

What is claimed is:

BEST AVAILABLE COPY

1 1. A Coriolis gyro (1'), having a first and a
2 second resonator (70₁, 70₂), which are each in the form of
3 a coupled system comprising a first and a second linear
4 oscillator (3₁, 3₂, 4₁, 4₂), with the first resonator (70₁)
5 being mechanically/electrostatically connected/coupled to
6 the second resonator (70₂) such that the two resonators
7 can be caused to oscillate in antiphase with one another
8 along a common oscillation axis (72).

1 2. The Coriolis gyro (1') as claimed in claim 1,
2 characterized in that the configurations of the first and
3 of the second resonator (70₁, 70₂) are identical, with the
4 resonators (70₁, 70₂) being arranged axially symmetrically
5 with respect to one another with respect to an axis of
6 symmetry (73) which is at right angles to the common
7 oscillation axis (72).

1 3. The Coriolis gyro (1') as claimed in claim 1
2 or 2, characterized in that the first oscillators (3₁, 3₂)
3 are each connected by means of first spring elements
4 (5₁ - 5₈) to a gyro frame (7₁ - 7₁₄) of the Coriolis gyro,
5 and the second oscillators (4₁, 4₂) are each connected by
6 second spring elements (6₁ - 6₄) to one of the first
7 oscillators (3₁, 3₂).

1 4. The Coriolis gyro (1') as claimed in claim 3,
2 characterized in that the second oscillators (4₁, 4₂) are
3 attached/clamped in at one end to the first oscillators
4 (3₁, 3₂) by means of the second spring elements (6₁ - 6₄)
5 and/or the first oscillators (3₁, 3₂) are attached/clamped
6 in at one end to a gyro frame of the Coriolis gyro by
7 means of the first spring elements (5₁ - 5₈).

1 5. The Coriolis gyro (1') as claimed in claim 3
2 or 4, characterized by a device for production of
3 electrostatic fields, by means of which the alignment
4 angle of the first spring elements (5₁ - 5₈) with respect
5 to the gyro frame can be varied, and/or the alignment
6 angle of the second spring elements (6₁ - 6₄) with respect
7 to the first oscillators (3₁, 3₂) can be varied.

BEST AVAILABLE COPY

1 6. The Coriolis gyro (1') as claimed in claim 5,
2 characterized by

3 - a device (10₁ - 10₈, 11₁ - 11₄) by means of
4 which it is possible to determine first signals for the
5 rotation rate and quadrature bias, which occur within the
6 first resonator (70₁), and second signals for the rotation
7 rate and quadrature bias, which occur in the second
8 resonator (70₂),

9 - control loops (60 - 67) by means of which the
10 alignment/strength of the electrostatic fields is
11 regulated such that the first and the second quadrature
12 bias are each as small as possible, and

13 - a computation unit, which uses the first and
14 second signals to determine the rotation rate, and uses an
15 in-phase component of the electrostatic fields which
16 compensate for the first and second quadrature biases to
17 determine the acceleration to be measured.

~~BEST AVAILABLE COPY~~

1 7. A method for selective or simultaneous
2 measurement of rotation rates and accelerations using a
3 rotation rate Coriolis gyro (1') which has a first and a
4 second resonator (70_1 , 70_2) which are each in the form of
5 a coupled system comprising a first and a second linear
6 oscillator (3_1 , 3_2 , 4_1 , 4_2), with the rotation rates being
7 determined by tapping and evaluation of the deflections of
8 the second oscillators (4_1 , 4_2), having the following
9 steps:

10 - the two resonators (70_1 , 70_2) are caused to
11 carry out oscillations in antiphase with one another along
12 a common oscillation axis (72),

13 - the deflections of the second oscillators (4_1 ,
14 4_2) are compared with one another in order to determine an
15 antiphase deflection component which is a measure of the
16 rotation rate to be measured and/or in order to determine
17 a common in-phase deflection component, which is a measure
18 of the acceleration to be measured,

19 - calculation of the rotation rate/acceleration
20 to be measured from the in-phase deflection
21 component/antiphase deflection component.

~~BEST AVAILABLE COPY~~

1 8. The method as claimed in claim 7,
2 characterized in that the common in-phase deflection
3 component is determined as follows:

4 - a first quadrature bias is determined which
5 occurs within the first resonator (70_1),

6 - a second quadrature bias is determined which
7 occurs within the second resonator (70_2),

8 - the first quadrature bias is calculated using
9 the second quadrature bias in order to determine a common
10 quadrature bias component which is proportional to the
11 acceleration to be measured and represents the common in-
12 phase deflection component.

1 9. The method as claimed in claim 8,
2 characterized in that electrostatic fields are produced in
3 order to vary the mutual alignment of the first and second
4 oscillators (3_1 , 3_2 , 4_1 , 4_2), with the alignment/strength
5 of the electrostatic fields being regulated such that the
6 first and the second quadrature bias are each as small as
7 possible.