DEEP LEARNING

Artificial Neural Networks

Deep Learning (DL)

 "DL is part of a broader family of machine learning methods based on artificial neural networks with representation learning" – WIKI

- Cascade of non-linear transformations
- End to end learning
- General framework (any hierarchical model is deep)

- Before 2012
 - Hubel & Wiesel ('60s) Simple & Complex cells architecture:

• Fukushima's Neocognitron ('70s):

Figures from Yann LeCun's CVPR 2015 plenary

- Before 2012
 - Yann LeCun's Early ConvNets ('80s):
 - Used for character recognition
 - Trained with back propagation

Figures from Yann LeCun's CVPR 2015 plenary

- Before 2012
 - Competitive performance, but not widely used
 - State-of-the-art in handwritten pattern recognition (LeCun et al. '89, Ciresan et. al. '07, etc.]

Figures from Yann LeCun's CVPR 2015 plenary

Deep Learning: New Era (1/2)

ImageNet Dataset

Figures from Fei-Fei Li's slides, CVPR 2015 plenary

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 6/77

Deep Learning: New Era (2/2)

ImageNet Classification Challenge

Figures from Fei-Fei Li's slides, CVPR 2015 plenary

What makes this result possible?

- More data to train
 - 1.4 million, high-resolution training samples
 - 1000 object categories
- Better Hardware (GPU)
- Better algorithm (e.g., Dropout, batch normalization)

IM ... GENET Large Scale Visual Recognition Challenge

Figures from Fei-Fei Li's slides

• Brilliant performance in different applications and dataset

Recurrent Neural Network

Convolutional Neural Network

MSR 2014

Deep Learning: Generative Models

Train CNN in an adversarial way

Style-GAN Karrans et. al., 2020

Neural Networks

Neural Function

- Brain function (thought) occurs as the result of the firing of neurons
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticity: They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Biology of A Neuron

Source: National Institutes of Health

Source: "Blausen 0657 - Multipolar neuron - English labels" by Bruce Blaus, license: CC BY.

Brain Structure

- Different areas of the brain have different functions
 - Some areas seem to have the same function in all humans (e.g., Broca's region for motor speech); the overall layout is generally consistent
 - Some areas are more plastic, and vary in their function; also, the lower-level structure and function vary greatly
- We don't know how different functions are "assigned" or acquired
 - Partly the result of the physical layout / connection to inputs (sensors) and outputs (effectors)
 - Partly the result of experience (learning)

Comparison of Computing Power

INFORMATION CIRCA 2012	Computer	Human Brain
Computation Units	10-core Xeon: 10 ⁹ Gates	10 ¹¹ Neurons
Storage Units	10 ⁹ bits RAM, 10 ¹² bits disk	10 ¹¹ neurons, 10 ¹⁴ synapses
Cycle time	10 ⁻⁹ sec	10 ⁻³ sec
Bandwidth	10 ⁹ bits/sec	10 ¹⁴ bits/sec

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neural Networks (1/2)

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural Networks (2/2)

- Computers are way faster than neurons...
- But there are a lot more neurons than we can reasonably model in modern digital computers, and they all fire in parallel
- Neural networks are designed to be massively parallel
- The brain is effectively a billion times faster

Layered feed-forward network

Neuron Model: Threshold Unit

Neuron Model: Logistic Unit

Neural Network

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 20/77

Feed-forward Process (1/2)

- Input layer units are set by some exterior function (think of these as sensors), which causes their output links to be activated at the specified level
- Working forward through the network, the input function of each unit is applied to compute the input value
 - Usually this is just the weighted sum of the activation on the links feeding into this node

Feed-forward Process (2/2)

- The activation function transforms this input function into a final value
 - Typically this is a nonlinear function, often a sigmoid function corresponding to the threshold of that node

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 22/77

Neural Network

 $a_i^{(j)}$ = "activation" of unit i in layer j

 $\Theta^{(j)}$ = weight matrix controlling function mapping from layer j to layer j+1

$$\begin{split} a_1^{(2)} &= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \\ a_2^{(2)} &= g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \\ a_3^{(2)} &= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \\ h_{\Theta}(x) &= a_1^{(3)} &= g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \end{split}$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension s_{j+1} imes (s_j+1) .

