

Google Colab(Jupyter). Знакомство с аналитикой.

Лекция 5

План курса

Что будет на лекции сегодня

63

- Чтение и предварительный просмотр данных
- Выбор данных
- Простая статистика
- Изображаем статистические отношения
- Линейные графики
- Гистограмма

Знакомство с аналитикой

Знакомство с аналитикой. Мы будем пользоваться таким инструментом как Google Colab

На лекции мы познакомимся с инструментом для работы с табличными данными(pandas) и способами визуализации данных с помощью библиотек matplotlib и seaborn. Прежде, чем приступать непосредственно к машинному обучению, важно произвести EDA(Exploratory Data Analysis) - Разведочный анализ данных.

Он состоит в анализе основных свойств данных, нахождения в них общих закономерностей, распределений и аномалий, построение начальных моделей, зачастую с использованием инструментов визуализации.

Понятие введено математиком Джоном Тьюки, который сформулировал цели такого анализа следующим образом:

- 1. Максимальное «проникновение» в данные
- 2. Выявление основных структур
- 3. Выбор наиболее важных переменных
- 4. Обнаружение отклонений и аномалий
- 5. Проверка основных гипотез

Библиотека pandas может читать многие форматы, включая: .csv, .xslx, .txt, sql и многие другие. Полный список по <u>ссылке</u>

Чтобы подключить библиотеку к Вашей программе необходимо написать следующее:

```
import pandas as pd
```

Напоминание: as(alias) - псевдоним. Мы можем сократить название все библиотеки до 2-х букв.

Прочтем файл .csv(он находится в Google Colab в папке sample_data) с помощью библиотеки pandas

```
df = pd.read_csv('sample_data/california_housing_train.csv')
```


Для того чтобы прочитать первые n строк таблицы, необходимо воспользоваться следующей функцией:

```
DataFrame.head(n=5)
```

Где DataFrame - это таблица с данными, которая предварительно была открыта. Мы ее открыли и записали в переменную df. Необязательно указывать n=5, вместо 5 мы можем указать любое число(число не должно превосходить количество строк в таблице). Если Вы ничего не укажете в круглых скобках, то ошибка не вылезет, по умолчанию будут выведены первые 5 строк таблицы.

```
df.head()
```


Пример:

df.head()

Результат:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
1	-114.47	34.40	19.0	7650.0	1901.0	1129.0	463.0	1.8200	80100.0
2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
4	-114.57	33.57	20.0	1454.0	326.0	624.0	262.0	1.9250	65500.0

Как мы знаем, в нашем мире почти все симметрично, есть отрицательные числа, а есть положительные и тд. Значит, если есть функция, которая показывает первые 5 строк таблицы, то и есть функция, которая показывает последние 5 строк таблицы. Давайте с ней познакомимся.

Пример:

df.tail()

Результат:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0
16997	-124.30	41.84	17.0	2677.0	531.0	1244.0	456.0	3.0313	103600.0
16998	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0
16999	-124.35	40.54	52.0	1820.0	300.0	806.0	270.0	3.0147	94600.0

Данная функция работает аналогично с head(). Необязательно выводить последние 5 строчек, можно указать сколько угодно.

Иногда заранее неизвестно сколько строк и столбцов находится внутри таблицы, чтобы это сделать необходимо воспользоваться специальной функцией.

Пример:

df.shape

Результат:

(17000, 9)

Функция shape возвращает размеры таблицы: кортеж из 2 значений, 1 - количество строк, 2 - количество столбцов.

Согласитесь, что все не раз делали заказ на каком-нибудь маркетплейсе. И когда мы заполняли поле "Email", то могли его пропустить, потому что указанно, что оно необязательное и не хотели видеть лишнего спама. Вы когда-нибудь задумывались, как в этом случае эти данные будут выглядеть внутри базы данных(таблице)? Пропуск? Пустая ячейка? Нет. Когда нужно указать, что в данной ячейки таблицы ничего нет указывается значение null.

Чтобы обнаружить пустые значения в таблице данных необходимо воспользоваться

функцией .isnull().

