SONIX Technology Co., Ltd.

SN8F5900 Series Datasheet (Rev. 1.7)

8051-based Microcontroller

SN8F5907

SN8F5908

SN8F5909

1 Device Overview

1.1 Features

Enhanced 8051 microcontroller with reduced instruction cycle time (up to 12 times 80C51)

- Up to 32 MHz flexible CPU frequency
- Internal 32 MHz Clock Generator (IHRC)
- Real-time clock with 32.768 kHz crystal
- Fcpu: 16MIPs ~ 0.25MIPs

Memory:

- 64 KB non-volatile flash memory (IROM) with in-system program support
- 256 bytes internal RAM (IRAM)
- 2 KB external RAM (XRAM)

I/O Pin: 20-Pins pure I/O and 24-Pins I/O share with LCD function.

Interrupt: 10 interrupt sources with priority levels control and unique interrupt vectors

- 8 internal interrupts: T0, TC0, TC1, TC2, ADC, UART, I2C, SPI
- 2 external interrupts: INTO, INT1

Hardware Multiplication/Division Unit and 2 set of DPTR

Timer System:

- 1 set 8-Bit base Timer for RTC.(T0)
- 3 set 16-Bit Timer/Counter with Auto reload, PWM, Buzzer output.(TC0~TC2)
- One Buzzer Pin (P15): 1KHz / 2KHz / 4KHz / 8KHz

SPI, UART, I2C interface with SMBus Support

One Comparator for Low Battery Detect 2.2V~3.6V (0.2V/step)

Power Supply: 2.0~6.5V (AVDD/DVDD)

Charge Pump Regulator:

- Input voltage: 2.0V ~ 6.5V
- Regulator AVDDR output for Analog Circuit (ADC, PGIA, OP..)
- AVDDR selectable: 2.7V, 3.0V, 3.3V, 3.6V
- ACM 1V for ADC common voltage.

PGIA: Programmable Gain Instrument Amplifier, High Input Impedance

- Gain: 1x, 4x, 8x, 16x, 32x, 64x, 128x

24-Bit Delta Sigma ADC:

- Single or Differential channel configure.
- 9 external Input channels: AI1~AI9
- 4 internal Input channels: 1/8*VDD detect, Temperature sensor, ACM, and Gnd.
- Internal or External reference voltages
- Conversion Rate: 2Hz~7.8KHz

OPA: 1 set Operational Amplifier

LCD Driver: C-Type LCD driver up to 252 dot

- 4 com or 6 com with 1/3 bias
- 4x44 or 6x42 dots, LCD pin share with I/O
- Adjustable VLCD output 2.6V ~ 4.5V

On-Chip Debug Support:

- Single-wire debug interface 5 hardware breakpoints
 Unlimited software breakpoints ROM data security/protection
- Watchdog and programmable external reset

1.2 Applications

- Blood Pressure Meter
- Glucose Meter
- Other measurement application.

- Thermometer
- Weight scale

1.3 Features Selection Table

	0/1	CCD	RTC	16-Bit Timer / PWM	12C	SPI	UART	ADC	OPA	CMP	Int. INT	Ext. INT	Package Types
SN8F5907	34	4x26, 6x24	٧	3	٧	٧	٧	5-Ch	1	2	8	2	LQFP64
SN8F5908	44	4x36, 6x34	V	3	V	V	٧	9-Ch	1	2	8	2	LQFP80
SN8F5909	44	4x44, 6x42	V	3	V	V	٧	9-Ch	1	2	8	2	LQFP100

1.4 Block Diagram

On-chip Debug Support

8051-based CPU

ALU, MDU

32 MHz IHRC On-chip Generator,

Reset and Power-on Controller

ISR

Accumulator PC, SP, DPTR

256 Bytes IRAM

16-Bit Timers, RTC PWM, Buzzer

32K Crystal driver

SPI, UART, I2C

2KB On-chip XRAM

64KB On-chip Non-volatile Memory

24-Bit ADC, PGIA, Temperature Sensor

OP-Amps, Comparators Charge Pump Regulator AVDDR, ACM

C-Type LCD driver

GPIO / Pin-sharing Controller

2 Table of Contents

1	Device Overview	2
2	Table of Contents	5
3	Revision History	6
4	Pin Assignments	8
5	CPU	15
6	Special Function Registers	20
7	Reset and Power-on Controller	27
8	System Clock and Power Management	30
9	Interrupt	34
10	MDU	40
11	GPIO	44
12	External Interrupt	48
13	TCx 16-BIT Timer/Counter	51
14	Timer 0	65
15	Buzzer Function	72
16	LCD Driver	73
17	ADC	80
18	Charge Pump Regulator	96
19	Comparator	99
20	OPA	102
21	UART	104
22	SPI	111
23	I2C	117
24	In-System Program	129
25	APPLICATION CIRCUIT	135
26	Electrical Characteristics	138
27	Instruction Set	144
28	Debug Interface	149
29	Analog Setting and Application	151
30	Overview of Packaging Information	152

3 Revision History

Revision	Date	Description
1.0	May 2016	Modify PGA Register descriptions(P83)
1.1	May 2016	1. Modify Temperature Sensor Sensitivity descriptions -1.8mV/℃ (P90)
	,	2. Modify LQFP64 Pin Name (P10)
1.2	June 2016	Modify ADCM2 Register DRDY Bit descriptions. (P87)
		2. Modify Example code SCL clock rate is from TC2 Timer overflow rate. (P120)
		3. Remove Table 19-2 Recommended Setting TC2 Timer overflow period for
		Common UART 1M Baud Rates. (P107)
		4. Modify SN8P5907 LQFP64 P4 Pin Name. (P10)
		5. Modify Internal VDD voltage division setting value. (P101)6. Modify T0 timer with 0.5 or 60 Sec wake up in stop mode. (P71)
		7. Add TO Timer RTC function use STOP&STOP_RTC Macros System into STOP
		MODE Sample code. (P69)
		8. Modify CH19 Comparator Internal VDD voltage division value 2.1~3.5v. (P103)
1.3	Aug 2016	 Modify P0~P5 Register Initial value. (P46) Modify 24.2 Byte Program descriptions. (P130)
		3. Modify 26.9 Flash Memory Characteristics descriptions. (P142)
		4. Modify CH19 Comparator Internal VDD voltage division value 2.2~3.6v. (P99)
		5. Modify 17.10 Temperature Sensor (TS) descriptions. (P90)
		6. Add Charge Pump note descriptions. (P97)
		7. Add Table 19-2 Recommended Setting TC2 Timer overflow period for Comm
		UART Baud Rates descriptions.(P106)
		8. Modify 19 comparator block diagram (P99)
		9. Modify 17 ADC block diagram MUXP & MUXN setting value OP+/OPO(P80)
		10. Add Debug interface P1.7 notice (P149)
		11. Modify 4.4 Pin Descriptions-ACM Connect 0.1uF to AVDDR. (P14)
		12. Modify LBTM Register (0xD7) LBTSEL3 descriptions.(P99)
		13. Modify Overview of packaging information descriptions.(P152~156)14. Delete TO Timer RTC function use STOP&STOP_RTC Macros System into ST
		MODE Sample code. (P69~P71)
		15. Modify T0 timer with 0.5 or 60 Sec wake up in stop mode. (P71)
		16. Modify Analog input signal channel selection table (P82)
		17. Modify MUXP[3:0] & MUXN[3:0] descriptions. (P85)
		18. Add CH29 Analog Setting and Application descriptions.(P151)
		19. Add (*Note: Port P1.7 don't connect any loading@Debug Mode.) (P13)
		20. Modify Comparator Characteristic LBTSEL [3:0] descriptions.(P100)(P103)
		21. Add 26.10 Recommendations for special use environmental descriptions.(P14
		22. Modify LCDM1 Register (0xAD) descriptions.(P76)
	0 : 0016	23. Add Charge Pump Regulator Setting table. (P98)
1.4	Oct 2016	 Modify baud rate control note descriptions.(P105) Modify ADC Conversion Rate Table.(P84)
1 F	Oct 2016	Modify Ch9 Interrupt descriptions.(P34)
1.5	Oct 2016	2. Modify Ch12 External Interrupt descriptions.(P48)
		3. Modify 27.5 Boolean manipulation descriptions.(P147)
1.6	Nov 2016	1. Add 8.3 Power Management Note, For user who is develop program in C
•		language, IDLE(); and STOP(); macros is strongly recommended to control the
		microcontroller's system mode, instead of set IDLE and STOP bits.(P30)
		2. Modify T0 with 0.5 or 60 Sec wake up stop mode sample code.(P69)
		3. Modify LCD Function keep running in stop mode.(P75&P78)
1.7	Jan 2017	1. Add Revision History descriptions.(P6)

SN8F5900 Series

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

4 Pin Assignments

4.1 SN8F5909F (LQFP100)

4.2 SN8F5908F (LQFP80)

4.3 SN8F5907F (LQFP64)

4.4 Pin Descriptions

Power Pins

Pin	Туре	Description
DVDD	Power	Digital power supply
DVSS	Power	Digital Ground
AVDD	Power	Analog power supply
AVSS	Power	Analog Ground

Port 0

Pin Name	Туре	Description
P0.0	Digital I/O	GPIO
INT0	Digital I/O	INTO Interrupt input.
P0.1	Digital I/O	GPIO
INT1	Digital I/O	INT1 Interrupt input.
P0.2	Digital I/O	GPIO
SCL	Digital I/O	I2C: clock output (master) clock input (slave)
P0.3	Digital I/O	GPIO
SDA	Digital I/O	I2C: data pin
P0.4	Digital I/O	GPIO
UTX	Digital Output	UART: transmission pin
P0.5	Digital I/O	GPIO
URX	Digital Output	UART: reception pin
P0.6	Digital I/O	GPIO
PWM0	Digital Output	PWM0 output pin
P0.7	Digital I/O	GPIO
PWM1	Digital Output	PWM1 output pin

Port 1

FULL		
Pin Name	Туре	Description
P1.0	Digital I/O	GPIO
LBT0	Analog Input	Comparator external Input
P1.1	Digital I/O	GPIO
LBT1	Analog Output	Ground control pin.
SSN	Digital Input	SPI: Slave selection pin
P1.2	Digital I/O	GPIO
MOSI	Digital I/O	SPI: transmission pin (master) reception pin (slave)
P1.3	Digital I/O	GPIO
MISO	Digital I/O	SPI: reception pin (master) transmission pin
P1.4	Digital I/O	GPIO
SCK	Digital I/O	SPI: clock output (master) clock input (slave)

SN8F5900 Series

P1.5	Digital I/O	GPIO
Buzzer	Digital Output	Buzzer output pin
P1.6	Digital I/O	GPIO
PWM2	Digital Output	PWM2 output pin
P1.7	Digital I/O	GPIO
SWAT	Digital I/O	Debug interface
		(*Note: Port P1.7 can't connect any loading @Debug
		Mode.)

Port 2

Pin Name	Туре	Description
P2.0	Digital I/O	GPIO
LXIN	Analog Input	System clock: external clockinput
P2.1	Digital I/O	GPIO
LXOUT	Analog Output	System clock: drive external crystal
P2.2	Digital I/O	GPIO
P2.3	Digital I/O	GPIO

Port 3

Pin Name	Туре	Description
P3.0	Digital I/O	GPIO
SEG35	LCD Output	LCD: SEG35
P3.1	Digital I/O	GPIO
SEG34	LCD Output	LCD: SEG34
P3.2	Digital I/O	GPIO
SEG33	LCD Output	LCD: SEG33
P3.3	Digital I/O	GPIO
SEG32	LCD Output	LCD: SEG32
P3.4	Digital I/O	GPIO
SEG31	LCD Output	LCD: SEG31
P3.5	Digital I/O	GPIO
SEG30	LCD Output	LCD: SEG30
P3.6	Digital I/O	GPIO
SEG29	LCD Output	LCD: SEG29
P3.7	Digital I/O	GPIO
SEG28	LCD Output	LCD: SEG28

Port 4

Pin Name	Туре	Description
P4.0	Digital I/O	GPIO
SEG27	LCD Output	LCD: SEG27
P4.1	Digital I/O	GPIO
SEG26	LCD Output	LCD: SEG26
P4.2	Digital I/O	GPIO
SEG25	LCD Output	LCD: SEG25
P4.3	Digital I/O	GPIO
SEG24	LCD Output	LCD: SEG24
P4.4	Digital I/O	GPIO
SEG23	LCD Output	LCD: SEG23
P4.5	Digital I/O	GPIO
SEG22	LCD Output	LCD: SEG22
P4.6	Digital I/O	GPIO
SEG21	LCD Output	LCD: SEG21
P4.7	Digital I/O	GPIO
SEG20	LCD Output	LCD: SEG20

Port 5

Pin Name	Туре	Description
P5.0	Digital I/O	GPIO
SEG43	LCD Output	LCD: SEG43
P5.1	Digital I/O	GPIO
SEG42	LCD Output	LCD: SEG42
P5.2	Digital I/O	GPIO
SEG41	LCD Output	LCD: SEG41
P5.3	Digital I/O	GPIO
SEG40	LCD Output	LCD: SEG40
P5.4	Digital I/O	GPIO
SEG39	LCD Output	LCD: SEG39
P5.5	Digital I/O	GPIO
SEG38	LCD Output	LCD: SEG38
P5.6	Digital I/O	GPIO
SEG37	LCD Output	LCD: SEG37
P5.7	Digital I/O	GPIO
SEG36	LCD Output	LCD: SEG36

LCD

Pin Name	Туре	Description
VLCD	LCD Output	LCD: output voltage
сомо	LCD Output	LCD: COM0
COM1	LCD Output	LCD: COM1
COM2	LCD Output	LCD: COM2
COM3	LCD Output	LCD: COM3
COM4	LCD Output	LCD: COM4
SEG0	LCD Output	LCD: SEG0
COM5	LCD Output	LCD: COM5
SEG1	LCD Output	LCD: SEG1
SEG2~SEG19	LCD Output	LCD: SEG2 ~ SEG19

Analog Pins

Pin Name	Туре	Description
AVDD	Power	Analog power supply
AVSS	Power	Analog Ground
C+,C-	-	Charge pump Capacitor connection Pins Connect 1uF when charge pump enable
AVDDCP	Pump Output	Charge Pump output. Connect 2.2uF to DVSS when charge pump enable.
AVDDR	Analog Output	Regulator output for analog part. Connect 1uF to AVSS. Selectable: 2.7V, 3.0V, 3.3V, and 3.6V
ACM	Analog Output	ACM Voltage output 1V for ADC common voltage. (sink only) Connect 0.1uF to AVDDR.
Al1	Analog Input	ADC: Input channel 1
Al2	Analog Input	ADC: Input channel 2
Al3	Analog Input	ADC: Input channel 3
Al4	Analog Input	ADC: Input channel 4
AI5	Analog Input	ADC: Input channel 5
R+	Analog Input	ADC: external reference positive input pin
Al6	Analog Input	ADC: Input channel 6
R-	Analog Input	ADC: external reference negative input pin
AI7	Analog Input	ADC: Input channel 7
OP+	Analog Input	OPA: positive input
AI8	Analog Input	A ADC: Input channel 8
OP-	Analog Input	OPA: negative input pin
AI9	Analog Input	ADC: Input channel 9
ОРО	Analog Output	OPA: output pin

5 CPU

SN8F5000 family is an enhanced 8051 microcontroller (MCU). It is fully compatible with MCS-51 instructions, hence the ability to cooperate with modern development environment (e.g. Keil C51). Generally speaking, SN8F5000 CPU has 9.4 to 12.1 times faster than the original 8051 at the same frequency.

5.1 Memory Organization

SN8F5900 builds in three on-chip memories: internal RAM (IRAM), external RAM (XRAM), and program memory (IROM). The internal RAM is a 256-byte RAM which has higher access performance (direct and indirect addressing). By contrast, the external RAM has 2 KB of size, but it requires a longer access period. The program memory is a 64 KB non-volatile memory and has a maximum 16MHz speed limitation.

5.2 Direct Addressing: IRAM and SFR

Direct addressing instructions (e.g. MOV A, direct) can access the lower 128-byte internal RAM (address range: 0x00 - 0x7F) and all registers (SFR, address range: 0x80 - 0xFF).

Moreover, the lowest 32 bytes of internal RAM (0x00 - 0x1F) can be seen as four set of R0 – R7 working registers which are addressable by fastest assembly instructions like MOV A, R0. Internal RAM from 0x20 to 0x2F and every 0x0/0x8-ending SFR addresses are bit-addressable.

5.3 Indirect Addressing: IRAM

Although direct addressing instructions take fewer period to access internal RAM than indirect addressing, the second addressing type has the full range accessibility to internal RAM and is the only method to access the higher 128-byte internal RAM (0x80 -0xFF).

0xFF	Higher 128-byte
0x80	Internal RAM (IRAM)
0x7F	Lower 128-byte
0x00	Internal RAM (IRAM)

5.4 External RAM (XRAM)

The external RAM enlarges the capacity of variables, yet it is the lowest access performance in the contrast of internal RAM. Since frequently used variables and local variables are expected to store in internal RAM, the vast majority of external RAM usages are specific. It can be allocated as a variable storage area for lower priority tasks, or look-up table preloaded from ROM to speed up the access period. LCD RAM is also located in external RAM.

5.5 Program Memory (IROM)

The program memory is a non-volatile storage area where stores code, look-up ROM table, and other data with occasional modification. It can be updated by debug tools like SN-Link Adapter II, and a program can also self-update via in-system program process (refer to In-system Program).

5.6 Program Memory Security

The SN8F5900 provides security options at the disposal of the designer to prevent unauthorized access to information stored in FLASH memory. When enable security option, the ROM code is secured and not dumped complete ROM contents. ROM security rule is all address ROM data protected and outputs 0x00.

5.7 Data Pointer

A data pointer helps to specify the XRAM and IROM address while performing MOVX and MOVC instructions. The microcontroller has two set of data pointer (DPH/DPL and DPH1/DPL1) which is selectable by DPS register. The DPC register controls two functions: next DPTR selection and automatically increase/decrease DPTR function.

The next DPTR selection can specify which DPTR is anticipated to use after perform MOVX @DPTR instruction. In other word, the DPS can automatically swap between the two data pointers. To enable this function: write 0 to DPSEL and fill 1 to NDPS firstly, then write 1 to DPSEL and fill 0 to NDPS register.

The automatically increase/decrease DPTR function can make an increment or decrement after perform MOVX @DPTR instruction. As a result, it enables a continuous external RAM access without re-specified DPTR value. Those functions are controlled by the DPC Register, where there are separate DPC register bits for each DPTR, to provide high flexibility in data transfers. The DPC Register address 0x93 points to the window where the actual DPC is selected using the DPS Register, same as for the DPTR.

5.8 Stack

Stack can be assigned to any area of internal RAM (IRAM). However, it requires manual assignment to ensure its area does not overlap other RAM's variables. An overflow and underflow stack could also mistakenly overwrite other RAM's variables; thus, these factors should be considered while arrange the size of stack.

By default, stack pointer (SP register) points to 0x07 which means the stack area begin at IRAM address 0x08. In other word, if a planned stack area is assigned from IRAM address 0xC0, the

appropriate SP register is anticipated to set at 0xBF after system reset.

An assembly PUSH instruction costs one byte of stack. LCALL, ACALL instructions and interrupt respectively costs two bytes stack. POP-instruction decreases one count, and a RET/RETI subtract two counts of stack pointer.

5.9 Stack and Data Pointer Register

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SP	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
DPL	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0
DPH	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0
DPL1	DPL17	DPL16	DPL15	DPL14	DPL13	DPL12	DPL11	DPL10
DPH1	DPH17	DPH16	DPH15	DPH14	DPH13	DPH12	DPH11	DPH10
DPS	-	-	-	-	-	-	-	DPSEL
DPC	-	-	-	-	NDPS	ATMS	ATMD	ATME

SP Register (0x81)

Bit	Field	Туре	Initial	Description
70	SP	R/W	0x07	Stack pointer

DPL Register (0x82)

Bit	Field	Туре	Initial	Description
70	DPL[7:0]	R/W	0x00	Low byte of DPTR0

DPH Register (0x83)

Bit	Field	Туре	Initial	Description
70	DPH[7:0]	R/W	0x00	High byte of DPTR0

DPL1 Register (0x84)

Bit	Field	Type	Initial	Description
70	DPL1[7:0]	R/W	0x00	Low byte of DPTR1

DPH1 Register (0x85)

Bit	Field	Type	Initial	Description
70	DPH1[7:0]	R/W	0x00	High byte of DPTR1

DPS Register (0x92)

Bit	Field	Type	Initial	Description
71	Reserved	R	0x00	
0	DPSEL	R/W	0	DPTR selection
				0: DPH/DPL (DPTR0) is selected
				1: DPH1/DPL1 (DPTR1) is selected

DPC Register (0x93)

D. C. I.	chister (oxss)			
Bit	Field	Type	Initial	Description
74	Reserved	R	0x0	
3	NDPS	R/W	0	Next DPTR selection
				The DPSEL loads this bit automatically after perform any
				MOVX @DPTR instruction.
21	ATMS/ATMD	R/W	00	Automatically increase/decrease DPTR (if ATMEapplied)
				00: +1 after any MOVX @DPTR instruction
				01: -1 after any MOVX @DPTR instruction
				10: +2 after any MOVX @DPTR instruction
				11: -2 after any MOVX @DPTRinstruction
0	ATME	R/W	0	Automatically increase/decrease DPTR function
				0: Disable
				1: Enable

6 Special Function Registers

6.1 Special Function Register Memory Map

BIN	000	001	010	011	100	101	110	111
F8	P5	POM	P1M	P2M	P3M	P4M	P5M	PFLAG
FO	В	POUR	P1UR	P2UR	P3UR	P4UR	P5UR	SRST
E8	P4	MD0	MD1	MD2	MD3	MD4	MD5	ARCON
EO	ACC	SPSTA	SPCON	SPDAT	P1OC	CLKSEL	CLKCMD	-
D8	-	-	I2CDAT	I2CADR	I2CCON	I2CSTA	SMBSEL	SMBDST
D0	PSW	CHS	VREG	AMPM	ADCM1	ADCM2	BZRM	LBTM
C8	-	TC1M	TC1RL	TC1RH	TC1CL	TC1CH	TC1DL	TC1DH
CO	IRCON	TCOM	TCORL	TCORH	TC0CL	TC0CH	TC0DL	TC0DH
В8	IEN1	IP1	SORELH	TOM	TOC	MIN	SEC	-
В0	Р3	LCDM1	LCDM2			ADCDL	ADCDM	ADCDH
A8	IEN0	IP0	SORELL	-	-	-	-	-
Α0	P2	TC2M	TC2RL	TC2RH	TC2CL	TC2CH	TC2DL	TC2DH
98	SOCON	SOBUF	IEN2	ОРМ	PEBYTE	P5COM	P3CON	P4CON
90	P1	P1W	DPS	DPC	PECMD	PEROML	PEROMH	PERAM
88	-	_	-	-	-	-	CKCON	PEDGE
80	Р0	SP	DPL	DPH	DPL1	DPH1	WDTR	PCON

6.2 Special Function register Description

0x80 - 0x9F Registers Description

Register	Address	Description
P0	0x80	Port 0 data buffer.
SP	0x81	Stack pointer register.
DPL	0x82	Data pointer 0 low byte register.
DPH	0x83	Data pointer 0 high byte register.
DPL1	0x84	Data pointer 1 low byte register.
DPH1	0x85	Data pointer 1 high byte register.
WDTR	0x86	Watchdog timer clear register.
-	0x87~0x8D	-
CKCON	0x8E	Extended cycle controls register.
PEDGE	0x8F	External interrupt edge controls register.
P1	0x90	Port 1 data buffer.
P1W	0x91	Port 1 wake-up controls register.
DPS	0x92	Data pointer selects register.
DPC	0x93	Data pointer controls register.
PECMD	0x94	In-System Program command register
PEROML	0x95	In-System Program ROM address lowbyte
PEROMH	0x96	In-System Program ROM address highbyte
PERAM	0x97	In-System Program RAM mapping address
SOCON	0x98	UART control register.
SOBUF	0x99	UART data buffer.
IEN2	0x9A	Interrupts enable register
ОРМ	0x9B	OP-AMP controls register.
PEBYTE	0x9C	In-System Program ROM Byte write address
P5CON	0x9D	Port 5 configuration controls register.
P3CON	0x9E	Port 3 configuration controls register.
P4CON	0x9F	Port 4 configuration controls register.

0xA0 - 0xBF Registers Description

P2 0xA0 Port 2 data buffer TC2M 0xA1 TC2 timer mode controls register TC2RL 0xA2 TC2timer counter reload buffer low byte TC2RH 0xA3 TC2 timer counter reload buffer high byte TC2CL 0xA4 TC2 timer Low Byte counter TC2CH 0xA5 TC2 timer High Byte counter TC2DL 0xA6 PWM duty control low byte buffer	
TC2RL 0xA2 TC2timer counter reload buffer low byte TC2RH 0xA3 TC2 timer counter reload buffer high byte TC2CL 0xA4 TC2 timer Low Byte counter TC2CH 0xA5 TC2 timer High Byte counter TC2DL 0xA6 PWM duty control low byte buffer	
TC2RH 0xA3 TC2 timer counter reload buffer high byte TC2CL 0xA4 TC2 timer Low Byte counter TC2CH 0xA5 TC2 timer High Byte counter TC2DL 0xA6 PWM duty control low byte buffer	
TC2CL 0xA4 TC2 timer Low Byte counter TC2CH 0xA5 TC2 timer High Byte counter TC2DL 0xA6 PWM duty control low byte buffer	
TC2CH 0xA5 TC2 timer High Byte counter TC2DL 0xA6 PWM duty control low byte buffer	
TC2DL 0xA6 PWM duty control low byte buffer	
·	
T00011 0 47 0 10011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TC2DH 0xA7 PWM duty control high byte buffer	
IENO 0xA8 Interrupts enable register	
IPO 0xA9 Interrupts priority register	
SORELL 0xAA UART reload low byte register	
- 0xAB~0xAF -	
P3 0xB0 Port 3 data buffer.	
LCDM1 0xB1 LCD Mode 1 control register.	
LCDM2 0xB2 LCD Mode 2 control register.	
- 0xB3 -	
- 0xB4 -	
ADCDL 0xB5 ADC output data Low byte.	
ADCDM 0xB6 ADC output data medium byte.	
ADCDH 0xB7 ADC output data high byte.	
IEN1 0xB8 Interrupts enable register.	
IP1 0xB9 Interrupts priority register.	
SORELH 0xBA UART reload high byte register.	
TOM 0xBB Timer0 Mode control register.	
TOC 0xBC Timer0 counter register.	
MIN 0xBD Timer0 minutes register.	
SEC 0xBE Timer0 second register.	
- 0xBF -	

0xC0 - 0xDF Registers Description

Register	Address	Description
IRCON	0xC0	Interrupts request register.
TCOM	0xC1	TC0 control register.
TCORL	0xC2	TCO reload buffer low byte.
TCORH	0xC3	TCO reload buffer high byte.
TC0CL	0xC4	TC0 counter low byte.
TC0CH	0xC5	TC0 counter high byte.
TC0DL	0xC6	PWM0 duty control low byte buffer.
TC0DH	0xC7	PWM0 duty control high byte buffer.
-	0xC8	-
TC1M	0xC9	TC1 control register.
TC1RL	0xCA	TC1 reload buffer low byte.
TC1RH	0xCB	TC1 reload buffer high byte.
TC1CL	0xCC	TC1 counter low byte.
TC1CH	0xCD	TC1 counter high byte.
TC1DL	0xCE	PWM1 duty control low byte buffer.
TC1DH	0xCF	PWM1 duty control high byte buffer.
PSW	0xD0	System flag register.
CHS	0xD1	ADC input channel selection register.
VREG	0xD2	Voltage regulator control register.
AMPM	0xD3	PGIA control register.
ADCM1	0xD4	ADC control register1.
ADCM2	0xD5	ADC control register2.
BZRM	0xD6	Buzzer control register.
LBTM	0xD7	Comparator and Low battery detection control register.
(NA)	0xD8	-
(NA)	0xD9	-
I2CDAT	0xDA	I2C data buffer.
I2CADR	0xDB	Own I2C slave address.
I2CCON	0xDC	I2C interface operation control register.
I2CSTA	0xDD	I2C Status Code.
SMBSEL	0xDE	SMBus mode controls register.
SMBDST	0xDF	SMBus internal timeout register.

