CT561: Systems Modelling & Simulation

Lecture 4: Formulating Effects and Limits to Growth

Dr. Jim Duggan,

School of Engineering & Informatics

National University of Ireland Galway.

https://github.com/JimDuggan/SDMR

https://twitter.com/_jimduggan

Recap: Feeback Example

Copyright © 2001 by the McGraw-Hill Companies, JD Sterman Business Dynamics

Formulating Effects

- An important building block for models is to capture how variables influence one another over time.
- System dynamics offers a convenient structure for modeling effect variables (Sterman 2000).

$$Y = Y^* \times Effect(X_1 on Y) \times ... \times Effect(X_n on Y)$$

$$Effect(X_i on Y) = f\left(\frac{X_i}{X_i^*}\right)$$

Effects structure (1)

- There is a variable Y that is the dependent variable of a causal relationship, and this depends on a set of n independent variables $(X_1, X_2, ..., X_n)$
- The variable Y has a reference value Y^* , and this is multiplied by a sequence of *effect functions* that are calculated based on the normalized ratio of (X_i/X_i^*) , where X_i^* is the reference value, and X_i is the actual value.

Effects structure (2)

- The effect function (y-axis) has the normalized ratio (X/X^*) on its x-axis, and always contains the point (1,1) although the function itself can be either linear or non-linear around this point.
- This point (1,1) is important for the following reason: if X equals its reference value X^* , then the effect function will be 1, and therefore Y will then equal its reference value Y^* .

Software Engineering Example

- Reference productivity is 100 loc/person/day
- This assumes a reference rookie proportion in the team (say 20%)
- If we have exactly 20% Rookies
 - Actual Productivity = Reference Productivity
- If we have > 20% Rookies
 - Actual Productivity < Reference Productivity
- If we have < 20% Rookies
 - Actual Productivity > Reference Productivity

The equation

Actual Productivity = Reference Productivity *
 Effect of Rookie Proportion on Productivity

Reference Productivity	Reference Rookie Proportion	Actual Rookie Proportion	Effect Multiplier	Actual Productivity
100	20%	20%	1	100
100	20%	40%	< 1	< 100
100	20%	10%	> 1	> 100

The Effect Equation

- Actual Productivity =
 Reference Productivity *
 Effect of Rookie Proportion
 on Productivity
- Effect of X on Y = F(X/X*)
- Normalised Value
- When $X = X^*$, F(X) = 1
- X* and Y* are reference values

Example

• X = Rookie Proportion

X* = Reference Rookie
 Percentage

Impact on productivity?

• (1,1) is always on the line

Thinking about the effects...

- X = Actual Rookie
 Proportion
- X* = Reference Rookie Proportion (i.e. the number at which our experienced productivity is at its reference value)
- Scenarios:
 - If $X > X^*$, Effect?
 - If $X < X^*$, Effect?

Sketching the relationship, More rookies than reference value

• X > X*

- We have more Rookies than our target level
- This will reduce our experienced productivity
- More work to train rookies
- Effect will be lower than1
- Decide on minimum value (0.25)

Sketching the relationship, Less rookies than reference value

• X < X*

- We have less Rookies than our target level
- This will increase our experienced productivity
- Less work to train rookies
- Effect will be greater than 1
- Decide on a maximum value (1.8)

Effect equation represented as table lookup

Challenge 4.1

- Extend the model to include the following variable:
 - Average time to promotion

Limits to Growth Model

There will always be limits to growth. They can be self-imposed. If they aren't, they will be system-imposed.

Donella H. Meadows, Thinking in Systems: A Primer (2008), p.103

Formulating the Effect

Initial Equations

 $Growth \ Rate = Ref \ Growth \ Rate \\ \times Effect \ of \ Availability \ on \ Growth \ Rate$

Effect of Availability on Growth Rate = $f(\frac{Availability}{Ref\ Availability})$ Ref Growth Rate = 0.10 Ref Availability = 1.0

Effect equation y = mx + c

 $Effect \ of \ Availability \ on \ Growth \ Rate = \frac{Availability}{Ref \ Availability}$

Ref Availability	Availability	Effect of Availability on Growth Rate	Ref Growth Rate	Growth Rate
1.0	1.0	1.0	0.10	0.10
1.0	0.5	0.5	0.10	0.05
1.0	0.0	0.0	0.10	0.00

Remaining Equations

Limit constant, stock approaches

Simulation Output

Verhulst Equations (1838)

In ecology: modeling population growth [edit]

A typical application of the logistic equation is a common model of population growth, originally due to Pierre-François Verhulst in 1838, where the rate of reproduction is proportional to both the existing population and the amount of available resources, all else being equal. The Verhulst equation was published after Verhulst had read Thomas Malthus' *An Essay on the Principle of Population*. Verhulst derived his logistic equation to describe the self-limiting growth of a biological population. The equation was rediscovered in 1911 by A. G. McKendrick for the growth of bacteria in broth and experimentally tested using a technique for nonlinear parameter estimation.^[4] The equation is also sometimes called the *Verhulst-Pearl equation* following its rediscovery in 1920 by Raymond Pearl (1879–1940) and Lowell Reed (1888–1966) of the Johns Hopkins University.^[5] Another scientist, Alfred J. Lotka derived the equation again in 1925, calling it the *law of population growth*.

Letting *P* represent population size (*N* is often used in ecology instead) and *t* represent time, this model is formalized by the differential equation:

$$\frac{dP}{dt} = rP \cdot \left(1 - \frac{P}{K}\right)$$

where the constant r defines the growth rate and K is the carrying capacity.

https://en.wikipedia.org/wiki/Logistic function

Challenge 4.2

$$\frac{dP}{dt} = rP \cdot \left(1 - \frac{P}{K}\right)$$

where the constant r defines the growth rate and K is the carrying capacity.

 Map the Verhulst equation onto the stock and flow model.

