

Choose the correct answer:

The simplest dispersion measure is

1. (a) the arithmetic mean.

(b) the median.

(c) the range.

(d) the mode.

Which of the following tables represents the direct variation between x and y?

2.

(a)	x	y ,
	2	9
	4	18

x	y
3	20
5	12

(c)

X	. . y
3	6
-2	- 9

X	y
10	9
5	18

If $X = \{3\}$, n(Y) = 5, then $n(X \times Y) = \dots$

- 3.
- (a) 1
- (b) 5
- (c) 8

(d) 15

The relation which represents an inverse variation between the two variables y and X is

- 4.
- (a) Xy = 5
- (b) y = x + 3 (c) $\frac{x}{5} = \frac{y}{2}$
- (d) y = 2 X

The arithmetic mean of the set of values: 8,9,7,6 and 5 equals

- 5.
- (a) 25
- **(b)** 7
- (c) 35
- (d) 5

The relation representing the direct variation between the two variables x and y is

- 6.
- (a) X y = 5
- (b) y = x + 3 (c) $\frac{x}{3} = \frac{4}{y}$
- $(\mathbf{d})\frac{x}{5} = \frac{y}{2}$
- If $\sum (x \overline{x})^2 = 36$ to the set of 9 values, then $\sigma = \cdots$
- 7.
- (a) 2
- **(b)** 4
- (c) 18
- (d) 27

If x y = 7, then $y \propto \dots$

- 8.
- (a) $\frac{1}{x}$
- **(b)** x 7
- (c) X
- (d) X + 7

Preparatory three - First term revision - 2021					
9.	The solution (a) {4}	set of the equation: x (b) $\{-2, 2\}$	$\mathbb{C}^2 + 4 = 0 \text{ in } \mathbb{R} \text{ is } \cdots$ (c) $\{-2\}$	(d) Ø	
10.	_	$(b) \{(3,4)\}$, then 2		(d) {1,4}	
11.	If $y = m x$ who (a) $y \propto x$	ere m is a constant ≠ zer (b) $x \propto y$	o, which of the following (c) $\chi = \frac{1}{m} y$		
12.	f: f(X) = (2: degree when a (a) zero	$a - 2) x^3 + 3 x^2 + x + 1 = \dots$ (b) 2	- 2 is a polynomial fund	ction from the second (d) 1	
13.	If the point (a (a) $a \ge 5$	-5 , $5-a$) lies in the f (b) $a \le 5$	fourth quadrant, then (c) a > 5	(d) a < 5	
14.	If $\frac{a}{3} = \frac{b}{5}$, then (a) 3	5 a - 3 b + 4 =(b) 4	 (c) 5	(d) 6	
15.	If $\sum (x - \overline{x})^2 =$ • then $\sigma = \cdots$	= 48 of a set of values a (b) – 2	and the number of these	e values is 12 (d) 4	
16.	The following where $f(X) =$ (a) $X + 3$		nial functions except the (c) $x\left(x + \frac{1}{x}\right)$	·	
17.	The second pro	oportional to the number	ers 2 , , 8 is	(d) ± 6	
18.	The range of t	he set of the values: 7 (b) 4	,3 ,6 ,9 ,5 is (c) 6	(d) 12	
19.	If $y \propto X$ and y (a) 16	x = 2 when $x = 8$, then (b) 12	$y = 3$ when $x = \dots$ (c) 24	 (d) 6	
20.	If $5 x = 9 y$, (a) 27: 10	then $\frac{3 \chi}{2 y} = \dots$ (b) 9:5	(c) 5 : 9	(d) 81 : 25	
			-2-		

Preparatory three - First term revision - 2021 In the opposite figure: The curve of a quadratic function A(-4,0), then the equation of the axis 21. of symmetry is $X = \cdots$ (a) 1 (b) - 1(c) - 2(d)0If f(x) = 3, then $f(2) - f(7) = \dots$ 22. (a) 5 (b) - 5(c)0(d) - 4The third proportional of the quantities 2,3 and 6 is 23. (d) 12 (a) 1 (b) 4 (c)9If the point (b-4, 2-b) lies in the third quadrant, then $b = \dots$ 24. (a) 2 (c) 4 (d)6(b) 3 If a set of values are equal, then the dispersion of these values is 25. (c) = 1(a) > zero(b) < zero(d) = zeroIf $\Sigma (x - \overline{x})^2 = 36$ for a set of values whose number is 9, then $\sigma = \cdots$ 26. (a) 2 (b) 4 (c) 18 (d) 27If $(X - 1, 2^y) = (1, 8)$, then $(X, y) = \dots$ 27. (a) (2,3)(b) (3, 2) (c) (0, 3)(d) (0, -3)If a, b, 2 and 3 are proportional, then $\frac{a}{b} = \cdots$ 28. (c) $\frac{3}{4}$ (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (d) $\frac{4}{3}$ If X y = 7, then $y \propto \dots$ 29. (a) $\frac{1}{x}$ **(b)** X - 7(c) X + 7(d) XIf f(X) = 3, then $f(5) + f(-5) = \cdots$ 30. (a) - 1(b) 0 (c) 1 (d)6The range of the set of the values: 3,5,6,7,9 equals 31. (a) 3 (b) 4 (c)6(d) 12

		Preparatory three	- First term revision	- 2021
32.			antities, then $X = \cdots$	
	(a) 9	(b) 18	(c) 12	(d) 3
33.	\$250 W	a-3, 5) lies on y-ax	is , then a =	
	(a) 5	(b) 3	(c) 2	(d) 0
	The difference	ce between the greates	t value and the smallest	t value of a set of individuals
34.	is called			
J T .	(a) the range		(b) the arithmeti	c mean.
	(c) the media	an.	(d) the standard	deviation.
2.5	The fourth p	roportional of the quar	ntities 4,8,8 equals	
35.	(a) 4	(b) 8	(c) 12	(d) 16
	If $y^2 + 4 x^2$	$= 4 \times y$, then		
36.	(a) $y \propto X$	= 4 \times y, then (b) y \propto \times \times 2	(c) $y \propto \frac{1}{\chi}$	(d) $y \propto \frac{1}{\chi^2}$
2.7	The degree of	of the polynomial funct	ion $f: f(X) = X^4 - 23$	$\chi^2 + 5$ is
37.	(a) fourth.	(b) third.	(c) second.	(d) first.
	The middle J	proportional between	3 and $\frac{1}{3}$ is	
38.		(b) 9	(c) $\frac{1}{9}$	$(\mathbf{d}) \pm 9$
20	The third pro	portional of the two nu	ımbers – 6 , 12 is	
39.	(a) - 24	(b) 6	(c) 18	(d) 72
4.0	If $f(X) = 4$	X + a and f(2) = 15	then a =	
40.	(a) 2	(b) 4	(c) 7	(d) 15
	All of the fol	lowing are polynomial	functions except	
41.	(a) $f_1(x) = x$	$x^3 + x^2 + 3$	(b) $f_2(x) = x^3$	$+\frac{1}{x}+7$
	(c) $f_3(x) = 5$	$-X^2$	(d) $f_4(x) = x^2$	
4.5	The range is	the measure	of dispersions.	
42.	(a) simplest	(b) greatest	(c) difficult	(d) otherwise
			4	

	Prep	paratory three - F	irst term revision	- 2021	
43.				variables X and y is	
43.	(a) $X y = 5$	(b) $y = X + 3$	(c) $\frac{x}{3} = \frac{3}{y}$	(d) $\frac{\chi}{5} = \frac{y}{3}$	
44.	If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k v$ (a) k^3	where $\mathbf{k} \in \mathbb{R}$, then $\frac{2}{\mathbf{k}}$	$\frac{1 c e}{0 d f} = \dots$		
44.	(a) k^3	(b) k^2	(c) k	(d) 3	
	The positive square root to the average of squares deviations of values from the mean				
45.	is called the (a) median.	(b) mode.	(c) range.	(d) standard deviation.	
			., .		
46.	3	2	on then χ^2 y =		
	(a) 7	(b) $\frac{1}{7}$	(c) 14	(d) 49	
	The commonest m	easure of dispersion	ns and the most accura	ate is ·····	
47.	(a) the median.		(b) the arithmetic	e mean.	
_	(c) the mode.		(d) the standard of	deviation.	
48.	The point $(-2,5)$	lies in the	quadrant.		
40.	(a) first	(b) second	(c) third	(d) fourth	
	1000		\mathbb{Z} is located in the fo	ourth quadrant	
49.	, then $X = \cdots$		7.3.4	(1) (
	(a) 2	(b) 3	(c) 4	(d) 6	
			y = 2 X - 1 is represe at the point	nted graphically by	
50.	/ 4 \	(b) $(0, -1)$		(d) $(0, \frac{1}{2})$	
	(2)		Separation 19 No. 1992	- L /	
51.		-	dispersion of these v		
		(b) < zero		(d) = zero	
	$11 x^2y^2 - 6xy + 9$	= 0, then (b) $y \propto x^2$	$(c) \times c \frac{1}{2}$	(d) $v \propto \frac{1}{1}$	
52.	(a) y & x	(b) y & X	(c) y a x	(d) $y \propto \frac{1}{\chi^2}$	
	The relation which	n represents an inver	rse variation between	the two variables	
53.	y and <i>X</i> is		se variation services	the two variables	
	(a) $Xy = 5$	(b) $y = x + 3$	(c) $\frac{\chi}{5} = \frac{y}{2}$	(d) $y = 2 X$	
	1		-5-		

Preparatory three - First term revision - 2021

SECOND: GEOMETRY

Cn	oose the c	orrect ans	swer:				
1.	If $\overrightarrow{AB} \perp \overrightarrow{CD}$ and	the slope of $\overrightarrow{AB} = -$					
	(a) 2	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) - 2			
	tan 60° tan 30° =	tan 60° tan 30° =					
2.	(a) sin 30°	(b) tan 30°	(c) tan 45°	(d) cos 60°			
3.	The equation of the to X-axis is		h passes through th	e point (2,3) and is parallel			
	(a) $X = 2$	(b) $X = 3$	(c) $y = 2$	(d) $y = 3$			
	If $\sin x = \frac{1}{2}$ whe	re X is an acute an	gle, then $\sin 2x$:	=			
4.	(a) $\frac{1}{4}$	(b) 1	(c) $\frac{1}{\sqrt{3}}$	$(d) \frac{\sqrt{3}}{2}$			
	The distance betw	The distance between the point (4,3) and y-axis equals length unit.					
5.	(a) - 3	(b) -4	(c) 3	(d) 4			
6.	If A (5,7), B	If A (5,7), B (1,-1), then the midpoint of \overline{AB} is					
0. 	(a) (2 , 3)	(b) (3,3)	(c) (3,2)	(d) (3 , 4)			
_	If A, B are two ac, then	ute angles and m (\angle	$A) + m (\angle B) = 90$	$m \in A$ $m (\angle A) \neq m (\angle B)$			
7.	(a) $\sin A = \cos B$		(b) $\sin A = \sin B$	}			
	(c) $\tan A = \tan B$		$(d)\cos A = \cos B$	В			
0			nd its radius length i	s 2 length unit, then the			
8.	point be	(b) $\left(-2,\sqrt{5}\right)$	(c) (0 - 1)	(d) (1/2 - 1)			
	-/(-/ -/	(0)(2)(3)	(0) (0) 1)	(a) (\(\frac{1}{2}\) \(\frac{1}{2}\)			
9.	If $\cos \frac{x}{2} = \frac{1}{2}$ when	ere $\frac{x}{2}$ is the measur	e of a positive acute	e angle, then $x = \cdots$			
<i>)</i> .	(a) 30	(b) 90	(c) 60	(d) 120			

-6-

Preparatory three - First term revision - 2021 If \overrightarrow{CD} is parallel to y-axis where C(k, 4), D(-5, 7), then $k = \dots$ 10. (a)5(b) 7 (c) - 5(d)4The equation of the straight line passing through the origin point and its slope = 1is 11. (a) y = X(b) y = -X(c) y = 2 X(d) y = 0If $\cos (x + 25^\circ) = \frac{1}{2}$, x is the measure of an acute angle, then $x = \dots$ 12. (d) 5 (a) 20 (b) 35 (c) zero The straight line whose equation is 3 y = 2 x - 6, its slope = 13. (d) $\frac{3}{2}$ (b) $\frac{2}{3}$ (c) 6 (a) 2 If ABC is a right-angled triangle at B and $\sin A = \frac{2}{7}$, then $\cos C = \cdots$ 14. (b) $\frac{3}{7}$ (d) $\frac{5}{7}$ (a) $\frac{2}{7}$ (c) $\frac{4}{7}$ The perpendicular distance between the two straight lines y - 4 = 0 and y + 5 = 0equalslength units. 15. (a) 1 (b) 5 (c)9(d) 4 If ABC is a right-angled triangle at B, then $\frac{\sin A}{\cos C} = \dots$ 16. (a) $\frac{3}{5}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) 1 ABC is a triangle, $m (\angle A) = 85^{\circ}$, $\sin B = \cos B$, then $m (\angle C) = \cdots$ 17. (a) 30° (b) 45° $(c) 50^{\circ}$ (d) 60° The area of the triangle bounded by the straight lines x = 0, y = 0 \Rightarrow 3 \times + 2 y = 12 equals square units. 18. (a) 6 (d) 5(b) 12 (c)4In the opposite figure: Which of the following represents the equation of the straight line L? 19. (a) y = X(b) y = 2(c) y + X = 2(d) y - X = 2

Preparatory three - First term revision - 2021 In the figure opposite: The equation of the straight line L is (a) X = 120. (b) y = -X(c) y = X(d) y = 1The perpendicular distance between the straight lines x-2=0, x+3=0 equalslength units. 21. (c) 2(d) 3 (a) 1 (b) 5 The distance between the two points (15,0), (6,0) equals unit length. 22. (a) - 9(b) 9 (c) 3 (d) - 3If \overrightarrow{CD} is parallel to the y-axis where C (m, 4), D (-5, 7), then m = 23. (a) 5 (b) -5(c) - 7(d)7If AB is a diameter of a circle, where A (3, -5), B (5, 1), then the centre of 24. the circle is (a) (8, -2)(b) (4, 2)(c)(2,2)If $\frac{-2}{3}$, $\frac{k}{2}$ are the slopes of two parallel straight lines, then $k = \dots$ 25. (a) $\frac{-4}{3}$ (b) $\frac{-3}{4}$ (d) $\frac{1}{3}$ (c) 3 If $\cos 2 X = \frac{1}{2}$, then m ($\angle X$) = 26. (a) 15° (b) 30° (c) 45° (d) 60° If the two straight lines $3 \times 4 y = 3$ and $4 \times k y = 8$ are perpendicular , then $k = \cdots$ 27. (a) 4 (b) 3(c) - 4(d) - 3The slope of the straight line which makes with the positive direction of x-axis a positive angle of measure 45° equals 28. (a) 1 (b) - 1(c) zero (d) 1.4

Preparatory three - First term revision - 2021

If $\cos(x + 15^\circ) = \frac{1}{2}$, then $\tan x = \dots$ where x is the measure of an acute angle.

- 29. (a) 1
- **(b)** $\sqrt{3}$
- (c) $\frac{\sqrt{3}}{3}$
- (d) $\frac{1}{2}$

The distance between the two points (-3,0) and (0,-4) equalslength units.

- (a) 4
- (b) 5
- (c)3
- (d) 2

If C (-3, y) is the midpoint of \overline{AB} where A (x, -6) and B (9, -12)

- 31. then $y X = \dots$
 - (a)7
- (b) 9

- (c) 6
- (d) 18

If m (\angle A) = 85° and sin B = cos B in \triangle ABC, then m (\angle C) =°

- 32.
- (a) 30
- (b) 45
- (c) 50
- (d) 60

The straight line whose equation is $2 \text{ y} = 3 \text{ } \text{\mathcal{X}} - 6$ intercepted a part equalunits from y-axis.

- 33.
- (a) 6

(b) 2

- (c) 3
- (d) $\frac{3}{2}$

If $\sin x = \cos x$, then $x = \cdots \circ (x \text{ is the measure of an acute angle})$

34.

35.

- (a) 30
- (b) 45
- (c) 60
- (d) 90

In the opposite figure:

The slope of \overrightarrow{AB} equals

- (a) $\frac{2}{3}$
- (b) $\frac{-2}{3}$
 - (c) $\frac{3}{2}$
- (d) $\frac{-3}{2}$

The perpendicular distance between the two straight lines x - 3 = 0, x + 4 = 0 36. equalslength units.

