New Progress in Univariate Polynomial Root Finding

ISSAC 2020

Rémi Imbach^{1,3} and Victor Y. Pan^{2,4}

¹ Courant Institute of Mathematical Sciences, New York University, USA

² Lehman College, City University of New York, USA

³ NSF Grants # CCF-1563942 and # CCF-1564132

 $^{^4}$ NSF Grants # CCF-1116736 and # CCF-1563942 and PSC CUNY Award 698130048.

Root Counters

Introduction

Complex disk: $\Delta = D(c, r) := \{z \text{ s.t. } |z - c| \le r\}$

Polynomial: $p \in \mathbb{C}[z]$ of degree d

#(S,p) := nb of roots of p in S counted with multiplicities, S a set

Counting test:

Exclusion test:

Complex disk: $\Delta = D(c, r) := \{z \text{ s.t. } |z - c| \le r\}$

Polynomial: $p \in \mathbb{C}[z]$ of degree d #(S,p) := nb of roots of p in S counted with multiplicities, S a set

Counting test:

 $C^*(p, \Delta, \ldots)$

 $p \in \mathbb{C}[z]$ of degree d, $\Delta = D(c, r)$ a disk

Output: $\#(\Delta, p)$ or -1 (can not decide)

Exclusion test:

Root Counters

Complex disk:
$$\Delta = D(c, r) := \{z \text{ s.t. } |z - c| \le r\}$$

Polynomial: $p \in \mathbb{C}[z]$ of degree d#(S,p) := nb of roots of p in S counted with multiplicities, S a set

Counting test:

$C^*(p, \Delta, \ldots)$

Input: $p \in \mathbb{C}[z]$ of degree d, $\Delta = D(c, r)$ a disk

Output: $\#(\Delta, p)$ or -1 (can not decide)

Exclusion test:

$$C^0(p,\Delta,\ldots)$$

Input: $p \in \mathbb{C}[z]$ of degree d, $\Delta = D(c, r)$ a disk **Output:** true $(\#(\Delta, p) = 0)$ or can not decide

Root Counters

Introduction

Complex disk:
$$\Delta = D(c, r) := \{z \text{ s.t. } |z - c| \le r\}$$

Polynomial: $p \in \mathbb{C}[z]$ of degree d #(S,p) := nb of roots of p in S counted with multiplicities, S a set

Counting test:

$C^*(p, \Delta, \ldots)$

 $p \in \mathbb{C}[z]$ of degree d, $\Delta = D(c, r)$ a disk

Output: $\#(\Delta, p)$ or -1 (can not decide)

Exclusion test:

$$C^0(p,\Delta,\ldots)$$

 $p \in \mathbb{C}[z]$ of degree d, $\Delta = D(c, r)$ a disk Output: true $(\#(\Delta, p) = 0)$ or can not decide

Core tools for root-finding algorithms based on subdivision

Root Clustering Problem

Input: a polynomial $p \in \mathbb{C}[z]$ of degree d > 1

Output:

Example: Mignotte-like polynomial: $z^d - 2(2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$

Root Clustering Problem

Introduction

Input: a polynomial $p \in \mathbb{C}[z]$ of degree d > 1

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where

- the Δ_i 's are pairwise-disjoint disks
- $\forall i, \#(\Delta^j, p) = m^j$ and $\#(3\Delta^j, p) = m^j$ (natural clusters)
- $Z(\mathbb{C},p)=\bigcup_{j=1}^\ell Z(\Delta^j,p)$ and $\ell>1$

Notations: Z(S, p): roots of p in S

Example: Mignotte-like polynomial: $z^d - 2(2^{\sigma}z - 1)^2$, where d = 16, $\sigma = 4$

Root Clustering Problem Local Version

Input: a polynomial $p \in \mathbb{C}[z]$, a complex box B

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where

- the Δ_i 's are pairwise-disjoint disks
- $\forall i, \#(\Delta^j, p) = m^j$, and $\#(3\Delta^j, p) = m^j$ (natural clusters)^{1.5}