0xE0 - 0xFF Registers Description

Register	Address	Description					
ACC	0xE0	Accumulator register.					
SPSTA	0xE1	SPI statuses register.					
SPCON	0xE2	SPI control register.					
SPDAT	0xE3	SPI data buffer.					
P1OC	0xE4	Open drain controls register.					
CLKSEL	0xE5	Clock switch selects register.					
CLKCMD	0xE6	Clock switch controls Register.					
_	0xE7	-					
P4	0xE8	Port 4 data buffer.					
MD0	0xE9	MDU controls register 0.					
MD1	0xEA	MDU controls register 1.					
MD2	0xEB	MDU controls register 2.					
MD3	0xEC	MDU controls register 3.					
MD4	0xED	MDU controls register 4.					
MD5	0xEE	MDU controls register 5.					
ARCON	0xEF	MDU Arithmetic control register.					
В	0xF0	Multiplication/ division instruction data buffer.					
POUR	0xF1	Port 0 pull-up resister controls register.					
P1UR	0xF2	Port 1 pull-up resister controls register.					
P2UR	0xF3	Port 2 pull-up resister controls register.					
P3UR	0xF4	Port 3 pull-up resister controls register.					
P4UR	0xF5	Port 4 pull-up resister controls register.					
P5UR	0xF6	Port 5 pull-up resister controls register.					
SRST	0xF7	Software reset controls register.					
P5	0xF8	Port 5 data buffer.					
POM	0xF9	Port 0 input/output mode register.					
P1M	0xFA	Port 1 input/output mode register.					
P2M	0xFB	Port 2 input/output mode register.					
P3M	0xFC	Port 3 input/output mode register.					
P4M	0xFD	Port 4 input/output mode register.					
P5M	0xFE	Port 5 input/output mode register.					
PFLAG	0xFF	Reset flag register.					

6.3 System Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
В	В7	В6	B5	В4	В3	B2	B1	В0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р

ACC Register (0xE0)

Bit	Field	Туре	Initial	Description
70	ACC[7:0]	R/W	0x00	The ACC is an 8-bit data register responsible for
				transferring or manipulating data between ALU and data
				memory. If the result of operating is overflow (OV) or
				there is carry (C or AC) and parity (P) occurrence, then
				these flags will be set to PSW register.

B Register (0xF0)

Bit	Field	Туре	Initial	Description
70	B[7:0]	R/W	0x00	The B register is used during multiplying and division
				instructions. It can also be used as a scratch-pad register
				to hold temporary data.

PSW Register (0xD0)

Bit	Field	Туре	Initial	Description
7	CY	R/W	0	Carry flag.
				0: Addition without carry, subtraction with borrowing
				signal, rotation with shifting out logic "0", comparison
				result < 0.
				1: Addition with carry, subtraction without borrowing,
				rotation with shifting out logic "1", comparison
				result ≥ 0.
6	AC	R/W	0	Auxiliary carry flag.
				0: If there is no a carry-out from 3rd bit of Accumulator
				in BCD operations.
				1: If there is a carry-out from 3rd bit of Accumulator in
				BCD operations.
5	F0	R/W	0	General purpose flag 0. General purpose flag available
				for user.
43	RS[1:0]	R/W	00	Register bank select control bit, used to select working
				register bank.
				00: 00H – 07H (Bnak0)
				01: 08H – 0FH (Bnak1)
				10: 10H – 17H (Bnak2)
				11: 18H – 1FH (Bnak3)
2	OV	R/W	0	Overflow flag.
				0: Non-overflow in Accumulator during arithmetic
				Operations.
				1: overflow in Accumulator during arithmetic
				Operations.
1	F1	R/W	0	General purpose flag 1. General purpose flag available
				for user.
0	Р	R	0	Parity flag. Reflects the number of '1's in the
				Accumulator.
				0: if Accumulator contains an even number of '1's.
				1: Accumulator contains an odd number of '1's.

7 Reset and Power-on Controller

The reset and power-on controller has five reset sources: low voltage detectors (LVDs), watchdog, programmable external reset pin, and software reset. The first three sources would trigger an additional power-on sequence. Subsequently, the microcontroller initializes all registers and starts program execution with its reset vector (ROM address 0x0000).

7.1 Configuration of Reset and Power-on Controller

SONiX publishes a *SN8F590x_OPTIONS.A51* file in *SN-Link Driver for Keil C51.exe* (downloadable on cooperative website: www.sonix.com.tw). This *options file* contains appropriate parameters of reset sources and CPU clock source selection, and is strongly recommended to add to Keil project. *SN8F5000 Debug Tool Manual* provides the further detail of this configuration. The option items are as following:

- Program Memory Security
- CPU Clock Source
- Noise Filter
- Watchdog

7.2 Power-on Sequence

A power-on sequence would be triggered by LVD, watchdog, and external reset pin. It takes place between the end of reset signal and program execution. Overall, it includes two stages: power stabilization period, and clock stabilization period.

The power stabilization period spends 5ms in typical condition. Afterward the microcontroller fetches CPU Clock Source selection automatically. The selected clock source would be driven, and the system counts 4096 times of the clock period to ensure its reliability.

7.3 LVD Reset

The low voltage detectors monitor VDD pin's voltage at one level 1.8 V. when the VDD voltage is lower than 1.8V, the MCU system will be reset.

7.4 Watchdog Reset

Watchdog is a periodic reset signal generator for the purpose of monitoring the execution flow. Its internal timer is expected to be cleared in a check point of program flow; therefore, the actual reset signal would be generated only after a software problem occurs. Writing 0x5A to WDTR is the proper method to place a check point in program.

1 WDTR = 0x5A;

WDT clock pre-scaler	Clock/1	Clock/2	Clock/4	Clock/8
Watchdog interval time	64ms	128ms	256ms	512ms

The operation mode of watchdog is configurable in options file:

Always mode counts its internal timer in all CPU operation modes (normal, IDLE, SLEEP);

Enable mode counts its internal timer during CPU stays in normal mode, and it would not trigger watchdog reset in IDLE and STOP modes;

Disable mode suspends its internal timer at all CPU modes, and the watchdog would not trigger in this condition.

When watchdog is operating in always mode, the system will consume additional power.

7.5 External Reset Pin

In SN5900 series, there is no external reset pin.

7.6 Software Reset

A software reset would be generated after consecutively set SRSTREQ register. As a result, this procedure enables firmware's ability to reset microcontroller (e.g. reset after firmware update). The following sample C code repeatedly set the least bit of SRST register to perform software reset.

```
1 SRST = 0 \times 01;
2 SRST = 0 \times 01;
```

7.7 Reset and Power-on Controller Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	POR	WDT	-	-	-	-	-	-
SRST	-	-	-	-	-	-	-	SRSTREQ
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0

PFLAG Register

Bit	Field	Туре	Initial	Description
7	POR	R	0	This bit is automatically set if the microcontroller has
				been reset by LVD.
6	WDT	R	0	This bit is automatically set if the microcontroller has
				been reset by watchdog.
50	Reserved	R	0	

SRST Register

Bit	Field	Туре	Initial	Description
71	Reserved	R	0	
0	SRSTREQ	R/W	0	Consecutively set this bit for two times to trigger
				software reset.

WDTR Register (0x86)

Bit	Field	Туре	Initial	Description
70	WDTR[7:0]	W	-	Watchdog clear is controlled by WDTRregister. Moving
				0x5A data into WDTR is to reset watchdog timer.

8 System Clock and Power Management

For power saving purpose, the microcontroller built in three different operation modes: normal, IDLE, and STOP mode.

The normal mode means that CPU and peripheral functions are under normally execution. The system clock is based on the combination of source selection, clock divider, and program memory wait state. IDLE mode is the situation that temporarily suspends CPU clock and its execution, yet it remains peripherals' functionality (e.g. timers, SPI, UART, and I2C). By contrast, STOP mode disables all functions and clock generator until a wakeup signal to return normal mode. Additionally, the LCD function and TO-RTC function are also still can work in STOP Mode for low standby current application.

8.1 System Clock

The microcontroller has only one system clock source, on-chip clock generator (IHRC 32MHz). The reset and power-on controller automatically loads IHRC clock during power-on sequence. Therefore, the IHRC clock is as 'fosc' domain which is a fixed frequency at any time.

Subsequently, the fosc is divided by 1 to 128 times which is controlled by CLKSEL register. The CPU input the divided clock as its operation base (named fcpu). Applying CLKSEL's setting when CLKCMD register be written 0x69.

```
1 CLKSEL = 0 \times 04; // set fcpu = fosc / 8
2 CLKCMD = 0 \times 69; // Apply CLKSEL's setting
```


ROM interface is built in between CPU and IROM (program memory). It optionally extends the data fetching cycle in order to support lower speed program memory. For example if the CPU is anticipated to run at 32 MHz and the IROM has to run at 16 MHz, one extended cycle must be placed by CKCON register.

IROM fetching cycle =
$$\frac{\text{fcpu}}{\text{PWSC}[2:0]+1} \le 16\text{MHz}$$
, PWSC[2:0] = 0~7

8.2 Noise Filter

The Noise Filter controlled by Noise Filter option is a low pass filter and supports crystal mode. The purpose is to filter high rate noise coupling on high clock signal from external oscillator. In high noisy environment, enable Noise Filter option is the strongly recommendation to reduce noise effect.

8.3 Power Management

After the end of reset signal and power-on sequence, the CPU starts program execution at the speed of fcpu. Overall, the CPU and all peripherals are functional in this situation (categorized as normal mode).

The least two bits of PCON register (IDLE at bit 0 and STOP at bit 1) control the microcontroller's power management unit.

If IDLE bit is set by program, only CPU clock source would be gated. Consequently, peripheral functions (such as timers, PWM, SPI, UART, and I2C) and clock generator (IHRC 32 MHz) remain execution in this status. Any change from PO/P1 input and interrupt events can make the microcontroller turns back to normal mode, and the IDLE bit would be cleared automatically.

If STOP bit is set, by contrast, CPU, peripheral functions, and clock generator are suspended. Data storage in registers and RAM would be kept in this mode. Any change from PO/P1 can wake up the microcontroller and resume system's execution. STOP bit would be cleared automatically.

*Note: For user who is develop program in C language, IDLE and STOP macros is strongly recommended to control the microcontroller's system mode, instead of set IDLE and STOP bits directly.

```
1     IDLE();     Use C51 Macros into IDLE MODE
2     STOP();     Use C51 Macros into STOP MODE
```

8.4 System Clock and Power Management Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CKCON	-	PWSC2	PWSC1	PWSC0	ESYN	EWSC2	EWSC1	EWSC0
CLKSEL	-	-	-	-	-	CLKSEL2	CLKSEL1	CLKSEL0
CLKCMD	CMD7	CMD6	CMD5	CMD4	CMD3	CMD2	CMD1	CMD0
PCON	SMOD	-	-	-	P2SEL	GF0	STOP	IDLE
P1W	P17W	P16W	P15W	P14W	P13W	P12W	P11W	P10W

CKCON Register (0x8E)

Bit	Field	Туре	Initial	Description	
7	Reserved	R	0		
64	PWSC[2:0]	R/W	111	Extended cycl	e(s) applied to reading programmemory
				000: non	(set "000", if Fcpu ≤ 16MHz)
				001: 1 cycle	(set "001", if Fcpu > 16MHz)
				010: 2 cycles	(reserved)
				011: 3 cycles	(reserved)
				100: 4 cycles	(reserved)
				101: 5 cycles	(reserved)
				110: 6 cycles	(reserved)
				111: 7 cycles	(reserved)
3	ESYN	R/W	0	Extended extr	a cycles to write XRAM (user always set "0")
20	EWSC[2:0]	R/W	001	Extended cycl	e(s) applied to reading XRAM
				000: non	(user always set "0")
				001: 1 cycle	(reserved)
				010: 2 cycles	(reserved)
				011: 3 cycles	(reserved)
				100: 4 cycles	(reserved)
				101: 5 cycles	(reserved)
				110: 6 cycles	(reserved)
				111: 7 cycles	(reserved)

CLKSEL Register (0xE5)

Bit	Field	Туре	Initial	Description
73	Reserved	R	0x00	
20	CLKSEL[2:0]	R/W	111	CLKSEL would be applied by writing CLKCMD.
				000: fcpu = fosc / 128
				001: fcpu = fosc / 64
				010: fcpu = fosc / 32
				011: fcpu = fosc / 16
				100: fcpu = fosc / 8
				101: fcpu = fosc / 4
				110: fcpu = fosc / 2
				111: fcpu = fosc / 1
				* After set CLKSEL [2:0], then must write 0x69 to apply CLKSEL's setting.

CLKCMD Register (0xE6)

Bit	Field	Type	Initial	Description
70	CMD[7:0]	W	0x00	Writing 0x69 to apply CLKSEL's setting.

PCON Register (0x87)

Bit	Field	Туре	Initial	Description
7				Refer to other chapter(s)
64	Reserved	R	0x00	
3	P2SEL	R/W	1	High-order address byte configuration bit. Chooses the
				higher byte of address ("XRAM[15:8]") during MOVX
				@Ri operations
				0: The "XRAM[15:8]" = "P2REG". The "P2REG" is the
				contents of Port2 output register.
				1: The "XRAM[15:8]" = 0x00.
2	GF0	R/W	0	General Purpose Flag
1	STOP	R/W	0	1: Microcontroller switch to STOP mode
0	IDLE	R/W	0	1: Microcontroller switch to IDLE mode

P1W Register (0x91)

Bit	Field	Туре	Initial	Description
70	P1nW	R/W	0	0: Disable P1.n wakeup function
				1: Enable P1.n wakeup function

9 Interrupt

The MCU provides 10 interrupt sources (2 external and 8 internal) with 4 priority levels. Each interrupt source includes one or more interrupt request flag(s). When interrupt event occurs, the associated interrupt flag is set to logic 1. If both interrupt enable bit and global interrupt (EAL=1) are enabled, the interrupt request is generated and interrupt service routine (ISR) will be started. Most interrupt request flags must be cleared by software. However, some interrupt request flags can be cleared by hardware automatically. In the end, ISR is finished after complete the RETI instruction. The summary of interrupt source, interrupt vector, priority order and control bit are shown as the table below.

Interrupt	Enable	Request (IRQ)	IRQ Clearance	Priority / Vector
System Reset	-	-	-	0 / 0x0000
INT0	EX0	IEO	Automatically	1 / 0x0003
INT1	EX1	IE1	Automatically	2 / 0x000B
TC0	ETC0	TCF0	Automatically	3 / 0x0013
T0	ETO	TF0	Automatically	4 / 0x0093
TC1	ETC1	TCF1	Automatically	5 / 0x001B
TC2	ETC2	TCF2	Automatically	6 / 0x009B
UART	ES0	TIO / RIO	By firmware	7 / 0x0023
SPI	ESPI	SPIF / MODF	By firmware	8 / 0x00A3
ADC	EADC	ADCF	By firmware	9 / 0x002B
I2C	EI2C	SI	By firmware	10 / 0x00AB

9.1 Interrupt Operation

Interrupt operation is controlled by interrupt request flag and interrupt enable bits. Interrupt request flag is interrupt source event indicator, no matter what interrupt function status (enable or disable). Both interrupt enable bit and global interrupt (EAL=1) are enabled, the system executes interrupt operation when each of interrupt request flags actives. The program counter points to interrupt vector (0x03 - 0xEB) and execute ISR.

9.2 Interrupt Priority

Each interrupt source has its specific default priority order. If two interrupts occurs simultaneously, the higher priority ISR will be service first. The lower priority ISR will be serviced after the higher priority ISR completes. The next ISR will be service after the previous ISR complete, no matter the priority order.

For special priority needs, 4-level priority levels (Level 0 – Level 3) are used. All interrupt sources are classified into 6 priority groups (Group0 – Group5). Each group can be set one specific priority level. Priority level is selected by IPO/IP1 registers. Level 3 is the highest priority and Level 0 is the lowest. The interrupt sources inside the same group will share the same priority level. With the same priority level, the priority rule follows default priority.

Priority	IP1.x	IP0.x
Level 0	0	0
Level 1	0	1
Level 2	1	0
Level 3	1	1

The ISR with the higher priority level can be serviced first; even can break the on-going ISR with the lower priority level. The ISR with the lower priority level will be pending until the ISR with the higher priority level completes.

Group	Interrupt Source							
Group 0	INT0	-	-	-				
Group 1	INT1	-	-	-				
Group 2	TC0	TO	-	-				
Group 3	TC1	TC2	-	-				
Group 4	UART	SPI	-	-				
Group 5	ADC	I2C	-	-				

IPO, IP1 Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP0	-	-	IP05	IP04	IP03	IP02	IP01	IP00
IP1	-	-	IP15	IP14	IP13	IP12	IP11	IP10

IPO Register (OXA9)

Bit	Field	Туре	Initial	Description
50	IP0[5:0]	R/W	0	Interrupt priority. Each bit together with corresponding bit from IP1 register specifies the priority level of the respective interrupt priority group.
Else	Reserved	R	0	respective interrupt priority 61 oup.

IP1 Register (0XB9)

Bit	Field	Туре	Initial	Description
50	IP1[5:0]	R/W	0	Interrupt priority. Each bit together with corresponding bit from IPO register specifies the priority level of the respective interrupt priority group.
Else	Reserved	R	0	

^{*}Example: Priority groups Level GP0>GP1>GP2>GP3=GP4=GP5.

```
1 IPO = 0 \times 05;
2 IP1 = 0 \times 03;
```

*Example: Priority groups Level GP5>GP4>GP3>GP2=GP1=GP0.

```
1 IP0 = 0x28;
2 IP1 = 0x30;
```


9.3 Interrupt Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IEN0	EAL	-	-	ES0	-	EX1	ET0	EX0
IEN1	-	-	-	-	-	-	ESPI	EI2C
IEN2	-	-	-	EADC	ETC2	ETC1	ETC0	-
IRCON	ADCF	TCF2	TCF1	TCF0	-	TF0	IE1	IE0
SOCON	SM0	SM1	SM20	REN0	TB80	RB80	TI0	RIO
SPSTA	SPIF	WCOL	SSERR	MODF	-	-	-	-
I2CCON	CR2	ENS1	STA	STO	SI	AA	CR1	CR0

IENO Register (0XA8)

Bit	Field	Туре	Initial	Description
7	EAL	R/W	0	Enable all interrupt control bit. 0: Disable all interrupt function. 1: Enable all interrupt function.
4	ESO	R/W	0	UART interrupt control bit. 0: Disable UART interrupt function. 1: Enable UART interrupt function.
2	EX1	R/W	0	External P0.1 interrupt (INT1) control bit. 0: Disable INT1 interrupt function. 1: Enable INT1 interrupt function.
1	ETO	R/W	0	T0 timer interrupt control bit. 0: Disable T0 interrupt function. 1: Enable T0 interrupt function
0	EX0	R/W	0	External P0.0 interrupt (INT0) control bit. 0: Disable INT0 interrupt function. 1: Enable INT0 interrupt function.
Else	Reserved	R	0	

IEN1 Register (0XB8)

	-0 7			
Bit	Field	Type	Initial	Description
1	ESPI	R/W	0	SPI interrupt control bit
				0: Disable SPI interrupt function.
				1: Enable SPI interrupt function.
0	EI2C	R/W	0	I2C interrupt control bit.
				0: Disable I2C interrupt function.
				1: Enable I2C interrupt function.
Else	Reserved	R	0	

IEN2 Register (0X9A)

Bit	Field	Туре	Initial	Description
4	EADC	R/W	0	ADC interrupt control bit
				0: Disable ADC interrupt function.
				1: Enable ADC interrupt function.
3	TC2	R/W	0	TC2 overflow interrupt control bit.
				0: Disable TC2 interrupt function.
				1: Enable TC2 interrupt function.
2	TC1	R/W	0	TC1 overflow interrupt control bit.
				0: Disable TC1 interrupt function.
				1: Enable TC1 interrupt function.
1	TC0	R/W	0	TC0 overflow interrupt control bit.
				0: Disable TC0 interrupt function.
				1: Enable TC0 interrupt function.
Else	Reserved	R	0	

IRCON Register (0xC0)

Bit	Field	Type	Initial	Description
7	ADCF	R/W	0	ADC interrupt request flag. 0: None ADC interrupt request 1: ADC interrupt request.
6	TCF2	R/W	0	TC2 timer interrupt request flag. 0: None TC2 interrupt request. 1: TC2 interrupt request.
5	TCF1	R/W	0	TC1 timer interrupt request flag. 0: None TC1 interrupt request. 1: TC1 interrupt request.
4	TCF0	R/W	0	TCO timer interrupt request flag. 0: None TCO interrupt request. 1: TCO interrupt request.
2	TF0	R/W	0	T0 timer interrupt request flag. 0: None T0 interrupt request. 1: T0 interrupt request.
1	IE1	R/W	0	External P0.1 interrupt (INT1) request flag 0: None INT1 interrupt request. 1: INT1 interrupt request.
0	IE0	R/W	0	External P0.0 interrupt (INTO) request flag 0: None INTO interrupt request. 1: INTO interrupt request.
Else	Reserved	R	0	

SOCON Register (0X98)

Bit	Field	Type	Initial	Description
1	TIO	R/W	0	UART transmit interrupt request flag. It indicates
				completion of a serial transmission at UART. It is set by
				hardware at the end of bit 8 in mode 0 or at the
				beginning of a stop bit in other modes. It must be
				cleared by software.
				0: None UART transmit interrupt request.
				1: UART transmit interrupt request.
0	RI0	R/W	0	UART receive interrupt request flag. It is set by hardware
				after completion of a serial reception at UART. It is set by
				hardware at the end of bit 8 in mode 0 or in the middle
				of a stop bit in other modes. It must be cleared by
				software.
				0: None UART receive interrupt request.
				1: UART receive interrupt request.
Else				Refer to other chapter(s)

SPSTA Register (0XE1)

J	,,,,,	register (ONEI)			
Bi	it	Field	Туре	Initial	Description
7		SPIF	R	0	SPI complete communication flag
					Set automatically at the end of communication
					Cleared automatically by reading SPSTA, SPDAT registers
4		MODF	R	0	Mode fault flag
El	se				Refer to other chapter(s)

I2CCON Register (0XDC)

Field	Туре	Initial	Description
SI	R/W	0	Serial interrupt flag
			The SI is set by hardware when one of 25 out of 26
			possible I2C states is entered. The only state that does
			not set the SI is state F8h, which indicates that no
			relevant state information is available. The SI flag must
			be cleared by software. In order to clear the SI bit, '0'
			must be written to this bit. Writing a '1' to SI bit does
			not change value of the SI.
			Refer to other chapter(s)
			<u> </u>

10 MDU

The multiplication division unit is an on-chip arithmetic co-processor which enables the microcontroller to perform additional extended arithmetic operations. This unit provides 32-bit unsigned division, 16-bit unsigned multiplication, shift and normalize operations. These operations are identified by the different sequences of writing MD0 to MD5 registers.

10.1 Multiplication (16-bit x 16-bit)

The elements of a multiplication include three parts: multiplicand, multiplier and product. To start a multiplication requires following writing sequence: MD0 (low byte of multiplicand), MD4 (low byte of multiplier), MD1 (high byte of multiplicand), and MD5 (high byte of multiplier).

By the end of writing MD5 register, the multiplication is automatically started and takes 11 CPU cycles for its operation. The product of this term operation would be available to read by a specific sequence: MD0 (LSB), MD1, MD2, and MD3 (MSB) registers.

10.2 Division (32-bit/16-bit and 16-bit/16-bit)

The MDU supports two kind of division: 32-bit by 16-bit, and 16-bit by 16-bit. The first operation takes 17 CPU cycles to compute, whereas the second one takes 9 cycles only.

A 32-bit division started by a specific sequence of writing registers: MD0, MD1, MD2, MD3, MD4, and MD5. In this case, the 32-bit dividend is expected to store in MD3 (most significant bit) to MD0 registers, and 16-bit divisor is stored in MD5 and MD4 registers (MSB in MD5 register).

A 16-bit division operation cooperates with four registers only. The 16-bit dividend is stored in MD1 and MD0 registers, and the 16-bit divisor is stored in MD5 and MD4 registers (MD1 and MD5 for most signification bit). The appropriate performing sequence is 'MD0, MD1, MD4, and MD5.'

The MDU starts computing from MD5 register is written. It spends 9 or 17 CPU cycles, depends on the length of dividend, before the outcome is generated. The quotient is stored in MD3 to MD0 registers for 32-bit division, and MD1 to MD0 registers for 16-bit division (LSB in MD0 register). The reminder would be placed in MD5 (MSB) and MD4 registers no matter which division is performed. However, reading MD5 register must be the last operation to indicate the full division is completed.

10.3 Shifting and Normalizing

The shifting and normalizing operations rotate the 32-bit registers (MD3 to MD0, MSB in MD3) for a certain or uncertain time.

In shift operation, the 32-bit unsigned integer is shifted left or right by a specified number of bits. The direction and shifting number is specified in ARCON register. A shift operation takes 3 to 18

CPU cycles depends on the shift time.

In normalizing operation, the 32-bit unsigned integer would be shifted left repeatedly until the most significant bit (7th bit of MD3 register) is 1. A normalizing operation takes 4 to 19 CPU cycles depends on the actual shift time.

Both shifting and normalizing operations are started by proper sequence of writing registers: MD0, MD1, MD2, MD3, and finally ARCON register. The result would be place in MD0 to MD3 registers which should be read in the sequence of MD0, MD1, MD2, and MD3.

10.4 Cooperate with Keil C51

Because Keil C51 supports both of hardware and software multiplication/division operators, a command line '#pragma mdu_r515' is required in C to enable the hardware MDU functionality for higher performance. Subsequently, Keil C51 would compile mathematic operators with MDU support.

```
1 #include <SN8F5909.H>
2 #pragma mdu r515  //Keil C51 MDU command line
```

10.5 The Error Flag (MDEF)

The "MDEF" error flag indicates an improperly performed operation (when one of the arithmetic operations has been restarted or interrupted by a new operation). The error flag mechanism is automatically enabled with the first write operation to "MD0" and disabled with the final read instruction from "MD3" (multiplication or shift/normalize) or "MD5" (division) in phase three.

The error flag is set when:

There is a write access to 'MDx' registers (any of 'MD0' to 'MD5' and ARCON) during phase two of MDU operation (restart or calculations interrupting)

There is a read access to one of MDx registers during phase two of MDU operation when the error flag mechanism is enabled. In such condition error flag is set but the calculation is not interrupted. The error flag is reset only after read access to "ARCON" register. The error flag is read only.

10.6 The Overflow Flag (MDOV)

The MDOV overflow flag is set when one of the following conditions occurs:

Division by zero

Multiplication with a result greater than 0000 FFFFh

Start of normalizing if the most significant bit of MD3 is set (MD3.7= 1)

Any operation of the MDU that does not match the above conditions clears the overflow flag. Note that the overflow flag is exclusively controlled by hardware. It cannot be written.

10.7 MDU Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MD0	MD07	MD06	MD05	MD04	MD03	MD02	MD01	MD00
MD1	MD17	MD16	MD15	MD14	MD13	MD12	MD11	MD10
MD2	MD27	MD26	MD25	MD24	MD23	MD22	MD21	MD20
MD3	MD37	MD36	MD35	MD34	MD33	MD32	MD31	MD30
MD4	MD47	MD46	MD45	MD44	MD43	MD42	MD41	MD40
MD5	MD57	MD56	MD55	MD54	MD53	MD52	MD51	MD50
ARCON	MDEF	MDOV	SLR	SC4	SC3	SC2	SC1	SC0

MD Registers (MD0 – MD5: 0xE9 – 0xEE)

Bit	Field	Type	Initial	Description
70	MD[7:0]	R/W	0x00	Multiplication/Division Registers

ARCON Register (0xEF)

Bit	Field	Туре	Initial	Description
7	MDEF	R/W	0	MDU error flag MDEF
				Indicates an improperly performed operation (when one
				of the arithmetic operations has been restarted or
				interrupted by a new operation).
6	MDOV	R/W	0	MDU overflow flag
				Overflow occurrence in the MDU operation.
5	SLR	R/W	0	Shift direction
				0: Shift left operation
				1: Shift right operation
40	SC[4:0]	R/W	0x00	Shift counter
				Write 0x00: Perform normalizing. The actual shifttime
				would be readable after operation.
				Write else values: Specify the times of shift operation.

