2° Práctica califica MN217

Josue Huaroto Villavicencio

Código: 20174070I Sección: B

1. (4 puntos) Un tubo de 150 mm se ramifica en dos ramales, uno de 100 mm y otro de 50 mm, como se aprecia en la figura. Ambos tubos son de cobre y miden 30 m de longitud. El fluido es de DR = 0.823; viscosidad cinemática $\nu = 1.99 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{s}$. Determine, ¿cuál debe de ser el coeficiente de Resistencia K de la válvula, con el fin de obtener el mismo flujo volumétrico de 550 L/min en cada ramal?

Solución:

De la condición del problema de $\dot{\forall}_1 = \dot{\forall}_2 = 550 \, \text{L/min}$; por la ecuación de continuidad, el flujo en la tubería de 150 mm debe ser $\dot{\forall}_1 + \dot{\forall}_2 = 1100 \, \text{L/min} = \dot{\forall}$. De los datos del fluido:

- $\bullet \ \rho = 0.823\,\mathrm{kg/m^3}$
- $\nu = 1.99 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{s}$

Suponemos que los tubos utilizados son de cobre tipo K. Tomando como valores los de la tabla muy aproximados a los del problema:

$D_i = 100 \mathrm{mm}$	$D_i = 50 \mathrm{mm}$
$D_e \approx 104.8 \mathrm{mm}$	$D_e \approx 53.98 \mathrm{mm}$
$e \approx 0.0015 \mathrm{mm}$	$e \approx 0.0015 \mathrm{mm}$
$A_f \approx 7.538 \cdot 10^{-3} \mathrm{m}^2$	$A_f \approx 1.945 \cdot 10^{-3} \mathrm{m}^2$
$L = 30 \mathrm{m}$	$L = 30 \mathrm{m}$

Teniendo el caudal que pasa por cada tubo, podemos hallar las velocidades en cada uno de ellos:

$$v_1 = 1.216 \,\mathrm{m/s}$$
 $v_2 = 4.7129 \,\mathrm{m/s}$

Y también el número de Reynolds para cada uno:

$$Re_1 = 58650.084$$
 $Re_2 = 117300.17$

Llegamos a la conclusión de que ambos son turbulentos.

Calculando las pérdidas:

Tubería de 100 mm:

$$h_f + h_s = f \frac{L}{D} \frac{v^2}{2g} + \lambda \frac{v^2}{2g} + K \frac{v^2}{2g}$$

De la ecuación de Colebrook:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right) \longrightarrow f = 0.02022$$

Pérdidas primarias = $0.02022 \cdot \frac{30\,\mathrm{m}}{100\,\mathrm{mm}} \cdot \frac{(1.1216\mathrm{m/s})^2}{2\cdot 9.81\mathrm{m/s}^2} = 0.3889\,\mathrm{m}$. Considerando que los codos son atornillados, según "Pipe Friction Manual"; el λ de los codos es de aproximadamente 0.63.

Pérdidas secundarias = $0.63 \cdot \frac{(1.1216 \text{m/s})^2}{2.9.81 \text{m/s}^2} = 0.04039 \,\text{m} \cdot 2 = 0.080789 \,\text{m}$

Pérdida de la válvula = $K \cdot \frac{(1.1216 \text{m/s})^2}{2\cdot 9.81 \text{m/s}^2} = 0.06412 K \text{ m}$

Pérdidas totales = 0.469689 + 0.06412K

Tubería de 50 mm:

$$h_f + h_s = f \frac{L}{D} \frac{v^2}{2g} + \lambda \frac{v^2}{2g}$$

De la ecuación de Colebrook:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right) \longrightarrow f = 0.01758$$

Pérdidas primarias = $0.01758 \cdot \frac{30 \, \text{m}}{50 \, \text{mm}} \cdot \frac{(4.7129 \, \text{m/s})^2}{2 \cdot 9.81 \, \text{m/s}^2} = 11.941189 \, \text{m}.$

Pérdidas secundarias = $0.63 \cdot \frac{(4.7129 \text{m/s})^2}{2 \cdot 9.81 \text{m/s}^2} = 0.713211 \text{ m} \cdot 2 = 1.426422 \text{ m}$

Pérdidas totales = $46.53912 \,\mathrm{m}$

En las tuberías en paralelo la pérdida debe mantenerse constante:

$$13.367611 = 0.469689 + 0.06412K \longrightarrow \boxed{K = 201.15287}$$

Si usamos longitud equivalente en vez de lambda:

$$13.1353 = 0.466687 + 0.06412K \longrightarrow \boxed{K = 197.57674}$$

2. (4 puntos) En la coraza de la figura fluye agua a 10° C a razón de $850\,\mathrm{L/min}$. La coraza está hecha de tubo de cobre de 2 pulgadas, tipo K, y los tubos también son de cobre de 3/8 pulg, tipo K. La longitud del intercambiador es de $10.80\,\mathrm{m}$.

