

# Ingénierie des Systèmes Complexes et Systèmes Humains

Master Modélisation Hybride Avancée et Calcul Scientifique

M9: Méthodes Numériques

Notes de cours sur la Méthode des Éléments Finis

Années 2019-2020

Abdellah El Kacimi

1 erreur9 avertissements

## **Contents**

|    | Cont                         | tents                                       | 2  |
|----|------------------------------|---------------------------------------------|----|
| In | ntroduction                  |                                             | 6  |
| 1  | The                          | Exact Boundary controllability              | 7  |
|    | 1.1                          | Formulation of the control problem          | 7  |
|    | 1.2                          | Existence and uniqueness of solutions       | 8  |
|    | 1.3                          | Controllability by minimization             | 9  |
| 2  | Conjugate Gradient Algorithm |                                             | 15 |
|    | 2.1                          | Variational Problem                         | 15 |
|    | 2.2                          | General conjugate gradient algorithm        | 16 |
|    | 2.3                          | Application of conjugate gradient algorithm | 17 |
| Co | Conclusion                   |                                             |    |

# List of figures

## List of tables

## Introduction

FE

## Chapitre 1

## The Exact Boundary controllability

### 1.1 Formulation of the control problem

Let  $\Omega$  be a bounded domain ( that is, non-empty open connected set ) in  $\mathbb{R}^n$  with boundary  $\Gamma = \partial \Omega$  "Sufficiently smooth",  $\Gamma_1$  be an open nonempty subset of  $\Gamma$  and  $\Gamma_2 = \Gamma \backslash \Gamma_1$ . With T a given positive number, we consider the following non-homogeneous wave equation :

$$\begin{cases} \frac{\partial^{2}y}{\partial t^{2}} - \Delta y &= 0 & \text{for } (x,t) \in \Omega \times (0,T), \quad (1.1.1) \\ y(x,t) &= 0 & \text{for } (x,t) \in \Gamma_{2} \times (0,T), \quad (1.1.2) \\ y(x,t) &= v(x,t) & \text{for } (x,t) \in \Gamma_{1} \times (0,T), \quad (1.1.2) \\ y(x,0) &= y^{0}, \quad \frac{\partial y}{\partial t}(x,0) = y^{1} & \text{for } x \in \Omega. \quad (1.1.3) \end{cases}$$

$$(1.1)$$

(1.1.2): The boundary conditions.

(1.1.3) The initial conditions.

In (1.1),  $y^0 \in L^2(\Omega)$ ,  $y^1 \in H^{-1}(\Omega)$ , such that  $H^{-1}(\Omega)$  is the topological dual space of  $H_0^{-1}(\Omega)$  and  $\Delta$  is the Laplacian operator.

We shall now define the exact boundary controllability for the system (1.1).

**Definition 1.1.1.** System (1.1) is controllable in time T>0 if for every initial data  $(y^0,y^1)\in L^2(\Omega)\times H^{-1}(\Omega)$ , we can find a control function  $v\in L^2(\Gamma_1\times (0,T))$  such that the corresponding solution (y,y') of (1.1) verifies

$$y(.,T) = y'(.,T) = 0.$$
 (1.2)

**Remark 1.1.1.** For the existence of solution see section [1.2]

**Remark 1.1.2.** If the solution of (1.1) verifies (1.2) is also said to be null controllable in time T > 0, for more details (see [1], page 100).

The problem that we consider is the following one : is it possible to find T>0 sufficiently large or optimal and  $v\in L^2(\Gamma_1\times(0,T))$  a boundary

control function such that for any  $(y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega)$  we have (1.2). But before that, we have to prove that the system (1.1) admits a solution.

### 1.2 Existence and uniqueness of solutions

In this section we consider the general case of (1.1) whith v not necessarily null and a bounded domain  $\Omega$  in  $\mathbb{R}^n$ .

**Definition 1.2.1.** For  $(y^0,y^1)$  in  $L^2(\Omega)\times H^{-1}(\Omega)$  and  $v\in L^2(\Gamma_1\times[0,+\infty))$  a function  $y\in C([0,+\infty),L^2(\Omega))\cap C^1([0,+\infty),H^{-1}(\Omega))$  is called a weak solution of  $(\mathbf{1.1})$  if the relation

$$\int_{\Omega} y(x,t)\varphi(x)dx - \int_{\Omega} y^{0}(x)\varphi(x)dx - t < y^{1}, \varphi >_{-1,1} = \int_{0}^{t} \int_{0}^{s} \int_{\Omega} y(x,\xi)\Delta\varphi(x)dxd\xi ds 
- \int_{0}^{t} \int_{0}^{s} \int_{\Gamma_{1}} v(x,\xi) \frac{\partial \varphi}{\partial n}(x)d\sigma d\xi ds,$$
(1.3)

holds for every  $t \geq 0$  and every  $\varphi \in H^2(\Omega) \cap H^1_0(\Omega)$ .

**Remark 1.2.1.** For x in  $\Gamma$  and  $\varphi$  in  $H^2(\Omega)$  we have

$$\frac{\partial \varphi}{\partial n}(x) = \nabla \varphi(x) \cdot \overrightarrow{n}(x),$$

is called the normal derivative, with  $\overrightarrow{n}(x)$  is the normal vector at x

**Remark 1.2.2.** The normal vector exists because the boundary  $\Gamma$  is sufficiently smooth.

The main result for the existence of solutions of (1.1) is the following:

**Theorem 1.2.1.** For every v in  $L^2(\Gamma_1 \times (0,T))$  and  $(y^0,y^1)$  in  $L^2(\Omega) \times H^{-1}$  system (1.1) has a unique weak solution

$$(y, y') \in C([0, T], L^{2}(\Omega) \times H^{-1}),$$

moreover, there exists a constant C = C(T) > 0 such that

$$||(y, y')||_{L^{\infty}([0,T], L^{2}(\Omega) \times H^{-1})} \le C \left[||(y^{0}, y^{1})||_{L^{2}(\Omega) \times H^{-1}} + ||v||_{L^{2}(\Gamma_{1} \times (0,T))}\right]$$

#### Proof:

The theorem is a consequence of the theory of nonhomogeneous evolution equations.

