ТЕМА 7. НОРМАЛИЗАЦИЯ РЕЛЯЦИОННЫХ ОТНОШЕНИЙ. НОРМАЛЬНЫЕ ФОРМЫ

В качестве одной из методологий проектирования баз данных может быть рассмотрен подход, при котором весь процесс осуществляется в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих «улучшенными» свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами, в некотором смысле, лучшими, чем предыдущая.

Каждой нормальной форме соответствует определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером может служить ограничение первой нормальной формы – значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию.

- В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм:
 - первая нормальная форма (1NF);
 - вторая нормальная форма (2NF);
 - третья нормальная форма (3NF);
 - нормальная форма Бойса-Кодда (BCNF);
 - четвертая нормальная форма (4NF);
- пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).

Основные свойства нормальных форм состоят в следующем:

- каждая следующая нормальная форма в некотором смысле лучше предыдущей нормальной формы;
- при переходе к следующей нормальной форме свойства предыдущих нормальных форм сохраняются.
- В основе процесса проектирования лежит метод нормализации, т. е. декомпозиции отношения, находящегося в предыдущей нормальной форме, на два или более отношений, которые удовлетворяют требованиям следующей нормальной формы.

Минимальные функциональные зависимости и вторая нормальная форма

Пусть имеется переменная отношения служащие проекты задания (слу ном, СЛУ УРОВ, СЛУ ЗАРП, про ном, СЛУ ЗАДАН }. Новые атрибуты СЛУ УРОВ и СЛУ ЗАДАН содержат, соответственно, данные о разряде служащего и о задании, которое выполняет служащий в данном проекте. Будем считать, что разряд служащего определяет размер его заработной платы и что каждый служащий может участвовать в нескольких проектах, но в каждом проекте он выполняет только одно задание. Тогда очевидно, что единственно возможным ключом отношения служащие проекты задания является составной атрибут {СЛУ НОМ, про ном $\}$. Диаграмма минимального множества FD показана на рис. 1, а возможное тело значения отношения - на рис. 2.

Рис. 1. Диаграмма множества FD отношения СЛУЖАЩИЕ_ПРОЕКТЫ_ЗАДАНИЯ

СЛУ_НОМ	СЛУ_УРОВ	СЛУ_ЗАРП	про_ном	СЛУ_ЗАДАН
2934	2	22400.00	1	A
2935	3	29600.00	1	В
2936	1	20000.00	1	С
2937	1	20000.00	1	D
2934	2	22400.00	2	D
2935	3	29600.00	2	С
2936	1	20000.00	2	В
2937	1	20000.00	2	A

Рис. 2. Возможное значение переменной отношения СЛУЖАЩИЕ_ПРОЕКТЫ_ЗАДАНИЯ

Аномалии обновления, возникающие из-за наличия неминимальных функциональных зависимостей

Во множество FD отношения служащие проекты задания входит много FD, в которых детерминантом является не возможный ключ отношения (соответствующие стрелки в диаграмме начинаются не с {СЛУ_НОМ, про ном}**, т. е. некоторые** функциональные зависимости атрибутов от возможного ключа не являются минимальными). Это приводит К так называемым аномалиям обновления. Под аномалиями обновления понимаются трудности, С приходится сталкиваться при выполнении операций добавления кортежей в отношение (INSERT), удаления кортежей (DELETE) и модификации кортежей (UPDATE). Обсудим сначала аномалии обновления, вызываемые наличием FD слу ном—слу уров (эти аномалии связаны с избыточностью хранения значений атрибутов СЛУ УРОВ и СЛУ ЗАРП в каждом кортеже, описывающем задание служащего в некотором проекте).

- Добавление кортежей. Мы не можем дополнить отношение служащие_проекты_задания данными о служащем, который в данное время еще не участвует ни в одном проекте (про_номявляется частью первичного ключа и не может содержать неопределенных значений). Между тем часто бывает, что сначала служащего принимают на работу, устанавливают его разряд и размер зарплаты, а лишь потом назначают для него проект.
- Удаление кортежей. Мы не можем сохранить в отношении служащие_проекты_задания данные о служащем, завершившем участие в своем последнем проекте (по той причине, что значение атрибута про_ном для этого служащего становится неопределенным). Между тем характерна ситуация, когда между проектами возникают перерывы, не приводящие к увольнению служащих.
- Модификация кортежей. Чтобы изменить разряд служащего, мы будем вынуждены модифицировать все кортежи С соответствующим значением атрибута СЛУ НОМ. В противном случае будет нарушена естественная FD слу ном→слу уров (у одного служащего имеется только один разряд).

