RMP-Sample Based Motion Planning

Dis

Combinatorial approaches:

- Advantages: complete algorithm
- Disadvantages:
 - **computational expensive**, DOF \(\ \ \ \ , runtime increases exponentially \(\ \ \ \ \)
 - construction of whole configuration space(collision tests) —> for larger DOF very expensive
 - uses heuristics, not reliable. (potential field)
- -> Solution: Sample based methods!!!

Sample based Methods

- probabilistic completeness: a solution path can be found with high probability.
- ▼ Distribution of sample points: uniform random distribution
 - on which parameters?

▼ Parametrization of environment to get a connected roadmap

Probabilistic Roadmap (PRM) — Multiple-query sampling for higher dimensions solving multiple-query problems

- multiple query sampling
- **▼** assumptions:
 - **static** environment, arbitrary obstacles
 - many queries processed in same environment
 - unknown start & goal, can be anywhere in free space
 - repeated tasks
 - —> sample over the whole free space necessary!!
- ▼ applications:
 - navigation in static environment
 - robot manipulator arm in a workcell (parts from different start, need to be moved to different goals)
 - playing chess
- Process:
 - **▼** Offline: Construct PRM
 - sampling (nodes): uniformly sample n milestones in the config-space & collision test
 - a. in free space: kept
 - b. collision with obstacle: try again
 - connection (edges): connect milestones through linear local path.
 Collision test along the linear local path by dense sampling
 - a. if no collision from each point: connect 2 nodes
 - b. collision:

▼ Online: Query

- given start/goal point, connect them to the nearest milestone(node) in PRM by random walk.
- 2. **graph search**: find a path based on cost function (shortest path, least node, etc)
- 3. termination:
 - a. if path returned: always correct
 - b. no path returned: error, but hope correct with high probability
- Problem: small connected components, low connectivity of the whole graph

▼ Solutions to increase connectivity:

• increase #samples

▼ random walk

- collision during linear connection: walk in random direction
- when hits an obstalce, random walk again up to a maximum distance d_{max} —> create new milestone.
- try to connect. repeat until 2 subgraphs connect.
- -> edges can be no longer straight line, still linear
- —> might get you through narrow passages /opening
- —> resulting path could be very zig-zag: **smoothing necessary!!!**

▼ path correction

- collision when connecting 2 nodes: push the line towards free space —>
 find boundary
- sample points along the line: for each point, extend in random direction
- **binary search:** collision test in by halving the distance **until boundary** >create new milestone.
- connect the milestones with subgraphs.

▼ sample around obstacles: OBPRM

▼ Smoothing of zig-zag paths

▼ motivation:

- new nodes that increase connectivity create zig-zag path, chaotic & complicated
- frequent change of configuration and velocity (negative to positive)
- -> smoothing necessary!!!!

▼ Process

- 1. connect start to goal **supporting line**
- 2. if collision, find the **most distant node** to the line.
- 3. from that node, connects to goal **supporting line**
- 4. repeat, find the **most distant node**, until it reaches the goal.
- —> Path: sequence of these most distant nodes.
- Preservation of planning topology: homotopic path
 - after path correction(smoothing), homotopy ensures the space topology gets visited from the same side as planned.
 - it **doesn't intersect any obstacles**. no jumpting through an obstacle.

Probabilistic Roadmap (PRM) — Multiple-query sampling solving single-query problems

- single query problem:
 - known start & goal, not far away from each other.
 - **one-time** task
- multiple-query sampling solution:
 - o add start & goal with all other uniformly sampled distributed nodes
 - build edges
 - —> sampling the whole free space uniformly doesn't make sense! —> resource waste
 - -> single-query sampling!!

Single-query sampling solving single-query problems

- ▼ Process:
 - 1. expansion:
 - a. simultaneously **grow 2 trees from start & goal** configuration
 - b. randomly sample n nodes around existing nodes —> weighted sampling
 - connection: check if distance of child nodes between 2 trees is below threshold —> linear dense sampling —> connect if no collision
 - 3. iterates between expansion and connection until
 - a. 2 trees connected
 - b. max. number of expansion/connection steps reached

Expansion + Connection

- Problem at sampling:
 - child nodes can **expand back** to the parent nodes (back to known areas)
 - if **obstacle**, the tree will **bounce back** to parent nodes.
 - -> unable to go through narrow passages.
- ▼ Solution at Expansion: weighted sampling of nodes
 - Weight: w(x) number of existing nodes (including itself) within radius d
 - 1. pick a node x with probability $\frac{1}{w(x)}$
 - 2. randomly sample k points around ${\sf x}$ within radius ${\sf d}$
 - 3. for each sample y, calculate w(y) and sampling probability $\frac{1}{w(y)}$
 - 4. add y into the tree, if
 - a. y has higher probability
 - b. collision free from y to x (linear collision test)
 - c. y can see x
 - —> nodes **well distributed** over unknown spaces, also able to **expand to obstacle** or through **narrow passages!!!**

▼ applications:

- remove parts from car: a collision free path
- · piano mover
- start & goal close to each other, one-time tasks

Evaluation of PRM: $(\epsilon, \alpha, \beta)$ - Expansiveness

- coverage: milestones are distributed such that almost any point of config-space can be connected to one milestone with a straight line. (doesn't have to be connected)
- connectivity: a one-to-one correspondence between the connected components of the roadmap and those of F
 - -> difficult in narrow passages
- ▼ expansiveness: characterize both coverage and connectivity
 - **visibility set** of q: all configurations seen by q by straight line.
 - minimum visibility ϵ : each configuration sees at least ϵ fraction of the free space
 - -> find the configuration q with minimum visibility

~-

$$\epsilon = rac{S}{F_{free space}} \in (0,1]$$

- β -lookout set of S B, subset of the confined space S: the area from the confined space S(minimum visibility) where it can see the rest of the free space
- lookout of B β : each configuration in B can see at least β fraction of freespace $F \setminus S$

$$eta = rac{C}{F \setminus S} \in (0,1]$$

• α : the fraction of B to the confined space S

$$\alpha = \frac{B}{S}$$

- free space F is $(\epsilon, \alpha, \beta)$ expansive:
 - F is ϵ -good,
 - for each subset S in F, its β -lookout is at least α fraction of S.
 - $\Longrightarrow \epsilon, \alpha, \beta \uparrow$, construction cost \downarrow for good connectivity and coverage.
 - —> high probability in getting a linking sequence that covers a large fraction of free space

Theorem: a roadmap of $n=\frac{8\ln(8/\epsilon\cdot\alpha\cdot\gamma)}{\epsilon\cdot\alpha}+\frac{3}{\beta}$ milestones has the correct connectivity with at least $1-\gamma$ success rate.

- —> exponential dependency of success and n: increase n linearly will result in exponential improvement of
 - success
 - connectivity
 - coverage

- basic PRM: uniform random distribution
- not fast for single query
- single query sampling:
 - EST
 - RRT