Artificial Neural Networks

Artificial Neural Networks

- > What?
 - Computing Systems inspired by Biological Neural Networks.

- > Nervous System
 - Biological Neural Networks
 - Biological Neurons
 - What?
 - Biological Neuron is an electrically excitable cell that processes and transmits information through electrical and chemical signals.

- > Nervous System
 - Biological Neural Networks
 - Biological Neurons
 - 10 100 billion Neurons
 - connection to 100 10000 other neurons
 - 100 different types
 - layered structure

> Features

- Parallel processing systems
- Neurons are processing elements and each neuron performs some simple calculations
- Neurons are networked
- Each connection conveys a signal from one node (neuron) to another
- Connection strength decides the extent to which a signal is amplified or diminished by a connection

- > Features (from our experience)
 - Ability to learn from experience and accomplish complex task without being programmed explicitly
 - Driving
 - Speaking using a particular language
 - Translation
 - Speaker Recognition
 - Face Recognition, etc...

Artificial Neuron Model

- > An artificial neuron is a mathematical function regarded as a model of a biological neuron.
 - > Remember: 1. BN is able to receive the amplified or diminished inputs from multiple dendrites 2. It is able to combine these inputs 3. It is able to process input and produce output
- > Simple Neuron
 - Weight Function, Net Input Function & Transfer Function

Neuron with Vector Input

$$n = w_{1,1}p_1 + w_{1,2}p_2 + \dots + w_{1,R}p_R + b$$

Activation Functions

Activation Functions [12]

f(net) = max(0, net)

$$0.01*x_i/a_i*x_i$$

$$y_{ji} = \begin{cases} x_{ji} & \text{if } x_{ji} \ge 0\\ a_{ji}x_{ji} & \text{if } x_{ji} < 0, \end{cases}$$

$$y_i = \begin{cases} x_i & \text{if } x_i \ge 0\\ 0 & \text{if } x_i < 0. \end{cases}$$

$$a_{ji} \sim U(l, u), l < u \text{ and } l, u \in [0, 1)$$

 a_{ji} is a random number sampled from a uniform distribution U(l, u).

A Layer of Neurons

Where

R = number of elements in input vector

S = number of neurons in layer

Multiple Layers of Neurons

> Fully Connected Network (Asymmetric)

> Fully Connected Network (Symmetric)

> Layered Network

These are networks in which nodes are partitioned into subsets called layers, with no connections that lead from layer j to layer k if j > k

> Acyclic Network

These are subclass of layered networks with no intra-layer connections.

> Feedforward Network

These are subclass of acyclic networks in which a connection is allowed from a node in layer i only to nodes in layer i + 1.

Learning in ANN

- > Types of Learning
 - Supervised Learning
 - Unsupervised Learning

Linear Separability

- > 1 D Case
 - > 7/5 Students data Weight Values & Obese/Not Obese
 - > (50, NO), (55, NO), (60, NO), (65, NO), (70, O), (75, O), (80, O) Linearly Separable
 - > (55, NO), (60, O), (65, NO), (70, O), (75, O) Linearly Inseparable
 - > Learning a separating point/line

Linear Separability

- >2 D Case
 - > Learning a separating line

Linear Separability

- > 3 D Case
 - > Learning a separating plane

- > Higher Dimensional Case
 - > Learning a separating hyperplane

Perceptron Model [6]

- > What is Perceptron?
 - > It is a machine which can learn (using examples) to assign input vectors to different classes.
- > What can it do?
 - 2-class linear classification problem
 - · What?
 - Process

a = hardlim(Wp + b) hardlim(n) = 1, if n >= 0; 0 otherwise.

Perceptron Learning Rule [5, 6]

> Learning Process

R = number of elements in input vector

- • $W_{new} = W_{old} + \eta eP$
- $b_{new} = b_{old} + \eta e$, where e = target actual

Numerical

Assume 7 one dimensional input patterns {0.0, 0.17, 0.33, 0.50, 0.67, 0.83, 1.0}. Assume that first four patterns belong to class 0 (with desired output 0) and remaining patterns belong to class 1 (with desired output 1). Design a perceptron to classify these patterns. Use perceptron learning rule. Assume learning rate = 0.1 and initial weight and bias to be (-0.36) and (-0.1) respectively. Show computation for two epochs.

Some Issues

- > Why to use bias?
- > Termination Criterion
- > Learning Rate
- > Non-numeric Inputs
- > Epoch

Multiclass Discrimination

- > Layer of Perceptron
 - > To distinguish among n classes, a layer of n perceptrons can be used

- A presented sample is considered to belong to ith class only if ith output is 1 and remaining are 0.
- If all outputs are zero, or if more than one output value equals one, the network may be considered to have failed in classification task.

Multilayer Networks - Typical Transfer Functions

Linear Transfer Function

An example of a multilayer feed-forward neural network.

Initial input, weight, and bias values.

Class Label: 1

x_1	x_2	<i>x</i> 3	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w 34	w 35	w 46	w ₅₆	θ_4	θ_5	θб
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Figure 6.18 An example of a multilayer feed-forward neural network.

Table 6.3 Initial input, weight, and bias values.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	W14	พ ₁₅	w24	₩25	1V34	W35	w46	₩56	θ4	θ5	θ ₆
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Class Label: 1

Table 6.4 The net input and output calculations.

Unitj	Net input, I_j	Output, Oj
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7})=0.332$
5	-0.3+0+0.2+0.2=0.1	$1/(1+e^{-0.1})=0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1+e^{0.105})=0.474$

> Backpropagation

x_1	x_2	<i>x</i> ₃	W14	w ₁₅	₩24	w ₂₅	W34	W35	w ₄₆	w ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

$$Err_j = O_j(1 - O_j)(T_j - O_j),$$

$$Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk},$$

j	O _j
4	0.332
5	0.525
6	0.474

Table 6.5 Calculation of the error at each node.

Unit j	Err _j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

> Backpropagation

x_1	x_2	<i>x</i> ₃	W14	w ₁₅	₩24	w ₂₅	W34	W35	w ₄₆	w ₅₆	θ ₄	θ ₅	θ ₆
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Table 6.6 Calculations for weight and bias updating.

$\Delta w_{ij} = (l)Err_jO_i$ $w_{ij} = w_{ij} + \Delta w_{ij}$	T
$\Delta \theta_j = (l)Err_j$	
$\theta_j = \theta_j + \Delta \theta_j$	

j	O _j	Err _j
4	0.332	-0.0087
5	0.525	-0.0065
6	0.474	0.1311

Weight or bias	New value
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261
W56	-0.2 + (0.9)(0.1311)(0.525) = -0.138
W14	0.2 + (0.9)(-0.0087)(1) = 0.192
W15	-0.3 + (0.9)(-0.0065)(1) = -0.306
W24	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
W34	-0.5 + (0.9)(-0.0087)(1) = -0.508
W35	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408

Binary Cross-Entropy

Code

```
def CrossEntropy(yHat, y):
if y == 1:
    return -log(yHat)
else:
    return -log(1 - yHat)
```

Math

In binary classification, where the number of classes M equals 2, cross-entropy can be calculated as:

$$-(y\log(p) + (1-y)\log(1-p))$$

Categorical Cross-Entropy

If M>2 (i.e. multiclass classification), we calculate a separate loss for each class label per observation and sum the result.

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

Note

- M number of classes (dog, cat, fish)
- log the natural log
- y binary indicator (0 or 1) if class label c is the correct classification for observation o
- p predicted probability observation o is of class c

Softmax Activation Function

Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.