Theoretical Computer Science

Administrative Information

Lecture 6 - Manuel Mazzara

Mid-term Exam

When: Wednesday, 15 March 2023, ~12:40-14:10

Where: 106, 107, 108 (precise instructions later)

What:

Formal Languages, FSA, Pumping Lemma, PDA

List of topics for mid-term

Finite State Automata

Finite State Transducers

Operations on FSA

Regular Languages

Pumping Lemma

Pushdown Automata

FSA Validator

Design and coding exercise where you have to demonstrate an understanding of the basic principles and functioning of FSAs

Assignment 1

In Moodle – please respect the deadline!

There will be Assignment 2 around Week 12 (release) and 14 (submission)

Theoretical Computer Science

Regular Languages and Pumping Lemma

Lecture 6 - Manuel Mazzara

Representations of Regular Languages

Examples of non regular languages

$$\{a^nb^n: n\geq 0\}$$

 $\{ww^R: w\in \{a,b\}^*$

- How can we prove that a language is not regular?
- Can we prove that there is no FSA that accepts it?
- This is not easy to prove!

Pumping Lemma

Pumping Lemma: formal statement

• Given a regular language L, If $x \in L$ and $|x| \ge |Q|$, then there exists a $q \in Q$ and a $w \in I^+$ such that:

$$-x = ywz$$

$$-\delta^*(q_0,y)=q$$

$$-\delta^*$$
 (q,z) = q' \in F

$$-\delta^*$$
 (q,w) = q

$$-|yw| \leq |Q|$$

$$-yw^nz \in L, \forall n \geq 0$$

For languages that are not regular these conditions does NOT have to apply. However, some at time may apply.

This is the Pumping Lemma (one can "pump" w)

The pumping lemma is a <u>necessary</u> but not sufficient condition for a language to be regular

Pumping Lemma, graphically

Levels of expressiveness

• In order to "count" an <u>arbitrary n</u> we need an infinite memory!

Fixed vs finite

- From the toy example {aⁿbⁿ} to more concrete cases:
 - Checking <u>well-balancing of brackets</u> (typically used in programming languages)
 cannot be done with fixed memory
- We therefore need more powerful models (PDA)

Theoretical Computer Science

Pushdown automata

Lecture 6 - Manuel Mazzara

A bit of context

Adding a (destructive) external memory

Pushdown automata

- Finite state automata can be enriched with a stack
 - → Pushdown Automata (PDA)
- PDAs differ from finite state machines in two ways:
 - They can use the top of the stack to decide which transition has to be made
 - They can manipulate the stack as part of performing a transition

Moves of a PDA

Depending on

- the symbol read from the input (but it could also read nothing)
- the symbol read from the top of the stack
- the state of the control device

the PDA

- <u>changes</u> its state
- moves ahead the scanning head
- changes the symbol read from the stack with a string lpha (possibly empty)

Acceptance

The input string **x** is recognized (accepted) if

- the PDA scans it completely
- upon reaching the end of x, it is in an accepting state

This is one of the possible definitions of "acceptance"

Acceptance, in general

- Acceptance by "Final State"
 - Input is consumed and PDA is in a final state
- Acceptance by "Empty Stack"
 - Input is consumed and stack is empty
- Not equivalent for the deterministic pushdown automaton
- They are equivalent for the *non-deterministic* pushdown automaton

 We will see this later

A little "hint"

- The languages accepted by *empty* stack are:
 - the languages that are accepted by *final state*
 - have no word in the language that is the prefix of another word in the language

PDA: a first example

Theoretical Computer Science

PDA in context

Lecture 6 - Manuel Mazzara

PDA vs FSA (1)

- We know that aⁿbⁿ cannot be recognized by any FSA
 - Pumping Lemma

but it can be recognized by a PDA

- Every regular language can be recognized by a PDA
 - Given an FSA A=<Q,I, δ ,q $_0$,F> it is straightforward to build a PDA A'=<Q',I', Γ ', δ ',q $_0$ ',Z $_0$ ',F'> such that L(A)=L(A')

PDA vs FSA (2)

PDAs are more expressive than FSAs

PDA vs FSA (3)

- Regular languages are languages which can be recognized by an automaton with <u>fixed memory</u>
 - Fixed memory is more restrictive than finite!
 - Finite vs. unlimited
 - Think about FSA (states only) and PDA (stack can grow)
- FSA is a model of computation with <u>fixed memory</u>
- PDA has <u>finite</u> but not fixed –
- It is using an <u>unbounded</u> amount of memory

PDA vs FSA (4)

- Many languages cannot be recognized using only fixed memory
 - For example aⁿbⁿ
 - FSA cannot count an unlimited n
 - Number of states is fixed, stack can grow with no bound

PDA and compilers

- PDAs are at the heart of compilers
- Stack memory has a LIFO policy
- LIFO is suitable to analyze <u>nested syntactic structures</u>
 - Arithmetical expressions
 - Begin/End
 - Activation records
 - Parenthesized strings

— ...

Balanced Parentheses

Intuitively, a string of parentheses is balanced if each left parenthesis has a matching right parenthesis and the matched pairs are well nested. The set PAREN of balanced strings of parentheses [] is the prototypical context-free language and plays a pivotal role in the theory of CFLs.

Historical Notes

The pivotal importance of balanced parentheses in the theory of contextfree languages was recognized quite early on.

Dexter Kozen, Automata and Computability, Springer-Verlag, 1997

Well parenthesized strings

- PDA to recognize well parenthesized strings
 - -(()(()())) OK
 -)())())) NO

General Structure of a Compiler

Lexical Analysis

- Lexical analysis (lexing/scanning) breaks the source code text into small pieces
 - Tokens
 - Single atomic units of the language
 - Keywords, identifiers ...

