London Restaurant Scene project- MIBE

Edoardo Mustarelli

6/3/2021

Let's start with the analysis of the files. First I am going to load the libraries necessary, or that may be necessary, to move on with the analysis.

```
# ipak function: install and load multiple R packages.
# check to see if packages are installed. Install them if they are not, then load
them into the R session.
ipak <- function(pkg){</pre>
new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]</pre>
if (length(new.pkg))
    install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)
}
# usage
packages <- c("dplyr", "tidyverse", "tidyr", "here", "magrittr", "purrr",</pre>
"purrrlyr", "ggplot2", "formattable", "rlist", "gtools", "tm", "SnowballC",
"wordcloud", "RColorBrewer", "sf", "tmap", "tmaptools", "rgdal", "rgeos", "ggmap", "tidytext", "ggraph", "readr", "htmltools", "webshot")
ipak(packages)
##
           dplyr
                    tidyverse
                                       tidyr
                                                       here
                                                                magrittr
                                                                                  purrr
##
            TRUE
                          TRUE
                                        TRUE
                                                       TRUE
                                                                     TRUE
                                                                                   TRUE
                                                                   gtools
##
       purrrlyr
                       ggplot2 formattable
                                                      rlist
                                                                                      tm
##
            TRUE
                          TRUE
                                                       TRUE
                                                                     TRUE
                                                                                   TRUE
##
      SnowballC
                     wordcloud RColorBrewer
                                                         sf
                                                                              tmaptools
                                                                     tmap
##
            TRUE
                          TRUE
                                        TRUE
                                                       TRUE
                                                                     TRUE
                                                                                   TRUE
##
                                                  tidytext
                                                                   ggraph
                                                                                  readr
           rgdal
                         rgeos
                                       ggmap
##
            TRUE
                          TRUE
                                        TRUE
                                                       TRUE
                                                                     TRUE
                                                                                   TRUE
##
      htmltools
                       webshot
##
            TRUE
                          TRUE
restaurants_info <- readRDS(file="C:/Users/Edoardo/Desktop/LSU_project/resturants-
mibe.rds")
info delivery <- readRDS(file="C:/Users/Edoardo/Desktop/LSU project/delivery-</pre>
mibe.rds")
```

I now want to inspect the dataset regarding the restaurants' information to have a better understanding of what I'm working with.

```
glimpse(restaurants_info)
## Rows: 5,786
## Columns: 7
```

```
<dbl> 191295, 54515, 113653, 184167, 84922, 194571, 136~
## $ restaurant_id
                             <chr> "Baba Wali Hendon Broadway", "Burger & Lobster", ~ <chr> NA, "Burger & Lobster", NA, "Europa 2 Go Pizza", ~
## $ rest name
## $ rest brand
                             <chr> "NW97DY", "W1W7JE", "HA90TG", "SE255QF", "SW151JP~
## $ rest postcode
                             <chr> "Hendon", "Fitzrovia", "Wembley", "Croydon", "Put~
## $ rest_neighborhood
                             <dbl> NA, 4.7, NA, 3.8, 4.3, 4.4, 4.6, 4.2, 4.8, 4.6, 4~
## $ rest rating
## $ rest menu item price $\text{list}$ <2.80, 4.20, 5.60, 4.20, 5.60, 14.00, 16.80, 4.2$\times$
head(restaurants info)
## # A tibble: 6 x 7
     restaurant id rest_name rest_brand rest_postcode rest_neighborho~
rest rating
##
              <dbl> <chr>
                                 <chr>
                                                             <chr>>
                                             <chr>>
<dbl>
             191295 Baba Wali~ <NA>
## 1
                                             NW97DY
                                                             Hendon
                                                                                        NA
## 2
              54515 Burger & ~ Burger & ~ W1W7JE
                                                             Fitzrovia
4.7
## 3
             113653 Afta Eats <NA>
                                             HA90TG
                                                             Wemblev
                                                                                        NA
             184167 Europa 2 ~ Europa 2 ~ SE255QF
## 4
                                                             Croydon
3.8
## 5
              84922 Julia Dom~ <NA>
                                             SW151JP
                                                             Putney
4.3
## 6
             194571 Kin + Deum \langle NA \rangle
                                             E146AB
                                                             Canary Wharf
4.4
## # ... with 1 more variable: rest_menu_item_price <list>
```

We can see that the restaurants_info file has 7 variables which are id, name, brand, postcode, neighborhood, rating, and menu item price. We can also see that we have the data for 5,786 restaurants in London. #### 1 Restaurant Information Analysis

1.1 top 10 neighborhoods by the number of restaurants

```
top10 neighborhoods <- restaurants info %>%
  group by(rest neighborhood) %>%
  filter(!is.na(rest_neighborhood)) %>%
  summarise(number_of_rest=n()) %>%
  arrange(-number of rest) %>%
  slice(1:10)
top10_neighborhoods
## # A tibble: 10 x 2
      rest neighborhood number of rest
##
##
      <chr>>
                                 <int>
##
   1 Canary Wharf
                                   228
   2 The City
##
                                   209
##
   3 Croydon
                                   206
## 4 Ealing
                                   206
## 5 Wimbledon
                                   196
## 6 Soho
                                   192
## 7 Harrow
                                   191
## 8 Marylebone
                                   186
```

