

Mean-Field Control and Continuity Inclusions

Benoît Bonnet
(in collaboration with H. Frankowska)

59th Conference on Decision and Control

From my kitchen to Jeju Island
November 5, 2020

Outline of the talk

Introduction to mean-field control

From differential inclusions to continuity inclusions

Main contributions

Outline of the talk

Introduction to mean-field control

From differential inclusions to continuity inclusions

Main contributions

Introduction – *Multi-agent systems*

A multi-agent system is a large ensemble of interacting things

First observation (dimensionality-related problems)

The number N of agents is usually very large \leadsto numerical issues

Idea: Approximation procedure using mean-field limits!

System of ODEs on
$$N$$
 agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$
$$\Big(\qquad \mu_N = \tfrac{1}{N} \sum_{i=1}^N \delta_{x_i} \Big)$$

Single PDE on the density of agents $\mu:\mathbb{R}^d o\mathbb{R}$

First observation (dimensionality-related problems)

The number N of agents is usually very large \rightarrow numerical issues

Idea: Approximation procedure using mean-field limits!

System of ODEs on
$$N$$
 agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$

$$\left(\qquad \mu_N = \frac{1}{N}\sum_{i=1}^N \delta_{x_i} \qquad \right)$$

Single PDE on the density of agents $\mu: \mathbb{R}^d o \mathbb{R}$

First observation (dimensionality-related problems)

The number N of agents is usually very large \rightarrow numerical issues

Idea: Approximation procedure using mean-field limits!

System of ODEs on
$$N$$
 agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$
$$(\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i})$$

Single PDE on the density of agents $\mu: \mathbb{R}^d \to \mathbb{R}$

First observation (dimensionality-related problems)

The number N of agents is usually very large \rightarrow numerical issues

Idea: Approximation procedure using mean-field limits!

System of ODEs on
$$N$$
 agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$
$$\bigcap_{N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}}$$

Single PDE on the density of agents $\mu : \mathbb{R}^d \to \mathbb{R}$.

Introduction – Continuity equations

Multi-agent dynamics are modelled via continuity equations

$$\partial_t \mu(t) + \operatorname{div} (\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

where $\mu(t) \in \mathcal{P}_c(\mathbb{R}^d)$ and $\mathbf{v} : [0, T] \times \mathcal{P}_c(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d$.

Introduction – *Continuity equations*

Multi-agent dynamics are modelled via continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

where $\mu(t) \in \mathcal{P}_c(\mathbb{R}^d)$ and $\mathbf{v} : [0, T] \times \mathcal{P}_c(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d$.

Introduction – *Continuity equations*

Multi-agent dynamics are modelled via continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

where $\mu(t) \in \mathcal{P}_c(\mathbb{R}^d)$ and $\mathbf{v} : [0, T] \times \mathcal{P}_c(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d$.

Mean-field control --- control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T]\to U$ is a control law.

- ♦ Existence of optimal trajectories → (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- o 15-order optimality conditions -- (8., Cavagnari, Frankowska,
- Simenez, margonas, Quincampora, Fricasi, Frigatisev, Rossi, etc...)
- Cavarnari Ginelio Gimenez Marieonda Quincamoris etc...)
- Optimal feedback synthesis --> Open for now

Natural question: General framework to study these problems?

— Year Reformulate communical dynamics as differential inclusions.

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- ◆ Existence of optimal trajectories

 (B., Frankowska, Fornasiera

 Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ♦ 1st-order optimality conditions ~ (B., Cavagnari, Frankowska Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- Cavagnari, Ganglio, Gimenez, Mangonda, Quincampoix, etc...)
- Optimal feedback synthesis --> Open for now

Natural question: General framework to study these problems?

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- Existence of optimal trajectories ~ (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ◆ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- Properties of value functions ~ (B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ♦ Optimal feedback synthesis → Open for now.

Matural question: General framework to study these problems?

