Aufgaben-Blatt: Symbolisches Differenzieren

Das Problem des symbolischen Differenzierens besteht darin, einen gegebenen arithmetischen Ausdruck E symbolisch nach einer Variable x abzuleiten. Symbolisch heißt in diesem Zusammenhang, dass das Ergebnis dieser Operation keine Zahl ist, sondern wieder ein arithmetischer Ausdruck. Hat beispielsweise E den Wert $x \cdot \exp(x)$, so gilt nach der Produkt-Regel der Differential-Rechnung

$$\frac{d}{dx}\Big(x \cdot \exp(x)\Big) = 1 \cdot \exp(x) + x \cdot \exp(x).$$

Also ist das Ergebnis, das wir erhalten, wenn wir den arithmetischen Ausdruck $x \cdot exp(x)$ nach x differenzieren, der Ausdruck $1 \cdot \exp(x) + x \cdot \exp(x)$.

Um einen Algorithmus entwickeln zu können, der arithmetische Ausdrücke symbolisch differenziert, definieren wir zunächst induktiv die Menge \mathcal{E} der arithmetischen Ausdrücke.

- 1. Die Variablen x, y und z sind arithmetische Ausdrücke.
- 2. Alle Zahlen sind arithmetische Ausdrücke.
- 3. Gilt $s, t \in \mathcal{E}$, so gilt auch:
 - (a) $s + t \in \mathcal{E}$,
 - (b) $s t \in \mathcal{E}$,
 - (c) $s \cdot t \in \mathcal{E}$,
 - (d) $s / t \in \mathcal{E}$.
- 4. Ist $s \in \mathcal{E}$ und ist $n \in \mathbb{Z}$ so gilt auch $s^n \in \mathcal{E}$.

Als nächstes müssen wir überlegen, wie arithmetische Ausdrücke in SetlX repräsentiert werden können. Wir definieren dazu eine Repräsentations-Funktion

$$\mathtt{rep}: \mathcal{E} \to SetlX$$

die als Eingabe einen arithmetischen Ausdruck nimmt und diesen in eine SetlX-Datenstruktur transformiert:

- $1.\ {\it Variablen}$ werden als Strings dargestellt. Daher gilt
 - rep(v) = v für alle Variablen v.
- 2. Genauso ist die Repräsentation von Zahlen trivial:

$$rep(x) = x$$
 für alle $x \in \mathbb{N}$.

- 3. rep(s+t) := [rep(s), "+", rep(t)].
- 4. rep(s-t) := [rep(s), "-", rep(t)].
- 5. $rep(s \cdot t) := [rep(s), "*", rep(t)].$
- 6. rep(s / t) := [rep(s), "/", rep(t)].
- 7. $rep(s^n) := [rep(s), "**", n].$

Aufgabe 1: Schreiben Sie eine SetlX-Prozedur diff, so dass der Aufruf diff(E, x) den arithmetischen Ausdruck E symbolisch nach der Variablen x differenziert.

Hinweis: Unter

 $\verb|www.dhbw-stuttgart.de/"stroetma/Logic/SetlX-Programs/derivative-frame.stlx| \\$

finden Sie ein Programm-Gerüst, in dem Sie nur noch die Prozedur diff() implementieren müssen. Das Gerüst enthält bereits einen Parser, einen Pretty-Printer und diverse Testfälle. Die Ableitungs-Regeln sind wir folgt:

1. Summen-Regel:
$$\frac{d}{dx}(g+h) = \frac{dg}{dx} + \frac{dh}{dx}$$

2. Differenzen-Regel:
$$\frac{d}{dx}(g-h) = \frac{dg}{dx} - \frac{dh}{dx}$$

3. Produkt-Regel:
$$\frac{d}{dx}(g \cdot h) = \frac{dg}{dx} \cdot h + g \cdot \frac{dh}{dx}$$

4. Quotienten-Regel:
$$\frac{d}{dx} \left(\frac{g}{h} \right) = \frac{\frac{dg}{dx} \cdot h - g \cdot \frac{dh}{dx}}{h \cdot h}$$

5. Potenz-Regel:
$$\frac{d}{dx}g^n = n \cdot g^{n-1} \cdot \frac{dg}{dx} \quad \text{für alle } n \in \mathbb{Z}$$

Hinweis: Es gibt eine vordefinierte Prozedur isInteger() die genau dann "true" liefert, wenn ihr Argument eine ganze Zahl ist.

Aufgabe 2: Erweitern Sie das Programm so, dass auch arithmetische Ausdrücke, die Funktionen wie exp(), ln(), sqrt(), sin(), cos(), tan(), oder arctan() enthalten, differenziert werden können.

Hinweis: Zur Ableitung dieser Funktionen gelten die folgenden Regeln:

f(x)	$\frac{d}{dx}f$
$\exp(x)$	$\exp(x)$
ln(x)	$\frac{1}{x}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$

f(x)	$\frac{d}{dx}f$
tan(x)	$\frac{1}{\cos^2(x)}$
$\arctan(x)$	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Hinweis: Berücksichtigen Sie die Kettenregel. Ist die Funktion h(x) als

$$h(x) = g(f(x))$$

definiert, so läßt sich die Ableitung von h(x) nach der Formel

$$\frac{d}{dx}h(x) = g'\big(f(x)\big) \cdot f'(x) \quad \text{ mit } g'(x) = \frac{d}{dx}g(x) \text{ und } f'(x) = \frac{d}{dx}f(x)$$

berechnen.

Aufgabe 3: Schreiben Sie eine Prozedur simplify, die einen gegebenen arithmetischen Ausdruck unter Berücksichtigung der Regeln

$$1 \cdot x = x \cdot 1 = x$$
, $0 \cdot x = x \cdot 0 = 0$, $0 + x = x + 0 = x$

vereinfacht.

Hinweis: Je rekursiver Sie Ihr Programm schreiben, desto einfacher wird es!

Aufgabe 4*: Erweitern Sie das Programm so, dass auch arithmetische Ausdrücke der Form s ** t für beliebige arithmetische Ausdrücke s und t differenziert werden können. Testen Sie die Implementierung, indem Sie

$$\frac{d}{dx}(x^x)$$

berechnen.