AgroParisTech /

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

# TP statistiques univariées

Eric Marcon

03 February 2024

AgroParisTech /

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

# Statistiques descriptives

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

#### Enquête de vie 2003 de l'INSEE

library("questionr")
data(hdv2003)



Afficher les tableaux avec View()



# Moyenne, écart-type, médiane

```
TP
statistiques
univariées
```

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
Statistiques sur l'âge des personnes interrogées mean(hdv2003$age)
```

```
## [1] 48.157
sd(hdv2003$age)

## [1] 16.94181
var(hdv2003$age)

## [1] 287.0249
```

```
## [1] 287.0249
median(hdv2003$age)
```

## [1] 48



# Histogramme

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

## hist(hdv2003\$age)





# AgroParisTech / Densité de probabilité

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

## plot(density(hdv2003\$age))





# Densité sans réflexion

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

# La densité n'est pas bornée

plot(density(hdv2003\$freres.soeurs))







# Densité avec réflexion

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
Utiliser le package GoFKernel
```

```
library("GoFKernel")
plot(
  density.reflected(hdv2003$freres.soeurs, lower = 0)
)
```

#### density(x = x.reflect, weights = p.reflect)





# Histogramme lissé

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

## Histogramme des probabilités

```
hist(
  hdv2003$freres.soeurs,
  prob = TRUE,
  main = "",
  xlab = "Nombre de frères et soeurs"
)
lines(
  density.reflected(hdv2003$freres.soeurs, lower = 0),
  col = "red"
)
```



```
AgroParisTech 🖊
```

# Quantiles

```
TP
statistiques
univariées
```

Eric Marcon

# Statistiques descriptives

Lois de Probabilités

```
summary(hdv2003$age)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 18.00 35.00 48.00 48.16 60.00 97.00

quantile(hdv2003$age, probs = c(0.025, 0.975))

## 2.5% 97.5%

## 20 81
```



# Boîte à moustaches

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités boxplot(hdv2003\$age)



## Comptages

Pour les variables discrètes.

AgroParisTech /

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

Lois de Probabilités



# Distributions classiques

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

#### Incontournables:

- loi uniforme
- loi de Bernoulli, loi binomiale
- loi de Poisson
- loi normale (gaussienne)

# Loi uniforme

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

# Densité de probabilité:

```
curve(dunif(x, min = 0, max = 1), from = 0, to = 1)
```



## Loi uniforme

# Loi uniforme

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
Fonction quantile:
```

```
qunif(p = 0.95, min = 0, max = 2)
```

## [1] 1.9

## Loi uniforme

#### Tirage:

```
runif(n = 5)
```

```
## [1] 0.0482511 0.2186699 0.5021846 0.4053148
## [5] 0.3986500
```

## [5] 0.3980500

Toutes les distributions de probabilité ont des fonctions d, p, q et r.



# Loi des grands nombres

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités



La distribution des tirages tend vers la loi quand le nombre de tirages augmente.



# Loi des grands nombres

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

#### La moyenne tend aussi vers l'espérance:

```
tirages_n <- 10000
tirages <- runif(tirages_n)
plot(x = 1:tirages_n, y = cumsum(tirages) / 1:tirages_n, type = "l")
abline(h = 0.5, col = "red")</pre>
```





## Loi binomiale

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités Nombre de succès d'une épreuve répétée size fois avec la probabilité de succès prob.

```
hist(rbinom(tirages_n, size = 100, prob = 0.2))
```



## Loi de Poisson

TP statistiques

Eric Marcon
Statistiques

descriptives

Lois de Probabilités Loi binomiale dont la probabilité de succès tend vers 0 et le nombre d'épreuves vers  $+\infty$ .

Ex.: combien d'arbres se trouvent dans  $1000 \text{ m}^2$  de forêt avec une densité de 500/ha?

```
# 10000 tirages, espérance = 500 * 0.1
plot(density(rpois(tirages_n, 50)))
abline(v = 50, lty = 2)
```



## Loi normale

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités Distribution de la moyenne de nombreuses variables aléatoires.

