

PAW3903E1-TXQT: Optical Motion Tracking Chip

Product Datasheet

General Description

The PAW3903E1-TXQT is PixArt Imaging's latest improved low light performance optical motion tracking chip designed to a wide working range of 80 mm to infinity. Its latest state of the art architecture allows motion tracking under low light condition of down to 30 lux. In addition, a dedicated super low light mode is designed for motion tracking at single digit lux which is suitable for low speed super low light hovering stabilization function. It is housed in a 28-pin land-grid-array (LGA) package that enables direct drop in to PMW3901 for ease of design and assembly. It is most suitable for far field application for motion detection, e.g Drone.

Key Features

 Three Operation Modes to cater different far field application needs and ambient conditions.

Mode	Description	Lux (Typ)
0 @ 126 fps	Bright Mode for general motion tracking	60
1 @ 126 fps (Default)	Low Light Mode for low light motion tracking	30
2 @ 50 fps	Super Low Light Mode for super low light and low speed motion tracking	9

- Wide working range from 80 mm to infinity
- No lens focusing required during lens mounting process
- Power consumption of 6 mA typical @ run mode
- Effective viewing angle of 42 degree
- High speed of max 7.4 rad/s (Mode 0 & 1)
- 16-bits motion data registers
- Motion detect pin output

- Internal oscillator no clock input needed
- Frame capture via register read is available
- Synchronized Chip Operation

Applications

- Devices that require far field motion detection and hovering stability, e.g Drone
- Indoor and outdoor X-Y positioning especially in GPS denied environment

Key Parameters

Parameter	Value				
Supply Voltage (V)	V _{DD} : 1.8 – 2.1				
	V _{DDIO} : 1.8 – 3.6				
Working Range (mm)	80 to infinity				
Interface	4-Wire SPI @ 2 MHz				
Package Type	28-pin LGA Package with L214-ZSZ Lens Assembly:				
	6 x 6 x 3.08 mm				

Ordering Information

Part Number	Package Type				
PAW3903E1-TXQT	28-pin LGA Package				
L214-ZSZ	Lens Assembly				

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

SEE. FEEL. TOUCH.

PixArt Imaging Inc.

Contents

PAW3	3903E1-TXQT: Optical Motion Tracking Chip	1
Pro	oduct Datasheet	1
Ger	neral Description	1
Key	y Features	1
	plications	
Key	y Parameters	1
Ord	dering Information	1
List of	f Figures	4
	f Tables	5
1.0	Introduction	6
1.1		
1.2		
1.3		
2.0	Operating Specifications	
2.1		
2.2	Recommended Operating Conditions	9
2.3	DC Characteristics	9
2.4	AC Characteristics	10
3.0	Mechanical Specifications	12
3.1	Package Marking	12
3.2	LGA Package Outline Drawing	12
3.3	L214-ZSZ Lens Assembly Drawings	14
4.0	System Level Description	16
4.1	Reference Schematic	16
4.2	Assembly Recommendation	17
4.3	Manual re-work of chip assembly	17
5.0	Power States & Sequence	18
5.1	Power-Up Sequence	18
5.2	Power-Down Sequence	19
6.0	Serial Port Interface Communication	20
6.1	Signal Description	20
6.2	Motion Pin Timing	20
6.3	Chip Select Operation	20
6.4	Write Operation	21
Versio	on 1.10 13 Nov 2018 SEE. FEE I	L. ТОИСН.

6.5	Read Operation	22
6.6	Required Timing between Read and Write Commands (t _{SXX})	23
7.0	Operation	25
7.1	Burst Mode	25
7.2	Motion Read	25
7.3	Frame Capture	27
7.4	Frame Synchronization (FS)	30
7.5	Resolution versus Height Chart	33
7.6	Speed versus Height Chart	
7.7	Operation Modes	
8.0	Registers	37
8.1	Registers List	37
8.2	Performance Optimization Registers	37
8.3	Register Description	46
Appen	dix A: External Illumination Guiden History	56
Revisio	n History	58

List of Figures

Figure 1. Functional Block Diagram	6
Figure 2. Pin Configuration	7
Figure 3. LGA Package Outline Drawing	12
Figure 4. Recommended PCB Layout	13
Figure 5. System Assembly View with L214-ZSZ	14
Figure 6. Exploded View of System Assembly	14
Figure 7. L214-ZSZ Lens Outline Drawing	15
Figure 8. PAW3903E1 Reference Schematics	16
Figure 9. Write Operation	
Figure 10. MOSI Set-up and Hold Time	
Figure 11. Read Operation	
Figure 12. MISO Delay and Hold Time	
Figure 13. Timing between two Write Commands	
Figure 14. Timing between Write and Read commands	23
Figure 15. Timing between Read and either Write or subsequent Read commands	23
Figure 16. Motion Read Timing	
Figure 17. Raw Data Map	29
Figure 18. Single Chip Synchronization	32
Figure 19. Resolution versus Height Chart	33
Figure 20. Speed versus Height Chart (Mode 0 & 1)	34
Figure 21. Operation Mode's Switching Scheme	35
Figure 22. LED_N pulsing	56
Figure 23. Schematics to drive external LED circuitry	57

List of Tables

Table 1. Signal Pins Description	
Table 2. Absolute Maximum Ratings	8
Table 3. Recommended Operating Conditions	9
Table 4. DC Electrical Specifications	9
Table 5. AC Electrical Specifications	10
Table 6. Code Identification	
Table 7. State of Signal Pins during Power-Up & Reset	18
Table 8. State of Signal Pins during Shutdown.	
Table 9. Register List	37
Table 10. Performance Optimization Registers for Mode 0: Bright Mode	37
Table 11. Performance Optimization Registers for Mode 1: Low Light Mode	40
Table 12. Performance Optimization Registers for Mode 2: Super Low Light Mode	
Table 13. Product ID Related Registers	46
Table 14. Reset and Shutdown Related Registers	47
Table 15. Operational Control Related Register	48
Table 16. Motion Related Registers	49
Table 17. Operational Check Related Registers	52
Table 18. Troubleshooting Related Registers	54

1.0 Introduction

1.1 Overview

PAW3903E1-TXQT is based on Optical Navigation Technology, which measures changes in position by optically acquiring sequential picture elements and mathematically determining the direction and magnitude of movement. PAW3903E1 contains a Picture Element Acquisition System (PEAS), a hard-coded Digital Signal Processing System (DSPS), and a four-wire serial port interface. The picture elements acquired by the PEAS are processed by the DSPS to determine the direction and distance of motion. The DSPS calculates the delta X and delta Y relative displacement. An external microcontroller reads and translates the delta X and delta Y information from PAW3903E1 before sending them to the host.

Figure 1 below shows the functional block diagram of PAW3903E1. Refer to the subsequent chapters for detailed information on the functionality of the different interface blocks.

This datasheet describes the electrical characteristics, configuration specifications, I/O timings, and provides recommendations for handling PAW3903E1 and its lens assembly.

