Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2007-2

1^{ra} Práctica Dirigida de Cálculo Diferencial (CM131 A-B-C)

- Simbolice los enunciados siguientes:
 - a) Si una sustancia orgánica se descompone, entonces sus componentes se transforman en abono y fertilizan el suelo.
 - b) Si son más de las 22 horas, entonces la puerta está cerrada y yo no tengo la llave.
 - c) Si este mineral no es duro, entonces no está compuesta de cristales de cuarzo.
- Use la lógica proposicional para contestar las siguientes preguntas. Se dan los enunciados: Juan necesita un abogado o Juan necesita un médico.

Si Juan necesita un abogado entonces Juan necesita un médico.

arcument an anguard.

a) ¿Necesariamente se deduce que "Juan necesita un abogado"?

- b); Necesariamente se deduce que "Juan necesita un médico"?
- Simbolice las proposiciones matemáticas siguientes:
 - a) Si x es menor que dos, entonces x es igual a umo o x es igual a cero.
 - b) Si a la vez x es menor que tres y mayor que uno, entonces x es igual a dos.
 - c) y = 4 y si x < y, entonces x < 5.
 - d) O z es mayor que cinco y z es menor que siete o z no es igual a seis.
 - e) Si x+3>5 y y-4>0, entonces y>6.
- 4. Simbolice y niegue las siguientes proposiciones:
 - a) Para todo número racional r existe un número entero n tal que $n \le r < n+1$
 - b) Para todo número real a, existe un número natural no tal que si n > no novembro entonces n > a
 - c) Es posible encontrar un número "y" entre 0 y 1, de modo que todo par de números $x,z \in \mathbb{R}$, también entre 0y1, satisfacen $z \le y < z$
 - d) Todos los americanos están locos.
 - e) Hay al menos una persona que es feliz todo el tiempo.
 - Todos los hombres son honestos o algún hombre es ladrón.
 - g) Al final del ciclo, todos los alumnos del curso de Cálculo Diferencial tendrán una mota mayor o igual a 10.

- h) Es de día y todo el mundo se ha levantado.
- Halle la recíproca y la contrarrecíproca de cada una de las siguientes proposiciones:
 - a) Si él tiene valor, ganará.
 - b) Es preciso ser fuerte para ser marinero.
 - c) Solo si no se cansa ganará.
 - d) Es suficiente que sea un cuadrado para ser un rectángulo.
- 6. Sea P el conjunto de todos los peruanes, y H el coajunto de personas honestas. Exprese en palabras las siguientes proposiciones y establezca su valor de verdad:
 - a) $\forall x : \sim (x \in H)$ b) $\forall y : y \in P \rightarrow y \in H$
 - c) $\forall z: z \in H \rightarrow z \notin P$ d) $\exists x: x \notin H \rightarrow x \in P$
 - e) $\exists y : (y \notin H \to y \notin P) \land \forall w : (w \in H \to w \in P)$
- 7. De las siguientes proposiciones. ¿Cuáles son equivalentes entre si?
 - a) Es necesario que Juan no estudie en la Uni para que Luis viva en el Rimac.
 - b) No es cierto que Luis viva en el Rimac y que Juan estudie en la Uni.
 - c) Luis no vive en el Rimac y Juan no estudia en la Uni.
- Se sabe que (p \(\lambda \) q) y (q \(\rightarrow \) p) son falsos. ¿Cuáles de las siguientes proposiciones son verdaderas?
 - a) (~pvt) vs. V
 - b) $[(\sim p) \lor (q \land \sim t)] \leftrightarrow [(p \rightarrow q) \land \sim (q \land t)].$
- nory c) ~ [p \ (~ q \ ~ p)].
 - 9. La proposición $\sim (p \rightarrow q) \land (q \rightarrow \sim r)$ es equivalente a: a) $p \land (p \lor \sim r) \land (\sim q)$ b) $p \land (\sim q) \land [\sim (q \land r)]$ $\downarrow (c) (p \land \sim q) \lor [(p \land \sim r) \land \sim q]$
- 10. Dado el conjunto $A = \{1, 2, 3\}$: Determine el valor de verdad de: a) $\exists x \in A / \forall y \in A, x^2 < y + 1$ b) $\forall x \in A, \exists y \in A / x^2 + y^2 < 11$ c) $\forall x \in A, x^2 < 4 \leftrightarrow x < 3$
- 11. Explique porqué las proposiciones no son equivalentes:

 $x \in \mathbb{R} : \exists y \in \mathbb{R}/x < y$ b) $\exists y \in \mathbb{R}/x \in \mathbb{R} : x < y$

12. Determine el valor de verdad de las siguientes proposiciones (aquí el conjunto universal es el de los números reales).

a) $\forall x, |x| = x$; b) $\exists x, x^2 = x$; c) $\forall x, x + 1 > x$; d) $\exists x, |x| = 0$; e) $\exists x, x^2 = x$; f) $\exists x, x + 2 = x$

