

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 $N_{AC} =$

$$H_A = V_A = V_J =$$

$$N_{AB} = N_{CD} = N_{EF} =$$

$$N_{GH} = N_{IJ} =$$

$$N_{\text{CE}} = \qquad \qquad N_{\text{EH}} = \qquad \qquad N_{\text{HJ}} = \qquad \qquad N_{\text{BD}} = \qquad \qquad N_{\text{DF}} = \qquad \qquad N_{\text{FG}} = \qquad N_{\text{FG}$$

$$N_{GI} = N_{BC} = N_{DE} = N_{EG} = N_{HI} =$$

$$\begin{array}{ccc} u_{A}=&&u_{B}=&&u_{C}=\\ v_{A}=&&v_{B}=&&v_{C}= \end{array}$$

$$\begin{array}{lll} u_{\text{D}} = & & u_{\text{E}} = & u_{\text{F}} = \\ v_{\text{D}} = & & v_{\text{E}} = & v_{\text{F}} = \end{array}$$

$$\begin{array}{lll} u_G = & & u_H = & & u_I = \\ v_G = & & v_H = & & v_I = \end{array}$$

$$u_{JJI} = v_{J} = v_{J}$$

	J.
l I	
G G	6————#
 F	F—————————————————————————————————————
F	, the state of the
D D	8
 В	В ————————————————————————————————————

EQUILIBRIO

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a A: aste AC CD CE CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{b} = 96F_{b}$

Rotazione intorno a C: aste CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $24V_{J}b + 8V_{BA}b = 48Fb$

Rotazione intorno a B: aste BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{J}b - 8V_{DC}b - 15H_{EC}b = 96Fb$

Rotazione intorno a D: aste DE EF EH EG GH GF GI IJ IH HJ

 $24V_{.i}b - 15H_{EC}b = 56Fb$

Rotazione intorno a E: aste EG GH GF GI IJ IH HJ

 $16V_1b + 15H_{ED}b = 24Fb$

Rotazione intorno a G: aste GF

 $8V_{FF}b = -16Fb$

Rotazione intorno a G: aste GI IJ IH HJ

 $8V_{1}b - 15H_{HE}b = 8Fb$

Rotazione intorno a I: aste IH HJ

 $8V_{HG}b - 15H_{HE}b = 0$

Rotazione intorno a H: aste HJ

 $0=d_{IL}V8-\ d_LV8$

Matr	ic	Э)	di	ec	Įι	ıilib	ri	C
	_								

Soluzione del sistema

$$\begin{bmatrix} & \text{Fb} & \text{J} \\ & \text{V}_{\text{Jb}} & \text{J} \\ & \text{V}_{\text{BA}} & \text{J} \\ & \text{V}_{\text{DC}} & \text{J} \\ & \text{H}_{\text{EC}} & \text{J} \\ & \text{H}_{\text{FD}} & \text{J} \\ & \text{V}_{\text{FE}} & \text{J} \\ & \text{V}_{\text{HE}} & \text{J} \\ & \text{V}_{\text{HG}} & \text{J} \\ & \text{V}_{\text{JI}} & \text{J} \end{bmatrix}$$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = 0$$
 $V_A = 3F$ $V_J = 3F$

$$N_{AB} = -3F$$

$$N_{CD} = -2F$$

$$N_{EF} = -2F$$

$$N_{EF} = -2F$$
 $N_{GH} = -2F$ $N_{IJ} = -3F$ $N_{AC} = 0$

$$N_{AC} = 0$$

$$N_{CE} = 16/15F$$

$$N_{CF} = 16/15F$$
 $N_{FH} = 16/15F$

$$N_{H,I} = 0$$

$$N_{HJ} = 0$$
 $N_{BD} = -16/15F$ $N_{DF} = -8/5F$

$$N_{FG} = -8/5F$$

$$N_{GI} = -16/15F$$
 $N_{BC} = 34/15F$ $N_{DE} = 17/15F$ $N_{EG} = 17/15F$ $N_{HI} = 34/15F$

$$N_{BC} = 34/15F$$

$$N_{DE} = 17/15F$$

$$N_{EG} = 17/15F$$

$$N_{HI} = 34/15F$$

$$u_A = 0$$
$$v_A = 0$$

$$u_B = 448/15(Fb/EA)$$

$$v_{B} = -45/2 (Fb/EA)$$

$$u_C = 0$$

 $v_C = -71531/1350(Fb/EA)$

$$u_D = 64/3(Fb/EA)$$

$$v_D = -91781/1350(Fb/EA)$$

$$u_E = 128/15(Fb/EA)$$

$$u_F = 128/15(Fb/EA)$$

$$v_D = -91781/1350(Fb/EA)$$

$$v_E = -36941/450(Fb/EA)$$

$$v_F = -43691/450(Fb/EA)$$

$$u_G = -64/15(Fb/EA)$$

$$v_G = -91781/1350(Fb/EA)$$

$$u_H = 256/15(Fb/EA)$$

 $v_H = -71531/1350(Fb/EA)$

$$u_1 = -64/5(Fb/EA)$$

 $v_1 = -45/2(Fb/EA)$

$$u_{JJJ} = 256/15(Fb/EA)$$

$$V_J = 0$$

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

		١
	11	

 $N_{GI} =$

$$H_A = V_A = H_J = V_J =$$

 $N_{BC} =$

$$N_{AB} = N_{CD} = N_{EF} = N_{GH} = N_{IJ} = N_{AC} =$$

$$N_{\text{CE}} =$$
 $N_{\text{EH}} =$ $N_{\text{HJ}} =$ $N_{\text{BD}} =$ $N_{\text{DF}} =$ $N_{\text{FG}} =$

 $N_{EG} =$

 $N_{HI} =$

SPOSTAMENTI NODALI

$$egin{array}{lll} u_A = & & u_B = & & u_C = \\ v_A = & & v_B = & & v_C = \\ \end{array}$$

 $N_{DE} =$

$$\begin{array}{lll} u_{D} = & & u_{E} = & u_{F} = \\ v_{D} = & v_{E} = & v_{F} = \end{array} \label{eq:uD}$$

$$\begin{array}{lll} u_G = & & u_H = & & u_I = \\ v_G = & & v_H = & & v_I = \end{array}$$

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a J: aste JI IG IH GH GF GE EF EH ED DB DF BC CD CA CE AB

