- **Ex 1** Soit $n \in \mathbb{N}$. Calculer $P_n(X) = (1+X)(1+X^2)(1+X^4)\cdots(1+X^{2^n})$.
- Ex 2 Effectuer les divisions euclidiennes de

a)
$$A = X^6 + 4X^5 + X^4 + X^3 - 2X + 1$$
 par $B = X^2 + 2X - 1$

- b) $A = 4X^3 + X^2$ par B = X + 1 + i
- **Ex 3** Effectuer la division euclidienne de $P=X^4+6X^3+10X^2+3X-6$ par $B=X^2+3X$. En déduire la factorisation de P sur \mathbb{R} .
- **Ex 4** Soient $(p,q) \in \mathbb{N}^2$ et $n \in [0,p+q]$. A l'aide du coefficient de degré n du polynôme $(X+1)^p (X+1)^q$, montrer la formule de Vandermonde : $\sum_{k=0}^n \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}$
- **Ex 5** Soit (P_n) la suite de polynômes définie par $P_0=1$ et $\forall k\in\mathbb{N},\ P_{k+1}=\left(1+X^2\right)P_k'-\left(2k+1\right)XP_k$. Calculer le degré et le coefficient dominant de P_n pour tout $n\in\mathbb{N}$.
- **Ex 6** On considère n un entier supérieur à $1, x_1, \ldots, x_n$ des réels distincts, et P, Q deux polynômes réels unitaires de degré n vérifiant $\forall k \in [1, n]$, $P(x_k) = Q(x_k)$. Montrer que P = Q.
- **Ex 7** Soient $n \in \mathbb{N}$, x_0, x_1, \ldots, x_n des réels distincts, et $F : \mathbb{R}_n [X] \to \mathbb{R}^{n+1}$ définie par

$$\forall P \in \mathbb{R}_n [X], F(P) = (P(x_0), \dots, P(x_n))$$

Montrer que F est injective.

- **Ex 8** Soit $P \in \mathbb{C}[X]$ non constant. Démontrer que l'application polynomiale associée $\tilde{P} : \mathbb{C} \to \mathbb{C}$ est surjective. Pour $P = X^n \ (n \geqslant 2)$, \tilde{P} est-elle injective ?
- **Ex 9** Soit $n \in \mathbb{N}^*$. Montrer que $X^5 + 1$ divise $P = (X^4 1)(X^3 X^2 + X 1)^n + (X + 1)X^{4n-1}$.
- **Ex 10** Soient $\theta \in \mathbb{R}$ et $n \ge 2$. Montrer que $B = X^2 2X \cos \theta + 1$ divise $P_n = X^n \sin \theta X \sin (n\theta) + \sin ((n-1)\theta)$.
- **Ex 11** Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer le reste de la division de $A = (X \sin \theta + \cos \theta)^n$ par $B = X^2 + 1$.
- **Ex 12** Soit $n \in \mathbb{N}^*$. Montrer que le polynôme $P = 1 + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \dots + \frac{X^n}{n!}$ n'admet pas de racines multiples.
- **Ex 13** Trouver l'ensemble des $n \in \mathbb{N}^*$ tels que $(X^2 + X + 1)^2$ divise $(X + 1)^n X^n 1$.
- **Ex 14** Factoriser $X^6 + 1$ sur \mathbb{C} puis sur \mathbb{R} . Trouver la décomposition sur \mathbb{R} à l'aide d'un raisonnement direct.
- **Ex 15** Résoudre l'équation $z^4 + z^3 + z^2 + z + 1 = 0$ en posant $Z = z + \frac{1}{z}$, et en déduire $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$.
- **Ex 16** Décomposer sur $\mathbb{R}[X]$ les polynômes $P = X^6 + 2X^4 + 2X^2 + 1$ et $Q = X^9 + X^6 + X^3 + 1$.
- Ex 17 Soit $P=X^{10}-X^9-X^8+2X^6-2X^5-2X^4+X^2-X-1$. Montrer que $e^{i\pi/4}, e^{-i\pi/4}, e^{3i\pi/4}, e^{-3i\pi/4}$ sont racines au moins doubles de P, et en déduire la décomposition de P sur $\mathbb R$.
- **Ex 18** a) Soit $P \in \mathbb{K}[X]$ un polynôme admettant $a \in \mathbb{K}$ pour racine au moins double. Montrer que le reste de la division euclidienne de P par P' admet a pour racine.
 - b) Application : décomposer $P = X^4 9X^3 + 30X^2 44X + 24$ sur $\mathbb{R}[X]$, sachant qu'il admet une racine au moins double.
- **Ex 19** Soit $n \in \mathbb{N}^*$. Décomposer dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $P = X^n + 1$. On distinguera n pair et n impair, et on remarquera que -1 est racine de P pour n impair.
- **Ex 20** On donne $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On pose $P = (X+1)^n e^{2ni\theta}$.
 - a) Calculer les racines de P dans \mathbb{C} .
 - b) A l'aide de P(0), calculer $A(\theta) = \prod_{k=0}^{n-1} \sin\left(\theta + \frac{k\pi}{n}\right)$ puis $B = \prod_{k=1}^{n-1} \sin\frac{k\pi}{n}$.

