Lab C: Color Detection

胡晉瑄 林修賢 INSTRUCTOR: Professor Jiin Lai

Overview

- Background Introduction
- Performance Analysis
- Result of color detection
- Suggestion for Improvement

Color Detection

The Color Detection algorithm is basically used for color object tracking and object detection, based on the color of the object. The color based methods are very useful for object detection and segmentation, when the object and the background have a significant difference in color.

Why FPGA acceration for color detection?

Nowdays, object detection by color is widely use in many field, such as image annotation, vehicle counting, face detection and also using in tracking objects.

We can find that most of above application are video type and have a real-time need. However, CPU is not suitable for such kind computation. FPGA can solve this problem, we can design a specialized architecture for color detection. With FPGA, we could:

- 1. Increase the throughput of applications (FPS 1)
- 2. Shorten the latency for computing (real time)
- 3. Utilize hardware of FPGA for data parallelism

Flow of Color Detection

- > The color space of the original BGR image is converted into an HSV color space.
 - o BGR2HSV
- > Applying the thresholding operation on the HSV image and return either 255 or 0.
 - Thresholding
- > Applying morphological operation, reducing unnecessary white patches (noise) in the image.
 - Morphological Opening: Erode -> Dilate
 - Morphological Closing : Dilate -> Erode

Convert BGR to HSV

- Why HSV?
 - HSV color space is useful for working with color information. It stands for HUE, SATURATION, and VALUE (or brightness). It is very useful in image processing tasks that need to segment objects based on its color
 - **HUE**: The hues are modeled as an angular dimension that encodes color information.
 - **SATURATION**: Saturation encodes the intensity of color.
 - **VALUE**: Value represents the amount to which that respective color is mixed with black.
- RGB colorspace are coded using the three channels, it is more difficult to segment an object based on its color.

HSV colorspace

Thresholding

- > Set lower bound and upper bound of detecting objection.
- > Get a binary mask of the frame where the target color is present

Ex: As following example, we set the lower bound to [50, 20, 20], upper bound to [100, 255, 255] (bound for leaves).

Then, we can use thresholding function to filter the image.

255(white) is for targeting color, 0(black) is for the other color.

Morphological Opening & Closing

- In the original mask, we can see that there is lots of unnecessary noise. So we have to remove it to get a better result.
- Morphological Opening:
 - Eroding and then dilating. It is aimed to remove little white dot in the black region.
- Morphological Closing :
 - Dilating and then Eroding. It is aimed to remove little black dot in the white region.

Flow result

Hardware Functions

The Color Detection example uses five hardware functions from the Vitis vision library. They are:

- Array2xfMat
- BGR2HSV
- colorthresholding
- erode
- dilate

Kernel Functions - Array2xfMat

```
static void axiStrm2xfMat(hls::stream<ap axiu<PTR WIDTH, 0, 0, 0> >& srcPtr,
                              xf::cv::Mat<T, ROWS, COLS, NPC, XFCVDEPTH>& dstMat) {
        Axi2Mat(srcPtr, dstMat.data, dstMat.rows, dstMat.cols);
    static void Axi2Mat(hls::stream<ap axiu<PTR WIDTH, 0, 0, 0> >& din,
                       hls::stream<ap uint<XF BITS PER CLOCK>, XFCVDEPTH>& dout,
                       int rows = ROWS,
                       int cols = COLS) {
// clang-format off
#pragma HLS DATAFLOW
       // clang-format on
       hls::stream<ap uint<PTR WIDTH> > ldata;
       ap uint<log2<ADDRBOUND>::cvalue + 1> axibound = MMITER::addrbound(rows, cols);
       Axi2AxiStream(din, ldata, axibound);
       AxiStream2Mat(ldata, dout, rows, cols);
```

- 1. Input a 1D array
- 2. MAXI in stream out
- 3. fill with a 2D matrix

Kernel Functions - bgr2hsv

Pseudo code

```
for(rows){
    for(cols){
        src_mat>>pixel_in;
        convert(pixel_in, pixel_out);
        dst_mat<<pixel_out;
    }
}</pre>
Convert

Img_out
```

• In bgr2hsv function, it will stream in every bgr pixels and calculate its corresponding hsv representation and then stream out.

