Novinky v periodické tabulce prvků

Zdeněk Moravec, hugo@chemi.muni.cz

For notes and updates to this table, see www.ispac.org. This version is cloted 28 November 2016.

Úvod

1869

опытъ системы элементовъ.

основанной на изъ атомномъ въсъ и химическомъ сходствъ

I. Menzagbent

Periodická tabulka prvků z roku 1869.¹

2016

For roles and updates to this table, see www.lupac.org. This version is dated 28 Nov Copyright © 2016 ILBAC, the International Union of Pine and Applied Chemistry.

Periodická tabulka prvků.²

¹Zdroj: Dmitrij Ivanovič Mendělejev/Commons

²Zdroj: IUPAC

Historický vývoj atomové teorie

- Démokritos (460–370 př. n. l.) všechno jsoucí se skládá ze dvou prvků, "plného" a "prázdného", které do sebe nikdy nepřecházejí. "Plné" tvoří nedělitelné (řecky atomoi) a nekonečně rozmanité částečky, které se pohybují v "prázdném".
- Nedělitelnost atomu byla vyvrácena až v roce 1897 fyzikem J. J. Thompsonem, který objevil a charakterizoval elektron.³

Thompsonův pudinkový model atomu.⁴

³Corpuscles to Electrons

⁴Zdroj: Fastfission/Commons

Historický vývoj atomové teorie

- Niels Bohr (1885–1962) dánský fyzik, nositel Nobelovy ceny za fyziku z roku 1922.⁵
- ▶ V letech 1911–1918 vytvořil tzv. Bohrův model atomu.
- ▶ Zavedl tři postuláty:⁶
 - Atom je stabilní soustava složená z kladně nabitého jádra, v němž je soustředěna téměř celá hmotnost atomu, a z elektronového obalu. Elektrony obíhají kolem jádra po kružnicových drahách, na nichž nevyzařují žádnou energii.
 - 2. Atom se může nacházet pouze v kvantových stacionárních stavech s určitou hodnotou energie (na určitých energetických hladinách).
 - Při přechodu mezi energetickými hladinami elektron absorbuje (při přechodu na hladinu s vyšší energií) nebo emituje (při přechodu na hladinu s nižší energií) právě jeden foton, jehož energie odpovídá energetickému rozdílu hladin.

⁵The Nobel Prize in Physics 1922

⁶Bohr model

Historický vývoj atomové teorie

Bohrův model atomu.⁷

⁷Zdroj: Cdang/Commons

Struktura atomu

- Atom skládá se z elektronového obalu a atomového jádra
- ► Elektronový obal tvoří většinu objemu atomu, ale je skoro prázdný
- Atomové jádro malý objem, ale obsahuje většinu hmoty atomu
- Periodická tabulka prvků atomy (prvky) seřazené podle hmotnosti (počtu protonů)
- Perioda skupina prvků, které mají shodnou valenční slupku elektronového obalu
- Skupina prvky, které mají shodný počet elektronů ve valenční slupce

Model atomu sodíku.8

⁸Zdroj: Plazmi/Commons

Struktura atomu

1 Å = 100 pm

Model atomu helia; 1 pm = 10^{-12} m; 1 fm = 10^{-15} m. 9

⁹Zdroj: Yzmo/Commons

Izotopy

- Nuklid látka z atomů jednoho prvku, které mají stejný počet neutronů.
- Izotop konkrétní nuklid jednoho chemického prvku.
- Existenci izotopů prokázal v roce 1913 Frederick Soddy, který za tento objev získal v roce 1921 Nobelovu cenu za chemii. 10

