

CHAPTER 2: DISCRETE-TIME SIGNALS & SYSTEMS

Lesson #4: DT signals

Lesson #5: DT systems

Lesson #6: DT convolution

Lesson #7: Difference equation models

Lesson #8: Block diagram for DT LTI systems

Duration: 9 hrs

Lecture #4 DT signals

1. Representations of DT signals

- 2. Some elementary DT signals
- 3. Simple manipulations of DT signals
- 4. Characteristics of DT signals

Sampled signals

Converting a CT signal into a DT signal by sampling: given $x_a(t)$ to be a CT signal, $x_a(nT)$ is the value of $x_a(t)$ at $t = nT \rightarrow DT$ signal is defined only for n an integer

$$\left| \mathbf{x}_{a}(t) \right|_{t=nT} = \mathbf{x}_{a}(nT) \equiv \mathbf{x}(n), -\infty < n < \infty$$

Representations of DT signals

1. Functional representation

$$x[n] = \begin{cases} 1, & n = 1,3 \\ 4, & n = 2 \\ 0, & n \neq \end{cases}$$

2. Tabular representation

n	 -1	0	1	2	3	4	
x[n]	 0	0	1	4	1	0	

Representations of DT signals

3. Sequence representation

$$x[n] = \left\{ 0, 1, 4, 1 \right\}$$

4. Graphical representation

Lecture #4 DT signals

- 1. Representations of DT signals
- 2. Some elementary DT signals
- 3. Simple manipulations of DT signals
- 4. Classification of DT signals

Some elementary DT signals

- 1. Unit step sequence
- 2. Unit impulse signal
- 3. Sinusoidal signal
- 4. Exponential signal

Unit step

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Time-shifted unit step

$$u[n-n_0] = \begin{cases} 1, & n \ge n_0 \\ 0, & n < n_0 \end{cases}$$

n

Time-shifted unit step

$$u[n-n_0] = \begin{cases} 1, & n \ge n_0 \\ 0, & n < n_0 \end{cases}$$

For $n_0 < 0$

Unit impulse

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Time-shifted unit impulse

$$\delta[n - n_0] = \begin{cases} 1, & n = n_0 \\ 0, & n \neq n_0 \end{cases}$$

For $n_0 > 0$

Time-shifted unit impulse

$$\delta[n - n_0] = \begin{cases} 1, & n = n_0 \\ 0, & n \neq n_0 \end{cases}$$

Relation between unit step and unit impulse

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$\delta[n] = u[n] - u[n-1]$$

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

$$\sum_{n=-\infty}^{\infty} x[n]\delta[n-n_0] = x[n_0]$$

Sinusoidal signal

Exponential signal

$$x[n] = Ca^n$$

1. If C and a are real, then x[n] is a real exponential

 $a > 1 \rightarrow$ growing exponential

 $0 < a < 1 \rightarrow$ shrinking exponential

 $-1 < a < 0 \rightarrow$ alternate and decay

 $a < -1 \rightarrow$ alternate and grows

2. If C or a or both is complex, then x[n] is a complex exponential

An example of real exponential signal

$$x[n] = (0.2)(1.2)^n$$

An example of complex exponential signal

$$x[n] = 2e^{\left(-\frac{1}{12} + j\frac{\pi}{6}\right)n}$$

Periodic exponential signal

Consider complex exponential signal:

$$x[n] = Ce^{j\Omega_0 n} = C\cos(\Omega_0 n) + j\sin(\Omega_0 n)$$

It is also periodic only if its frequency is a rational number:

$$F_0 = \frac{k}{N}$$
 or $\frac{\Omega_0}{2\pi} = \frac{k}{N}$

Fundamental period

The fundamental period can be found as

$$N = \frac{k2\pi}{\Omega_0}$$

Where k is the smallest integer such that N is an integer

- Step 1: Is $\frac{\Omega_0}{2\pi}$ rational?
- Step 2: If yes, then periodic; reduce to

$$\frac{\Omega_0}{2\pi} = \frac{k}{N} = \frac{\# \, cycles}{\# \, po \, \text{int } s}$$

Determine which of the signals below are periodic. For the ones that are, find the fundamental period and fundamental frequency $x_1[n] = e^{j\frac{\pi}{6}n}$

$$\frac{\Omega_0}{2\pi} = \frac{\pi}{6(2\pi)} = \frac{1}{12} = \frac{k}{N} \quad \Rightarrow \text{ One cycle in 12 points}$$

