3.3 Teorema Cayley-Hamilton [], sec. 6.1]

Mis IF suatu lapangan.

Lemma Utk setiap $A \in \mathbb{H}^{n \times n}$ berlaku A adj(A) = [A|I.N.B. Jika A invertibel (artinya A^{-1} ada dan $[A| \neq 0)$ maka dgn mengalikan kedua ruas dengan A^{-1} dari kiri, diperoleh

 $A^{-1} = \frac{1}{|A|} adj(A),$ yattu rumus eksplist dari invers matriks.

Bukti
Ambil $A \in \mathbb{F}^{n \times n}$. Ambil $\hat{c}, \hat{j} \in \{1, ..., n\}$. Perhatikan $\left[A \text{ adj}(A) \right]_{\hat{c}, \hat{j}} = \sum_{k=1}^{n} A_{\hat{c}, k} \left[\text{adj}(A) \right]_{k, \hat{j}} \quad (\text{def. perkalian matriks})$

$$= \sum_{k=1}^{n} A_{ijk} \left[cos(A) \right]_{k,j}^{T} \quad (def. adj(A))$$

$$= \sum_{k=1}^{n} A_{i,k} \left[cos(A) \right]_{\hat{a},k} \quad (def. transpos).$$

• Mis i=3. Bentuk terakhir adl

$$\frac{n}{\sum_{k=1}^{N} A_{i,k}} \left[\cos(A) \right]_{i,k} = |A|$$

berdasarkan ekspansi kofaktor sepanjang baris i.

$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$

$$dom \quad p(\lambda) = \lambda^{2} - 3\lambda^{1} + 2 = \lambda^{2} - 3\lambda^{1} + 2\lambda^{0}, \text{ maka}$$

$$p(A) = A^{2} - 3A^{1} + 2A^{0}$$

$$= A^{2} - 3A + 2I$$

$$= \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} - 3\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} + 2\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 3 \\ -6 & 7 \end{pmatrix} - \begin{pmatrix} 0 & 3 \\ -6 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Teorema Cayley-Hamilton utk matriks

Mis $A \in \mathbb{H}^{n \times n}$ Jika $p(\lambda) := |A - \lambda I|$ adl polinomial karakteristik dari A, maka p(A) = O. [DKL, setiap matriks persegi mempakan pembuat nol dari polinomial karakteristiknya.]

Bukt Karena $p(\lambda) = |A - \lambda J|$ memilikî derajat n dan koefisien utama $(-1)^n$, maka

 $|A - \lambda I| = (-1)^n (\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + - - + a_{n-1} \lambda + a_n) \star$

wtk svatu $a_1, \dots, a_n \in \mathcal{F}$. Karena matriks $A-\lambda I$ memiliki entrê berupa polinomial $dlm \lambda dgn devajat pahing tenggi 1,$ maka matriks $adj(A-\lambda I) = [cos(A-\lambda I)]^T$ memiliki

```
entite berupa polinomial d \mid m \mid \lambda \mid dgn derajat

paling tinggi n-1, shg

adj(A-\lambda I) = B_0 \lambda^{n-1} + B_1 \lambda^{n-2} + \dots + B_{n-2} \lambda^{n-2} + B_{n-1} \lambda^{n+1}
             utk svatu Bo, ---, Bn-1 ElF<sup>n×n</sup>.
Berdasarkan lemma,
                              (A-\lambda I) ad\hat{j}(A-\lambda I) = |A-\lambda I| I.
             Substitusikan A dan AA ke XXX, diperoleh
(A-\lambda I)(B_0\lambda^{n-1}+B_1\lambda^{n-2}+\cdots+B_{n-2})+B_{n-1})=(-1)^n(1+a_1)^{n-1}+a_2\lambda^{n-2}
                                                                                       + --- + an-11+an) I.
            Dgn menyamakan koefisien? 1, 1, 1, 1, 1, 2, 1 di ke-
dua ruas, diperoleh

\begin{array}{rcl}
-B_0 &= & (-1)^{\eta} I_{,} \\
AB_0 &-B_1 &= & (-1)^{n} a_{1} I_{,} \\
AB_1 &-B_2 &= & (-1)^{n} a_{2} I_{,}
\end{array}

            ABn-1 = (-1)^nan I.

Kalikom kesamaan di atas msg² dgn A^n, A^{n-1}, A^{n-2}, A^0 dari kiti, diperoleh
                                    -A^{n}B_{0} = (-1)^{n}A^{n},
A^{n}B_{0} - A^{n-1}B_{1} = (-1)^{n}a_{1}A^{n-1},
A^{n}B_{1} - A^{n-2}B_{2} = (-1)^{n}a_{2}A^{n-2},
           Jumlahkan semuanya, diperoleh
                    0 = (-1)^n (A^n + a_1 A^{n-1} + a_2 A^{n-2} + \cdots + a_n I) = p(A).
```