- 13. Niegue las proposiciones del problema anterior.
- 14. Analice el valor de verdad de las siguientes proposiciones, $x, y \in \mathbb{R}$:

a) $\forall x : (x-1)(x+1) = x^2 - 1$ b) $\forall x \exists y/x < y$

c) $\forall x : [\exists y/x^2 + y^2 = (x+y)^2]$ d) $\exists x/\forall y, x+y=0$

e) $\forall x : x \neq 0 \Rightarrow \exists y/xy = 1$ f) $\exists x/3x-2 = -4x+1$

15. Analice el valor de verdad de las siguientes proposiciones, donde $M = \{1, 2, 3, 4, 5\}$

a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (-y)(-x) = xy \Rightarrow xy > 0$

b) $\forall x \in M, \exists y \in M/x + y \leq 7$

c) $\exists x \in \mathbb{R}/\sqrt{-x} \in \mathbb{R}$

16. Establezca las negaciones de:

(a) $\forall y \in \mathbb{R}, 0 < y < 1 : \exists x, z \in \mathbb{R}, 0 < x, z < 1 / x < y < z$.

b) $\forall \epsilon > 0 \exists n_0; \forall n(n > n_0 \rightarrow |a_n| < \epsilon).$

c) $\forall x \in \mathbb{Z}, x+3 > x$

d) $\exists x \in \mathbb{Z}/x^4 - x = 0$

e) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}/x^2 - y^2 = x + y \times y$

f) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}/x > y \land y < x^2$.

g) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}/x \ge y \lor x < y$.

h) $\forall x \in A, \exists y \in B / \forall z \in C, P(x, y, z) = 0$

i) $[\exists y \in A / \sim p(y)] \land [\forall x \in A, q(x) \lor r(x)]$

j) $\exists x \in A/\exists y \in B/[p(x) \rightarrow q(x,y)]$

17. Utilice el modus ponendo ponens para deducir una conclusión de cada uno de los conjuntos de premisas siguientes:

a) Si $x \neq 0$ entonces x + y > 1, $x \neq 0$

b) Si x + y = z entonces y + x = z, x + y = z.

 sì x es un número e y es un número, entonces x+y es un número.x es un número e y un número.

18. Demuestre que las conclusiones son consecuencias de las premisas dadas en los siguientes ejercicios

a) Demuestre: R

1) $P \rightarrow Q$ 2) $\sim Q$

 $3)\sim P\rightarrow R$

b) Demuestre: B1)~ $A \lor \sim B$

 $2)\sim A\rightarrow E$

3)~ E

c) Dennestre: C

 $1)A \rightarrow B$

3)A

 $2)B \rightarrow C$

d) Demuestre:R 1) $S \rightarrow \sim T$

2)5

 $3)\sim T\rightarrow R$

 Demuestre usando Modus Tollendo Ponens los siguientes conjuntos.

WC9-537 T-

P4 - 1

- a) 1)~ $Q \lor R$ b) 1) $P \land Q$ 2)~R 2)~Q
- c) 1)~ TV ~ R
- Sea n ∈ N. Si n² es múltiplo de 7, pruebe que n también lo es.
- 21. Demuestre que para un número entero n:

a) Si n^2 es par entonces n es par.

- b) Si n² es múltiplo de 5 entonces n es múltiplo de 5.
- 22. Verifique la validez de los siguientes argumentos:

a) $p \wedge q$ $\sim p \rightarrow q$

b) $p \land (p \lor q)$ $(p \lor q) \to r$

 $\frac{\sim p \to q}{\sim q}$

 $r \rightarrow s$

c) $(p \land q) \rightarrow (r \land s)$ $(\sim q) \lor (\sim s)$ $(\sim p) \lor \sim q$

23. Demuestre inductivamente.

a) $\forall n \in \mathbb{N}, n \geq 1.$

b) Sean $m, n \in \mathbb{N}$, m > n entonces $\frac{n}{m} \notin \mathbb{N}$

c) $a, b \in \mathbb{N}$ entones $a + b \in \mathbb{N}$

d) $a, b \in \mathbb{N}$ entones $a, b \in \mathbb{N}$

e) Sean $a, b, x \in \mathbb{N}$

i) a+x=b+x implies a=b

ii) a.x = b.x implica a = b

24. Sea $n \in \mathbb{N}$, demuestre

i) $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ ii) $\sum_{i=1}^{n} \frac{1}{i(i+1)} =$

iii) $\sum_{i=1}^{n} (2i-1) = n^2$ iv) $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

25. Dados los naturales m,n y p pruebe:

a) m + (n+p) = (m+n) + p

b) m+n=n+m

c) $m+n=m+p \Rightarrow n=p$

- d) Tricotomía: se cumple una y sólo una de las condiciones m = n ó $\exists p \in \mathbb{N}/m = n + p$ ó $\exists q \in \mathbb{N}/n = m + q$.
- 26. Indique claramente en las funciones proposicionales siguientes, cuáles hipótesis del principio de inducción no se satisfacen:

(a) P(n): n = 1 (b) P(n): n > 1

(c) $P(n): n^2 - 3n + 2 = 0 \times$

(d) P(n): n = 1 ó n es múltiplo de 2 ó n es múltiplo de 3

(e) $P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2} + 3$

NI. ENPY

Los profesores¹ Uni, 7 de setiembre del 2007

Hecho en MEX