 $-32V_{\Delta}b = -96Fb$

Rotazione intorno a I: aste IG GH GF GE EF EH ED DB DF BC CD CA CE AB

 $15H_Ab - 32V_Ab - 8V_{HG}b + 15H_{HF}b = -96Fb$

Rotazione intorno a I: aste IH

 $8V_{HG}b - 15H_{HF}b = 15Xb$

Rotazione intorno a G: aste GF

 $8V_{FF}b = -16Fb$

Rotazione intorno a G: aste GE EF EH ED DB DF BC CD CA CE AB

 $15H_{A}b - 24V_{A}b - 8V_{FE}b + 15H_{HE}b = -40Fb$

Rotazione intorno a E: aste ED DB DF BC CD CA CE AB

 $-16V_{A}b - 15H_{ED}b = -24Fb$

Rotazione intorno a D: aste DB BC CD CA CE AB

 $15H_{A}b - 8V_{A}b + 15H_{FC}b = -8Fb$

Rotazione intorno a B: aste BC CD CA CE AB

 $15H_{A}b + 8V_{DC}b + 15H_{EC}b = 0$

Rotazione intorno a C: aste CA AB

 $-8V_{A}b - 8V_{BA}b = 0$

Mat	rice di	equilib	orio										Soli	uzior	e del	sistema
	$[H_Ab]$	$V_A b$	$V_{BA}b$	$V_{DC}b$	$V_{\text{FE}}b$	$V_{HG}b$	$H_{EC}b$	$H_{HE}b$	$H_{FD}b$		[Xb	Fb_			[Xb	Fb
ϕ_{JI}	0	-32	0	0	0	0	0	0	0		0	-96	V _A b		0	3
ϕ_{IG}	15	-32	0	0	0	-8	0	15	0		0	-96	H _A b		1	0
ϕ_{IH}	0	0	0	0	0	8	0	-15	0		15	0	$V_{HG}b$		0	2
ϕ_{GF}	0	0	0	0	8	0	0	0	0		0	-16	V _{FE} b		0	-2
ϕ_{GE}	15	-24	0	0	-8	0	0	15	0	=	0	-40	H _{HE} b	=	-1	16/15
ϕ_{ED}	0	-16	0	0	0	0	0	0	-15		0	-24	H _{FD} b		0	-8/5
ϕ_{DB}	15	-8	0	0	0	0	15	0	0		0	-8	H _{EC} b		-1	16/15
ϕ_{BC}	15	0	0	8	0	0	15	0	0		0	0	V _{DC} b		0	-2
ϕ_{CA}	0	-8	-8	0	0	0	0	0	0		0	0	V _{BA} b_		0	-3

Es.N.002

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = 8/15F$$
 $V_A = 3F$ $H_A = -8/15F$ $V_A = 3F$

$$N_{AB} = -3F$$
 $N_{CD} = -2F$

$$N_{EF} = -2$$

$$N_{GH} = -2F$$

$$N_{EF} = -2F$$
 $N_{GH} = -2F$ $N_{IJ} = -3F$ $N_{AC} = -8/15F$

$$N_{CF} = 8/15F$$

$$N_{FH} = 8/15F$$

$$N_{HJ} = -8/15F$$
 $N_{BD} = -16/15F$ $N_{DF} = -8/5F$

$$N_{BD} = -16/15$$

$$N_{FG} = -8/5F$$

$$N_{GI} = -16/15F$$

$$N_{PC} = 34/15F$$

$$N_{DE} = 17/15F$$

$$N_{GI} = -16/15F$$
 $N_{BC} = 34/15F$ $N_{DE} = 17/15F$ $N_{EG} = 17/15F$ $N_{HI} = 34/15F$

$$N_{HI} = 34/15F$$

SPOSTAMENTI NODALI

$$u_A = 0$$
$$v_A = 0$$

$$u_B = 64/3(Fb/EA)$$

$$u_{c} = -64/15(Fb/EA)$$

$$V_B = -45/2(Fb/EA)$$

 $v_c = -68459/1350(Fb/EA)$

$$u_D = 64/5(Fb/EA)$$

$$u_E = 0$$

$$u_F = 0$$

$$V_D = -88709/1350(Fb/EA)$$

$$v_E = -35917/450(Fb/EA)$$

$$V_F = -42667/450(Fb/EA)$$

$$u_G = -64/5(Fb/EA)$$

$$v_G = -88709/1350(Fb/EA)$$

$$u_H = 64/15(Fb/EA)$$

 $v_H = -68459/1350(Fb/EA)$

$$u_1 = -64/3(Fb/EA)$$

$$V_H = -68459/1350(Fb/EA)$$

$$v_1 = -45/2(Fb/EA)$$

$$v_J = 0$$

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$V_A = V_A = V_J = V_J$$

$$N_{AB} = N_{CD} = N_{EF} = N_{GH} = N_{IJ} = N_{AC} = 0$$

$$N_{\text{CE}} =$$
 $N_{\text{EH}} =$ $N_{\text{HJ}} =$ $N_{\text{BD}} =$ $N_{\text{DF}} =$ $N_{\text{FG}} =$

$$N_{GI} = N_{BC} = N_{DE} = N_{EG} = N_{HI} =$$

$$egin{array}{lll} u_A = & & u_B = & & u_C = \\ v_A = & & v_B = & & v_C = \\ \end{array}$$

$$\begin{array}{lll} u_{D} = & & u_{E} = & & u_{F} = \\ v_{D} = & & v_{E} = & & v_{F} = \end{array}$$

$$\begin{array}{lll} u_G = & & u_H = & & u_I = \\ v_G = & & v_H = & & v_I = \end{array}$$

$$u_{JJI} = v_{J} = v_{J}$$

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a A: aste AC CD CE CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{i}b = 15Fb$

Rotazione intorno a C: aste CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $24V_{1}b + 8V_{RA}b = 15Fb$

Rotazione intorno a B: aste BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{J}b - 8V_{DC}b - 15H_{EC}b = 0$

