Точки сочленения и блоки в связном графе

В этом разделе G — связный граф.

Определение

- 1) Вершина $a \in V(G)$ называется точкой сочленения, если граф G-a несвязен.
- 2) *Блоком* называется любой максимальный по включению подграф графа *G*, не имеющий точек сочленения.
- В силу максимальности, блок графа G является индуцированным подграфом графа G на своем множестве вершин.
- Любой подграф без точек сочленения H графа G входит хотя бы в один блок (так как H можно дополнить до максимального подграфа без точек сочленения).

Определение

Блоки и *точки сочленения* несвязного графа — это блоки и точки сочленения его компонент.

• Далее мы будем рассматривать только связные графы?

Лемма 1

Пусть B_1 и B_2 — два разных блока графа G, причём $V(B_1) \cap V(B_2) \neq \varnothing$. Тогда $V(B_1) \cap V(B_2)$ состоит из точки сочленения а графа G, причем а — единственная точка сочленения, отделяющая B_1 от B_2 .

Доказательство. • Пусть $|V(B_1) \cap V(B_2)| \ge 2$. Тогда для любой вершины $x \in V(B_1 \cup B_2)$ граф $B_1 \cup B_2 - x$ связен (см. рис. а). Следовательно, $B_1 \cup B_2$ содержится в блоке B графа G, а B_1 является собственным подграфом B, что противоречит максимальности B_1 .

ullet Далее пусть $V(B_1) \cap V(B_2) = \{a\}$. Так как a- общая вершина блоков B_1 и B_2 , отделить B_1 от B_2 в графе G может только a.

- ullet Если a не отделяет B_1 от B_2 в графе G, то в G-a есть $V(B_1)V(B_2)$ -путь P (см. рис. b).
- Пусть $H = B_1 \cup B_2 \cup P$. Граф H x связен для любой вершины $x \in V(H)$. Поэтому H содержится в одном блоке B графа G, а блок B_1 собственный подграф B, противоречие.
- Итак, a единственная вершина, которая отделяет B_1 от B_2 в графе G. Следовательно, граф G a несвязен, то есть a точка сочленения G.

Пример дерева блоков и точек сочленения для графа слева

- По Лемме 1 любой подграф без точек сочленения H графа $G \in V(H) > 1$ входит ровно в один блок. В частности, любое ребро графа входит ровно в один блок.
- Если у связного графа *G* хотя бы две вершины, то каждая его вершина смежна хотя бы с одной другой вершиной. Следовательно, любой блок графа *G* содержит хотя бы две вершины.

Определение

- Построим граф B(G), вершины которого соответствуют всем точкам сочленения a_1, \ldots, a_n графа G и всем его блокам B_1, \ldots, B_m (мы будем обозначать эти вершины так же, как и блоки). Вершины a_i и B_j будут смежны, если $a_i \in V(B_j)$. Других рёбер в этом графе нет.
- Граф B(G) называется деревом блоков и точек сочленения графа G.

Лемма 2

Пусть B_1 и B_2 — два разных блока графа G, а P — путь между ними в графе B(G). Тогда точки сочленения графа G, отделяющие B_1 от B_2 — это в точности те точки сочленения, что лежат на пути P. Остальные точки сочленения не разделяют даже объединение блоков пути P.

Доказательство. • Пусть x — точка сочленения графа G, не лежащая на пути P, а H — объединение всех блоков пути P.

• Для любого блока B пути P граф B-x связен. Если B — не B_1 и не B_2 , то в нем можно пройти между двумя точками сочленения, входящими в P (эти точки отличны от x). Поэтому H-x — связный граф.

