CLAIMS

1	1. (currently amended) A method for reducing spurious emissions in an amplified signal to		
2	applying pre-distortion, whose magnitude is frequency-dependent, to an input signal to generate a pre-		
3	distorted signal, such that, when the pre-distorted signal is applied to an amplifier to generate the		
4	amplified signal, the pre-distortion reduces the spurious emissions in the amplified signal, wherein the		
5	pre-distorted signal is generated by:		
6	(a) generating a first frequency-dependent pre-distortion signal corresponding to a first set		
7	frequency components for the input signal;		
8	(b) generating a second frequency-dependent pre-distortion signal corresponding to a secon		
9	set of frequency components for the input signal, wherein the first set of frequency components is		
10	different from the second set of frequency components; and		
11	(c) combining the first and second frequency-dependent pre-distortion signals to generate		
12	the pre-distorted signal, wherein:		
13	the first set of frequency components corresponds to positive_frequency components of		
14	the input signal, wherein the positive-frequency components correspond to frequencies that are greater		
15	than a center frequency of the input signal; and		
16	the second set of frequency components corresponds to negative-frequency components		
17	of the input signal, wherein the negative-frequency components correspond to frequencies that are		
18 .	smaller than the center frequency of the input signal.		
1	2. (previously presented) The method of claim 1, wherein the phase of the pre-distortion i		
2 also frequency-dependent.			
1	3. (canceled)		
1	4. (previously presented) The method of claim 1, wherein:		
2	the first frequency-dependent pre-distortion signal is generated by:		
3	(1) generating a first set of one or more waveforms corresponding to a first set of		
4	one or more pre-distortion parameters;		
5	(2) differentiating the first set of one or more waveforms with respect to time to		
. 6	generate a first set of one or more differentiated waveforms; and		
7	(3) applying the first set of one or more differentiated waveforms to a positive-		
8	frequency operation to generate the first frequency-dependent pre-distortion signal; and		
9	the second frequency-dependent pre-distortion signal is generated by:		

10		(1) generating a second set of one or more waveforms corresponding to a second set		
11	of one or more pre-distortion parameters;			
12		(2) differentiating the second set of one or more waveforms with respect to time to		
13	generate a seco	ond set of one or more differentiated waveforms; and		
14		(3) applying the second set of one or more differentiated waveforms to a negative-		
15	frequency oper	ration to generate the second frequency-dependent pre-distortion signal.		
1	5-6.	(canceled)		
1	7.	(previously presented) The method of claim 1, further comprising the step of generating		
2	a frequency-independent pre-distorted signal from the input signal, wherein the frequency-independent			
3	pre-distorted si	gnal and the first and second frequency-dependent pre-distortion signals are combined to		
4	generate the pre-distorted signal.			
1	8.	(previously presented) The method of claim 1, wherein:		
2	the input signal is represented in a base-band domain; and			
3	the firs	at and second frequency-dependent pre-distortion signals are generated in a digital domain.		
1	9.	(currently amended) An apparatus for applying pre-distortion to an input signal to		
2	generate a pre-distorted signal, such that, when the pre-distorted signal is applied to an amplifier to			
3	generate an amplified signal, the pre-distortion reduces spurious emissions in the amplified signal, the			
4	apparatus comprising:			
5	(a)	a first signal processing path adapted to generate a main pre-distortion signal from the		
6	input signal;			
7	(b)	a second signal processing path adapted to generate a first frequency-dependent pre-		
8	distortion signa	al corresponding to a first set of frequency components for the input signal;		
9	(c)	a third signal processing path adapted to generate a second frequency-dependent pre-		
10	distortion signa	al corresponding to a second set of frequency components for the input signal, wherein		
11	frequencies of	the first set of frequency components [[is]] are different from frequencies of the second set		
12	of frequency co	of frequency components; and		
13	(d)	a combiner adapted to combine the first and second frequency-dependent pre-distortion		
14	signals with the	e main pre-distortion signal to generate the pre-distorted signal.		

10.

