阻
23	OPA1_IP/P3.0	输入/输出	运放 1 同相端输入/P3.0

编号	名称	类型	功能说明				
24	OPA1_IN/P3.1	输入/输出	运放 1 反相端输入/P3.1				
25	UART1_TX(RX)/TIM3_CH0/OSC_IN/P2.8	输入/输出	UART1_TX(RX)/Timer3 通道 0/晶振输入/P2.8,內置可软件开启的 10k 上拉电阻,如接晶体,该引脚接一个 15pf 电容到地。				
26	UART1_TX(RX)/TIM3_CH1/OSC_OUT/P3.9	输入/输出	UART1_TX(RX)/Timer3 通道 1/晶振输出/P3.9,內置可软件开启的 10k 上拉电阻,如接晶体,该引脚接一个 15pf 电容到地。				
27	LRC/MCPWM_CH0P/P1.4	输入/输出	32kHz RC 时钟输出/电机 PWM 通道 0 高边/P1.4				
28	HRC/MCPWM_CH0N/P1.5	输入/输出	4MHz RC 时钟输出/电机 PWM 通道 0 低边/P1.5				
29	MCPWM_CH1P/P1.6	输入/输出	电机 PWM 通道 1 高边/P1.6				
30	MCPWM_CH1N/P1.7	输入/输出	电机 PWM 通道 1 低边/P1.7				
31	MCPWM_CH2P/P1.8	输入/输出	电机 PWM 通道 2 高边/P1.8				
32	MCPWM_CH2N/P1.9	输入/输出	电机 PWM 通道 2 低边/P1.9				
33	ADC_CH13/MCPWM_CH3P/UART0_TX(RX)/SCL/TIM0_ CH0/ADC_TRIG2/P1.10	输入/输出	电机 PWM 通道 3 高边/UARTO_TX(RX)/IIC 时钟 /Timer0 通道 0/ADC 触发信号 2/P1.10, 内置可软件 开启的 10k 上拉电阻				
34	MCPWM_CH3N/UART0_TX(RX)/SDA/TIM0_CH1/ ADC_TRIG3/SIF/P1.11	输入/输出	电机 PWM 通道 3 低边/UARTO_TX(RX)/IIC 数据 /Timer0 通道 1/ADC 触发信号 3/P1.11, 内置可软件 开启的 10k 上拉电阻				
35	OPA2_IP/P3.10	输入/输出	运放 2 同相端输入/P3.10				
36	OPA2_IN/P3.11	输入/输出	运放 2 反相端输入/P3.11				
37	SPI_DI(DO)/SCL/ADC_CH12/CMP0_IP0/P2.9	输入/输出	SPI_DI(DO)/IIC 时钟/ADC 通道 12/比较器 0 同相端 输入通道 0/P2.9				
38	SPI_DI(DO)/SDA/P2.10	输入/输出	SPI_DI(D0)/IIC 数据/P2.10, 内置可软件开启的 10k 上拉电阻				
39	OPA3_IN/P3.14	输入/输出	运放 3 反相端输入/P3.14				
40	OPA3_IP/P3.15	输入/输出	运放 3 同相端输入/P3.15				
41	SPI_CLK/ADC_CH14/CMP1_IP0/P2.1	输入/输出	SPI 时钟/ADC 通道 14/比较器 1 同相端输入通道 0/P2.1,内置可软件开启的 10k 上拉电阻				
42	CMP1_IN/P2.2	输入/输出	比较器 1 反相端输入/P2.2				
43	CMP1_OUT/MCPWM_BKIN0/SPI_CS/REF/P2.3	输入/输出	比较器 1 输出/电机 PWM 终止信号 0/SPI 片选信号/ 电压参考信号/P2.3				
44	HALL_INO/MCPWM_CH2P/UART1_TX(RX)/TIM1_CH0/ ADC_TRIG3/CMP1_IP1/P2.4	输入/输出	Hall 传感器 A 相输入/电机 PWM 通道 2 高边 /UART1_TX(RX)/Timer1 通道 0/ADC 触发信号 3/比 较器 1 同相端输入通道 1/P2.4,内置可软件开启的 10k 上拉电阻。				
45	HALL_IN1/MCPWM_CH2N/UART1_TX(RX)/TIM1_CH1/ ADC_TRIG0/CMP1_IP2/P2.5	输入/输出	Hall 传感器 B 相输入/电机 PWM 通道 2 低边 /UART1_TX(RX)/Timer1 通道 1/ADC 触发信号 0/比 较器 1 同相端输入通道 2/P2.5,内置可软件开启的 10k 上拉电阻				
46	HALL_IN2/MCPWM_CH3P/TIM3_CH0/ ADC_TRIG1/CMP1_IP3/P2.6	输入/输出	Hall 传感器 C 相输入/电机 PWM 通道 3 高边 /Timer3 通道 0/ADC 触发信号 1/比较器 1 同相端输				

