

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 August 2002 (01.08.2002)

PCT

(10) International Publication Number
WO 02/059321 A2

(51) International Patent Classification⁷: C12N 15/40,
15/51, 5/10, C07K 14/18, C12N 15/85

Pomezia (Rome) (IT). MIGLIACCIO, Giovanni [IT/IT];
IRBM, Via Pontina Km. 30, 600, I-00040 Pomezia (Rome)
(IT). PAONESSA, Giacomo [IT/IT]; IRBM, Via Pontina
Km. 30, 600, I-00040 Pomezia (Rome) (IT).

(21) International Application Number: PCT/EP02/00526

(22) International Filing Date: 16 January 2002 (16.01.2002) (74) Agent: THOMPSON, John; Merck & Co., Inc., European
Patent Department, Terlings Park, Eastwick Road, Harlow,
Essex CM20 2QR (GB).

(71) Applicant (for all designated States except US): ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P. ANGELETTI SPA [IT/IT]; Via Pontina Km.
30, 600, I-00040 Pomezia (Rome) (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DE FRANCESCO,
Raffaele [IT/IT]; IRBM, Via Pontina Km. 30, 600, I-00040

(81) Designated States (national): CA, JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HEPATITIS C VIRUS REPLICONS AND REPLICON ENHANCED CELLS

(57) Abstract: The present invention features nucleic acid containing one or more adaptive mutations, and HCV replicon enhanced cells. Adaptive mutations are mutations that enhance HCV replicon activity. HCV replicon enhanced cells are cells having an increased ability to maintain an HCV replicon.

WO 02/059321 A2

TITLE OF THE INVENTION**HEPATITIS C VIRUS REPLICONS AND REPLICON ENHANCED CELLS****CROSS-REFERENCE TO RELATED APPLICATIONS**

5 The present application claims priority to U.S. Serial No. 60/263,479,
filed January 23, 2001, hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

The references cited in the present application are not admitted to be
10 prior art to the claimed invention.

It is estimated that about 3% of the world's population are infected
with the Hepatitis C virus (HCV). (Wasley, *et al.*, 2000. *Semin. Liver Dis.* 20, 1-16.)
Exposure to HCV results in an overt acute disease in a small percentage of cases,
while in most instances the virus establishes a chronic infection causing liver
15 inflammation and slowly progresses into liver failure and cirrhosis. (Iwarson, 1994.
FEMS Microbiol. Rev. 14, 201-204.) In addition, epidemiological surveys indicate an
important role of HCV in the pathogenesis of hepatocellular carcinoma. (Kew, 1994.
FEMS Microbiol. Rev. 14, 211-220, Alter, 1995. *Blood* 85, 1681-1695.)

The HCV genome consists of a single strand RNA of about 9.5 kb in
20 length, encoding a precursor polyprotein of about 3000 amino acids. (Choo, *et al.*,
1989. *Science* 244, 362-364, Choo, *et al.*, 1989. *Science* 244, 359-362, Takamizawa,
et al., 1991. *J. Virol.* 65, 1105-1113.) The HCV polyprotein contains the viral
proteins in the order: C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B.

Individual viral proteins are produced by proteolysis of the HCV
25 polyprotein. Host cell proteases release the putative structural proteins C, E1, E2, and
p7, and create the N-terminus of NS2 at amino acid 810. (Mizushima, *et al.*, 1994. *J.
Virol.* 68, 2731-2734, Hijikata, *et al.*, 1993. *P.N.A.S. USA* 90, 10773-10777.)

The non-structural proteins NS3, NS4A, NS4B, NS5A and NS5B
presumably form the virus replication machinery and are released from the
30 polyprotein. A zinc-dependent protease associated with NS2 and the N-terminus of
NS3 is responsible for cleavage between NS2 and NS3. (Grakoui, *et al.*, 1993. *J.
Virol.* 67, 1385-1395, Hijikata, *et al.*, 1993. *P.N.A.S. USA* 90, 10773-10777.) A
distinct serine protease located in the N-terminal domain of NS3 is responsible for
proteolytic cleavages at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A and NS5A/NS5B
junctions. (Barthenschlager, *et al.*, 1993. *J. Virol.* 67, 3835-3844, Grakoui, *et al.*,

1993. *Proc. Natl. Acad. Sci. USA* 90, 10583-10587, Tomei, *et al.*, 1993. *J. Virol.* 67, 4017-4026.) NS4A provides a cofactor for NS3 activity. (Failla, *et al.*, *J. Virol.* 1994. 68, 3753-3760, De Francesco, *et al.*, U.S. Patent No. 5,739,002.) NS5A is a highly phosphorylated protein concurring interferon resistance. (De Francesco, *et al.*, 2000. 5 *Semin Liver Dis.*, 20(1), 69-83, Pawlotsky, 1999. *J. Viral Hepat. Suppl. 1*, 47-48.) NS5B provides an RNA polymerase. (De Francesco, *et al.*, International Publication Number WO 96/37619, Behrens, *et al.*, 1996. *EMBO* 15, 12-22, Lohmann, *et al.*, 1998. *Virology* 249, 108-118.)

10 Lohmann, *et al.*, *Science* 285, 110-113, 1999, illustrates the ability of a bicistronic HCV replicon to replicate in a hepatoma cell line. The bicistronic HCV replicon contained a neomycin cistron and an NS2-NS5B or an NS3-NS5B cistron. "NS2-NS5B" refers to a NS2-NS3-NS4A-NS4B-NS5A-NS5B polyprotein. "NS3-NS5B" refers to a NS3-NS4A-NS4B-NS5A-NS5B polyprotein.

15 Bartenschlager, European Patent Application 1 043 399, published October 11, 2000 (not admitted to be prior art to the claimed invention), describes a cell culture system for autonomous HCV RNA replication and protein expression. Replication and protein expression is indicated to occur in sufficiently large amounts for quantitative determination. European Patent Application 1 043 399 indicates that prior cell lines or primary cell cultures infected with HCV do not provide favorable 20 circumstances for detecting HCV replication.

SUMMARY OF THE INVENTION

The present invention features nucleic acid containing one or more adaptive mutations, and HCV replicon enhanced cells. Adaptive mutations are 25 mutations that enhance HCV replicon activity. HCV replicon enhanced cells are cells having an increased ability to maintain an HCV replicon.

An HCV replicon is an RNA molecule able to autonomously replicate in a cultured cell and produce detectable levels of one or more HCV proteins. The basic subunit of an HCV replicon encodes for a HCV NS3-NS5B polyprotein along 30 with a suitable 5' UTR-partial core (PC) region and 3' UTR. The 5' UTR-PC region is made up of a 5'UTR region and about 36 nucleotides of the beginning of the core. Additional regions may be present including those coding for HCV proteins or elements such as the complete core, E1, E2, p7 or NS2; and those coding for other types of proteins or elements such as a encephalomyocarditis virus (EMCV) internal 35 ribosome entry site (IRES), a reporter protein or a selection protein.

The present application identifies different adaptive mutations that enhance HCV replicon activity. Enhancing replicon activity brings about at least one of the following: an increase in replicon maintenance in a cell, an increase in replicon replication, and an increase in replicon protein expression.

5 Adaptive mutations are described herein by identifying the location of the adaptive mutation with respect to a reference sequence present in a particular region. Based on the provided reference sequence, the same adaptive mutation can be produced in corresponding locations of equivalent regions having an amino acid sequence different than the reference sequence. Equivalent regions have the same function or encode for a polypeptide having the same function.

10 Replicon enhanced cells are a preferred host for the insertion and expression of an HCV replicon. Replicon enhanced cells are initially produced by creating a cell containing a HCV replicon and then curing the cell of the replicon. The term "replicon enhanced cell" includes cells cured of HCV replicons and progeny 15 of such cells.

15 Thus, a first aspect of the present invention describes a nucleic acid molecule comprising at least one of the following regions: an altered NS3 encoding region, an altered NS5A encoding region, and an altered EMCV IRES region. The altered region contains one or more adaptive mutations. Reference to the presence of 20 particular adaptive mutation(s) does not exclude other mutations or adaptive mutations from being present. Adaptive mutations are described with reference to either an encoded amino acid sequence or a nucleic acid sequence.

25 A nucleic acid molecule can be single-stranded or part of a double strand, and can be RNA or DNA. Depending upon the structure of the nucleic acid molecule, the molecule may be used as a replicon or in the production of a replicon. For example, single-stranded RNA having the proper regions can be a replicon, while double-stranded DNA that includes the complement of a sequence coding for a replicon or replicon intermediate may useful in the production of the replicon or replicon intermediate.

30 Preferred nucleic acid molecules are those containing region(s) from SEQ. ID. NOS. 1, 2, or 3, or the RNA version thereof, with one or more adaptive mutations. Reference to "the RNA version thereof" indicates a ribose backbone and the presence of uracil instead of thymine.

35 The presence of a region containing an adaptive mutation indicates that at least one such region is present. In different embodiments, for example, adaptive

mutations described herein are present at least in the NS3 region, in the NS5A region, in the NS3 and NS5A regions, in the EMCV IRES and NS3 regions, in the EMCV and NS5A regions, and in the ECMV IRES, NS3 and NS5A regions.

Another aspect of the present invention describes an expression vector 5 comprising a nucleotide sequence of an HCV replicon or replicon intermediate coupled to an exogenous promoter. Reference to a nucleotide sequence "coupled to an exogenous promoter" indicates the presence and positioning of an RNA promoter such that it can mediate transcription of the nucleotide sequence and that the promoter is not naturally associated with the nucleotide sequence being transcribed. The 10 expression vector can be used to produce RNA replicons.

Another aspect of the present invention describes a recombinant human hepatoma cell. Reference to a recombinant cell includes an initially produced cell and progeny thereof.

Another aspect of the present invention describes a method of making 15 a HCV replicon enhanced cell. The method involves the steps of: (a) introducing and maintaining an HCV replicon into a cell and (b) curing the cell of the HCV replicon.

Another aspect of the present invention describes an HCV replicon enhanced cell made by a process comprising the steps of: (a) introducing and maintaining an HCV replicon into a cell and (b) curing the cell of the HCV replicon.

20 Another aspect of the present invention describes a method of making a HCV replicon enhanced cell comprising an HCV replicon. The method involves (a) introducing and maintaining a first HCV replicon into a cell, (b) curing the cell of the replicon, and (c) introducing and maintaining a second replicon into the cured cell, where the second replicon may be the same or different as the first replicon.

25 Another aspect of the present invention describes an HCV replicon enhanced cell containing a HCV replicon made by the process involving the step of introducing an HCV replicon into an HCV replicon enhanced cell. The HCV replicon introduced into the HCV replicon enhanced cell may be the same or different than the HCV replicon used to produce the HCV replicon enhanced cell. In a preferred 30 embodiment, the HCV replicon introduced into an HCV replicon enhanced cell is the same replicon as was used to produce the enhanced cell.

35 Another aspect of the present invention describes a method of measuring the ability of a compound to affect HCV activity using an HCV replicon comprising an adaptive mutation described herein. The method involves providing a compound to a cell comprising the HCV replicon and measuring the ability of the

compound to affect one or more replicon activities as a measure of the effect on HCV activity.

Another aspect of the present invention describes a method of measuring the ability of a compound to affect HCV activity using an HCV replicon enhanced cell that comprises an HCV replicon. The method involves providing a compound to the cell and measuring the ability of the compound to effect one or more replicon activities as a measure of the effect on HCV activity.

Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples.

10 The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

15 BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1G illustrate the nucleic acid sequence for the pHCVNeo.17 coding strand (SEQ. ID. NO. 3). The different regions of pHCVNeo.17 are provided as follows:

1-341: HCV 5' non-translated region, drives translation of the core-neo fusion protein;

20 342-1181: Core-neo fusion protein, selectable marker;

1190-1800: Internal ribosome entry site of the encephalomyocarditis virus, drives translation of the HCV NS region;

1801-7755: HCV polyprotein from non-structural protein 3 to non-structural protein 5B;

25 1801-3696: Non-structural protein 3 (NS3), HCV NS3 protease/helicase;

3697-3858: Non-structural protein 4A (NS4A), NS3 protease cofactor;

3859-4641: Non-structural protein 4B (NS4B);

4642-5982: Non-structural protein 5A (NS5A);

5983-7755: Non-structural protein 5B (NS5B); RNA-dependent RNA polymerase

30 7759-7989: HCV 3' non-translated region; and

7990-10690 plasmid sequences comprising origin of replication, beta lactamase coding sequence, and T7 promoter.

DETAILED DESCRIPTION OF THE INVENTION

HCV replicons and HCV replicon enhanced cells can be used to produce a cell culture providing detectable levels of HCV RNA and HCV protein.

HCV replicons and HCV replicon enhanced hosts can both be obtained by selecting

5 for the ability to maintain an HCV replicon in a cell. As illustrated in the examples provided below, adaptive mutations present in HCV replicons and host cells can both assist replicon maintenance in a cell.

The detectable replication and expression of HCV RNA in a cell culture system has a variety of different uses including being used to study HCV

10 replication and expression, to study HCV and host cell interactions, to produce HCV RNA, to produce HCV proteins, and to provide a system for measuring the ability of a compound to modulate one or more HCV activities.

15 Preferred cells for use with a HCV replicon are Huh-7 cells and Huh-7 derived cells. "Huh-7 derived cells" are cell produced starting with Huh-7 cells and introducing one or more phenotypic and/or genotypic modifications.

Adaptive Mutations

Adaptive mutations enhance the ability of an HCV replicon to be maintained and expressed in a host cell. Adaptive mutations can be initially selected

20 for using a wild type HCV RNA construct or a mutated HCV replicon. Initial selection involves providing HCV replicons to cells and identifying clones containing a replicon.

Nucleic acid sequences of identified HCV replicons can be determined using standard sequencing techniques. Comparing the sequence of input HCV

25 constructs and selected constructs provides the location of mutations. The effect of particular mutation(s) can be measured by, for example, producing a construct to contain particular mutation(s) and measuring the effect of these mutation(s). Suitable control constructs for comparison purposes include wild type constructs and constructs previously evaluated.

30 Adaptive mutations were predominantly found in the HCV NS3 and NS5A regions. With the exception of two silent mutations in NS5A and NS5B, consensus mutations occurring in the NS region resulted in changes to the deduced amino acid sequence. Noticeably, the amino acid changes occurred in residues that are conserved in all or a large number of natural HCV isolates. HCV sequences are 35 well known in the art and can be found, for example, in GenBank.

Adaptive mutations described herein can be identified with respect to a reference sequence. The reference sequence provides the location of the adaptive mutation in, for example, the NS3 or NS5A RNA, cDNA, or amino acid sequence. The remainder of the sequence encodes for a functional protein that may have the same, or a different, sequence than the reference sequence.

Preferred NS3 and NS5A adaptive mutations and examples of changes that can be made to produce such mutations are shown in Tables 1 and 2. The amino acid numbering shown in Tables 1 and 2 is with respect to SEQ. ID. NO. 1. The nucleotide numbering shown in Tables 1 and 2 is with respect to SEQ. ID. NO. 2.

SEQ. ID. NO. 1 provides the amino acid sequence of the Con1 HCV isolate (Accession Number AJ238799). SEQ. ID. NO. 2 provides the nucleic acid sequence of the Con1 HCV isolate.

TABLE 1

15

Preferred NS3 Adaptive Mutations	
Amino Acid	Nucleotide
gly1095ala	G3625C
glu1202gly	A3946G
ala1347thr	G4380A

TABLE 2

Preferred NS5A Adaptive Mutations	
Amino Acid	Nucleotide
Lys@2039	AAA@6458
asn2041thr	A6463C
ser2173phe	C6859T
ser2197phe	C6931T
leu2198ser	T6934C
ala2199thr	G6936A
ser2204arg	C6953A (or G)

"@" refers to an addition.

Preferred adaptive mutations identified with respect to a reference sequence can be produced changing the encoding region of SEQ. ID. NO. 1, or an equivalent sequence, to result in the indicated change. Preferred adaptive mutations provided in Tables 1 and 2 occur in amino acids conserved among different HCV isolates.

Adaptive mutations have different effects. Some mutations alone, or in combination with other mutations, enhance HCV replicon activity. In some cases, two or more mutations led to synergistic effects and in one case, a slightly antagonistic effect was observed.

An adaptive mutation once identified can be introduced into a starting construct using standard genetic techniques. Examples of such techniques are provided by Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-1998, and Sambrook, *et al.*, *Molecular Cloning, A Laboratory Manual*, 2nd Edition, 15 Cold Spring Harbor Laboratory Press, 1989.

HCV replicons containing adaptive mutations can be built around an NS3 region or NS5A region containing one or more adaptive mutations described herein. The final replicon will contain replicon components needed for replication and may contain additional components.

SEQ. ID. NO. 2 can be used as a reference point for different HCV regions as follows:

5' UTR- nucleotides 1-341;
Core- nucleotides 342-914;
E1- nucleotides 915-1490;
25 E2- nucleotides 1491-2579;
P7- nucleotides 2580-2768;
NS2- nucleotides 2769-3419;
NS3- nucleotides 3420-5312;
NS4A- nucleotides 5313-5474;
30 NS4B- nucleotides 5475-6257;
NS5A- nucleotides 6258-7598;
NS5B- nucleotides 7599-9371; and
3' UTR- nucleotides 9374-9605.

The amino acid sequences of the different structural and non-structural regions is provided by SEQ. ID. NO. 1.

Nucleic acid sequences encoding for a particular amino acid can be produced taking into account the degeneracy of the genetic code. The degeneracy of the genetic code arises because almost all amino acids are encoded for by different combinations of nucleotide triplets or "codons". The translation of a particular codon

5 into a particular amino acid is well known in the art (see, e.g., Lewin *GENES IV*, p. 119, Oxford University Press, 1990). Amino acids are encoded for by RNA codons as follows:

A=Ala=Alanine: codons GCA, GCC, GCG, GCU
C=Cys=Cysteine: codons UGC, UGU
10 D=Asp=Aspartic acid: codons GAC, GAU
E=Glu=Glutamic acid: codons GAA, GAG
F=Phe=Phenylalanine: codons UUC, UUU
G=Gly=Glycine: codons GGA, GGC, GGG, GGU
H=His=Histidine: codons CAC, CAU
15 I=Ile=Isoleucine: codons AUA, AUC, AUU
K=Lys=Lysine: codons AAA, AAG
L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU
M=Met=Methionine: codon AUG
N=Asn=Asparagine: codons AAC, AAU
20 P=Pro=Proline: codons CCA, CCC, CCG, CCU
Q=Gln=Glutamine: codons CAA, CAG
R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU
S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU
T=Thr=Threonine: codons ACA, ACC, ACG, ACU
25 V=Val=Valine: codons GUA, GUC, GUG, GUU
W=Trp=Tryptophan: codon UGG
Y=Tyr=Tyrosine: codons UAC, UAU.

Constructs, including subgenomic and genomic replicons, containing one or more of the adaptive mutations described herein can also contain additional 30 mutations. The additional mutations may be adaptive mutations and mutations not substantially inhibiting replicon activity. Mutations not substantially inhibiting replicon activity provide for a replicon that can be introduced into a cell and have detectable activity.

HCV Replicon

HCV replicons include the full length HCV genome and subgenomic constructs. A basic HCV replicon is a subgenomic construct containing an HCV 5' UTR-PC region, an HCV NS3-NS5B polyprotein encoding region, and a HCV 3' UTR. Other nucleic acid regions can be present such as those providing for HCV NS2, structural HCV protein(s) and non-HCV sequences.

The HCV 5' UTR-PC region provides an internal ribosome entry site (IRES) for protein translation and elements needed for replication. The HCV 5'UTR-PC region includes naturally occurring HCV 5' UTR extending about 36 nucleotides into a HCV core encoding region, and functional derivatives thereof. The 5'-UTR-PC region can be present in different locations such as site downstream from a sequence encoding a selection protein, a reporter, protein, or an HCV polyprotein.

Functional derivatives of the 5'-UTR-PC region able to initiate translation and assist replication can be designed taking into structural requirements for HCV translation initiation. (See, for example, Honda, *et al.*, 1996. *Virology* 222, 31-42). The affect of different modifications to a 5' UTR-PC region can be determined using techniques that measure replicon activity.

In addition to the HCV 5' UTR-PC region, non-HCV IRES elements can also be present in the replicon. The non-HCV IRES elements can be present in different locations including immediately upstream the region encoding for an HCV polyprotein. Examples of non-HCV IRES elements that can be used are the EMCV IRES, poliovirus IRES, and bovine viral diarrhea virus IRES.

The HCV 3' UTR assists HCV replication. HCV 3' UTR includes naturally occurring HCV 3' UTR and functional derivatives thereof. Naturally occurring 3' UTR's include a poly U tract and an additional region of about 100 nucleotides. (Tanaka, *et al.*, 1996. *J. Virol.* 70, 3307-3312, Kolykhalov, *et al.*, 1996. *J. Virol.* 70, 3363-3371.) At least *in vivo*, the 3' UTR appears to be essential for replication. (Kolykhalov, *et al.*, 2000. *J. Virol.* 2000 4, 2046-2051.) Examples of naturally occurring 3' UTR derivatives are described by Bartenschlager International Publication Number EP 1 043 399.

The NS3-NS5B polyprotein encoding region provides for a polyprotein that can be processed in a cell into different proteins. Suitable NS3-NS5B polyprotein sequences that may be part of a replicon include those present in different HCV strains and functional equivalents thereof resulting in the processing of NS3-NS5B to

a produce functional replication machinery. Proper processing can be measured for by assaying, for example, NS5B RNA dependent RNA polymerase.