Figure 1. Functional Block Diagram

1.2 Terminology

Term	Description
DSPS	Digital Signal Processing System
ESD	Electrostatic Discharge
LED	Light Emitting Diode
IC	Integrated Circuit
1/0	Input / Output
IMU	Inertial Measurement Unit
IR	Infrared
MCU	Microcontroller Unit
PCB	Printed Circuit Board

1.3 Signal Description

Figure 2. Pin Configuration

Table 1. Signal Pins Description

Pin No.	Signal Name	Туре	Description			
Functiona	al Group:	Power Supplies				
2	VDD	Power	Input power supply			
3	VDDIO	Power	/O reference voltage			
4	VREG	Power	Internal voltage output			
1	GND	Ground	Ground			
21	GND	Ground	Ground			
Function	al Group:	Control Interface				
16	MOSI	Input	Serial data input			
17	SCLK	Input	Serial data clock			
18	MISO	Output	Serial data output			
19	NCS	Input	Chip select			
Function	al Group:	Functional I/O				
7	NRESET	Input	Hardware reset (Active low)			
15	MOTION	Output	Motion interrupt (Active low)			
20	LED_N	Input	External LED control pin (Active low) (Refer Appendix A for more details)			
Function	al Group:	Special Function P	in			
5 - 6	NC	NC	No connection (float)			
8 - 14	NC	NC	No connection (float)			
22 - 28	NC	NC	No connection (float)			
29*	GND PAD	Ground Pad	Bottom of LGA package must be connected to circuit ground			

Version 1.10 | 13 Nov 2018

2.0 Operating Specifications

2.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Lead-Free Solder Temperature	T _{SOLDER}		260	°C	• 0
C	V_{DD}	-0.5	2.1	V	
Supply Voltage	V_{DDIO}	-0.5	3.6	V	
Input Voltage	V _{IN}	-0.5	3.6	V	All I/O pins
ESD	ESD _{HBM}		2	kV	All pins (Human Body Model)

Notes:

- 1. Maximum Ratings are those values beyond which damage to the device may occur.
- 2. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
- 3. Functional operation should be restricted to the Recommended Operating Conditions.

2.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0		60	°C	
Dower Cumply Voltage	V_{DD}	1.8	2.0	2.1	V	Including supply noise
Power Supply Voltage	V_{DDIO}	1.8	2.0	3.6	V	$V_{DDIO} \ge V_{DD}$
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to V _{DD} min
Supply Noise (Sinusoidal)	V_{NA}			100	mV_{p-p}	10 kHz – 75 MHz
Serial Port Clock Frequency	f_{SCLK}			2	MHz	50% duty cycle
Working Range	Z	80			mm	
Effective Viewing Angle	V_A		42		0	
Minimum Illuminance ²	L _{XM0}		60		lux	Mode 0: Bright Mode
(@ Crimson Carpet, Grey Vinyl & Light Grey Cement	L_{XM1}		30		lux	Mode 1: Low Light Mode (Default Mode)
surfaces)	L _{XM2}		9	• . (lux	Mode 2: Super Low Light Mode
	F _{RMO}		126		fps	Mode 0: Bright Mode
Frame Rate	F _{RM1}		126		fps	Mode 1: Low Light Mode (Default Mode)
	F _{RM2}		50		fps	Mode 2: Super Low Light Mode
Speed	S			7.4	rad/s	Mode 0 & 1

Notes:

- 1. PixArt does not guarantee the performance of the system beyond the recommended operating condition limits.
- 2. In addition to visible light spectrum (lux), PAW3903E1 is also sensitive to IR spectrum up to 940 nm which aids in tracking under low light ambient condition.

2.3 DC Characteristics

Table 4. DC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Current	loo auu		6		mA	Average current.
Supply Current	I _{DD_RUN}		O		ША	No load on MISO, MOTION.
Power Down Current	I_{PD}		12		uA	
Input Low Voltage	V_{IL}			0.3*V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V_{IH}	0.7*V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current	1		± 1	± 10	uA	V _{in} = V _{DDIO} or OV,
	I _{LEAK}		<u> </u>	1 10	uA	SCLK, MOSI, NCS
Output Low Voltage	V_{OL}			0.45	V	I _{OUT} = 1mA, MISO, MOTION
Output High Voltage	V_{OH}	V _{DDIO} - 0.45			V	I _{OUT} = -1mA, MISO, MOTION

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0 \text{V}$, $V_{DDIO} = 2.0 \text{V}$, $T_A = 25 ^{\circ}\text{C}$.

Version 1.10 | 13 Nov 2018

SEE. FEEL. TOUCH.

2.4 AC Characteristics

Table 5. AC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	t _{STDWN}			500	us	From Shutdown mode active to low current
Wake from Shutdown	t _{WAKEUP}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown", also note t _{MOT-RST} .
MISO Rise Time	t _{r-MISO}		50		ns	C _L = 100pF
MISO Fall Time	t _{f-MISO}		50		ns	C _L = 100pF
MISO Delay After SCLK	t _{DLY-MISO}			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO Hold Time	t _{hold-MISO}	200			ns	Data held until next falling SCLK edge
MOSI Hold Time	t _{hold-MOSI}	200			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	120			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	10.5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	t _{swr}	6			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time Between Read And Subsequent Commands	t _{srw} t _{srr}	1.5			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	t _{srad}	2			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.

Optical Motion Tracking Chip

NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to first SCLK rising edge
SCLK To NCS Inactive (For Read Operation)	t _{SCLK-NCS}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK To NCS Inactive (For Write Operation)	t _{sclk-ncs}	2			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state
MOTION Rise Time	t _{r-MOTION}		50		ns	C _L = 100pF
MOTION Fall Time	t _{f-MOTION}		50		ns	C _L = 100pF
Input Capacitance	C _{in}		50		pF	SCLK, MOSI, NCS
Load Capacitance	C _L			100	pF	MISO, MOTION
Transient Cumply Compart	I _{DDT}		9	70	mA	Max supply current during the supply ramp from 0V to V _{DD} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).
Transient Supply Current	I _{DDTIO}	,		70	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

3.0 Mechanical Specifications

3.1 Package Marking

Refer Figure 2. Pin Configuration for the code marking location on the device package.

Table 6. Code Identification

Code	Marking	Description	
Product Number	P3903	Part number label	
		Y: Year	
Lot Code	YWX	W: Week	
		X: Reserved as PixArt reference	

3.2 LGA Package Outline Drawing

Notes:

- 1. Dimensions in milimeters [Inches]
- 2. Coplanarity of pads: 0.08 mm
- 3. Non-cumulative pad pitch tolerance: ±0.10 mm
- 4. Maximum flash: ±0.20 mm
- 5. Dimensional tolerance: ±0.10 mm unless otherwise stated
- 6. Package Reference: 28L-6X6-LGA_009

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 3. LGA Package Outline Drawing

Note: Bottom center pad of LGA package must be connected to circuit ground.

Figure 4. Recommended PCB Layout

3.3 L214-ZSZ Lens Assembly Drawings

Figure 5. System Assembly View with L214-ZSZ

Figure 6. Exploded View of System Assembly

Figure 7. L214-ZSZ Lens Outline Drawing

4.0 System Level Description

4.1 Reference Schematic

Note:

- 1. All capacitors must be placed as close as possible to VDD, VDDIO & VREG pins.
- 2. Ceramic non-polarity capacitors are recommended.

Figure 8. PAW3903E1 Reference Schematics

4.2 Assembly Recommendation

- Surface mount PAW3903E1 and all other electrical components onto PCB.
- Reflow the entire assembly in a no-wash solder process.
 - Note: It is recommended to generate a stencil profile for the reflow process.
- Remove the protective kapton tape on top of the chip's package.
 - Note: Care must be taken to keep contamination from entering the aperture.
 - Recommendation: Hold the PCB assembly vertically when removing kapton tape.
- Place the PCB assembly horizontally with the top of the chip's package facing up.
- Insert the lens onto the optical aperture (the hole on the chip's package).
- Use an appropriate flat tip jig to press the lens onto the aperture until the top surface of the lens is parallel with the top surface of the chip's package.
 - Note: No lens focusing is required.
- Insert the nozzle of glue dispenser vertically inside the gluing slots and dispense glue appropriately.
- Remove the nozzle of glue dispenser and let the glue cure properly.

