

TD 2 – Intégrales de fonctions mesurables positives

ightharpoonup Exercice 1 (Inégalité de Markov). Soit (E, \mathcal{A}, μ) un espace mesuré. Soit f mesurable de (E, \mathcal{A}) dans $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ et positive. Montrer que

$$\forall a > 0, \quad \mu(\{f > a\}) \le \frac{1}{a} \int_E f \,\mathrm{d}\mu.$$

 \triangleright **Exercice 2.** Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $f: E \to \overline{\mathbb{R}}_+$ une fonction mesurable positive.

2.1. On définit

$$\mu_f \colon A \longrightarrow \overline{\mathbb{R}}_+$$

$$A \longmapsto \mu_f(A) := \int_E f \, \mathbb{1}_A \, \mathrm{d}\mu.$$

Montrer que μ_f est une mesure sur (E, A), appelée mesure de densité f par μ .

2.2. Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ deux à deux disjoints et de réunion $A:=\bigcup_{n\in\mathbb{N}}A_n$. En déduire que

$$\int_{A} f \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_{A_n} f \, \mathrm{d}\mu.$$

ightharpoonup Exercice 3. Soit f mesurable de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et positive. Soit δ_0 la mesure de Dirac en 0 définie sur $\mathcal{B}(\mathbb{R})$ par :

$$\delta_0 \colon \ \mathcal{B}(\mathbb{R}) \longrightarrow \overline{\mathbb{R}}_+$$

$$A \longmapsto \delta_0(A) \coloneqq \left\{ \begin{array}{l} 1 & \text{si } 0 \in A \\ 0 & \text{sinon.} \end{array} \right.$$

Déterminer $\int_{\mathbb{R}} f \, \mathrm{d}\delta_0$.

 \triangleright Exercice 4 (Relation de Chasles généralisée pour les fonctions mesurables positives). Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} deux à deux d'intersection de mesure nulle et de réunion $A := \bigcup_{n \in \mathbb{N}} A_n$. Soit f mesurable positive de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que

$$\int_A f \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_{A_n} f \, \mathrm{d}\mu.$$

 \triangleright Exercice 5. Soit (E, \mathcal{A}, μ) un espace mesuré.

5.1. Soit $f: E \to \overline{\mathbb{R}}_+$ mesurable positive telle que :

$$\mu(f^{-1}(\{+\infty\}) = 0.$$

f est-elle intégrable sur E?

5.2. Réciproquement, est-ce qu'une fonction intégrable f est finie presque partout, *i.e.* vérifie $\mu(\{f = +\infty\}) = 0$?