Kernel Functions - bgr2hsv convertion

```
b = in pix.range(p * STEP + STEP - 1, p * STEP);
g = in pix.range(p * STEP + (2 * STEP) - 1, p * STEP + STEP);
r = in pix.range(p * STEP + (3 * STEP) - 1, p * STEP + 2 * STEP);
                                                                                                            V = \max(R, G, B)
v = b;
vmin = b;
                                                                                                     V - \min(R, G, B)
CV CALC MAX 8U(v, g);
CV CALC MAX 8U(v, r);
                                                                                                                                otherwise
CV CALC MIN 8U(vmin, g);
CV CALC MIN 8U(vmin, r);
                                                                                             [60(G-B)/(V-\min(R,G,B)) \quad if \quad V=R
diff = v - vmin;
                                                                                       H = \{120 + 60(B - R)/(V - \min(R, G, B))\} if V = G
vr = v == r ? -1 : 0;
vg = v == g ? -1 : 0;
                                                                                             240 + 60(R - G)/(V - \min(R, G, B)) if V = B
s = (diff * sdiv[v] + (1 << (11))) >> 12;
h = (vr \& (g - b)) + (\sim vr \& ((vg \& (b - r + 2 * diff)) + ((\sim vg) \& (r - g + 4 * diff))));
h = (h * hdiv[diff] + (1 << (11))) >> 12;
h += h < 0 ? 180 : 0;
out pix.range(p * STEP + STEP - 1, p * STEP) = (unsigned char)(h);
out pix.range(p * STEP + (2 * STEP) - 1, p * STEP + STEP) = (unsigned char)(s);
out pix.range(p * STEP + (3 * STEP) - 1, p * STEP + 2 * STEP) = (unsigned char)(v);
```

Kernel Functions - colorthresholding

Pseudo code

 In colorthresholding function, it is typically used to get a binary image out of a image or for removing a noise, that is, filtering out pixels with too small or too large values

```
template <int SRC T, int DST T, int MAXCOLORS, int ROWS, int COLS, int NPC>
void colorthresholding(xf::cv::Mat<SRC_T, ROWS, COLS, NPC>& _src_mat,
.....xf::cv::Mat<DST T, ROWS, COLS, NPC>& dst mat,
.....unsigned char low thresh[MAXCOLORS * 3],
unsigned char high_thresh[MAXCOLORS * 3]) {
// clang-format off
 #pragma HLS INLINE OFF
 #pragma HLS DATAFLOW
···// clang-format on
unsigned char low_th[MAXCOLORS][3], high_th[MAXCOLORS][3];
// clang-format off
  #pragma HLS ARRAY PARTITION variable = low th dim = 1 complete
 #pragma HLS ARRAY_PARTITION variable = high_th dim = 1 complete
···// clang-format on
--- uint16 t j = 0;
for (uint16 t i = 0; i < (MAXCOLORS); i++) {
// clang-format off
#pragma HLS PIPELINE
····// clang-format on
                                                                           set the threshold
low th[i][0] = low thresh[j];
low_th[i][1] = low_thresh[j + 1];
\cdots low th[i][2] = low thresh[j + 2];
high th[i][0] = high thresh[j];
---- high_th[i][1] = high_thresh[j + 1];
high th[i][2] = high thresh[j + 2];
· · · · · · · · j · = · j · + · 3;
uint16_t img_height = src mat.rows;
   uint16 t img width = src mat.cols;
   xFInRange<SRC T, DST T, ROWS, COLS, XF DEPTH(SRC T, NPC), XF DEPTH(DST T, NPC), NPC, XF WORDWIDTH(SRC T, NPC),
   XF WORDWIDTH(DST T, NPC), MAXCOLORS>( src mat, dst mat, low th, high th, img height, img width);
} // namespace cv
```