N=12: fundamental period

$$\Omega_0 = \frac{2\pi}{N} = \frac{2\pi}{12} = \frac{\pi}{6}$$
: fundamental frequency

Determine which of the signals below are periodic. For the ones that are, find the fundamental period and fundamental frequency

$$x_2[n] = \sin\left(\frac{3\pi}{5}n + 1\right)$$

Determine which of the signals below are periodic. For the ones that are, find the fundamental period and fundamental frequency

$$x_3[n] = \cos(2n - \pi)$$

Determine which of the signals below are periodic. For the ones that are, find the fundamental period and fundamental frequency

$$x_4[n] = \cos(1.2\pi n)$$

Lecture #4 DT signals

- 1. Representations of DT signals
- 2. Some elementary DT signals
- 3. Simple manipulations of DT signals
- 4. Classification of DT signals

Simple manipulations of DT signals

- - Adding and subtracting signals
 - Transformation of time:
 - Time shifting
 - Time scaling
 - Time reversal
 - Transformation of amplitude:
 - Amplitude shifting
 - Amplitude scaling
 - Amplitude reversal

Adding and Subtracting signals

- Do it "point by point"
- Can do using a table, or graphically, or by computer program
- Example: x[n] = u[n] u[n-4]

n	<=-1	0	1	2	3	>=4
x[n]	0	1	1	1	1	0

Time shifting a DT signal

 $x[n] \rightarrow x[n - k]$; k is an integer

- k > 0: right-shift x[n] by |k| samples (delay of signal)
- k < 0: left-shift x[n] by |k| samples (advance of signal)

Examples of time shifting

Examples of time shifting

Time scaling a DT signal

$$x[n] \rightarrow y[n] = x[an]$$

- | a | > 1: speed up by a factor of a a must be an integer
- | a | < 1: slow down by a factor of a a = 1/K; K must be an integer</p>

n	x[n]	y[n]=x[n/2]
0	1	1
1	4	?
2	1	4
3	0	?

How to find y[1] and y[3]??

One solution is <u>linear interpolation</u> used in a simple compression scheme

$$w_1[n] = x[2n]$$

• What does $w_1[n/2]$ look like? Just look like x[n]!

• Find $w_2[n] = x[2n+1]$

• What does $w_2[n/2]$ look like? Just look like $w_2[n]$!

Time reversal a DT signal

$$x[n] \rightarrow x[-n]$$

Flip a signal about the vertical axis

Examples of time reversal

Combining time reversal and time shifting

$$x[n] \rightarrow y[n] = x[-n-k]$$

Method 1: Flip first, then shift

Method 2: Shift first, then flip

Example – Method 1

$$x[n] \rightarrow y[n] = x[-n-k]$$

Method 1: Flip first, then shift

Ex. Find
$$y[n] = x[-n-2] = x[-(n+2)]$$

$$x[n] \rightarrow x[-n] = w[n] \rightarrow w[n+2] = x[-(n+2)]$$

Flip

Advance by 2
(left shift)

Example – Method 2

$$x[n] \rightarrow y[n] = x[-n-k]$$

Method 2: Shift first, then flip

Ex. Find
$$y[n] = x[-n-2] =$$

$$x[n] \rightarrow x[n-2] = w[n] \rightarrow w[-n] = x[-n-2]$$

Delay by 2

Flip w[n]

(right shift)

Combining time shifting and time scaling

$$x[n] \rightarrow y[n] = x[an-b]$$

Method 1: time scale then shift

Method 2: shift then time scale

Be careful!!! For some cases, method 1 or 2 doesn't work. To make sure, plug values into the table to check

Example – Method 1

$$x[n] \rightarrow y[n] = x[an-b]$$

Method 1: time scale then shift

Ex. Find
$$y[n] = x[2-2n]$$

$$y[n] = x[-2(n-1)]$$

$$x[n] \rightarrow x[-2n] = w[n] \rightarrow w[n-1] = x[-2(n-1)]$$
Time scale
by -2
by 1

