

Rational and Irrational numbers

We are familiar with Natural numbers, Whole numbers, Integers and Rational numbers.

Natural numbers

Rational numbers

$$\frac{-25}{3}$$
, $\frac{10}{-7}$, -4, 0, 3, 8, $\frac{32}{3}$, $\frac{67}{5}$, etc.

Rational numbers: The numbers of the form $\frac{m}{n}$ are called rational numbers. Here, m and n are integers but n is not zero.

We have also seen that there are infinite rational numbers between any two rational numbers.

To show rational numbers on a number line

Let us see how to show $\frac{7}{3}$, 2, $\frac{-2}{3}$ on a number line.

Let us draw a number line.

- We can show the number 2 on a number line.
- $\frac{7}{3} = 7 \times \frac{1}{3}$, therefore each unit on the right side of zero is to be divided in three equal parts. The seventh point from zero shows $\frac{7}{3}$; or $\frac{7}{3} = 2 + \frac{1}{3}$, hence the point at $\frac{1}{3}$ rd distance of unit after 2 shows $\frac{7}{3}$.

To show $\frac{-2}{3}$ on the number line, first we show $\frac{2}{3}$ on it. The number to the left of 0 at the same distance will show the number $\frac{-2}{3}$.

Practice set 1.1

Show the following numbers on a number line. Draw a separate number line for each example.

$$(1) \frac{3}{2}, \frac{5}{2}, -\frac{3}{2}$$

$$(1) \frac{3}{2}, \frac{5}{2}, -\frac{3}{2}$$
 $(2) \frac{7}{5}, \frac{-2}{5}, \frac{-4}{5}$ $(3) \frac{-5}{8}, \frac{11}{8}$ $(4) \frac{13}{10}, \frac{-17}{10}$

$$(3) \frac{-5}{8}, \frac{11}{8}$$

$$(4) \frac{13}{10} , \frac{-17}{10}$$

2. Observe the number line and answer the questions.

- (1) Which number is indicated by point B?
- (2) Which point indicates the number $1\frac{3}{4}$?
- (3) State whether the statement, 'the point D denotes the number $\frac{5}{2}$ ' is true or false.

Comparison of rational numbers

We know that, for any pair of numbers on a number line the number to the left is smaller than the other. Also, if the numerator and the denominator of a rational number is multiplied by any non zero number then the value of rational number does not change. It remains the same. That is, $\frac{a}{b} = \frac{ka}{kb}$, $(k \neq 0)$.

Ex. (1) Compare the numbers $\frac{5}{4}$ and $\frac{2}{3}$. Write using the proper symbol of <, =, >.

Solution:
$$\frac{5}{4} = \frac{5 \times 3}{4 \times 3} = \frac{15}{12}$$
 $\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$

$$\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$$

$$\frac{15}{12} > \frac{8}{12}$$

$$\frac{15}{12} > \frac{8}{12}$$
 $\therefore \frac{5}{4} > \frac{2}{3}$

Ex. (2) Compare the rational numbers $\frac{-7}{9}$ and $\frac{4}{5}$.

Solution: A negative number is always less than a positive number.

Therefore, $-\frac{7}{9} < \frac{4}{5}$.

To compare two negative numbers,

let us verify that if a and b are positive numbers such that a < b, then -a > -b.

$$2 < 3$$
 but $-2 > -3$
 $\frac{5}{4} < \frac{7}{4}$ but $\frac{-5}{4} > \frac{-7}{4}$ Verify the comparisons using a number line.

Ex. (3) Compare the numbers $\frac{-7}{3}$ and $\frac{-5}{2}$.

Solution : Let us first compare $\frac{7}{3}$ and $\frac{5}{2}$.

$$\frac{7}{3} = \frac{7 \times 2}{3 \times 2} = \frac{14}{6}$$
, $\frac{5}{2} = \frac{5 \times 3}{2 \times 3} = \frac{15}{6}$ and $\frac{14}{6} < \frac{15}{6}$

$$\therefore \frac{7}{3} < \frac{5}{2} \qquad \therefore \frac{-7}{3} > \frac{-5}{2}$$

Ex. (4) $\frac{3}{5}$ and $\frac{6}{10}$ are rational numbers. Compare them.

Solution:
$$\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}$$
 $\therefore \frac{3}{5} = \frac{6}{10}$

$$\therefore \frac{3}{5} = \frac{6}{10}$$

The following rules are useful to compare two rational numbers.

If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers such that b and d are positive, and

(1) if
$$a \times d < b \times c$$
 then $\frac{a}{b} < \frac{c}{d}$

(2) if
$$a \times d = b \times c$$
 then $\frac{a}{b} = \frac{c}{d}$

(3) if
$$a \times d > b \times c$$
 then $\frac{a}{b} > \frac{c}{d}$

Practice Set 1.2

1. Compare the following numbers.

$$(1)$$
 -7, -2

(2) 0,
$$\frac{-9}{5}$$

$$(3) \frac{8}{7}, 0$$

$$(4) \frac{-5}{4}, \frac{1}{4}$$

(1)
$$-7$$
, -2 (2) 0 , $\frac{-9}{5}$ (3) $\frac{8}{7}$, 0 (4) $\frac{-5}{4}$, $\frac{1}{4}$ (5) $\frac{40}{29}$, $\frac{141}{29}$

$$(6) -\frac{17}{20}, \frac{-13}{20} \qquad (7) \frac{15}{12}, \frac{7}{16} \qquad (8) \frac{-25}{8}, \frac{-9}{4} \qquad (9) \frac{12}{15}, \frac{3}{5} \qquad (10) \frac{-7}{11}, \frac{-3}{4}$$

$$(7) \frac{15}{12}, \frac{7}{16}$$

$$(8) \frac{-25}{8}, \frac{-9}{4}$$

3

$$(9) \; \frac{12}{15}, \; \frac{3}{5}$$

$$(10) \frac{-7}{11}, \frac{-3}{4}$$

Decimal representation of rational numbers

If we use decimal fractions while dividing the numerator of a rational number by its denominator, we get the decimal representation of a rational number. For example, $\frac{7}{4}$ = 1.75. In this case, after dividing 7 by 4, the remainder is zero. Hence the process of division ends.

