Online Appendix

Appendix A1

Figure 1: Cross-Correlations between DIA ETF and its underlying Assets

Appendix A2

Figure 2: Cross-Correlations between SMH ETF and its underlying Assets

Appendix B1

Dynamic Model Estimates for the Underlying Assets of DIA ETF

Table 1: Estimated parameters for CSCO

var																														
	ϕ^{i2}_{aa}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ^{i5}_{ab}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ^{i9}_{ab}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.077 \\ (0.12)$	$0.083 \\ (0.08)$	$0.080 \\ (0.03)$	$0.078 \\ (0.05)$	$0.078 \\ (0.07)$	$0.077 \\ (0.05)$	$0.076 \\ (0.11)$	$0.085 \\ (0.21)$	$0.712 \\ (0.04)$	$0.138 \\ (0.01)$	$0.077 \\ (0.26)$	$0.079 \\ (0.03)$	$0.077 \\ (0.11)$	$0.077 \\ (0.07)$	$0.077 \\ (0.06)$	$0.078 \\ (0.15)$	0.073 (0.09)	$0.077 \\ (0.09)$	$0.078 \\ (0.07)$	$0.082 \\ (0.09)$	$0.127 \\ (0.05)$	$0.078 \\ (0.09)$	$0.081 \\ (0.35)$	$0.078 \\ (0.06)$	$0.077 \\ (0.03)$	$0.078 \\ (0.06)$	$0.078 \\ (0.26)$	$0.078 \\ (0.21)$	$0.076 \\ (0.06)$	$0.077 \\ (0.08)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	$0.083 \\ (0.05)$	$0.082 \\ (0.06)$	$0.078 \\ (0.04)$	0.081 (0.03)	$0.082 \\ (0.04)$	$0.082 \\ (0.05)$	$0.074 \\ (0.04)$	$0.082 \\ (0.25)$	$0.079 \\ (0.04)$	$0.082 \\ (0.05)$	$0.082 \\ (0.09)$	$0.072 \\ (0.17)$	0.081 (0.22)	$0.085 \\ (0.12)$	$0.082 \\ (0.09)$	$0.072 \\ (0.06)$	0.084 (0.04)	$0.074 \\ (0.05)$	$0.080 \\ (0.09)$	$0.083 \\ (0.03)$	$0.082 \\ (0.05)$	$0.083 \\ (0.05)$	0.083 (0.08)	$0.080 \\ (0.09)$	$0.080 \\ (0.06)$	0.073 (0.22)	$0.086 \\ (0.09)$	$0.083 \\ (0.27)$	0.077 (0.24)	0.077 (0.03)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}
$p_t - b_t$	$0.082 \\ (0.09)$	$0.072 \\ (0.04)$	$0.082 \\ (0.05)$	$0.073 \\ (0.03)$	$0.078 \\ (0.08)$	$0.078 \\ (0.04)$	$0.078 \\ (0.06)$	$0.080 \\ (0.04)$	$0.174 \\ (0.06)$	$0.668 \\ (0.22)$	$0.127 \\ (0.05)$	$0.096 \\ (0.09)$	$0.069 \\ (0.04)$	$0.078 \\ (0.21)$	$0.078 \\ (0.05)$	$0.077 \\ (0.07)$	$0.078 \\ (0.03)$	$0.078 \\ (0.08)$	$0.085 \\ (0.02)$	$0.082 \\ (0.09)$	$0.078 \\ (0.07)$	$0.078 \\ (0.21)$	$0.077 \\ (0.07)$	$0.077 \\ (0.02)$	$0.080 \\ (0.16)$	$0.077 \\ (0.06)$	$0.078 \\ (0.07)$	$0.076 \\ (0.08)$	$0.077 \\ (0.36)$	$0.078 \\ (0.06)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.079 \\ (0.06)$	$0.080 \\ (0.08)$	$0.074 \\ (0.09)$	$0.089 \\ (0.07)$	$0.078 \\ (0.06)$	$0.080 \\ (0.08)$	$0.078 \\ (0.09)$	$0.080 \\ (0.09)$	$0.072 \\ (0.05)$	$0.085 \\ (0.16)$	$0.082 \\ (0.08)$	0.083 (0.06)	$0.080 \\ (0.03)$	$0.074 \\ (0.18)$	$0.086 \\ (0.09)$	$0.052 \\ (0.04)$	0.081 (0.02)	$0.085 \\ (0.04)$	$0.086 \\ (0.05)$	$0.077 \\ (0.05)$	$0.080 \\ (0.09)$	$0.082 \\ (0.23)$	0.081 (0.03)	$0.085 \\ (0.04)$	0.083 (0.13)	0.084 (0.09)	$0.085 \\ (0.08)$	$0.080 \\ (0.03)$	0.087 (0.14)	0.077 (0.04)

Table 2: Estimated parameters for CAT

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.085 \\ (0.03)$	$0.074 \\ (0.04)$	$0.078 \\ (0.07)$	$0.077 \\ (0.08)$	$0.079 \\ (0.23)$	$0.080 \\ (0.06)$	$0.078 \\ (0.08)$	$0.078 \\ (0.26)$	$0.089 \\ (0.04)$	$0.078 \\ (0.06)$	$0.736 \\ (0.31)$	$0.219 \\ (0.10)$	$0.080 \\ (0.06)$	$0.100 \\ (0.09)$	$0.087 \\ (0.02)$	$0.078 \\ (0.05)$	$0.079 \\ (0.04)$	$0.078 \\ (0.06)$	$0.081 \\ (0.05)$	$0.078 \\ (0.21)$	$0.078 \\ (0.06)$	$0.076 \\ (0.05)$	$0.116 \\ (0.15)$	$0.286 \\ (0.04)$	$0.082 \\ (0.05)$	$0.079 \\ (0.30)$	$0.079 \\ (0.20)$	$0.078 \\ (0.09)$	$0.076 \\ (0.09)$	$0.089 \\ (0.03)$
	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	$0.091 \\ (0.03)$	$0.079 \\ (0.06)$	$0.079 \\ (0.09)$	$0.088 \\ (0.21)$	$0.080 \\ (0.22)$	$0.080 \\ (0.08)$	$0.079 \\ (0.07)$	0.084 (0.13)	$0.077 \\ (0.04)$	$0.106 \\ (0.08)$	0.077 (0.20)	$0.077 \\ (0.20)$	0.087 (0.08)	0.081 (0.09)	$0.082 \\ (0.05)$	$0.116 \\ (0.06)$	$0.078 \\ (0.07)$	$0.077 \\ (0.02)$	$0.155 \\ (0.14)$	$0.077 \\ (0.33)$	$0.070 \\ (0.05)$	$0.078 \\ (0.09)$	$0.077 \\ (0.07)$	$0.077 \\ (0.04)$	$0.076 \\ (0.08)$	$0.078 \\ (0.10)$	$0.120 \\ (0.06)$	0.110 (0.06)	$0.004 \\ (0.09)$	$0.085 \\ (0.04)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}
$p_t - b_t$	$0.083 \\ (0.05)$	$0.078 \\ (0.08)$	$0.078 \\ (0.04)$	$0.076 \\ (0.05)$	$0.081 \\ (0.06)$	$0.078 \\ (0.01)$	$0.078 \\ (0.09)$	$0.076 \\ (0.07)$	$0.078 \\ (0.11)$	$0.082 \\ (0.08)$	$0.135 \\ (0.03)$	$0.577 \\ (0.10)$	$0.078 \\ (0.02)$	$0.075 \\ (0.05)$	$0.083 \\ (0.27)$	$0.078 \\ (0.07)$	$0.076 \\ (0.07)$	$0.078 \\ (0.04)$	$0.083 \\ (0.05)$	$0.078 \\ (0.07)$	$0.072 \\ (0.33)$	$0.077 \\ (0.09)$	$0.078 \\ (0.03)$	$0.078 \\ (0.21)$	$0.089 \\ (0.08)$	$0.078 \\ (0.05)$	$0.075 \\ (0.09)$	$0.078 \\ (0.04)$	$0.097 \\ (0.04)$	$0.102 \\ (0.08)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.089 (0.09)	$0.080 \\ (0.09)$	0.167 (0.09)	$0.078 \\ (0.08)$	0.077 (0.09)	$0.079 \\ (0.05)$	0.082 (0.04)	0.095 (0.21)	0.079 (0.17)	0.084 (0.09)	0.077 (0.06)	0.081 (0.08)	0.138 (0.06)	$0.080 \\ (0.02)$	0.077 (0.08)	$0.096 \\ (0.04)$	$0.169 \\ (0.08)$	0.079 (0.08)	0.095 (0.08)	0.077 (0.09)	0.086 (0.07)	0.077 (0.06)	$0.078 \\ (0.15)$	0.077 (0.08)	0.078 (0.03)	0.077 (0.07)	0.077 (0.02)	0.082 (0.03)	0.085 (0.02)	0.078 (0.21)

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = CAT \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$

Table 3: Estimated parameters for DIS

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.069 \\ (0.05)$	$0.074 \\ (0.08)$	$0.079 \\ (0.34)$	$0.078 \\ (0.21)$	$0.079 \\ (0.04)$	$0.081 \\ (0.06)$	$0.076 \\ (0.20)$	$0.079 \\ (0.06)$	$0.089 \\ (0.04)$	$0.079 \\ (0.06)$	$0.078 \\ (0.09)$	$0.082 \\ (0.02)$	$0.658 \\ (0.10)$	-0.044 (0.03)	$0.088 \\ (0.30)$	$0.079 \\ (0.09)$	$0.076 \\ (0.07)$	$0.079 \\ (0.12)$	$0.082 \\ (0.22)$	$0.079 \\ (0.09)$	$0.079 \\ (0.03)$	$0.076 \\ (0.20)$	$0.117 \\ (0.06)$	$0.287 \\ (0.04)$	$0.083 \\ (0.07)$	$0.079 \\ (0.09)$	$0.080 \\ (0.02)$	$0.078 \\ (0.10)$	$0.076 \\ (0.30)$	$0.090 \\ (0.20)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ^{i28}_{ab}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.092 (0.06)	$0.075 \\ (0.07)$	$0.080 \\ (0.08)$	0.089 (0.19)	$0.080 \\ (0.08)$	0.081 (0.05)	$0.080 \\ (0.22)$	0.084 (0.08)	$0.078 \\ (0.04)$	$0.107 \\ (0.06)$	0.077 (0.09)	$0.078 \\ (0.11)$	0.079 (0.10)	0.082 (0.03)	0.073 (0.10)	0.117 (0.08)	$0.078 \\ (0.07)$	$0.078 \\ (0.05)$	$0.156 \\ (0.08)$	$0.078 \\ (0.06)$	$0.071 \\ (0.05)$	$0.078 \\ (0.05)$	$0.078 \\ (0.06)$	0.078 (0.04)	$0.076 \\ (0.06)$	$0.078 \\ (0.08)$	0.121 (0.10)	0.044 (0.01)	$0.078 \\ (0.20)$	0.078 (0.09)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\begin{array}{c} (0.05) \\ \phi_{bb}^{i11} \end{array}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.06)}{\phi_{ba}^{i13}}$	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	$\frac{(0.01)}{\phi_{bb}^{i14}}$	$\frac{(0.20)}{\phi_{ba}^{i15}}$	ϕ_{bb}^{i15}
$p_t - b_t$	$0.077 \\ (0.06)$	$0.082 \\ (0.09)$	$0.054 \\ (0.04)$	$0.089 \\ (0.02)$	$0.078 \\ (0.21)$	$0.078 \\ (0.17)$	$0.079 \\ (0.15)$	$0.080 \\ (0.08)$	$0.080 \\ (0.05)$	$0.079 \\ (0.10)$	$0.061 \\ (0.07)$	$0.079 \\ (0.09)$	$0.222 \\ (0.04)$	0.817 (0.10)	$0.015 \\ (0.06)$	$0.086 \\ (0.03)$	$0.110 \\ (0.09)$	$0.091 \\ (0.04)$	$0.087 \\ (0.08)$	$0.068 \\ (0.21)$	$0.089 \\ (0.10)$	$0.078 \\ (0.06)$	$0.080 \\ (0.09)$	$0.079 \\ (0.09)$	$0.088 \\ (0.10)$	$0.078 \\ (0.07)$	$0.079 \\ (0.03)$	$0.076 \\ (0.04)$	$0.100 \\ (0.20)$	$0.088 \\ (0.07)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.089 \\ (0.05)$	$0.080 \\ (0.09)$	$0.078 \\ (0.05)$	$0.066 \\ (0.07)$	$0.078 \\ (0.27)$	$0.076 \\ (0.10)$	$0.087 \\ (0.05)$	$0.079 \\ (0.04)$	$0.093 \\ (0.02)$	$0.088 \\ (0.20)$	$0.079 \\ (0.06)$	$0.076 \\ (0.03)$	$0.084 \\ (0.05)$	$0.078 \\ (0.06)$	$0.079 \\ (0.08)$	$0.079 \\ (0.05)$	$0.085 \\ (0.0)9$	0.082 (0.06)	$0.079 \\ (0.06)$	0.083 (0.19)	$0.068 \\ (0.06)$	$0.083 \\ (0.08)$	$0.081 \\ (0.07)$	0.073 (0.01)	$0.078 \\ (0.07)$	$0.082 \\ (0.06)$	$0.098 \\ (0.06)$	$0.077 \\ (0.05)$	$0.077 \\ (0.06)$	$0.079 \\ (0.09)$

 $For \ \phi^{ij}_{..}, \ i = DIS \ and \ j = AAPL, CVX, AXP, BA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CSC$

Table 4: Estimated parameters for IBM

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.072 \\ (0.22)$	$0.073 \\ (0.07)$	$0.078 \\ (0.07)$	$0.077 \\ (0.10)$	$0.083 \\ (0.09)$	$0.079 \\ (0.06)$	$0.074 \\ (0.30)$	$0.077 \\ (0.10)$	$0.128 \\ (0.08)$	$0.083 \\ (0.07)$	$0.077 \\ (0.04)$	$0.072 \\ (0.07)$	$0.077 \\ (0.30)$	$0.059 \\ (0.09)$	$0.857 \\ (0.04)$	$0.084 \\ (0.04)$	$0.073 \\ (0.06)$	$0.081 \\ (0.07)$	$0.078 \\ (0.11)$	$0.085 \\ (0.03)$	$0.083 \\ (0.06)$	$0.083 \\ (0.02)$	$0.079 \\ (0.10)$	$0.086 \\ (0.08)$	$0.080 \\ (0.07)$	$0.084 \\ (0.03)$	$0.086 \\ (0.09)$	$0.082 \\ (0.20)$	$0.076 \\ (0.09)$	$0.089 \\ (0.06)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.091 (0.04)	$0.075 \\ (0.07)$	$0.079 \\ (0.04)$	$0.080 \\ (0.07)$	0.082 (0.06)	0.079 (0.03)	0.082 (0.20)	0.084 (0.10)	0.077 (0.07)	$0.080 \\ (0.05)$	$0.071 \\ (0.05)$	0.082 (0.05)	0.084 (0.07)	0.081 (0.08)	$0.080 \\ (0.07)$	0.077 (0.04)	0.083 (0.06)	$0.165 \\ (0.10)$	0.077 (0.09)	0.072 (0.04)	0.096 (0.20)	0.077 (0.20)	0.082 (0.10)	$0.076 \\ (0.08)$	$0.085 \\ (0.07)$	$0.120 \\ (0.07)$	0.074 (0.05)	0.078 (0.08)	0.077 (0.08)	0.078 (0.08)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	$\frac{(0.04)}{\phi_{bb}^{i10}}$	$\frac{(0.20)}{\phi_{ba}^{i11}}$	$\frac{(0.20)}{\phi_{bb}^{i11}}$	ϕ_{ba}^{i12}	$\frac{(0.08)}{\phi_{bb}^{i12}}$	ϕ_{ba}^{i13}	$\frac{(0.07)}{\phi_{bb}^{i13}}$	$\begin{array}{c} (0.05) \\ \phi_{ba}^{i14} \end{array}$	$\frac{(0.08)}{\phi_{bb}^{i14}}$	$\frac{(0.08)}{\phi_{ba}^{i15}}$	ϕ_{bb}^{i15}
$p_t - b_t$	$0.083 \\ (0.06)$	$0.074 \\ (0.09)$	$0.054 \\ (0.20)$	$0.089 \\ (0.10)$	$0.086 \\ (0.23)$	$0.081 \\ (0.10)$	$0.083 \\ (0.09)$	$0.077 \\ (0.20)$	$0.148 \\ (0.06)$	$0.085 \\ (0.05)$	$0.068 \\ (0.04)$	$0.082 \\ (0.05)$	$0.077 \\ (0.08)$	$0.096 \\ (0.20)$	$0.080 \\ (0.20)$	$0.711 \\ (0.06)$	$0.083 \\ (0.08)$	$0.081 \\ (0.22)$	$0.085 \\ (0.10)$	$0.058 \\ (0.25)$	$0.085 \\ (0.20)$	$0.076 \\ (0.09)$	$0.082 \\ (0.05)$	$0.081 \\ (0.06)$	$0.082 \\ (0.05)$	$0.082 \\ (0.05)$	$0.081 \\ (0.07)$	$0.071 \\ (0.06)$	$0.077 \\ (0.30)$	$0.088 \\ (0.10)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.089 \\ (0.04)$	$0.080 \\ (0.08)$	$0.078 \\ (0.02)$	$0.076 \\ (0.10)$	$0.079 \\ (0.26)$	$0.072 \\ (0.20)$	$0.082 \\ (0.09)$	$0.079 \\ (0.05)$	$0.079 \\ (0.08)$	$0.081 \\ (0.04)$	$0.081 \\ (0.07)$	$0.076 \\ (0.05)$	0.084 (0.06)	$0.085 \\ (0.20)$	$0.082 \\ (0.07)$	$0.079 \\ (0.06)$	$0.085 \\ (0.04)$	$0.086 \\ (0.0)2$	$0.077 \\ (0.10)$	$0.079 \\ (0.21)$	$0.081 \\ (0.09)$	0.124 (0.09)	$0.074 \\ (0.07)$	$0.078 \\ (0.05)$	$0.082 \\ (0.04)$	$0.084 \\ (0.08)$	$0.079 \\ (0.07)$	$0.077 \\ (0.20)$	$0.077 \\ (0.10)$	0.081 (0.09)

Table 5: Estimated parameters for DOW

var																														
vai					.,																				74.0					
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{ii}	ϕ_{ab}^{ii}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ^{\imath}_{aa}	ϕ^{\imath}_{ab}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.079 \\ (0.02)$	$0.074 \\ (0.05)$	$0.078 \\ (0.20)$	$0.079 \\ (0.10)$	$0.080 \\ (0.09)$	$0.078 \\ (0.03)$	$0.066 \\ (0.32)$	$0.078 \\ (0.06)$	$0.077 \\ (0.06)$	$0.081 \\ (0.04)$	$0.077 \\ (0.08)$	$0.080 \\ (0.06)$	$0.100 \\ (0.03)$	0.087 (0.10)	$0.078 \\ (0.20)$	$0.112 \\ (0.01)$	$0.756 \\ (0.07)$	$0.081 \\ (0.02)$	$0.076 \\ (0.10)$	$0.080 \\ (0.09)$	$0.080 \\ (0.05)$	$0.078 \\ (0.25)$	$0.077 \\ (0.06)$	$0.078 \\ (0.07)$	$0.078 \\ (0.04)$	$0.116 \\ (0.08)$	$0.286 \\ (0.05)$	$0.082 \\ (0.06)$	$0.075 \\ (0.10)$	$0.079 \\ (0.10)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ^{i27}_{ab}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.078 \\ (0.01)$	$0.078 \\ (0.07)$	0.089 (0.20)	$0.091 \\ (0.01)$	$0.079 \\ (0.09)$	$0.079 \\ (0.05)$	$0.088 \\ (0.27)$	0.074 (0.08)	$0.080 \\ (0.06)$	$0.079 \\ (0.06)$	0.084 (0.09)	0.077 (0.08)	$0.106 \\ (0.05)$	0.077 (0.10)	0.077 (0.09)	$0.081 \\ (0.04)$	0.082 (0.07)	0.037 (0.02)	0.077 (0.10)	$0.155 \\ (0.09)$	0.077 (0.04)	0.084 (0.06)	$0.078 \\ (0.08)$	$0.077 \\ (0.07)$	$0.077 \\ (0.05)$	0.078 (0.04)	0.077 (0.03)	$0.108 \\ (0.08)$	0.103 (0.10)	$0.067 \\ (0.07)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	$\frac{(0.08)}{\phi_{ba}^{i12}}$	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	$\frac{(0.08)}{\phi_{bb}^{i14}}$	$\frac{(0.10)}{\phi_{ba}^{i15}}$	ϕ_{bb}^{i15}
$p_t - b_t$	$0.080 \\ (0.22)$	$0.078 \\ (0.04)$	$0.078 \\ (0.08)$	$0.076 \\ (0.05)$	$0.081 \\ (0.05)$	$0.076 \\ (0.07)$	$0.078 \\ (0.08)$	$0.078 \\ (0.05)$	$0.078 \\ (0.09)$	$0.078 \\ (0.05)$	$0.079 \\ (0.08)$	$0.079 \\ (0.21)$	$0.078 \\ (0.22)$	$0.075 \\ (0.11)$	$0.079 \\ (0.07)$	$0.083 \\ (0.23)$	$0.077 \\ (0.04)$	$0.064 \\ (0.08)$	0.611 (0.06)	$0.083 \\ (0.05)$	$0.078 \\ (0.07)$	$0.082 \\ (0.08)$	$0.077 \\ (0.07)$	$0.076 \\ (0.05)$	$0.078 \\ (0.05)$	$0.089 \\ (0.04)$	$0.078 \\ (0.06)$	$0.079 \\ (0.06)$	$0.078 \\ (0.08)$	$0.052 \\ (0.07)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.089 (0.20)	0.080 (0.06)	0.167 (0.06)	0.078 (0.05)	0.077 (0.05)	0.079 (0.04)	0.082 (0.04)	0.059 (0.08)	0.079 (0.08)	0.070 (0.06)	0.077 (0.06)	0.081 (0.07)	0.138 (0.09)	0.080 (0.08)	0.077 (0.07)	0.058 (0.04)	0.169 (0.06)	0.079 (0.07)	0.095 (0.04)	0.077 (0.07)	0.086 (0.04)	0.077 (0.03)	0.078 (0.09)	0.077 (0.09)	0.078 (0.06)	0.077 (0.03)	0.076 (0.03)	0.077 (0.03)	0.077 (0.09)	0.079 (0.03)

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = \textit{DOW} \ \textit{and} \ \ j = \textit{AAPL}, \textit{CVX}, \textit{AXP}, \textit{BA}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{PFE}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{$

Table 6: Estimated parameters for GS

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.082 \\ (0.09)$	$0.072 \\ (0.09)$	$0.082 \\ (0.08)$	$0.073 \\ (0.06)$	$0.078 \\ (0.05)$	$0.078 \\ (0.03)$	$0.078 \\ (0.10)$	$0.080 \\ (0.20)$	$0.078 \\ (0.09)$	$0.120 \\ (0.16)$	$0.082 \\ (0.04)$	$0.078 \\ (0.05)$	$0.077 \\ (0.20)$	$0.069 \\ (0.10)$	$0.078 \\ (0.41)$	$0.078 \\ (0.09)$	$0.077 \\ (0.08)$	$0.078 \\ (0.04)$	$0.733 \\ (0.05)$	$0.123 \\ (0.07)$	$0.078 \\ (0.20)$	$0.078 \\ (0.20)$	$0.077 \\ (0.20)$	$0.077 \\ (0.19)$	$0.080 \\ (0.10)$	$0.077 \\ (0.04)$	$0.078 \\ (0.07)$	$0.076 \\ (0.02)$	$0.077 \\ (0.04)$	$0.078 \\ (0.09)$
	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.079 \\ (0.09)$	$0.080 \\ (0.08)$	0.074 (0.04)	0.089 (0.06)	$0.078 \\ (0.06)$	$0.080 \\ (0.20)$	0.078 (0.04)	$0.080 \\ (0.07)$	0.072 (0.19)	$0.085 \\ (0.09)$	0.082 (0.04)	0.083 (0.09)	$0.080 \\ (0.20)$	$0.074 \\ (0.06)$	$0.086 \\ (0.08)$	$0.052 \\ (0.09)$	$0.081 \\ (0.08)$	$0.069 \\ (0.04)$	$0.086 \\ (0.05)$	$0.077 \\ (0.08)$	$0.080 \\ (0.10)$	0.082 (0.06)	$0.081 \\ (0.07)$	$0.085 \\ (0.08)$	0.083 (0.10)	0.084 (0.04)	$0.085 \\ (0.09)$	0.073 (0.02)	$0.067 \\ (0.07)$	0.077 (0.06)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.08)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	$\frac{(0.07)}{\phi_{ba}^{i12}}$	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	$\frac{(0.04)}{\phi_{bb}^{i13}}$	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	$\frac{(0.07)}{\phi_{ba}^{i15}}$	$\frac{(0.06)}{\phi_{bb}^{i15}}$
$p_t - b_t$	$0.077 \\ (0.04)$	$0.068 \\ (0.09)$	$0.083 \\ (0.07)$	$0.077 \\ (0.05)$	$0.082 \\ (0.23)$	$0.068 \\ (0.05)$	$0.100 \\ (0.08)$	$0.082 \\ (0.07)$	$0.083 \\ (0.10)$	$0.108 \\ (0.09)$	$0.083 \\ (0.21)$	$0.110 \\ (0.25)$	$0.075 \\ (0.07)$	$0.081 \\ (0.08)$	$0.079 \\ (0.08)$	$0.082 \\ (0.03)$	$0.139 \\ (0.04)$	$0.086 \\ (0.08)$	$0.111 \\ (0.04)$	$0.593 \\ (0.16)$	$0.078 \\ (0.04)$	$0.102 \\ (0.09)$	$0.058 \\ (0.07)$	$0.083 \\ (0.09)$	$0.078 \\ (0.09)$	$0.078 \\ (0.11)$	$0.077 \\ (0.21)$	$0.069 \\ (0.08)$	$0.086 \\ (0.07)$	$0.083 \\ (0.09)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.082 \\ (0.06)$	$0.086 \\ (0.06)$	$0.080 \\ (0.08)$	$0.058 \\ (0.04)$	$0.078 \\ (0.26)$	$0.078 \\ (0.06)$	$0.085 \\ (0.08)$	$0.079 \\ (0.07)$	$0.079 \\ (0.06)$	$0.061 \\ (0.09)$	0.086 (0.23)	$0.080 \\ (0.06)$	0.081 (0.03)	$0.080 \\ (0.05)$	$0.078 \\ (0.03)$	$0.109 \\ (0.09)$	0.138 (0.08)	$0.075 \\ (0.09)$	$0.072 \\ (0.06)$	$0.077 \\ (0.28)$	$0.071 \\ (0.07)$	$0.068 \\ (0.09)$	$0.071 \\ (0.07)$	0.083 (0.06)	$0.074 \\ (0.09)$	$0.095 \\ (0.11)$	$0.073 \\ (0.06)$	0.082 (0.02)	$0.077 \\ (0.08)$	$0.076 \\ (0.06)$

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = \textit{GS} \ \textit{and} \quad j = \textit{AAPL}, \textit{CVX}, \textit{AXP}, \textit{BA}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{PFE}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ} \\ \textit{SAMP}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{PFE}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ} \\ \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSC$

Table 7: Estimated parameters for HD

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.072 \\ (0.24)$	$0.073 \\ (0.20)$	$0.078 \\ (0.29)$	$0.077 \\ (0.06)$	$0.083 \\ (0.08)$	$0.079 \\ (0.08)$	$0.074 \\ (0.07)$	$0.077 \\ (0.04)$	$0.128 \\ (0.05)$	$0.077 \\ (0.10)$	$0.072 \\ (0.20)$	$0.059 \\ (0.06)$	$0.080 \\ (0.02)$	$0.079 \\ (0.04)$	$0.084 \\ (0.06)$	$0.073 \\ (0.03)$	$0.081 \\ (0.10)$	$0.078 \\ (0.20)$	$0.077 \\ (0.07)$	$0.079 \\ (0.06)$	$0.699 \\ (0.09)$	$0.139 \\ (0.08)$	$0.086 \\ (0.05)$	$0.080 \\ (0.05)$	$0.084 \\ (0.10)$	$0.086 \\ (0.10)$	$0.082 \\ (0.08)$	$0.076 \\ (0.06)$	$0.089 \\ (0.08)$	$0.091 \\ (0.05)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ^{i18}_{ab}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.075 \\ (0.06)$	$0.079 \\ (0.10)$	$0.080 \\ (0.05)$	$0.082 \\ (0.08)$	$0.079 \\ (0.07)$	$0.082 \\ (0.08)$	0.084 (0.09)	$0.077 \\ (0.05)$	$0.080 \\ (0.07)$	$0.071 \\ (0.10)$	$0.082 \\ (0.30)$	0.084 (0.08)	$0.081 \\ (0.05)$	$0.073 \\ (0.03)$	$0.080 \\ (0.07)$	$0.077 \\ (0.05)$	0.083 (0.10)	$0.165 \\ (0.05)$	$0.077 \\ (0.09)$	$0.072 \\ (0.08)$	$0.096 \\ (0.08)$	$0.077 \\ (0.0)4$	$0.077 \\ (0.06)$	0.073 (0.08)	$0.082 \\ (0.10)$	$0.076 \\ (0.20)$	$0.085 \\ (0.09)$	$0.120 \\ (0.07)$	$0.074 \\ (0.09)$	$0.078 \\ (0.0)8$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	$\begin{array}{c} (0.05) \\ \phi_{bb}^{i10} \end{array}$	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	$\frac{(0.09)}{\phi_{ba}^{i15}}$	$\frac{(0.0)8}{\phi_{bb}^{i15}}$
$p_t - b_t$	$0.064 \\ (0.07)$	$0.092 \\ (0.06)$	$0.078 \\ (0.04)$	$0.107 \\ (0.08)$	$0.084 \\ (0.07)$	$0.092 \\ (0.04)$	$0.057 \\ (0.08)$	$0.087 \\ (0.04)$	$0.179 \\ (0.09)$	$0.157 \\ (0.0)$	$0.104 \\ (0.20)$	$0.092 \\ (0.03)$	$0.077 \\ (0.06)$	$0.127 \\ (0.20)$	$0.077 \\ (0.03)$	$0.138 \\ (0.08)$	$0.117 \\ (0.06)$	$0.047 \\ (0.07)$	$0.077 \\ (0.08)$	$0.022 \\ (0.05)$	$0.027 \\ (0.06)$	$0.820 \\ (0.07)$	$0.149 \\ (0.05)$	$0.167 \\ (0.09)$	$0.167 \\ (0.0)$	$0.109 \\ (0.01)$	$0.122 \\ (0.08)$	-0.002 (0.20)	$0.055 \\ (0.06)$	$0.106 \\ (0.08)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.090 \\ (0.09)$	$0.089 \\ (0.06)$	0.118 (0.06)	$0.056 \\ (0.09)$	$0.097 \\ (0.08)$	$0.117 \\ (0.07)$	$0.167 \\ (0.09)$	$0.042 \\ (0.06)$	$0.098 \\ (0.09)$	$0.145 \\ (0.0)$	$0.109 \\ (0.01)$	$0.106 \\ (0.06)$	$0.057 \\ (0.20)$	$0.128 \\ (0.06)$	0.087 (0.08)	$0.120 \\ (0.05)$	0.127 (0.06)	$0.116 \\ (0.08)$	$0.097 \\ (0.07)$	$0.037 \\ (0.05)$	$0.155 \\ (0.05)$	$0.110 \\ (0.08)$	$0.007 \\ (0.04)$	0.157 (0.09)	0.087 (0.0)	$0.108 \\ (0.10)$	$0.107 \\ (0.09)$	$0.026 \\ (0.10)$	$0.112 \\ (0.08)$	$0.077 \\ (0.09)$

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = HD \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$

Table 8: Estimated parameters for KO

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.086 \\ (0.07)$	$0.081 \\ (0.07)$	$0.073 \\ (0.08)$	$0.085 \\ (0.07)$	$0.085 \\ (0.09)$	$0.080 \\ (0.04)$	$0.078 \\ (0.04)$	$0.085 \\ (0.03)$	$0.080 \\ (0.04)$	$0.080 \\ (0.08)$	$0.085 \\ (0.10)$	$0.114 \\ (0.09)$	$0.077 \\ (0.07)$	$0.077 \\ (0.07)$	$0.085 \\ (0.04)$	$0.083 \\ (0.08)$	$0.081 \\ (0.05)$	$0.084 \\ (0.07)$	$0.078 \\ (0.08)$	$0.078 \\ (0.09)$	$0.085 \\ (0.04)$	$0.077 \\ (0.05)$	$0.947 \\ (0.07)$	$0.082 \\ (0.05)$	$0.081 \\ (0.08)$	$0.082 \\ (0.01)$	$0.076 \\ (0.09)$	$0.089 \\ (0.08)$	$0.091 \\ (0.04)$	$0.075 \\ (0.08)$
	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ^{i28}_{ab}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.079 (0.07)	$0.080 \\ (0.05)$	$0.082 \\ (0.07)$	0.079 (0.09)	0.082 (0.09)	0.084 (0.09)	0.077 (0.04)	$0.080 \\ (0.08)$	0.071 (0.06)	0.082 (0.09)	0.084 (0.10)	0.081 (0.05)	0.073 (0.03)	0.080 (0.04)	0.077 (0.05)	0.083 (0.04)	$0.165 \\ (0.08)$	0.077 (0.09)	0.072 (0.07)	$0.096 \\ (0.09)$	0.077 (0.10)	0.082 (0.09)	0.081 (0.08)	0.077 (0.08)	0.076 (0.10)	0.085 (0.01)	$0.120 \\ (0.07)$	0.074 (0.06)	$0.078 \\ (0.09)$	0.077 (0.08)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.08)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\frac{(0.09)}{\phi_{bb}^{i11}}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	$\frac{(0.09)}{\phi_{ba}^{i15}}$	ϕ_{bb}^{i15}
$p_t - b_t$	$0.071 \\ (0.21)$	$0.085 \\ (0.08)$	$0.074 \\ (0.20)$	$0.077 \\ (0.08)$	$0.083 \\ (0.08)$	$0.081 \\ (0.02)$	$0.080 \\ (0.06)$	$0.071 \\ (0.04)$	$0.081 \\ (0.10)$	$0.077 \\ (0.06)$	$0.080 \\ (0.04)$	$0.071 \\ (0.06)$	$0.082 \\ (0.03)$	$0.076 \\ (0.07)$	$0.086 \\ (0.09)$	$0.107 \\ (0.20)$	$0.111 \\ (0.06)$	$0.109 \\ (0.08)$	$0.079 \\ (0.09)$	$0.105 \\ (0.05)$	$0.082 \\ (0.03)$	$0.077 \\ (0.08)$	$0.061 \\ (0.05)$	$0.776 \\ (0.04)$	$0.040 \\ (0.07)$	$0.121 \\ (0.04)$	$0.080 \\ (0.06)$	$0.072 \\ (0.08)$	$0.100 \\ (0.06)$	$0.089 \\ (0.03)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.078 \\ (0.30)$	$0.077 \\ (0.04)$	$0.040 \\ (0.09)$	$0.078 \\ (0.05)$	$0.079 \\ (0.04)$	$0.080 \\ (0.06)$	$0.074 \\ (0.04)$	$0.079 \\ (0.07)$	$0.080 \\ (0.03)$	$0.073 \\ (0.30)$	$0.085 \\ (0.03)$	$0.071 \\ (0.08)$	$0.084 \\ (0.06)$	$0.085 \\ (0.08)$	$0.082 \\ (0.06$	$0.082 \\ (0.10)$	$0.079 \\ (0.03)$	$0.085 \\ (0.05)$	$0.086 \\ (0.07)$	$0.077 \\ (0.03)$	$0.079 \\ (0.05)$	$0.081 \\ (0.02)$	0.124 (0.08)	0.074 (0.20)	$0.078 \\ (0.10)$	$0.082 \\ (0.02)$	$0.084 \\ (0.04)$	$0.079 \\ (0.03)$	$0.077 \\ (0.06)$	0.077 (0.03)