Notations: Z(S, p): roots of p in S

Example: Mignotte-like polynomial: $z^d - 2(2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$

Introduction

Root Clustering Problem Local Version

Input: a polynomial $p \in \mathbb{C}[z]$, a complex box B

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where

- the Δ_i 's are pairwise-disjoint disks
- $\forall i, \#(\Delta^j, p) = m^j$, and $\#(3\Delta^j, p) = m^j$ (natural clusters)^{1.5}
- $Z(B,p) \subseteq \bigcup_{i=1}^{\ell} Z(\Delta^{i},p) \subseteq Z(\delta B,p)$, for $\delta > 1$

Notations: Z(S, p): roots of p in S

Example: Mignotte-like polynomial: $z^d - 2(2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$

Let $\alpha \in \mathbb{C}$.

Introduction

Oracle for α : function $\mathcal{O}_{\alpha}: \mathbb{N} \to \mathbb{C}$

s.t. $|\alpha - \mathcal{O}_{\alpha}(L)| \leq 2^{-L}$

Let $p \in \mathbb{C}[z]$.

Oracle for p: function $\mathcal{O}_p : \mathbb{N} \to \mathbb{C}[z]$

s.t. $\|p - \mathcal{O}_p(L)\|_{\infty} \le 2^{-L}$

Local Root Clustering Algorithm

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 71–78. ACM, 2016.

Input polynomial: p given as an oracle

Near optimal: bit complexity $\widetilde{O}(d^2(\sigma+d))$ for the benchmark problem $(p \in \mathbb{Z}[z], \text{ degree } d, \text{ bit-size } \sigma)$

Implementation: C package Ccluster¹ interface for julia: Ccluster.jl²

¹https://github.com/rimbach/Ccluster

²https://github.com/rimbach/Ccluster.jl

Local Root Clustering Algorithm

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 71-78. ACM, 2016.

Input polynomial: p given as an oracle

Near optimal: bit complexity $\widetilde{O}(d^2(\sigma+d))$ for the benchmark problem ($p \in \mathbb{Z}[z]$, degree d, bit-size σ)

In practice: Still not the users choice for global problems (MPsolve)

Implementation: C package Ccluster¹

interface for **julia**: Ccluster.jl²

available in SINGULAR &

¹https://github.com/rimbach/Ccluster

²https://github.com/rimbach/Ccluster.jl

Counting test:

Exclusion test:

Subdivision approach:

Outline of [BSS⁺16]

Counting test:

Exclusion test:

Subdivision approach:

Counting test:

Exclusion test:

Subdivision approach:

Counting test:

Exclusion test: $C^0(\Delta, p)$

Subdivision approach:

Unsure Exclusion Test

Counting test: $C^*(\Delta, p)$

Exclusion test: $C^0(\Delta, p)$

Subdivision approach:

Based on Pellet's Theorem: for $\Delta = D(c, r)$, requires to compute the coefficients of p(c + rz)

Counting test: $C^*(\Delta, p)$ Exclusion test: $C^0(\Delta, p)$

Subdivision approach:

New Counting Test Unsure Exclusion Test Subdivision Algorithm
6/ 16

Our Contributions

Introduction

New Counting and Exclusion tests: based on power sums approximations

- require Δ to be "well isolated"
- do not require to shift p in c + rz
- evaluate p on a small nb. of points

Unsure Exclusion test:

- assume that Δ is well isolated
- check necessary conditions to verify the result
- experimentally reliable

Algorithm for the Global Root Clustering Problem:

- uses our unsure exclusion test
- the output is checked as a post-procedure

Introduction New Counting Test Unsure Exclusion Test Subdivision Algorithm
6/16

Our Contributions

New Counting and Exclusion tests: based on power sums approximations

- require Δ to be "well isolated"
- do not require to shift p in c + rz
- evaluate *p* on a small nb. of points

Unsure Exclusion test:

- ullet assume that Δ is well isolated
- check necessary conditions to verify the result
- experimentally reliable

