Relazioni di Laboratorio di Fisica Computazionale

Carlo Sana

 $4~{\rm giugno}~2012$

Indice

1		egrazione numerica	2
	1.1	Metodi deterministici	2
		1.1.1 Newton-Cotes	2
		1.1.2 Newton-Cotes:2°ordine	4
		1.1.3 Quadrature gaussiane	4
		1.1.4 Utilizzo	5
	1.2	Metodi Monte Carlo	12
2	Osc	cillatore armonico	17
	2.1	Integrali di cammino	17
	2.2	Algoritmo Metropolis	18
		2.2.1 Analisi risultati: binning e cluster Jackknife	20
3	Rur	nge-Kutta IV	22

Capitolo 1

Integrazione numerica

Si vuole calcolare il valore dell'integrale definito di una funzione reale di variabile reale in una dimensione:

$$I = \int_{x_{min}}^{x_{max}} f(x) \, dx$$

I metodo di integrazione numerica implementati si suddividono in metodi deterministici e metodi Monte Carlo.

1.1 Metodi deterministici

Le prime routine di integrazione deterministica sono un'implementazione delle formule di Newton-Cotes (al primo e secondo ordine) e del metodo delle quadrature gaussiane. Per aumentare la precisione del calcolo, il dominio di integrazione viene suddiviso in sottointervalli. La larghezza di ogni intervallo è uniforme ed è possibile scegliere il numero di intervalli in cui si vuole dividere il dominio di integrazione prima di chiamare le funzioni. Per ottenere la stima dell'integrale è necessario sommare le stime degli integrali ottenute per i sottointervalli.

Nel nostro caso n sarà il numero di sottointervalli. Definiamo così in modo naturale una partizione dell'insieme di integrazione:

$$h = \frac{x_{max} - x_{min}}{n}$$
 \Longrightarrow $a_i = x_{min} + ih$ per $i = 0, 1, ..., n$

Nel caso gli estremi di integrazione sono scambiati, ossia $x_{min} > x_{max}$, l'integrazione avviene comunque correttamente, visto che in questo caso h sarà negativo.

1.1.1 Newton-Cotes

Le formule di Newton-Cotes si ottengono interpolando la funzione integranda con polinomi di Lagrange. Il polinomio di Lagrange j-esimo di grado n è definito come:

$$l_j^n(x) = \prod_{i=0, i \neq j}^n \frac{x - x_i}{x_j - x_i}$$

Come si può vedere è un polinomio di grado n, definito in base alla partizione scelta per l'intervallo, con la proprietà:

$$l_i^n(x_i) = \delta_{ij}$$

E' ora immediato costruire un polinomio P(x) tale che $P(x_i) = f(x_i) \ \forall \ 0 < i < n$. Questo polinomio è il seguente:

$$P(x) = \sum_{i=0}^{n} f(x_i) l_i^n(x)$$

La stima dell'integrale diventa così:

$$I = \int_{x_{min}}^{x_{max}} P(x) dx = \int_{x_{min}}^{x_{max}} \sum_{i=0}^{n} f(x_i) l_i^n(x) = \sum_{i=0}^{n} f(x_i) \omega_i$$

Si dimostra inoltre che, con un cambio di variabile:

$$\omega_j = \int_{x_{min}}^{x_{max}} l_i^n(x) dx = \int_0^n \prod_{i=0}^n \frac{z-i}{j-i} dz$$

indipendente dall'intervallo di integrazione.

Questa è ovviamente una stima dell'integrale e si dimostra che l'errore, utilizzando n+1 punti è uguale a :

$$E_n = \frac{1}{(n+1)!} \int_{x_{min}}^{x_{max}} f^{n+1}(\xi) \prod_{i=0}^{n} (x - x_i) dx$$

dove ξ è un punto interno all'intervallo. L'errore è facilmente sovrastimabile, valutando il massimo della derivata n+1-esima all'interno dell'intervallo. L'errore sulla stima dell'integrale, però, non viene calcolato dalla routine d'integrazione. Ciò deriva dal fatto che esso è stimabile analiticamente, essendo necessario solo calcolare la derivata dell'integranda e valutarne il massimo nell'intervallo.

