Model Development Phase Template

Date	8 July 2024	
Team ID	739996	
Project Title	Identification Of Methodology Used In Real	
	Estate Property Valuation	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
O xg.fit(x_train,y_train)
 9+ L
                                                                                                                              XXIIIngressor
                     *** XXZERgrassor**

XXZERgrass
[ ] y_pred_xp-xg.predict(x_test)
[ ] from sklearn.ensemble inpurt GradientHoostingRegressor
[ ] gbr=GredientBooklingRegressor(n_setimators=10,mac_depth=5,learning_rate=1)
[ ] s_train,s_test,y_train,y_test=train_test_split(x,y,test_size=0.5,random_state=20)
| | ghr, fit(s_train,y_train)
                                                                      GradientBoostingRegressor
                   GradientBoostingRegressor(learning_rate:1, n_estimators:18)
[ ] y_pred_gbrogbr.predict(x_test)
[ ] from sklearn.ensemble import AdeBoostRegressor
| | adr-AdaBoostRegressor(n_estimators=10,learning_rate=1,random_state=20)
                   x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=20)
  adr.fit(a_train,y_train)
   \oplus
                                                                                                        AdaBoostRegressor
                     AdaBoostRegressor(learning_rate:1, n_extinators:10, random_state:20)
[ ] y_pref_adr-adr-predict(x_test)
  COMPARE ALL MODELS
[] print("The accuracy of Linear Regression:",e2_score(y_pred_le,y_test))
print("The accuracy of multilinear regression:",e2_score(y_pred_ale,y_test))
print("The accuracy of Decision Tree Regression:",e2_score(y_pred_re,y_test))
print("The accuracy of Render Forest Regression",e2_score(y_pred_re,y_test))
print("The accuracy of Kadosoct Regression",e2_score(y_pred_re,y_test))
print("The accuracy of Gradient Boosting Regression",e2_score(y_pred_ade,y_test))
print("The accuracy of Adabaset Regression",e2_score(y_pred_ade,y_test))
  The accuracy of Linear Regression: 0.41804661287484899
The accuracy of multilinear regression: 0.41804661287479644
The accuracy of Decision Tree Regression: 0.7882797310459597
The accuracy of Random Forest Regression: 0.7882797310459597
The accuracy of Xiboost Regression: 0.7837095871657219
The accuracy of Gradient Bossting Regression: 0.5931650408263717
The accuracy of Adaboset Regression: 0.639163473776885
```

Model Validation and Evaluation Report:

Model	Classification Report	Accur acy	Confus ion Matrix
Decisio n Tree Regress ion	The accuracy of Decision Tree Regression: 0.69709	69%	-
Rando m forest regressi on	The accuracy of Random Forest Regression 0.78827373	78%	-
Linear regressi on	The accuracy of Linear Regression: 0.41804661	41%	-
Ada boost regressi on	The accuracy of Adaboost Regression 0.68936347	68%	-
Xgboos t regressi on	The accuracy of XGBoost Regression 0.733703667165722	73%	-
Multi linear regressi on	The accuracy of multilinear regression: 0.418046	41%	