PATENT ABSTRACTS OF JAPAN

(11) Publication number: 62169795 A

(43) Date of publication of application: 25.07.87

(51) Int. CI

C07F 9/58 A61K 31/675 A61K 31/675

(21) Application number: 61011255

(22) Date of filing: 22.01.86

(71) Applicant:

NISSAN CHEM IND LTD

(72) Inventor:

SETO KIYOTOMO SAKOTA RYOZO TANAKA SAKUYA

(54) DIHYDROPYRIDINE PHOSPHONIC ACID CYCLIC ESTER

(57) Abstract:

NEW MATERIAL:A compound expressed by formula I {A represents (1W3C alkyl-substituted) 1,3-propylene; Y represents Y1 when either one of X1 and X2 represents H and the other represents nitro, halogen atom or trifluoromethyl; Y1 represents 13W20C alkyl, formula II (R1 represents 1W3C alkyl; D represents 2W6C alkylene), -D-N(R2)2 [R2 represents (methyl-substituted)cyclopentyl, etc.] etc.; Y represents Y1 or Y2 when formula III represents formula IV; Y2 represents formula V (R3 represents alkyl substituted by aromatic group); Y represents Y1, Y2 or Y3 when formula III represents formula VI, etc.; Y3 represents formula VII (R4 and R5 represent 1W6C alkyl, etc.)}.

EXAMPLE: 2-(N-(1-Indanyl)-N-methyl)amino ester of 5-(2,2-dimethyl trimethylenedioxyphosphinyl)-2,6-dimethyl-4-(3-nitropheyn yl-)-1,4-dihydropyridine- 3-carboxylic acid.

USE: An oral antihypertensive agent.

PREPARATION: A compound expressed by formula VIII is reacted with a compound expressed by formula IX.

COPYRIGHT: (C)1987,JPO&Japio

⑲ 日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭62 - 169795

@Int_Cl_4 識別記号 庁内整理番号 母公開 昭和62年(1987)7月25日 C 07 F 9/58 A 61 K 31/675 7055-4H 7252-4C ABN ABS 審査請求 未請求 発明の数 3 (全9頁)

❷発明の名称 ジヒドロピリジンホスホン酸環状エステル

> 创特 頤 昭61-11255

願 昭61(1986)1月22日

砂発 明 者 船橋市坪井町722番地1 日産化学工業株式会社中央研究 四発 明 者 良 三 田 船橋市坪井町722番地1 日産化学工業株式会社中央研究 所内 明者 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会 社生物化学研究所内

の出 日産化学工業株式会社 東京都千代田区神田錦町3丁目7番地1

1発明の名称

ジヒドロピリジンホスホン酸環状エステル

2.特許請求の範囲

〔式中、Aは1ないし4コの Ci~ Czアルキル基 によって懺換されていてもよいしるープロピレ ン基を意味し:

X1.X2の一方が水素原子であり、残りの一方 がニトロ基。ハロゲン基またはトリフルオロメ チル基であるときは、YはY,を意味し、更にY, は C13 - C20 のアルキル基. - D-N(R1

(R,はC,~C,のアルキル基であり、DはC2~C4 のアルキレン基である), -D-N(R₂)₂(R₂は 無量換のまたはメチル基によって量換されたシ

クロペンチルまたはシクロヘキシル基である)。 -D-NB (Bは、芳香族養またはアラルキル 基によって置換された 1.5 ーペンチレン基また は 1.4 - プチレン基である). -D-N (CH₂)_m (CH₂)_k (ℓ は 0 または 1 であり. m は 2 または 5 であ 5). $-D-N < \frac{(CH_2)_5}{(CH_2)_2} > NR_3$ (R₅ tt 1 f t f tt 2 ケの芳香族基によって置換されたアルキル基で ある)。-D-N (D. R. は上述と同意味で R. R_1 (R. R. R_2 (R. R. R_3)。 $-CH_2CH_2CN$ (CE2)k上述と同意味であり、kは3または4である)

(Rsは上述と同意味である)であり、

$$\bigcap_{X_2}^{X_1}$$
 is $\bigcap_{D \in \mathcal{D}}^{D \notin \mathcal{D}}$ range to the sector X_2 is X_2 in X_3 in X_4 in

Y は Y, (Y, は上述と同意味である) または Y2であり、Y2 は $-D-<\frac{(CH_2)_2}{(CH_2)_2}$ NR_3 (D, R₃ は上述と (CH₂)2

同意味である)であり.

