GSSNN: Graph Smoothing Splines Neural Networks

Shichao Zhu^{1,3}, Lewei Zhou^{2,4}, Shirui Pan⁵, Chuan Zhou^{2,3}, Guiying Yan^{2,4} and Bin Wang⁶

¹Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

²Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

³School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

⁴ University of Chinese Academy of Sciences, Beijing, China

⁵Faculty of Information Technology, Monash University, Melbourne, Australia ⁶Xiaomi Al Lab, Xiaomi Inc., Beijing, China

Outline

- Introduction
 - Preliminaries
 - Motivation
- Approach
 - GSSNN: Graph Smoothing Splines Neural Networks
 - Overall Model
- Experiments
 - Settings
 - Results and Analysis
- Conclusion

Outline

- Introduction
 - Preliminaries
 - Motivation
- Approach
 - GSSNN: Graph Smoothing Splines Neural Networks
 - Overall Model
- Experiments
 - Settings
 - Results and Analysis
- Conclusion

- Graph-level Representation Learning
 - Definition: Given a set of graphs $\mathcal{G} = \{G_i\}_i^t$, learn a mapping function: $\mathcal{G} \to \mathbb{R}^n$ that project each graph G_i into low dimensional vectors in space \mathbb{R}^n .
 - Existing Methods
 - Kernel-based methods
 - GNN-based methods

- Existing Methods
 - Kernel-based methods
 - Intuition: decompose graph into sub-components → build graph embedding in feature-based manner → apply ML algorithms to perform graph classification
 - Works: Weisfeiler-Lehman subtree kernel (WL) [1], graphlet count kernel (GK) [2], Random Walk (RW) [3]
 - GNN-based methods

- Existing Methods
 - Kernel-based methods
 - GNN-based methods
 - 1. Graph Summarization: collect the embedding for all nodes to generate graph representation
 - Works: GCAPS-CNN [4], CapsGNN [5], GIN [6]
 - 2. Graph Pooling: reduce the size of nodes to coarsen the graph progressively through learning topology-based node assignments
 - Global pooling methods: Set2Set [7], SortPool [8]
 - Hierarchical pooling methods: DiffPool [9], SAGPool [10]

- Existing Methods
 - Kernel-based methods
 - GNN-based methods ——

Only exploit local information via convolution or neighbor aggregation

1. Graph Summarization: collect the embedding for all nodes to generate graph representation

Cannot distinguish the importance of different nodes

2. Graph Pooling: reduce the size of nodes to coarsen the graph progressively through learning topology-based node assignments

Loss some important information for nodes

Non-smoothing node features

- GNN aggregation operation
 - ① Applying a feature fitting function g(X) = XW
 - ② Propagating the new representation $A \cdot g(X)$
 - 3 Fitting it into a nonlinear activation function

Result in degenerated node embedding due to the non-smooth feature fitting function g(X)

Node-level representation

Graph-level representation

Non-smoothing node features + Noise features

Suboptimal graph embedding

Motivation

- Limitations of existing methods

 - Ignore global topological knowledge
 - Lack of interpretability

Motivation

- Limitations of existing methods

 - Ignore global topological knowledge
 - Lack of interpretability
 - How do we overcome these limitations uniformly?
- GSSNN: Graph Smoothing Splines Neural Networks

Outline

- Introduction
 - Preliminaries
 - Motivation
- Approach
 - GSSNN: Graph Smoothing Splines Neural Networks
 - Overall Model
- Experiments
 - Settings
 - Results and Analysis
- Conclusion

GSSNN

- Roadmap
 - Non-smoothing node features

 Scaled Smoothing Splines
 - Ignore global topological knowledge → Node Importance Scoring

GSSNN-Scaled Smoothing Splines (S³)

- Smoothing Splines
 - Regression skill, aim to solve the following problem

$$RSS(f,\lambda) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int_a^b \{f''(t)\}^2 dt, (1)$$

Generalize smoothing splines to multi-dimensional values

Consider the first layer's feature fitting function: $g_k(X_i) = X_i^T W_k^0$, where $g_k(X_i)$ denote the *i*th node's *k*th feature.

