Virtour: Telepresence system for remotely-operated building tours

Patricio Lankenau pato@cs.utexas.edu

Shiqui Zang szhang@cs.utexas.edu

Jivko Sinapov jsinapov@cs.utexas.edu

Matteo Leonetti m.leonetti@leeds.ac.uk Peter Stone pstone@cs.utexas.edu

ABSTRACT

This is my abstract

Keywords

robots, telepresence, remote control, virtual tours

1. INTRODUCTION

The University of Texas at Austin has a constant stream of visitors and tours of the beautiful campus. Of special interest to us, are the large number of tours given at our computer science building: the Gates Dell Complex (GDC). The tour guests range in ages and backgrounds, and tend to be prospective students to both undergraduate and gradate programs, or visiting faculty. Unfortunately, there is a large population of prospective students that are unable to physically come to our campus and are thus unable to partake in the conventional tours.

Our lab has a group of autonomous wheeled robots which can localize, navigate, and perform tasks without human intervention for long periods of time. Furthermore, our lab is placed in a central part of our building and is thus a common place for tours. As such it only made sense that we utilize the platform we have built to try to solve the aforementioned problem.

This is why we designed Virtour. Virtour is a public facing system for teleoperated building tours. Virtour builds on the existing Building-Wide Intelligence autonomous robot platform and is designed to keep the robots and any humans involved safe. Through the use of modern web and robot technologies it allows untrained public users to remotely control our robots in what we call a virtual tour. Our system is created to balance external control abilities while maintaining our rigorous standard of safety and security for the robots and people involved. As such it gives the user control of what the robot is doing, while at the same time using existing the autonomous navigation capabilities and obstacle avoidance.

College of Natural Sciences, Department of Computer Science, Building-Wide Intelligence Lab Austin, Texas

ACM ISBN .

DOI:

2. RELATED WORK

3. BUILDING WIDE INTELLIGENCE

Virtour is a part of the Building Wide Intelligence (BWI) project, which aims to develop fully autonomous mobile robots. The goal is to have these robots be permanent inhabitants of UT's Computer Science departmental building. BWI focuses on the intersection of Artificial Intelligence and Robotics, and aims to create robots that are useful as research platforms, as well service robots to help the humans in the building.

Virtour runs on the BWI segbot robot platform. The segbot robot platform has three currently operating versions. Our last generation version 2 robots, a version 2 with an additional Kinova arm, and our latest generation version 3 robots. Although virtour supports all three versions, it is mostly run on the latest generation so that is what is described.

3.1 Hardware Platform

The robot's base is a Segway Robotics Mobility Platform (RMP), which is powered by a lithium-ion battery pack. The frame was designed in-house and supports a wide array of sensors. For navigation, localization, and obstacle avoidance, we use a Velodyne Puck lidar. Point clouds and RGB data is provided by a Microsoft Kinect. Our latest generation robots also have a laser range finder to compensate for the lidar's blind spots. The robot is equipped with a custom-built computer which runs Ubuntu 14.04. The computer is powered by the RMPs battery, thus removing the need for an external car battery (which was present in our version 2 robots). The battery life on a running robot is approximately 6 hours.

3.2 Software Stack

Our robots are powered by the Robot Operating System (ROS), which provides us with the infrastructure to run our robots as a distributed node system. ROS also provides us with access to many community packages such as device drivers, navigation implementations, and planning systems. Our navigation stack starts out with the logical planner, which uses ASP to plan and describe the environment (eg: which corridors connect with which hallways, and which doors are open). It then moves to the logical navigator which uses the global costmap (generated from previous laser readings, and is an adjacency grid of obstacles) to create the navigation plan. Finally, the local planner uses the immediate sensor readings to send commands to the segway

base and avoid any obstacles.

4. THE WEB CLIENT

Virtour consists of two platforms, the user facing client, and the server and associated software that runs on the robots. The user client is built using web 2.0 technologies to adhere to modern web development trends and simultaneously support as many platforms as possible. We decided to use a web-based client because of the increasing prominence of web browsers in people's lives. Furthermore, a web based approach means that our end-users do not have to install any additional software to connect with or use the robots, thus reducing the friction for trying our service.

