

- Jack Christopher Huaihua Huayhua
  - Angel Tomas Concha Layme
  - Jean Pierre Chavez Guevara

### CONTENIDO

01

**Artículo** 

02

**Estructura** 

03

Datos de entrenamiento

04

Áreas de aplicación

05

Ventajas y desventajas 05

Conclusiones



# LONG SHORT TERM MEMORY

**Año**: 1997

Medio de publicación: Journal Neural Computation.

**Autores**: Sepp Hochreiter y Jürgen Schmidhuber.

#### LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber IDSIA Corso Elvezia 36 6900 Lugano, Switzerland juergen@idsia.ch http://www.idsia.ch/~juergen

#### **MOTIVO**

Superar problemas de desvanecimiento y explosión de errores en RNN tradicionales.

#### **IMPACTO**

Aplicaciones en reconocimiento de voz, procesamiento del lenguaje natural y predicciones secuenciales.

#### **PUBLICACIÓN**

Revista científica especializada en inteligencia artificial, aprendizaje automático o procesamiento de lenguaje natural.

#### **RESULTADOS**

Capacidad para resolver problemas complejos con largos retrasos temporales.





# Idea Principal



### Memorización

Se gana información → se almacena para uso futuro



### Combinación

Información almacenada + habilidades analíticas







## **FORGET GATE**

Decide qué información debe eliminarse del **estado de la celda.** 

Toma el **estado oculto** anterior y la entrada actual y lo pasa a una función de activación Sigmoide.

Genera un valor entre 0 y 1, donde 0 significa olvidar y 1 significa mantener.





## **INPUT GATE**

Considera la entrada actual y el estado oculto anterior para actualizar el valor del estado de la celda.

- Función de activación de Sigmoide →
   Decide qué porcentaje de la información se requiere.
- Función de activación de Tanh →
   Mapea los datos entre -1 y 1, luego la multiplica por la función Sigmoide.

## **OUTPUT GATE**

Devuelve el **estado oculto** para la próxima ocasión.

- Función de activación Sigmoide →
   Decide el porcentaje de
   información relevante requerida.
- Función de activación Tanh →
   Toma el estado de la celda
   actualizada y la multiplica por la
   función de activación Sigmoide.



### **CELL STATE**

La **puerta de olvido** y la **puerta de entrada** actualizan la **celda de estado**.

La **celda de estado** anterior se multiplica por la salida de la **puerta de olvido**, se suma con la salida de la **puerta de entrada**.

Este valor se usa luego para calcular el estado oculto en la puerta de salida.





# Embedded Reber

Es una gramatica

Genera una secuencia de caracteres

Sigue una logica determinista



# LSTM - REBER



### **APRENDER**

Las reglas que usaba la gramática



### **PREDECIR**

Los caracteres que siguen



## Otros datos

Secuencias de datos como texto, audio, video.

Corpus de noticias, libros, artículos científicos, sitios web

Datos de entrenamiento de Stanford Question Answering Dataset (SQuAD)





# Modelado de lenguaje

LSTM es capaz de: crear modelos de lenguaje

Son usados en: sistemas de traducción automática o chatbots





# Predicción de series temporales

LSTM es capaz de: modelar datos de series temporales y predecir valores futuros en la serie

Son usados para: predecir precios de acciones o patrones de tráfico.

# Análisis de sentimientos

LSTM es utilizado para: analizar y clasificar las emociones expresadas en un texto.





# Reconocimiento de voz

LSTM es capaz de: construir sistemas de reconocimiento de voz

Son usados los siguientes casos: asistentes virtuales, automatización de tareas, accesibilidad y seguridad

# Subtitulos de imágenes

LSTM es utilizado para: generar subtítulos descriptivos para imágenes, como en motores de búsqueda de imágenes





# **VENTAJAS**

Captura de dependencias a largo plazo.

Manejo de secuencias de longitud variable.

Aprendizaje de representacion es jerárquicas.

Memoria de largo plazo.

Resistencia al ruido en los datos. Adaptabilidad a diferentes dominios.

## **DESVENTAJAS**

Mayor complejidad computacional Mayor dificultad de interpretación. Requiere tiempo y experiencia para su configuración.

Mayor consumo de recursos.

Riesgo de sobreajuste.

Sensibilidad a la selección de hiperparámetros



Implementación y tiempo computacional son retos a considerar.

(LSTM) ha sido una arquitectura revolucionaria

Sus logros respaldan su aplicabilidad en diversas áreas