MaLo		Nick Plaspohl	406476
SS 2021	Übungsblatt 05	Svenja Bösinger	408866
31. Mai 2021		Ahmet Polat	411291

Aufgabe 2

a)

i)

Z.z.: $\mathfrak{N} := (\mathbb{N}, +, -, \cdot)$ ist keine Substruktur von \mathfrak{R} .

Offensichtlich gilt $\mathbb{N} \subseteq \mathbb{R}$, da alle Zahlen in der Menge \mathbb{N} sind auch reelle Zahlen, aber nicht alle reellen Zahlen sind in der Menge \mathbb{N} (z.B. π).

Für alle $a, b \in \mathbb{N}$ gelten $a + b \in \mathbb{N}$ und $a \cdot b \in \mathbb{N}$, also ausschließlich für die Funktionssymbole + und \cdot gilt $dom(\mathbb{N}) \subseteq dom(\mathbb{R})$.

Aber es existieren $a, b \in \mathbb{N}$ mit $a - b \in \mathbb{Z} \setminus \mathbb{N}$. Siehe das Gegenbeispiel a = 1, b = 5.

Somit wurde gezeigt, dass \mathbb{N} nicht $\{+, -, \cdot\}$ -abgeschlossen ist.

Also \mathfrak{N} ist keine Substruktur von \mathfrak{R} .

Eine Substruktur von \mathfrak{R} , die \mathbb{N} enthält, ist $\mathfrak{Z} := (\mathbb{Z}, +, -, \cdot)$, da die Menge der ganzen Zahlen eine Teilmenge von \mathbb{R} , eine Obermenge von natürlichen Zahlen und \mathbb{Z} --abgeschlossen ist (wie auch für die anderen Funktionen der Signatur von \mathfrak{R}).

ii)

Wir wissen, dass $\mathbb{Z}\{+,-,\cdot\}$ -abgeschlossen ist.

Bekannt ist uns auch $2\mathbb{Z} \subseteq \mathbb{R}$.

Wir können nun diese FO-Aussage schreiben:

$$\forall z \in 2\mathbb{Z} \to (\exists a (a \in \mathbb{Z} \land a + a = z)).$$

D.h. für alle $z \in 2\mathbb{Z}$ existiert ein $a \in \mathbb{Z}$ mit a + a = z.

Also für beliebige $z, z' \in 2\mathbb{Z}$ existieren $a, a' \in \mathbb{Z}$ mit a + a = z und a' + a' = z'. Wir zeigen nun für die jeweiligen Funktionen in Signatur von \mathfrak{R} die Abgeschlossenheit.

 $(+^{\Re})$

$$z+z'=(a+a)+(a'+a')\stackrel{\text{assoziativ}}{=}a+a+a'+a'\stackrel{\text{kommutativ}}{=}a+a'+a+a'=\stackrel{a+a':=a''}{=}a''+a''.$$

Also da offensichtlich $a'' + a'' \in 2\mathbb{Z}$, ist $2\mathbb{Z}$ +-abgeschlossen.

 $(-^{\mathfrak{R}})$

$$z - z' = (a+a) - (a'+a') \stackrel{\text{distributiv}}{=} a + a - a' - a' \stackrel{\text{kommutativ}}{=} a - a' + a - a' = \stackrel{a-a' := a''}{=} a'' + a''.$$

Also da offensichtlich $a'' + a'' \in 2\mathbb{Z}$, ist $2\mathbb{Z}$ —-abgeschlossen.

 $(\cdot^{\mathfrak{R}})$

$$z \cdot z' = (a+a) \cdot (a'+a') \stackrel{\text{distributiv}}{=} (a \cdot a') + (a \cdot a') + (a \cdot a') + (a \cdot a') \stackrel{\text{assoziativ}}{=} (a \cdot a' + a \cdot a') + (a \cdot a') + (a \cdot a') \stackrel{\text{assoziativ}}{=} (a \cdot a' + a \cdot a') + (a \cdot a') + (a \cdot a') + (a \cdot a') \stackrel{\text{assoziativ}}{=} (a \cdot a' + a \cdot a') + (a \cdot a') + (a$$

Also da offensichtlich $a'' + a'' \in 2\mathbb{Z}$, ist $2\mathbb{Z}$ -abgeschlossen.

Somit wurde gezeigt, dass $2\mathfrak{Z}:=(2\mathbb{Z},+,-,\cdot)$ eine Substruktur von \mathfrak{R} ist.

b)

i)

 $\{1\}$ ist zwar eine Teilmenge von \mathbb{Q} , aber ist die entsprechende Struktur mit der Signatur von \mathfrak{Q} $\mathfrak{I} := (\{1\}, +, -, \cdot, ^{-1})$ nicht +-abgeschlossen ($1+1 \neq 1$). Damit ist \mathfrak{I} keine Substruktur von \mathfrak{Q} .

