Alcippe poioicephala $t_{\text{Student}}(29) = 4.24, p = 2.10e-04, \hat{r}_{\text{Winsorized}} = 0.62, \text{Cl}_{95\%} [0.34, 0.80], n_{\text{pairs}} = 31$ 7.5 5.0-2.5 0.0 abundance_pc 2-

100

detections_aru

50

150

200

0-

Corvus macrorhynchos

Culicicapa ceylonensis

Dicaeum concolor

 $t_{\text{Student}}(25) = -3.39, p = 2.32 \text{e-}03, \hat{r}_{\text{Winsorized}} = -0.56, \text{Cl}_{95\%} \text{ [-0.78, -0.23]}, n_{\text{pairs}} = 27$ 10-5abundance_pc 12 detections_aru

Dicrurus paradiseus

Ducula badia

Gallus sonneratii

Geokichla citrina

 $t_{\text{Student}}(39) = 2.12, p = 0.04, \hat{r}_{\text{Winsorized}} = 0.32, \text{Cl}_{95\%} \text{ [0.02, 0.57]}, n_{\text{pairs}} = 41$ 4-2-0-1.0abundance_pc 0.5-0.0 100 detections_aru 0 5 10152025 150 50 200

Gracula indica

Hypothymis azurea $t_{\text{Student}}(30) = 1.57, p = 0.13, \hat{r}_{\text{Winsorized}} = 0.28, \text{Cl}_{95\%} \text{ [-0.08, 0.57]}, n_{\text{pairs}} = 32$ abundance_pc

> 50 detections_aru

75

100 0.02.55.07.510.0

25

Hypsipetes ganeesa ganeesa $t_{\text{Student}}(39) = 7.89, p = 1.31\text{e-}09, \hat{r}_{\text{Winsorized}} = 0.78, \text{Cl}_{95\%} [0.63, 0.88], n_{\text{pairs}} = 41$ abundance_pc 200 detections_aru 0 5 10 15 100 300

Irena puella $t_{\text{Student}}(38) = 3.70, p = 6.72 \text{e-}04, \hat{r}_{\text{Winsorized}} = 0.52, \text{Cl}_{95\%} \text{ [0.24, 0.71]}, n_{\text{pairs}} = 40$ 4-2-0-7.5abundance_pc 2.0-2 2.5-0.0 0.0 2.5 5.0 7.5 30 detections_aru 90

Leptocoma minima

Loriculus vernalis

 $t_{\text{Student}}(41) = 7.74, p = 1.50 \text{e-}09, \hat{r}_{\text{Winsorized}} = 0.77, \text{Cl}_{95\%} \text{ [0.61, 0.87]}, n_{\text{pairs}} = 43$

Pellorneum ruficeps

Pericrocotus flammeus

Phylloscopus magnirostris $t_{\text{Student}}(39) = 4.89, p = 1.75\text{e-}05, \hat{r}_{\text{Winsorized}} = 0.62, \text{Cl}_{95\%} [0.38, 0.78], n_{\text{pairs}} = 41$ 0-12abundance_pc 0-100 200 detections_aru

Phylloscopus nitidus

 $t_{\text{Student}}(39) = 2.34, p = 0.02, \hat{r}_{\text{Winsorized}} = 0.35, \text{Cl}_{95\%} [0.05, 0.59], n_{\text{pairs}} = 41$ 10-5-0-12abundance_pc 20 40 detections_aru 60

Phylloscopus trochiloides $t_{\text{Student}}(41) = 0.33, p = 0.75, \hat{r}_{\text{Winsorized}} = 0.05, \text{Cl}_{95\%} \text{ [-0.25, 0.35]}, n_{\text{pairs}} = 43$ 5-4-3-2-1-0-16-12abundance_pc 100 200 300 detections_aru

Pomatorhinus horsfieldii t_{Student} (40) = 2.40, p = 0.02, $\hat{r}_{\text{Winsorized}}$ = 0.35, $\text{Cl}_{95\%}$ [0.06, 0.59], n_{pairs} = 42 5-4-3-2-1-0-10.0-

