

UNIT 4 DYNAMIC PROGRAMMING

Iris Hui-Ru Jiang Spring 2024

Department of Electrical Engineering National Taiwan University

Outline

Content:

- Weighted interval scheduling: a recursive procedure
- Principles of dynamic programming (DP)
 - Memoization or iteration over subproblems
- Rod cutting
- Matrix-chain multiplication
- Longest common subsequence
- Optimal binary search trees
- Example: Subset sums and Knapsacks: adding a variable
- Example: Traveling salesman problem
- Example: Fibonacci sequence
- Reading:
 - Chapter 14

Recap Divide-and-Conquer (D&C)

- Divide and conquer:
 - (Divide) Break down a problem into two or more sub-problems of the same (or related) type
 - (Conquer) Recursively solve each sub-problem and solve it directly if simple enough
 - (Combine) Combine the solutions of sub-problems into an overall solution
- Correctness: proved by mathematical induction
- Complexity: determined by solving recurrence relations

Dynamic Programming (DP)

- Dynamic "programming" came from the term "mathematical programming"
 - Typically on optimization problems (a problem with an objective)
 - Inventor: Richard E. Bellman, 1953
- Basic idea: One implicitly explores the space of all possible solutions by
 - Carefully decomposing things into a series of subproblems
 - Building up correct solutions to larger and larger subproblems
- Smell the D&C flavor? However, DP is another story!
 - DP does not exam all possible solutions explicitly
 - Be aware of the condition to apply DP!!

Weighted Interval Scheduling

Thinking in an inductive way

Weighted Interval Scheduling

- Given: A set of n intervals with start/finish times, weights
 - Interval i: (s_i, f_i) , v_i , $1 \le i \le n$
- Find: A subset S of mutually compatible intervals with maximum total weights (values)

Designing a Recursive Algorithm (1/3)

- In the induction perspective, a recursive algorithm tries to compose the overall solution using the solutions of subproblems (problems of smaller sizes)
- First attempt: Induction on time?

Designing a Recursive Algorithm (2/3)

- Second attempt: Induction on interval index
 - First of all, sort intervals in ascending order of finish times
 - In fact, this is also a trick for DP
- p(j) is the largest index i < j s.t. intervals i and j are disjoint

Designing a Recursive Algorithm (3/3)

- O_i = the optimal solution for intervals 1, ..., j
- OPT(j) = the value of the optimal solution for intervals 1, ..., j

 $- OPT(j) = max\{\{v_j + OPT(p(j))\}, OPT(j-1)\}$

Direct Implementation OPT(j) = max{{vj+OPT(p(j))}, OPT(j-1)}

```
// Preprocessing:
```

- // 1. Sort intervals by finish times: $f_1 \le f_2 \le ... \le f_n$
- // 2. Compute p(1), p(2), ..., p(n)

Compute-Opt(i)

10

- 1. if (j = 0) then return 0
- 2. **else return** max{ $\{v_i$ +Compute-Opt(p(j))}, Compute-Opt(j-1)}

Memoization: Top-Down

- The tree of calls widens very quickly due to recursive branching!
 - e.g., exponential running time when p(j) = j 2 for all j
- Q: What's wrong? A: Redundant calls!
- Q: How to eliminate this redundancy?

Iteration: Bottom-Up

We can also compute array M[j] by an iterative algorithm

p(5) = 3

p(6) = 3

5

6

Summary: Memoization vs. Iteration

- Memoization
- Top-down
- An recursive algorithm
 - Compute only what we need

- Iteration
- Bottom-up
- An iterative algorithm
 - Construct solutions from the smallest subproblem to the largest one

Compute every small piece

Start with the recursive divideand-conquer algorithm

The running time and memory requirement highly depend on the table size

- If all subproblems must be solved at least once, bottom-up DP is better due to less overhead for recursion and for maintaining tables.
- If many subproblems need not be solved, top-down DP is better since it computes only those required

Keys for Dynamic Programming 🕝

- DP typically is applied to optimization problems
- Dynamic programming can be used if the problem satisfies the following properties:
 - There are only a polynomial number of subproblems
 - The solution to the original problem can be easily computed from the solutions to the subproblems
 - There is a natural ordering on subproblems from "smallest" to "largest," together with an easy-to-compute recurrence

Keys for Dynamic Programming

- DP works best on objects that are linearly ordered and cannot be rearranged
- Elements of DP
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems.
 - Overlapping subproblem: a recursive algorithm revisits the same problem over and over again; typically, the total number of distinct subproblems is a polynomial in the input size.

