السلسلة 3: المنثاليات العددية

حدد نهابهُ المنتالبهُ (u_n) في كل حالهُ:

$$u_n = \frac{3}{n^3 \sqrt{n}} \tag{1}$$

$$u_n = n^2 \sqrt{n}$$
 (2)
$$u_n = \frac{3}{n^3 \sqrt{n}}$$
 (1)
$$u_n = \frac{2n - 6}{3n + 4}$$
 (4)
$$u_n = \frac{2}{2n^3 - 5n + 9}$$
 (3)
$$u_n = 5n + \frac{n^3}{n^3 + 8n}$$
 (6)
$$u_n = \frac{n^4 + 3n}{n^2 - 6n + 2}$$
 (5)

$$u_n = 5n + \frac{n^3}{n^3 + 8n}$$
 (6) $u_n = \frac{n^4 + 3n}{n^2 - 6n + 2}$ (5)

$$u_n = \sqrt{n+1} - \sqrt{n} \qquad (2) \qquad u_n = \sqrt{n} - n \qquad (1)$$

نده نظابهٔ المناالبهٔ
$$(u_n)$$
 في کل حالهٔ: $u_n = \sqrt{n+1} - \sqrt{n}$ (2) $u_n = \sqrt{n} - n$ (1) $u_n = \sqrt{5n-6} + \sqrt{n+2}$ (4) $u_n = \frac{2}{n^2+7} - \sqrt{n^2+5}$ (3)

$$u_n = \sqrt[3]{n} - 2\sqrt{n}$$
 (6) $u_n = \frac{n^4}{n^4 + \sqrt{n}}$ (5)

$$u_n = \sqrt[3]{n} - 2\sqrt{n}$$
 (6)
$$u_n = \frac{n^4}{n^4 + \sqrt{n}}$$
 (5)
$$u_n = \frac{n - \sqrt{n}}{\sqrt[3]{n} + 1}$$
 (8)
$$u_n = \frac{\sqrt[4]{n} - \sqrt{n}}{2n}$$
 (7)

ٺمرين ﴿3﴾ ـ

 $(\forall n \in \mathbb{N}^*): v_n = 3 + \frac{(-1)^n}{n}:$ کنگن $(v_n)_{n\geqslant 1}$ کنگن نالبه معرفهٔ ب

$$(\forall n \in \mathbb{N}^*) |v_n - 3| \leqslant \frac{1}{n}$$
 بين أن: (1)

السننئج أن المئنالبن
$$(v_n)_{n\geqslant 1}$$
 منفاربن محددا نهابنها. (2)

 $(\forall n \in \mathbb{N}^*): u_n = 4 + \frac{(-1)^n \cos(n)}{n}$:خبث بخبث $(u_n)_{n\geqslant 1}$

$$|u_n-4|\leqslant rac{1}{n}$$
 بین أن: (1)

 $(u_n)_{n\geqslant 1}$ إستنتج نهابخ (2)

ئەرىن ﴿5﴾

 $(orall n\in \mathbb{N})\,:v_n=rac{\sin(n)}{n+2}:$ لَلُكُن $(v_n)_{n\in \mathbb{N}}$ مئنالبهٔ معرفهٔ ب

$$(\forall n \in \mathbb{N}) \frac{-1}{n+2} \leqslant v_n \leqslant \frac{1}{n+2}$$
 (1) يين أن (1)

 $\lim v_n$ استنج (2)

ٺمرين ﴿6﴾

 $(\forall n \in \mathbb{N}): w_n = 5n + 6\sin(n):$ لَلُن $(w_n)_{n \in \mathbb{N}}$ مثنالبهٔ معرفهٔ ب

- $(\forall n \in \mathbb{N}) \ 5n 6 \leqslant w_n :$ بين أن (1)
 - $\lim_{n\to+\infty} w_n$ (2)

 $(\forall n \in \mathbb{N}) : v_n = 2n + (-1)^n$ کنگن $(v_n)_{n \in \mathbb{N}}$ مئنالبذ معرفهٔ ب