Izotopy vodíku.11

¹⁰The Nobel Prize in Chemistry 1921

¹¹Zdroj: Dirk Hünniger/Commons

Stabilita atomových jader

- Na stabilitu má vliv velikost vazebné energie jádra a poměr mezi počtem protonů a neutronů. U lehkých jader je poměr zhruba 1:1, se vzrůstajícím protonovým číslem dochází ke zvyšování přebytku neutronů
- Nejvíce stabilních jader má protonové i neutronové číslo sudé, např. ${}^{12}_{6}$ C, ${}^{16}_{8}$ O, ...
- Naopak kombinace lichého protonového a neutronového čísla je u stabilních jader vzácná, známe pouze čtyři: ¹₁H, ⁶₃Li, ¹⁰₅B a ¹⁴₇N
- Poločas rozpadu doba, za kterou dojde k rozpadu poloviny jader v systému
- Charakteristika nestabilních jader, pohybuje se od zlomků sekund až po milióny let
- $ightharpoonup N(t) = N_0 e^{-\lambda t}$
- $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \tau \ln 2$

Radioaktivní rozpady

- Pokud je v jádru nadbytek neutronů nebo protonů, jádro se přemění na stabilnější.
 - \triangleright α rozpad rozpad charakteristický pro těžší jádra, dojde k uvolnění α -částice (jádro ${}_{2}^{4}$ He ${}^{2+}$), vzniklé jádro má protonové číslo menší o 2 a nukleonové o 4
 - ightharpoonup 226 Rn + 4He
 - V případě nadbytku neutronů může dojít k rozpadu neutronu na proton a elektron, během přeměny se uvolňuje částice β^- ($^0_{-1}$ e $^-$)
 - $ightharpoonup \frac{32}{16}P \longrightarrow \frac{32}{16}S + \frac{0}{16}e$
 - V případě nadbytku protonů může dojít k rozpadu protonu na neutron a pozitron, během přeměny se uvolňuje částice β^+ ($^0_{\pm 1}$ e⁺)
 - ightharpoonup $^{11}_{6}C \longrightarrow ^{11}_{5}B + ^{0}_{11}e$
 - Nadbytek protonů v jádře může být kompenzován i pomocí elektro*nového záchytu*, kdy proton pohltí elektron a vznikne neutron $ightharpoonup {7\over4} Be + {0\over1} e \longrightarrow {7\over3} Li$

Alotropie prvků

- Koncept alotropie navrhl v roce 1841 Jöns Jakob Berzelius, termín je odvozen z řeckého výrazu pro variabilitu.¹²
- Alotropy prvku jsou rozdílné strukturní modifikace daného prvku, mají odlišné fyzikální i chemické vlastnosti.¹³
- S alotropy se setkáváme např. u uhlíku, fosforu, síry a mnoha dalších prvků.
 - ▶ Uhlík:¹⁴ diamant, grafit, grafen, fullereny, uhlíkové nanotrubice, ...
 - Fosfor: bílý, červený, černý, fialový
 - Selen: červený, šedý, černý
 - ightharpoonup *Kobalt*: α-kobalt, β-kobalt

Černý a červený selen.15

¹²The Origin of the Term Allotrope

¹³Allotropes

¹⁴KSICHT, seriál, ročník 2024/25

Alotropie prvků

Allotropické modifikace uhlíku.16

¹⁶Zdroj: mstroeck/Commons

PSP, stav před rokem 1997.¹⁷

¹⁷Zdroj: NPGallery/Commons

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 JUPAC, the International Union of Pure and Applied Chemistry.

Periodická tabulka prvků, rok 2016.¹⁸

¹⁸Zdroj: IUPAC

Bismut

Stabilita jader

- Z prvních 82 prvků má 80 stabilní izotopy. Tc (43) a Pm (61) stabilní izotopy nemá.
- Z 251 známých stabilních izotopů se předpokládá, že 90 je opravdu stabilních a 161 má velice dlouhý poločas přeměny.
- U těžších prvků se neočekává, že by měly stabilní izotopy.
- V přírodě nacházíme 35 nuklidů, které mají poločas přeměny delší než je stáří Země (primordiální jádra).
- Nejdelší změřený poločas rozpadu má 128 Te, 2,2×10²⁴ let.

