KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS

WS 2013/14

Dr. Christoph Schmoeger

Heiko Hoffmann

Höhere Mathematik I für die Fachrichtung Informatik

Lösungsvorschläge zum 2. Übungsblatt

Aufgabe 5

Wir betrachten die Ungleichungen

- a) $2^n > n^3$ sowie
- $\mathbf{b)} \quad n \cdot \sqrt{n} > n + \sqrt{n}.$

Bestimmen Sie für jede dieser Ungleichungen alle natürlichen Zahlen n, welche diese erfüllen, und beweisen Sie Ihre Behauptungen.

$L\"{o}sungsvorschlag$:

zu a): Wir behaupten $\{n \in \mathbb{N} : 2^n \ge n^3\} = \mathbb{N} \setminus \{2, 3, \dots, 9\}$. Zunächst einmal gilt

- $2^1 = 2 \ge 1 = 1^3$,
- $2^2 = 4 < 8 = 2^3$,
- $2^3 = 8 < 27 = 3^3$
- $2^4 = 16 < 64 = 4^3$,
- $2^5 = 32 < 125 = 5^3$.
- $2^6 = 64 < 216 = 6^3$,
- $2^7 = 128 < 343 = 7^3$.
- \bullet 2⁸ = 256 < 512 = 8³.
- $2^9 = 512 < 729 = 9^3$ sowie
- $2^{10} = 1024 > 1000 = 10^3$.

Wir zeigen nun mit Hilfe vollständiger Induktion, dass $2^n \ge n^3$ für alle $n \ge 10$ gilt. Den Induktionsanfang n=10 haben wir gerade eben schon behandelt, sodass wir uns gleich schon dem Induktionsschritt zuwenden können. Es sei nun $n \ge 10$ derart, dass $2^n \ge n^3$ erfüllt ist (Induktionsvoraussetzung). Dann folgt

$$2^{n+1} = 2^n \cdot 2 \ge n^3 \cdot 2.$$

Der Induktionsschritt ist getan, wenn wir $2 \cdot n^3 \ge (n+1)^3$ nachweisen können. Das Bestehen dieser Ungleichung ist zum Bestehen der Ungleichung $2 \ge \left(1 + \frac{1}{n}\right)^3$ äquivalent. Wegen $n \ge 10$ gilt nun aber in der Tat

$$\left(1 + \frac{1}{n}\right)^3 \le \left(1 + \frac{1}{10}\right)^3 = \frac{11^3}{1000} = \frac{1331}{1000} < 2.$$

Bemerkung: Unser Beweis zeigt mehr, als wir behauptet haben: Tatsächlich haben wir gezeigt, dass für n > 10 sogar $2^n > n^3$ gilt.

Des Weiteren beachte man, dass sich der Induktionsschritt bereits für $n \ge 4$ (wegen $\left(1 + \frac{1}{n}\right)^3 \le \left(1 + \frac{1}{4}\right)^3 = \frac{125}{64} < 2$) durchführen lässt. Dieses Beispiel zeigt also, dass es bei der vollständigen Induktion auch wesentlich auf den Induktionsanfang ankommt!

 $zu\ b$): Wir behaupten, dass $\{n\in\mathbb{N}:\ n\sqrt{n}>n+\sqrt{n}\}=\mathbb{N}\setminus\{1,2\}$ erfüllt ist. Zunächst sehen wir, dass $1\cdot\sqrt{1}=1<2=1+\sqrt{1}$ gilt. Wegen $2\cdot\sqrt{2}-(2+\sqrt{2})=\sqrt{2}-2<0$ (beachte: $(\sqrt{2})^2=2<4=2^2$) haben wir auch $2\cdot\sqrt{2}<2+\sqrt{2}$. Schließlich gilt $3\cdot\sqrt{3}-(3+\sqrt{3})=2\sqrt{3}-3>0$ (beachte: $(2\sqrt{3})^2=12>9=3^2$). Wir weisen jetzt mit Hilfe vollständiger Induktion nach, dass $n\cdot\sqrt{n}>n+\sqrt{n}$ für alle $n\geq 3$ erfüllt ist. Den Induktionsanfang n=3 haben wir gerade eben schon behandelt, sodass wir uns gleich schon dem Induktionsschritt zuwenden können. Es sei nun $n\geq 3$ derart, dass $n\cdot\sqrt{n}>n+\sqrt{n}$ gilt (Induktionsvoraussetzung). Wir beachten nun, dass für alle x>0 wegen $(\sqrt{x+1})^2=x+1< x+2\sqrt{x}+1=(\sqrt{x}+1)^2$ die Ungleichung $\sqrt{x+1}<\sqrt{x}+1$ gilt. Damit und mit der Induktionsvoraussetzung erhalten wir einerseits