10.8 Sample Code

The following sample code demonstrates how to perform MDU 32 bit / 16 bit.

```
1 #include <SN8F5909.H>
 2 #pragma mdu_r515 //Keil C51 MDU command line
 4 void main(void)
 5 {
    unsigned int Divisor; // 16-bit divisor
unsigned long Dividend; // 32-bit dividend
 6
 7
 8
     unsigned long Quotient; // 32-bit Quotient
     unsigned int Remainder; // 16-bit Remainder
9
10
    Divisor = 0x1234;
11
12
     Dividend = 0x56789ABC;
     Quotient = Dividend / Divisor; //0x0004C016
13
14
     Remainder = Dividend % Divisor; //0x0A44
15
16
   while (1);
17 }
18
```


11 GPIO

The microcontroller has up to 44 bidirectional general purpose I/O pin (GPIO). Unlike the original 8051 only has open-drain output, SN8F5909 builds in push-pull output structure to improve its driving performance.

11.1 Input and Output Control

The input and output direction control is configurable through POM to P5M registers. These bits specify each pin that is either input mode or output mode.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0M	P07M	P06M	P05M	P04M	P03M	P02M	P01M	P00M
P1M	P17M	P16M	P15M	P14M	P13M	P12M	P11M	P10M
P2M	-	-	-	-	P23M	P22M	P21M	P20M
P3M	P37M	P36M	P35M	P34M	P33M	P32M	P31M	P30M
P4M	P47M	P46M	P45M	P44M	P43M	P42M	P41M	P40M
P5M	P57M	P56M	P55M	P54M	P53M	P52M	P51M	P50M
P1OC	-	-	-	P05OC	P04OC	P140C	P130C	P12OC

POM: 0xF9, P1M: 0xFA, P2M: 0xFB, P3M: 0xFC, P4M: 0xFD, P5M:0xFE

Bit	Field	Туре	Initial	Description
7	P07M	R/W	0	Mode selection of P0.7
				0: Input mode
				1: Output mode
6	P06M	R/W	0	Mode selection of P0.6
				0: Input mode
				1: Output mode
5	P05M	R/W	0	Mode selection of P0.5
				0: Input mode
				1: Output mode
40				et cetera

P1OC Register (0xE4)

Bit	Field	Туре	Initial	Description
4	P05OC	R/W	0	P0.5 open-drain output mode
				0: Disable
				1: Enable, output high status becomes to input mode
3	P04OC	R/W	0	P0.4 open-drain output mode
				0: Disable
				1: Enable, output high status becomes to input mode
2	P14OC	R/W	0	P1.4 open-drain output mode
				0: Disable
				1: Enable, output high status becomes to input mode
1	P13OC	R/W	0	P1.3 open-drain output mode
				0: Disable
				1: Enable, output high status becomes to input mode
0	P12OC	R/W	0	P1.2 open-drain output mode
				0: Disable
				1: Enable, output high status becomes to input mode

11.2 Input Data and Output Data

By a read operation from any registers of P0 to P5, the current pin's logic level would be fetch to represent its external status. This operation remains functional even the pin is shared with other function like UART and I2C which can monitor the bus condition in some case.

A write P0 to P5 register value would be latched immediately, yet the value would be outputted until the mapped P0M – P5M is set to output mode. If the pin is currently in output mode, any value set to P0 to P5 register would be presented on the pin immediately.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P07	P06	P05	P04	P03	P02	P01	P00
P1	P17	P16	P15	P14	P13	P12	P11	P10
P2	-	-	-	-	P23	P22	P21	P20
Р3	P37	P36	P35	P34	P33	P32	P31	P30
P4	P47	P46	P45	P44	P43	P42	P41	P40
P5	P57	P56	P55	P54	P53	P52	P51	P50

PO: 0x80, P1: 0x90, P2: 0xA0, P3: 0xFC, P4: 0xE8, P5: 0xF8

Bit	Field	Туре	Initial	Description
7	P07	R/W	1	Read: P0.7 pin's logic level
				Write 1/0: Output logic high or low (applied if P07M = 1)
6	P06	R/W	1	Read: P0.6 pin's logic level
				Write 1/0: Output logic high or low (applied if P06M = 1)
5	P05	R/W	1	Read: P0.5 pin's logic level
				Write 1/0: Output logic high or low (applied if P05M = 1)
40				et cetera

11.3 On-chip Pull-up Resisters

The POUR to P5UR registers are mapped to each pins' internal 100 k Ω (in typical value) pull-up resister.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0UR	P07UR	P06UR	P05UR	P04UR	P03UR	P02UR	P01UR	P00UR
P1UR	P17UR	P16UR	P15UR	P14UR	P13UR	P12UR	P11UR	P10UR
P2UR	-	-	-	-	P23UR	P22UR	P21UR	P20UR
P3UR	P37UR	P36UR	P35UR	P34UR	P33UR	P32UR	P31UR	P30UR
P4UR	P47UR	P46UR	P45UR	P44UR	P43UR	P42UR	P41UR	P40UR
P5UR	P57UR	P56UR	P55UR	P54UR	P53UR	P52UR	P51UR	P50UR

POUR: 0xF1, P1UR: 0xF2, P2UR: 0xF3, P3UR: 0xF4, P4UR: 0xF5, P5UR: 0xF6

Bit	Field	Туре	Initial	Description
7	P07UR	R/W	0	On-chip pull-up resister control of P0.7
				0: Disable [*]
				1: Enable
6	P06UR	R/W	0	On-chip pull-up resister control of P0.6
				0: Disable [*]
				1: Enable
5	P05UR	R/W	0	On-chip pull-up resister control of P0.5
				0: Disable [*]
				1: Enable
40				et cetera

^{*} Recommended disable pull-up resister if the pin is output mode or analog function

11.4 Pin Shared with LCD Function

The microcontroller builds in LCD functions. The LCD driver output pins share with GPIO function, which can be configured by setting PxCON registers.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5CON	P5CON7	P5CON6	P5CON5	P5CON4	P5CON3	P5CON2	P5CON1	P5CON0
P3CON	P3CON7	P3CON6	P3CON5	P3CON4	P3CON3	P3CON2	P3CON1	P3CON0
P4CON	P4CON7	P4CON6	P4CON5	P4CON4	P4CON3	P4CON2	P4CON1	P4CON0

11.5 P3CON: 0x9E, P4CON: 0x9F, P5CON: 0x9D

Bit	Field	Туре	Initial	Description
7	P3CON7	R/W	1	P37 function control bit
				0: LCD function.
				1: GPIO function.
6	P3CON6	R/W	1	P36 function control bit
				0: LCD function.
				1: GPIO function.
5	P3CON5	R/W	1	P35 function control bit
				0: LCD function.
				1: GPIO function.
40				et cetera

12 External Interrupt

INTO and INT1 are external interrupt trigger sources. Build in edge trigger configuration function and edge direction is selected by PEDGE register. When both external interrupt (EX0/EX1) and global interrupt (EAL) are enabled, the external interrupt request flag (IE0/IE1) will be set to "1" as edge trigger event occurs. The program counter will jump to the interrupt vector (ORG 0x0003/0x000B) and execute interrupt service routine. Interrupt request flag will be cleared by hardware before ISR is executed.

12.1 External Interrupt Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PEDGE	-	-	-	-	EX1G1	EX1G0	EX0G1	EX0G0
IEN0	EAL	_	_	ES0	-	EX1	ET0	EX0
TCON	TF1	TR1	TF0	TR0	IE1	-	IE0	-

PEDGE Register (0X8F)

Bit	Field	Туре	Initial	Description
32	EX1G[1:0]	R/W	10	External interrupt 1 trigger edge control register. 00: Reserved. 01: Rising edge trigger.
				10: Falling edge trigger (default)
				11: Both rising and falling edge trigger
10	EX0G[1:0]	R/W	10	External interrupt 0 trigger edge control register. 00: Reserved. 01: Rising edge trigger.
				10: Falling edge trigger (default)
				11: Both rising and falling edge trigger
Else	Reserved	R	0	

12.2 Sample Code

The following sample code demonstrates how to perform INTO/INT1 with interrupt.

```
1 #include <intrins.h>
2 #include <SN8F5909.h>
4 void Init GPIO(void);
5 void Init_ISR(void);
6 void Delay1ms(unsigned int n);
8 void main(void)
9 {
                       // Initial GPIO
10
    Init GPIO();
11 Init ISR();
                        // Initial interrupt setting
12
13 while (1) {
14
        WDTR = 0x5A;
                        // clear watchdog if watchdog enable
        // To Do...
15
16
        Delay1ms(100);
17 }
18 }
19
20 void Init GPIO (void)
21 {
22
    P0 = 0x00;
23
    POUR = 0xFF;
24
                      // P0.0, P0.1 as input mode
   POM = 0x00;
25 }
27 void Init ISR(void)
28 {
                       // Clear PEDGE
29
   PEDGE &= 0 \times 00;
    PEDGE |= 0x02;
                        // EXOG = 0x10 : INTO Falling edge trigger (default).
30
31 EX0 = 1;
                        // INTO isr enable
32
33 PEDGE | = 0x04;
                        // EX1G = 0x01 : INT1 Rising edge trigger
                        // INT1 isr enable
34 EX1 = 1;
                        // Interrupt enable
35 EAL = 1;
36 }
38 void INTO ISR(void) interrupt ISRIntO // Vector @0x03
39 {
40
    // cleared int0 flag by hardware
41 // IE0 = 0;
                       // Clear INTO flag
42
   // To Do...
43
    _nop_();
44
45 }
46
47
48
49
50
51
53
54
```



```
56 void INT1_ISR(void) interrupt ISRInt1 // Vector @ 0x0B
58
    // cleared int1 flag by hardware
    // IE1 = 0;
59
                         // Clear INT1 flag
60
     // To Do...
61
62
     _nop_();
63 }
64
65 void Delay1ms (unsigned int n)
67
    unsigned int i, j;
68
    // int value
69
    i = 0;
70
    j = 0;
71
72
    for (i=0; i<n; i++) {</pre>
73
         for (j=0; j<220; j++) {</pre>
74
                        _nop_();
              _nop_();
75
              _nop_();
                          _nop_();
                         _nop_();
76
              _nop_();
77
              _nop_();
                          _nop_();
78
         }
79
     }
80 }
81
82
83
```


13 TCx 16-BIT Timer/Counter

The TCO/TC1/TC2 timer is an 16-bit binary up timer with basic timer, event counter and PWM functions. The basic timer function supports flag indicator (TCxIRQ bit) and interrupt operation (interrupt vector). The interval time is programmable through TCxM, TCxC, TCxR registers. The event counter is changing TCO clock source from system clock (Fcpu/Fosc/X'tal) to external clock like signal (e.g. 32768Hz Crystal). TCx becomes a counter to count external clock number to implement measure application. TCx also builds in duty/cycle programmable PWM. The PWM cycle and resolution are controlled by TCx timer clock rate, TCxR and TCxD registers, so the PWM with good flexibility to implement IR carry signal, motor control and brightness adjuster...The main purposes of the TCx timer are as following

■ 16-bit programmable up counting timer:

Generate time-out at specific time intervals based on the selected clock frequency.

■ Interrupt function:

TCx timer function supports interrupt function. When TCx timer occurs overflow, the TCxIRQ actives and the system points program counter to interrupt vector to do interrupt sequence.

■ Event Counter:

The event counter function counts the external clock counts.

■ Duty/cycle programmable PWM

The PWM is duty/cycle programmable controlled by TCxR and TCxD registers.

■ Idle mode function:

All TCx functions (timer, PWM, event counter, auto-reload) works on normal or idle mode, stop working in STOP mode.

Note:

Register	Function description
TCx = TC0, TC1 or TC2.	Timer Counter
TCxC = TC0C, TC1C or TC2C	Timer Counter Counting data
TCxD = TCF0, TCF1 or TCF2	Timer PWM function duty data
TCxR = TCF0, TCF1 or TCF2	Timer Auto reload data
TCxENB = TC0ENB, TC1ENB or TC2ENB	Timer function enable bit
TCxM = TC0M, TC1M or TC2M	Timer control register
ETCx = ETC0, ETC1 or ETC2	Timer overflow interrupt control bit.
TCFx = TCF0, TCF1 or TCF2	Timer Overflow interrupt request flag.
TCxRATE = TCORATE, TC1RATE or TC3 TATE	Timer Clock divider
x = 0, 1 or 2	,

13.1 Timer Counter Diagram and Clock Source Selection

The figures below illustrate the clock selection circuit of TC0, TC1 and TC2. Each has three internal clock sources selection (fcpu, fosc, and 32K Xtal) and one external signal input. The following block diagrams show the TCx internal structure.

TC0 Structure Diagram:

TC1 Structure Diagram:

TC2 Structure Diagram:

13.2 TC0 Timer Operation (include TC1 and TC2)

TCO timer is controlled by TCOENB bit. When TCOENB=1, TCO timer starts to count. One count period is one clock source rate. TCOC is TCO counter and up counting when TCOENB=1. When TCOC counts from 0xFFFF to 0x0000, TCO overflow condition is conformed and TCFO set as "1". The interrupt flag TCFO is clear by program or auto clear by hardware after executing interrupt vector. TCx builds in auto-reload function and always enabled. When TCO timer overflow occurs, the TCOC counter buffer will be reloaded from TCOR register automatically. TCO is double buffer design. If the TCOR is changed by program, the new value will be loaded at next overflow occurrence, or the TCO interval time is error. If TCO interrupt function is enabled (ETCO=1), the program counter is pointed to interrupt vector to execute interrupt service routine after TCO timer overflow occurrence.

13.3 TCO Counting Function and Register (include TC1 and TC2)

TCOC is TCO 16-bit counter. When TCOC overflow occurs, the TCFO flag is set as "1" and cleared by hardware or firmware. The TCOC decides TCO interval time through below equation to calculate a correct value. It is necessary to write the correct value to TCOC register and TCOR register first time, and then enable TCO timer to make sure the first cycle correct. After one TCO overflow occurs, the TCOC register is loaded a correct value from TCOR register automatically, not program.

TCOCH Register (TCOCH: 0xC5)

Bit	Field	Туре	Initial	Description
70	TC0CH	R/W	0x00	High byte of TC0 counter

TCOCL Register (TCOCL: 0xC4)

Bit	Field	Туре	Initial	Description
70	TC0CL	R/W	0x00	Low byte of TC0 counter

The equation of TCOC initial value is as following:

TCOC initial value = 65536 - (TCO interrupt interval time * TCO clock rate)

13.4 TCO Auto Reload Function and Register (include TC1 and TC2)

TCO timer builds in auto-reload function, and TCOR register stores reload data. When TCOC overflow occurs, TCOC register is loaded data from TCOR register automatically. Under TCO timer counting status, to modify TCO interval time is to modify TCOR register, not TCOC register. New TCOC data of TCO interval time will be updated after TCO timer overflow occurrence, TCOR loads new value to TCOC register. But at the first time to setup TCOM, TCOC and TCOR must be set the same value before enabling TCO timer. TCO is double buffer design. If new TCOR value is set by program, the new value is stored in 1st buffer. Until TCO overflow occurs, the new value moves to real TCOR buffer. This way can avoid any transitional condition to affect the correctness of TCO interval time and PWM output signal.

TC0RH Register (TC0RH: 0xC3)

Bit	Field	Туре	Initial	Description
70	TC0RH	R/W	0x00	High byte of TC0 reload buffer

TCORL Register (TCORL: 0xC2)

Bit	Field	Туре	Initial	Description
70	TC0RL	R/W	0x00	Low byte of TC0 reload buffer

The equation of TCOR initial value is as following:

TCOR initial value = 65536 - (TCO interrupt interval time * TCO clock rate)

Example: To calculation TCOC and TCOR value to obtain 10ms TCO interval time.

TC0 clock source is Fcpu = 32MHz/32 = 1MHz. Select TC0RATE=000 (Fcpu/128) TC0 interval time = 10ms. TC0 clock rate = 32MHz/32/128

TCOC/TCOR initial value = 65536 - (TC0 interval time * input clock)
= 65536 - (10ms * 32MHz / 32 / 128)
= 65536 - (
$$10^{-2} * 32 * 10^6 / 32 / 128$$
)
= FFB2H

13.5 TC0 (TC1 / TC2) PWM Function

The PWM is duty/cycle programmable design to offer various PWM signals. When TC0 timer enables and PWM0OUT bit sets as "1" (enable PWM output), the PWM output pin (P0.6) outputs PWM signal. One cycle of PWM signal is high pulse first, and then low pulse outputs. TC0R register controls the cycle of PWM, and TC0D decides the duty (high pulse width length) of PWM. TC0C initial value is TC0R reloaded when TC0 timer enables and TC0 timer overflows. When TC0C count is equal to TC0D, the PWM high pulse finishes and exchanges to low level. When TC0 overflows (TC0C counts from 0xFFFF to 0x0000), one complete PWM cycle finishes. The PWM exchanges to high level for next cycle. The PWM is auto-reload design to load TC0C from TC0R automatically when TC0 overflows and the end of PWM's cycle, to keeps PWM continuity. If modify the PWM cycle by program as PWM outputting, the new cycle occurs at next cycle when TC0C loaded from TC0R.

TCOD register's purpose is to decide PWM duty. In PWM mode, TCOR controls PWM's cycle, and TCOD controls the duty of PWM. The operation is base on timer counter value. When TCOC = TCOD, the PWM high duty finished and exchange to low level. It is easy to configure TCOD to choose the right PWM's duty for application.

The equation of TCOD initial value is as following:

TCOD initial value = TCOR + (PWM high pulse width period / TCO clock rate)

Example: To calculate TCOD value to obtain 1/3 duty PWM signal in 100Hz.

The TCOclock source is Fcpu = 32MHz/32= 1MHz. Select TCORATE=000 (Fcpu/128).

TCOR = FFB2H (TCORH: FFH,TCORL: B2H). TCO interval time = 10ms. So the PWM cycle is 100Hz. In 1/3 duty condition, the high pulse width is about 3.33ms.

TCOD initial value = FFB2H + (PWM high pulse width period / TCO clock rate)
= FFB2H + (3.33ms * 32MHz / 32 / 128)
= FFB2H + 1AH = FFCCH

13.6 TC0 Event Counter Function (include TC1 and TC2)

TCO event counter is set the TCO clock source from external input pin (P0.0). When TCOCKS1=1, TCO clock source is switch to external input pin (P0.0). TCO event counter trigger direction is falling edge. When one falling edge occurs, TCOC will up one count. When TCOC counts from 0xFFFF to 0x0000, TCO triggers overflow event. The external event counter input pin's wake-up function of GPIO mode is disabled when TCO event counter function enabled to avoid event counter signal trigger system wake-up and not keep in power saving mode. The external event counter input pin's external interrupt function is also disabled when TCO event counter function enabled, and the P00IRQ bit keeps "0" status. The event counter usually is used to measure external continuous signal rate, e.g. continuous pulse, R/C type oscillating signal...These signal phase don't synchronize with MCU's main clock. Use TCO event to measure it and calculate the signal rate in program for different applications.

Note: TC0 External Input signal = P00

TC1 External Input signal = P01

TC2 External Input signal = P02

13.7 TC0, TC1 and TC2 Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC0M	TC0ENB	TC0RATE2	TC0RATE1	TC0RATE0	TC0CKS1	TC0CKS0	PWM0OUT	-
TC0RL	TCORL7	TCORL6	TC0RL5	TCORL4	TCORL3	TC0RL2	TCORL1	TCORLO
TC0RH	TC0RH7	TCORH6	TC0RH5	TC0RH4	TC0RH3	TC0RH2	TC0RH1	TC0RH0
TC0CL	TC0CL7	TC0CL6	TC0CL5	TC0CL4	TC0CL3	TC0CL2	TC0CL1	TC0CL0
тсосн	TC0CH7	тсосн6	TC0CH5	TC0CH4	TC0CH3	TC0CH2	TC0CH1	тсосно
TC0DL	TC0DL7	TC0DL6	TC0DL5	TC0DL4	TC0DL3	TC0DL2	TC0DL1	TC0DL0
TC0DH	TC0DH7	TC0DH6	TC0DH5	TC0DH4	TC0DH3	TC0DH2	TC0DH1	TC0DH0
TC1M	TC1ENB	TC1RATE2	TC1RATE1	TC1RATE0	TC1CKS1	TC1CKS0	PWM10UT	-
TC1RL	TC1RL7	TC1RL6	TC1RL5	TC1RL4	TC1RL3	TC1RL2	TC1RL1	TC1RL0
TC1RH	TC1RH7	TC1RH6	TC1RH5	TC1RH4	TC1RH3	TC1RH2	TC1RH1	TC1RH0
TC1CL	TC1CL7	TC1CL6	TC1CL5	TC1CL4	TC1CL3	TC1CL2	TC1CL1	TC1CL0
TC1CH	TC1CH7	TC1CH6	TC1CH5	TC1CH4	TC1CH3	TC1CH2	TC1CH1	TC1CH0
TC1DL	TC1DL7	TC1DL6	TC1DL5	TC1DL4	TC1DL3	TC1DL2	TC1DL1	TC1DL0
TC1DH	TC1DH7	TC1DH6	TC1DH5	TC1DH4	TC1DH3	TC1DH2	TC1DH1	TC1DH0
TC2M	TC2ENB	TC2RATE0	TC2RATE1	TC2RATE0	TC2CKS1	TC2CKS0	PWM2OUT	-
TC2RL	TC2RL7	TC2RL6	TC2RL5	TC2RL4	TC2RL3	TC2RL2	TC2RL1	TC2RL0
TC2RH	TC2RH7	TC2RH6	TC2RH5	TC2RH4	TC2RH3	TC2RH2	TC2RH1	TC2RH0
TC2CL	TC2CL7	TC2CL6	TC2CL5	TC2CL4	TC2CL3	TC2CL2	TC2CL1	TC2CL0
TC2CH	TC2CH7	TC2CH6	TC2CH5	TC2CH4	TC2CH3	TC2CH2	TC2CH1	TC2CH0
TC2DL	TC2DL7	TC2DL6	TC2DL5	TC2DL4	TC2DL3	TC2DL2	TC2DL1	TC2DL0
TC2DH	TC2DH7	TC2DH6	TC2DH5	TC2DH4	TC2DH3	TC2DH2	TC2DH1	TC2DH0

TCOM Register (0xC1)

Bit	Field	Туре	Initial	Description
7	TC0ENB	R/W	0	TC0 function control bit.
				0: Disable
				1: Enable
64	TCORATE[2:0]	R/W	0	TC0 timer clock divider.
				000: clock/128 100: clock/8
				001: clock/64 101: clock/4
				010: clock/32 110: clock/2
				011: clock/16 111: clock/1
32	TC0CKS[1:0]	R/W	0	TC0 timer clock source select bits
				00: Fcpu
				01: Fosc
				10: external 32K crystal
				11: P0.0 (event counter)
1	PWM0OUT	R/W	0	PWM0 output control bit
				0: Disable, P0.6 is GPIO mode.
				1: Enable, P0.6 output PWM signal.
0	Reserved	R	0	

TC1M Register (0xC9)

Bit	Field	Туре	Initial	Description
7 TC1ENB R/		R/W	0	TC1 function control bit.
				0: Disable
				1: Enable
64	TC1RATE[2:0]	R/W	0	TC1 timer clock divider.
				000: clock/128 100: clock/8
				001: clock/64 101: clock/4
				010: clock/32 110: clock/2
				011: clock/16 111: clock/1
32	TC1CKS[1:0]	R/W	0	TC1 timer clock source select bits
				00: Fcpu
				01: Fosc
				10: external 32K crystal
				11: P0.1 (event counter)
1	PWM10UT	R/W	0	PWM1 output control bit
				0: Disable, P0.7 is GPIO mode.
				1: Enable, P0.7 output PWM signal.
0	Reserved	R	0	

TC2M Register (0xA1)

Bit	Field	Туре	Initial	Description
7	TC2ENB	R/W	0	TC2 function control bit.
				0: Disable
				1: Enable
64	TC2RATE[2:0]	R/W	0	TC2 timer clock divider.
				000: clock/128 100: clock/8
				001: clock/64 101: clock/4
				010: clock/32 110: clock/2
				011: clock/16 111: clock/1
32	TC2CKS[1:0]	R/W	0	TC2 timer clock source select bits
				00: Fcpu
				01: Fosc
				10: external 32K crystal
				11: P0.2 (event counter)
1	PWM2OUT	R/W	0	PWM2 output control bit
				0: Disable, P1.6 is GPIO mode.
				1: Enable, P1.6 output PWM signal.
0	Reserved	R	0	

Timer clock control table:

TCxCKS[1:0]	TCxRATE[2:0]	TCx Clock	TCxCKS[1:0]	TxRATE[2:0]	TCx Clock
	000	Fcpu / 128		000	Fosc / 128
	001	Fcpu / 64		001	Fosc / 64
00	010	Fcpu / 32		010	Fosc / 32
	011	Fcpu / 16	01	011	Fosc / 16
00	100	Fcpu / 8		100	Fosc / 8
	101	Fcpu / 4		101	Fosc / 4
	110	Fcpu / 2		110	Fosc / 2
	111	Fcpu / 1		111	Fosc / 1
	000	32KHz / 128			
	001	32KHz / 64			D0 0 1
	010	32KHz / 32			
10	011	32KHz / 16	11	NI A	P0.0 event
10	100	32KHz / 8	11	NA	counter function.
	101	32KHz / 4			Turicuoti.
	110	32KHz / 2			
	111	32KHz / 1			

Note: TCx = TC0, TC1 and TC2

IEN2 Register (0X9A)

Bit	Field	Туре	Initial	Description
4	EADC	R/W	0	ADC interrupt control bit
				0: Disable ADC interrupt function.
				1: Enable ADC interrupt function.
3	ETC2	R/W	0	TC2 overflow interrupt control bit.
				0: Disable TC2 interrupt function.
				1: Enable TC2 interrupt function.
2	ETC1	R/W	0	TC1 overflow interrupt control bit.
				0: Disable TC1 interrupt function.
				1: Enable TC1 interrupt function.
1	ETC0	R/W	0	TC0 overflow interrupt control bit.
				0: Disable TC0 interrupt function.
				1: Enable TC0 interrupt function.
Else	Reserved	R	0	

IRCON Register (0xC0)

6	ADCF TCF2	R/W	0	ADC interrupt request flag. 0: None ADC interrupt request
6	TCF2			0: None ADC interrupt request
6	TCF2			or record of the contract of t
6	TCF2			1: ADC interrupt request.
	. 51 2	R/W	0	TC2 timer interrupt request flag.
				0: None TC2 interrupt request.
				1: TC2 interrupt request.
5	TCF1	R/W	0	TC1 timer interrupt request flag.
				0: None TC1 interrupt request.
				1: TC1 interrupt request.
4	TCF0	R/W	0	TC0 timer interrupt request flag.
				0: None TC0 interrupt request.
				1: TC0 interrupt request.
2	TF0	R/W	0	T0 timer interrupt request flag.
				0: None T0 interrupt request.
				1: T0 interrupt request.
1	IE1	R/W	0	External P0.1 interrupt (INT1) request flag
				0: None INT1 interrupt request.
				1: INT1 interrupt request.
0	IE0	R/W	0	External P0.0 interrupt (INTO) request flag
				0: None INTO interrupt request.
				1: INTO interrupt request.
Else	Reserved	R	0	

TCOCH / TC1CH / TC2CH Registers (TCOCH : 0xC5, TC1CH : 0xCD, TC2CH : 0xA5)

Bit	Field	Туре	Initial	Description
70	TCxCH	R/W	0x00	High byte of TCx counter

TCOCL / TC1CL / TC2CL Registers (TCOCL : 0xC4, TC1CL : 0xCC, TC2CL : 0xA4)

Bit	Field	Туре	Initial	Description
70	TCxCL	R/W	0x00	Low byte of TCx counter

TCORH / TC1RH / TC2RH Registers (TCORH : 0xC3, TC1RH : 0xCB, TC2RH : 0xA3)

Bit	Field	Туре	Initial	Description
70	TCxRH	R/W	0x00	High byte of TCx reload buffer

TCORL / TC1RL / TC2RL Registers (TCORL : 0xC2, TC1RL : 0xCA, TC2RL : 0xA2)

Bit	Field	Туре	Initial	Description
70	TCxRL	R/W	0x00	Low byte of TCx reload buffer

TC0DH / TC1DH / TC2DH Registers (TC0DH : 0xC7, TC1DH : 0xCF, TC2DH : 0xA7)

Bit	Field	Type	Initial	Description
70	TCxDH	R/W	0x00	High byte of TCx duty control

TCODL / TC1DL / TC2DL Registers (TC0DL : 0xC6, TC1DL : 0xCE, TC2DL : 0xA6)

Bit	Field	Туре	Initial	Description
70	TCxDL	R/W	0x00	Low byte of TCx duty control

13.8 Sample Code

The following sample code demonstrates how to perform TC0/TC1/TC2 with interrupt.

```
// for _nop_
1 #include <intrins.h>
2 #include <SN8F5909.h>
4 void TCO Init(void);
5 void GPIO Init(void);
7 void Init SysCLK(void)
8 {
9
    /* Clock Switch Select Register */
10
    CLKSEL = 0x02; // Fcpu = Fhosc/32
11 CLKCMD = 0 \times 69;
                          // clock switch start
12
   /* System Control Register */
13
14 CKCON &= 0 \times 00;
15 }
16
17 void main (void)
18 {
19 Init_SysCLK();
20 GPIO Init();
21 TC0 Init();
22
23
   while (1) {
                         // clear watchdog if watchdog enable
24
      WDTR = 0x5A;
25
       // To Do...
26
27 }
28 }
29
30 void GPIO Init(void)
31 {
32 POM |= 0xFF; // PO = Output Mode
33 }
34
35 void TCO Init(void)
                          // TCO Clock = fcpu/128
37
    TCOM = OXOO;
38
39
    /* TCOC/TCOR initial value =65536-(10ms*32MHz/32/128) */
40
    TCORL = OXB2;
                     //AUTO-Reload Register
41
    TCORH = OXFF;
42
43 TCOCL = OXB2;
                          //TCO COUNTING Register
44 TCOCH = OXFF;
45
                         // TC0IEN = 1
   IEN2 |= 0 \times 02;
46
                           // TC0ENB = 1
47
    TCOM \mid = 0X80;
                          // EAL = 1
48
     IEN0 \mid = 0x80;
49 }
50
51
52
53
54
```


14 Timer 0

The T0 timer is an 8-bit binary up timer with basic timer function. The basic timer function supports flag indicator (TF0 bit) and interrupt operation (interrupt vector 0x93). The interval time is programmable through T0M, T0C registers and supports RTC function. The T0 builds in Stop mode wake-up function. When T0 timer overflow occurs under stop mode, the system will be waked-up to normal mode.

