MA146 Methods of Mathematical Modelling 1, Assignment 3

Dyson Dyson

Question 1

Objects moving in air experience a drag. Let us specifically consider a ball of radius r that moves with velocity v. We assume that its drag d also depends on the density ρ of the air and its dynamic viscosity μ , and write the problem in the form

$$d = u(r, v, \rho, \mu)$$

with some function u that we want to learn more about.

Perform a dimensional analysis using the power of μ to express the solution to the emerging system of linear equations.

Hint: the viscosity has dimension $[\mu]=ML^{-1}T^{-1},$ and the drag (force) $[d]=MLT^{-2}$

Let $a, b, c, d \in \mathbb{Z}$. Then

$$[d] = \left[r^a v^b \rho^c \mu^d \right] = L^a L^b T^{-2b} M^c L^{-3c} M^d L^{-d} T^{-d} = M L T^{-2}$$

Then we get the simultaneous equations

$$c+d=1$$

$$a+b-3c-d=1$$

$$-2b-d=-2$$

We don't have enough information to solve the system from here, but we can simplify to get

$$a = 3 - \frac{3}{2}d$$
$$b = 1 - \frac{d}{2}$$
$$c = 1 - d$$

Since they're all integers, we know that d is even, so we can just try even values of d.

d=2 gives

$$a = 0$$

$$b = 0$$

$$c = -1$$

$$d = 2$$

But we want the radius and velocity to be part of the equation, so we don't want a=b=0.

d=4 gives

$$a = -3$$

$$b = -1$$

$$c = -3$$

$$d = 4$$

Therefore $[d] = \left[r^{-3}v^{-1}\rho^{-3}\mu^4\right]$.

Question 2

To model the freezing of a pond at very cold temperatures, assume that the thickness of the ice on it increases at a rate inversely proportional to its thickness (we here ignore the finite depth of the pond).

Q2 (a)

Denoting the thickness of the ice by x(t) as a function of time t, formulate the problem as a differential equation for x using a proportionality constant denoted by α .

$$\dot{x}(t) = \frac{\alpha}{x(t)}$$

Q2 (b)

If the ice initially (at midnight) is 2mm thick and at 4am it is 3mm thick, how thick will it be at 9:36am?

Let midnight be time t=0, t be in hours and x(t) be in millimetres. Then x(0)=2 and x(4)=3.

$$\frac{dx}{dt} = \frac{\alpha}{x}$$

$$\int x dx = \int \alpha dt$$

$$\frac{x^2}{2} = \alpha t + C$$

$$\therefore x(t) = \sqrt{2\alpha t + C}$$

Then we can use the initial values.

$$x(0) = \sqrt{2\alpha \times 0 + C}$$

$$= \sqrt{C}$$

$$= 2$$

$$\implies C = 4$$

$$x(2) = \sqrt{2\alpha \times 4 + 4}$$

$$= 3$$

$$\implies 8\alpha = 3^{2} - 4$$

$$= 5$$

$$\implies \alpha = \frac{5}{8}$$

$$\therefore x(t) = \sqrt{\frac{5}{4}t + 4}$$

Now we can just plug in 9:36 am, which is 9.6 hours after midnight, and find that $x(9.6) = \sqrt{12+4} = 4$. Therefore the ice will be 4 mm thick at 9:36 am.

Q2 (c)

Assume that the proportionality factor α is replaced by a time dependent function of the form $\alpha(1+\cos(\omega t))$, which aims for modelling temperature changes during the day. Here, t is time measured in hours (denoted h) and $\omega = \frac{2\pi}{24h}$.

Assuming also an initial condition of the form $x(t_0) = x_0$, find the ice thickness as a function of time. (You may keep the parameter α , no need to replace it with the value from part (b).)

Now we have the differential equation

$$\dot{x}(t) = \frac{\alpha \left(1 + \cos\left(\frac{\pi}{12}t\right)\right)}{x(t)}$$

We can solve this like before,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\alpha \left(1 + \cos\left(\frac{\pi}{12}t\right)\right)}{x}$$

$$\int x \mathrm{d}x = \int \alpha \left(1 + \cos\left(\frac{\pi}{12}t\right)\right) \mathrm{d}t$$

$$\frac{x^2}{2} = \alpha t + \alpha \frac{12}{\pi} \sin\left(\frac{\pi}{12}t\right) + C$$

$$\therefore x(t) = \sqrt{2\alpha t + \frac{24\alpha}{\pi} \sin\left(\frac{\pi}{12}t\right) + C}$$

Let $t_0 = 0$. Then $x(t_0) = x(0) = \sqrt{0 + \frac{24\alpha}{\pi} \sin 0 + C} = \sqrt{C} = x_0$, therefore $C = (x_0)^2$.

Therefore,

$$x(t) = \sqrt{2\alpha t + \frac{24\alpha}{\pi} \sin\left(\frac{\pi}{12}t\right) + (x_0)^2}$$

Question 3

A model for the vibrations of a wine glass is given by the differential equation

$$x''(t) + \lambda x'(t) + \omega^2 x(t) = f(t) \tag{1}$$

where x is some measure of the deformation, $\lambda, \omega > 0$ are given numbers and f is a given function called *(acoustic) forcing*. The equation is nondimensional. The glass shatters if $|x(t)| \ge 1$ at any time t.