$$n + 1 + \sqrt{n+1} < n + \sqrt{n} + 2 < n \cdot \sqrt{n} + 2.$$

Andererseits gilt (wegen $n \geq 3$)

$$(n+1)\sqrt{n+1} = n\sqrt{n+1} + \sqrt{n+1} > n\sqrt{n} + \sqrt{3+1} = n\sqrt{n} + \sqrt{4} = n\sqrt{n} + 2,$$

sodass wir insgesamt $n+1+\sqrt{n+1}<(n+1)\sqrt{n+1}$ erhalten.

Aufgabe 6

- a) Beweisen Sie die folgenden Aussagen.
 - (i) Ist $q \in \mathbb{R} \setminus \{1\}$ und $n \in \mathbb{N}_0$, so gilt $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$.
 - (ii) Es gilt $\sum_{k=0}^{n} {n \choose k} (-1)^k = 0$ für jedes $n \in \mathbb{N}$.
 - (iii) Für alle $n \in \mathbb{N}$ hat man $\sum_{k=0}^{n} {n \choose k} = 2^n$.
 - (iv) Die Zahl 23 ist für jedes $n \in \mathbb{N}_0$ ein Teiler von $5^{2n} 2^n$.
- **b)** Zeigen Sie: Ist $n \in \mathbb{N}$ mit $n \geq 2$ und sind $a, b \in \mathbb{R}$ mit a + b > 0 und $a \neq b$, so gilt $2^{n-1}(a^n + b^n) > (a + b)^n$.

Lösungsvorschlag:

zu a) (i): Wir beweisen die Behauptung für fixiertes $q \in \mathbb{R} \setminus \{1\}$ durch vollständige Induktion nach $n \in \mathbb{N}_0$.

Induktionsanfang n = 0: Es gilt $\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$.

Induktionsvoraussetzung: Es gelte $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ für ein $n \in \mathbb{N}_0$.

Induktionsschritt: Mit der Induktionsvoraussetzung erhalten wir

$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^{n} q^k + q^{n+1} = \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q} = \frac{1 - q^{(n+1)+1}}{1 - q}.$$

zu a) (ii)& (iii): Der binomische Lehrsatz liefert

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = \sum_{k=0}^{n} \binom{n}{k} (-1)^k (1)^{n-k} = (-1+1)^n = 0$$

sowie

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} (1)^{k} (1)^{n-k} = (1+1)^{n} = 2^{n}.$$

zu a) (iv): Wir beweisen die Behauptung durch vollständige Induktion nach $n \in \mathbb{N}_0$.

Induktionsanfang n = 0: Dann ist $5^{2n} - 2^n = 5^0 - 2^0 = 0$ und 23 ist ein Teiler von 0.

Induktionsvoraussetzung: Es sei nun für ein $n \in \mathbb{N}_0$ angenommen, dass 23 die Zahl $5^{2n} - 2^n$ teilt.

Induktionsschritt: Es gilt

$$5^{2(n+1)} - 2^{n+1} = 25 \cdot 5^{2n} - 2 \cdot 2^n = 2 \cdot (5^{2n} - 2^n) + 23 \cdot 5^{2n}.$$

Nach Induktionsvoraussetzung teilt 23 die Zahl $5^{2n} - 2^n$, d.h., es gibt ein $k \in \mathbb{N}_0$ derart, dass $k \cdot 23 = 5^{2n} - 2^n$ erfüllt ist. Dies liefert nun

$$5^{2(n+1)} - 2^{n+1} = (2k + 5^{2n}) \cdot 23,$$

woraus folgt, dass 23 auch die Zahl $5^{2(n+1)} - 2^{n+1}$ teilt.

zu b): Wir fixieren $a, b \in \mathbb{R}$ mit a + b > 0 und $a \neq b$ und beweisen die Behauptung durch vollständige Induktion nach $n \in \mathbb{N} \setminus \{1\}$.

