Multi-armed Bandit Based Covariance Matrix Adaptation Evolution Strategy

Chuan-Che Yen Advisor: Dr. Tian-Li Yu

TEILab

Nov 23, 2014

Outline

- Real-valued Function Optimization
- Related Approaches
- Summary
- 4 Conclusion

Outline

- Real-valued Function Optimization
- Related Approaches
- Summary
- 4 Conclusion

3 / 17

Real-valued Function Optimization

- Real-valued function
 - $f: \mathcal{S} \subset \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$
 - S: search space
 - Elements of S: candidates or solutions
- Optimization
 - arg min f(x), where x are within given bounds.
 - $\widetilde{\text{Maximizing } f}$ is equivalent to minimizing -f.
- Example
 - $\arg\min 2x^3 3x^2 36x 14$.
 - Design of aircraft wings.

Black-box Optimization

Figure: Black-box function

- The only information is the interaction between input and output.
- The key point is investigating the trade-off between exploration and exploitation.
 - Exploration is the capability of having an overview for the search space.
 - Exploitation is the capability of generating high resolution candidates.

5 / 17

Non-convex

- Non-convex
 - Local optima are less important for global optimum.

Figure: Non-convex function

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness

Figure: Non-convex function

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality
 - Search space grows exponentially

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality
 - Search space grows exponentially
- Non-separable

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality
 - Search space grows exponentially
- Non-separable
 - Dependencies between decision variables

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality
 - Search space grows exponentially
- Non-separable
 - Dependencies between decision variables
- Ill-conditioned

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Local optima are less important for global optimum.
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality
 - Search space grows exponentially
- Non-separable
 - Dependencies between decision variables
- Ill-conditioned
 - Unable to extract gradient information

Figure: Non-convex function

Figure: sin(x) with noise

Outline

- Real-valued Function Optimization
- Related Approaches
 - Real-coded Extended Compact Genetic Algorithm
 - Covariance Matrix Adaptation Evolution Strategy
- Summary
- 4 Conclusion

Related Approaches

- Optimizing black-box problems
 - No deterministic way to evolve global optimum
 - Applying meta heuristic for approximation
- Stochastic algorithms
 - Iteratively generating better solutions
- Two major approaches
 - Estimation of distribution algorithm (EDA)
 - Evolution strategy (ES)

Discretization

- Continuous domain → Discrete domain
- ullet Finding good solutions o Finding promising regions
- 2 traditional discretization methods
 - Fixed Height Histogram (FHH)
 - Fixed Width Histogram (FWH)

Figure: Illustration of FHH

Figure: Illustration of FWH

Split on Demand

- ullet Solutions in each bin should not exceed $\gamma N.$
 - N is the population size.
 - $oldsymbol{\circ}$ γ defines the rate of one region.
- γ decays with a factor ϵ .

Figure: Illustration of SoD

EDA

- Sometimes known as Probabilistic Model Building GA (PMBGA).
 - Building model explicitly.
 - Linkage between decision variables are provided.
- Extended Compact Genetic Algorithm (ECGA).
 - Model is built according to population distribution.
 - Applying greedy search to refine model iteratively.

Figure: EDA

Real-coded ECGA with SoD

Figure: Integrating SoD into ECGA

Evolution Strategy (ES)

- A search template for black-box optimization.
 - Encoded in continuous domain.
- New search points are generated based on current population.
- (μ, λ) -ES and $(\mu + \lambda)$ -ES.
- $\bullet \ x_i^{t+1} = m^t + \sigma N_i(0, C).$
 - x_i^{t+1} : *i*-th generated solution at generation t+1.
 - m^t : weighted mean of population at generation t.
 - σ : step size.
 - C: Estimated distribution.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- A famous derivation of ES.
- Importance of σ and C.
 - Larger step size reinforces exploration while smaller reinforces exploitation.
 - Choosing an fixed, appropriate number?
 - Covariance matrix determines the shape of estimated distribution.
 - Determining the length of each axis.
 - Representing the dependency among decision variables.
- CMA-ES features in the adoption of historical information.
 - \bullet σ and C are adjusted accordingly.

Illustration of CMA-ES

Outline

- Real-valued Function Optimization
- 2 Related Approaches
- Summary
- 4 Conclusion

Outline

- Real-valued Function Optimization
- 2 Related Approaches
- Summary
- Conclusion