1987 CRC OCTANE NUMBER REQUIREMENT SURVEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

August 1988

88 10 21 035

COORDINATING RESEARCH COUNCIL, INC. 219 PERIMETER CENTER PARKWAY, ATLANTA, GEORGIA 30346

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

1987 CRC OCTANE NUMBER REQUIREMENT SURVEY

(CRC PROJECT No. CM-123-87)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH. MAY APPLY TO THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEMSELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1987 Analysis Panel

of the

CRC Octane Number Requirement Survey Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

August 1988

Automotive Vehicle Fuel, Lubricant, and Equipment Research Committee

of the

Coordinating Research Council, Inc.

ABSTRACT

In the forty-first annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 389 1987 model vehicles, including 300 passenger cars and 89 light-duty trucks and vans. Eighteen laboratories participated in this Survey. Maximum octane number requirements were determined by testing at maximum-throttle conditions, as well as at part-throttle. Requirements are expressed as the (R+M)/2 octane number, Research octane number, and Motor octane number of the reference fuel producing Knock which was recurrent and repeatable at the lowest audible level. The primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon Research octane number requirements as in Survey reports prior to 1985. Estimated octane number requirements for the total vehicles are weighted in proportion to the 1987 vehicle model production and/or sales figures. The maximum octane number requirements of 1987 models with FBRU fuels were 85.7 (R+M)/2 octane numbers at the 50 percent satisfaction level, and 90.5 (R+M)/2 octane numbers at the 90 percent satisfaction level. These requirements reflect an increase from 1986 of 0.4 and 0.7 (R+M)/2 octane numbers.

fuels. Juje

Access	ion For	
NTIS	GRA&I	
DTIC 1	CAB	
Unanno	unged	
Justia	Cluation_	
By Distr	ibution/	
Avai	lability	Codes
	Avail and	i/or
Dist	Special	L
A-1		

TABLE OF CONTENTS

TEXT		Page
	ABSTRACT	
I.	INTRODUCTION	1
II.	SUMMARY	1
III.	TEST VEHICLES	5
IV.	REFERENCE FUELS	6
	A. PR Fuels B. FBRU Reference Fuels C. FBRSU Reference Fuels	7
٧.	TEST TECHNIQUE	7
VI.	DISCUSSION OF RESULTS	9
	A. Distribution of Maximum Octane Number Requirements B. Part-Throttle Requirements C. Select Models D. Tank Fuel Engine Speed for Maximum Octane Number Requirements F. Gear Position for Maximum Octane Number Requirements	15 15 16 17
TABLES		
Table	III - 1987 Basic Timing Adjustments	22 23
1987 Tot	tal Vehicles	
Table	Requirements Used for Knock Sensor-Equipped Vehicles)	

TABLE OF CONTENTS - (Continued)

1987 Tot	tal Car	S	Page
Table		- - Maximum Octane Number Requirements (Maximum Octane	
		Requirements Used for Knock Sensor-Equipped Vehicles)	. 27
Table	VIII ·	 Maximum Octane Number Requirements (Minimum Octane Requirements Used for Knock Sensor-Equipped Vehicles) 	. 28
1987 Tot	tal Tru	cks and Vans	
Table	IX	- Maximum Octane Number Requirements (Maximum Octane	
Table	X	Requirements Used for Knock Sensor-Equipped Vehicles) Maximum Octane Number Requirements (Minimum Octane Requirements Used for Knock Sensor-Equipped Vehicles)	
1987 Tot	tal Kno	ck-Sensor Vehicles	
Table	XI ·	- Maximum Octane Number Requirements (Maximum Octane	
Table	YII .	Requirements Used for Knock Sensor-Equipped Vehicles) Maximum Octane Number Requirements (Minimum Octane	. 31
74570	711	Requirements Used for Knock Sensor-Equipped Vehicles)	. 32
Maximum	Octane	Number Rquirements - 1987 Select Models	
Table	XIII	- 1987 Select Model NAR T25A3/HAR T25A3/IAR T25A3/	22
Table	YTV .	LAR T25A3	. 23
Table		- Maximum (High-Borderline) and Minimum (Low-Borderline)	. 57
	•••	Octane Number Requirements - 1987 Knock-Sensor Select	
		Model NAW P28A3/HAW P28A3/IAW P28A3/LAW P28A3/NJW	25
Tahle	XVI .	P28A3/GJW P28A3 Maximum (High-Borderline) and Minimum (Low-Borderline)	. 33
INDIE	V11	Octane Number Requirements - 1987 Knock-Sensor Select	
		Model IH3 P38A4/IC3 P38A4/HH3 P38A4/LH3	_
T-11-	WUTT	P38A4/LC3 P38A4,	. 37
labie	YAII	- 1987 Select Model PED T22A3/PKD T22A3/PPD T22A3/ KKD T22A3/KPD T22A3/DHD T22A3	30
Table	XVIII	- 1987 Select Model OE9 T19A3/ME9 T19A3	. 40
	XIX	- 1987 Select Model OPF P50A4/OSF P50A4/MPF P50A4/	
			. 41
Table	XX	- Maximum (High-Borderline) and Minimum (Low-Borderline) Octane Number Requirements - 1987 Knock-Sensor Select	
		Model ORU P30A4/MRU P30A4	. 42
Table	XXI	- Owner/Rater Comparison of Tank Fuel Knock	
Table		- Tank-Fuel Knock Reported by Trained Observers	
Table	XXIII	- Engine Speeds for Maximum Octane Number Requirements	4.0
Table	YYTV	- 1987 Select Models	. 46
iavie	VVIA	- Engine Speeds for maximum octane number Requirements - All 1987 Vehicles	. 48
Table	XXV	- Throttle/Gear Position for 1987 Maximum FBRU	
		Octane Number Requirements	. 49

TABLE OF CONTENTS - (Continued)

FIGURES

Figure	1	- Distribution of Odometer Mileage for 1987 Model	
Edaumo	2	Vehicles Tested	50
Figure	2	Requirements - 1987 Total Vehicles	51
Figure	3	- Distribution of Maximum FBRU Fuel (R+M)/2 Octane Number	J 1
•		Requirements - 1987 Total Vehicles	52
Figure	4	- Distribution of Maximum FBRSU Fuel (R+M)/2 Octane Number	
P4	•	Requirements - 1987 Total Vehicles	53
Figure	כ	- Distribution of Maximum (R+M)/2 Octane Number Requirements - 1987 Total Vehicles	E A
Figure	6	- Distribution of Maximum FBRU Fuel (R+M)/2 Octane Number	34
rigure	U	Requirements - 1987 and 1986 Total Vehicles	55
Figure	7	- Distribution of Maximum (R+M)/2 Octane Number	•
•		Requirements - 1987 Total Cars	56
Figure	8	 Distribution of Maximum (R+M)/2 Octane Number 	
	_	Requirements - 1987 Total Trucks and Vans	57
Figure	9	- Distribution of Maximum (R+M)/2 Octane Number	
		Requirements - 1987 Knock Sensor-Vehicles Maximum (High Borderline)	50
Figure	10	- Distribution of Maximum (R+M)/2 Octane Number	50
· · · gui · c		Requirements - 1987 Knock-Sensor Vehicles	
		Minimum (Low-Borderline)	59
Figure	11	- Distribution of Maximum FBRU (R+M)/2 Octane Number	
		Requirements - 1987 & 1986 Knock-Sensor Vehicles	60
APPENDIC	F۹		
MI LADIO	==		
APPENDIX	A -	Participating Laboratories	ı - 1
ADDENDIV	D _	Membership: 1987 Analysis Panel)_ 1
APPENDIX	D -	membership. 1907 Analysis ranel)— I
APPENDIX	C -	Data on 1987/1988 Full-Boiling Range Reference Fuels	:-1
APPENDIX	D -	Program) – 1
ADDENDIV	_	1007 Ochona Number Barristonich Commer Baka	
APPENUIX	Ł -	1987 Octane Number Requirement Survey Data	1
APPENDIX	F -	Procedures for Calculating and Plotting Octane	
	•	Number Requirement Distribution Data	:-1
			_
APPENDIX	G -	Confidence Limits of Octane Number Requirement	
		Distributions	j - 1

I. INTRODUCTION

In the forty-first annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 389 1987 model-year vehicles, including 136 knock sensor-equipped vehicles and 8 select models of special interest. Three of the select models were equipped with knock sensors.

Passenger cars and light-duty trucks including vans were tested to represent the 1987 vehicle population in the United States. This year's Survey includes analyses for the following vehicle categories:

(1) Total Vehicles -- 389 vehicles

(2) Total Cars -- 300 cars

(3) Total Trucks and Vans -- 89 vehicles

(4) Total Knock-Sensor Vehicles -- 136 vehicles

It should be noted that the term "cars" designates passenger cars only, while the term "vehicles" includes passenger cars plus vans and light-duty trucks. The term "total" includes both US and imported models.

Eighteen laboratories participated in this Survey; they are listed in Appendix A. Members of the CRC Octane Number Requirement Survey Analysis Panel are identified in Appendix B.

II. SUMMARY

Data were collected on 389 1987 model-year vehicles. These vehicles consisted of 300 passenger cars and 89 light-duty trucks and vans. The average deposit mileage in this Survey was 13,720. The weighted average engine displacement and compression ratio were 2.91 liters and 8.98, respectively. One hundred thirty-six vehicles were equipped with knock sensors. The 1987 Survey included sufficient data for eight specific models which were analyzed separately as select models. All select models had automatic transmissions.

Requirements are expressed as the (R+M)/2 octane number, Research octane number (RON), and Motor octane number (MON) of the reference fuel which produced knock that was recurrent and repeatable at the lowest audible level. (This definition of borderline knock was used for the first time in the 1984 Survey.) Estimated octane number requirements for the vehicles are weighted in proportion to the 1987 vehicle model production and/or sales figures.

It should be noted that the primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon RON requirements as in Survey reports prior to 1985.

Part-throttle requirements were defined when their requirements were higher than the maximum-throttle requirements or, with FBRU fuels only, when they were within four octane numbers of maximum-throttle requirements. The maximum requirements listed for the 1987 Survey were reported by the same method used in prior Surveys. The greater of the maximum-throttle or part-throttle requirement is used, except when both the maximum-throttle and part-throttle requirements are the same. In that case, the computer selects the part-throttle requirement as the maximum octane number requirement. Maximum (high-borderline) and minimum (low-borderline) octane number requirements were reported for the knock sensor-equipped vehicles when determined.

This is the fifth Survey in which requirements for knock sensor-equipped vehicles were included in the distribution. The base analysis case for this report uses the maximum (high-borderline) octane number requirements of these vehicles. The following table for FBRU fuels presents maximum 1987 octane number requirements and changes from 1986 for the four weighted populations, at the 50 percent and 90 percent satisfaction levels, as well as illustrating the effect of using maximum (high-borderline) or minimum (low-borderline) for knock sensor-equipped vehicles on these four populations. At the current market penetration levels, inclusion of the knock sensor-equipped vehicles at their minimum (low-borderline) requirement reduces the total vehicle population requirements relative to those calculated at their maximum (high-borderline) requirements by 0.3 (R+M)/2 at the 50 percent satisfaction level, and 0.7 (R+M)/2 at the 90 percent satisfaction level.

FBRU (R+M)/2 OCTANE NUMBER REQUIREMENTS 1987 AND CHANGES FROM 1986

Weighted Population	KS-H**	△ from 1986	KS-L***	<u>Δ from 1986</u>				
50% Satisfaction								
Total Vehicles (35.0%)*	85.7	+0.4	85.4	+0.6				
Total Cars (31.3%)	85.4	+0.4	85.1	+0.3				
Total Trucks (47.2%)	86.3	-0.3	85.8	+0.1				
Total Knock-Sensor Vehicles	86.6	+1.2	85.5	+2.1				
90	0% Satisfa	ction						
Total Vehicles (35.0%)*	90.5	+0.7	89.8	+0.8				
Total Cars (31.3%)	90.4	+0.9	89.9	+1.0				
Total Trucks (47.2%)	91.6	+1.3	90.0	+0.1				
Total Knock-Sensor Vehicles	91.9	+1.7	89.9	+1.3				

^{*} Knock sensor-equipped vehicles as percent of the associated population.

^{**} KS-H = Population with knock sensor-equipped vehicles at maximum (high-borderline) requirement.

^{***} KS-L = Population with Knock Sensor-Equipped Vehicles at minimum (low-borderline) requirement.

Maximum octane requirements for the select models at the 50 percent and 90 percent satisfaction levels for FBRU fuels are summarized in the following table:

SELECT MODELS

MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

		(R+M)/2
Select Model	No. <u>Tested</u>	50% Sat.	90% Sat.
NAR T25A3/MAR T25A3/IAR T25A3/ LAR T25A3	17	88.9	92.3
NJ1 T20A3/LJ1 T20A3	13	85.1	87.6
NAW P28A3/HAW P28A3/IAW P28A3/ LAW P28A3/NJW P28A3/GJW P28A3 (High Borderline)	10	88.0	93.6
NAW P28A3/MAW P28A3/IAW P28A3/ LAW P28A3/NJW P28A3/GJW P28A3 (Low Borderline)	10	87.5	93.3
IH3 P38A4/IC3 P38A4/MH3 P38A4/ LH3 P38A4/LC3 P38A4 (High Borderline)	15	85.5	89.3
IH3 P38A4/IC3 P38A4/MH3 P38A4/ LH3 P38A4/LC3 P38A4 (Low Borderline)	15	84.1	88.2
PED T22A3/PKD T22A3/PPD T22A3/ KKA T22A3 KPD T22A3/DMD T22A3	10	84.6	88.2
0E9 T19A3/ME9 T19A3	12	86.7	90.6
OPF P50A4/OSF P50A4/MPF P50A4/ MSF P50A4/SPF P50A4	12	83.5	87.6
ORU P30A4/MRU P30A4 (High Borderline)	17	87.9	91.2
ORU P30A4/MRU P30A4 (Low Borderline)	17	86.8	90.0

Part-throttle octane requirements were equal to or higher than the maximum-throttle octane requirements on 29 percent of all 1987 vehicles with FBRU fuels. Using the analytical technique of 1986 and earlier Surveys, which reports only the instances in which part-throttle octane requirements exceed the maximum-throttle octane requirements, the instance of part-throttle knock would be 14 percent. This compares with 8 percent in 1986, 10 percent in 1985, and 9 percent in 1984.

In the 1987 Survey, 33 percent of the weighted vehicle population knocked on tank fuel, which compares with 31 percent in the 1986 Survey and 37 percent in the 1985 Survey.

III. TEST VEHICLES

This year's Survey tested a total of 389 1987 model vehicles, compared with 377 vehicles in the 1986 Survey. The analysis of the data included 300 passenger cars and 89 vans and light-duty trucks. Also included are 136 knock sensor-equipped vehicles (94 cars and 42 trucks).

Beginning with the 1987 Survey, test vehicles are divided into four main categories:

- (1) Total Vehicles, which includes all US and imported passenger cars, vans, and light-duty trucks
- (2) Total Cars, which includes all US and imported passenger cars
- (3) Total Trucks, which includes all US and imported vans and lightduty trucks
- (4) Total Knock-Sensor Vehicles, which includes all knock sensor equipped US and imported passenger cars, vans, and light-duty trucks.

In the 1987 Survey, 81 percent of the transmissions were automatic. Fifty-four percent of the automatics were three-speeds, and the rest four-speeds. The manual transmissions were divided into twelve four-speeds and sixty five-speeds. Eighty-nine percent of the surveyed vehicles were air-conditioned. A sufficient amount of data (ten or more vehicles) was obtained for eight specific select models. These select models are described in Table I.

Table II shows the distribution of odometer mileage for both the 1987 and 1986 Surveys. The 1987 distribution is shown as a bar chart in Figure 1. The average odometer mileage was 13,720. Three vehicles with odometer mileages less than 6,000 miles were included in the analysis. The weighted average displacement in 1987 was 2.91 liters, compared with 3.00 in 1986. The weighted average compression ratio in 1987 was 8.98 compared with 8.87 in 1986.

The basic timing was adjusted to the manufacturer's recommended setting (within $\pm 1^{\circ}$) prior to testing. A total of thirty-two vehicles were adjusted; twenty-four were two or more degrees off from the manufacturer's setting. The number of vehicles and their deviation in spark setting are shown in Table III.

Participants were requested to rate specific vehicle models in a pattern which would minimize data bias due to differences among testing laboratories and vehicles. To accomplish this, the United States was divided into four geographical areas, and laboratories within each geographical area were requested to test specific vehicles.

IV. REFERENCE FUELS

Three series of reference fuels were used in the 1987 Survey:

- Primary Reference (PR) Fuels;
- Average Sensitivity Full-Boiling Range Unleaded (FBRU) Reference Fuels with sensitivities similar to those of normal commercial gasoline; and
- High-Sensitivity Full-Boiling Range Unleaded (FBRSU) Reference Fuels with sensitivities about two octane numbers higher than the FBRU fuels.

A. PR Fuels

Isooctane and normal heptane, meeting ASTM specifications, were blended in two octane number increments from 76 to 82 octane number, and in one octane number increments from 82 to 100 octane number.

B. FBRU Reference Fuels

FBRU fuels were prepared from three base blends (RMFD-362-87/88, RMFD-363-87/88, and RMFD-364-87/88) in two octane number increments from 80 to 84 RON, and in one octane number increments from 84 to 103 RON. The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-I. The composition and average laboratory octane data for the 1987/1988 FBRU reference fuel series are presented in Appendix C, Table C-II.

C. FBRSU Reference Fuels

FBRSU fuels were prepared from three base blends (RMFD-365-87/88 RMFD-366-87/88, and RMFD-367-87/88) in two octane number increments from 80 to 84 RON, and in one octane number increments from 84 to 102.8 RON. The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-III. The laboratory blending octane data for the 1987/1988 FBRSU reference fuels are presented in Table C-IV.

V. TEST TECHNIQUE

The test technique (CRC Designation E-15-87, Attachment 2 of Appendix D) specified that octane number requirements be determined at level road acceleration conditions. The order of fuel testing was tank fuel, FBRSU fuels, FBRU fuels, and PR fuels. Knocking tendencies were investigated using both maximum-throttle and part-throttle acceleration techniques.* Part-throttle was investigated in each vehicle to determine if the part-throttle requirement was higher or equal to the maximum-throttle requirement. In these cases, the part-throttle requirement search was conducted with all three fuels. Part-throttle requirements were also determined with FBRU fuels down to four Research octane numbers below the maximum requirement at maximum-throttle.

^{*} Maximum-throttle is either full-throttle for manual transmissions or widest throttle position (detent) that does not cause the transmission to downshift for automatic transmissions.

The maximum octane number requirement of a vehicle is defined as the (R+M)/2, Research, or Motor octane number of the highest octane test fuel producing borderline knock. This requirement is defined at either maximum-or part-throttle acceleration conditions. For vehicles equipped with knock sensors, the technique identifies the highest octane fuel that gives borderline knock (maximum or high-borderline requirement) and the lowest octane fuel that gives borderline knock (minimum or low-borderline requirement). Requirements are expressed as the (R+M)/2 octane number, Research octane number (RON), and Motor octane number (MON) of the reference fuel which produces knock that is recurrent and repeatable at the lowest audible level.

Of the eighteen laboratories participating in the 1987 Survey, four used level roads and fourteen used chassis dynamometers. Seventy-nine percent of the cars were tested on chassis dynamometers.

Average test temperature was 67°F, with a barometric pressure average of 29.85 inches Hg and average humidity of 48.8 grains per pound. Test conditions for individual observations are reported in Appendix E.

The table below shows the average ambient conditions and the average odometer readings for the last four surveys.

Average Ambient Test Conditions

<u>Year</u>	Temperature, F°	Barometric Pressure, inches Hg	Humidity, grains per pound	<u>Mileage</u>
1984	70	29.86	61.0	11374
1985	69	29.91	56.6	12343
1986	70	29.83	58.2	11849
1987	67	29.85	48.8	13720

There is general agreement that ambient temperature, pressure, and humidity can influence the octane number requirement of a vehicle at any time. $^{(1,2)}$ Octane requirement increases as temperature and pressure increase, and as humidity decreases. The coefficients of these effects are difficult to determine and may be dependent upon the vehicle. In the 1987 Survey, the average humidity was significantly lower than in previous years. Directionally, this would cause the results of this Octane Number Requirement Survey to be slightly higher than would be the case if the humidity had been in the mid to high 50's. The average temperatures and pressures are similar enough so that differences in their effects on average octane number requirement are probably small.

CRC has gathered data on the effect of mileage on the octane requirement of cars from several model years. The most recent data $^{(3)}$ are for 1985 and 1986 model years, and show an average increase of 0.04 octane number per thousand miles for mileage accumulation between 10,000 and 15,000 miles. Based upon this information, the results of the 1987 Survey will tend to be higher than the results of the 1986 Survey, and the magnitude of the difference will be about 0.1 octane number.

VI. DISCUSSION OF RESULTS

A. <u>Distribution of Maximum Octane Number Requirements</u>

The octane number requirement data were used to prepare satisfaction curves and tables for the following samples of 1987 model vehicles:

- (1) Total Vehicles.
- (2) Total Cars.
- (3) Total Trucks and Vans, and
- (4) Total Knock-Sensor Vehicles.

⁽¹⁾ B. D. Keller, J. H. Steury, T. O. Wagner, SAE Paper 780668 (1978)

⁽²⁾ H. A, Bigley, Jr., B. D. Keller and M. G. Kloppe, SAE Paper 710675 (1971).

⁽³⁾ CRC Project No. CM-124-85/86

Maximum (R+M)/2, RON, and MON requirements and 95 percent confidence limits for the four categories at 50 percent and 90 percent satisfaction are shown in Table IV. In preparing the curves and tables, the octane number requirement data were weighted in accordance with final 1987 model-year production and/or sales figures. Each curve and table, therefore, provides an estimate of the distribution of octane number requirements of the appropriate vehicle population on the road. The procedure for assigning weighting factors and for calculating the octane number requirement distributions is described in Appendix F.

Vehicles equipped with knock sensors were included in the 1987 models tested. All vehicles with knock sensors were tested for maximum (high-borderline) octane number requirements, and 123 of the 136 vehicles were tested for minimum (low-borderline) octane number requirements. Octane number requirement distributions were calculated for each group of vehicles using the requirements from those vehicles with knock sensors rated at maximum (high-borderline) requirement and with their ratings at minimum (low-borderline) requirement. Maximum octane number requirements for the 1987 model vehicles were considered to be the requirements which included the knock sensor-equipped vehicles at the maximum (high-borderline) requirement.

Requirements are expressed as the (R+M)/2, Research, and Motor octane numbers of the reference fuel which produced knock that was recurrent and repeatable at the lowest audible level. (This definition of borderline knock was used for the first time in the 1984 Survey.)

It should also be noted that the primary analyses used in this report are based upon (R+M)/2 octane number requirements, rather than upon Research octane number requirements as in reports prior to 1985.

1. Total Vehicles

In the 1987 Survey, maximum octane number requirements were determined on 389 vehicles with PR, FBRU, and FBRSU fuels. One hundred thirty-six of the vehicles were equipped with knock sensors.

Maximum (R+M)/2 octane number requirements for all three reference fuels are shown in Figures 2, 3, and 4. Each plot compares the requirements with total vehicles, including knock-sensor vehicles, with ratings at the maximum (high-borderline) level and the minimum (low-borderline) level. The maximum (R+M)/2 octane number requirements for all three reference fuels are plotted in Figure 5. The octane number requirement distributions for FBRU and FBRSU fuels are similar. Maximum (R+M)/2, Research, and Motor octane number requirements are listed in Table V. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table VI. The 50 percent and 90 percent satisfaction level requirements are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Total Vehicles)

	50%	Satisfic	ed	90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.9	87.9	87.9	93.5	93.5	93.5
FBRU	85.7	89.8	81.6	90.5	95.6	85.4
FBRSU	85.5	90.9	80.1	91.1	97.4	84.8

Differences between 1987 and 1986 Survey maximum (R+M)/2, Research, and Motor octane number requirements are also shown in Tables V and VI for all three fuel series. Distributions of the 1987 and 1986 maximum (R+M)/2 requirements are shown in Figure 6 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1987 AND 1986 MAXIMUM OCTANE NUMBER REQUIREMENTS

(Total Vehicles)

50% Satisfied			90% Satisfied			
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	+0.3	+0.3	+0.3	+0.6	+0.6	+0.6
FBRU	+0.4	+0.6	+0.2	+0.7	+0.8	+0.5
FBRSU	+0.3	+0.5	+0.1	+1.3	+1.5	+1.1

Confidence limits for maximum octane number requirement distributions are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements were ± 0.4 at the 50 percent satisfaction level, and varied ± 0.5 to ± 0.6 at the 90 percent satisfaction level.

2. Total Cars

Maximum octane number requirements were determined on 300 cars with PR, FBRU, and FBRSU fuels.

Maximum (R+M)/2, RON, and MON requirements on all three fuel series are given in Table VII. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table VIII. The maximum (R+M)/2 octane number requirement distributions for all three reference fuels are plotted in Figure 7. Maximum octane number requirements at the 50 percent and 90 percent satisfaction levels are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Total Cars)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.4	87.4	87.4	93.1	93.1	93.1
FBRU	85.4	89.4	81.3	90.4	95.5	85.2
FBRSU	85.2	90.5	79.9	90.7	97.0	84.5

Differences between the 1987 and 1986 Survey maximum (R+M)/2, RON, and MON requirements are also shown in Tables VII and VIII for PR, FBRU, and FBRSU fuels. Differences between 1987 and 1986 data at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1987 AND 1986 MAXIMUM OCTANE NUMBER REQUIREMENTS

(Total Cars)

	50% Satisfied			90% Satisfied		
Fue1_	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	+0.1	+0.1	+0.1	+0.5	+0.5	+0.5
FBRU	+0.4	+0.6	+0.1	+0.9	+1.1	+0.6
FBRSU	+0.4	+0.6	+0.2	+1.1	+1.4	+1.0

Confidence limits for maximum octane number requirement distributions of 1987 Total cars are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 requirements varied from ± 0.4 to ± 0.5 at the 50 percent satisfaction level, and from ± 0.6 to ± 0.7 at the 90 percent satisfaction level.

3. Total Trucks and Vans

Maximum octane number requirements were determined on eighty-nine trucks and vans with PR, FBRU, and FBRSU fuels. Maximum (R+M)/2 octane number requirements for all three reference fuel series are plotted in Figure 8. Maximum octane number requirements in terms of (R+M)/2, RON, and MON are given in Table IX. Octane number requirements with knock sensor-equipped trucks and vans tested at minimum (low-borderline) levels are given in Table X. The 50 percent and 90 percent satisfaction level maximum octane number requirements are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Total Trucks and Vans)

	50% Satisfied			90% Satisfied		
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	89.2	89.2	89.2	94.0	94.0	94.0
FBRU	86.3	90.5	82.0	91.6	97.0	86.3
FBRSU	86.0	91.5	80.6	92.2	98.5	85.8

Differences between the maximum (R+M)/2, RON, and MON requirements of trucks and vans in the 1987 and 1986 Surveys are also given in Tables IX and X for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are:

OCTANE NUMBER REQUIREMENTS

(Total Trucks and Yans)

	50%	Satisfic	ed	90%	Satisfic	ed
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	-0.1	-0.1	-0.1	+0.1	+0.1	+0.1
FBRU	-0.3	-0.5	-0.2	+1.3	+1.7	+1.0
FBRSU	-0.2	-0.5	+0.3	+1.7	+1.8	+1.4

*1986 maximum octane number requirements estimated from CRC Report No. 553, "1986 CRC Octane Number Requirement Survey."

Confidence limits for maximum octane number requirement distributions of 1987 trucks and vans are tabulated in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements varied from ± 0.6 to ± 0.8 at the 50 percent satisfaction level, and from ± 0.9 to ± 1.1 at the 90 percent satisfaction level.

4. Total Knock-Sensor Vehicles

Maximum octane number requirements (high-borderline) were determined on 136 total vehicles containing knock sensors on PR, FBRU, and FBRSU fuels. Minimum (low-borderline) octane number requirements were determined on 123 vehicles.

The distributions of maximum (R+M)/2 octane number requirements at the maximum (high-borderline) and the minimum (low-borderline) levels are shown in Figures 9 and 10, respectively, for the three fuel series. Maximum (R+M)/2, RON, and MON requirements for all three fuel series are given in Table XI. Octane number requirements with knock sensor-equipped vehicles tested at minimum (low-borderline) levels are given in Table XII. Maximum octane number requirements for the 50 percent and 90 percent satisfaction levels are:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(1987 Total Knock-Sensor Vehicles)

	50%	Satisfic	ed	90%	Satisfic	ed
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	89.0	89.0	89.0	94.6	94.6	94.6
FBRU	86.6	90.9	82.2	91.9	97.3	86.5
FBRSU	86.1	91.6	80.6	92.6	99.0	86.2

Differences between 1987 and 1986 Survey maximum (R+M)/2, RON, and MON requirements are also shown in Tables XI and XII. Distributions of maximum (R+M)/2 octane number requirements are shown in Figure 11 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1987 AND 1986 MAXIMUM OCTANE NUMBER REQUIREMENTS

(1987 Total Knock-Sensor Vehicles)

	50%	Satisfic	ed	90%	Satisfic	edbe
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	+0.8	+0.8	+0.8	+1.2	+1.2	+1.2
FBRU	+1.2	+1.6	+0.7	+1.7	+2.1	71.3
FBRSU	+0.7	+1.0	+0.5	+2.5	+2.8	+2.2

The differences between the maximum octane number requirements of 136 vehicles tested, and the octane number requirements at minimum (low-borderline) levels of 123 vehicles are:

DIFFERENCES BETWEEN MAXIMUM AND MINIMUM OCTANE NUMBER REQUIREMENTS

(1987 Total Knock-Sensor Vehicles)

	50%	Satisfic	ed_	90%	Satisfi	ed
<u>Fue1</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	+0.2	+0.2	+0.2	+1.4	+1.4	+1.4
FBRU	+1.1	+1.3	+0.8	+2.0	+2.4	+1.5
FBRSU	+1.1	+1.3	+0.9	+1.6	+1.7	+1.4

Confidence limits for maximum octane number requirement distributions of 1987 knock-sensor vehicles are given in Appendix G, Table G-1. The 95 percent confidence limits for (R+M)/2 octane number requirements (high-borderline) varied between ± 0.7 and ± 0.8 at the 50 percent satisfaction level, and between ± 0.9 and ± 1.1 at the 90 percent satisfaction level.

The 95 percent confidence limits for (R+M)/2 octane number requirements (low-borderline) varied between ± 0.6 and ± 0.7 at the 50 percent satisfaction level, and between ± 0.8 and ± 1.0 at the 90 percent satisfaction level.

B. Part-Throttle Requirements

Part-throttle octane requirements were equal to or higher than the maximum-throttle octane requirements on 29 percent of all 1987 vehicles with FBRU fuels. Using the analytical technique of 1986 and earlier Surveys, which reports only the instances in which part-throttle octane requirements exceed the maximum-throttle octane requirements, the instance of part-throttle knock would be 14 percent. This compares with 8 percent in 1986, 10 percent in 1985, and 9 percent in 1984.

C. <u>Select Models</u>

Eight select models with unique engine-chassis combinations were tested. The select models tested in this year's Survey included three knock sensor-equipped models. The identification and specifications of the engine-chassis combinations of the select models are in Table I.

