万变不离其宗: 用统一框架理解向量化召回

Original 石塔西 推荐道 Today

收录于话题

#推荐算法 13 #搜索算法 2 #深度学习 9 #召回算法 4 #图神经网络 6

前言

常读我的文章的同学会注意到,我一直强调、推崇,不要孤立地学习算法,而是要梳理算法的脉络+框架,唯有如此,才能真正融会贯通,变纸面上的算法为你的算法,而不是狗熊掰棒子,被层出不穷的新文章、新算法搞得疲于奔命。

之前,我在《推荐算法的"五环之歌"》梳理了主流排序算法常见套路:

- 特征都ID化。类别特征天然是ID型,而实数特征需要经过分桶转化。
- 每个ID特征经过Embedding变成一个向量,以扩展其内涵。
- 属于一个Field的各Feature Embedding通过Pooling压缩成一个向量,以减少DNN的规模
- 多个Field Embedding拼接在一起,喂入DNN
- DNN通过多层Fully Connection Layer (FC)完成特征之间的高阶交叉,增强模型的扩展能力。
- 最后一层FC的输出,就是最终的logit,与label (e.g., 是否点击?是否转化) 计算binary cross-entropy loss。

相比于排序那直白的套路,召回算法,品类众多而形态迥异,看似很难找出共通点。如今比较流行的召回算法,比如: item2vec、DeepWalk、Youtube的召回算法、Airbnb的召回算法、FM召回、DSSM、双塔模型、百度的孪生网络、阿里的EGES、Pinterest的PinSAGE、腾讯的RALM和GraphTR、......

- 从召回方式上分,有的直接给user找他可能喜欢的item (user-to-item,简称u2i);有的是拿用户喜欢的item找相似item (item-to-item,简称i2i);有的是给user查找相似user,再把相似user喜欢的item推出去 (user-to-user-to-item,简称u2u2i)
- 从算法实现上分,有的来自"前深度学习"时代,老当益壮;有的基于深度学习,正当红;有的基于图算法,未来可期(其实基于图的,又可细分为游走类和卷积类)。
- 从优化目标上分,有的属于一个越大规模的多分类问题,优化softmax loss;有的基于Learning-To-Rank(LTR),优化的是hinge loss或BPR loss

但是,如果我告诉你,以上这些召回算法,其实都可以被一个统一的算法框架所囊括,惊不惊奇、意不意外?本文就介绍我归纳总结的NFEP (Near, Far, Embedding, Pairwie-loss) 框架,**系统化地理解向量化召**

回算法。在详细介绍之前,我首先需要强调,这么做的目的,并非要将本来不相干的算法"削足适履"硬塞进一个框架里,哗众取宠,而是有着两方面的重要意义:

- 一是为了开篇所说的"**融会贯通**"。借助NFEP,你学习的不再是若干孤立的算法,而是一个算法体系,不仅能加深对现有算法的理解,还能轻松应对未来出现的新算法;
- 二是为了"**取长补短**"。大多数召回算法,只是在NFEP的某个维度上进行了创新,而在其他维度上的做法未必是最优的。我们在技术选型时,没必要照搬某个算法的全部,而是借助NFEP梳理的脉络,博采多家算法之所长,取长补短,组成最适合你的业务场景、数据环境的算法。

接下来,我首先介绍NFEP框架,然后逐一介绍如何从NFEP的框架视角来理解Airbnb召回、Youtube召回、Facebook EBR、Pinterest的PinSAGE、微信GraphTR、FM召回这几种典型的召回算法。

NFEP: 理解向量化召回的统一框架

· 向量化召回简介 ·

NFEP框架关注的是"向量化召回"算法,也就是将召回建模成在向量空间内的近邻搜索问题。传统的 ItemCF/UserCF那种基于统计的召回方式,和阿里TDM那种基于树模型层次化划分搜索空间的召回算法,不在讨论范围之内。

