DATABASE DESIGN AND CONCEPTS (notes)

CONTENTS

DATABASE PRELUDE (Page 3)

What is a Database

Database Concepts

Data and Information

Database Management Systems (DBMS

Types of Databases

Poor Database design vs Good Database design

DATA MODELS AND RELATIONSHIPS (Page 7)

Relationships in Databases Linking Relational Tables Relation Diagram

ENTITY RELATION MODELLING (ERM) (Page 9)

Weak Entity Relationships Strong / Mandatory Entity Relationships Types of Relationships Recursive Relationships

THE RELATIONAL DATABASE MODELLING (Page 12)

Keys – Primary Keys Keys – Foreign Keys

RELATIONAL ALGEBRA – MANIPULATING TABLE CONTENTS (Page 15)

SELECT

PROJECT

UNION

DIFFERENCE

PRODUCT

JOIN

NATURAL JOIN

LEFT OUTER JOIN

RIGHT OUTER JOIN

DIVIDE

RELATIONSHIPS AND KEYS IN THE RELATIONAL DATABASE MODEL (Page 18)

The 1:M Relationship in Relational Database Design

The 1:1 Relationship in Relational Database Design

The M:N Relationship in Relational Database Design

Converting a M:N Relationships into a 1:M relationships

ERMs

Relational Diagram

STRUCTURED QUERY LANGUAGE (SQL) (Page 24)

CREATE TABLE

INSERT

SELECT AND SELECT QUERY

SELECT AND, OR, NOT Operators

LIKE

IN -Special Operators

EXISTS

UPDATE

DELETE

SQL JOINS

CROSS JOIN

NATURAL JOIN

JOIN ON

OUTER JOINS

LEFT OUTER JOIN

RIGHT OUTER JOIN

FILL OUTER JOIN

DATABASES PRELUDE

What is a Database, what is a Relational Database and what is Database Design?

Databases are specialized structures that allow computer-based systems to store, manage, and retrieve data very quickly. Virtually all modern business systems rely on databases.

A relational database is a type of database that organises data into rows and columns, which collectively form a table where the data points are related to each other. It organises data using relations, allowing us to insert, update and query the database. We should store only appropriate data in databases.

Determining entities, the attributes they are represented by and the relationships between them, is the heart and essence of Database Design.

Database Concepts

Database Concepts

```
"Conventional" Relational Database Design
Design Models
E-R Modelling (CSDE)
Structured Query Language – SQL
Security
Transactions and Concurrency
"New" Database Concepts
```

Data and Information

Data is the foundation of information, which is the bedrock of knowledge.

- Data constitutes the building blocks of information.
- Information is produced by processing data.
- Information is used to reveal the meaning of data.
- Accurate, relevant, and timely information is the key to good decision making.
- Good decision making is the key to organizational survival in a global environment

Database Management Systems (DBMS)

A database management system (DBMS) is a collection of programs that manages the database structure and controls access to the data stored in the database. In a sense, a database resembles a

very well-organized electronic filing cabinet in which powerful software (the DBMS) helps manage the cabinet's contents. The DBMS serves as the intermediary between the user and the database.

Advantages of using a DBMS:

- Improved data sharing.
- Improved data security.
- Better data integration. Wider access to well-managed data promotes an integrated view of the organization's operations and a clearer view of the big picture. It becomes much easier to see how actions in one segment of the company affect other segments.
- Minimized data inconsistency. Data inconsistency exists when different versions of the same data appears in different places. For example, data inconsistency exists when a company's sales department stores a sales representative's name as Bill Brown and the company's personnel department stores that same person's name as William G. Brown
- Improved data access. The DBMS makes it possible to produce quick answers to ad hoc queries. From a database perspective, a query is a specific request issued to the DBMS for data manipulation—for example, to read or update the data
- Improved decision making.
- Increased end-user productivity. The availability of data, combined with the tools that transform data into usable information, empowers end users to make quick, informed decisions that can make the difference between success and failure in the global economy.

Types of Databases

A single-user database supports only one user at a time. In other words, if user A is using the database, users B and C must wait until user A is done. A single-user database that runs on a personal computer is called a desktop database. In contrast, a multi-user database supports multiple

users at the same time. When the multi-user database supports a relatively small number of users (usually fewer than 50) or a specific department within an organization, it is called a workgroup database. When the database is used by the entire organization and supports many users (more than 50, usually hundreds) across many departments, the database is known as an enterprise database. Location might also be used to classify the database. For example, a database that supports data located at a single site is called a centralized database. A database that supports data distributed across several different sites is called a distributed database.

Poor Database Design vs Good Database Design

A poor Database Design:

- It would be difficult, if not impossible, to produce an alphabetical listing of employees based on their last names.
- To determine how many employees are certified in Basic Database Manipulation, you would need a program that counts the number of those certifications recorded in Skill1 and places it in a variable. Then the count of those certifications in Skill2 could be calculated and added to the variable. Finally, the count of those certifications in Skill3 could be calculated and added to the variable to produce the total.
- If you redundantly store the name of a skill with each employee who is certified in that skill, you run the risk of spelling the name differently for different employees. For example, the skill Basic Database Manipulation is also entered as Basic DB Manipulation for at least one employee, which makes it difficult to get an accurate count of employees who have the certification.

Improved Database Design:

Table name: EMPLOYEE

Employee_ID	Employee_FName	Employee_LName	Employee_HireDate	Employee_Title
02345	Johnny	Jones	2/14/1995	DBA
03373	Franklin	Johnson	3/15/2002	Purchasing Agent
04893	Patricia	Richards	6/11/2004	DBA
06234	Jasmine	Patel	8/10/2005	Programmer
08273	Marco	Bienz	7/28/2006	Analyst
09002	Ben	Joiner	5/20/2010	Clerk
09283	Juan	Chavez	7/4/2010	Clerk
09382	Jessica	Johnson	8/2/2010	Database Programmer
10282	Amanda	Richardson	4/11/2011	Clerk
13383	Raymond	Matthews	3/12/2012	Programmer
13567	Robert	Almond	9/30/2012	Analyst
13932	Megan	Lee	9/29/2013	Programmer
14311	Lee	Duong	9/1/2014	Programmer

Database name: Ch01_Text

Table name: CERTIFIED

Employee_ID	Skill_ID	Certified_Date
02345	100	2/14/2002
02345	110	8/9/2003
02345	180	2/14/2005
03373	120	6/20/2011
04893	180	6/11/2006
04893	220	9/20/2012
06234	110	8/10/2007
06234	200	8/10/2007
06234	210	1/29/2012
08273	110	3/8/2009
08273	190	8/19/2012
09002	110	5/16/2013
09002	120	5/16/2013
09382	140	8/2/2012
09382	210	8/2/2012
09382	220	5/1/2013
13383	170	3/12/2014
13567	130	9/30/2014
13567	140	5/23/2015
14311	110	9/1/2016

Table name: SKILL

Skill_ID	Skill_Name	Skill_Description
100	Basic Database Management	Create and manage database user accounts.
110	Basic Web Design	Create and maintain HTML and CSS documents.
120	Advanced Spreadsheets	Use of advanced functions, user-defined functions, and macroing.
130	Basic Process Modeling	Create core business process models using standard libraries.
140	Basic Database Design	Create simple data models.
150	Master Database Programming	Create integrated trigger and procedure packages for a distributed environment.
160	Basic Spreadsheets	Create single tab worksheets with basic formulas
170	Basic C#Programming	Create single-tier data aware modules.
180	Advanced Database Management	Manage Database Server Clusters.
190	Advance Process Modeling	Evaluate and Redesign cross-functional internal and external business processes.
200	Advanced C# Programming	Create multi-tier applications using multi-threading
210	Basic Database Manipulation	Create simple data retrieval and manipulation statements in SQL.
220	Advanced Database Manipulation	Use of advanced data manipulation methods for multi-table inserts, set operations, and correlated subqueries.