Top 10 neighborhoods ranked by number of res

1.2 top 10 neighborhoods by the restaurant review score

```
1 Chelsea
##
                               4.64
##
    2 Mayfair
                               4.63
##
   3 Soho
                               4.62
## 4 Fitzrovia
                               4.61
## 5 Marylebone
                               4.58
##
   6 Covent Garden
                               4.54
                               4.52
## 7 The City
## 8 Fulham
                               4.52
## 9 Shoreditch
                               4.52
## 10 Bloomsbury
                               4.51
top10_neig_ratings %>%
ggplot(aes(reorder(rest_neighborhood, -rest_rating), rest_rating, fill=-
rest_rating)) +
  geom bar(stat = "identity")+
  labs(x = "Neighborhoods", y = "Average Rating", fill="rating")+
  ggtitle("Top 10 neighborhoods ranked by average ratings of the restaurants")+
  coord_flip()+
  ggsave("10neigh_by_avg_rating.png")
## Saving 5 x 4 in image
```

Top 10 neighborhoods ranked by average rati


```
top_neigh_overall <- inner_join(top10_neighborhoods, top10_neig_ratings)
## Joining, by = "rest_neighborhood"
top_neigh_overall</pre>
```

```
## # A tibble: 3 x 3
     rest_neighborhood number_of_rest rest_rating
##
##
     <chr>>
                                 <dbl>
                                              <dbl>
## 1 The City
                                   209
                                              4.52
## 2 Soho
                                   192
                                              4.62
## 3 Marylebone
                                   186
                                              4.58
1.3 Top 10 biggest chains
top_chains <- restaurants_info %>%
  group_by(rest_brand) %>%
  filter(!is.na(rest_brand)) %>%
  summarise(number_of_spots = n()) %>%
  arrange(-number_of_spots) %>%
  slice(1:10)
top_chains
## # A tibble: 10 x 2
##
                            number of spots
      rest brand
##
      <chr>>
                                      <int>
## 1 Get drinks delivered
                                         42
## 2 KFC
                                         42
## 3 PizzaExpress
                                         42
                                         33
## 4 Pret A Manger
## 5 Burger King
                                         22
## 6 itsu
                                         22
## 7 Pure
                                         21
## 8 Wasabi
                                         20
## 9 LEON
                                         19
## 10 Papa John's
                                         18
top chains$number of spots <- as.numeric(top chains$number of spots)</pre>
 webshot::install_phantomjs(force = TRUE)
## phantomjs has been installed to C:\Users\Edoardo\AppData\Roaming\PhantomJS
```

formattable(align = c("l","c"), list(number_of_spots =

color_bar(("lightseagreen"))))

export_formattable(FT, "FT.png")

rest_brand number_of_spots Get drinks delivered 42 KFC 42 PizzaExpress 42 Pret A Manger 33 Burger King 22 itsu 22 Pure 21 Wasabi 20 LEON 19 Papa John's 18

