Demostración de la condición necesaria y suficiente de integrabilidad de Riemann

Ailema Matos C121, Raúl R. Espinosa C122 March 14, 2025

En este documento se demuestra rigurosamente mediante un análisis detallado de las definiciones y propiedades fundamentales de la integración de Riemann un teorema que nos permite asegurar que una funcion sea integrable según Riemann.

Teorema 1 (Condición necesaria y suficiente de integrabilidad de Riemann en funciones reales). Sea $f: \mathbb{R} \to \mathbb{R}$ entonces se cumple que

$$f \in \mathcal{R}[a,b] \Longleftrightarrow \forall \epsilon > 0 \ , \exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) - s(f,P) < \epsilon \Longleftrightarrow \underline{I} = \overline{I}$$

Definiciones:

- 1. def de Riemann integrable: $f \in \mathcal{R}[a,b] \iff \exists lim(\sigma(f,P,\{\xi_i\}))$
- 2. def de Sumas de Darboux:
 - (a) Suma superior: $S(f, P) = \sum_{i=1}^{n} M_i \Delta_i$
 - (b) Suma inferior: $s(f, P) = \sum_{i=1}^{n} m_i \Delta_i$
- 3. def de Integral superior $\overline{I} = inf\{S(f, P) : P \in P[a, b]\}$
- 4. def de Integral inferior $\underline{I} = \sup\{s(f, P) : P \in P[a, b]\}$

Afirmación 1: $s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$

Proof. Demostremos la afirmación 1:

Sean $\{m_i\}$ el conjunto de los mínimos de cada intervalo de P y $\{M_i\}$ el conjunto de los máximos de cada intervalo de P. Note que

$$m_i \le f(\xi_i) \le M_i$$

$$m_i \Delta x_i \le f(\xi_i) \Delta x_i \le M_i \Delta x_i$$

$$\sum_{i=1}^{n} m_i \Delta x_i \le \sum_{i=1}^{n} f(\xi_i) \Delta x_i \le \sum_{i=1}^{n} M_i \Delta x_i$$
$$s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$$

Afirmación 2: $s(f,P) = \inf\{\sigma(f,P,\{\xi_i\})\} \land S(f,P) = \sup\{\sigma(f,P,\{\xi_i\})\}$

Proof. Demostremos la afirmación 2:

Tenemos por la **Afirmación 1** que s(f, P) y S(f, P) son cotas inferior y superior de $\{\sigma(f, P, \{\xi_i\})\}$ respectivamente.

Demostremos que son la mayor de las cotas inferiores y la menor de las cotas superiores respectivamente.

Dado $\epsilon > 0$, por definición de ínfimo, para cada i existe $\xi_i \in [x_{i-1}, x_i]$ tal que

$$f(\xi_i) < m_i + \frac{\epsilon}{b-a}.$$

de donde

$$\sigma(f, P, \{\xi_i\}) = \sum_{i=1}^n f(\xi_i) \Delta x_i < \sum_{i=1}^n \left(m_i + \frac{\epsilon}{b-a} \right) \Delta x_i.$$

$$\sigma(f, P, \{\xi_i\}) < \sum_{i=1}^n m_i \Delta x_i + \frac{\epsilon}{b-a} \sum_{i=1}^n \Delta x_i = s(f, P) + \epsilon.$$

Queda demostrado que $\forall \epsilon > 0$, $\exists \{\xi_i\}$ con $\sigma(f, P, \{\xi_i\}) < s(f, P) + \epsilon$, que es lo mismo que s(f, P) es la mayor de las cotas inferiores por lo que es ínfimo.

Dado $\epsilon > 0$, por definición de supremo, para cada i existe $\xi_i \in [x_{i-1}, x_i]$ tal que

$$f(\xi_i) > M_i - \frac{\epsilon}{b-a}$$
.

de donde

$$\sigma(f, P, \{\xi_i\}) = \sum_{i=1}^n f(\xi_i) \Delta x_i > \sum_{i=1}^n \left(M_i - \frac{\epsilon}{b-a} \right) \Delta x_i.$$

$$\sigma(f, P, \{\xi_i\}) > \sum_{i=1}^n M_i \Delta x_i - \frac{\epsilon}{b-a} \sum_{i=1}^n \Delta x_i = S(f, P) - \epsilon.$$

Queda demostrado que $\forall \epsilon > 0$, $\exists \{\xi_i\}$ con $\sigma(f, P, \{\xi_i\}) > S(f, P) - \epsilon$, que es lo mismo que S(f, P) es la menor de las cotas inferiores por lo que es supremo.

Proof. Demostración del teorema

Para demostrar el teorema, procedemos en tres partes:

- 1. $[f \in \mathcal{R}[a,b] \implies \forall \epsilon > 0, \exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) s(f,P) < \epsilon$
- 2. $\forall \epsilon > 0$, $\exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) s(f,P) < \epsilon \implies \underline{I} = \overline{I}$
- 3. $\underline{I} = \overline{I} \implies [f \in \mathcal{R}[a, b]]$
- 1. $[f \in \mathcal{R}[a,b] \implies \forall \epsilon > 0, \exists P_{\epsilon} \in P[a,b] : (P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) s(f,P) < \epsilon)$