- $(\forall n \in \mathbb{N}) \ n \leqslant v_n :$ يين أن (1)
- استنتج أن (v_n) منباعدة وحدد نهابتها. (2)

ٺمرين ﴿8﴾ ___

 $(\forall n \in \mathbb{N}) : u_n = -7n + \cos(n) - 1 :$ لَيْلُن $(u_n)_{n \in \mathbb{N}}$ لَيْلُن اللهُ مَعْرِفَهُ بِ

- $(\forall n \in \mathbb{N}) \ u_n \leqslant -7n :$ بين أن (1)
 - $\lim_{n\to+\infty}u_n$ إستننج (2)

 \mathbb{N}^* من n الله معرفة الله معرفة (w_n) و (v_n) و (u_n) $w_n = 1 + \frac{1}{n}$ g $v_n = 1 - \frac{1}{n}$ g $u_n = \frac{n + \sin(\sqrt{n})}{n}$

$$(\forall n \in \mathbb{N}^*) \ v_n \leqslant u_n \leqslant w_n$$
 :بین أن (1)

$$(w_n)_{n\geqslant 1}$$
 و $(v_n)_{n\geqslant 1}$ من کل من أحسب نھابة کل من (2)

إسنننج أن المئنالبة
$$(u_n)_{n\geqslant 1}$$
 منفاربة محددا نهابنها. (3)

المرين
$$u_0=1$$
 $(\forall n\in\mathbb{N});\;u_{n+1}=rac{1}{5}(u_n^2+1)$ خورت معرفهٔ بنالبهٔ معرفهٔ ب

$$(\forall n \in \mathbb{N}) \ 0 \leqslant u_n \leqslant 1$$
 (1) دين أن (1)

بن أن المنئالبث
$$(u_n)$$
 ننافصبث و إسننتج أنها منفاربث. (2)

$$\cdot \left\{ egin{array}{ll} u_0=1 \ (orall n\in \mathbb{N}); \ u_{n+1}=rac{1}{2}u_n+1 \end{array}
ight.$$
نگن (u_n) منالبه معرفهٔ ب

$$(\forall n \in \mathbb{N}) \ u_n < 2$$
:بين بالنرجع أن (1)

بین بین با بین المثنالین
$$(u_n)$$
 نزایدین و استنتج اُنها متفارین. (2)

ٺمرين ﴿12﴾

$$v_0=3$$
 $(orall n\in \mathbb{N});\; v_{n+1}=rac{1}{2}\left(v_n+rac{4}{v_n}
ight)$:ب منالبه معرفهٔ ب

$$(v_n)$$
 بين أن المئناليث: (v_n) مصغورة بالعدد (1)

يين أن المنالية
$$(v_n)$$
 ننافصية.

$$(v_n)$$
 بيوره العرد 3) يبكننج أن المنتالية (v_n) منفارية و أنها ملبورة بالعرد 3)

$$\cdot \left\{ egin{array}{ll} v_0=3 \ (orall n\in \mathbb{N}); \ v_{n+1}=\sqrt{v_n+12} \end{array}
ight.$$
 نگلن (v_n) مثنالبهٔ معرفهٔ ب

$$(\forall n \in \mathbb{N}) \ 0 \leqslant v_n \leqslant 4$$
ن أن (1)

أدرس رئابهٔ المئناليهٔ
$$(v_n)$$
 و إستنتج أنها منفاريه. (2)

$$. \left\{ egin{array}{ll} w_0 = rac{2}{3} \ (orall n \in \mathbb{N}); \; w_{n+1} = rac{3w_n + 2}{2w_n + 3} \end{array}
ight.$$
نگن (w_n) منالبذ معرفذ w_n

$$(\forall n \in \mathbb{N}) \ 0 \leqslant w_n \leqslant 1$$
 :بين أن (1)

أدرس رئابهٔ المئنالبهٔ
$$(w_n)$$
 و إسننتج أنها منفاربه. (2)

