

Final Model Selection Justification Report

Date	5 july 2025
Team ID	SWTID1750170729
Project Name	Deepfruitveg: Automated Fruit And Veg Identification
Maximum Marks	2 Marks

1. Objective

To justify the selection of the most optimal deep learning model architecture and configuration used for deployment based on empirical results, performance, scalability, and robustness.

2. Models Considered

Model Name	Description	Status
Simple CNN	Custom-built CNN with Conv-Pool-Dense layers	Discarded due to underfitting and limited accuracy
ResNet50	Transfer learning model with skip connections	Moderate results, slightly heavier, not chosen
EfficientN etB3 ☑	Pretrained ImageNet model optimized for performance and parameter efficiency	Selected for final deployment

3. Selection Criteria

Criteria	Description	
Accuracy	High validation accuracy and generalization across unseen data	
Top-K Accuracy	Reliable top-3 predictions improve usability for ambiguous classes	
Model Size EfficientNetB3 is more lightweight compared to ResNet50 for similar accuracy		
Training Time	Moderate training time on Colab GPU; efficient compared to deeper models	
Scalability	Capable of being deployed to web/mobile platforms due to low size & latency	
Robustness	Performs well under various image conditions (lighting, occlusion, noise)	
Ease of Fine- tuning	I EtticientNet offers modular fraining with better convergence characteristic	

4. Final Model Summary

Parameter	Value	
Base Model	EfficientNetB3 (from tensorflow.keras.applications)	
Input Size	300×300×3	
Pooling	Global Average Pooling	
Custom Layers	$Dense(256,ReLU) \to Dropout(0.4) \to Dense(num_classes,Softmax)$	
Optimizer	Adam (LR=1e-5)	
Loss Function	Categorical Crossentropy	
Metrics	Accuracy, Top-3 Accuracy	
Class Imbalance Handling	Class weights (computed using sklearn)	
Data Augmentation	Rotation, Flip, Zoom, Shift, Shear	
Callbacks	EarlyStopping, ModelCheckpoint	

5. Performance Comparison (Summary)

Model	Validation Accuracy	Top-3 Accuracy	Notes
Simple CNN	~65%	~80%	Lacked complexity to handle fine classes
ResNet50	~82%	~93%	Good, but training slower and model heavier
EfficientNetB3 ✓	~ 90.67 %	~98.22 %	Best trade-off between speed, accuracy, and size

6. Conclusion

EfficientNetB3 was selected as the final model due to its:

- Superior accuracy and top-3 accuracy
- Efficient architecture with fewer parameters
- Ability to generalize well under augmented image scenarios
- Compatibility with real-time and mobile deployment

This model serves the project's goals of building a scalable, robust, and accurate fruit/vegetable classification system suited for agricultural and food processing industries.