- (a) 2
- (b)7
- (c) 12
- (d) 6

37. If $\tan (x + 20)^\circ = \sqrt{3}$ where $(x + 20)^\circ$ is the measure of an acute angle, then $x = \cdots$

- (a) 30
- (b) 60
- (c) 90
- (d) 40

	Preparatory three - First term revision - 2021				
38.	If $x + y = 5$, $kx + 2y = 0$ are two (a) -2 (b) -1	o parallel straight lii	nes, then $k = \cdots$ (d) 2		
39.	The points (0,0), (0,6) and (8,0) (a) form an acute-angled triangle. (c) form an obtuse-angled triangle.		at-angled triangle. ar.		
40.	The equation of the straight line which to y-axis is		e point $(-5,3)$ and is parallel (d) $X = 3$		
41.	The perpendicular distance between to equalslength units. (a) 1 (b) 2	he two straight lines	$5 \times 2 = 0$, $x + 3 = 0$ (d) 5		
42.	4 sin 60° tan 60° = (a) 3 (b) 6	(c) 12	(d) $2\sqrt{3}$		
43.	$\tan 60^{\circ} \tan 30^{\circ} = \dots$ (a) $\sin 30^{\circ}$ (b) $\tan 30^{\circ}$	(c) tan 45°	(d) cos 60°		
44.	If $\sin x = \frac{1}{2}$ where x is an acute angular (a) $\frac{1}{4}$ (b) 1	gle, then $\sin 2 X =$ (c) $\frac{1}{\sqrt{3}}$	(d) $\frac{\sqrt{3}}{2}$		
45.	The distance between the point $(4, 3)$ (a) -3 (b) -4	and y-axis equals (c) 3	length unit.		
46.	The equation of the straight line which to X -axis is(b) $y = 1$	ch passes through the (c) $y = -3$			
47.	In the opposite figure: ABC is an isosceles triangle and a right then tan $C = \cdots$ (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{\sqrt{3}}$	ght-angled triangle a	at A (d) $\frac{1}{2}$ C		

First-term 2020/2021

First Algebra:

Choose the correct answer:

1) The relation which represents the inverse relation between x and y is

- (a) y=5x b) $y=\frac{1}{5}x$ c) $y=\frac{5}{7}$ d) y=5x
- 2) [1,5]-{0,1} =
- a)]1,5[b)]1,5] c) [1,5[
- d) {5}

3) If the arithmetic mean of the set of values a, 5, 8, 7, 6 equals 6, then a =

- b) 6
- c) 8
- d) 30
- 4) If $\frac{3}{4} + \frac{3}{x} = \frac{3}{2}$ then x =

- c) 3
- d) 9

5) The linear function f: f(x) = 2x - 1 is represented by a straight line cutting y-axis at the point

- b) (0,-1) c) (1,0) d) (-1,0)

6) The range of the set of values 7, 3, 6, 9, 5 equals

- b) 4

7) If x-y=5, x+y=1, then $x^2 - y^2 = \dots$

- b) 3 c) 25 d) $\frac{1}{25}$

8) If $n(X^2) = 9$, then n(X) =

- b) 3 c) 6
- d) 9

9) If $(9, 4) \in \{9, 7\} \times \{x, 5\}$, then x =

- a) 9
- b) 4
- c) 7
- d) 5

10) is one of the measures of the dispersions							
a) The arithme	tic mean	b) The med	b) The median				
b) C) The mode	2	d) The stan	dard deviation				
11) The point (-3 , 4) in the quadrant							
a) first	b) second	c) third	d) fourth				
12) If $\sum (x - x)$	12) If $\sum (x-x)2$ =48 of a set of values and the number of these values = 12 , then σ =						
a) -2	b) 2	c) 4	d) 6				
13) $\frac{1}{3}$ of the nu	mber 3 ⁴ =						
a) 3	b) 3 ²	c) 3 ³	d) 2 ³				
14) If x , y , z are	in continued pr	oportion , the	n x =				
a) $\pm \sqrt{xy}$	b) yz	c) $\frac{y^2}{z}$	d) $\frac{y}{z}$				
15) If all the val	ues are equal, t	hen					
a) $x-\overline{x}>0$	$b) x - \overline{x} < 0$	c) $x = 0$	$d)\sigma = 0$				
16) If $\sum (x - \overline{x})$	= 48 of a set of	values and the	number of these values =12 , then σ =				
a) -2	h) 2	a) 1	4) C				
		c) 4	d) 6				
17) $\sqrt[3]{64} = $							
a) 2	b <mark>) 16</mark>	c) 8	d) 4				
18)]4 , 6[∩ {4 , 6} =							
a)]4 , 6[b) {4}	c) [4,6]	d) Ø				

27) If the =	point ($x-4$, 2	$ x$) where $x \in \mathbb{Z}$ is l	ocated in the third quadrant,	then x			
a) 2	b) 3	c) 4	d) 6				
28) The middle proportion between a and c equals							
a) $\sqrt{a+c}$	b) $\frac{a+c}{2}$	c) $\pm \sqrt{ac}$	d) ac				
29) The range	of the set of va	lues 7 , x , 8 , 9 and 5	is 6 , then x =				
a) 3	b) 4	c) 6	12				
30) The functi	$ion\; f \colon f(x) = (x$	$(-2)^2 - x^2$ is of the	degree				
a) <mark>first</mark>	b) second	c) third	d) fourth				
Second: T	rigonometry&G	eometry					
31)The equati	ion of the straigl	ht line which passes t	through the origin point is	•••••			
a) $x=1$	b) y = 1	c) $y = x$	$\mathbf{d)}\; \boldsymbol{y} = -\boldsymbol{x}$				
32) The area o	of the square wh	ose perimeter is 16 l	ength unit = square ur	nits			
a) 4	b) 8	c) 12	d) 16				
33) The slope	of the straight li	ine which is parallel t	to <i>x</i> – <i>axis</i> is				
a) -1	b) zero	c) 1	d) undefined				
34) 2sin30=							
a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) 1	d) 2				
35) The sum o	of measures of th	he interior angles of a	a quadrilateral equals				
a) <mark>360</mark>	b) 180	c) 90	d) 540				

36) If A(1 , -6)	, B(9 , 2) , then the	e midpoint of \overline{AB}	is			
a) (-2 , 5)	b) (2,-5)	c) (5,-2)	d) (-5,	2)		
37) If a = b, a, b are the measures of two complementary angles, then a =						
a) 30	b) 45	c) 60		d) 90		
38) The distan	ce between the tw	o points (4 , 0) ar	ıd (0 , -3) =	length units		
a) <mark>5</mark>	b) 4	c) 3		d) 12		
39) ABC is a rig	ght-angled triangle	at B , D is the mi	dpoint of \overline{AC}	and BD = 5cm, the	en AC	
a) 5	b) <mark>10</mark>	c) 15	d) 20			
40) The numb	er of axis of symm	etry of an isoscele	s triangle ed	uals		
a) 1	b) zero	c) 2	d) 3			
41) If $cos(x +$	$30) = \frac{1}{2}$ where x	is the measure of	an acute an	gle , then x =		
a) 60	b) <mark>30</mark>	c) 45	d) 20			
	th of two sides of a de is cm	an isosceles triang	le are 3 cm.	,7 cm. , then the le	ngth	
a) 4	b) 7	c) 10	d) 3			
43) The distan	ce between the tw	o straight lines x	-2=0 , x	+3=0 equals	Length unit	
a) 1	b) 2	c) 3	d) <mark>5</mark>			
44) The equation of the straight line passing through the point (-2, -3) and parallel to x-axis is						
a) $y = -2$	b) $y=-3$	c) $x =$	-2	d) x = -3		

45) The length of the side which opposite to angle 30 in the right-angled triangle equals The length of the hypotenuse						
a) twice	b) half	c) triple		d) third		
46) If the diag	onal length of a sq	uare is 10 cm., th	en its area :	= <i>cm</i> ²		
a) 100	b) <mark>50</mark>	c) 75		d) 25		
47) The image	of the point (3, -2) by reflection in	the x-axis is			
a) (-2,3)	b) (3,2)	c) (2,-3)		d) (-3,-2)		
48) The slope	of the straight line	x-5=0 is				
a) 5	b) 0 c)	-5 d) u	ndefined			
49) The number	er of diagonals of h	nexagon equals				
a) 4	b) 5 c)	6 d) 7				
	50) The measure of two angles of a triangle are 70, 40, then the number of axis of symmetry of the triangle =					
a) 1	b) 2 c)	3 d) z	ero			
51) If O the or	igin point of \overline{AB} as	A =(-2 , 5) , then E	3=			
a) (2,5)	b) (2,-5)	c) (-2,5)	d) (-2,	-5)		
52) The perim	eter of the square	whose surface are	ea is 100 squ	uare units = units		
a) 10	b) 20	c) <mark>40</mark>	d) 50			
53) If $\frac{-2}{3}$, $\frac{6}{k}$ are	the slopes of two	perpendicular st	aight lines,	then k =		
a) <mark>4</mark>	b) -9	c) -4	d) 9			
54) The measure of the interior angle of a regular hexagon equals						
a) 108	b) <mark>120</mark>	c) 90	d) 180			

Prep.[3] First Term-Algebra Final Revision Part 2-Problems

Mr. Mahmoud Esmaiel 01006487539=01110882717

لاســم

A]: Choose The Correct Answer: -

If $X = \{5\}$ and $Y = \{3\}$, then $n(X \times Y) = \dots$

(a) 15

(b) 5

(c) 3

(d) 1

If $X = \{7\}$, $Y = \{5\}$, then $n(X \times Y) = \dots$

2 (a) 1

(b) 2

(c) zero

(d) 35

If n(X) = 2, $Y = \{1, 2\}$, then $n(X \times Y) = \dots$

3 (a) 4

(b) 3

(c) 5

(d) 6

Α

If n(X) = 3, $n(X \times Y) = 12$, then $n(Y) = \dots$ 4

(a) 15

(b) 36

(c)4

(d) 9

If $n(X^2) = 4$, $n(X \times Y) = 12$, then $n(Y) = \dots$

5 (a) 3

(b) 6

(c) 4

(d) 12

В

If $X = \{2, 3, 4\}$, then $n(X^2) = \dots$ 6

(a) 3

(b) 6

(c) 9

(d) 12

If $X = \{2\}$, then $X^2 = \{\dots \}$

(a) (2,2) (b) (2,0)

(c) (0, 2) (d) (2, -2)

Α

If $(2, 9) \in \{2, 8\} \times \{x, 4\}$, then $x = \dots$ 8

(a) 8

(b) 6

(c)9

(d) 2

If $\{2\} \times \{x, y\} = \{(2, 4), (2, 3)\}$, then $x - y = \dots$ 9

(a) 1

(b) - 1

(c) ± 1

(d) zero

The set of images elements of the domain of the function is called 10

(a) the rule.

(b) the domain.

(c) the range.

(d) the codomain.

The point (4, -5) lies in the quadrant. 11

(a) first

(b) second

(c) third

(d) fourth

В

D

If the point (x-4, 2-x) where $x \in \mathbb{Z}$ is located in the third quadrant

(a) 2

12

(b) 3

, then X equals

(c) 4

(d) 6

	Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717 ⊨	
	rage [5] - Math - Mi. Mahinodu Eshialei - Mobile : 01000407555 - 01110002717	
13	If the point $(x-5,7-x)$ lies in the second quadrant, then $x = \dots$ (a) 5 (b) 3 (c) 7 (d) 9	В
14	If the point $(X, 2)$ lies on y-axis, then $X + 3 = \cdots$ (a) 3 (b) zero (c) 2 (d) 5	6
15	if $(x-2, 13) = (7, y+5)$, then $\sqrt{x+2} = \dots$ (a) 2 (b) 5 (c) 7 (d) 13	В
16	If $(x-1, 11) = (8, y+3)$, then $\sqrt{x+2} y = \dots$ (a) 7 (b) 5 (c) 4 (d) 3	В
17	If the point (a, 3) lies on the straight line which represents the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, where $f(x) = 4x - 5$, then a equals	A
18	If the point (a, 2) lies on the straight line which represents the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ where $f(x) = 3 \times -1$, then $a = \cdots$ (a) 2 (b) 3 (c) 1 (d) -1	С
19	The function f where $f(x) = x^4 - 2x^3 + 7$ is polynomial of degree	D
20	The function f where $f(x) = x(x-4) + 1$ is a polynomial of the degree. (a) first (b) second (c) third (d) fourth	В
21	If $f: \mathbb{R} \longrightarrow \mathbb{R}$, then the function f where $f(x) = x^2 - (x^2 - 3x)$ is of the degree. (a) first (b) second (c) third (d) fourth	A
22	$f(X) = X(3 X + 2)^2$ is function of degree. (a) third (b) second (c) first (d) otherwise	A
23	If $(2, b)$ satisfies the function f where $f(x) = 3x - 6$, then $b = \cdots$ (a) zero (b) 7 (c) 9 (d) 2	A

	Page [4] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
		ı
24	If $f(X) = k X + 8$, $f(2) = \text{zero}$, then $k = \dots$ (a) 8 (b) 6 (c) 4 (d) -4	D
25	The function f where $f(X) = 5 X$ is represented graphically by a straight line passes through the point	В
26	If $3a = -4b$, then $\frac{a}{b} = \dots$ (a) $-\frac{4}{3}$ (b) $-\frac{3}{4}$ (c) $\frac{3}{4}$	A
27	If $6a - 5b = 0$, then $\frac{a}{b} = \cdots$ (a) $\frac{6}{5}$ (b) $\frac{5}{6}$ (c) $\frac{2}{3}$	В
28	If $\frac{a}{b} = \frac{5}{3}$, then $\frac{3 a}{5 b}$ equals	В
29	If $3 = \frac{5}{6} b$, then $\frac{a}{b} = \cdots$ (a) $\frac{18}{5}$ (b) $\frac{5}{2}$ (c) $\frac{2}{5}$ (d) $\frac{5}{18}$	D
30	If $\frac{x}{2} = \frac{y}{3}$, then $\frac{3x}{2y} = \dots$ (a) zero (b) 1 (c) 2 (d) 3	В
31) If $\frac{a}{3} = \frac{b}{2} = \frac{2a+b}{x}$, then $x = \dots$ (a) 8 (b) 4 (c) 3	A
32	If $\frac{x}{8} = \frac{y}{7} = \frac{x+y}{3 k}$, then $k = \dots$ (a) 15 (b) 8 (c) 5	С
33	The equality of two ratios or more is called the	D
34	The first proportional for the numbers : 7, 10, 14 is	Α

	Page [5] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
35	If 4, x , 12, 18 are proportional, then $x = \dots$ (a) 2 (b) 3 (c) 6 (d) 54	С
36	The third proportional of the numbers : 4 , 3 , , 6 is	D
37	The fourth proportional of the quantities: 9, 21, 15, is	С
38	The third proportion of the two numbers 3 and 6 is	D
39	The positive middle proportion between 3 and 27 is	D
40	If 2, 6, $x + 15$ are proportional, then $x = \dots$ (a) 1 (b) 2 (c) 3 (d) 4	С
41	If 3, x and $\frac{1}{y}$ are in continued proportion, then $y \propto \dots$ (a) x (b) $\frac{1}{x}$ (c) x^2 (d) $\frac{1}{x^2}$	D
42	If $1, x, 4$ in continued proportion, then $x = \dots$ (a) ± 1 (b) ± 2 (c) ± 4 (d) ± 3	В
43) If y varies inversely with X and $y = 4$ when $X = 3$, then $y = \dots$ when $X = 2$ (a) 4 (b) 3 (c) 6 (d) 12	С
44	If $y = 4 \times 3$, then (b) $x \propto \frac{1}{y}$ (c) $y \propto x$ (d) otherwise.	С
45	If $y = 2 x$, then $y \propto$ (a) $\frac{1}{x}$ (b) x^2 (c) $\frac{1}{x^2}$ (d) x	D
46	If $\frac{x}{y} = 1$, then $y \propto \dots$ (a) $x - 1$ (b) $x + 1$ (c) $\frac{1}{x}$ (d) x	D
		(

	Page [6] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
47	If $X y = 2$, then	Α
48	If $X y^2 = a$ where is a constant \neq zero \Rightarrow then X varies inversely with	D
49	If $2 X - 3 y = 2 y - 5 X$, then $X \propto \dots$ (a) y^2 (b) $\frac{1}{y^2}$ (c) $\frac{1}{y}$ (d) y	D
50	The relation represents the direct variation between the two variables x and y which is	D
51	If $y^2 + 4 X^2 = 4 X y$, then	A
52	If $4 x^2 - 12 x y + 9 y^2 = 0$, then $y \propto \dots$ (a) x (b) x^2 (c) $\frac{1}{x}$ (d) $\frac{1}{x^2}$	A
53	If $X^2 - 4 X y + 4 y^2 = 0$, then	Α
54	One of the measurements of dispersion is the	С
55	The simplest and easiest dispersion measure is the	Α
56	The range of the set of the values: 7,3,6,9 and 5 equals	С
57	The range of the set of the values: 3, 4, 6, 9, and 12 equals	В

	Page [7] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
58	The range of the set of the values: 5, 14, 21, 4, 16, 12 is	Α
59	The range of the set of the values: 5, 13, 4, 19 and 16 is	D
60	The range of the set of values: 23, 22, 15, 18, 17 is	Α
61	The difference between the largest and smallest value for a set of values is the	В
62	The difference between the maximum and minimum value is called the	Α
63	The difference between the greatest value and the smallest value is	Α
64	The set which has the greatest dispersion in the following sets is	D
65	The arithmetic mean of the set of the values: $6, 2, 8$ and $4 = \cdots$ (a) 5 (b) 6 (c) 10 (d) 20	Α
66	The mean of the values: $2, 3, 7, 8, 10 = \dots$ (a) 3 (b) 5 (c) 2 (d) 6	D
67	The arithmetic mean of the set of the values: 7,3,6,9 and 5 equals	С
68	The arithmetic mean of the set of the values: 7,6,5,13,4 is	D
69	The arithmetic mean of the values: 12, 24, 26, 38 and 20 is	В

	Page [8] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717			
70	The positive square root of the average of the squares of deviations of the values from their arithmetic mean is called			
	(c) the median. (d) the standard deviation.	7)		
71	If all the individuals are equal in values then	С		
72	If $\Sigma (X - \overline{X})^2 = 36$ for a set of values whose number is 9, then $\sigma = \cdots$ (a) 2 (b) 4 (c) 18 (d) 27	A		
73	If $\Sigma (x - \overline{x})^2 = 28$ for a set of values whose number is 7, then $\sigma = \dots$ (a) 2 (b) 4 (c) 7 (d) 14	A		
74	If the standard deviation of the set of values = 2 and number of these values = 6, then $\Sigma (x - \overline{x})^2 = \cdots$ (a) 12 (b) 18 (c) 24 (d) 36	С		

Prep.[3] First Term-Geometry Final Revision Part 2-Problems

Mr. Mahmoud Esmaiel 01006487539=01110882717

لاســم

] : Choose The Correct Answer : -

$$(a)\sqrt{3}$$

(c)
$$\frac{1}{\sqrt{3}}$$

(d)
$$\frac{1}{2}$$

$$\tan^2 45^\circ = \cdots$$

2 (a)
$$\sqrt{3}$$

(a)
$$\sqrt{3}$$
 (b) $\frac{1}{\sqrt{3}}$

(d)
$$\frac{1}{2}$$

$$\sqrt{2} \sin 30^\circ = \cdots$$

Α

(a)
$$\frac{1}{2}$$

4

5

6

(c)
$$\frac{2}{3}$$

$$(d) \frac{\sqrt{3}}{2}$$

$$2 \sin 30^{\circ} \cos 30^{\circ} = \dots$$

Α

(b)
$$2\sqrt{3}$$

$$\sin 30^{\circ} + \cos 60^{\circ} + \tan 45^{\circ} = \dots$$

$$(a) - 2$$

8)
$$2 \tan 45^{\circ} - \frac{1}{\cos 60^{\circ}} = \dots$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{\sqrt{3}}{2}$$

