Difference Equations

2.1.1 Compound Interest

2.1.2 Loan Repayment

2.1.3 Gambler's Ruin

2.2.2 Exponential Population Growth

2.2.3 Average Lifespan

2.2.★ Rabbit Populations

2.2.4 Nonlinear Population Models

You just took a loan to buy a car. You'll need to make fixed payments every period, and the bank will charge an interest on the amount you still owe every period.

You just took a loan to buy a car. You'll need to make fixed payments every period, and the bank will charge an interest on the amount you still owe every period.

- O $D_k = amount of money owed to the bank after <math>k$ periods
- p% = annual interest rate
- \circ $\alpha = \text{length of a payment/compounding period (in years)}$
- \circ R = payment amount per period

- **1** Find an equation relating D_{k+1} with D_k .
- 2 Calculate $D_1, D_2, D_3, ...$ in terms of D_0 until you find a pattern. What is D_k ?

- 3 What is an equilibrium solution D_{eq} ?
- 4 Sketch a graph of some possible outcomes for D_k .

- 3 What is an equilibrium solution D_{eq} ?
- 4 Sketch a graph of some possible outcomes for D_k .

5 If

$$D_0 = $20\,000.00$$
 , $p = 20\%$, $\alpha = \frac{1}{12}$

then what is the monthly payment R so that the loan will be paid off in 5 years?

If the monthly payment is $R = \$1\,000.00$, how many periods does it take to pay off the loan?

Preparation for next lecture

Section 4.5.

 Know how to use the Method of Undetermined Coefficients. https://youtu.be/YRvqem1n0nQ