15 de dezembro de 2021 Duração total: 2 horas

Questão 1 (65 pts)

Seja f a função definida por $f(x) = \arcsin(\sqrt{x-2}) - \frac{\pi}{2}$.

- 1. Determine o domínio de f, D_f .
- 2. Justifique que f tem máximo e mínimo globais em D_f e calcule os seus valores.
- 3. Indique, justificando, o contradomínio de f.
- 4. Justifique que f é invertível e defina a função inversa de f (indique expressão analítica, domínio e contradomínio).
- 5. Determine o limite $\lim_{x\to 3} \frac{f(x)}{x-3}$.

Resolução:

1. Como

$$D_{\sqrt{x}} = [0, +\infty[$$
 e $D_{\arcsin x} = [-1, 1],$

resulta que:

$$D_f = \{x \in \mathbb{R} : x - 2 \ge 0 \land -1 \le \sqrt{x - 2} \le 1\}.$$

Assim,

$$x - 2 \ge 0 \Leftrightarrow x \ge 2$$

 $-1 \le \sqrt{x-2}$ condição universal pois $0 \le \sqrt{x-2}$

$$\sqrt{x-2} \le 1 \Leftrightarrow 0 \le x-2 \le 1 \Leftrightarrow 2 \le x \le 3$$

e o domínio de f é

$$D_f = [2, 3].$$

- 2. Apresentam-se duas hipóteses de resposta:
 - (a) Como as funções $a(x) = \arcsin x$ e $r(x) = \sqrt{x-2}$ são ambas crescentes, a função composta é também crescente, e portanto os extremos absolutos da função ocorrem nas extremidades do intervalo que corresponde ao domínio da função, ou seja

Máximo global de
$$f: f(3) = \arcsin(\sqrt{3-2}) - \frac{\pi}{2} = 0$$

mínimo global de
$$f: f(2) = \arcsin(\sqrt{2-2}) - \frac{\pi}{2} = -\frac{\pi}{2}$$
.

(b) Usando a função derivada para estudar a monotonia:

$$f'(x) = \frac{(\sqrt{x-2})'}{\sqrt{1 - (\sqrt{x-2})^2}} = \frac{\frac{1}{2\sqrt{x-2}}}{\sqrt{1 - (x-2)}} = \frac{1}{2\sqrt{x-2}\sqrt{3-x}}$$

O domínio da função derivada é $D_{f'}=]2,3[$. A função f é estritamente crescente neste intervalo, já que f'(x)>0, $\forall x\in]2,3[$. Sendo a função f contínua, os extremos globais da função são atingidos nas extremidades do domínio:

Máximo global de
$$f: f(3) = \arcsin(\sqrt{3-2}) - \frac{\pi}{2} = 0$$

mínimo global de
$$f: f(2) = \arcsin(\sqrt{2-2}) - \frac{\pi}{2} = -\frac{\pi}{2}$$
.

3. Como foi visto na alínea anterior, o máximo de f é 0 e o mínimo é $-\frac{\pi}{2}$, logo o contradomínio de f é

$$CD_f = \left[-\frac{\pi}{2}, 0 \right].$$

- 4. Duas hipóteses de resposta para justificar que f é invertível:
 - (a) Sendo f estritamente crescente, f é injetiva, logo invertível.
 - (b) A função f é injetiva, porque as funções $a(x) = \arcsin x$ e $r(x) = \sqrt{x-2}$ são ambas injetivas:

$$f(x_1) = f(x_2) \Leftrightarrow \arcsin(\sqrt{x_1 - 2}) - \frac{\pi}{2} = \arcsin(\sqrt{x_2 - 2}) - \frac{\pi}{2}$$

$$\Leftrightarrow \arcsin(\sqrt{x_1-2}) = \arcsin(\sqrt{x_2-2}) \iff \sqrt{x_1-2} = \sqrt{x_2-2}$$
 porque $a(x)$ é injetiva

$$\Leftrightarrow$$
 porque $r(x)$ é injetiva $x_1 - 2 = x_2 - 2 \Leftrightarrow x_1 = x_2$.

então a função f é injetiva, logo invertível.

Para determinar a expressão da inversa, resolve-se em ordem ao x a equação:

$$y = \arcsin(\sqrt{x-2}) - \frac{\pi}{2}.$$

$$y + \frac{\pi}{2} = \arcsin(\sqrt{x-2}) \Leftrightarrow \sin\left(y + \frac{\pi}{2}\right) = \sqrt{x-2} \Leftrightarrow \left(\sin\left(y + \frac{\pi}{2}\right)\right)^2 + 2 = x.$$

e a função inversa é dada por

$$f^{-1}(x) = \operatorname{sen}^2\left(x + \frac{\pi}{2}\right) + 2$$

com $x \in D_{f^{-1}} = CD_f = \left[-\frac{\pi}{2}, 0 \right]$. O contradomínio de f^{-1} é $CD_{f^{-1}} = D_f = [2, 3]$.