LKS32AT085 Datasheet

编号	名称	类型	功能说明
			入通道 3/P2.6,内置可软件开启的 10k 上拉电阻
47	SWCLK	输入	SWD 时钟,内置固定上拉的 10k 电阻
48	SWDIO	输入/输出	SWD 数据,内置固定上拉的 10k 电阻

2.2 管脚复用功能说明

表 2-2 LKS32AT085 引脚复用功能选择

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF0
P0.0												ADC_CH4, DAC_OUT
P0.1												ADC_CH6
P0.2												
P0.3						SCL		TIM2_CH0				ADC_CH7
P0.4						SDA		TIM2_CH1				ADC_CH8
P0.5												ADC_CH9
P0.6				UART1_TX(RX)			TIM1_CH0			CAN_RX		
P0.7				UART1_TX(RX)			TIM1_CH1			CAN_TX		
P0.8												
P0.9						SCL		TIM2_CH0				
P0.10						SDA		TIM2_CH1				
P0.11		HALL_IN0						TIM3_CH0				ADC_CH15/CMP0_IP1
P0.12		HALL_IN1						TIM3_CH1		CAN_RX		ADC_CH16/CMP0_IP2
P0.13		HALL_IN2								CAN_TX		ADC_CH17/CMP0_IP3
P0.14	CMP0_OUT		MCPWM_BKIN1		SPI_CLK		TIM0_CH1		ADC_TRIG0		SIF	ADC_CH10/CMP0_IP4
P0.15			MCPWM_CH0P	UARTO_TX(RX)	SPI_DI(DO)		TIM0_CH0		ADC_TRIG1			CMP0_IN

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF0
P1.0			MCPWM_CH0N	UARTO_TX(RX)	SPI_DI(DO)							
P1.1					SPI_CS							
P1.2								TIM3_CH0				
P1.3								TIM3_CH1				ADC_CH5
P1.4	LRC		MCPWM_CH0P									
P1.5	HRC		MCPWM_CH0N									
P1.6			MCPWM_CH1P									
P1.7			MCPWM_CH1N									
P1.8			MCPWM_CH2P									
P1.9			MCPWM_CH2N									
P1.10			MCPWM_CH3P	UARTO_TX(RX)		SCL	TIM0_CH0		ADC_TRIG2			ADC_CH13
P1.11			MCPWM_CH3N	UARTO_TX(RX)		SDA	TIM0_CH1		ADC_TRIG3		SIF	
P1.12			MCPWM_BKIN0									
P1.13					SPI_CLK		TIM0_CH0					
P1.14					SPI_DI(DO)		TIM0_CH1					
P1.15					SPI_DI(DO)			TIM2_CH0				

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF0
P2.0					SPI_CS			TIM2_CH1				
P2.1					SPI_CLK							ADC_CH14/ CMP1_IP0
P2.2												CMP1_IN
P2.3	CMP1_OUT		MCPWM_BKIN0		SPI_CS							REF
P2.4		HALL_IN0	MCPWM_CH2P	UART1_TX(RX)			TIM1_CH0		ADC_TRIG3	CAN_RX		CMP1_IP1
P2.5		HALL_IN1	MCPWM_CH2N	UART1_TX(RX)			TIM1_CH1		ADC_TRIG0	CAN_TX		CMP1_IP2
P2.6		HALL_IN2	MCPWM_CH3P					TIM3_CH0	ADC_TRIG1		SIF	CMP1_IP3
P2.7												ADC_CH11/ OPAx_OUT/ LDO15
P2.8				UART1_TX(RX)				TIM3_CH0				OSC_IN
P2.9					SPI_DI(DO)	SCL						ADC_CH12/ CMP0_IP0
P2.10					SPI_DI(DO)	SDA						
P2.11			MCPWM_CH1P					TIM2_CH0				
P2.12			MCPWM_CH1N					TIM2_CH1	ADC_TRIG2			
P2.13			MCPWM_CH3N					TIM3_CH1				
P2.14						SCL						
P2.15	_				_	SDA		_				

