Practical 2

Aim: Implement the given Boolean expressions using minimum number of gates.

1. <u>De-Morgan's Theorem:-</u>

• De-Morgan's Theorem 1:

The complement of the sum of two or more variables is equal to the product of the complement of the variables.

$$(A+B)' = A'.B'$$

Α	В	A + B	(A + B)'	A'	B'	A'.B'
0	0	0	1	1	1	1
0	1	1 .	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

• De-Morgan's Theorem 2:

The complement of the product of two or more variables is equal to the sum of the complements of the variables.

$$(A.B)' = A' + B'$$

INPUTS		OUTPUTS				
В	А	A•B	A · B	Ā	В	A + B
0	0	0	1	1	1	1
0	1	0	1	0	1	1
1	0	0	1	1	0	1
1	1	1	0	0	0	0

2. Implement the given Expression using minimum number of gates:-

Expression – 1:

 $A + A' \cdot B = A + B$

LHS Circuit:

RHS Circuit:

Truth table Verification:

А	В	LHS A + A.B	RHS A + B
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Hence the given expression is verified and proves the equivalence.

Expression – 2: (A+B).(A+C) = A+B.C

LHS Circuit:

RHS Circuit:

Truth table Verification:

A	В	C	LHS (A + B) . (A + C)	RHS A+B,C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Hence the given expression is verified and proves the equivalence.

SR. No.	Laws	ANDing	ORing
1	Identity	1.A=A	0+A=A
2	Null	0.A=0	1+A=1
3	Idempotent	A.A=A	A+A=A
4	Inverse	A.A'=0	A+A'=1
5	Commutative	A.B=B.A	A+B=B+A
6	Associative	A.(B.C)=(A.B).C	A+(B+C)=(A+B)+C
7	Distributive	A+(B.C)=A.B+A.C	A.(B+C)=(A.B)+(A.C)
8	DeMorgan's	(A.B)'=A'+B'	(A+B)'=A'.B'