Proof. Supongamos que $f \in \mathcal{R}[a,b]$. Entonces, por la **def de Riemann integrable**

$$lim(\sigma(f, P, \{\xi_i\})) = I$$

existe un único número I tal que $\forall \epsilon > 0$, existe una partición $P_{\frac{\epsilon}{2}} \in P[a,b]$ donde $\forall P: P \in P[a,b] \land P \supset P_{\frac{\epsilon}{2}}$ se cumple que:

$$|\sigma(f, P, \{\xi_i\}) - I| < \frac{\epsilon}{2}$$

por la **Afirmación 2** se tiene $s(f,P)=\inf\{\sigma(f,P,\{\xi_i\})\}$, de donde por definición de ínfimo $\forall \epsilon>0 \exists \{\xi_i\}_{\frac{\epsilon}{n}}:$

$$s(f, P) \le \sigma(f, P, \{\xi_i\}_{\frac{\epsilon}{2}}) < s(f, P) + \frac{\epsilon}{2}$$

multiplicando por (-1)

$$-s(f,P) \ge -\sigma(f,P,\{\xi_i\}_{\frac{\epsilon}{2}}) > -s(f,P) - \frac{\epsilon}{2}$$

por la **Afirmación 2** se tiene $S(f,P)=\sup\{\sigma(f,P,\{\xi_i\})\}$, de donde por definición de supremo $\forall \epsilon>0 \exists \{\xi_i\}_{\frac{\epsilon}{2}}$:

$$S(f,P) \ge \sigma(f,P,\{\xi_i\}_{\frac{\epsilon}{2}}) > S(f,P) - \frac{\epsilon}{2}$$

sumando esta con la desigualdad anterior se obtiene que

$$S(f, P) - s(f, P) > 0 > S(f, P) - s(f, P) - \epsilon$$

de la desigualdad de la derecha se tiene

$$S(f, P) - s(f, P) < \epsilon$$

Queda demostrada la primera parte.

 $2. \ \forall \epsilon > 0 \ , \exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) - s(f,P) < \epsilon \implies \underline{I} = \overline{I}$

Proof. Supongamos que $\forall \epsilon > 0$, $\exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) - s(f,P) < \epsilon$

Por def de Integral superior y def de Integral inferior se tiene que

$$\overline{I} \leq S(f, P)$$

у

$$\underline{I} \ge s(f, P)$$

de donde

$$\overline{I} - \underline{I} \le S(f, P) - s(f, P)$$

usando la premisa de la que partimos tenemos que $\forall \epsilon > 0$

$$\overline{I} - \underline{I} \le S(f, P) - s(f, P) < \epsilon$$

como $\overline{I} - \underline{I} \geq 0$ y es constante, entonces $\overline{I} = \underline{I}$

3. $\underline{I} = \overline{I} \implies f \in \mathcal{R}[a, b]$

Proof. Supongamos que $\underline{I} = \overline{I}$ y sea $I: I = \underline{I} = \overline{I}$.

Por definición de \overline{I} (ínfimo) y de I (supremo) se tiene que

$$S(f, P) - \overline{I} \ge 0 \wedge \lim(S(f, P) - \overline{I}) = 0$$

$$I - s(f, P) \ge 0 \wedge \lim(s(f, P) - I) = 0$$

Por definición de límite para todo x>0, y>0, tomando $\epsilon=max(x,y)$ se tienen las desigualdades

$$0 < |S(f, P) - \overline{I}| < x \le \epsilon$$

$$0 < |s(f, P) - \underline{I}| < y \le \epsilon$$

que son equivalentes a

$$0 < S(f, P) - \overline{I} < \epsilon$$

$$0 < \underline{I} - s(f, P) < \epsilon$$

Por la **Afirmación 1** tenemos que

$$s(f, P) \le \sigma(f, P, \{\xi_i\}) \le S(f, P)$$

restando I

$$s(f, P) - I \le \sigma(f, P, \{\xi_i\}) - I \le S(f, P) - \overline{I}$$

usando las desigualdades anteriores llegamos a

$$-\epsilon < s(f, P) - \underline{I} \le \sigma(f, P, \{\xi_i\}) - I \le S(f, P) - \overline{I} < \epsilon$$

que se puede escribir como

$$0 < |\sigma(f, P, \{\xi_i\}) - I| < \epsilon$$

Como la desigualdad se cumple para todo $\epsilon > 0$, por definición de límite se tiene que

$$lim(\sigma(f, P, \{\xi_i\})) = I$$

donde por la **def de Riemann integrable** se tiene que $f \in \mathcal{R}[a,b]$. Por tanto, queda demostrado que $\overline{I} = \underline{I} \implies f \in \mathcal{R}[a,b]$

Hemos probado que:

$$\begin{split} [f \in \mathcal{R}[a,b] \implies \forall \epsilon > 0 \ , \exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) - s(f,P) < \epsilon \\ \forall \epsilon > 0 \ , \exists P_{\epsilon} \in P[a,b] : P \in P[a,b] \land P \supset P_{\epsilon} \implies S(f,P) - s(f,P) < \epsilon \implies \underline{I} = \overline{I} \\ \underline{I} = \overline{I} \implies [f \in \mathcal{R}[a,b] \end{split}$$

Por lo que queda demostrado que:

$$f \in \mathcal{R}[a,b] \Longleftrightarrow \forall \epsilon > 0 \;, \exists P_\epsilon \in P[a,b] : P \in P[a,b] \land P \supset P_\epsilon \implies S(f,P) - s(f,P) < \epsilon \Longleftrightarrow \underline{I} = \overline{I}$$