REGULARITY FOR A CLASS OF (NON)VARIATIONAL PROBLEMS WITH (NON)STANDARD GROWTH

University of Ottawa Colloquium in Mathematics and Statistics

Sumiya Baasandorj University of Ottawa September 25, 2025

1. Outline

- Variational approach: Orlicz double phase functional
- Special functionals
- Starting Point: De Giorgi-Nash-Moser Theory
- 4 Nonvariational Approach: Theory of viscosity solutions
- 5 Starting point: Krylov-Safanov theorem
- 6 Monge-Ampére equation and Optimal Transport

VARIATIONAL APPROACH: ORLICZ DOUBLE PHASE FUNCTIONAL

3. Orlicz double phase functional (ODP)

$$W^{1,1}(\Omega) \ni v \mapsto \mathcal{P}(v,\Omega) := \int_{\Omega} \left[G(|\nabla v|) + a(x)H(|\nabla v|) \right] dx, \tag{1}$$

where

- $\Omega \subset \mathbb{R}^n$, $n \ge 2$, is a bounded open subset
- Sobolev space $W^{1,1}(\Omega) = \{ v \in L^1(\Omega) : \text{weak derivative } \nabla v \in L^1(\Omega; \mathbb{R}^n) \}$

$$\int_{\Omega} v \nabla \varphi \, dx = -\int_{\Omega} \nabla v \varphi \, dx \quad \forall \varphi \in C_c^{\infty}(\Omega)$$

- $G, H: [0, \infty) \to [0, \infty) \text{ are } N\text{-functions of class } C^1([0, \infty)) \cap C^2((0, \infty))$ such that there exist constants c_G, c_H satisfying

$$\frac{1}{c_G} \le \frac{G''(t)t}{G'(t)} \le c_G \quad \text{and} \quad \frac{1}{c_H} \le \frac{H''(t)t}{H'(t)} \le c_H \quad (\forall t > 0)$$
 (2)

5 $0 \le a(\cdot) \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1]$.

4. Motivation¹²

- Modelling of strongly anisotropic materials
- Elasticity
- Homogenization
- Lavrentiev phenomenon

¹(V.V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C.

R . Acad. Sci. Paris. Sér. I Math 316 (1993))

²(V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Math. 1986)

5. Musialek-Orlicz space

■ We define the complementary function Φ^* of Φ by

$$\Phi^*(x,t) = \sup_{s \ge 0} (st - \Phi(x,s))$$

Musielak-Orlicz space associated to Φ

$$L^{\Phi}(\Omega) := \operatorname{span} \left\{ v : \Omega \to \mathbb{R} : \int_{\Omega} \Phi(x, |v(x)|) \, dx < \infty \right\}.$$

Properties³

■ If Φ satisfies (2), then $L^{\Phi}(\Omega)$ is a Banach space under the Luxemburg norm

$$\|v\|_{L^{\Phi}(\Omega)} = \inf \left\{ \sigma > 0 : \int\limits_{\Omega} \Phi\left(x, \frac{|v(x)|}{\sigma}\right) dx \le 1 \right\}$$

If Φ satisfies (2), $L^{\Phi^*}(\Omega)$ is a Banach space under the corresponding Luxemburg norm.

6. Musielak-Orlicz-Sobolev space

Musielak-Orlicz-Sobolev space associated to Φ

$$W^{1,\Phi}(\Omega) \coloneqq \operatorname{span}\left\{v \in L^\Phi(\Omega): \text{ weak gradient } \nabla v \in L^\Phi(\Omega;\mathbb{R}^n)\right\}.$$

Properties³

■ If Φ satisfies (2), $W^{1,\Phi}(\Omega)$ is a Banach space under the Luxemburg norm

$$\|v\|_{W^{1,\Phi}(\Omega)}\coloneqq \|v\|_{L^\Phi(\Omega)} + \|\nabla v\|_{L^\Phi(\Omega;\mathbb{R}^n)}\,.$$

■ If Φ satisfies (2), $W^{1,\Phi^*}(\Omega)$ is a Banach space.

