(88369) פתרון – תרגיל בית -4 חקר ביצועים

1. טבלת הסימפלקס הנתונה:

מ. בסיס	Z	X_1	$(!)X_2$	S_1	A_1	A_2	S_2	א.ימין	יחס
Z	-1	0	-(5/3)M-1/3	M	(7/3)M-4/3	0	0	-2M-4	
X_1	0	1	1/3	0	1	0	0	1	3
(>)A ₂	0	0	*5/3	-1	0	1	0	2	1.2(m)
S_2	0	0	5/3	0	0	0	1	3	1.8

#1 שלב

מ. בסיס	Z	X_1	X_2	$(!)S_1$	A_1	A_2	S_2	א.ימין	יחס
Z	-1	0	0	-1/5	M-8/5	M+1/5	0	-18/5	
X_1	0	1	0	1/5	3/5	-1/5	0	3/5	3
X_2	0	0	1	-3/5	-4/5	3/5	0	6/5	-
$(>)S_2$	0	0	0	*1	1	-1	1	1	1(m)

#2 שלב

מ. בסיס	Z	X_1	X_2	S_1	A_1	A_2	S_2	א.ימין	יחס
Z	-1	0	0	0	M-7/5	M	1/5	-17/5	
X_1	0	1	0	0	2/5	0	-1/5	2/5	
X_2	0	0	1	0	-1/5	0	3/5	9/5	
S_1	0	0	0	1	1	-1	1	1	

וסיימנו כי אין יותר איברים שליליים בשורת פונ' המטרה.

 $X_1 = 2/5, X_2 = 9/5$ Z = 17/5 :הפתרון הוא

(=-1) איבר הפיבוט (=-1 המשתנה הנכנס. (<) המשתנה היוצא. (=-1 היחס המינמלי. *-1 איבר הפיבוט (=-1 הציר).

.2

א). הבעיה הנתונה:

$$\begin{aligned} \text{Max} & Z = 5X_1 + 4X_2 \\ s.t. & X_1 + X_2 \le 2 \\ & -2X_1 - 2X_2 \le -9 \end{aligned}$$

$$X_1, X_2 \ge 0$$

הפיכה לצורה הסטנדרטית:

=> יש לתקנן גם שורת פונקציית המטרה לפני הכנסה לטבלה. השורה המתוקנת מופיעה בטבלה הבאה.

טבלת הסימפלקס המתקבלת:

מ. הבסיס	Z	$(!)X_1$	X_2	S_1	S_2	a_1	RHS
Z	1	-2M-5	-2M-4	0	M	0	-9M
(>)S ₁	0	1	1	1	0	0	2
a_1	0	2	2	0	-1	1	9

המשתנה הנכנס: X_1 (המקדם השלילי ביותר) אמשתנה היוצא: S_1 (היחס המינימלי).

הטבלה האיטרציה הבאה:

מ. הבסיס	Z	X_1	X_2	S_1	S_2	a_1	RHS
Z	1	0	2M+5	M	M	0	-5M+10
X_1	0	1	1	1	0	0	2
a_1	0	0	0	-2	-1	1	5

טבלה זו מראה שאין פתרון לבעיה!. מקדמי שורת פונ' המטרה חיוביים, אך המשתנה המלאכותי עדיין בבסיס. גם ניסיון להוציאו בשלב הקודם יביא לאותה מסקנה , אז נקבל פתרון לא אפשרי (איבר שלילי באגף ימין).

ב). הבעיה הנתונה:

Max
$$Z = X_1 - 4X_2$$

s.t. $-2X_1 + X_2 \le -1$
 $-X_1 - 2X_2 \le -2$
 $X_1, X_2 \ge 0$

:הפיכה לצורה סטנדרטית

=> יש לתקנן את שורת פונקציית המטרה לפני הכנסה לטבלה. השורה המתוקנת מופיעה בטבלה הבאה.

