studyguide

Shantanu Vyas

October 18, 2016

Contents

1	Cha	oter 1	3
	1.1	Propositional Logic	. 3
		1.1.1 Converse Contrapositive and Inverse $(p \rightarrow q) \dots$. 3
	1.2	Applications of Propositional Logic	
		1.2.1 Examples of turning sentences into propositional Logic	:. 4
	1.3	Propositional Equivalences	
		1.3.1 Logical Equivalences	4
		1.3.2 Logical Equivelances Involving Conditional Statements	
		1.3.3 Logical Equivalences Involving Biconditional Statement	
	1.4	Predicates and Quantifiers	
		1.4.1 Quantifiers	
	1.5	Nested Quantifers	
		1.5.1 Nested Quantifiers can be used when there are multiple	
		variables such as x and y	. 5
		1.5.2 Quantification of Two Variables	
	1.6	Rules of Inference	
		1.6.1 Rules of inference	
		1.6.2 Rules of Inference for Quantifies Statements	
	1.7	Introduction to Proofs	
		1.7.1 There are 3 main methods for proofs	
	1.8	Proof methods and Strategy	
		1.8.1 Exhaustive Proof	
	~ 1		10
2		oter 2	10
	2.1	Sets	
		2.1.1 Definition	
		2.1.2 Number sets	. 10

	2.1.3	Interval Notation
	2.1.4	Empty Set
	2.1.5	Subsets
	2.1.6	Proper Subset
	2.1.7	Set Cardinality
	2.1.8	Power Sets
	2.1.9	Cartesian Product
	2.1.10	Truth Set
2.2	Set Op	perations
	2.2.1	Union
	2.2.2	Intersection
	2.2.3	Disjoint
	2.2.4	Difference
	2.2.5	Complement
	2.2.6	Set Identities
2.3	Functi	ons
	2.3.1	Functions
	2.3.2	Image
	2.3.3	One to One (Injective)
	2.3.4	Onto
	2.3.5	One to one correspondence
	2.3.6	Inverse Functions
	2.3.7	Composition
2.4	Sequer	$_{ m ces}$ and $_{ m Summations}$
	2.4.1	Definition: Sequence is a function from a subset of the
		set of integers to a set S. They're also an ordered set 14
	2.4.2	Example:
	2.4.3	Geometric Sequence
	2.4.4	Arithmetic Progression
	2.4.5	Recurrence Relations
	2.4.6	We say that we have solved a recurrence relation to-
		gether with the initial condition when we find a for-
		mula. We call this the closed formula
	2.4.7	Summations
2.5	Cardin	ality of Sets
	2.5.1	Definition: The sets A and B have the same cardinality
		iff there is a one to one correspondance from A to B,
		we write $ A = B $

2.5.2	Countability																									1	5
-------	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

1 Chapter 1

1.1 Propositional Logic

- 1.1.1 Converse Contrapositive and Inverse (p -> q)
 - Coverse

$$- q \rightarrow p$$

• Contrapositive

$$- \ q \to \neg p$$

 \bullet Inverse

$$- \neg p \rightarrow \neg q$$

1.2 Applications of Propositional Logic

1.2.1 Examples of turning sentences into propositional Logic.

1.3 Propositional Equivalences

1.3.1 Logical Equivalences

$p \wedge T$	р	Identity Laws
-	-	Identity Laws
$\underline{}^{\mathrm{p}\vee F}$	<u>p</u>	
$p \lor T$	Τ	Domination Laws
$p \wedge F$	F	
$p \lor p$	p	Idempotent Laws
$p \land p$	p	
$\neg(\neg p)$	p	Double Negation Laws
$p \lor q$	$q \lor p$	Commutative Laws
$p \land q$	$q \wedge p$	
$(p \lor q) \lor r$	$p \lor (q \lor r)$	Associative Laws
$(p \land q) \land r$	$p \land (q \land r)$	
$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$	Distributive Laws
$p \land (q \lor r)$	$(p \land q) \lor (p \land r)$	
$\neg(p \land q)$	$\neg p \lor q$	De Morgans Laws
$\neg (p \ v \ q)$	$\neg p \land q$	
$p \lor (p \land q)$	p	Absorption Laws
$p \land (p \lor q)$	p	
р v ¬р	Τ	Negation Laws
$p \land p$	F	

