Translating Embeddings for Modeling Multi-relational Data

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran (2013)

2021 DSAIL Winter Internship

2022.01.18. Daeyoung Kim

Index

- Background
- Introduction
- Model
- Experiments
- Conclusions
- Further Discussion

In previous papers...

Machine Learning

Feature learning

Label classification

Applied machine learning for **homogeneous** graphs (ex. DeepWalk, Node2Vec)

Q. How to handle heterogeneous graphs?

Heterogeneous graph

$$G = (V, E, R, T)$$

Nodes(*V*) can have **various** types(*T*)

Edges(E) can have types

Relations(R) are defined

Knowledge graph: example of heterogeneous graph

Knowledge graph

Knowledge Base(KB): 지적 활동, 지식, 사실, 규칙 등이 저장되어 있는 데이터 베이스 개체(entity)와 개체 간의 관계(relationship)으로 구성 family

Knowledge Graph(KG): 정보와 지식들을 상호 연결한 그래프

- 그래프의 node와 edge가 각각 entity와 relationship에 대응
- 다양한 정보들의 관계를 나타낼 수 있음

주로 link prediction에 대한 연구 진행

dad

son

Knowledge graph

지식 그래프의 node와 edge가 많으므로, 저차원 공간에 임베딩 -> 쉽게 표현, 학습

지식 그래프의 local, global 연결 패턴을 학습해서 node와 node 사이의 missing link를 예측

각각의 entity에 대해 relation이 주어지면 **정답**에 해당하는 entity와 연결하는 방식을 이용

Abstract

- Problem
 Embedding entities, relationships of multi-relational data in low-dimensional V.S.
- Define relationships as translations operating on the low-dimensional embeddings of the entities
- Easy to train, reduced number of parameters, high scalability

Multi-relational data

In **Directed graph**, node as entity, edge as relationship

Composed of (head, label, tail)

Used in social network analysis, recommender systems

Goal: automatically adding new facts without extra knowledge

Modeling multi-relational data

Extract connectivity patterns between entities,

Locality may involve relationships and entities of **different** types at the **same time** -> requires more **generic** approaches

Most existing methods were based on latent representations of constituents But higher cost / overfitting / underfitting problem exists.

Simpler, linear model provide better trade-offs between accuracy and scalability

Relationships as translations

In TransE,

relationships: translations in the embedding space

When (h, l, t) holds, t is close to h + l $(h, l, t \in \mathbb{R}^d)$

Social Network

Embedding Space

Motivations

Why use **translations**?

naturally represent hierarchical relationships(extremely common in KBs)
 ex) parent-child relationship, sibling relationship

represents 1-to-1 relationships between entities of <u>different</u> types

Definition

Algor	rithm 1 Learning TransE
input	Training set $S = \{(h, \ell, t)\}$, entities and rel. sets E and L , margin γ , embeddings dim. k .
	nitialize $\ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each $\ell \in L$
2:	$\ell \leftarrow \ell / \ \ell\ $ for each $\ell \in L$
3:	$e \leftarrow uniform(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each entity $e \in E$
4: lc	оор
5:	$\mathbf{e} \leftarrow \mathbf{e} / \ \mathbf{e}\ $ for each entity $e \in E$
6:	$S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b$
7:	$T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets
8:	for $(h, \ell, t) \in S_{batch}$ do
9:	$(h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) \text{ // sample a corrupted triplet}$
10:	$T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}$
11:	end for
12:	Update embeddings w.r.t. $\sum \nabla \left[\gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}$
	$((h,\ell,t),(h',\ell,t')) \in T_{batch}$
13: e	nd loop

Input	설명
$S = \{(h, l, t)\}$	set of triplets: (head, relation, tail)
$S' = \{(h', l, t')\}$	Corrupted triplets
E	set of entities
L	set of relationships
T	pairs of triplets
k	dimension of embedding space
γ	margin (smallest distance tolerated by model between valid, corrupted triplets)

Idea

When (h, l, t) holds, t is the nearest neighbor of $h + l (h + l \approx t)$ d(h + l, t): dissimilarity of triplet

Notations h: Mona Lisa l: painted by h+l: t: Da Vinci d(h+l,t): distance (———)

Characteristics

✓ Inverse relation holds

✓ Composition relations

$$(h, l_1, m), (m, l_2, t) \rightarrow (h, l, t) \forall h, l, t (l = l_1 + l_2)$$

Ex) My mother's husband is my father.

