What Is Claimed Is:

1	 An XDSL system comprising:
2	a hybrid circuit in operative communication with a
3	transmission line and an XDSL modem associated with a subscriber
4	premises, said hybrid circuit comprising a plurality of selectable impedance
5	circuits; and
6	a switch for connecting each of said plurality of selectable
7	impedance circuits in-line with said XDSL modem and said transmission
8	line in response to a control signal.
1	The XDSL system of claim 1 further comprising a
2	controller for producing said control signal as a function of a performance
3	characteristic associated with each of said impedance circuits.
1	3. The XDSL system of claim 1 wherein the plurality of
2	selectable impedance circuits equals four.
1	4. The XDSL system of claim 1 wherein one of said
2	plurality of impedance circuits has an impedance value equal to a
3	characteristic line impedance of said transmission line without a bridged
4	tap.

- 5. The XDSL system of claim 4 wherein one of said
 plurality of impedance circuits has an impedance value equal to a
 characteristic line impedance with a bridged tap.
- 1 6. The XDSL system of claim 2 wherein said performance
 2 characteristic is a data transmission rate and said control signal
 3 corresponds to the respective impedance circuit associated with the highest

1

2

1

2

1

2

3

4 data transmission rate value.

1	A method of configuring an XDSL system comprising:
2	providing a hybrid circuit in-line with a transmission line and
3	an XDSL modem associated with a subscriber premises, said hybrid circuit
4	comprising a plurality of selectable impedance circuits; and
5	engaging one of said plurality of selectable impedance
6	circuits in-line with said transmission line and said XDSL modem in
7	response to a control signal.

- The method of claim 7 wherein the step of engaging includes the step of engaging seriatimly each of said plurality of impedance circuits in-line with said transmission line and said XDSL modem.
- 9. The method of claim 8 further comprising the step of determining a performance characteristic of said XDSL system for each of said plurality of impedance circuits when engaged, and outputting said control signal as a function of each of said performance characteristics.
- 10. The method of claim 9 wherein said performance characteristic is a data transmission rate and said control signal corresponds to the respective impedance circuit associated with the highest data rate
- 1 11. The method of claim 9 wherein said performance
 2 characteristic is a data transmission rate and said control signal
 3 corresponds to a first respective impedance circuit associated with a data
 4 rate greater than a selected rate.

1	12. The method of claim 9 wherein the step of outputting
2	includes the step of comparing each of said performance characteristics
3	associated with each respective impedance circuit.
1	The method of claim 7 wherein one of said plurality of
2	impedance values is equal to a characteristic line impedance of said
3	transmission line without a bridged tap.
1	14. The method of claim 13 wherein one of said plurality
2	of impedance values is equal to a characteristic line impedance with a
3	bridged tap.
1	15. An XDSL system comprising:
2	a hybrid circuit in operative communication with a
3	transmission line and an XDSL modem associated with a subscriber
4	premises, said hybrid circuit comprising a plurality of selectable impedance
5	circuits;
6	a switch for connecting each of said plurality of selectable
7	impedance circuits in-line with said XDSL modem and said transmission
8	line in response to a control signal; and
9	a controller programmed to determine a performance
10	characteristic associated with each of said plurality of selectable impedance
11	circuits when connected, and output said control signal as a function of
12	said performance characteristics associated with each of said impedance
13	circuits.

 $1 \hspace{1cm} \hbox{ 16. } \hspace{1cm} \hbox{The XDSL system of claim 15 wherein the number of} \\ 2 \hspace{1cm} \hbox{impedance circuits is four.}$

- 1 17. The XDSL system of claim 15 wherein said performance characteristic is a transmission data rate.
- 1 18. The XDSL system of claim 15 wherein said 2 performance characteristic is a transmission line attenuation.
- 1 19. The XDSL system of claim 15 wherein said 2 performance characteristic is a noise margin.
- 20. The XDSL system of claim 15 wherein one of the
 plurality of impedance circuits comprises a 460 ohm resistor in parallel
 with a 1200 ohm resistor and 520 pF capacitor.