- **8-bit programmable up counting timer**: Generate time-out at specific time intervals based on the selected clock frequency.
- **Interrupt function:** To timer function supports interrupt function. When To timer occurs overflow, the TFO actives and the system points program counter to interrupt vector to do interrupt sequence.
- **RTC function:** TO RTC function is controlled by TOTB bit. The RTC period is 0.5sec@32KHz when TOMOD=0. When TOMOD=1, TO interrupt period is 60sec @32KHz.
- Stop mode function: T0 keeps running in stop mode and can wake-up from STOP mode as
 T0ENB = 1 & T0TB = 1 @IHRC_RTC System will be Wake-up when TF0 actives after T0 timer overflow occurrence.

14.1 T0 Timer Operation

TO timer is controlled by TOENB bit. When TOENB=0, TO timer stops. When TOENB =1, TO timer starts to count. TOC increases "1" by timer clock source. When TO overflow event occurs, FTO flag is set as "1" to indicate overflow and cleared by program. The overflow condition is TOC count from full scale (0xFF) to zero scale (0x00). To doesn't build in double buffer, so load TOC by program when TO timer overflows to fix the correct interval time. If T0 timer interrupt function is enabled (ET0=1), the system will execute interrupt procedure. The interrupt procedure is system program counter points to interrupt vector (ORG 0093H) and executes interrupt service routine after T0 overflow occurrence. Clear TFO by program is necessary in interrupt procedure. TO timer can works in normal mode, idle mode and stop mode. In stop mode, TO keeps counting, set TFO and wakes up system when TO timer overflows.

TFO is cleared by program, or cleared by hardware after executing interrupt vector.

TO clock source is Fcpu (instruction cycle) through TORATE[2:0] pre-scalar to decide cpu/2~Fcpu/256. TO length is 8-bit (256 steps), and the one count period is each cycle of input clock.

		High Speed Mode (Fcpu=1 MIP)			
T0RATE[2:0]	T0 Clock	Max overflow Time	One Step = max/256		
000	Fcpu / 256	65.563 ms	256 us		
001	Fcpu / 128	32.768 ms	128 us		
010	Fcpu / 64	16.384 ms	64 us		
011	Fcpu / 32	8.192 ms	32 us		
100	Fcpu / 16	4.096 ms	16 us		
101	Fcpu / 8	2.048 ms	8 us		
110	Fcpu / 4	1.024 ms	4 us		
111	Fcpu / 2	0.512 ms	2 us		

14.2 TO Mode Control Register

TOM is TO timer mode control register to configure TO operating mode including TO pre-scaler, clock source...These configurations must be setup completely before enabling TO timer.

TOM Register (0xBB)

Bit	Field	Туре	Initial	Description
7	T0ENB	R/W	0	T0 timer enable bit.
				0 : Disable.
				1 : Enable.
64	TORATE[2:0]	R/W	0	T0 timer clock source select bits.
				000 : Fcpu/256. 100 : Fcpu/16.
				001 : Fcpu/128. 101 : Fcpu/8.
				010 : Fcpu/64. 110 : Fcpu/4.
				011 : Fcpu/32. 111 : Fcpu/2.
1	TOMOD	R/W	0	T0 timer interrupt Mode control bit
				0: T0 interrupt occur when T0C register overflow.
				1: T0 interrupt occur when SEC register overflow.
0	ТОТВ	R/W	0	T0 timer RTC function control bit.
				0 : Disable RTC function. TO clock source from Fcup.
				1 : Enable RTC function. TO clock source from Low clock.

14.3 TOC Counting Register

TOC is TO 8-bit counter. When TOC overflow occurs, the TOIRQ flag is set as "1" and cleared by program. The TOC decides TO interval time through below equation to calculate a correct value. It is necessary to write the correct value to TOC register, and then enable TO timer to make sure the first cycle correct. After one TO overflow occurs, the TOC register is loaded a correct value by program.

TOC Register (0xBC)

Bit	Field	Type	Initial	Description
70	T0C[7:0]	R/W	0	Timer 0 counter register.

The equation of TOC initial value is as following:

TOC initial value = 256 - (T0 interrupt interval time * T0 clock rate)

Example: To calculation TOC to obtain 10ms T0 interval time.

TO clock source is Fcpu = 32MHz/32 = 1MHz. Select TORATE=001 (Fcpu/128)

T0 interval time = 10ms. T0 clock rate = 32MHz/32/128

TOC initial value = 256 - (T0 interval time * input clock)

= 256 - (10ms * 32MHz / 32 / 128) = 178 = 0xB2.

SEC Register (0xBD)

Bit	Field	Type	Initial	Description
50	SEC[5:0]	R/W	0	Timer 0 second counter. SEC counter range = 00H ~ 3BH (0 ~ 59) When SEC value of 3BH and increase "1", counter overflow occurring with reset counter value to 00H

MIN Register (0xBE)

Bit	Field	Туре	Initial	Description
50	MIN[5:0]	R/W	0	Timer 0 Minute counter. MIN counter range = 00H ~ 3BH (0 ~ 59) When MIN value of 3BH and increase "1", counter overflow occurring with reset counter value to 00H

IENO Register (0xBC)

Bit	Field	Type	Initial	Description
1	ETO	R/W	0	Timer 0 Interrupts enable. 0 : Disable Timer 0 interrupt.
				1 : Enable Timer 0 interrupt.
Else				Refer to other chapter(s)

IRCON Register (0xC0)

Bit	Field	Type	Initial	Description
2	TF0	R/W	0	T0 timer interrupt request flag.
				0 : None T0 interrupt request.
				1 : T0 interrupt request.
Else				Refer to other chapter(s)

14.5 Sample Code

The following sample code demonstrates how to perform TO with interrupt.

```
2 #include <intrins.h>
                           // for _nop_
3 #include <SN8F5909.h>
5 void TO Init(void);
7 void Init SysCLK(void)
8 {
    /* Clock Switch Select Register */
9
   CLKSEL = 0x02; // Fcpu = Fhosc/32
10
11
    CLKCMD = 0x69;
                        // clock switch start
12
   /* System Control Register */
13
14
   CKCON &= 0 \times 00;
15 }
16
17 void main (void)
18 {
19
    Init_SysCLK();
20
   T0_Init();
21
22 while (1) {
23
       WDTR = 0x5A;
                        // clear watchdog if watchdog enable
24
        // To Do...
25
26
    }
27 }
28
29 void TO Init(void)
30 {
31
   POM \mid = 0xFF;
                        // Fcpu/128
32
    TOM \mid = OX10;
33
    TOC = OXB2;
                         // TOC inital value = 256 - (TO interal time * input clock)
34
                         // TOC inital value = 256 - (10ms*32MHz/32/128) = 0XB2
35
36 IENO |= 0 \times 02;
                         // TOIEN = 1
37 TOM | = 0 \times 80;
                         // TOENB = 1
    IEN0 | = 0x80;
                         // EAL = 1
38
39 }
40
41 void TO ISR(void) interrupt ISRTimerO // Vector @0x93
42 {
43
    // cleared TCO interrupt flag by hardware
44
   // \text{ TCFO} = 0;
                   // Clear TCF0 flag
45
                         // Reload data to TOC
46
   TOC = OXB2;
                          // PO Toggle
47
    P0 ^= 0XFF;
48 }
49
50
51
52
53
54
```


The following sample code demonstrates how to perform TO with 0.5 or 60 Sec wake up stop mode.

```
// for nop
 2 #include <intrins.h>
 3 #include <SN8F5909.h>
 5 void TO RTC Init(void);
 6 void GPIO Init(void);
 8 void Init SysCLK(void)
 9 {
     /* Clock Switch Select Register */
 10
 11 CLKSEL = 0x02; // Fcpu = Fhosc/32
    CLKCMD = 0x69;
                         // clock switch start
 12
 13
     /* System Control Register */
 14
15 CKCON &= 0 \times 00;
16 }
17
18 void main (void)
19 {
 20
     Init SysCLK();
    GPIO Init();
 21
 22
    TO RTC Init();
 23
 24
    while (1) {
 25
                        // clear watchdog if watchdog enable
      WDTR = 0x5A;
26
       STOP();
                         // System into STOP MODE
 27
    }
 28 }
 29
 30 void GPIO Init(void)
 31 {
    P0 = 0X00;
 33
    POM \mid = OxFF;
 34 }
 35
 36 void TO RTC Init(void)
 37 {
 38
                          // TOTB = 1, Clock source must from 32768 Hz X'tal
     TOM = 0X01;
 39
                          // Timer interrupt is occur when 0.5SEC overflow.
 40
 41
     /* 60s Interrupt function */
 42
     //T0M = 0X02;
                       // TOMOD = 1, Timer interrupt is occur when 60SEC overflow.
                          // "SEC" = 00H~3BH(0~59)
 43
 44
 45
                         // TOIEN = 1
    IEN0 | = 0 \times 02;
                         // TOENB = 1
 46 TOM | = OXF0;
 47
     IEN0 |= 0x80;
                         // EAL = 1
 48 }
 49
 50
 51
 52
 53
54
```


15 Buzzer Function

Buzzer function is controlled by BZRENB bit, which be configured as GPIO mode or Buzzer mode. Buzzer output square wave signal through P1.5 Pin with 50% duty, and output frequency is controllable by setting the BZRCKS[1:0] register.

BZRM Register (0xD6)

Bit	Field	Туре	Initial	Description
21	BZRCKS[1:0]	R/W	0	Buzzer output frequency
				00 : 0.98KHz.
				01 : 1.96KHz.
				10 : 3.9KHz.
				11 : 7.8KHz
0	BZRENB	R/W	0	Buzzer output control bit.
				0 : GPIO Mode.
				1 : Buzzer Mode. P15 output Buzzer signal.

*Example: Buzzer Function Sample code.

```
1 BZRM |= 0X02; // Set Buzzer clock=1.95k Hz
2 BZRM |= 0X01; // Buzzer enable
```


16 LCD Driver

LCD driver is C-type structures with 4 x 44 or 6 x 42. The LCD scan timing is 1/4 or 1/6 duty with 1/3 bias only, to drive LCD of 176 dots or 252 dots. C-type LCD driver can output adjustable VLCD output voltage and adjustable driving power to support diversity of LCD panel. VLCD Pin must connect 0.1uF capacitor to DVSS for C-Type LCD driver operation.

LCD driver output 4 or 6-com waveform controlled by LCDMODE bit, the output frame Rate controlled by LCDRATE bit, which shows in following table:

- **Stop mode function**: LCD function keeps running in stop mode as LCDEN = 1 & STOP = 1.
- **Low power mode function:** LCD low power function is controlled by BGM bit.

Control	Register	LOD Charl (III.)	Frame Rate	
LCDRATE	LCDMODE	LCD Clock (Hz)	(Hz)	Туре
0	0	32KHz / 128=256	64	4-COM (1/4 duty)
0	1	32KHZ / 128=250	43	6-COM (1/6 duty)
1	0	2271- / 64 542	128	4-COM (1/4 duty)
1	1	32KHz / 64 =512	85	6-COM (1/6 duty)

LCD Drive Waveform, 1/4 duty, 1/3 bias :

LCD Drive Waveform, 1/6 duty, 1/3 bias:

LCD Drive Waveform, 1/6 duty, 1/3 bias

16.1 LCD RAM Location

LCD RAM locates in address from 0xF000 to 0xF02B.

LCD RAM location relate to COM0 ~ COM3 vs. SEG0 ~ SEG43 LCD as show in following table.

	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
	COM0	COM1	COM2	COM3	-	-	-	-
SEG 0	F000H.0	F000H.1	F000H.2	F000H.3	N/A	N/A	N/A	N/A
SEG 1	F001H.0	F001H.1	F001H.2	F001H.3	N/A	N/A	N/A	N/A
SEG 2	F002H.0	F002H.1	F002H.2	F002H.3	N/A	N/A	N/A	N/A
SEG 3	F003H.0	F003H.1	F003H.2	F003H.3	N/A	N/A	N/A	N/A
-	-	-	-	-	-	_	-	-
-	-	-	-	-	-	_	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	_	-	-
SEG 43	F02BH.0	F02B H.1	F02B H.2	F02B H.3	N/A	N/A	N/A	N/A

LCD RAM location relate to COM0 ~ COM5 vs. SEG2 ~ SEG43 LCD as show in following table.

	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
	COM0	COM1	COM2	COM3	COM4	COM5	-	-
SEG 0 (COM4)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SEG 1 (COM5)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SEG 2	F002H.0	F002H.1	F002H.2	F002H.3	F002H.4	F002H.5	N/A	N/A
SEG 3	F003H.0	F003H.1	F003H.2	F003H.3	F003H.4	F003H.5	N/A	N/A
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	_	-	-	_	-	-
-	-	-	-	-	-	-	-	-
SEG 43	F02BH.0	F02B H.1	F02B H.2	F02B H.3	F02B H.4	F02B H.5	N/A	N/A

16.2 LCD Control Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LCDM1	-	_	-	LCDBNK	LCDMODE	LCDRATE	LCDPEN	LCDEN
LCDM2	VAR1	VAR0	BGM	DUTY1	DUTY0	VCP2	VCP 1	VCP0

LCDM1 Register (0xAD)

Bit	Field	Туре	Initial	Description
4	LCDBNK	R/W	0	LCD blank control bit.
				0 : Normal display.
				1 : All of the LCD dots turn off.
3	LCDMODE	R/W	0	LCD driver 4-COM or 6-COM control bit.
				0 : 4-COM mode.
				1 : 6-COM mode.
2	LCDRATE	R/W	0	LCD clock rate control bit.
				0 : 256Hz.
				1 : 512Hz.
1	LCDPEN	R/W	0	C-Type LCD pump enable bit.
				0 : Pump disable.
				1 : Pump enable.
0	LCDEN	R/W	0	LCD driver enable bit.
				0 : LCD driver disable.
				1 : LCD driver enable.

*Example: 1.LCD Pump must enable (LCDPEN=1) and wait 1ms firstly, then enable LCD driver (LCDEN=1).

```
1 LCDM1 |= 0x02; // Enable LCD Pump.
2 Delay1ms(1); // Dealy 1m sec.
```

*Example: 2.LCD function keeps running in stop mode as LCDEN = 1 & STOP = 1.

```
1  LCDM1 |= 0x01;  // Enable LCD Function.
...
...
STOP();  // Use C51 Macros into STOP MODE
```


SN8F5900 Series

Bit	Field	Type	Initial	Description				
76	VAR[1:0]	R/W	0	VLCD Pump output ripple control bit.				
				00 : ±30mV. (please set "00")				
				Others : reserve				
5	BGM	R/W	1	LCD low power mode control bit.				
				0 : Enable low power mode.				
				1 : Normal operation mode.				
43	DUTY[1:0]	R/W	0	LCD pump output driving capacity control bits.				
				00 : 25% 10 : 50%				
				01 : 37.5%				
				*Note: DUTY [1:0] is controllable when BGM=0, which is				
				set for LCD low power consumption.				
20	VCP[2:0]	R/W	011	VLCD output voltage control bits.				
				000 : 2.6V				
				001 : 2.8V 100 : 3.6V				
				010 : 3.0V				
				Others: reserved.				
				*Note: Battery voltage must be greater than 1.9V.				
				@VLCD output voltage 2.6~3.6V				

^{*}Example: 3. LCD low power consumption mode.

```
1 LCDM2 &= 0xE7; // Driving capacity = 25%.
2 LCDM2 &= 0xDF; // Enable Low power Mode.
```

P3CON Register (0x9E)

Bit	Field	Type	Initial	Description
70	P3CON[7:0]	R/W	0xFF	Port 3 function control bit.
				0 : Set as LCD function (SEG35 ~ SEG28)
				1 : Set as GPIO function (P30 ~ P37)

P4CON Register (0x9F)

Bit	Field	Туре	Initial	Description
70	P4CON[7:0]	R/W	0xFF	Port 4 function control bit.
				0 : Set as LCD function (SEG27 ~SEG20)
				1 : Set as GPIO function (P40 ~ P47)

SN8F5900 Series

P5CON Register (0x9D)

Bit	Field	Туре	Initial	Description
70	P5CON[7:0]	R/W	0xFF	Port 5 function control bit.
				0 : Set as LCD function (SE43 ~SEG36)
				1 : Set as GPIO function (P50 ~ P57)

16.3 Sample Code

The following sample code demonstrates how to perform LCD Function keep running in stop mode.

```
2 void Init LCD(void)
3 {
     LCDM1 &= 0x00; // Clear LCDM1
LCDM1 |= 0x02; // Enable LCD Pump
Delay1ms(1); // Dealy 1m sec
LCDM1 &= 0xF3; // LCD Clock=256HZ
 4
 5
 6
     LCDM2 &= 0x00; // Clear LCDM2

LCDM2 &= 0xDF; // Enable Low power Mode @STOP MODE

LCDM2 |= 0x03; // VLCD=3.2V

LCDM2 &= 0xE7; // Low power
 7
                              // LCD Clock=256HZ, Frame=64Hz @4-COM
 8
9
10 LCDM2 &= 0xDF;
11 LCDM2 |= 0x03;
                              // Low power mode Driving capacity = 25%.
12
13
      LCDM1 \mid = 0x01; // Enable LCD
14
15 }
16
17 void main (void)
18 {
19
      CLEAR LCD RAM(); // Clear LCD RAM
                              // Initial LCD
20
      Init LCD();
21
      while (1)
22
      {
           // To Do...
23
24
                               // Use C51 Macros into STOP MODE
           STOP();
25
    }
26 }
27
28
```


17 ADC

The microcontroller integrates high resolution Δ Σ Analog-to-Digital Converter (ADC) and low noise programmable gain amplifier (PGIA), which output 24-bit resolution with 18-bit noise free bit accuracy. ADC conversion rate can output from 2Hz to 7.8 kHz, and ADC reference voltage can set from internal or external (R+ / R-). The ADC operates in normal mode and idle mode, which works with interrupt or wakeup function after every ADC end of conversion if interrupt enable. ADC has internal Gain option with selective range of x1 and x2. The PGIA input through configured 2 Multiplexer, MUXP and MUXN, provides differential-types input and single-end-type input. This ADC is optimized for measuring low-level unipolar or bipolar signals in sensory measurement and medical applications. A very low noise chopper-stabilized programmable gain amplifier (PGIA) with selectable gains of 1x, 4x, 8x, 16x, 32x, 64x, and 128x in the ADC to accommodate these applications.

17.1 Configurations of Operation

These configurations must be setup completely before starting ADC converting. ADC is configured using the following steps:

- 1. Analog Power AVDDR, ACM and Bandgap must enable. (By <u>AVDDREN</u>, <u>ACMEN</u>, <u>BGREN</u> bits)
- 2. Choose the ADC input channels. (By <u>MUXP[3:0]</u> and <u>MUXN[3:0]</u> bits)
- 3. Input Buffer setting: Turn-off if PGIA is applied in the application. Turn-On if PGIA turn-off and sensor requires condition of higher input-impedance. (By <u>GX</u> bit)
- 4. PGIA enable if required, and Set PGIA Gain ratio (By *PGAEN*, *GS[2:0]* bits)
- 5. Turn on Chopper function and clock of PGIA and ADC (By <u>PCHPEN</u>, <u>ACHPEN[1:0]</u>, <u>AMPCKS[1:0]</u> bits)
- 6. Set ADC reference voltage from internal voltage or external R+/R-. (By IRVS[2:0] bits)
- 7. Set ADC conversion rate through ADC clock and OSR Over-Sample Rate.(By *ADCKS[1:0]* and *OSR[2:0]* bits)
- 8. Set ADC interrupt function if necessary, and Enable ADC. (By *EADC* and *ADCEN* bits)
- After enable ADENB bit, the ADC ready to convert analog signal to digital data. (24-bits <u>ADCDH</u>, <u>ADCDM</u>, <u>ADCDL</u>)

17.2 ADC Input Channels and PGIA

The ADC builds in 9 external channels input source and 4 internal channels input source, which (AI1 – AI9) to measure 9 different analog signal sources controlled by CHS[4:0] bits. 4 Internal channels including ACM, GND, VDD_DET (VDD detection), and Temperature channels. AI7~AI9 channels share with OPA input and output terminals. The ADC external reference voltage is input via AI5 and AI6. The VDD_DET channel is 1/8*VDD voltage input ADC to measure battery power by ADC. Temperature sensor is also embedded in the IC to measure temperature around the IC or room temperature roughly.

The microcontroller includes a very low noise chopper-stabilized programmable gain amplifier (PGIA) with selectable gains of 1x, 4x, 8x, 16x, 32x, 64x, and 128x, which inputs can be configured as a differential type or single-end type. The PGIA has high input-impedance characteristic (around 5G-Ohm), which is suitable applied or connect to sensor with higher input impedance.

Analog input signal channel selection table:

MUXP[3:0]	PGIA Positive input	MUXN[3:0]	PGIA Negative input	
0000	AN1	0000	AN1	
0001	AN2	0001	AN2	
0010	AN3	0010	AN3	
0011	AN4	0011	AN4	
0100	AN5 / R+	0100	AN5 / R+	
0101	AN6 / R-	0101	AN6 / R-	
0110	AN7 / OP+	0110	AN7 / OP+	
0111	AN8 / OP-	0111	AN8 / OP-	
1000	AN9 / OPO	1000	AN9 / OPO	
1001	ACM	1001	ACM	
1010	VDD_DET+	1010	VDD_DET-	
1011	Temperature+	1011	Temperature-	
1100	AVss	1100	AVss	
Others	NA.	Others	NA.	

17.3 Analog Input Buffer

Input Buffers are included ADC signal input buffer and ADC external reference input buffer R+/R-, which provide a high impedance of analog input, to minimized the input current of ADC for sensitive measurement and to avoid loading effect. When PGIA set 1x of application, the sensor output signal is bypass PGIA and direct connected to ADC's input. In that case, Input buffer function must be enabled by setting <u>GX</u> bit as "1". If external Vref is selected for ADC, input buffer R+/R- also must be enabled by setting <u>GR</u> bit as "1".

17.4 ADC Reference Voltage

ADC reference voltage can set from external R+ / R- input or from internal voltage source input, which control by setting IRVS[2:0] bits of ADCM1 register, and shows the Vref setting in following:

	D1/6/2 01		ADC Ref	erence Voltage	
<u> </u>	RVS[2:0]	AVDDR 2.7V	AVDDR 3.6V		
0xx	External			R+ / R-	
100	0.2*AVDDR	0.54V	0.6V	0.66V	0.72V
101	0.3*AVDDR	0.81V	0.9V	0.99V	1.08V
110	0.4*AVDDR	1.08V	1.2V	1.32V	1.44V
111	0.5*AVDDR	1.35V	reserved	reserved	reserved

17.5 ADC Gain and ADC Output Code

The ADC builds in internal Gain Option with selective range of x1 and x2 for additional signal amplification expect PGIA. The ADC Gain setting is controlled by ADGN [2:0] bits in register ADCM1.

The ADC conversion output 24-Bit data which is combined with ADCDH, ADCDM, and ADCDL register in 2's compliment with sign bit numerical format, and Bit ADCB23 is the sign bit of ADC data. Refer to following formula to calculate ADC conversion data value. The following shows ADC output code calculation:

24-Bit format, ADC output code in <u>ADCDH</u>, <u>ADCDM</u> and <u>ADCDL</u>:

$$\frac{\Delta Input \times PGIA_Gain \times ADC_Gain}{Vref} \times 2^{(24-1)} = + (2^{(24-1)} - 1) \sim -2^{(24-1)}$$

PGIA_Gain: $x1 \sim x128$

ADC_Gain: $x1 \sim x2$

Vref : $0.3V \sim 1.5V$

16-Bit format, ADC output code in ADCDH and ADCDM:

$$\frac{\Delta Input \times PGIA_Gain \times ADC_Gain}{Vref} \times 2^{(16-1)} = +32767 \sim -32768$$

PGIA_Gain: $x1 \sim x128$

ADC Gain: $x1 \sim x2$

Vref : $0.3V \sim 1.5V$

17.6 ADC Interrupt Control

When the ADC converting successfully, the ADCF will be set to "1" no matter the EADC is enabled or not. If the EADC and the trigger event ADCF is set to be "1". As the result, the system will execute the interrupt vector. If the EADC = 0, the trigger event ADCF is still set to be "1". Moreover, the system won't execute interrupt vector even when the EADC is set to be "0". Users need to be cautious with the operation under multi-interrupt situation.

17.7 ADC Conversion Rate

The ADC provides variable output conversion rate from 2Hz up to 7.8 kHz, which conversion rate is decided by setting bits of <u>ADCKS [1:0]</u> and <u>OSR [2:0]</u> in <u>ADCM2</u> register. Adjust ADC clock (ADCKS) and OSR can get suitable ADC output word rate. For High resolution application, OSR set maximum value of 32768 recommended. The ADC output code with slow output word rate is more stable than fast one. In ADC's application, that should be tradeoff between ADC's output word rate and stability (ENOB). The following table shows the ADC output word rate with setting:

ADC Conversion Rate = ADC Clock / OSR

ADC output stable date at the 3rd data after ADC enable or input channel switch, which the 1st and 2nd ADC output data are unstable data. The 3rd, 4th, 5th ... are stable data.