Note: Refer to L214-ZSZ lens assembly's Application Note for more information and detailed steps of the assembly process.

4.3 Manual re-work of chip assembly

If there is a need to re-work the chip assembly by de-soldering and re-soldering the chip onto PCB, it is advised to do so before applying glue onto the lens' gluing slots. Please note below precautions for re-work of chip assembly:

- Remove lens from the optical aperture by peeling the lens from the gluing slot using a tweezer.
 - Note: It is important to remove the lens as it will melt under the soldering heat.
- Place kapton tape across the top of the package to keep contamination from entering the aperture.
- Perform de-soldering & soldering activities as needed.
- Remove kapton tape and insert the lens as outlined in the above section.

5.0 Power States & Sequence

5.1 Power-Up Sequence

Although PAW3903E1 performs an internal power up self-reset, it is still recommended that the Power_Up_Reset register is written every time power is applied. The appropriate sequence is as follows:

- 1. Apply power to VDDIO first and followed by VDD, with a delay of no more than 100ms in between each supply. Ensure all supplies are stable.
- 2. Wait for at least 40 ms.
- 3. Drive NCS high, and then low to reset the SPI port.
- 4. Write 0x5A to Power Up Reset register (or alternatively, toggle the NRESET pin).
- 5. Wait for at least 1 ms.
- 6. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion pin state.
- 7. Refer Section **8.2 Performance Optimization Registers** to configure the needed registers in order to achieve optimum performance of the chip.

The table below shows the state of the various pins during power-up and reset.

Table 7. State of Signal Pins during Power-Up & Reset

State of Signal Pins after VDD is Valid						
Pin	During Reset	After Reset				
NRESET	Functional	Functional				
NCS	Ignored	Functional				
MISO	Undefined	Depends on NCS				
SCLK	Ignored	Depends on NCS				
MOSI	Ignored	Depends on NCS				
MOTION	Undefined	Functional				

<u>Note</u>: The NRESET pin can be used to perform a full chip reset. When asserted, it performs the same function as the Power_Up_Reset register. The NRESET pin needs to be asserted (held to logic 0) for at least 100 ns. The NRESET pin cannot be left floating or unconnected.

5.2 Power-Down Sequence

PAW3903E1 can be set to Shutdown mode by writing to Shutdown register. The SPI port should not be accessed when Shutdown mode is asserted, except the power-up command (writing 0x5A to register 0x3A). Other ICs on the same SPI bus can be accessed, as long as the chip's NCS pin is not asserted.

To de-assert Shutdown mode:

- 1. Drive NCS high, and then low to reset the SPI port.
- 2. Write 0x5A to Power_Up_Reset register (or alternatively, toggle the NRESET pin).
- 3. Wait for at least 1 ms.
- 4. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion pin state.
- 5. Refer Section **8.2 Performance Optimization Registers** to configure the needed registers in order to achieve optimum performance of the chip.

The table below shows the state of various pins during shutdown.

Table 8. State of Signal Pins during Shutdown.

Pin	Status during Shutdown Mode
NRESET	High
NCS	High ¹
MISO	Hi-Z ²
SCLK	Ignore if NCS = 1 ³
MOSI	Ignore if NCS = 1 ⁴
MOTION	Output High

Notes:

- 1. NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Shutdown unless powering up the chip. It must be held to 0 (low) if the chip is to be re-powered up from shutdown (writing 0x5A to register 0x3A).
- 2. MISO should be either pull up or down during shutdown.
- 3. SCLK is ignored if NCS is 1 (high). It is functional if NCS is 0 (low).
- 4. MOSI is ignored if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5A to register 0x3A).

6.0 Serial Port Interface Communication

6.1 Signal Description

The synchronous serial port is used to set and read parameters in PAW3903E1, and to read out the motion information.

The port is a four wire port. The host microcontroller always initiates communication; PAW3903E1 never initiates data transfers. SCLK, MOSI, and NCS may be driven directly by a microcontroller. The port pins may be shared with other SPI slave devices. When the NCS pin is high, the inputs are ignored and the output is tri-stated.

The lines that comprise the SPI port are:

Pin	Description
SCLK	Clock input, generated by the master (microcontroller).
MOSI	Input data (Master Out / Slave In).
MISO	Output data (Master In / Slave Out).
NCS	Chip select input (active low). NCS needs to be low to activate the serial port; otherwise MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.

6.2 Motion Pin Timing

The motion pin is an active low output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is non-zero data in the Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers. Clearing the motion bit (by reading Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers, or writing to the Motion register) will put the motion pin high.

6.3 Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is still required before beginning the next transaction.

To improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because ESD and EFT/B events could be interpreted as serial communication and put the chip into an unknown state.

In addition, NCS must be raised after each burst-mode transaction is complete to terminate burst-mode. The port is not available for further use until burst-mode is terminated.

6.4 Write Operation

Write operation, defined as data going from the micro-controller to PAW3903E1, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. PAW3903E1 reads MOSI on rising edges of SCLK.

Figure 9. Write Operation

Figure 10. MOSI Set-up and Hold Time

6.5 Read Operation

A read operation, defined as data going from PAW3903E1 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by PAW3903E1 over MISO. The chip outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.

Figure 11. Read Operation

Figure 12. MISO Delay and Hold Time

<u>Note:</u> The minimum high state of SCLK is also the minimum MISO data hold time of PAW3903E1. Since the falling edge of SCLK is actually the start of the next read or write command, PAW3903E1 will hold the state of data on MISO until the falling edge of SCLK.

6.6 Required Timing between Read and Write Commands (tsxx)

There are minimum timing requirements between read and write commands on the serial port.

Figure 13. Timing between two Write Commands

If the rising edge of the SCLK for the last data bit of the second write command occurs before the t_{SWW} delay, then the first write command may not complete correctly.

Figure 14. Timing between Write and Read commands

Figure 15. Timing between Read and either Write or subsequent Read commands

Version 1.10 | 13 Nov 2018

If the rising edge of SCLK for the last address bit of the read command occurs before the t_{SWR} required delay, the write command may not complete correctly. During a read operation, SCLK should be delayed at least t_{SRAD} after the last address data bit to ensure that the chip has time to prepare the requested data.

The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that PAW3903E1 has time to prepare the requested data.

7.0 Operation

7.1 Burst Mode

Burst mode is a special serial port operation mode which may be used to reduce the serial transaction time for Motion Read. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.

Note: A single read of any Motion related registers (0x02 to 0x06) should be avoided during burst mode.

7.2 Motion Read

Reading the Motion_Burst register activates Burst Mode. PAW3903E1 will respond with the following motion burst report in order.