If
$$\sin x = \frac{1}{2}$$
 where x is a measure of an acute angle, then $x = \dots \circ$

If
$$\sin x = \frac{1}{2}$$
, where x is an acute angle. $\therefore \sin 2x = \dots$

(b) 2

(c)
$$\frac{1}{2}$$

(d)
$$\frac{\sqrt{3}}{2}$$

11 If
$$\cos x = \frac{1}{2}$$
 where x is an acute angle, then $x = \dots$

(a) 1

$$(d) 45^{\circ}$$

	Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
12	If $\sin x = 1$ where x is an angle, then $m (\angle x) = \dots^{\circ}$	D
	(a) 30 (b) 60 (c) 45 (d) 90 If $\cos 2 x = \frac{1}{2}$, x is the measure of an acute angle, then m ($\angle x$) =	0
13	(a) 15 (b) 30 (c) 45 (d) 60	В
14	If $\tan \frac{3 \times X}{2} = 1$ where X is an acute angle, then m ($\angle X$) =	В
15	If $\tan 3 \ X = 1$, where X is an acute angle, then $3 \ X = \dots$ (a) 15° (b) 20° (c) 45° (d) 60°	С
16	If tan 3 $X = \sqrt{3}$ where 3 X is an acute angle, then m ($\angle X$) =	В
17	If $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then m ($\angle x$) =	С
18	If $\sin 30^\circ = \cos \theta$ where θ is an acute angle, then $m (\angle \theta) = \cdots$ (a) 45° (b) 10° (c) 60° (d) 30°	С
19	If $\sin x = \cos 30^\circ$ where x is an acute angle, then $m (\angle x) = \dots$ (a) 10 (b) 30 (c) 45 (d) 60	D
20	In \triangle ABC, if m (\angle A) = 85°, sin B = cos B, then m (\angle C) =	С
21	In \triangle ABC, if m (\angle B) = 90°, then \sin A + \cos C =	Α
22	In \triangle ABC if m (\triangle B) = 90°, $\sin A = \frac{4}{5}$, then $\sin C = \dots$ (a) $\frac{4}{5}$ (b) $\frac{5}{4}$ (c) $\frac{3}{5}$ (d) $\frac{5}{3}$	С
23	If ABC is a right-angled triangle at B, then $\frac{BC}{AC} = \cdots$ (a) cos C (b) cos A (c) tan C (d) tan A	Α
		<u> </u>

	Page [4] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
24	In \triangle ABC, if m (\angle B) = 90°, AB = 3 cm., BC = 4 cm., then sin A cos C =	D
25	The length of the line segment which is drawn between the two points (0,0), (5,12) equals	D
26	The distance between the two points (5,0), (0,12) equals length unit. (a) 5 (b) 13 (c) 17 (d) 7	В
27	The distance between the two points $(5,0)$, $(0,-12)$ equalslength unit. (a) 12 (b) 13 (c) 17 (d) 5	В
28	The distance between the point $A = (2, -5)$ and the point $B = (5, -1)$ equals unit length. (a) 5 (b) 2 (c) -5 (d) -3	Α
29	If $A = (0, 0)$, $B = (3, 4)$, then the length of $\overline{AB} = \dots$ length unit. (a) 3 (b) 4 (c) 5 (d) 6	С
30	The distance between the point (4,3) and the origin point equals units. (a) 3 (b) 5 (c) 4 (d) 7	В
31	The distance between the point $(-3, 4)$ and the point of origin equals	С
32	The distance between the point $(3, -4)$ and the origin point equals	С
33	The distance between the point $(3 - 4)$ and X -axis = length unit. (a) 3 (b) 5 (c) 4 (d) -4	С
34	The distance between the point $(4, -3)$ and the X-axis equals length unit. (a) -3 (b) 3 (c) 4 (d) 5	В

	Page [5] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
35	The distance between the point $(2, -2)$ and the y-axis = length unit. (a) -2 (b) 2 (c) $2\sqrt{2}$ (d) 4	В
36	(a) -2 (b) 2 (c) $2\sqrt{2}$ (d) 4 If the origin point is a centre of a circle of diameter length 6 length unit, then the point which belongs to the circle is	C
37	If the distance between the point $(a,0)$ and the point $(0,1)$ equals one length unit, then $a = \cdots$ $(a) - 1 \qquad (b) 0 \qquad (c) 1 \qquad (d) 2$	В
38	The points (-3,0), (0,3), (3,0) are the vertices of	D
39	If A (1, 2) and B (3, 4), then the coordinates of the midpoint of AB is	С
40	The coordinates of the midpoint of the line segment joining the two points $(3,-8)$, $(-3,4)$ is	В
41	If $A = (-1, 2)$, $B = (5, -2)$, then the midpoint of $\overline{AB} = \cdots$ (a) $(2, 2)$ (b) $(2, 0)$ (c) $(3, 2)$ (d) $(4, 0)$	В
42) If \overline{AB} is a diameter in a circle where A (3, -5) and B (5, 1), then the centre of the circle is	A
43	\overline{AB} is a diameter in a circle where A (3, 6), B (5, -2), then the coordinates of the centre of the circle are	Α
	If the point $(0,4)$ is the midpoint of the two points $(-1,-1)$, (x,y) , then the poin (x,y) is	Α

	Page [6] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
4.5) If $(4, -3)$ is the midpoint of \overline{AB} where A $(3, -4)$, then the coordinates of B is	
45	If $(4, -3)$ is the midpoint of \overline{AB} where A $(3, -4)$, then the coordinates of B is	Α
46	The slope of the straight line which is parallel to the X -axis is	В
47	The slope of the straight line which is parallel to the y-axis is	D
48	Slope of the line which makes with the positive direction of the X-axis angle of measure θ equals (where θ is the positive measure) (a) $\sin \theta$ (b) $\sin^2 \theta$ (c) $\tan \theta$ (d) $\cos \theta$	С
49	The product of the two slopes of two perpendicular lines equal to	D
50	If \overrightarrow{AB} // \overrightarrow{CD} and the slope of \overrightarrow{CD} equals $\frac{1}{2}$, then the slope of \overrightarrow{AB} equals	С
51) If \overrightarrow{AB} // \overrightarrow{CD} and the slope of $\overrightarrow{AB} = \frac{2}{3}$, then the slope of \overrightarrow{CD} equals	С
52	If $\overrightarrow{AB} \perp \overrightarrow{CD}$ and the slope of $\overrightarrow{AB} = \frac{3}{5}$, then the slope $\overrightarrow{CD} = \cdots$ (a) $-\frac{5}{3}$ (b) $\frac{5}{3}$ (c) $\frac{3}{5}$ (d) $\frac{9}{25}$	A
53	If $\overrightarrow{AB} \perp \overrightarrow{CD}$, and then slope of $\overrightarrow{AB} = \frac{1}{2}$, then the slope of $\overrightarrow{DC} = \cdots$ (a) -2 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$	A
54) If $\overrightarrow{LM} \perp \overrightarrow{EO}$, $E(-1,2)$, $O(0,0)$, then the slope of \overrightarrow{LM} equals	С
55	If $\frac{-2}{3}$, $\frac{k}{2}$ are the slopes of two parallel straight lines, then $k = \cdots$ (a) $\frac{-4}{3}$ (b) $\frac{-3}{4}$ (c) $\frac{1}{3}$ (d) 3	A

	Page [7] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
56	If $\frac{2}{3}$, $\frac{k}{3}$ are the slopes of two parallel straight lines, then $k = \dots$ (a) $\frac{2}{9}$ (b) $\frac{9}{2}$ (c) 2 (d) -2	С
57	If the two straight lines L_1 , L_2 are parallel and the slope of $L_1 = \frac{3}{4}$, then the slope of $L_2 = \cdots$ (a) $\frac{3}{4}$ (b) $\frac{-3}{4}$ (c) $\frac{4}{3}$	A
58	The slope of the straight line whose equation : $2 \times -3 + 5 = 0$ equals	С
59	The slope of the straight line whose equation is: $3y = 5 - 2x$ equals	С
60	The straight line passing through two points $(-1, -1)$, $(4, 4)$ makes positive angle with the positive direction to the X -axis an angle measure =	В
61	If the equation of the straight line is: $a \times -by + c = zero$, $b \neq 0$, then its slope $m = \cdots$ (a) $\frac{b}{a}$ (b) $\frac{-a}{b}$ (c) $\frac{-b}{a}$ (d) $\frac{a}{b}$	D
62	The straight line whose equation is: $x - 3y - 6 = 0$ intercepts from the y-axis a part of length	D
63	The straight line whose equation is: $2 \times -3 \text{ y} + 6 = 0$ intercepts from the y-axis a part of length	С
64	The line whose equation: $3 \times 4 = 0$ intersects a part of y-axis its length =	С

Mr. Ma. Esmaiel - Page [7] - Prep [3] - First Term - Geometry - Final Revision - Problems

	Page [8] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
		•
65	The straight line whose equation is: $2 y - 4 X = 6$ intercepts from the y-axis a part of length = units. (a) 2 (b) 3 (c) 4 (d) 6	В
66) The straight line whose equation is : $3 y = 2 X + 6$ cuts a part from the y-axis with length equals unit of length. (a) 6 (b) 3 (c) 2 (d) $\frac{2}{3}$	С
67	The line: $2 y = 3 X + 12$ cuts from the y-axis part of length	D
68	The equation of the straight line whose slope 1 and passing through the origin point is	D
69	The equation of the straight line whose its slope = 2 and passes through the origin point is	С
70	The equation of the straight line which passes through the origin point and its slope = 3 is	A
71	The equation of the straight line which passes through the point $(2, -3)$, parallel to X -axis is	В
72	If the two straight lines: $3 \times -4 = 0$, $4 \times -8 = 0$ are parallel, then $4 \times -8 = 0$ (c) $4 \times -8 = 0$ (d) $4 \times -8 = 0$ (e) $4 \times -8 = 0$ (f)	Α
73	The two straight lines: $X + y = 5$, $k = 2$, $X + 2$, $Y = 0$ are parallel when $Y = 3$. (a) 2 (b) -1 (c) 1 (d) -2	Α

	Page [9] - Math - Mr. Mahmoud Esmaiel - Mobile : 0	1006487539 - 01110882717					
	If the two straight lines: $x + y = 5$ and $kx + 2y = 0$ are perpendicular						
74	• then $k = \cdots$						
	(a) 2 (b) 1 (c) -1	(d) – 2	2				
	If the straight line whose equation : $x + 3y - 6 = 0$ is perpendicular to the straight line						
75	whose equation: a $x - 3y + 7 = 0$, then a =						
	(a) 2 (b) 9 (c) 4	(d) 1					
	If the two straight lines: $3 \times 4 = 9 = 0$ and $4 \times 4 = 0$ are perpendicular,						
76	then k =		Δ				
	(a) -4 (b) -3 (c) 3	(d) 4					
The area of the triangle in square units which is bounded by the straight lines							
77	3 x - 4 y = 12, x = 0, y = 0 equals						
	(a) 6 (b) -6 (c) 12	(d) – 12					
	OABC is a parallelogram where A (5, 2) B(6,8)						
	B (6, 8), O is the origin point.						
	(1) The coordinates of the point C =						
	(a) (2,5) (b) (1,5)	X $A(5,2)$ X	D				
	(c) (1,6) (d) (2,6)	O D					
	(2) OB = length unit.	y` ♥					
	(a) 5 (b) 6 (c) 8	(d) 10	В				
78	(3) tan m (∠ AOD) =						
	(a) 0.3 (b) 0.4 (c) 0.6	(d) 0.8					
	(4) The equation of OC is		Α				
	(a) $y = 6 x$ (b) $y = -6 x$ (c) $y = x$	(d) $y = -x$					
	(5) The equation of the straight line passing through the origin point and perpendicular to						
	OB	3					
	J	(d) $y = -\frac{3}{4} x$					
	(6) cos m (∠ BOD) =		С				
	(a) 0.8 (b) 0.7 (c) 0.6	(d) 0.4					
			JI				

[9] Final Revision-Algebra -3Rd.Prep-First Term - Mr. Mahmoud Esmaiel

[A] Choose the correct Answer:

If $X = \{5\}$ and $Y = \{3\}$, then $n(X \times Y) = \dots$

(a) 15

(b) 5

(c) 3

(d) 1

If $X = \{7\}$, $Y = \{5\}$, then $n(X \times Y) = \cdots$

(a) 1

(b) 2

(c) zero

(d)35

3 If n(X) = 2, $Y = \{1, 2\}$, then $n(X \times Y) = \cdots$

(a) 4

(b) 3

(c) 5

(d) 6

4 If n(X) = 3, $n(X \times Y) = 12$, then $n(Y) = \dots$

(a) 15

(b) 36

(c)4

(d) 9

If $n(X^2) = 4$, $n(X \times Y) = 12$, then $n(Y) = \dots$

(a) 3

5

6

7

9

10

(b) 6

(c) 4

(d) 12

If $X = \{2, 3, 4\}$, then $n(X^2) = \dots$

(a) 3

(b) 6

(c)9

(d) 12

(a) (2, 2)

(b) (2,0)

(c)(0,2)

(d) (2,-2)

8 If $(2,9) \in \{2,8\} \times \{x,4\}$, then $x = \dots$

(a) 8

(b) 6

(c)9

(d) 2

 $| \text{If } \{2\} \times \{x, y\} = \{(2, 4), (2, 3)\}, \text{ then } x - y = \dots$

(a) 1

(b) - 1

 $(c) \pm 1$

(d) zero

The set of images elements of the domain of the function is called

(a) the rule.

(b) the domain.

(c) the range.

(d) the codomain.

The point (4, -5) lies in the quadrant.

(a) first

(b) second

(c) third

(d) fourth

T.	10] Final Revision–Algebra	-3 Rd .Prep–First Te	erm - Mr. Mahmoud Esm	aiel		
12	If the point $(X-4, 2-X)$ where X , then X equals	$x \in \mathbb{Z}$ is located in the (c) 4	e third quadrant (d) 6			
	If the point $(X - 5, 7 - X)$ lies in the second quadrant, then $X = \dots$					
13	(a) 5 (b) 3	(c) 7	(d) 9			
14	If the point $(X, 2)$ lies on y-axis, (a) 3 (b) zero	then $x + 3 = \dots$ (c) 2	(d) 5			
	if $(x-2, 13) = (7, y+5)$, then $\sqrt{x+2y} = \dots$					
15	(a) 2 (b) 5	(c) 7	(d) 13			
16	If $(x-1, 11) = (8, y+3)$, then $\sqrt{x+2y} = \dots$					
16	(a) 7 (b) 5	(c) 4	(d) 3			
17	If the point (a, 3) lies on the straig $f: \mathbb{R} \longrightarrow \mathbb{R}$, where $f(X) = 4X$ (a) 2 (b) 4					
	If the point $(a, 2)$ lies on the straight line which represents the function $f: \mathbb{R} \longrightarrow \mathbb{R}$					
18	where $f(x) = 3x - 1$, then $a = \dots$ (a) 2 (b) 3	(c) 1	(d) - 1			
19	The function f where $f(X) = X^4 - 2X^3 + 7$ is polynomial of degree					
19	(a) first. (b) second.	(c) third.	(d) fourth.			
00	The function f where $f(x) = x(x-4) + 1$ is a polynomial of the degree.					
20	(a) first (b) second	(c) third	(d) fourth			
21	If $f: \mathbb{R} \longrightarrow \mathbb{R}$, then the function f where $f(x) = x^2 - (x^2 - 3x)$					
	is of the degree.					
	(a) first (b) second	(c) third	(d) fourth			
22	$f(X) = X(3 X + 2)^2$ is function of degree.					
	(a) third (b) second	(c) first	(d) otherwise			

If (2, b) satisfies the function f where f(x) = 3x - 6, then $b = \cdots$ 23

- (a) zero
- (b) 7
- (c) 9
- (d) 2

If f(X) = k X + 8, f(2) = zero, then $k = \dots$ 24

- (a) 8

- (d) 4

The function f where f(X) = 5 X is represented graphically by a straight line passes through the point 25

- (a) (5,5)
- (b) (0,0)
- (c)(0,5)
- (d) (5,0)

If 3a = -4b, then $\frac{a}{b} = \cdots$ (a) $-\frac{4}{3}$ (b) $-\frac{3}{4}$ 26

- (b) $-\frac{3}{4}$
- (d) $\frac{4}{3}$

If 6a - 5b = 0, then $\frac{a}{b} = \cdots$ (a) $\frac{6}{5}$ (b) $\frac{5}{6}$ 27

- (d) $\frac{3}{2}$

If $\frac{a}{b} = \frac{5}{3}$, then $\frac{3 a}{5 b}$ equals 28

- (a) $\frac{5}{3}$

- (c)3
- (d) 15

If $3 = \frac{5}{6} b$, then $\frac{a}{b} = \dots$ (a) $\frac{18}{5}$ (b) $\frac{5}{2}$ 29

- (c) $\frac{2}{5}$
- (d) $\frac{5}{18}$

If $\frac{x}{2} = \frac{y}{3}$, then $\frac{3x}{2y} = \dots$ 30

- (a) zero

- (c) 2
- (d)3

) If $\frac{a}{3} = \frac{b}{2} = \frac{2a+b}{x}$, then $x = \dots$ 31

- (a) 8
- (b) 4

- (c) 3
- (d) 1

If $\frac{x}{8} = \frac{y}{7} = \frac{x+y}{3k}$, then $k = \dots$ 32

- (a) 15
- (b) 8

(c) 5

(d) 7

The equality of two ratios or more is called the 33

- (a) function.
- (b) direct variation.
- (c) inverse variation. (d) proportion.

