DC Block Clustering * * *

Nicole Bills

Objective

Create a neighborhood explorer tool to help residents and visitors develop an understanding of Points of Interest in Washington, DC

Use Cases

Plan a trip

Select real estate

Conduct city planning

Approach |

Cluster Blocks based on Points of Interest from Open Data DC

Schools
Historical Sites
Museums
Monuments

Fire Stations

Police Stations

Libraries

Metro Stations

UniversitiesHospitalsPublic ServicesRecreation Centers

Process

Clean & Categorize

Cluster

Score

Results

Cluster		Description		
blue	:	convention centers, artsy, historic		
orange	:	historic, packed with embassies		
red	:	miscellaneous		
teal	:	artsy, historic, civics		
green	:	recreation		
yellow	:	nature access		
purple	:	civic, scholastic, public safety		
pink	:	scholastic, packed with universities		
brown	:	artsy, scholastic		
gray	:	nature access, monuments		

Results

Blocks of the same color have a similar composition in terms of Points of Interest

Next Steps

Add commercial establishments in Yelp dataset

Enable users to explore specific addresses

>> Create photo explorer tool using Flickr API

Thank You!

Appendix

>> Process

<u>Scores</u>

Points of Interest

Clustering 1

 $\rangle\rangle$ Clustering 2

Process

Clean and Categorize

- Limit Points of Interest to public buildings, universities, and historic places
- Categorize based on function

 Utilize machine learning to create ten clusters based on quantity of Points of Interest across categories

Score

 Rank clusters across five dimensions (Arts, Civics, History, Nature, and Recreation) based on percent composition within category

Scores

Cluster	Arts	Civics	History	Nature	Recreation
blue	3	3	4	3	4
orange	1	1	5	1	1
red	1	3	1	2	2
teal	5	4	5	2	2
green	2	1	1	1	5
yellow	2	2	3	5	3
purple	5	5	2	4	3
pink	3	1	2	3	1
brown	4	3	3	4	4
gray	4	1	4	5	5

Points of Interest

 $\left. \right\rangle$

Baruch Bench of Inspiration

Samuel Hahnemann Memorial

Arena Stage

Japanese Lantern

Original Roosevelt Memorial

[k means]

Clustering

Unsupervised technique to create groups with high intra-group similarity / inter-group disimilarity

Source: Visuals and Animations by Andrey A. Shabalin, Ph.D.

[k means]

Clustering

Unsupervised technique to create groups with high intra-group similarity / inter-group disimilarity

Select k initial seeds Assign each observation to a cluster to which it is "closest" Recompute the cluster centroids Reassign the observations to one of the clusters according to some rule Stop if there is no reallocation

Silhouette Score

Higher score indicates better fit across different numbers of clusters

