

National University of Computer & Emerging Sciences MT2008 - Multivariate Calculus

13.5

THE CHAIN RULE

In this section we will derive versions of the chain rule for functions of two or three variables. These new versions will allow us to generate useful relationships among the derivatives and partial derivatives of various functions.

CHAIN RULES FOR DERIVATIVES

If y is a differentiable function of x and x is a differentiable function of t, then the chain rule for functions of one variable states that, under composition, y becomes a differentiable function of t with

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

13.5.1 THEOREM (Chain Rules for Derivatives) If x = x(t) and y = y(t) are differentiable at t, and if z = f(x, y) is differentiable at the point (x, y) = (x(t), y(t)), then z = f(x(t), y(t)) is differentiable at t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$
 (5)

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

If each of the functions x = x(t), y = y(t), and z = z(t) is differentiable at t, and if w = f(x, y, z) is differentiable at the point (x, y, z) = (x(t), y(t), z(t)), then the function w = f(x(t), y(t), z(t)) is differentiable at t and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
 (6)

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y, z).

 $\frac{\partial z}{\partial x}$ $\frac{\partial z}{\partial y}$ $\frac{dx}{dt}$ $\frac{dy}{dt}$ $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$

▲ Figure 13.5.1

Formula (5) can be represented schematically by a "tree diagram" that is constructed as follows (Figure 13.5.1). Starting with z at the top of the tree and moving downward, join each variable by lines (or branches) to those variables on which it depends *directly*. Thus,

z is joined to x and y and these in turn are joined to t. Next, label each branch with a derivative whose "numerator" contains the variable at the top end of that branch and whose "denominator" contains the variable at the bottom end of that branch. This completes the "tree." To find the formula for dz/dt, follow the two paths through the tree that start with

Create a tree diagram for Formula (6).

► Example 1 Suppose that

$$z = x^2 y, \quad x = t^2, \quad y = t^3$$

z and end with t. Each such path corresponds to a term in Formula (5).

Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and differentiating directly.

Solution. By the chain rule [Formula (5)],

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = (2xy)(2t) + (x^2)(3t^2)$$
$$= (2t^5)(2t) + (t^4)(3t^2) = 7t^6$$

Alternatively, we can express z directly as a function of t,

$$z = x^2y = (t^2)^2(t^3) = t^7$$

and then differentiate to obtain $dz/dt = 7t^6$. However, this procedure may not always be convenient.

► **Example 2** Suppose that

$$w = \sqrt{x^2 + y^2 + z^2}$$
, $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$

Use the chain rule to find $dw/d\theta$ when $\theta = \pi/4$.

Solution. From Formula (6) with θ in the place of t, we obtain

$$\frac{dw}{d\theta} = \frac{\partial w}{\partial x} \frac{dx}{d\theta} + \frac{\partial w}{\partial y} \frac{dy}{d\theta} + \frac{\partial w}{\partial z} \frac{dz}{d\theta}
= \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2x)(-\sin\theta) + \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2y)(\cos\theta)
+ \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2z)(\sec^2\theta)$$

When $\theta = \pi/4$, we have

$$x = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad y = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad z = \tan\frac{\pi}{4} = 1$$

Substituting $x = 1/\sqrt{2}$, $y = 1/\sqrt{2}$, z = 1, $\theta = \pi/4$ in the formula for $dw/d\theta$ yields

$$\frac{dw}{d\theta}\bigg|_{\theta=\pi/4} = \frac{1}{2} \left(\frac{1}{\sqrt{2}}\right) (\sqrt{2}) \left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{2} \left(\frac{1}{\sqrt{2}}\right) (\sqrt{2}) \left(\frac{1}{\sqrt{2}}\right) + \frac{1}{2} \left(\frac{1}{\sqrt{2}}\right) (2) (2)$$

$$= \sqrt{2} \blacktriangleleft$$

Confirm the result of Example 2 by expressing w directly as a function of θ .

REMARK

There are many variations in derivative notations, each of which gives the chain rule a different look. If z = f(x, y), where x and y are functions of t, then some possibilities are

$$\frac{dz}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt}$$
$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
$$\frac{df}{dt} = f_x x'(t) + f_y y'(t)$$

Similarly, if w = f(x, y, z) and x, y, and z are each functions of u and v, then the composition w = f(x(u, v), y(u, v), z(u, v)) expresses w as a function of u and v. Thus we can also ask for the derivatives $\partial w/\partial u$ and $\partial w/\partial v$; and we can investigate the relationship between these derivatives, the partial derivatives $\partial w/\partial x$, $\partial w/\partial y$, and $\partial w/\partial z$, and the partial derivatives of x, y, and z with respect to u and v.