<u> </u>	12] Final Revision–Algebra -3Rd.Prep–First Term - Mr. Mahmoud Esma	iiel —
34	The first proportional for the numbers : 7, 10, 14 is	
35	If 4, x , 12, 18 are proportional, then $x = \dots$ (a) 2 (b) 3 (c) 6 (d) 54	
36	The third proportional of the numbers : 4 , 3 , , 6 is	
37	The fourth proportional of the quantities: 9, 21, 15, is	
38	The third proportion of the two numbers 3 and 6 is	
39	The positive middle proportion between 3 and 27 is	
40	If 2, 6, $x + 15$ are proportional, then $x = \dots$ (a) 1 (b) 2 (c) 3 (d) 4	
41	If 3, x and $\frac{1}{y}$ are in continued proportion, then $y \propto \dots$ (a) x (b) $\frac{1}{x}$ (c) x^2 (d) $\frac{1}{x^2}$	
42	If 1, χ , 4 in continued proportion, then $\chi = \dots$ (a) ± 1 (b) ± 2 (c) ± 4 (d) ± 3	
43) If y varies inversely with X and $y = 4$ when $X = 3$, then $y = \cdots$ when $X = 2$ (a) 4 (b) 3 (c) 6 (d) 12	
44	If $y = 4 X$, then	
45	If $y = 2 X$, then $y \propto \dots$ (a) $\frac{1}{X}$ (b) X^2 (c) $\frac{1}{X^2}$ (d) X	

13	Final Revision-Alg	gebra -3 Rd .Pre	p-First Term ·	- Mr. Mahmoud	Esmaie
	I mai itevision Al	gebia o ii ie		mi. maiiioaa	Lomaic

_		
46	If $\frac{x}{y} = 1$, then $y \propto \dots$ (a) $x - 1$ (b) $x + 1$ (c) $\frac{1}{x}$ (d) x	
47	If $X y = 2$, then	
48	If $x = a$ where is a constant \neq zero, then x varies inversely with	
49	If $2 \times -3 y = 2 y - 5 \times$, then $X \propto \dots$ (a) y^2 (b) $\frac{1}{y^2}$ (c) $\frac{1}{y}$	
50	The relation represents the direct variation between the two variables x and y which is	
51	If $y^2 + 4 x^2 = 4 x y$, then	
52	If $4 x^2 - 12 x y + 9 y^2 = 0$, then $y \propto \dots$ (a) x (b) x^2 (c) $\frac{1}{x}$ (d) $\frac{1}{x^2}$	
53	If $X^2 - 4 X y + 4 y^2 = 0$, then (a) $X \propto y$ (b) $X \propto \frac{1}{y}$ (c) $X \propto y^2$ (d) $X \propto \frac{1}{y^2}$	
54	One of the measurements of dispersion is the	
55	The simplest and easiest dispersion measure is the	
56	The range of the set of the values: 7, 3, 6, 9 and 5 equals	

[14]	Final	Revision	-Algebra	-3 Rd .Prep	-First 1	Term -	Mr. Mal	hmoud	Esmaiel

57	The range of the set of the values: 3, 4, 6, 9, and 12 equals	
	(a) 15 (b) 9 (c) 5 (d) 3	
58	The range of the set of the values: 5, 14, 21, 4, 16, 12 is	
59	The range of the set of the values: 5, 13, 4, 19 and 16 is	
60	The range of the set of values: 23, 22, 15, 18, 17 is	
61	The difference between the largest and smallest value for a set of values is the	
62	The difference between the maximum and minimum value is called the	
63	The difference between the greatest value and the smallest value is	
64	The set which has the greatest dispersion in the following sets is	
65	The arithmetic mean of the set of the values: $6 \cdot 2 \cdot 8$ and $4 = \cdots$ (a) 5 (b) 6 (c) 10 (d) 20	
66	The mean of the values: $2, 3, 7, 8, 10 = \dots$ (a) 3 (b) 5 (c) 2 (d) 6	
67	The arithmetic mean of the set of the values: 7, 3, 6, 9 and 5 equals	
68	The arithmetic mean of the set of the values: 7,6,5,13,4 is	

[15] Final Revision-Algebra -3Rd.Prep-First Term - Mr. Mahmoud Esmaiel

The arithmetic mean of the values: 12, 24, 26, 38 and 20 is

(a) 12

69

70

(b) 24

(c) 26

(d) 38

The positive square root of the average of the squares of deviations of the values from their arithmetic mean is called

(a) the range.

(b) the arithmetic mean.

(c) the median.

(d) the standard deviation.

If all the individuals are equal in values then

71

(a) $X - \overline{X} > \text{zero}$ (b) $X - \overline{X} < \text{zero}$

(c) σ = zero

(d) \overline{x} = zero

If $\Sigma (x - \overline{x})^2 = 36$ for a set of values whose number is 9, then $\sigma = \cdots$ **72**

(a) 2

(b) 4

(c) 18

(d) 27

If $\Sigma (x - \overline{x})^2 = 28$ for a set of values whose number is 7, then $\sigma = \cdots$

73 (a) 2

74

(b) 4

(c)7

(d) 14

If the standard deviation of the set of values = 2 and number of these values = 6, then $\Sigma (X - \overline{X})^2 = \cdots$

(a) 12

(b) 18

(c) 24

(d) 36

Choose the correct Answers

Sn.	Answer	Sn.	Answer	Sn.	Answer	Sn.	Answer
1	D	21	Α	41	С	61	В
2	Α	22	Α	42	В	62	Α
3	Α	23	Α	43	С	63	Α
4	С	24	D	44	C	64	D
5	В	25	В	45	D	65	Α
6	С	26	Α	46	D	66	D
7	Α	27	В	47	A	67	С
8	С	28	В	48	D	68	D
9	С	29	D	49	D	69	В
10	С	30	В	50	D	70	D
11	D	31	A	51	Α	71	С
12	В	32	9	52	Α	72	Α
13	В	33	D	53	Α	73	Α
14	Α	34	A	54	С	74	С
15	В	35	С	55	Α	75	
16	В	36	D	56	С	76	
17	Α	37	С	57	В	77	
18	С	38	D	58	Α	78	
19	D	39	D	59	D	79	
20	В	40	С	60	Α	80	

(8) Final Revision - Geometry - 3Rd.Prep - First Term

[A] Choose the correct Answer:

tan 45° =

 $(a)\sqrt{3}$

(b) 1

(c) $\frac{1}{\sqrt{3}}$

(d) $\frac{1}{2}$

 $\tan^2 45^\circ = \cdots$

2

5

6

7

(b) $\frac{1}{\sqrt{3}}$

(c) 1

 $\sqrt{2} \sin 30^\circ = \cdots$ 3

(a) sin 45°

(b) sin 60°

(c) cos 30°

(d) cos 60°

tan 45° sin 30° =

(a) $\frac{1}{2}$

(c) $\frac{2}{3}$

2 sin 30° cos 30° =

(a) sin 60°

(b) cos 60°

(c) tan 60°

(d) tan 30°

4 cos 30° tan 60° =

(a) 3

(b) $2\sqrt{3}$

(c) 6

(d) 12

 $\sin 30^{\circ} + \cos 60^{\circ} + \tan 45^{\circ} = \cdots$

(a) - 2

(c) 1.5

(d) 2

) 2 tan 45° $-\frac{1}{\cos 60^{\circ}} =$ (a) zero (b) $\frac{1}{2}$ 8

(c) $\frac{\sqrt{3}}{2}$

(d) 1

If $\sin x = \frac{1}{2}$ where x is a measure of an acute angle, then $x = \dots \circ$ 9

(a) 90

(b) 60

(c) 45

(d) 30

If $\sin x = \frac{1}{2}$, where x is an acute angle. $\therefore \sin 2x = \cdots$

10 (a) 1

(b) 2

(c) $\frac{1}{2}$

 $(d) \frac{\sqrt{3}}{2}$

) If $\cos x = \frac{1}{2}$ where x is an acute angle , then $x = \dots$ 11

(a) 30°

 $(b) 60^{\circ}$

 $(c) 90^{\circ}$

 $(d) 45^{\circ}$

	(9) Final Revision - Geometry - 3 rd .Prep - First Term	
12	If $\sin x = 1$ where x is an angle, then $m (\angle x) = \dots$ (a) 30 (b) 60 (c) 45 (d) 90	
13	If $\cos 2 X = \frac{1}{2}$, X is the measure of an acute angle, then m ($\angle X$) =° (a) 15 (b) 30 (c) 45 (d) 60	
14	If $\tan \frac{3 \times X}{2} = 1$ where X is an acute angle, then m ($\angle X$) =	
15	If $\tan 3 x = 1$, where x is an acute angle, then $3 x =$ (a) 15° (b) 20° (c) 45° (d) 60°	
16	If $\tan 3 x = \sqrt{3}$ where 3 x is an acute angle, then m ($\angle x$) =° (a) 10 (b) 20 (c) 30 (d) 60	
17	If $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle, then $\tan (x + 15^\circ) = \sqrt{3}$ where x is an acute angle in the x is a cute angle.	
18	If $\sin 30^\circ = \cos \theta$ where θ is an acute angle, then $m (\angle \theta) = \cdots$ (a) 45° (b) 10° (c) 60° (d) 30°	
19	If $\sin x = \cos 30^\circ$ where x is an acute angle, then m ($\angle x$) =° (a) 10 (b) 30 (c) 45 (d) 60	
20	In \triangle ABC, if m (\angle A) = 85°, sin B = cos B, then m (\angle C) =	
21	In \triangle ABC, if m (\angle B) = 90°, then sin A + cos C =	
22	In \triangle ABC if m (\angle B) = 90°, sin A = $\frac{4}{5}$, then sin C =	
23	If ABC is a right-angled triangle at B, then $\frac{BC}{AC} = \cdots$ (a) cos C (b) cos A (c) tan C (d) tan A	
	<u> </u>	

	(10) Final Revision - Geometry - 3 Rd .Prep - First Term	
24	In \triangle ABC, if m (\angle B) = 90°, AB = 3 cm., BC = 4 cm., then sin A cos C =	
25	The length of the line segment which is drawn between the two points (0,0), (5,12) equals	
26	The distance between the two points (5,0), (0,12) equals length unit. (a) 5 (b) 13 (c) 17 (d) 7	
27	The distance between the two points $(5,0)$, $(0,-12)$ equalslength unit. (a) 12 (b) 13 (c) 17 (d) 5	
28	The distance between the point $A = (2, -5)$ and the point $B = (5, -1)$ equals unit length. (a) 5 (b) 2 (c) -5 (d) -3	
29	If $A = (0, 0)$, $B = (3, 4)$, then the length of $\overline{AB} = \dots$ length unit. (a) 3 (b) 4 (c) 5 (d) 6	
30	The distance between the point (4,3) and the origin point equals units. (a) 3 (b) 5 (c) 4 (d) 7	
31	The distance between the point $(-3, 4)$ and the point of origin equals	
32	The distance between the point (3, -4) and the origin point equalsunit length. (a) 3 (b) 4 (c) 5 (d) 7	
33	The distance between the point $(3 - 4)$ and X -axis = length unit. (a) 3 (b) 5 (c) 4 (d) -4	
34	The distance between the point $(4, -3)$ and the X -axis equalslength unit. (a) -3 (b) 3 (c) 4 (d) 5	

	(11) Final Revision - Geometry - 3 Rd .Prep - First Term	
35	The distance between the point $(2, -2)$ and the y-axis = length unit. (a) -2 (b) 2 (c) $2\sqrt{2}$ (d) 4	
36	If the origin point is a centre of a circle of diameter length 6 length unit, then the point which belongs to the circle is	
37	If the distance between the point $(a, 0)$ and the point $(0, 1)$ equals one length unit, then $a = \cdots$ $(a) - 1 \qquad (b) 0 \qquad (c) 1 \qquad (d) 2$	
38	The points (-3,0), (0,3), (3,0) are the vertices of	
39	If A (1, 2) and B (3, 4), then the coordinates of the midpoint of \overrightarrow{AB} is	
40	The coordinates of the midpoint of the line segment joining the two points $(3,-8)$, $(-3,4)$ is	
41	If $A = (-1, 2)$, $B = (5, -2)$, then the midpoint of $\overline{AB} = \cdots$ (a) $(2, 2)$ (b) $(2, 0)$ (c) $(3, 2)$ (d) $(4, 0)$	
42) If \overline{AB} is a diameter in a circle where A (3, -5) and B (5, 1), then the centre of the circle is	
43	\overline{AB} is a diameter in a circle where A (3, 6), B (5, -2), then the coordinates of the centre of the circle are	
44	If the point $(0, 4)$ is the midpoint of the two points $(-1, -1)$, (x, y) , then the poin (x, y) is	

	(12) Final Revision - Geometry - 3 Rd .Prep - First Term	
45	If $(4, -3)$ is the midpoint of \overline{AB} where A $(3, -4)$, then the coordinates of B is	
46	The slope of the straight line which is parallel to the X -axis is	
47	The slope of the straight line which is parallel to the y-axis is	
48	Slope of the line which makes with the positive direction of the X-axis angle of measure θ equals (where θ is the positive measure) (a) sin θ (b) sin² θ (c) tan θ (d) cos θ	
49	The product of the two slopes of two perpendicular lines equal to	
50	If \overrightarrow{AB} // \overrightarrow{CD} and the slope of \overrightarrow{CD} equals $\frac{1}{2}$, then the slope of \overrightarrow{AB} equals	
51) If \overrightarrow{AB} // \overrightarrow{CD} and the slope of $\overrightarrow{AB} = \frac{2}{3}$, then the slope of \overrightarrow{CD} equals	
52	If $\overrightarrow{AB} \perp \overrightarrow{CD}$ and the slope of $\overrightarrow{AB} = \frac{3}{5}$, then the slope $\overrightarrow{CD} = \cdots$ (a) $-\frac{5}{3}$ (b) $\frac{5}{3}$ (c) $\frac{3}{5}$ (d) $\frac{9}{25}$	
53	If $\overrightarrow{AB} \perp \overrightarrow{CD}$, and then slope of $\overrightarrow{AB} = \frac{1}{2}$, then the slope of $\overrightarrow{DC} = \cdots$ (a) -2 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$	
54) If $\overrightarrow{LM} \perp \overrightarrow{EO}$, $E(-1,2)$, $O(0,0)$, then the slope of \overrightarrow{LM} equals	
	If $\frac{-2}{3}$, $\frac{k}{2}$ are the slopes of two parallel straight lines, then $k = \dots$	
55	If $\frac{-2}{3}$, $\frac{k}{2}$ are the slopes of two parallel straight lines, then $k = \cdots$ (a) $\frac{-4}{3}$ (b) $\frac{-3}{4}$ (c) $\frac{1}{3}$ (d) 3	

	(13) Final Revision - Geometry - 3 Rd .Prep - First Term	
56	If $\frac{2}{3}$, $\frac{k}{3}$ are the slopes of two parallel straight lines, then $k = \dots$ (a) $\frac{2}{9}$ (b) $\frac{9}{2}$ (c) 2 (d) -2	
57	If the two straight lines L_1 , L_2 are parallel and the slope of $L_1 = \frac{3}{4}$, then the slope of $L_2 = \cdots$ (a) $\frac{3}{4}$ (b) $\frac{-3}{4}$ (c) $\frac{4}{3}$ (d) $\frac{-4}{3}$	
58	The slope of the straight line whose equation : $2 \times 3 + 5 = 0$ equals	
59	The slope of the straight line whose equation is : $3 \text{ y} = 5 - 2 \text{ x}$ equals	
60	The straight line passing through two points $(-1, -1)$, $(4, 4)$ makes positive angle with the positive direction to the X -axis an angle measure =° (a) 30 (b) 45 (c) 60 (d) 135	
61	If the equation of the straight line is: $a \times -by + c = zero$, $b \neq 0$, then its slope $m = \dots$ (a) $\frac{b}{a}$ (b) $\frac{-a}{b}$ (c) $\frac{-b}{a}$ (d) $\frac{a}{b}$	
62	The straight line whose equation is : $x - 3$ y $- 6 = 0$ intercepts from the y-axis a part of length	
63	The straight line whose equation is : $2 \times -3 \text{ y} + 6 = 0$ intercepts from the y-axis a part of length	
64	The line whose equation: $3 \times 4 = 0$ intersects a part of y-axis its length = units. (a) 5 (b) -5 (c) $\frac{5}{4}$ (d) $\frac{-4}{3}$	

	(14) Final Revision - Geometry - 3 Rd .Prep - First Term) ——
65	The straight line whose equation is: $2y - 4X = 6$ intercepts from the y-axis a part of length = units. (a) 2 (b) 3 (c) 4 (d) 6	
66) The straight line whose equation is: $3 y = 2 X + 6$ cuts a part from the y-axis with length equals unit of length. (a) 6 (b) 3 (c) 2 (d) $\frac{2}{3}$	
67	The line: $2 y = 3 X + 12$ cuts from the y-axis part of length	
68	The equation of the straight line whose slope 1 and passing through the origin point is	
69	The equation of the straight line whose its slope = 2 and passes through the origin point is	
70	The equation of the straight line which passes through the origin point and its slope = 3 is	
71	The equation of the straight line which passes through the point $(2, -3)$, parallel to x -axis is	
72	If the two straight lines: $3 \times -4 = 0$, $x + 3 \times -8 = 0$ are parallel, then $x = 0$. (a) -4 . (b) -3 . (c) 3 . (d) 4 .	
73	The two straight lines: $x + y = 5$, $kx + 2y = 0$ are parallel when $k = \dots$ (a) 2 (b) -1 (c) 1 (d) -2	

	15) Final Revision - Geometry - 3 Rd .Prep - First 1	'ern
--	--	------

If the two straight lines : x + y = 5 and kx + 2y = 0 are perpendicular

, then $k = \cdots$

(a) 2

74

75

76

77

78

(b) 1

(c) - 1

(d) - 2

If the straight line whose equation : x + 3y - 6 = 0 is perpendicular to the straight line whose equation: $a \times x - 3 y + 7 = 0$, then $a = \dots$

(a) 2

(b) 9

(c)4

(d) 1

If the two straight lines: $3 \times -4 y - 5 = 0$ and $k \times -3 y + 8 = 0$ are perpendicular, then $k = \cdots$

(a) - 4

(b) - 3

(c)3

(d) 4

The area of the triangle in square units which is bounded by the straight lines

3 X - 4 y = 12, X = 0, y = 0 equals

(a) 6

(b) - 6

(c) 12

(d) - 12

B(6,8)

OABC is a parallelogram where A (5, 2)

B(6,8), O is the origin point.

