Lecture 1 Section 7.1 One-To-One Functions; Inverses

Jiwen He

1 One-To-One Functions

1.1 Definition of the One-To-One Functions

What are One-To-One Functions? Geometric Test

Horizontal Line Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

What are One-To-One Functions? Algebraic Test

Definition 1. A function f is said to be *one-to-one* (or injective) if

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.

Lemma 2. The function f is one-to-one if and only if

$$\forall x_1, \forall x_2, \ x_1 \neq x_2 \quad implies \quad f(x_1) \neq f(x_2).$$

Examples and Counter-Examples

Examples 3. • f(x) = 3x - 5 is 1-to-1.

- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof. • $f(x_1) = f(x_2) \Rightarrow 3x_1 - 5 = 3x_2 - 5 \Rightarrow x_1 = x_2$. In general, f(x) = ax - b, $a \neq 0$, is 1-to-1.

- $f(1) = (1)^2 = 1 = (-1)^2 = f(-1)$. In general, $f(x) = x^n$, n even, is not 1-to-1.
- $f(x_1) = f(x_2)$ \Rightarrow $x_1^3 = x_2^3$ \Rightarrow $x_1 = x_2$. In general, $f(x) = x^n$, n odd, is 1-to-1.
- $f(x_1) = f(x_2)$ \Rightarrow $\frac{1}{x_1} = \frac{1}{x_2}$ \Rightarrow $x_1 = x_2$. In general, $f(x) = x^{-n}$, n odd, is 1-to-1.
- $f(0) = 0^n 0 = 0 = (1)^n 1 = f(1)$. In general, 1-to-1 of f and g does not always imply 1-to-1 of f + g.

1.2 Properties of One-To-One Functions

Properties

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.
$$f \circ g(x_1) = f \circ g(x_2) \Rightarrow f(g(x_1)) = f(g(x_2)) \Rightarrow g(x_1) = g(x_2) \Rightarrow x_1 = x_2.$$

Examples 4. • $f(x) = 3x^3 - 5$ is one-to-one, since $f = g \circ u$ where g(u) = 3u - 5 and $u(x) = x^3$ are one-to-one.

- $f(x) = (3x 5)^3$ is one-to-one, since $f = g \circ u$ where $g(u) = u^3$ and u(x) = 3x 5 are one-to-one.
- $f(x) = \frac{1}{3x^3 5}$ is one-to-one, since $f = g \circ u$ where $g(u) = \frac{1}{u}$ and $u(x) = 3x^3 5$ are one-to-one.

1.3 Increasing/Decreasing Functions and One-To-Oneness

 ${\bf Increasing/Decreasing\ Functions\ and\ One-To-Oneness}$

Definition 5. • A function f is (strictly) *increasing* if

$$\forall x_1, \forall x_2, x_1 < x_2 \text{ implies } f(x_1) < f(x_2).$$

• A function f is (strictly) decreasing if

$$\forall x_1, \forall x_2, x_1 < x_2 \text{ implies } f(x_1) > f(x_2).$$

Theorem 6. Functions that are increasing or decreasing are one-to-one.

Proof. For
$$x_1 \neq x_2$$
, either $x_1 < x_2$ or $x_1 > x_2$ and so, by monotonicity, either $f(x_1) < f(x_2)$ or $f(x_1) > f(x_2)$, thus $f(x_1) \neq f(x_2)$.

Sign of the Derivative Test for One-To-Oneness

Theorem 7. • If f'(x) > 0 for all x, then f is increasing, thus one-to-one.

• If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples 8. • $f(x) = x^3 + \frac{1}{2}x$ is one-to-one, since

$$f'(x) = 3x^2 + \frac{1}{2} > 0$$
 for all x .

•
$$f(x) = -x^5 - 2x^3 - 2x$$
 is one-to-one, since

$$f'(x) = -5x^4 - 6x^2 - 2 < 0$$
 for all x .

•
$$f(x) = x - \pi + \cos x$$
 is one-to-one, since
and $f'(x) = 0$ only at $x = \frac{\pi}{2} + 2k\pi$.

$$f'(x) = 1 - \sin x \ge 0$$

2 Inverse Functions

2.1 Definition of Inverse Functions

What are Inverse Functions?

Definition 9. Let f be a one-to-one function. The *inverse* of f, denoted by f^{-1} , is the unique function with domain equal to the range of f that satisfies

$$f(f^{-1}(x)) = x$$
 for all x in the range of f .

Warning

DON'T Confuse f^{-1} with the reciprocal of f, that is, with 1/f. The "-1" in the notation for the inverse of f is not an exponent; $f^{-1}(x)$ does not mean 1/f(x).

Example

Proof. • By definition, f^{-1} satisfies the equation

$$f(f^{-1}(x)) = x$$
 for all x .

