Complexes Fonctions a valeurs complexes

MPSI 2

Soit \mathcal{I} un intervalle de \mathbb{R} .

Soit $f: \mathcal{I} \longrightarrow \mathbb{C}$ une application definie sur \mathcal{I} et a valeurs complexes.

$$t \longmapsto f(t)$$

$$\forall t \in \mathcal{I}, f(t) = f_{1}(t) + i f_{2}(t)$$

On definit ainsi deux fonctions sur \mathcal{I} a valeurs reelles : f_1 et f_2 .

On a :
$$\forall t \in \mathcal{I}, \begin{cases} f_{1}(t) = \mathcal{R}e(f(t)) \\ f_{2}(t) = \mathcal{I}m(f(t)) \end{cases}$$

Définition 0.0.1

On dit que f admet une limite lorsque t tend vers t₀ sur I si les fonctions composantes f₁ et f₂ admettent une limite finie quand t tend vers t₀.
 Dans ce ca, la limite de f (t) quand t tend vers t₀ est :

$$L = L_{1} + iL_{2} \quad ou \quad L_{1} = \lim_{\substack{t \to t_{0} \\ t \in \mathcal{T}}} f_{1}\left(t\right) \ et \ L_{2} = \lim_{\substack{t \to t_{0} \\ t \in \mathcal{T}}} f_{2}\left(t\right)$$

- f est continue $sur \mathcal{I}$ si f_1 et f_2 sont continues $sur \mathcal{I}$.
- f est derivable en t_0 si f_1 et f_2 sont derivables en t_0 .

 Dans ce cas, le nombre derive de f en t_0 est par definition :

$$f'(t_0) = f_1'(t_0) + i f_2'(t_0)$$

• Soit $F: \mathcal{I} \longrightarrow \mathbb{C}$ une application definie $sur \mathcal{I}$ a valeurs dans \mathbb{C} . On dit que F est une primitive de f $sur \mathcal{I}$ si F est derivable $sur \mathcal{I}$ et si:

$$\forall t \in \mathcal{I}, F'(t) = f(t)$$

On a alors:

$$\forall t \in \mathcal{I}, F_{1}'\left(t\right) + iF_{2}'\left(t\right) = f_{1}\left(t\right) + if_{2}\left(t\right)$$

• $Si\ f\ est\ continue\ sur\ un\ segment\ [a,b],\ on\ pose:$

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f_{1}(t) dt + i \int_{a}^{b} f_{2}(t) dt$$

1

Cas particulier de fonctions a valeurs complexes : L'exponentielle complexe

Soit $z_0 = a + ib$ un nombre complexe.

Cas 1: z_0 reel

 e^{z_0} a un sens (exponentielle reelle).

Cas 2 : z_0 imaginaire

$$z_0 = i\dot{\theta}$$

$$e^{z_0} = e^{i\theta}$$

$$=\cos\theta + i\sin\theta$$

Cas 3:

Si
$$z_0 = a + ib$$
, on pose : $e^{z_0} = e^a e^{ib}$

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

$$x \longmapsto e^{z_0 x}$$

f est une fonction a valeurs complexes et :

$$\forall x \in \mathbb{R}, f(x) = e^{(a+ib)x}$$

$$= e^{ax+ibx}$$

$$= e^{ax}e^{ibx}$$

$$= e^{ax}(\cos bx + i\sin bx)$$

Les applications composantes de f sont :

$$\begin{array}{cccc} f_{\scriptscriptstyle 1}\colon \mathbb{R} & \longrightarrow \mathbb{R} & \text{et} & f_{\scriptscriptstyle 1}\colon \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto e^{ax}\cos bx & x & \longmapsto e^{ax}\sin bx \end{array}$$

 $f_{\scriptscriptstyle 1}$ et $f_{\scriptscriptstyle 2}$ sont derivables su $\mathbb R$ donc f est derivable sur $\mathbb R$ et:

$$\forall x \in \mathbb{R}, f_1'(x) = e^{ax} (a \cos bx - b \sin bx)$$

$$f_2'(x) = e^{ax} (a \sin bx + b \cos bx)$$

$$f'(x) = e^{ax} [(a + ib) \cos bx + i (a + ib) \sin bx]$$

$$= (a + ib) e^{ax} (\cos bx + i \sin bx)$$

$$= (a + ib) e^{(a+ib)x}$$