

Center for Industrial Mathematics (ZeTeM)

Mathematics / Computer science

Faculty 03

Introduction to TorchPhysics

Getting started with a simple example

Tom Freudenberg, Nick Heilenkötter, Janek Gödeke Heidelberg, 07.11.2023

Main Goal of Today

Universität

- Solve a simplified drilling problem
- Leads to a heat equation on a time dependent domain
- Use PINNs and TorchPhysics to solve this problem

Starting with TorchPhysics

Universität

Bremen

• We introduce the library with the Laplace equation:

 $\Delta u = 1$ in $\Omega = [0, 1] \times [0, 1]$

u = 0 on $\partial \Omega$

Introduction to TorchPhysics

Tom Freudenberg, Nick Heilenkötter, Janek Gödeke Faculty 03
Mathematics / Computer science

But first...

Universität

Setting up Google Colab

Universität Bremen

Structure

Universität Bremen

Gödeke

TORCHPHYSICS

Universität

Bremen

Example:
$$\Omega = [0, 1] \times [0, 1]$$

$$\Delta u(x) = 1, \quad \text{for } x \in \Omega,$$

 $u(x) = 0, \quad \text{for } x \in \partial \Omega.$

Universität

Bremen

Example:
$$\Omega = [0, 1] \times [0, 1]$$

$$\Delta u(x) = 1, \quad \text{for } x \in \Omega,$$

 $u(x) = 0, \quad \text{for } x \in \partial \Omega.$

Universität Bremen

Example:
$$\Omega = [0, 1] \times [0, 1]$$

$$\Delta u(x) = 1, \quad \text{for } x \in \Omega,$$

 $u(x) = 0, \quad \text{for } x \in \partial \Omega.$

```
import torchphysics as tp
X = tp.spaces.R2('x')
U = tp.spaces.R1('u')
```

Universität Bremen

Domains

Domains

Universität

- Basic geometries implemented:
 - Point, Interval, Parallelogram, Circle, ...

Domains

- Basic geometries implemented:
 - Point, Interval, Parallelogram, Circle, ...
- Here: Parallelogram

Example:
$$\Omega = [0, 1] \times [0, 1]$$

$$\Delta u(x) = 1, \quad \text{for } x \in \Omega,$$

 $u(x) = 0, \quad \text{for } x \in \partial \Omega.$

Domains

- Basic geometries implemented:
 - Point, Interval, Parallelogram, Circle, ...
- Here: Parallelogram

Example:
$$\Omega = [0, 1] \times [0, 1]$$

$$\Delta u(x) = 1, \quad \text{for } x \in \Omega,$$

 $u(x) = 0, \quad \text{for } x \in \partial \Omega.$

4 omega = tp.domains.Parallelogram(X, [0,0], [1,0], [0,1])

PointSampler

Universität

- Creation of training/validation points inside of the domains
- Different types of sampling:
 - RandomUniformSampler, GridSampler, GaussianSampler, AdaptiveRejectionSampler, ...

PointSampler

- Creation of training/validation points inside of the domains
- Different types of sampling:
 - RandomUniformSampler, GridSampler, GaussianSampler, AdaptiveRejectionSampler, ...

PointSampler

- Creation of training/validation points inside of the domains
- Different types of sampling:

RandomUniformSampler, GridSampler, GaussianSampler,

AdaptiveRejectionSampler, ...

Neural Networks

Universität Bremen

Neural Networks

Universität Bremen

$$\Delta u(x) = 1$$

Universität Bremen

Conditions

Conditions

- Different types, e.g. PINNCondition
- Represents one mathematical condition, e.g.

$$\Delta u(x) = 1 \text{ in } \Omega$$
 or $u(x) = 0 \text{ at } \partial \Omega$

• DifferentialOperators allow natural definition:

Conditions

- Different types, e.g. PINNCondition
- Represents one mathematical condition, e.g.

$$\Delta u(x) = 1 \text{ in } \Omega$$
 or $u(x) = 0 \text{ at } \partial \Omega$

DifferentialOperators allow natural definition:

```
def pde_residual(u, x):
    return tp.utils.laplacian(u, x) - 1.0

pde_cond = PINNCondition(model,
    inner_sampler,
    pde_residual)
```

Conditions

- Different types, e.g. PINNCondition
- · Represents one mathematical condition, e.g.

$$\Delta u(x) = 1 \text{ in } \Omega$$
 or $u(x) = 0 \text{ at } \partial \Omega$

DifferentialOperators allow natural definition:

```
def pde_residual(u, x):
                                                  20 def boundary_residual(u):
      return tp. utils.laplacian(u, x) - 1.0
                                                        return U = 0.0
16
                                                  22
  pde_cond = PINNCondition(model,
                                                    boundary cond = PINNCondition(model,
18
                             inner_sampler,
                                                  24
                                                                                bound sampler,
                             pde residual)
                                                                                boundary residual)
19
                                                 25
```

Universität Bremen

Solver

Solver

- Collects all conditions
 - \rightarrow overall loss computable
- Flexible choice optimization algorithm

```
optim = tp.OptimizerSetting(torch.optim.Adam, Ir=0.001)
solver = tp.solver.Solver([boundary_cond, pde_cond],
optimizer_setting=optim))
```

Solver

- Collects all conditions
 - \rightarrow overall loss computable
- Flexible choice optimization algorithm

```
optim = tp.OptimizerSetting(torch.optim.Adam, Ir=0.001)
solver = tp.solver.Solver([boundary_cond, pde_cond],
optimizer_setting=optim))
```

Based upon OPYTORCH LIGHTNING

Utils - Plot Results

Universität Bremen

$$\Delta u(x) = 1.0$$
 for $x \in \Omega$
 $u(x) = 0.0$ for $x \in \partial \Omega$

Figure: Solution of the PDE

Utils - Plot Results

$$\Delta u(x) = 1.0$$

Universität Bremen

$$u(x) = 0.0$$

for
$$x \in \Omega$$

for
$$x \in \partial \Omega$$

Does your solution look like the one in the picture?

Figure: Solution of the PDE

First extension of the example

• Learning the time dependent Laplace equation (heat equation):

$$\partial_t u - 0.1 \Delta u = 1$$
 in $\Omega \times [0, 2]$
 $u = 0$ on $\partial \Omega \times [0, 2]$
 $u(\cdot, 0) = 0$ in Ω

First extension of the example

• Learning the time dependent Laplace equation (heat equation):

$$\partial_t u - 0.1 \Delta u = 1$$
 in $\Omega \times [0, 2]$
 $u = 0$ on $\partial \Omega \times [0, 2]$
 $u(\cdot, 0) = 0$ in Ω

- Aspects to adjust:
 - Adding a time variable t, time interval and sample time points
 - One more input to the neural network
 - Adapt PDE-condition and implement initial condition
- Template: Example_2.ipynb