1

Document on Question 28 Exercise(8.1)

Pothukuchi Siddhartha

Abstract—This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/ Summer2020/trunk/document/codes

a) By Python

b) By Latex-tikz

QUESTION

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:

- $a) \triangle AMC \cong \triangle BMD$
- b) $\triangle DBC$ is a right angle.
- $c)\triangle DBC \cong \triangle ABC$
- d)CM = $\frac{1}{2}$ AB

The tables below are the values used for constructing the triangles in both Python and Latex-Tikz.

Initial Input Values.	
a	4
b	3
$\angle(ACB)$	90°

TABLE I: To construct $\triangle ACB$

CONSTRUCTION

The python code for the figure is

./code/traingle.py

The latex- tikz code is

./figs/triangle.tex

The above latex code can be compiled as standalone document

./figs/triangle_fig.tex

The steps for constructing $\triangle ACB$ are

(i) Let $\mathbf{C} = \mathbf{C}$

(ii)

$$\mathbf{C} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

(iii)
$$\mathbf{B} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

Since, M is the midpoint of AB and CD

$$\mathbf{M} = (1/2)(\mathbf{A} + \mathbf{B})$$

$$\mathbf{M} = \begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$$

$$D = 2M$$

$$\mathbf{D} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Derived Values.	
M	$\begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$
D	$\binom{4}{3}$

TABLE II: To construct $\triangle DCB$

SOLUTION

From the figure, lets assume C to be the origin.

Fig. 1: $\triangle ACB$

$$\mathbf{C} = 0$$
 $\|\mathbf{C}\mathbf{A}\| = \mathbf{b}$
 $\|\mathbf{C}\mathbf{B}\| = \mathbf{a}$

M is the position vector of mid-point of BA. CM = CB + BM [BM = (1/2) * BA]

$$\mathbf{CM} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} -a \\ b/2 \end{pmatrix}$$

Therefore,

$$\mathbf{CM} = \begin{pmatrix} a/2 \\ b/2 \end{pmatrix}$$

Fig. 2: $\triangle DBC$

From the figure, CD = 2(CM)

$$\mathbf{CD} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Sol.a)

 $\triangle AMC$ and $\triangle DMB$ are congruent to each other by SAS congruency.

- (i) Side AM is equal to the corresponding side BM [As M is midpoint of AB]
- (ii)Side CM of is equal to corresponding side DM [As M is midpoint of DC]
- $(iii) \angle AMC = \angle DMB$ [Vertically Opposite Angles] Hence, proved

Sol.b)

In $\triangle ACB$ ($\|\mathbf{BA}\|$)² = $a^2 + b^2$ Since $\angle ACB$ = 90° [Pythagorus theorem] $= [((a^2 + b^2 -$ In $\triangle DBC$ $cos \angle DBC$ $(\|\mathbf{CD}\|)^2/2ab)$ With the given vector values we get norm of $(\|\mathbf{B}\mathbf{A}\|) = (\|\mathbf{C}\mathbf{D}\|)$ $\cos \angle DBC = [((a^2 + b^2 - (\|\mathbf{C}\mathbf{D}\|)^2)/2ab)]$

 $cos \angle DBC = 0$

Therefore, $\angle DBC$ is right angle

Sol.c)

 $\triangle ACB$ and $\triangle DCB$ are congruent to each other in SAS congruency. (i)Both the triangles have a common base, a.

(ii)AC = DB by using distance formula

(iii) $\angle ACB = \angle DBC = 90^{\circ}$ [From Solution b)] Hence, proved.

Sol.d)

Since CM is halfway of CD $\|CM\| = \|CD\|$ From Solution b) it is clear that $\|CD\| = \|BA\|$ Therefore $\|CM\| = \frac{1}{2} \|AB\|$ Hence, proved.