KARTIK MADHIRA

kartikmadhira1@gmail.com | 3012046989 | 2211 Stearns Hill Rd, Boston, MA 02451 | linkedin.com/in/kartik-madhira-aa1555115/ | kartikmadhira1.github.io

EXPERIENCE

Software Engineer, Computer Vision, Innovasea Systems

Jan 2021 - Present

- Designing and Implementing underwater perception (stereo) solution for accurate biomass estimation of fish.
- Also worked on improving air and underwater camera calibration of stereo cameras and deploying accelerated deep learning models on edge devices.

Software Engineer, Computer Vision, Vecna Robotics, Boston

Aug 2020 - Dec 2020

- Implemented perception pipeline for robustly detecting pose of payloads from a forklift robot equipped with a lidar and a camera.
- Improved detection mAP scores by 9% than existing models and deployed mechanism to train models at scale with metrics logging.

Research Assistant, RAAS Lab, University of Maryland

Sep 2019 - Aug 2020

- Implemented and deployed end-to-end perception pipeline for UAV based autonomous bridge infrastructure inspection. The sensor module includes a 3D Lidar (VLP-16), Monocular Camera and IMU.
- Perception pipeline involves semantic understanding of the environment where the infrastructure is present and catering as the input to the planning pipeline.

Perception Intern, Aeva Inc., Mountain View

May 2019 - Aug 2019

- Quantifying object tracking and detection in the perception pipeline Implemented and integrated end to end metrics to set benchmarks for tracker and classifier improvements.
- The metrics helped in improving the tracker for highway scene, acting as a feedback in the perception pipeline.

PROJECTS

UKF tracker for highway scenario using Radar and Lidar fusion

Implemented Unscented Kalman Filter based tracker for simulated highway scenario using lidar and radar data.

Structure from Motion (SfM)

A 3D reconstruction of a scene from a set of several snaps from a Quadrotor flying over a mat of AprilTags.

Visual - SLAM

- Fun implementation of the ORB-SLAM paper by Raul et al. for monocular camera moving in space.
- Odometry and sparse mapping implementation by simplifying some of the assumptions in the paper.

Human Detection Module - Software Development Project

• Followed Agile Iterative Process (AIP) with Unit Testing and pair-programming to write a software package in C++ (using OpenCV) to detect humans. Used Google Test framework.

SnapCut/Rotobrush

• Implemented Adobe After Effects segmentation pipeline SnapCut, a robust video object cutout using localized classifiers.

EDUCATION

Master of Engineering, Robotics

Aug 2018 - May 2020

University of Maryland

: 3.96

Bachelors in Technology, Instrumentation and Control Engineering

Jul 2013 - Aug 2017

Nirma University

: 3.8

SKILLS

Computer Vision: Visual Odometry, Object Segmentation, Object Detection, Visual SLAM, Structure from Motion (SfM), camera calibration, image Processing, 3D Computer Vision

Lidar & Radar: Point Cloud Processing, Lidar-Camera calibration, Semantic Mapping, Sensor Fusion, Radar based tracking

Softwares/Libraries: OpenCV, TensorFlow, PCL, Keras, Boost, Agile Iterative Process (AIP), Robot Operating System (ROS), NumPy, Eigen

Computer Languages: Python, C++, MATLAB

RECOMMENDATIONS

- Dr. Siddharth Chattpar, Chief Architect Advanced Development at Vecna Robotics
- Dr. Magnus Snorrason, Computer Vision Specialist at Vecna Robotics
- Dr. Pratap Tokekar, Associate Professor at UMD CS