Maximum octane number requirements for each select model at various satisfaction levels are listed in Tables XIII through XX. The maximum (high-borderline) and minimum (low-borderline) octane number requirements for the three knock sensor-equipped models are given in Tables XV, XVI, and XX.

D. Tank Fuel

Tank fuel was tested for incidence of knock on all vehicles. Owners' questionnaires, however, were obtained only when the vehicle tested had a regular driver and the ignition timing did not have to be reset.

1. Owner/Rater Comparisons of Tank Fuel Knock

For 179 vehicles, both owner and rater data were reported, and no adjustments of spark timing were made. The trained raters reported that 40 percent of the vehicles knocked, while the owners reported that 24 percent knocked, an owner/rater knock ratio of 0.60. The 40 percent of vehicles found to be knocking by trained raters is higher than in the 1986 Survey. These owner/rater comparisons of tank fuel knock for 1987, along with previous Survey data back to 1980, are presented in Table XXI.

Tank fuel RON and MON data were reported for a total of 137 vehicles with both owner/rater data and no adjustments of spark timing. One-hundred-four vehicles were reported to have tank fuel octane numbers less than 90.0~(R+M)/2. Trained observers reported knock on 44 percent of these, compared with 26 percent for owners. Of the other thirty-three vehicles having tank fuels greater than or equal to 90.0~(R+M)/2, 21 percent knocked according to trained raters, and 12 percent according to owners.

2. <u>Objectionable Versus Non-Objectionable Knock</u>

Of the owners reporting tank-fuel knock with vehicles which had no change in spark timing, 12 percent found the knock to be objectionable, in comparison with 15 percent in the 1986 Survey. Comparisons of objectionable knock for 1980 through 1987 Surveys are also given in Table XXI.

3. Tank Fuel Knock Reported by Trained Raters

Tank fuel knock observations were reported for 322 of the 389 vehicles tested. The percentages of all 1987 vehicles knocking on tank fuel are shown in Table XXII. On both a weighted and unweighted basis, 35 percent of the 1987 vehicles tested knocked on tank fuel, compared with 31 percent (weighted) and 32 percent (unweighted) in the 1986 Survey.

The percentages of selected models knocking on tank fuel, also shown in Table XXII varied from a low of 10 percent to a high of 73 percent.

E. Engine Speed for Maximum Octane Number Requirements

Engine speeds at which maximum octane number requirements occurred for each select model are shown in Table XXIII for PR, FBRU, and FBRSU fuels. Weighted data for all 1987 vehicles are shown in Table XXIV.

F. Gear Position for Maximum Octane Number Requirements

The throttle/gear position for maximum octane number requirements on FBRU fuels is shown in Table XXV. Of the 389 vehicles tested, 317 (81 percent) were equipped with automatic transmissions and 72 (19 percent) were equipped with manual transmissions.

Maximum requirements at maximum-throttle occurred in 73 percent of the automatic transmission vehicles (17 percent in fourth gear, 37 percent in third gear, and 19 percent in second gear). Maximum requirements at part-throttle occurred in 27 percent of the automatic transmission vehicles (7 percent in fourth gear, 18 percent in third gear, and 2 percent in second gear).

For manual transmission vehicles, 62 percent had maximum requirements at maximum-throttle (56 percent in fourth gear and 6 percent in third gear). Maximum requirements at part-throttle occurred in 38 percent of manual transmission vehicles (35 percent in fourth gear, and 3 percent in third gear). Fifth gear for five-speed manual transmissions was not examined per program instructions.

TABLES

AND

FIGURES

1987 SELECT MODEL SPECIFICATIONS

TABLE I

<u>Model</u>	Knock Sensor	Disp.	Engine Type	Fuel System Type*	Comp. Ratio	Brake HP	Trans- mission
Chrysler Corporation:							
Carravelle/Reliant/Sundance/ Aries/Shadow/Lebaron GTS		2.2	L4	TBI	9.5	97	A 3
Ford Motor Company:							
Escort/Lynx		1.9	L4	TBI	9.0	90	A 3
Taurus/Sable	KS	3.0	٧6	MFI	9.3	140	A4
LTD Crown Victoria/ Thunderbird/Grand Marquis/ Cougar/Town Car		5.0	8V	MFI	8.9	150	A4
General Motors Corporation:							
Cavalier/Skyhawk		2.0	L4	TBI	9.0	90	A 3
Celebrity/6000/Ciera/Century		2.5	L4	TBI	8.3	98	A3
Celebrity/Cavalier/6000/Ciera/ Century/Cimarron	KS	2.8	V 6	MFI	8.9	125	A 3
Bonneville/Delta 88/Regency/ LeSabre/Electra	KS	3.8	٧6	MFI	8.5	150	A4

^{*} TBI = Throttle Body Fuel Injection; MFI = Manifold Fuel Injection. Individual manufacturers may use different abbreviations.

TABLE II

FOR TESTED VEHICLES

No. of Vehicles Within Mileage Increments

		THE THE CASE STREET
<u>Mileage</u>	1986 Vehicles	1987 Vehicles
0 - 1,999	1	0
2,000 - 3,999	0	0
4,000 - 5,999	1	3
6,000 - 7,999	103	59
8,000 - 9,999	63	59
10,000 - 11,999	63	66
12,000 - 13,999	53	47
14,000 - 15,999	20	47
16,000 - 17,999	26	28
18,000 - 19,999	16	25
20,000 - 24,999	14	32
25,000 - 29,999	13	12
30,000 +	4	11
No. of Vehicles	377	389
Average Mileage	11,849	13,720

TABLE III

1987 BASIC TIMING ADJUSTMENTS

Degrees From Manufacturer's Setting	No. of	Vehicles
	+	-
1	5	3
2	6	8
3	2	2
4	1	0
5	1	2
6	0	1
7	1	0
8	0	0
9	0	0
10	0	0
11+	0	0
	_	_
	16	16

TOTAL

32

TABLE IV

MAXIMUM OCTANE NUMBER REQUIREMENTS WITH 95% CONFIDENCE LIMITS

		No.	(R+	M)/2	Research 0	ctane No.	Motor Oc	tane No.
	Fue	Vehicles	50% Sat.	at. 90% Sat.	50% Sat. 90% Sat.	90% Sat.	50% Sat.	% Sat. 90% Sat.
Total Vehicles	PR FBRU	389 389	87.9+0.4 $85.7+0.4$	93.5+0.6 90.5 + 0.5	87.9+0.4 89.8 7 0.4	93.5+0.6 95.6 7 0.6	87.9+0.4 $81.6+0.3$	93.5+0.6 85.4 7 0.4
	FBRSU	389	85.5+0.4	$91.1\overline{+}0.6$	$90.9\overline{+}0.5$	97.4+0.7	80.1 ± 0.4	84.8+0.5
Total Cars	PR FBRU	300	87.4+0.5 85.4+0.4	93.1+0.7	87.4+0.5	93.1+0.7	87.4+0.5	93.1+0.7
	FBRSU	300	85.2 ± 0.5	90.7±0.7	90.5+0.6	97.0 <u>+</u> 0.8	79.9 ± 0.4	84.5±0.6
Total Trucks and Vans	P.R.	68 80	89.2+0.8	94.0+1.1	89.2+0.8	94.0+1.1	89.2+0.8	94.0+1.1
	FBRSU	68	86.0+0.8	92.241.0	91.5+0.9	$98.5\overline{+}1.2$	80.0±0.08 80.6±0.6	85.8 <u>+</u> 0.9
Total Knock-Sensor Vehicles	PR FBRU	136 136	89.0+0.7	94.6+1.0 91.9 + 0.9	89.0+0.7 90.9 1 0.8	94.6+1.0 97.3 + 1.1	89.0+0.7 82.2 <u>+</u> 0.5	94.6+1.0 $86.5+0.7$
	LENGL	130	80.1+0.8	92.6+1.1	91.6+0.9	99.0 ± 1.2	80.6 ± 0.7	86.2+0.9

TABLE V

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL VEHICLES

(For Knock-Sensor Vehicles, Maximum Octane Number Requirements Are Used)

	PR Fuels	uels	179)	6/ (MTG)	FBRU Fuels	uels		1	170	6/ (M+g)	FBRSU Fuels	Fuels	1	
Percent Satisfied	1987	△ from 1986	1987	^//c ∆ from 1986	1987	^ from 1986	1987	∆ from 1986	1987	^//c △ from 1986	1987	^ from 1986	1987	^ from 1986
10	82.9	+0.1	81.4	+0.1	84.7	+0.5	78.2	-0.3	80.8	-0.3	85.3	0.0	76.2	-0.8
20	84.7	+0.1	82.6	-0.1	86.1	+0.2	79.1	-0.5	82.0	-0.3	86.8	0.0	77.2	-0.7
8	85.9	+0.2	83.6		87.2	0.0	79.9	-0.5	83.2	0.0	88.1	+0.3	78.2	-0.3
40	86.8	+0.1	84.6	+0.2	88.5	+0.4	80.7	-0.1	84.2	+0.1	89.4	+0.4	79.1	-0.1
25	87.9	+0.3	85.7	+0.4	89.8	+0.6	81.6	+0.2	85.5	+0.3	90.9	+0.5	80.1	+0.1
09	89.2	+0.5	86.7		91.1	+0.8	82.4	+0.3	86.5	+0.3	92.1	+0.4	81.0	+0.3
02	90.4	+ 0.6	87.9	+0.9	92.5	+1.2	83.2	+0.5	87.7	+0.6	93.6	+0.8	81.9	+0.5
88	91.7	+0.6	88.8	+0.8	93.7	+1.1	84.0	9.0+	89.1	+1.0	95.1	+1.2	83.1	+0.8
8	93.5	+0.6	90.5	+0.7	95.6	+0.8	85.4	+0.5	91.1	+1.3	97.4	+1.5	84.8	+1.1
95	94.7	+0.6	95.6	+1.4	98.1	+1.7	87.0	+1.0	93.4	+2.2	6.66	+2.5	87.0	+2.0
86	6.96	+0.6	94.7	+1.5	100.5	+1.9	89.3	+1.5			•	1	•	ı

TABLE VI

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1987 TOTAL VEHICLES

(For Knock-Sensor Vehicles, Minimum Octane Number Requirements Are Used)

	PR F	PR Fuels	(R+	2/2	FBRU Fuels	uels	NOM	2	(R+M)	1/2	FBRSU Fuels	Fuels	NOW	
Percent Satisfied	1987	△ from 1986	1987	∆from 1987 1986	1987	△ from 1986	1987	∆ from 1986	1987	∆ from 1986	1987	∆ from 1986	1987	△ from 1986
10	82.6	+0.5	81.1	+0.7	84.3	+1.2	77.9	+0.2	80.4	+0.6	84.8	+1.1	76.0	+0.1
20	84.6	+0.6	82.4	+0.2	85.9	9.0+	79.0	-0.2	81.8	0.0	86.5	+0.4	77.1	-0.5
30	82.8	+0.7	83.4	+0.2	87.1	+ 0.6	8.62	-0.1	82.9	+0.2	87.9	+0.7	78.0	-0.1
40	86.8	+0.6	84.4	+0.4	88.2	+0.7	80.5	0.0	83.9	+0.4	89.0	+0.7	78.8	0.0
20	87.8	+0.8	85.4	+0.6	89.4	+1.1	81.3	+0.3	85.1	9.0+	90.4	6.0+	8.62	+0.3
09	89.0	+0.9	86.4	+0.7	90.6	+0.9	82.1	+0.4	86.2	9.0+	91.8	+0.9	80.7	+0.4
70	90.1	+0.9	87.6	+0.9	92.1	+1.2	83.0	9.0+	87.3	+0.5	93.1	+0.7	81.6	+0.4
80	91.3	+0.8	88.6	+1.0	93.4	+1.2	83.8	+0.7	88.6	+0.8	94.6	+1.0	82.7	+0.7
06	93.1	+0.7	83.8	+0.8	94.8	+0.9	84.8	+0.6	90.6	+1.3	8.96	+1.5	84.3	+1.0
95	94.2	+0.4	91.6	+0.9	97.0	+1.2	86.2	+0.6	92.5	+1.8	98.8	+2.0	86.1	+1.5
86	95.7	+0.4	94.6	+1.4	100.2	+1.6	89.0	+1.2	ı	1	1	ı	ı	ı
66	97.8	+1.5	95.0	+1.1	100.6	+1.2	89.4	+0.9	1	ı	1	ı	ı	ı

-27-

TABLE VII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL CARS

(For Knock-Sensor Cars, Maximum Octane Number Requirements Are Used)

				-	-21-									
	NON NON	1986	-0.9	-0.8	-0.5	-0.3	0.2	0.4	0.7	1.2	1.0	1.5	1.4	•
	*	1987	76.2	77.1	78.0	78.8	79.9	80.8	81.9	83.2	84.5	86.3	88.2	4
Fuels	- 1	1986	-0.2	-0.2	0.1	0.3	9.0	0.7	1.2	1.6	1.4	1.9	1.6	•
FBRSU Fuels	RON	1987	85.2	96.6	87.9	89.1	90.5	91.9	93.6	95.2	97.0	99.1	101.3	ı
	1)/2	1986	-0.6	-0.5	-0.1	0.1	0.4	0.5	1.0	1.4	1.1	1.7	1.6	1
	(R+M)	1987	80.7	81.9	83.0	84.0	85.2	86.3	87.8	89.2	7.06	92.7	94.8	,
		1986	-0.3	-0.5	-0.7	-0.3	0.1	0.3	0.7	6.0	9.0	9.4	9.0	1.2
		1987	78.2	79.0	9.62	80.4	81.3	82.2	83.1	84.0	85.2	86.4	88.0	89.3
uels	Z	1986	0.7	0.1	-0.1	0.3	9.0	6.0	1.4	1.5	1.1	0.8	0.9	1.5
FBRU Fuels	RON	1987	84.8	85.9	86.9	88.1	89.4	8.06	92.3	93.6	95.5	97.2	99.5	100.5
	1)/2	1987 1986	0.5	-0.2	-0.5	0.0	0.4	9.0	1.0	1.2	6.0	9.0	0.7	1.4
		1987	81.5	82.4	83.2	84.3	85.4	86.5	87.7	88.8	90.4	91.8	93.6	94.9
PR Fuels	4	1986	0.1	0.1	-0.1	-0.1	0.1	0.4	9.0	0.8	0.5	8.0	1.6	•
PR F		1987	82.9	84.5	85.5	86.4	87.4	88.6	0.06	91.5	93.1	94.6	7.96	ı
	+ 4 0 0	Satisfied	10	20	30	40	20	09	70	80	6	95	86	66

TABLE VIII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL CARS

(For Knock-Sensor Cars, Minimum Octane Number Requirements Are Used)

	PR F	PR Fuels	ļ		FBRU Fuels	uels					FBRSU Fuels	Fuels		
•		, 6	¥	2//	NO.		2	X.	KŦ	(K+M)/2	S	<u> </u>		
Satisfied	1987	1986	1987	1987 1986	1987	∆ Trom 1986	1987	∆ 170m 1986	1987	∆ Trom 1986	1987	△ Trom 1986	1987	∆ rrom 1986
10	82.6	0.2	81.1	0.2	84.3	9.0	77.9	-0.2	80.4	-0.3	84.8	0.0	76.0	-0.7
20	84.4	0.2	82.3	-0.1	85.8	0.4	78.9	-0.4	81.7	-0.4	86.5	0.1	77.0	-0.7
90	85.5	0.1	83.2	-0.2	8.8	0.2	79.5	9.0-	85.8	-0.1	87.8	0.3	77.9	-0.4
40	86.4	0.0	84.1	0.0	87.9	0.3	80.3	-0.3	83.8	0.1	88.8	0.3	78.7	-0.2
20	87.3	0.2	85.1	0.3	89.1	9.0	81.2	0.1	85.0	0.5	90.3	8.0	79.7	0.2
09	88.5	0.5	86.2	9.0	90.4	6.0	82.0	0.4	86.1	0.7	91.6	6.0	90.8	0.4
70	86.8	0.7	87.4	1.0	92.0	1.4	82.9	0.7	87.3	0.8	93.1	1.0	81.6	0.7
80	91.0	0.7	88.5	1.2	93.3	1.6	83.8	1.0	88.7	1.2	94.7	1.5	82.7	6.0
8	92.8	9.0	89.9	1.0	95.0	1.3	84.9	0.8	90.4	1.3	9.96	1.5	84.2	1.1
95	93.8	0.3	91.3	9.0	9.96	9.0	86.0	0.4	92.1	1.5	98.4	1.6	85.7	1.2
86	95.9	1.0	93.2	0.3	98.8	0.5	87.6	0.1	94.4	1.2	100.9	1.2	87.9	1.2
66	98.8	3.2	94.4	0.9	100.0	1.0	88.8	0.7	r	•	1	•	ı	•

- 20-

-29-

TABLE IX

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL TRUCKS AND VANS

(For Knock-Sensor Trucks and Vans, Maximum Octane Number Requirements Are Used)

	MON From	1986*	3 -0.5	6 -0.2	0.0 9	7 0.4	6 0.3	2 -0.1	8 -0.1	8 -0.1	8 +1.4	•		•
		1987	76.3	77.6	78.6	79.7	80.6	81.2	81.8	82.8	85.8	1	•	1
FBRSU Fuels	KUN A from	1986*	0.0	+0.6	+0.1	-0.9	-0.5	-0.3	0.0	0.1	+1.8	ı	ı	ı
FBRU Fuels		1987	85.3	87.4	88.7	90.2	91.5	92.4	93.4	94.8	98.5	í	ı	ı
	M)/2 △ from	1986*	-0.2	+0.1	+0.1	-0.1	-0.2	-0.1	0.0	0.0	+1.7		ı	1
	¥	1987	80.8	82.5	83.7	85.0	86.0	86.8	87.6	88.8	92.2	1	•	ı
	ON △ from	1986*	-1.1	9.0-	-0.3	0.0	-0.2	9.0-	-0.1	-0.3	+1.0	+3.1		
		1987	77.9	79.8	80.4	81.3	82.0	82.7	83.6	84.0	86.3	89.1	8.68	ı
	or from	1986*	-0.8	-0.5	-0.7	-0.7	-0.5	-0.2	-0.3	-0.1	+1.7	+5.0	ı	ŧ
		1987	84.3	87.1	88.1	89.4	90.5	91.7	93.0	93.8	97.0	100.3	101.0	•
	(K+M)/2 △ from	1986*	-1.0	-0.2	-0.4	-0.3	-0.3	-0.3	0.0	-0.3			ı	1
		1987	81.1	83.4	84.3	85.3	86.3	87.2	88.3	88.9	91.6	94.7	95.4	•
	∆ from	1986*	-0.5	-0.1	0.0	-0.3	-0.1	0.1	0.0	0.1	0.1	-0.1	0.3	ı
PR Fuels		1987	83.0	85.6	87.0	88.0	89.2	90.2	91.2	92.2	94.0	92.6	97.8	ı
	Percent	Satisfied	10	50	30	40	20	09	70	80	06	96	86	66

^{*1986} Maximum Octane Number Requirements estimated from CRC Report No. 553, "1986 CRC Octane Number Requirement Survey."

TABLE X

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL TRUCKS AND VANS

(For Knock-Sensor Trucks and Vans, Minimum Octane Number Requirements Are Used)

	PR F	PR Fuels			FBRU Fuels	uels				Š	FBRSU Fuels	Fuels		
		• 10 19	K.	1//2	2			**************************************	K+M)	1/2	ZON.		NON T	- 1
Satisfied	1987	1986	1987	987 1986	1987	1986	1987	1986	1987	∆ Trom 1986	1987	1986	1987	1986
10	82.8	1.5	80.9	3.2	84.1	4.1	77.8	2.4	80.4	4 .8	84.8	6.2	76.0	3.5
20	85.3	2.3	83.1	5.9	86.7	3.7	79.5	2.1	82.0	4.1	86.8	5.5	77.3	3.1
93	86.9	8.2	84.1	2.1	87.8	8.2	80.3	1.3	83.2	3.3	88.1	4.1	78.2	2.4 -08
40	87.9	3.0	85.0		88.9	2.7	81.0	1.8	84.2	2.2	89.4	5.6	79.1	1.9
20	89.0	2.3	82.8		89.9	-0.1	81.6	0.2	85.5	1.0	8.06	1.3	80.1	9.0
09	89.8	8.0	9.98		91.0	-0.2	82.3	-0.1	9.98	-0.3	92.2	-0.3	81.0	-0.3
70	9.06	0.4	88.1	0.1	92.7	4 .0	83.4	-0.2	87.3	-0.7	93.0	-1.0	81.5	-0.5
80	91.6	4.0	88.7	-0.1	93.5	0.2	83.9	2.7	88.4	-0.4	94.4	-0.2	82.5	-0.5
06	93.7	6.0	90.0	0.1	95.0	0.2	84.9	-0.1	91.4	1.4	7.76	1.6	85.1	1.1
95	94.4	-0.8	91.5	0.0	7.96	6.0	86.2	-1.0	ı	ı	ı	ı	ı	ı
86	95.0	-2.0	92.9	-0.9	98.3	-0.2	87.5	-1.5	ı		1	ı	1	
66	0.96	-2.3	93.8	-0.8	99.3	0.2	88.4	-1.6	ı	1	ı	ı	1	1

^{*1986} Maximum Octane Number Requirements estimated from CRC Report No. 553, "1986 CRC Octane Number Requirement Survey."

-31-

TABLE XI

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 TOTAL KNOCK-SENSOR VEHICLES

(Maximum Octane Number Requirements Are Used)

	PR F	PR Fuels		ķ	FBRU Fuels	uels					FBRSU Fuels	Fuels	Ĭ.	
Percent Satisfied	1987	^ from 1986	1987	\(\text{K+M}\)/2 \(\frac{\fir}{\fir}}}}}}}}}{\frac}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	1987	^ from 1986	1987	n ∆ from 1986	1987	}/2 ∆ from 1986	1987	A from 1986	MUM 1987	n ∆ from 1986
10	82.0	1.8	80.1	1.3	83.1	1.8	77.1	9.0	79.9	1.0	84.1	1.4	75.6	0.5
50	84.2	0.2	82.3	0.0	85.8	0.5	78.9	-0.3	81.4	-0.3	86.1	0.2	8.92	-0.6
30	85.8	0.3	83.9	0.4	87.6	0.7	80.1	-0.1	83.1	0.2	88.0	0.5	78.1	-0.2
40	87.8	6.0	85.3	1.0	89.3	1.4	81.3	9.0	84.7	9.0	90.0	1.0	79.5	0.3
20	89.0	0.8	86.6	1.2	90.9	1.6	82.2	0.7	86.1	0.7	91.6	1.0	90.08	0.5
09	90.3	1.1	87.7	1.4	92.2	1.8	83.1	1.0	87.0	0.7	92.7	6.0	81.3	0.5
70	91.3	1.1	88.6	1.2	93.4	1.6	83.8	6.0	88.3	1.0	94.2	1.2	82.4	8.0
80	92.4	0.8	89.7	1.1	94.7	1.4	84.7	6.0	88.8	1.2	95.8	1.3	83.7	1.0
06	94.6	1.2	91.9	1.7	97.3	2.1	86.5	1.3	92.6	2.5	0.66	2.8	86.2	2.2
98	96.2	2.0	93.3	2.5	98.9	2.9	87.7	2.0	94.4	3.6	100.9	4.0	87.9	3.3
86	ı	1	ı			1	1		ſ	8		ı	1	ı
66	8	1	ı	•	•		1	ı	ı	•		ı	•	•

-32-

TABLE XII

MAXIMUM OCTAME NUMBER REQUIREMENTS - 1987 TOTAL KNOCK-SENSOR VEHICLES

(Minimum Octane Number Requirements Are Used)

					-,	32-							
	∆ from 1986	1.2	1.1	0.5	0.7	1.4	1.7	1.4	0.8	2.0	5.6	3.8	4.0
	1987	74.2	76.3	77.3	78.4	79.7	80.8	81.5	82.4	84.8	86.3	88.1	88.6
Fuels	A from 1986	2.5	2.5	1.9	2.2	2.8	3.0	2.3	1.2	2.7	3.3	4.6	4.9
FBRSU Fuels	1987	82.2	85.3	86.9	88.5	90.3	91.8	92.9	94.2	97.3	99.5	101.1	101.8
6/	//2 △ from 1986	1.8	1.8	1.2	1.5	2.1	2.4	1.9	1.0	2.3	3.0	4.2	4.4
67 (87-9)	1987	78.2	80.8	82.1	83.5	85.0	86.3	87.2	88.3	91.0	92.8	94.6	95.2
	^ from 1986	2.0	8.0	0.7	1.0	1.3	1.6	1.8	1.2	1.0	1.7	2.6	1
	1987	76.3	78.2	79.5	9.08	81.4	82.2	83.4	83.9	84.9	86.3	87.8	
uels	^ from 1986	3.2	2.1	1.9	2.3	2.8	3.2	3.2	2.2	1.5	2.7	3.8	ı
FBRU Fuels	1987	81.9	84.7	86.7	88.3	89.6	90.9	92.7	93.6	94.9	97.1	0.66	ı
6/2	A from Δ from 1986	5.6	1.5	1.3	1.7	2.1	2.4	2.5	1.7	1.3	2.2	3.2	•
770	1987	79.1	81.5	83.1	84.5	85.5	96.6	88.1	88.8	89.9	91.7	93.4	1
lels	△ from 1986	3.4	1.6	2.0	3.0	2.9	2.5	1.9	1.8	1.6	1.5	3.1	•
PR Fuels	1987	81.2	83.4	85.4	87.6	88.8	89.6	90.4	91.4	93.2	94.8	97.3	
	Percent Satisfied	10	20	30	4 0	20	09	70	80	06	98	86	66

TABLE XIII

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1987 SELECT MODELS SELECT MODEL: NAR T25A3/HAR T25A3/IAR T25A3/LAR T25A3

Percent	æd		FBRU			FBRSU	1
	NO	RON	MON	(R+M)/2	RON	MON	(R+M)/2
	83.9	88.5	9.08	84.6	8.68	79.0	84.4
	84.8	89.7	81.4	85.5	91.0	80.0	85.5
	85.9	91.1	82.3	86.7	92.5	81.2	86.9
	86.7	92.1	83.0	87.5	93.6	82.0	87.8
	87.4	92.9	83.6	88.2	94.5	85.8	88.7
	88.0	93.7	84.1	88.9	95.4	83.4	89.4
	88.6	94.5	84.6	9.68	96.3	84.1	90.2
	89.3	95.4	85.2	90.3	97.2	84.8	91.0
	90.1	96.4	85.9	91.1	98.3	85.7	92.0
	91.2	7.76	86.8	92.3	8.66	86.9	93.3
	92.1	98.9	87.6	93.2	101.0	87.8	94.4
	17	17	17	17	17	17	17
	88.0	93.7	84.1	88.9	95.4	83.4	89.4
Std. Dev.	2.5	3.1	2.1	5.6	3.4	2.7	3.1

TABLE XIV

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

SELECT MODEL: NJ1 T20A3/LJ1 T20A3

	í		FBRU			FBRSU	
Percent Satisfied	. S	RON	MON	(R+M)/2	RON	MOM	(R+M)/2
2	82.8	85.1	78.5	81.8	86.3	76.9	81.6
10	83.7	86.0	79.1	82.6	87.3	77.6	82.4
20	84.8	87.1	79.8	83.4	88.4	78.4	83.4
30	85.5	87.8	80.3	84.0	89.3	79.0	84.1
40	86.2	88.5	80.7	84.6	90.0	79.5	84.8
90	86.8	89.1	81.1	85.1	90.7	80.0	85.3
09	87.5	89.7	81.5	85.6	91.4	80.5	85.9
70	88.1	90.3	81.9	86.1	92.1	81.0	86.5
80	88.9	91.1	82.4	86.7	92.9	81.6	87.3
06	0.06	92.1	83.0	97.6	94.1	82.4	88.3
95	6.06	93.)	83.6	88.3	95.1	83.1	89.1
z	13	13	13	13 13 13	13	13	13 13 13
Mean	86.8	89.1	81.1	85.1	90.7	80.0	85.3
Std. Dev.	2.5	2.4	1.5	2.0	2.7	1.9	2.3

TABLE XV

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

SELECT MODEL: MAN P28A3/HAW P28A3/IAW P28A3/LAW P28A3/NJW P28A3/GJW P28A3

	ŝ		FBRU			FBRSU	
Percent Satisfied	X 8	RON	MOM	(R+M)/2	RON	MOM	(R+M)/2
ĸ	79.6	84.2	77.8	81.0	83.2	74.5	78.8
10	81.5	86.1	79.0	82.5	85.5	76.2	80.9
20	83.8	88.3	80.5	84.4	88.4	78.4	83.4
30	85.5	0.06	81.6	85.8	90.5	79.9	85.2
40	86.9	91.4	82.6	87.0	92.2	81.3	86.7
20	88.2	95.6	83.4	88.0	93.8	82.5	88.2
09	89.6	93.9	84.3	89.1	95.5	83.7	89.6
70	91.0	95.3	85.3	90.3	97.2	85.0	91.1
80	92.7	97.0	86.4	91.7	99.3	9.98	92.9
06	95.0	99.5	87.9	93.6	102.2	88.7	95.4
95	6.96	101.1	89.1	95.1	104.5	90.5	97.5
z	10	10	10	10	10	10	10
Mean	88.2	92.6	83.4	88.0	93.8	82.5	88.2
Std. Dev.	5.2	5.1	3.5	4.3	6.5	4.9	5.7

TABLE XV (Continued)

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1987 SELECT MODELS

SELECT MODEL: NAW P28A3/HAW P28A3/IAW P28A3/NJW P28A3/GJW P28A3

	;		FBRU			FBRSU	
Percent Satisfied	ON N	RON	MON	(R+M)/2	RON	MOM	(R+M)/2
S	79.1	83.0	6.92	79.9	82.6	74.1	78.3
10	81.1	84.9	78.3	81.6	85.0	75.8	80.4
20	83.4	87.4	79.9	83.6	87.8	78.0	82.9
30	85.1	89.1	81.1	85.1	89.9	79.5	84.7
40	86.5	90.6	82.1	86.3	91.7	80.8	86.2
20	87.8	91.9	83.0	87.5	93.3	82.1	87.7
09	89.2	93.3	83.9	88.6	94.9	83.3	89.1
70	90.6	94.8	84.9	89.9	7.96	84.6	7.06
80	92.3	96.5	86.1	91.3	98.8	86.2	92.5
06	94.6	0.66	87.7	93.3	101.6	88.3	95.0
95	9.96	100.9	89.1	95.0	104.0	90.1	97.0
z	10	10	10	10	10	10	10
Mean	87.8	91.9	83.0	87.5	93.3	82.1	87.7
Std. Dev.	5.3	5.5	3.7	4.6	6.5	4.9	5.7

TABLE XVI

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

Knock-Sensor Select Model - High-Borderline SELECT MODEL: IH3 P38A4/IC3 P38A4/HH3 P38A4/LH3 P38A4/LC3 P38A4