- Пусть a точка сочленения, лежащая на P, и она входит в блоки B_1' и B_2' пути P (см. рисунок).
- Обозначим через H_1 объединение всех блоков, лежащих на пути P от B_1 до a, а через H_2 объединение всех блоков, лежащих на пути P от a до B_2 .
- По доказанному выше, а не разделяет ни один из графов H_1 и H_2 .
- С другой стороны, по Лемме 1 точка сочленения a отделяет блок B_1' от блока B_2' , а значит, a отделяет H_1 от H_2 и, в частности, B_1 от B_2 .

https://youtu.be/BSvj5lhVHgk?t=1196

- 1) Дерево блоков и точек сочленения связного графа G это действительно дерево, все листья которого соответствуют блокам.
- 2) Точка сочленения а разделяет два блока B_1 и B_2 в графе G, если и только если а разделяет B_1 и B_2 в B(G).

Доказательство. 1) B(G) — связный граф.

- Для любых двух вершин B(G) (не важно, блоков или точек сочленения) рассмотрим путь Q в G между ними.
- ullet Путь Q перестраивается в путь в B(G) так:
- участок пути Q, проходящий по одному блоку графа G, заменяем на соответствующую блоку вершину в B(G);
- переход Q между различными блоками по лемме 1 осуществляется через их общую точку сочленения вершину B(G).
- Предположим, что в B(G) есть простой цикл Z и рассмотрим подграф H объединение всех блоков этого цикла.
- \bullet Между любыми двумя входящими в Z блоками есть два независимых пути в B(G).
- По Лемме 2 граф *H* не имеет точек сочленения (они должны бы были лежать на двух путях без общих внутренних точек).
- Следовательно, существует блок B, содержащий H, а все (хотя бы два) блока цикла Z собственные подграфы B, что невозможно.
- Таким образом, B(G) дерево.
- Если лист B(G) соответствует точке сочленения a, то по Лемме 2 граф G-a связен, противоречие.
- 2) В дереве B(G) есть единственный путь между B_1 и B_2 . По лемме 2 в точности точки сочленения с этого пути отделяют B_1 от B_2 в графе G.

Крайние блоки

Определение

- 1) Назовем блок *В крайним*, если он соответствует висячей вершине дерева блоков и точек сочленения.
- 2) Внутренность Int(B) блока B это множество всех его вершин, не являющихся точками сочленения в графе G.
- Нетрудно понять, что блок недвусвязного графа *G* является крайним тогда и только тогда, когда он содержит ровно одну точку сочленения.
- Внутренность некрайнего блока может быть пустой. Внутренность крайнего блока всегда непуста.
- Если у связного графа *G* есть точки сочленения, то он имеет хотя бы два крайних блока. Т.к. у дерева хотя бы 2 листа
- Если B блок графа G, а $x \in Int(B)$, то граф G x связен.

Лемма 3

Пусть B — крайний блок связного графа G, а $G' = G - \operatorname{Int}(B)$. Тогда граф G' связен, а блоки G' — это все блоки G, кроме B.

Доказательство.

- Пусть $a \in V(B)$ точка сочленения, отрезающая крайний блок B от остального графа. Тогда $\mathrm{Int}(B)$ это одна из компонент связности графа G-a, откуда очевидно следует связность графа G'.
- Все отличные от *В* блоки графа *G* являются подграфами *G'*, не имеют точек сочленения и являются максимальными подграфами *G'* с таким свойством (они были максимальными даже в *G*). Следовательно, все они блоки графа *G'*.
- Пусть B' блок графа G'. Очевидно, $v(G') \ge 2$, поэтому B' содержит хотя бы одно ребро e, которое в графе G лежит в некотором блоке $B^* \ne B$. Теперь очевидно, что $B^* = B'$.

Разрез графа G по точке сочленения a.

ullet Пусть $U_1,\ldots,\ U_k$ — все компоненты связности графа $G-a_i$ а $G_i=G(U_i\cup\{a\}).$ Разрежем граф G на графы $G_1,\ldots,\ G_k.$

Лемма 4

- 1) Пусть $b \in U_i$. Тогда b разделяет вершины $x, y \in U_i$ в G_i , если и только если b разделяет их в G.
- 2) Все точки сочленения графов G_1, \ldots, G_k это в точности все точки сочленения графа G, кроме a.
- Доказательство. 1) \Leftarrow . Если в G b нет xy-пути, то его, очевидно, нет и в $G_i b$. Т.к. Gi b это его подграф
- \Rightarrow . Наоборот, пусть x и y лежат в разных компонентах связности графа G_i-b . Не умаляя общности можно считать, что компонента связности $W\ni x$ не содержит a. Тогда W компонента связности графа G-b, то есть, и в этом графе нет xy-пути.

