به نام بگانه معبود بخشنده مهربان

مبانی یادگیری ماشین

Machine Learning Foundations

گروه هوش مصنوعی، دانشکده مهندسی کامپیوتر، دانشگاه اصفهان

ترم اول سال تحصیلی ۲۰-30

ارائه دهنده : پیمان ادیبی

مثالی از شبکه های عصبی

An Example of Neural Networks

Outline

Embeddings

Dropout Regularization

Recommender Systems

جانشانیها

Embeddings

متغيرهاي نمادين

Symbolic variable

- Text: characters, words, bigrams...
- Recommender Systems: item ids, user ids
- Any categorical descriptor: tags, movie genres, visited URLs, skills on a resume, product categories...

Notation:

Symbol s in vocabulary V

كدگذاري تك فعال

One-hot representation

$$onehot(\text{'salad'}) = [0, 0, 1, \dots, 0] \in \{0, 1\}^{|V|}$$

- ullet Sparse, discrete, large dimension |V|
- · Each axis has a meaning
- · Symbols are equidistant from each other:

euclidean distance =
$$\sqrt{2}$$

جانشاني

Embedding

$$embedding(\text{'salad'}) = [3.28, -0.45, \dots 7.11] \in \mathbb{R}^d$$

- Continuous and dense
- $oldsymbol{\cdot}$ Can represent a huge vocabulary in low dimension, typically: $d \in \{16, 32, \ldots, 4096\}$
- Axis have no meaning a priori
- Embedding metric can capture semantic distance

Neural Networks compute transformations on continuous vectors

جانشانی - یک نوع پیاده سازی

Implementation with Keras

Size of vocabulary $n=\lvert V
vert$, size of embedding d

```
# input: batch of integers
Embedding(output_dim=d, input_dim=n, input_length=1)
# output: batch of float vectors
```

• Equivalent to one-hot encoding multiplied by a weight matrix $\mathbf{W} \in \mathbb{R}^{n \times d}$:

$$embedding(x) = onehot(x)$$
. **W**

- $oldsymbol{ ext{W}}$ is typically randomly initialized, then tuned by backprop
- W are trainable parameters of the model

فاصله و شباهت در فضای جانشانی

Distance and similarity in Embedding space

Euclidean distance

$$d(x,y) = ||x - y||_2$$

- Simple with good properties
- Dependent on norm (embeddings usually unconstrained)

Cosine similarity

$$cosine(x,y) = rac{x \cdot y}{||x|| \cdot ||y||}$$

- Angle between points, regardless of norm
- $cosine(x, y) \in (-1, 1)$
- Expected cosine similarity of random pairs of vectors is 0

فاصله و شباهت در فضای جانشانی

Distance and similarity in Embedding space

If x and y both have unit norms:

$$||x - y||_2^2 = 2 \cdot (1 - cosine(x, y))$$

or alternatively:

$$cosine(x,y) = 1 - rac{||x-y||_2^2}{2}$$

Alternatively, dot product (unnormalized) is used in practice as a pseudo similarity

مصورسازي جانشاني ها

Visualizing Embeddings

- Visualizing requires a projection in 2 or 3 dimensions
- Objective: visualize which embedded symbols are similar

PCA

 Limited by linear projection, embeddings usually have complex high dimensional structure

t-SNE

Visualizing data using t-SNE, L van der Maaten, G Hinton, *The Journal of Machine Learning Research*, 2008

مصورسازي جانشاني ها

t-Distributed Stochastic Neighbor Embedding

- Unsupervised, low-dimension, non-linear projection
- Optimized to preserve relative distances between nearest neighbors
- Global layout is not necessarily meaningful

t-SNE projection is non deterministic (depends on initialization)

- Critical parameter: perplexity, usually set to 20, 30
- See http://distill.pub/2016/misread-tsne/

مصورسازی جانشانی ها Example word vectors

excerpt from work by J. Turian on a model trained by R. Collobert et al. 2008

مصورسازي جانشاني ها

Visualizing Mnist

تنظيم با حذف تصادفي

Dropout Regularization

Regularization

Size of the embeddings

Depth of the network

 L_2 penalty on embeddings

Dropout

- ullet Randomly set activations to 0 with probability p
- Bernoulli mask sampled for a forward pass / backward pass pair
- Typically only enabled at training time

حذف تصادفي

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al., Journal of Machine Learning Research 2014

حذف تصادفي

Dropout

At test time, multiply weights by p to keep same level of activation

Interpretation

Reduces the network dependency to individual neurons

بیش برازش بدون حذف تصادفی Overfitting Noise

برازش مناسب با حذف تصادفی A bit of Dropout

MLP with 3 hidden layers and noisy labels train, no dropout validation, no dropout train, dropout p=0.2 2.0 validation, dropout p=0.2 1.5 1.0 0.5 0.0 20 40 60 80 100 120 140 epoch

برازش ناكافي با حذف تصادفي

Too much: Underfitting

سامانه های توصیه گر

Recommend contents and products

Movies on Netflix and YouTube, weekly playlist and related Artists on Spotify, books on Amazon, related apps on app stores, "Who to Follow" on twitter...

Prioritized social media status updates

Personalized search engine results

Personalized ads and RTB

مبتنی بر محتوا در برابر فیلترسازی همکارانه

Content-based vs Collaborative Filtering (CF)

Content-based: user metadata (gender, age, location...) and item metadata (year, genre, director, actors)

Collaborative Filtering: passed user/item interactions: stars, plays, likes, clicks

Hybrid systems: CF + metadata to mitigate the cold-start problem

بازخورد صریح دربرابر ضمنی Explicit vs Implicit Feedback

Explicit: positive and negative feedback

- Examples: review stars and votes
- Regression metrics: Root Mean Squared Error (RMSE),
 Mean Absolute Error (MAE)...

Implicit: positive feedback only

- Examples: page views, plays, comments...
- Ranking metrics: ROC AUC, precision at rank, NDCG...

بازخورد صريح دربرابر ضمني

Implicit feedback much more **abundant** than explicit feedback

Explicit feedback does not always reflect actual user behaviors

 Self-declared independent movie enthusiast but watch a majority of blockblusters

Implicit feedback can be **negative**

- Page view with very short dwell time
- Click on "next" button

Implicit (and Explicit) feedback distribution impacted by UI/UX changes and the RecSys deployment itself.

تجزیه ماتریسی در فیلترسازی همکارانه Matrix Factorization for CF

$$L(U,V) = \sum_{(i,j) \in D} ||r_{i,j} - \mathbf{u}_i^T \cdot \mathbf{v}_j||_2^2 + \lambda(||U||_2^2 + ||V||_2^2)$$

- ullet Train U and V on observed ratings data $r_{i,j}$
- ullet Use U^TV to find missing entries in sparse rating data matrix R_{27}

معماری و تنظیم RecSys with Explicit Feedback

معماری و تنظیم Deep RecSys Architecture

معماری و تنظیم

Deep RecSys with metadata

معماری و تنظیم

Implicit Feedback: Triplet loss

معماری و تنظیم Deep Triplet Networks

معماري و تنظيم

Training a Triplet Model

- ullet Gather a set of positive pairs user i and item j
- While model has not converged:
 - \circ Shuffle the set of pairs (i,j)
 - \circ For each (i,j):
 - ullet Sample item k uniformly at random
 - ullet Call item k a negative item for user i
 - ullet Train model on triplet (i,j,k)

معماری و تنظیم

Deep Neural Networks for YouTube Recommendations

√398

https://research.google.com/pubs/pub45530.html