

# CS1238 用户手册

24-bit Sigma-Delta ADC Rev 1.1

通讯地址:深圳市南山区蛇口南海大道 1079 号花园城数码大厦 A 座 9 楼

邮政编码: 518067

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com

微信号: 芯海科技

微信二维码:





# 版本历史

| 历史版本    | 修改内容                                                                                  | 版本日期       |
|---------|---------------------------------------------------------------------------------------|------------|
| REV 1.0 | 初始版本                                                                                  | 2014-3-26  |
| REV 1.1 | <ol> <li>更换格式</li> <li>修改差分输入阻抗参数</li> <li>修改 P-P 噪声参数</li> <li>修改共模输入范围参数</li> </ol> | 2014-10-17 |



# 目 录

| 版本历史  |                                                         | 2  |
|-------|---------------------------------------------------------|----|
| 目录    |                                                         | 3  |
| 1 芯片功 | <b>力能说明</b>                                             | 5  |
| 1.1   | 芯片主要功能特性                                                |    |
| 1.2   | 芯片应用场合                                                  |    |
| 1.3   | 芯片基本结构功能描述                                              |    |
| 1.4   | 芯片绝对最大极限值                                               |    |
| 1.5   | CS1238 数字逻辑特性                                           |    |
| 1.6   | CS1238 电气特性                                             |    |
| 1.7   | 芯片引脚                                                    | 9  |
| 2 芯片功 | b能模块描述                                                  | 10 |
| 2.1   | 模拟输入前端                                                  | 10 |
| 2.2   | 温度传感器                                                   |    |
| 2.3   | 低噪声 PGA 放大器                                             | 11 |
| 2.4   | 时钟信号源                                                   | 12 |
| 2.5   | 复位和断电(POR&power down)                                   | 12 |
| 2.6   | SPI 串口通信                                                |    |
| 2.6.1 | 建立时间                                                    | 13 |
| 2.6.2 | ADC 数据输出速率                                              | 14 |
| 2.6.3 | 数据格式                                                    | 14 |
| 2.6.4 | 数据准备/数据输入输出( $\overline{\textit{DRDY}}/\textit{DOUT}$ ) | 14 |
| 2.6.5 | 串行时钟输入(SCLK)                                            | 14 |
| 2.6.6 | 数据发送                                                    | 15 |
| 2.6.7 | 功能配置                                                    | 16 |
|       | 2.6.7.1 SPI 命令字                                         | 16 |
|       | 2.6.7.2 SPI 寄存器                                         | 17 |
| 2.6.8 | Power down 模式                                           | 18 |
| 3 芯片的 | 9封装                                                     | 19 |
| 3.1   | SOP-14pin                                               | 19 |
| 3.2   | DIP-14pin                                               |    |



# 图目录

| 图 1 CS1238 原理框图                |    |
|--------------------------------|----|
|                                |    |
| 图 2 CS1238 芯片引脚图               |    |
| 图 3 模拟输入结构图                    |    |
| 图 4 PGA 结构图                    |    |
| 图 5 CS1238 数据建立过程 1            | 13 |
| 图 6 CS1238 数据建立过程 2            | 13 |
| 图 7 CS1238 读取数据时序图 1           | 15 |
| 图 8 CS1238 读取数据时序图 2           |    |
| 图 9 功能配置时序图                    | 16 |
|                                | 18 |
|                                |    |
|                                | 20 |
| 表目录                            |    |
| 表 1 CS1238 极限值                 |    |
| 表 2 CS1238 数字逻辑特性              | 7  |
| 表 3 CS1238 电气特性(VDD = 5V、3.3V) | 8  |
| 表 4 CS1238 电源电气特性(VDD = 5V)    | 8  |
| 表 5 CS1238 电源电气特性(VDD = 3.3V)  | 8  |
| 表 6 PIN 脚说明                    | 9  |
| 表7输出速率设置                       | 14 |
| 表8理想输出码和输入信号(1)                | 14 |
| 表9读取数据时序表                      |    |
| 表 10 CS1238 命令字说明表             |    |
| 表 11 Config 寄存器说明表             |    |



