PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-006348

(43) Date of publication of application: 13.01.1998

(51)Int.CI.

B29C 33/52 B29C 33/76 B29C 45/00 // B29L 31:30

(21)Application number: 08-161731

(71)Applicant: CALSONIC CORP

(22)Date of filing:

21.06.1996

(72)Inventor: FUNATSU TAKASHI

(54) HOLLOW CORE. ITS PRODUCTION AND PRODUCTION OF HOLLOW RESIN PRODUCT **USING HOLLOW CORE**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a hollow core reduced in the use amt. of a low m.p. alloy and to produce a hollow resin product using the hollow core. SOLUTION: A low m.p. alloy layer 30 is formed on the outer peripheral surface of a pipe 10. The pipe 10 is made of aluminum or a heat-resistant resin. The low m.p. alloy layer 30 constitutes the molding region of a hollow resin product. The pipe 10 is arranged to a casting mold 20 and a low m.p. alloy is injected into the gap between the pipe 10 and the casting mold 20 to form the low m.p. alloy layer 30 on the outer peripheral surface 17 of the pipe 10. A hollow core A wherein the low m.p. alloy layer 30 is formed on the outer peripheral surface 17 of the pipe 10 is arranged in an injection mold and a resin is injected into the injection mold and the hollow core A and, thereafter, the pipe 10 and the low m.p. alloy are taken out of an injection-molded resin cured object.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-6348

(43)公開日 平成10年(1998) 1月13日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ			技術表示箇所	
B 2 9 C 33/52				33/52			
33/76				33/76			
45/00			45/00				
# B 2 9 L 31:30							
			審查請求	未請求	請求項の数 5	OL (全 4 頁)	
(21)出願番号	特顯平8-161731 (71)出願人 00		0000047	300004765			
				カルソニ	ニック株式会社		
(22) 出願日	平成8年(1996)6月21日			東京都中	中野区南台5丁	目24番15号	
			(72)発明者	船津 貴	志		
				東京都中	中野区南台5丁	目24番15号 カルソ	
				ニックを	未式会社内		
			(74)代理人	、弁理士	古谷 史旺	(外1名)	
			İ				
-							

(54) 【発明の名称】 中空中子及びその製造方法並びに中空中子を用いた中空樹脂製品の製造方法

(57)【要約】

【課題】 低融点合金の使用料を低減した中空中子及び その製造方法並びに中空中子を用いた中空樹脂製品の製 造方法を提供することにある。

【解決手段】 パイプ10の外周面17に低融点合金層30を形成して成る。パイプ10は、アルミニウム、鉄、耐熱性樹脂である。低融点合金層30は中空樹脂製品の成形領域を構成する。パイプ10を鋳造型20に配設し、パイプ10と鋳造型20との間に低融点合金を注入し、パイプ10の外周面17に低融点合金層30を形成する。パイプ10の外周面17に低融点合金層30を形成して成る中空中子Aを射出成形用金型40内に配設し、射出成形用金型40と中空中子Aとの間に樹脂を射出した後、射出成形された樹脂硬化体50からパイプ10及び低融点合金を取り出す。

1

【特許請求の範囲】

【請求項1】 バイブ(10)の外周面(17)に低融 点合金層(30)を形成して成ることを特徴とする中空 中子。

【請求項2】 請求項1記載の中空中子において、バイプ(10)は、アルミニウム、鉄、耐熱性樹脂であるととを特徴とする中空中子。

【請求項3】 請求項1記載の中空中子において、低融 点合金層(30)は中空樹脂製品の成形領域を構成する ことを特徴とする中空中子。

【請求項4】 バイブ(10)を鋳造型(20)に配設し、バイブ(10)と鋳造型(20)との間に低融点合金を注入し、バイブ(10)の外周面(17)に低融点合金層(30)を形成することを特徴とする中空中子の製造方法。

【請求項5】 請求項1記載の中空中子を射出成形用金型(40)内に配設し、射出成形用金型(40)と中空中子との間に樹脂を射出した後、射出成形された樹脂硬化体(50)からバイブ(10)及び低融点合金を取り出すことを特徴とする中空中子を用いた中空樹脂製品の 20製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車のキャブレータとエンジンとを接続する樹脂製インテークマニホールド、ターボチャージャで加圧された空気をエンジンの吸気側に導く樹脂管、ラジエータとヒーターコアとを繋ぐ樹脂管等の中空樹脂製品を製造するために使用される中空中子及びその製造方法並びに中空中子を用いた中空樹脂製品の製造方法に関するものである。

[0002]

【従来の技術】従来、との種の中空樹脂製品としては、例えば、特開平4-229236号公報等に配載されるものが知られている。図3は中空樹脂製品の一例を示す。

【0003】との種の中空樹脂製品4は、3次元形状をなしているので、通常の射出成形で成形することができない。そこで、従来では、低融点中子法が採用されている。先ず、中子鋳造機によってBi57-Sn43合金(融点138℃、比重8.7)等の低融点合金で中子1 40を作る。

