

Stochastic Model Specification Search for Time-Varying Parameter VARs

Study of the Monetary Policy Transmission Mechanism in the Euro Area

Mantė Želvytė

September 2020

Motivation

- In the low interest rate environment little room exists for further monetary easing - the speed and magnitude of potential impact of the monetary policy enactment is particularly important.
- Time-varying vector autoregressive models with stochastic volatility (TVP-VAR-SV) and impulse response functions are used to analyse the evolution of the monetary policy transmission mechanism.
- Problems/gaps:
 - TVP-VAR-SV models are highly-parameterised while time-series of macroeconomic variables are often short,
 - relatively few authors attempt to model shrinkage with an aim to reduce time-varying parameters to static ones to induce parsimony,
 - ▶ little focus in the existing literature on methods to improve precision for the impulse response analysis.

Research Aims

Employ a Bayesian variable selection and shrinkage approach - **stochastic model specification search** (SMSS) - for TVP-VAR-SV by Eisenstat et al. (2016) to study the monetary policy transmission mechanism in the euro area to identify whether:

- its effectiveness has changed over time, especially post the European Monetary Union (EMU) creation,
- Bayesian variable selection and shrinkage methods result in a more precise inference.

Vector Autoregressive Model

- An extension of the univariate autoregressive model (AR) for stochastic processes.
- Captures linear dependencies among multiple time series.

AR(2)

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{y}_{t-1} + \beta_2 \mathbf{y}_{t-2} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2),$$

 y_t s are endogenous variables, β_i s are their coefficients, $\beta_{0,t}$ is an intercept, and ϵ_t is a normally distributed error term with the variance σ^2 .

VAR(2)

$$\mathbf{y_t} = \beta_0 + \beta_1 \mathbf{y_{t-1}} + \beta_2 \mathbf{y_{t-2}} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \tilde{\Sigma}),$$

 y_t , β_0 and ϵ_t are $n \times 1$ vectors and β_i s are $n \times n$ matrices.

Elements of ϵ_t are independently, identically and normally distributed errors with the $n \times n$ covariance matrix $\tilde{\Sigma}$.

Time-Varying Parameter VAR (1)

- Models the processes which gradually change over time.
- The state-space representation of a structural VAR used to incorporate time-varying coefficients and stochastic volatility.

State-Space Form of TVP-SVAR-SV

$$egin{aligned} m{\mathcal{B}_{0,t}} m{y_t} &= m{X_t^*}m{eta_t^*} + m{\epsilon_t^*}, & m{\epsilon_t^*} \sim m{\mathcal{N}(0,\Sigma_t)}, \ m{eta_t^*} &= m{eta_{t-1}^*} + m{\eta_t}, & m{\eta_t} \sim m{\mathcal{N}(0,\tilde{\Omega})}, \ m{h_t} &= m{h_{t-1}} + m{
u_t}, & m{
u_t} \sim m{\mathcal{N}(0,R)}. \end{aligned}$$

 ${\cal B}_{0,t}$ is a lower triangular matrix and Σ_t is a diagonal matrix, ${\cal X}_t^*$ is a matrix of intercepts and lagged endogenous variables, β_t^* is a vector of states of time-varying coefficients, ${\it h}_t$ is a vector of states of time-varying log variances, ${\it n}_t$ and ${\it v}_t$ are the error terms with covariance matrices $\tilde{\Omega}$ and ${\it R}$.

Time-Varying Parameter VAR (2)

Explanatory variables in X_t^* and their coefficients β_t^* can be rearranged to incorporate the contemporaneous values y_t and the free elements of the matrix $B_{0,t}$

State-Space Form of TVP-VAR-SV

$$egin{aligned} \mathbf{y_t} &= \mathbf{X_t} eta_t + \epsilon_t, & \epsilon_t \sim N(\mathbf{0}, \Sigma_t), \ eta_t &= eta_{t-1} + \eta_t, & \eta_t \sim N(\mathbf{0}, \tilde{\Omega}), \ h_t &= h_{t-1} +
u_t, &
u_t \sim N(\mathbf{0}, \mathbf{R}). \end{aligned}$$

 X_t is a matrix of intercepts, lagged endogenous variables and contemporaneous variables, and β_t is a vector of states of the time-varying coefficients and free elements of $B_{0,t}$.

Non-centred Parameterisation

- Breaks down coefficients β_t into the constant part α and the time-varying part γ_t .
- Time-variation controlled by the elements of $\Omega^{1/2}$.
- Provides the framework to arrive at sparse state-space models given a suitable prior specification for $\Omega^{1/2}$.

