Multivariate calculus

Reference: https://www.coursera.org/learn/multivariate-calculus-machine-learning

Derivative

Definition

$$f'(x) = rac{df(x)}{dx} = \lim_{\Delta x o 0} \left(rac{f(x + \Delta x) - f(x)}{\Delta x}
ight)$$

Derivatives of some named functions

$$egin{aligned} rac{d}{dx}\left(rac{1}{x}
ight) &= -rac{1}{x^2} \ rac{d}{dx}(sin(x)) &= cos(x) \ rac{d}{dx}(cos(x)) &= -sin(x) \ rac{d}{dx}(e^x) &= e^x \end{aligned}$$

Derivative rules

These rules help computing the derivation faster.

• Sum rule

$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

Power rule

$$\frac{d}{dx}(ax^b) = abx^{b-1}$$

Product rule

$$rac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

· Chain rule

$$\frac{d}{dx}g(h(x)) = g'(h(x))h'(x)$$

in other words

Given
$$g = g(u)$$
 and $u = h(x)$
then $\frac{dg}{dx} = \frac{dg}{du}\frac{du}{dx}$

• Total derivative: for the function f(x, y, z, ...), where each variable is a function of parameter t, the total derivative is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt} + \dots$$

where

$$\frac{\partial f}{\partial x}$$

is the partial derivative of f with respect to x

Derivative structures

Given f = f(x, y, z),

Jacobian

$$J_f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}
ight]$$

where J is a *row vector* of the partial derivatives of f. This vector points in the *direction of the* greatest slope from the point (x, y, z), and the *bigger the norm* of this vector, the steeper the slope is.

Hessian

$$H_f = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} & rac{\partial^2 f}{\partial x \partial z} \ rac{\partial^2 f}{\partial y \partial x} & rac{\partial^2 f}{\partial y^2} & rac{\partial^2 f}{\partial y \partial z} \ rac{\partial^2 f}{\partial z \partial x} & rac{\partial^2 f}{\partial z \partial y} & rac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

or, in a more compact notation

$$H = egin{bmatrix} \partial_{xx}f & \partial_{xy}f & \partial_{xz}f \ \partial_{yx}f & \partial_{yy}f & \partial_{yz}f \ \partial_{zx}f & \partial_{zy}f & \partial_{zz}f \end{bmatrix}$$

When the *determinant of the the Hessian matrix* is positive, we know we are either at a minimum or a maximum (the gradient is zero). If the element e_{11} of the Hessian is positive, we have a minimum; if it is negative, we have a maximum. If the determinant is negative, we have a **saddle point**.

Notes:

- o to calculate an Hessian matrix, it is easier to calculate first the Jacobian
- the Hessian matrix is symmetrical

Multi-variable chain rule

Example with $f(\boldsymbol{x}(t))$

lf

$$f(x_1, x_2, \dots, x_n) = f(\mathbf{x}) = f(\mathbf{x}(t))$$

with

$$x_1 = x_1(t), x_2 = x_2(t), \dots, x_n = x_n(t)$$

then

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt}$$

where

$$egin{aligned} rac{\partial f}{\partial oldsymbol{x}} = egin{bmatrix} rac{\partial f}{\partial x_1} \ rac{\partial f}{\partial x_2} \ dots \ rac{\partial f}{\partial x_n} \end{bmatrix}, rac{doldsymbol{x}}{dt} = egin{bmatrix} rac{dx_1}{dt} \ rac{dx_2}{dt} \ dots \ rac{dx_n}{dt} \end{bmatrix} \end{aligned}$$

Note that $\frac{\partial f}{\partial {m x}}$ is the Jacobian as a column-vector = $(J_f)^T$

Example with $f(\boldsymbol{x}(\boldsymbol{u}(t)))$

lf

$$f(\boldsymbol{x}(\boldsymbol{u}(t)))$$

with

$$f(oldsymbol{x}) = f(x_1, x_2), oldsymbol{x}(oldsymbol{u}) = egin{bmatrix} x_1(u_1, u_2) \ x_2(u_1, u_2) \end{bmatrix}, oldsymbol{u}(t) = egin{bmatrix} u_1(t) \ u_2(t) \end{bmatrix}$$

then

$$rac{df}{dt} = rac{\partial f}{\partial oldsymbol{x}} \cdot rac{\partial oldsymbol{x}}{\partial oldsymbol{u}} \cdot rac{doldsymbol{u}}{dt} = egin{bmatrix} rac{\partial f}{\partial x_1} & rac{\partial f}{\partial x_2} \end{bmatrix} \cdot egin{bmatrix} rac{\partial x_1}{\partial u_1} & rac{\partial x_1}{\partial u_2} \ rac{\partial x_2}{\partial u_1} & rac{\partial x_2}{\partial u_2} \end{bmatrix} \cdot egin{bmatrix} rac{du_1}{dt} \ rac{du_2}{dt} \end{bmatrix}$$

Note:

- $\frac{\partial f}{\partial x}$ is represented by a Jacobian row-vector
 $\frac{d \boldsymbol{u}}{dt}$ is a column vector of derivatives.
 The dot product of three matrices (1,2) by (2,2) by (2,1) is a scalar equal to $\frac{df}{dt}$.