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Vectorization

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g\left(z_{1}^{(2)}\right)$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g\left(z_{2}^{(2)}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g\left(z_{3}^{(2)}\right)$$

$$h_{\Theta}(\mathbf{x}) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right) = g\left(z_{1}^{(3)}\right)$$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$\text{Add } a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

Other Network Architectures

- L denotes the number of layers
- $s \in \mathbb{N}^{+L}$ contains the numbers of nodes at each layer
 - Not counting bias units
 - Typically, $s_0 = d$ (# input features) and $s_{L-1} = K$ (# classes)

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 25/77

Multiple Output Units: One-vs-Rest (1/2)

Multiple Output Units: One-vs-Rest (2/2)

when motorcycle

when truck

• Given $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$

when car

when pedestrian

ullet Must convert labels to 1-of-K representation

- e.g.,
$$y_i = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 when motorcycle, $y_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ when car, etc.

Neural Network Classification (1/3)

Binary classification

$$y = 0 \text{ or } 1$$

1 output unit $(s_{L-1}=1)$

Given:

$$\{(\mathbf{x}_1,y_1),\,(\mathbf{x}_2,y_2),\,...,\,(\mathbf{x}_n,y_n)\}$$
 $\mathbf{s}\in\mathbb{N}^{+L}$ contains # nodes at each layer $-s_\theta=d$ (# features)

Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K \quad \text{e.g.} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 pedestrian car motorcycle truck

$$\mathit{K}$$
 output units $(\mathit{s}_{\mathit{L-1}} = \mathit{K})$

Neural Network Classification (2/3)

Neural Network Classification (3/3)

Understanding Representations

Representing Boolean Functions (1/2)

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_{1}	x_2	$\mathrm{h}_{\Theta}(\mathbf{x})$
0	0	<i>g</i> (-30) ≈ 0
0	1	$g(-10) \approx 0$
1	0	<i>g</i> (-10) ≈ 0
1	1	g(10) ≈ 1

Representing Boolean Functions (2/2)

Combining Representations

Layering Representations (1/2)

20x20 pixel images d = 400, 10 classes

Layering Representations (2/2)

Visualization of Hidden Layer

LeNet Demonstration

Neural Network Learning

Motivation

- Recall: Optimization objective is to minimize loss
- Goal: how should we tweak the parameters to decrease the loss slightly?

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 39/77

Problem Statement

• Given a function f with respect to inputs x, labels y, and parameters compute the gradient of Loss with respect to θ

Loss =
$$f(x,y;\theta)$$

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 40/77

Backpropagation

 An algorithm for computing the gradient of a compound function as a series of local, intermediate gradients

Loss =
$$((\sigma(xW_1 + b_1)W_2 + b_2) - y)^2$$

- Identify intermediate functions (forward prop)
- Compute local gradients
- Combine with upstream error signal to get full gradient

Modularity (1/2)

- Simple example
 - Compound function

$$f(x, y, z) = (x + y)z$$

• Intermediate variables q = x + y

$$q = x + y$$

Forward propagation

$$f = qz$$

Modularity (2/2)

Neural network example

• Compound function $Loss = ((\sigma(xW_1 + b_1)W_2 + b_2) - y)^2$

• Intermediate variables $h_1 = xW_1 + b_1$ $z_1 = \sigma(h_1)$

$$z_2 = z_1 W_2 + b_2$$

• Forward propagation $Loss = (z_2 - y)^2$

Forward and Backward

Intermediate Variables (forward propagation)

$$h_1 = xW_1 + b_1$$

$$z_1 = \sigma(h_1)$$

$$z_2 = z_1 W_2 + b_2$$

$$Loss = (z_2 - y)^2$$

Intermediate Gradients (backward propagation)

$$\frac{\partial h_1}{\partial x} = W_1^T$$

$$\frac{\partial z_1}{\partial h_1} = \sigma'(h_1) = z_1 \circ (1 - z_1)$$

$$\frac{\partial z_2}{\partial z_1} = W_2^\top$$

$$\frac{\partial Loss}{\partial z_2} = 2(z_2 - y)$$

Chain Rule (1/9)

- Key chain rule intuition
 - Expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g
 - Slopes multiply

$$\frac{d((f\circ g)(x))}{dx} = \frac{d(f(g(x)))}{d(g(x))} \frac{d(g(x))}{dx}$$

Chain Rule (2/9)

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 46/77

Chain Rule (3/9)

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 47/77

Chain Rule (4/9)

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 48/77

Chain Rule (5/9)

Chain Rule (6/9)

Chain Rule (7/9)

Circuit intuition

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 51/77

Chain Rule (8/9)

Circuit intuition

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain Rule (9/9)

Circuit intuition

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Forward Propagation

 Given one labeled training instance (x, y):

Forward propagation:

- $a^{(1)} = x$
- $\mathbf{z}^{(2)} = \Theta^{(1)} \mathbf{a}^{(1)}$
- $\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$ [add $\mathbf{a}_0^{(2)}$]
- $\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$
- $\mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$ [add $\mathbf{a}_0^{(3)}$]
- $\mathbf{z}^{(4)} = \Theta^{(3)} \mathbf{a}^{(3)}$
- $\mathbf{a}^{(4)} = \mathbf{h}_{\Theta}(\mathbf{x}) = g(\mathbf{z}^{(4)})$

