

Work Page 2

Partoty pe

Shepa ALS> Lot = (10, 20, 30, 40)

Example 2:

Work Page 5

647. Palindromic Substrings

Medium **5** 7966 √ 171

✓ Add to List [Share

Given a string s, return the number of palindromic substrings in it.

A string is a palindrome when it reads the same backward as forward.

A **substring** is a contiguous sequence of characters within the string.

Example 1:

Input: s = "abc"

Output: 3

Explanation: Three palindromic strings: "a", "b", "c".

10:05-10:20 vamnla 2.

Input: s = "aaa"

Output: 6

Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

abc cbc)

He 9 pardromic SS

Count Pandronic 55

Example 2:

Input:

Str = "aab" Output:

Explanation:

palindromic subsequence are :"a", "a", "b", "aa"

10:46-10:56

 $S \subset bc$ (--, -c, b-, bc) $a S \subset bc$ a - -, q - c, qb-, qbc- s(bc)d --d, -cd, b-d, bcd las(be)d a--d, a-cd, ab-d, abd

_ s (abid) = s(bc) s1 s(bc) s2 s(bc) d s3 as(bc)d

$$St_{N} = Cl - m - C2$$

$$S_{5}(m) + S1$$

$$S_{5}(st_{N}) = S_{5}(cl - m - c2) - (S_{5}(m)c2 - S_{5}(m)c2 - S_{5$$

$$S_{3}(S_{1}^{1} N) = S_{3}(C_{1}^{1} m C_{1}^{1})$$

$$C_{1}(S_{3}^{1}(m)) = S_{3}(C_{1}^{1} m C_{1}^{1})$$

$$C_{2}(S_{3}^{1}(m)) = S_{3}(C_{3}^{1}(m)) = S_{$$

Symmetry

Symmetry

Symmetry

C(i,j) + C(i,j-1)

(i,j-1)

(i,j-1)

65	6	λ	b	C	C	b	C
CD X	a T	(4)	2 :	abc 3	ع المرد	cbas	abrebe
<i>ab</i>	6		b	3 · bc	bcc.) bec b	babe
U	-	<u>X</u>	٠, ١	Z	9.	6-P	Cebe
X - CV	C'	X	X		3 .	Ÿ;	to che
c - V		X	\propto	~	1,	<u> </u>	53.
cal	Ь	\propto	~	\propto	~	(25
		0	\propto	\sim	\sim		

1. - (lm)

$$SIN = CIMCL$$

$$SIN = CIMCL$$

$$SIN = CIM$$

$$SIN = CIMCL$$

$$CISIN = CIMCL$$

$$CISIN = CIMCL$$

$$CIMCL = CIMC$$

(C) 11/1/2 - (C)/1/2 - 1/

(ialig) - ((ialgj-1) + ((i,j,1))