Keys for Dynamic Programming

- DP works best on objects that are linearly ordered and cannot be rearranged
- Elements of DP
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems.
 - Overlapping subproblem: a recursive algorithm revisits the same problem over and over again; typically, the total number of distinct subproblems is a polynomial in the input size.

Keys for Dynamic Programming

- Standard operation procedure for DP:
 - 1. Formulate the answer as a recurrence relation or recursive algorithm (Start with **defining subproblems**)
 - Show that the number of different instances of your recurrence is bounded by a polynomial
 - 3. Specify an order of evaluation for the recurrence so you always have what you need (Also check boundary conditions)

Algorithmic Paradigms

- Brute-force (Exhaustive): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion. Record one subproblem all the time
- Divide-and-conquer: Break up a problem into two or more subproblems, solve each sub-problem independently, and combine solution to subproblems to form solution to original problem (disjoint subproblems)
- Dynamic programming: Break up a problem into a series of overlapping subproblems, and build up solutions to larger and larger subproblems (overlapping subproblems)

Fibonacci Sequence

- Recurrence relation: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$
 - e.g., 0, 1, 1, 2, 3, 5, 8, ...
- Direct implementation:
 - Recursion!

fib(n)

- 1. if $n \le 1$ return n
- 2. **return** fib(n 1) + fib(n 2)

What's Wrong?

fib(n) 1. if $n \le 1$ return n2. return fib(n - 1) + fib(n - 2)

- What if we call fib(5)?
 - fib(5)
 - fib(4) + fib(3)
 - (fib(3) + fib(2)) + (fib(2) + fib(1))
 - ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - -(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - A call tree that calls the function on the same value many different times
 - fib(2) was calculated three times from scratch
 - Impractical for large n

Too Many Redundant Calls!

Recursion

True dependency

- How to remove redundancy?
 - Prevent repeated calculation

Dynamic Programming -- Memoization

- Store the values in a table
 - Check the table before a recursive call
 - Top-down!
 - The control flow is almost the same as the original one

fib(n)

- 1. Initialize *f*[0..*n*] with -1 // -1: unfilled
- 2. f[0] = 0; f[1] = 1
- 3. fibonacci(n, f)

fibonacci(n, f)

- 1. If f[n] == -1 then
- 2. f[n] = fibonacci(n 1, f) + fibonacci(n 2, f)
- 3. **return** f[n] // if f[n] already exists, directly return

Dynamic Programming -- Bottom-up?

- Store the values in a table
 - Bottom-up
 - Compute the values for small problems first
 - Pretty much like induction

fib(n)

- 1. initialize f[1..n] with -1 // -1: unfilled
- 2. f[0] = 0; f[1] = 1
- 3. for i=2 to n do
- 4. f[i] = f[i-1] + f[i-2]
- 5. **return** *f*[*n*]

Rod Cutting

Rod Cutting

- Cut steel rods into pieces to maximize the revenue
 - Assumptions: Each cut is free; rod lengths are integers
- Input: A length n and table of prices p_i , for i = 1, 2, ..., n
- Output: The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods

Objects are linearly ordered (and cannot be rearranged)??

Optimal Rod Cutting

length i	1	2	3	4	5	6	7	8	9	10
price <i>p</i> _i	1	5	8	9	10	17	17	20	24	30
max revenue r _i	1	5	8	10	13	17	18	22	25	30

- If p_n is large enough, an optimal solution might require no cuts, i.e., just leave the rod as n unit long
- Solution for the maximum revenue r_i of length i

```
r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1) = \max_{1 \le i \le n} (p_i + r_{n-i})

r_1 = 1 from solution 1 = 1 (no cuts)

r_2 = 5 from solution 2 = 2 (no cuts)

r_3 = 8 from solution 3 = 3 (no cuts)

r_4 = 10 from solution 4 = 2 + 2

r_5 = 13 from solution 5 = 2 + 3

r_6 = 17 from solution 6 = 6 (no cuts)

r_7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3

r_8 = 22 from solution 8 = 2 + 6
```

Optimal Substructure

length i	1	2	3	4	5	6	7	8	9	10
price <i>p</i> _i	1	5	8	9	10	17	17	20	24	30
max revenue r _i	1	5	8	10	13	17	18	22	25	30

- Optimal substructure: To solve the original problem, solve subproblems on smaller sizes. The optimal solution to the original problem incorporates optimal solutions to the subproblems
 - We may solve the subproblems independently
- After making a cut, we have two subproblems