حدد نهابهٔ المنئالبهٔ (u_n) في کل حالهُ:

$$4\left(\frac{7}{4}\right)^n \qquad (2) \qquad u_n = \frac{3^n}{7} \qquad (1)$$

$$u_{n} = -4\left(\frac{7}{4}\right)^{n} \qquad (2) \qquad u_{n} = \frac{3^{n}}{7^{n}} \qquad (1)$$

$$u_{n} = -2 + \left(\frac{3}{\pi}\right)^{n+1} \qquad (4) \qquad u_{n} = 2\left(-\frac{\sqrt{2}}{2}\right)^{n} \qquad (3)$$

$$u_{n} = \frac{3^{n} - 4^{n}}{3^{n} + 4^{n}} \qquad (6) \qquad u_{n} = 3^{n} - 4^{n} \qquad (5)$$

$$u_{n} = \frac{2^{n} - 5^{n}}{5^{n}} \qquad (8) \qquad u_{n} = \frac{2^{n} + (-1)^{n}}{3^{n}} \qquad (7)$$

$$u_{n} = n^{\frac{2}{3}} - n^{\frac{3}{4}} \qquad (10) \qquad u_{n} = n^{\frac{2}{3}} - n^{-\frac{1}{3}} \qquad (9)$$

$$u_n = \frac{3^n - 4^n}{3^n + 4^n} \tag{6}$$
 $u_n = 3^n - 4^n$

$$u_n = \frac{2^n - 5^n}{5^n}$$
 (8) $u_n = \frac{2^n + (-1)^n}{3^n}$ (7)

$$u_n = n^{\frac{2}{3}} - n^{\frac{3}{4}}$$
 (10) $u_n = n^{\frac{2}{3}} - n^{-\frac{1}{3}}$ (9)

نہرین ﴿16﴾

$$.\left\{egin{array}{ll} w_0=3 \ (orall n\in \mathbb{N}); \ w_{n+1}=w_n(w_n+1) \end{array}
ight.$$
نگلن (w_n) منالبهٔ معرفهٔ ب

$$w_2$$
 و w_1 أحسب (1)

- ببن أن المنتالبذ (w_n) نزابدبد. (2)
- $(\forall n \in \mathbb{N}) \ 2w_n < w_{n+1} :$ (3)
- $(\forall n \in \mathbb{N}) \ 3 \times 2^n < w_n$ إستنتج أن (4)
 - $\lim w_n$ أحسب (5)

نَمرين ﴿17﴾ ______ بونبو 2003

 $f(x) = 4x\sqrt{x} - 3x^2$: المعرفة بالدالة ألما المعرفة المعرفة (1)

$$(u_n)$$
 نعتبر المتنالبة العددبة (u_n) المعرفة (2) $\begin{cases} u_{n+1}=4u_n\sqrt{u_n}-3u_n^2 \ ; \ (n\in\mathbb{N}) \end{cases}$

 $(orall n \in \mathbb{N}): \quad rac{4}{9} \leqslant u_n \leqslant 1$ ن أن .ا

بين أن المئنالين (u_n) نزابدين.

ج. إسننئج أن المنالبة (u_n) منفاربة، ثم أحسب نهابنها.

نمرين ﴿18﴾ ______ بولبوز 2003

 $f(x) = x - 2\sqrt{x} + 2$ أدرس نغبرات الدالة f المعرفة ب (1)

: المعرفة (
$$v_n$$
) نعتبر المثالبة العددية (v_n) نعتبر $v_{n+1}=f(v_n)$; $(n\in\mathbb{N})$:

 $(\forall n \in \mathbb{N}): \quad 1 \leqslant v_n \leqslant 2$ ن بين بالنرجع أن .ا

بين أن المناالبة (v_n) ننافصبة.

ج. إسننئج أن المئنالبة (v_n) منفاربة، ثم أحسب نهابنها.

نَمِينَ ﴿19 ﴾ ______ بونبو 2004

ين على
$$\mathbb{R}_+$$
 جدول نغيرات الدالة g المعرفة ب $g(x)=1-rac{1}{2}x-rac{2}{e^x+1}$

$$w_n$$
 المعرفة (w_n) المعرفة (w_n) المعرفة (w_n) المعرفة ($w_{n+1}=1-rac{2}{e^{w_n}+1}$ $w_0=1$

 $(\forall n \in \mathbb{N}): \quad w_n > 0$ النرجع أن $w_n > 0$.