Rotazione intorno a D: aste DE EF EH EG GH GF GI IJ IH HJ

 $24V_{J}b - 15H_{FC}b = 0$

Rotazione intorno a E: aste EG GH GF GI IJ IH HJ

 $16V_1b + 15H_{ED}b = 0$

Rotazione intorno a G: aste GF

 $8V_{FF}b = 0$

Rotazione intorno a G: aste GI IJ IH HJ

 $8V_{J}b - 15H_{HF}b = 0$

Rotazione intorno a I: aste IH HJ

 $8V_{HG}b - 15H_{HF}b = 0$

Rotazione intorno a H: aste HJ

 $8V_{J}b - 8V_{JI}b = 0$

Matrio	26	9	di	e	qι	ıilik	rio	
г		,						

	V_{J} b	$V_{BA}b$	$V_{DC}b$	$V_{FE}b$	$V_{HG}b$	$V_{JI}b$	$H_{EC}b$	$H_{\text{HE}}b$	$H_{FD}b$		[Fb]
ϕ_{AC}	32	0	0	0	0	0	0	0	0		[15]
ϕ_{CB}	24	8	0	0	0	0	0	0	0		15
ϕ_{BD}	32	0	-8	0	0	0	-15	0	0		0
ϕ_{DE}	24	0	0	0	0	0	-15	0	0		0
ϕ_{EG}	16	0	0	0	0	0	0	0	15	=	0
ϕ_{GF}	0	0	0	8	0	0	0	0	0		0
ϕ_{GI}	8	0	0	0	0	0	0	-15	0		0
ϕ_{IH}	0	0	0	0	8	0	0	-15	0		0
φ _{н.і}	8	0	0	0	0	-8	0	0	0		0

Soluzione del sistema

$$\begin{bmatrix} Fb \\ V_{J}b \\ V_{BA}b \\ V_{DC}b \\ H_{EC}b \\ H_{FD}b \\ V_{FE}b \\ H_{HE}b \\ 1/4 \\ V_{HG}b \\ V_{JI}b \end{bmatrix} = \begin{bmatrix} Fb \\ 15/32 \\ 3/4 \\ -1/2 \\ 0 \\ 1/4 \\ 15/32 \\ 15/32 \end{bmatrix}$$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

∐1.2 F

$$H_A = -F$$
 $V_A = -15/32F$ $V_J = 15/32F$

$$N_{AB} = 15/32F$$
 $N_{CD} = 15/32F$ $N_{EF} = 0$ $N_{GH} = -15/32F$ $N_{LI} = -15/32F$ $N_{AC} = F$

$$N_{CE} = 3/4F$$
 $N_{EH} = 1/4F$ $N_{HJ} = 0$ $N_{BD} = -3/4F$ $N_{DF} = -1/2F$ $N_{FG} = -1/2F$

$$N_{GI} = -1/4F$$
 $N_{BC} = -17/32F$ $N_{DE} = -17/32F$ $N_{EG} = 17/32F$ $N_{HI} = 17/32F$

$$u_A = 0$$
 $u_B = 53743/1536(Fb/EA)$ $u_C = 8(Fb/EA)$ $v_A = 0$ $v_B = 225/64(Fb/EA)$ $v_C = -112/15(Fb/EA)$

$$\begin{array}{lll} u_{D} = 44527/1536(Fb/EA) & u_{E} = 14(Fb/EA) & u_{F} = 38383/1536(Fb/EA) \\ v_{D} = -3793/960(Fb/EA) & v_{F} = -128/15(Fb/EA) & v_{F} = -128/15(Fb/EA) \end{array}$$

$$\begin{array}{ll} u_G = 32239/1536(Fb/EA) & u_H = 16(Fb/EA) & u_I = 29167/1536(Fb/EA) \\ v_G = -1699/192(Fb/EA) & v_H = -16/3(Fb/EA) & v_I = -225/64(Fb/EA) \end{array}$$

$$u_{JJI} = 16(Fb/EA)$$

 $v_{I} = 0$

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 $N_{AC} =$

	וחו

$$V_A = V_A = V_J = V_J$$

$$N_{CD} = N_{EF} = N_{GH} = N_{CH}$$

$$N_{CE} =$$
 $N_{EH} =$ $N_{HJ} =$ $N_{BD} =$ $N_{DF} =$ $N_{FG} =$

 $N_{IJ} =$

$$N_{GI} = N_{BC} = N_{DE} = N_{EG} = N_{HI} =$$

$$egin{array}{lll} u_A = & & u_B = & & u_C = \\ v_A = & & v_B = & & v_C = \\ \end{array}$$

$$\begin{array}{lll} u_{D} = & & u_{E} = & & u_{F} = \\ v_{D} = & & v_{E} = & & v_{F} = \end{array}$$

$$\begin{array}{lll} u_G = & & u_H = & & u_I = \\ v_G = & & v_H = & & v_I = \end{array}$$

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a J: aste JI IG IH GH GF GE EF EH ED DB DF BC CD CA CE AB

 $-32V_{\Delta}b = 15Fb$

Rotazione intorno a I: aste IG GH GF GE EF EH ED DB DF BC CD CA CE AB

 $15H_Ab - 32V_Ab - 8V_{HG}b + 15H_{HE}b = 0$ Rotazione intorno a I: aste IH

 $8V_{HG}b - 15H_{HF}b = 15Xb$

Rotazione intorno a G: aste GF

 $8V_{FF}b = 0$

Rotazione intorno a G: aste GE EF EH ED DB DF BC CD CA CE AB

 $15H_{\Delta}b - 24V_{\Delta}b - 8V_{EE}b + 15H_{HE}b = 0$

Rotazione intorno a E: aste ED DB DF BC CD CA CE AB

 $-16V_{\Delta}b - 15H_{ED}b = 15Fb$

Rotazione intorno a D: aste DB BC CD CA CE AB

 $15H_{A}b - 8V_{A}b + 15H_{EC}b = 0$

Rotazione intorno a B: aste BC CD CA CE AB

 $15H_{A}b + 8V_{DC}b + 15H_{EC}b = 0$

Rotazione intorno a C: aste CA AB

 $-8V_{A}b - 8V_{BA}b = 0$

	istema
	Fb]
m 15 32 0 0 0 8 0 15 0 0 0 Hb 1	15/32
$\phi_{\text{IG}} \mid 15 \ \ -32 \ \ 0 \ \ \ 0 \ \ \ \ -8 \ \ \ 0 \ \ \ 15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	-1
$\phi_{ m IH} \mid 0 = 0 = 0 = 0 = 0 = 0 = -15 = 0 = = 0 = 15 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	15/32
$\phi_{GF} \hspace{.1cm} \mid \hspace{.1cm} 0 \hspace{.1cm} \mid .1$	0
$\phi_{GE} \begin{vmatrix} 15 & -24 & 0 & 0 & -8 & 0 & 0 & 15 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & H_{HE}b \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 0 & $	1/4
$\phi_{\text{ED}} \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1/2
$\phi_{DB} \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	3/4
$\phi_{BC} \mid 15 0 0 8 0 0 15 0 0 \mid 0 0 \mid V_{DC}b \mid \mid 0 \mid 0 \mid V_{DC}b \mid \mid 0 \mid$	15/32
$\varphi_{CA} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	15/32