ときは、Yは Y_1 , Y_2 (Y_1 と Y_2 は上述と同意味である)または Y_5 であり、 Y_5 は -D-N $< R_4$ (R_4 ,

R₅は、C₁~C₆のアルキル基、芳香族基または 1 ケまたは 2 ケの芳香族基によって置換された アルキル基であり、 KDは上述と同意味である) である。〕で示される化合物または可能な場合 はその楽理的に許容される塩。

(2) 一般式 回

(式中、A、X, およびX, は、特許請求の範囲 第(1)項に記載の一般式(1)の説明と同意味である) で示される化合物と、

で示される化合物または可能な場合はその業理的化許容し得る塩から選ばれた1種または2種以上を含有することを特徴とする循環器系障害改善集。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、経口抗高圧作用があり、人間を含めた任乳動物の低心症、脳血行障害、高血圧症等の循環器系疾病の治療に有用である5 - ホスホン酸環状エステルー3 - カルボン酸エステルージヒドロビリジンに関する。

また、上記化合物を含有することを特徴とする抗高圧剤および上記化合物の製造に関する。 (従来の技術)

ヨーロッパ特許公開公報 0 1 4 1 2 2 2 号 (以下、文献 a という。) および 0 1 5 9 0 4 0 号 (以下、文献 b という。) 化本発明化合物と類似した 5 - ホスホン酸環状エステルー 5 - カルポン酸エステルージヒドロビリジン類の配述がある。

一般式 🖾

ずる一般式印

$$_{\rm NH^{2}}$$
 > c=cH $_{\rm CO^{2}}$ A $_{\rm CO^{2}}$

(式中、Yは、特許請求の範囲第(1)項に記載の一般式(I)の説明と同意味である) で示される化合物とを反応させることを特徴と

$$A \stackrel{\bigcirc}{\underset{\text{CH}_3}{\bigvee}} \stackrel{\bigcirc}{\underset{\text{H}}{\bigvee}} \stackrel{X_1}{\underset{\text{CD}_2}{\bigvee}} Y \tag{1}$$

(式中, A、 X₁, X₂ およびYは上述と同意味 である。)

で示される化合物の製造法。

〔式中.A.X₁,X₂ およびYは特許請求の範囲 第(1)項配数の一般式(1)の説明と同意味である。〕

(発明が解決しようとする問題)

上記文献 a と b に記載された化合物より更に 経口的抗高圧活性が高く、作用の持続が長く、 心悸昂進が弱い 5 ーホスホン酸環状エステルー 5 ーカルポン酸エステルージヒドロビリジン類 を探索した。

その結果,以外にも本発明化自物群がこれらの条件を構すと期待されることを見出した。 (問題点を解決するための手段)

本発明の化合物は。一般式(1)

$$A = \bigcup_{CH_{5}} \bigcup_{M} \bigcup_{CH_{5}} \bigcup_{CH_{5}}$$

「式中、人は1ないし4コのC₁ ~C₅アルキル

基によって最換されていてもよい 1 3 − ブロビ
レン基を意味し;

X, 、X, の一方が水果原子であり、残りの一方がニトロ基、ハログン基またはトリフルオロメテル基であるときは、 Y は Y, を意味し、更に Y,

は C₁₅ ~ C₂₀ の アルキル基, - D - N < R₁ (R₁

は $C_1 \sim C_2$ のアルキル基であり、 D は $C_2 \sim C_4$ のアルキレン基である)、 -D-N (R_2) $_2$ (R_2 は 無置換のまたはメチル基によって置換されたシクロペンチルまたはシクロペキシル基である)、-D-N B (B は、芳香族基またはアラルキル基によって置換された L 5 - ペンチレン基または L 4 - プチレン基である)、-D-N $C(CH_2)$