} // namespace xf

use InRange to filter out

```
template <int WORDWIDTH SRC, int WORDWIDTH DST, int DEPTH SRC, int DEPTH DST, int SRC T, int NPC>
void inrangeproc(XF SNAME(WORDWIDTH SRC) & val src,
                XF SNAME(WORDWIDTH DST) & tmp val,
                XF PTNAME(DEPTH DST) channel out[XF CHANNELS(SRC T, NPC)],
                XF PTNAME(DEPTH DST) lower thresh[XF CHANNELS(SRC T, NPC)],
                XF_PTNAME(DEPTH_DST) _upper_thresh[XF_CHANNELS(SRC_T, NPC)]) {
   XF PTNAME(DEPTH SRC) p;
   ap uint<8> tmp val1 = 0;
   for (ap\_uint<13> k = 0; k < (1 << XF\_BITSHIFT(NPC)); k++) {
// clang-format off
   #pragma HLS unroll
       // clang-format on
       p = val src.range(k * XF PIXELDEPTH(DEPTH_SRC) + (XF_PIXELDEPTH(DEPTH_SRC) - 1), k * XF_PIXELDEPTH(DEPTH_SRC));
       for (ap_uint<13> ch = 0, idx = 0; ch < XF_CHANNELS(SRC_T, NPC); ch++, idx += XF_DTPIXELDEPTH(SRC_T, NPC)) {
// clang-format off
     #pragma HLS unroll
                                                                      set in-range channel to 1
           // clang-format on
           tmp val1 = p.range(idx + (XF DTPIXELDEPTH(SRC T, NPC) - 1), idx);
           channel out[ch] =
               ((tmp_val1 >= _lower_thresh[ch]) && (tmp_val1 <= _upper_thresh[ch])) ? (ap_uint<8>)255 : (ap_uint<8>)0;
       if (XF CHANNELS(SRC T, NPC) != 1) {
           tmp val.range(k * XF PIXELDEPTH(DEPTH DST) + (XF PIXELDEPTH(DEPTH DST) - 1), k * XF PIXELDEPTH(DEPTH DST)) =
               (channel out[0] & channel out[1] & channel out[2]);
       } else {
           tmp val.range(k * XF PIXELDEPTH(DEPTH DST) + (XF PIXELDEPTH(DEPTH DST) - 1), k * XF PIXELDEPTH(DEPTH DST)) =
               channel out[0];
                                                     & all the channel and get the result
```