Poločas přeměny izotopů. 19

¹⁹Zdroj: BenRG/Commons

- Dlouho byl za stabilní (a zároveň nejtěžší stabilní jádro) považován izotop 209 Bi, ale v roce 2003 bylo prokázáno, že se rozpadá za uvolnění částice $\alpha.^{20}$
- $ightharpoonup {}^{209}_{83} \text{Bi} \longrightarrow {}^{205}_{81} \text{TI} + {}^{4}_{2} \alpha$
- Poločas rozpadu je $2,01.10^{19}$ let. Stáří vesmíru je odhadováno na $13,8\times10^9$ let.
- ightharpoonup Za nejtěžší stabilní jádro je nyní považováno jádro $^{208}_{82}$ Pb.

Izotop	Poločas rozpadu	Typ rozpadu
²⁰⁷ Bi	31,55 let	β^+
²⁰⁸ Bi	$3,7.10^5$ let	β^+
²⁰⁹ Bi	2,01.10 ¹⁹ let	α
²¹⁰ Bi	5,012 dne	β^-/α
^{210m} Bi	3,04.10 ⁶ let	α

 $^{^{20}}$ Experimental detection of alpha-particles from the radioactive decay of natural bismuth

Dokončení 7. periody

Supertěžké prvky mají protonové číslo vyšší než 103.

Protonové číslo	Značka	Název	$T_{\frac{1}{2}}$
104	Rf	Rutherfordium	1,3 h
105	Db	Dubnium	28 h
106	Sg	Seaborgium	14 min
107	Bh	Bohrium	11,5 min
108	Hs	Hassium	110 s
109	Mt	Meitnerium	67 s
110	Ds	Darmstadtium	14 s
111	Rg	Roentgenium	306 s
112	Cn	Copernicium	28 s
113	Nh	Nihonium	9,5 s
114	FI	Flerovium	19 s
115	Мс	Moscovium	650 ms
116	Lv	Livermorium	57 ms
117	Ts	Tennessine	51 ms
118	Og	Oganesson	181 ms

Dokončení 7. periody

- Organizace IUPAC vydala 9. 6. 2016 návrh na pojmenování nových čtyř prvků s protonovými čísly 113, 115, 117 a 118.²¹
- ▶ 28. 11. 2016 byly tyto názvy schváleny.^{22,23}
- ▶ Všechny tyto nově připravené prvky jsou nestabilní, jejich poločasy rozpadu se pohybují ve zlomcích sekund.
- Kromě metod přípravy, jsou studovány i jejich fyzikální a chemické vlastnosti.²⁴

Protonové číslo	Původní název	Schválený název
113	Ununtrium (Uut)	Nihonium (Nh)
115	Ununpentium (Uup)	Moscovium (Mc)
117	Ununseptium (Uus)	Tennessine (Ts)
118	Ununoctium (Uuo)	Oganesson (Og)

 $^{^{21}\}mbox{IUPAC}$ is naming the four new elements nihonium, moscovium, tennessine, and oganesson

²²IUPAC announces the names of the elements 113, 115, 117, and 118

²³Další čtyři supertěžké prvky mají svá jména

²⁴Five decades of GSI superheavy element discoveries and chemical investigation

Dokončení 7. periody

- Nihonium
 - Umělý prvek, protonové číslo 113, Nh.
 - Poprvé byl připraven v roce 2003:

 - ightharpoonup $\stackrel{286}{\longrightarrow}$ Nh \longrightarrow $\stackrel{282}{\longrightarrow}$ Rg $+ \alpha$
- Pojmenován byl po Japonsku "země vycházejícího slunce".
- ► Známe osm izotopů ²⁷⁸Nh ²⁹⁰Nh, nejdelší poločas rozpadu má 286 Nh, $t_{\frac{1}{3}} = 9,5$ s.
- Chemické vlastnosti nihonia nebyly zatím detailně prozkoumány.²⁵
- Očekává se, že bude méně reaktivní než thallium a bude se podobat ušlechtilým kovům.