(A は 0 または 1 であり、mは 2 または 3 である)、 $-D-N < \frac{(CH_2)_5}{(CH_2)_2} > NR_5$ (R_5 は 1 ケまたは 2 ケの芳香族基によって懺換されたアルキル基である)。 $-D-N \longrightarrow (D.R_1$ は上述と同

意味である)。 - CH2 CH2CN,

 $N < R_1$ R_3 $(R_1 \cdot R_3$ は上述と同意味であり、 R_4 R_5 または 4 である) -D - N R_5

の不整炭素原子を有するが、本発明はこれらの 光学異性体の全てをも包含する。

次に、各置換器について更に具体的に説明する。なお、本発明は下配の具体例によって限定されるものではない。

Aは、1ないし4コのメチル基によって置換されていてもよい、5-プロピレン基を意味する。その具体例としては、 $-CH_2C(CH_1)_2CH_2-$ 、 $-C(CH_5)_2CH_2C(CH_4)_3-$ 等が挙げられる。

 X_1 \cdot X_2 の具体例としては、水果原子、塩素原子、ファ栗原子、臭果原子、ヨウ栗原子、トリフルオロメチル基またはジフルオロメトキン基、更に X_1 として X_2 が挙げられる。

R₁ の具体例としては、メテル基、エチル基。 プロビル基、イソプロビル差だ的中止チル基が 挙げられる。

Dの具体例としては無置換のまたは 1 乃至 2 コのメチル基またはエチル基によって置換された炭系鎖数 2 乃至 6 コのナルキレン基が挙げら または - CH₂ CH <u>(CH₂)</u> N R₃ (R₅ は上述と同意味である)であり、

と同意味である)であり。

るときは、Yは Y_1 , Y_2 (Y_1 と Y_2 は上述と同意味である)または Y_5 であり、 Y_5 は $-D-N < R_4$

(R4・Reは・C1 ~ C6 のアルキル基・芳香族基または 1 ケまたは 2 ケの芳香族基によって世換されたアルキル基であり、 Dは上述と同意味である)である。〕で示される化合物または可能な場合はその楽理的に許容される塩である。

また。一般式(1)で示される化合物は1ヶ以上

れる。

Bの具体例としては、フェキニル基またはペンジル基によって監換された 15 - ペンチレン基または 14 - ブチレン基が挙げられる。

R. の具体例としては、無関換のまたは置換されたペンセン環の 1 乃至 2 コドよって置換されたメテル基、エチル基、ロープロビル基等が挙げられる。

R4・R5 の例としては、炭素数 1 から 6 のアルヤル基・無置換のまたは置換された 5 ~ 6 員環の含鼠素、含酸累または含硫黄芳香環またはペンゼン環、更にこれら芳香環 1 乃至 2 コによって置換された炭素数 1 乃至 4 のアルキル基が挙げられる。

R₄ · R₅ の更に具体的な例としては、直鎖のまたは分校した炭素数 1 乃至 6 のアルキル基。ペンジル基。β - フェネチル基シよび γ - フェニルブロビル基が挙げられる。

更に、Yの例を具体的に挙げる。(以下 Ph はフェニル芸を意味する。)Y, の例としては及業

(スキーム 1 中の A。 X_t 、X₂ および Y は一般 式(I)の説明と同意味である。)

本発明は、スキーム1によって示されるより に一般式仰によって示される化合物に、一般式 仰によって示される化合物を不活性溶媒中反応 させることを特徴とする一般式(1)の製造法にも 関する。

原料化合物。回は既知の技術を応用することによってアセトニルホスホン酸環状エステル回とペンズアルデヒド類との反応から得ることができ、原料化合物回は対応するカルポニル化合物とアンモニアとの反応で容易に得られる。原料化合物回は対応するカルポニル化合物とアンモ

- CH₂ CH₂ N CH(〇 F)₂ . - (CH₂)₃ N N CH(Ph)₂ および - (CH₂)₅ N CH(〇 F)₂ が準げられる。 Y₅ の例としては、 - CH₂ CH₂ N CH₅ CH₂ Ph .

