FIGURE 1

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGTTCCCCGAAACCCGGCCG CTAAGCGAGGCCTCCTCCCCCCAGATCCGAACGGCCTGGGCGGGGTCACCCCGGCTGGGA CAAGAAGCCGCCTGCCTGCCCGGGCCCGGGGAGGGGGCTGGGGCTGGGGCCGGAGGCGG GGTGTGAGTGGGTGTGCGGGGGGGGGGGGGGGTTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG CCGCCGCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCCCAGCCTCCCGCACCCCCATCGCCGG AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGTGGTGGTCCACGTATGG ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGGCCCCCTCGCCTTCTCGGACGCGGGGCC CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGC $\tt CGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT$ ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG GAGACCATGCCCGGGCCTCTTCACTGCTGCCAGGGGCTGTGGTACCTGCAGCGTGGGGGACG TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAAACATCTAGAA GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCTGGGCCCCCATTCTGCTCCCTCGA GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC CCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAGAT TTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

FIGURE 2

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLEVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

signal peptide:
amino acids 1-22

N-myristoylation sites: amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site: amino acids 48-59

HBGF/FGF domain: amino acids 80-131

FIGURE 9

FIGURE 10

Fig. 15.

Figure 20

			Ţ	rhFGF19	
	Vehicle	icle	5.0 µg	2.0 µg	0.5 µg
NPY	1.0 +/- 0.08	0.08	0.81 +/- 0.23	0.63 +/-0.20	0.40 +/- 0.08
AgRP	1.0 +/+ 0.33	0.33	0.26 +/- 0.10	0.57 +/- 0.26	0.29 +/- 0.16
POMC	1.0 +/+ 0.27	. 0.27	1.49 +/- 0.42	3.48 +/- 1.5	38.77 +/- 3.32
MC4-R	1.0 +/- 0.16	- 0.16	0.47 +/- 0.09	0.70 +/- 0.10	0.48 +/- 0.08