Induktionsanfang n = 2: Es gilt

$$2^{2-1}(a^2+b^2) = 2 \cdot a^2 + 2 \cdot b^2 = (a+b)^2 + a^2 + b^2 - 2ab = (a+b)^2 + (a-b)^2 > (a+b)^2,$$

wobei die letzte Ungleichung aufgrund von $a \neq b$ gilt.

Induktionsvoraussetzung: Es gelte $2^{n-1}(a^n+b^n) > (a+b)^n$ für ein $n \in \mathbb{N} \setminus \{1\}$.

Induktionsschritt: Wegen a+b>0 folgt einerseits unter Verwendung der Induktionsvoraussetzung

(1)
$$(a+b)^{n+1} = (a+b)^n (a+b) < 2^{n-1} (a^n + b^n) (a+b)$$
$$= 2^{n-1} (a^{n+1} + b^{n+1}) + 2^{n-1} (a^n b + ab^n).$$

Andererseits hat man

$$2^{n}(a^{n+1} + b^{n+1}) - 2^{n-1}(a^{n+1} + b^{n+1}) - 2^{n-1}(a^{n}b + ab^{n})$$

$$= 2^{n-1}(a^{n+1} + b^{n+1}) - 2^{n-1}(a^{n}b + ab^{n})$$

$$= 2^{n-1}(a^{n}(a - b) + b^{n}(b - a))$$

$$= 2^{n-1}(a - b)(a^{n} - b^{n}).$$

Wenn wir jetzt noch $2^{n-1}(a-b)(a^n-b^n) > 0$ begründen können, so sind wir fertig. Denn dann erhalten wir

$$2^{n}(a^{n+1}+b^{n+1})-2^{n-1}(a^{n+1}+b^{n+1})-2^{n-1}(a^{n}b+ab^{n})>0$$

oder äquivalent

$$2^{n}(a^{n+1}+b^{n+1}) > 2^{n-1}(a^{n+1}+b^{n+1}) + 2^{n-1}(a^{n}b+ab^{n}),$$

was zusammen mit (1) schließlich

$$(a+b)^{n+1} < 2^{n-1}(a^{n+1}+b^{n+1}) + 2^{n-1}(a^nb+ab^n) < 2^{(n+1)-1}(a^{n+1}+b^{n+1})$$

liefert.

Nun also zur Begründung der Ungleichung $2^{n-1}(a-b)(a^n-b^n)>0$. Hierzu ist lediglich $(a-b)(a^n-b^n)>0$ nachzuweisen.

Ist $a > b \ge 0$ oder $b > a \ge 0$, so haben a - b und $a^n - b^n$ stets dasgleiche Vorzeichen und sind beide von 0 verschieden, sodass dann $(a - b)(a^n - b^n) > 0$ gilt.

Die Fälle $0 \ge a > b$ und $0 \ge b > a$ können nicht eintreten, da dann die Bedingung a + b > 0 verletzt wäre.

Es bleiben also nur noch die Fälle a > 0 > b sowie b > 0 > a zu untersuchen.

Im ersten dieser Fälle gilt wegen a+b>0 auch noch b>-a. Wir haben also -a< b< a, was zu |b|< a äquivalent ist. Hieraus wiederum folgt $b^n \le |b^n| = |b|^n < a^n$ und damit $a^n - b^n > 0$. Ferner gilt a-b>-b>0. Also erhalten wir insgesamt $(a-b)(a^n-b^n)>0$.

