

# ETC3550: Applied forecasting for business and economics

Ch5. Regression models

OTexts.org/fpp2/

#### **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

## Multiple regression and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \cdots + \beta_k x_{k,t} + e_t.$$

- $y_t$  is the variable we want to predict: the "response" variable
- Each  $x_{j,t}$  is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
- The coefficients  $\beta_1, \ldots, \beta_k$  measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the **marginal effects**.

 $\mathbf{e}_t$  is a white noise error term

```
autoplot(uschange[,c("Consumption","Income")]) +
  ylab("% change") + xlab("Year")
   2.5 -
% change
                                                               series
                                                                 Consumption
                                                                 Income
   -2.5 -
```



```
tslm(Consumption ~ Income, data=uschange) %>% summary
##
## Call:
## tslm(formula = Consumption ~ Income, data = uschange)
##
## Residuals:
## Min 10 Median 30
                                         Max
## -2.40845 -0.31816 0.02558 0.29978 1.45157
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54510 0.05569 9.789 < 2e-16 ***
## Income 0.28060 0.04744 5.915 1.58e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6026 on 185 degrees of freedom
## Multiple R-squared: 0.159, Adjusted R-squared: 0.1545
## F-statistic: 34.98 on 1 and 185 DF, p-value: 1.577e-08
```





```
fit.consMR <- tslm(Consumption ~
 Income + Production + Unemployment + Savings, data=uschange)
summary(fit.consMR)
##
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
      Savings, data = uschange)
##
## Residuals:
       Min 10 Median
                                 30
                                         Max
##
## -0.88296 -0.17638 -0.03679 0.15251 1.20553
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.26729 0.03721 7.184 1.68e-11 ***
## Income 0.71449 0.04219 16.934 < 2e-16 ***
## Production 0.04589 0.02588 1.773 0.0778 .
## Unemployment -0.20477 0.10550 -1.941 0.0538 .
## Savings -0.04527 0.00278 -16.287 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3286 on 182 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7486
## F-statistic: 139.5 on 4 and 182 DF, p-value: < 2.2e-16
```







#### **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

#### **Trend**

#### Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

# **Dummy variables**

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a \*\*dummy variable\*\*.

|    | A   | D  |
|----|-----|----|
| 1  | Yes | 1  |
| 2  | Yes | 1  |
| 3  | No  | 0  |
| 4  | Yes | 1  |
| 5  | No  | 0  |
| 6  | No  | 0  |
| 7  | Yes | 1  |
| 8  | Yes | 1  |
| 9  | No  | 0  |
| 10 | No  | 0  |
| 11 | No  | 0  |
| 12 | No  | 0  |
| 13 | Yes | 1  |
| 14 | No  | 0  |
|    |     | 15 |

## **Dummy variables**

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

|   |    |           | _ | _ |   |   |
|---|----|-----------|---|---|---|---|
|   |    | A         | В | С | D | E |
|   | 1  | Monday    | 1 | 0 | 0 | 0 |
|   | 2  | Tuesday   | 0 | 1 | 0 | 0 |
|   | 3  | Wednesday | 0 | 0 | 1 | 0 |
|   | 4  | Thursday  | 0 | 0 | 0 | 1 |
|   | 5  | Friday    | 0 | 0 | 0 | 0 |
|   | 6  | Monday    | 1 | 0 | 0 | 0 |
|   | 7  | Tuesday   | 0 | 1 | 0 | 0 |
| : | 8  | Wednesday | 0 | 0 | 1 | 0 |
|   | 9  | Thursday  | 0 | 0 | 0 | 1 |
|   | 10 | Friday    | 0 | 0 | 0 | 0 |
|   | 11 | Monday    | 1 | 0 | 0 | 0 |
|   | 12 | Tuesday   | 0 | 1 | 0 | 0 |
|   | 13 | Wednesday | 0 | 0 | 1 | 0 |
|   | 14 | Thursday  | 0 | 0 | 0 | 1 |
|   | 15 | Friday    | 0 | 0 | 0 | 0 |

# Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

#### **Uses of dummy variables**

#### **Seasonal dummies**

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

#### **Uses of dummy variables**

#### Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

#### **Outliers**

If there is an outlier, you can use a dummy variable (taking value 1 for that observation and 0 elsewhere) to remove its effect.

#### **Uses of dummy variables**

#### Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

#### **Outliers**

If there is an outlier, you can use a dummy variable (taking value 1 for that observation and 0 elsewhere) to remove its effect.

#### **Public holidays**

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.



