8.3절~8.5절

11주1강 가설과 검정2

복습

가설검정

- □ **가설검정**이란 모집단에 대한 어떤 가설을 설정한 뒤에 표본관찰을 통하여 그 가설의 채택 여부를 결정하는 분석방법이다.
- □ 일반적으로 통계분석에서는 모집단의 모수에 대하여 관심이 있으므로 **가설은 모수에 대하여 설정**한다.

가설설정

- □ 가설검정에서 가설은 귀무가설 (H_0) 과 대립가설 (H_1) 로 설정한다.
- ① 귀무가설: "모수가 특정한 값이다", "두 모수의 값이 같다" 등과 같이 간단하고 구체적인 경우를 귀무가설로 설정한다.
- ② 대립가설: "모수가 특정한 값이 아니다", "한 모수의 값이 다른 모수의 값보다 크다", "두 모수의 값이 다르다" 등과 같이 모수에 대한 관심의 영역 중에서 귀무가설로 지정되지 않은 모든 경우를 포괄적으로 대립가설로 설정한다.
- □ **가설검정**이란 두 가설 H_0 와 H_1 중에서 하나를 선택하는 과정이므로 H_0 를 채택(accept)하면 H_1 을 기각(reject)하게 되고 H_0 를 기각하면 H_1 을 채택하게 된다.
- □ 따라서 **가설검정이란 '두 가설 중에서 귀무가설 H₀ 를 채택하든지 또는 기각하는 과정'**이라 고 이해할 수 있다.

검정통계량

- □ 검정통계량이란 가설검정에서 관찰된 표본으로부터 구하는 통계량으로 분포가 가설에서 주어지는 모수에 의존한다.
- □ 귀무가설이 옳다는 전제하에서 구한 검정통계량의 값이 나타날 가능성이 크면 귀무가설을 채택하고 나타날 가능성이 작으면 귀무가설을 기각한다.

유의수준

유의수준 α란 귀무가설이 옳은데도 불구하고 이를 기각하는 확률의 크기를 말하며 검정통
 계량을 구하는 것과는 무관하게 검정을 실시하는 사람의 판단에 따라 결정한다.

기각역

- 기각역이란 가설검정에서 유의수준 α가 정해졌을 때, 검정통계량의 분포에서 이 유의수준의 크기에 해당하는 영역을 말하는데, 검정통계량의 분포에서 이 영역의 위치는 대립가설의 형태에 따라 다르다.
- \square 기각역 C 와 유의수준 α 의 관계

유의수준 α ; 귀무가설 하에서 검정통계량이 기각역 C에 속할 확률이다.

$$P_r(T(X) \in C \mid H_0) = \alpha$$

대립가설과 기각역, $\alpha = 0.05$

- 검정통계량의 분포에서 유의수준 α에 의해 기각역의 크기가 결정되며, 기각역의 위치는 대립가설
 H_1 의 형태에 의해 결정된다.
- 대립가설의 형태는 가설검정의 목적에 의하여 결정되는데 가설검정은 대립가설의 형태에 따라 양측검정과 단측검정으로 나누어지고, 단측검정은 다시 왼쪽 단측검정과 오른쪽 단측검정으로 분류된다.
- ① 양측검정 귀무가설이 "모수가 특정값이다"라고 할 때, 대립가설이 "모수가 특정값이 아니다"라고 주어지는 경우로 귀무가설과 대립가설은 다음과 같이 표현할 수 있다.

 $H_0: \mu = \mu_0; \mu_0$ 은 고정된 상수 $H_1: \mu \neq \mu_0$ 기각역 $C = \{T(X) \leq -C_1$ 또는 $T(X) \geq C_1\}$

② 왼쪽 단측검정 귀무가설이 "모수가 특정값이다"라고 할 때, 대립가설 H_1 이 "모수가 μ_0 보다 작다"로 주어지는 경우로 귀무가설과 대립가설을 다음과 같이 표현할 수 있다.

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$
기각역 $C = \{T(X) \le C_2\}$

③ 오른쪽 단측검정 귀무가설이 "모수가 특정값이다"라고 할 때, 대립가설 H_1 이 "모수가 μ_0 보다 크다"로 주어지는 경우로 귀무가설과 대립가설을 다음과 같이 표현할 수 있다.