Newton-Cotes:1° ordine

Questo metodo consiste nell'approssimare la funzione fra due punti a_i e a_{i+1} con un segmento. L'area si ottiene calcolando l'area del trapezio sotteso da questo segmento, oppure applicando le formule di Newton-Cotes, ponendo n=1:

$$\omega_0 = \frac{1}{2} \qquad \omega_1 = \frac{1}{2}$$

In questo caso la stima analitica dell'errore diventa:

$$|E_1(f)| = \frac{h^3}{12} f''(\xi) \le \frac{h^3}{12} \max [f''(x), x \in [x_{min}, x_{max}]]$$

Questa formula vale nel caso venga considerato un solo intervallo. Nel nostro caso, l'intervallo è stato suddiviso in n sottointervalli. Una buona sovrastima dell'errore è dunque:

$$|E_1(f)| \le \frac{h^2}{12} (x_{max} - x_{min}) \max [f''(x), x \in [x_{min}, x_{max}]]$$

1.1.2 Newton-Cotes:2°ordine

In questo caso, l'approssimazione viene fatta con polinomi di grado 2, ossia parabole. I pesi ω_i valgono:

$$\omega_0 = \frac{1}{6}$$
 $\omega_1 = \frac{2}{3}$ $\omega_2 = \frac{1}{6}$

La stima dell'errore si può scrivere come:

$$|E_2(f)| = \frac{h^5}{90} f^4(\xi) \le \frac{h^5}{90} \max [f^4(x), x \in [x_{min}, x_{max}]]$$

Come nel caso precedente, nel caso di n sottointervalli, la sovrastima corretta diviene:

$$|E_2(f)| \le \frac{h^4}{90} (x_{max} - x_{min}) \max [f^4(x), x \in [x_{min}, x_{max}]]$$

1.1.3 Quadrature gaussiane

Nel caso delle quadrature gaussiane, i punti della partizione non vengono più scelti equidistanti, ma vengono scelti in maniera più opportuna: sono gli zeri del polinomio ortogonale scelto.

E' fondamentale l'uso di polinomi ortogonali in un certo intervallo [a,b] con il peso $\omega(x)$:

$$\int_{a}^{b} \omega(x) P_n(x) P_m(x) = \delta_{m,n}$$

Si può dimostrare che la stima dell'integrale è:

$$I = \int_a^b f(x) = \sum_{i=0}^n \omega_i f(x_i)$$

dove ω_i , nel caso dei polinomi di Legendre, sono gli stessi pesi definiti per i polinomi di Lagrange costruiti sull'insieme degli zeri del polinomio di Legendre considerato. Considerando che un polinomio ortogonale di grado n in [a,b] ha n zeri in [a,b], anche i polinomi di lagrange saranno di grado n. Inoltre x_i sono gli zeri del polinomio ortogonale considerato. Gli zeri del polinomio sono stati inseriti manualmente, lasciando però al calcolatore il compito di calcolarne il valore in virgole mobile, per aumentarne la precisione. All'interno dell'algoritmo, è necessario effettuare un cambio di variabile in modo da mappare l'intervallo di integrazione nell'intervallo in cui il polinomio è ortogonale. Nel nostro caso tale intervallo è [-1,1], dato che è stato usato un polinomio di Legendre. Tale cambio di variabile è:

$$x' = 2\frac{x - x_{min}}{x_{max} - x_{min}} - 1$$
 $dx' = 2\frac{dx}{x_{max} - x_{min}}$

1.1.4 Utilizzo

Il programma "integral" si occupa di utilizzare le librerie appena discusse per stimare il valore dell'integrale di una funzione, confrontando i tre metodi discussi sopra. Per testare le routine ho utilizzato come funzioni da integrare:

$$f_1(x) = log(1+x)$$
 \Rightarrow primitiva $-x + log(1+x) + xlog(1+x)$
 $f_2(x) = x^9 - x^7 + 3$ \Rightarrow primitiva $\frac{x^{10}}{10} - \frac{x^8}{8} + 3x$