Im zweiten dieser Fälle erhalten wir mit dem gerade Gezeigten (indem wir die Rollen von a und b vertauschen), dass $(b-a)(b^n-a^n) > 0$ gilt. Wegen $(a-b)(a^n-b^n) = (b-a)(b^n-a^n)$ folgt dann auch $(a-b)(a^n-b^n) > 0$ wie behauptet.

Damit ist der Induktionsschritt vollzogen.

Aufgabe 7

Beweisen Sie die folgenden Aussagen.

- a) Sind A und B abzählbar, so ist auch das kartesische Produkt $A \times B := \{(a, b) : a \in A, b \in B\}$ abzählbar.
- b) Für jedes $k \in \mathbb{N}$ ist das k-fache kartesische Produkt \mathbb{N}^k abzählbar; hierbei ist \mathbb{N}^k rekursiv wie folgt definiert: $\mathbb{N}^1 := \mathbb{N}$ und $\mathbb{N}^k := \mathbb{N}^{k-1} \times \mathbb{N}$ für k > 1, wobei $\mathbb{N}^{k-1} \times \mathbb{N}$ gemäß Teil a) definiert ist.
- c) Die Menge aller nichtleeren, endlichen Teilmengen von N ist abzählbar.

$L\"{o}sungsvorschlag$:

 $zu\ a$): Da A und B abzählbar sind, gibt es Folgen $(a_n)_n$ in A und $(b_n)_n$ in B mit $A = \{a_n : n \in \mathbb{N}\}$ bzw. $B = \{b_n : n \in \mathbb{N}\}$. Wir betrachten nun für $k \in \mathbb{N}$ die Menge $C_k := \{(a_n, b_k) : n \in \mathbb{N}\}$ und setzen $c_{n,k} := (a_n, b_k)$. Dann gilt $C_k = \{c_{n,k} : n \in \mathbb{N}\}$, d.h., C_k ist abzählbar. Wegen $A \times B = \bigcup_{k \in \mathbb{N}} C_k$ ist $A \times B$ als abzählbare Vereinigung abzählbarer Mengen selbst abzählbar (siehe 2. Saalübung).

zu b): Wir beweisen die Behauptung durch Induktion nach $k \in \mathbb{N}$. Der Induktionsanfang k=1 ist wegen $\mathbb{N}^1=\mathbb{N}$ klar. Wird nun \mathbb{N}^k für ein $k \in \mathbb{N}$ als abzählbar vorausgesetzt, so ist $\mathbb{N}^{k+1}=\mathbb{N}^k\times\mathbb{N}$ nach Teil a) ebenfalls abzählbar, sodass der Induktionsschritt vollzogen ist.

zu c): Es bezeichne $\mathfrak{P}(\mathbb{N})$ die Potenzmenge von \mathbb{N} . Für $k \in \mathbb{N}$ betrachten wir die Mengen

$$N_k := \{ A \in \mathfrak{P}(\mathbb{N}) \setminus \{\emptyset\} : A \text{ hat h\"ochstens } k \text{ Elemente} \}.$$

Dann ist $\bigcup_{k\in\mathbb{N}} N_k$ präsize die Menge aller nichtleeren, endlichen Teilmengen von \mathbb{N} . Da es sich hierbei um eine abzählbare Vereinigung handelt, genügt es, zu zeigen, dass jede der Mengen N_k abzählbar ist. Dies zeigen wir durch Induktion nach $k \in \mathbb{N}$. Für k = 1 gilt $N_k = N_1 = \{\{n\} : n \in \mathbb{N}\}$ und wir sehen unmittelbar ein, dass N_1 abzählbar ist. Sei nun für ein $k \in \mathbb{N}$ vorausgesetzt, dass N_k abzählbar ist. Dann existiert eine Folge $(A_n)_n$ in N_k mit $N_k = \{A_n : n \in \mathbb{N}\}$. Es gilt dann $N_{k+1} = \bigcup_{m \in \mathbb{N}} \{A_n \cup \{m\} : n \in \mathbb{N}\}$. Daher ist N_{k+1} als abzählbare Vereinigung abzählbarer Mengen selbst abzählbar.