#### **Regression model**

$$y_t = \beta_0 + \beta_1 t + \beta_2 d_{1,t} + \beta_3 d_{2,t} + \beta_4 d_{3,t} + e_t$$

 $d_{i,t} = 1$  if t is quarter i and 0 otherwise.

```
fit.beer <- tslm(beer ~ trend + season)
summary(fit.beer)
##
## Call:
## tslm(formula = beer ~ trend + season)
##
## Residuals:
      Min 10 Median 30
##
                                   Max
## -42.903 -7.599 -0.459 7.991 21.789
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 441.80044 3.73353 118.333 < 2e-16 ***
## trend -0.34027 0.06657 -5.111 2.73e-06 ***
## season2 -34.65973 3.96832 -8.734 9.10e-13 ***
## season3 -17.82164 4.02249 -4.430 3.45e-05 ***
## season4 72.79641 4.02305 18.095 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
```









#### **Fourier series**

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + e_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

#### Harmonic regression: beer production

```
fourier.beer <- tslm(beer ~ trend + fourier(beer, K=2))</pre>
summary(fourier.beer)
##
## Call:
## tslm(formula = beer ~ trend + fourier(beer, K = 2))
##
## Residuals:
##
      Min 10 Median 30
                                     Max
## -42.903 -7.599 -0.459 7.991 21.789
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          446.87920 2.87321 155.533 < 2e-16 ***
## trend
                          -0.34027 0.06657 -5.111 2.73e-06 ***
## fourier(beer, K = 2)S1-4 8.91082 2.01125 4.430 3.45e-05 ***
## fourier(beer, K = 2)C1-4 53.72807 2.01125 26.714 < 2e-16 ***
## fourier(beer, K = 2)C2-4 13.98958 1.42256 9.834 9.26e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
```

#### **Intervention variables**

#### **Spikes**

Equivalent to a dummy variable for handling an outlier.

#### **Intervention variables**

#### **Spikes**

Equivalent to a dummy variable for handling an outlier.

#### **Steps**

Variable takes value 0 before the intervention and 1 afterwards.

#### Intervention variables

#### **Spikes**

Equivalent to a dummy variable for handling an outlier.

#### **Steps**

Variable takes value 0 before the intervention and 1 afterwards.

#### Change of slope

■ Variables take values 0 before the intervention and values  $\{1, 2, 3, ...\}$  afterwards.

# **Holidays**

#### For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable  $v_t = 1$  if any part of Easter is in that month,  $v_t = 0$  otherwise.
- Ramadan and Chinese new year similar.

# **Trading days**

With monthly data, if the observations vary depending on how many different types of days in the month, then trading day predictors can be useful.

```
z<sub>1</sub> = # Mondays in month;
z<sub>2</sub> = # Tuesdays in month;
:
z<sub>7</sub> = # Sundays in month.
```

# **Distributed lags**

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

#### **Nonlinear trend**

## Piecewise linear, trend with bend at au

$$\mathbf{x}_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

#### **Nonlinear trend**

Piecewise linear, trend with bend at au

$$\mathbf{x}_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

#### Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

#### **Nonlinear trend**

### Piecewise linear, trend with bend at au

$$\mathbf{x}_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

#### Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

**NOT RECOMMENDED!** 







```
# Linear trend
fit.lin <- tslm(marathon ~ trend)</pre>
fcasts.lin <- forecast(fit.lin, h=10)</pre>
# Exponential trend
fit.exp <- tslm(marathon ~ trend, lambda = 0)</pre>
fcasts.exp <- forecast(fit.exp, h=10)
# Piecewise linear trend
t.break1 <- 1940
t.break2 <- 1980
t <- time(marathon)
t1 <- ts(pmax(0, t-t.break1), start=1897)
t2 <- ts(pmax(0, t-t.break2), start=1897)
fit.pw <- tslm(marathon ~ t + t1 + t2)
t.new \leftarrow t[length(t)] + seq(10)
t1.new \leftarrow t1[length(t1)] + seq(10)
t2.new \leftarrow t2[length(t2)] + seq(10)
newdata <- cbind(t=t.new, t1=t1.new, t2=t2.new) %>%
  as.data.frame
fcasts.pw <- forecast(fit.pw, newdata = newdata)</pre>
```



##



၁၀







A spline is a continuous function f(x) interpolating all points  $(\kappa_j, y_j)$  for j = 1, ..., K and consisting of polynomials between each consecutive pair of 'knots'  $\kappa_j$  and  $\kappa_{j+1}$ .

