Pertemuan 5 HISTOGRAM

- Pertemuan ini membahas tentang:
 - Pembuatan Histogram
 - Algoritma Perhitungan
 - Pengubahan Histogram
 - Perataan Histogram (Histogram Equalization)
 - Spesifikasi Histogram

Pembuatan Histogram

• Histogram Citra adalah

$$h_i = \frac{n_i}{n}$$
 , $i = 0, 1, ..., L-1$

Dimana

L = derajat keabuan $n_i = \text{jumlah } pixel \text{ yang memiliki derajat keabuan } i$ n = jumlah seluruh pixel di dalam citra

Pembuatan Histogram

- Ciri citranya
 - a) Gelap
 - b) Terang
 - c) Normal
 - d) Normal Brightness dan Contrast

Algoritma Histogram

• Contoh, citra 8x8 dengan skala keabuan 0 - 15

[3	7	7	8	10	12	14	10
2	0	0	0	1	8	15	15
14	6	5	9	8	10	9	12
12	12	11	8	8	10	11	1
0	2	3	4	5	13	10	14
4	5	0	0	1	0	2	2
15	13	11	10	9	9	8	7
2	1	0	10	11	14	13	12

	n_i	$h_i = n_i/n \ (n = 6)$
0	8	0.125
1	4	0.0625
2	5	0.078125
3	2	0.03125
4	2	0.03125
5	3	0.046875
6	1	0.015625
7	3	0.046875
8	6	0.09375
9	3	0.046875
10	7	0.109375
11	4	0.0625
12	5	0.078125
13	3	0.046875
14	4	0.0625
15	3	0.046875

Pembuatan Histogram

• Contoh citra hitam-putih

(a) kapal 512 x512, 8-bit

(b) Histogram citra kapal (by PolyView)

Pembuatan Histogram

• Contoh citra berwarna

(a) pepper (color), 512x512, 24-bit

(b) Histogram untuk kanal merah

(c) Histogram untuk kanal hijau

(d) Histogram untuk kanal biru

- Ada dua cara
 - Perataan Histogram
 - Spesifikasi Histogram

Rumus histogram ~ rumus peluang

$$P_r(r_k) = \frac{n_k}{n}$$

$$r_k = \frac{k}{L-1} \qquad , 0 \le k \le L-1$$

- Derajat keabuan (k) dinormalkan terhadap derajat keabuan terbesar (L-1).
- $r_k = 0$ ~ hitam, $r_k = 1$ ~ putih

• Contoh, *L*=8

,	r_k
0	0/7 = 0
1	1/7
2	2/7
3	3/7
4	4/7
5	5/7
6	6/7
7	7/7 = 1

Pengertiannya

- Mengubah derajat keabuan suatu pixel (r) dengan derajat keabuan yang baru dengan suatu fungsi transformasi T, dimana s=T(r)

• Sifatnya

- Nilai s adalah pemetaan 1 ke 1 dari r, sehingga r dapat diperoleh dari transformasi invers $r = T^{-1}(s)$, $0 \le s \le 1$
- Untuk $0 \le r_i \le 1$, maka $0 \le T(r) \le 1$

• Contoh, citra 64x64 dengan derajat keabuan (L) = 8

k	r_k	n_k	$P_r(r_k) = n_k/n$
0	0/7 = 0.00	790	0.19
1	1/7 = 0.14	1023	0.25
2	2/7 = 0.29	850	0.21
3	3/7 = 0.43	656	0.16
4	4/7 = 0.57	329	0.08
5	5/7 = 0.71	245	0.06
6	6/7 = 0.86	122	0.03
7	7/7 = 1.00	81	0.02

• Contoh, Histogram sebelum dilakukan perataan histogram

• Contoh, Perhitungan perataan histogram

 $s_5 = 0.95$

Soliton, Formedigan pertutation instogram
$$s_0 = T(r_0) = \sum_{j=0}^{0} P_r(r_j) = P_r(r_0) = 0.19$$

$$s_1 = T(r_1) = \sum_{j=0}^{1} P_r(r_j) = P_r(r_0) + P_r(r_1) = 0.19 + 0.25 = 0.44$$

$$s_2 = T(r_2) = \sum_{j=0}^{2} P_r(r_j) = P_r(r_0) + P_r(r_1) + P_r(r_2) = 0.19 + 0.25 + 0.21 = 0.65$$

