2.10 Problems

- Q2-1 Sketch the following discrete-time signals for $0 \le n \le 8$:
 - (a) $x(n) = \delta(n)$
- (b) $x(n) = 0.5\delta(n-2)$
- (c) x(n) = u(n)
- (d) x(n) = 0.5u(n-3)
- (e) x(n) = u(n) u(n-3)
- (f) $x(n) = 2\delta(n) 3\delta(n-1) + \delta(n-3)$
- (g) $x(n) = \{2, -3, 0, 1\}$
- (h) $x(n) = 3(0.5)^n u(n-2)$
- Q2-2 A discrete signal is given as $x(n) = \delta(n-1) 2\delta(n-2) + 4\delta(n-3)$. Sketch the following signals for $-6 \le n \le 6$:
 - (a) x(n-2)

(b) x(n+3)

(c) x(-n)

- (d) x(2-n)
- Q2-3 Write down the difference equations for the digital network shown in Figure 2.32 and Figure 2.33.

Figure 2.33 Digital network II

Figure 2.32 Digital network I

- Q2-4 Draw the digital network for the system whose difference equation is: y(n) = 0.5x(n) + 0.8x(n-1) + 0.7y(n-1) 0.2y(n-2)
- Q2-5 (a) Explain what the impulse response of a system means.
 - (b) A system is described by the difference equation,

$$y(n) = 0.5x(n) + 0.5x(n-1).$$

Calculate, for $0 \le n \le 5$:

- (i) The system impulse response, h(n).
- (ii) The output, y(n), if $x(n) = \{1, 0.5, -2\}$.
- Q2-6 For the digital system in Figure 2.33, determine the output of the system for $0 \le n \le 8$, assuming that y(n) = 0 when n < 0, if the input applied to the system is:
 - (a) $x(n) = \delta(n)$
- (b) $x(n) = 2\delta(n) 3\delta(n-1) + \delta(n-3)$

Q2-7 Find the impulse response of the system for $0 \le n \le 5$ whose difference equation is given by:

$$y(n) = 0.5x(n) + 0.8x(n-1) + 0.7y(n-1) - 0.2y(n-2)$$

Assume that y(n) = 0 when n < 0.

Q2-8 For the digital network shown in Figure 2.34, obtain the impulse response of the system for $0 \le n \le 10$. Assume that t(n) = 0 when n < 0.

Figure 2.34 Digital network of a system

- Q2-9* A digital system has its digital network shown in Figure 2.35.
 - (a) Derive the difference equation.
 - (b) Calculate its impulse response for n = 0, ..., 3 assuming that y(n) = 0 when n < 0.

Figure 2.35 Digital network of a system

Q2-10* The difference equation of a digital system is given by:

$$y(n) = x(n) + y(n-1) - y(n-2)$$
.

Assume that y(n) = 0 when n < 0.

- (a) Compute the impulse response of this system for n = 0, ..., 7.
- (b) Based on the impulse response, what can you conclude about the stability of this system?

- Q2-11* A linear time invariant system's response to a unit impulse is given by $y(n) = \left(\frac{1}{2}\right)^n u(n)$. Let $y_1(n)$ be the output of this system for a given input $x_1(n) = 4\delta(n) + \delta(n-2)$. What will be the value of $y_1(8)$?
- Q2-12* A linear time invariant system's response to a unit step function is given as $y(n) = e^{-n}u(n)$. Determine the impulse response of this system and calculate the values of y(0), y(1) and y(2).
- Q2-13* Consider the discrete-time sequences given below:
 - (i) $x_1(n) = 2\delta(n-1) 0.5\delta(n-2) \delta(n-3)$
 - (ii) $x_2(n) = -4\delta(n) + 2\delta(n-2) 2\delta(n-3)$
 - (iii) $h_1(n) = \delta(n) + 3\delta(n-1)$
 - (iv) $h_2(n) = 2\delta(n) 2\delta(n-1) + \delta(n-2)$

Determine the following output sequences:

- (a) $y(n) = h_1(n) * x_1(n)$
- (b) $y(n) = h_2(n) * x_1(n)$
- (c) $y(n) = x_2(n) * x_1(n)$
- (d) $y(n) = [h_1(n) * h_2(n)] * x_1(n)$
- (e) $y(n) = [h_1(n) + h_2(n)] * x_2(n)$
- (f) $y(n) = [h_1(n) h_2(n)] * [x_1(n) + x_2(n)]$
- Q2-14* Determine the cross-correlation of the two sequences given as:

$$x_1(n) = \delta(n) + 2\delta(n-1) - \delta(n-2) - 2\delta(n-3)$$
 and $x_2(n) = 2\delta(n) - \delta(n-1)$.

At which lag index will the maximum correlation peak be obtained?

Q2-15* Determine the autocorrelation of the sequence $x_1(n)$ in Q2-13.