

N 9 3 - 3 0 7 2 3

SPACE R&T **OVERVIEW**

<u> -0</u>AST

Gregory M. Reck
Director for Space Technology
Office of Aeronautics and Space Technology

March 1992

SPACE RESEARCH & TECHNOLOGY OVERVIEW

=0AST

- **ORGANIZATION**
- **OBJECTIVES AND STRUCTURE**
- PROGRAM ELEMENTS AND MILESTONES
- **PLANNING AND RESOURCES**
- **ACCOMPLISHMENTS**
- **CENTER ROLES**

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY FY 1992 BUDGET

(\$,M)

APPROP.	PROP. AERO TRA		SPACE	TOTAL				
R&D	574.2	5.0	309.3*	888.5				
R&PM	273.1	16.1	138.4	427.6				
CofF	42.3	7	-	42.3				
SUBTOTAL	889.6	21.1	447.7	1358.4				
RES. OPS. S	UPP.			210.1				
TOTAL	TOTAL							

SPACE EXCLUDES MISSION STUDIES (\$5.0M)

92-1038 Rev 2/26/92

SPACE R&T MISSION STATEMENT

=0AST

OAST SHALL PROVIDE TECHNOLOGY FOR FUTURE
CIVIL SPACE MISSIONS AND PROVIDE A BASE OF
RESEARCH AND TECHNOLOGY CAPABILITIES TO SERVE
ALL NATIONAL SPACE GOALS

- IDENTIFY, DEVELOP, VALIDATE AND TRANSFER TECHNOLOGY TO:
 - INCREASE MISSION SAFETY AND RELIABILITY
 - REDUCE PROGRAM DEVELOPMENT AND OPERATIONS COST
 - ENHANCE MISSION PERFORMANCE
 - ENABLE NEW MISSIONS
- PROVIDE THE CAPABILITY TO:
 - ADVANCE TECHNOLOGY IN CRITICAL DISCIPLINES
 - RESPOND TO UNANTICIPATED MISSION NEEDS

5-YEAR FORECAST INCLUDES

'93 THRU '97: LIMITED **NEW STARTS**

COMPLETION OF INITIAL SSF SOME SHUTTLE IMPROVEMENTS

INITIAL EOS & EOSDIS

SELECTED SPACE SCIENCE STARTS

NLS DEVELOPMENT

INITIAL SEI ARCHITECTURE SELECTION **EVOLVING GEO COMMERCIAL COMMSATS** MINOR UPGRADES OF COMMERCIAL ELVS

FLIGHT PROGRAMS FORECAST

• 10-YEAR FORECAST INCLUDES

'96 THRU '03: MULTIPLE **NEW STARTS** TO BE LAUNCHED IN 2003 THRU 2010

SSF EVOLUTION/INFRASTRUCTURE FINAL SHUTTLE ENHANCEMENTS ADVANCED LEO EOS PLATFORMS/FULL EOSDIS MULTIPLE SPACE SCIENCE STARTS NLS OPERATIONS/EVOLUTION

EVOLVING LAUNCH/OPERATIONS FACILITIES INITIAL SEVLUNAR OUTPOST START DSN EVOLUTION (KA-BAND COMMUNICATIONS) NEW GEO COMMERCIAL COMMSATS

NEW COMMERCIAL ELVS

• 20-YEAR FORECAST INCLUDES

'04 THRU '11 MULTIPLE OPTIONS FOR NEW STARTS TO BE LAUNCHED IN 2009 THRU 2020

SSF-MARS EVOLUTION BEGINNING OF AMLS/PLS DEVELOPMENT MULTIPLE SPACE SCIENCE STARTS DSN EVOLUTION (OPTICAL COMM) INITIAL MARS HLLV DEVELOPMENT **EVOLVING LUNAR SYSTEMS** MARS SEI ARCHITECTURE CHOSEN LARGE GEO COMMSATS

NEW COMMERCIAL ELVS

LBF40305 (JCM-7692) Ē

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

SPACE RESEARCH & TECHNOLOGY

RESEARCH & TECHNOLOGY BASE

DISCIPLINE RESEARCH

Aerothermodynamics
Space Energy Conversion
Propulsion
Materials & Structures
Information and Controls
Human Support
Space Communications

UNIVERSITY PROGRAMS

SPACE FLIGHT R&T

SYSTEMS ANALYSIS

CIVIL SPACE TECHNOLOGY INITIATIVE

SPACE SCIENCE TECHNOLOGY

Science Sensing Observatory Systems Science Information In Situ Science Technology Flight Expts.