- Max revenue
$$r_7$$
: $r_7 = 18 = r_4 + r_3 = (r_2 + r_2) + r_3$ or $r_1 + r_6$

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1)$$

• Decomposition with **only one subproblem**: Some cut gives a first piece of length i on the left and a remaining piece of length n - i on the right $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$

Recursive Top-Down "Solution"

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) \begin{vmatrix} 2 & \text{retur} \\ 3 & q = -\infty \\ 4 & \text{for } i-1 \end{vmatrix}$$

Cut-Rod(*p*, *n*)

- 1. **if** n == 0
- 2. return 0
- 4. **for** i = 1 **to** n
- 5. $q = \max(q, p[i] + \text{Cut-Rod}(p, n i))$
- 6. return q

Inefficient solution: Cut-Rod calls itself repeatedly, even on subproblems it has already solved!!

Cut-Rod(p, 4)Cut-Rod(p, 3) $T(n) = \begin{cases} 1, & \text{if } n = 0\\ 1 + \sum_{j=0}^{n-1} T(j), & \text{if } n > 0. \end{cases}$ $T(n) = 2^n$ Cut-Rod(p, 1)**Overlapping** subproblems? Cut-Rod(p, 0)

Top-Down DP Cut-Rod with Memoization

- Complexity: $O(n^2)$ time
 - Solve each subproblem just once, and solves subproblems for sizes 0,1, ..., n. To solve a subproblem of size n, the for loop iterates n times

```
Memoized-Cut-Rod(p, n)
1. let r[0..n] be a new array
2. for i = 0 to n
3. r[i] = -\infty
4. return Memoized-Cut-Rod -Aux(p, n, r)
```

Bottom-Up DP Cut-Rod

- Complexity: $O(n^2)$ time
 - Sort the subproblems by size and solve smaller ones first.
 - When solving a subproblem, have already solved the smaller subproblems we need

```
Bottom-Up-Cut-Rod(p, n)
1. let r[0..n] be a new array
2. r[0] = 0
3. for j = 1 to n
4. q = -\infty
5. for i = 1 to j
6. q = \max(q, p[i] + r[j - i])
7. r[j] = q
8. return r[n]
```

Bottom-Up DP with Solution Construction

- Extend the bottom-up approach to record not just optimal values, but optimal choices
- Saves the first cut made in an optimal solution for a problem of size i in s[i]

- 1. let r[0..n] and s[0..n] be new arrays
- 2. r[0] = 0
- 3. **for** j = 1 **to** n
- 4. $q = -\infty$
- 5. **for** i = 1 **to** j
- 6. **if** q < p[i] + r[j-i]
- 7. q = p[i] + r[j-i]
- 8. s[j] = i
- 9. r[j] = q
- 10. return r and s

Print-Cut-Rod-Solution(*p*, *n*)

- 1. (r, s) = Extended-Bottom-Up-Cut-Rod(p, n)
- 2. **while** *n* > 0
- 3. print *s*[*n*]
- $4. \qquad n = n s[n]$

i	0	1	2	3	4	5	6	7	8	9	10
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22	25	30
s[<i>i</i>]	0	1	2	3	2	2	6	1	2	3	10

Dynamic programming

DP Example: Matrix-Chain Multiplication

If A is a p x q matrix and B a q x r matrix, then C = AB is a p x r matrix

 $C[i, j] = \sum_{k=1}^{q} A[i, k] B[k, j]$

time complexity: O(pqr)

```
Matrix-Multiply(A, B)

1. if A.columns \neq B.rows

2. error "incompatible dimensions"

3. else let C be a new A.rows * B.columns matrix

4. for i = 1 to A.rows

5. for j = 1 to B.columns

6. c_{ij} = 0

7. for k = 1 to A.columns

8. c_{ij} = c_{ij} + a_{ik}b_{kj}

9. return C
```

DP Example: Matrix-Chain Multiplication

- The matrix-chain multiplication problem
 - Input: Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, matrix A_i has dimension $p_{i-1} \times p_i$
 - Objective: Parenthesize the product $A_1 A_2 ... A_n$ to minimize the number of scalar multiplications
- Exp: dimensions: A_1 : 4 x 2; A_2 : 2 x 5; A_3 : 5 x 1 $(A_1A_2)A_3$: total multiplications = 4 x 2 x 5 + 4 x 5 x 1 = 60 $A_1(A_2A_3)$: total multiplications = 2 x 5 x 1 + 4 x 2 x 1 = 18
- So the order of multiplications can make a big difference!

