

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

® Off nl gungsschrift ® DE 198 06 630 A 1

② Aktenzeichen:

198 06 630.9

② Anmeldetag: 18. 2.98

(3) Offenlegungstag: 26. 8.99

(5) Int. Cl. 6: A 01 F 17/02

A 01 F 15/08 A 01 D 90/04

(71) Anmelder:

Claas Selbstfahrende Erntemaschinen GmbH, 33428 Harsewinkel, DE

(74) Vertreter:

Weeg, T., Rechtsanw., 33428 Harsewinkel

② Erfinder:

Clostermeyer, Gerhard, 33334 Gütersloh, DE

56 Entgegenhaltungen:

DE 41 27 155 C2 DE 43 41 609 A1

DE 42 01 545 A1 DE 37 19 845 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prūfungsantrag gem. § 44 PatG ist gestellt

- (4) Ballenpresse für landwirtschaftliches Halmgut
- (3) Bei einer landwirtschaftlichen Ballenpresse, die im Einzugsbereich mit einer Zerkleinerungseinrichtung, bestehend aus einem oberschlächtig fördernden Schneidrotor (11), Gegenmessern (14) und Abstreifern (15) ausgestattet ist, soll der Guffluß und die Wirkungsweise der Schneideinrichtung dadurch optimiert werden, daß vor dem Rotor (11) eine unterschlächtig fördernde Querförderschnecke (8) angeordnet wird, die den Rotor (11) oberschlächtig arbeiten läßt, während Gegenmesser (14) und Abstreifer (15) rückwärtig eingreifen und eine Niederhaltertrommel (10) Unterstützungshilfe bietet.

DE 198 06 630 A 1

1

Beschreibung

Die Erfindung bezieht sich auf eine Ballenpresse für landwirtschaftliches Halmgut mit in Gutförderrichtung vor dem Preßraum angeordneter Pickup-Trommel und anschließender Zerkleinerungsvorrichtung, bestehend aus einem oberschlächtig fördernden Rotor, Gegenmessern und Abstrei-

Der Stand der Technik ergibt sich beispielhaft aus der DE 196 28 605. Die heute bekannten Ballenpressen mit Zer- 10 kleinerungseinrichtung fördern das Halmgut überwiegend unterschlächtig unter dem Schneidrotor hindurch. Die Förderfunktion kann dabei durch eine geeignete Anordnung von zusätzlichen Förderelementen verbessert werden. Allerdings ergibt sich bei unterschlächtig fördernden Systemen 15 der Nachteil, daß ein hohes Maß an Reibung und Quetschung des Halmgutes zwischen Förderrotoren und Bodenblechen auftritt. Dadurch verschlechtert sich der Wirkungsgrad der Ballenpressen. Man hat versucht, diesen Effekt durch Beschichtung der Bodenbleche, beispielsweise durch 20 Teflon, zu verringern, ohne aber dadurch die eigentliche Ursache beseitigen zu können. Als Beispiel für oberschlächtig fördernde Systeme sei die Schrift DE-OS 37 19 845 genannt. Dort ist eine Großballenpresse in Form einer Rundballenpresse gezeigt, die eine Zerkleinerungsvorrichtung 25 mit einem oberschlächtig fördernden Rotor aufweist, der die Funktionen Zerkleinern und Fördern miteinander kombiniert. Vorteil der oberschlächtigen Förderung sind eine geringere Reibung und Quetschung des Erntegutes zwischen der oberen Begrenzung der Förderstrecke und den Förderro- 30 toren im Vergleich zu einer unterschlächtigen Förderung. Insbesondere bei einer größeren Erntegutmenge und klebrigem Halmgut hat sich jedoch gezeigt, daß die bekannte Anordnung nicht immer zufriedenstellende Resultate hinsichtlich einer störungsfreien und sicheren Förderung des 35 Halmgutes zum Schneidrotor in Richtung der Preßraums liefert.

Aufgaben der Erfindung sind es, bei einer gattungsgemä-Ben Ballenpresse die Gutförderung zu optimieren.

