MS Lesion Segmentation

Background

- Obtaining manual lesion segmentations is often resource intensive.
- ► Accurate and efficient methods for automatic segmentation are necessary for scalability and research progress.

Goals of this tutorial

- Apply OASIS (Sweeney et al. 2013), an automatic lesion segmentation model, to obtain predicted lesion probability maps.
- Compare the results using the default OASIS settings to those obtained after re-training the model using our data.

Visualization

► Here's the T1 volume for training subject 05 with a 'gold standard' manual lesion segmentation overlayed.

MS Lesion Segmentation with OASIS

- ► OASIS is Automated Statistical Inference for Segmentation (Sweeney et al. 2013).
- ► The OASIS algorithm takes FLAIR, T1, T2, and PD images from patients with multiple sclerosis (MS) and produces OASIS probability maps of MS lesion presence, which can be thresholded into a binary lesion segmentation.
- ▶ The OASIS model is based on a logistic regression of the gold standard manual segmentation labels on the images, smoothed versions of the images, and some interaction terms (i.e., supervised learning).

Default OASIS Model

- ► The OASIS library comes with default parameters that can be used to generate probability maps for new test subjects.
- ► The default model was trained on approximately 100 MS subjects and 30 healthy subjects with manual segmentations.
- ► Here we apply the function oasis_predict with the default model to obtain OASIS probability maps for the test subjects.

```
library(oasis)
default_predict_ts = function(x){
  res = oasis predict(
      flair=ts_flairs[[x]], t1=ts_t1s[[x]],
      t2=ts t2s[[x]], pd=ts pds[[x]],
      brain mask = ts masks[[x]],
      preproc=FALSE, normalize=TRUE,
      model=oasis::oasis model)
  return(res)
}
default_probs_ts = lapply(1:3, default_predict_ts)
```

Vizualization

► Here's the probability map for test subject 01:

Thresholding

- ► To get a final estimated segmentation, we must choose a cutoff to binarize the OASIS probability maps.
- The binary argument in the oasis_predict function is FALSE by default, resulting in the output being the probability map.
- ► Setting binary=TRUE will return the thresholded version, using the input to the threshold argument (default = 0.16).
- ▶ 0.16 was obtained via a validation set allowing for a 0.5% false positive rate.
- ▶ In practice, we might want to use a grid search over thresholds and cross validation to choose the cutoff.

Vizualization

► Here's the binary mask for test subject 01, using the default 0.16 threshold:

Default OASIS Model

- ► To evaluate how the default model performs, we need to compare the predictions to a gold standard.
- ▶ Let's therefore obtain OASIS probability maps for our training subjects.
- ▶ We will use the default threshold to binarize.

```
default_predict_tr = function(x){
  res = oasis_predict(
      flair=tr_flairs[[x]], t1=tr_t1s[[x]],
      t2=tr_t2s[[x]], pd=tr_pds[[x]],
      brain_mask=tr_masks[[x]],
      preproc=FALSE, normalize=TRUE,
      model=oasis::oasis_model, binary=TRUE)
  return(res)
}
default probs tr = lapply(1:5, default predict tr)
```

Default OASIS Model Results

► Here's the T1 volume for training subject 05 with the OASIS segmentation overlayed.

Default OASIS Model Results

► The dice coefficients for the training subjects compared to raters 1 (left) and 2 (right) are:

```
[[1]]
[1] 0.4724006
[[2]]
[1] 0.6900361
[[3]]
[1] 0.362001
[[4]]
[1] 0.284585
```

[1] 0.3083417

[[5]]

Improving Results

- ► The default model is picking up a lot of false positives in the spinal cord.
- ▶ We might improve the results by re-training the OASIS model using our five training subjects.
- To re-train using new data, binary masks of gold standard lesion segmentations are needed and should be in T1 space.

Making OASIS data frames

- OASIS requires a particular data frame format, which we create using the function oasis_train_dataframe.
 - ▶ Includes an option to preprocess your data (preproc), which does (1) inhomogeneity correction using fsl_biascorrect and (2) rigid coregistration using flirt to the T1 space.
 - ▶ Includes an option to normalize the intensities of your data using whole-brain normalization (normalize).
 - make_df() below is a helper function.

```
make_df = function(x){
    res = oasis_train_dataframe(
        flair=tr_flairs[[x]], t1=tr_t1s[[x]], t2=tr_t2s[[x]]
    pd=tr_pds[[x]], gold_standard=tr_golds2[[x]],
    brain_mask=tr_masks[[x]],
    preproc=FALSE, normalize=TRUE, return preproc=FALSE)
```

}
oasis_dfs = lapply(1:5, make_df)

return(res\$oasis_dataframe)

Training OASIS

- ► The function oasis_training takes the data frames we made and fits a logistic regression using labels and features from a subset of voxels in each subject's brain mask (top 85% in FLAIR intensity).
- ▶ The function do.call is a useful R function that applies the function named in the first argument to all elements of the list specified in the second argument.
- ▶ Below, model is a glm object that stores the estimated parameters from the logistic regression.

```
ms_model = do.call("oasis_training", oasis_dfs)
```

OASIS model object

PD:PD 20

▶ By printing the ms model object, we can see the covariates used and assosicated coefficients:

```
print(ms.lesion::ms_model)
```

```
glm(formula = formula, family = binomial, data = tra
```

Coefficients:			
	FT 1 TD 10		A
(Intercept)	FLAIR_10	FLAIR	FLAI
E 2000	1 1011	4 4070	_

FLAI	FLAIR	FLAIR_10	(Intercept)
-2.	1.4076	4.1041	-5.6939
т	PD 20	PD	PD 10

1 11111	1 111110	1 1111111111111111111111111111111111111	(Intol copt)
-2.	1.4076	4.1041	-5.6939
Τ	PD_20	PD	PD_10

			(
-2.	1.4076	4.1041	-5.6939
Т	PD_20	PD	PD_10

-2.	1.4076	4.1041	-5.6939
Γ	PD_20	PD	PD_10
_	4 7 0000	0 4500	4 8048

-2	1.4076	4.1041	-5.6939
•	PD_20	PD	PD_10
•	47 0000	0.4700	4 7047

۷.	1.4070	4.1041	0.0909
1	PD_20	PD	PD_10
۵	_17 2222	0 1730	1 7017

۷.	1.1010	1.1011	0.0000
7	PD_20	PD	PD_10
9	-17 3328	0 1739	4 7047

T	PD_20	PD	PD_10
9.	-17.3328	0.1739	4.7047

PD 10

0.8376 -19.2016 12.5254

T2 10:T2

T2:T2 20

T1 10

-27.9823-1.0304-3.42760.3

T1 20 FLAIR 10:FLAIR FLAIR:FLAIR 20

Trained OASIS Model Results

- ▶ Using the same threshold of 0.16.
- ► The dice coefficients for the training subjects compared to raters 1 and 2 are:

```
[[1]]
[1] 0.6281593
[[2]]
[1] 0.7088758
[[3]]
[1] 0.5341028
[[4]]
[1] 0.3621744
[[5]]
```

[1] 0.4105148

References

Sweeney, Elizabeth M, Russell T Shinohara, Navid Shiee, Farrah J Mateen, Avni A Chudgar, Jennifer L Cuzzocreo, Peter A Calabresi, Dzung L Pham, Daniel S Reich, and Ciprian M Crainiceanu. 2013. "OASIS Is Automated Statistical Inference for Segmentation, with Applications to Multiple Sclerosis Lesion Segmentation in Mri." *NeuroImage: Clinical* 2. Elsevier: 402–13.