Motion burst report:

BYTE[00] = Motion

BYTE[01] = Observation

BYTE[02] = Delta X L

BYTE[03] = Delta_X_H

BYTE[04] = Delta_Y_L

BYTE[05] = Delta_Y_H

BYTE[06] = SQUAL

BYTE[07] = RawData Sum

BYTE[08] = Maximum RawData

BYTE[09] = Minimum_RawData

BYTE[10] = Shutter Upper

BYTE[11] = Shutter Lower

After sending the register address, the microcontroller must wait for t_{SRAD} , and then begin reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the microcontroller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

Procedure to start motion burst:

- 1. Lower NCS signal, and wait for $t_{NCS-SCLK}$ delay.
- 2. Send Motion_Burst address (0x16). After sending this address, MOSI should be held either high or low until the burst transmission is complete (MOSI should not be toggling during subsequent SCLK cycles).
- 3. Wait for t_{SRAD} .
- 4. Start reading SPI Data continuously up to 12 bytes. Motion burst may be terminated by pulling NCS high for at least t_{RFXIT} .
- 5. In each of the three operation modes, check SQUAL & Shutter values. To suppress false motion reports, discard Delta X and Delta Y values if the SQUAL and Shutter values meet the condition outlined in below table:

Mode	SQUAL	Shutter
0: Bright Mode	< 0x19	≥ 0x1FF0
1: Low Light Mode	< 0x46	≥ 0x1FF0
2: Super Low Light Mode	< 0x55	≥ 0x0BC0

6. To read new motion burst data, repeat from step 1.

Figure 16. Motion Read Timing

7.3 Frame Capture

Frame Capture is the method to download the full array of raw data values using register read operation. This mode disables navigation and no other SPI activity is allowed during this period. A hardware reset is required to restore navigation.

<u>Note</u>: It is recommended to perform Frame Capture in Mode 0 & 1. It is not recommended to perform Frame Capture in Mode 2 due to the low frame rate in this mode.

Power-Up sequence should have been completed before performing Frame Capture. Frame Capture procedure is outlined below:

1. To enter Frame Capture mode, perform the below register writes in sequence:

Address	Value
0x7F	0x07
0x41	0x1D
0x4C	0x00
0x7F	0x08
0x6A	0x38
0x7F	0x00
0x55	0x04
0x40	0x80
0x4D	0x11

- 2. Write value 0x00 to register 0x7F, and then write value 0xFF to register 0x58.
- 3. Poll RawData_Grab_Status register until both bits 6 & 7 are set before proceeding to the next step.

Version 1.10 | 13 Nov 2018

4. Read raw data from RawData_Grab register. Each raw data consists of 8-bits and is constructed as described below:

Register Name	RawData_G	irab						
				Ado	lress	0x58		
Access	R/W			Reset	: Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	RDG ₇	RDG_6	RDG₅	RDG ₄	RDG ₃	RDG ₂	RDG ₁	RDG_0
Description	stationary for information This process	or the durat is read out o s is initialized Reading this	ion of grabbi one data at a d by a single v	e full array of ing raw data time. write of any v unload 8-bits	until the full alue to this r	array is com	npletely read need to be w	out, as the
Field	Access	Reset	Value			Description		

Field	Access	Reset	Value	Description	
RDG[5:0]	R/W	0		Raw data values	
				Flag to indicate which bits of raw data is being grabbed	
RDG[7:6] R/W		00	Invalid (raw data not available). Continue to poll RawData_Grab register.		
	0	01	Raw data is valid and available. Upper 6-bits raw data are held in RDG[5:0].		
NDG[7.0]	1,7,00	1, 1, 1,	Ny W	10 in RDG[3:2]. Readir	Raw data is valid and available. Lower 2-bits raw data are held in RDG[3:2]. Reading of lower 2-bits always follow the read of upper 6-bits of raw data.
			11	Invalid (raw data not available). Continue to poll RawData_Grab register.	

- 5. Construct each raw data by assigning upper 6-bits values from RDG[5:0] as RawData[7:2] and assigning lower 2-bits values from RDG[3:2] as RawData[1:0].
- 6. Continue Steps (4) and (5) until all 1225 raw data are read.
- 7. To capture another frame, repeat Steps (2) to (6).
- 8. To exit Frame Capture mode, perform the below register writes in sequence:

Address	Value
0x7F	0x00
0x4D	0x11
0x40	0x80
0x55	0x80
0x7F	0x08

Version 1.10 | 13 Nov 2018

SEE. FEEL. TOUCH.

Address	Value
0x6A	0x18
0x7F	0x07
0x41	0x0D
0x4C	0x80
0x7F	0x00

Note: Manual reset is needed after frame capture to restore navigation.

Figure 17. Raw Data Map

7.4 Frame Synchronization (FS)

A single or multiple PAW3903E1 chips can be synchronized to other devices at the desired frame rates through a series of register writes. This is especially useful when PAW3903E1 is part of a network or system that requires synchronized operation. For example, in a drone application system, the output from PAW3903E1 can be matched to the output rate of the IMU sensor to ensure data collection from these devices are from the same time stamp. In the case where multiple PAW3903E1 chips are employed in a system, synchronized data output from these multiple chips are crucial to provide accurate results in specific use model.

7.4.1 Hardware Requirement

There is no hardware modification needed for Frame Synchronization (FS). Physical hardware connection is also not needed between multiple PAW3903E1 chips.

7.4.2 Single Chip Synchronization

The basis of this operation is to provide the host MCU the flexibility to start or stop the PAW3903E1 at any given time. The procedure to synchronize PAW3903E1 to the desired frame rate is as below:

- 1. Power-up PAW3903E1 as per Section 5.1 in this datasheet. This includes configuring the registers as per Section 8.2 in this datasheet.
- 2. Perform below register writes in sequence. This issues a command to the PAW3903E1 to stop operation upon the completion of the current frame.

Address	Value
0x7F	0x07
0x40	0x41
0x7F	0x06
0x62	0x10
0x63	0x00
0x68	0x10
0x69	0x00
0x7F	0x00

- 3. Delay 20 ms (Mode 0 & 1) or 50 ms (Mode 2) to allow the PAW3903E1 sufficient time to complete the current frame's activities.
- 4. Start timer period before issuing start operation command to the PAW3903E1. The corresponding timer period with PAW3903E1's frame rate is shown below:

Mode 0 & 1		Mode 2	
Timer (ms)	Frame Rate (fps)	Timer (ms)	Frame Rate (fps)
7.9	126	20.0	50
10.0	100	25.0	40
11.1	90	33.3	30
12.5	80	50.0	20

5. To start the PAW3903E1 (to match to another device in the system), perform below register writes in sequence:

Address	Value	Remarks
0x7F	0x00	
0x15	0x00	
0x7F	0x07	
0x40	0x40	
	elay 450 ± 20 us ay 860 ± 50 us	This delay is required for proper issuance of the "start operation" command to the PAW3903E1.
0x40	0x41	X
0x7F	0x00	
Read Mo	tion Data	

Motion data is read as the last step as mentioned above. Alternatively, motion data can be read during the delay time. Refer below example:

Address	Value		
0x7F	0x00		
0x15	0x00		
0x7F	0x07		
0x40	0x40		
Read Motion Data (200 us)			
Mode 0 & 1: Delay 250 ± 20 us			
Mode 2: Delay 660 ± 50 us			
0x40	0x41		
0x7F	0x00		

In the above example for Mode 2, reading the motion data takes 200 us. Hence, Host only need to delay a balance of 860 - 200 = 660 us. In the event reading motion data takes only 100 us, host would then need to delay a balance of 860 - 100 = 760 us. All in all, a total delay time of 860 ± 50 us (Mode 2) must be observed.

- 6. Upon expiration of the timer period, poll register 0x15 and check for bit 5 to be set (bit 5 == 1).

 Note: If bit 5 is not set (bit 5 == 0), continue polling at 1 ms interval. If bit 5 is not set after 3 continuous polling, please exit the routine, power cycle PAW3903E1 and repeat from Step 1.
- 7. Repeat Step 4 to 6 to continue the synchronization routine and normal operation of the chip. If these steps are not repeated, there will be no data output from PAW3903E1.
- 8. To exit the synchronization routine, issue a soft reset command to PAW3903E1 and configure the registers as per Section 8.2 in this datasheet.

