Generalized Equations

April 2, 2023

Basic definitions

- \rightarrow Variables : $\nu = \{v_1, v_2...v_r\}$
- \rightarrow Constants : $\mathcal{C} = \{a_1, a_2....a_r\}$
- ightarrow Word : $\mathcal{W}=$ Finite sequence of elements of $\mathcal{C}\cup
 u$
- ightarrow Word length $=|\mathcal{W}|$
- ightarrow Exponent of periodicity of (\mathcal{W}) : maximal number 'p' such that $\mathcal{W}=uw^pz$
- \rightarrow Word equation(\mathcal{E}): $w_1=w_2$ for some words w_1 and w_2
- \rightarrow Length of word equation : $|\mathcal{E}| = |w_1| + |w_2|$
- \rightarrow Unifier of \mathcal{E} : Sequence of words $U=u_1,u_2....u_k$ such that if we replace the variables $x_1,x_2....x_k$ with corresponding element of unifier (i.e. replace x_1 by u_1); w_1 becomes equal to w_2 .
- ightarrow Exponent of periodicity of U : maximal exponent of periodicity of words U_i

Graphical Representation

$$\mathcal{E}$$
 : $xaby = ybax$

- → In this representation the equation has a solution if there is a way to overlap both sides (top and bottom) such that the word between the boundaries are same
- → The vertical lines will be called boundaries.
- ightarrow The length of horizontal lines for constant is always 1 and is unknown for variables.

- \rightarrow The way to solve is to replace equals by equals like y=xa; then replace all occurrences of y and guess the boundaries again until we have solved.
- → Basic idea of algorithm is to guess the boundaries, replace from left to right; then guess boundaries again and so on.

Problems with this

- $\rightarrow\,$ The number of occurrences of some variables starts growing after replacement
- → What to do in cases where there is no evident replacement

 \rightarrow You can go on forever (cf.the equation xa == ax).

→ Limit the number of occurrences of a variable in an equation to 2. This avoids the problems of variables growing after replacement.

$$bxyx = yaxz \to \begin{cases} bx_1yx_1 = yax_2z \\ x_1 = x_2 \end{cases}$$

b	1		y	1		
П	x_1				x_1	
				x_2		
					z	
y			x_2			1
		a			z	
1	2	3	4	5	6	17

Generalized Equations Definition

- → The idea is to encode graphical representations into an equation.
 - Two finite sets C and X, the labels.
 - (2) A finite linear ordered set (BD, ≺), the boundaries.
 - (3) A finite set BS of bases. A base bs has the form $(t, (e_1, \ldots, e_n))$, where $n \geq 2$, $t \in \mathcal{C} \cup \mathcal{X}$, and $E_{bs} = (e_1, \dots, e_n)$ is a sequence of boundaries ordered by \preceq .

Generalized Equations 0000000

subject to the following conditions:2

- (C1) For each $x \in \mathcal{X}$, there are exactly two bases with label x, called duals, and (abusing notation) denoted by x and \bar{x} respectively. Also, their respective boundary sequences E_x , $E_{\bar{x}}$ must have the same length.
- (C2) For each base bs with $t \in \mathcal{C}$, the boundary sequence E_{bs} has exactly two elements and they are consecutive in the order \prec .
- \rightarrow We are using a new set of variables χ instead of ν because the χ will also include all those variables that we get after limiting the variables to 2. (Like x_1 and x_2 in previous example)

Generalized Equations

More definitions

- ightarrow Base $\mathit{bs} = (\mathit{t}, \mathit{E}_{\mathit{bs}})$ is Constant base if $\mathit{t} \in \mathcal{C}$ and Variable base if $\mathit{t} \in \chi$
- \rightarrow Left Boundary : Left(bs) = First element of E_{bs}
- ightarrow Right Boundary : Right(bs) = Last element of E_{bs}
- \rightarrow Column : Pair of boundaries (i,j) with i
- \rightarrow Column(i,i) is empty column.
- \rightarrow Column (i,i+1) is called indecomposable.
- \rightarrow Column of base bs = (Left(bs), Right(bs))
- \rightarrow A base is empty if its column is empty.
- ightarrow A generalised equation is solved if all variable bases are empty.
- ightarrow Letters z, y, z will be used as meta variables for variable bases.
- \rightarrow Letters i , j , . . , will denote boundaries.

