Chapter 2 Linear Differential equation

2.1 Homogeneous Linear Equation of second order

$$y''+p(x)y'+q(x)y=r(x)$$
 \Rightarrow second-order linear diff. eq.

P, q, r are function of x

$$r(x) = 0 \rightarrow \text{homogeneous equation}$$
 (A)

$$r(x) \neq 0 \rightarrow \text{non-homogeneous equation}$$
 (A')

Example: y'' - y = 0

A function $y = e^x$ and $y = e^{-x}$ are the solutions. If arbitrary constant, say, 3, -8, are multiplied, then take the sum

$$y = 3e^x + 8e^{-x}$$
 is also a solution.

For a homogeneous linear differential equation a new solution can always obtain from know solutions by multiplication by constant and by addition.

 y_1 and y_2 are solutions \Rightarrow $y = c_1y_1 + c_2y_2$ is also a solution

(superposition principle)

Theorem: for a homogeneous linear diff. equation, any linear combination of two solutions is again a solution of the eq.(A)

Proof: suppose y_1 and y_2 are solutions of (A)

Let $y = c_1 y_1 + c_2 y_2$, c_1, c_2 are arbitrary constants

Substitute into (A)

$$\Rightarrow$$
 $(c_1y_1 + c_2y_2)'' + p(x)(c_1y_1 + c_2y_2)' + q(x)(c_1y_1 + c_2y_2)$

$$= c_1(y_1" + p(x)y_1' + q(x)y_1) + c_2(y_2" + p(x)y_2' + q(x)y_2) = 0$$

$$\Rightarrow \text{ wis also a solution of } (A)$$

 \Rightarrow y is also a solution of (A)

Caution: this theorem is not hold for non-homogeneous linear equation or nonlinear equation

***** general solution, basis

A general solution of second order homogeneous linear diff. eq. is

of the form
$$y = c_1 y_1 + c_2 y_2$$

 y_1 and y_2 are not proportional solutions (linear independent)

 c_1, c_2 are arbitrary constants

If y_1 and y_2 are linear independent $\rightarrow y_1$ and y_2 are called a **basis** of (A)

Linear independent

$$\rightarrow$$
 if $k_1 y_1 + k_2 y_2 = 0$ implies $k_1 = 0 \& k_2 = 0$

Then $y_1(x), y_2(x)$ are said to be linearly independent.

Linear dependent

 \rightarrow if $k_1y_1 + k_2y_2 = 0$ but k_1 and k_2 are not both zero

$$\Rightarrow k_1 \neq 0$$
 or $k_2 \neq 0$ $\Rightarrow y_1 = -\frac{k_2 y_2}{k_1}$ or $y_2 = -\frac{k_1 y_1}{k_2}$

 $y_1(x), y_2(x)$ are said to be linear dependent

e.g.
$$y_1 = e^x; y_2 = x$$

since $k_1 e^x + k_2 x = 0$ is only satisfied when $k_1 = k_2 = 0$

 $\rightarrow y_1, y_2$ are linear independent

e.g.
$$y_1 = e^X; y_2 = 4e^X$$

since $k_1 e^x + k_2 (4e^x) = 0$ is satisfied when $k_1 = 4$; $k_2 = -1$

→ y₁;y₂ are linear dependent i.e. y₁,y₂ are proportional.

2.2 Homogeneous equation with constant coefficients

Standard form:
$$y''+ay'+by=0$$
 a, b constants (A)

try :
$$y = e^{\lambda x}$$
 λ : constant but unknown

(A)
$$\Rightarrow$$
 $(\lambda^2 + a\lambda + b) e^{\lambda x} = 0 \Rightarrow \lambda^2 + a\lambda + b = 0$ characteristic eq.

$$\Rightarrow \lambda_1 = \frac{1}{2} \left(-a + \sqrt{a^2 - 4b} \right) , \lambda_2 = \frac{1}{2} \left(-a - \sqrt{a^2 - 4b} \right)$$

$$\Rightarrow$$
 $y_1 = e^{\lambda_1 x}$, $y_2 = e^{\lambda_2 x}$ solutions

but
$$a^2 - 4b$$

$$\begin{cases} > 0 & two \quad real \quad roots \\ = 0 & a \quad real \quad double \quad root \\ < 0 & complex \quad roots \end{cases}$$

$$\%$$
 case I: $a^2 - 4b > 0 \implies y_1 = e^{\lambda_1 x}$, $y_2 = e^{\lambda_2 x}$

the solution is $y = c_1 y_1 + c_2 y_2$

example:
$$y''-y=0 \implies \lambda^2-1=0 \implies \lambda=1, -1$$

$$\implies y=c_1e^x+c_2e^{-x}$$

$$\%$$
 case II: $a^2 - 4b = 0 \implies \lambda = \lambda_1 = \lambda_2 = -\frac{a}{2}$

$$y_1 = e^{-\frac{a}{2}x}$$
 , but second solution ?

Method of reduction order

If y_1 is known, then solution y can be obtained by set $y = uy_1$

Consider
$$y''+p(x)y'+q(x)y=0$$
 y_1 is a known solution

Set
$$y = uy_1$$
 \Rightarrow $y' = uy_1' + u'y_1$ & $y'' = uy_1'' + 2u'y_1' + u''y_1$
 $y'' + p(x)y' + q(x)y = u[y_1'' + p(x)y_1' + q(x)y_1] + y_1u'' + [2y_1' + p(x)y_1)u' = 0$

$$y''+p(x)y'+q(x)y = u[y_1''+p(x)y_1'+q(x)y_1] + y_1u''+[2y_1'+p(x)y_1)u' = 0$$

It means that this method is suitable for both constant efficient and variable coefficient linear differential equations If it equals to zero, then y is a solution and

$$u''y_1 + [2y_1' + p(x)y_1]u' = 0$$

Let
$$W = u' \implies W' y_1 + [2y_1' + p(x)y_1]W = 0$$

$$\frac{dW}{W} + 2\frac{y_1'}{y_1}dx + p(x)dx = 0 \quad \Rightarrow \ln|W| + 2\ln|y_1| + \int p(x)dx + c = 0$$

$$\Rightarrow \ln \left| W y_1^2 \right| = - \int p(x) dx + c \quad \Rightarrow W y_1^2 = c_1 e^{-\int p(x) dx}$$

$$\Rightarrow W = u' = c_1 \frac{e^{-\int p(x)dx}}{y_1^2} \quad \Rightarrow u = c_1 \int \frac{e^{-\int p(x)dx}}{y_1^2} dx + c_2$$

$$\therefore y = uy_1 = c_1 y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2} dx + c_2 y_1(x)$$

$$\therefore y_2 = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2} dx \qquad (y_1, y_2 \text{ are linear independent})$$