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$
기각역 $C = \{T(X) \ge C_3\}$

단일모평균 μ 의 검정(t-검정)

- □ 단일집단의 모평균 μ 에 대한 검정은 모집단의 분포가 평균 μ 와 분산 σ^2 을 갖는 정규분포 $N(\mu, \sigma^2)$ 을 따른다는 것을 전제한다고 할 수 있다. 검정을 하기 위하여 추출한 표본을 $(X_1, X_2, ..., X_n)$ 이라고 할 때, $(X_1, X_2, ..., X_n)$ 은 $N(\mu, \sigma^2)$ 으로부터의 확률표본이다.
- ① 가설의 설정
 - (a) 양측검정 : $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$
 - (b) 단측검정 : $H_0: \mu = \mu_0$, $H_1: \mu > \mu_0$ (또는 $\mu < \mu_0$)
 - \rightarrow 여기에서 μ_0 은 구체적으로 주어지는 특정한 값이며 H_1 에 주어지는 세 가지 서로 다른 가설은 가설검정에서 알고자 하는 목적에 따라 결정된다.
- ② 귀무가설 하에서의 검정통계량과 분포

 - (a) σ^2 을 아는 경우 (b) σ^2 을 모르는 경우

(a) σ^2 을 아는 경우

(b) σ^2 을 모르는 경우

$$T(X) = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$T(X) = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$$

$$T(X) = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

- □ [(a) & (b)-(i)] 표준정규분포를 이용하여 검정하는 경우 모분산 σ^2 이 알려져 있는 경우와 σ^2 이 알려져 있지 않으나 표본의 수 n이 이상이면 검정통계량의 분포가 근사적으로 표준정규분포를 따르므로 표준정규분포를 이용하여 검정을 실시한다.
- □ [(b)-(ii)] t-분포를 이용하여 검정하는 경우 모분산 σ^2 이 알려져 있지 않고 표본의 수 n이 30 이하이면 자유도가 n-1인 t-분포를 이용하여 검정을 실시한다.

이 검정에서 검정통계량 T(X)가 자유도 n-1인 t-분포를 따르므로 t-검정이라고 한다.

8.3 두 집단 모평균의 동일성에 대한 검정

두 집단의 모평균의 동질성에 대한 검정

- □ 두 집단의 모평균의 동질성에 대한 검정에 있어서의 전제조건은 '**두 집단이 서로 독립이며 두 집단 모두 정규분포를 따른다**'는 것이다.
- 및 일반적으로 두 집단이 서로 독립이며 각 집단의 평균과 분산이 각각 (μ_1, σ_1^2) 과 (μ_2, σ_2^2) 인 정규분포를 따를 때 두 모평균의 동일성 $(\mu_1 = \mu_2)$ 에 대한 검정은 각 집단에서 '랜덤하게' n_1 과 n_2 개의 표본을 추출하여 실시한다.

표 10-2		두 독립집단의	나 모수와 통계량		
모수와 통계량	모	<u></u>	##0 77	통기	계량
집단	모평균	모분산	표본의 크기	표본평균	표본분산
집단 1	μ_1	σ_1^2	n_1	\overline{X}_1	S_1^2
집단 2	μ_2	σ_2^2	n_2	\overline{X}_2	S_2^2

$$\square \quad \overline{X_1} \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right)$$

$$\square \ \overline{X_2} \sim N\left(\mu_2, \frac{\sigma_2^2}{n_2}\right)$$

$$\Rightarrow \overline{X_1} - \overline{X_2} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

$$\Rightarrow T(X) = \frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

① 가설의 설정

(a) 양측검정 : $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$

(b) 단측검정 : $H_0: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$ (또는 $\mu_1 < \mu_2$)

- ② 귀무가설하에서의 검정통계량의 값과 분포
 - (a) σ_1^2, σ_2^2 이 알려져 있는 경우

$$T(X) = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}} \sim N(0, 1)$$

(a) σ_1^2 , σ_2^2 이 알려져 있지 않는 경우

(i)
$$\sigma_1^2 = \sigma_2^2$$
인 경우 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 이라 할 때, S_1^2, S_2^2 모두 σ^2 의 추정하다. σ^2 의 추정치로 S_1^2 와 S_2^2 의 가중평균 S_p^2 사용.