Version 1.10 | 13 Nov 2018

Figure 18. Single Chip Synchronization

7.4.3 Multiple Chips Synchronization

To synchronize multiple PAW3903E1 chips, repeat the steps in **Section 7.4.2 Single Chip Synchronization** but with all the chips receiving the register writes at the same time. To reiterate, every chip's NCS pin should be active low during the register writes. This ensures all the chips start the frame at the same time as close as possible.

All motion data should be read immediately from one chip to another, in a sequential manner. The maximum period to read motion data for all the chips should not exceed 150 us (Mode 0 & 1) or 1.2 ms (Mode 2) (regardless of timer period used). This helps to ensure the motion data read from all the chips are synchronized. If motion data for the chips are read outside these time frames, the motion data obtained (for some of the chips) might not be from the same frame.

7.5 Resolution versus Height Chart

This chart serves as a reference of resolution count with its corresponding height.

Note: Interpolation is applied to resolution count beyond 2 m.

Figure 19. Resolution versus Height Chart

7.6 Speed versus Height Chart

This chart serves as a theoretical reference of speed capability with its corresponding height for Mode 0 & 1 only.

Note: Interpolation is applied beyond 0.5 m.

Figure 20. Speed versus Height Chart (Mode 0 & 1)

7.7 Operation Modes

PAW3903E1 comes with three operation modes to cater different far field application needs and ambient conditions.

Mode	Frame Rate	Description	Lux (Typ)
0	126 fps	Bright Mode for general motion tracking	60
1 (Default)	126 fps	Low Light Mode for low light motion tracking	30
2	50 fps	Super Low Light Mode for super low light and low speed motion tracking	9

While PAW3903E1's default operation mode is Mode 1, however, it is possible for PAW3903E1 to start up in any of the three operation modes depending on customer's specific application. This section covers the switching scheme between these three operation modes. It is advisable to issue a soft reset when switching between modes. Note that switching to Mode 2 lowers the frame rate and should be targeted for low speed application.

The basis of the switching scheme is the Shutter and RawData_Sum values which determine the optimum condition for PAW3903E1 to operate in. Refer below flowchart for the respective Shutter and RawData_Sum thresholds to determine the switch condition. To ease coding efforts, the Reference Code for the switching scheme is attached together with this datasheet.

Figure 21. Operation Mode's Switching Scheme

It is recommended to switch to the respective modes once the switching criteria is met. As a minimum requirement, PAW3903E1 should not operate with Shutter < 0x01F4 in Mode 2, and must switch to the next operation mode.

Procedure to switch operation mode:

- 1. Issue a soft reset to PAW3903E1 by writing 0x5A to Power_Up_Reset register.
- 2. Refer Section **8.2 Performance Optimization Registers** to configure the needed registers in order to achieve optimum performance of the chip for the desired operation mode.
- 3. Discard the first three motion data.
- 4. Resume normal operation of reading motion data.

8.0 Registers

8.1 Registers List

PAW3903E1 registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 9. Register List

Address	Register Name	Access	Reset	Address	Register Name	Access	Reset
0x00	Product_ID	RO	0x49	0x0B	Shutter_Lower	RO	0x00
0x01	Revision_ID	RO	0x01	0x0C	Shutter_Upper	RO	0x00
0x02	Motion	R/W	0x00	0x15	Observation	R/W	0x00
0x03	Delta_X_L	RO	0x00	0x16	Motion_Burst	RO	0x00
0x04	Delta_X_H	RO	0x00	0x3A	Power_Up_Reset	WO	N/A
0x05	Delta_Y_L	RO	0x00	0x3B	Shutdown	WO	N/A
0x06	Delta_Y_H	RO	0x00	0x4E	Resolution	R/W	0x14
0x07	Squal	RO	0x00	0x58	RawData_Grab	R/W	0x00
0x08	RawData_Sum	RO	0x00	0x59	RawData_Grab_Status	RO	0x00
0x09	Maximum_RawData	RO	0x00	0x5B	Orientation	R/W	0xE0
0x0A	Minimum_RawData	RO	0x00	0x5F	Inverse_Product_ID	RO	0xB6

8.2 Performance Optimization Registers

Upon power-up of PAW3903E1, there are a number of registers to configure in order to achieve optimum performance of the chip. These registers are PixArt proprietary information, thus no additional information is provided in this datasheet with regards to these register's descriptions. These registers should be written in sequence as outlined in the respective sections for the three operation modes.

8.2.1 Mode 0: Bright Mode

It is advisable to issue a soft reset when switching between modes, before proceeding with the below register writes.

Table 10. Performance Optimization Registers for Mode 0: Bright Mode

Function	Address	Value	Remarks
Write	0x7F	0x00	
Write	0x55	0x01	
Write	0x50	0x07	
Write	0x7F	0x0E	
Write	0x43	0x10	
Write	0x48	0x02	
Write	0x7F	0x00	
Write	0x51	0x7B	
Write	0x50	0x00	
Write	0x55	0x00	
Write	0x7F	0x00	

Version 1.10 | 13 Nov 2018

Function	Address	Value	Remarks
Write	0x61	0xAD	
Write	0x7F	0x03	
Write	0x40	0x00	
Write	0x7F	0x05	
Write	0x41	0xB3	
Write	0x43	0xF1	
Write	0x45	0x14	
Write	0x5F	0x34	X
Write	0x7B	0x08	
Write	0x5E	0x34	
Write	0x5B	0x32	
Write	0x6D	0x32	
Write	0x45	0x17	
Write	0x70	0xE5	
Write	0x71	0xE5	
Write	0x7F	0x06	
Write	0x44	0x1B	
Write	0x40	0xBF	
Write	0x4E	0x3F	
Write	0x7F	0x08	
Write	0x66	0x44	
Write	0x65	0x20	
Write	0x6A	0x3A	
Write	0x61	0x05	
Write	0x62	0x05	
Write	0x7F	0x09	
Write	0x4F	0xAF	
Write	0x48	0x80	
Write	0x49	0x80	
Write	0x57	0x77	
Write	0x5F	0x40	
Write	0x60	0x78	
Write	0x61	0x78	
Write	0x62	0x08	
Write	0x63	0x50	
Write	0x7F	0x0A	
Write	0x45	0x60	
Write	0x7F	0x00	

Function	Address	Value	Remarks
Write	0x4D	0x11	
Write	0x55	0x80	
Write	0x74	0x21	
Write	0x75	0x1F	
Write	0x4A	0x78	
Write	0x4B	0x78	
Write	0x44	0x08	
Write	0x45	0x50	
Write	0x64	0xFE	
Write	0x65	0x1F	
Write	0x72	0x0A	
Write	0x73	0x00	
Write	0x7F	0x14	
Write	0x44	0x84	*
Write	0x65	0x47	
Write	0x66	0x18	
Write	0x63	0x70	
Write	0x6F	0x2C	
Write	0x7F	0x15	
Write	0x48	0x48	
Write	0x7F	0x07	
Write	0x41	0x0D	
Write	0x43	0x14	
Write	0x4B	0x0E	
Write	0x45	0x0F	
Write	0x44	0x42	
Write	0x4C	0x80	
Write	0x7F	0x10	
Write	0x5B	0x03	
Write	0x7F	0x07	
Write	0x40	0x41	
	Delay 10 ms		
Write	0x7F	0x00	
Write	0x32	0x00	
Write	0x7F	0x07	
Write	0x40	0x40	
Write	0x7F	0x06	
Write	0x68	0x70	

Function	Address	Value	Remarks
Write	0x69	0x01	
Write	0x7F	0x0D	
Write	0x48	0xC0	
Write	0x6F	0xD5	
Write	0x7F	0x00	
Write	0x5B	0xA0	
Write	0x4E	0xA8	
Write	0x5A	0x50	
Write	0x40	0x80	
Write	0x73	0x1F	
	Delay 10 ms		
Write	0x73	0x00	

8.2.2 Mode 1: Low Light Mode (Default Mode)

It is advisable to issue a soft reset when switching between modes, before proceeding with the below register writes.