Design has been improved by decomposing the data into three related tables. These tables contain all of the same data from before, but the tables are structured so that you can easily manipulate the data to view it in different ways and answer simple questions. We can now:

- Produce an alphabetical listing of employees by last name: SELECT * FROM EMPLOYEE ORDER BY EMPLOYEE LNAME;
- Determine how many employees are certified in Basic Database Manipulation: SELECT Count(*) FROM SKILL JOIN CERTIFIED ON SKILL.SKILL_ID = CERTIFIED.SKILL_ID WHERE SKILL_NAME = 'Basic Database Manipulation';

Note that because each skill name is stored only once, the names cannot be spelled or abbreviated differently for different employees. Also, the additional certification of an employee with a fourth or fifth skill does not require changes to the structure of the tables.

DATA MODELS AND RELATIONSHIPS

The basic building blocks of all data models are entities, attributes, relationships, and constraints. An entity is a person, place, thing, or event about which data will be collected and stored.

- An entity represents a particular type of object in the real world, which means an entity is "distinguishable"—that is, each entity occurrence is unique and distinct. For example, a CUSTOMER entity would have many distinguishable customer occurrences, such as John Smith, Pedro Dinamita, and Tom Strickland. Entities may be physical objects, such as customers or products, but entities may also be abstractions, such as flight routes or musical concerts.
- An attribute is a characteristic of an entity. For example, a CUSTOMER entity would be described by attributes such as customer last name, customer first name, customer phone number, customer address, and customer credit limit. Attributes are the equivalent of fields in file systems.
- A relationship describes an association among entities. For example, a relationship exists between customers and agents that can be described as follows: an agent can serve many customers, and each customer may be served by one agent. Data models use three types of relationships: one-to-many, many-to-many, and one-to-one. Database designers usually use the shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively. (Although the M:N notation is a standard label for the many-to-many relationship, the label M:M may also be used.) The following examples illustrate the distinctions among the three relationships.

Relationships

- One-to-many (1:M or 1..*) relationship. A painter creates many different paintings, but each is painted by only one painter. Thus, the painter (the "one") is related to the paintings (the "many"). Therefore, database designers label the relationship "PAINTER paints PAINTING" as 1:M. Note that entity names are often capitalized as a convention, so they are easily identified. Similarly, a customer (the "one") may generate many invoices, but each invoice (the "many") is generated by only a single customer. The "CUSTOMER generates INVOICE" relationship would also be labelled 1:M.
- Many-to-many (M:N or *..*) relationship. An employee may learn many job skills, and each job skill may be learned by many employees. Database designers label the relationship "EMPLOYEE learns SKILL" as M:N. Similarly, a student can take many classes and each class can be taken by many students, thus yielding the M:N label for the relationship expressed by "STUDENT takes CLASS."
- One-to-one (1:1 or 1..1) relationship. A retail company's management structure may require that each of its stores be managed by a single employee. In turn, each store manager, who is anemployee, manages only a single store. Therefore, the relationship "EMPLOYEE manages STORE" is labelled 1:1.

Linking Relational Tables

Tables for Agents and their customers

GENT_CO	DE AGENT_L	NAME AGEN	IT_FNAME .	AGENT_INITIAL	AGENT_AREACO	DE AGENT_PHONE			
5	01 Alby	Alex	E	9	713	228-1249			
5	02 Hahn	Leah	F	:	615	882-1244			
5	03 Okon	John	T	Г	615	123-5589			
					gh AGENT_C				
ble nan	e: CUSTO	MFR							
	CUS_LNAME	MER CUS_FNAME	CUS_INITIAL	L CUS_AREACO	DE CUS_PHONE	CUS_INSURE_TYPE	CUS_INSURE_AMT	CUS_RENEW_DATE	AGENT_COD
US_CODE			CUS_INITIAL	CUS_AREACO		CUS_INSURE_TYPE	CUS_INSURE_AMT 100.00		
US_CODE 10010	CUS_LNAME	CUS_FNAME			844-2573				50
US_CODE 10010	CUS_LNAME Ramas Dunne	CUS_FNAME Alfred	А	615	844-2573	T1	100.00	05-Apr-2016	50 50
US_CODE 10010 10011 10012	CUS_LNAME Ramas Dunne	CUS_FNAME Alfred Leona	A K	615 713	844-2573 894-1238 894-2285	T1 T1	100.00 250.00	05-Apr-2016 16-Jun-2016	50 50 50
US_CODE 10010 10011 10012 10013	CUS_LNAME Ramas Dunne Smith	CUS_FNAME Alfred Leona Kathy	A K W	615 713 615	844-2573 894-1238 894-2285	T1 T1 S2	100.00 250.00 150.00	05-Apr-2016 16-Jun-2016 29-Jan-2017	50 50 50
10010 10011 10012 10013 10014	CUS_LNAME Ramas Dunne Smith Olowski	CUS_FNAME Alfred Leona Kathy Paul	A K W	615 713 615 615	844-2573 894-1238 894-2285 894-2180	T1 T1 S2 S1	100.00 250.00 150.00 300.00	05-Apr-2016 16-Jun-2016 29-Jan-2017 14-Oct-2016	50 50 50 50
10010 10011 10012 10013 10014 10015	CUS_LNAME Ramas Dunne Smith Olowski Orlando	CUS_FNAME Alfred Leona Kathy Paul Myron	A K W	615 713 615 615 615	844-2573 894-1238 894-2285 894-2180 222-1672 442-3381	T1 T1 S2 S1 T1	100.00 250.00 150.00 300.00 100.00	05-Apr-2016 16-Jun-2016 29-Jan-2017 14-Oct-2016 28-Dec-2017	50 50 50 50 50
10010 10010 10011 10012 10013 10014 10015 10016	CUS_LNAME Ramas Dunne Smith Olowski Orlando O'Brian	CUS_FNAME Alfred Leona Kathy Paul Myron Amy	A K W F	615 713 615 615 615 615 713	844-2573 894-1238 894-2285 894-2180 222-1672 442-3381 297-1228	T1 T1 S2 S1 T1 T2	100.00 250.00 150.00 300.00 100.00 850.00	05-Apr-2016 16-Jun-2016 29-Jan-2017 14-Oct-2016 28-Dec-2017 22-Sep-2016	50 50 50 50 50 50 50
US_CODE 10010 10011 10012 10013 10014 10015 10016 10017	CUS_LNAME Ramas Dunne Smith Olowski Orlando O'Brian Brown	CUS_FNAME Alfred Leona Kathy Paul Myron Amy James	A K W F	615 713 615 615 615 615 713 615	844-2573 894-1238 894-2285 894-2180 222-1672 442-3381 297-1228	T1 T1 S2 S1 T1 T2 S1	100.00 250.00 150.00 300.00 100.00 850.00	05-Apr-2016 16-Jun-2016 29-Jan-2017 14-Oct-2016 28-Dec-2017 22-Sep-2016 25-Mar-2017	50 50 50 50

Relational Diagram

The relational diagram shows the connecting fields (in this case, AGENT_CODE) and the relationship type (1:M). employs the infinity symbol (∞) to indicate the "many" side. In this example, the CUSTOMER represents the "many" side because an AGENT can have many CUSTOMERs. The AGENT represents the "1" side because each CUSTOMER has only one AGENT.

ENTITY RELATIONSHIP MODELLING (ERM)

manages

one employee.

A professor teaches many classes.

Each room is used by many classes.

Each course generates many classes.

WEAK ENTITY RELATIONSHIP

The above is an example of a weak entity relationship.

- 1. The entity is existence-dependent; it cannot exist without the entity with which it has a relationship.
- 2. The entity has a primary key that is partially or totally derived from the parent entity in the relationship.

For example, a company insurance policy insures an employee and any dependents. For the purpose of describing an insurance policy, an EMPLOYEE might or might not have a DEPENDENT, but the DEPENDENT must be associated with an EMPLOYEE. Moreover, the DEPENDENT cannot exist without the EMPLOYEE; that is, a person cannot get insurance coverage as a dependent unless the person is a dependent of an employee. DEPENDENT is the weak entity in the relationship "EMPLOYEE has DEPENDENT."