Example:

- If $\Phi(x,t) = t^p \ (p > 1)$, then $W^{1,\Phi}(\Omega) = W^{1,p}(\Omega)$ and $\Phi^*(x,t) = t^{\frac{p}{p-1}}$.
- In particular, $\Phi(x,t) = t^2$, then $W^{1,\Phi}(\Omega) = W^{1,2}(\Omega) = H^1(\Omega)$ and $\Phi^*(x,t) = t^2$.

³(P. Harjulehto and P. Hästö, Orlicz spaces and Generalized Orlicz spaces, Lecture notes in Mathematics, 2019)

7. Principle question

- Q1 Discovering suitable optimal conditions to be replaced on nonlinearity under which we prove
- Q2 a local minimizer u of ODP functional is regular suitably:
 - Existence of a solution in a given class of functions,
 - Uniqueness of minima satisfying same boundary condition.
 - Boundedness.
 - Harnack's inequality,
 - Hölder continuity,
 - Sobolev regularity,
 - Lipschitz regularity,

 - Gradient Hölder continuity,
 - Smoothness and analiticity if they are obtainable.

8. Minima

Definition of a minimizer⁴

A function $u \in W^{1,1}(\Omega)$ is a local minimizer of the functional \mathcal{P} in (1) if

- 1. $\Phi(x, |\nabla u|) = G(|\nabla u|) + a(x)H(|\nabla u|) \in L^1(\Omega)$,
- 2. The minimality condition

$$\int_{\operatorname{supp}(u-w)} \Phi(x, |\nabla u|) \, dx \le \int_{\operatorname{supp}(u-w)} \Phi(x, |\nabla w|) \, dx$$

is satisfied whenever $w \in W^{1,1}(\Omega)$ is such that supp $(u - w) \in \Omega$.

⁴(E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing, 2003)

9. Euler-Lagrange equation

Euler-Lagrange equation

Let $u \in W^{1,1}(\Omega)$ be a local minimizer of ODP functional \mathcal{P} . A function $\mathbb{R} \ni t \mapsto f(t) := \mathcal{P}(u + t\varphi, \Omega)$ attains its minimimum at t = 0 for every $\varphi \in C_0^{\infty}(\Omega)$.

Then $\int \langle \frac{G'(|\nabla u|)}{|\nabla u|} \nabla u + a(x) \frac{H'(|\nabla u|)}{|\nabla u|} \nabla u, \nabla \varphi \rangle = 0 \quad (\forall \varphi \in C_0^{\infty}(\Omega))$

 $\operatorname{div}\left(\frac{G'(|\nabla u|)}{|\nabla u|}\nabla u + a(x)\frac{H'(|\nabla u|)}{|\nabla u|}\nabla u\right) = 0 \quad \text{in} \quad \Omega$

(3)

Definition of a weak solution

$$u \in W^{1,1}(\Omega)$$
 is called a weak solution of Orlicz double phase equation

$$u \in W^{1,1}(\Omega)$$
 is called a weak solution of Orlicz double phase equation

if
$$\int \langle \frac{G'(|\nabla u|)}{|\nabla u|} \nabla u + a(x) \frac{H'(|\nabla u|)}{|\nabla u|} \nabla u, \nabla \varphi \rangle = 0$$

holds true for all $\varphi \in W_0^{1,1}(\Omega)$ with $\Phi(x, |\nabla \varphi|) \in L^1(\Omega)$.

Hölder continuity of minima

Theorem 1 (B.-Byun, [Memoirs of AMS 2025])

Let $u \in W^{1,1}(\Omega)$ be a local minimizer of ODP functional \mathcal{P} or a weak solution of ODP equation. If one of the following assumptions

$$\begin{cases}
\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + [G(\rho)]^{1+\frac{\alpha}{n}}} < \infty, \\
\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}} G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega) \\
\text{or}
\end{cases} \tag{4a}$$

$$\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\alpha} G(\rho)} < \infty \text{ and } u \in L^{\infty}(\Omega)$$
 (4c)

is satisfied, then $u \in C_{loc}^{0,\theta}(\Omega)$ for some $\theta \in (0,1)$. Moreover, for every $\Omega_0 \in \Omega$, we have

$$||u||_{L^{\infty}(\Omega_0)} + [u]_{C^{0,\theta}(\Omega_0)} \leq C(\mathbf{data}, \Omega_0)$$