In questo modo si è potuto confrontare i tre metodi di integrazione con il valore vero dell'integrale, valutandone lo scostamento dal valore vero e confrontandolo con la stima dell'errore calcolata analiticamente. È riportata nella tabella seguente una serie di risultati ottenuti variando il numero di intervalli, ma mantenendo costanti gli estremi di integrazione. In questo caso l'intervallo di integrazione è stato [1,2]. La prima tabella si riferisce alla funzione integranda di tipo logaritmico, la seconda a quella di tipo polinomiale. La stima analitica dell'errore è stata calcolata valutando il massimo della derivata in tutto l'intervallo di integrazione. Questa risulta essere una sovrastima della stima dell'errore. Tali valori sono stati calcolati con Wolfram Mathematica e risultano essere:

funzione	$\operatorname{Max} f'$	$\operatorname{Max} f^4$
$f_1 \text{ (Log)}$	0.5	-0.0740742
f_2 (Poly)	1856	90048

Newton-Cotes I: Logaritmo

Log		
Numero intervalli	Newton-Cotes I	Stima analitica errore
10	1.388645 e-04	4.166667e-04
20	3.472070 e-05	1.041667e-04
40	8.680460 e06	2.604167e-05
80	2.170133e-06	6.510417e-06
160	5.425343e-07	1.627604 e-06
320	1.356337e-07	4.069010 e-07
640	3.390842e-08	1.017253e-07
1280	8.477104e-09	2.543132e-08
2560	2.119278e-09	6.357829 e-09
5120	5.298200 e-10	1.589457e-09
10240	1.324560e-10	3.973643e-10
20480	3.310918e-11	9.934107e-11
40960	8.281043e-12	2.483527e-11
81920	2.071121e-12	6.208817e-12

Da questo confronto si nota come l'errore scala come previsto analiticamente e rimane sempre inferiore alla stima fatta analiticamente.

Newton-Cotes II: Logaritmo

Log		
Numero intervalli	Newton-Cotes II	Stima analitica errore
10	-6.101824e-09	-8.230467e-08
20	-3.816787e-10	-5.144042e-09
40	-2.386025e -11	-3.215026e-10
80	-1.491696e-12	-2.009391e-11
160	-9.336976e-14	-1.255870e-12
320	-6.217249e-15	-7.849185e-14
640	-2.220446e-16	-4.905740e-15
1280	-1.443290e-15	-3.066088e-16
2560	-6.661338e-16	-1.916305e-17

CAPITOLO 1. INTEGRAZIONE NUMERICA 1.1. METODI DETERMINISTICI

5120	-2.664535e -15	-1.197691e-18
10240	1.443290e-15	-7.485566e-20
20480	2.220446e-15	-4.678479e-21
40960	2.220446e-15	-2.924049e-22
81920	-3.108624e-15	-1.827531e-23

in questo caso invece l'errore scala correttamente fino a quando raggiunge il valore di $10^{-15}/10^{-16}$. A quel punto smette di diminuire all'aumentare degli intervalli considerati ed inizia ad oscillare, cambiando anche di segno.

Quadrature gaussiane: Logaritmo

Log	
Numero intervalli	quadratura gaussiana
10	2.220446e-16
20	2.220446e-16
40	2.220446e-16
80	2.220446e-16
160	5.551115e-16
320	1.221245e-15
640	-3.330669e-16
1280	1.332268e-15
2560	-6.661338e-16
5120	-2.775558e-15
10240	-1.443290e-15
20480	-2.220446e-15
40960	-2.109424e-15
81920	2.997602e-15

Newton-Cotes I: Polinomio

Poly		
Numero intervalli	Newton-Cotes I	Stima analitica errore
10	1.541035e+00	1.546667e + 00
20	3.860018e-01	3.866667e-01
40	9.654698e-02	9.666667e-02
80	2.413966e-02	2.416667e-02
160	6.035096e-03	6.041667e-03
320	1.508785 e-03	1.510417e-03
640	3.771970e-04	3.776042e-04
1280	9.429930 e-05	9.440104 e-05
2560	2.357483e-05	2.360026e-05
5120	5.893707e-06	5.900065e-06
10240	1.473427e-06	1.475016e-06
20480	3.683565 e-07	3.687541e-07
40960	9.208941 e-08	9.218852e-08
81920	2.302234 e-08	2.304713e-08

in questo caso l'andamento è simile al caso della funzione logaritmica interpolata con il metodo dei trapezi. Si può notare che in questo caso la differenza fra l'errore stimato e l'errore di integrazione è molto piccola. In ogni caso l'errore stimato è sempre maggiore dell'errore di integrazione.

