On Borel Inseparability of Game Tree Languages

Szczepan Hummel Henryk Michalewski Damian Niwiński

Faculty of Mathematics, Informatics and Mechanics University of Warsaw

GAMES 2008

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

strictness of the hierarchy,

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory)

we ask about:

- strictness of the hierarchy,
- separation properties in this hierarchy:

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- strictness of the hierarchy,
 - separation properties in this hierarchy:
 - given two disjoint sets on certain level of the hierarchy

In contexts where we study hierarchies (Descriptive Set Theory, Automata Theory, Logic, Complexity Theory) we ask about:

- strictness of the hierarchy,
- separation properties in this hierarchy:
 - given two disjoint sets on certain level of the hierarchy
 - can they be separated by a set from the lower level?

Nondeterministic Index Hierarchy

Santocanale and Arnold studied separation property in the context of μ -terms and parity automata.

Nondeterministic Index Hierarchy

Santocanale and Arnold studied separation property in the context of μ -terms and parity automata.

Nondeterministic Index Hierarchy

Santocanale and Arnold studied separation property in the context of μ -terms and parity automata.

- The inseparable pair:
 - $W_{(0,1)}$ one of the game tree languages that witness strictness of alternating index hierarchy:

- The inseparable pair:
 - $W_{(0,1)}$ one of the game tree languages that witness strictness of alternating index hierarchy:

- The inseparable pair:
 - $W_{(0,1)}$ one of the game tree languages that witness strictness of alternating index hierarchy:

Set of trees where \exists has a strategy to force finitely many 1's

- The inseparable pair:
 - $W_{(0,1)}$ one of the game tree languages that witness strictness of alternating index hierarchy:
 - Set of trees where \exists has a strategy to force finitely many 1's
 - ullet $W_{(0,1)}'$ obtained from $W_{(0,1)}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$

- The inseparable pair:
 - W_(0,1) one of the game tree languages that witness strictness of alternating index hierarchy:
 Set of trees where ∃ has a strategy to force finitely many 1's
 - $W'_{(0,1)}$ obtained from $W_{(0,1)}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$
- ullet As subsets of $T_{\{\exists,\forall\}\times\{0,1\}}$ the space of all (0,1)-game trees

- The inseparable pair:
 - W_(0,1) one of the game tree languages that witness strictness of alternating index hierarchy:
 Set of trees where ∃ has a strategy to force finitely many 1's
 - $W'_{(0,1)}$ obtained from $W_{(0,1)}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$
- ullet As subsets of $T_{\{\exists,\forall\} imes\{0,1\}}$ the space of all (0,1)-game trees
- We consider standard topology on $T_{\{\exists,\forall\}\times\{0,1\}}$

- The inseparable pair:
 - W_(0,1) one of the game tree languages that witness strictness of alternating index hierarchy:
 Set of trees where ∃ has a strategy to force finitely many 1's
 - $W'_{(0,1)}$ obtained from $W_{(0,1)}$ by interchanging $\forall \leftrightarrow \exists$ and $0 \leftrightarrow 1$
- As subsets of $T_{\{\exists,\forall\}\times\{0,1\}}$ the space of all (0,1)-game trees
- We consider standard topology on $T_{\{\exists,\forall\}\times\{0,1\}}$
- We use this to prove something stronger than needed:

Main Result

Theorem

There is no Borel set separating $W_{(0,1)}$ and $W_{(0,1)}^{'}$.

Main Result

Theorem

There is no Borel set separating $W_{(0,1)}$ and $W'_{(0,1)}$.

- $W_{(0,1)}$ and $W'_{(0,1)}$ are recognized by nondeterministic automata with co-Büchi condition.
- $Comp(\Sigma_1 \cup \Pi_1) \subseteq Bor$

Corollary

There exists a pair of disjoint sets recognized by Σ_2 automata, that is **not** separated by any $Comp(\Sigma_1 \cup \Pi_1)$ -recognized set.

Main Result

Theorem

There is no Borel set separating $W_{(0,1)}$ and $W'_{(0,1)}$.

- $W_{(0,1)}$ and $W'_{(0,1)}$ are recognized by nondeterministic automata with co-Büchi condition.
- $Comp(\Sigma_1 \cup \Pi_1) \subseteq Bor$

Corollary

There exists a pair of disjoint sets recognized by Σ_2 automata, that is not separated by any $Comp(\Sigma_1 \cup \Pi_1)$ -recognized set.