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF0
P3.0												OPA1_IP
P3.1												OPA1_IN
P3.2												
P3.3												
P3.4												
P3.5												OPA0_IP
P3.6												
P3.7												OPA0_IN
P3.8												
P3.9				UART1_TX(RX)				TIM3_CH1				OSC_OUT
P3.10												OPA2_IP
P3.11												OPA2_IN
P3.12												
P3.13												
P3.14												OPA3_IN
P3.15												OPA3_IP

封装尺寸 3

3.1 LKS32AT085C8Q9

PLQFN6.00 \times 6.00-48-D:

图 3-1 LKS32AT085C8Q9 封装图示

表 3-1 LKS32AT085C8Q9 封装尺寸

SYMBOL		MILLIMETER			
SIMBUL	MIN	NOM	MAX		
A	0.500	0.550	0.600		
A1	0.007	0.012	0.017		
A2		0.040			
D	5.900	6.000	6.100		
Е	5.900	6.000	6.100		
D1	1.950	2.000	2.050		
E1	1.950	2.000	2.050		
L	0.350	0.400	0.450		
b	0.150	0.200	0.250		
e	0.350	0.400	0.450		
X1	0.650	0.700	0.750		
X2	1.550	1.600	1.650		
Х3	1.550	1.600	1.650		

4 电气性能参数

表 4-1 LKS32AT085C8Q9 电气极限参数

参数	最小	最大	单位	说明
电源电压(AVDD)	-0.3	+6.0	V	
工作温度	-40	+125	°C	
存储温度	-40	+125	°C	
结温	-	150	°C	
引脚温度(焊接 10 秒)	-	300	°C	

表 4-2 LKS32AT085C8Q9 建议工况参数

参数	最小	典型	最大	单位	说明
电源电压(AVDD)	2.2	5	5.5	V	
模拟工作电压(AVDD _A)	3.3	5	5.5	V	ADC 选择 2.4V 内部基准源
快沙工下电压(AVDDA)	2.8	5	5.5	V	ADC 选择 1.2V 内部基准源

运算放大器可以在 2.2V 下工作, 但输出幅度受限。

表 4-3 LKS32AT085C8Q9 ESD 性能参数

项目	最小	最大	单位
ESD测试 (HBM)	-6000	6000	V

根据《MIL-STD-883J Method 3015.9》,在 25 °C ,55%相对湿度环境下,在被测芯片的所有 IO 引脚施加进行静电放电 3 次,每次间隔 1s。测试结果显示芯片抗静电放电等级达到 Class 3A \geq 4000V,<8000V。

表 4-4 LKS32AT085C8Q9 Latch-up 性能参数

项目	最小	最大	单位
Latch-up电流 (85°C)	-200	200	mA

根据《JEDEC STANDARD NO.78E NOVEMBER 2016》,对所有电源 IO 施加过压 8V,在每个信号 IO 上注入 200mA 电流。测试结果显示芯片抗拴锁等级为 200mA。

表 4-5 LKS32AT085C8Q9 IO 极限参数

参数	描述	最小	最大	单位
V_{IN}	GPIO信号输入电压范围	-0.3	6.0	V
I_{INJ_PAD}	I _{INJ_PAD} 单个GPIO最大注入电流		11.2	mA
I_{INJ_SUM}	所有GPIO最大注入电流	-50	50	mA

表 4-6 LKS32AT085C8Q9 IO DC 参数

	, ,		2 23.			
参数	描述	AVDD	条件	最小	最大	単位
17	V _{IH} 数字IO输入高电压	5V		0.7*AVDD		17
VIH		3.3V	-	2.0		V
$V_{\rm IL}$	数字IO输入低电压	5V	-		0.3*AVDD	V

		3.3V			0.8	
V _{HYS} 施密特迟滞范围		5V		0.1*AVDD		V
V_{HYS}	旭名付 及伊尼国	3.3V	-	U.1 AVDD		V
$ m I_{IH}$	I _{III} 数字IO输入高电压,电流消耗,	5V	_		1	uA
1IH	数于10個/C向电压,电视相和	3.3V	-			uA
$ m I_{IL}$	数字IO输入低电压,电流消耗	5V		-1		uA
IIL	数于10 _制 八似电压,电机相代	3.3V		-1		uA
V _{OH}	数字 IO 输出高电压		最大驱动电流	AVDD-0.8		V
VOH	数于IO栅山间电压		11.2mA	AVDD-0.0		v
V_{OL}	数字IO输出低电压	数字IO输出低电压 最大驱动电流		0.5	V	
VOL	VOL 数于10相由版电压		11.2mA		0.5	•
R_{pup}	上拉电阻大小*			8	12	kΩ
R _{io-ana}	IO与内部模拟电路间连接电阻			100	200	Ω
C	数字IO输入电容	5V			10	ηF
C_{IN}	数 于IU 稝八 电谷	3.3V	-		10	pF