11. Harnack's inequality

Theorem 2 (B.-Byun, [Memoirs of AMS 2025])

Let $u \in W^{1,1}(\Omega)$ be a nonnegative local minimizer of ODP functional \mathcal{P} or a nonnegative weak solution of ODP equation. If one of the following assumptions

$$\begin{cases} \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + [G(\rho)]^{1+\frac{\alpha}{n}}} < \infty, & (5a) \\ \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\alpha}G(\rho)} < \infty \text{ and } u \in L^{\infty}(\Omega), & (5b) \end{cases}$$

$$\begin{cases} \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}}G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), & (5c) \end{cases}$$

$$\underset{\rho>0}{\sup} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n-\kappa}}G(\rho)} < \infty \text{ and } u \in C^{0,\gamma}(\Omega) & (5d) \end{cases}$$

$$\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}} G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), \tag{5c}$$

$$\sup_{\alpha>0} \frac{H(\rho)}{G(\alpha) + \rho^{\frac{\alpha}{1-\gamma}}G(\alpha)} < \infty \text{ and } u \in C^{0,\gamma}(\Omega)$$
 (5d)

is satisfied, for every ball $B_R \subset \Omega_0 \in \Omega$, we have

$$\sup_{B_R} u \le c(\mathbf{data}, \Omega_0) \inf_{B_R} u.$$

12. Morrey decay

Theorem 3 (B.-Byun, [Memoirs of AMS 2025])

Let $u \in W^{1,1}(\Omega)$ be a local minimizer of ODP functional \mathcal{P} or a weak solution of ODP equation. If one of the following assumptions

If one of the following assumptions
$$\begin{cases} \sup \frac{H(\rho)}{G(\rho) + [G(\rho)]^{1+\frac{\alpha}{n}}} < \infty, & \text{(6a)} \\ \sup \frac{H(\rho)}{G(\rho) + \rho^{\alpha}G(\rho)} < \infty \text{ and } u \in L^{\infty}(\Omega), & \text{(6b)} \end{cases}$$

$$\begin{cases} \sup \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}}G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), & \text{(6c)} \\ \sup \frac{H(\rho)}{\rho > 0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n-\kappa}}G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), & \text{(6d)} \end{cases}$$

(6c)

$$\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha}{1-\gamma}} G(\rho)} < \infty \text{ and } u \in C^{0,\gamma}(\Omega)$$
 (6d) is satisfied, then $u \in C^{0,\theta}_{\text{loc}}(\Omega)$ for every $\theta \in (0,1)$. Moreover, for every $\sigma \in (0,n)$, it holds, whenever $B_r \subset B_R \subseteq \Omega$ with $R \le 1$ are concentric balls,

 $\int_{B} \Phi(x, |\nabla u|) dx \lesssim \left(\frac{r}{R}\right)^{n-\sigma} \int_{B_{R}} \Phi(x, |\nabla u|) dx$

13. Maximal regularity

Theorem 4 (B.-Byun, [Memoirs of AMS 2025])

Let $u \in W^{1,1}(\Omega)$ be a local minimizer of ODP functional \mathcal{P} or a weak solution of ODP equation. If any of the following assumptions

$$\begin{cases} \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + [G(\rho)]^{1+\frac{\alpha}{n}}} < \infty, \\ \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\alpha}G(\rho)} < \infty \text{ and } u \in L^{\infty}(\Omega), \\ \sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}}G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), \end{cases}$$
(7b)

$$\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha\kappa}{n+\kappa}} G(\rho)} < \infty \text{ and } u \in L^{\kappa}(\Omega), \tag{7c}$$

or
$$\sup_{\rho>0} \frac{H(\rho)}{G(\rho) + \rho^{\frac{\alpha}{1-\gamma}}G(\rho)} < \infty \text{ and } u \in C^{0,\gamma}(\Omega)$$
 (7d)

is satisfied, then there exists an exponent $\theta \equiv \theta(n, s_G, s_H, \alpha) \in (0, 1)$ such that $\nabla u \in C^{0,\theta}_{loc}(\Omega)$.

