IN THE CLAIMS:

Claims 1-29 were canceled by the Preliminary Amendment filed July 14, 2000.

Kindly amend the claims 30-44, as follows:

- 1 30. (Currently amended) A router for use in routing packets over a network, the
- 2 router supporting a plurality, X, of classes of service and including:
- A. a plurality of input ports for receiving packets over the network;
- B. a plurality of output ports for transferring packets over the network;
- 5 C. a classifier for assigning packets received by the input ports to X * Y classes
- of service, where * represents multiplication, and mapping the XY classes of service to
- 7 the X classes of service that are supported by the router, the classifier assigning to the
- packet one of Y associated levels of priority, wherein each level of priority is associated
- 9 with a different probability of packet loss;
- D. a buffer subsystem for retaining the packets in class of service per output port queues based on probabilities of discard associated with the X * Y classes of service; and
- E. a scheduler for transferring the packets from the buffer <u>subsystem</u> through each of the output ports based on the X classes of service.
- 1 31. (Original) The router of claim 30 wherein the buffer subsystem includes mul-
- tiple storage locations and links available storage locations in a free queue.
- 1 32. (Original) The router of claim 31 wherein the buffer subsystem includes a
- 2 processor that determines:

3

i. a new weighted average depth for the free queue, and

- ii. a probability of discard for a given packet if the new weighted average queue
- 5 depth falls below a predetermined maximum threshold associated with the class of serv-
- 6 ice to which the packet is assigned by the classifier.
- 1 33. (Original) The router of claim 32 wherein the buffer subsystem discards a
- 2 given packet if the associated new weighted average depth for the free queue falls below
- a minimum threshold associated with the class of service to which the packet is assigned.
- 1 34. (Original) The router of claim 33 wherein the buffer subsystem processor cal-
- culates the probability of discard as $P_d = c-(m^*A_{NEW})$ where c is an intercept and m is a
- 3 slope that is associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- weighted average depth of the free queue.
- 1 35. (Original) The router of claim 34 wherein the buffer subsystem processor cal-
- culates the new weighted average depth of the free queue as $A_{NEW} = A_{CURRENT} + w(I I)$
- 3 A_{CURRENT}) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 36. (Currently amended) The router of claim 35-30 wherein the scheduler selects
- from the buffer subsystem packets for transfer based on weighting factors associated with
- the respective $2^n X$ classes of service.
- 1 37. (Original) A router for use in routing packets over a network, the router sup-
- 2 porting a plurality, X, of classes of service and including:

3 A	. :	a plurality	of in	put	ports	for	receiving	packets	over t	he	networ	k:
-----	------------	-------------	-------	-----	-------	-----	-----------	---------	--------	----	--------	----

- B. a plurality of output ports for transferring packets over the network;
- C. a multiple storage location buffer for retaining packets to be transferred through the output ports;
- D. a buffer subsystem for retaining the packets in class of service per output port queues based on probabilities of discard associated with X*Y classes of service, where * represents multiplication; and
- E. a scheduler for transferring the packets from the buffer subsystem through each of the output ports based on the X classes of service that the router supports.
- 1 38. (Currently amended) The router of claim 37 further including a classifier for:
- i. assigning packets received by the input ports to X*Y classes of service,
- ii. associating the packets with the X*Y X classes of service that are supported by
 the router, and
- iii. assigning to the packet one of X*Y Y associated levels of priority, wherein
 each level of priority is associated with a different probability of packet loss.
- 1 39. (Currently amended) The router of claim 38-37 wherein the buffer subsystem includes a processor that determines
- i. a new weighted average queue depth for a free queue that links available buffer
 storage locations, and
- ii. a probability of discard for a given packet if the new weighted average free queue depth falls below a predetermined maximum threshold associated with the class of service to which the packet is assigned.
- 1 40. (Original) The router of claim 39 wherein the buffer subsystem processor cal-2 culates the probability of discard as $P_d = c - (m^* A_{NEW})$ where c is an intercept and m is a

- slope that are associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- weighted average depth of the free queue.
- 1 41. (Original) The router of claim 40 wherein the buffer subsystem processor cal-
- culates the new depth of the weighted average free queue as $A_{NEW} = A_{CURRENT} + w$ (I-
- 3 A_{CURRENT}) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 42. (Currently amended) The router of claim 41 40 wherein the buffer subsystem
- discards a given packet if the new weighted average free queue depth falls below a mini-
- mum threshold associated with the class of service to which the packet is assigned.
- 1 43. (Currently amended) The router of claim 44 40 wherein the buffer subsystem
- retains a given packet if the new weighted average free queue depth is above a maximum
- threshold associated with the class of service to which the packet is assigned.
- 1 44. (Currently amended) The router of claim 37 wherein the scheduler selects pack-
- ets for transfer through each output port based on weighting factors associated with the
- respective $2^n X$ classes of service.

Please add the following new claims 45 et seq.

