Cartesian coordinates V.S. Polar coordinates in 2D-plane

Chapter 3. Multiple Integral

1 Three-Variable Case (Triple Integral):

1.1 Definition

1.2 Particular Interpretations:

- (a) If $f(x, y, z) \equiv 1$, then $\iiint 1 dx dy dz =$ **volume** of the region V.
- (b) If the scalar function $\rho(x, y, z)$ gives the density at a point (x, y, z) of the region V, then $\iiint_V \rho(x, y, z) dx dy dz = \mathbf{mass}$ of the region V.
- (c) If the scalar function $\rho(x, y, z)$ gives the charge density at a point (x, y, z) of the region V, then $\iiint_V \rho(x, y, z) dx = \textbf{total charge}$ within the region V.

1.3 Computation of Double Integrals:

Case 1: By iterated integral in some order directly.

Example. The density of a rectangular blocks V bounded by the planes x=1, x=2, y=0, y=3, z=-1, z=0 is given by the scalar function $\rho(x,y,z)=x(y+1)-z$. Find the mass of the block.

Example. Evaluate $\iiint_V \frac{1}{(x+y+2z+1)^3} dx dy dz$ where V is the region enclosed by the planes

$$x = 0, y = 0, z = 0, x + y + z = 1.$$

Example. With the aid of the following figure, change the order of the iterated integral $\int_0^1 \left[\int_{-1}^0 \left(\int_0^{y^2} f(x,y,z) dz \right) dy \right] dx$ to an equivalent iterated integral with order dydzdx.

Example. Find the volume of the solid D enclosed by $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

Example. Evaluate $\iiint_V 2xyz \ dV$ where V is the region bounded by the parabolic cylinder $z=2-\frac{1}{2}x^2$ and the planes $x=0,\ y=x$ and $y=0,\ z=0$.

Example. Evaluate $\iiint_V xyz \ dV$, where V is the region enclosed by $x^2 + y^2 + z^2 = 1$ and $x \ge 0, z \ge 0, y \ge 0$ and x = 0, y = 0, z = 0.

Case 2. Substitution needed first.

For $I = \iiint_V f(x, y, z) dx dy dz$, the change of variable x = x(u, v, w), y = (u, v, w), z = z(u, v, w), gives,

$$I = \iiint_V f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du dv dw$$

where
$$J = \frac{\partial(x,y,z)}{\partial(u,v,w)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}$$
 is the Jacobian of the transformation V^* is the region in $uvvv$ -space corresponding to the region V in

mation. V^* is the region in uvw-space corresponding to the region V in xyz-space injectively (one to one) and J must be of one sign in V^* .

Example

$$\int_0^3 \int_0^4 \int_{x=y/2}^{x=\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right) dx dy dz.$$

The most popular alternative coordinate systems to rectangular coordinates are **cylindrical polar coordinates** and **spherical polar coordinates**. They induce the popularly used substitutions: cylindrical substitution and spherical substitution.

Cylindrical Polar Coordinates v.s. Rectangular Coordinates:

Example. Find the volume V between the surfaces $x^2 + y^2 = 2, z = x^2 + y^2 + 2$ and the plane z = 0.

Example. $\iiint_V z \ dV$ with V enclosed by $x^2 + y^2 = 4$, $z = x^2 + y^2$ and xy-plane.

Spherical Polar Coordinates:

Example.

Find the volume of the "ice cream cone" \underline{D} cut from the solid sphere $x^2+y^2+z^2=1$ by the cone $x^2+y^2=3z^2$ for $z\geq 0$.

Example 21

Find an equation for the sphere $x^2 + y^2 + (z - 1)^2 = 1$ under spherical coordinates.