 FT

rest_brand

number_of_spots

Get drinks delivered

42

KFC

42

PizzaExpress

42

Pret A Manger

33

Burger King

22

itsu

22

Pure

21

Wasabi

20

LEON

19

Papa John's

1.4 Average menu price and number of items for each restaurant

```
number_of_items_gross <- restaurants_info %>%
  filter(restaurant_id %>%
           map_lgl(any)) %>%
  unnest(rest_menu_item_price)
number of items gross
## # A tibble: 703,861 x 7
      restaurant id rest name rest brand rest postcode rest neighborho~
##
rest_rating
##
              <dbl> <chr>
                               <chr>>
                                           <chr>>
                                                          <chr>>
<dbl>
##
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
   1
NA
             191295 Baba Wal~ <NA>
##
    2
                                           NW97DY
                                                          Hendon
NA
##
    3
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
NA
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
##
    4
NA
    5
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
##
NA
             191295 Baba Wal~ <NA>
##
    6
                                           NW97DY
                                                          Hendon
NA
    7
             191295 Baha Wal~ <NA>
                                           NW97DY
                                                          Hendon
##
NA
             191295 Baba Wal~ <NA>
                                                          Hendon
##
    8
                                           NW97DY
NA
    9
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
##
NA
             191295 Baba Wal~ <NA>
## 10
                                           NW97DY
                                                          Hendon
NA
## # ... with 703,851 more rows, and 1 more variable: rest menu item price <dbl>
number of items net <- number of items gross[apply(number of items gross[c(7)],1,
function(del) any(!del==0)),]
number_of_items_net
## # A tibble: 581,092 x 7
      restaurant_id rest_name rest_brand rest_postcode rest_neighborho~
##
rest_rating
##
              <dbl> <chr>>
                               <chr>>
                                           <chr>>
                                                          <chr>>
<dbl>
##
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
    1
NA
##
    2
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
NA
    3
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                          Hendon
##
NA
             191295 Baba Wal~ <NA>
##
                                           NW97DY
                                                          Hendon
```

```
NA
    5
             191295 Baha Wal~ <NA>
                                          NW97DY
                                                         Hendon
##
NA
##
   6
             191295 Baba Wal~ <NA>
                                           NW97DY
                                                         Hendon
NA
##
    7
             191295 Baba Wal~ <NA>
                                          NW97DY
                                                         Hendon
NA
             191295 Baba Wal~ <NA>
                                          NW97DY
                                                         Hendon
##
    8
NA
    9
             191295 Baba Wal~ <NA>
                                                         Hendon
##
                                           NW97DY
NA
## 10
             191295 Baba Wal~ <NA>
                                          NW97DY
                                                         Hendon
## # ... with 581,082 more rows, and 1 more variable: rest_menu_item_price <dbl>
num_of_items <- number_of_items_net %>%
  group_by(rest_name) %>%
  summarise(num_items_menu = n()) %>%
  arrange(-num_items_menu)
num of items
## # A tibble: 4,522 x 2
##
      rest_name
                             num_items_menu
##
      <chr>>
                                      <int>
## 1 PizzaExpress
                                       8802
## 2 KFC
                                       5492
## 3 Papa John's
                                       4914
## 4 Pizza Hut Delivery
                                       3903
## 5 Pret A Manger
                                       3405
## 6 BP
                                       3379
## 7 Tops Pizza
                                       2804
## 8 itsu
                                       2389
## 9 Wagamama
                                       2109
## 10 Pizza Hut Restaurants
                                       2072
## # ... with 4,512 more rows
avg_price <- number_of_items_net %>%
  group by(restaurant id, rest name) %>%
  filter(!is.na(restaurant_id)) %>%
  summarise_at(vars(rest_menu_item_price), list(~mean(.)), na.rm = TRUE)
colnames(avg_price)[3] <- "Avg_price"</pre>
avg_price$Avg_price <- sprintf(avg_price$Avg_price, fmt="%#.4f")</pre>
avg_price
## # A tibble: 5,772 x 3
## # Groups:
               restaurant_id [5,772]
##
      restaurant_id rest_name
Avg_price
              <dbl> <chr>
                                                                             <chr>>
##
```

```
3 "Busaba Chelsea"
##
   1
                                                                           9.8087
                  5 "Rossopomodoro"
##
   2
                                                                           11.2719
## 3
                  8 "New Culture Revolution"
                                                                           8.8381
## 4
                 10 "Mandaloun"
                                                                           9.7169
## 5
                 15 "Busaba St Christopher's Place"
                                                                           9.6062
##
   6
                 16 "Busaba Bloomsbury"
                                                                           9.4978
## 7
                 18 "\U0001f1ef\U0001f1f5\U0001f1e7\U0001f1f7 Y00BI \U00~ 8.3522
## 8
                 19 "Noura"
                                                                           58.8348
## 9
                 20 "Dozo Sushi"
                                                                           10.9386
                 21 "Levant"
## 10
                                                                           13.1274
## # ... with 5,762 more rows
```

1.5 how many items on the 5 most expensive restaurants' menus?

```
#I want to create a joint dataset between the number of items per menu and the
average price
how_many_for_how_much <- left_join(num_of_items, avg_price)</pre>
## Joining, by = "rest_name"
how many for how much$Avg price <- as.numeric(how many for how much$Avg price)
most_expensive <- how_many_for_how_much %>%
  arrange(-Avg price) %>%
  slice(1:5)
most_expensive
## # A tibble: 5 x 4
##
     rest name
                             num_items_menu restaurant_id Avg_price
##
     <chr>>
                                       <int>
                                                     <dbl>
                                                               <dbl>
## 1 Emerald London Catering
                                           2
                                                    156503
                                                               5670
## 2 KERB (Catering)
                                           3
                                                    181459
                                                               4172.
                                                    181439
## 3 Zest Mixology
                                          47
                                                               1928.
## 4 Chilli Bees Catering
                                                               1267.
                                          11
                                                    121538
## 5 King's Kitchen Catering
                                          28
                                                                 323.
                                                    177883
most expensive %>%
ggplot(aes(reorder(rest_name, num_items_menu), num_items_menu, fill=-Avg_price)) +
  geom bar(stat = "identity")+
  labs(x = "Name", y = "# of items", fill="avg price")+
  ggtitle("5 most expensive restaurants with relative number of items")+
  coord flip()+
  ggsave("who_howmuch_howmany.png")
## Saving 5 x 4 in image
```

5 most expensive restaurants with rela-

From this last graph we can observe how there is almost an inverse relationship between the number of items listed on the menus and the average price. As a matter of fact, the two most expensive restaurants also happen to be the ones with less items on their menus. But we can also see that 4/5 of these ase catering services.