Die kleinste Substruktur ist also die \mathfrak{Q} , da für die Abgeschlossenheit von + soll die Menge unendlich sein, und wegen $^{-1}$ sind in der Menge auch nicht ganze Zahlen enthalten. Es gibt keine kleinere Menge, die diese Bedingungen erfüllt und unter Signatur von \mathfrak{Q} abgeschlossen ist.

ii)

 $\{0\}$ ist eine Teilmenge von \mathbb{Q} .

Wir betrachten das einzige Element von $\{0\}$, nämlich 0. Für die jeweiligen Funktionen der Signatur von \mathfrak{Q} gelten:

0 + 0 = 0.

0 - 0 = 0.

 $0 \cdot 0 = 0.$

 $0^{-1} = 0.$

Damit sind alle möglichen Fälle bedeckt und es wurde gezeigt, dass $\mathfrak{D} := (\{0\}, +, -, \cdot, ^{-1})$ eine Substruktur von \mathfrak{Q} ist.

Aufgabe 3

a)

i)

Die Aussage beschreibt alle Bäume, die eine Tiefe kleiner als 3 haben. Die Aussage gilt offensichtlich für den Beispielbaum, da dessen Tiefe 2 ist.

ii)

Die Aussage beschreibt alle binären Bäume, in denen jeder Knoten außer den Blättern, genau zwei Kinder hat.

Der Beispielbaum erfüllt diesen Satz nicht, da der Knoten v_1 nur ein Kind hat, was laut Satz ψ_2 nicht geht, da laut ψ_2 hat ein Knoten entweder 2 oder 0 Kinder.

b)

Es gibt einen Knoten im Baum, der von der Wurzel n Kanten entfernt ist. Wenn für einen Baum $B \models \vartheta_n$ gilt, dann heiß das, dass B mindestens die Tiefe n hat. Für n = 1 und n = 2 erfüllt der Beispielbaum ϑ_n .

c)

$$\varphi(x) := (\forall v(\neg E(v, x))) \land (\exists v'(E(x, v')))$$

Aufgabe 4

a)

i)

$$\varphi_{ai}(a) := \forall x ((a \circ x = x) \land (x \circ a = x))$$

Erklärung: Das leere Wort hat keine Wirkung auf die Konkatenation.

ii)

$$\varphi_{aii}(a) \coloneqq \forall x(\neg(a \subseteq x))$$

Erklärung: Kein anderes Wort hat die gleiche Länge wie ϵ , weil gäbe es so ein Wort $\epsilon' \simeq \epsilon$, würde ϵ' nach der Definition in i) das leere Wort sein, weil es sie erfüllt, aber da das leere Wort einzigartig ist, gilt $\epsilon = \epsilon'$. Also kein anderes Wort hat die Länge von ϵ .

b)

$$\varphi_b(a,b) := \exists x(a=b \circ x)$$

Erklärung: Wenn b ein Präfix von a ist, dann müsste es ein Wort geben, so dass wenn man es mit b konkateniert wie in der Lösung, kriegt man a.

c)

$$\varphi_c(a) := \bigvee_{w \in \{00\}^*} a \simeq (0 \circ w)$$

Erklärung: Wir haben $(a \simeq 0) \lor (a \simeq 000) \lor (a \simeq 00000)...$, was besagt, dass wir die Länge a mit allen ungeraden natürlichen Zahlen vergleichen und a für eines dieser Nullen der ungeraden Länge, die Aussage erfüllen muss. Wenn die Aussage falsch ist, dann wissen wir auch direkt dass a eine gerade Länge hat

d)

$$\varphi_d(a,n) \coloneqq \bigvee_{i \in \underline{n}} \bigvee_{w \in \{0,1\}^i} a = w$$

Erklärung: Da n fest ist, muss es ein Parameter der Formel sein. Wir sagen, dass wenn a höchsten die Länge n hat, für mindestens ein Wort bis zur Länge n, das Gleiche sein muss.

$$\varphi_e(a) := \bigvee_{w \in \{0101010\}^*} a \simeq (01010 \circ w)$$

Erklärung: w ist immer der Länge 7n für $n \in \mathbb{N}$.

01010ist einfach ein festes Wort der Länge 5. Nur die Länge ist für uns relevant.

wir verodern die Längenvergleichungsrelation \simeq , was bedeutet dass damit die Aussage wahr ist, die Formel für mindestens eins der w-en gelten muss.