Neural networks

Model of neurons

Definitions

$$a^{(0)} \bigcirc \bigcirc \bigcirc a^{(1)}$$
 $a^{(1)} = \sigma(wa^{(0)} + b)$

where

- a = activity
- w = weight
- b = bias
- σ = activation function

2-1 neuronal network

$$a_0^{(0)} \bigcirc w_0 \qquad a^{(1)}$$

$$a_1^{(0)} \bigcirc w_1 \qquad a^{(1)}$$

$$a^{(1)} = \sigma(w_0 a_0^{(0)} + w_1 a_1^{(0)} + b)$$

3-2 neuronal network

$$a_{0}^{(0)} \bigcirc a_{0}^{(1)}$$

$$a_{1}^{(0)} \bigcirc a_{0}^{(1)}$$

$$a_{2}^{(0)} \bigcirc a_{1}^{(1)}$$

$$a_{0}^{(1)} = \sigma(\mathbf{w}_{0} \cdot \mathbf{a}^{(0)} + b_{0})$$

$$a_{1}^{(1)} = \sigma(\mathbf{w}_{1} \cdot \mathbf{a}^{(0)} + b_{1})$$

Using a matrix notation:

$$a_0^{(0)} \bigcirc a_0^{(1)}$$

$$a_1^{(0)} \bigcirc a_1^{(1)}$$

$$a_2^{(0)} \bigcirc a_1^{(1)}$$

$$a_1^{(1)} = \sigma(W^{(1)} \cdot a^{(0)} + b^{(1)})$$

General case: n-m neuronal network

$$\begin{bmatrix} a_0^{(0)} & \bigcirc & a_0^{(1)} \\ a_1^{(0)} & \bigcirc & a_1^{(1)} \\ a_2^{(0)} & \bigcirc & a_1^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m-1}^{(0)} & \vdots \end{bmatrix} = \sigma \begin{pmatrix} \begin{bmatrix} w_{0,0}^{(1)} & w_{0,1}^{(1)} & \cdots & w_{0,n-1}^{(1)} \\ w_{1,0}^{(1)} & w_{1,1}^{(1)} & \cdots & w_{1,n-1}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m-1,0}^{(1)} & w_{m-1,1}^{(1)} & \cdots & w_{m-1,n-1}^{(1)} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_{m-1}^{(0)} \end{bmatrix} + \begin{bmatrix} b_0^{(1)} \\ b_1^{(1)} \\ \vdots \\ b_{m-1}^{(1)} \end{bmatrix}$$

When a network has n inputs, m outputs, then

• \boldsymbol{W} is a (m,n) matrix

• **b** is a vector with m elements

Hidden layer in a neuronal network

Function linking two layers in a neuronal network

Activation function

$$\sigma(x) = tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Backpropagation

Practical example of backpropagation computed using the Jacobian of the cost function with respect to the weights and biases.

Taylor series

Also see https://en.wikipedia.org/wiki/Taylor_series

Univariate

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

or, in a more compact notation:

$$f(x) = \sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!} (x-a)^n$$

where $f^{(n)}(a)$ denotes the *nth* derivative of f evaluated at the point a.

When a=0, the series is also called a **Maclaurin series**.

Multivariate

$$f(m{x}) = f(m{c}) + m{J}_f(m{c})(m{x}{-}m{c}) + rac{1}{2}(m{x}{-}m{c})^Tm{H}_f(m{c})(m{x}{-}m{c}) + ...$$

Optimization and vector calculus

Newton-Raphson

Reference: https://en.wikipedia.org/wiki/Newton's_method

In numerical analysis, the Newton–Raphson method is a **root-finding algorithm** which produces successively better approximations to the roots (or zeroes) of a real-valued function.

$$x_{i+1}=x_i-rac{f(x_i)}{f'(x_i)}$$

is a better approximation of the root than x_i .

Geometrically, $(x_{i+1}, 0)$ is the intersection of the x-axis and the tangent of the graph of f at $(x_i, f(x_i))$: that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as until a sufficiently precise value is reached.

Grad

The **gradient vector** (called *grad*) is perpendicular to the contour lines of f(x, y, z) and is written

$$abla f = egin{bmatrix} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \ rac{\partial f}{\partial z} \end{bmatrix}$$

Gradient descent

We can use *grad* to go down a hill to find the minimum values of a function by taking little steps. We don't need to evaluate the function everywhere, and then, find the minimum, or solve the function using algebra. This *gradient descent* method is probably the most powerful method for finding minima that exists.

If s_n is our current position, the next position is

$$s_{n+1} = s_n - \gamma
abla f$$

where γ is a factor to control the descend speed.

Lagrange multiplier

If we want to find the minimums or maximums of a function f under a constraint described by the function g, we need to solve the equation

$$\nabla f = \lambda \nabla g$$

where λ is the **Lagrange multiplier**.

In other words, the minimums or maximums are where the two gradients are parallel, or where the contours of g(x) are parallel to the contours of f(x).

Nonlinear least squares fitting method

Let $y = f(x; a_k)$ be a non-linear function of x with m parameters a_k , and σ_i is the uncertainty of the data point y_i , where i = 1..n.

Say we want to fit the parameters a_k to some data, the goodness of fit parameters is measured by the sum of the squares of the residuals of the model

$$\chi^2 = \sum_{i=1}^n rac{(y_i - f(x_i;a_k))^2}{\sigma_i^2}$$

Uncertain data points have a low weight in the sum of χ . When uncertainty is unknown, $\sigma_i=1$, and we can write

$$\chi^2 = |\boldsymbol{y} - f(\boldsymbol{x}; a_k)|^2$$

The minimum of χ^2 is found when $\nabla \chi^2 = 0$. We find it by using the steepest descent by adapting the parameters a_k , where

$$a_{next} = a_{cur} + \gamma \sum_{i=1}^{n} rac{(y_i - y(x_i; a_k))}{\sigma_i^2} rac{\partial y}{\partial a_k}$$