Non-centred Parameterisation of the State-Space Model

$$egin{align} \mathbf{y}_t &= \mathbf{X}_t lpha + \mathbf{X}_t \Omega^{1/2} \Phi \gamma_t + \epsilon_t, & \epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma_t), \ \gamma_t &= \gamma_{t-1} + \tilde{\eta}_t, & ilde{\eta}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m), \ \mathbf{h}_t &= \mathbf{h}_{t-1} + \mathbf{\nu}_t, & \mathbf{\nu}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}). \ \end{array}$$

$$\tilde{\Omega} = \Omega^{1/2} \Phi \Phi' \Omega^{1/2}$$
, where $\Omega^{1/2} = diag(\omega_1, \dots, \omega_m)$.

Tobit Prior

- \blacksquare A prior on ω_i that
 - allows for some probability that a given parameter is time-invariant,
 - adds hierarchical shrinkage.
- The latent variable ω_j^* determines whether ω_j is shrunk to zero.
- lacksquare ω_i^* can be sampled from a truncated normal distribution.

Tobit Prior

$$\begin{split} \rho(\omega_j|\mu_j,\tau_j^2) &= \Phi(-\mu_j/\tau_j) \mathbf{1}(\omega_j = 0) + \phi(\omega_j;\mu_j,\tau_j^2) \mathbf{1}(\omega_j > 0), \\ \omega_j &= \begin{cases} 0 & \text{if } \omega_j^* \leqslant 0, \\ \omega_j^* & \text{if } \omega^* > 0, \quad \omega_j^* \sim \textit{N}(\mu_j,\tau_j^2). \end{cases} \end{split}$$

 $\Phi(-\mu_i/\tau_i)$ denotes cumulative density function of the standard normal distribution, and $\phi(\omega_i; \mu_i, \tau_i^2)$ denotes normal density.

Bayesian Shrinkage in Tobit Prior

- Hierarchical shrinkage is imposed by incorporating the Lasso prior on the latent variable ω_j^* as in Belmonte et al. (2014).
- The Bayesian Lasso prior is also used for the elements of ϕ , and, optionally, for the constant part of coefficients α .

Bayesian Lasso

$$egin{aligned} & \omega_j^* \sim \textit{N}(\mu_j, au_j^2) \ & au_j^2 | \lambda \sim \textit{Exponential}(\lambda^2/2) \ & \lambda^2 \sim \textit{Gamma}(\lambda_{01}, \lambda_{02}), \ & \lambda_{01} = 0.1, \quad \lambda_{02} = 0.1, \quad \mu_j = 0 \quad \forall j. \end{aligned}$$

The hyperparameters 0.1 and 0.1 result in the prior for λ^2 with mean equal to 1 and variance equal to 10.

Monte Carlo Markov Chain Algorithm

- 12-step MCMC algorithm to estimate posterior distribution
- Highly autocorrelated MCMC chains
- Two additional Generalised Gibbs steps used to improve sampling efficiency

- **Step 1.** Sample α
- **Step 2.** Sample γ
- **Step 3.** (Opt.) Sample λ_{α}
- **Step 4.** (Opt.) Sample τ_{α}
- **Step 5.** Sample Σ
- Step 6. Sample R
- **Step 7.** Sample λ
- **Step 8.** Sample ω^*
- **Step 9.** Sample τ
- Step 10. Sample Φ
- **Step 11.** Sample λ_{ϕ}
- **Step 12.** Sample τ_{ϕ}

The Euro Area Model Specification

- Quarterly time series of variables:
 - ► COMPR commodity prices, ∆ log
 - YER real output, seasonally adjusted, ∆ log
 - YED prices, ∆ log
 - ► STN short-term interest rate, monetary policy instrument
 - ► EEN nominal exchange rate, \(\Delta \) log
- Sample period: 1970Q1-2017Q4
- Number of lags: 2
- Number of simulations: 25,000
- Identification of structural shocks: a triangular scheme based on the Cholesky decomposition
 - determines the contemporaneous impact of a shock in one of the variables to the rest of the system
- Benchmarking: the SMSS full and the SMSS diagonal specifications versus TVP-VAR-SV by Primiceri (2005)

Time Variation of Model Parameters

1.0

 β_0

COMPR₁

- Time-invariance detected in the majority of the parameters in the STN_t , YED_t and EEN_t equations.
- Significant time variation in the coefficients of the *COMPR*_t and some of the coefficients in the YER_t equations.