Idea

Loss function:
$$\mathcal{L} = \sum_{(h,\ell,t) \in S} \sum_{(h',\ell,t') \in S'_{(h,\ell,t)}} \left[\gamma + d(h+\ell,t) - d(h'+\ell,t') \right]_{+}$$

Well-defined: lower values of energy for training triplets than corrupted ones

Corrupted triplets:

Replace either head or tail with random entity

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}.$$

Use L_2 normalization for entity embeddings

Algorithm

Algorithm 1 Learning TransE input Training set $S = \{(h, \ell, t)\}$, entities and rel. sets E and L, margin γ , embeddings dim. k. 1: **initialize** $\ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each $\ell \in L$ $\ell \leftarrow \ell / \|\ell\|$ for each $\ell \in L$ $\mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{L}}, \frac{6}{\sqrt{L}})$ for each entity $e \in E$ 3: 4: loop $\mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\|$ for each entity $e \in E$ $S_{batch} \leftarrow \text{sample}(S, b) \text{ // sample a minibatch of size } b$ $T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets for $(h, \ell, t) \in S_{batch}$ do $(h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) // \text{ sample a corrupted triplet}$ $T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}$ 10: 11: end for $\nabla \left[\gamma + d(\mathbf{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]$ Update embeddings w.r.t $((h,\ell,t),(h',\ell,t')) \in T_{batch}$ 13: end loop

Procedures

Initialize E, *L* normalize relationships

Loop

- 1. Normalize entities
- 2. Create samples(S_{batch}), initialize T_{batch}
- 3. Create unseen samples(S'_{batch}), assign both into T_{batch}
- 4. Update embeddings using SGD

Lower distance for valid triplets
Higher distance for corrupted triplets

Dataset

Wordnet(**WN**): KB composed of senses

Entities: word senses, relationships: lexical relations

Freebase(FB): huge, growing KB of general facts

FB15K: small data set

FB1M: large-scale data to test TransE

DATA SET	WN	FB15K	FB1M
ENTITIES	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10^{6}
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

Experiment setup

Implementation

- learning rate(λ): {0.001, 0.01, 0.1}
- margin(γ): {1, 2, 10}
- latent dimension(*k*): {20, 50}
- dissimilarity measure(d): {L₁, L₂}
- training time: limited to 1000 epochs

Optimal configurations

- $WN: \{0.01, 2, 20, L_1\}$
- FB15K: {0.01, 1, 50, L_1 }
- $FB1M: \{0.01, 1, 50, L_2\}$

Experiment setup

Ranking Method

- 1. For each test triplet, eliminate head, replace by each of the entities of dictionary
- 2. compute dissimilarity of corrupted triplets, sort by ascending order
- 3. Repeat 1, 2 while removing the tail instead of the head
- Use mean rank, hits@10 as metrics

mean rank: mean of predicted ranks

hits@10: proportion of correct entities ranked in the top 10

Use *filtered rank* as metric

filtered rank: eliminate corrupted triples in dataset, calculate rank

Experiment setup

Baselines

- Unstructured: another version of TransE (mono-relational data, translations=0)
- RESCAL: collective MF model
- SE, SME(linear, bilinear), LFM: energy-based

METHOD	NB. OF PARAMETERS	ON FB15K
Unstructured [2]	$O(n_e k)$	0.75
RESCAL [11]	$O(n_e k + n_r k^2)$	87.80
SE [3]	$O(n_e k + 2n_r k^2)$	7.47
SME(LINEAR) [2]	$O(n_e k + n_r k + 4k^2)$	0.82
SME(BILINEAR) [2]	$O(n_e k + n_r k + 2k^3)$	1.06
LFM [6]	$O(n_e k + n_r k + 10k^2)$	0.84
TransE	$O(n_e k + n_r k)$	0.81

Link prediction

Table 3: Link prediction results. Test performance of the different methods.

