import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import confusion_matrix,accuracy_score,classification_report,ConfusionMatrixDisplay

df=pd.read_csv('/content/drive/MyDrive/creditcard.csv')

df

→	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	•••	0.247998	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0
•••													
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	•••	0.213454	0
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800		0.214205	0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454		0.232045	0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	•••	0.265245	0
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	•••	0.261057	0

284807 rows × 31 columns

df.head()

→		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798278	-0.

5 rows × 31 columns

df.tail()

 $\overline{\mathbf{T}}$

7		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428		0.213454	0.1
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800		0.214205	0.9
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454		0.232045	0.5
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087		0.265245	0.8
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180		0.261057	0.6

5 rows × 31 columns

df.columns

df.shape

→ (284807, 31)

df.isna().sum()

→

0 Time 0 **V**1 0 0 V2 **V**3 0 **V4** 0 **V**5 0 **V**6 0 **V7** 0 0 **V8 V**9 0 0 V10 0 V11 V12 0 V13 0 V14 0 V15 0 V16 0 V17 0 0 V18 V19 0 V20 0 V21 0 V22 0 V23 0 0 V24 V25 0 V26 0 V27 0 V28 0 Amount 0

df.dtypes

Class 0

0 Time float64 **V**1 float64 **V2** float64 **V3** float64 **V4** float64 **V**5 float64 **V6** float64 **V7** float64 **V8** float64 **V9** float64 V10 float64 **V11** float64 V12 float64 V13 float64 V14 float64 V15 float64 V16 float64 V17 float64 V18 float64 V19 float64 V20 float64 V21 float64 **V22** float64 V23 float64 **V24** float64 **V25** float64 **V26** float64 **V27** float64 **V28** float64 Amount float64 Class int64

df['Class'].value_counts()

dtype: int64

1 492

sns.countplot(x='Class',data=df)
plt.title("Class distribution")

Class distribution


```
plt.figure(figsize=(20,10))
sns.heatmap(df.corr(),annot=True,fmt='0.2f')
plt.title("Correlation heatmap")
```

 \rightarrow Text(0.5, 1.0, 'Correlation heatmap')

- 1.0

- 0.6

```
from imblearn.under_sampling import RandomUnderSampler
sampler=RandomUnderSampler()
x_res,y_res=sampler.fit_resample(x,y)
df1=pd.DataFrame(x_res)
df2=pd.DataFrame(y_res)
result=pd.concat([df1,df2],axis=1,join='inner')
#resampled dataset
df=result;
```

sns.countplot(x='Class',data=df,palette='Set1')
plt.title("Class distribution")

 $\overline{\Sigma}$

<ipython-input-159-2738ae6ca0f4>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `

sns.countplot(x='Class',data=df,palette='Set1')
Text(0.5, 1.0, 'Class distribution')