 $.(orall n\in \mathbb{N}): \quad w_{n+1}\leqslant rac{1}{2}w_n$ نفق من أن ...

ج. ببن أن المئنالبة (w_n) ننافصبة.

$$(w_n)$$
 د. بين أن $w_n\leqslant (rac{1}{2})^n$ نه $w_n\leqslant (rac{1}{2})^n$ د. بين أن

ولبوز 2004 بولبوز
$$u_{n+1} = \frac{u_n^3}{3u_n^2 + 1}$$
 ; $(n \in \mathbb{N})$ نعئبر المئالبة (u_n) المعرفة $u_n = 1$

- $(\forall n \in \mathbb{N}): \quad u_n > 0$ يين أن (1)
- يبن أن المئنالبة (u_n) ننافصبة. (2)
 - ربک. (u_n) استنتح أن (u_n) متفاربک.
- $(\forall n \in \mathbb{N}): \quad u_{n+1} \leqslant \frac{1}{3}u_n$ بين أن (4)
- (w_n) نبن أن $w_n \leqslant (\frac{1}{3})^n$ نبن أن $w_n \leqslant (\frac{1}{3})^n$ نبن أن (5)

نمرین ﴿21﴾ ______ بونبو 2005

- $f(x) = 1 + x \ln(x) \ln^2(x)$ أدرس نغبرات الدالة f المعرفة ب
 - $f(x) x = (\ln x 1)(x 1 \ln x)$ نخفی من أن (2)
 - f(x) xعلى المجال]0; $+\infty$ غلى المجال (3)
- نعتبر المتنالبة العددية (v_n) المعرفة $v_{n+1}=f(v_n)$; $(n\in\mathbb{N})$. $\begin{cases} v_{n+1}=f(v_n) & \text{if } n\in\mathbb{N} \end{cases}$
 - $(orall n \in \mathbb{N}): \quad 1 \leqslant v_n \leqslant e$ ن النرجع أن .ا
 - ببن أن المئنالبن (v_n) ننافصبن. -
 - ج. إسنننج أن المنتاليث (v_n) منفاريث، ثم أحسب نهاينها.

المرين ﴿22 جولبوز 2005

. $(\forall n\in\mathbb{N}^*): \quad w_n=n+\left(rac{1}{3}
ight)^n$: نعنبر المنئالبة العددبة (w_n) المعرفة بنالله المحموع . $S_n=w_1+w_2+...+w_n$ أحسب بدلاله n المحموع

نَمِينَ ﴿23 ______ ہونبو 2006

- فع جدول نغيرات الدالة g المعرفة ب: $g(x) = \ln(1+x) x$ على المجال $[0;+\infty]$
 - $.(orall n \in \mathbb{R}_+^*): \quad 0 < \ln(1+x) < x$ بین أن (2)
- نعتبر المتنالبة العددية $(u_n)_{n\geqslant 2}$ المعرفة ب(3) . $(orall n\in \mathbb{N}^*\setminus\{1\}): u_n=\ln\left(rac{n+1}{n-1}
 ight)$
- $.(orall n\in \mathbb{N}^*\smallsetminus\{1\}): \quad u_n=\ln\left(1+rac{2}{n-1}
 ight)$ نکفن من أن .1
 - $(u_n)_{n\geqslant 2}$ ببن أن المئنالبذ بين أن المئنالبذ .-
 - $.(\forall n \in \mathbb{N}^* \smallsetminus \{1\}): \quad 0 < u_n < rac{2}{n-1}$ ن أن .
 - $(u_n)_{n\geqslant 2}$ د. أحسب نهابه المنالبه
- يولبوز 2006 يولبوز (u_n) نعبر المنالبه العدديه (u_n) المعرفه بغير المنالبه العدديه $\left\{ \begin{array}{ll} u_{n+2} = \frac{2}{5}u_{n+1} \frac{1}{25}u_n & ; \ (n \in \mathbb{N}) \\ u_0 = 0 \ \mbox{g} \ u_1 = 1 \end{array} \right.$

