ALL PROGRAMMABLE

5G Wireless • Embedded Vision • Industrial IoT • Cloud Computing

Depuración del Hardware

Contenido

- Conocer las opciones disponibles de depuración en el hardware
- Describir los distintos bloques para depuración y su funcionalidad
- Conocer cómo se incluyen los bloques de depuración en el sistema

Temario

- Introducción
- Bloques de Depuración
- Proceso de depuración
- Resumen

Depuración

- ➤ La depuración y verificación lleva alrededor del 40% del tiempo de desarrollo
- > Es un proceso lento por la baja velocidad de las interfaces de comunicación
- ➤ Si la depuración no forma parte integral del desarrollo, genera retrasos innecesarios en el ciclo de desarrollo

Metodología de depuración

- Encarar el proceso de depuración de una manera sistemática
 - Descomponer el problema en partes
 - Simplificar reduciendo variables y variabilidad (reducción de funciones)
 - Verificar los resultados contra salidas generadas por otros métodos
 - Planificar cómo y dónde aplicar depuración en el sistema
- ➤ El diseño de sistemas con FPGA es un proceso iterativo
- Depurar un sistema basado en FPGA también es un proceso iterativo
 - 1) Obtención de datos: Agregar o modificar los bloques de depuración
 - 2) <u>Implementación</u>: Compilar el sistema con los bloques de depuración configurados
 - 3) <u>Analizar</u>: Analizar los resultados obtenidos y verificar si son correctos funcionalmente y en temporización
 - 4) Reparar: Realizar las modificaciones necesarias y repetir el proceso

Depuración

- **▶** Herramienta *Hardware debugging*
 - Es un analizador lógico para las señales internas de la FPGA
 - Reemplaza el uso de un analizador lógico externo
- > Forma parte de las herramientas de desarrollo
- **▶** La misma conexión JTAG se utiliza en dos funciones:
 - Configurar la lógica programable de la FPGA
 - Depuración del Hardware

- Interfaz de software en tiempo de ejecución para interactuar con los bloques ILA y VIO
- > Se pueden ver los resultados de varios bloques ILA simultaneamente
- **▶** Los resultados se pueden guardar y recuperar

Funciones

- Cursores y marcadores con medición de tiempos
- Ampliación/Reducción
- Herramientas para encontrar las transiciones de las señales
- Busqueda de señales por el nombre
- Representación de números en distintas bases

Ejecucion de comandos Tcl

Permite la automatización del proceso de depuración

- Se utiliza de la misma manera que para otros procesos
- Las pruebas se pueden ejecutar en forma interactiva o automática
- Se pueden guardar los resultados para posterior análisis

Se pueden crear funciones y pruebas personalizadas

- Permite realizar pruebas de regresión
- Se pueden asociar secuencias de comandos Tcl a botones del IDE
- La ejecución de scripts permite la integración con otros entornos de depuración

```
2 # Connect to Digilent cable connected to my lab123
4 connect hw server -host lab123:50001
5 current_hw_target [get_hw_targets */digilent plugin/SN:12345]
6 open hw target
9# Program device with design.bit file and refresh device
11 current hw device [lindex [get hw devices] 0]
12 set_property PROGRAM.FILE {./design.bit} [current_hw_device]
13 program hw devices [current hw device]
14 refresh hw device -update hw probes [current hw device]
15
17 #Set up ILA core trigger position and probe compare value
19 current hw ila [get hw ilas hw ila 1]
20 set property CONTROL.TRIGGER POSITION 512 [current hw ila]
21 set property COMPARE VALUE.0 eql'b0 [get hw probes PROBE 4]
24 # Arm and wait for ILA core trigger, upload and save data
26 run hw ila hw ila 1
27 wait on hw ila hw ila 1
28 write hw ila data [upload hw ila data hw ila 1] wavedata
```

- > Una unidad de comparación (match unit) por cada señal a verificar
 - Se pueden hacer todos los tipos de comparación (</>/=/!=/etc)
- > No es necesario instanciar un bloque de depuración específico para la conexión
- ➤ La mayoría de los parámetros de depuración se configuran en tiempo de ejecución

Se pueden definir señales a depurar en el código HDL mediante la propiedad MARK_DEBUG

Se puede depurar un sistema sintetizado

Se puede depurar a nivel sistema, incluyendo IP agregada

Debug Probe HDL entity FIR is port (clk: in rst: in din: in **Hierarchy Schematic** Netlist] mips_top 🖮 🕼 Nets (525). ⊕ -

fr display_data (14) **Vivado IP Integrator** ⊕ - √ fr a cb (4) in figure in the figure i Net Properties... Ctrl+E Mark Debug Unmark Debug Assign to Debug Port... Show Connectivity Ctrl+T

