On considère les matrices $A = \begin{pmatrix} 2 & -3 & 1 \\ 5 & -9 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & -1 \\ -3 & -1 \\ -14 & -1 \end{pmatrix}$

- 1. Justifier que l'on peut effectuer le produit *AB* puis effectuer ce produit.
- 2. Peut-on affirmer que les matrices *A* et *B* sont inverses l'une de l'autre? Justifier.

Soient les matrices $M = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ et $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 1. Calculer M^2 puis démontrer qu'il existe un entier k tel que $6M M^2 = kI_2$.
- 2. En déduire que la matrice M est inversible et que sa matrice inverse, M^{-1} peut s'écrire sous la forme $M^{-1} = \alpha I_2 + \beta M$ où α et β sont deux réels que l'on précisera.

1. Soit la matrice *A* carrée d'ordre 3 telle que :

$$a_{ij} = \begin{cases} 0 & \text{si } i = j, \\ 1 & \text{sinon} \end{cases}$$

Écrire la matrice A avec ses coefficients.

- 2. Soit *B* la matrice définie par $B = A + I_3$ où I_3 désigne la matrice identité d'ordre 3.
 - (a) Écrire la matrice B avec ses coefficients puis calculer B^2 .
 - (b) La matrice *B* est inversible? Justifier.
 - (c) Démontrer que la matrice A est inversible et préciser A^{-1} avec ses coefficients.

Soient les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Calculer la matrice A^2 puis vérifier que $A^2 = 3A 2I_3$.
- 2. Démontrer par récurrence que, pour tout entier naturel n non nul :

$$A^n = (2^n - 1)A + (2 - 2^n)I_3$$

« Il y a des temps pour toutes choses; et les temps sont les matrices de toutes choses. Ils ne suivent donc pas une seule voie, mais empruntent des milliers de chemins »

Paracelse (1493 – 1541)