EE1101 Signals and Systems JAN—MAY 2019 Tutorial 1

- 1. Let x[n] be a signal with x[n] =for n < -2 and n > 4. For each of the signals given below, determine the ranges of n for which the signal is guaranteed to be zero.
 - (a) x[n-3], (b) x[-n], (c) x[-n+3], (d) x[3n-1].
- 2. Determine whether or not each of the following signals is periodic.
 - (a) $x(t) = 2e^{j(t+\frac{\pi}{4})}$, (b) y[n] = u[n] + u[-n], (c) $z[n] = \sum_{n=-\infty}^{\infty} \left(\delta[n-4k] \delta[n-1-4k]\right)$.
- 3. For each of the following signals, determine all values of the independent variable at which the even part of the signal is guaranteed to be zero.
 - (a) $x_1[n] = (\frac{1}{2})^n u[n-3]$, (b) $x_2(t) = sin(\frac{t}{2})$, (c) $x_3(t) = e^{-5t}u(t+2)$.
- 4. Consider the signal $x(t) = \delta(t+2) \delta(t-2)$. Calculate energy of the signal $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 5. (a) Show that if x[n] is an odd signal, then

$$\sum_{n=-\infty}^{\infty} x[n] = 0$$

- (b) Show that if $x_1[n]$ is an odd signal and $x_2[n]$ is an even signal, then $x_1[n]x_2[n]$ is an odd signal.
- (c) Show that if x[n] is an arbitrary signal with even and odd parts $x_e[n]$ and $x_o[n]$, then

$$\sum_{n=-\infty}^{\infty} x^2[n] = \sum_{n=-\infty}^{\infty} x_e^2[n] + \sum_{n=-\infty}^{\infty} x_o^2[n]$$

6. An important concept in many communication applications is the 'correlation' between two signals. Let x(t) and y(t) be two signals, then the correlation between them is defined as:

$$\Phi_{xy}(t) = \int_{-\infty}^{\infty} x(t+\tau)y(\tau)d\tau$$

The function $\Phi_{xx}(t)$ is known as the autocorrelation function of x(t) and the function $\Phi_{xy}(t)$ is known as the cross correlation function.

- (a) What would be the relationship between $\Phi_{xy}(t)$ and $\Phi_{yx}(t)$?
- (b) Compute the odd and even parts of $\Phi_{xx}(t)$.
- (c) If y(t) = x(t+T), mod $T < \infty$, express $\Phi_{xy}(t)$ and $\Phi_{yy}(t)$ in terms of $\Phi_{xx}(t)$