> PLANETARY SURFACE TECHNOLOGY

Surface Systems Human Support Technology Flight Expts.

TRANSPORTATION TECHNOLOGY

ETO Transportation Space Transportation Technology Flight Expts.

SPACE PLATFORMS TECHNOLOGY

Earth-Orbiting Platforms Space Stations Deep-Space Platforms Technology Flight Expts.

OPERATIONS TECHNOLOGY

Automation & Robotics Infrastructure Operations Info. & Communications Technology Flight Expts.

LBE40319

DISCIPLINE RESEARCH

CONCEIVE, DEVELOP AND VALIDATE NEW TECHNOLOGY CONCEPTS AND APPROACHES FOR ENHANCING OR ENABLING FUTURE SPACE MISSIONS, INCLUDING REVOLUTIONARY IMPROVEMENTS IN SPACE CAPABILITY

- DISCIPLINE RESEARCH TECHNOLOGY
 - AEROTHERMODYNAMICS
 - SPACE ENERGY CONVERSION
 - PROPULSION
 - MATERIALS & STRUCTURES
 - INFORMATION & CONTROLS
 - HUMAN SUPPORT
 - ADVANCED COMMUNICATIONS

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM R&T Base Discipline Programs Content

ŀ	 ,	BASE CAPABILITIES			ADVANCED CHNOLOGIES			CHNOLOGIES	
Aerothermo- dynamics	Hypersonic Flowfield Sim. Fundamental Data Bases	Hypersonic Vehicle Synth.	Hatel	Fit. Environ. Instrument'n Aerothermo. Design Tools	Configuration Design/Optimiz. —	_ _			
Space Communications	Travelling Wave Tubes (TWTs)			KeBend TWT Solid State MMIC Systems	Processors	Ground Terminals —	Laser Comm. Components Mobile Comm. Systems (Persons))	
Space Energy Conversion	Photovoltaic Perf. Validation Electrochemical Diagn./Models	Bolar Dynamics Design/Analysia		Adv. Solar Cells (GeAs, In-P) Concentrators and Arrays	(Rechg/Life) Soler Dynamics	Thermoelectric Conv. Systems Power Mgt. & Distribution	Components Adv. Fuel Cells		Diamond Film Per Electronics
Human Support	-Extravehicular Activity Sult Human Modelin (Cogn./Physical	- 	<u>-</u>	EVA Gloves PLSS Components	Components Interactive	Life Support Models Life Support Sensors/Cntris		Al Computer Associates	-
Information and Controls	Electro-optic Marte/Sensors			Advanced Al Research —	Computational Controls Software Develop, Tools	-		Photonics High-Temp Superconductors	Multiple Inter- active Robots
Materials and Structures	Synthesis High Temp.	Space Durable Materials Advanced Space Struct. Concepts	Sp. Environ. Effects (Mat's) Tribology	Mechanisms	High Precision Struc Lg./Deployed Struc Debris Shielding	Dolumere	Intermetalics & Metal Metrix Computational Chemistry	Computational Materials "Smart" Materials	Adaptive Materials
Propulsion	Combustion Models/Diagn. Engine Analysis Expert Systems		_	ion Thrusters Hydrogen Arcjet MPD Thrusters	Water Resistojets Is Iridium-Rhenium Engine Liners	H-O Engines Propulsion Health Mgt.	High Energy Density Propell. Electrodeless Thrusters (ECR)	Laser Rocket Propulsion Fission/Fusion Propulsion	Superconduc Bearings

NOVEMBER 13, 19-3 JCM 686

SPACE FLIGHT RESEARCH & TECHNOLOGY

PROVIDE FOR EXPERIMENT STUDIES, DEVELOPMENT AND SUPPORT FOR IN-SPACE FLIGHT RESEARCH AND VALIDATION OF ADVANCED SPACE TECHNOLOGIES

- IN-SPACE TECHNOLOGY EXPERIMENT PROGRAM (IN-STEP)
 - DESIGN, DEVELOP AND FLIGHT TEST INDUSTRY, UNIVERSITY AND NASA TECHNOLOGY FLIGHT EXPERIMENTS
- FLIGHT OPPORTUNITIES VIA
 - SPACE SHUTTLE
 - EXPENDABLE LAUNCH VEHICLES
 - SPACE STATION FREEDOM

IN-SPACE TECHNOLOGY EXPERIMENTS

UNIVERSITY PROGRAMS

BROADEN THE CAPABILITIES OF THE NATION'S ENGINEERING COMMUNITY TO PARTICIPATE IN THE U.S. CIVIL SPACE PROGRAM THROUGH UNIVERSITY-BASED RESEARCH AND EDUCATION