$$s_3 = 0.81 \qquad s_6 = 0.98$$

$$s_4 = 0.89 \qquad s_7 = 1.00$$

• Contoh, Perhitungan perataan histogram. Pembulatan ke nilai *r* terdekat

```
s_0 = 0.19 lebih dekat ke nilai 1/7 (= 0.14), maka s_0 = 1/7 s_1 = 0.44 lebih dekat ke nilai 3/7 (= 0.43), maka s_1 = 3/7 s_2 = 0.65 lebih dekat ke nilai 5/7 (= 0.71), maka s_2 = 5/7 s_3 = 0.81 lebih dekat ke nilai 6/7 (= 0.86), maka s_3 = 6/7 s_4 = 0.89 lebih dekat ke nilai 6/7 (= 0.86), maka s_4 = 6/7 s_5 = 0.95 lebih dekat ke nilai 7/7 (= 1.00), maka s_5 = 7/7 s_6 = 0.98 lebih dekat ke nilai 7/7 (= 1.00), maka s_6 = 7/7 s_7 = 1.00 lebih dekat ke nilai 7/7 (= 1.00), maka s_7 = 7/7
```

• Contoh, Perhitungan perataan histogram. Hasil transformasinya

· k	r_k	S_k
0	0	1/7
1	1/7	3/7
2	2/7	5/7
3	3/7	6/7
4	4/7	6/7
5	5/7	1
6	6/7	1
7	1	1 -

Notasinya

$$s_0 = 1/7$$
, $s_1 = 3/7$, $s_2 = 5/7$, $s_3 = 6/7$, $s_4 = 1$

• Contoh, Perhitungan perataan histogram. Hasil rangkuman transformasinya

Sk	n_k	$P_s(s_k) = n_k/n$
1/7	790	0.19
3/7	1023	0.25
5/7	850	0.21
6/7	656 + 329 = 958	0.23
7/7	$245 + 122 + 81 \approx 448$	0.11

Contoh, Hasil rangkuman histogramnya
 Sebelum

Contoh

(b) Kiri: citra anjing collie setelah perataan histogram; kanan: histogramnya

- Perataan histogram cocok untuk pembuatan histogram yang seragam
- Spesifikasi histogram ~ metode pembuatan histogram yang ditentukan nilainya oleh pengguna, bisa untuk histogram yang tidak seragam

- Secara matematis
 - − *T* & *G* ~ Transformasi
 - $-P_r(r)$ ~ histogram citra semula
 - $-P_z(z)$ ~ histogram yang diharapkan
 - Perataan histogramnya adalah

$$s = T(r) = \int_{0}^{r} P_r(w) dw$$

Jika histogram yang diharapkan telah dispesifikasikan, maka perataan histogramnya

$$v = G(z) = \int_{0}^{z} P_{z}(w)dw$$

Secara matematis

– Invers dari G

$$z = G^{-1}(v)$$

- Dengan mengganti v dengan s $z \approx G^{-1}(s)$

- Hasil tsb merupakan harga harap/pendekatan
- Dengan kata lain histogram nilai intensitas pada citra semula dipetakan menjadi intensitas z pada citra yang diinginkan dengan fungsi

$$z = G^{-1}[T(r)]$$

• Contoh, citra 64x64 dengan derajat keabuan (L) = 8

Tabel	histogram	citra	semul	a
-------	-----------	-------	-------	---

r_k	n_k	$P_r(r_k) = n_k/n$
0/7 = 0.00	790	0.19
1/7 = 0.14	1023	0.25
2/7 = 0.29	850	0.21
3/7 = 0.43	656	0.16
4/7 = 0.57	329	0.08
5/7 = 0.71	245	0.06
6/7 = 0.86	122	0.03
7/7 = 1.00	81	0.02

Tabel histogram yang diinginkan

Zk	$P_z(z_k)$
0/7 = 0.00	0.00
1/7 = 0.14	0.00
2/7 = 0.29	0.00
3/7 = 0.43	0.15
4/7 = 0.57	0.20
5/7 = 0.71	0.30
6/7 = 0.86	0.20
7/7 = 1.00	0.15

Langkah-langkahnya

Langkah 1: Hasil perataan histogram terhadap citra semula,

$$s_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n} = \sum_{j=0}^k P_r(r_j)$$