Kernel Functions - erode/dilate

Pseudo code

kernel erode and kernel dilate have same architecture, the only difference is function_apply in the process_function.


```
template <int ROWS, int COLS, int PLANES, int TYPE, int NPC, int WORDWIDTH, int TC, int K ROWS, int K COLS>
void Process function(...) {
Col Loop:
   for (ap uint<13> col = 0; col < ((img width) >> XF BITSHIFT(NPC)) + col loop var;
        col++) // Image width should be multiple of NPC
       #pragma HLS LOOP TRIPCOUNT min=1 max=TC
       #pragma HLS pipeline
       #pragma HLS LOOP FLATTEN OFF
       Row Loop:
       for (int idx = 0; idx < K_ROWS; idx++) {
           #pragma HLS LOOP TRIPCOUNT min=K ROWS max=K ROWS
           #pragma HLS UNROLL
           // clang-format on
           if (col < (img width >> XF BITSHIFT(NPC)))
               buf cop[idx] = buf[(row ind[idx])][col];
           else { -
                                                           padding over bounding value with 0
               buf cop[idx] = 0; // buf cop[idx];
               buf cop[idx].b not();
                               Actual Process function cal
       for (int iter = 0; iter < npc; iter++) {
// clang-format off
           #pragma HLS pipeline
           // clang-format on
                                                                                          copy data to kernel buffer from src
           for (int copyi = 0; copyi < K ROWS; copyi++) {
               for (int copyj = 0; copyj < K COLS; copyj++) {</pre>
                   src buf temp med apply[copyi][copyj] = src buf[copyi][copyj + iter];
           function_apply<PLANES, TYPE, K_ROWS, K_COLS>(&OutputValue, src_buf_temp_med_apply,
                                                       kernel); // processing 8-pixels
                                                                                             run function applt & write back
           OutputValues[iter] = OutputValue;
```

```
unsigned char kernel[K ROWS][K COLS]) {
                                                                      erode: function apply
Apply erode Loop:
   for (ap uint<5> c = 0, k = 0; c < PLANES; c++, k += depth) {
// clang-format off
       #pragma HLS LOOP TRIPCOUNT min=1 max=PLANES
                                                                                   dst(x, y) = \min_{x-1 \le x \le x+1} src(x', y')
       #pragma HLS UNROLL
       // clang-format on
       XF PTNAME(DEPTH) max = 255;
                                                                                                       y-1 \le y' \le y+1
       for (ap uint<13> k rows = 0; k rows < K ROWS; k rows++) {
// clang-format off
           #pragma HLS LOOP TRIPCOUNT min=1 max=K ROWS
           #pragma HLS UNROLL
           // clang-format on
           for (ap uint<13> k cols = 0; k cols < K COLS; k cols++) {
// clang-format off
                                                              If any pixel in the kernel is 0,
               #pragma HLS LOOP TRIPCOUNT min=1 max=K COLS
               #pragma HLS UNROLL
                                                              output of this kernel would be set 0
               // clang-format on
               if (kernel[k rows][k cols]) {
                   if (src buf[k rows][k cols].range(k + (depth - 1), k) < max) {</pre>
                      max = src buf[k rows][k cols].range(k + (depth - 1), k);
       packed val.range(k + (depth - 1), k) = max;
   *OutputValue = packed val;
   return;
```

void function apply(XF PTUNAME(DEPTH) * OutputValue,

XF PTUNAME(DEPTH) src buf[K ROWS][K COLS],

```
XF PTUNAME(DEPTH) src buf[K ROWS][K COLS],
                                                                         dilate: function_apply
                          unsigned char kernel[K ROWS][K COLS]) {
Apply dilate Loop:
    for (ap uint\langle 5 \rangle c = 0, k = 0; c < PLANES; c++, k += depth) {
// clang-format off
                                                                                   dst(x, y) = \max_{x-1 \le x \le x+1} src(x, y)
       #pragma HLS LOOP TRIPCOUNT min=1 max=PLANES
       #pragma HLS UNROLL
       // clang-format on
       XF PTNAME(DEPTH) max = 0;
                                                                                                       y-1 \le y' \le y+1
       for (ap uint<13> k rows = 0; k rows < K ROWS; k rows++) {
// clang-format off
           #pragma HLS LOOP TRIPCOUNT min=1 max=K ROWS
           #pragma HLS UNROLL
           // clang-format on
           for (ap uint<13> k cols = 0; k cols < K COLS; k cols++) {
// clang-format off
                                                                    If any pixel in the kernel is 255,
               #pragma HLS LOOP TRIPCOUNT min=1 max=K COLS
                                                                    output of this kernel would be set 255
               #pragma HLS UNROLL
               // clang-format on
               if (kernel[k rows][k cols]) {
                   if (src buf[k rows][k cols].range(k + (depth - 1), k) > max) {
                       max = src buf[k rows][k cols].range(k + (depth - 1), k);
        packed val.range(k + (depth - 1), k) = max;
    *OutputValue = packed val;
    return;
```

