This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

41/36/ 5/1990

MOAV \star Q61 91-115976/16 \star SU 1567-808-A Rivet and bolt has sealing compound in micro-capsule form in clearances between rivet head, shank ribs and locking ring

MOSC AVIATION INST 09.06.88-SU-439009

(30.05.90) F16b-19/08

09.06.88 as 439009 (1439MB)

The rivet/bolt, esp. for making a sealed joint, consists of a shank (4) with a ring (1) and a sealing compound. The shank has a primary head (3) on one end, ribs (5) and a shearing section on the other,

while the ring engages with the ribs.

The end of the ring facing towards the head has a recess containing the sealing compound, which is contained in microcapsules covered with a protective film. The compound is also contained under the head (3) and on the shank's ribs. The depth of the annular recess in the ring is calculated from a formula based on the material of the ring, its dimensions, and the size of the microcapsules.

When the joint is tightened, the sealing compound fills all the clearances, providing a sealed joint without the use of sealing substances between the workpieces or on top of the joint

components.

ADVANTAGE - More reliable seal. Bul. 20/30.5.90 (4pp Dwg.No.3/3)

© 1991 DERWENT PUBLICATIONS LTD.

128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 303, McLean, VA22101, USA
Unauthorised copying of this abstract not permitted.

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 4439009/31-27

(22) 09.06.88

(46) 30.05.90. Бюл. № 20

(71) Московский авиационный институт им. Серго Орджоникидзе

(72) В.З.Кондрашов, А.А.Годовалов и А.Н.Фомин

(53) 621.884 (088.8)

(56) Ершов В.И., Павлов В.В., Каширин М.Ф., Хухорев В.С. Технология сборки самолетов. - М.: Машиностроение, 1986, с.128.

Патент США № 3139786, кл. 85-7, 1964. (54) БОЛТ-ЗАКЛЕПКА

(57) Изобретение относится к машиностроению, к заклепкам для герметичных соединений. Цель изобретения — повышение надежности герметизации заклепочного соединения. Болт-заклепка состоит из кольца с кольцевой выемкой на торце и стержня с закладной головкой 3, гладким участком 4, участком 5 с кольцевыми ребрами, шейкой и отрывным технологическим хвостовиком. Кольцо установлено на кольцевых ребрах стержня. Герметизирующее сред-

Фиг. 2

000/000 m 100/000

ство 6 в виде микрокапсул герметика, покрытых защитной пленкой, нанесено в кольцевой выемке кольца, под за-кладной головкой стержня и на его кольцевых ребрах. При втягивании стержня в отверстие соединяемых дета-лей и при обжатии на нем кольца про-

исходит разрушение микрокапсул герметика. Герметик заполняет все зазоры и создает герметичное заклепочное соединение без применения внутришовной и поверхностной герметизации.

3 ил.

Изобретение относится к машиностроению, в частности к заклепкам для герметичных соединений.

Цель изобретения - повышение надежности герметизации заклепочного соединения.

На фиг.1 показано кольцо с кольце- 20 вой выемкой, заполненной микрокапсулами герметика; на фиг.2 - болт-заклепка с нанесенными на нее микрокапсулами герметика; на фиг.3 - герметичное заклепочное соединение. 25

Болт-заклепка состоит из кольца 1 с кольцевой торцевой выемкой 2, заполненной микрокапсулами герметика и стержня с закладной головкой 3, включающего гладкий участок 4, средний участок с накатанными кольцевыми ребрами 5, шейку и отрывной технологический хвостовик 7. Под закладную головку и в углублении между кольцевыми ребрами на среднем участке стержня нанесены микрокапсулы герметика 8. Микрокапсулы герметика ващитной пленкой.

Болт-заклепка вставляется в отверстие, на хвостовик устанавливается пресс, и стержень болт заклепки втя-гивается в отверстие. Затем на стержень болт-заклепки устанавливается кольцо 1, далее происходит обжатие кольца и обрыв хвостовика 7 по шей-ке 6.

