This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION P (51) International Patent Classification 5:	·	т) Internati nal Publication Number:	WO 92/18119
A61K 31/215, 31/275, 31/235 A61K 31/24, 31/19, 31/195 // A61K 31/17, 31/135, 31/13 A61K 31/12, 31/115, 31/095	A1			
A61K 31/075, 31/045, 31/05 A61K 31/03, 31/025, 31/015		(43) International Publication Date:	29 October 1992 (29.10.92)
(21) 111011111111111111111111111111111111	CT/US92/03	- 1	(74) Agents: BARRESE, Rocco, S. Blvd., Uniondale, NY 11553	
(30) Priority data: 687,719 18 April 1991 (18	`	US	(81) Designated States: AT (Europe pean patent), BR, CA, CH (I ropean patent), DK (Europe patent), FR (European patent), GR (European patent), IT (I	European patent), DE (Eu- ean patent), ES (European et), GB (European patent), European patent), JP, KR,
(71) Applicant: WORLD RESEARCH IN SCIENCE AND TECHNOLOGY, 38-42 9th Street, Long Island City, NY	INC. [US/U	OR JS];	LU (European patent), MC (Iropean patent), RU, SE (European patent)	European patent), NL (Eu-
(72) Inventors: BANG, Soon, Duk; 13859 St Clifton, VA 22024 (US). JOHNSON, St 84th Avenue, Briarwood, NY 11435 (U C., S.; 33 Iroquois Avenue, Oakland, l	tuart, K. ; 147 S). PARK, Jo	7-12 hn,	Published With international search repo Before the expiration of the to claims and to be republished to	ime limit for amending the

amendments.

(54) Title: COMPOSITION AND METHOD FOR TREATING TUMORS

(57) Abstract

A composition and method for treating tumors with resin acids and derivatives thereof are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	MI.	Mali
BB	Bartados	FR	I-rance	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BC	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	ltaly	RO	Romania
CF	Central African Republic	JР	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic	SD	Sudan
CH	Switzerland		of Korea	SE	Sweden
CI	Côte d'Ivoire	KR	Republic of Korea	SN	Senegal
CM	Cameroon	LI	Liechtenstein	รบ	Soviet Union
CS	Czechoslovakia	LK	Sri Lanka	TD	Chad
DE	Germany	LU	Luxembourg	TG	l'ogo
DK	Denmark	MC	Monaco	US	United States of America

WO 92/18119 PCT/US92/03209

COMPOSITION AND METHOD FOR TREATING TUMORS

BACKGROUND OF THE INVENTION

The present invention is directed to a composition and method for treating tumors. More specifically, the present invention is directed to the treatment of tumors involving administration of certain rosin extracts including abietic acid, other resin acids, and their derivatives.

Traditionally, tumors have been treated by surgery, radiation, chemotherapy, or a combination of any of these treatments. Recognition that malignant cells tend to spread systemically through the body has resulted in recent emphasis on chemotherapeutic treatment to attack such tumor cells. However, chemotherapy administration is, at the very least, extremely debilitating, while toxicity continues to be a difficult problem. Additionally, difficulties have been encountered with selectivity of action by chemotherapeutic agents against certain malignant cells, while problems of providing a suitable delivery mechanism of such drugs have also been experienced. Accordingly, the search continues for improved anti-cancer treatments which minimize toxicity, improve selectivity of action (i.e. attack only malignant tumors), and enhance delivery of active agents to the situs of such malignant tumors and cells.

For example, U.S. Patent No. 4,193,931 discloses 7 -(substituted indanyl or naphthyl)-3-methyl-octa-2,4,6-triene derivatives which are useful as anti-tumor agents. U.S. Patent No. 4,786,496 relates to an immunopotentiator having anti-tumor activity which is derived from marine chlorella. Ref. Zh. Khim 1971, Abstr. No. 8Zh623 (CA76:

30

1

10

15

20

(I)

1 141080g (1972)) states that certain specific alkylating derivatives of abietic acid, dehydroabietic acid and 6-hydroxyabietic acid exhibited antitumor activity against certain sarcomas. At the same time, other alkylating derivatives of these acids were found to be very toxic, while still other alkylating derivatives were documented as exhibiting no or very weak anti-tumor activity.

