FTC Team #11587 Starry Knights

Tech Learning Series

Shooting Mechanisms

Introduction

- Shooting Overview
- Core Types of Shooter Mechanisms
 - Flywheel
 - Catapult
 - Flicker
- Summary

Shooting Overview

Shooting has been a scoring component of FTC competitions for the past 4 years

2016: Velocity Vortex

- 2015: RES-Q

2014: Cascade Effect

- 2013: Block Party!

- Objective typically involves getting gamepieces into a goal or receptacle
- Lead-in for more advances challenges in FRC

Intro To Shooter Mechanisms

Flywheel Shooter

 Flywheel shooters utilize 2-4 rapidly spinning wheels spaced just far enough apart to provide grip on particle passing between

Flywheel Shooter CAD Diagram

Flywheel Shooter

- Pro's
 - Easy to build
 - Wheel / Gears / Axles / DC motors
 - Easy to feed / reload
 - Sweeper / chute feed
- Con's
 - Consistency is poor
 - Exit velocity changes with battery voltage
 - Aiming is difficult
 - Fixed trajectory is most likely due to...
 - Takes up space!

Flywheel Shooter

- Design Considerations
 - Gear ratio from drive motor to flywheel needs to be at least 1:5
 - Flywheels must have consistent, grippy surface
 - Good for "mortar" applications indirect fire
 - Voltage regulator can smooth motor RPM

BOTTOM LINE: Reliable but needs a lot of attention in the build to make it work

Catapult Shooter

 Catapult shooter uses elastic bands, a cam mechanism, and lever arms to launch projectiles

Catapult Shooter CAD Diagram

Catapult Shooter

Pro's

- Most accurate / consistent shooting mechanism
- Able to shoot long distance accurately with right design
- Quick to reset

Con's

- Generally fixed trajectory adjustable mechanism is complex
- Can be tough to feed / reload

Catapult Shooter

- Design Considerations
 - Good for shooting from a known point
 - Surgical tubing good for elastic component
 - Changing lever arm length adjusts velocity / trajectory
 - Will have to carefully design a feeding mechanism for multiple shots

BOTTOM LINE: Most accurate fixed configuration shooter but complex feed

Flicker Shooter

 Utilizes a piece of polycarbonate attached to a spinning holder to "flick" the projectile on a trajectory

Flicker Shooter

- Pro's
 - Simple to build
 - Reliable
 - Easy to feed
- Con's
 - Fixed trajectory

Flicker Shooter

- Design Considerations
 - Protect the mechanism from impacts by game objects or other robots – i.e. encase the whole mechanism
 - Build spare replacement components in case of breakage
 - Good for rapid reload / fixed shot tactics

BOTTOM LINE: Simplest, most reliable shooter – used by many Teams for a reason

Video Tutorials

Shooting Mechanism Overview:

https://www.youtube.com/watch?v=60W-YfxOt1Y

• "Choo-choo" Catapult Mechanism:

https://www.youtube.com/watch?v=97ruz5Xrqqs

Particle Flicker Mechanism:

https://www.youtube.com/watch?v=ArmfwvATW3c

Summary

 Shooting has been a popular robotics task with FTC for the past several seasons – expect the trend to continue

- Ballistics calculations are difficult without instrumentation
 - trial & error is generally the fastest way to consistency

 Other methods are also available, but these three have proven to be the most reliable, simplest designs