Table 9: Estimated parameters for JPM

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.079 \\ (0.03)$	$0.076 \\ (0.06)$	$0.077 \\ (0.10)$	$0.071 \\ (0.30)$	$0.080 \\ (0.08)$	$0.073 \\ (0.03)$	$0.074 \\ (0.21)$	$0.081 \\ (0.09)$	$0.077 \\ (0.09)$	$0.084 \\ (0.15)$	$0.077 \\ (0.08)$	$0.084 \\ (0.09)$	$0.081 \\ (0.03)$	$0.082 \\ (0.02)$	$0.073 \\ (0.06)$	$0.070 \\ (0.07)$	$0.080 \\ (0.10)$	$0.099 \\ (0.20)$	$0.089 \\ (0.09)$	$0.082 \\ (0.05)$	$0.077 \\ (0.23)$	$0.080 \\ (0.09)$	-0.002 (0.09)	$0.767 \\ (0.18)$	$0.080 \\ (0.09)$	$0.076 \\ (0.05)$	$0.080 \\ (0.20)$	$0.086 \\ (0.02)$		
	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ^{i18}_{ab}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	0.057 (0.05)	0.082 (0.03)	$0.065 \\ (0.10)$	$0.081 \\ (0.05)$	0.073 (0.06)	0.083 (0.04)	0.079 (0.27)	$0.080 \\ (0.06)$	$0.078 \\ (0.09)$	0.073 (0.27)	0.083 (0.08)	$0.058 \\ (0.03)$	0.081 (0.20)	$0.100 \\ (0.04)$	$0.081 \\ (0.05)$	$0.082 \\ (0.07)$	0.072 (0.10)	$0.080 \\ (0.05)$	$0.076 \\ (0.07)$	0.083 (0.03)	$0.083 \\ (0.31)$	$0.076 \\ (0.05)$	0.082 (0.09)	0.072 (0.32)	$0.083 \\ (0.06)$	$0.085 \\ (0.03)$	$0.085 \\ (0.05)$	$0.073 \\ (0.03)$		
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\begin{array}{c} (0.10) \\ \phi_{ba}^{i10} \end{array}$	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\phi_{ba}^{(0.09)}$	ϕ_{bb}^{i13}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i14}	$\frac{(0.03)}{\phi_{bb}^{i14}}$	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}
$p_t - b_t$	$0.080 \\ (0.06)$	$0.072 \\ (0.03)$	$0.073 \\ (0.08)$	$0.078 \\ (0.05)$	$0.077 \\ (0.08)$	$0.083 \\ (0.01)$	$0.079 \\ (0.07)$	$0.074 \\ (0.08)$	$0.077 \\ (0.05)$	$0.128 \\ (0.10)$	$0.078 \\ (0.08)$	$0.077 \\ (0.05)$	$0.075 \\ (0.05)$	$0.080 \\ (0.09)$	$0.078 \\ (0.06)$	$0.089 \\ (0.06)$	$0.078 \\ (0.06)$	$0.077 \\ (0.08)$	$0.077 \\ (0.05)$	$0.077 \\ (0.09)$	$0.074 \\ (0.20)$	$0.077 \\ (0.06)$	$0.091 \\ (0.07)$	$0.078 \\ (0.03)$	$0.079 \\ (0.30)$	$0.827 \\ (0.09)$	$0.073 \\ (0.04)$	$0.083 \\ (0.06)$	$0.073 \\ (0.09)$	$0.082 \\ (0.06)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.107 (0.08)	0.079 (0.07)	$0.090 \\ (0.08)$	$0.059 \\ (0.07)$	0.077 (0.07)	0.083 (0.30)	0.084 (0.06)	0.073 (0.07)	0.081 (0.06)	0.073 (0.07)	$0.078 \\ (0.05)$	$0.078 \\ (0.03)$	$0.078 \\ (0.07)$	$0.085 \\ (0.09)$	0.083 (0.03)	$0.083 \\ (0.05)$	0.079 (0.08)	$0.086 \\ (0.08)$	0.072 (0.07)	$0.080 \\ (0.09)$	$0.078 \\ (0.16)$	$0.071 \\ (0.09)$	0.071 (0.09)	$0.078 \\ (0.08)$	0.082 (0.08)	0.082 (0.08)	$0.071 \\ (0.06)$	$0.085 \\ (0.07)$	$0.085 \\ (0.09)$	0.081 (0.02)

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = JPM \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, AMP, CSCO, CAT, DIS, AMP, CSCO, CS$

Table 10: Estimated parameters for INTC

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}
$a_t - p_t$	$0.083 \\ (0.05)$	$0.077 \\ (0.08)$	$0.072 \\ (0.04)$	$0.077 \\ (0.20)$	$0.059 \\ (0.10)$	$0.080 \\ (0.07)$	$0.070 \\ (0.05)$	$0.073 \\ (0.08)$	$0.078 \\ (0.05)$	$0.077 \\ (0.08)$	$0.083 \\ (0.03)$	$0.079 \\ (0.08)$	$0.074 \\ (0.09)$	$0.077 \\ (0.08)$	$0.128 \\ (0.09)$	$0.084 \\ (0.05)$	$0.073 \\ (0.08)$	$0.081 \\ (0.04)$	$0.078 \\ (0.03)$	$0.085 \\ (0.10)$	$0.071 \\ (0.06)$	$0.083 \\ (0.07)$	$0.079 \\ (0.08)$	$0.086 \\ (0.07)$	$0.080 \\ (0.04)$	$0.078 \\ (0.05)$	$0.779 \\ (0.07)$	$0.082 \\ (0.08)$	$0.076 \\ (0.05)$	$0.089 \\ (0.09)$
	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.091 \\ (0.05)$	$0.075 \\ (0.08)$	0.079 (0.04)	$0.080 \\ (0.03)$	$0.082 \\ (0.10)$	$0.079 \\ (0.08)$	$0.082 \\ (0.08)$	0.084 (0.08)	$0.077 \\ (0.07)$	$0.080 \\ (0.09)$	$0.071 \\ (0.05)$	$0.082 \\ (0.08)$	0.084 (0.03)	$0.081 \\ (0.09)$	0.073 (0.02)	$0.080 \\ (0.05)$	$0.077 \\ (0.08)$	0.083 (0.04)	$0.165 \\ (02.0)$	0.077 (0.10)	$0.072 \\ (0.05)$	$0.096 \\ (0.04)$	$0.077 \\ (0.08)$	$0.082 \\ (0.05)$	$0.076 \\ (0.03)$	$0.085 \\ (0.04)$	$0.120 \\ (0.09)$	$0.074 \\ (0.02)$	$0.078 \\ (0.09)$	0.077 (0.10)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i15}	$\frac{(0.10)}{\phi_{bb}^{i15}}$
$p_t - b_t$	$0.080 \\ (0.08)$	$0.083 \\ (0.04)$	$0.054 \\ (0.09)$	$0.077 \\ (0.06)$	$0.086 \\ (0.04)$	$0.073 \\ (0.10)$	$0.083 \\ (0.21)$	$0.084 \\ (0.09)$	$0.079 \\ (0.07)$	$0.071 \\ (0.09)$	$0.081 \\ (0.10)$	$0.085 \\ (0.04)$	$0.075 \\ (0.09)$	$0.085 \\ (0.14)$	$0.076 \\ (0.22)$	$0.082 \\ (0.08)$	$0.081 \\ (0.06)$	$0.085 \\ (0.09)$	$0.068 \\ (0.06)$	$0.082 \\ (0.07)$	$0.077 \\ (0.10)$	$0.075 \\ (0.17)$	$0.078 \\ (0.09)$	$0.080 \\ (0.09)$	$0.082 \\ (0.03)$	$0.082 \\ (0.06)$	$0.081 \\ (0.05)$	$0.667 \\ (0.09)$	$0.077 \\ (0.24)$	$0.078 \\ (0.15)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.078 \\ (0.08)$	$0.080 \\ (0.08)$	$0.078 \\ (0.06)$	$0.082 \\ (0.07)$	0.082 (0.09)	0.079 (0.05)	$0.068 \\ (0.18)$	$0.086 \\ (0.06)$	0.077 (0.09)	0.079 (0.20)	0.081 (0.06)	$0.082 \\ (0.07)$	0.074 (0.08)	0.078 (0.26)	$0.082 \\ (0.17)$	$0.069 \\ (0.08)$	0.079 (0.09)	$0.076 \\ (0.20)$	0.079 (0.08)	0.072 (0.08)	0.082 (0.23)	0.079 (0.06)	$0.079 \\ (0.05)$	0.081 (0.09)	0.081 (0.10)	$0.076 \\ (0.33)$	$0.084 \\ (0.07)$	$0.085 \\ (0.03)$	0.077 (0.21)	0.078 (0.09)

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = INTC \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AMP, CSCO, CAT, DIS, IBM, DOW, GS, HD, CSCO, CAT, DIS, IBM, DOW, CSCO, CAT, DIS, IBM, D$

Table 11: Estimated parameters for JNJ

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ^i_{aa}	ϕ^i_{ab}
$a_t - p_t$	$0.081 \\ (0.26)$	$0.075 \\ (0.05)$	$0.074 \\ (0.08)$	$0.082 \\ (0.08)$	$0.085 \\ (0.04)$	$0.083 \\ (0.07)$	$0.080 \\ (0.08)$	$0.086 \\ (0.05)$	$0.079 \\ (0.08)$	$0.076 \\ (0.06)$	$0.079 \\ (0.20)$	$0.077 \\ (0.06)$	$0.077 \\ (0.09)$	$0.084 \\ (0.09)$	$0.077 \\ (0.06)$	$0.074 \\ (0.20)$	$0.077 \\ (0.05)$	$0.077 \\ (0.07)$	$0.076 \\ (0.08)$	$0.077 \\ (0.04)$	$0.074 \\ (0.09)$	$0.079 \\ (0.08)$	$0.082 \\ (0.05)$	$0.083 \\ (0.08)$	$0.084 \\ (0.08)$	$0.069 \\ (0.08)$	$0.077 \\ (0.07)$	$0.083 \\ (0.09)$	$0.780 \\ (0.09)$	$0.161 \\ (0.06)$
	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.177 \\ (0.05)$	$0.082 \\ (0.05)$	$0.077 \\ (0.06)$	$0.081 \\ (0.08)$	$0.072 \\ (0.04)$	$0.085 \\ (0.03)$	$0.055 \\ (0.08)$	$0.078 \\ (0.05)$	$0.080 \\ (0.09)$	$0.082 \\ (0.07)$	$0.085 \\ (0.11)$	$0.082 \\ (0.06)$	$0.086 \\ (0.08)$	0.084 (0.08)	$0.070 \\ (0.07)$	$0.078 \\ (0.08)$	$0.080 \\ (0.05)$	$0.075 \\ (0.05)$	$0.079 \\ (0.08)$	$0.082 \\ (0.04)$	$0.080 \\ (0.09)$	$0.073 \\ (0.08)$	$0.077 \\ (0.05)$	$0.065 \\ (0.04)$	$0.085 \\ (0.04)$	$0.079 \\ (0.21)$	$0.068 \\ (0.06)$	$0.077 \\ (0.07)$	$0.082 \\ (0.03)$	$0.077 \\ (0.07)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ^i_{ba}	ϕ^i_{bb}
$p_t - b_t$	$0.077 \\ (0.26)$	$0.079 \\ (0.08)$	$0.071 \\ (0.06)$	$0.064 \\ (0.05)$	$0.107 \\ (0.04)$	$0.042 \\ (0.04)$	$0.109 \\ (0.08)$	$0.076 \\ (0.08)$	$0.078 \\ (0.05)$	$0.088 \\ (0.30)$	$0.074 \\ (0.02)$	$0.077 \\ (0.06)$	$0.080 \\ (0.10)$	$0.075 \\ (0.09)$	$0.081 \\ (0.04)$	$0.078 \\ (0.16)$	$0.094 \\ (0.08)$	$0.096 \\ (0.06)$	$0.067 \\ (0.05)$	$0.079 \\ (0.04)$	$0.077 \\ (0.08)$	$0.074 \\ (0.08)$	$0.083 \\ (0.03)$	$0.078 \\ (0.06)$	$0.075 \\ (0.20)$	$0.095 \\ (0.02)$	$0.078 \\ (0.07)$	$0.077 \\ (0.10)$	$0.187 \\ (0.09)$	$0.395 \\ (0.03)$
	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.105 \\ (0.32)$	$0.113 \\ (0.08)$	$0.032 \\ (0.07)$	$0.103 \\ (0.05)$	$0.076 \\ (0.04)$	$0.079 \\ (0.06)$	$0.075 \\ (0.08)$	$0.077 \\ (0.07)$	$0.094 \\ (0.07)$	$0.055 \\ (0.05)$	$0.098 \\ (0.05)$	$0.095 \\ (0.03)$	0.087 (0.10)	$0.076 \\ (0.07)$	$0.077 \\ (0.04)$	0.087 (0.20)	$0.077 \\ (0.08)$	$0.095 \\ (0.08)$	$0.078 \\ (0.05)$	$0.085 \\ (0.04)$	$0.078 \\ (0.08)$	$0.077 \\ (0.03)$	$0.079 \\ (0.04)$	$0.078 \\ (0.03)$	$0.077 \\ (0.02)$	$0.082 \\ (0.05)$	$0.081 \\ (0.07)$	$0.078 \\ (0.10)$	$0.076 \\ (0.09)$	$0.076 \\ (0.06)$

 $\textit{For} \quad \phi^{ij}_{..}, \quad i = JNJ \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, DIS, IBM, DOW, GS, HD, CO, DIS, IBM, DOW, GS, HD, CO$

Table 12: Estimated parameters for MMM

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.082 \\ (0.11)$	$0.074 \\ (0.09)$	$0.069 \\ (0.10)$	$0.078 \\ (0.03)$	$0.078 \\ (0.05)$	$0.089 \\ (0.03)$	$0.077 \\ (0.08)$	$0.081 \\ (0.08)$	$0.066 \\ (0.03)$	$0.092 \\ (0.08)$	$0.077 \\ (0.04)$	$0.077 \\ (0.07)$	$0.078 \\ (0.08)$	$0.076 \\ (0.09)$	$0.070 \\ (0.07)$	$0.078 \\ (0.10)$	$0.117 \\ (0.05)$	$0.078 \\ (0.10)$	$0.077 \\ (0.06)$	$0.081 \\ (0.05)$	$0.078 \\ (0.06)$	$0.065 \\ (0.08)$	$0.079 \\ (0.07)$	$0.080 \\ (0.05)$	$0.074 \\ (0.06)$	$0.056 \\ (0.07)$	$0.077 \\ (0.09)$	$0.082 \\ (0.07)$	$0.082 \\ (0.08)$	$0.162 \\ (0.06)$
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	0.993 (0.06)	$0.076 \\ (0.05)$	$0.081 \\ (0.07)$	$0.078 \\ (0.07)$	$0.080 \\ (0.05)$	$0.076 \\ (0.08)$	0.083 (0.08)	$0.086 \\ (0.09)$	$0.080 \\ (0.07)$	$0.075 \\ (0.08)$	$0.079 \\ (0.05)$	0.083 (0.08)	$0.072 \\ (0.07)$	$0.022 \\ (0.03)$	$0.081 \\ (0.07)$	0.127 (0.08)	$0.078 \\ (0.20)$	0.083 (0.21)	$0.073 \\ (0.08)$	$0.080 \\ (0.05)$	$0.074 \\ (0.09)$	$0.080 \\ (0.08)$	-0.005 (0.05)	$0.077 \\ (0.07)$	$0.099 \\ (0.04)$	$0.106 \\ (0.06)$	$0.078 \\ (0.04)$	$0.086 \\ (0.07)$	$0.077 \\ (0.04)$	$0.077 \\ (0.06)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	$\begin{array}{c} (0.21) \\ \phi_{bb}^{i10} \end{array}$	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	$\frac{(0.04)}{\phi_{ba}^{i16}}$	ϕ_{bb}^{i16}
$p_t - b_t$	$0.076 \\ (0.09)$	$0.074 \\ (0.07)$	$0.086 \\ (0.07)$	$0.077 \\ (0.04)$	$0.085 \\ (0.04)$	$0.097 \\ (0.05)$	$0.079 \\ (0.08)$	$0.077 \\ (0.01)$	$0.089 \\ (0.06)$	$0.077 \\ (0.20)$	$0.097 \\ (0.06)$	$0.076 \\ (0.07)$	$0.077 \\ (0.01)$	$0.075 \\ (0.06)$	$0.084 \\ (0.08)$	$0.078 \\ (0.09)$	$0.045 \\ (0.05)$	$0.080 \\ (0.03)$	$0.085 \\ (0.04)$	$0.079 \\ (0.06)$	$0.071 \\ (0.05)$	$0.081 \\ (0.08)$	$0.081 \\ (0.06)$	$0.077 \\ (0.04)$	$0.078 \\ (0.10)$	$0.077 \\ (0.05)$	$0.074 \\ (0.08)$	$0.077 \\ (0.03)$	$0.079 \\ (0.07)$	$0.108 \\ (0.07)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.147 (0.04)	0.844 (0.09)	$0.086 \\ (0.08)$	$0.071 \\ (0.04)$	$0.107 \\ (0.03)$	$0.079 \\ (0.05)$	$0.075 \\ (0.08)$	0.098 (0.20)	0.099 (0.04)	$0.056 \\ (0.10)$	0.078 (0.07)	$0.080 \\ (0.08)$	$0.075 \\ (0.06)$	0.138 (0.08)	$0.047 \\ (0.16)$	$0.102 \\ (0.06)$	$0.096 \\ (0.04)$	0.085 (0.04)	0.082 (0.04)	$0.080 \\ (0.08)$	$0.078 \\ (0.05)$	$0.076 \\ (0.08)$	0.081 (0.05)	0.074 (0.04)	0.082 (0.04)	$0.077 \\ (0.07)$	0.077 (0.09)	$0.077 \\ (0.04)$	$0.076 \\ (0.09)$	0.080 (0.28)

Table 13: Estimated parameters for MCD

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.084 \\ (0.04)$	$0.081 \\ (0.05)$	$0.075 \\ (0.07)$	$0.074 \\ (0.09)$	$0.082 \\ (0.28)$	$0.085 \\ (0.07)$	$0.071 \\ (0.05)$	$0.080 \\ (0.08)$	$0.068 \\ (0.05)$	$0.079 \\ (0.06)$	$0.076 \\ (0.08)$	$0.079 \\ (0.20)$	$0.083 \\ (0.06)$	$0.069 \\ (0.09)$	$0.071 \\ (0.05)$	$0.082 \\ (0.04)$	$0.085 \\ (0.05)$	$0.067 \\ (0.09)$	$0.073 \\ (0.07)$	$0.077 \\ (0.08)$	$0.074 \\ (0.07)$	$0.077 \\ (0.05)$	$0.077 \\ (0.08)$	$0.076 \\ (0.05)$	$0.077 \\ (0.07)$	$0.074 \\ (0.09)$	$0.079 \\ (0.23)$	$0.082 \\ (0.06)$	$0.083 \\ (0.08)$	$0.084 \\ (0.05)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.082 (0.04)	$0.077 \\ (0.05)$	$0.158 \\ (0.08)$	$0.072 \\ (0.03)$	$0.805 \\ (0.10)$	$0.055 \\ (0.04)$	$0.078 \\ (0.05)$	$0.080 \\ (0.08)$	$0.082 \\ (0.05)$	$0.085 \\ (0.07)$	$0.082 \\ (0.09)$	$0.086 \\ (0.27)$	$0.084 \\ (0.07)$	0.083 (0.09)	$0.068 \\ (0.04)$	$0.077 \\ (0.04)$	$0.082 \\ (0.05)$	0.073 (0.06)	$0.070 \\ (0.20)$	$0.078 \\ (0.07)$	$0.080 \\ (0.07)$	$0.075 \\ (0.05)$	0.079 (0.08)	$0.082 \\ (0.05)$	$0.080 \\ (0.08)$	$0.073 \\ (0.09)$	0.110 (0.29)	$0.065 \\ (0.08)$	$0.085 \\ (0.05)$	0.079 (0.04)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.05)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	$\frac{(0.20)}{\phi_{ba}^{i11}}$	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	$\frac{(0.08)}{\phi_{ba}^{i14}}$	$\frac{(0.09)}{\phi_{bb}^{i14}}$	ϕ_{ba}^{i15}	$\frac{(0.08)}{\phi_{bb}^{i15}}$	$\frac{(0.05)}{\phi_{ba}^{i16}}$	ϕ_{bb}^{i16}
$p_t - b_t$	$0.064 \\ (0.06)$	$0.107 \\ (0.08)$	$0.042 \\ (0.01)$	$0.109 \\ (0.09)$	$0.076 \\ (0.04)$	$0.078 \\ (0.07)$	0.087 (0.20)	$0.076 \\ (0.08)$	0.137 (0.04)	$0.076 \\ (0.40)$	$0.087 \\ (0.07)$	$0.076 \\ (0.03)$	$0.095 \\ (0.07)$	$0.078 \\ (0.09)$	$0.068 \\ (0.04)$	$0.079 \\ (0.07)$	$0.078 \\ (0.09)$	$0.088 \\ (0.10)$	$0.074 \\ (0.09)$	$0.078 \\ (0.04)$	$0.773 \\ (0.06)$	$0.079 \\ (0.05)$	$0.071 \\ (0.08)$	$0.074 \\ (0.04)$	$0.083 \\ (0.06)$	$0.078 \\ (0.07)$	$0.075 \\ (0.05)$	$0.095 \\ (0.06)$	$0.078 \\ (0.01)$	$0.075 \\ (0.03)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.080 \\ (0.07)$	0.095 (0.08)	$0.150 \\ (0.01)$	0.082 (0.09)	0.081 (0.06)	0.078 (0.08)	0.074 (0.05)	0.075 (0.08)	$0.104 \\ (0.04)$	0.081 (0.06)	$0.078 \\ (0.07)$	0.094 (0.05)	$0.096 \\ (0.09)$	$0.067 \\ (0.01)$	0.079 (0.06)	0.077 (0.08)	-0.034 (0.03)	$0.702 \\ (0.10)$	$0.105 \\ (0.09)$	0.113 (0.06)	0.032 (0.08)	0.103 (0.10)	$0.076 \\ (0.08)$	0.079 (0.04)	$0.075 \\ (0.07)$	0.077 (0.03)	0.094 (0.06)	$0.055 \\ (0.08)$	0.098 (0.10)	0.071 (0.05)

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = MCD \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$

Table 14: Estimated parameters for NKE

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.085 \\ (0.09)$	$0.065 \\ (0.06)$	$0.067 \\ (0.05)$	$0.073 \\ (0.08)$	$0.077 \\ (0.07)$	$0.074 \\ (0.06)$	$0.077 \\ (0.08)$	$0.077 \\ (0.01)$	$0.076 \\ (0.33)$	$0.084 \\ (0.20)$	$0.081 \\ (0.07)$	$0.075 \\ (0.06)$	$0.074 \\ (0.08)$	$0.082 \\ (0.03)$	$0.085 \\ (0.08)$	$0.080 \\ (0.08)$	$0.068 \\ (0.06)$	$0.079 \\ (0.03)$	$0.076 \\ (0.08)$	$0.076 \\ (0.08)$	$0.080 \\ (0.05)$	$0.075 \\ (0.08)$	$0.798 \\ (0.01)$	$0.072 \\ (0.25)$	$0.080 \\ (0.06)$	$0.079 \\ (0.07)$	$0.083 \\ (0.07)$	$0.069 \\ (0.09)$	$0.086 \\ (0.05)$	$0.084 \\ (0.07)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ^{i28}_{ab}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.083 \\ (0.09)$	$0.068 \\ (0.08)$	$0.077 \\ (0.05)$	0.082 (0.08)	$0.081 \\ (0.09)$	$0.150 \\ (0.07)$	$0.042 \\ (0.09)$	$0.110 \\ (0.01)$	$0.065 \\ (0.21)$	$0.085 \\ (0.06)$	$0.079 \\ (0.03)$	0.077 (0.06)	$0.071 \\ (0.08)$	0.082 (0.06)	0.077 (0.03)	$0.074 \\ (0.08)$	0.079 (0.04)	0.082 (0.07)	0.083 (0.08)	0.084 (0.03)	0.082 (0.06)	0.077 (0.08)	0.081 (0.10)	$0.072 \\ (0.22)$	$0.085 \\ (0.07)$	$0.055 \\ (0.06)$	$0.078 \\ (0.08)$	$0.080 \\ (0.03)$	$0.082 \\ (0.07)$	0.085 (0.08)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	$0.065 \\ (0.04)$	$0.087 \\ (0.06)$	$0.077 \\ (0.03)$	$0.077 \\ (0.06)$	$0.076 \\ (0.08)$	$0.078 \\ (0.03)$	$0.085 \\ (0.09)$	$0.120 \\ (0.08)$	$0.044 \\ (0.06)$	$0.076 \\ (0.30)$	$0.077 \\ (0.10)$	$0.078 \\ (0.07)$	$0.075 \\ (0.06)$	$0.078 \\ (0.09)$	$0.073 \\ (0.08)$	$0.076 \\ (0.06)$	$0.078 \\ (0.07)$	$0.076 \\ (0.06)$	$0.116 \\ (0.08)$	$0.068 \\ (0.08)$	$0.082 \\ (0.03)$	$0.079 \\ (0.09)$	$0.075 \\ (0.08)$	0.857 (0.08)	$0.074 \\ (0.05)$	$0.078 \\ (0.10)$	$0.077 \\ (0.08)$	$0.079 \\ (0.07)$	$0.080 \\ (0.09)$	$0.075 \\ (0.09)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.078 \\ (0.08)$	0.089 (0.02)	$0.078 \\ (0.08)$	-0.012 (0.06)	$0.082 \\ (0.09)$	0.119 (0.05)	$0.146 \\ (0.03)$	$0.079 \\ (0.08)$	$0.156 \\ (0.09)$	0.077 (0.06)	$0.070 \\ (0.10)$	$0.078 \\ (0.08)$	$0.070 \\ (0.08)$	$0.078 \\ (0.05)$	$0.076 \\ (0.08)$	$0.089 \\ (0.05)$	$0.091 \\ (0.06)$	$0.075 \\ (0.06)$	$0.079 \\ (0.06)$	$0.066 \\ (0.09)$	$0.080 \\ (0.06)$	$0.080 \\ (0.05)$	$0.075 \\ (0.08)$	0.084 (0.03)	$0.077 \\ (0.70)$	$0.106 \\ (0.10)$	$0.077 \\ (0.09)$	$0.077 \\ (0.05)$	$0.078 \\ (0.05)$	0.081 (0.09)

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = NKE \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$

Table 15: Estimated parameters for MRK

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.054 \\ (0.08)$	$0.076 \\ (0.08)$	0.087 (0.11)	$0.079 \\ (0.20)$	$0.093 \\ (0.05)$	$0.077 \\ (0.10)$	$0.088 \\ (0.02)$	$0.089 \\ (0.05)$	$0.080 \\ (0.11)$	$0.083 \\ (0.10)$	$0.078 \\ (0.06)$	$0.015 \\ (0.0)$	$0.086 \\ (0.08)$	$0.110 \\ (0.06)$	$0.063 \\ (0.32)$	$0.087 \\ (0.06)$	$0.073 \\ (0.08)$	$0.078 \\ (0.11)$	$0.082 \\ (0.20)$	$0.056 \\ (0.05)$	$0.078 \\ (0.08)$	$0.080 \\ (0.02)$	$0.080 \\ (0.05)$	$0.084 \\ (0.15)$	$0.075 \\ (0.30)$	$0.079 \\ (0.06)$	$0.061 \\ (0.0)$	$0.088 \\ (0.08)$	$0.079 \\ (0.06)$	$0.079 \\ (0.21)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	0.082 (0.08)	$0.054 \\ (0.08)$	0.089 (0.13)	0.084 (0.02)	$0.080 \\ (0.08)$	$0.079 \\ (0.08)$	0.136 (0.04)	-0.005 (0.06)	$0.076 \\ (0.15)$	0.087 (0.05)	$0.079 \\ (0.07)$	0.093 (0.0)	0.089 (0.09)	$0.080 \\ (0.08)$	0.078 (0.22)	$0.066 \\ (0.04)$	$0.202 \\ (0.08)$	0.079 (0.21)	0.085 (0.30)	0.072 (0.08)	0.079 (0.02)	$0.071 \\ (0.06)$	$0.068 \\ (0.07)$	0.089 (0.18)	0.087 (0.06)	$0.079 \\ (0.08)$	0.073 (0.0)	$0.078 \\ (0.09)$	0.082 (0.08)	0.079 (0.06)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	$0.161 \\ (0.08)$	$0.078 \\ (0.10)$	$0.075 \\ (0.06)$	$0.081 \\ (0.08)$	$0.081 \\ (0.05)$	$0.078 \\ (0.08)$	$0.078 \\ (0.05)$	$0.076 \\ (0.08)$	$0.116 \\ (0.04)$	$0.286 \\ (0.04)$	$0.082 \\ (0.08)$	$0.079 \\ (0.07)$	-0.045 (0.08)	$0.087 \\ (0.19)$	$0.077 \\ (0.07)$	$0.076 \\ (0.05)$	$0.078 \\ (0.10)$	$0.120 \\ (0.06)$	$0.044 \\ (0.08)$	$0.078 \\ (0.07)$	$0.080 \\ (0.07)$	$0.075 \\ (0.09)$	$0.084 \\ (0.08)$	$0.077 \\ (0.05)$	$0.106 \\ (0.08)$	$0.077 \\ (0.03)$	$0.077 \\ (0.07)$	$0.078 \\ (0.08)$	$0.081 \\ (0.23)$	$0.072 \\ (0.06)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i24}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.167 \\ (0.08)$	$0.079 \\ (0.10)$	$0.085 \\ (0.07)$	$0.074 \\ (0.09)$	$0.078 \\ (0.08)$	$0.080 \\ (0.07)$	$0.167 \\ (0.09)$	$0.150 \\ (0.08)$	$0.070 \\ (0.07)$	$0.078 \\ (0.03)$	$0.076 \\ (0.08)$	0.089 (0.07)	0.091 (0.04)	$0.075 \\ (0.15)$	$0.079 \\ (0.08)$	$0.088 \\ (0.05)$	$0.075 \\ (0.10)$	$0.078 \\ (0.07)$	0.089 (0.06)	$0.078 \\ (0.04)$	$0.167 \\ (0.08)$	$0.082 \\ (0.03)$	$0.077 \\ (0.08)$	$0.079 \\ (0.08)$	$0.079 \\ (0.03)$	$0.156 \\ (0.0)3$	$0.077 \\ (0.05)$	$0.070 \\ (0.03)$	$0.078 \\ (0.23)$	$0.080 \\ (0.09)$

