数学建模与 Matlab 第一章对变化进行建模

韩建伟

信息学院 mm@hanjianwei.com

2016/09/13

课程介绍

- 内容 数学建模 + Matlab
- 教材 数学建模 (原书第 5 版), Frank R.Giordano, Willam P.Fox, Steven B.Horton, 叶其孝 / 姜启源译, 机械工业出版社
- 参考 数学模型 (第四版), 姜启源 / 谢金星 / 叶俊, 高等教育出版 社 数学建模, 杨启帆 / 谈之奕 / 何勇, 浙江大学出版社

精通 MATLAB R2011a. 张志涌. 北京航天航空大学出版社

网站 http://zjsu.github.io/mm

课程安排

时间 15 周 = 9 课堂 + 5 实验 + 1 假期 考试 成绩 = 平时 \times 30%+ 期末 $(闭卷) \times 70\%$ 作业 作业 = 小作业 + 大作业 (2-3 人一个团队) 提交 相应的提交方式将在网站公布

课程概要

*Part Two requires single-variable calculus as a corequisite.

简介

数学模型是对现实世界现象的理想化表示而非完全精确的表示.

- 预测变化
- 对现实世界进行简化

例如: 比例性.

弹簧系统

Table 1.1 Spring-mass system

Mass	Elong	
50	1.000	
100	1.875	
150	2.750	
200	3.250	
250	4.375	
300	4.875	
350	5.675	
400	6.500	
450	7.250	
500	8.000	
550	8.750	

$$\mathit{slope} = \frac{4.875 - 3.25}{300 - 200} = 0.01625$$

验证弹簧系统

对变化进行建模

*未来值 = 现在值 + 变化 变化 = 未来值 - 现在值

离散时间 差分方程 (difference equation)

连续时间 微分方程 (第11章)

差分方程

定义

对于数列 $A = a_0, a_1, a_2, a_3, ...$,其一阶差分定义为:

$$\Delta a_0 = a_1 - a_0$$

 $\Delta a_1 = a_2 - a_1$
 $\Delta a_2 = a_3 - a_2$
 $\Delta a_3 = a_4 - a_3$

对于每个正整数 n, 第 n 个一阶差分为:

$$\Delta a_n = a_{n+1} - a_n$$

差分方程

储蓄问题

考虑本金 1000 美元, 月利息 1% 的储蓄问题 A = (1000, 1010, 1020.10, 1030.30, ...).

$$\Delta a_0 = a_1 - a_0 = 1010.0 - 1000.0 = 10.0$$

 $\Delta a_1 = a_2 - a_1 = 1020.1 - 1010.0 = 10.1$
 $\Delta a_2 = a_3 - a_2 = 1030.3 - 1020.1 = 10.2$

$$a_{n+1} = \begin{array}{l} \Delta a_n = a_{n+1} - a_n = 0.01 a_n \\ a_n + 0.01 a_n = 1.01 a_n, n = 0, 1, 2, 3 \\ a_0 = 1000 \end{array}$$

如果每月取出 50 美元...

$$\Delta a_n = a_{n+1} - a_n = 0.01a_n - 50$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

如何找出变化

在多数情况下, 很难象上述例子那样精确表述, 因此我们通过如下步骤找出变化:

- 画出变化
- ② 观察变化规律
- ◎ 用数学术语描述变化

变化 = Δa_n = 某个函数 f

对于离散情况:

变化 = $\Delta a_n = a_{n+1} - a_n = f($ 序列中的项, 外部项)

按揭买房

六年前按揭 20 年买了一套 80000 美元的房子, 月供 880.87 美元并付每月 1% 的利息. 问现在还欠银行多少?

$$\Delta b_n = b_{n+1} - b_n = 0.01b_n - 880.87$$

求解下列方程即可:

$$b_{n+1} = b_n + 0.01b_n - 880.87$$

$$b_0 = 80000$$

B = (80000, 79919.13, 79837.45, ...)