1.3.2 Logical Equivelences Involving Conditional Statements

$p \rightarrow q$	$\neg p \lor q$
$p \rightarrow q$	$\neg \mathbf{q} \to p$
$p \lor q$	$\neg \mathbf{p} \to q$
$p \land q$	$\neg(\mathbf{p} \to q)$
$\neg(p \to q)$	$p \land q$
$\overline{(p \to q) \land (p \to r)}$	$p \to (q \land r)$
$(p \to r) \land (q \to r)$	$(p \lor q) \to r$
$\overline{(p \to q) \lor (p \to r)}$	$p \to (q \lor r)$
$(p \to r) \lor (q \to r)$	$(p \land q) \to r$

1.3.3 Logical Equivalences Involving Biconditional Statements

$p \leftrightarrow q$	$(p \to q) \land (q \to p)$
$p \leftrightarrow q$	$\neg p \leftrightarrow q$
$p \leftrightarrow q$	$(p \land q) \lor (p \land q)$
$\neg(\mathbf{p} \leftrightarrow q)$	$p \leftrightarrow q$

1.4 Predicates and Quantifiers

1.4.1 Quantifiers

- Universal Quantifer
 - $\forall (x) P(x)$
 - * Definition: For all x in the universe P(x) is true;
 - * Negation
 - $\neg \forall (x) \ P(x) \ can also be written as \exists \neg P(x)$
 - There exists an x such that P(x) is false
- Existential Quantifer
 - $\ \exists (x) \ P(x)$
 - * Definition: For all x in the universe P(x) is true for at least one x;
 - * Negation
 - $\neg \exists (x) \ P(x) \ can also be written as \forall \neg P(x)$
 - · All x in the universe make P(x) false

1.5 Nested Quantifers

- 1.5.1 Nested Quantifiers can be used when there are multiple variables such as x and y
 - \forall (x) \exists (y) (x + y = 0)
- 1.5.2 Quantification of Two Variables

Statement	When True	When False
$\forall (x) \forall (y) P(x,y)$	P(x,y) is true for every pair	When there is a x,y
		for which $P(x,y)$ is false
$\forall (x) \exists (y) P(x,y)$	For every x there is a y	When there is an x such
	for which $P(x,y)$ is true	that $P(x,y)$ is false for every y
$\exists (x) \forall (y) P(x,y)$	There is an x for which $P(x,y)$	When for every x there is a y
	is true for every y	for which $P(x,y)$ is false
$\exists (x)\exists (y)P(x,y)$	There is a pair for x,y	P(x,y) is false for
$\exists (y) \exists (x) P(x,y)$	for which $P(x,y)$ is true	every pair of x and y

1.6 Rules of Inference

1.6.1 Rules of inference

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rule of Inference	Tautology	Name
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p	$(p \land (p \to q)) \to q$	Modus Ponens
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{p} \to q$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>q</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(\neg q \land (p \to q)) \to p$	Modus Tollens
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p \to q$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$((n \lor a) \land n) \lor a$	Hypothotical
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$((p \lor q) \land p) \to q$	- -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q / 		Dynogiani
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p \to r$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p \lor q$	$p \to (p \lor q)$	Disjunctive
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 (2 1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	q		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	$p \to (p \lor q)$	Addition
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p \land q$	$(p \land q) \to p$	Simplification
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$((n) \wedge (n)) \wedge (n \wedge n)$	Conjunction
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	$((p)\land(q))\to(p\land q)$	Conjunction
$\begin{array}{ccc} \mathbf{p} \vee q & & & & & & & & & \\ \neg \mathbf{p} \vee r & & & & & & & \\ & & & & & & & \\ \hline \end{array}$	Ч 		
$\begin{array}{ccc} \mathbf{p} \vee q & & & & & & & & & \\ \neg \mathbf{p} \vee r & & & & & & & \\ & & & & & & & \\ \hline \end{array}$	$p \land q$		
$\neg p \lor r$		$((p \lor q) \land (p \lor r)) \to (q \lor r)$	Conjucttion
_ 		(1 1)	U
$\operatorname{q}\!\!\vee\!\! r$	_		
-	$\mathbf{q} \vee r$		

1.6.2 Rules of Inference for Quantifies Statements

Rules of Inference	Name
$\forall (x)P(x)$	Universal Instantiation
P(c)	
P(x) for an Arbitrary c	Universal Generalization
	
