

DNLR

Robotics and Computer Vision Master Program

Dynamics of Non-Linear Systems

Prepared by: Ahmed Mohsen Ali

Supervised by: Prof. Alexander Klimchik

- Forward and Inverse Kinematics
- Differential Kinematics
- Trajectory Planning
- Dynamics

Part 1: Forward & Inverse kinematics

Spherical Robot

- Robot Model is Spherical Robot with spherical wrist.
- Robot Configuration is RRPRRR

Hand Sketch drawing for the robot joints

Frames rules:

- All frames follow right hand rule
- All revolute and prismatic joint actuate around/along z axis
- \circ Each x_i is prependicular on z_{i-1}

Hand sketch for Frames Assignment

FK Equations:

```
a1 = rot_z1*rotm2tform(rotz(90))*trans_z1*rotm2tform(rotx(90));
a2 = rot_z2*rotm2tform(rotz(90))*rotm2tform(rotx(90));
a3 = rotm2tform(rotz(90))*trans_z3;
a4 = rot_z4*rotm2tform(rotx(-90));
a5 = rot_z5*rotm2tform(rotx(90));
a6 = rot_z6*trans_z6;
```

Link	heta	d	а	α
1	$\theta_{1}^{*} + 90^{\circ}$	d_1	0	90°
2	$\theta_{2}^{*} + 90^{\circ}$	0	0	90°
3	90	D_3^*	0	0
4	θ_4^*	0	0	-90°
5	$ heta_5^*$	0	0	90°
6	$ heta_6^*$	D_6	0	0

DH Parameters=[0 0 1 0 0 0]

End Effector pose:

Robot at initial pose

IK STEPS (Pieper's Solution)

```
T_06 = [nx sx ax x;
ny sy ay y;
nz sz az z;
0 0 0 1];
```

2) Solve FK to obtain A_0^3 and A_3^6 .

Tool Pose Assumption:

- 3) Solve for first three joint parameters.
- 4) Solve for last three joint parameters.

IK Equations:

```
% IK Equations as derived in the report
q_1=atan2(-x_c,y_c);
q_2=atan2(cos(q_1)*(z_c-d_1),y_c);
q_3=(y_c/(cos(q_1)*cos(q_2)))-d_3;
q_4=atan2(ay*cos(q_1)*sin(q_2) - az*cos(q_2) - ax*sin(q_1)*sin(q_2), ax*cos(q_1) + ay*sin(q_1));
q_6=atan2(-sz*sin(q_2) + sy*cos(q_1)*cos(q_2) - sx*cos(q_2)*sin(q_1),nz*sin(q_2) + ny*cos(q_1)*cos(q_2) - nx*cos(q_2)*sin(q_1));
q_5=atan2(((ay*cos(q_1)*sin(q_2) - az*cos(q_2) - ax*sin(q_1)*sin(q_2))/sin(q_4)),az*sin(q_2) + ay*cos(q_1)*cos(q_2) - ax*cos(q_2)*sin(q_1));
```


Tool Pose input:

Joint Parmeters output:

Part 2: Differential Kinematics

Jacobin Matrix

- Jacobian of end effector was obtained with respect to each joint
- Third joint is different since it is prismatic

$$j_{1} = \begin{pmatrix} Z_{0} \times (O_{6} - O_{0}) \\ Z_{i} \end{pmatrix}$$

$$j_{2} = \begin{pmatrix} Z_{1} \times (O_{6} - O_{1}) \\ Z_{1} \end{pmatrix}$$

$$j_{3} = \begin{pmatrix} Z_{2} \\ 0 \end{pmatrix}$$

$$j_{4} = \begin{pmatrix} Z_{3} \times (O_{6} - O_{3}) \\ Z_{3} \end{pmatrix}$$

$$j_{5} = \begin{pmatrix} Z_{4} \times (O_{6} - O_{4}) \\ Z_{4} \end{pmatrix}$$

$$j_{6} = \begin{pmatrix} Z_{5} \times (O_{6} - O_{5}) \\ Z_{5} \end{pmatrix}$$

Jacobin Code

- This matlab code calculates the jacobian for each joint
- The jacobian matrix for DH=[45 0 1 20 0 0] was as follow:

```
j =
  -2.7858
          0.2418
                    -0.7071
                             0.2418
                                       0.7071
                                                0.2418
  -2.7858
          -0.2418
                    0.7071
                              0.2418
                                               -0.2418
                                       0.7071
          3.9397
                                  0
                                               0.9397
                             -0.7071
            0.7071
                                      -0.2418 0.7071
          0.7071
                              0.7071
                                     0.2418
                                                0.7071
   1.0000
                                      -0.9397
```

```
─ for i=1:6
 frame= frames(:,:,i);
 pi 1 = frame(1:3,4);
 zi 1 = frame(1:3,3);
 if i==3 %jacobian for prismatic joint
         j(1:3,i)=zi 1;
         j(4:6,i)=[0;0;0];
 else
               %jacobian for revolute joint
         jp =cross(zi_1,pe-pi_1);
         j(1:3,i)=jp;
         j(4:6,i)=zi_1;
 end
 end
```


Jacobin Singularities

- Singularity occur when determinant of Jacobian matrix is zero
- This happens in three cases:
 - 1. Robot is fully extended
 - 2. End effector on first joint axis
 - 3. Axis 4,6 are collinear

```
%This condition checks if there is simgularity on a given configuration
if det(newj(1:3,1:3))*det(newj(4:6,4:6))==0
    fprintf('This is a signularity!')
```

