Calculs avec les nombres réels et complexes

Exercice 1 : inégalité (1)

Montrer l'inégalité suivante : pour tout $a, b, c \in \mathbb{R}$, $a^2 + b^2 + c^2 \ge ab + ac + bc$.

Exercice 2 : produit de complexes

- 1) Montrer que $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, \prod_{k=0}^n (1+z^{2^k}) = \sum_{\ell=0}^{2^{n+1}-1} z^\ell.$
- 2) En déduire que $\forall z \in \mathbb{C}, |z| < 1, \lim_{n \to +\infty} \prod_{k=0}^n (1+z^{2^k}) = \frac{1}{1-z}.$

Exercice 3 : inégalité (2)

Soient $n \in \mathbb{N}^*$ et $a_1, \dots, a_n \in [0; +\infty[$.

- 1. Montrer que $\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{k=1}^{n} a_k$.
- 2. On suppose maintenant que $a_1, \dots, a_n \in [1; +\infty[$. Déduire de 1) que $n + \prod_{k=1}^n a_k \ge 1 + \sum_{k=1}^n a_k$.

Exercice 4: inégalité (3)

- 1. Montrer que $\forall n \in \mathbb{N}^*, \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} \sqrt{n-1}$.
- 2. En déduire la valeur de $E\left(\frac{1}{2}\sum_{k=1}^{10000}\frac{1}{\sqrt{k}}\right)$ où E(x) désigne la partie entière d'un réel x.

Suites numériques

Exercice 5 : suites arithmétiques et géométriques

- 1. Soit $(u_n)_{\mathbb{N}}$ une suite arithmétique de raison 2 telle que $u_5 = 7$. Calculer u_{100} .
- 2. Quelle est la somme des n premiers termes d'une suite arithmétique?
- 3. Soit $(u_n)_{\mathbb{N}}$ une suite géométrique de raison q>0 telle que $u_3=2$ et $u_7=18$. Calculer u_{20} .
- 4. Quelle est la somme des n premiers termes d'une suite géométrique ?

Exercice 6 : démonstrations de cours

- 1. Montrer que si $(u_n)_{\mathbb{N}}$ est convergente alors sa limite est unique.
- 2. Montrer que la suite $\left(\frac{1}{\sqrt{n}}\right)_{n\geq 1}$ converge vers 0 en utilisant la définition de la limite.
- 3. Montrer qu'une suite $(u_n)_{\mathbb{N}}$ est convergente si et seulement si les suites extraites $(u_{2n})_{\mathbb{N}}$ et $(u_{2n+1})_{\mathbb{N}}$ sont convergentes vers une même limite.

4. Étudier la convergence des suites définies par $u_n = (-1)^n$ et $v_n = i^n$.

Exercice 7: définition limite

- 1) [DM 1 2011-2012] Montrer, à l'aide de la définition de la limite d'une suite, que la suite de terme général $u_n = \frac{3n}{4n+2}$, pour $n \ge 0$, converge et calculer sa limite.
- 2) [DM 1, 2012-2013] En utilisant la définition de la limite d'une suite, montrer que la suite de terme général $u_n = \frac{5n+3}{3n+5}$ converge et calculer sa limite.

Exercice 8 : cours + convergence de suites (1)

On considère les suites de terme général suivant :

1)
$$\alpha_n = \frac{2 + \cos(n)}{n}$$
, 2) $\beta_n = (2 + \cos(n))n$, 3) $\gamma_n = (-1)^n (2 + \cos(n))n$, 4) $\delta_n = \sqrt{n+1} - \sqrt{n}$.

- 1. **cours**: Montrer qu'une suite convergente est bornée.
- 2. Les suites ci-dessus sont-elles bornées?
- 3. Sont-elles convergentes?

Exercice 9 : convergence de suites (2)

Étudier la convergence et déterminer la limite (si elle existe) des suites suivantes :

1)
$$\frac{\cos(n)}{n}$$
, 2) $\sqrt[n]{3+\sin(n)}$, 3) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$, 4) $\frac{\sum_{k=0}^{n} (3k+1)}{\sum_{k=0}^{n} (2k+3)}$, 5) $\sum_{k=1}^{n} \frac{1}{\sqrt{n^2+2k}}$, 6) $\sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2+2k}}$.