$r_{i\rightarrow}s_{k}$	ov imagazin n_k dat dan diums	$P_s(s_k) = n_k/n$
$r_0 \rightarrow s_0 = 1/7$	790	0.19
$r_1 \rightarrow s_1 = 3/7$	1023	0.25
$r_2 \rightarrow s_2 = 5/7$	850	0.21
$r_3, r_4 \rightarrow s_3 = 6/7$	656 + 329 = 958	0.23
$r_5, r_6, r_7 \rightarrow s_4 = 7/7$	245 + 122 + 81 = 448	0.11

• Langkah-langkahnya

Langkah 2: Lakukan perataan terhadap histogram yang diinginkan, $P_z(z)$, dengan persamaan

$$v_k = G(z_k) = \sum_{j=0}^k \frac{n_j}{n} = \sum_{j=0}^k P_z(z_j)$$

$$v_0 = G(z_0) = 0.00$$
 $v_4 = G(z_4) = 0.35$
 $v_1 = G(z_1) = 0.00$ $v_5 = G(z_5) = 0.65$
 $v_2 = G(z_2) = 0.00$ $v_6 = G(z_6) = 0.85$
 $v_3 = G(z_3) = 0.15$ $v_7 = G(z_7) = 1.00$

• Langkah-langkahnya

Langkah 3: Gunakan transformasi $z = G^{-1}(s)$ untuk memperoleh nilai z dari nilai s hasil perataan histogram.

$$s_0 = 1/7 \approx 0.14$$
 paling dekat dengan $0.15 = G(z_3)$, jadi $G^{-1}(0.14) = z_3 = 1/7$
 $s_1 = 3/7 \approx 0.43$ paling dekat dengan $0.35 = G(z_4)$, jadi $G^{-1}(0.43) = z_4 = 4/7$
 $s_2 = 5/7 \approx 0.71$ paling dekat dengan $0.65 = G(z_5)$, jadi $G^{-1}(0.71) = z_5 = 5/7$
 $s_3 = 6/7 \approx 0.86$ paling dekat dengan $0.85 = G(z_6)$, jadi $G^{-1}(0.86) = z_6 = 6/7$
 $s_4 = 1 \approx 1.00$ paling dekat dengan $1.00 = G(z_7)$, jadi $G^{-1}(1.00) = z_7 = 1$

Diperoleh pemetaan langsung sebagai berikut:

$$r_0 = 0 \rightarrow z_3 = 3/7$$
 $r_4 = 4/7 \rightarrow z_6 = 6/7$
 $r_1 = 1/7 \rightarrow z_4 = 4/7$ $r_5 = 5/7 \rightarrow z_7 = 1$
 $r_2 = 2/7 \rightarrow z_5 = 5/7$ $r_6 = 6/7 \rightarrow z_7 = 1$
 $r_3 = 3/7 \rightarrow z_6 = 6/7$ $r_7 = 1 \rightarrow z_7 = 1$

• Langkah-langkahnya

Penyebaran pixel:

Karena $r_0 = 0$ dipetakan ke $z_3 = 3/7$, maka terdapat 790 *pixel* hasil transformasi yang memiliki nilai intensitas 3/7.

Karena $r_1 = 1/7$ dipetakan ke $z_4 = 4/7$, maka terdapat 1023 *pixel* hasil transformasi yang memiliki nilai intensitas 4/7.

Karena $r_2 = 2/7$ dipetakan ke $z_5 = 5/7$, maka terdapat 850 *pixel* hasil transformasi yang memiliki nilai intensitas 5/7.

Karena $r_3 = 3/7$ dan $r_4 = 4/7$ dipetakan ke $z_6 = 6/7$, terdapat 245 + 122 + 81 = 448 pixel hasil transformasi yang memiliki nilai intensitas 1.

• Langkah-langkahnya

Selanjutnya, tidak ada *pixel* yang mempunyai intensitas $z_0 = 0$, $z_1 = 1/7$, dan $z_2 = 2/7$, karena tidak ada r_k yang dipetakan ke nilai-nilai z tersebut.

Zk	n_k	$P_z(z_k) = n_k/n$
0	0	0.00
1/7	0	0.00
2/7	0	0.00
3/7	790	0.19
4/7	1023	0.25
5/7	850	0.21
6/7	985	0.24
1	-448	0.11

• Hasil histogram yang diharapkan