▲ Figure 13.5.2

13.5.2 THEOREM (Chain Rules for Partial Derivatives) If x = x(u, v) and y = y(u, v) have first-order partial derivatives at the point (u, v), and if z = f(x, y) is differentiable at the point (x, y) = (x(u, v), y(u, v)), then z = f(x(u, v), y(u, v)) has first-order partial derivatives at the point (u, v) given by

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \qquad and \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial v} \qquad (7-8)$$

If each function x = x(u, v), y = y(u, v), and z = z(u, v) has first-order partial derivatives at the point (u, v), and if the function w = f(x, y, z) is differentiable at the point (x, y, z) = (x(u, v), y(u, v), z(u, v)), then w = f(x(u, v), y(u, v), z(u, v)) has first-order partial derivatives at the point (u, v) given by

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial u} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial u} \quad and \quad \frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial v} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial v}$$
(9-10)

▲ Figure 13.5.2

▲ Figure 13.5.3

PROOF We will prove Formula (7); the other formulas are derived similarly. If v is held fixed, then x = x(u, v) and y = y(u, v) become functions of u alone. Thus, we are back to the case of Theorem 13.5.1. If we apply that theorem with u in place of t, and if we use ∂ rather than d to indicate that the variable v is fixed, we obtain

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \blacksquare$$

Figures 13.5.2 and 13.5.3 show tree diagrams for the formulas in Theorem 13.5.2. As illustrated in Figure 13.5.2, the formula for $\partial z/\partial u$ can be obtained by tracing all paths through the tree that start with z and end with u, and the formula for $\partial z/\partial v$ can be obtained by tracing all paths through the tree that start with z and end with v. Figure 13.5.3 displays analogous results for $\partial w/\partial u$ and $\partial w/\partial v$.

► Example 3 Given that

$$z = e^{xy}$$
, $x = 2u + v$, $y = u/v$

find $\partial z/\partial u$ and $\partial z/\partial v$ using the chain rule.

Solution.

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = (ye^{xy})(2) + (xe^{xy}) \left(\frac{1}{v}\right) = \left[2y + \frac{x}{v}\right] e^{xy}$$

$$= \left[\frac{2u}{v} + \frac{2u + v}{v}\right] e^{(2u + v)(u/v)} = \left[\frac{4u}{v} + 1\right] e^{(2u + v)(u/v)}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} = (ye^{xy})(1) + (xe^{xy}) \left(-\frac{u}{v^2}\right)$$

$$= \left[y - x\left(\frac{u}{v^2}\right)\right] e^{xy} = \left[\frac{u}{v} - (2u + v)\left(\frac{u}{v^2}\right)\right] e^{(2u + v)(u/v)}$$

$$= -\frac{2u^2}{v^2} e^{(2u + v)(u/v)}$$

► **Example 4** Suppose that

$$w = e^{xyz}$$
, $x = 3u + v$, $y = 3u - v$, $z = u^2v$

Use appropriate forms of the chain rule to find $\partial w/\partial u$ and $\partial w/\partial v$.

Solution. From the tree diagram and corresponding formulas in Figure 13.5.3 we obtain

$$\frac{\partial w}{\partial u} = yze^{xyz}(3) + xze^{xyz}(3) + xye^{xyz}(2uv) = e^{xyz}(3yz + 3xz + 2xyuv)$$

and

$$\frac{\partial w}{\partial v} = yze^{xyz}(1) + xze^{xyz}(-1) + xye^{xyz}(u^2) = e^{xyz}(yz - xz + xyu^2)$$

If desired, we can express $\partial w/\partial u$ and $\partial w/\partial v$ in terms of u and v alone by replacing x, y, and z by their expressions in terms of u and v.

3

OTHER VERSIONS OF THE CHAIN RULE

Although we will not prove it, the chain rule extends to functions $w = f(v_1, v_2, ..., v_n)$ of n variables. For example, if each v_i is a function of t, i = 1, 2, ..., n, the relevant formula is

$$\frac{dw}{dt} = \frac{\partial w}{\partial v_1} \frac{dv_1}{dt} + \frac{\partial w}{\partial v_2} \frac{dv_2}{dt} + \dots + \frac{\partial w}{\partial v_n} \frac{dv_n}{dt}$$
(11)

Note that (11) is a natural extension of Formulas (5) and (6) in Theorem 13.5.1.

There are infinitely many variations of the chain rule, depending on the number of variables and the choice of independent and dependent variables. A good working procedure is to use tree diagrams to derive new versions of the chain rule as needed.

Example 5 Suppose that $w = x^2 + y^2 - z^2$ and

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

Use appropriate forms of the chain rule to find $\partial w/\partial \rho$ and $\partial w/\partial \theta$.