• Set $y = f^{-1}(x)$ and solve f(y) = x for y:

$$f(y) = x \quad \Rightarrow \quad y^3 = x \quad \Rightarrow \quad y = x^{1/3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = x^{1/3}.$$

In general,

$$f(x) = x^n$$
, n odd, \Rightarrow $f^{-1}(x) = x^{1/n}$.

Example

Example 11. • $f(x) = 3x - 5 \implies f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$. Proof. • By definition, f^{-1} satisfies $f(f^{-1}(x)) = x, \forall x$.

• Set $y = f^{-1}(x)$ and solve f(y) = x for y:

$$f(y) = x$$
 \Rightarrow $3y - 5 = x$ \Rightarrow $y = \frac{1}{3}x + \frac{5}{3}$.

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}.$$

In general,

$$f(x) = ax + b, \ a \neq 0, \quad \Rightarrow \quad f^{-1}(x) = \frac{1}{a}x - \frac{b}{a}.$$

2.2 Properties of Inverse Functions

Undone Properties

$$f \circ f^{-1} = \mathrm{Id}_{\mathcal{R}(f)}$$

 $\mathcal{D}(f^{-1}) = \mathcal{R}(f)$

$$x = f(f^{-1}(x))$$

f

$$f^{-1}(x)$$

$$f^{-1} \circ f = \mathrm{Id}_{\mathcal{D}(f)}$$

 $\mathcal{R}(f^{-1}) = \mathcal{D}(f)$

f(x)

$$f^{-1}$$

Ĵ

$$\chi$$

$$f^{-1}(f(x)) = x$$

Theorem 12. By definition, f^{-1} satisfies

$$f(f^{-1}(x)) = x$$
 for all x in the range of f .

It is also true that

$$f^{-1}(f(x)) = x$$
 for all x in the domain of f .

Proof.

• $\forall x \in \mathcal{D}(f)$, set y = f(x). Since $y \in \mathcal{R}(f)$,

$$f(f^{-1}(y)) = y \quad \Rightarrow \quad f(f^{-1}(f(x))) = f(x).$$

• f being one-to-one implies $f^{-1}(f(x)) = x$.

Graphs of f and f^{-1}

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line y = x.

Example 13. Given the graph of f, sketch the graph of f^{-1} .

Solution

First draw the line y = x. Then reflect the graph of f in that line.

Corollary 14. f is continuous \Rightarrow so is f^{-1} .

2.3 Differentiability of Inverses

Differentiability of Inverses

Theorem 15.

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x).$$

Proof. • $\forall y \in \mathcal{D}(f^{-1}) = \mathcal{R}(f), \exists x \in \mathcal{D}(f) \text{ s.t. } y = f(x).$ By definition,

$$f^{-1}(f(x)) = x \quad \Rightarrow \quad \frac{d}{dx}f^{-1}(f(x)) = (f^{-1})'(f(x))f'(x) = 1.$$

• If $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \Rightarrow \quad (f^{-1})'(y) = \frac{1}{f'(x)}.$$

Example

Example 16. Let $f(x) = x^3 + \frac{1}{2}x$. Calculate $(f^{-1})'(9)$.

Solution

- Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.
- Note that $(f^{-1})'(y) = \frac{1}{f'(x)}, y = f(x).$
- To calculate $(f^{-1})'(y)$ at y = 9, find a number x s.t. f(x) = 9:

$$f(x) = 9$$
 \Rightarrow $x^3 + \frac{1}{2}x = 9$ \Rightarrow $x = 2$.

• Since $f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$, then $(f^{-1})'(9) = \frac{1}{f'(2)} = \frac{2}{25}$.

Note that to calculate $(f^{-1})'(y)$ at a specific y using

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x),$$

we only need the value of x s.t. f(x) = y, not the inverse function f^{-1} , which may not be known explicitly.

Daily Grades

Daily Grades

- 1. f(x) = x, $f^{-1}(x) = ?$: (a) not exist, (b) x, (c) $\frac{1}{x}$.
- 2. $f(x) = x^3$, $f^{-1}(x) = ?$: (a) not exist, (b) $x^{\frac{1}{3}}$, (c) $\frac{1}{x^3}$.
- 3. $f(x) = x^2$, $f^{-1}(x) = ?$: (a) not exist, (b) $x^{\frac{1}{2}}$, (c) $\frac{1}{x^2}$.
- 4. f(x) = 3x 3, $(f^{-1})'(1) = ?$: (a) not exist, (b) 3, (c) $\frac{1}{3}$.

Outline

Contents

L	One	To-One Functions	1	
		Definition		
	1.2	Properties	2	
	1.3	Monotonicity	:	
			3	
	Inverses			
	2.1	Definition	3	
	2.2	Properties	8	
	2.3	Differentiability	11	