SPECIAL FUNCTIONALS

15. Special Double phase functionals

(p,q)-double phase functional introduced by Zhikov is the hardest one to treat

$$W^{1,1}(\Omega) \ni v \mapsto \int_{\Omega} (|\nabla v|^p + a(x)|\nabla v|^q) dx, \quad 1$$

and its borderline case

$$W^{1,1}(\Omega) \ni v \mapsto \int_{\Omega} (|\nabla v|^p + a(x)|\nabla v|^p \log(e + |\nabla v|)) \ dx, \quad 1 < p$$

TITLE	CITED BY	YEAR
Regularity results for stationary electro-rheological fluids E Acerbi, G Mingione Archive for Rational Mechanics and Analysis 164, 213-259	812	2002
Regularity results for a class of functionals with non-standard growth E Aceth, G Mingione Archive for Rational Mechanics and Analysis 156 (2), 121-140	683	2001
Regularity for double phase variational problems M Colombo, G Mingione Archive for Rational Mechanics and Analysis 215 (2), 443-496	631	2015
Bounded minimisers of double phase variational integrals M Colombo, G Minipione Archive for Rational Mechanics and Analysis 218 (1), 219-273	546	2015
Regularity for general functionals with double phase P Baroni, M Colombo, G Minglione Calculus of Variations and Partial Differential Equations 57 (2), 62	544	2018

16. References for special double phase functionals

Maria Colombo

Professor, <u>EPFL Lausanne</u> Verified email at epfl.ch - <u>Homepage</u> Mathematical analysis

TITLE	CITED BY	YEAR
Regularity for double phase variational problems M Colombo, G Mingione Archive for Rational Mechanics and Analysis 215 (2), 443-496	638	2015
Bounded minimisers of double phase variational integrals M Colombo, G Mingione Arch. Ration. Mech. Anal 218 (1), 219-273	548	2015
Regularity for general functionals with double phase P Baroni, M Colombo, G Mingione Calculus of Variations and Partial Differential Equations 57 (2), 62	546	2018
Harnack inequalities for double phase functionals P Baroni, M Colombo, G Mingione Nonlinear Analysis: Theory, Methods & Applications 121, 206-222	400	2015
Non-autonomous functionals, borderline cases and related function classes P Baroni, M Colombo, G Mingione St. Petersburg Mathematical Journal 27 (3), 347-379	325	2016
Calderón–Zygmund estimates and non-uniformly elliptic operators M Colombo, G Mingione Journal of Functional Analysis 270 (4), 1416-1478	256	2016

17. Laplacean: $\Phi(x,t) = t^p$ or G(t)

p-Laplace energy or equation⁵:

$$W^{1,1}(\Omega) \ni v \mapsto \int_{\Omega} |\nabla v|^p dx \longleftrightarrow \operatorname{div}(|\nabla v|^{p-2} \nabla v) = 0 \text{ in } \Omega$$

Motivation: Conformal Geometry, Optimal Matching problem (Ladyzheskaya, Uraltseva, Evans, Giaquinta, Giusti, Lewis, Lindqvist, Manfredi, Uhlenbeck, and many others)

■ *G*-Laplace energy or equation⁵:

$$W^{1,1}(\Omega)\ni v\mapsto \int_{\Omega}G(|\nabla v|)\,dx\longleftrightarrow \operatorname{div}\left(\frac{G'(|\nabla v|)}{|\nabla v|}\nabla v\right)=0\ \text{in}\ \Omega$$

(Diening, Stroffolini, Verde, Lieberman, Byun, and many others)

⁵(G. Mingione and V. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, JMAA, 2021)