$$T(X) = \frac{\overline{X_1} - \overline{X_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$T(X) \sim N(0,1), \qquad n_1 + n_2 > 30 인 경우$$

$$T(X) \sim t_{n_1+n_2-2}, \qquad n_1+n_2 \leq 30$$
인 경우

(i)
$$\sigma_1^2 \neq \sigma_2^2$$
인 경우

$$T(X) = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
이며 $T(X)$ 의 분포는 $n_1 + n_2 > 30$ 일 때, $T(X) \sim N(0,1)$ 이다.

- ③ 검정
- □ 검정통계량 T(X)의 분포에서 **가설의 종류(단측검정 또는 양측검정)와 유의수준** α 에 의하여 기각역을 설정한다.
- □ 귀무가설하에서의 검정통계량의 값 *T(X)*가 기각역에 속하면 귀무가설을 기각하고 기각역에 속하지 않으면 귀무가설을 채택한다.

예8-4.

서울시내 남녀 고등학생들의 학력수준에 차이가 있는가를 알아보기 위하여 남녀 고등학생 각 각 100명씩을 임의로 선발한 뒤에 학력고사를 실시하여 다음과 같은 결과를 얻었다.

남학생 : $\overline{X_1}$ = 82점, S_1 = 20점

여학생 : $\overline{X_2} = 78$ 점, $S_2 = 18$ 점

두 집단의 모분산이 동일하다고 할 때 남녀학생들의 학력고사 성적이 차이가 있는지를 검정하라.

(sol)

(1) 가설의 설정 : 남학생 집단의 평균성적을 μ_1 , 여학생 집단의 평균성적을 μ_2 라고 할 때, 두 집단의 평균성적이 동일한가에 대한 검정을 하고자 하므로 양측검정이라고 할 수 있다.

$$H_0: \mu_1 = \mu_2 \ v.s \ H_1: \mu_1 \neq \mu_2$$

(2) 검정통계량과 분포 : $\sigma_1^2 = \sigma_2^2$ 이므로 합동표본분산은 다음과 같이 계산된다.

$$S_P^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{99 \times 400 + 99 \times 324}{100 + 100 - 2} = 362$$

$$S_P = \sqrt{S_P^2} = 19.026$$

따라서 귀무가설하에서 검정통계량의 값은 다음과 같다.

$$T(X) = \frac{\overline{X}_1 - \overline{X}_2}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{82 - 78}{19.026 \sqrt{\frac{1}{100} + \frac{1}{100}}}$$
$$= \frac{4}{2.6907} = 1.487$$

표본의 수는 $n_1 + n_2 = 200 > 30$ 이므로 $T(X) \sim N(0,1)$ 이라고 할 수 있다.

(3) 검정 : 양측검정에서 유의수준 $\alpha = 0.05$ 에 대한 표준정규분포의 기각역은 아래 그림의 빗금 친 부분이고, T(X) = 1.487은 이 기각역에 속하지 않으므로 귀무가설은 기각되지 않는다.

즉, 위의 표본관측결과에 의할 때 남녀 고등학생들의 평균성적은 유의수준 5%하에서 동일하다고 할 수 있다.

[예 8. 4]에서 같이 표본의 크기가 동일한 경우 $(n_1 = n_2 = n)$ 에는 S_p^2 과 T(X)를 다음과 같이 간단하게 구할 수 있다.

$$S_{P}^{2} = \frac{1}{2} (S_{1}^{2} + S_{2}^{2})$$
$$T(X) = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{P} \sqrt{\frac{2}{n}}}$$

예8-5.

두 가지 서로 다른 체중조절약의 체중조절효과를 분석하기 위하여 각각 40명씩 1년간 임상실험한 결과 다음과 같은 자료를 얻었다. 체중조절약 I의 체중조절효과가 체중조절약 II의 효과보다 더 크다고 볼 수 있는지를 5% 유의수준으로 검정하라.

