

Sistemas Cognitivos Artificiales

Dra. Mariana-Edith Miranda-Varela 13-May-24

Agenda

- Modelo americano (MODAM)
- Clases presenciales virtuales
- Canales de comunicación
- Material
- Visión general de la materia

MODAM

Material teórico grabado

Ideas clave

Lecturas adicionales

MODAM

Ideas clave (archivo PDF)

Clases en directo (parte práctica)

Vídeos feedback

Foros

Clases presenciales virtuales

Clases presenciales virtuales

- 12 clases en directo
 - Primera presentación
 - Última repaso
- Comunicación

FUENTE: https://www.nicepng.com/ourpic/u2e6y3t4w7a9w7t4_conferences-presentations-online-chat-icon-png/https://www.iconpacks.net/free-icon/microphone-342.html

Sesiones prácticas

FUENTE:

- https://www.123rf.com/photo 125733402 business-data-analysis-development-illustration-internet-research-character-flat-cartoon-vector.html
- https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567
- https://meditationsonbianddatascience.com/2017/05/11/overfitting-underfitting-how-well-does-your-model-fit/

Explicación de actividades

Complemento de las sesiones practicas

Dos archivos: jupyter (*.ipynb) y pdf

Rúbrica

Formato de entrega de actividad (no autoevaluables)

Sesiones grabadas

Canales de comunicación

Foros

- Foro de avisos
- Foro de dudas
 - Cada actividad tendrá su Foro de dudas

Clases en directo

Material

Documento con las ideas clave

Once temas

Sistemas Cognitivos Artificiales

Introducción al aprendizaje profundo

Entrenamiento de redes neuronales

FUENTE: Francois Chollet, "Deep learning with Python".

Frameworks

Aspectos prácticos en el entrenamiento de DNN

Funciones de activación

$$F = \sigma \left(b + \sum_{i=1}^{5} x_i \, w_i \right)$$

Optimización avanzada

Overfitting

Convolutional Neural Networks (CNN)

FUENTE: https://opendatascience.com/using-the-cnn-architecture-in-image-processing/

Word Vectors

- Word2Vec
 - Contexto de una palabra

Recurrent Neural Networks (RNN)

- Arquitecturas con longitud variable de entradas o salidas
- Estado interno (memoria)
- Modelar relaciones temporales entre los elementos de la secuencia

Secuencia-Secuencia

única entrada - secuencia

Agentes inteligentes. Deep Reinforcement Learning

Procesos de decisión de Markov

Redes neuronales en entornos Big Data

FUENTES:

https://kumarvinay.com/how-to-install-cuda-and-cudnn-on-ubuntu/https://www.anyscale.com/blog/what-is-distributed-training

Últimos avances en aprendizaje profundo

- Generative adversarial networks (GAN)
 - Modelo generativo
 - Aprendizaje no supervisado

Distribución de probabilidad de datos

Meta-learning

Próxima sesión

Semana 2 20-05-24 al 24-05-24

UNIVERSIDAD INTERNACIONAL LITTERNACIONAL DE LA RIOJA

www.unir.net