

PB93-210979

Quantitative Characteristics of Primary Amino Acid Sequences Predict 'Fractal' Measures on Tertiary Structures of Proteins

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (France)

Prepared for:

Office of Naval Research, Arlington, VA

May 93

U.S. DEPARTMENT OF COMMERCE National Technical Information Service DTIC QUALITY INSPECTED S

19970821 083

BIBLIOGRAPHIC INFORMATION

PB93-210979

Report Nos: IHES/M-93/21

<u>Title</u>: Quantitative Characteristics of Primary Amino Acid Sequences Predict 'Fractal' Measures on Tertiary Structures of Proteins.

Date: May 93

Authors: A. J. Mandell, and K. A. Selz.

Performing Organization: Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (France).**Florida Atlantic Univ., Boca Raton.

Sponsoring Organization: *Office of Naval Research, Arlington, VA.

Supplementary Notes: Prepared in cooperation with Florida Atlantic Univ., Boca Raton. Sponsored by Office of Naval Research, Arlington, VA.

NTIS Field/Group Codes: 57F, 57B, 99F

Price: PC A02/MF A01

<u>Availability</u>: Available from the National Technical Information Service, Springfield, VA. 22161

Number of Pages: 6p

<u>Keywords</u>: *Proteins, *Enzymes, *Tertiary protein structure, *Amino acid sequence, Thermodynamics, Protein conformation, Calorimetry, Analysis of variance, Hydrophobicity.

Abstract:

QUANTITATIVE CHARACTERISTICS OF PRIMARY AMINO ACID SEQUENCES PREDICT "FRACTAL" MEASURES ON TERTIARY STRUCTURES OF PROTEINS

A. J. MANDELL K.A. SELZ

Institut des Hautes Etudes Scientifiques 35, route de Chartres 91440 - Bures-sur-Yvette (France)

Mai 1993

IHES/M/93/21

DTIC QUALITY INSPECTED 3

QUANTITATIVE CHARACTERISTICS OF PRIMARY AMINO ACID SEQUENCES PREDICT "TRACTAL" MEASURES ON TERTIARY STRUCTURES OF PROTEINS

Arnold J. Mandell and Karen A. Selz Departments of Mathematics, Physics, Psychology and the Chnical Psychology Center Florida Atlantic University, Boca Raton, FL33431

(Current Address: Institut des Hautes Etudes Scientifiques)

May, 1993

The quantitative prediction of the tertiary structure of proteins as defined by their x-ray crystallographic coordinates, using statistical physical and/or symbolic characteristics of the primary amino acid sequence is a long standing problem in biopolymer physics. An erstwhile missing feature of protein structural data has been a measure for the mapping of a set of x- ray observables onto a single real number as a continuously distributed descriptor which could then serve as the object of quantitative prediction. Such a global measure using the x-ray coordinates of protein crystals has been developed by Stapleton and associates. 1-3 Computation of the range of inter-a-carbon distances indicated that there were protein specific, statistically reliable, fractional power laws (we call them "Stapleton protein fractal dimensions", ds) relating the amino acid monomeric mass density to the α-carbon distances with values ranging from 1.26 to 1.87. Although insufficient in orders of magnitude of length to qualify for the definition of fractals, intuitively, the values appear related to the space filling aspects of tertiary structure. For examples, the "curled up," barrel dominated proteins such as equine hemoglobin A and B and sperm whale myoglobin manifested $ads \cong 1.65$, whereas in the "stretched out" more "random" chains such as protease A and B from s. griscus, $d_S = 1.31$ and 1.32 respectively. From similar computations yielding the "fractal dimension" of a polymer represented by the orbit of a self avoiding random walk in three dimensions, it is speculated that the upper bound on ds is in the vicinity of 5/3.1

Chothia's studies relating a protein's conformation deduced from x-ray crystallographic data⁴ to its amino acid side chain hydrophobicity values. hp_i (in $cal\ K^{-1}\ mol^{-1}$), derived from the studies of Nozaki and Tanford's, suggested a measure map to the reals for the amino acid sequence as quantitative predictors. Each protein can be transformed into a hydrophobic sequence, Σhp_i , from which a statistical model to predict the proteins' values for d_S could be developed. A representative set of amino acid-hydrophobic transformations' in $cal\ K^{-1}\ mol^{-1}\ yield: \ q=0.00, s=0.07, t=0.07, n=0.09, g=0.10, d=0.66, r=0.67, r=0.85, a=0.87, h=0.87, c=1.52, k=1.64, m=1.67, v=1.87, l=2.17, y=2.76, p=2.77, f=2.87, i=3.15, and w=3.77.$

