TensorFlow i TensorFlowLite kompatybilność operatorów

Marcin Cyc

Słowem wstępu

Modele są przetwarzane przez konwerter optymalizujący, w którym operacje mogą być pomijane lub łączone.

Zestaw operacji w Lite jest mniejszy.

Nie każdy model można przekształcić.

Zestaw operacji w Lite jest stale rozwijany.

Należy dokładnie rozważyć sposób konwersji oraz optymalizacji operacji aby zbudować model używany przez TensorFlowLite.

Wspierane typy

Ukierunkowanie na typy float.32, uint8, int8

Różnica konwersji ze względu na wykorzystany typ.

Przykład: wymagana informacja o zakresie dynamicznym dla tensorów w skwantyzowanej konwersji.

Kwantyzacja

Zmniejszenie precyzji liczb. Powoduje to:

- mniejszy rozmiar modelu
- szybsze obliczenia

Więcej na temat kwantyzacji:

https://www.tensorflow.org/lite/performance/model optimization#quantization

Rodzaje kwantyzacji

Rodzaje kwantyzacji w TensorFlowLite:

Technika	Wymagania danych	Redukcja rozmiaru	Dokładność	Wspierany hardware
Post-training float16 quantization	Brak danych	do 50%	Nieznaczna utrata dokładności	CPU, GPU
Post-training dynamic range quantization	Brak danych	do 75%	Utrata dokładnośći	CPU
Post-training integer quantization	Nieoznakowana reprezentatywna próbka	do 75%	Mniejsza utrata dokładności	CPU, EdgeTPU, Hexagon DSP
Quantization-aware training	Oznakowana reprezentatywna próbka	do 75%	Mniejsza utrata dokładności	CPU, EdgeTPU, Hexagon DSP

^{*}TPU - jednostka przetwarzająca tensor, układ scalony stworzony przez Google do Al

Format danych i emisja

Obsługiwany format to **NHWC TensorFlow**. (wielkość_próbki x wysokość x szerokość x kanały)

Transmisja w ograniczonej liczbie operacji: **tf.add, tf.mul, tf.sub, tf.div**

Kompatybilne operacje

Poniżej wymienione operacje są zwykle mapowane na ich odpowiedniki w wersji Lite:

- tf.nn.conv2d O ile filtr jest stały.
- tf.nn.12 normalize
- tf.reshape
- tf.nn.max pool

i wiele innych.

Pełna lista: https://www.tensorflow.org/lite/guide/ops_compatibility#compatible_operations

Proste konwersje, ciągłe składanie i łączenie

Jest możliwość przetwarzania operacji bez bezpośredniego odpowiednika.

Dotyczy to operacji, które można:

- usunąć z grafu if.identity
- zastąpić tensorami tf.placeholder
- połączyć w bardziej złożone operacje tf.nn.bias_add

Niepełna lista takich operacji:

https://www.tensorflow.org/lite/guide/ops compatibility#straight-forward conversions constant-folding and fusing

Nieobsługiwane operacje

Lista we wcześniejszym slajdzie zawiera najpopularniejsze operacje. Jeśli nie ma ta szukanej i popularnej operacji prawdopodobnie nie jest wspierana przez Lite. Taką operacją jest:

 tf.depth_to_space - Układa dane z głębokości (ang. deep) na bloki danych przestrzennych

Operacje TensorFlow Lite

Poniżej wymienione operacje są w pełni zastępują ich odpowiedniki w TensorFlow. Przykłady:

- ABS wartość bezwzględna wejścia
- CONV_2D wynik splotu 2D tensora wejściowego
- L2_NORMALIZATION znormalizowany wektor wzdłuż ostatniego wymiaru
- RESHAPE nowy kształt tensora wejściowego
- MAX_POOL_2D każdy wpis jest maksimum w adekwatnym oknie
- operatory porównań LESS, GREATER, EQUAL, NOT_EQUAL itd.

Pełna lista: https://www.tensorflow.org/lite/guide/ops compatibility#tensorflow lite operations

Podsumowanie

Jeśli tworzymy model, który ma zostać wykorzystany na urządzeniach mobilnych/ o mniejszej mocy obliczeniowej, musimy:

- pamiętać o możliwości konwersji do modelu Lite
- upewnić się, że operacje są mapowanie
- upewnić się, że operacje jeśli nie są mapowanie to można zastąpić je, usunąć
 lub połączyć w bardziej złożone operacje
- upewnić się, że operacja nie jest na liście niewspieranych operacji
- pamiętać o możliwości kwantyzacji
- wykorzystać wspierany typy danych
- nie nadużywać broadcasting'u