(a) Calcule el número de Reynolds para el flujo en la coraza. Hallando el caudal:

$$\forall = 850 \, L/min = 0.01417 \, m^3/s$$

El área a utilizar sería el área de la coraza restada de los 4 canales:

$$A = 1.945 \cdot 10^{-3} - 4 \times 1.267 \cdot 10^{-4} \,\mathrm{m}^2 = 1.4382 \cdot 10^{-3} \,\mathrm{m}^2$$

Mientras que el perímetro sería igual a $\pi \cdot D_{\text{cor}} + 4 \times \pi D_{\text{canal}} = 0.3155$ m.

$$D_H = 4\frac{A}{p} = 18.2315 \,\mathrm{mm}$$

De la expresión del caudal, hallamos la velocidad v:

$$v = \frac{Q}{A} = 9.8526 \,\mathrm{m/s}$$

Con estos valores ya hallados se puede hallar el número de Reynolds:

$$Re = \frac{v D_H}{\nu} = \boxed{138175.61 = Re}$$

(b) Determine la potencia del motor eléctrico ($\eta_m = 98\%$) que accione a la bomba ($\eta_B = 83\%$). Para determinar las pérdidas, primero hallamos el valor de f que se obtiene por la ecuación de Colebrook:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$

Del problema 3, ya se desarrolló una implementación en Python para hallar el valor de f mediante binary search:

$$f = 0.017353858338478363$$

Con los valores, se puede hallar la pérdida primaria:

$$h = f \frac{L}{D_H} \frac{v^2}{2g} = 0.01735386 \cdot \frac{10.8}{0.0182315} \frac{9.8526^2}{2 \cdot 9.81} = 50.8588 \,\mathrm{m}$$

Considerando que el intercambiador es horizontal:

$$P_H = 9.81 \cdot 0.01417 \cdot 50.8588 = 7.0698 \,\text{kW} \longrightarrow \boxed{P_B = \frac{7.0698}{0.98 \times 0.83} = 8.6917 \,\text{kW}}$$

Si consideramos que el **intercambiador es vertical**:

$$P_H = 9.81 \cdot 0.01417 \cdot (50.8588 + 10.8) = 8.571 \,\text{kW} \longrightarrow \boxed{P_B = 10.5373 \,\text{kW}}$$

(c) Determine el costo de la energía eléctrica anual del equipo impulso, si funciona un promedio de $9\,h/d$ ía, durante todo el año. El costo de la energía es de \$0.485/kW-h. Si el **intercambiador es vertical**:

Costo anual =
$$10.5373 \, \text{kW} \times 3265 \, \text{h/año} \times 0.485 \, \text{s/kWh} = \text{U$D} \, 16788.29$$

Si el intercambiador es horizontal:

Costo anual =
$$8.6917 \, \text{kW} \times 3265 \, \text{h/año} \times 0.485 \, \text{kWh} = \text{U$D} \, 13847.83$$

- 3. (4 puntos) Considere el P1, donde la válvula tiene un valor de L/D = 240; elabore:
 - (a) El Diagrama de Flujo para determinar los caudales en los ramales 1 y 2.

Figura 1: Código del problema 3 implementado en Python

(b) El gráfico de Q_T vs Q_1, Q_2 . Para Q_T =500 L/min, 550, 600, 650, 700 y 750 L/min. Obteniendo los siguientes datos:

$Q_t (L/s)$	$Q_1 (L/s)$	$Q_2 (\mathrm{L/s})$	$v_1 (\mathrm{m/s})$	$v_2 \; (\mathrm{m/s})$
500	400.2587544	99.7412456	0.88498	0.85468077
550	441.4885992	108.5114008	0.97614	0.929832055
600	482.639295	117.360705	1.067125	1.005661568
650	523.7221488	126.2778512	1.15796	1.082072418
700	564.7484676	135.2515324	1.24867	1.15896771551
750	605.7295584	144.2704416	1.33928	1.23625057

Graficamos los valores de Q_t vs Q_1 y Q_t vs Q_2

Figura 2: Q_t vs Q_1

Figura 3: Q_t vs Q_2

Si consideramos en los codos una perdida de longitud equivalente = 30:

Y los valores son:

$Q_t (L/s)$	$Q_1 (L/s)$	$Q_2~({ m L/s})$
500	400.8964692	99.10353
550	442.194156	107.805844
600	483.4104324	116.5895676
650	524.565651	125.434349
700	565.6688574	134.3311426
750	606.7268358	143.2731642

Los valores obtenidos se ajustan a los datos presentados antes. Sin embargo, la gráfica es un tanto peculiar que se mantenga lineal; para corroborar los resultados se procedió a probar con 100 valores distintos de caudal para graficar los respectivos Q_t vs Q_1 y Q_t vs Q_2 :

Se probó con un caudal de Q_t desde 50 hasta 5500 L/min. Se observa una pequeña desviación de los datos para valores muy pequeños, siendo que esto se deba a que el fluido se vuelve de régimen laminar al tener un caudal muy bajo.