Learning in NN: Backpropagation

- We cycle through our examples
 - If the output of the network is correct, no changes are made
 - If there is an error, weights are adjusted to reduce the error
- The trick is to assess the blame for the error and divide it among the contributing weights

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 55/77

Backpropagation Intuition (1/5)

- Each hidden node j is responsible for some fraction of the error $\delta j^{(l)}$ in each of the output nodes to which it connects
- $\delta j^{(l)}$ is divided according to the strength of the connection between hidden node and the output node
- Then, the "blame" is propagated back to provide the error values for the hidden layer

Backpropagation Intuition (2/5)

$$\begin{split} & \delta_j^{(l)} = \text{``error''} \text{ of node } j \text{ in layer } l \\ & \text{Formally, } & \delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \text{cost}(\mathbf{x}_i) \quad \text{ where } \text{cost}(\mathbf{x}_i) = y_i \log h_\Theta(\mathbf{x}_i) + (1 - y_i) \log(1 - h_\Theta(\mathbf{x}_i)) \end{split}$$

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 57/77

Backpropagation Intuition (3/5)

$$\begin{split} & \delta_j^{(l)} = \text{``error''} \text{ of node } j \text{ in layer } l \\ & \text{Formally, } & \delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \text{cost}(\mathbf{x}_i) \quad \text{ where } \text{cost}(\mathbf{x}_i) = y_i \log h_\Theta(\mathbf{x}_i) + (1 - y_i) \log(1 - h_\Theta(\mathbf{x}_i)) \end{split}$$

Backpropagation Intuition (4/5)

 $\delta_j^{(l)} = \text{"error" of node } j \text{ in layer } l$ Formally, $\delta_j^{(l)} = \frac{\partial}{\partial z_i^{(l)}} \text{cost}(\mathbf{x}_i) \quad \text{where } \text{cost}(\mathbf{x}_i) = y_i \log h_\Theta(\mathbf{x}_i) + (1 - y_i) \log(1 - h_\Theta(\mathbf{x}_i))$

Backpropagation Intuition (5/5)

$$\begin{split} & \delta_j^{(l)} = \text{``error''} \text{ of node } j \text{ in layer } l \\ & \text{Formally, } & \delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \text{cost}(\mathbf{x}_i) & \text{where } \text{cost}(\mathbf{x}_i) = y_i \log h_\Theta(\mathbf{x}_i) + (1 - y_i) \log(1 - h_\Theta(\mathbf{x}_i)) \end{split}$$

Backpropagation: Gradient Computation

• Let $\delta_j^{\;(l)}$ = "error" of node j in layer l (#layers L=4)

Backpropagation

• $\delta^{(4)} = a^{(4)} - y$

$$oldsymbol{\delta}^{(3)} = (\Theta^{(3)})^{\mathsf{T}} oldsymbol{\delta}^{(4)} \,.^* \, oldsymbol{g^{\,\prime}(\mathbf{z}^{(3)})}$$

$$oldsymbol{\delta}^{(2)} = (\Theta^{(2)})^{\mathsf{T}} oldsymbol{\delta}^{(3)} \,.^* \, g^{\, \prime}(\mathbf{z}^{(2)})$$

• (No $\delta^{(1)}$)

$$g'(\mathbf{z}^{(3)}) = \mathbf{a}^{(3)} \cdot * (1 - \mathbf{a}^{(3)})$$

$$g'(\mathbf{z}^{(2)})$$
 $g'(\mathbf{z}^{(2)}) = \mathbf{a}^{(2)} \cdot * (1-\mathbf{a}^{(2)})$

$$rac{\partial}{\partial\Theta_{ij}^{(l)}}J(\Theta)=a_j^{(l)}\delta_i^{(l+1)}$$
 (ignoring λ ; if $\lambda=0$)

Example Implementation

- For the sake of better understanding, we're not using vectorized form!
 - Initialize a network
 - Forward Propagate
 - Backward Propagate
- Let's use the vectorized form now

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 62/77

Non-linear Decision Boundary

 Can apply basis function expansion to features, same as with linear regression

Logistic Regression

• Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \dots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ where $x^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$

Model:

$$h_{m{ heta}}(m{x}) = g \, (m{ heta}^{ extsf{T}} m{x})$$
 $g(z) = rac{1}{1+e^{-z}}$ $m{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_d \end{bmatrix}$ $m{x}^{ extsf{T}} = egin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$

