Problem B. Useful Algorithm

Input file: standard input
Output file: standard output

Time limit: 6 seconds

Memory limit: 1024 megabytes

Putata is learning some useful algorithm called Binary Adding these days. This algorithm allows you to calculate the sum of two m-bit binary integers.

An integer x is called to be a m-bit binary integer, if and only if $0 \le x < 2^m$. The binary representation of m is a 0-indexed sequence v of length m, where $\forall 0 \le i < m, v_i \in \{0, 1\}$, and $x = \sum_{i=0}^{m-1} v_i 2^i$. It is guaranteed that for all m-bit binary integers, each one have its unique binary representation.

The Binary Adding algorithm for calculating the sum of two m-bit binary integers with binary representation $\{a_i\}_{i=0}^{m-1}, \{b_i\}_{i=0}^{m-1}$ is shown below:

Algorithm 1 BinaryAdding(a, b)

```
Input: input parameters a[0,\ldots,m-1], b[0,\ldots,m-1]

Output: output result sum[0,\ldots,m], carry[0,\ldots,m]

1: carry[0] := 0

2: for i := 0 to m-1 do

3: sum[i] := a[i] \oplus b[i] \oplus carry[i] \Rightarrow \oplus denotes xor operation

4: carry[i+1] := (a[i] \land b[i]) \lor (a[i] \land carry[i]) \lor (b[i] \land carry[i]) \Rightarrow \land denotes and operation, \lor denotes or operation.

5: sum[m] := carry[m]

6: return \ sum[0,\ldots,m], carry[0,\ldots,m]
```

In order to test if Putata really mastered this algorithm, Budada is going to prepare tests for Putata. Before preparing his tests, Budada devised a way to calculate the difficulty of a problem. Assume the problem is to calculate the sum of $\{a_i\}_{i=0}^{m-1}, \{b_i\}_{i=0}^{m-1}$, then we define the carry set of a, b, $S(a, b) = \{x | \text{when calling BinaryAdding}(a, b), carry_x = 1\}$. Budada has an integer sequence $\{w_i\}_{i=1}^m$, denoting the difficulty of calculation when a carry occurred at the corresponding bit. The **Carry Difficulty** is the maximum difficulty among all bits where a carry occurred. If there's no carry occurred, the **Carry Difficulty** is 0.

The problem database of Budada is an integer sequence $\{c_i\}_{i=1}^n$. Each integer has a corresponding **Numerical difficulty**, which is also an integer sequence $\{d_i\}_{i=1}^n$. Please notice that c_i are **not necessarily** pairwise distinct, and for some $c_i = c_j$, d_i **might not be equal to** d_j . A Binary Adding problem consists of two integers, so when Budada chooses c_i and c_j to set a test, the **Numerical difficulty** of this problem is $d_i + d_j$.

Budada wants to prepare the most difficult test for Putata, so he will choose two integers i, j such that $1 \leq i, j \leq n$ (not necessarily distinct), and use c_i, c_j to set a test. He wants to maximize the **Test Difficulty**, which is the product of the **Carry Difficulty** and **Numerical difficulty** of this test, and he asked you to tell him this production. Formally, the maximum **Test Difficulty** is $\max_{1 \leq i,j \leq n} \{\max\{w_x | x \in S(c_i, c_j)\}, 0\} \cdot (d_i + d_j)\}.$

Budada also has q updates for his problem database, each time he will select an integer i, and modify c_i, d_i . You are asked to answer the maximum **Test Difficulty** of q + 1 versions of the problem database.

Input

The first line contains three integers n, m, q ($1 \le n, q \le 10^5, 1 \le m \le 16$), corresponding to the meaning described above.

The 2022 ICPC Asia Hangzhou Regional Programming Contest Hangzhou Normal University, December, 04, 2022

The second line contains m integers, the i-th integer is w_i $(1 \le w_i \le 10^9)$.

The third line contains n integers, the i-th integer is c_i $(0 \le c_i < 2^m)$.

The fourth line contains n integers, the i-th integer is d_i $(1 \le d_i \le 10^9)$.

For the following q lines, each line contains three integers x, u, v, let lastans denotes the maximum **Test Difficulty** of the last version of the problem database, and $x' = x \oplus lastans$, $u' = u \oplus lastans$, $v' = v \oplus lastans$ ($1 \le x' \le n$, $0 \le u' < 2^m$, $1 \le v' \le 10^9$), this represents Budada changes $c_{x'}$ to u', and $d_{x'}$ to v'. Here, " \oplus " denotes the bitwise XOR operator. **Please notice that you should use** 64-bit integer to store x, u, v.

Output

Output q+1 lines, denoting the maximum **Test Difficulty** of the q+1 versions of the problem database.

Example

standard input	standard output
5 3 3	24
1 2 4	16
0 0 1 2 7	8
10 10 5 3 1	0
27 24 29	
20 16 19	
13 8 9	

Note

The decrypted operations are:

$$x' = 3, u' = 0, v' = 5.$$

$$x' = 4, u' = 0, v' = 3.$$

$$x' = 5, u' = 0, v' = 1.$$