上海交通大学试卷(A卷)

(2017至2018学年第二学期)

班级号	学号	姓名	
课程名称	Mathematical Foundations of Computer Science (CS499)		成绩

Each problem is worth 20 points. 100 points will give you full grade. Please note: (1) Justify your answers. (2) The problems are in random order, so Problem 1 is not necessarily the easiest. So check first before wasting time on the hardest problem. Also, all problems have some easy sub-problems.

Problem 1

We consider network flows (G, s, t, c) where G = (V, E) is a directed graph. As usual, $c :\to \mathbf{R}^+$ denotes the capacity of an edge. By convention we set c(u, v) = 0 whenever $(u, v) \notin E$.

We write $\operatorname{mincut}(G)$ to denote the capacity of a minimum s-t-cut in G. Recall that a cut is a set $S \subseteq V$ containing s but not t. By $\operatorname{MinCuts}(G)$ we denote the set of all minimum cuts of G. So $\operatorname{mincut}(G)$ is a real number but $\operatorname{MinCuts}(G)$ is a set of subsets of V. Note that the set $\operatorname{MinCuts}(G)$ is partially ordered by \subseteq .

1. Look at the network below. All edges have capacity 1.

This network has several minimum cuts. Find all minimum cuts and draw the Hasse diagram of the corresponding partial ordering. **Hint.** To get you started, $\{s\}$ is a minimum cut and so is $\{s,c\}$. So your Hasse diagram will contain the arrow $\{s\} \to \{s,c\}$.

2. Consider a flow network (G, s, t, c). Let S_1, S_2 be two (not necessarily minimum) cuts. That is, S_1, S_2 are subsets of V containing s but not t. Recall that $\operatorname{cap}(S) := \sum_{u \in S} \sum_{v \in V \setminus S} c(u, v)$. Prove that

$$cap(S_1) + cap(S_2) \ge cap(S_1 \cap S_2) + cap(S_1 \cup S_2)$$
. (1)

- 3. Suppose S_1 and S_2 are minimum cuts. Show that $S_1 \cap S_2$ and $S_1 \cup S_2$ are minimum cuts, too.
- 4. Show that the partial ordering of minimum cuts has a minimum. That is, there is a minimum cut S_{\min} such that $S_{\min} \subseteq S$ for every minimum cut S.
- 5. For a maximum flow f of the network, denote $S_f := \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in the residual network}\}.$ We have shown in the video lecture that S_f is a minimum cut. Show that $S_f = S_{\min}$.

Problem 2

In this problem, we consider minimum spanning trees (MST).

- 1. Draw a minimum spanning tree of this graph.
- 2. Suppose we add an edge between u and v and give it weight c. Call the resulting graph G^c . What is the largest c such that $\{u, v\}$ is contained in some minimum spanning tree of G^c ?
- 3. Let G be some connected graph with edge weights (not the one above). Let $e \in \binom{V}{2} \setminus E$. We add e to G, set its cost to some c > 0, and call this new graph G^c . Show that there is some c^* such that (1) if $c < c^*$ then every MST of G^c contains e, (2) if $c > c^*$ then no MST of G^c contains e, (3) if $c = c^*$ then some MST of G contains e but some other MST does not. **Remark.** First think about how to find f define f then show that f (1), (2), (3) hold. **Hint.** You can use everything from Homework 8 without proving it.

Problem 3

Consider the grid $\{0, 1, ..., n\} \times \{0, 1, ..., n\}$. We view it as a directed graph where (i, j) is connected to (i+1, j) and (i, j+1). Here is an illustration of the case n = 3, together with a path from (0, 0) to (n, n).

- 1. How many paths from (0,0) to (n,n) are there? Note that paths have to respect the direction of the edges. Give a closed formula!
- 2. Suppose $0 \le i, j \le n$ are given. How many paths are there that go from (0,0) to (n,n) and pass through (i,j)?
- 3. Find a closed formula for the summation

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \binom{i+j}{i} \binom{2n-i-j}{n-j} .$$

Problem 4

We define a partial order P_n on $\binom{[n]}{2}$: given two elements $A, B \in \binom{[n]}{2}$ we write $A \leq B$ if $\max(A) \leq \max(B)$ and $\min(A) \geq \min(B)$. For example, $\{5,6\} \leq \{5,7\} \leq \{4,7\} \leq \{3,8\}$.

- 1. Draw the Hasse diagram of P_5 .
- 2. What are the minimal and maximal elements of P_n ? Does P_n have a minimum? A maximum?
- 3. What is the largest antichain in P_{100} ? Justify your answer! **Hint.** You may use Dilworth's Theorem.

Problem 5

Consider trees on vertex set $V_n = \{1, ..., n\}$. We say a tree T is 3-regular if every vertex has degree 3 or 1.

- 1. How many 3-regular trees are there on the set V_{99} ?
- 2. Characterize 3-regular trees in terms of their Prüfer code. State and prove something like "A tree on V_n is 3-regular if and only if its Prüfer code..."
- 3. Give and justify an explicit formula for the number of 3-regular trees on V_n . Your formula may contain a!, $\binom{b}{a}$, etc., but not \sum or \prod .

Problem 6

For a graph G, let a(G) be the number of vertex covers of G. Let b(G) be the number of minimal vertex covers of G. Recall that a vertex cover C is minimal if there is no $C' \subseteq C$ such that C' is a vertex cover. Let P_n denote the path with n vertices (and thus n-1 edges). This is P_3 :

So $a(P_3) = 5$ since $\{2\}, \{1,3\}, \{1,2\}, \{2,3\}, \{1,2,3\}$ are all vertex covers. However, $b(P_3) = 2$ since only $\{2\}$ and $\{1,3\}$ are minimal vertex covers.

- 1. Find a recursive formula for $a(P_n)$.
- 2. Find a recursive formula for $b(P_n)$.
- 3. Let G = (V, E) be a graph and $e \in \binom{V}{2} \setminus E$. Denote by G + e the graph created by adding edge e. Show that $a(G) \geq a(G + e)$.
- 4. Give an example where b(G) < b(G + e), i.e., adding an edge increases the number of minimal vertex covers.
- 5. Give an example where b(G) > b(G + e).

题号	1	2	3	4	5	6		
得分								
批阅人(流水阅								
卷教师签名处)								

我承诺,我将严格遵守考试纪律。

承诺人:	