GATE-2021-XE-53-65

EE24BTECH11047 - Niketh Prakash Achanta

- 53) Match the heat treatment processes given in Column I with the most suitable outcomes in Column II. Column I Column II
 - (P) Quenching
 - (Q) Annealing

 - (R) Tempering
- (1) Hardens the steel
- (2) Softens the cold worked steel
 - (3) Softens the steel
- (S) Carburizing (4) Increases the surface hardness of steel
- a) P-3; O-2; R-1; S-4
- b) P-2; O-3; R-4; S-1
- c) P-3; O-1; R-4; S-2
- d) P-1; Q-3; R-4; S-2
- 54) A co-joined cross-ply laminate composite, as shown in the figure, is distorted upon heating. What are the resultant shapes of layers XY and YZ?

- a) $X \longrightarrow Y$, $Y \searrow Z$
- b) X \(\sup Y, Y --- Z
- c) $X \searrow Y$, $Y \nearrow Z$

1

- d) $X \sim Y, Y \sim Z$
- 55) X-ray diffraction peak broadening enables the estimation of
 - a) crystallite size of the material
 - b) residual stresses in the material
 - c) precise lattice parameter
 - d) residual microstrains acting on the material
- 56) Fe 10 atom % C austenite (fcc), having no Fe vacancies, has a lattice parameter of 4.2 Å. The density of austenite in g cm⁻³ is (**round off to 2 decimal places**).

(Given: atomic weight of Fe = 55.85; atomic weight of C = 12.0; Avogadro's number = 6.023×10^{23})

57) An element transforms from α to β at 773 K and 1 atm pressure with 912 J mol⁻¹ as enthalpy of transformation. The molar volumes of α and β phases are 7 and 7.5 cm³ mol⁻¹, respectively. Determine the difference in their internal energy at 773 K, independent of pressure. The amount of heat required for 10 g of transformation to occur at 723 K is (round off to nearest integer).

(Given: Atomic mass of $\alpha = 110.325 \times 10^6 \text{ Pa}$)

- 58) A binary A-B alloy has α and β phases at equilibrium. The ratio of weight fraction of A in α to β is 4. The wt.% of A in α and β phases is 70 and 20, respectively. The wt.% of B in the alloy is (**round off to nearest integer**).
- 59) During heating, Ti undergoes allotropic transformation from bcc to hcp at 882 °C. The percent volume change accompanying this transformation is (**round off to 1 decimal place**).

(Given: atomic weight of Ti = 47.9; lattice parameter of bcc Ti = 0.332 nm; density of hcp Ti = 4.51 g cm⁻³; Avogadro's number = 6.023×10^{23})

- 60) Vickers hardness test is performed with an indenter of square-base diamond pyramid having an included angle of 136° between the opposite faces of the pyramid. If the diagonal length is 0.5 mm and the average indentation depth is 0.015 mm, the Vickers hardness in kg mm⁻² is (**round off to nearest integer**).
- 61) The drift mobility of electron in an n-type Si crystal doped with $10^{16}~\rm cm^{-3}$ phosphorus atoms is 1350 cm² V⁻¹ s⁻¹. The electrical conductivity in Ω m⁻¹ is (round off to 2 decimal places).

- (Given: Intrinsic charge concentration of Si = 1.45×10^{10} cm $^{-3}$; Charge of an electron, e = 1.6×10^{-19} C)
- 62) At 1000 K, the linear thermal expansion coefficients of graphite, parallel and perpendicular to the graphite layers, are $0.8 \times 10^{-6}~{\rm K}^{-1}$ and $29 \times 10^{-6}~{\rm K}^{-1}$, respectively. The percentage increase in the volume of graphite when the temperature rises from 100 K to 1100 K is (round off to 2 decimal places).
- 63) A certain ceramic material has a theoretical density and sintered density of 6.76 g cm⁻³ and 6.69 g cm⁻³, respectively. The green compact has 18 volume percent porosity. For a sintered cube of side 2 cm, the weight of the cubic green compact in cm is (**round off to 2 decimal places**).
- 64) When a metal (M) is immersed in de-aerated acid electrolyte, it polarizes anodically by 0.4 V. The M/M^{2+} couple standard energy is 10^{-4} A cm⁻² and A = 4 cm². Use a tafel slope of 0.12 V decade⁻¹ in the anodic reaction. Both anodic and cathodic reactions are under activation control. The rate of metal dissolution in A m⁻² is (**round off to 1 decimal place**).
- 65) A force $F=40~\rm kN$ is applied on the hook as shown. The equivalent force-couple system at B is

- a) 40 kN in +y direction and M=0
- b) 40 kN in -y direction and M=0
- c) 40 kN in +y direction and M=4000 Nm counter clockwise
- d) 40 kN in +y direction and M=4000 Nm clockwise