

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta054

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\cos 1 + i \sin 1$.
- (4p) b) Să se calculeze distanța de la punctul D(1,2) la punctul C(0,1).
- (4p) c) Să se calculeze coordonatele punctelor de intersecție dintre cercul de ecuație $x^2 + y^2 = 25$ și dreapta de ecuație x + y = 0.
- (4p) d) Să se arate că punctele L(5, 2), M(6, 3) și N(7, 4) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(4,3,2), B(3,2,4), C(2,4,3) și D(1,2,3).
- (2p) f) Să se determine $a,b \in \mathbf{R}$ astfel încât să avem egalitatea de numere complexe $(\sqrt{3} + i)^4 = a + bi$.

SUBIECTUL II (30p)

1

- (3p) a) Să se verifice identitatea $(x y)^2 + (y z)^2 + (z x)^2 = 2(x^2 + y^2 + z^2 xy yz xz)$, $\forall x, y, z \in \mathbb{R}$.
- (3p) b) Să se arate că, dacă $x^2 + y^2 + z^2 = xy + yz + xz$, unde $x, y, z \in \mathbb{R}$, atunci x = y = z.
- (3p) c) Să se rezolve în mulțimea numerelor reale ecuația $4^x + 9^x + 25^x = 6^x + 10^x + 15^x$
- (3p) d) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_6$ să verifice relația $\hat{x}^3 = \hat{x}$.
- (3p) e) Să se calculeze suma rădăcinilor polinomului $f = X^4 + X^3 X^2 + 1$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x \sin x^2$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x)dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe intervalul [0,1].
- (3p) d) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) e) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^3}$.

SUBIECTUL III (20p)

 $\hat{\text{In multimea}} \ \ M_3(\mathbf{C}) \ \ \text{se consideră matricele} \ \ A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ \ , \ \ O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ,$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 funcția $f: M_3(\mathbf{C}) \to M_3(\mathbf{C})$, $f(X) = X^{2007}$.

- (4p) a) Să se calculeze determinantul și rangul matricei A.
- (4p) b) Să se calculeze A^2 și A^3 .
- (4p) c) Să se verifice că matricea $I_3 + A$ este inversabilă și că inversa sa este $I_3 A + A^2$.
- (2p) d) Să se arate că, dacă $Y \in M_3(\mathbb{C})$ şi $Y \cdot A = A \cdot Y$, atunci există $a, b, c \in \mathbb{C}$, astfel încât $Y = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.
- (2p) e) Să se arate că, dacă $Z = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ unde $a,b,c \in \mathbb{C}$ și det(Z) = 0, atunci $Z^3 = O_3$.
- (2p) f) Să se demonstreze că funcția f nu este injectivă.
- (2p) g) Să se demonstreze că funcția f nu este surjectivă.

SUBIECTUL IV (20p)

Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{2x^3 + x}{x^2 + 1}$.

- (4p) a) Să se verifice că $f(x) = 2x \frac{x}{x^2 + 1}$, $\forall x \in \mathbf{R}$.
- (4p) b) Să se calculeze $f'(x), x \in \mathbf{R}$.
- (4p) c) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (2p) d) Să se calculeze $\int_{0}^{1} f(x)dx.$
- (2p) e) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- (2p) $| f \rangle$ Să se arate că funcția f este bijectivă.
- (2p) g) Dacă notăm cu $g: \mathbf{R} \to \mathbf{R}$ inversa funcției f, să se calculeze $\int_{0}^{\frac{3}{2}} g(x) dx$.