ML Model Deployment on Heroku

1. Found toy data USA_Housing.csv

	Α	В	С	D	Е	F	G
1	Avg. Area Inc	Avg. Area Ho	Avg. Area Νι	Avg. Area Νι	Area Populat	Price	Address
2	79545.4586	5.68286132	7.00918814	4.09	23086.8005	1059033.56	208 Michael
3	79248.6425	6.00289981	6.73082102	3.09	40173.0722	1505890.91	188 Johnson
4	61287.0672	5.86588984	8.51272743	5.13	36882.1594	1058987.99	9127
5	63345.24	7.18823609	5.58672866	3.26	34310.2428	1260616.81	USS Barnett
6	59982.1972	5.04055452	7.83938779	4.23	26354.1095	630943.489	USNS
7	80175.7542	4.98840776	6.10451244	4.04	26748.4284	1068138.07	06039
8	64698.4634	6.02533591	8.14775959	3.41	60828.2491	1502055.82	4759 Daniel
0	70004 0000	C 0007707F	C C20470	2.42	20546 250	4570000 50	070 1

2. Wrote ML Model for toy data

```
import pandas as pd
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 22 23 24 25 27 28
       import pickle
       from sklearn.model_selection import train_test_split
      # Read Data
      df = pd.read_csv('USA_Housing.csv')
      # Select independent and dependent variables
      X = df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
               'Avg. Area Number of Bedrooms', 'Area Population',]]
      y = df['Price']
      # Split data into train and test
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_st
      # Training the Model
      from sklearn.linear_model import LinearRegression
      lm = LinearRegression()
      lm.fit(X_train,y_train)
      # Make pickle file
29
      pickle.dump(lm, open("model.pkl","wb"))
```

3. Created a server app.py to load the model and predict results

```
import numpy as np
from flask import Flask, request, render_template
import pickle
# Create flask app
app = Flask(__name___)
# Load pickle model
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
    return render_template('index.html')
@app.route('/predict', methods=['Post'])
def predict():
    int_features = [int(x) for x in request.form.values()]
    final_features = [np.array(int_features)]
    prediction = model.predict(final_features)
    output = round(prediction[0], 2)
    return render_template('index.html', prediction_text='House price should be $
if __name__ == "__main__":
    app.run(port=5000, debug=True)
```

4. Created an HTML form, index.html containing all the different options to select from each attribute. Allows users to enter details and displays results

```
<!doctype html>
<html>
<head>
    <meta charset="UTF-8"
    <title>ML API</title>
</head>
<body>
<div class= "Login">
    <h1>Predict House Price</h1>
<form action="{{ url_for('predict') }}" method="post">
        <legend>Input values:</legend>
        Avg. Area Income:
        <input name="Avg. Area Income" type="text" required>
        <br>
        <br >dr> Avg. Area House Age:
        <input name="Avg. Area House Age" type="text" required>
        <br> Avg. Area Number of Rooms:
        <input name="Avg. Area Number of Rooms" type="text" required>
        <br> Avg. Area Number of Bedrooms:
        <input name="Avg. Area Number of Bedrooms" type="text" required>
        <br> Area Population:
        <input name="Area Population" type="text" required>
        <br>
        <br>
        <input type="submit">
    </form>
    <br>
    <br>
    {{ prediction_text }}
</div>
<body>
</html>
```

5. Create Procfile

```
● ● Procfile ✓
web: gunicorn app:app
```

6. Upload files to Github

7. Create Heroku account and link to Github

8. Deploy app

9. Test app