表 4-7 LKS32AT085C8Q9 电路模块电流消耗 IDD

模块	Min	Тур	Max	单位
模拟比较器CMP(1个)		0.005		mA
运算放大器OPA(1个)		0.450		mA
模数转换器ADC		3.710		mA
数模转换器DAC		0.710		mA
温度传感器Temp Sensor		0.150		mA
带隙基准BGP		0.154		mA
4MHz RC时钟		0.105		mA
锁相环PLL		0.080		mA
CPU+flash+SRAM (96MHz)		8.667		mA
CPU+flash+SRAM (12MHz)		1.600		mA
CRC		0.070		mA
DSP		3.421		mA
UART		0.107		mA
DMA		1.340		mA
MCPWM		0.053		mA
TIMER		0.269		mA
SPI		0.500		mA
IIC		0.500		mA
CAN		2.200		mA
休眠	10	30	50	uA

以上测试如无特别标注,均为室温 25°5V 供电,使用 96MHz 时钟工作情况下的测试,由于制

造工艺存在器件模型偏差,不同芯片的电流消耗会存在个体差异。

5 模拟性能参数

表 5-1 LKS32AT085C8Q9 模拟性能参数

参数	最小	典型	最大	单位	说明	
2 74.	1 1/2 3		芯片	1 1	7574	
工作电源	2.2	5	5.5	V		
模数转换器(ADC)						
工作力源	3.3	5	5.5	V	ADC 选择 2.4V 内部基准源	
工作电源	2.8	5	5.5	V	ADC 选择 1.2V 内部基准源	
输出码率		3		MHz	f _{adc} /16	
差分输入信号范围	-REF		+REF	V	Gain=1 时; REF=2.4V	
左万制八佰亏氾固	-3.6		+3.6	V	Gain=2/3 时; REF=2.4V	
单端输入信号范围	-0.3		AVDD+0.3	V	受限于 IO 口输入电压限制	
直流失调(offset)		5	10	mV	可校正	
有效位数(ENOB)	10.5	11		bit		
INL		2	3	LSB		
DNL		1	2	LSB		
SNR	63	66		dB		
输入电阻	100k			Ohm		
输入电容		10pF		F		
	T	基	准电压(REF)	1	_	
工作电源	2.2	5	5.5	V		
输出偏差	-9		9	mV		
电源抑制比		70		dB		
温度系数		20		ppm/°C		
输出电压		1.2		V		
	T	ı	莫转换器(DAC)			
工作电源	2.2	5	5.5	V		
负载电阻	5k			Ohm		
负载电容			50p	F	輸出 BUFFER 开启	
输出电压范围	0.05		AVDD-0.1	V		
转换速度			1M	Hz		
DNL		1	2	LSB		
INL		2	4	LSB		
OFFSET		5	10	mV		
SNR	57	60	66	dB		
	T	1	算放大器(OPA)			
工作电源	2.8	5	5.5	V		
带宽		10M	20M	Hz		
负载电阻	20k			Ohm		
负载电容			5p	F		
输入共模范围	0		AVDD	V		

参数	最小	典型	最大	单位	说明
输出信号范围	0.1		AVDD-0.1	V	最小负载电阻下
共模电平(Vcm)	1.65	1.9	2.2	V	测量条件:常温。 运放摆幅=2 × min(AVDD-Vcm, Vcm)。建议 使用 OPA 单端输出的应用上 电后进行 Vcm 测量并进行软 件减除校正。更多分析请参 考官网应用笔记《ANN009- 运放差分和单端工作模式区 别》
OFFSET		10	15	mV	
共模抑制(CMRR)		80		dB	
电源抑制(PSRR)		80		dB	
负载电流			500	uA	
摆率(Slew rate)		5		V/us	
相位裕度		60		度	
		Ŀ	比较器(CMP)		
工作电源	2.2	5	5.5	V	
输入信号范围	0		AVDD	V	
OFFSET		5	10	mV	
<i>比</i> 松元11十		0.15u		S	默认功耗
传输延时		0.6u		S	低功耗
回差(Hysteresis)		20		mV	HYS='0'
固左(Hysteresis)		0		mV	HYS='1'

模拟寄存器表说明:

