

#33: Graph Vocabulary + Implementation

April 11, 2018 · Wade Fagen-Ulmschneider

Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

- 1. A common vocabulary to talk about graphs
- 2. Implementation(s) of a graph
- 3. Traversals on graphs
- 4. Algorithms on graphs

Graph Vocabulary

Consider a graph G with vertices V and edges E, G=(V,E).

Incident Edges:

$$I(v) = \{ (x, v) \text{ in } E \}$$

Degree(v): |I|

Adjacent Vertices:

$$A(v) = \{ x : (x, v) \text{ in } E \}$$

Path(G₂): <u>Sequence of vertices</u> connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): G' = (V', E'):

$$V' \in V$$
, $E' \in E$, and $(u, v) \in E \rightarrow u \in V'$, $v \in V'$

Graphs that we will study this semester include:

Complete subgraph(G)

Connected subgraph(G)

Connected component(G)

Acyclic subgraph(G)

Spanning tree(G)

Size and Running Times

Running times are often reported by \mathbf{n} , the number of vertices, but often depend on \mathbf{m} , the number of edges.

For arbitrary graphs, the minimum number of edges given a graph that is:

Not Connected: m = 0

*Minimally Connected**: m = n - 1

The maximum number of edges given a graph that is:

Simple:
$$n(n-1) / 2 \sim O(n^2)$$

Not Simple: Infinite

unbounded number of

edges

The relationship between the degree of the graph and the edges:

$$Sum(deg(v)) = 2m$$

Proving the Size of a Minimally Connected Graph

Theorem: Every minimally connected graph G=(V, E) has |V|-1 edges.

Proof of Theorem

Consider an arbitrary, minimally connected graph **G=(V, E)**.

Lemma 1: Every connected subgraph of **G** is minimally connected. (*Easy proof by contradiction left for you.*)

Inductive Hypothesis: For any j < |V|, any minimally connected graph of j vertices has j-1 edges.

Suppose |V| = 1:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges \rightarrow 1-1 = 0.

Suppose |V| > 1:

Choose any vertex \mathbf{u} and let \mathbf{d} denote the degree of \mathbf{u} .

Remove the incident edges of \mathbf{u} , partitioning the graph into ____ components: $\mathbf{C_o} = (\mathbf{V_o}, \mathbf{E_o}), ..., \mathbf{C_d} = (\mathbf{V_d}, \mathbf{E_d}).$

By Lemma 1, every component \mathbf{C}_k is a minimally connected subgraph of \mathbf{G} .

Finally, we count edges:

Graph ADT

orupii iib i			
Data	Functions		
Vertices	<pre>insertVertex(K key);</pre>		
Edges	<pre>insertEdge(Vertex v1, Vertex v2,</pre>		
Some data	removeVertex(Vertex v);		
structure	removeEdge(Vertex v1, Vertex v2);		
maintaining the	<pre>incidentEdges(Vertex v);</pre>		
structure between vertices and edges.	areAdjacent(Vertex v1, Vertex v2);		
O	origin(Edge e);		
	<pre>destination(Edge e);</pre>		
		1	

Graph Implementation #1: Edge List

Vert.	Edges
u	a
V	b
\mathbf{w}	c
Z	d

Operations:

insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

Graph Implementation #2: Adjacency Matrix

Vert.	Edges	Adj. Matrix				
				1		
u	a		u	V	W	Z
v	b	u				
W	c	v				
Z	d	w				
		Z				

CS 225 - Things To Be Doing:

- 1. Topic list for Programming Exam C available; starts Tuesday 4/17
- 2. lab_puzzles released today
- 3. MP6 released due on Monday, April 16th
- **4.** Daily POTDs are ongoing!