Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра вычислительных методов и программирования

Типовой расчет по курсу «Теория вероятностей и математическая статистика»

Вариант №30

Выполнил: студент гр. 820601 Шведов А.Р. Проверил: Гуринович А.Б.

Таблица заданий

Wegol

Одномерная выборка:

-1.34 -1.82 -0.06 -0.61 0.97 1.62 1.76 0.36 0.23 2.25 -0.33 0.70 0.99 1.28 -0.67 2.72 -2.27 -1.54 3.08 -0.04 3.21 1.85 -0.38 2.53 -0.59 -0.70 2.63 -1.77 0.97 1.24 0.20 -0.52 -0.22 3.04 -1.30 2.23 0.41 1.88 3.04 -1.60 -2.14 -0.49 -0.25 2.27 1.83 3.04 -0.88 0.94 1.56 -2.37 -0.01 -2.23 1.38 -2.08 -0.86 -0.87 0.96 0.42 3.11 1.67 1.70 -1.97 1.70 -0.76 1.99 1.81 0.69 0.87 2.80 -0.42 1.89 1.71 0.40 -0.42 2.30 -1.46 2.08 0.04 0.22 0.06 -1.02 1.42 -2.44 1.00 3.06 2.33 0.40 -1.37 -0.51 1.43 -1.67 0.72 -1.10 0.74 1.89 -2.06 -2.36 1.18 1.48 1.07 Двумерная выборка:

Двумерная выборка: (0.31; -1.81) (-2.12; -1.84) (-1.92; -0.07) (-1.70; -0.40) (-4.17; 2.92) (0.83; -4.56) (-2.83; 0.74) (0.94; -5.86) (-2.80; -0.58) (-0.45; 1.60) (-2.69; -1.13) (-3.61; 2.06) (0.65; -3.63) (-0.81; -1.17) (-7.04; 4.07) (-3.82; 1.00) (-4.00; 0.97) (0.71; -4.17) (-5.24; 0.20) (1.41; 0.47) (-6.00; 1.64) (-4.48; 3.97) (-3.25; 1.27) (-1.46; 1.48) (-4.83; 2.25) (1.74; -2.08) (-3.90; 2.77) (-0.64; -1.70) (-3.57; 3.48) (0.50; -1.17) (-3.73; 0.50) (-1.22; -4.06) (-5.52; -1.13) (-1.92; 1.71) (-3.90; -1.54) (-2.20; 1.28) (-1.08; 1.14) (2.22; -3.50) (-2.46; -3.00) (0.03; -3.30) (1.81; -2.42) (-8.28; 1.53) (-4.38; 1.84) (-8.82; 7.41) (1.72; -0.68) (-4.03; -3.05) (-0.85; -3.22) (-2.97; -2.51) (-4.59; 2.71) (-0.07; -0.70)

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5

Задача 6

Задача 7

Задача 8

Задача № 9

По выборке одномерной случайной величины:

- получить вариационный ряд;
- построить график эмпирической функции распределения $F^*(x)$;
- построить гистограмму равноинтервальным способом;
- построить гистограмму равновероятностным способом;
- вычислить точечные оценки математического ожидания и дисперсии;
- вычислить интервальные оценки математического ожидания и дисперсии ($\gamma = 0.95$);
- выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия согласия χ^2 и критерия Колмогорова ($\alpha=0{,}05$).

Размер выборки n = 100

Решение

1) Построим график эмпирической функции непосредственно по вариационному ряду, так как $F^*(x)$ — неубывающая и практически все ступеньки графика имеют одинаковую величину $\frac{1}{n}$ (Рисунок 1).