18. Many other examples

- $\Phi(x,t) = t^p \log^{\ell}(e+t) + a(x)t^q \log^m(e+t)$ (Zygmund double phase)
- $\Phi(x,t) = G(t) + a(x)G(t)\log(e+t)$
- $\Phi(x,t) = G(t) + a(x)G(t)\log(e + G(t))$ so on...
- Multi-phase functionals such as $\Phi(x,t) = G(t) + a(x)H_a(t) + b(x)H_b(t)$
- However, what happens if G, H do not satisfy the assumption (2)? For instance, double phase functional at linear growth given by

$$W^{1,1}(\Omega) \ni v \mapsto \int_{\Omega} (|\nabla v| \log(e + |\nabla v|) + a(x) |\nabla v|^q) dx$$

is investigated, see a recent reference ⁶⁷.

⁶(G. Mingione and C. De Filippis, Regularity for double phase problems at nearly linear growth, ARMA, 2023)

⁷(G. Mingione and C. De Filippis, *Nonuniformly elliptic Schauder theory*, Invent. Math. 2023)

19. Key steps for proving Theorem 1-4

- Absence of Lavrentiev phenomenon.
- 2 Sobolev-Poincaré type inequalities.
- Caccioppoli type inequality.
- 4 Local boundedness of minima.
- Almost standard Caccioppoli inequality.
- **6** Hölder continuity of minima $(C_{loc}^{0,\theta}$ -regularity for some $\theta \in (0,1)$).
- Harnack's inequality.
- 8 Harmonic type approximation.
- Morrey Decay estimates $(C_{loc}^{0,\theta}$ -regularity for any $\theta \in (0,1)$.
- $C_{loc}^{1,\theta}$ -regularity of minima.

STARTING POINT: DE GIORGI-NASH-MOSER THEORY

21. Hilbert's 19th problem of regularity

Let us consider the following functional

$$v \mapsto \mathcal{F}(v) \coloneqq \int_{\Omega} F(\nabla v) dx,$$

where $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ is analytic, convex and det $\nabla^2 F > 0$.

- 1 Laplace equation: $\Delta u = 0$ corresponds to $F(\xi) = |\xi|^2$
- ¹ Minimal surface equation: $\left(\delta_{ij} \frac{u_i u_j u_{ij}}{1 + |\nabla u|^2}\right) u_{ij} = 0$ corresponds to $F(\xi) = \sqrt{1 + |\xi|^2}$

Hilbert's 19th question

Are minima of the variational integral ${\mathcal F}$ are analytic? or Whether all such Euler-Lagrange equations

$$\operatorname{div}(\nabla F(\nabla v)) = 0$$

admit only analytic solutions?

¹⁽E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing, 2003)

22. Early answers

- Bernstein, 1904: C³ solutions are analytic in two dimensional case
- Hopf, Schauder, Caccioppoli, Morrey, Leray, Liechtenstein (many others) Final outcome: $C^{1,\alpha} \Longrightarrow$ Analytic.
- Using the difference quotient techniques, we can show a minimizer u of the functional

$$v\mapsto \int_{\Omega}F(\nabla v)\,dx$$

solves Euler-Lagrange equation

$$\operatorname{div}(\nabla F(\nabla u)) = 0$$

and therefore every component $\nabla_s u$ solves

$$\nabla_i(a_{ij}(x)\nabla_i v) = 0$$
 with $a_{ij}(x) = F_{\xi_i\xi_i}(\nabla u(x))$

23. Theorem (De Giorgi-Nash-Moser)

Theorem (De Giorgi 1956, Nash 1957)

Let $v \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$\nabla_i (a_{ij}(x)\nabla_j v) = 0 \text{ in } \Omega,$$

where

$$\nu|\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le L|\xi|^2 \quad (0 < \nu \le L).$$

Then there exists an exponent $\alpha \equiv \alpha(n, L/\nu) \in (0, 1)$ such that

$$\sup_{x \in \Omega_0} |v(x)| + \sup_{x,y \in \Omega_0} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}} \le c(n, \nu, L, \Omega_0) \|v\|_{L^2(\Omega)} \quad (\Omega_0 \in \Omega)$$

Remark

De Giorgi's theorem above concerns the regularity for uniformly elliptic linear equations. However, the linearity does not play a role in his proof \odot .

