WO 2005/085211 PCT/EP2005/002391

What we claim is:

1. Use of a compound of formula

wherein

R₁ is hydrogen, halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, $SO_2NR_2R_3$, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo- C_1-C_6 -alkylsulfonyloxy, halo- C_1-C_6 -alkylsulfonyloxy, C_1-C_6 -alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, NR₂R₃, unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C_1-C_6 -alkylsulfonyloxy, halo- C_1-C_6 -alkylsulfonyloxy, C_1-C_6 -alkylsulfinyl, halo- C_1-C_6 alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, halo- C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkylcarbonyl, halo- C_1 - C_6 -alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, halo- C_1 - C_6 -alkenyloxy, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio,

 C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfonyl, halo- C_1 - C_6 -alkylsulfonyl, halo- C_2 - C_6 -alkenylthio, halo- C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfonyl and halo- C_2 - C_6 -alkenylsulfonyl;

R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃, independently of one another, are hydrogen, halogen, cyano, nitro, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1-C_6 -alkyl, halo- C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkoxy, C_2-C_6 -alkenyl, halo- C_2-C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_2 - C_6 -alkoxy, halo- C_2 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_2 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_2 - C_6 alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆alkylthio, halo- C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁-C₆alkylsulfonylamino, halo-C₁-C₆-alkylsulfonylamino, C₁-C₆-alkylcarbonyl, halo-C₁-C₆alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl, or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO2, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 X_1 and X_2 , independently of one another, are $C(R_{14})(R_{15})$, NR_{14} , O, S, SO or SO_2 ; and R_{14} and R_{15} , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl;

in the control of ectoparasites on animals.

- 2. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio.
- 3. Use of a compound of formula according to claim 1, wherein

 R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy or halo- C_1 - C_6 -alkoxy.

- 4. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy.
- 5. Use of a compound of formula according to claim 1, wherein R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkylthio, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfinyl, C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfonyl.
- 6. Use of a compound of formula according to claim 1, wherein R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl.
- 7. Use of a compound of formula according to claim 1, wherein R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_2 -alkyl, benzyl or formyl.
- 8. Use of a compound of formula according to claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO_3H , $SO_2NR_2R_3$, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylthio, halo- C_1 - C_6 -alkylsulfinyl, C_3 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alk

 $C_2-C_6-alkenylsulfinyl,\ C_2-C_6-alkenylsulfinyl,\ C_2-C_6-alkenylsulfinyl,\ C_2-C_6-alkenylsulfonyl,\ halo-C_2-C_6-alkenylsulfonyl\ and\ NR_2R_3.$

- 9. Use of a compound of formula according to claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy.
- 10. Use of a compound of formula according to claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl.
- 11. Use of a compound of formula according to claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro or CF_3 .
- 12. Use of a compound of formula according to claim 1, wherein X_1 and X_2 , independently of one another, are NR_{14} , O or S.
- 13. Use of a compound of formula according to claim 1, wherein X_1 and X_2 , independently of one another, are NH, O or S.
- 14. Use of a compound of formula according to claim 1, wherein X_1 and X_2 are O.
- 15. Use of a compound of formula according to claim 1, wherein R_{14} and R_{15} , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl.
- 16. Use of a compound of formula according to claim 1, wherein R₁₄ and R₁₅, independently of one another, signify hydrogen or C₁-C₄-alkyl.
- 17. Use of a compound of formula according to claim 1, wherein R_{14} and R_{15} signify hydrogen.
- 18. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl or benzyl;

WO 2005/085211 PCT/EP2005/002391

 R_4 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylthio, C_3 - C_6 -cycloalkylthio, halo- C_4 - C_6 -alkylthio, C_4 - C_6 -alkylsulfonyloxy, halo- C_4 - C_6 -alkylsulfonyloxy, C_4 - C_6 -alkylsulfinyl, halo- C_4 - C_6 -alkylsulfinyl, C_4 - C_6 -alkylsulfinyl, C_4 - C_6 -alkylsulfinyl, C_4 - C_6 -alkenylsulfinyl, C_4 - C_6 -alkenylsulfinyl, C_4 - C_6 -alkenylsulfinyl, halo- C_4 - C_6 -alkenylsulfinyl, C_4 - C_6 -alkenylsulfinyl, halo- C_4 - C_6 -alkenylsulfinyl, C_4 - C_6 -alkenylsulfinyl, halo- C_4 - C_6 -alkenylsulfonyl, C_4 - C_6 -alkenylsulfonyl, halo- C_4 - C_6 -alkenylsulfonyl, C_4 - C_6 -alkenylsulfonyl, halo- C_4 - C_6 -alkenylsulfonyl, halo- C_4 - C_6 -alkenylsulfonyl and C_4 - C_6 -alkenylsulfonyl

X₁ and X₂, independently of one another, are NR₁₄, O or S; and

R₁₄ signifies hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl.

19. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy or halo- C_1 - C_6 -alkoxy:

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy; and

 X_1 and X_2 , independently of one another, are NH, O or S.

20. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl; and

 X_1 and X_2 are O.

21. Use of a compound of formula according to claim 1, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro or CF_3 ; and

 X_1 and X_2 are O.

- 22. Ectoparasiticidal composition comprising a compound of the formula I as defined in any one of claims 1 to 20 and a physiologically acceptable carrier and/or dispersant.
- 23. Ectoparasiticidal composition according to claim 22 consisting of a pour-on or spot-on formulation.
- 24. Method of controlling ectoparasites, whereby an effective amount of at least one compound of formula I according to claim 1 is administered to the habitat of the parasites.
- 25. Use of a compound of the formula I as defined in any one of claims 1 to 21 for the preparation of an ectoparasiticidal composition according to claim 22.
- 26. Compound of the formula I as defined in any one of claims 1 to 21 for the use in the treatment of ectoparasites on non-human animals.