2) Построим гистограмму равноинтервальным способом (рисунок 2). Для построения гистограммы составим интервальный статистический ряд (Талица 1), учитывая, что длина у всех интервалов должна быть одинаковая.

$$M = \sqrt{n} = \sqrt{100} = 10$$
 - количество интервалов;

$$h_j = \frac{X_n - X_1}{M} = \frac{3,21 + 2,44}{10} = 0,565$$
 - ширина интервала; Таблица 2 — Интервальный статистический ряд

$$p_j^* = \frac{v_j}{n}$$
 - частота попадания СВ X в j-ый интервал; $f_j^* = \frac{p_j^*}{h_j}$ - статистическая плотность в j-ом интервале.

Таблица 1 – Интервальный статистический ряд

тиолица т титервальный статиети теский ряд						
j	Aj	Bj	hj	vj	pj*	fj
1	-2,44	-1,875	0,565	9	0,09	0,159292
2	-1,875	-1,31	0,565	9	0,09	0,159292
3	-1,31	-0,745	0,565	7	0,07	0,123894
4	-0,745	-0,18	0,565	13	0,13	0,230088
5	-0,18	0,385	0,565	9	0,09	0,159292
6	0,385	0,95	0,565	10	0,1	0,176991
7	0,95	1,515	0,565	13	0,13	0,230088
8	1,515	2,08	0,565	14	0,14	0,247788
9	2,08	2,645	0,565	8	0,08	0,141593
10	2,645	3,21	0,565	9	0,09	0,159292

3) Построим гистограмму равновероятностным способом (рисунок 3). Для построения гистограммы составим интервальный статистический ряд, учитывая, что частота попадания СВ X в в каждый ј-ый интервал должна быть одинаковая (Таблица 2).

Таблица 2 – Интервальный статистический ряд

•	1	D.	1 '	1 .	• •	C'
J	Aj	Bj	hj	VJ	pj*	fj
1	-2,44	-1,795	0,645	10	0,1	0,155039
2	-1,795	-0,95	0,845	10	0,1	0,118343
3	-0,95	-0,5	0,45	10	0,1	0,222222
4	-0,5	0,015	0,515	10	0,1	0,194175
5	0,015	0,555	0,54	10	0,1	0,185185
6	0,555	0,995	0,44	10	0,1	0,227273
7	0,995	1,59	0,595	10	0,1	0,168067
8	1,59	1,885	0,295	10	0,1	0,338983
9	1,885	2,58	0,695	10	0,1	0,143885
10	2,58	3,21	0,63	10	0,1	0,15873

- 4) Математическое ожидание и дисперсия
- а) Вычислим точечные оценки математического ожидания и дисперсии:

$$M_X^* = \frac{1}{n} \cdot \sum_{i=1}^{n=100} x_i = 0,4785$$

$$D_X^* = \frac{1}{n-1} \cdot \sum_{i=1}^{n=100} (x_i - M_X^*)^2 = 2.467199$$

b) Вычислим интервальные оценки математического ожидания и дисперсии $(\gamma = 0.95)$:

$$I_{\gamma}(M_{X}) = \left[M_{X} - z_{\gamma} \frac{\sqrt{D_{X}}}{\sqrt{n}}; M_{X} + z_{\gamma} \frac{\sqrt{D_{X}}}{\sqrt{n}} \right] \qquad z_{\gamma} = \arg \Phi\left(\frac{\gamma}{2}\right)$$

$$z_{0.95} = \arg \Phi\left(0.475\right) = 1.96$$

$$I_{\gamma}(M_{X}) = \left[0.4785 - 1.96 \cdot \frac{\sqrt{2.467199}}{\sqrt{100}}; 0.4785 + 1.96 \cdot \frac{\sqrt{2.467199}}{\sqrt{100}} \right] = [0.17; 0.786];$$

$$I_{\gamma}(D_{X}) = \left[D_{X} - z_{\gamma} \sqrt{\frac{2}{n-1}} \cdot D_{X}; D_{X} + z_{\gamma} \sqrt{\frac{2}{n-1}} \cdot D_{X} \right] =$$

$$= \left[2.467199 + 1.96 \sqrt{\frac{2}{99}} \cdot 2.467199; 2.467199 - 1.96 \sqrt{\frac{2}{99}} \cdot 2.467199 \right]$$

$$= [3.154; 1.779];$$

- 5) По виду графика эмпирической функции распределения $F^*(x)$ и гистограмм выдвигаем двухальтернативную гипотезу о законе распределения случайной величины X:
- 1. H_0 величина X распределена по равномерному закону:

$$f(x)=f_0(x)=rac{1}{b-a};$$
 $F(x)=F_0(x)=rac{x-a}{b-a};$ a,b - параметры распределения

