< OSI 7 Layers >

1. 계층은 왜 나눌까?

통신이 일어나는 과정을 단계별로 알 수 있고, 특정한 곳에 이상이 생기면 그 단계만 수정할 수 있기 때문이다.

1) 물리(Physical)

리피터, 케이블, 허브 등

단지 데이터 전기적인 신호로 변환해서 주고받는 기능을 진행하는 공간 즉, 데이터를 전송하는 역할만 진행한다.

2) 데이터 링크(Data Link)

브릿지, 스위치 등

물리 계층으로 송수신되는 정보를 관리하여 안전하게 전달되도록 도와주는 역할

Mac 주소를 통해 통신한다. 프레임에 Mac 주소를 부여하고 에러검출, 재전송, 흐름제어를 진행한다.

3) 네트워크(Network)

라우터, IP

데이터를 목적지까지 가장 안전하고 빠르게 전달하는 기능을 담당한다.

라우터를 통해 이동할 경로를 선택하여 IP 주소를 지정하고, 해당 경로에 따라 패킷을 전달해준다.

라우팅, 흐름 제어, 오류 제어, 세그먼테이션 등을 수행한다.

4) 전송(Transport)

TCP, UDP

TCP 와 UDP 프로토콜을 통해 통신을 활성화한다. 포트를 열어두고, 프로그램들이 전송을 할 수 있도록 제공해준다.

• TCP: 신뢰성, 연결지향적

• UDP: 비신뢰성, 비연결성, 실시간

5) 세션(Session)

API, Socket

데이터가 통신하기 위한 논리적 연결을 담당한다. TCP/IP 세션을 만들고 없애는 책임을 지니고 있다.

6) 표현(Presentation)

JPEG, MPEG 등

데이터 표현에 대한 독립성을 제공하고 암호화하는 역할을 담당한다.

파일 인코딩, 명령어를 포장, 압축, 암호화한다.

7) 응용(Application)

HTTP, FTP, DNS 등

최종 목적지로, 응용 프로세스와 직접 관계하여 일반적인 응용 서비스를 수행한다.

사용자 인터페이스, 전자우편, 데이터베이스 관리 등의 서비스를 제공한다.

Reference

https://github.com/gyoogle/tech-interview-for-

developer/blob/master/Computer%20Science/Network/OSI%207%20%EA%B3%84%EC%B8%B5.md