Algèbre Linéaire 2 - Série 3

Matrices II

- 1. (a) Soit A une matrice inversible. Montrer que $(A^k)^{-1}=(A^{-1})^k$ et que $(ABA^{-1})^k=AB^kA^{-1}$ pour tout $k\in\mathbb{N}^*$.
 - (b) Soit $A \in \text{Mat}(n \times n, \mathbb{R})$ une matrice telle que $A^k = O_{n,n}$ pour un $k \ge 2$.
 - (i) Montrer que $(I_n A)^{-1} = I_n + A + A^2 + ... + A^{k-1}$. A quelle identité polynomiale cette propriété est-elle similaire ?
 - (ii) Calculer $(I_4 A)^{-1}$ pour $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 \end{pmatrix}$.
 - (c) Soient $A = \begin{pmatrix} 4 & 1 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 4 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$ et $B = A^T$. Calculer $\left(\left(\left(A^T \right)^{-1} \left(B^T \right)^{-1} \right)^T \right)^{-1}$.
- 2. (a) Montrer que $\det(A^k) = (\det A)^k$ pour tout $k \in \mathbb{N}$ et que $\det(BAB^{-1}) = \det A$.
 - (b) Calculer le déterminant de la matrice $A = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 0 & 2 & 4 \\ 3 & 2 & 2 & 0 \end{pmatrix}$.
- 3. (a) Montrer que la matrice $A = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -7 & 3 & 1 & 5 \\ -4 & -6 & -11 & -1 \\ 4 & -6 & -7 & -5 \end{pmatrix}$ n'est pas inversible, en utilisant:
 - (i) son déterminant.
 - (ii) l'algorithme de Gauss-Jordan.
 - (b) Calculer l'inverse de la matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & -3 \\ 1 & 2 & -2 \end{pmatrix}$, en utilisant:
 - (i) un système de 9 équations à 9 inconnues.
 - (ii) l'algorithme de Gauss-Jordan.
 - (iii) la méthode des cofacteurs.