ADC Conversion Rate Table:

ADCKS [1:0]	OSR [2:0]	ADC clock	Conversion Rate	ADCKS [1:0]	OSR [2:0]	ADC clock	Conversion Rate
00	000		7.8 kHz	01	000		1.95 kHz
00	001		3.9 kHz	01	001		976 Hz
00	010		1.95 kHz	01	010		488 Hz
00	011	E00KH-	488 Hz	01	011	125711-	122 Hz
00	100	500KHz	122 Hz	01	100	125KHz	30.5 Hz
00	101		61 Hz	01	101		15.2 Hz
00	110		30.5 Hz	01	110		7.6 Hz
00	111		15.2 Hz	01	111		3.8 Hz
01	000		3.9 kHz	11	000		976 Hz
01	001		1.95 kHz	11	001		488 Hz
01	010		976 Hz	11	010		244 Hz
01	011	250611-	244 Hz	11	011	C2 EVII-	61 Hz
01	100	250KHz	61 Hz	11	100	62.5KHz	15.2 Hz
01	101		30.5 Hz	11	101		7.6 Hz
01	110		15.2 Hz	11	110		3.8 Hz
01	111		7.6 Hz	11	111		1.9 Hz

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CHS	MUXP3	MUXP2	MUXP1	MUXP0	MUXN3	MUXN2	MUXN1	MUXN0
VREG	BGREN	AVDDRS1	AVDDRS0	AVDDREN	ACMEN	CPCKS	CPMOD1	CPMOD0
AMPM	GX	AMPCKS1	AMPCKS0	GS2	GS1	GS0	PCHPEN	PGIAEN
ADCM1	GR	IRVS2	IRVS1	IRVS0	ADGN	ACHPEN1	ACHPEN0	ADCEN
ADCM2	-	-	ADCKS1	ADCKS0	OSR2	OSR1	OSR0	DRDY
ADCDH	ADCB23	ADCB22	ADCB21	ADCB20	ADCB19	ADCB18	ADCB17	ADCB16
ADCDM	ADCB15	ADCB14	ADCB13	ADCB12	ADCB11	ADCB10	ADCB9	ADCB8
ADCDL	ADCB7	ADCB6	ADCB5	ADCB4	ADCB3	ADCB2	ADCB1	ADCB0
IEN2	-	-	-	EADC	ETC2	ETC1	ETC0	-
IRCON	ADCF	TCF2	TCF1	TCF0	-	TF0	IE1	IE0

CHS Register (0xD1)

CH3 K	egister (0xD1)								
Bit	Field	Туре	Initial	Description					
74	MUXP[3:0]	R/W	0	ADC positive in	ADC positive input channel selection bits.				
				0000 : AI1	0101 : AI6/R-	1010 : VDD_DET+			
				0001 : AI2	0110 : AI7/OP+	1011 : Temperature+			
				0010 : AI3	0111 : AI8/OP-	1100 : AVSS			
				0011 : AI4	1000 : AI9/OPO	others : N/A			
				0100 : AI5/R+	1001 : ACM				
30	MUXN[3:0]	R/W	0	ADC negative	input channel select	ion bits.			
				0000 : AI1	0101 : AI6/R-	1010 : VDD_DET-			
				0001 : AI2	0110 : AI7/OP+	1011 : Temperature-			
				0010 : AI3	0111 : AI8/OP-	1100 : AVSS			
				0011 : AI4	1000 : AI9/OPO	others : N/A			
				0100 : AI5/R+	1001 : ACM				

VREG Register (0xD2) Refer to chapter of <u>"Charge pump regulator"</u>.

AMPM Register (0xD3)

Bit	Field	Туре	Initial	Description
7	GX	R/W	0	ADC Input buffer enable bit.
				0 : Disable
				1 : Enable
				(When PGIA Gain set x1)
65	AMPCKS[1:0]	R/W	00	PGIA chopper frequency control bits.
				00 : ADCKS / 128
				01 : ADCKS / 32
				(please set "01" for all application)
42	GS[2:0]	R/W	000	PGIA Gain selection bits.
				000 : 1x 100 : 32x
				001 : 4x
				010 : 8x 110 : 128x
				011 : 16x
1	PCHPEN	R/W	0	PGIA chopper enable bit.
				0 : Disable
				1 : Enable. (must enable when PGIA enable)
0	PGIAEN	R/W	0	PGIA function enable bit.
				0 : Disable
				1 : Enable.

^{*}Example: When PGIA Gain set 1x application, the AI+/AI- signal will bypass PGIA and input ADC directly. PGIA can be disabled (PGIAEN=0) for power saving, and input buffer of ADC must be enabled (GX=1) for input high impedance characteristic of ADC.

```
1 AMPM \mid = 0x10;  // Enable X+/X- Unit Gain Buffer @GAIN 1x1.

2 AMPM &= 0xE3;  // PGIA x 1, GX Buff always set 1.

3 AMPM \mid = 0x01;  // Enable PGIA.
```

ADCM1 Register (0xD4)

Bit	Field	Туре	Initial	Description
7	GR	R/W	0	ADC reference buffer enable bit.
				0 : Disable
				1 : Enable
				(When ADC Vref set from external pin R+ and R)

SN8F5900 Series

10.75[2.0]			
IRVS[2:0]	R/W	000	ADC reference voltage selection bits.
			0xx : external R+/R-
			100 : Internal 0.2 x AVDDR
			101 : Internal 0.3 x AVDDR
			110 : Internal 0.4 x AVDDR
			111 : Internal 0.5 x AVDDR
ADGN	R/W	0	ADC Gain selection bit.
			0:1x
			1:2x
ACHPEN[1:0]	R/W	00	ADC chopper control bit2.
			11 : Enable. (must set "11" for all applications)
ADCEN	R/W	0	ADC function enable bit.
			0 : Disable
			1 : Enable.
	ACHPEN[1:0]	ACHPEN[1:0] R/W	ACHPEN[1:0] R/W 00

^{*}Example: When ADC Vref set from external pin R+ and R-, and R+/R- input buffer of ADC Vref must be enabled (GR=1) for input high impedance characteristic of ADC Vref.

```
1 ADCM1 &= 0x8F; // EXT Vref

2 ADCM1 |= 0x80; // Enable GR Unit Gain Buffer.@EXT Vref

3 ADCM1 |= 0x01; // Enable ADC
```

ADCM2 Register (0xD5)

Туре	Initial	Description		
		Description		
R/W	0	ADC clock selec	ction bit.	
		00 : 500KHz	10 : 125KHz	
		01:250KHz	11 : 62.5KHz	
		(set 250KHz re	commend)	
R/W	000	ADC Over-Sam	pling-Rate selection bits.	
		000 : 64	100 : 4096	
		001 : 128	101 : 8192	
		010 : 256	110 : 16384	
		011 : 1024	111 : 32768	
R/W	0	ADC function e	enable bit.	
		0 : ADCDH, ADCDL, and ADCDLL conversion data are not ready.1 : ADC output (update) new conversion data to ADCDH,		
		ADCDL, and AD	OCDLL.	
			01 : 250KHz (set 250KHz re (set 250KHz re R/W 000 ADC Over-Sam 000 : 64 001 : 128 010 : 256 011 : 1024 R/W 0 ADC function e 0 : ADCDH, AD ready.	

ADCDH Register (0xB7), ADC output high byte register.

ADCDM Register (0xB6), ADC output medium byte register.

ADCDL Register (0xB5), ADC output low byte register.

IEN2 Register (0X9A)

Bit	Field	Туре	Initial	Description
				ADC interrupt control bit
4	EADC	R/W	0	0: Disable ADC interrupt function.
				1: Enable ADC interrupt function.
	others	R/W	0	Refer to interrupt chapter.

IRCON Register (0xC0)

Bit	Field	Туре	Initial	Description
7	ADCF	R/W	0	ADC interrupt request flag.
				0: None ADC interrupt request
				1: ADC interrupt request.
	others	R/W	0	Refer to interrupt chapter.

17.9 ADC Electrical Characteristic

SYM.	DESCRIPTION	Condition	MIN.	TYP.	MAX.	UNIT
ladc	Operating current	Run mode @ 2.4V	-	200	-	uA
IPDN	Power down current	Stop mode @ 2.4V	-	0.1	-	μΑ
_	Conversion rate	ADC Clock=62.5KHz, OSR=32768	-	1.9	-	Hz
FSMP	(WR)	ADC Clock=500KHz, OSR=64	-	7.8	-	kHz
TADCSTL	ADC settling Time	3*(1/WR), if WR=61Hz, TADCSTL = 3*16.4ms = 49.2ms		3		WR
.,	Reference Voltage Input	External V _{REF} Input Range (R+ - R-)	0.3		1.35	V
VREF	Voltage	Internal VREF Input Range.	0.3		1.35	V
.,	ADC Reference signal	GR=1, R+ and R- absolutely input Voltage	0.4		AVDDR-1V	V
V R	absolutely voltage	GR=0, R+ and R- absolutely input Voltage	0.4		AVDDR-1V	V
.,	ADC Input signal absolutely	GX=1, AI absolutely input Voltage	0.4		AVDDR-1V	V
Vai	voltage	GX=0, AI absolutely input Voltage	0		AVDDR-1V	V
Vx	PGIA output signal absolutely voltage	X+ and X- absolutely output Voltage(GX=0)	0.4		AVDDR-1	
DNL	Differential non-linearity	ADC range ± 131072 x 0.9. (0.9 x Vref , 18-bits)		± 2		LSB
INL	Integral non-linearity	ADC range ± 131072 x 0.9. (0.9 x Vref , 18-bits)		± 4		LSB
NMC	No missing code	ADC range ± 131072 x 0.9. (0.9 x Vref , 24-bits)		18		bit
NED	Noise free bits	Gain:1, Vref:0.8V, OSR:32768, Input-short		18.5		bit
NFB	Noise free bits	Gain=128, Vref=0.8V, OSR:32768, Input-short		15.5		bit
- NOD		Gain:1, Vref:0.8V, OSR:32768, Input-short		21		bit
ENOB	Effective number of bits	Gain=128, Vref=0.8V, OSR:32768, Input-short		18		bit
Vain	ADC Input differential range	ADC input signal, signal after PGIA application	0.3		1.44	V
TDrift	ADC Temperature Drift	AVDDR = 2.7V, PGIA x 16, T= 0 $^{\sim}$ 50 $^{\circ}$ C		30		PPM/°C

	SN8F5909 ADC Performance ENOB (Noise Free Bit) vs. Output Rate and Gain										
OSR	32768	16384	8192	4096	1024	256	128	64			
WR	7.6Hz	15Hz	30.5Hz	61Hz	244Hz	976Hz	1.9KHz	3.9K			
128x1	15.4	15	14.5	14	13.1	12.0	11.5	10.8			
64x1	16.4	15.9	15.3	14.8	13.9	12.9	12.3	11.1			
32x1	17.1	16.4	15.9	15.5	14.1	13.6	13.0	11.2			
16x1	17.6	17.0	16.5	15.9	15.0	14.0	13.2	11.3			
8x1	17.7	17.3	16.7	16.2	15.2	14.2	13.3	11.5			
4x1	17.7	17.3	16.8	16.3	15.2	14.3	13.3	11.5			
1x1	18.3	17.8	17.3	16.7	15.7	14.8	13.3	11.5			

^{*} Buffer off (GX=0, GR=0)

All Test condition: ADC 250kHz, Input-Short, Vref=0.81V, Gain = PGIA x ADC, Collect 1024 ADC date.

- (1). Noise Free Resolution = Log2 (Full Scale Range / Peak-Peak Noise) where Full Scale Range = 2 x Vref / Gain (ex. Vref=0.81V, Gain=1x~128x)
- (2). Effective Resolution = Log2 (Full Scale Range / RMS_Noise)
- (3). RMS Noise = σ x LSB_Resolution where LSB_Resolution = Full Scale Range / 2^Bit, Bit=24 σ = standard deviation of 1024 ADC output data.
- (4). Peak-Peak Noise = 6.6 x RMS Noise, or code variation range x LSB_Resolution where Code variation range = ADC counts max-min of 1024 data.

17.10 Temperature Sensor (TS)

In applications, sensor characteristic might change in different temperature also. To get the temperature information, SN8F5909 build in a temperature senor (TS) for temperature measurement. Select the respective PGIA channel to access the Temperature Sensor ADC output.

- ★ Note 1: When selected Temperature Sensor, PGIA gain must set to 1x, or the result will be incorrect.
- * Note 2: The Temperature Sensor was just a reference data not real air temperature. For precision application, please use external thermistor sensor.

In 25C, V(TS) will be about V_{TS} Offset typically, and if temperature rise 10° C, V(TS) will increase about 18mV (VTS = V_{TS} Offset+18mV), if temperature drop 10° C, V(TS) will decrease about 18mV (VTS = V_{TS} Offset-18mV).

Example:

Temperature	(Ts+) - (Ts-)	ADC Vref	ADC Output(16bit)
15 ℃	V _{TS} Offset + 0.018V	0.81V	ADC offset + 738
25 ℃	V _{TS} Offset	0.81V	ADC offset
35 ℃	V _{TS} Offset - 0.018V	0.81V	ADC offset - 738

By ADC output of V(TS), can get temperature information and compensation the system.

- ★ Note 1: The V(TS) voltage and temperature curve of each chip might different. Calibration in room temperature is necessary when application temperature sensor.
- * Note 2: -1.8mV/°C was typical temperature parameter only sensor, every single chip was different to each other. (-73.8 Cnt/°C)

SYM	DESCRIPTION	PARAMETER	MIN	TYP	MAX	UNIT
TR	Temperature Sensor Range	AVDDR=3V ,VDD=5V	-	-	-	${\mathbb C}$
TS	Temperature Sensor Sensitivity	AVDDR=3V ,VDD=5V	-1.98	-1.8	-1.62	mV/℃
ETS	ETS Temperature Sensor Accuracy	One Temperature point 25°C Calibration	-10	-	+10	%
	Temperature defisor Accuracy	Two Temperature points Calibration.	-1	-	+1	%

17.11 ADC Application Notes

In applications , ADC design be attention to PGIA input signal(AI+,AI-) absolutely voltage and ADC Input signal (X+,X-)absolutely voltage. The PGIA input voltage must be between 0.4V~AVDDR-1V, the output signal must be between 0.4~AVDDR-1V. The ADC input signal (X+, X-) absolutely voltage range must be between 0~AVDDR-1V @GX Buff = OFF. The application circuit design as shown below.

*Example:

17.12 Sample Code

The following sample code demonstrates how to perform ADC with interrupt.

```
2 #include <intrins.h>
                            // for nop
 3 #include <SN8F5909.h>
 5 unsigned short ADCValue;
7 void Init VREG(void);
8 void Init PGIA(void);
9 void Init ADC(void);
10 void ADC Enable ISR(void);
11 void ADC_ISR(void);
13 void main (void)
14 {
                          // Initial VREG
     Init VREG();
15
                          // Initial PGIA
16
    Init PGIA();
17
     Init ADC();
                          // Initial ADC
18 ADC Enable ISR();
                         // ADC ISR Enable
19
20 while (1) {
21
         WDTR = 0x5A;
                         // clear watchdog if watchdog enable
22
         // To Do ...
23
    }
24 }
25
26
27 void Init VREG(void)
28 {
                          // Clear VREG
29
     VREG \&= 0 \times 00;
                          // Enable Band gap
30
     VREG \mid = 0 \times 80;
31
     VREG \&= 0 \times 9 F;
                          // AVDDR=2.7V
32
33 VREG |= 0x08;
                          // Enable ACM
34 VREG | = 0 \times 10;
                          // Enable AVDDR
35 }
36
37
38 void Init PGIA(void)
39 {
                          // Clear CHS
40
     CHS &= 0 \times 00;
                          // MUXP channel [AI1]
41
     CHS \&= 0 \times 0 F;
                          // MUXP channel [AI2]
42
     CHS \mid = 0 \times 01;
43
                          // Clear AMPM
44
    AMPM &= 0 \times 00;
                          // ADCLK=7.8k@ADCCLK=250K
45
    AMPM |= 0x20;
                          // Enable PGIA Chopper
46
    AMPM |= 0x02;
47
    AMPM |= 0x18;
                          // PGIA x 128
48
49
     AMPM |= 0 \times 01;
                     // Enable PGIA
50 }
51
52
53
54
```



```
56 void Init_ADC(void)
57 {
                          // Clear ADCM1
58
     ADCM1 &= 0 \times 00;
59
     ADCM1 \mid = 0 \times 06;
                          // Enable ADC Chopper,
60
                          // ACHPEN[1:0] always set 11
61 ADCM1 &= 0xF7;
                          // ADC Gain=1x
                          // ADC Vref = AVDDR*0.3
62 ADCM1 | = 0 \times 50;
63
                          // Clear ADCM2
ADCM2 &= 0 \times 00;
                          // ADC Clk=250kHz
65
     ADCM2 \mid = 0x10;
                          // ADC ODR=32768
66
     ADCM2 \mid = 0 \times 0 E;
67
                         // Clear DRDY
68
   ADCM2 &= 0xFE;
69 ADCM1 |= 0x01;
                         // Enable ADC
70 }
71
72
73 void ADC Enable ISR(void)
74 {
75
                         // Clear ADCF
    ADCF = 0;
76
    IEN2 &= 0 \times 00;
                         // Clear IEN2
77
    IEN2 \mid = 0 \times 10;
                         // ADC interrupt enable (EADC)
                          // Interrupt enable
78
     EAL = 1;
79 }
80
81
82 void ADC ISR(void) interrupt ISRAdc
83 {
84
     // Get ADC value
     if (ADCF) {
85
86
         ADCF = 0;
                         // Clear ADC interrupt edge flag (ADCF)
87
         /* Get16Bit ADC Data ( ADCDH, ADCDM ) */
88
89
        ADCValue = ADCDH;
90
        ADCValue = ADCValue << 8;
        ADCValue = ADCValue+ADCDM;
91
92
         _nop_();
93
     }
94 }
95
96
```


The following sample code demonstrates how to perform ADC Temperature.

```
1 #include <intrins.h>
                           // for _nop_
2 #include <SN8F5909.h>
4 unsigned short ADCValue;
6 void Init_VREG(void);
7 void Init PGIA(void);
8 void Init ADC(void);
9
10 void main (void)
11 {
                        // Initial VREG
     Init VREG();
12
                         // Initial PGIA
13 Init PGIA();
    Init ADC();
                         // Initial ADC
14
15
   while (1) {
16
        WDTR = 0x5A; // clear watchdog if watchdog enable
17
18
19
        // Get ADC value
20
        if (ADCF) {
            ADCF = 0; // Clear ADC interrupt edge flag (ADCF)
21
22
            /* Get16Bit ADC Data( ADCDH, ADCDM ) */
23
24
             ADCValue = ADCDH;
            ADCValue = ADCValue << 8;
25
            ADCValue = ADCValue+ADCDM;
26
27
             _nop_();
28
        }
29
      }
30 }
31
32 void Init VREG(void)
33 {
     VREG \&= 0x00;
                      // Clear VREG
                        // Enable Band gap
35 VREG |= 0x80;
36 VREG &= 0x9F;
                        // AVDDR=2.7V
37
38
     VREG \mid = 0 \times 08;
                        // Enable ACM
39
    VREG \mid = 0 \times 10;
                         // Enable AVDDR
40 }
41
42 void Init PGIA(void)
43 {
44
     CHS &= 0 \times 00;
                         // Clear CHS
                        // MUXP channel [Temp S+]
45
     CHS \mid = 0xB0;
     CHS \mid = 0 \times 0 B;
                         // MUXP channel [Temp S-]
46
47
                       // Clear AMPM
48 AMPM &= 0 \times 00;
49 AMPM | = 0x20;
                        // ADCLK=7.8k@ADCCLK=250K
50 AMPM | = 0 \times 02;
                        // Enable PGIA Chopper
                        // PGIA x 1
51 AMPM &= 0xE3;
52
53
    AMPM \mid = 0 \times 01;
                        // Enable PGIA
54 }
```



```
55 void Init ADC (void)
56 {
57
     ADCM1 &= 0 \times 00;
                          // Clear ADCM1
     ADCM1 \mid = 0 \times 06;
                          // Enable ADC Chopper
58
59
     ADCM1 &= 0xF7;
                          // ADC Gain=1x
    ADCM1 \mid = 0x50;
                          // ADC Vref = AVDDR*0.3
60
61
   ADCM2 &= 0 \times 00;
                          // Clear ADCM2
62
63 ADCM2 |= 0x10;
                          // ADC Clk=250kHz
ADCM2 \mid = 0 \times 0 E;
                          // ADC ODR=32768
65
     ADCM2 &= 0xFE;
                          // Clear DRDY
66
67
   ADCM1 \mid = 0x01;
                          // Enable ADC
68 }
69
```


18 Charge Pump Regulator

The SN8F5900 IC has a built-in Voltage Charge-Pump Regulator (CPR) to support a stable analog voltage "AVDDR" for ADC, PGIA, OP, and external sensor use. Charge pump regulator is designed as efficient type of boost and buck mode, which apply in condition of wide VDD input range from 2.0V to 6.5V. AVDDR is adjustable output voltage 2.7V, 3.0V, 3.3V, and 3.6V with maximum 7.5mA current driving capacity. Another regulator ACM 1V is used as ADC common voltage, which is sink-type only.

18.1 Charge Pump Register

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREG	BGREN	AVDDRS1	AVDDRS0	AVDDREN	ACMEN	CPCKS	CPMOD1	CPMOD0

VREG Register (0xD2)

Bit	Field	Туре	Initial	Description				
7	BGREN	R/W	0	ADC Band Gap Enable bit.				
				0 : Disable. (must disable when system in stop mode)				
				1 : Enable. (must enable firstly when turn on AVDDR,				
				ADC, PGIA, OPA, and LBT function)				
65	AVDDRS[1:0]	R/W	00	AVDDR regulator output voltage control bits.				
				00 : 2.7V 10 : 3.3V				
				01:3.0V 11:3.6V				
4	AVDDREN	R/W	0	AVDDR regulator function enable bit.				
				0 : Disable.				
				1 : Enable.				
				Note : AVDDR is source power of analog part.				

The following table shows the pump working mode:

CPMOD[1:0]	Charge Pump Mode	Pump Behavior
00	Disable Mode	Pump Disable AVDDCP = VDD
01	Buck-Boost Mode	<u>VDD input range 2.0V ~ 6.5V</u> - Pump Enable AVDDCP = AVDDR + 0.5V - AVDDCP =3.2V (when AVDDR disable)
10	Reserved	-
11	2x Pump Mode	 VDD input range 3.6V ~ 6.5V Pump Disable (when VDD >3.6V must disable) AVDDCP = VDD VDD input range 2.0V ~ 3.4V Pump Enable AVDDCP = 2x VDD (AVDDR enable or disable)

VDD : Pump input Voltage

AVDDCP: Pump output voltage

<u>Analog function turn on Sequence with Pump:</u>

(1). BandGap Enable (2). Pump Enable

(3). 1ms-delay for pump output stable

(4). Enable AVDDR/ ACM (5). 0.5ms-Delay (6)

(6). Enable ADC, PGIA, OPA..

★ Note: When battery voltage is less than AVDDR+0.3V, the pump mode can set buck-boost mode.

18.2 Charge Pump Regulator Setting

VDD Input Range	Charge Pump	AVDDCP	AVDDR	Note	
6.5V ~ 4.0V	Disable		* Connect 1uF to AVSS * 2.7V, 3V, 3.3V, 3.6V Available		
6.5V ~ 3.3V	Disable		* Connect 1uF to AVSS * 2.7V, 3V Available	No double current	
6.5V ~ 3.0V	Disable		* Connect 1uF to AVSS * 2.7V Available		
6.5V ~ 2.0V	Enable	* Connect Cavddcp 2.2uF to DVSS	* Connect 1uF to AVSS	Current consumption from	
3.6V ~ 2.0V	Lilabic	(Connect C _{Pump} 1uF to C+/C-)	* 2.7V, 3V, 3.3V, 3.6V Available	AVDDR will be double.	

18.3 Charge Pump Regulator Characteristic

		Charge Pump						
PARAMETER								
Operation Voltage (Charge Pump input)	V _{oper}	Charge Pump Input Voltage Range (AVDD)	2.0	-	6.5	V		
		Charge Pump OFF, AVDD from 2V to 6.5V AVDDCP = AVDD	2.0	-	6.5	V		
Charge numn Output Pange	V	Busk-boost Mode, AVDD from 2V to 6.5V AVDDCP = $3.2V \sim 4.1V \text{ (AVDDR + 0.5V)}$	A	VDDR + 0).5V	V		
Charge pump Output Range	V _{AVDDCP}	2x Pump Mode, AVDD from 2V ~ 3.3V AVDDCP = 4V ~ 6.6V		2x AVD	D	V		
		2x Pump Mode, AVDD from 3.3V ~ 6.5V AVDDCP = AVDD.		AVDD		V		
Charge pump Output Current	I _{AVDDCP}	Charge Pump On or OFF, AVDD from 2V to 6.5V	-	5	7.5	mA		
Charge pump intrinsic Current	I _{PUMP}	Busk-boost Mode, AVDD=3V	160		uA			
		ACM						
		Output voltage	0.9	1	1.1	V		
Analog common voltage	V_{ACM}	Output Voltage drift vs. Temperature △10°C	-	±0.1	-	%		
		Output Voltage drift vs. AVDD (2V~6.5V)	-	±0.1	-	%		
VACM driving capacity	I _{SRC}	Only for ADC use	-	-	10	uA		
VACM sinking capacity	I _{SNK}	Only for ADC use	-	-	1	mA		
		AVDDR						
		AVDDR Output Range = 2.7V, 3.0V, 3.3V, 3.6V	2.7	-	3.6	V		
		AVDDR set 2.7V	2.55	2.7	2.85	V		
		AVDDR set 3.0V	2.85	3.0	3.15	V		
Regulator output	V _{AVDDR}	AVDDR set 3.3V	3.15	3.3	3.45	V		
voltage AVDDR	• AVDDR	AVDDR set 3.6V	3.45	3.6	3.75	V		
		AVDDR Load regulation △5mA	V,	AVDDR ± 0.0	05V	V		
		Output Voltage drift vs. Temperature Δ10°C	-	±0.1	-	%		
		Output Voltage drift vs. AVDD (2V~6.5V)	-	±0.1	-	%		
AVDDR drive/Sink Current	I _{AVDDR}		-	-	7.5	mA		
Quiescent current	I _{QI}	Pump + AVDDR + ACM		200		uA		

19 Comparator

The microcontroller builds in comparator functions. When the positive input voltage is greater than the negative input voltage, the comparator output is high (LBTO=1). When the positive input voltage is smaller than the negative input voltage, the comparator output is low (LBTO=0). Comparator positive voltage is always from internal 1.2V. Comparator negative voltage is controllable from external P10 and Internal VDD voltage division. The comparator has flag indicator (LBTO) and use for different application, like low battery detection. Internal VDD voltage division of comparator negative input has eight voltage levels, which is selectable via LBTSEL[2:0] register, from 2.1V to 3.5V with 0.2V per step.

19.1 Comparator Control Register

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LBTM	-	P11IO	LBTSEL3	LBTSEL2	LBTSEL1	LBTSEL0	LBTO	LBTEN

LBTM Register (0xD7)

Bit	Field	Type	Initial	Description
6	P11IO	R/W	0	P1.1 Configuration bit.
				0: P1.1 set as GPIO function.
				1 : Set P1.1 as LBT function, P1.1 connect to ground
				internally.

SN8F5900 Series

wwv	v.sonix.com.tw			311013300 301103
5	LBTSEL3	R/W	0	Comparator negative input source selection bit. 0: P1.0 set as GPIO function 1: External VDD voltage division.
42	LBTSEL[2:0]	R/W	010	Internal VDD voltage division control bits. 000: VDD < 2.2V, LBTO=1. 001: VDD < 2.4V, LBTO=1. 010: VDD < 2.6V, LBTO=1. 011: VDD < 2.8V, LBTO=1. 100: VDD < 3.0V, LBTO=1. 101: VDD < 3.2V, LBTO=1. 110: VDD < 3.4V, LBTO=1. 111: VDD < 3.6V, LBTO=1.
1	LBTO	R/W	0	Comparator Output flag. 0 : Comparator negative voltage great than 1.2V. 1 : Comparator negative voltage less than 1.2V.
0	LBTEN	R/W	00	Comparator function enable bit. 0 : Disable. 1 : Enable.

