Lecture 3: Model-based RL

Chong Li

Outline

- Introduction to dynamic programming
- Policy Evaluation
- Policy Iteration
- Value Iteration
- Extensions

^{*}Materials are modified from David Silver's RL lecture notes

What is dynamic programming

- DP refers to a collection of algorithms that can be used to compute optimal policies given a *perfect* model of the environment as a MDP
- Classical DP algorithms are of limited utility in RL. Why?
 - Need perfect model
 - Great computational expense
- Still important theoretically
- For now, assume finite MDP only. DP ideas can be applied to problems with continuous state and action spaces, exact solutions are possible only in special cases.

Dynamic Programming

For prediction:

```
Input: MDP \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle and policy \pi or: MRP \langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle
Output: value function v_{\pi}
```

Or for control:

Input: MDP $\langle S, A, P, R, \gamma \rangle$

Output: optimal value function v_*

and: optimal policy π_*

Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup

$$v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\pi}$$

• Using synchronous backups,

At each iteration k+1

For all states $s \in \mathcal{S}$

Update $v_{k+1}(s)$ from $v_k(s')$

where s' is a successor state of s

• We will discuss asynchronous backups later

Policy Evaluation

$$\begin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right) \\ \mathbf{v}^{k+1} &= \mathbf{\mathcal{R}}^{\mathbf{\pi}} + \gamma \mathbf{\mathcal{P}}^{\mathbf{\pi}} \mathbf{v}^k \end{aligned}$$

Example: Small Grid world

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- ullet Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Example: Small Grid world

Example: Small Grid world

	0.0	
k = 3	-2.4	
K — 3	-2.9	
	2.0	

$$k = 10$$

$$0.0 | -6.1 | -8.4 | -9.0$$

$$-6.1 | -7.7 | -8.4 | -8.4$$

$$-8.4 | -8.4 | -7.7 | -6.1$$

$$-9.0 | -8.4 | -6.1 | 0.0$$

$$k = \infty$$

$$0.0 | -14. | -20. | -22.$$

$$-14. | -18. | -20. | -20.$$

$$-20. | -20. | -18. | -14.$$

$$-22. | -20. | -14. | 0.0$$

How to improve a policy?

- Given a policy π
 - Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

• Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \operatorname{greedy}(v_{\pi})$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Iteration - Algorithm

1. Initialization

$$v(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat
$$\Delta \leftarrow 0$$
 For each $s \in \mathcal{S}$:
$$temp \leftarrow v(s)$$

$$v(s) \leftarrow \sum_{s'} p(s'|s, \pi(s)) \left[r(s, \pi(s), s') + \gamma v(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |temp - v(s)|)$$
 until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$temp \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma v(s') \right]$$

If $temp \neq \pi(s)$, then policy-stable $\leftarrow false$

If policy-stable, then stop and return v and π ; else go to 2

Proof of Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

• It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s \right] = v_{\pi'}(s)$$

Proof of Policy Improvement

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

• Therefore $v_{\pi}(s) = v_{*}(s)$ for all $s \in \mathcal{S}$ so π is an optimal policy

Generalized Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Value Iteration

- One drawback of policy iteration: each of its iterations involves policy evaluation, which itself is an iterative computation through the state set
 - 2. Policy Evaluation Repeat

```
\begin{array}{l} \Delta \leftarrow 0 \\ \text{For each } s \in \mathcal{S}: \\ temp \leftarrow v(s) \\ v(s) \leftarrow \sum_{s'} p(s'|s,\pi(s)) \Big[ r(s,\pi(s),s') + \gamma v(s') \Big] \\ \overline{\Delta} \leftarrow \overline{\max}(\Delta, \overline{|temp-v(s)|}) \\ \text{until } \Delta < \theta \ \ \text{(a small positive number)} \end{array}
```

Truncate this policy evaluation by stopping after just one state sweep

3. Policy Improvement $policy\text{-stable} \leftarrow true$ For each $s \in \mathcal{S}$: $temp \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma v(s') \right]$ If $temp \neq \pi(s)$, then $policy\text{-stable} \leftarrow false$ If policy-stable, then stop and return v and π ; else go to 2

Value Iteration - Algorithm

```
Initialize array v arbitrarily (e.g., v(s) = 0 for all s \in S^+)

Repeat
\Delta \leftarrow 0
For each s \in S:
temp \leftarrow v(s)
v(s) \leftarrow \max_a \sum_{s'} p(s'|s,a)[r(s,a,s') + \gamma v(s')]
\Delta \leftarrow \max(\Delta, |temp - v(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
\pi(s) = \arg\max_a \sum_{s'} p(s'|s,a) \Big[ r(s,a,s') + \gamma v(s') \Big]
```

Example: Shortest Path

Summary: Synchronous DP

Problem	Bellman Equation	Algorithm
Prediction Bellman Expectation Equati	Bollman Expectation Equation	Iterative
	Deninan Expectation Equation	Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Major drawback: involve operations over the entire state set of the MDP
- The game of backgammon has over 10^20 states
- Asynchronous DP can help!

Asynchronous DP

- Three simple ideas for asynchronous DP
 - In-place DP
 - Prioritized sweeping
 - Real-time dynamic programming
- To guarantee convergence, need continue to backup the values of all the states

In-place DP

• Synchronous value iteration stores two copies of value function for all s in $\mathcal S$

$$V_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{old}(s') \right)$$

$$V_{old} \leftarrow V_{new}$$

• In-place value iteration only stores one copy of value function for all s in $\mathcal S$

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Prioritized Sweeping DP

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{s}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-time DP

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

23