Yes! Reformulate controlled dynamics as differential inclusions

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- ◆ Existence of optimal trajectories ~→ (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ♦ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- ◆ Properties of value functions ~ (B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ♦ Optimal feedback synthesis → Open for now

Natural question : General framework to study these problems ? Yes! Reformulate controlled dynamics as differential inclusions

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- Existence of optimal trajectories ~ (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ♦ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- ◆ Properties of value functions ~→(B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ♦ Optimal feedback synthesis → Open for now

Natural question : General framework to study these problems ? → Yes! Reformulate controlled dynamics as differential inclusions

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- ♦ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- ◆ Properties of value functions ~→(B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ◇ Optimal feedback synthesis → Open for now

Natural question : General framework to study these problems ? → Yes! Reformulate controlled dynamics as differential inclusions

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- Existence of optimal trajectories ~> (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ♦ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- ◆ Properties of value functions ~→(B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ◇ Optimal feedback synthesis → Open for now

Natural question : General framework to study these problems ?

→ Yes! Reformulate controlled dynamics as differential inclusions.

Mean-field control → control problems on continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \mathbf{u}(t), \cdot)\mu(t)) = 0,$$

where $u:[0,T] \to U$ is a control law.

- Existence of optimal trajectories
 (B., Frankowska, Fornasier, Marigonda, Quincampoix, Pogodaev, Rossi, Savaré, Solombrino, etc...)
- ♦ 1st-order optimality conditions → (B., Cavagnari, Frankowska, Gimenez, Marigonda, Quincampoix, Piccoli, Pogodaev, Rossi, etc...)
- ◆ Properties of value functions ~→(B., Frankowska, Cardaliaguet, Cavagnari, Gangbo, Gimenez, Marigonda, Quincampoix, etc...)
- ◇ Optimal feedback synthesis → Open for now

Natural question : General framework to study these problems ?

→ Yes! Reformulate controlled dynamics as differential inclusions

Outline of the talk

Introduction to mean-field control

From differential inclusions to continuity inclusions

Main contributions

Intuition: Differential inclusions \iff ODEs with **set-valued** r.h.s

Definition (differential inclusion)

$$\dot{x}(t) \in F(x(t))$$
 \longrightarrow $\begin{cases} \dot{x}(t) = f(t), \\ f(t) = F(x(t)), \end{cases}$ \mathcal{L}^1 -a.e. in $[0, T]$

Intuition: Differential inclusions \iff ODEs with **set-valued** r.h.s

Definition (differential inclusion)

$$\dot{x}(t) \in F(x(t)) \iff \begin{cases} \dot{x}(t) = f(t), \\ f(t) \in F(x(t)), \end{cases} \mathcal{L}^1$$
-a.e. in $[0, T]$

Intuition: Differential inclusions \iff ODEs with **set-valued** r.h.s

Definition (differential inclusion)

$$\dot{x}(t) \in F(x(t)) \iff \begin{cases} \dot{x}(t) = f(t), \\ f(t) \in F(x(t)), \end{cases}$$
 \mathcal{L}^1 -a.e. in $[0, T]$

Intuition: Differential inclusions \iff ODEs with **set-valued** r.h.s

Definition (differential inclusion)

$$\dot{x}(t) \in F(x(t)) \iff \begin{cases} \dot{x}(t) = f(t), \\ f(t) \in F(x(t)), \end{cases}$$
 \mathcal{L}^1 -a.e. in $[0, T]$

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If
$$f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$$
 is Carathéodory, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}$$

Recap': Building differential inclusions

Check that the ambient space has a manifold-like structure
 Identify an ODE staurage --> make the velocities set-valued.

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If $f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$ is Carathéodory, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}.$$

Recap': Building differential inclusions

Check that the ambient space has a manifold-like structure.
 Identify an ODE structure.