1.6 how many items on the 5 mleast expensive restaurants' menus?

```
least expensive <- how many for how much %>%
  arrange(Avg_price) %>%
  slice(1:5)
least expensive
## # A tibble: 5 x 4
##
     rest_name
                          num_items_menu restaurant_id Avg_price
##
                                    <int>
                                                  <dbl>
                                                            <dbl>
     <chr>>
## 1 Metro Coffee Express
                                       29
                                                 161225
                                                             1.10
## 2 The Bubble Spot
                                       11
                                                 158430
                                                             1.32
## 3 Bambusa
                                       12
                                                 173211
                                                             1.41
## 4 InstaGrab Pretzel
                                                             1.59
                                       27
                                                 113358
## 5 Salad Box
                                      319
                                                  61215
                                                             1.64
least expensive %>%
ggplot(aes(reorder(rest_name, num_items_menu), num_items_menu, fill=-Avg_price)) +
  geom_bar(stat = "identity")+
  labs(x = "Name", y = "# of items", fill="avg price")+
  ggtitle("5 least expensive restaurants with relative number of items")+
  coord_flip()+
  ggsave("who_howlittle_howmany.png")
```

5 least expensive restaurants with relative


```
all_prices <- full_join(most_expensive, least_expensive)

## Joining, by = c("rest_name", "num_items_menu", "restaurant_id", "Avg_price")

all_prices %>%
ggplot(aes(reorder(rest_name, num_items_menu), num_items_menu, fill=-Avg_price)) +
    geom_bar(stat = "identity")+
    labs(x = "Name", y = "# of items", fill="avg price")+
    ggtitle("5 most & least expensive restaurants with relative number of items")+
    coord_flip()+
    ggsave("all_prices.png")

## Saving 5 x 4 in image
```

5 most & least expensive restaurants v

2 Restaurants Delivery Times Analysis

```
colnames(info_delivery)[1] <- "restaurant_id"</pre>
complete rest data <- left join(info delivery, restaurants info, by =
"restaurant_id")
glimpse(complete rest data)
## Rows: 152,217
## Columns: 9
                                 <dbl> 98636, 167932, 902, 22555, 29850, 202819, 69871~
## $ restaurant_id
                                 <chr> "the-city", "the-city", "the-city", "the-city",~
## $ neighborhood_name
## $ rest_delivery_time_min <dbl> 10, 10, 15, 15, 10, 25, 20, 10, 15, 15, 10, 15,~
                                <chr> "Farmer J - King William Street", "Acai Berry",~<chr> "Farmer J", "Acai Berry Boxpark", "La Cucina", ~
## $ rest name
## $ rest brand
                                <chr> "EC4R9AJ", "E16GY", "E16RL", "EC2M4NQ", "E16SB"~ <chr> "The City", "Shoreditch", "Brick Lane", "The Ci~
## $ rest postcode
## $ rest_neighborhood
## $ rest rating
                                 <dbl> 4.9, 4.8, 4.4, 4.6, 4.8, 4.4, 4.7, 4.6, 4.9, 4.~
## $ rest_menu_item_price
                                <list> <1.00, 9.60, 9.50, 2.00, 9.00, 10.25, 9.00, 8.~</pre>
```

2.1 How many neighborhoods does each restaurant deliver to?

```
deliveries_where <- complete_rest_data %>%
   group_by(restaurant_id) %>%
   summarise(num_place_of_delivery = n())

glimpse(deliveries_where)

## Rows: 4,240
## Columns: 2
```

2.2 Top 15 neighborhoods for number of restaurants served by.

```
deliveries by <- complete rest data %>%
  group by(neighborhood name) %>%
  summarise(how_many_deliver = n()) %>%
  arrange(-how many deliver) %>%
  slice(1:15)
glimpse(deliveries_by)
## Rows: 15
## Columns: 2
## $ neighborhood name <chr>> "tottenham-court-road", "regent's-park", "fitzrovia"~
## $ how_many_deliver <int> 2201, 2177, 2158, 2158, 2143, 2142, 2133, 2128, 2115~
deliveries by %>%
ggplot(aes(reorder(neighborhood name, how many deliver), how many deliver,
fill=neighborhood name)) +
  geom bar(stat = "identity")+
  labs(x = "Name", y = "# restaurants delivering", fill="avg price")+
  ggtitle("15 top neighborhoods by # of restaurants that deliver there")+
  coord flip()+
  ggsave("most served.png")
## Saving 5 x 4 in image
```


2.3 Average delivery time per restaurant

```
avg del time <- complete rest data %>%
  group by(restaurant id, rest name, rest postcode, rest rating) %>%
  summarise(avg time = mean(rest_delivery_time_min, na.rm = TRUE))
## `summarise()` has grouped output by 'restaurant_id', 'rest_name',
'rest_postcode'. You can override using the `.groups` argument.
avg_del_time
## # A tibble: 4,240 x 5
             restaurant_id, rest_name, rest_postcode [4,240]
## # Groups:
      restaurant_id rest_name
                                                 rest_postcode rest_rating
avg_time
##
              <dbl> <chr>>
                                                 <chr>>
                                                                      <dbl>
<dbl>
                  3 "Busaba Chelsea"
## 1
                                                 SW35UZ
                                                                        4.6
19.6
                  5 "Rossopomodoro"
## 2
                                                 SW109NB
                                                                        4.5
17.1
                 8 "New Culture Revolution"
## 3
                                                 SW35EP
                                                                       4.7
18.3
                 10 "Mandaloun"
## 4
                                                 SW109TW
                                                                       4.8
18.6
                                                                       4.7
## 5
                 15 "Busaba St Christopher's Pl~ W1U1BU
21.8
## 6
                16 "Busaba Bloomsbury"
                                                 WC1E7DF
                                                                       4.7
22.4
## 7
                 18 "\U0001f1ef\U0001f1f5\U0001~ W1F0LL
                                                                        4.8
20.6
## 8
                 19 "Noura"
                                                 W1J5HP
                                                                        4.7
23.7
                20 "Dozo Sushi"
## 9
                                                 W1D4TP
                                                                       4.8
62.2
                 21 "Levant"
                                                                        4.8
## 10
                                                 W1U2SJ
21.8
## # ... with 4,230 more rows
```

