Lab 4: Adders/Subtractors

Objectives

- To practice on signed binary numbers.
- To perform addition and subtraction by using 4-bit binary adder.

Apparatus

7483 4-bit binary adder 7486 quad 2-input XOR gates

PreLab Questions:

1. Design a half adder circuit and a full adder circuit by using only XOR gates and NAND gates.

152120211104 Q1.circ

Input		Output		
Х	Y	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1 1		0	

Soruda sadece XOR ve NAND kapılarının kullanılması belirtilmiştir. Bu yüzden C çıktısını NAND kapılarıyla alabilmek üç adet NAND kullanılmıştır. İki adet NAND kapısının çıktılarının üçüncü NAND kapısına bağlanmasıyla C çıktısı elde edilmiştir. S çıktısı için sadece XOR kapısı kullanımı yeterli olmuştur.

152120211104_Q1.circ

Input			Output	
Χ	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

İlk devreden farklı olarak bu devrede birtane daha input değerimiz var. S çıkışını almak için X ve Y değerleri XOR kapısına bağlanmış olup çıkan sonuç ile üçüncü input değerimiz ayrı bir XOR kapısına bağlanılmıştır. C çıkışını almak için X ve Y nin XOR çıkışı ile üçüncü input değerimiz bir NAND kapısına ve X ve Y değerlerimmiz başka bir NAND kapısına bağlanmıştır. Bu iki NAND kapısının değerleri ise başka bir NAND kapısına bağlanılarak C çıktımız elde edilmiştir.

2. Fill the table with the 1's and 2's complements of the binary numbers.

	1s complement	2s complement		
1011	0100	0101		
1111	0000	0001		
0101	1010	1011		
0000	1111	0000		
0011	1100	1101		

3. Fill the table with the 8-bit signed representations of the decimal numbers.

Decimal	Signed	Signed 1's	Signed 2'
	Magnitude	lagnitude complement	
-4	10000100	11111011	11111100
-12	10001100	11110011	11110100
-8	10001000	11110111	11111000
-16	10010000	11101111	11110000
-1	10000001	11111110	11111111

4. The 4 bit adder/subtractor circuit implemented with IC 7483 is shown in Fig.3. The circuit uses signed 2's complement system for negative numbers. Explain the operation of the circuit with your own words, briefly.

 C_i girişi 0 iken toplama işlemi gerçekleşiyor. Ancak C_i girişi 1 iken çıkarma işlemi gerçekleşiyor. Çıkarma işleminde çıkartılacak sayının 2' tümleyeni alınarak diğer sayıyla toplanması gerçekleştiriliyor. Burada 2' tümleyeni XOR kapılarıyla sağlanıyor. Örneğin 5-3 işlemi 5+(-3) şeklinde gerçekleştirilmiş oluyor.

M = 0 for add and M = 1 for subtract

Fig.3 4-bit adder/subtractor

IC Description:

IC type $7\dot{4}83$ is a 4-bit binary adder with fast carry. The pin-out for the 7483 is shown in Fig 4. The two 4-bit input binary numbers are applied to the inputs A(1:4) and (B1:4). The 4-bit sum is obtained from S(1:4). Ci and Co are the carry input and carry output pins.

Fig. 4 Pin-out for IC 7483

Procedure

1. Connect the adder/subtractor circuit given in Fig.4. Apply the following numbers in 4-bit binary to circuit and select the operation with the select (M), and record the sum (S) and carry-out (C0).

Decimal A B	Sum (S1:4)			Carry Out C0	
2 + 5	0	1	1	1	0
7 - 4	0	0	1	1	1
6 + 7	1	1	0	1	0
-5 + 4	1	1	1	1	0
-63	1	1	0	1	0
3 - 3	0	0	0	0	1

- Observe that Co =1 when the sum is bigger than 15.
- In signed 2's complement system, the number ranges for 4-bit between -8 to +7. If the result after addition/subtraction exceeds these limits, it said that the overflow has occurred. Determine in which operations overflow occurs.

4 adet bitimiz var 2^4 = 16. Yani 0'dan 15'e kadar olan sayıları taşma olmadan gösterebiliriz. Eğer bu sınır aşılırsa taşma meydana gelir. Örneğin 8(1000) + 8(1000) = 16(10000). Burada sonuç 5 bit olduğu için overflow meydana geldi. Yani devredeki sonuç olan 3(0011)-3(0011)=10000 ile aynı çıktı. Bu yüzden sınırın dışındaki sayılarda overflow meydana geliyor.

152120211104_P1.circ