Example – Method 2

$$x[n] \rightarrow y[n] = x[an-b]$$

Method 2: shift then time scale

Ex. Find
$$y[n] = x[2-2n]$$

$$x[n] \rightarrow x[n+2] = w[n] \rightarrow w[-2n] = x[2-2n]$$

advance by 2

Time scale

by -2

$$y[n] = x[2n-3]??$$

n	x[n]	y[n]
-1	0	0
0	0	0
1	1	0
2	4	1
3	1	1
4	0	0

Exercise

• Find x[n] = (u[n+1] - u[n-5])(nu[2-n])

Lecture #4 DT signals

- 1. Representations of DT signals
- 2. Some elementary DT signals
- 3. Simple manipulations of DT signals
- 4. Characteristics of DT signals

- Symmetric (even) and anti-symmetric (odd) signals
- Energy and power signals

Even and odd signals

A DT signal x_e[n] is even if

Even:
$$x_e[n] = x_e[-n]$$

And the signal $x_0[n]$ is *odd* if

$$Odd: x_o[n] = -x_o[-n]$$

Any DT signal can be expressed as the sum of an even signal and an odd signal:

$$x_{e}[n] = \frac{1}{2}(x[n] + x[-n])$$

$$x_{o}[n] = \frac{1}{2}(x[n] - x[-n])$$

$$x[n] = x_{e}[n] + x_{o}[n]$$

Even and odd signals

- How to find $x_e[n]$ and $x_o[n]$ from a given x[n]?
- Step 1: find x[-n]
- Step 2: find

$$x_e[n] = \frac{1}{2}(x[n] + x[-n])$$

Step 3: find

$$x_o[n] = \frac{1}{2}(x[n] - x[-n])$$

• Find x[n] + x[-n]

• Find $x_e[n]$

• Find *x*[*n*] - *x*[-*n*]

• Find $x_0[n]$

Energy and power signals

Define the signal energy:

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

Define the signal power:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left| x[n] \right|^2$$

- E is finite \rightarrow x[n] is called an energy signal
- E is finite \rightarrow P = 0
- E is infinite → P maybe finite or infinite. If P is finite and nonzero → x[n] is called power signal

Determine which of the signals below are energy signals?
Which are power signals?

(a) Unit step
$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} 1^2 = \infty$$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=0}^{N} 1^2 = \lim_{N \to \infty} \frac{N+1}{2N+1} = 1/2 < 0$$

Unit step is a power signal

Determine which of the signals below are energy signals?
Which are power signals?

(b)
$$x[n] = \begin{cases} (1/2)^n, & n \ge 0 \\ (2)^n, & n < 0 \end{cases}$$

$$\sum_{n=n_0}^{\infty} a^n = \begin{cases} \frac{a^{n_0}}{1-a} & \text{if } |a| < 1 \\ \infty & \text{if } |a| \ge 1 \end{cases}$$

(c)
$$x[n] = cos(\frac{\pi}{4}n)(u[n] - u[n-4])$$

$$x[n] = \begin{cases} \cos\left(\frac{\pi}{4}n\right) & 0 \le n \le 3\\ 0 & otherwise \end{cases} = \delta[n] + \frac{\sqrt{2}}{2}\delta[n-1] - \frac{\sqrt{2}}{2}\delta[n-3]$$

Lecture #5 DT systems

- 1. DT system
- 2. DT system properties

Input-output description of DT systems

Think of a DT system as an operator on DT signals:

- It processes DT input signals, to produce DT output signals
- Notation: $y[n] = T\{x[n]\} \leftarrow \rightarrow y[n]$ is the response of the system T to the excitation x[n]
- Systems are assumed to be a "black box" to the user

DT system example

A digital low pass filter:

$$y[n] = 1/5\{x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]\}$$

After filtering

Interconnection of DT systems

$$y[n] = y_1[n] + y_2[n] = T_1\{x[n]\} + T_2\{x[n]\} = (T_1 + T_2)\{x[n]\}$$

$$= T\{x[n]\}$$

 $y[n] = T\{x[n]\}$: notation for the total system

Interconnection of DT systems

Cascade connection

$$y[n] = T_2{y_1[n]} = T_2{T_1{x[n]}} = T{x[n]}$$

 $y[n] = T\{x[n]\}$: notation for the total system

Lecture #5 DT systems

- 1. DT system
- 2. DT system properties

- Memory
- Invertibility
- Causality
- Stability
- Linearity
- Time-invariance

Memory

- $y[n_0] = f(x[n_0]) \rightarrow$ system is memoryless (static)
- Otherwise, system has memory (dynamic), meaning that its output depends on inputs rather than just at the time of the output

■ <u>Ex:</u>

- a) y[n] = x[n] + 5:
- b) y[n]=(n+5)x[n]:
- c) y[n]=x[n+5]:

Invertibility

A system is said to be invertible if distinct inputs result in distinct outputs

Ex.:
$$y[n] = |x[n]|$$
 is ...