(1) The coordinates of the point C =

(a)(2,5)

(b) (1,5)

(c)(1,6)

(d)(2,6)

(a) 5

(b) 6

(c) 8

(d) 10

(3) $tan m (\angle AOD) = \dots$

(a) 0.3

(b) 0.4

(c) 0.6

(d) 0.8

(4) The equation of OC is

(a) y = 6 X

(b) y = -6 X

(c) y = X

(d) y = -X

(5) The equation of the straight line passing through the origin point and perpendicular to <u>OB</u>

(a) $y = \frac{4}{3} X$ (b) $y = \frac{3}{4} X$ (c) $y = -\frac{4}{3} X$ (d) $y = -\frac{3}{4} X$

(6) $\cos m (\angle BOD) = \cdots$

(a) 0.8

(b) 0.7

(c) 0.6

(d) 0.4

(16) Final Revision - Geometry - 3Rd.Prep - First Term

Choose the correct Answers

Sn.	Answer	Sn.	Answer	Sn.	Answer	Sn.	Answer
1	В	21	A	41	В	61	D
2	C	22	C	42	A	62	D
3	A	23	A	43	A	63	C
4	A	24	D	44	A	64	C
5	A	25	D	45	A	65	В
6	С	26	В	46	В	66	С
7	D	27	В	47	D	67	D
8	A	28	A	48	C	68	D
9	D	29	C	49	D	69	C
10	D	30	В	50	C	70	A
11	В	31	C	51	C	71	В
12	D	32	C	52	A	72	A
13	В	33	C	53	A	73	A
14	В	34	B	54	C	74	D
15	С	35	В	55	A	75	В
16	В	36	C	56	C	76	A
17	С	37	В	57	A	77	A
18	С	38	D	58	C		1)C – 2) D
19	D	39	C	59	C	78	3)B-4)A
20	С	40	В	60	В		5)D - 6)C

Final Revision Middle (3) Geometry

1) If $\sin x = \frac{1}{2}$, x is an acute	e angle, then	$m(\angle x) =$	•
------------------------------	-------------------	---------------	-----------------	---

- a) 45°
- b) 60° c) 30°
- d) 90°
- 2) The distance between two points (3, 0) and (0, -4) equals l.u
 - a) 4

b) 5

c) 6

- d) 7
- 3) If x + y = 5 and kx + 2y = 0 are perpendicular, then k = 0.
 - a) -2
- b) -1
- c) 1

- d) 2
- 4) If A (5, 7) and B (1, -1), then the midpoint of \overline{AB} is
 - a) (2,3)
- b) (3,3)
- c) (3, 2)
- d) (3,4)
- 5) The equation of straight line which passes through the point (3, -5) and parallel to y-axis is
 - a) x = 3
- b) y = -5
- c) y = 2
- d) x = -5

- **6**) $2 \sin 30^{\circ} \tan 60^{\circ} =$
 - a) $\sqrt{3}$
- b) 3

- $d)\frac{1}{2}$
- 7) The equation of straight line which passes through the point (-2, -3) are parallel to x-axis is
 - a) x = -2
- b) y = -2
- c) y = -3 d) x = -3
- 8) If $\cos x = \frac{\sqrt{3}}{2}$, x is an acute angle, then $\sin 2x = \dots$
 - a) 1

- b) -2
- d) $\frac{1}{\sqrt{3}}$
- 9) A circle of center at origin point and it is radius is 2 l.u, which of the following points belong to circle?
 - a) (1, -2)
- b) $(-2, \sqrt{5})$
- c) $(\sqrt{3}, 1)$
- d)(0,1)

a) 1

b) 5

c) 2

- d) 3
- 11) $\frac{-3}{2}$, $\frac{6}{k}$ are the slopes of two parallel straight lines, the k =
 - a) 6

- **b)** -4
- c) 2

- **d**) $\frac{3}{2}$
- 12) If $\overrightarrow{AB} \perp \overrightarrow{CD}$ and the slope of $\overrightarrow{AB} = \frac{1}{2}$, then slope of $\overrightarrow{CD} = \dots$
 - a) 2___
- **b**) $\frac{1}{2}$
- c) -2
- d) $-\frac{1}{2}$

- 13) $\tan 60^{\circ} \tan 30^{\circ} = \dots$
 - a) $\sin 30^{\circ}$
- b) tan 30°
- c) tan 45°
- d) $\cos 60^{\circ}$
- 14) The distance between the point (4, 3) and y-axis equals l.u
 - a) -3
- **b)** -4
- c) 3

- d) 4
- **15**) Points (0, 8), (0, 6), (0, 0) forms
 - a) Right angled triangle
- b) Obtuse angled triangle
- c) Acute angled triangle
- d) collinear
- **16**) If \overrightarrow{AB} // \overrightarrow{CD} and slope of $\overrightarrow{AB} = \frac{2}{3}$, then slope $\overrightarrow{CD} = \dots$
 - a) $\frac{3}{2}$

- c) $\frac{-3}{2}$ d) $\frac{-2}{3}$
- 17) If A, B are two acute angles and $m(\angle A) = m(\angle B) = 90^{\circ}$, $m(\angle A) \neq m(\angle A)$, then
 - $a) \sin A = \cos B$

b) $\sin A = \sin B$

c) tan A = tan B

- $d) \cos A = \cos B$
- 18) If $\cos \frac{x}{2} = \frac{1}{2}$ where $\frac{x}{2}$ is measure of positive angle, then $x = \dots$
 - a) 30°
- b) 90°
- c) 60°
- d) 120°
- **19**) If \overrightarrow{CD} is parallel to y-axis where C (K, 4) and D (-5, 7) then K =

b) 7

c) -5

- 20) The equation of straight line passing through origin point and it is slope = 11S.....
 - a) y = x
- b) y = -x c) y = 2x
- d) y = 0

21) If $cos(x + 25) = \frac{1}{2}$, x is measure of acute angle, then $x = \dots$

- a) 20°
- b) 35°
- c) 0

d) 5

22) The straight line whose equation is 3y = 2x - 6, it is slope =

a) 2

 $b)\frac{2}{3}$

c) 6

 $\mathbf{d})\frac{3}{2}$

23) If slope of straight line (L₁) is $\frac{a}{5}$ and slope of straight line (L₂) is $\frac{-b}{3}$ where $a, b \neq 0$ and L₁ \perp L₂, then $ab = \dots$

a) $\frac{3}{5}$

- **b**) $\frac{-3}{5}$
- c) 15
- d) -15

24) The distance between the point (-2, -3) and x-axis l.u

- a) 2
- **b) 3**
- (c) -2

d) -3

25) If straight line whose equation is y = kx + 1 is parallel to straight line whose equation is 2y - x = 0, then $k = \dots$

- a) 1
- **b**) $\frac{1}{2}$

c) 4

d) -2

26) ABC is a triangle, $m(\angle A) = 85^{\circ}$, $\sin B = \cos B$, then $m(\angle c) = \dots$

- a) 30°
- b) 45°
- c) 50°
- d) 60°

27) In the opposite figure

Which of the following represents the equation of straight line L?

- a) y = x
- b) y + x = 2
- c) y = 2
- d) y x = 2

28) In the opposite figure

The equation of straight line (L) is

- a) x = 1
- b) y = x
- c) y = -x
- d) y = 1

29) If $\frac{-2}{3}$, $\frac{k}{6}$ slopes of two straight line which are perpendicular then $k = \dots$

a) 9

b) 4

- c) -9
- d) -4

30) If \overrightarrow{CD} is parallel to y-axis where C (m, 4), D (-5, 7), then m =

a) 5

- b) -5
- c) -7
- d) 7

31) If the point of origin is the midpoint of AB , where A (5, -2) , then the point B is

- a) (-5, -2)
- (5,2)
- (-5, 2)
- (0,0)

32 In the opposite figure

The slope of L equals

- a) $\frac{2}{3}$
- b) $\frac{3}{2}$

- c) $\frac{-2}{3}$
- d) $\frac{-3}{2}$

33) If C (-3, y) is midpoint of \overline{AB} where A (x, -6) and B (9, -12),

then $y - x = \dots$

a) 7

b) 9

c) 6

d) -18

34) If \overline{AB} is a diameter of a circle, A (3, -5), B (5, 1), then the center of circle is......

- a) (-8, -2)
- b) (4, 2)
- (2,2)
- (4, -2)

35) The straight line whose equation is y = 3x + 4 intercepts from the positive direction of y-axis apart of length l.u

a) 3

b) 4

c) 5

d) 7

36) The slope of straight line whose makes with the positive direction of x – axis an angle whose measure is x° equals

- a) sin x
- b) $\cos x$
- c) $\frac{\sin x}{\cos x}$
- d) $\sin x + \cos x$

37) If $\sin \theta = 0.6$, then $m(\angle \theta) = \dots$

- a) 51° 33′ 35″
- b) 36° 52 \ 12 \ \ \
- c) 47° 15 '48"
- d) 45° 15 '6"

38) ABC is right-angled triangle at B where A (1, 4), B (-1, -2), then the slope of \overrightarrow{BC} equals

- a) $\frac{-1}{3}$
- b) 3

c) $\frac{1}{3}$

d) -3

39) If ABCD is a rectangle A (-4, -1), C (4, 5), then the length of $\overline{BD} = \dots 1.$

- a) 10
- b) 6

c) 5

d) 4

40) The equation of straight line is : $\frac{x}{2} - \frac{y}{3} = 6$, then the intercepted part of x-axis part of length L.u

a) 3

- b) 12
- c) 6

d) 18

41) If $\sin 30^{\circ} = \cos \theta$ where θ is an acute angle, then $\theta = \dots^{\circ}$

- a) 15°
- **b)** 30°
- c) 60°
- **d)** 90°

42) If x + y = 5, kx + 2y = 0 are perpendicular, then $k = \dots$

a) 1

- b) -1
- c) 2

a) 0

b) 1

c) 6

d) 0.48

Final Revision Middle (3) Algebra

Choose the correct answer:

CHOOSE the Collect	CCIID II CI		
1) Point (-3,4) lie	in the	quadrant	
a) First	b) Second	(c) Third	d) Fourth
2) If $n(x) = 2$, $n(y^2)$	= 9, then $n(x)$	× y) =	
a) 6	b) 18) 11 d) 7	
3) Point (3,4) lie in th	ıequadran	ıt	
a) First	b) Second	c) Third	d) Fourth
4) $n(x) = 2, n(y \times$	x) = 6, then $n($	$(y^2) = \dots$	
a) 4	b) 9	c) 16	d) 12
5) $x = \{3\}, n(y) =$	5, then $n(x \times y)$	=	
a) 1	b) 5	c) 8	d) 15
6) $f(x) = 3$, then $f(x) = 3$	(3) + f(-3) =		
a) 0	b) 1	c) 6	d) -6
7) $n(x) = 5$, $n(x)$	$\langle y \rangle = 10$, then	$n(y) = \dots$	• •
a) 4	b) 3	c) 2	d) 1
8) $(x + 5, 8) = (1, $	6y + x), then y	=	
a) 5	b) 6	c) 2	d) 12
9) If $x \times y = \{(1,2)$, (3,4)}, then x ∩	<i>y</i> =	
a) {1,2}	b) {(3,4)}	c) Ø	d) {1,4}
10) $f(x) = (2a - 2)$	x3 + 3x2 + x +	- 2 is a polynomial fun	nction from second
degree, then a=			

d) 1

c) 3

b) 2

a) 0

Ÿ					
11)	If Point (a — 5,5 -	- a) lie fourt	h quadrant, t	then	• • • • • •
	a) $a \ge 5$	b) a ≤	≤ 5	c) a > 5	d) a < 5
12)	a < 5, then Point	(2,a-5) lie i	n the	quadrant	
	a) First	b) Secon	d c)	Third	d) Fourth
a)	The following fund here $f(x) = \dots$ (x + 3) = (-3) (a - 7, 26) = (-3)	2x + 1	c) $x \left(x + \frac{1}{x}\right)$	(x^2)	
15)	a) 5 If $f(x + 3) = x - 4$	-5 - 3, then $f(7)$	$\frac{c) \pm 5}{c} = \dots $		±7 .) 10
16)	f(x) = 3, then f	(2) - f(7)			d) -4
	If Point $(b - 4, 2)$ a) 2 $x = \{1, 2\}, y = \{0\}$	3	c) 4		d) 6
19)	a) $x \times y$ If point $(2, y)$ lie x a) 5	b) $y \times x$	c)	x ²	d) y ²
20)	If $(3,5) \in \{3,b\} \times$	$\{x, 8\}$ then x	<i>:</i> =	• •	
	a) 8	b) 6		c) 5	d) 3

c) (5,5)

21) If (x-3,2y) = (2,10), then $(x,y) = \dots$

a) (5, 2) b) (2, 5)

(2, 2)

..... is one of measure of desperation.

a) Median

b) Arithmetic mean

c) Standard deviation

d) Mode

- a)

- x + 7

37) The simplest dispersion measure is

- a) Arithmetic mean
- b) The median
- c) The range
- d) Mode

38) The relation which represent an inverse variation between the two variables *y* and *x* is

- a) xy = 5 b) y = x + 3 c) $\frac{x}{5} = \frac{y}{2}$ d) y = 2x

39) The mean of set of values 8,9,7,6 and 5 equals

- a) 25
- b) 7
- c) 35
- d) 5

- a) x + y = 5 b) y = x + 3 c) $\frac{x}{3} = \frac{4}{y}$ d) $\frac{x}{5} = \frac{y}{2}$

41) If $\sum (x - \bar{x})^2 = 36$ to set of 9 values, then $\sigma = \dots$

b) 4

- c) 18
- d) 27

42) Mean of 2x, 3, 4, 5 equals 4, then $x = \dots$

a) 1

- c) 3
- d) 4

43) If y = mx as m is constant $\neq 0$, which of following is false

a) $y \propto x$

- b) $\mathbf{x} \propto y$ c) $\mathbf{X} = \frac{1}{m} \mathbf{y}$ d) $\mathbf{x} \propto \frac{1}{v}$

44) If a, b, c, d is proportional, then $\frac{ad-bc}{a^2+b^2+c^2}=\dots$

- b) 1
- c) 2
- d) 3

49	The	expectation	of the	match	of I	smaili	club	is	called	
-()	1110	cripectation	OI CITO	IIICCCII		DILLECTI	CIGO	10	Culled	

•				
	a) Probability	b) Equation	c) Inequality	d) Relation
46)	The third proportional	of quantities, 2,	3,6 is	
	a) 1	b) 4	c) 9	d) 12
47)	If set of values are equ	ual, then the dispe	rsion of these val	ues is
	a) > 0	b) < 0	c) = 1	$\mathbf{d}) = 0$
48)	The difference between	n the greatest valu	ie and the smalles	t value in a set of
	individuals called			
	a) Standard deviatio	n b) Mean	c) Median	d) Range
49)	The commonest measu	re of dispersion a	nd the most accur	rate is
	a) Standard deviatio	n b) Mean	c) Median	d) Mode
50)	If $7, x, \frac{1}{x}$ is continue	d proportion, ther	$1 x^2 y = \dots$	•
	y			
	a) 7	b) $\frac{1}{7}$	c) 14	d) 49
51)	If a, 2, 4, b is conta	ined proportional	, then $a + b = \dots$	
	a) 4	b) 6	c) 8	d) Other
52)	The standard deviation			
34)	a) zero	b) 5	c) 6	d) 2
53)	If $\frac{y}{x} = 5$, then $y \propto$			
	$\frac{x}{a}$ x	$\frac{1}{2}$	c) $x - 5$	d) $x + 5$
54)	The middle proportion	al between $3x^3$	and $27x$ is	
	a) $9x^2$	$\pm 9x^2$	c) $\pm 9x^4$	d) $9x^4$
55)	$y^2 + 4x^2 = 4xy$, then		. 1	1
-	a) $y \propto x$		c) $y \propto \frac{1}{x}$	d) $y \propto \frac{1}{x^2}$
5 0)	If all values are equal, a) $x - \bar{x} > 0$		c) $\bar{x}=0$	d) $\sigma = 0$
57).	X, Y , Z are continued	20 20 20 20		
20	a) $\pm \sqrt{yz}$	b) tz	c) $\frac{y^2}{z}$	d) $\frac{Y}{Z}$

Prep 3

Algebra

Choose the correct answer:

1)	The	point	(-3.	4)	lies in	 quadra	nt
- ,						 	•

- a) first
- b) second
- c) third
- d) fourth

2) If
$$X = \{5\}$$
, $Y = \{3\}$, then $n(X \times Y) = \dots$

- a) 15
- b) 8

- c) 2
- d)

3) If:
$$X = \{5, 6, 7\}$$
, then $n(X^2) = \dots$

- a) 3
- b) 6

- c) 9
- d) 12

4) If:
$$n(X^2) = 9$$
, then $n(X) =$

- a) 3
- b) 6

- c) 18
- d) 81

5) If:
$$X \times Y = \{(1, 3), (1, 4)\}$$
, then $n(X) = \dots$

- a) 3
- b) (

- c) 4
- d) 2

a)
$$R = \{(3,5), (5,3), (3,7)\}$$

- b) $R = \{(3,5), (5,7)\}$
- c) $R = \{(3,5), (5,5), (7,5)\}$

d)
$$\mathbf{R} = \{(3,3), (3,5), (3,7)\}$$

- a) 2
- b) 3

- c) 5
- d) 8

8) If the function f is a function from set X to set Y then the domain of the function is

a) x

b) y

c) x × y

d) $y \times x$

a) {3,4,5,6,9}

b) {4, 5, 9}

c) $\{3, 6, 9\}$

d) {3,6}

10) If the point (x, 7) lies on y-axis, then $5x + 1 = \dots$

a) zero

b) 1

c) 5

d) 6

11) If: $f(X) = X^2 + 7$, then f(3) =

a) 10

b) 7

c) 9

d) 16

12) If: $f(X) = X^3$, then f(2) + f(-2) =

a) 16

b) zero

c) -7

d) 4

13) If: $f(x) = 7 x - \frac{1}{2}$, then $f(\frac{1}{2}) = \dots$

a) 7

b) $\frac{1}{2}$

c) $\frac{7}{2}$

d) 3

14) The function f, where f(x) = 5x is represented graphically by a straight line passes through the point

a) (5, 5)

(0,0) (d

c) (0,5)

d)(5,0)

15) If : f(x) = 4x + b, f(3) = 15, then $b = \dots$

a) 156

b) 3

c) 4

d) -3

16) If: (m, 13) satisfies the function f where f (x) = 3 x + 4, then m =

a) 6

b) -6

c) 3

d) -3

17) If: (2, b) satisfies the function f where f(x) = 3x - 6, then

- a) zero
- b) 7
- c) 9
- d) 2

18) If: f(x) = 5x + 4 is represented graphically by a straight line passes through the point (3, b), then $b = \dots$

a) 5

19) If: a, b, 2 and 3 are proportional, then

a) $\frac{2}{3}$

- b) $\frac{3}{2}$

20) If: $\frac{x}{y} = \frac{z}{l}$ which of the following is true?