EMP_NUM	EMP_LNAM	E EMP_FNA	ME EMP_	INITIAL	EMP_DOB	EMP_HIREDATE
1001	Callifante	Jeanine	J		12-Mar-64	25-May-97
1002	Smithson	√Villiam	K		23-Nov-70	28-May-97
1003	√Vashington	Herman	Н		15-Aug-68	28-May-97
1004	Chen	Lydia	В		23-Mar-74	15-Oct-98
1005	Johnson	Melanie			28-Sep-66	20-Dec-98
1006	Ortega	Jorge	G		12-Jul-79	05-Jan-02
1007	O'Donnell	Peter	D		10-Jun-71	23-Jun-02
1008	Brzenski	Barbara	Α		12-Feb-70	01-Nov-03
ahla aasaa	DEBENDE	NIT				
able name	: DEPENDE	NT DEP_FNAME	DEP_DOB	1		
			DEP_DOB 05-Dec-97]		
EMP_NUM	DEP_NUM	DEP_FNAME Annelise				
EMP_NUM 1001	DEP_NUM 1	DEP_FNAME Annelise	05-Dec-97	!		
EMP_NUM 1001 1001	DEP_NUM 1 2	DEP_FNAME Annelise Jorge Suzanne	05-Dec-97 30-Sep-02			
EMP_NUM 1001 1001 1003	DEP_NUM 1 2 1	DEP_FNAME Annelise Jorge Suzanne Carlos	05-Dec-97 30-Sep-02 25-Jan-04			
EMP_NUM 1001 1001 1003 1006	DEP_NUM 1 2 1 1	DEP_FNAME Annelise Jorge Suzanne Carlos Michael	05-Dec-97 30-Sep-02 25-Jan-04 25-May-01			

STRONG / MANDATORY ENTITY RELATIONSHIP

the "COURSE generates CLASS" relationship, it is easy to see that a CLASS cannot exist without a COURSE. Therefore, you can conclude that the COURSE entity is mandatory in the relationship.

NUMBERS OF RELATIONSHIPS

RECURSIVE RELATIONSHIP

THE RELATIONAL DATABASE MODEL

U_NUM STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS	STU_GPA STU_	TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
321452 Bowser	William	С	12-Feb-1985	42	So	2.84	No	BIOL	2134	20
324257 Smithson	Anne	K	15-Nov-1991	81	Jr	3.27	Yes	CIS	2256	22
324258 Brewer	Juliette		23-Aug-1979	36	So	2.26	Yes	ACCT	2256	22
324269 Oblonski	Walter	Н	16-Sep-1986	66	Jr	3.09	No	CIS	2114	22
324273 Smith	John	D	30-Dec-1968	102	Sr	2.11	Yes	ENGL	2231	19
324274 Katinga	Raphael	P	21-0ct-1989	114	Sr	3.15	No	ACCT	2267	22
324291 Robertson	Gerald	T	08-Apr-1983	120	Sr	3.87	No	EDU	2267	31
324299 Smith	John	В	30-Nov-1996	15	Fr	2.92	No	ACCT	2315	23
TU_LNAME	= Student = Student = Student	last nam	e					2001	2313	2
TU_LNAME TU_FNAME TU_INIT TU_DOB	= Student	last nam first nan middle i date of l	ne ne nitial pirth					, and a	2310	23
TU_LNAME TU_FNAME TU_INIT TU_DOB TU_HRS TU_CLASS	= Student = Student = Student = Student = Credit h = Student	last nam first nan middle i date of l nours ear classifica	ne nitial pirth ned ation						2310	23
TU_LNAME TU_FNAME TU_INIT TU_DOB TU_HRS TU_CLASS	= Student = Student = Student = Student = Credit h	last nam first nan middle i date of l nours ear classifica	ne nitial pirth ned ation						2310	23
TU_LNAME TU_FNAME TU_INIT TU_DOB TU_HRS TU_CLASS TU_GPA	= Student = Student = Student = Student = Credit h = Student = Grade p	last nam first nan middle i date of l nours ear classifica point aver	ne nitial pirth ned ation	nother in	stitution				2310	23
TU_NUM TU_LNAME TU_FNAME TU_FNAME TU_INIT TU_DOB TU_HRS TU_CLASS TU_GPA TU_TRANSFER	= Student = Student = Student = Student = Credit h = Student = Grade p = Student	last nam first nan middle i date of l nours ear classifica point aver transferi	e ne nitial oirth ned ation rage red from ar	nother ins	stitution				2310	e.
TU_LNAME TU_FNAME TU_INIT TU_DOB TU_HRS TU_CLASS TU_GPA	= Student = Student = Student = Student = Credit h = Student = Grade p = Student = Departr	last nam first nan middle i date of l nours ear classific point aver transfer ment cod	e ne nitial oirth ned ation rage red from ar		stitution				2310	

- The STUDENT table is perceived to be a two-dimensional structure composed of 8 rows (tuples) and 12 columns (attributes).
- Each row in the STUDENT table describes a single entity occurrence within the entity set. (The entity set is represented by the STUDENT table.) For example, row 4 describes a student named Walter H. Oblonski. Given the table contents, the STUDENT entity set includes eight distinct entities (rows), or students.
- Each column represents an attribute, and each column has a distinct name.
- All of the values in a column match the attribute's characteristics. For example, the grade point average (STU_GPA) column contains only STU_GPA entries for each of the table rows. Data must be classified according to its format and function. Although various DBMSs can support different data types, most support at least the following:
 - a. Numeric. You can use numeric data to perform meaningful arithmetic procedures. For example, STU HRS and STU GPA are numeric attributes.
 - b. Character. Character data, also known as text data or string data, can contain any character or symbol not intended for mathematical manipulation. STU_CLASS and STU_PHONE are examples of character attributes.
 - c. Date. Date attributes contain calendar dates stored in a special format known as the Julian date format. STU DOB is a date attribute.
 - d. Logical. Logical data can only have true or false (yes or no) values. The STU_TRANSFER attribute uses a logical data format.
- The column's range of permissible values is known as its domain. Because the STU_GPA values are limited to the range 0–4, inclusive, the domain is [0,4].
- The order of rows and columns is immaterial to the user.

In the relational model, keys are important because they are used to ensure that each row in a table is uniquely identifiable. They are also used to establish relationships among tables and to ensure the integrity of the data. A key consists of one or more attributes that determine other attributes. For example, an invoice number identifies all of the invoice attributes, such as the invoice date and the customer name.

The role of a key is based on the concept of determination. Determination is the state in which knowing the value of one attribute makes it possible to determine the value of another.

If you consider what the attributes of the STUDENT table actually represent, you will see a relationship among the attributes. If you are given a value for STU_NUM, then you can determine the value for STU_LNAME because one and only one value of STU_LNAME is associated with any given value of STU_NUM. A specific terminology and notation is used to describe relationships based on determination. The relationship is called functional dependence, which means that the value of one or more attributes determines the value of one or more other attributes. The standard notation for representing the relationship between STU_NUM and STU_LNAME is as follows:

STU NUM → STU LNAME

In this functional dependency, the attribute whose value determines another is called the determinant or the key. The attribute whose value is determined by the other attribute is called the dependent.

Using this terminology, it would be correct to say that STU_NUM is the determinant and STU_LNAME is the dependent. STU_NUM functionally determines STU_LNAME, and STU_LNAME is functionally dependent on STU_NUM.