```
# 10000 tirages, espérance = 500 * 0.1
plot(density(rnorm(tirages_n, mean = 50, sd = sqrt(50))))
abline(v = 50, lty = 2)
```



A comparer avec la loi de Poisson

# Loi log-normale

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités Loi dont le logarithme est normal.

Distribution du produit de nombreuses variables aléatoires.

```
plot(
   density.reflected(rlnorm(tirages_n, meanlog = 0, sdlog = 1), lower = 0
   log ="x"
)
abline(v = exp(1/2), lty = 2) # Espérance
abline(v = exp(-1), lty = 3) # Mode
```



## Théorème de la limite centrale

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
hist(
  replicate(
    tirages_n,
    mean(runif(n = 2))
  )
)
```

```
hist(
  replicate(
    tirages_n,
    mean(runif(n = 30))
)
```





La distribution de la moyenne de n variables uniformes tend vers la loi normale. Sa variance est celle de la loi uniforme (1/12) divisée par n.

# Intervalle de confiance

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités  $\alpha$  est le seuil de risque, en général 5%.

 $1-\alpha$  est le seuil de confiance, en général 95%.

95% des **tirages** d'une loi normale sont situés à moins de 1.96 écarts-types  $(\sigma)$  de l'espérance.

qnorm(0.975)

## [1] 1.959964

#### TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités La **moyenne** de n variables aléatoires tend vers une loi normale.

95% de ses réalisations sont situés à moins de  $1,96\sigma/\sqrt{n}$  de l'espérance.

Précisément 1,96 est le 97,5ème centile de la loi de Student avec un très grand nombre de degrés de liberté.

```
alpha <- 0.05
qt(1 - alpha / 2, df = 1E6)
## [1] 1.959966
```

```
n = 30
plot(density(
  replicate(
    tirages_n,
    mean(runif(n))
))
ci <- qt(1-alpha/2, df = n - 1) /
  sqrt(12) / sqrt(n)
abline(v = 0.5 + c(ci, -ci),
    col = "red", lty = 2)</pre>
```



## Test contre une valeur

TP statistiques

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
Combien de temps regarde-t-on la TV par jour ?
```

```
(tv_mean <- mean(hdv2003$heures.tv, na.rm = TRUE))
```

```
## [1] 2.246566
```

*n* mesures individuelles, loi inconnue. La moyenne tend vers une loi normale.

```
n <- sum(!is.na(hdv2003$heures.tv))
tv_sd <- sd(hdv2003$heures.tv, na.rm = TRUE)
ci <- qt(1 - alpha / 2, df = n - 1) * tv_sd / sqrt(n)
paste("Intervalle de confiance:", tv_mean - ci, "-", tv_mean + ci)</pre>
```

```
## [1] "Intervalle de confiance: 2.16859286989944 - 2.32453996218076"
```

On regarde la TV plus de 2 heures par jour (95% de confiance).



## Méthode de Monte-Carlo

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités Si la loi est inconnue mais l'algorithme de simulation disponible.

Exemple : carré d'une distribution normale.

```
dist <- rnorm(tirages_n)^2
(dist_q <- quantile(dist, c(0.025, 0.975)))

## 2.5% 97.5%
## 0.001017103 5.249021141
plot(density(dist), main = "")
abline(v = dist_q, col = "red", lty = 2)</pre>
```



## Méthode de Monte-Carlo

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités

```
... mais on connaît souvent les distributions.
```

Le carré d'une loi normale est une loi du  $\chi^2$  à 1 degré de liberté, identique à une loi  $\Gamma$  de forme 1/2 et d'échelle 2. qchisq(.075, df = 1)

```
## [1] 0.008861853
qchisq(.975, df = 1)

## [1] 5.023886
qgamma(0.975, shape = 1/2, scale = 2)

## [1] 5.023886

\to \text{lire l'aide ?qchisq, Wikipedia, Google...}
```

AgroParisTech 🗘

TP statistiques univariées

Eric Marcon

Statistiques descriptives

Lois de Probabilités