	ć		FBRU			FBRSU	
Percent Satisfied	Ž 8	RON	MON	(R+M)/2	RON	MON	(R+M)/2
ស	76.8	83.7	77.5	80.6	82.0	73.9	78.0
10	78.7	85.0	78.4	81.7	83.8	75.1	79.5
20	81.0	86.5	79.4	83.0	85.9	76.7	81.3
30	82.7	87.7	80.2	83.9	87.5	77.8	82.6
40	84.2	88.7	80.8	84.7	88.8	78.7	83.7
20	85.5	89.6	81.4	85.5	90.0	9.6	84.8
09	86.8	90.5		86.2	91.3	80.4	85.8
70	88.3	91.5	82.6	87.0	97.6	81.4	87.0
80	0.06	95.6		88.0	94.1	82.5	88.3
06	92.3	94.2	84.4	89.3	96.3	84.0	90.1
95	94.2	95.5	85.2	90.4	98.0	85.2	91.6
z	15	15		15	15	15	15
Mean	85.5	89.6		85.5	90.0	9.6/	84.8
Std. Dev.	5.3	3.6		3.0	4.9	3.4	4.1

TABLE XVI (Continued)

MAXIMUM OCTANE NUMBER REQUIRENENTS - 1987 SELECT MODEL

Knock-Sensor Select Model - Low-Borderline SELECT MODEL: IH3 P38A4/IC3 P38A4/HH3 P38A4/LH3 P38A4/LC3 P38A4

•	ć		FBRU			FBRSU	
Satisfied	ž 8	RON	HON	(R+M)/2	RON	MON	(R+M)/2
ĸ	76.4	81.6	76.1	78.9	80.1	72.7	76.4
10	78.2	83.0	77.1	80.0	82.0	74.0	78.0
20	80.4	84.7	78.2	81.4	84.3	75.6	79.9
30	82.0	85.9	79.0	82.4	85.9	76.7	81.3
40	83.4	87.0	79.7	83.3	87.4	17.71	82.5
20	84.7	87.9	80.3	84.1	88.7	78.6	83.7
09	85.9	88.9	80.9	84.9	90.0	9.62	84.8
70	87.3	90.0	81.6	85.8	91.4	80.5	86.0
80	88.9	91.2	82.4	86.8	93.0	81.7	87.4
96	91.1	92.9	83.6	88.2	95.3	83.3	89.3
95	92.9	94.3	84.5	89.4	97.2	84.6	6.06
z	15	15	15	15	15	15 15	15
Mean	84.7	87.9	80.3	84.1	88.7	78.6	83.7
Std. Dev	. 5.0	3.9	2.5	3.2	5.5	3.6	4.4

TABLE XVII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

SELECT MODEL: PED T22A3/PKD T22A3/KKD T22A3/KPD T22A3/DHD T22A3

	ć		FBRU			FBRSU	
Percent Satisfied	X N	RON	MOM	(R+M)/2	RON	RON MON	(R+M)/2
ĸ	82.2	83.0		80.1	82.9	74.6	78.7
10	83.2	84.3		81.1	84.3	75.6	79.9
20	84.5	85.7		82.3	86.0	76.7	81.4
30	85.4	86.8		83.2	87.2	77.6	82.4
40	86.2	87.7		83.9	88.3	78.3	83.3
20	86.9	88.5		84.6	89.3	79.0	84.2
09	87.6	89.4		85.3	90.3	79.7	85.0
70	88.4	90.3		86.1	91.4	80.5	85.9
80	89.3	91.4		87.0	95.6	81.3	87.0
06	90.6	92.8		88.2	94.3	82.5	88.5
95	91.6	94.1		89.2	95.7	83.5	9.68
Z	10	10		10 10	10	10	10
Mean	86.9	88.5		84.6	89.3	79.0	84.2
Std. Dev	. 2.9	3.4		2.8	3.9	2.7	3.3

TABLE XVIII
MAXIMIM OCTANE NUMBER REQUIREMENTS - 1987 SELECT NODELS

SELECT MODEL: 0E9 TISA3/NE9 TISA3

	;		FBRU			FBRSU	
Percent Satisfied	Z 8	RON	NOM	(R+M)/2	RON	HON	(R+M)/2
ស	84.4	84.9	78.3	81.6	86.8	77.3	82.1
10	85.8	86.3	79.2	82.7	87.9	78.0	83.0
20	87.4	87.9	80.3	84.1	89.2	79.0	84.1
30	88.6	89.1	81.0	85.1	90.2	9.6	84.9
40	89.6	90.1	81.7	85.9	91.0	80.2	85.6
20	90.6	91.0	82.3	86.7	91.7	80.7	86.2
09	91.5	91.9	82.9	87.4	92.5	81.2	86.9
70	92.5	92.9	83.6	88.3	93.3	81.8	87.6
80	93.7	94.1	84.3	89.2	94.3	82.5	88.4
06	95.4	95.7	85.4	9.06	92.6	83.4	89.5
95	7.96	97.1	86.3	91.7	7.96	84.1	90.4
z	12	12	12	12	12	12	12
Mean	9.06	91.0	82.3	86.7	91.7	80.7	86.2
Std. Dev.	3.7	3.7	2.4	3.1	3.0	2.1	2.5

TABLE XIX

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT NODELS

SELECT MODEL: OPF PSOA4/OSF PSOA4/NPF PSOA4/NSF PSOA4/SPF PSOA4

	ŝ		FBRU			FBRSU	
Percent Satisfied	X N	RON	MOM	MON (R+M)/2	RON	MOM	
ĸ	80.1	80.8	75.6	78.2	80.9	73.3	
10	81.6	82.2	76.5	79.4	82.4	74.3	
70	83.5	83.9	77.6	80.8	84.3	75.6	
90	84.9	85.1	78.5	81.1	85.6	76.5	
40	86.0	86.2	79.1	82.7	86.7	77.2	
20	87.1	87.2	79.8	83.5	87.7	78.0	
09	88.2	88.1	80.4	84.3	88.8	78.7	
70	89.4	89.2	81.1	85.2	89.9	79.4	
80	7.06	90.4	81.9	86.2	91.2	80.4	
06	97.6	92.1	83.1	97.6	93.1	81.6	
98	94.2	93.5	84.0	88.7	94.6	82.6	
z	12	12	12	12	12	12	12
Mean	87.1	87.2	79.8	83.5	87.7	78.0	
Std. Dev.	4.3	3.9	2.6	3.2	4.1	2.8	

TABLE XX

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

Knock-Sensor Select Model - High-Borderline SELECT MODEL: ORU P30A4/MRU P30A4

ı	i		FBRU		1	FBRSU	
Percent Satisfied	2 8	RON	HON	(R+M)/2	ROM	NOM	(R+M)/2
ĸ	87.7	87.6	80.0	83.8	88.0	78.0	83.0
10	88.6	88.7	80.7	84.7	89.2	78.9	84.0
20	89.6	90.0	81.6	85.8	7.06		85.3
8	90.3	91.0	82.3	96.6	91.7		86.2
Q	91.0	91.8	87.8	87.3	97.6		87.0
20	91.6	95.6	83.3	87.9	93.5		87.7
09	92.2	93.3	83.8	88.6	94.3		88.4
70	92.8	94.1	84.4	89.3	95.2		89.2
80	93.6	95.1	85.0	90.1	96.3		90.1
6	94.6	96.4	85.9	91.2	7.76		91.4
95	95.5	97.6	9.98	92.1	98.9		92.5
z	17	17	17	17	17	17	17
Mean	91.6	95.6	83.3	87.9	93.5		87.7
Std. Dev.	2.4	3.0	2.0	2.5	3.3		2.9

TABLE XX (Continued)

MAXIMIM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

Knock-Sensor Select Model - Low-Borderline SELECT MODEL: ORU P30A4/NRU P30A4

	6		FBRU			FBRSU	
Percent Satisfied	2 8	RON	MON		RON	MON	(R+M)/2
ស	96.6	86.2	79.2	82.7	86.6	77.0	818
10	87.4	87.3	79.9	83.6	87.8	77.9	82.9
50	88.4	88.6	80.8	84.7	89.3	78.9	84.1
30	89.1	89.6	81.4	85.5	90.3	79.7	85.0
40	89.8	90.4	81.9	86.1	91.2	80.3	85.8
20	90.4	91.1	82.4	86.8	92.0	80.9	86.5
09	6.06	91.9	82.9	87.4	92.9	81.5	87.2
70	91.6	92.7	83.4	88.1	93.8	82.2	88.0
80	92.3	93.7	84.1	88.9	94.8	82.9	88.9
06	93.3	95.0	84.9	0.06	96.3	84.0	90.1
95	94.2	96.1	85.6	6.06	97.5	84.8	91.1
z	17	17	17	17	17	17	17
Mean	90.4	91.1	82.4	86.8	92.0	80.9	86.5
Std. Dev.	2.3	3.0	2.0	2.5	3.3	2.4	2.3

TABLE XXI

OMMER/RATER COMPARISON OF TANK FUEL KNOCK

(1980-1987 CRC Octane Number Requirement Surveys)

Model Year:	1987	1986	1985	1984	1983	1982	1981	1980
Fuel:	Unleaded							
Total Reports:	179	160	143	149	129	144	149	218
Percent Knocking								
Trained Rater	39.7	33.1	37.8	51.7	59.7	47.9	43.6	51.1
Owner	24.0	16.3	18.9	26.2	29.5	25.0	29.5	31.2
Owner/Rater Ratio	0.61	0.49	0.50	0.51	0.49	0.52	0.68	0.61
Percent Owners Objecting	ting							
Based on: Total Reports	2.8	2.5	9.6	7.4	12.4	13.2	12.1	15.1
Owners Reporting Knock	11.6	15.4	51.9	28.2	42.1	52.8	40.9	48.5

^{*} Some vehicles were designed for leaded fuels.

TABLE XXII

TANK-FUEL KNOCK REPORTED BY TRAINED OBSERVERS

I. <u>Total Vehicles</u>

	•	Vehicles Test	ed on Tank Fuel
Model Year	No. <u>Survey</u>	No. Tested	% Knocking (Wtg. Avg.)
1987	389	322	35.0
1986	377	330	31.1
1985	374	327	36.9
1984	407	358	49.3
1983	383	314	44.6
1982	434	342	41.6
1981	417	326	42.9
1980	429	374	49.9

II.	1987 Select Models	No. in Survey	No. <u>Tested</u>	% Knocking
	NAR T25A3/HAR T25A3/ IAR T25A3/LAR T25A3	17	15	73
	NJ1 T20A3/LJI T20A3	13	11	18
	NAW P28A3/HAW P28A3/ IAW P28A3/LAW P28A3/ NJW P28A3/GJW P28A3	10	10	60
	IH3 P38A4/IC3 P38A4/ HH3 P38A4/LH3 P38A4/ LC3 P38A4	15	13	23
	PED T22A3/PKD T22A3/ PPD T22A3/KKD T22A3/ KPD T22A3/DHD T22A3	10	8	50
	OE9 T19A3/MED T19A3	12	12	33
	OPF P50A4/OSF P50A4/ MPF P50A4/MSF P50A4/ SPF P50A4	12	10	10
	ORU P30A4/MRU P30A4	17	15	60

TABLE XXIII

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

Percent of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges

Ind Lower 0 0 0 31 30 50 30 31 40 45 40 23 31 3C 31 46	NAW P28A3/MAW P28A3/IAW P28A3 IM3 P38A4/IC3 P38A4/MM3 P38A4 LAW P28A3/NJW P28A3/GJW P28A3 LM3 P38A4/LC3 P38A4 Knock Sensor, Minimum Knock Sensor, Maximum Model: (Low-Borderline)	28A3/HAW P2 28A3/LAW P2 28A3/GJW P2 Sensor, Max Sensor, Max 11 11 11 11 11 11 11 11 11 11 22 11 11	NAW PR NOCK TO 10 10 10 10 10 10 10 10 10 10 10 10 10	1 T20A3/LJ1 T20A3 FBRU FBRSU 28 27 27 9 18 27 27 37 0 0 0 27 84 43 P38A4/MM3 P38A4 43 P38A4/LC3 P38A4 Maximum High-Borderline) FBRU FBRSU FBRU FBRSU 30 50 31 36		T25A3/IAR T25A3 125A3 0 33 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 80r, Minim orderline) RU FBRSI RU FBRSI		Model: Model: Fuel:	SPEED RANGE 1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher No. of Cars SPEED RANGE
- 2399 30 11 20 31 - 2799 10 11 20 15 - 3199 20 11 10 0 and Higher 0 22 10 0	RANGE Fuel: PR FBRSU FBRSU PR FBRSU PR FBRSU PR FBRU Ind Lower 0 0 0 0 31 30 50 31 1999 40 45 40 23 31 36 31 46	0 8 0	3		31 15 0 0 15		30 20 10 10		- 23 - 31 and
IM3 P38A4 IC3 P38A4/MM3 P38A4/			10		13		17		of
of Cars 17 13 10 IM3 P38A4 IM3 P38A4/IC3 P38A4/IM3 P38A4 IM3 P38A4/IMM3 P38A4 IM3 P38A4/IMM3 P38A4 LAW P28A3/MJW P28A3/	of Cars 17		0 2 0 0 0 0 0 0		0 0 64 0 0		26 7 20 27 13		and 12/2/2014
Second Register Second Reg	and Lower 26 40 33 0 28 27 0 40 45 - 1999 7 0 7 9 0 40 45 - 2399 20 13 7 0 27 9 30 11 - 2799 27 40 39 64 18 27 10 11 - 3199 13 0 7 27 27 37 20 11 and Higher 7 7 7 7 0 0 0 0 of Cars 17		묎		8			Fue]:	D RANGE
RANGE Fuel: PR FBRU FBRU <th< td=""><td>Fuel: PR FBRU FBRSU PR FBRU FBRSU PR FBRU wer 26 40 33 0 28 27 0 0 20 13 7 9 0 40 45 27 40 39 64 18 27 10 11 13 0 7 7 7 7 27 37 20 11 sher 17 7 7 7 0 0 0 0 0 22</td><td>28A3/HAN 28A3/LAN 28A3/GJN Sensor, Ih-Border</td><td>NAW IAW NJW Knoch</td><td></td><td>ICN</td><td>. —</td><td>NAR T25A3/H/</td><td>Model:</td><td></td></th<>	Fuel: PR FBRU FBRSU PR FBRU FBRSU PR FBRU wer 26 40 33 0 28 27 0 0 20 13 7 9 0 40 45 27 40 39 64 18 27 10 11 13 0 7 7 7 7 27 37 20 11 sher 17 7 7 7 0 0 0 0 0 22	28A3/HAN 28A3/LAN 28A3/GJN Sensor, Ih-Border	NAW IAW NJW Knoch		ICN	. —	NAR T25A3/H/	Model:	

TABLE XXIII (Continued)

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1987 SELECT MODELS

Percent of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges

OPF P50A4 P50A4/MPF P50A4 P50A4/SPF P50A4	FBRU FBRSU	58 75 17 0 17 25 8 0 0 0					
OSF P5 MSF P5	<u>8</u>	75 17 8 0 0	12				
11943	FBRSU	25 0 0 0 0		ORU P30A4/MRU P30A4 Knock-Sensor, Minimum (Low-Borderline)	FBRSU	47 12 6 0 6	
OE9 719A3/ME9 T19A3	FBRU	25 0 0 8 0		ORU P30A4/MRU P30A4 nock-Sensor, Minimu (Low-Borderline)	FBRU	65 0 0 0 0 0	
0.69	%	33000	12	ORU Knock	A	76 188 0 0 0	
D T22A3 D T22A3 D T22A3	FBRSU	20 0 20 10 10		U P30A4 Maximum rline)	FBRSU	70 12 6 12 0	
T22A3/PKD T22A3/KKD T22A3/DMD	FBRU	10 10 10 10 10		RU P30A4/MRU P30A4 ock-Sensor, Maximu (High-Borderline)	FBRU	76 188 0 0 6	
PED PPD	띪	003200	10	ORU Knock (H1	%	76 18 0 6 0	17
Model:	Fuel:			Model:	Fuel:		
	SPEED RANGE	1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher	No. of Cars		SPEED RANGE	1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher	No. of Cars

TABLE XXIV

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

Weighted % of Vehicles Having Requirements in Indicated (rpm) Ranges

All 1987 Vehicles

	Requirements Speed Range	PR Fuels	FBRU Fuels	FBRSU Fuels
1599	and Lower	22.7	22.4	23.8
1600	- 1999	19.6	20.4	16.2
2000	- 2399	21.4	17.4	17.3
2400	- 2799	17.3	17.1	16.9
2800	- 3199	12.1	10.4	9.8
3200	- 3599	4.9	7.3	10.3
3600	and Higher	2.0	5.0	5.7

TABLE XXV

THROTTLE/GEAR POSITION FOR 1987 MAXIMUM

FBRU OCTANE NUMBER REQUIREMENTS

Throttle Position	Transmission Ty	pe & Gear	No. of <u>Vehicles*</u>	% of <u>Vehicles</u>
	Automatic Tr	ansmission		
Maximum	4-Speed:	4th 3rd 2nd	54 40 21	17.4 12.9 6.8
	3-Speed:	3rd 2nd	73 38	23.5 12.3
Part	4-Speed:	4th 3rd	21 5	6.8 1.6
	3-Speed	3rd 2nd	50 8	16.1 2.6
			310	100.0
	Manual Tran	smission		
Maximum	5-Speed:	4th 3rd	35 4	49.4 5.6
	4-Speed:	4th	5	7.0
Part	5-Speed:	4th	20	28.2
	4-Speed:	4th 3rd	5 2	7.0
			71	100.0

^{*} Five test vehicles not counted, because all FBRU fuels satisfied their octane number requirements.

Three test vehicles not counted, because no FBRU fuels satisfied their octane number requirements.

Figure 1
DISTRIBUTION OF ODOMETER MILEAGE FOR 1987 MODEL VEHICLES TESTED

98.9 KNOCK SENSORS - MAXIMUM (HIGH BORDERLINE) 389 VEHICLES Figure 2 DISTRIBUTION C" MAXIMUM PR FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS KNOCK SENSORS - MINTMUM (LOM BORDERLINE) 376 VEHICLES 1987 TOTAL VEHICLES PERCENT SATISFIED ය റ്റ വ ജ 8/ (R+M) \2 OCTANE NUMBER

Figure 3 Distribution of Maximum fbru fuel (R+H)/2 octane number requirements 1987 total vehicles

99.9 Figure 4
DISTRIBUTION OF MAXIMUM FBRSU FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS
1987 TOTAL VEHICLES KNOCK SENSORS - MAXIMUM (HIGH BORDERLINE) 389 VEHICLES KNOCK SENSORS - MINIMUM (LOW BORDERLINE) 377 VEHICLES PERCENT SATISFIED 엉 9 (R+M) /2 OCTANE NUMBER

Figure 5 Distribution of Maximum (R+M)/2 Octane Number Requirements 1987 total Vehicles

99.9 Figure 6 DISTRIBUTION OF MAXIMUM FBRU FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS 1987 AND 1986 TOTAL VEHICLES 1986 왔 PERCENT SATISFIED ය ጽ ຂ / (H+H) \S OCTANE NUMBER

Figure 7
DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIRENENTS

9.

PR FUEL - 89 VEHICLES FBRU FUEL - 89 VEHICLES FBRSU FUEL - 89 VEHICLES Figure 8
DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1987 TOTAL TRUCKS AND VANS PERCENT SATISFIED ය 육 ജ ನ വ

(R+M) \2 OCTANE NUMBER

Figure 9
DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS
1987 KNOCK SENSOR VEHICLES - MAXIMUM (HIGH BORDERLINE)

6.06 6.06 8 PR FUEL - 123 VEHICLES FBRU FUEL - 124 VEHICLES FBRSU FUEL - 124 VEHICLES 86 Figure 10 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1987 KNOCK SENSOR VEHICLES - MINIMUM (LOW BORDERLINE) 8 පු 8 PERCENT SATISFIED 8 යි 9 ജ ನ S 8 8 2 8 8 88 88 2 8 8 78 (H+H) \S OCTANE NUMBER

DISTRIBUTION OF MAXIMUM FBRU FUEL (R+M)/2 OCTANE NUMBER REQUIRENERS 1987 AND 1986 KNOCK SENSOR VEHICLES Figure 11

APPENDIX A

PARTICIPATING LABORATORIES

PARTICIPATING LABORATORIES

No. of <u>Vehicles Tested</u>	Eastern Area	East Central Area Vel	No. of nicles Tested
29	Exxon Res. & Engrg. Co. Linden, NJ	Chrysler Corporation Detroit, Michigan	10
30	Mobil Res. & Dev. Corp. Paulsboro, NJ	Ford Motor Company Dearborn, MI	30
31	Sun Company Marcus Hook, PA	MMC Services Ann Arbor, MI	3
33	Texaco Inc. Beacon, NY	Nissan Res. & Dev. Ann Arbor, MI	10
		Petro-Canada Products Sheridan Park, Ontario	26
		Shell Canada Oakville, Ontario	15
		Standard Oil Co. Cleveland, OH	32
		Southwest Research Institut San Antonio, Texas	te* 12
		Toyota Motor Corp. Ann Arbor, MI	10
	Western Area	West Central Area	
30	Chevron Research Company Richmond, CA	Amoco Oil Company Naperville, IL	30
30	Unocal Corporation Brea, CA	Phillips Petroleum Co. Bartlesville, OK	21
		Shell Development Co. Houston, TX	7

^{*}Industry-sponsored contract work.

APPENDIX B

MEMBERSHIP: 1987 ANALYSIS PANEL

1987 CRC OCTANE NUMBER REQUIREMENT SURVEY

1987 ANALYSIS PANEL

Name	Company
D. I. Hoel, Leader	Exxon Research and Engineering Company
W. F. Biller	Consultant
C. J. Bone's	Sun Refining and Marketing Company
P. W. Brigandi	Mobil Research and Development Corporation
J. C. Callison	Amoco Oil Company
J. P. Graham	Chevron Reseach Company
M. T. Noorman	Mobil Oil Corporation
T. Wusz	Unocal Corporation

APPENDIX C

DATA ON 1987/1988
FULL-BOILING RANGE REFERENCE FUELS

SUPPLIERS' FUEL INSPECTIONS

TABLE C-I

1987/1988 FBRU FUELS

	Low-Octane Base Blend RMFD 362-87/88	Intermediate- Octane Base Blend RMFD 363-87/88	High-Octane Base Blend RMFD 364-87/88
Laboratory Inspection			
Distillation, °F		00	92
IBP ·	98	90	
10% Evap.	137	124	122
30% Evap.	166	163	185 237
50% Evap.	192	214	
70% Evap.	230	272	259
90% Evap.	333	353	294
End Point	413	421	388
RVP, psi	7.2	8.4	8.1
Lead, g/gal.	0.000	0.000	0.000
Oxidation Stab., min.	1440+	1440+	1440+
Hydrocarbon Type, Vol. %			
Aromatics	19.8	27.5	51.3
Olefins	13.8	9.6	0.0
Saturates	66.4	62.7	48.7
Saturates	ογ. τ	02. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Research Octane Number	79.2	90.8	103.5
Motor Octane Number	74.7	82.6	91.8
Sensitivity	4.5	8.2	11.7

TABLE C-II

OCTANE NUMBERS AND COMPOSITIONS FOR 1987/1988 FBRU FUELS

Research	Vo	olume Percent	t	Motor	
Octane	RMFD	RMFD	RMFD	Octane	
Number	362-87/88	363-87/88	364-87/88	Number	<u>Sensitivity</u>
80	95.0	5.0		74.9	5.1
82	77.5	22.5		76.3	5.7
84	60.5	39.5		77.7	6.3
85	51.5	48.5		78.4	6.6
86	42.5	57.5		79.0	7.0
87	34.0	66.0		79.7	7.3
88	25.0	75.0		80.4	7.6
89	16.5	83.5		81.1	7.9
90	7.5	92.5		81.7	8.3
91		99.5	0.5	82.3	8.7
92		92.5	7.5	82.9	9.1
93		85.5	14.5	83.6	9.4
94	~ ~ ~	78.0	22.0	84.2	9.8
95	~	70.0	30.0	84.9	10.1
96	*==	62.5	37.5	85.6	10.4
97	~	54.5	45.5	86.3	10.7
98		46.5	53.5	86.9	11.1
99		37.5	62.5	87.8	11.2
100		28.5	71.5	88.8	11.2
101		19.0	81.0	89.8	11.2
102		10.0	90.0	90.8	11.2
103	*	1.5	98.5	91.7	11.3

TABLE C-III

SUPPLIERS' FUEL INSPECTIONS

1987/1988 FBRSU FUELS

	Low-Octane Base Blend RMFD 365-87/88	Intermediate- Octane Base Blend RMFD 366-87/88	High-Octane Base Blend RMFD 367-87/88
Laboratory Inspection			
Distillation, °F IBP 10% Evap. 30% Evap. 50% Evap. 70% Evap. 90% Evap. End Point	100 134 172 204 245 357 417	96 128 167 216 277 367 413	96 127 184 237 256 304 392
RVP, psi Lead, g/gal. Oxidation Stab., min.	7.3 0.000 1440+	7.8 0.000 1440+	7.6 0.000 1440+
Hydrocarbon Type, Vol. % Aromatics Olefins Saturates	12.8 34.7 52.5	27.9 20.4 51.7	63.3 1.5 35.3
Research Octane Number	79.4	90.8	103.2
Motor Octane Number	72.4	80.6	89.5
Sensitivity	7.0	10.2	13.7

TABLE C-IV

OCTANE NUMBERS AND COMPOSITIONS FOR 1987/1988 FBRSU FUELS

Research	Volume Percent			Motor		
Octane	RMFD	RMFD	RMFD	Octane		
Number	<u>365-87/88</u>	366-87/88	367-87/88	Number	<u>Sensitivity</u>	
80	96.0	4.0		72.6	7.4	
82	78.5	21.5		74.0	8.0	
84	61.0	39.0		75.5	8.5	
85	52.0	48.0		76.1	8.9	
86	43.5	56.5		76.7	9.3	
87	34.5	65.5		77.4	9.6	
88	26.0	74.0		78.1	9.9	
89	17.0	83.0		78.8	10.2	
90	8.0	92.0		79.5	10.5	
91		99.0	1.0	80.2	10.8	
92		92.0	8.0	80.9	11.1	
93		85.0	15.0	81.5	11.5	
94		77.5	22.5	82.2	11.8	
95		69.5	30.5	83.0	12.0	
96		61.0	39.0	83.8	12.2	
97		52.5	47.5	84.5	12.5	
98		43.0	57.0	85.4	12.6	
99		34.0	66.0	86.2	12.8	
100		25.0	75.0	87.1	12.9	
101		16.0	84.0	88.0	13.0	
102		7.0	93.0	88.8	13.2	
102.8		0.0	100.0	89.6	13.2	

APPENDIX D

PROGRAM

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA. GEORGIA 30346 (404) 396-3400

PROGRAM

for the

1987 CRC OCTANE NUMBER REQUIREMENT SURVEY

CRC Project No. CM-123-87

October 1986

TABLE OF CONTENTS

TEXT OF	PROGRAM	Page
I.	INTRODUCTION	. D-3
II.	GEOGRAPHICAL AREAS	. D-3
III.	VEHICLES	. D-4
IV.	FUELS	. D-5
٧.	TEST TECHNIQUE	. D-6
VI.	DATA FORMS	. D-6
VII.	REPORTING RESULTS	. D-6
INDEX O	F TABLES	
TABLE	D-I - Design Specifications for 1987 Select Models	. D-7
TABLE	D-II- Limiting Specifications for 1987 and 1988 Full-Boiling Range Reference Fuels	. D-8
INDEX O	F ATTACHMENTS	
ATTA	CHMENT 1 - Owner's Questionnaire	. D-9
ATTA	CHMENT 2 - Technique for Determination of Octane Number Requirements of Light-Duty Vehicles	D-11

I. INTRODUCTION

The 1987 program of the CRC Light-Duty Octane Number Requirement Survey Group will consist of a survey of the octane number requirements of 1987 model domestic and imported vehicles. For the purposes of this program, the designation "passenger vehicles" will include passenger cars, light-duty (<8500 lb/3856 kg GVW) pickup trucks, and vans. Approximately 400 vehicles will be tested. Most of these vehicles will be sampled in proportion to their relative production or import volume, to provide data from which to estimate the distribution of octane number requirements for the 1987 model vehicle population in the United States. In addition, select models of special interest will be tested in sufficient numbers to estimate their requirement distributions.

Knocking characteristics will be investigated with three series of reference fuels. Tank fuel knock will also be evaluated. Maximum octane number requirements, whether at maximum-throttle or part-throttle, will be established for each vehicle using high sensitivity unleaded full-boiling range reference (FBRSU) fuels, average sensitivity unleaded full-boiling range reference (FBRU) fuels, and primary reference (PR) fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement. Also, minimum requirements are determined for knock-sensor equipped vehicles.

II. GEOGRAPHICAL AREAS

As in previous years, the 1987 Survey will be conducted on a nation-wide basis. The country has been divided into four geographical areas. Participants located in New York, New Jersey, Delaware, and Pennsylvania have been included in the Eastern Area; those located in Ohio, Michigan, and Kentucky comprise the East Central Area; those in Illinois, Texas, and Oklahoma comprise the West Central Area; and California participants make up the Western Area. A coordinator has been appointed for each area as follows:

Eastern Area	Α.	Bouffard
East Central Area	Р.	Sherwood
West Central AreaJ.	В.	Baker
Western Area	Wu:	SZ

The area coordinators will contact their area participants periodically regarding the progress of the survey. To expedite this, it is suggested that participants send copies of all correspondence concerning the survey to the area coordinators. This program outlines the survey in broad terms. If more detailed information is desired, it is suggested that the participant contact his area coordinator.

III. VEHICLES

A total of approximately 400 vehicles will be tested in the 1987 Survey. Current experience indicates we can expect about 11 full participants and 5 partial participants. The 400 vehicle total will be divided into two groups: (1) the statistical group, sampled in proportion to US car model production or import volume, and (2) select models of special interest. Approximately 20 of each of these select models are assigned to be tested in order to provide an estimate of the octane requirement distribution of each model. Some of these 20 vehicles will be those already included in the statistical group, and the remainder will be additional vehicles added to the program.

The desired number of vehicles to be tested in each category is as follows:

Statistical Group		350
Additional Select Model	Group	_50
	Total	400

A detailed breakdown of the specific models and the number of each model to be tested will be circulated to the participants in May 1987 after an estimate of vehicle model production has been obtained. Design specifications for select models to be tested in the 1987 Survey are shown in Table D-1. Selection of these vehicles has been based on new or modified design characteristics that might have a significant effect on octane number requirements and high sales volume which allows individual treatment without additional testing.

Wherever possible, specific vehicle assignments to individual participating laboratories will be made in a pattern which tends to minimize data bias. This will be accomplished by apportioning cars of a given model among the four geographical areas, and subsequently among the laboratories within each area, in order to minimize the effect of non-random factors on the results of the Survey.

IV. FUELS

A. Full-Boiling Range Reference Fuels

Two full-boiling range reference fuel series will be used to define the vehicle octane number requirements. The two series will be unleaded and of varying sensitivity. One series will be comparable to the average sensitivity of unleaded commercial fuels (FBRU); the other series (FBRSU) will be a minimum of two numbers higher in sensitivity than the FBRU fuels. The Research octane number (RON) range for both fuel series is 79 to 104.

The two series will be blended in increments of two RON up to 84, and one RON above 84 from three base fuels for each series. The base fuels are compounded from normal refinery gasoline components. Limiting specifications for each base fuel for both series are shown in Table D-II. These specifications apply to both the 1987 and 1988 Surveys.