 $STU_NUM \rightarrow (STU_LNAME, STU_FNAME, STU_GPA)$

FOREIGN KEYS

Foreign key: VEND_CODE										
PROD_CODE	PROD_DES	CRIPT	PROD_PRICE	PROD_	ON_HAND	VEND_C	ODE			
001278-AB	Clavv hammer		12.95		23		232			
123-21UUY	Houselite chain sa	w, 16-in. bar	189.99		4		235			
QER-34256	Sledge hammer, 16	3-lb. head	18.63		6		231			
SRE-657UG	Rat-tail file		2.99		15		232			
ZZX/3245Q	Steel tape, 12-ft. le	ngth	6.79		8		235			
				link						
		VEND_CODE	VEND_CON	NTACT	VEND_AR	EACODE	VEND	_PHONE		
Table name:	VENDOR	23	0 Shelly K. Sm	nithson	608		555-1	234		
Primary key:	VEND_CODE	23	1 James John	son	615		123-4	536		
Foreign key:	none	23	2 Annelise Cr	ystall	608		224-2	134		
,		23	3 Candice Wa	llace	904		342-6	567		
		23	4 Arthur Jone	s	615		123-3	324		
		23	5 Henry Ortoz	:0	615		899-3	425		

Just as the

primary key has a role in ensuring the integrity of the database, so does the foreign key. Foreign keys are used to ensure referential integrity, the condition in which every reference to an entity instance by another entity instance is valid. In other words, every foreign key entry must either be null or a valid value in the primary key of the related table. Note that the PRODUCT table has referential integrity because every entry in VEND_CODE in the PRODUCT table is either null or a valid value in VEND_ CODE in the VENDOR table. Every vendor referred to by a row in the PRODUCT table is a valid vendor.

Entity integrity. The CUSTOMER table's primary key is CUS_CODE. The CUSTOMER primary key column has no null entries, and all entries are unique. Similarly, the AGENT table's prima

Referential integrity. The CUSTOMER table contains a foreign key, AGENT_CODE, that links entries in the CUSTOMER table to the AGENT table. The CUS_CODE row identified by the (primary

Primary ke	e: CUSTOMI y: CUS_COI v: AGENT_C	DE		Database nam	e: Ch	03_InsureCo			
	CUS_LNAME		E CUS_INITIA	AL CUS_RENEW_	DATE	AGENT_CODE			
10010	Ramas	Alfred	A	05-Ap	r-2016	502			
10011	Dunne	Leona	K	16-Ju	n-2016	501			
10012	Smith	Kathy	W	29-Jai	n-2017	502			
10013	Olowski	Paul	F	14-00	t-2016				
10014	Orlando	Myron		28-De	c-2016	501			
10015	O'Brian	Amy	В	22-Se	p-2016	503			
10016	Brown	James	G 25-Ma		r-2017	502			
10017	vVIIIams	George		17-Ju	ıl-2016	503			
10018	Farriss	Anne	G	03-De	03-Dec-2016				
10019	Smith	Olette	К	14-Ma	r-2017	503			
	Table name: AGENT (only five selected fields are shown) Primary key: AGENT_CODE								
Foreign key	: none								
AGENT_COD	E AGENT_ARE	EACODE AG	ENT_PHONE	AGENT_LNAME	AGEN	NT_YTD_SLS			
50	713	228	3-1249	Alby		132735.75			
	02 615		2-1244	Hahn		138967.35			
50	03 615	123	3-5589	Okon		127093.45			

key) number 10013 contains a null entry in its AGENT_CODE foreign key because Paul F. Olowski does not yet have a sales representative assigned to him. The remaining AGENT_CODE entries in the CUSTOMER table all match the AGENT_CODE entries in the AGENT table.

RELATIONAL ALGEBRA – Manipulating Table Content

SELECT – SELECT can be used to list all rows of a specific criterion.

PROJECT – PROJECT will return only the attributes requested, in the order in which they are requested. In other words, PROJECT yields a vertical subset of a table. PROJECT will not limit the rows returned so all rows of the specified attributes will be included in the result.

UNION – combines all rows from two tables, excluding duplicate rows. To be used in the UNION, the tables must have the same attribute characteristics; in other words, the columns and domains

must be compatible. When two or more tables share the same number of col umns, and when their corresponding columns share the same or compatible domains, they are said to be union-compatible.

P_CODE	P_DESCRIPT	PRICE	UNION	P_CODE	P_DESCRIPT	PRICE	yields	P_CODE	P_DESCRIPT	PRICE
123456	Flashlight	5.26		345678	Microwave	160.00		123456	Flashlight	5.26
123457	Lamp	25.15		345679	Dishwasher	500.00		123457	Lamp	25.15
123458	Box Fan	10.99		123458	Box Fan	10.99		123458	Box Fan	10.99
	9v battery	1.92		120400	DOX 1 dil	10.00		213345	9v battery	1.92
254467	100W bulb	1.47						254467 311452	100W bulb Powerdrill	1.47 34.99
311452	Powerdrill	34.99						345678	Microwave	160
								345679	Dishwasher	500

INTERSECT – yields only the rows that appear in both tables. As with UNION, the tables must be union-compatible to yield valid results. For example, you cannot use INTERSECT if one of the attributes is numeric and one is character-based.

DIFFERENCE – yields all rows in one table that are not found in the other table; that is, it subtracts one table from the other. As with UNION, the tables must be union-compatible to yield valid results.

PRODUCT – yields all possible pairs of rows from two tables—also known as the Cartesian product. Therefore, if one table has 6 rows and the other table has 3 rows, the PRODUCT yields a list composed of $6 \times 3 = 18$ rows.

JOIN – allows information to be intelligently combined from two or more tables. JOIN is the real power behind the relational database, allowing the use of independent tables linked by common attributes.

Table name	: CUSTOME	R		Table name: A	GENT
CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_CODE	AGENT_PHONE
1132445	√Valker	32145	231	125	6152439887
1217782	Adares	32145	125	167	6153426778
1312243	Rakowski	34129	167	231	6152431124
1321242	Rodriguez	37134	125	333	9041234445
1542311	Smithson	37134	421		
1657399	Vanloo	32145	231		

NATURAL JOIN – links tables by selecting only the rows with common values in their common attribute(s). SELECT is normally preferred over Natural Join.

CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
1132445	Walker	32145	231	125	6152439887
1132445	Walker	32145	231	167	6153426778
1132445	Walker	32145	231	231	6152431124
1132445	Walker	32145	231	333	9041234445
1217782	Adares	32145	125	125	6152439887
1217782	Adares	32145	125	167	6153426778
1217782	Adares	32145	125	231	6152431124
1217782	Adares	32145	125	333	9041234445
1312243	Rakowski	34129	167	125	6152439887
1312243	Rakowski	34129	167	167	6153426778
1312243	Rakowski	34129	167	231	6152431124
1312243	Rakowski	34129	167	333	9041234445
1321242	Rodriguez	37134	125	125	6152439887
1321242	Rodriguez	37134	125	167	6153426778
1321242	Rodriguez	37134	125	231	6152431124
1321242	Rodriguez	37134	125	333	9041234445
1542311	Smithson	37134	421	125	6152439887
1542311	Smithson	37134	421	167	6153426778
1542311	Smithson	37134	421	231	6152431124
1542311	Smithson	37134	421	333	9041234445
1657399	Vanloo	32145	231	125	6152439887
1657399	Vanloo	32145	231	167	6153426778
1657399	Vanloo	32145	231	231	6152431124
1657399	Vanloo	32145	231	333	9041234445

LEFT OUTER JOIN – yields all of the rows in the CUSTOMER table, including those that do not have a matching value in the AGENT table.

CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	125	6152439887
1321242	Rodriguez	37134	125	125	6152439887
1312243	Rakowski	34129	167	167	6153426778
1132445	Walker	32145	231	231	6152431124
1657399	Vanloo	32145	231	231	6152431124
1542311	Smithson	37134	421		

RIGHT OUTER

JOIN – yields all of the rows in the AGENT table, including those that do not have matching values in the CUSTOMER table.

CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	125	6152439887
1321242	Rodriguez	37134	125	125	6152439887
1312243	Rakowski	34129	167	167	6153426778
1132445	Walker	32145	231	231	6152431124
1657399	Vanloo	32145	231	231	6152431124
				333	9041234445

DIVIDE – operator is used to answer questions about one set of data being associated with all values of data in another set of data. The DIVIDE operation uses one 2-column table (Table 1) as the dividend and one single-column table (Table 2) as the divisor.