טבלת הסימפלקס המתקבלת:

מ. הבסיס	Z	$(!)X_1$	X_2	S_1	S_2	a_1	a_2	RHS
Z	1	-3M-1	-M+4	M	M	0	0	-3M
(>)a ₁	0	2	-1	-1	0	1	0	1
a_2	0	1	2	0	-1	0	1	2

שבלה 2#

מ. הבסיס	Z	$(!)X_1$	X_2	S_1	S_2	a_1	a_2	RHS
Z	1	-5/2M+7/2	-1/2M-1/2	M	3/2M+1/2	0	0	-3/2M+1/2
$X_1(>)$	0	1	-1/2	-1/2	0	1/2	0	1/2
a_2	0	0	5/2	1/2	-1	-1/2	1	3/2

. אין משתנה שיכול לצאת מהבסיס. היחס עבור a_2 הוא "אינסוף" – מה שמרמז שהבעיה לא חסומה.

.3

 $X_1 = X_{11} - X_{12}$: מכיוון ש- X_1 שני משתנים בסימן, נבטא נבטא לא לא לא מכיוון ש- מכיוון הבאה:

Max
$$Z = 2X_{11} - 2X_{12} - 3X_2$$

s.t. $6X_{11} - 6X_{12} + 3X_2 + s_1 = 12$
 $-X_{11} + X_{12} + 3X_2 + s_2 = 7$
 $X_{11}, X_{12}, X_2 \ge 0$

נכנים זאת לטבלת סימפלקס סטנדרטית ונפתור:

Z	x11	x12	<i>x</i> 2	s1	<i>s</i> 2	RHS
1	-2(!)	2	3	0	0	0
0	6*	-6	3	1	0	12(>)
0	-1	1	3	0	1	7

:השלב הבא

Z	<i>x11</i>	<i>x12</i>	<i>x</i> 2	s1	<i>s</i> 2	RHS
1	0	0	4	0.3333	0	4
0	1	-1	0.5	0.1667	0	2
0	0	0	3.5	0.1667	1	9

.
$$X_{1}=X_{11}-X_{12}=2-0=2$$
 $X_{2}=0$: הפתרון האופטימלי: ג אופטימלי: . $Z=4$

.4

א). הבעיה הדואלית:

Min
$$W = 16y_1 + 25y_2 + 25y_3 + 16y_4$$

s.t. $2y_1 + 3y_2 + 2y_3 + y_4 \ge 2$
 $y_1 + 2y_2 + 3y_3 + y_4 \ge 2$
 $y_1, y_2, y_3, y_4 \ge 0$

ב). הפתרון הגרפי של הבעיה הפרימלית:

 $X_1=5,\ X_2=5$: כלומר: (5,5), כלומר: מצא בנק' בציור. האפשרי מקווקוו בציור. בציור. המקסימום נמצא בנק' במפגש קווי האילוצים: $2X_1+2X_2=25$ ו- $2X_1+3X_2=25$ ערך פונ' המטרה הוא: 20.

. $y_1=y_4=0$ ביבלנו הראשון והרביעי אינם כובלים ולכן: $x_1,x_2\neq 0$ בעיה הפרימלית מערכת מצאנו בבעיה לכן האילוצים המתאימים לא מתאפסים ומקבלים את מערכת השוויונים לפתרון:

$$y_2 = y_3 = 2/5$$
 : לכן: $= \begin{cases} 3y_2 + 2y_3 = 2 \\ 2y_2 + 3y_3 = 2 \end{cases}$ וערך פונ' המטרה: 20

.5

א). הבעיה הדואלית:

min
$$W = 20y_1 + 12y_2$$

s.t. $2y_1 + y_2 \ge 5$
 $5y_1 + 3y_2 \ge 7$
 $y_2 \ge 4$
 $y_1, y_2 \ge 0$

ב). פתרון הבעיה הפרימלית:

הטבלה ההתחלתית:

שבלה 1#

$$Z$$
 X_1 X_2 X_3 S_1 S_2 RHS Z 1 -2.2 0 -4 1.4 0 28 X_2 0 0.4 1 0 0.2 0 4 X_3 0 -0.2 0 1 -0.6 1 0

שבלה 2#

שבלה 3#

 $X_1 = 10, \; X_2 = 0, \; X_3 = 2$ והפתרון האופטימלי: Z = 58 וערך פונ' המטרה:

ג). מהטבלה הסופית האופטימלית (שורת פונ' המטרה, בעמודות משתני הסרק) נמצא את הפתרון לבעיה . $y_1=0.5,\;y_2=4$