Table 11. Performance Optimization Registers for Mode 1: Low Light Mode

The second second	A.1.1	V-1 -	David Control
Function	Address	Value	Remarks
Write	0x7F	0x00	
Write	0x55	0x01	
Write	0x50	0x07	
Write	0x7F	0x0E	
Write	0x43	0x10	
Write	0x48	0x02	
Write	0x7F	0x00	
Write	0x51	0x7B	
Write	0x50	0x00	
Write	0x55	0x00	
Write	0x7F	0x00	
Write	0x61	0xAD	
Write	0x7F	0x03	
Write	0x40	0x00	
Write	0x7F	0x05	
Write	0x41	0xB3	
Write	0x43	0xF1	
Write	0x45	0x14	
Write	0x5F	0x34	
Write	0x7B	0x08	

Function	Address	Value	Remarks
Write	0x5E	0x34	
Write	0x5B	0x65	
Write	0x6D	0x65	
Write	0x45	0x17	
Write	0x70	0xE5	
Write	0x71	0xE5	
Write	0x7F	0x06	
Write	0x44	0x1B	
Write	0x40	0xBF	
Write	0x4E	0x3F	
Write	0x7F	0x08	
Write	0x66	0x44	
Write	0x65	0x20	
Write	0x6A	0x3A	
Write	0x61	0x05	
Write	0x62	0x05	
Write	0x7F	0x09	
Write	0x4F	0xAF	
Write	0x48	0x80	
Write	0x49	0x80	
Write	0x57	0x77	
Write	0x5F	0x40	
Write	0x60	0x78	
Write	0x61	0x78	
Write	0x62	0x08	
Write	0x63	0x50	
Write	0x7F	0x0A	
Write	0x45	0x60	
Write	0x7F	0x00	
Write	0x4D	0x11	
Write	0x55	0x80	
Write	0x74	0x21	
Write	0x75	0x1F	
Write	0x4A	0x78	
Write	0x4B	0x78	
Write	0x44	0x08	
Write	0x45	0x50	
Write	0x64	0xFE	

Function	Address	Value	Remarks
Write	0x65	0x1F	
Write	0x72	0x0A	
Write	0x73	0x00	
Write	0x7F	0x14	
Write	0x44	0x84	
Write	0x65	0x67	
Write	0x66	0x18	
Write	0x63	0x70	
Write	0x6F	0x2C	
Write	0x7F	0x15	
Write	0x48	0x48	
Write	0x7F	0x07	
Write	0x41	0x0D	
Write	0x43	0x14	*
Write	0x4B	0x0E	
Write	0x45	0x0F	
Write	0x44	0x42	
Write	0x4C	0x80	
Write	0x7F	0x10	
Write	0x5B	0x03	
Write	0x7F	0x07	
Write	0x40	0x41	
	Delay 10 ms		
Write	0x7F	0x00	
Write	0x32	0x00	
Write	0x7F	0x07	
Write	0x40	0x40	
Write	0x7F	0x06	
Write	0x68	0x70	
Write	0x69	0x01	
Write	0x7F	0x0D	
Write	0x48	0xC0	
Write	0x6F	0xD5	
Write	0x7F	0x00	
Write	0x5B	0xA0	
Write	0x4E	0xA8	
Write	0x5A	0x50	
Write	0x40	0x80	

SEE. FEEL. TOUCH.

Function	Address	Value	Remarks
Write	0x73	0x1F	
	Delay 10 ms		
Write	0x73	0x00	

8.2.3 Mode 2: Super Low Light Mode

It is advisable to issue a soft reset when switching between modes, before proceeding with the below register writes.

Table 12. Performance Optimization Registers for Mode 2: Super Low Light Mode

Function	Address	Value	Remarks
Write	0x7F	0x00	
Write	0x55	0x01	
Write	0x50	0x07	
Write	0x7F	0x0E	
Write	0x43	0x10	
Write	0x48	0x04	
Write	0x7F	0x00	
Write	0x51	0x7B	
Write	0x50	0x00	
Write	0x55	0x00	
Write	0x7F	0x00	
Write	0x61	0xAD	
Write	0x7F	0x03	
Write	0x40	0x00	
Write	0x7F	0x05	
Write	0x41	0xB3	
Write	0x43	0xF1	
Write	0x45	0x14	
Write	0x5F	0x34	
Write	0x7B	0x08	
Write	0x5E	0x34	
Write	0x5B	0x32	
Write	0x6D	0x32	
Write	0x45	0x17	
Write	0x70	0xE5	
Write	0x71	0xE5	
Write	0x7F	0x06	
Write	0x44	0x1B	
Write	0x40	OxBF	

Function	Address	Value	Remarks
Write	0x4E	0x3F	
Write	0x7F	0x08	
Write	0x66	0x44	
Write	0x65	0x20	
Write	0x6A	0x3A	
Write	0x61	0x05	
Write	0x62	0x05	
Write	0x7F	0x09	X
Write	0x4F	0xAF	
Write	0x48	0x80	
Write	0x49	0x80	
Write	0x57	0x77	
Write	0x5F	0x40	
Write	0x60	0x78	
Write	0x61	0x78	
Write	0x62	0x08	
Write	0x63	0x50	
Write	0x7F	0x0A	
Write	0x45	0x60	
Write	0x7F	0x00	
Write	0x4D	0x11	
Write	0x55	0x80	
Write	0x74	0x21	
Write	0x75	0x1F	
Write	0x4A	0x78	
Write	0x4B	0x78	
Write	0x44	0x08	
Write	0x45	0x50	
Write	0x64	0xCE	
Write	0x65	0x0B	
Write	0x72	0x0A	
Write	0x73	0x00	
Write	0x7F	0x14	
Write	0x44	0x84	
Write	0x65	0x67	
Write	0x66	0x18	
Write	0x63	0x70	
Write	0x6F	0x2C	

Function	Address	Value	Remarks
Write	0x7F	0x15	
Write	0x48	0x48	
Write	0x7F	0x07	
Write	0x41	0x0D	
Write	0x43	0x14	
Write	0x4B	0x0E	
Write	0x45	0x0F	
Write	0x44	0x42	
Write	0x4C	0x80	
Write	0x7F	0x10	
Write	0x5B	0x02	
Write	0x7F	0x07	
Write	0x40	0x41	
	Delay 25 ms		
Write	0x7F	0x00	
Write	0x32	0x44	
Write	0x7F	0x07	
Write	0x40	0x40	
Write	0x7F	0x06	
Write	0x68	0x40	
Write	0x69	0x02	
Write	0x7F	0x0D	
Write	0x48	0xC0	
Write	0x6F	0xD5	
Write	0x7F	0x00	
Write	0x5B	0xA0	
Write	0x4E	0xA8	
Write	0x5A	0x50	
Write	0x40	0x80	
Write	0x73	0x0B	
	Delay 25 ms		
Write	0x73	0x00	

8.3 Register Description

8.3.1 Product ID

Table 13. Product ID Related Registers

Usage	Register Addresses	
Product identification	0x00, 0x01, 0x5F	

Register Name	Product_ID								
				Add	Address		0x00		
Access	RO			Reset	: Value	0x49			
Bit	7	6	5	4	3	2	1	0	
Field	PID ₇	PID ₆	PID ₅	PID ₄	PID ₃	PID ₂	PID_1	PID ₀	
Description		his value is a unique identification assigned to this model only. The value in this register does not lange; it can be used to verify that the serial communications link is functional.							

