

计算机网络概述

什么是计算机网络

- 什么是计算机网络
 - 硬件方面:通过线缆将网络设备和计算机连接起来
 - 软件方面:操作系统,应用软件,应用程序通过通信 线路互连
 - 实现资源共享、信息传递

计算机网络的功能

- 数据通信
- 资源共享
- 增加可靠性
- 提高系统处理能力

Tedu.cn

计算机网络发展阶段

- 60年代
 - 分组交换
- 70-80年代
 - TCP/IP
- 90代年后
 - Web技术

网络标准

- 标准化组织
 - ISO(国际标准化组织)
 - ANSI(美国国家标准化局)
 - ITU-T (国际电信联盟-电信标准部)
 - IEEE(电气和电子工程师学会)

WAN与LAN

- 广域网 (Wide-Area Network)
 - 范围:几十到几千千米
 - 作用:用于连接远距离的计算机网络
 - 典型应用:Internet
- 局域网(Local-Area Network)
 - 范围:1km左右
 - 作用:用于连接较短距离内的计算机
 - 典型应用:企业网, 校园网

网络设备及拓扑

Tedu.cn

网络设备生产厂商

- 网络设备生产厂商
 - Cisco (思科)
 - 华为

路由交换设备

• 路由交换设备

Cisco 2911路由器

Cisco 3560交换机

网络拓扑结构

- 线缆连接计算机和网络设备的布局
 - 点对点
 - 星型及扩展的星型
 - 网状

网络拓扑结构(续1)

- 点对点拓扑结构
 - 两台设备之间有一条单独的连接

网络拓扑结构(续2)

- 星型拓扑
 - 优点

易于实现 易于网络扩展 易于故障排查

- 缺点

中心节点压力大 组网成本较高

网络拓扑结构(续3)

- 网状拓扑结构
 - 一个节点与其他多个节点相连
 - 提供冗余性和容错性
 - 可靠性高
 - 组网成本高

OSI 参考模型

计算机网络的功能

• 数据通信

网络分层

- 网络通信的过程很复杂
 - 数据以电子信号的形式穿越介质到达正确的计算机,然后转换成最初的形式,以便接收者能够阅读
 - 为了降低网络设计的复杂性,将协议进行了分层设计

Tedu.cn

邮局实例

甲地

乙地

OSI 协议模型

• OSI的七层框架

OSI 协议模型(续1)

• OSI的七层框架功能

应用层网络服务与最终用户的一个接口

表示层 数据的表示、安全、压缩

会话层建立、管理、中止会话

传输层 定义传输数据的协议端口号,以及流控和差错校验

网络层 进行逻辑地址寻址,实现不同网络之间的路径选择

数据链路层建立逻辑连接、进行硬件地址寻址、差错校验等功能

物理层 建立、维护、断开物理连接

TCP/IP模型

OSI模型、TCP/IP模型

• TCP/IP五层模型、OSI七层模型

应用层 传输层 网络层 数据链路层

物理层

TCP/IP 5层模型

应用层 表示层 会话层 传输层 网络层 数据链路层 物理层 OSI 7层模型

TCP/IP协议族的组成

应用层

HTTP FTP TFTP

SMTP SNMP DNS

传输层

TCP

UDP

网络层

ICMP IGMP

IP

ARP RARP

数据链路层

物理层

由底层网络定义的协议

什么是协议

- 什么是协议?
 - 为了使数据可以在网络上从源传递到目的地,网络上 所有设备需要"讲"相同的"语言"
 - 描述网络通信中"语言"规范的一组规则就是协议

Tedu.cn

协议数据单元(PDU)

应用层

上层数据

传输层

TCP头部

上层数据

数据段

网络层

IP头部

TCP头部

上层数据

数据包

数据链路层

MAC头部 IP头部

TCP头部

上层数据

数据帧

比特流

物理层

设备与层的对应关系

应用层

计算机

传输层

防火墙

网络层

路由器

数据链路层

交换机

物理层

网卡

物理层

以太网接口

- RJ 45
 - RJ是描述公用电信网络的接口,常用的有RJ-11和RJ-45

Plug End RJ-45 8 Conductor

- 光纤接口
 - 用以稳定地但并不是永久地连接两根或多根光纤的无源组件

FC 圆形带螺纹光纤接头

ST卡接式圆形光纤接头

SC 方型光纤接头

LC 窄体方形光纤接头

MT-RJ 收发一体的方型光纤接头

双绞线

- 双绞线TP是目前使用最广,价格相对便宜的一种传输介质
- 由两根绝缘铜导线相互缠绕组成,以减少对邻 近线对的电气干扰
- 由若干对双绞线构成的电缆被称为双绞线电缆