Возможная декомпозиция

Для преодоления этих трудностей можно произвести декомпозицию переменной отношения Служащие_проекты_задания на две переменных отношений — Служ $\{\text{Слу}_\text{ном}, \text{Слу}_\text{уров}, \text{Слу}_\text{зарп}\}$ и Служ_про_задан $\{\text{Слу}_\text{ном}, \text{про}_\text{ном}, \text{Слу}_\text{задан}\}$. На основании теоремы Хита эта декомпозиция является декомпозицией без потерь, поскольку в исходном отношении имелась FD $\{\text{Слу}_\text{ном}, \text{про}_\text{ном}\}$ —Слу_задан. На рис. $\underline{3}$ показаны диаграммы множеств FD этих отношений, а на рис. $\underline{4}$ — их значения.

Рис. 3. Диаграммы FD в переменных отношений СЛУЖ и СЛУЖ_ПРО_ЗАДАН

Теперь мы можем легко справиться с операциями обновления.

- **Добавление кортежей.** Чтобы сохранить данные о принятом на работу служащем, который еще не участвует ни в каком проекте, достаточно добавить соответствующий кортеж в отношение СЛУЖ.
- Удаление кортежей. Если кто-то из служащих прекращает работу над проектом, достаточно удалить соответствующий кортеж из отношения СЛУЖ_ПРО_ЗАДАН. При увольнении служащего нужно удалить кортежи с соответствующим значением атрибута СЛУ НОМ из отношений СЛУЖ и СЛУЖ ПРО ЗАДАН.
- **Модификация кортежей.** Если у служащего меняется разряд (и, следовательно, размер зарплаты), достаточно модифицировать один кортеж в отношении служ.

	еменной отноше	T
СЛУ_НОМ	CNA_A LOB	СЛУ_ЗАРП
2934	2	22400.00
2935	3	29600.00
2936	1	20000.00
2937	1	20000.00
СЛУ_НОМ	ной отношения С ПРО_НОМ	СЛУ_ЗАДАН
2934	1	A A
2935	1	В
2936	1	С
2930		
2937	1	D
	1 2	D D
2937	-	
2937 2934	2	D

Рис. 4. Значения переменных отношений

Вторая нормальная форма

Как видно, на <u>рис. 3</u> отсутствуют FD, не являющиеся **минимальными**. Наличие таких FD на <u>рис. 1</u> вызывало аномалии обновления. Проблема заключалась в том, что атрибут СЛУЖ_УРОВ относился к сущности служащий, в то время как первичный ключ идентифицировал сущность задание служащего в проекте.

Переменная отношения находится во второй нормальной форме (2NF) тогда и только тогда, когда она находится в первой нормальной форме, и каждый неключевой атрибут минимально функционально зависит от первичного ключа.

Нетранзитивные функциональные зависимости и третья нормальная форма

В произведенной декомпозиции переменной отношения служащие_проекты_задания множество FD переменной отношения служ_про_задан предельно просто – в единственной нетривиальной функциональной зависимости детерминантом является возможный ключ. При использовании этой переменной отношения какие-либо аномалии обновления не возникают. Однако переменная отношения служ не является такой же совершенной.

Аномалии обновлений, возникающие из-за наличия транзитивных функциональных зависимостей

Функциональные зависимости переменной отношения служ по-прежнему порождают некоторые аномалии обновления. Они вызываются наличием транзитивной FD слу_ном—слу_зарп(через FD слу_ном—слу_уров и слу_уров—слу_зарп). Эти аномалии связаны с избыточностью хранения значения атрибута слу_зарп в каждом кортеже, характеризующем служащих с одним и тем же разрядом.

- Добавление кортежей. Невозможно сохранить данные о новом разряде (и соответствующем ему размере зарплаты), пока не появится служащий с новым разрядом. (Первичный ключ не может содержать неопределенные значения.)
- Удаление кортежей. При увольнении последнего служащего с данным разрядом мы утратим информацию о наличии такого разряда и соответствующем размере зарплаты.
- **Модификация кортежей.** При изменении размера зарплаты, соответствующей некоторому разряду, мы будем вынуждены изменить значение атрибута СЛУ_ЗАРП в кортежах всех служащих, которым назначен этот разряд (иначе не будет выполняться FD СЛУ УРОВ—СЛУ ЗАРП).

Возможная декомпозиция

Для преодоления этих трудностей произведем декомпозицию переменной отношения служ на две переменных отношений – служ1 {слу_ном, слу_уров} и уров {слу_уров, слу_зарп}. По теореме Хита, это снова декомпозиция без потерь по причине наличия, например, FD слу_ном—слу_уров. На рис. 7.5 показаны диаграммы FD этих переменных отношений, а на рис. 7.6 – их возможные значения.

Рис. 5. Диаграммы FD в отношениях СЛУЖ1 и УРОВ

Как видно из <u>рис. 6</u>, это преобразование обратимо, т. е. любое допустимое значение исходной переменной отношения СЛУЖ является естественным соединением значений отношений СЛУЖ1 и уров. Также можно заметить, что мы избавились от трудностей при выполнении операций обновления.

