Name: Matthew Mendoza

- Name: Matthew Mendoza
 - Homework Assignment 4
 - 1. What is the formal definition of the deadlock?
 - 2. What are the four requirements for a deadlock?
 - 3. Suppose that a resource allocation graph contains a cycle. Does this mean there is a deadlock?
 - <u>4. Suppose that a resource allocation graph does not contain a cycle. Does this</u> mean there is no deadlock?
 - 5. Consider a system with processes P1 and P2 and resources R1, R2, R3 (where each resource has a single instance). Draw a resource allocation graph for each of the following steps in the sequence and answer the following questions
 - a. Process P2 requests resource R1
 - b. Process P1 is granted access to R1
 - c. Processes both P1 and P2 claim both resources R2 and R3
 - 6. Consider a three process system in which processes may request any of 12 drives. Suppose the allocation state given below. Show that the allocation state is unsafe. Will this system deadlock?
 - Step 1 Always use a top-down scan
 - <u>Step 2</u>
 - <u>Step 3</u>

Homework - Assignment 4

1. What is the formal definition of the deadlock?

Process in the set is waiting for an event that only another process in the set can cause.

Analogous Example:

An interviewer asks: "What is Deadlock?"

You answer: "Hire me and I'll tell you."

2. What are the four requirements for a deadlock?

The four requirements for a deadlock are

- 1. Mutual Exclusion not required for sharable resources (e.g., read-only files); must hold for non-sharable resources
- 2. Hold and Wait must guarantee that whenever a process requests a resource, it does not hold any other resources
- 3. No preemption: if the process requests a resource that cannot be allocated immediately
- 4. Circular wait: impose a total ordering of all resource types, and require each process to request resources in an increasing order of enumeration.

3. Suppose that a resource allocation graph contains a cycle. Does this mean there is a deadlock?

If no cycle exists in the resource allocation graph, there is no deadlock; however, if there is a cycle in the graph and each resource has only one instance, then there is deadlock.

A cycle is a necessary and sufficient condition for deadlock.

4. Suppose that a resource allocation graph does not contain a cycle. Does this mean there is no deadlock?

If a resource-allocation graph contains no cycles, then the system is not deadlocked.

- 5. Consider a system with processes P1 and P2 and resources R1, R2, R3 (where each resource has a single instance). Draw a resource allocation graph for each of the following steps in the sequence and answer the following questions
- a. Process P2 requests resource R1

b. Process P1 is granted access to R1

c. Processes both P1 and P2 claim both resources R2 and R3

6. Consider a three process system in which processes may request any of 12 drives. Suppose the allocation state given below. Show that the allocation state is unsafe. Will this system deadlock?

	Allocation	Max	Need	Available
P0	5	10	5	12
P1	2	4	2	-
P2	3	9	6	-

Step 1 - Always use a top-down scan

Because P_0 's $Need \leq Available=12$, P_0 can run and returns its allocated 5, making the new Available=12+5=17.

	Allocation	Max	Need	Available
P0	-	10	_	17
P1	2	4	2	-

	Allocation	Max	Need	Available
P2	3	9	6	_

Step 2

Then, P_1 can run because its $Need=2 \leq Available=17$. After P_1 finishes its work, its Allocation=2 is returned to Available, and the new Available=17+2=19.

	Allocation	Max	Need	Available
P0	-	10	_	19
P1	-	4	_	-
P2	3	9	6	-

Step 3

 P_2 's $Need = 3 \leq Available = 17$, P_2 can run with no blocks...

For this reason, this system is in a safe state and $\langle P_2, P_1, P_0 \rangle$ is a safe sequence

Note to self: When not given the Need array we need to calculate it

	Allocation	Max	Need	Available
P0	5	10	_	12
P1	2	4	_	-
P2	3	9	_	-

	Allocation	Max	Need	Available
P0	5	10	5	12
P1	2	4	2	-
P2	3	9	6	-