地址 0x40000040~0x40000050 是各个模块的校正寄存器,这些寄存器在出厂之前都会填上各 自的校正值。一般情况下用户不要去配置或改变这些值。如果需要对模拟参数进行微调,需要读取 原校正值,并以此为基础进行微调。

地址 0x40000020~0x4000003c 是开放给用户的寄存器, 其中空白部分的寄存器必须全部配置 为 0(芯片上电后会被复位为 0)。其他寄存器根据应用场合需要进行配置。

6 电源管理系统

电源管理系统由 LDO15 模块、电源检测模块(PVD)、上电/掉电复位模块(POR)组成。

该芯片由 2.2V~5.5V 单电源供电,以节省芯片外的电源成本。芯片内部集成一路 LDO15 给内部所有数字电路、PLL 模块供电。

LDO 上电后自动开启,无需软件配置,但LDO 输出电压可通过软件实现微调。

LDO15 的输出电压可通过设置寄存器 LDO15TRIM<2:0>来调节,具体寄存器所对应值见模拟寄存器表说明。LDO15 在芯片出厂前已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调 LDO 的输出电压,需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

POR 模块监测 LD015 的电压,在 LD015 电压低于 1.1V 时(例如上电之初,或者掉电之时),为数字电路提供复位信号以避免数字电路工作产生异常。

PVD 模块对 5V 输入电源进行检测,如低于某一设定阈值,则产生报警(中断)信号以提醒 MCU。中断提醒阈值可通过寄存器 PVDSEL<1:0>设置为不同的电压。PVD 模块可通过设置 PD_PDT='1'关闭。具体寄存器所对应值见模拟寄存器表说明。

7 时钟系统

时钟系统包括内部 32KHz RC 时钟、内部 4MHz RC 时钟、外部 4MHz 晶体起振电路、PLL 电路组成。

32K RC 时钟作为 MCU 系统慢时钟使用,作为诸如滤波模块或者低功耗状态下的 MCU 时钟使用。4MHz RC 时钟作为 MCU 主时钟使用,配合 PLL 可提供最高到 96MHz 的时钟。外部 4MHz 晶体起振电路作为备份时钟使用。

32k 和 4M RC 时钟均带有出厂校正,可在常温下实现 32K RC 时钟±5%的精度,4M RC 时钟±1%的精度。其中 4M RC 时钟还开放有用户校正寄存器,可进一步将精度校正到±0.5%范围。32K RC 时钟在-40~105℃范围内的精度为±20%, 4M RC 时钟在该温度范围的精度为±1%; 在 105~125℃范围内,32kHz RC 的精度为±40%,4M RC 时钟在该温度范围的精度为±1.5%。

32K RC 时钟频率可通过寄存器 RCLTRIM<3:0>进行设置,4M RC 时钟频率可通过寄存器 RCHTRIM<5:0>进行设置,具体寄存器所对应值见模拟寄存器表说明。

芯片出厂前时钟已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调频率, 需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

4M RC 时钟通过设置 RCHPD ='0'打开(默认打开,设'1'关闭), RC 时钟需要 Bandgap 电压基准源模块提供基准电压和电流,因此开启 RC 时钟需要先开启 BGP 模块。芯片上电的默认状态下,4M RC 时钟和 BGP 模块都是开启的。32K RC 时钟是始终开启的,不能关闭。

PLL 对 4M RC 时钟进行倍频,以提供给 MCU、ADC 等模块更高速的时钟。MCU 和 PWM 模块的最高时钟为 96MHz, ADC 模块典型工作时钟为 48MHz,通过寄存器 ADCLKSEL<1:0>可设置为不同的 ADC 工作频率。

PLL 通过设置 PLLPDN='1'打开(默认关闭,设 1 打开),开启 PLL 模块之前,同样也需要开启 BGP(Bandgap)模块。开启 PLL 之后,PLL 需要 6us 的稳定时间来输出稳定时钟。芯片上电的默认状态下,RCH 时钟和 BGP 模块都是开启的,但 PLL 默认是关闭的,需要软件来开启。

晶体起振电路内置放大器,需在 IO OSC_IN/OSC_OUT 之间接入一个晶体,且 OSC_IN/OSC_OUT 上各放一个 15pF 的电容到地,并设置 XTALPDN='1'即可起振。

8 基准电压源

该基准源为 ADC、DAC、RC 时钟、PLL、温度传感器、运算放大器、比较器和 FLASH 提供基准 电压和电流,使用上述任何一个模块之前,都需要开启 BGP 基准电压源。