The second solution of case II can be obtained by

$$\therefore y_2 = e^{-\frac{a}{2}x} \int \frac{e^{-\int a dx}}{e^{-ax}} dx = x e^{-\frac{a}{2}x}$$

The corresponding general solution is

$$\therefore y = (c_1 + c_2 x)e^{-\frac{a}{2}x}$$

Example: y'' + 8y' + 16y = 0

Characteristic equation $\Rightarrow \lambda^2 + 8\lambda + 16 = 0 \Rightarrow \lambda = -4, -4$

$$\therefore y = c_1 e^{-4x} + c_2 x e^{-4x}$$

case III, $a^2 - 4b < 0$

$$\Rightarrow \quad \lambda_1 = -\frac{1}{2}a + i\omega, \quad \lambda_2 = -\frac{1}{2}a - i\omega, \quad \omega = \sqrt{b - \frac{1}{4}a^2}$$

$$\Rightarrow y_1 = e^{(-\frac{1}{2}a + i\omega)x}, \quad y_2 = e^{(-\frac{1}{2}a - i\omega)x}$$
 complex

real solution is desired \Rightarrow $y = c_1 y_1 + c_2 y_2$

$$= c_1 (e^{-\frac{1}{2}ax} e^{i\omega x}) + c_2 (e^{-\frac{1}{2}ax} e^{-i\omega x})$$

$$= e^{-\frac{1}{2}ax} [c_1 (\cos \omega x + i \sin \omega x) + c_2 (\cos \omega x - i \sin \omega x)]$$

$$= e^{-\frac{1}{2}ax} [(c_1 + c_2) \cos \omega x + i(c_1 - c_2) \sin \omega x]$$

$$= e^{-\frac{1}{2}ax} [A \cos \omega x + B \sin \omega x] \quad A, B \quad \text{arbitrary constants}$$

$$\Re$$
 Euler's formula $e^{i\theta} = \cos\theta + i\sin\theta$

$$z = x + iy$$
 \Rightarrow $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$

Example:
$$y''+2y'+5y=0$$
, $y(0)=1$, $y'(0)=5$

Let $y = e^{\lambda x}$ \Rightarrow characteristic equation $\Rightarrow \lambda^2 + 2\lambda + 5 = 0$

$$\Rightarrow \lambda = -1 \pm 2 i \Rightarrow y(x) = e^{-x} (A\cos 2x + B\sin 2x)$$

I.C.
$$y(0) = 1 \Rightarrow 1 = A$$

 $y'(0) = 5 \Rightarrow 5 = -A + 2B \Rightarrow B = 3$

$$\Rightarrow y(x) = e^{-x}(\cos 2x + 3\sin 2x)$$

2.3 Differential Operators

D: denote differentiation with respect to x $D = \frac{d}{dx}$

i.e.
$$Dy = y' = \frac{dy}{dx}$$
 D: operator

second derivative
$$D(D y) = D^2 y = D y' = y''$$

$$D = y', \quad D^2 = y'', \quad D^3 = y''', \dots$$

combination: $L = p(D) = D^2 + aD + b$ second order linear differential operator

$$\Rightarrow$$
 $L(y) = (D^2 + aD + b)y = y'' + ay' + b$

L: linear operator $\Rightarrow L(\alpha y + \beta W) = \alpha L(y) + \beta L(W)$

Consider
$$y''+ay'+by=0 \Rightarrow L(y)=p(D)(y)=0$$

e.g.
$$L(y) = (D^2 + D - 6)y = y'' + y' - 6y = 0$$

try solution $y = e^{\lambda x}$

since
$$D[e^{\lambda x}] = \lambda e^{\lambda x}$$
, $D^2[e^{\lambda x}] = \lambda^2 e^{\lambda x}$

$$\Rightarrow p(D)[e^{\lambda x}] = (\lambda^2 + a \lambda + b) e^{\lambda x} = p(\lambda) e^{\lambda x} = 0$$

 $\dot{e}^{\lambda x}$ is a solution if and only if $p(\lambda) = 0$

If $p(\lambda) = 0$ \Rightarrow two different roots \Rightarrow two independent solutions

 \Rightarrow a double root \Rightarrow only one solution

to obtain the second solution, differentiate $p(D)[e^{\lambda x}] = p(\lambda) e^{\lambda x}$

with respect to λ

$$\Rightarrow p(D)[x e^{\lambda x}] = p'(\lambda) e^{\lambda x} + p(\lambda) x e^{\lambda x}$$
(A)

for a double root $\Rightarrow p'(\lambda) = p(\lambda) = 0$

$$\Rightarrow$$
 (A) = 0 \Rightarrow $p(D)[x e^{\lambda x}] = 0 \Rightarrow x e^{\lambda x}$ is also a solution

 $\therefore p(D)[e^{\lambda x}] = p(\lambda) e^{\lambda x} \quad p(D) \text{ can be treated just like an algebraic}$ quantity

Example:
$$p(D) = D^2 + D - 6$$
 Solve $p(D)y = 0$

:
$$D^2 + D - 6 = (D + 3)(D - 2)$$
, by definition $(D-2)y = y'-2y$

$$\Rightarrow (D+3)(D-2)y = (D+3)[y'-2y] = y''-2y'+3y'-6y = y''+y'-6y$$
 factorization is permissible

the solutions are
$$(D+3)y = 0$$
 $y = e^{-3x}$
 $(D-2)y = 0$ $y = e^{2x}$

$$D^2 + D - 6 = (D+3)(D-2) = (D-2)(D+3)$$

Note:1. Factors of a differential operator with constant coefficient commute.

