Prueba de Oposición Área de Ciencia de Datos

Pedro Ortiz

Departamento de Computación, FCEyN, UBA

09 de octubre de 2023

Introducción

- Ejercicio de Introducción a la Investigación Operativa y Optimización.
- Mapa de la materia:
 - Modelado y complejidad
 - Simplex
 - Dualidad y Branch and Bound
 - Grafos
 - Optimización no lineal
- Tema del ejercicio: Dualidad.

Contexto

- Al momento de presentación del ejercicio:
 - Fueron presentados teoremas relacionando el problema Primal con el problema Dual, las cotas que marcan para sus funciones objetivo, y la correspondencia entre soluciones factibles y óptimas de ambos.
 - Los alumnos realizaron ejercicios sencillos del planteo del problema Dual a partir del Primal.

Contexto

- Al momento de presentación del ejercicio:
 - Fueron presentados teoremas relacionando el problema Primal con el problema Dual, las cotas que marcan para sus funciones objetivo, y la correspondencia entre soluciones factibles y óptimas de ambos.
 - Los alumnos realizaron ejercicios sencillos del planteo del problema Dual a partir del Primal.
- Se busca que los estudiantes:
 - relacionen conceptos claves de la materia como problema primal y dual, solución factible y solución óptima.
 - apliquen los teoremas aprendidos y estudiados en la parte teórica de la materia.
 - ejerciten las formulaciones de los problemas, y el pasaje entre problemas primales y duales.

Enunciado

Para el siguiente modelo, decidir si x^* es una solución óptima utilizando el problema dual.

$$x^* = (0,0,8,3)$$
max:
$$3x_1 + 2x_2 - x_3 + 3x_4$$
sa:
$$x_1 + 2x_2 - x_3 + 2x_4 \le -2$$

$$3x_1 - x_2 + x_3 - x_4 \le 5$$

$$-2x_1 + x_2 - 3x_3 + 3x_4 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pasaje al Dual

Recordemos como es el pasaje al problema dual :

Primal	Dual
Objetivo: Maximizar	Objetivo: Minimizar
<i>i</i> -ésima restricción ≤	i -ésima variable ≥ 0
<i>i</i> -ésima restricción ≥	<i>i</i> -ésima variable ≤ 0
<i>i-</i> ésima restricción =	<i>i</i> -ésima variable libre
j -ésima variable ≥ 0	<i>j</i> -ésima restricción ≥
j -ésima variable ≤ 0	<i>j</i> -ésima restricción ≤
<i>j</i> -ésima variable libre	<i>j</i> -ésima restricción =

Teorema de Holgura Complementaria

Sean x_1^*, \ldots, x_n^* una solución factible del primal y y_1^*, \ldots, y_m^* una solución factible del dual. Las siguientes son condiciones necesarias y suficientes para la optimalidad simultánea de x^* e y^* :

$$\sum_{i=1}^m \mathsf{a}_{ij} y_i^* = c_j \; \mathsf{o} \; x_j^* = 0 \; \mathsf{(o \; ambas)} \quad orall j = 1, \dots, n$$

$$\sum_{i=1}^n a_{ij} x_j^* = b_i$$
 o $y_i^* = 0$ (o ambas) $\forall i = 1, \dots, m$

Teorema de Holgura Complementaria, versión 2

Una solución factible x_1^*, \ldots, x_n^* del primal es óptima si y sólo si existen números y_1^*, \ldots, y_m^* tal que:

$$\begin{cases} \sum_{i=1}^m a_{ij} y_i^* = c_j \text{ cuando } x_j^* > 0, \\ y_i^* = 0 \text{ cuando } \sum_{j=1}^n a_{ij} x_j^* < b_i \end{cases}$$

y tal que:

$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_i^* \ge c_j & \forall j = 1, \dots, n, \\ y_i^* \ge 0 & \forall i = 1, \dots, m \end{cases}$$

Teorema Fundamental de Dualidad

Si el problema primal tiene solución óptima (x_1^*, \ldots, x_n^*) , entonces su dual tiene solución óptima (y_1^*, \ldots, y_m^*) tal que:

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Enseñanzas y observaciones

- Con el ejercicio mostrado se logró:
 - consolidar la formulación del problema Dual
 - poner en práctica el Teorema de Holgura Complementaria
 - utilizar el Teorema Fundamental de Dualidad para comprobar nuestra solución
- Se deja como ejercicio decidir si x* es una solución óptima utilizando el problema dual, en el siguiente caso:

$$x^* = (0, 2, 0, 7, 0)$$
max
$$8x_1 - 9x_2 + 12x_3 + 4x_4 + 11x_5$$
s.a.
$$2x_1 - 3x_2 + 4x_3 + x_4 + 3x_5 \le 1$$

$$x_1 + 7x_2 + 3x_3 - 2x_4 + x_5 \le 1$$

$$5x_1 + 4x_2 - 6x_3 + 2x_4 + 3x_5 \le 22$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Eso es todo

Muchas gracias por su atención.

¿Preguntas?