Definisi Svatu polinomial di $F[\lambda]$ bersifat monik jika koefisien utamanya adl 1. Polinomial minimal dari svatu matriks $A \in F^{n \times n}$ adl polinomial monik $g(\lambda) \in F[\lambda]$ berderajat terkecil shg g(A) = O (polinomial monik berderajat terkecil yg dibuat nol oleh matriks A).

Teorema folinomial minimal dari svotu matriks tunggal dan habis membagi polinomial karakteristiknya.

Mis $A \in \mathbb{F}^{n \times n}$. And alkan A memiliki dva polinomial minimal berbeda $q_1(\lambda)$, $q_2(\lambda) \in \mathbb{F}[\lambda]$. Kedwa polinomial ini monik, berderajat sama (kavena jika tidak sama maka ya derajatnya lebih besar bukan polinomial minimal), dan memenuhi $q_1(A) = q_2(A) = O$. Kavena $q_1(\lambda)$ dan $q_2(\lambda)$ monik, maka $r(\lambda) := q_1(\lambda) - q_2(\lambda)$ adl polinomial berderajat lebih keal ya memenuhi $r(A) = q_1(A) - q_2(A) = O - O = O$. Konfradiksi dan fakta bahwa $q_1(\lambda)$ dan $q_2(\lambda)$ adl polinomial minimal.

Mis $p(\lambda) \in F[\lambda]$ polinomial korakteristik dari Adan $q(\lambda) \in F[\lambda]$ polinomial minimal dari A, maka berda-sarkan pembagian polinomial, ada polinomial $F(\lambda)$, $G(\lambda) \in F[\lambda]$ dengan

 $q(\lambda) = q(\lambda)F(\lambda) + G(\lambda),$ dgn derajat dati $G(\lambda)$ kurang dari derajat dari $q(\lambda)$. Andaikan $G(\lambda)$ bukan polinomial nol, maka $G(\lambda) = p(\lambda) - q(\lambda)F(\lambda) \in F[\lambda]$ polinomial berderajat lebih kecil yg memenuhi G(A) = p(A) - q(A)F(A) = O-O = O. Kontradiksi dgn Fakta bahwa $q(\lambda)$ polinomial minimal. Jadi, $G(\lambda) = O$, artinya $q(\lambda)$ habis membagi $p(\lambda)$.

Contoh Diket matriks
$$A = \begin{pmatrix} 0 & -2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- a) Tent polinomial karakteristik dari A.
- 6) Tent (jika ada) At don Teorema Cayley-Hamitton. 6) Tent polinormal minimal dari A.

Jawab

(a) Kita bentuk matriks

$$A - \lambda I = \begin{pmatrix} 0 & -2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} - \lambda \begin{pmatrix} 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -\lambda & -2 & -2 \\ 1 & 3 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{pmatrix},$$

sho polinomial karakteristik dari A adl

$$p(\lambda) = |A - \lambda|$$

$$= \begin{vmatrix} -\lambda & -2 & -2 \\ 1 & 3 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

$$= (2 - \lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix}$$

$$= (2 - \lambda) (-3\lambda + \lambda^2 + 2)$$

$$= -6\lambda + 2\lambda^{2} + 4 + 3\lambda^{2} - \lambda^{3} - 2\lambda$$
$$= -\lambda^{3} + 5\lambda^{2} - 8\lambda + 4.$$

Berdasarkan Teorema Cayley-Hamilton,

$$-A^{3} + 5A^{2} - 8A + 4I = 0.$$

Dan demikian,

$$I = \frac{1}{4}(A^3 - 5A^2 + 8A) = \frac{1}{4}(A^2 - 5A + 8I)A$$
.

