Университет ИТМО Кафедра вычислительной техники Основы вычислительной техники

ЛАБОРАТОРНАЯ РАБОТА №3

Выполнение циклических программ

Группа Р3102 Вариант №88

Работу выполнил студент Коков Алексей Тимурович

Цель работы

Изучение способов организации циклических программ и исследование порядка функционирования БЭВМ при выполнении циклических программ.

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Вариант 88:

3E5:	03FC	3F3:	F700
3E6:	0003	3F4:	83F9
3E7:	F500	3F5:	F600
3E8:	+ F200	3F6:	F600
3E9:	43E5	3F7:	63E7
3EA:	3009	3F8:	33E7
3EB:	F200	3F9:	000A
3EC:	33E7	3FA:	C3EF
3ED:	63E6	3FB:	F000
3EE:	300A	3FC:	F101
3EF:	F200	3FD:	FA01
3F0:	4809	3FE:	43F2
3F1:	F700		
3F2:	83F9		

Текст исходной программы

Адрес	Код программы	Мнемоника	Комментарии		
3E5	03FC	A	Адрес первого элемента		
			массива.		
3E6	0003	N	Число элементов в массиве.		
3E7	F500	R	Ячейка, содержащая результат.		
3E8	+ F200	CLA	Начало программы.		
3E9	43E5	ADD 3E5	В индексную ячейку 009 из		
3EA	3009	MOV 009	ячейки 3Е5 записывается адрес		
			первого элемента массива.		
3EB	F200	CLA	Обнуление ячейки 3Е7.		
3EC	33E7	MOV 3E7			

3ED	63E6	SUB 3E6	В ячейку 00А записывается
3EE	300A	MOV 00A	отрицательное значение кол-ва
			элементов в массиве.
3EF	F200	CLA	Начало цикла.
3F0	4809	ADD (009)	Значение аккумулятора
			складывается со значением
			ячейки по адресу,
			расположенному в ячейке 009.
			Адрес инкрементируется
			(переход на следующий
			элемент массива).
3F1	F700	ROR	Проверка делимости числа на
3F2	83F9	BCS 3F9	4. В случае если число на 4 не
3F3	F700	ROR	делится, производится переход
3F4	83F9	BCS 3F9	к ячейке 3F9 и выполнение
			продолжается, начиная с нее.
3F5	F600	ROL	Восстановление исходного
3F6	F600	ROL	значения числа.
3F7	63E7	SUB 3E7	Отнять R от элемента массива.
3F8	33E7	MOV 3E7	Записать получившееся
			значение обратно в R.
3F9	000A	ISZ 00A	Инкрементирование счетчика
3FA	C3EF	BR 3EF	итераций. Если он <0, то
			осуществляется переход в
			начало цикла.
3FB	F000	HLT	Остановка. Конец программы.
3FC	F101	A_1	
3FD	FA01	A_2	Элементы массива.
3FE	43F2	A_3	

Описание программы

Программа вычисляет значение R следующим образом:

$$\begin{split} R &= F_{n'}; \\ F_i &= A_i' - F_{i-1}; \\ F_1 &= A_1'. \end{split}$$

Здесь n'- количество элементов, кратных 4, в массиве; A'_i - i-й элемент массива элементов, кратных 4; $1 \le i \le n'$.

Элементы массива и результат вычислений R — знаковые 16-разрядные числа, область представления данных: $[-2^{15}; 2^{15}-1]$.

Количество элементов массива и ячейка адреса первого элемента массива — беззнаковое 11-разрядное число, область представления данных: $[0; 2^{11}-1]$.

OД3 для результата вычисления R совпадает с областью представления данных: $[-2^{15}; 2^{15}-1]$.

OД3 для каждого элемента массива чисел, кратных 4, в общем виде может быть выражена как:

$$-2^{15} \le A'_i - (A'_{i-1} - \dots) \le 2^{15} - 1; \quad 1 \le i \le n'.$$

Также существует такая OД3, что ошибка переполнения при вычислении результата R не возникнет вне зависимости от значений элементов массива:

$$-2^{15-\frac{n'}{2}} \le A_i' \le 2^{15-\frac{n'}{2}} - 1; \ n \ge 2.$$

Для n=1 применимо общее выражение ОДЗ для знаковых чисел: $-2^{15} \le A_1' \le 2^{15} - 1$.

 $O\!Z\!\!/3$ для диапазона размещения массива: [000; 008] \cup [00B; 3E4] \cup [3FC; 7FF]. Такой диапазон обусловлен в первую очередь количеством доступных ячеек в БЭВМ, а также зарезервированными программой адресами.

OД3 для количества элементов массива зависит от расположения первого и последнего элемента массивов: [1; (адрес последнего элемента – адрес первого элемента + 1)].

Адрес первой и последней команды:

Первая команда: **3EF** Последняя команда: **3FB**

Адреса ячеек для хранения аргументов и промежуточных результатов:

Результат R: 3E7

Количество элементов массива N: **3E6** Адрес первого элемента массива A: **3E5**

Элементы массива A_i: 3FC – 3FE

Таблица трассировки

Выполняемая Содержимое регистров после			ie		Ячейка, содержимое				
команда		выполнения команды						которой изменилось после	
					выполнения команды				
Адрес	Код	СК	PA	PK	РД	A	С	Адрес	Новый код
3E8	F200	3E9	3E8	F200	F200	0000	0		
3E9	43E5	3EA	3E5	43E5	03FC	03FC	0		
3EA	3009	3EB	009	3009	03FC	03FC	0	009	03FC
3EB	F200	3EC	3EB	F200	F200	0000	0		
3EC	33E7	3ED	3E7	33E7	0000	0000	0	3E7	0000
3ED	63E6	3EE	3E6	63E6	0003	FFFD	0		
3EE	300A	3EF	00A	300A	FFFD	FFFD	0	00A	FFFD
3EF	F200	3F0	3EF	F200	F200	0000	0		
3F0	4809	3F1	3FC	4809	F101	F101	0	009	03FD

3F1	F700	3F2	3F1	F700	F700	7880	1		
3F2	83F9	3F9	3F2	83F9	83F9	7880	1		
3F9	000A	3FA	00A	000A	FFFE	7880	1	00A	FFFE
3FA	C3EF	3EF	3FA	C3EF	C3EF	7880	1		
3EF	F200	3F0	3EF	F200	F200	0000	1		
3F0	4809	3F1	3FD	4809	FA01	FA01	0	009	03FE
3F1	F700	3F2	3F1	F700	F700	7D00	1		
3F2	83F9	3F9	3F2	83F9	83F9	7D00	1		
3F9	000A	3FA	00A	000A	FFFF	7D00	1	00A	FFFF
3FA	C3EF	3EF	3FA	C3EF	C3EF	7D00	1		
3EF	F200	3F0	3EF	F200	F200	0000	1		
3F0	4809	3F1	3FE	4809	43F2	43F2	0	009	03FF
3F1	F700	3F2	3F1	F700	F700	21F9	0		
3F2	83F9	3F3	3F2	83F9	83F9	21F9	0		
3F3	F700	3F4	3F3	F700	F700	10FC	1		
3F4	83F9	3F9	3F4	83F9	83F9	10FC	1		
3F9	000A	3FB	00A	000A	0000	10FC	1	00A	0000
3FB	F000	3FC	3FB	F000	F000	10FC	1		

Вывод

В ходе лабораторной работы я смог познакомиться с операторами перехода, а также изучил способы организации циклических программ и исследовал порядок функционирования БЭВМ при выполнении циклических программ.