# $11n_{58} (K11n_{58})$



## Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -u^{21} - u^{20} + \dots + 5u^2 + b, -u^{14} + 7u^{12} - 18u^{10} + 19u^8 - 6u^6 + 2u^4 + 2u^3 - 4u^2 + a - 4u - 1, u^{22} + 2u^{21} + \dots - 4u^2 - 1 \rangle$$

$$I_2^u = \langle b + 1, u^3 + a - 2u, u^5 - u^4 - 2u^3 + u^2 + u + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 27 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -u^{21} - u^{20} + \dots + 5u^2 + b, -u^{14} + 7u^{12} + \dots + a - 1, u^{22} + 2u^{21} + \dots - 4u^2 - 1 \rangle$$

### (i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\-u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1\\u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u\\-u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{14} - 7u^{12} + 18u^{10} - 19u^{8} + 6u^{6} - 2u^{4} - 2u^{3} + 4u^{2} + 4u + 1\\u^{21} + u^{20} + \dots - 9u^{3} - 5u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{21} + u^{20} + \dots + 5u + 1\\3u^{21} + 2u^{20} + \dots + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3}\\u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{21} - 2u^{20} + \dots + 4u + 2\\u^{21} + u^{20} + \dots - 5u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{14} - 7u^{12} + 18u^{10} - 19u^{8} + 4u^{6} + 4u^{4} - 1\\u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{14} - 7u^{12} + 18u^{10} - 19u^{8} + 4u^{6} + 4u^{4} - 1\\u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

### (ii) Obstruction class = -1

### (iii) Cusp Shapes

$$= -2u^{21} - 4u^{20} + 20u^{19} + 37u^{18} - 87u^{17} - 136u^{16} + 219u^{15} + 241u^{14} - 359u^{13} - 186u^{12} + 398u^{11} + 17u^{10} - 277u^9 + 14u^8 + 98u^7 + 38u^6 - 34u^5 - 18u^4 + 36u^3 + 13u^2 - u - 2$$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing            |
|-----------------------|-------------------------------------------|
| $c_1, c_4$            | $u^{22} - 6u^{21} + \dots + 6u - 1$       |
| $c_2$                 | $u^{22} + 2u^{21} + \dots + 2u + 1$       |
| $c_3, c_8$            | $u^{22} - u^{21} + \dots - 64u + 32$      |
| <i>C</i> <sub>5</sub> | $u^{22} + 2u^{21} + \dots + 2996u - 1960$ |
| $c_6, c_7, c_{10}$    | $u^{22} - 2u^{21} + \dots - 4u^2 - 1$     |
| $c_9$                 | $u^{22} - 2u^{21} + \dots - 2u + 1$       |
| $c_{11}$              | $u^{22} + 6u^{21} + \dots - 64u - 17$     |

