Тема 2. Методы одномерной оптимизации.

Задание 1. Написать (добавить в собственный класс/библиотеку) следующие функции:

1. <u>Поиск экстремума функции одной переменной методом золотого</u> сечения;

* Возможна самостоятельная декомпозиция задачи на нескольких функций, решающих конкретные подзадачи. В таком случае, для удобства вызова пользователем, необходимо предусмотреть оберточную функцию.

Формат входных данных:

Обязательные параметры:

- а) Функция в аналитическом виде;
- б) Границы области оптимизации;

Необязательные параметры:

- в) Точность оптимизации по аргументу (по умолчанию: $10^{\Lambda-5}$);
- г) Максимальное число итераций (по умолчанию: 500);
- д) Флаг «вывод промежуточных результатов» (по умолчанию: False) при установке TRUE выводит полученные значения результатов на каждой итерации);
- е) Флаг «запись промежуточных результатов в датасет» (по умолчанию: False) при установке TRUE записывает номер итерации и полученные значения результатов на каждой итерации в pandas dataset).
- * возможно добавление других обязательны или необязательных параметров

Формат выходных данных:

- а) Найденное значение координаты точки экстремума;
- б) Значение функции в точке экстремума;
- г) Отчет о работе алгоритма (например флаг: 0 найдено значение с заданной точностью; 1 достигнуто максимальное количество итераций; 2 выполнено с ошибкой).

2. Поиск экстремума функции одной переменной методом парабол;

* Возможна самостоятельная декомпозиция задачи на нескольких функций, решающих конкретные подзадачи. В таком случае, для удобства вызова пользователем, необходимо предусмотреть оберточную функцию.

Формат входных данных:

Обязательные параметры:

- а) Функция в аналитическом виде;
- б) Границы области оптимизации;

Необязательные параметры:

- в) Точность оптимизации по аргументу (по умолчанию: 10^-5);
- г) Максимальное число итераций (по умолчанию: 500);
- д) Флаг «вывод промежуточных результатов» (по умолчанию: False) при установке TRUE выводит полученные значения результатов на каждой итерации);
- е) Флаг «запись промежуточных результатов в датасет» (по умолчанию: False) при установке TRUE записывает номер итерации и полученные значения результатов на каждой итерации в pandas dataset).
- * возможно добавление других обязательны или необязательных параметров

Формат выходных данных:

- а) Найденное значение координаты точки экстремума;
- б) Значение функции в точке экстремума;
- г) Отчет о работе алгоритма (например флаг: 0 найдено значение с заданной точностью; 1 достигнуто максимальное количество итераций; 2 выполнено с ошибкой).

3. Поиск экстремума функции одной переменной комбинированным методом **Брента**;

* Возможна самостоятельная декомпозиция задачи на нескольких функций, решающих конкретные подзадачи. В таком случае, для удобства вызова пользователем, необходимо предусмотреть оберточную функцию.

Формат входных данных:

Обязательные параметры:

- а) Функция в аналитическом виде;
- б) Границы области оптимизации;

Необязательные параметры:

- в) Точность оптимизации по аргументу (по умолчанию: 10^-5);
- г) Максимальное число итераций (по умолчанию: 500);
- д) Флаг «вывод промежуточных результатов» (по умолчанию: False) при установке TRUE выводит полученные значения результатов на каждой итерации);
- е) Флаг «запись промежуточных результатов в датасет» (по умолчанию: False) при установке TRUE записывает номер итерации и полученные значения результатов на каждой итерации в pandas dataset).
- * возможно добавление других обязательны или необязательных параметров

Формат выходных данных:

- а) Найденное значение координаты точки экстремума;
- б) Значение функции в точке экстремума;
- г) Отчет о работе алгоритма (например флаг: 0 найдено значение с заданной точностью; 1 достигнуто максимальное количество итераций; 2 выполнено с ошибкой).

4. <u>Алгоритм неточной одномерной минимизации (Алгоритм Бройдена —</u> **Флетчера — Гольдфарба — Шанно**);

* Возможна самостоятельная декомпозиция задачи на нескольких функций, решающих конкретные подзадачи. В таком случае, для удобства вызова пользователем, необходимо предусмотреть оберточную функцию.

Формат входных данных:

Обязательные параметры:

- а) Функция в аналитическом виде;
- б) Начальная точка;

Необязательные параметры:

- в) Параметр для первого условия Вольфе (по умолчанию: 10^-4);
- г) Параметр для второго условия Вольфе (по умолчанию: 0.1);
- д) Максимально возможное значение аргумента функции (по умолчанию 100);
- е) порог выхода по длине интервала поиска (по умолчанию: $10^{\land -8}$);
- г) Максимальное число итераций (по умолчанию: 500);
- д) Флаг «вывод промежуточных результатов» (по умолчанию: False) при установке TRUE выводит полученные значения результатов на каждой итерации);
- е) Флаг «запись промежуточных результатов в датасет» (по умолчанию: False) при установке TRUE записывает номер итерации и полученные значения результатов на каждой итерации в pandas dataset).
- <u>* возможно добавление других обязательны или необязательных</u> параметров

Формат выходных данных:

- а) Найденное значение координаты точки экстремума;
- б) Значение функции в точке экстремума;
- г) Отчет о работе алгоритма (например флаг: 0 точка удовлетворяющая условию Вольфе найдена; 1 точка удовлетворяющая условию Вольфе найдена с заданной точностью; 2 достигнуто максимальное количество итераций; 3 Достигнуто ограничение на максимально возможное значение аргумента; 4 выполнено с ошибкой).