 $-CH_{2}CH_{2}N \stackrel{\text{Ph}}{\subset} CH_{2}Ph \qquad -CH_{2}CH_{2}N(Ph)_{2} ,$ $-CH_{2}CH_{2}N(CH_{2}Ph)_{2} , -(CH_{2})_{5}N \stackrel{\text{Ph}}{\subset} CH_{2}Ph$

-(CH₂)₃ N(Ph)₂ または -(CH₂)₃ N(CH₂Ph)₂が挙げられる。

本発明化合物は下配のスキーム1に従って合成される。

- 12 -

ニアを混合するととで反応系内で生成させても よく、必ずしも単離する必要はない。

不活性溶媒とは、メタノール、エタノール、フロベノール、インプロベノールなどのアルコール系溶媒、12ージメトキシエタン、THPなどのエーテル系溶媒、ペンゼン、トルエン・キンレンなどの芳香族炭化水泵系溶媒、アセドサル、ペンゾニトリルなどのニトリルドネ溶媒、DAM、DMF、Nーメチルピロリドンなどのアミド系溶媒、DMBOやスルホランならのスルホキシド系溶媒、酢酸エチルヤグチロラクトンなどのエステル系溶媒の他にピリジンなども利用することが可能である。

反応は、室温~200℃の間、好ましくは60~140℃の間で、1時間~100時間、好ましくは5時間~20時間加温するととによって行なわれる。

本発明化合物は、下述の発明の効果の試験例 に示したように経口的抗高圧作用を示すので、 血管拡張によるほ乳動物の狭心症、脳血行障害。 高血圧症等の循環器系疾病の治療に有用である。

本発明化合物を、上配治療の目的に使用する 場合、この種のジヒドロビリジン類と、薬学的 に、または獣医学的に許容可能の希釈剤または 担体とからなる薬学的または獣医学的組成物に 形成される。

これらの組成物は経口投与に適した形たとえば錠剤またはカブセル剤。 経皮投与に適した形たとえば軟膏または湿布剤。 吸入剤に適した形たとえばエブレーに適したエフロゾルまたは溶液、非経口投与に適した形たとえば注射剤として使用するのに適した無菌の水溶液剤。または肛門または膣。 直腸等内に使用するのに適した坐剤の形で使用することができる。

本発明化合物を含有する上配組成物は、全組成物の重量に対して、本発明化合物を約 0.1~9 9.5 %、好ましくは約 0.5~9 5 %を含有する。

本発明化合物にまたは本発明化合物を含有する組成物に加えて、他の楽学的にまたは獣医学

- 15 -

合するととができる。

(寒施例、試験例、製剤例)

以下に本発明を実施例、製剤例および試験例によりさらに具体的に説明するが、本発明の範囲はこれらに制限されるものではない。なお、下記構造式中の Pa はフェニル基を意味する。 実施例 1

5 - (22 - ジメチルトリメチレンジオキシ ホスフィニル) - 26 - ジメチル - 4 - (5 -ニトロフェニル) - 14 - ジヒドロピリジン-3 - カルボン酸 2 - (N - (1 - インダニル) - N - メチル) - アミノエチルエステルの合成

環状(22-ジメチルトリメチレン) αー アセチル-3-ニトロスチリルホスホネート 10 ፆに3-アミノクロトン酸2-(N-(1-イ ンダニル)-N-メチル)-アミノエチルエス 的に活性な化合物を含ませることができる。 また、これらの組成物は本発明化合物の複数を 含ませることができる。