Algorithm for the Global Root Clustering Problem:

- uses our unsure exclusion test
- the output is checked as a post-procedure

Introduction New Counting Test Unsure Exclusion Test Subdivision Algorithm
6/16

Our Contributions

New Counting and Exclusion tests: based on power sums approximations

- require Δ to be "well isolated"
- do not require to shift p in c + rz
- evaluate *p* on a small nb. of points

Unsure Exclusion test:

- ullet assume that Δ is well isolated
- check necessary conditions to verify the result
- experimentally reliable

Algorithm for the Global Root Clustering Problem:

- uses our unsure exclusion test
- the output is checked as a post-procedure

Introduction New Counting Test Unsure Exclusion Test Subdivision Algorithm
6/16

Our Contributions

New Counting and Exclusion tests: based on power sums approximations

- require Δ to be "well isolated"
- do not require to shift p in c + rz
- evaluate *p* on a small nb. of points

Unsure Exclusion test:

- assume that Δ is well isolated
- check necessary conditions to verify the result
- experimentally reliable

Algorithm for the Global Root Clustering Problem:

- uses our unsure exclusion test
- the output is checked as a post-procedure

Let $\Delta = D(c, r)$, $p \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of p in Δ (non necessarily distinct) Let $h \in \mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

Power Sums

Let $\Delta = D(c, r)$, $p \in \mathbb{C}[z]$ of degree dLet $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of p in Δ (non necessarily distinct) Let $h \in \mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

(i)
$$\#(\Delta, p) = s_0(\Delta, p)$$

Power Sums

Let $\Delta = D(c, r)$, $p \in \mathbb{C}[z]$ of degree dLet $\alpha_1, \ldots, \alpha_{d_{\wedge}}$ be the roots of p in Δ (non necessarily distinct) Let $h \in \mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

(i)
$$\#(\Delta, p) = s_0(\Delta, p)$$

(ii)
$$\#(\Delta, p) = 0 \Rightarrow s_h(\Delta, p) = 0$$
 for any h

Power Sums

Let $\Delta=D(c,r),\ p\in\mathbb{C}[z]$ of degree dLet $\alpha_1,\ldots,\alpha_{d_\Delta}$ be the roots of p in Δ (non necessarily distinct) Let $h\in\mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

Remarks:

(i)
$$\#(\Delta, p) = s_0(\Delta, p)$$

(ii)
$$\#(\Delta, p) = 0 \Rightarrow s_h(\Delta, p) = 0$$
 for any h

Let
$$p_{\Delta} = p(c + rz)$$
:

(iii)
$$\#(\Delta, p) = s_0(D(0, 1), p_{\Delta})$$

(iv)
$$\#(\Delta, p) = 0 \Rightarrow s_h(D(0, 1), p_{\Delta}) = 0$$
 for any h

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive g-th root of unity.

Unsure Exclusion Test

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive g-th root of unity.

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Definition: $\Delta = D(c, r)$ is ρ isolated, for $\rho > 1$, if $D(c, r\rho) \setminus D(c, \frac{r}{\rho})$ contains no root

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Definition: $\Delta = D(c,r)$ is ρ isolated, for $\rho > 1$, if N $D(c,r\rho) \setminus D(c,\frac{r}{\rho})$ contains no root

Theorem [Sch82]: Let $\rho > 1$;

suppose D(0,1) is ho-isolated and contains d_{Δ} roots. Then

$$|s_h^* - s_h(D(0,1),p)| \le rac{d_\Delta heta^{q+h} + (d-d_\Delta) heta^{q-h}}{1- heta^q}$$
 where $heta = rac{1}{
ho}$

[Sch82] Arnold Schönhage.

The fundamental theorem of algebra in terms of computational complexity. Manuscript. Univ. of Tübingen, Germany, 1982.