Psilopogon viridis

Sitta frontalis

Tephrodornis sylvicola $t_{\text{Student}}(19) = -1.47, p = 0.16, \hat{r}_{\text{Winsorized}} = -0.32, \text{Cl}_{95\%}$ [-0.66, 0.13], $n_{\text{pairs}} = 21$ 2abundance_pc 0--1-5 10 15 15 detections_aru

Terpsiphone paradisi

 $t_{\text{Student}}(28) = -1.98, p = 0.06, \hat{r}_{\text{Winsorized}} = -0.35, \text{Cl}_{95\%} \text{ [-0.63, 0.01]}, n_{\text{pairs}} = 30$

Zosterops palpebrosus $t_{\text{Student}}(41) = 2.38, p = 0.02, \hat{r}_{\text{Winsorized}} = 0.35, \text{Cl}_{95\%} [0.05, 0.59], n_{\text{pairs}} = 43$ 4-2-0-12-8abundance_pc 0-200 detections_aru 100 300 5

Arachnothera longirostra $t_{\text{Student}}(25) = 2.18, p = 0.04, \hat{r}_{\text{Winsorized}} = 0.40, \text{Cl}_{95\%} [0.02, 0.68], n_{\text{pairs}} = 27$ 7.5 5.0-2.5-0.0-8abundance_pc 2-0.0 2.5 5.0 7.5 120 80 detections_aru

Dumetia atriceps $t_{\text{Student}}(15) = -1.43, p = 0.17, \hat{r}_{\text{Winsorized}} = -0.35, \text{Cl}_{95\%} \text{ [-0.71, 0.16]}, n_{\text{pairs}} = 17$ 3-2-1-0 -7.5 -5.0abundance_pc 2.5-0.0--2.5 10 0 3 6 20 detections_aru

Harpactes fasciatus $t_{\text{Student}}(16) = 0.45, p = 0.66, \hat{r}_{\text{Winsorized}} = 0.11, \text{Cl}_{95\%} \text{ [-0.37, 0.55]}, n_{\text{pairs}} = 18$ abundance_pc 10 30

detections_aru

Larvivora brunnea

Muscicapa muttui

Psilopogon malabaricus

Pterorhinus delesserti $t_{\text{Student}}(2) = -1.25, p = 0.34, \hat{r}_{\text{Winsorized}} = -0.66, \text{Cl}_{95\%} \text{ [-0.99, 0.82]}, n_{\text{pairs}} = 4$ 3-2-1-5.0-2.5 abundance_pc 0.0 -2.5 -5.0 0.00 0.75 0.00.51.01.52.0 0.25 0.50 1.00 detections_aru

Centropus sinensis

Chrysocolaptes guttacristatus $t_{\text{Student}}(26) = 0.08, p = 0.94, \hat{r}_{\text{Winsorized}} = 0.02, \text{Cl}_{95\%} \text{ [-0.36, 0.39]}, n_{\text{pairs}} = 28$ 10.0-7.5 5.0-2.5-0.0-3-2-1-0-

20

detections_aru

30

5

10

abundance_pc

Cyornis pallidipes $t_{\text{Student}}(17) = 0.68, p = 0.50, \hat{r}_{\text{Winsorized}} = 0.16, \text{Cl}_{95\%} \text{ [-0.31, 0.58]}, n_{\text{pairs}} = 19$ 2abundance_pc 60 0 3 6 20

detections_aru

Eumyias albicaudatus $t_{\text{Student}}(4) = -0.62, p = 0.57, \hat{r}_{\text{Winsorized}} = -0.30, \text{Cl}_{95\%} \text{ [-0.89, 0.68]}, n_{\text{pairs}} = 6$ 1.00-0.75 0.50-0.25 0.00-1.5-1.0abundance_pc 0.5-0.0--0.5 10

detections_aru

Merops leschenaulti $t_{\text{Student}}(31) = 0.67, p = 0.51, \hat{r}_{\text{Winsorized}} = 0.12, \text{Cl}_{95\%} \text{ [-0.23, 0.44]}, n_{\text{pairs}} = 33$ abundance_pc 20 40 detections_aru