2. Differential operators with variable coefficient generally do not commute.

such as
$$(D+x)(D-x)$$
 or $[D+f(x)]D+g(x)\ne [D+g(x)]D+f(x)$

Example:
$$y = 3x^2 + 2x$$

 $(D+x)Dy \neq D(D+x)y$
 $6x^2 + 2x + 6 \neq 9x^2 + 4x + 6$

2.4 Mass-Spring System (free oscillations of undamped system)

Fig. 39. Mechanical system under consideration

(b) Hooke's law: spring force =- kS_0 , gravity force = + mgSystem in equilibrium \rightarrow spring force + gravity force=0

$$\rightarrow kS_0 = mg$$

(c) : note m in motion

spring force: $-k(y+S_0)$ gravity force = +mg

the net force applied at m is $-k(y+S_0) + mg = -ky$

the mass will be accelerated by the force

Newton's second law: F = ma

Since the displacement is $y \rightarrow$ the acceleration is $\frac{d^2 y}{dt^2} = y''$

 $\therefore -ky = m \cdot \frac{d^2 y}{dt^2} \Rightarrow my'' + ky = 0 \text{ (free vibration without damping)}$

$$\Rightarrow$$
 $y'' + \frac{k}{m}y = 0$ set $y = e^{\lambda t}$

$$\Rightarrow \lambda^2 + \frac{k}{m} = 0 \Rightarrow \lambda = \pm \sqrt{\frac{k}{m}} i = \pm \omega_0 i$$

 $\Rightarrow y = A \cos \omega_0 t + B \sin \omega_0 t$ harmonic motion

or
$$y = C\cos(\omega_0 t - \delta)$$
, $C = \sqrt{A^2 + B^2}$, $\tan \delta = \frac{B}{A}$

 \Rightarrow It is a harmonic motion.

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 (rad/sec) is a special characteristic for the system,

 $\frac{\omega_0}{2\pi}$: natural frequency

To solve A and B, the initial conditions

y(0): initial displacement

and

y'(0): initial velocity

should be given.

Damped system:

Damped force:

- 1. direction opposite to the instantaneous motion
- 2. the magnitude is assumed to be proportional to velocity

damping force =
$$-c \frac{dy}{dt}$$
 c : damping constant

net force applied on m is

$$-k(y+S_0) - c\frac{dy}{dt} + mg = -ky - c\frac{dy}{dt}$$
 net force

Newton's second law:

$$-ky - c\frac{dy}{dt} = m\frac{d^2y}{dt^2} \implies my'' + cy' + ky = 0$$

Governing equation of free vibrating system with damping

Characteristic equation:
$$\lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0$$

$$\lambda_{1,2} = -\frac{c}{2m} \pm \frac{1}{2m} \sqrt{c^2 - 4mk} = -\alpha \pm \beta$$

where
$$\alpha = \frac{c}{2m}$$
, $\beta = \frac{1}{2m} \sqrt{c^2 - 4mk}$

Case I: $c^2 - 4mk > 0 \implies \text{overdamping}$

$$\lambda_1, \lambda_2$$
 real distinct roots \Rightarrow $y(t) = c_1 e^{-(\alpha - \beta)t} + c_2 e^{-(\alpha + \beta)t}$ not oscillate

Fig. 42. Typical motions (7) in the overdamped case (a) Positive initial displacement (b) Negative initial displacement

Case II: critical damping. $c^2 - 4mk = 0 \implies \beta = 0, \ \lambda_1 = \lambda_2 = -\alpha$ $\implies y(t) = (c_1 + c_2 t)e^{-\alpha t} \quad \text{not oscillate}$ $c_c = \sqrt{4mk} = 2\sqrt{mk} : \text{critical damping}$

Case III: underdamping, $c^2 - 4mk < 0 \implies \beta = i \omega^*$ a pure imaginary value

$$\omega^* = \frac{1}{2m} \sqrt{4mk - c^2} = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}} = \sqrt{{\omega_0}^2 - {\alpha}^2}, \quad \alpha = \frac{c}{2m}$$

$$\therefore \lambda_1 = -\alpha + i \, \omega^* \qquad \qquad \lambda_2 = -\alpha - i \, \omega^*$$

$$\therefore y(t) = e^{-\alpha t} (A \cos \omega^* t + B \sin \omega^* t)$$

or
$$y(t) = Ce^{-\alpha t}\cos(\omega^* t - \delta)$$

 $Ce^{-\alpha t}$: damped amplitude

$$\omega^* = \sqrt{{\omega_0}^2 - {\alpha}^2}$$
 quasi-frequency(damped natural frequency)

 ω_0 : (undamped) natural frequency

Fig. 44. Damped oscillation in Case III [see (10)]

From the graph, the maximum and minimum occur at t_n for which

$$\cos(\omega^* t - \delta) = \pm 1 \implies \omega^* t_n - \delta = n\pi, \quad n = 0, 1, 2, \dots$$

$$\Rightarrow t_n = \frac{n\pi + \delta}{\omega^*}, \quad n = 0, 1, 2, \cdots$$

$$\Rightarrow t_{n+1} - t_n = \frac{\pi}{\omega^*} \qquad \Rightarrow t_{n+2} = \frac{2\pi}{\omega^*} + t_n$$

time between maximum and minimum

$$y(t_{n+2}) = C e^{-\alpha t_{n+2}} \cos(\omega^* t_{n+2} - \delta)$$
$$= C e^{-\alpha (t_n + \frac{2\pi}{\omega^*})} \cos[\omega^* (t_n + \frac{2\pi}{\omega^*}) - \delta]$$

$$= e^{-\alpha \frac{2\pi}{\omega^*}} C e^{-\alpha t_n} \cos[\omega^* t_n - \delta]$$

$$y(t_{n+2}) = e^{-\alpha \frac{2\pi}{\omega^*}} y(t_n) \implies \frac{y(t_n)}{y(t_{n+2})} = e^{\alpha \frac{2\pi}{\omega^*}}$$

$$\Delta = \ln \left[\frac{y(t_n)}{y(t_{n+2})} \right] = \alpha \frac{2\pi}{\omega^*} = \frac{2\pi \alpha}{\sqrt{{\omega_0}^2 - \alpha^2}} \quad \text{logarithmic decrement}$$

this equation can be used to determine α and then damping coefficient c when k, m are known and $\left[\frac{y(t_n)}{y(t_{n+2})}\right]$ are measured.

