

- (1) For each of the below GIVEN statements, state whether the following OTHER statement is definitely true, definitely false, or possible (i.e., it could be true or false).
- (a) GIVEN: $T_1(N) = O(N)$ OTHER: $T_1(N) = O(N^3)$

Definitely true

(b) GIVEN: $T_1(N) = \Omega (N^4)$ OTHER: $T_1(N) = O(N^6)$

Possible

(c) GIVEN: $T_1(N) = O(N^4 log N)$ OTHER: $T_1(N) = \Omega(N^5)$

Definitely false

(d) GIVEN: $T_1(N) = O(N^3 \log N)$ and $T_2(N) = O(N^3)$ OTHER: $T_1(N) + T_2(N) = O(N^3)$

Possible

(e) GIVEN: $T_1(N) = O(N^4)$ and $T_2(N) = O(N^5 \log N)$ OTHER: $T_1(N) + T_2(N) = \Theta(N^5)$

Possible

(f) GIVEN: $T_1(N) = o(N)$ and $T_2(N) = o(N^5)$ OTHER: $T_1(N) + T_2(N) = \Theta(N^5)$

Definitely False

(g) GIVEN: $T_1(N) = O(N^3)$ and $T_2(N) = O(N^3 \log N)$ OTHER: $T_1(N) + T_2(N) = O(N^4)$

Definitely true

(h) GIVEN: $T_1(N) = \Omega(N^4)$ and $T_2(N) = \Theta(N^5 log N)$ OTHER: $T_1(N) + T_2(N) = \Theta(N^5 log N)$

Possible

(i) GIVEN: $T_1(N) = \Theta(N^4)$ and $T_2(N) = \Theta(N^5 log N)$ OTHER: $T_1(N) + T_2(N) = \Omega(N^{5.1})$

Definitely false

(j) GIVEN: $T_1(N) = \Theta(N^4)$ and $T_2(N) = \Theta(N^5 \log N)$ OTHER: $T_1(N) + T_2(N) = o(N^{5.1})$

Definitely true

(2) Consider the following pseudo-code for a function that takes, as input, a parameter N:

```
Function F(N)
if F1(N)
  Loop i from 1 to N<sup>2</sup>
  F2(N)
else
  F3(N)
  Loop j from 1 to N
  if F4(N)
     F5(N)
  else
  F6(N)
```

For each of the following assumptions, analyze the worst-case running time of Function F using Big-Oh notation, Big-Omega notation, and Big-Theta notation, *if possible*. Express all answers using the tightest possible bounds. *Briefly explain your answers!*

Note: In class, we went over rules related to Big-Oh notation. You will have to infer similar rules for the other notations. Assume that function F1 returns a Boolean value.

- (a) Assume that the worst-case running time of F1(N) is O(N), the worst-case running time of F2(N) is O(N), the worst-case running time F3(N) is O(N), the worst-case running time of F4(N) is O(N), the worst-case running time of F5(N) is O(N), and the worst-case running time of F6(N) is O(N).
 - $O(F(N)) = N^3$ because the first case is the worst possible: $n^2 * n = n^3$
 - $\Omega(F(N)) = N$ because F#s are at best constant, and thus with the least about of looping 1*n = n
 - Theta may not exist.

- (b) Assume that the worst-case running time of F1(N) is O(N), the worst-case running time of F2(N) is $O(N^3)$, the worst-case running time F3(N) is $O(N^{11})$, the worst-case running time of F4(N) is $O(N^5)$, the worst-case running time of F5(N) is $O(N^7)$, and the worst-case running time of F6(N) is $O(N^9)$.
 - $O(F(N)) = N^{11}$ because the 2nd case is the greatest possible
 - $\Omega(F(N)) = N$ because P#s are at best constant, and thus with the least about of looping 1*n = n
 - Can't say anything about Big-Theta

- (c) Assume that the worst-case running time of F1(N) is $\Omega(N)$, the worst-case running time of F2(N) is $\Omega(N)$, the worst-case running time F3(N) is $\Omega(N)$, the worst-case running time of F4(N) is $\Omega(N)$, the worst-case running time of F6(N) is $\Omega(N)$.
 - $\Omega(N^2)$ because the lower bond will follow the 2^{nd} case
 - Can't say anything about Big-O notation, and Big-Theta

- (d) Assume that the worst-case running time of F1(N) is $\Theta(N)$, the worst-case running time of F2(N) is $\Theta(N)$, the worst-case running time F3(N) is $\Theta(N)$, the worst-case running time of F4(N) is $\Theta(N)$, the worst-case running time of F5(N) is $\Theta(N)$, and the worst-case running time of F6(N) is $\Theta(N)$.
 - O(N³) (see example a)
 - $\Omega(N^2)$ (see example c)
 - Big-Theta doesn't exist because they are not equal
- (e) Assume that the worst-case running time of F1(N) is $\Theta(N)$, the worst-case running time of F2(N) is $\Theta(N^3)$, the worst-case running time F3(N) is $\Theta(N^5)$, the worst-case running time of F4(N) is $\Theta(N)$, the worst-case running time of F5(N) is $\Theta(1)$, and the worst-case running time of F6(N) is $\Theta(N^2)$.

• All paths lead to a complexity of (N^5) and thus $O(N^5) = \Omega(N^5) = \Theta(N^5)$