Matrix-Chain Multiplication: Brute Force

- $A = A_1 A_2 ... A_n$: How to compute A using the minimum number of multiplications?
- Brute force: check all possible orders?
 - -P(n): number of ways to multiply n matrices.

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

- $-P(n) = \Omega(4^n/n^{3/2})$, exponential in n.
- Any efficient solution?
 - The matrix chain is linearly ordered and cannot be rearranged!!
 - Smell dynamic programming?

Matrix-Chain Multiplication

- m[i, j]: minimum number of multiplications to compute matrix $A_{i...j} = A_i A_{i+1} ... A_j$, $1 \le i \le j \le n$
 - -m[1, n]: the cheapest cost to compute $A_{1...n}$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \text{ ,} \\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \text{ .} \end{cases}$$

$$A_{i..j} = (A_i ... A_k)(A_{k+1} ... A_j) & \text{matrix } A_i \text{ has dimension } p_{i-1} \times p_i$$

- Applicability of dynamic programming
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems
 - Overlapping subproblem: a recursive algorithm revisits the same problem over and over again; only $\Theta(n^2)$ subproblems

Bottom-Up DP Matrix-Chain Order

```
Matrix-Chain-Order(p)
1. n = p.length - 1
2. Let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
3. for i = 1 to n
       m[i, i] = 0
5. for I = 2 to n
                    /// is the chain length
        for i = 1 to n - l + 1
6.
7.
           i = i + 1 - 1
           m[i, j] = \infty
           for k = i to i-1
9.
10.
               q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
11.
               if q < m[i, j]
12.
                    m[i, j] = q
13.
                    s[i, j] = k
14. return m and s
```

A_i dimension $p_{i-1} \times p_i$

```
m
matrix | dimension
                                                                                            S
           30 * 35
 A,
                                                10,500>
 A_{2}
           35 * 15
                                                    5,375
 A_3
           15 * 5
                                 (7,875)
                                                 2,500×3,500
 A_A
            5 * 10
                              15,750 \times 2,625
                                                    (1.000)\times 5,000
                                              750
 A_{5}
           10 * 20
 A_6
           20 * 25
                                          A_3 A_4 A_5 A_6
```

$$m[2,4] = \min \left\{ \begin{array}{l} m[2,2] + m[3,4] + p_1 p_2 p_4 = 0 + 750 + 35 \times 15 \times 10 = 6000. \\ m[2,3] + m[4,4] + p_1 p_3 p_4 = 2625 + 0 + 35 \times 5 \times 10 = 4375. \end{array} \right.$$

Constructing an Optimal Solution

- s[i, j]: value of k such that the optimal parenthesization of $A_i A_{i+1} \dots A_j$ splits between A_k and A_{k+1}
- Optimal matrix $A_{1...n}$ multiplication: $A_{1...s[1, n]}A_{s[1, n] + 1...n}$
- **Exp:** call Print-Optimal-Parens(s, 1, 6): $((A_1 (A_2 A_3))((A_4 A_5) A_6))$

```
Print-Optimal-Parens(s, i, j)

1. if i == j

2. print "A";

3. else print "("

4. Print-Optimal-Parens(s, i, s[i, j])

5. Print-Optimal-Parens(s, s[i, j] + 1, j)

6. print ")"
```

matrix	dimension	<i>m</i> 6 ∧ 1	S
A_{i}	30 * 35	5 15,125 2	6/\1
A_2	35 * 15	j 4 11,875 10,500 3 i	j 5 3 2 i
A_3	15 * 5	$3 \begin{array}{c} 3 \\ 9,375 \\ 7,125 \\ 5,375 \\ 4 \\ 3,500 \\ 5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A_4	5 * 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1 3 3 5 5
A_{5}	10 * 20	$\langle 0 \rangle \langle 0 \rangle \langle 0 \rangle \langle 0 \rangle \langle 0 \rangle$	$\left\langle 1\right\rangle \left\langle 2\right\rangle \left\langle 3\right\rangle \left\langle 4\right\rangle \left\langle 5\right\rangle$
A_6	20 * 25	A_1 A_2 A_3 A_4 A_5 A_6	

