· Given my data matrix is

$$\underline{X}_{n \times p} = \begin{bmatrix}
X_{11} & X_{12} & \dots & X_{1p} \\
X_{21} & X_{22} & \dots & X_{2p} \\
\vdots & & \ddots & \vdots \\
X_{n1} & X_{n2} & \dots & X_{np}
\end{bmatrix}$$

$$\cdot E(S_n) = \frac{n-1}{n} \sum_{n=1}^{\infty} \sum_{n=1}$$

$$=\sum -\frac{1}{n}\sum$$

so $\frac{n}{n-1}$ Sn is an unbiased estimator of Σ

Sample Mean Vector, Covarionce and Corvielation as matrix Operation: Let X is a given data matrix, then

1> Sample Mean Matrix:
$$X_{px_1} = \frac{1}{n} X^T I$$

2) Sample Variance matrix:
$$S = \frac{1}{n-1} \overline{X}'(I - \frac{1}{n} II') \overline{X}$$

$$S_n = \frac{1}{n} \overline{X}'(I - \frac{1}{n} I I') \overline{X}$$

3.) Sample Standard deviation Matrix:

$$D^{1/2} = \begin{bmatrix} \sqrt{S_{11}} & O & \dots & O \\ O & \sqrt{S_{22}} & \dots & O \\ \vdots & & \ddots & \vdots \\ O & O & \dots & \sqrt{S_{PP}} \end{bmatrix}$$

4) Sample Corvielation Matrix

$$R = D^{-1/2} S D^{-1/2}$$

5.> Sample Variance matrix, If Ringiner $S = D^{1/2} R D^{1/2}$

•
$$A^TA = A \implies A$$
 is Idempotent matrix.

Sample Values of Linear Combinations of Variable:

Sample Values of Linear Combination of vectors

$$\mathcal{L}^{T}X = C_{1}X_{1} + C_{2}X_{2} + \cdots + C_{p}X_{p}$$

Where X_1 , X_2 ,..., X_p are independent realizations from the random vector.

- I) An estimate of the mean CTU is CTX
 - 2) An estimate of the variance CTEC is CTSn C
 - 3) An estimate for the population covariance matrix of $\not \succeq x$, $\not \subseteq x$ Which is $Cov(\not \succeq x, \not \subseteq x) = \not \succeq^T \Sigma(\not \subseteq x)^T$ $= \not \succeq^T \Sigma \not \subseteq x \cdot \not \succeq^T S_n \not \subseteq x$

Later of the property of

Chapter-3 Idempote matrix

FRom book

+> Random sampling implies

- 1) measurment taken on different items (or tribals) are unstelested to one another and
- 2) The joint distribution of all p variables remains the same for all items

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_1} & x_{n_2} & \dots & x_{np} \end{bmatrix} = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_{n_r} \end{bmatrix} \leftarrow 1 \text{ of } (\text{multivariate}) \text{ observation}$$

- The Hows of X represent n points in p-dimensional space (because n nows Ent)
- \rightarrow If the points are regarded as solid spheres, the sample mean vector \overline{X} , is the center of balance.
- > Variability occurs in more than one direction and it is quantified by the sample variance-covariance matrix So.

Control of the Contro
> A single numerical measure of variability is provided to by the determinant of the sample variance -covariance matrix
by the determinant of the sample variance -covariance
matrix
matrix The matrix of bolance grade god & and 4th of the custom of the same of dealer of the same of the same of dealer of the same of the same of dealer of the same of the
oust diman simple shall the war of the as data
CUST dimensional space AT conse of data (Hord no of variable for T should be some as data (hoint)
point) 1+1+1+
Jobservation , x3 my third observation
second observation , x3 my third observation
event.
\\ \alpha^2 \\ \al
descent of columns of the data matrix are the co-ordin
-> Elemens of control x of rector (Anathor approach) x
$\begin{pmatrix} \chi_1 & J_1 \\ \chi_2 & J_2 \end{pmatrix}$
> Elements of columns of the dota matrix are the co-ordin of vector (Anathor opproach) x y \(\alpha \forall \) \(\alpha \forall \forall \) \(\alpha \forall \forall \) \(\alpha \forall \forall \
correlation will be approximately zero. If the two vectors or oriented in nearly opposite directions, the sample correlation will be close to -1.
convelation will be close to -1

