<u>Tutorial sheet – CONIC SECTIONS</u>

Tutorial 1:

- 1. Find the equation of the circle with
 - i.) centre $(\frac{1}{2}, \frac{1}{4})$ and radius $\frac{1}{12}$.
 - ii.) centre (-a, -b) and radius $\sqrt{a^2 b^2}$.

Ans:
$$(x-1/2)^2 + (y-1/4)^2 = 1/144$$

Ans:
$$(x+a)^2 + (y+b)^2 = a^2 - b^2$$

2. Find the centre and radius of the circles.

i)
$$x^2 + y^2 - 4x - 8y - 45 = 0$$

Ans: centre=
$$(2,4)$$
, radius= $\sqrt{65}$

ii)
$$45x^2 + 45y^2 - 60x + 36y - 19 = 0$$

Ans: centre=
$$(\frac{2}{3}, \frac{-2}{5})$$
, radius= $\frac{\sqrt{41}}{15}$

3. Find the equation of the circle passing through the points (2,3) and (-1,1) and whose centre is on the line x - 3y - 11 = 0.

Ans:
$$x^2 + y^2 - 7x + 5y - 14 = 0$$

- 4. Find the equation of the circle with end points of diameter (2,-3) & (-3,5) Ans: $x^2 + y^2 + x 2y 21 = 0$
- 5. Find the equation of a circle with centre (2,2) and passes through the point (4,5).

Ans:
$$x^2 + y^2 - 4x - 4y - 5 = 0$$

6. Find the equation of the circle passes through the point (1,0), (-1,0) and (0,1) Ans: $x^2+y^2=1$.

Tutorial 2:

I. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.

1.
$$y^2 = 10x$$
 2. $x^2 = -9y$

Ans:

	focus	axis	directrix	Length of latus
				rectum
1	(5/2,0)	X axis	x = -5/2	10
2	(0,-9/4)	Y axis	y=9/4	9

II. Find the equation of the parabola that satisfies the following given conditions:

i) Vertex (0,0); focus (3,0)

 $Ans:y^2=12x$

ii) Vertex (0,0); focus (-2,0)

 $Ans:y^2 = -8x$

iii) Vertex (0,0) passing through (2,3) and axis is along *x*-axis.

 $Ans:2y^2=9x$

III. Find the coordinates of foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse

$$36x^2 + 4y^2 = 144$$

	focus	vertices	Length of major axis	Length of minor axis	eccentricity	Length of latus rectum
1	$(\pm\sqrt{13},0)$	$(\pm 7, 0)$	14	12	$\frac{\sqrt{13}}{7}$	72/7
2	$(0, \pm 4\sqrt{2})$	$(0, \pm 6)$	12	4	$\frac{2\sqrt{2}}{3}$	4/3

IV. Find the equation of the ellipse that have vertices $(0,\pm 13)$, foci $(0,\pm 5)$

Ans:
$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$

Find the coordinates of the foci and the vertices, the eccentricity and the length of V. the latus rectum of the hyperbola

$$49y^2 - 16x^2 = 784.$$

focus	vertices	eccentricity	Length of latus
			rectum
$(0, \pm \sqrt{65})$	$(0, \pm 4)$	65	49/2
		4	

VI. Find the equation of the hyperbola that have vertices $(0, \pm 3)$, foci $(0, \pm 5)$

Ans:
$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$