Research and Motor ratings will be determined for incremental blends of each fuel series by participants to provide data for establishment of blending curves.

B. Primary Reference Fuels

Blends of ASTM-grade isooctane and normal heptane will be prepared in two octane number increments from 76 to 82, and one octane number increments from 82 to 100.

C. Tank Gasoline

Research and Motor octane ratings will be obtained only on gasoline samples from the tank of vehicles with owner questionnaire (Attachment 1). Owner's Questionnaire should be obtained if:

- a) vehicle has a regular driver;
- b) the ignition timing is within \pm 2° of the manufacturer's specifications.

V. TEST TECHNIQUE

All tests are to be conducted using the technique entitled, "Technique for Determination of Octane Number Requirements of Light-Duty Vehicles" (CRC Designation E-15-87). A copy of this technique is included as Attachment 2 to this program. Octane number requirement investigations are to be conducted in all vehicles under level road conditions. Any vehicle obviously in poor mechanical condition or with malfunctioning emission control devices should not be considered for test work. The vehicles must have a minimum of 6000 deposit miles (9656 km), and preferably be privately owned and operated. Data with less than 6000 miles will not be analyzed. Vehicles previously used for fuel road octane rating must not be employed in this survey.

Data should be reported on each vehicle tested, even though knock was not encountered on any of the fuels.

The order in which the fuels are to be tested is as follows:

1) Tank fuel;

3) FBRU;

2) FBRSU;

4) PR.

VI. DATA FORMS

The test results on each vehicle will be reported on data forms DFMF-11-87 and DFMF-19-87. For knock sensor-equipped vehicles, data forms should be filled out completely for maximum requirements and include vehicle information with minimum requirements. Copies of these forms will be mailed to all participants from the CRC office with instructions for their use. Additional instructions are included in the E-15-87 technique.

VII. REPORTING RESULTS

The original data forms for each vehicle tested should be submitted to William F. Biller, 68 Yorktown Road, East Brunswick, New Jersey 08816, as soon as possible, but not later than October 31, 1987.

TABLE D-I

DESIGN SPECIFICATIONS FOR 1987 SELECT MODELS

Make & Model	Engine Displ. Liters	Configuration & No. of Cylinders	Fue] System	Comp. Ratio	ВНР	Knock- Sensor	VIN Engine Code	Trans. Type
GM S10/S15 Pick Up	2.8	9-1	181			0 N	!	Ą
J Car (Ex Chev)	2.0	L4	181	9.0	06	NO	¥	A
Ford Escort/Lynx EXP	1.9	4	CFI	9.0	06	N N	თ	A3
Taurus/Sable	3.0	٧-6	EFI	9.25	140	Yes	为	A4
Chrysler S Body (Mini Van)	3.0	۸-6	EFI	9.0	140	ON O	;	A3
N Body (Dakota Pick Up)	3.9	٧-6	2 bb1	9.5	125	N O		٩

TABLE D-II

LINITING SPECIFICATIONS FOR 1987 AND 1988 FULL-BOILING RANGE REFERENCE FUELS*

	Unleade Refe	eaded Average Sensiti Reference Fuels (FBRU	Unleaded Average Sensitivity Reference Fuels (FBRU)	ty	Unleade Refere	Unleaded High Sensitivity Reference Fuels (FBRSU)	tivity 3RSU)
Inspection Tests	RMFD 362		RMFD 363	RMFD 364	RMFD 365	RMFD 366	RMFD 367
ASTM Distillation, °F(°C) IBP, Min.		2.2)	06	06	06	U6	O
10% Evap.	_	(0.02 -1	115-158	115-158	115-158	115-158	115-158
30% Evap.	150-190 (65.6	(82.6-87.8)	150-190	150-190	150-190	150-190	150-190
50% Evap.	_	5 - 121.1	195-250	195-250	195-250	195-250	195-250
70% Evap.	_)-148.9)	230-300	230-300	230-300	230-300	230-300
90% Evap.	_	5-190.0	285-374	285-374	285-374	285-374	285-374
End Point, Max.	437 (2	(525)	437	437	437	437	437
RVP, psi (KPa)	_	48-62)	7-9	7-9	6-7	7-9	7-9
Lead, g/gal (g/l)	<0.03 (<0	<0.008)	<0.03	<0.03	<0.03	<0.03	<0.03
Oxidation Stability,	97		•	•	•	,	
Mindes, Min.	1440		1440	1440	1440	1440	1440
Hydrocarbon Type, Vol. %							
Aromatics, Max.**	20		35	55	35	45	65
Olefins, Max.	50		15	10	35	25	15
Saturates	Remainder		Remainder	Remainder	Remainder	Remainder	Remainder
Octane Number Research	79 + 1		01 + 1	104	70 + 1	-	
Spnsitivity**	- + V V		1 - 16	11 5 7 1	1 - 1 - 1	- -	104 + 1
Minimum of two units sensitivi	nsitivity difference between corresponding fuels	nce betwe	en correspo		of each series.	10.5 ± .5 es.	13.5 + .5
Color	Bronze		Green	Red	Yellow	Deep Purple	Light Blue

All fuels to contain minimum 5 PTB of a 100% active antioxidant and 10 PTB of corrosion inhibitor. Note:

No manganese added. Confirmation of product quality of fuel blends to be approved by a six-laboratory CRC Fuel Acceptance Panel prior to drumming.

To be compounded from normal refinery components. Oxygenates are not to be used as fuel components. 1% maximum Benzene or legal. Sensitivities are shown for the mean Research octane number.

CRC OCTANE NUMBER REQUIREMENT SURVEY

OWNER'S QUESTIONNAIRE

OWNER:
Your vehicle is being tested for fuel octane number requirements by a Coordinating Research Council activity. To help analyze the data, we would like the person who has recently been driving the vehicle to answer the following questions:
1. What grade of unleaded fuel is now in the tank?
Regular Premium Mixture
2. Has any engine knock (ping) been encountered with the fuel that is now in the tank?
Yes No
3. Did you consider the knock (ping) objectionable?
Yes No
Vehicle Make License No
Vehicle Identification No.
Company Testing Vehicle

TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-87)

August 1987

TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-87 - Including Annex A)

A. GENERAL

The technique provides for the determination of maximum octane number requirements (and minimum octane number requirements for vehicles equipped with knock sensors), whether at maximum-throttle or part-throttle, of a vehicle in terms of borderline spark knock on two series of full-boiling range reference fuels as well as on primary reference fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement.

Knock intensity on tank fuel will be measured.

B. DEFINITION OF TERMS

The following definitions of knock, approved by the CLR and CFR Committees on June 8, 1954, have been rephrased for clarification and adaptability to current technology by the Survey Steering Panel.

1. Spark Knock:

Spark knock is the noise associated with the autoignition* of a portion of the fuel-air mixture ahead of the advancing flame front. It is recurrent and repeatable in terms of audibility and fuel octane quality. This includes knock occurring when going from road load to other operating conditions (e.g., tip-in, etc.).

2. Knock Intensity

a. Borderline Knock

This means spark knock of lowest audible intensity of at least three (3) pings, and over a range of engine speed of at least 50 rpm, all being repeatable during subsequent accelerations.

^{*} Autoignition: The spontaneous ignition and the resulting very rapid reaction of a portion or all of the fuel-air mixture. The flame speed is many, many times greater than that which follows normal spark ignition. There is no time reference for autoignition.

b. No Knock

This means either no audible knock or knock less than borderline intensity.

c. Above Borderline Knock

This means spark knock of greater than borderline intensity.

3. Octane Number Requirements

a. Maximum Requirement

This is equivalent to the octane number of the highest reference fuel giving borderline knock as previously defined (the next higher fuel gives no knock). If the knock intensity with the highest fuel giving knock is above borderline, the maximum requirement shall be equivalent to the mid-point between the octane number of the fuel giving knock and that of the next higher fuel which gives no knock.

Minimum Requirement (for vehicles with knock sensors)

This is equivalent to the octane number of the lowest reference fuel giving borderline knock (the next lower fuel will give above borderline knock). If the knock intensity with the lowest fuel giving knock is above borderline and the next highest fuel is no knock, then the minimum requirement is the mid-point between the two.

4. Definition of Accelerations

Accelerations are made at <u>maximum-throttle</u> and <u>part-throttle</u> conditions which are defined below:

a. Maximum-Throttle

The throttle is depressed and held at either full-throttle or the widest throttle position that does not cause the transmission to downshift (detent) throughout the acceleration in each of the required test gears listed in D.3.d.(1)(a). The detent manifold vacuum/pressure obtainable on a given model is determined by the transmission characteristics. For manual transmissions, the throttle is depressed fully throughout the acceleration.

b. Part-Throttle

The throttle is depressed and regulated throughout the acceleration to maintain a desired, constant critical manifold vacuum/pressure as defined in D.3.d.(1)(d).

C. VEHICLE PREPARATION

The following vehicle preparation steps should be completed before any octane tests are run. Detailed procedures for each adjustment can be found in the manufacturers' shop manuals.

- 1. Record vehicle identification number and emission control type, Federal, Altitude, California, or Fifty-State. Fill in heading on data sheet DFMF-11-87. For knock sensor-equipped vehicles, two DFMF-11-87 data sheets should be filled out completely: one for maximum requirement, and one for minimum requirement. Ford emission calibration numbers are to be recorded.
- Inspect all vacuum lines and air pump hoses for appropriate connections. Also, check to see if PCV valve, spark advance vacuum delay controls, EGR valve, knock sensors, and heated inlet air mechanism are functioning. Engine must be warmed up for these checks.
- 3. Record engine idle speed and observe anti-dieseling solenoid operation. Adjust to manufacturers' recommended specifications as specified on the under-hood decal.
- 4. Observe and record basic spark timing at recommended engine speed. Adjust to manufacturers' recommended setting as specified on the under-hood decal.
- 5. Crankcase oil, radiator coolant, automatic transmission fluid, and battery fluid levels shall be maintained as recommended by the manufacturer.
- 6. A calibrated tachometer graduated in 100 rpm (or smaller) increments and capable of indicating engine speed from 0-5000 rpm shall be installed on the vehicle.
- 7. One calibrated vacuum gage, graduated in one-half inch of mercury (or smaller) increments and capable of indicating vacuum from 0-24 inches of mercury (0-81 kPa) shall be connected to the intake manifold. For vehicles with turbochargers, a compound vacuum/pressure gage should be used; the pressure side of the gage should be capable of indicating pressures up to 15 psig (103 kPa).
- 8. An auxiliary fuel system shall be provided to supply test fuels to the engine. Caution shall be taken to avoid placing auxiliary fuel lines in locations which promote vapor lock. If vehicles with carbureted engines have tank return fuel lines, this return line should be blocked off. Disconnect fuel tank vent line at evaporation control system canister. Instructions for the auxiliary fuel system used with fuel injection systems are given in Annex A.

9. For vehicles with owner questionnaire completed, a sample of the tank gasoline shall be withdrawn for determination of Research and Motor method octane number ratings. If insufficient fuel is available, omit this step and obtain tank fuel observations as described in Item D.3.d.(2).

D. TEST PROCEDURE

1. Engine Warm-Up

- a. To stabilize engine temperatures, a minimum of ten miles of warmup is required. The test vehicle should be operated at 55 mph (88 kph) in top gear with a minimum of full-throttle operation.
- b. During the warm-up period, the general mechanical condition of the vehicle should be checked to insure satisfactory and safe operation during test work.

2. Fuel Changeover

To eliminate contamination of the new fuel with residual amounts of the previous fuel, fuel-injected systems should be flushed once with new fuel and carburetted systems should be flushed twice. Fuel handling procedures for vehicles equipped with fuel injection systems are explained in Annex A.

After fuel changeover, make one maximum-throttle acceleration before beginning Vehicle Rating Procedure.

3. Details of Observations

a. Operating Conditions

All octane number requirements will be determined under level road acceleration conditions.

Tests will be conducted on moderately dry days, preferably at ambient temperatures between $60^{\circ}F$ (15.5°C) and $90^{\circ}F$ (32.2°C). Tests should not be conducted during periods of high humidity such as prevail when rain is threatening or during or immediately after a rain storm. Laboratories with control capabilities should target for $70^{\circ}F$ (21°C) air temperature and 50 grains of water per pound (7.14 gm/kg) of dry air whenever possible.

Air-conditioned vehicles will be tested with air conditioner turned ON. (Normal setting, minimum temperature, low fan.) Air conditioner will be ON at all times.

b. Order of Fuel Testing

1) Tank

3) FBRU

2) FBRSU

4) Primary

c. Determination of Knock Intensity

Maximum octane requirements will be established by evaluating the occurrence of knock in terms of knock intensity: "N" for none, "B" for borderline, and "A" for above borderline. Establishment of representative knock intensity for a given fuel will be accomplished with a maximum of three (3) rated accelerations. Coastdown time between the end of one acceleration and the beginning of the next should be approximately twenty (20) seconds. As defined below, the first two duplicating accelerations are sufficient with "N" and "B" intensity.

Accel	eration N	umber	Representative Rating
1	<u>2</u>	<u>3</u>	
N	N	-	N
N	B	N	N
N	B	B	B
B	N	B	B
B	Ä	-	A
A		-	A

All subsequent accelerations will normally be discontinued when "A" knock intensity is experienced, and testing continued with a higher octane number fuel in that series. An exception will be made if "A" knock is experienced on the highest octane fuel which knocks in the engine. In this case, it may be necessary to run additional accelerations to determine the speed of maximum knock intensity. If "A" knock is experienced at initiation of acceleration, as limited by transmission characteristics, this speed will be considered the speed of maximum knock. Otherwise, the midpoint between knock-in and knock-out will be considered the speed of maximum knock. When establishing knock-in and knock-out, back off on the throttle between points to eliminate "A" knock.

Minimum octane number requirements for vehicles equipped with knock sensors will be established in a similar manner except that when "A" knock intensity is encountered, subsequent accelerations will be made with a given fuel until duplicate "A" ratings are obtained over a measurable range of engine speeds as indicated below:

Acce1	eration N	umber	Representative Rating
1	<u>2</u>	3	
B	A	B	B
B	A	A	A
A	A	-	A
A	B	В	B

d. Determination of Octane Requirements

Tests should be run to 70 mph (113 kph). If required to terminate at lower speed, termination speed should be noted on data sheet.

(1) Vehicle Operating Procedure

(a) Establishment of Automatic Transmission Characteristics

Determine the minimum attainable road speed, and obtain the transmission downshift characteristics of engine rpm and manifold vacuum/pressure from minimum speed at 25, 35, 45, 55, and 65 mph (40, 56, 72, 88 and 104 kph) as applicable (as obtainable in each gear), by movement of the throttle through the detent, i.e., downshift, throttle position. These characteristics are to be determined for each of the gears specified in the table below. For transmissions with converter clutches, determine the minimum road speed for clutch application. At this initial speed and at 10 mph (16 kph), increments up to about 60 mph (97 kph) determine minimum vacuums (pressures) for application. Record all road speed/engine rpm/vacuum or pressure measurements from above on data sheet.

Do not use brakes, turn signals or hazard flashers during accelerations as these may affect electronic engine controls.

The selection of required test gears, and test gear/converter clutch combinations (if applicable) for various types of transmissions are shown in Table T-I. Transmissions not explicitly described should be tested in a manner as similar as possible to those listed. Automatic transmission vehicles should be tested with the gear selector in D or O; top gear should not be locked out. Transmissions equipped with electronic overdrive should be operated in overdrive. Transmissions equipped with power/normal selection should be operated in the normal position.

TABLE T-I

TRANSMISSION GEAR SELECTION

AUTOMATICS

Place the selector in "D" or "O" and check for critical condition.

Туре	Gears to be Tested
GM 4-speed	4th gear, converter clutch engaged 3rd gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged
GM 3-speed/ Chrysler 3-speed with converter clutch	3rd gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged
Ford Front-Wheel 4-speed overdrive	Drive: 4th gear, converter clutch engaged 4th gear, converter clutch disengaged 3rd gear, converter clutch engaged, if applicable 3rd gear, converter clutch disengaged 2nd gear
Ford Rear-Wheel 4-speed overdrive	Drive: 4th gear, converter clutch engaged,
Other 3-speed	3rd gear 2nd gear
MANUALS	
5-speed 4-speed 3-speed	4th and 3rd gears 4th and 3rd gears 3rd and 2nd gears

(b) Maximum-Throttle Accelerations - Automatic Transmissions

For maximum-throttle accelerations in <u>each</u> of the gears and gear/converter clutch combinations specified above, accelerate at the detent/application condition according to the speed versus vacuum/pressure profiles determined in (a) from the minimum obtainable speed up to 70 mph (113 kph). If the transmission downshifts, abort and start the acceleration again. Start with the highest gear or gear/clutch combination and proceed in descending order.

(c) <u>Maximum-Throttle Accelerations - Manual Transmissions</u>

Select the highest gear as specified in the table above. Start at the lowest speed from which the vehicle will accelerate smoothly or 25 mph (40 kph), whichever is higher, and depress the throttle full throughout the acceleration up to 70 mph (113 kph).

Select the next lower gear specified in the table above and accelerate at full throttle from the minimum speed from which the vehicle will accelerate smoothly up to 70 mph (113 kph).

(d) Part-Throttle Accelerations for Both Automatic and Manual Transmissions

Select the highest gear as specified in Table T-I for manual transmissions. Select the two highest gears as specified in Table T-I for automatic transmissions. For example, on a four-speed automatic transmission, check both fourth locked and unlocked and third locked and unlocked; on a three-speed automatic transmission, check third locked and unlocked and second. For automatic transmissions with converter clutches use the highest gear up to the minimum vehicle speed at which the converter clutch will engage, and the highest gear/converter clutch combination above this minimum speed, to obtain the critical part-throttle vacuum or pressure. To obtain the critical part-throttle vacuum/pressure, first operate at constant speed road load, at 25, 35, 45, 55, and 65 mph (40, 56, 72, 88, and 104 kph) incremental speeds if obtainable in the specified gear. At each speed, move the throttle in approximately 3 seconds from the road-load vacuum to the positions described below for naturally aspirated and turbocharged engines:

- for naturally aspirated vehicles, one inch Hg (3.4 kPa) above:
 - a. full-throttle vacuum for manual transmissions;
 - detent vacuum for automatic transmissions without converter clutches;
 - c. the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.
- 2. for turbocharged vehicles, one psi (3.4 kPa) below:
 - a. full-throttle maximum boost for manual transmissions;
 - b. maximum boost at detent for automatic transmissions without converter clutches;
 - c. maximum boost or 0.5 psig (1.7 kPa) above the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.

Use of vehicle brakes should be avoided.

If knocking occurs within any of the vacuum/pressure ranges, establish the manifold vacuum/pressure which gives maximum knock intensity on each fuel series. This is the critical vacuum/pressure to be used for all subsequent constant-vacuum/pressure part-throttle accelerations from the minimum obtainable speed in the test gear to 70 mph (113 kph), or until the vehicle ceases to accelerate. This critical vacuum/pressure should be determined for each reference fuel series.

(2) Tank Fuel Observations

Investigate for maximum-throttle and part-throttle knock as detailed in Item 3d(1). Define maximum knock intensity as per Item 3c. Record maximum knock intensity, speed of maximum knock intensity, and manifold vacuum/pressure at each operating condition.

(3) <u>Vehicle Rating Procedure</u>

All initial accelerations should be started from minimum obtainable gear/converter clutch combination at constant level road-load conditions. Knock rating should be performed while in a normal upright seated position with floor mats in place.

- Step 1 After Tank Fuel Observations, use a fuel estimated to give borderline knock in a given fuel series and investigate for incidence of knock under conditions as described in D.3.d.(1)(b) above, and D.3.d.(1)(c) above, whichever is applicable.
- Step 2 If no knock occurs, go to a lower octane number blend in that series and repeat Step 1.
- Step 3 If knock occurs at one or more of the operating conditions in Step 1, continue investigation at the critical condition(s) with higher octane blends until highest octane fuel giving knock is determined within one octane number or one blend (the next higher fuel giving no knock). Record maximum knock intensity on all fuels. Record speed of maximum knock intensity and manifold vacuum/pressure on highest octane fuel that knocks.
- Step 4 Using the lowest octane blend that did not knock in Step 3, investigate for incidence of part-throttle knock as described in D.3.d.(1)(d). If knock occurs, continue investigation at critical vacuum/ pressure until requirement is defined. Record maximum knock intensity and critical manifold vacuum/pressure on all fuels, and speed of maximum knock intensity on highest octane fuel that knocks.
- Step 5 With FBRU fuel only, if no knock occurs in Step 4, go to a lower octane number blend and repeat Step 4. Discontinue part-throttle investigation if knock is not observed with a fuel four octane numbers lower than determined in Step 3.
- Step 6 For knock-sensor equipped vehicles after determination of maximum requirement, continue with lower octane blends until the lowest octane fuel giving borderline knock is determined (the next lowest fuel giving above borderline knock).

The rating procedure is given in arrow diagram form on page $D\!\!\sim\!24$ for maximum requirement, and on page $D\!\!\sim\!25$ for minimum requirement, for knock sensor-equipped cars.

E. INTERPRETATION OF DATA

The data will be recorded on data sheets DFMF-11-87 and DFMF-19-87. Data Form DFMF-11-87 has provisions for recording both the maximum and minimum requirements of knock-sensor equipped vehicles on the same sheet. Additional data sheets for recording run data may be appended to DFMF-11-87 as needed. Octane requirements for all reference fuels shall be determined as follows:

- 1. If the knock intensity of the highest reference fuel giving knock is borderline, the requirement shall be reported as the octane number of that fuel.
- 2. If the knock intensity of the highest fuel giving knock is above borderline, the requirement shall be reported as the mid-point between the octane number of the fuel giving knock and that of the next higher fuel.
- 3. If the octane requirement in high gear is equal to the requirement in a lower gear, report the highest gear data.
- 4. For part-throttle requirements, report the data from the critical manifold vacuum/pressure observations.
- 5. For knock-sensor equipped vehicles, report the highest and lowest fuel giving borderline knock. If the knock intensity with the lowest fuel giving knock is above borderline and the next highest fuel is no knock, then the minimum requirement is the mid-point between the two.

Record data on all fuels tested, even though knock was not encountered. The octane number requirement summary block on the first sheet of DFMF-11-87 provides space for both the maximum and the minimum requirements of knock-sensor equipped vehicles. When transferring data to the summary block, record maximum-throttle and part-throttle octane number requirements in the appropriate blocks. The higher of the two will be selected by the computer as the maximum octane number requirement. If both maximumthrottle and part-throttle requirements are equal, then the computer will select the part-throttle requirement as the maximum octane number requirement. Use proper letter designation (see footnotes on data sheet) to designate: (1) requirements outside of the reference fuel limits; (2) FBRU part-throttle requirement more than four numbers below maximum; and (3) all other cases for which the octane number requirement has not been determined. Note that in the case of a converter-clutch equipped vehicle, test gear numbers should indicate whether the converter clutch was locked or unlocked. Note also that in the case of turbo-equipped vehicles, a manifold pressure above atmospheric is indicated as a <u>negative</u> number in units of psig.

It is important that the vehicle identification number (VIN) of each vehicle tested be recorded on all data sheets to provide a means of cross-indexing.

* Con N 2 & (1)(1) Diane O 10 10 10 10

ANNEX A to the CRC E-15-87 TECHNIQUE

PROCEDURE FOR SETTING UP VEHICLES WITH FUEL INJECTION

ANNEX A

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS: VEHICLES EQUIPPED WITH FUEL INJECTION

- 1. To run octane requirements on fuel-injected vehicles, it is necessary to install an external fuel supply line with auxiliary electric fuel pump from the reference fuel can to the vehicle fuel system and an external return line back to the reference fuel can.
- 2. There are two types of fuel injection systems: throttle-body injection, and multi-port injection. As a general description, the systems will contain the following parts:

Fuel Tank
High- or Low-Pressure In-Tank Fuel Pump
Fuel Supply Line(s)
In-Line Filter(s)
High-Pressure Chassis-Mounted Pump (not required for all vehicles)
Fuel Rail (to supply multiple injectors on port fuel injection)
Fuel-Pressure Regulator (integral on throttle-body, on fuel rail with multi-port injection; controls pressure at the injectors)

Depending upon the vehicle's specific fuel system and/or tester's preference, installation of the required auxiliary equipment can be accomplished in a variety of ways.

- 3. The auxiliary fuel supply line may be installed anywhere between the fuel tank and the inlet at the throttle-body or fuel rail. the auxiliary fuel return line may be installed anywhere between the fuel-pressure regulator outlet and the tank.
- 4. After connections have been broken, the fuel lines on the fuel tank side should be capped and the vehicle's pump(s) disconnected or disarmed. Alternately, an additional fuel line can be looped between the supply and return lines and the vehicle pump(s) allowed to circulate fuel directly back to the fuel tank.

The auxiliary fuel supply system must be capable of supplying fuel at slightly higher than the nominal regulated pressure (to overcome losses) to insure accurate results. This may be accomplished by using a high-pressure pump capable of being adjusted for the particular vehicle being tested, or by using a low-pressure pump to supply fuel to the chassis-mounted high-pressure pump if the testing lab chooses to keep it in the system. A fuel filter may be required between the auxiliary pump and the reference fuel can to protect the pump. The fuel return line should be connected to the reference fuel can through a tee at the auxiliary pump inlet. The reference fuel can should be vented to outside the vehicle.

It is possible to use three-way valves in the fuel line between the fuel pump and the fuel tank and between the return line and the fuel tank. When used, the operator must change the return line valve to

the auxiliary fuel system while the engine is shut down, to avoid building up excessive pressure in the return line which could damge both the fuel-pressure regulator and injection pump.

- 5. When changing from one reference fuel can to another, the following steps should be followed:
 - a. Disconnect fuel inlet line from reference fuel can and run engine a short time; do not run out of fuel since this will introduce air into the fuel injection system and excessive cranking will be required to restart the engine.
 - b. With the engine shut off, disconnect the fuel return line from the reference fuel can and connect it to a slop can. Connect the fuel supply line to the new reference fuel can and run the engine long enough to purge the old reference fuel from the system. The time required will be dependent upon length of added fuel lines, but it will be approximately 30-60 seconds; approximately 1-2 quarts of fuel will be discarded to slop. (1)
 - c. With the engine off, connect the fuel return line to the reference fuel can. The vehicle is then ready to be tested.
 - d. When changing to the next reference fuel, it is necessary to repeat Steps a, b, and c.

CAUTIONS

Fuel supply lines remain pressurized long after the engine is shut off; be sure to relieve the pressure before disconnecting fuel lines.

Use fuel lines designed for high pressure. They should be rated for at least 250 psi working pressure and for 1000 psi burst pressure.

The engine and auxiliary fuel pumps should be shut off while changing from reference to tank fuels.

Purging procedures should be followed strictly to preclude reference fuel contamination or discarding more fuel than is required.

Vehicle pump(s) may be disarmed by use of the inertia switch. The voltage supplied to the inertia switch may then be used to power the auxiliary pump. When making these electrical connections, do not "splice" into the wire, instead connect the wire lead to the connector.

Use of the "rolled edge" style hose clamps, such as those made by Chrysler, is recommended to prevent damage to fuel lines.

Note: Diagnostic scanners should not be used while knock testing.

⁽¹⁾ It is critical to circulate an adequate amount of fuel to the slop can to prevent reference fuel contamination.