假设向量化召回,是拿X概念下的某个x,在向量空间中搜索Y概念下与之最近的y。其serving的套路就是

- 离线时,将几百万、上干万的y,通过模型获得它们的embedding,将这些y embedding灌入FAISS并建立索引
- 在线时,拿请求中的x,或提取、或生成x embedding,在FAISS中查找最近的y embedding,将对应的y 作为召回结果返回

为了达成以上目标,我们在训练的时候,需要考虑四个问题: (1) 如何定义X/Y两概念之间的"距离近"? (2) 如何举反例,即如何定义X/Y之间的"距离远"? (3) 如何获取embedding? (4) 如何定义loss来优化? 这4个问题,对应着NFEP框架的4个维度,接下来将会逐一详细分析。

· Near: 如何定义"近"?

这取决于不同的召回方式

- i2i召回: x,y都是item, 我们认为同一个用户在同一个session交互过的两个item在向量空间是相近的, 体现两个item之间的"相似性"。
- u2i召回: x是user, y是item。一个用户与其交互(e.g., 点击、观看、购买)过的item应该是相近的,体现 user与item之间的"匹配性"。
- u2u召回: x,y都是user。比如使用孪生网络,则x是user一半的交互历史,y是同一用户另一半交互历史,二者在向量空间应该是相近的,体现"同一性"。

无论哪种召回方式,为了能够与FAISS兼容,我们都拿x embedding和y embedding之间的"点积"或"cosine"来 衡量距离。显然,点积或cosine越大,代表x与y在向量空间越接近。

。 Far: 如何定义"远"?

其实就是举反例。举出的 $< x, y_->$ 反例,要能够让模型见识到形形色色、五花八门、不同角度的" x, y_- 之间差异性",达到让模型"**开眼界,见世面**"的目的。特别是在训练u2i召回模型时,一个非常重要的原则就是,**干万不能(只)拿"曝光未点击"做负样本**。否则,正负样本都来自"曝光"样本,都是与user比较匹配的item,而在上百万的候选item中,绝大部分item都是与user兴趣"八杆子打不着"的。这种训练数据与预测数据之间的bias,将导致召回模型上线后"水土不服"。具体原理解释,请参考我的另一篇文章《负样本为王》。

为了达到以上目标,获得 y_- 最重要的方式就是在整个y的候选集中随机采样:

- 有同学担心,随机采样得到的 y_- 有可能与x是相近的。不排除这种可能性,但是在一个实际的推荐系统中,候选的y一般是成百上干万,而每次随机采样的 y_- 不会超过100,这种false negative的概率极低。
- 随机采样并非uniform sampling,那样会导致热门item霸占召回结果,从而失去个性化。因此在采样时,需要打压热门item。比较有效的一种方式就是学习word2vec中打压高频词的方法,降低热门item成为正样本的概率,提升热门item成为负样本的概率。具体公式细节,见的我的知乎回答《推荐系统传统召回是怎么实现热门item的打压?》。

但是,只通过随机采样获得 y_- 也有问题,就是会导致模型的精度不足。假如,你要训练一个"相似图片召回"算法。

- 当x是一只狗时, y_+ 是另外一只狗。 y_- 在所有动物图片中随机采样得到,大概率是到猫、大象、乌鸦、海豚、…。这些随机负样本,对于让模型"开眼界,见世面"十分重要,能够让模型快速"去伪存真"。
- 但是猫、大象、乌鸦、海豚、…这样随机的负样本,与正样本相比相差太大,使得模型只观察到粗粒度就足够了,没有动力去注意细节,所以这些负样本被称为easy negative。

■ 为了能给模型增加维度,迫使其关注细节,我们需要让其见识一些hard negative,比如狼、狐狸、…这种与x、 y_+ 还有几分相似的负样本

不同的算法,采取不同的方式获得hard negative,在下文中将会详细分析。

Embedding: 如何生成向量?

用哪些特征学出embedding?

۰

- 有的算法只使用UserId/DocId
- 有的算法除此之外,还使用了画像、交互历史等side information
- 图卷积算法还使用了user节点、item节点在图上的连接关系

通过什么样的模型学习出embedding?

