

Lifecycle overzicht

Jens Baetens

01

BUSINESS UNDERSTANDING

Ask relevant questions and define objectives for the problem that needs to be tackled.

07

DATA VISUALIZATION

Communicate the findings with key stakeholders using plots and interactive visualizations. 02

DATA MINING

Gather and scrape the data necessary for the project.

DATA SCIENCE
LIFECYCLE

sudeep.co

03

DATA CLEANING

Fix the inconsistencies within the data and handle the missing values.

06

PREDICTIVE MODELING

Train machine learning models, evaluate their performance, and use them to make predictions

05

FEATURE ENGINEERING

Select important features and construct more meaningful ones using the raw data that you have. 04

DATA EXPLORATION

Form hypotheses about your defined problem by visually analyzing the data.

- Wat is de gestelde vraag of het probleem?
- Formuleer de vragen waarop een antwoord moet gevonden worden
- 5 soorten vragen:

Hoeveel?Regressie

Wat is het?
Classificatie

Is het sterk gelijkend op?
Clustering

Is het vreemd?
Anomaly Detection

Welke optie is het beste?
Recommendation

- Verzamel data van verschillende bronnen
- Welke data is er nodig?
- Hoe geraak ik aan deze data?
 - Lokale databases
 - Scraping van webpaginas
 - Verzamelen van data van sensoren / apps / satellieten ...
- Hoe bewaar ik de verzamelde data?

- Belangrijke stap voor betrouwbare resultaten te bekomen:
 - Garbage In -> Garbage Out
- Het doel is om problemen op te lossen in de datasets:
 - Ontbrekende data
 - Verkeerd gelabelde data (0/1 vs true/false)
 - Verschillende dataformaten (male/m/Male or dates)
 - Verbeteren van typos, vertalen van sommige velden, ...

- Fase waarin je de verzamelde data bestudeerd
- Zoek naar bestaande patronen en controleer of er een bias aanwezig
- Visualiseer en analyseer deze patronen
- Detecteer outliers
- Stel een aantal hypotheses voor
- Ook exploratory data analysis genoemd: https://en.wikipedia.org/wiki/Exploratory_data_analysis

- Feature = Een meetbare eigenschap van een geobserveerd datapunt
- Feature engineering = Zoeken naar de beste features om iets te bereiken
 - Vereist domein kennis
- Feature Selection
 - Verwijder onbruikbare features/datapunten
 - Curse of dimensionality
- Feature Construction
 - Nieuwe features op basis van bestaande
 - Vaak belangrijk in het geval van beelden
 - vb: Enkel geinteresseerd of iemand volwassen is en niet de exacte leeftijd.

- Machine learning model opbouwen
 - Probeer verschillende varianten en evalueer elk model
 - Zie cheat sheet voor een aantal mogelijkheden
- Beste keuze hang af van:
 - Hoeveelheid, type en kwaliteit van de data
 - Beschikbare computer-capaciteit
 - Gewenste output type

Visualiseer de resultaten en inzichten

Communicatie aangepast aan het doelpubliek

Data Science lifecycle – alternatieve modellen

Data Science lifecycle – alternatieve modellen

The Data Science Process

Belangrijke termen

- Data Collection
- Data Cleaning
- Exploratory Data Analysis
- **■** Feature
- Feature Engineering

- Modelling
- Training
- Curse of dimensionality

