Devoir à la maison n° 10

À rendre le 21 janvier

I. Un comportement asymptotique

I – Fonctions continues vérifiant une limite.

Dans cette partie, on considère une fonction $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle que

$$f(x+1) - f(x) \xrightarrow[x \to +\infty]{} 0.$$

L'objectif est de montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0.$$

On fixe un entier $n \in \mathbb{N}^*$.

1) Soit $\varepsilon_n \in \left]0, \frac{1}{n}\right[$. Montrer qu'il existe $p_n \in \mathbb{N}$ tel que :

$$\forall x \in [p_n, +\infty[, f(x) - \varepsilon_n \leqslant f(x+1) \leqslant f(x) + \varepsilon_n.$$

2) On considère l'intervalle $I_n = [p_n, p_n + 1]$. Montrer que f est bornée sur I_n et en déduire qu'il existe $M_n \in \mathbb{R}_+^*$ tel que :

$$\forall x \in I_n, -M_n \leqslant f(x) - \frac{x}{n} \leqslant M_n.$$

3) Montrer par récurrence que pour tout $k \in \mathbb{N}$ et tout $x \in I_n$:

$$f(x+k) - \frac{x+k}{n} \le M_n + k\left(\varepsilon_n - \frac{1}{n}\right).$$

4) Montrer qu'il existe $K_n \in \mathbb{N}$ tel que pour tout entier $k \geq K_n$:

$$M_n + k\left(\varepsilon_n - \frac{1}{n}\right) \leqslant 0.$$

5) En déduire que pour tout $x \in I_n$ et pour tout entier $k \geqslant K_n$:

$$f(x+k) \leqslant \frac{x+k}{n}.$$

6) En déduire que pour tout $x \in [p_n + K_n, +\infty[$:

$$\frac{f(x)}{x} \leqslant \frac{1}{n}.$$

On montrerait de même à partir des questions 1) et 2) que :

$$\forall x \in [p_n + K_n, +\infty[, -\frac{1}{n} \leqslant \frac{f(x)}{x}].$$

7) Conclure en montrant que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0$.

II – Application : morphismes continus de (\mathbb{R}_+^*,\times) dans $(\mathbb{R},+).$

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue vérifiant :

$$\forall x, y \in \mathbb{R}_+^*, \ f(xy) = f(x) + f(y).$$

8) Montrer que f(1) = 0, puis que :

$$\forall x \in \mathbb{R}_+^*, \ f\left(\frac{1}{x}\right) = -f(x).$$

9) Montrer enfin que:

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0$$
 et $xf(x) \xrightarrow[x \to 0]{} 0$.

Remarque: ceci montre que, pour savoir que $\lim_{x\to +\infty} \frac{\ln(x)}{x} = \lim_{x\to 0} x \ln(x) = 0$, il suffit de savoir que ln est continue et transforme les produits en sommes.

II. Un exercice

Soit a > 0, $f : \mathbb{R} \to \mathbb{R}$ continue et vérifiant : $\forall (x, y) \in \mathbb{R}^2$, $|f(x) - f(y)| \ge a|x - y|$. Montrer que f est bijective.

— FIN —