APPENDIX E

1987 OCTANE NUMBER REQUIREMENT SURVEY DATA

G L O S S A R Y

(For Appendix E Only)

Emission Certification (EMCT): Altitude California Federal B Both California and Altitude Ε Everything Knock Sensor (KNK SEN): Yes No Air Conditioner: Yes No Spark Advance: Before Top Center After Top Center Test Fuel: 1 Tank Fuel **FBRSU FBRU** 3 PR Octane Number Requirements: Less than lowest available ON for FBRU and (expressed as Research ON) FBRSU fuels and less than 76 for PR fuels Higher than highest available ON for FBRU and FBRSU fuels and higher than 100 ON for PR fuels Part-throttle requirement greater than four numbers below maximum-throttle requirement Throttle (THR): Maximum Part Gear: 1-5 Manual and Automatic Torque Converter (CONV): Not tested in lockup Tested in lockup Manifold Vacuum (MV): Inches Hg, positive (+) for vacuum, negative (-) for pressure Owner-Reported Knock (OWKNK): Yes, Not Objectionable Objectionable No Rater-Reported Noise Intensity None (NINT): Borderline

Above Borderline

1387 CPC OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE D	DESCRIPTION	WEATHER	OCTANE NUMBER	PEQUIPEMENT DATA	TANN FE	JEL INFORMATION
				MUMIXAM	PART THROTTLE		PATER
CBS NO	MODEL C KNK	SPARK ADVANCE A I AS AS COOM C.P. R RCC TST MILES	TMP BAROM HUM L	NO R RPM	G E OCT 4 My NO P PPM	4	N G ITE N H A TTRR PPW MV
41-23	ACE P16A4 C N	9.3 7 +12 +12 15415	75 30.45 46 3 2	89.0 4u 2900	0.5	N	B M 40 3000 1.5
05-20	4CE - P16M5 F N	9.3 r +12 +12 14695	2	32.0 4 2250	3.2 F 0.2 2.2	N 34.4 94	.: v
86-17	BGA P18M5 F N	9.0 y - 6 - 6 10410	2	39.0 4 2950	C.4 85.0 4 2900 C.4 G.4	1. 5 N 95 .1 83.	.5 N
47-14	BGC P18M5 C Y H H H	10.0 Y + 8 + 6 12900	2	96.0 4 4500 98.0 4 4500 92.0 4 2000	0.5 0.5 0.5		
	L 1.	·	2	94.0 4 4500 96.0 4 4490 90.0 4 2000			
69-90	BJA P18M5 F N	3.0 Y - 6 - 6 24667	2	89.0 4 2400 90.0 4 3600 87.0 4 2400	0.4 0.6 0.4	N 97.2 86.	.6 N
45-15	BUB P18MS F Y H H H	10.0 Y + 6 + 6 17030	2	83.0 4 1450		2.2 N 94.1 85. 2.3	.4 N
	լ Լ է		2		1.2 1.3 82.0 4 1450 1.2	2.3	
07-*6	SHO T22A3 F N	9.5 Y +12 +12 20721	2	89.0 3 2800		2.0 N 34.8 83	.2 N
25-08	OMP 252A3 F Y H H H	9.1 Y + 5 + 5 19603	2	90.0 30 1400	3.0 93.0 2U 1350	2.0 2.0 2.0	N
	ւ Ն Լ		2	90.0 30 1400	3.0 92.0 20 1400	2.0 2.0 2.0	
06-13	EAP 2'6A3 F N	9.4 Y - 7 - 7 11443	2	90.0 3L 3000 92.0 2U 3200 87.0 3L 3200	1.4 96.0 3L 3000	6.0 N 93.0 82 6.0	.0 A P 3L 3000 E.3

1397 CRC OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE DESCRIPTION	WEATHER			TANK FUEL INFORMATION
•				PART THROTTLE	RATER
08S NO	SPARK E ADVANCE M A MODEL C KNK I AS AS OF ODE T SEN C.P. P PCD TST MILE	F U COM AMB E LES TMP BAPOM HUM L	E OCT A	OCT A	O N N G N OCT NO ITE N A A RES MCT TO P DDM M.
55-02	EAP 216A3 C N 9.4 Y +10 + 7 204	2	87.3 20 2300	1.5 F 1.5 1.5	
35-91	EAP 216M5 F N 9.4 + 7 + 7 69	ž	85.0 4 2400	2.0 86.0 4 1600 5.0 2.0 86.0 4 1950 5.0 2.0	N 35.8 86.0 N
41-11	EAP 216M5 C N 9.4 Y + 7 + 7 270	2	87.0 4 2400	2.6 2.0 2.0	N; M
46- 01	SAP 216M5 F N 3.4 Y + 7 + 7 118	2	91.0 4 1400	2.0 89.0 4 1575 3.3 2.0 90.0 4 1375 3.0 2.0	N 90.5 83.1 B P 4 1450 3.0
47-12	EAP 216M5 C N 9.4 Y + 5 + 7 307	2	86.0 4 3600	1.0 84.5 4 3600 1.0 1.0	
47-13	EAP 216M5 C N 9.4 Y + 7 + 7 155	2	• • • •	1.0 89.0 4 1900 3.0 1.0 1.0	
28-17	EAP 716A3 F N 9.4 Y + 7 + 7 152	2	87.0 3U 2450	0.7 84.0 3U 2550 3.0 .7 0.7	8 M 3J 2450 1.7
40-09	EBH P20A4 F N 8.5 + +15 +15 88	Ş		0.5	N
52-01	E9H P2044 F N 8.5 Y +15 +15 278	î	90.0 4L 92.0 3L 88.0 3L 3100		0 94,4 33.7 N
65-16	EBH P20M5 F N 8.5 N +15 +15 295	2		95.0 4 1750 3.0 95.5 4 1650 3.5 0.0	
52-08	ECE P16M5 F Y H 10.0 Y +15 +15 146 H	2	87.0 4 2600	0.1 86.0 4 260 0 2.0 0.1 0.1	N 97.1 85.8 N
	L L L	2		0.1 85.0 4 2500 2.0 0.1 0.:	

1987 ORG OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE	DESCRIPTION	WEATHER	OCTANE NUMBER REQU	IPEMENT DATA	TANK FUEL INFORMATION							
				MAXIMUM	PART THPO:TLE	PATER							
0 8 S	E M Model C kny	SPAPA 4D/ANGE A C I 4S 4S	F J COOM ANB E	G E E COCT A	3 E OCT A	0 # N G N 007 NO I I E NN H A							
NC	CODE 7 SEM	C.R. R RCD TST	MILES TMP BAPOM HUM L	NO R RPM MV	NC P PPM M.								
55-**			9750 48 29 .80 32 3										
41-20	EDP P2GA4 F N	8.5 + +15 +15		88.0 30 1800 1.0 90.0 30 2300 1.0 87.0 30 2200 1.0	87.0 4L 1800 - 9.0	N 4							
07-10	EEm P30A4 F N	9.6 * +20 +20		83.0 4L 1700 1.3 85.0 4L 1900 1.3 83.0 4L 1800 1.3	81.0 4L 2000 4.5	N 92.C 82.1 N							
29-05	EEH P3GA4 F N	3.0 Y +20 +20	*1500 70 30.09 62 3 2	37.5 4L 1900 1.2 : 86.5 4L 1800 1.2	87.0 3U 2300 3.0 88.5 3U 2300 3.0	N 95.2 86.9 N							
40-08	EEH P30M5 F N	9.0 r +20 +20		93.5 3 1400 0.0 92.5 3 1400 0.9 93.5 4 1500 0.0	F	۸ .							
08-33	GC8 T4144 F N	9.0 1		3 87.0 4L 1450 2.0 2 88.0 39 2300 1.5 4 84.0 3L 1950 1.5	86.0 4L 2025 6.0 88.0 4L 2025 5.0	4							
07-03	GC8 T41A4 F N	9.0 r +10 +10		8 88.0 4L 1800 1.0 2 88.0 3L 2150 0.5 3 86.0 3L 2100 0.5	85.0 4L 1750 3.0	N N							
65 -08	GC8 T41A4 F N	9.0 Y +10 +10	6295 66 29.14 49 3 2	8 86.5 4L 1300 0.0 2 86.0 4L 1400 0.0	85.5 4L 1250 310 38.5 4L 1250 3.0								
41-05	GC8 T41A4 F N	9.0 Y +10 +10		8 86.0 3L 2200 1.5 2 99.0 3L 1900 1.5 4 85.0 3L 2000 1.5		ч -							
75-08	,	4 8.3 Y 4 H		2 90.5 2U 2500 2.0 2 91.5 2U 2500 2.0 3 88.5 2U 2900 2.0	90.5 2U 2500 5. 0	A M 2U 260C 2.3							
	; ,	L L	2	3 90.5 2U 2500 2.0 2 91.5 2U 2500 2.0 8 88.5 2U 2900 2.0	90.5 20 2500 5.0								
29-11	HAR 72543 F N	8.3 Y	16151 70 29.80 65 3 2 4		102.0 30 2450 4.0	Y 91.6 82.3 A M 3L 1600 1.1							

1987 ORG OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE	DESCRIPTION	1	WEATHER	00-	ANE NUMBE	TANK PUEL INFORMATION										
	*******		• • • • • • • • • • • • • • • • • • • •			MUMIKAM		PAPT	THROTT							PATER	••
OBS NO	E M Model C rnk Code T sen	SPAR ADVANI A I AS A C.P. P PCD T	000 AM		U E OCT	G E A P RPM	MV	G E OCT 4 NO R		My				I	- 1	РРЫ	ν,
29-13	HAR 725A3 F N	8.3 Y	12184		2 36.5	3L 1500 3U 2700	1.2	95.0 3	U 2400	4.0	γ 3	٠.:	82.3		 м 3(1900	1.2
45-12	HAR T25A3 F N	8.3 7	19152 7		92.0	20 2675 30 2950 20 2950	1.0 1.0 1.0	86.0 3	L 2150	2.0	31	0.3	÷3.·	3	w (),	1676	٠.٥
08-17	мА W Р28АЗ F Y H Н Н		12221 7	;	2 96.0	3L 1700 3L 1600 3L 1900	1.5 1.5 1.5	94.0 3 95.0 3 90.0 3		5.0				8	w 3(2500	2.0
	L L			;	2 94.0	3L 1700 3L 1600 3L 1900	1.5 1.5 1.5										
29-10	HAW P29A3 F Y H H H		11721 7	;	2	3L 1900		97.5 2 102.0 2			9	1.9	22.8	. 4	M 3.	2000	1.*
	L c				3 2 4 93.0	3L 1900	1.1	97.5 2 102.0 2		2.0 2.5							
29-23	HAW P2843 F V H H H		14887 7	0 30.00 57	2	2U 2850		98.0 2 101.5 2		2.0 2.0	1 9	1,4	82.2	. 4	M 31	1900	1.0
	L (2	2u 28 50		98.0 2 101.5 2									
29-09	HAW P28A4 F Y H H H		15368 7		2 99.5	3U 2800 3U 3000 2U 29 00	1.1 1.1 0.9	92.0 3	L 25 00	3.0	Υ 9	1.7	82.2	£	M 36	1 2200	1,1
	և Ն Ն				2 99.5	3U 2900 3U 3000 2U 2900	1.1 1.1 0.9										
⁻ 5-01	HBY 450A4 F Y H H H		20 6227 6		2 85.5	3L 2300 3L 1 8 00 3U 2100	2.0 2.0 2.0	F 85.5 4	L 1800	6.0				Ŋ			
	ن د				2 85.5	3L 2300 3L 1800 3L 2100		Б 85.5 4	L 1800	6.0							

1987 CPC OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE DESCRIPTION			ION		WEATHER				OCTANE NUMBER REQUIREMENT DATA									TANK FUEL INFORMATION							
												w,	NJ I MUH	 	Pı	RT.	1H901	`_E						91759		
OBS NC	MODEL	E M C KNK T SEN	¢.a.	4 - :	SPARK ADVANO AS AS	Ε	/ AMB	: BARON		j E	057	E	ooy	W.	OCT NO	A			(N		T NC	: 	3 E A R	pp u	· · · · · · · · · · · · · · · · · · ·	
29-08	HEE P5044									-	٦								-					 . '500		
										3 2 4	- - -				۲											
41-13	HEF P50A4	C Y H H	3.3	* *	. 6 +	6 26157	73	30.08		4	30.0 89.0	2U 2U	3500 3300	1.5 1.5 1.5								N				
es 10				•						2	88.0 89.0 88.0	2U 2U	3600 3600	1.5 1.5 1.5												
65-10	HFS P2844	H H	8.3	γ +	י+ טי	3 9/19	48	29.5		2	89.0 8 8 .0	4L 4L	1700 1900	1.0	86.5	41	1900	2.5								
06-12	4H3 P39A4		9 F	•		12064	43	20 50		2	88.5 98.5 87.5	41 41	17 5 0 1850	1.0	a	211	1700	3 A		24	a 3*	7 11				
44	iig raanv	H #	V. J	•		12004	•:	23,30	J	2	92.0 96.0	3U 3U	1700 2700	1.0	31.0	30	2100	3.0	`	34.	3 33.	. 4				
22-25	HH3 P38A4	E V 4	4 5	¥		22942	70	20 10		2	30.0 36.0	3U :	295 0 2700	1.3	30 0	•	1700	• •								
2.7 .4	m.s (Sunv	H	J. J	•		22042	, 0	30.75		4	96.0 31.0	4L	1 20 0 1300	0.7	20.5	3 L	UU	3.0	•			4	M 38	2000	9	•
22-00	au 2	i L	a •			11700	••			2	89.0 95.3 90.0	2U :	220 0 1 2 00	0.6												
23-06	HH3 P38A4	H	3.5	1		14750	10	30.20		2 4	99.0 92.0	4L 3U 3	1350 2200	0.5 0.5	93. 5	4 U	2000	2.0	Y	31.6	3 32.	4 A	# 10	1780	0.5	
		ا -								2	95.0 99.0 91.0	4L 1	350													

1387 CRC OCTANE NUMBER REQUIREMENT SURVEY

	VEHICLE DESCRI	PTION	WEATHER	OCTANE NUMBER	R REQUIPEMENT 1474	TARK FUEL INFORMATION
				MAXIMUM	PART THROTTLE	\$4 ⁷ E9
09 S NO	M Model C Kna		AM8 E TMP BAROM HUM L	NO R RPM	MY NO B BOM	C
29-13	HH3 P38A4 F Y H 8.5 H H	, 2,2,8	70 30.40 52 3 2 4	93.0 4L 1200 93.0 3U 1900 80.0 2H 2000 92.0 4L 1250 93.0 3U 1900	0.5 0.4	3.3
4*-20	н43 Р38A4 F Y H 8.5 н Н	Y 18548	2	97.0 40 1400 94.0 40 1350	0.5 0.6	
	L L L HH3 P3844 F Y H - 8.5	v -34.•	2 4	35.0 4L 1500 32.0 4L 1400	0.5 92.0 4L 1400 0.5 0.5	2.C N 92.3 82.4 B M 4L 1450 0.7
	H L	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 4 3 2	34.0 4L 1500 99.0 4L 1500 89.0 4L 1450 91.0 4L 1450	0.7 0.7 0.7 0.7	N JEIJ JEIV B N SE SJE C
65-14	L HJK 72043 F N 8.8	N + 3 + 3 8188	50 29.74 56 3	95.0 3L 2200 96.0 3L 2200	6.7 1.0 92.5 3_ 2200 1.0 1.0	2.0
29-29	HUK T20A3 F N 8.9	Y + 8 + 8 13608	2		0.7	6.C Y A M 2U 3000 C.6
29-2*	HUN TECAS FIN 8.8	Y + 8 + 8 12237	2	95.0 2U 4500		1.5 Y 91.4 82.3 A M 26 4300 0.6
06-26	HJK 72043 F.N. 3.8	Y - 8 - 8 139 6 9	2	94.0 3L 2500		2.0 N 93.1 82.8 B M 3L 2100 0.4 2.0
29-32	HN_ P30A3 F * H 9.5 H	y 2149 ⁷	2	90.0 2U 2400	0.6 85.0 3£ 1600 0.6 0.9	4.0 N
	ն :-		2	87.0 2U 2500 88.0 2U 2500 87.0 3L 1700		

	/EHICLE	DESCRIPTION	WEATHER	OCTANE NUMBER REQU	IREMENT DATA	TANK FUEL INFORMATION
		***************			PART THROTTLE	
OBS	E M Model C Khr	SPAPA ACVANCE A I AS AS O	COM AMB E	E	G E	G W N 3 N 3CT NC I T E N N H 5
٧C		CURUR ROD IST MI.	LES IMP BAROM HUM [AC s sow MA	NO R RPM M.	C RES MCT THE PPM M.
29-15	4NJ 725A3 F N		943 TO 30.00 5T 3	95.5 3L 1300 1.1 84.5 3U 2850 3.6		+ 31,6 82,3 A M 3U 2400 C.5
66-13	HNU 72843 F N	9.0 + 14/	213 63 23.38 42 3 2 4		96.0 3L 1900 1.5 39.0 3L 2100 1.5 93.0 3L 1800 1.5	
06-08	H180 21543 F N	3,4 / + 5 + 5 133		94.0 3 3700 1.4 95.0 3 3700 1.4 32.0 3 2750 1.4		N 96.0 86.2 N
41-28	H180 21543 C N	9.4 N + 3 - 3 T		30.0 3 2300 1.0 32.0 3 2400 1.0 88.0 3 2400 1.0		N 92.8 82.8 8 M 2 3000 1.8
60-04	HYBU 21543 F N	3.4 N + 8 + 5 6		87.0 2 4200 1.2 88.0 2 4000 1.2 86.0 3 3000 1.4	95.0 3 2500 5.0	N 94.6 83.2 N
05-10	HYB. 215M5 F N	3.4 Y + 5 + 5 30		90.5 4 1500 1.5 91.0 4 1800 1.5 90.5 4 1500 1.5	89.0 4 2500 2.5 91.5 4 1500 8.0	
25-15	HYBU 215M5 F N	9.4 * + 5 + 5 16		88.0 4 1500 1.0 88.0 4 1500 1.0 87.0 3 1450 1.0	36.0 4 1700 2.5	N 91,7 83.1 N
47-16	IA3 P38A4 C * H H H			98.0 4L 1700 9.5 100.0 4L 1650 0.5 95.0 4L 1700 0.5	F	
	L -		2	96.0 4L 1750 0.5 98.0 4L 1700 0.5 93.0 4L 1650 0.5		
09-01	IAR 725A3 F N	8.8 9 119		94.0 3L 1375 4.0 96.0 3L 1400 4.0 88.0 3L 1375 4.0	93.0 3L 1850 8.0 94.0 3L 1875 8.0 F	B M 3∟ 1350 4.0
15-09	149 T25A3 F N	9.8 7 + 9 + 8 87		89.0 3U 2300 1.0 91.0 3U 2300 1.0 86.0 3U 2550 1.0	91.0 3U 2150 4.0 93.0 3U 2450 3.5	N 96.5 88.6 N
29-31	14P 725A3 F N	3.5 Y 165		92.5 2U 3300 0.7 94.0 2U 3300 5.7 88.0 2U 3300 0.7	L	N

	VE!	HICLE I	DESCRI	PTION		WEATHE	P									-74	k FuE	_ INFOR	wr_IO/	
		• • • • • • • • • • • • • • • • • • • •				******			M	A: IMUM		ρΔ¢	THRCT	"LE					Pite	
0 8 S NC	MODE_ Code		C.R.	SPAPK 40VANCE A I AS AS P RCD TST	OCOM MILES	AME TMP BAPO	а 3 2 М ИН М			•					•		. -	N 3	RPM	и,
36-15	IA# P2843	е у н н н	8.5	Y	5,16	48 29.3	2 4 3	91.0 92.0 85.0	31 31 31 31	2250 1950 2100	1.0	83.0	3_ 2250 3L 2250	3.0	N	92.2	÷2.(t _k		
65 -0 ⁻	IC3 P38A4	•	9.5	Ϋ́	10625	66 29.1	4 4 48 3 2	83.0 99.0	31 30 30	1350 2000 2000	0.0	36.0	4 L 1300	2.5						
40-04	IC1 P3844	L L L	3 £	· · ·	10750	F1 20 C	2 4	87.5 97.5	30 30	2500	0.C 0.0							N		
4 0-04	102 73044	H H	0.4	,	10 33	J: 30.0	2 4 3 2		3U 2U 3U 3U	1600 2100 1800 1600								А		
60-09	IC3 P38A4	H	8.5	Ÿ	11503	58 29.9	6 48 3 2 4	89.0 88.0 88.0	3: 3L 3L	2350 2300 2400	0.9 0.9 0.3		4L 2000		N			X		
70	TC~ ~~~.	L L		v			2 4	87.0 87.0	4L 4L	2050	0.8 0 .3		4L 1900							
(3-12	IC3 P38A4	т т н Н	8.3	ī	:3184	84 29.0	2 4	86.5 82.5	3L 3U	1400 1 60 0	1.0		3U 1900					N		
		L					2 4	86.5 82.5	3L 3U		1.0		3U 1 9 00							
08-09	IGA 238A3	FYH H H	8.0	Y +15 +15	15469	80 30.0	2 4	98.0 90.0	3L 3U	1875 1900	1.8		3L 1400 3L 1475					9 M 3U	1900	٠.5
							2	92.0	30	1950 1900 1900	1.5									

1987 ORG OCTANE NUMBER PEQUIPEMENT SURVEY

75	HICLE	GESCPI	PTION			#E	ATHER		007	ANE	AUMBE:	PEQU	IREMEN	. :1	-1			TANK FU	[_ [\c0a*	(47]]]\	
										¥	A : [MUM		24	RT T	0	`.E			•	1.Eb	
MODEL CODE	-		40 v A A A AS	ANCE AS				1	L E OCT			uy.			əp k	W,	3 W K & K	OCT NO	N 3 1 T 5 N H 4 T P R	DDN DDN	¥.
IGA 238A3	F Y 4 H	8.0	 r +15	+15	13485	73	29.39			20	2000	· .5	31.0	3U	2000		-	30.5 33.	B 4 35	1775	1.5
	L L							;	3 2 4				81.0 	25	1975	2.5					
IGY 45043	= Y H H H	8.0	Y +2C	+20	6629	30	23.63	:	2 38.0	25	2250	0.5	82.3	3L	1400	10.0			٠ .		
	:								3 2 4												
IGY 45043	C Y H H H	3.0	+22	+20	7967	65	30.01	-	2 88.0	31	1400	3.5							٧		
	1								3 2 4												
IGY 450A3	F Y H H H	9.0	Y +20	+20	7777	70	30.14		2 100.0	20	2250		96.0	3L	1800	3.0	•	92.2 31	A P 3L	1750	\$.1
	ا د د								3 2 4												
IGY 450A3	Н		Y +20	+20	18310	61	29.24		2 99. 0	3L	1500	8.0	98.5	30	1900	7.5	N		N		
	<u>.</u> L							,	3 2 4												
IGY 45044	. F Y н н	8.0	Y +20	+20	6079	65	29.01		2 86.0	20	1900		F						N		
	1 1 1							i	3 2 4												-
	MCCEL CODE IGA 238A3 IGY 450A3 IGY 450A3	IGY 450A3 F Y H H IGY 450A3 F Y H H IGY 450A3 F Y H H H IGY 450A3 F Y H H H IGY 450A3 F Y H H H IGY 450A3 F Y H H	E M M M COEL C NAK CODE T SEN C.R. : IGA 238A3 F Y H 8.0 H H L L L L L L L L L L L L L L L L L	SPI	SPARK ACVANCE M A MOCEL C ANK I AS AS CODE T SEN C.R. P RCD TST IGA 238A3 F Y H 8.0 Y +20 +20 H L L IGY 450A3 F Y H 8.0 Y +22 +20 H H IGY 450A3 F Y H 8.0 Y +20 +20 H L L IGY 450A3 F Y H 8.0 Y +20 +20 H L L L IGY 450A3 F Y H 8.0 Y +20 +20 H L L L L L L L L L L L L	SPARK E ACVANCE M A MODE C ANK I AS AS ODOM CODE T SEN C.R. P RCD TST MILES IGA 238A3 F Y H 8.0 Y +20 +20 6629 H H L L L IGY 450A3 F Y H 8.0 Y +22 +20 7967 H H L L L IGY 450A3 F Y H 8.0 Y +20 +20 7777 H H L L L L IGY 450A3 F Y H 8.0 Y +20 +20 18310 H H L L L L L L L L L L L L L L L L L	SPARK E	SPARK E ACVANCE M A A MOCEL C NNK I AS AS COOM AMB CODE T SEN C.R. P RCC TST MILES TMP BAROM ISA 238A3 F Y H 8.0 Y +20 +20 5629 30 29.63 H L L IGY 450A3 F Y H 8.0 Y +22 +20 7967 65 30.01 H H L IGY 450A3 F Y H 8.0 Y +20 +20 7777 70 30.14 H H L IGY 450A3 F Y H 8.0 Y +20 +20 18310 61 29.24 H H L L IGY 450A3 F Y H 8.0 Y +20 +20 18310 61 29.24 H H L L L L L L L L L L L	SPARK E 40 VANCE M A MODE C NAK I AS AS ODOM AMB CODE T SEN C.R. P RCD TST MILES TMF BAROM HUM ISA 238A3 F Y + 8.0 Y +20 +20 6629 30 29.83 29 H H L L IGY 450A3 F Y H 8.0 Y +20 +20 7967 65 38.01 60 H H L IGY 450A3 F Y H 8.0 Y +20 +20 7777 70 30.14 61 H L L IGY 450A3 F Y H 8.0 Y +20 +20 18310 61 29.24 72 H H L L IGY 450A3 F Y H 8.0 Y +20 +20 18310 61 29.24 72 H H L IGY 450A4 F Y H 8.0 Y +20 +20 6079 65 29.01 75 H	SPARK E ACVANCE M A	SPARK E	SPARK E ACVANCE M A	SPARK E	SPARK S	SPARK E ATVANCE	SPARK SPAR	SPARK F H S.0 Y +20 +2	SARK SARK	SPARK SPARK S	SPARK SPAR	SPARK SPAR

	VEHICLE	DESCRIPTION	1	WEATHER	OCTANE	NUMBER REG.	JIREMENT DATA	7.144.5	UEL INFORMATION
					М.	AXIMUM	PAP" "HROTTL	.£	\$4.E5
OBS NO			ANCE	U 9 E			G E OCT A NO R PPM		N G ITE N H 1 T P P RPM W.
46-06	THO POBA4 F Y	н 8.5 г н	10334 7	2		1600 1.2 1500 1.5		N 35.4 98	.8 %
		L -		3 2 4	81.0 20 1	1400 1.5	i		
40-11	INC P3CA3 F V	# 9.(r #	10717 3.	2		3100 1.0	90.0 3L 2100	2.0	N
		L L		2		2100 1.0 2100 1.0 2100 1.0			
97-19	INL P30A3 F Y	Н 9.2 Y Н Н	9317 7.	2		1550 1.0		7.0 N 94.2 82 7.0	.4 B M 3L 1600 1.0
		<u>.</u>		2	93.0 3L 93.0 3L 93.0 3L		91.0 31 1500	1.0	
05-15	INU 72543 F N	9.0 Y	8935 6	9 29.85 50 3 2 4			94.0 3L 2750 96.0 3L 2750 93.0 3L 2750		.0 N
65-22	INU 725A3 F N	9.0 Y		2	95.0 3U	3000 1.0	92.0 3L 1900 95.5 3L 1900 90.0 3L 1900	4.3	
07 - 27	JA 315A4 F N	9.2 N +15	+15 10787 7	2	83.0 3 82.0 4 82.0 4	2900 1.5	79.0 3 2400	3.0 N 92.3 82	.1 4
35-81	JB 313M4 F N	10.9 N +14	+14 24723 7.	2		2350 1.5	90.0 4 1950	2.5 N 31.2 83	.5 B M 4 2300 1.8
52-92	J9 315A4 F N	9.2 N +15	+15 6461 7	2		3200 1.4	92.0 4 2700	3.0 N 33.0 81	.6 N
41-25	JB 315A4 F N	9.2 + +15	+15 21442 6	2	86.0 3 98.0 3 84.0 3	2900 1.5	F	92.4 83	.0 %

	√E!	HICLE D	ESCRIP	PTION		WEATHER		OCTA	NE NUMB	EP R EQ U	IPEMENT DATA		TANK FUE.	LINFORMATION
-					•				MATIMU	M	PAPT THROT",			PITER
CBS NO	CODE	E M C KNR T SEN	C.P. R	RCD T	CE S OBOM ST MILES	AMB TMP BAPON	U E HUM I	007 NG	G E 4 R PPW	M's	G E OCT A NO R PPM	О # ч к	OCT NO	N H A
29-2	29 315M5	F N	3.2	+20 +	20 7110	70 30.10	52 3 2	н Н Н			Н	· · · · · · · · · · · · · · · · · · ·	•	A M 4 1600 C.4
50-0 ⁻	JC 220A4	FN	9.1	+1" +	17 7873	68 30.25	2	86.0	3L 2700 4L 3250 3L 3000	2.5	82.0 42 2550	7.5 N	34.0 83.2	X
41-15	UC 229A4	C N	9,1 1	f +15 +	15 6160	75 30.10	2	94.0	3U 2500 4U 3000 4U 2600	2.0		N	l	N
05-27	JC 220M5	FN	9.1	+24 +	24 - 278	69 30.82	2	91.0	4 2250 4 2350 4 2200	1.8	ŧ	N	I	N
46-05	JC 220M5	FN	3.1 \	+24 +	24 16245	75 29.31	2	90.0	4 1625 3 2350 4 2000	2.0	86.0 4 1900	3.0 A	92.0 83.3	B M 4 1600 2.3
29-01	JC P20A4	FN	9.8 \	Y +15 +	15 11291	70 30.10	2	86.5	40 3000 30 3300 20 3000	0.2	85.5 3u 24 00	3. 0 M	9 5.8 87.0	N
06-04	JC P20M5	FN	8.8 \	Y +°5 +	15 25900	67 29.97	2	91.0	4 2600 4 2650 4 2400	0.6		h	4 98.9 87.8	N
46-20	JC P20M5	i F N	8.8	Y +15 +	15 6004	74 29.80	2	86.0	4 2450 4 2600 4 2600	0.5	84.0 4 1650	1.5	4 34.9 82.6	N
25-02	KGE*P22M5	i F Y H H H		Y +12 +	12 15444	70 29.56	2	91.0	4 2600 4 2600 4 2600	-10.0	F			4
		<u>.</u>					7	88.0	4 2600 4 2600 4 2600	-10.0				
25-01	KHK T25A3	BFN	9.0	Y +12 +	12 15945	70 29.55	i	2 85.0	3U 2000 3U 2000 3U 2000	2.0	81.0 3L 2100	3.0		N
96-96	KKO T2243	3 F N	9.5	Y +12 4	12 23589	51 29.7	i	2 91.5	3 2700 3 2700 3 2400	0.6	30.0 3 2 300	2.0	N 33.5 82.8	N N

	*EHICLE	DESCRIPTION	WEATHER	OCTANE NUMBER REC	JIREMENT CATA	TANK FUEL INFORMATION
•			•	ATY ARM	PART THROTTLE	RATE:
083 NO	E M Model C knk Code T sen	LC.R. R HCD (S) MILE:	2 IMP RYACH HOM C	G E 3CT 4 NC 9 RPM MY	G E OCT A NO R RPM MY	0 N G N G I T E N H A
47-15		3.5 Y +12 +12 3000	0 70 30.01 48 3			
25-09	KKD T22AC F N	9.5 + +12 +12 1917	2	84.0 2 2000 0.5 85.0 2 2000 0.5 84.0 2 2000 0.5		N
38-23	RLC 222A3 A N	9.0 N +10 +10 855.	2	89.0 2 3500 1.2 92.0 2 3500 1.2 92.0 2 2800 1.2		9 M 2 3600 1.2
05-30	KLC 22 2 A3 F N	9.0 % +10 +10 1822	2	87.0 3 2400 3.8 89.0 3 2325 4.3 84.0 3 2800 1.8		N 31.7 82.8 N
		9.8 Y +10 +10 1904	2	96.0 2 1900 1.8 88.0 3 2400 1.5	96.0 3 1800 7.0	
			4	85.5 3 250 0	88.0 3 10.0 88.5 3 1500 10.0	N
			2	86.0 4 1300 0.5 86.0 4 1500 0.5		N
05-19	H H	1	2	89.0 2U 3100 2.5 86.0 2U 1100 2.5	89.0 20 1100 5.0 90.0 20 1150 5.0 87.0 20 1 5 00 5.0	
	<u>.</u> 1		2	86.0 2U 3050 2.5 88.0 2U 3100 2.5 83.0 2U 1500 2.5	88.0 2U 1150 5.0 83.0 2U 1500 5.0	
		9.5 Y +12 +12 1271	2	90.0 3 2100 0.5 88.0 3 2100 0.5		N
39-03		9.5 Y +12 +12 1083.	2	88.0 3 2000 1.5 86.0 2 2200 0.5	90.0 3 1300 11.0	B P 3 1150 11.0
46-11	KPD T22A3 F N	9.5 Y +12 +12 1516	2	85.0 2 2000 1.0 83.0 2 2250 1.0 82.0 2 2100 1.0		4

	EHICLE O	DESCRIPTION	WEATHER	OCTANE NUMBER REQU	IREMENT DATA	TANK FUEL INFORMATION
	**************			MAXIMUM	PART THPOTTLE	RATER
085 NO			AMB E TMP BAPOM HUM L	OCT A NO R PPM MV	NO R PPM M.	N N H 1 K RES MCT T P R RPM MV
25-04	NPETP22A3 F Y H		70 29.61 50 3 2		95.0 3 2400 -3.0	
	<u>։</u> Լ <u></u>		2	93.0 3 2400 -4.0 93.0 3 23 ⁵ -4.0 93.0 3 2550 -4.0	33.0 3 230C -3.C	
28-34	RPETP22A3 F Y H H H	8.1 Y +12 +12 10556	2	92.0 3 2800 1.0 90.0 3 2800 1.0 89.0 3 2800 1.0		N N
	£ £		2	91.0 3 2800 1.0 89.0 3 2800 1.0 89.0 3 2800 1.0		
63-01	KICK 215A3 F N	3.4 Y 0 + 5 7017	2	86.0 2 2500 2.0 87.0 2 2500 2.0 86.0 2 2500 2.0	84.0 2 2200 3.5	N
06-03	KICK 215M4 F N	3.4 N + 5 + 5 21527	2	93.0 4u 1500 0.8 93.0 3u 1500 0.6 93.0 4u 1500 0.8	96.0 30 1500 7.0 97.0 30 1600 7.0	N 93.3 ±2.0 4 P 3U
08-32	LAR T25A3 F N	8.3 / 12275	2	90.0 3U 2700 1.0 92.0 3U 2500 1.0 85.0 2U 3100 1.0	89.0 3L 2250 5.0 90.0 3L 2300 5.0	N
05-29	LAW P28A3 F Y H H H		2	84.0 3L 1900 1.6 85.0 3L 1950 1.6 82.0 3L 2000 1.5	F	N 92.1 82.5 N
	t t		2	84.0 3L 1900 1.6 85.0 3L 1950 1.6 82.0 3L 2000 1.6	F	
07-21	LAW P28A3 F Y H H H			87.0 3U 1850 2.3 89.0 2U 2250 1.4 85.0 2U 2500 1.4	Ė.	N 92.3 82.4 B M 3U 1990 2.3
	د د د		2	87.0 3U 1850 2.3 88.0 3U 1900 2.3 85.0 2U 2500 1.4	t	