双绞线(续1)

• 非屏蔽双绞线UTP和屏蔽双绞线STP

双绞线的标准

类型 传输速率

cat5 100Mbps

cat5e 100Mbps

cat6 1000Mbps(1Gbps)

cat7 10000Mbps(10Gbps)

线缆的连接

• T568A:白绿、绿、白橙、蓝、白蓝、橙、白棕、棕

• T568B:白橙、橙、白绿、蓝、白蓝、绿、白棕、棕

管脚号	用途	颜色
1	发送+	白色和绿色
2	发送 -	绿色
3	接收+	白色和橘黄色
4	不被使用	蓝色
5	不被使用	白色和蓝色
6	接收 -	橘黄色
7	不被使用	白色和棕色
8	不被使用	棕色
1		

T568A标准中RJ-45连接器的 管脚号和颜色编码

线缆的连接(续1)

- 线缆的连接
 - 标准网线
 - 交叉网线
 - 全反线

· 例外情况:版本较新设备可以随意使用标准与交叉网线而 不受限制,设备本身具备自动识别功能。

Tedu.cn

物理层的设备

- 网络接口卡
 - 连接计算机和网络硬件
 - 有一个惟一的网络节点地址
 - 按照速率可分为10/100M、100/1000M自适应网卡
 - 按照扩展类型可分为USB网卡、PCI网卡
 - 按照提供的线缆接口类型可分为RJ-45接口网卡、光纤网卡等

物理层的设备(续1)

- 中继器
 - 放大信号
 - 延长网络传输距离

Packet Tracer软件

Packet Tracer软件简介

- Cisco Packet Tracer软件
 - Cisco Packet Tracer 是由Cisco公司发布的一个辅助学习工具,为学习思科网络课程的初学者去设计、配置、排除网络故障提供了网络模拟环境。用户可以在软件的图形用户界面上直接使用拖曳方法建立网络拓扑,并可提供数据包在网络中行进的详细处理过程,观察网络实时运行情况。可以学习IOS的配置、锻炼故障排查能力。

Packet Tracer软件使用

• 模拟器开启后的界面

Packet Tracer软件使用(续1)

- 硬件设备
 - 在界面的左下角一块区域,这里有许多种类的硬件设备,从左至右,从上到下依次为路由器、交换机、集线器、无线设备、设备之间的连线,终端设备等。

Packet Tracer软件使用(续2)

- 认认线缆
 - 用鼠标点一下线缆,在右边你会看到各种类型的线, 依次为自动选择连接类型、控制线、直通线、交叉线、 光纤等。

Packet Tracer软件使用(续3)

- 认识设备
 - 点选了终端设备就可以在右方选到对应的设备种类。
 - 如果不清楚队形的设备是什么把鼠标移动到设备上, 可以看到设备的名称。

Packet Tracer软件使用(续4)

- 设备选择
 - 当你需要用哪个设备的时候,先用鼠标单击一下它,然后在中央的工作区域点一下即可。

Packet Tracer软件使用(续5)

- 连线
 - 连线只需选中一种线,然后就在要连线的设备上点一下,选接口,再点另一设备即可。

Packet Tracer软件使用(续6)

显示设置

Preferences				
接口	管理	隐藏	字体	Miscellaneous
用户自定义				
☑ Show Animation				
☐ Play Sound				
☑ Show Device Model Labels显示设备系列				
☑	Show Device Name Labels 显示设备名			
✓	☑ Always Show Port Labels 显示端口			
☐ Disable Auto Cable				

Packet Tracer软件使用(续7)

- 移动与删除
 - 对设备进行编辑在右边有一个区域,从上到下依次为选定/取消、移动(总体移动,移动某一设备,直接拖动它就可以了)、Place Note(文本)、删除等。

交换机命令行模式

交换机的命令行模式

- 配置前的连接
 - Console电缆
 - 物理连接计算机COM口交换机/路由器Console口
 - 软件连接超级终端 其他软件

交换机的命令行模式(续1)