## 1 芯片功能说明

CS1238 是一款高精度、低功耗模数转换芯片,两路差分输入通道,内置温度传感器和高精度振荡器。

CS1238的PGA可选: 1、2、64、128, 默认为128。

CS1238 的 ADC 数据输出速率可选: 10Hz、40Hz、640Hz、1.28kHz,默认为 10Hz; MCU 可以通过 2 线的 SPI 接口 SCLK、 $\overline{DRDY}/DOUT$ 与 CS1238 进行通信,对其进行配置,例如通道选择、PGA 选择、输出速率选择等。

### 1.1 芯片主要功能特性

- 内置晶振
- 集成温度传感器
- 带 Power down 功能
- 2线 SPI 接口,最快速率为 1.1MHz

## ADC 功能特性:

- 24 位无失码
- PGA 放大倍数可选: 1、2、64、128
- 集成 2 通道 24 位无失码的差分输入,在 PGA=128 时 ENOB 为 20.7 位(工作在 5V)\20.2 位(工作在 3.3V)
- P-P 噪声: PGA=128、10Hz: 150nV;
- INL 小于 0.0015%
- 输出速率可选: 10Hz、40Hz、640Hz、1.28kHz
- 带内短功能

#### 1.2 芯片应用场合

- 工业过程控制
- 电子秤
- 液体/气体化学分析
- 血液计
- 智能变换器
- 便携式设备



## 1.3 芯片基本结构功能描述

CS1238 是一款高精度、低功耗 Sigma-Delta 模数转换芯片,内置一路 Sigma-Delta ADC,两路差分输入通道和一路温度传感器,ADC采用两阶 sigma delta 调制器,通过低噪声仪用放大器结构实现 PGA 放大,放大倍数可选: 1、2、64、128。在 PGA=128 时,有效分辨率可达 20.7 位(工作在 5V)。

CS1238 内置 RC 振荡器,无需外置晶振。

CS1238 可以通过 *DRDY/DOUT* 和 SCLK 进行多种功能模式的配置,例如用作温度检测、PGA 选择、ADC 数据输出速率选择等等。

CS1238 具有 Power down 模式。



图1 CS1238 原理框图



## 1.4 芯片绝对最大极限值

表1 CS1238 极限值

| 名称       | 符号  | 最小   | 最大       | 单位            |
|----------|-----|------|----------|---------------|
| 电源电压     | VDD | -0.3 | 6        | V             |
| 电源瞬间电流   |     |      | 100      | mA            |
| 电源恒定电流   |     |      | 10       | mA            |
| 数字管脚输入电压 |     | -0.3 | DVDD+0.3 | V             |
| 数字输出管脚电压 |     | -0.3 | DVDD+0.3 | V             |
| 节温       |     |      | 150      | ${\mathbb C}$ |
| 工作温度     |     | -40  | 85       | ${\mathbb C}$ |
| 储存温度     |     | -60  | 150      | ${\mathbb C}$ |
| 芯片管脚焊接温度 |     |      | 240      | ${\mathbb C}$ |

## 1.5 CS1238 数字逻辑特性

表2 CS1238 数字逻辑特性

| 参数           | 最小       | 典型 | 最大       | 单位  | 条件说明    |
|--------------|----------|----|----------|-----|---------|
| VIH          | 0.7×DVDD |    | DVDD+0.1 | V   |         |
| VIL          | DGND     |    | 0.3×DVDD | V   |         |
| VOH          | DVDD-0.4 |    | DVDD     | V   | Ioh=1mA |
| VOL          | DGND     |    | 0.2×DVDD | V   | IoL=1mA |
| IIH          |          |    | 10       | μΑ  | VI=DVDD |
| IIL          | -10      |    |          | μΑ  | VI=DGND |
| 串口时钟SCLK工作频率 |          |    | 1.1      | MHz |         |



## 1.6 CS1238 电气特性

所有的参数测试在环境温度-40~85℃、内置基准的条件下测试,除非有其它注明。

表3 CS1238 电气特性(VDD = 5V、3.3V)