체중조절약	표본크기	표본평균(체중평균감소량)	표본분산
I	40	10kg	4.3kg
II	40	8kg	5.7kg

(sol) 체중조절약 I 과 II의 체중조절효과의 평균과 분산을 각각 다음과 같다고 할 때, 검정을 실시한다.

체중조절약
$$I: \mu_1, \sigma_1^2$$
, 체중조절약 $II: \mu_2, \sigma_2^2$

(1) 가설의 설정 : 체중조절약 l의 효과가 더 큰가(즉, μ_1 이 μ_2 보다 더 큰가)를 알고자 하므로 단측검정이며 H_0 와 H_1 은 각각 다음과 같이 설정된다.

$$H_0: \mu_1 = \mu_2 \ v.s \ H_1: \mu_1 > \mu_2$$

(2) 검정통계량과 분포 : $\sigma_1^2 = \sigma_2^2$ 이라는 조건이 주어지지 않았으므로 귀무가설 하에서의 검정통계량은 다음과 같다.

$$T(X) = \frac{X_1 - X_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \frac{10 - 8}{\sqrt{\frac{4.3}{40} + \frac{5.7}{40}}} = \frac{2}{0.5} = 4.0$$

표본크기 $n_1 + n_2 = 80(>30)$ 이 충분히 크다고 볼 수 있으므로 $T(X) \sim N(0,1)$ 을 따른다고 할 수 있다.

(3) 검정 : 양측검정에서 유의수준 $\alpha = 0.05$ 에 대한 표준정규분포의 기각역은 아래 그림의 빗금 친 부분이고, T(X) = 4은 이 기각역에 속하지 않으므로 귀무가설은 기각된다.

즉, 체중조절약 I의 효과가 더 크다고 볼 수 있다.

예8-6.

두 개의 서로 다른 자동차 제동장치의 성능을 비교하기 위하여 각 제동장치를 10대의 동일모형 자동차에 장착한 후에 80km/hr로 달리다가 제동을 하는 데 필요한 거리(m)를 관측한 결과가 다음과 같다. 두 제동장치의 제동거리의 분포는 동일한 분산 σ^2 을 가지며 정규분포를 따른다고 할 때, 두 제동장치의 성능이 동일한가에 대한 검정을 유의수준 5%하에서 실시하라.

제동장치 1	10.2	10.5	10.3	10.8	9.8	10.6	10.7	10.2	10.0	10.6
제동장치 2	9.8	9.6	10.1	10.2	9.7	9.5	9.6	10.1	9.8	9.9

(sol)

(1) 가설의 설정 : 두 제동장치의 성능이 동일한가를 알고자 하므로 양측검정이며 H_0 와 H_1 은 각각 다음과 같이 설정한다.

$$H_0: \mu_1 = \mu_2 \ v.s \ H_1: \mu_1 \neq \mu_2$$

(2) 검정통계량과 분포: 두 집단으로부터의 표본에 의하여 다음을 구할 수 있다.

$$n_1 = 10$$
, $\overline{X}_1 = 10.37$, $S_1^2 = 0.105$
 $n_2 = 10$, $\overline{X}_2 = 9.83$, $S_2^2 = 0.058$

표본크기가 $n_1 = n_2 = 10$ 이고, 두 집단의 모분산이 동일하므로 합동표본분산과 검정통계량은 다음과 같이 구할 수 있다.

$$S_P^2 = \frac{S_1^2 + S_2^2}{2} = \frac{0.105 + 0.058}{2}$$
$$= 0.0815$$
$$S_P = \sqrt{S_P^2} = 0.285$$

$$T(X) = \frac{\overline{X}_1 - \overline{X}_2}{S_P \sqrt{\frac{2}{n}}} = \frac{10.37 - 9.83}{0.285 \sqrt{\frac{2}{10}}}$$
$$= 4.24$$

T(X)는 자유도가 $n_1 + n_2 - 2 = 18인 t-분포를 따른다.$

(3) 검정 : 유의수준 5%하에서 양측검정에 대한 $t_{(18)}$ 분포의 기각역은 부록V의 [표 4]에 의하여 다음 그림의 빗금친 부분과 같다. T(X) = 4.24가 기각역에 속하므로 귀무가설은 기각된다. 즉, 두 제동장치의 성능이 동일하다고 볼 수 없다.