Die Aufgabe wird gelöst, indem zwischen Pickup-Trom- 40 mel und Schneidrotor eine das Halmgut auf Rotor- bzw. Förderkanalbreite zusammenführende, mit Zinken besetzte unterschlächtig fördernde Querförderschnecke angeordnet ist, die das Erntegut an den oberschlächtig fördernden Schneidrotor übergibt. Die Verteilung der Funktionen Fördern und 45 Zerkleinern auf zwei Förderelemente ermöglicht eine bessere Verarbeitung von Mengenspitzen. Die Kombination aus unter- und oberschlächtiger Förderung des Halmgutes erlaubt eine gleichmaßigere Verteilung der Gutmatte. Das Halmgut wird zunächst zusammengezogen und dann von 50 der Querförderschnecke hochgefördert. Größere Halmgutansammlungen werden beim Hochfördern auseinandergezogen, wodurch eine auflockerungsbedingte Vergleichmäßigung der Gutmatte erreicht wird. Bei Mengenspitzen an zugefördertem Halmgut werden diese nicht kräftezehrend und 55 reibungswiderstandserhöhend auf den Boden gepreßt, sondern bei vergleichsweise geringer Reibung an der oberen Begrenzung der Förderstrecke in sich vorverdichtet. Die vorverdichtend angesammelten Gutportionen können dann vom Schneidrotor leicht abgefräst werden. Die Antriebslei- 60 stung für den Schneidrotor kann verringert werden, wodurch die Herstellkosten für die Maschine gesenkt werden können. Wirkungsgradverluste der eingesetzten Antriebskraft, die durch Andrücken des Halmgutes auf den Boden des Förderkanals entstehen, werden vermieden. Weitere vorteilhafte 65 1 Preßkanal Ausgestaltungen der Erfindung ergeben sich aus dem Wortlaut der Unteransprüche.

Anhand der Zeichnungen sei die Erfindung nachfolgend

2

beispielhaft erläutert. Es zeigen:

Fig. 1 eine perspektivische Schemadarstellung des Einzugsbereichs einer Großballen-Quaderpresse,

Fig. 2 das Pressenvorderteil in Seitenansicht,

Fig. 3 die zum Pressen-Einzug gehörige Schneideinrichtung für das Erntegut in Seitenansicht,

Fig. 4 ein Teilstück des zur Schneideinrichtung gehörigen Rotors in Perspektive und

Fig. 5 einen Teilschnitt durch Rotor, Gegenmesser und Abstreifer der Schneideinrichtung entsprechend Fig. 3.

Mit 1 ist der Preßraum einer Großballen-Quaderpresse als Ausführungsbeispiel bezeichnet, in dem sich der Preßkolben 2 hin- und herbewegt und dem das Erntegut über gesteuerte Rafferzinken 3 und den Zuführkanal 4 zugeführt wird. Der Kolben 2 wird über die Kolbenstange 5 und das Winkelgetriebe 6 angetrieben. Eine im Uhrzeigersinn drehende Pikkup-Trommel 7 nimmt das Erntegut vom Feld auf und übergibt es an eine Einzugswalze bzw. Querförderschnecke 8, die im mittleren Bereich mit Zinken 9 besetzt ist, sich in entgegengesetzter Richtung dreht und das Gut auf die Breite des Preßkanals 1 zusammenführt. Die Zinken 9 fördem das Gut unterschlächtig unter der Querförderschnecke 8 hindurch, nehmen es dann nach oben mit und geben es dabei an den oberschlächtig fördernden Schneidrotor 11 ab. Die oberhalb zwischen der Einzugswalze 8 und dem Schneidrotor 11 angebrachte entgegen dem Uhrzeigersinn drehende Niederhaltertrommel unterstützt die Gutabgabe von der Einzugswalze und die Gutannahme des Schneidrotors. Auf einer Welle 12 sind parallel beabstandet zueinander zueinander Förderzinken 13 angeordnet, in deren Zwischenräume von oben Gegenmesser 14 und von unten Abstreifleisten 15 eingreifen. Die Förderzinken 13 können zusätzlich noch versetzt zueinander sein. Gegenmesser 14 und Abstreifleisten 15 können abwechselnd in die Zwischenräume eingreifen, um einen Überlappungseffekt erzielen zu können. Die Eintauchtiefe der Gegenmesser 14 ist unterschiedlich zur Eintauchtiefe der Abstreifleisten 15, um eine bessere Abstreifwirkung erzielen und Wickeln verhindern zu können. Die Eintauchtiefe der Gegenmesser 14 wird durch die Anordnung von auf die Welle 12 aufgesetzten Distanzringen 16 gegenüber der Eingreiftiefe der Abstreifleisten 15 verringert. Mit 17 ist ein Schwungrad, mit 18 eine Gelenkwelle zum Antrieb der Presse zeichnungsmäßig angedeutet. Die sich aneinander anschließenden Transport- und Arbeitselemente (Pickup 7, Förderschnecke 8, Niederhaltertrommel 10 und Schneidrotor 11) haben für den optimalen Gutfluß in vorteilhafter Weise untereinander ansteigende Umfangsgeschwindigkeiten. Die Förderschnecke 8 und die Niederhaltertrommel 10 sind in vorteilhafter Weise schwimmend gelagert bzw. aufgehängt und können sich so ideal den schwankenden Erntegutmengen anpassen. Insbesondere könne sie auch bei geringeren Mengen an Halmgut immer noch eine Vorverdichtung des Erntegutes und eine Vergleichmäßigung der Halmgutmatte bewirken. Die Gegenmesser 14 sind so gelagert, daß sie bei Überlast ausweichen