Пример:

df.isnull()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False

16995	False	False	False	False	False	False	False	False	False
16996	False	False	False	False	False	False	False	False	False
16997	False	False	False	False	False	False	False	False	False
16998	False	False	False	False	False	False	False	False	False
16999	False	False	False	False	False	False	False	False	False

Функция привела нашу таблицу к следующему виду True-False, где True - это пустая ячейка, False - это заполненная ячейка. Но это неудобно, то есть нам надо просматривать 17 000 * 9 = 153 000 ячеек. Вау... Это займет слишком много времени. Однако, мы можем воспользоваться еще одной функцией .sum(). Данная функция выведет количество null-значений в каждой ячейке по столбцам.

```
df.isnull().sum()
```

0
0
0
0
0
0
0
0
0

Можно сделать следующий вывод: пустые значения в нашей таблицы отсутствуют.

Еще при работе с C#, мы поняли, что у каждой переменной есть свой тип данных. Также и здесь, у каждого столбца есть свой тип данных, чтобы это узнать, нужно применить функцию .dtypes.

Пример:

df.dtypes

longitude	float64
latitude	float64
housing_median_age	float64
total_rooms	float64
total_bedrooms	float64
population	float64
households	float64
median_income	float64
median_house_value	float64

Чтобы узнать название всех столбцов в таблице, воспользуйтесь функцией .columns.

```
df.columns
```


Выборка данных

Если Вы хотите вывести 1 столбец на экран, то можно указать следующее выражение, которое позволит это сделать.

```
df['latitude']
```

```
0
         34.19
1
         34.40
         33.69
         33.64
4
         33.57
         . . .
16995
         40.58
16996
         40.69
16997
         41.84
16998
         41.80
         40.54
16999
Name: latitude, Length: 17000, dtype: float64
```


Выборка данных

Что мы будем делать, если нам потребуется вывести на экран сразу несколько столбцов? Не очень удобно будет это прописывать вот таким образом:

```
print(df['latitude'])
print(df['population'])
```

Конечно есть решение данного вопроса

Задача

Задание: Необходимо вывести столбец total_rooms, у которого медианный возраст здания(housing_median_age) меньше 20.

Для того чтобы решить это задание, давайте познакомимся с синтаксисом выборки данных. На самом деле, это ничем не отличается от операторов ветвления.

Решение:

df[df['housing_median_age'] < 20]</pre>

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
1	-114.47	34.40	19.0	7650.0	1901.0	1129.0	463.0	1.8200	80100.0
2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
10	-114.60	33.62	16.0	3741.0	801.0	2434.0	824.0	2.6797	86500.0
16983	-124.19	41.78	15.0	3140.0	714.0	1645.0	640.0	1.6654	74600.0
16987	-124.21	41.77	17.0	3461.0	722.0	1947.0	647.0	2.5795	68400.0
16991	-124.23	41.75	11.0	3159.0	616.0	1343.0	479.0	2.4805	73200.0
16997	-124.30	41.84	17.0	2677.0	531.0	1244.0	456.0	3.0313	103600.0
16998	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0
4826 row	s × 9 column	IS							

Задача

Если Вам нужно поставить другое условие, то аналогично.

Мы помним с C#, что иногда приходится проверять несколько условий сразу. Чтобы проверить несколько условий внутри Google Colab, указывается так:

```
df[(df['housing_median_age'] > 20) & (df['total_rooms'] > 2000)]
```

& - выполнение одновременно всех условий.

- выполнение хотя бы **одного** из условия.