$$H_A = -1/2F$$
 $V_A = -15/32F$ $H_A = -1/2F$ $V_A = 15/32F$

$$N_{AB} = 15/32F$$
 $N_{CD} = 15/32F$ $N_{EF} = 0$ $N_{GH} = -15/32F$ $N_{IJ} = -15/32F$ $N_{AC} = 1/2F$

$$N_{CE} = 1/4F$$
 $N_{EH} = -1/4F$ $N_{HJ} = -1/2F$ $N_{BD} = -3/4F$ $N_{DF} = -1/2F$ $N_{FG} = -1/2F$

$$N_{GI} = -1/4F$$
 $N_{BC} = -17/32F$ $N_{DE} = -17/32F$ $N_{EG} = 17/32F$ $N_{HI} = 17/32F$

$$u_{A} = 0$$
 $u_{B} = 41455/1536(Fb/EA)$ $u_{C} = 4(Fb/EA)$ $v_{A} = 0$ $v_{B} = 225/64(Fb/EA)$ $v_{C} = -16/3(Fb/EA)$

$$u_D = 32239/1536(Fb/EA)$$
 $u_E = 6(Fb/EA)$ $u_F = 26095/1536(Fb/EA)$ $v_D = -349/192(Fb/EA)$ $v_F = -32/5(Fb/EA)$ $v_F = -32/5(Fb/EA)$

$$\begin{array}{lll} u_G = 19951/1536(Fb/EA) & u_H = 4(Fb/EA) & u_I = 16879/1536(Fb/EA) \\ v_G = -2149/320(Fb/EA) & v_H = -16/5(Fb/EA) & v_I = -225/64(Fb/EA) \end{array}$$

$$u_{J} = 0$$
$$v_{J} = 0$$

Es.N.004 Es.N.004

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Elongazione termica specifica ε assegnata su asta BD.

Elongazione termica specifica ε assegnata su asta DF.

Elongazione termica specifica ε assegnata su asta FG.

Elongazione termica specifica ϵ assegnata su asta GI.

Elongazione termica specifica ε assegnata su asta AC.

Elongazione termica specifica ε assegnata su asta CE.

Elongazione termica specifica ε assegnata su asta EH.

Elongazione termica specifica ε assegnata su asta HJ.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 \leftarrow $\boxed{+}$ \rightarrow

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = V_A = V_J =$$

$$_{AB}$$
 = N_{CD} = N_{EF} = N_{GH} = N_{IJ} = N_{AC} = N_{CE} = N_{EH} = N_{HJ} =

$$N_{BD} = N_{DF} = N_{FG} = N_{GI} = N_{BC} = N_{DE} = N_{EG} = N_{HI} = N$$

$$egin{array}{lll} u_A = & u_B = & u_C = & u_D = & u_E = \\ v_A = & v_B = & v_C = & v_D = & v_E = \\ \end{array}$$

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a A: aste AC CD CE CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{1}b = 0$

Rotazione intorno a C: aste CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $24V_{J}b + 8V_{BA}b = 0$

Rotazione intorno a B: aste BD DF DE EF EH EG GH GF GI IJ IH HJ

 $32V_{J}b - 8V_{DC}b - 15H_{EC}b = 0$

Rotazione intorno a D: aste DE EF EH EG GH GF GI IJ IH HJ

 $24V_{J}b - 15H_{EC}b = 0$

Rotazione intorno a E: aste EG GH GF GI IJ IH HJ

 $16V_{J}b + 15H_{FD}b = 0$

Rotazione intorno a G: aste GF

 $8V_{FF}b = 0$

Rotazione intorno a G: aste GI IJ IH HJ

 $8V_{J}b - 15H_{HE}b = 0$

Rotazione intorno a I: aste IH HJ

 $8V_{HG}b - 15H_{HF}b = 0$

Rotazione intorno a H: aste HJ

 $8V_{J}b - 8V_{JJ}b = 0$

Matrice di equilibrio

	$[V_J b]$	$V_{BA}b$	$V_{DC}b$	$V_{\text{FE}}b \\$	$V_{HG}b$	$V_{JI}b$	$H_{\text{EC}}b$	$\boldsymbol{H}_{HE}\boldsymbol{b}$	$H_{FD}b$	
ϕ_{AC}	32	0	0	0	0	0	0	0	0	
ϕ_{CB}	24	8	0	0	0	0	0	0	0	
ϕ_{BD}	32	0	-8	0	0	0	-15	0	0	
ϕ_{DE}	24	0	0	0	0	0	-15	0	0	
ϕ_{EG}	16	0	0	0	0	0	0	0	15	
ϕ_{GF}	0	0	0	8	0	0	0	0	0	
ϕ_{GI}	8	0	0	0	0	0	0	-15	0	
ϕ_{IH}	0	0	0	0	8	0	0	-15	0	
ϕ_{HJ}	8	0	0	0	0	-8	0	0	0	

⊢— 67.24 αTb

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = 0$$
 $V_A = 0$ $V_J = 0$

$$N_{AB} = 0 \qquad N_{CD} = 0 \qquad N_{EF} = 0 \qquad N_{GH} = 0 \qquad N_{IJ} = 0 \qquad N_{AC} = 0 \qquad N_{CE} = 0 \qquad N_{EH} = 0 \qquad N_{HJ} = 0$$

$$N_{BD} = 0 \qquad N_{DF} = 0 \qquad N_{FG} = 0 \qquad N_{GI} = 0 \qquad N_{BC} = 0 \qquad N_{DE} = 0 \qquad N_{EG} = 0 \qquad N_{HI} = 0$$

$u_A = 0$	$u_B = 32\alpha Tb$	$u_C = 8\alpha Tb$	$u_D = 24\alpha Tb$	$u_E = 16\alpha Tb$
$v_{A} = 0$	$V_B = 0$	$v_C = -64/5\alpha Tb$	$v_D = -64/5\alpha Tb$	$v_{E} = -256/15\alpha Tb$

Svolgere l'analisi cinematica.