2.4 Top 20 fastest restaurants.

```
fastest20 <- avg_del_time %>%
  arrange(-avg_time) %>%
  head(20)
fastest20
## # A tibble: 20 x 5
## # Groups: restaurant_id, rest_name, rest_postcode [20]
      restaurant_id rest_name
                                                  rest_postcode rest_rating
avg time
##
              <dbl> <chr>>
                                                  <chr>>
                                                                      <dbl>
<int>
## 1
             186103 Peppercorn Food
                                                 W127GF
                                                                       NA
120
             134907 Timber Gardens Restaurant a~ CR02RJ
## 2
                                                                        4.1
110
             202181 Le Pain Quotidien Catering
## 3
                                                 WC2E8RF
                                                                        4.8
106
## 4
             27252 PizzaExpress
                                                 HA11HS
                                                                        4.1
105
## 5
             107127 Sanjunana
                                                 SW193PZ
                                                                        4.5
79
## 6
             113498 Flaming Grill Kitchen
                                                 HA01NR
                                                                        4.1
76
## 7
              22907 Babbo Restaurant
                                                 W1S4JQ
                                                                        4.8
75
              42727 Chamisse - Platters
                                                 WC1X8PP
                                                                       NA
## 8
73
## 9
             119799 Khana Peena Restaurant
                                                 CR26EG
                                                                       NA
73
             113471 Che Restaurant
## 10
                                                 CR02XP
                                                                        4.4
72
## 11
             64754 Tapelia
                                                 W139RT
                                                                        4.6
70
## 12
              96972 Petch Sayam Thai
                                                 E113AA
                                                                        4.5
68
              68900 PizzaExpress - Corporate Bu~ WC1V6LF
## 13
                                                                       NA
67
## 14
              70371 Shinde's Pure Veg
                                                 E78LF
                                                                        4.5
67
             107158 Matese Pasta Lab
                                                                        4.3
## 15
                                                 W73ST
65
             157210 KT London
## 16
                                                 SW97TB
                                                                        4.4
65
## 17
              25142 PizzaExpress
                                                 W148UX
                                                                        4.5
63
              30483 Big Easy - Chelsea
                                                                        4.3
## 18
                                                 SW35UR
63
              68371 PizzaExpress - Corporate Bu~ W1D3RW
                                                                        3.7
## 19
63
                 20 Dozo Sushi
## 20
                                                 W1D4TP
                                                                        4.8
62
```

```
export_formattable <- function(f, file, width = "100%", height = NULL,
                                background = "white", delay = 0.2)
      w <- as.htmlwidget(f, width = width, height = height)</pre>
      path <- html_print(w, background = background, viewer = NULL)</pre>
      url <- paste0("file:///", gsub("\\\", "/", normalizePath(path)))</pre>
      webshot(url,
              file = file,
              selector = ".formattable_widget",
              delay = delay)
    }
f20 <- fastest20 %>%
  subset(select = -restaurant_id) %>%
  relocate(avg_time, .before = rest_postcode) %>%
  relocate(Ratings = rest_rating, .before = rest_postcode)
FT2 <- f20 %>%
  formattable(align = c("l", "c", "c", "l"), list(avg_time =
color_bar(("lightseagreen"))))
export_formattable(FT2, "FT2.png")
```

rest_name	avg_time	Ratings	rest_postcode
Peppercorn Food	120	NA	W127GF
Timber Gardens Restaurant and Bar	110	4.1	CR02RJ
Le Pain Quotidien Catering	106	4.8	WC2E8RF
PizzaExpress	105	4.1	HA11HS
Sanjunana	79	4.5	SW193PZ
Flaming Grill Kitchen	76	4.1	HA01NR
Babbo Restaurant	75	4.8	W1S4JQ
Chamisse - Platters	73	NA	WC1X8PP
Khana Peena Restaurant	73	NA	CR26EG
Che Restaurant	72	4.4	CR02XP
Tapelia	70	4.6	W139RT
Petch Sayam Thai	68	4.5	E113AA
PizzaExpress - Corporate Bundles	67	NA	WC1V6LF
Shinde's Pure Veg	67	4.5	E78LF
Matese Pasta Lab	65	4.3	W73ST
KT London	65	4.4	SW97TB
PizzaExpress	63	4.5	W148UX
Big Easy - Chelsea	63	4.3	SW35UR
PizzaExpress - Corporate Bundles	63	3.7	W1D3RW
Dozo Sushi	62	4.8	W1D4TP