Table 16: Estimated parameters for MSFT

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.084 \\ (0.09)$	$0.081 \\ (0.08)$	$0.075 \\ (0.04)$	$0.074 \\ (0.20)$	$0.082 \\ (0.08)$	$0.085 \\ (0.08)$	$0.071 \\ (0.05)$	$0.080 \\ (0.06)$	$0.068 \\ (0.10)$	$0.079 \\ (0.20)$	$0.076 \\ (0.07)$	$0.079 \\ (0.09)$	$0.083 \\ (0.06)$	$0.069 \\ (0.08)$	$0.071 \\ (0.06)$	$0.082 \\ (0.06)$	$0.085 \\ (0.08)$	$0.067 \\ (0.07)$	$0.073 \\ (0.05)$	$0.077 \\ (0.08)$	$0.074 \\ (0.09)$	$0.077 \\ (0.07)$	$0.077 \\ (0.09)$	$0.076 \\ (0.03)$	$0.077 \\ (0.04)$	$0.074 \\ (0.07)$	$0.079 \\ (0.09)$	$0.072 \\ (0.07)$	$0.083 \\ (0.09)$	$0.084 \\ (0.04)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.840 \\ (0.04)$	$0.162 \\ (0.08)$	$0.082 \\ (0.08)$	$0.077 \\ (0.06)$	$0.081 \\ (0.08)$	$0.072 \\ (0.11)$	$0.085 \\ (0.08)$	$0.055 \\ (0.06)$	$0.078 \\ (0.03)$	$0.080 \\ (0.04)$	$0.082 \\ (0.08)$	$0.086 \\ (0.08)$	$0.840 \\ (0.03)$	$0.162 \\ (0.05)$	$0.084 \\ (0.05)$	$0.083 \\ (0.07)$	$0.068 \\ (0.08)$	$0.077 \\ (0.08)$	$0.082 \\ (0.07)$	$0.073 \\ (0.08)$	$0.070 \\ (0.23)$	$0.078 \\ (0.08)$	$0.080 \\ (0.06)$	$0.075 \\ (0.20)$	0.079 (0.04)	$0.082 \\ (0.09)$	$0.080 \\ (0.05)$	$0.073 \\ (0.07)$	$0.110 \\ (0.04)$	$0.065 \\ (0.05)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	$\frac{(0.08)}{\phi_{bb}^{i12}}$	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	$0.086 \\ (0.09)$	$0.079 \\ (0.06)$	$0.076 \\ (0.10)$	$0.079 \\ (0.07)$	$0.084 \\ (0.09)$	-0.012 (0.06)	$0.078 \\ (0.05)$	$0.096 \\ (0.09)$	$0.079 \\ (0.03)$	$0.066 \\ (0.10)$	$0.099 \\ (0.06)$	$0.098 \\ (0.20)$	$0.058 \\ (0.03)$	$0.087 \\ (0.04)$	$0.117 \\ (0.07)$	$0.138 \\ (0.09)$	$0.047 \\ (0.06)$	$0.102 \\ (0.01)$	$0.058 \\ (0.04)$	$0.082 \\ (0.09)$	$0.070 \\ (0.06)$	$0.077 \\ (0.05)$	$0.078 \\ (0.09)$	$0.066 \\ (0.03)$	$0.077 \\ (0.10)$	$0.078 \\ (0.06)$	$0.073 \\ (0.04)$	$0.085 \\ (0.03)$	$0.082 \\ (0.03)$	$0.080 \\ (0.05)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.106 \\ (0.09)$	$0.078 \\ (0.06)$	$0.085 \\ (0.10)$	$0.089 \\ (0.08)$	$0.075 \\ (0.09)$	0.092 (0.04)	$0.086 \\ (0.05)$	$0.079 \\ (0.09)$	$0.078 \\ (0.03)$	0.097 (0.10)	0.087 (0.06)	$0.096 \\ (0.05)$	-0.043 (0.02)	$0.758 \\ (0.30)$	0.157 (0.08)	$0.077 \\ (0.09)$	0.077 (0.06)	0.083 (0.10)	$0.068 \\ (0.08)$	0.084 (0.09)	0.081 (0.04)	$0.083 \\ (0.05)$	$0.107 \\ (0.10)$	$0.079 \\ (0.03)$	0.079 (0.10)	$0.078 \\ (0.06)$	0.094 (0.10)	$0.078 \\ (0.20)$	$0.095 \\ (0.06)$	0.097 (0.02)

Table 17: Estimated parameters for WBA

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.077 \\ (0.26)$	$0.078 \\ (0.20)$	$0.089 \\ (0.09)$	$0.075 \\ (0.05)$	$0.081 \\ (0.06)$	$0.094 \\ (0.20)$	$0.100 \\ (0.20)$	$0.072 \\ (0.07)$	$0.089 \\ (0.10)$	$0.047 \\ (0.10)$	$0.111 \\ (0.08)$	$0.045 \\ (0.03)$	$0.075 \\ (0.30)$	$0.082 \\ (0.06)$	$0.095 \\ (0.06)$	$0.061 \\ (0.27)$	$0.106 \\ (0.20)$	$0.114 \\ (0.09)$	$0.033 \\ (0.05)$	$0.103 \\ (0.06)$	$0.077 \\ (0.20)$	$0.079 \\ (0.05)$	$0.075 \\ (0.07)$	$0.078 \\ (0.01)$	$0.060 \\ (0.20)$	$0.078 \\ (0.08)$	$0.095 \\ (0.03)$	$0.097 \\ (0.10)$	$0.086 \\ (0.08)$	$0.079 \\ (0.04)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.078 \\ (0.21)$	$0.075 \\ (0.20)$	0.084 (0.09)	$0.167 \\ (0.05)$	$0.078 \\ (0.06)$	0.096 (0.20)	0.079 (0.06)	$0.066 \\ (0.07)$	0.099 (0.10)	0.098 (0.02)	0.058 (0.08)	0.087 (0.03)	0.077 (0.20)	0.138 (0.07)	$0.770 \\ (0.07)$	0.077 (0.20)	0.096 (0.20)	0.079 (0.09)	0.085 (0.05)	$0.075 \\ (0.06)$	0.077 (0.20)	0.079 (0.08)	0.078 (0.07)	0.077 (0.10)	0.082 (0.20)	0.073 (0.08)	$0.075 \\ (0.03)$	0.077 (0.05)	$0.076 \\ (0.09)$	0.083 (0.04)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	$0.074 \\ (0.20)$	$0.078 \\ (0.04)$	$0.069 \\ (0.09)$	$0.078 \\ (0.06)$	$0.075 \\ (0.08)$	$0.089 \\ (0.09)$	$0.074 \\ (0.06)$	$0.112 \\ (0.10)$	$0.075 \\ (0.07)$	$0.078 \\ (0.09)$	$0.070 \\ (0.06)$	$0.078 \\ (0.06)$	$0.081 \\ (0.05)$	$0.080 \\ (0.09)$	$0.138 \\ (0.03)$	$0.053 \\ (0.20)$	$0.093 \\ (0.03)$	$0.071 \\ (0.09)$	$0.092 \\ (0.06)$	$0.063 \\ (0.09)$	$0.127 \\ (0.09)$	$0.075 \\ (0.06)$	$0.086 \\ (0.10)$	$0.073 \\ (0.09)$	$0.090 \\ (0.04)$	$0.081 \\ (0.07)$	$0.080 \\ (0.07)$	$0.099 \\ (0.05)$	$0.048 \\ (0.08)$	$0.078 \\ (0.04)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.078 \\ (0.20)$	$0.117 \\ (0.05)$	$0.078 \\ (0.09)$	$0.057 \\ (0.07)$	$0.081 \\ (0.08)$	$0.078 \\ (0.09)$	$0.065 \\ (0.06)$	0.079 (0.10)	$0.080 \\ (0.08)$	$0.074 \\ (0.08)$	$0.098 \\ (0.08)$	$0.055 \\ (0.07)$	$0.110 \\ (0.05)$	$0.077 \\ (0.08)$	$0.120 \\ (0.05)$	0.577 (0.20)	$0.116 \\ (0.03)$	0.082 (0.09)	$0.075 \\ (0.08)$	$0.073 \\ (0.09)$	$0.080 \\ (0.09)$	$0.081 \\ (0.06)$	$0.079 \\ (0.10)$	$0.083 \\ (0.07)$	$0.073 \\ (0.03)$	0.084 (0.09)	$0.075 \\ (0.08)$	$0.080 \\ (0.05)$	$0.075 \\ (0.09)$	$0.086 \\ (0.06)$

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = WBA \ \textit{and} \ \ j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \text{The substitution of the properties of the prop$

Table 18: Estimated parameters for UTX

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.100 \\ (0.02)$	$0.072 \\ (0.10)$	$0.089 \\ (0.05)$	$0.047 \\ (0.05)$	$0.111 \\ (0.09)$	$0.045 \\ (0.03)$	$0.075 \\ (0.09)$	$0.105 \\ (0.04)$	$0.082 \\ (0.07)$	$0.095 \\ (0.06)$	$0.061 \\ (0.03)$	$0.106 \\ (0.30)$	$0.114 \\ (0.05)$	0.033 (0.0)	$0.077 \\ (0.08)$	$0.079 \\ (0.02)$	$0.077 \\ (0.01)$	$0.078 \\ (0.08)$	$0.089 \\ (0.07)$	$0.075 \\ (0.09)$	$0.081 \\ (0.03)$	$0.094 \\ (0.09)$	$0.075 \\ (0.05)$	$0.078 \\ (0.06)$	$0.060 \\ (0.09)$	$0.078 \\ (0.03)$	$0.095 \\ (0.30)$	$0.097 \\ (0.06)$	$0.086 \\ (0.0)$	$0.079 \\ (0.09)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	0.078 (0.02)	$0.075 \\ (0.10)$	0.084 (0.06)	$0.167 \\ (0.05)$	$0.078 \\ (0.09)$	$0.096 \\ (0.03)$	$0.079 \\ (0.09)$	$0.066 \\ (0.03)$	$0.099 \\ (0.07)$	$0.098 \\ (0.08)$	$0.058 \\ (0.03)$	$0.078 \\ (0.30)$	$0.153 \\ (0.07)$	-0.046 (0.0)	0.087 (0.04)	$0.077 \\ (0.02)$	0.602 (0.10)	0.079 (0.08)	$0.085 \\ (0.08)$	$0.075 \\ (0.09)$	0.077 (0.03)	0.079 (0.09)	$0.078 \\ (0.06)$	$0.077 \\ (0.07)$	0.082 (0.03)	$0.073 \\ (0.03)$	$0.075 \\ (0.03)$	$0.077 \\ (0.05)$	$0.076 \\ (0.0)$	$0.083 \\ (0.05)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\begin{array}{c} (0.09) \\ \hline \phi_{bb}^{i11} \end{array}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.06)}{\phi_{ba}^{i13}}$	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	$\frac{(0.0)}{\phi_{ba}^{i16}}$	ϕ_{bb}^{i16}
$p_t - b_t$	$0.053 \\ (0.04)$	$0.093 \\ (0.09)$	$0.071 \\ (0.30)$	$0.092 \\ (0.18)$	$0.063 \\ (0.11)$	0.127 (0.09)	$0.075 \\ (0.06)$	$0.086 \\ (0.09)$	$0.073 \\ (0.30)$	$0.090 \\ (0.20)$	$0.081 \\ (0.22)$	$0.080 \\ (0.26)$	$0.099 \\ (0.04)$	$0.048 \\ (0.04)$	$0.078 \\ (0.03)$	$0.117 \\ (0.06)$	$0.078 \\ (0.09)$	$0.057 \\ (0.04)$	$0.081 \\ (0.26)$	$0.078 \\ (0.16)$	$0.065 \\ (0.09)$	$0.079 \\ (0.06)$	$0.074 \\ (0.09)$	$0.078 \\ (0.04)$	$0.069 \\ (0.01)$	$0.078 \\ (0.28)$	$0.075 \\ (0.27)$	$0.089 \\ (0.06)$	$0.074 \\ (0.05)$	$0.042 \\ (0.03)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.075 (0.06)	0.078 (0.09)	$0.070 \\ (0.03)$	0.078 (0.22)	0.081 (0.14)	0.042 (0.09)	0.080 (0.07)	0.138 (0.09)	0.080 (0.04)	0.074 (0.10)	0.098 (0.22)	$0.055 \\ (0.32$	0.080 (0.07)	0.120 (0.06)	0.775 (0.03)	0.077 (0.05)	0.116 (0.09)	0.812 (0.03)	0.075 (0.27)	0.073 (0.18)	0.080 (0.09)	0.081 (0.10)	0.079 (0.09)	0.083 (0.06)	0.073 (0.20)	0.084 (0.20)	$0.075 \\ (0.21)$	0.080 (0.08)	$0.075 \\ (0.0)7$	0.086 (0.03)

Table 19: Estimated parameters for PG

var																														
-	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.085 \\ (0.02)$	$0.079 \\ (0.05)$	$0.068 \\ (0.10)$	$0.077 \\ (0.20)$	$0.072 \\ (0.09)$	$0.083 \\ (0.05)$	$0.074 \\ (0.04)$	$0.086 \\ (0.09)$	$0.079 \\ (0.20)$	$0.070 \\ (0.04)$	$0.082 \\ (0.30)$	$0.083 \\ (0.07)$	$0.084 \\ (0.07)$	$0.079 \\ (0.04)$	$0.083 \\ (0.03)$	$0.072 \\ (0.02)$	$0.084 \\ (0.05)$	$0.081 \\ (0.01)$	$0.075 \\ (0.02)$	$0.080 \\ (0.09)$	$0.082 \\ (0.07)$	$0.085 \\ (0.06)$	$0.076 \\ (0.09)$	$0.079 \\ (0.04)$	$0.083 \\ (0.06)$	$0.080 \\ (0.03)$	$0.084 \\ (0.07)$	$0.078 \\ (0.08)$	$0.074 \\ (0.05)$	$0.081 \\ (0.03)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.075 \\ (0.02)$	$0.082 \\ (0.05)$	$0.079 \\ (0.10)$	$0.080 \\ (0.10)$	$0.079 \\ (0.09)$	$0.082 \\ (0.08)$	$0.082 \\ (0.04)$	$0.078 \\ (0.09)$	$0.081 \\ (0.05)$	$0.072 \\ (0.08)$	$0.085 \\ (0.30)$	$0.055 \\ (0.08)$	$0.086 \\ (0.05)$	$0.083 \\ (0.06)$	$0.142 \\ (0.03)$	$0.095 \\ (0.02)$	$0.082 \\ (0.05)$	0.086 (0.10)	0.884 (0.09)	0.083 (0.09)	$0.070 \\ (0.04)$	$0.077 \\ (0.07)$	0.083 (0.09)	$0.075 \\ (0.06)$	$0.079 \\ (0.06)$	$0.082 \\ (0.30)$	$0.080 \\ (0.06)$	$0.073 \\ (0.09)$	$0.079 \\ (0.07)$	$0.073 \\ (0.03)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.05)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	$\frac{(0.06)}{\phi_{ba}^{i15}}$	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	$\frac{(0.03)}{\phi_{bb}^{i16}}$
$p_t - b_t$	$0.074 \\ (0.10)$	$0.071 \\ (0.09)$	$0.079 \\ (0.09)$	$0.081 \\ (0.05)$	$0.077 \\ (0.20)$	$0.080 \\ (0.06)$	$0.070 \\ (0.07)$	$0.094 \\ (0.09)$	$0.078 \\ (0.30)$	$0.085 \\ (0.03)$	$0.045 \\ (0.09)$	$0.079 \\ (0.03)$	$0.072 \\ (0.05)$	$0.078 \\ (0.04)$	$0.086 \\ (0.06)$	$0.084 \\ (0.04)$	$0.070 \\ (0.04)$	$0.081 \\ (0.09)$	$0.080 \\ (0.05)$	$0.075 \\ (0.20)$	$0.083 \\ (0.07)$	$0.076 \\ (0.05)$	$0.081 \\ (0.09)$	$0.070 \\ (0.30)$	$0.081 \\ (0.05)$	$0.080 \\ (0.08)$	$0.076 \\ (0.03)$	$0.138 \\ (0.05)$	$0.076 \\ (0.06)$	$0.104 \\ (0.06)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	0.081 (0.31)	$0.080 \\ (0.06)$	$0.068 \\ (0.09)$	$0.078 \\ (0.05)$	0.079 (0.20)	$0.082 \\ (0.08)$	$0.074 \\ (0.04)$	$0.085 \\ (0.09)$	$0.070 \\ (0.30)$	$0.080 \\ (0.06)$	0.073 (0.07)	0.084 (0.03)	$0.071 \\ (0.07)$	$0.072 \\ (0.07)$	$0.015 \\ (0.06)$	$0.162 \\ (0.20)$	$0.085 \\ (0.08)$	$0.075 \\ (0.09)$	$0.079 \\ (0.05)$	0.473 (0.20)	0.085 (0.04)	0.081 (0.06)	0.084 (0.09)	0.077 (0.03)	$0.068 \\ (0.04)$	0.079 (0.06)	0.073 (0.03)	0.082 (0.08)	$0.076 \\ (0.08)$	$0.074 \\ (0.06)$

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = PG \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$

Table 20: Estimated parameters for PFE

var																														
•	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.084 \\ (0.10)$	$0.081 \\ (0.05)$	$0.075 \\ (0.08)$	$0.077 \\ (0.07)$	$0.076 \\ (0.04)$	$0.074 \\ (0.07)$	$0.079 \\ (0.10)$	$0.082 \\ (0.08)$	$0.083 \\ (0.01)$	$0.084 \\ (0.03)$	$0.082 \\ (0.07)$	$0.077 \\ (0.04)$	$0.081 \\ (0.06)$	$0.085 \\ (0.03)$	$0.055 \\ (0.09)$	$0.078 \\ (0.10)$	$0.080 \\ (0.05)$	$0.082 \\ (0.08)$	$0.085 \\ (0.07)$	$0.082 \\ (0.04)$	$0.086 \\ (0.07)$	$0.084 \\ (0.10)$	$0.083 \\ (0.08)$	$0.068 \\ (0.01)$	$0.077 \\ (0.03)$	$0.082 \\ (0.07)$	$0.073 \\ (0.04)$	$0.070 \\ (0.06)$	$0.078 \\ (0.03)$	$0.074 \\ (0.09)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.082 (0.10)	$0.085 \\ (0.05)$	$0.071 \\ (0.08)$	$0.080 \\ (0.07)$	$0.068 \\ (0.04)$	$0.079 \\ (0.07)$	$0.076 \\ (0.10)$	$0.079 \\ (0.08)$	0.083 (0.01)	$0.069 \\ (0.03)$	$0.097 \\ (0.07)$	$0.071 \\ (0.04)$	0.082 (0.06)	$0.085 \\ (0.30)$	$0.067 \\ (0.05)$	0.073 (0.10)	0.114 (0.05)	0.083 (0.08)	$0.080 \\ (0.07)$	$0.166 \\ (0.04)$	$0.309 \\ (0.07)$	$0.075 \\ (0.10)$	0.079 (0.08)	0.082 (0.01)	$0.080 \\ (0.03)$	$0.073 \\ (0.07)$	0.110 (0.04)	$0.065 \\ (0.06)$	$0.162 \\ (0.30)$	$0.061 \\ (0.05)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\begin{array}{c} (0.05) \\ \phi_{ba}^{i10} \end{array}$	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	-0.041 (0.0)	$0.079 \\ (0.08)$	$0.078 \\ (0.10)$	$0.075 \\ (0.05)$	$0.079 \\ (0.07)$	$0.072 \\ (0.03)$	$0.075 \\ (0.04)$	$0.084 \\ (0.09)$	$0.079 \\ (0.07)$	$0.076 \\ (0.04)$	$0.096 \\ (0.30)$	$0.079 \\ (0.05)$	$0.076 \\ (0.15)$	$0.096 \\ (0.03)$	$0.077 \\ (0.03)$	$0.082 \\ (0.0)$	$0.089 \\ (0.08)$	$0.079 \\ (0.10)$	$0.079 \\ (0.05)$	$0.075 \\ (0.07)$	$0.105 \\ (0.30)$	$0.082 \\ (0.04)$	$0.078 \\ (0.09)$	$0.095 \\ (0.07)$	$0.097 \\ (0.04)$	$0.068 \\ (0.30)$	$0.079 \\ (0.05)$	$0.078 \\ (0.16)$	$0.076 \\ (0.07)$	$0.080 \\ (0.03)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.106 \\ (0.0)$	$0.069 \\ (0.08)$	$0.107 \\ (0.10)$	$0.046 \\ (0.05)$	$0.109 \\ (0.07)$	$0.077 \\ (0.30)$	$0.078 \\ (0.04)$	0.087 (0.09)	$0.077 \\ (0.07)$	$0.138 \\ (0.04)$	$0.072 \\ (0.03)$	$0.087 \\ (0.05)$	$0.052 \\ (0.17)$	$0.096 \\ (0.09)$	$0.079 \\ (0.03)$	$0.068 \\ (0.0)$	$0.079 \\ (0.08)$	0.086 (0.10)	$0.093 \\ (0.05)$	$0.145 \\ (0.07)$	$0.033 \\ (0.03)$	$0.603 \\ (0.04)$	$0.077 \\ (0.09)$	$0.079 \\ (0.07)$	$0.075 \\ (0.04)$	$0.078 \\ (0.03)$	$0.094 \\ (0.05)$	$0.055 \\ (0.26)$	$0.098 \\ (0.04)$	$0.071 \\ (0.03)$

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = \textit{PFE} \ \textit{and} \quad j = \textit{AAPL}, \textit{CVX}, \textit{AXP}, \textit{BA}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{JPM}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT$

Table 21: Estimated parameters for TRV

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.080 \\ (0.08)$	$0.068 \\ (0.07)$	$0.079 \\ (0.05)$	$0.076 \\ (0.04)$	$0.079 \\ (0.08)$	$0.083 \\ (0.10)$	$0.069 \\ (0.09)$	$0.077 \\ (0.07)$	$0.071 \\ (0.06)$	$0.082 \\ (0.02)$	$0.085 \\ (0.03)$	$0.067 \\ (0.04)$	$0.073 \\ (0.07)$	$0.074 \\ (0.30)$	$0.084 \\ (0.06)$	$0.081 \\ (0.08)$	$0.075 \\ (0.07)$	$0.074 \\ (0.05)$	$0.082 \\ (0.04)$	$0.085 \\ (0.08)$	$0.071 \\ (0.10)$	$0.081 \\ (0.09)$	$0.075 \\ (0.07)$	$0.083 \\ (0.06)$	$0.068 \\ (0.02)$	$0.077 \\ (0.03)$	$0.082 \\ (0.04)$	$0.073 \\ (0.07)$	$0.070 \\ (0.03)$	$0.078 \\ (0.06)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.080 \\ (0.08)$	$0.075 \\ (0.07)$	$0.079 \\ (0.05)$	0.082 (0.04)	$0.080 \\ (0.08)$	0.073 (0.10)	0.110 (0.09)	$0.065 \\ (0.07)$	$0.085 \\ (0.06)$	0.079 (0.02)	0.072 (0.03)	0.077 (0.04)	$0.074 \\ (0.07)$	$0.079 \\ (0.30)$	0.082 (0.06)	0.083 (0.08)	0.078 (0.07)	$0.082 \\ (0.05)$	$0.165 \\ (0.04)$	$0.105 \\ (0.08)$	0.072 (0.10)	$0.086 \\ (0.09)$	$0.554 \\ (0.07)$	$0.078 \\ (0.06)$	$0.080 \\ (0.02)$	0.082 (0.03)	$0.085 \\ (0.04)$	0.082 (0.07)	0.086 (0.03)	0.084 (0.06)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\frac{(0.08)}{\phi_{bb}^{i11}}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.07)}{\phi_{ba}^{i13}}$	ϕ_{bb}^{i13}	$\frac{(0.02)}{\phi_{ba}^{i14}}$	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	$\frac{(0.07)}{\phi_{bb}^{i15}}$	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}
$p_t - b_t$	$0.109 \\ (0.05)$	$0.077 \\ (0.07)$	$0.078 \\ (0.0)$	$0.087 \\ (0.10)$	$0.077 \\ (0.05)$	$0.138 \\ (0.07)$	$0.077 \\ (0.08)$	$0.087 \\ (0.10)$	$0.078 \\ (0.20)$	$0.078 \\ (0.07)$	$0.075 \\ (0.04)$	$0.084 \\ (0.05)$	$0.065 \\ (0.06)$	$0.043 \\ (0.07)$	$0.114 \\ (0.10)$	$0.079 \\ (0.05)$	$0.072 \\ (0.07)$	$0.075 \\ (0.0)$	$0.084 \\ (0.21)$	$0.079 \\ (0.05)$	$0.076 \\ (0.07)$	$0.079 \\ (0.08)$	$0.079 \\ (0.10)$	$0.076 \\ (0.20)$	$0.080 \\ (0.07)$	$0.096 \\ (0.04)$	$0.077 \\ (0.05)$	$0.072 \\ (0.06)$	$0.081 \\ (0.07)$	$0.077 \\ (0.10)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.096 \\ (0.05)$	$0.079 \\ (0.07)$	$0.068 \\ (0.0)$	$0.079 \\ (0.18)$	$0.077 \\ (0.05)$	$0.079 \\ (0.07)$	0.077 (0.08)	0.079 (0.10)	$0.075 \\ (0.20)$	$0.078 \\ (0.07)$	0.094 (0.04)	$0.055 \\ (0.05)$	$0.098 \\ (0.06)$	$0.075 \\ (0.07)$	$0.074 \\ (0.10)$	$0.075 \\ (0.05)$	$0.080 \\ (0.07)$	$0.077 \\ (0.0)$	$0.062 \\ (0.26)$	$0.158 \\ (0.05)$	$0.097 \\ (0.07)$	$0.068 \\ (0.08)$	$0.079 \\ (0.10)$	0.728 (0.20)	$0.088 \\ (0.07)$	0.083 (0.04)	$0.048 \\ (0.05)$	0.114 (0.06)	0.033 (0.07)	$0.103 \\ (0.10)$

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i=TRV \ and \ j=AAPL,CVX,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,XOM,WMT,UNH,V,VZ,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,CO,DIS,IBM,DOW,GS,HD,CO,DIS,IBM,DOW,GS,HD,CO,DIS,IBM,DOW,GS,HD,CO,DIS,IBM,DOW,DOW,GS,HD,CO,DIS,IBM,DOW,DOW,GS,HD,CO,DIS,IBM,DOW,GS,HD,CO,DIS,IBM,DOW$

Table 22: Estimated parameters for XOM

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.119 \\ (0.04)$	$0.118 \\ (0.12)$	$0.060 \\ (0.08)$	$0.084 \\ (0.10)$	$0.067 \\ (0.09)$	$0.078 \\ (0.04)$	$0.097 \\ (0.03)$	$0.168 \\ (0.10)$	$0.078 \\ (0.06)$	$0.066 \\ (0.40)$	$0.086 \\ (0.07)$	$0.042 \\ (0.02)$	$0.107 \\ (0.03)$	$0.092 \\ (0.07)$	$0.143 \\ (0.05)$	$0.086 \\ (0.04)$	$0.128 \\ (0.23)$	$0.045 \\ (0.08)$	$0.098 \\ (0.10)$	$0.090 \\ (0.09)$	$0.082 \\ (0.04)$	$0.120 \\ (0.05)$	$0.089 \\ (0.01)$	$0.076 \\ (0.06)$	$0.096 \\ (0.04)$	$0.101 \\ (0.07)$	$0.131 \\ (0.02)$	$0.100 \\ (0.03)$	$0.138 \\ (0.07)$	$0.108 \\ (0.05)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ^{i28}_{ab}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	$0.085 \\ (0.04)$	$0.074 \\ (0.35)$	$0.106 \\ (0.08)$	$0.077 \\ (0.10)$	0.089 (0.09)	$0.110 \\ (0.04)$	0.073 (0.07)	$0.065 \\ (0.01)$	$0.100 \\ (0.06)$	0.079 (0.04)	$0.101 \\ (0.07)$	0.085 (0.02)	$0.076 \\ (0.03)$	$0.060 \\ (0.07)$	$0.129 \\ (0.05)$	0.078 (0.04)	0.138 (0.28)	$0.054 \\ (0.08)$	0.082 (0.10)	$0.078 \\ (0.09)$	0.143 (0.04)	$0.100 \\ (0.08)$	0.077 (0.10)	$0.075 \\ (0.06)$	0.811 (0.41)	$0.080 \\ (0.07)$	$0.075 \\ (0.02)$	$0.070 \\ (0.03)$	$0.068 \\ (0.07)$	$0.074 \\ (0.05)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.28)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\phi_{bb}^{(0.09)}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	$\frac{(0.07)}{\phi_{ba}^{i16}}$	$\frac{(0.05)}{\phi_{bb}^{i16}}$
$p_t - b_t$	$0.080 \\ (0.05)$	$0.074 \\ (0.08)$	$0.068 \\ (0.07)$	$0.078 \\ (0.10)$	$0.075 \\ (0.04)$	$0.082 \\ (0.08)$	$0.080 \\ (0.05)$	$0.069 \\ (0.09)$	$0.080 \\ (0.03)$	$0.080 \\ (0.10)$	$0.077 \\ (0.04)$	$0.005 \\ (0.20)$	$0.076 \\ (0.11)$	$0.083 \\ (0.06)$	$0.073 \\ (0.07)$	$0.080 \\ (0.05)$	$0.071 \\ (0.08)$	$0.079 \\ (0.07)$	$0.081 \\ (0.10)$	$0.080 \\ (0.04)$	$0.109 \\ (0.08)$	$0.072 \\ (0.05)$	$0.077 \\ (0.09)$	$0.078 \\ (0.03)$	$0.085 \\ (0.10)$	$0.045 \\ (0.04)$	$0.077 \\ (0.20)$	$0.072 \\ (0.22)$	$0.100 \\ (0.06)$	$0.167 \\ (0.08)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.079 \\ (0.05)$	$0.070 \\ (0.08)$	$0.081 \\ (0.07)$	$0.080 \\ (0.05)$	$0.075 \\ (0.04)$	$0.083 \\ (0.08)$	$0.076 \\ (0.05)$	0.073 (0.09)	0.084 (0.03)	0.073 (0.10)	$0.080 \\ (0.04)$	$0.076 \\ (0.20)$	0.138 (0.33)	0.083 (0.06)	$0.076 \\ (0.09)$	$0.082 \\ (0.05)$	$0.085 \\ (0.08)$	$0.079 \\ (0.07)$	$0.074 \\ (0.05)$	$0.081 \\ (0.04)$	$0.036 \\ (0.08)$	$0.154 \\ (0.05)$	$0.070 \\ (0.09)$	$0.077 \\ (0.03)$	$0.648 \\ (0.10)$	$0.079 \\ (0.04)$	$0.073 \\ (0.20)$	$0.082 \\ (0.10)$	$0.076 \\ (0.06)$	$0.106 \\ (0.09)$

Table 23: Estimated parameters for WMT

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.076 \\ (0.09)$	$0.086 \\ (0.10)$	$0.110 \\ (0.08)$	$0.063 \\ (0.07)$	$0.087 \\ (0.05)$	$0.073 \\ (0.04)$	$0.078 \\ (0.07)$	$0.072 \\ (0.10)$	$0.056 \\ (0.07)$	$0.078 \\ (0.20)$	$0.084 \\ (0.07)$	$0.075 \\ (0.05)$	$0.075 \\ (0.08)$	$0.061 \\ (0.01)$	$0.079 \\ (0.06)$	$0.080 \\ (0.09)$	$0.080 \\ (0.10)$	$0.076 \\ (0.08)$	$0.081 \\ (0.07)$	$0.016 \\ (0.05)$	$0.068 \\ (0.04)$	$0.083 \\ (0.07)$	$0.076 \\ (0.10)$	$0.015 \\ (0.07)$	$0.079 \\ (0.20)$	$0.088 \\ (0.07)$	$0.079 \\ (0.05)$	$0.079 \\ (0.08)$	$0.082 \\ (0.01)$	$0.054 \\ (0.06)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	$0.089 \\ (0.09)$	0.084 (0.10)	$0.748 \\ (0.08)$	-0.047 (0.07)	$0.079 \\ (0.05)$	$0.085 \\ (0.04)$	$0.072 \\ (0.07)$	$0.079 \\ (0.10)$	$0.071 \\ (0.07)$	$0.068 \\ (0.20)$	$0.089 \\ (0.07)$	$0.075 \\ (0.05)$	$0.075 \\ (0.08)$	$0.088 \\ (0.01)$	$0.078 \\ (0.06)$	$0.079 \\ (0.09)$	$0.076 \\ (0.10)$	$0.054 \\ (0.08)$	$0.076 \\ (0.07)$	0.087 (0.05)	$0.079 \\ (0.04)$	$0.444 \\ (0.07)$	0.094 (0.10)	$0.088 \\ (0.07)$	0.089 (0.20)	$0.080 \\ (0.07)$	$0.078 \\ (0.05)$	$0.066 \\ (0.08)$	$0.064 \\ (0.01)$	$0.057 \\ (0.06)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\frac{(0.05)}{\phi_{bb}^{i11}}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	$\frac{(0.01)}{\phi_{ba}^{i16}}$	$\frac{(0.06)}{\phi_{bb}^{i16}}$
$p_t - b_t$	$0.120 \\ (0.06)$	$0.044 \\ (0.10)$	$0.150 \\ (0.05)$	$0.161 \\ (0.07)$	$0.078 \\ (0.20)$	$0.075 \\ (0.04)$	$0.075 \\ (0.08)$	$0.081 \\ (0.08)$	$0.078 \\ (0.06)$	$0.078 \\ (0.10)$	$0.076 \\ (0.08)$	$0.116 \\ (0.08)$	$0.072 \\ (0.05)$	$0.079 \\ (0.07)$	$0.097 \\ (0.04)$	$0.069 \\ (0.06)$	$0.074 \\ (0.10)$	$0.078 \\ (0.05)$	$0.077 \\ (0.07)$	$0.075 \\ (0.20)$	$0.080 \\ (0.04)$	$0.075 \\ (0.08)$	$0.076 \\ (0.08)$	$0.089 \\ (0.06)$	-0.045 (0.10)	$0.087 \\ (0.07)$	$0.077 \\ (0.07)$	$0.080 \\ (0.04)$	$0.076 \\ (0.08)$	$0.078 \\ (0.03)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.076 \\ (0.06)$	$0.167 \\ (0.10)$	$0.099 \\ (0.05)$	$0.073 \\ (0.07)$	$0.079 \\ (0.20)$	$0.079 \\ (0.04)$	-0.001 (0.08)	$0.077 \\ (0.08)$	$0.070 \\ (0.06)$	$0.078 \\ (0.01)$	$0.070 \\ (0.06)$	$0.086 \\ (0.09)$	$0.076 \\ (0.06)$	$0.089 \\ (0.09)$	$0.091 \\ (0.06)$	$0.075 \\ (0.06)$	$0.079 \\ (0.10)$	$0.088 \\ (0.05)$	$0.074 \\ (0.07)$	$0.080 \\ (0.20)$	$0.075 \\ (0.04)$	0.084 (0.08)	$0.080 \\ (0.08)$	0.234 (0.06)	$0.075 \\ (0.01)$	0.128 (0.06)	$0.108 \\ (0.07)$	$0.081 \\ (0.07)$	$0.072 \\ (0.09)$	-0.012 (0.08)

