

基于随机森林的献血招募模型

宋子星

东南大学计算机科学与工程学院

May 29, 2020

背景

随机森林理论

研究方法与数据集特征

SMS 使用情况分析

背景

随机杰林理论

研究方法与数据集结征

SMS 使用情况分析

背景

现状与意义

● 医疗领域: 当前献血招募主要采取人力招募方式

● 计算机领域: 机器学习技术迅猛发展

● 献血招募 + 机器学习 ⇒ 提升招募精度 + 降低招募成本?

研究问题

年龄	性别	历史献血次数	历史献血总量	 献血资格
38	女	2	200	 有
17	男	0	0	 无

10 10 10 15 15 15 10 10

研究问题

	年龄	性别	历史献血次数	历史献血总量		献血资格
	38	女	2	200		有
	17	男	0	0		无

训练数据 {X_{train},Y_{train}}

模型

预测结果 {*Y*,...}

감몸

随机森林理论

研究方法与数据集娃征

SMS 使用情况分析

集成学习 (Ensemble Learning)

图 1: 集成学习流程框架

集成学习是指用于训练多个学习器并组合其输出,可以将其视为"决策委员会"的投票决策结果。

Bagging

图 2: Bagging 算法

Bagging 利用有放回抽样生成新的训练数据集 (Bootstrap samples)。

决策树 (Desicion Tree)

图 3: 决策树案例

决策树的训练:构建一棵决策树(ID3, C4.5, CART)。

决策树的测试: 自顶而下匹配一条路径。

- 训练集样本特征:性别、年龄和职业。
- 预测目标:是否喜欢玩电脑 游戏。
- 算法关键:每次寻找出当前 最佳分割属性。

- 训练集样本特征:性别、年龄和职业。
- 预测目标:是否喜欢玩电脑 游戏。
- 根据某分割指标,从3个属性中选择年龄作为分割属性,分裂节点。
- 无需分割,则停止分裂节点。

- 训练集样本特征:性别、年龄和职业。
- 预测目标:是否喜欢玩电脑 游戏。
- 对需要再次分割的节点,根据某分割指标,从剩下的2个属性中选择性别作为分割属性,分裂节点。

表 1: 三种最常见的决策树生成算法比较

生成算法	分割指标	支持的属性	缺失值处理	
ID3	信息增益	仅离散属性	不支持	
C4.5	信息增益率	离散、连续属性	支持	
CART	基尼指数	离散、连续属性	支持 19	

随机森林 (Random Forest)

随机森林的随机性

- 随机森林 = Bagging + 决策树 (CART)
- 训练集生成的随机性 ⇒ Bagging (Bootstrap 样本)
- 特征变量选取的随机性 \Rightarrow 决策树生成中,每次分裂节点时,随机选择一部分特征作为候选分割属性,常见 $M=\sqrt{N}$, $M=\log_2 N$,再从候选属性中,寻找出最佳分割属性。

随机森林 (Random Forest)

图 5: 随机森林训练过程

图 6: 随机森林测试过程

뱝몸

随机壶灶珊论

研究方法与数据集特征

SMS 使用情况分析

爬取公共短消息网关

- 使用 Scrapy 框架爬取公共网关
- 收集8个公共短信网关在14个月的数据
- 共抓取 386,327 条数据

表 2: 公共网关及抓取的信息数

Site	Messages
receivesmsonline.net	81313
receive-sms-online.info	69389
receive-sms-now.com	63797
hs3x.com	55499
receivesmsonline.com	44640
receivefreesms.com	37485
receive-sms-online.com	27094
e-receivesms.com	7107

消息聚类分析

基本思路

- 使用编辑距离矩阵将类似的消息归于一张连通图中。
- 使用固定值替换感兴趣的消息,如代码、email 地址。
- 查找归一化距离小于阈值的消息,并确定聚类边界。

实现步骤

- 加载所有消息。
- ② 用固定的字符串替换数字、电子邮件和 URL 以预处理消息。
- ③ 将预处理后的信息按字母排序。
- ④ 通过使用编辑距离阈值 (0.9) 来确定聚类边界。
- **⑤** 手动标记各个聚类,以确定服务提供者、消息类别等。

消息分类结果

- **账户创建确认信息**: 向来自服务提供者的用户提供了一个代码 该服务提供者需要在新帐户创建期间进行 SMS 验证。
- 活动确认信息: 向来自服务提供者的用户提供了请求授权进行活动的代码(例如,付款确认)。
- 一次性密码:包含用户登录的代码的短信息。
- 用于绑定不同设备的一次性口令:将消息发送给用户,以绑定一个新的电话号码或启用相应的移动应用程序。
- 重置密码口令:包含密码重置密码的短信息。
- 其他: 其他未被指定为某种特定功能的消息。

消息分类结果

- 账户创建和移动设备绑定占比最大, 占 51.6%
- 一次性密码信息占 7.6%
- 密码重置消息占 1.3%
- 包含"测试"关键词的消息占 0.8%

图 7: 消息的聚类

谐볶

随机杰林理论

研究方法与数据集选征

SMS 使用情况分析

使用 SMS 作为安全信道

PII 和其他敏感信息

- 财务信息
- 用户名和密码
- 重置密码口令
- 其他个人识别信息 (PII)
- 敏感程序的 SMS 活动

使用 SMS 作为安全信道

SMS 编码熵

使用 χ 方检验测试每组编码的熵。 χ 方检验是一个零假设的显著性检验,用于测试 SMS 服务的编码是否是从低位到高位均匀分布的。若 p值小于 0.01,则表明观测值和理想均匀分布之间存在统计学上的显著差异。检验结果表明,65% 的 SMS 服务的编码熵较低,容易被预测和攻击。

图 8: WeChat

图 9: Talk2

SMS 的恶意应用

公共网关检测到的恶意信息

- **泄露用户位置信息**:短 URL 可以用于确定消息的源和目的地,即 会泄漏用户的位置信息。
- 垃圾邮件宣传广告: 在公共网关服务中比例较低, 约为 1.0%。
- 网络钓鱼活动: 试图欺骗用户, 使其相信自己正与合法网站通信。

Apple Customer,
Your lost iPhone has been found \
and temporarily switched ON.
To view iPhone map location
lostandfounds-icloud*com
Apple

图 11: SMS 地址分布

图 12: 钓鱼短信实例

谐볶

随机杰林理论

研究方法与数据集特征

SMS 使用情况分析

- SMS 生态系统在智能手机时代出现了新的发展,加入了更多新的设备和参与者。
- 公共网关为用户提供了基于 SMS 的各种安全解决方案。
- 根据该研究,将 SMS 作为安全信道传递敏感信息存在一定的危险性。一些一次性的消息传递机制亟待改进。
- 至于短信滥用,公共网关可以用于规避一些安全性较差的认证机制,或进行 PVA 欺诈行为。

Thanks for Listening.

LaTeX Beamer template opensource on Github now!

https://github.com/wurahara/SEU-Beamer-Slide

Welcome Star and Fork.