Algorithmic Game Theory COMP6207

Lecture 5: Vickrey-Clarks-Grove (VCG) Mechanism

Bahar Rastegari b.rastegari@soton.ac.uk Electronics and Computer Science University of Southampton

Learning Outcomes

By the end of this and next lecture, you should be able to

- Define VCG mechanism and the family of Groves mechanisms.
- Apply VCG mechanism to different settings and compute the outcome and agents' payments.
- Describe what properties does VCG mechanism have, and prove that VCG does have these properties.
- Outline the limitations a mechanism designer faces when requiring all of the properties defined in this lecture (except perhaps tractability). That is, describe the relevant theorems and explain what they mean and imply.

Fun Game

Fun game: Selfish routing

- A network with 6 vertices and 8 edges.
- Each edge has a cost and there is an agent associated with each edge.
- 8 students play as agents; others act as mediators.
- Agents' utility functions: u_i = payment cost if your edge is chosen; 0 otherwise.
- Mediators: find a path from A to F at the lowest cost you can.
- Agents: agree to be paid whatever you like; claim whatever you like; don't show your paper to anyone.

Quasilinear mechanism design

Direct quasilinear mechanism with IPVs

Setting:

- n strategic agents
- A finite set X of choices
- An agent's valuation for choice $x \in X$ is $v_i(x) = u_i(x, \theta_i)$
 - the maximum amount i is willing to pay for x to be chosen

Direct quasilinear mechanism with IPVs

Setting:

- n strategic agents
- A finite set X of choices
- An agent's valuation for choice $x \in X$ is $v_i(x) = u_i(x, \theta_i)$
 - the maximum amount i is willing to pay for x to be chosen

In a direct mechanism:

- Agents are asked to declare $v_i(x)$ for each $x \in X$
- Let \hat{v}_i denote the valuation that agent i declares to the mechanism
 - \hat{v}_i may be different from her true valuation v_i
 - Let \hat{v} denote the declared valuation profile of all agents, and \hat{v}_{-i} the declared valuation profile of all agents except i.
- The mechanism maps v̂ to a choice x ∈ X and a payment for each agent

Direct quasilinear mechanism with IPVs

Setting:

- n strategic agents
- A finite set X of choices
- An agent's valuation for choice $x \in X$ is $v_i(x) = u_i(x, \theta_i)$
 - the maximum amount i is willing to pay for x to be chosen

In a direct mechanism:

- Agents are asked to declare $v_i(x)$ for each $x \in X$
- Let \hat{v}_i denote the valuation that agent i declares to the mechanism
 - \hat{v}_i may be different from her true valuation v_i
 - Let \hat{v} denote the declared valuation profile of all agents, and \hat{v}_{-i} the declared valuation profile of all agents except i.
- The mechanism maps v̂ to a choice x ∈ X and a payment for each agent

Often when it is understood we are in a quasilinear setting, $x \in X$ is referred to as an **outcome**.

Properties

Efficiency

Definition (Efficiency)

A quasilinear mechanism is efficient, or social-welfare maximising, if in equilibrium selects a choice x that maximises $\sum_{i=1}^{n} v_i(x)$.

Efficiency

Definition (Efficiency)

A quasilinear mechanism is efficient, or social-welfare maximising, if in equilibrium selects a choice x that maximises $\sum_{i=1}^{n} v_i(x)$.

- Efficiency is also called economic efficiency to distinguish from other (e.g. computational) notions.
- Note that efficiency is defined in terms of true (not declared) valuations.

(Dominant-strategy) Truthfulness

Definition (Dominant-strategy truthful mechanism)

A direct quasilinear mechanism is dominant-strategy truthful (truthful) if for each agent i, declaring $\hat{v}_i = v_i$ maximises i's utility, no matter what the other agents declare:

$$u_i(\chi(v_i, v_{-i}), p_i(v_i, v_{-i})) \ge u_i(\chi(\hat{v}_i, v_{-i}), p_i(\hat{v}_i, v_{-i})), \forall \hat{v}_i \forall v_{-i}$$

• Our definition before, adapted for the quasilinear setting.

Individual Rationality

Definition (Ex post individual rationality)

A mechanism is ex post individually rational if in equilibrium, the utility of each agent is at least 0.

Individual Rationality

Definition (Ex post individual rationality)

A mechanism is ex post individually rational if in equilibrium, the utility of each agent is at least 0.

- So no agent loses by participating in the mechanism.
- There is also the notion of ex interim individual rationality.

Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balance when

 $\forall v, \sum_{i=1}^{n} p_i(s(v)) = 0$, where s is the equilibrium strategy profile.

Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balance when $\forall v, \sum_{i=1}^{n} p_i(s(v)) = 0$, where s is the equilibrium strategy profile.

- Regardless of the agents' types, the mechanism collects and disburses the same amount of money from and to the agents.
- There are also weak and ex ante variants.

Tractability

Definition (Tractability)

A quasilinear mechanism is tractable if for all \hat{v} , $\chi(\hat{v})$ and $p(\hat{v})$ can be computed in polynomial time.

Tractability

Definition (Tractability)

A quasilinear mechanism is tractable if for all \hat{v} , $\chi(\hat{v})$ and $p(\hat{v})$ can be computed in polynomial time.

• The mechanism is computationally feasible.

Some other Properties (that we will discuss in future)

- Revenue maximisation
- Fairness

Efficiency + Dominant-Strategy Truthfulness

- Recall that Vickrey (second-price) auction is both efficient (social-welfare maximising) and dominant-strategy truthful.
- Is there a mechanism that is both efficient and dominant-strategy truthful in general quasilinear settings with IPVs?

Efficiency + Dominant-Strategy Truthfulness

- Recall that Vickrey (second-price) auction is both efficient (social-welfare maximising) and dominant-strategy truthful.
- Is there a mechanism that is both efficient and dominant-strategy truthful in general quasilinear settings with IPVs? Yes.
- There is a general class of mechanism called Groves mechanisms that are both efficient and dominant-strategy truthful.
- In fact, in settings where agents may have unrestricted quasilinear utilities, Groves mechanisms are the only mechanisms that are both efficient and dominant-strategy truthful. [Theorem by Green-Laffont]

Groves mechanisms

Definition (Groves mechanisms)

Any direct quasilinear mechanism (χ, p) where

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$

$$p_i(\hat{\mathbf{v}}) = h_i(\hat{\mathbf{v}}_{-i}) - \sum_{j \neq i} \hat{\mathbf{v}}_j(\chi(\hat{\mathbf{v}}))$$

Groves mechanisms

Definition (Groves mechanisms)

Any direct quasilinear mechanism (χ, p) where

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$

$$p_i(\hat{v}) = h_i(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}))$$

- VCG is a specific mechanism within the class of Groves mechanism. (The most famous mechanism within this class.)
- Some people refer to Groves mechanisms as VCG mechanisms.
- Vickrey auction is a special case of VCG, and hence VCG is sometimes known as generalised vickrely auction.

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$
 $p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$
 $p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$

 We will prove later in the lecture that Groves mechanisms are dominant-strategy truthful.

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$
 $p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$

- We will prove later in the lecture that Groves mechanisms are dominant-strategy truthful.
- The choice rule should not come as a surprise.

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$
 $p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$

- We will prove later in the lecture that Groves mechanisms are dominant-strategy truthful.
- The choice rule should not come as a surprise.
 - Groves mechanisms are truthful and efficient.

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$
 $p_{i}(\hat{v}) = h_{i}(\hat{v}_{-i}) - \sum_{i \neq i} \hat{v}_{j}(\chi(\hat{v}))$

- We will prove later in the lecture that Groves mechanisms are dominant-strategy truthful.
- The choice rule should not come as a surprise.
 - Groves mechanisms are truthful and efficient.
- So what's going on with the payment rule?
 - agent i must pay some amount $h_i(\hat{v}_{-i})$ that doesn't depend on his own declared valuation.
 - agent i is paid the sum of others' declared valuations for the chosen choice.

The Clarke tax sets the h_i term in the definition of the Groves mechanism as:

$$h_i(\hat{\mathbf{v}}_{-i}) = \sum_{j \neq i} \hat{\mathbf{v}}_j(\chi(\hat{\mathbf{v}}_{-i}))$$

Definition (Vickrey-Clarke-Groves (VCG) mechanism)

$$\chi(\hat{v}) = \underset{x}{\operatorname{argmax}} \sum_{i} \hat{v}_{i}(x)$$

$$p_i(\hat{v}) = \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_j(\chi(\hat{v}))$$

$$\chi(\hat{v}) = \operatorname*{argmax}_{x} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

$$\chi(\hat{v}) = \underset{x}{\operatorname{argmax}} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

$$\text{Optimal social welfare (for the other agents) if i is not participating}$$

$$\text{Total welfare of the other agents from the chosen choice}$$

$$\chi(\hat{v}) = \underset{x}{\operatorname{argmax}} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

$$\text{Optimal social welfare (for the other agents) if i is not participating}$$

$$\text{Total welfare of the other agents from the chosen choice}$$

- Every agent pays his/her social cost.
- VCG is also called pivotal mechanism.

$$\chi(\hat{v}) = \underset{x}{\operatorname{argmax}} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

$$\text{Optimal social welfare (for the other agents) if i is not participating}$$

$$\text{Total welfare of the other agents from the chosen choice}$$

- Every agent pays his/her social cost.
- VCG is also called pivotal mechanism.
- Question: What is *u_i* in terms of social welfare?

