The Power of Scale for Parameter-Efficient Prompt Tuning

Brian Lester* Rami Al-Rfou Noah Constant

Google Research

{brianlester, rmyeid, nconstant}@google.com

Abstract

- Prompt Tuning
 - In Downstream Task, Learning "Soft Prompt" + Frozen Language Models
 - more competitive with scale
 - benefits in robustness to domain transfer
 - efficient prompt ensembling

Introduction

- How to adapt general-purpose models to downstream tasks?
 - Model tuning (fine-tuning)
 - all model parameters are tuned during adaptation
 - Prompt design (priming)
 - prompts: a task description and/or several examples
 - freezing pre-trained models
 - make a single generalist model simultaneously serve many different tasks

Introduction

- Key drawbacks of prompt-based adaptation
 - Task description is error-prone and requires human involvement
 - The effectiveness depends on the prompt quality
 - Downstream task quality is lower than tuned models

Solution: Prompt Tuning!

Conditional Text Generation of T5 (Classification)

$$\Pr_{\theta}(Y|X)$$

- X is a series of tokens, Y is a sequence of tokens that represent a class label
- ullet θ is the weights of the transformers that make up its encoder and decoder

Prompting is the approach of adding extra information

$$\Pr_{\theta}(Y|[P;X])$$

P is a series of tokens prepended (prompts)

-
$$P = \{p_1, p_2, ..., p_n\}$$

• The model maximizes the likelihood of the correct Y, while keeping the model parameters θ (fixed)

- Prompt Design
 - selecting prompt tokens from a fixed vocabulary of frozen embeddings
- Prompt Tuning
 - using a fixed prompt of special tokens,
 where only the embeddings of these prompt tokens can be updated

New conditional generation model

$$\Pr_{\theta;\theta_P}(Y|[P;X])$$

- The model maximizes the likelihood of Y via backpropagation
- Only applying gradient updates to θ_P

New conditional generation model

$$\Pr_{\theta;\theta_P}(Y|[P;X])$$

- Given a series of n tokens, $\{x_1, x_2, \dots, x_n\}$,

 T5 embed the tokens forming a matrix $X_e \in \mathbb{R}^{n \times e}$
 - e is the dimension of the embedding space
- lacktriangle soft-prompts are represented as a parameter $P_e \in \mathbb{R}^{p imes e}$
- Then, our prompt is $[P_e; X_e] \in \mathbb{R}^{(p+n) \times e}$
 - only the prompt parameters P_e are updated

Reference: Google Al

- Design Decisions
 - How to initialize the prompt representations?
 - random initialization
 - initialize each prompt token to an embedding drawn from the model's vocab
 - For classification tasks, initialize the prompt with embeddings that enumerate the output classes
 - The length of the prompt
 - aim to find a minimal length that still performs well

- Unlearning Span Corruption
 - T5 is tasked with "reconstructing" masked spans in the input text
 - This setup is not a good fit for prompt tuning
 - Example)
 - Text: "Thank you for inviting me to your party last week"
 - Input: "Thank you <X> me to your party <Y> week"
 - Output: "<X> for inviting <Y> last <Z>"

- Unlearning Span Corruption
 - Span Corruption
 - just use pre-trained T5 off-the-shelf as our frozen model
 - Span Corruption + Sentinel
 - use the same model, but prepend all downstream targets with a sentinel
 - LM Adaptation
 - continue T5's self-supervised training for a small number of additional steps
 - natural text prefix -> natural text continuation
 - quickly transform T5 into a model more similar to GPT-3

Results

- Default configuration
 - LM-adapted version of T5
 - initialize using class labels
 - use a prompt length of 100 tokens
- SuperGLUE benchmark
- Prompt Tuning matches the baselines

Results

Ablation Study

(b) Prompt initialization

Results

Ablation Study

(c) Pre-training method

(d) LM adaptation steps

Comparison to Similar Approaches

 Prompt Tuning is the most parameter-efficient

Resilience to Domain Shift

- Prompt tuning prevents the model from modifying its general understanding
- This suggests that prompt tuning may improve robustness to domain shifts
- Zero-shot domain transfer: QA, paraphrase detection

Dataset	Domain	Model	Prompt	Δ
SQuAD	Wiki	94.9 ±0.2	94.8 ± 0.1	-0.1
TextbookQA	Book	54.3 ±3.7	66.8 ±2.9	+12.5
BioASQ	Bio	77.9 ± 0.4	79.1 ± 0.3	+1.2
RACE	Exam	59.8 ± 0.6	60.7 ± 0.5	+0.9
RE	Wiki	88.4 ± 0.1	88.8 ± 0.2	+0.4
DuoRC	Movie	68.9 ± 0.7	67.7 ± 1.1	-1.2
DROP	Wiki	68.9 ± 1.7	67.1 ± 1.9	-1.8

Table 1: F1 mean and stddev for models trained on SQuAD and evaluated on out-of-domain datasets from the MRQA 2019 shared task. Prompt tuning tends to give stronger zero-shot performance than model tuning, especially on datasets with large domain shifts like TextbookQA.

Train	Eval	Tuning	Accuracy	F1
QQP	MRPC	Model Prompt	73.1 \pm 0.9 76.3 \pm 0.1	81.2 ± 2.1 84.3 ± 0.3
MRPC	QQP	Model Prompt	74.9 ±1.3 75.4 ±0.8	70.9 ±1.2 69.7 ±0.3

Table 2: Mean and stddev of zero-shot domain transfer between two paraphrase detection tasks.

Prompt Ensembling

• By training N prompts on the same tasks, we create N separate "models" for a task, while still sharing the core language modeling parameters throughout

Dataset	Metric	Average	Best	Ensemble
BoolQ	acc.	91.1	91.3	91.7
CB	acc./F1	99.3 / 99.0	100.00 / 100.00	100.0 / 100.0
COPA	acc.	98.8	100.0	100.0
MultiRC	$EM/F1_a$	65.7 / 88.7	66.3 / 89.0	67.1 / 89.4
ReCoRD	EM/F1	92.7 / 93.4	92.9 / 93.5	93.2 / 93.9
RTE	acc.	92.6	93.5	93.5
WiC	acc.	76.2	76.6	77.4
WSC	acc.	95.8	96.2	96.2
SuperGLU	JE (dev)	90.5	91.0	91.3

Table 3: Performance of a five-prompt ensemble built from a single frozen T5-XXL model exceeds both the average and the best among the five prompts.

Conclusion

- On SuperGLUE benchmark
 - the task performance rivals that of traditional model tuning,
 with the gap vanishing as model size increases
- On zero-shot domain transfer
 - prompt tuning leads to improved generalization
- Efficiency
 - efficient storage and serving costs -> multi-task serving, prompt ensembling