2.

a)

$$\hat{A} = \frac{1}{N} \frac{N}{1} N^{i}$$

$$\hat{G}^{2} = \frac{1}{N-1} \frac{N}{1} (N^{i} - N^{i})^{2}$$

$$\hat{G}^{3} = \frac{1}{N-1} \frac{N}{1} (N^{i} - N^{i})^{2}$$

$$\hat{G}^{3} = \frac{1}{N-1} \frac{N}{1} (N^{i} - N^{i})^{2}$$

$$\hat{G}^{3} = \frac{1}{N-1} \frac{N}{1} (N^{i} - N^{i})^{2}$$

- b) estimate of μ is 46.8599 estimate of σ^2 is 118.1177 estimate of σ is 10.8682
- c) The sampling distribution of \bar{Y} is $\bar{Y} \sim G(\mu, \frac{\sigma}{\sqrt{n}})$, where μ represents the average fuel consumption per fill-up, σ represents the standard deviation of the fuel consumption per fill-up, and n represents the number of gas data for car S. The formula for a pivotal quantity for μ based off \bar{Y} is $\frac{\bar{Y} \mu}{\sigma / \sqrt{n}}$.
- d) The sampling distribution of S^2 is $S^2 \sim \frac{\chi^2(n-1)\sigma^2}{n-1}$, where σ^2 represents the variance of the fuel consumption per fill-up, and n represents the number of gas data for car S. The formula for a pivotal quantity for σ^2 based off S^2 is $\frac{(n-1)S^2}{\sigma^2}$ and S^2 represents the sample variance of the fuel consumption per fill-up.
- e) The sampling distribution of T is T = $\frac{Y-\mu}{S/\sqrt{n}} \sim t(n-1)$, where n represents the number of gas data for car S. T is a pivotal quantity. This is because T is a function of the data Y due to the presence of \bar{Y} and the unknown parameter μ such that the distribution of the random variable T is fully known, which is t distribution and degree freedom is n 1.

That is, probability statements such as $P(T \le b)$ and $P(T \ge a)$ depend on a and b but not on μ or any other unknown information.