 $(\forall n \in \mathbb{N}): \quad v_n = u_{n+1} - \frac{1}{5}u_n$ و $w_n = 5^n u_n$ ونضع

- n ببن أن المنالبة (v_n) هندسبة أساسها $\frac{1}{5}$ ثم أكنب v_n بدلالة (1)
 - (v_n) بين أن المئنالية (w_n) حسابية أساسها
 - n أكنب u_n بدلاله n ثم إسننج w_n بدلاله (3)
 - $.(\forall n \in \mathbb{N}^*): \quad 0 < u_{n+1} \leqslant \frac{2}{5}u_n$ بين أن (4)
 - $(\forall n \in \mathbb{N}^*): \quad 0 < u_n \leqslant \left(\frac{2}{5}\right)^{n-1}$ ن إسننج أن (5)
 - (u_n) أحسب نهابه (6)

نَورين ﴿25﴾ ______نورو 25%

- $f(x) = \frac{1}{x}$ درس إشاره f(x) = x على $f(x) = \frac{x}{x + e^{-x}}$
- نعتبر المتنالية العدوية (u_n) نعتبر المتنالية العدوية $\begin{cases} u_{n+1} = f(u_n) & ; \ (n \in \mathbb{N}) \\ u_0 = 1 \end{cases}$
 - $(\forall n \in \mathbb{N}): \quad 0 \leqslant u_n \leqslant 1$ بين بالنرجع أن .

بين أن المناالبخ (u_n) ننافصيخ.

ج. إستنتج أن المتنالبة (u_n) متفاربة، ثم حدد نهابتها.

نمرین 426 نمرین نموین نموین نموین نموین نمینالبن العددبنه (u_n) المعرفه u_n بولبوز 2007

ينبر المنتالية العدوية
$$(u_n)$$
 المعرفة \dots . $\begin{cases} u_{n+1} = \frac{1}{5}(u_n - 4n - 1) & ; \ (n \in \mathbb{N}) \end{cases}$

 $(\forall n \in \mathbb{N}): \quad v_n = u_n + n - 1$ نفع

- $rac{1}{5}$ ببن أن المئنالبخ (v_n) هنر سبخ أساسها $rac{1}{5}$.
 - n بدلاله v_n بدلاله (2)
- (u_n) إسنننج u_n بدلاله n ثم أحسب نهابه u_n

 $S_n=T_n-rac{1}{4}\left(1-rac{1}{5^n}
ight)$ و $S_n=T_n-rac{(n+1)(n-2)}{2}$ يين أن

نمرين (27) نمرين (27) نعبر المنالبة العردية (u_n) المعرفة (u_n)

 $\begin{cases} u_{n+1} = \frac{1 + u_n^2}{1 + u_n} & ; (n \in \mathbb{N}) \\ u_0 = \frac{1}{2} \end{cases}$

 $(\forall n \in \mathbb{N}): \quad 0 \leqslant u_n \leqslant 1$ يين أن (1)

ببن أن المنئالبذ (u_n) رئببذ و إسننئج أنها منفاربذ. (2)

 $(\forall n \in \mathbb{N}): \quad 1 - u_{n+1} \leqslant \frac{2}{3}(1 - u_n)$ بين أن (3)

 $(\forall n \in \mathbb{N}): \quad 1-u_n \leqslant \frac{1}{2} \left(\frac{2}{3}\right)^n$ بين أن (4)

 (u_n) إسنننج نهابه (5).

بولبوز 2008

نموين $\stackrel{\text{(28)}}{\text{identify}}$ نعبر المنالبث العددبث (u_n) المعرفث $\begin{cases} u_{n+1} = \frac{5u_n}{2u_n+3} \end{cases}$; $(n \in \mathbb{N})$ $u_0 = 2$

 $(\forall n \in \mathbb{N}): \quad v_n = \frac{u_n - 1}{u_n}$ نضع

 $.(orall n\in \mathbb{N}): \quad u_n>1$ بېن أن (1)

n ببن أن المئنالبذ (v_n) هند سبث أساسها $\frac{3}{5}$ ثم أكنب v_n بدلالذ v_n

 (u_n) نين أن $u_n = \frac{2}{2 - \left(\frac{3}{\epsilon}\right)^n}$ نين أن $(\forall n \in \mathbb{N})$: $u_n = \frac{2}{2 - \left(\frac{3}{\epsilon}\right)^n}$ (3)

