Problema 1.

Conte em quantas maneiras podemos cobrir um tabuleiro de dimensão $2 \times n$ com peças-dominô (ou seja, peças de dimensão $2\times 1).$

Demonstração

Seja D(n) o número de maneiras que podemos cobrir um tabuleiro de dimensão $2\times n$ com peças-dominô.

Usando o principio da adição.

$$D(0) = 1$$

 $D(1) = 1$
 $\forall n > 1D(n) = D(n-1) + D(n-2)$

$$D(n-1)$$

 $\underbrace{D(n-1)}_{\text{onde o tabuleiro começa com uma peça no vertical}}$

$$D(n-2)$$

onde o tabuleiro começa com duas peças no vertical, ou horizontal

Problema 2.

Do alfabeto $\{a,b,c\}$ desejamos formar strings de tamanho ℓ onde não aparece o substring ab. Em quantas maneiras podemos fazer isso?

Demonstração

Seja K(n) o número de maneiras que podemos formar a string de tamanho n onde não aparece a substring ab.

Usando o principio da adição.

$$K(0) = 1$$

$$K(1) = 3$$

$$K(2) = 8$$

$$\forall n > 2 \ K(n) = K(n-1) + K(n-1) + K(n-2) + K(n-2) - K(n-3)$$

$$K(n-1)$$

onde a string não começa com o caractere a $\underbrace{K(n-1)}_{K(n-2)}$ onde a string não começa com o caractere ab

$$K(n-2)$$

$$K(n-3)$$

onde a string começa com o caractere b e depois é colocado o a antes dele

Problema 3.

Definimos a \leq nos naturais assim:

$$n \le m \iff (\exists k \in \mathbb{N})[n+k=m]$$

Demonstre por indução que \leq é uma bem-ordem:

Para todo
$$A \subseteq \mathbb{N}$$
, $A = \emptyset$ ou A possui mínimo.

Dica: visualise teu alvo assim:

$$(\forall n \in \mathbb{N})(\forall A \subseteq \mathbb{N})[|A| = n \implies \text{A vazio ou possui minimo}]$$

Onde |A| denota a cardinalidade do A, ou seja, a quantidade de membros de A. Considere conhecido que:

$$\begin{aligned} |A| &= 0 \iff A = \emptyset_{(a1101)} \\ |A| &= Sn \iff (\exists a \in A)(\exists A' \subseteq A)[a \notin A' \ \& \ |A'| = n] \ \& \ (\forall x \in A)[x = a \text{ ou } x \in A']]_{(b1101)} \end{aligned}$$

Lembre-se que $m \in A$ é minimo membro de A sse $(\forall x \in A)[m \le a]$

Demonstração

Vou demonstrar a proposição.

Por indução!

BASE

Suponha |A|=0

Logo pela (a1101) $A = \emptyset$ ou A possui mínimo.

Passo Indutivo. Seja $k \in \mathbb{N}$ tal que:

$$(\forall A \subseteq \mathbb{N})[|A| = k \implies A = \emptyset$$
 ou possui minimo] (H.I)

Basta demonstrar que $(\forall A \subseteq \mathbb{N})[|A| = Sk \implies A = \emptyset$ ou possui minimo]

Seja $A \subseteq \mathbb{N}$ tal que |A| = Sk

Sejam $a \in A$ e $A' \subseteq A$ tais que $a \notin A'$ & |A'| = n & $(\forall x \in A)[x = a \text{ ou } x \in A']$

Logo $A' \subseteq \mathbb{N} \ (A' \subseteq A \subseteq \mathbb{N})$

Logo pelo H.I, $A' = \emptyset$ ou possui minimo.

Dividindo em casos

CASO
$$A' = \emptyset$$

Logo pela (b1101) $(\forall x \in A)[x = a]$

Logo A possui minimo.

CASO A' possui minimo

Seja $y \in A'$ tal que $(\forall m \in A')[y \le m]$

Logo $(\forall m \in A)[y \le m \le a \text{ ou } a \le y \le m]$

Logo A possui minimo.

Problema 4.

Faria sentido trocar o '($\exists a \in A$)' por '($\forall a \in A$)' na penúltima linha do Problema 3? Explique curtamente.

Resposta: Não, pois A^\prime não poderia ser subconjunto de A

.