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
6	-114.58	33.61	25.0	2907.0	680.0	1841.0	633.0	2.6768	82400.0
8	-114.59	33.61	34.0	4789.0	1175.0	3134.0	1056.0	2.1782	58400.0
13	-114.61	34.83	31.0	2478.0	464.0	1346.0	479.0	3.2120	70400.0
42	-115.49	32.67	25.0	2322.0	573.0	2185.0	602.0	1.3750	70100.0
45	-115.50	32.67	35.0	2159.0	492.0	1694.0	475.0	2.1776	75500.0
		3112							
16986	-124.19	40.73	21.0	5694.0	1056.0	2907.0	972.0	3.5363	90100.0
16990	-124.22	41.73	28.0	3003.0	699.0	1530.0	653.0	1.7038	78300.0
16993	-124.23	40.54	52.0	2694.0	453.0	1152.0	435.0	3.0806	106700.0
16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0
5624 row	vs × 9 column	IS							

Задача

Первую часть задания мы успешно выполняли! Только загвоздка... Нам не нужна вся таблица, а лишь один столбец, как это сделать?

Решение:

```
df[df['housing_median_age'] < 20, 'total_rooms']
# или (если необходимо вывести 2 и более столбцов
df[df['housing_median_age'] < 20, ['total_bedrooms', 'total_rooms']]</pre>
```

```
17
          44.0
19
          97.0
113
          96.0
116
         208.0
120
         186.0
         . . .
16643
         255.0
16733
         411.0
16743
         89.0
16801
          98.0
16851
         133.0
Name: total rooms, Length: 178, dtype: float64
```


Простая статистика

Pandas позволяет получить основные простые данные для описательной статистики. Такие как минимальное значение в столбце, максимальное значение, сумма всех значений, среднее значение

```
Максимальное
значение:

print(df['population'].max())
значение:

print(df['population'].min())
значение:

Среднее
значение:

print(df['population'].mean())

Cymma:

print(df['population'].sum())
```

Медианное значение для нескольких столбцов:

```
df[['population', 'total_rooms']].median()
```


Простая статистика

Перцентиль - это показатель, используемый в статистике, показывающий значение, ниже которого падает определенный процент наблюдений в группе наблюдений Получить общую картину можно простой командой describe

df.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000	3000.000000	3000.00000
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667	489.91200	3.807272	205846.27500
std	1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012	365.42271	1.854512	113119.68747
min	-124.180000	32.56000	1.000000	6.000000	2.000000	5.000000	2.00000	0.499900	22500.00000
25%	-121.810000	33.93000	18.000000	1401.000000	291.000000	780.000000	273.00000	2.544000	121200.00000
50%	-118.485000	34.27000	29.000000	2106.000000	437.000000	1155.000000	409.50000	3.487150	177650.00000
75%	-118.020000	37.69000	37.000000	3129.000000	636.000000	1742.750000	597.25000	4.656475	263975.00000
max	-114.490000	41.92000	52.000000	30450.000000	5419.000000	11935.000000	4930.00000	15.000100	500001.00000

count - Общее кол-во не пустых строк, mean - среднее значение в столбце

std - стандартное отклонение от среднего значения, min - минимальное значение, max - максимальное значение

Числа **25%**, **50%**, **75%** - перцентили

Изображаем статистические отношения

Scatterplot (Точечный график)

Математическая диаграмма, изображающая значения двух переменных в виде точек на декартовой плоскости. Библиотека seaborn без труда принимает pandas DataFrame(таблицу). Чтобы изобразить отношения между двумя столбцами достаточно указать, какой столбец отобразить по оси х, а какой по оси у.

Для того чтобы начать работу с библиотекой seaborn, ее необходимо импортировать к себе в программу:

import seaborn as sns

Вернемся к нашей таблице. Можно заметить, что дома расположены в определенной "полосе" долготы и широты.

Изображаем статистические отношения

Изображение точек долготы по отношению к широте:

sns.scatterplot(data=df, x="longitude", y="latitude")

Изображаем статистические отношения

Помимо двумерных отношений, мы можем добавить "дополнительное измерение" с помощью цвета. В данном случае опять же достаточно очевидное отношение, чем выше кол-во семей, тем выше кол-во людей и соответственно

```
sns.scatterplot(data=df, x="households", y="population", hue="total rooms")
```


Линейные графики

Хорошо подойдут, если есть временная или какая-либо иная последовательность и значения, которые могут меняться в зависимости от нее. Для генерации линейных графиков в seaborn используется relplot функцию. Она также принимает DataFrame, x, y - столбцы.

