Recitation Class 8

Zexi Li

lzx12138@sjtu.edu.cn

2021.07.27

Outline

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal-Oxide-Semiconductor Field-Effect Transistor: Additional Concepts

MOSFET

Enhancement mode: the semiconductor substrate is not inverted directly under the oxide with zero gate voltage.

Depletion mode: a p-channel region exists under the oxide with 0V applied to the gate.

MOSFET

(a) p-channel enhancement MOSFET

(b) p-channel depletion MOSFET

V_{GS} - V_T

Figure: (a) $V_{GS} < V_T$, (b) $V_{GS} > V_T$

FOY HAUS

- $ightharpoonup V_{GS} < V_T$: no inversion layer, no current.
- $ightharpoonup V_{GS} > V_T$: inversion layer created, current flow from drain to source.

V_{DS} when $V_{GS} > V_T$

 $ightharpoonup V_{DS}$ low ($V_{GS} < V_{GS} - V_T$): act as a controllable resistor.

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS}$$

 $ightharpoonup G_{DS}$ high $(V_{DS} \geq V_{GS} - V_T)$: saturation

$$I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$
 (saturation)

V_{GS} - V_T

After pinch off: the electrons are injected into the space charge region where they are swept by the E-field to the drain contact.

Transconductance

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}$$

$$= \begin{cases} \mu_{n} C_{ox} \frac{W}{L} V_{DS}, & 0 < V_{DS} < V_{GS} - V_{T} \\ \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}), & V_{DS} > V_{GS} - V_{T} \end{cases}$$

Substrate Bias Effects

$$V_{SB}=0: \quad Q_{SD}'(ext{max})=-\sqrt{2earepsilon_sN_a(2\phi_{fp})}$$

$$V_{SB} > 0$$
: $Q'_{SD} = -\sqrt{2e\varepsilon_s}N_a(2\phi_{fp} + V_{SB})$

$$\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{ox}} = \frac{\sqrt{2e\varepsilon_s N_a}}{C_{ox}} \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

where $\Delta V_T = V_T(V_{SB} > 0) - V_T(V_{SB} = 0)$ for NMOS.

Substrate Bias Effects

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

 $\label{lem:chapter 11 - Metal-Oxide-Semiconductor Field-Effect Transistor: \\ Additional Concepts$

I - Subthreshold Conduction (Leakage Current)

Figure: Comparison of ideal and experimental plots of $\sqrt{I_D}$ versus V_{GS} .

When
$$V_{GS} < V_T$$
, $I_D \propto \exp\left(rac{qV_{GS}}{nkT}
ight)$

I - Subthreshold Conduction (Leakage Current)

Slope Factor: defined to be the inverse slope of the $log(I_D)$ vs. V_{GS} characteristic in the subthreshold region.

$$S = n \left(\frac{kT}{q} \ln(10) \right)$$
 (Volts per decade)

II - Channel Length Modulation

III - Velocity Saturation

$$I_{DSAT}=WC_{
m ox}\left[V_{GS}-V_T-rac{V_{DSAT}}{2}
ight]v_{sat}$$
 where $V_{DSAT}=rac{L}{\mu_0}v_{sat}$.

IV - Short Channel Effect

End