The ability of an NS5B protein to provide RNA polymerase activity can be measured using techniques well known in the art. (See, for example, De

5 Franscesco, *et al.*, International Publication Number WO 96/37619, Behrens, *et al.*, 1996. *EMBO* 15:12-22, Lohmann, *et al.*, 1998. *Virology* 249:108-118.) Preferably, the sequence of the active NS5B is substantially similar as that provided in SEQ. ID. NO. 1, or a wild type NS5B such as strains HCV-1, HCV-2, HCV-BK, HCV-J, HCV-N, HCV-H. A substantially similar sequence provides detectable HCV polymerase

10 activity and contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid alterations to that present in a HCV NS5B polymerase. Preferably, no more than 1, 2, 3, 4 or 5 alterations are present.

15 Alterations to an amino acid sequence provide for substitution(s), insertion(s), deletion(s) or a combination thereof. Sites of different alterations can be designed taking into account the amino acid sequences of different NS5B polymerases to identify conserved and variable amino acid, and can be empirically determined.

HCV replicons can be produced in a wide variety of different cells and *in vitro*. Suitable cells allow for the transcription of a nucleic acid encoding for an HCV replicon.

20

Additional Sequences

An HCV replicon may contain non-HCV sequences in addition to HCV sequences. The additional sequences should not prevent replication and expression, and preferably serve a useful function. Sequences that can be used to 25 serve a useful function include a selection sequence, a reporter sequence, transcription elements and translation elements.

Selection Sequence

A selection sequence in an HCV replicon facilitates the identification 30 of a cell containing the replicon. Selection sequences are typically used in conjunction with some selective pressure that inhibits growth of cells not containing the selection sequence. Examples of selection sequences include sequences encoding for antibiotic resistance and ribozymes.

Antibiotic resistance can be used in conjunction with an antibiotic to 35 select for cells containing replicons. Examples of selection sequences providing for

antibiotic resistance are sequences encoding resistance to neomycin, hygromycin, puromycin, or zeocin.

A ribozyme serving as a selection sequence can be used in conjunction with an inhibitory nucleic acid molecule that prevents cellular growth. The ribozyme recognizes and cleaves the inhibitory nucleic acid.

Reporter Sequence

A reporter sequence can be used to detect replicon replication or protein expression. Preferred reporter proteins are enzymatic proteins whose presence can be detected by measuring product produced by the protein. Examples of reporter proteins include, luciferase, beta-lactamase, secretory alkaline phosphatase, beta-glucuronidase, green fluorescent protein and its derivatives. In addition, a reporter nucleic acid sequence can be used to provide a reference sequence that can be targeted by a complementary nucleic acid. Hybridization of the complementary nucleic acid to its target can be determined using standard techniques.

Additional Sequence Configuration

Additional non-HCV sequences are preferable 5' or 3' of an HCV replicon genome or subgenomic genome region. However, the additional sequences can be located within an HCV genome as long as the sequences do not prevent detectable replicon activity. If desired, additional sequences can be separated from the replicon by using a ribozyme recognition sequence in conjunction with a ribozyme.

Additional sequences can be part of the same cistron as the HCV polypeptide or can be a separate cistron. If part of the same cistron, the selection or reporter sequence coding for a protein should result in a product that is either active as a chimeric protein or is cleaved inside a cell so it is separated from HCV protein.

Selection and reporter sequences encoding for a protein when present as a separate cistron should be associated with elements needed for translation. Such elements include a 5' IRES.

Detection Methods

Methods for detecting replicon activity include those measuring the production or activity of replicon RNA and encoded for protein. Measuring includes qualitative and quantitative analysis.

Techniques suitable for measuring RNA production include those detecting the presence or activity of RNA. The presence of RNA can be detected using, for example, complementary hybridization probes or quantitative PCR. Techniques for measuring hybridization between complementary nucleic acid and

5 quantitative PCR are well known in the art. (See for example, Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-1998, Sambrook, *et al.*, *Molecular Cloning, A Laboratory Manual*, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and U.S. Patent No. 5,731,148.)

RNA enzymatic activity can be provided to the replicon by using a
10 ribozyme sequence. Ribozyme activity can be measured using techniques detecting the ability of the ribozyme to cleave a target sequence.

Techniques for measuring protein production include those detecting the presence or activity of a produced protein. The presence of a particular protein can be determined by, for example, immunological techniques. Protein activity can
15 be measured based on the activity of an HCV protein or a reporter protein sequence.

Techniques for measuring HCV protein activity vary depending upon the protein that is measured. Techniques for measuring the activity of different non-structural proteins such as NS2/3, NS3, and NS5B, are well known in the art. (See, for example, references provided in the Background of the Invention.)

Assays measuring replicon activity also include those detecting virion production from a replicon that produces a virion; and those detecting a cytopathic effect from a replicon producing proteins exerting such an effect. Cytopathic effects can be detected by assays suitable to measure cell viability.

Assays measuring replicon activity can be used to evaluate the ability
25 of a compound to modulate HCV activities. Such assays can be carried out by providing one or more test compounds to a cell expressing an HCV replicon and measuring the effect of the compound on replicon activity. If a preparation containing more than one compound is found to modulate replicon activity, individual
30 compounds or smaller groups of compounds can be tested to identify replicon active compounds.

Compounds identified as inhibiting HCV activity can be used to produce replicon enhanced cells and may be therapeutic compounds. The ability of a compound to serve as a therapeutic compound can be confirmed using animal models such as a chimpanzee to measure efficacy and toxicity.

Replicon Enhanced Host Cell

Replicon enhanced cells are initially produced by selecting for a cell able to maintain an HCV replicon and then curing the cell of the replicon. Cells produced in this fashion were found to have an increased ability to maintain a replicon upon subsequent HCV replicon transfection.

Initial transfection can be performed using a wild-type replicon or a replicon containing one or more adaptive mutations. If a wild-type replicon is employed, the replicon should contain a selection sequence to facilitate replicon maintenance.

Cells can be cured of replicons using different techniques such as those employing replicon inhibitory agent. In addition, replication of HCV replicons is substantially reduced in confluent cells. Thus, it is conceivable to cure cells of replicons by culturing them at a high density.

Replicon inhibitory agents inhibit replicon activity or select against a cell containing a replicon. An example of such an agent is IFN- α . Other HCV inhibitory compounds may also be employed. HCV inhibitor compounds are described, for example, in Llinas-Brunet, *et al.*, 2000. *Bioorg Med Chem Lett.* 10(20), 2267-2270.

The ability of a cured cell to be a replicon enhanced cell can be measured by introducing a replicon into the cell and determining efficiency of subsequent replicon maintenance and activity.

EXAMPLES

Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Techniques

This example illustrates the techniques employed for producing and analyzing adaptive mutations and replicon enhanced cells.

Manipulation of Nucleic Acids and Construction of Recombinant Plasmids

Manipulation of nucleic acids was done according to standard protocols. (Sambrook, *et al.*, 1989. *Molecular Cloning: A Laboratory Manual*, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.) Plasmid DNA was

prepared from ON culture in LB broth using Qiagen 500 columns according to manufacturer instructions.

Plasmids containing desired mutations were constructed by restriction digestion using restriction sites flanking the mutations or by PCR amplification of the area of interest, using synthetic oligonucleotides with the appropriate sequence. Site directed mutagenesis was carried out by inserting the mutations in the PCR primers. PCR amplification was performed using high fidelity thermostable polymerases or mixtures of polymerases containing a proofreading enzyme. (Barnes, *et al.*, 1994. *Proc. Natl. Acad. Sci.* 91, 2216-2220.) All plasmids were verified by restriction mapping and sequencing.

10 pHCVneo17.wt contains the cDNA for an HCV bicistronic replicon identical to replicon I₃₇₇neo/NS3-3'/wt described by Bartenschlager (SEQ. ID. NO. 3) (Lohmann, *et al.*, 1999. *Science* 285, 110-113, EMBL-genbank No. AJ242652). The plasmid comprises the following elements: 5' untranslated region of HCV comprising 15 the HCV-IRES and part of the core (nt1-377); neomycin phosphotransferase coding sequence; and EMCV IRES; HCV coding sequences from NS3 to NS5B; 3' UTR of HCV.

20 Plasmid pHCVNeo17.GAA is identical to pHCVNeo.17, except that the GAC triplets (nt. 6934-6939 of pHCVNeo17 sequence) coding for the catalytic aspartates of the NS5B polymerase (amino acids 2737 and 2738 of HCV polyprotein) were changed into GCG, coding for alanine.

25 Plasmid pHCVNeo17.m0 is identical to pHCVNeo17, except that the triplet AGC (nt. 5335-5337 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2204 of HCV polyprotein) was changed into AGA, coding for arginine.

Plasmid pHCVNeo17.m1 is identical to pHCVNeo17, except that the triplet AAC (nt. 4846-4848 of pHCVNeo17 sequence) coding for the asparagine of NS5A protein (amino acid 2041 of HCV polyprotein) was changed into ACC, coding for threonine.

30 Plasmid pHCVNeo17.m2 is identical to pHCVNeo17, except that the triplet TCC (nt. 5242-5244 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2173 of HCV polyprotein) was changed into TTC, coding for phenylalanine.

Plasmid pHCVNeo17.m3 is identical to pHCVNeo17, except that the triplet TCC (nt. 5314-5316 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2197 of HCV polyprotein) was changed into TTC, coding for phenylalanine.

5 Plasmid pHCVNeo17.m4 is identical to pHCVNeo17, except that the triplet TTG (nt. 5317-5319 of pHCVNeo17 sequence) coding for the leucine of NS5A protein (amino acid 2198 of HCV polyprotein) was changed into TCG, coding for serine.

10 Plasmid pHCVNeo17.m5 is identical to pHCVNeo17, except that an extra triplet AAA coding for lysine was inserted after the triplet GTG (nt. 4840-4843 of pHCVNeo17 sequence), coding for valine 2039 of HCV polyprotein.

15 Plasmid pHCVNeo17.m6 is identical to pHCVNeo17, except that the triplets GAA and GCC (nt. 2329-2331 and 2764-2766 of pHCVNeo17 sequence) coding for the glutamic acid and the alanine of NS3 protein (amino acid 1202 and 1347 of HCV polyprotein) were changed respectively into GGA and ACC, coding for glycine and threonine. The triplet TCC (nt. 5242-5244 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2173 of HCV polyprotein) was changed into TTC, coding for phenylalanine; an extra adenosine was inserted into the EMCV IRES (after the thymidine 1736 of the replicon sequence).

20 Plasmid pHCVNeo17.m7 is identical to pHCVNeo17, except that the triplet AAC (nt. 4846-4848 of pHCVNeo17 sequence) coding for the asparagine of NS5A protein (amino acid 2041 of HCV polyprotein) was changed into ACC, coding for threonine; the triplet TCC (nt. 5242-5244 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2173 of HCV polyprotein) was changed into 25 TTC, coding for phenylalanine.

30 Plasmid pHCVNeo17.m8 is identical to pHCVNeo17, except that the triplet AAC (nt. 4846-4848 of pHCVNeo17 sequence) coding for the asparagine of NS5A protein (amino acid 2041 of HCV polyprotein) was changed into ACC, coding for threonine; the triplet TCC (nt. 5314-5316 of pHCVNeo17 sequence) coding for the serine of NS5A protein (amino acid 2197 of HCV polyprotein) was changed into TTC, coding for phenylalanine.

Plasmid pHCVNeo17.m9 is identical to pHCVNeo17, except that the triplet AAC (nt. 4846-4848 of pHCVNeo17 sequence) coding for the asparagine of NS5A protein (amino acid 2041 of HCV polyprotein) was changed into ACC, coding

for threonine; the triplet TTG (nt. 5317-5319 of pHCVNeo17 sequence) coding for the leucine of NS5A protein (amino acid 2198 of HCV polyprotein) was changed into TCG, coding for serine.

Plasmid pHCVNeo17.m10 is identical to pHCVNeo17, except that the
5 triplet GAA (nt. 2329-2331 of pHCVNeo17 sequence) coding for the glutamic acid of
NS3 protein (amino acid 1202 of HCV polyprotein) was changed into GGA, coding
for glycine; an extra triplet AAA coding for lysine was inserted after the triplet GTG
(nt. 4840-4843 of pHCVNeo17 sequence), coding for valine 2039 of HCV
polyprotein.

10 Plasmid pHCVNeo17.m11 is identical to pHCVNeo17, except that the
triplet TCC (nt. 5314-5316 of pHCVNeo17 sequence) coding for the serine of NS5A
protein (amino acid 2197 of HCV polyprotein) was changed into TTC, coding for
phenylalanine. The triplet GCC (nt. 5320-5322 of pHCVNeo17 sequence) coding for
the alanine of NS5A protein (amino acid 2199 of HCV polyprotein) was changed into
15 ACC coding for threonine.

Plasmid pHCVNeo17.m12 is identical to pHCVNeo17, except that the
triplet AAC (nt. 4846-4848 of pHCVNeo17 sequence) coding for the asparagine of
NS5A protein (amino acid 2041 of HCV polyprotein) was changed into ACC, coding
for threonine; the triplet TCC (nt. 5314-5316 of pHCVNeo17 sequence) coding for
20 the serine of NS5A protein (amino acid 2197 of HCV polyprotein) was changed into
TTC, coding for phenylalanine. The triplet GCC (nt. 5320-5322 of pHCVNeo17
sequence) coding for the alanine of NS5A protein (amino acid 2199 of HCV
polyprotein) was changed into ACC coding for threonine.

Plasmid pHCVNeo17.m13 has the same mutations as
25 pHCVNeo17.m8, but also an extra adenosine inserted into the EMCV IRES (after the
thymidine 1736 of the replicon sequence).

Plasmid pHCVNeo17.m14 has the same mutations as
pHCVNeo17.m11, but also an extra adenosine inserted into the EMCV IRES (after
the thymidine 1736 of the replicon sequence).

30 Plasmid pHCVNeo17.m15 is identical to pHCVNeo17, except that the
triplet GCC (nt. 5320-5322 of pHCVNeo17 sequence) coding for the alanine of
NS5A protein (amino acid 2199 of HCV polyprotein) was changed into ACC coding
for threonine.

Plasmid pRBSEAP.5 is a pHCVNeo.17 derivative where the Neo coding sequence has been replaced with the sequence coding for the human placental alkaline phosphatase corresponding to nucleotides 90-1580 of pBC12/RSV/SEAP plasmid. (Berger, *et al.*, 1988. *Gene* 66, 1-10.)

5

RNA Transfection

Transfection was performed using Huh-7 cells. The cells were grown in Dulbecco's modified minimal essential medium (DMEM, Gibco, BRL) supplemented with 10% FCS. For routine work, cells were passed 1 to 5 twice a 10 week using 1x trypsin/EDTA (Gibco, BRL).

Plasmids were digested with the ScaI endonuclease (New England Biolabs) and transcribed *in vitro* with the T7 Megascript kit (Ambion). Transcription mixtures were treated with DNase I (0.1 U/ml) for 30 minutes at 37°C to completely remove template DNA, extracted according to the procedure of Chomczynski 15 (Chomczynski, *et al.*, 1987. *Anal. Biochem.* 162, 156-159), and resuspended with RNase-free phosphate buffered saline (rfPBS, Sambrook, *et al.*, 1989. *Molecular Cloning: A Laboratory Manual*, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).

RNA transfection was performed as described by Liljestrom, *et al.*, 20 1991. *J. Virol.* 6, 4107-4113, with minor modifications. Subconfluent, actively growing cells were detached from the tissue culture container using trypsin/EDTA. Trypsin was neutralised by addition of 3 to 10 volumes of DMEM/10%FCS and cells were centrifuged for 5 minutes at 1200 rpm in a Haereus table top centrifuge at 4°C. Cells were resuspended with ice cold rfPBS by gentle pipetting, counted with a 25 haemocitometer, and centrifuged as above. rfPBS wash was repeated once and cells were resuspended at a concentration of 1-2 x 10⁷ cell/ml in rfPBS. Aliquots of cell suspension were mixed with RNA in sterile eppendorf tubes. The RNA/cell mixture was immediately transferred into the electroporation cuvette (precooled on ice) and pulsed twice with a gene pulser apparatus equipped with pulse controller (Biorad). 30 Depending on the experiment, 0.1, 0.2 or 0.4 cm electrode gap cuvettes were used, and settings adjusted (Table 3).

TABLE 3

Cuvette	Volume	Voltage	Capacitance	Resistance	RNA
gap (cm)	(μl)	(Volts)	(μF)	(ohm)	(μg)
0.1	70	200	25	infinite	1-10
0.2	200	400	25	infinite	5-20
0.4	800	800	25	infinite	15-100

After the electric shock, cells were left at room temperature for 1-10 minutes (essentially the time required to electroporate all samples) and subsequently diluted with at least 20 volumes of DMEM/10%FCS and plated as required for the experiment. Survival and transfection efficiency were monitored by measuring the neutral red uptake of cell cultured for various days in the absence or in the presence of neomycin sulfate (G418). With these parameters, survival of Huh-7 cells was usually 40-60% and transfection efficiency ranged between 40% and 100%.

Sequence Analysis of Replicon RNAs

The entire NS region was recloned from 3 different transfection experiments performed with HCVNeo.17 RNA. RNA was extracted from selected clones either using the Qiagen RNAeasy minikit following manufacturer instructions or as described by Chomczynski, *et al.*, 1987. *Anal. Biochem.* 162, 156-159.

Replicon RNAs (5 μg of total cellular RNA) were retro-transcribed using oligonucleotide HCVG34 (5'- ACATGATCTGCAGAGAGGCCAGT-3'; SEQ. ID. No. 4) and the Superscript II reverse transcriptase (Gibco, BRL) according to manufacturer instructions, and subsequently digested with 2 U/ml Ribonuclease H (Gibco BRL). The cDNA regions spanning from the EMCV IRES to the HCV 3' end were amplified by PCR using oligonucleotides HCVG39 (5'- GACASGCTGTGATAWATGTCTCCCC-3'; SEQ. ID. NO. 5) and CITE3 (5'- TGGCTCTCCTCAAGCGTATTG -3'; SEQ. ID. NO. 6) and the LA Taq DNA polymerase (Takara LA Taq).

Amplified cDNAs were digested with the KpnI endonuclease (New England Biolabs) and the 5.8 kb fragments were gel purified and ligated to the 5.6 kb vector fragment (purified from plasmid pRBSEAP.5 digested with KpnI) using T4

DNA ligase (New England Biolabs) according to manufacturer instructions. Ligated DNAs were transformed by electroporation in DH10B or JM119 strains of *E. coli*.

In the case of NS5A region, total RNA isolated from 3 clones, (HB77, HB60 and HB68) was extracted and used for RT-PCR. 5 μ g of total RNA plus 20 pmole of AS61 oligo (5'-ACTCTCTGCAGTCAAGCGGCTCA-3', RT antisense oligo; SEQ. ID. NO. 7) were heated 5 minutes at 95°C, then DMSO (5% f.c.), DTT (10 mM f.c.), 1 mM dNTP (1 mM f.c.), 1x Superscript buffer (1 x f.c.), and 10 u Superscript (Gibco) were added to a total volume of 20 μ l and incubated 3 hours at 42°C. 2 μ l of this RT reaction were used to perform PCR with oligos S39 (5'-CAGTGGATGAACCGGCTGATA-3', sense; SEQ. ID. NO. 8) or S41 (5'-GGGGCGACGGCATCATGCAAACC-3', sense; SEQ. ID. NO. 9) and B43 (5'-CAGGACCTGCAGTCTGTCAAAGG-3', antisense; SEQ. ID. NO. 10) using Elongase Enzyme Mix (Gibco) according the instruction provided by the manufacturer. The resulting PCR fragment was cloned in pCR2.1 vector using the TA Cloning kit (Invitrogen) and transformed in Top10F' bacterial strain.

Plasmid DNA was prepared from ON culture of the resulting ampicillin resistant colonies using Qiagen 500 columns according to manufacturer instructions. The presence of the desired DNA insert was ascertained by restriction digestion, and the nucleotide sequence of each plasmid was determined by automated sequencing. Nucleotide sequences and deduced amino acids sequences were aligned using the GCG software.

TaqMan

TaqMan analysis was typically performed using 10 ng of RNA in a reaction mix (TaqMan Gold RT-PCR kit, Perkin Elmer Biosystems) either with HCV specific oligos/probe (oligo 1: 5'-CGGGAGAGCCATAGTGG-3'; SEQ. ID. NO. 11, oligo 2: 5'-AGTACCACAAGGCCTTCG-3'; SEQ. ID. NO. 12, probe: 5'-CTGCGAACCGGTGAGTACAC-3'; SEQ. ID. NO. 13) or with human GAPDH specific oligos/probe (Pre-Developed TaqMan Assay Reagents, Endogenous Control Human GAPDH, Part Number 4310884E, Perkin Elmer Biosystems). PCR was performed using a Perkin Elmer ABI PRISM 7700 under the following conditions: 30 minutes at 48°C (the RT step), 10 minutes at 95°C and 40 cycles: 15 seconds at 95°C and 1 minute at 60°C. Quantitative calculations were obtained using the Comparative C_T Method (described in User Bulletin #2, ABI PRISM 7700 Sequence Detection System, Applied Biosystem, Dec 1997) considering the level of GAPDH mRNA

constant. All calculations of HCV RNA are expressed as fold difference over a specific control.