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(0,1) is ρ -isolated. Then

(i)
$$|s_0^*-s_0(D(0,1),p)| \leq rac{d heta^q}{1- heta^q}$$
 where $heta=rac{1}{
ho}$

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(0,1) is ρ -isolated. Then

(i)
$$|s_0^*-s_0(D(0,1),p)|\leq rac{d heta^q}{1- heta^q}$$
 where $heta=rac{1}{
ho}$

(ii) Fix
$$e > 0$$
. If $q = \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$ then $|s_0^* - s_0(D(0,1), p)| \le e$.

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(\zeta^g)}{p(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(0,1) is ρ -isolated. Then

$$\mathsf{(i)} \ |s_0^* - s_0(\mathit{D}(0,1), \rho)| \leq \frac{d\theta^q}{1 - \theta^q} \ \mathsf{where} \ \theta = \frac{1}{\rho}$$

(ii) Fix
$$e>0$$
. If $q=\lceil\log_{\theta}(\frac{e}{d+e})\rceil$ then $|s_0^*-s_0(D(0,1),p)|\leq e$.

Remark: $s_0(D(0,1),p)$ is an integer, thus error $e<\frac{1}{4}$ is enough to recover it from s_0^* !

Example: when $\rho = 2$ and d = 500, q = 11 in enough!

R. Imbach and V. Pan

Let $\Delta=D(c,r)$, $p\in\mathbb{C}[z]$ of degree dLet $\alpha_1,\ldots,\alpha_{d_\Delta}$ be the roots of p in Δ (non necessarily distinct) Let $h\in\mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

Remarks:

(i)
$$\#(\Delta, p) = s_0(\Delta, p)$$

(ii)
$$\#(\Delta, p) = 0 \Rightarrow s_h(\Delta, p) = 0$$
 for any h

Let
$$p_{\Delta} = p(c + rz)$$
:

(iii)
$$\#(\Delta, p) = s_0(D(0, 1), p_{\Delta})$$

(iv)
$$\#(\Delta, p) = 0 \Rightarrow s_h(D(0, 1), p_{\Delta}) = 0$$
 for any h

Approximation of the Power Sums in $\Delta = D(c, r)$

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(c, r) is ρ -isolated. Then

(i)
$$|s_0^* - s_0(D(c, r), p)| \le \frac{d\theta^q}{1 - \theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) Fix
$$e > 0$$
. If $q = \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$ then $|s_0^* - s_0(D(c, r), p)| \le e$.

Approximation of the Power Sums in $\Delta = D(c, r)$

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(c,r) is ρ -isolated. Then

(i)
$$|s_0^* - s_0(D(c, r), p)| \le \frac{d\theta^q}{1 - \theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) Fix
$$e > 0$$
. If $q = \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$ then $|s_0^* - s_0(D(c, r), p)| \le e$.

Remark: Computing $s_0(D(c,r),p)$ does **not** require to compute the coefficients of $p_{\Lambda} = p(c + rz)!$

R. Imbach and V. Pan

Counting and Exclusion Tests

$$P^*(p,\Delta,\rho)$$
 //Output in $\{0,1,\ldots,d\}$

 $p \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

1.
$$e \leftarrow 1/4$$
, $\theta \leftarrow 1/\rho$

2.
$$q \leftarrow \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$$

3. compute
$$s_0^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^g \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

4. return the unique integer in $D(s_0^*, e)$

Counting and Exclusion Tests

$$P^*(p,\Delta,\rho)$$
 //Output in $\{0,1,\ldots,d\}$

 $p \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

1.
$$e \leftarrow 1/4$$
, $\theta \leftarrow 1/\rho$

2.
$$q \leftarrow \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$$

3. compute
$$s_0^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^g \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

4. return the unique integer in $D(s_0^*, e)$

Remarks: One can derive

1. an implementable version for oracle polynomials

$$P^*(p, \Delta, \rho)$$
 //Output in $\{0, 1, \dots, d\}$

Input: $p \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

Remarks: One can derive

- 1. an implementable version for oracle polynomials
- 2. an exclusion test:

$$P^0(p, \Delta, \rho)$$
 //Output in { true, false }

Input: $p \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: true iff p has no root in Δ

1. return $P^*(p, \Delta, \rho) == 0$

Subdivision Algorithm

Counting and Exclusion Tests

$$P^*(p,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

 $p \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

Remarks: One can derive

- 1. an implementable version for oracle polynomials
- 2. an exclusion test:

Question: What if ρ is not known?

