Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

Li Yan

Computer Science University of California Riverside

06/10/2013

Outline

- The FTFP Problem
- Results in Dissertation
- Related Work
- 4 Techniques
- 5 Approximation Algorithms
- **6** Summary

Table of Contents

- 1 The FTFP Problem
- Results in Dissertation
- Related Work
- 4 Techniques
- 5 Approximation Algorithms
- **6** Summary

Fault-Tolerant Facility Placement Problem (FTFP)

Fault-Tolerant Facility Placement Problem (FTFP)

Fault-Tolerant Facility Placement Problem (FTFP)

Feasible Integral Solution

Instance

Feasible Integral Solution

2 2 3

Instance

Solution

Feasible Integral Solution

Instance

Solution

Cost

$$2f_1 + f_2 + 3f_3 + d_{11} + d_{12} + 2d_{14} + d_{23} + 3d_{31} = 38$$

Metric Distances: Triangle Inequality

$$d(i_1, j_2) \le d(i_1, j_1) + d(i_2, j_1) + d(i_2, j_2)$$

Needed when estimating distances...

Table of Contents

- 1 The FTFP Problem
- Results in Dissertation
- Related Work
- Techniques
- 5 Approximation Algorithms
- **6** Summary

Hardness

How hard is FTFP?

FTFP is NP-hard

FTFP is MaxSNP-hard

Best ratio ≥ 1.463 unless P = NP

Results Highlight

- LP-rounding: 1.575-approximation
- LP-rounding: asymptotic ratio of 1 when all demands large
- Primal-dual: H_n -approximation
- Primal-dual: Example of $\Omega(\log n / \log \log n)$ for dual-fitting

$$\begin{array}{ll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

$$\begin{array}{ll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

$$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$$

```
\begin{array}{ll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}
```

 $\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$

```
UFL 1.575
FTFL 1.7245
```

$$\begin{array}{ll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

$$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$$

```
Primal-dual
UFL 1.52
FTFP O(log n)
```

- Related Work
- 6 Approximation Algorithms

Related Work for UFL

Approximation Results for UFL

Shmoys, Tardos and Aardal	1997	3.16	LP-rounding
Chudak	1998	1.736	LP-rounding
Sviridenko	2002	1.58	LP-rounding
Jain and Vazirani	2001	3	primal-dual
Jain <i>et al.</i>	2002	1.61	greedy
Mahdian <i>et al.</i>	2002	1.52	greedy
Arya <i>et al.</i>	2004	3	local search
Byrka	2007	1.5	hybrid
Li	2011	1.488	hybrid

Lower Bound

Guha and Khuller 1998 1.463

Related Work for FTFL

Approximation Algorithms for FTFL

Jain and Vazirani	2000	3 In max _j r _j	primal-dual
Guha et al.	2001	4	LP-rounding
Swamy, Shmoys	2008	2.076	LP-rounding
Byrka <i>et al.</i>	2010	1.7245	LP-rounding

No primal-dual algorithms for FTFL with constant ratio.

Work on FTFP (Dissertation Topic)

Approximation Algorithms for FTFP

Xu and Shen	2009		Introduced FTFP
Liao and Shen	2011	1.861	Dual-fitting (for special case)
Yan and Chrobak	2011	3.16	LP-rounding
Yan and Chrobak	2012	1.575	LP-rounding
Yan and Chrobak	preliminary results		Dual-fitting (for general case)

Table of Contents

- Techniques

Techniques

Demand Reduction

- Reduce all r_i to polynomial values (to ensure polynomial time of rounding)
- ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original instance

- Split sites into facilities and clients into unit demands
- Split associated fractional values
- Properties ensure rounding similar to UFL can be applied

LP Formulation for FTFP

- y_i = number of facilities open at site $i \in \mathbb{F}$
- $x_{ij} =$ number of connections from client $j \in \mathbb{C}$ to site $i \in \mathbb{F}$

(Primal) minimize
$$\sum f_i y_i + \sum d_{ij} x_{ij}$$

subject to $y_i - x_{ij} \ge 0$ $\forall i, j$
 $\sum x_{ij} \ge r_j$ $\forall j$
 $x_{ij} \ge 0, y_i \ge 0$ $\forall i, j$

