La différente, À REORGANISER

0.1 Cas Dedekind

On prends A de Dedekind et K = Frac(A) puis L/K finie séparable et B les entiers de L sur A.

0.1.1 B^{\wedge} est fractionnaire

L'idée c'est de faire le cas d'un module libre et de l'utiliser pour montrer le cas de type fini.

Dans l'ordre on montre que pour $M \subset L$ un A-réseau alors

- 1. Si $M=\oplus w_i.A$ alors $M^{\wedge}=w_i^{\wedge}.A$ où w_i^{\wedge} est la L-base duale.
- 2. Si $M \subset N$ alors $N^{\wedge} \subset M^{\wedge}$ pour deux A-modules quelconques.

Ensuite si $L = \bigoplus_i e_i K$ alors y'a un $a \in \mathcal{O}_K$ tel que $\bigoplus ae_i A \subset B$ d'où

$$\bigoplus_{i} ae_{i}A \subset B \subset B^{\wedge} \subset (\bigoplus_{i} ae_{i}A)^{\wedge} = \bigoplus_{i} (ae_{i})^{\wedge}A$$

et on peut montrer que B^{\wedge} est fractionnaire via un dénominateur commun des $(ae_i^{\wedge})_i$.

0.1.2 $D_{L/K}$ est un idéal de B

On a $B \subset B^{\wedge}$ d'où $D_{L/K} \subset B$.

0.1.3 Caractérisation

L'idéal $D_{L/K}^{-1}$ est maximal tel que

$$Tr_{L/K}(D_{L/K}^{-1}) = \mathcal{O}_K$$

Pour le voir suffit de remarquer que pour $I \subset L$ fractionnaire si on a

$$Tr_{L/K}(I.\mathcal{O}_L) = Tr_{L/K}(I) = \mathcal{O}_K$$

alors $I \subset D_{L/K}^{-1}$ par déf.

0.1.4 Transitivité

On veut montrer que $D_{L/K} = D_{L/M}D_{M/K}$, y suffit de montrer sur les inverses (Dedekind). En fait on a

$$Tr_{L/M}(D_{L/K}^{-1}) \subset D_{L/M}^{-1}$$

via la maximalité puis

$$Tr_{L/M}(D_{L/K}^{-1}D_{M/K}) = D_{M/K}Tr_{L/K}(D_{L/K}^{-1}) \subset D_{M/K}D_{M/K}^{-1} \subset \mathcal{O}_K$$

d'où $D_{L/K}^{-1}D_{M/K}\subset D_{L/M}^{-1}$ puis

$$D_{L/K}^{-1} \subset D_{L/M}^{-1} D_{M/K}^{-1}$$
.

À l'inverse

$$Tr_{L/K}(D_{M/K}^{-1}D_{L/M}^{-1}) \subset \mathcal{O}_K$$

d'où le résultat.

0.1.5 Corps locaux de caractéristique 0

On a toujours $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ et on peut prouver qu'alors si $f = \mu_\alpha$:

$$D_{L/K} = (f'(\alpha))$$

d'où

- 1. $v_L(D_{L/K}) = e 1$ ssi l'extension est modérée.
- 2. $v_L(D_{L/K}) \ge e$ en général.

0.2 La différente

Elle est donnée par

$$\mathscr{D}_{L/K} := (\mathcal{O}_L^{\wedge})^{-1} = (\{x \in L | Tr_{L/K}(x\mathcal{O}_L) \subset \mathcal{O}_K\})^{-1}$$

avec $I^{-1} =_L (\mathcal{O}_L : I)$.

