CS/BCA/SEM-3/BCA-301/2011-12 2011

OPERATING SYSTEM

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following	1.	Choose	the correct	alternatives	for	the	following
--	----	--------	-------------	--------------	-----	-----	-----------

 $10 \times 1 = 10$

- i) The technique of temporarily removing inactive programs from the memory of a computer system is
 - a) switching

b) swapping

c) paging

- d) none of these.
- ii) The time required for read-write head to travel to target cylinder is called
 - a) latency time
- b) seek time
- c) transfer time
- d) none of these.
- iii) The technique of relocating all occupied areas of storage to one end is called
 - a) sharing

b) relocation

c) compaction

d) distribution.

iv)	Whic	ch of the following statements is false?							
.,	a)	Implicit task is a system-defined task							
	b)	A process is an instance of a program execution							
	c)	Buffering is a sophisticated form of spooling							
	d)	Time-sharing system follows Round-robin algorithm.							
v)		coincidence of high page traffic and low CPU zation is							
	a)	Belady's Anomaly b) Mutual Exclusion							
	ć)	Deadlock d) Thrashing.							
vi)	Which scheduling algorithm is inherently preemptive?								
	a)	FCFS b) SJF							
	c)	RR d) Priority scheduling.							
vii)	The optimal scheduling algorithm is								
	a)	FCFS b) SJF							
	c)	RR d) None of these.							
viii)	Thr	ashing							
	a)	reduces page I/O							
	b)	decreases the degree of multiprogramming							
	c)	implies excessive page I/O							
	d)	improves the system performance.							
ix)	For	k is							
ix)	a)	the creation of a new job							
	b)	the dispatching of a task							
	c)	increasing the priority of a task							
	d)	the creation of new task.							
x)	RN	II stands for							
	a)	Remote Method Interface							
	b)	Remote Message Interface							
	c)	Remote Method Invocation							
	d)	None of these.							

3077 2

GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any three of the following.

Consider the following resource allocation state involving 2. processes P0, P1, P2, P3 and P4 and resources R0, R1, R2, R3 and R4:

Resources Assigned					Resources Still Needed					
Processes	Resources				Processes	Resources				
	R1	R2	R3	R4	deliberation of	R1	R2	R3	R4	
A	3	0	1	1	A	1	1	0	0	
В	0	1	0	0	В	0	1	1	2	
С	1	1	1	0	С	3	1	0	0	
D	1	1	0	1	D	0	0	1	0	
Е	0	0	0	0	E	2	1	1	0	

Available resources = 1 0 2 0

Determine whether the system is in a safe state or not.

- Explain with examples the difference between premptive and 3. non-preemptive priority scheduling.
- Distinguish between 'starvation' and 'deadlock'. 4.
- Explain PCB with a neat diagram. 5.
- What is thread? Compare it with process. 6.

2 + 3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- Explain the following file access methods: a) 7.

- Direct
- ii) Sequential
- Indexed Sequential. iii)
- What is Memory Compaction? What is its use? b)

- 8. a) What is swapping? What is its purpose?
 - b) Consider the following sequence of memory references generated by a single program in a pure paging system:

10, 11, 104, 170, 173, 177, 309, 245, 246, 247, 458, 364.

Determine the number of page faults for each of the following page replacement policies assuming three (3) page frames are available and all are initially empty.

The size of a page is 100 words:

- i) LRU
- ii) FIFO
- iii) Optimal page replacement. 3 + 4 + 4 + 4
- 9. a) Describe a system model for deadlock.
 - Explain the combined approach to deadlock handling.
 - c) Differentiate process switching and context switching.

5 + 5 + 5

- 10. a) Explain Mutual exclusion.
 - b) Write the first algorithm of mutual exclusion algorithm.
 - c) What are its problems?

5 + 7 + 3

11. Write short notes on any three of the following:

 3×5

- a) Round Robin Scheduling
- b) Thrashing
- c) Virtual memory
- d) Paging and Segmentation.