Invertibility

A system is said to be invertible if distinct inputs result in distinct outputs

Examples for invertibility

Determine which of the systems below are invertible

a) Unit advance y[n] = x[n+1] is invertible

 \rightarrow y[n-1] = x[n] is inverse system

b) Accumulator $y[n] = \sum_{k=-\infty}^{n} x[k]$

c) Rectifier y[n] = |x[n]|

Causality

- The output of a causal system (at each time) does not depend on future inputs
- All memoryless systems are causal
- All causal systems can have memory or not

Examples for causality

Determine which of the systems below are causal:

a)
$$y[n] = x[-n]$$

b)
$$y[n] = (n+1)x[n-1]$$

c)
$$y[n] = x[(n-1)^2]$$

d)
$$y[n] = cos(w_0n+x[n])$$

e)
$$y[n] = 0.5y[n-1] + x[n-1]$$

- If a system "blow up" it is not stable
 - In particular, if a "well-behavior" signal (all values have finite amplitude) results in infinite magnitude outputs, the system is **unstable**
- BIBO stability: "bounded input bounded output" –
 if you put finite signals in, you will get finite signals out

Examples for stability

Determine which of the systems below are BIBO stable:

- a) A unit delay system
- b) An accumulator
- c) y[n] = cos(x[n])
- d) y[n] = In(x[n])
- e) y[n] = exp(x[n])

Linearity

Scaling signals and adding them, then processing through the system

same as

Processing signals through system, then scaling and adding them

If
$$T(x_1[n]) = y_1[n]$$
 and $T(x_2[n]) = y_2[n]$
 $\rightarrow T(ax_1[n] + bx_2[n]) = ay_1[n] + by_2[n]$

$$\rightarrow$$
 T(ax₁[n] + bx₂[n]) = ay₁[n] + by₂[n]

Time-invariance

- If you time shift the input, get the same output, but with the same time shift
- The behavior of the system doesn't change with time

If T(x[n]) = y[n]then $T(x[n-n_0]) = y[n-n_0]$

Examples for linearity and time-invariance

Determine which of the systems below are linear, which ones are time-invariant

a)
$$y[n] = nx[n]$$

Linear

Not time-invariant

Examples for linearity and time-invariance

Determine which of the systems below are linear, wich ones are time-invariant

b)
$$y[n] = x^2[n]$$

Determine which of the systems below are linear, wich ones are time-invariant

c)
$$y[n] = \sum_{r=0}^{M} b_r x[n-r]$$

Example for DT system properties

- a) Memoryless?
- b) Invertible?

c) Causal?

Example for DT system properties

c) Stable?

Example for DT system properties

Given the system below:
$$y[n] = \left[\frac{n+2.5}{n+1.5}\right]^2 x[n]$$

d) time-invariant?

e) Linear?

Lecture #6 DT convolution

1. DT convolution formula

- 2. DT convolution properties
- 3. Computing the convolution sum
- 4. DT LTI properties from impulse response

Computing the response of DT LTI systems to arbitrary inputs

Method 1: based on the direct solution of the input-output equation for the system

Method 2:

- Decompose the input signal into a sum of elementary signals
- Find the response of system to each elementary signal
- Add those responses to obtain the total response of the system to the given input signal

$$x[n] = \sum_{k} c_{k} x_{k}[n]$$

$$x_{k}[n] \rightarrow y_{k}[n]$$

$$x[n] \rightarrow y[n] = \sum_{k} c_{k} y_{k}[n]$$

DT convolution formula

Convolution: an operation between the input signal to a system and its impulse response, resulting in the output signal

CT systems: convolution of 2 signals involves integrating the product of the 2 signals – where one of signals is flipped and shifted

DT systems: convolution of 2 signals involves summing the product of the 2 signals – where one of signals is flipped and shifted

Impulse representation of DT signals

We can describe any DT signal x[n] as:
$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Example:

Impulse response of DT systems

Impulse response: the output results, in response to a unit impulse

Denotation: $h_k[n]$: impulse response of a system, to an impulse at time k

Remember: the impulse response is a sequence of values that may go on forever!!!