²⁵First foot prints of chemistry on the shore of the Island of Superheavy Elements

Dokončení 7. periody

Moscovium

- ► Umělý prvek, protonové číslo 115, Mc.²⁶
- Dřívější název tohoto prvku byl ununpentium.
- ▶ Poprvé byl připraven v roce 2004:²⁷

$$\blacktriangleright \ ^{243}_{95} \text{Am} + {}^{48}_{20} \text{Ca} \longrightarrow {}^{288}_{115} \text{Mc} + 3 \, {}^{1}_{0} \text{n}$$

$$\blacktriangleright \ ^{243}_{95} \text{Am} + {}^{48}_{20} \text{Ca} \longrightarrow {}^{287}_{115} \text{Mc} + 4 \, {}^{1}_{0} \text{n}$$

▶ Předpokládaná elektronová konfigurace: [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p³.

Izotop	Poločas rozpadu	Typ přeměny
²⁸⁶ Mc	20 ms	α
²⁸⁷ Mc	38 ms	α
²⁸⁸ Mc	193 ms	α
²⁸⁹ Mc	250 ms	α
²⁹⁰ Mc	650 ms	α

 $^{^{26}\}mbox{IUPAC}$ announces the names of the elements 113, 115, 117, and 118

 $^{^{27}\}mbox{Experiments}$ on the synthesis of element 115

Tennessin

- ▶ Umělý prvek, protonové číslo 117, Ts.²⁸
- ▶ Název byl zvolen podle Tennessee (státu USA).²⁹
- ▶ Poprvé byl připraven v dubnu 2010:³⁰

$$ightharpoonup {}^{249}_{97} Bk + {}^{48}_{20} Ca \longrightarrow {}^{294}_{117} Ts + 3 {}^{1}_{0} n$$

•	Poločas rozpadu	Typ přeměny
²⁹³ Ts	25 ms	α
²⁹⁴ Ts	51 ms	α

 $^{^{28}}$ IUPAC announces the names of the elements 113, 115, 117, and 118

²⁹The Discovery of Tennessine

 $^{^{30}}$ Synthesis of a New Element with Atomic Number Z = 117 + 3 + 4 = 4 = 4 = 4

Dokončení 7. periody

Ogganesson

- Umělý prvek, protonové číslo 118, Og.³¹
- Pojmenován byl podle ruského fyzika Yuri Ogganessiana, jde o druhý prvek pojmenovaný po žijící osobě.³²
- Poprvé byl připraven v roce 2002:³³

Izotop	Poločas rozpadu	Typ přeměny
²⁹⁴ Og	0,58 ms	α

Yuri Ogganessian.34

 $^{^{31}\}text{IUPAC}$ announces the names of the elements 113, 115, 117, and 118

³²Mr Element 118: The only living person on the periodic table

³³Scientists Announce Creation of Atomic Element, the Heaviest Yet

³⁴Zdroj: VPRO/Commons

Hledání dalších supertěžkých prvků

- Struktura atomového jádra je podobná struktuře elektronového obalu.
- Protony mají svůj systém hladin, stejně tak neutrony. Z toho důvodu existují velmi stabilní kombinace počtu protonů a neutronů, tzv. magická čísla, kdy jsou tyto slupky zcela zaplněny.
- **2**, 8, 20, 28, 50, 82, 126³⁵
- U těchto číselných kombinací se očekává zvýšená stabilita jader.
- Stabilitu jader dále zvyšuje sudý počet protonů i neutronů.