- \* Proof with variational method, see [2].
- \* Proof with Semigroups operator, see [3].

### 1.3 Controllability by minimization

In this section we will give a necessary and sufficient condition for the exact controllability of (1.1) and also we will transform the controllability problem to a minimization problem, but before that we need to proof the following lemma:

**Lemma 1.3.1.** For every  $(\varphi^0, \varphi^1)$  in  $H_0^1(\Omega) \times L^2(\Omega)$  the following wave equation

$$\begin{cases} \frac{\partial^{2} \varphi}{\partial t^{2}} - \Delta \varphi &= 0 & \text{in } \Omega \times (0, T), \\ \varphi &= 0 & \text{in } \Gamma \times (0, T), \\ \varphi(., 0) &= \varphi^{0}, & \frac{\partial \varphi}{\partial t}(., 0) = \varphi^{1} & \text{in } \Omega \end{cases},$$

$$(1.4)$$

has a unique solution, moreover (1.4) generates a group of isometries in  $H_0^1(\Omega) \times L^2(\Omega)$ .

#### Proof:

this lemma is a consequence of the following classic theorem :

#### Theorem 1.3.1. (Stone, 1930)

Let H be a Hilbert space and A be a linear operator on H with dense domain, then A generates a  $C_0$ -group of unitary operators if and only if A is skewadjoint (A' = -A)

Let  $w(t)=(\varphi(t),\varphi'(t))$  and the state space is  $H^1_0(\Omega)\times L^2(\Omega)$  with the scalar product

$$<(\varphi_1,\varphi_2),(\psi_1,\psi_2)>=\int_{\Omega}\nabla\varphi_1\nabla\psi_1+\int_{\Omega}\varphi_2\psi_2,$$

then the corresponding norm on H given by :

$$||(\varphi_1, \varphi_2)||^2 = \int_{\Omega} ||\nabla \varphi_1||^2 + \int_{\Omega} ||\varphi_2||^2.$$

By the Poincaré inequality, this norm is eqivalent to the usual norm on  ${\cal H}.$  We define the linear operator  ${\cal A}$  by :

$$D(A)=H^2(\Omega)\cap H^1_0(\Omega)\times H^1_0(\Omega)\quad \text{and}$$
 
$$A=\begin{pmatrix} 0 & I\\ \Delta & 0 \end{pmatrix}.$$

Firstly the domain D(A) is dense in H. Let  $(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in D(A)$ , then

$$\langle A(\varphi_{1}, \varphi_{2}), (\psi_{1}, \psi_{2}) \rangle = \langle (\varphi_{2}, \Delta \varphi_{1}), (\psi_{1}, \psi_{2}) \rangle$$

$$= \int_{\Omega} \nabla \varphi_{2} \nabla \psi_{1} + \int_{\Omega} \Delta \varphi_{1} \psi_{2}$$

$$= \int_{\Omega} \nabla \varphi_{2} \nabla \psi_{1} - \int_{\Omega} \nabla \varphi_{1} \nabla \psi_{2}$$

$$+ \underbrace{\int_{\Gamma} \frac{\partial \varphi_{1}}{\partial n} \psi_{2}}_{0}$$

$$= -\int_{\Omega} \nabla \varphi_{1} \nabla \psi_{2} - \int_{\Omega} \varphi_{2} \Delta \psi_{1}$$

$$= -\langle (\varphi_{1}, \varphi_{2}), (\psi_{2}, \Delta \psi_{1}) \rangle$$

$$= -\langle (\varphi_{1}, \varphi_{2}), A(\psi_{1}, \psi_{2}) \rangle .$$

Which implies that the operator A is skewadjoint on H and thus generates a unitary  $C_0$ -group on H by Stone's theorem.

Then if  $(\varphi^0, \varphi^1)$  in D(A) the system (1.4) has a unique strict solution by Semi-group theory, but in the case  $(\varphi^0, \varphi^1)$  in  $H \setminus D(A)$ , (1.4) has a unique weak solution by follows the proof of lemma.

**Proposition 1.3.1.** Assume that T>0 is large enough, then there exists a constant  $\hat{C}>0$  such that :

$$\int_0^T \int_{\Gamma_1} \left| \frac{\partial \varphi}{\partial n} \right|^2 d\sigma \ dt \le \hat{C} ||(\varphi^0, \varphi^1)||_{H_0^1(\Omega) \times L^2(\Omega)}^2, \tag{1.5}$$

for all  $(\varphi^0, \varphi^1) \in H_0^1(\Omega) \times L^2(\Omega)$  and  $\varphi$  is the solution of (1.4).

#### Proof:

The inequality (1.5) is a hildden regularity result, that may not be obtained by standard trace results (see, [.]).