Т.к. кроме как по точке а, блоки графа не пересекаются

Прибавиться точек сочленения не могло и их максимальность при удалении а не могла измениться

Разрез графа по точке сочленения (а обязательно принадлежит каждому графу)

- Доказательство пункта 2 леммы 4 Так как $G_i a c$ компонента графа G a, вершина a не является точкой сочленения ни в одном из графов G_1, \ldots, G_k .
- ullet Любая другая точка сочленения графа G лежит ровно в одном из графов $G_1,\dots,\,G_k$ и является в нем точкой сочленения по пункту 1.
- Также из пункта 1 следует, что других точек сочленения в графах G_1, \ldots, G_k нет.

Алгоритм разбиения связного графа на блоки

- Выберем точку сочленения a и разрежем по ней G заменим граф G на полученные при этом графы G_1, \ldots, G_k .
- ◆ Каждым следующим шагом мы будем брать один из имеющихся графов, выбирать в нем точку сочленения и разрезать его по ней.
- И так далее, пока хотя бы один из полученных графов имеет точку сочленения.

Теорема 2

В результате описанного выше алгоритма разрезания графа по точкам сочленения вне зависимости от порядка действий получатся блоки графа G.

Доказательство.

- \bullet По Лемме 4 мы вне зависимости от порядка действий проведем разрезы по всем точкам сочленения графа G и только по ним.
- Пусть B блок графа G. Тогда в графе G множество V(B) не было разделено ни одной из точек сочленения. Значит, по пункту 1 Леммы 4 множество V(B) не было разрезано при нашем алгоритме.
- ullet Так как в результате алгоритма получились индуцированные подграфы графа G, один из них скажем, H является надграфом B.
- Если $H \neq B$, то рассмотрим вершину $c \in V(H) \setminus V(B)$. В графе G существует точка сочленения a, отделяющая c от V(B). Тогда в силу Леммы 4 при разрезе по a вершина c была отделена от блока B, противоречие.

Определение

Граф G является двусвязным , если $\nu(G) \geq 3$ и граф не имеет точек сочленения.

 Блок связного графа, имеющий более двух вершин двусвязный граф.

Теорема 3

Пусть $G - двусвязный граф, <math>n_1, n_2 \in \mathbb{N}$, $v(G) = n_1 + n_2$. Тогда $G = G_1 \cup G_2$, где $v(G_1) = n_1$, $v(G_2) = n_2$ и оба графа G_1 и G_2 связные.

Доказательство. • Индукция по n_1 .

- ullet База $n_1=1$ очевидна: пусть G_1 состоит из одной вершины v_1 , тогда граф $G_2:=G-v_1$ связен, так как G не имеет точек сочленения.
- ullet Переход $n_1 o n_1 + 1$. В этом случае $n_2 := v(G_2) \ge 2$.
- Пусть B крайний блок G_2 , а a единственная входящая в B точка сочленения. (если G_2 не имеет точек сочленения, то $B = G_2$, a любая верщина B).
- В B-a есть вершина x, смежная с $V(G_1)$ (иначе a отделяет G_1 от B-a в графе G, то есть, является точкой сочленения, которых нет).
- ullet Тогда x не точка сочленения графа G_2 . Значит, $G_2' := G_2 x$ связен и $v(G_2') = n_2 1$.
- \bullet Так как x смежна с G_1 , граф G_1' , полученный из G_1 добавлением x и всех ребер графа G от x к G_1 , связен.

$$\bullet \ v(G_1') = n_1 + 1.$$

Npunep gby C-B9 zievz zpagoa

Разделяющие множества

Определение. Пусть $X, Y \subset V(G), R \subset V(G) \cup E(G)$.