void dilate function apply(XF PTUNAME(DEPTH) * OutputValue,

Performance Analysis

SW_emulation

Profilie summary: Kernel execution time: 19015ms

HW_emulation

Profilie summary: Kernel execution time: 1.203ms

& Com	pute Units																
ecution																	
	Enqueues	Total Time (ms)	Min Time (ms)	Avg Time (ms)	Max Time (ms)												
_detect	1	19015.500	19015.50	00 19015.500	19015.500												
el Execu	tion																
	Kernel Insta Address	nce Cont	ext Comm Queue			Star	rt Dura e (ms) (ms)										
detect		44b10	0		gen3x16_xdma_201		53.115 190										
Unit Util	ization																
t	Kernel	Device					Dataflow	CU	Total	Min	Avg	Max	Clock			1	
	color detect		an 2v1 6 vdm	a 201920 3-0	Execution 1 No		Acceleration 1.000000x	Utilization (%)	Time (ms) 19015.500	Time (ms) 19015.500	Time (ms) 19015.500	Time (ms) 19015.500	Freq (MHz) 300.000	(ms)	Min Time (ms)	Avg Time (ms)	Max Time (ms)
	color_detect	XIIII IX_USO_g(ciioxio_xdiii	a_201320_3 0	1100		1.000000	100	10010,000	15015,500	10010,000	10010.000		11.858	41.858	41.858	41.858
Unit Sta	lle													0.010	0.010	0.010	0.010
UTIIL SLA	1115													0.779	0.779	0.779	0.779
				No da	ata. To generate ke	rnel stall data,	see Profiling	the Application						0.326	0.326	0.326	0.326
									clEnqu	eueWriteBuff	er		1	0.233	0.233	0.233	0.233
clFinish 1									0.001	0.001	0.001	0.00					
Write	70 W W					1 27 227			clGetD	eviceIDs			2	0.002	0.000	0.001	0.001
ess	Context			Start	Duration	Buffer	Writ		clGetD	clGetDeviceInfo 2			0.008	0.001	0.004	0.006	
,33	ID	Queue	e ID	Time (ms)	(ms)	Size (KB	Rat	e (MB/s)	clGetExtensionFunctionAddress			2	0.016	0.002	0.008	0.015	
	0	ß	0	51.223	N/A	1,041.3	5 N/A		clGetE	tensionFund	tionAddress	orPlatform	2	0.005	0.001	0.003	0.004
									clGetPl	atformInfo			6	0.003	0.000	0.000	
	0	E	0	50.891	N/A	0.027	N/A		clRelea	seCommand	Queue		1	0.002	0.002	0.002	
	0		0	50.759	N/A	1,041.3	2 N/A			seContext			1	1.375	1.375	1.375	
										seDevice			2	0.002	0.001	0.001	0.002
										seEvent			1	0.024	0.024	0.024	0.024
										seKernel			1	0.208	0.208	0.208	
Read	S									seMem0bje	t		11	0.007	0.000	0.001	0.002
	Context	Comm		Start	Duration	Buffer	Rea	ading		clReleaseProgram		1	0.061	0.061	0.061	0.061	
ess	ID	Queue	e ID	Time (ms)	(ms)	Size (k	(KB) Rate (MB/s)		clRetainDevice clRetainMemObject			2	0.001	0.000	0.000		
	0	15	0	19069.600	N/A	347.1	08 N/A	(nmemobject ernelArg			6 7	0.004	0.000	0.001	0.002
	- 10		323		1283	5 17.12				orEvents				0.013	19018.300	19018.300	
l									CIWAILF	OLEVELIUS			1 13	010.500	13010,300	13010.300	13010.300

