

Universidade do Estado do Rio de Janeiro

Instituto de Física Armando Dias Tavares Mecânica Física I: Turma 3

${\bf Mediç\~oes~das~25~mesas}$

Aluno(a): Hugo Alves da Costa

 $\frac{\mathrm{Matricula}}{201710076611} \; \mathrm{FIS}$

Sala Ava SALA101FIS

<u>Professores:</u> Marcia Begalli e Jim Skea

Conteúdo

1	Intr	odução	1
	1.1	Objetivos do experimento	1
	1.2	Material Utilizado	1
	1.3	Procedimento Experimental	1
2	Col	eta e Análise de dados	1
	2.1	Dados	1
	2.2	Fórmulas Utilizadas	2
	2.3	Cálculos realizados	3
	2.4	Tabelas	5
	2.5	Gráficos(Histogramas)	7
	2.6	Gráficos(Dispersão)	8
	2.7	Gráficos (Histogramas da Turma)	9
3	Res	ultados da compatibilidade	10
4	Cor	nclusão	11
5	Ref	erências	11

1 Introdução

1.1 Objetivos do experimento

O experimento tem como objetivo **determinar o valor da área(cm)** da mesa utilizada no laboratório de mecânica com 25 medições feitas a partir do cálculo do comprimento(cm) e largura(cm). Analisando os dados coletados será verificado a qualidade das medições assim como a compatibilidade com o valor de referência para a mesa.

1.2 Material Utilizado

- 1 régua milimetrada de 150cm
- 25 mesas de comprimento 150 cm e largura 75cm
- 1 folha de caderno para realizar as anotações

1.3 Procedimento Experimental

O procedimento experimental consistiu em realizar as medições do comprimento e largura das 25 mesas com a régua milimetrada. Foram realizadas as medições em conjunto na mesma mesa, onde o comprimento e a largura eram aferidos e depois seus valores eram anotados em uma tabela com as 25 medições para realizar o cálculo da área de cada medida individualmente, isto é, o valor da área para cada uma das 25 mesas.

Primeiro era colocada a régua na posição para calcular o comprimento de forma a ficar mais rente possível ao tamanho da mesa. Logo após anotado o valor do comprimento, colocava-se a posição da régua para calcular a largura da mesa e, assim como na medição de comprimento, foi anotado seu valor.

2 Coleta e Análise de dados

2.1 Dados

Os dados coletados para o experimento foram:

- Média de Comprimento, Largura e Área
- Desvio Padrão de Comprimento, Largura e Área
- Erro da Média de Comprimento, Largura e Área
- Erro Padrão de Comprimento, Largura e propagação da área
- Média das médias dos grupo dos alunos
- Propagação de Erros para a incerteza da área
- Discrepância e compatibilidade das medidas

Apresentação dos dados:

Cálculos	Comprimento(cm)	Largura(cm)	$\text{Área}(\text{cm}^2)$
Média	149,50	74,94	11203,22
DesvioPadrão	0,63	0,12	$47,\!48$
Erro da Média	0,13	0,02	9,496
Erro Padrão	0,161	0,103	19,23

2.2 Fórmulas Utilizadas

A **média**(\bar{x}) é representado por:

$$\bar{x} = \frac{x_1 + x_2 + \dots x_n}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (1)

O desvio-padrão (σ_x) é representado pela relação:

$$\sigma_x = \sqrt{x^2 - \bar{x}^2} \tag{2}$$

O erro da média $(\sigma_{\overline{x}})$ é calculado pela seguinte relação da razão entre o desvio padrão e a raiz das medidas:

$$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{N}} \tag{3}$$

O erro da padrão(σ) é calculado pela seguinte relação, sendo a combinação em quadratura das incertezas do tipo A e tipo B, cada qual com o nível de confiança de 68%. Incertezas tipo A são relacionadas aos erros estatisticos, enquanto o erro tipo B são relacionados ao erro do instrumento de medição:

$$\sigma = \sqrt{\sigma_A^2 + \sigma_B^2} \tag{4}$$

Sendo a área uma grandeza calculada a partir de **medidas indiretas** como o comprimento e largura a sua incerteza associada é partir da **propagação de erros**. A relação é a seguinte:

$$\sigma_{\bar{a}} = A * \sqrt{\left(\frac{\sigma_c}{c}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$
 (5)