Antibodies and Immunological Techniques

5 Mouse monoclonal antibody (anti-NS3 mab10E5/24) were produced by standard techniques. (Galfré and Milstein, 1981. *Methods in Enzymology* 73, 1-46.) Purified recombinant protein was used as an immunogen. (Gallinari, *et al.*, 1999. *Biochemistry* 38, 5620-5632.)

10 For Cell-ELISA analysis, transfected cells were monitored for expression of the NS3 protein by ELISA with the anti-NS3 mab 10E5/24. Cells were seeded into 96 well plates at densities of 40,000, 30,000, 15,000 and 10,000 cells per well and fixed with ice-cold isopropanol at 1, 2, 3 and 4 days post-transfection, respectively. The cells were washed twice with PBS, blocked with 5% non-fat dry milk in PBS + 0.1% Triton X100 + 0.02% SDS (PBSTS) and then incubated
15 overnight at 4°C with 10E5/24 mab diluted 1:2000 in Milk/PBSTS. After washing 5 times with PBSTS, the cells were incubated for 3 hours at room temperature with anti-mouse IgG Fc specific alkaline phosphatase conjugated secondary antibody (Sigma A-7434), diluted 1:2000 in Milk/PBSTS. After washing again as above, the reaction was developed with *p*-nitrophenyl phosphate disodium substrate (Sigma 104-
20 105) and the absorbance at 405 nm read at intervals.

The results were normalized by staining with sulforhodamine B (SRB Sigma S 1402) to determine cell numbers. The alkaline phosphatase substrate was removed from the wells and the cells washed with PBS. The plates were then incubated with 0.4% SRB in 1% acetic acid for 30 minutes (200 µl/well), rinsed 4 times in 1% acetic acid, blotted dry and then 200 µl/well of 10mM Tris pH 10.5 added. After mixing, the absorbance at 570 nm was read.
25

Neutral Red/Crystal Violet Staining of Foci

30 The survival of transfected cells in the absence or presence of G418 was monitored by staining of foci/clones with neutral red *in vivo* with subsequent crystal violet staining. The medium was removed from the cells and replaced with fresh medium containing 0.0025% neutral red (Sigma N2889) and the cells incubated for 3 hours at 37°C. Cells were washed twice with PBS, fixed in 3.5% formaldehyde for 15 minutes, washed twice again in PBS and then with distilled water and the
35 number of (live) foci counted. The cells could then be re-stained with crystal violet

by incubating with an 0.1% crystal violet (Sigma C0775) solution in 20% methanol for 20 minutes at room temperature, followed by 3 washes in 20% methanol and a wash with distilled water.

5 *Preparation Of Cells Cured Of Endogenous Replicon*

Replicon enhanced cells designated 10IFN and Cl.60/cu were produced using different HCV inhibitory agents. Based on the techniques described herein additional replicon enhanced clones can readily be obtained.

10IFN was obtained by curing a Huh-7 cell of a replicon using human
10 IFN- α 2b. Huh-7 cells containing HCV replicons (designated HBII10, HBIII4, HBIII27 and HBIII18) were cultured for 11 days in the presence of 100 U/ml recombinant human IFN- α 2b (Intron-A, Schering-Plough), and subsequently for 4 days in the absence of IFN- α 2b. At several time points during this period, the clones were analyzed for the presence of HCV proteins and RNA by Western and Northern
15 blotting. After 7 days of incubation with IFN- α 2b, HCV proteins could no longer be detected in any of these clones by Western blotting and similar effects were seen with RNA signals in Northern blots. IFN- α 2b treated cells were stored in liquid nitrogen until used for transfection experiments.

Cl.60/cu was obtained by curing a Huh-7 cell of a replicon using an
20 HCV inhibitory compound. The presence of HCV RNA was determined using PCR (TaqMan) at 4, 9, 12 and 15 days. From day 9 the amount of HCV RNA was below the limit of detection. To further test the disappearance of the replicon, 4 million cells of cured Clone 60 cells (after the 15 days of treatment) were plated in the presence of 1 mg/ml G-418. No viable cells were observed, confirming that absence of HCV
25 replicons able to confer G-418 resistance.

Example 2: Selection and Characterization of Cell Clones Containing Functional HCV Replicons

Huh-7 cells ($2\text{-}8 \times 10^6$) were transfected by electroporation with *in vitro*
30 transcribed replicon RNAs (10–20 μg), plated at a density ranging from 2.5×10^3 to $10 \times 10^3/\text{cm}^2$, and cultured in the presence of 0.8–1 mg/ml G418. The majority of replicon transfected cells became transiently resistant to G418 and duplicated normally for 7 to 12 days in the presence of the drug, while cells transfected with irrelevant RNAs and mock transfected cells did not survive more than 7 days (data not shown). Transient resistance to G418 was likely due to persistence of the Neo protein
35

expressed from the transfected RNA, since it was observed also with mutated replicons unable to replicate. Approximately 2 weeks after transfection, transient resistance declined, most cells died and small colonies of cells permanently resistant to the antibiotic became visible in samples transfected with HCVNeo.17 RNA, but not in cells transfected with other replicon RNAs.

5 In several experiments, the frequency of G418 resistant clones ranged between 10 and 100 clones per 10^6 transfected cells. About 20 G418 resistant colonies were isolated, expanded and molecularly characterized. PCR and RT-PCR analysis of nucleic acids indicated that all clones contained HCV RNA but not HCV DNA, demonstrating that G418 resistance was due to the presence of functional replicons (data not shown). This result was confirmed by Northern blot analysis and metabolic labeling with 3H -uridine, which revealed the presence of both genomic and antigenomic HCV RNAs of the expected size (data not shown). Lastly, western blot, immunoprecipitation and immunofluorescence experiments showed that these clones
10 expressed all HCV non-structural proteins as well as Neo protein (data not shown).

15

Clones differed in terms of cell morphology and growth rate. Replicon RNA copy number (500-10000 molecules/cell) and viral protein expression also varied between different clones (data not shown). However, the amount of replicon RNA and proteins also varied with passages and with culture conditions and was
20 higher when cells were not allowed to reach confluence, suggesting that replicons replicated more efficiently in dividing cells than in resting cells. Processing of the viral polyprotein occurred with kinetics similar to those observed in transfected cells.

Interestingly, in all tested clones HCV replication was efficiently inhibited by treating the cells with IFN- α 2b. The EC₅₀ was between 1 and 10 U/ml,
25 depending on the clone.

Example 3: Identification of Adaptive Mutations

The low number of G418 resistant clones derived from HCVNeo.17 RNA transfection suggested that replication could require mutation(s) capable of
30 adapting the replicon to the host cell (adaptive mutations) and/or that only a small percentage of Huh-7 cells were competent for HCV replication. To verify the first hypothesis, mutations in replicons RNAs derived from selected cell clones were identified.

RNA sequences for different replicons were determined using standard techniques. Such techniques involved isolating RNA from several independent clones, reverse transcription to produce cDNA, amplifying cDNAs by PCR and cloning into an appropriate vector. The cDNA spanning almost the entire HCV NS region (126 bp at the 3' end of the EMCV IRES and 5650 bp of the HCV NS region (i.e., the entire NS ORF and 298 nucleotides at the 3' end) from 5 clones (HB110, HBIII12, HBIII18, HBIII27, HBIV1) were recloned and sequenced. In addition, the NS5A coding region (nt. 4784-6162) from 3 additional clones (HB 77, HB 68 and HB 60) were recloned and sequenced.

5 To discriminate mutations present in the replicon RNA from those derived from the cloning procedure, at least 2 isolates derived from independent RT-PCR experiments were sequenced for each cell clone. Comparison of the nucleotide sequences with the parental sequence indicated that each isolate contained several mutations (Tables 4A and 4B).

10

15

TABLE 4A

Cell clone	HBIII 12		HBIII 18		HB1 10		HBIII 27	
isolate	4	29	28	61	12	43	13	72
	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460
EMCV IRES 126 bp	A @ 1736	A @ 1736		C 1752 T				T 1678 C
NS3 1895 bp	G 2009 C A 2698 G G 2764 A A 3256 G T 3273 C	A 2330 G C 2505 T G 2764 A T 3085 C	T 2150 C C 2196 A T 3023 A T 3134 C C 3267 T	T 2015 C A 2338 G C 2616 T A 2664 G A 3148 G T 3286 C C 3615 T C 3657 T	T 1811 A A 2330 G T 2666 C T 3395 C	A 2330 G A 2882 G T 3673 C	G 2009 C T 2015 C C 2336 G A 3130 T A 3401 G A 3518 C	G 2009 C C 2052 A G 2644 A C 2803 A T 2823 A T 3692 C
NS4A 161 bp	T 3790 C		A 3847 G	T 3827 A	T 3742 C		A 3743 G	A 3797 G
NS4B 782 bp	T 3869 C A 4107 G T 4185 C A 4428 G	C 4283 T C 4429 T	G 4300 A	A 4136 G A 4261 G G 4309 A A 4449 G	T 4290 C	A 4053 G A 2496 C T 4316 G	G 3880 A T 4200 C A 4366 G	C 4547 T

TABLE 4A

Cell clone	HBIII 12		HBIII 18		HBI 10		HBIII 27	
isolate	4	29	28	61	12	43	13	72
	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460	1674-7460
NS5A 1340 bp	A 4847 C <i>G 5158 A</i>	G 4728 A <i>A 4845 G</i>	C 5243 T <i>C 5175 C</i>	C 4729 A <i>C 5243 T</i>	A 4694 T <i>A 4842</i>	A 4675 G <i>AAA @</i>	A 4855 G <i>A 4761 G</i>	A 4888 G <i>C 5006 T</i>
	<i>G 5158 A</i>	<i>A 4845 G</i>	<i>A 5486 G</i>	<i>T 4993 C</i>			<i>C 5006 T</i>	<i>C 4985 T</i>
	C 5243 T <i>C 5390 T</i>	G 5512 T <i>A 5521 G</i>	G 5823 A <i>A 5600 G</i>	T 5334 C <i>T 5379 A</i>		AAA @ <i>T 5368 C</i>	T 5318 C <i>A 5574 G</i>	T 5030 A <i>T 5090 A</i>
				<i>T 5374 T</i>			<i>G 5866 A</i>	<i>T 5318 C</i>
				<i>T 5480 C</i>				<i>A 5328 G</i>
				<i>A 5513 G</i>				<i>A 5399 G</i>
				<i>T 5977 C</i>				<i>A 5574 G</i>
NS5B 1477 bp	T 6316 C <i>T 6589 C</i>	A 6406 G <i>T 7370 C</i>	T 6074 C <i>G 6756 A</i>	A 6150 G <i>G 6963 T</i>	A 6911 G	A 5986 G <i>T 6099 C</i>	G 6479 C <i>C 6870 T</i>	G 6156 A <i>G 7434 A</i>
				<i>A 6541 G</i>		<i>C 6141 T</i>	<i>A 7213 G</i>	<i>T 7444 C</i>
				<i>A 6732 G</i>	<i>T 7352 A</i>		<i>G 6463 A</i>	<i>T 7448 C</i>
				<i>A 7350 T</i>			<i>C 6849 T</i>	
				<i>A 7359 G</i>			<i>T 6865 C</i>	

Clone name and isolate number are indicated in the first and second row, respectively.

The first and the last nucleotide of the region that was recloned and sequenced are indicated in the third row.

Nucleotide (IUB code) substitutions are indicated with the original nucleotide, its position and mutated nucleotide.

Nucleotide(s) insertions are indicated with the nucleotide(s), the symbol @ and the position of the nucleotide preceding insertion.

Numbering refers to the first nucleotide of the replicon sequence (EMBL-genbank No. AJ242652).

The region in which mutations are located and the nucleotide length of each region are indicated in the left most column.

Silent mutations are in italic.

Non sense mutations are underlined.

15 Consensus mutations are bold.

TABLE 4B

Cell clone	HBIV1		HB 77		HB 68		HB 60	
isolate	85	93	10	14	42	1	13	7
	1674-7460	1674-7460	4784-6162	4465-6162	4784-6162	4465-6162	4784-6162	4784-6162
EMCV IRES 126 bp		<i>A @ 1736</i>						
NS3 1895 bp	A 3403 G	A 2572 G						
		<i>A 3454 G</i>						

TABLE 4B

Cell clone	HBIV1		HB 77		HB 68		HB 60		
	isolate	85	93	10	14	42	1	13	7
		1674-7460	1674-7460	4784-6162	4465-6162	4784-6162	4465-6162	4784-6162	4784-6162
NS4A 161 bp									
NS4B 782 bp	A 4084 G	C 3892 T							
NS5A 1340 bp	T 4742 C C 5315 T G 5431 T T 5751 C T 5797 C	A 4847 C A 5225 G C 5315 T G 5320 A T 5356 A G 5523 A T 5888 A	C 4813 T G 5060 C C 5337 A C 5337 A A 5459 G T 5977 C	A 4699 C A 5161 G C 5337 A C 5337 A A 5639 G A 5969 G	T 5171 G C 5298 T T 4972 C A 5094 G G 5320 A C 5532 T	T 4587 C T 4972 C A 5278 G T 5601 G C 5808 T	A 4821 G G 5320 A A 5414 G T 5601 G C 5808 T	C 5337 G C 5551 T G 5806 A	
NS5B 1477 bp	T 6144 A A 6365 G A 6656 G A 6677 G T 6855 C T 6947 A T 6997 C G 7041 T A 7187 C	T 6855 C A 7135 G T 7171 C							

See Table 4A legend.

The frequency of mutations ranged between 1.7×10^{-3} and 4.5×10^{-3} (average 3×10^{-3}). The majority of mutations were nucleotide substitutions, although insertions of 1 or more nucleotides were also observed (Tables 4A and 4B).

Approximately 85% of the mutations found only in 1 isolate (non-consensus) were randomly distributed in the recloned fragment, and possibly include mis-incorporation during the PCR amplifications. Conversely, the remaining 15% of the mutations were common to 2 or more isolates derived from independent RT-PCR experiments (consensus mutations), and presumably reflected mutations present in the template RNA.

Consensus mutations were found in all isolates and were either common to isolates derived from the same clone (consensus A), or to isolates derived from different clones (consensus B). Analysis of additional isolates derived from the same cell clones indicated that consensus A mutations were not always present in all isolates derived from one clone (data not shown). This observation, together with the

presence of consensus B mutations, suggests that, even within a single cell clone, replicons exist as quasi-species of molecules with different sequences.

At variance with non-consensus mutations, consensus mutations were not randomly distributed but were clustered in the regions coding for the NS5A protein (frequency 1×10^{-3}) and for the NS3 protein (frequency 0.5×10^{-3}). Only one consensus mutation was found in the region coding for the NS5B protein (frequency 0.1×10^{-3} nucleotides) and none in the regions coding for NS4A and NS4B. Interestingly, 1 consensus mutation was observed also in the EMCV IRES.

With the exception of 2 silent mutations found in NS5A and NS5B, consensus mutations occurring in the NS region resulted in changes in the deduced amino acid sequence (Tables 5A and 5B). Noticeably, these amino acid changes occurred in residues that are conserved in all or most natural HCV isolates. Interestingly, clones HB 77 and HB 60 displayed different nucleotide substitutions (C5337A and C5337G, respectively) resulting in the same amino acidic mutation (S 15 2204 R).

TABLE 5A

Cell clone	HBIII 12		HBIII 18		HBI 10		HBIII 27	
isolate	4	29	28	61	12	43	13	72
NS3	G 1095 A A 1347 T	E 1202 G A 1347 T			E 1202 G	E 1202 G	G 1095 A	G 1095 A
NS4A								
NS4B								
NS5A	N 2041 T S 2173 F	S 2173 F	S 2173 F	E 2263	K @ 2039	K @ 2039	L 2198 S R 2283 R	L 2198 S R 2283 R
NS5B								

See Table 4A legend.

TABLE 5B

Cell clone	HBIV1		HB 77		HB 68		HB 60	
	isolate	85	93	10	14	42	1	13
NS3								
NS4A								
NS4B								
NS5A	S 2197 F S 2197 F A 2199 T	N 2041 T	S 2204 R	S 2204 R	S 2204 R	A 2199 T	A 2199 T	S 2204 R
NS5B	<i>N 2710 N</i>	<i>N 2710 N</i>						

See Table 4A legend.

5 Example 4: Functional Characterization of Consensus Mutations

The identification of consensus mutations in recloned replicons indicated that replication proficiency of replicon RNAs contained in selected cell clones depended from the presence of such mutations. To substantiate this hypothesis, the effect of several consensus mutations on replication were analyzed.

10 Consensus mutations found in the NS5A region were more closely analyzed. Consensus mutations were segregated from the non-consensus ones, and pHCVNeo.17 derivatives containing single or multiple consensus mutations were constructed (Table 6).

TABLE 6

Construct	Consensus mutations			G418 cfu/10 ⁵ transfected cells
	NS3	NSSA	EMCV IRES	
pHCVNeo17.wt				0-3
pHCVNeo17.GAA				0
pHCVNeo17.m0		S2204R		30-130
pHCVNeo17.m1		N2041T		0-3
pHCVNeo17.m2		S2173F		15-60
pHCVNeo17.m3		S2197F		160-500
pHCVNeo17.m4		L2198S		30-50

TABLE 6

Construct	Consensus mutations			G418 cfu/10 ³ transfected cells
pHCVNeo17.m5	NS3	NS5A <u>K@2039</u>	EMCV IRES	25-55
pHCVNeo17.m6	E1202G; A1347T	S2173F	Extra A	13-100
pHCVNeo17.m7		N2041T; S2173F		0-1
pHCVNeo17.m8		N2041T; S2197F		360-500
pHCVNeo17.m9		N2041T; L2198S		140-170
pHCVNeo17.m10	E1202G	<u>K@2039</u>		1060
pHCVNeo17.m11		S2197F; A2199T		900
pHCVNeo17.m12		N2041T; S2197F; A2199T		>1000
pHCVNeo17.m13		N2041T; S2197F	Extra A	100
pHCVNeo17.m14		S2197F; A2199T	Extra A	>500
pHCVNeo17.m15		A2199T		300-600

Huh-7 cells (2×10^6) were transfected with 10 μ g of RNA transcribed from the indicated constructs. Approximately 2×10^3 cells were plated in a 10 cm tissue culture dish and cultured with 1 mg/ml G418 for 20 days.

Colonies surviving selection were stained with crystal violet and counted.

5

RNAs transcribed *in vitro* from these constructs were transfected in Huh-7 cells and the affect on replication was estimated by counting neomycin resistant colonies (G418 cfu). As shown in Table 6, all but 1 construct containing single consensus mutations showed a significant increase on G418 cfu efficiency, thus indicating that the corresponding mutations improved replication. Noticeably, 2 mutants containing single mutations in NS5A (m3 and m15) were clearly more effective than all other single mutants. Results of mutants containing 2 or more mutations, indicated the presence of a synergistic effect in some combinations (m8, m9, m11 and possibly m10), but also a slightly antagonistic effect in 1 mutant (m7).

15

Example 5: Replicon Replication in the Absence of Selection

Replication of HCV replicons in the absence of a G418 selection was detected using quantitative PCR (TaqMan). At 24 hours post-transfection a large amount of replicon RNA was detected in cells transfected with all replicons, including the GAA control replicon containing mutations in the catalytic GDD motif of the NS5B polymerase. This result suggested that analysis at very early time points (up to 48 hour post-transfection) essentially measured the input RNA. Northern blot analysis also indicated that after 24 hours the majority of the transfected RNA was degraded intracellularly (data not shown).

Analysis at later time points showed that the amount of replicon RNA was considerably reduced at 4 days and eventually became undetectable (6/8 days) in cells transfected with replicon HCVNeo17.wt, but was still high in cells transfected with replicons m0, m3 and m15 (Table 7). At day six, that the amount of replicon

5 RNA became undetectable in cells transfected with replicon HCVNeo17.wt, m0, and m2, but was detectable in cells transfected with replicon m3 and m15 (Table 7).

TABLE 7

Name	Hu H7	
	RNA equ.	RNA equ.
Wt	day 4	day 6
hcvneo17.m0	1 x	1 x
hcvneo17.m2	3 x	1 x
hcvneo17.m3	1 x	1 x
hcvneo17.m3	5 x	3 x
hcvneo17.m15	6 x	5 x

10

Persistence of m0, m3 and m15 replicons RNA was abolished by treatment with interferon- α or with an HCV inhibitory compound (data not shown). Moreover, RNA persistence was not observed with mutated replicons carrying the NS5B GAA mutation besides adaptive mutations (data not shown). Taken together,

15 these results demonstrated that quantitative PCR could be used to monitor replication at early times post-transfection, and can be used to evaluate the replication proficiency of replicon RNAs containing mutations.

Comparison of the results shown in Tables 6 and 7, indicated that there was a good correlation between the amount of replicon RNA detected by TaqMan and the G418 cfu efficiency. Nonetheless, some mutants (m2, m3) showed a pronounced effect on G418 cfu efficiency, and little if any effect on early replication as measured by TaqMan PCR, while other mutants (m0) showed the reverse behavior.

Example 6: HCV Replicon Enhanced Cells

HCV replicon enhanced cells were produced by introducing an HCV replicon into a host, then curing the host of the replicon. Adaptive mutations (or combinations of them) by themselves increased up to 2 orders of magnitude the G418

5 cfu efficiency and enhanced early replication comparably. Nonetheless, even with the most effective mutants, only a small percentage of transfected cells (<5 %, data not shown) gave rise to G418 resistant clones containing functional replicons. This observation was attributed, at least in part to a low cloning efficiency of Huh-7 cells (data not shown), and only a fraction of Huh-7 cells being competent for replication.

