第八章各类反应的动力学的动力学

8一4 聚合反应

聚合反应——

- ▶由很大数量的一种或多种小分子单体重复键合连接而成大分子化合物的反应;
- >形成的大分子化合物称为聚合物;
- >其中由两种以上不同单体形成的称为共聚物;
- >聚合时如无其它小分子产生则称加成聚合;
- >聚合时有水或其它小分子分离出来则称为缩聚;
- 聚合反应均为复合反应,具有链反应机理。其基元反应可能是分子反应,或离子反应,或自由基反应。

例: 自由基聚合反应

热引发,光照射,加入引发剂 \longrightarrow R_1 **链引发**

$$R_1 \cdot + M \xrightarrow{k_p} R_2 \cdot$$

$$R_2 \cdot + M \xrightarrow{k_p} R_3 \cdot$$

链传递

$$R_{n-1} \cdot + M \xrightarrow{k_p} R_n \cdot$$

$$R_n \cdot + R_m \cdot \xrightarrow{k_t} R_{n+m}$$
 链终止

速率方程

$$\mathbf{R}_{1} :: \ \ \upsilon_{i} - k_{p} c_{\mathbf{R}_{1}} \cdot c_{M} - k_{t} c_{\mathbf{R}_{1}} \cdot \sum_{n} c_{\mathbf{R}_{n}} = \mathbf{0}$$

$$\mathbf{R}_{2} :: k_{\mathbf{p}} c_{\mathbf{R}_{1}} c_{\mathbf{M}} - k_{\mathbf{p}} c_{\mathbf{R}_{2}} c_{\mathbf{M}} - k_{\mathbf{t}} c_{\mathbf{R}_{2}} \sum_{n} c_{\mathbf{R}_{n}} = 0$$

$$R_m :: k_p c_{R_{m-1}} c_M - k_p c_{R_m} c_M - k_t c_{R_m} \sum_n c_{R_n} = 0$$

$$\upsilon_{\mathbf{i}} - k_{\mathbf{t}} \left(\sum_{n} c_{\mathbf{R}_{n}} \right)^{2} = \mathbf{0} \qquad \sum_{n} c_{\mathbf{R}_{n}} = \left(\frac{\upsilon_{\mathbf{i}}}{k_{\mathbf{t}}} \right)^{1/2}$$

$$-\frac{\mathrm{d}c_{\mathrm{M}}}{\mathrm{d}t} = k_{\mathrm{p}}c_{\mathrm{M}} \sum_{n} c_{\mathrm{R}_{n}} = k_{\mathrm{p}} \left(\frac{\upsilon_{\mathrm{i}}}{k_{\mathrm{t}}}\right)^{1/2} c_{\mathrm{M}}$$

加入引发剂的速率方程

$$-\frac{dc_{M}}{dt} = k_{p} \left(\frac{k_{i}}{k_{t}}\right)^{1/2} c_{M} c_{A}^{1/2} - \frac{dc_{M}}{dt} = k_{p} \left(\frac{k_{i}}{k_{t}}\right)^{1/2} c_{M}^{3/2} c_{A}^{1/2}$$

光引发的速率方程

$$-\frac{\mathrm{d}c_{\mathrm{M}}}{\mathrm{d}t} = k_{\mathrm{p}} \left(\frac{I_{\mathrm{a}}}{k_{\mathrm{t}}}\right)^{1/2} c_{\mathrm{M}}$$

热引发的速率方程

$$-\frac{\mathrm{d}c_{\mathrm{M}}}{\mathrm{d}t} = k_{\mathrm{p}} \left(\frac{k_{\mathrm{i}}}{k_{\mathrm{t}}}\right)^{1/2} c_{\mathrm{M}}^{2}$$

8-5 燃烧与爆炸

由于热量积聚而产生——热爆炸

支链反应

$$A \xrightarrow{k_i} R$$
.