 $\begin{cases} u_{n+1} = \frac{8(u_n - 1)}{2 + u_n} & ; (n \in \mathbb{N}) \\ u_0 = 3 & \end{cases}$

 $.(\forall n \in \mathbb{N}): \quad 2 < u_n < 4$ بين أن (1)

ببن أن المنئالبة (u_n) رئيبة و إسننتج أنها منفاربة. (2)

 $(\forall n \in \mathbb{N}): \quad 4 - u_{n+1} \leqslant \frac{4}{5}(4 - u_n)$ بين أن (3)

 $.(\forall n \in \mathbb{N}): \quad 4-u_n \leqslant \left(\frac{4}{5}\right)^n$ بين أن (4)

 (u_n) حدد نهابه (5)

 $(\forall n \in \mathbb{N}): \quad v_n = \frac{u_n - 4}{u_n - 2}$ نفغ (6)

ا. أثبت أن (v_n) مثنالبة هندسبة محددا أساسها و حدها الأول. u_n عدد u_n نم u_n بدلاله ...

 $\lim u_n$ ج. إسنننج

 $(\forall n \in \mathbb{N}^*): \quad S_n = v_0 + v_1 + \dots + v_{n-1}$ نفع $\lim S_n$ بدلاله n و إسنننج S_n

نعبر المناالبث العدوبث (u_n) المعرفث \vdots نعبر المناالبث العدوبث $\begin{cases} u_{n+1} = \frac{-7u_n - 8)}{2u_n + 1} \\ u_0 = -5 \end{cases}$; $(n \in \mathbb{N})$

 $(\forall n \in \mathbb{N}): \quad u_n \neq -2$ بين أن (1)

 $(\forall n \in \mathbb{N}): \quad v_n = \frac{1}{n-2}$ نفع (2)

ا. أثبت أن (v_n) منثالبة حساببة محددا أساسها وحدها الأول. u_n عدد v_n عمد u_n بدلاله .

 $(\forall n \in \mathbb{N}^*): \quad |u_n + 2| \leqslant \frac{3}{n}$ ين أن (3)

 $\lim u_n$ السننج .—

نمرين ﴿31﴾ ____

 $f(x) = \frac{x^2 - 3x + 6}{x - 1}$ نلن f دالهٔ عددبهٔ معرفهٔ ب

 $.(\forall x \in]1; +\infty[): \quad f(x) \geqslant 3$ بين أن (1)

 (u_n) نعتبر المتنالبة العردبة (u_n) المعرفة (2) $\begin{cases} u_{n+1} = f(u_n) & ; (n \in \mathbb{N}) \\ u_0 = 2 \end{cases}$

 $(orall n \in \mathbb{N}^*): \quad u_n \geqslant 3$ بين أن .1

بن أن المئنالبن (u_n) رئيبن و إسننئج أنها منفاربن.

 (u_n) ج. حدد نهابه

 $(\forall n \in \mathbb{N}): \quad u_n \geqslant 1$ سن أن (1)

بين أن (u_n) نزابدېد. (2)

 $(\forall n \in \mathbb{N}): \quad v_n = (2 + u_n)^2$ نفع (3)

ا. أثبت أن (v_n) مثنالية حسابية محددا أساسها وحدها الأول. u_n بدلالهٔ u_n بدلالهٔ ...

 $\lim u_n$ إسننج

نعبر المنتالية العددية (u_n) المعرفة -: نعبر المنتالية العددية $\begin{cases} u_{n+1} = \sqrt{\frac{u_n+3}{2}} \end{cases}$; $(n \in \mathbb{N})$

 $(\forall n \in \mathbb{N}): \frac{1}{2} \leqslant u_n \leqslant \frac{3}{2}$ بين أن (1)

ببن أن (u_n) نزابدبهٔ و إسننتج أنها منفاربه. (2)

 $\lim u_n$ عدد (3)