Newton-Cotes II: Polinomio

Poly		
Numero intervalli	Newton-Cotes II	Stima analitica errore
10	9.908609e-04	1.000533e-01
20	6.203492 e-05	6.253333e-03
40	3.878841e-06	3.908333e-04
80	2.424535e-07	2.442708e-05
160	1.515373 e-08	1.526693e-06
320	9.471250 e-10	9.541829 e - 08

640	5.921663e- 11	5.963643e-09
1280	3.652190e-12	3.727277e-10
2560	1.847411e-13	2.329548e-11
5120	4.263256e-14	1.455968e-12
10240	-1.705303e -13	9.099798e-14
20480	4.263256e-14	5.687374e-15
40960	-3.552714e-13	3.554608e-16
81920	4.263256e-14	2.221630e-17

anche in questo caso l'andamento è simile alla funzione logaritmica, anche se l'errore inizia ad oscillare ad un valore di $10^{-13}/10^{-14}$.

Quadrature gaussiane: Polinomio

Poly	
Numero intervalli	quadratura gaussiana
10	0.000000e+00
20	0.000000e+00
40	1.421085e-14
80	1.421085e-14
160	2.842171e-14
320	0.000000e+00
640	2.842171e-14
1280	-2.842171e-14
2560	2.842171e-14
5120	-2.842171e-14
10240	1.705303e-13
20480	-4.263256e-14
40960	3.552714e-13
81920	-2.842171e-14

Dall'analisi di questi dati è possibile trarre alcune conclusioni riguardo i diversi metodi di integrazione deterministica utilizzati. È banale notare come la precisione dell'integrazione con le formule di Newton-Cotes al II° ordine sia molto maggiore di quelle al I° ordine, al prezzo di un costo computazionale ovviamente maggiore. Inoltre, si nota come l'errore scali nella maniera prevista fino a quando diventa troppo "piccolo" e inizia ad oscillare attorno a zero. Questo può essere dovuto alla precisione con cui sono salvati i numeri nel calcolatore, nonostante siano state usate variabili di tipo double in tutto il codice. In ogni caso, si può notare come gli errori abbiano un andamento asintotico in accordo

con la previsione teorica prima che si facciano sentire gli errori di approssimazione del calcolatore.

1.2 Metodi Monte Carlo

Per metodi Monte Carlo si intendono algoritmi basati sulla generazione di dati in modo non deterministico. Generalmente vengono utilizzate sequenze di numeri casuali o pseudocasuali che verranno analizzate e manipolate opportunamente all'interno dell'algoritmo in modo da ottenere una risposta statisticamente significativa al problema.

Il metodo più generale per l'integrazione Monte Carlo consiste nell'utilizzare un generatore di numeri *pseudocasuali* con distribuzione di probabilità piatta. La formula che restituisce il valore dell'integrale è:

$$I = \int_{x_{min}}^{x_{max}} f(x) dx \simeq \frac{1}{n} \sum_{i} f(x_{i}) + o\left(\frac{1}{\sqrt{n}}\right)$$

dove gli x_i sono estratti tra x_{min} e x_{max} . n indica il numero di numeri pseudocasuali estratti.

Questo metodo ha lo svantaggio di ritornare valori poco precisi nel caso la funzione integranda sia estremamente piccata intorno a un punto e zero nel resto dell'intervallo. Questo deriva dal fatto che il generatore estrae numeri in maniera "cieca", senza tenere conto della funzione.

È possibile migliorare questo aspetto, attraverso il metodo del campionamento di importanza. Esso consiste nel generare numeri secondo una distribuzione di probabilità nota e il più possibile simile alla funzione integranda.

$$I = \int_{x_{min}}^{x_{max}} f(x) dx = \int \frac{f(x)}{g(x)} (g(x)dx) \simeq \frac{1}{n} \sum_{i} \frac{f(x_i)}{g(x_i)}$$

Data la natura probabilistica dell'algoritmo, è necessario utilizzare un approccio statistico per ottenere un errore associato al valore dell'integrale. Abbiamo quindi:

$$\sigma^2 = \langle f(x)^2 \rangle - \langle f(x) \rangle^2 = \int (f(x) - I)^2 dx$$

Nel caso utilizziamo il metodo campionamento di importanza:

$$\sigma^2 = \langle \left(\frac{f(x)}{g(x)}\right)^2 \rangle - \langle \frac{f(x)}{g(x)} \rangle^2 = \int \left(\frac{f(x)}{g(x)} - I\right)^2 dx$$

si deduce così che nel caso $g(x) \simeq \frac{f(x)}{I}$ la varianza tende a zero. La difficoltà risiede, però, nel riuscire a creare un generatore di numeri *pseudocasuali* secondo una distribuzione di probabilità a piacere.

