Homework 3

Rebecca-Jane Gullette

2024-06-08

Table of contents

https://github.com/rebecca-jane-gullette/Gullette-RebeccaJane_homework-03.git

Read in Packages and Data

Problem 1

a. code and annotations

```
drought_exp_clean <- drought_exp %>% # cleaning data
  clean_names() %>% # changing column names
  mutate(species_name = case_when( # adding column for species scientific names
    species == "ENCCAL" ~ "Encelia californica", # bush sunflower
    species == "ESCCAL" ~ "Eschscholzia californica", # California poppy
    species == "PENCEN" ~ "Penstemon centranthifolius", # Scarlet bugler
    species == "GRICAM" ~ "Grindelia camporum", # great valley gumweed
    species == "SALLEU" ~ "Salvia leucophylla", # Purple sage
    species == "STIPUL" ~ "Nasella pulchra", # Purple needlegrass
    species == "LOTSCO" ~ "Acmispon glaber" # deerweed
  relocate(species_name, .after = species) %>% # move species_name column after species
  mutate(water treatment = case when( # adding column with full treatment names
    water == "WW" ~ "Well watered",
    water == "DS" ~ "Drought stressed"
  )) %>%
  relocate(water_treatment, .after = water) # moving water_treatment column after water
# models from workshop
model0 <- lm(total_g ~ 1, # formula null model</pre>
             data = drought_exp_clean) # data frame
model1 <- lm(total_g ~ sla + water_treatment + species_name, # saturated model</pre>
             data = drought_exp_clean)
model2 <- lm(total_g ~ sla + water_treatment, # total biomass as a function of SLA and water
             data = drought_exp_clean)
model3 <- lm(total_g ~ sla + species_name, # total biomass as a function of SLA and species
             data = drought_exp_clean)
# additional model
model4 <- lm(total_g ~ water_treatment + species_name, # total biomass as a function of water
             data = drought_exp_clean)
```

```
model_table <- modelsummary::modelsummary( # create a table summarizing the models
list( # selecting the models to include
   "Null Model: No Predictors" = model0, # changing model names to indicate predictors
   "Model 1: All Predictors" = model1,
   "Model 2: SLA and Water Treatment" = model2,
   "Model 3: SLA and Species" = model3,
   "Model 4: Water Treatment and Species" = model4
))</pre>
```

Table 1. Comparison of Five Models of Total Biomass and Three Predictors: Specific Leaf Area, Water Treatment, and Species.

```
model_table # display table of models
```

b. Write a 5-6 sentence "statistical methods" section.

To examine the influence of specific leaf area (SLA), water treatment, and species on the total biomass of plants in California I created 5 linear models with different combinations of predictor variables. The null model had no predictors, model 1 included all predictors, model 2 looked at SLA and water treatment, model 3 looked at SLA and species, and model 4 looked at the effect of water treatment and species on total biomass. To determine the model that best predicts total biomass I used the model.sel() function from the MuMin package which calculated the lowest AIC and a delta of 0 for Model 4. Before concluding that this was the final model I evaluated it for the assumptions of a linear model using the diagnostic plots and the residuals follow a linear pattern on the QQ plot and the residuals are homoscedastic and normally distributed.

c. Make a visualization of the model predictions with underlying data for your "best" model.

	Null Model: No Predictors	Model 1: All Predictors	Model 2: S
(Intercept)	0.279	0.080	
	(0.017)	(0.056)	
sla		0.000	
		(0.000)	
$water_treatmentWell\ watered$		0.122	
		(0.020)	
$species_nameEncelia\ californica$		0.238	
		(0.051)	
$species_nameEsch$		0.234	
		(0.033)	
$species_nameGrindelia\ camporum$		0.330	
		(0.047)	
species_nameNasella pulchra		0.241	
		(0.040)	
$species_name Penstemon\ centrant hifolius$		0.061	
		(0.039)	
species_nameSalvia leucophylla		0.117	
		(0.033)	
Num.Obs.	70	70	
R2	0.000	0.755	
R2 Adj.	0.000	0.722	
AIC	-75.2	-157.5	
BIC	-70.7	-135.0	
Log.Lik.	39.580	88.741	
RMSE	0.14	0.07	

```
ggplot() + # creating a plot
 geom_point(data = drought_exp_clean, # plotting underlying data
             aes(x = water_treatment,
                 y = total_g,
                 color = water_treatment), # creating different colors for water treatment
             position = position_jitter(width = 0.1, height = 0), # jittering points
             size = 0.8,
             alpha = 0.3) + # making underlying data transparent
 geom_pointrange(data = model_preds4_for_plotting, # adding model predictions
              aes(x = water_treatment,
                  y = predicted,
                  ymin = conf.low, # adding confidence interval
                  ymax = conf.high,
                  color = water_treatment),
              size = 0.1) +
 labs(x = "Water Treatment", y = "Total Biomass") + # labeling axes
 theme_classic() + # changing to cleaner theme
 theme(axis.text.x = element_text(size = 7), # making text smaller to prevent labels from or
       legend.position = "none") + # getting rid of legend
 scale_color_manual(values = c("Well watered" = "deepskyblue3", "Drought stressed" = "#9933"
 facet_wrap(~species_name) # creating different panels for species
```


d. Write a caption for your visualization.

Figure 1. Total Biomass of 7 native California plant species under different water treatments. Each plot compares the total biomass of a plant species when they are well watered versus drought stressed. Blue indicates well watered and purple indicates drought stressed. Each plot displays the average biomass and a 95% confidence interval. Data Source: Valliere J, Zhang J, Sharifi M, Rundel P (2019) Can we condition native plants to increase drought tolerance and improve restoration success? https://doi.org/10.5061/dryad.v0861f7.

e. Write a 3-4 sentence results section.

Your answer should be in paragraph form and address the following points:

what predictors "best" described total mass (include model statistics here)? on average, what differences did you find between water treatments? on average, what differences did you find between species?

Problem 2. Affective visualization

a. Describe in words what an affective visualization could look like for your personal data (3-5 sentences)

Since my data is about crocheting, I want to make icons of the projects that I've completed. I could do them in different sizes relative to the time I spent on each with a border indicating pattern type and difficulty, and highlighted according to type of yarn. I would like to organize them chronologically and have an additional icon indicating the day of the week and time of day I crochet the most.

b. Create a sketch (on paper) of your idea.

![Affective Visualization Sketch](images/affectivesketch.jpeg)

c. Make a draft of your visualization.

- ![Crochet Data Affective Visualization] (images/affectivecrochet.jpeg)
- ![Key] (images/affectivekey.jpeg)