DATASET WN		N		FB15K				FB1M		
METRIC	MEAN RANK		HITS@10(%)		MEAN RANK		HITS@10(%)		MEAN RANK	HITS@10 (%)
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	-	-
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	-	-
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	-	-
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1		
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0

appropriate design + simplicity + translation term-> high performance

Link prediction

Baseline Analysis

SE: more expressive, but higher complexity

SME: insufficient learning to exploit full capability

LFM: insufficient learning + originally designed to predict relationships

Unstructured: cluster co-occurring entities independent of relationships

Link prediction

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK		Predic	TING head		PREDICTING tail			
REL. CATEGORY	1-TO-1	1-то-М.	MTO-1	Мто-М.	1-TO-1	1-то-М.	Мто-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

Categorize relationships into 4 classes: 1-1, 1-M, M-1, M-M'

Highest performance at 1-to-1

Link prediction

Head와 label이 주어질 때 top predicted tails 표시

True tail, other true tails appear commonly

(predictions reflect common-sense)

INPUT (HEAD AND LABEL)	PREDICTED TAILS			
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander, Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming			
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth, Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake			
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County, Essex County, New Jersey, Passaic County, Ocean County, Bucks County			
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance, BFCA Critics' Choice Award for Best Comedy, MTV Movie Award for Best On-Screen Duo, MTV Movie Award for Best Breakthrough Performance, MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss, D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures, Screen Actors Guild Award for Best Actor - Motion Picture			
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers, Pitchers, Infielder, Outfielder, Center, Defenseman			
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis, Toronto, New York City, Wellington, Dallas, Puerto Rico			
WALL-E has the genre	Animations, Computer Animation, Comedy film, Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama			

Relationship prediction

Setup

- Test how well methods could generalize to new facts
- Use FB15k dataset
- Randomly select 40 relationships, then split data into 2 sets
- FB15k-40rel: containing all triplets these with 40 relationships
 training: 40000(1000 for each relationship)
- FB15k-rest: containing the rest

Phases

- Train, select models using *rest* train, validation set
- 2. Train by *rel* train set for learn parameters related to 40 relationships
- 3. Evaluate by *rel* test set

Repeat using 0, 10, 100, 1000 examples of each relationships in 2

Relationship prediction

TransE: fastest learning model

simplicity: generalize well without modify already trained embeddings

Conclusions

- ✓ TransE: new approach to learn embeddings of KBs
- ✓ Focus on minimal parametrization to represent hierarchical relationships
- ✓ Highly scalable model
- ✓ Remains unclear if all relationship types can be modeled adequately.

Further Discussion

Limitations

✓ Non-symmetric

- ✓ Not suitable for represent n-ary relations
 - Ex) (Da Vinci, paint, Mona Lisa), (Da Vinci, paint, The Last Supper)

Embeddings are equal, but locations of tails are different!

-> Wrong!

Further Discussion

Codes

Reproduction of experiment results

Experiment: link prediction

Dataset: FB15k

Set epochs = 100, other conditions are same

(computational cost problem)

Results

Experiment	MeanRank (Raw)	MeanRank (Filter)	Hits@10 (Raw)	Hits@10 (Filter)
paper	243	125	34.9	47.1
implementation	299.884	159.487	37.5	52.9

Further Discussion

Implementations

Dataset

NATION: relations between countries

UMLS: biomedical ontology set

Set k=5, using L1-normalization 100 epochs for NATION, 1000 epochs for UMLS

Results

Experiment	MeanRank (Raw)	MeanRank (Filter)	Hits@10 (Raw)	Hits@10 (Filter)
NATION	5.025	2.812	77.5	94.8
UMLS	29.641	23.031	47.3	60.1

THANK YOU