Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 326.52

Figure 1: Outline of path 1

2.1.1 An azide and acetylene free synthesis of 1-substituted 1,2,3-triazoles

Substrates:

- 1. Tosylhydrazide available at Sigma-Aldrich
- 2. Glyoxal dimethyl acetal available at Sigma-Aldrich
- 3. 2-Chloroethylammonium chloride available at Sigma-Aldrich

Products:

1. 1-(2-chloro-ethyl)-1h-[1,2,3]triazole

Typical conditions: 1.TsNHNH2.MeOH.rt 2.Amine.AcOH.heat

Protections: none

Reference: 10.1016/j.tetlet.2020.152483

Retrosynthesis ID: 31020968

2.1.2 Iodination of aromatic compounds

Substrates:

 $1. \ 1\hbox{-}(2\hbox{-chloro-ethyl})\hbox{-}1\hbox{h-}[1,2,3] triazole$

Products:

1. ClCCn1cc(I)nn1

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

2.1.3 I/Li exchange

Substrates:

1. ClCCn1cc(I)nn1

2. t-BuLi - available at Sigma-Aldrich

Products:

1. [Li]c1cn(CCCl)nn1

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1016/j.tet.2004.09.111 and 10.1039/c3ob41082j And

 $10.1016/j.bmc.2012.03.056 \quad And \ 10.1002/chem.201300292$

Retrosynthesis ID: 30673

${\bf 2.1.4}\quad {\bf Addition\ of\ electrophiles\ to\ lithiated\ arenes/heteroarenes}$

Substrates:

1. TMSCl - available at Sigma-Aldrich

2. [Li]c1cn(CCCl)nn1

Products:

1. C[Si](C)(C)c1cn(CCCl)nn1

Typical conditions: THF

Protections: none

Reference: 10.1002/ejoc.200600589 and 10.1055/s-0036-1588863 and 10.1002/1099-0690(200107)2001:14<2771::AID-EJOC2771>3.0.CO;2-Y and 10.1021/ol202873d (SI)

Retrosynthesis ID: 10019541

2.1.5 Blanc bromomethylation

Substrates:

1. Formalin - available at Sigma-Aldrich

2. C[Si](C)(C)c1cn(CCCl)nn1

Products:

1. C[Si](C)(C)c1nnn(CCCl)c1CBr

 ${\bf Typical\ conditions:\ HBr.heat}$

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-4039(02)01769-0 and 10.1021/ja002069c

Retrosynthesis ID: 31010730

2.1.6 Synthesis of alkyl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. C[Si](C)(C)c1nnn(CCCl)c1CBr

Products:

1. C[Si](C)(C)c1nnn(CCCl)c1C[Mg]Br

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

2.1.7 Grignard-Type Reaction

Substrates:

- 1. C[Si](C)(C)c1nnn(CCCl)c1C[Mg]Br
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCl)c1CC1(O)C = CCCC1 \\$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.1.8 Alkylation of tertiary alcohols

Substrates:

 $1. \ C[Si](C)(C)c1nnn(CCCl)c1CC1(O)C=CCCC1$

Products:

1. C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCC2

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 326.52

Figure 2: Outline of path 2

2.2.1 An azide and acetylene free synthesis of 1-substituted 1,2,3-triazoles

Substrates:

1. Tosylhydrazide - available at Sigma-Aldrich

2. Glyoxal dimethyl acetal - available at Sigma-Aldrich

3. 2-Chloroethylammonium chloride - available at Sigma-Aldrich

Products:

 $1. \ 1\hbox{-}(2\hbox{-chloro-ethyl})\hbox{-}1\hbox{h-}[1,2,3] triazole$

 $\textbf{Typical conditions:}\ 1. TsNHNH2. MeOH. rt\ 2. Amine. AcOH. heat$

Protections: none

Reference: 10.1016/j.tetlet.2020.152483

Retrosynthesis ID: 31020968

2.2.2 Bromination of aromatic compounds

Substrates:

1. 1-(2-chloro-ethyl)-1h-[1,2,3]triazole

Products:

1. ClCCn1cc(Br)nn1

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

2.2.3 Br/Li exchange

Substrates:

1. n-BuLi - available at Sigma-Aldrich

2. ClCCn1cc(Br)nn1

Products:

1. [Li]c1cn(CCCl)nn1

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.2.4 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

1. TMSCl - available at Sigma-Aldrich

2. [Li]c1cn(CCCl)nn1

Products:

1. C[Si](C)(C)c1cn(CCCl)nn1

Typical conditions: THF

Protections: none

Reference: 10.1002/ejoc.200600589 and 10.1055/s-0036-1588863 and 10.1002/1099-0690(200107)2001:14<2771::AID-EJOC2771>3.0.CO;2-Y and 10.1021/ol202873d (SI)