Для визуализации выбирается тип line:

```
sns.relplot(x="latitude", y="median house value", kind="line", data=df)
```


Линейные графики

Можно видеть, что в определенных местах долготы цена за дома резко подскакивает.

Попробуем визуализировать longitude по отношения к median_house_value и поймем в чем же дело, почему цена так резко подскакивает.

```
sns.relplot(x = 'longitude', y = 'median_house_value', kind = 'line', data = df)
```


Линейные графики

Можно видеть, что в определенных местах широты цена за дома также очень высока.

Используя точечный график можно визуализировать эти отношения с большей четкостью. Скорее всего резкий рост цен связан с близостью к ценному объекту, повышающему качество жизни, скорее всего побережью океана или реки.

```
sns.scatterplot(data=df, x="latitude", y="longitude", hue="median house value")
```


Способ представления табличных данных в графическом виде — в виде столбчатой диаграммы. По оси х обычно указывают значение, а по оси у - встречаемость (кол-во таких значений в выборке).

```
sns.histplot(data=df, x="median income")
```


Можно видеть что у большинства семей доход находится между значениями 2 и 6. И только очень небольшое количество людей обладают доходом > 10.

Изобразим гистограмму по housing_median_age.

```
sns.histplot(data = df, x = 'housing_median_age')
```


Распределение по возрасту более равномерное. Большую часть жителей составляют люди в возрасте от 20 до 40 лет. Но и молодежи не мало. Также очень много пожилых людей > 50 лет медианный возраст.

Давайте посмотрим медианный доход у пожилых жителей.

Пример:

sns.histplot(data=df[df['housing_median_age']>50], x="median_income")

Большого отличия от популяции в целом не наблюдается. Скорее всего это местные жители.

Давайте разобьем возрастные группы на 3 категории те кто моложе 20 лет, от 20 до 50 и от 50, чтобы посмотреть влияет ли это на доход.

Пример:

```
df.loc[df['housing_median_age'] <= 20, 'age_group'] = 'Молодые'

df.loc[(df['housing_median_age'] > 20) & (df['housing_median_age'] <= 50), 'age_group'] = 'Ср. возраст'

df.loc[df['housing_median_age'] > 50, 'age_group'] = 'Пожилые'
```

Что в этом случае происходит внутри таблицы? Добавился новый столбец age_group, в котором будет указана соответствующая категория.

```
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_valueage_group0-114.3134.1915.05612.01283.01015.0472.01.493666900.0Молодые
```


Применим group_by, чтобы получить среднее значение.

df.groupby('age_group')['median_income'].mean().plot(kind='bar')

Молодые оказываются самой богатой группой населения. Но отличие в доходе не значительное.

Seaborn так же позволяет нам смотреть распределение по многим параметрам. Давайте поделим группы по доходам на 2. Те у кого медианный доход выше 6 и те у кого меньше. Изобразим дополнительное измерение с помощью оттенка в виде возрастных групп и групп по доходам.

Анализ данных должен предоставлять информацию и инсайт, которые не видны невооруженным взглядом. В этом и есть красота аналитики. В данном случае можно сделать следующий выводы. Стоимость домов напрямую зависит от их расположения, в определенной полосе(скорее всего побережье) цена на дома высокая. Чем выше доход, тем больше шанс, что человек проживает в богатом районе. Распределение по возрастам примерно одинаковое во всех группах доходов. Ну и очевидно чем больше людей, тем больше семей, и соответственно комнат и спален.

Спасибо за внимание!