To make g_k smooth and insensitive to noisy data, we hope to minimize the following penalized residual sum of squares:

$$RSS(g_k, \lambda) = \sum_{i=1}^{N} \{y_i - g_k(x_i^1, x_i^2, ..., x_i^d)\}^2 + \lambda \int_B \sum_{j=1}^{d} \left(\frac{\partial^2 g_k}{\partial x^{j2}}\right)^2 dx$$

GSSNN-Scaled Smoothing Splines (S³)

Generalize smoothing splines to multi-dimensional values

Theorem 1. If $g_k(x^1, x^2, ..., x^d)$ that minimizes the RSS equation with two continuous derivatives has the form $g_k(x^1, x^2, ..., x^d) = \sum_{j=1}^d u_j(x^j)$, then RSS equation has an explicit, finite-dimensional, unique minimizer:

$$g_k(x^1, x^2, ..., x^d) = \sum_{i=1}^d \sum_{i=1}^N \alpha_i^j(x^j) \theta_{ij}$$

Important nodes features

Where θ_{ij} is the learnable parameter, $\alpha_i^j(x^j)$ can be represented by the natural cubic spline with N knots ξ_k , and x_i^j is the value of the jth feature of node v_i , $l_{j,k}$ are the node indexes that make $x_{l_{ij}}^j < \cdots < x_{l_{iN}}^j$.

$$\alpha_{1}^{j}(x^{j}) = 1,$$

$$\alpha_{2}^{j}(x^{j}) = x^{j},$$

$$\alpha_{k+2}^{j}(x^{j}) = \begin{bmatrix} d_{k}^{j}(x^{j}) & \xi_{N-1}^{j} \\ \xi_{N-1}^{j}(x^{j}) & \xi_{k}^{j} \\ \xi_{N-1}^{j}(x^{j}) & \xi_{k}^{j} \\ \xi_{N-1}^{j}(x^{j}) & \xi_{k}^{j} \\ \xi_{N-1}^{j}(x^{j}) & \xi_{N-1}^{j}(x^{j}), \end{cases}$$

$$\alpha_{k+2}^{j}(x^{j}) = \begin{bmatrix} d_{k}^{j}(x^{j}) - d_{N-1}^{j}(x^{j}), & \xi_{k}^{j} = x_{l_{j,k}}^{j} \in \mathbb{R} \text{ and } a_{j} < x_{l_{j,1}}^{j} < \dots < x_{l_{j,N}}^{j} < b_{j} \end{cases}$$

GSSNN-Smoothing Feature Enhancement

Generalize smoothing splines to graph neural networks

According to Theorem 1, we design a natural cubic splines function on $(x^1, x^2, ..., x^d)$ to make $g_k(x)$ minimize the RSS equation.

$$F_s(X) = \sigma([\beta(X_1^T), \beta(X_2^T), ..., \beta(X_N^T)]^T W_s + b_s)$$
$$\beta(x^1, x^2, ..., x^d) = (\gamma(x^1), \gamma(x^2), ..., \gamma(x^d))$$
$$\gamma(x^j) = (\alpha_1^j(x^j), \alpha_2^j(x^j), ..., \alpha_K^j(x^j)),$$

Where the K is the number of knots for one feature dimension, and W_s and b_s are learnable parameters for scaling the expanded nodes dimension.