Example

$$GEN(bxyx = yaxz)$$

$$C = \{a, b\}$$

$$\chi = \{x_1, x_2, y, z\}$$

$$BD = \{1, 2...7\}$$

$$BS = \{(b, (1, 2)), (a, (3, 4)), (x_1, (2, 3)), (x_1, (5, 7)), (y, (3, 5)), (y, (1, 3)), (x_2, (4, 6)), (x_2, (5, 7)), (z, (6, 7)), (z, (6, 7))\}$$

Definition 3

Definition 3. A unifier of GE is a function U that assigns to each indecomposable column of GE a word over $C \cup V$ (extend it by concatenation to all non-empty columns of GE) with the following properties:

Generalized Equations 0000000

- (1) For each constant base bs of label c, $U(\operatorname{col}(bs)) = c$.
- (2) For every pair of dual variables x, \bar{x} , and for every $e_i \in E_x$, $U(e_1, e_i) =$ $U(\bar{e}_1,\bar{e}_i)$ (recall $\bar{e}_1,\bar{e}_i\in E_{\bar{x}}$). In particular $U(\operatorname{col}(x))=U(\operatorname{col}(\bar{x}))$.

U is strict if U(i, i+1) is non-empty for every $i \in BD$. The index of U is the number $|U(b_1, b_M)|$, where b_1 is the first and b_M the last element of BD. The exponent of periodicity of U is the maximal exponent of periodicity of the words $U(\operatorname{col}(x))$, where x is a variable base.

Basic definitions

Definition 4. For a generalized equation GE, and $c \in C$, the associated system of linear Diophantine equations, L(GE, c), is defined by:

- (1) A variable Z_i for each indecomposable column (i, i + 1) of GE.
- (2) For each pair of dual variables bases $(x, (e_1, \ldots, e_n))$ and $(x, (\bar{e}_1, \ldots, \bar{e}_n))$ define (n-1) equations, for $j=1,\ldots,n-1$:

$$\sum_{e_j \preceq i \prec e_{j+1}} Z_i = \sum_{\bar{e}_j \preceq i \prec \bar{e}_{j+1}} Z_i$$

(3) For each constant base (t, (i, i + 1)), define the equation $Z_i = 1$ if t = c and $Z_i = 0$ if $t \neq c$.

Lemma 5

Lemma 5. If GE has a unifier, then L(GE, c) is solvable for each $c \in C$.

Proof. Let U be a unifier of GE and $c \in C$. Define $Z_i = |U(i, i+1)| - D_c$ where D_c is the number of occurrences of constants different from c in the word U(i, i+1). Using the fact that U is a unifier, it is easy to check that this is a solution to L(GE, c).

Checking solvability of systems of linear Diophantine systems is decidable, although expensive (NP-complete). A generalized equation GE whose system L(GE,c) is solvable for all $c \in C$ is called admissible.

Lemma 6

Lemma 6. There exists an algorithm GEN which for every word equation \mathcal{E} outputs a finite set $GEN(\mathcal{E})$ of generalized equations with the following properties:

- E has a unifier with exponent of periodicity p if and only if some GE ∈ GEN(E) has a strict unifier with exponent of periodicity p.
- (2) For each GE ∈ GEN(ε), every boundary is the right or left boundary of a base. Also, every boundary sequence contains exactly these two boundaries.
- (3) For $GE \in Gen(\mathcal{E})$, the number of bases of GE does not exceed $2|\mathcal{E}|$.
- (4) Every $GE \in Gen(\mathcal{E})$ is admissible.

→ From the graphical representation, the naive idea was to pick the leftmost biggest variable (carrier) and move all its columns to the position of its dual

Definition 7. The carrier of GE, denoted x_c , is the non-empty variable base with smallest left boundary. If there is more than one, x_c is the one with largest right boundary. If there is still more than one, choose one among them randomly. We will denote $l_c = \text{LEFT}(x_c)$ and $r_c = \text{RIGHT}(x_c)$.

The critical boundary of GE is defined as $cr = \min\{\text{LEFT}(y) : r_c \in \text{col}(y)\}$ if the set is non-empty, and $cr = r_c$ if not.

 \rightarrow If any variable column has r_c in it, then c_r is the left boundary of that variable column.

Examples

$$axb = aby z$$
 $a y z$
 $a b y z$
 $(x, \{2,3,4\}) \in BS$
 $(x, \{2,3,4\}) \in$

→ Carrier : y

 $\rightarrow l_c: 1$

 $\rightarrow r_c: 3$ $\rightarrow c_r: 3$

→ Carrier : x

Generalized Equations

 $\rightarrow I_c: 1$ $\rightarrow r_c: 5$

 $\rightarrow c_r: 4$

More definitions

Definition 8. Let be base of GE, be is not the carrier. Then

- bs is superfluous if col(bs) = (i, i) ≺ l_c.
- (2) bs is transport if $l_c \leq \text{LEFT}(bs) \prec cr$ or col(bs) = (cr, cr).
- (3) bs is fixed if it is not superfluous and not transport.