2.5 Euler-Cauchy Equation

Equation form:
$$x^2y'' + axy' + by = 0$$
 a and b constants (1)

General form:
$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = g(x)$$

Euler-Cauchy equation (equip-dimensional equation)

Try
$$y = x^m \Rightarrow (1) \Rightarrow x^2 m (m-1) x^{m-2} + a x m x^{m-1} + b x^m = 0$$

$$\Rightarrow x^m [m^2 + (a-1)m + b] = 0$$

$$\therefore m^2 + (a-1)m + b = 0 \text{ auxiliary eq.}$$

Case I: distinct real root $m_1 \neq m_2 \implies y_1(x) = x^{m_1}, \quad y_2(x) = x^{m_2}$

Thus general solution is $y(x) = c_1 x^{m_1} + c_2 x^{m_2}$

Compare:
$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Case II: double root
$$m_1 = \frac{1-a}{2} \implies y_1(x) = x^{\frac{1-a}{2}}$$
, but $y_2 = ?$

Remember: method of reduction prder $y = uy_1$

$$\Rightarrow y_2(x) = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx$$

here
$$p(x) = \frac{a}{x}$$
 (: $y'' + p(x)y' + q(x)y = 0$)

$$\Rightarrow y_2(x) = y_1(x) \int \frac{e^{-\int \frac{a}{x} dx}}{x^{1-a}} dx = y_1(x) \int \frac{e^{-a \ln x}}{x^{1-a}} dx = y_1(x) \int \frac{x^{-a}}{x^{1-a}} dx$$
$$= y_1(x) \int \frac{1}{x} dx = \ln x \ y_1(x) = x^{\frac{1-a}{2}} \ln x$$

the general solution is $y(x) = (c_1 + c_2 \ln x) x^{\frac{1-a}{2}}$

Compare:
$$y(x) = (c_1 + c_2 x) e^{\lambda_1 x}$$

Case III: complex conjugate roots, m_1 , m_2 are complex

Say
$$m_1 = \mu + i\upsilon$$
, $m_2 = \mu - i\upsilon$ $\Rightarrow y_1 = x^{\mu + i\upsilon}$, $y_2 = x^{\mu - i\upsilon}$

General solution is $y = c_1 x^{\mu+i\nu} + c_2 x^{\mu-i\nu}$

$$\therefore x^{i\beta} = \left(e^{\ln x}\right)^{i\beta} = e^{i\beta \ln x} = \cos(\beta \ln x) + i\sin(\beta \ln x)$$

$$\therefore y = c_1 x^{\mu + iv} + c_2 x^{\mu - iv} = x^{\mu} (c_1 x^{iv} + c_2 x^{-iv})$$

$$= x^{\mu} [c_1 \cos(\upsilon \ln x) + c_1 i \sin(\upsilon \ln x) + c_2 \cos(\upsilon \ln x) - c_2 i \sin(\upsilon \ln x)]$$

$$= x^{\mu} [(c_1 + c_2)\cos(\upsilon \ln x) + (c_1 i - c_2 i)\sin(\upsilon \ln x)]$$

the solution is $y(x) = x^{\mu} [A\cos(\upsilon \ln x) + B\sin(\upsilon \ln x)]$

Compare:
$$y(x) = x^{-ax} [A \cos \omega x + B \sin \omega x]$$

Example:

$$x^{2}y''-2.5xy'-2y=0 \implies y=x^{m}, \implies m^{2}-3.5m-2=0$$

$$\Rightarrow m = -0.5, \quad 4 \quad \Rightarrow \quad y = c_1 x^4 + c_2 x^{-0.5} = c_1 x^4 + c_2 \frac{1}{\sqrt{x}}$$

Example:
$$x^2y''-3xy'+4y=0 \implies y=x^m, \implies m^2-4m+4=0$$

$$\Rightarrow m = 2$$
, $2 \Rightarrow y = (c_1 + c_2 \ln x)x^2$

Example:
$$x^2y'' + 7xy' + 13y = 0 \implies y = x^m, \implies m^2 + 6m + 13 = 0$$

$$\Rightarrow m = -3 \pm 2i \Rightarrow y = x^{-3}[A\cos(2\ln x) + B\sin(2\ln x)]$$

2.6 Existence and uniqueness theory

Consider an initial value problem

$$y'' + p(x)y' + q(x)y = 0 (1)$$

$$y(x_0) = K_0$$
, $y'(x_0) = K_1$ (2)

Theorem: If p(x) and q(x) are continuous functions on some open interval I and x_0 is in I, then the initial value problem has unique solution y(x) on the interval I.

Def: Linear dependent

A set of function $f_1(x)$, $f_2(x)$, $f_3(x)$, \cdots $f_n(x)$ is said to be linearly dependent on an interval I if there exist constants $c_1, c_2, \cdots c_n$ not all zero, such that $c_1f_1(x) + c_2f_2(x) + c_3f_3(x) + \cdots + c_nf_n(x) = 0$ for every x in the interval.

Def: Linear independent

A set of function $f_1(x)$, $f_2(x)$, $f_3(x)$, \dots $f_n(x)$ is said to be linearly independent if it is not linearly dependent on an interval.

 \implies If it is linear independent, then all the constants $c_1, c_2, \cdots c_n$ must equal to zero.

Theorem 1: Suppose $f_1(x)$, $f_2(x)$, $f_3(x)$, \cdots $f_n(x)$ possess at least n-1 derivatives. If the determinant

$$\begin{vmatrix} f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\ f_{1}'(x) & f_{2}'(x) & \cdots & f_{n}'(x) \\ \vdots & \vdots & \cdots & \vdots \\ f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x) \end{vmatrix} \neq 0$$

for at least one point in the interval I, then the functions $f_1(x)$, $f_2(x)$, $f_3(x)$, \dots $f_n(x)$ are linearly independent on the interval.

The determinant is denoted by $W(f_1, f_2, f_3, \dots f_n)$ and is called **Wronskian** of the functions.

Theorem 2: Solutions y_1 and y_2 of homogeneous linear differential equation (1) on I are linearly dependent on I if and only if their Wronskian W is zero at some x_0 in I. Furthermore, if W =

0 for $x = x_0$, then W = 0 on I; hence if there is an x_1 in I at which $W \neq 0$, then y_1 and y_2 are linearly independent on I.

Proof: (a) y_1 , y_2 are linear dependent $\rightarrow W = 0$

$$\therefore y_1 \text{ and } y_2 \text{ are linear dependent } \Rightarrow \begin{cases} y_2 = ky_1, & k \neq 0 \\ y_1 = \ell y_2, & \ell \neq 0 \end{cases}$$

$$\therefore W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & ky_1 \\ y_1' & ky_1' \end{vmatrix} = ky_1y_1' - ky_1y_1' = 0$$

(b) $W(y_1, y_2) = 0$ for some $x = x_0 \rightarrow y_1$, y_2 are linear dependent consider the linear system equations

consider the linear system equations
$$\begin{vmatrix}
k_1 y_1(x_0) + k_2 y_2(x_0) = 0 \\
k_1 y_1'(x_0) + k_2 y_2'(x_0) = 0
\end{vmatrix}
k_1, k_2 \text{ unknowns} \qquad (A)$$
the Wronskian is
$$W[y_1(x_0), y_2(x_0)] = \begin{vmatrix}
y_1(x_0) & y_2(x_0) \\
y_1'(x_0) & y_2'(x_0)
\end{vmatrix} = 0$$

the Wronskian is
$$W[y_1(x_0), y_2(x_0)] = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} = 0$$

since it is zero, thus the solution for k_1 and k_2 exist

 k_1 and k_2 not both zero.