5. Возможно добавление других функций (опционально)

<u>Задание 2.</u> Для тестирования написанных функций а так же прототипирования различных методов проводится следующее приемо-сдаточное тестирование:

- * <u>Данные задания оформляются в отдельном пайплайне (в случае подключения собственной библиотеки), или ячейках, располагающихся ниже. Каждый тест пишется в своей ячейке и решает свой класс задач.</u>
 - 1. Решение задачи на нахождение экстремума одномерной функции. С клавиатуры вводится функция в аналитическом виде и начальные условия. Результатом работы программы является список точек экстремумов и значения исследуемой функции в данной точке, число итераций и другие параметры, описанные в выходных параметрах функций из п.1. Задание выполняется для каждого из разработанных алгоритмов (1-3).

Протестировать реализованные алгоритмы на следующем наборе задач оптимизации:

- $f(x) = -5x^5 + 4x^4 12x^3 + 11x^2 2x + 1$ на интервале [-0.5, 0.5];
- $f(x) = \log^2(x-2) + \log^2(10-x) x^{0.2}$ на интервале [6, 9.9];
- $f(x) = -3x \sin 0.75x + \exp(-2x)$ на интервале $[0, 2\pi]$;
- $f(x) = \exp(3x) + 5 \exp(-2x)$ на интервале [0, 1];
- $f(x) = 0.2x \log x + (x 2.3)^2$ на интервале [0.5, 2.5];
 - 2. Решение задачи на одномерную неточную оптимизацию.

С клавиатуры вводится функция в аналитическом виде и начальные условия. Результатом работы программы является список точек экстремумов и значения исследуемой функции в данной точке, число итераций и другие параметры, описанные в выходных параметрах функций из п.1.

Протестировать реализованный алгоритм на следующем наборе задач оптимизации:

- $\phi(\alpha) = -\frac{\alpha}{\alpha^2 + \beta}$ для $\beta = 2$;
- $\phi(\alpha) = (\alpha + \beta)^5 2(\alpha + \beta)^4$ для $\beta = 0.004$;
- $\phi(\alpha) = \phi_0(\alpha) + \frac{2(1-\beta)}{l\pi} \sin(\frac{l\pi}{2}\alpha)$, где

$$\phi_0(\alpha) = \begin{cases} 1 - \alpha, & \alpha \le 1 - \beta, \\ \alpha - 1, & \alpha \ge 1 + \beta, \\ \frac{1}{2\beta}(\alpha - 1)^2 + \frac{\beta}{2}, & \alpha \in [1 - \beta, 1 + \beta]. \end{cases}$$

Здесь $\beta = 0.01$, l = 39;

• $\phi(\alpha) = \gamma(\beta_1)\sqrt{(1-\alpha)^2+\beta_2^2}+\gamma(\beta_2)\sqrt{\alpha^2+\beta_1^2}$, где $\gamma(\beta) = \sqrt{1+\beta^2}-\beta$, для следующих трёх пар (β_1,β_2) : (0.001,0.001), (0.01,0.001), (0.001,0.001);

Дополнительные задания (опционально)

3. Визуализировать работу одного из разработанных алгоритмов. Предлагается построить график исходной функции и на нем отобразить способ построения приближенной аппроксимации для быстро сходящейся функции.

Пример визуализации работы метода парабол:

Рис. 2: Иллюстрация работы метода парабол. Слева: первые две итерации метода, красная кривая — оптимизируемая функция, синяя кривая — квадратичное приближение на первой итерации, черная кривая — квадратичное приближение на второй итерации. Справа: пример плохой сходимости метода парабол, красная кривая — оптимизируемая функция, синии кривые — итерационные квадратичные приближения.

- * Возможны другие варианты визуализации работы алгоритмов, на усмотрение студентов.
- 4. Оценить сходимость алгоритма.

Для оценки сходимости метода предлагается построить график величины исследуемого интервала от номера итерации. Так же необходимо вывести списком все полученные величины на каждой итерации алгоритма.

Пример графика:

5. Сравнить производительность 4 разработанных алгоритмов.

Предлагается для одной и той же функции провести поиск минимума всеми 4-я алгоритмами. При этом необходимо замерить время выполнения алгоритма и количество итераций.

Результаты предлагается оформить в виде следующей таблицы:

Параметр	Алгоритм1	Алгоритм2	Алгоритм3	Алгоритм4
Полученное				
решение				
Время				
выполнения				
Количество				
<mark>итераций</mark>				

6. Сравнить производительность приближенных алгоритмов и точных алгоритмов.

Предлагается для одной и той же функции провести поиск минимума оптимальным алгоритмом из п.5 и одним из алгоритмов 1 темы данного курса. При этом необходимо замерить время выполнения алгоритма и количество итераций.

Результаты предлагается оформить в виде следующей таблицы:

	1 1		
Параметр	Оптимальный	Оптимальный	точный
	итерационный алгоритм	алгоритм	
Полученное			
решение			
<mark>Время</mark>			
выполнения			

7. Необходимо оформить проектную документацию по проекту в формате файла «Описание структуры и разделов документации по проекту.docx»