Online-Unterricht

17.03.21

Die Redoxreihe der Metalle

Merke:

- Je edler ein Metall, desto leichter nehmen die Metall-Ionen Elektronen auf und werden reduziert.
- Je unedler ein Metall, desto leichter geben die Metall-Atome Elektronen ab und werden oxidiert.

Übungsaufgaben

- 1. Findet eine Redoxreaktion zwischen den angegebenen Stoffen statt?
 Stelle ggf. Teilgleichungen für Oxidation und Reduktion auf und begründe deine Meinung!
 - a. Lithium und Blei (Pb)-Ionen
 - b. Blei und Lithium-Ionen
 - c. Gold (Au) und Eisen (Fe)-Ionen
 - d. Magnesium und Nickel (Ni) -Ionen
 - e. Aluminium (Al) und Quecksilber (Hg)-Ionen
- 2. Überlege dir zwei weitere Redoxreaktionen, die ablaufen und stelle die Teilgleichungen dazu auf. Überlege dir zwei weitere Reaktionen, die nicht ablaufen und begründe deine Meinung.

Lösungen

a. Lithium und Blei (Pb)-Ionen

Lithium ist unedler als Blei und gibt daher Elektronen an die Blei-Ionen ab. Es entstehen Lithium-Ionen und Blei-Atome.

Oxidation: Li \rightarrow Li⁺ + e⁻ / \cdot 2

Reduktion: $Pb^{2+} + 2e^{-} \rightarrow Pb$

Redoxreaktion: $2 \text{ Li} + \text{Pb}^{2+} \rightarrow \text{Pb} + 2 \text{ Li}^{+}$

b. Blei und Lithium-Ionen

Blei ist edler als Lithium. Bleiatome geben daher keine Elektronen an die Lithium-Ionen ab. Es findet keine Elektronenübertragung und damit keine Reaktion statt.

c. Gold (Au) und Eisen (Fe)-Ionen

Gold ist edler als Eisen. Goldatome geben daher keine Elektronen an die Eisen-Ionen ab. Es findet keine Elektronenübertragung und damit keine Reaktion statt.

d. Magnesium und Nickel (Ni) -Ionen

Magnesium ist unedler als Nickel und gibt daher Elektronen an die Nickel-Ionen ab. Es entstehen Magnesium-Ionen und Nickel-Atome.

Oxidation: Mg \rightarrow Mg²⁺ + 2 e⁻

Reduktion: $Ni^{2+} + 2e^{-} \rightarrow Ni$

Redoxreaktion: Mg + Ni²⁺ \rightarrow Ni + Mg²⁺

e. Aluminium (Al) und Quecksilber (Hg)-Ionen

Aluminium ist unedler als Quecksilber und gibt daher Elektronen an die Quecksilber-Ionen ab. Es entstehen Aluminium-Ionen und Quecksilber-Atome.

Oxidation: Al \rightarrow Al³⁺ + 3 e⁻ /·2

Reduktion: $Hg^{2+} + 2e^{-} \rightarrow Hg$ /·3

Redoxreaktion: 3 Al + $3 \text{ Hg}^{2+} \rightarrow 3 \text{ Hg} + 2 \text{ Al}^{3+}$