Lecture 006

Classification

Edward Rubin 13 February 2020

Admin

Admin

Material

Last time Shrinkage methods

- Ridge regression
- (The) lasso
- Elasticnet

Today Classification methods

- Introduction to classification
- Linear probability models
- Logistic regression

Also: Class will end today at 11:30am.[†]

Admin

Upcoming

Readings Today ISL Ch. 4

Problem sets

- Shrinkage methods Due today
- Classification Due next week

Intro

Regression problems seek to predict the number an outcome will take—integers (e.g., number of cats), reals (e.g., home/cat value), etc. [†]

Classification problems instead seek to predict the category of an outcome

- **Binary outcomes** success/failure; true/false; A or B; cat or *not cat*; *etc*.
- Multi-class outcomes yes, no, or maybe; colors; letters; type of cat; tetc.

This type of outcome is often called a qualitative or categorical response.

† Maybe: Binary indicators... †† It turns out, all of machine learning is about cats.

Examples

For the past few weeks, we've been immersed in regression problems.

It's probably helpful to mention a few examples of classification problems.

- Using life/criminal history (and demographics?):
 Can we predict whether a defendant is granted bail?
- Based upon a set of symptoms and observations:
 Can we predict a patient's medical condition(s)?
- From the pixels in an image:
 Can we classify images as bagel, puppy, or other?

Approach

One can imagine two[†] related **approaches to classification**

- 1. Predict which category the outcome will take.
- 2. Estimate the **probability of each category** for the outcome.

That said, the general approach will

- ullet Take a set of training observations $(x_1,y_1),\,(x_2,y_2),\,\ldots,\,(x_n,y_n)$
- Build a classifier $\hat{y}_o = f(x_o)$

all while balancing bias and variance.^{††}

Q If everything is so similar, can't we use regre	ession methods?

Q If everything is so similar, can't we use regression methods? A Sometimes. Other times: No. Plus you still need new tools.

Why not regression?

Regression methods are not made to deal with multiple categories.

Ex. Consider three medical diagnoses: stroke, overdose, and seizure.

Regression needs a numeric outcome—how should we code our categories?

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if overdose} \\ 3 & \text{if seizure} \end{cases} Y = \begin{cases} 1 & \text{if overdose} \\ 2 & \text{if stroke} \\ 3 & \text{if seizure} \end{cases} Y = \begin{cases} 1 & \text{if seizure} \\ 2 & \text{if stroke} \\ 3 & \text{if overdose} \end{cases}$$

The categories' ordering is unclear—let alone the actual valuation.

The choice of ordering and valuation can affect predictions. 🐼

Why not regression?

As we've seen, binary outcomes are simpler.

Ex If we are only choosing between stroke and overdose

Option 1 Option 2
$$Y = \begin{cases} 0 & \text{if stroke} \\ 1 & \text{if overdose} \end{cases}$$
 and $Y = \begin{cases} 0 & \text{if overdose} \\ 1 & \text{if stroke} \end{cases}$

will provide the same results.

Why not regression?

In these **binary outcome** cases, we *can* apply linear regression.

These models are called linear probability models (LPMs).

The **predictions** from an LPM

- 1. estimate the conditional probability $y_i=1$, i.e., $\Pr(y_o=1\mid x_o)$
- 2. are not restricted to being between 0 and 1[†]
- 3. provide an ordering—and a reasonable estimate of probability

Other benefits: Coefficients are easily interpreted + we know how OLS works.

† Some people get very worked up about this point.

Let's consider an example: the Default dataset from ISLR

default	♦ student	\$ balance 🖣	income 🛊
No	No	939.10	45,519
No	Yes	397.54	22,711
Yes	No	1,511.61	53,507
No	No	301.32	51,540
No	No	878.45	29,562
Yes	No	1,673.49	49,310
No	No	310.13	37,697
No	No	1,272.05	44,896
No	No	887.20	41,641
No	No	230.87	32,799

The data: The outcome, default, only takes two values (only 3.3% default).