Unit 4 Y.-W. Chang 39

Top-Down, Recursive Matrix-Chain Order

• Time complexity: $\Omega(2^n)$ $(T(n) > \sum_{k=1}^{n-1} T(k) + T(n-k) + 1))$

```
Recursive-Matrix-Chain(p, i, j)

1. if i == j

2. return 0

3. m[i, j] = \infty

4. for k = i to j-1

5  q = \text{Recursive-Matrix-Chain}(p, i, k)
+ Recursive-Matrix-Chain(p, k+1, j) + p_{i-1}p_kp_j

6. if q < m[i, j]

7. m[i, j] = q

8. return m[i, j]
```


Top-Down DP Matrix-Chain Order (Memoization)

• Complexity: $O(n^2)$ space for m[] matrix and $O(n^3)$ time to fill in $O(n^2)$ entries (each takes O(n) time)

```
Memoized-Matrix-Chain(p)
1. n = p.length - 1
2. let m[1..n, 1..n] be a new table
2. for i = 1 to n
3. for j = i to n
4. m[i, j] = \infty
5. return Lookup-Chain(m, p, 1, n)
```

```
Lookup-Chain(m, p, i, j)

1. if m[i, j] < \infty

2. return m[i, j]

3. if i == j

4. m[i, j] = 0

5. else for k = i to j - 1

6. q = \text{Lookup-Chain}(m, p, i, k) + \text{Lookup-Chain}(m, p, k+1, j) + p_{i-1}p_kp_j

7. if q < m[i, j]

8. m[i, j] = q

9. return m[i, j]
```


Longest Common Subsequence

- **Problem:** Given $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, find the **longest common subsequence (LCS)** of X and Y.
- Exp: $X = \langle a, b, c, b, d, a, b \rangle$ and $Y = \langle b, d, c, a, b, a \rangle$ LCS = $\langle b, c, b, a \rangle$ (also, LCS = $\langle b, d, a, b \rangle$).
- Exp: DNA sequencing: measure similarity
 - S1 = ACCGGTCGAGATGCAG;
 S2 = GTCGTTCGGAATGCAT;
 LCS S3 = CGTCGGATGCA
- Brute-force method:
 - Enumerate all subsequences of X and check if they appear in Y
 - Each subsequence of X corresponds to a subset of the indices {1, 2, ..., m} of the elements of X
 - There are 2^m subsequences of X. Why?

Objects are linearly ordered (and cannot be rearranged)??

Optimal Substructure for LCS

- First step: define subproblems!
- **Theorem:** Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and $Z = \langle z_1, z_2, ..., z_k \rangle$ be LCS of X and Y
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies Z is an LCS of X_{m-1} and Y
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies Z is an LCS of X and Y_{n-1}
 - An LCS of two sequences contains within it an LCS of prefixes of the two sequences

 $X_1, X_2, \ldots X_{m-1}, X_m$

 $y_1, y_2, \dots y_{n-1}, y_n$

- c[i, j]: length of the LCS of X_i and Y_j
- c[m, n]: length of LCS of X and Y
- Basis: c[0, j] = 0 and c[i, 0] = 0

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Top-Down DP for LCS

- c[i, j]: length of the LCS of X_i and Y_j , where $X_i = \langle x_1, x_2, ..., x_i \rangle$ and $Y_j = \langle y_1, y_2, ..., y_j \rangle$
- *c*[*m*, *n*]: LCS of *X* and *Y*
- Basis: c[0, j] = 0 and c[i, 0] = 0

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
Top down DP: initialize of i 01 - of 0 if - 0 of i if - NIII.

• Top-down DP: initialize c[i, 0] = c[0, j] = 0, c[i, j] = NIL

```
TD-LCS(i, j)

1. if c[i, j] == NIL // check memo

2. if x_i == y_j

3. c[i, j] = TD-LCS(i-1, j-1) + 1

4. else c[i, j] = max(TD-LCS(i, j-1), TD-LCS(i-1, j))

5. return c[i, j]
```

Bottom-Up DP for LCS

- Find the right order to solve the subproblems
- To compute c[i, j], we need
 c[i-1, j-1], c[i-1, j], and c[i, j-1]
- b[i, j]: points to the table entry w.r.t. the optimal subproblem solution chosen when computing c[i, j]

```
LCS-Length(X, Y)
1. m = X.length
2. n = Y.length
3. let b[1..m, 1..n] and c[0..m, 0..n]
  be new tables
4. for i = 1 to m
5. c[i, 0] = 0
6. for j = 0 to n
7. c[0, j] = 0
8. for i = 1 to m
     for j = 1 to n
10.
         if x_i == y_i
              c[i, j] = c[i-1, j-1]+1
11.
              b[i, j] = "\"
12.
         elseif c[i-1,j] \ge c[i, j-1]
13.
14.
              c[i,j] = c[i-1, j]
              b[i, j] = "\uparrow"
15.
16. else c[i, j] = c[i, j-1]
              b[i, j] = "\leftarrow"
17.
18. return c and b
```