4.1 Modern Approach

The website is designed to be simple and functional while still being aesthetically pleasing to end users. It uses a grid system, powered by Bootstrap 2.0, to create a fully responsive web layout. This allows us to support any web-powered platform (eg: mobile devices, tablets, and computers) by making the website scale and re-organize based on the specifications of the device.

When a user first visits our website, he or she is greeted by a list of our currently active and available robots (more on server implementation later). From here our user can select a robot to connect to (by clicking on the robot's name and image) to initiate a virtual tour session. Tour sessions can be either led or spectated. Each tour can have at most one leader, but no limit on the number of spectators. If the tour has no existing leader and tours are allowed then a visiting user can elect to become tour leader by pressing the "Become Leader" button. Upon success, it will present the user with the leader UI.

4.2 Leader UI

The leader UI adds a number of components to the guest UI that allow the user to control the operations of the robot. The current list of available capabilities is as follows

- Rotate the robot's base
- Navigate to a room on the same floor
- Navigate to a door on the same floor
- Speak a message (using text-to-speech)
- Deliver a spoken message (using text-to-speech) to a location
- Pause and resume a robot task
- Move the robot's camera (on supported robots)

The user can interact with the interface to request any of the previously mentioned tasks.

Whenever a user first connects to a robot, the web client will query the robot for the capabilities that it has (eg: which generation robot, which cameras it has access to, if the camera has servos, etc...) and then adapt the user interface accordingly to support whichever robot the user is connected to

The leader UI was developed using javascript and uses sockets to communicate with the robot. The javascript client can interact with ROS via the socket to make service calls,

Figure 1: Overview of the virtour server structure and hierarchy

subscribe and publish to topics, as well as make actionlib requests. Regardless of the type of the request, it is serialized and transferred over the socket to be interpreted by the server (described in a later section).

In order to maintain leader consistency, the leader UI will ping the server at a known interval to ensure the leader is still connected. If the user closes the window or the ping fails, the leader will relinquish the leader status so other users can control robot.

For security reasons, we only allow outside parties to become leaders (and thus have control of the robot's operations) if we explicitly enable virtual tours on the robot. Furthermore, all leader operations that affect the robot (eg: rotating, or navigating) require user authentication, to prevent unauthorized sources to take control of our robots. On the client side, this means that each user is assigned a unique identifier (valid only for the current session). Whenever a user requests leadership, they request it for their unique identifier. All subsequent requests are made using this identifier to ensure that only an authorized user can control the robot.

4.3 Guest UI

The guest UI is the default interface presented to the user whenever he or she connects to a robot. It dominated by the live stream from the robot's camera which is shown prominently in the center. The robot's camera is placed in a position on the robot that makes the user experience feel like a point of view camera. This makes the experience more immersive and the tour more engaging.

Furthermore, the interface also displays a mini map of which ever floor the robot is on, with a position marker to indicate the robot's current position. This map is updated whenever the robot switches floors (via the elevator) to show the most up to date map of the current floor.

Finally, the guest UI has a status box which displays whether or not a tour is on-going, allowed, or disabled. From here the user can request to become tour leader (if available), or wait for a tour to be available.

All our robots support the guest UI during all times we are running them, so that users can remotely connect to the robots and experience what they are doing.

5. THE SERVER

The server consists of a number of components which run on the physical robot to enable the web client to perform the required operations.

5.1 Tour Manager

- 5.1.1 Leader Management
- 5.1.2 Robot Control
- 5.1.3 Authentication
- 5.2 IP management
- 6. SCAVENGER HUNT INTEGRATION
- 7. CONCLUSIONS
- 8. ACKNOWLEDGMENTS

9. REFERENCES

- M. Bowman, S. K. Debray, and L. L. Peterson. Reasoning about naming systems. ACM Trans. Program. Lang. Syst., 15(5):795–825, November 1993.
- [2] J. Braams. Babel, a multilingual style-option system for use with latex's standard document styles. *TUGboat*, 12(2):291–301, June 1991.
- [3] M. Clark. Post congress tristesse. In TeX90 Conference Proceedings, pages 84–89. TeX Users Group, March 1991.
- [4] M. Herlihy. A methodology for implementing highly concurrent data objects. *ACM Trans. Program. Lang. Syst.*, 15(5):745–770, November 1993.
- [5] L. Lamport. LaTeX User's Guide and Document Reference Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.
- [6] S. Salas and E. Hille. Calculus: One and Several Variable. John Wiley and Sons, New York, 1978.