- 只使用ID特征的算法,模型就只有一个embedding矩阵,通过id去矩阵相应行提取embedding
- 有的模型,将特征(id+side information)喂入DNN,逐层让特征充分交互,DNN最后一层的输出就是 我们需要的embedding
- 基于图卷积的模型中,目标节点(user或item)的embedding,是由其邻居节点的embedding,加上节点本身信息,聚合而成。一来,图上的节点不仅有user/item,还可以包括性别、年龄、职业等属性节点;二来,邻居节点也有自己的邻居。图的这种性质,使得节点embedding能够利用的信息更加广泛,并且兼具本地与全局视角。

召回模型的特点:解耦

u2i召回,与排序,虽然都是建模user与item的匹配(match)关系,但是在样本、特征、模型上都有显著不同。在之前的文章中,我详细论述了二者在样本选择上的区别,这一节将论述二者在特征、模型上的区别。简言之,就是:排序鼓励交叉,召回要求解耦。

排序鼓励交叉

- 特征上,排序除了利用user feature(包括context)、item feature,最重要还使用了大量的交叉统计特征,比如"user tag与item tag的重合度"。这类交叉统计特征是衡量"user与item匹配性"的最强信号,但是也将user feature与item feature紧密耦合在一起。
- 模型上,排序一般将user feature、item feature、交叉统计特征拼接成一个大向量,喂入DNN,让三类特征通过多层全连接层(Fully Connection, FC)进行充分交叉。从第一层FC之后,你就已经无法分辨,

召回要求解耦

排序之所以允许、鼓励交叉,还是因为它的候选集比较小,最多不过几千个。**换成召回那样,要面对百万、干万级别的海量候选item,如果让每个user与每个候选item都计算交叉统计特征,都过一遍DNN那样的复杂操作,是无论如何也无法满足线上的实时性要求的**。所以,召回要求解耦、隔离user与item特征。

- 特征上,尽管信号强,但是**召回不允许使用"交叉统计特征**"。(放弃这么强的信号,的确可惜。如何在不使用交叉统计特征的情况下,仍然达到使用了它们的效果?有一种方法是使用蒸馏,详情见《Privileged Features Distillation at Taobao Recommendations》)
- 模型上,**禁止user feature与item feature出现DNN那样的多层交叉,二者必须独立发展**,i.e., user子模型,利用user特征,生成user embedding;item子模型,利用item特征,生成item embedding。唯一一次user与item的交叉,只允许出现在最后拿user embedding与item embedding做点积计算匹配得分的时候。

只有这样,才能允许我们

- 离线时,在user未知的情况下,独立生成item embedding灌入faiss;
- 在线时,能独立生成user embedding,避免与每个候选item进行"计算交叉特征"和"通过DNN"这样复杂耗时的操作

* Pairwise-loss: 如何成对优化? *

排序阶段经常遵循"CTR预估"的方式

- 样本上, <user, item_, 1>和<user, item_, 0>是两条样本
- loss上使用binary cross-entropy这样的pointwise loss

能够这么做的前提是,其中的 $< user, item_-, 0>$ 是"曝光过但未点击"的"真负"样本,label的准确性允许我们使用pointwise loss追求"绝对准确性"。

但是在召回场景下,以上前提并不成立。以常见的u2i召回为例,绝大多数item从未给user曝光过,我们再从中随机采样一部分作为负样本,这个negative label是存在噪声的。在这种情况下,再照搬排序使用binary cross-entropy loss追求"预估值"与"label"之间的"绝对准确性",就有点强人所难了。所以,召回算法往往采用Pairwise LearningToRank(LTR),建模"排序的相对准确性":