Table 24: Estimated parameters for UNH

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ^{i5}_{ab}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ^{i10}_{ab}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.074 \\ (0.04)$	$0.079 \\ (0.05)$	$0.076 \\ (0.06)$	$0.079 \\ (0.08)$	$0.083 \\ (0.30)$	$0.069 \\ (0.08)$	$0.077 \\ (0.04)$	$0.071 \\ (0.20)$	$0.082 \\ (0.06)$	$0.085 \\ (0.11)$	$0.076 \\ (0.07)$	$0.073 \\ (0.05)$	$0.083 \\ (0.06)$	$0.077 \\ (0.04)$	$0.077 \\ (0.10)$	$0.024 \\ (0.04)$	$0.077 \\ (0.05)$	$0.084 \\ (0.06)$	$0.081 \\ (0.08)$	$0.075 \\ (0.30)$	$0.074 \\ (0.08)$	$0.082 \\ (0.04)$	$0.085 \\ (0.20)$	$0.071 \\ (0.06)$	$0.080 \\ (0.22)$	$0.074 \\ (0.08)$	$0.079 \\ (0.05)$	$0.082 \\ (0.06)$	$0.083 \\ (0.04)$	$0.084 \\ (0.10)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i29}	ϕ_{ab}^{i29}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}
	$0.082 \\ (0.04)$	$0.077 \\ (0.05)$	$0.081 \\ (0.06)$	$0.072 \\ (0.08)$	$0.085 \\ (0.03)$	$0.055 \\ (0.08)$	0.078 (0.04)	$0.080 \\ (0.20)$	0.082 (0.06)	0.085 (0.22)	0.082 (0.08)	$0.086 \\ (0.05)$	$0.084 \\ (0.06)$	$0.083 \\ (0.04)$	$0.068 \\ (0.10)$	$0.077 \\ (0.04)$	0.082 (0.05)	0.073 (0.06)	$0.070 \\ (0.0)8$	$0.078 \\ (0.03)$	$0.080 \\ (0.08)$	$0.075 \\ (0.04)$	0.079 (0.20)	0.827 (0.06)	$0.156 \\ (0.33)$	$0.042 \\ (0.09)$	$0.110 \\ (0.05)$	$0.065 \\ (0.06)$	$0.085 \\ (0.04)$	0.079 (0.10)
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.05)}{\phi_{ba}^{i10}}$	ϕ_{bb}^{i10}	$\frac{(0.0)8}{\phi_{ba}^{i11}}$	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	$\frac{(0.04)}{\phi_{bb}^{i12}}$	$\frac{(0.20)}{\phi_{ba}^{i13}}$	ϕ_{bb}^{i13}	$\frac{(0.33)}{\phi_{ba}^{i14}}$	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	$\frac{(0.06)}{\phi_{bb}^{i15}}$	ϕ_{ba}^{i16}	$\frac{(0.10)}{\phi_{bb}^{i16}}$
$p_t - b_t$	$0.065 \\ (0.10)$	$0.076 \\ (0.07)$	$0.080 \\ (0.08)$	$0.096 \\ (0.03)$	$0.077 \\ (0.05)$	$0.082 \\ (0.06)$	$0.081 \\ (0.20)$	$0.079 \\ (0.08)$	$0.074 \\ (0.10)$	$0.075 \\ (0.30)$	$0.105 \\ (0.06)$	$0.082 \\ (0.04)$	$0.078 \\ (0.07)$	$0.068 \\ (0.02)$	$0.079 \\ (0.08)$	$0.078 \\ (0.10)$	$0.073 \\ (0.07)$	$0.083 \\ (0.08)$	$0.107 \\ (0.30)$	$0.043 \\ (0.05)$	$0.109 \\ (0.06)$	$0.077 \\ (0.20)$	$0.078 \\ (0.08)$	$0.087 \\ (0.10)$	$0.077 \\ (0.03)$	$0.138 \\ (0.06)$	$0.076 \\ (0.04)$	$0.087 \\ (0.07)$	$0.077 \\ (0.03)$	$0.096 \\ (0.03)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.079 \\ (0.10)$	$0.068 \\ (0.07)$	$0.079 \\ (0.08)$	$0.077 \\ (0.03)$	$0.079 \\ (0.05)$	$0.078 \\ (0.06)$	0.089 (0.20)	$0.075 \\ (0.08)$	$0.078 \\ (0.10)$	$0.077 \\ (0.30)$	$0.079 \\ (0.06)$	$0.072 \\ (0.04)$	$0.075 \\ (0.07)$	0.084 (0.02)	$0.079 \\ (0.06)$	$0.076 \\ (0.10)$	$0.096 \\ (0.07)$	$0.079 \\ (0.08)$	$0.106 \\ (0.30)$	$0.114 \\ (0.05)$	0.033 (0.06)	$0.103 \\ (0.20)$	$0.077 \\ (0.08)$	$0.079 \\ (0.10)$	$0.578 \\ (0.30)$	$0.150 \\ (0.06)$	$0.094 \\ (0.04)$	$0.055 \\ (0.07)$	$0.098 \\ (0.05)$	$0.071 \\ (0.04)$

Table 25: Estimated parameters for V

var																														
	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.079 \\ (0.08)$	$0.072 \\ (0.20)$	$0.083 \\ (0.05)$	$0.077 \\ (0.10)$	$0.082 \\ (0.07)$	$0.073 \\ (0.08)$	$0.079 \\ (0.07)$	$0.076 \\ (0.06)$	$0.082 \\ (0.06)$	$0.127 \\ (0.06)$	$0.083 \\ (0.10)$	$0.081 \\ (0.09)$	$0.146 \\ (0.03)$	$0.078 \\ (0.07)$	$0.083 \\ (0.01)$	$0.075 \\ (0.08)$	$0.083 \\ (0.20)$	$0.080 \\ (0.05)$	$0.078 \\ (0.10)$	$0.076 \\ (0.07)$	$0.079 \\ (0.08)$	$0.076 \\ (0.07)$	$0.085 \\ (0.06)$	$0.080 \\ (0.06)$	$0.083 \\ (0.20)$	$0.134 \\ (0.10)$	$0.077 \\ (0.09)$	$0.085 \\ (0.05)$	$0.070 \\ (0.07)$	$0.080 \\ (0.01)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ^{i26}_{ab}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ^{i28}_{ab}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i30}	ϕ^{i30}_{ab}
	0.083 (0.08)	$0.082 \\ (0.20)$	$0.078 \\ (0.05)$	$0.081 \\ (0.10)$	$0.072 \\ (0.07)$	$0.082 \\ (0.08)$	$0.074 \\ (0.07)$	$0.082 \\ (0.06)$	$0.079 \\ (0.06)$	0.082 (0.20)	0.082 (0.10)	$0.072 \\ (0.09)$	0.081 (0.02)	$0.069 \\ (0.07)$	0.082 (0.01)	$0.072 \\ (0.08)$	0.084 (0.20)	$0.074 \\ (0.05)$	$0.080 \\ (0.10)$	0.083 (0.07)	$0.082 \\ (0.08)$	$0.083 \\ (0.07)$	$0.071 \\ (0.06)$	$0.080 \\ (0.06)$	$0.074 \\ (0.05)$	0.081 (0.10)	0.553 (0.09)	$0.015 \\ (0.06)$	$0.112 \\ (0.07)$	$0.101 \\ (0.10)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	$\begin{array}{c} (0.07) \\ \phi_{ba}^{i16} \end{array}$	ϕ_{bb}^{i16}
$p_t - b_t$	$0.082 \\ (0.20)$	$0.078 \\ (0.08)$	$0.072 \\ (0.04)$	$0.085 \\ (0.08)$	$0.130 \\ (0.07)$	$0.069 \\ (0.06)$	$0.082 \\ (0.10)$	$0.083 \\ (0.05)$	$0.084 \\ (0.10)$	$0.079 \\ (0.20)$	$0.077 \\ (0.06)$	$0.080 \\ (0.08)$	$0.074 \\ (0.06)$	$0.076 \\ (0.04)$	$0.072 \\ (0.07)$	$0.082 \\ (0.20)$	$0.073 \\ (0.08)$	$0.078 \\ (0.04)$	$0.069 \\ (0.08)$	$0.149 \\ (0.07)$	$0.080 \\ (0.06)$	$0.071 \\ (0.10)$	$0.120 \\ (0.05)$	$0.102 \\ (0.10)$	$0.078 \\ (0.04)$	$0.082 \\ (0.06)$	$0.069 \\ (0.08)$	$0.142 \\ (0.07)$	$0.083 \\ (0.06)$	$0.078 \\ (0.08)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}
	$0.074 \\ (0.20)$	$0.080 \\ (0.08)$	$0.074 \\ (0.04)$	$0.089 \\ (0.08)$	$0.085 \\ (0.07)$	$0.080 \\ (0.06)$	$0.078 \\ (0.10)$	$0.080 \\ (0.05)$	$0.072 \\ (0.10)$	$0.085 \\ (0.30)$	0.082 (0.06)	$0.083 \\ (0.08)$	$0.080 \\ (0.05)$	$0.074 \\ (0.07)$	$0.086 \\ (0.09)$	$0.052 \\ (0.20)$	$0.081 \\ (0.08)$	$0.069 \\ (0.04)$	$0.086 \\ (0.08)$	$0.077 \\ (0.07)$	$0.080 \\ (0.06)$	$0.082 \\ (0.10)$	$0.073 \\ (0.05)$	$0.085 \\ (0.10)$	$0.083 \\ (0.10)$	0.084 (0.06)	$0.152 \\ (0.08)$	$0.466 \\ (0.04)$	$0.067 \\ (0.09)$	0.081 (0.08)

Table 26: Estimated parameters for VZ

var																														
	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}
$a_t - p_t$	$0.078 \\ (0.10)$	$0.069 \\ (0.04)$	$0.089 \\ (0.08)$	$0.079 \\ (0.20)$	$0.079 \\ (0.06)$	$0.078 \\ (0.08)$	$0.060 \\ (0.05)$	$0.075 \\ (0.05)$	$0.095 \\ (0.20)$	$0.097 \\ (0.06)$	$0.086 \\ (0.20)$	$0.079 \\ (0.30)$	$0.078 \\ (0.08)$	$0.084 \\ (0.05)$	-0.012 (0.06)	$0.078 \\ (0.10)$	$0.096 \\ (0.04)$	$0.079 \\ (0.08)$	$0.087 \\ (0.20)$	$0.099 \\ (0.06)$	$0.056 \\ (0.08)$	$0.096 \\ (0.05)$	$0.087 \\ (0.07)$	$0.117 \\ (0.20)$	$0.138 \\ (0.05)$	$0.047 \\ (0.20)$	$0.102 \\ (0.03)$	$0.096 \\ (0.08)$	$0.062 \\ (0.05)$	$0.086 \\ (0.06)$
	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}	ϕ_{aa}^{i26}	ϕ_{ab}^{i26}	ϕ_{aa}^{i27}	ϕ_{ab}^{i27}	ϕ_{aa}^{i28}	ϕ_{ab}^{i28}	ϕ_{aa}^{i29}	ϕ^{i29}_{ab}	ϕ_{aa}^{i30}	ϕ_{ab}^{i30}	ϕ^i_{aa}	ϕ^i_{ab}
	0.079 (0.10)	$0.078 \\ (0.04)$	$0.089 \\ (0.08)$	$0.108 \\ (0.20)$	0.097 (0.06)	$0.067 \\ (0.08)$	$0.058 \\ (0.05)$	0.157 (0.09)	0.077 (0.20)	$0.077 \\ (0.04)$	$0.071 \\ (0.02)$	$0.068 \\ (0.30)$	$0.070 \\ (0.08)$	$0.081 \\ (0.07)$	0.083 (0.06)	$0.107 \\ (0.10)$	$0.074 \\ (0.04)$	$0.085 \\ (0.08)$	0.082 (0.20)	$0.070 \\ (0.06)$	$0.077 \\ (0.08)$	$0.078 \\ (0.05)$	$0.088 \\ (0.09)$	$0.074 \\ (0.20)$	$0.078 \\ (0.03)$	$0.081 \\ (0.20)$	$0.069 \\ (0.03)$	$0.082 \\ (0.08)$	$0.408 \\ (0.07)$	$0.155 \\ (0.06)$
	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	$\frac{(0.04)}{\phi_{ba}^{i10}}$	$\frac{(0.08)}{\phi_{bb}^{i10}}$	ϕ_{ba}^{i11}	$\frac{(0.06)}{\phi_{bb}^{i11}}$	$\frac{(0.08)}{\phi_{ba}^{i12}}$	ϕ_{bb}^{i12}	$\frac{(0.09)}{\phi_{ba}^{i13}}$	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	$\frac{(0.20)}{\phi_{bb}^{i14}}$	$\begin{array}{c} (0.03) \\ \phi_{ba}^{i15} \end{array}$	ϕ_{bb}^{i15}	$\frac{(0.07)}{\phi_{ba}^{i16}}$	$\frac{(0.06)}{\phi_{bb}^{i16}}$
$p_t - b_t$	$0.077 \\ (0.08)$	$0.093 \\ (0.05)$	$0.085 \\ (0.07)$	$0.077 \\ (0.06)$	$0.108 \\ (0.10)$	$0.089 \\ (0.08)$	$0.076 \\ (0.20)$	$0.080 \\ (0.08)$	$0.088 \\ (0.20)$	$0.051 \\ (0.06)$	$0.093 \\ (0.10)$	$0.117 \\ (0.03)$	$0.078 \\ (0.08)$	$0.078 \\ (0.04)$	$0.082 \\ (0.09)$	$0.084 \\ (0.08)$	$0.083 \\ (0.05)$	$0.089 \\ (0.07)$	$0.080 \\ (0.06)$	$0.075 \\ (0.10)$	$0.081 \\ (0.08)$	$0.098 \\ (0.20)$	$0.100 \\ (0.08)$	$0.088 \\ (0.20)$	$0.099 \\ (0.06)$	$0.035 \\ (0.01)$	$0.028 \\ (0.03)$	$0.039 \\ (0.09)$	$0.079 \\ (0.04)$	$0.082 \\ (0.04)$
	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}	ϕ_{ba}^{i26}	ϕ_{bb}^{i26}	ϕ_{ba}^{i27}	ϕ_{bb}^{i27}	ϕ_{ba}^{i28}	ϕ_{bb}^{i28}	ϕ_{ba}^{i29}	ϕ_{bb}^{i29}	ϕ_{ba}^{i30}	ϕ_{bb}^{i30}	ϕ^i_{ba}	ϕ^i_{bb}
	$0.079 \\ (0.08)$	$0.081 \\ (0.05)$	$0.078 \\ (0.07)$	$0.056 \\ (0.06)$	$0.068 \\ (0.10)$	$0.074 \\ (0.09)$	$0.133 \\ (0.20)$	$0.082 \\ (0.08)$	$0.028 \\ (0.02)$	$0.080 \\ (0.06)$	$0.069 \\ (0.10)$	$0.082 \\ (0.03)$	$0.091 \\ (0.07)$	$0.073 \\ (0.05)$	$0.081 \\ (0.06)$	$0.100 \\ (0.08)$	$0.049 \\ (0.05)$	$0.079 \\ (0.07)$	$0.079 \\ (0.06)$	0.118 (0.10)	$0.077 \\ (0.09)$	$0.058 \\ (0.20)$	$0.082 \\ (0.08)$	$0.079 \\ (0.20)$	$0.075 \\ (0.06)$	$0.083 \\ (0.01)$	$0.074 \\ (0.03)$	-0.004 (0.07)	$0.160 \\ (0.05)$	$0.209 \\ (0.06)$

Appendix B2
Estimated GARCH Parameters for DIA and its Underlying Assets

ETF	κ_{pf}^0	κ_{p^f}	$\kappa^0_{ap^f}$	κ_{ap^f}	$\kappa^0_{pb^f}$	κ_{pb^f}	$ au_0^f$	$ au_1^f$	$ au_2^f$	$ au_3^f$
DIA	-0.611 (0.184)	$0.601 \\ (0.001)$	-0.553 (0.010)	0.781 (0.09)	-0.772 (0.001)	$0.784 \\ (0.005)$	-0.220 (0.003)	$0.939 \\ (0.012)$	-0.229 (0.038)	$0.601 \\ (0.007)$
STOCK κ_p^0	κ_p	κ^0_{ap}	κ_{ap}	κ_{pb}^0	κ_{pb}	$ au_0$	$ au_1$	$ au_2$	$ au_3$	0.001
AAPL	-0.761 (0.001)	$0.600 \\ (0.004)$	-0.663 (0.134)	$0.783 \\ (0.005)$	-0.453 (0.014)	$0.785 \\ (0.003)$	-0.671 (0.002)	0.879 (0.004)	-0.071 (0.189)	0.601 (0.039)
CVX	-0.651 (0.001)	$0.601 \\ (0.010)$	-0.343 (0.034)	$0.844 \\ (0.066)$	-0.427 (0.062)	$0.870 \\ (0.027)$	-0.421 (0.023)	$0.929 \\ (0.009)$	-0.521 (0.067)	$0.601 \\ (0.035)$
AXP	-0.260 (0.077)	$0.611 \\ (0.033)$	-0.473 (0.035)	$0.785 \\ (0.056)$	-0.333 (0.076)	$0.785 \\ (0.025)$	-0.240 (0.090)	$0.779 \\ (0.044)$	-0.370 (0.064)	0.606 (0.043)
BA	-0.761 (0.048)	$0.601 \\ (0.067)$	-0.413 (0.005)	$0.786 \\ (0.011)$	-0.273 (0.091)	$0.788 \\ (0.024)$	-0.671 (0.045)	$0.879 \\ (0.089)$	-0.071 (0.029)	0.601 (0.046)
CSCO	-0.321 (0.074)	$0.601 \\ (0.053)$	-0.393 (0.045)	$0.789 \\ (0.009)$	-0.623 (0.010)	$0.785 \\ (0.022)$	-0.291 (0.034)	$0.649 \\ (0.038)$	-0.371 (0.059)	0.606 (0.037)
CAT	-0.321 (0.027)	$0.674 \\ (0.045)$	-0.553 (0.089)	$0.792 \\ (0.048)$	-0.773 (0.042)	$0.805 \\ (0.049)$	-0.203 (0.032)	$0.881 \\ (0.043)$	-0.721 (0.077)	0.696 (0.029)
DIS	-0.221 (0.057)	0.027 (0.034)	-0.707 (0.045)	$0.790 \\ (0.009)$	-0.447 (0.033)	$0.786 \\ (0.030)$	$0.123 \\ (0.011)$	$0.639 \\ (0.019)$	-0.371 (0.039)	0.604 (0.065)
IBM	-0.484 (0.048)	$0.652 \\ (0.021)$	-0.351 (0.006)	$0.794 \\ (0.002)$	-0.593 (0.094)	$0.789 \\ (0.085)$	$0.119 \\ (0.032)$	$0.870 \\ (0.037)$	-0.276 (0.076)	0.604 (0.008)
DOW	-0.405 (0.008)	$0.652 \\ (0.045)$	-0.553 (0.055)	$0.785 \\ (0.067)$	-0.773 (0.027)	$0.785 \\ (0.039)$	-0.851 (0.028)	$0.560 \\ (0.088)$	-0.221 (0.008)	0.642 (0.035)
GS	-0.484 (0.054)	$0.604 \\ (0.065)$	-0.623 (0.039)	$0.785 \\ (0.066)$	-0.573 (0.056)	$0.785 \\ (0.043)$	-0.451 (0.037)	$0.637 \\ (0.074)$	-0.486 (0.038)	0.601 (0.007)
HD	-0.342 (0.058)	$0.639 \\ (0.055)$	-0.553 (0.121)	$0.803 \\ (0.012)$	-0.573 (0.043)	$0.802 \\ (0.032)$	$0.039 \\ (0.045)$	$0.789 \\ (0.066)$	-0.371 (0.021)	$0.613 \\ (0.073)$
КО	-0.284 (0.058)	$0.631 \\ (0.035)$	-0.553 (0.037)	$0.876 \\ (0.021)$	-0.593 (0.028)	$0.871 \\ (0.113)$	$0.031 \\ (0.044)$	$0.570 \\ (0.009)$	-0.576 (0.032)	0.611 (0.048)
JPM	-0.201 (0.062)	$0.666 \\ (0.027)$	-0.543 (0.037)	$0.862 \\ (0.056)$	-0.693 (0.047)	$0.872 \\ (0.078)$	-0.051 (0.055)	$0.684 \\ (0.003)$	-0.771 (0.001)	0.657 (0.037)
INTC	-0.604 (0.118)	$0.688 \\ (0.041)$	-0.453 (0.053)	$0.833 \\ (0.065)$	-0.588 (0.096)	$0.809 \\ (0.086)$	-0.261 (0.033)	$0.739 \\ (0.211)$	-0.471 (0.053)	0.631 (0.099)
JNJ	-0.426 (0.032)	$0.665 \\ (0.098)$	-0.413 (0.067)	$0.787 \\ (0.045)$	-0.473 (0.012)	$0.835 \\ (0.021)$	-0.292 (0.022)	$0.686 \\ (0.067)$	-0.336 (0.045)	$0.656 \\ (0.053)$
MMM	-0.521 (0.065)	$0.622 \\ (0.063)$	-0.573 (0.007)	$0.788 \\ (0.067)$	-0.720 (0.087)	$0.789 \\ (0.054)$	-0.401 (0.015)	$0.699 \\ (0.141)$	-0.301 (0.111)	$0.615 \\ (0.056)$
MCD	-0.426 (0.032)	$0.621 \\ (0.035)$	-0.613 (0.093)	$0.877 \\ (0.078)$	-0.773 (0.068)	$0.884 \\ (0.067)$	-0.071 (0.056)	$0.599 \\ (0.078)$	-0.551 (0.053)	$0.626 \\ (0.052)$
NKE	-0.303 (0.011)	$0.636 \\ (0.021)$	-0.513 (0.035)	$0.877 \\ (0.076)$	-0.512 (0.037)	$0.802 \\ (0.043)$	-0.159 (0.038)	$0.699 \\ (0.029)$	-0.401 (0.053)	$0.645 \\ (0.054)$
MRK	-0.321 (0.013)	$0.685 \\ (0.054)$	-0.6931 (0.021)	$0.822 \\ (0.043)$	-0.453 (0.051)	$0.802 \\ (0.015)$	-0.251 (0.006)	$0.659 \\ (0.032)$	-0.321 (0.067)	$0.696 \\ (0.009)$
MSFT	-0.426 (0.023)	$0.617 \\ (0.121)$	-0.813 (0.023)	$0.877 \\ (0.034)$	-0.823 (0.053)	$0.885 \\ (0.034)$	-0.071 (0.032)	$0.599 \\ (0.031)$	-0.551 (0.011)	$0.626 \\ (0.043)$
WBA	-0.393 (0.022)	$0.682 \\ (0.118)$	-0.683 (0.038)	$0.836 \\ (0.051)$	-0.573 (0.037)	$0.854 \\ (0.037)$	-0.096 (0.035)	$0.848 \\ (0.026)$	-0.531 (0.009)	$0.655 \\ (0.101)$
UTX	-0.514 (0.042)	$0.652 \\ (0.023)$	-0.837 (0.023)	$0.836 \\ (0.008)$	-0.727 (0.100)	$0.854 \\ (0.052)$	-0.396 (0.053)	$0.748 \\ (0.045)$	-0.231 (0.039)	0.665 (0.088)
PG	-0.192 (0.054)	$0.666 \\ (0.031)$	-0.413 (0.032)	$0.811 \\ (0.052)$	-0.543 (0.053)	$0.797 \\ (0.053)$	-0.331 (0.031)	$0.569 \\ (0.030)$	$0.130 \\ (0.008)$	$0.666 \\ (0.008)$
PFE	-0.621 (0.025)	$0.697 \\ (0.024)$	$0.177 \\ (0.073)$	$0.813 \\ (0.053)$	-0.708 (0.009)	$0.804 \\ (0.053)$	-0.241 (0.034)	$0.499 \\ (0.064)$	-0.482 (0.045)	$0.660 \\ (0.007)$
TRV	0.006 (0.046)	$0.635 \\ (0.038)$	-0.313 (0.074)	0.877 10063	-0.373 (0.063)	$0.885 \\ (0.037)$	-0.411 (0.087)	$0.793 \\ (0.054)$	-0.193 (0.032)	$0.646 \\ (0.021)$
XOM	-0.431 ()0.034	$0.613 \\ (0.032)$	-0.648 (0.021)	$0.881 \\ (0.007)$	-0.608 (0.053)	$0.852 \\ (0.042)$	-0.671 (0.032)	$0.761 \\ (0.012)$	-0.031 (0.031)	$0.645 \\ (0.032)$
WMT	-0.471 (0.023)	$0.675 \\ (0.045)$	-0.720 (0.034)	$0.822 \\ (0.044)$	-0.636 (0.011)	$0.842 \\ (0.045)$	-0.351 (0.023)	$0.959 \\ (0.012)$	-0.392 (0.022)	0.6867 (0.031)
UNH	-0.426 (0.043)	$0.617 \\ (0.032)$	-0.813 (0.032)	$0.847 \\ (0.034)$	-0.673 (0.009)	$0.836 \\ 0.074)$	-0.071 (0.053)	$0.599 \\ (0.042)$	-0.551 (0.019)	$0.626 \\ (0.042)$
V	-0.321 (0.035)	$0.601 \\ (0.015)$	-0.499 (0.076)	$0.849 \\ (0.023)$	-0.402 (0.056)	$0.874 \\ (0.073)$	-0.291 (0.046)	$0.649 \\ (0.042)$	-0.371 (0.042)	$0.606 \\ (0.055)$
VZ	-0.121 (0.025)	$0.692 \\ (0.024)$	-0.722 (0.057)	$0.846 \\ (0.053)$	-0.737 (0.052)	$0.854 \\ (0.043)$	-0.381 (0.032)	$0.969 \\ (0.053)$	-0.181 (0.042)	$0.751 \\ (0.053)$

Appendix C1

Dynamic Model Estimates for the Underlying Assets of SMH ETF

Table 27: Estimated parameters for TXN

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.091 \\ (0.11)$	$0.080 \\ (0.09)$	$0.082 \\ (0.07)$	$0.083 \\ (0.12)$	$0.085 \\ (0.25)$	$0.086 \\ (0.13)$	$0.084 \\ (0.11)$	$0.084 \\ (0.09)$	$0.071 \\ (0.03)$	$0.084 \\ (0.08)$	$0.152 \\ (0.12)$	$0.087 \\ (0.07)$	$0.080 \\ (0.04)$	$0.106 \\ (0.08)$	$0.072 \\ (0.13)$	$0.084 \\ (0.25)$	$0.085 \\ (0.07)$	$0.081 \\ (0.02)$	$0.087 \\ (0.12)$	$0.084 \\ (0.09)$	$0.084 \\ (0.11)$	$0.082 \\ (0.08)$	$0.122 \\ (0.13)$	-0.125 (0.11)	$0.088 \\ (0.07)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.085 \\ (0.04)$	$0.081 \\ (0.11)$	$0.082 \\ (0.07)$	$0.082 \\ (0.13)$	$0.095 \\ (0.05)$	$0.069 \\ (0.07)$	$0.085 \\ (0.09)$	$0.085 \\ (0.25)$	0.094 (0.08)	$0.080 \\ (0.12)$	$0.086 \\ (0.13)$	$0.085 \\ (0.07)$	$0.090 \\ (0.08)$	$0.083 \\ (0.25)$	$0.112 \\ (0.11)$	0.083 (0.90)	$0.083 \\ (0.05)$	0.093 (0.12)	0.087 (0.04)	$0.078 \\ (0.03)$	0.829 (0.07)	0.084 (0.11)	0.082 (0.12)	$0.161 \\ (0.11)$	0.083 (0.09)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	$\frac{(0.05)}{\phi_{ba}^{i9}}$	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\begin{array}{c} (0.11) \\ \phi_{bb}^{i111} \end{array}$	ϕ_{ba}^{i12}	$\frac{(0.11)}{\phi_{bb}^{i12}}$	ϕ_{ba}^{i13}
$p_t - b_t$	$0.077 \\ (0.25)$	$0.084 \\ (0.11)$	$0.079 \\ (0.07)$	$0.082 \\ (0.13)$	$0.087 \\ (0.08)$	$0.084 \\ (0.12)$	$0.082 \\ (0.09)$	$0.082 \\ (0.05)$	$0.082 \\ (0.04)$	$0.088 \\ (0.09)$	$0.090 \\ (0.11)$	$0.161 \\ (0.07)$	$0.084 \\ (0.25)$	$0.081 \\ (0.12)$	$0.089 \\ (0.11)$	$0.084 \\ (0.09)$	$0.082 \\ (0.05)$	$0.081 \\ (0.13)$	$0.089 \\ (0.08)$	$0.084 \\ (0.07)$	$0.078 \\ (0.09)$	$0.083 \\ (0.11)$	$0.084 \\ (0.12)$	$0.084 \\ (0.11)$	$0.071 \\ (0.13)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.084 (0.09)	$0.081 \\ (0.07)$	0.084 (0.25)	$0.103 \\ (0.11)$	$0.108 \\ (0.12)$	$0.071 \\ (0.05)$	$0.086 \\ (0.08)$	0.173 (0.09)	0.084 (0.13)	0.083 (0.11)	0.081 (0.07)	0.088 (0.13)	$0.101 \\ (0.11)$	0.084 (0.08)	$0.090 \\ (0.25)$	0.083 (0.11)	0.087 (0.07)	$0.144 \\ (0.08)$	0.086 (0.12)	0.083 (0.09)	$0.102 \\ (0.13)$	$0.175 \\ (0.09)$	$0.081 \\ (0.11)$	$0.101 \\ (0.07)$	0.083 (0.12)

 $For \ \phi_{\cdot\cdot\cdot}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 28: Estimated parameters for QCOM

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.091 \\ (0.09)$	$0.080 \\ (0.11)$	$0.084 \\ (0.24)$	$0.083 \\ (0.06)$	$0.085 \\ (0.22)$	$0.086 \\ (0.24)$	$0.081 \\ (0.09)$	$0.084 \\ (0.11)$	$0.071 \\ (0.06)$	$0.084 \\ (0.22)$	$0.082 \\ (0.06)$	$0.088 \\ (0.03)$	$0.171 \\ (0.03)$	-0.039 (0.24)	$0.093 \\ (0.03)$	$0.084 \\ (0.11)$	$0.081 \\ (0.14)$	$0.084 \\ (0.06)$	$0.087 \\ (0.12)$	$0.084 \\ (0.22)$	$0.084 \\ (0.24)$	$0.082 \\ (0.09)$	$0.122 \\ (0.24)$	$0.292 \\ (0.11)$	$0.088 \\ (0.09)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ^{i15}_{ab}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.085 (0.06)	$0.081 \\ (0.90)$	0.084 (0.24)	$0.082 \\ (0.22)$	$0.095 \\ (0.11)$	0.097 (0.06)	0.081 (0.11)	$0.085 \\ (0.22)$	0.094 (0.06)	$0.086 \\ (0.22)$	$0.086 \\ (0.09)$	$0.085 \\ (0.24)$	$0.090 \\ (0.19)$	0.083 (0.14)	0.112 (0.11)	0.083 (0.16)	0.083 (0.09)	0.084 (0.17)	0.087 (0.11)	$0.078 \\ (0.24)$	0.829 (0.09)	0.084 (0.13)	0.083 (0.22)	$0.161 \\ (0.24)$	$0.083 \\ (0.09)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.060 \\ (0.11)$	$0.088 \\ (0.06)$	$0.060 \\ (0.09)$	$0.095 \\ (0.22)$	$0.084 \\ (0.13)$	$0.082 \\ (0.06)$	$0.085 \\ (0.24)$	$0.080 \\ (0.17)$	$0.086 \\ (0.11)$	$0.085 \\ (0.24)$	$0.067 \\ (0.09)$	$0.085 \\ (0.22)$	$0.097 \\ (0.13)$	$0.167 \\ (0.06)$	$0.021 \\ (0.24)$	$0.092 \\ (0.11)$	$0.116 \\ (0.09)$	$0.097 \\ (0.26)$	$0.093 \\ (0.22)$	$0.074 \\ (0.09)$	$0.095 \\ (0.18)$	$0.084 \\ (0.06)$	$0.080 \\ (0.24)$	$0.085 \\ (0.11)$	$0.094 \\ (0.09)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.084 (0.11)	$0.085 \\ (0.14)$	$0.082 \\ (0.16)$	$0.106 \\ (0.06)$	0.094 (0.11)	$0.095 \\ (0.24)$	$0.086 \\ (0.22)$	0.084 (0.11)	$0.072 \\ (0.24)$	0.084 (0.09)	$0.081 \\ (0.11)$	$0.093 \\ (0.16)$	$0.085 \\ (0.13)$	$0.099 \\ (0.14)$	$0.094 \\ (0.06)$	$0.085 \\ (0.09)$	$0.082 \\ (0.24)$	$0.090 \\ (0.11)$	0.084 (0.22)	$0.085 \\ (0.09)$	$0.788 \\ (0.06)$	$0.091 \\ (0.14)$	$0.078 \\ (0.06)$	$0.085 \\ (0.24)$	$0.089 \\ (0.09)$

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ \overline{AMD, \ ASML, \ TXN, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 29: Estimated parameters for MU