If we define a function $y(x) = k_1 y_1(x) + k_2 y_2(x)$

From (A)
$$\Rightarrow y(x_0) = 0$$
, $y'(x_0) = 0$ (B)

Thus the zero function $y(x) \equiv 0$ satisfy the differential equation

y'' + p(x)y' + q(x)y = 0 and the initial conditions (B). also by theorem 1, the solution is unique

$$\Rightarrow k_1 y_1(x) + k_2 y_2(x) \equiv 0 \quad \Rightarrow \quad y_2(x) = -\frac{k_1}{k_2} y_1(x)$$

thus y_1 and y_2 are linearly dependent.

- (c) $W \neq 0$ for some $x = x_1 \rightarrow y_1$, y_2 are linearly independent From (b), if $W(y_1, y_2) = 0$ at $x_0 \rightarrow y_1$, y_2 are linear dependent By (a), y_1 , y_2 are linear dependent $\rightarrow W(y_1, y_2) = 0$
 - \therefore $W \neq 0$ at x_1 in I cannot happen in the case of linear dependence
 - \Rightarrow $W \neq 0$ at x_1 implies linear independence

Theorem 3: If the coefficients p(x) and q(x) of (1) are continuous on some open interval I, then (1) has a general solution on I. (existence)

Theorem 4: Suppose that (1) has continuous coefficients p(x) and q(x) on some open interval I, then every solution y = Y(x) of (1) is of the form

$$Y(x) = \widetilde{c}_1 y_1(x) + \widetilde{c}_2 y_2(x)$$

where $y_1(x)$, $y_2(x)$ form a basis of solution of (1) on I and \tilde{c}_1 , \tilde{c}_2 are suitable constants. (unique)

2.7 nonhomogeneous equations

consider
$$y''+p(x)y'+q(x)y = r(x)$$
 (1)

if
$$r(x) = 0 \implies y'' + p(x)y' + q(x)y = 0$$
 homogeneous eq. (2)

- Theorem 1: (a) The difference of two solution of (1) on some open interval I is a solution of (2) on I.
 - (b) The sum of a solution of (1) on I and a solution of (2) on I is a solution of (1) on I.

Proof: (a)
$$y''+p(x)y'+q(x)y = r(x) \Rightarrow L(y) = r(x)$$

Let y and \tilde{y} be any solutions of (1)

$$\therefore L(y) = r(x) \text{ and } L(\widetilde{y}) = r(x)$$

$$\therefore L(y - \widetilde{y}) = L(y) - L(\widetilde{y}) = r(x) - r(x) = 0$$

Thus $y - \tilde{y}$ is a solution of (2)

(b) assume y is a solution of (1) and y^* is a solution of (2)

$$L(y + y^*) = L(y) + L(y^*) = r(x) + 0 = r(x)$$

Thus $y + y^*$ is also a solution of (1)

Def: general solution

A general solution of nonhomogeneous eq. (1) is a solution of the form

$$y(x) = y_h(x) + y_p(x) \tag{3}$$

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x)$$
 is a general solution of (2)

 $y_p(x)$: is any solution of (1) containing no arbitrary constants

Example:
$$y''-4y'+3y=10e^{-2x}$$
, $y(0)=1$, $y'(0)=-3$

Characteristic equation of the homogeneous equation

$$\lambda^2 - 4\lambda + 3 = 0 \implies \lambda = 1, \quad 3 \implies y_h = c_1 e^x + c_2 e^{3x}$$

try $y_p(x) = ce^{-2x}$ substitute into original equation.

$$4ce^{-2x} - 4(-2ce^{-2x}) + 3ce^{-2x} = 10e^{-2x}$$

$$\Rightarrow$$
 $c = \frac{2}{3} \Rightarrow y_p = \frac{2}{3}e^{-2x}$

$$\therefore y(x) = y_h + y_p = c_1 e^x + c_2 e^{3x} + \frac{2}{3} e^{-2x}$$
 general solution

$$y(0) = 1 \Rightarrow c_1 + c_2 + \frac{2}{3} = 1$$

$$y'(0) = -3 \Rightarrow c_1 + 3c_2 - \frac{4}{3} = -3$$

$$\Rightarrow c_1 = \frac{4}{3}, \quad c_2 = -1$$

$$\therefore y(x) = \frac{4}{3}e^x - e^{3x} + \frac{2}{3}e^{-2x}$$

Method of undetermined coefficients (Solve y_p)

This method is limited to nonhomogeneous linear equation

- that has constant coefficients
- where r(x) is a constant, polynomial function, exponential function, sine, cosine, or finite sum and products of those functions

Example 1
$$y''-2y'-3y = -5 - - - - - (A)$$

 $y_h = c_1 e^{-x} + c_2 e^{3x}$
Try $y_p = A - - - - - (B)$
Substitute (B) into (A):
 $-3A = -5 \Rightarrow A = \frac{5}{3}$
 $\therefore y_p = \frac{5}{3}$

Example 2
$$y''-2y'-3y = 4x - - - - (A)$$

Try $y_p = Ax + B - - - - - (B)$
Substitute (B) into (A):
 $-2A - 3(Ax + B) = 4x$

$$\Rightarrow \begin{cases} -3A = 4 \\ -2A - 3B = 0 \end{cases} \Rightarrow A = \frac{-4}{3}; B = \frac{8}{9}$$

$$\therefore y_p = -\frac{4}{3}x + \frac{8}{9}$$

Example 3
$$y''-2y'-3y = 6xe^{2x} - - - - - (A)$$

Try $y_p = (Ax + B)e^{2x} - - - - - (B)$
Substitute (B) into (A):
 $4Ae^{2x} + 4(Ax + B)e^{2x} - 2Ae^{2x} + 2(Ax + B)e^{2x} - 3(Ax + B)e^{2x} = 6xe^{2x}$
 $\Rightarrow \{2A - 3B\}e^{2x} - 3Axe^{2x} = 6xe^{2x}$
 $\Rightarrow \begin{cases} -3A = 6 \\ 2A - 3B = 0 \end{cases} \Rightarrow A = -2; B = -\frac{4}{3}$
 $\therefore y_p = -(2x + \frac{4}{3})e^{2x}$