芯片上电的默认状态下,BGP模块是开启的。基准源通过设置BGPPD='0'打开,从关闭到开启, BGP 需要约 2us 达到稳定。BGP 输出电压约 1.2V, 精度为±0.8%

基准源可通过设置 REF_AD_EN='1',将基准电压送至 IO P2.3 进行测量。

9 ADC 模块

芯片内部集成 1 路同步双采样的 SAR 结构 ADC, 芯片上电的默认状态下, ADC 模块是关闭的。 ADC 开启前,需要先开启 BGP 和 4M RC 时钟和 PLL 模块,并选择 ADC 工作频率。默认配置下 ADC 工作时钟是 48M,对应 3MHz 的转换数据率。

同步双采样电路可在同一时刻对两路输入信号进行采样,采样完成之后 ADC 按先后顺序将这两路信号进行转换,并写入相应的数据寄存器中。

ADC 完成一次转换需要 16 个 ADC 时钟周期,其中 13 个为转换周期,3 个为采样周期。即 $f_{conv} = f_{adc}/16$ 。在 ADC 时钟设为 48M 时,转换速率是 3MHz。

ADC 在降频应用时,可通过寄存器 CURRIT<1:0>降低 ADC 的功耗水平。

ADC 可工作在如下模式:单次单通道触发、连续单通道、单次 1~20 通道扫描、连续 1~20 通道扫描。每路 ADC 都有 20 组独立寄存器对应每一个通道。

ADC 触发事件可以来自外部的定时器信号 TO、T1、T2、T3 发生到预设次数,或者为软件触发。

20 个通道里最后一个通道用来测量 ADC 自身的 offset,将其保存在通道寄存器中,其他通道的 ADC 值都已自动减去该 offset。在芯片上电之初,应由 MCU 发起 offset 校正信号,校正控制模块将 ADC 通道设置为通道 1,并将值储存在通道寄存器中。如果客户对 offset 要求较高,可定期(例如一小时/一天)在 ADC 空闲时将 offset 校正一次。

在 GAIN_REF=0 时,基准电压源为 2.4V。ADC 带有两种增益模式,通过 GAIN_SHAx 进行设置,对应 1 倍和 2/3 倍增益。1 倍增益对应±2.4V 的输入信号,2/3 倍增益对应±3.6V 的输入信号幅度。在测量运放的输出信号时,根据运放可能输出的最大信号来选择具体的 ADC 增益。

在 GAIN_REF=1 时,基准电压源为 1.2V,在 3.3V 供电系统中,需要将 GAIN_REF 设置为'1',详细信息请参考 User manual。ADC 带有两种增益模式,通过 GAIN_SHAx 进行设置,对应 1 倍和 1/3 倍增益。1 倍增益对应±1.2V 的输入信号,1/3 倍增益对应±3.6V 的输入信号幅度。在测量运放的输出信号时,根据运放可能输出的最大信号来选择具体的 ADC 增益。

10 运算放大器

4 路输入输出 rail-to-rail 运算放大器(部分型号为 2/3 路), 内置反馈电阻 R2/R1, 外部引脚需 串联一个电阻 R0。反馈电阻 R2:R1 的阻值可通过寄存器 RES_OPA0<1:0>设置, 以实现不同的放大倍数。具体寄存器所对应值见模拟寄存器表说明。

最终的放大倍数为 R2/(R1+R0), 其中 R0 是外部电阻的阻值,

对于 MOS 管电阻直接采样的应用,建议接>20kΩ 的外部电阻,以减小 MOS 管关断时,往芯片引脚里流入的电流。

对于小电阻采样的应用,建议接 100Ω 的外部电阻。

放大器可通过设置 OPAOUT_EN<2:0>选择将 4 路放大器中的某一路输出信号通过 BUFFER 送至 P2.7 IO 口进行测量和应用(对应关系见 datasheet 芯片管脚说明)。因为有 BUFFER 存在,在运放正常工作模式下也可以选择送一路运放输出信号出来。

芯片上电的默认状态下,放大器模块是关闭的。放大器可通过设置 OPAxPDN ='1'打开,开启放大器之前,需要先开启 BGP 模块。

运放输入同相和反相端内置钳位二极管,电机相线通过一匹配电阻后直接接入输入端,从而简化了 MOSFET 电流采样的外置电路。

11 比较器

内置 2 路输入 rail-to-rail 比较器,比较器比较速度可编程、迟滞电压可编程、信号源可编程。 比较器的比较延时可通过寄存器 IT_CMP 设置为 0.15uS/0.6uS。 迟滞电压通过 CMP_HYS 设置为 $20 \text{mV}/0 \text{mV}_{\circ}$