That relationships between measures on Σhp_e and d_S have physical meaning is suggested by two groups of research findings: (1) The related studies by the Stapleton group yielding solvent ionic strength-sensitive, densities of low frequency ($< 300cm^{-1}$), vibrational state fractional power laws, when probed by temperature dependent. Raman spin-lattice relaxation techniques in heme and iron-sulfer proteins, which were very similar to the proteins' values for d_S :¹⁻³(2) Calorometric studies of the specific heats of proteins consistent with the presence of internal "soft" modes with low fundamental frequencies ($< 500cm^{-1}$), easily excitable and subject to the influence of hydrophobic factors in folding, ligand binding, and ionic environment.⁷⁻⁹

One might relate these two ideas to the space-filling dependence of d_S with the idea that protein relaxation dynamics might vary in temporal complexity when comparing the potential motions along the spatially one-dimensional amino acid peptide backbone with the more complex, hierarchical multimodal, higher dimensional case involving hydrophobic interactions of the amino acid side chains (off backbone connectivity) in addition to one dimensional pathways. The distributions of modes, $\rho(\gamma)$, between γ and $\gamma + \delta \gamma$, would go like γ^{-d_S} , $1 < d_S < 2$. These considerations motivated the development of quantities on Σhp_i which might describe the potential for hydrophobic "mode" structure predictive of Stapleton's measure, d_S .

In 35 proteins representing the range of reported values for d_S , we studied the relationships between d_S obtained in two series of studies by the Stapleton group¹⁰ and four statistical transformations on Σhp_i .

The transformations included (1) As a statistical modulus, the average hydrophobicity per amino acid residue, $\overline{hp} \approx \frac{\Sigma^2 \pi^2}{2} (col |K^{-4} mol^{+4})$, (2) As a statistical wave length, the average inter-high hydrophobic run interval in number of amino acid residues, ω_{bb} , in which the values for hp for the amino acid sequences were partitioned into 0 for hp < 1 length (i.e., 2.17) and 1 for values \mathbb{R} lengthe; (3) As an estimate of longer range order in the hydrophobic sequence partitioned into four bins (letters) of five amino acid each (1), 10, 66 - 87, 152 - 217, 276 - 377), the longest "word", $\lambda_{\text{Word}}(\Sigma hp_b)$, in number of amino acid residues (a word is defined as a sequence of amino acid residue transformations that appears at least twice along the length of the protein). Whereas ω_{bb} yields values sensitive to small structure (for example, the hemoglobins and myoglobin with high densities of α -helixes manifest the expected values $\cong 3.5$ and $u\pi$ helix-like value of 3.3 was seen in carboxypeptidase as "average turn lengths"), λ_{Word} varied up to 15 residues, ω_{bp} is similar to the rotation number used in studies of two dimensional reductions of three dimensional dynamical systems Ω_{Word} is derived from symbolic dynamics and lexical compression algorithms." (1) As a correction term, we used the percent of the sequence length that was proline Ω_{CPRO} , its role as a "structure breaker" in pative pretein conformations being well known

We remind ourselves of the Frdos-Renyi "new law of large numbers" which says that the longest expected repetition length in a random sequence is asymptotically = $\log_{\text{base}(\mathbf{p})} n_*^{1.5} \lambda_{\text{word}}$ exceeded this value for all proteins studied. For examples, for the four letter code (p=0.25) in the n=141 residue hemoglobin, a longest word length, λ_{word} of 3.56 was expected and two distinct λ'_{word} s of 6 residues were observed; the expectation for protease λ was 3.75 and an 11 residue word was observed; for elastase it was 3.95 versus 13.