| 参数                    | 条件            | 最小值       | 典型值                                          | 最大值       | 单位                   |
|-----------------------|---------------|-----------|----------------------------------------------|-----------|----------------------|
| 模拟输入                  |               |           |                                              |           |                      |
| 满幅输入电压<br>(AINP-AINN) |               |           | ±0.5VREF/PGA                                 |           | V                    |
| <b>北掛絵)</b> 由匠        | PGA=1, 2      | AGND-0.1  |                                              | AVDD+0.1  | V                    |
| 共模输入电压                | PGA=64, 128   | AGND+0.75 |                                              | AVDD-0.75 | V                    |
| 差分输入阻抗                | PGA=1、2       |           | 210                                          |           | MΩ                   |
| 左刀 棚八四九               | PGA=64、128    |           | 29                                           |           | MΩ                   |
| 系统性能                  |               |           |                                              |           |                      |
| 分辨率                   | 无失码           |           | 24                                           |           | Bits                 |
| AD速率                  |               |           | 10                                           | 1280      | Hz                   |
| 建立时间                  | 全建立           |           | 3: ADC输出速率为10\40Hz、<br>4: ADC输出速率为640\1280Hz |           | 转换周期                 |
| P-P噪声                 | PGA=128、 10Hz |           | 150                                          |           | nv                   |
| 有效精度                  | PGA=128、10Hz  |           | 20.7 (5V)<br>20.2 (3.3V)                     |           | Bit                  |
| 积分线性度                 | PGA=128       |           | ±15                                          |           | ppm                  |
| 失调误差                  | PGA=128       |           | ±1.4                                         |           | μV                   |
| 失调误差漂移                | PGA=128       |           | 20                                           |           | nv/℃                 |
| 增益误差                  | PGA=128       |           | ±0.5                                         |           | %                    |
| 增益误差漂移                | PGA=128       |           | 8                                            |           | ppm/℃                |
| 参考电压输入                |               |           |                                              |           |                      |
| 参考电压输入                | REFIN         | 1.5       | VDD                                          | VDD+0.1   | V                    |
| 参考电压输出                |               |           |                                              |           |                      |
| 参考电压输出                | REFOUT        |           | VDD                                          |           | V                    |
| 时钟                    |               |           |                                              |           |                      |
| 内部振荡器频率               |               |           | 5.2                                          |           | MHz                  |
| 内置时钟温漂                |               |           | 250                                          |           | ppm/°C               |
| 温度传感器                 |               |           |                                              |           |                      |
| 温度测量误差                | TempError     |           | ±3                                           |           | $^{\circ}\mathbb{C}$ |

## 表4 CS1238 电源电气特性(VDD = 5V)

| 参数   |    | 条件         | 最小值 | 典型值  | 最大值 | 单位 |
|------|----|------------|-----|------|-----|----|
| 电源电压 |    | VDD        | 4.5 | 5    | 5.5 | V  |
|      | 正常 | PGA=1、2    |     | 1.57 |     | mA |
| 工作电流 | 模式 | PGA=64、128 |     | 2.34 |     | mA |
|      | Po | ower down  |     | 0.1  | 0.1 | μΑ |

## 表5 CS1238 电源电气特性(VDD = 3.3V)

| 参数   |    | 条件         | 最小值 | 典型值  | 最大值 | 单位 |
|------|----|------------|-----|------|-----|----|
| 电源电压 |    | VDD        | 3   | 3.3  | 3.6 | V  |
|      | 正常 | PGA=1、2    |     | 1.26 |     | mA |
| 工作电流 | 模式 | PGA=64、128 |     | 2.11 |     | mA |
|      | P  | ower down  |     | 0.1  |     | μA |



# 1.7 芯片引脚



图2 CS1238 芯片引脚图

表6 PIN 脚说明

| 序号 | 引脚名称                   | 输入/输出 | 说明            |
|----|------------------------|-------|---------------|
| 1  | VDD                    | P     | 电源            |
| 2  | REFOUT                 | AO    | 基准源输出         |
| 3  | REFIN                  | AI    | 基准源输入         |
| 4  | GND                    | P     | 芯片地           |
| 5  | NC                     |       | 空脚            |
| 6  | AINP1                  | AI    | 通道1正输入        |
| 7  | AINN1                  | AI    | 通道1负输入        |
| 8  | AINP2                  | AI    | 通道2正输入        |
| 9  | AINN2                  | AI    | 通道2负输入        |
| 10 | NC                     |       | 空脚            |
| 11 | GND                    | P     | 芯片地           |
| 12 | NC                     |       | 空脚            |
| 13 | SCLK                   | DI    | SPI输入接口       |
| 14 | $\overline{DRDY}/DOUT$ | DI/DO | SPI 数据输入/输出接口 |