Response of LTI DT systems to arbitrary inputs

Notation: y[n] = x[n] * h[n]

Convolution sum in more details

The general output:

$$y[n] = ... + x[-2]h[n+2] + x[-1]h[n+1] + x[0]h[n]$$

+ $x[1]h[n-1] + x[2]h[n-2] + ... + x[n-1]h[1]$
+ $x[n]h[0] + x[n+1]h[-1] + x[n+2]h[-2]$

Note: the sum of the arguments in each term is always *n*

Lecture #6 DT convolution

- 1. DT convolution formula
- 2. DT convolution properties
- 3. Computing the convolution sum
- 4. DT LTI properties from impulse response

4

Convolution sum properties

•
$$\delta[n] * x[n] = x[n]$$

 $\delta[n-m] * x[n] = x[n-m]$
 $\delta[n] * x[n-m] = x[n-m]$

- Commutative law
- Associative law
- Distributive law

Commutative law

$$x[n]*h[n] = h[n]*x[n]$$

Associative law

$$(x[n]*h_1[n])*h_2[n] = x[n]*(h_1[n]*h_2[n])$$

Distributive law

$$x[n]*(h_1[n]+h_2[n]) = (x[n]*h_1[n])+(x[n]*h_2[n])$$

Lecture #6 DT convolution

- 1. DT convolution formula
- 2. DT convolution properties
- 3. Computing the convolution sum
- 4. DT LTI properties from impulse response

Computing the convolution sum

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \quad \Rightarrow \quad y[n_0] = \sum_{k=-\infty}^{\infty} x[k]h[n_0-k]$$

- 1. Fold h[k] about k = 0, to obtain h[-k]
- 2. Shift h[-k] by n_0 to the right (left) if n_0 is positive (negative), to obtain $h[n_0-k]$
- 3. Multiply x[k] and $h[n_0-k]$ for all k, to obtain the product $x[k].h[n_0-k]$
- 4. Sum up the product for all k, to obtain $y[n_0]$

Repeat from 2-4 fof all of n

The length of the convolution sum result

Suppose:

Length of x[k] is $N_x \rightarrow N_1 \le k \le N_1 + N_x - 1$ Length of h[n-k] is $N_h \rightarrow N_2 \le n-k \le N_2 + N_h - 1$ $\rightarrow N_1 + N_2 \le n \le N_1 + N_2 + N_x + N_h - 2$

Length of y[n]:

$$N_y = N_x + N_h - 1$$

Example 1

Find y[n] = x[n]*h[n] where

$$x[n] = u[n+1] - u[n-3] + \delta[n]$$
 $h[n] = 2(u[n] - u[n-3])$

$$y[0] = 6;$$

Example 2

Find y[n] = x[n]*h[n] where
$$x[n] = a^n u[n]$$
 $h[n] = u[n]$

Try it both ways (first flip x[n] and do the convolution and then flip h[n] and do the convolution). Which method do you prefer?

Remember!
$$\sum_{n=n_0}^{\infty} a^n = \begin{cases} \frac{a^{n_0}}{1-a} & \text{if } |a| < 1\\ \infty & \text{if } |a| \ge 1 \end{cases}$$

$$\sum_{n=n_0}^{n_1} a^n = a^{n_0} \frac{1 - a^{(n_1 - n_0 + 1)}}{1 - a}$$

Example 2

First flip x[n] and do the convolution

Factor out aⁿ to get form you know

Therefore

$$y[n] = \left(\frac{a^{n+1}-1}{a-1}\right)u[n]$$

Therefore
$$y[n] = \left(\frac{a^{n+1} - 1}{a - 1}\right)u[n]$$

Tip: first flip the simpler signal!!!