FT2

rest_name

avg_time

Ratings
rest_postcode
Peppercorn Food
120
NA
W127GF
Timber Gardens Restaurant and Bar
110
4.1
CR02RJ
Le Pain Quotidien Catering
106
4.8
WC2E8RF
PizzaExpress
105
4.1
HA11HS
Sanjunana
79
4.5
SW193PZ
Flaming Grill Kitchen
76
4.1
HA01NR
Babbo Restaurant
75
4.8

Matese Pasta Lab
65
4.3
W73ST
KT London
65
4.4
SW97TB
PizzaExpress
63
4.5
W148UX
Big Easy - Chelsea
63
4.3
SW35UR
PizzaExpress - Corporate Bundles
63
3.7
W1D3RW
Dozo Sushi
62
4.8
W1D4TP
3 Open Analysis

By looking at this data one question comes to my mind almost immediately. Are restaurants located in those neighborhoods that are served by the highest number of delivery places?

I start by creating a new data frame that contains the data all the data from the restaurants and their deliveries, but only for the top 10 neighborhoods for number of restaurants.

```
complete data_fortified <- inner_join(complete_rest_data, top10_neighborhoods, by</pre>
= "rest neighborhood")
complete data fortified
## # A tibble: 31,978 x 10
      restaurant id neighborhood name rest delivery tim~ rest name
                                                                         rest brand
##
                                                    <dbl> <chr>>
              <dbl> <chr>>
                                                                         <chr>>
## 1
              98636 the-city
                                                       10 Farmer J - Ki∼ Farmer J
## 2
              22555 the-city
                                                       15 Polo
                                                                         Polo
## 3
             108441 the-city
                                                       10 Subway
                                                                         Subway
## 4
             126532 the-city
                                                      10 Doughnut Time <NA>
## 5
            40178 the-city
                                                       10 Le Pain Quoti∼ Le Pain
Qu~
## 6
                                                      15 People's Choi~ <NA>
            65537 the-city
## 7
              34430 the-city
                                                      10 Pure - Breakf~ Pure
## 8
             205253 the-city
                                                      15 Original Bage~ <NA>
## 9
              69042 the-city
                                                      15 Yummy Bagels
                                                                         <NA>
## 10
                                                      10 Nisa
              78979 the-city
                                                                         Nisa
## # ... with 31,968 more rows, and 5 more variables: rest_postcode <chr>,
       rest neighborhood <chr>, rest rating <dbl>, rest menu item price <list>,
       number of rest <dbl>
```

I now want to calculate how many restaurants deliver to a neighborhood and where they are from.

```
new ranking <- complete data fortified %>%
  group by(neighborhood name, rest neighborhood) %>%
  summarise(how_many_to_and_from = n()) %>%
  arrange(-how_many_to_and_from) %>%
  slice(1:15)
## `summarise()` has grouped output by 'neighborhood_name'. You can override using
the `.groups` argument.
new ranking
## # A tibble: 310 x 3
               neighborhood name [188]
## # Groups:
      neighborhood name rest_neighborhood how_many_to_and_from
##
##
      <chr>>
                        <chr>>
                                                          <int>
## 1 acton
                                                            170
                        Ealing
## 2 aldgate
                        The City
                                                            186
                        Canary Wharf
## 3 aldgate
                                                              7
## 4 anerley
                        Croydon
                                                             10
## 5 anerley
                        Tooting
                                                              2
## 6 angel
                        The City
                                                              1
## 7 balham
                                                            103
                        Tooting
## 8 balham
                        Wimbledon
                                                              2
## 9 bank
                                                            201
                        The City
## 10 bankside
                        The City
                                                              1
## # ... with 300 more rows
```

I now want to join together the previous set with how many restaurants deliver to each neighborhood (just the 15 neighborhoods with the highest number of restaurants that deliver there)

```
who delivers <- inner join(new ranking, deliveries by)
## Joining, by = "neighborhood_name"
who delivers
## # A tibble: 40 x 4
## # Groups:
              neighborhood name [15]
     neighborhood name rest neighborhood how many to and from how many deliver
##
      <chr>>
                        <chr>>
                                                         <int>
                                                                          <int>
## 1 berners-street
                       Soho
                                                           544
                                                                           2128
## 2 berners-street
                       Marylebone
                                                           443
                                                                           2128
## 3 berners-street
                       The City
                                                             2
                                                                           2128
## 4 bloomsbury
                       Soho
                                                           506
                                                                           1802
## 5 bloomsbury
                       Marylebone
                                                                           1802
                                                           168
## 6 bloomsbury
                       The City
                                                            19
                                                                           1802
## 7 charlotte-street Soho
                                                           551
                                                                           2133
## 8 charlotte-street Marylebone
                                                           421
                                                                           2133
## 9 charlotte-street The City
                                                             2
                                                                           2133
                        Soho
## 10 covent-garden
                                                           526
                                                                           1799
## # ... with 30 more rows
```

