

UMD DATA605 - Big Data Systems

Lesson 5.1: NoSQL Databases

Instructor: Dr. GP Saggese - gsaggese@umd.edu

- Online tutorials
- Silbershatz Chap 10.2
- High-level view:
 - Seven Databases in Seven Weeks, 2e

From SQL to NoSQL

DBs are central tools to big data

- New applications, new data/storage constraints
- ~2000s NoSQL "movement" started
 - Initially "No SQL" \rightarrow then "Not Only SQL"

- Different worldviews
- Schema vs schema-less
- Rich vs fast query ability
- Strong consistency (ACID), weak, eventual consistency
- APIs (SQL, JS, REST)
- Horizontal vs vertical scaling, sharding, replication
- Indexing (for rapid lookups) vs no indexing
- Tuned for reads or writes, control over tuning

• User base/applications have expanded

- IMO Postgres + Mongo cover 99% of use cases
- Data scientists/engineers need familiarity with both
- "Which DB solves my problem best?"
- Polyglot model
 - Use more than one DB per project
- Relational DBs won't disappear soon

Issues with Relational Dbs

- Relational DBs have drawbacks
 - 1 Application-DB impedance mismatch
 - 2 Schema flexibility
 - 3 Consistency in distributed set-up
 - 4 Limited scalability
- For each drawback:
 - Problem
 - Solutions
 - Within relational SQL paradigm
 - With NoSQL approach

1 App-DB Impedance Mismatch: Problem

- Mismatch between data representation in code and relational DB
 - Code uses:
 - Data structures (e.g., lists, dictionaries, sets)
 - Objects
 - Relational DB uses:
 - Tables (entities)
 - Rows (instances of entities)
 - Relationships between tables
- Example of app-DB mismatch:
 - Application stores a Python map: # Store a dictionary from name (string) to tags (list of strings). tag_dict: Dict[str, List[str]]
 - Relational DB needs 3 tables:
 - Names(<u>nameld</u>, name) for keys
 - Tags(tagld, tag) for values
 - Names_To_Tags(<u>nameld</u>, tagld) to map keys to values
 - Denormalize using a single table:
 - Names(name, tag)

1 App-DB Impedance Mismatch: Solutions

- Ad-hoc mapping layer
 - Translate objects and data structures into DB model
 - E.g., implement a layer for "Name to Tags" storage
 - Code uses a simple map, but DB has 3 tables
 - Cons
 - · Need to write and maintain code
- Object-relational mapping (ORM)
 - Pros
 - Automatic data conversion between object code and DB
 - E.g., implement Person object using DB
 - . E.g., SQLAlchemy for Python and SQL
 - Cons
 - · Complex types (e.g., struct), polymorphism, inheritance
- NoSQL approach
 - No schema
 - Objects can be flat or complex (e.g., nested JSON)
 - Stored objects (documents) can vary

2 Schema Flexibility

Problem

- Data may not fit neatly into a schema
- E.g., nested or dishomogeneous data (e.g., List[Obj])

Within relational DB

- Use a general schema for all cases
- Cons
 - Complicated schema with implicit relations
 - Sparse DB tables
 - Violates basic relational DB assumptions

NoSQL approach

- E.g., MongoDB does not enforce schema
- Pros
 - · No schema concerns when writing data
- Cons
 - Handle various schemas during data processing
 - Related to ETL vs ELT data pipelines

3 Consistency in Relational DBs

- All systems fail
 - Application error (e.g., corner case, internal error)
 - Application crash (e.g., OS issue)
 - Hardware failure (e.g., RAM ECC error, disk)
 - Power failure
- Relational DBs enforce ACID properties
 - Guarantee for any system failure
- Atomicity
 - Transactions are "all or nothing"
 - Transaction (with multiple statements) succeeds completely or fails
- Consistency
 - Transaction brings DB from valid state to another
 - Maintain DB invariants (primary, foreign key constraints)
- Isolation
 - Concurrent transactions yield same result as sequential execution
- Durability

Application error

Hardware failure

3 Consistency in Distributed DB

- Scale data or clients → distributed setup
- Goals:
 - Performance (e.g., transactions per second)
 - Availability (e.g., up-time guarantee)
 - Fault-tolerance (recover from faults)
- Achieving ACID consistency:
 - Not easy in single DB
 - E.g., Postgres guarantees ACID
 - E.g., MongoDB doesn't
 - Impossible in distributed DB
 - Due to CAP theorem
 - · Even weak consistency is difficult

A = Atomicity

C = Consistency

I = Isolation

D = Durability

CAP Theorem

- CAP theorem: Any distributed DB can have at most two of the following three properties
 - Consistent
 - All clients see the same data
 - Writes are atomic and subsequent reads retrieve the new value
 - Available: Returns a value if a single server is running
 - Partition tolerant: System works even if communication is temporarily lost (network partitioned)
- Originally a conjecture (Eric Brewer)
- Made formal later (Gilbert, Lynch, 2002)