Exercice 10 : convergence de suites (3) [DM 1, 2011-2012] et [DM 1 2012-2013]

La suite de terme général u_n (pour n suffisamment grand), dans chaque cas suivant, est-elle divergente ? Calculer sa limite le cas échéant :

$$u_{n} = \frac{4n^{5}}{6n^{7} - 5n^{3} + n^{2} - 4}, \quad u_{n} = \frac{(n+1)^{3} - (n-1)^{3}}{n^{2} + 1}, \quad u_{n} = \frac{1}{n\left(\sqrt{n^{2} + 2} - n\right)};$$

$$u_{n} = (-1)^{n} \sin\left(\frac{n\pi}{2}\right), \quad u_{n} = \frac{2n - \sqrt{n^{2} - 1}}{\sqrt{n^{2} + 3} - n}, \quad u_{n} = n^{1/n};$$

$$a_{n} = \frac{3^{n} - (-2)^{n}}{3^{n} + (-2)^{n}}, \quad n \ge 0 \quad b_{n} = \sqrt{n^{2} + n + 1} - \sqrt{n^{2} - n + 1}, \quad n \ge 0; \quad c_{n} = \frac{e^{n}}{n^{n}}, \quad n \ge 1;$$

$$d_{n} = \frac{1}{n^{2}} \sum_{k=1}^{n} k, \quad n \ge 0; \quad p_{n} = \left(1 + \frac{1}{n}\right)^{n}, \quad n \ge 1; \quad q_{n} = \frac{n - \sqrt{n^{2} + 1}}{n + \sqrt{n^{2} - 1}}, \quad n \ge 1;$$

$$r_{n} = \frac{n - (-1)^{n}}{n + (-1)^{n}}, \quad n \ge 2; \quad s_{n} = \frac{\sin n}{n + (-1)^{n+1}}, \quad n \ge 1; \quad u_{n} = \frac{1}{n} \sum_{k=1}^{n} \exp(\frac{\ln k}{k}), \quad n \ge 1;$$

$$v_{n} = \frac{1}{n} \sum_{k=1}^{n} \frac{\cos k}{k}, \quad n \ge 1; \quad w_{n} = \frac{1}{n} \sum_{k=1}^{n} \left(1 + \frac{1}{k}\right)^{k}, \quad n \ge 1.$$

Exercice 11 : convergence de suites complexes

Étudier la convergence des suites de terme général donné ci-dessous :

1)
$$u_n = 4 + ni$$
, 2) $v_n = \frac{n}{n+3i} - \frac{ni}{n+1}$, 3) $w_n = \frac{n^2 i^n}{n^3+1}$, 4) $x_n = (-1)e^{in\pi}$, 5) $y_n = e^{ni\frac{\pi}{4}}$, 6) $z_n = \frac{(1+i)^n}{2^n}$, 7) $z_n = \exp\left((-1)^n \frac{i\pi}{n}\right)$.

Exercice 12: suite d'entiers convergente

Soit $(u_n)_{\mathbb{N}}$ une suite telle que $\forall n \in \mathbb{N}, u_n \in \mathbb{Z}$. Montrer que $(u_n)_{\mathbb{N}}$ converge si et seulement si elle est stationnaire.

Exercice 13 : convergence de cos(n) **et** sin(n)

Montrer que l'existence d'une des deux limites $\lim_{n\to +\infty}\sin(n)$ ou $\lim_{n\to +\infty}\cos(n)$ entraînerait l'autre, et que l'existence de ces deux limites conduirait à une contradiction. Conclure.

Exercice 14 : étude de suite

Pour tout entier $n \ge 1$, on pose $u_n = \frac{1}{n} + e^{-n}$.

- 1. Déterminer le sens de variation de la suite $(u_n)_{n>1}$.
- 2. Montrer que la suite $(u_n)_{n\geq 1}$ est bornée.

Exercice 15 : étude de suite

On pose, pour $n \in \mathbb{N}^*$, $u_n = n\pi + \frac{1}{n}$.

- 1. La suite (u_n) est-elle bornée?
- 2. Est-elle convergente?
- 3. Montrer que la suite (v_n) définie par $v_n = \sin(u_n)$ converge vers 0.

Exercice 16 : somme convergente de suites majorées

Soient $a,b\in\mathbb{R}$ et $(u_n)_{\mathbb{N}},(v_n)_{\mathbb{N}}\subseteq\mathbb{R}$ telles que $\forall n\in\mathbb{N},u_n\leq a,v_n\leq b$ et $u_n+v_n\to a+b$. Montrer que $\lim_{n\to+\infty}u_n=a$ et $\lim_{n\to+\infty}v_n=a$.