0.2.1 Base duale de $(\alpha^i)_i$ pour la trace

Pour trouver la base duale de $\mathscr{D}_{L/K}^{-1}$ avec $L = K[\alpha]$ et $\alpha \in \mathcal{O}_L$ on a en notant $P(T) = (T - \alpha)(\sum_{i=1}^{n-1} c_i(\alpha)T^i)$ que

$$\sum_{i} \alpha_{i}^{k} \frac{P(T)}{P'(\alpha_{i})(T - \alpha_{i})} = T^{k}$$

d'où en développant $\sum_{i} \alpha_{i}^{k} \frac{c_{j}(\alpha_{i})}{P'(\alpha_{i})} = \delta_{ij}$. Et ça c'est $Tr_{L/K}(\alpha \frac{c_{j}(\alpha)}{P'(\alpha)})$ d'où $(\frac{c_{j}(\alpha)}{P'(\alpha)})_{j}$ est duale pour $(\alpha^{k})_{k}$. En plus vu que on peut réécrire

$$([P(T) - P(\alpha))/(T - \alpha) = \sum_{i=1}^{n} a_i \frac{(T^i - \alpha^i)}{T - \alpha}$$

et en développant on trouve $\sum_{i=j+1}^{n} a_i \alpha_{i-1-j} = c_j(\alpha)$. De $\alpha \in \mathcal{O}_L$ on a $a_n = 1$ d'où la matrice de transition de $1, \alpha, \ldots, \alpha^{n-1}$ vers $(c_j(\alpha))_j$ est triangulaire inférieure avec une diagonale faite de 1 d'où inversible dans \mathcal{O}_K .

En conclusion la base duale pour la trace de $(\alpha^i)_i$ est $(c_j(\alpha)/f'(\alpha))_j$. Mais quand $\alpha \in \mathcal{O}_L$, $\mathcal{O}_K[\alpha]^{\wedge} = \frac{1}{P'(\alpha)}\mathcal{O}_K[\alpha]$.

0.2.2 La différente quand $\mathcal{O}_L = \mathcal{O}_K[\alpha]$

Par exemple dans des corps locaux de caractéristique 0 un tel α existe toujours via $\mathcal{O}_L = \mathcal{O}_K[\theta, \pi_L]$ et le fait que l'extension résiduelle est séparable.

Maintenant
$$\mathscr{D}_{L/K} = ((\mathcal{O}_L)^{\wedge})^{-1} = \frac{1}{P'(\alpha)} \mathcal{O}_L.$$

Remarque 1. Directement si $L = K[\alpha]/K$ est non ramifiée, $P'(\alpha) \in \mathcal{O}_L^{\times}$ car $\bar{P}'(\bar{\alpha}) \neq 0 \mod \pi_L$. d'où $\mathcal{D}_{L/K} = \mathcal{O}_L$.

0.3 Transitivité

Étant donné L/F/K, on a $\mathcal{D}_{L/K} = \mathcal{D}_{L/F}\mathcal{D}_{F/K}$. Suffit de montrer que, $\mathcal{O}_{L/K}^{\wedge} = \mathcal{O}_{L/F}^{\wedge}(\mathcal{O}_{F/K}^{\wedge})$ vu que $(IJ)^{-1} = I^{-1}J^{-1}$ c'est un calcul terme à terme. Et pour ça le seul cas pas évident c'est $x \in \mathcal{O}_{L/K}^{\wedge}$ implique est un produit.

0.3.1 Base produit

Dans le cas complet ça va, c'est que des dvrs d'où on a une base produit.

0.4 Caractérisation

On a $Tr(D_{L/K}^{-1})=\mathcal{O}_K$ et c'est le plus grand idéal fractionnaire tel que c'est vrai. Faut penser à la base duale pour le voir!

0.4 Caractérisation

Chapitre 1

Résumé

On a $Tr_{L/K}(D_{L/K}^{-1})=\mathcal{O}_K$, la surjectivité vient de la base duale. L'autre inclusion est par déf.

La transitivité on peut prouver que $Tr_{L/F}(D_{L/K}^{-1}) = D_{F/K}^{-1}$ sachant que si $x \in F$ et v_i^* est dans la base duale de L sur F alors xv_i^* est dans $D_{L/K}^{-1}$, la raison c'est que $Tr_{F/K}(x) \in \mathcal{O}_K$. Par déf.

L'autre côté est simple.

L'existence de la base duale c'est que Hom(L,K) est de dimension $\leq [L:K]$ et $x\mapsto Tr(_x)$ est injective par non dégénérescence.