■ 样本往往是<user,item_,item_>的三元组形式

为了实现Pairwise LTR,有几种Loss可供选择。

一种是sampled softmax loss。

- 这种loss将召回看成一个超大规模的多分类问题,优化的目标是使,user选中item+的概率最高。
- user选中item+的概率= $\frac{exp(v_u \cdot v_{i+})}{\sum_{|I|} exp(v_u \cdot v_i)}$, 其中 v_u 是user embedding, v_i 代表item embedding, |I|代表整个 item候选集。
- 为使以上概率达到最大,要求分子,即user与item+的匹配度,尽可能大;而分母,即user与除item+之外的所有item的匹配度之和,尽可能小。体现出上文所说的"**不与label比较,而是匹配得分相互比较**"的特点。
- 但是,由于计算分配牵扯到整个候选item集合|I|,计算量大到不现实。所以实际优化的是sampled softmax loss,即从|I|中随机采样若干 $item_-$,近似代替计算完整的分母。

$$lacksquare L_{SampledSoftmax} = \sum\limits_{(u,i_+)} log(1 + exp(-v_u \cdot v_{i_+})) + \sum\limits_{(u,i_-)} log(1 + exp(v_u \cdot v_{i_-}))$$

另一种loss是margin hinge loss,

- 优化目标是: user与正样本item的匹配程度,要比, user与负样本item的匹配程度,高出一定的阈值。
- $lacksquare \mathbb{P}$, L_{hinge} = $\sum_{i}^{n} max(0, margin user \cdot item_{+} + user \cdot item_{-})$

因为margin hinge loss多出一个超参margin需要调节,因此我主要使用如下的BPR Loss。

- 其思想是计算"给user召回时,将item+排在item-前面的概率", $p_{CorrectOrder} = sigmoid(user \cdot item_{+} user \cdot item_{-})$
- 因为<user, item+, item->的ground-truth label永远是1,所以将 $p_{CorrectOrder}$ 喂入binary cross-entropy loss 的公式,就有 $L_{BPR} = -log(p_{CorrectOrder}) = log(1 + exp(user \cdot item_- user \cdot item_+))$

注意,为了方便行文,以上公式都是针对u2i召回的举例,但是u2u,i2i召回也具备类似的公式。

用NFEP理解典型向量化召回算法

本节将从NFEP框架的视角,来理解几种主流、经典的召回算法,看看这些算法是在哪些维度上进行了创新,存在哪些内在联系。

《Real-time Personalization using Embeddings for Search Ranking at Airbnb》是一篇经典论文,其中介绍了 listing embedding和user/listing-type embedding两种召回算法。

listing embedding召回

listing就是Airbnb中的房源,所以基于listing embedding的召回,本质就是一个i2i召回。

Near

本来是想照搬word2vec,将用户的点击序列看成一个句子,认为一个滑窗内的两个相邻listing是相似的,它们的embedding应该接近。

但是仔细想想,以上想法存在严重问题

- word2vec建模的是语言模型的"共现性",即哪些词语经常一起出现,因此需要一个滑动窗口限制距离
- 而这里,我们建模的是listing之间的相似性,难道只有相邻listing之间存在相似性?一个点击序列首尾的两个listing就不相似了吗?

所以,理想情况下,一个序列中任意两个listing,它们的embedding都应该是相近的。但是在实践中发现,这样的组合太多,所以Airbnb还是退回到word2vec的老路,即还是只拿一个滑窗内的中心listing与邻居 listing组成正样本对。但是由于"最终成功预订"的那个listing有最强的业务信号,所以我们拿它与点击序列中的每个listing组成正样本对。这也就是Airbnb论文中"增加final booked listing作为global context加入每个滑窗"的原因。

Far

绝大部分负样本还是随机采样生成的。但是,Airbnb发现,用户点击序列中的listing多是同城的,导致正样本多是同城listing组成,而随机采样的负样本多是异地的,这其中存在的bias容易让模型只关注"地域"这个粗粒度特征。

为此,Airbnb在全局随机采样生成的负样本之外,还在与中心listing同城的listing中随机采样一部分listing作为hard negative,以促使模型能够关注除"地域"外的更多其他细节。

Embedding

特征只用了listing ID,模型也只不过是一个大的embedding矩阵而已。缺点是对于新listing,其id不在embedding矩阵中,无法获得embedding。

