ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова Департамент электронной инженерии

Курс: Теория электрических цепей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ N24

«ЧЕТЫРЕХПОЛЮСНИК»

Ефремов Виктор Васильевич БИТ-203 Бригада 1

R=100 Ом, C=1 мкФ, L=1 мГн, f=5 кГц.

Холостой ход на вторичных выводах:

* C:\Users\Wicirelllis\Documents\LTspiceXVII\lab_4.asc					
AC I	Analysis				
V(n002): V(b): V(a): V(n001): I(C1): I(L1): I(R2): I(R1):	mag: 4.76445 pi mag: 5 pi mag: 5 pi mag: 0.0476445 pi mag: 0.0476446 pi mag: 0.0476445 pi	Ohase: 17.6568° Ohase: -1.65602e-010° Ohase: -2.54444e-015° Ohase: 0° Ohase: 17.6567° Ohase: 17.6568° Ohase: -162.343°	voltage voltage voltage voltage device_current device_current device_current device_current device_current		

Короткое замыкание на вторичных выводах:

Холостой ход на первичных выводах:

A	C Analy	sis			
frequency:	5000	Hz			
V(n001):	mag:	4.65145 phase:	-16.9933°	voltage	
V(b):	mag:	5 phase:	1.55779e-010°	voltage	
V(a):	mag:	4.65145 phase:	-16.9933°	voltage	
V(n002):	mag:	5 phase:	0°	voltage	
I(C1):	mag:	0 phase:	0°	device_current	
I(L1):	mag:	0.0465145 phase:	163.007°	device_current	
I (R2):	mag:	0.0465144 phase:	-16.9933°	device_current	
I(R1):	mag:	0.0465145 phase:	-16.9933°	device_current	
I(V1):	mag:	0.046515 phase:	163.007°	device current	

Короткое замыкание на первичных выводах:

* C:\Users\Wicirelllis\Documents\LTspiceXVII\lab_4.asc					
AC Analysis					
frequency: 5000 Hz V(n001): mag: 12.3697 phase: -84.1727° voltage V(b): mag: 5 phase: 9.5802e-010° voltage V(a): mag: 3.88606e-010 phase: 5.82726° voltage V(n002): mag: 5 phase: 0° voltage I(C1): mag: 0.388606 phase: 5.82726° device_current I(L1): mag: 0.407819 phase: 168.17° device_current I(R3): mag: 0.388606 phase: 5.82726° device_current I(R2): mag: 0.407818 phase: -11.8295° device_current I(R1): mag: 0.123697 phase: -84.1727° device_current I(V1): mag: 0.407819 phase: 168.17° device_current					

Входные сопротивления (эксперимент):

Входные сопротивления ищутся как отношение входного напряжения (которое в нашем случае всегда 5В) и входного тока.

$$\begin{split} Z_{1\mathrm{x}} &= \frac{5}{0.0476446*e^{j17.6567^{\circ}}} \approx \mathbf{100} - j\mathbf{31.831} \\ Z_{1\mathrm{K}} &= \frac{5}{0.417726*e^{j22.8205^{\circ}}} \approx \mathbf{11.033} - j\mathbf{4.642} \\ Z_{2\mathrm{x}} &= \frac{5}{0.0465144*e^{-j16.9933^{\circ}}} \approx \mathbf{102.8} + j\mathbf{31.416} \\ Z_{2\mathrm{K}} &= \frac{5}{0.407818*e^{-j11.8295^{\circ}}} \approx \mathbf{12} + j\mathbf{2.513} \end{split}$$

Входные сопротивления (теория):

Сначала посчитаем комплексные сопротивления элементов схемы. 2.8 Ом в импендане катушки нужны, т.к. модель в спайсе их учитывает и без них будет заметное расхождение в результатах.