$$R \cdot + A \xrightarrow{k_p} \alpha R \cdot + P$$

R·→ 销毁

氢氧反应机理

$$(1) \qquad \left[\mathbf{H}_2 + \mathbf{O}_2 \longrightarrow 2\mathbf{OH} \cdot \right]$$

(1)
$$\begin{cases} H_2 + O_2 \longrightarrow 2OH \cdot \\ H_2 + M \longrightarrow 2H \cdot +M \end{cases}$$

(3)
$$OH \cdot +H_2 \longrightarrow H \cdot +H_2O$$

$$(4) \qquad \left(\mathbf{H} \cdot + \mathbf{O}_2 \longrightarrow \mathbf{O} \cdot + \mathbf{OH} \cdot \right)$$

(5)
$$\begin{cases} O \cdot + H_2 \longrightarrow H \cdot + OH \cdot \end{cases}$$

$$(7) \quad \left| \mathbf{H} \cdot + \mathbf{O}_2 + \mathbf{M} \longrightarrow \mathbf{HO}_2 \cdot + \mathbf{M} \right|$$

(8)
$$\int HO_2 \cdot +H_2 \longrightarrow H \cdot +H_2O_2$$

(9)
$$\Big| HO_2 \cdot + H_2O \longrightarrow OH \cdot + H_2O_2$$

链的引发

链的传递

支链产生

链的终止

慢速传递

气体组成对爆炸影响

表 8-5 空气中的爆炸极限(体积%)

	·	
物质	低限	高 限
H_2	4.1	
NH_3	16	27
CO	12.5	74
CH_4	5.3	14
C_2H_6	3.2	12.5
C_3H_8	2.4	9.5
C_4H_{10}	1.9	8.4
C_3H_6	2	11
C_6H_6	1.2	9.5
$(CH_3)_2CO$	2.5	13

8-8 光化学反应

光化学第一定律: 只有被物质吸收的光才能有效 地引起化学反应

光化学第二定律: 光化学反应中,初级过程是一个光子活化一个分子

表 8-6 不同波长光的爱因斯坦值

DESCRIPTION OF THE PROPERTY OF			
光的颜色	λ / nm	$(h\nu/\mathrm{J})\times10^{19}$	$Lh v / kJ \cdot mol^{-1}$
红外	1000	1.99	119.6
红	700	2.84	170.9
橙	620	3.20	192.9
黄	580	3.42	206
青	530	3.75	226
蓝蓝	470	4.23	254
紫	420	4.73	285
紫外	300	6.63	399
紫外	200	9.93	598
X光	0.1	1.99×10^4	1.196×10^6

1爱因斯坦 =
$$Lh\nu$$
 = $\left[\frac{119.6\times10^3}{\lambda/\text{nm}}\right]$ kJ·mol⁻¹

光化学速率方程

$$\upsilon = \phi I_{\rm a}$$

量子效率:参加反应的分子数或反应产生的分子数与被吸收的光子数之比

$$H \cdot +HI \longrightarrow H_2 + I \cdot M + I \cdot +I \cdot \longrightarrow M + I_2$$

$$2HI + h\nu \longrightarrow H_2 + I_2$$

$$Cl_2 + h\nu \xrightarrow{\phi_1I_a} 2Cl \cdot H_2 + Cl \cdot \xrightarrow{k_2} HCl + H \cdot$$

$$H \cdot + Cl_2 \xrightarrow{k_3} HCl + Cl \cdot Cl \cdot \xrightarrow{k_4} \frac{1}{2}Cl_2$$
(墙面销毁)

$$\frac{dc_{H}}{dt} = k_2 c_{Cl} c_{H_2} - k_3 c_{H} c_{Cl_2} = 0$$

$$\frac{dc_{\text{Cl}}}{dt} = 2\phi_1 I_a - k_2 c_{\text{Cl}} c_{\text{H}_2} + k_3 c_{\text{H}} c_{\text{Cl}_2} - k_4 c_{\text{Cl}} = 0$$

$$\upsilon_{\text{HCl}} = \frac{dc_{\text{HCl}}}{dt} = k_2 c_{\text{Cl}} c_{\text{H}_2} + k_3 c_{\text{H}} c_{\text{Cl}_2} = 2k_2 c_{\text{Cl}} c_{\text{H}_2}
= \frac{4k_2}{k_4} \phi_1 I_{\text{a}} c_{\text{H}_2} \qquad \phi = 4k_2 \phi_1 c_{\text{H}_2} / k_4$$