Example of LCS

- LCS time and space complexity: $\Theta(mn)$
- $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle \Rightarrow$ LCS = $\langle B, C, B, A \rangle$

Constructing an LCS

Trace back from b[m, n] to b[1, 1], following the arrows:
 O(m+n) time

Print-LCS(b, X, i, j)

1. **if** i == 0 **or** j == 02. **return**3. **if** b[i, j] == "

4. Print-LCS(b, X, i-1, j-1)

5. print x_i 6. **elseif** b[i, j] == " \uparrow "

7. Print-LCS(b, X, i-1, j)

8. **else** Print-LCS(b, X, i, j-1)

	j	0	1	2	3	4	5	6
i		y_{j}	B	D	<u>C</u>	Α	$^{\circ}$	<u>(A)</u>
0	\boldsymbol{x}_{i}	0	0	Ō	0	0	0	0
1	A	0	0	0	0	1	- 1	1
2	B	0	1	•- ₁	- 1	1	2	- 2
3	C	0	1	† 1	2	- 2	† 2	2
4	$lue{\mathbf{B}}$	0	1	† 1	† 2	2	3	- 3
5	D	0	1	2	•	2	3	3
6	A	0	† 1	2	2 2	3	† 3	4
7	В	0	1	2	2	3	4	4

Optimal Binary Search Tree

Given

- a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of n distinct keys in sorted order $(k_1 < k_2 < ... < k_n)$ a set of probabilities $P = \langle p_1, p_2, ..., p_n \rangle$ for searching the keys in *K*
- $= Q = \langle q_0, q_1, q_2, ..., q_n \rangle$ for unsuccessful searches (corresponding to $D = \langle d_0, d_1, d_2, ..., d_n \rangle$ of **n+1** distinct dummy keys with d_i representing all values between k_i and k_{i+1})

Goal

construct a binary search tree whose expected search cost is

50 Y.-W. Chang

An Example

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

E [search cost in
$$T$$
] =
$$\sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i}$$
Figure 4.

Unit 4

Optimal Substructure

- If an optimal binary search tree T has a subtree T' containing keys k_i, \ldots, k_j , then this subtree T' must be optimal as well for the subproblem with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_i
 - Given keys k_i , ..., k_j with k_r ($i \le r \le j$) as the root, the left subtree contains the keys k_i , ..., k_{r-1} (and dummy keys d_{i-1} , ..., d_{r-1}) and the right subtree contains the keys k_{r+1} , ..., k_j (and dummy keys d_r , ..., d_j)
 - For the subtree with keys k_i , ..., k_j with root k_i , the left subtree contains keys k_i , ..., k_{i-1} (no key) and the dummy key d_{i-1}

Overlapping Subproblem: Recurrence

- e[i, j]: expected cost of searching an optimal binary search tree containing the keys k_i , ..., k_i
 - Want to find e[1, n]
 - $= e[i, i-1] = q_{i-1}$ (only the dummy key d_{i-1})

Node depths increase by 1 after merging two subtrees, and so do the costs

• If k_r ($i \le r \le j$) is the root of an optimal subtree containing keys k_i , ..., k_j and let $w(i, j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$ then

$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$$

$$= e[i, r-1] + e[r+1, j] + w(i, j)$$

= e[i, r-1] + e[r+1, j] + w(i, j)• Recurrence: $e[i, j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ \min_{i \le r \le j} \{e[i, r-1] + e[r+1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$

53

Computing the Optimal Cost

- Need a table e[1..*n*+1, 0..*n*] for e[*i*, *j*] (why e[1, 0] and e[*n*+1, *n*]?)
- Apply the recurrence to compute w(i, j) (why?)

$$w[i, j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ w[i, j-1] + p_j + q_j & \text{if } i \leq j \end{cases}$$


```
Optimal-BST(p, q, n)
```