Se puede depurar el sistema a distintos niveles

Temario

- Introducción
- Bloques de Depuración
- Proceso de depuración
- Resumen

Estructura de los bloques de depuración

- ➤ Los bloques de depuración permiten acceder a todas las señales internas de la FPGA
 - Puertos de los bloques físicos
 - Señales intenas, puertos y nodos de la lógica
 - Se pueden simular señales externas mediante el bloque de depuración Virtual I/O core
- La depuración se ejecuta a la velocidad del sistema
 - Se utilizan los relojes definidos en el sistema
- ➤ No se utilizan pines de I/O
 - Se accede mediante la interfaz JTAG

Bloques de depuración

> ILA

- Bloque para adquirir señales(Integrated Logic Analyzer)
- Permite agregarse como Netlist o como código HDL

> VIO

- Bloque para simular señales de entrada/salida (Virtual Input / Output)
- -Se agrega como código HDL

ILA 6.1 and VIO 3.0 HDL Instantiation

LC_XLNX_HW_PROBE_INFO("NUM_OF_PROBES=1,DATA_DEPTH=1024,PROBEO_WIDTH=1,]
.C_XDEVICEFAMILY("zynq"),
.C_CORE_TYPE(1),
.C_CORE_INFO1(0),
.C_CORE_INFO2(0),
.C_CAPTURE_TYPE(0),
.C_MU_TYPE(0),
.C_TC_TYPE(0),
.C_TC_TYPE(0),
.C_MU_OF_PROBES(1),

.C_DATA_DEPTH(1024), .C MAJOR VERSION(2013),

ILA 6.1 Netlist Insertion

Bloque ILA

- > Se utiliza para monitorear señales internas de la lógica programable
- ➤ Las unidades de disparo para adquisición son configurables
 - Se puede configurar el tamaño y el tipo de coincidencia para trabajar con distintos tipos y condiciones de las señales
- ➤ Entradas separadas de datos y disparo: una señal genera la condición de disparo y otras señales son adquiridas
- > Se pueden capturar los datos antes, durante y después de la condición de disparo

Bloque VIO

- > Permite simular señales de entrada/salida en tiempo real
- > Tiene una unidad para generar las señales de entrada
- Tiene una unidad para almacenar las señales de salida

Propiedad Mark_Debug

> Se puede usar esta propiedad para marcar señales para depuración en el código HDL

▶ En VHDL:

```
attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";
```

> En Verilog:

```
(* mark_debug = "true" *) wire [7:0] char_fifo_dout;
```

Temario

- Introducción
- Bloques de Depuración
- Proceso de depuración
- Resumen

Proceso de depuración

Inserción como Netlist

- Es la forma más flexible
- Se puede hacer en distintas etapas (HDL, sistema sintetizado, sistema implementado)
- Se puede aplicar en desarrollos basados en proyectos o en desarrollos independientes

Instanciado en el código HDL

- Es la forma mas común
- Se utiliza a nivel código HDL solamente
- Se puede aplicar en desarrollos basados en proyectos o en desarrollos independientes

> Se pueden aplicar ambos simultaneamente

Herramientas de depuración en la interfaz gráfica

- ➤ Seleccionar Tools → Set up Debug para iniciar el asistente de depuración
- ➤ La pestaña de depuración (Debug) aparece en la vista de sistema sintetizado

Selección de las señales para depuración

- Como seleccionar las redes con las señales a verificar
 - En la vista de redes (Netlist view) en la carpeta con la red (nets folders)
 - En esta vista está la estructura jerárquica de las señales
 - En el diagrama esquemático
 - Con la herramienta de búsqueda
- Presionar con el botón derecho la red y seleccionar Mark Debug
- > En la vista de depuración, las redes sin asignar
 - Aquí se ubican las redes de IP que no están configuradas
- > En el asistente de depuración también está disponible la herramienta de búsqueda

Configuración de la herramienta de depuración

- Se puede verificar el contenido y la configuración de las señales
 - Señales de reloj (CLK)
 - Señales monitoreadas (PROBE)
 - Cantidad de señales en cada monitor
- Se configuran las opciones en la pestaña de propiedades

Temario

- Introducción
- Bloques de Depuración
- Proceso de depuración
- Resumen

Resumen

- ➤ El analizador lógico integrado ILA tiene una interfaz similar a la del simulador y acepta comandos Tcl
- > El tiempo y los mecanismos de depuración deben ser tenidos en cuenta como parte del ciclo de desarrollo de un sistema
- > El analizador lógico integrado provee bloques para ver las señales internas del sistema y para simular las entradas y salidas externas a la velocidad del sistema
 - Bloque ILA (señales internas)
 - Bloque VIO (señales de entrada/salida)
- ➤ El asistente de depuración se utiliza para configurar los bloques lógicos y realizar las verificaciones utilizando una interfaz gráfica
- > Hay 3 mecanismos para agregar los bloques de depuración
 - Instanciado en el código fuente HDL
 - Inserción en la Netlist del sistema
 - Usando el atributo Mark Debug