Introduction to Machine Learning

Evaluation: Multi-Class AUC

Υ	$\hat{\pi}_1$	$\hat{\pi}_2$	â.
		7.2	$\hat{\pi}_3$
1	0.7	0.2	0.1
1	0.5	0.3	0.2
2	0.3	0.5	0.2
2	0.4	0.5	0.1
3	0.6	0.1	0.3
3	0.1	0.1	0.8
	_	1 0.5 2 0.3 2 0.4 3 0.6	1 0.5 0.3 2 0.3 0.5 2 0.4 0.5 3 0.6 0.1

Learning goals

- Understand that generalizing AUC to multi-class is not trivial
- Learn how multi-class AUC can be derived

- AUC and other ROC metrics for binary classification
- Different ways to estimate multi-class AUC
- Often based on aggregated binary AUCs:
 e.g. 1-vs-1 or 1-vs-rest

Example: 1-vs-1 on iris

- Def AUC($k \mid \ell$) for classes k (pos) and ℓ (neg)
- Compute AUC: Subset preds to rows of true k and ℓ , use $\hat{\pi}_k$
- Interprete: Prob that random member of ℓ has a lower prob to belong to class k than random member of class k.

Example: AUC(3|1) with g = 3 classes

	AUC(pos ne		
	Υ	$\hat{\pi}_1$	$\hat{\pi}_2$	$ \hat{\pi}_3 $
neg	1	0.7	0.2	0.1
neg	1	0.5	0.3	0.2
	0			
	2	0.3	0.5	0.2
	2	0.3	0.5	0.2
pos				0.2

- Subset pred rows to true classes 1 and 3
- 2 Use k=3 as pos and $\ell=1$ as neg class
- **3** Compute standard AUC with $\hat{\pi}_3$ as scores
- **4** AUC(3|1) = 1: all pos have higher $\hat{\pi}_3$ than negs

- For binary classes: always AUC(1|0) = AUC(0|1)
- For multi-class usually: $AUC(k \mid \ell) \neq AUC(\ell \mid k)$
- **Example** with g = 3 where $AUC(1|3) \neq AUC(3|1)$:
 - AUC(3|1) = 1 (RHS) as before

ALIC(noclinea) = ALIC(113)

• AUC(1|3) \neq 1 (LHS)

	AUC(hosliiei		
	Υ	$\hat{\pi}_1$	$\hat{\pi}_2$	$\hat{\pi}_3$
pos	1	0.7	0.2	0.1
pos	1	0.5	0.3	0.2
	2	0.3	0.5	0.2
	2	0.4	0.5	0.1
neg	3	0.6	0.1	0.3
neg	3	0.1	0.1	0.8

	AUC(pos ne	g) = AU	
	Υ	$\hat{\pi}_1$	$\hat{\pi}_2$	$\hat{\pi}_3$
neg	1	0.7	0.2	0.1
neg	1	0.5	0.3	0.2
	2	0.3	0.5	0.2
	_	0.0	0.0	0.2
	2	0.4	0.5	0.2
pos				0.1

Hand and Till (2001) proposed to avg AUC via 1-vs-1:

• For all class pairs, compute AUC($k \mid \ell$).

$$\mathsf{AUC}_{\mathit{MC}} = rac{1}{g(g-1)} \sum_{k
eq \ell} \mathsf{AUC}(k|\ell) \in [0,1].$$

Comments:

- Other defs use **1-vs-rest** and need to avg only *g* AUC values
- 1-vs-rest creates imbal classes even if orig classes are balanced
- Imbalanced classes can be considered by weighting individual AUC values with class priors [Ferri et al. (2003)]