8-10 化学振荡

实例一(Lotka-Volterra模型)

$$A \longrightarrow P$$

$$A + X \xrightarrow{k_1} 2X \quad X + Y \xrightarrow{k_2} 2Y \quad Y \xrightarrow{k_3} P$$

$$dc_{X}/dt = k_1 c_A c_X - k_2 c_X c_Y$$

$$dc_{Y}/dt = k_2 c_{X} c_{Y} - k_3 c_{Y}$$

$$c_{XS} = k_3 / k_2$$
 $c_{YS} = k_1 c_A / k_2$

$$\frac{dc_{X}}{dc_{Y}} = \frac{k_{1}c_{A}c_{X} - k_{2}c_{X}c_{Y}}{k_{2}c_{X}c_{Y} - k_{3}c_{Y}} = -\frac{k_{2}c_{X}(c_{Y} - c_{Ys})}{k_{2}c_{Y}(c_{X} - c_{Xs})}$$

$$c_{X} - c_{Xs} \ln c_{X} + c_{Y} - c_{Ys} \ln c_{Y} = K$$

实例一(丙二酸被溴酸钾氧化)

$$3H^{+} + 3BrO_{3}^{-} + 5CH_{2}(COOH)_{2} \xrightarrow{Ce^{3+}}$$

$$3BrCH(COOH)_{2} + 2HCOOH + 4CO_{2} + 5H_{2}O$$

产生化学振荡的基本条件

远离平衡 存在反馈 产物能加速反应,即自催化反应 存在双稳定性 在同样条件下存在两个可能 的稳定状态

自催化反应

$$A + B \rightarrow 2B + P$$
 $\upsilon = kc_A c_B$
 $A + 2B \rightarrow 3B + P$ $\upsilon = kc_A c_B^2$

双稳定性

过程
$$A$$

$$BrO_3^- + Br^- + 2H^+ \rightarrow HBrO_2 + HOBr$$

$$HBrO_2 + Br^- + H^+ \rightarrow 2HOBr$$

过程
$$B$$

$$BrO_3^- + HBrO_2 + H^+ \rightleftharpoons 2BrO_2 \cdot + H_2O$$

$$2BrO_2 \cdot + 2Ce^{3+} + 2H^+ \rightarrow 2HBrO_2 + 2Ce^{4+}$$

$$2HBrO_2 \rightarrow BrO_3^- + HOBr + H^+$$

过程C

$$2Ce^{4+} + MA + BrMA \rightarrow$$

分岔

$$\frac{dx}{dt} = -y + x \left[\mu - \left(x^2 + y^2\right)\right] \qquad \frac{dr}{dt} = r(\mu - r^2)$$

$$\frac{dy}{dt} = x + y \left[\mu - \left(x^2 + y^2\right)\right] \qquad \frac{d\theta}{dt} = 1$$

$$r = \sqrt{(2t + C)^{-1}} \qquad \mu = 0$$

$$r = \sqrt{\mu (1 + Ce^{-2\mu t})^{-1}} \qquad \mu \neq 0$$

$$\theta = t - t_0$$

$$x = 0 y = 0$$
$$dx/dt = 0$$
$$dy/dt = 0$$

$$\mu \le 0 \quad t \to +\infty$$
$$r = 0$$

$$\mu > 0 \quad t \to +\infty$$

$$r = \sqrt{\mu}$$

混沌

 $\boldsymbol{\mathcal{X}}$

 μ