- 1. let e[1..n+1, 0..n], w[1..n+1, 0..n], and root[1..n, 1..n] be new tables
- 2. for i = 1 to n + 1
- 3. $e[i, i-1] = q_{i-1}$
- 4. $w[i, i-1] = q_{i-1}$
- 5. for l = 1 to n
- for i = 1 to n l + 1
- 7. j = i + l 1
- 8. $e[i, j] = \infty$
- 9. $w[i, j] = w[i, j-1] + p_j + q_j$ 10. for r = i to j
- 11. t = e[i, r-1] + e[r+1, j] + w[i, j]
- 12. if t < e[i, j]
- 13. e[i, j] = t
- 14. root[i, j] = r
- 15. return e and root

• root[i, j]: index r for which k_r is the root of an optimal search tree containing keys k_i, \ldots, k_i

Example $e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$

Subset Sums & Knapsacks

Adding a variable

Subset Sum

Given

- A set of *n* items and a knapsack
 - Item *i* weighs $w_i > 0$
 - The knapsack has capacity of *W*
- Goal:
 - Fill the knapsack so as to maximize total weight
 - maximize $\Sigma_{i \in S} w_i$
- Greedy ≠ optimal
 - Largest w_i first: 7+2+1 = 10
 - Optimal: 5+6 = 11

Item	Weight
1	1
2	2
3	5
4	6
5	7

Karp's 21 NP-complete problems:

R. M. Karp, "Reducibility among combinatorial problems". *Complexity of Computer Computations*. pp. 85–103.

Dynamic Programming: False Start

- Optimization problem formulation
 - $-\left(\max \Sigma_{i \in S} \ W_i \right) \leftarrow \text{objective function}$ s.t. $\Sigma_{i \in S} \ W_i \le W$, $S \subseteq \{1, ..., n\} \leftarrow \text{constraints}$
- OPT(i) = the total weight of optimal solution for items 1,..., i
 - OPT(i) = max_S $\Sigma_{i \in S}$ w_i , $S \subseteq \{1, ..., i\}$
- Consider OPT(n), i.e., the total weight of the final solution O
 - Case 1: $n \notin O$ (OPT(n) does not count w_n)
 - OPT(n) = OPT(n-1) (Optimal solution of {1, 2, ..., n-1})
 - Case 2: $n \in O$ (OPT(n) counts w_n)

Q: What's wrong? -

A: Accept item $n \Rightarrow$ For items $\{1, 2, ..., n-1\}$, we have less capacity, $W - w_n$

Adding a New Variable

Optimization problem formulation

```
-\left(\max \Sigma_{i \in S} \ W_i \right.
s.t. \Sigma_{i \in S} \ W_i \leq W, \ S \subseteq \{1, ..., n\}
```

- OPT(i) depends not only on items {1, ..., i} but also on W
- Consider OPT(n), i.e., the total weight of final solution O
 - Case 1: $n \notin O$ (OPT(n) does not count w_n)
 - Case 2: $n \in O$ (OPT(n) counts w_n)
- Recurrence relation:

_

DP: Iteration

```
OPT(i, w) = \begin{cases} 0 \\ OPT(i-1, w) \\ max \{OPT(i-1, w), w_i + OPT(i-1, w-w_i)\} \end{cases} otherwise
```



```
Subset-sum(n, w_1, ..., w_n, W)
1. for W = 0, 1, ..., W do
2. M[0, w] = 0
3. for i = 0, 1, ..., n do
4. M[i, 0] = 0
5. for i = 1, 2, ..., n do
6. for W = 1, 2, ..., W do
7. if (w_i > w) then
8. M[i, w] = M[i-1, w]
      else
10.
           M[i, w] = \max \{M[i-1, w], w_i + M[i-1, w-w_i]\}
```

Example

Running time:

O(nW)

```
Subset-sum(n, w_1, ..., w_n, W)
```

- 1. **for** W = 0, 1, ..., W **do**
- 2. M[0, w] = 0
- 3. **for** i = 0, 1, ..., n **do**
- 4. M[i, 0] = 0
- 5. **for** i = 1, 2, ..., n **do**
- 6. **for** w = 1, 2, ..., W **do**
- 7. if $(w_i > w)$ then
- 8. M[i, w] = M[i-1, w]
- 9. else
- 10. $M[i, w] = \max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$

W + 1

Item	Weight				
1	1				
2	2				
3	5				
4	6				
5	7				

W = 11

		0	1	2	3	4	5	6	7	8	9	10	11
	Ø	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	2	3	3	3	3	3	3	3	3	3
<i>n</i> + 1	{ 1, 2, 3 }	0	1	2	3	3	5	6	7	8	8	8	8
	{ 1, 2, 3, 4 }	0	1	2	3	3	5	6	7	8	9	9	11
\downarrow	{ 1, 2, 3, 4, 5 }	0	1	2	3	3	5	6	7	8	9	10	11

Pseudo-Polynomial Running Time

- Running time: O(nW)
 - W is not polynomial in input size
 - "Pseudo-polynomial"
 - In fact, the subset sum is a computationally hard problem!
 - r.f. Karp's 21 NP-complete problems:
 - R. M. Karp, "Reducibility among combinatorial problems". Complexity of Computer Computations. pp. 85--103.

