NDMAS V Q			
ADAMAS			
UNIVERSITY			
PURSUE EXCELLENCE			

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

UNIVERSITY PURSUE EXCELLENCE		(Academic Session: 2020 – 21)		
Name of the Program:	B. Tech.	Semester:	VII	
Paper Title :	Control Systems	Paper Code:	EEE44101	
Maximum Marks :	40	Time duration:	3 hours	
Total No of questions:	8	Total No of Pages:	2	
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. Assumptions made if any, should be stated clearly at the beginning of your 			

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) Give the expression for peak overshoot for a second order system.
 - **b**) What is the nature of response if the poles are complex conjugate?
 - c) What is static acceleration error constant?

answer.

- d) Give a practical example of a closed-loop system with proper reasoning.
- e) Mention two disadvantages of transfer function based analysis.

GROUP-B

Answer any three of the following

 $3 \times 5 = 15$

2. For the block diagram of the system shown in the following Figure, determine the overall transfer function using block diagram reduction technique.

3. If the loop transfer function of a negative feedback control system is $G(s)H(s) = \frac{K}{(s+1)^3}$,

determine the gain *K* for a closed-loop pole to be at $-\frac{1}{2} + j\frac{\sqrt{3}}{2}$.

4. Determine the step response of the system, the transfer function of which is given by

$$G(s) = \frac{1}{s^2 + 4s + 2}$$

5. Calculate the angle of asymptotes and their centroid for the system having

$$G(s)H(s) = \frac{K(s+2)}{s(s+1)(s+4)} \quad K > 0$$

Answer any two of the following

$$2 \times 10 = 20$$

6. Draw the root locus of the system having the open-loop transfer function as

$$G(s)H(s) = \frac{K}{s(s+3)(s^2+2s+2)}, K > 0.$$

- 7. Sketch the Bode plot of a unity negative feedback closed loop system of which open loop transfer function is given by $G(s) = \frac{5(s+2)}{s(s+4)(s+10)}$ and comment on stability of the system.
- 8. Consider a feedback control system with loop transfer function $G(s)H(s) = \frac{2(s-1)}{s(s+2)^2}$, determine (a) the gain crossover frequency (GCF), (b) phase crossover frequency (PCF) of the system and (c) comment on stability of the system based on the above GCF and PCF.