Assignment Project Exam Help Review of the Final

https://pawcoder.com

Add WeChat powcoder

Reminders/Comments

This is a final exam that means

You should work on your own

ssignment Project ExamoHelp extensions

but it is open book

- Journay use any written resource dutonly packages that we specifically refer to
- We are happy to explain what error messages mean, but you

should isolate the line of code that generates them. therefore the line of code that generates them.

- Structured like a homework; 3 questions, 6 parts each
- Sub-parts are structured as (i): do the coding, (ii) and (iii): plot or comment on results.
- Happy to tell you what code should do, written responses are up to you. 4 D > 4 A > 4 B > 4 B >

Question 1: Control Functionals

Assignment Project Exam Help

https://powcoder.com

If we know
$$Eh(X) = \int g(x)f(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} g(X_i)$$

If we know $Eh(X) = 0$ and $Cor(g(X), h(X)) \neq 0$ then

Add WeChat powcoder

has smaller variance if $\alpha = \text{cov}(g(X), h(X))/\text{var}(h(X))$.

 \bullet α ? Estimate from values of $g(X_i)$ and $h(X_i)$.

Example on Final

Assignment $e^{\sum_{k=0}^{\infty} \frac{1}{k} = \sin(x+0.1)} Exam Help$

Comparisons

Parts b/c with antithetic sampling SS1: Summent (Project Exam Help

We want to look at

- 1 Vanilla: $\frac{1}{N} \sum g(X_i)$ 2 **attpSates: powicoforxicom**
- 3 Antithetic $\frac{1}{N} \sum (g(X_i) + g(X_i))/2$

Both: $\frac{1}{N}\sum (g(X_i)+g(-X_i))/2 - \alpha \frac{1}{N}\sum (h(X_i)+h(-X_i))/2$ For both calculated plane of values of M and $(h(X_i) + h(-X_i))/2$

Question about relative improvement are for you to think about.

Also bonus on using $g(x) = \sin(x)$ or h(x) = x.

Control Functionals

Part d taken from Oates, Girolami, Chopin, 2016

Assignment Project Exam Help

- Use $X_1, \ldots, X_{N/2}$ to get a better $h_N(x), X_{N/2+1}, \ldots, X_N$ for control variate integral.
- https://powcoder.com

Add WeCha \in powcoder

 d_i make $h_N(x)$ approximate g(x) but we know

$$\int k_j(x)f(x)dx=0$$

Control Functional Details

Need $Ek_j(X) = 0$: modify a kernel function

Assignment Project; Exam Help where $\phi(z; s)$ is normal density with standard deviation s (dnorm(z,sd=s))

https://powcoder.com

Why?
Add WeChat powcoder

$$\int k_j(x)f(x)dx = \int (\phi'(x-X_j;s)f(x))dx + \phi(x-X_j;s)f(x))dx$$

$$= \int \frac{d}{dx}(\phi(x-X_j;s)f(x))dx$$

$$= \phi(\infty-X_i;s)f(\infty) - \phi(-\infty-X_i;s)f(-\infty) = 0$$

Control Functional Implementation

1 Calculate matrix to store for $1, \ldots, N/2$

Assignment Project Exam Help remember $\phi(z;s)$ is N(0,s), f(x) is N(0,1).

- Obtain d_j by regressing $g(X_i)$ on the matrix K_{ij} http://www.set.in.to.zero.
- 3 Plug in $X_{N/2+1}, \ldots, X_N$ to

(note that the X_i used to define k_i stay the same.

 k_j : sort of kernel/sort of basis. No smoothing penalty because $g(X_i)$ has no error.

Example

Using $g(x) = \sin(x)$

Assignment Project Exam Help

Convergence Rates

Parts e/f: simulation based on control functionals Example is

Assignment of the property $Assign (x) = \sin(x)$, control variate h(x) = x (more effective) $Assign (x) = \sin(x)$, control variate h(x) = x (more effective) $Assign (x) = \sin(x)$, control variate h(x) = x (more effective) Assign (x) = x (mor

End of Part f:

$$\sqrt{MSE} \approx CN^{\alpha} \rightarrow \log(\sqrt{MSE}) \approx \alpha \log(N) + \log(C)$$

looks like a linear model.

Question 2: Kernel Density Estimates

Kernel Density Estimation, given X_1, \ldots, X_n :

Assignment, Project, Exam Help

Cross Validation

Part b to choose s, we want to make the density on a *new* point as high as possible.

Assiĝinne intil Projectal Lexamtin Help

- s small \Rightarrow peaks will miss new points, s large \rightarrow low density everywhere.
- https://powcoder.com

Simulation

Part c Form of density is like

Assignment Project Exam Help

- Choose an observation at random
- 2 Simulate from $N(X_k, s)$

Can artteps://eportwcoder.com

Hellinger Distance

Part d Measure of distance between densities

Assignment Project Exam Help

$$A(g, https://powdowspression.) $eethodowspression.$$$

Statistical use: find θ to maximize affinity between $\hat{f}(x)$ and $f(x;\theta)$ Add WeChat_nowcoder_

and $f(x;\theta)$ is $N(\theta,1)$:

$$A(heta) = rac{1}{N} \sum \sqrt{rac{\phi(Z_j - heta, 1)}{\hat{f}(Z_j)}}$$

Optimization and Robustness

To find $\max_{\theta} A(\theta)$ use optimize function between -10 and 10.

Asisi gen Megnetimaticulect Exam Help

https://powcoder.com Add WeChat powcoder

- Add O to data (8 points instead of 7)
- Don't change s with value of O (yes this is cheating).
- Do simulate new Monte Carlo points with each value.

