题目

作者1 作者2

摘要

中文摘要

关键字: 中文关键词 1; 中文关键词 2

Abstract

英文摘要

Keywords: 英文关键词 1; 英文关键词 2

文章题目

目录

1	第一部分	1
2	第二部分	1
	2.1 第二部分第一小节	1
	2.1.1 第二部分第一小节第一分节	1
3	第三部分	1

- 1 第一部分
- 2 第二部分
- 2.1 第二部分第一小节
- 2.1.1 第二部分第一小节第一分节
- 3 第三部分

详例

在语句内添加公式用 $a^2 = b^2 + c^2$ 来表示 在语段间添加公式用

$$a^2 = b^2 + c^2$$

来表示

分点可以用以下代码表示:

- 1. xxx
- 2. xxx
- 3. xxx
- XXX
- xxx
- xxx

展示图片可以用如图1来表示:

	N01	N02	N03	N04	N05	N06	N07	N08
PRE	100	20	20	100	70	0	80	70
REC	100	22.3	50	100	70	0	100	100
F1	100	21.1	28.6	100	70	0	88.9	82.4
		_ 20000		2 ²⁰ 2. 2.1			to a talka ta	
	N09	N10	N11	N12	N13	N14	N15	N16
PRE	N09	N10	N11 40	N12	N13	N14	N15	N16 100
PRE REC					2 32			
	100	100	40	100	100	100	100	100

图 1: 这是一张图片

展示表格可以用如表1来表示:

Parameters	Т	k_1
Values	0.02s	10

表 1: 这是一个表格

Algorithm 1 Framework of ensemble learning for our system.

Require:

The set of positive samples for current batch, P_n ;

The set of unlabelled samples for current batch, U_n ;

Ensemble of classifiers on former batches, E_{n-1} ;

Ensure:

Ensemble of classifiers on the current batch, E_n ;

- 1: Extracting the set of reliable negative and/or positive samples T_n from U_n with help of P_n ;
- 2: Training ensemble of classifiers E on $T_n \cup P_n$, with help of data in former batches;
- 3: $E_n = E_{n-1} \cup E$;
- 4: Classifying samples in $U_n T_n$ by E_n ;
- 5: Deleting some weak classifiers in E_n so as to keep the capacity of E_n ;
- 6: **return** E_n ;

Algorithm 2 An example

```
\operatorname{set} r(t) = x(t)
\operatorname{repeat}
\operatorname{set} h(t) = r(t)
\operatorname{repeat}
\operatorname{set} h(t) = r(t)
```

until B

until B

```
Algorithm 3 Calculate y = x^n
Require: n \ge 0 \lor x \ne 0
Ensure: y = x^n
   y \Leftarrow 1
   \quad \text{if } n < 0 \text{ then} \\
      X \Leftarrow 1/x
      N \Leftarrow -n
   else
      X \Leftarrow x
      N \Leftarrow n
   end if
   while N \neq 0 do
      if N is even then
          X \Leftarrow X \times X
          N \Leftarrow N/2
      else \{N \text{ is odd}\}
          y \Leftarrow y \times X
          N \Leftarrow N - 1
      end if
   end while
```

Algorithm 4 An example for format For & While Loop in Algorithm

- 1: **for** each $i \in [1, 9]$ **do**
- 2: initialize a tree T_i with only a leaf (the root);
- 3: $T = T \cup T_i$;
- 4: end for
- 5: for all c such that $c \in RecentMBatch(E_{n-1})$ do
- 6: $T = T \cup PosSample(c);$
- 7: end for
- 8: **for** i = 1; i < n; i + + **do**
- 9: // Your source here;
- 10: **end for**
- 11: **for** i = 1 to n **do**
- 12: // Your source here;
- 13: **end for**
- 14: // Reusing recent base classifiers.
- 15: while $(|E_n| \leq L_1)$ and $(D \neq \phi)$ do
- 16: Selecting the most recent classifier c_i from D;
- 17: $D = D c_i$;
- 18: $E_n = E_n + c_i$;
- 19: end while

$$a + b = b + a \tag{1}$$

$$ab = ba (2)$$

$$a\times b=b\times a$$

$$ab = ba$$

$$a + b = b + a$$

$$ab = ba$$

$$x = t + \cos t + 1 \tag{3}$$

$$y = 2\sin t \tag{4}$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$
(5)

$$D(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 (6)

Listing 1: test.py

```
import numpy as np

def main():
    print(np.randn([3, 4]))

if __name__ == "__main__":
    main()
```

Listing 2: test.cpp

```
#include <iostream>
1
        #define LENGTH 8
2
3
        using namespace std;
        //测试用的代码, bubbleSort函数
4
5
        int main() {
            int temp,number[LENGTH] = {95,45,15,78,84,51,24,12};
6
            for(int i=0;i<LENGTH;i++)</pre>
7
                 for(int j=0;j<LENGTH-1-i;j++)</pre>
8
                     if(number[j]>number[j+1]) {
9
                         temp=number[j];
10
                         number[j]=number[j+1];
11
12
                         number[j+1]=temp;
13
                     } //if end
            for(int i=0;i<LENGTH;i++) cout<<number[i]<<" ";</pre>
14
            cout<<endl;</pre>
15
16
        }//main end
```

参考文献这样使用[2]

参考文献

- [1] Zheng L, Wang S, Tian L, et al., Query-adaptive late fusion for image search and person re-identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1741-1750.
- [2] Arandjelović R, Zisserman A, Three things everyone should know to improve object retrieval, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012: 2911-2918.
- [3] Lowe D G. Distinctive image features from scale-invariant keypoints, International journal of computer vision, 2004, 60(2): 91-110.
- [4] Philbin J, Chum O, Isard M, et al. Lost in quantization: Improving particular object retrieval in large scale image databases, Computer Vision and Pattern Recognition, 2008.
 CVPR 2008, IEEE Conference on, IEEE, 2008: 1-8.