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.079 \\ (0.08)$	$0.080 \\ (0.05)$	$0.085 \\ (0.11)$	$0.085 \\ (0.22)$	$0.090 \\ (0.23)$	$0.087 \\ (0.33)$	$0.081 \\ (0.08)$	$0.085 \\ (0.05)$	$0.135 \\ (0.21)$	$0.090 \\ (0.21)$	$0.080 \\ (0.23)$	$0.067 \\ (0.07)$	$0.085 \\ (0.11)$	$0.162 \\ (0.22)$	$0.091 \\ (0.05)$	$0.088 \\ (0.08)$	$0.086 \\ (0.21)$	$0.093 \\ (0.22)$	$0.090 \\ (0.11)$	$0.090 \\ (0.33)$	$0.087 \\ (0.23)$	$0.093 \\ (0.33)$	$0.088 \\ (0.05)$	$0.091 \\ (0.21)$	$0.093 \\ (0.08)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ^{i18}_{ab}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.089 (0.05)	0.083 (0.11)	$0.096 \\ (0.08)$	$0.098 \\ (0.23)$	0.082 (0.07)	0.086 (0.23)	0.087 (0.05)	0.089 (0.33)	0.087 (0.07)	0.089 (0.08)	0.091 (0.21)	$0.085 \\ (0.05)$	0.087 (0.23)	0.078 (0.11)	0.089 (0.33)	0.091 (0.04)	$0.088 \\ (0.08)$	0.081 (0.21)	$0.088 \\ (0.08)$	0.084 (0.05)	0.798 (0.11)	0.172 (0.04)	0.081 (0.33)	0.085 (0.23)	0.074 (0.05)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.076 \\ (0.04)$	$0.080 \\ (0.04)$	$0.060 \\ (0.33)$	$0.095 \\ (0.11)$	$0.092 \\ (0.08)$	$0.087 \\ (0.50)$	$0.089 \\ (0.33)$	$0.084 \\ (0.23)$	$0.154 \\ (0.21)$	$0.091 \\ (0.23)$	$0.074 \\ (0.11)$	$0.088 \\ (0.05)$	$0.083 \\ (0.11)$	$0.102 \\ (0.11)$	$0.083 \\ (0.07)$	$0.146 \\ (0.08)$	$0.089 \\ (0.04)$	$0.087 \\ (0.21)$	$0.091 \\ (0.33)$	$0.064 \\ (0.23)$	$0.091 \\ (0.04)$	$0.082 \\ (0.07)$	$0.088 \\ (0.05)$	$0.087 \\ (0.08)$	$0.088 \\ (0.11)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.088 \\ (0.23)$	$0.087 \\ (0.05)$	$0.077 \\ (0.21)$	0.083 (0.11)	$0.094 \\ (0.04)$	$0.095 \\ (0.23)$	$0.086 \\ (0.33)$	$0.084 \\ (0.04)$	$0.075 \\ (0.21)$	$0.085 \\ (0.08)$	$0.078 \\ (0.31)$	$0.088 \\ (0.44)$	$0.085 \\ (0.05)$	0.084 (0.08)	0.087 (0.11)	0.087 (0.31)	0.082 (0.11)	$0.090 \\ (0.06)$	$0.091 \\ (0.05)$	$0.088 \\ (0.08)$	$0.785 \\ (0.05)$	$0.085 \\ (0.33)$	$0.074 \\ (0.08)$	0.092 (0.11)	$0.079 \\ (0.07)$

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 30: Estimated parameters for AVGO

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.079 \\ (0.01)$	$0.091 \\ (0.03)$	$0.084 \\ (0.11)$	$0.078 \\ (0.07)$	$0.087 \\ (0.12)$	$0.064 \\ (0.03)$	$0.097 \\ (0.07)$	$0.068 \\ (0.04)$	$0.086 \\ (0.12)$	$0.086 \\ (0.03)$	$0.036 \\ (0.01)$	$0.114 \\ (0.03)$	$0.085 \\ (0.11)$	$0.085 \\ (0.03)$	$0.060 \\ (0.03)$	$0.144 \\ (0.07)$	$0.128 \\ (0.01)$	$0.212 \\ (0.04)$	$0.138 \\ (0.09)$	$0.040 \\ (0.11)$	$0.108 \\ (0.03)$	$0.105 \\ (0.01)$	$0.074 \\ (0.03)$	$0.173 \\ (0.07)$	$0.051 \\ (0.11)$
	ϕ^{i13}_{ab}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ^{i15}_{ab}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.098 \\ (0.22)$	$0.163 \\ (0.07)$	$0.054 \\ (0.01)$	$0.112 \\ (0.03)$	$0.096 \\ (0.04)$	$0.124 \\ (0.03)$	0.084 (0.11)	$0.085 \\ (0.22)$	$0.095 \\ (0.04)$	0.093 (0.11)	$0.102 \\ (0.01)$	$0.048 \\ (0.03)$	$0.103 \\ (0.22)$	$0.090 \\ (0.07)$	$0.080 \\ (0.03)$	$0.086 \\ (0.04)$	$0.089 \\ (0.03)$	$0.084 \\ (0.11)$	$0.114 \\ (0.07)$	0.087 (0.04)	$0.078 \\ (0.22)$	$0.087 \\ (0.01)$	$0.081 \\ (0.07)$	0.087 (0.04)	0.094 (0.11)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.081 \\ (0.06)$	$0.071 \\ (0.08)$	$0.114 \\ (0.09)$	$0.081 \\ (0.07)$	$0.084 \\ (0.08)$	$0.086 \\ (0.03)$	$0.060 \\ (0.11)$	$0.078 \\ (0.04)$	$0.071 \\ (0.04)$	$0.113 \\ (0.11)$	$0.117 \\ (0.01)$	$0.115 \\ (0.03)$	$0.082 \\ (0.11)$	$0.055 \\ (0.06)$	$0.098 \\ (0.07)$	$0.101 \\ (0.01)$	$0.099 \\ (0.03)$	$0.087 \\ (0.06)$	$0.087 \\ (0.11)$	$0.057 \\ (0.01)$	$0.086 \\ (0.07)$	$0.085 \\ (0.01)$	$0.064 \\ (0.03)$	$0.082 \\ (0.11)$	$0.066 \\ (0.01)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.084 (0.01)	$0.101 \\ (0.03)$	$0.145 \\ (0.06)$	$0.074 \\ (0.11)$	$0.085 \\ (0.11)$	0.082 (0.07)	$0.085 \\ (0.01)$	$0.076 \\ (0.06)$	0.112 (0.09)	0.086 (0.11)	$0.064 \\ (0.03)$	$0.085 \\ (0.03)$	$0.072 \\ (0.01)$	$0.105 \\ (0.03)$	$0.062 \\ (0.11)$	$0.102 \\ (0.07)$	0.073 (0.01)	0.082 (0.09)	0.144 (0.09)	0.073 (0.06)	0.083 (0.11)	$0.102 \\ (0.07)$	0.081 (0.03)	$0.091 \\ (0.01)$	$0.085 \\ (0.09)$

For ϕ_{ii}^{ij} , i = INTC and j = TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, NXPI, LRCX, AMAT, ADI, KLAC, XLNX, STM, MCHP, CDNS, SWKS, MXIM, TER, MRVL, QRVO, ON, OLED

Table 31: Estimated parameters for NXPI

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ^{i9}_{ab}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.093 \\ (0.22)$	$0.077 \\ (0.13)$	$0.087 \\ (0.11)$	$0.083 \\ (0.09)$	0.087 (0.09)	$0.089 \\ (0.05)$	$0.077 \\ (0.13)$	$0.083 \\ (0.09)$	$0.093 \\ (0.11)$	$0.084 \\ (0.09)$	$0.090 \\ (0.22)$	$0.146 \\ (0.13)$	$0.090 \\ (0.11)$	$0.083 \\ (0.05)$	$0.111 \\ (0.08)$	$0.083 \\ (0.22)$	$0.091 \\ (0.09)$	$0.092 \\ (0.13)$	0.899 (0.02)	$0.082 \\ (0.08)$	$0.084 \\ (0.05)$	$0.074 \\ (0.09)$	$0.086 \\ (0.22)$	$0.076 \\ (0.08)$	$0.070 \\ (0.09)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.085 \\ (0.13)$	$0.083 \\ (0.11)$	0.087 (0.22)	0.087 (0.09)	$0.085 \\ (0.08)$	$0.080 \\ (0.05)$	$0.083 \\ (0.05)$	0.089 (0.11)	$0.086 \\ (0.05)$	0.087 (0.90)	0.083 (0.22)	$0.091 \\ (0.13)$	0.084 (0.08)	$0.085 \\ (0.11)$	0.082 (0.90)	$0.085 \\ (0.13)$	$0.091 \\ (0.05)$	0.083 (0.11)	0.089 (0.22)	$0.082 \\ (0.08)$	0.088 (0.90)	$0.085 \\ (0.05)$	$0.076 \\ (0.05)$	0.087 (0.22)	0.085 (0.13)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.056 \\ (0.09)$	$0.087 \\ (0.11)$	$0.086 \\ (0.05)$	$0.074 \\ (0.08)$	$0.084 \\ (0.11)$	$0.085 \\ (0.13)$	$0.078 \\ (0.05)$	$0.080 \\ (0.09)$	$0.091 \\ (0.13)$	$0.091 \\ (0.08)$	$0.086 \\ (0.09)$	$0.042 \\ (0.22)$	$0.084 \\ (0.05)$	$0.083 \\ (0.09)$	$0.082 \\ (0.11)$	$0.082 \\ (0.13)$	$0.086 \\ (0.11)$	$0.086 \\ (0.05)$	$0.085 \\ (0.08)$	$0.764 \\ (0.22)$	$0.083 \\ (0.05)$	$0.086 \\ (0.09)$	$0.076 \\ (0.22)$	$0.083 \\ (0.13)$	$0.084 \\ (0.22)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.091 \\ (0.09)$	0.083 (0.22)	0.083 (0.13)	0.088 (0.11)	$0.082 \\ (0.05)$	$0.092 \\ (0.09)$	0.091 (0.22)	$0.076 \\ (0.13)$	0.087 (0.11)	$0.086 \\ (0.05)$	$0.085 \\ (0.09)$	0.089 (0.22)	0.083 (0.13)	0.087 (0.08)	$0.090 \\ (0.09)$	$0.079 \\ (0.08)$	$0.086 \\ (0.13)$	0.081 (0.03)	$0.144 \\ (0.24)$	$0.083 \\ (0.05)$	$0.078 \\ (0.05)$	0.091 (0.22)	$0.085 \\ (0.13)$	0.085 (0.11)	0.079 (0.09)

 $For \ \phi_{...}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 32: Estimated parameters for LRCX

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.083 \\ (0.22)$	$0.099 \\ (0.14)$	$0.076 \\ (0.07)$	$0.085 \\ (0.24)$	$0.114 \\ (0.11)$	$0.095 \\ (0.07)$	$0.097 \\ (0.22)$	$0.099 \\ (0.14)$	$0.086 \\ (0.20)$	$0.074 \\ (0.10)$	$0.111 \\ (0.11)$	$0.099 \\ (0.20)$	$0.123 \\ (0.10)$	$0.134 \\ (0.20)$	$0.083 \\ (0.07)$	$0.084 \\ (0.14)$	$0.088 \\ (0.22)$	$0.090 \\ (0.11)$	$0.089 \\ (0.07)$	$0.139 \\ (0.20)$	$0.084 \\ (0.11)$	$0.149 \\ (0.07)$	$0.930 \\ (0.24)$	$0.088 \\ (0.14)$	$0.097 \\ (0.22)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ^{i15}_{ab}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.088 (0.24)	$0.087 \\ (0.07)$	$0.106 \\ (0.10)$	$0.055 \\ (0.22)$	0.085 (0.24)	$0.082 \\ (0.22)$	0.124 (0.11)	$0.085 \\ (0.07)$	$0.064 \\ (0.05)$	$0.088 \\ (0.14)$	0.085 (0.10)	$0.095 \\ (0.24)$	$0.086 \\ (0.11)$	$0.081 \\ (0.14)$	0.087 (0.24)	$0.063 \\ (0.07)$	$0.106 \\ (0.22)$	0.094 (0.24)	$0.063 \\ (0.11)$	0.127 (0.07)	0.134 (0.14)	0.123 (0.24)	$0.085 \\ (0.07)$	0.082 (0.22)	0.084 (0.14)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.091 \\ (0.14)$	$0.080 \\ (0.22)$	$0.084 \\ (0.05)$	$0.083 \\ (0.11)$	$0.081 \\ (0.07)$	$0.086 \\ (0.22)$	$0.081 \\ (0.07)$	$0.084 \\ (0.20)$	$0.071 \\ (0.11)$	$0.084 \\ (0.24)$	$0.082 \\ (0.14)$	$0.088 \\ (0.10)$	$0.083 \\ (0.07)$	$0.092 \\ (0.24)$	-0.039 (0.20)	$0.093 \\ (0.22)$	$0.084 \\ (0.14)$	$0.081 \\ (0.10)$	$0.084 \\ (0.24)$	$0.083 \\ (0.14)$	$0.082 \\ (0.24)$	$0.165 \\ (0.11)$	$0.122 \\ (0.20)$	$0.741 \\ (0.07)$	$0.088 \\ (0.22)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.085 (0.11)	0.081 (0.22)	0.084 (0.07)	0.082 (0.24)	0.095 (0.11)	$0.069 \\ (0.07)$	0.081 (0.14)	0.085 (0.24)	0.094 (0.20)	0.080 (0.21)	0.086 (0.11)	0.085 (0.22)	$0.076 \\ (0.07)$	0.083 (0.11)	0.112 (0.14)	0.083 (0.12)	0.083 (0.24)	0.084 (0.22)	0.087 (0.10)	0.078 (0.07)	0.829 (0.14)	0.084 (0.21)	0.083 (0.30)	0.161 (0.22)	0.083 (0.14)

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 33: Estimated parameters for AMAT

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.083 \\ (0.10)$	$0.088 \\ (0.11)$	$0.060 \\ (0.22)$	$0.095 \\ (0.09)$	$0.082 \\ (0.23)$	$0.082 \\ (0.09)$	$0.085 \\ (0.10)$	$0.080 \\ (0.08)$	$0.086 \\ (0.12)$	$0.085 \\ (0.22)$	$0.067 \\ (0.22)$	$0.085 \\ (0.11)$	$0.083 \\ (0.08)$	$0.097 \\ (0.21)$	$0.097 \\ (0.09)$	$0.021 \\ (0.23)$	$0.092 \\ (0.11)$	$0.116 \\ (0.10)$	$0.097 \\ (0.08)$	$0.093 \\ (0.08)$	$0.074 \\ (0.23)$	$0.095 \\ (0.22)$	$0.803 \\ (0.09)$	-0.286 (0.07)	$0.094 \\ (0.10)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.084 (0.22)	$0.085 \\ (0.23)$	$0.082 \\ (0.08)$	$0.106 \\ (0.23)$	0.094 (0.22)	$0.095 \\ (0.09)$	$0.086 \\ (0.10)$	0.084 (0.09)	$0.072 \\ (0.12)$	0.084 (0.08)	0.081 (0.09)	$0.093 \\ (0.11)$	$0.085 \\ (0.10)$	$0.099 \\ (0.08)$	0.094 (0.11)	$0.085 \\ (0.10)$	$0.082 \\ (0.22)$	$0.090 \\ (0.22)$	0.084 (0.11)	$0.085 \\ (0.23)$	0.788 (0.10)	$0.091 \\ (0.23)$	$0.078 \\ (0.11)$	$0.085 \\ (0.09)$	$0.099 \\ (0.22)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.085 \\ (0.23)$	$0.048 \\ (0.09)$	$0.095 \\ (0.22)$	$0.083 \\ (0.08)$	$0.122 \\ (0.11)$	$0.064 \\ (0.09)$	$0.123 \\ (0.10)$	$0.068 \\ (0.22)$	$0.085 \\ (0.08)$	$0.093 \\ (0.23)$	$0.076 \\ (0.09)$	$0.098 \\ (0.10)$	$0.086 \\ (0.11)$	$0.084 \\ (0.22)$	$0.053 \\ (0.08)$	$0.144 \\ (0.22)$	$0.123 \\ (0.10)$	$0.113 \\ (0.11)$	$0.173 \\ (0.23)$	$0.138 \\ (0.08)$	$0.040 \\ (0.11)$	$0.083 \\ (0.10)$	$0.973 \\ (0.09)$	$0.173 \\ (0.23)$	$0.051 \\ (0.22)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.098 \\ (0.22)$	$0.163 \\ (0.11)$	$0.054 \\ (0.09)$	$0.112 \\ (0.22)$	$0.096 \\ (0.10)$	$0.095 \\ (0.09)$	0.084 (0.30)	$0.085 \\ (0.08)$	$0.095 \\ (0.10)$	0.093 (0.10)	$0.102 \\ (0.23)$	0.118 (0.22)	$0.103 \\ (0.22)$	$0.090 \\ (0.23)$	$0.086 \\ (0.10)$	$0.086 \\ (0.09)$	$0.085 \\ (0.08)$	0.084 (0.11)	0.114 (0.20)	0.087 (0.10)	0.088 (0.22)	0.087 (0.09)	$0.085 \\ (0.22)$	0.087 (0.11)	0.094 (0.10)

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AVGO, \ NXPI, \ LRCX, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AVGO, \ NXPI, \ LRCX, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AVGO, \ NXPI, \ LRCX, \ ADI, \ KLAC, \ ADI, \ AVGO, \ AND, \ AVGO, \ AND, \ AVGO, \ AND, \ AVGO, \ AV$

Table 34: Estimated parameters for ADI

var																									
•	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.091 \\ (0.07)$	$0.080 \\ (0.04)$	$0.082 \\ (0.23)$	$0.083 \\ (0.06)$	$0.085 \\ (0.11)$	$0.086 \\ (0.07)$	$0.084 \\ (0.04)$	$0.084 \\ (0.14)$	$0.071 \\ (0.06)$	$0.084 \\ (0.11)$	$0.082 \\ (0.07)$	$0.102 \\ (0.04)$	$0.087 \\ (0.14)$	$0.080 \\ (0.06)$	$0.106 \\ (0.23)$	$0.072 \\ (0.07)$	$0.084 \\ (0.04)$	$0.085 \\ (0.11)$	$0.081 \\ (0.06)$	0.087 (0.23)	$0.084 \\ (0.07)$	$0.084 \\ (0.04)$	$0.082 \\ (0.11)$	$0.122 \\ (0.06)$	$0.143 \\ (0.23)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.105 \\ (0.09)$	$0.081 \\ (0.11)$	$0.082 \\ (0.07)$	$0.082 \\ (0.09)$	$0.095 \\ (0.23)$	$0.069 \\ (0.04)$	$0.085 \\ (0.09)$	$0.085 \\ (0.07)$	0.094 (0.11)	$0.080 \\ (0.14)$	$0.086 \\ (0.06)$	$0.085 \\ (0.04)$	$0.090 \\ (0.07)$	0.083 (0.09)	$0.112 \\ (0.11)$	0.083 (0.09)	0.083 (0.06)	$0.093 \\ (0.07)$	0.087 (0.11)	$0.078 \\ (0.04)$	0.829 (0.06)	0.084 (0.06)	$0.082 \\ (0.07)$	$0.161 \\ (0.09)$	0.083 (0.09)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.056 \\ (0.09)$	$0.092 \\ (0.11)$	$0.087 \\ (0.06)$	$0.079 \\ (0.14)$	$0.091 \\ (0.07)$	$0.091 \\ (0.09)$	$0.085 \\ (0.23)$	$0.082 \\ (0.06)$	$0.091 \\ (0.11)$	$0.080 \\ (0.07)$	$0.086 \\ (0.09)$	$0.091 \\ (0.23)$	$0.046 \\ (0.06)$	$0.082 \\ (0.14)$	$0.087 \\ (0.07)$	$0.082 \\ (0.09)$	$0.091 \\ (0.11)$	$0.077 \\ (0.06)$	$0.086 \\ (0.14)$	$0.090 \\ (0.07)$	$0.081 \\ (0.09)$	$0.083 \\ (0.23)$	$0.075 \\ (0.06)$	$0.083 \\ (0.11)$	$0.153 \\ (0.07)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.079 \\ (0.07)$	$0.082 \\ (0.11)$	$0.084 \\ (0.14)$	0.084 (0.09)	$0.088 \\ (0.06)$	$0.086 \\ (0.09)$	0.087 (0.07)	0.087 (0.06)	0.088 (0.11)	$0.090 \\ (0.23)$	0.087 (0.09)	$0.086 \\ (0.14)$	$0.089 \\ (0.07)$	0.089 (0.11)	$0.078 \\ (0.09)$	$0.088 \\ (0.09)$	$0.089 \\ (0.06)$	0.074 (0.23)	$0.091 \\ (0.07)$	0.083 (0.09)	$0.796 \\ (0.09)$	0.087 (0.11)	$0.080 \\ (0.23)$	$0.089 \\ (0.06)$	$0.092 \\ (0.07)$

For ϕ_{ij}^{ij} , i = INTC and j = TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, AVGO, NXPI, LRCX, AMAT, KLAC, XLNX, STM, MCHP, CDNS, SWKS, MXIM, TER, MRVL, QRVO, ON, OLED

Table 35: Estimated parameters for KLAC

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.077 \\ (0.14)$	$0.084 \\ (0.05)$	$0.079 \\ (0.07)$	$0.082 \\ (0.20)$	$0.087 \\ (0.10)$	$0.084 \\ (0.14)$	$0.082 \\ (0.05)$	$0.082 \\ (0.07)$	$0.082 \\ (0.20)$	$0.088 \\ (0.10)$	$0.078 \\ (0.14)$	$0.090 \\ (0.05)$	$0.091 \\ (0.07)$	$0.084 \\ (0.20)$	$0.081 \\ (0.10)$	$0.089 \\ (0.14)$	$0.084 \\ (0.05)$	$0.082 \\ (0.07)$	$0.081 \\ (0.20)$	$0.089 \\ (0.10)$	$0.084 \\ (0.14)$	$0.078 \\ (0.05)$	$0.083 \\ (0.07)$	$0.084 \\ (0.10)$	$0.084 \\ (0.10)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.071 \\ (0.20)$	$0.922 \\ (0.20)$	-0.025 (0.14)	$0.103 \\ (0.05)$	$0.108 \\ (0.07)$	$0.071 \\ (0.10)$	$0.086 \\ (0.10)$	-0.006 (0.14)	$0.084 \\ (0.05)$	$0.083 \\ (0.07)$	$0.081 \\ (0.20)$	$0.088 \\ (0.10)$	$0.065 \\ (0.14)$	$0.084 \\ (0.05)$	$0.076 \\ (0.07)$	0.083 (0.20)	0.087 (0.10)	$0.022 \\ (0.14)$	$0.086 \\ (0.05)$	$0.083 \\ (0.07)$	$0.771 \\ (0.10)$	$0.175 \\ (0.20)$	$0.081 \\ (0.14)$	$0.101 \\ (0.05)$	$0.083 \\ (0.07)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.07)}{\phi_{ba}^{i13}}$
$p_t - b_t$	$0.093 \\ (0.05)$	$0.077 \\ (0.09)$	$0.080 \\ (0.14)$	$0.082 \\ (0.07)$	$0.087 \\ (0.20)$	$0.078 \\ (0.05)$	$0.077 \\ (0.20)$	$0.074 \\ (0.14)$	$0.092 \\ (0.07)$	$0.079 \\ (0.10)$	$0.089 \\ (0.05)$	$0.021 \\ (0.20)$	$0.090 \\ (0.14)$	$0.080 \\ (0.07)$	$0.110 \\ (0.10)$	$0.075 \\ (0.05)$	$0.090 \\ (0.20)$	$0.075 \\ (0.14)$	$0.076 \\ (0.07)$	$0.091 \\ (0.10)$	$0.081 \\ (0.05)$	$0.075 \\ (0.20)$	$0.073 \\ (0.14)$	$0.085 \\ (0.07)$	$0.076 \\ (0.05)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.083 \\ (0.07)$	$0.670 \\ (0.14)$	0.086 (0.10)	0.079 (0.05)	0.085 (0.20)	0.079 (0.07)	0.085 (0.14)	0.077 (0.10)	$0.085 \\ (0.05)$	0.079 (0.20)	0.083 (0.07)	$0.090 \\ (0.14)$	0.084 (0.10)	0.084 (0.05)	0.081 (0.20)	$0.085 \\ (0.07)$	$0.090 \\ (0.14)$	0.082 (0.05)	0.088 (0.20)	0.081 (0.10)	0.795 (0.10)	0.081 (0.14)	$0.075 \\ (0.05)$	0.087 (0.20)	0.080 (0.10)

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 36: Estimated parameters for XLNX

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ_{ab}^{i4}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.079 \\ (0.06)$	$0.087 \\ (0.10)$	$0.078 \\ (0.20)$	$0.082 \\ (0.08)$	$0.079 \\ (0.11)$	$0.075 \\ (0.06)$	$0.080 \\ (0.10)$	$0.090 \\ (0.20)$	$0.079 \\ (0.08)$	$0.090 \\ (0.11)$	$0.083 \\ (0.06)$	$0.085 \\ (0.10)$	$0.081 \\ (0.20)$	$0.077 \\ (0.08)$	$0.089 \\ (0.11)$	$0.089 \\ (0.06)$	$0.070 \\ (0.10)$	$0.091 \\ (0.20)$	$0.077 \\ (0.08)$	$0.084 \\ (0.11)$	$0.078 \\ (0.06)$	$0.084 \\ (0.10)$	$0.083 \\ (0.08)$	$0.084 \\ (0.20)$	$0.087 \\ (0.11)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ^{i18}_{ab}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}
	$0.077 \\ (0.11)$	$0.092 \\ (0.22)$	$0.077 \\ (0.08)$	0.084 (0.20)	0.088 (0.10)	$0.160 \\ (0.06)$	$0.060 \\ (0.11)$	-0.006 (0.08)	0.084 (0.20)	0.087 (0.10)	0.089 (0.11)	$0.078 \\ (0.06)$	$0.086 \\ (0.08)$	0.077 (0.)	0.087 (0.10)	0.083 (0.06)	$0.086 \\ (0.11)$	$0.077 \\ (0.08)$	0.088 (0.20)	$0.076 \\ (0.10)$	0.789 (0.11)	$0.092 \\ (0.06)$	0.087 (0.08)	0.088 (0.06)	0.083 (0.10)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.078 \\ (0.20)$	$0.079 \\ (0.06)$	$0.085 \\ (0.10)$	$0.084 \\ (0.11)$	$0.077 \\ (0.20)$	$0.086 \\ (0.06)$	$0.080 \\ (0.10)$	$0.085 \\ (0.08)$	$0.135 \\ (0.11)$	$0.077 \\ (0.20)$	$0.079 \\ (0.10)$	$0.085 \\ (0.06)$	$0.065 \\ (0.08)$	$0.084 \\ (0.11)$	$0.076 \\ (0.20)$	$0.091 \\ (0.10)$	$0.079 \\ (0.06)$	$0.088 \\ (0.08)$	$0.085 \\ (0.11)$	$0.092 \\ (0.05)$	$0.077 \\ (0.08)$	$0.090 \\ (0.10)$	$0.086 \\ (0.08)$	$0.075 \\ (0.11)$	$0.087 \\ (0.06)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.077 \\ (0.10)$	$0.093 \\ (0.20)$	$0.088 \\ (0.08)$	$0.096 \\ (0.11)$	$0.158 \\ (0.06)$	$0.081 \\ (0.11)$	$0.086 \\ (0.10)$	$0.080 \\ (0.10)$	$0.078 \\ (0.11)$	$0.086 \\ (0.08)$	$0.078 \\ (0.11)$	$0.090 \\ (0.08)$	0.084 (0.06)	0.081 (0.10)	$0.077 \\ (0.06)$	0.089 (0.11)	$0.077 \\ (0.08)$	0.088 (0.20)	$0.080 \\ (0.06)$	0.087 (0.10)	$0.790 \\ (0.11)$	$0.090 \\ (0.08)$	$0.171 \\ (0.10)$	$0.080 \\ (0.20)$	$0.090 \\ (0.06)$

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 37: Estimated parameters for STM

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.079 \\ (0.08)$	$0.087 \\ (0.20)$	$0.078 \\ (0.11)$	$0.082 \\ (0.21)$	$0.079 \\ (0.23)$	$0.075 \\ (0.08)$	$0.080 \\ (0.20)$	$0.090 \\ (0.11)$	$0.079 \\ (0.23)$	$0.090 \\ (0.21)$	$0.083 \\ (0.08)$	$0.085 \\ (0.20)$	$0.081 \\ (0.11)$	$0.077 \\ (0.23)$	$0.089 \\ (0.21)$	$0.089 \\ (0.08)$	$0.070 \\ (0.20)$	$0.091 \\ (0.11)$	$0.077 \\ (0.23)$	$0.084 \\ (0.21)$	$0.078 \\ (0.08)$	$0.084 \\ (0.20)$	$0.083 \\ (0.11)$	$0.084 \\ (0.23)$	$0.087 \\ (0.08)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.077 \\ (0.21)$	$0.092 \\ (0.08)$	$0.077 \\ (0.23)$	0.087 (0.20)	$0.088 \\ (0.21)$	$0.160 \\ (0.21)$	0.060 $(0.)$	-0.006 (0.20)	0.084 (0.23)	0.087 (0.11)	$0.089 \\ (0.08)$	$0.078 \\ (0.23)$	$0.086 \\ (0.20)$	0.077 (0.23)	0.087 (0.21)	0.083 (0.11)	$0.086 \\ (0.08)$	0.077 (0.20)	0.088 (0.11)	$0.076 \\ (0.23)$	0.789 (0.11)	$0.092 \\ (0.08)$	0.087 (0.20)	$0.088 \\ (0.23)$	0.083 (0.21)
	ϕ_{ba}^{i}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.078 \\ (0.11)$	$0.079 \\ (0.08)$	$0.085 \\ (0.31)$	$0.084 \\ (0.31)$	$0.077 \\ (0.20)$	$^{0.08}_{(0.08)}6$	$0.080 \\ (0.08)$	$0.085 \\ (0.31)$	$0.135 \\ (0.11)$	$0.077 \\ (0.20)$	$0.079 \\ (0.08)$	$0.085 \\ (0.08)$	$0.065 \\ (0.23)$	$0.084 \\ (0.11)$	$0.076 \\ (0.20)$	$0.091 \\ (0.08)$	$0.079 \\ (0.08)$	$0.088 \\ (0.11)$	$0.085 \\ (0.31)$	$0.092 \\ (0.20)$	$0.077 \\ (0.08)$	$0.090 \\ (0.08)$	$0.086 \\ (0.11)$	$0.075 \\ (0.08)$	0.087 (0.20)
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.077 (0.20)	0.093 (0.11)	0.088 (0.31)	0.084 (0.10)	0.158 (0.21)	0.081 (0.08)	0.086 (0.31)	$0.080 \\ (0.31)$	0.078 (0.11)	0.086 (0.31)	0.078 (0.20)	$0.090 \\ (0.21)$	0.084 (0.31)	0.081 (0.08)	0.077 (0.31)	0.089 (0.11)	0.077 (0.20)	0.088 (0.31)	$0.080 \\ (0.11)$	0.087 (0.08)	$0.790 \\ (0.11)$	$0.090 \\ (0.31)$	0.171 (0.20)	$0.080 \\ (0.31)$	0.087 (0.08)

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i=INTC \ and \ j=TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 38: Estimated parameters for MCHP

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.084 \\ (0.23)$	$0.083 \\ (0.10)$	$0.083 \\ (0.20)$	$0.085 \\ (0.09)$	$0.011 \\ (0.10)$	$0.084 \\ (0.23)$	$0.106 \\ (0.23)$	$0.078 \\ (0.20)$	$0.120 \\ (0.04)$	$0.089 \\ (0.09)$	$0.087 \\ (0.23)$	$0.053 \\ (0.10)$	$0.086 \\ (0.20)$	$0.091 \\ (0.04))$	$0.078 \\ (0.09)$	$0.121 \\ (0.23)$	$0.109 \\ (0.10)$	$0.034 \\ (0.20)$	$0.084 \\ (0.07)$	$0.163 \\ (0.07)$	$0.105 \\ (0.23)$	$0.012 \\ (0.10)$	$0.115 \\ (0.20)$	$0.064 \\ (0.07)$	$0.090 \\ (0.09)$
	ϕ^{i13}_{ab}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.066 \\ (0.04))$	$0.097 \\ (0.23)$	$0.039 \\ (0.10)$	0.131 (0.09)	0.093 (0.12)	$0.133 \\ (0.04))$	$0.085 \\ (0.23)$	$0.147 \\ (0.20)$	0.373 (0.10)	$0.092 \\ (0.04))$	0.087 (0.20)	$0.055 \\ (0.23)$	$0.058 \\ (0.20)$	$0.085 \\ (0.10)$	$0.089 \\ (0.09)$	$0.092 \\ (0.20)$	0.084 (0.23)	$0.071 \\ (0.20)$	$0.061 \\ (0.09)$	$0.104 \\ (0.10)$	$0.765 \\ (0.20)$	0.124 (0.23)	0.084 (0.20)	$0.090 \\ (0.04))$	$0.081 \\ (0.10)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\phi_{ba}^{(0.10)}$
$p_t - b_t$	$0.081 \\ (0.09)$	$0.091 \\ (0.20)$	$0.095 \\ (0.10)$	$0.083 \\ (0.23)$	$0.122 \\ (0.07)$	$0.064 \\ (0.09)$	$0.123 \\ (0.07)$	$0.068 \\ (0.10)$	$0.085 \\ (0.23)$	$0.093 \\ (0.07)$	$0.076 \\ (0.20)$	$0.098 \\ (0.07)$	$0.086 \\ (0.10)$	$0.084 \\ (0.23)$	$0.053 \\ (0.09)$	$0.144 \\ (0.20)$	$0.043 \\ (0.07)$	$0.113 \\ (0.10)$	-0.006 (0.23)	$0.138 \\ (0.09)$	$0.040 \\ (0.20)$	$0.133 \\ (0.10)$	$0.105 \\ (0.07)$	$0.074 \\ (0.23)$	$0.173 \\ (0.07)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.051 \\ (0.23)$	$0.098 \\ (0.10)$	$0.163 \\ (0.09)$	$0.054 \\ (0.07)$	0.112 (0.20)	$0.071 \\ (0.23)$	0.084 (0.09)	$0.304 \\ (0.10)$	0.012 (0.07)	$0.093 \\ (0.07)$	$0.064 \\ (0.23)$	0.118 (0.20)	$0.063 \\ (0.09)$	$0.090 \\ (0.10)$	$0.086 \\ (0.04))$	$0.086 \\ (0.23)$	$0.085 \\ (0.20)$	$0.082 \\ (0.04))$	0.114 (0.10)	0.087 (0.07)	$0.795 \\ (0.23)$	$0.079 \\ (0.09)$	$0.085 \\ (0.20)$	0.087 (0.07)	0.094 (0.10)

 $For \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 39: Estimated parameters for SWKS