10 Several clones were cured of endogenous replicons by treating them for about 2 weeks with IFN- α or with a HCV inhibitory compound. Analysis at the end of the treatment showed that neither viral proteins nor replicon RNA could be detected.

15 Cured cells (10IFN and Cl.60/cu) were transfected with mutated replicons and replication efficiency was determined by counting neomycin resistant clones (10IFN) or by TaqMan (10IFN and Cl.60/cu). As shown in Table 8, for all tested replicons the G418 cfu efficiency in 10IFN cells was at least 5 fold higher than in parental Huh-7 cells. This increase in G418 cfu efficiency was particularly relevant for a subset of mutants (m3, m5, m8, m9, m15).

20

TABLE 8

Construct	Consensus mutations			G418 cfu/10 ³ transfected cells
	NS3	NS5A	EMCV IRES	
pHCVNeo17.wt				12 - 56
pHCVNeo17.GAA				0
pHCVNeo17.m0		S2204R		180 - 1000
pHCVNeo17.m1		N2041T		8 - 13
pHCVNeo17.m2		S2173F		2000
pHCVNeo17.m3		S2197F		1600 - 3000
pHCVNeo17.m4		L2198S		190 - 650
pHCVNeo17.m5		K@2039		1600 - 3000
pHCVNeo17.m6	E1202G; A1347T	S2173F	extra A	600 - 2000
pHCVNeo17.m7		N2041T; S2173F		170 - 800
pHCVNeo17.m8		N2041T; S2197F		> 4000
pHCVNeo17.m9		N2041T; L2198S		1400 - 3000
pHCVNeo17.m10	E1202G	K@2039		>4000
pHCVNeo17.m11		S2197F; A2199T		>4000

TABLE 8

Construct	Consensus mutations			G418 cfu/ 10^5 transfected cells
	NS3	NS5A	EMCV IRES	
pHCVNeo17.m12		N2041T; S2197F; A2199T		>4000
pHCVNeo17.m13		N2041T; S2197F	extra A	>4000
pHCVNeo17.m14		S2197F; A2199T	extra A	>4000
pHCVNeo17.m15		A2199T		> 4000

10IFN cells (2×10^5) were transfected with 10 µg of RNA transcribed from the indicated constructs. Approximately 2×10^5 cells were plated in a 10 cm tissue culture dish and cultured with 1 mg/ml G418 for 20 days.

Colonies surviving selection were stained with crystal violet and counted.

Strikingly, the best mutants yielded a number of G418 resistant clones ranging between 20 and 80% of the cell clones which grew in the absence of G418 (data not shown), thus indicating that the majority of 10IFN cells were competent for replication. This result was confirmed by TaqMan analysis (Table 9), in which the fold increase versus the parental Huh-7 cells was very high. The data indicates that replicons carrying adaptive mutations replicate vigorously in replicon enhanced cells such as 10IFN and Cl.60/cu.

15

TABLE 9

Name	10IFN		Cl.60/cu.	
	RNA equ.	RNA equ.	RNA equ.	RNA equ.
Wt	Day 4 1 x	day 6 1 x	day 4 1 x	Day 6 1 x
hcvneo17.m0	46 x	12 x	78 x	512 x
hcvneo17.m2	2 x	2 x	1 x	2 x
hcvneo17.m3	68 x	49 x	19 x	392 x
hcvneo17.m15	247 x	80 x	268 x	5518 x

Expression of viral proteins was determined in replicon enhanced cells using an ELISA assay designed to detect the NS3 protein in transfected cells plated in 96-wells microtiter plates (Cell-ELISA). As shown in Table 10, 24 hours post-transfection cells transfected with all tested replicons expressed low but detectable levels of the NS3 protein.

TABLE 10

Name	NS3 arbitrary units			
	24 h p.t.		96 h p.t.	
	-	+ IFN	-	+IFN
Construct				
Mock	1	1	1	1
pHCVNeo17.wt	3.7	4.2	1.2	1.3
pHCVNeo17.GAA	3.1	3.2	1.1	1
pHCVNeo17.m0	3.4	3.2	9.9	0.8
pHCVNeo17.m3	5.7	4.6	4.7	1.5
pHCVNeo17.m8	6.6	5.1	15.1	1.4
pHCVNeo17.m10	8	5.6	9.2	1.8
pHCVNeo17.m11	8.4	6.2	13.6	1.8

10IFN cells (2×10^6) were transfected with 10 µg of RNA transcribed from the indicated constructs. Cells were plated in 96 wells microtiter plates as indicated in Example 1.

5 Where indicated (+IFN), IFN- α (100 U/ml) was added to the culture medium 4 hours post-transfection. At the indicated times post-transfection, cells were fixed and analyzed by Cell-ELISA.

The early expression shown in Table 10 is likely due to translation of transfected RNA, since it was comparable in all replicons (including that carrying the GAA mutation) and was not affected by IFN- α . At 4 days post-transfection, NS3 expression persisted or increased in cells transfected with replicons carrying consensus mutations, but could not be detected anymore in cells transfected with wt and GAA replicons. In addition, NS3 expression was almost completely abolished when cells were cultured in the presence of IFN- α .

Taken together, these results indicated that the level of NS3 expression reflected the replication rate. Indeed, NS3 expression level (Table 10) paralleled the RNA level measured by TaqMan (Table 9). The high replication proficiency of 10IFN cells was further confirmed by immunofluorescence experiments which showed that more than 50% of cells transfected with replicons m8 and m11 expressed high level of viral proteins, and that expression was almost completely abolished by 20 IFN- α .

Example 7: Replication of Full Length Constructs

This example illustrates the ability of a full length HCV genome containing adaptive mutations described herein to replicate in a replicon enhanced host cell. The full length sequence of the HCV isolate Con-1 (EMBL-Genbank No. AJ238799) (plasmid pHCVRBFL.wt) and 2 derivatives containing either the N2041T

and S2173 F mutations (plasmid pHCVRBFL.m8) or the S2197F and A2199T mutations (plasmid pHCVRBFL.m11) were used as starting constructs.

RNAs transcribed from the starting constructs were transfected in 10IFN cells and their replication proficiency was assessed by Cell-ELISA,

5 immunofluorescence and TaqMan. Both constructs containing consensus mutations (pHCVRBFL.m8 and pHCVRBFL.m11) replicated, while no sign of replication was observed with the wt. construct (data not shown).

Example 8: Replicons with Reporter Gene

10 This example illustrates an HCV replicon containing adaptive mutations and a reporter gene. A pHCVNeo17.wt derivative where the Neo coding region was substituted with that coding for human placental secretory alkaline phosphatase (pRBSEAP5.wt) and a derivative also containing the N2041T and S2173F mutations (plasmid pRBSEAP5.m8) were constructed. RNAs transcribed

15 from these plasmids were transfected in 10IFN cells and their replication proficiency was assessed by measuring secretion of alkaline phosphatase. Analysis of the kinetics of secretion suggested that only plasmid pRBSEAP5.m8 was competent for replication (data not shown).

20 **Example 9: SEQ. ID. Nos. 1 and 2**

SEQ. ID. NOs. 1 and 2 are provided as follows:

SEQ. ID. NO. 1

MSTNPKPQRKTKRNTNRRPQDVKFPGGGIVGGVYLLPRRGPRLGVRATRK
25 SERSQPRGRQQPIPKARQPEGRAWAQPGYPWPLYGNEGLWAGWLSPRGS
RPSWGPTDPRRRSRNLGVIDTLTCGFADLMGYIPLVGAPLGAARALAHGV
RVLEDGVNYATGNLPGCSFSIFLLALLSCLTIPASA YEVNVSGVYHVTNDCS
NASIVYEADMIMHTPGCVPCVRENNSSRCWVALTPLAARNASVPTTTIRR
HVDLLVGAAALCSAMYVGDLGGSVFLVAQLFTFSPPRHE TVQDCNCISIYPGH
30 VTGHRMAWDMMMNWSPTAALVVSQLLRIPQA VVDMVAGAHWGVLAGLA
YYSMVGNWAKVLIVMLLFAGVDGGTYVTGGTMAKNTLGITSLFSPGSSQKIQ
LVNTNGSWHINRTALNCNDSLNTGFLAALFYVHKFNSSGC PERMASCSPIDAF
AQGWGPITYNESHSSDQRPYCWHYAPRPCGIVPAAQVCGPVYCFTPSPVVVG
TTDRFGVPTYSWGNETDVLLLNNTRPPQGNWFGCTWMNSTGFTKTCGGPP

CNIGGIGNKTLTCPDCFRKHPEATYTKCGSGPWLTPLRCLVHYPYRLWHYPC
 TVNFTIFKVRMYVGGVEHRLEAACNWTRGERCNLEDRDRSELSPLLLSTTEW
 QVLPCSFTILPALSTGLIHLHQNVVDVQYLYGIGSAVVSFAIKWEYVLLLFL
 ADARVCACLWMMLIAQAEAALENLVVLAASVAGAHGILSFLVFFCAA
 5 IKGRLVPGAAAYALYGVWPLLLLLALPPRAYAMDREMAASC GGAVFVGLILL
 TLSPHYKLFLARLIWWLQYFITRAE AHLQVWIPPLNVRGGRD A VILLCAIHP
 LIFTITKILLAILGPLMVLQAGITKVPYFVRAHGLIRACMLVRKVAGGHYQ
 ALMKLAALTGTYVYDHLTPLRDWAHAGLRDLAVAVEPVVFSDMETKVITW
 GADTAACGDIILGLPVSARRGREIHLGPADSLEGQGWRLAPITAYSQQTRGL
 10 LGCIITSLTGRDRNQVEGEVQVVSTATQSFLATCVNGVCWTYHGAGSKTLA
 GPKGPITQMYTNVDQDLVGWQAPPGRSLTPCTCGSSDLYLVTRHADVIPVR
 RRGDSRGSLSPRPVSYLKGS SGGPLLCP SGHAVGIFRAAVCTR GVAKA VDFV
 PVESMETTMRSPVFTDNSSPPAVPQTQVAHLHAPTGSGKSTKVPAA YAAQG
 YKVLVLPNSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGAPITYSTYGKFLA
 15 DGGCSGGAYDIIICDECHSTDSTTILGITVLDQAETAGARLVVLATA
 TPPGSVTVPHPNIEEVALSSTGEIPFYGKAIPIETIKGGRHLIFCHSKKKCDE
 LAAKLSGLGLNAVAYRG LDVSVIPTSGDVIVVATDALMTGFTGDFDSVID
 CNTCVTQTVDFSLDPFTIETTTVPQDAVSRSQRGRGRTGRGRMGIYRFV
 TPGERPSGMFDSSVLCCEYDAGCAWYE LTPAETSVRLRAYLNTPLPVC
 QDHLEFWESVFTGLTHID
 20 AHFLSQTKQAGDNFPYLVAYQATVCARAQAPP SWDQMWKCLIRLKPTLHG
 PTPLLYRLGA VQNEVTTTHPITKYIMACMSADLEVVTSTWVLVGGVLA
 ALAA YCLTTGSVVIVGRIILSGKPAIPDREVLYREFDEMEECASHLPYIE
 QGMQLAEQFKQKAIGLLQTATKQAEAAAPV
 VESKWRTLEAFWAKHMWNFISGIQYLAGSTLPGNPAIASLMAFTASITSPL
 TTQHTLLFNILGGWVAAQLAPPSAASA
 FVGAG
 25 IAGAAVGSIGLKVLDILAGYGAGVAGALVAFKVMGEMPS
 TEDLVNLLPA ILSPGALVVGVVCAAILRRHVGPGE
 GA VQWMNRLIAFASRGNHVSP
 THYVPE SDAAARVTQILSSLTTQLLKRLHQWINEDC
 STPCSGSWL RDVWDWICTV
 LTD FKTWLQSKLLPRLPGVPFFSCQRGYKG
 VWRGDGIMQTTCP
 CGAQITGHVKNG SMRIVG
 PRTCSNTWHGTFPINAYTTGP
 CTPSPAPNYS
 RALWRVAA
 EYVEV
 30 RVGDFHYVTGM
 TTDNVKCPCQVPAPEFFTE
 EVDGVR
 LHYAPACKPLLREEV
 TFLVGLNQYLVGSQL
 PC EPEPDVA
 VLTSMLDPSHITAET
 AKRRLARGSPP
 SLASSASQL
 SAPSLKATCT
 TRHDSP
 ADLIEANLL
 WRQEMGGN
 ITRVESEN
 KV
 ILDSFEPL
 QAEE
 DEREVS
 VP
 AEILRRSRKF
 PRAMPI
 WARPDYN
 PPL
 LEWKDPD
 YVPPV
 VHGCPL
 PPAKAPP
 IPPR
 RKRT
 VVL
 SE
 TV
 SSAL
 AELAT
 K
 TFG
 S
 ESSA
 35 VDSGTATASPD
 QPSDDGDAGSD
 VESYSSM
 PPLEGE
 PGDP
 DLSDGS
 WSTV
 SEE

ASEDVVCCSMS YTWTGALITPCAAEETKLPIINALSNSLLRHNLVYATTSRSA
 SLRQKKVTFDRLQVLDDHYRDVLKEMKAKASTVKAKILLSVEEACKLTPPHS
 ARSKFGYGAKDVRNLSKA VNHIRSVWKLLEDTEPIDTTIMAKNEVFCVQ
 PEKGGRKPARLIVFPDLGVRVCEKMALYDVVSTLPQAVMGSSYGFQYSPGQR
 5 VEFLVNAWKAKKCPMGAYDTRCFDSTVTENDIRVEESIYQCCDLAPEARQA
 IRSLTERLYIGGPLTNSKGQNCGYRRCRASGVLTSCGNTLCYLAAAACRA
 AKLQDCTMLVCGDDLVVICESAGTQEDEASLRATEAMTRYSAPPGDPPKPE
 YDLELITSCSSNVSVAHASGKRVYYLTDPTPLARAABETARHTPVNSWL
 GNIMYAPTLWARMILMTHFFSILLAQEQUEKALDCQIYGACYSIEPLDLPQIQ
 10 RLHGLSAFSLHSYSPGEINRVASCLRKLGVPLRVWRHRARSVRARLLSQGGR
 AATCGKYLNFNWAVRTKLKLTPIPAASQLDLSSWFVAGYSGGDIYHSLSRARP
 RWFMWCLLLLSVVGVIYLLPNR

SEQ. ID. NO. 2:

15 gccagcccccgattggggcgacactccaccatagatcactccctgtgaggaactactgtttcacgcagaaagcgtcta
 gcatggcgtagttagttagtgcgtgcagcccccaggcccccccccggagagccatagtggttgtcggaaccgggt
 agtacaccggaaatgccaggacgaccgggtcccttggatcaaccggetcaatgcctggagattggcgccggccggcg
 agactgctagccgagtagtgtgggtcgcaaaggccctgtgtactgcctgatagggcttgcgagtgcccccggaggt
 ctcgttagaccgtgcaccatgagcacgaatctaaacctcaaagaaaaaccaacgtaacaccaaccggcccccacagga
 20 cgtcaagtccccggcggtgtcagatgcgtggggatttacctgtggccgcagggcccccagggtgggtgtcgccgc
 gacttaggaagacttccgagcggtcgcaacctcgatggaaaggcgacaacatccccaaaggctcgccagcccgaggtagg
 gcctgggtcgccgtacggccgggtacccctggcccccataatggcaatggggcttgggtggcaggatggctctgtcaccctg
 ggctctcgccctagttggggccacggaccccgccgttaggtcgccatgtggtaaggtcatcgataccctacgtgc
 ggcttcgccgatctcatgggtacattccgctcgccgcggccctagggggcgctgcagggccctggcgcatggcgt
 25 ccgggttctggaggacggcgtgaactatgcacacgggaatgcgggtgtctctttctatcttcctttggcttgctgtcct
 gtttgaccatcccgatccgcattatgaagtgcgcacgtatccggagtgtaccatgtcacaacgactgtccaaacgc
 catgtgtatggggcggcagccgacatgtcatgcatacccccgggtgcgtgcggccatgtcggatgttgc
 tgggtagcgctacccacgcgtcgccggccaggaacgcgttagcgccccactacgacgatcgacgcacatgtc
 gttggggcggctgtctgtccgtatgtacgtggagatctgtggatctgtcggatctgttgc
 30 ccctcgccggcagagacagtacaggactgcacattgtcaatataatccggccacgtgcacaggatggcttgg
 tatgtatgtactggtcacccatcagcagccctaggttatgcgtactccggatcccacaaggctgtgtggatgttgg
 cggggccatggggatgtccatgcggccgttgcctactatccatggggactggctaaagggttgtatgtatgt
 ctcttgcggcgttgcggggacatgtgacagggggacatggccaaaaacaccctgggattacgtccctt
 cacccgggtatccagaaaatccagctgttaaacaccaacggcagctggcacatcaacaggactgc
 35 gactccctcaacactgggtccctgtcgccgttgtctacgtgcacaactcatctggatgc
 cccagagcgcatggccag

gactcaatgcgttagcatattaccggggccitgtatccgtcataccaactagcgagacgtattgtcgttagcaacggac
 gctctaattacgccccccgttaccggcgatttcgactcgttagtgcataatcatgttcacccagacagtcgacttcagcc
 ggacccgaccitcaccattgagacgacgaccgtgccacaagacgcgggtcacgcgtcagcggcgaggcaggactgg
 agggcaggatggcatttacagggttgactccaggagaacggccctggcatgtcgattctcggtctgtcgagtt
 5 gctatgacgcgggtgtgttgcgttgcgttaggcggacttcgttaggtgcggcttacctaaccacaccag
 gggttgcggctgtccaggaccatctggagtttgcggagagcgttacaggccatcccacatagacgcccatttctgtcc
 cagactaaggcaggcaggagacaacttcccttacccgttagcataccaggctacgggtgtcgccaggcgttccacc
 tccatcggtggaccaaatgttgcgaagtgtctcatacggctaaagcctacgcgtcacggccaacgccccgtgtataggctg
 ggagccgttcaaaccaggacttaccacacccataaccaatacatatggcatgtcggtgtaccgtggaggt
 10 gtcacgagcacctgggtgttgcgttaggcggacttcgttagcagcttgcgttgcgttgcgttgcgttgcatt
 gtggcaggatcatctgtccggaaagccggccatcatcccgacaggaaatcccttaccggagttcgtatggaa
 gagtgtgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 caaacagccaccaagcaagcggaggctgtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 agcatatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 15 tggcattcacagccttatcaccagccgttaccacccaaacataccctctgttaacatccctggggatgggtggccgc
 ccaacttgcctcccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 aagggtgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 atgcccctccaccggaggacctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gatacgtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 20 accacgttcccccacgcactatgtccctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cagctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gattggatatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 tcatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cggacatgtgaaaaacgggttccatgaggatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 25 gctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ggcccccgaatttcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 aggttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 cacttccatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 30 ggccgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 ctcatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 tttggatatttcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 gaaatttcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 acgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt
 35 gttgtccatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgt

Other embodiments are within the following claims. While several
30 embodiments have been shown and described, various modifications may be made
without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

1. A nucleic acid molecule comprising a region selected from the group consisting of:
 - 5 a) an altered HCV NS3 encoding region coding for one or more NS3 mutations, wherein at least one of said NS3 mutations, identified by reference to the amino acid sequence numbering of SEQ. ID. NO. 1, is selected from the group consisting of:
amino acid 1095 being Ala,
10 amino acid 1202 being Gly, and
amino acid 1347 being Thr;
b) an altered HCV NS5A encoding region coding for one or more NS5A mutations, wherein at least one of said NS5A mutations, identified by reference to the amino acid sequence numbering of SEQ. ID. NO. 1, is selected from the group 15 consisting of:
amino acid 2041 being Thr,
a Lys insertion between residue 2039 and 2040.
amino acid 2173 being Phe,
amino acid 2197 being Phe,
20 amino acid 2198 being Ser,
amino acid 2199 being Thr, and
amino acid 2204 being Arg; and
c) an altered encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) region containing one or more EMCV IRES mutations,
25 wherein at least one of said EMCV IRES mutations, identified by reference to the nucleotide number of SEQ. ID. NO. 3, is an insertion at nucleotide 1736 of adenine.
2. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises said NS5A encoding region.
30
3. The nucleic acid molecule of claim 2, wherein at least two of said NS5A adaptive mutations are present.

4. The nucleic acid molecule of claim 2, further comprising a region encoding for a HCV NS3 region, wherein said NS3 region may be the same or different than said altered NS3 region.

5 5. The nucleic acid molecule of claim 4, wherein said nucleic acid molecule is an HCV replicon comprising a HCV 5' UTR-PC region, said NS3 encoding region, an HCV NS4A encoding region, an HCV NS4B encoding region, said NS5A encoding region, an HCV NS5B encoding region, and a HCV 3' UTR.

10 6. The nucleic acid molecule of claim 5, wherein said HCV replicon further comprises a sequence encoding for a reporter protein.

7. The nucleic acid molecule of claim 5, wherein said HCV replicon further comprises a sequence encoding for a selection protein.

15 8. The nucleic acid molecule of claim 5, wherein said HCV replicon further comprises a HCV core encoding region, a HCV E1 encoding region, a HCV E2 encoding region, a HCV p7 encoding region, and a HCV NS2 encoding region.