- 1) Назовем множество R разделяющим, если граф G-R несвязен.
- 2) Пусть $X \not\subset R$, $Y \not\subset R$. Будем говорить, что R разделяет множества X и Y (или, что то же самое, отделяет множества X и Y друг от друга), если никакие две вершины $v_x \in X$ и $v_y \in Y$ не лежат в одной компоненте связности графа G R.
- Любой неполный граф имеет *вершинное* разделяющее множество (состоящее только из вершин).
- Любой граф более чем из одной вершины имеет *реберное* разделяющее множество (состоящее только из ребер).

Определение. Граф G является k-связным, если $v(G) \ge k+1$ и минимальное вершинное разделяющее множество в графе G содержит хотя бы k вершин.

• Блок связного графа, имеющий более двух вершин — двусвязный граф.

Если множества X и Y пересекаются, то чтобы их разделить, нужно удалить их пересечение

Touvep:

 $\mathcal{X} = 2$ $\mathcal{X}(x,y) = 2$

Вершинная связность

Определение

- 1) Пусть $x,y \in V(G)$ несмежные вершины. Обозначим через $\kappa_G(x,y)$ размер минимального множества $R \subset V(G)$ такого, что R разделяет x и y. Если x и y смежны, то положим $\kappa_G(x,y) = +\infty$. Назовем $\kappa_G(x,y)$ связностью вершин x и y.
- 2) Пусть $X, Y \subset V(G)$. Обозначим через $\kappa_G(X, Y)$ размер минимального множества $R \subset V(G)$ такого, что R разделяет X и Y. Если такого множества нет, то положим $\kappa_G(X, Y) = +\infty$.
- В k-связном графе G для любых двух множеств вершин $X,Y\subset V(G)$ выполнено $\kappa_G(X,Y)\geq k$.

Вершинная связность

Определение

- 1) Пусть $x,y \in V(G)$ несмежные вершины. Обозначим через $\kappa_G(x,y)$ размер минимального множества $R \subset V(G)$ такого, что R разделяет x и y. Если x и y смежны, то положим $\kappa_G(x,y) = +\infty$. Назовем $\kappa_G(x,y)$ связностью вершин x и y.
- 2) Пусть $X,Y\subset V(G)$. Обозначим через $\kappa_G(X,Y)$ размер минимального множества $R\subset V(G)$ такого, что R разделяет X и Y. Если такого множества нет, то положим $\kappa_G(X,Y)=+\infty$.
- ullet В k-связном графе G для любых двух множеств вершин $X,Y\subset V(G)$ выполнено $\kappa_G(X,Y)\geq k.$

Т.к. чтобы хоть как-то разделить kсвязный граф нужно удалить хотя бы k вершин

(K. Menger, 1927.) Пусть $X,Y\subset V(G)$, $\kappa_G(X,Y)\geq k$, $|X|\geq k$, $|Y|\geq k$. Тогда в графе G существуют k непересекающихся XY-путей.

Доказательство. • Индукция по количеству вершин в графе. Доказывая утверждение для графа G и пары множеств X, Y, мы будем считать утверждение уже доказанным для всех меньших графов.

• Рассмотрим два случая.

Случай 1: существует множество R из k вершин, разделяющее X и Y

- Никакой XR-путь не содержит вершины из $Y \setminus R$ (иначе существовал бы XY-путь, не содержащий ни одной вершины множества R, см. рис а). Тогда R не было бы разделяющим множеством
- Следовательно, любое множество S, отделяющее X от R в графе $G_X = G (Y \setminus R)$, отделяет X от R и в графе G. Но тогда S отделяет X от Y в графе G, T.к. ни один путь не проходил через следовательно, $|S| \geq k$.

- По индукционному предположению существует k непересекающихся XR-путей в графе G_x , а следовательно, и в графе G.
- Аналогично, существует k непересекающихся RY-путей в графе G. Также рассмотрим граф $Gy = G (X \setminus R)$
- Никакой XR-путь не пересекает никакой RY-путь (иначе существовал бы XY-путь, не содержащий ни одной вершины множества R, см. рис. b).
- Так как |R| = k, то мы можем состыковать XR-пути и RY-пути по вершинам множества R, получив k непересекающихся XY-путей (см. рис.с).