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = V_A = V_J =$$

 $N_{EG} =$

$$N_{GH} =$$

$$N_{IJ} =$$

$$N_{AC} = N_{CE} =$$

 $N_{EF} =$

 $N_{HI} =$

$$N_{DF} =$$

$$N_{FG} =$$

$$N_{GI} = N_{BC} =$$

$$u_A = v_A =$$

$$U_B = V_B = V_B$$

$$u_C = v_C =$$

$$u_D = V_D = V_D$$

$$u_G = v_G =$$

$$u_{JJI} = v_{J} = v_{J}$$

	1
G G	8
F F	F
D D	0
В	B
5	

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a A: aste AC CD CE CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $36V_b = 108Fb$

Rotazione intorno a C: aste CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $27V_{1}b + 9V_{RA}b = 54Fb$

Rotazione intorno a B: aste BD DF DE EF EH EG GH GF GI IJ IH HJ

 $36V_{J}b - 9V_{DC}b - 12H_{EC}b = 108Fb$

Rotazione intorno a D: aste DE EF EH EG GH GF GI IJ IH HJ

 $27V_{J}b - 12H_{FC}b = 63Fb$

Rotazione intorno a E: aste EG GH GF GI IJ IH HJ

 $18V_{J}b + 12H_{ED}b = 27Fb$

Rotazione intorno a G: aste GF

 $9V_{FF}b = -18Fb$

Rotazione intorno a G: aste GI IJ IH HJ

 $9V_1b - 12H_{HF}b = 9Fb$

Rotazione intorno a I: aste IH HJ

 $9V_{HG}b - 12H_{HF}b = 0$

Rotazione intorno a H: aste HJ

 $9V_{J}b - 9V_{JI}b = 0$

Matrice di equilibrio

[VJb VBAb VDCb VEB VHGb VJB HEC HEB HED] Fb] 108 36 0 0 ϕ_{AC} 27 0 54 ϕ_{CB} 108 36 0 -9 0 0 0 -12 0 0 ϕ_{BD} 27 0 0 0 -12 0 63 0 0 ϕ_{DE} 27 ϕ_{EG} 12 18 0 0 0 0 0 0 0 -18 0 0 0 0 0 -12 0 9 ϕ_{GI} 0 0 0 0 0 9 0 -12 0 0 0 0

Soluzione del sistema

		[Fb]
$V_{J}b$		[3]
V _{BA} b		-3
V _{DC} b		-2
H _{EC} b		3/2
H _{FD} b	=	-9/4
V _{FE} b		-2
H _{HE} b		3/2
V _{HG} b		2
V _{JI} b		3

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = 0$$
 $V_A = 3F$ $V_J = 3F$

$$N_{AB} = -3F$$
 $N_{CD} = -2F$ $N_{EF} = -2F$ $N_{GH} = -2F$ $N_{LI} = -3F$ $N_{AC} = 0$ $N_{CE} = 3/2F$

$$N_{EH} = 3/2F$$
 $N_{HJ} = 0$ $N_{BD} = -3/2F$ $N_{DF} = -9/4F$ $N_{FG} = -9/4F$ $N_{GI} = -3/2F$ $N_{BC} = 5/2F$

$$N_{DE} = 5/4F$$
 $N_{EG} = 5/4F$ $N_{HI} = 5/2F$

$$u_{A} = 0$$
 $u_{B} = 189/4(Fb/EA)$ $u_{C} = 0$ $u_{D} = 135/4(Fb/EA)$ $v_{A} = 0$ $v_{B} = -18(Fb/EA)$ $v_{C} = -1105/16(Fb/EA)$ $v_{D} = -1297/16(Fb/EA)$

$$u_E = 27/2(Fb/EA)$$
 $u_F = 27/2(Fb/EA)$ $u_G = -27/4(Fb/EA)$ $u_H = 27(Fb/EA)$ $v_E = -1665/16(Fb/EA)$ $v_F = -1857/16(Fb/EA)$ $v_G = -1297/16(Fb/EA)$ $v_U = -1105/16(Fb/EA)$

$$u_{I} = -81/4(Fb/EA)$$
 $u_{JJI} = 27(Fb/EA)$

$$v_i = -18(Fb/EA)$$
 $v_{,i} = -18(Fb/EA)$

$$v_1 = 0$$

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 $\begin{array}{lll} A_{\gamma Z} \cdot x_{\gamma Z} \cdot \theta_{\gamma Z} & \text{riferimento locale asta YZ con origine in Y.} \\ @ & \text{Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07} \end{array}$

$$H_A = V_A = H_J = V_J =$$

$$_{AB}$$
 = N_{CD} = N_{EF} = N_{GH} = N_{IJ} = N_{AC} = N_{CE} =

$$N_{EH}$$
 = N_{HJ} = N_{BD} = N_{DF} = N_{FG} = N_{GI} = N_{BC} =

$$N_{DE} = N_{EG} = N_{HI} =$$

$$egin{array}{lll} u_{A} = & u_{B} = & u_{C} = & u_{D} = \\ v_{A} = & v_{B} = & v_{C} = & v_{D} = \end{array}$$

$$\begin{array}{lll} u_E = & & u_F = & & u_G = & & u_H = \\ v_E = & & v_F = & & v_G = & & v_H = \end{array}$$

