Lógica Computacional

Fundamentos de lógica

Você sabia que seu material didático é interativo e multimídia? Isso significa que você pode interagir com o conteúdo de diversas formas, a qualquer hora e lugar. Na versão impressa, porém, alguns conteúdos interativos ficam desabilitados. Por essa razão, fique atento: sempre que possível, opte pela versão digital. Bons estudos!

Nesta webaula vamos conhecer as principais características no estudo de lógica. Este estudo será fundamental para que você tenha facilidade nas futuras programações computacionais, por exemplo, na construção de algoritmos para a resoluções de problemas do cotidiano.

Conceitos

Para melhorar o entendimento da lógica, é necessário conhecer as definições de alguns termos importantes e muito utilizados na lógica. Mundim (2002) destaca :

- Proposição: consiste em um enunciado, uma frase declarativa.
- Premissas: consistem em proposições que são utilizadas como base para um raciocínio. Pode-se dizer que são as proposições do silogismo.
- Argumento: conjunto de enunciados que se relacionam uns com os outros.
- Silogismo: consiste em um raciocínio dedutivo (premissas) e possibilita a dedução de uma conclusão a partir das premissas.
- Falácia: consiste em argumentos que logicamente estão incorretos.

A partir dos vocabulários, podemos definir os tipos de lógica existentes, entre os quais estão a lógica formal e a lógica transcendental.

Lógica Formal

Começa nos estudos de Aristóteles, na Grécia Antiga. A lógica é dita formal quando analisa e representa a forma de qualquer argumento para que possa ser considerado válido para alguma conclusão.

Para se entender a lógica formal e como formamos nosso raciocínio é importante ter em mente alguns conceitos. Uma proposição é um pensamento em forma de frase declarativa. Essa proposição pode ser verdadeira ou falsa. A lógica não permite concluir se uma proposição ou afirmação é verdadeira ou falsa, ela apenas garante que, com base em premissas verdadeiras, seja possível chegar a conclusões verdadeiras.

Portanto, temos que as premissas podem ser verdadeiras ou falsas. Se afirmo que o céu está claro e sem nuvens, você pode olhar pela janela e concluir se a afirmação é verdadeira ou falsa. Se estiver chovendo, você dirá que minha afirmação é falsa. Por outro lado, um argumento pode ser válido ou inválido.

Inferência é o processo que permite chegar a conclusões a partir de premissas, constituindo a argumentação lógica perfeita. A inferência, como veremos a seguir, pode ser de dois tipos: indutiva e dedutiva. Uma inferência inválida é chamada **falácia**.

Em especial no século XIX, alguns matemáticos e filósofos concluíram que a lógica formal não era suficiente para que se pudesse alcançar o rigor necessário na análise dos argumentos. Por isso que foi desenvolvida a **lógica simbólica**, relacionada à matemática, a partir do século XIX. Ela permite a expressão das premissas e de suas relações por meio de símbolos matemáticos, construindo equações para expressar argumentos. Tal linguagem é absolutamente precisa e não dá margem a duplas interpretações.

Lógica transcendental

É desenvolvida por toda a obra do filósofo Immanuel Kant, em especial em seu célebre livro *Crítica da Razão Pura* (2015). Nesse livro, Kant discute que nosso conhecimento, o conhecimento humano, parte de duas fontes principais. A primeira trata da receptividade das impressões por meio de nossos sentidos; a segunda fonte é relativa à faculdade de conhecer um objeto por representações mentais, a partir do pensamento.

Desse modo, a lógica transcendental opera a partir das representações, dos conceitos e não das coisas em si. Trata-se de uma investigação sobre as representações a priori, as categorias, os conceitos puros em relação aos objetos, enquanto a Lógica geral se volta para a forma lógica do pensamento.

Kant distingue dois tipos de Conhecimento:

Conhecimento Empírico: também chamado conhecimento a posteriori está relacionado ao que é obtido por meio de nossos sentidos, à observação, à experimentação, com base na presença real de determinado objeto.

Lógica dedutiva

É aquela que parte de premissas afirmativas ou leis mais gerais permitindo a obtenção de verdades menos gerais ou particulares. Vamos a um exemplo de inferência dedutiva ou dedução?

Todo o analista de sistemas sabe programar.

Mariana é analista de sistemas.

Portanto, Mariana sabe programar.

Aqui, partimos de uma informação geral sobre as habilidades dos analistas de sistemas para concluir sobre as habilidades de Mariana. Com base na afirmativa geral, tomada como verdadeira, a conclusão é inevitável. Chamamos Silogismo esse tipo de argumentação lógica.

Lógica indutiva

Se preocupa com argumentos que permitem conclusões gerais a partir de casos particulares. Vamos a um exemplo de inferência indutiva ou indução?

Mariana é analista de sistemas e sabe programar.

Enzo é analista de sistemas e sabe programar.

Sabrina é analista de sistemas e sabe programar.

(...)

Portanto, todos os analistas de sistemas sabem programar.

Observe que, ao consultar dezenas ou centenas de analistas de sistemas, chegamos a uma conclusão geral com relação a eles. Um cuidado a ser tomado com a lógica indutiva é que **um único contraexemplo** é capaz de invalidar todo um raciocínio.

Nesta webaula conhecemos quatro tipos de lógica que auxiliarão na compreensão dos próximos estudos.