Artinya,

$$A^{-1} = \frac{1}{4} \begin{pmatrix} A^{2} - 5A + 8I \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} 0 - 2 - 2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 - 2 - 2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & -2 - 2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 - 2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{2} & 1 & 1 \\ -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

© Polinomial minimal dari A monik dan habis membagi

$$p(\lambda) = (2-\lambda)(\lambda^2 - 3\lambda + 2) = -(\lambda - 2)^2(\lambda - 1).$$

Kita hitung

$$A - 2I = \begin{pmatrix} 0 & -2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \neq 0,$$

$$A - I = \begin{pmatrix} 0 & -2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \neq 0,$$

$$(A-2I)(A-I) = \begin{pmatrix} -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

Jadi, polinomial minimal dari A adl qlh)=(1-2)(1-1).

Akan dipelajari Teorema Cayley-Hamilton utk operator linear. Mis V ruang vektor berdimensi berhingga atas lapangan #.

- Jika $T:V \rightarrow V$ operator linear dan $n \in \mathbb{N}$, maka $T^n := To -- o T$ dan $T^0 := I_V$.
- Jika $T_1: V \rightarrow V$ dan $T_2: V \rightarrow V$ operator linear maka $T_1 + T_2: V \rightarrow V$ adl pemetaan dgn aturan $(T_1 + T_2)(\overline{x}) := T_1(\overline{x}) + T_2(\overline{x}).$

Dayat dibuktikan bahwa Ti+Tz operator linear.

• Jika $T: V \rightarrow V$ operator linear dan $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ ad pemetaan dgn aturan $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ $\alpha \in \mathbb{F}$ $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$ $\alpha \in \mathbb{F}$ $\alpha \in \mathbb{F}$ maka $\alpha \in \mathbb{F}$

Dapat dibuktikan bahwa XT operator linear.

Teorema Cayley-Hamilton utk operator linear.

Mis $T: V \rightarrow V$ operator linear. Jika $p(\lambda)$ adl polinomial karakteristik dari T, maka p(T) = To. LDKL, setiap operator linear merupakan pembuat nol dari polinomial karakteristiknya.]

Mis T: V-> V operator linear. Mis $\beta = \{\bar{x}_1, ..., \bar{x}_n\}$ basis bagi V, $A := [T]_{\beta}$, dan polinomial karakterstik dari T adl $p(\lambda) := |A - \lambda I| = (-1)^n (\lambda^n + a_1 \lambda^n + - - + a_{n-1} \lambda + a_n),$ which should $a_1, - - , a_n \in \mathbb{F}, maka$ $P(T) = (-1)^{n} (T^{n} + a_{1} T^{n-1} + \cdots + a_{n-1} T + a_{n} I_{v}).$ Ambil $\overline{x} \in V$. Perhatikan $P(T)(\overline{x}) = (-1)^n (T^n + q, T^{n-1} + \cdots + a_{n-1}T + a_n I_v)(\overline{x})$ $= (-1)^n \left[T^n(\bar{x}) + a_1 T^{n-1}(\bar{x}) + --+ a_{n-1} T(\bar{x}) + a_n I_v(\bar{x}) \right]$ $\left[p(t)(\bar{x})\right]_{\beta} = (-1)^{n} \left[\left[T^{n}(\bar{x})\right]_{\beta} + a_{1} \left[T^{n-1}(\bar{x})\right]_{\beta} + \dots + a_{n-1} \left[T(\bar{x})\right]_{\beta} + a_{n} \left[T$ $= (-1)^{n} \left[T^{n} \right]_{\beta} \left[\bar{x} \right]_{\beta} + a_{1} \left[T^{n-1} \right]_{\beta} \left[\bar{x} \right]_{\beta} + \cdots + a_{n-1} \left[T^{n} \right]_{\beta} \left[\bar{x} \right]_{\beta} + a_{n} \left[\bar{x} \right]_{\beta} \right]$ $= (-1)^{n} \left[\left[\left[T \right]_{\beta}^{n} + a_{1} \left[T \right]_{\beta}^{n-1} + \cdots + a_{n-1} \left[T \right]_{\beta} + a_{n} I \right] \left[\overline{z} \right]_{\beta}$ $= (-1)^{n} \left[A^{n} + a_{1} A^{n-1} + - - + a_{n-1} A + a_{n} I \right] \left[\bar{x} \right]_{\beta}$ $= p(A) [\bar{x}]_{\beta}$ = $\overline{0}$, yg artinya (dgn memetakan kedua nvas thd P_{g}^{T}) $p(T)(\overline{x}) = \overline{0}$. Jadi, p(T) adl pemetaan nol. \square Definisi Polinomial minimal dari operator linear T:V>Value all polinomial monik q(V) = #[X] berderayat terkeal she

