

Part 25- Support Vector Machines The Kernel Trick

Prof. Pedram Jahangiry

Topics

Part 23

- SVM Geometry
- **SVM** Motivation

Part 24

- Maximum Margin Classifier (MMC)
- Support Vector Classifiers (SVC)

Part 25

Support Vector Machines (SVM)

Soft my + kerrel

Part 26

Support Vector Regressors (SVR)

Part 27

- Multiple class classification
- SVM pros and cons
- SVM applications in Finance

Kernel Trick!

- Non-linearly separable data: sometime a linear boundary simply won't work, no matter what value of C.
- We need a non-linear decision boundary!
- Mapping to higher dimensional space, finding the hyper plane and projecting it back to low dimensional space can be computationally expensive.
- Solution: Kernel Trick!

Support Vector Machines (SVM)

- SVM generalizes the SVC to a nonlinear model, via the kernel ϕ which is applied to the input points $x_{i,k}$.
- The Kernel $\phi(x_{i,k})$ is a function that quantifies the similarities between observations by summarizes the relationship between every single pairs in the training set.

Svc (Soft rangin) + linear kuncl = Svc
SVC + Non-linear Kernel = SVM

$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^{L} \xi_i$$

s.t.
$$y_i \left(\sum_{k=1}^K w_k \phi(x_{i,k}) + b \right) \ge 1 - \xi_i, \quad \xi_i \ge 0 \ \forall_i$$

Support Vector Machines (SVM)

- SVM generalizes the SVC to a nonlinear model, via the kernel ϕ which is applied to the input points $x_{i,k}$.
- The Kernel $\phi(x_{i,k})$ is a function that quantifies the similarities between observations by summarizes the relationship between every single pairs in the training set.

SVC + Non-linear Kernel = SVM

$$\min_{w,b} \ \frac{1}{2} ||w||^2 + C \sum_{i=1}^{I} \xi_i$$

s.t.
$$y_i \left(\sum_{k=1}^K w_k \phi(x_{i,k}) + b \right) \ge 1 - \xi_i, \qquad \xi_i \ge 0 \ \forall_i$$

The Gaussian RBF Kernel (Radial Basis Function)

The Gaussian RBF Kernel (Radial Basis Function)

Most common types of Kernel

Decision boundaries with different Kernels

1

Tuning hyperparameters

SVM hyperparameters:

- 1) C, Cost of misclassification: controls bias variance trade off
- 2) Kernel
- Gamma, controls how far the influence of a single training set reaches

Source: Machine learning with R, tidyverse, and mlr

<u>Grid search</u> cross validation is used to tune the hyper parameters.

Kernel	↓ C	A Gamma	a CV
Linear, rbf, poly,	0.1, 1, 10, 100,	0.001, 0.01, 0.1, 1,	5,10,
3 *	9 x	+ 15	2900

Decision boundaries with different Kernels

Comparing classifiers (so far)

Source: https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

