Aufgabe 1

Sei K ein Körper. V:=K[X] sei ein K-Vektorraum. Sei $U:=[1]=[1+0X+0X^2+\dots]=$ $[(1,0,0,\dots)].$

- (a) Gib eine Basis B von K[X]/U an! (b) Gib einen Isomorphismus f von K[X]/U nach K[X] an! Zeige auch: f ist wohldefiniert!
- (c) Gib $B^* = (g_1, g_2, g_3, \dots)$ (die duale Vektorenmenge von B; für unendlichdimensionale Vektorräume ist B^* keine Basis) an! Zeige: g_1, g_2, \ldots sind wohldefiniert!
- (d) Sei v = (2, 5, 3, 6, 7, 0, 0, ...) + U. Berechne $g_1(v), g_2(v), g_3(v), ...$

Aufgabe 2

Sei
$$V := F_3^3$$
, $B = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix} = (b_1, b_2, b_3)$.

(a) Zeige: B ist Basis von V.

(b) Boyoshyo B^*

- (b) Berechne B^* .

(c) Sei
$$\Phi \colon V \to V^*, \Phi(b_i) = b_i^*$$
. Sei $x := \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$. Berechne $\varphi := \Phi(x)$ und $\varphi(x)$.