Home Security Series

Traditional Home Network

Problems?

- No security
- No privacy
- At risk for being hacked*
- No segmentation

- Anyone can just "join"
- Single failure point
- Lateral movement is easy
- Potential for slower speeds

<u>Mitigation</u>

- Segmentation create VLANs
- Isolation cut off access
- Default Deny and No Default LAN
- Firewall rules

What would this look like?

<u> Planning</u>

- Group devices into categories or levels of trust.
- Think about the level of permissions each device should have.
 - Should they know about all devices on my network
 - Should they reach the internet
 - etc

<u>Planning Cont.</u>

Examples:

- IoT least amount of trust
- Security high amount of trust, no internet access
- Management management interfaces of networking devices. Web UI's
- Trusted Desktop or laptop computers that need to access to management interfaces

Things to Note

- Just putting devices into VLAN's does not make them more secure
- Firewall rules will need to be setup

- You will probably need more hardware
- Take notes of your configurations
- There is no 1 correct way

Hardware & Software

Hardware Involved

- Modem
- Router*
- Switch (Managed)
- Wireless Access Points (WAP's)

Software Involved

- Router:
 - Default
 - OPNSense
 - Pfsense
 - OpenWRT.
 - DD-WRT

Software Involved Cont.

- Switch:
 - Default
- Wireless Access Point:
 - Default
 - OpenWRT

Configuration: Firewall

Configuration: Firewall

- Create a new VLAN
 - You will need a name: Ex IoT
 - VLAN tag: Ex 100
 - Description: Ex Internet of Things Network
 - Interface to assign this to: Ex eth0, igb0, wlan0, etc
- Repeat for each VLAN

VLAN Config

Setup your VLAN

Repeat for each VLAN

Configuration: Firewall

 After creating the VLAN's you may need to assign them to an interface. If you have multiple network interfaces you can assign multiple VLAN's to each one.

• Ex:

- Eth0 IoT, Lab VLANs
- Eth1 Security
- Eth2 Guest, Work
- etc

Interface Assignment

Assign lot interface

Repeat for each interface

Interface Configuration

Next you will have to configure the newly assigned interface

Interface Config Cont.

Sample Config

Iot Config

DHCP Server

 Each VLAN should have a DHCP server to give out IP addresses to devices that are connected to it.

DHCP Server

Configuration: Firewall

- Once each VLAN is assigned to an interface you will now need to setup firewall rules.
- Firewall rules work in a top down approach.

Configuration: Firewall

- Rules:
 - BlockRFC1918 Networks
 - Block External DNS
 - Allow Internal DNS
 - Allow All

- 1) Blocks access to all private network addresses
- 2) Blocks external DNS. Ex: 8.8.8.8 (Google)
- 3) Allow all other traffic not specified

VLAN Firewall

Floa	ıting	WAN	LAN I	OT W	ORK	SECURITY						
Rules (Drag to Change Order)												
		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions
	×	0 /0 B	IPv4 *	*	*	This Firewall	塘	*	none		Block Firewall access	
	~	0 /0 B	IPv4 UDP	÷	*	IOT net	53 (DNS)	rk	none		Allow internal DNS	
	×	0 /0 B	IPv4 UDP	÷	*	*	53 (DNS)	rk	none		Block external DNS	Ů () ○ ○ □ ○
	×	0 /0 B	IPv4 *	IOT net	÷	private_ networks	*	÷	none		Block RFC1918 Networks	
	~	0 /0 B	IPv4 *	sk	*	*	*	*	none		Allow all traffic	Ů Ø □ 0 1

Configuration: Switch

Switch Setup

- 802.1Q VLAN
- VLAN Tagging
- Tagged vs Untagged
- PVID

- Tagged ports: usually "trunked" connection.
 Connect 2 switches together.*
- Untagged: no VLAN identifier is attached to the packet.*

IoT Switch VLAN Example

Repeat

Considerations

- Remove ports from the default VLAN
- Setup a "Dead VLAN"
 - Ex: 999 → All unused ports should be a member of this VLAN