Exercice 17 : irrationalité de e

Pour commencer en douceur : montrer que $\sqrt{2}$ est irrationnel.

On considère les suites $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$. Par définition $e := \lim_{n \to +\infty} u_n$.

- 1) Montrer que (u_n) et (v_n) sont adjacentes. Conclure que $\forall n \in \mathbb{N}, u_n \leq e \leq v_n$.
- 2) Montrer que les inégalités sont strictes.
- 3) En raisonnant par l'absurde, montrer que e est irrationnel.

Exercice 18 : suite $u_{n=1} = f(u_n)$

Étudier la convergence de la suite suivante : $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + (-1)^n n$.

3

Exercice 19: moyenne arithmético-géométrique

Soient 0 < a < b, soient $(u_n)_{n>0}$ et $(v_n)_{n>0}$ les deux suites définies par

$$u_0 = a$$
, $v_0 = b$, $u_{n+1} = \sqrt{u_n v_n}$, $v_{n+1} = \frac{u_n + v_n}{2}$.

Montrer que ces suites sont adjacentes.

Exercice 20 : borne supérieure, borne inférieure

Calculer $\sup \{u_p, p \ge n\}$, $\inf \{u_p, p \ge n\}$, $\overline{\lim}_{n \to +\infty} u_n$ et $\underline{\lim}_{n \to +\infty} u_n$ pour les suites $(u_n)_n$ suivantes :

- 1. $u_n = (-1)^n \text{ pour } n \ge 0$;
- 2. $u_n = (-1)^n \left(1 + \frac{(-1)^n}{n}\right) \text{ pour } n \ge 1;$
- 3. $u_n = \left(2 + \frac{(-1)^n}{n}\right) \sin\left(\frac{\pi n}{2}\right) \text{ pour } n \ge 1;$
- 4. $u_n = n^{(-1)^n} \text{ pour } n \ge 1.$

Exercice 21 : borne supérieure, borne inférieure

Soit a un nombre réel strictement positif. On pose :

$$A = \left\{ \frac{1}{1+|x|}; |x| < a \right\}, \ B = \left\{ \frac{1}{1+|x|}; |x| > a \right\}.$$

- 1. Déterminer $\max A$ et $\sup A$.
- 2. Déterminer $\sup B.$ L'ensemble B admet-il un maximum ?

Exercice 22: série harmonique

Soit
$$(H_n)_{n\geq 1}$$
 la suite définie par $H_n=\sum_{k=1}^n\frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}.$

1. En intégrant la fonction $x\mapsto \frac{1}{x}$ sur [n;n=1], montrer, pour tout $n\geq 1$, l'inégalité double

$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}.$$

- 2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.
- 3. Déterminer la limite de H_n .
- 4. Montrer que la suite de terme général $u_n := H_n \ln(n)$ converge (indication : on montrera que $(u_n)_{n>1}$ est décroissante).

4

Voici une autre façon de montrer que $(H_n)_{\mathbb{N}^*}$ diverge.

- 1. Montrer $\forall m \in \mathbb{N}, H_{2^{m+1}} H_{2^m} \ge \frac{1}{2}$.
- 2. En déduire que $\lim_{n\to+\infty} H_n = +\infty$.

Exercice 23: moyenne de Cesàro

Soit $(u_n)_{n\geq 1}$ une suite de nombres complexes. Pour tout $n\in\mathbb{N}^*$, on pose

$$c_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

On dit que $(u_n)_{n\geq 1}$ converge au sens de Cesàro si la suite $(c_n)_{n\geq 1}$ converge.

- 1. Montrer que la suite $(u_n)_{n\geq 1}=((-1)^n)_{n\geq 1}$ converge au sens de Cesàro vers une limite que l'on déterminera.
- 2. Montrer que si $(u_n)_{n\geq 1}$ convergente vers l alors $(c_n)_{n\geq 1}$ est également convergente de limite l.