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If $f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$ is Carathéodory, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}.$$

- 1) Check that the ambient space has a manifold-like structure
- 2) Identify an ODE structure --- make the velocities set-valued

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If $f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$ is Carathéodory, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}.$$

- 1) Check that the ambient space has a manifold-like structure
- 2) Identify an ODE structure --- make the velocities set-valued

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If $f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$ is **Carathéodory**, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}.$$

- 1) Check that the ambient space has a manifold-like structure
- 2) Identify an ODE structure \leadsto make the velocities set-valued

Key point: Control systems are equivalent to diff. inclusions

Equivalence (heuristic statement)

If $f:[0,T]\times\mathcal{M}\times U\to T\mathcal{M}$ is Carathéodory, then

$$\dot{x}(t) = f(t, x(t), u(t)) \iff \dot{x}(t) \in F(t, x(t)),$$

where

$$F(t,x) := \Big\{ f(t,x,u) \text{ s.t. } u \in U \Big\}.$$

- 1) Check that the ambient space has a manifold-like structure
- 2) Identify an ODE structure \leadsto make the velocities set-valued

Idea: Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the **optimal transport** metric W_2

$$W_2(\mu,\nu) := \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^{2d}} |x-y|^2 \mathrm{d}\gamma(x,y) \right)^{1/2}$$

Wasserstein geometry & ODEs [Ambrosio, Gigli, McCann, Otto, Savaré]

- \diamond $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a "manifold" with $T_\mu \mathcal{P}_2(\mathbb{R}^d) \subset L^2(\mu)$
- Continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

are **ODEs** over $\mathcal{P}_2(\mathbb{R}^d)$, with velocities $\mathbf{v}(t, \mu(t), \cdot) \in L^2(\mu(t))$

Idea: Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the **optimal transport** metric W_2

$$W_2(\mu,\nu) := \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^{2d}} |x-y|^2 \mathrm{d}\gamma(x,y) \right)^{1/2}$$

Wasserstein geometry & ODEs [Ambrosio, Gigli, McCann, Otto, Savaré]

- \diamond $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a "manifold" with $T_{\mu}\mathcal{P}_2(\mathbb{R}^d) \subset L^2(\mu)$
- Continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

are **ODEs** over $\mathcal{P}_2(\mathbb{R}^d)$, with velocities $\mathbf{v}(t,\mu(t),\cdot)\in L^2(\mu(t))$

Idea: Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the **optimal transport** metric W_2

$$W_2(\mu,\nu) := \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^{2d}} |x-y|^2 \mathrm{d}\gamma(x,y) \right)^{1/2}$$

Wasserstein geometry & ODEs [Ambrosio, Gigli, McCann, Otto, Savaré]

- \diamond $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a "manifold" with $T_\mu \mathcal{P}_2(\mathbb{R}^d) \subset L^2(\mu)$
- Continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

are **ODEs** over $\mathcal{P}_2(\mathbb{R}^d)$, with velocities $\boldsymbol{v}(t,\mu(t),\cdot)\in L^2(\mu(t))$

Idea: Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the **optimal transport** metric W_2

$$W_2(\mu,\nu) := \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^{2d}} |x-y|^2 \mathrm{d}\gamma(x,y) \right)^{1/2}$$

Wasserstein geometry & ODEs [Ambrosio, Gigli, McCann, Otto, Savaré]

- \diamond $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a "manifold" with $T_\mu \mathcal{P}_2(\mathbb{R}^d) \subset L^2(\mu)$
- Continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

are ODEs over $\mathcal{P}_2(\mathbb{R}^d)$, with velocities $\boldsymbol{v}(t,\mu(t),\cdot)\in L^2(\mu(t))$

Idea: Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the **optimal transport** metric W_2

$$W_2(\mu,\nu) := \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^{2d}} |x-y|^2 \mathrm{d}\gamma(x,y) \right)^{1/2}$$

Wasserstein geometry & ODEs [Ambrosio, Gigli, McCann, Otto, Savaré]

- \diamond $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a "manifold" with $T_\mu \mathcal{P}_2(\mathbb{R}^d) \subset L^2(\mu)$
- Continuity equations

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t, \mu(t), \cdot)\mu(t)) = 0,$$

are ODEs over $\mathcal{P}_2(\mathbb{R}^d)$, with velocities $\boldsymbol{v}(t,\mu(t),\cdot)\in L^2(\mu(t))$