A spline is a continuous function f(x) interpolating all points  $(\kappa_j, y_j)$  for j = 1, ..., K and consisting of polynomials between each consecutive pair of 'knots'  $\kappa_j$  and  $\kappa_{j+1}$ .

- Parameters constrained so that f(x) is continuous.
- Further constraints imposed to give continuous derivatives.

## **General linear regression splines**

- Let  $\kappa_1 < \kappa_2 < \cdots < \kappa_K$  be "knots" in interval (a, b).
- Let  $x_1 = x$ ,  $x_j = (x \kappa_{j-1})_+$  for j = 2, ..., K + 1.
- Then the regression is piecewise linear with bends at the knots.

## **General cubic splines**

- Let  $x_1 = x$ ,  $x_2 = x^2$ ,  $x_3 = x^3$ ,  $x_j = (x \kappa_{j-3})_+^3$  for  $j = 4, \dots, K+3$ .
- Then the regression is piecewise cubic, but smooth at the knots.
- Choice of knots can be difficult and arbitrary.
- Automatic knot selection algorithms very slow.

```
# Spline trend
library(splines)
t <- time(marathon)
fit.splines <- lm(marathon ~ ns(t, df=6))
summarv(fit.splines)
##
## Call:
## lm(formula = marathon ~ ns(t, df = 6))
##
## Residuals:
                10 Median
       Min
                                 30
##
                                         Max
## -13.0028 -2.5722 0.0122 2.1242 21.5681
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 168.447 2.086 80.743 < 2e-16 ***
## ns(t, df = 6)1 -6.948 2.688 -2.584
                                              0.011 *
## ns(t, df = 6)2 -28.856 3.416 -8.448 1.16e-13 ***
## ns(t, df = 6)3 -35.081 3.045 -11.522 < 2e-16 ***
## ns(t, df = 6)4 -32.563 2.652 -12.279 < 2e-16 ***
## ns(t, df = 6)5 -64.847 5.322 -12.184 < 2e-16 ***
## ns(t, df = 6)6 -21.002
                         2.403 -8.741 2.46e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.834 on 113 degrees of freedom
## Multiple R-squared: 0.8418, Adjusted R-squared: 0.8334
## F-statistic: 100.2 on 6 and 113 DF. p-value: < 2.2e-16
```



### splinef

A slightly different type of spline is provided by splinef

```
fc <- splinef(marathon)
autoplot(fc)</pre>
```



## splinef

- Cubic smoothing splines (rather than cubic regression splines).
- Still piecewise cubic, but with many more knots (one at each observation).
- Coefficients constrained to prevent the curve becoming too "wiggly".
- Degrees of freedom selected automatically.
- Equivalent to ARIMA(0,2,2) and Holt's method.

#### **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

## Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- $\blacksquare$   $e_t$  are uncorrelated and zero mean
- $\bullet$   $e_t$  are uncorrelated with each  $x_{j,t}$ .

#### Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- e<sub>t</sub> are uncorrelated and zero mean
- $\blacksquare$   $e_t$  are uncorrelated with each  $x_{j,t}$ .

It is **useful** to also have  $e_t \sim N(0, \sigma^2)$  when producing prediction intervals or doing statistical tests.

#### **Residual plots**

Useful for spotting outliers and whether the linear model was appropriate.

- Scatterplot of residuals  $e_t$  against each predictor  $x_{j,t}$ .
- Scatterplot residuals against the fitted values  $\hat{y}_t$
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

#### Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor not in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

## **Breusch-Godfrey test**

#### **OLS regression:**

$$y_t = \beta_0 + \beta_1 x_{t,1} + \cdots + \beta_k x_{t,k} + u_t$$

#### **Auxiliary regression:**

$$\hat{u}_t = \beta_0 + \beta_1 x_{t,1} + \dots + \beta_k x_{t,k} + \rho_1 \hat{u}_{t-1} + \dots + \rho_p \hat{u}_{t-p} + \varepsilon_t$$

If  $R^2$  statistic is calculated for this model, then

$$(T-p)R^2 \sim \chi_p^2$$

when there is no serial correlation up to lag p, and T = length of series.

Ljung-Box test not recommended for regression models.

#### Beer production again

```
##
## Breusch-Godfrey test for serial correlation of order up to 8
##
## data: Residuals from Linear regression model
## LM test = 9.3083, df = 8, p-value = 0.317
```

#### If the model fails the Breusch-Godfrey test ...

- The forecasts are not wrong, but have higher variance than they need to.
- There is information in the residuals that we should exploit.
- This is done with a regression model with ARMA errors which will be covered in week 12.