PCSI 1 Thiers 2019/2020

- **Ex 21** Trouver tous les polynômes complexes vérifiant (X + 1) P(X) = (X 2) P(X + 1).
- **Ex 22** Déterminer les polynômes $P\in\mathbb{C}\left[X\right]$ tels que $\left(X^2+1\right)P''-6P=0$.

On commencera par déterminer le degré d'un polynôme répondant à cette condition.

- **Ex 23** Déterminer $P \in \mathbb{R}[X]$ de degré 7 tel que $\begin{cases} (X+1)^4 \text{ divise } P-1 \\ (X-1)^4 \text{ divise } P+1 \end{cases}$ (factoriser P').
- **Ex 24** Soit P un polynôme de degré n vérifiant : $\forall k \in [[1, n+1]], \ P(k) = \frac{1}{k}$. On considère Q = XP 1. Factoriser Q, et en déduire la valeur de P(n+2).
- Ex 25 Trouver les polynômes unitaires P de $\mathbb{C}[X]$ divisibles par leur dérivée P'. On raisonnera par analyse et synthèse, en étudiant l'ordre de multiplicité d'une racine d'un tel polynôme.
- **Ex 26** Soit $n \ge 2$. Pour $k \in \mathbb{N}$, on pose $\omega_k = e^{2ik\pi/n}$. Trouver un polynôme $P \in \mathbb{Z}_{n-1}[X]$ dont les racines sont

$$\frac{1}{\omega_1-1},\ldots,\frac{1}{\omega_{n-1}-1}.$$

En déduire les valeurs de $\prod_{k=1}^n \frac{1}{\omega_k - 1}$ et $\sum_{k=1}^n \frac{1}{\omega_k - 1}$.

Ex 27 Résoudre le système

$$\begin{cases} x + y + z = 2 \\ xyz = -\frac{1}{2} \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2} \end{cases}$$

Ex 28 Soit $n \in \mathbb{N}$ et $P = X^{2n+1} - (X-2)^{2n+1}$. On note pour tout $k \in \mathbb{N}$, $a_k = \sin \frac{k\pi}{2n+1}$.

- a) Déterminer le degré et le coefficient dominant de P
- b) Trouver les racines de P et vérifier qu'elles ont toutes une partie réelle égale à 1.
- c) Justifier que $P=2\left(2n+1\right)\prod_{k=1}^{n}\left(X^2-2X+\frac{1}{a_k^2}\right)$. En déduire la valeur de $\prod_{k=1}^{n}\sin\frac{k\pi}{2n+1}$

Ex 29 Soit $n \in \mathbb{N}^*$, et $P(X) = nX^n - \sum_{k=1}^{n-1} X^k$.

- a) Montrer que 1 est racine de P. k=0
- b) Soit $z \in \mathbb{C}$: montrer que si |z| > 1, alors $|z^{n-1} + z^{n-2} + \cdots + z + 1| < n |z|^n$.
- c) Soit $z \in \mathbb{C}$: montrer que si |z|=1 et $z \neq 1$, alors |1+z|<2 et en déduire $\left|z^{n-1}+z^{n-2}+\cdots+z+1\right|< n$.
- d) En déduire que les racines de P autres que 1 sont de module strictement inférieur à 1.
- e) Soit Q = (X 1) P. Montrer que $Q = nX^{n+1} (n+1) X^n + 1$
- f) Montrer que toutes les racines de Q autres que 1 sont simples, et en déduire que les racines de P sont simples.