Apply scaled smoothing splines after single layer of GNN as follows.

$$f_1(X, \hat{A}) = \sigma\left(\hat{A}F_s(X)W^{(0)}\right)$$

GSSNN - Node Importance Scoring

- Incorporate Global Topological Knowledge
 - Self-attention Scoring $S = \sigma(\hat{A}\sigma(\hat{A}XW^{(0)})W^{(1)})$ [local]
 - $W^{(0)} \in \mathbb{R}^{d \times d}$, $W^{(1)} \in \mathbb{R}^{d \times 1}$ are learnable parameters.
 - Centrality Scoring
 - Degree centrality D(v) [local]
 - Closeness centrality C(v) [global]
 - Final importance scores
 - Weighted sum of above scores: $P(v) = \sigma(q_s S_v + q_d D(v) + q_c C(v))$

According to importance scores, select the top-K important nodes features as knots in scaled smoothing splines.

Readout Layer

$$h_G = \text{CONCAT} \left\{ \text{SUM} \left\{ h_v | v \in G \right\}, p\left(\xi_i | i = 1, ..., K \right) \right\}$$

- Model Training
 - Feed the graph embedding to MLP
 - Minimizing the cross-entropy loss over labeled training examples:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln X_{lf}$$

Readout Layer

$$h_G = \text{CONCAT} \left\{ \text{SUM} \left\{ h_v | v \in G \right\}, p\left(\xi_i | i = 1, ..., K \right) \right\}$$

- Model Training
 - Feed the graph embedding to MLP
 - Minimizing the cross-entropy loss over labeled training examples:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln X_{lf}$$

Outline

- Introduction
 - Preliminaries
 - Motivation
- Approach
 - GSSNN: Graph Smoothing Splines Neural Networks
 - Overall Model
- Experiments
 - Settings
 - Results and Analysis
- Conclusion

Experiment Settings

- Datasets
 - Biological datasets
 - Social datasets

Dataset	Source	Graphs	Classes	Avg.N	Avg.E
MUTAG	Bio	188	2	17.93	19.79
PROTEINS	Bio	1113	2	39.06	72.81
D&D	Bio	1178	2	284.31	715.65
NCI1	Bio	4110	2	29.87	32.30
IMDB-B	Social	1000	2	19.77	193.06
IMDB-M	Social	1500	3	13	131.87
COLLAB	Social	5000	3	74.49	4914.99

- Baselines
 - Kernel-based methods: WL, GK, DGK
 - GNN-based methods:
 - GCAPS-CNN, GapsGNN, GIN
 - SortPool, DiffPool, SAGPool

Graph Classification

Table 4: Graph classification results of biological and social datasets in accuracy.

	Method	MUTAG	NCI1	PROTEINS	DD	COLLAB	IMDB-B	IMDB-M
Kernel	WL GK	82.05 ± 0.36 81.58 ± 2.11	82.19 ± 0.18 62.49±0.27	74.68 ± 0.49 71.67 ± 0.55	79.78 ± 0.36 78.45 ± 0.26	79.02 ± 1.77 72.84 ± 0.28	73.40±4.63 65.87±0.98	49.33±4.75 43.89±0.38
Romoi	DGK	87.44 ± 2.72	80.31 ± 0.46	75.68 ± 0.54	73.50 ± 1.01	73.09 ± 0.25	66.96 ± 0.56	44.55±0.52
	GCAPS-CNN	89.62 ± 5.38	81.35±2.37	75.70 ± 3.86	78.82 ± 3.17	77.32 ± 1.98	72.02 ± 4.10	49.31±5.30
	GapsGNN	87.78 ± 6.68	78.25 ± 2.22	75.68 ± 3.22	75.88 ± 3.41	79.67 ± 1.24	74.68 ± 3.10	52.17 ± 4.25
GNN -	GIN	93.50 ± 6.49	80.85±2.34	76.81±3.78	77.76±2.27	80.50 ± 1.43	78.60 ± 3.37	54.33±4.49
CIVIV	SortPool	86.62 ± 4.72	70.36 ± 4.36	76.72 ± 3.77	75.27 ± 2.60	78.70 ± 1.52	74.40 ± 5.29	53.07±5.20
	DiffPool	89.79 ± 8.15	78.29 ± 3.33	77.02 ± 3.23	$70.95{\pm}2.41$	79.70 ± 1.84	78.08 ± 4.24	53.13 ± 4.70
	SAGPool	90.42 ± 7.78	77.62 ± 2.37	76.55 ± 3.50	76.91 ± 2.12	79.88 ± 1.02	78.10 ± 4.20	53.80 ± 4.08
	GSSNN	96.77±4.68	80.75±4.07	79.73±3.31	80.26±2.50	81.60±1.26	80.10±3.25	59.00±3.80
		3.27	1.44	2.92	0.48	1.10	1.50	4.67