Die vorstehende Beschreibung ist nur als beispielhaft zu verstehen. Einem Fachmann bereitet es keine Schwierigkeiten, die beschriebene Erfindung unter Zuhilfenahme des ihn zur Verfügung stehenden Fachwissens abzuwandeln und für seine Zwecke anzupassen.

Bezugszeichenliste

- 2 Preßkolben
- 3 gesteuerte Rafferzinken
- 4 Zuführkanal

DE 198 06 630 A 1

5

10

15

4

3

- 5 Kolbenstange
- 6 Winkelgetriebe
- 7 Pickup-Trommel
- 8 Querförderschnecke (Einzugswalze)
- 9 Zinken der Schnecke 8
- 10 Niederhaltertrommel
- 11 Schneidrotor
- 12 Welle des Schneidrotors 11
- 13 Förderzinken des Rotors 11
- 14 Gegenmesser
- 15 Abstreifleisten
- 16 Distanzringe
- 17 Schwungrad
- 18 Gelenkwelle

Patentansprüche

- 1. Ballenpresse für landwirtschaftliches Halmgut mit in Gutförderrichtung vor dem Preßraum angeordneter Pickup-Trommel und anschließender Zerkleinerungseinrichtung, bestehend aus einem oberschlächtig fördernden Rotor, Gegenmessern und Abstreifer, dadurch gekennzeichnet, daß zwischen Pickup-Trommel (7) und Schneidrotor (11) eine das Halmgut auf Rotor- bzw. Preßkanalbreite zusammenführende mit 25 Zinken (9) besetzte unterschlächtig fördernde Querförderschnecke (8) angeordnet ist, die das Erntegut an den oberschlächtig fördernden Schneidrotor (11) übergibt. 2. Ballenpresse nach Anspruch 1, dadurch gekennzeichnet daß oberbalb der Operförderschnecke (8) und 30
- 2. Ballenpresse nach Anspruch 1, dadurch gekennzeichnet, daß oberhalb der Querförderschnecke (8) und 30 des Schneidrotors (11) zwischen beiden Elementen eine unterschlächtig fördernde Niederhaltertrommel (10) vorgesehen ist.
- 3. Ballenpresse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf dem Schneidrotor (11) parallel 35 beabstandet zueinander versetzt Förderzinken (13) angeordnet sind, in deren Zwischenräume abgabeseitig von oben her Gegenmesser (14) und von unten her Abstreifteisten (15) eingreifen.
- 4. Ballenpresse nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Eintauchtiefe der Gegenmesser (14) in die Zwischenräume benachbarter Förderzinken (13) unterschiedlich ist zur Eintauchtiefe der Abstreifleisten (15).
- 5. Ballenpresse nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Niederhaltertrommel (10) angetrieben oder freilaufend ausgebildet und vorzugsweise schwimmend gehalten bzw. gelagert ist.
- Ballenpresse nach den Ansprüchen 1 bis 5, dadurch 50 gekennzeichnet, daß die Gegenmesser (14) ausweichbar gelagert sind.

Hierzu 3 Seite(n) Zeichnungen

ZEICHNUNGEN SEITE 1

Nummer: Int. Ci.⁶: Offenlegungstag: DE 198 06 630 A1 A 01 F 17/02 26. August 1999

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁶: Offenlegungstag: DE 198 06 630 A1 A 01 F 17/02 26. August 1999

ZEICHNUNGEN SEITE 3

Nummer: Int. Cl.⁶: Offenlegungstag: DE 198 06 630 A1 A 01 F 17/02 26. August 1999