RELATIONSHIPS AND KEYS IN THE RELATIONAL DATABASE MODEL

1:M Relationship

- Each painting was created by one and only one painter, but each painter could have created many paintings. For Example Painter 123 (Georgette P. Ross) has three works stored in the PAINTING table.
- There is only one row in the PAINTER table for any given row in the PAINTING table, but there may be many rows in the PAINTING table for any given row in the PAINTER table

1:M RELATIONSHIP IN RELATIONAL DATABASES

Table name: COURSE Primary key: CRS_CODE

Database name: Ch03_TinyCollege

Foreign key: n	ione
----------------	------

CRS_CODE	DEPT_CODE	CRS_DESCRIPTION	CRS_CREDIT
ACCT-211	ACCT	Accounting I	3
ACCT-212	ACCT	Accounting II	3
CIS-220	CIS	Intro. to Microcomputing	3
CIS-420	CIS	Database Design and Implementation	4
QM-261	CIS	Intro. to Statistics	3
QM-362	CIS	Statistical Applications	4

Table name: CLASS Primary key: CLASS_CODE Foreign key: CRS_CODE

CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
10012	ACCT-211	1	M/VF 8:00-8:50 a.m.	BUS311	105
10013	ACCT-211	2	M/VF 9:00-9:50 a.m.	BUS200	105
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10015	ACCT-212	1	MVVF 10:00-10:50 a.m.	BUS311	301
10016	ACCT-212	2	Th 6:00-8:40 p.m.	BUS252	301
10017	CIS-220	1	M/VF 9:00-9:50 a.m.	KLR209	228
10018	CIS-220	2	M/VF 9:00-9:50 a.m.	KLR211	114
10019	CIS-220	3	M/VF 10:00-10:50 a.m.	KLR209	228
10020	CIS-420	1	vV 6:00-8:40 p.m.	KLR209	162
10021	QM-261	1	M/VF 8:00-8:50 a.m.	KLR200	114
10022	QM-261	2	TTh 1:00-2:15 p.m.	KLR200	114
10023	QM-362	1	M/VF 11:00-11:50 a.m.	KLR200	162
10024	QM-362	2	TTh 2:30-3:45 p.m.	KLR200	162

Note that the PAINTER table's primary key, PAINTER_ NUM, is included in the PAINTING table as a foreign key. Similarly, the COURSE table's primary key, CRS_CODE, is included in the CLASS table as a foreign key.

THE 1:1 RELATIONSHIP IN RELATIONAL DATABASES

Table name: PROFESSOR Database name: Ch03_TinyCollege Primary key: EMP_NUM Foreign key: DEPT_CODE EMP_NUM | DEPT_CODE | PROF_OFFICE | PROF_EXTENSION | PROF_HIGH_DEGREE 103 HIST **DRE 156** 6783 Ph.D. 104 ENG DRE 102 5561 MA 105 ACCT KLR 229D 8665 Ph.D 106 MKT/MGT 3899 KLR 126 Ph.D. 110 BIOL AAK 160 3412 Ph.D. KLR 211 114 ACCT 4436 Ph.D. 155 MATH AAK 201 4440 Ph.D. 160 ENG DRE 102 2248 Ph.D. 162 CIS KLR 203E 2359 Ph.D. 191 MKT/MGT KLR 409B 4016 DBA 195 PSYCH AAK 297 3550 Ph.D. 209 CIS KLR 333 3421 Ph.D. 228 CIS KLR 300 3000 Ph.D. 297 MATH **AAK 194** 1145 Ph.D. 299 ECON/FIN KLR 284 2851 Ph.D. 301 ACCT KLR 244 4683 Ph.D. 335 ENG DRE 208 2000 Ph.D. 342 SOC BBG 208 5514 Ph.D. 387 BIOL AAK 230 8665 Ph.D. 401 HIST DRE 156 6783 MA 425 ECON/FIN KLR 284 2851 MBA 435 ART BBG 185 2278 Ph.D. The 1:M DEPARTMENT employs PROFESSOR relationship is implemented through the placement of the DEPT_CODE foreign key in the PROFESSOR table. The 1:1 PROFESSOR chairs DEPARTMENT relationship is implemented through the placement of the Table name: DEPARTMENT EMP_NUM foreign key in the DEPARTMENT table. Primary key: DEPT_CODE Foreign key: EMP_NUM SCHOOL CODE EMP NUM | DEPT ADDRESS | DEPT EXTENSION

DEPT_CODE	DEPT_NAME	SCHOOL_CODE	EMP_NOM	DEPT_ADDRESS	DEPT_EXTENSION
ACCT	Accounting	BUS	114	KLR 211, Box 52	3119
ART	Fine Arts	A&SCI	435	BBG 185, Box 128	2278
BIOL	Biology	A&SCI	387	AAK 230, Box 415	4117
CIS	Computer Info. Systems	BUS	209	KLR 333, Box 56	3245
ECON/FIN	Economics/Finance	BUS	299	KLR 284, Box 63	3126
ENG	English	A&SCI	160	DRE 102, Box 223	1004
HIST	History	A&SCI	103	DRE 156, Box 284	1867
MATH	Mathematics	A&SCI	297	AAK 194, Box 422	4234
MKT/MGT	Marketing/Management	BUS	106	KLR 126, Box 55	3342
PSYCH	Psychology	A&SCI	195	AAK 297, Box 438	4110
soc	Sociology	A&SCI	342	BBG 208, Box 132	2008

- Each professor is a college employee. Therefore, the professor identification is through the EMP_NUM. (However, note that not all employees are professors—there's another optional relationship.)
- The 1:1 "PROFESSOR chairs DEPARTMENT" relationship is implemented by having the EMP_NUM foreign key in the DEPARTMENT table. Note that the 1:1 relationship is treated as a special case of the 1:M relationship in which the "many" side is restricted to a single occurrence. In this case, DEPARTMENT contains the EMP_NUM as a foreign key to indicate that it is the department that has a chair.

THE M:N RELATIONSHIP IN RELATIONAL DATABASES

Table name: STUDENT Primary key: STU_NUM Database name: Ch03_Co Foreign key: none STU_NUM | STU_LNAME CLASS_CODE 321452 Bowser 10014 321452 Bowser 10018 321452 Bowser 10021 324257 Smithson 10014 324257 Smithson 10018 324257 Smithson 10021 Table name: CLASS Primary key: CLASS_CODE Foreign key: STU_NUM CLASS_CODE | STU_NUM | CRS_CODE CLASS_SECTION CLASS_TIME CLASS_ROOM PROF_NUM 10014 321452 ACCT-211 3 TTh 2:30-3:45 p.m. BUS252 342 10014 324257 ACCT-211 3 TTh 2:30-3:45 p.m. 342 BUS252 10018 321452 CIS-220 2 MWF 9:00-9:50 a.m. KLR211 114 10018 324257 CIS-220 2 114 MWF 9:00-9:50 a.m. KLR211 10021 321452 QM-261 114 1 M/VF 8:00-8:50 a.m. | KLR200 10021 324257 QM-261 1 M/VF 8:00-8:50 a.m. | KLR200 114

- Each CLASS can have many STUDENTs, and each STUDENT can take many CLASSes.
- There can be many rows in the CLASS table for any given row in the STUDENT table, and there can be many rows in the STUDENT table for any given row in the CLASS table.
- HOWEVER, this example creates a lot of repetition(redundancies) and therefore
 inefficiency, complexity and potential errors. The tables create many redundancies. For
 example, note that the STU_NUM values occur many times in the STUDENT table. In a
 real-world situation, additional stu dent attributes such as address, classification, major, and
 home phone would also be contained in the STUDENT table, and each of those attribute
 values would be repeated in each of the records shown here. Similarly, the CLASS table
 contains much

CONVERTING A M:N RELATIONSHIP INTO TWO 1:M RELATIONSHIPS

Table name: S Primary key: ! Foreign key: r	STU_NUM			Databa	se name: Ch
STU_NUM S		1			
321452 Bo					
324257 Sr	nithson				
		•			
Table name: E	NROLL				
Primary key:	CLASS_COI	DE + STU_NUM			
Foreign key: (CLASS_COL	DE, STU_NUM			
CLASS_CODE	STU_NUM	ENROLL_GRADE			
10014	321452	С			
10014	324257	В			
10018	321452	A			
10018	324257	В			
10021	321452	С			
10021	324257	С			
Table name: O Primary key: O Foreign key: O	CLASS_COI				
CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
10021	QM-261	1	M/VF 8:00-8:50 a.m.	KLR200	114

The ENROLL table links two tables, STUDENT and CLASS, it is also called a linking table. In other words, a linking table is the implementation of a composite entity.

