Rebuttal Responses

Figure 1: Loss function of two tasks. $f_1(\theta)$ and $f_2(\theta)$ have different minimums and $f_2(\theta)$ is dominant across most values of θ_1 .

Figure 2: Synthetic experiment for the counterexample. We add Gaussian random noise to simulate the stochastic gradient descent. STREAM can find the optimal $\theta^{(1)}$ and achieve minimal forgetting and loss on the new task.

Table 1: Results on Multiple Dataset, Split CIFAR100, and Split Tiny Imagenet. Split Tiny-Imagenet Multiple Dataset Split CIFAR100 Methods $ACC(\uparrow)$ $FGT(\downarrow)$ $ACC (\uparrow)$ $FGT(\downarrow)$ $ACC(\uparrow)$ $FGT(\downarrow)$ 20.43 ± 0.64 NCL 46.64 ± 2.32 $0.334{\pm}0.035$ $44.42{\pm}1.35$ 0.325 ± 0.024 0.301 ± 0.009 SGP $55.68{\pm}1.23$ $0.305 {\pm} 0.153$ $56.55{\pm}1.64$ 0.100 ± 0.001 $26.86 {\pm} 0.90$ $0.122 {\pm} 0.008$ $64.06{\pm}0.86$ STREAM $72.08{\pm}1.40$ $0.152 {\pm} 0.035$ 0.132 ± 0.010 31.36 ± 0.71 0.121 ± 0.008

Figure 3: Class-incremental learning comparison with different sampling methods.