ttbar Analysis Status NTUA 1/9/2020

George Bakas, Ioannis Papakrivopoulos

Introduction

Signal Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (2 btagged jets)	> Medium WP
Signal Trigger	

Control Region Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (0 btagged jets)	< Medium WP
Control Trigger	

bTagging Scale Factor distributions in Signal Region

b tagging SF's

without b tagging SF's

Parton Efficiency '16,'17,'18 NominalMC

Parton Efficiency '16,'17,'18 NominalMC

b tagging SF's

without b tagging SF's

Parton Acceptance '16,'17,'18 NominalMC

Parton Acceptance '16,'17,'18 NominalMC

b tagging SF's

without b tagging SF's

Parton Efficiency '16,'17,'18 NominalMC

Parton Efficiency '16,'17,'18 NominalMC

b tagging SF's

without b tagging SF's

Parton Acceptance '16,'17,'18 NominalMC

Parton Acceptance '16,'17,'18 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetPt0 2016 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetY0 2016 NominalMC

600 1.15 19.28 500 36.96 1.8 3.09 80.79 1.90 1.6 400 142.56 1.4 214.24 13.12 1.2 300 364.40 0.8 200 504.44 19.28 0.6 19.62 577.34 0.4 100 0.2 0.4 0.6 0.8 2.2 partonY0

Response Reco-Parton jetY0 2016 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetPt0 2017 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetY0 2017 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetPt0 2018 NominalMC

b tagging SF's

without b tagging SF's

Response Reco-Parton jetY0 2018 NominalMC

Response Reco-Parton jetY0 2018 NominalMC

Contamination Plots Medium WP (CR) 2016

b tagging SF's

Contamination Plots Medium WP (CR) 2017

b tagging SF's

Contamination Plots Medium WP (CR) 2018

b tagging SF's

Contamination Plots Medium WP (CR, SR) 2018

- Both SR and Control Region use the Medium btag WP.
- Intuition is to remove the ttbar and subdominant bkg contribution from the data Control Region

Simple Mass Fit 2016

A RooPlot of "mTop"

(t)	- / ts	_ / t>	- · · · +>
$OCD(m^{l})$	$-D(m^{l})$	$-T$ (m^{t})	$1 - Suh (m^{l})$
$Q \cup D_0(III)$	$I - D_0(III)$	$I_0(III)$	$-Sub_0(m^t)$

Without tag SF:

Floating Parameter	FinalValue +/-	Error
kMassResol	9.2245e-01 +/-	2.72e-02
kMassScale	9.9906e-01 +/-	
kQCD_2b	6.8926e-02 +/-	5.06e-02
nFitBkg_2b	2.5236e+02 +/-	1.44e+02
nFitQCD_2b	2.9886e+03 +/-	1.73e+02
nFitSig2b	5.2694e+03 +/-	1.65e+02

Signal strength: $r = 0.671244 \pm 0.0252439$ (old)

With b tag sf:

Floating Parameter	FinalValue +/-	Error
kMassResol kMassScale kQCD_2b nFitBkg_2b nFitQCD_2b	9.2251e-01 +/- 9.9891e-01 +/- 6.9753e-02 +/- 2.4472e+02 +/- 2.9890e+03 +/-	2.01e-03 5.26e-02 1.47e+02 1.74e+02
nFitSig2b	5.2763e+03 +/-	1.6/e+02

<u>Signal strength:</u> $r = 0.686668 \pm 0.0263103$ (new)

Simple Mass Fit 2017

A RooPlot of "mTop"

Without b tag SF:

	Floating Parameter	FinalValue +/-	Error
·	 kMassResol	1.0990e+00 +/-	4.05e-02
	kMassScale	9.8328e-01 +/-	2.64e-03
	kQCD_2b	1.6702e-02 +/-	7.79e-03
	nFitBkg_2b	6.3994e+02 +/-	2.81e+02
	nFitQCD_2b	2.0219e+03 +/-	3.23e+02
	nFitSig2b	4.8080e+03 +/-	1.51e+02

Signal strength: $r = 0.553099 \pm 0.0198563$ (old)

With b tag SF:

Floating Parameter	FinalValue +/-	Error
kMassResol kMassScale kQCD_2b nFitBkg_2b	1.0998e+00 +/- 9.8340e-01 +/- 1.6593e-02 +/- 4.9791e+02 +/-	2.66e-03 7.44e-03 2.68e+02
nFitQCD_2b	2.1662e+03 +/-	
nFitSig2b	4.8059e+03 +/-	1.50e+02

<u>Signal strength:</u> $r = 0.644361 \pm 0.023851$ (new)

Simple Mass Fit 2018

<u>Without b tag SF:</u>

Floating Parameter	FinalValue +/-	Error
kMassResol kMassScale kQCD 2b	1.0171e+00 +/- 9.8961e-01 +/- 1.3178e-02 +/-	1.92e-03
nFitBkg_2b	•	2.73e+02
nFitQCD_2b nFitSig2b	4.7747e+03 +/- 7.7140e+03 +/-	3.04e+02 1.85e+02

Signal strength: $r = 0.615816 \pm 0.017298$ (old)

With b tag SF:

_	Floating Parameter	FinalValue +/-	Error
-	kMassResol kMassScale kQCD_2b nFitBkg_2b nFitQCD_2b nFitSig2b	1.0156e+00 +/- 9.8998e-01 +/- 1.2365e-02 +/- 1.6612e+00 +/- 5.0843e+03 +/- 7.7041e+03 +/-	1.92e-03 2.50e-03 6.55e+03 1.80e+02
	= = = = = =	, , , , , ,	