Cost function

Logistic regression

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i))] + \frac{\lambda}{2n} \sum_{j=1}^{d} \theta_j^2$$

Neural network

$$\begin{split} h_{\Theta} &\in \mathbb{R}^{K} & (h_{\Theta}(\mathbf{x}))_{i} = i^{th} \text{output} \\ J(\Theta) &= -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log (h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log \left(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k} \right) \right] \\ &+ \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} \left(\Theta_{ji}^{(l)} \right)^{2} & \text{kth class: true, predicted not k^{th} class: true, predicted} \end{split}$$

K is the number of output units
L is the total number of layers in the network, and sl is the number of units in layer l

Intuition Behind Cost Function

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 66/77

Optimizing the Neural Network

$$J(\Theta) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log(h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log\left(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k}\right) \right] + \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} \left(\Theta_{ji}^{(l)}\right)^{2}$$

Solve via: $\min J(\Theta)$ neural net yields a local optimum

 $J(\Theta)$ is not convex, so GD on a

But, tends to work well in practice

Need code to compute:

$$J(\Theta)$$

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

Example Implementation

Gradient Descent (GD)

Backpropagation

```
Set \Delta_{i,j}^{(l)} = 0 \quad \forall l, i, j (Used to accumulate gradient)

For each training instance (\mathbf{x}_k, y_k):

Set \mathbf{a}^{(1)} = \mathbf{x}_k
Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation

Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_k
Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}
Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}

Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
```

 $m{D}^{(l)}$ is the matrix of partial derivatives of $J(\Theta)$

Note: Can vectorize $\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ as $\mathbf{\Delta}^{(l)} = \mathbf{\Delta}^{(l)} + \boldsymbol{\delta}^{(l+1)} \mathbf{a}^{(l)^\mathsf{T}}$

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 70/77

Training a Neural Network (1/2)

Gradient descent with Backprop

```
Given: training set \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}
Initialize all \Theta^{(l)} randomly (NOT to 0!)
Loop // each iteration is called an epoch
      Set \Delta_{i,j}^{(l)} = 0 \quad \forall l, i, j
                                                                                     (Used to accumulate gradient)
      For each training instance (\mathbf{x}_k, y_k):
            Set \mathbf{a}^{(1)} = \mathbf{x}_k
            Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
            Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_k
           Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}
           Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}
     Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
      Update weights via gradient step \Theta_{ij}^{(l)} = \Theta_{ij}^{(l)} - \alpha D_{ij}^{(l)}
Until weights converge or max #epochs is reached
```

Backpropagation

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 71/77

Backpropagation

Training a Neural Network (2/2)

Mini-batch gradient descent with Backprop

```
Given: training set \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}
Initialize all \Theta^{(l)} randomly (NOT to 0!)
Loop // each iteration is called an epoch
     Loop // each iteration is a mini-batch
           Set \Delta_{i,j}^{(l)} = 0 \quad \forall l, i, j
                                                                                                      (Used to accumulate gradient)
           Sample m training instances \mathcal{X} = \{(\mathbf{x}'_1, y'_1), \dots, (\mathbf{x}'_m, y'_m)\} without replacement
           For each instance in \mathcal{X}, (\mathbf{x}_k, y_k):
                Set \mathbf{a}^{(1)} = \mathbf{x}_k
                Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
                Compute \delta^{(L)} = \mathbf{a}^{(L)} - y_k
                Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}
                Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}
          Compute mini-batch regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{m} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
           Update weights via gradient step \Theta_{ij}^{(l)} = \Theta_{ij}^{(l)} - \alpha D_{ij}^{(l)}
     Until all training instances are seen
Until weights converge or max #epochs is reached
```

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 72/77

Summary

- Neural nets will be very large: impractical to write down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- Implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Training a Neural Network

- 1. Randomly initialize weights
- 2. Implement forward propagation to get $h\Theta(\mathbf{x}i)$ for any instance $\mathbf{x}i$
- 3. Implement code to compute cost function $J(\Theta)$
- 4. Implement backprop to compute partial derivatives $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$
- 5. Use gradient checking to compare $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$ computed using backpropagation vs. the numerical gradient estimate.
 - Then, disable gradient checking code
- 6. Use gradient descent with backprop to fit the network

Multilayer Perceptron

Multilayer Perceptron

- A multilayer perceptron is a special case of a feedforward neural network, where every layer is a fully connected layer
- In some definitions, the number of nodes in each layer is the same
- In many definitions the activation function across hidden layers is the dame

More Example Implementations

- Make Predictions
- Multi-class Classification

Dr. Samet Ayhan Week 1: Artificial Neural Networks "Not Subject to EAR or ITAR" 77/77