8.4 짝진표본의 모평균에 대한 검정

- □ 성장환경이 어린이의 지능발달에 영향을 미치는가를 조사하고자 할 때,
- □ 우선 생각할 수 있는 검정방법은 성장환경이 좋은 지역의 어린이 n_1 명과 성장환경이 좋지 않은 지역의 어린이 n_2 명을 임의로 선발해 동일한 지능검사를 실시한 후 지능검사 결과가 차이가 있는가를 분석해 검정 실시한다.
- □ 그러나, 이 경우에 지능검사에 미치는 요인이 환경이 아니라 유전적 요인일 수 있음을 배제하기 어렵다.
- □ 이 문제에 대한 바람직한 접근 방법은 일란성 쌍둥이 n쌍을 선택하여 일정기한 동안 각 쌍둥이를 하나는 좋은 환경에 다른 하나는 좋지 않은 환경에 두는 것이다.

짝진표본의 모평균에 대한 검정

□ n개의 쌍 $(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$ 으로 관측된 표본에서, 관찰값의 차이를 $d_i=x_i-y_i,$ i=1,2,...,n이라고 할 때, 두 집단 평균 μ_X 와 μ_Y 의 동일성에 대한 검정은 $\mu_D=\mu_X-\mu_Y$ 이므로 다음과 같이 실시한다.

표 10-3		찍	진표본의 관칠	캆		
쌍번호	1	2	3	4		n
X	<i>X</i> ₁	X 2	<i>x</i> ₃	X 4		χ_n
Y	уı	y ₂	у3	y 4	•••	Уn
D	d_1	d_2	d_3	d_4	•••	d_n

① 가설 설정

(a) 양측검정 : $H_0: \mu_D = 0$, $H_1: \mu_D \neq 0$

(b) 단측검정 : $H_0: \mu_D = \mu_2$, $H_1: \mu_D > 0$ (또는 $\mu_D < 0$)

② 검정통계량과 분포

두 집단 차이의 평균과 분산을 다음과 같다고 할 때, 귀무가설 검정통계량은 다음과 같다.

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i , S_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$$

$$T(X) = \frac{\overline{d}}{S_d \sqrt{n}}$$

검정통계량 T(X)의 분포는 n에 따라 다음과 같이 나타난다.

$$T(X) \sim N(0, 1), n > 30$$
인 경우, $T(X) \sim t_{n-1}, n \leq 30$ 인 경우이다.

③ 검정

검정통계량 T(X)의 분포에서 **가설의 종류(단측검정 또는 양측검정)와 유의수준 \alpha에 의하여 기각역을 설정**한다.

귀무가설하에서의 검정통계량의 값 T(X)가 **기각역에 속하면 귀무가설을 기각**하고 **기각역에 속하지 않으면 귀무가설을 채택**한다.

예8-7.

□ 두 종류의 타이어(A, B)의 성능을 비교하기 위하여 5대의 자동차를 임의로 선발하여 각 자동차의 뒷바퀴 중에서 한 쪽에는 A타이어를 그리고 다른 한쪽에는 B타이어를 끼우고 500km를 주행한 뒤에 타이어의 마모상태를 조사한 결과가 주어져 있다. 두 타이어의 마모율에 차이가 있는가를 유의수준 5%하에서 검정하라.

0-4	두 타이어			
자동차	타이어 A	EFOIO B	D=A-B	
1	10.6	10.2	0.4	
2	9.4	9.8	-0.4	
3	12.3	11.8	0.5	
4	9.7	9.1	0.6	
5	8.3	8.8	-0.5	

(sol)

(1) 가설의 설정 : 두 타이어의 마모율이 동일한가에 대한 검정이므로 A, B, D의 모평균을 각각 μ_A, μ_B, μ_D 라고 할 때 귀무가설과 대립가설은 각각 다음과 같이 설정할 수 있다.