TIP of Coefficients

EEN₁

Coefficient

COMPR₂

STN₁ Top: time-invariance probability (TIP), bottom: maximum time variation (MTV) of coefficients in each equation.

YER₁

EEN₂

STN₂

YED2

Timeline for Impulse Response Analysis **UCL**

1979 - Creation of EMS and ECU¹ 1980 -1989 - ◆ Delors report 1990 - ◆ Stage 1 of EMU²: free capital movement, use of ECU 1994 - ◆ Stage 2 of EMU: further economic convergence 1996 - ◆ Structural break identified in prior research 1999 - ◆ Stage 3 of EMU: Euro and single monetary policy 2007-2008 - Global financial crisis 2001-2009 - Slovenia, Slovakia, Cyprus, Malta adopt euro 2009 - European sovereign debt crisis 2015 - ■ Baltic States adopt euro, second EMU reform plan

¹EMS - European Monetary System, ECU - European Currency Unit

²EMU - European Monetary Union

Time Variation of Impulse Responses (1) **LCL**

No significant time variation is observed in the impulse responses of variables to the monetary policy shock (*STN*).

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] highest posterior density (HPD) intervals for 12 quarter horizon starting in 1980Q1 vs 1999Q1.

Time Variation of Impulse Responses (2)

Notable increase in uncertainty around the impulse response functions in 2009 and 2015.

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 1999Q1 vs 2009Q1 vs 2015Q1.

Precision of Impulse Responses: 1980Q1 ±UCL

- Narrower HPD intervals for the first 3-6 quarters, especially for the variables with higher TIPs.
- Price puzzle observed in both. Exchange rate puzzle observed in the benchmark TVP-VAR-SV.

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for IRFs starting in 1980Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS

Precision of Impulse Responses: 1990Q1

The main benefit from narrower HPD intervals - when the median impulse response combined with an interval gives a clear indication on the direction of the effect.

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 1990Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS diagonal specifications.

Precision of Impulse Responses: 1996Q1 LCL

More uncertainty accounted for in the SMSS specification at later horizon points.

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 1996Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS diagonal specifications.

Precision of Impulse Responses: 1999Q1 LCL

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 1999Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS disconal specifications.

Precision of Impulse Responses: 2009Q1 = UCL

■ HPD intervals become considerably wider in both specifications in 2009Q1 and 2015Q1, but to a lesser extent in the benchmark model.

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 2009Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS diagonal specifications.

Precision of Impulse Responses: 2015Q1 = UCL

Impulse response functions to a unit (1%) shock to the short-term interest rates and the [16%, 84%] HPD intervals for 12 quarter horizon starting in 20015Q1. Comparison between the benchmark TVP-VAR-SV, the SMSS full and the SMSS diazonal soecifications.

Conclusions

- Significant number of coefficients in the euro area-wide model are nearly time-invariant, indicating unnecessary overparameterisation inherent in the unrestricted TVP-VAR-SV model.
- There is no evidence of time variation in the effects of unexpected shocks to the short-term interest rates at the historically significant dates in the run-up to and the aftermath of the EMU creation.
- Impulse response functions are more precise under the SMSS specification at short-end horizons for the variables where a material number of coefficients is detected to be time-invariant.

Limitations and Further Research

- Potential overshrinkage inherent in Bayesian Lasso
 - consider other continuous shrinkage priors either within the Tobit prior specification or instead, such as the normal-gamma, the normal-gamma-gamma prior etc
- Static shrinkage of coefficients
 - consider dynamic shrinkage priors to introduce time-varying sparsity
- Non-stationary data that can potentially cause inconsistent IRFs at long horizons
 - \blacktriangleright consider a vector error correction model instead of the $\Delta \log$ transformation
- Price puzzle
 - include more and/or different variables, potentially as exogenous or using factor VARs for computational feasibility
 - different choices of identification schemes/restrictions

References

- Belmonte, M. A., G. Koop, and D. Korobilis (2014). Hierarchical shrinkage in time-varying parameter models. *Journal of Forecasting* 33(1), 80–94.
- Eisenstat, E., J. C. Chan, and R. W. Strachan (2016). Stochastic model specification search for time-varying parameter VARs. *Econometric Reviews 35*(8-10), 1638–1665.
- Frühwirth-Schnatter, S. and H. Wagner (2010). Stochastic model specification search for Gaussian and partial non-Gaussian state space models. *Journal of Econometrics* 154(1), 85–100.
- Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. *The Review of Economic Studies 72*(3), 821–852.