Generatori di numeri pseudocasuali

Nel nostro caso ci occuperemo di calcolare il valore dei momenti gaussiani attraverso la tecnica esposta precedentemente.

Nel programma "importanza" sono confrontate tre diverse distribuzioni di probabilità per calcolare il secondo e il quarto momento gaussiano:

$$P_{flat}(x) = 1$$
 per $x_{min} < x < x_{max}$
 $P_{root}(x) = \frac{2}{\sqrt{\pi}} e^{-x} \sqrt{x}$
 $P_{gauss}(x) = \frac{2}{\sqrt{\pi}} e^{-x^2}$

La prima distribuzione è generata dalle funzioni in ranlxd.h ed è stata assunta come corretta. Questa assunzione è necessaria visto che le altre due distribuzioni saranno generate a partire da essa. La distribuzione $P_{gauss}(x)$ è generate con il seguente cambio di variabile, a partire da due variabili casuali "piatte":

$$\hat{x_1}, \hat{x_2} \qquad 0 \le x_1, x_2 \le 1$$

$$y_1^2 = -\log(1 - x_2)\sin^2\left(\frac{\pi}{2}x_1\right)$$
$$y_2^2 = -\log(1 - x_2)\cos^2\left(\frac{\pi}{2}x_1\right)$$

La distribuzione $P_{root}(x)$ invece si ottiene con il seguente cambio di variabile:

$$\hat{x}_1$$
 $P(x_1) = \frac{2}{\pi}e^{-x_1^2}$
 \hat{x}_2 $P(x_2) = e^{-x_2}$

$$y_1 = x_1^2 + x_2$$
$$y_2 = x_2$$

A questo punto la distribuzione di probabilità ottenuta è:

$$P(y_1, y_2) = \frac{2}{\sqrt{\pi}} e^{-(y_1^2 + y_1)} \frac{1}{2\sqrt{y_1 - y_2}}$$

La distribuzione ricercata si ottiene integrando sulla seconda variabile. Ciò equivale ad utilizzare esclusivamente la prima variabile y_1 come variabile casuale.

Confronto tra le distribuzioni

Le diverse distribuzioni sono state confrontate nel calcolare il secondo e il quarto momento gaussiano:

$$\mu_2(x) = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{\pi}} e^{-x^2} = \frac{1}{2}$$

$$\mu_4(x) = \int_{-\infty}^{+\infty} x^4 \frac{1}{\sqrt{\pi}} e^{-x^2} = \frac{3}{4}$$

Si può prevedere che la distribuzione P_{root} fornisca un errore minore, dato che è più simile alle funzioni integrande.

Figura 1.1: Confronto tra il valore dell'integrale con le diverse distribuzioni.

Valore μ_2	0.5		
N	P_{flat}	P_{gauss}	P_{root}
1000	0.402414	0.509921	0.520847
2000	0.478750	0.500909	0.503343
4000	0.559025	0.516745	0.493403
8000	0.529128	0.508603	0.496762
16000	0.528902	0.497904	0.500056
32000	0.527839	0.500956	0.501474

Valore μ_2	0.75		
N	P_{flat}	P_{gauss}	P_{root}
1000	0.819771	0.639290	0.761542
2000	0.734319	0.679399	0.735870
4000	0.710013	0.771816	0.742201
8000	0.824491	0.719916	0.741778
16000	0.788585	0.748977	0.748735
32000	0.718003	0.743117	0.751811

