

PROJECT PORTFOLIO

STEVEN KAZADI

MENG: INDUSTRIAL ENGINEER KZD SOLUTIONS (2023/671157/07)

Company	Tot. projects	Financial Impacts	Industry	Duration
DUYS	12	>R945,000.00/yr	Automotive	6 months
ZA Gear	10	>R100,000.00/yr	Textile	6 months
Oh Two Printing	20	>1,500,000.00/yr	Printing	24 months

Skillset

Project Planning

Gemba walk (visual observations for improvement)

Method, Time Study techniques and Takt time

AutoCAD Designs (2D layout revisions)

Solid Works Design (Design Modifications) "Beginner"

Lean Six-Sigma Methodologies

Designing work instructions/Standard Operating Procedures

MS Visio, Excel

Process Mapping including value Stream Mapping

Mentoring and training

Quality Improvement Systems

Data collection and Analysis

The projects below entail a summary of what the Industrial Engineering (IE) consultant has produced throughout his career. More details about the project are available upon discussion.

Contents

5' s and Kanban Implementation	1
acility revised layout designs	2
Tool and Rack design	3
Kaizen Report	4
Process Engineering	5
Quality Improvement System (Utilizing OPMS)	6
Production planning and control	7
Restructuring Business Organizational Structure	. 10
Business Improvement Project	. 13

5's and Kanban Implementation

Figure 1: 5's and Kanban implementation

Facility revised layout designs

Figure 2: Layout design

Tool and Rack design

Kalzen key Points:

- 1. Will require no need of modifications
- 2. Made specifically for bent pipes
- 3. Reduces risks of injures
- 4. Easy to push
- 5. Will increase productivity
- 6. estimated to carry 100 bent trolleys
- 7. help reduce over production
- 8. Will not damage the material

Figure 3: tool and rack designs

- This card will help operators know that this durinage is specifically made for trolleys.
- Capacity stated to avoid overloading. However, they will write the quantity the dunnage is carrying to avoid over production and keep track of how much pipes they are bending.

Kaizen Report

Figure 4: Kaizen report (rack design)

Process Engineering

44 I D - - -

Figure 5: Process Engineering

Quality Improvement System (Utilizing OPMS)

After we have implemented most of the quality systems to improve poor quality because it was affecting the CMT production line efficiency. We then asses the improvements to see if the new method of improving quality works for the company. The OPMS systems developed by the BMA analysts formerly known as B&M analysts communicates with the management to see for any improvements.

Figure 6: Quality Improvement Rates results

From appointment of the production engineer in January and application of quality and lean-six sigma methodologies there has been a steady improvement on overall performance of the production. However, communication, leadership and teamwork does play a role to achieve significant improvement in a short space of time.

Conclusion

Table 1: Summary of improvement rates

Before		After	
cost loss:	R 13,563.00	cost loss:	R 3,195.00
Shortages:	R 25,494.00	shortages:	R 1,200.00
rework rate:	44%	rework rate:	7%
scrap rate:	0.54%	scrap rate:	2%
FTT:	40%	FTT:	170%

Production planning and control

Time study and takt time techniques were used to identify and eliminate or reduce bottlenecks that was cause late deliveries and not meeting daily targets which ultimately will affect the companies' profits negatively. The approach taken was a predictive analysis approach of conducting a time study from the sample stage to determine whether its profitable doing the garment and how many operators needed and the adjustments required to meet the demand in the shortest lead time as possible.

Summary

The table below represents the result of production line optimization through predictive approaches of utilizing time study, takt time and poka-yoke techniques.

Table 2: Summary of optimization results

Category	Before	After
Total Idle time:	2.38	1.08
Workstation time:	31.39	30.11
Balance delay:	8%	4%
Efficiency:	92%	94%

Time Study

Production Engineer trains the time study officer to conduct time study during sample stage and the engineer collects the data and begins to conduct analysis.

