$$\begin{array}{c} u(m_0) = -\oint \left(u(m) \frac{\partial}{\partial n} \left(\frac{1}{4\pi \Gamma_{m,m}} \right) - \frac{1}{4\pi \Gamma_{m,m}} \frac{\partial}{\partial n} u \right) ds_m \\ \Rightarrow n \\ \end{array}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 1 \\ \exists u = 2 \\ \end{array}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 1 \\ \exists u = 1 \\ \exists u = 2 \\ \end{array}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 1 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 1 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 0 \\ \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\ \exists u = 2 \\ \end{aligned}$$

$$\begin{array}{c} \exists u = 2 \\$$

60		Init	
$\theta \approx \sin^2 \theta - 2c$	osb bx + (lll+1)-	$\frac{m^2}{1-c_0t^2\chi}$ $\theta=0$ θ_{χ}	$\int \sin^2\theta - \cos\theta \theta_x$
D//	\sim	1,5	
(1-x*) P" -2x)	$p'+\left(\lfloor \lfloor \lfloor + \rfloor - \frac{m^2}{1-\chi^2} \right)$	- JP =0	
$U(Y,\theta,\varphi)=\sum_{m,l}C_{l}$, r ¹ [Am cos my + B	m sinmy] Pi ^m (coso)	
考虑 m =0	(1-x ³)p"-2xp'tl	(L11) P=0 -	-[\le \chi \x \x
	$L \rho = \lambda \rho$		
		ずか止 復多功 で(x²-1) ¹	· · · · · · · · · · · · · · · · · · ·
	$P(x) = \frac{1}{x^2} \frac{d^2}{dx^2}$	T(x2-1)6 964	格表示
	$2^{l}l!$ dx		
	\longrightarrow $(\vdash X^{1})^{\frac{M}{2}}$	$\frac{d^m}{dx^m} P(x)$	egendre总程
(+x2) p"(x) -2x p"	x) +n(n+1) P(x) =	9	
(1) x)<			
(2) 11不一定是整数	X		
$i \Re P(x) = \chi^{c} [a_{o} +$	$-a_1 \times + a_2 \times^2 + \cdots$	tak Xk+]	
= \frac{t \infty}{k=0} \alpha_k	χktc	<i>d</i> ₀ ‡0	
-x' P"-2x P' +n(n+1) P+ P" =0		
[- (k+c)(k+c-1)	-2(k+c) tn(h+1)]a	k † (k+c +2) (k+c+1	
			k=0,1,2,···
χ ^{c-2} α ₀ c ((-1)	=0 C=0 C	=1	
χ ^{c-1} α, C(C -1)		=-1 a1 +0	

C=0	$a_{ktl} = \frac{k(ktl) - n(ntl)}{(ktl)(ktl)} a_k$ n整,有限项多项式
	(k-n)(k+n-1)
	后定,只了全系数可角军 -h(n-1)
	$= \frac{-h(n-1)}{1-2}a_{b}$ $(2-h)(n+1) \qquad h(n-2)(n-1)(n+1)$
	$= \frac{(2-h)(h+1)}{3\cdot 4} a_2 = \frac{h(h-2)(h-1)(h+1)}{1\cdot 2\cdot 3\cdot 4} a_0$
	$= (-1)^{k} \frac{1(n-2)\cdots(n-2k+2)(n+1)(n+3)\cdots(n+2k-1)}{(2k)!} a_{0}$
	$=\frac{-n(n+1)}{2-3}\alpha_1$
a _s	$= \frac{-(n-3)(n+2)}{4-5} a_3 = \frac{(n-1)(n-3)n(n+2)}{5!}$
	$a_1 = (-1)^k (n-1)(n-3)\cdots (n-2k\pi) n(n\pi 2)\cdots (n\pi 2k) a_1 $ $(2k+1)!$
y ₁ =	$\sum_{k=0}^{+\infty} a_{2k} \chi^{2k} \qquad \qquad y_2 = \sum_{k=0}^{+\infty} a_{2k+1} \chi^{2k+1}$
流线	$ \sum_{k=0}^{+\infty} Q_{2k} \chi^{2k} \qquad y_2 = \sum_{k=0}^{+\infty} Q_{2kn} \chi^{2kn} $ $ \frac{1}{2} + \int y(\omega) = a_0 \qquad \dot{\partial}_{2k} \chi^{2k} \chi$
C =0	\sim $n(n-2)\cdots(n-2k+2)(n+1)\cdots(n+2k+1)$
	$J_1 = \sum_{k=0}^{\infty} (2k)!$
	$y_2 = \sum_{k=0}^{\infty} (-1)^k \frac{(n+1)(n-1)(n-2k+1) \cdot (n+2) - \cdots (n+2k)}{(2k+1)!} \chi^{2k+1}$
	$W(y_1,y_1)$ 의 $4 \sqrt{5} $ 安全 $\frac{ a_{k12} }{ a_k } \frac{h^{20}}{ a_k }$
	1×1<1

C=	$a_{kt2} = \underline{0}$	k+1) [k+2) (k+2)(k+3)	hinti) ak	aı	<i>-0</i>	
C = -[a, =0 9					
假设加是正等	整数 k=0,	ر ۰۰۰ ر ۱٫ ۲٫	N-1			
An-2	$= \frac{-n(n-1)}{2h-1}$	a _n	a _k :	= - <u>()</u>	zti) (k †2) -k) (1†k-	A _{kt} ,
				r t2 = N	1 (<i>n</i> - ₍)	
				$z - \frac{1}{2}$		
			dn-4	=	(n-2)(n- 4 (2n-5)	$\frac{3}{2} \cdot \dots \cdot \frac{n \cdot (n-1)}{2(2n-1)} a_n$
	(21) -	2m)	Oln =	2"h!		
an-2m = (-1)	$\int_{-\infty}^{\infty} \frac{(2n-1)^n}{2^n m! (n-m)}$! (n =2m)!				
a _{h-1} = (-1)	$\frac{(2n-2)!}{2^{n}(n-1)!(n-1)!}$	<u>-1)!</u> =	(-1) \(\frac{1}{2^n h}\)	(2 <i>n-</i> 2/!	<u>)!</u>	
$y_{1} = \sum_{n=0}^{\frac{n}{2}}$		-2m)! -m]! (n-2)	n) !	12-7 W ()		34.7531140.75+
y = 2 2 2 2 M=0	(~I) ^m (.	2n-2m]! n-m]! (n-		-χ ^{η-2m} [ð		花得到冷阪弦
Pn (x) =	<u>M</u> (-1) ^m	11-m); (11- 11-m (2n-2 11: (n-m)!	m)!			
		: (n-m); -1)^		ı)=I, <i>P</i> ,	1 H) = H	12 n

作	水:	六:	1.							