2. H_1 – величина X не распределена по равномерному закону:

$$f(x) \neq f_0(x);$$
 $F(x) \neq F_0(x)$

- 6) Проверим гипотезу о равномерном законе по критерию Пирсона χ^2 .
- а) Вычислим значение критерия χ^2 на основе равноинтервального статистического ряда:

$$\chi^{2} = 100 \cdot \sum_{j=1}^{10} \frac{(p_{j} - p_{j}^{*})^{2}}{p_{j}}$$

b) Теоретические вероятности попадания в интервалы вычислим по формуле:

$$p_{j} = F_{0}(B_{j}) - F_{0}(A_{j}) = \frac{B_{j} - A_{j}}{x_{n} - x_{j}}$$

Таблица 3 – Результаты расчётов

$\frac{1}{4}$ аолица $3 - 1$ сзультаты				ласчетов		
j	A_{j}	B_{j}	P_{j}	P_{j}^{*}	$\frac{\left(P_{j}^{*}-P_{j}\right)^{2}}{P_{j}}$	
1	-2,44	-1,875	0,1	0,09	0,001	
2	-1,875	-1,31	0,1	0,09	0,001	
3	-1,31	-0,745	0,1	0,07	0,009	
4	-0,745	-0,18	0,1	0,13	0,009	
5	-0.18	0,385	0.1	0.09	0,001	
6	0,385	0.95	0.1	0.1	0	
7	0,95	1,515	0,1	0,13	0,009	
8	1,515	2,08	0.1	0.14	0,016	
9	2,08	2,645	0.1	0,08	0,004	
10	2,645	3,21	0,1	0,09	0,001	
Сумма:			1	1	0,051	

с) Проверим правильность вычислений p_i :

$$\left| 1 - \sum_{j=1}^{10} p_j \right| = 0 < 0.01;$$

d) Вычислим критерий Пирсона:

$$\chi^2 = 100 \cdot \sum_{j=1}^{10} \frac{\left(p_j - p_j^*\right)^2}{p_j} = 5,1;$$

е) Определим число степеней свободы:

$$k = M - s - 1 = 10 - 2 - 1 = 7$$
:

f) Выбираем критическое значения критерия Пирсона из таблицы [1, стр.63] для степени свободы k = 7 и заданного уровня значимости $\alpha = 0.05$:

$$\chi^2_{0.05;7} = 14,07$$
 $\chi^2 = 5,1 < \chi^2_{0.05;7} = 14,07$

Так как условие выполняется, то гипотеза H_0 о равномерном законе распределения принимается (нет оснований ее отклонить).

- 6) Проверим гипотезу при помощи критерия Колмогорова.
- а) Для этого построим график гипотетической функции распределения $F_0(x)$ в одной системе координат с эмпирической функцией $F^*(x)$ (рисунок 6). В качестве опорных точек используем 10 значений $F_0(A_j)$ из таблицы 6. По графику определим максимальное по модулю отклонение между функциями $F_0(x)$ и $F^*(x)$:

$$Z = \max_{i=1}^{n} \left| F^{*}(x_{i}) - F_{0}(x_{i}) \right| = \max_{i=1}^{n} \left| 0, 3 - 0, 243 \right| = 0,057$$

b) Вычислим значение критерия Колмогорова:

$$\lambda = \sqrt{n} \cdot Z = \sqrt{100} \cdot 0.057 = 0.57$$

с) Из таблицы Колмогорова [1, стр. 64] по заданному уровню значимости $\alpha = 0.05$ выбираем критическое значение критерия:

$$\lambda_{\gamma} = \lambda_{1-\alpha} = \lambda_{0.95} = 1.36$$
 $\lambda = 0.57 \le \lambda_{\gamma} = 1.36$

Так как условие выполняется, гипотеза H_0 о равномерном законе распределения принимается (нет оснований ее отклонить).

