Data Visualisation Lab Experiment – 2

Name: Om Ashish Mishra

Registration Number: 16BCE0789

Slot: C2

Question 1

Problem 4

Design and implement an interactive visual idiom to help the users in choosing mobile phones with best price and features.

(What) Target - choosing mobile phone with best price and features

(Why) Tasks - Present

- Search

Set one goal for each task

i.e., present – communicate specific details precisely.

i.e., Search – browse for prices and features for a known mobile brand

Implement the goals using the following actions.

(How) Action – Encode, Navigate, Select, Arrange

CODE and OUTPUT

```
library(jsonlite)

cp = fromJSON(txt = "Cell Phone Data.txt", simplifyDataFrame =

TRUE) num.atts = c(4,9,11,12,13,14,15,16,18,22)

cp[,num.atts] = sapply(cp[,num.atts], function (x)
as.numeric(x)) cp$aspect.ratio = cp$att_pixels_y /

cp$att_pixels_x cp$isSmartPhone =

ifelse(grepl("smart|iphone|blackberry", cp$name,

ignore.case=TRUE) == TRUE | cp$att_screen_size >= 4,
```

```
"Yes", "No")
library(ggplot2)
library(ggthemr)
library(scales)
ggthemr("camoflauge")
ggplot(cp, aes(x=att brand, y=price)) + geom boxplot() +
ggtitle("Mobile Phone Price by Brand") +
theme(axis.text.x=element text(angle=90, size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x discrete("Brand")
ggplot(cp, aes(x=att weight, y=price)) + geom point(size=3) +
ggtitle("Mobile Phone Price by Weight") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("Weight (oz)") + stat smooth(se=FALSE)
ggplot(cp, aes(x=att screen size, y=price)) +
geom point(size=3) + ggtitle("Mobile Phone Price by Screen
Size") + theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("Screen Size (in)") + stat smooth(se=FALSE)
ggplot(cp, aes(x=att ram, y=price)) + geom point(size=3) +
ggtitle ("Mobile Phone Price by Amount of RAM") +
theme(axis.text.x=element text(size=14, vjust=0.5),
```

```
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("RAM (gb)") + stat smooth(se=FALSE)
ggplot(cp, aes(x=att sd card, y=price)) + geom point(size=3) +
ggtitle("Mobile Phone Price by SD Card Capacity") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("SD Card Capacity (gb)") +
stat smooth(se=FALSE)
ggplot(cp, aes(x=ifelse(cp$att dual sim == 1, "Yes", "No"),
y=price)) + geom boxplot() + ggtitle("Mobile Phone Price by
Dual Sim") + theme(axis.text.x=element text(size=14,
vjust=0.5), axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x discrete("Has Dual Sim Card?")
ggplot(cp, aes(x=att storage, y=price)) + geom point(size=3) +
ggtitle ("Mobile Phone Price by Storage Capacity") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("Storage Capacity (gb)") +
stat smooth(se=FALSE)
ggplot(cp, aes(x=att battery mah, y=price)) +
geom point(size=3) + ggtitle("Mobile Phone Price by Battery
Capacity") + theme(axis.text.x=element text(size=14,
vjust=0.5), axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
```

```
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("Battery Capacity (mAh)") +
stat smooth(se=FALSE)
ggplot(cp, aes(x=aspect.ratio, y=price)) + geom point(size=3)
+ ggtitle("Mobile Phone Price by Aspect Ratio") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x continuous("Aspect Ratio (Y Pixels / X Pixels)") +
stat smooth(se=FALSE)
ggplot(cp, aes(x=isSmartPhone, y=price)) + geom boxplot() +
ggtitle("Mobile Phone Price by Smart Phone Status") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x discrete("Is it a Smart Phone?")
ggplot(cp, aes(x=att os, y=price)) + geom boxplot() +
ggtitle("Mobile Phone Price by Operating System") +
theme(axis.text.x=element text(size=14, vjust=0.5),
axis.text.y=element text(size=14),
axis.title.x=element text(size=15),
axis.title.y=element text(size=15),
plot.title=element text(size=17)) +
scale y continuous(labels=dollar, name="Price (USD?)") +
scale x discrete("Operating System") library(caret)
control = trainControl(method="cv")
in train = createDataPartition(cp$price, p=.8, list=FALSE)
model.gbm = train(price ~ att brand + att weight
att screen size +
                                      att ram + att sd card
+ att dual sim +
                                             att storage +
                                  att os,
att battery mah
                                                   data=cp,
             trControl=control, verbose=FALSE,
method="gbm",
subset=in train) cp$att brand = factor(cp$)
```

```
cp.test = cp[-in_train,] cp.test =
subset(cp.test, att_brand != "TOTO") cp.test =
na.omit(cp.test)
cp.test$pred.price = predict(model.gbm, cp.test)

ggplot(cp.test, aes(x=pred.price, y=price)) +
geom_point(size=3) + ggtitle("Mobile Phone Price by Predicted
Price") + theme(axis.text.x=element_text(size=14, vjust=0.5),
axis.text.y=element_text(size=14),
axis.title.x=element_text(size=15),
axis.title.y=element_text(size=15),
plot.title=element_text(size=17)) +
scale_y_continuous(labels=dollar, name="Price (USD?)") +
scale_x_continuous("Predicted Price", labels=dollar) +
geom_abline(intercept=0, slope=1, colour="yellow") +
stat smooth(se=FALSE)
```


Mobile Phone Price by Storage Capacity

RESULT

Importance of each feature in the dataset
 gbm variable importance

only 20 most important variables shown (out of 41)

	Overall
att storage	100.0000
att_battery_mah	59.7597
att_weight	46.5410
att_ram	27.5871
att_osiOS	26.9977
att screen size	21.1106
att sd card	20.1130
att brandSamsung	9.1220

Question 2

Problem 6

Generate a Node Edge Diagram (directed) for the data given in the table below. The attributes: Relationship, Age and Lives in should be displayed when there is a mouse click on each node. Use different shapes to differentiate gender. Also use similar node colors for the same places in which persons are living.

Source	Destination	Relationship	Age	Lives in
A	В	Daughter	75	Coimbatore
A	С	Son	78	Tiruppur
В	D	Son	55	Madurai
В	E	Son	52	Madurai
С	C1	Daughter	56	Shankarankovil
С	C2	Daughter	50	Coimbatore
D	D1	Daughter	25	Coimbatore
D	D2	Daughter	18	Madurai
E	E1	Daughter	20	Tiruppur
E	E2	Son	23	Nagarkovil
D1	F	Son	2	Thiruvarur

CODE and OUTPUT

links = data.frame(from = data\$Source, to = data\$Destination,
label = data\$Relationship) visNetwork(nodes, links) %>%
visEdges(arrows = 'to')

EXPERIMENT - 2 !11