Problems

5.1 Vector Addition and Subtraction: Graphical Methods 25.

A person attempts to cross a river in a straight line by navigating a boat at $15\,\text{m/s}$. If the river flows at $5.0\,\text{m/s}$ from his left to right, what would be the magnitude of the boat's resultant velocity? In what direction would the boat go, relative to the straight line across it?

- a. The resultant velocity of the boat will be $10.0\,\text{text}\{m/s\}$. The boat will go toward his right at an angle of $26.6\,\text{circ}$! to a line drawn across the river.
- b. The resultant velocity of the boat will be $10.0\,\text{m/s}$. The boat will go toward his left at an angle of $26.6\,\text{circ}$! to a line drawn across the river.
- c. The resultant velocity of the boat will be 15.8\,\text{m/s}. The boat will go toward his right at an angle of 18.4^\circ\! to a line drawn across the river.
- d. The resultant velocity of the boat will be $15.8\, \text{m/s}$. The boat will go toward his left at an angle of $18.4\$ to a line drawn across the river.

26.

A river flows in a direction from south west to north east at a velocity of $7.1\$, m/s. A boat captain wants to cross this river to reach a point on the opposite shore due east of the boat's current position. The boat moves at $13\$, $\text{text}\{m/s\}$. Which direction should it head towards if the resultant velocity is $19.74\$, $\text{text}\{m/s\}$?

- a. It should head in a direction 22.6^{\c} east of south.
- b. It should head in a direction 22.6 \circ\! south of east.
- c. It should head in a direction 45.0° ! east of south.
- d. It should head in a direction 45.0 \circ south of east.

5.2 Vector Addition and Subtraction: Analytical Methods 27.

A person walks 10.0 m north and then 2.00 m east. Solving analytically, what is the resultant displacement of the person?

- a. $\overrightarrow{R} = 10.2 \text{ m}, = 78.7^{\circ} \text{ east of north}$
- b. $R = 10.2 \text{ m}, = 78.7^{\circ} \text{ north of east}$
- c. $R = 12.0 \text{ m}, = 78.7^{\circ} \text{ east of north}$
- d. $\vec{R} = 12.0 \text{ m}, = 78.7^{\circ} \text{ north of east}$

28.

 analytically.

```
a. 10.84\,\text{m}b. 65.1\,\text{m}c. 66.04\,\text{m}d. 80.00\,\text{m}
```

5.3 Projectile Motion 29.

A water balloon cannon is fired at $30\,\text{text}\{m/s\}$ at an angle of $50\,\text{circ}$ above the horizontal. How far away will it fall?

```
a. 2.35\,\text{m}b. 3.01\,\text{m}c. 70.35\,\text{m}d. 90.44\,\text{m}
```

30.

A person wants to fire a water balloon cannon such that it hits a target 100 m away. If the cannon can only be launched at 45° above the horizontal, what should be the initial speed at which it is launched?

```
a. 31.3 m/sb. 37.2 m/sc. 980.0 m/sd. 1,385.9 m/s
```

5.4 Inclined Planes 31.

A coin is sliding down an inclined plane at constant velocity. If the angle of the plane is 10^\circ\! to the horizontal, what is the coefficient of kinetic friction?

```
a. \mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{$|$}} \mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{$|$}} \mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$|$}} \mbox{\mbox{\mbox{$
```

32.

A skier with a mass of 55 kg is skiing down a snowy slope that has an incline of 30°. Find the coefficient of kinetic friction for the skier if friction is known to be 25 N .

```
a. \mu k = 0
b. \mu k = 0.05
c. \mu k = 0.09
d. \mu k = \infty
```

5.5 Simple Harmonic Motion 33.

What is the time period of a $6\, \text{text}\{cm\}\$ long pendulum on earth?

```
a. 0.08\,\text{s}b. 0.49\,\text{s}c. 4.9\,\text{s}d. 80\,\text{s}
```

34.

A simple harmonic oscillator has time period $4\,\det\{s\}$. If the mass of the system is $2\,\det\{kg\}$, what is the force constant of the spring used?

```
a. 0.125\, \text{text}\{N/m\}
b. 0.202\, \text{text}\{N/m\}
```

c. $0.81\, \text{text}\{N/m\}$

d. $4.93\, \text{text}\{N/m\}$