NONVARIATIONAL APPROACH: THEORY OF VISCOSITY SOLUTIONS

25. A short guide to viscosity solutions

The theory of viscosity solutions applies to certain partial differential equations of the form

$$\mathcal{F}(x, u, \nabla u, \nabla^2 u) = 0 \text{ in } \Omega \subset \mathbb{R}^n, \tag{8}$$

where

■ $\mathcal{F} \equiv \mathcal{F}(x, r, \xi, M) : \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}(n) \to \mathbb{R}$ satisfies monotonicity condition

$$\mathcal{F}(x, r, \xi, N) \leq \mathcal{F}(x, s, \xi, M)$$
 whenever $r \leq s$ and $M \leq N$,

where $r, s \in \mathbb{R}$, $x \in \Omega$, $\xi \in \mathbb{R}^n$ and $M, N \in \mathcal{S}(n)$.

- $lue{}$ u stands for a real-valued continuous unknown function defined on Ω
- Gradient of u: $\nabla u = \left(\frac{\partial u}{\partial x_i}\right)$
- Hessian of u: $\nabla^2 u = \left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)$

26. Examples

■ Laplace equation: $\mathcal{F}(x, r, \xi, M) = -\operatorname{tr}(M)$

$$\Delta u = 0$$

■ p-Laplace equation: $\mathcal{F}(x,r,\xi,M) = -|\xi|^{p-2}\operatorname{tr}(M) + (p-2)|\xi|^{p-4}\operatorname{tr}((\xi \otimes \xi)M)$

$$-|\nabla u|^{p-2}\Delta u + (p-2)|\nabla u|^{p-4}\operatorname{tr}((\nabla u \otimes \nabla u)\nabla^2 u) = 0$$

- Hamilton-Jacobi-Bellman or Isaac equations for stochastic control and stochastic differential games.
- Monge-Ampére equation

$$\mathcal{F}(x,r,\xi,M) \coloneqq \begin{cases} -\det(M) + f(x,r,\xi) & \text{if } M \geq 0 \\ +\infty & \text{otherwise} \end{cases}$$

$$\det(\nabla^2 u) = f(x, u, \nabla u) \quad (u \text{ is convex})$$

■ Fully nonlinear elliptic equation: $\mathcal{F}(x, r, \xi, M)$ satisfies

$$\lambda \operatorname{tr}(N) \le F(x, r, \xi, M) - F(x, r, \xi, M + N) \le \Lambda \operatorname{tr}(N) \quad (\forall N \ge 0)$$

27. Viscosity solutions

Definition of a viscosity solution⁸

A continuous function u is called a **viscosity supersolution** of (8) if for any $x_0 \in \Omega$, for all $\phi \in C^2(\Omega)$ such that $u - \phi$ has a local minimum at x_0 , there holds

$$\mathcal{F}(x_0, u(x_0), \nabla \phi(x_0), \nabla^2 \phi(x_0)) \geqslant 0.$$

A continuous function u is called a **viscosity subsolution** of (8) if for any $x_0 \in \Omega$, for all $\phi \in C^2(\Omega)$ such that $u - \phi$ has a local maximum at x_0 , there holds

$$\mathcal{F}(x_0, u(x_0), \nabla \phi(x_0), \nabla^2 \phi(x_0)) \leq 0.$$

We say that $u \in C(\Omega)$ is a viscosity solution of (8) if u is a viscosity supersolution and subsolution simultaneously.

