SS 2014

Prof. Dr. Margarita Esponda

ALP2: Objektorientierte Programmierung

0. Übungsblatt

1. Aufgabe

installieren Sie (aus http://www.python.org) irgendeine Python-Version 3.x.

2. Aufgabe

Geben Sie, ohne den Python-Interpreter zu verwenden, den **Wert** und den **Datentyp** (class name) folgender Ausdrücke an:

complex(0)	complex(3)	(1+2j)*(3+0j)	(2+3j)/5j
()	(10)	[]	(0,3)+(1,0)
2*[0,1]*2	[1,2,3]+[5,4]	2 in (1,3,3)	2/3
3^16	5 6	9&7	~3
2<<4	2>>2	-2<<4	-2>>2

3. Aufgabe

Was ist ein dynamisches Typsystem im Kontext von Programmiersprachen? Welche sind die Vorteile und Nachteile von dynamischen Typsystemen?

4. Aufgabe

Testen Sie folgende Kommandos bzw. Ausdrücke des Python-Interpreters:

help() import math math.sqrt(2) import random random.randint(-10,10) random.random() usw.

5. Aufgabe

Gegeben sei folgendes Python-Programm

a = [2, 3, 5]
b = a
c = 8
a[2] = c
c = 100
e = [a, b, c]
print(a)
print(e)
a = [b, c, e]
print(a)

print(b)

Ohne das Programm auszuführen, schreiben Sie, was ausgegeben wird.

6. Aufgabe

Die Fläche eines beliebigen regulären Polygons kann bei Eingabe der Seitenlängen \mathbf{s} und der Anzahl der Seiten \mathbf{n} mit Hilfe folgender Formel berechnet werden.

$$area = \frac{n \cdot s \cdot a}{2}$$
mit $n = Anzahl \ der \ Seiten \ des \ Polygons$

$$s = Seitenlänge$$

$$a = Apothema = \frac{s}{2 \cdot \tan\left(\frac{\pi}{n}\right)}$$

Schreiben Sie ein entsprechendes Python-Programm, das die Berechnung macht. Kontrollieren Sie vor der Berechnung, dass die angegebenen Zahlen **s** und **n** positiv sind.

7. Aufgabe

Schreiben Sie ein Python-Programm, das nach Eingabe von drei positiven **int**-Zahlen **a**, **b** und **c** feststellen kann, ob die eingegebenen natürlichen Zahlen ein pythagoräisches Zahlentripel bilden (D.h., ob es sich um die Seitenlängen eines rechtwinkligen Dreiecks handelt oder nicht.)