5. O limite $\lim_{x\to 3} \frac{f(x)}{x-3}$ é uma indeterminação do tipo $\frac{0}{0}$ dado que arcsen $\sqrt{3-2}=\arcsin 1=\frac{\pi}{2}$. Aplicando a regra de Cauchy a este limite, tem-se

$$\lim_{x \to 3} \frac{f'(x)}{(x-3)'} = \lim_{x \to 3} \frac{\frac{1}{2\sqrt{x-2}\sqrt{3-x}}}{1} = +\infty.$$

Como este último limite existe, pode-se afirmar que

$$\lim_{x \to 3} \frac{f(x)}{x - 3} = \lim_{x \to 3} \frac{f'(x)}{(x - 3)'} = +\infty.$$

15 de dezembro de 2021 Duração total: 2 horas

Questão 2 (40 pts)

1. Determine a função f que satisfaz as condições

$$f'(x) = \frac{e^x}{\sqrt{1 - (e^x)^2}}$$
 e $\lim_{x \to 0} f(x) = 2\pi$.

2. Determine a família de primitivas $\int x \ln(x+1) dx$.

Resolução:

1. Tendo em conta que

$$\int \frac{e^x}{\sqrt{1-(e^x)^2}} dx = \arcsin(e^x) + C, \ C \in \mathbb{R},$$

f(x) é da forma $\operatorname{arcsen}(e^x) + C, C \in \mathbb{R}$. Deste modo,

$$\lim_{x \to 0} f(x) = 2\pi \Leftrightarrow \lim_{x \to 0} (\operatorname{arcsen}(e^x) + C) = 2\pi \Leftrightarrow \frac{\pi}{2} + C = 2\pi \Leftrightarrow C = \frac{3\pi}{2}.$$

Assim, a função f que satisfaz as condições dadas é

$$f(x) = \arcsin(e^x) + \frac{3\pi}{2}.$$

2. Primitivando por partes, obtém-se:

$$\int x \ln(x+1) dx = \frac{x^2}{2} \ln(x+1) - \int \frac{x^2}{2} \frac{1}{x+1} dx$$

$$= \frac{x^2}{2} \ln(x+1) - \frac{1}{2} \int \left(x - 1 + \frac{1}{x+1}\right) dx$$

$$= \frac{x^2}{2} \ln(x+1) - \frac{1}{2} \left(\frac{x^2}{2} - x + \ln(x+1)\right) + C, \ C \in \mathbb{R}$$

Questão 3 (40 pts)

Calcule os seguintes integrais indefinidos:

1.
$$\int \sin^2 x \, dx;$$

2.
$$\int \frac{1}{x^2\sqrt{x^2-4}} dx$$
, com $x > 2$.

Resolução 1. Como

$$\cos(2x) = \cos^2(x) - \sin^2(x),$$

temos que

$$\cos(2x) = 1 - 2\sin^2(x),$$

por aplicação directa da fórmula fundamental da trigonometria. Assim,

$$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}.$$

Temos então que

$$\int \operatorname{sen}^{2}(x) \, dx = \int \frac{1 - \cos(2x)}{2} \, dx$$
$$= \frac{1}{2} \int dx - \frac{1}{4} \int (2\cos(2x)) \, dx$$
$$= \frac{x}{2} + \frac{1}{4} \operatorname{sen}(2x) + c, c \in \mathbb{R}.$$

Resolução 2. Efetuando a mudança de variável

$$x = 2\sec(t), \ t \in \left]0, \frac{\pi}{2}\right[$$

e atendendo que d $x=2\frac{\mathrm{sen}(t)}{\mathrm{cos}^2(t)}\,\mathrm{d}\,t$ obtemos

$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \, \mathrm{d} \, x = \left(\int \frac{\cos^2(t)}{4} \frac{1}{\sqrt{4(\sec^2(t) - 1)}} 2 \frac{\sin(t)}{\cos^2(t)} \, \mathrm{d} \, t \right)_{t = \arccos\left(\frac{2}{x}\right)}$$

$$= \frac{1}{4} \left(\int \cos(t) \, \mathrm{d} \, t \right)_{t = \arccos\left(\frac{2}{x}\right)}$$

$$= \frac{1}{4} \sin\left(\arccos\left(\frac{2}{x}\right)\right) + c$$

$$= \frac{1}{4} \sqrt{1 - \frac{4}{x^2}} + c$$

$$= \frac{\sqrt{x^2 - 4}}{4x} + c, \ c \in \mathbb{R}.$$

Questão 4 (25 pts)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função duas vezes derivável em \mathbb{R} tal que:

- f' é estritamente crescente em \mathbb{R} ,
- $\lim_{x \to -\infty} f'(x) = -\infty$ e
- $\lim_{x \to +\infty} f'(x) = +\infty$.
- 1. Mostre que existe um único $c \in \mathbb{R}$ tal que f'(c) = 0.
- 2. O que pode concluir sobre a existência de extremo global em c? Caso exista, classifique-o.

