PHYS7721 Homework 2

Ryan Carelli

Due Thursday March 2, 2017

Exercise 1. By evaluating the "volume" of the relevant region of its phase space, show that the number of microstates available to a rigid rotator with angular momentum $\leq M$ is $(M/\hbar)^2$. Hence determine the number of microstates that may be associated with the quantized angular momentum $M_j = \sqrt{j(j+1)}\hbar$, where $j=0,1,2,\ldots$ or $\frac{1}{2},\frac{3}{2},\frac{5}{2},\ldots$ Interpret the result physically.

Solution. We desire the total volume in phase space,

$$\int d\theta d\phi dp_{\theta} dp_{\phi}$$

where θ and ϕ represent the orientation of the rotator in real space. We have that the area of an ellipse $A = \pi ab$ where a is the length of the major axis and b is the length of the semimajor axis. The general formula for an ellipse is,

$$1 = \frac{a^2}{x^2} + \frac{b^2}{y^2}$$

Consider $M^2 = p_{\theta}^2 + (p_{\phi}^2/\sin^2\theta)$. We get

$$1 = \frac{p_{\theta}^2}{M^2} + \frac{p_{\phi}^2}{M^2 \sin^2 \theta}$$

which gives us the values for a and b. The momentum cross section is therefore $\pi M^2 \sin \theta$ and our integral is reduced to,

$$\int_0^\pi \sin\theta d\theta \int_0^{2\pi} \pi M^2 d\phi = 4\pi^2 M^2.$$

Thus the number of microstates is $\frac{4\pi^2M^2}{h^2} = \left(\frac{M}{\hbar}\right)^2$ as desired. For a particular quantized angular momentum, we estimate with the range of a particular quanta.

$$\frac{1}{\hbar} \left[M_{j+\frac{1}{2}}^2 - M_{j-\frac{1}{2}}^2 \right] = 2j + 1$$

simply plugging in the chosen values of j.

Exercise 2. Following the method of Appendix C, replacing equation (C.4) by the integral

$$\int_0^\infty e^{-r} r^2 dr = 2,$$

show that

$$V_{3N} = \int \dots \int_{0 \le \sum_{i=1}^{N} r_i \le R} \prod_{i=1}^{N} (4\pi r_i^2 dr_i) = (8\pi R^3)^N/(3N)!.$$

Using this result, compute the "volume" of the relevant region of the phase space of an extreme relativistic gas ($\epsilon = pc$) of N particles moving in three dimensions. Hence, derive expressions for the various thermodynamic properties of this system and compare your results with those of Problem 1.7.

Solution. $V_{3N} = AR^{3N}$ and $dV_{3N} = 3ANR^{3N-1}dR$.

$$\int_0^\infty ... e^{-\sum_{i=1}^N r_i} \prod_{i=1}^N r_i^2 dr_i = 2^N$$

by substitution of the given integral. Write the LHS,

$$\int_0^\infty e^{-R} 4^{-N} \pi^{-N} dV_{3N} = (4\pi)^{-N} 3AN\Gamma(3N)$$

$$2^{N} = (4\pi)^{-N} 3AN\Gamma(3N) \implies A = \frac{(8\pi)^{N}}{(3N)!}$$

where we use the definition of the gamma function to get the factorial. By $V_{3N} = AR^{3N}$ this yields the desired expression for V_{3N} .

Now to find the volume of the region of the phase space,

$$\int \prod_{i=1}^{3N} dq_i dp_i = V^N \int \prod_{i=1}^{N} 4\pi p_i^2 dp_i = V^N \frac{\left(\frac{8\pi E^3}{c^3}\right)^N}{(3N)!}$$

Divide by h^3 to give the number of microstates contained in this volume.

$$\left(\frac{\partial (k \ln \Sigma)}{\partial E}\right)_{N.V} = \frac{3Nk}{E} = \frac{1}{T}$$

as expected. Since VE^3 is a constant we get VT^3 a constant which gives us $\gamma = \frac{4}{3}$ and now taking partial derivatives we can get the thermodynamic quantities we desire matching those in 1.7.

Exercise 3. Making use of the fact that the Helmholtz free energy A(N, V, T) of a thermodynamic system is an extensive property of the system, show that

$$N\left(\frac{\partial A}{\partial N}\right)_{VT} + V\left(\frac{\partial A}{\partial V}\right)_{NT} = A$$

[Note that this result implies the well-known relationship: $N\mu = A + PV (= G)$.]