- 1 45. (New) An apparatus for routing packets through a router that supports a plu-
- 2 rality, X, of classes of service, the apparatus comprising:
- means for receiving packets through one or more input ports and assigning the
- 4 packets to X*Y classes of service, where * represents multiplication;
- 5 means for retaining packets based on probabilities of discard associated with the
- 6 X*Y classes of service in a multiple storage location buffer that links available storage
- 7 locations to a free queue; and
- means for transferring the packets through one or more output ports based on.
- 9 the X classes of service.

1

- 1 46. (New) The apparatus of claim 45, further including:
- means for associating packets assigned to the X*Y classes of service with the X
- 3 classes of service supported by the apparatus; and
- 4 means for assigning to the respective packets one of Y associated levels of pri-
- ority, each level of priority being associated with a different probability of packet loss.
 - 47. (New) The apparatus of claim 46, further comprising:
- means for determining a new weighted average depth for the free queue; and
- means for determining a probability of discard for a given packet if the new
- 4 weighted average free queue depth falls below a predetermined maximum threshold as-
- sociated with the class of service to which the packet is assigned.

- 48. (New) The apparatus of claim 47, wherein the means for retaining packets fur-1 ther comprises: 2 means for discarding a given packet if the new weighted average free queue 3 depth is less than a minimum threshold associated with the class of service to which the packet is assigned. 49. (New) The apparatus of claim 47, wherein the means for retaining packets fur-1 ther comprises: 2 means for retaining a given packet if the new weighted average free queue depth 3 is greater than a maximum threshold associated with the class of service to which the 4 packet is assigned. 5 50. (New) A computer-readable media, comprising: 1 instructions for execution in a processor for the practice of a method, said method 2 having the steps, 3 receiving packets through one or more input ports and assigning the packets to X*Y classes of service, where * represents multiplication; retaining packets based on probabilities of discard associated with the 6 X*Y classes of service in a multiple storage location buffer that links available 7 storage locations to a free queue; and transferring the packets through one or more output ports based on the X 9
- 1 51. (New) The computer-readable media of claim 50, wherein the method further comprises the steps of:

classes of service.

10

3		associating packets assigned to the A T classes of service with the A
4		classes of service supported by the apparatus; and
5		assigning to the respective packets one of Y associated levels of priority,
6		each level of priority being associated with a different probability of packet loss.
1	52.	(New) The computer-readable media of claim 51, wherein the method further
2	comp	rises the steps of:
3		determining a new weighted average depth for the free queue; and
4		determining a probability of discard for a given packet if the new
5		weighted average free queue depth falls below a predetermined maximum
6		threshold associated with the class of service to which the packet is assigned.
1	.53.	(New) The computer-readable media of claim 52, wherein the method further
2	comp	rises the step of:
3		discarding a given packet if the new weighted average free queue depth
4		is less than a minimum threshold associated with the class of service to which
5		the packet is assigned.
1	54.	(New) The computer-readable media of claim 52, wherein the method further
2	comp	rises the step of:
3	•	retaining a given packet if the new weighted average free queue depth is
4		greater than a maximum threshold associated with the class of service to which
5		the packet is assigned.
1	55.	(New) Electromagnetic signals propagating on a computer network, comprising:

2		instruc	tions for execution on a processor for the practice of a method, said method				
3	having	the step	ps,				
4			receiving packets through one or more input ports and assigning the				
5		packets	s to X*Y classes of service, where * represents multiplication;				
6			retaining packets based on probabilities of discard associated with the				
7	X*Y classes of service in a multiple storage location buffer that links available						
8	storage locations to a free queue; and						
9			transferring the packets through one or more output ports based on the X				
10		classes	of service.				
1 .	56.	(New)	The electromagnetic signals of claim 55, wherein the method further				
2			steps of:				
3	Compri	ises the	associating packets assigned to the X*Y classes of service with the X				
		oloccac					
4		Classes	of service supported by the apparatus; and				
5			assigning to the respective packets one of Y associated levels of priority,				
6		each le	vel of priority being associated with a different probability of packet loss.				
1	57.	(New)	The electromagnetic signals of claim 56, wherein the method further				
2	compri	ises the	steps of:				
3			determining a new weighted average depth for the free queue; and				
4			determining a probability of discard for a given packet if the new				
5		weighte	ed average free queue depth falls below a predetermined maximum				
6		thresho	old associated with the class of service to which the packet is assigned.				
	5 0	(NI)					
1	58.	, ,	The electromagnetic signals of claim 57, wherein the method further				
2	compri	ses the	step of:				

3		discarding a given packet if the new weighted average free queue depth
4		is less than a minimum threshold associated with the class of service to which
5		the packet is assigned.
1	59.	(New) The electromagnetic signals of claim 57, wherein the method further
2	comp	rises the step of:
3		retaining a given packet if the new weighted average free queue depth is
4		greater than a maximum threshold associated with the class of service to which
5		the packet is assigned.