Лабораторная работа №7. "Графы"

Студент Ларин Владимир - ИУ7-34Б

Описание условия задачи

Найти все вершины заданного орграфа, недостижимые из заданной его вершины.

Техническое задание

Входные данные:

- 0. Файл для построения графа
 - файл не пустой
 - в начале указано кол-во вершин графа
 - вершины нумеруются последовательно, начиная с единицы
 - ∘ связи между вершины указываются построчно в формате А->в , где А и в номера вершин
- 1. Номер команды целое число в диапазоне от 0 до 15 включительно.
- 2. Командно-зависимые данные:
 - номер вершины, больше нуля, меньше или равен кол-ву вершин в орграфе

Выходные данные:

В зависимости от выбранного действия результатом работы программы могут являться:

- 1. Графическое представление
 - оргафа
 - достижимости той или иной вершины
- 2. Таблицы
 - ∘ смежности
 - достижимости
- 3. Информация о недостижимости вершин

Команды программы

- Перестроить граф из файла
- Показать граф

- Напечатать матрицы смежности и достижимости
- Найти все вершины, недостижимые из заданной вершины

Обращение к программе:

Запускается из терминала при помощи комманды ./bin/app.out filename , где filename - имя файла с данными.

Аварийные ситуации:

- 1. Некорректный ввод номера команды.
 - На входе: число, большее, чем максмальный индекс команды или меньшее, чем минимальный.
 - На выходе: Сообщение об ошибке
- 2. Ошибка открытия файла
 - На входе: отсутствие файла, запрещен доступ
 - На выходе: Сообщение об ошибке
- 3. Некорректный ввод номера вершины
 - На входе: ввод, отличный от указанного в ТЗ
 - На выходе: Сообщение об ошибке

Структуры данных

Матрицы

Для хранения матриц используется следующая структура

```
typedef struct matrix {
   size_t rows; // Кол-во строк
   size_t cols; // Кол-во столбцов
   matrix_type_t **data; // Буффер с данными
} matrix_t;
```

Ориентированный граф

Для хранения орграфа используется следующая структура

```
typedef struct graph {
  size_t num; // Кол-во вершин графа
  matrix_t* adjacency_matrix; // Матрица смежности
  matrix_t* reachability; // Матрица достижимости
} graph_t;
```

Описание основных функций

Матрицы

- matrix_t *init_matrix(size_t rows, size_t cols); СОЗДАНИЕ МАТРИЦЫ
- matrix_t *sum(const matrix_t *l, const matrix_t *r); найти сумму матриц
- matrix_t *mul(const matrix_t *left, const matrix_t *right); найти произведение
 матриц
- matrix_t *copy_matrix(matrix_t *source); копирование матрицы
- void free_matrix(matrix_t *matrix); освобождение матрицы

Граф

- graph_t* create_from_file(FILE* file); создание орграфа из файла
- int generate_reachability_matrix(graph_t* graph); генерация матрицы достижимости для графа
- void free_graph(graph_t* graph); освобождение графа
- int export_dot(FILE* file, graph_t* graph); экспорт графа в формате DOT
- int export_dot_reachability(FILE* file, graph_t* graph, size_t point); экспорт информации о дистижимости вершин графа указаной вершиной в формате DOT

Алгоритм

- 1. На экран пользователю выводится меню
- 2. Пользователь вводит номер команды
- 3. Выполняется действие согласно номеру команды

Рассчет матрицы достижимости

Матрицу достижимости нахожу как сумму степеней матрицы смежности от 1 до кол-ва вершин графа.

$$B = \sum_{i=1}^{n} A^{i}$$

- 1. Копирование матрицы смежности дважды
 - для результирующей таблицы
 - для временной таблицы
- 2. Цикл n-1 раз
 - временная таблица умножается на таблицу смежности

Контрольные вопросы

- 1. Что такое граф?
- Граф конечное множество вершин и соединяющих их ребер; G=< V, E>. Если пары E (ребра) имеют направление, то граф называется ориентированным; если ребро имеет вес, то граф называется взвешенным.
- 2. Как представляются графы в памяти?
- С помощью матрицы смежности.
- 3. Какие операции возможны над графами?
- Обход вершин, поиск различных путей, исключение и включение вершин.
- 4. Какие способы обхода графов существуют?
- Обход в ширину
- обход в глубину
- 5. Где используются графовые структуры?
- Графовые структуры могут использоваться в задачах, в которых между элементами могут быть установлены произвольные связи, необязательно иерархические.
- 6. Какие пути в графе Вы знаете?
- Эйлеров путь, простой путь, сложный путь, гамильтонов путь.
- 7. Что такое каркасы графа?
- Каркас графа дерево, в которое входят все вершины графа, и некоторые (необязательно все) его рёбра.

Вывод

Один из способов проверки достижимости - это построение таблицы достижимости. Данная таблица имеет приемущество - данные о достижимости получаются сразу для всех вершин орграфа. Следовательно в задачах, связанных с постоянным поиском данная таблица упростит задачу до O(n). Но данная операция очень затратна по времени построения таблицы и требуется большое кол-во памяти. Сложность выполнения операции построения

таблицы смежности $O(n^3)$. Объём занимаемой памяти $O(n^2)$.

Делаем вывод, что данный способ эффективен только для маленьких связанных графов. При таком хранении больших малосвязных орграфов, очень быстро растет время построения и объём занимаемой памяти, следовательно при таких условиях использование данной СД - нецелесообразно.