Отчёт по лабораторной работе №4

Дисциплина: Архитектура компьютера

Ким Денис Вячеславович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	12
Список литературы		13

Список иллюстраций

4.1	Создание каталога	8
4.2	Создание и открытие текстового файла	8
4.3	Ввод текста	8
4.4	Компиляция текста	9
4.5	Ввод команды	9
4.6	Передача файла на обработку	9
4.7	Выполнение команды	9
4.8	Запуск программы Hello	9
4.9	Создание копии файла	10
4.10	Внос изменений	10
4.11	Трансляция текста	10
4.12	Копирование файлов	10
4.13	Загрузка файлов на Github	11

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

В процессе данной лабораторной работы мне предстоит познакомиться с процедурой компиляции и сборки программ, написанных на ассемблере NASM, его языком, а также процессом создания и обработки программы на этом языке.

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-				
талога	Описание каталога			
/	Корневая директория, содержащая всю файловую			
/bin	Основные системные утилиты, необходимые как в			
	однопользовательском режиме, так и при обычной работе всем			
	пользователям			
/etc	Общесистемные конфигурационные файлы и файлы конфигурации			
	установленных программ			
/home	Содержит домашние директории пользователей, которые, в свою			
	очередь, содержат персональные настройки и данные пользователя			
/media	Точки монтирования для сменных носителей			
/root	Домашняя директория пользователя root			
/tmp	Временные файлы			
/usr	Вторичная иерархия для данных пользователя			

Более подробно про Unix см. в [1-4].

4 Выполнение лабораторной работы

Создаём каталог для работы с программами на языке ассемблера NASM (рис. 4.1):

Рис. 4.1: Создание каталога

Переходим в него, создаём текстовый файл hello.asm и открываем его с помощью gedit (рис. 4.2):

```
dvkim@dk3n55 ~ $ cd ~/work/arch-pc/lab04
dvkim@dk3n55 ~/work/arch-pc/lab04 $ touch hello.asm
dvkim@dk3n55 ~/work/arch-pc/lab04 $ gedit hello.asm
```

Рис. 4.2: Создание и открытие текстового файла

Вводим текст в файл (рис. 4.3):

```
hello.asm
  Открыть ▼ 🛨
                                                                                   \equiv
                                                                        Сохранить
 1 SECTION .data
          hello: DB 'Hello world!',10
          helloLen: EQU $-hello ; Длина строки hello
 5 SECTION .text
          GLOBAL _start
7_start:
          mov eax,4
          mov ebx,1
10
          mov ecx,hello
          mov edx,helloLen
11
          int 80h
12
          mov eax,1
          mov ebx,0
          int 80h
```

Рис. 4.3: Ввод текста

Вводим команды для компиляции текста. Проверяем правильность (рис. 4.4):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls
hello.asm hello.o
```

Рис. 4.4: Компиляция текста

Выполняем следующую команду. Проверяем правильность: (рис. 4.5):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ nasm -o obj.o -f elf -g -l list.lst hello.as
m
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls
hello.asm hello.o list.lst obj.o
dvkim@dk3n55 ~/work/arch-pc/lab04 $ [
```

Рис. 4.5: Ввод команды

Передаём объектный файл на обработку компоновщику (рис. 4.6):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ld -m elf_i386 hello.o -o hello dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls hello hello.asm hello.o list.lst obj.o dvkim@dk3n55 ~/work/arch-pc/lab04 $ [
```

Рис. 4.6: Передача файла на обработку

Ключ -о с последующим значением задаёт в данном случае имя создаваемого исполняе- мого файла. Выполняем следующую команду: (рис. 4.7):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ld -m elf_i386 obj.o -o main
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls
hello hello.asm hello.o list.lst main obj.o
dvkim@dk3n55 ~/work/arch-pc/lab04 $
```