Example:
$$y''-2y'-3y = 4x-5+6xe^{2x}$$

First the associated homogeneous equation $\Rightarrow y''-2y'-3y = 0$
 $\Rightarrow \lambda^2 - 2\lambda - 3 = 0 \Rightarrow m = -1, 3 \Rightarrow y_h = c_1e^{-x} + c_2e^{3x}$
Next: $4x-5$ in $r(x)$ is a polynomial \Rightarrow try $Ax+B$
 $xe^{2x} \Rightarrow x \cdot e^{2x} \Rightarrow$ try (polynomial $Cx+D$) $\cdot e^{2x}$
 \therefore try $y_p(x) = (Ax+B) + (Cx+D) \cdot e^{2x}$
Eq. $\Rightarrow -3Ax-2A-3B-3Cxe^{2x} + (2C-3D)e^{2x} = 4x-5+6xe^{2x}$
 x^0 : $\begin{cases} -2A-3B=-5 & A=-4/3 \\ x: & -3A=4 & \Rightarrow B=23/9 \\ e^{2x}: & 2C-3D=0 & \Rightarrow C=-2 \\ xe^{2x}: & -3C=6 & D=-4/3 \end{cases}$

$$\therefore y(x) = c_1 e^{-x} + c_2 e^{3x} - \frac{4}{3}x + \frac{23}{9} - (+2x + \frac{4}{3})e^{2x}$$

Summary:

$$r(x) \qquad Form \ of \ y_p(x)$$

$$constant \qquad \Rightarrow A$$

$$x^n + c_{n-1}x^{n-1} + \dots + c_1x + c_0 \qquad \Rightarrow K_nx^n + K_{n-1}x^{n-1} + \dots + K_1x + K_0$$

$$cos \omega x \qquad \Rightarrow Acos \omega x + B sin \omega x$$

$$sin \omega x \qquad \Rightarrow Acos \omega x + B sin \omega x$$

$$e^{\gamma x} \qquad \Rightarrow Ae^{\gamma x}$$

$$x^n e^{\gamma x} \qquad \Rightarrow (K_nx^n + K_{n-1}x^{n-1} + \dots + K_1x + K_0)e^{\gamma x}$$

$$e^{\gamma x} sin \omega x \qquad \Rightarrow e^{\gamma x} (Acos \omega x + B sin \omega x)$$

$$e^{\gamma x} cos \omega x \qquad \Rightarrow e^{\gamma x} (Acos \omega x + B sin \omega x)$$

$$x^n sin \omega x \qquad \Rightarrow e^{\gamma x} (Acos \omega x + B sin \omega x)$$

$$\Rightarrow (K_nx^n + K_{n-1}x^{n-1} + \dots + K_1x + K_0) sin \omega x + K_1x + K_2x + K_3x + K_3x + K_1x + K_2x + K_3x + K_3x + K_1x + K_3x + K_3x + K_1x + K_2x + K_3x + K_1x + K_3x + K_3x + K_1x + K_2x + K_3x + K_1x + K_1x + K_2x + K_3x + K_1x + K_2x + K_2x + K_1x + K_2x + K_1x + K_1x + K_2x + K_1x + K_2x + K_1x + K_1x + K_1x + K_2x + K_1x + K_1$$

Example:
$$y''-3y'+2y=e^x$$

Characteristic eq. $\lambda^2-3\lambda+2=0 \implies \lambda=1, 2$
 $y_h(x)=c_1e^x+c_2e^{2x}$
to find y_p , try $y_p(x)=Ae^x$ since $r(x)=e^x$
 $\Rightarrow Ae^x-3Ae^x+2Ae^x=e^x \implies 0=e^x$ that's impossible
Thus $y_p(x)=Ae^x$ is not a solution. Why?
Since $y_p(x)=Ae^x$ is the same as c_1e^x
It is a solution of the homogeneous equation.

*Modification Rule: If a term in your choice for y_p happens to be solution of the homogeneous equation, then multiply your choice of y_p by x (or by x^2 if this solution corresponds to a double root of the characteristic equation of the homogeneous equation).

Example:
$$y''-2y'+y=e^x$$

Characteristic eq. $\lambda^2-2\lambda+1=0 \Rightarrow \lambda=1,1$
 $y_h(x)=c_1e^x+c_2\ x\,e^x$
according to the modification rule $try\ y_p(x)=A\,x^2e^x$

$$\Rightarrow Ax^{2}e^{x} + 4Axe^{x} + 2Ae^{x} - 4Axe^{x} - 2Ax^{2}e^{x} + Ax^{2}e^{x} = e^{x}$$

$$\Rightarrow 2Ae^{x} = e^{x} \Rightarrow A = \frac{1}{2}$$
Thus $y(x) = c_{1}e^{x} + c_{2} x e^{x} + \frac{1}{2}x^{2}e^{x}$

2.10 Variation of parameters

When r(x) in the nonhomogeneous equation is not of the form as mentioned above, the solution of $y_p = ?$

 \Rightarrow variation of parameters [not only for constant coefficients but also for variable coefficients p(x), q(x)]

Consider
$$a_2(x)y''(x) + a_1(x)y'(x) + a_0(x)y(x) = r(x)$$

At first divide by
$$a_2(x) \Rightarrow y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$

This is the standard equation form.

If y_1 and y_2 is the basis solutions of the associated homogeneous equation,

i.e.,
$$y_1''(x) + p(x)y_1'(x) + q(x)y_1(x) = 0$$

 $y_2''(x) + p(x)y_2'(x) + q(x)y_2(x) = 0$
 $\therefore y_h(x) = c_1y_1(x) + c_2y_2(x)$

To get $y_p(x)$, Now replace c_1 and c_2 by the "variable parameters" $u_1(x)$ and $u_2(x) \implies y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ particular solution

If $u_1(x)$ and $u_2(x)$ are determined, then $y_p(x)$ is obtained

$$y_p = u_1 y_1 + u_2 y_2 \quad \Rightarrow \quad y_p' = u_1 y_1' + y_1 u_1' + u_2 y_2' + y_2 u_2' \tag{1}$$