Matlab condition to check for singularity

Jacobin Singularities

 In this robot model, Singulariy occur when theta_2 = 90 degrees which makes robot fully extended.

```
>> FK_with_Jacobian
This is a signularity!>> det(j)
ans =
0
```

Code successfully detect the singularity with determinant = 0

Robot is fully extended (Case 1)

Part 3: Trajectory Planning

- Position, velocity, and acceleration trajectories are plotted for each joint.
- The joint parameters are shown

```
%%Enter joint parameters as [q0,qf,dq_m, ddq_m,]
j1 =[0,10,5,4];
j2=[0,50,8,4];
j3 =[0,5,2,1]; %prismatic joint
j4=[0,40,4,2];
j5 =[0,50,8,4];
j6=[0,70,5,2];
```


Joints Trajectories

Synchronized Joints Trajectories

Remark: All joints have now a maximum velocity and acceleration less than before due to the prolongation of execution time.

synchronized Joint Trajectories

Numerical Joints Trajectories

 Numerical control is needed because the robot controller acts at certain frequency

The new numerical time can be calculated as

$$t_b = \left(\frac{t_b}{\Delta t} + 1\right) \Delta t$$

• The same goes for T

Numerical Joints Trajectories

Propagated Error

 The error is calculated between the end effector before and after numerical control

 Based on the arbitrary values entered, the error was 0

```
%Calculate the difference between x,y,z postion
x_error=Actual_FK(1:4)-Numerical_FK(1:4);
y_error=Actual_FK(2:4)-Numerical_FK(2:4);
z_error=Actual_FK(3:4)-Numerical_FK(3:4);

fprintf("\nError for end effector position is : %.2f in x and %.2f in y and %.2f in z\n",x_error,y_error,z_error)
```

Error for end effector position is : 0.00 in \boldsymbol{x} and 0.00 in \boldsymbol{y} and 0.00 in \boldsymbol{z}

Part 4: Dynamics

Euler Lagrange

- 1) Center of mass equations
- 2) Mass matrix M(q)
- 3)Corriolis matrix C(q,dq)
- 4) Gravity Matrix g

• Dynamics Equation:

$$ddq1$$
 $dq1$ $dq2$ $dq2$ $dq3$ $dq3$ $M(q)ddq4 + C(q,dq) dq4 + g(q) = \tau $dq5$ $dq6$$

- 1) Center of mass equations:
 - It was obtained using DH parameters
 - Equation for x,y,z were obtained

```
%This represents tranformation needed for each COM. first CoM is easy so it
%written directly in the next step

COM_02 = a1*rot_z2*trans_c2;

COM_03 = a1*a2*trans_c3;

COM_04 = a1*a2*a3*rot_z4*trans_c4;

COM_05 = a1*a2*a3*a4*rot_z5*trans_c5;

COM_06 = a1*a2*a3*a4*a5*rot_z6*trans_c6;
```

Euler Lagrange

- 2) Mass matrix M(q):
 - Linear Jacobian
 - Angular Jacobian

$$M(q) = \sum_{i=1}^{n} m_i * (J_v^i)^T * J_v^i + (J_w^i)^T * R_i * I * (R_i)^T * J_w^i$$

```
syms m1 m2 m3 m4 m5 m6
M_q_lin = m1*transpose(jac_lin_1)*jac_lin_1+m2*transpose(jac_lin_2)*jac_lin_2+m3*transpose
M_q_ang = transpose(jac_ang_1)* rot_z1(1:3,1:3) *I* transpose(rot_z1(1:3,1:3))...
    *jac_ang_1+transpose(jac_ang_2)* rot_z2(1:3,1:3) *I* transpose(rot_z2(1:3,1:3))...
    *jac_ang_2+transpose(jac_ang_3)* rot_z3(1:3,1:3)*I* transpose(rot_z3(1:3,1:3))...
    *jac_ang_3+transpose(jac_ang_4)* rot_z4(1:3,1:3) *I* transpose(rot_z4(1:3,1:3))...
    *jac_ang_4+transpose(jac_ang_5)* rot_z5(1:3,1:3)*I* transpose(rot_z5(1:3,1:3))...
    *jac_ang_5+transpose(jac_ang_6)* rot_z6(1:3,1:3) *I* transpose(rot_z6(1:3,1:3))...
    *jac_ang_6;
M_q= M_q_lin + M_q_ang;
```

Euler Lagrange

• 3) Corilios C:

$$c_{ij} = \sum_{k=1}^{n} c_{ijk} * \dot{q}_k$$

• 4) gravity g:

$$g = -\sum_{k=1}^{n} (J_{v_i}^k)^T * m_k * g_0$$

Euler Lagrange Code

For the following parameters:

```
DH=[0 0 1 0 0 0]; %Enter the values for each joint parameter RRPRRR
L=[1 1 0 1 1 1]; %Robot lengthes
C=[.1 .1 .1 .1 .1]; %Location of each COM relative to the local origin
m = [10 10 10 10 10 10]; %mass of each link
dq=[2 ;2; 4 ;3; 1; 5];%joint velocity
ddq=[1 ;.5 ;1 ;.1 ;.5 ;.6];%joint acceleration
izz=1; %izz valie
g 0=9.81; % gravity
```

The torques were obtained:

T =

-735.4400
198.2900
40.0000
74.4400
-58.6200
5.0200

Thank You