DataFrame.head(n=5)

Параметры:

n: int, значение по умолчанию 5

Посмотреть первые 5 строк df.head()

DataFrame.tail(n=5)

Параметры:

n: int, значение по умолчнию 5

Посмотреть последние 5 строк df.tail()

Возвращает размеры таблицы: кортеж из 2 значений, 1 ко л-во строк, 2 - кол-во столбцов df.shape

DataFrame.isnull() - обнаруживает пустые значения
DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs) возвращает сумму значений по выбраной оси
Параметры:

axis: int {index (0), columns (1)} - ось(0 - вертикальная, 1 - горизонтальная) По умолчанию 0

Посмотреть есть ли у нас пусты е значения

В данном случае пустых значен ий нет df.isnull().sum()

Проверить тип данных в столбц ах

В данных случаях везде float, ч исло 64 указывает на разрядност ь(Используется 64 байта для хра нения значения в памяти,

чем меньше разрядность, тем м еньший диапазон могут принима ть числа и тем меньше тратится п амяти на хранение. df.dtypes

Посмотреть все столбцы

Возвращает список со строкам и строк - названиями столбцов в таблице df.columns

В данном случае у нас следующие строки:

- 1. longitude долгота
- 2. latitude широта
- 3. housing_median_age медианный возраст зданий
- 4. total_rooms общее кол-во зданий
- 5. total_bedrooms Общее кол-во спален
- 6. population кол-во жителей
- 7. households кол-во семей
- 8. median_house_value медианная стоимость дома

Медиана набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше.

Выбор данных

```
# Выбор 1 столбца - [широты] df['latitude']
```

```
# Выбор нескольких столбцов [широта, колво жителей]

df[['latitude', 'population']]
```



```
# Выбор определенного кол-ва рядов
# Синтаксис df[df[col]!=|==|>|<| значение]
df[df['housing_median_age'] < 20]
```



```
# Для отбора можно использовать несколько у словий одновременно
# Знак & означает 'and', а знак | 'or' df[(df['housing_median_age'] > 20) & (df['total_ro oms'] > 2000)]

df[(df['housing_median_age'] > 20) | (df['total_ro oms'] > 2000)]

# Выбор определенного колва рядов и столбцов
# используется метод loc в [], первый аргумент
```

используется метод юс в [], первый аргумент индекс или селектор, а второй список со столб цами df.loc[df['population'] < 100, ['total_bedrooms', 't otal_rooms']]

Простая статистика

Pandas позволяет получить основные простые данные для описательной статистики

Такие как минимальное значение в столбце, максимальное значение, сумма всех значений, среднее значение

Максимальное значение print(df['population'].max()) # Минимальное значение print(df['population'].min()) # Среднее значение print(df['population'].mean()) # Сумма print(df['population'].sum())

Эту же статистику можно рассчитывать сразу для нескольких столбцов

Медианное значение df[['population', 'total_rooms']].median()

population 1155.0 total_rooms 2106.0

dtype: float64

Получить общую картину можно простой командой describe

df.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000	3000.000000	3000.00000
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667	489.91200	3.807272	205846.27500
std	1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012	365.42271	1.854512	113119.68747
min	-124.180000	32.56000	1.000000	6.000000	2.000000	5.000000	2.00000	0.499900	22500.00000
25%	-121.810000	33.93000	18.000000	1401.000000	291.000000	780.000000	273.00000	2.544000	121200.00000
50%	-118.485000	34.27000	29.000000	2106.000000	437.000000	1155.000000	409.50000	3.487150	177650.00000
75%	-118.020000	37.69000	37.000000	3129.000000	636.000000	1742.750000	597.25000	4.656475	263975.00000
max	-114.490000	41.92000	52.000000	30450.000000	5419.000000	11935.000000	4930.00000	15.000100	500001.00000

count - Общее кол-во не пустых строк mean - среднее значение в столбце std - стандартное отклонение от среднего значения min - минимальное значение max - максимальное значение Числа 25%, 50%, 75% - перцентили

> Перцентиль - это показатель, используемый в статистике, показывающий значение, ниже которого падает определенный процент наблюдений в группе наблюдений

На лекции мы познакомимся с инструментами и способами визуализации данных с помощью библиотек matplotlib и seaborn.

Прежде, чем приступать непосредственно к машинному обучению, важно произвести EDA (Exploratory Data Analysis) - Разведочный анализ данных.

Он состоит в анализе основных свойств данных, нахождения в них общих закономерностей, распределений и аномалий, построение начальных моделей, зачастую с использованием инструментов визуализации.