Outline of the talk

Introduction to mean-field control

From differential inclusions to continuity inclusions

Main contributions

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems? --- Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take $v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$ is Cauchy-Lip and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d)$$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems? --- Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take $v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$ is Cauchy-Lip and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d)$$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems? --- Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take $v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$ is Cauchy-Lip and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d)$$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems? \leadsto Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take
$$v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$$
 is Cauchy-Lip and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d)$$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems ? → Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take
$$v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$$
 is Cauchy-Lip and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d)$$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems ? → Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take $v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$ is **Cauchy-Lip** and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d).$$

Then $\mu(\cdot)$ solves (I) $\iff \mu(\cdot)$ solves (E) with $\mathbf{v}(t) := v(t, \mu(t), u(t))$

Definition (Continuity inclusions) [B., Frankowska]

Let
$$(t,\mu) \in [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \rightrightarrows V(t,\mu) \subset L^2(\mu)$$
. Then, $\mu(\cdot)$ solves

$$\partial_t \mu(t) \in -\text{div}(V(t, \mu(t))\mu(t)),$$
 (I)

if there exists $t \in [0, T] \mapsto \mathbf{v}(t) \in V(t, \mu(t))$ s.t.

$$\partial_t \mu(t) + \operatorname{div}(\mathbf{v}(t)\mu(t)) = 0.$$
 (E)

Certificate: Is this notion suited for control systems ? → Yes!

Theorem (Correspondence with control systems) [B., Frankowska]

Take $v:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\times U\times\mathbb{R}^d\to\mathbb{R}^d$ is **Cauchy-Lip** and set

$$V(t,\mu) := v(t,\mu,U) \subset C^0(\mathbb{R}^d,\mathbb{R}^d).$$

Then $\mu(\cdot)$ solves (I) $\iff \mu(\cdot)$ solves (E) with $\mathbf{v}(t) := v(t, \mu(t), u(t))$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \left\{ \mu(\cdot) \text{ s.t. } \partial_t \mu(t) \in -\operatorname{div} \left(V(t, \mu(t)) \mu(t) \right), \ \mu(0) = \mu^0
ight\}$$

is **compact** in the C^0W_2 -topology \rightarrow **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is Cauchy-Lip, with closed images. Then, $\mathcal{S}(\omega^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\operatorname{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \rightarrow **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is Cauchy-Lip, with closed images. Then, $\mathcal{S}(\omega^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\text{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \longrightarrow Existence of minimisers!

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is Cauchy-Lip, with closed images. Then, $\mathcal{S}(\mu^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\text{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \leadsto **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is Cauchy-Lip, with closed images. Then, $\mathcal{S}(\mu^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\text{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \leadsto **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is Cauchy-Lip, with closed images. Then, $\mathcal{S}(\mu^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\operatorname{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \leadsto **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed** images. Then, $\mathcal{S}(\mu^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\operatorname{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Theorem (Compactness of solution sets)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed convex** images. Then for any μ^0 , the solution set

$$\mathcal{S}(\mu^0) := \Big\{ \mu(\cdot) \ \text{ s.t. } \ \partial_t \mu(t) \in - \mathrm{div}\big(V(t,\mu(t))\mu(t)\big), \ \mu(0) = \mu^0 \Big\},$$

is **compact** in the C^0W_2 -topology \leadsto **Existence of minimisers!**

Theorem (Relaxation)[B., Frankowska]

Suppose that $V:[0,T]\times\mathcal{P}_c(\mathbb{R}^d)\rightrightarrows C^0(\mathbb{R}^d,\mathbb{R}^d)$ is **Cauchy-Lip**, with **closed** images. Then, $\mathcal{S}(\mu^0)$ is dense in the solution set of

$$\partial_t \mu(t) \in -\operatorname{div}(\overline{\operatorname{co}}V(t,\mu(t))\mu(t)), \quad \mu(0) = \mu^0,$$

Conclusion – That's all folks!

Thank you for your attention !