19.2 Comparator Characteristic

SYM.	DESCRIPTION	PARAMETER	MIN.	TYP.	MAX.	UNIT	
		Condition: LBTSEL [3:0] = 0000, VLBT=2.2V	2.04	2.15	2.26		
VILBT	Internal Low-Battery detect voltage	Condition: LBTSEL [3:0] = 0100, VLBT=3V	2.80	2.95	3.10	.,	
		Condition: LBTSEL [3:0] = 0111, VLBT=3.6V	3.40	3.55	3.70	V	
VELBT	External Low-Battery detect voltage	Condition: LBTSEL [3:0] = 1xxx, VLBT=P10 input.	1.1	1.2	1.3		
V _{HY}	Comparator Hysteresis Window			50	-	mV	
Ісомр	Current consumption	AVDD = 3V		50	-	uA	

19.3 Sample Code

The following sample code demonstrates how to perform comparator functions.

```
1
                           // for _nop_
  2 #include <intrins.h>
  3 #include <SN8F5909.h>
  5 unsigned char LBTOValue;
  6
  7 void Init_VREG(void);
  8 void Init_LBTM(void);
  9
 10 void main (void)
 11 {
 12
       Init VREG();
                          // Initial VREG
                     // Initial LBT
      Init LBTM();
 13
 14
 15
      while (1) {
  16
         LBTOValue = LBTM; //Get LBTO Flag
 17
          LBTOValue = LBTOValue>>1;
 18
          LBTOValue &= 0 \times 01;
 19
         if(LBTOValue==1){
 20
           // To Do ...
 21
 22
  23
          Else{
  24
           // To Do ...
  25
          }
  26
  27 }
 28
 29
  30 void Init VREG(void)
  31 {
                           // Clear VREG
  32
      VREG &= 0 \times 00;
                           // Enable Band gap
  33
      VREG \mid = 0 \times 80;
  34 VREG &= 0 \times 9 F;
                           // AVDDR=2.7V
  35
     VREG \mid = 0 \times 08;
                          // Enable ACM
  36
     VREG \mid = 0x10;
                           // Enable AVDDR
  37
  38 }
  39
  40 void Init LBTM(void)
  41 {
      LBTM &= 0x00; // Clear LBTM
      /* Low Battery Detect Voltage as 2.6v */
  43
  44
      LBTM \mid = 0x08;
  45
      LBTM |= 0x01; // Comparator function enable
  46
  47 }
  48
  49
```


20 OPA

The microcontroller builds in one operational amplifier. The OP-Amp power source form AVDDR. OP-Amp input signal and output voltage are within range of 0V to AVDDR-0.1V. The OP-Amp input and output pin share with ADC input channel (AI7~AI9). OP_Amp can be configured as buffer mode when OPBUF=1. There are four internal bias-voltages can be shorted to positive end of OP-Amp through setting register <u>BIAS[1:0]</u> and BIASEN.

20.1 OP-Amp Control Register

Regis	er	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPN	1	-	-	-	BIAS1	BIAS0	BIASEN	OPBUF	OPAEN

OPM Register (0x9B)

Bit	Field	Туре	Initial	Description
43	BIAS[1:0]	R/W	0	Bias output voltage control bits
				00 : 0.1 x AVDDR.
				01: 0.15 x AVDDR.
				10: 0.2 x AVDDR
				11: 0.25 x AVDDR
2	BIASEN	R/W	0	Bias function enable bit.
				0 : Disable.
				1 : Enable, Vbias output connect to OP+.
1	OPBUF	R/W	0	OPA buffer mode control bit.
				0 : Disable.
				1 : Enable, OPO and OP- are shorted by MOS-SW.
0	OPAEN	R/W	0	OPA function enable bit.
				0 : Disable.
				1 : Enable.

*Example: Operational amplifier & internal bias-voltages function Sample code.

```
VREG |= 0XB0; // Enable Band gap
// AVDDR=3.0V & Enable AVDDR
OPM |= 0x18; // Set Bias 0.75V@AVDDR=3V.
OPM |= 0x04; // Set Bias enable.

OPM |= 0X03; // OP-Amp enables & OP-Buff enable
```

20.2 OP-Amp Electrical Characteristic

Operation Amplifier										
PARAMETER	SYM.	DESCRIPTION	MIN.	TYP.	MAX.	UNIT				
Operation voltage	Voper	Power source from AVDDR	2.7	-	3.6	V				
Input offset voltage	Vos			±3		mV				
Operating Current	loper	Per OP-Amp	-	185	-	uA				
Analog Input voltage range	VIN	OP+ / OP-	0.05		AVDDR-0.1	V				
Analog Output voltage range	Vout	OPOUT	0.05		AVDDR-0.1	V				
Output short circuit current	Ioh/IoL	Unit Gain Buffer. Vo = 0V~3.2V, AVDDR=3.3V	-	±5	-	mA				
Buffer Mode Switch Ron	RBUF	AVDDR 3.3V, VOUT=1.65V.	-	50		Ω				
Gain Bandwidth	GB	RL=300KΩ, CL=50pF		1.4	-	MHz				
Slew Rate	SR	10% to 90%	-	0.8	-	V/uS				
Turn on time	Ton		-	20	-	uS				

21 UART

The universal synchronous/asynchronous receiver/transmitter, or UART, provides an up to 1 MHz flexible full-duplex transmission. It has four operate modes: one synchronous, and three asynchronous. The synchronous mode transmits 8 bits data without start/stop bits, whereas the other modes respectively support 8 and 9 bits data transmission with start/stop bits appended. UTX signal output via P0.4 and URX signal received via P0.5.

21.1 UART Mode 0: Synchronous 8-bit Receiver/Transmitter

In mode 0, the UART transmits/receives an 8-bit-length data without start and stop bits. It handles the first bit of the bus as LSB (least significant bit), and its baud rate is fixed at fcpu/12. The reception is started by setting RENO and clearing RIO bits, whereas the transmission is started by writing data to SOBUF.

21.2 UART Mode 1: Asynchronous 8-bit Receiver/Transmitter

In mode 1, the UART operates typical format protocol which has a start bit, 8 data bits, and one stop bit. Its baud rate is controlled by SORELH/SORELL registers, TC2 Timer overflow period depending on BD register.

A Transmission is started by writing SOBUF register. The first bit of transmission is a start bit (always 0), then data from SOBUF proceed (LSB first). After which a stop bit (always 1) is transmitted, and TIO bit is automatically set as a notification/interrupt.

The UART synchronizes with the start bit from master if the reception is enabled (RENO = 1). The first data bit would be seen as LSB (least significant bit), and SOBUF would be updated after the completion of a reception.

21.3 UART Mode 2/3: Asynchronous 9-bit Receiver/Transmitter

Both mode 2 and 3 have a start bit, 9 data bits, and one stop bit. The mode 2 has only two baud rate selections, fcpu/32 and fcpu/64, but the mode 3 can control its baud rate by SORELH/SORELL registers or TC2 Timer overflow period.

The 9th data bit (after the MSB of S0BUF register proceed) is writable in TB80 register for its transmission, and readable in RB80 for a reception. By always setting TB80 register, it is an alternative method to transmit two stop bits with 8 data bits. Another common application of 9th bit is parity check.

Furthermore, the 9th bit can also be seen as identification for multiprocessor communication. If SM20 register is set, the receive interrupt is generated only when the 9th received bit is high. To utilize this feature to multiprocessor communication, on the other word, all slave processors set SM20 to 1. The master processor transmits the slave's address, with the 9th bit set to 1, causing reception interrupt in all of the slaves. The slave processors' software compares the received byte with their network address. If there is a match, the addressed slave clears its SM20 flag and the rest of the message is transmitted from the master with the 9th bit set to 0. The other slaves keep their SM20 to 1 so that they ignore the rest of the message sent by the master.

21.4 Baud Rate Control

The UART mode 0 has a fixed baud rate at fcpu/12, and the mode 2 has two baud rate selection which is chosen by SMOD register: fcpu/32 (SMOD = 0) and fcpu/64 (SMOD = 1).

The baud rate of UART mode 1 and mode 3 is generated by either SORELH/SORELL registers (BD = 1) or TC2 Timer overflow period (BD = 0). The SMOD bit doubles the frequency from the generator. The SMOD bit doubles the frequency from the generator.

If the SORELH/SORELL is selected (BD = 1) in mode 1 and 3, the baud rate is generated as following equation.

Baud Rate =
$$2^{\text{SMOD}} \times \frac{\text{fcpu}}{64 \times (1024 - \text{SOREL})}$$

Table 19-1 Recommended Setting for Common UART Baud Rates (fcpu = 32 MHz)

Baud Rate	SMOD	SORELH	SORELL	Accuracy			
4800 Hz	1	0x03	0x30	-0.16 %			
9600 Hz	1	0x03	0x98	-0.16 %			
19200 Hz	1	0x03	0xCC	-0.16 %			
38400 Hz	1	0x03	0xE6	-0.16 %			
56000 Hz	1	0x03	0xEE	0.79 %			
57600 Hz	1	0x03	0xEF	-2.12 %			
115200 Hz	1	0x03	0xF7	3.55 %			
128 kHz	1	0x03	0xF8	2.34 %			
250 kHz	1	0x03	0xFC	0 %			
500 kHz	1	0x03	0xFE	0 %			
1 MHz	1	0x03	0xFF	0 %			

If the TC2 Timer overflow period is selected (BD = 0) in mode 1 and 3, the baud rate is generated as following equation. The TC2 Timer must be in 16-bit auto-reload mode which can generate periodically overflow signals.

Baud Rate =
$$2^{\text{SMOD}} \times \frac{1}{32 \times \text{Timer period}}$$

Table 19-2 Recommended Setting TC2 Timer overflow period for Common UART Baud Rates (fcpu = 32 MHz)

Baud Rate	SMOD	Timer Priod	TC2CH/L	TC2RH/ L	Accuracy
4800 Hz	1	13.021 us	0xFE5F	0xFE5F	-0.08 %
9600 Hz	1	6.510 us	0xFF30	0xFF30	0.16 %
19200 Hz	1	3.255 us	0xFF98	0xFF98	0.16 %
38400 Hz	1	1.628 us	0xFFCC	0xFFCC	0.16 %
56000 Hz	1	1.116 us	0xFFDC	0xFFDC	-0.80 %
57600 Hz	1	1.085 us	0xFFDD	0xFFDD	-0.80 %
115200 Hz	1	0.543 us	0xFFEF	0xFFEF	2.08 %
128 kHz	1	0.488 us	0xFFF0	0xFFF0	-2.40 %
250 kHz	1	0.250 us	0xFFF8	0xFFF8	0 %
500 kHz	1	0.125 us	0xFFFC	0xFFFC	0 %

* Note: System clock Fcpu minimum setting value follow Fcpu < Timer Priod Value.@ PWSC[2:0]=001 Ex: If TC2 Timer overflow period is 6.510us system clock Fcpu can setting 32M/64 or 32M/128.

*Example: TC2 Timer overflow period is selected (BD = 0) in mode 1 and 3, the baud rate 115200 is setting as following equation.(Fcpu = 32M Hz)

```
1
      TC2CH = 0x0FF;
                          // baud rate 115200
2
                          // 0.543us Overflow
       TC2CL = 0x0EF;
 3
                          // auto-reload value
      TC2RH = 0x0FF;
 4
      TC2RL = 0x0EF;
                          //
 5
      TC2M \mid = 0x0F0;
                          // TC2 ENABLE, TC2 timer clock= Fpcu/1
 6
 7
      SOCON2 = 0x00;
                          // baud rate = TC2 Timer overflow period
8
      PCON \mid = 0x80;
                          // SMOD=1,Fcpu*2 in mode1/mode3;
9
      SOCON = 0x50;
                         // UART Enable, UART Mode 1
10
```


21.5 UART Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SOCON	SM0	SM1	SM20	REN0	TB80	RB80	TI0	RIO
S0CON2	BD	_	_	_	-	-	_	-
SOBUF	S0BUF7	S0BUF6	S0BUF5	S0BUF4	S0BUF3	S0BUF2	S0BUF1	S0BUF0
PCON	SMOD	-	-	-	P2SEL	GF0	STOP	IDLE
SORELH	-	-	-	-	-	-	SOREL9	SOREL8
SORELL	SOREL7	SOREL6	SOREL5	SOREL4	SOREL3	SOREL2	SOREL1	RORELO
IEN0	EAL	-	ET2	ES0	ET1	EX1	ET0	EX0
P1OC	-	-	-	P05OC	P04OC	P140C	P130C	P120C
POM	P07M	P06M	P05M	P04M	P03M	P02M	P01M	P00M
P0	P07	P06	P05	P04	P03	P02	P01	P00

SOCON Register (0x98)

Bit	Field	Type	Initial	Description
76	SM[0:1]	R/W	00	UART mode selection
				00: Mode 0
				01: Mode 1
				10: Mode 2
				11: Mode 3
5	SM20	R/W	0	Multiprocessor communication (mode 2, 3)
				0: Disable
				1: Enable
4	REN0	R/W	0	UART reception function
				0: Disable
				1: Enable
3	TB0	R/W	0	The 9 th bit transmission data (mode 2, 3)
2	RB0	R/W	0	The 9 th bit data from reception
1	TIO	R/W	0	UART interrupt flag of transmission
0	RI0	R/W	0	UART interrupt flag of reception

SOCON2 Register (0xD8)

Bit	Field	Туре	Initial	Description
7	BD	R/W	1	Baud rate generators selection (mode 1, 3)
				0: TC2 Timer overflow period
				1: Controlled by SORELH, SORELL registers
60	Reserved	R	0x00	

SOBUF Register (0x99)

Bit	Field	Туре	Initial	Description
70	SOBUF	R/W	0x00	Action of writing data triggers UART communication (LSB
				first). Reception data is available to read by the end of
				packages.

PCON Register (0x87)

	register (oxor)			
Bit	Field	Туре	Initial	Description
7	SMOD	R/W	0	UART baud rate control
				(UART mode 2)
				0: fcpu/64
				1: fcpu/32
				(UART mode 1,3)
				0: fcpu*1
				1: fcpu*2
60				Refer to other chapter(s)

SORELH/SORELL Registers (SORELH: 0xBA, SORELL: 0xAA)

Bit	Field	Туре	Initial	Description
1510	Reserved	R	0x00	
90	SOREL[9:0]	R/W	0x00	SORELH[1:0] & SORELL[7:0]. UART Reload Register is used
				for UART baud rate generation.

IENO Register (0xA8)

Bit	Field	Туре	Initial	Description
7	EAL	R/W	0	Interrupts enable. Refer to Chapter Interrupt
4	ES0	R/W	0	Enable UART interrupt
Else				Refer to other chapter(s)

P1OC Register (0xE4)

Bit	Field	Туре	Initial	Description
4	P05OC	R/W	0	0: Switch P0.5 (URX) to input mode (required)
				1: Switch P0.5 (URX) to open drain mode*
3	P04OC	R/W	0	0: Switch P0.5 (UTX) to push-pull mode
				1: Switch P0.5 (UTX) to open-drain mode
Else				Refer to other chapter(s)

^{*} Setting P05OC as high causes URX cannot receive data.

POM Register (0xF9)

Bit	Field	Туре	Initial	Description
5	P05M	R/W	0	0: Set P0.5 (URX) as input mode (required)
				1: Set P0.5 (URX) as output mode*
4	P04M	R/W	0	0: Set P0.4 (UTX) as input mode*
				1: Set P0.4 (UTX) as output mode (required)
Else				Refer to other chapter(s)

^{*} The URX and UTX respectively require input and output mode selection to receive/transmit data appropriately.

P0 Register (0x80)

	Piece (evee)			
Bit	Field	Туре	Initial	Description
5	P05	R/W	0	This bit is available to read at anytime for monitoring
				the bus statue.
4	P04	R/W	0	0: Set P0.4 (UTX) always low*
				1: Make P0.4 (UTX) can output UART data (required)
Else				Refer to other chapter(s)

^{*} Setting P04 initially high because UART block drive the shared pin low signal only.

21.6 Sample Code

The following sample code demonstrates how to perform UART mode 1 with interrupt.

```
(0 << 6)
 1 #define SYSUartSM0
 2 #define SYSUartSM1 (1 << 6)
 3 #define SYSUartSM2 (2 << 6)
 4 #define SYSUartSM3 (3 << 6)
 5 #define SYSUartREN (1 << 4)
6 #define SYSUartSMOD (1 << 7)
7 #define SYSUartESO (1 << 4)
8
9 void SYSUartInit(void)
10 {
11
    // set UTX, URX pins' mode at here or at GPIO initialization
12
    P04 = 1;
13
     P05 = 0;
14
     // set P04 Output Mode and P05 Input Mode
15
     POM = (POM \mid 0x10) & \sim 0x20;
16
17
     // configure UART mode between SMO and SM3, enable URX
     S0CON = SYSUartSM1 | SYSUartREN;
18
19
     // configure UART baud rate
20
21
     PCON = SYSUartSMODE1;
22
     SOCON2 = 0 \times 80;
23
     SORELH = 0x03;
    SORELL = OxFE;
24
25
26
    // enable UART interrupt
27
    IEN0 |= SYSUartES0;
28
29
     // global interrupt enable
30
    EAL = 1;
31
32
    // send first UTX data
   SOBUF = uartTxBuf;
33
34 }
35
36 void SYSUartInterrupt(void) interrupt ISRUart
37 {
38
    if (TIO == 1) {
39
     SOBUF = uartTxBuf;
     TIO = 0;
40
    } else if (RIO == 1)
41
42
      { uartRxBuf = S0BUF;
43
      RIO = 0;
44
     }
45 }
```


22 SPI

The serial peripheral interface, aka SPI, has two operation modes: master and slave. A master proactively outputs bus clock through SCK pin, whereas slave device(s) handle communication based on SCK pin's clock input. An optional slave select pin (SSN) can be enabled by register in slave mode.

22.1 SPI Master

The SPI master mode has seven types of clock generator from fcpu/2 to fcpu/128. Generated clock is outputted through SCK pin (shared with P1.4) and its idle status is controlled by CPOL.

The phase of data input and output is automatically specified by CPHA register. In master mode MOSI pin (shared with P1.2) plays the role of data output, and MISO pin (shared with P1.3) fetches data from slave device. A SPI communication is started by writing SPDAT register; the received data from MISO is available to read after the end of data transmission.

The master mode has two status flags with interrupt function:

SPIF register indicates the end of one byte data communication. An interrupt would be issued at the same time if ESPI bit is enabled.

MODF is issued by SSN (shared with P1.1) low status while transmission. This interrupt source can be masked by setting SSDIS bit.

22.2 SPI Slave

The SPI slave mode monitors SCK pin to control its MISO and MOSI communication. However, the maximum clock rate is limited at fcpu/8. Slave device(s) are expected to specify its CPOL and CPHA setting as the same configuration of the connected SPI bus.

The slave mode treats MOSI pin as its data input, and MISO pin as its data transmission. By default, the SSDIS register is low which means the slave select pin (SSN) is functional. A SPI communication would be processed if the SSN is low status. Thus, a slave device is suspended if its SSN is high status.

The slave mode has two status flags with interrupt function:

SPIF indicates the end of one byte data communication. The original SPDAT's value has been transmitted, and the received data from MOSI is ready to be read on SPDAT.

MODF indicates that the slave select pin (SSN) has turned high before a completion of one byte communication. In other word, the last time of SPI communication is broken.

22.3 SPI Operation

The table below illustrates four different setting of CPOL and CPHA, and the bus operation in each combination.

22.4 SPI Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPR2	SPEN	SSDIS	MATR	CPOL	СРНА	SPR1	SPR0
SPSTA	SPIF	WCOL	SSERR	MODF	-	-	-	-
SPDAT	SPDAT7	SPDAT6	SPDAT5	SPDAT4	SPDAT3	SPDAT2	SPDAT1	SPDAT0
IEN0	EAL	-	-	ES0	-	EX1	ET0	EX0
IEN1	-	-	-	-	-	-	ESPI	EI2C
P10C	-	-	-	P05OC	P04OC	P140C	P130C	P12OC
P1M	P17M	P16M	P15M	P14M	P13M	P12M	P11M	P10M
P1	P17	P16	P15	P14	P13	P12	P11	P10

SPCON Register (0xE2)

	Register (UXE2)		la itia i	Description
Bit	Field	Type	Initial	Description
7,1,0	SM[2:0]	R/W	000	SPI baud rate generator (master mode only)
				000: fcpu/2
				001: fcpu/4
				010: fcpu/8
				011: fcpu/16
				100: fcpu/32
				101: fcpu/64
				110: fcpu/128
				111: reserved
6	SPEN	R/W	0	SPI communication function
				0: Disable
				1: Enable
5	SSDIS	R/W	0	Slave select pin function (MSTR = 0, CPHA = 0 only)
				0: Enable slave selection pin (SSN) function
				1: Disable slave select pin (SSN) function
4	MSTR	R/W	1	SPI mode
				0: Slave mode
				1: Master mode
3	CPOL	R/W	0	SCK pin idle status
				0: SCK idle low
				1: SCK idle high
2	СРНА	R/W	1	Clock phase of data latch control
				0: Data latched by the first of clockedge
				1: Data latched by the second of clockedge

SPSTA Register (0xE1)

	-0 1 /			
Bit	Field	Туре	Initial	Description
7	SPIF	R	0	SPI complete communication flag
				Set automatically at the end of communication
				Cleared automatically by reading SPSTA, SPDAT registers
6	WCOL	R	0	Write collision flag
				Set automatically if write SPDAT during communication
				Cleared automatically by reading SPSTA, SPDAT registers
5	SSERR	R	0	Synchronous slave select pin error
				Set automatically if SSN error controlling
				Cleared automatically by clear SPEN
4	MODF	R	0	Mode fault flag
30	Reserved	R	0x00	

SPDAT Register (0xE3)

Bit	Field	Туре	Initial	Description
DIL	riciu	Type	IIIIuai	Description
70	SPDAT	R/W	0x00	Master mode: action of writing data triggers SPI
				communication; reception data is readable after the end
				of one byte communication (SPIF automatically set).
				Slave mode: written data would be transmitted by SCK
				input; reception data is available to read after the end of
				one bytecommunication (SPIF automatically set).

IENO Register (0xA8)

Bit	Field	Туре	Initial	Description
7	EAL	R/W	0	Interrupts enable. Refer to Chapter Interrupt
Else				Refer to other chapter(s)

IEN1 Register (0xB8)

Bit	Field	Туре	Initial	Description
1	ESPI	R/W	0	Enable SPI interrupt
Else				Refer to other chapter(s)

P1OC Register (0xE4)

Bit	Field	Туре	Initial	Description
2	P140C	R/W	0	0: Switch P1.4 (SCK) to input or output mode
				1: Switch P1.4 (SCK) to open-drain mod
1	P130C	R/W	0	0: Switch P1.3 (MISO) to input or output mode
				1: Switch P1.3 (MISO) to open-drain mod
0	P12OC	R/W	0	0: Switch P1.2 (MOSI) to input or output mode
				1: Switch P1.2 (MOSI) to open-drain mode
Else				Refer to other chapter(s)

POM Register (0xF9)

Bit	Field	Туре	Initial	Description
7	P11M	R/W	0	0: Set P1.1 (SSN) as input mode * 1: Set P1.1
				(SSN) as output mode*
Else				Refer to other chapter(s)

^{*}If slave mode with SSN function: essentially to set SSN as input mode.

P1M Register

Bit	Field	Туре	Initial	Description
4	P14M	R/W	0	0: Set P1.4 (SCK) as input mode slave mode
				1: Set P1.4 (SCK) as output mode mastermode
3	P13M	R/W	0	0: Set P1.3 (MISO) as input mode mastermode
				1: Set P1.3 (MISO) as output mode slavemode
2	P12M	R/W	0	0: Set P1.2 (MOSI) as input mode slavemode
				1: Set P1.2 (MOSI) as output mode mastermode
Else				Refer to other chapter(s)

¹Setting SCK as input mode is essential in slave mode; setting as output mode is recommended in master mode.

²Setting MISO as input mode is essential in master mode; setting as output mode is recommended in slave mode.

³Setting MOSI as input mode is essential is slave mode; setting as output mode is recommended in master mode.

22.5 Sample Code

The following sample code demonstrates how to perform SPI Master with interrupt.

```
//SPI = Master mode
1 #define SpiMaster (1 << 4)
2 #define SpiSlave (1 << 4)
                                    //SPI = Slave mode
3 #define SpiMode0 (0 << 2)</pre>
                                    //SCK idle low, data latch at rising edge
4 #define SpiMode1 (1 << 2)
5 #define SpiMode2 (2 << 2)
6 #define SpiMode3 (3 << 2)
                                    //SCK idle low, data latch at falling edge
                                    //SCK idle high, data latch at falling edge
                                    //SCK idle high, data latch at rising edge
                                    //Enable SPI
7 #define SpiEn (1 << 6)
8 #define SpiSSNEn (0 << 5)
                                   //SSN pin function enable
9 #define SpiSSNDis (1 << 5)
                                    //SSN pin function disable
10
11
                                // data buffer
12 unsigned char u8SpiData = 0;
13 unsigned char u8TxCompleted = 0;
14
15
16 void SpiMaster (void)
    //SCK & MOSI = output, MISO = input
19
   P1M |= 0x14;
    //Enable Spi, Master mode, SSN pin disable, Fclk/128
20
    //SCK idle low, data latch at falling edge
21
22
    SPCON = SpiEn | SpiMaster | SpiModel | SpiSSNDis | 0x82;
23
    //Enable Global/SPI interrupt
24
   while (1) {
25
     SPDAT = 0x55;
                             // wait end of transmition
26
     while(!u8TxCompleted);
27
     u8TxCompleted = 0;
                                    // clear sw flag
28
     u8RcvData = u8SpiData;
                                    // receive 0x66
29
     SPDAT = 0x99;
    30
                                    // clear sw flag
31
    u8TxCompleted = 0;
    u8RcvData = u8SpiData;
32
                                    // receive 0xAA
33
   }
34 }
35
36
37 void SpiInterrupt (void) interrupt ISRSpi //0xA3
38 {
39
    switch ( SPSTA )
                                    // Clear SPI flag (SPIF) by reading
40
     case 0x80:
41
     u8SpiData = SPDAT;
42
43
     u8TxCompleted = 1;
44
      break;
45
    case 0x10:
46
47
     // Mode Fault
48
     break;
49
    }
50 }
51
52
53
54
```


23 I2C

The I2C is a serial communication interface for data exchanging from one MCU to one MCU or other hardware peripherals. The device can transmit data as a master or a slave with two bi-directional IO, SDA (Serial data output) and SCL (Serial clock input).

When a master transmit data to a slave, it's called "WRITE" operation; when a slave transmit data to a master, it's called "READ" operation. It also supports multi-master communication and keeps data transmission correctly by an arbitration method to decide one master has the control on bus and transmit its data.

23.1 I2C Protocol

I2C transmission structure includes a START(S) condition, 8-bit address byte, one or more data byte and a STOP (P) condition. START condition is generated by master to initial any transmission.

Data is transmitted with the Most Significant Bit (MSB) first. In address byte, the higher 7-bit is address bit and the lowest bit is data direction (R/W) bit. When R/W=0, it assigns a "WRITR" operation. When R/W=1, it assigns a "READ" operation.

After each byte is received, the receiver (a master or a slave) must send an acknowledge (ACK). If transmitter can't receive an ACK, it will recognize a not acknowledge (NACK). In WRITE operation, the master will transmit data to the slave and then waits for ACK from slave. In READ operation, the slave will transmit data to the master and then waits for ACK from master. In the end, the master will generate a STOP condition to finish transmission.

23.2 I2C Transfer Modes

The I2C can operate as a master/slave to execute the 8-bit serial data transmission/reception operation. Thus, the module can operate in one of four modes: Master Transmitter, Master Receiver, Slave Transmitter and Slave Receiver.

23.3 Master Transmitter Mode

The master transmits information to the slave. The serial data is output via SDA while the serial clock is output on SCL. Data transmission starts via generate a START(S) signal. After the START signal, the specific address byte of slave device is sent. The address byte includes 7-bit address bit and an 8th data direction (R/W) bit. The R/W is set "0" to enable the master transmission. In the following, the master transmits one or more data byte to the slaver. After each data is transmitted, the master waits for the acknowledge (ACK) from the slave. In the end, the master generates a STOP (P) signal to terminate the data transmission.

23.4 Master Receiver Mode

The master receives the information from the slave. The serial data input via SDA while the serial clock output on SCL. Data reception starts via generate a START(S) signal. After the START signal, the specific address byte of slave device is sent. The address byte includes 7-bit address bit and an 8th data direction (R/W) bit. The R/W is set "1" to enable the master reception. In the following, the master receives one or more data byte from the slaver. After each data is received, the master generates the acknowledge (ACK) or not acknowledge (NACK) to the slave via the status of AA bit. In the end, the master generates a STOP (P) signal to terminate the data transmission.

