Enroll. No.

SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY ADITYA SILVER OAK INSTITUTE OF TECHNOLOGY

BE - SEMESTER-II • MID SEMESTER-I EXAMINATION - SUMMER 2019

SUBJECT: MATHEMATICS-2 (3110015) (ALL BRANCH)

		ODDOEDT: MATTIEMATION-2 (OTTOOTO) (ALL DIVATOR	•)
DAT	E: 30	-03-2019 TIME: 8:00 PM To 9:45 pm	TOTAL MARKS: 40
Instruc	tions:	 All the questions are compulsory. Figures to the right indicate full marks. Assume suitable data if required. 	
Q.1	(a)	Find the Laplace Transform of following functions. (i) $f(t) = cos^3 t$ (ii) $f(t) = e^{-2t}(sin4t + t^2)$.	[04]
	(b)	Solve $(D^2 - 4D + 4)y = 2^x + \log 5$, where $D = \frac{d}{dx}$.	[04]
	(c)	State the convolution theorem and find the Inverse Laplace transform using C theorem $L^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\}$.	Convolution [04]
Q.2	(a)	Check given differential equation is exact or not and find the general solutio $(x^4 - 2xy^2 + y^4)dx - (2x^2y - 4xy^3 + siny)dy = 0$	n [03]
	(b)	Solve the differential equation $\frac{dy}{dx} + \frac{y}{(1+x)} = \frac{y^2}{(1+x)^2}$.	[04]
	(c)	Solve the differential equation using Laplace Transform: $y'' - 3y' + 2y = 4t + e^{3t}$, $y(0) = 1$, $y'(0) = -1$.	[07]
OR			
Q.2	(a)	Obtain the Inverse Laplace transform of following function $L^{-1}\left\{\log\left(\frac{s-3}{s+4}\right)\right\}$.	[03]
	(b)	Solve the differential equation $\frac{dy}{dx} + ytanx = sin2x$, y(0)=0.	[04]
	(c)	Find Laplace Transform of the following function $(i)f(t) = t \sin 3t \cos 2t $ $(ii)f(t) = \frac{\cos t - \cos 2t}{t}.$	[07]
Q.3	(a)	Solve the differential equation $(D^3 - 2D^2 + 4D - 8)y = 0$ where $D = \frac{d}{dx}$. [03]
	(b)	Solve $\left(\frac{dy}{dx}\right)^2 - (x^2 + x)\frac{dy}{dx} + x^3 = 0.$	[04]
	(c)	Find out general solution of the differential equation $y'' - 6y' + 9y = \cos 2x \sin 4x$.	[07]
OR			
Q.3	(a)	Solve $xp^2 - 2py + 4x = 0$.	[03]
	(b)	Using partial fraction Obtain the Inverse Laplace Transform of $\left\{\frac{4s+5}{(s+2)(s-3)(s+1)}\right\}$	<u>[04]</u>

Solve $(D^4 - 16)y = e^{2x} + x^4$, where $D = \frac{d}{dx}$.

[07]