MRS and GluCEST:

Acquisition and Analysis

Method for studying neurochemicals/neurometabolites in vivo

$$H_2N$$
 NH
 CH_3
 OH

- Method for studying neurochemicals/neurometabolites in vivo
- The output of processed MRS data is a spectra

- Method for studying neurochemicals/neurometabolites in vivo
- The output of processed MRS data is a spectra
- Neurochemicals/metabolites we can measure:
 - N-acetylaspartate (NAA)
 - Choline
 - Creatine/phosphocreatine
 - Myo-inositol
 - Lactate
 - Glutathione
 - Glutamate/Glutamine

No Magnetic Field

No Magnetic Field

Applied Magnetic Field (B0)

No Magnetic Field

Applied Magnetic Field (B0)

Radiofrequency Field (B1)

Radiofrequency Field (B1)

Choline Glutamate/Glutamine

NAA

ΔE
(LOW FREQUENCY electromagnetic radiation)

- Protons in different chemicals absorb electromagnetic radiation of different FREQUENCIES
- When we turn off the B1, protons in different chemicals therefore EMIT RADIATION OF DIFFERENT FREQUENCIES
- These emitted frequencies are what we measure in MRS!

Concentrations estimated in one brain region per study

Cannot differentiate between gray matter, white matter, and CSF signal

Glutamate + Glutamine = GLX

Concentrations estimated in one brain region per study

Cannot differentiate between gray matter, white matter, and CSF signal

Glutamate + Glutamine = GLX

- Is glutamate actually disrupted in these disorders?
- Is it disrupted early or late in the disorder (or both)? Are alterations different at different stages in the disorder?
- How does glutamate level relate to clinical symptoms?
- Is glutamate abnormal in all individuals with a disorder or in a subset of them only?
- Can glutamate measures be used to target individuals to glutamate-modulating treatments?

Concentrations estimated in one brain region per study

Cannot differentiate between gray matter, white matter, and CSF signal

Glutamate + Glutamine = GLX

GluCEST

Glutamate level estimated across an entire 2D brain slice

Can differentiate between gray matter, white matter, and CSF glutamate

Only sensitive to glutamate

Glutamate Chemical Exchange Saturation Transfer Imaging (GluCEST)

Glutamate Chemical Exchange Saturation Transfer Imaging (GluCEST)

*700 FOLD INCREASE IN SENSITIVITY TO GLUTAMATE

