MPE Calculation page

MPE Calculator			d on TX power added to the ante	nna gain in dBi.		
		ompared to an isotropic radiate	or.			
	S = power dens	ity in mW/cm^2				
					Antenna Gain (dBi)	
		Output Power		dBd + 2.17 = dBi	dBi to dBd	
Tx Frequency (MHz)	24,200.00	Maximum (Watts)	0.001000	A	antenna Gain (dBd)	44.8
Cable Loss (dB)	0.0	(dBm)	0.00	Antenna	a minus cable (dBi)	47.0
Calcula	ted ERP (mw) 3	0408 850		EIRP = Po(dBM) + Gain (dB)		
	ed EIRP (mw) 5				diated (EIRP) dBm	47.00
Cucuu	callia (iiii) s	0110.725		ERP = EIRP - 2.17 dB	dated (End.) doin	17.00
Occupa	tional Limit	Power density (S)			diated (ERP) dBm	44.83
	mW/cm ²			10		
		EIRP				
50.00000		$ = mW/cm^2$ $4 p r^2$				
	l Public Limit	4 p r · 2				
1.00000	mW/cm ²	r (cm) EIRP (mW)				
10.00000	W/m^2	1 ()				
		FCC radio frequency radiation exposure limits per 1.1310 (mW/cm2)				
		Frequency (MHz)	Occupational Limit	Public Limit		
		300-1,500	f/300	f/1500		
		1,500-10,000	5	1		
		FCC radio frequency radiation exposure limits per 1.1310				
		Frequency (MHz)	Occupational Limit	Public Limit		
		300-1,500 (mW/cm2)	80.6666667	16.13333333		
		300-1,500 (W/m2)	806.6666667	161.3333333		
		1,500-100,000 (mW/cm2)	5	1		
		1,500-100,000 (W/m2)	50	10		
EIDD			D' -	D' ·	D'	D' ·
EIRP	S	S	Distance	Distance	Distance	Distance
milliwatts	mW/cm ²	W/m ²	cm	meter	inches	Feet
50118.723	0.01108	0.11079	600.00	6.00	236.22	0.50
50118.723	0.01595	0.15953	500.00	5.00	196.85	0.42
50118.723	0.01970	0.19695	450.00	4.50	177.17	0.38
50118.723	0.02493	0.24927	400.00	4.00	157.48	0.33
50118.723	0.03256	0.32558	350.00	3.50	137.80	0.29
50118.723	0.04431	0.44315	300.00	3.00	118.11	0.25
50118.723	0.06381	0.63813	250.00	2.50	98.43	0.21
50118.723	0.09971	0.99708	200.00	2.00	78.74	0.17
50118.723	0.17726	1.77259	150.00	1.50	59.06	0.13
50118.723	0.39883	3.98832	100.00	1.00	39.37	0.08
50118.723	0.70903	7.09035	75.00	0.75	29.53	0.06
50118.723	0.81394	8.13943	70.00	0.70	27.56	0.06
50118.723	0.94398	9.43981	65.00	0.65	25.59	0.05
50118.723	4.43147	44.31468	30.00	0.30	11.81	0.03
50118.723	6.38131	63.81314	25.00	0.25	9.84	0.02
50118.723	9.97080	99.70803	20.00	0.20	7.87	0.02
50118.723	17.72587	177.25872	15.00	0.15	5.91	0.01
			Occupational Limit minimum Distance	Occupational Limit minimum Distance	Public Limit	Public Limit
		Frequency (MHz)	(meters)	(cm / inches)	distance (meters)	(cm / inches)
		300-1,500	N/A	N/A	N/A	N/A
				1 N/A		1N/A

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Model: Inegra-S-24 Test #: 140916

Test to: 47CFR 15.249(b) and RSS-210 (A12)

File: RFExp Intergra24

FCC: W9Z-INTEGRA24 IC: 8855A- INTEGRA24 Date: October 2, 2014

Page 1 of 1