Dendrocitta leucogastra

Dicrurus leucophaeus

Ficedula nigrorufa $t_{\text{Student}}(4) = p_{\text{Student}}(4) = Cl_{95\%}[1], n_{\text{pairs}} = 6$ 2.0-1.5-1.0-0.5-0.0 1.0-0.5abundance_pc -0.5 -1.0-

detections_aru

40

20

Ocyceros griseus

Buceros bicornis $t_{\text{Student}}(22) = -2.36, p = 0.03, \hat{r}_{\text{Winsorized}} = -0.45, \text{Cl}_{95\%} \text{ [-0.72, -0.06]}, n_{\text{pairs}} = 24$ 2abundance_pc 0--1-

detections_aru

60

80

5 10 15

20

Ficedula ruficauda $t_{\text{Student}}(13) = -1.07, p = 0.30, \hat{r}_{\text{Winsorized}} = -0.28, \text{Cl}_{95\%} \text{ [-0.70, 0.27]}, n_{\text{pairs}} = 15$ 2-0-3-2abundance_pc 0--1-0 1 2 3 4 5 10 20 detections_aru

Muscicapa dauurica $t_{\text{Student}}(11) = p = \hat{r}_{\text{Winsorized}} = Cl_{95\%} [1, 1], n_{\text{pairs}} = 13$ 2.0-1.5-1.0-0.5-0.0 1.0-0.5-0.0 -0.5

10

20

detections_aru

30

abundance_pc

Pycnonotus jocosus

 t_{Student} (39) = 10.08, p = 2.06e-12, $\hat{r}_{\text{Winsorized}}$ = 0.85, $\text{Cl}_{95\%}$ [0.73, 0.92], n_{pairs} = 41 7.5-5.0-2.5-0.0 15abundance_pc 5-0-100 200 300 400 500 detections_aru

Acrocephalus dumetorum

Cinnyris asiaticus

Streptopelia chinensis $t_{\text{Student}}(25) = 1.83, p = 0.08, \hat{r}_{\text{Winsorized}} = 0.34, \text{Cl}_{95\%} \text{ [-0.04, 0.64]}, n_{\text{pairs}} = 27$ 10-5-0-10.0-7.5-5.0-2.5-0.0-

100

detections_aru

50

150

0.0 2.5 5.0 7.5

200

abundance_pc

Chloropsis aurifrons

Psittacula columboides

Psittacula cyanocephala $t_{\text{Student}}(35) = 4.58, p = 5.64 \text{e-}05, \hat{r}_{\text{Winsorized}} = 0.61, \text{Cl}_{95\%} \text{ [0.36, 0.78]}, n_{\text{pairs}} = 37$ abundance_pc

detections_aru

20

0 5 10 15 20

Rubigula gularis $t_{\text{Student}}(9) = -0.63, p = 0.54, \hat{r}_{\text{Winsorized}} = -0.21, \text{Cl}_{95\%} \text{ [-0.72, 0.45]}, n_{\text{pairs}} = 11$ 2-3-2abundance_pc 20 10 40 detections_aru

Acridotheres fuscus $t_{\text{Student}}(10) = -2.67, p = 0.02, \hat{r}_{\text{Winsorized}} = -0.65, \text{Cl}_{95\%} \text{ [-0.89, -0.11]}, n_{\text{pairs}} = 12$ 2-3-2abundance_pc -1-0.0 2.5 5.0 7.5

detections_aru

15

20

Orthotomus sutorius

 $t_{\text{Student}}(27) = 3.75, p = 8.61 \text{e-}04, \hat{r}_{\text{Winsorized}} = 0.58, \text{Cl}_{95\%} \text{ [0.28, 0.78]}, n_{\text{pairs}} = 29$

Aegithina tiphia

Turdus simillimus

Halcyon smyrnensis

Machlolophus aplonotus $t_{\text{Student}}(18) = -2.36, p = 0.03, \hat{r}_{\text{Winsorized}} = -0.49, \text{Cl}_{95\%} \text{ [-0.76, -0.06]}, n_{\text{pairs}} = 20$ 3-2abundance_pc -1detections_aru 30 10