Büchi∩co-Büchi ⊆ Bor

Corollary

First Separation Property fails for co-Büchi class.

Core of the Proof

• We show that our pair has a capacity to describe every Borel set

Core of the Proof

We show that our pair has a capacity to describe every Borel set

Lemma

Let $B \subseteq 2^{\omega}$ be an arbitrary Borel set. There exists a continuous function $F_B: 2^{\omega} \to T_{\{\exists,\forall\} \times \{0,1\}}$ such, that:

$$F_B^{-1}(W_{(0,1)}) = B$$

 $F_B^{-1}(W'_{(0,1)}) = 2^{\omega} \setminus B$

Core of the Proof

We show that our pair has a capacity to describe every Borel set

Lemma

Let $B \subseteq 2^{\omega}$ be an arbitrary Borel set. There exists a continuous function $F_B: 2^{\omega} \to T_{\{\exists,\forall\} \times \{0,1\}}$ such, that:

$$F_B^{-1}(W_{(0,1)}) = B$$

 $F_B^{-1}(W'_{(0,1)}) = 2^{\omega} \setminus B$

ullet Consider class ${\mathcal C}$ of sets B for which there is such function F_B

- ullet Consider class ${\mathcal C}$ of sets B for which there is such function F_B
- ullet It suffices to show that ${\cal C}$
 - includes all clopen sets
 - is closed under complementation
 - is closed under countable unions

- ullet Consider class ${\mathcal C}$ of sets B for which there is such function F_B
- It suffices to show that C
 - includes all clopen sets characteristic function
 - is closed under complementation
 - is closed under countable unions

- ullet Consider class ${\mathcal C}$ of sets B for which there is such function F_B
- \bullet It suffices to show that $\mathcal C$
 - includes all clopen sets characteristic function
 - ullet is closed under complementation by symmetry of $W_{(0,1)}$ and $W_{(0,1)}'$
 - is closed under countable unions

- ullet Consider class ${\mathcal C}$ of sets B for which there is such function F_B
- It suffices to show that C
 - includes all clopen sets characteristic function
 - ullet is closed under complementation by symmetry of $W_{(0,1)}$ and $W_{(0,1)}^{'}$
 - is closed under countable unions meta-game construction

Topological View

- ullet $W_{(0,1)}$ and $W_{(0,1)}^{'}$ are Π_1^1 -complete (coanalytic complete) sets
- Borel inseparable Π_1^1 pairs known so far were all similar to the classical one:

```
\begin{array}{lcl} \textit{WF} & = & \{t \in T_{\{0,1\}} : \text{every path has only finitely many 1's} \} \\ \textit{UB} & = & \{t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1's} \} \end{array}
```

But UB is not even recognized by alternating co-Büchi automaton

Topological View

- ullet $W_{(0,1)}$ and $W_{(0,1)}^{'}$ are Π_1^1 -complete (coanalytic complete) sets
- Borel inseparable Π_1^1 pairs known so far were all similar to the classical one:

```
\begin{array}{lcl} \textit{WF} & = & \{t \in T_{\{0,1\}} : \text{every path has only finitely many 1's} \} \\ \textit{UB} & = & \{t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1's} \} \end{array}
```

But UB is not even recognized by <u>alternating</u> co-Büchi automaton

• Büchi sets are all Σ^1_1 \Rightarrow every pair of disjoint Büchi sets is separated by a Borel set

Topological View

- ullet $W_{(0,1)}$ and $W_{(0,1)}^{'}$ are Π_1^1 -complete (coanalytic complete) sets
- Borel inseparable Π_1^1 pairs known so far were all similar to the classical one:

```
\begin{array}{lcl} \textit{WF} &=& \{t \in T_{\{0,1\}} : \text{every path has only finitely many 1's} \} \\ \textit{UB} &=& \{t \in T_{\{0,1\}} : \text{exactly one path has infinite number of 1's} \} \end{array}
```

But UB is not even recognized by alternating co-Büchi automaton

- Büchi sets are all Σ^1_1 \Rightarrow every pair of disjoint Büchi sets is separated by a Borel set
- But we can ask:

Does Büchi class have First Separation Property? (It would complement another fact by Santocanale and Arnold)