Pairwise-loss

使用sampled softmax loss。

user/listing-type embedding召回

Near

这个所谓的用user-type去召回listing-type,实际上就是u2i召回,只不过Airbnb觉得预订行为太稀疏,所以将相似的user聚类成user-type,把相似的listing聚类成listing-type。

既然如此,"Near"步骤与一般的u2i召回,别无二致。即,如果某user预订过某listing,那么该user所属的user-type,与该listing所属的listing-type就应该是相近的。

Far

绝大部分负样本还是随机采样生成的。除此之外,增加"被owner拒绝"作为hard negative,表达一种非常强烈的"user~item不匹配"。

Embedding

特征只有user-type ID和listing-type ID,模型也只不过拿ID当行号去embedding矩阵中抽取embedding。

Pairwise-loss

使用sampled softmax loss。

点评

Airbnb的两个算法,在Embedding和Pairwise-loss两个步骤上,都是标准操作,平淡无奇。

由于Airbnb论文的话术向word2vec"生搬硬套",给人一种感觉,在学习listing embedding时增加final booked listing作为global context加入每个滑窗,在学习user/listing-type embedding时将user-type和listing-type组成异构序列,都是脑洞大开的创新。但从Near的角度来看

- word2vec建模的是词语间的"共现性",listing embedding建模的是一个session中任意两个listing之间的"相似性",而user/listing-type embedding建模的是user和listing之间的"匹配性",三者的目标截然不同。
- 序列、滑窗只是word2vec刻画"共现性"所独有的概念,完全没必要出现在学习listing embedding和 user/listing-type embedding的过程中。
- 学习listing embedding时增加final booked listing作为global context,与其说是创新,不如说是考虑计算量之后的一种折中方案。
- 让user type和其预订过的listing type组成正样本对,从"匹配性"的角度来看,天经地义,完全没必要像 论文中那样组成user+listing异构序列,从"共现性"的角度来解释。

在Far这个维度,Airbnb增加"同城负样本"和"owner拒绝负样本",是根据业务逻辑增加hard negative的典型代表。

Youtube召回算法

ø

Youtube在《Deep Neural Networks for YouTube Recommendations》一文中介绍的基于DNN的召回算法,非常经典,开DNN在召回中应用之先河,被业界模仿。

Near

۰

u2i召回的典型思路: user与其观看过的视频, 在向量空间中是相近的。

Far

论文中只提到了随机负采样,没有提到如何打压热门视频,也没有提到如何增加hard negative。

Embedding

user embedding

- 。 用户看过的视频的embedding, pooling成一个向量
- 。 用户搜索的关键词的embedding, pooling成一个向量
- 。 以上两个向量, 加上一些用户的基本属性, 拼接成一个大向量, 喂入多层全连接(FC)进行充分交叉
- 。 最后一层FC的输出就是user embedding

video embedding

- 。 特征只用了video id,模型也只不过是一个大的embedding矩阵
- 整个模型在两个地方要用到video embedding, 一个自然是最后计算user embedding与video
 embedding点积作为匹配分的时候要用到,另一处是用户看过的视频的embedding要参与生成user
 embedding
- 。 这两处video embedding是否需要共享?原文中没有详细说明。我是偏向于共享的,一来降低模型规模,二来增加一些冷门video得到训练的机会。

Pairwise-loss

使用sampled softmax loss。

Facebook在《Embedding-based Retrieval in Facebook Search》一文中介绍的算法。如果想了解更多的技术细节,请参考我的另一篇文章《负样本为王:评Facebook的向量化召回算法》

Near

u2i召回的典型思路: user与其观看过的视频, 在向量空间中是相近的。

Far

绝大部分负样本依然是通过随机采样得到的。论文明确提出了, **召回算法不应该拿"曝光未点击"做负样本**。

另外,本文最大的贡献是提供了两种挑选hard negative的方案。Facebook的EBR与百度Mobius的作法非常相似,都是用**上一版本的召回模型筛选出"没那么相似"的<user,item>对,作为额外负样本,来增强训练下一版本召回模型**。具体做法上,又分online和offline两个版本

