(2) 다음의 문제 크기 n에 대해 알고리즘 A, B가 종료될 때까지의 시간을 측정하여 다음 테이블에 작성하라. (초 단위)

n	알고리즘 A	알고리즘 B
5,000	1.49113	0.03025
10,000	6.73383	0.06475
15,000	13.68088	0.10247
20,000	23.97265	0.14167
30,000	57.45465	0.23831
40,000	104.61178	0.29572
80,000		0.63970

(3) n개의 데이터에 대해 알고리즘 A의 수행시간을 fA(n), 알고리즘 B의 수행시간을 fB(n)로 표현한다. (2)항의 테이블 값을 이용해서 n'/n =2, 3, 4 일 때 fA(n')/fA(n), fB(n')/fB(n)의 평균값을 계산하라. 즉, 데이터의 크기가 2배, 3배, 4배 될 때 수행시간의 비율을 구하는 것이다.

n'/n	fA(n')/fA(n)	fB(n')/fB(n)
2	4.15984609	2.18093738
3	8.85354001	3.53395067
4	15.8060457	4.58861107

(4) (3)의 결과에서 관찰한 내용과 n=40,000일 때의 결과를 이용하여 n=50,000,000 일 때의 알고리 즘 A의 수행시간을 추정한다. 추정 결과를 year 단위로 표시하라. 추정 방법에 대해 설명한다.

n	Α	В	n'/n	fA(n')/fA(n)	fB(n')/fB(n)			
5,000	1.49113	0.03025	2	4.15984609	2.180937384			
10,000	6.73383	0.06475	3	8.85354001	3.533950668			
15,000	13.68088	0.10247	4	15.8060457	4.588611066			
20,000	23.97265	0.14167						
30,000	57.45465	0.23831						
40,000	104.61178	0.29572						
80,000	><	0.6397						
SUMMARY O	UTPUT							
							연	
	Statistics				fA(50,000,000)/fA(40,000)	7271.011933		
Multiple R	0.99378874				fA(40,000)	104.61178		
R Square	0.98761607				fA(50,000,000)	760633.5008	0.02411953	
Adjusted R So								
Standard Erro	0.92215605							
Observations	3							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	67.8169827	67.8169827	79.7498042	0.070992074			
Residual	1	0.85037178	0.85037178					
Total	2	68.6673544						
	Coefficients	Standard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-7.8628221	2.02734562	-3.8783827	0.16064669	-33.62269063	17.89704634	-33.62269063	17.89704634
n'/n	5.8230998	0.65206279	8.93027459	0.07099207	-2.462143566	14.10834317	-2.462143566	14.10834317

답: 0.2411953 year

(3)항의 테이블을 가지고 엑셀에서 선형회귀분석을 통해, Y절편과 n에 대한 계수를 구할 수 있다. fA(n')/fA(n) = -7.8628221+ 5.8230998 * (n'/n)의 식을 가진다. n'/n에 50,000,000 / 40,000 = 1,250 을 대입

하면, 7271.011933(초)가 나온다. fA(50,000,000) = fA(40,000) * 7,271.011933 = 760,633.5008 이를 연 단위로 환산하면 760,644,5008 / (60*60*24*365) =0.2411953이 나온다.

(5) (2)의 결과를 이용하여 가로축이 n, 세로축이 시간인 그래프에 fB(n)를 표시하라. 이 그래프를 an log(2)n 함수로 표시할 때 a값을 추정하라. 추정 방법을 설명한다.

답: 4.90938E-07

T(n) = a * n * log2(n)

a = T(n) / (n * log2(n))

이 식을 통해 n에 5,000부터 80,000까지 대입해보면

4.92362E-07

4.87292E-07

4.92431E-07

4.95776E-07

5.34111E-07

4.83591E-07

4.90938E-07

이 나온다.

따라서 a 는 80,000 의 경우를 대표삼아 4.90938E-07 로 추정된다.

(6) (5)의 결과를 이용하여 알고리즘 B를 컴퓨터로 1분간 수행할 때 해결할 수 있는 문제의 크기 n'를 추정하라. 추정 방법을 설명한다.

답: 5,460,741

60(초) >= 4.90938E-07 * n * log2(n) 의 부등식을 푼다.

파이썬 코드로 while 문을 돌려 풀면,

해당하는 값을 구할 수 있다.