注: REFOUT 即是传感器激励源输出(输出值为 VDD)。



## 2 芯片功能模块描述

### 2.1 模拟输入前端

CS1238 中有 1 路 ADC,集成了 2 通道差分输入,信号输入可以是差分输入信号 AINP1、AINN1 或 AINP2、AINN2,也可以是温度传感器的输出信号,输入信号的切换由寄存器 (ch\_sel[1:0])控制,其基本结构如下图所示:



图3 模拟输入结构图

CS1238的PGA可配: 1、2、64、128,由寄存器(pga\_sel[1:0])控制;

基准电压可以由外部输入也可是内部输出,如果要使用外部基准电压,要先关闭内部基准,内部基准控制由寄存器(refo\_off)控制。

#### 2.2 温度传感器

芯片內部提供温度测量功能。当 ch\_sel[1:0]=2'b10 时,ADC 模拟信号输入接到内部温度传感器,其它的模拟输入信号无效。ADC 通过测量内部温度传感器输出的电压差来推导出实际的温度值。当 ch\_sel[1:0]=2'b10 时,ADC 只支持 PGA=1。**温度传感器需要进行单点校正。校正方法:在某个温度点 A 下,使用温度传感器进行测量得到码值 Ya。** 

那么其他温度点 B 对应的温度= Yb\*(273.15+A)/Ya-273.15

A 温度单位是摄氏度。Ya 是 A 点对应温度码值。Yb 是 B 点对应温度码值。



## 2.3 低噪声 PGA 放大器

CS1238 提供了一个低噪声,低漂移的 PGA 放大器与桥式传感器差分输出连接,其基本结构图如下图所示,前置抗 EMI 滤波器电路 R=450Ω,C=18pF 实现 20M 高频滤波。低噪声 PGA 放大器通过 RF1,R1,RF2 实现 64 倍放大,并和后级开关电容 PGA 组成 64 和128 的 PGA 放大。通过 pga\_sel[1:0]来配置 1、2、64、128 等不同的 PGA。当使用PGA=1,2 时,64 倍低噪声 PGA 放大器会被关断以节省功耗。当使用低噪声 PGA 放大器时,输入范围在 GND+0.75V 到 VDD-0.75V 之间,超出这个范围,会导致实际性能下降。在 CAP 端口处接一个内置 45pF 电容,与内置 2k 电阻 RINT 组成一个低通滤波,用作低噪声 PGA 放大器的输出信号的高频滤波,同时该低通滤波器也可以作为 ADC 的抗混叠滤波器。



图4 PGA 结构图

CS1238 内置 Buffer, 当 PGA=1,2 时,CS1238 使用 Buffer 来减少由于 ADC 差分输入阻抗低带来的问题,例如建立时间不足,增益误差偏大等等,当 PGA=64,128 时,CS1238 也使用 Buffer 来减少由于低噪声 PGA 经过 RINT=2K,CINT=0.1μF 的低通滤波后带来的建立误差,增益误差以及内码漂移的现象。



## 2.4 时钟信号源

CS1238 使用内置晶振来提供系统所需要的时钟频率,典型值为 5.2MHz。

## 2.5 复位和断电(POR&power down)

当芯片上电时,内置上电复位电路会产生复位信号,使芯片自动复位。

当 SCLK 从低电平变高电平并保持在高电平超过 100 μs, CS1238 即进入 PowerDwon 模式,此时功耗低于 0.1μA。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

当系统由 Power down 重新进入正常工作模式时,此时所有功能配置为 PowerDown 之前的状态,不需要进行功能配置。



### 2.6 SPI 串口通信

CS1238 中采用 2 线 SPI 串行通信,通过 SCLK 和  $\overline{DRDY}/DOUT$  可以实现数据的接收以及功能配置。

### 2.6.1 建立时间

在 ADC 数据输出速率为 10Hz 或 40Hz 时,数字部分需要有 3 个数据转换周期满足模拟输入信号的建立和滤波器的建立时间要求;ADC 数据输出速率为 640Hz 或 1280Hz 时,数字部分需要有 4 个数据转换周期满足模拟输入信号的建立和滤波器的建立时间要求。CS1238 整个建立过程如下图所示:



