

MT6757P MFNR Manual

2017/03

Content

- MFNR2.0 Flow Introduction
- MFNR2.0 Tool Operation Guide
- MFNR2.0 Tuning Guide

Content

- MFNR2.0 Flow Introduction
- MFNR2.0 Tool Operation Guide
- MFNR2.0 Tuning Guide

Objective

- Reduce luma/chroma noise by multi-frame blending
- V2.0 new feature: motion area noise refinement (MFB/MAR)

Flow

N*Iraw: Input RAW files. In MT6757P, N=2~6

N*Ibfbld: Images prepared to do multi-frame blending

Imfb: Single blended Image

lafbld: Image after post-processing

loutput: Image after motion area refinement

1. Before NR

- Convert RAW to YUV format
- Noise pre-reduced to fit into MFB's capacity
- Remove impulse noise and bad pixels
- Relative Registers:
 - MFNR→BEFORE-UDM
 - MFNR→BEFORE-NBC
 - MFNR→BEFORE-NBC2

2. MFB (Multi-Frame Blending)

- Compound motion-compensated frames into one frame
 - Reduce noise without losing details
 - Work on both luma and chroma noise
- Relative Registers:
 - MFNR → MFB/MAR

3. ISP Post NREE

- Apply AFTER-NBC/EE/NBC2/HFG:
 - Reduce low-frequency noise in advance
 - Improve image sharpness
 - Add random fine noise, for boosting visually clarity
- Relative Registers:
 - MFNR → AFTER-NBC
 - MFNR → AFTER-EE
 - MFNR → AFTER-NBC2
 - MFNR → AFTER-HFG

4. Motion Area Refinement

- Apply stronger NR against motion area
 - Remove motion occlusion noise left in MFB stage
 - Improve visual continuity around the boundary of motion and static areas
- Relative Registers:
 - MFNR → MFB/MAR
 - MFNR → MAR-NBC
 - MFNR → MAR-EE
 - MFNR → MAR-NBC2
 - MFNR → MAR-HFG

Content

- MFNR2.0 Flow Introduction
- MFNR2.0 Tool Operation Guide
- MFNR2.0 Tuning Guide

- Step1 (I): Load RAW files
 - Hot Key: CTRL + R
 - Make sure that all MFNR RAW files share the same name, followed by a serial number
 - Only the first one(*-01.raw) needs to be selected
 - JPG and SDBLK with same file name will also be loaded automatically

- Step1 (II): Load DAT Settings
 - Hot Key: CTRL + D
 - For loading pre-saved DAT file, make sure RAW is loaded at first

- Step2: Ensure MFNR flow is enabled
 - Menu -> ISPs -> ensure "Multi-Frame Noise Reduction" is checked

(If RAW is shot in MFNR mode, it'll auto-checked after RAW/JPG loaded, only confirmation needed)

- Step3: Registers Checking/Tuning
 - MFNR related parameters are congregated into 12 tabs in MFNR page (Please refer following "MFNR Tuning Guide" section for tuning)

- Step4(I): Full Simulation
 - In MFB/MIX tab, make sure all MFNR stages are checked.

- Press Time: 0 sec button to run simulation (Hot Key: F2)
- Check the running status: D Time: 0 sec D Time: 0 sec D Time: 52.165 sec D Time: 6 sec D Time:
- It takes about 4~12 minutes for full MFNR simulation.

- Step4(II): Partial Simulation
 - Once full simulation is done, some stages can be skipped in next run if no register in the stages been changed.
 - Ex: If only AFTER-NBC/EE module are tuned since previous run, Before/ MFB can be skipped in next run.

- Step5: Result Images Checking
 - Results are saved in "Results\" folder located in the same folder as the RAW files
 - Following bitmap files would be generated after full simulation:

- Step6: Save tuning result as DAT file
 - For next time tuning & simulation
 - Hot Key: CTRL + T
 - Can also choose to save MFNR related modules only. (CTRL + M)
 - Suggest to name DAT file with ISO/camera sensor/IC for recognizing

MPHWNR

MFLL NR3D

MPSWNR

Save Save

Cancel

Cancel

Step7: Merge Settings to "camera_isp_regs_XXX.h"

Please refer "Guideline_ISP_Reg_Header_File_Tool.pptx"

- Step8: Set frame-number in "camera_feature_para_imxXXXmipiraw.h"
 - Set capture_frame_number = blend_frame_number = 6 (max. frames)
 - Set mfll_iso_th = minimum MFNR enable ISO
 - There are 7 ISO thresholds for MFB frame-number mapping. Frame_num1~7 are individually mapping to iso_level1~7

```
// Gives N. for capturing N frames
capture frame number
// Gives N, for N-frame blending. E.g.: N = 6, 6-frame blending, do blending 5 times.
blend frame number
// Give 0 or 1, 0 for half size MC, 1 for full size MC
full size mc
                                1,
memc_bad_mv_range
                                255,
memc bad mv rate th
                                12707,
// The threshold of doing MFB or not
mfll iso th
                                 200,
// iso range for adaptive frame number mechanism
iso level1
                                 200,
iso level2
                                 300,
iso level3
                                400,
iso level4
                                600,
iso level5
                                 800,
iso level6
                                2000,
                                        // reserved for extension
iso level7
                                 2000,
                                        // reserved for extension
// at least to set blend frame number >= 2
frame num1
                                 2,
frame_num2
frame num3
frame num4
frame_num5
frame num6
                                 6,
frame num7
                                         // reserved for extension
```