После втягивания болт-заклепки в отверстие происходит разрушение микрокапсул герметика, расположенных под закладной головкой. При обжатии кольца разрушаются микрокапсулы, расположенные на среднем участке стержня и в кольцевой выемке на торце кольца.

Усилие, действующее на кольцо при обжатии, равно усилию отрыва хвостовика Р. Под действнем силы Р кольцевые выступы (буртики) начинают деформироваться. Для деформации кольцевых выступов до высоты, равной или мень-

шей, чем диаметр микрокапсул (это не15 обходимо, для разрушения микрокапсул),
надо чтобы величина равная площадки
кольцевых выступов S_{AA} после деформации умноженная на предел прочности
материала кольца Gⁿ была равна уси20 лию P:

$$P = S_{dd} \mathcal{E}_{B}^{\kappa} . \qquad (1)$$

Площадь кольцевых выступов по де-5 формации S_{ДД} равна сумме площадей внешнего и внутреннего кольцевых выступов.

$$S_{\Delta\Delta} = S_{BHew} + S_{BHYTp};$$

$$S_{BHew} = \frac{\widehat{n}D^2}{4} - \frac{\widehat{n}(D-21)^2}{4} = \widehat{n}(D1-1^2);$$

$$S_{BHYTP} = \frac{\hat{I}(d+21)^2}{4} + \frac{\hat{I}(d^2)}{4} = \hat{I}(d1+1^4);$$

$$S_{\Delta\Delta} = \widehat{n} (D1-1^2) + \widehat{n} (d1+1^2) = \widehat{n} 1 (d+D),$$

где D - наружный диаметр кольца;

d - внутренний диаметр кольца;

 толщина кольцевого буртика кольца.

45 Объем кольцевых выступов находят из соотношения

$$V_{\kappa} = S_{\Delta\Delta} \cdot h$$
,

о где h - глубина кольцевой выемки, мм. Подставляя S₄₀ из формулы (2) получаем:

$$V_{\nu} = \widehat{n} lh(d+D). \tag{3}$$

Учитывая, что при деформации объем кольцевых выступов остается неизменным, находят площадь кольцевых выступов после деформации

$$S_{\Delta\Delta} = \frac{V_K}{d_{M.K}} = \frac{\int lh(d+D)}{d_{M.K}},$$

где $d_{M,k}$ - диаметр микрокапсул, мм. Подставляя значение S_{ДО} в формулу (1) получим:

$$P = \frac{\int \int h (d+D) \delta_{\underline{a}}^{\kappa}}{d_{M,\kappa}}.$$
 (4)

Необходимо, чтобы кольцевые выступы при осаживании не теряли устойчивости. Кольцевой выступ можно представить как короткий тонкостенный цилиндр с опертыми кромками, нагруженный осевой силой. Критические напряжения потери устойчивости рассчитываются по формуле

$$\mathcal{G}_{\kappa\rho} = \frac{0.9E_{\kappa} \cdot 1^{2}}{h^{2}},$$

при ограничении

$$h \leq 1,22\sqrt{\frac{d1}{2}},$$

$$\begin{cases} \frac{0}{2} \frac{9E_{\kappa}}{h^{\frac{2}{2}}} \frac{1^{2}}{7} \frac{3}{6} \frac{\kappa}{8} \\ h = \frac{P \cdot d}{\sqrt{1}} \frac{d \kappa}{(d+D)6} \frac{\kappa}{8} \end{cases} \qquad \begin{cases} h \leq 1, 22 \sqrt{\frac{d1}{2}} \\ h = \frac{P}{\sqrt{1}} \frac{d \kappa}{(d+D)6} \frac{\kappa}{8} \end{cases}, \quad 1 \leq \frac{P}{\sqrt{1}} \frac{d \kappa}{(d+D)6} \frac{\kappa}{8} \end{cases}$$

50

Решая неравенства, получают

1 >
$$\sqrt{\frac{P \cdot d_{MK}}{\widehat{n}(D+d)} \sqrt{\frac{9E_{K}G_{\delta}^{K}}{1}}}$$

После установки болт-заклепки микрокапсулы, находящиеся под закладной головкой, на среднем участке стержня и в кольцевой выемке в торце кольца, разрушаются, герметик заполняет щели между пакетом и болт-заклепкой, создавая герметичное соединение.