本発明化合物を含有する上配組成物は、常法 で製造することができ、かつ常用の賦形剤を配

- 16 -

アル L 8 2 8 をトルエン 2 0 m に 溶解し、 7 時間 療 焼 した。 溶 葉 を 滅 圧 下留 去 し。 残 査 を シリカゲルカラムクロマトグラフィー (容 離 液: 酢 酸 エチル) に 付 し。 喪 配 化 合 物 を 得 た。

以下同様な方法で実施例2~47の化合物を 得た。得られた化合物の構造、収率、性状、及 びマススペクトルを表1~4に掲載した。

	G						_ £	
X X X (MB;%(始度比)	4(66) 187(100) 8(5, 14 ⁺)	4(58) 187(100) 8(5, 14 ⁺)	4(75) 187(100) 2(4 H ⁺)	8(100) 201(56) 3(2 M ⁺)	8(59) 201(100) 2(4 M ⁺)	5(100) 443(29) 8(37) 567(12 M	5(100) 443(17) 6(11, 11 ⁺)
X, X, Y Y (4) H CA -CH ₂ CH ₂ N Ph 54 CA R R 52 52 CA CA SA 37 NOL H -CH ₂ CH ₂ N -CH ₂ CH ₂ Ph 57 H CA R 61 H CA CH ₂ CH ₂ N 57 H CA CA 55			17	17		18	`	
K, X, Y H C.4 -CH ₂ CH ₂ N -Ph C.5 C.6 H C.5 C.6 KO ₂ H -CH ₂ CH ₂ N -CH ₂ Ph H C.6 C.6 H C.7 CH ₂ N -CH ₂ Ph H C.7 CH ₂ Ph H C.8	作して、	黄色柚状做	黄色固体 (93)	(2155)	黄色苗状物	•	语色苗状体	黄色固体 (134~136
ж п т т т т т т т т т т т т т т т т т т	政策	56	52	37	3.7	19	57	5.5
X H Z Z Z H Z	X	-CH CH N			wa⁵n⊃-{_}N²no⁵no-	` ,	(N, 412, 412, -	
12 日 12 日 15 C	χ	73	Ħ	70		73	缸	3
88 2 1 1 2 2 2 1 8 1 1 1 2 1 2 1 1 1 1 1	×	Ħ	70	70	NO.	坩	NO	Ħ
	张克	12	13:	14	15	91	17	. 60

x 収率 性 状 xs; 男(強度比) x (mp, ℃) xs; 男(強度比)	(157) 54 (157) 543(7) (157)	H2N NCH <ph (206-207)="" 167(52)="" 408(5)<="" 44(100)="" 60="" th="" 文色固体=""><th>H₂N N_{CH} 45 黄色曲状物 535(44) 701(100)</th><th>394(63) 536(21) 704(100, 14+1)</th><th>H₂CH₂N (CH<p<sub>I) 74 (158) 428(39) 737(18 M⁺)</p<sub></th><th>H₂N NCH 7</th><th>1)sN XCH()F 55 数典色曲状物 125(74) 203(100)</th></ph>	H ₂ N N _{CH} 45 黄色曲状物 535(44) 701(100)	394(63) 536(21) 704(100, 14+1)	H ₂ CH ₂ N (CH <p<sub>I) 74 (158) 428(39) 737(18 M⁺)</p<sub>	H ₂ N NCH 7	1)sN XCH()F 55 数典色曲状物 125(74) 203(100)
¥	-CH ₂ CH ₂ CH ₂	-ca2cu2NCHCPh	-ch ch2 N CH CPA	•	23 C4 C4 -CH, CH, CH, NCH <ph< th=""><th></th><th></th></ph<>		
			ш	79	7,	70	3
×	3	r)	_	0		_	, –
寒糖 X, X,	19 61	20 CL CL	21 NO, I	22 H C&	3	70	3

