

北京工业大学 2015-2016 学年第一学期期末 数理统计与随机过程(研) 课程试卷

学号	
----	--

注意: 试卷共七道大题,请写明详细解题过程。数据结果保留3位小数。

考试方式: 半开卷, 考试时**只允许看教材**《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时**允许使用计算器**。

考试时间 120 分钟。考试日期: 2016年1月4日

- 一、(10 分) 一灯泡使用寿命 X 服从正态分布 $N(\mu,\sigma^2)_{,}$ 现从中任取 25 只,测得寿命 (单位: 小时) 平均值和样本方差分别为 $\overline{X}=153,S^2=64$ 。取显著性水平为 $\alpha=0.01$,
 - (1) 可否认为 $\mu = 150$?
 - (2) 可否认为 $\sigma^2 \ge 60$?

$$|t| = \left| \frac{x - h_0}{5/Jn} \right|$$

$$= \left| \frac{1t3 - 150}{8/5} \right|$$

= | + d/2(H-1) = tooos (24) = 2.7969 HI < t d/2(H-1) 在拒絕域内,接受 H。

(2) Ho: 6260 Hi: 6260
拒絕域的
$$\chi^{2} = \chi^{2} \chi^{2} \chi_{2} (n+1) \vec{x} \chi^{2} \leq \chi^{2} - \omega_{2} (n-1)$$

$$\chi^{2} = \frac{(n-1)s^{2}}{6s^{2}}$$

$$= \frac{24 \times 64}{60}$$

$$= 25.6$$

$$\chi^{2} = \chi^{2} (n+1) = \chi^{2} 0.005 (24) = 45.558$$

$$\chi^{2} + \omega_{2} (n+1) = \chi^{2} 0.995 (24) = 9886$$

Xing(n) X' <Yuz(n-1) 不在拒絕城内, 遊受厚假沒

 (1E A)	观察某地区每日交通情况,	100 天的纪录加入:
 (10.71)		• HK/NICTH/\ 001

事故数	0	1	2	3	4	5	≥6
天数	35	40	19	3	2	1	0

初步推测每日发生的事故数服从 Poisson 分布,试用 χ^2 检验法检验之($\alpha=0.05$).

e-1= 0.3679

P6= MX26] = 1- \frac{5}{200058}

n=lov

申最大队然后什么得入=X=∑行: 40+38+9+8+5==1

$$P_{0} = \frac{e^{-1}}{0!} = 0.3679$$

$$P_{1} = \frac{e^{-1}}{0!} = 0.3679$$

$$P_{2} = P_{1} = 0.3679$$

$$P_{3} = P_{1} = P_{3} = 0.06132$$

$$P_{4} = P_{3} = P_{4} = 0.01533$$

$$P_{5} = P_{5} = P_{5} = 0.00307$$

$$P_{6} = P_{5} = P_{5} = 0.00307$$

AG

Ai fi Pi nPi
$$\frac{1}{1}$$
/nPi
Ao 35 03679 3679 3679 33.297
Ai 40 0.3679 3679 43.4901
Az 19 0.1839 18.39 19.6302
A3 3 0.06132 6.132
A4 2 6 0.01533 1.533 803 44832
A5 1 0.00307 0.307

并组后 L: 4, 因在计算中,估什了个参数入,故下一1 公的自由度为 \$ k-1-1=2

8200

Z = 100.9005

:.
$$\chi^2(k-1-1) = \chi^20.05(2) = 5.992$$

不在托绝域内, 接受儿。

000058

三、(15分)假定一保险公司希望确定居民住宅火灾造成的损失数额与该住户到最近的消防站的距离之间的相关关系,以便准确地定出保险金额。下面列出了8起火灾事故的损失及火灾发生地与最近的消防站的距离。

TO THE TAX PORT OF THE PROPERTY OF THE PROPERT								
距消防站的	3. 4	1.8	2. 1	2.6	4.6	2.3	3. 1	5. 5
距离 x (km)								
火灾损失 Y (千元)	26. 2	17.8	24. 0	19.6	31.3	23. 1	27. 5	36. 0

- (1) 求 Y 关于 x 的线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2)对回归方程进行显著性检验(取 $\alpha = 0.05$);
- (3) 求b 的置信水平为0.95 的置信区间。