Kernels & Co	STATE STATE OF STREET																		
Kernel Execution	n (include:	s estima	ated devi	ce times)															
Kernel	Enque	20110	Total Time (ms	Min) Time (ms) Time	Max e (ms) Time	(ms)												
<pre>// color_dete</pre>	ct	1	1.20	3 1.	203	1.203	1.203												
Top Kernel Exe	cution																		
Kernel	Kerne Addre	l Instand ss	ce Co		ommand ueue ID	Device				Start Time (ms)	Duration (ms)								
	ct 0x55f8	33a255	470	0	0	xilinx u50 ge	en3x16_xdma	201920 3-0		0.121	1.203								
lost Data Tran	sfers									API Calls									
ost Transfer										OpenCL API (Calls								
Context:Number of Devices	Transfer Type		ber of er Transfe	Tran		Avg Bandwidt Utilization (%)		Total Time (ms)	A	A API Name		Calls	Total Time (ms)	Min Time (ms)	Avg Time (ms)	Max Time (ms)			
ontext0:1	READ			1 :	224.240	N/A	347.108	N/A	N	N clCreateBuffer		5			0.242	0.63			
context0:1	WRITE			3		N/A	694.234		clCreateCommandQueue		1			0.002	0.00				
contexto:1	WRITE	WRITE		3	0.910	WA.	034.234	IVA	1/	clCreateCor		1		0.040	0.040	0.04			
										clCreateKer		1		1.382	1.382	1.38			
op Memory Write	S										gramWithBinary	1		21752.700	21752.700	21752.70			
	Context	Comma	and Sta	art	Duration	Buffer	Writing			100000000000000000000000000000000000000	figrateMemObjects	1		0.005	0.005	0.00			
Buffer Address	ID	Queue		ne (ms)	(ms)	Size (KB)	Rate (MB/s)			clEnqueueR		1		1.611 0.028	1.611 0.028	1.61 0.02			
0x101000	0	197		799.700	N/A	1.041.35	N/A			clEnqueueT clEnqueueV		1			0.028	0.02			
0xff000	0		AG 5000	791.200	N/A	0.027	N/A			clEnqueuev	micebullet	1			0.002	0.00			
	- 5				17.5		1907.3			clGetDevice	IDs	2			0.001	0.00			
0x0	0		0 21	791.000	N/A	1,041.32	N/A			clGetDevice		2		0.001	0.003	0.00			
											ionFunctionAddress	2		0.002	0.007	0.013			
op Memory Read	ls.									clGetExtens	ionFunctionAddressForPlat	form 2	0.004	0.001	0.002	0.00			
op Memory Read		Commo	and Ct	u+	Durotic	n Buffer	Dooding			clGetPlatfor	minfo	6	0.002	0.000	0.000	0.00			
Buffer Address	Context	Comma		ime (ms)	Duration (ms)	Size (KB)	Reading Rate (MB/s)			clReleaseCo	ommandQueue	1	0.003	0.003	0.003	0.00			
0x102000	0				142077.000		- I - I - I - I - I - I - I - I - I - I		347.108	N/A			clReleaseCo	ontext	1	9835.720	9835.720	9835.720	9835.72
UX102000	U		0 14	20//.000	N/A	347.108	IV/A			clReleaseDe	evice	2	0.004	0.001	0.002	0.00			
										clReleaseEv	ent ent	1	0.018	0.018	0.018	0.01			
										clReleaseKe	enal	1	0.688	0.688	0.688	0.68			

IP Synthesis Report

== Performance Estimates + Timing: * Summary: +------Clock | Target | Estimated | Uncertainty |ap clk | 3.33 ns| 3.650 ns| + Latency: * Summary: Latency (cycles) | Latency (absolute)

115 | 8328075 | 0.420 us | 30.394 ms | 88 | 8328014 | dataflow

Pipeline

Summary:	10000000000	0.0000000000000000000000000000000000000			
Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression		-1	0	88	-
FIFO	-1	-1	587	705	-
Instance	37	12	11673	17679	0
Memory		-	-	-	=
Multiplexer	-	-	-1	162	3 -
Register	-	-	21		
Total	37	12	12281	18634	0
Available SLR	1344	2976	871680	435840	320
Utilization SLR (%)	2	~0	1	4	0
Available	2688	5952	1743360	871680	640
Utilization (%)	1	~0	~0	2	0