Задача №10

По выборке двухмерной случайной величины:

- вычислить точечную оценку коэффициента корреляции;
- вычислить интервальную оценку коэффициента корреляции $\gamma = 0.95$;
- проверить гипотезу об отсутствии корреляционной зависимости $\alpha = 0.05$;
- вычислить оценки параметров a_0 и a_1 линии регрессии $y = a_0 + a_1 x$;
- построить диаграмму рассеивания и линию регрессии.

Решение

Для удобства все промежуточные вычисления поместим в таблицу 4. Вычислим

1) Оценки математических ожиданий по каждой переменной:

$$m_X^* = \frac{1}{n} \sum_{i=1}^n x_i = -2,2896$$
 $m_Y^* = \frac{1}{n} \sum_{i=1}^n y_i = -0,2054$

2) Оценки начальных моментов второго порядка по каждой переменной:

$$\alpha_2^*(x) = \frac{1}{n} \sum_{i=1}^n x_i^2 = 12,03496$$
 $\alpha_2^*(y) = \frac{1}{n} \sum_{i=1}^n y_i^2 = 6,899594$

3) Оценку смешанного начального момента второго порядка:

$$\alpha_{1,1}^*(x,y) = \frac{1}{n} \sum_{i=1}^n x_i \cdot y_i = -4,18331$$

4) Оценки дисперсий:

$$D_X^* = \frac{n}{n-1} \cdot \alpha_2^*(x) - \frac{n}{n-1} \cdot m_X^2 = 6,931322 \qquad D_Y^* = \frac{n}{n-1} \cdot \alpha_2^*(y) - \frac{n}{n-1} \cdot m_Y^2 = 6,997352$$

5) Оценку корреляционного момента:

$$K_{XY}^* = \frac{n}{n-1} \cdot \alpha_{1,1}^*(x, y) - \frac{n}{n-1} \cdot m_X^* \cdot m_Y^* = -4,74856$$

Таблица 4 – Результаты промежуточных вычислений

Tuosimia i Tesysibiatibi ripomerky to mbix bbi mesierimi						
X	У	\mathbf{x}^2	y^2	x*y		
0,31	-1,81	0,0961	3,2761	-0,5611		
-2,12	-1,84	4,4944	3,3856	3,9008		
-1,92	-0,07	3,6864	0,0049	0,1344		
-1,7	-0,4	2,89	0,16	0,68		
-4,17	2,92	17,3889	8,5264	-12,1764		
0,83	-4,56	0,6889	20,7936	-3,7848		
-2,83	0,74	8,0089	0,5476	-2,0942		
0,94	-5,86	0,8836	34,3396	-5,5084		
-2,8	-0,58	7,84	0,3364	1,624		
-0,45	1,6	0,2025	2,56	-0,72		
-2,69	-1,13	7,2361	1,2769	3,0397		
-3,61	2,06	13,0321	4,2436	-7,4366		
0,65	-3,63	0,4225	13,1769	-2,3595		
-0,81	-1,17	0,6561	1,3689	0,9477		
-7,04	4,07	49,5616	16,5649	-28,6528		
-3,82	1	14,5924	1	-3,82		
-4	0,97	16	0,9409	-3,88		
0,71	-4,17	0,5041	17,3889	-2,9607		
-5,24	0,2	27,4576	0,04	-1,048		
1,41	0,47	1,9881	0,2209	0,6627		
-6	1,64	36	2,6896	-9,84		
-4,48	3,97	20,0704	15,7609	-17,7856		