The key result in this section is the variational characterization of the controllability of (1.1) given by the following lemma:

**Lemma 1.3.2.** The initial data  $(y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega)$  is controllable to zero if and only if there exists  $v \in L^2(\Gamma_1 \times (0, T))$  such that :

$$\int_0^T \int_{\Gamma_1} \frac{\partial \varphi}{\partial n} v d\sigma dt = \langle y^1, \varphi^0 \rangle_{-1,1} - \int_{\Omega} y^0 \varphi^1 dx, \tag{1.6}$$

for all  $(\varphi^0, \varphi^1) \in H_0^1(\Omega) \times L^2(\Omega)$  and where  $\varphi$  is the solution of the adjoint problem (1.4)

#### Proof:

For  $(y^0,y^1)\in D(\Omega)\times D(\Omega)$ ,  $(\varphi^0,\varphi^1)\in D(\Omega)\times D(\Omega)$  and  $v\in D(\Gamma_1\times(0,T))$ , then y and

 $\varphi$  are regular solutions. Multiplying the equation (1.1.1) in system (1.1) by  $\varphi$  and integrating, we have

$$\begin{split} 0 &= \int_0^T \int_\Omega (y'' - \Delta y) \varphi dx \; dt \\ &= \int_\Omega \int_0^T y'' \varphi dt \; dx - \int_0^T \int_\Omega \Delta y \varphi dx \; dt \\ &= \int_\Omega \left[ \left[ y' \varphi \right]_0^T - \int_0^T y' \varphi' dt \right] dx + \int_0^T \int_\Omega \nabla y \; \nabla \varphi dx \; dt \\ &= \int_\Omega (y'(T) \varphi(T) - y'(0) \varphi(0)) dx - \int_\Omega \left[ y \varphi' \right]_0^T dx + \int_\Omega \int_0^T y \varphi'' dt \; dx \\ &- \int_0^T \int_\Omega \Delta \varphi y dx \; dt + \int_0^T \int_{\Gamma_1} \frac{\partial \varphi}{\partial n} y \; d\sigma \; dt \\ &= \int_\Omega (y'(T) \varphi(T) - y'(0) \varphi(0)) dx - \int_\Omega (y(T) \varphi'(T) - y(0) \varphi'(0)) dx + \int_0^T \int_{\Gamma_1} \frac{\partial \varphi}{\partial n} y \; d\sigma \; dt \end{split}$$

Hence,

$$\int_{0}^{T} \int_{\Gamma_{1}} \frac{\partial \varphi}{\partial n} y \, d\sigma \, dt = -\int_{\Omega} (y'(T)\varphi(T) - y'(0)\varphi(0)) dx + \int_{\Omega} (y(T)\varphi'(T) - y(0)\varphi'(0)) dx,$$

finally we have,

$$\int_{0}^{T} \int_{\Gamma_{1}} \frac{\partial \varphi}{\partial n} y \, d\sigma \, dt = \int_{\Omega} y^{1} \varphi^{0} dx - \int_{\Omega} y^{0} \varphi^{1} dx + \int_{\Omega} y(T) \varphi'(T) dx - \int_{\Omega} y'(T) \varphi(T) dx.$$

We Know that  $D(\Omega)\times D(\Omega)$  dense in  $L^2(\Omega)\times H^{-1}(\Omega)$  as well as in  $H^1_0(\Omega)\times L^2(\Omega)$  and  $D(\Gamma_1\times(0,T))$  dense in  $L^2(\Gamma_1\times(0,T))$ . by the inequality (1.5), we have  $\frac{\partial \varphi}{\partial n}|_{\Gamma_1}\in L^2(\Gamma_1)\times(0,T)$ . From a density argument we deduce that for any  $(y^0,y^1)\in L^2(\Omega)\times H^{-1}(\Omega)$ ,  $(\varphi^0,\varphi^1)\in H^1_0(\Omega)\times L^2(\Omega)$  we have,

$$\int_{0}^{T} \int_{\Gamma_{1}} \frac{\partial \varphi}{\partial n} y \, d\sigma \, dt = \langle y^{1} \varphi^{0} \rangle_{-1,1} - \int_{\Omega} y^{0}, \varphi^{1} dx$$

$$+ \langle (\varphi(T), \varphi'(T)), (y(T), y'(T)) \rangle.$$

With  $<...>_{-1,1}$  be the duality product between  $H^{-1}(\Omega)$  and  $H^1_0(\Omega)$ . For all  $(\varphi^0,\varphi^1)\in H^1_0(\Omega)\times L^2(\Omega)$ ,  $(y^0,y^1)\in L^2(\Omega)\times H^{-1}(\Omega)$  we introduce the duality product

$$<(\varphi^0,\varphi^1),(y^0,y^1)>=\int_{\Omega}y^0\varphi^1-< y^1,\varphi^0>_{-1,1}.$$

Such that the wave equation generates a group of isometries in  $H^1_0(\Omega) \times L^2(\Omega)$ , then **(1.6)** holds if and anly if  $(y^0,y^1)$  is controllable to zero in time T>0. This completes the proof. From lemme 1.3.2, the equality **(1.6)** can be seen as an optimality condition for the minimants of the functional  $\mathcal{J}: H^1_0(\Omega) \times L^2(\Omega) \to \mathbb{R}$ , defined by

$$\mathcal{J} = \frac{1}{2} \int_0^T \int_{\Gamma_1} \left| \frac{\partial \varphi}{\partial n} \right|^2 d\sigma \ dt + \langle (\varphi^0, \varphi^1), (y^0, y^1) \rangle, \tag{1.7}$$

where  $(\varphi^0, \varphi^1) \in H_0^1(\Omega) \times L^2(\Omega)$  and  $\varphi$  is the corresponding solution of (1.4).

Before introducing the main theorem in this section we need to proof that the functional  ${\mathcal J}$  has a minimant .

**Definition 1.3.1.** System (1.4) is said to be observable in time T > 0 if there exists a positive a positive constant C > 0 such that

$$C||(\varphi^0, \varphi^1)||_{H_0^1(\Omega) \times L^2(\Omega)}^2 \leq \int_0^T \int_{\Gamma_1} \left| \frac{\partial \varphi}{\partial n} \right|^2 d\sigma \ dt, \tag{1.8}$$

for all  $(\varphi^0, \varphi^1) \in H^1_0(\Omega) \times L^2(\Omega)$  where  $\varphi$  is the solution of (1.4) with initial data  $(\varphi^0, \varphi^1)$ .

In the following we assume that there is a positive time  $T^*$  such that for any  $T > T^*$  the system (1.4) is observable.