Find y[n] = x[n]*h[n] where x[n] = $b^nu[n]$ and h[n] = $a^nu[n+2]$ |a| < 1, |b| < 1, a \neq b

Compute output of a system with impulse response

 $h[n] = a^n u[n-2], |a| < 1$ when the input is x[n] = u[-n]

Flipping x[n] because it is simpler

Lecture #6 DT convolution

- 1. DT convolution formula
- 2. DT convolution properties
- 3. Computing the convolution sum
- 4. DT LTI properties from impulse response

Recall impulse response

System output, in response to the unit impulse input:

$$h[n] = T\{\delta[n]\}$$

- May go on forever → there are 2 kinds of LTI systems:
- 1. Finite Impulse Response (FIR) system
- 2. Infinite Impulse Response (IIR) system
- Be one of system representations
- Be convolved with the input to result in the output

Calculation of the impulse response

- Applying the unit impulse function to the input-output equation
- **Ex.:** $y[n] = \frac{1}{4}y[n-1] + \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$

system is causal

Suppose this
$$h[0] = \frac{1}{4}h[-1] + \frac{1}{2}\delta[0] + \frac{1}{2}\delta[-1] = \frac{1}{2}$$

$$h[1] = \frac{1}{4}h[0] + \frac{1}{2}\delta[1] + \frac{1}{2}\delta[0] = \frac{1}{4}x\frac{1}{2} + \frac{1}{2} = \frac{5}{8} = \frac{5}{8}\left(\frac{1}{4}\right)^{0}$$

$$h[2] = \frac{1}{4}h[1] + \frac{1}{2}\delta[2] + \frac{1}{2}\delta[1] = \frac{5}{8}\left(\frac{1}{4}\right)^{1}$$

$$h[3] = \frac{1}{4}h[2] + \frac{1}{2}\delta[3] + \frac{1}{2}\delta[2] = \frac{1}{4}x\frac{1}{4}x\frac{5}{8} = \frac{5}{8}\left(\frac{1}{4}\right)^2$$

$$y[n] = (1/2)\delta[n] + (1/4)^{n-1}(5/8)u[n-1]$$

Memoryless system: impulse response must have the form below

$$h[n] = K\delta[n]$$

• Invertible system: system with h[n] is invertible if there exists another impulse response $h_i[n]$ such that

$$h[n] * h_i[n] = \delta[n]$$

Causal system: h[n] is zero for all time n<0

The system is causal → output does not depend on future inputs →

$$y[n_0] = \sum_{k=-\infty}^{\infty} h[k]x[n_0 - k] = \sum_{k=0}^{\infty} h[k]x[n_0 - k] + \sum_{k=-\infty}^{-1} h[k]x[n_0 - k]$$

$$= \{h[0]x[n_0] + h[1]x[n_0 - 1] + \dots\} + \{h[-1]x[n_0 + 1] + h[-2]x[n_0 + 2] + \dots\}$$

Present and past inputs

Future inputs

Thus, the second term should be zero $\leftarrow \rightarrow h[n] = 0 \quad n < 0$

Causal system: h[n] is zero for all time n<0</p>

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$\downarrow \qquad \qquad \downarrow$$

$$= \sum_{k=0}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^{n} x[k]h[n-k]$$

If at least one value of h[k] for a negative k is not zero, the system is not causal

- BIBO stable system: finite input, finite output
- If x[n] is bounded then:

$$|x[n]| \le M_x < \infty$$

Take the absolute:
$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right| \Rightarrow |y[n]| \le \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$|y[n]| \leq M_x \sum_{k=-\infty}^{\infty} |h[k]|$$

The output is bounded if the impulse response satisfies:

$$\sum_{n=-\infty}^{+\infty} |h[n]| < \infty$$

1. Is $h[n] = 0.5^n u[n]$ BIBO stable? Causal?

Stable Causal

2. Is $h[n] = 3^n u[n]$ BIBO stable? Causal?

3. Is $h[n] = 3^n u[-n]$ BIBO stable? Causal?

Lecture #7 Difference equation model

1. LTI systems characterized by linear constant coefficient difference equations

- 2. Recursive solution of difference equations
- 3. Closed form solution of difference equations

Linear constant coefficient difference equations

General form:

$$y[n] + a_1 y[n-1] + ... + a_N y[n-N] = b_0 x[n] + b_1 x[n-1] + ... + b_M x[n-M]$$

$$\Leftrightarrow \sum_{k=0}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r], \quad a_0 = 1$$

