获得的答案

Given CFG (Context-free Grammar) is

$$A \to BAB \mid B \mid \varepsilon$$
$$B \to 00 \mid \varepsilon$$

Now, construct an equivalent CFG (Context-free Grammar) in Chomsky normal form.

Chomsky normal form:

A context i– free grammar s in **Chomsky normal form** if every rule is of the form

$$A \to BC$$
$$A \to a$$

Here, a is terminal,

A, B and C are variables,

In addition, it permits the rule $S \to \mathcal{E}$, here S is the start variable.

convert the given CFG into an equivalent CFG in Chomsky normal form.

Let's add a new start variable S_0 and the rule $S_0 \to A$.

Thus the obtained grammar is

$$\begin{split} S_0 &\to A \\ A &\to BAB \mid B \mid \varepsilon \\ B &\to 00 \mid \varepsilon \end{split}$$

In the addition of new start variable guarantees that the start variable doesn't occur on the right-hand side of a rule.

Removing all rules that containing arepsilon .

Removing $A \rightarrow \varepsilon$ and $B \rightarrow \varepsilon$ gives

$$\begin{split} S_0 &\to A \mid \mathcal{E} \\ A &\to BAB \mid BA \mid AB \mid A \mid B \mid BB \\ B &\to 00 \end{split}$$

The rule $S_0 \to \varepsilon$ is accepted since S_0 is the start variable and that is allowed in Chomsky normal form.

Now remove the unit rules.

Removing $A \rightarrow A$ gives

$$\begin{split} S_0 &\to A \mid \varepsilon \\ A &\to BAB \mid BA \mid AB \mid B \mid BB \\ B &\to 00 \end{split}$$

Removing $S \rightarrow B$ gives

$$\begin{split} S_0 &\to A \mid \varepsilon \\ A &\to BAB \mid BA \mid AB \mid 00 \mid BB \\ B &\to 00 \end{split}$$

Removing $S_0 \to S$ gives

$$\begin{split} S_0 &\rightarrow BAB \mid BA \mid AB \mid 00 \mid BB \mid \varepsilon \\ A &\rightarrow BAB \mid BA \mid AB \mid 00 \mid BB \\ B &\rightarrow 00 \end{split}$$

Now replace ill placed terminals 0 by variable U with new

$$\begin{split} S_0 &\to BAB \mid BA \mid AB \mid UU \mid BB \mid \varepsilon \\ A &\to BAB \mid BA \mid AB \mid UU \mid BB \\ B &\to UU \\ U &\to 0 \end{split}$$

Shorten the right-hand side of rules with only 2 variables each.

To shorten the rules, replace $S_0 \to BAB$ with two rules $S_0 \to BA_1$ and $A_1 \to AB$.

The rule $A \to BAB$ is replaced by the two rules $A \to BA_2$ and $A_2 \to AB$.

After replacing these rules, the final Context-free grammar in Chomsky normal form is $G = (V, \Sigma, R, S_0)$.

Here the set of variables is $V = \{S_0, S, B, U, A_1, A_2\}$,

the start variable is S_0 .

 $A_1 \rightarrow AB$

The set of terminals is $\Sigma = \{0\}$, and the rules R are given by

$$\begin{split} S_0 &\to BA_1 \mid BA \mid SB \mid UU \mid BB \mid \varepsilon \\ A &\to BA_1 \mid BA \mid SB \mid UU \mid BB \\ B &\to UU \\ U &\to 0 \end{split}$$

This is the final CFG in Chomsky normal form equivalent to the given CFG.