Da questo grafico si nota come l'utilizzo di distribuzioni non piatte porti a una significativa diminuizione dell'errore. Inoltre, come ci aspettavamo, la distribuzione P_{root} è quella che fornisce una stima migliore dell'integrale, a parità di numeri estratti. È necessario controllare che l'algoritmo fornisca risultati con l'andamento asintotico atteso analiticamente come verifica della sua correttezza. Si può dimostrare che l'errore di integrazione è asintotico a $\frac{1}{\sqrt{n}}$. In ordinata è stato quindi posto:

$$\frac{\sigma}{I} \simeq \frac{A}{\sqrt{n}} \longrightarrow y = \frac{\sigma}{I} \sqrt{n} \simeq A$$

Per questo motivo ci aspettiamo che nel grafico i punti siano allineati all'incirca su rette orizzontali. Il valore dell'ordinata indica, dunque, il coefficiente dell'andamento asintotico dell'errore. Da ciò possiamo dedurre che la distribuzione P_{root} , avendo come valore di A minore, è quella che fornisce un valore dell'integrale più preciso.

Figura 1.2: Andamento asintotico del "rumore".

Capitolo 2

Oscillatore armonico

Si è risolto l'oscillatore armonico quantistico monodimensionale attraverso l'utilizzo degli integrali di cammino sul reticolo. È stato scelto un approccio non-determnistico attraverso l'integrazione Monte Carlo.

Il tempo è stato discretizzato in N istanti e, ponendo T come istante finale e 0 come istante iniziale, abbiamo il passo reticolare temporale $a=\frac{T}{N}$.

2.1 Integrali di cammino

Nel formalismo del *path integral* sul reticolo è fondamentale introdurre il concetto di azione. Nel nostro caso sarà importante la definizione di azione euclidea:

$$S_E = a \sum_{i=0}^{n-1} \mathcal{L}_E(x_i, x_{i+1})$$

dove

$$\mathcal{L}_E(x_i, x_{i+1}) = \frac{m}{2} \left(\frac{x_{i+1} - x_i}{a} \right)^2 + \frac{1}{2} V(x_i) + \frac{1}{2} V(x_{i+1})$$

Si ricava un equivalente alla funzione di partizione classica definita come:

$$Z_a(0,T) = \left(\frac{m}{2\pi a}\right)^{N/2} \int \prod_{i=1}^{N-1} dx_i \ e^{-S_E}$$

e il correlatore fra due operatori di posizione è uguale a:

$$C(|l-k|) = \langle x_l | x_k \rangle = \frac{\int \prod_{i=1}^{N-1} dx_i | x_l | x_k | e^{-S_E}}{Z_a}$$

Si dimostra che:

$$C(|l-k|) = \langle x_l \, x_k \rangle = 2|\langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle|^2 \exp\left(-\frac{Na}{2} \left(\tilde{E}_1 - \tilde{E}_0\right) x\right) \cosh\left[a\left(\frac{N}{2} - |l-k|\right) (\tilde{E}_0 - \tilde{E}_1)\right]$$

$$\langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle = \frac{1}{\sqrt{2m\bar{\omega}}}$$

dove è stato posto

$$\bar{\omega}^2 = \omega^2 \left(1 + \frac{a^2 \omega^2}{4} \right) \qquad a\tilde{\omega} = \ln \left(1 + a\bar{\omega} + \frac{a^2 \omega^2}{2} \right) \qquad \tilde{E}_n = \tilde{\omega} \left(n + \frac{1}{2} \right)$$

Nel nostro caso, si è posto N=32, ma l'algoritmo è indipendente da N.

Ciò che viene calcolato dall'algoritmo sono i valor medi $\langle x_l | x_k \rangle$ per ogni valore di |l-k| e i relativi errori. Da essi siamo in grado di estrarre il valore di $\langle E_0 | \hat{x} | E_1 \rangle$ e $\tilde{E}_1 - \tilde{E}_0$. Gli errori sulle grandezze secondarie sono stati calcolati con il metodo cluster jackknife.

2.2 Algoritmo Metropolis

Per calcolare $\langle x_l | x_k \rangle$ con un metodo Monte Carlo è necessario riuscire ad estrarre numeri casuali secondo la $pdf \ e^{-S_E}$. L'algoritmo Metropolis-Hastings permette di estrarre numeri casuali secondo una pdf qualsiasi a partire da un generatore "piatto".