2.25	1.07	10.5605	1 (100	4.1075
-3,25	1,27	10,5625	1,6129	-4,1275
-1,46	1,48	2,1316	2,1904	-2,1608
-4,83	2,25	23,3289	5,0625	-10,8675
1,74	-2,08	3,0276	4,3264	-3,6192
-3,9	2,77	15,21	7,6729	-10,803
-0,64	-1,7	0,4096	2,89	1,088
-3,57	3,48	12,7449	12,1104	-12,4236
0,5	-1,17	0,25	1,3689	-0,585
-3,73	0,5	13,9129	0,25	-1,865
-1,22	-4,06	1,4884	16,4836	4,9532
-5,52	-1,13	30,4704	1,2769	6,2376
-1,92	1,71	3,6864	2,9241	-3,2832
-3,9	-1,54	15,21	2,3716	6,006
-2,2	1,28	4,84	1,6384	-2,816
-1,08	1,14	1,1664	1,2996	-1,2312
2,22	-3,5	4,9284	12,25	-7,77
-2,46	-3	6,0516	9	7,38
0,03	-3,3	0,0009	10,89	-0,099
1,81	-2,42	3,2761	5,8564	-4,3802
-8,28	1,53	68,5584	2,3409	-12,6684
-4,38	1,84	19,1844	3,3856	-8,0592
-8,82	7,41	77,7924	54,9081	-65,3562
1,72	-0,68	2,9584	0,4624	-1,1696
-4,03	-3,05	16,2409	9,3025	12,2915
-0,85	-3,22	0,7225	10,3684	2,737
-2,97	-2,51	8,8209	6,3001	7,4547
-4,59	2,71	21,0681	7,3441	-12,4389
-0,07	-0,7	0,0049	0,49	0,049

6) Точечную оценку коэффициента корреляции:

$$R_{XY}^* = \frac{K_{XY}^*}{\sqrt{D_X \cdot D_Y}} = -0,68185$$

7) Вычислим интервальную оценку коэффициента корреляции с заданной надёжностью $\gamma = 0.95$, По таблице функции Лапласа [1, стр, 61]

$$z_{0.95} = \arg \Phi(0.475) = 1.96$$
:

$$a = 0.5 \cdot \ln \left(\frac{1 + R_{XY}^*}{1 - R_{XY}^*} \right) - \frac{z_{\gamma}}{\sqrt{n - 3}} = -1,11845$$

$$b = 0.5 \cdot \ln \left(\frac{1 + R_{XY}^*}{1 - R_{XY}^*} \right) + \frac{z_{\gamma}}{\sqrt{n - 3}} = -0.54666$$

Таким образом, доверительный интервал для коэффициента корреляции имеет вид:

$$I_{\nu}(R_{XY}) = [-0.80703; -0.49801]$$

8) Проверим гипотезу о корреляционной зависимости:

$$H_0: R_{XY} = 0;$$

$$H_1:R_{XY}\neq 0.$$

Так как объём выборки велик (n>=50), то критерий вычислим по формуле:

$$Z = \frac{\left| R^*_{XY} \right| \cdot \sqrt{n}}{1 - \left(R^*_{XY} \right)^2} = 9,010522$$

По таблице функции Лапласа
$$Z_{0,05} = \arg \mathcal{O}\left(\frac{1-0.05}{2}\right) = 1.96$$

Так как $Z>Z_{\alpha}$, то гипотеза H_0 принимается, т.е. величины X и Y не коррелированы.

9) Вычислим оценки параметров линии регрессии:

$$\alpha_1^* = \frac{K_{XY}^*}{D_X} = -0,68509$$
 $\alpha_0^* = m_Y^* - \alpha_1^* \cdot m_X^* = -1,77398$

Уравнение линии регрессии имеет вид:

$$y(x) = \alpha_0^* + \alpha_1^* x = -1,77398 - 0,68509 x$$

Исходя из двухмерной выборки построим диаграмму рассеивания и линию регрессии y(x) = -1,77398 - 0,68509x (рисунок 4):

Рисунок 4