	TIME STUDY SHEET									
Departm	ent: Sample Department	Document Owner: Industrial Engineer (steven kazadi)								
Order No	o.: 31929	DATE: 21/02/2019								
APPROV	ÆD:	Time study personnel: Rose Jila								
Ops no.	Operations		Cycle	times		Rating	NT	Apfd	Tstd	
Ops no.	Operations	Cycle 1	Cycle 2	Cycle 3	Ave. time	Rating	INI	Apra	lstd	
1	Make belt	1.4	1.48		1.44	100%	1.44	1.15	1.66	
2	Close belt	0.35	0.33		0.34	100%	0.34	1.15	0.39	
3	Join shoulders	0.39	0.32		0.36	100%	0.36	1.15	0.41	
4	Bind neckline	1.34	1.24		1.29	100%	1.29	1.15	1.48	
5	Frenchstitch neckline	2.33	1.38		1.86	100%	1.86	1.15	2.13	
6	Bind sleeves	0.15	0.18		0.17	100%	0.17	1.15	0.19	
7	Fit sleeves	1.35	0.18		0.77	100%	0.77	1.15	0.88	
8	Close sides (top)	1.36	1.44		1.40	100%	1.40	1.15	1.61	
9	Tack sleeves opening	0.27	0.33		0.30	100%	0.30	1.15	0.35	
	Lock front overlaps	0.39	0.45		0.42	100%	0.42	1.15	0.48	
11	Join fronts (bottom panels)	1.17	1.22		1.20	100%	1.20	1.15	1.37	
12	Join backs (bottom panels)	0.48	0.42		0.45	100%	0.45	1.15	0.52	
13	Close sides (bottom)	1.19	1.32		1.26	100%	1.26	1.15	1.44	
14	Overlock bottom	0.51	0.5		0.51	100%	0.51	1.15	0.58	
15	Hem bottom	2.33	2.03		2.18	100%	2.18	1.15	2.51	
16	Fit top to bottom	1.24	2.11		1.68	100%	1.68	1.15	1.93	
17	Tack elastic	0.16	0.19		0.18	100%	0.18	1.15	0.20	
18	Attach elastic	1.42	2.28		1.85	100%	1.85	1.15	2.13	
19	Overock elastic	1.23	1.15		1.19	100%	1.19	1.15	1.37	
20	Make belt loops	0.18	0.23		0.21	100%	0.21	1.15	0.24	
	Attach belt loops	1.24	1.16		1.20	100%	1.20	1.15	1.38	
	Attach hanger loops	0.36	0.46		0.41	100%	0.41	1.15	0.47	
	Attach label	0.24	0.29		0.27	100%	0.27	1.15	0.30	
	Total time (min)	21.08	20.69	0.00	20.89		20.89		24.02	

CMT Price:	R 44.00
Labor Charge:	R 36.03
Profit/loss:	R 7.97

Labor charge formular:	R1.5/min * total Tstd
------------------------	-----------------------

Profit:	
Loss:	

Figure 7: Time study data sheet (Textile: CMT)

Production Capacity Alterations

Order Number: 31929 Start Date: 25/02/2019 Indicates when it goes to production

Avail. Time	Daily Demand	Takt time
510	796	0.64

Budgeted Value	Budgeted Value cmt		Demand/hr	
35000 44		796	94	

Avail. Hrs: 8.5

Before Alterations

After Alteration

no. Process

1 Make belt

2 Close belt

3 Join shoulders

Predecessors

After Alterations adjusted depending on the output

0.00

0.25

0.23

1.66

0.39

0.41

Takt time | C.T (min) | Idle Time | Headcount | Qty/hr | Target/person | M/C required

Headcount may also be

109 153

147

36 Safety

147 Safety

153 Flat

no. Process	Predecessor	Takt time	C.T (min)	Idle Time	Headcount	Qty/hr	Target/person	M/C required
1 Make belt	-	0.64	1.66	0.00	3	109	36	Safety
2 Close belt	1	0.64	0.39	0.25	1	153	153	Flat
3 Join shoulders	-	0.64	0.41	0.23	1	147	147	Safety
4 Bind neckline	3	0.64	1.48	0.00	3	121	40	Flat + binder
5 Frenchstitch neckline	4	0.64	2.13	0.00	4	113	28	Flat
6 Bind sleeves	-	0.64	0.19		1	316		Flat + binder
7 Fit sleeves	6	0.64	0.88	0.00	2	136	68	Safety
8 Close sides (top)	7	0.64	1.61	0.00	3	112	37	Safety
9 Tack sleeves opening	8	0.64	0.55	0.09	1	109	109	Flat
10 Lock front overlaps	9	0.64	0.48	0.16	1	124	124	Flat
11 Join fronts (bottom panels)	-	0.64	1.37	0.00	3	131	44	Safety
12 Join backs (bottom panels)	-	0.64	0.52	0.12	1	116	116	Safety
13 Close sides (bottom)	11,12	0.64	1.44	0.00	3	125	42	Safety
14 Overlock bottom	13	0.64	0.58	0.06	1	103	103	Overlock
15 Hem bottom	14	0.64	2.51	0.00	4	96	24	Flat
16 Fit top to bottom	9,14	0.64	1.93	0.00	4	125	31	Flat
17 Tack elastic	-	0.64	0.20	0.44	1	298	298	Flat
18 Attach elastic	17	0.64	2.13	0.00	4	113	28	Flat
19 Overock elastic	18	0.64	1.37	0.00	3	132	44	Overlock
20 Make belt loops	-	0.64	0.24	0.40	1	255	255	Flat + binder
21 Attach belt loops	20	0.64	1.38	0.00	3	130	43	Flat
22 Attach hanger loops	21	0.64	0.47	0.17	1	127	127	Flat
23 Attach label	22	0.64	0.30	0.34	1	197	197	Flat
Total:		14.74	24.22	2.38	. 49		k	