También se tomó valores para λ distinto en los codos. Se observa en el gráfico que, manteniendo el caudal Q_t constante, los valores de Q_1, Q_2 se distribuyen de manera lineal respecto a λ . Este comportamiento se observa para todos los valores de Q_t como se detalla en la imagen:

4. (4 puntos) Considere el flujo de aire a 15° C sobre la placa pana delgada, lisa y de ancho b, que se muestra en la figura.

El flujo sobre el lado inferior de la placa es turbulento sobre toda la placa, y el flujo sobre el lado superior es laminar en la parte frontal y después se hace turbulento. Compare la resistencia por unidad de ancho sobre la pared superior con el de la mitad inferior. La velocidad de corriente libre es de $10\,\mathrm{m/s}$; considere las longitudes $X_{\rm crit}$ y $L=2X_{\rm crit}$.

A temperatura de 15°C.

$$\nu = 1.46 \cdot 10^{(} - 5)m^2/s$$

Para el número de Reynolds:

$$Re = \frac{10 \cdot (2X_{crit})}{1.46 \cdot 10^{-5}} = 1369863.014 \cdot X_{crit}$$

El flujo es turbulento; hallamos el valor de X_{crit} para el cual aún se mantiene laminar:

$$X_{crit} = 0.73 \,\mathrm{m}$$

El espesor en la capa límite:

$$\delta_c = \frac{(5.20 \times X_{crit})}{\sqrt{(\text{Re}_{crit})}} = \frac{5.2 \cdot 0.73}{\sqrt{500000}} = 5.3683 \,\text{mm}$$

La resistencia superficial es igual a la resistencia producida en la zona de laminar y la resistencia en la zona turbulenta.

La resistencia laminar por unidad de ancho en la cara superior.

$$R_L = \frac{C_D \cdot \rho \cdot A \cdot v^2}{2} = \frac{1.328}{\sqrt{500000}} \cdot 1.225 \cdot 0.73 \cdot \frac{10^2}{2} = 0.08397 \,\text{kg/m}$$

Mientras que la resistencia turbulenta por unidad de ancho.

$$R_T = \frac{0.074}{1000000^{0.2}} \cdot 1.225 \cdot 1.46 \cdot \frac{10^2}{2} = 0.4175 \,\mathrm{kg/m}$$

La resistencia turbulenta ficticia por unidad de ancho hasta el X_{crit} .

$$R_{\text{Ficticia}} = \frac{0.074}{500000^{0.2}} \cdot 1.225 \cdot 0.73 \cdot \frac{10^2}{2} = 0.2398 \,\text{kg/m}$$

Resistencia por unidad de ancho en la cara superior:

$$R_S = \frac{0.08397}{0.4175 - 0.2398} = 0.26167 \,\mathrm{kg/m}$$

La resistencia turbulenta por unidad de ancho para la cara inferior:

$$R_I = \frac{0.074}{999999.9998^{0.2}} \cdot 1.225 \cdot 0.73 \cdot \frac{10^2}{2} = 0.2087 \,\mathrm{kg/m}$$

Comparamos las resistencias de la cara superior y la cara inferior; observamos que hay mayor oposición en la cara superior que en la inferior; esto debido a que se desarrolla un flujo turbulento.

$$R_S/R_I = 1.2538$$

$$R_S = 1.2536 R_I$$

5. (4 puntos) Determine la resistencia superficial total de un tren de pasajeros que viaja a 50 mph. El tren mide 600 pies de longitud y tiene un área de sección transversal cuadrada de 100 pies². Sugerencia: Considere que el tren tiene superficies lisa sin interrupciones e ignore el lado del fondo. Suponiendo que el fluido sobre el que se trabaja es aire a temperatura ambiente:

$$\nu = 1.51 \cdot 10^{-5}$$

Entonces, el número de Reynolds sería:

$$Re = \frac{v \cdot L}{v} = 2.707 \cdot 10^8$$

El flujo será turbulento, hallamos el valor de x para el cual aún se mantiene como laminar:

$$Re = \frac{v \cdot x}{\nu} = 5 \cdot 10^5 \longrightarrow x = 0.3378 \,\mathrm{m}$$

Ahora podemos hallar los valores de C_{Af} para la parte laminar y turbulenta:

$$C_{Afl} = \frac{1.328}{\sqrt{Re}} = 1.878 \cdot 10^{-3}$$
 $C_{Afl} = \frac{0.074}{\sqrt[5]{Re}} = 5.363 \cdot 10^{-3}$ $C_{Aft} = \frac{3.913}{(\ln Re)^{2.58}} = 1.858 \cdot 10^{-3}$

Con los valores obtenidos se puede hallar la fuerza F:

$$F = \frac{\rho}{2} u_{\infty}^2 \cdot b \cdot (C_{Afl} \cdot x + C_{Afl} \cdot L - C_{Aft} \cdot x) = 310.42 \,\mathrm{N}$$

Siendo la resistencia total, 3 veces el F hallado por estar sometido al fluido en 3 direcciones, x, y, z:

$$F_T = 931.258 \,\mathrm{N}$$