20.	Choose	the	stateme	ent TR	UE amo	ng the	followi	ing state	ments	related	to	bipolar
trar	nsistors:											

[A] The transistor is the union of two diodes in opposition.

[B] It is a symmetric three-terminal device, because you can swap the collector and emitter terminals.

[C] The base terminal is serving as the control terminal.

• We can also solve this exercise in a graphical form (see previous page)

(22) Given the following circuit, the corresponding load line, operating point Q and characteristic curves of the transistor, which of the following statements is correct?

DATA: $V_{CESAT} = 0.2V$; $V_{BEON} = 0.7V$ y $\beta=100$ (I_Bis not negligible).

[A].The transistor is saturated.

[B]. The I_{c} of transistor is 1,75mA.

[C] The V_{CE} of transistor is 5V.

[D].The value of R2 is 3K. 💢

23.Indicate, using the attached figures, the value of resistance R2. (Data: β =100, $V_{CE(SAT)}$ = 0.2V; $V_{BE(ON)}$ = 0.7V; V1= 6V; R1=100kΩ)

[B] 1,2 kΩ

[C] $0.87 \text{ k}\Omega$

[D] Some data are missing.

29. In a circuit based on a NPN bipolar transistor whose current gain β is 100, the following currents and DC voltages are measured:

$$V_{BE} = 0.7V$$
 $I_{B} = 0.1mA$ $I_{E} = 3.5mA$

Taking into account these data, we can state that:

- [A] The transistor is in cut-off mode.
- [B] The transistor is in active region.
- [C] The operating region cannot be known, because it is not know the value of V_{CE} .

[D] The transistor is saturated.

30. Given the circuit of the figure, where $V_{BEON} = 0.7V$, V_{CESAT} and $\beta = 100$; indicate the operating region of the transistor for:

[A]
$$Vi = 0.7V$$
[B] $Vi = 4V$
[C] $Vi = 6.7V$

A) As $Vi = VBE(ON)$

$$IB = Vi - VBE(ON) = OMA$$

Then This in Cut-off reg.

but in the limit to Active $A(IB=O, IE=O, VCE=IOV)$

(1)
$$I_{B}=\frac{V_{i}-V_{B} \mp ioN}{R_{2}} = \frac{4-0.7}{5oK} = 0.066mA$$

Assuming active region:

 $I_{C}=\beta I_{B}=6.6mA$

as VCE > VCEISAT) => TIIS in ACTIVE region Q (IB= 0.066mA) IC= 6.6mA; VCE- 3.4V)

C)
$$\begin{array}{c|c}
IB & |I| &$$

(2) VCE= 10-PIIc= 10-12=-2V, then Tisnot in active region, then is saturated VCE= VCE(SAT)= 0.2V=) @ IC= 10-VCE(SAT) 10-02

IC= 9.8mA

Q (IB-0.12mA, Ic-9.8mA, VCE-0.2V)

27. Indicate the working región of transistor of figure for an input voltaje Vi of 3.7 V: (DATA: Vcc = 5V; Rb = 100 k Ω ; Rc = 2 k Ω , Q1: $V_{BE(ON)} = 0.7V$, $V_{CE(SAT)} = 0.2V$, $\beta = 100$)

- [A] Cutt-off
- [B] Active
- [C] En el límite entre Active and Saturation regions.
- D Saturation

(1)
$$I_{B} = \frac{Vi - V_{BE(ON)}}{Rb} = \frac{3.7 - 0.7}{100K} = 0.03mA$$

· Assuming linear region:

(2)
$$I_c = I_{c(SAT)} = \frac{V_{cc} - V_{ce(SAT)}}{Rc} = \frac{5 - 0.2}{2K} = 2.4 \text{ m A}$$