(Dual) maximize
$$\sum r_j \alpha_j$$

subject to $\sum \beta_{ij} \leq f_i \quad \forall i$
 $\alpha_j - \beta_{ij} \leq d_{ij} \quad \forall i, j$
 $\alpha_j \geq 0, \beta_{ij} \geq 0 \quad \forall i, j$

Algorithm for FTFP

Algorithm for FTFP

Techniques

Demand Reduction

- Reduce all r_i to polynomial values (to ensure polynomial time of rounding)
- ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original instance
- Adaptive Partitioning
 - Split sites into facilities and clients into unit demands
 - Split associated fractional values
 - Properties ensure rounding similar to UFL can be applied

Demand Reduction

Implementation

- Solving LP for $(\mathbf{x}^*, \mathbf{y}^*)$.
- $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = (\mathbf{x}^*, \mathbf{y}^*)$ round down to integer
- \bullet $(\dot{\mathbf{x}},\dot{\mathbf{y}})=(\mathbf{x}^*,\mathbf{y}^*)-(\hat{\mathbf{x}},\hat{\mathbf{y}})$, fractional part
- $\hat{r}_j = \sum_j \hat{x}_{ij}$ for $\hat{\mathcal{I}}$, $\dot{r}_j = r_j \hat{r}_j$ for $\dot{\mathcal{I}}$
- ullet $(\hat{\mathbf{x}},\hat{\mathbf{y}})$ (integral) feasible and optimal for $\hat{\mathcal{I}}$
- ullet (\dot{x},\dot{y}) (fractional) feasible and optimal for $\dot{\mathcal{I}}$

Properties

- $\dot{r}_i = \text{poly}(|\mathbb{F}|)$
- ρ -approx for $\dot{\mathcal{I}}$ implies ρ -approx for \mathcal{I}

Demand Reduction: Consequences

FTFP to FTFL, 1.7245-approximation

- Sites into facilities
- Clients with demand r_i
- FTFL size polynomial because demand reduction

Ratio
$$1 + O(|F|/Q)$$
 for $Q = \min_j r_j$, approaches 1 when Q is large

Next slide

Ratio 1 + O(|F|/Q) for FTFP

Ratio 1 + O(|F|/Q) for FTFP

Techniques

- Demand Reduction
 - Reduce all r_i to polynomial values (to ensure polynomial time of rounding)
 - ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original instance
- Adaptive Partitioning
 - Split sites into facilities and clients into unit demands
 - Split associated fractional values
 - Properties ensure rounding similar to UFL can be applied

Adaptive Partitioning

Now round each \bar{y}_{μ} and $\bar{x}_{\mu\nu}$ to 0 or 1...

Neighborhood of Demand

Neighborhood of Demand

ν needs 1 facility...

Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}

- optimal connection cost
- large facility cost

Strategy 2: do this for demands with disjoint neighborhoods

- optimal facility cost
- large connection cost

Neighborhood of Demand

ν needs 1 facility...

Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}

- optimal connection cost
- large facility cost

Strategy 2: do this for demands with disjoint neighborhoods

- optimal facility cost
- large connection cost

How to balance these two strategies?

Two Types of Demands: Primary and Non-primary

Neighborhood Structure for Siblings

Neighborhood Structure for Siblings

Example of Partitioning

Before Partitioning

Example of Partitioning

Partitioning:

- Clients → demands
- Sites → facilities
- $\bullet \ (x^*,y^*) \to (\bar{x},\bar{y})$
- $\bullet \ \sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority(ν)

• $N(\kappa_1) \cup N(\nu_1) \cap N(\kappa_2) \cup N(\nu_2) = \emptyset$

Partitioning:

- Clients → demands
- Sites → facilities
- $\bullet \ (x^*,y^*) \to (\bar{x},\bar{y})$
- $\sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority (ν)

• $N(\kappa_1) \cup N(\nu_1) \cap N(\kappa_2) \cup N(\nu_2) = \emptyset$

Partitioning:

- Clients → demands
- Sites → facilities
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\bullet \sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- ullet Each non-primary u assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) < priority (ν)

small connection cost of ν

• $N(\kappa_1) \cup N(\nu_1) \cap N(\kappa_2) \cup$ $N(\nu_2) = \emptyset$

Partitioning:

- Clients → demands
- Sites → facilities
- \bullet $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\bullet \sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- ullet Each non-primary u assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) < priority (ν)

small connection cost of ν

• $N(\kappa_1) \cup N(\nu_1) \cap N(\kappa_2) \cup$ $N(\nu_2) = \emptyset$

fault-tolerance

Partition Implementation

Partition implementation: two phases

- Phase 1, the partitioning phase
 - Define demands
 - Allocate facilities
- Phase 2, the augmenting phase
 - Add facilities to make neighborhood unit

Phase 1, Step 1

For each client, arrange neighbor facilities near to far

Phase 1, Step 1

For each client, arrange neighbor facilities near to far

Phase 1, Step 2

Select client p with min $tcc(p) + \alpha_p^*$. Two cases:

 $N(\kappa)$ $N_1(p)$

 $N_1(p)$ overlaps some $N(\kappa)$

Case 2

Phase 1, Step 2 (Cont. Case 1)

Phase 1, Step 2 (Case 1)

All facilities in $N_1(p)$ moved to $N(\nu)$

Phase 1, Step 2 (Cont. Case 2)

Move all overlapping facilities in $\widetilde{N}(p) \cap N(\kappa)$ into $N(\nu)$.

Phase 2

Add facilities from $\widetilde{N}(j)$ to $N(\nu)$ until total connection value is 1.

We are done with adaptive partitioning and got a structured fractional solution

Next: the rounding algorithms...

Table of Contents

- 6 Approximation Algorithms

3-Approximation for FTFP

Client priority values

• $tcc(j) + \alpha_i^*$ (average connection cost + dual value)

Rounding

- Facilities: Each primary κ opens random $\mu \in N(\kappa)$
- Connections: All demands assigned to κ connect to μ

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $< 3 \cdot LP^*$, because
 - Facility cost $\leq F^*$
 - Connection cost $< C^* + 2 \cdot LP^*$

1.736-Approximation for FTFP

Client priority values

• $tcc(j) + \alpha_i^*$ (average connection cost + dual value)

Rounding

- Facilities:
 - Each primary κ opens random $\mu \in N(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - if a neighbor open, connect to nearest neighbor
 - else, connect via assigned primary demand

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $\leq (1+2/e) LP^*$, because
 - Facility cost < F*
 - Connection cost $\leq C^* + \frac{2}{9} \cdot LP^*$

1.575-Approximation for FTFP - Idea

More intricate neighborhood structure

- Two neighborhoods: close and far, $N(\nu) = N_{\rm cls}(\nu) \cup N_{\rm far}(\nu)$
- $N_{\rm cls}(\nu) = \text{nearest } (1/\gamma) \text{fraction of } N(\nu)$
- $N_{\rm cls}(\nu) \cap N_{\rm cls}(\kappa) \neq \emptyset$, if ν assigned to κ
- For siblings $\nu_1, \nu_2, N_{\rm cls}(\kappa_1) \cup N(\nu_1)$ and $N_{\rm cls}(\kappa_2) \cup N(\nu_2)$ disjoint

1.575-Approximation for FTFP

Client priority values

• $tcc_{cls}(i) + dmax_{cls}(i)$ (average + worst connection cost to close neighborhood)

Rounding (extension of Byrka's)

- Facilities:
 - Each primary κ opens random $\mu \in N_{\rm cls}(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - if a neighbor open, connect to nearest neighbor
 - else, connect via assigned primary demand

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N_{\rm cls}(\kappa)$
- Cost: $\langle \gamma \cdot LP \text{ for } \gamma = 1.575, \text{ because}$
 - Facility cost $\leq \gamma \cdot F^*$
 - Connection cost $\leq \gamma \cdot C^*$

Greedy and Dual-fitting

- Greedy in polynomial time
 - Best star can be found quickly
 - Best star remains best
- Ratio H_n (Wolsey's result): Greedy is H_n -approx for
 - Minimizing a linear function
 - Subject to submodular constraint
- Lower bound $\Omega(\log n / \log \log n)$ for dual-fitting
 - Example has k groups, $n = k^k$
 - Shrinking factor is k/2

Dual feasibility forces a ratio of k/2, number of clients $n = k^k$

Table of Contents

- 1 The FTFP Problem
- 2 Results in Dissertation
- Related Work
- 4 Techniques
- 5 Approximation Algorithms
- **6** Summary

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Open Problems

- Can FTFL be approximated with the same ratio?
- LP-free algorithms for FTFP or FTFL with constant ratio?
- Close the 1.463 − 1.488 gap for UFL!