$\forall (x)P(x)$	
$\exists (x)P(x)$	Existential Instantiation
	
P(c) for some element c	
P(x) for some element c	Existential Generalization
	
$\exists P(x)$	

1.7 Introduction to Proofs

1.7.1 There are 3 main methods for proofs.

- Direct Proof
 - Construct a conditional statement $p \rightarrow q$
 - Assume p to be true
 - Use rules of inference to then show that when p is true q must be true (p true and q false can not happen)
- Proof by Contraposition
 - Construct a conditional statement $p \rightarrow q$
 - Set up the contrapositive to be $\neg q \rightarrow \neg p$
 - Prove that if $\neg q$ is true then $\neg p$ has to be true
- Proof by Contradiction
 - If we want to prove p is true set up the contradiction to be $\neg p \rightarrow q$
 - Because q is false but $\neg p \rightarrow q$ is true we know is false which means p is true
 - You are assuming your premise to be false then attempting to show that the conditional statement is then false

1.8 Proof methods and Strategy

1.8.1 Exhaustive Proof

- Sometimes w cannot prove a theorem using a single argument that holds for all possible cases.
- Proofs by exhaustion use proof by cases for every element and check examples.
- Example
 - Prove that $(n+1)^3 \ge 3^n$ if n is a positive integer ≤ 4
 - To do this test for $n = \{1,2,3,4\}$
 - Since for $n = \{1,2,3,4\}$ 3^n is greater we proved this statement through Proof by Exhaustion
- Proof by Cases
 - A proof by cases must cover all possible cases that arise in a theorem.
 - Example
 - * Prove that if n is an integer than $n^2 \ge n$
 - * We check 3 cases
 - * 1) n = 0; $0^2 = 0$ which follows $n^2 \ge n$
 - * 2) n \geq 1; Multiply both sides of the inequality n \geq 1 by the positive integer n. We get n^2 > n*1 for n \geq 1
 - * 3) $n \le 1$; Since $n^2 \ge 0$ it follows $n^2 \ge n$
- Leveraging Proof by Cases
- Existence Proofs
- Proof Stratagies
 - Forward and Backward Reasoning
 - Adapting Existing Proofs
 - Looking for Counterexamples

2 Chapter 2

2.1 Sets

2.1.1 Definition

- A set is an unordered collection of objects. $a \in A$
- Set builder notation
 - Set builder notation is used to describe a set.
 - $O = \{x \mid x \text{ is a positive integer less than } 10\}$
 - $\ O = \{x \mid x < 10 \, \land \, 2x{+}1 \in Z{+} \ \}$

2.1.2 Number sets

- N = $\{0,1,2,...,\}$ Set of Natural Numbers
- $Z+=\{1,2,3,\ldots,\}$ Set of Positive Integers
- R = Set of Real Numbers
- R+ = Set of positive Real Numbers
- C = Set of complex numbers

2.1.3 Interval Notation

[a,b]	$\{\mathbf{a} \le x \le b\}$
[a,b)	$\{a \le x\}b\}$
$\overline{(a,b]}$	$\{a \mid x \leq b\}$
$\overline{(a,b)}$	{a x b}

2.1.4 Empty Set

- Denoted by Ø
- All sets contain the empty set although it does not count as a element when measuring cardinality

2.1.5 Subsets

The set A is a subset of B iff every element of A is also in B. Denoted by A
 ⊂ B

2.1.6 Proper Subset

• The set A is a subset of B iff every element of A is also in B but $A \neq B$. Denoted by $A \subset B$

2.1.7 Set Cardinality

- If S is a set the cardinality of the set denoted by |S| is the number of UNIQUE elements.
 - Example $S = \{1,2,3,3,4,4,5\} |S| = 5$

2.1.8 Power Sets

- Definition: Given the set S the power set of S i the set of all subsets of the set S. The powerset of S is denoted by P(S)
 - Example: What is the powerset of $\{0,1,2\}$
 - $P(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}, \}$

2.1.9 Cartesian Product

- Definition: The ordered n-tuple (a1,a2..an) is the ordered collection that has a1 as its first element, a2 as its second..and an as its nth element.
- $A \times B = \{(a,b) \mid a \in A \land b \in B\}$
- Example: What is the cartesian Product of $A = \{1,2\}$ $B = \{a,b,c\}$
 - $-A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
 - $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$
- \bullet Example: What is the cartesian Product of A = {0,1} B = {1,2} C = {0,1,2}
 - $-A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$

2.1.10 Truth Set

- The truth set for a predicate P, and domain D the truth set of P is $\{x \in D \mid P(x)\}$
- Another way to phrase this is the Truth set is the set that makes a predicate true in the domain.