Più in generale esso permette, dato uno spazio di configurazioni S e una pdf P(s): $S \to \mathbb{R}$, di estrarre configurazioni del sistema compatibili con la pdf voluta. Ciò è particolarmente utile in quanto non è sempre possibile trovare un cambio di coordinate che permette di ottenere la distribuzione voluta a partire da una distribuzione piatta, come è stato fatto nell'integrazione Monte Carlo discussa in 1.2.

L'algoritmo si basa sul metodo del rigetto. Poniamo di avere uno stato s nello spazio delle configurazioni. A questo punto:

- si estrae una nuova configurazione del sistema s' con il generatore di numeri random "piatto".
- si calcola il rapporto $\frac{P(s')}{P(s)}$.
- si accetta il nuovo stato estratto s' con probabilità pari a $min\left[1, \frac{P(s')}{P(s)}\right]$.

Si dimostra che gli stati del sistema vengono estratti con la pdf da noi cercata, a patto di attendere che il sistema si termalizzi. Questo è dovuto al fatto che la pdf di estrazione delle configurazioni approssima la distribuzione P solo in regime asintotico.

Implementazione dell'algoritmo Metropolis all'oscillatore armonico

Nel caso dell'oscillatore armonico la pdf ricercata è e^{-S_E} , opportunamente normalizzata. Inoltre, lo spazio delle configurazioni coincide con \mathbb{R}^N , dove N è il numero di coordinate. D'ora in poi per $\hat{e_i}$ si intenderà l'i-esimo vettore della base canonica in \mathbb{R}^N . In questo caso, grazie alla presenza dell'esponenziale nella pdf, il rapporto $\frac{P(s')}{P(s)}$ si semplifica ulteriormente, e l'algoritmo diventa:

- si estrae una nuova configurazione del sistema $\vec{x'}$: esso corrisponde a $\vec{x} + \left(\delta \ rand() \frac{\delta}{2}\right) \hat{e_i}$. rand() è un numero casuale fra 0 e 1, δ è un parametro per regolare la traslazione (in questo caso è uguale a 2). È importante notare che viene cambiata una coordinata alla volta per ogni passo del Metropolis.
- si calcola $\Delta S_E = S_E(\vec{x}') S_E(\vec{x})$

Dato che ad ogni passo del Metropolis viene modificata solo una coordinata, è possibile valutare ΔS_E in una forma più efficiente come costo computazionale.

$$\Delta S_E = a[\mathcal{L}(x_{i-1}, x_i') + \mathcal{L}(x_i', x_{i+1}) - \mathcal{L}(x_{i-1}, x_i) - \mathcal{L}(x_i, x_{i+1})]$$

Inizializzazione e termalizzaione dell'algoritmo

Prima che l'algoritmo Metropolis riesca a generare configurazioni del sistema con la pdf voluta, è necessario che entri in regime asintotico. È possibile stimare il tempo di termalizzazione dell'algoritmo graficando l'andamento dell'azione euclidea S_E in funzione del tempo markoviano.

In questo caso si è scelto di inizializzare il la configurazione di partenza in modo che tutte le variabili fossero inizializzate a zero: ossia è stato fatta una *cold start*.

Figura 2.1: Andamento dell'azione euclidea in funzione del numero di sweeps.

Come si vede nel grafico, l'azione parte da zero e cresce velocemente. Dopo circa cento sweeps si può vedere come l'algoritmo sia già in un regime asintotico. All'interno del programma è stato scelto come tempo di termalizzazione 200. Gli sweeps di termalizzazione non sono stati utilizzati per calcolare alcune grandezza.

2.2.1 Analisi risultati: binning e cluster Jackknife

Data la natura dell'algoritmo Metropolis, durante l'analisi dati è necessario considerare che le diverse configurazioni estratte non sono scorrelate l'una dall'altra. Per tenere conto di questo fenomeno, è stato necessario dividere l'insieme delle configurazioni in intervalli tali che la loro "lunghezza" in tempo markoviano sia molto maggiore del tempo di decorrelazione τ_{corr} . Esso viene ricavato da una stima approssimativa della funzione di autocorrelazione così definita:

$$\Gamma(t) = \frac{\sum_{i=0}^{t} \langle O(t_i)O(t_i+t) \rangle - \langle O(t_i) \rangle \langle O(t_i+t) \rangle}{\sum_{i=0}^{t} \langle O(t_i)^2 \rangle - \langle O(t_i) \rangle^2} \simeq \exp\left(-\frac{t}{\tau_{corr}}\right)$$

Dal grafico si può stimare τ_{corr} approssimativamente: esso risulta essere circa 4 – 5. La

Figura 2.2: Funzione di autocorellazione per ogni valore di |l-k|

larghezza degli intervalli è stata scelta pari a cento.