- a) $\frac{x}{1} = \frac{y}{x}$
- b) $\frac{x}{z} = \frac{1}{z}$
- (c) $\frac{x}{y} = \frac{1}{z}$ (d) $\frac{x}{z} = \frac{y}{1}$

21) The second proportion of the quantities 12 ab2,, 21 ab, 14 b² is

- a) 8ab²
- c) 24ab
- d) $24b^2$

22) The third proportion of the two numbers 3 and 6 is

- c) 9
- d) 12

23) If: 2, 6, x + 15 are proportional, then X =

- b) 2
- c) 3

24) If: $\frac{9}{a^2} = \frac{4}{b^2}$ (where a $\neq 0$ and b $\neq 0$) then, $\frac{a}{b} = \dots$

- a) $\frac{2}{a}$
- b) $\pm \frac{3}{2}$ c) $\pm \frac{2}{3}$

25) If $\frac{a}{2} = \frac{b}{3}$, then $\frac{b-a}{b+a}$ equals

a) $\frac{1}{5}$

- b) $\frac{1}{2}$
- c) $\frac{2}{5}$
- d) $\frac{3}{5}$

26) If: $\frac{x}{2} = \frac{y}{3} = \frac{4x - 2y}{z}$, then $z = \dots$

- a) -2 b) $-\frac{1}{2}$
- c) $\frac{1}{2}$

d) 2

27) If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = m$ (where $m \in \mathbb{R}^*$), then $\frac{ace}{bdf} = \dots$

- a) m
- b) 3m
- c) m³

28) The number which if we added to each of the numbers 1, 3, 7, 15 respectively to be in continued proportion is

a) 1

b) 2

29) The relation which represents direct variation between the two variables x and y is

d) $\frac{x-y}{z-z}$

30) If $y \propto x$ and x=1 at y=4, then the constant of the variation

c) $\frac{1}{4}$ d) $\frac{1}{4}$

where $x \neq y \neq 0$, then

- b) $y \propto x$

c) $y \propto \frac{1}{y}$ d) $y \propto \frac{1}{y^2}$

32) The positive square root of the average of squares of deviations of the values from its arthimetic mean is called.....

a) the range.

b)the arthimetic mean.

c) the median.

d) the standard deviation.

33) The range of the set of the values: 7, 3, 6, 9 and 5 equals

a) 3

b) 4

c) 6

d) 12

34) The arthimetic mean of the set of the values: 7, 3, 6, 9, and 5 equals

a) 3

b) 4

c) 6

(d) 12

35) If $\sum (X - \overline{X})^2 = 36$ of a set of values and the number of these values = 9, then $\delta = \dots$

a) 2

b) 4

c) 3

d) 27

36) If $X \times Y = \{(2, 3), (2, 5)\}$, then $n(X) = \dots$

a) 1

b) 2

e) 3

d) 5

37) If b < 3, then the point (6, b-3) lies in the quadrant

a) first

b) second

c) third

d) fourth

38) If the point (x, 3) lies on y-axis, then $7x - 1 = \dots$

a) 20

b) 1

c) 6

d) 8

39) If f(x) = 4x + b, $\frac{1}{3}f(3) = 5$, then $b = \dots$

a) -57

b) 3

c) 4

d)-3

40) The function f where f(x) = 3x is represented graphically by a straight line which passes through the point

a) (3, 3)

b) (3,0)

(0,0)

d)(0,3)

41) The maximum value of the function $f: f(x) = -2x^2 + 4x + 3$ is.....

a) 5

b) 1

c) 3

d) -1

42) If the point (a, 3 - a) is located on the x-axis, then $a = \dots$

a) zero

b) 3

c) -3

d) 5

43) If $f(x) = X^3$, then $f(2) + f(-2) = \dots$

a) 16

- b) zero

d) 4

44) If $X \times Y = \{2, 3\}$, then $X^2 = \dots$

a) $\{(4, 9)\}$

b) {(4,3)}

c) {(2, 2)}

d) {(2, 9)}

45) If f: f(x) = 5 is represented by a straight line parallel to the x-axis, then it passes through the point...

a) (0,5)

c) (5, -5)

46) If R is a function from X to Y where $X = \{3, 5, 7\}$, $Y = \{4, 9\}$ and $R = \{(3, 4)\}, (b, 9), (5, 9)\}, then b =$

a) 3

d) 9

47) The function $f: f(x) = (X - 5)^3$ is a polynominal of the degree.

- b) second
- c) third
- d) fourth

48) If $4X^2 = 9Y^2$, then $\frac{x}{y} = \dots$

- b) $\frac{3}{2}$
- c) $\pm \frac{3}{2}$ d) $\pm \frac{2}{3}$

49) If $X^2y = 5$, then

- a) y \prec x
- b) $y \propto x^2$
- c) $y \propto \frac{1}{y}$ d) $y \propto \frac{1}{y^2}$

50) If $\frac{a}{2} = \frac{b}{3}$, then $\frac{b-a}{b+a} = \dots$

a) $\frac{1}{5}$

- b) $\frac{1}{2}$
- c) $\frac{2}{5}$
- d) $\frac{3}{5}$

51) If $\frac{x}{2} = \frac{y}{3} = \frac{4x - 2y}{z}$, then $z = \dots$

a) -2

- b) $-\frac{1}{2}$ c) $\frac{1}{2}$

d) 2

52) The second proportional for the quantities 12 a b2,, 21 a b, 14 b² is

- a) $8 a b^2$
- b) 8 b³
- c) 24 a b

d) 24 b4

53) If $y \propto x$ and x = 1 when y = 4, then the constant proportional equals

a) 1

b) -4

54) If a, b, 2 and 3 are proportional quantities, then $\frac{b}{a} = \dots$

- b) $\frac{2}{3}$

d) 2

55) If 2, 6 and x + 15 are proportional, then $X = \dots$

a) 1

c) 3

d) 4

56) If x y = 12, then y varies directly with

- a) $\frac{1}{x}$
- b) x 12
- c) x

d) x + 12

57) If y varies inhersely with x and $x = \sqrt{3}$ when $y = \frac{2}{\sqrt{3}}$, then the constant of proportion equals

d) 6

58) If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = m$ (where $m \in \mathbb{R}^*$), then $\frac{ace}{bdf} = \dots$

- a) m
- b) 3m
- c) m3

d) 3 m³

59) If $\frac{a}{3} = \frac{b}{5}$, then 5 a – 3 b + 7 =

a) 3

- b) 9
- c) 7

d) 5 ab

60)	The difference between the	greatest	value and	d the smallest
	value of a set of individuals	is called		

a) the range.

b) the ariothemtic mean.

c) the median.

- d) the standard deviation.
- 61) Selecting a sample of layers of a statistical society is called sample.
 - a) random

b) class (layer)

c) delibrate

- d) bunch
- 62) The range of the set of values : 5, 14, 4, 37, 15, 16 and 7 is.....
 - a) 30
- b) 33
- c) 32

- d) 22
- 63) The standard deviation of the values: 5, 5, 5, 5 equals
 - a) zero
- b) 5

- c) 6
- d) 2

Prep 3

Geometry

Answer the following questions:

Choose the correct answer:

- 1) 4 cos 30° tan 60° =
 - a) 3

- b) $2\sqrt{3}$
- c) 6

- d) 12
- 2) If $\cos 2x = \frac{1}{2}$ where X is an acute angle, then $m(\angle X) = \dots$
 - a) 15°

- b) 30°
- c) 45°
- d) 60°
- 3) If $\tan \frac{3x}{2} = 1$ where X is an acute angle, then $m(\angle X) = \dots$
 - a) 10°

- b) 30°
- c) 45°
- d) 60°

- 4) $2 \tan 45 \frac{1}{\cos 60} = \dots$
 - a) zero
- b) $\frac{1}{2}$

- c) $\frac{\sqrt{3}}{2}$
- d) 1
- 5) If $\cos \frac{x}{2} = \frac{\sqrt{3}}{2}$ where X is an acute angle, then Sin X =
 - a) $\frac{1}{2}$

- b) $\frac{1}{\sqrt{3}}$
- c) $\frac{2}{\sqrt{3}}$

d) $\frac{\sqrt{3}}{2}$

6) In ΔABC:

If m $(\angle A) = 85^{\circ}$, SinB = Cos B, then m $(\angle C) = \dots$

- a) 30°
- b) 45°
- c) 50°
- d) 60°
- 7) If $\tan X = \frac{1}{\sqrt{3}}$ where X is an acute angle, then : \tan

2X=.....

- a) $\frac{2}{\sqrt{3}}$
- b) $2\sqrt{3}$
- c) $\sqrt{3}$
- d) 3

8) If X is the measure of an acute angle and Sin $X = \frac{1}{2}$, then Sin2X =

- b) $\frac{1}{4}$ c) $\frac{\sqrt{3}}{2}$

9) If 2 Sin X = tan 60° where X is an acute angle, then : m(∠X)

- a) 30°
- b) 45°
- c) 60°

10) If tan $2X = \frac{\sqrt{3}}{3}$ where 2X is an acute angle, then: $m(\angle X)$

- a) 15°

11) If $\sin 2X = \frac{\sqrt{3}}{2}$, then : $X = \dots$ (where 2X is an acute angle).

- a) 20°

d) 60°

12) If $\cos \frac{x}{2} = \frac{1}{2}$ where $\frac{x}{2}$ is an acute angle, then: m ($\angle X$) =

- a) 30°
- c) 60°

d) 120°

13) If $Cos(X + 10^\circ) = \frac{1}{2}$ where $(X + 10^\circ)$ is an acute angle, then

- b) 40°
- c) 50°

d) 70°

14) If $\tan (X - 5^\circ) = \frac{1}{\sqrt{3}}$ where $(X - 5^\circ)$ is an acute angle, then: X=

- a) 35°
- b) 65°
- c) 60°

d) 30°

- 15) If $\sin (X + 5^\circ) = \frac{1}{2}$ where $(X + 5^\circ)$ is the measure of an acute angle, then : tan (X + 20 °) =
 - a) $\frac{\sqrt{2}}{2}$

- b) $\frac{1}{2}$ c) $\frac{\sqrt{3}}{2}$
- d) 1

- 16) Tan 75° =
 - a) $\frac{\cos 75^{\circ}}{\sin 75^{\circ}}$

b) $\frac{\sin 75^{\circ}}{\cos 75^{\circ}}$

c) 3 tan 25°

- d) 3Sin25°Cos25°
- 17) In the opposite figure:

ABC is a triangle in which:

$$M(\angle A) = 90^{\circ}$$
, $AB = 5$ cm.

And BC = 13 cm.

, then : tan B =

- a) $\frac{5}{13}$

- d) $\frac{25}{13}$

13 cm

- 18) For any acute angle A , tan A =
 - a) $\frac{\cos A}{\sin A}$

b) Sin A CosA

c) $\frac{\sin A}{\cos A}$

- d) Sin A + CosA
- 19) For any two acute angles A and B if SinA = CosB, then $m(\angle A) + m(\angle B) = \dots$
 - a) 30°
- b) 60°
- c) 90°
- d) 180°
- 20) If $m(\angle A) = 75^{\circ}$, $\sin B = \cos A$ where B is an acute angle,

then: m (∠B) =

- a) 45°
- b) 75°
- c) 15°
- d) 105°

21) In $\triangle ABC$: if m($\angle A$) = 60°, Sinc = CosC, then: m

(∠B)=.....

- a) 60°
- b) 30°
- c) 45°
- d) 75°

22) In the opposite figure:

Which of the following has

The value of SinC?

a) SinB

b) CosB

- c) TanC
- d) CosC

- 23) For any acute angle A ,tanA =
 - a) $\frac{CosA}{SinA}$

b) Sin A Cos A

c) $\frac{Sin A}{Cos A}$

- d) Sin A + Cos A
- 24) If Cos $X = \frac{\sqrt{2}}{2}$ where X is an acute angle, then Sin 2X =
 - a) $\frac{1}{\sqrt{2}}$

b) $\frac{-\sqrt{2}}{2}$

- c) 1
- d) $\frac{2}{\sqrt{2}}$
- 25) ABC is a right-angled triangle at B where 3AC = 5 BC, then tan A =
 - a) 3/5

- b) $\frac{5}{3}$
- $c)\frac{3}{4}$
- d) $\frac{4}{3}$
- 26) If $Cos(X + 15^\circ) = \frac{1}{2}$, then $Sin(75^\circ X) = \dots$
 - a) $\frac{1}{2}$

- b) $\frac{\sqrt{3}}{2}$
- c) $\frac{1}{\sqrt{2}}$

- d) 1
- 27) If XYZ is an isosceles triangle and right at Z, then tan X

=.....

- a) $\frac{1}{\sqrt{3}}$
- b) $\sqrt{3}$
- c) 1

d) $\frac{1}{3}$

28) If tan(X + 15) = 1 where X is an acute angle, then X =

- a) 60°
- b) 45°
- c) 30°

d) 15°

29) If Sin 30° = Cos E where E is an acute angle, then

m(∠E)=.....

- a) 15°
- b) 30°

c) 60°

d) 90°

30) If X is an acute angle, $2\sin X - 1 = 0$, then $m(\angle X) = \dots$

- a) 60°
- b) 90°
- c) 45°

d) 30°

31) If A and B are two complementary angles where A : B = 1:2, then Sin A + Cos B =

 $a)\frac{1}{2}$

b) $\frac{1}{4}$

 $c)\frac{\sqrt{3}}{2}$

d) 1

32) If $m(\angle A) = 70^{\circ}$, Sin B = Cos B in $\triangle ABC$, then $m(\angle C)$

=....

- a) 50°
- b) 45°
- c) 70°
- d) 65°

33) In the opposite figure:

ABC is a triangle in which:

 $M (\angle A) = 90^{\circ}, AB = 15 \text{ cm}.$

, BC = 25 cm , then tan B =

- a) 3
- b) $\frac{4}{5}$

 $c)^{\frac{4}{2}}$

34) The distance between the point (4, -3) and the x-axis equals.....

- a) -3
- b) 3
- c) 4
- d) 5

35) A circle of centre at the origin point and its radius length is 2 unit length which of the following point belongs to the circle?