28. A class of nonlinear elliptic equations

We consider a class of singular/degenerate nonlinear elliptic equations

$$\mathcal{F}(x, u, \nabla u, \nabla^2 u) := A(x, u, \nabla u) F(\nabla^2 u) - f(x) = 0$$
 (9)

where

- $A(x, u, \nabla u) |\nabla u|^2 \approx \Phi(x, |\nabla u|) = G(|\nabla u|) + a(x)H(|\nabla u|)$ (Orlicz double phase integrand function)
- $F: S(n) \to \mathbb{R}$ is an operator satisfying uniform ellipticity condition

$$\lambda \operatorname{tr}(N) \le F(M) - F(M+N) \le \Lambda \operatorname{tr}(N) \quad (\forall 0 \le N \in \mathcal{S}(n))$$

 $f \in L^{\infty}(\Omega)$

Motivation:

- Transmission problems for diffusion processes in heterogeneous media with applications to
 - thermal
 - electromagnetic conductivity
 - composite materials

29. Some recent results

Theorem (B.-Byun-K.-A. Lee-S.-C. Lee)

Let $u \in C(\Omega)$ be a viscosity solution of (9) under suitably optimal assumptions on nonlineaty.

- $u \in C^{1,\alpha}_{loc}(\Omega)^{10}$.
- The existence of solution and global $C^{1,\alpha}$ estimate with Dirichlet boundary condition¹¹.

Basic ideas of the proof

- Ishii-Lions techniques and compactness arguments.
- Peron's method for the existence of a solution.

¹¹B., S.S.Byun, K.A. Lee and S.C. Lee, Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations, MZ 2024

 $^{^{10}}$ B., S.S.Byun, K.A. Lee and S.C. Lee, $C^{1,\alpha}$ -regularity for a class of degenerate/singular fully non-linear elliptic equations, IFB 2024)

STARTING POINT: KRYLOV-SAFANOV THEOREM

31. Krylov-Safanov theorem and Caffarelli's theorem

Theorem(Caffarelli, [Anal. Math. 1989])

Any $u \in C(\Omega)$ viscosity solution of

$$\mathcal{F}(x, u, \nabla u, \nabla^2 u) := F(\nabla^2 u) = 0 \text{ in } \Omega$$

is in $u \in C^{1,\alpha}_{loc}(\Omega)$ for $\alpha \equiv \alpha(n,\nu,L) \in (0,1]$.

Theorem (Krylov-Safanov ¹²)

Mathematics AMS, 1996)

Let $u \in C(\Omega)$ be a viscosity solution to

$$\mathcal{F}(x,\nabla^2 u) := -a_{ij}(x)\partial_{ij}u = 0 \text{ in } \Omega \subset \mathbb{R}^n.$$

where there exist constant $0 < \lambda \le \Lambda$ such that

$$\lambda |\xi|^2 \leq a_{ii}(x)\xi_i\xi_i \leq \Lambda |\xi|^2 \quad (\forall x \in \Omega, \, \xi \in \mathbb{R}^n)$$

Then we have $u \in C^{0,\alpha}_{loc}(\Omega)$ and it satisfies Harnack's inequality.

¹²⁽N.V. Krylov, Lectures on elliptic and parabolic PDEs in Hölder spaces, Graduate studies in

MONGE-AMPÉRE EQUATION AND OPTIMAL TRANSPORT

33. Regularity for Monge-Amperé equation

$$\mathcal{F}(x, u, \nabla u, \nabla^2 u) \coloneqq -\det(\nabla^2 u) + f(x) = 0$$
 in Ω

where

- u is convex
- $0 < \lambda < f \in L^{\infty}(\Omega) < \Lambda.$

Theorem (Caffarelli [Ann. Math. 1990])

Let u be a strictly convex function satisfying Monge-Ampére equation above in viscosity sense. Then there exists $\alpha \equiv \alpha(n,\lambda,\Lambda) \in (0,1)$ such that $u \in C^{1,\alpha}_{loc}(\Omega)$. More precisely, for every $\Omega_0 \in \Omega$, there exists a constant C depending only n,λ,Λ ,

 Ω_0 and the modulus of convexity of u such that

$$\sup_{x \neq y \in \Omega_0} \frac{\left| \nabla u(x) - \nabla u(y) \right|}{|x - y|^{\alpha}} \le C$$

Remark

There are many other discovered regularity results such as C^{∞} , $C^{2,\alpha}$, $W^{2,p}$, $W^{2,1}$ so on (Caffarelli, Figalli, De Philippis, Wang, many others)

34. Application to Optimal Transport Theory

$$W_2^2(\mu,\nu) \coloneqq \inf_{\pi \in \Pi(\mu,\nu)} \int_{\Omega_X \times \Omega_Y} \frac{|x-y|^2}{2} d\pi(x,y),$$

where

the set of transport plans

$$\Pi(\mu,\nu) \coloneqq \{ \pi \in \mathcal{P}(\Omega_X \times \Omega_Y) : \pi(A \times \Omega_Y) = \mu(A) \text{ and } \pi(\Omega_X \times B) = \nu(B) \}$$
(for any $A \subset \Omega_X$ and $B \subset \Omega_Y$ measurable subsets).