									•
4	Bind neckline	3	0.64	1.48	0.00	3	121	40	Flat + binder
5	Frenchstitch neckline	4	0.64	2.13	0.00	4	113	28	Flat
6	Bind sleeves+ make belt loops	-	0.64	0.55	0.09	1	109	109	Flat + binder
7	Fit sleeves	6	0.64	0.88	0.00	2	136	68	Safety
8	Close sides (top)	7	0.64	1.61	0.00	3	112	37	Safety
9	Tack sleeve+ tack elastic	8	0.64	1.25	0.00	2	96	48	Flat
10	Lock front overlaps	9	0.64	0.48	0.16	1	124	124	Flat
11	Join fronts (bottom panels)		0.64	1.37	0.00	3	131	44	Safety
12	Join backs (bottom panels)	•	0.64	0.52	0.12	1	116	116	Safety
13	Close sides (bottom)	11,12	0.64	1.44	0.00	3	125	42	Safety
14	Overlock bottom	13	0.64	0.58	0.06	1	103	103	Overlock
15	Hem bottom	14	0.64	2.51	0.00	4	96	24	Flat
16	Fit top to bottom	9,14	0.64	1.93	0.00	3	93	31	Flat
17	Attach elastic	16	0.64	2.13	0.00	4	113	28	Flat
18	Overock elastic	17	0.64	1.37	0.00	3	132	44	Overlock
19	Attach belt loops	18	0.64	1.38	0.00	3	130	43	Flat
20	Attach hanger loops	19	0.64	0.47	0.17	1	127	127	Flat
21	Attach label	20	0.64	0.30	0.34	1	197	197	Flat
	Total:		13.45	24.85	1.08	47			

0.64

0.64

0.64

Determine how many people required to do the job

Determines how many each person should produce to meet demand

Figure 8: Capacity study after alterations

Figure 9: Capacity study before alterations

Restructuring Business Organizational Structure

Scope

The project entails by far the biggest and most complex problem of targeting quality and efficiency at the source by restructuring the organizational structure in order to build problem solving leaders to promote the culture of continuous improvements.

Result of the project

- Improved communication between departments
- More accountability
- Upskilling employees
- Creation of new departments and job opportunities
- An environment that ensures the profitability of the business
- Quicker decision making

The commonalities between two different industries

Both SMME's and the majority of the reasons of lack of communication and accountability between departments stems from no foundational organizational structure. The biggest impact upon the two is that not only lean-six sigma projects reduce costs to maximize profits but also job creation as seen in the organograms.

In the end to execute this executive level project it boils down to three main factors influence, communication and collaborations.

ZA Gear Organizational Structure

Figure 10: Before Organizational Structure (textile: CMT)

Figure 11: Revised Organizational structure (textile: CMT)

Oh Two Printing Organizational structure

Figure 13: O2P organizational Structure (printing) Before

Figure 12: O2P organizational structure (revised)

Business Improvement Project

Scope

The IE consultant was tasked to improve overall operations of the printing organization by utilizing Industrial, Lean-Six Sigma approach. In which, everything began with restructuring the organizational structure, developing the SIPOC diagram and automating data collection and analyzing processes.

Results of the projects

- Increase production capacity of up to 50%
- Improved quality rate of up to 80%
- Reduced lead time of up to 50%
- >R1.5million cost savings
- On-time delivery rate raised from 60% to 100%
- Producing more for less in the shortest space of time

SIPOC Diagram

Process Oh Two Printing
Process Owner Steven Kazadi
Date Reviewed 9-Dec-21

Benefits category:

- * Prrovides a simple and high level view of the processes and elements
- *Provide a starting point for process improvement or transformation
- * Focal point of moving towards
- a pull system

SWOT or PESTEL Analysis	Lean and Six Sigma methodologies	Marketing Strategies
Identfying Internal & External factors that affects the business	* Identifying and increasing value to the customer by waste reduction to increase	* Developing loyal customers
	efficiency and Improving quulity to increase effectiveness	* Pricing
 keeping inventory based on customer demand and 	* Reducing operating expenses that include rent, labor and materials	 Customers are your best
production capacity	* Quantifying, Measuring, Control and Improve	advertisers
	* Matching capacity to demand, removing just-in-case habits	* Competitive advantage
Finance, CEO	Production Management	CEO

Opportunity Project Analysis
Description
Key Role Players

Figure 14: SIPOC diagram (Printing)

A3 Problem solving approach through lean-six sigma

Figure 15: A3 problem-solving

Kaizen Report

Figure 16: kaizen report (Printing Industry)