Such a decimal form of a rational number is called a terminating decimal form.

We know that every rational number can be written in a non-terminating recurring decimal form.

For example, (1) $\frac{7}{6} = 1.1666... = 1.16$

(2)
$$\frac{5}{6} = 0.8333... = 0.83$$

(3)
$$\frac{-5}{3} = -1.666... = -1.66$$

(4)
$$\frac{22}{7} = 3.142857142857... = 3.\overline{142857}$$
 (5) $\frac{23}{99} = 0.2323... = 0.\overline{23}$

Similarly, a terminating decimal form can be written as a non-terminating recurring decimal form. For example, $\frac{7}{4} = 1.75 = 1.75000... = 1.750$.

Practice Set 1.3

- 1. Write the following rational numbers in decimal form.

- (1) $\frac{9}{37}$ (2) $\frac{18}{42}$ (3) $\frac{9}{14}$ (4) $\frac{-103}{5}$ (5) $-\frac{11}{13}$

Irrational numbers

In addition to rational numbers, there are many more numbers on a number line. They are not rational numbers, that is, they are irrational numbers. $\sqrt{2}$ is such an irrational number.

We learn how to show the number $\sqrt{2}$ on a number line.

On a number line, the point A shows the number 1. Draw line l perpendicular to the number line through point A.

4

Take point P on line l such that OA = AP = 1 unit.

Draw seg OP. The Δ OAP formed is a right angled triangle.

By Pythagoras theorem,

$$OP^2 = OA^2 + AP^2$$

= $1^2 + 1^2 = 1 + 1 = 2$
 $OP^2 = 2$

$$\therefore$$
 OP = $\sqrt{2}$...(taking square roots on both sides)

 Now, draw an arc with centre O and radius OP. Name the point as Q

where the arc intersects the number line. Obviously distance OQ is $\sqrt{2}$. That is, the number shown by the point Q is $\sqrt{2}$.

If we mark point R on the number line to the left of O, at the same distance as OQ, then it will indicate the number $-\sqrt{2}$.

We will prove that $\sqrt{2}$ is an irrational number in the next standard. We will also see that the decimal form of an irrational number is non-terminating and non-recurring.

Note that -

In the previous standard we have learnt that π is not a rational number. It means it is irrational. For calculation purpose we take its value as $\frac{22}{7}$ or 3.14 which are very close to π ; but $\frac{22}{7}$ and 3.14 are rational numbers.

The numbers which can be shown by points of a number line are called real numbers. We have seen that all rational numbers can be shown by points of a number line. Therefore, all rational numbers are real numbers. There are infinitely many irrational numbers on the number line.

 $\sqrt{2}$ is an irrational number. Note that the numbers like $3\sqrt{2}$, $7 + \sqrt{2}$, $3 - \sqrt{2}$ etc. are also irrational numbers; because if $3\sqrt{2}$ is rational then $\frac{3\sqrt{2}}{3}$ should also be a rational number, which is not true.

We learnt to show rational numbers on a number line. We have shown the irrational number $\sqrt{2}$ on a number line. Similarly we can show irrational numbers like $\sqrt{3}$, $\sqrt{5}$. . . on a number line.

Practice Set 1.4

1. The number $\sqrt{2}$ is shown on a number line. Steps are given to show $\sqrt{3}$ on the number line using $\sqrt{2}$. Fill in the boxes properly and complete the activity.

Activity:

The point Q on the number line shows the number

- Right angled Δ ORQ is obtained by drawing seg OR.
- $l(OQ) = \sqrt{2}$, l(QR) = 1

.. by Pythagoras theorem,

Draw an arc with centre O and radius OR. Mark the point of intersection of the line and the arc as C. The point C shows the number $\sqrt{3}$.

- Show the number $\sqrt{5}$ on the number line. 2.
- Show the number $\sqrt{7}$ on the number line. **3***.

kkk

Answers

Practice Set 1.1

2. (1)
$$\frac{-10}{4}$$

(2) C (3) True

Practice Set 1.2

$$(2) \ 0 > \frac{-9}{5}$$

(3)
$$\frac{8}{7} > 0$$

$$(4) \ \frac{-5}{4} < \frac{1}{4}$$

1. (1)
$$-7 < -2$$
 (2) $0 > \frac{-9}{5}$ (3) $\frac{8}{7} > 0$ (4) $\frac{-5}{4} < \frac{1}{4}$ (5) $\frac{40}{29} < \frac{141}{29}$

(6)
$$\frac{-17}{20} < \frac{-13}{20}$$
 (7) $\frac{15}{12} > \frac{7}{16}$ (8) $\frac{-25}{8} < \frac{-9}{4}$ (9) $\frac{12}{15} > \frac{3}{5}$

$$(7) \ \frac{15}{12} > \frac{7}{16}$$

$$(8) \frac{-25}{8} < \frac{-9}{4}$$

$$(9) \frac{12}{15} > \frac{3}{5}$$

$$(10) \ \frac{-7}{11} > \frac{-3}{4}$$

Practice Set 1.3

(1) $0.\overline{243}$ (2) $0.\overline{428571}$ (3) $0.6\overline{428571}$ (4) -20.6 (5) $-0.8\overline{46153}$