- Open, bounded, and convex sets $\Omega_X, \Omega_Y \subset \mathbb{R}^n$
- Probability measures $\mu \in \mathcal{P}(\Omega_X)$ and $\nu \in \mathcal{P}(\Omega_Y)$
- $\mu = f\mathcal{L}^n$ and $\nu = g\mathcal{L}^n$ with spt $f = \overline{\Omega}_X$ and spt $g = \overline{\Omega}_Y$
- There are positive constants λ and Λ such that

$$\lambda \leq f, g \leq \Lambda$$

35. Application to Optimal Transport Theory

Theorem(Brenier ¹³)

■ $\pi_0 \in \Pi(\mu, \nu)$ is an optimal transport plan for $W_2(\mu, \nu)$ if and only if

$$\operatorname{spt}(\pi_0) \subset \operatorname{Graph}(\partial u_0) \coloneqq \{(x, y) \in \Omega_X \times \Omega_Y : y \in \partial u_0(x)\}$$
$$= \{(x, y) \in \Omega_X \times \Omega_Y : u_0(x) + v_0(y) = \langle x, y \rangle\}$$

for a convex semicontinuous function $u_0: \Omega_X \to \mathbb{R}$, where

- $v_0 := u_0^*$ is the Legendre transform of u_0 .
- ${f u}$ ${f u}_0$ is differentiable μ -a.e. and there is a unique optimal transport plan

$$\pi_0 \coloneqq (\mathsf{Id}, \nabla u_0)_{\#} \mu$$

for $W_2(\mu,\nu)$, where ∇u_0 is called Brenier's optimal transport map from μ to ν .

¹³Y. Brenier, Polar factorization and monotone rearrangement of vector-valued function. Comm. Pure Appl. Math. 1991

36. Application to Optimal Transport Theory

Regularity of Brenier's map

■ Convex function $u_0: \Omega_X \to \mathbb{R} \cup \{+\infty\}$ (defined above) solves the so-called Monge-Ampére equation

$$g(\nabla u) \det \nabla^2 u = f$$

in the sense of Brenier (viscosity sense).

 $u_0 \in C^{1,\alpha}_{loc}(\Omega)$ by Caffarelli's regularity theorem for Monge-Ampére equation.

37. Future Research Plan

- Recently, we (with A. Gerolin and S. Di Marino) have obtained $C_{loc}^{1,\alpha}$ regularity results for potentials of entropy regularized optimal transport problems with quadratic cost. We try to obtain other regularity results for the same potential.
- Seek for potential ways to show regularity of Kantorovich potentials (without Caffarelli's results)
- Barycenter problems, optimal transport with Coulomb cost, and many others.
- Regularity for variational functionals with nonstandard growth, and nonvariational problems.¹
- ullet Parabolic double phase type problems are being investigated intensively, like 2

$$u_t - \operatorname{div}\left(\frac{G'(|\nabla u|)}{|\nabla u|}\nabla u + a(x,t)\frac{H'(|\nabla u|)}{|\nabla u|}\nabla u\right) = f$$

¹(C. De Filippis and G. Mingione, *Nonuniformly elliptic Schauder theory*, Invent. Math., (2023))

²J. Kinnunen, K. Moring and K, Wontae, *Gradient higher integrability for degenerate* parabolic double-phase systems, ARMA, 2023

³G. Friesecke, Optimal transport: A comprehensive introduction to Modeling, Analysis UOttawa Simulation, Applications, SIAM, 2025

Thank you for your attention ©.

