Homework 1

Joseph Sepich

Contents

1	Problem 1	1
	1.1 a	1
	1.2 b	4
2	Problem 2	4

Problem 1 1

1.1 a.

Functions as given:

- 1. $log^2(n)$
- $2. \binom{n}{2}$ $3. \log(n^2)$
- 4. log(n!)
- 5. $2^{\log(n)}$
- 6. n * log(n)
- 7. $4^{\log(n)}$
- 8. \sqrt{n}
- 9. $2^{\log^2(n)}$
- 10. n
- 11. log(log(n))

Recall the definition of big O notation:

c > 0, n₀ > 0 and
$$0 \le f(n) \le cg(n)$$
 for all $n \ge n_0$

We will proceed by comparing each function to the previous and adjusting the order accordingly.

Recall that
$$\binom{n}{2} = \frac{n!}{2(n-2)!}$$

With $n_0 = 1$ and c = 1

$$\log^2(n) \le \binom{n}{2}$$

So we start with:

- 1. $log^2(n)$ 2. $\binom{n}{2}$

Now compare function 2. and 3.

Here we can choose $n_0 = 2$ and c = 2

$$log(n^2) \le \frac{2n!}{2(n-2)!} = n(n-1)$$

So compare 3. and 1.

Here we can choose $n_0=2$ and c=2

$$log(n^2) \le 2log^2(n)$$

So we have:

- 1. $log(n^2)$
- $\begin{array}{ccc}
 2. & log^2(n) \\
 3. & \binom{n}{2}
 \end{array}$

Now compare 3. and 4.

Here we can choose $n_0 = 2$ and c = 1

$$log(n!) \le \binom{n}{2}$$

And compare to $log^2(n)$

We can choose $n_0 = 1$ and c = 1/2

$$log^2(n) \le 2log(n!)$$

So we have:

- 1. $log(n^2)$
- 2. $log^{2}(n)$
- 3. log(n!)4. $\binom{n}{2}$

Next looking at $2^{log(n)}$ we know equal x by logarithm properties, so we can put it between the two functions that increase at an increasing rate and increase at a decreasing rate and have:

- 1. $log(n^2)$
- 2. $\log^{2}(n)$ 3. $2^{\log(n)}$
- 4. log(n!)
- $5. \binom{n}{2}$

Next we look at n * log(n)

This function increases at an increasing rate, so we know it is above $2^{\log(n)}$ then let's compare to the next highest log(n!)

Choosing $n_0 = 1$ and c = 1 we get

$$n * log(n) \le log(n!)$$

So we have:

- 1. $log(n^2)$
- 2. $\log^{2}(n)$ 3. $2^{\log(n)}$
- 4. n * log(n)
- 5. log(n!)
- 6. $\binom{n}{2}$

Next we look at $4^{log(n)}$. This is similar to the exponential function 4^n , so compare it to our fastest growing function:

Choosing $n_0 = 1$ and c = 1 we get

$$\binom{n}{2} \leq 4^{\log(n)}$$

So we have:

- 1. $log(n^2)$
- 2. $log^{2}(n)$ 3. $2^{log(n)}$
- 4. n * log(n)
- 5. log(n!)6. $\binom{n}{2}$
- 7. $4^{\tilde{log}(n)}$

Next we look at \sqrt{n} , which obviously grows less than the linear function $2^{\log(n)}$. Let's compare to our bottom two functions.

Choose $n_0 = 2$ and c = 2

$$\sqrt{n} \leq 2log^2(n)$$

and choose $n_0 = 1$ and c = 3

$$log(n^2) \le 3\sqrt{n}$$

So we have:

- 1. $log(n^2)$
- 2. \sqrt{n} 3. $\log^2(n)$ 4. $2^{\log(n)}$
- 5. n * log(n)
- 6. log(n!)
- 8. $4^{log(n)}$

 $\log(\log(n))$ is the slowest growing with the composed log functions and n is the same function as $2^{\log(n)}$. Keeping with this process I get:

- 1. log(log(n))
- $2. log(n^2)$
- 3. $log^2(n)$
- 4. \sqrt{n}
- 5. $2^{log(n)}$
- 6. *n*
- 7. n * log(n)
- 8. log(n!)
- 9. $\binom{n}{2}$
- 10. $4^{\tilde{log}(n)}$
- 11. $2^{\log^2(n)}$

1.2 b.

Now we want to sort the functions into classes that are upper and lower bounded by each other. Basically can you find an n_0 and c for each other that it is upper bounded and a different one that they are lower bounded.

There are only two groups of classes that I can see functions belonging to. The others are not grouped with anyone else.

- 1. n and $2^{log(n)}$ grow at the exact same rate Θn .
- 2. $\binom{n}{2}$ and $4^{\log(n)}$ are both bounded by $\Theta(n^2)$

The second group makes sense, because n choose 2 is the binomial coefficient, or the coefficient for the term x^2 , so it grows at a rate bounded $\Theta(x^2)$. $4^{\log(n)}$ is equivalent to x^2 , so it must be bounded.

2 Problem 2

We are running the insertion sort algorithm on the following input sequence:

$$2,1,4,3,6,5,\ldots,n,n-1$$

We can see that each pair of numbers is switch around in order i.e. 1 is where 2 should be and 2 is where 1 should be, 3 is where 4 should be and 4 is where 3 should be and so on up to n is where n-1 should be and n-1 is where n should be.

This means that for every 2 numbers we need to perform 4 actions (with exception of the first pair, since we start at the second index). This means we will perform $4 * \frac{n}{2}$ actions or 2n actions. 2n is bother lower and upper bounded by n, if you use $n_0 = 1$, c = 1, and $n_0 = 1$, c = 3 respectively. Therefore the running time of the input here is $\Theta(n)$.