Debugging Process

- Can't find opency path:
 - solution: \$(SYSROOT)/usr/include/opencv4
- Can't run hardware FPGA run
 - Maybe ask server manager?

```
[XRT] WARNING: XRT

[XRT] ERROR: Permission denied Device index 0

[XRT] ERROR: Could not open device

/mnt/HLSNAS/nycuhls11/vitis/Vitis_Libraries/vision/L3/examples/colordetect/xf_colordetect_tb.cpp:182 Error calling cl::Context context(device, NULL, NULL, NULL, & Serr), error code is: -6

[XRT] WARNING: Profiling may contain incomplete information. Please ensure all OpenCL objects are released by your host code (e.g., clReleaseProgram()).

[XRT] WARNING: XRT

[XRT] ERROR: Permission denied Device index 0

terminate called after throwing an instance of 'std::runtime_error'

what(): Could not open device

make: *** [Makefile:352: run] Aborted (core dumped)
```

The Result of Color Detection

- Yellow threshold: [50,20,20] [100,255,255]
- Increase FILTER_SIZE from 3,7,10

The erodsion and dilation can clean image better.

The Result of Color Detection

• **ITERATIONS** : 1,2,4

The erodsion and dilation can clean image better.

Suggestion for Improvement-1

Setting NPC argument of kernel erode and kernel dilate to accelerate.

NPC

Number of pixels to be processed per cycle; possible options are XF_NPPC1 and XF_NPPC8 for 1 pixel and 8 pixel operations respectively.

Operating Mode	Latency Estimate	
Operating Mode	Min Latency (ms)	Max Latency (ms)
1 pixel operation (300 MHz)	7.0	7.0
8 pixel operation (150 MHz)	1.85	1.85

	Resource Utilization						
Name	1 pixel per clock operation	8 pixel per clock operation					
	300 MHz	150 MHz					
BRAM_18K	3	6					
DSP48E	0	0					
FF	411	657					
LUT	392	1249					
CLB	96	255					

Suggestion for Improvement-2

Change the iterations number seperately.

```
Threshol
                                                                   Dilate
                                                                                Dilate
                                                                                                           Output
             BGR Image
                            BGR2HSV
                                                       Erode
                                                                                             Erode
                                         ding
                                                                                                            Image
   Use erode and dilate to fully mark color areas:
xf::cv::erode<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
              NPC1>(imgHelper1, imgHelper2, _kernel);
xf::cv::dilate<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
               NPC1>(imgHelper2, imgHelper3, kernel);
xf::cv::dilate<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
               NPC1>(imgHelper3, imgHelper4, kernel);
xf::cv::erode<XF BORDER CONSTANT, OUT TYPE, HEIGHT, WIDTH, XF KERNEL SHAPE, FILTER SIZE, FILTER SIZE, ITERATIONS,
              NPC1>(imgHelper4, imgOutput, kernel);
र्त::cv::erode<XF BORDER CONSTANT, OUT TYPE, HEIGHT, WIDTH, XF KERNEL SHAPE, FILTER SIZE, FILTER SIZE, ITERATIONS,
             NPC1>(imgHelper1, imgHelper2, kernel);
kf::cv::dilate<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF KERNEL SHAPE, FILTER SIZE, FILTER SIZE, 2*ITERATIONS,
           NPC1>(imgHelper2, imgHelper3, kernel);
xf::cv::erode<XF BORDER CONSTANT, OUT TYPE, HEIGHT, WIDTH, XF KERNEL SHAPE, FILTER SIZE, FILTER SIZE, ITERATIONS,
           NPC1>(imgHelper4, imgOutput, kernel);
```

Suggestion for Improvement-3

- IP utilization is very low using dataflow(<1%) => Not good for FPGA.
 - > Dataflow can deal with arbitrary input size and fixed hardware utilization
 - However, latency grows up by the size of input

If the input size is known and the memory is also sufficient

- Optimization
 - Treat image as a big matrix
 - Using pipline or unroll mechanism to calculate mutiple pixels at same time.
 - > Fully utilize FPGA resource to get the best performance