23.5 Slave Transmitter Mode

The slave transmits information to the master. The serial data output via SDA while the serial clock input on SCL. Data transmission starts via receive a START(S) signal from the master. After the START signal, the specific address byte of slave device is received. The address byte includes 7-bit address bit and an 8th data direction (R/W) bit. The R/W is set "1" to enable the slave transmission. If the received address byte match the address in I2CADR register, the slave generate an acknowledge (ACK). Otherwise, if general call address condition is set (GC=1), the slave also generate an acknowledge (ACK) after general call address (0x00) is received. In the following, the slave transmits one or more data byte to the master. After each data is transmitted, the slave waits for the acknowledge (ACK) from the master. In the end, the slave receives a STOP (P) signal from the master to terminate the data transmission.

23.6 Slave Receiver Mode

The slave receives information from the master. Both the serial data and the serial clock are input on SDA and SCL. Data reception starts via receive a START(S) signal from the master. After the START signal, the specific address byte of slave device is received. The address byte includes 7-bit address bit and an 8th data direction (R/W) bit. The R/W is set "0" to enable the slave reception. If the received address byte match the address in I2CADR register, the slave generate an acknowledge (ACK). Otherwise, if general call address condition is set (GC=1), the slave also generate an acknowledge (ACK) after general call address (0x00) is received. In the following, the slave receives one or more data byte from the master. After each data is receives, the slave generates the acknowledge (ACK) or not acknowledge (NACK) to the master via the status of AA bit. In the end, the slave receives a STOP (P) signal from the master to terminate the data

23.7 General Call Address

In I2C bus, the first 7-bit is the slave address. Only the address matches slave address, the slave will response an ACK. The exception is the general call address which can address all slave devices. When this address occur, all devices should response an acknowledge (ACK). The general call address is a special address which is reserved as all "0" of 7-bit address. The general call address function is control by GC bit. Set this bit will enable general call address and clear it will disable. When GC=1, the general call address will be recognized. When GC=0, the general call address will be ignored.

23.8 Serial Clock Generator

In master mode, the SCL clock rate generator's is controlled by CR[2:0] bit of I2CCON register. When CR[2:0]=000~110, SCL clock rate is from internal clock generator.

SCL Clock Rate =
$$\frac{F_{CPU}}{\text{Prescaler}}$$
 (Prescaler = 256 ~ 60)

When CR[2:0]=111, SCL clock rate is from TC2 Timer overflow rate.

$$SCL Clock Rate = \frac{Timer Overflow}{8}$$

The table below shows the clock rate under different setting.

CD3	CD4	CDO	I2C		Bit Freque	ncy (kHz)			
CR2	CR1	CR0	Prescaler	4MHz	8MHz	16MHz	32MHz		
0	0	0	256	15.6	31.3	62.5	125		
0	0	1	224	17.9	35.7	71.4	142.9		
0	1	0	192	20.8	41.7	83.3	166.7		
0	1	1	160	25	50	100	200		
1	0	0	960	4.2	83.3	16.7	33.3		
1	0	1	120	33.3	66.7	133.3	266.7		
1	1	0	60	66.7	133.3	266.7	533.3		
1	1	1	(TC2 Timer overflow rate)/8						

^{*}Example: When CR[2:0]=111, SCL clock rate is from TC2 Timer overflow rate. The clock rate 400k Hz is setting as following equation. (Fcpu = 32M Hz)

```
1
                           // clock rate 400k Hz = 1/0.3125us/8
      TC2CH = 0x0FF;
2
      TC2CL = 0x0F6;
                          // 0.3125us Overflow
3
      TC2RH = 0x0FF;
                          // auto-reload value
4
      TC2RL = 0x0F6;
                          //
5
      TC2M \mid = 0x0F0;
                          // TC2 ENABLE, TC2 timer clock= Fpcu/1
6
7
      12CCON | = 0x83;
                          // SPR[2:0]:111,SCL source from TC2 Timer
8
      I2CCON \mid = 0 \times 40;
                          // I2C enable (ENS1)
9
```

23.9 Synchronization and Arbitration

In multi-master condition, more than one master may transmit on bus in the same time. It must be decided which master has the control of bus and complete its transmission. Clock synchronization and arbitration are used to configure multi-master transmission. Clock synchronization is executed by synchronizing the SCL signal with anther devices.

When two masters want to transmit data in the same, the clock synchronization will start by the High to Low transition on the SCL. If master 1 clock set LOW first, it holds the SCL in LOW status until the clock transit to HIGH status. However, if anther master clock still keep LOW status, the Low to High transition of master 1 may not change SCL status (SCL keep LOW). In the other word, SCL keep LOW by the master with the longest clock time in LOW status. The SCL will transit from LOW to HIGH when the all devices clock transit to HIGH status. In the duration, the master1 will keep in HIGH status and wait for SCL transition (from LOW to HIGH), then continue its transmission. After clock synchronization, all devices clock and SCL clock are the same. Arbitration is used to decide which master can complete its transmission by SDA signal. Two masters may send out a START condition and transmit data on bus in the same time. They may influence by each other. Arbitration will force one master to lose the control on bus. Data transmission will keep until master output different data signal. If one master transmits HIGH status and anther master transmits LOW status, the SDA will be pull low. The master output High will detect the different with SDA and lose the control on bus. The mater with LOW status wins the bus control and continues its

transmission. There is no data miss during arbitration.

23.10 System Management Bus Extension

The optional System Management Bus (SMBus) protocol hardware supports 3 types timeout detection: (1) Tmext Timeout Detection: The cumulative stretch clock cycles within one byte. (2)Tsext Timeout Detection: The cumulative stretch clock cycles between start and stop condition. (3)Timeout Detection: The clock low measurement.

Timeout detection is controlled by SMBSEL and SMBDST registers. The SMBEXE bit of SMBSEL is SMBus extension function enable bit. When SMBEXE=1, SMBus extension function is enabled. Otherwise, Disable SMBus extension function. Timeout type and period setting is controlled by SMBTOP[2:0] and SMBDST. The period of SMBus timeout is controlled by three 16-bit buffers of Tmex, Tsext and Tout. The equation is as following.

$$Tmext/Tsext/Tout = \frac{Timer\ Period(sec) * F_{CPU}(Hz)}{1024}$$

Tmext is support by two 8-bit register of Tmext_L and Tmext_H . Tmext_L hold the low byte and Tmext_H hold high byte. Tsext is support by two 8-bit register of Tsext_L and Tsext_H . Tsext_L hold the low byte and Tsext_H hold high byte. Tout is support by two 8-bit register of Tout_L and Tout_H . Tout_L hold the low byte and Tout_H hold high byte.

Toma	Time Time out wanted		32MHz
Туре	Time out period	DEC	HEX
Tmext	5ms	157	9D
Tsext	25ms	782	30E
Tout	35ms	1094	446

By the setting of SMBTOP[2:0] to choose register type (as the table below), and write to register by write data to SMBDST register.

SMBTOP[2:0]	SMBDST	Descriptio
000	Tmext_L	Select the low byte of Tmext register.
001	Tmext_H	Select the high byte of Tmext register.
010	Tsext_L	Select the low byte of Tsext register.
011	Tsext_H	Select the high byte of Tsext register.
100	Tout_L	Select the low byte of Tout register.
101	Tout_H	Select the high byte of Tout register.

When the SMBus extension function is enabled the lower 3-bit of I2CSTA hold the information about time out as the table below.

12CSTA	Description
XXXX X000	No timeout errors.
XXXX XXX1	Tout timeout error.
XXXX XX1X	Tsext timeout error.
XXXX X1XX	Tmext timeout error.

23.11 I2C Registers

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CDAT	I2CDAT7	I2CDAT6	I2CDAT5	I2CDAT4	I2CDAT3	I2CDAT2	I2CDAT1	I2CDAT0
I2CADR	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	GC
I2CCON	CR2	ENS1	STA	STO	SI	AA	CR1	CR0
I2CSTA	I2CSTA7	I2CSTA6	I2CSTA5	I2CSTA4	I2CSTA3	I2CSTA2	I2CSTA1	I2CSTA0
SMBSEL	SMBEXE	-	-	-	-	SMBSTP2	SMBSTP1	SMBSTP0
SMBDST	SMBD7	SMBD6	SMBD5	SMBD4	SMBD3	SMBD2	SMBD1	SMBD0
IEN0	EAL	-	-	ES0	-	EX1	ET0	EX0
IEN1	-	-	-	-	-	-	ESPI	EI2C
POM	P07M	P06M	P05M	P04M	P03M	P02M	P01M	P00M
P0	P07	P06	P05	P04	P03	P02	P01	P00

I2CDAT Register (0xDA)

ZCDA	i Register (UXDA	\)		
Bit	Field	Туре	Initial	Description
7:0	I2CDAT[7:0]	R/W	0x00	The I2CDAT register contains a byte to be transmitted
				through I2C bus or a byte which has just been received
				through I2C bus. The CPU can read from and write to
				this 8-bit, directly addressable SFR while it is not in the
				process of byte shifting. The I2CDAT register is not
				shadowed or double buffered so the user should only
				read I2CDAT when an I2C interrupt occurs.

I2CADR Register (0xDB)

Bit	Field	Туре	Initial	Description
7:1	I2CADR[6:0]	R/W	0x00	I2C slave address
0	GC	R/W	0	General call address (0X00) acknowledgment
				0: ignored
				1: recognized

I2CCON Register (0xDC)

Bit	Field	Type	Initial	Description
7,1,0	CR[2:0]	R/W	0	I2C clock rate
				000: fcpu/256
				001: fcpu/224
				010: fcpu/192
				011: fcpu/160
				100: fcpu/960
				101: fcpu/120
				110: fcpu/60
				111: reserved
6	ENS1	R/W	0	I2C functionality
				0: Disable
				1: Enable
5	STA	R/W	0	START flag
				0: No START condition is transmitted.
				1: A START condition is transmitted if the bus is free.
4	STO	R/W	0	STOP flag
				0: No STOP condition is transmitted.
				1: A STOP condition is transmitted to the I2C busin
3	SI	R/W	0	Serial interrupt flag
				The SI is set by hardware when one of 25 out of 26
				possible I2C states is entered. The only state that does
				not set the SI is state F8h, which indicates that no
				relevant state information is available. The SI flag must
				be cleared by software. In order to clear the SI bit, '0'
				must be written to this bit. Writing a '1' to SI bit does
				not change value of the SI.
2	AA	R/W	0	Assert acknowledge flag
				0: A NACK will be returned when a byte has received
				1: An ACK will be returned when a byte has received

I2CSTA Register (0xDD)

Bit	Field	Туре	Initial	Description	
7:3	I2CSTA[7:3]	R	11111	I2C Status Code	
20	I2CSTA[2:0]	R	000	SMBus Status Code	

I2C status code and status

	Status		Application :	softwa	re resp	onse		
Mode	Code	Status of the I2C	To/from I2CDAT		TO 12	CCON		Next action taken by I2C hardware
	Couc		TOTTOTTIZEDAT	STA	STO	SI	AA	
er tter/ er	08H	A START condition has been transmitted	Load SLA+R	Х	0	0	х	SLA+R/W will be transmitted; ACK will be received
Master ansmitter Receiver		A repeated START condition	Load SLA+R					SLA+R/W will be transmitted; ACK will be received
Master Transmitter/ Receiver	10H	has been transmitted.	Load SLA+W	Х	0	0	Х	SLA+W will be transmitted; I2C will be switched to MST/TRX mode.
			Load data byte	0	0	0	Х	Data byte will be transmitted; ACK will be received.
		CLA : NA/ has been treasure: the di-	No action	1	0	0	Х	Repeated START will be transmitted.
	18H	SLA+W has been transmitted; ACK has been received	No action	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		ACK has been received	No action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
			Load data byte*	0	0	0	Х	Data byte will be transmitted; ACK will be received.
		SLA+W has been transmitted;	No action	1	0	0	Х	Repeated START will be transmitted.
tter	20H	not ACK has been transmitted;	No action	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
Master Transmitter		not ACK has been received	No action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
Ļ		Data byte in I2CDAT has been transmitted; ACK has been received	Load data byte	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
ster			No action	1	0	0	Х	Repeated START will be transmitted.
Ä	28H		No action	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
_			No action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
		Data byte in I2CDAT has been	Load data byte*	0	0	0	Х	Data byte will be transmitted; ACK will be received.
			No action	1	0	0	Х	Repeated START will be transmitted.
	30H	transmitted; not ACK has been	No action	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		received	No action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
	40H	SLA+R has been transmitted;	No action	0	0	0	0	Data byte will be received; not ACK will be returned
	400	ACK has been received	No action	0	0	0	1	Data byte will be received; ACK will be returned
			No action	1	0	0	Χ	Repeated START condition will be transmitted
<u>.</u>	48H	SLA+R has been transmitted;	No action	0	1	0	Χ	STOP condition will be transmitted; STO flag will be reset
r Recei	4011	not ACK has been received	No action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset
	50H	Data byte has been received;	Read data byte	0	0	0	0	Data byte will be received; not ACK will be returned
	SUFI	ACK has been returned	Read data byte	0	0	0	1	Data byte will be received; ACK will be returned
Σ			Read data byte	1	0	0	Χ	Repeated START condition will be transmitted
	58H	Data byte has been received;	Read data byte	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset
	ЭВП	not ACK has been returned	Read data byte	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset

	CL-L		Application	softwa	re resp	onse		
Mode	Status	Status of the I2C	T - /5 126D AT	TO I2CCON				Next action taken by I2C hardware
	Code		To/from I2CDAT	STA	STO	SI	AA	
	60H	Own SLA+W has been received; ACK has been returned	No action	х	0	0	0/1	Data byte will be received and not ACK/ACK will be returned
	68H	Arbitration lost in SLA+R/W as master; own SLA+W has been received, ACK returned	No action	х	0	0	0/1	Data byte will be received and not ACK/ACK will be returned
	70H	General call address (00H) has been received; ACK has been returned	No action	х	0	0	0/1	Data byte will be received and not ACK/ACK will be returned
eceiver	78H	Arbitration lost in SLA+R/W as master; general call address has been received, ACK returned	No action	х	0	0	0/1	Data byte will be received and not ACK/ACK will be returned
Slave Receiver	80H	Previously addressed with own SLV address; DATA has been received; ACK returned	Read data byte	х	0	0	0/1	Data byte will be received and not ACK/ACK will bereturned
			Read data byte	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address
	88H	Previously addressed with own	Read data byte	0	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized
	ооп	SLA; DATA byte has been received; not ACK returned	Read data byte	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address; START condition will be transmitted when the bus becomes free
			Read data byte	1	0	0	1	Switched to not addressed SLV mode; own SLA orgeneral

SN8F5900 Series

								call address will be recognized; START condition will be transmitted when the bus becomes free
	90H	Previously addressed with general call address; DATA has been received; ACK returned	Read data byte	Х	0	0	0/1	Data byte will be received and not ACK/ACK will bereturned
			Read data byte	0	0	0	0	Switched to not addressed SLV mode; no recognition of owr SLA or general call address
		Previously addressed with	Read data byte	0	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized
	98H	general call address; DATA has been received; not ACK returned	Read data byte	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address; START condition will be transmitted when the bus becomes free
			Read data byte	1	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized; START condition will be transmitted when the bus becomes free
			No action	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address
		A STOP condition or repeated	No action	0	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized
	A0H	START condition has been received while still addressed as SLV/REC or SLV/TRX	No action	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address; START condition will be transmitted when the bus becomes free
			No action	1	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized; START condition will be transmitted when the bus becomes free
	A8H	Own SLA+R has been received;	Load data byte	X	0	0	0	Last data byte will be transmitted and ACK will be received
		ACK has been returned	Load data byte	X	0	0	1	Data byte will be transmitted; ACK will be received.
	вон	Arbitration lost in SLA+R/W as master; own SLA+R has been received, ACK has been returned.	Load data byte	X	0	0	1	Last data byte will be transmitted and ACK will be received Data byte will be transmitted; ACK will be received.
		Data byte has been	Load data byte	Х	0	0	0	Last data byte will be transmitted and ACK will be received
	В8Н	transmitted; ACK will be received.	Load data byte	Х	0	0	1	Data byte will be transmitted; ACK will be received.
		Data byte has been transmitted; not ACK has been received.	No action	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address.
itter			No action	0	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized.
Slave Transmitter	СОН		No action	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address; START condition will be transmitted when the bus becomes free.
Slav			No action	1	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized; START condition will be transmitted when the bus becomes free.
			No action	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address.
		Last data byte has been	No action	0	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized.
	C8H	transmitted; ACK has been received.	No action	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or general call address; START condition will be transmitted when the bus becomes free.
			No action	1	0	0	1	Switched to not addressed SLV mode; own SLA or general call address will be recognized; START condition will be transmitted when the bus becomes free.
S	F8H	No relevant state information available; SI=0	No action		No a	ction		Wait or proceed current transfer
noa	38H	Arbitration lost	No action	0	0	0	Х	I2C will be released; A start condition will be transmitted.
lane	3011	A SILI BLIOTI 103L	No action	1	0	0	X	When the bus becomes free. (enter to a master mode)
Miscellaneous	00H	Bus error during MST or selected slave modes	No action	0	1	0	Х	Only the internal hardware is affected in the MST or addressed SLV modes. In all cases, the bus is released and I2C is switched to the not addressed SLV mode. STO flag is reset.

[&]quot;SLA" means slave address, "R" means R/W=1, "W" means R/W=0

^{*}For applications where NACK doesn't mean the end of communication.

SMBSEL Register (0xDE)

Bit	Field	Type	Initial	Description
7	SMBEXE	R/W	0	SMBus extension functionality
				0: Disable
				1: Enable
20	SMBSTP[2:0]	R/W	000	SMBus timeout register

SMBDST Register (0xDF)

Bit	Field	Type	Initial	Description
70	SMBD[7:0]	R/W	0x00	This register is used to provide a read/write access port
				to the SMBus timeout registers. Data read or written to
				that register is actually read or written to the Timeout
				Register which is pointed by the SMBSEL register.

IENO Register (0xA8)

Bit	Field	Туре	Initial	Description
7	EAL	R/W	0	Interrupts enable. Refer to Chapter Interrupt
Else				Refer to other chapter(s)

IEN1 Register (0xB8)

Bit	Field	Туре	Initial	Description
0	EI2C	R/W	0	Interrupts enable. Refer to Chapter Interrupt
Else				Refer to other chapter(s)

POM Register (0xF9)

Bit	Field	Туре	Initial	Description
3	P03M	R/W	0	0: Set P0.3 (SDA) as input mode (required)
				1: Set P0.3 (SDA) as output mode*
2	P02M	R/W	0	0: Set P0.2 (SCL) as input mode (required)
				1: Set P0.2 (SCL) as output mode*
Else				Refer to other chapter(s)

^{*} The P02M and P03M respectively require be set input mode.

23.12 Sample Code

The following sample code demonstrates how to perform I2C with interrupt.

```
1 unsigned int I2CAddr;
2 unsigned int I2C TXData0;
3 unsigned int I2C TXDatan;
4 unsigned int I2C RXData0;
5 unsigned int I2C RXDatan;
6
8 void I2C Init(void)
9 {
10
     P02 = 0;
     P03 = 0;
11
12
     POM = 0x00;
                      // P02 & P03 as input
13
    I2CCON |= 0x40;  // I2C enable (ENS1)
I2CCON |= 0x82;  // Clock rate bit :
14
                            // Clock rate bit : 110b ; 533.3KHz at 32MHz
15
16
17
    EI2C = 1;
                            // I2C interrupt enable
18
     EAL = 1;
                            // Interrupt enable
19 }
20
21
22 void I2C ISR(void) interrupt ISRI2c // Vector @ 0xAB
23 {
    switch (I2CSTA)
24
25
    {
     // tx mode
26
27
       case 0x08:
        28
29
30
         break;
31
      case 0x18:
32
                             // write first byte
         I2CDAT = I2C TXData0;
33
34
          break;
35
       case 0x28:
36
                            // write n byte
37
          I2CDAT = I2C_TXDatan;
38
          break;
39
40
       case 0x30:
                           // STOP (STO)
        I2CCON \mid = 0 \times 10;
41
42
         break;
43
     // rx mode
44
      case 0x40:
         ase 0x40: // get slave addr I2CCON |= 0x04; // AA = 1
45
46
47
         break;
48
49
      case 0x50:
                            // read n byte
        I2C RXData0 = I2CDAT;
50
          12CCON \&= 0xFB; // AA = 0
51
52
          break;
53
54
```



```
55
56
       case 0x58:
                            // read last byte & stop
57
          I2C RXDatan = I2CDAT;
          12CCON = 0x10; // STOP (STO)
58
59
          break;
60
61
       default:
62
         I2CCON \mid= 0x10; // STOP (STO)
63
     }
     I2CCON &= 0xF7;
                            // Clear I2C flag (SI)
64
65 }
66
67
```


24 In-System Program

SN8F5900 builds in an on-chip 64 KB program memory, aka IROM, which is equally divided to 1024 pages (64 bytes per page). The in-system program is a procedure that enables a firmware to freely modify every page's data or each byte data of page; in other word, it is the way to store value(s) into the non-volatile memory and/or live update firmware.

0xFFFF	Page 1023
0xFFC0	
0xFFBF	Dage 1022
0xFF80	Page 1022
0x00BF	Page 2
0x0080	Page 2
0x007F	
0x0040	Page 1
0x003F	Page 0
0x0000	Page 0

Program memory (IROM)

24.1 Page Program

Because each page of the program memory has 64 bytes in length, a page program procedure requires 64 bytes IRAM as its data buffer.

As an example, assume the 1022th page of program memory (IROM, 0xFF80 – 0xFFBF) is the anticipated update area; the content is already stored in IRAM address 0x60 – 0x9F. To perform the in-system program, simply write starting IROM address 0xFF80 to EPROMH/EPROML registers, and then specify buffer starting address 0x60 to EPRAM register. Subsequently, write '0xA5A' into PECMD [11:0] registers to duplicate the buffer's data to 1022th page of IROM.

In general, every page has the capability to be modified by in-system program procedure. However, since the first and least pages (page 0 and 1023) respectively stores reset vector and information for power-on controller, incorrectly perform page program (such as turn off power while programming) may cause faulty power-on sequence / reset.

24.2 Byte Program

SN8F5900 series support byte program function of all program memory area, a byte program procedure requires 1-bytes IRAM as its data buffer.

As an example, assume the 3rd byte of 1022th page of program memory (IROM, 0xFF82) is the anticipated update byte; the content is already stored in IRAM address 0x60. To perform the insystem program, simply write starting IROM page address 0xFF80 to EPROMH/EPROML registers, writer byte address 0x02 to PEBYTE register, and then specify buffer starting address 0x60 to EPRAM register. Subsequently, write '0xA1E' into PECMD [11:0] registers to duplicate the buffer's data to 3rd byte of 1022th page of IROM.

24.3 In-system Program Register

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PERAM	RAM7	RAM6	RAM5	RAM4	RAM3	RAM2	RAM1	RAM0
PEROMH	ROM15	ROM14	ROM13	ROM12	ROM11	ROM10	ROM9	ROM8
PEROML	ROM7	ROM6	-	-	CMD11	CMD10	CMD9	CMD8
PECMD	CMD7	CMD6	CMD5	CMD4	CMD3	CMD2	CMD1	CMD0
PEBYTE			PEBYTE5	PEBYTE4	PEBYTE	PEBYTE2	PEBYTE1	PEBYTE0

PECMD Register (0x94)

Bit	Field	Туре	Initial	Description
70	PECMD[7:0]	W	-	0x5A : Start page-program procedure
				0x1E : Start byte-program procedure.

^{*} Not permitted to write any other to PECMD register.

PEROML Register (0x95)

Bit	Field	Туре	Initial	Description
76	PEROM[7:6]	R/W	00	The first address $(7^{th} - 6^{th})$ of program page (IROM)
54	Reserved	R	0	
30	PECMD[11:8]	W	-	0xA: Enable in-system program
				Else values: Disable in-system program*

^{*} Disabling in-system program can avoid mistakenly trigger ISP function.

PEROMH Register (0x96)

	iiiiogistei (exse)			
Bit	Field	Туре	Initial	Description
70	PEROM[15:8]	R/W	0x00	The first address (15 th – 8 th bit) of program page

PERAM Register (0x97)

Bit	Field	Туре	Initial	Description
70	PERAM[7:0]	R/W	0x00	The first address of data buffer (IRAM)

PEBYTE Register (0x9C)

Bit	Field	Туре	Initial	Description
50	PEBYTE[5:0]	R/W	0x00	The Byte address of a page.