- UNIVERSITY SPACE ENGINEERING RESEARCH CENTERS
 - FOSTER CREATIVE AND INNOVATIVE CONCEPTS OF FUTURE SPACE SYSTEMS
 - EXPAND THE NATION'S ENGINEERING TALENT BASE FOR RESEARCH AND DEVELOPMENT
- UNIVERSITY INVESTIGATORS RESEARCH
 - SPONSOR INDIVIDUAL RESEARCH ON HIGHLY INNOVATIVE SPACE TECHNOLOGY CONCEPTS AND APPROACHES
- UNIVERSITY ADVANCED DESIGN
 - FOSTER INTERDISCIPLINARY ENGINEERING DESIGN EDUCATION

UNIVERSITY SPACE ENGINEERING RESEARCH PROGRAM

UNIVERSITY-BASED CENTERS

- ATTRACT AND RETAIN STUDENT AND INDUSTRY SUPPORT
- SUPPORT AND EXPAND THE NATION'S ENGINEERING TALENT BASE
- FOSTER INNOVATIVE, MULTI-DISCIPLINARY RESEARCH

91-2118

- · UNIVERSITY OF ARIZONA
 - Planetary Resources
- UNIVERSITY OF CINCINNATI
 - Propulsion Monitoring Systems
- UNIVERSITY OF COLORADO, BOULDER
 - Space Construction
- · UNIVERSITY OF IDAHO
 - VLSI hardware
- MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 - Controlled Structures Technology
- · UNIVERSITY OF MICHIGAN
 - Space TeraHertz Sensing Technologies
- NORTH CAROLINA STATE AT RALEIGH & NORTH CAROLINA AGRICULTURAL & TECHNICAL STATE UNIVERSITIES
 - Mars Mission Technologies
- PENNSYLVANIA STATE UNIVERSITY
 - Propulsion
- RENSSELAER POLYTECHNIC INSTITUTE
 - Robotics

SYSTEMS ANALYSIS

CONDUCT INTERDISCIPLINARY SYSTEM STUDIES TO IDENTIFY AND PRIORITIZE NEW TECHNOLOGY REQUIREMENTS AND OPPORTUNITIES AND DEVELOP MODELING AND ANALYSIS TOOLS

- FOCUSED PROGRAMS
 - IDENTIFY CRITICAL TECHNOLOGY ISSUES OF FUTURE MISSION CONCEPTS
 - TRANSPORTATION
 - . SPACE SCIENCE
 - . SPACE PLATFORMS
 - . SPACE EXPLORATION
 - · OPERATIONS
- BREAKTHROUGH
 - IDENTIFY BENEFITS OF HIGHLY
 INNOVATIVE SPACE TECHNOLOGY
 IDEAS AND SPACE APPLICATIONS OF
 NEW TECHNOLOGY FRONTIERS
- EXTERNAL
 - SUPPORT SPACE COMMERCIALIZATION
 - IMPROVE USE OF INDUSTRY INDEPENDENT R&D (IRAD)
 - PLAN FOR MULTI-AGENCY PROGRAMS

SPACE RESEARCH & TECHNOLOGY

RESEARCH & TECHNOLOGY BASE

DISCIPLINE RESEARCH

Aerothermodynamics
Space Energy Conversion
Propulsion
Materials & Structures
Information and Controls
Human Support
Space Communications

UNIVERSITY PROGRAMS

SPACE FLIGHT R&T

IN SPACE TECHNOLOGY EXPTS

SYSTEMS ANALYSIS

CIVIL SPACE TECHNOLOGY INITIATIVE

SPACE SCIENCE TECHNOLOGY

Science Sensing Observatory Systems Science Information In Situ Science Technology Flight Expts.

PLANETARY SURFACE TECHNOLOGY

Surface Systems Human Support Technology Flight Expts.

TRANSPORTATION TECHNOLOGY

ETO Transportation Space Transportation Technology Flight Expts.

SPACE PLATFORMS TECHNOLOGY

Earth-Orbiting Platforms Space Stations Deep-Space Platforms Technology Flight Expts.

OPERATIONS TECHNOLOGY

Automation & Robotics Infrastructure Operations Info. & Communications Technology Flight Expls.