The proteins studied were: protease A and B(S,griseus), myoglobin (sperm whale), rhodanese (borine), staphylococcal nuclease (S. aureus), glyceraldehyde dehydrogenase (lobster), thermolysin (B. amylolique-facieus), thioredoxin (E. coli), adenylate kinase (poreine), alcohol dehydrogenase (equine), algal ferredoxin (S. platensis), carbonic amhydrase B and C(human), carboxypeptidase A and B(borine), concanavalin A (pack bean), cytochromes. C(albacore), B5(borine), C2(R, rubrum), C551(P, aeruginosu), B562(E, coli), dihydrofolate reductase (L. casci), elastase (poreine), flavodoxin (clostridium), hemerythrin B(P, gouldiu), hemoglobin A and B(equine), lactate dehydrogenase (doglish), lysozyme (chicken), subtilisin inhibitor (S. alborqriseoulus), superoxide dismutase (borine), trypsin inhibitor (borine), chymotrypsin $\alpha(borine)$, papain (papaya), and subtilisin (B. amyloliquefaciens).

Freating the continuous, transformed measures as predictors showed negligible linear intercorrelations, with the exception of a strong negative relationship between between \overline{hb} and $\omega_{hl}(r=-0.805)$ (the more dense the ≥ 2.17 , hydrophobic bursts, the higher the average hydrophobicity). Since these measures were redundant with respect to d_S , two alternative regression models predicting d_S were constructed incorporating ω_{hb} in one and \overline{hb} in the other. Using standardized regression coefficients $(i,e,\beta's),d_S$ -predictive Model I is $[-.246\omega_{hb}-.420\lambda_{word}]$, 411% (PRO)] and Model II is $[+.221\overline{hb}-.403\lambda_{word}]$, 429% (PRO)]. Model I resulted in a squared multiple R=0.340 (adjusted $R^2=0.274$) and a highly significant ANOVA [F(3,31)=5.661,p=0.003]. Similarly, for Model II, $R^2=0.354$ (adjusted $R^2=0.291$) and an ANOVA of [F(3,31)=5.332,p=0.004]. These findings are consistent with our hypothesis that the values for d_S computed upon x-day crystallographic data from protein tertiary structure can be predicted from suitable transformations of the primary amino acid hydrophobicity sequences of the proteins. That λ_{word} has a strong negative weighting with respect to d_S suggests that the simple "fractal" interpretation d_S is insufficient.

REFERENCES

- Stapleton, H.J., Allen, J.P., Flynn, C.P., Stinson, D.G., and Kurtz, S.R. Phys. Rev. Lett. 45, 1456 = 1459(1980).
- Allen, J.P., Colvin, J.T., Stinson, D.G., Flynn, C.P. and Stapleton, H.J. Biophys. J. 38, 299 310(1982).
- Wagner, G.C., Colvin, J.T., Allen, J.P., and Stapleton, H.J. J. Am. Chem. Soc. 107, 5589 5594(1985).
- Chothia, C. Nature, 254, 304 308(1975).
- 5. Nozaki, Y. and Tanford, C. J. Biol. Chem. 246, 2211 2217.
- 6. Manayalan, P. and Ponnuswamy, P.K. Nature 275, 673 674(1978).

- 7 Franconi, R. and Finegold, I. Science 100, 158 460(1975).
- 8. Brown, K.G., Erfurth, S.C., Small, E.W. and Peticolas, W.L. Proc. Natl. Acad. Sci. USA 69:1467 + 1469(1972).
- 9. Sturtevant, J.M. Proc. Natal. Acad. Sci. USA 74:2236 2240(1977).
- 10. Supplemental data for ref-rence # 3 above obtained from Professor Harvey J. Stapleton, Department of Physics, University of Illinois, 1119 W. Green Street, Urbana, 1L61801.
- 11. Newhouse, S., Palis, J., and Takens, F. Publ. I.H.E.S57, 5 72(1983).
- 12. Jimenez-Montano, M.A. Bull Math. Biol. 16.641 659(1984).
- 13. Erdos, P. and Renyi, A. J. Anal. Math. 22,103 111(1970).

ACKNOWLEDGEMENTS. This work was partially supported by the (USA) Office of Naval Research (Divisions of Theoretical Biophysics, and Biological Intelligence). Appreciation is expressed to the Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France, for its hospitality during the data development and writing of this paper.