 $H_0: \mu_D = 0 \ (\stackrel{\triangle}{\to}, \mu_A = \mu_B)$

 $H_1: \mu_0 \neq 0 \ (\stackrel{\scriptstyle \triangleleft}{\leftarrow}, \mu_{\lambda} \neq \mu_0)$

(2) 검정통계량과 분포: 자료에 의하여 D의 표본평균과 표본표준편차는 각각 다음과 같다.

$$\overline{d} = 0.12$$
, $S_d = 0.5263$

귀무가설 하에서의 검정통계량의 값은 다음과 같다.

$$T(X) = \frac{\overline{d}}{S_d/\sqrt{n}} = \frac{0.12}{0.5263/\sqrt{5}} = 0.510$$

쌍의 크기 $n = 5 \le 30$ 이므로 T(X)는 자유도가 n - 1 = 4인 t-분포를 따른다.

(3) 검정 : 유의수준 5%하에서 자유도가 4인 t-분포의 양측검정에 대한 기각역은 부록V의 [표 4]에 의하여 아래 그림의 빗금친 부분과 같다. 귀무가설 하에서의 검정통계량의 값 T(X) = 0.510은 기각역에 속하지 않으므로 귀무가설은 기각되지 않는다. 즉, 5% 유의수준 하에서 두 타이어의 성능은 동일하다고 할 수 있다.

예8-8.

8명의 사람이 한 다이어트 프로그램에 한 달 동안 참석하였는데, 처음 시작할 때와 한 달후 다이어트 프로그램이 끝났을 때 측정한 체중이 다음 표와 같다. 다이어트 프로그램이 체중을 줄이는 효과가 있는지를 5% 유의수준 하에서 검정하라.

표 10−5	다이어트 프로그램 참가자의 체중값					
사람	처음 체중(A)	한 달 후 체중(B)	D = A - B			
1	110	95	15			
2	95	91	4			
3	87	85	2			
4	105	98	7			
5	70	68	2			
6	123	110	13			
7	77	74	3			
8	99	95	4			

(sol)

(1) 가설의 설정 : 체중이 다이어트 프로그램이 끝난 후에 줄어들었는지의 여부에 관심이 있으므로 귀무가설과 대립가설은 각각 다음과 같이 설정할 수 있다.

 $H_0: \mu_D = 0 \ (\stackrel{\triangle}{\hookrightarrow}, \mu_A = \mu_B)$

 $H_1: \mu_D > 0$ (즉, $\mu_A > \mu_B$)

(2) 검정통계량과 분포: 주어진 자료에 의하여 D의 표본평균과 표본 표준편차는 각각 다음과 같이 계산된다.

$$\overline{d} = 6.25$$
, $S_d = 5.06$

따라서 귀무가설 하에서의 검정통계량의 값은 다음과 같이 계산된다.

$$T(X) = \frac{\overline{d}}{S_d/\sqrt{n}} = \frac{6.25}{5.06/\sqrt{8}} = 3.491$$

표본크기 n = 8 < 30이므로 T(X)는 자유도가 n - 1 = 7인 t-분포를 따른다.

(3) 검정 : 5% 유의수준 하에서 자유도가 7 인 t-분포의 오른쪽 단측검정에 대한 기각역은 부록 V의 [표 4]에 의하여 아래 그림의 빗금친 부분과 같다.

귀무가설 하에서의 검정통계량 값 T(X) = 3.901이 기각역에 속하므로 귀무가설은 기각된다. 즉, 다이어트 프로그램이 체중을 줄이는 효과가 있다고 할 수 있다.

8.5 모비율 P에 대한 검정

단일 모비율 P의 검정

- □ 단일 모집단의 특성의 비율 P에 대한 검정에서 n개의 표본을 관찰한 결과 모집단의 특성을 만족하는 경우가 X개라고 할 때 모비율 P가 특성값 P_0 과 같은가에 대한 검정이다.
 - ① 가설의 설정
 - (a) 양측검정 : $H_0: P = P_0, H_1: P \neq P_0$
 - (b) 단측검정 : $H_0: P = P_0, H_1: P > P_0$ (또는 $P < P_0$)
 - ② 귀무가설하에서의 검정통계량의 값과 분포

 $\hat{P} = \frac{X}{n}$ 라 할 때 $\hat{P} \sim N\left(P, \frac{P(1-P)}{n}\right)$ 귀무가설 하에서 검정통계량의 값과 분포는 다음과 같다.

$$T(X) = \frac{\hat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} \sim N(0, 1)$$

③ 검정

검정통계량 T(X)의 분포에서 **가설의 종류(단측검정 또는 양측검정)와 유의수준** α 에 의하여 기각역을 설정한다.

