EJERCICIO 2.2)

K	f	E	U
0.39478	0.1 Hz	0.6436	0.4776
0.39478	1 Hz	0.4077	0.1630
0.39478	10 Hz	0.4044	0.1597
3.9478	0.1 Hz	0.0637	0.2516
3.9478	1 Hz	0.3449	1.3617
3.9478	10 Hz	0.4040	1.5952
39.4784	0.1 Hz	0.064	0.2541
39.4784	1 Hz	0.0637	2.5156
39.4784	10 Hz	0.3449	13.6174

EJERCICIO 2.3)

Para la función Gde se obtiene el siguiente diagrama de Bode (módulo)

(RECHAZO DE PERTURBACIONES)

Línea azul: K=0.39478
Línea roja: K=3.94784
Línea amarilla: K=39.4784

El rechazo a perturbaciones mejora cuando aumenta el valor de K (el modulo de Gde se hace más pequeño).

Se puede observar que si la ganancia es de K=3.948 el Módulo ya se pone a ODb antes de llegar a una wd=10rad/s, siendo inferior a O dB para K=39.4784.

Cuando wd=100rad/s, la grafica roja (K=3.94784) ya está a 0 dB de amplitud, pero la amarilla(K=39.4784) se acerca a los 0dB.

El mejor rechazo a perturbaciones se produce cuando K=39.4784 debido a que el rechazo a perturbaciones mejora al disminuir |Gde(jwd)|, que se produce cuando la ganancia es más alta.

Vemos que para bajas frecuencias la amplitud de la gráfica con K=39.4784 tiene un valor menor de amplitud que para cualquier de las otras ganancias.

A altas frecuencias todas las ganancias nos proporcionan una amplitud similar (OdB).

Para la función Gdu se obtiene el siguiente diagrama de Bode (módulo)

(RECHAZO DE PERTURBACIONES + MODERACIÓN DE CONTROL)

Línea azul: K=0.39478
Línea roja: K=3.94784
Línea amarilla: K=39.4784

Al tratarse de una moderación de control nos interesa que el valor de K sea lo m a´s bajo posible, para hacer que |C(jwd)| (modulo en frecuencia del controlador) sea muy pequeño, haciendo que |Gdu(jwd)| sea aproximadamente 0.

Nos interesa una buena moderación de control a altas ganancias, pudiéndose ver en el gráfico que esto se produce a valores de K bajos, pues presenta una amplitud negativa (atenuación de la perturbación do), mejorándose la señal de actuación u(t).