Solution. An extensive property increases linearly with N. We want to express A as a process of intensive variables and N,

$$A(N, V, T) = Na(v, T).$$

$$\begin{split} V \left(\frac{\partial A}{\partial V} \right)_{N,T} &= V N \left(\frac{\partial a}{\partial v} \right)_T \frac{\partial v}{\partial V} = V N \left(\frac{\partial a}{\partial v} \right)_T \frac{1}{N} \\ N \left(\frac{\partial A}{\partial N} \right)_{V,T} &= N \left(a + N \left(\frac{\partial a}{\partial v} \right)_T \frac{-V}{N^2} \right) \end{split}$$

and summing,

$$VN\Big(\frac{\partial a}{\partial v}\Big)_T\frac{1}{N}+N\Big(a+N\Big(\frac{\partial a}{\partial v}\Big)_T\frac{-V}{N^2}\Big)=Na(v,T)=A$$

Exercise 4. (a) Assuming that the total number of microstates accessible to a given statistical system is Ω , show that the entropy of the system, as given by the equation (3.3.13), is maximum when all Ω states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value \bar{E}), then show that the entropy, as given by the same formal expression, is maximum when $P_r \alpha e^{-\beta E_r}$, β being a constant to be determined by the given value of \bar{E} .

(c) Further, if we have an ensemble of systems sharing energy (with mean value \bar{E}) and also sharing particles (with mean value \bar{N}), then show that the entropy, given by a similar expression, is maximum when $P_{r,s}\alpha e^{-\alpha N_r - \beta E_s}$, α and β being constants to be determined by the given values of \bar{N} and \bar{E} .

Solution. This problem is an application of the Lagrange Multiplier method discussed in class. Consider first the constraints,

$$\sum_{s} E_s P_{r,s} = \bar{E}, \quad \sum_{s} N_s P_{r,s} = \bar{N}$$

These are the most general constraints allowing variation in \bar{N} and \bar{E} , and we can remove these one by one to get all of the desired expressions. As in Eq. 3.2.8 in the book, slightly vary P and we get,

$$\sum_{r,s} (-(1+\ln P_{r,s}) - \gamma - \beta E_s - \alpha N_r) \delta P_{r,s} = 0$$

But then

$$-(1 + \ln P_{r,s}) - \gamma - \beta E_s - \alpha N_r = 0$$

which implies from simple rearrangement (c), $P_{r,s}\alpha e^{-\beta E_s-\alpha N_r}$. Now remove the constraint from \bar{N} and we are left with (b) $P_r\alpha e^{-\beta E_r}$ by the same process. Finally if we remove the constraint from \bar{E} we get $P_r = k$ where k is a constant (a).

Exercise 5. If the "free volume" \bar{V} of a classical system is defined by the equation

$$\bar{V}^N = \int e^{(\bar{U} - U(\bar{q}_i)/kT} \prod_{i=1}^N d^3 q_i,$$

where \bar{U} is the average potential energy of the system and $U(\bar{q}_i)$ the actual potential energy as a function of the molecular configuration, then show that

$$S = Nk \left(\ln \left(\frac{\bar{V}}{N} \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} \right) + \frac{5}{2} \right)$$

In what sense is it justified to refer to the quantity \bar{V} as the "free volume" of the system? Substantiate your answer by considering a particular case - for example, the case of a hard sphere gas.

Solution. To derive S, we want to find the partition function. Start with the equation for classical systems,

$$Q_N(V,T) = \frac{1}{N!h^{3N}} \int e^{-\beta H(q,p)} d\omega$$

and substitute the Hamiltonian for a system of particles $H(q,p) = \sum_i \frac{p_i^2}{2m} + U(q)$.

$$Q_N(V,T) = \frac{1}{N!h^{3N}} \int e^{-\beta \sum_i \frac{p_i^2}{2m} + U(q)} d\omega$$

which becomes,

$$Q_N(V,T) = \frac{1}{N!} \left(\frac{2\pi mkT}{h^2} \right)^{3N/2} \int e^{-U(q)/kT} d^{3N} q$$

Now apply the Stirling Approximation and let $Z_N = \int e^{-U(q)/kT} d^{3N} q$

$$A = NkT \left(\ln \left(N \left(\frac{h^2}{2\pi mkT} \right)^{3/2} \right) - 1 \right) - kT \ln Z$$

$$\implies S = Nk \left(\frac{1}{N} \left(\frac{2\pi mkT}{h^2} \right)^{3/2} \right) + \frac{5}{2} \right) + kT \left(\frac{\partial \ln Z}{\partial T} \right)_{NV} + k \ln Z$$

Evaluating the partial derivative,

$$kT \Big(\frac{\partial \ln Z}{\partial T}\Big)_{N,V} = \frac{\bar{U}}{T}$$

$$k \ln Z = Nk \ln \bar{V} - \frac{\bar{U}}{T}$$

which gives the result stated in the problem. For a hard sphere of gas,

$$U(q) = \sum_{i < j} u(r_{ij}) \implies e^{\beta U(q)} = \prod_{i < j} e^{-\beta u(r_{ij})}$$

But now when we evaluate Z, we find that \bar{V} represents a volume element of the molecules considered.

Г