Quantitative Methods 2

Tutorial 3 Nhan La

Assignment 1

- 1. Assignment tab on LMS
- 2. Group registration due by 5 pm, Friday 16/8
- 3. Assignment 1 due by 4 pm, Friday 23/8

Tutorial 3

- 1. Obtain and interpret descriptive statistics
- 2. Evaluate the (normal) distribution of a series
- 3. Hypothesis testing using
 - Parametric tests
 - Non-parametric test

Population vs. sample

• Population vs. sample quantities

Quantities	Population parameters	Sample statistics
Mean	μ	\bar{x}
Variance	σ^2	s^2
Standard	σ	S
deviation		

- Always be about population parameters (<u>not</u> about sample statistics)
- Test of no difference (null hypothesis H_0) vs. difference (alternative hypothesis H_A)
 - H_A never contains the equal sign
- Purpose: To see if the difference is real or due to randomness
 - Find the probability of obtaining a sample with the estimated statistic, assuming the population value stated in H_0 is true.
 - If such a probability is small enough then H_0 is false or rejected and vice versa.
 - How small is enough? It's determined in the significance level α

One population

Two populations - Numerical

Two populations - Ordinal and Nominal

More than two populations

- Choose the appropriate test based on:
 - Levels of measurement
 - Types of variable
 - Distribution of the underlying population
 - Relevant population parameter (e.g., σ^2) known/unknown

Level of measurement	Type of	variable
	Quantitative	Qualitative
Nominal		
Ordinal		
Interval		
Ratio		

- Significance level α
 - Pr(Type I Error): Probability of rejecting H_0 when it is true (an error). That is, the extent to which we can accept that error to happen.
 - Define the distance between the sample mean and the null hypothesis parameter
 - Conventional values of α : 0.1, 0.05, 0.01
- p-value (of a test statistic)
 - The smallest α that leads to a rejection of H_0
 - If α < p-value, we can't reject H_0 , and vice versa
- The decision (i.e., to reject H_0 or not) is made based on the comparison
 - Significance level vs. p-value; OR
 - Critical value vs. test statistic

- 1. Set up $\frac{H_0}{H_0}$ and $\frac{H_A}{H_A}$
- 2. Determine the appropriate test, test statistic and its sampling distribution
- 3. Specify α
- 4. Define the decision rule using <u>either</u>
 - Test statistic vs. critical values, or
 - p-value vs. α
 - Unless asked to use both
- 5. Calculate the test statistic
- 6. Make a decision and draw a conclusion
- Based on the comparison of <u>either</u>
 - Test statistic vs. critical values, or
 - p-value vs. α
 - Whatever use, make it consistent with step 4
- Decision: Reject or not able to reject H_0
- Conclusion: Statement in relation to the population values.

Normality test

- Visual assessment
- Descriptive measures: relative comparisons
 - Mean vs. median
 - Skewness
 - \widehat{SK} vs. 0
 - $|\widehat{SK}|$ vs. $2s_{\widehat{SK}}$
 - Kurtosis
 - \widehat{K} vs. 3
 - $|\widehat{K}-3|$ vs. $2s_{\widehat{K}}$
- Hypothesis test: Jacque-Bera

- H_0 : $\mu = \mu_0$
- H_A : $\mu > \mu_0$
- Reject H_0 ?
 - Yes

- H_0 : $\mu = \mu_0$
- H_A : $\mu > \mu_0$
- Reject H_0 ?
 - No

- H_0 : $\mu = \mu_0$
- H_A : $\mu < \mu_0$
- Reject H_0 ?
 - Yes

- H_0 : $\mu = \mu_0$
- H_A : $\mu < \mu_0$
- Reject H_0 ?
 - No

Two-sided hypothesis

- H_0 : $\mu = \mu_0$; H_A : $\mu \neq \mu_0$
- Reject H_0 ?
 - Yes

Two-sided hypothesis

- H_0 : $\mu = \mu_0$
- H_A : $\mu \neq \mu_0$
- Reject H_0 ?
 - No

Critical values

1. Exercise 3: Two sided test:

- $\alpha = 0.05$
- H_0 : $\mu = 0.25$; H_A : $\mu \neq 0.25$

$$t_{cr_u} = t_{\alpha/2,n-1} = t_{0.005,39}$$
 [EViews: scalar tcr_u=@qtdist(0.995,39)]