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ^{i9}_{ab}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.082 \\ (0.04))$	$0.086 \\ (0.05)$	$0.080 \\ (0.08)$	$0.083 \\ (0.10)$	$0.083 \\ (0.25)$	$0.004 \\ (0.04))$	$0.038 \\ (0.10)$	$0.084 \\ (0.08)$	$0.086 \\ (0.25)$	$0.086 \\ (0.05)$	$0.080 \\ (0.04))$	$0.068 \\ (0.10)$	$0.087 \\ (0.08)$	$0.087 \\ (0.25)$	$0.071 \\ (0.05)$	$0.081 \\ (0.04))$	$0.083 \\ (0.10)$	$0.084 \\ (0.08)$	$0.083 \\ (0.25)$	$0.082 \\ (0.05)$	$0.093 \\ (0.04))$	$0.033 \\ (0.10)$	$0.083 \\ (0.08)$	$0.086 \\ (0.05)$	$0.072 \\ (0.04))$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.090 \\ (0.05)$	$0.103 \\ (0.10)$	$0.083 \\ (0.04))$	$0.082 \\ (0.08)$	0.087 (0.25)	$0.083 \\ (0.08)$	$0.085 \\ (0.10)$	$0.084 \\ (0.04))$	0.094 (0.22)	$0.154 \\ (0.25)$	$0.081 \\ (0.05)$	$0.086 \\ (0.08)$	$0.088 \\ (0.04))$	$0.085 \\ (0.25)$	$0.085 \\ (0.25)$	$0.091 \\ (0.05)$	$0.081 \\ (0.08)$	$0.090 \\ (0.04))$	$0.086 \\ (0.10)$	0.087 (0.04)	$0.785 \\ (0.05)$	$0.088 \\ (0.08)$	$0.091 \\ (0.04))$	$0.081 \\ (0.10)$	$0.085 \\ (0.05)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	$\frac{(0.08)}{\phi_{bb}^{i11}}$	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.092 \\ (0.25)$	$0.073 \\ (0.08)$	$0.086 \\ (0.04))$	$0.082 \\ (0.08)$	$0.083 \\ (0.05)$	$0.054 \\ (0.15)$	$0.001 \\ (0.08)$	$0.032 \\ (0.04))$	$0.085 \\ (0.05)$	$0.096 \\ (0.10)$	$0.078 \\ (0.25)$	$0.089 \\ (0.10)$	$0.086 \\ (0.04))$	$0.089 \\ (0.11)$	$0.033 \\ (0.10)$	$0.079 \\ (0.05)$	$0.085 \\ (0.08)$	-0.006 $(0.04))$	$0.083 \\ (0.08)$	$0.079 \\ (0.25)$	$0.084 \\ (0.05)$	$0.113 \\ (0.05)$	$0.058 \\ (0.04))$	$0.083 \\ (0.08)$	$0.083 \\ (0.10)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.095 \\ (0.08)$	$0.083 \\ (0.05)$	$0.089 \\ (0.10)$	$0.082 \\ (0.25)$	$0.082 \\ (0.04))$	$0.089 \\ (0.08)$	0.083 (0.10)	$0.089 \\ (0.25)$	$0.083 \\ (0.05)$	$0.171 \\ (0.04))$	$0.098 \\ (0.08)$	$0.087 \\ (0.25)$	$0.075 \\ (0.07)$	$0.088 \\ (0.02)$	$0.081 \\ (0.04))$	0.087 (0.08)	$0.089 \\ (0.25)$	$0.085 \\ (0.05)$	0.089 (0.16)	$0.086 \\ (0.04))$	$0.085 \\ (0.08)$	0.092 (0.19)	$0.090 \\ (0.05)$	$0.079 \\ (0.10)$	0.083 (0.04))

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT,$

Table 40: Estimated parameters for CDNS

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.056 \\ (0.25)$	$0.079 \\ (0.11)$	$0.086 \\ (0.16)$	$0.074 \\ (0.19)$	$0.084 \\ (0.14)$	$0.085 \\ (0.11)$	$0.078 \\ (0.25)$	$0.080 \\ (0.05)$	$0.075 \\ (0.16)$	$0.091 \\ (0.19)$	$0.086 \\ (0.16)$	$0.042 \\ (0.25)$	$0.011 \\ (0.11)$	$0.083 \\ (0.05)$	$0.082 \\ (0.19)$	$0.082 \\ (0.19)$	$0.086 \\ (0.25)$	$0.086 \\ (0.16)$	$0.077 \\ (0.11)$	$0.085 \\ (0.05)$	$0.079 \\ (0.05)$	$0.083 \\ (0.25)$	$0.086 \\ (0.16)$	$0.076 \\ (0.05)$	$0.083 \\ (0.11)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}
	$0.082 \\ (0.16)$	$0.091 \\ (0.05)$	$0.083 \\ (0.25)$	$0.083 \\ (0.11)$	0.088 (0.11)	$0.082 \\ (0.05)$	$0.092 \\ (0.16)$	$0.091 \\ (0.25)$	$0.076 \\ (0.19)$	$0.080 \\ (0.19)$	0.085 (0.11)	$0.089 \\ (0.05)$	$0.082 \\ (0.25)$	0.087 (0.16)	$0.170 \\ (0.19)$	$0.069 \\ (0.05)$	$0.086 \\ (0.23)$	$0.081 \\ (0.25)$	$0.144 \\ (0.11)$	0.082 (0.16)	0.785 (0.11)	$0.091 \\ (0.05)$	$0.085 \\ (0.25)$	0.085 (0.19)	0.079 (0.16)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.087 \\ (0.25)$	$0.081 \\ (0.16)$	$0.080 \\ (0.19)$	$0.088 \\ (0.09)$	$0.091 \\ (0.05)$	$0.071 \\ (0.11)$	$0.085 \\ (0.25)$	$0.145 \\ (0.19)$	$0.083 \\ (0.25)$	$0.090 \\ (0.05)$	$0.086 \\ (0.16)$	$0.080 \\ (0.11)$	$0.087 \\ (0.25)$	$0.083 \\ (0.19)$	$0.082 \\ (0.05)$	$0.083 \\ (0.16)$	$0.080 \\ (0.11)$	$0.084 \\ (0.19)$	$0.091 \\ (0.25)$	$0.084 \\ (0.05)$	$0.073 \\ (0.16)$	$0.083 \\ (0.11)$	$0.088 \\ (0.19)$	$0.089 \\ (0.19)$	$0.079 \\ (0.25)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.092 (0.05)	0.085 (0.19)	0.082 (0.11)	0.078 (0.16)	0.089 (0.25)	0.089 (0.16)	$0.075 \\ (0.05)$	0.083 (0.11)	0.089 (0.25)	$0.090 \\ (0.05)$	0.082 (0.04)	$0.078 \\ (0.05)$	0.083 (0.25)	0.087 (0.16)	$0.070 \\ (0.19)$	$0.164 \\ (0.11)$	0.061 (0.25)	0.082 (0.05)	0.086 (0.16)	0.077 (0.19)	0.781 (0.25)	0.088 (0.11)	$0.074 \\ (0.19)$	$0.090 \\ (0.05)$	0.089 (0.16)

For $\phi^{ij}_{..}$, i=INTC and j=TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, AVGO, NXPI, LRCX, ADI, AMAT, KLAC, XLNX, STM, MCHP, SWKS, MXIM, TER, MRVL, QRVO, ON, OLED

Table 41: Estimated parameters for MXIM

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.078 \\ (0.19)$	$0.086 \\ (0.04)$	$0.075 \\ (0.09)$	$0.084 \\ (0.15)$	$0.082 \\ (0.09)$	$0.095 \\ (0.04)$	$0.084 \\ (0.19)$	$0.092 \\ (0.21)$	$0.075 \\ (0.09)$	$0.078 \\ (0.15)$	$0.094 \\ (0.04)$	$0.098 \\ (0.21)$	$0.082 \\ (0.19)$	$0.082 \\ (0.21)$	$0.082 \\ (0.09)$	$0.082 \\ (0.04)$	$0.090 \\ (0.21)$	$0.089 \\ (0.15)$	$0.078 \\ (0.19)$	$0.028 \\ (0.09)$	$0.079 \\ (0.04)$	$0.133 \\ (0.21)$	$0.084 \\ (0.05)$	$0.089 \\ (0.15)$	$0.079 \\ (0.19)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ^{i18}_{ab}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ^{i20}_{ab}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.086 \\ (0.09)$	$0.079 \\ (0.21)$	$0.086 \\ (0.04)$	$0.061 \\ (0.15)$	$0.112 \\ (0.19)$	0.084 (0.19)	$0.082 \\ (0.21)$	0.123 (0.04)	$0.082 \\ (0.09)$	$0.083 \\ (0.15)$	$0.079 \\ (0.19)$	0.094 (0.21)	0.083 (0.04)	$0.146 \\ (0.15)$	$0.050 \\ (0.09)$	$0.062 \\ (0.19)$	0.083 (0.21)	$0.083 \\ (0.04)$	$0.078 \\ (0.15)$	$0.085 \\ (0.09)$	$0.840 \\ (0.19)$	$0.122 \\ (0.21)$	$0.082 \\ (0.04)$	$0.079 \\ (0.15)$	0.081 (0.09)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.09)}{\phi_{ba}^{i13}}$
$p_t - b_t$	$0.078 \\ (0.21)$	$0.087 \\ (0.09)$	$0.081 \\ (0.19)$	$0.082 \\ (0.09)$	$0.086 \\ (0.04)$	$0.080 \\ (0.21)$	$0.077 \\ (0.09)$	$0.091 \\ (0.19)$	$0.041 \\ (0.15)$	$0.087 \\ (0.04)$	$0.085 \\ (0.21)$	$0.076 \\ (0.09)$	$0.067 \\ (0.19)$	$0.088 \\ (0.04)$	$0.076 \\ (0.15)$	$0.090 \\ (0.21)$	$0.056 \\ (0.09)$	$0.082 \\ (0.19)$	$0.082 \\ (0.04)$	$0.172 \\ (0.09)$	$0.027 \\ (0.21)$	$0.084 \\ (0.04)$	$0.086 \\ (0.19)$	$0.081 \\ (0.09)$	$0.087 \\ (0.15)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.073 (0.19)	$0.087 \\ (0.04)$	0.084 (0.09)	$0.090 \\ (0.04)$	$0.079 \\ (0.19)$	0.087 (0.19)	$0.084 \\ (0.21)$	$0.079 \\ (0.09)$	$0.086 \\ (0.15)$	$0.086 \\ (0.19)$	$0.051 \\ (0.19)$	$0.080 \\ (0.04)$	$0.082 \\ (0.21)$	$0.102 \\ (0.09)$	0.139 (0.19)	$0.079 \\ (0.19)$	$0.085 \\ (0.04)$	$0.091 \\ (0.21)$	$0.077 \\ (0.15)$	0.085 (0.19)	$0.785 \\ (0.19)$	$0.086 \\ (0.04)$	$0.092 \\ (0.09)$	0.089 (0.21)	0.078 (0.19)

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

Table 42: Estimated parameters for TER

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.075 \\ (0.04)$	$0.081 \\ (0.06)$	$0.087 \\ (0.13)$	$0.066 \\ (0.13)$	$0.095 \\ (0.15)$	$0.079 \\ (0.04)$	$0.085 \\ (0.15)$	$0.094 \\ (0.13)$	$0.086 \\ (0.18)$	$0.086 \\ (0.15)$	$0.085 \\ (0.06)$	$0.093 \\ (0.15)$	$0.084 \\ (0.18)$	$0.081 \\ (0.13)$	$0.090 \\ (0.06)$	$0.087 \\ (0.04)$	$0.085 \\ (0.06)$	$0.081 \\ (0.15)$	$0.084 \\ (0.18)$	$0.082 \\ (0.13)$	$0.095 \\ (0.04)$	$0.097 \\ (0.06)$	$0.081 \\ (0.15)$	$0.090 \\ (0.06)$	$0.083 \\ (0.04)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.112 (0.18)	$0.083 \\ (0.04)$	0.083 (0.06)	0.084 (0.13)	0.087 (0.18)	$0.078 \\ (0.15)$	0.122 (0.04)	0.092 (0.06)	0.087 (0.13)	$0.161 \\ (0.15)$	$0.050 \\ (0.15)$	$0.098 \\ (0.04)$	$0.125 \\ (0.06)$	0.084 (0.13)	0.083 (0.15)	$0.145 \\ (0.15)$	0.097 (0.04)	$0.102 \\ (0.06)$	0.084 (0.13)	0.084 (0.15)	0.789 (0.16)	$0.122 \\ (0.04)$	0.092 (0.06)	0.088 (0.13)	$0.083 \\ (0.18)$
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.082 \\ (0.06)$	$0.082 \\ (0.13)$	$0.082 \\ (0.15)$	$0.088 \\ (0.04)$	$0.082 \\ (0.15)$	$0.090 \\ (0.06)$	$0.091 \\ (0.13)$	$0.084 \\ (0.04)$	$0.081 \\ (0.06)$	$0.089 \\ (0.18)$	0.084 (0.06)	$0.082 \\ (0.15)$	$0.081 \\ (0.13)$	$0.077 \\ (0.18)$	0.084 (0.13)	$0.082 \\ (0.06)$	$0.082 \\ (0.04)$	0.087 (0.13)	$0.084 \\ (0.18)$	$0.108 \\ (0.04)$	$0.071 \\ (0.06)$	$0.086 \\ (0.15)$	$0.173 \\ (0.12)$	$0.084 \\ (0.18)$	$0.083 \\ (0.15)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.081 (0.15)	0.088 (0.04)	$0.101 \\ (0.13)$	0.084 (0.06)	$0.090 \\ (0.15)$	0.083 (0.13)	0.087 (0.15)	0.144 (0.04)	$0.086 \\ (0.06)$	0.089 (0.18)	0.084 (0.06)	0.078 (0.13)	0.083 (0.18)	0.084 (0.04)	0.095 (0.15)	0.073 (0.06)	0.164 (0.13)	0.084 (0.04)	0.103 (0.15)	0.083 (0.19)	0.809 (0.06)	0.175 (0.04)	0.081 (0.15)	$0.101 \\ (0.13)$	0.083 (0.06)

For ϕ_{ii}^{ij} , i = INTC and j = TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, AVGO, NXPI, LRCX, ADI, AMAT, KLAC, XLNX, STM, MCHP, SWKS, CDNS, MXIM, MRVL, QRVO, ON, OLED

Table 43: Estimated parameters for MRVL

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.085 \\ (0.06)$	$0.206 \\ (0.18)$	$0.093 \\ (0.26)$	$0.088 \\ (0.07)$	$0.085 \\ (0.09)$	$0.081 \\ (0.06)$	$0.084 \\ (0.18)$	$0.082 \\ (0.26)$	$0.095 \\ (0.07)$	$0.097 \\ (0.09)$	$0.081 \\ (0.06)$	$0.085 \\ (0.18)$	$0.071 \\ (0.07)$	$0.086 \\ (0.26)$	$0.080 \\ (0.09)$	$0.085 \\ (0.06)$	$0.084 \\ (0.18)$	$0.081 \\ (0.07)$	$0.084 \\ (0.26)$	$0.079 \\ (0.09)$	$0.084 \\ (0.06)$	$0.084 \\ (0.18)$	$0.082 \\ (0.07)$	$0.122 \\ (0.04)$	-0.025 (0.26)
	ϕ^{i13}_{ab}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ_{ab}^{i16}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ^{i19}_{ab}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.090 \\ (0.07)$	$0.083 \\ (0.09)$	$0.112 \\ (0.26)$	$0.083 \\ (0.18)$	$0.083 \\ (0.06)$	$0.084 \\ (0.07)$	0.087 (0.09)	$0.078 \\ (0.26)$	$0.122 \\ (0.18)$	$0.084 \\ (0.06)$	0.083 (0.07)	$0.161 \\ (0.06)$	$0.083 \\ (0.26)$	$0.086 \\ (0.18)$	0.081 (0.09)	$0.071 \\ (0.07)$	$0.083 \\ (0.06)$	$0.162 \\ (0.26)$	$0.098 \\ (0.18)$	$0.082 \\ (0.09)$	$0.799 \\ (0.07)$	$0.091 \\ (0.09)$	$0.080 \\ (0.26)$	$0.084 \\ (0.18)$	0.083 (0.06)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.067 \\ (0.26)$	$0.085 \\ (0.06)$	$0.083 \\ (0.07)$	$0.097 \\ (0.09)$	$0.923 \\ (0.18)$	$0.021 \\ (0.26)$	$0.092 \\ (0.06)$	$0.116 \\ (0.07)$	$0.097 \\ (0.09)$	$0.081 \\ (0.18)$	$0.088 \\ (0.26)$	$0.060 \\ (0.07)$	$0.095 \\ (0.06)$	$0.084 \\ (0.09)$	$0.082 \\ (0.18)$	$0.085 \\ (0.26)$	$0.080 \\ (0.07)$	$0.086 \\ (0.06)$	$0.085 \\ (0.09)$	$0.093 \\ (0.18)$	$0.074 \\ (0.26)$	$0.094 \\ (0.06)$	$0.095 \\ (0.09)$	$0.086 \\ (0.07)$	$0.084 \\ (0.18)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.072 \\ (0.18)$	0.084 (0.26)	0.081 (0.06)	$0.093 \\ (0.07)$	0.081 (0.26)	0.099 (0.26)	0.094 (0.18)	0.085 (0.06)	0.082 (0.09)	$0.090 \\ (0.07)$	0.084 (0.09)	$0.080 \\ (0.26)$	0.081 (0.18)	0.091 (0.09)	$0.078 \\ (0.07)$	0.084 (0.09)	0.083 (0.26)	0.125 (0.06)	$0.164 \\ (0.18)$	0.084 (0.07)	0.788 (0.09)	0.082 (0.26)	$0.106 \\ (0.06)$	0.085 (0.06)	0.089 (0.18)

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT,$

Table 44: Estimated parameters for QRVO

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.067 \\ (0.11)$	$0.085 \\ (0.10)$	$0.083 \\ (0.20)$	$0.097 \\ (0.09)$	$0.923 \\ (0.04)$	$0.021 \\ (0.11)$	$0.092 \\ (0.20)$	$0.116 \\ (0.10)$	$0.097 \\ (0.09)$	$0.081 \\ (0.20)$	$0.088 \\ (0.11)$	$0.060 \\ (0.03)$	$0.095 \\ (0.10)$	$0.084 \\ (0.09)$	$0.082 \\ (0.20)$	$0.085 \\ (0.11)$	$0.080 \\ (0.32)$	$0.086 \\ (0.10)$	$0.085 \\ (0.09)$	$0.093 \\ (0.20)$	$0.074 \\ (0.11)$	$0.094 \\ (0.20)$	$0.095 \\ (0.10)$	$0.086 \\ (0.09)$	$0.084 \\ (0.11)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ^{i14}_{ab}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ^{i23}_{ab}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}
	$0.072 \\ (0.20)$	0.084 (0.09)	$0.081 \\ (0.11)$	$0.093 \\ (0.10)$	$0.081 \\ (0.25)$	$0.099 \\ (0.10)$	0.094 (0.09)	0.085 (0.11)	$0.082 \\ (0.08)$	$0.090 \\ (0.21)$	0.084 (0.10)	$0.080 \\ (0.09)$	$0.081 \\ (0.11)$	$0.091 \\ (0.05)$	$0.078 \\ (0.20)$	$0.095 \\ (0.20)$	0.084 (0.09)	0.125 (0.11)	$0.164 \\ (0.20)$	0.084 (0.06)	0.788 (0.10)	$0.082 \\ (0.09)$	$0.106 \\ (0.11)$	$0.085 \\ (0.20)$	0.089 (0.20)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.085 \\ (0.10)$	$0.206 \\ (0.11)$	$0.093 \\ (0.20)$	$0.088 \\ (0.09)$	$0.085 \\ (0.07)$	$0.081 \\ (0.10)$	$0.084 \\ (0.11)$	$0.082 \\ (0.07)$	$0.095 \\ (0.09)$	$0.097 \\ (0.20)$	$0.081 \\ (0.10)$	$0.085 \\ (0.11)$	$0.071 \\ (0.07)$	$0.086 \\ (0.09)$	$0.080 \\ (0.20)$	$0.085 \\ (0.10)$	$0.084 \\ (0.11)$	$0.081 \\ (0.08)$	$0.084 \\ (0.09)$	$0.079 \\ (0.20)$	$0.084 \\ (0.10)$	$0.084 \\ (0.11)$	$0.082 \\ (0.08)$	$0.122 \\ (0.09)$	-0.025 (0.20)
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.090 \\ (0.11)$	$0.083 \\ (0.09)$	0.112 (0.10)	0.083 (0.10)	0.083 (0.11)	0.084 (0.)	0.087 (0.09)	0.078 (010.)	$0.122 \\ (0.01)$	0.084 (0.11)	0.083 (0.11)	$0.161 \\ (0.09)$	0.083 (0.10)	0.086 (0.20)	0.081 (0.20)	0.084 (0.11)	$0.071 \\ (0.09)$	$0.162 \\ (0.10)$	0.098 (0.20)	0.082 (0.24)	0.799 (0.10)	$0.091 \\ (0.09)$	$0.080 \\ (0.11)$	0.084 (0.11)	0.083 (0.10)

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i=INTC \ and \ j=TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ MRVL, \ ON, \ OLED, \ AMAT, \$

Table 45: Estimated parameters for ON

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ_{ab}^{i2}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.083 \\ (0.20)$	$0.083 \\ (0.14)$	$0.095 \\ (0.12)$	$0.083 \\ (0.14)$	$0.089 \\ (0.05)$	$0.082 \\ (0.20)$	$0.082 \\ (0.12)$	$0.089 \\ (0.05)$	$0.086 \\ (0.14)$	$0.087 \\ (0.26)$	$0.081 \\ (0.20)$	0.087 (0.26)	$0.089 \\ (0.14)$	$0.085 \\ (0.05)$	$0.089 \\ (0.12)$	$0.086 \\ (0.20)$	0.085 (0.)	$0.092 \\ (0.26)$	$0.090 \\ (0.05)$	$0.084 \\ (0.12)$	$0.073 \\ (0.20)$	$0.086 \\ (0.14)$	$0.082 \\ (0.26)$	$0.083 \\ (0.05)$	$0.054 \\ (0.12)$
	ϕ^{i13}_{ab}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ^{i22}_{ab}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ^{i25}_{ab}
	$0.165 \\ (0.05)$	$0.032 \\ (0.14)$	0.085 (0.12)	$0.096 \\ (0.26)$	$0.078 \\ (0.24)$	0.089 (0.14)	0.086 (0.12)	0.089 (0.20)	0.033 (0.26)	$0.079 \\ (0.05)$	0.085 (0.14)	-0.006 (0.12)	0.089 (0.20)	0.083 (0.26)	0.083 (0.05)	0.088 (0.06)	0.087 (0.14)	$0.075 \\ (0.20)$	0.088 (0.12)	$0.079 \\ (0.05)$	0.083 (0.14)	$0.165 \\ (0.12)$	$0.060 \\ (0.20)$	$0.079 \\ (0.05)$	0.125 (0.12)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.12)}{\phi_{ba}^{i13}}$
$p_t - b_t$	$0.033 \\ (0.12)$	$0.083 \\ (0.26)$	$0.086 \\ (0.14)$	$0.072 \\ (0.05)$	$0.090 \\ (0.04)$	$0.103 \\ (0.12)$	$0.083 \\ (0.20)$	$0.082 \\ (0.14)$	$0.087 \\ (0.05)$	$0.083 \\ (0.26)$	$0.088 \\ (0.12)$	$0.085 \\ (0.20)$	$0.085 \\ (0.14)$	$0.091 \\ (0.09)$	$0.081 \\ (0.05)$	$0.090 \\ (0.12)$	$0.086 \\ (0.20)$	$0.087 \\ (0.14)$	$0.078 \\ (0.26)$	$0.088 \\ (0.05)$	$0.082 \\ (0.12)$	$0.086 \\ (0.20)$	$0.080 \\ (0.14)$	$0.083 \\ (0.26)$	$0.083 \\ (0.05)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.004 \\ (0.14)$	$0.038 \\ (0.26)$	0.084 (0.05)	$0.086 \\ (0.05)$	0.086 (0.20)	$0.080 \\ (0.12)$	$0.068 \\ (0.14)$	0.087 (0.26)	0.087 (0.05)	0.071 (0.20)	0.081 (0.12)	0.083 (0.26)	0.085 (0.12)	0.092 (0.04)	0.091 (0.20)	0.083 (0.12)	0.084 (0.26)	0.081 (0.14)	$0.086 \\ (0.05)$	0.083 (0.20)	$0.791 \\ (0.05)$	0.093 (0.20)	$0.165 \\ (0.14)$	0.081 (0.12)	$0.085 \\ (0.05)$

Table 46: Estimated parameters for OLED

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ^{i3}_{ab}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ_{ab}^{i6}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ_{ab}^{i8}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ^{i12}_{ab}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.083 \\ (0.26)$	$0.074 \\ (0.07)$	$0.089 \\ (0.10)$	$0.083 \\ (0.28)$	$0.088 \\ (0.05)$	$0.074 \\ (0.26)$	$0.106 \\ (0.10)$	$0.091 \\ (0.07)$	$0.089 \\ (0.05)$	$0.114 \\ (0.28)$	$0.089 \\ (0.26)$	$0.116 \\ (0.10)$	$0.081 \\ (0.05)$	$0.091 \\ (0.07)$	$0.085 \\ (0.10)$	$0.088 \\ (0.26)$	$0.021 \\ (0.28)$	$0.173 \\ (0.07)$	$0.085 \\ (0.05)$	$0.086 \\ (0.28)$	$0.077 \\ (0.26)$	$0.084 \\ (0.07)$	$0.108 \\ (0.05)$	$0.064 \\ (0.28)$	$0.077 \\ (0.10)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ_{ab}^{i21}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ^{i24}_{ab}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	0.084 (0.05)	0.084 (0.26)	0.083 (0.28)	$0.075 \\ (0.07)$	0.092 (0.05)	0.077 (0.10)	0.088 (0.26)	0.092 (0.28)	$0.086 \\ (0.07)$	$0.064 \\ (0.05)$	0.084 (0.10)	0.084 (0.26)	$0.075 \\ (0.28)$	0.085 (0.07)	$0.085 \\ (0.05)$	0.067 (0.10)	0.092 (0.26)	$0.080 \\ (0.28)$	0.087 (0.07)	$0.086 \\ (0.05)$	0.082 (0.10)	0.115 (0.26)	$0.788 \\ (0.05)$	0.078 (0.07)	0.083 (0.28)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	$\frac{(0.28)}{\phi_{ba}^{i13}}$
$p_t - b_t$	$0.082 \\ (0.10)$	$0.088 \\ (0.28)$	$0.084 \\ (0.26)$	$0.083 \\ (0.07)$	0.087 (0.05)	$0.081 \\ (0.07)$	$0.091 \\ (0.07)$	$0.041 \\ (0.26)$	$0.088 \\ (0.10)$	$0.086 \\ (0.05)$	$0.090 \\ (0.28)$	$0.068 \\ (0.10)$	$0.088 \\ (0.26)$	$0.077 \\ (0.07)$	$0.083 \\ (0.05)$	$0.109 \\ (0.28)$	0.083 (0.10)	0.083 (0.26)	$0.173 \\ (0.07)$	$0.028 \\ (0.28)$	0.084 (0.10)	$0.087 \\ (0.07)$	$0.082 \\ (0.26)$	$0.092 \\ (0.28)$	$0.074 \\ (0.05)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	0.087 (0.07)	0.084 (0.08)	$0.091 \\ (0.10)$	$0.080 \\ (0.05)$	$0.086 \\ (0.26)$	0.084 (0.07)	$0.080 \\ (0.08)$	0.086 (0.10)	0.087 (0.05)	$0.052 \\ (0.26)$	0.084 (0.07)	$0.081 \\ (0.10)$	0.094 (0.08)	$0.063 \\ (0.05)$	$0.090 \\ (0.26)$	$0.080 \\ (0.07)$	0.086 (0.10)	0.092 (0.08)	$0.078 \\ (0.05)$	0.086 (0.26)	0.079 (0.07)	0.092 (0.10)	0.797 (0.08)	$0.079 \\ (0.05)$	$0.083 \\ (0.26)$

 $\overline{For} \ \phi^{ij}_{..}, \ i = INTC \ and \ j = TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, AVGO, NXPI, LRCX, ADI, AMAT, KLAC, XLNX, STM, MCHP, SWKS, CDNS, MXIM, TER, MRVL, QRVO, ON$

Table 47: Estimated parameters for ASML

var																									
	ϕ^i_{aa}	ϕ^i_{ab}	ϕ_{aa}^{i2}	ϕ^{i2}_{ab}	ϕ_{aa}^{i3}	ϕ_{ab}^{i3}	ϕ_{aa}^{i4}	ϕ^{i4}_{ab}	ϕ_{aa}^{i5}	ϕ_{ab}^{i5}	ϕ_{aa}^{i6}	ϕ^{i6}_{ab}	ϕ_{aa}^{i7}	ϕ_{ab}^{i7}	ϕ_{aa}^{i8}	ϕ^{i8}_{ab}	ϕ_{aa}^{i9}	ϕ_{ab}^{i9}	ϕ_{aa}^{i10}	ϕ_{ab}^{i10}	ϕ_{aa}^{i11}	ϕ_{ab}^{i11}	ϕ_{aa}^{i12}	ϕ_{ab}^{i12}	ϕ_{aa}^{i13}
$a_t - p_t$	$0.080 \\ (0.05)$	$0.089 \\ (0.11)$	$0.086 \\ (0.09)$	$0.082 \\ (0.15)$	$0.083 \\ (0.09)$	$0.083 \\ (0.22)$	$0.082 \\ (0.05)$	$0.091 \\ (0.11)$	$0.923 \\ (0.07)$	$0.140 \\ (0.09)$	$0.079 \\ (0.22)$	$0.085 \\ (0.05)$	$0.134 \\ (0.11)$	$0.089 \\ (0.08)$	$0.082 \\ (0.09)$	$0.083 \\ (0.22)$	$0.079 \\ (0.09)$	$0.081 \\ (0.05)$	$0.084 \\ (0.13)$	$0.088 \\ (0.09)$	$0.133 \\ (0.22)$	$0.145 \\ (0.09)$	$0.087 \\ (0.11)$	$0.084 \\ (0.05)$	$0.083 \\ (0.09)$
	ϕ_{ab}^{i13}	ϕ_{aa}^{i14}	ϕ_{ab}^{i14}	ϕ_{aa}^{i15}	ϕ_{ab}^{i15}	ϕ_{aa}^{i16}	ϕ^{i16}_{ab}	ϕ_{aa}^{i17}	ϕ_{ab}^{i17}	ϕ_{aa}^{i18}	ϕ_{ab}^{i18}	ϕ_{aa}^{i19}	ϕ_{ab}^{i19}	ϕ_{aa}^{i20}	ϕ_{ab}^{i20}	ϕ_{aa}^{i21}	ϕ^{i21}_{ab}	ϕ_{aa}^{i22}	ϕ_{ab}^{i22}	ϕ_{aa}^{i23}	ϕ_{ab}^{i23}	ϕ_{aa}^{i24}	ϕ_{ab}^{i24}	ϕ_{aa}^{i25}	ϕ_{ab}^{i25}
	$0.154 \\ (0.10)$	$0.083 \\ (0.08)$	0.084 (0.05)	0.082 (0.22)	0.083 (0.06)	$0.088 \\ (0.05)$	$0.088 \\ (0.08)$	0.082 (0.06)	0.087 (0.10)	0.078 (0.22)	0.088 (0.22)	$0.080 \\ (0.08)$	$0.088 \\ (0.05)$	0.081 (0.06)	0.078 (0.10)	0.088 (0.06)	$0.078 \\ (0.08)$	0.086 (0.10)	$0.075 \\ (0.05)$	0.088 (0.06)	$0.785 \\ (0.06)$	$0.090 \\ (0.08)$	$0.080 \\ (0.10)$	0.086 (0.22)	0.077 (0.05)
	ϕ^i_{ba}	ϕ^i_{bb}	ϕ_{ba}^{i2}	ϕ_{bb}^{i2}	ϕ_{ba}^{i3}	ϕ_{bb}^{i3}	ϕ_{ba}^{i4}	ϕ_{bb}^{i4}	ϕ_{ba}^{i5}	ϕ_{bb}^{i5}	ϕ_{ba}^{i6}	ϕ_{bb}^{i6}	ϕ_{ba}^{i7}	ϕ_{bb}^{i7}	ϕ_{ba}^{i8}	ϕ_{bb}^{i8}	ϕ_{ba}^{i9}	ϕ_{bb}^{i9}	ϕ_{ba}^{i10}	ϕ_{bb}^{i10}	ϕ_{ba}^{i11}	ϕ_{bb}^{i11}	ϕ_{ba}^{i12}	ϕ_{bb}^{i12}	ϕ_{ba}^{i13}
$p_t - b_t$	$0.078 \\ (0.06)$	$0.078 \\ (0.05)$	$0.088 \\ (0.10)$	$0.079 \\ (0.08)$	$0.084 \\ (0.10)$	$0.082 \\ (0.06)$	$0.082 \\ (0.05)$	$0.086 \\ (0.10)$	$0.040 \\ (0.08)$	$0.863 \\ (0.06)$	$0.090 \\ (0.10)$	$0.088 \\ (0.05)$	$0.075 \\ (0.22)$	$0.084 \\ (0.08)$	$0.082 \\ (0.22)$	$0.082 \\ (0.10)$	$0.084 \\ (0.05)$	$0.083 \\ (0.06)$	$0.074 \\ (0.08)$	$0.087 \\ (0.06)$	$0.089 \\ (0.22)$	$0.084 \\ (0.05)$	$0.083 \\ (0.06)$	$0.082 \\ (0.08)$	$0.086 \\ (0.10)$
	ϕ_{bb}^{i13}	ϕ_{ba}^{i14}	ϕ_{bb}^{i14}	ϕ_{ba}^{i15}	ϕ_{bb}^{i15}	ϕ_{ba}^{i16}	ϕ_{bb}^{i16}	ϕ_{ba}^{i17}	ϕ_{bb}^{i17}	ϕ_{ba}^{i18}	ϕ_{bb}^{i18}	ϕ_{ba}^{i19}	ϕ_{bb}^{i19}	ϕ_{ba}^{i20}	ϕ_{bb}^{i20}	ϕ_{ba}^{i21}	ϕ_{bb}^{i21}	ϕ_{ba}^{i22}	ϕ_{bb}^{i22}	ϕ_{ba}^{i23}	ϕ_{bb}^{i23}	ϕ_{ba}^{i24}	ϕ_{bb}^{i24}	ϕ_{ba}^{i25}	ϕ_{bb}^{i25}
	$0.083 \\ (0.06)$	$0.083 \\ (0.22)$	$0.082 \\ (0.08)$	$0.083 \\ (0.10)$	$0.083 \\ (0.05)$	$0.085 \\ (0.08)$	$0.086 \\ (0.06)$	$0.080 \\ (0.10)$	$0.095 \\ (0.22)$	$0.084 \\ (0.05)$	$0.086 \\ (0.05)$	$0.084 \\ (0.08)$	$0.079 \\ (0.06)$	$0.078 \\ (0.10)$	$0.091 \\ (0.05)$	$0.078 \\ (0.10)$	$0.089 \\ (0.05)$	$0.080 \\ (0.08)$	$0.080 \\ (0.06)$	$0.092 \\ (0.22)$	$0.058 \\ (0.10)$	0.087 (0.22)	$0.075 \\ (0.05)$	$0.073 \\ (0.08)$	0.083 (0.06)