from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42) print(x_train)

```
V1
                              V2
                                       ٧3
                                                ۷4
                                                         ۷5
          Time
                                                                  ۷6
         2105.0 -2.289565 -0.480260 0.818685 -1.706423 0.822102 -1.660326
247823 153702.0 -0.313717 -4.064342 -3.398445 0.704011
                                                   0.101662 1.529848
152342
        97283.0 -1.809763 -0.567439 2.265186 -0.960318 -1.212537 1.516493
103385
        68628.0 1.192319 0.178575 0.141491 0.459628 -0.049959 -0.112122
8771
        11951.0 -0.963451 0.700311 1.097333 -1.547626 0.669966
119879
        75618.0 1.173488 0.100792 0.490512 0.461596 -0.296377 -0.213165
259178
       159000.0 -0.775981 0.144023 -1.142399 -1.241113 1.940358 3.912076
131932
        79795.0 -0.146609 0.992946 1.524591 0.485774 0.349308 -0.815198
        87931.0 -2.948638 2.354849 -2.521201 -3.798905 1.866302 2.727695
146867
121958
        76381.0 1.233174 -0.784851 0.386784 -0.698559 -1.034018 -0.637028
                     V8
                              V9
                                           V20
                                                    V21
                                                             V22 \
       0.944047 -0.541765 1.323156 ... -0.831985 -0.210837 0.914737
2557
247823 1.551670 -0.036774 0.015829 ... 2.142593 0.853186 -0.091941
152342 -1.417176 0.903421 1.961027 ... -0.554004 -0.509915 -0.424978
103385 -0.163883 0.155740 -0.067566 ... -0.149985 -0.240464 -0.739862
       ...
                    . . .
                                       . . .
                                               . . .
           . . .
119879 -0.165254 0.119221 -0.114199 ... -0.157534 -0.186027 -0.574283
259178 -0.466107 1.360620 0.400697 ... -0.295730 0.037078 -0.019575
131932 1.076640 -0.395316 -0.491303 ... 0.007155 0.052649 0.354089
146867 -0.471769 2.217537 0.580199 ... 0.417396 -0.332759 -1.047514
121958 -0.502369 -0.188057 -0.749637 ... 0.337732 0.027634 -0.234522
           V23
                    V24
                             V25
                                     V26
                                              V27
                                                       V28
                                                              Amount
       0.867888 \quad 0.422969 \quad 0.310584 \quad -0.781488 \quad 0.392241 \quad -0.147757
2557
                                                              1.00
247823 -0.936215 -0.833081 -0.498728 0.651183 -0.290331 0.110360
                                                            1194.28
152342 -0.268621 0.010121 0.466862 0.835540 -0.062385 0.088079
1.98
8771 -0.124037 -1.388839 -0.237453 0.785347 0.349708 0.216207
                                                               37.31
           ...
                          . . .
                                      . . .
```

```
259178 0.241830 0.682820 -1.635109 -0.770941 0.066006 0.137056
     131932 -0.291198 0.402849 0.237383 -0.398467 -0.121139 -0.196195
    146867 0.143326 0.678869 0.319710 0.426309 0.496912 0.335822
    121958 -0.059544 -0.109073 0.290326 -0.393074 0.001217 0.038588
     [199364 rows x 30 columns]
print(y_train)
 → 2557
              0
     247823
              0
    152342
              0
    103385
              0
    8771
              0
    119879
              0
     259178
              0
    131932
              0
    146867
              0
    121958
              0
    Name: Class, Length: 199364, dtype: int64
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
print(x_train)
 -0.4486209
      -0.339747831
     [1.24181171 - 0.15922175 - 2.43543667 ... - 0.71311931 0.33519183]
       4.27773998]
     [ \ 0.05339701 \ -0.92214029 \ -0.33881865 \ \dots \ -0.15212107 \ \ 0.26753092
      -0.0533992 ]
     [-0.31497174 - 0.07400401 \ 0.59673261 \dots -0.29672056 -0.59571272
      -0.32837128]
                                                       1.01984233
     [-0.14359433 -1.50291696 1.41328113 ... 1.2243654
      -0.33974783]
      [-0.38688453  0.62962541  -0.46917078  ...  0.0044092
                                                       0.11724428
       0.09364469]]
print(x_test)
 1.06564352]
      [-1.06346299 0.17404952 -1.64365414 ... 0.10230985 0.3099202
       1.66902653]
      [-1.24834248 0.71449029 -0.35276585 ... 0.02949291 0.01413826
      -0.22366055]
     [-1.32360446  0.38159558  -0.61498614  ...  0.1450263
                                                       0.177531
       0.41327168]
     [ 0.97516144 \ 1.06174851 \ 0.1019923 \ \dots \ -0.15089508 \ -0.09379868
      -0.34017349]
      -0.30492165]]
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
y_pred=dt.predict(x_test)
y_pred
 \rightarrow array([1, 0, 0, ..., 0, 0, 0])
print(y_test)
    43428
              1
    49906
              0
    29474
              0
     276481
              0
     278846
              0
    180795
              0
     259979
              0
```

119879 0.161405 -0.006140 0.091444 0.109235 -0.020922 0.003967

1.98

89.23

3.94

1.00

113.00

21885 0 217812 0 86348 0

Name: Class, Length: 85443, dtype: int64

accuracy_score(y_test,y_pred)

→ 0.9991222218320986

cm=confusion_matrix(y_test,y_pred)

print(classification_report(y_test,y_pred))

→	precision	recall	f1-score	support
0 1	1.00 0.70	1.00 0.79	1.00 0.74	85307 136
accuracy macro avg weighted avg	0.85 1.00	0.89 1.00	1.00 0.87 1.00	85443 85443 85443

cmd=ConfusionMatrixDisplay(cm,display_labels=[0,1])
cmd.plot()

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f71f3c7add0>

