Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Test 19

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{1}{2} - \frac{2}{3} + \frac{3}{4}\right) : \frac{14}{12} = \frac{6 - 8 + 9}{12} : \frac{14}{12} =$	3р
	$= \frac{7}{12} \cdot \frac{12}{14} = \frac{1}{2}$	2p
2.	$f(1) = 0 \Rightarrow 1 + a + 1 = 0$	3p
	a = -2	2p
3.	$3x - 4 = x + 20 \Rightarrow 2x = 24$	3p
	x = 12, care convine	2p
4.	Mulțimea M are 10 elemente, deci sunt 10 cazuri posibile	2p
	În mulțimea M sunt 5 numere pare, deci sunt 5 cazuri favorabile	2p
	nr. cazuri favorabile 5 1	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{10} = \frac{1}{2}$	1p
5.	Înălțimea din C a triunghiului ABC este distanța de la punctul C la dreapta AB	3p
	$d\left(C,AB\right)=4$	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{12}{13}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$ $= 4 - 6 = -2$	3p
	=4-0=-2	2p
b)	$A+B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$	3 p
	$x \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 5x & 5x \\ 5x & 5x \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \text{ de unde obţinem } x = \frac{1}{5}$	2 p
c)	$A \cdot B = \begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}, B \cdot A = \begin{pmatrix} 13 & 20 \\ 5 & 8 \end{pmatrix}, \text{deci } A \cdot B - B \cdot A - C = \begin{pmatrix} -6 & -16 \\ 14 & 4 \end{pmatrix}$	3 p
	$2X = \begin{pmatrix} -6 & -16 \\ 14 & 4 \end{pmatrix}, \text{ deci } X = \begin{pmatrix} -3 & -8 \\ 7 & 2 \end{pmatrix}$	2p
2.a)	$2020 \circ (-4) = 2020 \cdot (-4) + 4 \cdot 2020 + 4 \cdot (-4) + 12 =$	3p
	=-16+12=-4	2p

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4, pentru orice numere reale x şi y	3 p
c)	$x \circ x = (x+4)^2 - 4$, pentru orice număr real x	2p
	$(x+4)^2 - 4 = x \Leftrightarrow (x+4)(x+3) = 0 \Leftrightarrow x = -4 \text{ sau } x = -3$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (4x^3)' + (6x^2)' + 5' =$	2p
	$=12x^2+12x=12x(x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f'(x)}{f(x) - 4x^3} = \lim_{x \to +\infty} \frac{12x^2 + 12x}{6x^2 + 5} = \lim_{x \to +\infty} \frac{12x^2 \left(1 + \frac{1}{x}\right)}{x^2 \left(6 + \frac{5}{x^2}\right)} =$	3 p
	$=\frac{12}{6}=2$	2 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 0$	2p
	$x \in (-\infty, -1] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, -1]$, $x \in [-1, 0] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-1, 0]$, $x \in [0, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[0, +\infty)$	3 p
2.a)	$\int_{0}^{2} \left(f(x) - 4x^{2} \right) dx = \int_{0}^{2} 3x^{3} dx = \frac{3x^{4}}{4} \Big _{0}^{2} =$	3 p
	$=\frac{3}{4}\cdot 2^4=12$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{3x^4}{4} + \frac{4x^3}{3} + c$, unde $c \in \mathbb{R}$	2p
	$F(0) = 2020 \Rightarrow c = 2020$, deci $F(x) = \frac{3x^4}{4} + \frac{4x^3}{3} + 2020$	3 p
c)	$\int_{1}^{m} \frac{f(x)}{x^{2}} dx = \int_{1}^{m} (3x+4) dx = \left(\frac{3x^{2}}{2} + 4x\right) \Big _{1}^{m} = \frac{3m^{2}}{2} + 4m - \frac{11}{2}$	3 p
	$\frac{3m^2}{2} + 4m - \frac{11}{2} = \frac{17}{2} \Rightarrow 3m^2 + 8m - 28 = 0 \text{ si, cum } m > 1 \text{, obținem } m = 2$	2p