Pharmaceutical Chemistry Journal Volume 6, No. 10 (1972), pages 647-650 also documents these specific test results.

10

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a composition and method for the treatment of tumors.

It is a particular object of the invention to provide a tumor-treating composition of reduced toxicity.

It is another object of the present invention to provide for improved selectivity in treating tumors.

These and other objects are achieved by the tumortreating composition of the present invention which
comprises a tumor-treating effective amount of at least one
compound of the general formula (I):

25

30

 $R_{10} \stackrel{R}{\underset{1}} \stackrel{$

1	wh rein	R ₁ is H or OH,
	•	R ₂ is H, OH or OCOOH,
		R_3 is H, OCH ₃ or CH(COOCH ₃) ₂ ,
		R4, when present, is H or OCH3,
5		R_5 , when present, is $H_1 = 0$, CH_2OH or CH_2OCOCH_3 ,
		R_6 , when present, is H, OH, CHO or CHS ₂ ,
		R_7 , when present, is H, =0, Cl, OH, OCH ₃ , COOH,
		OCOOH, CH2OH or CH2OCOCH3,
		R_s , when present, is $H/or^{CH3}OH$,
10		R, when present, is H or CH3,
		R_{10} , when present, is H, Cl, CH_3 , CH_2Cl , CH_2CN ,
		CH_2OH , $COOCH_3$, CH_2COOH , $CH_2CH_2NH_2$, CH_2OCOCH_3 ,
		CH ₂ CH ₂ NCO, CH ₂ COOCH ₃ , CH ₂ CH ₂ NHCONHC ₆ H ₅ ,
		$CH_2O(CH_2CCH_3OH)_xH$ where x is a positive
15		integer, $CH_2CH_2NHCONHC_6H_{11}$, $CH_2OCO(CH_2)_4COOC_2H_4OH$
		or $CH_2CH_2NH_2 \cdot HOOC_6H_3(NO_2)_2$,
		R _{II} , when present, is H or OH,
		R ₁₂ is H,CH ₃ or COOCH ₃ ,
20		R_{13} is CN, CH ₃ , COCl, COOH, CONH ₂ , COCH ₃ , CH ₂ OH,
20		CH ₂ NH ₂ , COOCH ₃ , CH ₂ NCO, CH ₂ OCOOH, CH ₂ OCOCH ₃ ,
		$CH_2O(CHCHO)_xH$ where x is a positive integer,
	-	CH ₂ NHCONHC ₆ H ₅ , CH ₂ NHCONHC ₆ H ₁₁ , CH ₂ O
		(CH ₂ CCH ₃ HO) _x H where x is a positive integer,
25		CH ₂ NH ₂ ·HOOCC ₆ H ₃ (NO ₂) ₂ or
		$CH_2OCO(CH_2)_4COOC_2H_4OH$,
		R ₁₄ is H, CH ₃ , CH ₂ , COOH, CH ₂ OH or COOCH ₃ ,
		R ₁₅ is H, OH, OCOOH,
		R ₁₆ , when present, is CH ₃ or CH ₂ OH,
30		R ₁₇ is H or OH,
		R ₁₈ is H, OH or OCOOH,

 R_{19} is H, OCH₃ or CH(COOCH₃)₂, 1

> when present, is H, =0, CH2OH or CH2OCOCH3, and

 R_{21} , when present, is H or CH_{3} ,

5 and the pharmaceutically acceptable salts thereof together with a pharmaceutically acceptable carrier therefor.

