

progressively measurable process

Canonical name ProgressivelyMeasurableProcess

Date of creation 2013-03-22 18:37:31 Last modified on 2013-03-22 18:37:31

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Definition Classification msc 60G05

Synonym progressive process Related topic PredictableProcess Related topic OptionalProcess

Defines progressive

Defines progressively measurable

A stochastic process $(X_t)_{t \in \mathbb{Z}_+}$ is said to be adapted to a http://planetmath.org/FiltrationOf (\mathcal{F}_t) on the measurable space (Ω, \mathcal{F}) if X_t is an \mathcal{F}_t -measurable random variable for each $t = 0, 1, \ldots$ However, for continuous-time processes, where the time t ranges over an arbitrary index set $\mathbb{T} \subseteq \mathbb{R}$, the property of being adapted is too weak to be helpful in many situations. Instead, considering the process as a map

$$X : \mathbb{T} \times \Omega \to \mathbb{R}, \ (t, \omega) \mapsto X_t(\omega)$$

it is useful to consider the measurability of X.

The process X is progressive or progressively measurable if, for every $s \in \mathbb{T}$, the stopped process $X_t^s \equiv X_{\min(s,t)}$ is $\mathcal{B}(\mathbb{T}) \otimes \mathcal{F}_s$ -measurable. In particular, every progressively measurable process will be adapted and jointly measurable. In discrete time, when \mathbb{T} is countable, the converse holds and every adapted process is progressive.

A set $S \subseteq \mathbb{T} \times \Omega$ is said to be progressive if its characteristic function 1_S is progressive. Equivalently,

$$S \cap ((-\infty, s] \times \Omega) \in \mathcal{B}(\mathbb{T}) \otimes \mathcal{F}_s$$

for every $s \in \mathbb{T}$. The progressively measurable sets form a σ -algebra, and a stochastic process is progressive if and only if it is measurable with respect to this σ -algebra.