Понятие введено математиком Джоном Тьюки, который сформулировал цели такого анализа следующим образом:

- 1. Максимальное «проникновение» в данные
- 2. Выявление основных структур
- 3. Выбор наиболее важных переменных4. Обнаружение отклонений и аномалий5. Проверка основных гипотез

Библиотека для работы с табли чными данными

import pandas as pd

Библиотека для вычислений ли нейной алгебры

import numpy as np

Библиотеки для визуализации

import seaborn as sns import matplotlib.pyplot as plt # Начнем с чтения csv данных

df = pd.read_csv('sample_data/cali
fornia_housing_train.csv')

Первые пять строк df.head()

Изображаем статистические отношения

Scatterplot (Точный график)

Математическая диаграмма, изображающая значения двух переменных в виде точек на декартовой плоскости.

Библиотека seaborn без труда принимает pandas DataFrame(таблицу). Чтобы изобразить отношения между двумя столбцами достаточно указать, какой стобец отоброзить по оси x, а какой по оси y.

- # Изображения точек долготы по отношению к широте.
- # Можно заметить, что дома расположены в определенной "полосе" долготы и широты sns.scatterplot(data=df, x="longitude", y="latitude")

Самостоятельная работа №1
Изобразите отношение households к population
sns.scatterplot(data = df, x = 'households', y = 'population')

Помимо двумерных отношений, мы можем добавить "дополнительное измерение" с помощью цвета. В данном случае опять же достаточно очевидное отношение, чем выше кол-во семей, тем выше кол-во людей и соответственно комнат

sns.scatterplot(data=df, x="households", y="population", hue="total_rooms")

Помимо обозначения дополнительного измерения цветом мы можем использовать size

Самостоятельная работа №2
Добавьте total_rooms используя дополнительное и змерение size
sns.scatterplot(data=df, x="households", y="population", hue="total_rooms", size = 4)

Мы можем визуализировать сразу несколько отношений используя класс PairGrid внутри seaborn

PairGrid принимает как аргумент pandas DataFrame и визуализирует все возможные отношения между ними, в соответствии с выбранным типом графика.

cols = ['population', 'median_income', 'housing_median_ag
e', 'median_house_value']
g = sns.PairGrid(df[cols])
g.map(sns.scatterplot)

Вопрос

Как вы думаете, чем вызвана линейная зависимость по диагонали?

Линейные графики

Хорошо подойдут, если есть временная или какаялибо иная последовательность и значения, которые могут меняться в зависимости от неё.

Для генерации линейных графиков в seaborn используется relplot функция. Она также принимает DataFrame, x, y - столбцы.

Для визуализации выбирается тип line sns.relplot(x="latitude", y="median_house_value", kind ="line", data=df)

Можно видеть, что в определенных местах долготы цена за дома резко подскакивает.


```
# Самостоятельная работа №3
# Визуализировать longitude по отношения к median _house_value
# Используя линейный график
sns.relplot(x = 'longitude', y = 'median_house_value', ki
nd = 'line', data = df)
```

Можно видеть, что в определеных местах широты цена за дома также очень высока

Используя точечный график можно визуализировать эти отношения с большей четкостью. Скорее всего резкий рост цен связан с близостью к ценному объекту, повышающему качество жизни, скорее всего побережью океана или реки.

sns.scatterplot(data=df, x="latitude", y="longitude", hue="median_house_value")

Гистограмма

Способ представления табличных данных в графическом виде — в виде столбчатой диаграммы. По оси х обычно указывают значение, а по оси у - встречаемость (кол-во таких значений в выборке)

sns.histplot(data=df, x="median_income")

Можно видеть что у большинства семей доход находится между значениями 2 и 6.И только очень небольшое ко-во людей обладают доходом > 10

Самостоятельная работа №5 # Изобраить гистограмму по housing_median_age sns.histplot(data = df, x = 'housing_median_age')

Распределение по возрасту более равномерное. Большую часть жителей составляют люди в возрасте от 20 до 40 лет. Но и молодежи не мало. Также очень много пожилых людей > 50 лет медианный возраст.