# (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing                |
|--------------------|---------------------------------------------------|
| $c_1, c_4$         | $y^{22} - 2y^{21} + \dots - 2y + 1$               |
| $c_2$              | $y^{22} + 42y^{21} + \dots - 62y + 1$             |
| $c_3, c_8$         | $y^{22} - 33y^{21} + \dots - 7680y + 1024$        |
|                    | $y^{22} + 66y^{21} + \dots + 61827024y + 3841600$ |
| $c_6, c_7, c_{10}$ | $y^{22} - 22y^{21} + \dots + 8y + 1$              |
| $c_9$              | $y^{22} + 30y^{21} + \dots + 8y + 1$              |
| $c_{11}$           | $y^{22} - 14y^{21} + \dots - 2056y + 289$         |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 0.547451 + 0.687554I  |                                       |                    |
| a = -1.64917 + 1.79616I   | 10.04630 - 1.61926I                   | 3.79117 - 0.60262I |
| b = -0.18168 + 2.30378I   |                                       |                    |
| u = 0.547451 - 0.687554I  |                                       |                    |
| a = -1.64917 - 1.79616I   | 10.04630 + 1.61926I                   | 3.79117 + 0.60262I |
| b = -0.18168 - 2.30378I   |                                       |                    |
| u = 0.477782 + 0.730631I  |                                       |                    |
| a = 1.68752 - 2.10270I    | 9.80847 + 6.35147I                    | 3.22096 - 4.88727I |
| b = 0.07337 - 2.34864I    |                                       |                    |
| u = 0.477782 - 0.730631I  |                                       |                    |
| a = 1.68752 + 2.10270I    | 9.80847 - 6.35147I                    | 3.22096 + 4.88727I |
| b = 0.07337 + 2.34864I    |                                       |                    |
| u = -1.15891              |                                       |                    |
| a = -0.585194             | 1.97038                               | 6.11980            |
| b = 0.132093              |                                       |                    |
| u = -0.253735 + 0.636077I |                                       |                    |
| a = -0.333427 + 0.841858I | 0.10442 - 2.33425I                    | 2.92732 + 5.10863I |
| b = -0.032077 + 0.372929I |                                       |                    |
| u = -0.253735 - 0.636077I |                                       |                    |
| a = -0.333427 - 0.841858I | 0.10442 + 2.33425I                    | 2.92732 - 5.10863I |
| b = -0.032077 - 0.372929I |                                       |                    |
| u = 1.33846               |                                       |                    |
| a = 1.06516               | 1.80329                               | 6.37870            |
| b = 1.56525               |                                       |                    |
| u = -1.374360 + 0.085773I |                                       |                    |
| a = -0.046048 - 1.048570I | 3.07940 - 2.15283I                    | 3.96233 + 2.53077I |
| b = 0.632067 + 0.872611I  |                                       |                    |
| u = -1.374360 - 0.085773I |                                       |                    |
| a = -0.046048 + 1.048570I | 3.07940 + 2.15283I                    | 3.96233 - 2.53077I |
| b = 0.632067 - 0.872611I  |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.458175 + 0.412746I |                                       |                     |
| a = -1.044590 - 0.139124I | 1.10436 - 0.93215I                    | 5.59687 + 3.71705I  |
| b = -0.311064 - 0.023201I |                                       |                     |
| u = -0.458175 - 0.412746I |                                       |                     |
| a = -1.044590 + 0.139124I | 1.10436 + 0.93215I                    | 5.59687 - 3.71705I  |
| b = -0.311064 + 0.023201I |                                       |                     |
| u = 1.384260 + 0.250179I  |                                       |                     |
| a = 0.084137 - 0.456690I  | 5.30289 + 5.58097I                    | 6.98899 - 5.83204I  |
| b = 0.043050 - 0.643455I  |                                       |                     |
| u = 1.384260 - 0.250179I  |                                       |                     |
| a = 0.084137 + 0.456690I  | 5.30289 - 5.58097I                    | 6.98899 + 5.83204I  |
| b = 0.043050 + 0.643455I  |                                       |                     |
| u = 1.46039 + 0.14631I    |                                       |                     |
| a = -0.589431 - 0.029298I | 7.28227 + 3.02618I                    | 8.05288 - 2.57798I  |
| b = -0.810187 + 0.008550I |                                       |                     |
| u = 1.46039 - 0.14631I    |                                       |                     |
| a = -0.589431 + 0.029298I | 7.28227 - 3.02618I                    | 8.05288 + 2.57798I  |
| b = -0.810187 - 0.008550I |                                       |                     |
| u = -1.50300 + 0.26177I   |                                       |                     |
| a = 1.77777 + 0.03837I    | 16.2359 - 9.9783I                     | 6.35264 + 4.88027I  |
| b = 0.23595 + 2.50634I    |                                       |                     |
| u = -1.50300 - 0.26177I   |                                       |                     |
| a = 1.77777 - 0.03837I    | 16.2359 + 9.9783I                     | 6.35264 - 4.88027I  |
| b = 0.23595 - 2.50634I    |                                       |                     |
| u = -1.52245 + 0.22649I   | 10.0150 1.50057                       | F 00100 + 0 6F4007  |
| a = -1.49085 + 0.18083I   | 16.8152 - 1.7067I                     | 7.03198 + 0.67482I  |
| b = -0.42745 - 2.45052I   |                                       |                     |
| u = -1.52245 - 0.22649I   | 10.0150 : 1.50057                     | F 00100 0 0 F 100 F |
| a = -1.49085 - 0.18083I   | 16.8152 + 1.7067I                     | 7.03198 - 0.67482I  |
| b = -0.42745 + 2.45052I   |                                       |                     |

| Solutions to $I_1^u$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|--------------------------|---------------------------------------|---------------------|
| u = 0.152064 + 0.338601I |                                       |                     |
| a = 1.36411 + 1.84123I   | -1.75639 + 0.64723I                   | -5.17438 + 1.08919I |
| b = 0.929357 - 0.322994I |                                       |                     |
| u = 0.152064 - 0.338601I |                                       |                     |
| a = 1.36411 - 1.84123I   | -1.75639 - 0.64723I                   | -5.17438 - 1.08919I |
| b = 0.929357 + 0.322994I |                                       |                     |