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$

 ${\bf Appendix} \ {\bf C2}$ Estimated GARCH Parameters for SMH and its Underlying Assets

ETF	$\kappa_{pf}^0 \\ -0.471$	κ_{p^f}	$\kappa^0_{ap^f}$	κ_{ap^f}	$\kappa^0_{pb^f}$	κ_{pb^f}	$ au_0^f$	$ au_1^f$	$ au_2^f$	$ au_3^f$
SMH	(0.008)	$0.901 \\ (0.025)$	$0.153 \\ (0.048)$	$0.760 \\ (0.022)$	-0.833 (0.098)	$0.767 \\ (0.036)$	$0.136 \\ (0.008)$	$0.925 \\ (0.060)$	-0.371 (0.025)	$0.801 \\ (0.022)$
STOCK	κ_p^0	κ_p	κ_{ap}^0	κ_{ap}	κ_{pb}^0	κ_{pb}	$ au_0$	$ au_1$	$ au_2$	$ au_3$
TSM	-0.441 (0.045)	$0.901 \\ (0.003)$	-0.657 (0.026)	$0.930 \\ (0.059)$	-0.447 (0.057)	$0.612 \\ (0.027)$	-0.541 (0.014)	$0.629 \\ (0.041)$	-0.121 (0.039)	$0.701 \\ (0.15)$
INTC	-0.514 (0.039)	$0.694 \\ (0.022)$	-0.657 (0.044)	$0.800 \\ (0.011)$	-0.447 (0.021)	$0.819 \\ (0.055)$	-0.439 (0.056)	$0.784 \\ (0.028)$	-0.033 (0.003)	$0.306 \\ (0.047)$
NVDA	-0.404 (0.005)	$0.672 \\ (0.002)$	-0.427 (0.051)	$0.119 \\ (0.013)$	-0.587 (0.021)	$0.838 \\ (0.015)$	-0.152 (0.047)	$0.709 \\ (0.037)$	-0.229 (0.027)	$0.216 \\ (0.017)$
AMD	-0.501 (0.026)	$0.694 \\ (0.036)$	-0.507 (0.026)	$0.172 \\ (0.016)$	-0.567 (0.0025)	$0.156 \\ (0.015)$	-0.337 (0.035)	$0.896 \\ (0.045)$	-0.305 (0.044)	$0.266 \\ (0.023)$
ASML	-0.321 (0.039)	$0.635 \\ (0.057)$	-0.387 (0.038)	$0.854 \\ (0.019)$	-0.437 (0.010)	$0.879 \\ (0.029)$	-0.010 (0.030)	$0.931 \\ (0.020)$	-0.341 (0.013)	$0.300 \\ (0.024)$
TXN	-0.301 (0.016)	$0.695 \\ (0.038)$	-0.547 (0.049)	$0.130 \\ (0.056)$	-0.467 (0.18)	$0.135 \\ (0.013)$	-0.776 (0.015)	$0.829 \\ (0.026)$	-0.590 (0.011)	$0.590 \\ (0.033)$
QCOM	-0.321 (0.037)	$0.637 \\ (0.045)$	-0.547 (0.058)	$0.129 \\ (0.005)$	-0.487 (0.011)	$0.135 \\ (0.028)$	$0.139 \\ (0.026)$	$0.519 \\ (0.034)$	-0.372 (0.032)	$0.524 \\ (0.003)$
MU	-0.484 (0.030)	$0.632 \\ (0.059)$	-0.345 (0.043)	$0.091 \\ (0.037)$	-0.587 (0.028)	$0.088 \\ (0.019)$	$0.119 \\ (0.028)$	$0.870 \\ (0.008)$	-0.276 (0.002)	$0.486 \\ (0.022)$
AVGO	-0.241 (0.028)	-0.757 (0.038)	-0.841 (0.036)	$0.557 \\ (0.019)$	-0.773 (0.032)	$0.853 \\ (0.023)$	-0.651 (0.045)	$0.633 \\ (0.018)$	-0.221 (0.026)	$0.629 \\ (0.020)$
NXPI	-0.341 (0.045)	$0.654 \\ (0.022)$	-0.506 (0.006)	$0.180 \\ (0.018)$	-0.577 (0.001)	$0.846 \\ (0.004)$	-0.273 (0.008)	$0.898 \\ (0.043)$	$0.023 \\ (0.028)$	$0.043 \\ (0.017)$
LRCX	-0.504 (0.009)	$0.622 \\ (0.006)$	-0.467 (0.003)	$0.859 \\ (0.023)$	-0.597 (0.031)	$0.836 \\ (0.004)$	-0.398 (0.034)	$0.173 \\ (0.021)$	-0.593 (0.027)	$0.413 \\ (0.035)$
AMAT	-0.56 (0.056)	$0.672 \\ (0.003)$	-0.487 (0.021)	$0.153 \\ (0.001)$	-0.657 (0.036)	$0.841 \\ (0,023)$	-0.711 (0.034)	$0.783 \\ (0.005)$	-0.162 (0.007)	$0.627 \\ (0.027)$
ADI	-0.160 (0.059)	-0.677 (0.029)	-0.876 (0.016)	$0.441 \\ (0.030)$	-0.521 (0.002)	$0.675 \\ (0.033)$	-0.235 (0.022)	$0.654 \\ (0.014)$	-0.410 (0.017)	$0.606 \\ (0.023)$
KLAC	-0.451 (0.051)	$0.676 \\ (0.031)$	-0.502 (0.057)	$0.862 \\ (0.039)$	-0.566 (0.032)	$0.179 \\ (0.005)$	-0.238 (0.001)	$0.746 \\ (0.033)$	-0.521 (0.044)	$0.275 \\ (0.047)$
XLNX	-0.218 (0.021)	-0.356 (0.011)	-0.637 (0.002)	$0.858 \\ (0.005)$	-0.565 (0.009)	$0.068 \\ (0.007)$	-0.697 (0.004)	$0.815 \\ (0.002)$	-0.587 (0.023)	$0.151 \\ (0.057)$
STM	-0.134 (0.034)	-0.084 (0.013)	-0.384 (0.009)	$0.665 \\ (0.003)$	-0.346 (0.038)	$0.798 \\ (0.031)$	-0.134 (0.057)	$0.569 \\ (0.002)$	-0.439 (0.039)	$0.184 \\ (0.002)$
MCHP	-0.308 (0.002)	$0.664 \\ (0.034)$	-0.267 (0.003)	$0.155 \\ (0.13)$	-0.657 (0.045)	$0.174 \\ (0.023)$	-0.488 (0.039)	$0.864 \\ (0.009)$	-0.396 (0.004)	$0.612 \\ (0.002)$
CDNS	-0.304 (0.020)	-0.578 (0.043)	-0.823 (0.056)	$0.394 \\ (0.012)$	$0.128 \\ (0.030)$	$0.652 \\ (0.039)$	-0.264 (0.010)	$0.877 \\ (0.003)$	-0.592 (0.009)	$0.497 \\ (0.057)$
SWKS	-0.240 (0.001)	$0.658 \\ (0.011)$	-0.577 (0.023)	$0.149 \\ (0.032)$	-0.507 (0.002)	$0.145 \\ (0.008)$	-0.174 (0.050)	0.706 - (0.005)	-0.350 (0.040)	$0.304 \\ (0.004)$
MXIM	-0.216 (0.017)	$0.639 \\ (0.047)$	-0.467 (0.005)	$0.150 \\ (0.002)$	-0.507 (0.001)	$0.166 \\ (0.043)$	$0.083 \\ (0.034)$	$0.921 \\ (0.056)$	-0.015 (0.050)	$0.926 \\ (0.019)$
TER	-0.576 (0.003)	$0.675 \\ (0.056)$	-0.450 (0.027)	$0.129 \\ (0.30)$	-0.767 (0.040)	$0.129 \\ (0.029)$	-0.451 (0.009)	$0.977 \\ (0.031)$	-0.545 (0.001)	$0.550 \\ (0.004)$
MRVL	-0.346 (0.006)	$0.631 \\ (0.002)$	-0.605 (0.004)	$0.109 \\ (0.58)$	-0.374 (0.029)	$0.115 \\ (0.049)$	-0.222 (0.057)	0.963 (0.021)	-0.186 (0.029)	$0.340 \\ (0.030)$
ON	-0.684 (0.023)	$0.669 \\ (0.010)$	-0.587 (0.034)	$0.088 \\ (0.043)$	-0.345 (0.045)	$0.593 \\ (0.021)$	-0.269 (0.019)	$0.970 \\ (0.023)$	-0.576 (0.011)	$0.664 \\ (0.033)$
OLED	-0.304 (0.045)	$0.629 \\ (0.032)$	-0.588 (0.049)	$0.879 \\ (0.030)$	-0.804 (0.029)	$0.183 \\ (0.019)$	-0.094 (0.015)	$0.819 \\ (0.035)$	-0.089 (0.040)	0.180 (0.056)

Appendix D1

Table 1: Estimated Correlation Coefficients for DIA and its Underlying Assets

	ϵ_m^1	ϵ_p^1	ϵ_a^1	ϵ_b^1	ϵ_m^2	ϵ_p^2	ϵ_a^2	ϵ_b^2	ϵ_m^3	ϵ_p^3	ϵ_a^3	ϵ_b^3	ϵ_m^4	ϵ_p^4	ϵ_a^4	ϵ_b^4	ϵ_m^5	ϵ_p^5	ϵ_a^5	ϵ_b^5	ϵ_m^6	ϵ_p^6	ϵ_a^6	ϵ_b^6	ϵ_m^7	ϵ_p^7	ϵ_a^7	ϵ_b^7	ϵ_m^8	ϵ_p^8	ϵ_a^8	ϵ_b^8
ϵ_m^1	1																															
ϵ_p^1	-0.49	1																														
ϵ_a^1	-0.43	0.23	1																													
ϵ_{b}^{1}	-0.34	0.26		1																												
ϵ_m^2	0.87				1																											
ϵ_p^2	-0.34				-0.33	1																										
ϵ_a^2					-0.45	0.22	1																									
ϵ_{b}^{2}					-0.41	-0.39	0.24	1																								
ϵ_m^3	0.48				0.45				1																							
ϵ_p^3	-0.47				-0.15				-0.23	1																						
ϵ_a^3									-0.46	0.28	1																					
ϵ_{b}^{3}									-0.43	0.22		1																				
ϵ_{m}^{4}	0.65				0.56				0.40				1																			
ϵ_p^4	-0.47				-0.36				-0.21				-0.30	1																		
ϵ_a^4													-0.44	0.23	1																	
ϵ_{b}^{4}													-0.48	0.25		1																
ϵ_m^{σ}	0.36				0.53				0.31				0.42				1															
ϵ_p^3	-0.33				-0.26				-0.42				-0.32				-0.43	1	_													
ϵ_a^3																	-0.38	0.21	1													
ϵ_{b}^{s}																	-0.42	0.17		1	_											
ϵ_m^0	0.56				0.49				0.38				0.21				0.30				1	,										
ϵ_p^{o}	-0.52				-0.37				-0.43				-0.32				-0.50				-0.43	1										
ϵ_a°																					-0.45	0.32										
ϵ_{b}^{o}	0.00				0.40				0.54				0.45				0.00				-0.50	0.27		1	•							
ϵ_m	0.23				0.46				0.54				0.45				0.38				0.42				1	,						
ϵ_p	-0.43				-0.32				-0.43				-0.36				-0.51				-0.29				-0.37	1	_					
ϵ'_{a}																									-0.49	0.19						
ϵ_{b}'	0.00				0.55				0.07				0.40				0				0.11				-0.308	0.11		1	-			
ϵ_{m}^{o}	0.39				0.55				0.27				0.43				0.45				0.11				0.28				1			
ϵ_p^o	-0.32				-0.22				-0.35				-0.43				-0.39				-0.43				-0.54				-0.46	1	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																													-0.41	0.23	1	-
ϵ_b^{o}																													-0.57	0.21		1

Table 2: Continued

	ϵ_m^9	ϵ_p^9	ϵ_a^9	ϵ_{h}^{9}	ϵ_m^{10}	ϵ_p^{10}	ϵ_a^{10}	ϵ_h^{10}	ϵ_m^{11}	ϵ_p^{11}	ϵ_a^{11}	ϵ_{b}^{11}	ϵ_m^{12}	ϵ_p^{12}	ϵ_a^{12}	ϵ_{b}^{12}	ϵ_m^{13}	ϵ_p^{13}	ϵ_a^{13}	ϵ_h^{13}	ϵ_m^{14}	ϵ_p^{14}	ϵ_a^{14}	ϵ_h^{14}	ϵ_m^{15}	ϵ_p^{15}	ϵ_a^{15}	ϵ_h^{15}	ϵ_m^{16}	ϵ_p^{16}	ϵ_a^{16}	ϵ_b^{16}
€9	1	- Р	u	В	m	p	и	ь	m	p	и	Ь	m	р	и	В	m	P	· u	В	m	p	· u	В	m	р	и	В	m	- Р	u	В
ϵ_{p}^{m}	-0.25	1																														
ϵ^9	-0.46	0.321	1																													
ϵ_{i}^{9}	-0.47	0.11	-	1																												
ϵ_{m}^{10}	0.50			_	1																											
ϵ_n^{m}	-0.27				-0.43	1																										
ϵ_{a}^{10}					-0.32	0.11	1																									
ϵ_{L}^{10}					-0.46	0.28		1																								
ϵ_m^{11}	0.25				0.34				1																							
ϵ_n^{n}	-0.32				-0.21				-0.26	1																						
ϵ_a^{11}									-0.48	0.18	1																					
ϵ_h^{11}									-0.54	0.27		1																				
ϵ_m^{12}	0.45				0.52				0.38				1																			
ϵ_p^{12}	-0.32				-0.33				-0.21				-0.35	1																		
ϵ_a^{12}													-0.435	0.215	1																	
$\epsilon_{b_0}^{12}$													-0.354	0.178		1																
ϵ_m^{13}	0.57				0.65				0.55				0.65				1															
ϵ_{p}^{13}	-0.35				-0.42				-0.21				-0.34				-0.35	1														
ϵ_a^{13}																	-0.476	0.321	1													
$\epsilon_{b_A}^{13}$	0.00				0.45				0.00				0.41				-0.547	0.301		1												
ϵ_m^{14}	0.36 -0.32				0.47 -0.34				0.29 -0.45				0.41				0.38 -0.43				1	1										
ϵ_p	-0.32				-0.34				-0.45				-0.33				-0.43				-0.32	1 0.12	1									
ϵ_a																					-0.43 -0.45	0.12	1	1								
6 b	0.43				0.49				0.30				0.42				0.46				0.36	0.20		1	1							
ϵ_m^{15}	-0.27				-0.45				-0.38				-0.27				-0,29				-0.12				-0.22	1						
ϵ^{15}	0.21				0.10				0.50				0.21				0,20				0.12				-0.453	0.101	1					
ϵ_{i}^{15}																									-4.76	0.332	•	1				
ϵ_m^{16}	0.45				0.31				0.23				0.49				0.34				0.45				0.39				1			
ϵ_n^{n}	-0.26				-0.31				-0.22				-0.43				-0.36				-0.19				-0.43				-0.27	1		
ϵ_a^{16}																													-0.543	0.275	1	
$\begin{array}{c} \varepsilon^9_{m} \\ \varepsilon^9_{p} \\ \varepsilon^9_{p} \\ \varepsilon^9_{a} \\ \varepsilon^9_{b} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{p} \\ \varepsilon^{10}_{a} \\ \varepsilon^{10}_{b} \\ \varepsilon^{11}_{a} \\ \varepsilon^{11}_{b} \\ \varepsilon^{12}_{b} \\ \varepsilon^{12}_{b} \\ \varepsilon^{13}_{a} \\ \varepsilon^{13}_{b} \\ \varepsilon^{13}_{a} \\ \varepsilon^{13}_{b} \\ \varepsilon^{13}_{a} \\ \varepsilon^{14}_{b} \\ \varepsilon^{14}_{b} \\ \varepsilon^{14}_{b} \\ \varepsilon^{15}_{b} \\ \varepsilon^{15}_{a} \\ \varepsilon^{15}_{b} \\ \varepsilon^{16}_{a} \\ \varepsilon^{16}_{b} \\ $																													-0.412			1

)

Table 3: Continued

	ϵ_m^{17}	ϵ_p^{17}	ϵ_a^{17}	ϵ_h^{17}	ϵ_m^{18}	ϵ_p^{18}	ϵ_a^{18}	ϵ_h^{18}	ϵ_m^{19}	ϵ_p^{19}	ϵ_a^{19}	ϵ_h^{19}	ϵ_m^{20}	ϵ_p^{20}	ϵ_a^{20}	ϵ_h^{20}	ϵ_m^{21}	ϵ_p^{21}	ϵ_a^{21}	ϵ_h^{21}	ϵ_m^{22}	ϵ_p^{22}	ϵ_a^{22}	ϵ_h^{22}	ϵ_m^{23}	ϵ_p^{23}	ϵ_a^{23}	ϵ_h^{23}	ϵ_m^{24}	ϵ_p^{24}	ϵ_a^{24}	ϵ_b^{24}
ϵ_m^{17}	1	,				,				,				,				,				,				,						
$\epsilon_{p_{-}}^{17}$	-0.206	1																														
ϵ_{a}^{17}	-0.396	0.210	1																													
$\epsilon_{b_0}^{17}$	-0.333	0.198		1																												
ϵ_m^{18}	0.703				1																											
ϵ_p^{10}	-0.366				-0.482	1																										
ϵ_a^{10}					-0.343	0.246	1	,																								
ϵ_{b}^{10}	0.050				-0.289	0.186		1																								
ϵ_m^{19}	0.659				0.743 -0.422				-0.229	1																						
	-0.217				-0.422				-0.229	0.206	1																					
6 a									-0.210		1	1																				
ϵ^{20}	0.802				0.653				0.587	0.133		1	1																			
ϵ_n^{20}	-0.209				-0.212				-0.187				-0.149	1																		
ϵ_{a}^{p}													-0.345	0.249	1																	
ϵ_{b}^{20}													-0.401	0.222		1																
ϵ_m^{21}	0.701				0.811				0.532				0.598				1															
ϵ_p^{21}	-0.290				-0.318				-0.235				-0.189				-0.208	1														
ϵ_a^{21}																	-0.254	0.107	1													
$\epsilon_{b_0}^{21}$																	-0.432	0.226		1												
ϵ_m^{22}	0.765				0.465				0.632				0.611				0.540				1											
ϵ_{p}^{22}	-0.220				-0.298				-0.309				-0.216				-0.327				-0.375	1	_									
ϵ_a^2																					-0.342	0.188	1									
ϵ_b^{-23}	0.765				0.496				0.456				0.666				0.253				-0.410 0.453	0.201		1	1							
ϵ_m^{23}	-0.236				-0.284				-0.243				-0.342				-0.207				-0.217				-0.198	1						
ϵ^{23}	-0.230				-0.204				-0.243				-0.342				-0.201				-0.217				-0.401	0.231	1					
ϵ_{i}^{23}																									-0.348		-	1				
ϵ_m^{24}	0.543				0.627				0.499				0.437				0.654				0.498				0.675	0.100		-	1			
ϵ_n^{n}	-0.178				-0.186				-0.342				-0.208				-0.243				-0.165				-0.284				-0.253	1		
ϵ_a^{24}																													-0.364	0.211	1	
$\begin{array}{c} \epsilon^{17}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n18} \\ \epsilon^{18}_{n19} \\ \epsilon^{19}_{n19} \\ \epsilon^{19}_{n29} \\ \epsilon^{20}_{n20} \\$																													-0.386	0.189		1

Table 4: Continued

25	ϵ_m^{25}	ϵ_p^{25}	ϵ_a^{25}	ϵ_b^{25}	ϵ_m^{26}	ϵ_p^{26}	ϵ_a^{26}	ϵ_b^{26}	ϵ_m^{27}	ϵ_p^{27}	ϵ_a^{27}	ϵ_b^{27}	ϵ_m^{28}	ϵ_p^{28}	ϵ_a^{28}	ϵ_b^{28}	ϵ_m^{29}	ϵ_p^{29}	ϵ_a^{29}	ϵ_b^{29}	ϵ_m^{30}	ϵ_p^{30}	ϵ_a^{30}	ϵ_b^{30}	ϵ_v	ϵ_p^f	ϵ_a^f	ϵ_b^f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -0.38	1																										
ϵ_a^{25}	-0.49	0.27	1																									
ϵ_{b}^{25}	-0.33	0.38		1																								
ϵ_m^{26}	0.23				1																							
ϵ_n^{26}	-0.36				-0.18	1																						
ϵ^{26}					-0.44	0.14	1																					
ϵ_{1}^{26}					-0.39	0.28		1																				
ϵ_{m}^{27}	0.39				0.43				1																			
ϵ_n^{n}	-0.24				-0.32				-0.39	1																		
ϵ_{a}^{27}									-0.26	0.23	1																	
ϵ_{1}^{27}									-0.35	0.25		1																
ϵ_{28}^{28}	0.54				0.44				0.42				1															
ϵ_{n}^{28}	-0.23				-0.25				-0.32				-0.23	1														
ϵ_{28}^{p}													-0.42	0.24	1													
ϵ^{28}													-0.29	0.21	-	1												
ϵ^{29}	0.45				0.43				0.54				0.50	0.2 1		-	1											
ϵ^{29}	-0.25				-0.34				-0.35				-0.18				-0.30	1										
629	0.20				0.01				0.00				0.10				-0.43	0.23	1									
ϵ^{29}																	-0.34	0.12	1	1								
$\frac{b}{\epsilon^{30}}$	0.39				0.46				0.56				0.34				0.53	0.12		1	1							
630	-0.24				-0.30				-0.28				-0.27				-0.24				-0.22	1						
630	0.24				0.50				0.20				0.27				0.24				-0.45	0.28	1					
$\begin{vmatrix} c_a \\ c^{30} \end{vmatrix}$																					-0.30	0.16	1	1				
c	0.36				0.48				0.23				0.47				0.25				0.39	0.10		1	1			
$egin{array}{c} \epsilon_v \ \epsilon_p^f \ \epsilon_a^f \ \epsilon_h^f \ \end{array}$	0.30				0.40				0.23				0.47				0.23				0.33							
ϵ_p																									-0.45	1		
$\left \begin{array}{c} \epsilon_a^{J} \end{array} \right $																									-0.32	0.32	1	
$\mid \epsilon_b^f \mid$																									-0.38	0.21		1

	ϵ_m^1	ϵ_m^2	ϵ_m^3	ϵ_m^4	ϵ_m^5	ϵ_m^6	ϵ_m^7	ϵ_m^8	ϵ_m^9	ϵ_m^{10}	ϵ_m^{11}	ϵ_m^{12}	ϵ_m^{13}	ϵ_m^{14}	ϵ_m^{15}	ϵ_m^{16}	ϵ_m^{17}	ϵ_m^{18}	ϵ_m^{19}	ϵ_m^{20}	ϵ_m^{21}	ϵ_m^{22}	ϵ_m^{23}	ϵ_m^{24}	ϵ_m^{25}	ϵ_m^{26}	ϵ_m^{27}	ϵ_m^{28}	ϵ_m^{29}	ϵ_m^{30}	ϵ_v
ϵ_m^9	0.46	0.34	0.46	0.26	0.54	0.28	0.38	0.30	0.34	0.42	0.37	0.19	0.58	0.24	0.19	0.29	0.49	0.46	0.37	0.46	0.40	0.35	0.29	0.36	0.42	0.37	0.33	0.56	0.45	0.40	0.87
ϵ_n^n	-0.20	-0.45	-0.29	-0.26	-0.18	-0.12	-0.11	-0.23	-0.23	-0.29	-0.34	0.35	-0.22	0.25	-0.23	-0.46	-0.19	-0.37	-0.37	-0.30	-0.23	-0.22	-0.19	-0.32	-0.25	-0.32	-0.22	-0.38	-0.32	-0.23	-0.34
ϵ_m^{10}	0.36	0.43	0.22	0.35	0.44	0.37	0.21	0.33	0.46	0.39	0.29	0.31	0.60	0.25	0.28	0.34	0.53	0.33	0.27	0.39	0.42	0.42	0.47	0.26	0.42	0.44	0.18	0.12	0.55	0.11	0.15
ϵ_n^{n}	-0.31	-0.48	-0.22	-0.33	-0.28	-0.32	-0.43	-0.21	-0.24	-0.27	-0.12	-0.38	-0.19	-0.39	-0.27	-0.36	-0.23	-0.41	-0.11	-0.31	-0.34	-0.49	-0.35	-0.29	-0.21	-0.19	-0.14	-0.22	-0.23	-0.27	-0.30
ϵ_m^{11}	0.51	0.24	0.39	0.19	0.54	0.22	0.15	0.29	0.62	0.36	0.33	0.15	0.54	0.23	0.31	0.22	0.36	0.37	0.12	0.32	0.25	0.11	0.28	0.34	0.52	0.43	0.26	0.24	0.42	0.29	0.38
ϵ_n^{m}	-0.35	-0.11	-0.38	-0.24	-0.31	-0.29	-0.19	-0.27	-0.25	-0.22	-0.12	-0.18	-0.21	-0.39	-0.27	0-0.15	-0.35	-0.36	-0.28	-0.19	-0.26	-0.28	-0.39	-0.37	-0.28	-0.23	-0.17	-0.22	-0.26	-0.13	-0.33
ϵ_m^{12}	0.46	0.18	0.32	0.23	0.40	0.11	0.45	0.37	0.42	0.28	0.41	0.37	0.18	0.38	0.20	0.15	0.36	0.43	0.49	0.35	0.65	0.29	0.21	0.24	0.43	0.28	0.39	0.33	0.46	0.13	0.22
ϵ_n^{n}	-0.25	-0.43	-042	-0.38	-0.21	-0.49	-0.15	-0.38	-0.27	-0.27	-0.12	-0.38	-0.26	-0.35	-0.47	-0.33	-0.27	-0.23	-0.32	-0.44	-0.36	-0.18	-0.28	-0.37	-0.27	-0.11	-0.47	-0.42	-0.29	-0.49	-0.32
ϵ_m^{13}	0.55	0.42	0.44	0.25	0.49	0.33	0.21	0.18	0.36	0.27	0.29	0.42	0.33	0.23	0.35	0.25	0.43	0.19	0.39	0.26	0.50	0.11	0.43	0.48	0.43	0.24	0.14	0.16	0.42	0.17	0.38
ϵ_n^{m}	-0.25	-0.22	-0.38	-0.17	-0.21	-0.39	-0.42	-0.28	-0.24	-0.32	-0.42	-0.18	-0.29	-0.46	-0.47	-0.26	-0.24	-0.21	-0.32	-0.38	-0.27	0.31	-0.11	-0.29	-0.26	-0.47	-0.13	-0.38	-0.25	-0.33	-0.23
ϵ_m^{14}	0.66	0.34	0.52	0.28	0.43	0.45	0.53	0.41	0.54	0.33	0.52	0.43	0.42	0.36	0.58	0.60	0.35	0.43	0.42	0.45	0.49	0.49	0.36	0.46	0.38	0.47	0.52	0.34	0.28	0.38	0.35
ϵ_n^{m}	-0.11	-0.23	-0.32	-0.29	-0.37	-0.25	-0.23	-0.35	-0.22	-0.23	-0.08	-0.24	-0.21	-0.09	-0.12	-0.23	-0.39	-0.29	-0.23	-0.27	-0.19	-0.23	-0.34	-0.30	-0.16	-0.26	-0.21	-0.26	-0.25	-0.27	-0.21
ϵ_m^{15}	0.54	0.36	0.33	0.19	0.47	0.28	0.27	0.46	0.42	0.36	0.29	0.39	0.52	0.24	0.23	0.27	0.31	0.21	0.30	0.20	0.40	0.33	0.35	0.41	0.52	0.45	0.28	0.32	0.45	0.25	0.22
ϵ_n^{n}	-0.25	-0.46	-0.36	-0.21	-0.38	-0.35	-0.41	-0.46	-0.24	-0.34	-0.39	-0.29	-0.31	-0.36	-0.28	-0.22	-0.28	-0.20	-0.23	-0.33	-0.24	-0.27	-0.25	-0.37	-0.46	-0.23	-0.21	-0.35	-0.34	-0.28	-0.19
$\epsilon_{\rm m}^{16}$	0.42	0.44	0.27	0.24	0.33	0.35	0.41	0.26	0.43	0.36	0.29	0.22	0.47	0.31	0.47	0.27	0.46	0.37	0.32	0.24	0.35	0.21	0.39	0.32	0.45	0.38	0.28	0.25	0.35	0.33	0.29
ϵ_n^{n}	-0.35	-0.12	-0.18	-0.43	-0.31	-0.47	-0.19	-0.13	-0.32	-0.35	-0.46	-0.41	-0.21	-0.45	-0.28	-0.25	-0.23	-0.27	-0.29	-0.22	-0.24	-0.34	-0.39	-0.38	-0.26	-0.33	-0.36	-0.22	-0.21	-0.28	-0.21
ϵ_m^{17}	0.45	0.26	0.36	0.35	0.37	0.25	0.45	0.34	0.48	0.33	0.39	0.31	42	0.24	0.47	0.43	0.46	0.21	0.39	0.28	0.45	0.26	0.29	0.27	0.23	0.33	0.32	0.37	0.36	0.22	0.37
ϵ_n^{17}	-0.15	-0.41	-0.22	-0.44	-0.38	-0.49	-0.45	-0.28	-0.24	-0.32	-0.17	-0.25	-0.35	-0.38	-0.36	-0.26	-0.13	-0.22	-0.31	-0.27	-0.23	-0.29	-0.21	-0.34	-0.25	-0.31	-0.21	-0.33	-0.24	-0.26	-0.23
ϵ_m^{18}	0.45	0.47	0.18	0.29	0.43	0.39	0.33	0.22	0.46	0.26	0.36	0.34	0.32	0.23	0.42	0.47	0.46	0.35	0.34	0.31	0.40	0.29	0.27	0.41	0.38	0.34	0.33	0.21	0.28	0.23	0.35
ϵ_n^{n}	-0.25	-0.45	-0.35	-0.48	-0.21	-0.17	-0.39	-0.47	-0.26	-0.22	-0.17	-0.37	-0.23	-0.25	-0.44	-0.42	-0.14	-0.28	-0.31	-0.37	-0.22	-0.33	-0.28	-0.26	-0.16	-0.24	-0.42	-0.34	-0.19	-0.24	-0.29
ϵ_m^{19}	0.35	0.48	0.12	0.25	0.43	0.37	0.16	0.21	0.32	0.41	0.11	0.17	0.36	0.47	0.22	0.17	0.46	0.23	0.34	0.28	0.45	0.21	0.47	0.44	0.52	0.28	0.22	0.27	0.35	0.33	0.39
ϵ_n^{m}	-0.32	-0.48	-0.42	-0.46	-0.24	-0.23	-0.19	-0.33	-0.27	-0.15	-0.17	-0.26	-0.28	-0.39	-0.21	-0.48	-0.23	-0.47	-0.22	-0.33	-0.27	-0.35	-0.28	-0.24	-0.26	-0.35	-0.21	-0.38	-0.22	-0.19	-0.26
$\begin{array}{c} \varepsilon^{9}_{p} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{p} \\ \varepsilon^{11}_{m} \\ \varepsilon^{12}_{p} \\ \varepsilon^{12}_{m} \\ \varepsilon^{12}_{p} \\ \varepsilon^{13}_{m} \\ \varepsilon^{14}_{p} \\ \varepsilon^{15}_{p} \\ \varepsilon^{16}_{m} \\ \varepsilon^{17}_{p} \\$	0.42	0.12	0.47	0.16	0.45	0.13	0.43	0.24	0.41	0.23	0.15	0.49	0.42	0.26	0.41	0.41	0.25	0.21	0.36	0.29	0.37	0.46	0.22	0.15	0.43	0.38	0.23	0.17	0.13	0.45	0.43
ϵ_n^{n}	-0.26	0.16	-0.28	-0.13	-0.24	-0.45	-0.41	-0.11	-0.29	-0.21	-0.32	-0.25	-0.27	-0.44	-0.49	-0.19	-0.22	-0.24	-0.17	-0.13	-0.26	-0.27	-0.33	-0.37	-0.23	-0.28	-0.41	-0.43	-0.28	-0.28	-0.15
ϵ_m^{21}	0.55	0.12	0.33	0.22	0.34	0.25	0.39	0.43	0.52	0.49	0.15	0.26	0.44	0.34	0.12	0.14	0.36	0.46	0.34	0.25	0.42	0.27	0.43	0.31	0.43	0.38	0.21	0.33	0.47	0.45	0.33
ϵ_n^{n}	-0.35	-0.46	-0.33	-0.44	-0.11	-0.43	-0.17	-0.26	-0.13	-0.48	-0.21	-0.28	-0.13	-0.22	-0.45	-0.17	-0.15	-0.24	-0.31	-0.37	-0.23	-0.47	-0.43	-0.35	-0.12	-0.26	-0.14	-0.32	-0.19	-0.26	-0.21
ϵ_m^{22}	0.41	0.46	0.18	0.36	0.42	0.22	0.44	0.21	0.40	0.25	0.37	0.34	56	0.41	0.21	0.49	0.46	0.42	0.13	0.36	0.51	0.29	0.17	0.35	0.42	0.26	0.17	0.35	0.40	0.47	0.39
ϵ_n^{n}	-0.26	-0.47	-0.19	-0.14	-0.28	-0.46	-0.44	-0.48	-0.29	-0.23	-0.29	-0.15	-0.25	-0.11	-0.48	-0.27	-0.23	-0.28	-0.17	-0.31	-0.32	-0.22	-0.46	-0.23	-0.28	-0.13	-0.34	-0.28	-0.20	-0.17	-0.19
ϵ_m^{23}	0.36	0.33	0.21	0.37	0.63	0.26	0.15	0.43	0.46	0.49	0.35	0.33	0.48	0.31	0.41	0.11	0.43	0.22	0.44	0.47	0.42	0.28	0.37	0.21	0.38	0.15	0.26	0.33	0.42	0.45	0.29
ϵ_n^{23}	-0.22	-0.43	13	-0.37	-0.21	-0.26	-0.39	-0.29	-0.20	-0.34	-0.22	-0.11	-0.19	-0.46	-0.42	-0.38	-0.14	-0.37	-0.26	-0.35	-0.31	-0.16	-0.27	-0.48	-0.24	-0.13	-0.44	-0.43	-0.15	-0.32	-0.21
ϵ_m^{24}	0.44	0.48	0.47	0.15	0.37	0.33	0.36	0.18	0.38	0.16	0.31	0.42	0.22	0.49	0.34	0.24	0.63	0.22	0.41	0.29	0.32	0.21	0.49	0.47	0.28	0.27	0.35	0.11	0.31	0.24	0.41
ϵ_n^{24}	-0.19	-0.31	-0.39	-0.14	-0.29	-0.23	-0.11	-0.46	-0.27	-0.17	-0.22	-0.45	-0.39	-0.21	-0.14	-0.33	-0.24	-0.26	-0.31	-0.44	-0.35	-0.41	-0.47	-0.13	-0.24	-0.32	-0.45	-0.19	-0.33	-0.21	-0.22
ϵ_m^{25}	0.44	0.17	0.41	0.38	0.37	0.25	0.19	0.21	0.38	0.33	0.24	0.49	0.22	0.32	0.18	0.27	0.63	0.32	0.21	0.41	0.32	0.45	0.35	0.38	0.28	0.29	0.22	0.31	0.31	0.28	0.47
ϵ_n^{25}	-0.19	-0.22	-0.43	-0.23	-0.29	-0.21	-0.41	-0.17	-0.27	-0.31	-0.45	-0.35	-0.39	-0.32	-0.34	-0.29	-0.24	-0.19	-0.31	-0.33	-0.35	-0.11	-0.47	-0.22	-0.24	0.17	0.22	0.17	-0.33	-0.21	-0.32
ϵ_m^{26}	0.44	0.26	0.27	0.29	0.37	0.39	0.23	0.22	0.38	0.16	0.18	0.38	0.22	0.35	0.36	0.47	0.63	0.43	0.27	0.22	0.32	0.47	0.16	0.11	0.28	0.42	0.34	0.28	0.31	0.31	0.44
ϵ_n^{26}	1	-0.18			-0.29		-0.26			-0.31					-0.35	-0.46		-0.12			-0.35			-0.44				-0.17		-0.32	
ϵ_m^{27}	0.44	0.29	0.39	0.35	0.37	0.47	0.44	0.47	0.38	0.24	0.13	0.41		0.39	0.43	0.38	0.63	0.37	0.32	0.18	0.32		0.38	0.19	0.28	0.14	0.31	0.41	0.31	0.32	0.29
ϵ_{p}^{27}	-0.19	-0.21	-0.14		-0.29		-0.23		-0.27	-0.39		-0.44		-0.15	-0.27	-0.11		-0.29	-0.37		-0.35	-0.21		-0.36	-0.24	-0.26	-0.17		-0.33	-0.31	
ϵ_m^{58}	0.44	0.16	0.11	0.39	0.37	0.32	0.47	0.46	0.38	0.28	0.33	0.26	0.22	0.26	0.49	0.29	0.63	0.34	0.14	0.45	0.32	0.21	0.37	0.35	0.28	0.46	0.31	0.42	0.31	0.22	0.33
ϵ_n^{n}	1	-0.27		-0.31		-0.23	-0.48		-0.27	-0.28		-0.33		-0.21	-0.13	-0.27		-0.29	-0.11		-0.35	-0.23	-0.33		-0.24	-0.42	-0.26		-0.33	-0.41	
$\begin{array}{c} \varepsilon_{p}^{26} \\ \varepsilon_{p}^{27} \\ \varepsilon_{m}^{27} \\ \varepsilon_{p}^{28} \\ \varepsilon_{m}^{28} \\ \varepsilon_{p}^{29} \\ \varepsilon_{m}^{29} \\ \varepsilon_{m}^{30} \\ \varepsilon_{p}^{30} \end{array}$	0.44	0.47	0.49	0.22	0.37	0.18	0.14	0.33	0.38	0.34	0.29	0.42	0.22	0.29	0.38	0.15	0.63	0.35	0.27	0.39	0.32	0.45	0.35	0.42	0.28	0.41	0.31	0.21	0.31	0.46	0.47
ϵ_n^{n}	-0.19	-0.28		-0.36		-0.32	-0.42		-0.27	-0.31		-0.45		-0.15	-0.37	-0.44			-0.24		-0.35		-0.31	-0.46		-0.28	-0.23		-0.33	-0.37	
ϵ_m^{30}	0.44	0.35		0.48	0.37	0.39	0.19	0.33	0.38	0.16	0.46	0.26	0.22	0.37	0.48	0.41	0.63	0.11	0.25	0.45	0.32	0.23	0.12	0.29	0.28	0.17	0.38	0.47	0.31	0.35	
ϵ_n^{30}	-0.19	-0.17		-0.35		-0.18	-0.46		-0.27	-0.23		-0.27		-0.38	-0.42	-0.36		-0.22	-0.49		-0.35		-0.47	-0.16	-0.24	-0.27		-0.37	-0.33	-0.19	
ϵ_v	0.44	0.39	0.35	0.14	0.37	0.45	0.23	0.18	0.38	0.28	0.43	0.39		0.49	0.12	0.32	0.63	0.27	0.18	0.48	0.32	0.47	0.11	0.31	0.28	0.22	0.23	0.13	0.31	0.47	I .
ϵ_{p^f}	-0.19															-0.49												-0.37		-0.23	I .
<i>P</i> °_	1																														

