MATH2211 SPRING 2022 PROBLEM SET 3

DUE WEDNESDAY, FEBRUARY 16 2022 AT 11:59 PM

Let F be a field and let V be an F-vector space.

Problem 1. Suppose we are given a list $v_1, \ldots, v_n \in V$.

- (a) Show that v_1, \ldots, v_n are linearly dependent if and only if there is some $1 \le i \le n$ such that $v_i \in \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$ (i.e. the span of the list with v_i taken out).
- (b) Show that $v_i \in \text{span}(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n)$ if and only if $\text{span}(v_1, \dots, v_n) = \text{span}(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n)$.

(That is, the span doesn't change when v_i is taken out.)

Problem 2. Suppose $v_1, v_2, v_3, v_4 \in V$ and set

$$w_1 = v_1 - v_2$$
, $w_2 = v_2 - v_3$, $w_3 = v_3 - v_4$, $w_4 = v_4$.

- (a) Show that span $(v_1, v_2, v_3, v_4) = \text{span}(w_1, w_2, w_3, w_4)$.
- (b) Show that v_1, v_2, v_3, v_4 are linearly independent if and only if w_1, w_2, w_3, w_4 are linearly independent.

Problem 3. Suppose that $\{v_1, v_2, \ldots, v_n\}$ is linearly independent in V. Show that $\{v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n\}$ is linearly independent as well.

Problem 4.

- (a) Show that V is infinite dimensional if and only if it satisfies the following property: for every integer k > 0, one can find k linearly independent vectors $v_1, \ldots, v_k \in V$.
- (b) Show that the vector space $\mathbb{R}^{\infty} := \{ \text{ all sequences } (a_1, a_2, a_3, \dots) \text{ of real numbers} \}$ is infinite dimensional.
- (c) Give an example of a subspace of \mathbb{R}^{∞} which is strictly contained in \mathbb{R}^{∞} but is still infinite dimensional.

Problem 5. For each positive integer n, let

$$B_n = \{(-1, 1, \dots, 1), (1, -1, 1, \dots, 1), \dots, (1, 1, \dots, -1)\} \subseteq F^n.$$

That is, B_n is the set of vectors in F^n with one component equal to -1 and n-1 components equal to 1.

- (a) Let $F = \mathbb{R}$. For which n is B_n a basis of \mathbb{R}^n ?
- (b) Let $F = \mathbb{F}_3$. Show that if n is of the form 3k + 2 for some $k \in \mathbb{Z}_{\geq 0}$ (i.e. $n \in \{2, 5, 8, ...\}$), then B_n is not a basis of \mathbb{F}_3^n .

¹If you need a hint for where to start, try to check whether the vectors in B_n are linearly independent.

²Hint: Try to show that B_n is contained in a proper subspace.