Statistics and Operations Research

Undergraduate Programmes

Modules

First year

SSTS000: Descriptive	Credits: 24	Co-requisite / Prerequisite:
Statistics (ECP)		

Content:

- Definitions and concepts.
- Sources and types of data.
- Organizing and summarizing data; Descriptive statistics.
- Elementary probability theory.
- Counting techniques: Permutations and combinations.
- Random variables and probability distributions: Bernoulli, Binomial, Poisson and
 Normal distributions

SSTB000: Introduction to	Credits: 24	Co-requisite / Prerequisite:
Statistical Inference (ECP)		

- Sampling distributions: t, F and Chi-square distributions.
- Central Limit Theorem.
- Estimation: point and interval; Confidence Interval for the mean, proportion and variance.
- Test of hypotheses: Tests for the mean, proportion and variance.
- Inferences about differences in two means and two proportions; One-way ANOVA.

- Chi-square tests. Simple linear regression and correlation.
- Time series analysis. Index numbersInformation literacy

SSTS011: Introduction to	Credits: 12	Co-requisite / Prerequisite:
Statistics		

- Definitions and concepts.
- Sources and types of data.
- Organizing and summarizing data; Descriptive statistics.
- Elementary probability theory.
- Counting techniques: Permutations and combinations.
- Random variables and probability distributions: Bernoulli, Binomial, Poisson and Normal distributions

SSTA012: Introduction to	Credits: 12	Co-requisite / Prerequisite:
Statistical Inference		

- Sampling distributions: t, F and Chi-square distributions.
- Central Limit Theorem.
- Estimation: point and interval; Confidence Interval for the mean, proportion and variance.
- Test of hypotheses: Tests for the mean, proportion and variance.
- Inferences about differences in two means and two proportions; One-way ANOVA.
- Chi-square tests. Simple linear regression and correlation.
- Time series analysis. Index numbers.

Second year

SSTA021: Theory of	Credits: 20	Co-requisite / Prerequisite:
Distributions		

Content:

- Basic probability concepts.
- Theory of discrete and continuous probability distributions.
- Expected values and MGF.
- Special discrete and continuous probability distributions: Bernoulli, Binomial,
 Hypergeometric, Geometric, Poisson and Negative Binomial, Uniform, Gamma,
 Exponential, Weibull, Pareto and Normal distributions.
- Theory of multivariate discrete and continuous distributions, marginal and conditional distributions.
- Covariance and correlation.
- Theory of conditional expectation and conditional variance.

Distributions of random functions: distribution function, transformation and MGF techniques

SSTA022: Statistical	Credits: 20	Co-requisite / Prerequisite:
Inference		

- Convergence and limiting distribution, Law of large numbers and Central limit theorem with applications.
- Sampling distributions
- Estimations: Point and Interval estimation
- Methods of finding point estimators.

- Criteria for evaluating estimators. Confidence intervals: pivotal quantity method.
- Theory of hypothesis testing: MP and UMP tests, Generalized likelihood ratio tests.
- Application to normal populations.

SSOA021: Introduction to	Credits: 20	Co-requisite / Prerequisite:
Linear Programming		

- Linear Programming Models: Graphical approach; the Simplex Method; the Big-M-method; the two-phase method.
- Concept of duality and duality theorem.
- Transportation model.
- Assignment problems.
- Network problems.

SSOA022: Game and	Credits: 20	Co-requisite / Prerequisite:
Decision Theory		

Content:

- Game Theory: Rectangular games; Graphical solution procedure; Algebraic technique;
 Solution by LP method.
- Decision Theory: Decision rules; Decision making without probabilities; Decision making with Probabilities; Decision Analysis with additional information; Utility; Decision Trees.

Third year

SSTA031: Time Series	Credits: 16	Co-requisite / Prerequisite:
Analysis		

- The classical approach to time series analysis: Decomposition of time series.
- Smoothing methods.
- Forecasting.
- Properties of stochastic time series models
- Stationary series.
- Autocorrelation and partial autocorrelation functions.
- Purely random, moving average and autoregressive processes.
- The Box-Jenkins approach: ARMA and ARIMA models.
- Case studies.

SSTB031: Applied Linear	Credits: 16	Co-requisite / Prerequisite:
Regression		

Content:

- Simple Linear Regression.
- Review of Matrix Algebra.
- Multiple Linear Regression.
- Model Adequacy Checking.
- Variable Selection and Model Building.

SSTA032: Design and	Credits: 16	Co-requisite / Prerequisite:
Analysis of Experiments		

- Definitions of basic terminologies; Design of experiments.
- Design and analysis of: Completely randomized, Randomized block, Latin square and Factorial designs.
- Multiple comparisons of treatment means.
- Analysis of covariance.

SSTB032: Multivariate	Credits: 16	Co-requisite / Prerequisite:
Statistical Methods		

- Review of matrix theory.
- Multivariate distributions: Multivariate normal distribution and its properties;
 Inference about multivariate means; Hotelling's T2.
- Multivariate analysis of variance and regression.
- Introduction to data reduction.

SSTC032: Sampling Theory	Credits: 16	Co-requisite / Prerequisite:
Content:		
• Elements of Sampling,		
• Questionnaire Design,		
Simple Random Sampling	5,	
Stratified Random Sampl	ing,	
• Ratio Estimation,		
Difference and Regressio	n Estimators,	
 Systematic Sampling. 		

SSOA031: Statistical Quality	Credits: 16	Co-requisite / Prerequisite:
Control		

- Quality improvement in the modern era;
- Statistical methods useful in quality control;
- Inferences about process quality;

- Basic methods of statistical process control;
- control charts for variables and attributes;
- univariate and multivariate process monitoring and control.

SSOB031: Advanced Linear	Credits: 16	Co-requisite / Prerequisite:
Programming		
Content:		

- Review of Linear Programming Model;
- Algebra of the Simplex Method;
- Geometry of the Simplex Method;
- The two-phase method;
- Duality and sensitivity analysis;
- The Revised Simplex method;
- Case studies

SSOA032: Integer	Credits: 16	Co-requisite / Prerequisite:
Programming		

- Pure and Mixed Integer Programming models;
- Problem formulation;
- Graphical Solutions / Lattice Points;
- Cutting Plane Algorithms;
- Branch-and-Bound Algorithms;
- Case Studies

SSOB032: Dynamic	Credits: 16	Co-requisite / Prerequisite:
Programming		

- The Stagecoach problem;
- Characteristics of a Dynamic Programming Problem;
- Deterministic and Probabilistic Dynamic Programming Problems;
- Case studies.

- Basic Structure of Queuing Models;
- Examples of Real Queuing Systems;
- The Role of Exponential Distribution;
- The Birth and Death Process;
- The M/M/S Model and its Variations;
- Queuing Models Involving Non-Exponential Distributions.