On the other hand, the functional  $\mathcal J$  is continuous, strictly convex and coercive. It is easy to see that functional  $\mathcal J$  is continuous, now let  $(\varphi^0,\varphi^1),(\psi^0,\psi^1)$  in  $H^1_0(\Omega)\times L^2(\Omega)$  and  $\lambda\in]0,1[$ , we have,

$$\mathcal{J}(\lambda(\varphi^{0},\varphi^{1}) + (1-\lambda)(\psi^{0},\psi^{1})) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{1}} \left| \lambda \frac{\partial \varphi}{\partial n} + (1-\lambda) \frac{\partial \psi}{\partial n} \right|^{2} d\sigma dt 
+ \langle \lambda(\varphi^{0},\varphi^{1}) + (1-\lambda)(\psi^{0},\psi^{1}), (y^{0},y^{1}) \rangle 
= \lambda \mathcal{J}((\varphi^{0},\varphi^{1})) + (1-\lambda)\mathcal{J}((\psi^{0},\psi^{1})) 
- \frac{\lambda(1-\lambda)}{2} \int_{0}^{T} \int_{\Gamma_{1}} \left| \frac{\partial \varphi}{\partial n} - \frac{\partial \psi}{\partial n} \right|^{2} d\sigma dt.$$

Using the observability inequation, we obtain,

$$\int_0^T \int_{\Gamma_1} \left| \frac{\partial}{\partial n} (\varphi - \psi) \right|^2 d\sigma \ dt \ge C ||(\varphi^0 - \psi^0, \varphi^1 - \psi^1)||_{H_0^1(\Omega) \times L^2(\Omega)}^2,$$

then if  $(\varphi_0, \varphi_1) \neq (\psi_0, \psi_1)$ , then,

$$\mathcal{J}(\lambda(\varphi^0,\varphi^1) + (1-\lambda)(\psi^0,\psi^1)) < \lambda \mathcal{J}((\varphi^0,\varphi^1)) + (1-\lambda)\mathcal{J}((\psi^0,\psi^1)).$$

Hence  $\mathcal{J}$  is strictly convex.

For the coercivity of the the functional  $\mathcal{J}$ , we have,

$$\mathcal{J}((\varphi^{0},\varphi^{1})) \geq \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{1}} \left| \frac{\partial \varphi}{\partial n} \right|^{2} d\sigma \ dt - ||(\varphi^{0},\varphi^{1})||_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)} \ ||(y^{0},y^{1})||_{L^{2}(\Omega) \times H^{-1}(\Omega)}$$
 
$$\geq \frac{C}{2} ||(\varphi^{0},\varphi^{1})||_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} - ||(\varphi^{0},\varphi^{1})||_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)} \ ||(y^{0},y^{1})||_{L^{2}(\Omega) \times H^{-1}(\Omega)},$$

then 
$$\lim_{||(\varphi^0,\varphi^1)||\to +\infty} \mathcal{J}((\varphi^0,\varphi^1))=\infty.$$

We conclude that the functional  $\mathcal J$  has a unique minimizer  $(\hat{\varphi^0},\hat{\varphi^1})$  in  $H^1_0(\Omega)\times L^2(\Omega)$ , we have,

**Theorem 1.3.2.** Let  $(y^0,y^1)$  in  $L^2(\Omega) \times H^{-1}(\Omega)$  and  $(\hat{\varphi^0},\hat{\varphi^1})$  in  $H^1_0(\Omega) \times L^2(\Omega)$  be the unique minimizer of the functional  $\mathcal J$ , then the function  $\hat v$  defined on  $\Gamma_1 \times (0,T)$  by :

$$\hat{v}(x,t) = \frac{\partial \hat{\varphi}}{\partial n}(x,t), \quad (x,t) \in \Gamma_1 \times (0,T),$$

is a control which leads  $(y^0, y^1)$  to zero in time T > 0.

#### Proof:

The functional  ${\mathcal J}$  achieves its minimum at  $(\hat{\varphi^0},\hat{\varphi^1})$ , then

$$\lim_{h \to 0} \frac{1}{h} \left[ \mathcal{J}((\hat{\varphi}^0, \hat{\varphi}^1) + h(\varphi^0, \varphi^1)) - \mathcal{J}((\hat{\varphi}^0, \hat{\varphi}^1)) \right] = 0, \tag{1.9}$$

for all  $(\varphi^0, \varphi^1)$  in  $H^1_0(\Omega) \times L^2(\Omega)$  where  $\varphi$  is the solution of **(1.4)** with initial data  $(\varphi^0, \varphi^1)$ . On the other hand, we have,

$$\mathcal{J}((\hat{\varphi^0}, \hat{\varphi^1}) + h(\varphi^0, \varphi^1)) - \mathcal{J}((\hat{\varphi^0}, \hat{\varphi^1})) = \frac{1}{2} \int_0^T \int_{\Gamma_1} \left| \frac{\partial \hat{\varphi}}{\partial n} + h \frac{\partial \varphi}{\partial n} \right|^2 d\sigma \, dt + \langle (\hat{\varphi^0}, \hat{\varphi^1}) + h(\varphi^0, \varphi^1), (y^0, y^1) \rangle$$

$$- \frac{1}{2} \int_0^T \int_{\Gamma_1} \left| \frac{\partial \hat{\varphi}}{\partial n} \right|^2 d\sigma \, dt - \langle (\hat{\varphi^0}, \hat{\varphi^1}), (y^0, y^1) \rangle,$$

hence,

$$\frac{1}{h} \left[ \mathcal{J}((\hat{\varphi^0}, \hat{\varphi^1}) + h(\varphi^0, \varphi^1)) - \mathcal{J}((\hat{\varphi^0}, \hat{\varphi^1})) \right] = \frac{h}{2} \int_0^T \int_{\Gamma_1} \left| \frac{\partial \varphi}{\partial n} \right|^2 d\sigma \, dt + \int_0^T \int_{\Gamma_1} \frac{\partial \hat{\varphi}}{\partial n} \frac{\partial \varphi}{\partial n} d\sigma \, dt + \left( \varphi^0, \varphi^1 \right), (y^0, y^1) >,$$

and from (1.8) we deduce that

$$\begin{split} \int_0^T \int_{\Gamma_1} \frac{\partial \hat{\varphi}}{\partial n} \frac{\partial \varphi}{\partial n} d\sigma \, dt &= - < (\varphi^0, \varphi^1), (y^0, y^1) > \\ &= - \int_{\Omega} y^0 \varphi^1 dx + < y^1, \varphi^0 >_{-1, 1}, \end{split}$$

for every  $(\varphi^0, \varphi^1)$  in  $H_0^1(\Omega) \times L^2(\Omega)$ .