The data: The outcome, default, only takes two values (only 3.3% default).

The linear probability model struggles with prediction in this setting.

Logistic regression appears to offer an improvement.

Intro

Logistic regression models the probability that our outcome Y belongs to a specific category (often whichever category we think of as TRUE).

For example, we just saw a graph where

$$Pr(Default = Yes|Balance) = p(Balance)$$

we are modeling the probability of default as a function of balance.

We use the **estimated probabilities** to **make predictions**, e.g.,

- if $p(Balance) \geq 0.5$, we could predict "Yes" for Default
- ullet to be conservative, we could predict "Yes" if $p(\mathrm{Balance}) \geq 0.1$

What's logistic?

We want to model probability as a function of the predictors $(\beta_0 + \beta_1 X)$.

Linear probability model

linear transform. of predictors

$$p(X) = \beta_0 + \beta_1 X$$

Logistic model

logistic transform. of predictors

$$p(X)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

What does this *logistic function* $\left(\frac{e^x}{1+e^x}\right)$ do?

- 1. ensures predictions are between 0 $(x
 ightharpoonup -\infty)$ and 1 $(x
 ightharpoonup \infty)$
- 2. forces an S-shaped curved through the data (not linear)

What's logistic?

With a little math, you can show

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}} \implies \logigg(rac{p(X)}{1 - p(X)}igg) = eta_0 + eta_1 X$$

New definition: log odds[†] on the RHS and linear predictors on the LHS.

- 1. **interpretation** of β_i is about $\log \text{ odds}$ —not probability
- 2. **changes in probability** due to X depend on level of X^{\dagger}

Estimation

Before we can start predicting, we need to estimate the β_i s.

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}} \implies \logigg(rac{p(X)}{1 - p(X)}igg) = eta_0 + eta_1 X$$

We estimate logistic regression using maximum likelihood estimation.

Maximum likelihood estimation (MLE) searches for the β_j s that make our data "most likely" given the model we've written.

Maximum likelihood

MLE searches for the β_i s that make our data "most likely" using our model.

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

1. β_i tells us how x_i affects the log odds

2. odds
$$=$$
 $\frac{p(X)}{1-p(X)}$. If $p(X)>0.5$, then odds >1 and $\log odds>0$.

So we want choose β_i such that

- ullet log odds are above zero for observations where $y_i=1$
- ullet log odds even larger for areas of x_i where most is have $y_i=1$

Formally: The likelihood function

We estimate logistic regression by maximizing the likelihood function

$$\ell(eta_0,eta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1-p(x_i))$$

The likelihood function is maximized by

- ullet making $p(x_i)$ large for individuals with $y_i=1$
- ullet making $p(x_i)$ small for individuals with $y_i=0$

Put simply: Maximum likelihood maximizes a predictive performance, conditional on the model we have written down.

[†] Generally, we actually will maximize the *log* of the likelihood function.

In R

In R, you can run logistic regression using the glm() function.

Aside: Related to lm, glm stands for generalized (linear model).

"Generalized" essentially means that we're applying some transformation to $\beta_0 + \beta_1 X$ like logistic regression applies the logistic function.

In R

In R, you can run logistic regression using the glm() function.

Key arguments (very similar to lm())

- specify a formula, † e.g., y ~ . Or y ~ x + I(x^2)
- define family = "binomial" (so R knows to run logistic regression)
- give the function some data

```
est_logistic = glm(
  i_default ~ balance,
  family = "binomial",
  data = default_df
)
```

† Notice that we're back in the world of needing to select a model...

```
est logistic %>% summary()
#>
#> Call:
#> glm(formula = i default ~ balance, family = "binomial", data = default df)
#>
#> Deviance Residuals:
      Min 10 Median 30
#>
                                       Max
#> -2.2697 -0.1465 -0.0589 -0.0221 3.7589
#>
#> Coefficients:
#>
                Estimate Std. Error z value Pr(>|z|)
\# (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
#> balance 5.499e-03 2.204e-04 24.95 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
      Null deviance: 2920.6 on 9999 degrees of freedom
#>
#> Residual deviance: 1596.5 on 9998 degrees of freedom
#> AIC: 1600.5
#>
#> Number of Fisher Scoring iterations: 8
```

Estimates and predictions

Thus, our estimates are $\hat{eta}_0 \approx -10.65$ and $\hat{eta}_1 \approx 0.0055$.