■ 在线筛选

- 。 假如一个batch有n个正样本对, $< u^{(i)}, t_+^{(i)}>$,那么 $u^{(i)}$ 的hard negative是利用上一轮迭代得到的召回模型,评估 $u^{(i)}$ 与同一个batch的除 $t_+^{(i)}$ 之外的所有 t_+ 的匹配度,再选择一个与 $u^{(i)}$ 最相似的作为hard negative。
- 。 文章还提到,一个正样本最多配置2个这样的hard negative,配置多了反而会有负向效果。
- 。 缺点是仅仅采用一个batch中的item作为hard negative的候选集,规模太小,可能还不足够hard。

■ 离线筛选

- 。 拿当前的召回模型,为每个候选item生成item embedding,灌入FAISS
- 。 拿当前的召回模型,为每个user生成user embedding,在FAISS中检索出top K条近邻item
- 。 这top K条近邻item中,排名靠前的是positive,排名靠后的是easy negative,只有中间区域 (Facebook的经验是101-500) 的item可以作为hard negative。
- 将hard negative与随机采样得到的easy negative混合。毕竟线上召回时,候选库里还是以easy negative为主,所以作者将比例维持在easy:hard=100:1
- 。 拿增强后的负样本,训练下一版召回模型。

Embedding

模型采用经典的双塔模型。双塔模型鲜明体现了前文所述的"召回要求解耦"的特点:

- 模型不会将user feature与item feature接入一个DNN,防止它们在底层就出现交叉
- user特征,通过user tower独立演进,生成user embedding
- item特征,通过item tower独立演进,生成item embedding

■ 唯一一次user与item的交叉,只允许出现在最后拿user embedding与item embedding做点积计算匹配得分的时候

只有这样,才能允许我们

- 离线时,在user未知的情况下,只使用item tower,独立生成item embedding灌入faiss;
- 在线时,只使用user tower独立生成user embedding,避免与每个候选item进行"计算交叉特征"和"通过 DNN"这样复杂耗时的操作

Pairwise-loss

使用margin hinge loss

Pinterest 推出的基于 GCN 的召回算法 PinSAGE,被誉为"GCN 在工业级推荐系统上的首次成功运用"。对技术细节感兴趣的同学,推荐读我的另一篇文章《PinSAGE 召回模型及源码分析》。

Near

和Airbnb一样,我们可以认为被同一个user消费过的两个item是相似的,但是这样的排列组合太多了。

为此, PinSAGE采用随机游走的方式进行采样:在原始的user-item二部图上,以某个item作为起点,进行一次二步游走 (item→user→item), 首尾两端的item构成一条边。将以上二步游走反复进行多次,就构成了item-item同构图。

在这个新构建出来的item-item同构图上,每条边连接的两个item,因为被同一个user消费过,所以是相似的,构成了训练中的正样本。

Far

PinSAGE提供了一种基于随机游走筛选hard negative的方法。

■ 在训练开始前,

- 。 从item-item图上的某个节点u, 随机游走若干次。
- 。 游走过程中遍历到的每个节点v,都被赋予一个分数L1-normalized visit count=该节点被访问到的次数/随机游走的总步数。
- 。 这个分数,被视为节点v针对节点u的重要性,即所谓的Personal PageRank (PPR)。

■ 训练过程中

- 。 针对item-item同构图上的某一条边u→v,u和v就构成了一条正样本,它们的embedding应该相近
- 。在图上所有节点中随机采样一部分ne,u和每个ne就构成了一条负样本,它们的embedding应该比较远。因为是随机采样得到的,所以ne是easy negative。
- 。除此之外,还将u所有的邻居,按照它们对u的重要性(PPR)从大到小排序,筛选出排名居中(e.g. 论文中是2000~5000名)的那些item。这些item与u有几分相似,但是相似性又没那么强,从中再抽样一批item,作为"u"的hard negative。