Данное техническое решение позволит создать герметичное болт-заклепочное соединение за счет нанесения микрокапсул герметика под закладную головку, на средний участок стержня в углубления между кольцевыми выступами и в кольцевую выемку, выполненную в торце кольца, который контактирует с пакетом.

1567808

где 1 - толщина стенки колы буртика, мм;

commenced and individual control of the first for the first of the first of the first of the first of the

h - глубина кольцевой вы

d - внутренний диаметр к E_к - модуль упругости мат кольца, кг/мм2.

Критические напряжения до: вышать предел прочности матер 10 кольца Скр 7 6 к.

Подставляя в неравенство з **Ско**, получают

$$5 \frac{0.9E_{k}1^{2}}{h^{2}} > 6_{8}^{k}, \text{ при } h \leq 1,22\sqrt{\frac{5}{2}}$$

Глубина кольцевой выемки h на быть меньше диаметра микрок.

h > d M.K. Используя соотношение (4), ь зависимость между 1 и h .

$$h = \frac{P \cdot d \cdot \kappa}{\sqrt{1 \cdot (d+D)G \cdot \kappa}}$$

На толщину буртика накладыва: ограничения из соотношений (5) ј

Применение болт-заклепки для в нения герметичных швов позволит н 40 производить внутришовную и поверх стную герметизацию шва полисульфи; ми герметиками, что обеспечит сних ние массы конструкции, улучшение у ловий труда за счет отказа от прим 45 нения в производстве токсичных ве ществ, а также снижение трудоемкос сборочных работ.

Формула изобретени

Болт-заклепка, содержащая стержє кольцо и герметизирующее средство, при этом стержень выполнен с эаклад ной головкой на одном конце и конце выми рабрами и отрывным технологиче ким хвостовиком на другом конце, а кольцо установлено на кольцевых ребрах стержня, отличающийс; тем, что, с целью повышения надежнос ти герметизации заклепочного соедине ния, на торце кольца, обращенном к закладной головке стержня, выполнена кольцевая выемка, герметизирующее средство выполнено в виде микрокапсул герметика, покрытых защитной пленкой, и размещено в упомянутой кольцевой выемке кольца, под закладной головкой стержня и на его кольцевых ребрах, при этом глубина кольцевой выемки кольца равна

$$h = \frac{P \cdot d \cdot M \cdot K}{6 \cdot n \cdot (D+d) \cdot 1},$$

при условии, что

$$1 < \frac{P}{\delta_{\frac{K}{8}}(d+D\widehat{\Pi})}; 1 > \sqrt{\frac{P \cdot d_{M,K}}{\widehat{\Pi}(D+d)\sqrt{0,9E_{k}\delta_{\frac{K}{8}}^{K}}}}; 1 > \sqrt{\frac{P^{2} \cdot d_{M,K}^{2}}{(\delta_{\frac{K}{8}})^{2}(0,744d)\widehat{\Pi}^{2}(D+d)^{2}}},$$

- глубина кольцевой выемки, где ћ

MM; толщина кольцевых буртиков, образованных кольцевой выемкой на торце кольца, мм $_\chi$

- предел прочности материала кольца, кг/мм²;

 $d_{M,k}$ - диаметр используемых микро-

капсул герметика, мм;

- наружный диаметр кольца, мм, · D - внутренний диаметр кольца,

- модуль упругости материала кольца, $\kappa \Gamma / MM^2$;

- усилие отрыва хвостовика, ĸг.

Слставитель Н. Никулина Техред Л.Сердюкова

Корректор М.Максимишинец

Редактор Л.Пчалинская

Тираж 552

Подписное

Заказ 1311 ВНИНПИ Государственного комитета по изобретениям и открытиям при ГКИТ СССР 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101