## **US consumption again**

```
##
## Breusch-Godfrey test for serial correlation of order up to 8
##
## data: Residuals from Linear regression model
## LM test = 14.874, df = 8, p-value = 0.06163
```

#### **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

#### **Selecting predictors**

- When there are many predictors, how should we choose which ones to use?
- We need a way of comparing two competing models.

## **Selecting predictors**

- When there are many predictors, how should we choose which ones to use?
- We need a way of comparing two competing models.

#### What not to do!

- Plot y against a particular predictor  $(x_j)$  and if it shows no noticeable relationship, drop it.
- Do a multiple linear regression on all the predictors and disregard all variables whose p values are greater than 0.05.
- $\blacksquare$  Maximize  $R^2$  or minimize MSE

Computer output for regression will always give the  $R^2$  value. This is a useful summary of the model.

- It is equal to the square of the correlation between y and  $\hat{y}$ .
- It is often called the "coefficient of determination".
- It can also be calculated as follows:

$$R^{2} = \frac{\sum (\hat{y}_{t} - \bar{y})^{2}}{\sum (y_{t} - \bar{y})^{2}}$$

 It is the proportion of variance accounted for (explained) by the predictors.

#### However ...

- $\blacksquare$   $R^2$  does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of  $R^2$ , even if that variable is irrelevant.

#### However ...

- $\blacksquare$   $R^2$  does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of  $R^2$ , even if that variable is irrelevant.

To overcome this problem, we can use adjusted  $R^2$ :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

#### However ...

- $\blacksquare$   $R^2$  does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of  $R^2$ , even if that variable is irrelevant.

To overcome this problem, we can use adjusted  $R^2$ :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

## Maximizing $\bar{R}^2$ is equivalent to minimizing $\hat{\sigma}^2$ .

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} \sum_{t=1}^{T} e_t^2$$

#### **Cross-validation**

#### **Cross-validation for regression**

(Assuming future predictors are known)

- Select one observation for test set, and use remaining observations in training set. Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.

#### **Cross-validation**

#### **Traditional evaluation**



#### **Traditional evaluation**



## Leave-one-out cross-validation



Leave-one-out cross-validation for regression can be carried out using the following steps.

- Remove observation t from the data set, and fit the model using the remaining data. Then compute the error  $(e_t^* = y_t \hat{y}_t)$  for the omitted observation.
- Repeat step 1 for t = 1, ..., T.
- Compute the MSE from  $\{e_1^*, \dots, e_T^*\}$ . We shall call this the CV.

The best model is the one with minimum CV.

#### Five-fold cross-validation



#### Five-fold cross-validation



#### Ten-fold cross-validation



#### Ten-fold cross-validation

- Randomly split data into 10 parts.
- Select one part for test set, and use remaining parts as training set. Compute accuracy measures on test observations.
- Repeat for each of 10 parts
- Average over all measures.

### **Akaike's Information Criterion**

$$AIC = -2 \log(L) + 2(k + 1)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

### **Akaike's Information Criterion**

$$AIC = -2 \log(L) + 2(k + 1)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- This is a penalized likelihood approach.
- Minimizing the AIC gives the best model for prediction.
- AIC penalizes terms more heavily than  $\bar{R}^2$ .
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation.

### **Corrected AIC**

For small values of *T*, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$AIC_C = AIC + \frac{2(k+2)(k+3)}{T-k-1}$$

As with the AIC, the AIC<sub>C</sub> should be minimized.

## **Bayesian Information Criterion**

$$BIC = -2\log(L) + (k+1)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

## **Bayesian Information Criterion**

$$BIC = -2\log(L) + (k+1)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when

$$v = T[1 - 1/(log(T) - 1)].$$

#### **Best subsets regression**

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

### **Best subsets regression**

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

#### Warning!

- If there are a large number of predictors, this is not possible.
- For example, 44 predictors leads to 18 trillion possible models!

### **Backwards stepwise regression**

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

### **Backwards stepwise regression**

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

#### **Notes**

- Stepwise regression is not guaranteed to lead to the best possible model.
- Inference on coefficients of final model will be wrong.

## **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

## **Ex-ante versus ex-post forecasts**

- Ex ante forecasts are made using only information available in advance.
  - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
  - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

## Scenario based forecasting

- Assumes possible scenarios for the predictor variables
- Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

# Building a predictive regression model

If getting forecasts of predictors is difficult, you can use lagged predictors instead.

$$y_t = \beta_0 + \beta_1 x_{1,t-h} + \cdots + \beta_k x_{k,t-h} + \varepsilon_t$$

A different model for each forecast horizon h.