Aufgabe 8

- a) Beweisen Sie: Ist $(a_n)_n$ eine konvergente Folge reeller Zahlen mit dem Grenzwert $a := \lim_{n\to\infty} a_n$ und ist $\alpha \in \mathbb{R}$, so ist auch die Folge $(\alpha a_n)_n$ konvergent und zwar gegen αa .
- b) Eine Folge heißt Nullfolge, wenn sie gegen 0 konvergiert. Es sei $(a_n)_n$ eine reelle Zahlenfolge. Welche der nachstehenden Bedingungen erzwingen, dass $(a_n)_n$ eine Nullfolge ist?
 - (i) $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} : n \geq n_0 \implies |a_n| < \epsilon^2$
 - (ii) $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} : n \geq n_0 \implies |a_n^4 a_n^3| < \epsilon$
 - (iii) $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} : n \ge n_0 \implies |a_n a_{n+1}| < \epsilon$
 - (iv) $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} : n \ge n_0 \implies \forall m \in \mathbb{N} : |a_n a_m| < \epsilon$

$L\"{o}sungsvorschlag:$

zu a): Sei $\epsilon > 0$ beliebig. Wegen $\lim_{n \to \infty} a_n = a$ existiert ein $n_0 \in \mathbb{N}$ derart, dass $|a_n - a| < \frac{\epsilon}{|\alpha|+1}$ für jedes $n \ge n_0$ gilt. Damit erhalten wir

$$|\alpha a_n - \alpha a| = |\alpha(a_n - a)| = |\alpha| \cdot |a_n - a| < |\alpha| \cdot \frac{\epsilon}{|\alpha| + 1} = \frac{|\alpha|}{|\alpha| + 1} \cdot \epsilon < \epsilon$$

für alle $n \geq n_0$.

zu b)(i): Die Folge $(a_n)_n$ erfülle die Bedingung (i). Ist dann $\epsilon > 0$ beliebig, so existiert zu $\sqrt{\epsilon} > 0$ gemäß (i) ein $n_0 \in \mathbb{N}$ derart, dass $|a_n| < (\sqrt{\epsilon})^2 = \epsilon$ für alle $n \geq n_0$ gilt. Mithin ist $(a_n)_n$ eine Nullfolge.

 $zu\ b)(ii)$: Man sieht sofort ein, dass die Folge $(a_n)_n$, welche durch $a_n := 1\ (n \in \mathbb{N})$ gegeben ist, die Bedingung (ii) erfüllt, obschon es sich dabei nicht um eine Nullfolge handelt.

 $zu\ b)(iii)$: Wir betrachten die Folge $(a_n)_n$, die folgendermaßen definiert ist. Wir setzen $a_n := 1$, falls $n \in \mathbb{N}$ ungerade ist und $a_n := 0$, falls $n \in \mathbb{N}$ gerade ist. Dann gilt $a_n a_{n+1} = 0$ für alle $n \in \mathbb{N}$ und $(a_n)_n$ genügt somit der Bedingung (iii). Die Folge $(a_n)_n$ ist jedoch keine Nullfolge. Sonst müsste es nämlich insbesondere ein $n_0 \in \mathbb{N}$ derart geben, dass $|a_n| < 1$ für alle $n \ge n_0$ gilt. Für jede ungerade Zahl n gilt allerdings $|a_n| = 1$.

 $zu\ b)(iv)$: Es sei $(a_n)_n$ eine Folge, welche der Bedingung (iv) unterworfen sei. Ferner sei $\epsilon>0$ beliebig. Dann existiert insbesondere zu $\epsilon^2>0$ ein $n_0\in\mathbb{N}$ dergestalt, dass für alle $m\in\mathbb{N}$ und alle $n\geq n_0$ die Ungleichung $|a_na_m|<\epsilon^2$ erfüllt ist. Dies impliziert, dass

$$\epsilon^2 > |a_n a_n| = |a_n| \cdot |a_n| = |a_n|^2$$

für alle $n \ge n_0$ gilt, woraus sich wiederum $|a_n| < \epsilon$ für jedes $n \ge n_0$ ergibt. Somit ist $(a_n)_n$ als Nullfolge erkannt.