- a) (1,2)
- b) (-2, 1)
- c) $(\sqrt{3}, 1)$ d) $(\sqrt{2}, 1)$

36) If: (4, -3) is the midpoint of \overrightarrow{AB} where A (3, -4), then the coordinates of B is

- a) (5, -2)
- b) (2,5)
- (5,2)

 6 = 0 intercepts from the y-axis a part of length

- a) -6
- b) -2
- d) 2

38) If the two straight lines: 3x-4y-3=0 and kx+3y-8=0are perpendicular, then k =

- a) -4
- b)_-3

d) 4

39) If the two straight lines : x + y = 5 and kx + 2y = 0 are parallel, then k= ...

a) -2

- c) 1

d) 2

40) The area of the triangle bounded by the straight line: 3x-4y=12, x=0 and y=0 in square unit equal

a) 6

- b) 7
- c) 12
- d) 15

41) AB is a straight line passing through the two points (2, 5)and (5, 2) which of the following points $\in \overline{AB}$

- a) (1, 6)
- b) (2,3)
- (0,0)
- d)(3,-4)

- 42) The points (0,0), (3,0) and (0,4)
 - a) from an obtuse-angled triangle.
 - b) from an acute-angled triangle.
 - c) from a right-angled triangle.
 - d) are collinear.
- 43) If: A (0,0), B (5,7) and C (5, h) are the vertices of a rightangled triangle at C, then h =
 - a) zero
- b) 5
- c) 7
- d) -5
- - a) $X_1X_2 + Y_1Y_2$

- b) $\sqrt{X1 \ X2 + Y1 \ Y2}$
- c) (X_2-X_1, Y_2-Y_1)
- d) $\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}$
- 45) The distance between the two points (2, 2), (-1, 6) = length units.
 - a) 2

- b) 5
- c) 10
- d) 25
- 46) If A (0,0), B (2,3) are two points in a Cartesian coordinates plane, then AB =
 - a) $\sqrt{5}$
- b) √7
- c)√11
- d) $\sqrt{13}$
- 47) In the Cartesian coordinates plane, the point that is at a distance 2 length unit from the origin may be
 - a) (1, 2)
- b) (2, 1)
- c)(0,2)
- d)(-3,5)
- 48) The distance between the point (3, -5) and x-axis is length units.
 - a) 3
- b) -5
- c) 5
- d) √34

49) The distance between	the point (2, -3) and y-axis is
length units.	

a) 2

b) -3

c) $1\sqrt{13}$

d) $\sqrt{5}$

50) A circle its centre is the origin and its radius length is 2 length units, which of the following points belongs to the circle?

a) (1,2)

b) (-2, 1)

c) $(\sqrt{3}, 1)$

51) If A (1, 3) and B (3, -5), then the midpoint of AB is ...

a) (2, 1)

b) (2,4)

c) (2,

(-2,1)

52) If A (7, -4) and B (-1, 0), then the coordinates of the midpoint of \overline{AB} is

a) (-3, 2)

b) (3 (2)

(3,-2)

d) (-3, -2)

53) If C (2, 1) is the midpoint of AB where B (3, 0), then A

a) (1, 2)

c) (5,1)

d) (1,5)

54) If the point (3, -1) is the midpoint of the line segment whose terminals are (X, 2) and (10, y), then $X + Y = \dots$

b) 8

c) 2

d)-2

55) If M (1, 2) is the intersection point of the two diagonals in the parallelogram ABCD where A (2, 5), then C is

a) (0, 2)

b) (0, -1)

c) (-4, 1) d) (-1, 0)

56) If $(\frac{1}{2}, \frac{5}{2})$ is the midpoint of \overline{AB} where A (1, -1) and B (x, 6), then X =

a) 0

b) 1

c) 2

 $d)\frac{1}{2}$

57) If th	e slope of a straight line more than zero, then the type	of
the	ositive angle which it makes with the positive direction	1
of X	-axis is	

a) zero

b) acute

c) right

d) obtuse

58) If m₁ and m₂ are two slope of two perpendicular straight lines, then

a) $m_1=m_2$

b) $m_1 = -m_2$

c) $m_1 m_2 = -1$

d) $m_1 m_2 = 1$

59) If m₁ and m₂ are two slopes of two parallel straight lines, then.....

a) $m_1 - m_2 = 0$

b) $m_1 + m_2 = 0$

c) $m_1 m_2 = 0$

d) $m_1 - m_2 \neq 0$

60) If ABCD is a parallelogram, then the slope of $\overrightarrow{AB} = \dots$

a) the slope of BC

b) the slope of \overrightarrow{CD}

c) the slope of AD

d) the slope of \overrightarrow{AC}

61) The straight line that passes through the two points (0, 0) and (2, 3) is parallel to the straight line whose slope is

a) $\frac{3}{2}$

b) $\frac{2}{3}$

 $c)^{\frac{-3}{2}}$

d) $-\frac{2}{3}$

62) If The straight line L is perpendicular to the straight line which passes through the two points (-1, 2) and (0, 5), then the slope of the straight line L =

a) 3

b) -3

c) $\frac{1}{3}$

d) $-\frac{1}{3}$

63) The two str	aight line whos	e slopes are $\frac{3}{5}$ and $\frac{-3}{3}$	⁵ / ₃ are
a) parallel		b) perpendicular	
c) coinciden	t	d) not perpendicul	lar
64) If the straig	ht line which p	asses through the t	wo points (x,5)
and (2, 3) is	parallel to the	straight line which	passes
through the	two points (3,	4) and (5, 2) then 2	(=
a) 2	b) -2	c) zero	d),1
65)The straight	line which pas	ses through the two	points
(-1, -1) and	(4, 4) makes w	ith the positive dire	ection of X-axis
a positive an	gle of measure		
a) 30°	b) 45°	e) 60°	d) 135°
66) The straigh	t line passes thi	rough two points (a	, 0) and (0, 4)
perpendicul	ar to the one w	hich makes an angl	e of measure
45° with the	positive directi	on of X-axis, then a	ı =
a) 4	b) -4	c) 1	d) -1
67) The slope of	f the straight lin	ne whose equation i	s: 3y = 2x - 5
is			
a) 3	b) 2	c) -5	d) $\frac{2}{3}$
68) The straigh	t line whose equ	uation is : 3x - 3y +	5 = 0 makes a
	-	tive direction of X-	
measure =			
a) 30°	b) 45°	c) 60°	d) 90°

-	_	_	-	-
•	-		-	•
	_	п		

ALSHAMEKH

AT MATH

69) The straight line whose equation is 2x - 3y - 6 = 0 intercepts from y-axis a part of length units.

a) -6

b) -2

c) $\frac{2}{3}$

d) 2

70) The straight line whose equation : 2x +5y - 10 = 0 cuts from X-axis a part of length = units.

a) $\frac{2}{5}$

b) 2

c) $\frac{5}{2}$

d) 5

a) y = 3x + 4

b) y = 4x + 3

c) y = 3x - 4

d) y = -3x + 4

72) The two straight lines : y = 3x - 5 and 2y = 6x + 5 are straight lines.

a) parallel

b) coincident

c) intersecting and not perpendicular

d) perpendicular

73) If the two straight lines : 3x - 4y - 3 = 0 and ky + 4x - 8 = 0 are perpendicular, the $k = \dots$

a) -4

b) -3

c) 3

d) 4

74) The two straight lines : x + y = 5 and k x + 2 y = 0 are parallel , then $k = \dots$

a) -2

b) -1

c) 1

d) 2

75) The two straight lines : y = ax + b and y = cx + d are perpendicular, then = -1

a) a×d

b) b × c

c) a × c

 $d) b \times d$

76) The straight line passing through the two points (5, 4) and (1,5) is perpendicular to the straight line

a)
$$4x = 3 - 4y$$

b)
$$5y + x = 4$$

c)
$$y = 4x$$

d)
$$x + 2y = 4$$

77) If the straight line whose equation is y = (a - 1) x + 5 is parallel to the straight line which passes through the two points (1, 2) and (3, 8), then the value of a = 4...

78) The slope of the straight line whose equation is: 3y = ax - 5and passes through the point (20, 5) is

d) $\frac{1}{3}$

79) The area of the triangle in square units which is bounded by the straight lines 3x - 4y = 12, x = 0, y = 0 equals

d) -6

80) The diastance between the point (-7, -3) and y-axis is length unit.

d) 3

81) The point (0, 4) biscets the distance between the two points (-1, -1) (x , y) , then the point (x , y) is

b)
$$(-1, 9)$$
 c) $(-\frac{1}{2}, \frac{3}{2})$ d) $(-1, 3)$

82) If the two straight lines whose slope are $(\frac{-1}{4})$ and (4k) are perpendicular, then k =

- a) 1
- b) 4
- c) -4
- d) $\frac{1}{4}$

83) The slope of the straight line whose equation is: X - 5 = 0IS.....

a) 5

b) 1/5

c) undefined

d) 0

84) If the straight line which passes through the two points (x,-1) and (4, 2) is parallel to the straight line which passes through the two points (3, 4) and (-3, -2), then X =

a) -3

b) 2

85) If ABCD is a rectangle where: A (-4, -1), C (4, 5), then the length of $\overline{BD} = \dots$ Length unit.

a) 10

b) 6

d) 4

86) If the two straight lines : 3x - 4y - 3 = 0 and kx + 3y - 8 = 0are perpendicular, then k =

a) -4

b) -3

d) 4

87) The straight line whose equation is : 2x - 3y - 6 = 0intercepts from y-axis a part of length units.

a) -6

c) $\frac{2}{3}$

d) 2

88) The equation of the straight line which passes through the point (2, -3) and is parallel to X-axis is

b) y = -3

c) x = -2 d) y = 3

89) In the opposite figure:

Which of the following represents

The equation of the straight line L?

b)
$$y = 2$$

c)
$$y + x = 2$$

d)
$$y - x = 2$$

Prep 3 First Term

1	If $(a+3,b-$	-1) = (-2, 4), then a	ı + b =	
	(a) 0	(b) 2	(c) 5	(d) 10

If X - y = 5, then $6X - 6y = \cdots$

(a) Ø

(a) 30 (b) 11 (c) 1 (d) -1

If X, 3, 4 and 6 are proportional, then $X = \dots$ (a) 0 (b) 1 (c) 2 (d) 3
{3} \bigcup]3, 5] = \dots

The positive square root of mean of the squares of deviations of the values from their arithmetic mean is called

(c) 3,5]

(d) [3,5]

(a) the range. (b) the standard deviation.

(c) the median. (d) the mean.

(b) $\{3\}$

If $X^2 = 25$, where $X \in \mathbb{Z}$, then $X = \dots$

(a) 5 (b) -5 (c) ± 5 (d) -25

If $X \in \mathbb{R}$ and 1 < X < 3, then $(3 X - 1) \in \dots$

(a)]2,8[(b) [2,8] (c)]2,8] (d) {2,8}

The range of the set of the values: 7,3,6,5,9 is

(a) 3 (b) 4 (c) 6 (d) 12

8 Half of the number 4²⁰ =

(a) 2^{20} (b) 2^{39} (c) 2^{29} (d) 4^{19}

If X, Y are two non empty sets and $n(X^2) = 4$, $n(X \times Y) = 6$, then $n(Y^2) = \cdots$

(a) 4 (b) 9 (c) 16 If $a \times \frac{b}{3} = \frac{a}{3}$, then $b = \dots$

(a) - a (b) 1 (c) $\frac{a}{3}$ (d) a

If x y = 7, then $y \propto \dots$ (a) $\frac{1}{x}$ (b) x - 7 (c) x (d) x + 7

1

		-	
	If $(5, x-8) = (y+1, -5)$), then x + y =	
1	a) 4	b) 5	d
	c) 6	d) 7	
	{3} × {3} =		
2	a) {9}	b) {3}	С
	c) {(3, 3)}	d) 9	- 7
	If $n(X) = 3$, $n(X \times Y) = 12$, 1	then n (Y) =	
3	a) 4	b) 9	a
5	c) 15	d) 36	a
	If $n(X^2) = 4$, $n(X \times Y) = 8$,		
4	al 1	b) 4	C
	c) 16	d) 64	
	In the opposite figure: \$\sin A = -		
2	a) $\frac{2}{12}$ b) $\frac{12}{5}$		
5	c) \$	5 co	d
	d) 12/13	C 12 cm B	Man.
	If $\sin X = \frac{1}{2}$ where X is an a	cute angle, then m (∠ X) =	
6	a)30	b) 45	а
7	c) 60	d)40	
	A STATE OF THE STA		
	100000	acute angle, then: m ($\angle X$) =	
7	a) 30°	b) 45°	С
	c) 60°	d) 40°	
	tan 75° =		
8	a) sin 75° cos 75°	b) cos 75° sin 75°	а
	c) 3 tan 25°	d)3 sin 25°cos 25°	

	If $\frac{3a}{5b} = \frac{1}{2}$, then $\frac{a}{b} = \dots$	
1	a) $\frac{3}{2}$ b) $\frac{6}{5}$ c) $\frac{5}{6}$ d) $\frac{2}{3}$	С
2	If 5a, 2, 3b, 7 are four proportional quantities then $\frac{a}{b} =$ a) $\frac{3}{7}$ b) $\frac{6}{35}$ c) $\frac{3}{5}$	b
3		С
4	If $\frac{a}{b} = \frac{c}{d} = \frac{s}{f} = \frac{3}{5}$, then $\frac{a-2c+s}{b-2d+f} = \frac{3}{5}$ a) $\frac{3}{5}$ c) $\frac{5}{3}$ d) $\frac{5}{3}$	а
5	The distance between the two points (15, 0), (6, 0) equals a) 21 b) 9 c) 4.5 d) 189	b
6	If the point (X, 0) is the midpoint of the line segment whose ends are (1, -5) and (2, 5), then the value of X = a) 2.5 b) 2 c) 0 d) 1.5	d
7	The slope of the straight line which is parallel to the straight line passing through the two points (2, 3) and (-2, 3) equals a) undifined b) 1 c) 0 $d^{\frac{3}{2}}$	С
8	The triangle whose vertices are A (3, -1), B (X, 3) and C (5, 3) is a right-angled triangle at A, then the value of X = $\frac{1}{5}$ b) -5 c) $\frac{1}{5}$	b

	If the mean of numbers: $3k-3$, $3k-$	1, 2k + 1, 2k + 3 and 2k + 5 is 13, then k =	
1	a) 65	b) 5	b
	c) 13	d)10	1.3
_	If $\Sigma (x - x)^2 = 36$ of a set of values deviation =	and the number of these values = 9, then the standard	V.
2	a) 4 c) 27	b) 2 d) ±2	ь
		of the values: 6 , 5 , 9 , 4 and 12 is	
3	a) 8	b) 7	а
•	c) 6	d) 3	
	The most repeated val	ue in a set of values represents	
^	a) the mean	b) the range	4
4			d
	c) the median	d) the mode	
5		d) the mode ine, its slope = 2 and intercepts from the positive p	
9	The equation of the straight lift of y – ax is 7 units is a) $y = 2x + 7$ c) $y = \frac{7}{2}x$ The equation of the straight line	ine, its slope = 2 and intercepts from the positive positive $y = 7x + 2$	art
5	The equation of the straight lift of y – ax is 7 units is a) $y = 2x + 7$ c) $y = \frac{7}{2}x$ The equation of the straight line the positive direction of X-axis at a) $y = 135x$ c) $y = x - 1$	ine, its slope = 2 and intercepts from the positive positive positive positive positive positive positive positive positive angle of measure 135" is b) $y = -x$ d) $y = x + 135$ sing through the point (-2, 3) and perpendicular to $-\frac{1}{2}x + 3$ b) $y = -\frac{1}{2}x + 2$	art a
5	The equation of the straight live of y — ax is 7 units is a) $y = 2x + 7$ c) $y = \frac{7}{2}x$ The equation of the straight line the positive direction of X-axis at a) $y = 135x$ c) $y = x - 1$ The equation of the straight line pass the straight line whose equation: $y = x - 1$ a) $y = 2x + 7$ c) $y = 2x + 2$	ine, its slope = 2 and intercepts from the positive positive positive positive positive positive positive positive positive angle of measure 135° is b) $y = x + \frac{2}{7}$ which passes through the origin point and makes we positive angle of measure 135° is b) $y = -x$ d) $y = x + 135$ sing through the point (-2, 3) and perpendicular to $-\frac{1}{2}x + 3$	art a b
5	The equation of the straight live of y — ax is 7 units is a) $y = 2x + 7$ c) $y = \frac{7}{2}x$ The equation of the straight line the positive direction of X-axis at a) $y = 135x$ c) $y = x - 1$ The equation of the straight line pass the straight line whose equation: $y = x - 1$ a) $y = 2x + 7$ c) $y = 2x + 2$	ine, its slope = 2 and intercepts from the positive positive positive positive positive passes through the origin point and makes we positive angle of measure 135° is b) $y = -x$ d) $y = x + 135$ sing through the point (-2, 3) and perpendicular to $-\frac{1}{2}x + 3$ b) $y = -\frac{1}{2}x + 2$ d) $y = -\frac{1}{2}x + 7$	art a

	The function f where $f(x) = 2$	X – 3X ⁴ + 1 is a polynomial function of	degree.	
1	a) first	b) second		d
	c) third	d) fourth		
	If $f(X) = 3$, then	$f(5) + f(-5) = \cdots$	-	
2	a) 0		b) 6	b
-	c) 8		d) 10	J
	If (2x - 3): (x - 5	5) = 1:4, then $x =$	-	
3	a) 2	120	b) 4	С
	c) 1	119	d) 3	
	lf y α X and y =	2 as X = 8, then y =	when X = 12	*
4	a) 3		b) 8	a
	c) 48		d) 24	-
0	Cos 60" + sin 30" =	AUGA T	4	N
5	a) 0	7	b) 90	cA
	c) 1		d) 2	1/13
	The distance be	tween the two points A (6,0),	B (0,8)=	No.
6	a)10	7	b)14	а
	c) 2		d)100	
		midpoint of AB where its terminals are A (15	, y) and B (-5 , -2),	
7	then the value of y =			С
•	a) ½	b) 4		
	c) 8	d) 6	V 100 000	
	The slope of the straight line w of measure 45° equals	hich makes with the positive direction of X-a	is a positive angle	
8	a) 45	b) 1		b
	c)-1	d) 2		

	If f is a function from the set X to the set	Y, then: X is called	
1	a) the range of the function \boldsymbol{f}	b) the domain of the function \boldsymbol{f}	b
	c) The codomain of the function f	d) the rule of the function \boldsymbol{f}	
	If: $f(X) = a X + 6$, $f(2) = 2$, the	n a =	
2	a) 2	b) -2	b
	c) 4	d) 6	
	If $(3, y) \in \text{the set of the function}$	f where $f(X) = X + 2$, then $y =$	×
3	a) 1	b) 5	b
	c)4	d) 6	
	The difference between the greatest value is called	and the smallest value in a set of values	
4	a) mean	b) mode	d
	c) median	d) range	
	If $\cos (X + 10^\circ) = \frac{1}{2}$ where $(X + 1)$	0°) is an acute angle, then X =	
5	a) 30°	b) 40°	d
7			
	c) 70°	d) 50°	11/21
	c) 70° In the rhombus ABCD where A (–1 , 7), B (–3 , 1		CHEN.
6	In the rhombus ABCD where A (-1 , 7), B (-3 , 1), then the perimeter of the rhombus equals	AFL
6	In the rhombus ABCD where A (-1, 7), B (-3, 1 length unit), then the perimeter of the rhombus equals	a
6	In the rhombus ABCD where A (−1 , 7), B (−3 , 1 length unit a) 8√10 c) 4√10	b) 40	W.
	In the rhombus ABCD where A (−1, 7), B (−3, 1 length unit a) 8√10 c) 4√10 The slope of the straight line which	b) 40 d) $2\sqrt{10}$ is parallel to X-axis =	AFL
6	In the rhombus ABCD where A (−1 , 7), B (−3 , 1 length unit a) 8√10 c) 4√10	b) 40 d) $2\sqrt{10}$ is parallel to X-axis =	AFL
	In the rhombus ABCD where A (−1, 7), B (−3, 1 length unit a) 8√10 c) 4√10 The slope of the straight line which	b) 40 d) $2\sqrt{10}$ is parallel to X-axis =	a
	In the rhombus ABCD where A (-1,7), B (-3,1) length unit a) $8\sqrt{10}$ c) $4\sqrt{10}$ The slope of the straight line which a) 2 c) 0 The slope of the straight line which is perpendicular.	b) 40 d) $2\sqrt{10}$ is parallel to X-axis = b) -1 d) 1	a
	In the rhombus ABCD where A (-1,7), B (-3,1) length unit a) $8\sqrt{10}$ c) $4\sqrt{10}$ The slope of the straight line which a) 2 c) 0 The slope of the straight line which is perpendicula the two points A (2, -3), B (3, 5) is	b) 40 d) $2\sqrt{10}$ is parallel to X-axis = b) -1 d) 1	a