1

(currently amended) The apparatus of claim 9, wherein:

2	the first set of frequency components corresponds to positive_frequency components of the inpu		
3	signal, wherein the positive-frequency components correspond to frequencies that are greater than a		
4	center frequency of the input signal; and		
5	the second set of frequency components corresponds to negative_frequency components of the		
6	input signal, wherein the negative-frequency components to negative frequencies that are smaller than t		
7	center frequency of the input signal.		
1	11. (previously presented) The apparatus of claim 10, wherein:		
2	the first frequency-dependent pre-distortion signal is generated by:		
3	(1) generating a first set of one or more waveforms corresponding to a first set of		
4	one or more pre-distortion parameters;		
5	(2) differentiating the first set of one or more waveforms with respect to time to		
6	generate a first set of one or more differentiated waveforms; and		
7	(3) applying the first set of one or more differentiated waveforms to a positive-		
8	frequency operation to generate the first frequency-dependent pre-distortion signal; and		
9	the second frequency-dependent pre-distortion signal is generated by:		
10	(1) generating a second set of one or more waveforms corresponding to a second set		
11	of one or more pre-distortion parameters;		
12	(2) differentiating the second set of one or more waveforms with respect to time to		
13	generate a second set of one or more differentiated waveforms; and		
14	(3) applying the second set of one or more differentiated waveforms to a negative-		
15	frequency operation to generate the second frequency-dependent pre-distortion signal.		
1	12. (previously presented) The apparatus of claim 11, wherein the positive-frequency and		
2	negative-frequency operations are implemented using filters.		
1	13. (currently amended) The apparatus of claim 9, wherein:		
2	the first set of frequency components corresponds to positive-frequency components and		
3	negative_frequency components of the input signal; [[and]]		
4	the second set of frequency components corresponds to only positive_frequency components or		
5	only negative_frequency components of the input signal;		
6	the positive-frequency components correspond to frequencies that are greater than a center		
7	frequency of the input signal; and		

8	the negative-frequency components correspond to frequencies that are smaller than the center		
9	frequency of the input signal.		
1	14. (previously presented) The apparatus of claim 13, wherein:		
2	the first frequency-dependent pre-distortion signal is generated by:		
3	(1) generating a first set of one or more waveforms corresponding to a first set of		
4	one or more pre-distortion parameters;		
5	(2) differentiating the first set of one or more waveforms with respect to time to		
6	generate the first frequency-dependent pre-distortion signal; and		
7	the second frequency-dependent pre-distortion signal is generated by:		
8	(1) generating a second set of one or more waveforms corresponding to a second set		
9	of one or more pre-distortion parameters;		
10	(2) differentiating the second set of one or more waveforms with respect to time to		
11	generate a second set of one or more differentiated waveforms; and		
12	(3) applying the second set of one or more differentiated waveforms to a negative-		
13	frequency operation or a positive-frequency operation to generate the second frequency-dependent pre-		
14	distortion signal.		
1	15. (previously presented) The apparatus of claim 14, wherein the positive-frequency		
2	operation or the negative-frequency operation is implemented using a filter.		
1	16. (previously presented) The apparatus of claim 9, wherein:		
2	the input signal is represented in a base-band domain; and		
3	the main pre-distortion signal and the first and second frequency-dependent pre-distortion signals		
4	are generated in a digital domain.		
1	17. (previously presented) The apparatus of claim 9, wherein:		
2	the first signal processing path comprises:		
3	(1) an index generator adapted to generate index values proportional to envelope		
4	power of the input signal;		
5	(2) a first look-up table adapted to provide first and second pre-distortion parameters		
6	using the index values; and		
7	(3) a first multiplier adapted to multiply the input signal by the first and second pre-		
8	distortion parameters to generate the main pre-distortion signal;		