Давайте посмотрим медианный доход у пожилых жителей

sns.histplot(data=df[df['housing_median_age']>50], x="
median_income")

Большого отличия от популяции в целом не наблюдается. Скорее всего это местные жители.

Давайте посмотрим на популяцию

sns.histplot(data=df, x="population", binwidth=1000)

Разобьем возрастные группы на 3 категории те кто моложе 20 лет, от 20 до 50 и от 50, чтобы посмотреть влияет ли это на доход.

```
df.loc[df['housing_median_age'] <= 20, 'age_group'] = 'Молодые' df.loc[(df['housing_median_age'] > 20) & (df['housing_median_age'] <= 50), 'age_group'] = 'Ср. возраст' df.loc[df['housing_median_age'] > 50, 'age_group'] = 'Пожилые'
```

Применим group_by, чтобы получить среднее значение

df.groupby('age_group')['median_income'].mean().plot(kind='bar')

Молодые оказываются самой богатой группой населения. Но отличие в доходе не значительное.

Seaborn так же позволяет нам смотреть распределение по многим параметрам. Давайте поделим группы по доходам на 2. Те у кого медианный доход выше 6 и те у кого меньше. Изобразим дополнительное измерение с помощью оттенка в виде возрастных групп и групп по доходам.

```
df.loc[df['median_income'] > 6, 'income_group'] = 'rich'
df.loc[df['median_income'] < 6, 'income_group'] = 'everyone_else'
sns.displot(df, x="median_house_value", hue="income_group")</pre>
```


Heatmaps (Корелляция)

Посмотрим как данные коррелируют между собой

corr = df.corr()


```
mask = np.triu(np.ones like(corr, dtype=bool))
# Создаем полотно для отображения большого
графика
f, ax = plt.subplots(figsize=(11, 9))
# Создаем цветовую политру
cmap = sns.diverging_palette(230, 20, as_cmap=
True)
# Визуализируем данные кореляции
sns.heatmap(corr, mask=mask, cmap=cmap, vma
x=.3, center=0,
     square=True, linewidths=.5, cbar_kws={"sh
rink": .5})
```


Выводы

Анализ данных должен предоставлять информацию и инсайт, которые не видные невооруженным взглядом. В этом и есть красота аналитики. В данном случае можно сделать следующий выводы. Стоимость домов напрямую зависит от их расположения, в определенной полосе(скорее всего побережье) цена на дома высокая. Чем выше доход, тем больше шанс, что человек проживает в богатом районе. Возраст никак не коррелирует с доходом. Распределение по возрастам примерно одинаковое во всех группах доходов. Ну и из очевидно чем больше людей, тем больше семей, и соответственно комнат и спален.

Объяснение


```
penguins = sns.load dataset("penguins")
# Первые 5 строк датасета про пингвинов
penguins.head()
sns.scatterplot(data = penguins, x = 'bill length
mm', y = 'bill depth mm', hue = 'sex', size = 5)
sns.scatterplot(data = penguins, x = 'body_mass
_g', y = 'flipper_length_mm', hue = 'sex', size = 6)
sns.scatterplot(data = penguins, x = 'bill depth
mm', y = 'bill length mm', hue = 'body mass g',
size = 4
```

```
lst = ['bill length mm', 'bill depth mm', 'flipper length m
m', 'body mass g', 'sex']
g = sns.PairGrid(penguins[lst])
g.map(sns.scatterplot)
sns.histplot(data = penguins, x = 'bill depth mm')
sns.histplot(data = penguins, x = 'bill_length_mm')
sns.histplot(data = penguins, x = 'flipper_length_mm')
corrs = penguins.corr()
mask = np.triu(np.ones_like(corrs, dtype=bool))
f, ax = plt.subplots(figsize=(11, 9))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(corrs, mask=mask, cmap=cmap, vmax=.3, ce
nter=0.
      square=True, linewidths=.5, cbar kws={"shrink": .5})
```