Efficient Estimation of Word Representations in Vector Space

Google Inc., Mountain View, CA

Tomas Mikolov Kai Chen Greg Corrado Jeffrey Dean

Junmyeong Lee, Junior student of GIST College

Raised problem

How to represent information well?

How to encoding various words/sentences/documents?

Word embedding

Word Embedding

- Convert word to high-dimensional vector
- Represent one-hot vector to dense vector

Country-Capital

Word Embedding

One-hot encoding (Sparse representation)

Dense vector (Dense representation)

밀집 표현 Dense Representation

희소 표현된 단어를 임의의 길이의 실수 벡터로 표현할 경우, 이를 <mark>밀집 표현(Dense Representation)</mark>이라고 한다. 이 과정을 Word Embedding이라고 하며, 밀집 표현된 결과를 <mark>임베딩 벡터(Embedding Vector)</mark>라고 부른다.

Statistical Language model: Bag-of-Words model

- Procedure
 - 1. Assign index to each word
 - 2. Count # of words in document
 - 3. Make frequency table(or histogram)
- This model shows strong performance!
- But, we can't consider relations between words in same sentence(or document)
- Applied to document classification/measuring similarity

Statistical Language model: Bag-of-Words model

Overfitting

- About unseen word, model can't represent word/document
- For sparse data, model can't represent word well

	가지	감자	고구마	당근	무	미역	양파	피망
문서0	12	10	3	8	6	3	4	12
문서1	13	1	4	10	1	6	3	1
문서2	1	4	8	8	13	4	2	12
문서3	3	15	9	11	11	3	11	2
문서4	10	11	7	14	5	12	0	8
문서5	1	2	1	15	3	3	9	3
문서6	15	10	12	11	5	2	3	10
문서7	7	8	13	7	9	6	13	3
문서8	2	12	10	10	0	1	5	8
문서9	14	14	0	5	11	6	0	3

Document-Term matrix

$$P(\text{is}|\text{An adorable little boy}) = \frac{\text{count}(\text{An adorable little boy is})}{\text{count}(\text{An adorable little boy})}$$

Statistical Language model: N-gram model

- Consider neighbor N-words (token)
- Richer representation than BoW model
- Richer representation

<Tokens>

- N=1 : unigram
- N=2 : bigram
- N=3 : trigram → N-gram

Statistical Language model: N-gram model

Overfitting

Poor generalization performance

Tradeoff about N

- Sparsity problem
- Performance-complexity tradeoff

Neural Network based Language model

Distributed Hypothesis(분산 가설)

- We can think word vectors on the similar region have similar meanings
- NN based language model adopt distribution hypothesis as inductive bias

Distributed Representation(분산 표현)

- Dense vector representation of word
- Under "Distribution hypothesis"

Neural Network based Language model: NNLM series

NNLM(Neural Network Language Model)

- Projection Layer
- 2. Hidden Layer
- 3. Output layer
- Projection Layer
 - "Projection" each words to vector
 - No activation function
- Embedding Vector
 - Embedding Vector is row of projection matrix
 - By applying inner product, lookup one row of the projection matrix, which represents correspond word

0

1.5

lookup table

1.7 2.7

Neural Network based Language model: Word2Vec

CBOW(Continuous BoW)

Predict center word by using neighbor words

Skip-gram

Predict neighbors by using center word

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Neural Network based Language model - Word2Vec : CBOW

- Window size : m
- Consider all the words before and after (2m)

Projection layer

- Averaging all projected word vectors
- No activation function

Output layer

- Averaged vector → Probabilistic vector cat(one-hot vector)
- Get loss by comparing with target one-hot vector

Neural Network based Language model - Word2Vec : Skip-gram

- Window size : m
- Predict all the words before and after (2m)

Projection layer

- Project input word(one-hot vector) to dense vector
- No activation function

Output layer

- Projected vector → 2m one-hot vectors
- Get loss by comparing with target one-hot vector

Neural Network based Language model - Word2Vec : Skip-gram

중심 단어	주변 단어
[1, 0, 0, 0, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0]
[0, 0, 0, 0, 1, 0, 0]	[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 1, 0]	[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 1]	[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]

	중심 단어	주변 단어
중심 단어 프레 다이	cat	The
The fat cat sat on the mat	cat	Fat
The lat cat sat on the mat	cat	sat
	cat	on
	sat	fat
The fat cat sat on the mat	sat	cat
The fat cat sat on the mat	sat	on
	sat	the

CBOW

Skip-gram

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Semantic question	
Syntatic question	

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

Word2Vec: Test

Table 3: Comparison of architectures using models trained on the same data, with 640-dimensional word vectors. The accuracies are reported on our Semantic-Syntactic Word Relationship test set, and on the syntactic relationship test set of [20]

Model	Semantic-Syntactic Wo	MSR Word Relatedness	
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

Word2Vec : Test

Table 5: Comparison of models trained for three epochs on the same data and models trained for one epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Model	Vector	Training	Accuracy [%]		Training time	
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

Word2Vec: Result

 The relationship is defined by subtracting two word vectors!

We can apply linear operation to words!

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship Example 1		Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Word2Vec : Conclusion

- Proposed simple and high-performance architecture for word embedding
- Has much lower complexity
- Two architecture : CBOW & Skip-gram
- Can be utilized to various NLP task, like machine translation or question answering

https://word2vec.kr/search/