CSC17000-11

Simply topped Lande Calculus

* Why types?

Y Typu A, B::= Unit

| A > B

| A × B

* Term grenne

* Typing jodgment ([-e: A)

* Roll: Van, unit, -> Elim, -> Intro,

* Roll: Van, unit, -> Elim, -> Intro,

* Xelim 2, * Elime, * xintro

x Eg 2: A(n:unit). 2: unit -> hnit

* $2g2: (\lambda n: A \rightarrow A \cdot \lambda y: A \cdot n (ny))$: $(A \rightarrow A) \rightarrow A \rightarrow A$

* Typability: Not all terms have Typu.

* No polymorphism: "Simply typed"

* What about * combinety?

* Firpoint operator

pair = $\lambda f. \lambda s. b$ b fsfor prine

= $\lambda p. p + ne$ Sand = $\lambda p. p + alse$

fsx (par ry) 2(Paar ry) fra

((x1. 1s. 1h b fs)

ry) fru

(true ry)

fsx ($\lambda f. \lambda s. \lambda b. b. f. s$) $\Rightarrow (\lambda f. \lambda s. \lambda b. b. f. s) true$ $(\lambda s. \lambda b. b. frue s)$

Example of Typing derivations

(An: A > A. Ay: A. n Cny)

(An: A > A - A) -> A -> A

T'= (T, 2:A)

T'(2) = A

Carinto + (xx:vnt. 2)

T'(2) = unit?

T'(2) = unit

(T, x:unit) + x:unit

(> into)

Tupiro derivation

Tupiro derivation

Tupiro derivation

Tupiro derivation

P. (2) = A > A

P. + y. A

C.> cl.m.

[2:A-)A; Y:A) +2:A-)A [+ 2y:A [- [-] Elim] [n:A-)A;y; A) + 2 (x y): A [or in two] [x: A->A] | A(y:A), x (x y): A->A - (-> intro) $\begin{array}{c} & & & \\ & &$ Curry - Howard I somorphism Logic 1. Cog Computation Proposition 2. Isabelle MoL Tupes Profl 3. ELF Program 2 Combindor ()n. 2 2) ()n. 22) () (x:-), x x) (>x:-,xx) $A : A \rightarrow A$ $A = A \rightarrow A$

7 combinator

4 = M. (/x. f(2 m)) (/n. d(x m))

$$\frac{\sum \left(\sum A \rightarrow A \right)}{\sum \left(\sum A \rightarrow A \right)} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A}$$

(for earl)

er -> v e ("h) [tm 3] -> v

fix (xf. xx. e) (2 -> v)

fix (xf. xx. e) (2 -> v)

fix foot) 2

e [2/n] [for foot]

foot

1) 220 then 1 Else 2 x (for foot 1)

e \rightarrow $\langle v_1, v_2 \rangle$ [FST-EW]

1 Sind e

1 Sind e

1 $\langle v_1, v_2 \rangle$ 1 $\langle v_1, v_2$

1+ ~ 17-M2

Type Safety: He, HT. e:T => IV. e->V (Imprece'es) Angelic Languege en -> 1, 1, + NIL e, n -Int: Sot of all integers 2 v: Int (v >0) : Set of all the integers e, : Int ez: { 0: Int | 2>0} e,/c: Int

T, <: T2

Arry (1) <: Arry (1)

e, -> 1, 1, = NULL

e, N -> NULL Pointer Excepter

- Liquid Harkell Harkell +refinemet toon

Me & refinemet toper: Catelly 1

aveg : set : a -> i ? i < Leuce)? -> v