At this point I am interested in knowing just the number of restaurants that deliver to each neighborhood and from which neighborhood they are.

```
from where <- who delivers %>%
  subset(select = c("neighborhood_name", "rest_neighborhood",
"how many to and from"))
from_where
## # A tibble: 40 x 3
## # Groups:
               neighborhood name [15]
##
      neighborhood name rest neighborhood how many to and from
##
      <chr>>
                        <chr>>
                                                         <int>
## 1 berners-street
                        Soho
                                                           544
## 2 berners-street
                        Marylebone
                                                           443
## 3 berners-street
                        The City
                                                             2
## 4 bloomsbury
                        Soho
                                                           506
## 5 bloomsbury
                        Marylebone
                                                           168
## 6 bloomsbury
                        The City
                                                            19
## 7 charlotte-street Soho
                                                           551
## 8 charlotte-street Marylebone
                                                           421
                                                             2
## 9 charlotte-street The City
## 10 covent-garden
                        Soho
                                                           526
## # ... with 30 more rows
how many <- who delivers %>%
  subset(select = c("neighborhood name", "rest neighborhood", "how many deliver"))
how many
```

```
## # A tibble: 40 x 3
               neighborhood name [15]
## # Groups:
##
      neighborhood name rest neighborhood how many deliver
##
      <chr>>
                         <chr>>
                                                       <int>
##
                         Soho
                                                        2128
    1 berners-street
    2 berners-street
##
                         Marylebone
                                                        2128
## 3 berners-street
                         The City
                                                        2128
                                                        1802
## 4 bloomsbury
                         Soho
## 5 bloomsbury
                         Marylebone
                                                        1802
## 6 bloomsbury
                         The City
                                                        1802
## 7 charlotte-street
                                                        2133
                        Soho
## 8 charlotte-street
                        Marylebone
                                                        2133
## 9 charlotte-street
                         The City
                                                        2133
## 10 covent-garden
                                                        1799
                         Soho
## # ... with 30 more rows
library(reshape)
##
## Attaching package: 'reshape'
## The following objects are masked from 'package:tidyr':
##
##
       expand, smiths
## The following object is masked from 'package:dplyr':
##
##
       rename
from_where.m <- melt(from_where)</pre>
## Using neighborhood name, rest neighborhood as id variables
from_where.m
##
         neighborhood name rest neighborhood
                                                           variable value
## 1
            berners-street
                                         Soho how many to and from
                                                                       544
## 2
                                   Marylebone how_many_to_and_from
                                                                       443
            berners-street
## 3
            berners-street
                                     The City how_many_to_and_from
                                                                         2
## 4
                bloomsbury
                                         Soho how many to and from
                                                                       506
                                   Marylebone how_many_to_and_from
## 5
                bloomsbury
                                                                       168
## 6
                bloomsbury
                                     The City how many to and from
                                                                        19
## 7
                                         Soho how many to and from
                                                                       551
          charlotte-street
                                                                       421
## 8
          charlotte-street
                                   Marylebone how_many_to_and_from
## 9
          charlotte-street
                                     The City how_many_to_and_from
                                                                         2
                                                                       526
## 10
             covent-garden
                                         Soho how_many_to_and_from
                                   Marylebone how_many_to_and_from
## 11
             covent-garden
                                                                       138
## 12
             covent-garden
                                     The City how_many_to_and_from
                                                                        38
## 13
                                         Soho how_many_to_and_from
                                                                       434
                     euston
## 14
                     euston
                                   Marylebone how_many_to_and_from
                                                                       268
## 15
                                         Soho how_many_to_and_from
                                                                       539
                 fitzrovia
## 16
                                   Marylebone how_many_to_and_from
                                                                       466
                 fitzrovia
## 17
                 fitzrovia
                                     The City how_many_to_and_from
                                                                         2
```

```
## 18
             goodge-street
                                         Soho how_many_to_and_from
                                                                      546
## 19
             goodge-street
                                   Marylebone how_many_to_and_from
                                                                      430
## 20
             goodge-street
                                     The City how_many_to_and_from
                                                                        2
## 21
          leicester-square
                                         Soho how many to and from
                                                                      552
## 22
          leicester-square
                                   Marylebone how many to and from
                                                                      382
                                     The City how_many_to_and_from
## 23
          leicester-square
                                                                         1
## 24
                marylebone
                                   Marylebone how many to and from
                                                                      581
## 25
                marylebone
                                         Soho how_many_to_and_from
                                                                      509
## 26
                    mayfair
                                         Soho how_many_to_and_from
                                                                      531
## 27
                                   Marylebone how many to and from
                                                                      490
                   mayfair
## 28
           mortimer-street
                                         Soho how_many_to_and_from
                                                                      545
## 29
           mortimer-street
                                   Marylebone how_many_to_and_from
                                                                      459
                                     The City how_many_to_and_from
                                                                        2
## 30
           mortimer-street
                                                                      557
## 31
             regent's-park
                                   Marylebone how_many_to_and_from
## 32
             regent's-park
                                         Soho how many to and from
                                                                      484
                                         Soho how many to and from
                                                                      596
## 33
                       soho
## 34
                                   Marylebone how_many_to_and_from
                                                                      411
                       soho
## 35
                       soho
                                     The City how_many_to_and_from
                                                                        1
## 36
                st-james's
                                         Soho how_many_to_and_from
                                                                      553
## 37
                st-james's
                                   Marylebone how_many_to_and_from
                                                                      428
                                                                      538
## 38 tottenham-court-road
                                         Soho how many to and from
                                   Marylebone how many to and from
## 39 tottenham-court-road
                                                                      453
                                     The City how_many_to_and_from
## 40 tottenham-court-road
                                                                        1
ggplot(from_where.m, aes(neighborhood_name, value, fill = rest_neighborhood)) +
  geom bar(stat="identity", position = "dodge")+
  labs(y = "Number of restaurants delivering", x = "Neighborhood", fill = "Who
delivers is from", title = "From where do restaurants deliver to?")+
  coord flip()+
  ggsave("fromwhere.png")
## Saving 5 x 4 in image
```