= 11.9404

·· 关于x的线性回归3程 9=24bx 9=119404+4398x

四、(15分)某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响。现取一批 粮食分成若干份,分别用三种不同方法储藏,过一段时间后测得和含水率如下:

	储藏方法	含水率数据						
r	1	7. 3	8. 3	7. 6	8. 4	8. 3		
	2	5. 4	7. 4	7. 1	6.8	5. 3		
	3	7. 9	9.5	10.0	9.8	8.4		

- 假定各种方法储藏粮食的含水率服从正态分布,且方差相等,试在 $\alpha = 0.05$ 水 平下检验着三种方法对含水率有无显著影响;
- (2) 如果有显著影响,求均值差 $\mu_1 \mu_2$ 的置信水平为95%的置信区间。

Tu= 54+74+7,1+68+5-3 = 32

T-3= 7-9+9-5+10-0+9.8+8-4 = 45-6

=\frac{1}{39.9^2 + 32^2 + 45.6^2} = \frac{13806-25}{15}

=18-6573

ST. SA. SE的自由度低次为 h-1=14, s-1=1, N-5=12 得名差分析表: SA = SA SE SE SE SE

海来源 平3和 自由度 均3 F比

因素 18-6573 2 9-3287 13.5927

误差 8、2357 12 0.6863

24.893 14

把绝域 = 13-5927 = 13-5927 0 289

Fa(s-1,n-s)-Foos (2,12)=3.89 : 超绝Ho有多差异

(2)从一小的置信水子为少为份置了区间 (X.j - Xi + toy2 (9-5) / SE (+ +)

(39.9-32 + too25 (12) Nabsb3 x(+++)

(1.58 ± 2-1788x 0-5239)

(1.58 ± 1.1415)

(04385, 2.7215)

五、(15分)设 $\{N(t),t\geq 0\}$ 是强度为 λ 的 Poisson 过程,对任意的t>s>0及整数 m和 n, 试求

(1)
$$P{N(s) = m, N(t) = m + n}$$
;

(2) E[N(s)N(t)];

(3)
$$D[N(t)-N(s)]$$
. $P_{k}[t_{0},t]=P[N(t_{0},t)=h]$

$$=\frac{[\lambda(t-t_{0})]^{k}}{k!}e^{-\lambda(t-t_{0})}$$

解

=
$$\frac{(\lambda s)^m}{m!}e^{-\lambda s} \cdot \frac{\lambda (t-s)^n}{n!}e^{-\lambda (t-s)}$$

=
$$\lambda^2 st + \lambda s$$

$$E[N(5)|N(t)] = \lambda^2 st + \lambda t$$

六、(15分)设 $\{X_n, n \ge 0\}$ 为时齐次马氏链,状态空间 $I = \{1,2,3\}$,一步转移概率矩阵为

$$P = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

初始分布 $P{X_0 = 1} = 1/2$, $P{X_0 = 2} = 1/3$, $P{X_0 = 3} = 1/6$

- (1) 求P($X_0 = 1, X_2 = 3$)的值;
- (2) 求P($X_2 = 2$)的值;
- (3) 判断 $\{X_n, n \ge 0\}$ 是否为遍历的,请说明理由;若是遍历的,求其平稳分布。

$$P(x_{1}=2) = \frac{1}{2} \frac{1}{16} \frac{1}{16} \frac{1}{16} = \frac{1}{16} \frac{1}{16} \frac{1}{16} = \frac{1}{16} \frac{1}{16} \frac{1}{16} = \frac{1}{16} = \frac{1}{16} \frac{1}{16} = \frac{1}{16} =$$

七、(15分)设随机序列 $\{X(t) = \sin(2\pi tX), t \in T\}$ (0, 1) 上的均匀分布,证明此随机序列为宽平稳序列。 概率度加了了了。0人X21 E[XIt] = E[sin (2Ttx)] = $\int_0^1 \sin 2\pi t \chi \cdot \frac{1}{2} d\chi$ = - I cosentx/0 三 0 均值必要为季数 TO CONTACT SOUTH = x(m,n) = E[X(m) X(n)] = E [Sin 27tm Sin 27tn] = 50 shizafm. shizafn. 1 dx = = 1 /0 - = [cos x (m+n) - cos x (m-n)] dx =- 4 Jo'[cos(M+M) x-cos(m-n) +] dx = -4m+n) sin fint) x / 2 d (m+n) x d (m+n) x / 4m m-n / 50 c