База индукции: связный граф. Между любыми двумя вершинами существует ровно один путь

Случай 2: Нет множества из k вершин, разделяющего XuY

- Случай, когда в графе G нет рёбер, очевиден.
- ullet Далее $E(G)
 eq \varnothing$. Пусть $xy \in E(G)$. Если условие теоремы выполняется в меньшем графе G - xy, то по индукционному предположению выполняется утверждение теоремы для графа G - xy, а следовательно, и для графа G.
- Остается рассмотреть случай, когда существует множество $T\subset V(G)$, $|T|\leq k-1$, разделяющее X и Y в графе G-xy.
- ullet Множества $X' = X \setminus T$ и $Y' = Y \setminus T$ непусты. Как мы знаем, $T^* = T \cup \{xy\}$ разделяет X и Y в графе G, а $T_x = T \cup \{x\}$ — не разделяет (так как $|T_x| \leq k$)Отсюда следует, что одно из множеств X' и Y' лежит в T_x .
- НУО $X' \subset T_x$. Тогда $X' = \{x\}$. Аналогично, $Y' = \{y\}$.
- ullet Таким образом, $T\supset X\setminus\{x\}$ и $T\supset Y\setminus\{y\}$.
- ullet Учитывая $|T| \leq k-1, \ |X| \geq k$ и $|Y| \geq k$, мы получаем $X \setminus \{x\} = Y \setminus \{y\} = T \text{ in } |T| = k-1.$
- В этом случае легко увидеть искомые пути это ребро ху и k-1 вершина из $T=X\cap Y$. 4 E F 4 G F 4 S F 4 S F 8 9 9 4 (

В этом случае условие теоремы для G - ху выполнено

B USDZE nougraeu, TSD Kaprunka Curengus ran.

Т.е. в данном случае Х и Ү совпадают во всех вершинах, кроме двух.

разделяющим множеством, т.к. из условия теоремы разделяющее множество состоит хотя бы из k вершин, а случай 2 говорит, что разделяющего множества ровно из k вершин нет

Следствие 1

Пусть вершины $x, y \in V(G)$ несмежны, $\kappa_G(x, y) \ge k$. Тогда существует k независимых путей из x в y.

Доказательство.

- \bullet Пусть $X = N_G(x)$ и $Y = N_G(y)$.
- ullet Так как x и y несмежны, множество X отделяет вершину x от вершины y. Значит, $|X| \geq k$ и (аналогично) $|Y|| \geq k$.
- Любой xy-путь идёт из x в X, далее в Y и затем в y. Поэтому, множество вершин R, отделяющее X от Y, отделяет вершину x от вершины y. Следовательно, $|R| \ge k$.
- По теореме 3 существует к непересекающихся
 XY-путей. Значит, есть и к независимых ху-путей.

Следствие 2

Пусть $x \in V(G)$, $Y \subset V(G)$, $x \notin Y$, $k = \min(|Y|, \kappa_G(x, Y))$. Тогда существуют k путей от x до различных вершин множества Y, не имеющих общих внутренних вершин.

Доказательство.

- ullet Пусть $X=\mathrm{N}_G(x)$. Очевидно, $|\mathrm{N}_G(x)|\geq k$.
- Так как $x \notin Y$, любое множество вершин R, отделяющее X от Y, отделяет вершину x от множества Y. Следовательно, $|R| \ge k$.
- Так как и $|Y| \ge k$, по теореме 3 существует k непересекающихся XY-путей в графе G, а следовательно, и k непересекающихся путей от x до различных вершин множества Y.

Следствие 2. Доказательство 2 Добавим в граф G вершину у, смежную только со всеми вершинами из множества Y. Тогда из следствия 2, в графе G + у существует к независимых ху путей. Удалив из каждого пути последнее ребро (ведущее в добавленную вершину у), получим искомые пути.

(H. Whitney, 1932.) Пусть G - k-связный граф. Тогда для любых двух вершин $x, y \in V(G)$ существует k независимых xy-путей.