Exercice 24 : suites de Cauchy

- 1. Montrer que la suite $(u_n)_{n\geq 0}$ de terme général $u_n=(-1)^n\frac{n}{n+1}$ n'est pas une suite de Cauchy.
- 2. Montrer que la suite $(u_n)_{n\geq 1}$ de terme général $u_n=\frac{2+(-1)^n}{n}$ est de Cauchy.
- 3. Montrer que la suite $(u_n)_{n\geq 1}$ de terme général $u_n=\sum_{k=1}^n\frac{1}{k}$ n'est pas une suite de Cauchy. Que peut-on dire de cette suite $(u_n)_{n\geq 1}$ lorsque $n\to +\infty$?
- 4. Montrer qu'une suite $(u_n)_{n>0}$ vérifiant $|u_{n+1}-u_n|\leq 2^{-n}$ pour tout $n\geq 0$ est de Cauchy.
- 5. Montrer que la suite $(u_n)_{n\geq 1}$ définie par $u_n=\sum_{k=1}^n\frac{1}{(2+\frac{1}{k})^k}$. est une suite de Cauchy. En déduire qu'elle converge.

Exercice 25 : existence de point fixe

Soit f une application de [0,1] dans lui-même telle qu'il existe un nombre réel positif 0 < k < 1 tel que

$$\forall x, y \in [0, 1], |f(x) - f(y)| \le k |x - y|.$$

Soit $a \in [0, 1]$. On considère la suite $(x_n)_{n>0}$ définie par $x_0 = a$, et $x_n = f(x_{n-1})$ pour tout $n \ge 1$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $|x_{n+1} x_n| \le k^n |x_1 x_0|$ et conclure que la suite $(x_n)_{n \ge 0}$ est une suite de Cauchy.
- 2. Montrer que $l = \lim_{n \to +\infty} x_n$ est l'unique point fixe de la fonction f.

Exercice 26: $u_{n+1} = f(u_n)$

Soit $(u_n)_{n\geq 1}$ la suite de nombres réels définie par la condition initiale $u_1=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}^*, u_{n+1} = 1 + \frac{u_n}{2}.$$

5

- 1. Montrer que $\forall n \in \mathbb{N}^*, u_n < 2$.
- 2. Montrer que $(u_n)_{n\geq 1}$ est croissante.
- 3. En déduire que $(u_n)_{n\geq 1}$ converge et déterminer sa limite.

Exercice 27 : suites réelles [DM 1, 2012-2013]

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n \frac{k}{k^2 + 1}$.

- 1. Montrer que pour tout $n \ge 1$ on a $S_{2n} S_n \ge \frac{1}{4}$.
- 2. En déduire que $\lim_{n\to\infty} S_n = +\infty$.

Exercice 28 : $u_{n+1} = f(u_n)$ [DM 1, 2012-2013]

Soit $(u_n)_{n\geq 0}$ la suite de nombres réels définie par les relations suivantes : $u_0\in]0,1]$ et pour

$$\forall n \ge 1, \ u_{n+1} = \frac{u_n}{2} + \frac{(u_n)^2}{4}.$$

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a $0 < u_n \le 1$.
- 2. Montrer que la suite $(u_n)_{n\geq 0}$ est monotone. En déduire qu'elle est convergente.
- 3. Déterminer la limite de la suite $(u_n)_{n>0}$.

Exercice 29: suites de Cauchy

Soit $(u_n)_{n\geq 0}$ une suite de nombres complexes telle que

$$\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}, \ |u_{p+q} - u_p - u_q| \le 1.$$

- 1. Montrer que $\forall q \in \mathbb{N}, \ \forall k \in \mathbb{N}^*, |u_{kq} ku_q| \leq k 1.$
- 2. Montrer que, pour tout entier $r \ge 0$, on a $|u_{kq+r} u_{kq}| \le |u_r| + 1$.
- 3. En déduire que si k et r désignent respectivement le quotient et le reste de la division euclidienne de n par l'entier q > 0, on a

$$\left| u_n - \frac{n}{q} u_q \right| \le \frac{r}{q} |u_q| + |u_r| + k.$$

4. En déduire que la suite $(u_n/n)_{n\geq 1}$ est convergente.

Exercice 30 : suites périodiques

On rappelle qu'une suite $(u_n)_{\mathbb{N}}$ est périodique s'il existe $T \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, u_{n+T} = u_n$.

1) Montrer que l'ensemble des suites réelles ou complexes périodiques est un espace vectoriel (réel ou complexe).

6

2) Montrer que toute suite de complexes périodique et convergente est constante.

Exercice 31 : espace c_0

Montrer que l'ensemble $c_0 = \{(u_n)_{\mathbb{N}} \subseteq \mathbb{C}, \lim_{n \to +\infty} u_n = 0\}$ est un espace vectoriel sur \mathbb{C} .

Exercice 32: Vrai-faux

Les suites sont réelles. Dites si les affirmations suivantes sont vraies (et dans ce cas, prouvez-le) ou fausses (donnez un contre-exemple).