VCG discussion

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

VCG discussion

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

• Who pays 0?

VCG discussion

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- Who pays 0?
 - agents who don't affect the choice of the mechanism.

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- Who pays 0?
 - agents who don't affect the choice of the mechanism.
- Who pays more than 0?

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- Who pays 0?
 - agents who don't affect the choice of the mechanism.
- Who pays more than 0?
 - (pivotal) agents who make things worse for others by existing.

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- Who pays 0?
 - agents who don't affect the choice of the mechanism.
- Who pays more than 0?
 - (pivotal) agents who make things worse for others by existing.
- Who gets paid?

$$\chi(\hat{v}) = \operatorname*{argmax}_{o} \sum_{i} \hat{v}_{i}(x)$$

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

- Who pays 0?
 - agents who don't affect the choice of the mechanism.
- Who pays more than 0?
 - (pivotal) agents who make things worse for others by existing.
- Who gets paid?
 - (pivotal) agents who make things better for others by existing.

Examples

VCG Example: combinatorial auction example

- two goods A and B
- n agents (here bidders)
- Set of outcomes X has $(n+1)^2$ elements: who gets A (if anyone) and who gets B (if anyone)

VCG Example: combinatorial auction example

- two goods A and B
- n agents (here bidders)
- Set of outcomes X has $(n+1)^2$ elements: who gets A (if anyone) and who gets B (if anyone)
- We assume (as is usually the case) that each bidder only cares about what good s/he receives (and hence values receiving no good at 0)
- Therefore, we can write an agent *i*'s valuation by specifying only 3 values: $v_i(A)$, $v_i(B)$ and $v_i(AB)$.

VCG Example: combinatorial auction example

- two goods A and B
- n agents (here bidders)
- Set of outcomes X has $(n+1)^2$ elements: who gets A (if anyone) and who gets B (if anyone)
- We assume (as is usually the case) that each bidder only cares about what good s/he receives (and hence values receiving no good at 0)
- Therefore, we can write an agent i's valuation by specifying only 3 values: $v_i(A)$, $v_i(B)$ and $v_i(AB)$.
- VCG chooses who gets what item(s) and how much each agent pays.

Combinatorial auction example contd.

What choice does VCG pick (i.e. who gets A and who gets B), and what is the payment for each agent?

Combinatorial auction setting with two agents

- $v_1(A) = 3$, $v_1(B) = 2$, $v_1(AB) = 6$
- $v_2(A) = 1$, $v_2(B) = 4$, $v_2(AB) = 4$

VCG Example: Selfish routing example

- The number on each edge is the cost of transporting along that edge.
- Each edge is owned by a different agent and the costs are private information of the agents.
- Goal: Find the shortest (least-cost) path from from A to F.
- The set of outcomes include all possible paths from from A to F.
- Note that numbers on edges are costs, not benefits.
 - If we select a path that crosses an edge of cost c, its owner is incurring a cost of c which means his value for this path is -c.
 - If our path doesn't cross agent i's edge, his value for the path is 0.

What path does VCG pick? break ties lexicographically What is the payment for each agent?

Books

 Twenty Lectures on Algorithmic Game Theory, by Tim Roughgarden

- Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations by Yoav Shoham and Kevin Leyton-Brown
 - From now on we will refer to this book as MAS

- Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani
 - From now on we will refer to this book as AGT

Further reading/watching

For further introduction to Mechanism Design, Groves mechanisms and VCG

- Read MAS chapters 10.1, 10.2, 10.3, 10.4.1-10.4.6 (we haven't covered some of the material in these sections, of which we will cover some in future lectures)
- Read AGT Chapters 9.1, 9.2, 9.3 (note that MAS and AGT sometimes use different notations and definitions for the same concepts)
- Watch Game Theory II Week 3 (VCG): 6 videos

Acknowledgment

Some of the slides in this lecture were based on the slides by Jie Zhang and Kevin Leyton-Brown.