Copsychus saularis $t_{\text{Student}}(23) = p_{\text{Student}}(23) = 0$ Cl_{95%} [,], $n_{\text{pairs}} = 25$ 4-2-0-2.0-1.5apnudance_pc 0.5-0.0-

detections_aru

0 5 10 15 20

30

10

Iduna caligata

Argya subrufa

Dinopium javanense $t_{\text{Student}}(8) = -3.79, p = 5.28 \text{e-}03, \hat{r}_{\text{Winsorized}} = -0.80, \text{Cl}_{95\%} \text{ [-0.95, -0.35]}, n_{\text{pairs}} = 10$ 2-1.0abundance pc 0.0--0.5 0 2 detections_aru

Hemipus picatus

Falco peregrinus $t_{\text{Student}}(^{)} = , p = , \hat{r}_{\text{Winsorized}} = , \text{Cl}_{95\%} [,], n_{\text{pairs}} = 1$ 1.00-0.75 0.50-0.25 0.00-1.050-1.025 aprindance bc 0.975-0.950-

0.000

detections_aru

0.025

-0.050

-0.025

0.00.25.50.75.00

Oriolus kundoo $t_{\text{Student}}(2) = -\ln f, p = 0.00, \hat{r}_{\text{Winsorized}} = -1.00, \text{Cl}_{95\%} \text{ [-1.00, -1.00]}, n_{\text{pairs}} = 4$ 2-1-0-1.00-0.75aboundance_pc_0.50-0.25-0.00-

detections_aru

Cyornis rubeculoides $t_{\text{Student}}(4) = p_{\text{Student}}(4) = Cl_{95\%}[1, n_{\text{pairs}} = 6]$ 5-4-3-2-1-0-2abundance_pc 0--1detections_aru

Galloperdix spadicea $t_{\text{Student}}(16) = p = \hat{r}_{\text{Winsorized}} = \text{Cl}_{95\%}[1, 1], n_{\text{pairs}} = 18$ 4-2-1.0abundance_pc 0.0 -0.5 10 5 10 15 Ó 15 20 5

detections_aru

Picus chlorolophus $t_{\text{Student}}(6) = -4.33, p = 4.93 \text{e-}03, \hat{r}_{\text{Winsorized}} = -0.87, \text{Cl}_{95\%} \text{ [-0.98, -0.43]}, n_{\text{pairs}} = 8$ 2-1-1.0-0.5abundance_pc 0.0 -0.5 -1.0detections_aru

Picus xanthopygaeus $t_{\text{Student}}(19) = p, p = \hat{r}_{\text{Winsorized}} = Cl_{95\%} [p, p], n_{\text{pairs}} = 21$ 4-3-2-1-0-1.0-0.5abundance_pc 0.0--0.5 0 5 10 15 15 20 detections_aru

Dinopium benghalense

Lanius cristatus

Columba elphinstonii $t_{\text{Student}}(^{)} =$, p =, $\hat{r}_{\text{Winsorized}} =$, $\text{Cl}_{95\%}$ [,], $n_{\text{pairs}} = 2$ 1.00-0.75-0.50-0.25 -0.00-2.0-1.5abundance_pc 1.0-0.5-0.0-0.50 detections_aru 0.00.25.50.75.00 0.00 0.75 1.00 0.25

Haliastur indus

Dryocopus javensis $t_{\text{Student}}(5) = p_{\text{Student}}(5) = Cl_{95\%}[1], n_{\text{pairs}} = 7$ 2.0-1.5-1.0-0.5 -0.0 -1.0abundance_pc 0.0

detections_aru

40

20

Lanius schach $t_{\text{Student}}(2) = -0.80, p = 0.51, \hat{r}_{\text{Winsorized}} = -0.49, \text{Cl}_{95\%} \text{ [-0.99, 0.89]}, n_{\text{pairs}} = 4$ 2.0-1.5-1.0-0.5 0.0 2abundance_pc -1--2detections_aru