LBF4031'

SCIENCE TECHNOLOGY

DEVELOP ADVANCED INSTRUMENT, OBSERVATION, INFORMATION, AND IN SITU MEASUREMENT TECHNOLOGIES TO MAXIMIZE THE RETURN FROM NASA SPACE AND EARTH SCIENCE MISSIONS OVER THE NEXT TWENTY YEARS

- EXPAND CAPABILITY AND REDUCE
 COSTS THROUGH DISCIPLINARY
 ADVANCEMENTS WHICH INCREASE
 SCIENCE INFORMATION RETURN AND
 SPACECRAFT PERFORMANCE
 - INSTRUMENT
 - OBSERVATION
 - DATA & INFORMATION
 - IN SITU MEASUREMENT
- ENABLE THE NEXT GENERATION OF SPACE SCIENCE MISSIONS
 - ASTROPHYSICS
 - SOLAR SYSTEM EXPLORATION
 - SPACE PHYSICS
 - EARTH SCIENCE
 - LIFE SCIENCES/MICROGRAVITY

SCIENCE TECHNOLOGY

INSTRUMENT

- IR Detectors
- Submillimeter DetectorsHigh Energy Detectors
- Passive Microwave

Active Microwave

Laser Sensors

Optoelectronics

Sensor Readouts

OBSERVATION

Cryocoolers

- Precision Pointing
- Telescope Systems

Micro Precision CSI

Sensor Optics

IN SITU-MEASUREMENT

- Sample Acquisition, Analysis, and Preservation
- Probes and Penetrators

DATA & INFORMATION

- Data Archives
- Information Visualization

91-8047

Office of Aeronautics and Space Technology

SPACE SCIENCE MILESTONES

▲ Indicates Funded △ Indicates NonFunded

PLANETARY SURFACE TECHNOLOGY

PROVIDE KEY TECHNOLOGIES FOR ROBOTIC AND MANNED PLANETARY SURFACE EXPLORATION SYSTEMS INCLUDING CAPABILITIES FOR AN OUTPOST ON THE MOON AND EXPLORATION OF THE PLANET MARS

- INCREASE RELIABILITY AND REDUCE RISK; REDUCE DEVELOPMENT AND OPERATIONS COST; AND ENABLE NEW AND INNOVATIVE CAPABILITIES IN THE AREAS OF:
 - ADVANCED SURFACE SYSTEM
 OPERATIONS ON THE MOON AND
 MARS
 - TECHNOLOGIES FOR HUMAN
 SUPPORT DURING VERY LONG
 DURATION PILOTED MISSIONS IN
 DEEP-SPACE AND ON
 PLANETARY SURFACES

91-8050A rev 8/23/91 Office of Aeronautics and Space Technology

PLANETARY SURFACE TECHNOLOGY

BURFACE SYSTEMS

- Space Nuclear Power
- In Situ Resource Utilization
- Planetary Rover
- High Capacity Power

- Surface Power and Thermal Management
- Surface Habitats & Construction
- Laser-Electric Power Beaming

HUMAN-SUPPORT

- · Regenerative Life Support
- Radiation Protection
- Extravehicular Activity Systems
- Exploration Human Factors
- Artificial Gravity
- Remote Medical Care Systems

PLANETARY SURFACE MILESTONES

▲ Indicates Funded
△ Indicates NonFunded

Office of Aeronautics and Space Technology

TRANSPORTATION TECHNOLOGY

PROVIDE TECHNOLOGIES THAT SUBSTANTIALLY INCREASE OPERABILITY, IMPROVE RELIABILITY, PROVIDE NEW CAPABILITIES, WHILE REDUCING LIFE CYCLE COSTS

- ENHANCE SAFETY, RELIABILITY, AND SERVICEABILITY OF CURRENT SPACE SHUTTLE
- PROVIDE TECHNOLOGY OPTIONS FOR
 NEW MANNED SYSTEMS THAT
 COMPLEMENT THE SHUTTLE AND ENABLE
 NEXT GENERATION VEHICLES WITH RAPID
 TURNAROUND AND LOW OPERATIONAL
 COSTS
- SUPPORT DEVELOPMENT OF ROBUST, LOW-COST HEAVY LIFT LAUNCH VEHICLES
- DEVELOP AND TRANSFER LOW-COST
 TECHNOLOGY TO SUPPORT COMMERCIAL
 ELY'S AND UPPER STAGES
- DIDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR IN-SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS

TRANSPORTATION TECHNOLOGY

SHUTTLE ENHANCEMENT

- SSME improvements
- Durable Thermal Protection Systems
- Improved Health Monitoring
- Light Structural Alloys
- Lidar-Based Adaptive Guidance & Control

NEXT GENERATION MANNED TRANSPORTS

- · Configuration Assessment
- High Frequency, High Voltage Power Management/Distribution Systems
- LOX/LH2 Propellant for OMS/RCS
- Maintenance-free TPS
- · Advanced Reusable Propulsion
- GPS-Based Autonomous GN&C
- Composites & Advanced Lightweight Metals
- Vehicle-Level Health Management For Autonomous Operations

