AGLA 1. Retake of TEST 1. 15 points, 60 minutes

Full name:	Group:

Task:	1	2	3	4	5	6	Total
Score:							

In each sheet, you should write your last name, first name, variant number, and group number in the **upper right** corner. Unsigned sheets or sheets without the information above will NOT BE graded.

1. (2 points) For each of the following statements mark it as True or False. Justify each answer.

1) $\det \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = 0$	ı
$\begin{vmatrix} 2 & 4 & = 0 \\ 3 & 6 \end{vmatrix}$	
2) The result of Scalar triple product operation is a vector.	
3) Any subset of vectors form a subspace	
4) Rank can be greater than a number of rows of a matrix.	

2. (2 points) Decompose the vector $\mathbf{p} = (1, 2, 3)$ into components parallel and perpendicular to the vector $\mathbf{q} = (1, -2, 2)$.

3. (2 points) (a) Find the matrix product AB if $A = \begin{bmatrix} 2 & x & 5 \\ 4 & 3 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & x \\ -3 & 2 \\ -1 & 2 \end{bmatrix}$

(b) Find the largest possible value of determinant (AB).

4. (3 points) Find a transformation matrix from X0Y to X'0'Y' (length of vectors is important).

Figure 1: Task 4

5. (3 points) Prove that the result of a cross product will not changes if to one of the vectors add vector \vec{x} such that \vec{x} is a collinear to another vector.

6. (3 points) It is known that $A^2 + A + I = O$ (O is a zero matrix) for a square matrix A. Is it true that matrix A is invertible? If it is so, how can we find the inverse matrix?