ERMs

RELATIONAL DIAGRAM

STRUCTURED QUERY LANGUAGE (SQL)

Database / ERM example used in this section:

- A vendor may supply many products. Some vendors do not yet supply products. For example, a vendor list may include potential vendors.
- If a product is vendor-supplied, it is supplied by only a single vendor.

Some products are not supplied by a vendor. For example, some products may be produced in-house or bought on the open market.

Table name: VENDOR Database

Database Table for this section:

V_CODE	V_NAME	V_CONTACT	V_AREACODE	V_PHONE	V_STATE	V_ORDER
21225	Bryson, Inc.	Smithson	615	223-3234	TN	Υ
21226	SuperLoo, Inc.	Flushing	904	215-8995	FL	N
21231	D&E Supply	Singh	615	228-3245	TN	Υ
21344	Gomez Bros.	Ortega	615	889-2546	KY	N
22567	Dome Supply	Smith	901	678-1419	GA	N
23119	Randsets Ltd.	Anderson	901	678-3998	GA	Υ
24004	Brackman Bros.	Browning	615	22B-1410	TN	N
24288	ORDVA, Inc.	Hakford	615	898-1234	TN	Υ
25443	B&K, Inc.	Smith	904	227-0093	FL	N
25501	Damal Supplies	Smythe	615	890-3529	TN	N
25595	Rubicon Systems	Orton	904	456-0092	FL	Υ

Table name: PRODUCT

P_CODE	P_DESCRIPT	P_INDATE	P_QOH	P_MIN	P_PRICE	P_DISCOUNT	V_CODE
11 QER/31	Power painter, 15 psi., 3-nozzle	03-Nov-15	8	5	109.99	0.00	25595
13-Q2/P2	7.25-in. pvvr. savv blade	13-Dec-15	32	15	14.99	0.05	21344
14-Q1/L3	9.00-in. pvvr. savv blade	13-Nov-15	18	12	17.49	0.00	21344
1546-QQ2	Hrd. cloth, 1/4-in., 2x50	15-Jan-16	15	8	39.95	0.00	23119
1558-QVV1	Hrd. cloth, 1/2-in., 3x50	15-Jan-16	23	5	43.99	0.00	23119
2232/QTY	B&D jigsaw, 12-in. blade	30-Dec-15	8	5	109.92	0.05	24288
2232/QVVE	B&D jigsaw, 8-in. blade	24-Dec-15	6	5	99.87	0.05	24288
2238/QPD	B&D cordless drill, 1/2-in.	20-Jan-16	12	5	38.95	0.05	25595
23109-HB	Claw hammer	20-Jan-16	23	10	9.95	0.10	21225
23114-AA	Sledge hammer, 12 lb.	02-Jan-16	8	5	14.40	0.05	
54778-2T	Rat-tail file, 1/8-in. fine	15-Dec-15	43	20	4.99	0.00	21344
89-WRE-Q	Hicut chain saw, 16 in.	07-Feb-16	11	5	256.99	0.05	24288
PVC23DRT	PVC pipe, 3.5-in., 8-ft	20-Feb-16	188	75	5.87	0.00	
SM-18277	1.25-in. metal screw, 25	01-Mar-16	172	75	6.99	0.00	21225
SW-23116	2.5-in. wd. screw, 50	24-Feb-16	237	100	8.45	0.00	21231
WR3/TT3	Steel matting, 4'x8'x1/6", .5" mesh	17-Jan-16	18	5	119.95	0.10	25595

SELECT – Which attributes to report.

FROM – which table/entity are attributes in.

WHERE – Which records do I want reported.

CREATE TABLE

CREATE TABLE VENDOR (

V_CODE	INTEGER	NOT NULL	UNIQUE,
V_NAME	VARCHAR(35)	NOT NULL,	
V_CONTACT	VARCHAR(25)	NOT NULL,	
V AREACODE	CHAR(3)	NOT NULL,	
V PHONE	CHAR(8)	NOT NULL,	
V STATE	CHAR(2)	NOT NULL,	
V ORDER	CHAR(1)	NOT NULL,	

PRIMARY KEY (V_CODE));

CREATE TABLE PRODUCT (

P_CODE	VARCHAR(10)	NOT NULL	UNIQUE,
P_DESCRIPT	VARCHAR(35)	NOT NULL,	
P_INDATE	DATE	NOT NULL,	
P_QOH	SMALLINT	NOT NULL,	
P_MIN	SMALLINT	NOT NULL,	
P_PRICE	NUMBER(8,2)	NOT NULL,	
P_DISCOUNT	NUMBER(5,2)	NOT NULL,	
V CODE	INTEGER.		

PRIMARY KEY (P_CODE), FOREIGN KEY (V CODE) REFERENCES VENDOR ON UPDATE CASCADE);

INSERT

INSERT INTO VENDOR VALUES (21225, 'Bryson, Inc.', 'Smithson', '615', '223-3234', 'TN', 'Y');

INSERT INTO VENDOR VALUES (21226, 'Superloo, Inc.', 'Flushing', '904', '215-8995', 'FL', 'N');

INSERT INTO PRODUCT VALUES ('11QER/31','Power painter, 15 psi., 3-nozzle','03-Nov-15',8,5,109.99,0.00,25595);

INSERT INTO PRODUCT VALUES ('13-Q2/P2','7.25-in. pwr. saw blade','13-Dec-15',32,15,14.99, 0.05, 21344);

SELECT AND SELECT QUERY

SELECT * FROM PRODUCT;

P_CODE	P_DESCRIPT	P_INDATE	P_QOH	P_MIN	P_PRICE	P_DISCOUNT	V_CODE
11QER/31	Power painter, 15 psi., 3-nozzle	03-Nov-15	8	5	109.99	0.00	2559
13-Q2/P2	7.25-in. pwr. saw blade	13-Dec-15	32	15	14.99	0.05	2134
14-Q1/L3	9.00-in. pwr. saw blade	13-Nov-15	18	12	17.49	0.00	2134
1546-QQ2	Hrd. cloth, 1/4-in., 2x50	15-Jan-16	15	8	39.95	0.00	2311
1558-QWV1	Hrd. cloth, 1/2-in., 3x50	15-Jan-16	23	5	43.99	0.00	2311
2232/QTY	B&D jigsaw, 12-in. blade	30-Dec-15	8	5	109.92	0.05	2428
2232/QW/E	B&D jigsaw, 8-in. blade	24-Dec-15	6	5	99.87	0.05	2428
2238/QPD	B&D cordless drill, 1/2-in.	20-Jan-16	12	5	38.95	0.05	2559
23109-HB	Claw hammer	20-Jan-16	23	10	9.95	0.10	2122
23114-AA	Sledge hammer, 12 lb.	02-Jan-16	8	5	14.40	0.05	
54778-2T	Rat-tail file, 1/8-in. fine	15-Dec-15	43	20	4.99	0.00	2134
89-WRE-Q	Hicut chain saw, 16 in.	07-Feb-16	11	5	256.99	0.05	2428
PVC23DRT	PVC pipe, 3.5-in., 8-ft	20-Feb-16	188	75	5.87	0.00	
SM-18277	1.25-in. metal screw, 25	01-Mar-16	172	75	6.99	0.00	2122
SW-23116	2.5-in. wd. screw, 50	24-Feb-16	237	100	8.45	0.00	2123
/VR3/TT3	Steel matting, 4'x8'x1/6", .5" mesh	17-Jan-16	18	5	119.95	0.10	2559

example written out:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_QOH, P_MIN, P_PRICE, P_DISCOUNT, V_CODE FROM PRODUCT;