Com os valores da média e suas incertezas é possível realizar o cálculo da discrepância e avaliar a compatibilidade entre as medidas. A compatibilidade e discrepância é dada pela seguinte relação:

$$|\bar{x} - x_{ref}| < 2\sigma_{\bar{x}}$$
 (6)

Sendo que se a discrepancia for menor que 2x a incerteza do valor de referência, aceita-se a compatibilidade. Caso a discrepância caia na região entre 2x e 3x a incerteza o experimento é dado como inconclusivo.

2.3 Cálculos realizados

Os cálculos das médias para comprimento, largura e área são respectivamente:

$$\bar{C} = \frac{3737,60}{25} = \frac{1}{N} \sum_{i=1}^{N} x_i = 149,50cm$$
 (7)

$$\bar{L} = \frac{1873,40}{25} = \frac{1}{N} \sum_{i=1}^{N} x_i = 74,90cm$$
(8)

$$\bar{A} = \frac{280080, 40}{25} = \frac{1}{N} \sum_{i=1}^{N} x_i = 11203, 23cm^2$$
 (9)

Os cálculos do erro da média para comprimento, largura e área são respectivamente:

$$\sigma_{\overline{c}} = \frac{0,63}{\sqrt{25}} = 0,13cm \tag{10}$$

$$\sigma_{\bar{l}} = \frac{0,12}{\sqrt{25}} = 0.02cm \tag{11}$$

$$\sigma_{\overline{a}} = \frac{47,48}{\sqrt{25}} = 9.496cm^2 \tag{12}$$

Agora calculado o erro da média das grandezas e conhecendo o o erro sistematático do instrumento a incerteza do comprimento e largura é apresentado com o cálculo do erro padrão, como citado na equação(4).

Em nosso caso o cálculo do **erro padrão para comprimento e largura será a com**binação em quadratura do erro da média e o erro do instrumento da régua milimetrade de 0,1cm:

$$\sigma_c = \sqrt{(0,13)^2 + (0,1)^2} = 0.161cm$$
(13)

$$\sigma_l = \sqrt{(0,02)^2 + (0,1)^2} = 0.103cm$$
(14)

O erro padrão da área é uma medida indireta dos incertezas dos erros do comprimento e largura. Tendo em vista essa informação, é necessário calculá-lo a partir da equação(5) de propagação de erros.

O cálculo é a combinação em quadratura do erro do instrumento de intrumento de medição da régua milimetrada de 0,1cm sobre as médias de comprimento e largura com o produto da média da área calculada com as 25 medidas. Vamos ao cálculo:

$$\sigma_{\bar{a}} = 11203, 23 * \sqrt{\left(\frac{0,1}{149,50}\right)^2 + \left(\frac{0,1}{74,94}\right)^2} = 16.72cm^2$$
(15)

Com o valor da propagação de erros da propagação área, pode-se realizar o cálculo do **erro** padrão da área com a combinação da quadratura da propagação e o erro da média da área.

$$\sigma_a = \sqrt{(16,72)^2 + (9,496)^2} = 19,23cm^2$$
(16)

Em posse dos cálculos da média e das incertezas associadas das grandezes. O resultado da medição de uma grandeza pode ser enunciado como:

$$\boxed{\bar{x} \pm \sigma_x} \tag{17}$$

Logo, as estimativas das grandezas de comprimento, largura e área com suas respectivas incertezas é apresentada a seguir:

Estimativa para comprimento (cm):

$$C = 149, 50 \pm 0, 161cm \tag{18}$$

Estimativa para largura (cm):

$$L = 74,94 \pm 0,103cm \tag{19}$$

Estimativa para área (cm^2) :

$$A = 11203, 23 \pm 19, 22cm^2$$
 (20)

2.4 Tabelas

Será apresentando 4 tabelas, sendo elas as tabelas das 25 medidas e 3 tabelas dos grupos de alunos com os dados do comprimento, largura e área.