Embedding

每个item embedding通过图卷积的方式生成。图卷积的核心思想就是:利用边的信息对节点信息进行聚合从而生成新的节点表示。多层图卷积的公式如下所示。

- 第一行,说明各节点h_n的初始表示,就等同于各节点自身的特征。这时还没有用上任何图的信息。
- 第二行,第 k 层卷积后,各节点的表示h^k_v, 和两部分有关

- 。 第一部分,括号中蓝色+黄色部分,即先聚合当前节点的邻居的第 k-1 层卷积结果 ($\sum_{u \in N(v)} \frac{h_u^{k-1}}{N(v)}$),再做线性变换。这时就利用上了图的信息,即某节点的邻居节点上的信息沿边传递到该节点并聚合(也就是卷积)
- 。 第二部分,括号中红色+绿色部分,即拿当前节点的第 k-1 层卷积结果(h_n^{k-1}),做线性变换
- 。 可以看到,如果不考虑括号中的第一部分,这个公式简化为 $h_v^k = \sigma(B_k h_v^{k-1})$,是不是很眼熟?这不就是传统的 MLP 公式吗?所以,图卷积的思想很简单,就是每层在做非线性变换之前,每个节点先聚合一次邻居的信息。
- 第三行,最后一层卷积后的结果,成为各节点最终向量表示,用于计算两节点存在边的可能性。

Parwise-loss

使用margin hinge loss。

这是我见过的最复杂的生成embedding的算法,没有之一。

Near

就是传统i2i召回的思路,在一个session内被观看的多个video之间是相似的,它们的embedding接近。

Far

就是随机负采样那一套,文中没有涉及打压热门视频,也没有涉及筛选hard negative。

Embedding

与上边介绍过的PinSAGE建立在item-item的同构图上有所不同,GraphTR建立在包括了user, video, tag, media (视频来源)这4类节点(每类称作一个域)的异构图上。每个节点要聚合来自多个领域的异构消息。

为了防止异构消息相互抵销而引入信息损失,GraphTR利用了三种聚合方式,**从三种不同粒度对于不同类型的邻居节点上的信息进行聚合**

- 将各域邻居节点的embedding拼接成一个大向量,按照传统的GraphSAGE方式聚合。这种聚合方式,不区分域,粒度最粗。
- 接下来的FM聚合,细致了一些,让不同域的邻居信息之间的两两交叉。
- 最后的Transformer聚合方式,粒度最细,不仅考虑了不同域之间的交叉,还考虑了一个域内部多个邻居节点之间的交叉。

为了生成item embedding,使用了GraphSAGE+FM+Transformer三种大杀器,是我见过的最复杂的向量化召回算法。对技术细节感兴趣的同学,可以参考我的另一篇文章《GraphSAGE+FM+Transformer强强联手:评微信的GraphTR模型》。

Pairwise-loss

sampled softmax loss

与风头正劲的众多基于DNN/GNN的召回算法相比,FM召回算法,如今不太引人注目。但是,FM召回性能优异,便于上线和解释,而且对冷启动新用户或新物料都非常友好,仍然不失为召回算法中的一把利器。

Near

u2i召回的典型思路: user与其消费过的item, 在向量空间中是相近的。

Far

绝大部分负样本还是随机采样生成的。同时在随机采样的过程中,要注意打压热门item,具体细节,见的我的知乎回答《推荐系统传统召回是怎么实现热门item的打压?》

至于如何增加hard negative来提高模型的精度,可以参考Facebook EBR中在线与离线筛选hard negative的做法。

Embedding

以上介绍的所有u2i召回(e.g, Youtube召回、Facebook EBR),召回的依据都只是user embedding与item embedding的点积,即**只考虑了user与item的匹配程度**。但是,**在一个实际的推荐系统中,用户喜欢的未必一定是与自身最匹配的,也包括一些自身性质极佳的item**(e.g.,热门视频、知名品牌的商品、著名作者的文章)。所以,我们在给某对儿<user,item>打分时,除了user/item的匹配度,**还需要考虑item本身的受欢迎程度**。