Per ogni intervallo è stata calcolata la media e la varianza del correlatore per ogni valore

di |l-k|. In questo modo esse risultano essere scorrelate fra gli intervalli ed è così possibile utilizzare la tecnica del *cluster jackknife* per calcolare gli errori sulle grandezze derivate.

Definiamo a_i come il valore della grandezza primaria nell'intervallo i. Indicando con \bar{a} la media tra tutti gli a_i , definiamo a_i clusterized come:

$$a^i = \bar{a} + \frac{1}{N_{bin} - 1} \left(\bar{a} - a_i \right)$$

Si può vedere come il valore medio degli a^i (clusterized) sia uguale al valor medio degli a_i .

L'utilità del cluster Jackknife si palesa nel calcolo della varianza di grandezze che sono funzione degli a_i precedentemente definiti.

Di nuovo, per una funzione f = f(a), definiamo $\bar{f} = f(\bar{a})$ e $f^i = f(a^i)$. Grazie a queste definizioni si può dimostrare:

$$\sigma_f^2 \simeq \frac{N_{bin} - 1}{N_{bin}} \sum_i \left(f^i - \bar{f} \right)^2$$

nel limite in cui $N_{bin} \to \infty$. Inoltre, è possibile calcolare la varianza di un'altra funzione secondaria, dipendente da f(a). Nel programma, abbiamo considerato dapprima a = C(|l-k|) e $f(a) = \Delta E$. In seguito, per calcolare l'elemento di matrice $W_{01} = \langle \tilde{E}_0 | \hat{x} | \tilde{E}_1 \rangle$, abbiamo posto $a = \Delta E$ e $f(a) = W_{01}$. Con questo metodo è stato possibile, dunque, calcolare le incertezze anche sulle grandezze che ci eravamo posti l'obiettivo di misurare con questa simulazione numerica. Come ulteriore test dell'algoritmo, sono state eseguite circa 4000 simulazioni. Così facendo è stato possibile avere un'idea della distribuzione di ΔE , $\sigma_{\Delta E}$, W_{01} , $\sigma_{W_{01}}$

Capitolo 3

Runge-Kutta IV

L'implementazione di questo metodo di risoluzione delle equazioni differenziali ordinarie è valida per sistemi di equazioni differenziali di ordine 2: ossia riconducibili a un sistema di 2 equazioni differenziali.

Nel nostro caso è stata risolta un'equazione newtoniana, ossia della forma

$$\ddot{x} = f(x,t) \Longleftrightarrow \begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = f(x,t) \end{cases}$$

Il sistema risolto in questo caso è un pendolo smorzato con forzante esterna sinusoidale, ossia risolvente la seguente equazione differenziale:

$$\ddot{\theta} = f(\theta, \dot{\theta}, t) - \frac{g}{R} \theta - b \dot{\theta} + Q \cos(\omega t)$$

L'algoritmo è implementato, sostanzialmente in questa funzione. Essendo un'implementazione in dimensione due, riceve come argomento 2 vettori in cui saranno salvati gli incrementi, le due variabili spaziali, e le due funzioni date dal sistema di equazioni differenziali. Nel nostro caso avremo:

$$\begin{cases} x_1 = \theta \\ x_2 = \dot{\theta} \end{cases} \implies f_1 = x_2 \qquad f_2 = f(x_1, x_2, t)$$

Nella funzione è utilizzata la variabile di preprocessore H che rappresenta il passo dell'incremento infinitesimo nel tempo.

Un'ultima funzione, infine, valuta l'incremento effettivo della variabile, a seconda dei valori calcolati dalla funzione riportata sopra e immagazzinati in uno dei due vettori k1 o k2.

I pesi sono definiti dal metodo Runge-Kutta IV.