Dados coletados das 25 medidas:

Mesa	Comprimento(cm)	Largura(cm)	$\text{Área}(\text{cm}^2)$
1	149,00	75,00	11175,00
2	150,00	75,00	11250,00
3	147,00	75,00	11025,00
4	149,00	75,00	11175,00
5	149,00	75,00	11175,00
6	149,00	75,00	11175,00
7	149,50	75,00	$11212,\!50$
8	149,70	74,80	11197,56
9	149,00	74,80	11145,20
10	150,00	75,00	11250,00
11	150,00	75,00	11250,00
12	150,00	74,50	11175,00
13	149,00	75,00	11175,00
14	150,00	74,70	$11205,\!00$
15	149,00	74,90	11160,10
16	149,60	75,00	11220,00
17	149,80	75,00	$11235,\!00$
18	149,80	75,00	$11235,\!00$
19	149,80	75,00	$11235,\!00$
20	149,70	75,00	11277,50
21	149,70	75,00	11277,50
22	149,80	74,80	$11205,\!04$
23	149,80	75,00	11235,00
24	150,00	75,00	11250,00
25	149,80	75,00	11235,00

Tabela 1: Tabela 1 com as 25 medições

Tabela com os dados do grupo 15 para comprimento:

Alunos	Média(cm)
Agatha	149,88
Amanda	150,02
Beatriz	150,00
Denise	149,99
Emilson	149,84
Gabriel	150,01
Mylena	150,07
Vitoria	150,02
Willian	149,01
Debora	150,15
Hugo	149,51
Nicolas	150,01
Samuel	149,00
Yuri	150,22
Thaynã	149,90

Tabela 2: Tabela grupo de aluno comprimento

Tabela com os dados do grupo 15 para Largura:

Alunos	Média(cm)
Agatha	75,19
Amanda	75,08
Beatriz	$75,\!12$
Denise	75,09
Emilson	75,92
Gabriel	$75,\!16$
Mylena	$75,\!16$
Vitoria	75,08
Willian	75,17
Debora	75,19
Hugo	74,91
Nicolas	$75,\!11$
Samuel	$75,\!29$
Yuri	75,09
Thaynã	74,90

Tabela 3: Tabela grupo de aluno largura

Tabela com os dados do grupo 15 para Área:

Alunos	$M\acute{e}dia(cm^2)$
Agatha	11269,40
Amanda	11264,40
Beatriz	$11268,\!30$
Denise	11263,79
Emilson	11222,72
Gabriel	$11278,\!52$
Mylena	11279,71
Vitoria	11264,40
Willian	$11272,\!48$
Debora	11290,83
Hugo	11203,23
Nicolas	11267,70
Samuel	$11303,\!25$
Yuri	11208,28
Thaynã	11230,81

Tabela 4: Tabela grupo de aluno área

Apresentação dos dados do grupo de alunos:

Cálculos	Comprimento(cm)	Largura(cm)	$\text{Área}(\text{cm}^2)$
Média	149,98	75,1	11264,12
DesvioPadrão	0,21	0,04	11,54
Erro da Média	0,13	0,02	9,496
Erro Padrão	0,05	0,01	2,98

2.5 Gráficos(Histogramas)

 ${
m Histogram as}$ com as $25~{
m medidas}$

Figura 1: Histograma Comprimento(cm)

Figura 2: Histograma Largura(cm)

Figura 3: Histograma Área(cm²)

2.6 Gráficos(Dispersão)

Figura 4: Gráfico de Dispersão entre C(cm)x L(cm)

Figura 5: Gráfico de Dispersão entre L(cm)x C(cm)

Podemos ver que com os gráficos de dispersão que não correlação entre as grandezas de Largura e Comprimento, podemos avaliar realizando os cálculos da covariancia e coeficiente de Pearson.

