DATA 515 A

Software Engineering for Data ScientistsClass Project Part 1 – "Dating"

David Beck^{1,2}, Joseph Hellerstein^{1,3}, Jake VanderPlas^{1,4}

Jay Garlapati³

¹eScience Institute

²Chemical Engineering

³Computer Science Engineering

⁴Astronomy

The University of Washington

April 20, 2017

Objectives For Today

- Introduce expectations for the project
- Initiate team formation "dating"

Class project overview

- Collaborative software engineering experience
 - Teams of 3 to 4 with 4 being optimal
 - Prefer teams with diversity
 - Develop project in Git w/ GitHub
 - Not Google docs or Dropbox

Class project overview

- Collaborative software engineering experience
 - Design (use cases, component specification)
 - Documentation (how to, docstrings)
 - Style (PEP8, pylint)
 - Coding, testing & milestones
 - Standup & code reviews

Project Type 1: Answer "Research" Questions

- Problem statement: Answer two to three questions of business or scientific relevance
 - Use a Jupyter notebook and supporting python files
- Example
 - <u>Climate Police</u>: Analyze effects of pollution on the planet.

Capstone Project Type 2: Create Reusable Data

- Problem statement: Create data repository with tools (e.g., search, visualization, analytics)
- Example
 - <u>Car2Know</u>: Provide car rental data to users of Car2Go (e.g., for planning trips)

Project Type 3: Create a Tool

- Problem statement: Solve a problem common to many users
 - Don't re-invent the wheel
- Example
 - BioReactor Data Logging Monitor and publish data from BioReactor experiments

Getting Started

Student Summary

- Topics of interest
- Data you have access to NOW
 - How much you've used the data
 - Code you have to access the data
 - How clean the data are

Do this in 1 minute!

Verify the Project Idea

- Is there an unmet need (i.e. no code already exists)?
- Clarity about the project type?
- Consensus on the problem being solved.
- Do you have data that can solve the problem?

More on the Data

- At least two non-trivial data sets
- Data need to be combined, joined, merged, etc. to answer the scientific questions
- Have access to the data NOW!

Some Public Data

- http://drugbank.ca
- http://toxnet.nlm.nih.gov
- https://data.seattle.gov/Transportation/Traffic-Flow-Counts/7svg-ds5z
- https://www.divvybikes.com/data
- http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
- https://www.kaggle.com
- Pronto bike data
- American Fact Finder Data
- <u>European union data</u> (World bank)
- Russian federation data (World bank)
- China data (World bank)

Some Third Party Tools

- What third party tools can / might you leverage?
 - Sci Kit Learn
 - http://scikit-learn.org/stable/
 - Lasagne
 - http://lasagne.readthedocs.org/en/latest/
 - Bokeh
 - http://bokeh.pydata.org/en/latest/

Grading Rubric

- Design (use cases, component specification)
- Documentation (how to, docstrings)
- Style (PEP8, pylint)
- Coding, testing & milestones
- Standup
- Project presentation

Data! Data! Data!

- At least two non-trivial data sets
- Data need to be combined, joined, merged, etc.

Think about your data NOW!