From where do restaurants deliver to?

In this graph we can see

how the top 15 neighborhoods for number of restaurants served by, are segmented between the restaurants located in 3 of the top 10 neighborhood for number of restaurants.

```
how many.m <- melt(how many)</pre>
## Using neighborhood name, rest neighborhood as id variables
how many.m
##
         neighborhood name rest neighborhood
                                                       variable value
## 1
            berners-street
                                          Soho how many deliver
                                                                  2128
## 2
            berners-street
                                   Marylebone how many deliver
                                                                  2128
## 3
                                      The City how_many_deliver
                                                                  2128
            berners-street
                                          Soho how_many_deliver
## 4
                 bloomsbury
                                                                  1802
                                   Marylebone how_many_deliver
                 bloomsbury
## 5
                                                                  1802
                                      The City how many deliver
## 6
                 bloomsbury
                                                                  1802
          charlotte-street
                                          Soho how many deliver
## 7
                                                                  2133
          charlotte-street
                                   Marylebone how many deliver
## 8
                                                                  2133
## 9
          charlotte-street
                                      The City how_many_deliver
                                                                  2133
                                          Soho how many deliver
             covent-garden
                                                                  1799
## 10
## 11
             covent-garden
                                   Marylebone how many deliver
                                                                  1799
## 12
             covent-garden
                                      The City how_many_deliver
                                                                  1799
                                          Soho how many deliver
## 13
                     euston
                                                                  1852
## 14
                                   Marylebone how many deliver
                     euston
                                                                  1852
                                          Soho how_many_deliver
## 15
                  fitzrovia
                                                                  2158
                 fitzrovia
                                   Marylebone how many deliver
## 16
                                                                  2158
                  fitzrovia
                                      The City how many deliver
## 17
                                                                  2158
## 18
             goodge-street
                                          Soho how many deliver
                                                                  2158
                                   Marylebone how many deliver
## 19
             goodge-street
                                                                  2158
```

```
## 20
                                     The City how_many_deliver
                                                                 2158
             goodge-street
## 21
          leicester-square
                                         Soho how_many_deliver
                                                                 2040
## 22
          leicester-square
                                   Marylebone how_many_deliver
                                                                 2040
## 23
          leicester-square
                                     The City how many deliver
                                                                 2040
## 24
                marylebone
                                   Marylebone how many deliver
                                                                 2142
## 25
                marylebone
                                         Soho how_many_deliver
                                                                 2142
## 26
                   mayfair
                                         Soho how many deliver
                                                                 2115
## 27
                   mayfair
                                   Marylebone how_many_deliver
                                                                 2115
## 28
           mortimer-street
                                         Soho how many deliver
                                                                 2143
## 29
                                   Marylebone how many deliver
           mortimer-street
                                                                 2143
## 30
           mortimer-street
                                     The City how many deliver
                                                                 2143
## 31
             regent's-park
                                   Marylebone how_many_deliver
                                                                 2177
                                         Soho how many deliver
## 32
             regent's-park
                                                                 2177
## 33
                       soho
                                         Soho how_many_deliver
                                                                 2114
## 34
                                   Marylebone how many deliver
                                                                 2114
                       soho
## 35
                                     The City how many deliver
                       soho
                                                                 2114
## 36
                st-james's
                                         Soho how_many_deliver
                                                                 2079
## 37
                st-james's
                                   Marylebone how_many_deliver
                                                                 2079
## 38 tottenham-court-road
                                         Soho how_many_deliver
                                                                 2201
## 39 tottenham-court-road
                                   Marylebone how_many_deliver
                                                                 2201
                                     The City how_many_deliver
## 40 tottenham-court-road
                                                                 2201
ggplot(how_many.m, aes(neighborhood_name, value, fill = neighborhood_name)) +
  geom_bar(stat="identity", position = "dodge")+
  labs(y = "Number of restaurants delivering", x = "Neighborhood", fill = "Deliver
to")+
  coord flip()+
  ggsave("howmany.png")
## Saving 5 x 4 in image
```


Based also on this last chart, I would then seggest restaurants that are not on the territory to maybe think of opening stores in the neighborhoods more served, as it may represent a way of, in the long run, reducing costs due to delivery and increasing their revenues as well.