Exercise 2 Introduction to Complex Network Analysis

Melanija Kraljevska

17 October 2021

1

 $Edge\ list$

Advantages:

Uses less memory for storing the graph. It is easy to iterate over all the edges.

Disadvantages:

It is hard to tell if an edge exists from A to B and to compute the degree of a node. It is usually not suitable for isolated nodes.

Adjacency matrix

Advantages:

We can check if two nodes have an edge in constant time. It is easier to compute the degrees of the nodes.

Disadvantages:

Large memory complexity. It has redundant information for undirected graphs.

$\mathbf{2}$

If all of the 14 friends are also friends with each other, then this is the case of a complete graph - where between every pair of nodes there is an edge. The number of edges can be calculated with the following formula: N(N-1)/2 where N is the number of nodes.

In this case, the number of nodes is N=15 (me and my 14 friends), so the total number of edges is: 15*14 / 2=105.

.

a) Adjacency matrix:

 $\begin{array}{c} 0.1,0,0,0,0,0,0,0,0\\ 1.0,1,1,1,0,0,0,0,0\\ 0.1,0,0,0,1,0,0,0,0\\ 0.1,0,0,0,0,0,0,0,0\\ 0.1,0,0,0,1,1,0,0,0\\ 0.0,1,0,1,0,0,0,1,1,0\\ 0.0,0,0,1,0,0,1,1,0\\ 0.0,0,0,0,0,1,0,1,1,0\\ 0.0,0,0,0,0,0,1,0,1,0\\ 0.0,0,0,0,0,0,0,0,0,0,0,0\\ 0.0,0,0,0,0,0,0,0,0,0,0,0,0\\ \end{array}$

b) Edge list:

- (1, 2)
- (2, 3)
- (2, 4)
- (2, 5)
- (3, 6)
- (5, 6)
- (5, 7)
- (7, 8)
- (7, 9)
- (8, 9)

- e) Number of d=3 paths between 2 and 3: 1
- f) The node pair 1 and 6 has 2 d=3 paths (there are also more node pairs that satisfy this).

d)

de = 1	d2,3=1 d2,4=1	d3,4=2 d3,5=2 d3,6=1 d3,7=3 d3,8=4 d3,9=4	d4,5=2	ds,6=1	d6,7=2	d7,8=1	d8.9-1
d1.372	d2,4=1	d3,5-2	da 6=3	ds, 2=1 ds, 8=2	de 18-3	d7,9-1	
de 4 = 2	012,5=1	d3,6 1	d47=3 d48=4 d48=4	ds,8=2	db,9=3		
d1,5=2 d1,6=3	d2,6°2	d3,7=3	d4.8=4	ds,9=2			
d1.6=3	dz, 7 2 dz, 8 = 3 dz, 9 = 3	03,8=4	04,9=6				
d1.7 = 3	02,8=3	d3,3=9					\perp
d1.8 = 4	012,9=3						1111
9-9-9	+++-+						
diameter=5							
density:							
	0.10						
D = 2L	- 2.10	= 2 =	0,222				
111111111111111111111111111111111111111	10 (10 3)	J					

The computations by computer are made and presented in Tutorial2.

4

A bipartite network with N1 and N2 nodes in the two sets.

- a) Maximum number of edges: N1 * N2.
- b) The total number of edges in a nonbipartite graph is: N(N-1)/2, which is (N1+N2)(N1+N2-1)/2. The maximal number of edges in a bipartite graph is: N1*N2, so the differences between these two numbers is: $(N1^2+N2^2-N1-N2)/2$.