HEAVY-LIFT CAPABILITY

- Advanced Fabrication (Forming & Joining)
- STME improvements
- On-Vehicle Adaptive Guidance & Control
- Systems & Components for Electric Actuators
- Health Monitoring for Safe Operations
- · AL-Li Cryo Tanks

LOW-COST COMMERCIAL

- Alternate Booster Concepts
- Advanced Cryogenic Upper Stage Engines
- Low-Cost Fab./Automated Processes/NDE
- Continuous Forging Processes for Cryogenic Tanks
- Fault-Tolerant, Redundant Avionics

IN-SPACE TRANSPORT

- · High-Power Nuclear Therma! & Electric Propulsion
- High Performance, Multiple Use Cryogenic Chemical Engine
- Highly Reliable, Autonomous Avionics
- Low Mass, Space Durable Materials
- Long-Term, Low-Loss Management of Cryogenic Hydrogen
- Autonomous Rendezvous, Docking & Landing
- · Aeroassist Technologies

Office of Aeronautics and Space Technology

91-8066

TRANSPORTATION MILESTONES

Activities	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
SHUTTLE ENHANCEMENT				tic Damping Test in TTB		Plasma Spri Imber Demo ir	TTB	Profiler O	Looking Wind STS for Asce	mt	
		- V	Mary 12	VAV	-12-66	· · · · · · ·	****\ V **	1 m \(\Lambda\)	1.138.4		
	Flig	nt Certify TUFi Tiles		Ground-Base Wind Pro (STS Land	Mer		Integrated H lonitoring Ca				
NEXT GENERATION		Optimized late Base		dentity Prefer opulation Con	cepts	piete Aero-Ae Config. Anal	ysis	Engine/Vehk Management A	rch. Defined	Tecl	Component Defined
MANNED			(44) S. P. T.		A CONTRACT		3.44V#	$1 \Delta m$	## V **		#Δ=
TRANSPORTS		ss	TO Assessm Complete	ient		y Preferred e Concepts	Integral St Concept		Select Candidate Concept		
HEAVY LIFT CAPABILITY		nplete CFD Too Turbine Desig		V	erify System & Checkout &	Monitoring for Inflight Shut			t Chamber Test in TTB		
CALADIELLI		* A **	142. V	THE WAY	, 1010	·//	1	* x > . · 🛆 ı	4 6 6 7 6	TA: 4	
			Ceramic Element i Test in	Bearings			genic Fluid F earing Tech.				
LOW-COST TRANSPORT				Industry/Go Defined		Redundant I with GPS Re		g-Scale Boost Concept Verif		VHM Demo	cessing
TIPLIOI GIII		7.47			** V***	N-V-	AD UNE	$\Delta \sim$	<u>/* </u>	. Δ	
			Test Low-C st Chamber		MA Prototype c Centaur	Continuous AL-LI Cryc Test Ar	Tank		rant Avionics it. Demo		
SPACE TRANSFER VEHICLE/ LANDERS		TPCE on Sh		1	clear Thermal ic Concepts	NTP Nucle Element	Test		Breadboard Cryo Engine	Ultra-Relia Architectu	ble Avionics re Defined
	Call		*****					***	V A		
			dv. Expande estbed Defin		500Kw Ele Propulsion Te				d Test of NTP		Verily N Tech Readine

▲ Indicates Funded △ Indicates NonFunded

SPACE PLATFORMS TECHNOLOGY

DEVELOP TECHNOLOGIES TO INCREASE ON-ORBIT MISSION EFFICIENCY AND DECREASE LIFE CYCLE COSTS FOR FUTURE MANNED AND UNMANNED SCIENCE, EXPLORATION & COMMERCIAL MISSIONS.