The Knapsack Problem

Given

- A set of *n* items and a knapsack
- Item *i* weighs $w_i > 0$ and has value $v_i > 0$.
- The knapsack has capacity of W.

$$-\left\{\begin{array}{l} \max \Sigma_{i \in S} \ v_i \\ \text{s.t. } \Sigma_{i \in S} \ w_i \leq W, \ S \subseteq \{1, \ldots, n\} \end{array}\right.$$

Greedy ≠ optimal

- Largest v_i first: 28+6+1 = 35

- Optimal: 18+22 = 40

Item	Value	Weight				
1	1	1				
2	6	2				
3	18	5				
4	22	6				
5	28	7				

Karp's 21 NP-complete problems:

R. M. Karp, "Reducibility among combinatorial problems". *Complexity of Computer Computations*. pp. 85–103.

Recurrence Relation

 We know the recurrence relation for the subset sum problem:

$$\begin{array}{ll}
\mathsf{OPT}(i, w) = \begin{cases}
0 & \text{if } i, w = 0 \\
\mathsf{OPT}(i-1, w) & \text{if } w_i > w \\
\mathsf{max} \left\{ \mathsf{OPT}(i-1, w), w_i + \mathsf{OPT}(i-1, w-w_i) \right\} & \text{otherwise}
\end{array}$$

- Q: How about the Knapsack problem?
- A:

$$\begin{array}{ll}
\mathsf{OPT}(i, w) = \left\{ \begin{array}{ll}
0 & \text{if } i, w = 0 \\
\mathsf{OPT}(i\text{-}1, w) & \text{if } w_i > w \\
\text{otherwise}
\end{array} \right.$$

Traveling Salesman Problem

Richard E. Bellman, 1962

R. Bellman, Dynamic programming treatment of the travelling salesman problem. *J. ACM* 9, 1, Jan. 1962, pp. 61-63.

R. E. Bellman 1920—1984 Inventor of DP, 1953

Traveling Salesman Problem

- TSP: A salesman is required to visit once and only once each of n different cities starting from a base city, and returning to this city. What path minimizes the total distance travelled by the salesman?
 - The distance between each pair of cities is given
- TSP contest
 - http://www.math.uwaterloo.ca/tsp/
- Brute-Force
 - Try all permutations: O(n!)

The Florida Sun-Sentinel, 20 Dec. 1998.

Dynamic Programming

- For each subset S of the cities with $|S| \ge 2$ and each u, $v \in S$, $\mathsf{OPT}(S, u, v) = \mathsf{the}$ length of the shortest path that starts at u, ends at v, visits all cities in S
- Recurrence
 - Case 1: $S = \{u, v\}$
 - lacksquare OPT(S, u, v) = d(u, v)
 - Case 2: |S| > 2
 - Assume $w \in S \{u, v\}$ is visited first: OPT(S, u, v) = d(u, w) + OPT(S-u, w, v)
 - OPT(S, u, v) = $\min_{w \in S \{u, v\}} \{d(u, w) + OPT(S u, w, v)\}$
- Efficiency
 - Space: $O(2^n n^2)$
 - Running time: $O(2^n n^3)$
 - Although much better that O(n!), DP is suitable when the number of subproblems is polynomial

Summary: Dynamic Programming

- Smart recursion: In a nutshell, dynamic programming is recursion without repetition
 - Dynamic programming is NOT about filling in tables; it's about smart recursion
 - Dynamic programming algorithms store the solutions of intermediate subproblems often but not always in some kind of array or table
 - A common mistake: focusing on the table (because tables are easy and familiar) instead of the much more important (and difficult) task of finding a correct recurrence
- If the recurrence is wrong, or if we try to build up answers in the wrong order, the algorithm will NOT work!
 - Optimal substructure
 - Overlapping subproblems

Summary: Algorithmic Paradigms

- Brute-force (Exhaustive search): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion.
 - Optimization problems that can be solved correctly by a greedy algorithm are very rare
- Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem
- Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems
 - The first step of DP: define the subproblem!