POLS201 Spring 2019

POLS201 Spring 2019

More About Dummy Variables and Jacobson Paper

Agenda

- Go into Moodle and let me know your preferred meet time
- Live import of a .csv into R (The 1998 Field CA Survey)
- Using dummy variables for categorical and ordinal IV's
- The Jacobson paper: summary and a breakout session
- Some risks of using regressions
 - Not typically relevant for your paper, but note for the final

Quick demo of importing R data

- Let's import 1998 data and look at these two variables
- V128: Respondent's Age and V131: Strength of liberal or conservative belief
- V131:
 - 1 'STRONG CONSERVATIVE'
 - 2 'NOT VERY STRONG CONSERVATIVE'
 - 3 'NOT VERY STRONG LIBERAL'
 - 4 'STRONG LIBERAL'
 - 8 'DON''T KNOW'
 - 9 'NOT APPLICABLE (NOT''CONSERVATIVE''OR''LIBERAL''ON Q103A)'
- Remember: select() chooses variables and filter() chooses observations

So How Good is your Regression?

- No one cares about predicting the past
 - An overly perfect model using past data is useless
- Worry if your predictions miss, a lot, and not randomly
- Have you thought of all the confounders?
- Linear regression is most appropriate for continuous variables. What if the DV isn't continuous?

Linearity

- Pitfalls of fitting lines to non-linear relationships
 - Your estimates might be insignificant, even though there is indeed a relationship between your variables
- You fail to adequately control for what you want to control for.

POLS201 Spring 2019

Linearity

POLS201 Spring 2019

Linearity

Linearity

- A function is linear if the coefficient is constant
 - Which means: it looks like a straight line
- Solution: Transform your variables.
- If you think a variable has an exponential effect on your DV, you can square it!
- In economics, variables are frequently converted to a logarithm to represent diminishing returns
- For categorical or ordinal variables? Dummy it out!

What is problematic here?

POLS201 Spring 2019

What's problematic?

0=word of man

I = inspired

2=word of god

The problem? We assume linearity

POLS201 Spring 2019

Recall our DV is church attendance

Linear Regression assumes the the marginal effect of moving from 0 to 1 is identical to the marginal effect of moving form 1 to 2. This is not necessarily the case in ordinal data where the distance between numbers is meaningless.

0=word of man

I= inspired

2=word of god

The solution? Use dummy variables!

POLS201 Spring 2019

■ Sometimes called "indicator" variables

- 1 Choose a Baseline category. For example make "0" the baseline.
- 2. Find the effect of being "1" relative to "0"
- 3. Find the effect of being "2" relative to "0"

0=word of man

I = inspired

2=word of god

How to use dummy variables

POLS201 Spring 2019

 We can use dummy variables to capture marginal effects of variables with multiple categories

Attendance	Bible Code	Bible	DI	D2
4	1	Divine Inspired	Divine Inspired 1	
3	1	Divine Inspired	1	0
4	2	Word of God	0	1
4	2	Word of God	0	1
4	1	Divine Inspired	1	0
0	0	Word of Man	0	0
2	1	Divine Inspired	1	0
1	0	Word of Man	0	0
4	2	Word of God	0	1
3	2	Word of God	0	1
4	1	Divine Inspired	1	0
1	0	Word of Man 0		0
0	0	Word of Man	0	0

Dummy Variables

- In a regression, both dummy variables MUST be interpreted relative to an **omitted** category.
- If there are no other variables in the regression, the intercept can be interpreted as the expected outcome for that omitted group.
- If there are other variables, compare predicted values!

Dummy Variables

- We create dummy variables (or, if we're good at R, use "factor" variables)
- Each coefficient compares the mean for that group vs. mean of excluded category

```
Call:
lm(formula = Attendance \sim `Bible Code`, data = x1, x = TRUE)
Residuals:
  Min
          10 Median 30 Max
 -1.40 -0.50 0.25
                     0.50 0.60
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5000 0.3518 1.421 0.185645
Bible Code`1 2.9000 0.4720 6.145 0.000109 ***
Bible Code`2 3.2500 0.4975 6.533 6.62e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7036 on 10 degrees of freedom
Multiple R-squared: 0.8407, Adjusted R-squared: 0.8089
F-statistic: 26.39 on 2 and 10 DF, p-value: 0.0001025
```

Dummy Variables: Always Exclude One Variable

POLS201 Spring 2019

- You must ALWAYS exclude one category
- Example: If you had a dummy variable for male and a dummy variable for female, they are just mirrors of each other. One must drop!
- The choice about which to drop is arbitrary; customary to choose the most frequent or smallest value

Remember, you are determining the marginal effect relative to the baseline. This means that if your variable of interest takes on 3 values, you can only estimate 2 relative marginal effects

Jacobson Paper Breakout Session

- Theory?
- Hypothesis?
- Unit of Analysis?