Retrosynthesis ID: 10019541

2.2.5 Blanc bromomethylation

Substrates:

1. Formalin - available at Sigma-Aldrich

2. C[Si](C)(C)c1cn(CCCl)nn1

Products:

1. C[Si](C)(C)c1nnn(CCCl)c1CBr

 ${\bf Typical\ conditions:\ HBr.heat}$

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-4039(02)01769-0 and 10.1021/ja002069c

Retrosynthesis ID: 31010730

2.2.6 Synthesis of alkyl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. C[Si](C)(C)c1nnn(CCCl)c1CBr

Products:

1. C[Si](C)(C)c1nnn(CCCl)c1C[Mg]Br

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

2.2.7 Grignard-Type Reaction

Substrates:

- 1. C[Si](C)(C)c1nnn(CCCl)c1C[Mg]Br
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCl)c1CC1(O)C = CCCC1 \\$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.2.8 Alkylation of tertiary alcohols

Substrates:

 $1. \ C[Si](C)(C)c1nnn(CCCl)c1CC1(O)C = CCCC1 \\$

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCC2$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.3 Path 3

Score: 338.70

Figure 3: Outline of path 3

2.3.1 Acid-catalyzed hydrolysis of epoxides or thiiranes

Substrates:

 $1. \ 8-oxaspiro [5.2] oct-2-ene$

Products:

1. OCC1(O)C=CCCC1

 $\textbf{Typical conditions:} \ H2O.H2SO4$

Protections: none

Reference: 10.1007/s13738-018-1400-5 and 10.1021/cr60241a004

Retrosynthesis ID: 822

2.3.2 An azide and acetylene free synthesis of 1-substituted 1,2,3-triazoles

Substrates:

1. Tosylhydrazide - available at Sigma-Aldrich

2. Glyoxal dimethyl acetal - available at Sigma-Aldrich

3. 2-Chloroethylammonium chloride - available at Sigma-Aldrich

Products:

1. 1-(2-chloro-ethyl)-1h-[1,2,3]triazole

 $\textbf{Typical conditions:} \ 1. TsNHNH2. MeOH.rt \ 2. Amine. AcOH. heat$

Protections: none

Reference: 10.1016/j.tetlet.2020.152483

2.3.3 Tandem oxidation-esterification

Substrates:

1. OCC1(O)C=CCCC1

Products:

 $1. \ \, {\rm methyl} \ 1 \hbox{-hydroxy-} 2 \hbox{-cyclohexenoate}$

Typical conditions: Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

Retrosynthesis ID: 25234

2.3.4 Bromination of aromatic compounds

Substrates:

1. 1-(2-chloro-ethyl)-1h-[1,2,3]triazole

Products:

1. ClCCn1cc(Br)nn1

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.3.5 Alkylation of tertiary alcohols

Substrates:

1. methyl 1-hydroxy-2-cyclohexenoate

2. ClCCn1cc(Br)nn1

Products:

 $1. \ COC(=O)C1(OCCn2cc(Br)nn2)C=CCCC1$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

${\bf 2.3.6}\quad {\bf Synthesis~of~Carboxylic~Acids~via~Ester~Hydrolysis}$

Substrates:

 $1. \ COC(=O)C1(OCCn2cc(Br)nn2)C=CCCC1$

Products:

1. O=C(O)C1(OCCn2cc(Br)nn2)C=CCCC1

Typical conditions: water.base

Protections: none

Reference: DOI: 10.1016/j.phytochem.2012.08.001 and 10.1021/jm900803q and

10.1002/anie.201303108 (SI page S14) and 10.1016/j.ejmech.2010.09.003

2.3.7 Friedel-Crafts Acylation

Substrates:

1. O=C(O)C1(OCCn2cc(Br)nn2)C=CCCC1

Products:

 $1. \ O{=}C1c2c(Br)nnn2CCOC12C{=}CCCC2$

Typical conditions: 1(COCl)2.Lewis Acid.solvent

Protections: none

Reference: 10.1021/ol800752v Retrosynthesis ID: 13729

2.3.8 Wolff-Kishner Reduction

Substrates:

 $1. \ O{=}C1c2c(Br)nnn2CCOC12C{=}CCCC2$

Products:

1. Brc1nnn2c1CC1(C=CCCC1)OCC2

Typical conditions: hydrazine.ethylene glycol.KOH.180-200 C

Protections: none

Reference: 10.1007/s00044-016-1528-8 p. 1116, 1110 and 10.1021/acs.jmedchem.7b01363 p. 9408, 9411 and 10.1016/j.tetasy.2006.11.005 and 10.1023/A:1024124411892

Retrosynthesis ID: 243

2.3.9 Synthesis of arylsilanes

Substrates:

- 1. Brc1nnn2c1CC1(C=CCCC1)OCC2
- 2. TMSCl available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCC2

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.