20 9. A nucleic acid molecule comprising a region selected from the group consisting of:

a) an altered HCV NS3 encoding region containing one or more NS3 mutations, wherein at least one of said NS3 mutations, identified by reference to the nucleotide numbering of SEQ. ID. NO. 2, is selected from the group consisting of: nucleotide 3625 being cytosine, nucleotide 3946 being guanine, nucleotide 4380 being adenine,

b) an altered HCV NS5A encoding region containing one or more NS5A mutations, wherein at least one of said NS5A mutations, identified by reference to the nucleotide numbering of SEQ. ID. NO. 2, is selected from the group consisting of: an insertion of 3 adenine residues between nucleotide 6458 and 6459, nucleotide 6463 being cytosine, nucleotide 6859 being thymine or uracil,

nucleotide 6931 being thymine or uracil,

nucleotide 6934 being cytosine,

nucleotide 6936 being adenine, and

nucleotide 6953 being adenine or guanine; and

5 c) an altered encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) region containing one or more EMCV IRES mutations, wherein at least one of said EMCV IRES mutations, identified by reference to the nucleotide number of SEQ. ID. NO. 3, is an insertion at nucleotide 1736 of adenine.

10 10. The nucleic acid molecule of claim 9, wherein said molecule comprises said altered NS5A encoding region, and the nucleotide sequence of said altered NS5A region is provided for by bases 6258-7598 of SEQ. ID. NO. 2, or the RNA version thereof, modified with one or more of said NS5A modifications selected from the group consisting of:

15 an insertion of 3 adenine residues between nucleotide 6458 and 6459,

nucleotide 6463 being cytosine,

nucleotide 6859 being thymine or uracil,

nucleotide 6931 being thymine or uracil,

nucleotide 6934 being cytosine,

20 nucleotide 6936 being adenine, and

nucleotide 6953 being adenine or guanine.

11. The nucleic acid molecule of claim 10, wherein said molecule is an HCV replicon comprising a HCV 5' UTR-PC region, a modified HCV NS3-NS5B region, and a HCV 3' UTR, wherein said modified NS3-NS5B region comprises said altered NS5A region.

12. The nucleic acid molecule of claim 11, wherein said 5' UTR-PC region is the RNA version of bases 1-377 of SEQ. ID. NO. 2 and said 3' UTR is the RNA version of bases 9374-9605 of SEQ. ID. NO. 2.

13. The nucleic acid molecule of claim 10, wherein said molecule is an HCV replicon comprising a HCV 5' UTR-PC region, a modified HCV NS3-NS5B region, and a HCV 3' UTR, wherein
35 said 5' UTR-PC region is the RNA version of bases 1-377 of SEQ. ID. NO. 2;

said 3' UTR is the RNA version of bases 9374-9605 of SEQ. ID. NO. 2; and
said modified NS3-NS5B region consists of the RNA version of bases 3420-9371 of
SEQ. ID. NO. 2 modified with one or more modifications selected from the group
consisting of:

- 5 nucleotide 4380 being adenine,
 nucleotide 3625 being cytosine,
 nucleotide 3946 being guanine,
 an insertion of 3 adenine residues between nucleotide 6458 and nucleotide 6459,
 nucleotide 6463 being cytosine,
- 10 nucleotide 6859 being uracil,
 nucleotide 6931 being uracil,
 nucleotide 6934 being cytosine,
 nucleotide 6936 being adenine, and
 nucleotide 6953 being adenine or guanine.

15

14. The nucleic acid molecule of claim 13, wherein said replicon is
a genomic replicon that further comprises the RNA version of nucleotides 378-3419
of SEQ. ID. NO. 2.

- 20 15. A nucleic acid molecule comprising the nucleic acid base
sequence of bases 1-7989 of SEQ. ID. NO. 3, or the RNA version thereof, consisting
of one or more different modifications selected from the group consisting of:
 - a) nucleotides 5335-5337 modified to code for arginine;
 - b) nucleotides 5242-5244 modified to code for phenylalanine;
 - c) nucleotides 5314-5316 modified to code for phenylalanine;
 - d) nucleotides 5317-5319 modified to code for serine;
 - e) nucleotides coding for lysine inserted after nucleotide 4843;
 - f) nucleotides 2329-2331 modified to code for glycine, nucleotides 2764-2766
modified to code for threonine, nucleotides 5242-5244 modified to code for
phenylalanine, and an extra adenosine inserted after nucleotide 1736;
 - g) nucleotides 4846-4848 modified to code for threonine, and nucleotides 5242-5244
modified to code for phenylalanine;
 - h) nucleotides 4846-4848 modified to code for threonine, and nucleotides 5314-5316
modified to code for phenylalanine;

- i) nucleotides 4846-4848 modified to code for threonine, and nucleotides 5317-5319 modified to code for serine;
- j) nucleotides 2329-2331 modified to code for glycine, and nucleotides coding for lysine inserted after nucleotides 4843;
- 5 k) nucleotides 5314-5316 modified to code for phenylalanine and nucleotides 5320-5322 modified to code for threonine;
- l) nucleotides 4846-4848 modified to code for threonine, nucleotides 5314-5316 modified to code for phenylalanine, and nucleotides 5320-5322 modified to code for threonine;
- 10 m) nucleotides 4846-4848 modified to code for threonine, nucleotides 5314-5316 modified to code for phenylalanine, and an extra adenosine inserted after nucleotide 1736; and
- n) nucleotides 5314-5316 modified to code for phenylalanine, nucleotides 5320-5322 modified to code for threonine, and an extra adenosine inserted after nucleotide 1736;
- 15 and
- o) nucleotides 5320-5322 modified to code for threonine.

16. The nucleic acid of claim 15, wherein said one or more different modifications is selected from the group consisting of:

- 20 a) C5337A;
- b) C5243T or U;
- c) C5315T or U;
- d) T or U5318C;
- e) AAA inserted after 4843;
- f) A2330G, G2764A, C5243T or U, and adenosine inserted 1736;
- 25 g) A4847C and C5243T or U;
- h) A4847C and C5315T or U;
- i) A4847C and T or U5318C;
- j) A2330G and AAA inserted after 4843;
- 30 k) C5315T or U and G5320A;
- l) A4847C, C5315T or U, and G5320A;
- m) A4847C, C5315T or U, and adenosine inserted 1736;
- n) C5315T or U, G5320A and adenosine inserted 1736; and
- o) G5320A.

17. The nucleic acid of claim 16, wherein said nucleic acid is RNA and comprises said nucleic acid base sequence.

5 18. The nucleic acid of claim 17, wherein said nucleic acid is RNA and consists of said nucleic acid base sequence.

10 19. An expression vector comprising a nucleotide sequence coding for the nucleic acid molecule of any one of claims 1-18, wherein said nucleotide sequence is transcriptionally coupled to an exogenous promoter.

20. A recombinant cell human hepatoma cell, wherein said cell comprises the nucleic acid of any one of claims 5-8 and 11-18.

15 21. The recombinant cell of claim 20, wherein said hepatoma cell is an Huh-7 cell.

20 22. The recombinant cell of claim 20, wherein said cell is derived from a Huh-7 cell.

23. A recombinant cell made by a process comprising the step of introducing into a human hepatoma cell the nucleic acid of any one of claims 5-8 and 11-18.

25 24. A method of making an HCV replicon enhanced cell comprising the steps of:

a) introducing and maintaining a HCV replicon in a cell; and
b) curing said cell of said HCV replicon to produce said replicon enhanced cell.

30 25. The method of claim 24, wherein said cell is a human hepatoma cell.

35 26. The method of claim 24, wherein said cell is a Huh-7 cell or is derived from a Huh-7 cell.

27. The method of claim 26, further comprising the step of confirming the ability of said replicon enhanced cell to maintain an HCV replicon.

5 28 A method of making an HCV replicon enhanced cell containing a functional HCV replicon comprising the steps of:

- a) introducing and maintaining a first HCV replicon in a cell;
- b) curing said cell of said first replicon to produce a cured cell;

and

10 c) introducing and maintaining a second HCV replicon into said cured cell, wherein said second HCV replicon may be the same or different than said first HCV replicon.

15 29 The method of claim 28, wherein said cell is a human hepatoma cell.

30. The method of claim 29, wherein said human hepatoma cell is a Huh-7 cell.

20 31. The method of claim 30, wherein said human hepatoma cell is derived from a Huh-7 cell.

32. An HCV replicon enhanced cell made by the method of any one of claims 24-27.

25

33. An HCV replicon enhanced cell containing a HCV replicon made by the method of any one of claims 28-31.

30 34. A method of measuring the ability of a compound to affect HCV activity comprising the steps of:

- a) providing said compound to the HCV replicon enhanced cell of claim 33; and
- b) measuring the ability of said compound to effect one or more replicon activities as a measure of the effect on HCV activity.

35

35. The method of claim 34, wherein said compound is a ribozyme.

36. The method of claim 34, wherein said compound is an antisense nucleic acid.

5

37. The method of claim 34, wherein compound is an organic compound.

10 38. The method of claim 34, wherein said step (b) measures HCV protein production.

39. The method of claim 33, wherein said step (b) measures production of RNA transcripts.

1 GCCAGCCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA
51 GGAACTAUTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTACTATGAG
101 TGTCGTGAG CCTCCAGGAC CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG
151 CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTT
201 GATCAACCCG CTCAATGCCT GGAGATTTGG CGGTGCCCGG GCGAGACTGC
251 TAGCCGAGTA GTGTTGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG
301 GTGCTTGCAGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACC
351 AATCCTAAAC CTCAAAGAAA AACCAAAGGG CGCGCCATGA TTGAACAAGA
401 TGGATTGCAC GCAGGTTCTC CGGCCGCTTG GGTGGAGAGG CTATTCGGCT
451 ATGACTGGGC ACAACAGACA ATCGGCTGCT CTGATGCCGC CGTGTCCGG
501 CTGTCAGCGC AGGGCGCCC GGTTCTTTT GTCAAGACCG ACCTGTCCGG
551 TGGCCCTGAAT GAACTGCCAGG ACGAGGCAGC GCGGCTATCG TGGCTGGCCA
601 CGACGGGCGT TCCTTGCAGA GCTGTGCTCG ACGTTGTCAC TGAAGCGGG
651 AGGGACTGGC TGCTATTGGG CGAAGTGCCG GGGCAGGATC TCCTGTCATC
701 TCACCTTGCT CCTGCCGAGA AAGTATCCAT CATGGCTGAT GCAATGCCGC
751 GGCTGCATAC GCTTGATCCG GCTACCTGCC CATTGACCA CCAAGCGAAA
801 CATCGCATCG AGCGAGCACG TACTCGGATG GAAGCCGGTC TTGTCGATCA
851 GGATGATCTG GACGAAGAGC ATCAGGGGCT CGCGCCAGCC GAACTGTTCG
901 CCAGGCTCAA GGCGCGCATG CCCGACGGCG AGGATCTCGT CGTGACCCAT
951 GGCGATGCCT GCTTGCCGAA TATCATGGTG GAAAATGGCC GCTTTCTGG
1001 ATTCAATCGAC TGTGGCCGGC TGGGTGTGGC GGACCGCTAT CAGGACATAG
1051 CGTTGGCTAC CCGTGATATT GCTGAAGAGC TTGGCGCGA ATGGGCTGAC
1101 CGCTTCCCTCG TGCTTTACGG TATCGCCGCT CCCGATTCGC AGCGCATCGC
1151 CTTCTATCGC CTTCTTGACG AGTTCTTCTG AGTTAAACA GACCACAAACG
1201 GTTTCCCTCT AGCGGGATCA ATTCCGCCCC TCTCCCTCCC CCCCCCTAA
1251 CGTTACTGGC CGAAGCCGCT TGGAAATAAGG CCGGTGTGCG TTTGTCTATA
1301 TGTATTTC CACCATATTG CCGTCTTTTG GCAATGTGAG GGCCCGGAAA
1351 CCTGGCCCTG TCTTCTTGAC GAGCATTCCCT AGGGGTCTTT CCCCTCTCGC
1401 CAAAGGAATG CAAGGTCTGT TGAATGTCGT GAAGGAAGCA GTTCCTCTGG
1451 AAGCTTCTTG AAGACAAACA ACGTCTGTAG CGACCCCTTG CAGGCAGCGG
1501 AACCCCCCAC CTGGCGACAG GTGCCTCTGC GGCCAAAAGC CACGTGTATA

FIG. 1A

1551 AGATACACCT GCAAAGGCGG CACAACCCA GTGCCACGTT GTGAGTTGGA
1601 TAGTTGTGGA AAGAGTCAAA TGGCTCTCCT CAAGCGTATT CAACAAGGGG
1651 CTGAAGGATG CCCAGAAGGT ACCCCATTGT ATGGGATCTG ATCTGGGCC
1701 TCGGTGCACA TGCTTTACAT GTGTTTAGTC GAGGTAAAA AACGTCTAGG
1751 CCCCCCGAAC CACGGGGACG TGGTTTCCT TTGAAAACA CGATAATACC
1801 ATGGCGCTA TTACGGCTA CTCCCAACAG AC CGAGGCC TACTTGGCTG
1851 CATCATCACT AGCCTCACAG GCCGGGACAG GAACCAGGTC GAGGGGGAGG
1901 TCCAAGTGGT CTCCACCGCA ACACAATCTT TCCTGGCGAC CTGCGTCAAT
1951 GGCGTGTGTT GGACTGTCTA TCATGGTGCC GGCTCAAAGA CCCTTGCCGG
2001 CCCAAAGGGC CCAATCACCC AAATGTACAC CAATGTGGAC CAGGACCTCG
2051 TCGGCTGGCA AGCGCCCCC GGGGCGCGTT CCTTGACACC ATGCACCTGC
2101 GGCAGCTCGG ACCTTTACTT GGTCACGAGG CATGCCGATG TCATTCCGGT
2151 GCGCCGGCGG GGCGACAGCA GGGGGAGCCT ACTCTCCCC AGGCCC GTCT
2201 CCTACTTGAA GGGCTCTTCG GGCGGTCCAC TGCTCTGCC CTCGGGGCAC
2251 GCTGTGGCA TCTTCGGGC TGCCGTGTGC ACCCGAGGGG TTGCGAAGGC
2301 GGTGGACTTT GTACCCGTG AGTCTATGGA AACCACTATG CGGTCCCCGG
2351 TCTTCACGGA CAACTCGTCC CCTCCGGCCG TACCGCAGAC ATTCCAGGTG
2401 GCCCATCTAC ACGCCCCTAC TGGTAGCGGC AAGAGCACTA AGGTGCCGGC
2451 TGCGTATGCA GCCCAAGGGT ATAAGGTGCT TGTCTGAAC CCGTCCGTG
2501 CCGCCACCC AGGTTTCGGG GCGTATATGT CTAAGGCACA TGGTATCGAC
2551 CCTAACATCA GAACCGGGGT AAGGACCATC ACCACGGGTG CCCCCATCAC
2601 GTACTCCACC TATGGCAAGT TTCTTGCCGA CGGTGGTTGC TCTGGGGCG
2651 CCTATGACAT CATAATATGT GATGAGTGCC ACTCAACTGA CTCGACCACT
2701 ATCCTGGCA TCGGCACAGT CCTGGACCAA GCGGAGACGG CTGGAGCGCG
2751 ACTCGTCGTG CTCGCCACCG CTACGCCCTCC GGGATCGGTG ACCGTGCCAC
2801 ATCCAAACAT CGAGGAGGTG GCTCTGTCCA GCACTGGAGA AATCCCCTTT
2851 TATGGCAAAG CCATCCCCAT CGAGACCATC AAGGGGGGG A GCACCTCAT
2901 TTTCTGCCAT TCCAAGAAGA AATGTGATGA GCTCGCCGCG AAGCTGTCCG
2951 GCCTCGGACT CAATGCTGTA GCATATTACC GGGGCCTTGA TGTATCCGTC
3001 ATACCAACTA GCGGAGACGT CATTGTCGTA GCAACGGACG CTCTAATGAC
3051 GGGCTTTACC GGCGATTTCG ACTCAGTGAT CGACTGCAAT ACATGTGTCA

FIG. 1B

3101 CCCAGACAGT CGACTTCAGC CTGGACCCGA CCTTCACCAT TGAGACGACG
3151 ACCGTGCCAC AAGACGCGGT GTCACGCTCG CAGCGGCAG GCAGGACTGG
3201 TAGGGGCAGG ATGGCATT ACAGGTTTGT GACTCCAGGA GAACGGCCCT
3251 CGGGCATGTT CGATTCCTCG GTTCTGTGCG AGTGCTATGA CGCGGGCTGT
3301 GCTTGGTACG AGCTCACGCC CGCCGAGACC TCAGTTAGGT TGCAGGGCTTA
3351 CCTAAACACA CCAGGGTTGC CCGTCTGCCA GGACCATCTG GAGTTCTGGG
3401 AGAGCGTCTT TACAGGCCTC ACCCACATAG ACGCCCATT TTTGTCCCAG
3451 ACTAACAGG CAGGAGACAA CTTCCCCTAC CTGGTAGCAT ACCAGGCTAC
3501 GGTGTGCCCG AGGGCTCAGG CTCCACCTCC ATCGTGGGAC CAAATGTGGA
3551 AGTGTCTCAT ACGGCTAAAG CCTACGCTGC ACGGGCCAAC GCCCTGCTG
3601 TATAGGCTGG GAGCGTTCA AAACGAGGTT ACTACCACAC ACCCCATAAC
3651 CAAATACATC ATGGCATGCA TGTGGGCTGA CCTGGAGGTC GTCACGAGCA
3701 CCTGGGTGCT GGTAGGCGGA GTCCTAGCAG CTCTGCCGC GTATTGCCCTG
3751 ACAACAGGCA CGTGGTCAT TGTGGGCAGG ATCATTTGT CCGGAAAGCC
3801 GGCCATCATT CCCGACAGGG AAGTCCTTA CCGGGAGTTC GATGAGATGG
3851 AAGAGTGCAG CTCACACCTC CCTTACATCG AACAGGAAAT GCAGCTCGCC
3901 GAACAATTCA AACAGAAGGC AATCGGGTTG CTGCAAACAG CCACCAAGCA
3951 AGCGGAGGCT GCTGCTCCCG TGGTGGAAATC CAAGTGGCGG ACCCTCGAAG
4001 CCTTCTGGGC GAACCATATG TGGAAATTCA TCAGCGGGAT ACAATATTAA
4051 GCAGGCTTGT CCACTCTGCC TGGCAACCCC GCGATAGCAT CACTGATGGC
4101 ATTACACAGCC TCTATCACCA GCCCCCTCAC CACCCAAACAT ACCCTCCTGT
4151 TTAACATCCT GGGGGGATGG GTGGCCGCC AACTTGCTCC TCCCAGCGCT
4201 GCTTCTGCCT TCGTAGGCC CGGCATCGCT GGAGGGCTG TTGGCAGGAT
4251 AGGCCTTGGG AAGGTGTTG TGGATATTAA GGCAGGTTAT GGAGCAGGGG
4301 TGGCAGGCC GCTCGTGGCC TTTAAGGTCA TGAGCGCGA GATGCCCTCC
4351 ACCGAGGACC TGGTTAACCT ACTCCCTGCT ATCCTCTCCC CTGGCGCCCT
4401 AGTCGTCAGG GTCGTGTGCG CAGCGATACT GCGTCGGCAC GTGGGCCCCAG
4451 GGGAGGGGGC TGTGCAGTGG ATGAACCGGC TGATAGCGTT CGCTTCGCGG
4501 GGTAACCACG TCTCCCCAC GCACTATGTG CCTGAGAGCG ACGCTGCAGC
4551 ACGTGTCACT CAGATCCTCT CTAGTCTTAC CATCACTCAG CTGCTGAAGA
4601 GGCTTCACCA GTGGATCAAC GAGGACTGCT CCACGCCATG CTCCGGCTCG

