杭州电子科技大学学生考试卷(B)卷

考试课程	计算机组成原理	(甲)	考试日期	20′	17 年	月	日	成 绩	
课程号	A0507030	教师号			任课	牧师女	生名		
考生姓名		学号 (8 位)			年级	1	15	专业	

所有试题均做在答题纸上, 否则不计分!

题号					第一	大题					总分
超牙	1	2	3	4	5	6	7	8	9	小计	極刀
分数	15	3	5	6	12	6	6	4	2	59	
得分											
题号	第二大题										
NS 5	1	2		3	4	5		6	7	小计	
分数	4	6		8	4	4		3	12	41	
得分											

答题纸

一、1.

- (1) (2分)
- (2) (2分)
- (3) (5分)

(4)(3分)

(5)(3分)

2. (3分)

操作控制字段	判别测试字段	下址字段
位	位	位

3. (5分)

1	2	3

4. (6分)

					=	I. 1. ((4分))				表	: 1				
										指令			功能描	述			
									xor	i rt,rs	imm	逻	辑异或: rs⊕imi	n→rt			
					2	. (6 分	·)					表	2				
					才	旨令 w_	_r_s]	IO_R I	O_W i	mm_s	rt_imm_s	wr_data_s	s ALU_OP V	Write_Reg	Mem_W	/rite	PC_s
5. (12 分)	IV A 400 10 00 7	7 ///	<i>5</i> 75 —	. 		in											
		第一字节为	H,第二	字节为	H。	out											
(2) (10 分)						. (8 分	•)					表 3					
指令序号	指令助记	符 源操	作数及寻址方式	执行结果		指2	\$ w	r s ii	mm s	rt imm	s wr dat	a s ALII	OP Write_Re	Mem W	Trite PC	指令	
								_1_5 11	3		_5 W1_dat	.a_s / AEO_	Of Whie_Re	S IVICIN_V		格式	-
						no											-
						sw											1
					4	. (4 分							5.	(4分)	<u> </u>	1	1
6. (6分)	<u> </u>	6	7	8	9							Γ					1
4)	9	0		<u> </u>	9	(.8		(9			20		20		I
7 (//\)																	I
7. (6分)	<u> </u>	12		43	6	. (3 分	·)					L					
10	10			(3)													
								2					23			3	
8. (4分)		9	. (2分)														
						7. (12 :	 分)(1), (2)		<u> </u>			I			
14	(15)		16	17			· ·		•]
								23				29		Q	7		İ
]
						<u> </u>											

座位号:

(3) 画图: (6分)	

试 题

所有试题均做在答题纸上,否则不计分!

一. (59 分) 图 1 是某单总线结构计算机,机器字长 8 位,IR 为指令寄存器,PC 为程序计数器,M 为 主存,AR 为地址寄存器,DR 为数据缓冲寄存器, ALU 能完成算术加、减运算和逻辑运算,R0~R3 是 通用寄存器。各部件的控制信号均已标出,控制信号的命名准则是: '-'符号前的是数据发送方部件,'-'符号后的是数据接收方部件, 并且控制信号中的 B 表示 IB 总线,另外,J1#控制指令译码,R/W#控制 存储器读/写(=1: 读; =0: 写),CS#是存储器的片选信号。例如 B-DA1 表示由总线 IB 将数据打入暂存器 DA1 的控制信号。

图 1 模型机结构框图

1. (15分)假如该机另具有浮点运算部件(图1中未画出),两个二进制补码数据 X 和 Y 分别放在浮点寄存器 f0 和 f1 中,浮点数格式为:阶码 4位,包含 1位符号位,尾数 8位,包含 1位符号位,阶码和尾数均用补码表示,排列顺序为:

	阶符(1位)	阶码 (3位)	数符(1位)	尾数 (7位)
--	--------	---------	--------	---------

已知: (X)₁₀= -2.875, Y 的规格化浮点表示为 F64H。

- (1) (2分) 写出 X 的规格化浮点数表示形式。
- (2) (2分) 求 Y 的二进制真值。

- (3) (5分) 求 $(X+Y)_{*}$ (要求用补码计算,采用 0 舍 1 入法,列出计算步骤);
- (4) (3分)假如使用图 1中的 ALU 和相关部件来完成浮点数乘法中的阶码运算,两个阶码分别存放在 R0 和 R1中,"和"存放在 R0中,请用微程序流程图描述阶码加法运算的过程。
- (5) (3分) 按照该浮点数格式,写出其规格化浮点数可表示数据的范围。
- 2. (3 分)假如该机采用微程序控制器,其控制存储器容量为 256*40 位,下址字段可寻址整个控制存储器,有7个转移控制状态(采用译码形式),微指令格式如下,其3个字段分别是几位?

操作控制字段 判别测试字段 下址字段

3. (5分) 有一段程序在图 1 所示模型机上运行,该程序段用汇编语言描述如下所示,已知所有指令都是 2 字节,假如存储器按字节编址,该程序被装入内存地址低端,起始地址为 0,请问存放最后一条指令 JMP LL 内存地址是 ① 和 ② ,LL 是标号,按照相对寻址方式,无条件转移指令 JMP LL的 8 位二进制偏移量是 ③

LL: MOV R_0 , 40H; $40H \rightarrow R_0$

ADD R_0 , [10H]; $R_0 + [10H] \rightarrow R_0$

STA [10H], R_0 ; $R_0 \rightarrow [10H]$

OUT [PORTAR], R_0 ; $R_0 \rightarrow LED$

JMP LL; PC+偏移量→PC

- 4. (6分)结合图 1 所示的模型机实例,谈谈微程序控制器由哪些部件组成,各部件主要功能是什么?
- 5. (12分)假如该模型机支持的机器指令格式如下,根据指令功能,指令字长可为 1~2 字节。