Note that all variable bases with LEFT(x) $\prec l_c$ are empty by definition of the carrier. Also, each base—except the carrier—is exactly one of these: superfluous, transport or fixed, depending on what region of the diagram below its left boundary is:

$$\begin{bmatrix} b_1 & & l_c & & cr & & r_c \\ \text{superfluous} & \text{transport} & \text{fixed} & & \text{fixed} \end{bmatrix}$$

 \rightarrow We have to move the transport bases. We haven't defined where to move them vet

Notation. For each boundary $l_c \preceq i \preceq r_c$ in BD, let us introduce a new symbol i^{tr} (which will indicate the place where the boundary i should go) and denote $\operatorname{tr}(E_x) = \operatorname{tr}(e_1, \dots, e_n) = (e_1^{tr}, \dots, e_n^{tr}).$

Definition 9. A print of GE is a linear order \leq on the set $BD \cup \{i^{tr} : i \in [l_c, r_c]\}$ satisfying the following conditions:

- (1) \leq extends the order of BD and $j^{tr} \prec k^{tr}$ for $l_c \leq j \prec k \leq r_c$.
- (2) $tr(E_c) = \bar{E}_c$. (The structure of the carrier overlaps its dual.)
- (3) If x is transport, \bar{x} fixed, then if for some $e_i \in E_x$, $e_i^{tr} = \bar{e}_i$, then $tr(E_x) = E_{\bar{x}}$. (The order ≺ is consistent with the boundary sequence information.)
- (4) If (c,(i,j)) is a constant base, then i,j (and also i^{tr},j^{tr} if $i,j\in[l_c,r_c]$) are consecutive in the order ∠. (Constants are preserved.)

Recap

Basic definitions

- (3) A finite set BS of bases. A base bs has the form $(t, (e_1, \ldots, e_n))$, where $n \geq 2$, $t \in \mathcal{C} \cup \mathcal{X}$, and $E_{bs} = (e_1, \ldots, e_n)$ is a sequence of boundaries ordered by \leq . subject to the following conditions:²
- (C1) For each $x \in \mathcal{X}$, there are exactly two bases with label x, called *duals*, and (abusing notation) denoted by x and \bar{x} respectively. Also, their respective boundary sequences E_x , $E_{\bar{x}}$ must have the same length.
- (C2) For each base bs with $t \in \mathcal{C}$, the boundary sequence E_{bs} has exactly two elements and they are consecutive in the order \preceq .

Recap

$$BS = \{(b, (1, 2)), (a, (3, 4)), (x_1, (2, 3)), (x_1, (5, 7)), (y, (3, 5)), (y, (1, 3)), (x_2, (4, 6)), (x_2, (5, 7)), (z, (6, 7)), (z, (6, 7))\}$$

$$E_y = \{1, 2, 3\}$$

$$E_{\overline{v}} = \{3, 4, 5\}$$

Basic definitions

- → Takes a Generalised Equation (GE)
- → Labels the bases as superfluous, transport or fixed
- → Comes up with a print(<) which is a guess as to where the transport base can go. This guess can be any linear order of boundaries but it should satisfy the conditions in definition 9.
- \rightarrow TRANSPORT (GE,<)
- \rightarrow TRANSPORT (GE, \leq) is a Generalised equation too so we can do the same procedure on it now until all bases are empty.

 $r_c:3$

 $c_r:3$

(1) \leq extends the order of BD and $j^{tr} \prec k^{tr}$ for $l_c \leq j \prec k \leq r_c$.

$$1^{tr}<2^{tr}<3^{tr}$$

 $c_r:3$

(2) $tr(E_c) = \bar{E}_c$. (The structure of the carrier overlaps its dual.)

Transportation

l_c : 1

 $r_c: 3$

 $c_r : 3$

(3) If x is transport, \bar{x} fixed, then if for some $e_i \in E_x$, $e_i^{tr} = \bar{e}_i$, then $\operatorname{tr}(E_x) = E_{\bar{x}}$. (The order \preceq is consistent with the boundary sequence information.)

 $c_r:3$

(4) If (c, (i, j)) is a constant base, then i, j (and also i^{tr}, j^{tr} if $i, j \in [l_c, r_c]$) are consecutive in the order ≤. (Constants are preserved.)