Remember: These coefficients are for the log odds.

If we want **to make predictions** for y_i (whether or not i defaults), then we first must **estimate the probability** p(Balance)

$$\hat{p}(ext{Balance}) = rac{e^{\hat{eta}_0 + \hat{eta}_1 ext{Balance}}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 ext{Balance}}} pprox rac{e^{-10.65 + 0.0055 \cdot ext{Balance}}}{1 + e^{-10.65 + 0.0055 \cdot ext{Balance}}}$$

- ullet If $\mathrm{Balance}=0$, we then estimate $\hat{p}pprox0.000024$
- If $\mathrm{Balance} = 2,000$, we then estimate $\hat{p} \approx 0.586$
- ullet If $\mathrm{Balance}=3,000$, we then estimate $\hat{p}pprox0.997$ $^{+}$

[†] You get a sense of the nonlinearity of the predictors' effects.

Logistic regression's predictions of p(Balance)

Note: Everything we've done so far extends to models with many predictors.

Old news: You can use predict() to get predictions out of glm objects.

New and important: predict() produces multiple types of predictions

- 1. type = "response" predicts on the scale of the response variable for logistic regression, this means **predicted probabilities** (0 to 1)
- 2. type = "link" predicts on the scale of the linear predictors for logistic regression, this means **predicted log odds** $(-\infty \text{ to } \infty)$

Beware: The default is type = "link", which you may not want.

Prediction

Putting it all together, we can get (estimated) probabilities $\hat{p}(X)$

```
# Predictions on scale of response (outcome) variable
p_hat = predict(est_logistic, type = "response")
```

which we can use to make predictions on y

```
# Predict '1' if p_hat is greater or equal to 0.5
y_hat = as.numeric(p_hat ≥ 0.5)
```


Assessment

Assessment

How did we do?

We guessed 97.25% of the observations correctly.

Q 97.25% is pretty good, right?

A It depends... Remember that 3.33% of the observations actually defaulted. So we would get 96.67% right by guessing "No" for everyone.[†]

We did guess 30.03% of the defaults, which is clearer better than 0%.

Q How can we more formally assess our model's performance?

A All roads lead to the confusion matrix.

† This idea is called the *null classifier*.

The confusion matrix

The confusion matrix is us a convenient way to display correct and incorrect predictions for each class of our outcome.

		Tro	uth
		No	Yes
Prediction	No	True Negative (TN)	False Negative (FN) True Positive (TP)
Prediction	Yes	False Positive (FP)	True Positive (TP)

The accuracy of a method is the share of correct predictions, i.e.,

Accuracy =
$$(TN + TP) / (TN + TP + FN + FP)$$

This matrix also helps display many other measures of assessment.

The confusion matrix

Sensitivity: the share of positive outcomes Y=1 that we correctly predict.

		Tr	uth
		No	Yes
Dradiction	No	True Negative (TN)	False Negative (FN) True Positive (TP)
Pieulcuon	Yes	False Positive (FP)	True Positive (TP)

Sensitivity is also called **recall** and the **true-positive rate**.

One minus sensitivity is the type-II error rate.

The confusion matrix

Specificity: the share of neg. outcomes (Y=0) that we correctly predict.

		Tr	uth
		No	Yes
Prediction	No	True Negative (TN)	False Negative (FN)
Piediction	Yes	False Positive (FP)	True Positive (TP)

One minus specificity is the false-positive rate or type-I error rate.

The confusion matrix

Precision: the share of predicted positives $(\hat{Y}=1)$ that are correct.

		Tr	uth
		No	Yes
Prodiction	No	True Negative (TN)	False Negative (FN)
Prediction	Yes	False Positive (FP)	False Negative (FN) True Positive (TP)

Which assessment?