OP (4位)	MOD (2位)	RD (2位)						
ADDR/ DATA / DISP								

其中,RD 为源/目的寄存器号,MOD 为寻址方式码字段,指令第二字为地址、数据或偏移量;源操作数由 MOD 字段和指令第二字共同确定。除了 HALT 指令为单字指令外,其他指令均为双字指令;操作码字段解释见表 1-1, MOD 字段解释见表 1-2,RD 字段解释见表 1-3。

表 1-1

指令助记符	操作码	指令助记符	操作码
MOV	0000	SBB	0100
ADD	0001	JMP	1000
SUB	0010		
AND	0011	HALT	1111

表 1-2

MOD 寻址方式

00 立即寻址

01 直接寻址

10 变址寻址(SI)

11 间接寻址

表 1-3

RD 寄存器

00 R0

01 R1

10 R2

11 R3

(1)(2分)指令 ADD R1,((40H))的功能:R1=((40H))+R1;指令使用间接寻址,则该指令机器码第一字节为___H,第二字节为___H。

(2)(10分)内存地址的部分单元内容如表 2:

表 2

单元地址	内容	单元地址	内容	单元地址	内容
10H	80H	20H	10H	24H	39H
11H	90H	21H	11H	25H	03H
12H	10H	22H	05H	26H	F0H
13H	11H	23H	12H	27H	20H

若(PC)=20H,变址寄存器(SI)=10H,R0、R1和R3寄存器内容初始为0;则此时启动程序执行,问执行了几条指令程序停止?请按以下格式,写出每条指令的助记符、寻址方式、EA、操作数和执行结果。

指令序号	指令助记符	源操作数及寻址方式	执行结果

6. (6分)图 1 所示模型机经改造升级后,扩大了主存容量,并在 CPU 与主存之间添加了一个 Cache,假设 CPU 总是从 Cache 取得数据,在一段时间内,Cache 完成存取的次数为 2100 次,主存完成的存取次数为 400 次,已知 Cache 的存储周期为 12ns,主存的存储周期为 80ns。则 Cache 的命中率为__④__, Cache/主存系统的平均访问时间为__⑤__ns。设升级后的主存容量为 128KB,存储器**按字节编址**; Cache 容量 8KB,每块 8 字节,Cache 按照 4 路组相联方式组织,则主存字节地址___⑥__位;其中"标记"字段__⑦_位,Cache 组地址___⑧_位,主存地址 09B3H 映射到 Cache 的__⑨_组。

二. (41 分)图 2 是实现 32 位 MIPS 单周期的 CPU 结构和数据通路, ALU 有 16 种运算功能, 加 法时 ALU_OP=0100; 减法时 ALU_OP=0101; 位或非运算 ALU_OP=0011; 位与运算 ALU_OP=0010。

1. (4分) 访问 IO 设备实际上就是通过端口地址访问 IO 接口中的寄存器,假如为实现独立编址的输入输出功能,**使用 I 型指令格式**实现输入指令 in 和输出指令 out 的功能,端口地址由指令低 16 位 I_{15-0} 提供,读写 IO 设备的控制信号分别是 IO_R 和 IO_W,按照表 1 格式,仿照 xori 指令的写法,分别写出 in 和 out 指令的格式和指令功能描述。

表 1

指令	功能描述			
xori rt,rs,imm	逻辑异或: rs⊕imm→rt			

2. (6分)为实现 IN 和 OUT 指令的数据通路,写出译码与控制单元所需设置的控制信号以二进制形式填入表 2。若某信号无论取何值都不影响指令的功能,则该信号填"-"。

表 2

指令	w_r_s	IO_R	IO_W	imm_s	rt_imm_s	wr_data_s	ALU_OP	Write_Reg	Mem_Write	PC_s
in										
out										

3. (8分)假如图 2 所示 MIPS 系统中,有如下 3 条指令,

指令助记符 指令功能描述

nor rd, rs, rt ; 位或非: ~(rs|rt)→rd andi rt, rs, imm ; 位与: (rs)&imm→rt sw rt, offset(rs) ; 存数: rt→mem(rs+offset) 写出上述3条指令的数据通路对应的控制信号之值、指令格式类型填入表3。

表 3 指令格式与控制信号表

指令	w_r_s	imm_s	rt_imm_s	wr_data_s	ALU_OP	Write_Reg	Mem_Write	PC_s	指令 格式
nor									
andi									
sw									

- 5. (4分) 假如该 MIPS 系统经过改造升级,数据存储器容量扩展为 32K×16 位,由 32 个 16K×1 位的 DRAM 芯片(芯片内是 128×128 结构)构成,存储器读/写周期为 100ns,那么,如果采用集中刷新方式,则刷新一遍需要___②___μs,采用异步刷新方式,存储器行刷新周期是__②___μs。
- 6. (3分) CISC 是指_**②**_, RICS 是指_**②**_, 硬布线控制器适合于_**②**_。
- 7. (12 分)假如该 MIPS 系统的数据存储器容量为 32M ×32 位,位于存储器空间的最低端,试问:
- (1) (4分)数据存储器的地址范围是: ___**②**__ H~ __**②**__ H。
- (3)(6分)画出上述 SRAM 芯片扩展成数据存储器的连接图,请清晰标示地址、数据和控制信号线。

图 2 MIPS 单周期 CPU 结构和数据通路