按揭买房

Months n	Amount Owed b_n
0	80000.00
1	79919.13
2	79837.45
3	79754.96
4	79671.64
5	79587.48
6	79502.49
7	79416.64
8	79329.94
9	79242.37
10	79153.92
11	79064.59
12	78974.37

用差分方程来近似变化

- 变化 = Δa_n = 某个函数 f
- 离散变化与连续变化
- 模型的细化: 生、死、资源

酵母培养 - 找出模型

Time		
in	Yeast	Change/
hours	biomass	hour
n	p_n	$p_{n+1}-p_n$
0	9.6	8.7
1 🖟	18.3	10.7
2	29.0	18.2
3	47.2	23.9
4	71.1	48.0
5	119.1	55.5
6	174.6	82.7
7	257.3	93.4
8	350.7	90.3
9	441.0	72.3
10	513.3	46.4
11	559.7	35.1
12	594.8	34.6
13	629.4	11.4
14	640.8	10.3
15	651.1	4.8
16	655.9	3.7
17	659.6	2.2
18	661.8	

$$\Delta p_n = p_{n+1} - p_n = k(665 - p_n)p_n$$

酵母培养 - 模型数值求解

	i
$p_{n+1}-p_n$	$p_n(665-p_n)$
8.7	6291.84
10.7	11,834.61
18.2	18,444.00
23.9	29,160.16
48.0	42,226.29
55.5	65,016.69
82.7	85,623.84
93.4	104,901.21
90.3	110,225.01
72.3	98,784.00
46.4	77,867.61
35.1	58,936.41
34.6	41,754.96
11.4	22,406.64
10.3	15,507.36
4.8	9050.29
3.7	5968.69
2.2	3561.84

 $k \approx 0.00082$

$$p_{n+1} = p_n + 0.00082(665 - p_n)p_n$$

酵母培养 - 模型验证

Time in hours	Observations	Predictions
0	9.6	9.6
1	18.3	14.8
2	29.0	22.6
3	47.2	34.5
4	71.1 ⊳	52.4
5	119.1	78.7
6	174.6	116.6
7	257.3	169.0
8	350.7	237.8
9	441.0	321.1
10	513.3	411.6
11	559.7	497.1
12	594.8	565.6
13	629.4	611.7
14	640.8	638.4
15	651.1	652.3
16	655.9	659.1
17	659.6	662.3
18	661.8	663.8

$$p_{n+1} = p_n + 0.00082(665 - p_n)p_n$$

思考: 看书上例 2 传染病传播模型, 考虑如何为该模型加入其它因素?

地高辛在血流中的变化

Table 1.2 The change a_n in digoxin in a patient's bloodstream

					·				
n	0	1	2	3	4	5	6	7	8
a_n Δa_n	0.500 -0.155				0.113 -0.035				0.026

Figure 1.11 A plot of Δa_n versus a_n from Table 1.2 suggests a straight line through the origin

$$\begin{array}{c} \Delta a_n = -0.31 a_n \\ a_{n+1} - a_n = -0.31 a_n \\ a_{n+1} = 0.69 a_n \end{array}$$

动态系统的解法 - 猜测

存款问题: $a_{n+1} = 1.01a_n$, $a_0 = 1000$

$$\begin{aligned} & a_1 = 1010.0 = 1.01(1000) \\ & a_2 = 1020.1 = 1.01(1010) = 1.01^2(1000) \\ & a_3 = 1030.3 = 1.01(1020.1) = 1.01^3(1000) \\ & a_4 = 1040.6 = 1.01(1030.3) = 1.01^4(1000) \end{aligned}$$

动态系统的解法 - 猜测

猜测: $a_k = 1.01^k (1000)$

验证、结论: ...

