3 Dérivation

 ψ 2.5 semaines

Yalkskis/polle/polle/valva déjà fait

Thème Point de vue local et global

• Contenu

- a) Point de vue local
 - ✓ Taux de variation. Sécantes à la courbe représentative d'une fonction en un point donné.
 - ✓ Nombre dérivé d'une fonction en un point, comme limite du taux de variation. Notation f'(a).
 - ✓ Tangente à la courbe représentative d'une fonction en un point, comme « limite des sécantes ». Pente. Équation : la tangente à la courbe représentative de f au point d'abscisse a est la droite d'équation y = f(a) + f'(a)(x a).
- b) Point de vue global
 - ✓ Fonction dérivable sur un intervalle. Fonction dérivée.
 - ✓ Fonction dérivée des fonctions carré, cube, inverse, racine carrée.
 - i. PDASENTANAKHILEH EVYY NYELI NATIYENKIYIEH KYENTAVEH KILIKUTIYAK KIYANK KIYANK KIYANK KIYANK KIYANK KILIKUTIYAK KIYANK KILIKUTIYAK KIYANK KIKAN KILIKUTIYAK KIYANK KIKAN KIKATIYAK KIYANK KIKAN KIKA
 - ✓ Pour $n \in \mathbb{Z}$, fonction dérivée de la fonction $x \mapsto x^n$.
 - ✓ Fonction valeur absolue : courbe représentative, étude de la dérivabilité en 0.

Capacités

- ✓ Calculer un taux de variation, la pente d'une sécante.
- ✓ Interpréter le nombre dérivé en contexte : pente d'une tangente, vitesse instantanée, coût marginal...
- ✓ Déterminer graphiquement un nombre dérivé par la pente de la tangente. Construire la tangente en un point à une courbe représentative connaissant le nombre dérivé.
- ✓ Déterminer l'équation de la tangente en un point à la courbe représentative d'une fonction.
- → À partir de la définition, calculer le nombre dérivé en un point ou la fonction dérivée de la fonction carré, de la fonction inverse.
- ▼ TDELTISI/PVESI/ENALT/NESI/ENALT/NESI/ENALT/NUMEI/SELTYELTEN/ENALT/NESI/

Démonstrations

- Équation de la tangente en un point à une courbe représentative.
- ✓ La fonction racine carrée n'est pas dérivable en 0.
- ✓ Fonction dérivée de la fonction carrée, de la fonction inverse.

Algorithmes

a) sans intérêt Écrire la liste des coefficients directeurs des sécantes pour un pas donné.

En liaison avec les autres disciplines, on peut signaler et utiliser la notation $\frac{\Delta y}{\Delta x}$ pour taux de variation, et $\frac{dy}{dx}$ pour la dérivée.

Si y = f(x) on peut écrire $\frac{dy}{dx} = f'(x)$, en adaptant selon le contexte : x = f(t) et q = f(t).