【0004】次に、これを射出成形金型2内に配置し、例えば、ナイロン66又はナイロン6にガラス繊維を30重量%混入したナイロン樹脂、ポリプロピレン樹脂等を、射出成形用金型2と中子1との間に射出し、中子1の周囲に樹脂層3を形成する。次に、周囲に樹脂層3を形成した中子1を取り出し、中子1の溶出槽(図示せず)で加熱処理して、中子1を溶出し、中空樹脂製品4とする。

[0005]

【発明が解決しようとする課題】以上のように、低融点中子法では、低融点合金で中子1を作るため、下記のような問題点がある。例えば、500gの樹脂製デュアルダクトを製造するのに10Kg以上の中子1を必要とする。

【0006】而も、中子1は、射出成形金型2内に固定するために、両端部に幅木部5を必要とする。そのため、重量が更に増大する。中子1の中子鋳造機からの取出、射出成形機へのセットに、大型ロボットを必要とし、設備が大型化する。射出成形後に中子入り成形品を取り出すのにも、大型ロボットを必要とする。

【0007】中子溶出時に、10Kg相当の中子1の場合、180℃で40分かかるため、多量の電気エネルギーを必要とする。本発明は斯かる従来の問題点を解決するためになされたもので、その目的は、低融点合金の使用料を低減した中空中子及びその製造方法並びに中空中子を用いた中空樹脂製品の製造方法を提供することにある。

[0008]

ご【課題を解決するための手段】請求項1の発明は、バイブの外周面に低融点合金層を形成して成ることを特徴とするものである。請求項2の発明は、請求項1記載の中空中子において、バイブは、アルミニウム、鉄、耐熱性樹脂であることを特徴とするものである。

【0009】請求項3の発明は、請求項1記載の中空中子において、低融点合金層は中空樹脂製品の成形領域を構成することを特徴とするものである。請求項4の発明は、パイプを鋳造型に配設し、パイプと鋳造型との間に低融点合金を注入し、パイプの外周面に低融点合金層を形成することを特徴とするものである。

【0010】請求項5の発明は、請求項1記載の中空中子を射出成形用金型内に配設し、射出成形用金型と中空中子との間に樹脂を射出した後、射出成形された樹脂硬化体からバイブ及び低融点合金を取り出すことを特徴とするものである。

【0011】(作用)請求項1乃至請求項4の発明においては、先ず、パイプを、中空樹脂製品の形状に則して曲げ加工する。

【0012】次いで、曲げ加工されたバイブを鋳造型に 配設し、バイブと鋳造型との間に低融点合金を注入し、 バイブの外周面に中空樹脂製品の成形領域を構成する低 融点合金層を形成する。その後、鋳造型からバイブの外 周面に低融点合金層を形成して成る中空中子を得ること ができる。

【0013】請求項5記載の発明によれば、バイブの外周面に低融点合金層を形成して成る中空中子を射出成形用金型内に配設し、射出成形用金型と中空中子との間に、例えば、ナイロン66又はナイロン6にガラス繊維を30重量%混入したナイロン樹脂、ボリブロビレン樹脂等ないは、サイルである。対して形象の対してある。

50 脂等を射出する。射出成形後、射出成形された樹脂硬化

体を射出成形用金型から取り出す。

【0014】次いで、樹脂硬化体を低融点合金の溶出槽 で加熱処理して、低融点合金を溶出する。その後、樹脂 硬化体からパイプを取り出し、中空樹脂製品を得ること ができる。

[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に 基づいて説明する。

【0016】図1は、請求項1乃至請求項4の中空中子 及びその製造方法の一実施形態を示す。先ず、図1 (イ) に示すように、2本のアルミニウム製パイプ1 1, 12を一端側13, 14で接合したアルミニウム製

のパイプ10を用意する。アルミニウム製のパイプ10 は、二股形状の中空樹脂製インテークマニホールドに則 して曲げ加工が施されている。

【0017】次いで、図1(ロ)に示すように、曲げ加 工されたアルミニウム製のパイプ10を鋳造型20に配 設する。鋳造型20は、2分割される上型21と下型2 4とで構成されている。上型21は、Bi57-Sn4 充満させる凹溝部22と、アルミニウム製のパイプ10 の端部16を固定する段部23とを有する。

【0018】下型24は、アルミニウム製のパイプ10 の端部15を嵌入させる凹部25と、低融点合金を充満 させる凹溝部26と、アルミニウム製のパイプ10の端 部16を載置する段部27とを有する。

【0019】次いで、図1(ハ)に示すように、アルミ ニウム製のパイプ10の外周面17と鋳造型20の凹溝 部22、26との間に低融点合金を注入し、アルミニウ 域を構成する低融点合金層30を形成する。次いで、図 1 (二) に示すように、鋳造型20からアルミニウム製 のパイプ10の外周面17に低融点合金層30を形成し て成る中空中子Aを取り出す。