24.4 Sample Code

The following sample code demonstrates how to perform ISP.

```
1 #include <intrins.h>
                           // for _nop_
2 #include <SN8F5909.h>
4 #include "GenericTypeDefs.h"
6 void ISPSetROMAddr(UINT16 u16addr);
7 void ISPSetRAMAddr(UINT8 u8addr);
8 void ISPWritePage(void);
9 void ISPWriteByte(void);
10 void ISPExecute PAGE (void);
11 void ISPExecute_Byte(void);
12
13 void main (void)
14 {
15
      WDTR = 0x5A;
                              // clear watchdog if watchdog enable
16
17
      ISPExecute PAGE();
                              // Program one page by ISP
18
19
      ISPExecute Byte();
                              // Program one Byte by ISP
20
21
      while (1) {
22
          WDTR = 0x5A;
                             // clear watchdog if watchdog enable
23
           // To Do ...
24
25
       }
26 }
27 void ISPExecute_PAGE(void)
28 {
29
      UINT8 idata u8data[64] = {0};
30
31
      UINT8 idata i =0;
32
      // step 1 : Get data
33
      for (i =1; i<65; i++)
34
                              // write data for test
      u8data[i-1] = i;
35
36
37
      // step 2 : Set RAM addr of data
38
      i = u8data;
                             // get start addr
39
40
      ISPSetRAMAddr(i);
       // step 3 : Set ROM start addr (Range is 0x0000~0xFFFF)
41
42
       ISPSetROMAddr(0x8880);
43
44
       // step 4 : Progarm one page (64 bytes)
45
       ISPWritePage();
46
47
      //erase all USER ROM
48
      //ISPEraseAllROM();
49 }
50
51
52
53
54
```



```
56 void ISPExecute Byte (void)
57 {
58
        UINT8 idata u8data byte[1] = \{0\};
       UINT8 idata j =0;
59
60
61
       // step 1 : Get data
62
       u8data byte[0] = 0XAA;
                                 // write data for test
       // step 2 : Set RAM addr of data
63
64
       j = u8data byte;
                                 // get start addr
65
       ISPSetRAMAddr(j);
66
       // step 3 : Set ROM start addr (Range is 0x0000~0xFFFF)
67
       ISPSetROMAddr(0x8880);
68
69
       // step 4 : Set ROM Byte addr(Range is 0x00~0x3F)
70
       PEBYTE = 0X20;
71
72
       // step 5 : Progarm one byte (1 byte)
73
       ISPWriteByte();
74
75
       //erase all USER ROM
76
       //ISPEraseAllROM();
77 }
78
79 void ISPSetROMAddr (UINT16 u16addr)
80 {
81
       // set ROM addr
82
       PEROML &= 0 \times 0 F;
83
       //ISP Target Start ROM address Low byte
       PEROML \mid = ((u16addr & 0x00F0));
       //ISP Target Start ROM address High byte
86
       PEROMH |= ((u16addr & 0xFF00)>>8);
87
        nop ();
88
89 }
90
91 void ISPSetRAMAddr (UINT8 u8addr)
       // set RAM addr
93
94
       PERAM = u8addr;
95 }
97 /*void ISPEraseAllROM(void)
98 {
99
       // erase whole USER ROM
100
      PECMD = 0x96;
101
       PEROML | = 0 \times 0 A;
102 } * /
103
104
105
106
107
108
109
```



```
110
111 void ISPWritePage (void)
112 {
113
      // execute Page Erase and Write
114
      PEROML |= 0x0A;
115
116
      if(EAL == 0) {
        PECMD = 0x5A;
117
      _nop_(); _nop_();
}
118
119
120
      else {
121
        EAL = 0;
        PECMD = 0x5A;
122
123
         nop_(); _nop_();
124
        EAL = 1;
125
      }
126 }
127 void ISPWriteByte (void)
128 {
129
       // execute Page Erase and Write
130
      PEROML |= 0x0A;
131
132
      if(EAL == 0) {
133
        PECMD = 0x1E;
        _nop_(); _nop_();
134
135
      }
      else {
136
137
       EAL = 0;
138
        PECMD = 0x1E;
139
         _nop_(); _nop_();
140
        EAL = 1;
141
       }
142 }
```


25 APPLICATION CIRCUIT

25.1 BP application circuit

★ Note: DVDD/AVDD capacitors should be as close as possible with pins of IC

25.2 Thermometer application circuit

* Note: DVDD/AVDD capacitors should be as close as possible with pins of IC

25.3 EV-KIT BOARD CIRCUIT

26 Electrical Characteristics

26.1 Absolute Maximum Ratings

Voltage applied at VDD to VSS	0.3V to 6.5V
Voltage applied at any pin to VSS	0.3V to VDD+0.3V
Operating ambient temperature	40°C to 85°C
Storage ambient temperature	40°C to 125°C

26.2 System Operation Characteristics

SYM.	Parameter	Test Condition	Min	TYP	MAX	UNIT
VDD	Operating voltage	fcpu = 1MHz	2.0		6.5	V
V _{DR}	RAM data retention Voltage		1.5			V
V _{POR}	VDD rising rate		0.05			V/ms
	1 2 2 110mily 1 dies	VDD = 3V ~ 5V, fcpu = 0.25MHz		2.8		mA
		VDD = 3V ~ 5V, fcpu = 1MHz		3.0		mA
		VDD = 3V ~ 5V, fcpu = 2MHz		3.3		mA
		VDD = 3V ~ 5V, fcpu = 4MHz		3.6		mA
l _{DD1}	Normal mode supply current	VDD = 3V ~ 5V, fcpu = 8MHz		4.3		mA
		VDD = 3V ~ 5V, fcpu = 16MHz		5.7		mA
		VDD = 3V ~ 5V, fcpu = 32MHz		8.4		mA
		VDD = 3V		3.5		μΑ
I _{DD2}	STOP mode supply current	VDD = 5V		4.0	6.0	μΑ
552	,	VDD = 3V, RTC enable (32768Hz Crystal)		5.0		μΑ
	IDLE mode supply current	VDD = 3V		0.56		mA
I _{DD3}	(fcpu = 0.25MHz)	VDD = 5V		0.57		mA
		VDD = 2.0V ~ 6.5V, Temp. 25°C	-1%	32	+1%	MHz
f _{IHRC}	Internal high clock generator	VDD = 2.0V to 6.5V, Temp40°C to 85°C	-2%	32	+2%	MHz
		25°C	1.58	1.65	1.72	V
V _{LVD18}	LVD16 detect voltage	-40°C to 85°C	1.60	1.65	1.80	V
		25°C	1.40	1.45	1.52	V
V _{LVD15}	LVD15 detect voltage	-40°C to 85°C	1.30	1.45	1.60	V
	Human body mode (HBM)			2	2.5	KV
ESD	Machine mode (MM)			200	300	V
		VDD < 6V	-400		+400	mA
LU	Latch Up	6V < VDD < 6.5V	-50		+400	mA
	Editori Op	6V < VDD < 6.5V, add $10Ω$ resistor in DVDD path.	-400		+400	mA
		V _{L+}			4500	
	Electrical Fast Transient	V_{L}			4500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
EFT	(Fcpu = 1mips)	V_{N+}			4500	V
		V_{N-}			4500	

SN8F5900 Series

WWW.30THX.COTH.CW			
	V_{LN+}	4500	
	V_{LN-}	4500	

^{*} Parameter(s) with star mark are non-verified design reference. Ambient temperature is 25°C.

26.3 GPIO Characteristics

SYM.	Parameter	Test Condition	Min	TYP	MAX	UNIT
V _{IL}	Low-level input voltage		VSS		0.3VSS	V
V _{IH}	High-level input voltage		0.7VDD		VDD	V
I _{LEKG}	I/O port input leakage current	VIN = VDD			2	μΑ
В		VDD = 3V	50	100	150	kΩ
R _{UP}	Pull-up resister	VDD = 5V	25	50	75	kΩ
I _{OH}	I/O output source current	$VDD = 3V$, $V_0 = VDD-0.5V$	8	10		mA
I _{OL}	I/O sink current	VDD = 3V, Vo = VSS+0.5V	9	10		mA

26.4 ADC Characteristics

SYM.	DESCRIPTION	Condition	MIN.	TYP.	MAX.	UNIT
IADC	Operating current	Run mode @ 2.4V	-	200	-	uA
IPDN	Power down current	Stop mode @ 2.4V	-	0.1	-	μΑ
_	Conversion rate	ADC Clock=62.5KHz, OSR=32768	-	1.9	-	Hz
FSMP	(WR)	ADC Clock=500KHz, OSR=64	-	7.8	-	kHz
TADCSTL	ADC settling Time	3*(1/WR), if WR=61Hz, TADCSTL = 3*16.4ms = 49.2ms		3		WR
Vref	Reference Voltage Input	External V _{REF} Input Range (R+ - R-)	0.3		1.35	V
V REF	Voltage	Internal VREF Input Range.	0.3		1.35	V
VR	ADC Reference signal	GR=1, R+ and R- absolutely input Voltage	0.4		AVDDR-1V	V
V R	absolutely voltage	GR=0, R+ and R- absolutely input Voltage	0.4		AVDDR-1V	V
Vai	ADC Input signal absolutely	GX=1, AI absolutely input Voltage	0.3		AVDDR-1V	V
V AI	voltage	GX=0, AI absolutely input Voltage	0		AVDDR-1V	V
Vx	PGIA output signal absolutely voltage	X+ and X- absolutely output Voltage	0.3		AVDDR-1V	
	PGIA Gain Ratio	VDD=5V , PGIA=x128	-3		+3	%
DNL	Differential non-linearity	ADC range ± 131072 x 0.9. (0.9 x Vref , 18-bits)		± 2		LSB
INL	Integral non-linearity	ADC range ± 131072 x 0.9. (0.9 x Vref , 18-bits)		± 4		LSB
NMC	No missing code	ADC range ± 131072 x 0.9. (0.9 x Vref , 18-bits)		18		bit
NFB	Noise free bits	Gain:1, Vref:0.8V, OSR:32768, Input-short		18.5		bit
INFB	Noise free bits	Gain=128, Vref=0.8V, OSR:32768, Input-short		15.5		bit
- FNOD		Gain:1, Vref:0.8V, OSR:32768, Input-short		21		bit
ENOB	Effective number of bits	Gain=128, Vref=0.8V, OSR:32768, Input-short		18		bit
VAIN	ADC Input differential range	ADC input signal, signal after PGIA application	0.3		1.44	V
TDrift	ADC/PGIA Temperature Drift	AVDDR = 2.7V		30		PPM/°C

26.5 Charge Pump Regulator Characteristic

		Charge Pump				
SYM.	PARAMETER	Condition	MIN.	TYP.	MAX.	UNIT
V _{oper}	Operation Voltage (Charge Pump input)	Charge Pump Input Voltage Range (AVDD)	2.0	-	6.5	V
	<u> </u>	Charge Pump OFF, AVDD from 2V to 6.5V AVDDCP = AVDD	2.0	-	6.5	V
V	Charge pump Output Range	Busk-boost Mode, AVDD from 2V to 6.5V AVDDCP = $3.2V \sim 4.1V$ (AVDDR + 0.5V)	A	VDDR + 0).5V	V
V _{AVDDCP}	Charge pump Output Kange	2x Pump Mode, AVDD from 2V \sim 3.3V AVDDCP = 4V \sim 6.6V		2x AVD	D	V
		$2x$ Pump Mode, AVDD from $3.3V \sim 6.5V$ AVDDCP = AVDD.		AVDD		V
I _{AVDDCP}	Charge pump Output Current	Charge Pump On or OFF, AVDD from 2V to 6.5V	-	5	7.5	mA
I _{PUMP}	Charge pump intrinsic Current	Busk-boost Mode, AVDD=3V		160		uA
		ACM				
		Output voltage	0.9	1	1.1	V
V_{ACM}	Analog common voltage	Output Voltage drift vs. Temperature △10°C	-	±0.1	-	%
		Output Voltage drift vs. AVDD (2V~6.5V)	-	±0.1	-	%
I _{SRC}	VACM driving capacity	Only for ADC use	-	-	10	uA
I _{SNK}	VACM sinking capacity	Only for ADC use	-	-	1	mA
		AVDDR				
		AVDDR Output Range = 2.7V, 3.0V, 3.3V, 3.6V	2.7	-	3.6	V
		AVDDR set 2.7V	2.55	2.7	2.85	V
		AVDDR set 3.0V	2.85	3.0	3.15	V
V _{AVDDR}	Regulator output	AVDDR set 3.3V	3.15	3.3	3.45	V
• AVDDR	voltage AVDDR	AVDDR set 3.6V	3.45	3.6	3.75	V
		AVDDR Load regulation △5mA	V _{AVDDR} ± 0.05V		05V	V
		Output Voltage drift vs. Temperature △10°C	-	±0.1	-	%
		Output Voltage drift vs. AVDD (2V~6.5V)	-	±0.1	-	%
I _{AVDDR}	AVDDR drive/Sink Current		-	-	7.5	mA
I _{QI}	Quiescent current	Pump + AVDDR + ACM		200		uA

26.6 OP-Amp Electrical Characteristic

	Operation Amplifier						
SYM.	PARAMETER	DESCRIPTION	MIN.	TYP.	MAX.	UNIT	
Voper	Operation voltage	Power source from AVDDR	2.7	-	3.6	V	
Vos	Input offset voltage			±3		mV	
loper	Operating Current	Per OP-Amp	-	185	-	uA	
VIN	Analog Input voltage range	OP+ / OP-	0.05		AVDDR-0.1	V	
Vout	Analog Output voltage range	OPOUT	0.05		AVDDR-0.1	V	
Ioн/IoL	Output short circuit current	Unit Gain Buffer. Vo = 0V~3.2V, AVDDR=3.3V	-	±5	-	mA	
RBUF	Buffer Mode Switch Ron	AVDDR 3.3V, VOUT=1.65V.	-	50		Ω	
GB	Gain Bandwidth	RL=300KΩ, CL=50pF		1.4	-	MHz	
SR	Slew Rate	10% to 90%	-	0.8	-	V/uS	
Ton	Turn on time		-	20	-	uS	

26.7 Comparator Characteristic

SYM.	DESCRIPTION	PARAMETER	MIN.	TYP.	MAX.	UNIT
		Condition: LBTSEL [3:0] = 0000, VLBT=2.2V	2.04	2.15	2.26	
VILBT	Internal Low-Battery detect voltage	Condition: LBTSEL [3:0] = 0100, VLBT=3V	2.80	2.95	3.10	1 ,,
		Condition: LBTSEL [3:0] = 0111, VLBT=3.6V	3.40	3.55	3.70	V
VELBT	External Low-Battery detect voltage	Condition: LBTSEL [3:0] = 1xxx, VLBT=P10 input.	1.1	1.2	1.3	
V _{HY}	Comparator Hysteresis Window			50	-	mV
Ісомр	Current consumption	AVDD = 3V		50	-	uA

26.8 LCD Characteristic

SYM.	DESCRIPTION	PARAMETER	MIN.	TYP.	MAX.	UNIT
		VDD:3~5V, No panel,Low power Mode (BGM=0,DUTY[1:0]=00)		9		
		VDD:3~5V, 1/3 bias, No panel, Low power Mode (BGM=0,DUTY[1:0]=01)		10		
ICLCD	C-Type LCD Operation Current	VDD:3~5V, 1/3 bias, No panel, Low power Mode (BGM=0,DUTY[1:0]=10)		12		uA
		VDD:3~5V, 1/3 bias, No panel, Low power Mode (BGM=0,DUTY[1:0]=11)		17		
		VDD:3~5V, 1/3 bias, No panel, Normal Mode (BGM=1,DUTY[1:0]= xx)		127		
	C Type VI CD output Voltage	VDD: 2.0 ~ 6.5V, VLCD set 3V (VCP [2:0]=010)	2.8	3.0	3.2	V
VLCD	C-Type VLCD output Voltage	VDD: 2.5 ~ 6.5V, VLCD set 4.5V (VCP [2:0]=101)	3.4	4.5	4.7	V

26.9 Flash Memory Characteristics

SYM.	Parameter	Test Condition	Min	TYP	MAX	UNIT
V_{dd}	Supply voltage		2.0		6.5	V
T _{en}	Endurance time	25°C		*100K		cycle
I _{wrt}	Write current	25°C		3	4	mA
T _{wrt}	Write time	Write 1 page=64 bytes, 25°C		5	8	ms

^{*} Parameters with star mark are non-verified design reference.

SN8F5900 Series

26.10 Recommendations for using in special condition or environment

Condition / Environment	Suggestion
Condition (1) When MCU I/O connect to other circuit, and it has negative transient voltage appear in I/O, peak voltage over -3V, the MCU might occur latch-up phenomena.	
Condition (2) When the power supply to MCU with high noise interference and the MCU function must work well. (MCU with High EFT ability)	MCU must set "Noise filter Enable" to enhance ability in High EFT environment.

27 Instruction Set

This chapter categorizes the SN8F5900 microcontroller's comprehensive assembly instructions. It includes five categories—arithmetic operation, logic operation, data transfer operation, Boolean manipulation, and program branch—which are fully compatible with standard 8051.

27.1 Symbol description

Symbol	Description
Rn	Working register R0 - R7
direct	One of 128 internal RAM locations or any Special Function Register
@Ri	Indirect internal or external RAM location addressed by register R0 or R1
#data	8-bit constant (immediate operand)
#data16	16-bit constant (immediate operand)
bit	One of 128 software flags located in internal RAM, or any flag of
	bit-addressable Special Function Registers
addr16	Destination address for LCALL or LJMP, can be anywhere within the 64-Kbyte
	page of program memory address space
addr11	Destination address for ACALL or AJMP, within the same 2-Kbyte page of
	program memory as the first byte of the following instruction
rel	SJMP and all conditional jumps include an 8-bit offset byte. Its range is
	+127/-128 bytes relative to the first byte of the following instruction
A	Accumulator

27.2 Arithmetic operations

Mnemonic	Description
ADD A, Rn	Add register to accumulator
ADD A, direct	Add directly addressed data to accumulator
ADD A, @Ri	Add indirectly addressed data to accumulator
ADD A, #data	Add immediate data to accumulator
ADDC A, Rn	Add register to accumulator with carry
ADDC A, direct	Add directly addressed data to accumulator with carry
ADDC A, @Ri	Add indirectly addressed data to accumulator with carry
ADDC A, #data	Add immediate data to accumulator with carry
SUBB A, Rn	Subtract register from accumulator with borrow
SUBB A, direct	Subtract directly addressed data from accumulator with borrow
SUBB A, @Ri	Subtract indirectly addressed data from accumulator with borrow
SUBB A, #data	Subtract immediate data from accumulator with borrow
INC A	Increment accumulator
INC Rn	Increment register
INC direct	Increment directly addressed location
INC @Ri	Increment indirectly addressed location
INC DPTR	Increment data pointer
DEC A	Decrement accumulator
DEC Rn	Decrement register
DEC direct	Decrement directly addressed location
DEC @Ri	Decrement indirectly addressed location
MUL AB	Multiply A and B
DIV	Divide A by B
DA A	Decimally adjust accumulator

27.3 Logic operations

Mnemonic	Description
ANL A, Rn	AND register to accumulator
ANL A, direct	AND directly addressed data to accumulator
ANL A, @Ri	AND indirectly addressed data to accumulator
ANL A, #data	AND immediate data to accumulator
ANL direct, A	AND accumulator to directly addressed location
ANL direct, #data	AND immediate data to directly addressed location
ORL A, Rn	OR register to accumulator

ORL A, direct	OR directly addressed data to accumulator
ORL A, @Ri	OR indirectly addressed data to accumulator
ORL A, #data	OR immediate data to accumulator
ORL direct, A	OR accumulator to directly addressed location
ORL direct, #data	OR immediate data to directly addressed location
XRL A, Rn	Exclusive OR (XOR) register to accumulator
XRL A, direct	XOR directly addressed data to accumulator
XRL A, @Ri	XOR indirectly addressed data to accumulator
XRL A, #data	XOR immediate data to accumulator
XRL direct, A	XOR accumulator to directly addressed location
XRL direct, #data	XOR immediate data to directly addressed location
CLR A	Clear accumulator
CPL A	Complement accumulator
RL A	Rotate accumulator left
RLC A	Rotate accumulator left through carry
RR A	Rotate accumulator right
RRC A	Rotate accumulator right through carry
SWAP A	Swap nibbles within the accumulator

27.4 Data transfer operations

Mnemonic	Description
MOV A, Rn	Move register to accumulator
MOV A, direct	Move directly addressed data to accumulator
MOV A, @Ri	Move indirectly addressed data to accumulator
MOV A, #data	Move immediate data to accumulator
MOV Rn, A	Move accumulator to register
MOV Rn, direct	Move directly addressed data to register
MOV Rn, #data	Move immediate data to register
MOV direct, A	Move accumulator to direct
MOV direct, Rn	Move register to direct
MOV direct1, direct2	Move directly addressed data to directly addressed location
MOV direct, @Ri	Move indirectly addressed data to directly addressed location
MOV direct, #data	Move immediate data to directly addressed location
MOV @Ri, A	Move accumulator to indirectly addressed location
MOV @Ri, direct	Move directly addressed data to indirectly addressed location
MOV @Ri, #data	Move immediate data to in directly addressed location

MOV DPTR, #data16	Load data pointer with a 16-bit immediate
MOVC A, @A+DPTR	Load accumulator with a code byte relative to DPTR
MOVC A, @A+PC	Load accumulator with a code byte relative to PC
MOVX A, @Ri	Move external RAM (8-bit address) to accumulator
MOVX A, @DPTR	Move external RAM (16-bit address) to accumulator
MOVX @Ri, A	Move accumulator to external RAM (8-bit address)
MOVX @DPTR, A	Move accumulator to external RAM (16-bit address)
PUSH direct	Push directly addressed data onto stack
POP direct	Pop directly addressed location from stack
XCH A, Rn	Exchange register with accumulator
XCH A, direct	Exchange directly addressed location withaccumulator
XCH A, @Ri	Exchange indirect RAM with accumulator
XCHD A, @Ri	Exchange low-order nibbles of indirect and accumulator

27.5 Boolean manipulation

Mnemonic	Description			
CLR C	Clear carry flag			
CLR bit	Clear directly addressed bit			
SETB C	Set carry flag			
SETB bit	Set directly addressed bit			
CPL C	Complement carry flag			
CPL bit	Complement directly addressed bit			
ANL C, bit	AND directly addressed bit to carry flag			
ANL C, /bit	AND complement of directly addressed bit to carry			
ORL C, bit	OR directly addressed bit to carry flag			
ORL C, /bit	OR complement of directly addressed bit to carry			
MOV C, bit	Move directly addressed bit to carry flag			
MOV bit, C	Move carry flag to directly addressed bit			

27.6 Program branches

Description
Absolute subroutine call
Long subroutine call
Return from subroutine
Return from interrupt
Absolute jump
Long jump

SN8F5900 Series

W W W .JOHIA.COIII.CW	
SJMP rel	Short jump (relative address)
JMP @A+DPTR	Jump indirect relative to the DPTR
JZ rel	Jump if accumulator is zero
JNZ rel	Jump if accumulator is not zero
JC rel	Jump if carry flag is set
JNC rel	Jump if carry flag is not set
JB bit, rel	Jump if directly addressed bit is set
JNB bit, rel	Jump if directly addressed bit is not set
JBC bit, rel	Jump if directly addressed bit is set and clear bit
CJNE A, direct, rel	Compare directly addressed data to accumulator and jump if not equal
CJNE A, #data, rel	Compare immediate data to accumulator and jump if not equal
CJNE Rn, #data, rel	Compare immediate data to register and jump if not equal
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal
DJNZ Rn, rel	Decrement register and jump if not zero
DJNZ direct, rel	Decrement directly addressed location and jump if not zero
NOP	No operation for one cycle

28 Debug Interface

The debug interface, aka SWAT, shares one pin with GPIO P1.7 which can update full range of the on-chip program memory (IROM), and cooperate with development environment. The shared pin is automatically reserved for debug interface if a SN-Link is connected before microcontroller's power-on, whereas the pin remains other function(s) if it does not detect any handshake signal during microcontroller's power-on sequence.

*Note: Port P1.7 can't connect any loading @Debug Mode.

28.1 Minimum Requirement

The following items are essential to build up an appropriate development environment. The compatibility is verified on listed versions, and is expected to execute perfectly on later version. SN-Link related information is available to download on SONiX website (www.sonix.com.tw); Keil C51 is downloadable on www.keil.com/c51.

- SN-Link Adapter II with updated firmware version ---
- SN-Link Driver for Keil C51 version---
- Keil C51 version ----

28.2 Debug Interface Hardware

The circuit below demonstrates the appropriate method to connect microcontroller's SWAT pin and SN-Link Adapter II.

Before starting debug, microcontroller's power (VDD) must be switched off. Connect the SWAT to both 6th and 8th pins of SN-Link, and respectively link VDD and VSS to 7th pin and 2nd pin. A handshake procedure would be automatically started by turn on the microcontroller, and SN-Link's red LED (Run) indicates the success of connection (refer *SN8F5000 Debug Tool Manual* for further detail).

example circuit

SN-Link header

28.3 IHRC Calibration

MCU Internal 32 MHz Clock Generator (IHRC), whatever package or dice form, always be calibrated within 1% accuracy after IC mass production. In Customer's COB (Chip on Board) process, it is possible with few probabilities that the IHRC frequency is shifted over 1% after die encapsulation, cause by stress change on dice. We strong recommend that PO2 and P17 pin must exist and reserve for writer re-programming and IHRC re-calibration, to solve few IC with IHRC frequency shift after COB processing if necessary.

However SN8F5900 Series provide IHRC calibration function for IHRC frequency drift. SN8F5900 Series provide debug interface 20th pin of Writer for IHRC calibration.

Following is IHRC calibration step:

- Step1: Download MP5-Writer from SONIX Web (http://www.sonix.com.tw/article-tw-433-21531)
- > Step2: **Connect P02** pin with 20th pin of Writer.

Writer Interface

Step3: Open MP5-Writer.exe \rightarrow Device/Load SN8 \rightarrow Select hex file format \rightarrow Auto Program

★ Note: IHRC calibration function was included Auto Program function.

29 Analog Setting and Application

SN8F5900 is applied in many DC measurement applications, like weight Scale, pressure measure, blood pressure meter and thermometer. The following table indicate different applications setting which MCU power source come from CR2032 battery, AA/AAA dry battery or external Regulator.

Charge pump enable Capacitor Table:

Dawar	AVDDR	ACM	AVDDCP	C+/-	VLCD	AVDD	DVDD
Power	C _{AVDDR}	C _{ACM}	C _{AVDDCP}	C _{PUMP}	C _{VLCD}	C _{AVDD}	C _{DVDD}
CR2032 (2.4 ~ 3.6V)	0.47uf	0.1uf	2.2uf	1uf	0.1uf	10uf/104	10uf/104
2*AA/AAA Bat (2.4 ~ 3.6V)		2.1.6					10.5/10.1
4*AA/AAA Bat (4 ~ 6.5V)	1uf	0.1uf	2.2uf	1uf	0.1uf	10uf/104	10uf/104

Analog Capacitor Connection (Charge pump enable):

Charge pump disable Capacitor Table (Charge pump disable):

Down town	AVDDR	ACM	AVDDCP	C+/-	VLCD	AVDD	DVDD
Power type	C _{AVDDR}	C _{ACM}	C _{AVDDCP}	C _{PUMP}	C_{VLCD}	C _{AVDD}	C _{DVDD}
4*AA/AAA Bat (4V ~6.5V)	1uf	0.1uf	NC	NC	0.1uf	10uf/104	10uf/104

Analog Capacitor Connection (Charge pump disable):

30 Overview of Packaging Information

This documentation introduces SN8F5900 family microcontrollers' mechanical data, such as height, width and pitch information.

In general, every SONiX microcontroller displays three columns: logo, device's full name and date code. The full name's package field maps to its package type; whereas the date code records the date of manufacture.

Date Code	
Year	15: 2015
	16: 2016
	17: 2017
	et cetera
Month	1: January
	2: February
	3: March
	A: October
	B: November
	C: December
	et cetera
Date	1: 01
	2: 02
	3: 03
	A: 10
	B: 11
	et cetera

30.1 Device Nomenclature

Full Name	Packing Type
S8F5909W	Wafer
SN8F5909H	Dice
SN8F5909FG	LQFP, 100 pins, Green package
SN8F5908FG	LQFP, 80 pins, Green package
SN8F5907FG	LQFP, 64 pins, Green package

30.2 LQFP 100 PIN

1.JEDEC OUTLINE:MS-026 BED

2.DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

3.DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE .

4.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.

	Min	Typical (inch)	Max	Min	Typical (mm)	Max
А			0.063			1.6
A1	0.002		0.006	0.05		0.15
A2	0.053		0.057	1.35		1.45
С	0.004		0.008	0.09		0.20
D		0.630 BSC			16 BSC	
D1		0.551 BSC			14 BSC	
E		0.630 BSC			16 BSC	
E1		0.551 BSC			14 BSC	
е		0.020 BSC			0.5 BSC	
В	0.007		0.011	0.17		0.27
L	0.018		0.030	0.45		0.75
L1		0.039 REF			1 .00 REF	

30.3 LQFP 80 PIN

	Min	Typical (inch)	Max	Min	Typical (mm)	Max
Α			0.063			1.6
A1	0.002		0.006	0.05		0.15
A2	0.053		0.057	1.35		1.45
c1	0.004		0.006	0.09		0.16
D		0.473 BSC			12 BSC	
D1		0.393 BSC			10 BSC	
E		0.473 BSC			12 BSC	
E1		0.393 BSC			10 BSC	
е		0.016 BSC			0.4 BSC	
В	0.005		0.009	0.13		0.23
L	0.018		0.030	0.45		0.75
L1		0.039 REF			1 .00 REF	

30.4 LQFP 64 PIN

	Min	Typical (inch)	Max	Min	Typical (mm)	Max
Α			0.063			1.6
A1	0.002		0.006	0.05		0.15
A2	0.053		0.057	1.35		1.45
С	0.004		0.008	0.09		0.20
D		0.354 BSC			9 BSC	
D1		0.276 BSC			7 BSC	
Е		0.354 BSC			9 BSC	
E1		0.276 BSC			7 BSC	
е		0.016 BSC			0.4 BSC	
b	0.005		0.009	0.13		0.23
L	0.018		0.030	0.45		0.75
L1		0.039 REF			1 .00 REF	

SN8F5900 Series Datasheet

8051-based Microcontroller

Corporate Headquarters

10F-1, No. 36, Taiyuan St. Chupei City, Hsinchu, Taiwan

TEL: +886-3-5600888 FAX: +886-3-5600889

Taipei Sales Office

15F-2, No. 171, Songde Rd.

Taipei City, Taiwan TEL: +886-2-27591980

FAX: +886-2-27598180 mkt@sonix.com.tw

sales@sonix.com.tw

Hong Kong Sales Office

Unit 2603, No. 11, Wo Shing St.

Fo Tan, Hong Kong

TEL: +852-2723-8086

FAX: +852-2723-9179

hk@sonix.com.tw

Shenzhen Contact Office

High Tech Industrial Park,

Shenzhen, China

TEL: +86-755-2671-9666

FAX: +86-755-2671-9786

mkt@sonix.com.tw

sales@sonix.com.tw

USA Office

TEL: +1-714-3309877

TEL: +1-949-4686539

tlightbody@earthlink.net

Japan Office

2F, 4 Chome-8-27 Kudanminami

Chiyoda-ku, Tokyo, Japan

TEL: +81-3-6272-6070

FAX: +81-3-6272-6165

jpsales@sonix.com.tw

FAE Support via email

8-bit Microcontroller Products:

sa1fae@sonix.com.tw

All Products: fae@sonix.com.tw