UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 16. Vectores y Rectas

Problema 1. Dados los puntos A(1,3,2), B(-1,2,-2), C(1,4,-2) y D(2,-1,-3). Determine: (i) $\overrightarrow{AB} + \overrightarrow{AC}$; $\frac{1}{2}\overrightarrow{AB} \cdot \overrightarrow{CD}$; $\|\overrightarrow{AB} \times \overrightarrow{CD}\|$. (ii) un punto P, si es posible, tal que \overrightarrow{AP} sea ortogonal a \overrightarrow{AB} y a \overrightarrow{CD} .

Problema 2. Sean u, v, w, vectores arbitrarios en el espacio, demuestre que

- (2.1) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
- (2.2) $\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \operatorname{sen}(\theta)$ donde θ es el menor ángulo entre \boldsymbol{u} y \boldsymbol{v}
- $(2.3) (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}).$
- (2.4) \boldsymbol{u} y \boldsymbol{v} son paralelos sí y sólo si $\boldsymbol{u} \times \boldsymbol{v} = \boldsymbol{0}$.
- (2.5) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0.$

Problema 3. Considere los vectores $\boldsymbol{u} = [2, \alpha, 3]$ y $\boldsymbol{v} = [1, -1, 2]$. Determine $\alpha \in \mathbb{R}$, de modo que:

- (3.1) $u \perp v$
- (3.2) \boldsymbol{u} sea paralelo al vector \boldsymbol{v} .

Si además \boldsymbol{w} es el vector $\boldsymbol{w} = [\beta, 2, 1]$. Determine $\alpha \in \mathbb{R}$, y $\beta \in \mathbb{R}$ de modo que :

(3.3) $\boldsymbol{u} \perp \boldsymbol{v}$, y el ángulo entre \boldsymbol{u} y \boldsymbol{w} sea igual a $\frac{\pi}{3}$.

Problema 4. Cuál o cuales son las componentes del vector $\mathbf{r} = [a, b, c]$, de modo que:

- (4.1) \boldsymbol{r} tenga norma 4 y el ángulo director entre \boldsymbol{r} e \boldsymbol{i} sea $\frac{\pi}{4}$, y entre \boldsymbol{r} y \boldsymbol{j} sea $\frac{\pi}{3}$.
- (4.2) el ángulo director entre \mathbf{r} e \mathbf{i} sea $\frac{\pi}{4}$, entre \mathbf{r} y \mathbf{j} sea $\frac{\pi}{3}$, \mathbf{r} sea perpendicular a [1, 2, -2] y además $||\mathbf{r}|| = 2$.

Problema 5. Encuentre una ecuación de la recta L tal que

- (5.1) contiene a (2,1,3) y (1,2,-1).
- (5.2) contiene a (2,2,1) y es paralela a $2\mathbf{i} \mathbf{j} \mathbf{k}$.
- (5.3) contiene a (-2,3,-2) y es paralela a k.
- (5.4) contiene a (2,3,1) y tiene vector director $\mathbf{r} = [2,-1,2]$.
- (5.5) contiene a (4,1,6) y es paralela a (x-2)/3 = (y+1)/6 = (z-5)/2.
- (5.6) contiene a (a, b, c) y es paralela a $d\mathbf{i} + e\mathbf{j}$.

Problema 6. Encontrar la distancia entre la recta L (que contiene a P y es paralela a r) y el origen cuando

- (6.1) $P = (2, 1, -4) \text{ y } \mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k}.$
- (6.2) $P = (1, 2, -3) \text{ y } \mathbf{r} = 3\mathbf{i} \mathbf{j} \mathbf{k}.$
- (6.3) $P = (-1, 4, 2) \text{ y } \boldsymbol{r} = -\boldsymbol{i} + \boldsymbol{j} + 2\boldsymbol{k}.$

Problema 7. Considere las rectas L_1

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

 $con \alpha \in \mathbb{R} y$

$$L_2: \frac{x+1}{3} = \frac{y-2}{2} = z+1.$$

Encuentre, si existe, el valor de α de modo que $L_1 \cap L_2 \neq \emptyset$.

Problema 8. Considere la recta L

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

- (8.1) Dado el punto A(2,3,1) encuentre la distancia de A a L. Lo mismo para el punto B(2,-3,5).
- (8.2) Encuentre la ecuación de la recta que pasa por A(2,3,1) y es perpendicular a L.
- (8.3) Encuentre la ecuación de la recta que pasa por A(2,3,1) y es paralela a L.
- (8.4) En los puntos (8.2) y (8.3) anteriores, encuentre la distancia entre las dos rectas involucradas.