GSSNN achieves the best performance on six datasets.

Global Information

Table 5: Graph classification accuracy with different scoring strategies.

Method	S_v	$S_v + D(v)$	$S_v + D(v) + C(v)$
MUTAG DD	88.89 74.62	94.44 77.78	96.77 80.26
IMDB-B	77.30	79.30	80.20

- S_v : Self-attention scores [local]
- $S_v + D(v)$: self-attention score plus degree scores [local]
- $S_v + D(v) + C(v)$: self-attention score plus degree scores and closeness scores [global]

Scaled Smoothing Splines (S³) as a Plugin

Table 6: Graph classification results of existing GNNs plugged with S³ in accuracy.

Method	MUTAG	PROTEINS	DD	IMDB-M
GCN	93.50	76.81	77.76	54.33
GCN+S ³	96.77	79.73	80.26	59.00
GAT	95.33	77.48	77.78	55.33
GAT+S ³	96.89	80.18	81.20	56.67

• The effectiveness of scaled smoothing splines (S³)

- Interpretability
 - Important nodes are mainly focused on heavy atoms with large degree, which determine the structure and properties of the compound to a large extent.

The important nodes or substructures

affect

Graph classification results

Visualization of important nodes in MUTAG dataset

Outline

- Introduction
 - Preliminaries
 - Motivation
- Approach
 - GSSNN: Graph Smoothing Splines Neural Networks
 - Overall Model
- Experiments
 - Settings
 - Results and Analysis
- Conclusion

Conclusion

GSSNN

- End-to-end model for graph-level representation learning: smoothing node features + global topological knowledge → high-quality and more robust graph features
- Scaled smoothing splines: easily fit into existing GNNs
- Interpretability

References

- [1] Shervashidze, N.; Schweitzer, P.; Leeuwen, E. J. v.; Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeilerlehman graph kernels. Journal of Machine Learning Research 12(Sep):2539–2561.
- [2] Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.; and Borgwardt, K. 2009. Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, 488–495.
- [3] Vishwanathan, S.V.N.; Schraudolph, N.N.; Kondor, R.; and Borgwardt, K.M. 2010. Graph kernels. Journal of Machine Learning Research 11(Apr):1201–1242.
- [4] Verma, S., and Zhang, Z.-L. 2019. Graph capsule convolutional neural networks. In Proceedings of the 7th International Conference on Learning Representations.
- [5] Xinyi, Z., and Chen, L. 2019. Capsule graph neural network. In Proceedings of the 7th International Conference on Learning Representations.
- [6] Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How powerful are graph neural networks? In Proceedings of the 7th International Conference on Learning Representations.

 AAAI-20; 7-12 February 2020, New York, USA

References

- [7] Vinyals, O.; Bengio, S.; and Kudlur, M. 2015. Order matters: Sequence to sequence for sets.
- [8] Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An end-to-end deep learning architecture for graph classification. In Proceedings of the 32th AAAI Conference on Artificial Intelligence.
- [9] Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and Leskovec, J. 2018. Hierarchical graph representation learning with differentiable pooling. In Advances in Neural Information Processing Systems, 4800–4810.
- [10] Lee,J.;Lee,I.;andKang,J. 2019. Self-attentiongraphpooling. InProceedings of the 36th International Conferenceon Machine Learning.