描述(1) 参数 最小值 典型值 最大值 单位 电源上电\PowerDown 恢复\通道切换之后模拟所需的 t1 2 ms 建立时间 t3 PGA 切换\速率切换之后模拟所需的建立时间 0.8 μs 300\75 10\40Hz ms 建立时间(DRDY/DOUT保持高电 t2 6.25\3.125 640\1280Hz ms



#### 2.6.2 ADC 数据输出速率

CS1238 数据输出速率可以通过寄存器 speed\_sel[1:0]配置。

表7 输出速率设置

| - PC 1 1111 II | 秋/10日起十久且        |  |  |  |  |
|----------------|------------------|--|--|--|--|
| SPEED_SEL[1:0] | ADC 输出速率<br>(Hz) |  |  |  |  |
| 00             | 10               |  |  |  |  |
| 01             | 40               |  |  |  |  |
| 10             | 640              |  |  |  |  |
| 11             | 1280             |  |  |  |  |

#### 2.6.3 数据格式

CS1238 输出的数据为 24 位的 2 进制补码,最高位(MSB)最先输出。最小有效位 (LSB)为 $(0.5V_{REF}/Gain)/(2^{23}-1)$ 。正值满幅输出码为 7FFFFFH,负值满幅输出码为 800000H。下表为不同模拟输入信号对应的理想输出码。

表8 理想输出码和输入信号(1)

| 输入信号 V <sub>IN</sub> (AINP-AINN) | 理想输出    |
|----------------------------------|---------|
| ≥+0.5V <sub>REF</sub> /Gain      | 7FFFFH  |
| $(+0.5V_{REF}/Gain)/(2^{23}-1)$  | 000001H |
| 0                                | 000000Н |
| $(-0.5V_{REF}/Gain)/(2^{23}-1)$  | FFFFFH  |
| ≤+0.5V <sub>REF</sub> /Gain      | 800000Н |

(1) 不考虑噪声, INL, 失调误差和增益误差的影响

#### **2.6.4** 数据准备/数据输入输出(*DRDY/DOUT*)

DRDY/DOUT 引脚有 4个用途。第一,当输出为低时,表示新的数据已经转换完成;第二,作为数据输出引脚,当数据准备好后,在第 1个 SCLK 的上升沿后, DRDY/DOUT 输出转换数据的最高位(MSB)。在每一个 SCLK 的上升沿,数据会自动移 1 位。在 24 个 SCLK 后将所有的 24 位数据读出,如果这时暂停 SCLK 的发送, DRDY/DOUT 会保持着最后一位的数据,直到下一个数据准备好之前拉高,此后当 DRDY/DOUT 被再次拉低,表示新的数据已经转换完成,可进行下一个数据读取;第三,在第 25、26个 SCLK 时,输出寄存器状态更新标志;第四,作为寄存器数据写入或读出引脚,当需要配置寄存器或读取寄存器值时,SPI 需要发送 46 个 SCLK,根据 DRDY/DOUT 输入的命令字,判断是写寄存器操作还是读寄存器操作。

#### 2.6.5 串行时钟输入(SCLK)

串行时钟输入 SCLK 是一个数字引脚。这个信号应保证是一个干净的信号,毛刺或慢速的上升沿都会可能导致读取错误数据或误入错误状态。因此,应保证 SCLK 的上升和下降时间都小于 50ns。



#### 2.6.6 数据发送

CS1238 可以持续的转换模拟输入信号,当将 DRDY/DOUT 拉低后,表明数据已经准备好接受,输入的第一个 SCLK 来就可以将输出的最高位读出,在 24 个 SCLK 后将所有的 24 位数据读出,如果这时暂停 SCLK 的发送, $\overline{DRDY}/DOUT$  会保持着最后一位的数据,直到其被拉高,第 25 和 26 个 SCLK 输出配置寄存器是否有写操作标志,第 25 个 SCLK 对应的  $\overline{DRDY}/DOUT$  为 1 时表明配置寄存器 Config 被写入了新的值,第 26 个 SCLK 对应的  $\overline{DRDY}/DOUT$  为芯片扩展保留位,目前输出一直为 0,通过第 27 个 SCLK 可以将  $\overline{DRDY}/DOUT$  拉高,此后当  $\overline{DRDY}/DOUT$  被再次拉低,表示新的数据已经准备好接受,进行下一个数据的转换。其基本时序如图所示:



图7 CS1238 读取数据时序图 1



图8 CS1238 读取数据时序图 2

表9 读取数据时序表

| SYMBOL | DESCRIPTION                    | MIN   | TYP   | MAX     | UNITS |    |
|--------|--------------------------------|-------|-------|---------|-------|----|
| t4     | DRDY / DOUT 变低后到第一个SCLK上升<br>沿 |       | 0     |         |       | ns |
| t5     | SCLK 高电平或低电平脉宽                 |       | 455   |         |       | ns |
| t6     | SCLK上升沿到新数据位有效(传输延迟)           |       | 455   |         |       | ns |
| t7     | SCLK上升沿到旧数据位有效(保持时间)           |       | 227.5 |         | 455   | ns |
| t8     | 数据更新,不允许读之前的数据                 |       |       | 26.13   |       | μs |
|        |                                | 10Hz  |       | 100     |       | ms |
| t9     | 转换时间 (1/data rate)             | 40Hz  |       | 25      |       | ms |
| U      |                                | 640Hz |       | 1.5625  |       | ms |
|        | 1280Hz                         |       |       | 0.78125 |       | ms |



#### 2.6.7 功能配置

CS1238 可以通过 SCLK 和 DRDY/DOUT 可以进行不同功能的配置,功能配置时序图如下图所示:





图9 功能配置时序图

功能配置过程简述,在DRDY/DOUT由高变低之后:

- 1. 第 1 个到第 24 个 SCLK, 读取 ADC 数据。如果不需要配置寄存器或者读取寄存器,可以省略下面的步骤。
- 2. 第25个到第26个 SCLK, 读取寄存器写操作状态。
- 3. 第 27 个 SCLK,把 DRDY/DOUT 输出拉高。
- 4. 第 28 个到第 29 个 SCLK, 切换 *DRDY* / *DOUT* 为输入。
- 5. 第 30 个到第 36 个 SCLK, 输入寄存器写或读命令字数据(高位先输入)。
- 6. 第 37 个 SCLK, 切换 *DRDY/DOUT* 的方向(如果是写寄存器, *DRDY/DOUT* 为输入; 如果是读寄存器, *DRDY/DOUT* 为输出)。
- 7. 第 38 个到第 45 个 SCLK,输入寄存器配置数据或输出寄存器配置数据(高位先输入/输出)。
- 8. 第 46 个 SCLK,切换  $\overline{DRDY}/DOUT$  为输出,并把  $\overline{DRDY}/DOUT$  拉高。 update 1/ update 2 被置位或清零。

### 2.6.7.1 SPI 命令字

CS1238有2个命令字,命令字的长度为7bits,命令字描述如下:

表10 CS1238 命令字说明表

| 命令名称   | 命令字节 | 描述            |
|--------|------|---------------|
| 写配置寄存器 | 0x65 | 写配置寄存器 Config |
| 读配置寄存器 | 0x56 | 读配置寄存器 Config |



# 2.6.7.2 SPI 寄存器

CS1238有一组寄存器 Config。

# Config 寄存器

| 寄存器 | R/W | 描述    | 复位值  |
|-----|-----|-------|------|
| 描述  | 保留位 | 配置寄存器 | 0x0C |

| 配置位 | В7     | B7 B6    |        | B4            |
|-----|--------|----------|--------|---------------|
| 描述  | 保留位    | REF 输出开关 | ADC \$ | <b>俞出速率选择</b> |
| 配置位 | В3     | B2       | B1     | В0            |
| 描述  | PGA 选择 |          | 通道选择   |               |