$$t_{cr_l} = t_{1-\alpha/2,n-1} = t_{0.995,39}$$
 [EViews: scalar tcr_l=@qtdist(0.005,39)]

Use the t distribution table: Find t_{cr_u} and apply the symmetry: $t_{cr_l} = -t_{cr_u}$

Degrees of freedom	P _{0,100}	f _{0.050}	P _{0.025}	0.010	P _{0.005}
29	1.311	1.699	2.045	2.462	756
30	1.310	1.697	2.042	2.457	750
35	1.306	1.690	2.030	2.438	724
40 45	1.000	1.004	2.021	2.425	2.704
	1.301	1.679	2.014	2.412	2.690

Critical values

- 2. Exercise 3: One-sided test
- Right tail test: H_0 : $\mu = 0.25$; H_A : $\mu > 0.25$ $t_{cr\ rt} = t_{\alpha,n-1} = t_{0.01,39}$ [EViews: scalar tcr_rt=@qtdist(0.99,39)]
- Left tail test: H_0 : $\mu = 0.25$; H_A : $\mu < 0.25$

$$t_{cr_{lt}} = t_{1-\alpha,n-1} = t_{0.99,39}$$
 [EViews: scalar tcr_lt=@qtdist(0.01,39)]

Use the t distribution table: $t_{cr_lt} = -t_{cr_rt}$

Degrees of freedom	f _{0.100}	f _{0.050}	f _{0.025}	P _{0.010}	f _{0.005}
29	1.311	1.699	2.045	462	2.756
30	1.310	1.697	2.042	: 457	2.750
35	1.306	1.690	2.030	.438	2.724
40	1.000	1.004	2.021	2.423	2.704
45	1.301	1.679	2.014	2.412	2.690

Confidence interval

- Not a probability
- Always agree with the p-value of the statistic with regard to statistical significance
- Recall significance level defines the distance between the sample mean and the null hypothesis parameter
- The confidence level defines the distance for how close the confidence limits are to sample mean

Confidence interval

- Reject H_0 at 5% sig. level
- 95% CI doesn't contain μ_0

CI and statistical significance

Confidence interval

- Not to reject H_0 at 5% sig. level
- 95% CI contains μ_0

CI and statistical significance

EViews command

Create a text object to save and modify commands.

```
Object → New Object → Text
```

- Examples of finding critical values associated with significance levels, and p-values associated with test statistics
 - Standard normal distribution (Z test)
 - t distribution (t test)
 - Chi-squared distribution

1. Critical value

a/One-sided, upper test

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu > \mu_0$

- $\alpha = 0.05$
- Reject H_0 if z statistic $> z_{\text{critical}}$
- Find $z_{critical}$: scalar z_crU=@qnorm(0.95)

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu < \mu_0$

- $\alpha = 0.05$
- Reject H_0 if z statistic $< z_{\text{critical}}$
- Find $z_{critical}$: scalar $z_{crl} = -@qnorm(0.95)$

- 1. Critical value (cont.)
- c/ Two-sided test

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu \neq \mu_0$

- $\alpha = 0.05$
- Reject H_0 if: z statistic $> z_{critical}$ OR z statistic $< -z_{critical}$
- Find z_{critical} :

$$scalar z_cr = @qnorm(0.975)$$

- Your turn:
 - Find $z_{\rm critical}$ for $\alpha = 0.1$ and $\alpha = 0.01$ for one- and two-sided tests
 - Compare values between EViews and standard normal distribution table (they should be equal)

