

GA-Net: Guided Aggregation Net for End-to-end Stereo Matching

Feihu Zhang, Victor Prisacariu, Ruigang Yang, Philip H.S. Torr University of Oxford, Baidu Research Code: https://github.com/feihuzhang/GANet

1. Key Steps of Stereo Matching:

- Feature Extraction
- Patches [Zbontar et al. 2015], Pyramid [Chang et al. 2018].
- Encoder-decoder [Kendall et al. 2017], etc.
- Matching Cost Aggregation
- Feature based matching cost is often ambiguous.
- Wrong matches easily have a lower cost than correct ones.
- Disparity Estimation
- Classification loss, Disparity regression [Kendall et al. 2017].

2. Problem and Target:

Matching Cost Aggregation:

- Current Deep Neural Networks:
- Only 2D/3D convolutions
- > Traditional Methods:
- Geometric, Optimization
- SGM [Hirschmuller. 2008], CostFilter [Hosni et al. 2013], etc.

Formulate Traditional Geometric & Optimization into Neural Networks.

3. Contributions:

Semi-Global Aggregation (SGA) Layer

- Differentiable SGM.
- Aggregate Matching Costs Over Whole Image.

Local Guided Aggregation (LGA) Layer

- Learn Guided Filtering.
- Refine Thin Structures and Edges.
- Recover Loss of Accuracy Caused by Down-sampling.

4. Energy Function and SGM:

Approximate Solution: SGM

Penalties

5. SGM to SGA Layer:

- > User-defined param (P_1, P_2) --> learnable weights $(W_1, ..., W_4)$:
- Learnable and adaptive in different scenes and locations.
- > Second/internal "min" --> "max" selection:
- Maximize the probability at the ground truth labels.
- Avoid zeros and negatives, more effective.
- > First "min" --> weighted "sum":
- Proven effective in [Springenberg, et al, 2014], no loss of accuracy.
- Reduce fronto-parallel surfaces in large textureless regions.
- Avoid zeros and negatives.

6. LGA Layer:

- \triangleright Learn guided $3 \times k \times k$ filtering kernel for each location/pixel.
- Locally refine thin structures and edges.
- Recover loss of accuracy caused by down-sampling.

$$C^{A}(\mathbf{p},d) = \sup \begin{cases} \sum_{\mathbf{q} \in N_{\mathbf{p}}} \omega_{0}(\mathbf{p},\mathbf{q}) \cdot C(\mathbf{q},d), \\ \sum_{\mathbf{q} \in N_{\mathbf{p}}} \omega_{1}(\mathbf{p},\mathbf{q}) \cdot C(\mathbf{q},d-1), \\ \sum_{\mathbf{q} \in N_{\mathbf{p}}} \omega_{2}(\mathbf{p},\mathbf{q}) \cdot C(\mathbf{q},d+1). \end{cases}$$

$$s.t. \sum_{\mathbf{q} \in N_{\mathbf{p}}} \omega_{0}(\mathbf{p},\mathbf{q}) + \omega_{1}(\mathbf{p},\mathbf{q}) + \omega_{2}(\mathbf{p},\mathbf{q}) = 1$$

7. Experimental Results:

Evaluation and Comparisons on SceneFlow Dataset

Models	3D conv layers	GA layers	Avg. EPE (pixel)	Error rate (%)
GC-Net	19	_	1.80	15.6
PSMNet	35	_	1.09	12.1
GANet-15	15	5	0.84	9.9
GANet-deep	22	9	0.78	8.7

Evaluation and Comparisons on KITTI Benchmarks

Our GANet-2

	KITTI 2012 benchmark		KITTI 2015 benchmark	
Models	Non-Occluded	All Area	Non-Occluded	All Area
GC-Net	1.77	2.30	2.61	2.87
PSMNet	1.49	1.89	2.14	2.32
GANet-15	1.36	1.80	1.73	1.93
GANet-deep	1.19	1.60	1.63	1.81

PSMNet [Chang et al. 2018]

Ground Truth