Content

- MFNR2.0 Flow Introduction
- MFNR2.0 Tool Operation Guide
- MFNR2.0 Tuning Guide

MFLL Tuning Guide

MFB Strength Decision

Proper MFB strength is around 20~28

Lower Strength:

Weak NR result in static area

MFB Strength = 8

Proper Strength:

(MAR will take care of the motion noise)

MFB Strength = 24

Higher Strength:

Ghost side-effect in motion area

MFB Strength = 40

MFB Strength Decision

- Set CLIP_TH1& CLIP_TH2 after MFB strength decided.
- CLIP_TH1 = CLIP_TH2 = (MFB_Strength + 8)*1.2

```
MFB

0 BLD FLT MODE

2 BLD FLT WT MODE1

1 BLD_FLT WT MODE2

45 BLD CLIP TH1

45 BLD CLIP TH2

5 BLD MAX WT

0 BLD BRZ EN
```


MFNR Tuning Guide

Calculate proper Ibfbld noise STD by MFB Strength

$$STD(I_{bfbld}) \approx \frac{MFB_Strength}{3}$$
 (Consider noise/details balance)

EX:

- *MFB_Strength=20* => $STD(I_{bfbld}) = 20/3 \approx 6.67$
- MFB_Strength=28 => $STD(I_{bfbld}) = 28/3 \approx 9.33$

Tune BEFORE-UDM & BEFORE-NBC to fit Ibfbld into the STD limitation.

Before NR - STEP2: UDM

- Please refer DM3.0 tuning guide for register tuning.
- When ISO increases:
 - Dial "EE Noise Level" up
 - Dial "Connectivity Detail" down
 - Dial "EE Strength-Detail" down
 - Dial"NR Strength" up

- Before tuning BEFORE-NBC, set Y HH/HL/L Detail =64 to measure STD with NR off
- If the STD meets the formula in STEP1, no need to enable BEFORE-NBC

- Set Y HH/HL/L Detail =0 (no blend to source), for checking pure NR result
- Adjust Y/C Noise NR, ensure that noises in flat region are all cleaned (include impulse noises)

 Increase Y HH/HL/L Detail to add noise/detail back, till the STD meets the requirement of STEP1 formula.

MFNR Tuning Guide

MFB Quality Check

Checkpoint:

- Ibfbld
 - Check if all images meets the STD requirement
 - Check if brightness/color/ISO of all images are consistent
 - Check mfnr_sim_log.txt, ensure base_idx makes sense

img_bfbld_nh_0__4032x3016_8d_s1.bmp
img_bfbld_nh_1__4032x3016_8d_s1.bmp
img_bfbld_nh_2__4032x3016_8d_s1.bmp
img_bfbld_nh_3__4032x3016_8d_s1.bmp
img_bfbld_nh_4__4032x3016_8d_s1.bmp
img_bfbld_nh_5 4032x3016_8d_s1.bmp
img_bfbld_nh_5 4032x3016_8d_s1.bmp

img mfb nh.bmp

- Imfb
 - Ghost effect in motion area(kids, cars, sports, walkers, etc)
 - Decrease XXX_THH0~2 / Increase "n" value in MFB v2.0 Tuning Step2
 - Need to re-tune MFB/BeforeUDM/NBC by steps
 - Too much noise => Check the MFB weighting Map
 - Tune BEFORE-NBC/NBC2
 - Increase YL2_THH2
 - Noise in motion area can be ignore here, MAR will take care later
 - Stronger corner Noise => BEFORE_NBC_LCE_GAIN2~3 / BEFORE_UDM_SL_Y2
 - Some slighter noise can also be handled by AFTER-NBC later
 - Lack of details
 - Lower UDM N0 / Higher UDM HT/HD
 - If details exist, just a little blurry, it can be enhanced by AFTER-EE later

MFB Quality Check

Weighting Map (BLD_W_OU.bmp)

Keep higher MFB weighting in static region (map pixel value = 32*frame_number)
 =>Adjust BEFORE-NBC/NBC2, higher YL2_THH2

Keep lower weighting in moving region (map pixel value -> 0)

=>Lower YL2_THH0

MFNR Tuning Guide

Post NREE - NBC

- Objective: STD in static area ≈ referenced photo
 - Similar to BEFORE-NBC tuning steps
 - Y HH/HL/L Detail: control noise level
 - Y Noise / C Noise should be smaller than BEFORE-NBC
- Reduce low-frequency noise
 - Raise Kernel Size Min/Max
 - Check Luma/Chroma Size 2x