- 2. p-value of *z* statistic
- a/ One-sided test
- Suppose z statistic = 1.68

```
scalar pval z1 = 1-@cnorm(1.68)
```


• Suppose z statistic = -1.68

$$scalar pval_z2 = @cnorm(-1.68)$$

In general:

```
p-value(z) = 1 - p-value(-z)
```


2. p-value of *z* statistic (cont.)

b/ Two-sided test

Suppose z statistic = 1.68

```
scalar pval z3=2*(1-ecnorm(1.68))
```

• Suppose z statistic = -1.68

```
scalar pval z3 = 2*@cnorm(-1.68)
```

- Your turn:
 - Find these p-values.
 - Compare EViews and standard normal distribution table outcomes
 - Also, compare one-sided and two-sided p-values

1. Critical value:

a/ One-sided, upper test

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu > \mu_0$

- $\alpha = 0.05$, suppose degrees of freedom (d.f) = 49
- Reject H_0 if t statistic $> t_{critical}$
- Find $t_{critical}$:

scalar t
$$crU = Qqtdist(0.95,49)$$

b/ One-sided, lower test

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu < \mu_0$

- $\alpha = 0.05$, d.f = 49
- Reject H_0 if t statistic $< t_{critical}$
- Find $t_{critical}$:

scalar t
$$crL = -Qqtdist(0.95,49)$$

- 1. Critical value (cont.)
- c/ Two-sided test

$$H_0$$
: $\mu = \mu_0$; H_A : $\mu \neq \mu_0$

- $\alpha = 0.05$, d.f=49
- Reject H_0 if: t statistic $> t_{
 m critical}$ OR t statistic $< -t_{
 m critical}$

- Find $t_{critical}$: scalar t_cr = @qtdist(0.975,49)
- Your turn:
 - Find $t_{\rm critical}$ for $\alpha=0.1$ and $\alpha=0.01$ for one- and two-sided tests. Also, vary d.f and observe the difference.
 - Compare values between EViews and t distribution table (they should be equal)

- 2. p-value of *t* statistic (still, d.f=49) a/ One-sided test
- Suppose t statistic = 1.68
 scalar pval_t1 = 1-@ctdist(1.68,49)

- Suppose t statistic = -1.68scalar pval_t2 = @ctdist(-1.68,49)
- In general:

```
p-value(t) = 1 - p-value(-t)
```


- 2. p-value of *t* statistic (cont.)
- b/ Two-sided test
- Suppose t statistic = 1.68

```
scalar pval t3=2*(1-0ctdist(1.68,49))
```

• Suppose t statistic = -1.68

```
scalar pval_t3 = 2*@ctdist(-1.68,49)
```


- Find these p-values.
- Compare EViews and t distribution table outcomes
- Also, compare one-sided and two-sided p-values

Chi-squared distribution

1. Critical value

• χ^2 is always positive (by definition)

$$H_0: \chi^2 = \chi_0^2; H_A: \chi^2 > \chi_0^2$$

- $\alpha = 0.05$, degrees of freedom (d.f) = 8
- Reject H_0 if $\chi^2 > \chi^2_{\text{critical}}$
- Find χ^2_{critical} : scalar cr chi = @qchisq(0.95,8)

- Find the critical value. Vary α and d.f and observe the difference
- What if H_A : $\chi^2 < \chi_0^2$? Reject H_0 if $\chi^2 < \chi_{\text{critical}}^2$
- Compare EViews and chi-squared distribution table outcomes

Chi-squared distribution

- 1. p-value of chi-squared statistic
- Suppose χ^2 statistic = 20, d. f = 8
- Find p-value χ^2_{critical} : scalar pval_chi = 1-@cchisq(20,8)
- Notice the difference of command compared with z and t distributions

- Your turn:
 - Find the p value. Vary χ^2 and d.f and observe the difference
 - Compare EViews and chi-squared distribution table outcomes