推测法的一般步骤

- 观察模式
- ② 猜测动力系统的形式
- ③ 用带入法来测试该猜测
- 接受或拒绝该推测:取决于代入和代数运算后结果是否满足该动力系统。

推论:形式为 $a_{n+1} = ra_n$ 的动态系统的解为 $a_k = r^k a_0$.

$$a_{n+1} = ra_n$$

$a_{n+1} = ra_n + b$

不动点 (平衡点)

	A	В	C	a_n
n	a _n	a _n	a _n	1
0	0.1	0.2	0.3	0.3
1	0.15	0.2	0.25	\
2	0.175	0.2	0.225	0.25
3	0.1875	0.2	0.2125	
4	0.19375	0.2	0.20625	0.20-0-0-0-0-0-0-0-0-0-0-0
5	0.196875	0.2	0.203125	good
6	0.1984375	0.2	0.2015625	0.15
7	0.19921875	0.2	0.20078125	6.15 /
8	0.19960938	0.2	0.20039063	. · V
9	0.19980469	0.2	0.20019531	0.1 ∳-
10	0.19990234	0.2	0.20009766	
11	0.19995117	0.2	0.20004883	0.05
12	0.19997559	0.2	0.20002441	
13	0.19998779	0.2	0.20001221	0
14	0.1999939	0.2	0.2000061	0 5 10 15
15	0.19999695	0.2	0.20000305	- 10 15

Digoxin 浓度变化

不动点

Digoxin 浓度变化

不动点

$$a_{n+1} = 1.01a_n - 1000$$

	A	В	C
n	a_n	a _n	a _n
0	90000	100000	110000
1	89900	100000	110100
2	89799	100000	№110201
3	89697	100000	110303
4	89594	100000	110406
5	89490	100000	110510
6	89385	100000	110615
7	89279	100000	110721
8	89171	100000	110829
9	89063	100000	110937
10	88954	100000	111046
11	88843	100000	111157
12	88732	100000	111268
13	88619	100000	111381
14	88505	100000	111495
15	88390	100000	111610

投资

r=1

不动点

$$a_{n+1} = ra_n + b, r \neq 1$$
 的不动点为:

$$a = \frac{b}{1 - r}$$

上述动态系统的解为: $a_k = r^k c + \frac{b}{1-r}$.

思考: r 的值不同时, 长期来说系统如何变化?

非线性系统

差分方程组

- 找出不动点
- 当初始值在不动点附近时,系统如何变化

研究系统的长期变化,看系统对如下条件是否敏感:

- 初始条件
- 对模型中的常量进行扰动

汽车租赁公司

定义

- $O_n = \Re n$ 天营业结束时在奥兰多的车辆数
- $T_n = \Re n$ 天营业结束时在坦帕的车辆数

$$O_{n+1} = 0.6O_n + 0.3T_n$$

 $T_{n+1} = 0.4O_n + 0.7T_n$

计算平衡点

如果存在平衡点 O, T:

$$O=O_{n+1}=O_n$$

$$T = T_{n+1} = T_n$$

推导出:

$$O = 0.6O + 0.3T$$

$$T = 0.4O + 0.7T$$

方程求解

 $O = \frac{3}{4}T$ 满足上述方程组. 如果公司有 7000 辆车,则 (O, T) = (3000, 4000) 处开始,保持不变。 分析下述四种初始条件:

Four starting values for the car rental problem

	Orlando	Tampa
Case 1	7000	0
Case 2	5000	2000
Case 3	2000	5000
Case 4	0	7000

分析

分析

结论

四种情形中每一种情形在一周内都是和平衡点 (3000,4000) 很接近的, 甚至在其中一个城市没有车的情况也是如此。结果显示,平衡点是稳定 的而且对初始值不敏感的。

思考: 该系统是否对 O_{n+1} 和 T_{n+1} 的系数敏感?

特拉法尔加战斗

法西联军 33 艘战舰,英军 27 艘战舰,在一次遭遇战中每方的战舰损失都是对方战舰的 10%。

动力系统模型 令 n 表示战斗过程中遭遇战的阶段并定义:

定义

- $B_n =$ 第 n 阶段英军的战舰数
- $F_n =$ 第 n 阶段法西联军的战舰数

死拼打法

战斗结束:英军全面战败,剩3艘战舰其中一艘严重损坏,法军大约还有18艘战舰。

各个击破

策略:英军 13 艘攻击 A;然后,全力攻击 B,最后攻击 C。

战斗A

战斗 B

战斗C

战果

英军大获全胜。现实世界: 法西联军没有参加战斗 C, 而是把剩下的约13 艘战舰撤回法国。

• On, Hn 分别表示第 n 天猫头鹰和隼的数量

- O_n, H_n 分别表示第 n 天猫头鹰和隼的数量
- $\Delta O_n = k_1 O_n$, $\Delta H_n = k_2 H_n$ (不考虑竞争)

