Session 46: Strong Induction

- Principle of Strong Induction
- Examples of Strong Induction

Strong Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, complete two steps:

Basis Step: Show that P(1) is true

Inductive Step: Show that $\forall k ([P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1))$ is true for all positive integers k.

• Strong Induction is sometimes called the *second principle of* mathematical induction or complete induction.

Properties of Strong Induction

- We can always use strong induction instead of mathematical induction.
- But there is no reason to use it if it is simpler to use mathematical induction.
- In fact, the principles of mathematical induction, strong induction, and the well-ordering property are all equivalent.
- Sometimes it is clear how to proceed using one of the three methods, but not the other two.

Example of Strong Induction

Theorem: Every positive integer n can be written as a sum of distinct powers of two, that is, there exists a set of integers $S = \{k_1, ..., k_m\}$ such

that
$$n = \sum_{j=1}^{m} 2^{k_j}$$
.

Proof: Base Step: $n = \Lambda$, $\sum_{j=1}^{m} 2^{k_j} = 1$, $k_{\Lambda} = 1$

Inductive Step: assume $k = \sum_{j=1}^{m} 2^{k_j}$ for $\{k_{\Lambda_j}, k_{m}\}$

If $k+\Lambda$ is odd, $0 \notin S$, therefore add 0 to S and $\sum_{j=1}^{m} 2^{k_j} + 2^{n_j} = k+\Lambda$.

If $k+\Lambda$ is wen, $k+\Lambda$ is an integer, therefore $k+1 = \sum_{j=1}^{m} 2^{k_j}$ for some $k+1 = \sum_{j=1}^{m} 2^{k_j} + \sum_{j=1}^{m} 2^{k_j}$ for some $k+1 = 2$. $k+1$

Summary

- Principle of Strong Induction
- Proofs can be sometimes simpler with strong induction

Conjedure: Every set of anes in the plane, no doo of which are parallel, med in a common point. "Proof": Basio Step: P(2) is drue Inductive Step P(Q) is done consider le +1 lines l,,.., le+1 by induction hypothesis l, ..., lx meet in a common point p, $l_2, \dots, l_{k+1} \longrightarrow p_2$ we show that $\rho_1 = \rho_2$ by contradiction assume $p_1 \neq p_2$: then l_2 , , l_k have to coincide p_2 Dus p1 = P2 and P(2+1) is true ?

The problem: verify the inductive step for le+1=3 $l_{11}l_{2}, l_{3}$ $l_{21}l_{2}, l_{3}$ assume $p_{1} \neq p_{2}$, then l_{2} passes through $p_{11}p_{2}$ P_{1} BUT there is no contradiction!

We would have do use P(3) as base case, but we cannot show P(3)!