From Greek *lexikos* 'of words' (from *lexis* 'word')

- The token syntax is typically a regular language
 - Finite State Automaton, Regular expressions
 - This compiler part is called *lexer*

Pascal identifiers

Syntax Analysis

PDA is the most important class of automata between FSA and TM

• FSA cannot even recognize a simple language such as anbn

- Nested structures are the key of programming languages
- Specific (nondeterministic) PDAs are used in Syntax Analysis/parsing

From Latin *pars* (*orationis*): part (of speech)

Context-free languages and PDA

Context-free grammars have played a central role in compiler technology since the 1960s There is an automaton-like notation, called the "pushdown automaton", that also describes all and only the context-free languages.

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman

Very roughly...

Everything seems under control...

Are there languages that cannot be recognized by PDAs?

The short answer

- The short answer is yes:
 - there are languages that cannot be recognized by PDAs
- We will look into the details!

- We will also look into the details of PDA formalization
 - Configuration
 - Transitions
 - Transducers

Theoretical Computer Science

PDA, formally

Lecture 6 - Manuel Mazzara

Again now we go from informal/intuition into examples and then to the formal definition

We need to be able to master all the levels back and forth

This is the job of a **Computer Scientist and Software Engineer**

Your job

Advancing software
correctness means making
tools and methods
available for standard offthe-shelf software and
average users

Tools need simplicity and friendly interface for their use to be scalable, at the moment often PhDs-level researchers are necessary

A PDA, formally

A PDA is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$

- Q is a <u>finite set of states</u>
- I is the <u>input alphabet</u>
- $-\Gamma$ is the stack alphabet
- $-\delta$ is the <u>transition function</u>
- $-q_0 \in Q$ is the <u>initial state</u>
- $-Z_0 \in \Gamma$ is <u>initial stack symbol</u>
- $F \subseteq Q$ is the set of <u>final states</u>

Transition function

- δ is the **transition function**
- $\delta: Q \times (I \cup \{\epsilon\}) \times \Gamma \rightarrow Q \times \Gamma^*$ - $\delta(q, i, A) = \langle p, \alpha \rangle$
- Graphical notation:

Remarks

- Q, I, q₀ and F are defined as in FSAs
- δ is a partial function
- Z₀ is the initial symbol of the stack, but it is not essential
 - It is useful to simplify definitions
- $\delta(q, \epsilon, A) = \langle p, \alpha \rangle$
 - An "ε move" is a spontaneous move
 - $-\varepsilon$ does not mean that the input is empty!

Example

 $L=\{a^nb^n|n>0\}$

Configuration, informally

A configuration is a generalization of the notion of state

- A configuration shows
 - the <u>current state</u> of the control device
 - the portion of the input string that starts from the head
 - the <u>stack</u>

It is a snapshot of the PDA

Configuration, formally

- A configuration c is $\langle q, x, \gamma \rangle$
 - q∈Q is the <u>current state</u> of the control device
 - $-x \in I^*$ is the unread portion of the input string
 - $-\gamma \in \Gamma^*$ is the string of symbols in the stack

Conventions:

- The stack grows bottom-up
- The input strings is read left to right
- The other way around is possible, but is important to be coherent!

Example of configuration

 $c = \langle q_1, abbb, ABZ_0 \rangle$

Transitions

- <u>Transitions</u> between configurations (|--) depend on the transition function
 - The transition function shows <u>how to move from a PDA snapshot</u>
 <u>to another</u>
- There are two cases:
 - The transition function is defined for an input symbol
 - The transition function is defined for an ε move

Transitions, formally

• If $\delta(q, i, A) = \langle q', \alpha \rangle$ is defined then $-c = \langle q, iy, A\beta \rangle | -c' = \langle q', y, \alpha\beta \rangle$

• If $\delta(q, \varepsilon, A) = \langle q', \alpha \rangle$ is defined then $-c = \langle q, x, A\beta \rangle | -c' = \langle q', x, \alpha\beta \rangle$

Spontaneous moves and nondeterminism

- An ε move is a spontaneous move
 - − If $\delta(q,\epsilon,A)$ ≠⊥ and A is the top symbol on the stack, the transition can always be performed
- If $\delta(q,\epsilon,A)\neq \perp$, then $\delta(q,i,A)=\perp \forall i\in I$
 - If this property was not satisfied, both the transitions would be allowed
 - Nondeterminism

"undefined"

Acceptance condition

• Let |-*- be the reflexive transitive closure of the relation |--

Acceptance condition:

$$\forall x \in I^* (x \in L \Leftrightarrow c_0 = \langle q_0, x, Z_0 \rangle | -^* - c_F = \langle q, \varepsilon, \gamma \rangle \text{ and } q \in F)$$

Note: used in a configuration the meaning is not the same than epsilon-move – means the input string has been entirely "consumed"

- Informally, a string is accepted by a PDA if there is a path coherent with x on the PDA that goes from the initial state to the final state
 - The input string has to be read completely

Example

- $L = \{wcw^R \mid w \in \{a,b\}^+\}$
 - We need to use a LIFO policy to memorize w

PDA vs FSA

• PDAs are more expressive than FSAs

Languages

What are the limits of PDAs?

Stack vs. tape

- The stack is a destructive memory
 - Once a symbol is read, it is destroyed

- It is necessary to use <u>persistent memory</u>
 - → memory tapes and TM

Bar-Hillel (hints)

- There is a generalization of the pumping lemma
 - Lemma of Bar-Hillel
 - The proof is based on the derivation tree (Chomsky generative grammars)
- A property shared by <u>all context-free</u> <u>languages</u>
- Not sufficient to guarantee that a language is context-free
- More on the tutorial

Generating uv⁰wx⁰y

Generating uv²wx²y