- DEVELOP TECHNOLOGIES THAT WILL DECREASE LAUNCH WEIGHT AND INCREASE THE EFFICIENCY OF SPACE PLATFORM FUNCTIONAL CAPABILITIES
- DEVELOP TECHNOLOGIES THAT WILL INCREASE HUMAN PRODUCTIVITY AND SAFETY OF MANNED MISSIONS
- DEVELOP TECHNOLOGIES THAT WILL INCREASE MAINTAINABILITY AND REDUCE LOGISTICS RESUPPLY OF LONG DURATION MISSIONS
- IDENTIFY AND DEVELOP FLIGHT EXPERIMENTS IN ALL TECHNOLOGY AND THRUST AREAS THAT WILL BENEFIT FROM THE UTILIZATION OF SSF FACILITIES

91-8052

Office of Aeronautics and Space Technology

SPACE PLATFORMS TECHNOLOGY

EARTH ORBITING PLATFORMS

- Structural Dynamics
- On-Orbit Non-Destructive Evaluation Techniques
- Space Environmental Effects

- Power Systems
- Thermal Management
- Advanced information Systems

SPACE STATIONS

- · Regenerative Life Support
- Integrated Propulsion and Fluid Systems Architecture
- Extravehicular Mobility
- Telerobotics
- Artificial Intelligence

SPACE BASED LABORATORY AND TESTBED

 Exploit Microgravity and Crew Interactive Capability to Advance and Validate Selected Technologies

DEEP SPACE MISSIONS

- Power and Thermal Management
- Propulsion
- Guidance, Navigation and Control

SPACE PLATFORMS MILESTONES

▲ Indicates Funded △ Indicates NonFunded Office of Aeronautics and Space Technology

OPERATIONS TECHNOLOGY

DEVELOP AND DEMONSTRATE TECHNOLOGIES TO REDUCE THE COST OF NASA OPERATIONS, IMPROVE THE SAFETY AND RELIABILITY OF THOSE OPERATIONS, AND ENABLE NEW, MORE COMPLEX ACTIVITIES TO BE UNDERTAKEN

- THE OPERATIONS THRUST SUPPORTS THE FOLLOWING MAJOR ACTIVITIES:
 - IN-SPACE OPERATIONS
 - FLIGHT SUPPORT OPERATIONS
 - GROUND SERVICING AND PROCESSING
 - PLANETARY SURFACE OPERATIONS
 - COMMERCIAL COMMUNICATIONS
- THE FOLLOWING TECHNOLOGY AREAS ARE INCLUDED:
 - AUTOMATION & ROBOTICS
 - INFRASTRUCTURE OPERATIONS
 - INFORMATION & COMMUNICATIONS
 - FLIGHT EXPERIMENTS

OPERATIONS TECHNOLOGY

AUTOMATION & RODOTICS

- Mission Control Support
- Planning & Scheduling
- Ground Servicing & Support Roles
- In-Space Teleoperation & Telerobotics

INFRACTRUCTURE OPERATIONS

- In-Space Assembly & Construction
- Space Processing & Servicing
- Training & Human Factors
- Ground Test & Processing
- Flight Control & Space Operations

INFORMATION & COMMUNICATIONS

- Space Data Systems
- Ground Data Systems
- Commercial Satellite Communications
- Photonics Systems
- High Rate Communications

FLIGHT EXPERIMENTS

- Commercial Satellite Communications
- Optical Communications

Office of Aeronautics and Space Technology

91-8054

OPERATIONS MILESTONES

Indicates Funded Indicates NonFunded

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

Strategic Plan ITP: CSTI Element Categorization

-OAST

Space Science Technology	Submillimeter Sensing	Direct Detectors Sensor	Active µwave Sensing Laser Sensing	Sample Acq., Analysis & Preservation	Passive Microwave Sensing		Optoelectrics Sensing & Processing	Probes and Penetrators	_
	Cooler and Cnyogenics	Electronics Micropredision CSI	Telescope Optical Systems	Data Archiving and Retrieval	Deta Visualization and Analysis		Precision Instrument Pointing	Sensor Optical Systems	
Planetary Surface Technology	Radiation Protection	Regenerative Life Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Capacity Power	Planetary Rovers	Surface Habitats and Construction	Exploration Human Factors		Artifical Gravity
recimology	-		Extravehicular Activity Systems	Surface Solar Power and Thermal Mgt.	in Sku Resource Utilization	Laser-Electric Power Beaming	Medical Support Systems		 -
Technology	ETO Propulsion	Nucleer Thermal Prop. Aerossulst	Aeroassist/ Aerobraking	Transfer Vehicle Avionics	ETO Vehicle Avionics	ETO Vehicle Structures & Materials	Autonomous Rendezvous & Docking	COHE	Auxiliary Propulsion
	Cryogenia Fluid Systems	Flight Expt Advanced Cryo. Engines	Low-Cost ETO Transport	Nuclear Electric Propulsion	CONE		Autonomotis Landing	TV Structures and Cryo Tankage	HEAD
Space Platforms	Platform Structures & Dynamics	Platform Power and Thermal Mgt.	Zero-G Lile Bupport	Pletform Materials & Environ. Effects	Station- Keeping Propulsion		Spacecraft On-Board Propulsion	Earth-Orbiting Platform Controls	Advanced Refrigerator Systems
Technology			Zero-G Advenced EMU	Pletform NDE-NDI	Deep-Space Power and Thermal		Spacecraft GN&C	Debris Mapping Experiment	
Operations Technology	Space Deta Systems	High-Rate Comm.	Artificial Intelligence	Ground Data a Systems	Optical Comm Flight Expt Fit. Telerobotic	Flight Control and Operations	Space Assembly & Construction	Space Processing & Servicing	Photonics Data Systems
		CommSal Communicatins	TeleRobotics	Operator Syst/Training	Servicer/DTF-1 Nevigation & Guidance	CommSat Communicatins Flight Expts		Ground Test and Processing	
L -	-	HIGHEST PRIORITY		-	2nd-HIGHEST PRIORITY 60	-	-	3rd-HIGHEST PRIORITY	