From lemma 1.3.2, it follows that  $\hat{v}=\frac{\partial\hat{\varphi}}{\partial n}|_{\Gamma_1}$  is the control for (1.1). This complete the proof. Now we can find the control of the wave equation by minimization of the functional  $\mathcal{J}$ , moreover, this control is the control of minimal  $L^2$ -norm:

**Proposition 1.3.2.** Let  $\hat{v} = \frac{\partial \hat{\varphi}}{\partial n}|_{\Gamma_1}$  be the control given by minimizing the functional  $\mathcal{J}$ . If  $w \in L^2(\Gamma_1 \times (0,T))$  is any other control for (1.1), then

$$||\hat{v}||_{L^2(\Gamma_1 \times (0,T))} \le ||w||_{L^2(\Gamma_1 \times (0,T))}. \tag{1.10}$$

#### Proof:

Let  $(\hat{\varphi^0}, \hat{\varphi^1}) \in H^1_0(\Omega) \times L^2(\Omega)$  the minimizer of the functional  $\mathcal J$  and w is a control function of  $(\mathbf{1.1})$ . By taking  $(\hat{\varphi^0}, \hat{\varphi^1})$  as initial data for  $(\mathbf{1.4})$ , lemma 1.3.2 gives,

$$\int_0^T \int_{\Gamma_1} \frac{\partial \hat{\varphi}}{\partial n} \frac{\partial \hat{\varphi}}{\partial n} d\sigma dt = -\int_{\Omega} y^0 \hat{\varphi}^1 dx + \langle y^1, \hat{\varphi}^0 \rangle_{-1,1},$$

hence,

$$||\hat{v}||_{L^2(\Gamma_1 \times (0,T))}^2 = -\int_{\Omega} y^0 \hat{\varphi^1} dx + \langle y^1, \hat{\varphi^0} \rangle_{-1,1}.$$

On the other hand,

$$\int_0^T \int_{\Gamma_1} \frac{\partial \hat{\varphi}}{\partial n} w \ d\sigma \ dt = -\int_{\Omega} y^0 \hat{\varphi}^1 dx + \langle y^1, \hat{\varphi}^0 \rangle_{-1,1},$$

then,

$$\begin{aligned} ||\hat{v}||_{L^{2}(\Gamma_{1}\times(0,T))}^{2} &= \int_{0}^{T} \int_{\Gamma_{1}} \hat{v} \ w \ d\sigma \ dt \\ &\leq ||\hat{v}||_{L^{2}(\Gamma_{1}\times(0,T))} ||w||_{L^{2}(\Gamma_{1}\times(0,T))}. \end{aligned}$$

Consequently, (1.10) is verified and the proof finishes.

## **Chapitre 2**

## **Conjugate Gradient Algorithm**

### 2.1 Variational Problem

In the previous chapter, we transferred the problem of controllability of (1.1) to a problem of minimization :

$$\min_{(\varphi^0,\varphi^1)\in H^1_0(\Omega)\times L^2(\Omega)} \mathcal{J}((\varphi^0,\varphi^1)), \tag{2.1}$$

where the functional  $\mathcal{J}$  is defined by (1.7).

Problem (2.1) can be written as follows:

$$\min_{(\varphi^0,\varphi^1)\in H^1_0(\Omega)\times L^2(\Omega)} \left(\frac{1}{2}a((\varphi^0,\varphi^1),(\varphi^0,\varphi^1)) - L((\varphi^0,\varphi^1))\right), \tag{2.2}$$

where a is defined on  $(H^1_0(\Omega)\times L^2(\Omega))\times (H^1_0(\Omega)\times L^2(\Omega))$  by

$$a((\varphi^0,\varphi^1),(\widetilde{\varphi^0},\widetilde{\varphi^1})) = \int_0^T \int_{\Gamma_1} \frac{\partial \varphi}{\partial n} \frac{\partial \widetilde{\varphi}}{\partial n} d\sigma \ dt, \quad \forall \ (\varphi^0,\varphi^1),(\widetilde{\varphi^0},\widetilde{\varphi^1}) \in H^1_0(\Omega) \times L^2(\Omega),$$

such that  $\varphi,\widetilde{\varphi}$  respectively the solutions of (1.4) with initial data  $(\varphi^0,\varphi^1)$  and  $(\widetilde{\varphi^0},\widetilde{\varphi^1})$ , and L is defined on  $H^1_0(\Omega)\times L^2(\Omega)$  by

$$L((\varphi^{0}, \varphi^{1})) = - < (\varphi^{0}, \varphi^{1}), (y^{0}, y^{1}) >$$

$$= - \int_{\Omega} y^{0} \varphi^{1} + < y^{1}, \varphi^{0} >_{-1,1},$$

for all  $(\varphi^0,\varphi^1)$  in  $H^1_0(\Omega)\times L^2(\Omega)$  and  $(y^0,y^1)$  in  $L^2(\Omega)\times H^{-1}(\Omega).$  we have,

**Lemma 2.1.1.**  $\blacklozenge$  The operator a is a bilinear form, continuous and  $H^1_0(\Omega) \times L^2(\Omega)$ -elliptic.

igl For all  $(y^0,y^1)\in L^2(\Omega) imes H^{-1}(\Omega)$ , we have  $L\in (H^1_0(\Omega) imes L^2(\Omega))'$ .