類の合成結果	M8 ; 型 (強度比)	116(100) 173(17) 595(2 lt ⁺)	116(100) 173(32) 584(1, 14)	色固体 117(60)146(100)(125-126)618(1, 以*)	194(100) 207(24) 629(1, ¼ ⁺)
CH, H CH,	任 状 (mb,で)	黄色油状物	•	黄色固体 (125~126	黄色油状物
	(多)	30	67	7.0	44 Dv
表 1 CH3	Y	-CH ₂ CH ₂ N CH ₃			. Ox 450 450-
	×	Ħ	77	ಶ	ш
	ĸ	ZON.	122	70	ъ́у.
	東龍 邓明斯 지	-	2	**	4

			- 22				
MB; Pg (強度比)	194(100) 207(33) 618(1, 14 ⁺)	160(100) 178(59) 595(1, 14 ⁴)	174(100) 405(3) 584(1, M ⁺)	174(100) 405(3) 592(2)	174(100) 300(5) 408(1)	174(180) 187(47) 609(1, M+)	174(77) 187(100) 609(4 M+)
作 株 (mp・で)	黄色固体	黄色苗状物	,	黄色固体	•	黄色油状物	
数色	77	57	80	99	49	45	55
I.	On 'Ho 'Ho-	-CH, CH, Ph	•	−ce, cu, N		NO ₂ -CH ₂ CH ₂ N Ph	•
×	73	22	70	ш	. 3	NO.	Ħ
×	12	*ON	щ	ζN	3	Ħ	₽
安 名 名 名	5	9	7	8	6	10	1.1 NO.2

167(100), 278(63), 426(54), 721(W⁺46) 187(100), 442(15),

630(M, 10)

黄色苗状物

29

-CH, CH, N Ph

製剤 X X X X X (現場 性 状 M8; ^m / ₆ (mp, T) M8; ^m / ₆ 5 C H -C ₁ B 33-n 65 (15) 55 (15) 55 (15 M ² c C C C C C C C C C C C C C C C C C C	M8; 四, (強既比)	365(15) 524(100) 635(12 M ⁺)	524(100) 632(20) 669(5.W ⁺)
(成務) -C ₁₄ H 33 -n 65	мв;		524(10
(成務) -C ₁₄ H 33 -n 65	ر در ¥	牧	
(成者) -C ₁₆ H ₃₃ -n 65		黄色苗	•
	政策		25
決略 X X X 35 C.6 日 C.6	Å	-C ₁₆ H ₃₃ -n	
表 3 3 2 40 C 4	x,		3
张 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	×-	3	3
	東朝	39	40

	- 	対のない。
•	CH COER'S	CH, HCH,
7		
13V		

畔

M8; 17, (強既比)

91(51), 210(100) 575(59)

70 黄色亩状物

-CH, CH, N CH, Ph

英施网络

91(49), 209(100) 652(M,7)

無色固体 (1385)

-CH2 CH2N CH2 Ph

4 2

無色固体 (214)

-CH2 CH2 N J CH Ph

														_
							- 1	ae -	-					
(全通號)。/自:BM		120(100) 201(78)	532(22) 623(6 M ⁺)	201(100) 521(21)	612(7, 1/4)	225(100) 449(40) 647(80)		212(100) 472(25) 670(50, 14 ⁺)		146(56) 565(100) 582(12, 14 ⁺ 1)		159(100) 300(27)	670(11, 14)	
	(mb. C)	黄色植状物				黄色 医午			•	事命有字	1 × × × × × × × × × × × × × × × × × × ×			
取る	3	4B		*	,	5.6		9	,	7.1		5.3	;	
¥		N\CH,				-ch, ch, M		•		-CH. CH. N				
×	\rfloor	Ħ	\Box	2		:	=		3			-	2	\exists
×		3 5 NO.	1	Ħ			35		70 00		5	~	Į.	
突帆		×0		4.5	: [35		7 7	;]	. ON . 2		~	