Let X1, X2, ..., Xn be a random sample from a joint distribution that has mean version in and covariance matrix Z. Then X is an unbiased estimator of in and its covariance matrix is in I Z that is

For the covariance matrix Sn

$$E(S_n) = \frac{n-1}{n} \sum_{n=1}^{\infty} \sum_{n=1}^{$$

Thus

$$E\left(\frac{n}{n-1}S_n\right)=\sum_{n=1}^{\infty}$$

So $[n/(n-1)] \le n$ is an unblased estimator of Σ , while $\le n$ is blased estimator with blas = $E(sn) - \Sigma$ = $\Sigma - \frac{1}{n} \Sigma - \Sigma$ = $-(\frac{1}{n}) \Sigma$.

> Proof given
$$X_1, X_2, ..., X_n$$
 are random sample
Now, $\overline{X} = X_1 + X_2 + ... + X_n$

$$500 E(X) = E\left(\frac{X_1 + N_2 + \dots + X_n}{n}\right)$$

$$= \frac{1}{n}\left(\frac{M+M+\dots + M}{n \text{ trimes}}\right)$$

$$= M$$

(2)
$$COV(\overline{X}) = \frac{1}{n} \Sigma$$
 (How?)

For this
$$(X-\mu)(X-\mu)'$$

$$= \left(\frac{1}{n}\sum_{j=1}^{n}(x_{j}-\mu)\left(\frac{1}{n}\sum_{j=1}^{n}(x_{j}-\mu)\right)\right)$$

$$= \left(\frac{1}{n}\sum_{j=1}^{n}(x_{j}-\mu)\left(\frac{1}{n}\sum_{j=1}^{n}(x_{j}-\mu)\right)\right)$$

$$= \frac{1}{n^{2}}\sum_{j=1}^{n}\sum_{k=1}^{n}(x_{j}-\mu)(x_{k}-\mu)'$$

$$= \frac{1}{n^{2}}\sum_{j=1}^{n}\sum_{k=1}^{n}(x_{j}-\mu)(x_{k}-\mu)'$$

Now by def
$$\cap$$
 $COV(X) = E[(X-H)(X-H)']$

Using
$$\neq$$

$$Cov(\overline{x}) = E\left[\frac{1}{n^2} \sum_{j=1}^{n} \sum_{l=1}^{n} (x_j - \mu)(x_l - \mu)^l\right]$$

for j \dist \lambda, all covarsance are zero, these nandom varsables are independent

$$Cov(X) = E\left[\frac{1}{n^2}\sum_{j=1}^{n}(x_j-\mu)(x_j-\mu)^j\right]$$

$$= \frac{1}{n^2} \left(\sum_{j=1}^{n} E(x_j - \mu)(x_j - \mu)^i \right)$$

$$= \frac{1}{n^2} \left(\sum_{j=1}^{n} * \Sigma \right)$$

$$=\frac{1}{12}\sum_{n=1}^{\infty}$$

-> sample varlance covariance matrix

$$S_{ik} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{ji} - \overline{x_i}) (x_{jk} - \overline{x_k})$$

> Sometimes it is desimable to assign a single numerical Value for the Variation expressed by S. one choice for a value is the determinant of S, which neduces to the Usual sample variance of a single characteristic when p=1 This determinant is called the generalized sample

: Generalized semple vorbance = 151

Sample Mean, Covarlance and Cornelation as materix Operations.

$$\Rightarrow X = \frac{1}{n} X' I$$
 (sample mean vector)

(sample correlation matrix

$$\Rightarrow \left[S = D^{1/2} R D^{1/2} \right]$$

-> sample mean of C'X = C'X

observation 4137 (van abservation 4137)

From note:

 $\rightarrow Cov(\bar{X}) = \frac{1}{2} \sum_{x}$

Watch CLT in home for Linear Combination.

To prove ATA = A, then A is idempolent matrix

LHS (ATA)