$$\mathbf{u}_{1} = \mathbf{u}_{J} = \mathbf{v}_{J} = \mathbf{v}_{J}$$

Rotazione intorno a J: aste JI IG IH GH GF GE EF EH ED DB DF BC CD CA CE AB

 $-36V_{A}b = -108Fb$

Rotazione intorno a I: aste IG GH GF GE EF EH ED DB DF BC CD CA CE AB

 $12H_{\Delta}b - 36V_{\Delta}b - 9V_{HG}b + 12H_{HE}b = -108Fb$

Rotazione intorno a I: aste IH

 $9V_{HG}b - 12H_{HE}b = 12Xb$

Rotazione intorno a G: aste GF

 $9V_{FF}b = -18Fb$

Rotazione intorno a G: aste GE EF EH ED DB DF BC CD CA CE AB

 $12H_Ab - 27V_Ab - 9V_{FF}b + 12H_{HF}b = -45Fb$

Rotazione intorno a E: aste ED DB DF BC CD CA CE AB

 $-18V_{\Delta}b - 12H_{ED}b = -27Fb$

Rotazione intorno a D: aste DB BC CD CA CE AB

 $12H_{\Delta}b - 9V_{\Delta}b + 12H_{EC}b = -9Fb$

Rotazione intorno a B: aste BC CD CA CE AB

 $12H_Ab + 9V_{DC}b + 12H_{EC}b = 0$

Rotazione intorno a C: aste CA AB

 $-9V_Ab - 9V_{BA}b = 0$

Matrice di equilibrio										Soluzio	ne d	el sis	stema				
	$[H_Ab]$	$V_A b$	$V_{BA}b$	$V_{DC}b$	$V_{\text{FE}}b$	$V_{HG}b$	$H_{EC}b$	$H_{HE}b$	$H_{FD}b$		[Xb	Fb]			[Xb	Fb]	
ϕ_{JI}	0	-36	0	0	0	0	0	0	0		0	-108	V _A b		0	3	
ϕ_{IG}	12	-36	0	0	0	-9	0	12	0		0	-108	H _A b		1	0	
ϕ_{IH}	0	0	0	0	0	9	0	-12	0		12	0	$V_{HG}b$		0	2	
ϕ_{GF}	0	0	0	0	9	0	0	0	0		0	-18	V _{FE} b		0	-2	
ϕ_{GE}	12	-27	0	0	-9	0	0	12	0	=	0	-45	H _{HE} b	=	-1	3/2	
ϕ_{ED}	0	-18	0	0	0	0	0	0	-12		0	-27	$H_{FD}b$		0	-9/4	
ϕ_{DB}	12	-9	0	0	0	0	12	0	0		0	-9	H _{EC} b		-1	3/2	
ϕ_{BC}	12	0	0	9	0	0	12	0	0		0	0	$V_{DC}b$		0	-2	
ϕ_{CA}	0	-9	-9	0	0	0	0	0	0		0	0	V _{BA} b_		0	-3	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = 3/4F$$
 $V_A = 3F$ $H_J = -3/4F$ $V_J = 3F$

$$N_{AB} = -3F$$
 $N_{CD} = -2F$ $N_{EF} = -2F$ $N_{GH} = -2F$ $N_{IJ} = -3F$ $N_{AC} = -3/4F$ $N_{CE} = 3/4F$

$$N_{EH} = 3/4F$$
 $N_{HJ} = -3/4F$ $N_{BD} = -3/2F$ $N_{DF} = -9/4F$ $N_{FG} = -9/4F$ $N_{GI} = -3/2F$ $N_{BC} = 5/2F$

$$N_{DE} = 5/4F$$
 $N_{EG} = 5/4F$ $N_{HI} = 5/2F$

$$u_A = 0$$
 $u_B = 135/4(Fb/EA)$ $u_C = -27/4(Fb/EA)$ $u_D = 81/4(Fb/EA)$ $v_A = 0$ $v_B = -18(Fb/EA)$ $v_C = -64(Fb/EA)$ $v_D = -76(Fb/EA)$

$$u_E = 0$$
 $u_F = 0$ $u_G = -81/4(Fb/EA)$ $u_H = 27/4(Fb/EA)$
 $v_F = -99(Fb/EA)$ $v_F = -111(Fb/EA)$ $v_G = -76(Fb/EA)$ $v_H = -64(Fb/EA)$

$$u_1 = -135/4(Fb/EA)$$
 $u_J = 0$
 $v_1 = -18(Fb/EA)$ $v_J = 0$

Es.N.007

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 $\begin{array}{lll} A_{\gamma Z} \cdot x_{\gamma Z} \cdot \theta_{\gamma Z} & \text{riferimento locale asta YZ con origine in Y.} \\ @ & \text{Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07} \end{array}$

 $N_{AC} =$

REAZIONI

$$H_A = V_A = V_J =$$

$$N_{AB} = N_{CD} = N_{EF} =$$

$$N_{CE} =$$
 $N_{EH} =$ $N_{HJ} =$ $N_{BD} =$ $N_{DF} =$ $N_{FG} =$

 $N_{GH} =$

 $N_{IJ} =$

$$N_{GI} = N_{BC} = N_{DE} = N_{EG} = N_{HI} =$$

$$\mathbf{u}_{\mathrm{I}} = \mathbf{u}_{\mathrm{JJI}} = \mathbf{v}_{\mathrm{J}} = \mathbf{v}_{\mathrm{J}}$$

Rotazione intorno a A: aste AC CD CE CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $36V_{J}b = 12Fb$

Rotazione intorno a C: aste CB BD DF DE EF EH EG GH GF GI IJ IH HJ

 $27V_{1}b + 9V_{RA}b = 12Fb$

Rotazione intorno a B: aste BD DF DE EF EH EG GH GF GI IJ IH HJ

 $36V_{J}b - 9V_{DC}b - 12H_{EC}b = 0$

Rotazione intorno a D: aste DE EF EH EG GH GF GI IJ IH HJ

 $27V_{J}b - 12H_{EC}b = 0$

Rotazione intorno a E: aste EG GH GF GI IJ IH HJ

 $18V_{J}b + 12H_{ED}b = 0$

Rotazione intorno a G: aste GF

 $9V_{FF}b = 0$

Rotazione intorno a G: aste GI IJ IH HJ

 $9V_{.i}b - 12H_{HE}b = 0$

Rotazione intorno a I: aste IH HJ

 $9V_{HG}b - 12H_{HF}b = 0$

Rotazione intorno a H: aste HJ

 $9V_{II}b - 9V_{II}b = 0$

Matrice	di	equilibrio
	٠.	090

	$V_{\rm J}$ b	$V_{BA}b$	$V_{DC}b$	$V_{\text{FE}}b$	$V_{HG}b$	$V_{JI}b$	$H_{EC}b$	$H_{\text{HE}}b$	$H_{FD}b$		[Fb]
ϕ_{AC}	36	0	0	0	0	0	0	0	0		[12]
ϕ_{CB}	27	9	0	0	0	0	0	0	0		12
ϕ_{BD}	36	0	-9	0	0	0	-12	0	0		0
ϕ_{DE}	27	0	0	0	0	0	-12	0	0		0
ϕ_{EG}	18	0	0	0	0	0	0	0	12	=	0
ϕ_{GF}	0	0	0	9	0	0	0	0	0		0
ϕ_{GI}	9	0	0	0	0	0	0	-12	0		0
ϕ_{IH}	0	0	0	0	9	0	0	-12	0		0
Фн	9	0	0	0	0	-9	0	0	0		0

Soluzione del sistema

		[Fb]
$V_{J}b$		[1/3]
V _{BA} b		1/3
V _{DC} b		1/3
H _{EC} b		3/4
H _{FD} b	=	-1/2
V _{FE} b		0
H _{HE} b		1/4
V _{HG} b		1/3
V _{JI} b		1/3