- 1. Toute suite croissante majorée est convergente.
- 2. De toute suite majorée, on peut extraire une sous-suite convergente.
- 3. Toute suite bornée est convergente.
- 4. Une suite décroissante et majorée converge.
- 5. $(u_n)_{\mathbb{N}}$ tend vers $+\infty$ et $(v_n)_{\mathbb{N}}$ minorée par a>0 alors $(u_n.v_n)_{\mathbb{N}}$ tend vers $+\infty$.
- 6. Une suite de Cauchy qui admet une valeur d'adhérence est convergente.
- 7. Toute suite bornée est de Cauchy.
- 8. Pour $n \in \mathbb{N}$, on a $u_n \le v_n \le w_n$ et $\lim_{n \to +\infty} v_n = l$, $\lim_{n \to +\infty} w_n = l'$, avec $l \le l'$; alors $\lim_{n \to +\infty} u_n \in [l; l']$.
- 9. $(u_n)_{\mathbb{N}}$ convergente et $(v_n)_{\mathbb{N}}$ bornée alors $(u_n.v_n)_{\mathbb{N}}$ est convergente.
- 10. On suppose que $\forall n \in \mathbb{N}, 1 \leq u_n \leq v_n$ et que $(v_n)_{\mathbb{N}}$ converge. Alors $(u_n)_{\mathbb{N}}$ converge.
- 11. On suppose que $\forall n \in \mathbb{N}, 1 \leq |u_n| \leq v_n$ et que $(v_n)_{\mathbb{N}}$ converge vers 1. Alors $(u_n)_{\mathbb{N}}$ converge.
- 12. $\lim_{n \to +\infty} u_n = l \in \mathbb{R} \Leftrightarrow \lim_{n \to +\infty} |u_n| = l$.
- 13. $(u_n)_{\mathbb{N}}$ convergente vers 0 et $(v_n)_{\mathbb{N}}$ bornée alors $(u_n.v_n)_{\mathbb{N}}$ est convergente.
- 14. $(u_n)_{\mathbb{N}}$ tend vers $+\infty$ et $(v_n)_{\mathbb{N}}$ bornée alors $(u_n.v_n)_{\mathbb{N}}$ tend vers $+\infty$.

Exercice 33 : QCM

Sans justifications, donner la (ou les) bonne(s) réponse(s) aux questions suivantes :

- 1. Quelle est la limite, si elle existe, de la suite $(u_n)_{\mathbb{N}}$ définie par $u_n = \frac{n^2 + 1}{2n + 1}$?
 - $a) \frac{1}{2}$ b) 0 $c) + \infty$ d) elle ne converge pas .
- 2. Quelle est la limite, si elle existe, de la suite $(u_n)_{\mathbb{N}}$ définie par $u_n = \sin(2n+1)$?
 - $a) + \infty$ b) 1 c) 1 d) elle ne converge pas .
- 3. Quelle est la limite, si elle existe, de la suite $(u_n)_{\mathbb{N}}$ définie par $u_n = \cos(2n\pi)$?
- 4. On suppose $\lim_{n \to \infty} u_n = 0$. Quelle est la limite, si elle existe, de $v_n = \ln(u_n)$?
 - $a) \ 0 \qquad b) \ -\infty \qquad c) \ 1 \qquad d) \ \ {
 m elle} \ {
 m ne} \ {
 m converge} \ {
 m pas} \ .$
- 5. On suppose $\lim_{n \to \infty} u_n = 1$. Quelle est la limite, si elle existe, de $v_n = u_n \cdot \sin(2n+1)$?
 - $a) \ 0 \qquad b) \ -\infty \qquad c) \ +\infty \qquad d) \ \ {
 m elle} \ {
 m ne} \ {
 m converge} \ {
 m pas} \ .$
- 6. On suppose $\lim_{n \to \infty} u_n = +\infty$. Quelle est la limite, si elle existe, de $v_n = u_n \cdot \sin(2n+1)$?
 - $a) \ 0 \qquad b) \ -\infty \qquad c) \ +\infty \qquad d) \ \ {
 m On \ ne \ peut \ pas \ conclure} \ .$
- 7. Quelle est la limite, si elle existe, de $u_n = (n+1)^2 (n-1)^2$?
 - $a) \ 0 \qquad b) \ + \infty \qquad c) \ \infty \qquad d) \ \ {
 m On \ ne \ peut \ pas \ conclure} \ .$