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM FY 1992 Program ITP: CSTI Element Categorization

Space Science Schnology	Submillimeter Seneing	Direct Detectors	Laser Sensing		' 	' 	· · · · · · · · · · · · · · · · · · ·	' 	
J	Cooler and Cryogenics	Microprecision CSI				****			
Planetary Surface	Radiation Protection	Regenerative Lile Support (Phys-Chem.)	Space Nuclear Power (SP-100)	High Cepacity Power				_	
Technology			Extravehicular Activity Systems			Leser Electric Power Beaming			
ansportation Technology	ETO Propulsion		****			***	_		
		Advanced Cryogenic Engines	Nuclear Thermal Propulsion	Nuclear Electric Propulsion			_	-	
Space Platforms Fechnology	Platform Structures & Dynamics	Platform Power & Thermal Mgt.						_	
3,		_	****					••••	
	Space Data Systems		Artificial Intelligence					***	
			TeleRobotics			 1			
	-	HIGHEST PRIORITY	-		2nd-HIGHEST PRIORITY	·	-	3rd-HIGHEST PRIORITY	

SPACE RESEARCH & TECHNOLOGY PROGRAM

LBF 404:

orden i 12. **Ha**rrier - Andrews Andrews Andrews Andrews Andrews SPACE TECHNOLOGY PLANNING CYCLE

FY1991 SPACE TECHNOLOGY ACCOMPLISHMENTS

=0/AST

SCIENCE

HgZnTe 1x270 ARRAY
SILICON-COMPATIBLE INFRARED SENSORS
GeBIB DETECTOR ARRAYS
SIS MIXER ELEMENTS
2-MICRON LASER FOR LIDAR
MICRODYNAMIC COMPONENT TESTER
AOTF-BASED IMAGING SPECTROMETER

OPERATIONS

AUTOMATED ASSEMBLY OF SPACE STRUCTURES
ADVANCED TELEOPERATION
AUTONOMOUS MOBILE EXPLORATION ROBOT
MINI-ROVER TECHNOLOGY
ASTRONAUT SCIENCE ADVISOR
AUTOCLASS IV
REAL-TIME DATA SYSTEM
SPACECRAFT HEALTH AUTOMATED REASONING PROTOTYPE
SCIENTIFIC ANALYSIS ASSISTANT
LOSSLESS DATA COMPRESSOR
IMAGING SPECTHOMETER FLIGHT PROCESSOR
HIGH SPEED FIBER OPTIC TRANSCEIVER

HIGH SPEED FIBER OPTIC TRANSCEIVER
DIGITAL AUTOCORRELATOR SPECTROMETER
SPACEFLIGHT OPTICAL DISK RECORDER
INTELLIGENT DATA MANAGEMENT

PLANETARY SURFACE
STIRLING COLD END MOTORING TEST
REGENERATIVE LIFE SUPPORT

<u>TRANSPORTATION</u>

NEW CFD TOOLS FOR TURBINE BLADE DESIGN NEW TECHNOLOGY MAIN COMPUSTION CHAMBER HIGH-ASPECT-RATIO COOLING CHANNEL DESIGNS LOW COST THRUST CHAMBER CRITICAL TEST CERAMIC COMPOSITE ENGINE PARTS CERAMIC BALLS FOR LONG-LIFE BALL BEARINGS SPACE PLATFORMS

CONTROLS-STRUCTURES INTERACTION
HYBRID-SCALE MODEL OF SSF CONFIGURATION
SIMULATED EVA ASSEMBLY OF TRUSS STRUCTURE AND PANELS