Register Name	Revision_ID	Revision_ID							
				Add	dress	0x01			
Access	RO			Reset	: Value	0x01			
Bit	7	6	5	4	3	2	1	0	
Field	RID ₇	RID ₆	RID ₅	RID ₄	RID ₃	RID ₂	RID_1	RID ₀	
Description	This registe released.	r contains t	he current I	C revision. It	is subject to	change wh	en new IC v	ersions are	

Register Name	Inverse_Pro	duct_ID						
				Add	lress	0x5F		
Access	RO			Reset	Value	0xB6		
Bit	7	6	5	4	3	2	1	0
Field	IPID ₇	IPID ₆	IPID ₅	IPID ₄	IPID₃	IPID ₂	IPID ₁	IPID ₀
Description	This value is	the inverse	of the Produ	ct_ID. It is use	ed to test the	SPI port har	dware.	

8.3.2 Reset and Shutdown Related Registers

Table 14. Reset and Shutdown Related Registers

Usage	Register Addresses
Reset / shutting down the chip	0x3A, 0x3B

Register Name	Power_Up_	Reset							
				Add	lress	0x3A			
Access	WO	NO Reset Value				N/A			
Bit	7	6	5	4	3	2	1	0	
Field	PUR ₇	PUR ₆	PUR ₅	PUR ₄	PUR ₃	PUR ₂	PUR ₁	PUR ₀	
Description	Write 0x5A	Write 0x5A to this register to reset the chip. All settings will revert to default values. Reset is required							
Description	after recove	ering from sh	iutdown mod	de and to rest	ore normal c	peration afte	er Frame Cap	ture.	

Register Name	Shutdown								
				Add	ress	0x3B			
Access	WO			Reset	Value	N/A			
Bit	7	6	5	4	3	2	1	0	
Field	SD ₇	SD_6	SD ₅	SD ₄	SD ₃	SD ₂	SD_1	SD_0	
Description		/rite 0xB6 to this register to set the chip to shutdown mode. Refer Section 5.2 Power-Down equence for more details and on the recovery procedure.							

8.3.3 Operational Control

Table 15. Operational Control Related Register

Usage				Register Address	
Programmable s	settings	of	chip	0x4E, 0x5B	

Register Name	Resolution	Resolution								
				Add	Address		0x4E			
Access	R/W			Reset	: Value	0x14				
Bit	7	6	5	4	3	2	1	0		
Field	RES ₇	RES ₆	RES ₅	RES ₄	RES ₃	RES ₂	RES ₁	RES ₀		
	_	nis register sets the X and Y resolution of PAW3903. To calculate the approximate resolution value feach register setting, use the formula below:								
Description		proximate Resolution = (Register Value + 1) * (50 / 8450) \approx 0.6% of data point in Figure 19 . esolution versus Height Chart.								
	The maximu	ım register v	alue is 0xA8.	The minimur	n register val	ue is 0.				

Register Name	Orientation	Orientation								
				Add	ress	0x5B				
Access	R/W			Reset	: Value	0xE0				
Bit	7	6	5	4	3	2	1	0		
Field	ORT ₇	ORT ₆	ORT ₅	Reserved	Reserved	Reserved	Reserved	Reserved		
Description	_	and flipping (inverting) the direction of X and Y axis. If both are selected, swapping is done before						•		

Field	Access	Reset	Value	Description		
				Invert X direction		
ORT ₅	ORT ₅ R/W		0	Not inverted		
A A			1	Inverted		
				Invert Y direction		
ORT ₆	R/W	1	0	Not inverted		
			1	Inverted		
				Swap X and Y		
ORT ₇	R/W	1	0	No swap		
			1	Swap		

8.3.4 Motion Related Registers

Table 16. Motion Related Registers

Usage	Register Addresses
Motion report status, accessing &	0x02, 0x03, 0x04, 0x05, 0x06, 0x16
logging data output	

Register Name	Motion									
				Add	lress	0x02				
Access	R/W			Reset Value		0x00				
Bit	7	6	5	4	3	2	1	0		
Field	MOT ₇	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
	This register	is register allows user to determine if motion has occurred since the last time it was read. The								

This register allows user to determine if motion has occurred since the last time it was read. The procedure to read the motion registers is as follows:

- Read the Motion register. This will freeze the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H
 register values.
 - <u>Note</u>: Burst read will clear the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers, and thus should not be executed at this stage.
- 2. If Bit 7 is set, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL and Shutter_Upper registers should be read in sequence to get the accumulated motion.
 - <u>Note</u>: If Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost.

Description

3. To suppress false motion reports, discard Delta X and Delta Y values if the SQUAL and Shutter values meet the condition outlined in below table:

Mode	SQUAL	Shutter
0: Bright Mode	< 0x19	≥ 0x1FF0
1: Low Light Mode	< 0x46	≥ 0x1FF0
2: Super Low Light Mode	< 0x55	≥ 0x0BC0

4. To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step (1).

<u>Note:</u> Writing anything to this register clears the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers.

Field	Access	Reset	Value	Description				
				Motion since last report				
MOT ₇	R/W	0	0	No motion				
IVIOT7	11/ VV	U	1	Motion occurred, data ready for reading in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers.				

Register Name	Delta_X_L									
				Add	Address		0x03			
Access	RO			Reset	Value	0x00				
Bit	7	6	5	4	3	2	1	0		
Field	X ₇	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀		
Description	X movemer the register		ce last repor	t. Absolute va	o +1		olution. Read 66 +32767	ing it clears		
		Delta_X 8	000 8001	FFFE FFFF	00 01	02 7F	FE 7FFF			

Register Name	Delta_X_H	Delta_X_H									
				Address		0x04					
Access	RO			Reset Value		0x00					
Bit	7	6	5	4	3	2	1	0			
Field	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁	X ₁₀	X ₉	X ₈			
	Delta_X_H must be read after Delta_X_L to have the full motion data. Reading it clears the register.										
Description	Note: It is re	commende	d that registe	ers 0x02, 0x03	3, 0x04, 0x05	and 0x06 be	read sequen	tially.			

Register Name	Delta_Y_L									
				Add	lress	0x05				
Access	RO	A		Reset	Value	0x00				
Bit	7	6	5	4	3	2	1	0		
Field	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀		
	Y movement counts since last report. Absolute value is determined by resolution. Reading it clears the register.									
Description	13	Motion -32	768 -32767	-2 -1	0 +1	+2 +327	66 +32767			
		Delta_Y 8	000 8001	FFFE FFFF	00 01	02 7F.	FE 7FFF			

Optical Motion Tracking Chip

Register Name	Delta_Y_H								
				Address		0x06			
Access	RO			Reset Value		0x00			
Bit	7	6	5	4	3	2	1	0	
Field	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉	Y ₈	
	Delta_Y_H r	must be reac	l after Delta_	Y_L to have t	he full motio	n data. Readi	ing it clears th	ne register.	
Description	Delta_Y_H must be read after Delta_Y_L to have the full motion data. Reading it clears the read Note: It is recommended that registers 0x02, 0x03, 0x04, 0x05 and 0x06 to be read sequential.								

