

Devoir surveillé de Mathématiques n°8 le 25/03/2025

durée: 2h00

Exercice 1 (10 points).

Dans ce problème, on considère un réel $a \in [0, 1]$.

1. Dans cette question , on suppose que f est une fonction continue sur \mathbb{R} , à valeurs réelles , solution de l'équation suivante :

$$(H): \quad \forall x \in \mathbb{R}, \ f(x) = \int_0^{ax} f(t)dt.$$

Montrer que f est dérivable sur $\mathbb R$ et déterminer, pour $x \in \mathbb R$, f'(x) en fonction de f, a et x.

(b) Montrer que f est de classe C^{∞} sur \mathbb{R} et que , $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f^{(n)}(x) = a^{\frac{n(n+1)}{2}} f(a^n x)$.

(c) Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$

(d) Soit $A \in \mathbb{R}_+^*$.

 \nearrow Pourquoi peut-on affirmer qu'il existe $M \in \mathbb{R}$, $\forall x \in [-A, A], \mid f(x) \mid \leq M$?

 $\forall x \in [-A, A], \mid f^{(n)}(x) \mid \leq M.$

Montrer enfin soigneusement que $\forall n \in \mathbb{N}, \forall x \in [-A, A], |f(x)| \leq M \frac{A^{n+1}}{(n+1)!}$

 K (e) En déduire que f est la fonction nulle sur \mathbb{R} .

 $\mathbb X$ 2. Soit φ une fonction continue sur $\mathbb R$ à valeurs dans $\mathbb R$. Montrer à l'aide du 1) qu'il existe au plus une fonction f, continue sur $\mathbb R$ et à valeurs réelles, telles que $\forall x \in \mathbb R$, $f(x) = \int_0^{ax} f(t)dt + \varphi(x)$.

Exercice 2 (10 points).

On considère l'application f définie sur $]0, +\infty[$ par $f(t) = \frac{1}{1+t-e^{-t}}$

Pour x > 0 , on définit $G(x) = \int_{x}^{2x} f(t)dt$.

 χ . Montrer que pour tout t > 0, $\frac{1}{1+t} \le f(t) \le \frac{1}{t}$.

Z. En déduire que G admet une limite finie ℓ en $+\infty$ et la déterminer.

Z. Montrer que G est dérivable sur \mathbb{R}_+^* et déterminer sa dérivée...

4. Pour t > 0, on pose $h(t) = f(t) - \frac{1}{2t}$.

Montrer que h se prolonge par continuité en 0.(on pourra chercher un $DL_0(0)$ de h). On note encore h le prolongement.

(b) Démontrer que G se prolonge par continuité en 0. Donner la valeur de G(0).

5. On pose , pour x>0 , $\Delta(x)=G(x)-\int_x^{2x}\frac{1}{1+t}dt.$

(a) On fixe x > 0. Montrer que $\forall t \in [x, 2x], \ 0 \le f(t) - \frac{1}{1+t} \le \frac{e^{-t}}{1+x-e^{-x}}$.

 $\bigoplus_{x \to +\infty} \widetilde{\operatorname{deduire}} \ \operatorname{que} \ \Delta(x) = \mathop{o}_{x \to +\infty} (\frac{1}{x}).$

 $\bigwedge C$ Montrer que $G(x) - \ell \sim_{x \to +\infty} -\frac{1}{2x}$