CS & IT ENGINERING Computer Networks

TCP & UDP

Lecture No.- 07

TOPICS TO BE COVERED

- (1) Flow control in TCP
- (5) ELAROR CONFROI IN ICA

Window Size or Advertising Window (16bits) [Used For Flow Control]: Adv. wm=400 B (1) reguest X < Dead lock Adv. window = 1000 (a) 21 pla 100B 400B 500B Probe sogment **₹** 10008 → (1Byte) (3) ACK AdV. WIN = 400 B Data = 400B Adv.win = 600B 600 B 400B Data = 400 Byte Adv.wm=0 Data = 500 B 500B Adv. wm = 100B 200B 100B 4008 PT Probe segment (1B) Data = 100 B Adv.win=0 PT 400B 500B 100B Grope zodunt(18) Adv. wm=0 PT Adv.win=0 Slide 2

Persistent Timer:

- Pw
- Whenever receiver announce that my receiving capacity is zero then sender should stop the transmission this might be lead to Deadlock.
- To correct the deadlock problem, TCP uses a persistent timer. When the sender receive an acknowledgment with a window size zero, it start a persistent timer.
- When the persistent timer goes off, the sender send a special segment called as Probe segment.
- This segment contain only one Byte of data. It has a sequence number, but its sequence number is never acknowledged.
- It is even ignored in calculating the sequence number for the rest of the data.
- Probe segment alters the receiving TCP that ACK was lost and should be resent
- The value of the persistent timer is set to the value of retransmission timer. How ever if a response is not received from the receiver; another probe segment is sent and the value of persistent timer will be doubled and reset.

Ws = 200000 Byte

B

WR = 2000000 Byte

Note: According to RFC – 1312 the maximum window size by using window scale option = 2^{30} byte = 1GB

Exxox Control in TCP

Error control in TCP:

Pw

- ☐ TCP can use both selective and cumulative acknowledgement.
- Receiver may choose to send independent ACK or cumulative ACK
- TCP uses a combination of selective repeat and GO-Back-N protocol for error control and flow control.
- In TCP sender window size = receiver window size.
- □ In TCP out of order packets are accepted by the receiver.
- When ever receiver receives an out of order packet, it accept that packet but send an acknowledgement for the expected packet.
- Out of order segments are never delivered to the process.
- TCP guarantee that data are delivered to process in order.

Selective ACK /Independent ACK:

WR=500Byte

Cumulative Ack

Ws=5000yte

Acktimur WR=500Byte

Acktimur

Acktimur

Retransmission in TCP

Pw

- (i) Retransmission after time out timer
- (ii) Retransmission after 3 duplicate ACK

(i) Retransmission after time out timer:

Note:

- (i) If 3 duplicate ACK
 Not Possible then
 we use Time Out
 timer Concept for
 retransmission the
 lost packet.
- (ii) Time Out timer indicate server congestion condition

Lost Acknowledgment:

Pw

- (i) Automatically corrected lost ACK
- (ii) Lost Acknowledgment corrected by resending a segment

(i) Automatically corrected lost ACK

(ii) Lost Acknowledgment corrected by resending a segment

Only one segment is retransmitted although two segment are not Acknowledged when sender receive the retransmitted ACK, it knows that both segments are safe because the acknowledgment is cumulative.

THANK - YOU