比较器同相和反相两个输入端的信号来源都可通过寄存器 CMP_SELP<2:0>和 CMP_SELN<1:0> 编程,详见寄存器模拟说明。

芯片上电的默认状态下,比较器模块是关闭的。比较器通过设置 CMPxPDN ='1'打开, 开启比较 器之前,需要先开启 BGP 模块。

12 温度传感器

芯片内置精度为±2℃的温度传感器。芯片出厂前会经温度校正,校正值保存在 flash info 区。 芯片上电的默认状态下,温度传感器模块是关闭的。开启传感器之前,需要先开启 BGP 模块。 温度传感器通过设置 TMPPDN='1'打开, 开启到稳定需要约 2us, 因此需在 ADC 测量传感器之 前 2us 打开。

13 DAC 模块

芯片内置一路 12bit DAC,输出信号的最大量程可通过寄存器 DAC_GAIN<1:0>设置为 1.2V/3V/4.85V。

12bit DAC 可通过配置寄存器 DACOUT_EN=1,将 DAC 输出送至 IO 口 P0.0,可驱动>5kΩ的负 载电阻和 50pF 的负载电容。

DAC 最大输出码率为 1MHz。

芯片上电的默认状态下, DAC 模块是关闭的。DAC 可通过设置 DAC12BPDN =1 打开, 开启 DAC 模块之前,需要先开启 BGP 模块。

14 处理器核心

- ▶ 集成 32 位 Cortex-M0+DSP 双核处理器(部分型号不带 DSP)
- ▶ 2线 SWD 调试管脚
- ▶ 最高工作频率 96MHz

15 存储资源

15.1 Flash

- ▶ 内置 flash 包括 64kB 主存储区, 1kB NVR 信息存储区
- ▶ 可反复擦除写入不低于2万次
- ▶ 室温 25℃数据保持长达 100 年
- ▶ 单字节编程时间最长 7.5us, Sector 擦除时间最长 5ms
- ▶ Sector 大小 512 字节,可按 Sector 擦除写入,支持运行时编程,擦写一个 Sector 的同时 读取访问另一个 Sector
- ▶ Flash 数据防窃取(最后一个 word 须写入非 0xFFFFFFF 的任意值)

15.2 SRAM

▶ 内置 8kB SRAM

16 电机驱动专用 MCPWM

- ▶ MCPWM 最高工作时钟频率 96MHz
- ▶ 支持最大 4 通道相位可调的互补 PWM 输出
- ▶ 每个通道死区宽度可独立配置
- 支持边沿对齐 PWM 模式
- ▶ 支持软件控制 IO 模式
- ▶ 支持 IO 极性控制功能
- 内部短路保护,避免因为配置错误导致短路
- ▶ 外部短路保护,根据对外部信号的监控快速关断
- ▶ 内部产生 ADC 采样中断
- 采用加载寄存器预存定时器配置参数
- ▶ 可配置加载寄存器加载时刻和周期

17 Timer

- ▶ 4路通用定时器,2路16bit 位宽计时器,2路32bit 位宽计时器。
- ▶ 4路支持捕获模式,用于测量外部信号宽度
- ▶ 4 路支持比较模式,用于产生边沿对齐 PWM/定时中断

特别地,LKS32AT085有2路支持编码信号输入,支持脉冲指令计数。

18 Hall 传感器接口

- ▶ 内置最大 1024 级滤波
- ➤ 三路 Hall 信号输入
- ▶ 24位计数器,提供溢出和捕获中断

19 DMA

- ▶ 一路 DMA 引擎
- ▶ 最多支持6个通道
- ▶ 支持 byte/halfword/word 等不同尺寸的传输
- > 支持不同的地址递增方式
- > 支持 ram/外设之间的数据传输
- > 支持循环模式

20 CRC

- ▶ 支持 7/8/16/32 等不同位宽的多项式
- > 支持多项式系数配置
- > 支持输入输出数据翻转

21 DSP

- 电机控制算法专用 DSP, 自主指令集, 三级流水
- ▶ 最高工作频率 96MHz
- > 32/16 位除法器 10 周期计算完成
- ▶ 32 位硬件开方 8 周期计算完成
- ▶ Q15 格式 Cordic 三角函数模块, sin/cos/artanc 8 周期计算完成
- ▶ DSP 配备独立的程序区和数据区,可自主执行 DSP 程序,亦可由 MCU 调用进行某项计算
- ▶ 支持中断暂停,与 MCU 进行数据交互