Доказательство. • Индукция по k, база для k=1 База: в связном графе между любыми очевидна. Докажем утверждение для k-связного графа, двумя вершинами есть путь считая, что оно доказано для графов меньшей связности.

- \bullet Если вершины x и y несмежны, то утверждение следует из Следствия 1. Далее вершины x и y смежны.
- ullet Если G-xy-(k-1)-связный граф, то по индукционному предположению существует k-1 независимых xy-путей в графе G-xy, а еще один путь это ребро xy.
- Пусть в G-xy существует разделяющее множество T, $|T| \le k-2$. Так как T не является разделяющим множеством в G, легко понять, что в графе $G-(T\cup \{xy\})$ ровно две компоненты связности: $U_x\ni x$ и $U_y\ni y$ (возвращение ребра xy дает связный граф G-T).
- Пусть $T_x = T \cup \{x\}$. Если $U_x \neq \{x\}$, то T_x отделяет $U_x \setminus \{x\}$ от U_y в G что невозможно (так как $|T_x| \leq k-1$).
- Тогда $U_x = \{x\}$. Аналогично, $U_y = \{y\}$. Таким образом, в графе G не более k вершин: это вершины множества T, x и y. Противоречие с определением k-связного графа. (по определению k-связного графа, в нем хотя бы k + 1вершина, а мы получили k.

T ∪ {xy}) - отделяет x от y в графе G

В графе G - (T U {xy}) ровно две компоненты связности, т.к. он становится связным при добавлении всего одного ребра

Т.к. любой путь из Ux в Uy проходит□ либо через Т, либо через ребро ху

X Ux = {x}, т.к. если отделение Ux от Uy множеством Tx противоречит условию => отделять просто нечего => Ux = {x}. Аналогично и Uy = {y}

(G. A. Dirac.) Пусть $k \ge 2$. В k-связном графе для любых k вершин существует простой цикл, содержащий все эти вершины.

Доказательство. • Докажем теорему индукцией по k. База для k=2 следует из теоремы Уитни (Теоремы 4).

Переход $k-1 \to k$. • Пусть k>2. Рассмотрим k-связный граф G и его вершины $v_1, \ldots, v_{k-1}, v_k$. Так как G является (k-1)-связным графом, по индукционному предположению существует простой цикл Z, содержащий вершины v_1, \ldots, v_{k-1} .

• Рассмотрим два случая.

Случай 1. v(Z) < k.

Тогда $V(Z) = \{v_1, \dots, v_{k-1}\}$ и по Следствию 2 существуют непересекающиеся пути от v_k до всех вершин цикла Z. В этом случае легко вставить v_k в цикл Z между его соседними вершинами и получить искомый цикл.

Случай 2. $v(Z) \ge k$.

- ullet По Следствию 2 существует k непересекающихся путей от v_k до цикла Z.
- Пусть $x_1, \ldots, x_k \in V(Z)$ концы этих путей в порядке их следования по циклу (нумерация циклическая). Они делят цикл на k дуг и внутренность одной из этих дуг.
- Одна их этих дуг (скажем, дуга L с концами x_i и x_{i+1}) не содержит ни одной из вершин v_1, \ldots, v_{k-1} . Тогда заменим дугу L на путь от x_i до v_k и путь от v_k до x_{i+1} , в результате получится искомый цикл.

★ k-связный граф является также и (k - 1)связным ... и т.д. и (k - n)-связным.

По следствию 2 из vx существует k - 1 путей в вершины цикла Z, но в Z всего k - 1 вершина

Из vk идет k путей в вершины цикла Z. Концы путей разделяют цикл на дуги. Наша цель - перерезать какую-то дугу и поменять ее на путь из xi в vk + путь из vk в xi+1. Тогда помешять нам это сделать может только какая-то вершина vi, лежащая на дуге, которую мы хотим отрезеать. k путей делят цикл на k дуг, а вершин v в этом цикле k - 1. Тогда всегда существует такая дуга, в которой не лежит ни одна vi.