Coeficiente de correlação linear de Pearson(r) que varia o intervalo entre -1 e 1 nos dá o quão forte é a correlação entre as grandezas pela relação abaixo:

$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \tag{21}$$

Tabela com os dados:

Cálculos	Comprimento(cm) x Largura(cm)
Covariancia	-0.014
Coeficente de Pearson(r)	-0.19

Os cálculos também demostraram uma baixa correlação entre as grandezas de comprimento e largura.

2.7 Gráficos(Histogramas da Turma)

Histogramas com médias dos valores da turma para comprimento, largura e área.

Figura 6: Histograma Comprimento da Turma(cm)

Figura 7: Histograma Largura da Turma(cm)

Figura 8: Histograma Área da Turma(cm²)

3 Resultados da compatibilidade

Com as estimativas esperados(\bar{x}) calculadas para as grandezas, é possível calcular a **discrepância** $|\bar{x} - x_{ref}|$ e verificar a compatibilidade com o erro-padrão $\sigma_{\bar{x}}$ da estimativa com os valores de referência(x) para cada uma dela.

Os valores de referência para cada grandeza são:

- Comprimento referência = 150.00 cm
- Largura referência = 75.00 cm
- Área referência = $11250.00 \ cm^2$

A discrepância para o comprimento $|\bar{c} - c_{ref}| = |149, 50 - 150| = 0, 5$ não é um resultado compatível com nível de 95% com este valor de referência para o comprimento.

A discrepância para a largura $|\bar{l} - l_{ref}| = |74,94 - 75,00| = 0,06$ é da ordem de nível de 68%, portanto, a estimativa para largura é compatível para seu valor de referência.

A discrepância para a área $|\bar{a} - a_{ref}| = |11203, 23 - 11250, 00| = 46, 77$ não é um resultado compatível com nível de 95% com este valor de referência para a área.

Compatibilidade com as médias das turmas

Para calcular a compatibilidade entre as estimativas com os valores calculados com a média da turma compara-se a discrepância $|\bar{x}_1 - \bar{x}_2|$ entre as estimativas utilizando o erro calculado pela composição $\sigma = \sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}$

A discrepância para o comprimento $|\bar{c} - c_{turma}| = |149, 50 - 149, 98| = 0.47$ não é um resultado compatível com nível de 95% com este valor de referência para o comprimento da turma.

A discrepância para a largura $|\bar{l} - l_{turma}| = |74,94 - 75.10| = 0,16$ é da ordem de nível de 68%, portanto, a **estimativa para largura é compatível** para seu valor de referência da turma.

A discrepância para a largura $|\bar{a} - a_{turma}| = |11203, 23 - 11264, 12| = 60.88$ não é um resultado compatível com nível de 95% com este valor de referência para o comprimento da turma.

4 Conclusão

Analisando os resultados da compatibilidade entre as estimativas dos valores de referência e as médias da turma é possível dizer que houve erro sistemático ao realizar as medições durante o experimento. Interessante notar que a largura apresentou compatibilidade com o valor de referência das mesas e o estimativa da média da turma para o valor da largura. Provavelmente efeito de uma medição mais cuidadosa e atenta para a grandeza da largura.

Nas medições do comprimento, é possível notar dados coletados mais dispersos, como por exemplo o valor de 147,00 cm, sendo consideralmente distante da média de 149,50 cm. Concluise que para obter estimativas compatíveis é necessário realizar novas tomadas de dados eliminando ao máximo os erros sistemáticos da coleta de dados.

5 Referências

1 – Alberto Santoro, José Mahon, Umberto Cinelli, Luiz Mundim, Vitor Oguri (org.), Wanda Prado, ESTIMATIVAS E ERROS EM EXPERIMETOS DE FÍSICA, 3 ed, Ed.UERJ,2013