CAP Corollary

- CAP Theorem: pick 2 among consistency, availability, partition tolerance
- Network partitions cannot be prevented in large-scale distributed systems
 - Minimize failure probability using redundancy and fault-tolerance
- Sacrifice either:
 - Availability (allow system downtime)
 - E.g., banking system
 - Consistency (allow different system views)
 - É.g., social network

You are here

CAP Theorem: Intuition

- Imagine:
 - Client (Node0)
 - Two DB replicas (Node1, Node2)
- Network partition occurs
 - DB servers (Node1, Node2) can't communicate
 - Users (Node0) access only one (Node2)
 - Reads: Access data on the same partition
 - Writes: Can't update due to potential inconsistency
- CAP theorem: Sacrifice consistency or availability
- Available, not consistent
 - Inconsistency acceptable (e.g., social networking)
 - Allow updates on accessible replica
- Consistent, not available
 - Inconsistency unacceptable (e.g., banking)
 - Stop service to maintain consistency

X X DB replica DB replica Client

Replication Schemes

- Replication schemes: Organize multiple servers for a distributed DB
- Primary-secondary replication
 - · Application only communicates with primary
 - Replicas cannot update local data, but require primary for updates
 - Single-point of failure
- Update-anywhere replication
 - Aka "multi-master replication"
 - Every replica can update data, propagated to others
- Quorum-based replication
 - N: Total replicas
 - Write to W replicas
 - Read from R replicas, pick latest update (timestamps)

Primary-secondary replication

Update-anywhere replication

Synchronous Replication

- Synchronous replication: updates propagate to replicas in a single transaction
- Implementations
 - 2-Phase Commit (2PC): original method
 - Single point of failure
 - Can't handle primary server failure
 - Paxos: widely used
 - No primary required
 - More fault tolerant
 - Both are complex/expensive
- CAP theorem: only one of Consistency or Availability during Network partition
 - Many systems use relaxed consistency models

Asynchronous Replication

Asynchronous replication

- Primary node updates replicas
- Transaction completes before replicas update
- Quick commits, less consistency

Eventual consistency

- Popularized by AWS DynamoDB
- Consistency only on eventual outcome
- "Eventual" may mean after server/network fix

• "Freshness" property

- Read from replica may not be latest
- Request version with specific "freshness"
 - E.g., "data from not more than 10 minutes ago"
 - E.g., show airplane ticket price a few minutes old
- Replicas use timestamps for data versioning
- Use local replica if fresh, else request primary node

4 Scalability Issues with RDMS

- Sources of SQL DB scalability issues:
- Locking data
 - DB engine locks rows/tables for ACID properties
 - When locked:
 - Higher latency \rightarrow Fewer updates/second \rightarrow Slower application
- Worse in distributed set-up
 - Requires data replication over multiple servers (scaling out)
 - Slower application due to:
 - Network delays
 - Locks across networks for DB consistency
 - Overhead of replica consistency (2PC, Paxos)

Scalability Issues with RDMS: Solutions

- Table denormalization
 - Increase performance by adding redundant data
 - Pros
 - Faster reads: Lock one table, no joins
 - Cons
 - Slower writes: More data to update
 - Lose table relations
- Relax consistency
 - Compromise on ACID
 - Weaken consistency (e.g., eventual consistency)
- NoSQL

Normalized data

Customer Orders

- id
- product_name
- product_code
- category_name
- customer_name
- cusomter_email
 order id
- order_details
- order_details - order_amount

Denormalized data

NoSQL Stores

- Use cases of large-scale web applications
 - · Real-time access with ms latencies
 - E.g., Facebook: 4ms for reads
 - No need for ACID properties
 - MongoDB started at DoubleClick (AdTech), acquired by Google
- Solve problems with relational databases
 - Application-DB impedance mismatch
 - Schema flexibility
 - Consistency in distributed setup
 - Scalability
- To scale out, give up something
 - Consistency
 - Joins
 - Most NoSQL stores don't allow server-side joins
 - Require data denormalization and duplication
 - Restricted transactions
 - Most NoSQL stores allow one object transactions
 - E.g., one document/key

Relational DB vs MongoDB

- How MongoDB solves four RDBM problems
- 1 Application-DB impedance mismatch
 - Store data as nested objects
- 2 Schema flexibility
 - No schema, tables, rows, columns, or table relationships
- 3 Consistency in replicated set-up
 - Application decides consistency level
 - Synchronous: wait for primary and secondary updates
 - Quorum synchronous: wait for majority of secondary updates
 - · Asynchronous, eventual: wait for primary update
 - "Fire and forget": no wait for primary persistence
- 4 Scalability
 - Lock only one document, not entire collection
 - Sharding: use more machines for more work