- On, Hn 分别表示第 n 天猫头鹰和隼的数量
- $\Delta O_n = k_1 O_n$, $\Delta H_n = k_2 H_n$ (不考虑竞争)
- $\Delta O_n = k_1 O_n k_3 O_n H_n$, $\Delta H_n = k_2 H_n k_4 O_n H_n$ (考虑竞争)

- On, Hn 分别表示第 n 天猫头鹰和隼的数量
- $\Delta O_n = k_1 O_n$, $\Delta H_n = k_2 H_n$ (不考虑竞争)
- $\Delta O_n = k_1 O_n k_3 O_n H_n$, $\Delta H_n = k_2 H_n k_4 O_n H_n$ (考虑竞争)
- $O_{n+1} = (1 + k_1)O_n k_3O_nH_n$
- $\bullet \ H_{n+1} = (1+k_2)H_n k_4O_nH_n$

求解平衡点

定义

- $O_{n+1} = 1.2O_n 0.001O_nH_n$
- $H_{n+1} = 1.3H_n 0.002O_nH_n$

如果 (O, H) 为平衡点则 $O_{n+1} = O_n = O$, $H_{n+1} = H_n = H$:

- $O = 1.2O 0.001OH \Rightarrow O = 0 \text{ or } H = 200$
- $H = 1.3H 0.002OH \Rightarrow H = 0 \text{ or } O = 150$

平衡点分析

两个平衡点: (0,0), (150,200). 为什么?

47 / 59

49 / 59

如果在栖息地安置 350 只猫头鹰和隼:

● 如果 150 头为猫头鹰:猫头鹰和隼的数量不变(150、200)

如果在栖息地安置 350 只猫头鹰和隼:

● 如果 150 头为猫头鹰:猫头鹰和隼的数量不变(150、200)

② 如果 149 头或更少猫头鹰: 猫头鹰将灭绝

如果在栖息地安置 350 只猫头鹰和隼:

● 如果 150 头为猫头鹰:猫头鹰和隼的数量不变(150、200)

② 如果 149 头或更少猫头鹰:猫头鹰将灭绝

③ 如果 151 头或更多猫头鹰: 隼将灭绝

如果在栖息地安置 350 只猫头鹰和隼:

- 如果 150 头为猫头鹰:猫头鹰和隼的数量不变(150、200)
- ② 如果 149 头或更少猫头鹰:猫头鹰将灭绝
- ③ 如果 151 头或更多猫头鹰: 隼将灭绝
- 该模型对初始条件极其敏感,平衡点不稳定。

政党投票

定义

 $R_n =$ 第 n 次选举投共和党票的人数 $D_n =$ 第 n 次选举投民主党票的人数 $I_n =$ 第 n 次选举投独立派票的人数

差分方程组

$$D_{n+1} = 0.05R_n + 0.60D_n + 0.20I_n$$

$$I_{n+1} = 0.20R_n + 0.20D_n + 0.40I_n$$
平衡点 $R_{n+1} = R_n = R$, $D_{n+1} = D_n = D$, $I_{n+1} = I_n = I$:
$$-0.25R + 0.20D + 0.40I = 0$$

$$0.05R - 0.40D + 0.20I = 0$$

$$0.20R + 0.20D - 0.60I = 0$$

 $R_{n+1} = 0.75R_n + 0.20D_n + 0.40I_n$

平衡点分析

R: D: I = 2.2221: 0.7777694: 1

	Republicans	Democrats	Independents
Case 1	222,221	77,777	100,000
Case 2	227,221	82,777	90,000
Case 3	100,000	100,000	199,998
Case 4	0	0	399,998

总结

选举系统相当稳定,即使刚开始没有人选共和党或者民主党,最后也会稳定.