<u>Signal strength:</u> $r = 0.687217 \pm 0.0194349$ (new)

A RooPlot of "mTop"

Signal Strength Results

Signal Extraction 2016

b tagging SF's

without b tagging SF's

Fiducial DataOverMC ratio (2016, TOP18013)

Fiducial DataOverMC ratio (2016, TOP18013)

Signal Extraction 2017

b tagging SF's

without b tagging SF's

Fiducial DataOverMC ratio (2017, TOP18013)

Fiducial DataOverMC ratio (2017, TOP18013)

Signal Extraction 2018

b tagging SF's

without b tagging SF's

Fiducial DataOverMC ratio (2018, TOP18013)

Fiducial DataOverMC ratio (2018, TOP18013)

Tag And Probe

- Top Tagger Scale Factors
 - Tag and Probe: Data and MC don't show inconsistency
 - Data is subtracted QCD and Subdominant bkgs (MC) so that the data sample is pure

```
efficiency = \frac{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, SR)}{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, only \, baseline)}
```

- Randomization (check random jet) to fill histogram to avoid pT bias
- mTop candidate distributions for Numerator and Denominator of efficiency
 - To scale the ttbar → fit the mTop in each of these regions (ttbar compatible ~ with SR)
- Divide the phase space into pT regions: [400-600] GeV, [600-800] GeV, [800-Inf] GeV
 - Again no inconsistencies

Tag And Probe Calculations 2016

b tagging SF's

without b tagging SF's

Efficiency--with btagging SF's eff data: 0.781 ± 0.038

eff ttbar: 0.772 ± 0.014

Efficiency per Pt region

eff data pT[400-600]: 0.761 ± 0.042 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.851 ± 0.100 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.886 ± 0.160 eff ttbar pT[800-Inf]: 0.775 ± 0.063

Efficiency--without btagging SF's

eff data: 0.782 ± 0.039

eff ttbar: 0.772 ± 0.014

Efficiency per Pt region

eff data pT[400-600]: 0.762 ± 0.043 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.854 ± 0.103 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.888 ± 0.161 eff ttbar pT[800-Inf]: 0.775 ± 0.064

TagAndProbe Efficiency (2016)

Tag And Probe Calculations 2017

b tagging SF's

without b tagging SF's

Efficiency-- with btagging SF's eff data: 0.857 ± 0.040

eff ttbar: 0.875 ± 0.0072

Efficiency per Pt region

eff data pT[400-600]: 0.872 ± 0.047 eff ttbar pT[400-600]: 0.874 ± 0.008

eff data pT[600-800]: 0.795 ± 0.088 eff ttbar pT[600-800]: 0.876 ± 0.018

eff data pT[800-Inf]: 0.797 ± 0.186 eff ttbar pT[800-Inf]: 0.899 ± 0.045

Efficiency-- without btagging SF's

eff data: 0.864 ± 0.043

eff ttbar: 0.875 ± 0.007

Efficiency per Pt region

eff data pT[400-600]: 0.880 ± 0.049 eff ttbar pT[400-600]: 0.874 ± 0.008

eff data pT[600-800]: 0.8 ± 0.091 eff ttbar pT[600-800]: 0.876 ± 0.018

eff data pT[800-Inf]: 0.796 ± 0.2 eff ttbar pT[800-Inf]: 0.898 ± 0.045

TagAndProbe Efficiency (2017)

Tag And Probe Calculations 2018

b tagging SF's

without b tagging SF's

Efficiency-- with tag SF's eff data: 0.816 ± 0.032 eff ttbar: 0.839 ± 0.005

Efficiency per Pt region

eff data pT[400-600]: 0.8176 ± 0.038 eff ttbar pT[400-600]: 0.837 ± 0.006

eff data pT[600-800]: 0.809 ± 0.063 eff ttbar pT[600-800]: 0.847 ± 0.013

eff data pT[800-Inf]: 0.772 ± 0.132 eff ttbar pT[800-Inf]: 0.868 ± 0.032

Efficiency-- without tag sf's

eff data: 0.822 ± 0.034

eff ttbar: 0.839 ± 0.005

Efficiency per Pt region

eff data pT[400-600]: 0.824 ± 0.039 eff ttbar pT[400-600]: 0.837 ± 0.006

eff data pT[600-800]: 0.819 ± 0.066 eff ttbar pT[600-800]: 0.847 ± 0.013

eff data pT[800-Inf]: 0.789 ± 0.141 eff ttbar pT[800-Inf]: 0.868 ± 0.032

TagAndProbe Efficiency (2018)

Data Vs MC Stacks for BDT output 2016

- BDT Output scores SR_B
 - SR_B: Baseline selection + tight Mass Cut (120,220) GeV, no TopTagger Selection
 - QCD scaled to data (k-factor)

Data Vs MC Stacks for BDT output 2017

b tagging SF's

Data Vs MC Stacks for BDT output 2018

b tagging SF's

BACKUP SLIDES

b tagging SF's

b tagging SF's

b tagging SF's

without b tagging SF's

0.48

3.01

0.19

0.12

3500

4000

3000

7.18

0.13

2500

0.47

0.36

4500

mTTbarParton (GeV)

5000

Response Reco-Parton mJJ 2018 NominalMC

0.06 -0.06

.41 0.41 0.13 0.13 0.06

1.51 0.79 1.30 4.48 32.18 103.16

1500 8.59 226.77545.39 88.89 4.29

35.18 204.13 64.81 6.37 0.50

1500

2000

5000

4500

4000

3500

3000

2500

2000

mJJ (GeV)

1000

500