TABLE 3

OLS Regression Estimates of the Effects of AFL-CIO Targeting on the Vote for Republican House Incumbents

Independent Variables	Freshmen Republicans	Senior Republicans
Intercept	25.27	49.77***
•	(25.06)	(8.17)
Republican incumbent's vote in 1994 (two-party %)	.34*	.37***
	(.13)	(.06)
Bob Dole's district vote in 1996 (two-party %)	.33***	.21***
	(.09)	(.04)
Challenger has held elective public office	83	-1.85*
	(1.11)	(.81)
Natural log of spending by and on behalf of challenger	-2.16***	-2.12***
	(.61)	(.26)
Natural log of spending by and on behalf of incumbent	1.86	.16
	(1.64)	(.62)
AFL-CIO target	-4.12**	67
	(1.45)	(.93)
AFL-CIO target—video	-4.27**	.22
-	(1.62)	(1.94)
Adjusted R ²	.72	.80
Number of cases	69	103

Note: The dependent variable is the percentage of the two-party vote won by the Republican incumbent; candidates are assumed to have spent at least \$5,000 (spending below this total need not be reported); standard errors are in parentheses.

^{*}p < .05 (two-tailed test)

^{**}p < .01 (two-tailed test)

^{***}p < .001 (two-tailed test)

POLS201 Spring 2019

Fake Data

Name	Status	Rep. 94 Vote Share	Dole 96 Vote Share	Challenger Quality	Challenger Spending	Incumbent Spending	AFL-CIO target	AFL-CIO Video
Smith	Freshman	53	60	1	\$30	\$40	0	1
Brown	Senior	64	58	0	\$20	\$80	0	0
Wilson	Senior	52	45	ı	\$60	\$120	-	0

TABLE 1

The Fates of House Republicans Targeted by AFL-CIO Advertisements

	Freshmen	Nonfreshmen	Total
Not targeted by AFL-CIO	26	123	149
Losers	0	2	2
Percent losers	0.0%	1.6%	1.3%
Mean vote	62.4%	66.3%	65.6%
Target of at least one advertisement	23	17	40
Losers	5	2	7
Percent losers	21.7%	11.8%	17.5%
Mean vote	52.9%	61.6%	56.4%
Target of voter video guide	21	3	24
Losers	7	2	9
Percent losers	33.3%	66.7%	37.5%
Mean vote	50.9%	51.2%	51.0%

Note: The differences across categories of AFL-ClO targeting for both the percentage of losses and the mean share of the vote are significant at p < .01 or better in all three columns; the vote is measured as the two-party vote in the district; uncontested incumbents are excluded from this calculation.

Model Specification

- Why include previous vote share? Dole vote share? Challenger quality?
- Other things predict candidate vote for example racial composition of district. Why not include those?
- Why does Jacobson run his model separately for first term Congress members?
- Why are there two separate variables for targeting?

Refresh on Omitted Variable Bias

- An omitted variable is correlated with the IV and partly determines the DV
- It distorts the estimate of the IV coefficient
- But Jacobson thinks he has "fixed" that problem. Do you agree?
- In pairs, list potential omitted variables that might fit this definition.

	Targeted?	Observe DV	Treatment	Observe DV	
R <	→ Yes	0	x	0	
	No No	0	~X	0	

The simplicity of Jacobson's model is a virtue

POLS201 Spring 2019

But beware:

Two-Party Vote in Last Election

Lingering issues

- An "Identification" problem: Is there enough variation on the IVs? It would be best if there were untargeted candidates with similar district/incumbent profiles.
- A "linearity assumption" problem: Is accounting for a "linear" effect of our control sufficient?

Basic Problems:

- Regression won't run:
 - If your number of variables is greater than your number of observations
 - If your X variable perfectly predicts your Y variable
- Regression will drop variables if:
 - If your X variable doesn't vary
 - If your X variable is identical or nearly identical to another X variable

The List of Basic Problems (even if the regression does run)

- Too Little Variation
- Outliers
- Too Many or Too Few Observations
- Collinear Variables
- Non-Linear Effects
- Error-Term Issues: Residuals vary in range or systematic

Outliers

- Outliers are data points that take on extreme values (high or low) of either your IV or DV.
- The slope of your line (the marginal effect) can be heavily influenced by outliers.
 - Especially if you don't have a lot of observations

Multicollinearity

- Beware of putting multiple variables that are highly correlated into the same regression.
- Practical effect: Null results or even false results.
 - Increases risk of false negatives
- Don't lard your model with highly correlated IV's

Too many / Too few number of observations

- Too Many Observations (~10,000 plus):
 - Easy to achieve significance
 - But all you have done is explain the data, not the process
 - Machine learning uses large observations much more effectively
- Too Few Observations (~less than 30): -Too hard to achieve significance
- But also remember: you need to work with the data you have, not the data you wish you had :)