Note on Jan 11

Relationship between Bivariate CDFs and PDFs

• Bivariate CDFs and PDFs have the following relationship:

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= \frac{\partial^2 \left[F_{Y_1,Y_2}(y_1,y_2) \right]}{\partial y_1 \partial y_2}; \\ -\infty &< y_1 < \infty , \qquad -\infty < y_2 < \infty \end{split}$$

where f_{Y_1,Y_2} is a joint (bivariate) probability density function (joint pdf).

This means that ...

$$f_1(y_1) = \int_{-\infty}^{\infty} f_{Y_1,Y_2}(y_1,y_2) dy_2$$

- That is, if we integrate Y_2 continuous variable out of the bivariate/joint pdf, we are left with the pdf of the Y_1 variable. This is the marginal probability density function of Y_1 variable.
- The $\underline{\text{marginal}}$ probability density function of Y_2 variable is obtained by $\underline{\text{integrating}}\ Y_1$ continuous variable $\underline{\text{out}}$ of the bivariate/joint pdf as shown below.

$$f_2(y_2) = \int_{-\infty}^{\infty} f_{Y_1,Y_2}(y_1,y_2) dy_1$$

Example 1:

$$f(y_1, y_2) = \begin{cases} \frac{6}{5} & (y_1 + y_2^2); & 0 \le y_1 \le 1, \\ 0 & ; & 0 \text{therwise} \end{cases}$$

Compute and report the marginal pdf of Y_1 .

Independence of Random Variables

Two random variables, Y_1 and Y_2 , are independent if and only if

Using CDF:

$$F_{Y_1,Y_2}(y_1,y_2) = F_1(y_1) \times F_2(y_2)$$
 where $F_1(y_1)$ and $F_2(y_2)$ marginal CDFs.

• Using PDF:

$$f_{Y_1,Y_2}(y_1,y_2) = f_1(y_1) \times f_2(y_2)$$
 where $f_1(y_1)$ and $f_2(y_2)$ marginal PDFs.

• If the support is dependent, then variables are NOT independent.

• Further, we don't need the marginal CDFs and pmfs/pdfs to show independence! We can show independence using non-negative functions of the variables themselves.

Example 1 Continued:

$$f(y_1, y_2) = \begin{cases} \frac{6}{5} & (y_1 + y_2^2) & ; \ 0 \le y_1 \le 1, \ 0 \le y_2 \le 1 \\ 0 & ; \ Otherwise \end{cases}$$

Are the random variables Y_1 and Y_2 independent according to probability? Explain.

Example 2 : Consider the following function.

$$f_{Y_1,Y_2}(y_1,y_2) \, = 0.3 \, \left(1-y_1^2+y_2\right) \; ; \; 0 \leq y_1 \leq y_2 \leq 2$$

(a) Draw and shade the support of this function on Cartesian plane.

(b) Find and report the recognized adf of V
(b) Find and report the marginal pdf of Y_1 .
(c) Find the probability that Y_2 is higher than 1.5. That is, find $P(Y_2 > 1.5)$.

(d) Are the random variables Y_1 and Y_2 independent according to probability? Explain.