▲ Figure 13.5.4

Solution. From the tree diagram and corresponding formulas in Figure 13.5.4 we obtain

$$\frac{\partial w}{\partial \rho} = 2x \sin \phi \cos \theta + 2y \sin \phi \sin \theta - 2z \cos \phi$$

$$= 2\rho \sin^2 \phi \cos^2 \theta + 2\rho \sin^2 \phi \sin^2 \theta - 2\rho \cos^2 \phi$$

$$= 2\rho \sin^2 \phi (\cos^2 \theta + \sin^2 \theta) - 2\rho \cos^2 \phi$$

$$= 2\rho (\sin^2 \phi - \cos^2 \phi)$$

$$= -2\rho \cos 2\phi$$

$$\frac{\partial w}{\partial \theta} = (2x)(-\rho \sin \phi \sin \theta) + (2y)\rho \sin \phi \cos \theta$$

$$= -2\rho^2 \sin^2 \phi \sin \theta \cos \theta + 2\rho^2 \sin^2 \phi \sin \theta \cos \theta$$

$$= 0$$

This result is explained by the fact that w does not vary with θ . You can see this directly by expressing the variables x, y, and z in terms of ρ, ϕ , and θ in the formula for w. (Verify that $w = -\rho^2 \cos 2\phi$.)

Example 6 Suppose that

$$w = xy + yz$$
, $y = \sin x$, $z = e^x$

Use an appropriate form of the chain rule to find dw/dx.

Solution. From the tree diagram and corresponding formulas in Figure 13.5.5 we obtain

$$\frac{dw}{dx} = y + (x+z)\cos x + ye^x$$
$$= \sin x + (x+e^x)\cos x + e^x\sin x$$

This result can also be obtained by first expressing w explicitly in terms of x as

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \frac{dy}{dx} + \frac{\partial w}{\partial z} \frac{dz}{dx}$$

▲ Figure 13.5.5

 $w = x\sin x + e^x \sin x$

and then differentiating with respect to x; however, such direct substitution is not always possible. \triangleleft

NARNING The symbol ∂z , unlike the differential dz, has no meaning of its own. For example, if we were to "cancel" partial symbols in the chain-rule formula

 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$

we would obtain

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial u} + \frac{\partial z}{\partial u}$$

which is false in cases where $\partial z/\partial u \neq 0$.

One of the principal uses of the chain rule for functions of a *single* variable was to compute formulas for the derivatives of compositions of functions. Theorems 13.5.1 and 13.5.2 are important not so much for the computation of formulas but because they allow us to express *relationships* among various derivatives. As an illustration, we revisit the topic of implicit differentiation.

■ IMPLICIT DIFFERENTIATION

Consider the special case where z = f(x, y) is a function of x and y and y is a differentiable function of x. Equation (5) then becomes

$$\frac{dz}{dx} = \frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx}$$
(12)

Show that the function y=x is defined implicitly by the equation

$$x^2 - 2xy + y^2 = 0$$

but that Theorem 13.5.3 is not applicable for finding dy/dx.

13.5.3 THEOREM If the equation f(x, y) = c defines y implicitly as a differentiable function of x, and if $\partial f/\partial y \neq 0$, then

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} \tag{14}$$

► Example 7 Given that

$$x^3 + y^2x - 3 = 0$$

find dy/dx using (14), and check the result using implicit differentiation.

Solution. By (14) with $f(x, y) = x^3 + y^2x - 3$,

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{3x^2 + y^2}{2yx}$$

Alternatively, differentiating implicitly yields

$$3x^2 + y^2 + x\left(2y\frac{dy}{dx}\right) - 0 = 0$$
 or $\frac{dy}{dx} = -\frac{3x^2 + y^2}{2yx}$

13.5.4 THEOREM If the equation f(x, y, z) = c defines z implicitly as a differentiable function of x and y, and if $\partial f/\partial z \neq 0$, then

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z} \qquad and \qquad \frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}$$

Example 8 Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\partial z/\partial x$ and $\partial z/\partial y$ at the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$.

Solution. By Theorem 13.5.4 with $f(x, y, z) = x^2 + y^2 + z^2$,

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z} = -\frac{2x}{2z} = -\frac{x}{z}$$
 and $\frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z} = -\frac{2y}{2z} = -\frac{y}{z}$

At the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$, evaluating these derivatives gives $\partial z/\partial x = -1$ and $\partial z/\partial y = -\frac{1}{2}$.

sion for $\partial z/\partial y$ found in Example 8 and that found in Example 7 of Section 13.3.

Note the similarity between the expres-