Resolução.

Como f é uma função duas vezes derivável em \mathbb{R} , então f e f' são contínuas em \mathbb{R} .

Agora, como $\lim_{x \to +\infty} f'(x) = +\infty$, então

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in D_{f'}, x > \delta \Rightarrow f'(x) > \epsilon.$$

Assim, se consideramos, por exemplo, $\epsilon = 100, \exists \delta > 0: x_1 \in D_{f'}, x_1 > \delta$, então $f'(x_1) > 100 > 0$. Do mesmo modo, como $\lim_{x \to -\infty} f'(x) = -\infty$, então

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in D_{f'}, -x > \delta \Rightarrow -f'(x) > \epsilon.$$

Assim, se consideramos $\epsilon = 100$, $\exists \delta > 0 : x_2 \in D_{f'}$, $x_2 < -\delta$, então $f'(x_2) < -100 < 0$.

Portanto, pelo corolário do Teorema de Bolzano, como f' é contínua em \mathbb{R} e $f'(x_1)f'(x_2) < 0$, então existe um $c \in]x_1, x_2[$ tal que:

$$f'(c) = 0.$$

Dado que f' é estritamente crescente em \mathbb{R} , podemos garantir que c é único. Como f é derivável em \mathbb{R} , temos que x = c é o único ponto crítico de f.

Uma vez que c é o único ponto de interseção de f' com o eixo x, f' é estritamente crescente, $\lim_{x \to +\infty} f'(x) = +\infty$ e $\lim_{x \to -\infty} f'(x) = -\infty$, então f'(x) < 0 se x < c e f'(x) > 0 se x > c. Logo,

\boldsymbol{x}		c	
f1	_	0	+
J	$-\infty$	0	$+\infty$
		f(c)	
f	\searrow	\	7
		mínimo absoluto	

Portanto, em x = c a função f atinge um mínimo absoluto.

15 de dezembro de 2021 Duração total: 2 horas

Questão 5 (30 pts)

Para cada uma das questões seguintes, assinale a opção correta.

1. Considere a função f definida no intervalo [0,8] cujo gráfico se apresenta na figura. Seja $\overline{S}_f(P)$ a soma superior de f relativamente à partição P do intervalo [0,8] definida por

$$P = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

Então, $\overline{S}_f(P)$ é igual a:

- (A) 4+2+3+4+5+6+7+8.
- (B) 2+1+2+5+6+5+7+8.
- (C) 4+2+2+5+6+6+7+8.
- (D) 4+2+1+2+5+6+5+7.....
- 2. O número de raízes reais distintas do polinómio $p(x) = \frac{3}{2}x^4 4x^3 + 3x^2 \frac{1}{3}$ é
 - (A) 1.

 - (C) 3.
 - (D) 4.
- 3. Considere a função racional definida por $f(x) = \frac{x^4 + 5x^2 2x + 1}{(x^2 + 2x + 5)(x 2)^2(x^2 + 2)^2}$. A sua decomposição em fatores simples é dada por

(A)
$$\frac{A}{x-1} + \frac{B}{x+3} + \frac{C_1}{x-2} + \frac{C_2}{(x-2)^2} + \frac{D_1x + E_1}{x^2 + 2} + \frac{D_2x + E_2}{(x^2 + 2)^2}$$
.....

(B)
$$\frac{Ax+B}{x^2+2x+5} + \frac{C_1}{x-2} + \frac{C_2}{(x-2)^2} + \frac{D_1x+E_1}{x^2+2} + \frac{D_2x+E_2}{(x^2+2)^2}$$
.

(C)
$$\frac{Ax+B}{x^2+2x+5} + \frac{C}{(x-2)^2} + \frac{Dx+E}{(x^2+2)^2}$$
.

(D)
$$\frac{A}{x^2+2x+5} + \frac{C_1}{x-2} + \frac{C_2}{(x-2)^2} + \frac{D_1}{x^2+2} + \frac{D_2}{(x^2+2)^2}$$
.