Please get the Jupyter notebook MA146_Assignment3.ipynb for this question. It contains an example on how to solve initial value problems for second order equations with sympy.

Q3 (a)

Use the notebook to symbolically solve the initial value problem

$$x''(t) + \lambda x'(t) + \omega^2 x(t) = 0, \quad x(0) = x_i, x'(0) = d_i$$

with $\lambda = 0.8$, $\omega = 5.0$, $x_i = 0$, and d = 3.6.

Provide your code, the algebraic expression for the solution produced by the software, and a plot on the interval $(0, 3\pi)$ for t of the solution.

```
x = Function("x")
t = Symbol('t')

lam = 0.8
omega = 5
ode = Derivative(x(t), t, t) + lam * Derivative(x(t), t) + (omega ** 2) * x(t);

xi = 0
di = 3.6
sol = dsolve(ode, ics={x(0): xi, x(t).diff(t).subs(t, 0): di})

print(sol)
plot(sol.rhs, (t, 0, 3 * pi))
```


Q3 (b)

Implement now a solver for (1) with

$$f(t) = a\cos(\alpha t)$$

and initial conditions

$$x(0) = 0, x'(0) = 0.$$

Assume that the parameters are $\lambda = 0.0009$, $\omega = 6.415$, $\alpha = 2\pi$.

Use your solver to computationally (for instance, by try and error) find the smallest number $n \in \mathbb{N}$ such that a = n/10 is sufficient to ensure that $x(t) \ge 1$ at some time t (i.e., the factor in the forcing is big enough to break the glass).

Provide your solution (n and a) and, for evidence, two graphs, one for the minimal n_{\min} and one for $n_{\min} - 1$.

(Hints: Start with n=3. You will need a sufficiently large domain for t to see what is going on, for instance, $t \in (0,60)$.

You might observe some odd behaviour in the graph but which (hopefully) are visualisation effects only. They should vanish if you increase the number of points in the variable <code>nb_of_points</code> that is used in the plotting command.)

My solution is $n_{\min} = 9$.

```
def solve_vibrations_ode(n: int):
    lam = 0.0009
    omega = 6.415
    a = n / 10
    alpha = 2 * pi
    ode = Derivative(x(t), t, t) + lam * Derivative(x(t), t) + (omega ** 2) * x(t) - a * cos(alpha * t);

    xi = 0
    di = 0
        sol = dsolve(ode, ics={x(0): xi, x(t).diff(t).subs(t, 0): di})
    return sol

n = 9
    sol = solve_vibrations_ode(n)

from sympy.plotting import plot_parametric

p = plot(sol.rhs, (t, 0, 60), adaptive=False, nb_of_points=8000, show=False, title=f"Solution with n={n} and a={n/10}")

# Use parametric plots to add horizontal lines at y=1 and y=-1
# I'm sure there's a better way to do this, but this method works
p.extend(plot_parametric((t, 1), (t, 0, 60), show=False))
p.extend(plot_parametric((t, -1), (t, 0, 60), show=False))
p.show()
```


Question 4

Find a particular integral for the second order differential equation

$$\frac{\mathrm{d}^2}{\mathrm{d}y^2}(t) + \eta \frac{\mathrm{d}}{\mathrm{d}t}y(t) + by(t) = f\cos(\theta t)$$

with parameters $b, \eta, \theta, f > 0$.

Since the right hand side is $f \cos(\theta t)$, we will use $y(t) = A \cos(\theta t) + B \sin(\theta t)$ as our particular integral.

$$y(t) = A\cos(\theta t) + B\sin(\theta t)$$

$$y'(t) = -\theta A\sin(\theta t) + \theta B\cos(\theta t)$$

$$y''(t) = -\theta^2 A\cos(\theta t) - \theta^2 B\sin(\theta t)$$

Plugging this into the ODE, we get

$$-\theta^2 A \cos(\theta t) - \theta^2 B \sin(\theta t) - \eta \theta A \sin(\theta t) + \eta \theta B \cos(\theta t) + b A \cos(\theta t) + b B \sin(\theta t) = f \cos(\theta t)$$

We can compare coefficients of sin and cos and conclude that

$$-\theta^2 B - \eta \theta A + bB = 0$$
$$-\theta^2 A - \eta \theta B + bA = f$$

The first equation implies $B(b-\theta^2)=\eta\theta A$. We can use this to get B in terms of A, so $B=\frac{\eta\theta A}{b-\theta^2}$. Then we can plug that into the second equation, which gives

$$A\left(-\theta^2 + \frac{\eta^2 \theta^2}{b - \theta^2} + b\right) = f$$

Therefore

$$A = \frac{f(b - \theta^2)}{\left(b - \theta^2\right)^2 + \eta^2 \theta^2}$$

And therefore

$$B = \frac{\eta \theta f}{\left(b - \theta^2\right)^2 + \eta^2 \theta^2}$$

Therefore the particular integral is

$$\frac{f(b-\theta^2)}{\left(b-\theta^2\right)^2+\eta^2\theta^2}\cos(\theta t)+\frac{\eta\theta f}{\left(b-\theta^2\right)^2+\eta^2\theta^2}\sin(\theta t)$$

Alternatively written as

$$\frac{f}{(b-\theta^2)^2 + \eta^2 \theta^2} \left((b-\theta^2) \cos(\theta t) + \eta \theta \sin(\theta t) \right)$$