N, M: non-negative integers

N: order of equation

 $\mathbf{a_k}$, $\mathbf{b_r}$: real constant coefficients

Linear constant coefficient difference equations

Two common ways to write:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r], \quad a_0 = 1$$

$$y[n] + \sum_{k=1}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r]$$

Solving the equation in 2 ways:

- 1. Solving the equation recursively, one value at a time. Need to start the iteration with initial conditions
- 2. Finding a formula for y[n] (a closed form)

Recursive solution of difference equations

1) Put y[n] on the left hand side by itself

$$y[n] = -a_1y[n-1] - ... - a_Ny[n-N] + b_0x[n] + ... + b_Mx[n-M]$$

- 2) To calculate a given output at time $n = n_0$, that is $y[n_0]$, we add the weighted M+1 inputs $b_0x[n_0] + ... + b_Mx[n_0-M]$ to the weighted N past outputs $-a_1y[n_0-1] ... a_Ny[n_0-N]$
- 3) Increase the time index to $n = n_0 + 1$ and recursively calculate the next output. This can continue forever.

To start this recursion somewhere, for example at $n_0 = 0$, we need to know the N initial conditions $y[n_0-1]$, $y[n_0-2]$, ..., $y[n_0-N]$

Solve iteratively to find the 1st 3 terms of

$$y[n] - 2y[n-1] = x[n-1]$$

with initial condition y[-1] = 10, and with the input x[n] = 2u[n]

n	x[n]	y[n]
-1	0	10 (initial condition)
0	2	y[0] = x[-1] + 2y[-1] = 20
1	2	y[1] = x[0]+2y[0] = 2+2(20) = 42
2	2	y[2] = x[1]+2y[1] = 2+2(42) = 86

Find the 1st 3 terms of y[n+2] - y[n+1] + 0.24y[n] = x[n+2] - 2x[n+1]with initial condition y[-1] = 2, y[-2] = 1, and input x[n] = nu[n]

This system is time invariant, so it is equivalent to

$$y[n] - y[n-1] + 0.24y[n-2] = x[n] - 2x[n-1]$$

n	x[n]	y[n]
-2	0	1 (initial condition)
-1	0	2 (initial condition)
0	0	y[n] = x[n]-2x[n-1]+y[n-1]-0.24y[n-2]
		y[0] = 1.76
1	1	y[1] = 2.28
2	2	y[2] = 1.8576

Closed form solutions of difference equations

Total response = zero-input component + zero-state component

- = natural response + forced response
- = complementary response + particular response
- 1. Find the complementary response, assume input = 0.
- 2. Find the particular response, assume all initial conditions = 0. Choose the form of the particular response same as the form of input
- 3. Total response = complementary + particular. Use initial conditions to find *N* constants from the complementary response

Given y[n] - 0.3y[n-1] = x[n] with y[-1] = 0 and $x[n] = (0.6)^n$

Example (cont)

Combining particular and complementary solutions:

Lecture #8 Block diagram for DT LTI systems

- 1. Components for block diagram
- 2. Direct form I realization of a system
- 3. Direct form II realization of a system

Components for block diagram

Components: branch points, summation, delays, gains, LTI systems

- Signals travel along lines, arrows point direction of inputs and outputs
- Each component acts the same way, no matter how many components are connected to it
- For linear system, the order of operation does not matter responses to obtain

Components for block diagram

EX: an averaging system y[n] = 0.5(x[n] + x[n-1])

Lecture #8 Block diagram for DT LTI systems

- 1. Components for block diagram
- 2. Direct form I realization of a system
- 3. Direct form II realization of a system

Direct form I realization of a system

$$y[n] + a_1 y[n-1] + ... + a_N y[n-N] = b_0 x[n] + b_1 x[n-1] + ... + b_M x[n-M]$$

$$\Leftrightarrow y[n] = b_0 x[n] + b_1 x[n-1] + ... + b_M x[n-M] + (-a_1) y[n-1] + ... + (-a_N) y[n-N]$$

Lecture #8 Block diagram for DT LTI systems

- 1. Components for block diagram
- 2. Direct form I realization of a system
- 3. Direct form II realization of a system

Direct form II realization of a system

To get another realization, we reverse the order of these two systems "violet" and "yellow" without altering the input-output relation

Direct form II realization of a system

We observe that: these two delays contain the same input and hence the same output \rightarrow these two delays can be merged into one delay

Direct form II realization of a system

Example of realization LTI system