22 通用外设

- ▶ 两路 UART, 全双工工作,支持 7/8 位数据位、1/2 停止位、奇/偶/无校验模式,带 1 字 节发送缓存、1字节接收缓存,支持 Multi-drop Slave/Master 模式,波特率支持 300~115200
- ▶ 一路 SPI, 支持主从模式
- ▶ 一路 IIC,支持主从模式
- ➤ 一路 CAN(部分型号不带 CAN)
- ▶ 硬件看门狗,使用 RC 时钟驱动,独立于系统高速时钟,写入保护, 2/4/8/64 秒复位间 隔

23 特殊 IO 复用

SWD 协议包含两根信号线: SWDCLK 和 SWDIO。前者是时钟信号,对于芯片而言,是输入状态且 不会改变输入状态。后者是数据信号,对于芯片而言,在数据传输过程中会在输入状态和输出状态 间切换,默认是输入状态。

LKS08x 可实现 SWDIO 复用为其它 IO 的功能,复用的 IO 是 P0.0、P2.15。注意事项如下:

- ▶ 默认状态是不开启复用,需要软件开启复用。即芯片硬复位结束后,初始状态是 SWDIO 用途, SWDIO 在芯片内部有上拉(芯片内部上拉电阻约为 10K),应用对初始电平有要求的,需注意。
- 开启复用后, KEIL 等工具无法直接访问芯片,即 Debug 和擦除下载功能均失效。若需要重新 下载程序,有两个方案。
- 其一,建议使用凌鸥专用离线下载器擦除。软件开启复用的时间,建议保留一定余量,例如 100ms 左右, 保证离线下载器能擦除, 防止死锁。 余量的多少是保证离线下载器擦除的成功率。 余量越大,一次性擦除成功的概率越大。
- 其二,程序内部有退出机制,例如某个其它 IO 电平发生变化(一般为输入),表明外界需要用 SWDIO, 软件重新配置,解除复用。此时,可以恢复 KEIL 的功能。

若此时,仅复用了SWDCLK,没有复用SWDIO,注意事项同上。

RSTN 信号,默认是用于 LKS08x 芯片的外部复位脚。

LKS08x 可实现 RSTN 复用为其它 IO 的功能,复用的 IO 是 P0.2。注意事项如下:

- 默认状态是不开启复用,需要软件开启复用。即芯片初始状态是 RSTN 用途, RSTN 在芯片内部 有上拉(芯片内部上拉电阻约为 100K),应用对初始电平有要求的,需注意。
- 默认状态是 RSTN, 只有 RSTN 正常释放后才能开始程序的执行, 应用需要保证 RSTN 有足够保 护,例如外围电路带上拉,若能加电容更佳。
- ▶ 开启复用后, RSTN 用途失效, 若需产生芯片硬复位, 源头只能是掉电/看门狗。
- ▶ RSTN 的复用,不影响 KEIL 的使用。
- ▶ 开启或关闭复用,可运行 1-2 条 NOP 指令,保证状态切换稳定。

SYS_RST_CFG 寄存器的 BIT[5], 为 RSTN 和 P0.2 的复用控制开关。

24 订购包装信息

型号	封装形式	每盘/管数量	内盒数量	外箱数量
LKS32AT085C8Q9	QFN48	490/盘	4900PCS	29400PCS

25 版本历史

表 25-1 文档版本历史

时间	版本号	说明
2023.01.13	1.23	增加订购包装信息
2022.11.07	1.22	增加 IO 与内部模拟电路间连接电阻阻值
2022.10.28	1.21	增加共模电压特性
2022.08.12	1.2	修订封装尺寸 D1/E1/X2/X3
2021.12.07	1.1	增加 105~125° RC 温度特性
2021.05.17	1.0	LKS32AT085C8Q9

免责声明

LKS 和 LKO 为凌鸥创芯注册商标。

南京凌鸥创芯电子有限公司(以下简称: "Linko") 尽力确保本文档内容的准确和可靠,但是保留随 时更改、更正、增强、修改产品和/或 文档的权利, 恕不另行通知。用户可在下单前获取最新相关 信息。

客户应针对应用需求选择合适的 Linko 产品,详细设计、验证和测试您的应用,以确保满足相应标 准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。

Linko 在此确认未以明示或暗示方式授予 Linko 或第三方的任何知识产权许可。

Linko 产品的转售,若其条款与此处规定不同,Linko 对此类产品的任何保修承诺无效。

禁止用于军事用途或生命监护、维持系统。

如有更早期版本文档,一切信息以此文档为准。