	VEHICLE DESCRIPTION	WEATHER	OCTANE NUMBER REQU	IPEMENT CATA	TANK FUEL INFORMATION
•			MAXIMUM	PART THPOTTLE	P1.EP
085 NO		ξ	GCT A NC P RPM My		C
82-63	_Am P28A4 F v H E.9 v H	26932 TC 30.71 44 3 2		79.6 4L 2100 4.0	N 94.2 82.7 8 M 31 2400 118
	.	ž	32.0 30 2900 1.7 82.0 31 2900 1.8 30.0 30 2900 1.7	79.0 4t 2100 - 4.0	
46-07	LC3 P3844 F + H 8.5 Y H H	8670 75 29,70 67 3 2 4		L L	Y 90.3 82.4 N
	L L L	3 2 4		L L	
47-30	CGTTP38A4 C Y H 3.0 Y H H	2	99.5 2U 3800 -11.0 99.5 2U 3800 -11.0 99.5 2U 3800 -11.0		
	i. L	2	99.0 2U 3800 -11.0 99.0 2U 3800 -11.0 99.0 2U 3800 -11.0		
C5-18	LGA 238A3 F Y H B.G Y +12 +1 H H	2	94.0 3L 1575 1.0 95.0 3L 1400 1.0 92.0 3L 1400 1.0	F	N 92.3 82.6 A M 3L 1500 1.0
	L L	2	93.0 3L 1500 1.0 94.0 3L 1400 1.0 92.0 3L 1400 1.0		
7 5- 09	LGY 450A4 F Y H 8.0 Y +20 + H H	2	94.5 3L 2000 1.5 95.5 3L 1800 1.5 83.5 3L 2200 1.5	ŧ	N
	L L	2	84.5 3L 2000 1.5 85.5 3L 1800 1.5 93.5 3L 2200 1.5	f	
29-10	LHS P3844 F Y H 8.5 Y H H		85.0 2U 1850 0.5 86.0 2U 1900 0.5 83.0 2U 1900 0.5	F	N
	i L	2	83.0 2U 1900 0.5 84.0 2U 2000 0.5 81.0 2U 1900 0.5		

	VE+	ICLE	DESCR	IPTIO	N		W	ATHER			OCTAN	E NUMB		IPEMEN					TANK FL	EL IMPORMATI	C4
												MAXIMU	M 				`.E			PATĘ	\$
OBS NO		E M C KNK T SEN	C.=.	40 A I A	PARK VANCE S AS D TST	OCOM MILES	AMB TMP	BAROM	HUM	F U E (3 E OCT 4			CT	Gil			O W	OCT NO	N G ITE NHA IPR PPM	u,
3-1:	LH3 P36A4	 F ፣ H ሦ	3.5	 f	•			29.32	50	3 8	86.0 2 86.0 2		0.5					-		N	
		: : L								2 8	84.0 2	ป 1750 ป 1700 ป 1700	0.5								
:-21	LH3 P38A4	F Y H H H	3.5	ř		7352	70	30.00		2 8	86.0 4	L 1250 L 1250 L 1250	1.0			1300 1300		N	96.3 86.3	N	
		F F								2 8	32.0 4 33.0 4	L 1300 L 1300 L 1250	1.0								
	LJ1 T20A3									2 9	34.0 3 38.0 3	L 2200 U 2900				2200 2400		N	32.8 84.3	l N	
-29	LJK T20A3	FN	ŝ.8	¥ + !	8 + 8	6105	70	29.98		2 8	36.0 3	L 2700 L 2600 L 3300	1.0 1.0 1.0	Ł				N	92.5 81.7	N	
	LNK T20A3									2 9	31.0 21 37.0 21	U 3000 U 2900	0.5 0.5 0.5	۶						B M 2U 2900	0.
-27	ENL P30A3	F Y H H H	9.0	Y		15422	70	29.36		2 8	13.0 21	J 2400 J 2350 J 2500	2.0 2.0 2.0	83.0	30	2150	4.0			N	
		Ł Ł								2 8	30.0 21	2000 2200 1500	2.0 2.0 2.0	80.0	3U	2000	4.0				
-05	ENU T2543	FN	9.0	Y		18234	82	29.85		2 8	6.0 3	1350 1550 1350	3.0 3.0 3.0	85.0	3L	1250	5 .0			N	
-12	LNU T25A3	FN	9.0	¥		9232	74	30.06			7.0 31	J 2900 _ 2050	1.5			2100 2100	5.5 5.5	N		A M 3U 2900	1.1
-30	LNU 725A3	CN	9.6	Y + \$	5 + 3	33431	70	30.18		2 8		1800	2.0 2.0 2.0	F					93.0 82.9	B M 3L 1400	2.:

	VEHI	CLE	DESCRI	PTIO	ON		W	EATHEP			OCTA	NE.	NUMBER	REQU:	IREMENT	T DA	ΔŢΔ			TAN	k FUE	_ INFO	PMATICA	í
												M	. IMUM		PAR	1 1	THPOTT	LE					RATER	
083		: ! ! KNK		A		DDCM				U E (CCT	E A			OCT							N 3 I E N H 4		
NO	CODE	SEN	C.P.	R P(:: TST	MILES	TMP	BAROM	HUM	<u>.</u>	NO	R 	RPM	MV	NC	F 	RPM	Mv	٠	PES	MCT	T F F	RPM	V,
32-20	MPF PSOA4 F	N	£.3	r +'	ió +10	12803	76	29.71		2	35.Ĉ	4		1.5	85.0 86.0 L			3.0 3.0	N			N		
32-05	MPF 250A4 F	: N	8.3	r +	9 +10	15306	-3	29.2*		2	91.0	4		1.8 1.8 1.8	38.0 90.0 89.0	4	1500	3.0 3.0 3.0	N			N		
4 1-0°	MRU P30A4 C	H Y :	3.3	Y #:	10 +10	21275	70	30.05	-	2	85.0	4 L		1.5 1.5 1.5										
		ا د ا								2	84.0	41	1400 1400 1400											
46-02	MRU P30A4 F	: У <u>Н</u> Ч	9.3	y +:	10 +10	6514	79	29.21		2	82.0	ЗU	1750 2100 2400		81.0 81.0			2.5	N	31.1	83.5	N		
		L									81.0		1650 2400	1.5	L 81.0	4 <u>1</u>	1650	2.5						
32-22	MRU P30A4 F	н Y : Н Н	9.3	, +,	10 +10	22426	70	29.56		2	89.0	4 L		0.8 0.8 0.8	88.0 89.0 88.0	4L	1400	2.0 2.0 2.0	N			B M 4	L 1500	9.8
		L								2	88.0	41		0.8 0.8 0.8	87.0 87.0 87.0	4L	1600	2.0 2.0 2.0						
08-26	MS3 T38A4 F	: N	8.7	Ÿ +	10 +10	16574	78	29.23		2	89.0	40	1400	2.0 2.0 2.0	87.0	40	1250	5.0				٩		
4	MS3 T38A4 C	; N	8.7	γ +	10 +10	24052	69	30.33		2	85.0	3L	1300	1.0 1.0 1.3	Ė							N M		
62-06	MSF P50A4 F	: N	8.9	¥ +	10 +10	10507	63	30.30		2	88.0	31		8.0 9.0 8.0	82.0 87.0			3.0 0.8	N	32.3	82.1	N		
09-19	MT# T23A3 F	: N	3.0	ÿ +	10 +10	7240	76	29.69		2	90.0	3	2450	1.0 2.0 1.0	84.0	3	2200	5.0				N		

E-18

	VEHICLE	DESCRIPTION	WEATHER	OCTANE NUMBER REQU	IREMENT DATA	TANK FUEL INFORMATION
				MTYIMOM	PART THROTTLE	2415 0
OBS NO	E M Model C knr Code T sem	SPAPK ADVANCE A S I AS AS ODOI S C.R. P RCD IST MILE:	U AMB E	G E CC [†] A	G E OCT A	0
32-26			5 70 29.45 50 3 2		86.0 3 2500 2.0	
32-23	MTX T23M5 F N	3.0 r +11 +10 10600	2	88.0 4 1700 0.5 89.0 4 1700 0.5 88.0 4 1700 0.5	88.0 4 2000 2.0 89.0 4 2000 2.0 88.0 4 2000 2.0	N N
65-04	MTx T23M5 F N	3.0 r +10 +10 9438	2	93.5 3 3400 0.5 90.5 3 3600 0.5	93.0 3 2000 5.0 94.5 3 3000 0.5	
63-03	MIBO 220A3 F N	9.5 Y + 8 + 8 32949	2	87.0 2 2200 1.0 87.0 2 2300 0.8 83.0 2 2200 1.0	83.0 2 2900 2.0	N
62-05	MIBD 22GA3 F N	8.5 1 + 5 + 5 9111	2	85.0 3 2900 1.5 87.0 3 2700 1.5 83.0 3 2900 1.5	F	N N
63-02	MIDL P24A4 F N	8.5 V + 5 + 5 13633	2	88.9 4L 1500 0.8 89.0 4L 1450 0.8 85.0 4L 1500 0.8	87.0 4L 1400 0.8	N
28-18	NAR T25A3 F N	8.3 Y 13570	2	87.0 3L 1500 1.0 89.0 3L 1800 1.0 84.0 3L 1500 1.0	85.0 3L 1550 3.5	A P 2J 1100 5.3
08-12	NAR T25A3 F N	8.3 Y 6702			90.0 3L 1325 7.0 93.0 3L 1450 7.0	8 M 3u 2425 1.5
08-22	NAP T25A3 F N	8.3 Y 11314	2	93.0 3L 1425 3.0 94.0 3L 1450 3.0 90.0 3L 1700 2.2	93.0 3t 14 ⁷ 5 5.0 95.0 3t 1525 5.0	4 M 3E 1403 - 2.8
06-07	NAR T25A3 F N	8.3 Y 17590		91.0 3U 3000 0.8 92.0 3L 2100 1.5 85.0 3U 2500 1.0	95.0 3U 2400 4.0 97.0 3L 2500 4.0	N 93.0 82.6 N
41-04	NAR T25A3 C N	9.3 Y 22460		93.0 3L 1300 1.5 95.0 3L 1300 1.5 90.0 3L 1400 1.5	92.0	A M 3L
65-13	NAR 12543 F N	8.3 7 8688		93.0 2U 2000 0.0 90.0 2U 2500 0.0	94.5 3U 2000 3.5 94.5 3U 2000 3.5 90.0 3U 2000 3.5	

	VEHICLE D	ESCRIPTION	WEATHER			TANK FUEL INFORMATION
•		***************************************	•		PART THROTTLE	
OBS NC	E M Mggel G ana Code T sen :	SPARK AD/ANCE A I AS AS COC C.R. R RCD IST MILE		G J E E OCT A NO R RPM MV	OCT 4 NO P PPM MV	C
40-12	NAR T25A3 F N	6.3 Y 1390	2		93.5 3L 2.0 98.0 3L 2.0	A M 30 1.6
07-09	NAR T2543 F N	8.3 7 1154	2		101.0 3L 2500 4.0	N 35.2 84.3 4 P 3U 2401 4.0
40-03	NAP T2543 F N	9.3 Y 1043	2		100.0 SL 4.0	A P 3L 4.1
47-01	NAR T25A3 C N	5.3 · 2229	2	3 94.0 3L 2400 1.0 2 94.0 3L 2400 1.0 1 97.0 3L 2400 1.0		
28-02	H Y R EAES9 WAN H	8.9 7 1583	2	82.0 2U 2000 1.3 2 85.0 2U 2000 1.3 4 81.0 2U 2000 1.3	-	N
	L L		2	3 82.0 2U 2000 1.3 2 85.0 2U 2000 1.3 4 81.0 2U 2000 1.3	-	
41-18	NAW P28A3 C Y H H H	8.9 Y 2235	2	3 94.0 3L 1600 3.0 2 95.0 3L 1600 3.0 4 88.0 3L 1600 3.0		N
	r r		2	3 94.0 3L 1600 3.0 2 94.0 3L 1600 3.0 4 88.0 3L 1600 3.0		
08-31	NAW P28A4 F Y H H H	8.9 Y 1023	2		89.0 3L 1525 5.0 92.0 3L 1550 5.0	N
	L 1		2	3 88.0 3L 1900 2.5 2 90.0 3L 1900 2.5 4 82.0 3L 1900 2.5		
75-02	NAW P28A4 F > H H	8.9 Y 69	2	3 35.0 3L 1900 5.0 2 85.5 2U 1700 1.0 4 93.5 2U 1900 1.0	85.5 30 2000 6.0	
	L L		2	3 85.0 3L 1900 6.0 2 85.5 2U 1700 1.0 4 83.5 2U 1900 1.0	85.5 38 2000 6.3	

	YE.	HICLE	DESCRI	IPTION	١		w	EATHER			007	ANE	NUMBER	REQU	IREMEN	· 0/	4-4			TAN	V EGE	LINFO	PMATION		
		*****								••		M	A/IMUM		P4	PT '	THRCT'	LE					PATER		
OBS NO		E M C RNK T SEN	C.R.	A	PARK VANCE S AS D TST	ODOM MILES	AMB TMF	BAROM	÷UM	F 5 E	OCT NO	3 8 4 2	9PM		001	G E A			k N		NO 	N G I T E N H A A T P P		ΜV	-
09-02	NBH 450A4						73		34	3	100.0	2U 2U	3050 3400	9.6	99.0	4.	1050	10.0				A M 4	1000	1.5	-
		L								2	98.0 100.0 94.0	211	3350	0.6 0.8 2.5											
08-24	NBH 450A4	F Y H H H	3.3	¥ () 0	10177	†g	30.01		2 4	95.0 91.0	2U 3U	3250 1950	1.0 1.0 2.5		3 L		8.0				A M 2:	3250	*.;	
22.22	NO: 45044	i. L		s. ,		2002	••	20.75		2	92.0 94.0 30.0	2U 3U	3250 1950	1.0								D 44 5			
26-33	48H 450A4	* T # #	3.3	,	, e	8033	ιυ			2	95.0 94.0 94.0	2U 2U	1900 1750	0.5 0.5 0.5	Ĺ							B # 2)	J 1800	υ. .	•
* \$ _11	NBm 450A4	FYH	9.3	y () 0	12683	51		76	2 4	94.0 94.0 88.5	2U 2U 2U	1700 1750 1700	0.5 0.5 0.5	F							N			
		# # L									90.0 87.5		1500	1.5											
09-19	NBZ *43A4	F Y H H H		Υ (0	8804	79	29.80		2	93.0 94.0 90.0	20	2150	0.5 0.5 0.5	f							4 M 2!	2200	8.5	-
		r F								2 4	92.0 93.0 89.0	2U 2U	2200 2100	0.5 0.5 0.5											
08-2*	NBZ 743A4	F Y H H H		Υ (0 0	7833	. 80	29.39		4	101.0 97.0	3L 4L	1850 1450	2.0	102.8 98.0	4L 4L	1350 1350	9.0 9.0				A M 3	L	1.5	
		i L i								2	100.0 99.0 96.0	3 L		2.0	100.0	4 L		9.0							-

	VEHICLE (DESCRIPTION	WEATHER	OCTANE NUMBER	PEGLIPEMENT DATA	TANK FUEL INFORMATION
•				MUMIKAM	PAPT THROTTLE	PATER
SEC ON	E M Model C Knk Code T Sen	SPARK 40VANCE A I AS AS OCC C.R. P PCD TST MILE	U 3 BMA M	G E CCT 4 NC R DPM	MV YO R RPM M	0 # N G N OCT NO ITE N
75-05	NFH 450A4 F 7 H	9.3 y C 0 931	2	97.5 20 2000	4.0 97.5 31 1225 5 2.0 2.0	A M 28 1500 4.0
	- L		2		4.0 97.5 31 1225 5 2.0 2.0	1.0
28-13	NFS P28A4 F : H M H	8.9 Y +10 +10 3354	2	L T5.0 20 2900	L L 0.5	N.
			3 2 4			
05-05	NES P28A4 E V H H	8.9 Y +11 +11 605	2		0.5 F 0.5 0.5	N 95.0 86.3 B M 20 8900 C.5
	; ;			93.0 2U 3850 95.0 2U 3800 89.0 3U 3450	0.5 0.5 1.0	
26-04	NGH 450A4 F Y H H H	9.3 y 0 0 955	2	95.0 3U 1550 96.0 3U 1550 92.0 3U 1550	1.5 F 1.5 F	N 92.4 83.1 B M 2U 2250 1.0
	L L		2		1.0 1.5 1.0	
28-05	NU1 T20A3 F N	9.0 Y 1410	2	88.0 20 2450		N. S. N.
28-96	NJ1 T2GA3 F N	9.0 Y 1480	2	89.0 3L 1500	2.5 95.0 3L '550 3 2.5 0.5	3.\$ N
68-1 3	NJ1 720A3 F N	9.5 Y 851	2	90.0 3L 1550	4.0 88.0 3L 1550 8 4.0 90.0 3L 1525 8 1.5	
08-13	NU1 T2043 F N	9.0 - 841	2	89.0 20 3000	1.0 34.0 31 1600 5 1.0 1.0).Ū N

	VEHICLE	DESCRIPTION	MEELMED		OCTANE NUMBER R	EQUIREMENT DATA		TANK FLEL IN	EQDM47]Q4
					MUMITAAM	PART THROTTL	E	·	PATES
OBS NO	CODE I SEN	ic.a. a aco ist M	CDOM AMS (ILES THP BAROM)	В Ц М ин	NO P POW W	OCT A V NO R RPM	N My A	OCTINO I T	1 3
56-18				19 3 2				92.8 32.3 3	3L 1500 1.0 _
29~16	NUI TECAS F N	9.0 : :	8385 70 30.00	2	38.0 38 2500 0 87.0 20 2600 0	.5	1.5	4	
40-14	NU1 T2043 F N	3.2 f	3433 33 30.22	2	91.0 35 1	.0 89.0 3L .0 89.0 3L		٨	
97-98	NU1 T2C43 F N	9.0 + 1	2461 72 29.85	66 3 2	88.0 30 2200 1	.5 88.0 3J 2500 .5 91.0 3U 2250	4.0 N	33.6 82.0 N	-
40-05	NU1 T20A3 F N	3.0 Y	9952 55 30.09	47 3 2 4	91.5 2U 1 91.5 2U 1 88.0 2U 3	.0 F .C .5		N	-
55− €¹	NU1 T20A3 F N	9.0 N 2	22094 67 29,14	2	91.5 2U 2800 (2.3		
06-24	NUT TECAS E N	9.0	10177 19 30,35	2	89.0 30 3100 0		1,4 N	94.9 83.5	
3 6- 27	NL1 T20A3 F N	9.0 • 1	7509 35 29,79	2	95.0 3L 2800 (4.0 N 4.0 4.0	93.0 83.0 8 1	4 30 2500 - 0.4
29-07		+ 8.9 + 1 + +	11122 70 30.10	2	98.0 3L 2200		5.0 Y 5.0	95.8 87.0 A F	P 2⊍ 3300 5.J -
	; ;	L L		3 2 4	98.0 3L 2200	100.0 2U 3800 101.0 2U 3000 .3			
273	NTC 21643 F N	9.0 N + 5 + 5	7728 72 30.24	2	93.0 3U 3200 (96.0 3L 3050 88.0 3U 3000 (0	92.3 32.1 4 1	4 2u 3 50 0 0.8
4*-14	NIAS 210MS C N	9.5 N +10 +10 2	29953 73 30.16	2	93.0 4 1300 94.0 4 1400 92.0 4 1300	.0	Ý	8 1	M 3 2200 (1.0),

	VEHI	CLE D)ESCRI	PŢ	ION			# 5	ATHER			OCTA	NE I	NUMBER	PEQUIP	EMENT	DA	TA			TAN	FuE	_ !	NF OR	MAT	104	
•													MA	xIMUM		PAR	T !	HROTTL							PAT	E=	
OBS NC	MODEL (E 4 C KNK T SEN		A I	SPA ADVA AS PCD	AS					U E	120	į	RPM	MV	OCT NO	R	RPM	MV	١ -	OCT RES		:	4 1	p¢	u	M\;
08-16	NUA4 216A3 /	 A N	3.0	Ÿ	+ 5	+ 5	10508	76	29.61	52	2	34.0 96.0 90.0	2U	3900 3800	0.6 0.6 2.2	F							8	M 3.	. · 3	50	3.2
47-26	NUA4 21643	CN	9.0	Y	+15	+ 5	15000	70	30.14	50	2	90.0 93.0 88.0	3L	3300	1.0 1.0 1.0	86.0	3L	2990	2.0								
41-25	NUA4 215A3	C N	9.0	¥	+ 5	+ 5	12470	69	30.12	53	2	88.0 98.0 87.0	21	3100	2.0 2.0 2.0								N				
07-14	NUA4 216A3	FN	9.0	N	+ 5	+ 5	5029	70	30.20	48	2	99.0 91.0 91.0	3U	2500	0.8 0.8 0.8	F				N	94.	32.	2 N				
65-15	NU44 216A3	FN	9.0	Ŋ	+10	+ 5	15152	58	29.40	56	2	86.0 87.0 85.5	2IJ	3400	0.5 0.0 0.5	F											
29-20	VUA4 216A3	FN	9.0	,	+ 5	+ !	10308	1 70	30.20) 5	2	93.5 96.0 39.0	20	3300	0.9 0.9 1.0				2.0								3.3
26-03	NUA4 216M5	FN	9.() ∀	+ {	5 + :	5 1059	7 68	30.4	8 5	2	93.0 94.0 93.0	3	2700	1.0 1.5 1.0	91.0	4	1500	2.0	N	93.	0 83	. 2 /	M	3 2	500	1.5
28-15	NUBG P15A4	FN	9.	\$ }	r +1)	0 +1	0 1521	2 71	29.3	9 5	2	86.5 87.0 85.0	41	1900	0.5 0.5 0.5	86.0	41	1850	1.5				ĺ	Y			
41-22	NUBG P15A4	C N	9.	4 '	r +1	0 +1	0 3014	7	5 30.3	2 3	2	90.0	41		1.0 1.0 1.0	F								N			
23-30	CE9 T19A3	FN	9.	0 '	Y +1	0 +1	0 532	2 7	0 28.9	2 5	2	94.	3	1400 1400 1400	0.5 0.5 0.5	94.1	0 3	1400	0.5					4	3	1400	0.5
05-23	OE9 719A3	3 F N	3.	0	Y +1	0 +1	0 628	0 6	9 29.5	10 5		2 88.	3		1.1 1.2 1.1					N	96	.5 96	.0	N			
29-28	0E9 T19A3	3 F N	9.	0	Y +1	0 +	10 1694	11 ?	0 30.0	00 !		2 3 0.	5 3	1450 1200 1800	0.5 0.6 0.6	9 9 .	5 3	1400	3.5					N			

	YEHIC	LE CESCRIF	PTION		WEATHER		OCTAN	E NUMBE	e sean	IREMENT D	472		*44. F	SEL INFORMATION	
•								MAXIMUM		PART	-RO*			54.£5	
OBS NO	E M MODEL C (CODE T :	KNK :	SPARK 40VANCE A L AS AS P RC2 TST	000M 41	49 4P BARCM	E L MuH	OCT A	эры	Mγ	100 A	POW	u,	O W S COT NO	N 3 I I E V H A T T P R POM MY	-
47-10	OE9 T19A3 C 1	<i></i> .				50 3 2		1500 1500							-
32-25	CE3 T19A3 F I	N 9.0 Y	/ +10 +10	14681	?@ 29.TT	2	94.0 3 94.0 3 94.1 3	1350	1.4 1.4 1.4	34.0 3	1350	4.0 4.0 4.0	Y	B M 3 1500 1.4	
32-29	CES T19A3 F !	N 9.6	+10 +10	13248	70 29.43	2	99.0 3 89.0 3 89.0 3	1700	1.0 C.3 1.0	89.3 3	1700	2.0	ķ	A W 3 1500 1.0	
41-09	0E3 T13A3 C 1	N 9.0 Y	/ +18 +10	17995 (56 30.23	2	91.0 3 92.0 3 90.0 3	1300	1.0 1.0 1.0	F				N	•
65-12	069 T19A3 F I	N 9.0 M	1 + 3 + 8	8125	30 29.80	2	95.0 3 95.0 3 95.0 3	1500	1.0	95.0 3 95. 5 3					
40-02	0E9 T19A3 F !	N 9.0 M	i +10 +10	7422	51 29.83	2	96.5 3 96.5 3 94.5 3	1500	4.0 4.0 4.0	96.5 3 94.5 3		3.0		X	
40-13	OE9 T19A3 F	N 9.6 N	i +10 +10	6218	19 30.12	2	91.5 3 91.0 3 91.5 3	1500	0.5 0.5 0.5	89.0 3	1500	0.5		4	
07-07	OE9 T19A3 F !	N 9.0)	+10 +10	13843	72 30.40	2	86.0 3 86.0 3	2500	0.9 0.9 0.9	86.9 3 87.9 3					
07-29	GEB T1BA3 F I	N 9.01	r +10 +10	15560	72 30.13	2	8 ⁻ .0 3 90.0 3 85.0 3	2500	0.7 0.7 0.7	85.3 3	1800	4.0		N	
32-27	0E3 T19M4 F (N 3.0 5	+10 +10	26454	70 29.09	2	93.0 4 94.0 4 93.0 4	1350	0.2 0.2 0.2	93.0 4 94.0 4 93.0 4	1200	2.0 2.0 2.0	N	B P 4 1300 2.0	
47+03	OEJ P19M5 C !	N 9.6)	/ + 8 +10	16790	70 30.24	2	91.0 4 91.0 4 91.0 4	1700	0.2 0.2 0.2	90.0 4	2000	2.0			
32-17	0EJ P19M5 F (N 9.0 1	+10 +10	12614	70 29.56	2	98.0 4 87.0 4 88.0 4	1650	0.5 0.5 0.5	88.0 4 88.0 4 88.0 4	1800	2.0	N	4	-

	VEH!	CLE	DESCRI	PTIO	N		#	EATHER		CCTANE	NUMBE	R PEQU	IREMEN	T 0.	4 T A			TAN	K FUE	_	OPMATIC	Y
									 	A	MUMIKAN		PA	RT	THROIT	_E			•••••		24.EB	•••••
	E	f		AD 4	PARK ANCE				U	E		****		3 E			0 # K	OCT	NC	v (·	
OBS NO		KNK							t	OCT 4 NO R			UC:	A				RES				ψγ
17-26	OFA P23A4 F	H H		Y +1	0 +10	6270	74	30.54	2	86.0 4t 84.0 3t 85.0 3t	3000	1.3 1.9 1.9	F				-		****	y ,		••••
		i. i.							2	85.3 4U 84.0 3U 54.0 4U	1 3000	1.3										
32-10	OFA P23M5 F	Р Н Н Ц		Y +1	0 +10	19754	70	29.28	2	25.5 4 85.5 4 96.0 4	2800	0.8 0.8 0.5	85.5	4	1700 1 500 1300	1.0 1.0 1.3	N			N		
		L							2	85.5 4 85.5 4 86.0 4	2800	0.8 0.8 0.5	85.5	4	1700 1500 1300	1.0 1.0 1.6						
05-23	OFE P50M5 F	H Y :		¥ -1	0 -10	17883	12	30.43	2	89.0 3 88.0 3 86.0 4		0.4 5.4 0.4	F				N	95.1	83.3	Ŋ		
		۱ ۱							2	88.0 3 86.0 3 84.0 4	900 900 1200	0.4 0.4 0.4										
28-07	OPF P50A4 F	: N	8.9	Y +1	0 +10	15839	70	29.35	2	78.0 25 78.0 25 79.0 25	2100	0.5 0.5 0.5								N		
05-25	OPF P50A4 F	: N	9.9	ት +1	0 +10	10295	69		2	90.0 41 92.0 41 89.0 41	. 1300	1.0 1.0 1.0					N	92.3	82.6	N		
41-24	OPF P5CA4 F	: N	8.9	γ +1	0 +10	16050	59	30.23	2	86.0 41 87.0 31 67.0 41	1500	1.3 1.5 1.0	84.0	41	1100	4.0				N		
65-06	OPE P50A4 F	: N	9.9	Y +	8 +10	15913	65	29.31	2	93.5 41 95.5 41		0.5 0.5			1400 1400							
47-27	OPF P5044 C	Ņ	3.9	Y +1	0 +10	12400	70	30.05	2	32.0 41 92.0 41 92.0 41	1500	1.0 1.0 1.0	90.0	4L	1800	4.0						
60-10	OPF P50A4 F	: _N	9.9	¥ +1	0 +10	25074	72	29.89	ĉ	89.0 31 88.0 41 87.0 31	1 1250	0.7 0.9 0.7	88.0	3⊍	1900	5.0	N	35.0	84.2	8 M :	30 1700	6.7

	∢EHICLE	DESCRIPTION	WEATHER	OCTANE NUMBER REQ	UIREMENT CATA	TANK FUEL INFORMATION
				MAXIMUM	PART THROTTLE	PATES
OBS NO	E M Model o Kna Code t sen	SPARK ADVANCE A AS AS ÚBOI I C.R. R RCD TST MILES	U 4MB E	G E GCT A NO R RPM MV	G E OCT 4	0
28-03	ORD T25A3 F N	9.0 Y +10 +10 1610;	2	89.0 3 2900 1.0 90.0 3 2750 1.0 87.0 3 2800 1.0		N -
65-19	OPD T25A3 F N	9.0 Y +1C +10 1136	2	90.5 3 2700 1.9 92.0 3 2600 1.5 89.5 3 2800 1.0		-
47-12	ORD T25A3 C N	3.0 Y +10 +10 21201	2	88.0 3 2800 1.0 89.0 3 2800 1.3 96.0 3 2800 1.3		
32-12	ORD T25A3 F N	9.0 Y +10 +10 1185	2	85.0 3 3000 1.7 85.0 3 3000 1.7 85.0 3 2700 1.5		N N
28-21	ORU P30A4 F Y H H H		2	91.0 4L 1450 0.5 91.0 4L 1550 0.5 91.0 4L 1500 0.5		N -
	£ £		2	89.0 4L 1500 0.5 90.0 4L 1500 0.5 99.0 4L 1500 0.5		
28-26	ORU P30A4 F Y H H		2	92.0 4L 1500 1.0 92.0 4L 1500 1.0 91.0 4L 1500 1.0		8 M 40 1500 1.0
	<u>L</u> 1		2	91.0 4L 1500 1.0 91.0 4L 1600 1.0 90.0 4L 1500 1.0		
0ê-20	ORU P30A4 F Y H H H		2	93.0 2U 3000 9.5 95.0 3U 2450 1.0 91.0 3U 2450 1.0	92.0 4L 1450 6.0	A M 20 3200 0.5 T
	<u>.</u> 1		2	90.0 2U 3200 0.5 92.0 2U 3200 0.5 88.0 2U 3000 0.5	i	
08-30	ORU P30A4 F Y H H H		2	95.0 4L 1450 2.0 96.0 4L 1350 2.0 92.0 4L 1400 2.0		B M 4L 1600 2.0
			2	92.0 4L 1600 2.0 94.0 4L 1600 2.0 90.0 4L 1550 2.0		-

