Análisis Numérico 40 semestre/ Jul-Dic 2021 20 parcial

Fecha: 13 nov 2021 Tiempo: 48 h 00 m Nombre:

Curso:

Profesor: Dr. Josué Trejo

Este examen contiene 3 planteamientos que corresponde a 3 puntos de la valoración final. Resuelva los problemas de acuerdo a lo que estudió en clases. No olvide poner su código y capturas de pantalla mostrando su funcionamiento. Además, cuide que los resultados estén ordenados y que haya distinción entre cada uno de los problemas.

Tabla de calificación de uso exclusivo para el profesor.

Pregunta:	1	2	3	Total
Puntos:	1	1	1	3
Resultado:				

1. (1 punto) Las estaciones de radar A y B, separadas por una distancia a=500 m, rastrean el avión C grabando los ángulos α y β en intervalos de 1 segundo. Si tres sucesivas mediciones son:

t(s)	9	10	11
α	54.80°	54.06°	53.34°
β	65.59°	64.59°	63.62°

calcule la velocidad v del avión y el ángulo de subida γ a t=10 s. Se puede mostrar que las coordenadas del avión son:

$$x = a \frac{\tan \beta}{\tan \beta - \tan \alpha} \qquad \qquad y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$$

Figura 1: Diagrama para el problema 1.

2. (1 punto) La siguiente tabla muestra la fuerza F del arco en función del tirón x. Si el arco se tira 0.5 m, determine la velocidad de la flecha de 0.075 kg cuando sale del arco. Sugerencia: la energía cinética de la flecha es igual al trabajo realizado al tensar el arco, es decir, $mv^2 = \int_0^{0.5m} F dx$.

x (m)											
F(N)	0	37	71	104	134	161	185	207	225	239	250

Fecha: 13 nov 2021

Figura 2: Diagrama para el problema 2.

3. (1 punto) Ajuste la función $f(x)=axe^{bx}$ a los siguientes datos y calcule la desviación estándar.

		1.0			
\overline{y}	0.541	0.398	0.232	0.106	0.052

Solución