Элементы криптографического анализа

Автор курса: Тимонина Елена Евгеньевна Составитель: Смирнов Дмитрий Константинович

2022 г.

Оглавление

1	Введ	дение	1
2	Опр	еделение шифра. Простейшие примеры.	2
	2.1	Что такое подстановка?	2
	2.2	Что такое группа, и почему множество S_m из примера 2.1	
		образует группу?	2
	2.3	Почему группа S_n из примера 2.2 является симметрической?	3
	2.4	Что такое кольцо? Что такое кольцо вычетов по модулю m ?	3
	2.5	Какую алгебраическую структуру представляет собой коль-	
		цо $\mathbb{Z}_{/m}$ при $m=2$?	4

Лекция 1

Введение

Лекция 2

Определение шифра. Простейшие примеры.

2.1 Что такое подстановка?

Подстановка — это взаимно однозначная функция, которая переводит буквы алфавита в буквы того же самого алфавита.

2.2 Что такое группа, и почему множество S_m из примера 2.1 образует группу?

Множество $G \neq \varnothing$ с бинарной операцией " \circ ", называется группой, если выполнены условия:

- 1. $\forall a, b \in G \ a \circ b \in G$;
- 2. $\forall a, b, c \in G \ a \circ (b \circ c) = (a \circ b) \circ c;$
- 3. $\exists e \in G : \forall a \in G \ e \circ a = a \circ e = a;$
- 4. $\forall a \in G \ \exists b \in G \colon a \circ b = b \circ a = e$

Множество S_m вводится как множество всех подстановок на конечном алфавите $A = \{a_1, ..., a_m\}$. Проверим выполнение аксиом группы:

- 1. Подстановка $k \in S_m$ отображение $k \colon A \to A$. $\forall k_1, k_2 \in S_m$ рассмотрим суперпозицию $k_1 \circ k_2$. Так как $k_1 \circ k_2 \colon A \to A \to A$, то $k_1 \circ k_2 \in S_m$ и первая аксиома верна.
- 2. $\forall k_1, k_2, k_3 \in S_m$ $k_1 \circ (k_2 \circ k_3) = k_1 \circ k_2(k_3(a)) = k_1(k_2(k_3(a))) = k_1(k_2(a)) \circ k_3(a) = (k_1 \circ k_2) \circ k_3.$
- 3. Поскольку S_m множество всех подстановок, то найдётся тождественная подстановка: $\exists e \in S_m \colon \forall a \in A \ e(a) = a$. Тогда $\forall k \in S_m$ верно

$$e \circ k = e(k(a)) = k(a) = k(e(a)) = k \circ e.$$

4. Так как подстановка – взаимно однозначная функция, то $\forall k \in S_m$ существует обратная функция: $\exists k^{-1} \colon A \to A \Rightarrow k^{-1} \in S_m$, для которой будет выполнено равенство $k \circ k^{-1} = k(k^{-1}(a)) = k^{-1}(k(a)) = k^{-1} \circ k$. При этом, $\forall a \in A \ k^{-1}(k(a)) = a = e(a)$.

Выполнены все аксиомы группы, следовательно S_m – группа.

2.3 Почему группа S_n из примера 2.2 является симметрической?

Симметрической группой n-го порядка называется множество S(X) всех биективных отображений $f\colon X\to X$, где X – конечное множество из n элементов. Группа S_n в примере 2.2 определяется как группа подстановок на множестве $X=\{1,...,n\}$. Подстановка – это биективное отображение, X – конечное множество из n элементов. Следовательно, по определению, группа S_n является симметрической.

2.4 Что такое кольцо? Что такое кольцо вычетов по модулю m?

Множество K называется кольцом, если в K определены две операции "+" (сложение) и "·" (умножение) и выполняются следующие условия $\forall a,b,c\in K$:

- 1. $a + b \in K, a \cdot b \in K$;
- 2. a + (b + c) = (a + b) + c, a(bc) = (ab)c;
- 3. a + b = b + a;
- 4. (a+b)c = ac + bc;
- 5. $\exists 0 \in K : a + 0 = a$.

Кольцом вычетов по модулю m называется такое кольцо $\mathbb{Z}_{/m} = \{C_0, C_1, ..., C_{m-1}\}$ $(C_r$ – смежный класс вычетов по модулю m), в котором операции сложения и умножения определяются следующими правилами:

- 1. $C_a + C_b = C_r$, где $r \equiv (a+b) \pmod{m}$;
- 2. $C_a C_b = C_r$, где $r \equiv ab \pmod{m}$

То есть, C_a+C_b – это класс, в который входит число a+b, а C_aC_b – класс, в который входит число ab.

2.5 Какую алгебраическую структуру представляет собой кольцо $\mathbb{Z}_{/m}$ при m=2?

Теорема 1. Если p – простое число и $p \geq 2,$ то $\mathbb{Z}_{/m}$ – поле характеристики p.

По теореме 1 кольцо $\mathbb{Z}_{/2}$ является полем характеристики 2.