If we make the demand that $u_1(x)$ and $u_2(x)$ be functions of which

$$y_1 u_1' + y_2 u_2' = 0 (2)$$

then (1)
$$\Rightarrow y_p' = u_1 y_1' + u_2 y_2'$$
 $\therefore y_p'' = u_1 y_1'' + y_1' u_1' + u_2 y_2'' + u_2' y_2'$

hence y''(x) + p(x)y'(x) + q(x)y(x)

$$= u_1 y_1" + u_1' y_1' + u_2 y_2" + u_2' y_2' + pu_1 y_1' + pu_2 y_2' + qu_1 y_1 + qu_2 y_2$$

$$= u_1 (y_1" + py_1' + qy_1) + u_2 (y_2" + py_2' + qy_2) + u_1' y_1' + u_2' y_2' = f(x)$$

i.e., $u_1(x)$ and $u_2(x)$ must be functions that also satisfy

$$u_{1}' y_{1}' + u_{2}' y_{2}' = f(x)$$
(2) & (3)
$$y_{1}u_{1}' + y_{2}u_{2}' = 0$$

$$u_{1}' y_{1}' + u_{2}' y_{2}' = f(x)$$

by Cramer's Rule:

$$u_{1}' = \frac{\begin{vmatrix} 0 & y_{2} \\ f(x) & y_{2}' \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2} \end{vmatrix}} = \frac{-y_{2}f(x)}{W(y_{1}, y_{2})} \qquad u_{2}' = \frac{\begin{vmatrix} y_{1} & 0 \\ y_{1}' & f(x) \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2} \end{vmatrix}} = \frac{y_{1}f(x)}{W(y_{1}, y_{2})}$$

$$\therefore u_{1} = \int \frac{-y_{2}f(x)}{W(y_{1}, y_{2})} dx \qquad u_{2} = \int \frac{y_{1}f(x)}{W(y_{1}, y_{2})} dx$$

$$\Rightarrow y_{p}(x) = u_{1}(x)y_{1}(x) + u_{2}(x)y_{2}(x)$$

Example:
$$y'' + 2y' + y = \frac{e^{-x}}{x}$$

 $y_h = c_1 e^{-x} + c_2 x e^{-x}$ $y_1 = e^{-x}$, $y_2 = x e^{-x}$
 $W(y_1, y_2) = e^{-2x}$

$$\therefore u_1 = \int \frac{-y_2 f(x)}{W(y_1, y_2)} dx = \int \frac{-x e^{-x} \frac{e^{-x}}{x}}{e^{-2x}} dx = \int (-1) dx = -x$$

$$u_2 = \int \frac{y_1 f(x)}{W(y_1, y_2)} dx = \int \frac{e^{-x} \frac{e^{-x}}{x}}{e^{-2x}} dx = \int (\frac{1}{x}) dx = \ln|x|$$

$$\Rightarrow y_p(x) = -x e^{-x} + x e^{-x} \ln|x|$$

$$\therefore y = y_h + y_p = c_1 e^{-x} + c_2 x e^{-x} + x e^{-x} \ln|x|$$

2.8 Forced Oscillations

Free motion (no applied force)

$$my'' + cy' + ky = 0$$

inertia force damping force spring force

Forced motion (force applied on the system)

$$my'' + cy' + ky = r(t)$$

r(t): input, driving force

y(t): output, response of the system to the driving force

If $r(t) = F_0 \cos \omega t$

$$\Rightarrow my'' + cy' + ky = F_0 \cos \omega t \tag{1}$$

Solve: y_h is known in section 2.5 $\Rightarrow y_h(t) = Ce^{-\alpha t}\cos(\omega^* t - \delta)$ y_p is assuming of the form $y_p(t) = a\cos\omega t + b\sin\omega t$

$$(1) \Rightarrow \left[(k - m\omega^{2})a + \omega cb \right] \cos \omega t + \left[-\omega ca + (k - m\omega^{2})b \right] \sin \omega t = F_{0} \cos \omega t \Rightarrow \begin{cases} \left[(k - m\omega^{2})a + \omega cb \right] = F_{0} - \omega ca + (k - m\omega^{2})b = 0 \end{cases} a = F_{0} \frac{k - m\omega^{2}}{(k - m\omega^{2})^{2} + \omega^{2}c^{2}}, \quad b = F_{0} \frac{\omega c}{(k - m\omega^{2})^{2} + \omega^{2}c^{2}}$$

 $\therefore k/m = \omega_0^2$: natural frequency of the system (undamped)

$$\Rightarrow a = F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}, \quad b = F_0 \frac{\omega c}{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}$$

$$\Rightarrow y(t) = C e^{-\alpha t} \cos(\omega^* t - \delta) +$$

$$F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 c^2} \cos \omega t + F_0 \frac{\omega c}{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 c^2} \sin \omega t \quad (2)$$

Case I: undamped forced oscillation

If
$$c = 0$$
 and assume that $\omega_0^2 \neq \omega^2$
then $\alpha = 0$, $b = 0$, $\omega_0^* = \omega_0$
(2) $\Rightarrow y(t) = C\cos(\omega_0 t - \delta) + \frac{F_0}{m(\omega_0^2 - \omega^2)}\cos\omega t$ (3)

the maximum amplitude of
$$y_p$$
 is $a_0 = \frac{F_0}{m(\omega_0^2 - \omega^2)} = \frac{F_0}{k} \frac{1}{1 - (\omega/\omega_0)^2}$

If $\omega = \omega_0 \Rightarrow a_0 \uparrow$ tend to infinity

This phenomenon of large oscillations by matching the input and the natural frequency is known as "resonance"

$$\bigstar$$
 when $\omega = \omega_0$ i.e. at resonance, (1) \Rightarrow $y'' + \omega_0^2 y = \frac{F_0}{m} \cos \omega_0 t$

One should try $y_p = t(a\cos\omega_0 t + b\sin\omega_0 t)$

(Since $y_h = c_1 \cos \omega_0 \ t + c_2 \sin \omega_0 t$)

$$\Rightarrow a = 0, \quad b = \frac{F_0}{2m\omega_0}$$

$$\therefore y_p = \frac{F_0}{2m\omega_0} t \sin \omega_0 t \quad \text{as} \quad t \to \infty, \ y_p \to \infty \quad \Rightarrow \text{pure resonance}$$

★ If c = 0 and $\omega_0^2 \neq \omega^2$ but ω very close to ω_0 and assume initially rest, i.e., y(0) = 0, y'(0) = 0.