Q So which criterion should we use?

A You should use the *right* criterion for your context.

- Are true positives more valuable than true negatives? Sensitivity will be key.
- Do you want to have high confidence in predicted positives? Precision is your friend
- Are all errors equal?
 Accuracy is perfect.

There's a lot more, e.g., the $\mathbf{F_1}$ score combines precision and sensitivity.

Confusion in R

confusionMatrix() from caret calculates the confusion matrix—and many other statistics.

- data: a factor vector of predictions (use as.factor() if needed)
- reference: a factor vector of true outcomes

```
cm_logistic = confusionMatrix(
    # Our predictions
    data = y_hat %>% as.factor(),
    # Truth
    reference = default_df$i_default %>% as.factor()
)
```

```
#> Confusion Matrix and Statistics
#>
              Reference
#>
   Prediction
#>
#>
             0 9625 233
             1 42 100
#>
#>
#>
                   Accuracy : 0.9725
#>
                     95% CI: (0.9691, 0.9756)
#>
       No Information Rate: 0.9667
       P-Value [Acc > NIR] : 0.0004973
#>
#>
                      Kappa: 0.4093
#>
#>
#>
     Mcnemar's Test P-Value : < 2.2e-16
#>
                Sensitivity: 0.9957
#>
                Specificity: 0.3003
#>
             Pos Pred Value: 0.9764
#>
#>
             Neg Pred Value: 0.7042
                 Prevalence: 0.9667
#>
             Detection Rate: 0.9625
#>
      Detection Prevalence: 0.9858
#>
#>
          Balanced Accuracy: 0.6480
```

Thresholds

Your setting also dictates the "optimal" threshold that moves a prediction from one class (e.g., Default = No) to another class (Default = Yes).

The Bayes classifier suggests a probability threshold of 0.5.

The Bayes classifier can't be beat in terms of *accuracy*, but if you have goals other than accuracy, you should consider other thresholds.

As we vary the threshold, our error rates (types I, II, and overall) change.

Error rate: — Type I (FP/N) — Type II (FN/P) — All

The ROC curve plots the true- (TP/P) and the false-positive rates (FP/N).

"Best performance" means the ROC curve hugs the top-left corner.

The AUC gives the area under the (ROC) curve.

"Best performance" means the AUC is near 1. Random chance: 0.5

Q So what information is AUC telling us?

Q So what information is AUC telling us?
A AUC tells us how much we've separated the <i>positive</i> and <i>negative</i> labels.

Example: Distributions of probabilities for negative and positive outcomes.

For any given **threshold**

For any given **threshold**, we get **false positives**

For any given **threshold**, we get false positives and **true positives**.

... moving through all possible thresholds generates the **ROC** (AUC ≈ 0.872).

Increasing separation between **negative** and **positive** outcomes...

... reduces error (shifts **ROC**) and increases **AUC** (≈ 0.994).

Further increasing separation between **negative** and **positive** outcomes...

... reduces error (shifts **ROC**) and increases **AUC** (≈ 1).

Tiny separation ("guessing") between **negative** and **positive** outcomes...

... increases error (shifts **ROC**) and pushes **AUC** toward 0.5 (here ≈ 0.523).

Getting **negative** and **positive** outcomes backwards...

... increases error (shifts **ROC**) and pushes **AUC** toward 0 (here ≈ 0.012).

Sources

These notes draw upon

- An Introduction to Statistical Learning (ISL) James, Witten, Hastie, and Tibshirani
- Receiver Operating Characteristic Curves Demystified (in Python)

Table of contents

Admin

- Today
- Upcoming

Classification

- Introduction
- Introductory examples
- Why not linear regression
- Linear probability models

Logistic regression

- Intro
- The logistic function
- Estimation
- Maximum likelihood
- In R
- Prediction

Assessment

- How did we do?
- The confusion matrix
- In R
- Thresholds
- ROC curves and AUC

Other

• Sources/references