Тука сложи заглавие

страницата се нуждае от дописване/преглеждане

Дефиници

Нека f(x,y) е деф. върху $X\mathbb{R}^2$ и $(x_0,y_0)\in X$ 1. т. (x_0,y_0) - т. на локален максимум, ако $\exists B_\sigma(x_0,y_0)\subset X: \forall (x,y)\in B_\sigma(x_0,y_0): f(x,y)\leq f(x_0,y_0)$ 2. т. (x_0,y_0) - т. на локален минимум, ако $\exists B_\sigma(x_0,y_0)\subset X: \forall (x,y)\in B_\sigma(x_0,y_0): f(x,y)\geq f(x_0,y_0)$

Теорема (НУ за лок. екстремум)

Нека f(x,y) е деф. върху $B_{\sigma}(x_0,y_0)$ и т. (x_0,y_0) - лок. екстремум \Rightarrow Ако \exists някоя от частните пр. на f в т. (x_0,y_0) , то тя е равна на), т.е. $\partial f(x_0,y_0)$ $\partial f(x_0,y_0)$

$$\exists (\frac{\partial f(x_0,y_0)}{\partial x},\frac{\partial f(x_0,y_0)}{\partial y}) = 0$$

Доказателство:

Нека $\exists \frac{\partial f(x_0,y_0)}{\partial x}$ и т. (x_0,y_0) - точка на локален максимум $\Rightarrow \exists B_{\sigma'}(x_0,y_0): \forall (x,y) \in B_{\sigma'} \Rightarrow f(x,y) \leq f(x_0,y_0).$ Сега разглеждаме функцията $\varphi(x)=f(x,y_0)$ върху $(x_0-\sigma',x_0+\sigma')$ тогава $\forall x \in (x_0-\sigma',x_0+\sigma'): \varphi(x)=f(x,y_0) \leq f(x_0,y_0)=\varphi(x_0)$ следователно т. x_0 - т. на лок максимум за $\varphi(x) \Rightarrow$ (Т.К.) $\Rightarrow \varphi'(x_0)=0$, т.е. $\frac{\partial f(x_0,y_0)}{\partial x}=0$ Аналогично по y.

Дефиниция

Точка
$$(x_0,y_0)$$
 такава, че $\dfrac{\partial f(x_0,y_0)}{\partial x}=0$ и $\dfrac{\partial f(x_0,y_0)}{\partial y}=0$

се нарича стационарна точка.

Картинка: Картинката е много готина, но уви... няма я

Теорема: Достатъчно условие

Нека f(x,y) е непрекъсната заедно с всички прозиводни до втори ред в $O(x_0,y_0)$ и е такава, че:

$$\begin{split} \frac{\partial \dot{f}(x_0,y_0)}{\partial x} &= \frac{\partial f(x_0,y_0)}{\partial y} = 0 \\ \text{и нека } D(x_0,y_0) &= \frac{\partial^2 f(x_0,y_0)}{\partial x^2} \cdot \frac{\partial^2 f(x_0,y_0)}{\partial y^2} - \Big[\frac{\partial^2 f(x_0,y_0)}{\partial x \partial y}\Big]^2 \end{split}$$

Тогава ако:

 $1.D(x_0,y_0)>0\Rightarrow$ т. (x_0,y_0) е точка на лок. екстремум, при това ако

1.1.
$$\dfrac{\partial^2 f(x_0,y_0)}{\partial x^2}>0\Rightarrow$$
 т. x_0,y_0 - точка на локален минимум;

1.2.
$$\dfrac{\partial^2 f(x_0,y_0)}{\partial x^2} < 0 \Rightarrow$$
 т. x_0,y_0 - точка на локален максимум;

 $2.D(x_0,y_0) < 0 \Rightarrow$ т. (x_0,y_0) не е точка на лок. екстремум.