Introdução ao

Reinforcement Learning

Github do curso: https://github.com/ronanft/rl-course

Introdução ao Reinforcement Learning

• Tipos de aprendizado de máquina: supervisionado, não-supervisionado, por reforço.

Introdução ao Reinforcement Learning

- Peculiaridades do RL:
 - feedback por tentativa (versus feedback por target annotation).
 - dependência de ambiente
 - retorno retardado
 - exploration vs. exploitation
 - moving target

Introdução ao Reinforcement Learning

• Aplicações de RL:

robótica, recomendação (produtos, anúncios, etc.), mercado financeiro, llm, etc.

Referências

Livro:

Sutton, Barto. http://incompleteideas.net/book/RLbook2020.pdf

Github:

https://github.com/aikorea/awesome-rl

https://gibberblot.github.io/rl-notes/index.html

https://github.com/dennybritz/reinforcement-learning

Vídeo:

https://www.youtube.com/watch?v=14BfO5IMiuk

Curso!!!

https://huggingface.co/learn/deep-rl-course/unit0/introduction

Elementos de RL

- Agente: quem aprende
- Ambiente: onde ocorre a interação (environment)
- Estado ou observação: o que o agente percebe (state)
- Recompensa: o sinal de feedback (reward)
- Taxa de desconto (γ): peso das recompensas futuras (discount rate)

Elementos de RL

O que é observação e o que é ação nesse contexto?

Interação Agente-Ambiente

- Em cada passo t:
 - O agente observa o estado s□
 - Escolhe uma ação a□
- O ambiente devolve nova observação s□+1 e recompensa r□+1

Objetivo: aprender uma política ótima que maximize a soma de TODAS as recompensas (não apenas a imediata!).

Loop OpenAl Gym (agora Farama's Gymnasium)

```
episodes = 5
for episode in range(1, episodes+1):
    state = env.reset()
    done = False
    score = 0

while not done:
    env.render()
    action = random.choice([0,1,2,3,4,5])
    n_state, reward, done, info = env.step(action)
    score+=reward
    print('Episode:{} Score:{}'.format(episode, score))
    env.close()

© 0.5s
```

Dynamic Programming

- Requer modelo completo do ambiente (transições e recompensas)
- Requer múltiplas iterações por todos os estados (e ações)
- Algoritmos: GPI (General Policy Iteration: evaluation e improvement) ou Value Iteration

• Usa Bellman Equations para avaliar e melhorar políticas

Bellman Equations

Expectation

$$V(s) = \mathbb{E}\left[G_t \mid S_t = s\right],$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t} R_T.$$

$$V(s) = \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s].$$

$$V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) (r + \gamma V(s')).$$

MDP

MDP é premissa das equações: O próximo estado depende apenas do estado atual e da ação, não do histórico anterior

Optimallity

$$v_*(s) = \max_{a} R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_*(s')$$
$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

Bellman Equations

Expectation

$$V(s) = \mathbb{E} [G_t \mid S_t = s],$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t} R_T.$$

$$V(s) = \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s].$$
^{16]}

$$V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) (r + \gamma V(s')).$$

Bellman Equations

Expectation

$$V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) (r + \gamma V(s')).$$

		υ	π_0	
	0.0	-14.	-20.	-22.
Е	-14.	-18.	-20.	-20.
7	-20.	-20.	-18.	-14.
	-22.	-20.	-14,	0.0

1	2	3_	4
5 †	£‡	7,	8
9 🕇	10 t	11	12
13 t	14_	15_	16

7		0
V		()
n	_	U

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

λ – 1					
0.0	-1.0	-1.0	-1.0		
-1.0	-1.0	-1.0	-1.0		
-1.0	-1.0	-1.0	-1.0		
-1.0	-1.0	-1.0	0.0		

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.	
-14.	-18.	-20.	-20.	← 11
-20.	-20.	-18.	-14.	$\leftarrow v_1$
-22.	-20.	-14.	0.0	

Monte Carlo e TD Learning

Mundo Real: env.step(), model free, ambos usam value function e só aprendem na medida em que conseguem rewards:

- Monte Carlo: aprende *value function* por episódios completos e recalcula valores de trás para frente, por meio de médias.
- Temporal Difference (TD): atualiza após cada passo (bootstrapping)

SARSA vs. Q-Learning

- SARSA: on-policy (atualiza value function e age conforme mesma política)
- Q-Learning: off-policy (usa a melhor ação na atualização)
- Ambos usam TD para atualizar Q(s,a)
- Muito usados em ambientes com ações discretas (necessário) e estados com pouca dimensionalidade

Resumo comparação métodos de RL

- DP: requer modelo (normalmente não dispomos), computacionalmente caro
- Monte Carlo: sem modelo, usa episódios completos
- TD: sem modelo, atualiza por passo
- Q-Learning: off-policy, converge para política ótima (pode ter viés otimista, principalmente se ambiente for estocástico!)
- SARSA: on-policy, mais conservador

Exploração vs. "Exploitação" (rs)

- Exploração: experimentar ações novas para aprender
- Exploitação: escolher a melhor ação conhecida
- ε decrescente é muito usado em SARSA e Q-Learning

Substitui a tabela Q por uma rede neural (Q-table inviável com muitos estados).

- Substitui a tabela Q por uma rede neural (Q-table inviável com muitos estados)
- Replay buffer: armazena e reutiliza experiências
- Target network: reduz instabilidade no treinamento
- Aprendizado eficiente mesmo com estados complexos

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning

Instead of a table, we have a **parametrized Q function**: $Q_{\theta}(s, a)$

Can be a linear function in features:

$$Q_{\theta}(s, a) = \theta_0 f_0(s, a) + \theta_1 f_1(s, a) + \dots + \theta_n f_n(s, a)$$

Or a neural net, decision tree, etc.

Learning rule:

- Remember: $\operatorname{target}(s') = R(s, a, s') + \gamma \max_{a'} Q_{\theta_k}(s', a')$
- Update:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left[\frac{1}{2} (Q_{\theta}(s, a) - \text{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$$

Encerramento e Revisão

- RL: interação, recompensa,
 aprendizado com tentativa e erro
- Evolução:
 - DP → MC/TD → Q-Learning → DQN
- Conceitos-chave: política, valor, exploração, estabilidade
- Aplicações reais
- Próximos passos: policy gradient, action space contínuo, etc.

RL Algorithms

This table displays the RL algorithms that are implemented in the Stable Baselines3 project, along with some useful characteristics: support for discrete/continuous actions, multiprocessing.

Name	Box	Discrete	MultiDiscrete	MultiBinary	Multi Processing
ARS ¹		~	×	×	•
A2C	~	✓	✓	✓	✓
CrossQ ¹	~	×	×	×	•
DDPG	~	×	×	×	V
DQN	×	~	×	×	•
HER	~	~	×	×	✓
PPO	~	*	-	V	•
QR-DQN ¹	×	~	×	×	V
RecurrentPPO 1	~	~	~	•	•
SAC	~	×	×	×	V
TD3	~	×	×	×	V
TQC 1	~	×	×	×	•
TRPO 1	~	~	·	V.	•
Maskable PPO 1	×	→	→	V	✓