Quantum vs Classical: Theoretical Advantages

Quantum Computing Concepts and Advantages (conceptual, minimal formalism)

Qubits and Superposition

- ▶ A **qubit** is a two-state quantum system (states $|0\rangle$, $|1\rangle$). Its general state is $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, with complex amplitudes α, β ($|\alpha|^2 + |\beta|^2 = 1$) [oai_citation : 0quantum.microsoft.com](https://quantum.microsoft.com/en us/insights/education/concepts/what is a qubit : text = Bits
- Geometric picture: the *Bloch sphere* represents all pure qubit states (antipodal points $\leftrightarrow |0\rangle, |1\rangle$, and any point on sphere corresponds to some superposition) [oai_citation: 1en.wikipedia.org](https://en.wikipedia.org/wiki/Bloch_sphere::text = The
- Classical bits vs qubits: bits are deterministic (either 0 or 1). Qubits can be in a superposition of 0 and 1 simultaneously (probabilistic until measured)
 [oai_citation: 2quantum.microsoft.com](https://probabilistic.com

Entanglement

- ▶ Entanglement is a quantum correlation between qubits. An entangled pair (or multi-qubit system) is described by one joint wavefunction, not separable into independent qubit states [oaicitation: 4quantum.microsoft.com](https://quantum.microsoft.com/en us/insights/education/concepts/entanglement::text = Entanglement
- Measurement on one qubit of an entangled pair instantly affects the other: e.g. if two qubits share the entangled state, finding one in |0⟩ forces the other to collapse accordingly [oai_citation: 5quantum.microsoft.com](https://quantum.microsoft.com/en − us/insights/education/concepts/entanglement:: text = for
- ► Entanglement has no classical analog. It enables nonlocal correlations used in quantum protocols (e.g. teleportation, correlated operations)

Quantum Interference

Quantum amplitudes behave like waves and interfere. Probability amplitudes for different paths can add (constructive interference) or cancel (destructive interference) [oai_citation: 7techtarget.com](https: //www.techtarget.com/whatis/definition/quantum – interference: text = Quantum

➤ As a result, some outcomes become more likely and others less likely when the quantum state is measured [oai_citation: 8techtarget.com](https:
//www.techtarget.com/whatis/definition/quantum - interference: text = Quantum

This interference is key to quantum computation: clever quantum algorithms manipulate amplitudes so that the correct answers are constructively enhanced and wrong ones cancel out.

Classical vs Quantum

- Deterministic vs Probabilistic: Classical algorithms yield a definite output for given input (deterministic logic gates). Quantum algorithms yield outcomes with certain probabilities, requiring repetition to obtain a result with high confidence.
- Qubits allow parallelism: An n-qubit system can be in a superposition of up to 2ⁿ basis states at once [oai_citation: 9spinquanta.com](https://www.spinquanta.com/news detail/quantum parallel advantage::text = a
- ► Even though measurement gives one result, quantum operations act on all components of the superposition simultaneously (quantum parallelism) [oai_citation: 10spinquanta.com](https://www.spinquanta.com/news detail/quantum parallel advantage::text = a
- ► Interference and entanglement are then used to amplify correct results and suppress incorrect ones (e.g. in Grover's and Shor's algorithms) [oai_c itation:

Shor's Factoring Algorithm

- Shor's quantum algorithm factors an integer N in polynomial time (roughly $O((\log N)^2)$ with optimizations) [oai_citation: 13en.wikipedia.org](https://en.wikipedia.org/wiki/Shor
- In contrast, the best classical algorithms (like the number field sieve) run in sub-exponential time, much slower for large N [oai_citation : 14en.wikipedia.org](https : //en.wikipedia.org/wiki/Shor
- ➤ This exponential speedup means that RSA and similar cryptosystems (whose security relies on factoring being hard) could be broken by a large-scale quantum computer [oaicitation: 15en.wikipedia.org](https://en.wikipedia.org/wiki/Shor

Grover's Search Algorithm

- ▶ Grover's algorithm finds a marked item in an unsorted list of size N in $O(\sqrt{N})$ steps $[oai_citation: 16en.wikipedia.org](https://en.wikipedia.org/wiki/Grover$
- ▶ A classical unstructured search requires O(N) steps in the worst case [oai_citation: 17en.wikipedia.org](https: //en.wikipedia.org/wiki/Grover
- ▶ For example, a brute-force search of a 128-bit key space (2^{128} possibilities) takes $O(2^{128})$ classically but only $O(2^{64})$ steps with Grover [oai_citation: 19en.wikipedia.org](https://en.wikipedia.org/wiki/Grover
- Grover's speedup is not exponential, but it is still significant for large problems and gives provable improvements for many search-based tasks.

Quantum Parallelism and Exponential State Space

- An n-qubit register is described by a 2ⁿ-dimensional state space. In superposition, it encodes all 2ⁿ basis states simultaneously [oai_c itation : 20spinquanta.com](https : //www.spinquanta.com/news − detail/quantum − parallel − advantage : : text = a
- ➤ A single quantum gate applies to all components of the superposition in parallel (this is quantum parallelism) [oaicitation: 22spinquanta.com](https:
 //www.spinquanta.com/news detail/quantum parallel advantage: text = a
- ▶ By using interference and entanglement, quantum algorithms can explore an exponentially large solution space and amplify correct solutions [oai_citation: 23spinquanta.com](https://www.spinquanta.com/news detail/quantum parallel advantage: text = However

Summary and Outlook

- ▶ Quantum computing uses **qubits** with superposition and entanglement to process information in ways beyond classical bits [oai_citation : 24quantum.microsoft.com](https : //quantum.microsoft.com/en us/insights/education/concepts/what is a qubit : text = Bits
- ▶ Key quantum effects are superposition, entanglement, and interference [oaicitation: 26quantum.microsoft.com](https://quantum.microsoft.com/en us/insights/education/concepts/what is a qubit:: text = Bits
- ► Certain algorithms exploit these to gain speedups: e.g. Shor's algorithm (exponential factoring speedup) [oai_citation: 28en.wikipedia.org](https://en.wikipedia.org/wiki/Shor
- ► The exponential state space

