Álgebra Linear 1 - 08.013-6 turma C Lista 2 - Determinantes Segundo semestre de 2017

Dada uma matriz quadrada $a=(a_{ij})$ de ordem n com entradas em \mathbb{K} ($\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$), seu **determinante** é definido indutivamente por:

Se
$$n = 1$$
 então $\det(a) = a_{11}$
Se $n > 1$ então $\det(a) = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \cdot \det(A_{1,j})$

sendo $A_{1,j}$ a $(n-1) \times (n-1)$ matriz obtida a partir de a pela supressão da primeira linha e j-ésima coluna de a.

1. Calcule a partir da definição acima o determinante de $a=(a_{ij})_{2\times 2}$ e o determinante de $b=(b_{ij})_{3\times 3}$. Mais geralmente, mostre que se $c=(c_{ij})_{n\times n}$ então

$$\det(c) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot c_{1\sigma(1)} \cdot c_{2\sigma(2)} \cdots c_{n\sigma(n)}$$

sendo $S_n = \{\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\} / \sigma$ é bijetora $\}$ o grupo de permutações de n elementos e $sgn(\sigma)$ é o sinal da permutação σ , o qual é definido como sendo -1 se σ se escreve como produto de um número ímpar de transposições e $sgn(\sigma) = 1$ se σ se escreve como produto de um número par de transposições.

- 2. Prove que se permutarmos duas linhas ou duas colunas numa matriz $a = (a_{ij})_{n \times n}$ então o determinante da matriz resultante é igual ao determinante de a multiplicado por (-1).
- 3. Mostre que, se $a \in M(n, n, \mathbb{K})$ possui duas linhas iguais ou duas colunas iguais então $\det(a) = 0$.
- 4. Mostre que $\det((a_{ij})_{n\times n}) = \sum_{s=1}^{n} (-1)^{r+s} \cdot a_{rs} \cdot \det(A_{r,s}) = \sum_{r=1}^{n} (-1)^{r+s} \cdot a_{rs} \cdot \det(A_{r,s}),$ sendo $A_{r,s}$ a $(n-1) \times (n-1)$ matriz obtida a partir $\det(a_{ij})_{n\times n}$ pela supressão da r-ésima linha e s-ésima coluna $\det(a_{ij})_{n\times n}$.

5. Mostre que $det(a) = det(a^t)$ para todo $a \in M(n, n, \mathbb{K})$.

6. Sejam
$$a = (a_{ij})_{n \times n} = \begin{pmatrix} L_1(a) \\ \vdots \\ L_i(a) \\ \vdots \\ L_n(a) \end{pmatrix}, b = (b_{ij})_{n \times n} = \begin{pmatrix} L_1(b) \\ \vdots \\ L_i(b) \\ \vdots \\ L_n(b) \end{pmatrix}$$
 e $\lambda, \mu \in \mathbb{K}$. Prove que, se

$$L_k(a) = L_k(b)$$
 para todo $k \in \{1, 2, \dots n\} - \{i\}$ então

$$\det \begin{pmatrix} \begin{pmatrix} L_1(a) \\ \vdots \\ \lambda \cdot L_i(a) + \mu \cdot L_i(b) \\ \vdots \\ L_n(a) \end{pmatrix} = \lambda \cdot \det(a) + \mu \cdot \det(b)$$

7. Considere as matrizes $a=(a_{ij})_{n\times n}=(C_1(a)\cdots C_j(a)\cdots C_n(a))$ e $b=(b_{ij})_{n\times n}=(C_1(b)\cdots C_j(b)\cdots C_n(b))$ e sejam $\lambda,\mu\in\mathbb{K}$. Prove que, se $C_k(a)=C_k(b)$ para todo $k\in\{1,2,\ldots n\}-\{j\}$ então

$$\det ((C_1(a) \cdots \lambda \cdot C_j(a) + \mu \cdot C_j(b) \cdots C_n(a))) = \lambda \cdot \det(a) + \mu \cdot \det(b)$$

- 8. Mostre que se $a \in M(n, n, \mathbb{K})$ possui uma linha ou uma coluna nula então $\det(a) = 0$.
- 9. Use o exercício 6 da lista 0 e as propriedades de determinante listadas acima para mostrar que se $a, b \in M(n, n, \mathbb{K})$, então $\det(a \cdot b) = \det(a) \cdot \det(b)$.
- 10. Dada uma matriz $a \in M(n, n, \mathbb{K})$, define-se o **cofator** do elemento a_{rs} de $a = (a_{ij})$ como sendo $\Delta_{rs} = (-1)^{r+s} \cdot \det(A_{rs})$, em que A_{rs} é a $(n-1) \times (n-1)$ matriz obtida de $a = (a_{ij})$ pela supressão da r-ésima linha e s-ésima coluna. A **matriz dos cofatores** de a é a matriz $\operatorname{cof}(a) = (\Delta_{ij})_{n \times n}$. Define-se a **matriz adjunta clássica** da matriz $a = (a_{ij})_{n \times n}$ como sendo a matriz $\operatorname{Adj}(a) = (\operatorname{cof}(a))^t$. Calcule $\operatorname{cof}(a)$ e $\operatorname{Adj}(a)$ para cada uma das matrizes a abaixo.

$$a = \begin{pmatrix} 2 & 0 & -3 & 4 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 7 \\ 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \quad a = \begin{pmatrix} 1 & i - 2 & 0 \\ 2i & -2 & 1 - i \\ 0 & 1 & 0 \end{pmatrix} \quad a = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

11. Dada uma matriz $a=(a_{ij})_{3\times 3}$, prove que $a\cdot \mathrm{Adj}(a)=\mathrm{Adj}(a)\cdot a=\det(a)\cdot I_3$. Convença-se de que resultado semelhante vale para qualquer $n\times n$ matriz sobre \mathbb{K} , ou seja, se $a\in M(n,n,\mathbb{K})$ e $\det(a)\neq 0$, então $a^{-1}=\left(\frac{1}{\det(a)}\right)\cdot \mathrm{Adj}(a)$. Baseado nessa fórmula, verifique quais das matrizes do exercício anterior são invertíveis e para as que forem, calcule sua inversa.