II. 
$$I_2^u = \langle b+1, u^3+a-2u, u^5-u^4-2u^3+u^2+u+1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} + 2u \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} + 4u \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + 2u \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u \\ u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u \\ u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-3u^3 u^2 + 8u + 3$

## (iv) u-Polynomials at the component

| Crossings  | u-Polynomials at each crossing    |
|------------|-----------------------------------|
| $c_1$      | $(u-1)^5$                         |
| $c_2, c_4$ | $(u+1)^5$                         |
| $c_3, c_8$ | $u^5$                             |
| $c_5, c_9$ | $u^5 + u^4 + 2u^3 + u^2 + u + 1$  |
| $c_6, c_7$ | $u^5 - u^4 - 2u^3 + u^2 + u + 1$  |
| $c_{10}$   | $u^5 + u^4 - 2u^3 - u^2 + u - 1$  |
| $c_{11}$   | $u^5 - 3u^4 + 4u^3 - u^2 - u + 1$ |

# (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing |
|--------------------|------------------------------------|
| $c_1, c_2, c_4$    | $(y-1)^5$                          |
| $c_3, c_8$         | $y^5$                              |
| $c_5, c_9$         | $y^5 + 3y^4 + 4y^3 + y^2 - y - 1$  |
| $c_6, c_7, c_{10}$ | $y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$ |
| $c_{11}$           | $y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.21774              |                                       |                     |
| a = -0.629714             | 0.756147                              | -2.80750            |
| b = -1.00000              |                                       |                     |
| u = -0.309916 + 0.549911I |                                       |                     |
| a = -0.871221 + 1.107660I | -1.31583 - 1.53058I                   | -0.02714 + 4.76366I |
| b = -1.00000              |                                       |                     |
| u = -0.309916 - 0.549911I |                                       |                     |
| a = -0.871221 - 1.107660I | -1.31583 + 1.53058I                   | -0.02714 - 4.76366I |
| b = -1.00000              |                                       |                     |
| u = 1.41878 + 0.21917I    |                                       |                     |
| a = 0.186078 - 0.874646I  | 4.22763 + 4.40083I                    | 4.43089 - 2.80751I  |
| b = -1.00000              |                                       |                     |
| u = 1.41878 - 0.21917I    |                                       |                     |
| a = 0.186078 + 0.874646I  | 4.22763 - 4.40083I                    | 4.43089 + 2.80751I  |
| b = -1.00000              |                                       |                     |

III. u-Polynomials

| Crossings  | u-Polynomials at each crossing                                           |
|------------|--------------------------------------------------------------------------|
| $c_1$      | $((u-1)^5)(u^{22}-6u^{21}+\cdots+6u-1)$                                  |
| $c_2$      | $((u+1)^5)(u^{22}+2u^{21}+\cdots+2u+1)$                                  |
| $c_3, c_8$ | $u^5(u^{22} - u^{21} + \dots - 64u + 32)$                                |
| $c_4$      | $((u+1)^5)(u^{22}-6u^{21}+\cdots+6u-1)$                                  |
| $c_5$      | $ (u5 + u4 + 2u3 + u2 + u + 1)(u22 + 2u21 + \dots + 2996u - 1960) $      |
| $c_6, c_7$ | $(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{22} - 2u^{21} + \dots - 4u^2 - 1)$  |
| $c_9$      | $ (u5 + u4 + 2u3 + u2 + u + 1)(u22 - 2u21 + \dots - 2u + 1) $            |
| $c_{10}$   | $(u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{22} - 2u^{21} + \dots - 4u^2 - 1)$  |
| $c_{11}$   | $(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)(u^{22} + 6u^{21} + \dots - 64u - 17)$ |

IV. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing                                                            |
|--------------------|-----------------------------------------------------------------------------------------------|
| $c_1,c_4$          | $((y-1)^5)(y^{22}-2y^{21}+\cdots-2y+1)$                                                       |
| $c_2$              | $((y-1)^5)(y^{22} + 42y^{21} + \dots - 62y + 1)$                                              |
| $c_3, c_8$         | $y^5(y^{22} - 33y^{21} + \dots - 7680y + 1024)$                                               |
| $c_5$              | $(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)$ $\cdot (y^{22} + 66y^{21} + \dots + 61827024y + 3841600)$ |
| $c_6, c_7, c_{10}$ | $(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{22} - 22y^{21} + \dots + 8y + 1)$                      |
| $c_9$              | $(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{22} + 30y^{21} + \dots + 8y + 1)$                       |
| $c_{11}$           | $(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)(y^{22} - 14y^{21} + \dots - 2056y + 289)$                 |