Hellinger's Posterior

Hooker and Vidyashankar, 2014 suggested finding a posterior based on

For this question:

- Keep same MC samples with $A(\theta)$ for each θ .
- Experiment to get acceptance to around 30%; decide on thinning from visual inspection (don't work too hard).

Stochastic Objective Functions

Monte Carlo integration \Rightarrow evaluation of $A(\theta)$ random.

Assignment Project Exam Help

In MCMC, stochastic posteriors are ok, but decrease acceptance rate.

Mixed Effects Logistic Models

Example data

■ 12 Subjects, each measured 7 times

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Logistic model (can use plogis)

$$P(Y_{ij} = 1|Z_j) = rac{e^{eta 0 + eta_1 X_{ij} + Z_j}}{1 + e^{eta 0 + eta_1 X_{ij} + Z_j}}$$

 $X_{ij} = \text{time of visit}, Z_i = \text{effect of subject } j.$

Generative Model

Don't get to see subject effects Z_j : model for a new data set is

Assignment of the control of the co

$$\text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where we thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where We thin Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } \\ \text{Where Write}^{P(Y_{i1}, \dots, Y_{ij}) = \int P(Y_{i1}, \dots, Y_{ij} | z) \phi(z; \sigma) dz } dz }$$

$$Add = \prod_{i=1}^{7} P(Y_{ij}|z)$$

$$Add = \prod_{i=1}^{7} P(Y_{ij}|z)$$

$$= \prod_{i=1}^{7} P(Y_{ij} = 1|z)^{Y_{ij}} (1 - P(Y_{ij} = 1|z))^{1 - Y_{ij}}$$

$$= \prod_{i=1}^{7} [Y_{ij}P(Y_{ij} = 1|z) + (1 - Y_{ij})(1 - P(Y_{ij} = 1|z))]$$

Use most convenient form, or dbinom.

Gauss Hermite Approximation

Part a Package ecoreg function GaussHermite(21) produces z_q , w_q in columns Points and Weights so that

Assignment, Project, Exam, Help

One subject at z_q ; circle size = $w_q^{0.05}$.

log Likelihood

Parameter vector $\theta = (\beta_0, \beta_1, \sigma)$ has negative log likelihood

Assignment-Project Exam Help

(Note that θ changes $P(Y_{1j},\ldots,Y_{7j})$ above – dropped to make notate $P(Y_{1j},\ldots,Y_{7j})$

- Obtain $P(Y_{ij}|z_q, X_{ij}, \theta)$ from plogis (incl. σ change to z_q).
 Foliation (YV) $P(y_i|z_q, X_{ij}, \theta)$ from plogis (incl. σ change to z_q).
- Obtain

$$P(Y_{1j},...,Y_{7j}|X_{1j},...,X_{7j},\theta) \approx \sum w_q P(Y_{1j},...,Y_{7j}|z_q,X_{.j},\theta)$$

negative log likelihood is minus sum of logs.

Maximizing and Alternatives

Maximum likelihood estimator minimizes negative log likelihood.

Assignment Project Exam Help

optim(par=theta,fn=logistic.nll,data=toenail)

to gehttps://powcoder.com

Part b Monte Carlo alternative

Replace Gauss-Hermite approximation with

with $Z_1, \ldots, Z_N \sim N(0, \sigma^2)$.

Possible to code so minimal changes from Part a.

Part c: MCMC

- Fix $\sigma = 1.2$ (MCMC techniques for variances are more fiddly).

Assignment of the property of the literature A such that A is the second A such that A is the second A is the

Run MCMC

• https://poswcoder.com

Obtain mean values and quantiles from chain.

Part d: Extended MCMC

What if we also include Z_1, \ldots, Z_{12} as values to be sampled? Whole likelihood is

Assignment Project Exam Help

easier to turn into logs; keep $\sigma = 1.2$ Ror McMc Poposal/is POWCOder.com

- **1** $\beta_0 \sim N(\beta_0, 0.25), \ \beta_1 \sim N(\beta_1, 0.05)$

 $Z_{1} \sim N(0.0.5)$ $Z_{1} \sim N(0.0.5)$ $Z_{1} \sim N(0.0.5)$ $Z_{2} \sim N(0.0.5)$ $Z_{3} \sim N(0.0.5)$ $Z_{4} \sim N(0.0.5)$ $Z_{5} \sim N(0.0.5)$ $Z_{7} \sim N(0.0.5)$ $Z_{1} \sim N(0.0.5)$

Part e SMC

Alternative random number generation from f(z):

Assignment place $Z_1, \ldots, Z_N \widetilde{P}_g(z)$ is get Z_i^* . Generate $Z_1, \ldots, Z_N \widetilde{P}_g(z)$ is get Z_i^* .

sample has input prob=W to specify sampling probability.

https://powcoder.com

 $Y_{\cdot 1}, X_{\cdot 1}$ data from Subject 1, θ from Part a estimate.

Bonus

For a hard optimization problem:

Assignment Project Exam Help

Wrap Up

BTRY/STSCI 4520: Many Topics Covered Briefly

Assignment of the considerations of the consideration of the co Numerical stability

- Numerics
 - thingsation powcoder.com
 - Integration (numerical/Monte Carlo)
- Statistics

Addatio We Chat powcoder Boostraps and permutation

- Nonparametric smoothing
- Maximum likelihood and LASSO penalties
- MCMC

Many tools enable practical, modern statistics.