## **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \cdots + \beta_k x_{k,t} + e_t.$$

$$y_{t} = \beta_{0} + \beta_{1}x_{1,t} + \beta_{2}x_{2,t} + \dots + \beta_{k}x_{k,t} + e_{t}.$$
Let  $\mathbf{y} = (y_{1}, \dots, y_{T})', \mathbf{e} = (e_{1}, \dots, e_{T})',$ 

$$\boldsymbol{\beta} = (\beta_{0}, \beta_{1}, \dots, \beta_{k})' \text{ and}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

$$y_{t} = \beta_{0} + \beta_{1}x_{1,t} + \beta_{2}x_{2,t} + \dots + \beta_{k}x_{k,t} + e_{t}.$$
Let  $\mathbf{y} = (y_{1}, \dots, y_{T})', \mathbf{e} = (e_{1}, \dots, e_{T})',$ 

$$\boldsymbol{\beta} = (\beta_{0}, \beta_{1}, \dots, \beta_{k})' \text{ and}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

Then

$$y = X\beta + e$$
.

#### Least squares estimation

Minimize:  $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ 

### **Least squares estimation**

Minimize:  $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ 

Differentiate wrt  $\beta$  gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

#### **Least squares estimation**

Minimize:  $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ 

Differentiate wrt  $\beta$  gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

#### Least squares estimation

Minimize:  $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$ 

Differentiate wrt  $\beta$  gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} (\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})$$

**Note:** If you fall for the dummy variable trap, (X'X) is a singular matrix.

If the errors are iid and normally distributed, then  $\mathbf{y} \sim \mathrm{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$ 

If the errors are iid and normally distributed, then  $\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$ 

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

If the errors are iid and normally distributed, then  $\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$ 

So the likelihood is

$$L = \frac{1}{\sigma^{T} (2\pi)^{T/2}} \exp \left( -\frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right)$$

which is maximized when  $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$  is minimized.

If the errors are iid and normally distributed, then  $\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$ 

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when  $(y - X\beta)'(y - X\beta)$  is minimized.

#### **Optimal forecasts**

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where  $\mathbf{x}^*$  is a row vector containing the values of the regressors for the forecasts (in the same format as  $\mathbf{X}$ ).

#### **Optimal forecasts**

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where  $\mathbf{x}^*$  is a row vector containing the values of the regressors for the forecasts (in the same format as  $\mathbf{X}$ ).

#### **Forecast variance**

Var(y\*|X,x\*) = 
$$\sigma^2 \left[ 1 + x^* (X'X)^{-1} (x^*)' \right]$$

#### **Optimal forecasts**

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where  $\mathbf{x}^*$  is a row vector containing the values of the regressors for the forecasts (in the same format as  $\mathbf{X}$ ).

#### **Forecast variance**

$$Var(y^*|X, x^*) = \sigma^2 [1 + x^*(X'X)^{-1}(x^*)']$$

- This ignores any errors in  $\mathbf{x}^*$ .
- 95% prediction intervals assuming normal errors:

$$\hat{y}^* \pm 1.96 \sqrt{\text{Var}(y^*|X,x^*)}$$
.

#### **Fitted values**

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

where  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$  is the "hat matrix".

#### **Fitted values**

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

where  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$  is the "hat matrix".

#### Leave-one-out residuals

Let  $h_1, \ldots, h_T$  be the diagonal values of H, then the cross-validation statistic is

$$CV = \frac{1}{T} \sum_{t=1}^{T} [e_t/(1-h_t)]^2,$$

where  $e_t$  is the residual obtained from fitting the model to all T observations.

## **Outline**

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- **5** Forecasting with regression
- **6** Matrix formulation
- 7 Correlation, causation and forecasting

### **Correlation is not causation**

- When x is useful for predicting y, it is not necessarily causing y.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

# Multicollinearity

In regression analysis, multicollinearity occurs when:

- Two predictors are highly correlated (i.e., the correlation between them is close to  $\pm 1$ ).
- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

# Multicollinearity

#### If multicollinearity exists...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the p-values to determine significance.
- there is no problem with model predictions provided the regressors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.

## **Outliers and influential observations**

## Things to watch for

- Outliers: observations that produce large residuals.
- Influential observations: removing them would markedly change the coefficients. (Often outliers in the x variable).
- Lurking variable: a predictor not included in the regression but which has an important effect on the response.
- Points should not normally be removed without a good explanation of why they are different.