GridSearch Wrapup

Macd Fast EMA	MACD Slow EMA	MACD SMA	Profit in pips
12	26	9	390
12	26	5	381
12	26	18	376
24	52	18	370
24	26	9	360
12	34	9	314
12	14	9	306
6	26	9	260
6	13	5	220
			forex.in.rs

20) updivallitoez

Backtesting vs Parameter Tuning

Backtest Wrapup

Backtest Wrapup

Sentiment Sentdex Strategy - Defence Stocks

Sivoanosa On Linit To Oraulova

					Mon	nthly Returns (%)				7004	Yearly Returns (%							
2012	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	60%					
2013	-7.0	2.4	4.7	7.8	9.1	1.5	11.9	1.2	6.9	5.7	6.4	4.2	50% 40%					
2014	3.2	5.8	0.1	-1.4	0.3	-1.2	-0.2	2.3	1.1	-1.6	1.6	2.2	30%		-			
2015	0.8	4.7	1.5	-1.3	-0.6	-1.5	2.2	-3.3	-0.4	7.5	3.4	0.6	20% 10%					
2016	-3.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0%					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-10%	2012	213	2014	215	P

Curve vs. Bei	ncnma	rĸ
Total Return	111%	34%
CAGR	25.45%	9.42%
Sharpe Ratio	169	0.75
Sortino Ratio	2.19	1.01
Annual Volatility	14.04%	13.21%
R-Squared	0.88	0.84
Max Daily Drawdown	9.69%	13.04%
Max Drawdown Duration	138	175
Trades per Year	24.6	

Trade Winning %	57%
Average Trade %	3.75%
Average Win %	8.33%
Average Loss %	-2.27%
Best Trade %	52.78%
Worst Trade %	-7.46%
Worst Trade Date	TBD
Avg Days in Trade	0.0
Trades	81

Time				
Winning Months %	71%			
Average Winning Month %	3.43%			
Average Losing Month %	-1.80%			
Best Month %	11.90%			
Worst Month %	-7.04%			
Winning Years %	60%			
Best Year %	68.85%			
Worst Year %	-2.76%			

Machine Learning Trees

Portfolio Management Trees

Technical Analysis Trees

What do you think?

How do you think?

Buying a house: The obvious thing to do would be to look at historic prices of houses sold in the area, then create some kind of decision

How do you think?

Random Forest

The random forest regression algorithm takes advantage of the 'wisdom of the crowds'. It takes multiple (but different) regression decision trees and makes them 'vote'

Horziena Son Horziesa Uzry desicton Tree Historia

Random Forest

Each tree needs to predict the expected price of the real estate based on the decision criteria it picked

Random Forest

Tally: Six 1s and Three 0s

Prediction 1

Extremely high accuracy

It usually produces better results than other linear models, including <u>linear</u> regression and logistic regression.

· Wirasipille Bandon - zoon & Over fit (Jaste generalize hum)

Scales well

Computationally, the algorithm scales well when new features or samples are added to the dataset.

Interpretable $\sim o \xi v_{19} \subset C C C V_{21} V_{19}$

Interpretable

Interpretable

A game – random 0-100 , if number >40 = win

- **1.Game 1** play 100 times, betting \$1 each time.
- **2.Game 2** play 10 times, betting \$10 each time.
- **3.Game 3** play one time, betting \$100.

Expected Value Game 1 = (0.60*1 + 0.40*-1)*100 = 20Expected Value Game $2 = (0.60*10 + 0.40*-10)*10 \neq 20$ Expected Value Game 3 = 0.60*100 + 0.40*-100 = 20

1 Km 1 L 620

Monte Carlo Simulation → 9 5 100 1

Monte Carlo Simulation

Monte Carlo Simulation

Random forest is the same — each tree is like one play in our game earlier.

OVERFIT?

Understand Model

Random forest is both a **supervised learning** algorithm and an **ensemble** algorithm.

to sou woln Disiein tope

Ensemble algorithms **combine** multiple other machine learning algorithms,

in order to make more accurate predictions than any underlying algorithm could on its own.

In the case of random forest, it ensembles multiple decision trees into its final decision.

Understand Model

1 2 Chon Dup f. 4

1 horis

Random Forest vs Bagging Trees

Random forests--

Only m<M features considered for each node for split

m can be selected via out-of-bag error, but m = sqrt(M) is a good value to start with

Bagging Trees--

All of M features considered for each node for a split

Parameters ... play/optimize

See you soon at

AdaBoost

Boosting

See you soon at

Low Risk , High Return

Learn Python

