Übungsblatt 3

Aufgabe 3.1

Ähnlich zum Beweis der Widerlegungsvollständigkeit im Skript:

Beweis durch Induktion über die Anzahl n der in Formel F vorkommenden atomaren Formeln.

IA:

Falls n = 0, so kann nur $F = \{\Box\}$ sein und wir sind fertig

IH:

Für eine unerfüllbare Formel F mit n atomaren Formeln gibt es einen Unerfüllbarkeitsbeweis, der die Regeln der P-Resolution folgt

IS:

Betrachte eine unerfüllbare Formel F mit n+1 atomaren Formeln.

Erzeuge F_0 und F_1 wie folgt:

 F_0 entsteht aus F, indem jedes Vorkommen von A_{n+1} in einer Klausel gestrichen wird. Dies entspricht dem Belegen von A_{n+1} mit 0.

Analog entsteht F_1 aus F, also als Belegung von A_{n+1} mit 1.

Da F unerfüllbar ist, müssen auch F_0 und F_1 unerfüllbar sein, ansonsten könnte aus deren erfüllender Belegung eine erfüllende Belegung für F konstruiert werden.

Da A_{n+1} in F_0 und F_1 nicht mehr vorkommt, haben F_0 und F_1 nur noch n atomare Formeln und wir können die $\underline{\text{IH}}$ anwenden und erhalten einen Unerfüllbarkeitsbeweis mittels P-Resolution für $F_0\left(K_0^1, K_0^2, K_0^3, \cdots, K_0^m\right)$ und $F_1\left(K_1^1, K_1^2, K_1^3, \cdots, K_1^l\right)$, mit $K_0^m = K_1^l = \square$.

Fügen wir nun die atomaren Formeln wieder in die Klauseln der Unerfüllbarkeitsbeweise von Formel F_0 und F_1 ein, können wir zwischen zwei Fällen unterscheiden:

- 1. Trotz Wiedereinfügen von A_{n+1} führen die gleichen Resolutionsschritte des Unerfüllbarkeitsbeweises von F_0 zur leeren Klausel. Dann sind wir fertig.
- 2. Folgen des Beweises von F_0 nach Wiedereinfügen von A_{n+1} führt nicht zur leeren Klausel. Dann muss $K^m = \{A_{n+1}\}$ sein. Resolviert man K^m mit jeder Klausel aus F, entstehen die Klauseln, die in F_1 vorkommen.

Folgen wir nun dem Beweis von F_1 , erhalten wir die leere Klausel.

Beispiel: Induktionsschritt mit n + 1 = 4

$$F = \left\{ \left\{ A_1 \right\}, \left\{ \overline{A_2}, A_4 \right\}, \left\{ \overline{A_1}, A_2, A_4 \right\}, \left\{ A_3, \overline{A_4} \right\}, \left\{ \overline{A_1}, \overline{A_3}, \overline{A_4} \right\} \right\}$$

$$F = \{\{A_1\}, \{\overline{A_2}\}, \{\overline{A_1}, A_2\}\}$$
 (A_n wird mit 0 belegt)
$$F = \{\{A_1\}, \{A_3\}, \{\overline{A_1}, \overline{A_3}\}\}$$
 (A_n wird mit 1 belegt)

Baum siehe Bild, TODO

Aufgabe 3.2

a)

Zeige die Aussage, indem gezeigt wird, dass höchstens 4^n Klauseln existieren können.

Betrachtet man eine Klausel, kann eine Atomformel auf genau vier verschiedene Arten darin auftreten: gar nicht, positiv, negativ oder positiv und negativ. Diese vier Optionen gibt es für jede Atomformel, die Kombination aller dieser Optionen gibt also alle möglichen Klauseln, was 4^n sind.

b)

Betrachten wir die Folge $F = Res^0(F), Res^1(F), \dots, Res^k(F) = Res^*(F).$

Im schlimmsten Fall unterscheidet sich $Res^i(F)$ und $Res^{i+1}(F)$ nur durch genau eine Klausel, also $|Res^0(F)| - |Res^0(F)| = 1$ für alle i. Da $|Res^0(F)|$ und wir aus a) wissen, dass $|Res^*(F)| \le 4^n$, wissen wir nun auch, dass nach spätestens 4^n Schritten alle möglichen Klauseln entstanden sind.

Also ist $Res^{k}(F) = Res^{4^{n}}(F) = Res^{*}(F)$. (In den meisten Fällen geschieht das aber schon viel früher)

Aufgabe 3.3

Aus der Definition von Resolution folgt:

F ist unerfüllbar $\Rightarrow F$ lässt sich zu \square resolvieren.

Somit kann der Algorithmus Unerfüllbarkeit erkennen (weil wir aus Aufgabe 1 wissen, dass es nur maximal 4^n Klauseln geben kann um überhaupt erst resolvieren zu können).

Wenn F nach einer gescheiterten Resolution $nicht \square$ ausgibt, so ist F erfüllbar.

Aufgabe 3.4

$$F = \forall x \forall y \forall z \left((E(x, y) \land E(y, z)) \rightarrow \overline{E(x, z)} \right)$$

a)

 \mathcal{A} ist ein Modell für F. Argumentation durch Widerspruch:

Angenommen \mathcal{A} sei kein Modell. Dann gäbe es eine Belegung der Variablen, sodass $F^{\mathcal{A}}$ zu 0 ausgewertet wird.

Dies kann nur der Fall sein, wenn die linke Seite der Implikation zu 1 ausgewertet wird und die rechte Seite zu 0.

Die Grundmenge sind die natürlichen Zahlen, daher wissen wir, dass die Summe zweier Zahlen ungerade ist, genau dann wenn eine der beiden Zahlen gerade und die andere ungerade ist.

1. x ist gerade: Damit der linke Teil der Implikation zu 1 ausgewertet wird, muss y ungerade sein und dadurch z gerade.

Da aber x und z gerade \Rightarrow rechte Seite der Implikation 1.

2. x ist ungerade: (Analog zu a))

b)

 \mathcal{B} ist kein Modell.

Betrachte dazu folgenden Fall: (x = 0, y = 0, z = 0)

Aufgabe 3.5

a)

$$A = (U_A, I_A) \text{ mit init } f(x) = x$$

$$U_A = \mathbb{N}_A$$

$$I_A(P) = P^A = \{(x, y, z) \mid |x + y + z| \ge 0\}$$

b)

$$A = (U_A, I_A) \text{ mit init } f(x) = x$$

$$U_A = \mathbb{N}_A$$

$$I_A(P) = P^A = \{(x, y, z) \mid |x + y + z| < 0\}$$