FIG. 1C

4651 TGGCTAAGAG ATGTTGGGA TTGGATATGC ACGGTGTTGA CTGATTTCAA
4701 GACCTGGCTC CAGTCCAAGC TCCTGCCCGC ATTGCCGGGA GTCCCCCTCT
4751 TCTCATGTCA ACGTGGGTAC AAGGGAGTCT GGCGGGCGA CGGCATCATG
4801 CAAACCACCT GCCCATGTGG AGCACAGATC ACCGGACATG TGAAAAACGG
4851 TTCCATGAGG ATCGTGGGC CTAGGACCTG TAGTAACACG TGGCATGGAA
4901 CATTCCCCAT TAACCGTAC ACCACGGGCC CCTGCACGCC CTCCCCGGCG
4951 CCAAATTATT CTAGGGCGCT GTGGCGGGTG GCTGCTGAGG AGTACGTGGA
5001 GGTTACGGGG GTGGGGGATT TCCACTACGT GACGGGCATG ACCACTGACA
5051 ACGTAAAGTG CCCGTGTCAG GTTCCGGCCC CCGAATTCTT CACAGAAGTG
5101 GATGGGGTGC GGTTGCACAG GTACGCTCCA GCGTGAAAC CCCTCCTACG
5151 GGAGGAGGTC ACATTCTGG TCGGGCTCAA TCAATACTG GTTGGGTAC
5201 AGCTCCCATG CGAGCCCCGAA CCGGACGTAG CAGTGTACAC TTCCATGCTC
5251 ACCGACCCCT CCCACATTAC GGCGGAGACG GCTAACGTA GGCTGGCCAG
5301 GGGATCTCCC CCCTCCTTGG CCAGCTCATC AGCTAGCCAG CTGTCTGCGC
5351 CTTCCCTGAA GGCAACATGC ACTACCCGTC ATGACTCCCC GGACGCTGAC
5401 CTCATCGAGG CCAACCTCCT GTGGCGGCAG GAGATGGCG GGAACATCAC
5451 CCGCGTGGAG TCAGAAAATA AGGTAGTAAT TTTGGACTCT TTGAGGCCGC
5501 TCCAAGCGGA GGAGGATGAG AGGGAAGTAT CCGTTCCGGC GGAGATCCTG
5551 CGGAGGTCCA GGAAATTCCC TCGAGCGATG CCCATATGGG CACGCCCGGA
5601 TTACAACCCCT CCACTGTTAG AGTCCTGGAA GGACCCGGAC TACGTCCCTC
5651 CAGTGGTACA CGGGTGTCCA TTGCCGCCTG CCAAGGCCCC TCCGATACCA
5701 CCTCCACGGA GGAAGACGGAC GGTTGTCTG TCAGAACTTA CCGTGTCTTC
5751 TGCCTTGGCG GAGCTGCCA CAAAGACCTT CGGCAGCTCC GAATCGTGG
5801 CCGTCGACAG CGGCACGGCA ACGGCCTCTC CTGACCAGCC CTCCGACGAC
5851 GGCAGCGGG GATCCGACGT TGAGTCGTAC TCCCTCATGC CCCCCCTTGA
5901 GGGGGAGCCG GGGGATCCC ATCTCAGCGA CGGGTCTTGG TCTACCGTAA
5951 GCGAGGAGGC TAGTGAGGAC GTCGTCTGCT GCTCGATGTC CTACACATGG
6001 ACAGGGGCC TGATCACGCC ATGCGCTGCG GAGGAAACCA AGCTGCCCAT
6051 CAATGCACTG AGCAACTCTT TGCTCCGTCA CCACAACTTG GTCTATGCTA
6101 CAACATCTCG CAGCGCAAGC CTGCGGCAGA AGAAGGTCAC CTTTGACAGA
6151 CTGCAGGTCC TGGACGACCA CTACCGGGAC GTGCTCAAGG AGATGAAGGC

FIG. 1D

6201 GAAGGCGTCC ACAGTTAAGG CTAAACTTCT ATCCGTGGAG GAAGCCTGTA
6251 AGCTGACGCC CCCACATTG GCCAGATCTA AATTTGGCTA TGGGGCAAAG
6301 GACGTCCGGA ACCTATCCAG CAAGGCCGTT AACACATCC GCTCCGTGTG
6351 GAAGGACTTG CTGGAAGACA CTGAGACACC AATTGACACC ACCATCATGG
6401 CAAAAAAATGA GGTTTCTGC GTCCAACCAG AGAAGGGGGG CCGCAAGCCA
6451 GCTCGCCTTA TCGTATTCCC AGATTTGGGG GTTCGTGTGT GCGAGAAAAT
6501 GGCCCTTAC GATGTGGTCT CCACCCCTCCC TCAGGCCGTG ATGGGCTCTT
6551 CATA CGGATT CCAATACTCT CCTGGACAGC GGGTCGAGTT CCTGGTGAAT
6601 GCCTGGAAAG CGAAGAAATG CCCTATGGGC TTCGCATATG ACACCCGCTG
6651 TTTTGACTCA ACGGTCACTG AGAATGACAT CCGTGTGAG GAGTCAATCT
6701 ACCAATGTTG TGACTTGGCC CCCGAAGCCA GACAGGCCAT AAGGTCGCTC
6751 ACAGAGCGGC TTTACATCGG GGGCCCCCTG ACTAATTCTA AAGGGCAGAA
6801 CTGCGGCTAT CGCCGGTGCC GCGCGAGCGG TGTACTGACG ACCAGCTGCC
6851 GTAATACCT CACATGTTAC TTGAAGGCCG CTGCGGCCTG TCGAGCTGCC
6901 AAGCTCCAGG ACTGCACGAT GCTCGTATGC GGAGACGACC TTGTCGTTAT
6951 CTGTGAAAGC GCGGGGACCC AAGAGGACGA GGCGAGCCTA CGGGCCTTCA
7001 CGGAGGCTAT GACTAGATAC TCTGCCCCC CTGGGGACCC GCCCAAACCA
7051 GAATACGACT TGGAGTTGAT AACATCATGC TCCTCCAATG TGTCAAGTCGC
7101 GCACGATGCA TCTGGCAAAA GGGTGTACTA TCTCACCCGT GACCCCCACCA
7151 CCCCCCTTGC CGGGCTGCG TGGGAGACAG CTAGACACAC TCCAGTCAAT
7201 TCCTGGCTAG GCAACATCAT CATGTATGCG CCCACCTTGT GGGCAAGGAT
7251 GATCCTGATG ACTCATTCT TCTCCATCCT TCTAGCTCAG GAACAACCTG
7301 AAAAAGCCCT AGATTGTCAG ATCTACGGGG CCTGTTACTC CATTGAGCCA
7351 CTTGACCTAC CTCAGATCAT TCAACGACTC CATGGCCTTA GCGCATTTC
7401 ACTCCATAGT TACTCTCCAG GTGAGATCAA TAGGGTGGCT TCATGCCTCA
7451 GGAAACTTGG GGTACCGCCC TTGCGAGTCT GGAGACATCG GGCCAGAAGT
7501 GTCCGCGCTA GGCTACTGTC CCAGGGGGGG AGGGCTGCCA CTTGTGGCAA
7551 GTACCTCTTC AACTGGCAG TAAGGACCAA GCTCAAACTC ACTCCAATCC
7601 CGGCTGCGTC CCAGTTGGAT TTATCCAGCT GGTTCGTTGC TGGTTACAGC
7651 GGGGGAGACA TATATCACAG CCTGTCTCGT GCCCGACCCC GCTGGTTCAT
7701 GTGGTGCCCTA CTCCTACTTT CTGTAGGGGT AGGCATCTAT CTACTCCCCA

FIG. 1E

7751 ACCGATGAAC GGGGAGCTAA ACACTCCAGG CCAATAGGCC ATCCTGTTTT
7801 TTTCCCTTTT TTTTTTTCTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT
7851 TTCTCCTTTT TTTTCCTCT TTTTTTCCTT TTCTTCCTT TGGTGGCTCC
7901 ATCTTAGCCC TAGTCACGGC TAGCTGTGAA AGGTCCGTGA GCCGCTTGAC
7951 TGCAGAGAGT GCTGATACTG GCCTCTCTGC AGATCAAGTA CTTCTAGAGA
8001 ATTCTAGCTT GGCGTAATCA TGGTCATAGC TGTTTCCTGT GTGAAATTGT
8051 TATCAGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA TAAAGTGTAA
8101 AGCCTGGGAT GCCTAATGAG TGAGCTAATC CACATTAGTT CGTGTGCGCT
8151 CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCT CCATTAGTGA
8201 ATCGTCAAAC GCACGGGGAG AGGCGGTTTG CGTATTGGGC GCACTTCCGC
8251 TTCCCTCGCTC ACTGACTCGC TGCGCTCGTT CGTTCCGCTG CGGCGAGCCG
8301 TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT
8351 AACGCAGGAA AGACCATGTG ACCAAAAGGC CAGCAAAAGG CCAGGAACCG
8401 TAAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCTGACG
8451 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA
8501 CTATAAAGAT ACCAGGCCTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC
8551 TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG
8601 GAAGCGTGGC GCTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG
8651 TAGGTCGTTG GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAAGCC
8701 CGACCGCTGC GCCTTATCCG GTAATATCG TCTTGAGTCC AACCCGGTAA
8751 GACACGACTT ATGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA
8801 GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA
8851 CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCCCTCG CTGAAGCCAG
8901 TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAAACCACC
8951 GCTGGTAGCG GTGGTTTTT TGTTTGCAG CACCAAGATTA CGCGCAGAAA
9001 AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC
9051 AGTGGAACGA AAACTCACGT TAAGGGATTG TGGTCATGAG ATTATCAAAA
9101 AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAATCAAT
9151 CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA
9201 GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC
9251 TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG

FIG. 1F

9301 CCCCAGTGCT GCAATGATAAC CGCGAGAACCC ACGCTCACCC GCACCAGATT
9351 TATCAGCAAT AAACCAGCCA GCCGGAAAGTG CGCTGCCGGAG AAGTGGTCCT
9401 GCAAACTTAT CCGCCTCCAT CCAGTCTATT AGTTGTTGCC GGGAAAGCTAG
9451 AGTAAGTAGT TCGCCAGTCA GCAGTTGCG TAACGTCGTT GCCATAGCAA
9501 CAGGCATCGT CGTGTACGC TCGTCGTTG GTATGGCTTC ATTCAAGCTCC
9551 GGCTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAAA
9601 AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG
9651 CAGTGTATC ACTCATGGTT ATGGCAGCAC TGCATAATT CTTACTGTC
9701 ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC
9751 ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCCGGTCAA
9801 TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT
9851 GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG
9901 ATCCAGTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT
9951 TTACTTTCAC CAGCGTTCT GGGTGAGCAA AACAGGAAG GCAAAATGCC
10001 GCAAAAAAGG GAATAAGGCC GACACGGAAA TGTTGAATAC TCATACTCTT
10051 CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG
10101 GATACATATT TGAATGTATT TAGAAAATA AACAAATAGG GGTTCCGCGC
10151 ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTACCAT
10201 GACATTAACC TATAAAAATA GGCGTATCAC GAAGCCCTT CGTCTAGCGC
10251 GTTTCGGTGA TGACGGTGA AACCTCTGAC ACTTGCAGCT CCCGCAGACG
10301 GTCACAGCTT GTCTGTAAGC GGATGCCGG AGCAGGCAAG CCCGTCAGGG
10351 CGCGTCAGTG GGTGTTGGCG GGTGTCGGGG CTGGCTTAAC TATGCGGCAT
10401 CAGAGCAGAT TGTACTGAGA GTACACCAGA TGGGGTGTGA AATACCGCAC
10451 AGATGCGTAA GGAGAAAATA CCGCATCAGC CTCCATTGCG CATTCAAGACT
10501 CGCGCAACTGT TGGGAAGGGC GGTCAGTACG CGCTTCTTCG CTATTACGCC
10551 AACTGGCGAA AGGGGGATGT GCTGCAAGGC GATTAAGTTG GGTAAACGCCA
10601 GGGTTTTCCC AATCACGACG TTGTAAAACG ACAGCCAATG AATTGAAGCT
10651 TATTAATTCT AGACTGAAGC TTTTAATACG ACTCACTATA (SEQ. ID. NO.:3)

Fig. 1G

SEQUENCE LISTING

<110> Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A.

<120> HEPATITIS C VIRUS REPLICONS AND REPLICON
ENHANCED CELLS

<130> IT0003 PCT

<150> 60/263,479
<151> 2001-01-23

<160> 13

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3010
<212> PRT

<213> Con 1 HCV isolate nucleic acid

<400> 1
Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn
1 5 10 15
Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly
20 25 30
Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala
35 40 45
Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro
50 55 60
Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala Trp Ala Gln Pro Gly
65 70 75 80
Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp
85 90 95
Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro
100 105 110
Arg Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
115 120 125
Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu
130 135 140
Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp
145 150 155 160
Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile
165 170 175
Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr
180 185 190
Glu Val Arg Asn Val Ser Gly Val Tyr His Val Thr Asn Asp Cys Ser
195 200 205
Asn Ala Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro
210 215 220
Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val
225 230 235 240
Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ala Ser Val Pro Thr Thr
245 250 255
Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Leu Cys
260 265 270
Ser Ala Met Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ala
275 280 285
Gln Leu Phe Thr Phe Ser Pro Arg Arg His Glu Thr Val Gln Asp Cys
290 295 300
Asn Cys Ser Ile Tyr Pro Gly His Val Thr Gly His Arg Met Ala Trp
305 310 315 320

Asp Met Met Met Asn Trp Ser Pro Thr Ala Ala Leu Val Val Ser Gln
 325 330 335
 Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His
 340 345 350
 Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp
 355 360 365
 Ala Lys Val Leu Ile Val Met Leu Leu Phe Ala Gly Val Asp Gly Gly
 370 375 380
 Thr Tyr Val Thr Gly Gly Thr Met Ala Lys Asn Thr Leu Gly Ile Thr
 385 390 395 400
 Ser Leu Phe Ser Pro Gly Ser Ser Gln Lys Ile Gln Leu Val Asn Thr
 405 410 415
 Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser
 420 425 430
 Leu Asn Thr Gly Phe Leu Ala Ala Leu Phe Tyr Val His Lys Phe Asn
 435 440 445
 Ser Ser Gly Cys Pro Glu Arg Met Ala Ser Cys Ser Pro Ile Asp Ala
 450 455 460
 Phe Ala Gln Gly Trp Gly Pro Ile Thr Tyr Asn Glu Ser His Ser Ser
 465 470 475 480
 Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile
 485 490 495
 Val Pro Ala Ala Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser
 500 505 510
 Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Val Pro Thr Tyr Ser
 515 520 525
 Trp Gly Glu Asn Glu Thr Asp Val Leu Leu Leu Asn Thr Arg Pro
 530 535 540
 Pro Gln Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly Phe
 545 550 555 560
 Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Ile Gly Asn
 565 570 575
 Lys Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala
 580 585 590
 Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Leu
 595 600 605
 Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe
 610 615 620
 Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Leu
 625 630 635 640
 Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asn Leu Glu Asp
 645 650 655
 Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp
 660 665 670
 Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly
 675 680 685
 Leu Ile His Leu His Gln Asn Val Val Asp Val Gln Tyr Leu Tyr Gly
 690 695 700
 Ile Gly Ser Ala Val Val Ser Phe Ala Ile Lys Trp Glu Tyr Val Leu
 705 710 715 720
 Leu Leu Phe Leu Leu Ala Asp Ala Arg Val Cys Ala Cys Leu Trp
 725 730 735
 Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn Leu Val
 740 745 750
 Val Leu Asn Ala Ala Ser Val Ala Gly Ala His Gly Ile Leu Ser Phe
 755 760 765
 Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu Val Pro
 770 775 780
 Gly Ala Ala Tyr Ala Leu Tyr Gly Val Trp Pro Leu Leu Leu Leu
 785 790 795 800
 Leu Ala Leu Pro Pro Arg Ala Tyr Ala Met Asp Arg Glu Met Ala Ala
 805 810 815

Ser Cys Gly Gly Ala Val Phe Val Gly Leu Ile Leu Leu Thr Leu Ser
 820 825 830
 Pro His Tyr Lys Leu Phe Leu Ala Arg Leu Ile Trp Trp Leu Gln Tyr
 835 840 845
 Phe Ile Thr Arg Ala Glu Ala His Leu Gln Val Trp Ile Pro Pro Leu
 850 855 860
 Asn Val Arg Gly Gly Arg Asp Ala Val Ile Leu Leu Thr Cys Ala Ile
 865 870 875 880
 His Pro Glu Leu Ile Phe Thr Ile Thr Lys Ile Leu Leu Ala Ile Leu
 885 890 895
 Gly Pro Leu Met Val Leu Gln Ala Gly Ile Thr Lys Val Pro Tyr Phe
 900 905 910
 Val Arg Ala His Gly Leu Ile Arg Ala Cys Met Leu Val Arg Lys Val
 915 920 925
 Ala Gly Gly His Tyr Val Gln Met Ala Leu Met Lys Leu Ala Ala Leu
 930 935 940
 Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro Leu Arg Asp Trp Ala
 945 950 955 960
 His Ala Gly Leu Arg Asp Leu Ala Val Ala Val Glu Pro Val Val Phe
 965 970 975
 Ser Asp Met Glu Thr Lys Val Ile Thr Trp Gly Ala Asp Thr Ala Ala
 980 985 990
 Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser Ala Arg Arg Gly Arg
 995 1000 1005
 Glu Ile His Leu Gly Pro Ala Asp Ser Leu Glu Gly Gln Gly Trp Arg
 1010 1015 1020
 Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu
 1025 1030 1035 1040
 Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Arg Asn Gln Val Glu
 1045 1050 1055
 Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr
 1060 1065 1070
 Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys
 1075 1080 1085
 Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val
 1090 1095 1100
 Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu
 1105 1110 1115 1120
 Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His
 1125 1130 1135
 Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu
 1140 1145 1150
 Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro
 1155 1160 1165
 Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val
 1170 1175 1180
 Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser
 1185 1190 1195 1200
 Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro
 1205 1210 1215
 Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro Thr
 1220 1225 1230
 Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly
 1235 1240 1245
 Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe
 1250 1255 1260
 Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr
 1265 1270 1275 1280
 Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser Thr Tyr
 1285 1290 1295
 Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile
 1300 1305 1310

Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly
 1315 1320 1325
 Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val
 1330 1335 1340
 Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro
 1345 1350 1355 1360
 Asn Ile Glu Glu Val Ala Leu Ser Ser Thr Gly Glu Ile Pro Phe Tyr
 1365 1370 1375
 Gly Lys Ala Ile Pro Ile Glu Thr Ile Lys Gly Gly Arg His Leu Ile
 1380 1385 1390
 Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser
 1395 1400 1405
 Gly Leu Gly Leu Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser
 1410 1415 1420
 Val Ile Pro Thr Ser Gly Asp Val Ile Val Val Ala Thr Asp Ala Leu
 1425 1430 1435 1440
 Met Thr Gly Phe Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr
 1445 1450 1455
 Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile
 1460 1465 1470
 Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg
 1475 1480 1485
 Gly Arg Thr Gly Arg Gly Arg Met Gly Ile Tyr Arg Phe Val Thr Pro
 1490 1495 1500
 Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys
 1505 1510 1515 1520
 Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser
 1525 1530 1535
 Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln
 1540 1545 1550
 Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile
 1555 1560 1565
 Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro
 1570 1575 1580
 Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro
 1585 1590 1595 1600
 Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro
 1605 1610 1615
 Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln
 1620 1625 1630
 Asn Glu Val Thr Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys
 1635 1640 1645
 Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly
 1650 1655 1660
 Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val
 1665 1670 1675 1680
 Val Ile Val Gly Arg Ile Ile Leu Ser Gly Lys Pro Ala Ile Ile Pro
 1685 1690 1695
 Asp Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu Glu Cys Ala
 1700 1705 1710
 Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe
 1715 1720 1725
 Lys Gln Lys Ala Ile Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu
 1730 1735 1740
 Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Thr Leu Glu Ala Phe
 1745 1750 1755 1760
 Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala
 1765 1770 1775
 Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala
 1780 1785 1790
 Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln His Thr Leu Leu
 1795 1800 1805

Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser
 1810 1815 1820
 Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly
 1825 1830 1835 1840
 Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly
 1845 1850 1855
 Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu
 1860 1865 1870
 Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser
 1875 1880 1885
 Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg
 1890 1895 1900
 His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile
 1905 1910 1915 1920
 Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro
 1925 1930 1935
 Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr
 1940 1945 1950
 Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys
 1955 1960 1965
 Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile
 1970 1975 1980
 Cys Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu
 1985 1990 1995 2000
 Pro Arg Leu Pro Gly Val Pro Phe Ser Cys Gln Arg Gly Tyr Lys
 2005 2010 2015
 Gly Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly
 2020 2025 2030
 Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly
 2035 2040 2045
 Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala
 2050 2055 2060
 Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg
 2065 2070 2075 2080
 Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val
 2085 2090 2095
 Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys
 2100 2105 2110
 Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val
 2115 2120 2125
 Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Glu Glu
 2130 2135 2140
 Val Thr Phe Leu Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu
 2145 2150 2155 2160
 Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr
 2165 2170 2175
 Asp Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg
 2180 2185 2190
 Gly Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala
 2195 2200 2205
 Pro Ser Leu Lys Ala Thr Cys Thr Thr Arg His Asp Ser Pro Asp Ala
 2210 2215 2220
 Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn
 2225 2230 2235 2240
 Ile Thr Arg Val Glu Ser Glu Asn Lys Val Val Ile Leu Asp Ser Phe
 2245 2250 2255
 Glu Pro Leu Gln Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala
 2260 2265 2270
 Glu Ile Leu Arg Arg Ser Arg Lys Phe Pro Arg Ala Met Pro Ile Trp
 2275 2280 2285
 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro
 2290 2295 2300

Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ala Lys
 2305 2310 2315 2320
 Ala Pro Pro Ile Pro Pro Arg Arg Lys Arg Thr Val Val Leu Ser
 2325 2330 2335
 Glu Ser Thr Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe
 2340 2345 2350
 Gly Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Ser
 2355 2360 2365
 Pro Asp Gln Pro Ser Asp Asp Gly Asp Ala Gly Ser Asp Val Glu Ser
 2370 2375 2380
 Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu
 2385 2390 2395 2400
 Ser Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val
 2405 2410 2415
 Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro
 2420 2425 2430
 Cys Ala Ala Glu Glu Thr Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser
 2435 2440 2445
 Leu Leu Arg His His Asn Leu Val Tyr Ala Thr Thr Ser Arg Ser Ala
 2450 2455 2460
 Ser Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp
 2465 2470 2475 2480
 Asp His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr
 2485 2490 2495
 Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro
 2500 2505 2510
 Pro His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg
 2515 2520 2525
 Asn Leu Ser Ser Lys Ala Val Asn His Ile Arg Ser Val Trp Lys Asp
 2530 2535 2540
 Leu Leu Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys
 2545 2550 2555 2560
 Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala
 2565 2570 2575
 Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met
 2580 2585 2590
 Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser
 2595 2600 2605
 Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val
 2610 2615 2620
 Asn Ala Trp Lys Ala Lys Cys Pro Met Gly Phe Ala Tyr Asp Thr
 2625 2630 2635 2640
 Arg Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu
 2645 2650 2655
 Ser Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile
 2660 2665 2670
 Arg Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser
 2675 2680 2685
 Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu
 2690 2695 2700
 Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ala Ala
 2705 2710 2715 2720
 Ala Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly
 2725 2730 2735
 Asp Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Glu
 2740 2745 2750
 Ala Ser Leu Arg Ala Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro
 2755 2760 2765
 Pro Gly Asp Pro Pro Lys Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser
 2770 2775 2780
 Cys Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val
 2785 2790 2795 2800

Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp
 2805 2810 2815
 Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile
 2820 2825 2830
 Met Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe
 2835 2840 2845
 Phe Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys
 2850 2855 2860
 Gln Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln
 2865 2870 2875 2880
 Ile Ile Gln Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr
 2885 2890 2895
 Ser Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly
 2900 2905 2910
 Val Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala
 2915 2920 2925
 Arg Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu
 2930 2935 2940
 Phe Asn Trp Ala Val Arg Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala
 2945 2950 2955 2960
 Ala Ser Gln Leu Asp Leu Ser Ser Trp Phe Val Ala Gly Tyr Ser Gly
 2965 2970 2975
 Gly Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met
 2980 2985 2990
 Trp Cys Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro
 2995 3000 3005
 Asn Arg
 3010

<210> 2
 <211> 9605
 <212> DNA
 <213> Con 1 HCV isolate amino acid

<400> 2

gccagcccccc	gattgggggc	gacactccac	catagatcac	tccctgtga	gaaactactg	60
tcttcacgca	aaaagcgctc	agccatggcg	ttatgttag	tgtcgtagcag	cctccaggac	120
ccccccctccc	gggagagcca	tagtgtctg	cggaaccgtt	gagtacaccg	gaattgcccag	180
gacgaccggg	tcctttcttg	gatcaaccgg	ctcaatgcct	ggagatttgg	gcgtgcccccc	240
gcgagactgc	tagccgagta	gtgttgggtc	gcgaaaggcc	ttgtggtaact	gcctgatagg	300
gtgcttgcga	gtgccccggg	aggtctcgta	gaccgtgcac	catgagcacg	aatcctaaac	360
ctcaaagaaa	aaccaaacgt	aacaccaacc	gccgcccaca	ggacgtcaag	ttcccgggccc	420
gtgtcagat	cgtcggtgga	gtttacctgt	tgccgcgcag	gggccccagg	ttgggtgtgc	480
gcccgcactag	gaagacttcc	gaggcggtcg	aacctcggtt	aaggcgacaa	cctatccccca	540
aggctcgcca	gccccgaggt	agggcttggg	ctcagccccc	gtacccttgg	cccctctatg	600
gcaatgaggg	cttgggttgg	gcaggatggc	tcctgtcacc	ccgtggctct	ccgccttagtt	660
ggggccccac	ggaccccccgg	cgttagtcgc	gcaatttggg	taaggtcate	gataccctca	720
cgtcgccgtt	cggcgatctc	atgggttaca	ttccgctcg	ccgcgcffff	ctagggggcc	780
ctgccaggggc	cctggcgcat	ggcgccgggg	ttctggagga	ccgcgtgaac	tatgcaacag	840
ggaatctgcc	cgggttgcctc	ttttctatct	tcctttggc	tttgctgtcc	tgtttgacca	900
tcccgatctc	cgcttatgaa	gtgcgcaacg	tatccggagt	gtaccatgtc	acgaacgact	960
gtcccaacgc	aaggattgt	tatgaggcag	ccgacatgt	catgcatacc	cccggtgtcg	1020
tgcctcgct	tggggagaa	aactctccc	gtctgggtt	agcgtcaact	cccacgctcg	1080
cggccaggaa	cgctagcg	cccactacga	cgatacgcg	ccatgtcgat	ttgctcggtt	1140
ggccggctgc	tctctgtcc	gctatgtacg	tgggagatct	ctgcccgtt	ttttcctcg	1200
tgcggccgt	gttcaccc	tcgcctcgcc	ggcacgagac	agtacaggac	tgcaattgt	1260
caatatatcc	cggccacgt	acaggtcacc	gtatggctt	ggatatgtat	atgaactggt	1320
cacctacagc	agcccttagt	gtatcgat	tactccggat	cccacaagct	gtcgtggata	1380
tggtggccggg	ggcccatgg	ggagtcctag	cgggccttgc	ctactattcc	atgggtgggaa	1440
actgggctaa	ggttctgtt	gtgatgtac	tcttgcgg	cggtgacggg	ggaacctatg	1500
tgacaggggg	gacgtgccc	aaaaaaccccc	tcgggattac	gtcccttctt	tcacccgggt	1560
catcccaagaa	aatccagtt	gtaaacaccca	acggcagctt	gcacatcaac	aggactgccc	1620

tgaactgcaa	tgactccctc	aacactgggt	tccttgcgtc	gctgttctac	gtgcacaagt	1680
tcaactcatc	tggatgccca	gaggcgcatgg	ccagctgcag	ccccatcgac	gcgttgcgtc	1740
agggggtgggg	gccccatcaact	tacaatgagt	cacacagctc	ggaccagagg	ccttattgtt	1800
ggcaactacgc	accccggccg	tgcggtatcg	tacccggcgc	gcagggtgt	gttccagtgt	1860
actgcttcac	cccaaggccct	gtcggtgtgg	ggacgaccga	ccgggtcgcc	gtccctacgt	1920
acagttgggg	ggagaatgag	acggacgtgc	tgcttcttaa	caacacgcgg	ccgcccgaag	1980
gcaactgggtt	tggctgtaca	tggatgaata	gcactgggtt	caccaagacg	tgccccggcc	2040
ccccgtgtaa	catcgggggg	atcggcaata	aaaccttgcac	ctgccccacg	gactgtttcc	2100
ggaagcaccc	cgaggccact	tacaccaagt	gtggttcggg	gccttgggt	acaccagat	2160
gcttggtcca	ctacccatac	aggcttggc	actacccctg	cactgtcaac	tttaccatct	2220
tcaaggttag	gatgtacgt	ggggagttgg	agcacagct	cgaagccgca	tgcaattgga	2280
ctcgaggaga	gcccgtgtaa	ctggaggaca	gggacagatc	agagcttage	ccgctgtgc	2340
tgttcaaac	ggagtggcag	gtattggcc	gttccttcac	caccatccg	gtctgtcca	2400
ctgggttcat	ccatctccat	cagaacgtcg	tggacgtaca	ataccgtac	gttatagggt	2460
cggcgggtgt	ctcccttgca	atcaaatggg	agatgtctt	gttgccttcc	cttcttctgg	2520
cggacgcgcg	cgtctgtgcc	tgcttgtgga	tgatgtctgt	gatagctaa	gctgaggccg	2580
ccctagagaa	cctgggtgtc	ctcaacgcgg	catccgtgc	cggggcgcac	ggcattctct	2640
cccttcctcgt	gttcttctgt	gctgcctgtt	acatcaaggg	caggctggtc	cctggggccg	2700
catatgcctc	ctacggcgt	tggccgtac	tccgtctct	gctggcgtta	ccaccacgag	2760
catacggccat	ggaccgggg	atggcagcat	cgtgcggagg	cgcgttttc	gttaggtctga	2820
tactcttgcac	ttgttcaccc	cacttaaagc	tgttctcgc	taggttcata	ttgtggttac	2880
aatattttat	caccaggggc	gaggcacact	tgcaagtgt	gatccccccc	ctcaacgttc	2940
ggggggggccg	cgatgcgtc	atccctctca	cgtgcgcgt	ccaccacagag	ctaatttta	3000
ccatcaccaa	aatcttgc	gccataactcg	gtccactcat	ggtgctccag	gctggtataa	3060
ccaaagtgcc	gtacttcgt	cgccacacg	ggctcattcg	tgcattgcac	ctgggtcgga	3120
agggtgctgg	gggtcattat	gtccaaatgg	ctctcatgaa	gttggccgca	ctgacaggta	3180
cgtacgttta	tgaccatctc	accccactgc	gggactggc	ccacccgggc	ctacgagacc	3240
ttgcgggtggc	agttgagccc	gtcgcttct	ctgatatgg	gaccaagggtt	atcacctgg	3300
ggcagacac	cgcggcgt	ggggacatca	tcttggccct	gcccgtctcc	gcccgcagg	3360
ggagggagat	acatctggg	ccggcagaca	gccttgaagg	gcagggttgg	cgactcctcg	3420
cgccttattac	ggcctactcc	caacagacgc	gaggcctact	tggctgcate	atcaactagcc	3480
tcacaggccg	ggacaggaac	caggtcgagg	gggaggtcca	agtggctcc	accgcaacac	3540
aatcttctct	ggcgcacctg	gtcaatggcg	tgtgttggac	tgtctatcat	gttgcgggt	3600
caaagacccct	tgccggccca	aagggcccua	tcacccaaat	gtacaccaat	gtggaccagg	3660
acctcgtcg	ctggcaagcg	ccccccgggg	cgcggttctt	gacccatgc	acctgcggca	3720
gctcggaccc	ttacttggc	acgaggcatg	ccgatgtcat	tccgtgcgc	ccggggggcc	3780
acagcagggg	gacgctact	tcccccaggc	cgtctctta	cttgaagggg	tttcggggcg	3840
gtccactgct	ctgccccctg	ggcacgtcg	tgggcattct	tgggctgccc	gtgtgcaccc	3900
gaggggttgc	gaaggcggtg	gactttgtac	cggtcgagtc	tatggaaacc	actatgcgt	3960
ccccggctt	cacggacaac	tcgtccccctc	cgccgttacc	gcagacattc	cagggtggccc	4020
atctacacgc	ccctacttgt	agcggcaaga	gcactaagg	gccggctgcg	tatgcagccc	4080
aagggtataa	ggtgcgttgc	ctgaacccgt	ccgtcgcgc	caccctaggt	ttcggggcg	4140
atatgtctaa	ggcacatgt	atgcaccct	acatcgaac	cggggttaagg	accatcacca	4200
cgggtgcccc	catcacgtac	tccacatgt	gcaagtttct	tgccgcacgg	gtttgtctg	4260
ggggcgccta	tgacatcta	atatgtatg	atgcgcacto	aactgactcg	accatattcc	4320
tgggcattcg	cacagtcc	gaccaagcg	agacggctgg	agcgcgactc	gtcgtctcg	4380
ccaccgcctac	gcctccggga	tcggtcaccc	tgccacatcc	aaacatcgag	gaggtggctc	4440
tgtccagcac	tggagaaatc	ccctttatg	gcaaagccat	ccccatcgag	accatcaagg	4500
gggggaggca	cctcattttc	tgccattcca	agaagaaaatg	tgatgagctc	gccgcgaagc	4560
tgtccggcc	cggaactcaat	gctgttagcat	attaccgggg	ccttgcgtat	tccgtcatac	4620
caactagcgg	agacgtcatt	gtcgtagcaa	cggacgcct	aatgcgggg	tttaccggcg	4680
atttcgactc	agtgtatcgac	tgcaatacat	gtgtcaccct	gacagtgcac	ttcagcctgg	4740
acccgaccc	caccattgg	acgacgaccg	tgccacaaaga	cgccgggtgtca	cgctcgcagc	4800
ggcgaggcag	gactggtagg	ggcaggatgg	gcatttacag	gtttgtgact	ccaggagaac	4860
ggccctcggg	catgttcgtat	tcctcggttc	tgtgcgagtg	ctatgacgcg	ggctgtgctt	4920
ggtacgagct	cacgcccccc	gagacctcg	ttaggttgcg	ggcttaccta	aacacaccag	4980
ggttggccgt	ctgcccaggac	catctggagt	tctgggagag	cgtcttaca	ggcctcaccc	5040
acatagacgc	ccattttctg	tcccagacta	agcaggcagg	agacaacttc	cccttacctgg	5100
tagcatacca	ggctacgggt	tgcgccagg	ctcaggctcc	acctccatcg	ttggaccaaa	5160
tgttggaaagt	tctcatacgg	ctaaaggcata	cgctgcacgg	gccaacgc	ccctgtgtata	5220
ggctggggagc	cgttcaaaac	gagggtacta	ccacacaccc	cataacaaaa	tacatcatgg	5280
catgcgtatgc	ggctgaccc	gagggtcgta	cgagcacctg	gttgcgtgt	ggcggaggcc	5340

tagcagctct	ggccgcgtat	tgccctgacaa	caggcagcgt	ggtcattgtg	ggcaggatca	5400
tcttgcgg	aaagccggcc	atcattcccg	acagggaaagt	ccttaccgg	gagttcgatg	5460
agatggaaa	gtgcgcctca	cacctccctt	acatcgaaaca	ggaaatgcag	ctgcgcgaac	5520
aattcaaaaca	gaaggcaatc	gggttgcgtc	aaacagccac	caagcaagcg	gaggctgcgt	5580
ctccccgtgt	ggaatccaag	tggccgaccc	tcgaagcctt	ctggcgaag	cataatgtgga	5640
atttcatca	cgggatacaa	tatttagcag	gcttgcac	tctgcctggc	aaccccgcga	5700
tagcatca	gatggcattc	acagcctcta	tcaccagccc	gctcaccacc	caacataccc	5760
tcctgttaa	catccctgggg	ggatgggtgg	ccggcccaact	tgctctccc	agcgctgcctt	5820
ctgcttcgt	aggcgcggc	atcgctggag	cggctgttgg	cagcataggc	cttgggaagg	5880
tgcttgtgga	tattttggca	ggttatggag	caggggtggc	aggcgcgc	gtggccttta	5940
aggcatgag	cggcgagatg	ccctccaccc	aggacctgtt	taacctacte	cctgtatattc	6000
tctccccctgg	cgcctctgtc	gtccgggtcg	tgtgcgcgc	gatactgcgt	ccgcacgtgg	6060
gcccgaggga	gggggctgtg	cagtggatga	accggctgtat	agcgttcgt	tcgcggggtta	6120
accacgtctc	ccccacgcac	tatgtgcctg	agagcgcacgc	tgacgcacgt	gtcaactcaga	6180
tcctctctag	tcttaccatc	acttagctgc	tgaagaggtt	tcaccagtgg	atcaacgagg	6240
actgtccac	gccatgtcc	ggctcggtgc	taagagatgt	ttgggattgg	atatgcacgg	6300
tgttactga	tttcaagacc	tggctccagt	ccaagctctt	gccgcgattt	ccgggagttcc	6360
ccttcttc	atgtcaacgt	gggtacaagg	gagtctggcg	gggcgcacggc	atcatgcaaa	6420
ccacactgccc	atgtggagca	cagatcaccc	gacatgtgaa	aaacgggttcc	atgaggatcg	6480
tggggcctag	gacctgtgt	aacacgtggc	atggAACATT	ccccattaaac	gcgtacacca	6540
cggggccctg	cacggccctcc	ccggccgcca	attattcttag	ggcgcgtgttgc	gggtgggtcg	6600
ctgaggagta	cgtgggggtt	acgcgggtgg	gggatTTCA	ctacgtgcac	ggcatgcacca	6660
ctgacaacgt	aaagtcccc	tgtcaggttc	cggccccccg	attcttcaca	gaagtggatg	6720
gggtgcgggtt	gcacaggtac	gctccagcgt	gcaaacccct	cctacgggag	gaggtcacat	6780
tcctggtcgg	getcaatcaa	tacctgggtt	ggtcacagct	cccatgcgag	cccgaaacccg	6840
acgttagcgt	gctcaattcc	atgtcaccgc	acccctccca	cattacggcg	gagacggcta	6900
acgttaggct	ggccaggggg	tctcccccct	ccttggccag	ctcatcagct	agccagctgt	6960
ctgcgccttc	cttgaaggca	acatgcacta	cccggtcatga	ctcccccggac	gctgacccctca	7020
tcgaggccaa	cctcctgtgg	cggcaggaga	tggggggaa	catccccgc	gtggagtcag	7080
aaaataaggt	agtaattttg	gacttttcgt	atccctaccgt	gtctctgtcc	ttggcggagc	7140
aagtatccgt	tccggcggag	atcctcgga	ggtccaggaa	attccctcg	ggcatgcacca	7200
tatgggcacg	cccgattac	aaccctccac	tgttagagtc	ctggaaaggac	ccggactacta	7260
tccttcctag	ggtacacccc	tgtccattgc	cgcctgccaa	ggcccccctcc	ataccaccc	7320
cacggaggaa	gaggacgggt	gtctgtcag	aatctaccgt	gtctctgtcc	ttggcggagc	7380
tcgccccaaa	gacccttcggc	agtcggat	cgtcgccgt	cgacagcg	acggcaacccg	7440
cctctccccc	ccagccctcc	gacgacggcg	acggggatc	cgacgttgc	tcgtactctt	7500
ccatgcccc	ccttgagggg	gagccggggg	atcccgatc	cagcgcacgg	tcttgggtcta	7560
ccgtaaacgt	ggaggctgt	gaggacgtcg	tctgctgtc	gatgtcctac	acatggacag	7620
gcgcctgtat	cacggccatgc	gctgcggagg	aaaccaagct	gccccatcaat	gcactgagca	7680
actctttgtc	ccgtcaccac	aacttggtct	atgctacaac	atctcgac	gcaaggctgc	7740
ggcagaagaa	ggtcacccctt	gacagactgc	aggtccttgg	cgaccactac	ccggacgtgc	7800
tcaaggagat	gaaggcgaag	gcgtccacag	ttaaggctaa	acttctatcc	gtggaggaag	7860
cctgtaaacgt	gacgccccca	cattcgccca	gatctaattt	tggctatgg	gcaaaggacg	7920
tccggaaacct	atccagcaag	gcccgttacc	acatccgtc	cgtgttgc	gacttgcgtgg	7980
aagacactga	gacaccaatt	gacaccacca	tcatggcaaa	aatagagggt	ttctgcgtcc	8040
aaccagagaa	ggggggccgc	aaggccagtc	gccttatcgt	attcccgat	ttgggggttc	8100
gtgtgtcgca	gaaaatggcc	ctttacgtg	tggtctccac	cctccctcag	gccgtgttgc	8160
gctcttcata	cggattccaa	tactctctgt	gacagcggtt	cgagttctgt	gtgaatgcct	8220
ggaaaagcgaa	gaaatgcct	atgggttcgt	catatgacac	ccgctgtttt	gactcaacccg	8280
tcactgagaa	tgacatccgt	gttgaggagt	caatctacca	atgtttgtac	ttggccccccg	8340
aagccagaca	ggccataagg	tcgtcacak	agcggcttca	catcgccggc	cccccgtacta	8400
attcttaagg	gcagaactgc	ggctatcgcc	ggtggccgc	gagcgggtta	ctgacgcacca	8460
gctcggtaa	taccctca	tgttacttgc	ggccgttgc	ggccgttgc	gtgcgaagc	8520
tccaggactg	cacgtgtc	gtatcggt	acgaccttgt	cgttatctgt	gaaagcgcgg	8580
ggacccaaga	ggacgaggcg	agcctacccgg	ccttcacgga	ggctatgact	agataactctg	8640
ccccccctgg	ggacccgccc	aaaccagaat	acgacttgg	gttgataaca	tcatgtccct	8700
ccaatgtgtc	agtgcgcac	gatgtatcg	gcaaaagggt	gtactatctc	acccgtgacc	8760
ccaccacccc	ccttgcgcgg	gctgcgtggg	agacagctag	acacactcca	gtcaattccct	8820
ggctaggccaa	catcatcat	tatgcgcaca	ccttgcgggc	aaggatgatc	ctgtactactc	8880
atttcttc	cattttctca	gctcaggaaac	aacttggaaa	agcccttagat	tgtcagatct	8940
acggggcctg	ttactccat	gagccacttg	acctaccta	gatcattaa	cgactccatg	9000
gccttagcgc	attttactc	catagttact	ctccaggtga	gatcaatagg	gtggcattcat	9060

gcctcaggaa	acttggggta	ccgcccattgc	gagtctggag	acatcggtcc	agaagtgtcc	9120
gchgcttaggct	actgtcccag	ggggggaggg	ctgccacttg	tggcaagtac	ctttcaact	9180
gggcagtaag	gaccaagctc	aaactcaactc	caatcccgcc	tgcgtcccgag	ttggatttat	9240
ccagctgggt	cgttgcgtt	tacagcgggg	gagacatata	tcacagcctg	tctcggtccc	9300
gaccccgctg	gttcatgtt	tgctactcc	tactttctgt	agggtaggc	atctatctac	9360
tccccaaccg	atgaacggg	agctaaacac	tccaggccaa	taggcatcc	tgttttttc	9420
cctttttttt	tttctttttt	ttttttttt	ttttttttt	ttttttttt	ttttttttt	9480
tcctcttttt	ttccttttct	ttcctttgtt	ggctccatct	tagccttagt	cacggctagc	9540
tgtgaaaggt	ccgtgagccg	cttgactgca	gagagtgtg	atactggcct	ctctgcagat	9600
	caagt					9605