M8; m/e (強度比)	135(100) 548(91) 613(5, M²)	135(100) 491(75) 636(4 M+)	174(100) 606(22) 625(7, 14)	174(100) 366(16) 646(10, 14)	353(100) 458(28) 475(4.14)	-	328(20) 353(100) 464(5 M²)
年(二)、八)	数黄色苗状物	·			乗色固体 (222~223)	(204~207)	农 ★包题存 (184~185)
新多	38	63	31	69	85	7.3	79
Υ .	-CH ₂ CH ₂ N - CH ₃		-CH2 CH2 CH (TN)-Ph		-CH2CH2CN		-CH2 CH2 CN
×	н	3	Ħ	3		3	Ħ
×	26 NO ₂ H	27 64 64	o g	3	50 NQ H	Ħ	73
東朝	26	27	28	29	30	3.1	52

数のも段替来	M8 %(強應比)	637 (M = 3) 620(7) 174(100)
NO. THE SECOND IN CO. 1 SECOND	性 株 (m)	黄色油状物
	政策	3.7
CH CH CH	X	-CH2 CH2 NO-Ph
K	奥施例 馬	4.5

- 27 -

製剤例1:錠剤

成分(100点袋)

	-			•
ステアリン酸マグネシウム			2.	0
メチルセルロース			3.	0
数結晶セルロース		2	5.	0
コーンスターチ		7	5.	٥
乳精	1	9	a.	0
実施例1の化合物の塩穀塩			5.	0 (F)

上記成分分量を計り、V型混合機に入れ、均一に混合する。この混合物末を直接打錠法で錠剤とする。一錠当たりの重量は 5 0 0 号である。

製剤例 2 : カブセル剤 成分 (1 0 0 0 錠)

ステアリン酸マグネシウム

 実施例1の化合物の塩酸塩
 5 (f)

 コーンスターチ
 1 4 5

 飲給品セルロース
 1 4 5

5 0 0

 实施例系	Å	坂路(多	性 状(mb,で)	M8 %(強展)
46	rd >HON N THO HO-	08	黄色固体 (140)	44(100), 167(95) 300(22), 697(14°,
 4.7	-сн₂ кууър	2.3	茶色油状物	174(100) 359(23 606(14 ⁺ .1)

- 28

上記成分分量を計り、V型混合機に入れ、均一に混合する。この混合粉末を硬カブセルに充 切する。1 カブセル当りの内容物は 3 D O 写で ある。

製剤例3:シロップ剤

成分(2多液)

 実施例1の化合物の塩酸塩
 2.0 (f)

 白糖
 5.0

 グリセリン
 5.0

 香味剤
 0.1

 96多エタノール
 10.0

 p-オヤン安息香酸メチル
 0.03

蒸留水 全量1000月にする量 白糖かよび実施例1の化合物の塩酸塩を60 月の温水に溶解した後、冷却後。グリセリンタ よびエタノールに溶解した谷味剤溶液を加えた。 ついでとの混合物に水を加えて全量1000月 にした。

製剤例4:散剤

	1	0	D.	0	•
メチルセルロース			1	0	
数結晶セルロース		1	0.	0	
乳 植		8	8.	0	
実施例1の化合物の塩酸塩			ĭ.	0	(F)

上記の成分分量を計り、 V 型混合機に入れ均一に混合した。

(発明の効果)

(1) 降圧作用

自然発生高血圧ラット(SHR)に対し、 化合物を経口投与し、血圧は尾動脈から非 観血的に測定した。結果を殺5に記載した。

(1) 急性毒性試験

表 5 降圧作用と毒性試験の結果

供試化合物の 実施例番号		E 作 用 9)最大降圧度(6)	LD ₅₀
14の塩酸塩	1 0	5 9	200
20 න	10	3 7	400<
250	1 5	3 6	600
45Ø /	1 D	3 5	150
対称化合物 注)	2 0	3 7	550 .

特許出顧人 日産化学工業株式会社

- 31 -