Рис. 4.7: Выполнение команды

Запуск программы Hello (рис. 4.8):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ ./hello
Hello world!
dvkim@dk3n55 ~/work/arch-pc/lab04 $ [
```

Рис. 4.8: Запуск программы Hello

Выполняем задания для самостоятельной работы. В каталоге ~/work/arch-pc/lab04 с помощью команды ср создаем копию файла hello.asm с именем lab4.asm (рис. 4.9):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ cp hello.asm lab4.asm dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls hello hello.asm hello.o lab4.asm list.lst main obj.o dvkim@dk3n55 ~/work/arch-pc/lab04 $
```

Рис. 4.9: Создание копии файла

С помощью любого текстового редактора вносим изменения в текст программы в файле lab4.asm так, чтобы вместо Hello world! на экран выводилась строка с нашими фамилией и именем (рис. 4.10):

Рис. 4.10: Внос изменений

Оттранслируем полученный текст программы lab4.asm в объектный файл. Выполняем компоновку объектного файла и запускаем получившийся исполняемый файл (рис. 4.11):

```
dvkim@dk3n55 ~/work/arch-pc/lab04 $ nasm -f elf lab4.asm dvkim@dk3n55 ~/work/arch-pc/lab04 $ nasm -o obj.o -f elf -g -l list.lst lab4.asm dvkim@dk3n55 ~/work/arch-pc/lab04 $ ld -m elf_i386 lab4.o -o lab4 dvkim@dk3n55 ~/work/arch-pc/lab04 $ ls hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o dvkim@dk3n55 ~/work/arch-pc/lab04 $ ./lab4 Ким Денис dvkim@dk3n55 ~/work/arch-pc/lab04 $ |
```

Рис. 4.11: Трансляция текста

Копируем файлы hello.asm и lab4.asm в наш локальный репозиторий в каталог ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/. (рис. 4.12):

Копирование файлов

Рис. 4.12: Копирование файлов

Загружаем файлы на Github. (рис. 4.13):

```
dvkim@dk3n55 ~ $ cd ~/work/study/2024-2025/"Архитектура компьютера"/arch-pc/
dvkim@dk3n55 ~/work/study/2024-2025/Архитектура компьютера/arch-pc $ git add
dvkim@dk3n55 ~/work/study/2024-2025/Архитектура компьютера/arch-pc $ git commit -am 'labs'
[master b7cf970] labs
14 files changed, 32 insertions(+)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
create mode 100644 labs/lab04/report/image/1.jpg
create mode 100644 labs/lab04/report/image/10.jpg
create mode 100644 labs/lab04/report/image/11.jpg
create mode 100644 labs/lab04/report/image/12.png
create mode 100644 labs/lab04/report/image/2.jpg
create mode 100644 labs/lab04/report/image/3.jpg
create mode 100644 labs/lab04/report/image/4.jpg
create mode 100644 labs/lab04/report/image/5.jpg
create mode 100644 labs/lab04/report/image/6.jpg
create mode 100644 labs/lab04/report/image/7.jpg
create mode 100644 labs/lab04/report/image/8.jpg
create mode 100644 labs/lab04/report/image/9.jpg
dvkim@dk3n55 ~/work/study/2024-2025/Архитектура компьютера/arch-pc $ git push
Перечисление объектов: 25, готово.
Подсчет объектов: 100% (25/25), готово.
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (20/20), готово.
Запись объектов: 100% (20/20), 420.32 КиБ | 3.28 МиБ/с, готово.
Total 20 (delta 4), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (4/4), completed with 3 local objects.
To github.com:dvkim2306/study_2024-2025_arh--pc.git
  5fb2f30..b7cf970 master -> master
dvkim@dk3n55 ~/work/study/2024-2025/Архитектура компьютера/arch-pc $
```

Рис. 4.13: Загрузка файлов на Github

5 Выводы

В ходе данной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM. Теперь я могу вводить текст, транслировать и компоновать его, а также запускать программу (выводить текст) с помощью данного ассемблера.

Список литературы

- 1. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.
- 2. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.