Typ rozpadu jádra v závislosti na protonovém čísle.³⁶

³⁵Magic numbers of nucleons

³⁶Zdroj: Napy1kenobi/Commons

Hledání dalších supertěžkých prvků

- ▶ V oblasti okolo magických čísel se očekávají tzv. ostrovy stability. 37
- Přesnou polohu těchto ostrovů je obtížné určit, každé nově objevené jádro pomáhá zpřesnit modely.³⁸
- lacktriangle První ostrov stability se předpokládá v blízkosti jádra $^{298}_{114}$ FI.
- Příprava těchto jader je ovšem velmi komplikovaná, např.:
- $ightharpoonup {}^{248}_{94} Pu + {}^{50}_{20} Ca \longrightarrow {}^{298}_{114} FI$
- ightharpoonup $^{248}_{96}$ Cm + $^{238}_{92}$ U \longrightarrow $^{298}_{114}$ FI + $^{186}_{74}$ W + 2 $^{1}_{0}$ n
- Druhý ostrov stability se předpokládá až u protonového čísla 164, to je ale se současnou technologií nedosažitelné.³⁹

³⁷Novinky ve studiu velmi těžkých a supertěžkých prvků

³⁸Meze periodické tabulky

 $^{^{39}}$ Investigation of the stability of superheavy nuclei around Z=114 and Z=164

Hledání dalších supertěžkých prvků

Ostrovy stability.40

⁴⁰Zdroj: InvaderXan/Commons

Hledání dalších supertěžkých prvků

- Nová supertěžká jádra lze produkovat několika způsoby:⁴¹
 - 1. Ostřelováním těžkých jader intenzivním proudem neutronů, např.:

$$\qquad \qquad \qquad ^{238}\textbf{U} + ^{1}_{0}\textbf{n} \longrightarrow ^{239}\textbf{U} \xrightarrow{23\,\text{min}} ^{239}\textbf{Np} + \beta^{-} \xrightarrow{56\,\text{hod}} ^{239}\textbf{Pu} + \beta^{-}$$

 Ostřelováním terče s obsahem těžkých, stabilních jader jiným těžkým jádrem.

$$\begin{array}{ll} \blacktriangleright & {}^{64}_{28}\text{Ni} + {}^{209}_{83}\text{Bi} \longrightarrow {}^{272}_{111}\text{Rg} + {}^{1}_{0}\text{n} \\ \blacktriangleright & {}^{70}_{30}\text{Zn} + {}^{208}_{82}\text{Pb} \longrightarrow {}^{277}_{112}\text{Cn} + {}^{1}_{0}\text{n} \end{array}$$

- Výzkum nových prvků probíhá v několika laboratořích:
 - ▶ Joint Institute for Nuclear Research v Dubně⁴²
 - ▶ Riken v Japonsku⁴³
 - ► GSI Helmholtz Centre for Heavy Ion Research v Darmstadtu⁴⁴

⁴¹Jak se produkují a studují supertěžké prvky

⁴² Joint Institute for Nuclear Research

⁴³RIKEN

⁴⁴GSI

Hledání dalších supertěžkých prvků

- Syntéza prvních prvků 8. periody je již studována.
- ▶ Ununennium, Uue, prvek 119
 - První neúspěšný pokus byl proveden již v roce 1985⁴⁵
 - $ightharpoonup {}^{254}_{99} Es + {}^{48}_{20} Ca \longrightarrow {}^{302}_{119} Uue^*$
 - Nadějnější se zdá experiment z roku 2020 (Riken, Japonsko):⁴⁶
 - $ightharpoonup {}^{248}_{96}\text{Cm} + {}^{51}_{23}\text{V} \longrightarrow {}^{299}_{119}\text{Uue*}$
- ▶ Unbibium, Ubb, prvek 122
 - ▶ V roce 2000 se o syntézu pokoušeli v GSI:⁴⁷
 - $ightharpoonup ^{238}U + ^{65}_{29}Cu \longrightarrow ^{303}_{121}Ubu^*$
- Cesta k těžším prvkům zatím není zcela zřejmá.
- Jednou z exotičtějších možností je studium prvků vyvržených během exploze supernovy.⁴⁸

 $^{^{45}}$ Search for superheavy elements using the 48 Ca $+^{254}$ Es g reaction

⁴⁶Extreme chemistry: experiments at the edge of the periodic table

 $^{^{}m 47}$ Investigations of the synthesis of the superheavy element Z = 122

Děkuji za pozornost

Zdeněk Moravec hugo@chemi.muni.cz