10

Parametric Equations and Polar Coordinates

Copyright © Cengage Learning. All rights reserved.

Calculus with Parametric Curves

Tangents

Tangents

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x = f(t), y = g(t), where y is also a differentiable function of x.

Then the Chain Rule gives

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

Tangents

If $dx/dt \neq 0$, we can solve for dy/dx:

1

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \quad \frac{dx}{dt} \neq 0$$

It is also useful to consider d^2y/dx^2 .

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

A curve *C* is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- (a) Show that C has two tangents at the point (3, 0) and find their equations.
- (b) Find the points on *C* where the tangent is horizontal or vertical.
- (c) Determine where the curve is concave upward or downward.
- (d) Sketch the curve.

Figure 1

Areas

Areas

We know that the area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$, where $F(x) \ge 0$.

If the curve is traced out once by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, then we can calculate an area formula by using the Substitution Rule for Definite Integrals as follows:

$$A = \int_a^b y \, dx = \int_\alpha^\beta g(t) f'(t) \, dt \qquad \text{or} \quad \int_\beta^\alpha g(t) f'(t) \, dt$$

Find the area under one arch of the cycloid

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

Figure 3

Example - Solution

$$A = \int_0^{2\pi r} y \, dx = \int_0^{2\pi} r(1 - \cos \theta) \, r(1 - \cos \theta) \, d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 \, d\theta$$

$$= r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) \, d\theta$$

$$= r^2 \int_0^{2\pi} \left[1 - 2\cos \theta + \frac{1}{2}(1 + \cos 2\theta) \right] \, d\theta$$

$$= r^2 \left[\frac{3}{2}\theta - 2\sin \theta + \frac{1}{4}\sin 2\theta \right]_0^{2\pi}$$

$$= r^2 \left(\frac{3}{2} \cdot 2\pi \right) = 3\pi r^2$$

We already know how to find the length L of a curve C given in the form y = F(x), $a \le x \le b$.

If F' is continuous, then

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Suppose that C can also be described by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, where dx/dt = f'(t) > 0.

This means that C is traversed once, from left to right, as t increases from α to β and $f(\alpha) = a$, $f(\beta) = b$.

Putting Formula 1 into Formula 2 and using the Substitution Rule, we obtain

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^{2}} \frac{dx}{dt} dt$$

Since dx/dt > 0, we have

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Theorem If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Notice that the formula in Theorem 5 is consistent with the general formulas $L = \int ds$ and $(ds)^2 = (dx)^2 + (dy)^2$.

Find the length of one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

Surface Area

Surface Area

Suppose the curve c given by the parametric equations $x = f(t), y = g(t), \ \alpha \le t \le \beta$, where f', g' are continuous, $g(t) \ge 0$, is rotated about the x-axis. If C is traversed exactly once as t increases from α to β , then the area of the resulting surface is given by

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The general symbolic formulas $S = \int 2\pi y \, ds$ and $S = \int 2\pi x \, ds$ are still valid, but for parametric curves we use

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Show that the surface area of a sphere of radius r is $4\pi r^2$.