Examen la TEORIA MĂSURII ŞI INTEGRĂRII 1 an II, sem. I, grupele 201, 202, 221, 222

1.09.2021

Numele şi prenumele
Grupa
Punctaj seminar

Subiectul 1. a) Fie $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ o funcție integrabilă Lebesgue, unde n este un număr natural, $n \ge 1$. Demonstrați că următoarele afirmații sunt echivalente:

- (i) $f(x) \ge 0$ a.p.t. (aproape peste tot).
- $(ii)\,\int_E f(x)dx \geq 0$ pentru orice mulțime $E\subseteq \mathbb{R}^n$ măsurabilă Lebesgue.
- b) Fie A, B două mulțimi măsurabile Lebesgue din \mathbb{R}^2 . Este adevărat că mulțimile A + B şi $A \cup B$ sunt măsurabile Lebesgue? Justificați!

Subiectul 2. a) Considerăm mulțimile

$$A = [5, 12] \setminus \mathbb{Q} \subseteq \mathbb{R}; \quad B = \{(x, 1) \in \mathbb{R}^2 | x \in [-1, 1] \setminus \mathbb{Q}\} \subseteq \mathbb{R}^2$$

Decideți dacă mulțimile A și B sunt măsurabile Lebesgue și, dacă este posibil, calculați $\lambda(A)$ și $\lambda(B)$.

b) Pentru orice $A \in \mathcal{M}_{\lambda^*}(\mathbb{R})$ definim $\mu(A) = \int_A \frac{1}{x^2} 1_{[1,\infty)} d\lambda(x)$. Demonstraţi că $(\mathbb{R}, \mathcal{M}_{\lambda^*}(\mathbb{R}), \mu)$ este un spaţiu cu măsură şi calculaţi $\mu((-4,\infty))$.

Subjectul 3. Considerăm funcția $f:[0,3] \longrightarrow \mathbb{R}$,

$$f(x) = \begin{cases} 2x + 1, & \text{dacă} \ x \in (1, 3] \cup \{0\} \\ n^2, & \text{dacă} \ x \in (\frac{1}{(n+1)^5}, \frac{1}{n^5}], \text{ pentru} \ n \in \mathbb{N}^*. \end{cases}$$

- a) Decideți dacă funcția f este măsurabilă Lebesgue.
- b) Decideți dacă funcția f este integrabilă Lebesgue.

Subiectul 4. Calculați integrala curbilinie următoare în două moduri (direct și folosind teorema lui Green):

$$I = \int_{\gamma} (x+3)dx + (xy+1)dy,$$

unde γ este conturul triunghiului OAB, O(0,0), A(-4,4) şi B(8,8), parcurs în sens trigonometric.

Subiectul 5. Considerăm funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$ definită prin

$$f(x) = \begin{cases} \sqrt{x}, & \text{dacă} \ x \in (0, 1) \\ 0, & \text{in rest} \end{cases}$$

a) Demonstrați că funcția f este integrabilă Lebesgue pe $\mathbb R$ și calculați $\int_{\mathbb R} f d\lambda$.

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru 2h. Fiecare subiect se noteaza se la 1 la 10. Rezolvările trebuie scanate și trimise împreună cu subiectul primit sub forma unui singur fișier pdf in formularul Google corespunzător. Succes!

b) Fie $(r_n)_{n\geq 1}$ o enumerare a mulțimii numerelor raționale $\mathbb Q$. Definim funcția $F:\mathbb R\longrightarrow \mathbb R$ prin $F(x)=\sum_{n=1}^\infty \frac{1}{3^n}f(x-r_n)$

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{3^n} f(x - r_n)$$

pentru orice $x \in \mathbb{R}$. Demonstrați că F este integrabilă Lebesgue și este bine definită.