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

$$H_A = -F$$
 $V_A = -1/3F$ $V_J = 1/3F$

$$N_{AB} = 1/3F$$
 N_{CD}

$$N_{CD} = 1/3F$$

$$N_{EF} = 0$$
 $N_{GH} = -1/3F$

$$N_{IJ} = -1/3F$$

$$N_{AC} = F$$

$$N_{CF} = 3/4F$$

$$N_{EH} = 1/4F$$

$$N_{HJ} = 0$$

$$N_{BD} = -3/4F$$
 $N_{DF} = -1/2F$

$$N_{FG} = -1/2F$$

$$N_{GI} = -1/4F$$

$$N_{BC} = -5/12F$$
 N

$$N_{DE} = -5/12F$$

$$N_{EG} = 5/12F$$

$$N_{HI} = 5/12F$$

$$u_A = 0$$
 $u_B = 278/5$ $v_A = 0$ $v_B = 2(Fb/5)$

$$u_B = 278/9(Fb/EA)$$

 $v_B = 2(Fb/EA)$

$$u_{c} = 9(Fb/EA)$$

 $v_{c} = -189/16(Fb/EA)$

$$u_D = 869/36(Fb/EA)$$

 $v_D = -157/16(Fb/EA)$

$$u_E = 63/4(Fb/EA)$$

$$u_F = 707/36(Fb/EA)$$

$$u_{G} = 545/36(Fb/EA)$$

$$u_H = 18(Fb/EA)$$

$$v_E = -27/2(Fb/EA)$$

$$v_F = -27/2(Fb/EA)$$

$$v_G = -167/16(Fb/EA)$$

$$v_{H} = -135/16(Fb/EA)$$

$$u_I = 116/9(Fb/EA)$$

$$u_{JJI} = 18(Fb/EA)$$

$$v_1 = -2(Fb/EA)$$

$$V_1 = 0$$

Es.N.008

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 $\begin{array}{lll} A_{\gamma Z} \cdot x_{\gamma Z} \cdot \theta_{\gamma Z} & \text{riferimento locale asta YZ con origine in Y.} \\ @ & \text{Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07} \end{array}$

$$H_A = V_A =$$

$$H_J = V_J =$$

$$N_{AB} = N_{CD} =$$

$$N_{AC} =$$

$$N_{BD} =$$

$$N_{DF} =$$

$$N_{FG} =$$

$$N_{GI} =$$

 $N_{IJ} =$

$$u_A = v_A = v_A = v_A$$

$$u_B = v_B = v_B$$

$$u_C = v_C =$$

$$u_D = v_D = v_D$$

$$u_G = v_G =$$

Rotazione intorno a J: aste JI IG IH GH GF GE EF EH ED DB DF BC CD CA CE AB

 $-36V_{A}b = 12Fb$

Rotazione intorno a I: aste IG GH GF GE EF EH ED DB DF BC CD CA CE AB

 $12H_Ab$ -36V_Ab -9V_{HG}b +12H_{HE}b = 0 Rotazione intorno a I: aste IH

 $9V_{HG}b - 12H_{HE}b = 12Xb$

Rotazione intorno a G: aste GF

 $9V_{FF}b = 0$

Rotazione intorno a G: aste GE EF EH ED DB DF BC CD CA CE AB

 $12H_{A}b - 27V_{A}b - 9V_{FF}b + 12H_{HF}b = 0$

Rotazione intorno a E: aste ED DB DF BC CD CA CE AB

 $-18V_{A}b - 12H_{ED}b = 12Fb$

Rotazione intorno a D: aste DB BC CD CA CE AB

 $12H_{\Delta}b - 9V_{\Delta}b + 12H_{EC}b = 0$

Rotazione intorno a B: aste BC CD CA CE AB

 $12H_{A}b + 9V_{DC}b + 12H_{EC}b = 0$

Rotazione intorno a C: aste CA AB

 $-9V_{A}b - 9V_{BA}b = 0$

Matrice di equilibrio

iviati	Matrice di equilibrio												
	$[H_Ab]$	$V_A b$	$V_{BA}b$	$V_{DC}b \\$	$\mathrm{V}_{\mathrm{FE}}\mathrm{b}$	$V_{\rm HG} b \\$	$\mathbf{H}_{\mathrm{EC}}\mathbf{b}$	$\boldsymbol{H}_{HE}\boldsymbol{b}$	$H_{FD}b$		[Xb	Fb]	
ϕ_{JI}	0	-36	0	0	0	0	0	0	0		0	12	
ϕ_{IG}	12	-36	0	0	0	-9	0	12	0		0	0	
ϕ_{IH}	0	0	0	0	0	9	0	-12	0		12	0	
ϕ_{GF}	0	0	0	0	9	0	0	0	0		0	0	
ϕ_{GE}	12	-27	0	0	-9	0	0	12	0	=	0	0	
ϕ_{ED}	0	-18	0	0	0	0	0	0	-12		0	12	
ϕ_{DB}	12	-9	0	0	0	0	12	0	0		0	0	
ϕ_{BC}	12	0	0	9	0	0	12	0	0		0	0	
ϕ_{CA}	0	-9	-9	0	0	0	0	0	0		0	0	

Soluzione del sistema

$$\begin{bmatrix} V_A b \\ H_A b \\ V_{HG} b \\ V_{FE} b \\ H_{FD} b \\ H_{EC} b \\ V_{DC} b \\ V_{BA} b \end{bmatrix} = \begin{bmatrix} X b & F b \\ 0 & -1/3 \\ 1 & -1 \\ 0 & 1/3 \\ 0 & 0 \\ -1 & 1/4 \\ 0 & -1/2 \\ -1 & 3/4 \\ 0 & 1/3 \\ 0 & 1/3 \end{bmatrix}$$

 $N_{AC} = 1/2F$

$$H_A = -1/2F$$
 $V_A = -1/3F$ $H_J = -1/2F$ $V_J = 1/3F$

$$N_{AB} = 1/3F$$
 $N_{CD} = 1/3F$ $N_{EF} = 0$ $N_{GH} = -1/3F$ $N_{IJ} = -1/3F$

$$N_{CE} = 1/4F$$
 $N_{EH} = -1/4F$ $N_{HJ} = -1/2F$ $N_{BD} = -3/4F$ $N_{DF} = -1/2F$ $N_{FG} = -1/2F$

$$N_{GI} = -1/4F$$
 $N_{BC} = -5/12F$ $N_{DE} = -5/12F$ $N_{EG} = 5/12F$ $N_{HI} = 5/12F$

SPOSTAMENTI NODALI

$u_A = 0$	$u_{B} = 197/9(Fb/EA)$	$u_C = 9/2(Fb/EA)$	$u_D = 545/36(Fb/EA)$
$V_A = 0$	$V_B = 2(Fb/EA)$	$v_{C} = -135/16(Fb/EA)$	$V_D = -103/16(Fb/EA)$

$$\begin{array}{lll} u_E = 27/4 (\text{Fb/EA}) & u_F = 383/36 (\text{Fb/EA}) & u_G = 221/36 (\text{Fb/EA}) & u_H = 9/2 (\text{Fb/EA}) \\ v_E = -81/8 (\text{Fb/EA}) & v_F = -81/8 (\text{Fb/EA}) & v_G = -113/16 (\text{Fb/EA}) & v_H = -81/16 (\text{Fb/EA}) \end{array}$$

$$u_1 = 35/9(Fb/EA)$$
 $u_3 = 0$
 $v_1 = -2(Fb/EA)$ $v_3 = 0$

----- 44.83 Fb/EA

Tracciare la deformata elastica.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Calcolare spostamento e rotazione di tutti i nodi.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Elongazione termica specifica ε assegnata su asta BD.