• Cisco交换机的命令行

用户模式 Switch>

特权模式(一般用于查看配置信息) Switch>enable Switch#

全局配置模式(所做的配置对整个设备生效) Switch#configure terminal Switch(config)#

交换机的命令行模式(续2)

Cisco交换机的命令行

接口模式 Switch(config)#interface fastEthernet 0/1 Switch(config-if)#

- interface: 关键字

- fastethernet:接口类型

- 0/1: "0" 表示模块号, "1" 表示端口号

Tedu,cn

模式间的转换

- 模式间转换
 - exit命令
 - end命令
 - 快捷键 < Ctrl-Z>退出到特权模式

switch(config-if)#end
switch#
switch(config)#end
switch#

switch(config-if)#exit
switch(config)#exit
switch#disable
switch>

switch(config)#int f 0/1
switch(config-if)#^Z
switch#

switch(config)#^Z
switch#

案例:交换机基本命令模式

- 交换机访问及命令模式
 - 通过的Console线缆访问交换机
 - 交换机工作模式的进入与退出

Switch>用户模式

Switch>enable

Switch#特模模式

Switch#configure terminal

Switch(config)#全局配置模式

Switch(config)#interface fastEthernet 0/1

Switch(config-if)#接口模式

交换机命令行配置

配置主机名

- 配置主机名
 - Switch>en
 - Switch#conf t
 - Switch(config)# hostname *Tarena-sw1*
 - Tarena-sw1(config)#

查看交换机的配置

tarena-sw1# show running-config

```
version 12.1
no service pad

service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Tarena-sw1
```


案例:交换机命令行基本配置

- 修改及查看交换机配置
 - 修改交换机主机名Switch(config)# hostname S1
 - 查看交换机配置信息Switch# show running-config

配置enable明文口令

- 配置enable明文口令
 - Tarena-sw1(config)#enable password cisco
 - Tarena-sw1(config)#exit
 - Tarena-sw1#show running-config

```
version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encry
!
hostname Tarena-sw1
!
enable password cisco
!
ip subnet-zero
```


配置enable明文口令(续1)

- 检验enable口令的作用
- Tarena-sw1# exit
 Press RETURN to get started.
- Tarena-sw1>enable
 Password: cisco
- Tarena-sw1#

保存交换机的配置

Tarena-sw1# copy running-config startup-config

或

Tarena-sw1# write
 Building configuration...
[OK]

恢复设备出厂默认值

Tarena-sw1# erase startup-config

Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
[OK]

Erase of nvram: complete

Tarena-sw1#reload
 Proceed with reload? [confirm]

案例:交换机命令行基本配置

- 按以下需求修改交换机配置
 - 为交换机配置特权密码Taren1
 - 保存配置并重启设备检测密码可用情况
 - 清空设备配置
 - 重启设备检测设备情况

总结和答疑

自动退出配置界面

问题现象

• 空闲一段时间后,重回初始界面的问题

```
Cisco Internetwork Operating System Software
IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA4, RELEASE
SOFTWARE(fc1)
Copyright (c) 1986-2005 by cisco Systems, Inc.
Compiled Wed 18-May-05 22:31 by jharirba

Press RETURN to get started!
```


原因分析

- 分析原因
 - 默认控制台会话时间为10分钟
- 解决方法
 - 配置控制台会话时间永不超时
 - Switch(config)#line console 0
 - Switch(config-line)#exec-timeout 0 0

打断命令输入

问题现象

• 控制台消息打断输入的命令

Switch(config)#interface fastEthe %LINK-5-CHANGED: Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

原因分析

- 分析原因
 - 输出日志消息会自动弹出
- 解决方法
 - 配置输出日志同步
 - Switch(config)#line console 0
 - Switch(config-line)#logging synchronous

禁用DNS查询

问题现象

• 故障错误信息

```
Switch>
Switch>en
Switch>enable
Switch#abc
Translating "abc"...domain server (255.255.255.255)
```


原因分析

- 分析原因
 - 在特权模式输入错误命令会发起解析请求
- 解决方法
 - 配置禁用DNS查询
 - switch(config)#no ip domain-lookup

打断命令输入

问题现象

• 控制台消息打断输入的命令

Switch(config)#interface fastEthe %LINK-5-CHANGED: Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

原因分析

- 分析原因
 - 输出日志消息会自动弹出
- 解决方法
 - 配置输出日志同步
 - Switch(config)#line console 0
 - Switch(config-line)#logging synchronous