Post NREE - SEEE

- Objective: Final sharpness of edge and details ≈ referenced photo
 - By frequency: Adjust Freq. Division EE
 - By Edge index: Adjust EE LUT
- Suppress ringing side-effect
 - Dial down Enhance Bound
- Please refer [SEEE3.0 Tuning Guide] for advanced EE tuning

Post NREE - NBC2

- If still impulse noises left in static area(sometimes they are raised by AFTER-EE), alleviate them by Impulse NR in AFTER-NBC2
- Use Edge Preserve NR for low-frequency chroma noise reduction (ultra-low frequency chroma noise can be taken care by later SWNR if needed)

Before AFTER NR/EE

AFTER-NR AFTER-EE

(Check if Noise/Ghost been enhanced, Overshoot, Contrast, details)

Post NREE - HFG

Raise Noise STD to enhance visual clarity

• Noise STD $\approx 0^{\sim}16$

Noise STD = 0

Noise STD = 16

MFNR Tuning Guide

MAR Tuning

Goal:

 Motion noise left by MFB should be handled in MAR(Motion Area Refinement), to keep its noise level being consistent with the static area

Tuning Criteria:

- MAR NR/EE strength can be predicted by fine-tuned AFTER NR/EE setting
- MAR-NBC/NBC2: check the motion noise level is similar to neighboring static area after MAR
- MAR-EE: ≈ After-EE

Partial Run Setup:

MAR – Tuning Criteria

- MAR-NBC only works on motion area.
- Make sure STD of static and motion area are similar after MAR

MAR – Tuning

- MAR-NR Suggestion:
 - Y/C Noise ≈ (MFB FrameNum)^0.5 x [AFTER_NBC1 PTC/Y]
 - Y HH/HL/L Detail:
 - $\approx (0.3^{\circ}0.5) \times (AFTER_NBC1)$
 - Adjust to align STD(Ipost)
 - Other parameter:
 - ≈ (AFTER_NBC1/2)

32 M0 160 M1 0 B0

255 B1 2 DT 1 Y EN

1 UV EN

- MAR_M1
 - M1↑: Motion Noise↓;
 Details between motion & static area ↓
 - Suggest M1 value for 6-frame MFB: 96~160

MAR – Result

 $img_afbld_out__4032x3016_8d_s1.bmp$

MFNR_A.bmp

MFNR Tuning Guide

ISO Adaptive Frame Number

- InMFNR v2.0, It's available to change frame number by shooting ISO
 - The more frame number, the better SNR of image
 - Low ISO: original noise is low, use less frame for shooting performance
 - High ISO: Gradually increase frame number for image quality

Comparison of different frame number MFNR result:

No blending

2-frame MFNR

6-frame MFNR

ISO Adaptive Frame Number – Image Quality

ISO Adaptive Frame Number – Image Quality

ISO Adaptive Frame Number – **Performance**

Shot-to-Shot Latency

ISO Adaptive Frame Number – **Performance**

Shot-to-Shot Latency

ISO Adaptive Frame Number – Simulation

Set "Total Frame" value in tool for simulation

ISO Adaptive Frame Number – Tuning

- Initially MFNR should be tuned with the highest frame number.
- Once frame number falls, AFTER-NBC and MAR_M1 need to be revised to keep the noise level consistency
- MAR_M1:

New_M1= M0 + (Old_M1-M0)x(New_FrameNum-1)/(Old_FrameNum-1)

Ex: 6-frames down to 3-frames: $New_M1 = 32 + (160-32)x(3-1)/(6-1) = 83$

ISO Adaptive Frame Number – Tuning (AFTER-NBC1)

Y/C Noise: NewValue ≈ OldValue x (OldFrameNum/NewFrameNum)^0.5 Y HH/HL/L Detail: NewValue ≈ OldValue / (OldFrameNum/NewFrameNum)^(0.25~0.4) MFP/MAR MAR-NBC MAR-NBC2 MAR-EE MAR-HFG BEFORE-UDM AFTER-NBC2 AFTER-EE BEFORE-NBC BEFORE-NBC2 AFTER-NBC AFTER-HFG NBC Edge Smooth Luma Preserve NR Strength HH Freq: 4 Strength: 6 Strength HL Freg: 4 Luma NR Gain Strength Low Freq: 4 Y0: 16 Threshold: 162 Y1: 16 Y2: 14 Edge Preserve NR Y HH Freg Detail: 38 Y3: 12 Y HL Freg Detail: 40 Color Bleeding Suppression Y LowFreq Detail: 42 Strength: 85 C Strength: 56 Corner NR Y Noise: 11 Strength: 16 Y Noise Low Freg: 0 C Noise: 14 Kernel Size Luma Size 2x ✓ Chorma Size 2x HighFreq Bound .: 3 Min: 7 Impulse NR Max: 7 Detect Sensi.: 2 Strength: 4 FrameNum ↓ Impulse NR↑

EX: AFTER-NBC in 6-frame MFNR:

Y HH Detail = 45

Y Noise= 8

Down to 3-frame MFNR:

Y HH Detail =
$$45 / (6/3)^0.25 = 38$$

Y Noise =
$$8 \times (6/3)^0.5 = 11$$

MEDIATEK

everyday genius