在FM召回中增加item自身得分非常简单,只需要将user embedding和item embedding都增广一维,如下图所示。其中 E_{user} 是某user包含的所有特征embedding之和, E_{item} 是某Item包含的所有特征embedding之和。

$$E_{user}^{new} = concat(1, E_{user})$$
 $E_{item}^{new} = concat(\sum Item特征一阶权重 + \sum Item特征内部交叉, E_{item})$

具体公式细节,请参考我的文章《FM:推荐算法中的瑞士军刀》中的FM召回一节。需要特别指出的是,这种通过向量增广考虑"item本身的受欢迎程度"的做法,同样适用于其他u2i召回算法(e.g.,e.g, Youtube召回、Facebook EBR),有助于提高它们的精度。

Pairwise-loss

在我的实现中, 我使用了BRP loss。

总结

从NFEP框架视角来理解向量化召回算法,各算法的特点梳理如下表所示。

召回算法	模式	Near	Far	Embedding	Pairwise-loss
Airbnb listing召回	121	 一个点击序列中的任意两个item都相近 为减少计算量,照撤word2vec,认为只在窗口内的两item才相近 将具备最强业务信号的item作为global context加入每个窗口 	- 随机负采样 - 根据业务逻辑增加hard negative	只利用IO,从embedding矩阵中提取相应行	sampled softmax loss
Airbnb user/listing—type召回	u2i	user与其消费过的item,应该是相近的	• 随机负采样 • 根据业务逻辑增加hard negative	只利用ID , 从embedding矩阵中提取相应行	sampled softmax loss
Youtube召回	u2i	user与其消费过的item,应该是相近的	隨机负采样	user embedding:将用户信息喂入DNN,DNN最后一层的输出 item embedding:只利用ID从embedding矩阵提取相应行	sampled softmax loss
Facebook EBR	u2i	user与其消费过的item,应该是相近的	・ 随机负采样・ 不应该用"曝光未点击"做负样本・ 用上一版模型筛选hard negative	双塔模型 • user特征,通过user tower独立演进,生成user embedding • item特征,通过item tower独立演进,生成item embedding	margin hinge loss
百度的孪生网络	u2u	将一个用户对iten的交互历史拆解为两份, 其中一半历史与另一半应该是相似的	随机负采样	双塔模型 • 拿用户的一半交互历史喂入一塔 • 塔的最后一层输出,代表这一半交互历史的user embedding	bpr loss
Pinterest的PinSAGE	121	被同一个user消费过的item之间应该是相近的为减少计算量,通过随机游走,对所有可能的item pair进行采样	 随机负采样 通过Personal PageRank筛选hard negative	同构图上卷积, 通过聚合节点本身信息与邻居信息获得节点embedding	margin hinge loss
微信的GraphTR	121	在一个session内被消费的多个item之间是相近的	随机负采样	异构图上的卷积 ・既通过FM让不同领域的邻居之间相互交叉 ・又通过Transformer让同一领域的邻居之间相互交叉	sampled softmax loss
FM召回	u2i	user与其消费过的item,应该是相近的	 随机负采样 打压热门item 借鉴Facebook的方法增强hard negative 	 user所包含的feature embedding相加得到user embedding item所包含的feature embedding相加得到item embedding 向量增广一维,以考虑item本身的受效迎程度 	bpr Toss

主流向量化召回算法梳理

可以看到,通过NFEP框架的梳理,各召回算法间的异同变得清晰,便于我们加深理解,融会贯通。

而当你为自己的召回项目选型的时候,**你可能希望实现双塔模型,还希望模仿**Facebook**的做法来增强hard negative,同时还要像FM召回一样将"item本身受欢迎程度"考虑在内**。借助NFEP框架的梳理,我们可以更好地取长补短,设计出最适合你的业务场景、数据环境的召回算法。

- END -

喜欢此内容的人还喜欢

2020年度「炼丹笔记」干货集锦

炼丹笔记

图算法在网络黑产挖掘中的思考

DataFunTalk

入职半年小结 | 给应届校招算法同学的几点建议

蘑菇先生学习记