	VEH	ICLE 1	DESCRI	PTION			v i	ATHER													N FUE	_ INFOR	PMATION	
•													MUMIKA										PATER	
08S NO	MODEL	E M C KNK T GEN		A I AS	ANCE AS					J E	0CT		ÖDM		OCT				N			N G	эрч	44
47-22	ORU P38A4	C Y H	9.3	 y +10	+10	12200	70	30.13		2 : 4 3 2	95.0 95.0 98.0 39.0	4L 4L 4L	1400 1300 1400 1400	0.5 6.5 0.5 0.5	98.0	41	1400	4.0	- •	₹3. ⁻	34.4	A W 4,	1400	2.5
47-11	ORU PSGA4	C Y H H H	9.3	Y + 8	+ 9	11300	70	30.22	50	3 2 4	94.0 92.0 92.0	41 41 41	1400 1400 1400 1400	0.5 0.5	91.0	4:	1400	1.5						
32-24	CRU P30A4	E F Y H H	9.3	Y +10	+10	14670	70	29.95	50	3 2	91.0 86.0 87.0	4L 4L 4L	1600	0.5 0.8 0.8		4L	1500	2.0 2.0 2.0	٩			N		
32-28	ORU P30A4	נ ע א א ד H	9.3	Y +10	+10	22620	70	29.77	50	2 4 3 2	86.0 85.0 91.0 92.0	4L 4L 3L 3L	1600 1600 1500 1500 1600	1.0	92.0	4L 4L 3L 3L	1600 1600 1400 1400		4			B P 31	_ 1400	4.0
										3	90.0 91.0	3L 3L	1400 1400		30.0	JL.	1400	4.0						
97-05	ORU P30A4	F Y H H H	9.3	Y +10	+10	14234	72	30.11		2	90.0 30.0	4U 4L	2400 1900	0.3 0.8 1.3			1800	4 .0	N			8 M 41	1800	1.3
29-22	ORU P30A4	E Y H H H	9.3	Y +10	+10	13973	70	30.00	57	4 3 2	89.0 93.0 94.5	4U 3U	1900 1500 2300	0.3 1.3 0.4 0.4 0.5	92.5	41	1400	2 .9	Y	91.6	82.0	A M 4	_ 150C	0.5
		i L L								3	93.0 94.5	4U 3U	1 50 0 23 0 0	0.4 0.4 0.5										

	í E	HICLE	DESCRI	PTION		W	EATHER			OCTANE NU	MBER REQU	IREMENT	DATA		TANK FLE	L INFORMATION
						• ••••				MAxI	MUM	PAR	T THROTT	LE		P≜™EP
083 NO	MGDEL CODE	E M C KNK T SEN	C.R. :	SPARI ADVANO A I AS AS R POD TS	E : 000#	I AMB	SARON	ri Ü M	. U E	G E OCT A NG P PP	· W	OCT NO	G E A R PPM	, w	O W K OCT NO N	N G ITE N H A TRR REV MA
23-30								55	3 2	93.0 4L 15 94.0 4L 14 92.0 4L 15	00 0.3 00 0.3					V
		L L							2	93.0 4L 15 94.0 4L 14 92.0 4L 15	00 0.3					
29-03	ORU P30A4	F Y H H H	9.3	Y +10 +	0 11643	76	30 .00		2	94.5 4L 15 97.0 3U 19 93.0 4L 15	00 0.9		4L 1500 3U 1900		N 95.8 86.9	N
		L L							2	94.5 4L 15 96.0 3L 18 93.0 4L 15	50 0.9		4L 1500 3U 1900	7.5 8.0		
65-25	ORU P30A4	F Y H H H	9.3	Y +10 + [·]	0 8313	71	23.50		2	93.5 4L 16 95.9 4L 16 91.5 4L 16	00 0.5	92.0	41 1600	3.0		
		L L							2	93.5 4L 16 93.5 4L 16 91.5 4L 16	00 0.5					
32-21	ORU P30A4	. F Y H Н Н	9.3	Y +10 +	0 13933	3 70	29.37		2	87.5 4L 14 88.0 4L 13 87.5 4L 14	100 1.4	88.0	4L 1300 4L 1150 4L 1300		N	N
		L L							2	87.5 4L 14 87.0 4L 14 87.5 4L 14	100 1.4	87.0		3.0 3.0 3.0		
32-30	OPU P30A4	. F Y H H H	9.3	Y +10 +	0 31186	3 70	28.89		2	94.0 4L 12 95.0 4L 12 94.0 4L 12	1.6	96.0	4L 1250 3L 1500 4L 1250	3.0 4.0 3.0	N	B P 3L 1400 4.0
		i, i,							2	90.0 4L 12 90.0 4L 13 90.0 4L 15	100 1.6	91.0	4L 1250 4L 1300 4L 1250	3.0 3.0 3.0		
06-25	ORU P30A4	. F У Н Н Н	9.3	y -10 -	10 10454	37	30.07		2	92.0 4U 14 92.0 4U 14 91.0 4U 12	00 1.0	91.0	40 1300	3.0	N 98.8 88.3	N
		<u>ا</u> د د							2	90.0 4U 12 91.0 4U 14 90.0 4U 13	1.0	90.0	4U 1300	3.0		

	VE	HICLE	DESCR	IPT:	CN			₩!	EATHER			OCT	NE	NUMBE	R REQU	IREMEN	T 0	ATA			TAN	K FJE	LINFOR	hm#1110A	
•												*	4/	I I I MUH	•••••	PAI	PT :	THROTT	.£					RATER	
CBS		E M C KNK		A ·		NCE AS					ช E (OCT	G E A			OCT	Ĝ			0 # K N			N GITE		
NC	CODE	T SEN	C.=.	P :	PCD	TST V	MILES	TMP	BARON	HUM	L 	NC	P 	RPM	MV	۷0	₹ 	RPM	#\;	K _	RES	MC"	1 2 2	bbn	μy
05-28	ORU P3044	F Y H H H	9.3	Ÿ.	-10	-10 2	21637	27	30.49		2	95.6	40		0.4 0.4 0.4	35.0	4 ti	1800	3.0	N	34.3	83.*	B 4 41	1803	6.4
		<u>ا</u> د									2	32.0	4 U		0.4 0.4 0.4	92.0	46	1800	3.0						
09-11	OS3 T38A4	FN	8.7	γ.	+1G	+10 1	2362	80	29.80		2	87.0	3	1500 1500 1500	1.0 1.0 1.0	84.0	4	1150	4.0				4		
40-06	OS3 T38A4	FN	8.7	γ.	+10	+10 1	11239	56	30.05		2	93.5	3	1500 1500 1600	1.0 1.0 2.0	3 0.0	4	1500	2.0				N		
32-04	OS3 T38A4	FN	8.7	γ .	+10	+10 2	9963	70	29.63		2 (87.0	4		3.0 3.0 3.0	87.0	4		4.0 4.0 4.0	N			N		
65-09	OS3 T38A4	FN	8.7	γ.	+10	+10 1	2406	48	29.53		2	31.5	3	1200 1200 1200	2.5 2.5 2.5	90.0	3	1400	3.9						
32-11	OSF P50A4	FN	8.9	у.	+10	+10 1	11016	70	28.91		2	85.0	4	1000	2.7 2.7 2.7	84.0	4	1000 1000 1100	4.0 4.0 4.0	N			N		
41-17	OSWTP23A4	C Y H H		,					29.99		2	90.0	30	3300									4 M 4;	. 1800	-7.5
		L L									2	90.0	34	3300	-8.0 -8.0 -2.0										
29-64	CSWTP23M5	F Y H H H	8.0	γ.	+10	+10	7845	70	30.00			96.5			-17.0 -17.0	96.5	40	2100	0.0	Ý	95 .8	97.0	A M 4:	2081	-17.0
		L :										96.5			-17.0 -17.0	96.0	40	2.00	0.0						
32-14	OTS T23A3	FN	9.0	γ.	+10	+10	7784	70	29.37		2	87.0	3	3300	1.2 1.2 1.2	87.0	ŝ	1800	6.3 6.3 6.3	N			N		

	v E!	HICLE D	ESCRIP	TION		WEATHE	R	OCTA	NE NUMBE	R REQU	IREMENT S	ÁTÁ		7	ANN FUE	L INFORM	ATION	
		*****									PART						ATER	
CBS NC		E M C KNK T SEN	A I C.R. P	SPARM ADVANC 	E : ODO#	I AMB 5 THP BARO	M HUM L	0CT /	G E A R RPM	Иv	G E OCT A NO R	RPM	N Ą	0 W K 0	CT NO	N 3 I T E - N H 4 - T R G 1	PM	M _e
08-14	OTX T23A3	F N	9.0 Y	+10 +1	0 8241	80 30.0	0 29 3 2		3 2950 2 3200		87.0 3				·	B M 2 3	3150	1.2
05-02	OTX T23A3	FN	3.0 *	+10 +1	0 11492	2 70 30.6	2	92.0 (34.0 (91.0 (3 3 50 0	1.7	89.0 3	2400	5.0					
41-07	OTX T23A3	CN	9.0 Y	+10 +1	0 13855	64 30.0	2	90.0 (91.0 (87.0 (3 2700	1.0 1.0 1.0	F					١		
29-14	OTX T23A3	ŧ N	9.0 Y	+10 +1	0 18228	70 30.0	2	93.5 95.0 92.5	3 2450	0.5 0.5 0.4	95.3 3 96.0 3			Y 90	.9 82.0	2 A M 3 2	2500	9.5
32-13	OTA 723 M5	FN	9.0 Y	+10 +1	0 12945	70 29.2	2	88.0 88.0	3 2000	0.4 0.5 0.4	88.0 4 89.0 3 88.0 4	1850		N		N		
32-13	OT3 T23M5	FN	9.0 Y	+10 +	10 14275	70 28.5	2	85.0 85.0 85.0	4 1300	0.5 0.5 0.5	86.0 4 86.0 4 86.0 4	1400	3.0 3.0 3.0	Ý		N		
29-12	PED T22A3	FN	9.5 Y	′ +12 +¹	12 18761	70 30.0	2	93.5 95.0 91.0	3 2000		93.0 3	1900	2.0	Y 92	:.0 82.0) A M 3 :	2100	€.4
08-29	PEETP22A3	A Y H H H	8.1 Y	' +12 +	12 10428	3 74 29.3	2	80.0 82.0 78.0	3 2500	-3.0	ι					N		
		L L					3 2 4	80.0	3 2600	-3.0								•
08-08	PEK T25A3	A N	9.0 Y	′ +12 + [·]	12 2 76 70	78 29.9	2	88.0 99.0 85.0	28 2500	0.8 0.8 0.8	F					N		
29-31	PER T25A3	FN	9.0 9	+12 +	12 10713	3 70 29.7	2	83.0 94.0 81.0	30 1700	1.5 1.5 0.5	L					N		
41-12	PKD T22A3	CN	9.5 \	′ +10 +	12 7550	5 68 30.1	2	85.0 86.0 84.0		1.0 1.0 1.0						B M 3	1900	1.0

	VEHICLE D	ESCRIPTION	WEATHEP	OCTANE NUMBER	R PEGUIREMENT DATA	TANK FLE	LINECPHATION
,	•••••		***************************************		PART THROTT		PATER
0 9 \$ NC	E M Model Cank Code Taen	SPARK ADVANCE A I AS AS COOM C.R. P RCD TST MILES	TMP BARON HUM L	G E OCT A NO P RPM	G E OCT A MV NO P RPM	C # K OCT NO V MV K RES MOT	
		3.0 % +10 +10 15688	72 30.25 46 3 2			5.0 + 92.4 82.2	4 M 3 2400 1.8
26-92	PLC 22243 F N	3.6 Y +10 +10 23342	2	89.0 3 1880	2.0 64.0 2 1700 2.0 2.3	4.0 N 92.2 E7.1	N
65-23	PLC 222A3 F N	3.0 N -10 +10 -8631	2	88.0 2 3000	1.0 83.0 3 2500 1.0 1.0	3.0	N
65-05	PLC 222A3 F N	9.0 N +10 +10 9019	2	88.0 2 2000 95.5 2 2000		3.5 3.5 3.5	
62-03	PPG T22A3 F N	3.5 7 +12 +12 8602	2	92.0 2 2900 91.0 3 2100 89.0 3 2300	0.5 93.0 3 1600 0.8 95.0 3 1500 0.8		A P 3 1700 3.0
40-10	QA4 T18A3 F N	9.5 N +20 +20 9206	2	90.0 3 3100 90.0 3 3100 87.0 3 3000	0.5 F 0.5 0.5		N
41-03	QA4 T18M5 C N	9.5 Y 11590	2	89.0 3 4900 92.0 3 5000 87.0 3 3500	1.0 1.0 1.0		N M 3 1.2
05-22	QC4 T18A3 F N	9.5 Y +20 +20 8173	2	93.0 3 3800	1.5 92.0 3 2500 1.5 93.0 2 2750 1.5		N
08-06	R4A T17A3 A N	9.5 Y 16926	2		1.2 98.0 3 2100 1.2 92.0 3 2100 1.2 88.0 3 2050		N
28-03	RAV T20M5 F Y H H H	3.5 Y 15239	2	86.0 4 3300	0.5 83.0 4 3200 0.5 0.5	2.0	N
	: :		2	85.0 4 3300	0.5 C.5 O.5		
32-98	SLM P50A4 F N	9.2 7 + 9 +10 14656	2	32.0 4 1450 92.0 4 1300 92.0 4 1400	1.9	2.0 N	A M 4 1650 1.0

	¥E	HICLE	DESCR	[PTIO	+		W	ATHER		OCT	ANE	NUMBER	REQU	IREMEN'	T DA	ATA			TAN	k FUE	LINFO	ACITAMP	
				••••							M;	AxIMUM		P41	RT 1	HROTI	LE					RATER	
OBS NC		E M C KNR T SEN		AD: A I A:	AS				E	0CT	G E			OCT	G E A			0	007		N 3 I 7 E N 4 4 7 D D		wy
	SPF P50A4								29 3 2		4 2	1365 2250					8.3				 N		
08-23	SPF P50A4	FW	8.9	Y +1	+10	3994	80	23.70	2	83.0 54.0 83.0	3	1500	2.0 1.5 2.0	82.0	4	*251	3 .:				¥		
29-26	TAE 11543	c N	9.3	Y + ;	• 3	11622	70	30.00	2	85.5 38.0 84.0	24	2900	8.0 6.0 8.0	84.0	3L	2000	2.5	ţ			8 M 3	2200	€.3
08-07	FAE 21543	A N	9.0	y + ;	3 + 3	13586	72	29.61	2	86.0 89.0 85.0	24	490€	1.5 1.0 1.5	t							N		
09-25	TAE 215A3	AN	9.0	Y + ;	+ 3	12519	78	29.28	2	90.0 92.0 88.0	20	3700	1.0 1.0 1.0			2250 2250	8.0 3.0				N		
07-05	TAE 215A3	ΕN	9.6	Y + :	3 + 3	6211	71	30.59	2	87.0 88.0 86.0	20	4500	0.7 0.3 0.7	F				Y	94.8	83.2	N		
47-02	TAE 215M4	C N	9.0	Y + 4	i + 3	18050	70	30.04	2	93.5 94.0 93.0	3	4000	0.8 0.8 1.0	99.0	4	1000	10.0						
29-12	TBA 216A3	FN	9.0	Y + (3 + 5	16557	70	29.32	2	90.0 91.0 88.0	20	2700	0.5 0.5 0.5	F							N		
50-06	TBA 216A3	FN	9.0	Y + !	5 + 5	12887	72	30.02	2	92.0 96.0 91.0	3L	2800	1.5 1.5 1.5	F				Y	92.3	82.1	B M 3	L 2900	2.2
47-03	TBA 216A3	C N	9.0	Y + '	7 + 5	13440	70	30.00	2	94.0 97.0 91.0	3L	3250	8.0 8.0 8.0	F									
41-19	TBA 216A3	CN	9.0	Y + !	5 + 5	22100	69	29.97	2	93.0 95.0 89.0	20	3300	1.5 1.5 1.5	F							A M 2	J	1.5
26-11	TBA 216M5	FN	9.0	Y - !	5 - 5	22064	52	30.03	2	93.0 94.0 93.0	4	3200	9.4 0.4 0.4	F				N	93.3	82.3	A H -	4 3200	0.4

	VEH]	ICLE !	DESCRI	[PT	ION		W	EATHER			OCTA	NE	NUMBER	REQU:	IREMEN	9	ATA			TÁN	k FLE	LINE	55 M 7_[0)	1
				. ~ ~											PA	? ?	THROTT	LE			•		PATER	
OBS NC	MODEL (E 4 C KNK T SEN	C.R.	A T	SPARK ADVANC AS AS PCD TS	E - ODOM T MILES	EMA I	SAROM	Hin	a d E L	OCT NO	G E A	PPM		OCT	3 E			0 # 4 #	CCT PES	NC MCT	N	Ğ E A B ROM	W,
28-37	TCA P16A4 P								50	3		4U 4U	2130 2100											****
29-17	TOS P20M5 F	= N	9.3	Y	+10 +1	9501	79	30.40		2	95.5 94.5 97.0	3	900	0.2 0.2 0.2	94.5	4	•300	٠.6	•	31.6	\$2.2	4 W	4 1100	1.2
Q5-16	TES P20A4 F	= N	3.3	٧	+10 +1	0 13908	69	30.05		2		4 ij	1750		F				N	92.0	82.8			
50-02	TES P2044 F	F N	9.3	Y	+10 +1	0 7011	7!	30.20		2	88.0 88.0 88.0	4L	1950	0.5 0.5 0.5			1950 2050	2.G 2.0	N	32.5	82.2	N		
40-07	TES P20A4 F	= N	3.3	Ÿ	+10 +1	0 10625	54	29.74		2	92.0 95.0 91.0	3L	2300	1.0 1.0 1.0	91.0	4L	2000	2.0				N		
29-02	TES P20A4 F	FN	9.3	Ý	+10 +1	0 11258	70	30.10	57	3 2 4					91.0	41		3.0	N	95.8	\$1.3	N		
41-08	TES P20A4 (C N	9.3	Y	+10 +1	0 9138	68	30.03		2	86.0 88.0 87.0	3L	2600	1.0 1.0 1.0	ŧ							N		
47-07	TES P2044 (CN	9.3	γ	+10 +1	0 11570	70	30.12		2	90.0 92.0 90.0	4L	2000	0.5 0.5 0.5	91.0	41	2000	2.0						
5C-05	TEM P28A4 F	F Y H H H	9.2	Y	+10 +1	0 7572	? 68	30.40		2	83.0 84.0 82.0	2U	4300	1.2 0.6 1.2	81.0	41	2000	3.0	N	92.3	82.2	H		
		L L								3 2 4														
47-25	TGM P30A4 (C N	9.2	Y	+ 5 +	5 20000) 70	30.10		2	88.0 89.0 85.0	4L	2500	1.0 1.0 1.0	F									
47-23	VAS P23A4 (C N	9.3	y	+12 +1	2 9250	70	29.80		2	90.0 90.0 90.0	4	2900	9.0 8.0 8.0	F				N	93.5	85.0			

	16	HICLE !	DESCRI	PTION			w	EATHER		OCT				IREMENT				ŢΔŊ	k FUE	LINF	ORMATION	
														PART							PATER	
OBS NO	MOSEL Code	E M C KNK T SEN	C.₽.	VCA A SA I	ARR ANCE AS	300M MILES	AMB TMP	BAROM	년(JM		G E A R	PPM	MV	GCT A	. <u>В</u> Рм	HV	K N	0C†	NC	: T N =	Ε	м,
	.48 P23M5								44 :		4	2500 3300					- N	93.0	÷7.5	 B M	4 2500	1.2
46-04	3.44 P27M5	FN	9.3	¥		15017	73	30.30	2	3 83.0 2 81.5 4 82.0	4	1100	0.8 0.8 0.8	82.0 4 81.0 4			4	92.5	93.7	4		
85-24	AA4 P27M5	FN	3.0	Y		11344	50	29.87	i	3 86.0 2 37.0 4 86.0	4	2000	0.5 0.5 0.5	85.0 4	2700	2.3						
96-82	IA P16A3	FN	9.3	Y + 2	+ 2	18070	71	29.71	:	33.0 2 95.0 4 90.0	3	2750	1.0 1.0 1.0	92.0 3	2750	2.0	N	95.2	÷3.÷	4		
	IA P16M5								i	92.0 1 92.0	4	2900 2450	0.4 0.4 0.4	90.0 4	2900	1.4	N	94.2	83.7	N		
40-15	IA P16M5	FN	9.3	N + 2	+ 2	41186	40	29.41	2	88.5 89.5 89.0	3	4500	0.5 0.5 0.5	85.5 4	3000	2.0				N		
36-21	IB P20M5	F N	9.5	· - 6	- 6	9635	45	30.02	2	85.0 85.0 86.0	4	2400	8.0 8.0 8.0	82.0 4	2100	2.2	N	93.2	82.4	N		
05-11	18 P20M5	FN	8.5	Y + 6	+ 6	19083	70	29.85	2	3 85.0 2 88.0 4 84.0	4	2200	0.2 0.2 0.2				N	92.6	33.5	N		
41-21	IB TP20M5	CN	7.8	Y + 8	+ 6	18866	69	30.28	2	86.0 2 86.0 4 87.0	3	4300	-7.8	86.0 4 86.0 4 86.0 4	2600		Y			N		
07-15	ZC P13A3	FN	3.4	v + 5	+ 5	11090	71	30.45	2	85.0 84.0 93.0	30	3400	0.9 0.8 0.9	81.0 4	L 3000	3.0	4	95.7	84.4	٧		
05-03	ZAA 211M4	FN	9.2	N + 5	+12	9812	70	30.20	3	95.0 97.0 94.0	4	4000	0.5 0.5 0.5	93.0 4	1900	1.5						
28-04	ЕТРНН ТЗСА4	FN	3.0	¥ +12	+12	16158	70	29.28	7	85.0 2 85.0 4 82.0	4L	1600	0.5 0.5 0.5	83.0 4	L 1650	٠.5				4		

	VΕ	HICLE	DESCRI	PTION		WEATHE	P	ЭСТ	4 VE	NUMBE	₹ PEQU.	REMENT	BATA			. 7 M	k fje	LINFO)PWAT[Oi	
•							•		MA	LIMUM		PART	THROT	_E				•	67.Ē8	
OBS NC					E - Odom	AMB TMP BARO	٤	001	£						Ņ.	0C ⁻	NO	N = 1		4 1
\$5-2' E	ETPHN T24M5					44 29.6						94.0 4 95.0 4	2000	4.5	-					•-•
62-14 B	ETPHN T24M5	FN	8.3	¥ +10 +1	0 9162	72 30.2	2	89.0 31.0 87.0	4	3000		86.0 4	3100	2.0	N	93.5	8*.9	N		
67 - 01 8	ET/38 72444	FN	3.3	r +10 +1	0 14983	71 30.4	2	87.0 89.5 85.0	3	3309	0.8 0.8 0.8	85.0 4	2 55 9	3.0	N	92.4	82.2	N		
46-14[]	ITPAA 213M4	FN	3.4	N + 6 +	6 8038	85 29.6	2	85.0 95.0 94.0	4	1950	2.0 2.0 2.0	t			N					
06-20 K	KTPDH 137A3	E Ņ	8.1	N -16 -1	6 3337	56 29.6	2	30.0 93.0 87.0	3	2350	1.4 1.4	87.0 3	2500	3.0	N	32.1	92.4	N		
95-95 ¥	(TPNM 23943	FN	9.2	Y + ⁻ +	⁷ 6925	70 30.4	2	90.0 92.0 87.0	3 L	3000		91.0 3 94.0 3	L 3000 L 2900		0	93.3	84.3	8 P :	3L 2800	5.0
26-07 *	KTPNM 239A3	FN	3.2	Y + 7 +	7 18327	70 30.2	2	88.0 91.0 37.0	24	3000	1.0 1.0 1.0	85.0 3 92.0 3	L 2100 L 2050		¥	93.2	33.2	N		
07-29 +	KTPNM 239A3	FN	9.2	Y + 7 +	8 6498	74 30.0	2	86.0 88.0 85.0	20	2750	0.9 0.5 0.9	84.0 3	L 2200	7.5	N	94.6	80.2	N		
28-35	KTPNM 239A3	FN	9.2	Y + 7 +	7 10495	70 28.9	2		3L	2500	0.5 0.5 0.5		L 2550 L 2500					N		
96-19 (KTVBT 252A3	FN	3.2	v - 9 -	8 6759	34 30.2	2	93.0 94.0 94.0	3	2000	1.5 2.0 1.0		2200 2000		Y			N		
38-15 (KT/S3 P30A3	4 4	3.85	Y +12 +1	2 12343	80 29.9	2	88.0 92.0 86.0	3U	2550	1.5 1.5 1.5	ř						9 N 3	3U 25 5 0	٠, 5
06-05	KTVS3 P30A3	FN	8.85	V 412 41	2 5651	41 29.5	5 23 3 2 4	Ĺ				L			N	99.0	87.5	K		

	v E	HICLE	DESCRI	PTION			WE	ATHER		0074	NE	NUMBER	PEQU	IPEMENT CAT	1		TENO F.	EL INFORMATIO	SN.
	4447										M	A:IMUM		PART THE	ROTTLE			PATE	
OBS NC	MOGEL Code				ANCE AS				Ü	06T N0	Ē Ā			G E OCT A NO P PP		Ŋ		- 4 m ±	u,
47-08	NT/SG 22543	C N	8.7		+ 7	12215	70	30.18	2	92.0 93.0 89.5	3	2500	1.2 1.2 1.0	t		-		·	
35-1°1	KITPFD 22644	Fγ	3.5 !	N - 8	+ 8	7291	69	30.10	2	31.0 92.0 89.0	2	2500	1.5 1.5 1.5	87.0 3 21	'5 0 4.0	٧	91.7 82.	. 9 N	
47-061	KITPED 220 m5	CN	8.5	V + 3	+ 8	700 0	70 1	29.94	2	93.0 94.0 87.0	4	3500	1.0 1.0 1.0	94.0 4 35 95.0 4 23					
0~-25	NTPGY 450A3	F Y H H H	9.2	1 0	0	32570	74	30.38	2	94.0 92.0 91.0	3 L	2050		94.0 31 17	750 10.0	0	34,8 84.	2 N	
									3 2 4										
75-06	NTPPH T50A3	F V H H Y		÷ 0	0	8198	65	29.29	2	93.5 92.5 90.5	2	1900	0.0 0.0 1.0	F				h _i	
									2	93.5 92.5 90.5	2	1300	0.0 0.0 1.0	F					
62-07	NTPRH T50A4	F Y H H H	3.2	i + 2	0	7515	70	30.52	2	93.5 93.0 91.5	20	3300	0.7 0.7 1.0	ş		N	97.6 95.	.7 A M 20 3000	£.*
		: L							2	93.5 93.0 91.5	20	3300	0.7 0.7 1.0	F					
05-03	NTPSE T25M5	FN	8.3 !	N + 8	+ 8	9406	72	30.50	2	92.0 93.0 91.0	4	2350		100.5 4 33 102.4 4 33 94.0 4 33	350 4.0	٧	97.0 aT.	0 4 P 4 270(4.0
06-16	NTPSR T2844	ғ ү н Н		÷ -10	-10	10537	44 .	29.60	2	95.0 96.0 93.0	4 L	1700		95.0 4L 16	300 2.5	N	94.6 83.	5 B M 41 1900	1.0
		1							2	94.0 95.0 92.0	4L	1600		94.0 4L 13	'00 2.0				

	VΕ	HIC	LE !	DESCR	ĮP	TION			W	EATHER			OCT	ANE	NUMBER	₽EQU	EREMEN	T 3	A T 5			TAN	k FUE	_ [550	C:TAMG	Y
														4,	AxIMUM				THRCTT						54.65	
002	MODE:	E			A	SP ADV		2504	440			F	OCT	3 E							0 W K	001	NO	N G		
OBS NO	CODE	Ţ	SE4		P	RCD	TST	MILES	THE	BARCM	HUM	Ĺ	NC	Ŗ	RPM	ΜV	NC	R	RPM	ΨV	N K	RES	MCT	N = 4	PPM	ď,
05-12	NTPSR T28A4											3		41. 41.	1950 1900						N	95.3	36.3	N .		
			1 11 11									2	92.0 92.0 92.0	4.	1925	0.8 0.8 0.8										
46-09	NTPSR T28A4	t) Н Н Н	8.9	¥	+10	+10	10233	72	29.51	65	2							1150 1150	2.0	N	90.7	83.1	N		
												2	L				81.0 L	41,	1150	2.0						
07-18	NTPSR T28M4	t	ү н н н	8.9	γ	+10	+10	13366	73	29.90	74	2	88.0 89.0 87.0	4	2300	0.2 0.2 0.2	89.0	4	2400	2.0	N	37.6	9 5 .8	N		
			L									2	88.0 89.0 85.0	4	2300	0.2 0.2 0.2	87.0	4	2300	2.0						
45-13	NTPSI T43A4	F	У Н Н Н	9.3	Y	S	0	12202	79	29.51	65	2	90.0 91.0 91.0	30	2350	1.0	F							N		
			L									2	89.0 91.0 88.0	20	2200	1.0 1.0 1.0	F									
46-10	NTSRK T57A4	F	Y H H H		Y	0	0	14549	76	29.36	96	2	88.0 88.0 87.0	3U	2800	2.5 2.5 2.5	F				٧	92.5	83.0	N		
												2	88.0 98.0 87.0	3U	2800	2.5 2.5 2.5	F									
28-36	NTSPK T57A4	F	Y H H	9.1	Y	0	0	12991	76	29.18	50	2	89.0 89.0 88.0	20	3200	0.5 0.5 0.5	Ē							N		
			Ł L									2	87.0 88.0 87.0	2U	3200	0.5 0.5 0.5										

	VE	HICLE	DESCR	IPTIO!	İ		w!	EATHER		OCT	ANE	NUMBE	R REQU	IREMEN'	T]#	A.T.A			TAN	K = .E	L D	FOP	MATION	
		•••									М,	AXIMUM		PA	?!!	HROTT	LE						RATEP	••••
088 NO		E M C KNK T SEN	C.R.	ΑŪ Α Ι 4	PARK PANCE ANCE S AS	ODOM MILES	AMB TMP	BAPOM	HUM !	; E OCT L NO	G E A P	RPM	MV	OCT NO	G E A R	RPM	MV	C W K N	0CT	NC	: 1	E . 4	PPM	M.
36-22	NTSRK TS7A4	H H H		γ :		3632	22	30.51	10 3		3L 2U	2250 2400	2.0	92.3				N	32.9	£2.3	8 1	 € 3t	2150	2.1
		L L 1							2	90.0 89.0 4 92.0	20	4000		90.0	35	2606	3.5							
75-94	NTSRK T57A4	F Y H H H		y {	9 0	10898	54	29.20	2	93.0 33.5 89.5	20	2300	3.0				4.0 4.0	N			Á	30	1800	3.5
		L L							2	93.C 93.5 89.5	2U	2300	3.0	92.5 89.5	••		4.0							
75-67	NTSRN T5744	F Y H H H	9.1	Υ (0	12767	67	29.24	2	3 93.5 2 94.5 3 91.5	20	2000		F				N			A N	1 2U	2300	2.3
		L							2	3 93.5 2 94.5 4 91.5	20	2000	2.0	f										
65-17	NTSSE T25M5	FN	8.3	N + 8	3 + 8	14563	50	29.68	34 3 2	2				101.0 H 98.0	40	2900	7.0 7.0 8.0							
47-04	NTSSR T28A4	C Y H H H	8.9	Y +11	+10	17483	70	29.93	2	3 98.0 2 100.0 4 94.0	30	3500	1.0 1.0 0.5	F										
		L L							2	3 94.0 2 97.0 4 93.0	3U	3200	1.0 1.0 0.5	F										
47-18	NTSSR 728A4	C Y H H H		Y +1;	? +10	9000	70	30.14	2	3 100.0 2 101.0 4 97.0	4L	2000	0.5 0.5 0.5	F										
		L L							2	96.0 2 99.0 4 94.0	41	2000	0.5 0.5 0.5											