Unsure Exclusion Test

$\widetilde{P}^0(p,\Delta)$

Input: $p \in \mathbb{C}[z]$ of degree d, Δ a disk Output: in { true, can not decide }

0. Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated

1.
$$e \leftarrow 1/4$$
, $\theta \leftarrow 1/\rho$

2.
$$q \leftarrow \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$$

3. compute
$$s_0^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^g \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

4. if $D(s_0^*, e)$ does not contain zero

5. return can not decide

6. return true

Unsure Exclusion Test

$\widetilde{P}^0(p,\Delta)$

Input: $p \in \mathbb{C}[z]$ of degree d, Δ a disk Output: in { true, can not decide }

- **0.** Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated
- **1.** $e \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- 2. $q \leftarrow \lceil \log_{\theta}(\frac{e}{d+e}) \rceil$
- **3.** compute $s_0^* = \frac{r}{q} \sum_{r=0}^{q-1} \zeta^g \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$
- **4.** if $D(s_0^*, e)$ does not contain zero
- 5. return can not decide
- 6. return true

Remark: Even if the output of $P^0(p, \Delta)$ is **true**, it may be wrong

		C ⁰ -tests	P ⁰ -tests		
d	n	t ₀ /t (%)	t_1/t_0	#F	
100 ra	andom dens	e polynomial	s per degre	e	
64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	
100 ra	andom spars	se (10 monor	nials) polyr	nomials p	per degree
64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: total number of exclusion tests t: sequential time of Ccluster t_0 : time spent in C^0 -tests t_1 : time spent in $\widetilde{P^0}$ -tests #F: nb of wrong res. in $\widetilde{P^0}$ -tests

		C ⁰ -tests	$\widetilde{P^0}$ -tests	
d	n	t ₀ /t (%)	t_1/t_0 #F	

100 random dense polynomials per degree

64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: total number of exclusion tests

t: sequential time of Ccluster

 t_0 : time spent in C^0 -tests

 t_1 : time spent in $\widetilde{P^0}$ -tests

#F: nb of wrong res. in P^0 -tests

128

191

Unsure Exclusion Test: Experiments

		C ⁰ -tests	$\widetilde{P^0}$ -tests	;	
d	n	t_0/t (%)	t_1/t_0	#F	
100 ra	andom dens	se polynomial	s per degr	ee	
64	116302	87.2	1.0	4	

21

26

100 random sparse (10 monomials) polynomials per degree

.54

.42

191	331966	92.1	.25	11	
128	226266	91.3	.36	11	
64	115850	86.2	.90	10	

Legend: d: degree

227842

340348

n: total number of exclusion tests t: sequential time of Ccluster t_0 : time spent in C^0 -tests t_1 : time spent in \widetilde{P}^0 -tests #F: nb of wrong res. in \widetilde{P}^0 -tests

90.5

92.0

		C ⁰ -tests	P^0 -tests		
d	n	t ₀ /t (%)	t_1/t_0	#F	
100 ra	andom dens	e polynomial	s per degre	ee	
64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	
100 r	andom spars	se (10 monor	nials) polyr	nomials p	per degree
64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: total number of exclusion tests t: sequential time of Ccluster t_0 : time spent in C^0 -tests t_1 : time spent in P^0 -tests #F: nb of wrong res. in P^0 -tests

		C ⁰ -tests	$\widetilde{P^0}$ -tests	
d	n	t ₀ /t (%)	t ₁ /t ₀ #F	

100 random dense polynomials per degree

128 22	227842	90.5	.54	21
		30.0		21
191 34	340348	92.0	.42	26

100 random sparse (10 monomials) polynomials per degree

128 226266 91.3 .36 11

Legend: d: degree

n: total number of exclusion tests t: sequential time of Ccluster t_0 : time spent in C^0 -tests t_1 : time spent in $\widetilde{P^0}$ -tests