#### Proof:

- $\bullet$  it easy to proof that L is linear continuous and a is bilinear
- The continuity of a follows from the inequality (1.5) and the coercivity follows from the inequality of observability (1.8).

Moreover the bilinear form a is symmetric, by follows and with the theorem of Lax-Milgram

the problem (2.2) reads as follows:

$$\left\{ \begin{array}{l} \operatorname{Find} \ (\widehat{\varphi^0}, \widehat{\varphi^1}) \in H^1_0(\Omega) \times L^2(\Omega) \ \text{such that} \\ a((\widehat{\varphi^0}, \widehat{\varphi^1}), (\varphi^0, \varphi^1)) = L((\varphi^0, \varphi^1)), \quad \forall (\varphi^0, \varphi^1) \in H^1_0(\Omega) \times L^2(\Omega). \end{array} \right.$$

### 2.2 General conjugate gradient algorithm

Let H a Hilbert space, a a continuous, symmetric and coercive bilinear form on  $H \times H$ , and L a continuous linear form on H, the variational problem problem (2.3) is a particular case of the following general variational problem :

$$\begin{cases} \text{ Find } u \in H \text{ such that} \\ a(u,v) = L(v), \quad \forall v \in H. \end{cases} \tag{2.4}$$

With the above hypotheses, problem (2.4) has a unique solution.

For the numerical solution of (2.4) we need the following algorithm, say the conjugate gradient algorithm:

 $(1) \ u^{(0)}$ : any arbitrarily vector in H;

(2) solve 
$$\begin{cases} \ \widetilde{u}^{(0)} \in H \\ < \widetilde{u}^{(0)}, v>_{H} = a(u^{(0)}, v) - L(v), \quad \forall v \in H. \end{cases}$$

$$(3) \bullet \text{ If } \widetilde{u}^{(0)} \text{ is small } (\frac{||\widetilde{u}^{(0)}||}{||u^{(0)}||} < \epsilon \text{ ), take } u = u^{(0)} \text{;}$$

ullet If not,set  $\check{u}^{(0)}=\widetilde{u}^{(0)}$ 

Assuming that  $u^{(n)}$ ,  $\widetilde{u}^{(n)}$ ,  $\widecheck{u}^{(n)}$  are known, compute  $u^{(n+1)}$ ,  $\widecheck{u}^{(n+1)}$ ,  $\widecheck{u}^{(n+1)}$  :

(4) 
$$\rho_n = \frac{||\tilde{u}^{(n)}||^2}{a(\check{u}^{(n)}, \check{u}^{(n)})};$$

(5) 
$$u^{(n+1)} = u^{(n)} - \rho_n \check{u}^{(n)};$$

(6) solve 
$$\begin{cases} \widetilde{u}^{(n+1)} \in H \\ <\widetilde{u}^{(n+1)}, v>_{H} = <\widetilde{u}^{(n)}, v>_{H} -\rho_{n}a(\widecheck{u}^{(n)}, v), \quad \forall v \in H. \end{cases}$$
 (2.6)

$$(7) \bullet \text{ If } \widetilde{u}^{(n+1)} \text{ is small } (\frac{||\widetilde{u}^{(n+1)}||}{||\widetilde{u}^{(0)}||} < \epsilon \text{ ), take } u = u^{(n+1)} \text{ ;}$$

If not.

$$\star \gamma_n = \frac{||\widetilde{u}^{(n+1)}||^2}{||\widetilde{u}^{(n)}||^2};$$

$$\star \check{u}^{(n+1)} = \widetilde{u}^{(n+1)} + \gamma_n \check{u}^{(n)};$$

$$(8) \,\, n = n+1 \,\, {\rm and} \,\, {\rm go} \,\, {\rm to} \,\, (4);$$

### 2.3 Application of conjugate gradient algorithm

Let us now apply the general conjugate gradient algorithm to the solution of (2.3).

 $(1) \ (\varphi^0_0,\varphi^1_0) \in H^1_0(\Omega) \times L^2(\Omega) = H$  : Initialization ;

(2) solve

$$\begin{cases} (\widetilde{\varphi_0^0}, \widetilde{\varphi_0^1}) \in H \\ < (\widetilde{\varphi_0^0}, \widetilde{\varphi_0^1}), (\varphi^0, \varphi^1) >_H = a((\varphi_0^0, \varphi_0^1), (\varphi^0, \varphi^1)) - L((\varphi^0, \varphi^1)), \quad \forall (\varphi^0, \varphi^1) \in H. \end{cases}$$

$$(2.7)$$

Consider the following non-homogeneous backward wave equation:

From the lemma 1.3.2, we have,

$$\int_{0}^{T} \int_{\Gamma_{1}} \frac{\partial \varphi_{0}}{\partial n} \frac{\partial \varphi}{\partial n} d\sigma dt = \langle \psi'_{0}(0), \varphi^{0} \rangle_{-1,1} - \int_{\Omega} \psi_{0}(0) \varphi^{1} dx,$$

for every  $(\varphi^0, \varphi^1) \in H$ , then we obtain,

$$\begin{split} \int_{\Omega} \bigtriangledown \widetilde{\varphi_0^0} \bigtriangledown \varphi^0 dx + \int_{\Omega} \widetilde{\varphi_0^1} \varphi^1 dx = <\psi_0^{'}(0), \varphi^0>_{-1,1} - \int_{\Omega} \psi_0(0) \varphi^1 dx \\ + \int_{\Omega} y^0 \varphi^1 dx - < y^1, \varphi^0>_{-1,1}. \end{split}$$

