# Setup for a "vanilla" autoencoder

x z y

- Input:  $x_i \in \mathbb{R}^n$
- Basic autoencoder: a feedforward, two layer net such that
  - the first layer "encodes"  $x_i \to z_i \in \mathbb{R}^p$ ,  $z = f_\theta(x) = \operatorname{sigmoid}(W'x + b')$
  - the second later "decodes"  $z_i \to y_i \in \mathbb{R}^n$ ,  $y = g_{\theta}(z) = \operatorname{sigmoid}(Wz + b)$
- "Autoencoder" objective: find W, b, W', b' such that  $\sum_i ||x_i y_i||^2$  is minimized
- Note  $y = g_{\theta}(z) = g_{\theta}(f_{\theta}(x))$  is trained to be the identity map!

### The simplest autoencoder...

- Linear AE: instead of sigmoid functions pick  $f_{\theta} = g_{\theta} = I$  (identity)
- If we further choose b = b' = 0, then
  - Encoding:  $z = f_{\theta}(x) = W'x$
  - Decoding:  $y = g_{\theta}(z) = Wz = WW'x$
- The linear AE cost is:  $C = \sum_{i} ||x_i| WW'x_i||^2$
- Can show the optimal W' depends on W:
  - Writing z = W'x, consider  $F(z) = ||x Wz||^2 = xx^T x^TWz z^TW^Tx + z^TW^TWz$
  - $0 = \frac{\partial F}{\partial z} \rightarrow 0 = -2W^T x + 2W^T W z^* \rightarrow W^T x = W^T W z^* \rightarrow W^T x = W^T W W'^* x$
  - To hold for all x, we must have  ${W'}^* = (W^T W)^{-1} W^T$  which is the pseudoinverse  $W^{\dagger}$  of W
- So the cost simplifies to

$$C = \sum_{i} \left\| x_i - WW^{\dagger} x_i \right\|^2$$

Ref: <a href="http://www.vision.jhu.edu/teaching/learning/datascience18/assets/Baldi Hornik-89.pdf">http://www.vision.jhu.edu/teaching/learning/datascience18/assets/Baldi Hornik-89.pdf</a>

## The simplest autoencoder... acts like PCA

- Recall PCA:  $Y = W^T X$  dimension reduction  $x_i \in \mathbb{R}^n \to y_i \in \mathbb{R}^p$
- Goal: find  $W \in \mathbb{R}^{n \times p}$  such that each new basis vector maximally describes variance in the data
- Can frame PCA as minimization problem:  $\sum_i ||x_i| WW^T x_i||^2$
- PCA solution: choose  $W = U_p$ , the first p eigenvectors from  $XX^T = U\Lambda U^T$
- Thus  $W=U_p$  is a minimizer of  $C=\sum_i \left\|x_i-WW^{\dagger}x_i\right\|^2$  Could try to show this directly by taking tricky derivative  $0=\frac{\partial C}{\partial W}=\cdots$ 

  - Note it is not unique solution: any change-of-basis of  $\mathcal{U}_p$  also works (e.g. non-orthogonal variants)
- Linear autoencoders project data onto the PCA subspace (with diff basis)
  - Suppose AE finds minimizer W, then its orthogonalization is  $U_p$  (up to rotation)
  - i.e.  $WW^{\dagger} = W(W^TW)^{-1}W^T = U_nU_n^T$



### Dimension reduction with autoencoders

- Classic "bottleneck" AE:
  - Restrict latent dimension p < n
  - performs dimension reduction on the data while explicitly preserving the data points



- Counterintuitive: same principle as unsupervised learning (e.g. MDS)
  - Unlike many unsupervised methods, a trained autoencoder offers a map to the latent space (and back) for new input data
- Remark:
  - Simple autoencoders reportedly perform poorly on untrained data
  - See 14.3 of Bengio/Goodfellow online text
- Extensions to address this:
  - adding more layers to the encoding and decoding (multilayer AEs)
  - fancier objective functions / constraints

## Variational Autoencoders (VAEs)

Input:  $\{x_i\}_{i=1}^M \in \mathbb{R}^n$ 

Assume the data was created by:

- 1. Sampling latent variables  $z_i$  from distribution  $p_{\theta}(z)$
- 2. Sampling data  $x_i$  from conditional distribution  $p_{\theta}(x|z)$

We want to find the "encoder"  $q_{\phi}(z|x)$  and "decoder"  $p_{\theta}(x|z)$  by optimizing with respect to parameters  $\phi$ ,  $\theta$ 

Cost function: 
$$L(x_i, \theta, \phi) = -D_{KL} [q_{\phi}(z|x_i) | p_{\theta}(z)] + E_{q_{\phi}(z|x_i)} [\log(p_{\theta}(x_i|z))]$$

- This is called the variational lower bound on  $p(x_i)$  because  $\log(p(x_i)) \ge L$
- ullet We actually want to  $\emph{maximize}\ \emph{L}$  for this technique; imagine maximizing the log-likelihood of our data

### **VAEs**



https://news.sophos.com/en-us/2018/06/15/using-variational-autoencoders-to-learn-variations-in-data/

### **VAE Intuition**

• The idea behind the VAE is that it allows you to incorporate a prior  $p_{\theta}(z)$  which constrains the latent mapping to be more intuitive



https://news.sophos.com/en-us/2018/06/15/using-variational-autoencoders-to-learn-variations-in-data/

## VAE Theory

The cost function can also be written like this:

$$p_{\theta}(x) - D_{KL}[q_{\phi}(z|x)||p_{\theta}(z|x)] = E_{q_{\phi}(Z|X)}[\log(p_{\theta}(x|z))] - D_{KL}[q_{\phi}(z|x)|p_{\theta}(z)]$$
 We want to maximize this

• The problem with the left-hand side is that it involves unknown distributions  $p_{\theta}(x)$  and  $p_{\theta}(z|x)$ 

### The Reparameterization Trick



#### References

- Bengio 2013: Ch 6, **7**, 8, 9
- 2018 arxiv VAE PCA: <a href="https://arxiv.org/pdf/1812.06775.pdf">https://arxiv.org/pdf/1812.06775.pdf</a>, p3
- Other PCA ref: <a href="https://arxiv.org/pdf/1804.10253.pdf">https://arxiv.org/pdf/1804.10253.pdf</a>
- http://www.vision.jhu.edu/teaching/learning/datascience18/assets/B aldi Hornik-89.pdf
- http://www.deeplearningbook.org/contents/autoencoders.html
- Kingma and Welling, 2013