#F: nb of wrong res. in $\widetilde{P^0}$ -tests

Power Sums

Let $\Delta = D(c, r)$, $p \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of p in Δ (non necessarily distinct) Let $h \in \mathbb{Z}$

h-th power sum of p in Δ :

$$s_h(\Delta, p) = \alpha_1^h + \ldots + \alpha_{d_{\Delta}}^h$$

Remarks:

(i)
$$\#(\Delta, p) = s_0(\Delta, p)$$

(ii)
$$\#(\Delta, p) = 0 \Rightarrow s_h(\Delta, p) = 0$$
 for any h

Let
$$p_{\Delta} = p(c + rz)$$
:

(iii)
$$\#(\Delta, p) = s_0(D(0, 1), p_{\Delta})$$

(iv)
$$\#(\Delta, p) = 0 \Rightarrow s_h(D(0, 1), p_{\Lambda}) = 0$$
 for any h

Approximation of the Power Sums in $\Delta = D(c, r)$ (II)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Corollary: Let $\rho > 1$; suppose D(c,r) is ρ -isolated. Then

(i)
$$|s_h^* - s_h(D(c, r), p)| \le \frac{d\theta^{q-h}}{1 - \theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) Fix
$$e > 0$$
. If $q = \lceil \log_{\theta}(\frac{e}{d+e}) \rceil + h$ then $|s_h^* - s_h(D(c, r), p)| \le e$.

Unsure Exclusion Test

$\widetilde{P}^0(p,\Delta,k)$

Input: $p \in \mathbb{C}[z]$ of degree d, Δ a disk, k an integer ≥ 0 Output: in { true, can not decide }

- **0.** Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated
- **1.** $e \leftarrow 1/4$, $\theta \leftarrow 1/\rho$
- 2. $q \leftarrow \lceil \log_{\theta}(\frac{e}{d+e}) \rceil + k$
- **3.** evaluate p and p' at $c + r\zeta^g$ for $g = 0, \ldots, g 1$
- **4.** for h = 0, ..., k do
- compute $s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{p'(c+r\zeta^g)}{p(c+r\zeta^g)}$
- **6.** if $0 \notin D(s_h^*, e)$ then
- return can not decide
- 8. return true

		C ⁰ -tests	$\widetilde{P^0}$ -tests, $k=0$		$\widetilde{P^0}$ -test	s, $k=1$	$\widetilde{P^0}$ -tests, $k=2$	
d	n	t ₀ /t (%)	t_1/t_0	#F	t_1'/t_0	#F'	$t_1^{\prime\prime}/t_0$	#F"

100 random dense polynomials per degree

64	116302	87.2	1.0	4	1.0	0	1.1	0
128	227842	90.5	.54	21	.57	0	.59	0
191	340348	92.0	.42	26	.43	1	.45	0

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	.95	0	.98	0
128	226266	91.3	.36	11	.37	0	.40	0
191	331966	92.1	.25	11	.26	2	.28	0
		1			11		11	

Legend: d: degree

n: total number of exclusion tests t: sequential time of Ccluster

 t_0 : time spent in C^0 -tests

 t_1 : time spent in P^0 -tests

 t_1' : time spent in \widetilde{P}^0 -tests with k=1

#F': nb of wrong res. in P^0 -tests with k=1

 t_1'' : time spent in P^0 -tests with k=2

#F": nb of wrong res. in \widetilde{P}^0 -tests with k=2

#F: nb of wrong res. in P^0 -tests with k=0

		C ⁰ -tests	$\widetilde{P^0}$ -test	s, $k = 0$	$\widetilde{P^0}$ -test	s, $k=1$	$\widetilde{P^0}$ -tests	s, $k = 2$
d	n	t ₀ /t (%)	t_1/t_0	#F	t_1'/t_0	#F'	$t_1^{\prime\prime}/t_0$	#F"