	If the point (5, b – 7	7) is located on the X- axis, then b =	
1	a) 2	b) 5	С
	c) 7	d) 12	
	The function $f: f(X) = X$ {	X – 2X ²) is a polynomial of the degree.	*
2	a) first	b) second	С
	c) third	d) fourth	1.65
		rule Y = 3X + 6 is represent graphically by a straight line	
3	intersecting the X-axis at the p		d
	a) (0, -2)	b) (2, 0) d) (-2, 0)	-
	c) (0, 2)	and $a = 12$ as $b = 8$, then the value of a as $b = 1.5$ is	
	- 10 M 10		
4	a) 64	b) 2.25	а
	c)1	d) 144	
11	1 Tan ² 60° + cos 60° -	2tan 45° =	
5	a) 0.5	b) -0.5	d
D	c) -1.5	d) 1.5	Sills.
	If the distance between t	he two points (a, 0), (0, 1) is 1 unit length, then a =	100
6	a) 1	b) 0	b
Ü	c) -1	d) 2	
	The value of each of X and y if	the point (3, -2) is the midpoint of the line segment drawn	
7	between the two points (X , 2)	40/1	а
1	a) 3 and -6	b) 5 and -4 d) 3 and -2	_
	c) 9 and -2 If ABCD is a square whose di	iagonals AC and BD where A (3, 5) and C (5, -1),	
	then the slope of \overline{BD} =		
8	a) 3	b) -3	C
	c) $\frac{1}{3}$	d) $\frac{-1}{3}$	

	If f is a function from the set X to the	ne set Y, then: Y is called	
1	a) the domain of the function	b) the codomain of the function	b
	c) the range of the function	d) the rule of the function	
	· If (a , a) ∈ the set of the function	on f where f(X) = 2X + 3, then a =	
2	a) 3	b) 2	С
	c) -3	d) 0	
	If x varies inversely as y the	en y =	
3	a) m	b) m×x	c
•	c) m/x	d) x	
		squares of deviation of the values from their mean is	
4	called the	b) standard deviation	b
	a) mode c) range	d) mean	-
al a	The state of the s	n 30° where x is an acute angle that equals	_
١.	a) 60°	b) 30°	
5	c) 45°	d) 0°	b
		U) U	
	If the distance between the two po	oints A (0 , K) and B (4 , 0) is 5 length units,	6/11/2
_	If the distance between the two po	1	Vp.
6	then the value of K is	oints A (0 , K) and B (4 , 0) is 5 length units, b) 5	c
6	then the value of K is a)1 c) ±3	b) 5 d) 3	c
6	then the value of K is	b) 5 d) 3	c
6	then the value of K is a)1 c) ±3	b) 5 d) 3	c
	then the value of K is a)1 c) ± 3 The slope of the straight line	b) 5 d) 3 ne parallel to y-axis =	
	then the value of K is a)1 c) ±3 The slope of the straight lin a) -1 c) undefined	b) 5 d) 3 ne parallel to y-axis =	
	then the value of K is a)1 c) ±3 The slope of the straight lin a) -1 c) undefined	b) 5 d) 3 ne parallel to y-axis = b) 1 d) 0	

If the point $(x-4,2-x)$ where $x \in \mathbb{Z}$ is located on the third quadrant, then $x = -x$		
b) 3	b	
d) 6		
If: $f(X) = x^2 - x + 3$, then: $f(3) =$		
b) 6	C	
d) 12		
f the function $f: f(X) = X^2 + 1$, then $Y = \dots$		
b) 3	С	
d) 6		
	1	
een: 2 a and 8 ab² is	200	
b) 4ab	а	
d) ±16ab		
is an acute angle, then: m (∠ X) =) =	
b) 45°	d	
d) 60°	SIL.	
B (4, 2), then the area of the square equals	uals	
· 10 10 10 10 10 10 10 10 10 10 10 10 10		
b) 25	b	
d) 5		
(1,5), B (3,3), C (0,-1) and D (X,y) respectively	vely	
b) (-2, 1)	b	
d) (9,4)	2000	
axis where C (M, 4) and D (-5, 7), then M =	M = -	
-axis where C (M , 4) and D (–5 , 7), then M =	M = d	
-axis where C (M , 4) and D (–5 , 7), then M = b) 4	M = -	

	If the point (X , 2) lies on Y-axis, then X =	
1	a) zero b) 1	а
	c) 2 d) 3	
1000	The liner function given by the rule y = X – 1 is represented graphically by a straight line intersecting the X-axis at the point	9
2	a) (0,0) b) (1,0)	b
	c) (1, 1) If $(X^2 - 8)$: $(2 X^2 + 1) = 1 : 3$ then $x = $	
	a) zero b) 5	
3	c) ±5 d) ±3	С
	0,13	
	If $y \circ X$ and $y = 2$ as $X = 4$, then: $y = -4$	
4	a) $\frac{1}{2}x$ b) $2x$	а
	c) 4x d) x	9.85
	sin 60° + cos 30° + tan 60° =	\
5	a) √3 b) 2√3	b
	c) 3	NI SI
	The distance between the point (-3, 4) and the point of origin =	Va.
6	a) 3	С
30	c) 5	
	If the point (5, 3) is the midpoint of AB where its terminals are A (15, y) and B (-5, -2),	+
7	then the value of y is	
′	a) 4 b) 6	С
	c) 8 d) 5	
	The slope of the straight line which is parallel to the straight line passing through the two points (2, 3) and (-2, 3) equals	
8	a) 3 b) 1	d
	c) 2 d) 0	

		Vi-	
1	If the point (-4, Y) lie a) -1 c) -8	es on the X-axis, then 2Y – 1 =b) 1 d) –9	а
2	The function $f: f(X) = X^2$ (X a) first c) third	(-3) ² is a polynomial of the degree. b) second d) fourth	d
3	The point of the vertex of the a) (1,3)	curve of the function f: f(X) = 2 X ² - 4X + 5 is	а
4	One of the measureme a) median c) mean	b) mode	b
5	If $\cos C = \frac{1}{2}$ where C is a) 30° c) 45°	an acute angle, then: m (∠ C) = b) 60° d) 90°	b
6	The radius lengthrof the circle what a) 7	b) 4 d) 3	ACHIE.
7	then the coordinates of the point a) (1,0) c) (0,1)	1 , -2) and D (-2 , 3) are vertices of the rhombus ABCD, of intersection of the two diagonals are $b) \left(\frac{1}{2} , -\frac{1}{2}\right)$ $d) (0 , 0)$	а
8	If the straight line AB is paralle a) 8 c) 2	b) 3 d) 0	b

Choose the correct answer:

- 1) If $x=\{2\}$, $y=\{3\}$, then $x \times y =$
 - a) 6
- b) $\{(3,2)\}$

- d) 9

- 2) If a,3x,b,9x are proportional then
 - a) 3

- 3) If x = 3y, then $y \alpha$

- 4) The difference between the greatest value and smallest value is called.
- b) the median c) the mode
- * d) the range
- If $\sin 2x = \frac{1}{2}$, then x =(x is acute angle)
 - a) 30
- b) 60

- 6) if $L_1//L_2$, and slope of st.line $L_2 = \frac{2}{3}$, then slope of $L_1 = ...$
 - a) $\frac{2}{3}$

- b) $-\frac{2}{3}$ c) $\frac{3}{2}$
- 7) If origin point is midpoint of \overline{AB} where A(4, -2), the coordinates of point B is
 - a) (4,2)
- b) (-4, -2) c) (4, -2)
- d) (-4,2)
- 8) Equation of the equation of st, line passing thought origin point and make angle of measure 45 with positive direction of x- axis is....
 - a) y = 1
- b) x = 1
- d) v = -x

Choose the correct answer:

- 1) Range of values 16,7,9,13,21 is......
 - a) 13

- b) 14
- c) 15

d)16

- 2) If 6a = 5b, then $\frac{a}{b} = \dots$
 - a) $\frac{5}{6}$

b) $\frac{6}{5}$

- c) 5
- d) 6

- 3) n (x)=3, n(x×y)=15, n(y)=........
 - a) 12

- b) 9
- c) 3
- d) 5
- 4) If y direct variation with x , y inverse variation with z , then y α .
 - a) x z

- b) $\frac{x}{z}$
- c) =
- d) =

- 5) If $\sin(x \cdot 10) = \frac{1}{2}$, then $x = \dots$
- (x is acute angle)

a) 30

b) 40

- c) 0
- 'd) 60 🕔
- 6) if $L_1 \perp L_2$, and slope of st.line $L_2 = \frac{1}{2}$, then slope of $L_2 = ...$
 - a) 2

b) -2

- c) $-\frac{1}{2}$
- 7) if two st.line thir slope $\frac{2}{3}, \frac{6}{k}$ are parallel, then k=.....
 - a) -4

b) -9

- c) 4
- d) 9
- 8) The equation of the straight line that passes through (-3,4) and parallel to y axis is......
 - a) y = 4

- b) x = -3
- c) y = -4
- d)x = 3

Choose the correct answer:

- 1) If $\frac{a}{b} = \frac{c}{d} = \frac{2}{5}$, then $\frac{a+c}{b+d} = \dots$
 - a) 2

b) 5

(c) $\frac{2}{5}$

- d) $-\frac{2}{5}$
- 2) The function $f(x)=x^2-(x^2-3x)$ is function fromdegree
 - a) first

- b) second
- (c) third

d) zero

- 3) If f(x) = 3x + b, f(5) = 13, then b = ...
 - a) 2

b) 3

c) -3

- d) -2
- 4) The point (x/5) lie in y -axis , then $x + 3 = \dots$
 - a) :

b) -5

c) 0

d) 3

- 5) Sin² 60+cos²30 =.....
 - a) 2

b) 3

c) $\frac{3}{2}$

d)

- 6) If $x \cos^2 60 = \sin 45 \cos 45$
 - a) 4

b) 2

c) 3

- d) 1
- 7) if m(2,-3) mid point of AB, A(x,-6), (4, y), then x=..., y=...
 - a) (0, 0)

- b) (-2, 0)
- c) (2, 0)
- d) (3,-3)
- 8) if two st.line thir slope $\frac{-1}{4}, \frac{8}{k}$ are perpendicular, then k=.....
 - a) 2

b) -2

c) 32

d) -32

01127470454

Choose the correct answer:

- 1) The middle proportion between 3 and 27 =
 - a) 9

b) -9

c) ± 9

d) 3

- 2) $x^2 y^2 6xy + 9 = 0$, then $y a \dots$
 - a) x

- b) y
- c) $\frac{1}{x}$

- d) -
- 3) If (a, 2), one of solution of, f(x) = 3x-1, then a = ...
 - a) -1

b) 3

c) -3

d) 1

- 4) if $(x-1,11) \neq (8, y+3)$, then $\sqrt{x+2} = \dots$
 - a) + 5

- b) 9
- c) 5

d) -9

- 5) If $\sin (x+15) = 1$, then x =
- (x is acute angle)

a) 30

b) 60

c) 45

- **d)** 90
- 6) if st.line passing points(8,3),(2,k) parallel X-axis then k=.....
 - a) 0

b) 3

c) -3

- d) 8
- 7) st.line whose equation y=2x-3, intercepted from y-axis part
 - a) 3

b) -3

c)2

- d)-2
- 8) If m_1 , m_2 are the slope of two lines and $m_1 \times m_2 = -1$, then two st.line are
 - a) Equal
- b) parallel
- c) perpendicular
- d) congruent

Choose the correct answer:

1)is positive square root to the average of squares deviations of values

from mean

a) The mean

c) the mode b) the median

d) the standard deviation

2) The third proportion of 3, 5, 40 is

a) 3

c) 40

d) 24

3) If 3 xy = 8, then $y \alpha$.

a) x

b) y

4) If the point (a, 4) lies on the straight line which represents the function

 $f: R \rightarrow R$ where f(x)=x-5, then a=.

5) If $\sin x = \frac{1}{2}$, then $\tan 2x = \dots$ (x is acute angle)

a) $\frac{1}{2}$

b) √3

c) $\sqrt{2}$

if st.line passing points(m,4),(5,7) parallel Y-axis then n

a) 7

b) 5

c) -7

d) -5

7) The distance between the point (8, -6) and $x - axis = \dots unit$

a) 8

b) 6

d) -8

Equation of st.line its slope 6, cut 4 parts from negative direction of y-axis......

a) y = 6x

b) y = 6x + 4 c) y = 6x - 4 d) y = -4

01127470454

Choose the correct answer from those given:

- 1) If $X = \{2, 4, 6\}, n(Y) = 4$, and the function $f: X \to Y$, $f(x) = x^2 1$ Then Y may be equal
- a) $\{3,7,13\}$ b) $\{3,15,35\}$ c) $\{3,15,25,45\}$ d) $\{3,15,25,35\}$
- 2) (2x,4) = (8,y+1) then $\sqrt{x^2 + y^2} = \dots \dots$

$$\sqrt{5}$$
 , 5 , $\sqrt{3}$, 3

3) If the point (a, 5) lies on the straight line which represents the function $f: R \rightarrow R$ where f(x) = 3x - 4, then $a = \dots$

$$(3, -3, 1, -1)$$

In the figure opposite:

If M is the mid-point of AB, then B = .

M (-1, -1 B (.., ..)

ii) (3, -3)

- iii) (-3, -3)

- 5) Tan 75° =
 - $i)\frac{\cos 75^{\circ}}{\sin 75^{\circ}}$

ii) 3 tan 25°

- iv)2 sin 25°
- If m₁ and m₂ are two orthogonal straight lines, then
 - i) $m_1 m_2 = -1$

- ii) $m_1 m_2 = 1$
- iii) $m_1 = m_2$
- iv) $m_1 = -m_2$
- 8) The point (4, -3) is length units distant from the origin.
 - i) 3

ii) 4

iii) 5

iv) 7

Choose the correct answer from those given:

6) The third proportional of the number 9 and -12 is

- 9) If f(x) = 3, then $3f(2) 2f(3) = \dots \dots \dots \dots$

In $\triangle ABC$, if $m(\langle B) = 90^{\circ}$, then $\sin A + \cos C = \dots \dots \dots$

If $\sin X = \frac{1}{2} X$ is an acute angles, then $m(< X) = \dots$

12) The straight line whose equation is 2x - 3y - 6 = 0 intercepts from the Y – axis a part of length

$$(-6, -2, \frac{2}{3}, 2)$$

13) The point which at distance 2 units from the origin is

Choose the correct answer from those given:

1) If the point (x-4,2-x) where $x \in \mathbb{Z}$ is located in the third quadrant, then x equals

(2,3,4,6)

2) The first proportional for the numbers to 23, 15 and 69 is

(5, 3, 12, 108)

(3, 10, 47, 50)

4) If $X = \{1,3,5\}$, and R is the function on X where $R = \{(a,3),(b,1),(1,5)\}$, Then the value of a + b

(5,6,8,4)

5) The point which at distance 2 units from the origin is

[(1,2) , (2,0) , (2,7) , (-5,5)]

6) If: AB // y-axis , where A (x, 7) and B (3, 5) , then x is

(3,5,7,4)

7) Tan 75° =

i) $\frac{\cos 75^{\circ}}{\sin 75^{\circ}}$

ii) 3 tan 25°

iii) $\frac{\sin 75^{\circ}}{\cos 75^{\circ}}$

iv)2 sin 25°

8) If m1 and m2 are two orthogonal straight lines, then

i) $m_1 m_2 = -1$

ii) $m_1 m_2 = 1$

iii) $m_1 = m_2$

iv) $m_1 = -m_2$

Choose the correct answer from those given:

1.
$$(x + 1, 2) = (3, \sqrt[3]{y})$$
 then $x + y = \dots$

$$(12, 10, 2\sqrt[3]{2}, 6)$$

2. If the point (a, 2a) lies on the straight line which represents the function $f: R \to R$ where f(x) = 3x - 4, then $a = \dots \dots$

3. If $\frac{3a-5b}{7a+4b} = 0$, then $\frac{b}{a} = \dots \dots \dots$

a)
$$\frac{5}{3}$$
 b) $\frac{3}{5}$

4. The point (-3, 4) lies in ··· ·· . Quadrant.

5. The point which at distance 2 units from the origin is

$$[(1,2), (2,0), (2,7), (-5,5)]$$

6. If: AB // y-axis , where A (x, 7) and B (3, 5) , then x is

Choose the correct answer from those given:

1. If
$$\frac{1}{2} x = 3$$
, then $\frac{2}{3} x = \dots$

2. If
$$\frac{A}{B} = \frac{5}{3}$$
, then $\frac{3A}{5B} = \dots$

$$(1, 3, 15, \frac{5}{3})$$

3. If the set of ordered Paris of a function is $\{(1, 2), (3, 4), (5, 6)\}$ its range = $\{\dots, \}$

$$\{1,3,5\}$$
, $\{2,4,6\}$, $\{1,2,3,4,5,6\}$, $\{1,2,3,4\}$)

4. If y varies inversely as x and if $x = \sqrt{3}$ as $y = \frac{2}{\sqrt{3}}$, then the constant of variation =...

$$(\frac{1}{2},\frac{2}{3},2,6)$$

5. The distance between the point (-1, -3) and the Y axis islength units

$$(1^{\circ}, -1, -3, 3)$$

6. If $\tan \frac{3x}{2} = 1$ where x is an acute angle, then m ($\angle x$) =

7. If $\sin 30^\circ = \cos A$, where A is an acute angle, then in $(\angle A) = \dots$

8. If AB // x-axis where A (4, a) & B (5, 2), then a =