Select Query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

FROM PRODUCT

WHERE $V_{CODE} = 21344;$

P_DESCRIPT	P_INDATE	P_PRICE	V_CODE
7.25-in. pwr. saw blade	13-Dec-15	14.99	21344
9.00-in. pwr. saw blade	13-Nov-15	17.49	21344
Rat-tail file, 1/8-in. fine	15-Dec-15	4.99	21344

Not Equal = <>

SELECT P_DESCRIPT, P_QOH, P_PRICE, V_CODE FROM PRODUCT WHERE V_CODE \Leftrightarrow 21344;

P_DESCRIPT	P_QOH	P_PRICE	V_CODE
Power painter, 15 psi., 3-nozzle	8	109.99	25595
Hrd. cloth, 1/4-in., 2x50	15	39.95	23119
Hrd. cloth, 1/2-in., 3x50	23	43.99	23119
B&D jigsaw, 12-in. blade	8	109.92	24288
B&D jigsaw, 8-in. blade	6	99.87	24288
B&D cordless drill, 1/2-in.	12	38.95	25595
Claw hammer	23	9.95	21225
Hicut chain saw, 16 in.	11	256.99	24288
1.25-in. metal screw, 25	172	6.99	21225
2.5-in. wd. screw, 50	237	8.45	21231
Steel matting, 4'x8'x1/6", .5" mesh	18	119.95	25595

SELECT P_DESCRIPT, P_QOH, P_MIN, P_PRICE FROM PRODUCT WHERE P_PRICE <= 10;

P_DESCRIPT	P_QOH	P_MIN	P_PRICE
Claw hammer	23	10	9.95
Rat-tail file, 1/8-in. fine	43	20	4.99
PVC pipe, 3.5-in., 8-ft	188	75	5.87
1.25-in. metal screw, 25	172	75	6.99
2.5-in. wd. screw, 50	237	100	8.45

Computation:

SELECT P_DESCRIPT, P_QOH, P_PRICE, P_QOH * P_PRICE FROM PRODUCT;

P_DESCRIPT F_QOH P_PRICE Expr1 109.99 879.92 Power painter, 15 psi., 3-nozzle 7.25-in. pwr. saw blade 32 14.99 479.68 17.49 314.82 9.00-in, pwr. saw blade 18 Hrd. cloth, 1/4-in., 2x50 15 39.95 599.25 Hrd. cloth, 1/2-in., 3x50 23 43.99 1011.77 8 B&D jigsaw, 12-in. blade 109.92 879.36 B&D jigsaw, 8-in. blade 6 99.87 599.22 38.95 467.40 B&D cordless drill, 1/2-in. 12 Claw hammer 23 9.95 228.85 8 14.40 115.20 Sledge hammer, 12 lb. Rat-tail file, 1/8-in. fin≘ 43 4.99 214.57 Higut chain saw, 16 in. 256.99 2826.89 11

SELECT AND, OR, NOT OPERATORS:

SELECT P DESCRIPT, P INDATE, P PRICE, V CODE

138

172

237

18

5.87

6.99

8.45

119.95 2159.10

1103.56

1202.28

2002.65

FROM PRODUCT

PVC pipe, 3.5-in., 8-ff

2.5-in. wd. screw, 50

1.25-in, metal screw, 25

Steel matting, 4'x8'x1/6", .5" mesh

WHERE V CODE = 21344 OR V CODE = 24288;

P_DESCRIPT	P_INDATE	P_PRICE	V_CODE
7.25-in. pwr. saw blade	13-Dec-15	14.99	21344
9.00-in. pwr. saw blade	13-Nov-15	17.49	21344
B&D jigsaw, 12-in. blade	30-Dec-15	109.92	24288
B&D jigsaw, 8-in. blade	24-Dec-15	99.87	24288
Rat-tail file, 1/8-in, fine	15-Dec-15	4.99	21344
Higut chain savy, 16 in.	07-Feb-16	256.99	24288

SELECT P DESCRIPT, P INDATE, P PRICE, V CODE

FROM PRODUCT WHERE P PRICE < 50

AND P INDATE > '15-Jan-2016';

P_DESCRIPT	P_INDATE	P_PRICE	V_CODE
B&D cordless drill, 1/2-in.	20-Jan-16	38.95	25595
Clavv hammer	20-Jan-16	9.95	21225
PVC sipe, 3.5-in., 8-ft	20-Feb-16	5.87	
1.25-in. metal screw, 25	01-Mar-16	6.99	21225
2.5-in. wd. screw, 50	24-Feb-16	8.45	21231

SELECT P_DESCRIPT, P INDATE, P PRICE, V CODE

FROM PRODUCT

WHERE (P PRICE < 50 AND P INDATE > '15-Jan-2016')

OR \overline{V} CODE = 24288;

P_DESCRIPT	P_INDATE	P_PRICE	V_CODE
B&D_igsaw, 12-in. blade	30-Dec-15	109.92	24288
B&D_igsaw, 8-in. blade	24-Dec-15	99.87	24288
B&D cordless drill, 1/2-in.	20-Jan-16	38.95	25595
Clavv hammer	20-Jan-16	9.95	21225
Higut chain saw, 16 in.	07-Feb-16	256.99	24288
PVC pipe, 3.5-in., 8-ft	20-Feb-16	5.87	
1.25-in. metal screw, 25	01-Mar-16	6.99	21225
2.5-in. wd. screw, 50	24-Feb-16	8.45	21231

SELECT *

FROM PRODUCT

WHERE NOT ($V_{CODE} = 21344$);

SPECIAL OPERATORS: BETWEEN, IS NULL, LIKE, IN, EXISTS

BETWEEN

SELECT *

FROM PRODUCT

WHERE P PRICE BETWEEN 50.00 AND 100.00;

or:

WHERE $P_{PRICE} \Rightarrow 50.00 \text{ AND } P_{PRICE} \iff 100.00;$

IS NULL

SELECT P_CODE, P_DESCRIPT, V_CODE V_CODE

FROM PRODUCT

WHERE V CODE IS NULL;

LIKE

The LIKE special operator is used in conjunction with wildcards to find patterns within string attributes. Standard SQL allows you to use the percent sign (%) and underscore (_) wildcard characters to make matches when the entire string is not known:

SELECT V NAME, V CONTACT, V AREACODE, V PHONE

FROM VENDOR

WHERE V CONTACT LIKE 'Smith%';

Will yield all names with Smith in the name like Smith and Smithson. It Is case sensitive.

IN - SPECIAL OPERATOR

The IN operator is especially valuable when it is used in conjunction with subqueries. For example, suppose that you want to list the V_CODE and V_NAME of only those vendors who provide products. In that case, you could use a subquery within the IN operator to automatically generate the value list. The query would be:

SELECT V CODE, V NAME

FROM VENDOR

WHERE V CODE IN (SELECT V CODE FROM PRODUCT);

EXISTS

The EXISTS special operator can be used whenever there is a requirement to execute a command based on the result of another query. That is, if a subquery returns any rows, run the main query; otherwise, do not. For example, the following query will list all vendors, but only if there are products to order:

SELECT *

FROM VENDOR

WHERE EXISTS (SELECT * FROM PRODUCT WHERE P_QOH <= P_MIN);

UPDATE

Change P_INDATE from December 13, 2015, to January 18, 2016, in the second row of the PRODUCT table, use the primary key PRODUCT_CODE (P_CODE) (13-Q2/P2) to locate the correct row.