	VEHICL	E DESCRIPTION	WEATHER		OCTANE NUMBER	PEQUIR	EMENT DATA		TANK FUE	LINECPHATION
					MAXIMUM		PART THROT	". E	· • • • • • • • • • • • • • • • • • • •	RATER
OBS NC	E M M M CODEL C K CODE T S	SPARK ADVANCE A NK I AS AS EN C.P. P RCO TST		U E	E OCT A	(G E OCT A NO R PPM		C W CT NO N	N H +
41-27	NTSSR T28A4 C Y	н 8.9 r +10 +10 Н		2	38.0 20 3200 89.0 20 3400 87.0 20 3200	3.0	f	••••	· 3'.3 82.8	N
		:		3 2 4						
25-32	NTSSR T28A4 F V	H 8.8 Y +10 +10 H		2	98.0 30 2500 88.0 4L 1600 87.0 4L 1600	0.5	F			N
		L L		3 2 4						
65-26	NTSSR	H 8.9 Y +10 +10 H H		2	99.0 3L 2400 96.5 3L 2400	1.0				
es 20	MTAAT TIAIA F V			2		1.0	98.5 41 1800			
65-20	NISSE (43A3 F Y	H 4.3 N 0 0		2	87.5 2U 2600 87.0 2U 2600		84.0 3U 2200	7 2.0		
		L L		2						
46-08	NTVGK T57A4 F Y	'H 9.1 Y 0 0 H H		2	92.0 2U 3250 91.0 2U 2150	2.0 2.0 2.0			N 91.3 82.1	N
		L L		2	91.0 2U 2900 90.0 2U 2250	2.0 2.0 2.0	f			
07-24	NT/GZ T43A3 F Y	Н Э.3 N О О Н Н		2	86.0 3 2400 86.0 2 2900	0.5 0.6 0.5	F		N 92.4 32.7	,
		L		2	86.0 3 2400	0.5 0.6 0.5	F			

	γE	HICLE	DESCR:	IPTIO	N		¥	EATHER		90	TANE	NUMBE	R PEQU	IPEMEN	rt Di	ATA			TAN	k FuE	_ INFO	BM41104	i
											4	fax IML M		PA	ρ- ·	THROTT	TE					BATED	
CBS NO	MODEL Code	E M C KNK T GEN		AD A I 4	PARK VANCE	ODOM MILES	AMB	HAPOM	H:: M	= U E 001	G E A	RPM	Wi.	OCT	G E A P	RCM	₩V	0 # K N	700	NC MGT	N GITE	PDW	M,
																		-				* ****	E: 1
20-20	NTVGZ T43A4	г! п Н	3.3	Ť	u u	6203	10	29.40		2 85.	0 31	. 3900 . 3900 ! 2300	0.5 0.5 0.5	Ĺ							N		
		L										3900 3900	0.5 0.5										
		L								4 81.			0.5										
05-14	NTVGZ T43A4	F Y H H H	9.3	¥	0 0	16826	54	30.21			0 25	3300	1.0 1.5 1.0	F				N	94.5	83.5	A M 31	; 2250	1.0
		<u>.</u>								3 94. 2 96. 4 90.	0 21	3300	1.0 1.5 1.0										
60-08	NT/GZ T4SA4	F Y H H H	9.3	Y	0 0	19580	72	30.1ē	43	3 90.	0 4L	. 1600 . 2600	0.6 0.6 0.6	89.0	4L	1600	5.5	N	94.0	92.1	B M 23	2400	1,6
		r F									0 31	1600 2500 1600	0.6 0.6 0.5	87.0	4L	1600	5 .5						
41-02	NT∀GZ T43A4	C Y H H H	9.3	Y	0 0	10834	64	30.08		2 95.	.0 31	2500 2600 2500	1.0 1.0 1.0								B M 3	J 2360	1.0
		L L								2 93.	0 31	2400 2800 2500											
46-16	OTPEN P5044	F Y H H H		Y +1	0 +10	14588	74	29.39		3 H 2 H 4 H				Ħ				N	91.3	82.3	В	1450	1.5
										2 87.	0 4	1350 1450 1300	1.5	39.0	4	1300	2.5						
46-21	OTPFY P49A3	F Y H H H	8.8	Y +1	0 +10	8059	74	29.70		2 87.	0 3	1975 2000 1950					3.0 3.0	N	91.0	82.7	N		
		۲ ۲								2 85.	0 3	2025 1650 1950	2.0	85.0	3	2075	3.0						

	, AE	HICLE [DESCRI	PTION			v !	EATHER			OCT	NE	NUMBER	R REQUI	REMEN	7 0	ĄTĄ			TAN	K FUE	. INFO	MCTTAMS	
	*********		••										AX IMUM										54_Eb	••
OBS		E M C kNk		4D: 4	ARK ANCE	ODOW	AMB	21204	11. M	F U E	007	3 & 4 0	מפט		OCT	G = 4	nnu -		0 # 5 N	007	NO	N 3 ITE NHA	264	
NO	CO SE																		-	#E3	#U		 - wqs	M,
45-13	OTPEY P49A3	Н ¥ Я Н	3.8	+10	+15	6217	32	29.60		2	83.0 83.0 82.0	2	3250	1.5	Ĺ					90.8	33.1	4		٠.\$
		i L								2	83.0 82.0 82.0	2	2700	1.5 1.5 1.5	L									
32-13	OTPFY P49M4	H H E A H	8.8	f + 5	+10	14894	70	29.73		2	30.0 88.5 89.0	4	900		90.0	4	1000 850 1000	2.0						
		L L								2	88.0 88.5 89.0	4		0.3 0.3 0.3	89.0	4	1000 850 1000	2.0 1.5 2.0						
05-13	OTPRA P23M5	F Y H H H	9.5 i	+10	+10	10898	70	29.78		2	90.0 91.0 89.0	4	1800	0.2 0.2 0.2	97.0	4	2500	8.0	¥	94.5	94.0	N		
		1								2	90.0 91.0 89.0	4	1800	0.2 0.2 0.2										
32-15	OTPRA P23M5	F Y H H H	9.5	/ +10	+10	10475	70	29.11		2	88.0 87.0 88.0	4	1400	0.4 0.4 0.4	88.0	4	1400 1400 1400		Y			8 M	4 1400	0.4
		L L								2	87.0 86.0 88.0	4			87.0	4	1400 1400 1400	2.0						
0?-23	OTPRT P29A4	F Y H H		1		11480	67	30.10		2		4 L	2000	0.8 1.5 1.5	F				N	92.3	82.1	N		
		L L L								2	98.0	4	2100 2000 1950	1.5	82.0	4L	2000	5.5						
46-13	OTPRT P29M5	F Y H H H	9.0	f +10	+10	6814	73	29.50		2		4	1550		84.0	4	1775	2.0						
		<u>.</u>								2	84.0	4	1550 1550 1750	1.0	84.0	4	1775	2.0						

	V E	HICLE	DESCRI	PTION			W	EATHER			OCTA	NE N	UMBER	REQU	IREMEN	† 5	4-4			TAN	k FJE	. IN	F () P M	ATION	
	**********								• • • •			MAA	.IMUM		DΑ	R!	THROTT	_ 						47ER	••••
088	MODEL	E M C KNK		VCA A 24 I		09 0 M			!		CCT	: :		••••	OCT		•••••		0 #	007	NC 	N I T N H			
NC	CODE	T SEN	C.R.	R RCD	TST	MILES	TMP	BAROM	HUM	L 	NO 5		PPM	MV	NO	R 	RPM	₩, 	K -	PES	MOT	~ R	ρ :	9 P.M.	Mi
97-17	OTPRT P29 45	н Н К ъ	9.0	\ +10	+10	20332	63	30.00		2 8	87.0 4 89.0 4 95.0 4	1 2	200	0.3 0.3 0.3	87.0	4	2200	4.3	N	92.2	82.3	Ñ			
		L							1	2 8	87.0 4 87.0 4 85.0 4	2	200	0.3 3.3 0.3	87.3	4	2200	4.3							
32-09	OTSBT P29A4	F > H H H	9.0	¥ +12	+10	11728	79	29.02	53	3 2 4	L L L				L L				N			N			
		L -							; 2	3 2 4	L				ز د د										
32-16	CTSBT P29A4	F Y H H H	9.0	Y +1C	+10	22169	70	29.15	53 3 2	3 2 4	L L				L L				N			N			
		i i							3	3 2 4	L L				L										
28-08	OTVAL P36A4	FN	9.3	+10	+10	20402	70	29.36	2	2 8	35.0 4 35.0 4 34.0 4	L 1	800	0.7 0.7 0.7	84.0	4L	1800	1.0				N			
05-26	OTVAU P3GA4	FN	9.3	f +10	+10	7569	71	30.60	2	2 9	0.0 4 0.0 4 90.0 4	L 1	950	2.0 2.0 2.0	90.0	4L	1800	5.0	N	91.8	83.2	N			
32-07	OTVAU P30A4	FN	9.3	f + 8	+10	17836	70	29.73	2	2 8	37.0 4 16.0 4 16.0 4	L 21	000	0.8 0.8 0.8		41	2000	3.0 3.0 3.0	Y			N			
47-24	OTYAU P30A4	CN	9.3	/ +10	+10	13288	70	30.22	2	2 8	18.0 4 18.0 4 18.0 4	L 1	600	0.8 0.8 0.8	87.0	4L	1600	2.0	N	93.7	84.0	N			
47-29	OTVAU P3044	CN	9.3 Y	/ +10	+10	13200	70	30.24	2	2 9	3.0 4 14.0 4 12.0 4	L 11	600	0.5 0.5 0.5	93.0	4 L	1600	2.0							
41-23	CTVAU P30A4	C N	9.3	+10	+10	24493	71	30.28	2	8	7.0 3 8.0 3	U 21	600	1.0 1.0 1.0	86.9	4L	2900	4.0		92.7	83.2	N			

	√EI	HIC	LE D	ESCR	ŧĮΡ	TION	I		W	ATHER			OCTA	INE	NUMBER	REQUI	IREMEN'	1 0/	ATA			TAN	N FUE	LIM	FOR	MATICH	
					•									M/	AxIMUM		PAI	₹Ţ	THROTTI	LE						RATER	
OBS NC			NNK SEN		A I	ADV		ODOM MILES	AMB			t :	130	GEA				G E A			0 W K N			W +	. 4	RPM	Ä,
	OTVAU P3GA4										36	3 9	92.5 92.5	4L 4L	1900 1900	1.5					-				·		
39-19	OTVAU P30A4	F	N	9.3	} Y	+10	+10	12109	70	30.20		2 9	32.0	41		0.6 0.6 0.6	91.0	4L	2000	2.0	¥	31.8	82.5	A 9	(4:	2000	€€
32-06	OTWAU P30M5	F	Ň	9.3	} Y	+ 8	+10	8549	70	29.32		2 8	39.0	4	1700 1900 1700	0.4 0.4 0.4	90.0	4		2.0 2.0 2.0	N			N			
32-03	CTVBY P49M4	F	Y Н Н	9.8	} Y	+ 7	+10	23901	70	29.45		2 9	32.0	3		0.6 1.2 0.6	91.0 94.0 89.5	3	3000 3000 2000	2.0 2.0 2 .0							
			L									2 9	32.0	3	3000 3000 2000	1.2 1.2 0.6	90.0 92.0 89.5	3	1000 3000 2000	2.0 2.0 2.0							
07-20	CT√CN P50A3	f	Y Н Н Н	9.0) Y	+10	+10	31762	71	29.95		2 9	92.0	3L		1.8 1.5 1.8	90.0	3U	1400	4.0	N	99.4	87.9	N			
			L									2 8	89.0	3L		1.8 1.6 1.6	89.0	3U	1400	4.0							
07-31	OTVCN P5GA3	f	H Y H) Y	+10	+10	37242	69			2 9	90.0	30		1.5 0.9 0.9				7.5 7.5		99.4	67.9	8 1	1 3ป	1800	0.9
			L L									2 8	99.0	31	1400 1500 1500		87.0 89.0		1500 1 50 0	7.5 7.5							
32-02	OTVCY P49M4	F	Y H H H	9.8	3 Y	+11	l' +10	14294	70	29.22		2 9	95.0	4	1400 1100 1000	0.3 0.3 0.3	94.5 95.0 95.0	4		2.0 2.0 2.0	N			A 1	1 4	1500	6.3
			L L									2 9	94.0	4	1400 1200 1300	0.3 0.3 0.3	94.0 94.0 94.0	4		2.0 2.0 2.0							

	/EH	CLE DESCRI	PTION	WEATHER	OCTANE NUMBE	R REQUIREMENT DATA	TANN	FUEL INFORMATION
					MAJIHUM	PART THROIT.	E	SYTED
OBS NO	***-	t Kna	SPARK AD-ANCE A I AS AS ODON R GCD TST MILES	S LAMB E THP BAROM HUM L	A TOO	G E OCT A MV NO R RPM		O ITE
32-01	OTVCY P49M4	: v н 3.8 н н	 Y + 3 +10 16410		36.0 4 130C 96.0 4 12CC 36.0 4 12CO	0.3 95.0 4 1200 0.3 95.0 4 1200 0.3 95.0 4 1200	2.0 N 2.0 2.5	4 M 4 1000 C.3
				2	94.0 4 1200 94.0 4 1200 95.0 4 1300		2.0 2.0 2.0	-
29-15	OTIEN P50A4	: Y Н 9.0 Н Н	Y +10 +10 23299		90.0 40 1650	2.0 90.3 4L 1550 2.0 91.0 4L 1750 2.0 89.0 4L 1150		8 P 4L 1000 5.0
		: L		3	!			-
				2	87.0 3U 2250 84.0 3U 2275	1.0	3.5	8 M 3U 2600 1.0
				4	82.0 2U 2700 78.0 2U 2540	0.5 0.5		N .
				4	83.0 3L 2600 8 80.0 3L 2750	1.0 1.0 0.9	N 92.3 3	
				4	82.0 3L 2550 80.0 3U 3150	1.2 L 1.2 1.2	N 90.2 9	
				4	82.0 3L 2500 80.0 2U 4000	0.8 L 0.8 0.5	N 92.4 8	2.2 N ~
29-24	PTVS3 P30A3	N 9.85	Y +12 +12 1132		88.0 3L 2000 91.5 3U 2000 87.5 2U 2300		3.0 Y	A M 3U 2000 0.8
26-95	PTVS3 P30A3	N 8.85	Y +12 +12 1408		8 81.0 2U 2200 8 82.0 3L 2000 1 78.0 3L 2050	1.0 L 1.0 1.0	N 32.3 8	3.2 N
25-03	PTVSG 226A3	N 9.7	Y + 7 + 7 2049!		3 94.0 3 2550 2 94.0 3 2300 3 92.0 3 2550	2.0 94.0 3 2450 2.0 95.0 3 2550 2.0 92.0 3 2475	3.5	B M 2 3050 1.5

	18	HICLE	DESCR	IPT	TION			W	EATHER			OCTA	NE	NUMBER	REQU	IREMEN	7 0	ATA			TAN	K FUE	L IN	iFOR	MATION	
						•													LE						RATER	
OBS NC		E M C KNK T SEN	. C.R.	AI	ADV/ AS	ARK ANCE AS TST	ODOM MI:ES	AMB TMP	BAROM	40 M	FUEL	CCT	G E A	RPM		OCT	G E A			C W K N	OCT	NO MCT	ų I T N H	G E A	P.P.M	M.
	PTVSG 226A3			-						50	3 2		2 2 2	2200 2250	·					-						
05-04	PT/SG 226A3	FN	8.7	¥	+ 7	. •	15757	71	30.00		2	93.0 95.0 90.0	2	2500	3.0 3.0 3.0	90.0	2	2500	4.0	N	37.3	86.7	N			
06-10	RTPBM P4GA4	FN	9.2	N	+15	+16	4847	55	29.84		2	92.0 93.0 90.0	3 L	2700	0.9 0.8 0.9	88.5	3L	2600	2.2	Ň	93.4	83.0	A M	1 3L	2500	0.8
62-10	RTSAM P40A4	FN	9.2	Y			10180	72	29.84		2	87.0 87.0 86.0	3L	1850	0.8 1.0 0.8	F				N	97.2	86.7	N			
4?-21	TTPIR 224A4	CN	9.3	Ÿ	0	0	650 0	70	30.34		2	91.0 93.0 87.5	3	3750	1.0 1.0 1.0	F				N	97.0	86.0				
47-29	TTPIR 224A4	CN	9.3	N	+ 2	3	6100	70	30.18		2	88.0 90.0 87.0	4	2900	0.8 0.8 0.8	86.0	4	2800	2.0							
41-16	TTPIR 224M4	C N	9.3	N	0	0	13190	75	29.82		2	91.0 91.0 94.0	4	1400	1.0 1.0 1.0											
05-14	TTPIR 224M5	FN	9.3	N	0	0	10442	69	30.35		2		4	1700	0.5 0.5 0.5					N	93.0	93.3	N			
60-03	TTPIR 224M5	FN	9.3	N	0	0	8146	72	30.25		2	90.0 90.0 90.0	4	1800	0.5 0.5 0.5	89.0	4	1800	2.5	N	94.7	84.4	N			
47-1"	TIPIR 224M5	CN	9.3	N	+ 2	0	19500	70	29.99		2	89.0 89.0 89.0	4	3400	0.5 0.5 0.5	F										
06-01	ITPD1 220M5	FN	8.6	N	+ 6	+ 6	8129	59	30.01		2	90.0	4	1400	0.5 0.4 0.5	89.0	4	1500	1.5	N	99.0	87.6	N			
47-05	ZTPD1 220MS	CN	8.6	Y	+ 6	+ €	6153	70	30.10		2	88.0 88.0 88.0	4	1350	1.0 1.0 1.0	F										

APPENDIX F

PROCEDURES FOR CALCULATING AND PLOTTING
OCTANE NUMBER REQUIREMENT DISTRIBUTION DATA

WEIGHTED VEHICLE/CAR POPULATIONS

Weighting factors for each vehicle model were developed from information supplied by the US vehicle manufacturers and from information published (Ward's Automotive Reports) for imported vehicles. These weight factors were proportioned to the relative production and/or sales volumes of the vehicles tested.

For any vehicle having octane requirements lower (L) than the lowest octane number fuel available within a given fuel series, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for any vehicle having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 0.5 Research/0.4 Motor higher was assigned.

The weighting factors of each vehicle model were divided by the number of vehicles tested to calculate individual vehicle weight factors. The octane requirements for each vehicle were then arranged in increasing order with the appropriate individual weighting factors. The percent of vehicles at each octane requirement level represents the summation of all vehicle weighting factors before that level, plus one-half the sum of the weighting factors at that level. The individual vehicle weighting factors are adjusted so that the summation of all weighting factors is 100.00 for any vehicle population of interest. The midpoint percentiles are plotted versus octane number requirement on arithmetic probability paper and a distribution curve is drawn through the points.

SELECT CAR MODELS

For individual car models, the octane number requirement distribution curves were plotted by the "Z" method as described in "Statistical Estimation of the Gasoline Octane Number Requirement of New Model Automobiles," C. S. Brinegar and R. R. Miller, <u>Technometrics</u>, Vol. 2, No. 1, February 1960.

The procedure is as follows:

For any cars having octane requirements lower (L) than the lowest octane number fuel available within a given fuel level, a number 1.0 Research/0.7 Motor lower was assigned. Similarly, for individual cars having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 1.5 Research/1.1 Motor higher was assigned.

Using all observed and estimated octane number values, calculate the mean (X) and the standard deviation (s) from the data for each car model.

$$s = \begin{bmatrix} \frac{1}{n-1} & \sum_{j=1}^{n} (\chi - \overline{\chi})^2 \end{bmatrix}^{1/2}$$

Where $X_i = 0$ ctane number requirement of i^{th} car of a given model n = Number of cars of that model.

Estimate octane number requirements at the percentiles of interest from octane number requirement distribution data by

$$0.N. = \overline{X} + ks$$

Where k is selected from normal distribution tables.

Values of k used to calculate percentiles in this report are:

<u>Percentile</u>	<u>k</u>
5	-1.645
10	-1.282
20	-0.842
30	-0.524
40	-0.253
50	0
60	+0.253
70	+0.524
80	+0.842
90	+1.282
95	+1.645

APPENDIX 6

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

Octane number requirements of vehicles presented in this Survey are determined at the levels that satisfy certain percentages of specific vehicle populations. In many cases, the recorded octane number requirement is followed by a plus and minus limit, referred to as the confidence interval. These limits are expected to bound the true requirement of the population represented by the test vehicles 95 percent of the time in replicate testing of the same number of test vehicles.

At the 50 percent satisfaction level, the 95 percent confidence interval is calculated as follows:

$$CI = \pm ts/(n)^{1/2}$$

where t = Students t at the proper number of degrees of freedom*

- s = Standard deviation, calculated directly from the data or estimated as the difference between the 84.16th and 50th percentiles (assuming normal distribution)
- n = Number of vehicles in population.

At other satisfaction levels:

$$CI = \pm ts \quad 1/n + k^2/[2(n-1)]^{1/2}$$

At the 90 percent satisfaction level, k = 1.2817. For other satisfaction levels, appropriate values for k may be found in the standard statistical tables.

Degrees of Freedom**	t	Degrees of Freedom**	t_
1	12.706	18	2.101
2	4.393	19	2.093
3	3.182	20	2.086
4	2.776	21	2.080
4 5 6	2.571	22	2.074
6	2.447	23	2.069
7	2.365	24	2.064
8	2.306	25	2.060
9	2.262	26	2.056
10	2.228	27	2.052
11	2.201	28	2.048
12	2.179	29	2.045
13	2.160	30	2.042
14	2.145	40	2.021
15	2.131	60	2.000
16	2.120	120	1.980
17	2.110	œ	1.960

^{*} Distribution of t for probability = 0.05.

^{**} Degrees of Freedom = (n-1).

TABLE G-I

95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

1987 Weighted Population Groups

		X		Star	Standard Do	>	NUG		95% Confidence	ence L	mits /Div	9/
Population	Fuel	Veh.	 	RON	MON (R	(R+M)/2	20%	181	50%	306	20%	206
Total Vehicles												
Includes Knock Sensor	PR	389	1.966	4.47	4.47	4.47	0.45	0.60				0,60
Maximum (High-Borderline)	FBRC	386	1.966	4.52	2.85	3.68	0.45	0.61	0.28	0.38	0.36	0.49
אפלת ו בפשפט כא	FBKSU	383	1.966	4.89	3.51	4.20	0.49	99.0				0.56
Includes Knock Sensor	P.	376	1.966	4.18	4.18	4.18	0.42	0.57			0.42	
rinimum (Low-Borderline) Requirements	FBRU FBRSU	377	1.966 1.966	4.36 4.85	2.71	3.53	0.44	0.60	0.27	0.37	0.35	0.48
Total Cars	•	;			;	:		9	•		0.45	
Includes Knock Sensor	S.	300	1 968	4 72	A 72	4 72		67		6		
Maximum (High-Borderline)	FBRU	300	1.968	4.90	3.08	3.99	0.56	0.75	0.35	0.47	0.34	2/.0
Kequirements	FBRSU	300	1.968	5.23	3.75	•		0.80		0.58	0.51	• •
Includes Knock Sensor	PR	292	1.968	•	4.52	4.52		0.70	_	0.70		
Minimum (Low-Borderline)		293 203	1.968	4.63	2.87	3.75	0.53	0.72	0.33	0.45	0.43	0.58
	LEKSO	293	1.908	•	3.5/	4.30		0.78	_	0.55	•	
Total Trucks and Vans												
Includes Knock Sensor	PR	88	1.986	3.91		3.91	0.82	1.11	0.82	1.11	0.82	1.11
Maximum (High-Borderline)	FBRU	8	1.986	3.72	2.36	3.04	0.78	1.06	0.50	0.67	0.64	0.86
redu l'rements	FBKSU	5	1.986	4.25		3.66	0.0	1.21	0.65	0.87	0.77	1.04
Includes Knock Sensor	PR.	84	1.988	3.63	3.63	3.63	0.79	1.07	0.79	1.07		1.07
Minimum (Low-Borderline)	FBRU	8 8	1.988	3.87	2.42	3.14	0.84	1.14	0.52	0.71	0.68	0.92
03-50-57	DCAG	6	1.988	4.3/	3.09	3./3	0.95	1.28	0.67	0.91	•	1.09

TABLE G-I (Continued)

95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

1987 Meighted Population Groups

								95%	Confide	ence Li	mits	
Population	Fuel	No. Veh.	ų	RON	Standard Dev.	v. +M)/2	80%	RON 50%	MO 202	MON (R+	3	7/2 90%
Total Knock-Sensor Vehicles					 			İ				
Includes Knock Sensor	P.R	136	1.978	4.15	4.15	4.15	0.70	0.95	0.70	0.95	0.70	0.95
Maximum (High-Borderline)	FBRU	136	1.978	4.79	3.15	3.97	0.81	1.10	0.53	0.72	0.67	0.91
Requirements	FBRSU	136	1.978	5.41	3.92	4.66	0.92	1.24	0.67	0.90	0.79	1.07
Includes Knock Sensor	A	123	1.980	3.26	3.26	3.26	0.58	0.79	0.58	0.79	0.58	0.79
Minimum (Low-Borderline)	FBRU	124	1.979	4.25	2.64	3.44	0.75	1.02	0.47	0.64	0.61	0.83
Requirements	FBRSU	124	1.979	4.75	3.35	4.05	0.84	1.14	0.59	0.80	0.71	0.97

TABLE 6-11

95% CONFIDENCE LIMITS FOR MAXINUM (R+H)/2, ROM, AND MON REQUINEMENTS

				ä	1987 Select Models	Models						
Model	Fuel	=	4	Std. Dev. (s) (R+M)/2		Fidence (R+M)/2 901 Satis.	Std.Dev. (s)	95% Con Limits 50% Satis.	fidence RON 90% Satis.	Std. Dev. (s)	95% Con Limits 50% Satis.	ridence MON 90% Satis.
PED 122A3/PKS 122A3/ PPD 122A3/KKD 122A3/ KKD 122A3/DHG 122A3	PR FBRU FBRSU	000	2.26 2.26 2.26	2.8 3.3		2.1 2.9 2.0 2.7 2.4 3.3	9.6.6. 9.4.9.	2.3 2.8	2.1 2.9 2.4 3.3 2.8 3.9	2.9 2.2 2.7	2.1 2.9 1.6 2.2 1.9 2.7	2.9 2.2 2.7
0E9 719A3.ME9 719A3	PR FBRU FBRSU	12	2.20 2.20 2.20	3.7		3.3 2.2	3.7 3.7 3.0	2.4	3.3 2.6 6	3.7 2.4 2.1	2.4	3.3 2.1 1.8
OPF P50A4/OSF P50A4/ MPF P50A4/MSF P50A4/ SPF P50A4	PR FBRU FBRS(/	12	2.20 2.20 2.20	4. t. t. t. s. t.		3.8 3.1	4. E. 4. E. Q. ≃.	2.7 2.4 2.6	e.e.e. & ♣ &	2.6 2.8 8	2.7 1.6 1.8	3.8 2.2 2.5
ORU P30A4/MRU P30A4/ (H1gh-Borderline)	PR FBRU FBRSU	17 17 71	2.12 2.12 2.12	2.5 2.9 2.9		1.7 1.8 2.0	2.8 3.3 8.3	1.2	2.1	2.0 2.4 4.0	1.2	1.7
ORU P30A4/MRU P30A4/ (Low-Borderline)	PR FBRU FBRSU	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	2.12 2.12 2.12	2.3 2.8 8.5		1.6 1.8 2.0	2.3 3.0 3.3	1.2 1.6 1.7	1.6 2.1 2.3	2.3 2.4 2.4	1.2	1.6

TABLE G-11

95% CONFIDENCE LIMITS FOR MAXIMUM (R+M)/2, ROM, AMD NOW REQUIREMENTS 1966 Select Models

				Std.Dev.	95% Conf Limits,	(R+M)/2	Std.Dev.	95% Con Limits	fidence RON 90%	Std.Dev.	95% Con Limits	fldence MON 90%
Model	Fuel	د	اب	(R+H)/2	Satis.	Satts.	RON	Satis.	Satis.		Satis.	Satts.
NAR T25A3/HAR T25A3/ IAR T25A3/LAR T25A3	PR FBRU FBRSU	11	2.12 2.12 2.12	2.5 2.6 3.1	1.4	1.7	2.5 3.1 3.4	1.3	2.2	2.5 2.4 7.7	1.3	2.4 2.4 1.9
NJI 120A3/LJI 120A3	PR FBRU FBRSU	13	2.18 2.18 2.18	2.5 2.3	1.2	1.6	2.5 2.4 2.7	1.5	2.1 2.0 2.2	2.55	1.5	2.1 1.3
NAW P28A3/HAW P28A3/ IAW P28A3/LAW P28A3/ NJW P28A3/GJW P28A3 (H1gh-Borderline)	PR FBRU FBRSU	999	2.26 2.26 2.26	76.48.70 51.60.1∨	3.8 4.1 4.1		5.7.7 6.5.1	3.8 4.0	3.8 5.2 3.7 5.1 4.6 6.4	က်က် နှ	6.5.6 8.8.8 8.6.4 8.8.4	9. 9. 9. 9.
NAW P28A3/HAW P28A3/ IAW P28A3/LAW P28A3/ NJW P28A3/GJW P28A3 (Low-Borderline)	PR FBRU FBRSU	222	2.26 2.26 2.26	ભુક્ષ. ພ.ભ.⊬	3.3.8 1.3.3	%.2 .5.5 .6.5 .6.5 .6.5 .6.5 .6.5 .6.5 .6	ທີ່ກຸດ ພິດທີ	8.8.4 9.0	ए.ए.० ८.ब.ब.	5.3 4.9	3.5 3.5 5.5	3.5.2 8.36.2
1H3 P38A4/1C3 P38A4/ HH3 P38A4/LH3 P38A4/ (H1gh-Borderline)	PR FBRU FBRSU	15 15	2.14 2.14 2.14	3.0 4.1	2.9 1.6 2.3	2.3 3.2	က် မ. မ.က စ.	2.9 2.0 2.7	4.0 2.7 3.7		2.9 1.3 1.9	4.0 1.8 2.6
IH3 P38A4/IC3 P38A4/ HH3 P36A4/LH3 P38A4/ (Low-Borderline)	PR FBRU FBRSU	15 15 15	2.14 2.14 2.14	5.8.4.0.2.4.	2.8 2.9 4.2	8.64 8.04	5.0 9.9 5.2	2.8 2.1 2.9	3.8 4.0	5.0 3.6	2.8 1.4 2.0	3.8 2.8