Hence,

$$<-\Delta\widetilde{\varphi_0^0}, \varphi^0>_{-1,1} - <\psi_0'(0)-y^1, \varphi^0>_{-1,1} = \int_{\Omega} (y^0-\psi_0(0)-\widetilde{\varphi_0^1})\varphi^1 dx.$$

Finally,

$$<(\varphi^{0},\varphi^{1}),(y^{0}-\psi_{0}(0)-\widetilde{\varphi_{0}^{1}},-\Delta\widetilde{\varphi_{0}^{0}}-(\psi_{0}^{'}(0)-y^{1}))>=0.$$

Its follows : (2)

$$\begin{cases}
-\Delta \widetilde{\varphi_0^0} = \psi_0'(0) - y^1, \\
\widetilde{\varphi_0^1} = y^0 - \psi_0(0).
\end{cases}$$
(2.8)

- $(3) \bullet \text{ If } (\widetilde{\varphi_0^0}, \widetilde{\varphi_0^1}) \text{ is small , take } (\widehat{\varphi^0}, \widehat{\varphi^1}) = (\varphi_0^0, \varphi_0^1) \text{;}$
- If not, set  $(\check{\varphi_0^0},\check{\varphi_0^1})=(\widetilde{\varphi_0^0},\widetilde{\varphi_0^1}).$

Assuming that  $(\varphi_n^0, \varphi_n^1)$ ,  $(\widetilde{\varphi_n^0}, \widetilde{\varphi_n^1})$ ,  $(\check{\varphi_n^0}, \check{\varphi_n^1})$  and  $\varphi_n$ ,  $\psi_n$  are known, compute  $(\varphi_{n+1}^0, \varphi_{n+1}^1)$ ,  $(\widetilde{\varphi^0}_{n+1}, \widetilde{\varphi^1}_{n+1})$ ,  $(\check{\varphi^0}_{n+1}, \check{\varphi^1}_{n+1})$ ,  $(\varphi_{n+1}^1, \psi_{n+1}^1)$ .

we knew that the form linear  $(\varphi^0,\varphi^1)\in H\longmapsto a((\check{\varphi_n^0},\check{\varphi_n^1}),(\varphi^0,\varphi^1))$  is continuous, then by Riesz's theorem there exists unique  $(\underline{\varphi_n^0},\underline{\varphi_n^1})$  in H, such that

$$a((\check{\varphi_n^0},\check{\varphi_n^1}),(\varphi^0,\varphi^1))=<(\varphi_n^0,\varphi_n^1),(\varphi^0,\varphi^1)>,\quad \forall (\varphi^0,\varphi^1)\in H.$$

Like the previous case, we can find  $(\varphi_n^0,\varphi_n^1)$  by :

(4) solve

$$\begin{cases} \frac{\partial^2 \check{\varphi_n}}{\partial t^2} - \Delta \check{\varphi_n} &= 0 & \text{in } \Omega \times (0,T), \\ \check{\varphi_n} &= 0 & \text{in } \Gamma \times (0,T), \\ \check{\varphi_n}(.,0) &= \check{\varphi_n^0}, & \frac{\partial \check{\varphi_n}}{\partial t}(.,0) = \check{\varphi_n^1} & \text{in } \Omega \end{cases},$$

and then

$$\begin{cases} \frac{\partial^2 \check{\psi_n}}{\partial t^2} - \Delta \check{\psi_n} &= 0 & \text{in } \Omega \times (0, T), \\ \check{\psi_n} &= \frac{\partial \check{\varphi_n}}{\partial n} & \text{in } \Gamma_1 \times (0, T), \\ \check{\psi_n} &= 0 & \text{in } \Gamma_2 \times (0, T), \\ \check{\psi_n}(., T) &= 0, & \frac{\partial \check{\psi_n}}{\partial t}(., T) = 0 & \text{in } \Omega. \end{cases}$$

Compute now  $(\underline{\varphi}_n^0,\underline{\varphi}_n^1)\in H$  by :

$$\begin{cases} -\Delta \underline{\varphi}_{n}^{0} = \check{\psi}_{n}^{'}(0) & \text{in } \Omega \\ \\ \underline{\varphi}_{n}^{1} = -\check{\psi}_{n}(0). \end{cases} \tag{2.9}$$

The other steps of the general algorithm are easy to adapt. Now we give the complete algorithm to solve the system (2.3):

$$(1)$$
  $(arphi_0^1,arphi_0^1)\in H^1_0(\Omega) imes L^2(\Omega)=H$  are given ;

#### (2) solve then

$$\begin{cases} \frac{\partial^2 \varphi_0}{\partial t^2} - \Delta \varphi_0 &=& 0 & \text{in} \quad \Omega \times (0, T), \\ \varphi_0 &=& 0 & \text{in} \quad \Gamma \times (0, T), \\ \varphi_0(\cdot, T) &=& 0, & \frac{\partial \varphi_0}{\partial t}(\cdot, T) = 0 & \text{in} \quad \Omega, \end{cases}$$

and

$$\begin{cases} \frac{\partial^2 \psi_0}{\partial t^2} - \Delta \psi_0 &= 0 & \text{in} \quad \Omega \times (0,T), \\ \psi_0 &= \frac{\partial \varphi_0}{\partial n} & \text{in} \quad \Gamma_1 \times (0,T), \\ \psi_0 &= 0 & \text{in} \quad \Gamma_2 \times (0,T), \\ \psi_0(\cdot,T) &= 0, & \frac{\partial \psi_0}{\partial t}(\cdot,T) = 0 & \text{in} \quad \Omega. \end{cases}$$

(3) Compute  $(\widetilde{\varphi_0^0},\widetilde{\varphi_0^1})\in H$  by

$$\left\{ \begin{array}{ll} -\Delta\widetilde{\varphi_0^0} = \psi_0'(0) - y^1, \\ \widetilde{\varphi_0^0} = 0 \quad \mbox{in} \quad \Gamma, \end{array} \right. \label{eq:power_power}$$

and

$$\widetilde{\varphi_0^1} = y^0 - \psi_0(0).$$

- $(4) \bullet \text{ If } (\widetilde{\varphi_0^0},\widetilde{\varphi_0^1}) \text{ is small , take } (\widehat{\varphi^0},\widehat{\varphi^1}) = (\varphi_0^0,\varphi_0^1) \text{ ;}$
- If not, set  $(\check{\varphi_0^0},\check{\varphi_0^1})=(\widetilde{\varphi_0^0},\widetilde{\varphi_0^1})$ .