Elongazione termica specifica ε assegnata su asta DF.

Elongazione termica specifica ε assegnata su asta FG.

Elongazione termica specifica ϵ assegnata su asta GI.

Elongazione termica specifica ε assegnata su asta AC.

Elongazione termica specifica ε assegnata su asta CE.

Elongazione termica specifica ε assegnata su asta EH.

Elongazione termica specifica ε assegnata su asta HJ.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 \leftarrow $\boxed{+}$ \rightarrow

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.07

 $N_{GI} =$

$$\mathsf{H}_\mathsf{A} = \qquad \qquad \mathsf{V}_\mathsf{A} = \qquad \qquad \mathsf{H}_\mathsf{J} = \qquad \qquad \mathsf{V}_\mathsf{J} =$$

$$N_{AB} = N_{CD} = N_{EF} = N_{GH} = N_{IJ} = N_{AC} =$$

$$N_{CE} =$$
 $N_{EH} =$ $N_{HJ} =$ $N_{BD} =$ $N_{DF} =$ $N_{FG} =$

 $N_{EG} =$

 $N_{HI} =$

 $N_{DE} =$

SPOSTAMENTI NODALI

 $N_{BC} =$

Rotazione intorno a J: aste JI IG IH GH GF GE EF EH ED DB DF BC CD CA CE AB

 $-36V_{\Delta}b = 0$

Rotazione intorno a I: aste IG GH GF GE EF EH ED DB DF BC CD CA CE AB

 $12H_Ab - 36V_Ab - 9V_{HG}b + 12H_{HE}b = 0$ Rotazione intorno a I: aste IH

 $9V_{HG}b - 12H_{HE}b = 12Xb$

Rotazione intorno a G: aste GF

 $9V_{FF}b = 0$

Rotazione intorno a G: aste GE EF EH ED DB DF BC CD CA CE AB

 $12H_{A}b - 27V_{A}b - 9V_{FF}b + 12H_{HF}b = 0$

Rotazione intorno a E: aste ED DB DF BC CD CA CE AB

 $-18V_{A}b - 12H_{ED}b = 0$

Rotazione intorno a D: aste DB BC CD CA CE AB

 $12H_{\Delta}b - 9V_{\Delta}b + 12H_{EC}b = 0$

Rotazione intorno a B: aste BC CD CA CE AB

 $12H_{A}b + 9V_{DC}b + 12H_{EC}b = 0$

Rotazione intorno a C: aste CA AB

 $-9V_{A}b - 9V_{BA}b = 0$

Matrice di equilibrio

Matrico di oquilibrio												
	$[H_Ab]$	$V_A b$	$V_{BA}b$	$V_{DC}b$	$V_{\text{FE}}b$	$V_{HG}b$	$H_{\text{EC}}b$	$\mathbf{H}_{\mathrm{HE}}\mathbf{b}$	$H_{FD}b$		[Xb]	
ϕ_{JI}	0	-36	0	0	0	0	0	0	0		[0]	
ϕ_{IG}	12	-36	0	0	0	-9	0	12	0		0	
ϕ_{IH}	0	0	0	0	0	9	0	-12	0		12	
ϕ_{GF}	0	0	0	0	9	0	0	0	0		0	
ϕ_{GE}	12	-27	0	0	-9	0	0	12	0	=	0	
ϕ_{ED}	0	-18	0	0	0	0	0	0	-12		0	
ϕ_{DB}	12	-9	0	0	0	0	12	0	0		0	
ϕ_{BC}	12	0	0	9	0	0	12	0	0		0	
ϕ_{CA}	0	-9	-9	0	0	0	0	0	0		0	

Soluzione del sistema

$$\begin{bmatrix} Xb \\ V_Ab \\ H_Ab \\ V_{HG}b \\ V_{FE}b \\ H_{HE}b \\ H_{FD}b \\ H_{EC}b \\ V_{DC}b \\ V_{BA}b \end{bmatrix} = \begin{bmatrix} Xb \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$H_A = \alpha TEA$$
 $V_A = 0$ $H_J = -\alpha TEA$ $V_J = 0$

$$N_{AB} = 0$$
 $N_{CD} = 0$

$$N_{EF} = 0$$

$$N_{GH} = 0$$

$$N_{I,J} = 0$$

$$N_{AC} = -\alpha TEA$$

$$N_{CE} = -\alpha TEA$$
 $N_{EH} = -\alpha TEA$

$$N_{-} = -\alpha TFA$$

$$N_{HJ} = -\alpha TEA$$

$$N_{BD} = 0$$

$$N_{DF} = 0$$
 $N_{FG} = 0$

$$N_{GI} = 0$$

$$N_{BC} = 0$$

$$N_{DE} = 0$$

$$N_{EG} = 0$$

$$N_{HI} = 0$$

SPOSTAMENTI NODALI

$$u_A = 0$$
 $u_B = 18\alpha Tb$
 $v_A = 0$ $v_B = 0$

$$u_{\rm C} = 0$$

 $v_{\rm c} = -27/2\alpha$

$$u_D = 9\alpha Tb$$

$$u_E = 0$$

$$\begin{array}{lll} u_C = 0 & & u_D = 9\alpha Tb & & u_E = 0 & & u_F = 0 \\ v_C = -27/2\alpha Tb & & v_D = -27/2\alpha Tb & & v_F = -81/4\alpha Tb & & v_F = -81/4\alpha Tb \end{array}$$

$$u_G = -9\alpha Tb$$
 $u_H = 0$ $u_I = -18$
 $v_G = -27/2\alpha Tb$ $v_H = -27/2\alpha Tb$ $v_I = 0$

$$u_H = 0$$

$$u_1 = -18\alpha Tb$$

 $v_1 = 0$

$$u_{J} = 0$$
$$v_{J} = 0$$

⊢ 44.83 αTb