2.2 Set Operations

2.2.1 Union

- If A and B are sets the union of the sets A and B, denoted by $A \cup B$ is the set that contains elements in either or both A and B
- $A \cup B = \{x \mid x \in A \lor x \in B\}$

2.2.2 Intersection

- If A and B are sets, the intersection of the sets A and B, denoted by A ∩ B, is the set containing elements in both A and B
- $A \cap B = \{x \mid x \in A \land x \in B\}.$

2.2.3 Disjoint

• Two sets are considered disjoint if they have no intersection or their intersection set is empty

2.2.4 Difference

- If A and B are sets, the difference of A and B denoted by A B is the set elements in A that are not in B
- A B = $\{x \mid x \in A \land x \notin B\}$

2.2.5 Complement

- If U is the universal set, the complement of the set A denoted by A(bar) is the set of U A or all the elements in the universe not in A
- $A(bar) = \{x \in U \mid x \notin A\}$

2.2.6 Set Identities

$\overline{p \wedge U}$	A	Identity Laws
$p\lor\emptyset$	A	
$A \lor T$	U	Domination Laws
$A \wedge F$	Ø	
$\overline{A \lor A}$	A	Idempotent Laws
$A \wedge A$	A	
$\overline{(A(bar)bar)}$	A	Double Negation Laws
$A \lor B$	$B \vee A$	Commutative Laws
$A \wedge B$	$B \wedge A$	
$\overline{(A \lor B) \lor C}$	$p \lor (B \lor C)$	Associative Laws
$(A \wedge B) \wedge C$	$A \wedge (B \wedge C)$	
$p \lor (B \land C)$	$(p \lor B) \land (p \lor C)$	Distributive Laws
$A \land (B \lor C)$	$(p \land B) \lor (A \land C)$	
$\neg(p \land B)$	$\neg p \lor B$	De Morgans Laws
$\neg(Av B)$	$\neg p \land B$	
$A \lor (p \land B)$	A	Absorption Laws
$A \land (p \lor B)$	A	
A V A(bar)	U	Complement Laws
A & A(bar)	Empty Set	

2.3 Functions

2.3.1 Functions

- Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A
- This also means that every element of A gets mapped to at exactly one set of B
- Everything in set A gets mapped to an element of set B
- (f1+f2)(x) = f1(x) + f2(x)

2.3.2 Image

• If f is a function that maps A to B, elements of B are called the image and the elements of A are called the preimage.

2.3.3 One to One (Injective)

• If f is a function that maps A to B, each $a \in A$ maps to a unique $b \in B$

2.3.4 Onto

• If f is a function that maps A to B, the function is onto if all elements of the codomain are mapped to from values of A

2.3.5 One to one correspondence

• If f is a function that maps A to b, it has one to one correspondance if it is both one to one and onto

2.3.6 Inverse Functions

• If a function f has a one to one correspondance it has an inverse function f-1 that maps the codomain to the domain.b

2.3.7 Composition

- $(f \circ f-1)(x) = x$
- $(f \circ g)(x) = f(g(x))$
- (f + g)(x) = f(x) + g(x)
- (f * g)(x) = f(x) * g(x)

2.4 Sequences and Summations

2.4.1 Definition: Sequence is a function from a subset of the set of integers to a set S. They're also an ordered set.

2.4.2 Example:

• $\{1,2,3,4,5,6,\ldots,\}$

2.4.3 Geometric Sequence

- a, ar, ar^2, \dots, ar^n
- Where a is the inital term and r is a ration

2.4.4 Arithmetic Progression

- a, a+d, a+2d, ..., a+nd
- Where a is the initial term and d is the common difference

2.4.5 Recurrence Relations

- A reccurence relation for the sequence {an} is an equation that expresses an in terms of one or more of the previous terms.
- Example:
 - -a0 = 0;
 - -a1 = a(n-1)+1
- 2.4.6 We say that we have solved a recurrence relation together with the initial condition when we find a formula. We call this the closed formula.
 - Example:
 - DO THIS

2.4.7 Summations

$\sum (k=0 \to n)ar^k$	$ar^{(n+1)} - a/(r-1)r \neq 1$
$\sum (k=1 \to n)k$	m n(n+1)/2
$\sum (k=1 \to n)k^2$	n(n+1)(2n+1)/6
$\sum (k=1 \to n)k^3$	$n^2(n+1)^2/4$
$\sum (k = 0 \to \inf) x^k abs(x) \le 1$	1/(1-x)
$\sum (k = 0 \to \inf) kx^{(k-1)} abs(x) \le 1$	$1/(1-x)^2$

2.5 Cardinality of Sets

2.5.1 Definition: The sets A and B have the same cardinality iff there is a one to one correspondance from A to B, we write $|\mathbf{A}| = |\mathbf{B}|$

2.5.2 Countability

• A set that is either finite or has the same cardinality as the set of positive integers is called countable..

• If A and B are both countable sets then A \cup B is also countable.