$$Z_{C} = \frac{1}{j2\pi fC} = \frac{1}{j * 2 * 3.14159256 * 5 * 10^{3} * 10^{-6}} \approx -j31.831$$

$$Z_{R} = R = 100$$

$$Z_{L} = 2.8 + j2\pi fL = 2.8 + j * 2 * 3.14159256 * 5 * 10^{3} * 10^{-3} \approx 2.8 + j31.416$$

$$Z_{1x} = Z_{C} + R = -j31.831 + 100 \approx \mathbf{100} - \mathbf{j31.831}$$

$$Z_{1K} = Z_{C} + (R||Z_{L}) = Z_{C} + \frac{R * Z_{L}}{R + Z_{L}} = -j31.831 + \frac{100 * (2.8 + j31.416)}{100 + 2.8 + j31.416} \approx \mathbf{11.033} - \mathbf{j4.642}$$

$$= 11.970 * e^{-j22.820^{\circ}}$$

$$Z_{2x} = Z_{L} + R = 2.8 + j31.416 + 100 \approx \mathbf{102.8} + \mathbf{j31.416}$$

$$Z_{2K} = Z_{L} + (R||Z_{C}) = Z_{L} + \frac{R * Z_{C}}{R + Z_{C}} = 2.8 + j31.416 + \frac{100 * (-j31.831)}{100 - j31.831} \approx \mathbf{12} + \mathbf{j2.513}$$

Можно видеть, что с хорошей точностью рачеты совпадают с моделированием спайса.

Первичные параметры (эксперимент):

Будем считать А-параметры. Они определяются системой:

$$U_1 = A_{11}U_2 + A_{12}I_2$$

$$I_1 = A_{21}U_2 + A_{22}I_2$$

Расчет по результатам моделирования:

В случае холостого хода $I_2=0$, откуда

$$A_{11} = \frac{U_1}{U_2} = \frac{5}{4.76445 * e^{j17.6568^{\circ}}} \approx \mathbf{1} - j\mathbf{0}.318$$

$$A_{21} = \frac{I_1}{U_2} = \frac{0.0476446 * e^{j17.6567^{\circ}}}{4.76445 * e^{j17.6568^{\circ}}} \approx \mathbf{0}.\mathbf{01}$$

В случае короткого замыкания $U_2=0$, откуда

$$A_{12} = \frac{U_1}{I_2} = \frac{5}{0.388606 * e^{j5.82726^{\circ}}} \approx 12.8 - j1.306$$

$$A_{22} = \frac{I_1}{I_2} = \frac{0.417726 * e^{j22.8205^{\circ}}}{0.388606 * e^{j5.82726^{\circ}}} \approx 1.028 + j0.314$$

Первичные параметры (теория):

Холостой ход на вторичных выводах:

$$A_{11} = \frac{U_1}{U_2} = \frac{U_1}{I_1 * Z_R} = \frac{Z_{1x}}{Z_R} = \frac{Z_C + Z_R}{Z_R} = 1 + \frac{Z_C}{Z_R} \approx \mathbf{1} - \mathbf{j0}.\mathbf{318}$$

$$A_{21} = \frac{I_1}{U_2} = \frac{I_1}{I_1 * Z_R} = \frac{1}{Z_R} \approx \mathbf{0}.\mathbf{01}$$

Короткое замыкание на вторичных выводах

Короткое замыкание на вторичных выводах.
$$A_{12} = \frac{U_1}{I_2} = \frac{U_1}{I_1 * \frac{Z_R}{Z_R + Z_L}} = \frac{U_1}{\frac{U_1}{Z_C + \frac{Z_R Z_L}{Z_R + Z_L}}} * \frac{Z_R}{Z_R + Z_L} = \frac{Z_C(Z_R + Z_L) + Z_R Z_L}{Z_R} = Z_C + Z_L + \frac{Z_C Z_L}{Z_R} \times \frac{Z_R}{Z_R + Z_L} = \frac{Z_C(Z_R + Z_L) + Z_R Z_L}{Z_R} = Z_C + Z_L + \frac{Z_C Z_L}{Z_R} \times \frac{Z_R}{Z_R + Z_L} = \frac{Z_R + Z_L}{Z_R} = \frac{Z_R + Z$$

Здесь так же все с хорошей точностью совпадает.