Teorema Polinomial minimal dan suatu operator linear tunggal dan habis membagi polinomial karakteristik-Bukti serupa dgn sebelumnya. 🗷 Contoh Mis $n \in H_0$. Tent polinomial minimal dari operator linear $T: R[x]_{\leq n} \to R[x]_{\leq n}$ dgn T(f(x)) = f'(x).Jawab Mis $\beta = \{1, x, x^2, \dots, x^n\}$ Perhatikan $T(1) = 0 = 0.1 + 0.x + 0.x^{2} + --- + 0.x^{9-1} + 0.x^{9}$ $T(x) = 1 = 1-1 + 0-x + 0-x^2 + --- + 0-x^{n-1} + 0-x^n$ $T(x^2) = 2x = 0.1 + 2.x + 0.x^2 + --- + 0.x^{n-1} + 0.x^n$ $T(x^{n}) = nx^{n-1} = 0.1 + 0.x + 0.x^{1} + --- + nx^{n-1} + 0.x^{n}$ Jadi, $[T]_{\beta} = ([T(x)]_{\beta} [T(x)]_{\beta} [T(x^{2})]_{\beta} --- [T(x^{n})]_{\beta})$ $= \begin{pmatrix} 0 & 1 & 0 & --- & 0 \\ 0 & 0 & 2 & --- & 0 \\ 0 & 0 & 0 & --- & 1 \\ 0 & 0 & 0 & --- & 1 \\ 0 & 0 & 0 & --- & 0 \end{pmatrix}$

$$[T]_{\beta} - \lambda I = \begin{pmatrix} -\lambda & 1 & 0 & -\cdots & 0 & 0 \\ 0 & -\lambda & 2 & -\cdots & 0 & 0 \\ 0 & 0 & -\lambda & -\cdots & 0 & 0 \\ 0 & 0 & 0 & -\cdots & -\lambda & n \end{pmatrix}$$
Polinonnial kovrakteristik dari T adl
$$|[T]_{\beta} - \lambda I| = (-\lambda)^{n+1} = (-1)^{n+1} \lambda^{n+1}$$

Dgn demikiom, kemungkinan = polinowal minimal dari T hanyalah λ , λ^2 , λ^3 ,..., λ^{n+1} . Karena $T(x) = 1 \neq 0$, $T^2(x^2) = 2 \cdot 1 \neq 0$, $T^3(x^3) = 3 \cdot 2 \cdot 1 \neq 0$, ..., $T^n(x^n) = n(n-1) \cdot ... \cdot 2 \cdot 1 = n! \neq 0$, maka T, T^2 , T^3 ,..., T^n bukan pemetaan nol, shg λ , λ^2 , λ^3 ,..., λ^n bukan polinormal minimal dari T. Jadi, polinormal minimal dari T adl $q(\lambda) = \lambda^{n+1}$.