INTRODUCTION

1 Statique, Mécanique & Génie/Ingénierie Mécanique

1 Statique, Mécanique & Génie/Ingénierie Mécanique

GÉNIE/INGÉNIERIE

Application Maths & Sciences
Physiques à la conception &
fabrication des articles qui
profitent à l'humanité

MÉCANIQUE

Considère action des forces sur des corps ou fluides au repos ou en mouvement

INGÉNIERIE MÉCANIQUE

Branche d'ingénierie appliquant principes de mécanique aux conceptions prenant en compte les effets des forces

1 Statique, Mécanique & Génie/Ingénierie Mécanique

- ◆ Grandeur Scalaire & Grandeur vectorielle :
 - Grandeur Scalaire:
 - quantité ayant seulement une magnitude
 - Nombre réel positif, négatif ou zéro
 - Exemples : température, temps, ...
 - Grandeur vectorielle :
 - Quantité ayant une magnitude, direction (orientation & sens)
 - Nombre non négatif
 - Suit loi de parallélogramme pour addition
 - Exemples : déplacement, vitesse, force, ...
- ◆ Notation d'un vecteur
 - \overrightarrow{A} , \overline{A} , \overrightarrow{A}
 - Magnitude d'un vecteur A : |A|
- ▶ Représentation géométrique d'un vecteur :
 - Segment de droite dirigé (flèche)
 - Magnitude
 - Direction spécifiée par le sens de flèche & angle fait par rapport à une référence

- ▶ Loi du parallélogramme pour addition des vecteurs :
 - A & B: composantes
 - C : Résultante

- ▶ Loi du triangle pour addition des vecteurs :
 - A & B: composantes
 - C : Résultante

- ◆ Addition de trois vecteurs :
 - E , F & G : composantes
 - E + F : Résultante de E & F
 - E + F + G : Résultante de E , F & G

◆ Soustraction de deux vecteurs :

•
$$A - B = A + (-B)$$

◆ Lois de sinus & cosinus

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$b^2 = c^2 + a^2 - 2ca \cos \beta$$

$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

◆ Exemple 1

La figure ci-contre montre deux vecteurs positions de magnitude A = 18.3 m & B = 30.5 m. Déterminer la résultante R = A + B analytiquement et graphiquement utilisant la loi du triangle

◆ Exemple 2

La force verticale **P** de magnitude 100 kN est appliquée au treillis ABC. Résoudre **P** en ses composantes qui sont parallèles aux membres AB & AC

◆ Exemple 3

Les magnitudes de deux vecteurs vitesses sont $v_1=3\,m/s$ & $v_2=2\,m/s$. Déterminer leur résultante $v=v_1+v_2$.

◆ Composantes rectangulaires & direction cosinus

Composantes vectorielles de A

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$

 $i,j \ \& \ k$: vecteurs unitaires

Composantes scalaires de A

$$A_x = A\cos\theta_x$$
 $A_y = A\cos\theta_y$ $A_z = A\cos\theta_z$

Magnitude de A, reliée à ses composantes scalaires

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Vecteur unité de A:

$$\lambda = \frac{A}{A}$$

◆ Composantes rectangulaires & direction cosinus

Magnitude de \overrightarrow{AB} (distance d):

$$|\overrightarrow{AB}| = d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

◆ Exemple 4

Pour la figure ci-contre, déterminer : (a) la représentation rectangulaire de la position du vecteur **A**, (b) les angles entre **A** et chacune des coordonnées positives des axes.

◆ Exemple 5

Pour la figure ci-contre, calculer la résultante de ces 3 forces avec $F_1=1.6$ kN, $F_2=1.2$ kN & $F_3=1.0$ kN.