Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Bea	m Coverplate Connection	
MainMo	odule			Moment Connection	
Moment(kNm)*				5.0	
Shear (kN)*			42.0	
Axial (k	(N) *			100.0	
		Section	•		
	Beam S	ection *		JB 225	
т Ү	Prefe	rences		Outside + Inside	
	Mate	erial *		E 250 (Fe 410 W)A	
	Ultimate strer	ngth, fu (MPa)		410	
$\frac{(B-t)}{4}$ t $-$	Yield	250	R1(mm)	6.5	
ZZ D	Strength , fy (MPa)				
R ₁	Mass	12.8	R2(mm)	1.5	
R ₂	Area(mm2) -	1630.0	Iz(mm4)	13100000.0	
Y	D(mm)	225.0	Iy(mm4)	405000.0	
•	B(mm)	80.0	rz(mm)	89.7	
	t(mm)	3.7	ry(mm)	15.8	
	T(mm)	5.0	Zz(mm3)	116000.0	
	FlangeSlope	91.5	Zy(mm3)	10100.0	
		Bolt Details			
Diameter	(mm)*		[12.0,	16.0, 20.0, 24.0, 30.0, 36.0	
Grade	e *		[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*		Friction Grip Bolt		
Bolt hole	e type			Standard	
Slip factor	r (µ_f)			0.3	
Type of	edges		a - 9	Sheared or hand flame cut	
Gap between beam and	. br>support (mm)		10.0	
Are the members exposed to	 corrosive	influences		False	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{1630.0 * 250}{1.1 * 10^3}$ $= 370.45$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{215.0 * 3.7 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 104.38$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 42758.12 * 250}{1.1 * 10^6}$ $= 9.72$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 116000.0 * 250}{1.1 * 10^6}$ $= 39.55$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(9.72, 39.55)$ = 9.72	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_{c}$ $= 0.3 * 370.45$ $= 111.14$ $Ac_{max} = Ac$ $= 370.45$	$A_u = 111.14$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 104.38 = 62.63 $Vc_{max} = Sc$ = 104.38	$V_u = 62.63$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 9.72 = 4.86 $Mc_{max} = Mc$ = 9.72	$M_u = 5.0$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(225.0 - 2 * 5.0) * 3.7 * 111.14}{1630.0}$ $= 54.24 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{42758.12 * 5.0}{129300.0}$ $= 1.65 \ kNm$	
Forces Carried by Flange		$A_{f} = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{111.14 * 80.0 * 5.0}{1630.0}$ $= 27.27 \ kN$ $M_{f} = Moment \ in \ flange$ $= Mu - M_{w}$ $= 5.0 - 1.65$ $= 3.35 \ kNm$ $F_{f} = flange \ force$ $= \frac{M_{f} * 10^{3}}{D - T} + A_{f}$ $= \frac{3.35 * 10^{3}}{225.0 - 5.0} + 27.27$ $= 42.48 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 42.48$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 80.0 * 5.0 * 250}{1.1}$ $= 90.91$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 54.24$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 215.0 * 3.7 * 250}{1.1}$ $= 181$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 80.0	Pass
flange_plate.InnerHeight	Inner.b >= 50	$inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{80.0 - 3.7 - (2 * 6.5)}{2}$ $= 31.65$	Fail

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness	T=2.5	$t_f = 80.0$	Pass
(mm)*			

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	t = 1.85	$t_w = 20.0$	Pass
	pt.area>=	$web \ b = D - (2*T) - (2*T_1)$ $= 225.0 - (2*5.0) - (2*6.5)$	
Plate Area check (mm2)		pt.area = 20.0 * 2 * 182.0	Pass
		=7280.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View