Assuming that  $(\varphi_n^0,\varphi_n^1)$ ,  $(\widetilde{\varphi_n^0},\widetilde{\varphi_n^1})$ ,  $(\check{\varphi_n^0},\check{\varphi_n^1})$  and  $\varphi_n$ ,  $\psi_n$  are known, compute  $(\varphi_{n+1}^0,\varphi_{n+1}^1)$ ,  $(\widetilde{\varphi^0}_{n+1},\widetilde{\varphi^1}_{n+1})$ ,  $(\check{\varphi^0}_{n+1},\check{\varphi^1}_{n+1})$ ,  $\varphi_{n+1}$ ,  $\psi_{n+1}$ .

#### Descent:

**(5) Solve** 

and then

$$\begin{cases} \frac{\partial^2 \check{\psi_n}}{\partial t^2} - \Delta \check{\psi_n} &= 0 & \text{in} \quad \Omega \times (0,T), \\ \check{\psi_n} &= \frac{\partial \check{\psi_n}}{\partial n} & \text{in} \quad \Gamma_1 \times (0,T), \\ \check{\psi_n} &= 0 & \text{in} \quad \Gamma_2 \times (0,T), \\ \check{\psi_n}(\cdot,T) &= 0, & \frac{\partial \check{\psi_n}}{\partial t}(\cdot,T) = 0 & \text{in} \quad \Omega. \end{cases}$$

(6) Compute  $(\underline{\varphi}_n^0,\underline{\varphi}_n^1)\in H$  by : solve

$$\left\{ \begin{array}{ll} -\Delta\underline{\varphi_{n}^{0}}=\check{\psi_{n}}^{'}(0) & \mbox{in } \Omega, \\ \\ \varphi_{n}^{0}=0 & \mbox{in } \quad \Gamma, \end{array} \right. \label{eq:partial_problem}$$

and

$$\varphi_n^1 = -\check{\psi_n}(0).$$

(7) Compute  $\rho_n$  by :

$$\begin{cases}
\rho_n = \frac{\|((\widetilde{\varphi_n^0}, \widetilde{\varphi_n^1}))\|^2}{a((\check{\varphi_n^0}, \check{\varphi_n^1}), (\check{\varphi_n^0}, \check{\varphi_n^1}))}, \\
= \frac{\|((\widetilde{\varphi_n^0}, \widetilde{\varphi_n^1}), (\check{\varphi_n^0}, \check{\varphi_n^1}))\|^2}{\langle \check{\psi_n'}(0), \check{\varphi_n^0} \rangle_{-1,1} - \int_{\Omega} \check{\psi_n}(0)\check{\varphi_n^1} dx}, \\
= \frac{\int_{\Omega} \|\nabla \widetilde{\varphi_n^0}\|^2 + \int_{\Omega} \|\widetilde{\varphi_n^1}\|^2}{\int_{\Omega} \nabla \underline{\varphi_n^0} \nabla \check{\varphi_n^0} dx + \int_{\Omega} \underline{\varphi_n^1} \check{\varphi_n^1} dx}.
\end{cases}$$

(8) Once  $\rho_n$  is known, compute :

$$\oplus (\varphi_{n+1}^0, \varphi_{n+1}^1) = (\varphi_n^0, \varphi_n^1) - \rho_n(\check{\varphi_n^0}, \check{\varphi_n^1}),$$

$$\oplus \varphi_{n+1} = \varphi_n - \rho_n \check{\varphi_n}$$

$$\oplus \psi_{n+1} = \psi_n - \rho_n \check{\psi_n},$$

$$\oplus \ (\widetilde{\varphi^0}_{n+1},\widetilde{\varphi^1}_{n+1}) = (\widetilde{\varphi^0}_n,\widetilde{\varphi^1}_n) - \rho_n(\varphi^0_n,\varphi^1_n).$$

Test of the convergence and <u>construction of the new descent direction.</u>

$$(9) \ \ \text{If} \ (\widetilde{\varphi^0}_{n+1},\widetilde{\varphi^1}_{n+1}) \ \ \text{is small , take} \ (\widehat{\varphi^0},\widehat{\varphi^1}) = (\varphi^0_{n+1},\varphi^1_{n+1}).$$
 If not, compute

$$\gamma_n = \frac{\int_{\Omega} ||\nabla \widetilde{\varphi^0}_{n+1}||^2 dx + \int_{\Omega} ||\widetilde{\varphi^1}_{n+1}||^2 dx}{\int_{\Omega} ||\nabla \widetilde{\varphi^0}_{n}||^2 dx + \int_{\Omega} ||\widetilde{\varphi^1}_{n}||^2 dx},$$

and set

$$(\check{\varphi^0}_{n+1},\check{\varphi^1}_{n+1}) = (\widetilde{\varphi^0}_{n+1},\widetilde{\varphi^1}_{n+1}) + \gamma_n(\check{\varphi^0}_n,\check{\varphi^1}_n).$$

(10) 
$$n = n + 1$$
 and go to (5).

# **Conclusion**

OK

# **Bibliographie**

 $[1] \ \mathsf{T.} \ \mathsf{Rossing.} \ \mathsf{Springer} \ \mathsf{Handbook} \ \mathsf{of} \ \mathsf{Acoustics.} \ \mathit{Rossing} \ \mathsf{Ed.}, \ \mathsf{2007}.$