

**Problem 1.** (5pt) Give the definition of a real number.

**Problem 2.** (15pt) For each of the following, determine if the associative property, commutative property, distributive property, additive identity property, multiplicative identity property, additive inverse property, or multiplicative inverse property is being used.

| (a) | $2^2 + (6 \cdot 4 + 1) - 3/6^3 = (2^2 + 6 \cdot 4) + 1 - 3/6^3$             |
|-----|-----------------------------------------------------------------------------|
| (b) | $5 - x^2(2a - 3b) = 5 - 2ax^2 + 3bx^2$                                      |
| (c) | $19 - 4^2 + 3 \cdot (-5) - 16 = 19 - 4^2 - 5(3) - 16$                       |
| (d) | 3 - 16 + 0 - 1/7 = 3 - 16 - 1/7                                             |
| (e) | $-17 + 2(5 \cdot 6 + 8^3)/2 = -17 + (5 \cdot 6 + 8^3)$                      |
| (f) | $45 - 4(5 \cdot 3) - 25/5^2 = 45 - (4 \cdot 5)3 - 25/5^2$                   |
| (g) | $1/3 - 6 \cdot 5^2 - (5 + \pi^2 \cdot 1) = 1/3 - 6 \cdot 5^2 - (5 + \pi^2)$ |
| (h) | $4 \cdot 7/5 + (1 - 41^2) - 6^2 + 36 = 4 \cdot 7/5 + (1 - 41^2)$            |
| (i) | $(5-1)^2 + 4(-3)6 \cdot 1/4 = (5-1)^2 + (-3)6 \cdot 4/4$                    |
| (j) | $-4 - (15 - 3^2)/2 + 1^3 + 4 = -(15 - 3^2)/2 + 1^3 - 4 + 4$                 |
| (k) | $61 - 19(1(5) + 6) + 8^5 - 8^5 = 61 - 19(1(5) + 6)$                         |
| (1) | $6^6 + 7(2 - 6) = 6^6 + 14 - 42$                                            |
| (m) | $19^2((1-3)4) + 0^3 = (19^2(1-3))4 + 0^3$                                   |
| (n) | $15 - 2\pi/\pi = 15 - 2$                                                    |
| (0) | $(5/3)^2 + 12 - (6-2) = (5/3)^2 + 12 - 2(3-1)$                              |

**Problem 3.** (10pt) Translate the following sentences into arithmetic:

(a)

The sum of a number and 20.

(b)

The quotient of one-hundred and five and six.

(c) \_\_\_\_\_

A number is decreased by nine.

The product of nineteen and negative eight.

(e)

Fifteen more than seven.

One-third times a number.

The difference of x and y is one.

A number is divided by sixteen.

Twice the difference of a number and 5.

Six more than five times a number is 27.

Problem 4. (20pt) Compute the following:

$$50 + 50 - (25 \cdot 0) + 2 + 2$$

$$3 + 6(9) - 5(8) + 48/6$$

$$3 \cdot 8 - 4/2 + 5 \cdot 2^2$$

$$2(1-1)^2 + 6/3 \cdot 2$$

$$2(1-1)^2 + 6/(3\cdot 2)$$

$$6 - \frac{3}{4} \cdot 8 + 2^2$$

$$\frac{1-1}{4+32}$$

$$7 - (4 - 6) + 5^3$$

(i) 
$$\underline{\hspace{1cm}}$$
:  $4(1) + 28/2^2 - (4-1)/3$ 

(j) \_\_\_\_\_: 
$$4 \cdot 2^{1-2} - (5-6)$$

$$4 \cdot 2^{1-2} - (5-6)$$

## **Problem 5.** (20pt) Compute the following:

(a) 
$$3(4-(3-5))-4/2$$

(b) \_\_\_\_\_: 
$$3(2^2(1-5(3(4-5))))$$

(c) \_\_\_\_: 
$$-3^2 - 9 + 2^4$$

(d) \_\_\_\_\_: 
$$(((2-10)/2)/4)^3$$

(e) \_\_\_\_\_: 
$$(3 \cdot 4^2)/4 - (15/(-3 \cdot 5))^3$$

(f) \_\_\_\_\_: 
$$(6^2 - (-10)^2)/2$$

(g) \_\_\_\_\_: 
$$1 - ((-1)^3 - 2(3 - (1+1))^2)$$

(h) \_\_\_\_\_: 
$$\frac{x^2 + y}{y - x}$$
; where  $x = -3$  and  $y = 1$ 

(i) \_\_\_\_\_\_: 
$$y - x^3$$
; where  $x = -1$  and  $y = 18$ 

(j) \_\_\_\_\_: 
$$\frac{3x-4}{y-7}$$
; where  $x=2$  and  $y=5$ 

## **Problem 6.** (10pt) Compute the following:

(a) \_\_\_\_\_: 
$$8^2 - 8^0$$

(b) 
$$(-7)^2$$

(c) \_\_\_\_\_: 
$$2^{-3} - 2^{-1}$$

(d) \_\_\_\_: 
$$\frac{5^3}{5}$$

(e) \_\_\_\_\_: 
$$\frac{2^2 \cdot 3^3}{2^{-2} \cdot 3^2}$$

**Problem 7.** (10pt) 'Simplify' the following as much as possible, being sure to not use any negative powers:

(a) \_\_\_\_\_\_:  $x^5 \cdot x^{-8}$ 

(b) \_\_\_\_\_:  $\frac{x^9}{x^3}$ 

(c) \_\_\_\_\_:  $(x^2y)(x^3/y^5)$ 

(d) \_\_\_\_:  $\frac{(2x^2)^3}{x^{-2}}$ 

(e) \_\_\_\_\_:  $(x^5/y^4)(x^2y^{-1})^{-3}$ 

**Problem 8.** (5pt) Express the following numbers in scientific notation:

(a) \_\_\_\_\_: 0.0013

(b) \_\_\_\_\_: 22100

(c) \_\_\_\_\_: 44.35

(d) \_\_\_\_\_: 4531453210

(e) \_\_\_\_\_: 5.8

**Problem 9.** (5pt) Convert the following numbers from their scientific notation to their decimal notation:

(a) \_\_\_\_\_:  $1.871 \times 10^5$ 

(b)  $: 1.6 \times 10^{-2}$ 

(c) \_\_\_\_\_:  $5.0 \times 10^0$ 

(d) \_\_\_\_\_:  $9 \times 10^{-8}$ 

(e) \_\_\_\_\_:  $2.66 \times 10^1$