Appendix D2

Table 1: Estimated Correlation Coefficients for SMH ETF and its underlying assets

	ϵ_m^1	ϵ_p^1	ϵ_a^1	ϵ_b^1	ϵ_m^2	ϵ_p^2	ϵ_a^2	ϵ_b^2	ϵ_m^3	ϵ_p^3	ϵ_a^3	ϵ_b^3	ϵ_m^4	ϵ_p^4	ϵ_a^4	ϵ_b^4	ϵ_m^5	ϵ_p^5	ϵ_a^5	ϵ_b^5	ϵ_m^6	ϵ_p^6	ϵ_a^6	ϵ_b^6	ϵ_m^7	ϵ_p^7	ϵ_a^7	ϵ_b^7	ϵ_m^8	ϵ_p^8	ϵ_a^8	ϵ_b^8
ϵ_m^1	1																					,								•		
ϵ_p^1	-0.32	1																														
ϵ_a^1	-0.37	0.21	1																													
ϵ_h^1	-0.34	0.34		1																												
ϵ_m^2	0.33				1																											
ϵ_p^2	-0.45				-0.33	1																										
ϵ_a^2					-0.13	0.42	1																									
ϵ_h^2					-0.37	-0.29	0.24	1																								
ϵ_m^3	0.48				0.27				1																							
ϵ_p^3	-0.29				-0.39				-0.37	1																						
ϵ_a^3									-0.25	0.39	1																					
ϵ_h^3									-0.34	0.32		1																				
ϵ_m^4	0.39				0.27				0.43				1																			
ϵ_p^4	-0.16				-0.38				-0.21				-0.34	1																		
ϵ_a^4													-0.44	0.23	1																	
ϵ_h^4													-0.48	0.25		1																
ϵ_m^5	0.29				0.53				0.31				0.42				1															
ϵ_p^5	-0.27				-0.26				-0.42				-0.32				-0.43	1														
ϵ_a^5																	-0.38	0.21	1													
ϵ_h^5																	-0.42	0.17		1												
ϵ_m^6	0.45				0.49				0.38				0.21				0.30				1											
ϵ_p^6	-0.27				-0.37				-0.43				-0.32				-0.50				-0.43	1										
ϵ_a^6																					-0.45	0.32	1									
ϵ_{h}^{6}																					-0.50	0.27		1								
$ \epsilon_m^7 $	0.49				0.46				0.44				0.45				0.38				0.42				1							
ϵ_n^7	-0.21				-0.32				-0.43				-0.36				-0.51				-0.29				-0.37	1						
ϵ_a^7																									-0.49	0.19	1					
$ \epsilon_h^7 $																									-0.38	0.12		1				
$\mid \epsilon_m^8 \mid$	0.33				0.55				0.27				0.43				0.45				0.11				0.28				1			
$ \epsilon_p^8 $	-0.26				-0.42				-0.45				-0.13				-0.44				-0.23				-0.24				-0.36	1		
$ \epsilon_a^8 $																													-0.41	0.23	1	
$\begin{array}{c} \epsilon^1_m \epsilon^1_p \epsilon^1_a \epsilon^1_b \epsilon^2_a \epsilon^2_b \epsilon^3_a \epsilon^3_b \epsilon^4_a \epsilon^4_b \epsilon^4_a \epsilon^4_b \epsilon^5_a \epsilon^5_b \epsilon^6_a \epsilon^6_b \epsilon^6_a \epsilon^6_b \epsilon^7_a \epsilon^7_a \epsilon^8_b \epsilon^8_a \epsilon^8_a$																													-0.57	0.21		1

Table 2: Continued

	ϵ_m^9	ϵ_p^9	ϵ_a^9	ϵ_b^9	ϵ_m^{10}	ϵ_p^{10}	ϵ_a^{10}	ϵ_b^{10}	ϵ_m^{11}	ϵ_p^{11}	ϵ_a^{11}	ϵ_b^{11}	ϵ_m^{12}	ϵ_p^{12}	ϵ_a^{12}	ϵ_b^{12}	ϵ_m^{13}	ϵ_p^{13}	ϵ_a^{13}	ϵ_b^{13}	ϵ_m^{14}	ϵ_p^{14}	ϵ_a^{14}	ϵ_b^{14}	ϵ_m^{15}	ϵ_p^{15}	ϵ_a^{15}	ϵ_b^{15}	ϵ_m^{16}	ϵ_p^{16}	ϵ_a^{16}	ϵ_b^{16}
ϵ_m^9	1																															
$\mid \epsilon_p^9 \mid$	-0.22	1																														
$\mid \epsilon_a^9 \mid$	-0.13	0.21	1																													
$\mid \epsilon_{b}^{9} \mid$	-0.34	0.43		1																												
$\left \begin{array}{c} \epsilon_m^{10} \end{array} \right $	0.25				1																											
$\left \begin{array}{c} \epsilon_{p}^{10} \end{array} \right $	-0.36				-0.23	1																										
$\left \begin{array}{c} \epsilon_a^{10} \end{array} \right $					-0.33	0.21	1																									
$\left \begin{array}{c} \epsilon_{b}^{10} \end{array} \right $					-0.43	0.16		1																								
$\mid \epsilon_m^{11} \mid$	0.34				0.38				1																							
$\mid \epsilon_{p_{\star}}^{\scriptscriptstyle 11} \mid$	-0.313				-0.41				-0.25	1																						
$\left \begin{array}{c} \epsilon_a^{11} \end{array} \right $									-0.27	0.43	1																					
$\left \begin{array}{c}\epsilon_{b_{0}}^{11}\end{array}\right $									-0.43	0.29		1																				
$\left \begin{array}{c} \epsilon_m^{12} \end{array} \right $	0.15				0.36				0.48				1																			
$\left \begin{array}{c} \epsilon_p^{12} \end{array} \right $	-0.33				-0.44				-0.26				-0.34	1																		
$\left \begin{array}{c} \epsilon_a^{12} \end{array} \right $													-0.28	0.35	1																	
$\left \begin{array}{c} \epsilon_{b_{2}}^{12} \end{array} \right $													-0.24	0.48		1																
$\left \begin{array}{c} \epsilon_m^{13} \end{array} \right $	0.26				0.31				0.44				0.15				1															
$\left \begin{array}{c} \epsilon_{p}^{13} \end{array} \right $	-0.27				-0.42				-0.21				-0.42				-0.27	1														
$\left \begin{array}{c} \epsilon_a^{13} \end{array} \right $																	-0.36	0.17	1													
$\left \begin{array}{c} \epsilon_{b_{4}}^{13} \end{array} \right $																	-0.28	0.45		1												
$\left \begin{array}{c}\epsilon_{m}^{14}\end{array}\right $	0.39				0.48				0.25				0.34				0.31				1											
$\left \begin{array}{c} \epsilon_{p}^{14} \end{array} \right $	-0.32				-0.34				-0.44				-0.23				-0.38				-0.31	1										
$\left \begin{array}{c}\epsilon_{a}^{14}\end{array}\right $																					-0.36	0.22	1									
$\left \begin{array}{c}\epsilon_{b}^{14}\end{array}\right $																					-0.24	0.45		1	_							
$\left \begin{array}{c}\epsilon_{m}^{13}\\ \end{array}\right $	0.43				0.35				0.23				0.17				0.33				0.27				1	_						
$\left \begin{array}{c}\epsilon_{p}^{13}\end{array}\right $	-0.27				-0.42				-0.27				-0.46				-0.49				-0.19				-0.47	1						
$\left \begin{array}{c} \epsilon_a^{13} \\ 15 \end{array}\right $																									-0.53	0.11	1					
$\left \begin{array}{c}\epsilon_{b}^{13}\\\epsilon_{b}\end{array}\right $																									-0.21	0.32		1	_			
$\left \begin{array}{c}\epsilon_{m}^{10}\\16\end{array}\right $	0.25				0.41				0.23				0.28				0.34				0.16				0.39				1			
$\left \begin{array}{c}\epsilon_{p}^{10}\\ 16\end{array}\right $	-0.26				-0.33				-0.19				-0.28				-0.47				-0.13				-0.41				-0.26	1		
$\begin{array}{c} \varepsilon^9_m \\ \varepsilon^9_p \\ \varepsilon^9_a \\ \varepsilon^{10}_b \\ \varepsilon^{10}_b \\ \varepsilon^{11}_b \\ \varepsilon^{11}_b \\ \varepsilon^{11}_b \\ \varepsilon^{12}_m \\ \varepsilon^{12}_b \\ \varepsilon^{13}_a \\ \varepsilon^{13}_b \\ \varepsilon^{13}_a \\ \varepsilon^{14}_b \\ \varepsilon^{15}_a \\ \varepsilon^{16}_b \\ \varepsilon^{16}_a \\ \varepsilon^{16}_b \\ \varepsilon^{16}_a \\ \varepsilon^{16}_b \end{array}$																													-0.33	0.44	1	,
ϵ_b^{10}																													-0.12	0.21		1

)

Table 3: Continued

																					Jiiiiiue																		
	ϵ_m^{17}	ϵ_p^{17}	ϵ_a^{17}	ϵ_h^{17}	ϵ_m^{18}	ϵ_p^{18}	ϵ_a^{18}	ϵ_h^{18}	ϵ_m^{19}	ϵ_p^{19}	ϵ_a^{19}	ϵ_b^{19}	ϵ_m^{20}	ϵ_p^{20}	ϵ_a^{20}	ϵ_h^{20}	ϵ_m^{21}	ϵ_p^{21}	ϵ_a^{21}	ϵ_b^{21}	ϵ_m^{22}	ϵ_p^{22}	ϵ_a^{22}	ϵ_b^{22}	ϵ_m^{23}	ϵ_p^{23}	ϵ_a^{23}	ϵ_b^{23}	ϵ_m^{24}	ϵ_p^{24}	ϵ_a^{24}	ϵ_{b}^{24}	ϵ_m^{25}	ϵ_p^{25}	ϵ_a^{25}	ϵ_b^{25}	ϵ_v	ϵ_p^f	ϵ_a^f ϵ_b^f
ϵ_m^{17}	1		- ti	<u> </u>	111	P	и	U	111	Р	и	U	111	Ρ	ti	U	· · · ·		u	U	m	P	u	U	m	P	и	U	m	P	u	υ		P	и	<u> </u>		Р	и р
ϵ_p^{17}	-0.46	1																																					
ϵ_a^{17}	-0.35		1																																				
$\epsilon_{b_0}^{17}$	-0.17	0.18		1																																			
ϵ_m^{10}	0.43				l	1																																	
ϵ_p	-0.36				-0.42 -0.31	1 0.26	1																																
ϵ_a^{18}					-0.28	0.26		1																															
ϵ_m^{19}	0.39				0.23	0.10		-	1																														
ϵ_n^{m}	-0.27				-0.22				-0.39	1																													
ϵ_a^{19}									-0.21	0.26																													
$\epsilon_{k_0}^{19}$									-0.33	0.49		1																											
ϵ_m^{20}	0.21				0.39				0.27				1																										
ϵ_p^{20}	-0.29				-0.32				-0.27				-0.14	1	1																								
ϵ_a^{20}													-0.32 -0.41	0.27 0.25	1	1																							
ϵ_m^{b}	0.27				0.11				0.32				0.27	0.23		1	1																						
ϵ_n^{21}	-0.29				-0.31				-0.27				-0.49				-0.16	1																					
ϵ_a^{21}																	-0.25		1																				
$\epsilon_{b_a}^{21}$																	-0.32	0.23		1																			
ϵ_m^{22}	0.13				0.49				0.32				0.41				0.22				1																		
ϵ_p^{22}	-0.22				-0.23				-0.39				-0.21				-0.35				-0.16	1																	
ϵ_a^{22}																						0.18 0.21	1	1															
ϵ_{23}^{b}	0.39				0.39				0.16				0.21				0.24				0.33	0.21		1	1														
ϵ_n^{23}	-0.26				-0.14				-0.43				-0.38				-0.27				-0.17				-0.38	1													
ϵ_a^{23}																										0.21	1												
ϵ_b^{23}																										0.15		1											
ϵ_m^{24}	0.28				0.27				0.17				0.23				0.33				0.36				0.45				1										
ϵ_p^{24}	-0.48				-0.21				-0.36				-0.25				-0.23				-0.16				-0.21				-0.29										
ϵ_a^{24}																													-0.46	0.29 0.49	1	1							
6 b 625	0.28				0.39				0.31				0.29				0.45				0.37				0.48				0.43	0.49		1	1						
ϵ_n^{m}	-0.21				-0.27				-0.23				-0.19				-0.18				-0.28				-0.34				-0.21				-0.38	1					
ϵ_a^{25}																																		0.27	1				
ϵ_{h}^{25}																																	-0.53	0.39		1			
ϵ_v	0.28				0.39				0.47				0.44				0.39				0.33				0.41				0.29				0.89				1		
ϵ_p^f	-0.19				-0.16				-0.21				-0.29				-0.28				-0.22				-0.18				-0.25				-0.22				-0.46	1	
$\begin{array}{c} \epsilon^{17} \\ \epsilon^{17} \\ \epsilon^{17} \\ \epsilon^{18} \\ \epsilon^{19} \\ \epsilon^{19$																																					-0.37	0.32	1
ϵ_b^f																																					-0.42	0.38	1

ن ا

Table 4: Continued

	ϵ_m^1	ϵ_m^2	ϵ_m^3	ϵ_m^4	ϵ_m^5	ϵ_m^6	ϵ_m^7	ϵ_m^8	ϵ_m^9	ϵ_m^{10}	ϵ_m^{11}	ϵ_m^{12}	ϵ_m^{13}	ϵ_m^{14}	ϵ_m^{15}	ϵ_m^{16}	ϵ_m^{17}	ϵ_m^{18}	ϵ_m^{19}	ϵ_m^{20}	ϵ_m^{21}	ϵ_m^{22}	ϵ_m^{23}	ϵ_m^{24}	ϵ_m^{25}	ϵ_m^{26}	ϵ_m^{27}	ϵ_m^{28}	ϵ_m^{29}	ϵ_m^{30}	ϵ_v
ϵ_{\cdots}^9	0.46	0.34	0.46	0.26	0.54	0.28	0.38	0.30	0.34	0.42	0.37	0.19	0.58	0.24	0.19	0.29	0.49	0.46	0.37	0.46	0.40	0.35	0.29	0.36	0.42	0.37	0.33	0.56	0.45	0.40	0.87
ϵ_p^m	-0.20	-0.45	-0.29	-0.26	-0.18	-0.12	-0.11	-0.23	-0.23	-0.29	-0.34	0.35	-0.22	0.25	-0.23	-0.46	-0.19	-0.37	-0.37	-0.30	-0.23	-0.22	-0.19	-0.32	-0.25	-0.32	-0.22	-0.38	-0.32	-0.23	-0.34
$\epsilon_m^{f_0}$	0.39	0.26	0.21	0.32	0.34	0.49	0.19	0.37	0.57	0.52	0.54	0.44	0.60	0.47	0.12	0.33	0.23	0.59	0.19	0.37	0.25	0.51	0.22	0.29	0.42	0.15	0.31	0.56	0.35	0.11	0.33
ϵ_p^{m}	-0.31	-0.49	-0.37	-0.55	-0.28	-0.48	-0.51	-0.44	-0.38	-0.53	-0.45	-0.27	-0.12	-0.33	-0.51	-0.17	-0.23	-0.29	-0.39	-0.47	-0.19	-0.51	-0.26	-0.11	-0.57	-0.45	-0.29	-0.43	-0.23	-0.21	-0.23
ϵ_m^{11}	0.51	0.38	0.26	0.22	0.54	0.31	0.16	0.44	0.62	0.59	0.17	0.41	0.39	0.27	0.11	0.23	0.58	0.36	0.28	0.52	0.45	0.22	0.37	0.21	0.29	0.46	0.29	0.53	0.42	0.31	0.37
ϵ_n^{11}	-0.35	-0.54	-0.33	-0.48	-0.17	-0.29	-0.32	-0.58	-0.18	-0.41	-0.28	-0.49	-0.51	-0.47	-0.36	-0.43	-0.55	0.11	-0.23	-0.29	-0.56	-0.27	-0.58	-0.16	-0.37	-0.44	-0.21	-0.48	-0.26	-0.34	-0.23
ϵ_m^{12}	0.46	0.26	0.49	0.22	0.29	0.47	0.19	0.31	0.42	0.56	0.29	0.51	32	0.25	0.47	0.21	0.36	0.16	0.48	0.22	0.65	0.41	0.27	0.11	0.43	0.33	0.52	0.37	0.21	0.45	0.38
ϵ_m^{12} ϵ_p^{12} ϵ_m^{13}	-0.17	-029	-0.59	-0.33	-0.57	-0.39	-0.15	-0.45	-0.16	-0.32	-0.39	-0.47	-0.57	-0.31	-0.26	-0.19	-0.56	-0.26	-0.11	-0.59	-0.36	-0.47	-0.22	-0.52	-0.51	-0.31	-0.12	-0.32	-0.27	-0.21	-0.19
ϵ_m^{13}	0.43	0.45	0.29	0.55	0.49	0.44	0.47	0.51	0.36	0.19	0.21	0.38	0.58	0.18	0.49	0.37	0.33	0.26	0.44	0.32	0.50	0.47	0.11	0.27	0.59	0.38	0.29	0.26	0.51	0.46	0.13
ϵ_p^{13} ϵ_m^{14}	-0.33	-0.38	-0.21	-0.51	-0.13	-0.14	-0.22	-0.28	-0.34	-0.24	-0.39	-0.35	-0.19	-0.58	-0.15	-0.46	-0.31	-0.59	-0.56	-0.11	-0.48	-0.49	-0.51	-0.32	-0.41	-0.33	-0.12	-0.34	-0.55	-0.22	-18
ϵ_m^{14}	0.66	0.34	0.61	0.28	0.47	0.45	0.53	0.43	0.54	0.33	0.41	0.43	0.42	0.36	0.58	0.60	0.35	0.43	0.42	0.45	0.49	0.52	0.36	0.46	0.38	0.47	0.62	0.34	0.28	0.38	0.39
ϵ_p^{14}	-0.11	-0.23	-0.32	-0.29	-0.37	-0.25	-0.23	-0.35	-0.22	-0.13	-0.31	-0.24	-0.21	-0.22	-0.12	-0.23	-0.39	-0.29	-0.23	-0.27	-0.19	-0.23	-0.34	-0.30	-0.16	-0.26	-0.44	-0.56	-0.25	-0.39	-0.23
ϵ_m^{15} ϵ_p^{15} ϵ_m^{16} ϵ_p^{16} ϵ_p^{17}	0.54	0.41	0.43	0.21	0.46	0.48	0.17	0.51	0.12	0.44	0.37	0.27	0.24	0.19	0.14	0.25	0.39	0.29	0.11	0.33	0.26	0.35	0.32	0.22	0.34	0.23	0.15	0.28	0.17	0.26	0.34
ϵ_p^{15}	-0.25	-0.18	-0.46	-0.28	-0.52	-0.15	-0.51	-0.27	-0.33	-0.11	-0.19	-0.16	-0.43	-0.41	-0.21	-0.35	-0.25	-0.12	-0.46	-0.39	-0.24	-0.37	-0.22	-0.13	-0.21	-0.36	-0.26	-0.23	-0.45	-0.11	-0.24
ϵ_m^{16}	0.48	0.37	0.16	0.36	0.38	0.18	0.42	0.22	0.17	0.12	0.15	0.47	0.33	0.41	0.26	0.33	0.29	0.25	0.43	0.23	0.39	0.44	0.37	0.21	0.24	0.28	0.17	0.11	0.29	0.41	0.38
ϵ_{p}^{16}	-0.42	-0.47	-0.15	-0.35	-0.44	-0.43	-0.16	-0.49	-0.29	-0.39	-0.15	-0.41	-0.14	-0.35	-0.36	-0.27	-0.13	-0.38	-0.46	-0.22	-0.38	-0.26	-0.48	-0.33	-0.23	-0.11	-0.37	-0.21	-0.34	-0.23	-0.23
ϵ_m^{17}	0.43	0.47	0.17	0.11	0.31	0.18	0.16	0.42	0.13	0.34	0.22	0.44	0.46	0.17	0.29	0.19	0.35	0.25	0.31	0.27	0.15	0.34	0.21	0.12	0.39	0.38	0.36	0.14	0.23	0.36	0.40
ϵ_p^{17}	-0.45	-0.41	-0.19	-0.11	-0.18	-0.36	-0.49	-0.42	-0.24	-0.38	-0.29	-0.31	-0.27	-0.46	-0.21	-0.13	-0.44	-0.37	-0.35	-0.25	-0.24	-0.17	-0.37	-0.33	-0.38	-0.16	-0.27	-0.45	-0.22	-0.27	-0.23
ϵ_m^{18}	0.25	0.48	0.28	0.35	0.13	0.22	0.26	0.29	0.49	0.39	0.31	0.48	0.32	0.14	0.41	0.28	0.23	0.44	0.17	0.35	0.12	0.31	0.36	0.22	0.27	0.26	0.43	0.11	0.29	0.45	0.37
ϵ_p^{18} ϵ_m^{19}	-0.29	-0.13	-0.17	-0.48	-0.27	-0.38	-0.28	-0.35	-0.26	-0.24	-0.43	-0.39	-0.15	-0.26	-0.47	-0.21	-0.45	-0.24	-0.11	-0.28	-0.29	-0.37	-0.46	-0.32	-0.23	-0.46	-0.33	-0.27	-0.21	-0.25	-0.17
ϵ_m^{13}	0.42	0.13	0.44	0.33	0.17	0.23	0.14	0.27	0.38	0.29	0.12	0.41	0.37	0.45	0.22	0.11	0.34	0.21	0.13	0.17	0.47	0.37	0.38	0.24	0.25	0.28	0.21	0.27	0.39	0.43	0.47
ϵ_p^{13}	-0.39	-0.49	-0.29	-0.19	-0.38	-0.24	-0.13	-0.33	-0.27	-0.15	-0.48	-0.18	-0.14	-0.47	-0.25	-0.46	-0.43	-0.13	-0.31	-0.22	-0.37	-0.48	-0.16	-0.42	-0.24	-0.38	-0.12	-0.46	-0.23	-0.23	-0.23
ϵ_m^{20}	0.44	0.16	0.33	0.11	0.38	0.32	0.27	0.48	0.29	0.41	0.16	0.43	0.24	0.25	0.11	0.32	0.27	0.36	0.47	0.22	0.39	0.15	0.35	0.27	0.37	0.45	0.31	0.22	0.24	0.31	0.46
$egin{array}{c} \epsilon_p^{19} \ \epsilon_m^{20} \ \epsilon_p^{20} \ \epsilon_m^{21} \ \end{array}$	-0.31	-0.18	-0.48	-0.15	-0.28	-0.44 0.12	-0.19 0.39	-0.46	-0.32	-0.38	-0.31	-0.36	-0.49 0.36	-0.14 0.33	-0.47	-0.29	-0.48	-0.16	-0.45	-0.22	-0.27	-0.35	-0.23 0.22	-0.11	-0.27	-0.13 0.24	-0.21 0.28	-0.34	-0.25	-0.21 0.33	-0.29
ϵ_m	0.54	0.18 -0.12	0.41 -0.45	0.49 -0.43	0.34 -0.13	-0.46	-0.39	0.15 -0.27	0.21 -0.32	0.19 -0.17	0.28 -0.46	0.16 -0.16	-0.42	-0.41	0.26 -0.19	0.49 -0.36	0.37 -0.47	0.28 -0.21	0.11 -0.11	0.47 -0.45	0.24 -0.39	0.14 -0.14	-0.31	0.25 -0.44	0.44 -0.42	-0.22	-0.16	0.13 -0.13	0.46 -0.32	-0.22	0.43
$egin{array}{c} \epsilon_p^{21} \ \epsilon_{22}^{22} \ \epsilon_p^{22} \ \epsilon_{23}^{23} \ \epsilon_p^{23} \ \epsilon_{24}^{24} \ \end{array}$	0.35	0.29	0.36	0.15	0.39	0.22	0.31	0.27	0.46	0.18	0.21	0.41	0.35	0.16	0.29	0.38	0.47	0.25	0.33	0.48	0.19	0.21	0.19	0.16	0.45	0.35	0.23	0.11	0.23	0.31	0.47
e ²²	-0.43	-0.28	-0.11	-0.46	-0.26	-0.49	-0.44	-0.18	-0.14	-0.22	-0.33	-0.34	-0.21	-0.32	-0.13	-0.45	-0.24	-0.19	-0.35	-0.15	-0.26	-0.13	-0.47	-0.37	-0.22	-0.17	-0.32	-0.37	-0.25	-0.20	-0.24
ϵ^{23}	0.19	0.44	0.11	0.36	0.42	0.45	0.41	0.10	0.14	0.22	0.12	0.14	0.38	0.26	0.39	0.25	0.43	0.32	0.17	0.16	0.42	0.48	0.44	0.37	0.48	0.17	0.19	0.25	0.23	0.45	0.50
ϵ^{23}	-0.42	-0.23	-0.18	-0.15	-0.13	-0.34	-0.48	-0.43	-0.24	-0.21	-0.35	-0.22	-0.49	-0.38	-0.27	-0.19	-0.36	-0.11	-0.26	-0.31	-0.49	-0.28	-0.14	-0.23	-0.31	-0.46	-0.11	-0.45	-0.31	0.27	-0.19
ϵ^{24}	0.25	0.38	0.11	0.26	0.13	0.29	0.17	0.22	0.35	0.21	0.16	0.43	0.36	0.18	0.41	0.13	0.31	0.45	0.36	0.49	0.33	0.17	0.26	0.33	0.15	0.27	0.26	0.43	0.12	0.47	0.35
ϵ_n^{24}	-0.35	-0.14	-0.42	-0.27	-0.39	-0.22	-0.15	-0.38	-0.17	-0.45	-0.29	-0.36	-0.19	-0.34	-0.43	-0.24	-0.21	-0.44	-0.25	-0.13	-0.41	-0.26	-0.16	-0.43	-0.22	-0.45	-0.24	-0.11	-0.35	-0.17	-0.27
ϵ_m^{25}	0.49	0.16	0.32	0.44	0.48	0.25	0.39	0.11	0.24	0.22	0.42	0.31	0.13	0.35	0.28	0.19	0.36	0.27	0.37	0.45	0.23	0.26	0.35	0.11	0.35	0.33	0.24	0.15	0.39	0.34	0.39
ϵ_p^{24} ϵ_m^{25} ϵ_p^{25}	-0.15	-0.14	-0.28	-0.38	-0.43	-0.36	-0.19	-0.33	-0.36	-0.41	-0.13	-0.22	-0.24	-0.23	-0.44	-0.29	-0.47	-0.45	-0.14	-0.27	-0.36	-0.31	-0.15	-0.11	-0.33	-0.26	-0.45	-0.32	-0.32	-0.22	-0.25
ϵ_{ν}	0.16	0.12	0.46	0.34	0.26	0.31	0.17	0.47	0.28	0.41	0.26	0.24	0.42	0.35	0.29	0.47	0.36	0.17	0.46	0.21	0.45	0.42	0.44	0.39	0.22	0.38	0.19	0.14	0.21	0.45	0.29
ϵ_{nf}	-0.38	0.49	-0.27	-0.25	-0.35	-0.38	-0.29	-0.18	-0.14	-0.38	-0.15	-0.17	-0.46	-0.24	-0.42	-0.37	-0.22	-0.38	-0.11	-0.28	-0.21	-0.37	-0.33	-0.48	-0.23	-0.46	-0.34	-0.14	-0.34	-0.24	-0.29
p_j	1																														

Appendix E1

Price Impulse Responses for Selected Underlying Assets of DIA

Appendix E2

Price Impulse Responses for Selected Underlying Assets of SMH