Spilornis cheela

Caprimulgus indicus

Yungipicus nanus $t_{\text{Student}}(4) = p_{10} = \hat{r}_{\text{Winsorized}} = Cl_{95\%} [1, 1], n_{\text{pairs}} = 6$ 2.0-1.5-1.0-0.5-0.0 0.050-0.025-0.000--0.025 -0.050

detections_aru

abundance_pc

Accipiter trivirgatus $t_{\text{Student}}(2) = p_{1} = \hat{r}_{\text{Winsorized}} = Cl_{95\%}[1, 1], n_{\text{pairs}} = 4$ 2.0-1.5-1.0-0.5-0.0 0.050-0.025abundance_pc 0.000--0.025 -0.050 7¹.5 detections_aru 2.5 10.0 12.5 0 1 5.0

Oriolus xanthornus

Pernis ptilorhynchus $t_{\text{Student}}(8) = , p = , \hat{r}_{\text{Winsorized}} = , \text{Cl}_{95\%} [,], n_{\text{pairs}} = 10$ 5-4-3-2-1-0-0.050-0.025-0.000--0.025

detections_aru

20

0.02.55.07.510.0

10

abundance_pc

-0.050

Prinia hodgsonii $t_{\text{Student}}(7) = p_{\text{student}}(7) = p_{\text{st$ 3-2-1-0-0.050-0.025abundance_pc 0.000--0.025 -0.050 50 0.0 2.5 5.0 7.5 100 detections_aru

Upupa epops $t_{\text{Student}}(9) = p_{\text{student}}(9) = p_{\text{student$ 2-1-0-0.050-0.025abundance_pc 0.000--0.025 -0.050 detections_aru 75 25

Strix leptogrammica

Accipiter badius $t_{\text{Student}}(3) = p_{\text{Student}}(3) = p_{\text{St$ 2.0-1.5-1.0-0.5 0.0 0.050-0.025-0.000--0.025

detections_aru

abundance_pc

-0.050

2

Argya striata $t_{\text{Student}}(7) = p_{\text{student}}(7) = r_{\text{Winsorized}} = r_{\text{student}}(7) = r_{\text{pairs}}(7) = r_{\text{winsorized}}(7) = r_{\text{student}}(7) = r_{$ 3-2-1-0-0.050-0.025-0.000--0.025 -0.050 20 detections_aru 0.0 2.5 5.0 7.5 60

abundance_pc

Eudynamys scolopaceus

Dendronanthus indicus $t_{\text{Student}}(^{)} = p, p = \hat{r}_{\text{Winsorized}} = Cl_{95\%}$ [,], $n_{\text{pairs}} = 2$ 1.00-0.75 0.50-0.25

Carpodacus erythrinus $t_{\text{Student}}(6) = p_{\text{Student}}(6) = Cl_{95\%}[1], n_{\text{pairs}} = 8$ 3-2-1-0-0.050-0.025-0.000--0.025 -0.050

detections_aru

30

10

abundance_pc

Phylloscopus affinis $t_{\text{Student}}(1) = p_{\text{student}}(1) = p_{\text{student}}(1) = 0$ The student of the studen 1.00-0.75 0.50-0.25 0.00-0.050-0.025abundance_pc 0.000--0.025 -0.050 detections_aru

Arundinax aedon $t_{\text{Student}}(^{)} = p, p = \hat{r}_{\text{Winsorized}} = Cl_{95\%}$ [,], $n_{\text{pairs}} = 2$ 1.00-0.75 0.50-0.25 0.00-0.050-0.025 -0.000--0.025 -0.050

detections_aru

20

0.00.51.01.52.0

abundance_pc

Ketupa zeylonensis $t_{\text{Student}}(^{)} = p, p = \hat{r}_{\text{Winsorized}} = Cl_{95\%}[,], n_{\text{pairs}} = 1$ 1.00-0.75 0.50-0.25 0.00-

Hemicircus canente $t_{\text{Student}}(^{)} = p, p = \hat{r}_{\text{Winsorized}} = Cl_{95\%}$ [,], $n_{\text{pairs}} = 2$ 1.00-0.75 0.50-0.25 0.00 0.050-0.025-0.000--0.025 -0.050

detections_aru

10

0.00.51.01.52.0

12

abundance_pc

Otus bakkamoena

Cacomantis passerinus

Ictinaetus malaiensis

Amaurornis phoenicurus