- Добавление кортежей. Чтобы сохранить данные о новом разряде, достаточно добавить соответствующий кортеж к отношению УРОВ.
- **кортежей.** При Удаление увольнении последнего служащего, обладающего данным разрядом, удаляется соответствующий кортеж отношения служ1, и данные о разряде сохраняются в отношении уров.
- Модификация **кортежей.** При изменении зарплаты, соответствующей некоторому разряду, изменяется значение атрибута СЛУ ЗАРП ровно в одном кортеже отношения УРОВ.

_		
I ретья	нормаль	ная форма

Значение переменн	ой отношения
СЛУ_НОМ	СЛУ_УРОВ
2934	2
2935	3
2936	1
2937	1
Значение переменн	ой отношения
СЛУ_УРОВ	СЛУ_ЗАРП
2	22400.00
3	29600.00
1	20000.00

Рис. 6. Тела отношений СЛУЖ1 и УРОВ

Трудности, которые мы испытывали, были связаны с наличием транзитивной FD слу ном→слу зарп. Наличие этой FD на самом деле означало, что атрибут СЛУ ЗАРП характеризовал не сущность служащий, а сущность разряд.

Переменная отношения находится в третьей нормальной форме (3NF) в том и только в том случае, когда она находится во второй нормальной форме, и каждый неключевой атрибут нетранзитивно41 функционально зависит от первичного ключа5).

Перекрывающиеся возможные ключи и нормальная форма Бойса-Кодда

До сих пор в определениях нормальных форм мы предполагали, что у декомпозируемого отношения имеется только один возможный ключ. На практике чаще всего бывает именно так. Но имеется один частный случай, который (почти) удовлетворяет требованиям 2NF и 3NF, но, тем не менее, порождает аномалии обновления. Это тот случай, когда у отношения имеется несколько возможных ключей, и некоторые из этих возможных ключей «перекрываются», т. е. содержат общие атрибуты.

Аномалии обновлений, связанные с наличием перекрывающихся возможных ключей

Например, пусть имеется переменная отношения служ про задан1 {слу ном, СЛУ ИМЯ, ПРО НОМ, СЛУ ЗАДАН} с множеством FD, показанным на рис. 7.

Рис. 7. Диаграмма FD отношения СЛУЖ_ПРО_ЗАДАН1

В отношении служ про задан1 служащие уникально идентифицируются как по удостоверений, так И ПО именам. Следовательно, FD слу ном→слу имя и слу имя→слу ном. Но один служащий может участвовать в нескольких проектах, поэтому возможными ключами являются {СЛУ НОМ, про ном} и {слу имя, про ном}. На рис. 8 показано возможное значение переменной отношения СЛУЖ ПРО ЗАДАН1.

СЛУ_НОМ	СЛУ_ИМЯ	IIPO_HOM	СЛУ_ЗАДАН
2934	Иванов	1	A
2941	Иваненко	2	В
2934	Иванов	2	В
2941	Иваненко	1	A

Рис. 8. Возможное значение переменной отношения СЛУЖ_ПРО_ЗАДАН1

Очевидно, что, хотя в отношении СЛУЖ_ПРО_ЗАДАН1 все FD неключевых атрибутов от возможных ключей являются минимальными и транзитивные FD отсутствуют, этому отношению свойственны аномалии обновления. Например, в случае изменения имени служащего требуется обновить атрибут СЛУ_ИМЯ во всех кортежах отношения СЛУЖ_ПРО_ЗАДАН1, соответствующих данному служащему. Иначе будет нарушена FD СЛУ НОМ—СЛУ ИМЯ, и база данных окажется в несогласованном состоянии.

Нормальная форма Бойса-Кодда

Причиной отмеченных аномалий является то, что в требованиях 2NF и 3NF не требовалась минимальная функциональная зависимость от первичного ключа атрибутов, являющихся компонентами других возможных ключей. Проблему решает нормальная форма, которую исторически принято называть нормальной формой Бойса-Кодда и которая является уточнением 3NF в случае наличия нескольких перекрывающихся возможных ключей.

Переменная отношения находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, когда любая выполняемая для этой переменной отношения нетривиальная и минимальная FD имеет в качестве детерминанта некоторый возможный ключ данного отношения.

Переменная отношения служ_про_задан1 может быть приведена к BCNF путем одной из двух декомпозиций: служ_ном_имя {слу_ном, слу_имя} и служ_ном_про_задан {слу_ном, про_ном, слу_задан} с множеством FD и значениями, показанными на рис. 9, и служ_ном_имя {слу_ном, слу_имя} и служ_имя_про_задан {слу_имя, про_ном, слу_задан} (FD и значения результирующих переменных отношений выглядят аналогично).

Очевидно, что каждая из декомпозиций устраняет трудности, связанные с обновлением отношения служ про задан1.

Рис. 9. Диаграммы FD и значения переменных отношений СЛУЖ_НОМ_ИМЯ и СЛУЖ_НОМ_ПРО_ЗАДАН