10	(1) a second look-up table adapted to provide third and fourth pre-distortion		
11	parameters using the index values;		
12	(2) a second multiplier adapted to multiply the input signal by the third and fourth		
13	pre-distortion parameters to generate first multiplied signals; and		
14	(3) a first differentiator adapted to differentiate the first multiplied signals with		
15	respect to time to generate first differentiated signals; and		
16	the third signal processing path comprises:		
17	(1) a third look-up table adapted to provide fifth and sixth pre-distortion parameters		
18	using the index values;		
19	(2) a third multiplier adapted to multiply the input signal by the fifth and sixth pre-		
20	distortion parameters to generate second multiplied signals; and		
21	(3) a second differentiator adapted to differentiate the second multiplied signals with		
22	respect to time to generate second differentiated signals.		
1	18. (previously presented) The apparatus of claim 17, wherein:		
2	the second signal processing path further comprises a positive-frequency filter adapted to filter		
3	the first differentiated signals to generate the first frequency-dependent predistortion signal; and		
4	the third signal processing path further comprises a negative-frequency filter adapted to filter the		
5	second differentiated signals to generate the second frequency-dependent predistortion signal.		
1	19. (previously presented) The apparatus of claim 17, wherein:		
2	the first differentiated signals are the first frequency-dependent predistortion signal; and		
3	the third signal processing path further comprises either a positive-frequency filter or a negative-		
4	frequency filter adapted to filter the second differentiated signals to generate the second frequency-		
5	dependent predistortion signal.		
1	20. (currently amended) A method for reducing spurious emissions in an amplified signal by		
2	applying pre-distortion, whose magnitude is frequency-dependent, to an input signal to generate a pre-		
3	distorted signal, such that, when the pre-distorted signal is applied to an amplifier to generate the		
4	amplified signal, the pre-distortion reduces the spurious emissions in the amplified signal, wherein the		
5	pre-distorted signal is generated by:		
6	(a) generating a first frequency-dependent pre-distortion signal corresponding to a first set of		
7	frequency components for the input signal;		

the second signal processing path comprises:

9

8	(b)	generating a second frequency-dependent pre-distortion signal corresponding to a second		
9	set of frequenc	y components for the input signal, wherein the first set of frequency components is		
10	different from the second set of frequency components; and			
11	(c)	combining the first and second frequency-dependent pre-distortion signals to generate		
12	the pre-distorte	the pre-distorted signal, wherein:		
13		the first set of frequency components corresponds to positive-frequency components and		
14	negative_frequ	ency components of the input signal; [[and]]		
15		the second set of frequency components corresponds to only positive_frequency		
16	components or	only negative_frequency components of the input signal;		
17		the positive-frequency components correspond to frequencies that are greater than a		
18	center frequen	cy of the input signal; and		
19		the negative-frequency components correspond to frequencies that are smaller than the		
20	center frequen	cy of the input signal.		
1	21.	(previously presented) The method of claim 20, wherein the phase of the pre-distortion		
2	is also frequer	ncy-dependent.		
1	22.	(previously presented) The method of claim 20, wherein:		
2	the fir	st frequency-dependent pre-distortion signal is generated by:		
3		(1) generating a first set of one or more waveforms corresponding to a first set of		
4	one or more p	re-distortion parameters;		
5		(2) differentiating the first set of one or more waveforms with respect to time to		
6	generate the f	irst frequency-dependent pre-distortion signal; and		
7	the se	cond frequency-dependent pre-distortion signal is generated by:		
8		(1) generating a second set of one or more waveforms corresponding to a second set		
9	of one or mor	e pre-distortion parameters;		
10		(2) differentiating the second set of one or more waveforms with respect to time to		
11	generate a sec	cond set of one or more differentiated waveforms; and		
12		(3) applying the second set of one or more differentiated waveforms to a negative-		
13	frequency ope	frequency operation or a positive-frequency operation to generate the second frequency-dependent pre-		
14	distortion sign	nal.		
1	23.	(previously presented) The method of claim 20, further comprising the step of		
2	generating a f	requency-independent pre-distorted signal from the input signal, wherein the frequency-		

- 3 independent pre-distorted signal and the first and second frequency-dependent pre-distortion signals are
- 4 combined to generate the pre-distorted signal.
- 1 24. (previously presented) The method of claim 20, wherein:
- 2 the input signal is represented in a base-band domain; and
- 3 the first and second frequency-dependent pre-distortion signals are generated in a digital domain.