UPDATE PRODUCT

SET $P_{INDATE} = '18-JAN-2016'$ WHERE $P_{INDATE} = '13-JAN-2016'$

Updating more than one attribute in a row, update P INDATE and P PRICE:

UPDATE PRODUCT

SET P INDATE = '18-JAN-2016', P PRICE = 17.99, P MIN = 10

WHERE P CODE = '13-Q2/P2';

DELETE

DELETE FROM PRODUCT WHERE P MIN = 5;

SQL JOIN

Old style join: Join a table with another table through their common Primary key and foreign key:

SELECT P CODE, P DESCRIPT, P PRICE, V NAME

FROM PRODUCT, VENDOR

WHERE PRODUCT.V CODE = VENDOR.V CODE;

CROSS JOIN: performs a relational product (also known as the Cartesian product) of two tables. The cross join syntax is:

SELECT column-list FROM table1 CROSS JOIN table2

SELECT * FROM INVOICE CROSS JOIN LINE;

performs a cross join of the INVOICE and LINE tables that generates 144 rows. (There are 8 invoice rows and 18 line rows, yielding $8 \times 18 = 144$ rows.) You can also perform a cross join that yields only specified attributes. For example, you can specify:

SELECT INVOICE.INV_NUMBER, CUS_CODE, INV_DATE, P_CODE FROM INVOICE CROSS JOIN LINE;

NATURAL JOIN

SELECT column-list FROM table 1 NATURAL JOIN table 2

The natural join will perform the following tasks:

- Determine the common attribute(s) by looking for attributes with identical names and compatible data types.
- Select only the rows with common values in the common attribute(s).

• If there are no common attributes, return the relational product of the two tables. The following example performs a natural join of the CUSTOMER and INVOICE tables and returns only selected attributes:

SELECT CUS_CODE, CUS_LNAME, INV_NUMBER, INV_DATE FROM CUSTOMER NATURAL JOIN INVOICE;

JOIN ON

Another way to express a join when the tables have no common attribute names is to use the JOIN ON operand. The query will return only the rows that meet the indicated join condition. The join condition will typically include an equality comparison expression of two columns. Syntax:

SELECT column-list FROM table 1 JOIN table 2 ON join-condition

SELECT INVOICE.INV_NUMBER, PRODUCT.P_CODE, P_DESCRIPT, LINE_UNITS, LINE PRICE

FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE. INV_NUMBER JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

INV_NUMBER	P_CODE	P_DESCRIPT	LINE_UNITS	LINE_PRICE
1001	13-02/P2	7.25-in. pwr. saw blade	1	14.99
	23109-НВ	Claw hammer	ī	9.95
	54778-2T	Rat-tail file, 1/8-in. fine	2	4.99
	2238/QPD	B&D cordless drill, 1/2-in.	ī	38.95
	1546-QQ2	Hrd. cloth, 1/4-in., 2x50	1	39.95
	13-Q2/P2	7.25-in. pwr. saw blade	5	14.99
	54778-2T	Rat-tail file, 1/8-in. fine	3	4.99
	23109-НВ	Claw hammer	2	9.95
	PVC23DRT	PVC pipe, 3.5-in., 8-ft	12	
1006	SM-18277	1.25-in. metal screw, 25	3	6.99
		B&D jigsaw, 12-in. blade	1	109.92
1006	23109-НВ	Claw hammer	1	9.95
1006	89-WRE-Q	Hicut chain saw, 16 in.	1	256.99
	13-Q2/P2	7.25-in. pwr. saw blade	2	14.99
	54778-2T	Rat-tail file, 1/8-in. fine	1	4.99
1008	PVC23DRT	PVC pipe, 3.5-in., 8-ft	5	5.87
1008	WR3/TT3	Steel matting, 4'x8'x1/6", .5" mesh	3	119.95
1008	23109-НВ	Claw hammer	1	9.95

OUTER JOINS

An outer join returns not only the rows matching the join condition (that is, rows with matching values in the common columns), it returns the rows with unmatched values. The ANSI standard

defines three types of outer joins: left, right, and full. The left and right designations reflect the order in which the tables are processed by the DBMS. Remember that join operations take place two tables at a time. The first table named in the FROM clause will be the left side, and the second table named will be the right side. If three or more tables are being joined, the result of joining the first two tables becomes the left side, and the third table becomes the right side.

The **LEFT OUTER JOIN** returns not only the rows matching the join condition (that is, rows with matching values in the common column), it returns the rows in the left table with unmatched values in the right table. The syntax is:

SELECT column-list

FROM table 1 LEFT [OUTER] JOIN table 2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes those vendors with no matching products:

SELECT P CODE, VENDOR.V CODE, V NAME

FROM VENDOR LEFT JOIN PRODUCT ON VENDOR. V_CODE = PRODUCT.V_CODE;

P_CODE	V_CODE	V_NAME
11QER/31 13-Q2/P2 14-Q1/L3 1546-QQ2 1558-QW1 2232/QTY 2232/QWE 2238/QPD 23109-HB 54778-2T 89-WRE-Q SM-18277 SW-23116 WR3/TT3	21344 21344 23119 24288 24288 25595 21225 21344 24288 21225 21231 25595 22567 21226 24004 25501	Rubicon Systems Gomez Bros. Gomez Bros. Randsets Ltd. Randsets Ltd. ORDVA, Inc. ORDVA, Inc. Rubicon Systems Bryson, Inc. Gomez Bros. ORDVA, Inc. Bryson, Inc. Bryson, Inc. D&E Supply Rubicon Systems Dome Supply SuperLoo, Inc. Brackman Bros. Damal Supplies B&K, Inc.

The **RIGHT OUTER JOIN** returns not only the rows matching the join condition (that is, rows with matching values in the common column), it returns the rows in the right table with unmatched values in the left table. The syntax is:

SELECT column-list

FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes products that do not have a matching vendor code:

SELECT P CODE, VENDOR.V CODE, V NAME

FROM VENDOR RIGHT JOIN PRODUCT ON VENDOR. V_CODE = PRODUCT.V_CODE;

P_CODE	V_CODE	V_NAME
23109-HB SW-23116 54778-2T 14-Q1/L3 13-Q2/P2 1558-QW1 1546-QQ2 89-WRE-Q 2232/OWF	21225 21231 21344 21344 21344 23119 23119 24288 24288	Bryson, Inc. Bryson, Inc. D&E Supply Gomez Bros. Gomez Bros. Gomez Bros. Randsets Ltd. Randsets Ltd. ORDVA, Inc. ORDVA, Inc.
2232/QTY	24288 25595 25595	ORDVA, Inc. Rubicon Systems Rubicon Systems Rubicon Systems

The **FULL OUTER JOIN** returns not only the rows matching the join condition (that is, rows with matching values in the common column), it returns all of the rows with unmatched values in the table on either side. The syntax is:

SELECT FROM column-list table1 FULL [OUTER] JOIN table2 ON join-condition

For example, the following query lists the product code, vendor code, and vendor name for all products and includes all product rows (products without matching vendors) as well as all vendor rows (vendors without matching products):

SELECT P CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR FULL JOIN PRODUCT ON VENDOR. V_CODE = PRODUCT.V_CODE;

P_CODE	V_CODE	V_NAME
11QER/31	25595	Rubicon Systems Gomez Bros. Gomez Bros.
13-Q2/P2	21344	Gomez Bros.
14-Q1/L3	21344	Gomez Bros.
1546-QQ2	23119	Randsets Ltd.
1558-QW1	23119	Randsets Ltd.
2232/QWE	24288	ORDVA, Inc. ORDVA, Inc.
2238/QPD	25505	Rubicon Systems
23109-HB	21225	Pauson Tro
	21223	Bryson, Inc.
23114-AA	21244	C
54778-2T		Gomez Bros.
89-WRE-Q	24288	ORDVA, Inc.
PVC23DRT	120022	
SM-18277	21225	Bryson, Inc.
SW-23116	21231	D&E Supply
WR3/TT3	25595	Rubicon Systems
	22567	Dome Supply
		SuperLoo, Inc.
		Brackman Bros.
		Damal Supplies
	25//3	B&K, Inc.
	43443	DON. IIIC.