Q. 5	(a) Given the vehicular speed $v = 72$ km/hr, $f_c = 895$ MHz. Determine the coherence time	
	and minimum symbol rate require to avoid frequency dispersion.	3 marks

(0)	Assume a receiver is located a 10 km from a 50 w transmitter. The carrier frequency is 6		
	GHz and free space propagation is assumed, Gr=1, Gt=1. Find the power at the re-	ee space propagation is assumed, Gr=1, Gt=1. Find the power at the receiver.	
		3 marks	
(c)	how that the PDF given in eq (1) can be generated by Normal random variable.		
	$P_R(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$	(1)	

Assume a receiver is located a 10 km from a 50 W transmitter. The corrier frequency is 6

also find the percentage of time that a signal is 20 dB or more below the rms value for a

4 marks

(h)

Rayleigh fading signal.