<210> 3
<211> 10690
<212> DNA
<213> pHCVNeo.17 coding

<400> 3						
gcacggccccc	gattgggggc	gacactccac	catagatcac	tccccctgtga	ggaactactg	60
tcttcacgca	gaaaagcgct	agccatggcg	ttatgtatgag	tgtcggtgcag	cctccaggac	120
ccccccctcc	gggagagcca	tagtgtctg	cgaaaccgg	gagtacaccg	gaattggccag	180
gacgaccggg	tccttcttg	gatcaaccgg	ctcaatgcct	ggagatttgg	gggtgcccc	240
gcgagactgc	tagccgagta	gtgttgggtc	gchaaaggcc	ttgtgttact	gcctgtatagg	300
gtgcttgcga	gtgccccggg	aggctcgta	gaccgtgcac	catgagcag	aatcttaaac	360
ctcaaagaaa	aaccaaagg	cgcgcattga	ttgaacaaga	tggattgcac	gcagggttctc	420
cggccgctt	ggtggagagg	ctattcggt	atgactggc	acaacagaca	atcggtctgt	480
ctgatggccgc	cgtgttccgg	ctgtcagcgc	agggggccccc	gttgcgttgc	gtcaagacccg	540
acctgtccgg	tgccttgaat	gaactgcagg	acggaggcc	gcggctatcg	tggctggcca	600
cgaacggcgt	tccttgcga	gctgtgtcg	acgttgcac	tgaagcggga	aggactggc	660
tgcatttggg	cgaagtgcgg	ggcaggatc	tcctgtcatc	tcacccgtct	cctggcggaga	720
aagtatccat	catggctgtat	gcaatgcggc	ggctgcatac	gtttgtatcc	gctacctgcc	780
cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcag	tactcgatg	gaagccggc	840
ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggt	cgccgcagcc	gaactgttcg	900
ccaggctcaa	ggcgcgcatg	cccgcacggcg	aggatctcg	cgtgaccat	ggcgatgcct	960
gtttggccga	tatcatgtt	gaaaatggcc	gtttttctgg	attcatcgac	tgtggccggc	1020
tgggtgtggc	ggaccgtat	caggacatag	cgttgcgtac	ccgtatatt	gttgaagagc	1080
ttggcggcga	atgggctgac	cgcttcctcg	gtctttacgg	tatcgccgt	cccgattcgc	1140
agcgcacgc	cttctatcg	cttcttgacg	agttttctcg	agtttaaaca	gaccacaacg	1200
gtttccctct	agcgggatca	attccgcccc	tctccctccc	ccccccctaa	cgttactggc	1260
cgaagccgct	tggaaataagg	ccgggtgtcg	tttgtctata	tttgtatttc	caccatattg	1320
ccgtttttt	gcaatgttag	ggcccgaaaa	cctggccctg	tcttttgac	gagcattcct	1380
aggggtttt	ccctcttcgc	caaaggatg	caaggctcg	tgaatgtcg	gaaggaagca	1440
gttctctgg	aagettctt	aagacaaaca	acgtctgtag	cgacccttt	caggcagcg	1500
aaccccccac	ctggcgacag	gtgcctctgc	ggccaaaagc	cacgttata	agatacacct	1560
gcaaaggccg	cacaacccca	gtgccacgtt	gtgagttga	tagttgtga	aaagatcaaa	1620
tggctctct	caagcgatt	caacaagggg	ctgaaggatg	cccagaagg	accccattgt	1680
atgggatctg	atctggggcc	tcggtgacac	tgctttacat	gtgttagtc	gaggtaaaaa	1740
aacgtctagg	ccccccgaa	cacggggacg	tggtttccct	ttgaaaaaca	cgataatacc	1800
atggcgctta	ttacggctta	ctcccaacag	acgcgaggcc	tacttggctg	catcatcaet	1860
acgctcacag	ggccggacag	gaaccagg	gagggggagg	tccaaatgtt	ctccaccgc	1920
acacaatctt	tcctggcgcac	ctggtcaat	ggcgtgttt	ggactgtcta	tcatggtgcc	1980
ggctcaaaa	cccttgcggg	cccaaaagg	ccaatcaccc	aatgtacac	caatgtggac	2040
caggacctcg	tcggctggca	agcgcccccc	ggggcgcgtt	ccttgacacc	atgcacccgt	2100
ggcagctcg	acctttaactt	ggtcacgagg	catgcccgt	tcattccgt	ggccggcg	2160
ggcgacagca	gggggagcc	actctcccc	aggccgtct	cctacttgaa	gggtcttcc	2220
ggcggtccac	tgctctggcc	ctcggggcac	gctgtggca	tcttcggc	tgccgtgtgc	2280
acccgagggg	ttgcgaaggc	ggtgactt	gtacccgtcg	agtctatgg	aaccactatg	2340
cggtccccgg	tcttcacgga	caactcgcc	cctccggcc	taccgcagac	atccagggt	2400
gcccatactac	acgccccat	tggtagcg	aaagacacta	aggtgcggc	tgcgtatgca	2460
gccaagggt	ataagggtct	tgtccctgaac	ccgtccgtcg	ccgcacccct	aggtttcggg	2520
gctatatgt	ctaaggcaca	tggatcgac	cctaacatca	gaaccggggt	aaggaccatc	2580

accacgggtg	ccccatcac	gtactccacc	tatggcaagt	ttcttgccga	cggtggttgc	2640
tctggggcg	cctatgacat	cataaatatgt	gatgagtgcc	actcaactga	ctcgaccact	2700
atccctggca	tcggcacagt	cctggaccaa	gcggagacgg	ctggagcgcg	actcgtcgtg	2760
ctcgccaccg	ctacgcctcc	gggatcggtc	accgtccac	atccaaacat	cgaggagggtg	2820
gctctgtcca	gcactggaga	aatccccctt	tatggcaag	ccatccccat	cgagaccatc	2880
aaggggggga	ggcacctcat	tttctgcccatt	tccaagaaga	aatgtgatga	gctcgcccg	2940
aagctgtccg	gcctcgact	caatgctgt	gcatattacc	ggggccttga	tgtatccgtc	3000
ataccaacta	gccccggacgt	cattgtcgta	gcaacggacg	ctctaattgac	gggctttacc	3060
ggcgatttcg	actcagtgtat	cgactgcaat	acatgtgtca	cccagacagt	cgacttcagc	3120
ctggccaccg	ccttccatcat	tgagacgacg	accgtccac	aagacgcgg	gtcacgctcg	3180
cagcggcgag	gcaggactgg	tagggcagg	atgggcattt	acaggttgt	gactccagga	3240
gaacggccct	cgggcatgtt	cgatcttcg	gttctgtgcg	agtgttatga	cggggcgtgt	3300
gcttggtacg	agctcacgccc	cgccgagacc	tcagtttagt	tgcgggctta	cctaaacaca	3360
ccagggttgc	ccgtctgcca	ggaccatctg	gagttctggg	agaggctt	tacaggcctc	3420
accacatag	acgcccattt	cttgcggcagg	actaaggcagg	caggagacaa	cttcccctac	3480
ctggtagcat	accaggtac	ggtgtgcgc	agggctcagg	ctccacctcc	atcgtgggac	3540
caaatgtgga	agtgtctcat	acggctaaag	cctacgctgc	acgggccaac	gccccctgctg	3600
tataggctgg	gagccgttca	aaacggagtt	actaccacac	acccatataac	caaatacatc	3660
atggcatgca	tgtcggtca	cctggagggtc	gtcacgagca	cctgggtgt	gttagggcga	3720
gtccttagcag	ctctggccgc	gtattgcctg	acaacagagg	gcgtgttcat	tgtgggagg	3780
atcatcttgc	ccggaaagcc	ggccatcatt	ccggacaggg	aagtcttta	ccgggagttc	3840
gatgagatgg	aagagtgcgc	ctcacaccc	ccttacatcg	aacagggaaat	gcagctcgcc	3900
gaacaattca	aacagaaggc	aatcggttg	ctgcaaacag	ccaccaagca	agcggaggct	3960
gctgctcccg	tggtggaaatc	caagtggcgg	accctcgaag	ccttctggc	gaagcatatg	4020
tggaatttca	tcagcgggat	acaatattta	gcaggcttgc	ccactctgcc	tggcaaccccc	4080
gcgatagcat	cactgtatggc	attcacagcc	tctatcacca	gccccgtcac	cacccaaacat	4140
accctctgt	ttaacatct	ggggggatgg	gtggccgccc	aactgtctcc	ttccagcgc	4200
gcttctgttt	tcgtaggcgc	ccgcatcgct	ggagcggctg	ttggcagcat	aggecttggg	4260
aaggtgttt	tggatatttt	ggcaggttat	ggagcagggg	tggcaggcgc	gctgtggcc	4320
tttaagggtca	tgagcggcga	gatgccctcc	accgaggacc	tggtaacct	actccctgt	4380
atccctctcc	ctggcgcctt	agtcgtcggg	gtcggtgcg	cagcgatact	gcgtcgccac	4440
gtggggccag	gggagggggc	tgtcagtgg	atgaaccggc	tgatagcg	cgcttcgccc	4500
ggttaaccacg	tctccccccac	gcactatgt	cctgagagcg	acgctgcagc	acgtgtcact	4560
cagatccct	ctagtcattac	catcaactcg	ctgtcgaaga	ggcttccacca	gtggatcaac	4620
gaggactgt	ccacggccat	ctccggctcg	tggctaagag	atgtttggg	ttggatatgc	4680
acgggtgtga	ctgatttcaa	gacccggc	cgttccaa	tcctggccgc	attgcccggg	4740
gtcccccttct	tctcatgtca	acgtgggtac	aaggggatct	ggcggggcga	ccgcacatcg	4800
caaaccacct	gccccatgtgg	agcacagatc	accggacatg	taaaaaacgg	ttccatgagg	4860
atcgtggggc	ctaggacctg	tagtaacacg	tggcatggaa	cattccccat	taacgcgtac	4920
accacggggcc	cctgcacgccc	ctccccggcg	ccaaaattatt	ctagggcgct	gtggcgggtg	4980
gctgctgagg	agtacgtgg	ggtaacgcgg	gtgggggatt	tccactacgt	gacggggcatg	5040
accactgaca	acgtaaaatg	cccggtgtcg	gttccggccc	ccgaatttt	cacagaagg	5100
gatgggggtc	ggttgcacag	gtacgttcca	gcgtgcacaa	ccctcttacg	ggaggagggtc	5160
acattcctgg	tcgggcttcaa	tcaatacctg	gttgggtc	agctccatcg	cgagccccgaa	5220
ccggacgtag	cagtgcctac	ttccatgctc	accgaccctt	cccacattac	ggcggagacg	5280
gctaaggcgta	ggctggccag	gggatctccc	ccctcccttg	ccagctcata	agctagccag	5340
ctgtctgcgc	tttccttggaa	ggcaacatgc	actaccgc	atgactcccc	ggacgctgac	5400
ctcatcgagg	ccaaaccttcc	gtggggcgc	gagatgggc	ggaacatcac	ccgcgtggag	5460
tcagaaaaata	aggtgtaaat	tttggactt	ttcgagccgc	tccaaacgg	ggaggatgag	5520
agggaaagtat	ccgttccggc	ggagatctcg	cggaggctca	ggaaatttt	tgcagcgatg	5580
cccatatggg	cacgccccgg	ttacaaccct	ccactgtt	atgcctggaa	ggacccggac	5640
tacgtccctc	cagtggatca	ccgggtgtcca	ttgccccttgc	ccaaaggcccc	tccgtatcca	5700
cctccacgg	ggaagaggac	ggttgtctcg	tcagaatcta	ccgtgttttc	tgccttggcg	5760
gagctcgcca	caaagaccc	cggcacgtcc	gaatcgtcg	ccgtcgacag	ccgcacggca	5820
acggcctctc	ctgaccagcc	ctccgcacgc	ggcgcacgg	gatccgacgt	tgagtctgac	5880
tcctccatgc	cccccttgc	gggggagccg	ggggatcccg	atctcagcg	cggttcttgg	5940
tctaccgtaa	gcgaggaggc	tagtggggac	gtcgtctgt	gctcgatgtc	ctacacatgg	6000
acaggcgccc	tgatcgc	atgcgtcg	gaggaaacca	agctgccc	caatgcactg	6060
agaactctt	tgctccgtca	ccacaactt	tgctatgt	caacatctcg	cagcgcac	6120
ctgcggcaga	agaagggtc	ctttgacaga	ctgcagg	tggacgacca	taccgggac	6180
gtgtcaagg	agatgaaggc	gaaggcgtcc	acagttagg	ctaaactt	atccgtggag	6240
gaaggctgt	agctgaccc	cccacattcg	gccagatcta	aattttggct	tggggcaaag	6300

gacgtccgga acctatccag caaggccgtt aaccacatcc gctccgtgt gaaggacttg	6360
cttggaaagaca ctgagacacc aattgacacc accatcatgg caaaaaaaaatgaa ggttttctgc	6420
gttccaaccag agaagggggg ccgcaagccaa gtcgcctta tcgtatcccc agatttgggg	6480
gttcgtgtgt gcgagaaaaat ggccctttac gatgtggctt ccacccctccc tcaggccgtg	6540
atgggctt catacggatt ccaatactct cttggacacg gggtcgagtt cctggtaat	6600
gcctggaaaag cgaagaaaatg ccctatggc ttcgcataatg acaccgcgtg ttttactca	6660
acggtcactg agaatgacat ccgtgttag gagtcaatct accaatgttg tgacttggcc	6720
cccgaaagcca gacaggccat aaggtcgctc acagagccgc tttacatcg gggccccctg	6780
actaattcta aagggcagaa ctgcggctat cgccgggtgcc ggcgcgagccg tgtactgacg	6840
accagctgca gtaataccct cacatgttac ttgaaggccg ctgcggctcg tcgagctgcg	6900
aagcttcagg actgcacat gtcgtatgc ggagacgacc ttgtcggttat ctgtgaaagc	6960
gccccgggg aagaggacga ggccggccata cgggccttca cggaggctat gactagatac	7020
tctggccccc ctgggggaccc gccccaaacca gaatacgtat tggagttat aacatcatgc	7080
tcctccaatg tgcgtatgc gcacgatgc tctggcaaaa gggtgtacta ttcacccgt	7140
gaccccaacca ccccccctgc gcgggctgcg tgggagacag cttagacacac tccagtcaat	7200
tcctggctag gcaacatcat catgtatgc cccaccttgc gggcaaggat gatcctgtat	7260
actcatttct tctccatct tctagctcg gaacaacttgc aaaaagccct agattgtcag	7320
atctacgggg cctgttactc catttagccaa ctgcgtatcc ctcagatcat tcaacgcactc	7380
catggcctta ggcgcatttc actccatagt tactctccag gtgagatcaa taggggtggct	7440
tcatgcctca gggaaacttgg ggtaccgcgc ttgcgagttt ggagacatcg ggccagaagt	7500
gtccgcgtca ggctactgtc ccagggggggg agggtcgccca ttgtggccaa gtacctttc	7560
aactgggcag taaggaccaaa gctcaaactc actccaaatcc cggctgcgtc ccagttggat	7620
ttatccagct ggttcggtc tggttacagc gggggagaca tatacacag cctgtctcgt	7680
gccccacccc gctgggtcat gtgggccta ctccctactt ctgtaggggtt aggcatctat	7740
ctactccccca accgatgaac ggggagctaa acactccagg ccaataggcc atcctgtttt	7800
tttccctttt tttttttttt tttttttttt tttttttttt ttctccctttt	7860
tttttcctct tttttttttt ttcttcctt ttgtggctcc atcttagccc tagtcacggc	7920
tagctgtgaa aggtccgtga gcccgttgc tgcagagatg gctgatactg gcctctctgc	7980
agatcaagta cttctagaga attctagatc ggctgatatac tggctatagc tggttcctgt	8040
gtgaaattgt tatcagctca caattccaca caacatacga gccgaaagca taaaatgtaa	8100
agcctgggat gcctaattgtg tgagcttaact cacattgtt gcgttgcgt cactgcggc	8160
tttccagtcg ggaaacccgt cgtgcccgc ccattagtga atcgtccaaac gcacggggag	8220
aggcggtttg cgtattggc gcacttccgc ttccctcgctc actgactcgc tgcgtcggt	8280
cgttcggctg cggcgaggccg tatacgtca ctcaaaggcc gtaatacggg tattccacaga	8340
atcaggggat aacgcgagaa agacccatgtg agccaaaaggc cagccaaaagg ccaggaaccg	8400
taaaaaggcc gctttgcgtt cgtttttcca taggtccgc cccctgcg acatcacaa	8460
aaatcgacgc tcaagtcaaa ggtggcggaaa cccgacagaga ctataaaatg accaggcggt	8520
tcccccctggaa agctccctcg tgcgtctcc tggtccgacc ctgcccctta ccggataacct	8580
gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct gttaggtatct	8640
cagtccgggt taggtcggtc getccaagct gggctgtgtg cacgaaacccc cggttcagcc	8700
cgaccgctgc gccttatccg gtaactatcg tcttgcgttcc aaccggtaa gacacgactt	8760
atcgcactg gcacgagccaa ctggtaacag gattagcaga gcgaggatg taggcgggtgc	8820
tacagagtcc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggat	8880
ctgcgtctcg ctgaaggccg ttacccctggg aaaaaggatg ggttagtctt gatccggcaa	8940
acaaaccacc gctggtagcg gtggttttt tggttgcgaa cagcagatta cgcgcagaaa	9000
aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgcgtctc agtggaaacga	9060
aaactcactgt taaggattt tggtcatgag attatcaaaa aggatctca cctagatctt	9120
tttaaattaa aaatgaagtt ttaaatcaat ctaaaatgtata tatgataaa ttggctctga	9180
cagttacca tgcttaatca gtggggcacc tatctcaggc atctgtctat ttgttcatc	9240
catagttgcc tgactccccc tcgtgttagat aactacgata cgggaggggct taccatctgg	9300
ccccagtcg gcaatgatac cgcggagaacc acgctcaccc gcaccaggatt tattcagcaat	9360
aaaccagcca gcccggaaatg cgctcgccgg agtggcttcc gcaactttat ccgcctccat	9420
ccagtcattt agttgttgc gggagactg agtaaagtatg tcgcctgtca gcagttgcg	9480
taacgtcggtt gccatagcaaa caggccatcg ggtgtcagc tcgtcggttt gtatggcttc	9540
attcagctcc ggctcccaac gatcaaggcg atttacatga tccccatgt tgcgaaaaaa	9600
agcggttagc tccttcgtc ctccgatcg tgcgtatgcg aagtggccg cagtgttattc	9660
actcatggtt atggcagcac tgcataattc tcttactgtc atgcctatccg taagatgctt	9720
ttctgtgact ggtgagttact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag	9780
ttgtcttgc ccggcgtaa tacggataa taccgcgcctt catagcagaa ctttaaaaatgt	9840
gctcatcatt gggaaacccgtt ctccggggcg aaaactctca aggatcttac cgctgttgcg	9900
atccagttcg atgtaacccca ctgcgtccacc caactgtatc tcagcatctt ttacttccac	9960
cagcgtttctt gggtagccaa aaacaggaag gaaaaatgcc gaaaaaaagg gaataaggcc	10020

gacacggaaa	tgttgaatac	tcatacttttctt	cctttttcaaa	tattattgaa	gcatttatca	10080
gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	10140
ggttccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaaacca	ttattaccat	10200
gacattaacc	tataaaaata	ggcgtatcac	gaagcccttt	cgtctagcgc	gtttcggtga	10260
tgacggtgaa	aacctctgac	acttgcagct	cccgccagacg	gtcacagctt	gtctgtaaagc	10320
ggatgcccggg	agcaggcaag	cccgctcaggg	cgcgtcagtg	ggtgttggcg	ggtgtcgggg	10380
ctggcttaac	tatgcggcat	cagagcagat	tgtactgaga	gtacaccaga	tgcgggtgtga	10440
aataccgcac	agatgcgtaa	ggagaaaata	ccgcatacgc	ctccattcgc	cattcagact	10500
ccgcaactgt	tgggaagggc	ggtcagtagc	cgcttcttcg	ctattacgccc	aactggcga	10560
agggggatgt	gctgcaaggc	gattaagttg	ggtaacgcca	gggttttccc	aatcacgacg	10620
ttgtaaaacg	acagccaaatg	aattgaagct	tattaattct	agactgaagc	ttttaatacg	10680
						10690

<210> 4						
<211> 23						
<212> DNA						
<213> Primer oligonucleotide						
<400> 4						
acatgatctg	cagagaggcc	agt				23
<210> 5						
<211> 26						
<212> DNA						
<213> Primer oligonucleotide						
<400> 5						
gacasgctgt	gatawatgtc	tccccc				26
<210> 6						
<211> 21						
<212> DNA						
<213> Primer oligonucleotide						
<400> 6						
tggctctccct	caagcgtatt	c				21
<210> 7						
<211> 23						
<212> DNA						
<213> Primer oligonucleotide						
<400> 7						
actctctgca	gtcaagcggc	tca				23
<210> 8						
<211> 21						
<212> DNA						
<213> Primer oligonucleotide						
<400> 8						
cagtggatga	accggctgat	a				21
<210> 9						
<211> 23						
<212> DNA						
<213> Primer oligonucleotide						
<400> 9						
ggggcgacgg	catcatgcaa	acc				23

<210> 10
<211> 23
<212> DNA
<213> Primer oligonucleotide

<400> 10
caggaccgtgc agtctgtcaa agg

23

<210> 11
<211> 17
<212> DNA
<213> Primer oligonucleotide

<400> 11
cgggagagcc atagtgg

17

<210> 12
<211> 19
<212> DNA
<213> Primer oligonucleotide

<400> 12
agtaccacaa ggccttcg

19

<210> 13
<211> 21
<212> DNA
<213> Probe

<400> 13
ctgcggaacc ggtgagtaca c

21