SEAT No.:	

P533

[Total No. of Pages : 1

T.E./Insem/APR-122 T.E. (E & TC) (Semester - II)

ADVANCED PROCESSORS			
		(2015 Pattern)	
Time	e :1 1	Hour] [Max.	Marks: 30
Instr	ucti	ions to the candidates:	
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4 and Q.5 or Q.6.	
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.	
	<i>3</i>)	Figures to the right side indicate full marks.	
	<i>4</i>)	Use of calculator is allowed.	
	<i>5)</i>	Assume suitable data if necessary.	
<i>Q1</i>)	a)	What is TDMI, Compare the ARM7, ARM9 and ARM11 pro	cessors.[5]
	b)	Describe CPSR and SPSR of ARM 7 in detail.	[5]
		OR OR	
Q2)	a)	Draw and explain the Data flow model of ARM7.	[5]
~	b)	State and explain different operating modes of ARM7.	[5]
	,		
Q3)	a)	Draw and explain the block schematic of Timer used in LPC	2148. [5]
~ /	b)	Explain with neat diagram relation between CCLK and PCL	
	- /	help of VPB/APB divider. Find the configuration of VPB	
		achieve PCLK = 30MHz for FOSC = 12MHz.	[5],
		OR	(-1
Q4)	a)	State features of LPC2148.	:[5]
۷-1	b)	Write an ARM based ALP to add series of 8,32 bit number	
	0)	result in register and memory.	[5]
		result in register discussions.	
<i>Q</i> 5)	a)	Draw an interfacing diagram for GLCD connected with data	pins from
20)	α)	port 0 and control pins from port 1 of LPC2148 and write an	• •
		C program to display square wave starting at x=y=16.	[5]
	b)	Draw and explain the block diagram of UART1.	[5]
	U)	OR	[0]
Q6)	a)	Draw and explain the interrupt structure of LPC2148.	[5]
20)	b)	Draw an interfacing diagram of 4×4 matrix keypad with LP	
	<i>U)</i>	write an embedded C program to detect the key.	[5]
		write an embedded e program to detect the key.	
		. 0	