【0020】これによって、目的とする中空中子Aを得 ることができる。以上のように、本実施形態に係る中空 中子Aによれば、アルミニウム製のパイプ10と低融点 合金層30とで構成されているので、低融点合金だけで 構成された従来の中空中子に比し、軽量化が図られる。 又、中子ハンドリングロボット、中子搬送コンベヤ等の 40 設備が小型化でき、設備投資が少なくてすむ。

【0021】尚、本実施形態では、アルミニウム製のパ イブ10を用いた場合について説明したが、これに限る ことなく、260℃以上の耐熱性、鋳造時の圧力に耐え 得る強度を有する材質であれば、鉄、耐熱性樹脂であっ ても良い。又、アルミニウム製のパイプ10を二股形状 の中空樹脂製インテークマニホールドに則した形状に曲 げ加工した場合について説明したが、これに限ることな く、目的とする中空樹脂製品の形状に則して曲げ加工を 施すことができる。

【0022】図2は、請求項5記載の発明に係る中空樹 脂製品の製造方法の一実施形態を示す。 ここでは、図1 (二) に示されるアルミニウム製のパイプ10の外周面 17に低融点合金層30を形成して成る二股形状の中空 樹脂製インテークマニホールド用の中空中子Aを用いた 場合について説明する。図2(イ)には、中空中子1を 示す。

【0023】先ず、図2(ロ)に示すように、中空中子 Aを射出成形用金型40内に配設する。射出成形用金型 10 40は、2分割される上型41と下型44とで構成され ている。上型41は、例えば、ナイロン66又はナイロ ン6にガラス繊維を30重量%混入したナイロン樹脂、 ポリプロピレン樹脂等の樹脂を充満させる凹溝部42 と、アルミニウム製のパイプ10の端部16を固定する 段部43とを有する。

【0024】下型44は、アルミニウム製のパイプ10 の端部15を嵌入させる凹部45と、樹脂を充満させる 凹溝部46と、アルミニウム製のパイプ10の端部16 を載置する段部47とを有する。次いで、図2(ハ)に 3合金(融点138℃、比重8.7)等の低融点合金を 20 示すように、射出成形用金型40と中空中子Aとの間 に、例えば、ナイロン66又はナイロン6にガラス繊維 を30重量%混入したナイロン樹脂、ポリプロピレン樹 脂等の樹脂を射出する。

> 【0025】射出成形後、射出成形された樹脂硬化体5 0を射出成形用金型40から取り出す。次いで、樹脂硬 化体50を低融点合金の溶出槽で加熱処理して、低融点 合金を溶出する。その後、樹脂硬化体50からアルミニ ウム製のパイプ10パイプを取り出す。

【0026】斯くして、図2(二)に示すように、二股 ム製のパイプ10の外周面17に中空樹脂製品の成形領 30 形状の中空樹脂製インテークマニホールド(中空樹脂製 品) 60を得ることができる。以上のように、本実施形 態に係る中空樹脂製品の製造方法によれば、中空中子A がアルミニウム製のパイプ10と低融点合金層30とで 構成されているので、低融点合金だけで構成された従来 の中空中子に比べて極めて軽量となり、射出成型用金型 40への搬入、射出成形後の搬出が容易となる。

> 【0027】而も、低融点合金の使用料が従来の低融点 中子に比し少ないので、低融点中子の溶出時間を減少で きる。勿論、溶出設備を小型化できる。

[0028]

【発明の効果】以上のように、請求項1乃至請求項4の 発明によれば、パイプとこの外周面を被覆する低融点合 金層とで構成されているので、低融点合金だけで構成さ れた従来の中空中子に比し、軽量化が図られる。

【0029】又、中子ハンドリングロボット、中子搬送 コンベヤ等の設備が小型化でき、設備投資が少なくてす む。又、請求項5の発明によれば、バイブとこの外周面 を被覆する低融点合金層とで構成されているので、低融 点合金だけで構成された従来の中空中子に比べて極めて 50 軽量となり、射出成型用金型への搬入、射出成形後の搬 出が容易となる。而も、低融点合金の使用料が従来の低 融点中子に比し少ないので、低融点中子の溶出時間を減 少できると共に、溶出設備を小型化できる。

【図面の簡単な説明】

【図1】請求項1乃至請求項4の中空中子及びその製造方法の一実施形態を示す説明図である。

【図2】請求項5の中空樹脂製品の製造方法の一実施形態を示す説明図である。

【図3】従来の低融点中子法を示す説明図である。 【符号の説明】 *10 アルミニウム製のパイプ

17 アルミニウム製のパイプ10の外周面

20 鋳造型

30 低融点合金層

40 射出成形用金型

50 樹脂硬化体

60 二股形状の中空樹脂製インテークマニホールド (中空樹脂製品)

A 中空中子

*10

[図1]

【図2】

【図3】

