EE488 Special Topics in EE < Deep Learning and AlphaGo>

Sae-Young Chung
Lecture 7
September 27, 2017

Chap. 7 Regularization for DL

- L² regularization
- L¹ regularization
- Dataset augmentation

L² Regularization

• L^2 regularization (ridge regression)

$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

 Usually we regularize weights only (there are far fewer bias terms and thus they do not contribute much to overfitting)

• Gradient

$$\nabla_{\mathbf{w}} \tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \alpha \mathbf{w}$$

• If J is quadratic near \mathbf{w}^* , i.e., $J(\mathbf{w}) = J(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*)$, then

$$\nabla_{\mathbf{w}} \tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = H(\mathbf{w} - \mathbf{w}^*) + \alpha \mathbf{w}$$

• At minimum, we have

$$\tilde{\mathbf{w}} = (H + \alpha I)^{-1} H \mathbf{w}^*$$

• If $H = Q\Lambda Q^T$, then

$$\tilde{\mathbf{w}} = (Q\Lambda Q^T + \alpha I)^{-1} Q\Lambda Q^T \mathbf{w}^* = Q(\Lambda + \alpha I)^{-1} \Lambda Q^T \mathbf{w}^*$$

L² Regularization

• Consider the following constrained optimization

$$\min_{\mathbf{w}: \frac{1}{2} \|\mathbf{w}\|^2 \leq \gamma} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$$

- Lagrangian: $L(\mathbf{w}, \mu) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \mu(\|\mathbf{w}\|^2/2 \gamma)$
- KKT conditions
 - 1. $\mu \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y}) = 0$
 - 2. $\|\mathbf{w}\|^2 \le \gamma, \, \mu \ge 0$
 - 3. $\mu(\|\mathbf{w}\|^2/2 \gamma) = 0$
- Assume $\|\mathbf{w}\|^2/2 = \gamma$, i.e., the inequality constraint is active, then the KKT conditions is simplified as
 - 1. $\mu \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y}) = 0$ (*)
 - 2. $\mu \ge 0$
- (*) is the same as the necessary condition for local minimum for

$$J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \frac{\mu}{2} \mathbf{w}^T \mathbf{w}$$

L² Regularization

Recap – Regularization Example

• To reduce the generalization error, we can penalize higher model complexity.

e.g., find **w** that minimizes $J(\mathbf{w}) = \text{MSE}_{\text{train}} + \lambda \mathbf{w}^T \mathbf{w}$

Recap – Regularization Example

L¹ Regularization

• L^1 regularization

$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \alpha \|\mathbf{w}\|_1$$

• If J is quadratic near \mathbf{w}^* , i.e., $J(\mathbf{w}) = J(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*)$, then

$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*) + \alpha \|\mathbf{w}\|_1$$

• Assume H is diagonal, then the analytical solution minimizing the above is given by

$$\tilde{w}_i = \operatorname{sign}(w_i^*) \max \left\{ |w_i^*| - \frac{\alpha}{H_{i,i}}, 0 \right\}$$

- $\tilde{w}_i = 0$ if $|w_i^*| \leq \frac{\alpha}{H_{i,i}}$
- L^1 regularization tends to give a more sparse solution than L^2 regularization. Sparse solution is good since it means some parameters can be set to zero, which simplifies computations.
- Related topic: Lasso (least absolute shrinkage and selection operator)

L¹ Regularization

 $\tilde{\mathbf{w}}$ is sparse, i.e., $\tilde{w}_1 = 0$ thanks to L^1 regularization

Underfitting can happen if α is too high

L¹ Regularization Example

• L^1 regularization

e.g., find **w** that minimizes $J(\mathbf{w}) = \text{MSE}_{\text{train}} + \lambda ||\mathbf{w}||_1$

Constrained Optimization

• Norm penalty as a constraint

$$\min J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y})$$
, subj. to $\Omega(\boldsymbol{\theta}) \leq k$

- E.g., $\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|^2$.
- Solutions
 - Barrier method
 - Penalty method
 - Re-projection

Re-projection

• Re-projection

- If $\Omega(\boldsymbol{\theta}) > k$ during GD, project $\boldsymbol{\theta}$ back to the nearest point satisfying $\Omega(\boldsymbol{\theta}) \leq k$
- Regularization kicks in only when $\Omega(\boldsymbol{\theta}) > k$
- Can prevent overflow of weights
- Unlike L^2 (or L^1) regularization, it is now possible to handle multiple inequality constraints simultaneously and explicitly, e.g., can be used to limit the norm of each column of a weight matrix

Re-projection

Dataset Augmentation

- Having more data can reduce overfitting problem, but costly
- Dataset augmentation for images
 - Translation, rotation, scaling, color variation
- Injecting noise
 - Adding noise at the input
 - Adding noise at hidden layer units
 - Dropout (\sim multiplicative noise)
 - Adding noise at the output, label smoothing
 - Adding noise to weights

Dropout

Fig. 7.6

Weight scaling can be done

Ensemble of subnetworks

Adversarial Training

+ .007 \times

=

 \boldsymbol{x}

y ="panda" w/ 57.7% confidence $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" w/8.2% confidence

 $m{x} + \\ \epsilon \operatorname{sign}(\nabla_{m{x}} J(m{\theta}, m{x}, y)) \\ \operatorname{"gibbon"} \\ \operatorname{w}/99.3\% \\ \operatorname{confidence}$

Fig. 7.8

ABCDEFGHI JKLMNOPQR STUVWXYZ DEPRTONLS

Witthoft N, Winawer J. Synesthetic colors determined by having colored refrigerator magnets in childhood. Cortex. 2006 Feb;42(2):175-83.

Other Topics

- Multi-task learning
- Early stopping
- Parameter tying and parameter sharing
- Bagging
- Ensemble methods
- Tangent prop

