

Concours d'accès en 1^{ère} année des ENSA Maroc **Juillet 2021**

Epreuve de Mathématiques

Durée : 1H30 min

Non autorisés : Calculatrices, téléphones, smartwatchs et tous types de documents

Q1. Une condition néces	saire (pas forcément suffisan	te) pour réussir le concou	rs de l'ENSA est :		
A) Avoir répondu correctement à tout le QCM	B) Avoir au plus 25% de réponses fausses	C) Avoir au moins 50% de réponses correctes	D) Avoir passé le concours		
Q2. Le 17 juillet 2021, jo Quel jour de la sema	our du concours de l'ENSA, e nine sera le 29 février 2024 ?	st un samedi.	di		
A) mardi	B) jeudi	C) samedi	D) lundi		
Q3. Le nombre de divise	eurs de N = $72^{10} \times 162^{50}$ est :	7			
A) 17600	B)17680	C) 17820	D) 17901		
Q4. Soient x et y deux r avec la somme de le	éels non nuls, inverses l'un de eurs carrés est égale à 10. Le	e l'autre, tels que la somme carré du nombre <i>x</i> vaut :	e du carré de leur somme		
A) $2 - \sqrt{3}$ ou $2 + \sqrt{3}$	B) $1 - \sqrt{5}$ ou $1 + \sqrt{5}$	C)1 – $\sqrt{3}$ ou 1 + $\sqrt{3}$	D)2 $-\sqrt{5}$ ou 2 $+\sqrt{5}$		
Q5. Le produit $\prod_{k=0}^{9} {}^{3.2}\sqrt[k]{5} =$					
$A) \sqrt[3]{\frac{511}{5^{256}}}$	$B) \sqrt[3]{\frac{1023}{5256}}$	$C) \sqrt[3]{\frac{1023}{5^{\frac{1023}{512}}}}$	$D) \sqrt[3]{5^{\frac{511}{1024}}}$		

				or in	
Q6.	W	$\lim_{n\to+\infty}3^n$	2 ⁻³ⁿ =		
	4	,ri/ 4-1		9	
A) 1		B) 0	C) +∞	D) e	
Q7. En ren	narquant que p	our tout n ∈ IN, le nombr	$= (3+\sqrt{5})^n + (3-\sqrt{5})^n$	est un entier pair,	
	ų m.	$\lim_{n\to+\infty}\sin\Big(\big(3+$	$(\sqrt{5})^n\pi$. 1. 25 11 7	
A) 1	4	B) -1	c) 0	<i>D</i>) +∞	
Q8.	44.7	$\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x}{x}$	$\frac{x - \cos x}{-\frac{\pi}{6}} =$	Lac	
A) 0	- 6	B) 1	c) 2	D) +∞	
$\lim_{x\to 0^+} x^{\left(\frac{1}{\ln 3x}\right)} =$					
A) e		B) 0	C) ln 3	D) 1 + e	
	oit $f: \mathbb{R} \to \mathbb{R}$ tors:	une fonction T périodique a	$\operatorname{vec} T > 0, \text{ telle que } \lim_{x \to +\infty} f$	(x) existe dans IR^* .	
	strictement oissante	B) f est strictement décroissante	C) f est la fonction nulle	D) f est une constante non nulle	

Q11. Soit la fonction f définie par :

$$f(x) = \begin{cases} x^2 + x^3 \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$$

Soit f' la dérivée d'ordre 1 de f.

A) f'(0) = 1

B) f'(0) = 0

C) f'(0) = 2

D) f n'est pas dérivable en 0

Q12. Pour la même fonction f de Q11, on note f'' sa dérivée d'ordre 2. Alors :

 $A) f^*(0) = 0$

B) f''(0) = 1

C) f''(0) = 2

D) f n'est pas deux fois dérivable en 0

Q13. L'aire de la région délimitée par la courbe d'équation $y = \cos(\ln x)$ et les droites d'équations $x = e^{\frac{\pi}{2}}$ et $x = e^{\pi}$ est égale à:

 $A) \frac{1}{2} \left(e^{\pi} + e^{\frac{\pi}{2}} \right)$

 $B) e^{\pi} - e^{\frac{\pi}{2}}$

 $C) e^{\pi} + e^{\frac{\pi}{2}}$

D) e^{π}

Q14. Soit $f: [0; \alpha] \to IR$ continue telle que $f(x) \neq -1$ et f(x). $f(\alpha - x) = 1$

$$\int_0^\alpha \frac{1}{1+f(x)} \ dx =$$

 $A)\frac{\alpha}{2}$

Β) α

C) $1 + \alpha$

 $D) \frac{1}{1+\alpha}$

Q15. Soit la fonction réelle

 $f(x) = e^{-x} \sin{(x)}$

et $f^{(4)}$ sa dérivée d'ordre 4, alors :

$$f^{(4)}(x) =$$

A) - f(x)

B)-4f(x)

C) 4f(x)

D) - 3f(x)

Q16. Pour la même fonction f de Q15,

$$\int_0^\pi f(x)\ dx =$$

A)
$$\frac{1}{3}(1-e^{-\pi})$$

$$B)^{\frac{1}{2}}(1+e^{-\pi})$$

$$C)^{\frac{1}{4}}(1-e^{-\pi})$$

$$D)\frac{1}{5}(1+e^{-\pi})$$

Q17. Soit u la solution de l'équation à variable complexe :

$$z\bar{z} + 4iz = -3 + 4i$$

Alors:

A)
$$Re(u) \times Im(u) = 2$$

B) $Re(u) \times Im(u) = 1$

C)
$$Re(u) + Im(u) = 2$$

D) u est un imaginaire pur

Q18. Soient z_1 et z_2 les solutions de l'équation à variable complexe :

$$z^2 - 2\overline{z} + 3 = 0$$

$$Re\left(\frac{z_1}{z_2}\right) =$$

$$A)-\frac{2\sqrt{6}}{7}$$

$$B) \frac{2\sqrt{6}}{7}$$

$$C)\frac{5}{7}$$

$$(D) - \frac{5}{7}$$

Q19. Soient θ un nombre réel non nul et z un nombre complexe tels que : $z = \cos^2 \theta + i \sin \theta \cos \theta$.

La partie réelle du nombre z^{-3} est :

$$A) \frac{\cos \theta}{\sin^3 \theta}$$

B)
$$\frac{\sin 3\theta}{\sin^3 \theta}$$

$$C)\frac{\cos 3\theta}{\cos^3\theta}$$

$$D)\frac{\sin\theta}{\cos^3\theta}$$

Q20. Le nombre $\cos 5\theta$ est égal à :

$$+10\cos^3\theta\sin^2\theta$$

$$+5\cos\theta\sin^4\theta$$

B)
$$\cos^5\theta$$

$$+5\cos^3\theta \sin^2\theta$$

$$+10\cos\theta\sin^4\theta$$

C)
$$\cos^5\theta$$

$$-10\cos^3\theta\sin^2\theta$$

$$+\cos\theta\sin^4\theta$$

D)
$$\cos^5\theta$$

$$-10\cos^3\theta\sin^2\theta$$

+
$$5\cos\theta\sin^4\theta$$