Register Name	Motion_Burst							
				Add	lress	0x16		
Access	RO			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	MB ₇	MB_6	MB ₅	MB ₄	MB ₃	MB ₂	MB_1	MB_0
Description	_	e Motion_Burst register is used for high-speed access of up to 12 register bytes. See Section otion Read for use details.						

8.3.5 Operational Check Related Registers

Table 17. Operational Check Related Registers

Usage	Register Addresses
Read only registers - Provide information related to chip's performance.	0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C

Register Name	SQUAL	SQUAL							
				Add	lress	0x07			
Access	RO			Reset	: Value	0x00			
Bit	7	6	5	4	3	2	1	0	
Field	SQ ₇	SQ_6	SQ ₅	SQ ₄	SQ ₃	SQ ₂	SQ_1	SQ_0	
Description	in the curre Number of I The maximus changes in S	nt frame. Us Features = SC um SQUAL re SQUAL, varia	e the followi Q <i>UAL Registe</i> egister value	is 0xFF. Since AL when look	find the total	I number of viges in the cur	valid features rent frame c	5:	

Register Name	RawData_S	Sum							
				Add	lress	0x08	_		
Access	RO			Reset	Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0	
Field	RDS ₇	RDS ₆	RDS ₅	RDS ₄	RDS ₃	RDS ₂	RDS ₁	RDS ₀	
Description	formula bel	ow: w Data = (Re um register v	egister Value	* 2048) / 122 . The minimur	5	J			

PixArt Imaging Inc.

Register Name	Maximum_	RawData						
				Address		0x09		
Access	RO			Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0
Field	MRD ₇	MRD ₆	MRD ₅	MRD ₄	MRD ₃	MRD ₂	MRD_1	MRD ₀
Description		aximum raw data value in current frame. Minimum value = 0, maximum value = 255. The maximum w data value can change every frame.						

Register Name	Minimum_	RawData						
				Add	lress	0x0A		
Access	RO			Reset Value 0x00				
Bit	7	6	5	4	3	2	1	0
Field	MinRD ₇	MinRD ₆	MinRD ₅	MinRD ₄	MinRD ₃	MinRD ₂	MinRD ₁	MinRD ₀
Description		Minimum raw data value in current frame. Minimum value = 0, maximum value = 255. The min raw data value can change every frame.						e minimum

Register Name	Shutter_Lo	Shutter_Lower								
						Add	lress	0x0B		
Access	RO				Reset Value			0x00		
Bit	7	6	5			4	3	2	1	0
Field	S ₇	S ₆	S ₅			S ₄	S ₃	S ₂	S ₁	S ₀
Description	Lower byte	wer byte of the 13-bit Shutter register.								

Register Name	Shutter_Up	per						
				Ado	lress	0x0C		
Access	RO		Reset Value		0x00			
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	Reserved	S ₁₂	S ₁₁	S ₁₀	S ₉	S ₈
Description	Shutter_Up to keep the	per first, the average raw	n Shutter_Lo data values v	register. Unit wer. They showithin normal e if needed o	ould be read o	consecutively nge. The shu	y. The shutter tter value is c	r is adjusted checked and

Optical Motion Tracking Chip

8.3.6 Troubleshooting Related Registers

Table 18. Troubleshooting Related Registers

Usage	Register Addresses
Dumping datalogs / information	0x15, 0x58, 0x59

Register Name	Observatio	n						
				Ado	lress	0x15		
Access	R/W			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	OB ₅	OB ₄	OB ₃	OB ₂	OB_1	OB ₀
Description		User must clear the register by writing 0x00, wait for 30 ms, and read the register. The action processes OB[5:0] will have set their corresponding bits. The read back value should be 0xBF.						

Register Name	RawData_Grab							
				Add	lress	0x58		
Access	R/W		Reset Value		0x00			
Bit	7 6 5		4	3	2	1	0	
Field	RDG ₇	RDG ₆	RDG₅	RDG ₄	RDG₃	RDG ₂	RDG ₁	RDG ₀
Description	stationary f information This process 8-bits raw o	or the durat is read out (s is initialized	ion of grabbi one data at a by a single w e, toggling be	e full array of ing raw data time. rrite of any val etween uppe	until the full ue to this reg	array is com sister. Readin	pletely read g this register	out, as the will unload

Field	Access	Reset	Value	Description
RDG[5:0]	R/W	0		Raw data values
				Flag to indicate which bits of raw data is being grabbed
			00	Invalid (raw data not available).
RDG[7:6]	R/W	0	01	Raw data is valid and available. Upper 6-bits raw data are held in RDG[5:0].
			10	Raw data is valid and available. Lower 2-bits raw data are held in RDG[3:2].
			11	Invalid (raw data not available).

Register Name	RawData_G	irab_Status								
				Add	dress	0x59				
Access	RO			Reset	: Value	0x00				
Bit	7	6	5	4	3	2	1	0		
Field	RDGS ₇	RDGS ₆	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
Description	This register provides status of raw data grab process. Refer Section 7.3 Frame Capture for m details.							re for more		
Field	Access	Reset	Value Description				<u> </u>			
DDCC	0.0	200		0	0	Raw data is	not from loca	ation 0,0		
RDGS ₆	RO	U	0 1	Raw data is from location 0,0						
PDCS	RO	0	0	Raw data grab is not valid						
RDGS ₇	RO		1	Raw data grab is valid						

Appendix A: External Illumination Guide

This section provides information and reference schematics in utilizing the LED_N pin from PAW3903E1 to support an external LED circuitry. The intent of having an external LED circuitry is to provide the appropriate illumination necessary for user-defined applications. The advantage of syncing the LED_N pulse to drive the external LED is a good power saving feature, especially in wireless and battery-powered applications. While this section aims to provide guidance in utilizing the LED_N pin, user owns the responsibility to select the appropriate LED and design its circuitry to meet the desired end application.

For power saving purposes, LED_N pulsing is not enabled by default. To enable the LED_N pulsing, refer below procedure:

- 1. Power up PAW3903E1 and initialize register settings as outlined in Section 8.2 Performance Optimization Registers.
- 2. Perform below register writes in sequence:

Address	Value
0x7F	0x14
0x6F	0x1C
0x7F	0x00

3. To monitor the LED_N pulsing, connect the LED_N pin to V_{DDIO} via a 1K Ω resistor. By probing the LED_N pin, one can observe the pulses as shown in below image.

Figure 22. LED_N pulsing

An example of syncing the LED_N pulse to drive an external LED circuitry using an IR LED is shown below:

Note:

- 1. All capacitors must be placed as close as possible to VDD, VDDIO & VREG pins.
- 2. Ceramic non-polarity capacitors are recommended.

Figure 23. Schematics to drive external LED circuitry

<u>Note</u>: The jumper set on the external illumination circuitry provides flexibility to enable LED pulsing (via LED_N pin) or set the LED to DC mode. Please refer PAW3903's User Guide for Evaluation Kit for more details on how to use the jumper set on the PAW3903's Evaluation Kit.

Revision History

Revision No.	Date Released	Description of Change(s)
V1.10	Nov/13/2018	Page 9 – Table 3: Add Note 2.