CS 203: Software Tools & Techniques for AI IIT Gandhinagar Sem-II - 2024-25

LAB 05

Total marks: 10

Submission deadline:

Submission guidelines:

- 1. Code should be added to a GitHub repository, and the repository details should be shared.
- 2. Late submissions will be penalized 20% per day.
- 3. Google form submission link:

Note: By submitting this assignment solution you confirm to follow the IITGN's honor code. We shall strictly penalize the submissions containing plagiarized text/code.

Model Architecture

Figure 2. Residual learning: a building block.

Source: Deep Residual Learning for Image Recognition, Microsoft Research

Resnet 34 Network (50 is a larger version of this)

ResNet50 is a deep convolutional neural network with 50 layers, designed for image recognition. It uses residual connections (skip connections) to prevent vanishing gradients and enable training of very deep networks. Pre-trained on ImageNet, it achieves high accuracy on various vision tasks. It's widely used in transfer learning for object detection, classification, and feature extraction.

Additionally, our setup uses

Training Parameters:

- Model: ResNet50 - Optimizer: Adam

- Learning Rate: 0.001

- Epochs: 20

- Loss Function: CrossEntropyLoss

Graphs

Augmented images (few)

Augmented train set training

Normal train set training

Scores

ResNet50 (Normal Training) Results:
Accuracy: 0.5357
Precision: 0.5200
Recall: 0.9286
F1 Score: 0.6667

ResNet50 (Augmented Training) Results:
Accuracy: 0.6071
Precision: 0.6000
Recall: 0.6429
F1 Score: 0.6207

Interpretation

Traintime

- We observe that the accuracy for augmented dataset rises quicker on average as compared to normal.
- This is because our augmented data offers more diversity and improves learning.

Testtime

- Here we observe, normal gives an accuracy of around 50%. This indicates that there is near to no learning that helps us, as this is binary classification and you can be right ½ times.
- However, for the augmented dataset, our accuracy is better. And it is reasonable.
- We also feel that we could get a much higher accuracy if we used other strategies like more augmentation, validation, k-folds etc.
- For augmented dataset training, the model generalizes better.

Extra

- Recall drops after augmentation (from $92.86\% \rightarrow 64.29\%$), which means the first model was aggressively predicting "dog" even when unsure. Because dog is positive class.
- F1 score is more balanced (from $66.67\% \rightarrow 62.07\%$), suggesting the second model is more reliable overall rather than just favoring recall.
- Precision improves (from $52\% \rightarrow 60\%$), reducing false positives.