Then (3)
$$\Rightarrow y(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t)$$

= $\frac{2F_0}{m(\omega_0^2 - \omega^2)} \left(\sin \frac{\omega + \omega_0}{2} t \sin \frac{\omega_0 - \omega}{2} t \right)$

If let $\omega_0 - \omega = 2\varepsilon$, ε : small, $\omega_0 \approx \omega$

$$y(t) \approx \frac{2F_0}{m(\omega_0 + \omega)(\omega_0 - \omega)} \left(\sin \frac{\omega + \omega_0}{2} t \sin \frac{\omega_0 - \omega}{2} t \right)$$

$$\cong \frac{F_0}{2m\varepsilon\omega_0} (\sin\omega_0 t \sin\varepsilon t) \quad \text{"beating"}$$

Fig. 59. Forced undamped oscillation when the difference of the input and natural frequencies is small ("beats")

Case II: damped forced oscillation ($c \neq 0$)

$$(2) \Rightarrow y = y_h + y_p$$

$$y_h(t) = e^{-\alpha t} (A\cos\omega^* t + B\sin\omega^* t)$$

transient solution

$$y_p = F_0 \frac{m(\omega_0^2 - \omega^2)}{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 c^2} \cos \omega t + F_0 \frac{\omega c}{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 c^2} \sin \omega t$$
(4) steady state solution

in undamped case, the amplitude of $y_p \to \infty$, as $\omega \to \omega_0$ in damped case, the amplitude of y_p is finite as $\omega \to \omega_0^*$

Amplitude of y_p :

(4) in form of
$$y_p(t) = C^* \cos(\omega t - \eta)$$

where
$$C^* = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + \omega^2 c^2}}$$
, $\tan \eta = \frac{\omega c}{m(\omega_0^2 - \omega^2)}$

the maximum of C^* occurs at $\frac{dC^*}{d\omega} = 0$ $\Rightarrow \left[-2m^2(\omega_0^2 - \omega^2) + c^2 \right] \omega = 0$

$$\Rightarrow \omega = 0 \quad or \quad \omega = \sqrt{\omega_0^2 - \frac{c^2}{2 m^2}} \quad \Leftarrow \omega_{\text{max}}$$

if
$$c^2 > 2m^2\omega^2 \implies no \ solution \implies C^* \ decrease (no \ maximum)$$

if $c^2 \le 2m^2\omega^2 \implies \omega_{\max} \ exist \implies C^*_{\max} = \frac{2mF_0}{c\sqrt{4m^2\omega_0^2 - c^2}}$
 $c \ decrease \implies C^*_{\max} \ increase$

Note:
$$\begin{cases} \omega_{\text{max}} = \sqrt{\omega_0^2 - \frac{c^2}{2m^2}} & \omega_{\text{max}} & \omega_0 \end{cases} \longrightarrow \omega$$

$$\omega^* = \sqrt{\omega_0^2 - \frac{c^2}{4m^2}}$$

In general $\omega_0, \omega^*, \omega_{\max}$ are very close to each other.

$$\begin{split} \frac{C^*}{F_0} &= \frac{1}{\sqrt{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 c^2}} = \frac{1}{m \omega_0^2 \sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + \frac{\omega^2 c^2}{m^2 \omega_0^4}}} \\ &= \frac{1}{k \sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + 4 \left(\frac{\omega}{\omega_0} \frac{c}{c_c}\right)^2}}, \end{split}$$

Where
$$c_c = 2\sqrt{km} \Rightarrow c_c^2 = 4km = 4m^2\omega_0^2$$

The magnification factor is defined as:

magnification ratio
$$\frac{C^*}{F_0/k} = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + \left(2\frac{\omega}{\omega_0}\frac{c}{c_c}\right)^2}}$$

It means (dynamic displacement) / (static displacement amplitude).

Fig. 60. Amplification C^*/F_0 as a function of ω for m=1, k=1, and various values of the damping constant c

phase angle:

$$\tan \eta = \frac{\omega c}{m(\omega_0^2 - \omega^2)}, \quad \eta : \text{phase angle, since } y_p(t) = C^* \cos(\omega t - \eta)$$

$$\omega < \omega_0 \Rightarrow \tan \eta > 0 \Rightarrow \eta < \frac{\pi}{2}$$

$$\omega > \omega_0 \Rightarrow \tan \eta < 0 \Rightarrow \eta > \frac{\pi}{2}$$

$$\omega = \omega_0 \Rightarrow \tan \eta \to \infty \Rightarrow \eta = \frac{\pi}{2}$$

Fig. 61. Phase lag η as a function of ω for m=1, k=1, thus $\omega_0=1$, and various values of the damping constant c

2.9 Electric Circuits

Fig. 63. RLC-circuit

Kirchhoff's law: $LI'+RI + \frac{1}{C}\int Idt = E_0 \sin \omega t$

Differentiate with respect to t

$$LI'' + RI' + \frac{I}{C} = E_0 \omega \cos \omega t$$

compare: $my'' + cy' + ky = F_0 \cos \omega t$

Electric circuit mass-spring system
Inductance L \Leftrightarrow mass mResistance R \Leftrightarrow damping constant cReciprocal of capacitance 1/C \Leftrightarrow spring constant kElectromotive force $E_0\omega\cos\omega t$ \Leftrightarrow driving force $F_0\cos\omega t$ Current I \Leftrightarrow displacement g

The phenomenon is the same as previous section

Complex method for particular solution

Consider
$$LI''+RI'+\frac{I}{C}=E_0\omega\cos\omega t$$
 (1)

Since $\cos \omega t$ is the real part of $e^{i\omega t}$

(1)
$$\Rightarrow$$
 complex equation : $LI'' + RI' + \frac{I}{C} = E_0 \omega e^{i\omega t}$ (2)

the real part of the particular solution of (2) is the solution of (1).

Assume $I = Ke^{i\omega t}$

(2)
$$\Rightarrow (-\omega^2 L + i\omega R + \frac{1}{C})Ke^{i\omega t} = E_0\omega e^{i\omega t}$$

$$\Rightarrow K = \frac{E_0}{-(\omega L - \frac{1}{\omega C}) + iR} = \frac{E_0}{-S + iR} = \frac{-E_0(S + iR)}{R^2 + S^2}$$
where $S = \omega L - \frac{1}{\omega C}$

$$\therefore I = Ke^{i\omega t} = \frac{-E_0}{R^2 + S^2} (S + iR) (\cos \omega t + i\sin \omega t)$$
the solution is the real part of $I = \frac{-E_0}{R^2 + S^2} (S\cos \omega t - R\sin \omega t)$

If the input at right hand side is $\sin \omega t$, then the solution will be imaginary part of I.