귀무가설 하에서의 검정통계량의 값 T(X)가 **기각역에 속하면 귀무가설을 기각**하고 **기각역에 속하지 않으면 귀무가설을 채택**한다.

예8-9.

한 전구회사에서는 자기 회사 제품의 불량률이 5% 이하라고 주장하였다. 그 주장이 사실인가를 알아보기 위하여 그 회사 제품의 전구 300개를 임의로 선택하여 조사한 결과 10개가 불량품임을 발견하였다. 그 회사의 주장이 타당하다고 볼 수 있는가를 유의수준 5%하에서 검정하라.

(sol)

(1) 가설의 설정 : 모비율 P가 0.05 이하인 경우에 관심이 있으므로 귀무가설과 대립가설은 각각 다음과 같이 설정한다.

 $H_0: P = 0.05$

 $H_1: P < 0.05$

(2) 검정통계량과 분포 : 모비율 P의 추정량의 값과 귀무가설 하에서의 검정통계량의 값은 다음과 같이 계산된다.

$$\hat{P} = \frac{10}{300} = \frac{1}{30} = 0.033$$

$$\hat{P} = \frac{10}{300} = \frac{1}{30} = 0.033$$

$$T(X) = \frac{\hat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{0.033 - 0.05}{\sqrt{\frac{0.05 \times 0.95}{300}}} = -1.35$$

T(X)는 근사적으로 N(0,1)을 따른다.

(3) 검정 : 유의수준 $\alpha = 0.05$ 일 때 왼쪽단측검정에 대한 N(0,1)에서의 기각역은 부록 \square 의 [표 3]에 의하여 아래 그림의 빗금친 부분과 같다.

검정통계량의 값 T(X) = -1.35가 기각역에 속하지 않으므로 귀무가설은 기각되지 않는다. 즉, 위에 주어진 표본관측결과에 의할 때 그 회사제품의 불량률이 5%보다 적다고 할 수 없다.

예8-10.

최근에 한 조사기관에서는 대학졸업자 중에서 약 20%가 자신의 전공을 살릴 수 있는 직장에 입사한다고 발표하였다. 이 발표가 사실인가를 알아보기 위하여 400명의 대학졸업자를 임의로 선발하여 조사한 결과 100명이 전공을 살릴 수 있는 직장에서 일하고 있음을 알 수 있었다. 조사기관의 발표가 타당한가를 5% 유의수준하에서 검정하라.

(sol)

(1) 가설의 설정 : 모비율 P가 20%인가 또는 그와 상당히 다른가에 대하여 관심이 있으므로 H_0 와 H_1 은 각각 다음과 같이 설정할 수 있다.

 $H_0: P = 0.20$

 $H_1: P \neq 0.20$

(2) 검정통계량과 분포: 표본비율과 귀무가설 하에서의 검정통계량 값은 다음과 같이 계산된다.

$$\hat{P} = \frac{100}{400} = 0.25$$

$$T(X) = \frac{\hat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{0.25 - 0.20}{\sqrt{\frac{0.20 \times 0.80}{400}}} = 2.5$$

T(X)은 근사적으로 N(0,1)을 따른다.

(3) 검정 : 유의수준 5%하에서 양측검정에 대한 N(0,1)의 기각역은 부록 V의 [표 3]에 의하여 아래 그림의 빗금친 부분과 같다.

귀무가설 하에서의 검정통계량의 값 T(X) = 2.5가 기각역에 속하므로 귀무가설은 기각된다. 즉 위의 표본관측결과에 의할 때 대학졸업생 중에서 20%가 자기 전공을 살릴 수 있는 직장에 취직한다는 주장을 받아들일 수 없다.

