

Day 38

DIY

Q1. Problem Statement: Logistic Regression

You are given a categorical dataset — "Heart_Disease.csv." Load the dataset into a DataFrame. Considering the "TenYearCHD" column as the target variable, perform the following tasks:

- 1. Explore the "Heart_Disease.csv" dataset, identify the null values and fill them with the mean value of their respective columns
- 2. Split the data into test and train parts using train_test_split() function in 80:20 ratio (80% train, 20% test)
- 3. Perform scaling of numeric data using the StandardScaler() function
- 4. Build a Logistic regression model using the test dataset and test the model using the test dataset
- 5. Print the classification report of the model
- 6. Calculate the confusion matrix and plot the same using a heatmap
- 7. Calculate and print the accuracy score of the model
- 8. Print the decision boundary for θ = 0, θ = 1 and 2

Dataset:

Sample Output:

1. Explore the "Heart_Disease.csv" dataset, identify the null values and fill them with the mean value of their respective columns

male	0
age	0
education	105
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	50
sysBP	0
diaBP	0
BMI	19
heartRate	1
glucose	388
TenYearCHD	0
dtype: int64	

male	0
age	0
education	0
currentSmoker	0
cigsPerDay	0
BPMeds	0
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
BMI	0
heartRate	0
glucose	0
TenYearCHD	0
dtype: int64	

 Split the data into test and train parts using train_test_split() function in 80:20 ratio (80% train, 20% test)

```
After splitting the data-
size of input train data is: 433952
sizeof input test data is: 108576
size of output train data is: 54272
size of output test data is: 13600
```


- 3. Perform scaling of numeric data using the StandardScaler() function
- 4. Build a Logistic regression model using the test dataset and test the model using the test dataset
- 5. Print the classification report of the model

	precision	recall	f1-score	support	
0	0.85	1.00	0.92	710	
1	0.82	0.07	0.12	138	
			0.05	040	
accuracy			0.85	848	
macro avg	0.83	0.53	0.52	848	
weighted avg	0.84	0.85	0.79	848	

6. Calculate the confusion matrix and plot the same using a heatmap

7. Calculate and print the accuracy score of the model

```
accuracy score : 0.8455188679245284
accuracy: 85 %
```

8. Print the decision boundary for θ = 0, θ = 1 and