

PROGRAMACIÓN I

HOJA EJERCICIOS Nº1

EJERCICIO Nº1

Escriba un programa en C++11, donde utilizando los **tipos de datos** y las **estructuras de control** necesarias, solicite al usuario una nota (número real) y muestre la calificación obtenida para dicha nota. El proceso preguntará al usuario si desea repetir con nuevos datos o finalizar la ejecución. Las calificaciones son:

- 10: Matrícula de Honor.
- 9: Sobresaliente.
- 7, 8: Notable.
- 6, 5: Aprobado.
- 0, 1, 2, 3, 4: Insuficiente.

EJERCICIO Nº2

Escriba un programa en C++11, donde utilizando los **tipos de datos** y las **estructuras de control** necesarias, calcule el área y el volumen de un cilindro solicitando al usuario el valor del radio de la base y la altura del cilindro (números enteros). Si no se puede calcular el área y el volumen se mostrará un mensaje de error. El proceso preguntará al usuario si desea repetir con nuevos datos o finalizar la ejecución.

EJERCICIO Nº3

Escriba un programa en C++11, donde utilizando los **tipos de datos** y las **estructuras de control** necesarias, solicite el peso de una persona en libras y nos devuelva su peso en kilogramos y gramos (NOTA: Una libra equivale a 0.453592 kg). El proceso preguntará al usuario si desea repetir con nuevos datos o finalizar la ejecución.

EJERCICIO Nº4

Supongamos que tenemos las ecuaciones las siguientes rectas:

$$y = ax + b$$
 $y = cx + d$

Escribe un programa en C++11 que solicite por pantalla los coeficientes (números enteros) de dichas rectas: **a, b, c** y **d**. Utilizando los **tipos de datos** y las **estructuras de control** necesarias y más adecuadas, determine si las retas son iguales (a=c y b=d), paralelas (a=c y b<> d) o secantes (a<>c) en un punto:

- Si se trata de dos rectas secantes, el programa deberá imprimir el correspondiente mensaje indicándolo y además, el punto de corte de ambas rectas.
- Para los otros dos casos, se visualizará por pantalla un mensaje que indique el tipo de rectas:
 coincidentes o paralelas.

El proceso preguntará al usuario si desea repetir con nuevos datos o finalizar la ejecución.

NOTA: La abscisa del punto de corte de las dos rectas anteriores es:

$$x = (d - b)/(a - c)$$

El valor de la ordenada del punto (y) se calcula sustituyendo el valor de la abscisa, x, en cualquiera de las dos ecuaciones de las rectas dadas.

EJERCICIO Nº5

Escribe un programa en C++11, que solicite por pantalla los coeficientes de una ecuación de segundo grado (números enteros) y calcule las raíces de la ecuación de segundo grado: $ax^2 +bx + c = 0$; teniendo en cuenta los siguientes casos:

- a) Si el coeficiente **a** es igual a **0** y **b** es igual a **0**, imprimirá un mensaje diciendo que **la ecuación** es degenerada.
- b) Si **a** es igual a **0** y **b** no es igual a **0**, existe una raíz única con valor: **-c/b**.
- c) En los demás casos, se utilizará la fórmula para obtener las soluciones de la ecuación de segundo grado. La expresión d = b2 4ac se denomina discriminante. Para que la ecuación tenga raíces reales el discriminante tiene que ser mayor o igual a 0. En otro caso, se imprimirá un mensaje indicando que las raíces son complejas.

El proceso preguntará al usuario si desea repetir con nuevos datos o finalizar la ejecución