100 random dense polynomials per degree

64	116302	87.2	1.0	4	1.0	0	1.1	0
128	227842	90.5	.54	21	.57	0	.59	0
191	340348	92.0	.42	26	.43	1	.45	0

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	.95	0	.98	0
128	226266	91.3	.36	11	.37	0	.40	0
191	331966	92.1	.25	11	.26	2	.28	0

Legend: d: degree

n: total number of exclusion tests t: sequential time of Ccluster

 t_0 : time spent in C^0 -tests t_1 : time spent in P^0 -tests

 t_1' : time spent in P^0 -tests with k=1#F': nb of wrong res. in \widetilde{P}^0 -tests with k=1

 t_1'' : time spent in P^0 -tests with k=2

#F": nb of wrong res. in \widetilde{P}^0 -tests with k=2

#F: nb of wrong res. in P^0 -tests with k=0

Subdivision Algorithm with Unsure Exclusion Test

- for the (global) Root Clustering Problem
- uses $\widetilde{P^0}$ -test with k=2
- always terminates, but may fail: in this case, reports failure
- implemented in C within Ccluster: CclusterF

- for the (global) Root Clustering Problem
- uses $\widetilde{P^0}$ -test with k=2
- always terminates, but may fail: in this case, reports failure
- implemented in C within Ccluster: CclusterF
- faster for sparse and procedural polynomial

Procedure: Mandelbrot_k(z)

Input: $k \in \mathbb{N}^*, z \in \mathbb{C}$

Output: $\alpha \in \mathbb{C}$

- **1.** if k = 1 then
- 2. return z
- 3. else
- 4. **return** zMandelbrot $_{k-1}(z)^2 + 1$

Subdivision Algorithm with Unsure Exclusion Test

|| Columnter ||

Results:

	CCIUSCEI		001	usterr
d	t	#Fails	t'	t'/t (%)
	100 randor	n dense po	lynomia	ls per degree
64	31.5	0	41.2	130
100	200	1 0	1.40	C7 2

64	31.5	0	41.2	130	
128	222	0	149	67.3	
191	665	0	340	51.1	
	-				_

100 ra	andom sparse	(10 mond	omials) pol	ynomials per degree
64	27.9	0	31.7	113
128	216	0	100	46.3
191	638	0	209	32.7

Mandelbrot polynomials							
127	3.46	0	0.56	16.1			
255	18.4	0	1.79	9.70			
511	118	0	7.61	6.42			

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

Subdivision Algorithm with Unsure Exclusion Test

Results:

	Ccluster		Cc.	lusterF
d	t	#Fails	t'	t'/t (%)

100 random dense polynomials per degree

64	31.5	0	41.2	130
128	222	0	149	67.3
191	665	0	340	51.1

100 random sparse (10 monomials) polynomials per degree

64	27.9	U	31.7	113	
128	216	0	100	46.3	
191	638	0	209	32.7	
					7

Mandelbrot polynomials

127	3.46	0	0.56	16.1
255	18.4	0	1.79	9.70
511	118	0	7.61	6.42

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

II a.z..... II

Results:

		Ccluster	CClusterr			
	d	t	#Fails	t'	t'/t (%)	
100 random dense polynomials per degree					s per degree	

	100 fandom dense polynomiais per degree				
64	31.5	0	41.2	130	
128	222	0	149	67.3	
191	665	0	340	51.1	

100 ra	andom sparse	(10 monomials) polynomials per degree		
64	27.9	0	31.7	113
128	216	0	100	46.3
191	638	0	209	32.7

Mandelbrot polynomials						
127	3.46	0	0.56	16.1		
255	18.4	0	1.79	9.70		
511	118	0	7.61	6.42		

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

Subdivision Algorithm

16/16

Remarks and Future Works

- Ongoing work!
- Probabilistic and deterministic support of our $\widetilde{P^0}$ -test

Remarks and Future Works

- Ongoing work!
- ullet Probabilistic and deterministic support of our $\widetilde{P^0}$ -test

Thank you!