RESEARCH & TECHNOLOGY BASE

PERSONNEL LAUNCH SYSTEM BENCHMARK STUDY
OPTIMIZED PLS HL-20 DATABASE
PLS APPROACH & LANDING SIMULATION STUDY
CERAMIC MATRIX COMPOSITES
WIND TUNNEL AIR FLOW DENSITY MEASUREMENTS
MAGELLAN AEROBRAKE MANEUVER GAS FLOW PREDICTIONS
ADVANCED CONCENTRATOR PHOTOVOLTAIC SYSTEM
ADVANCED PHOTOVOLTAIC SOLAR ARRAY
HOT ROCKET TECHNOLOGY
HIGH POWER ELECTRIC PROPULSION
FOIL BEARING TECHNOLOGY
BRUSH SEAL TECHNOLOGY
MOLECULAR COMPUTATIONAL FLUID DYNAMICS
MULTILAYER INSULATION TECHNOLOGY

MULTILAYER INSULATION TECHNOLOGY
TOUGHENED UNI-PIECE FIBROUS INSULATION MATERIAL
ADAPTIVE UNSTRUCTURED MESHES
RADIATION RESISTANCE OF NOVEL TINJ-CONTAINING POLYIMIDE
LDEF SUMMARY
LDEF IONIZING RADIATION

LDEF METEROID AND DEBRIS
FIRST TERAHERTZ FOCAL PLANE ARRAY
MICRO-SENSOR FOR FLOW MEASUREMENTS
ORBITAL ACCELERATION RESEARCH EXPERIMENT
SHUTTLE INFRARED LEESIDE TEMPERATURE SENSING
MULTI-FLEXIBLE BODY DYNAMIC MODELING TOOLS
PHOTONIC DEVICES FOR PLANETARY LANDER
EVA EMU ELECTRONIC CUFF CHECKLIST
VIRTUAL ENVIRONMENT FACILITY

TECHNOLOGY CONTRIBUTIONS TO SCIENCE SPACECRAFT

- Hubble VLSI Data Processing
- Astro Startracker
- Hubble Battery Technology
- Hubble Image Restoration

- Gailleo (& Hubble) CCD Array
- Voyager Spacecraft Health Monitoring
- Magellan Radar Ground Processor

- UARS 205 GHz Limb Sounder Technology
- Shuttle Imaging Radar SAR Technologies
- TOPEX Millimeter
 Accuracy Laser Ranging

Office of Aeronautics and Space Technology

92-8013

TECHNOLOGY CONTRIBUTIONS TO TRANSPORTATION

- Structural Analysis for Solid Rocket Motor (SRM) Redesign
- Vacuum Plasma Spray Coatings & Chambers
- Health Monitoring (Test Facilities)
 Thermal Protection System
 Bearing Cooling Analysis
 Real Time Data System

- **Orbiter Experiments**
- Damping Seals Modified Tires

Advanced Primary Battery

Office of Aeronautics and Space Technology

92-8023a

- TECHNOLOGY CONTRIBUTIONS TO SPACE PLATFORMS

Office of Aeronautics and Space Technology

Arcjet Thruster

Large Area Solar Cells

92-8024

NASA INSTALLATIONS

RESEARCH CENTERS

AMES

- Human Support
- Artificial Intelligence
- Aerothermodynamics
- Thermal Protection Systems
- Computer Science

LANGLEY

- Large Space Systems
- Aerothermodynamics, Materials, Structures & Dynamics
- Remote Sensing
- Advanced Vehicle System Concept Studies
- Robotic Systems
- Space Data Systems
- Guidance, Navigation & Control

LEWIS

- Electric Propulsion
- Thermal Management
- Chemical Propulsion
- CryoFluid Systems
- Communications Systems
- Nuclear Propulsion
- Space Power Systems

SPACE SCIENCE CENTERS

JET PROPULSION LABORATORY

- Autonomous Systems
 & Robotics
- Guidance, Navigation & Control
- Sensors
- Space Data & Information Systems
- Optical Systems
- Advanced Propulsion

GODDARD

- Sensors
- Space Data Systems
- Laser Communications
 - Telerobotics

Office of Aeronautics and Space Technology

91-8090

SPACE FLIGHT CENTERS

KENNEDY

- Telerobotics
- · Artificial Intelligence

MARSHALL

- · Chemical Propulsion
- Structures, Materials& Dynamics
- CryoFluid Systems
- Space Power Systems
- · Controls & Avionics

STENNIS

- Chemical Propulsion
- · Vehicle Health Monitoring

JOHNSON

- Human Support
- Thermal Management
- Controls & Avionics
- Mission Operations
- InSitu Resource Utilization/Surface Systems

Office of Aeronautics and Space Technology

91-8091