### 表11 Config 寄存器说明表

| 农们 Colling 可付价的仍仅 |                         |                                       |                      |         |         |                 |          |  |
|-------------------|-------------------------|---------------------------------------|----------------------|---------|---------|-----------------|----------|--|
| Bits              | Bits 描述                 |                                       |                      |         |         |                 |          |  |
| [7]               | -                       | 芯片保                                   | 留使用位。 <b>默认</b>      | 为0,写。   | 入时写 0,  | 不要写1            |          |  |
|                   |                         | REF 输                                 | REF 输出开关:默认 REF 输出开启 |         |         |                 |          |  |
| [6]               | REFO_OFF                | 1=关闭                                  | 1=关闭 REF 输出。         |         |         |                 |          |  |
|                   |                         | 0=REF                                 | 正常输出。                |         |         |                 |          |  |
|                   |                         | ADC 输                                 | 出速率选择: 點             | 犬认为 10F | Hz      |                 |          |  |
|                   |                         |                                       | SPEED_SEL            | L[1:0]  | 描述      |                 |          |  |
| 55.43             | aperto aer              |                                       | 00                   |         | A       | ADC 输出速率        | 为 10Hz   |  |
| [5:4]             | SPEED_SEL               |                                       | 01                   |         | A       | ADC 输出速率        | 为 40Hz   |  |
|                   |                         |                                       | 10                   |         | A       | ADC 输出速率为 640Hz |          |  |
|                   |                         |                                       | 11                   |         | Al      | DC 输出速率为        | J 1280Hz |  |
|                   |                         | PGA 选择:默认 PGA 为 128,在测温模式下 PGA_SEL=00 |                      |         |         |                 |          |  |
|                   |                         |                                       |                      | PGA_SI  | EL[1:0] | 描述              |          |  |
|                   |                         |                                       |                      | 0       | 0       | 1               |          |  |
| [3:2]             | PGA_SEL                 |                                       |                      | 0       | 1       | 2               |          |  |
|                   |                         |                                       |                      | 10      | 0       | 64              |          |  |
|                   |                         |                                       |                      | 1       | 1       | 128             |          |  |
|                   | <b>通道选择</b> : 默认通道为通道 A |                                       |                      |         |         |                 |          |  |
|                   | CH_SEL[1:0]             |                                       |                      | CH_SE   | EL[1:0] | 描述              |          |  |
|                   |                         |                                       |                      | 0       | 0       | 通道 A            |          |  |
| [1:0]             |                         |                                       |                      | 0       | 1       | 通道 B            |          |  |
|                   |                         |                                       |                      | 10      | 0       | 温度              |          |  |
|                   |                         |                                       |                      | 1       | 1       | 内短              |          |  |



### 2.6.8 Power down 模式

当 SCLK 从低电平变高电平并保持在高电平超过  $100\,\mu s$ ,CS1238 即进入 PowerDwon模式,这时会关掉芯片所有电路,功耗接近 0。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。



图10 CS1238 PowerDown 模式示意图

| symbol | 描述              | 最小值   | 典型值 | 最大值 |
|--------|-----------------|-------|-----|-----|
| t10    | SCLK高电平保持时间     | 100µs |     |     |
| t11    | SCLK下降之后低电平保持时间 | 10μs  |     |     |



# 3 芯片的封装

CS1238 采用 SOP14\DIP14 封装。

## 3.1 SOP-14pin



图11 芯片 SOP14 封装尺寸信息

| CVMDOLC | MIN   | NOR   | MAX   |  |  |  |
|---------|-------|-------|-------|--|--|--|
| SYMBOLS |       | (mm)  |       |  |  |  |
| Α       | 1.473 | 1.625 | 1.727 |  |  |  |
| A1      | 0.101 | -     | 0.254 |  |  |  |
| В       | 0.330 | 0.406 | 0.508 |  |  |  |
| С       | 0.190 | 0.203 | 0.249 |  |  |  |
| D       | 8.534 | 8.661 | 8.737 |  |  |  |
| E       | 3.810 | 3.911 | 3.987 |  |  |  |
| е       | -     | 1.270 | -     |  |  |  |
| н       | 5.791 | 5.994 | 6.197 |  |  |  |
| L       | 0.381 | 0.635 | 1.270 |  |  |  |
| θ°      | 0°    | -     | 8°    |  |  |  |

## 3.2 **DIP-14pin**







图12 芯片 DIP14 封装尺寸信息

| SYMBOLS    | MIN    | NOR        | MAX    |  |  |
|------------|--------|------------|--------|--|--|
|            | (mm)   |            |        |  |  |
| Α          | -      | -          | 5.334  |  |  |
| A1         | 0.381  | -          | -      |  |  |
| A2         | 3.175  | 3.302      | 3.429  |  |  |
| D          | 18.669 | 1.905      | 19.685 |  |  |
| E          | 7.62   |            |        |  |  |
| E1         | 6.223  | 6.35       | 6.477  |  |  |
| L          | 2.921  | 3.302      | 3.810  |  |  |
| e <b>B</b> | 8.509  | 9.017      | 9.525  |  |  |
| θ°         | 0°     | <b>7</b> ° | 15°    |  |  |