In formula (I) supra, the dashed lines (----) denote optional presence of substituents and optional double 10 bonds, i.e., unsaturation. For example, unsaturation of bonds can be present at any of the positions on the "C" ring in formula (I) supra, e.g., position nos. 8, 9, 11, 12, 13 and 14. If, e.g., unsaturation is observed at the no. 12 position on ring "C" in formula (I) supra, namely a double bond is present either from position no. 12 to position no. 11 or from position no. 12 to position no. 13, then one of groups R9 and R10 will not be present. However, there is no requirement that unsaturation must be present at any of the positions on rings B or C or along the chain extending from the no. 13 position on ring "C".

The present invention is also directed to a method for treating a tumor which comprises administering a tumortreating effective amount of a compound of the above formula (I) to a mammal possessing a tumor.

25

20

15

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be explained in greater detail with reference to the accompanying drawings in which:

Fig. 1 is a graph comparing retention time of 30 different rosin fractions, including those of the present

WO 92/18119 PCT/US92/03209

invention, eluted from a normal phase chromatographic column, with ultraviol t light absorbance and inhibition of tumor cell growth;

Fig. 2 is a graph comparing retention time of a purified resin acid fraction from Fig. 1 eluted from a reverse phase chromatographic column, with ultraviolet light absorbance and inhibition of tumor cell growth;

Fig. 3 is a graph comparing survival times of mice treated with different compositions, including those of the present invention; and

Fig. 4 is a graph comparing weight gain of the mice treated with the compositions of Fig. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Index, Tenth Edition, Entry #1).

The active tumor-treating agents of this invention are all rosin extracts including abietic acid, other resin acids, and derivatives thereof. Resin acids including abietic acid are isolated from rosin which is obtained primarily from coniferous trees. Rosin is a complex mixture of compounds with abietic acid being a principal constituent thereof. Rosin is easily modified to yield a number of different products, including levopimaric and abietic acids. In particular, abietic acid is prepared by isomerization of rosin as presented in Harris, Sanderson, Org. Syn. Coll.

Vol. IV, 1 (1963). For example, abietic acid can be prepared by heating rosin alone or with other acids (Merck

More specifically, the limpid oleoresin exuding from incisions cut in the bark of living pine trees is separated by steam distillation into a steam volatile fraction, a small amount of gum turpentine, and a

35

30

5

nonvolatile residue which, upon cooling, forms a 1 vellow/brown glassy substance which is known as rosin. Rosin is primarily composed of diterpene acids of the formula C10H20COOH in various stages of isomerization which 5 are known as resin acids (Fieser and Fieser, "Natural Products Related to Phenanthrene", Third Edition, 1949, Reinhold Publishing Corporation (New York)). Other extractable acids from pine are predominantly fatty acids. Virtually all pine resin acids belong to one of four basic ring structures, abietane, pimarane, isopimarane and 10 labdane. Some of these resin acids undergo isomerization and disproportionation upon exposure to inorganic acid and/or heat. For example, levopimaric acid which is also a principal resin acid component from coniferous trees is transformed in early stages of heating to roughly equal 15 amounts of palustric and abietic acids, followed by further isomerization of palustric acid into abietic acid, as noted in J. Am. Chem. Soc. 77:2823-2825.

isomerization of pine tree extract, is partially isomerized to neoabietic acid upon further heating, while the abietic acid suffers disproportionation at higher temperature to yield mixtures of dehydroabietic acid, dihydroabietic acid, and tetrahydroabietic acid (Fieser and Fieser, supra).

25 Preferably, abietic acid can be purified from crude resin by High Performance Liquid Chromatography (HPLC) which involves pumping the resin through a column packed with substrate, whereby the resin fractionates into various constituents, including the abietic acid, as the resin flows along the column. The resulting abietic acid fraction is then eluted

10

15

20

at the appropriate rate from the column and preferably pass d through a second column packed with different substrat to further purify the acid, followed by elution once again.

The purified abietic acid fraction can be esterified by the procedure described in <u>J. Lipid Res., 5</u>: 600-608 to form an abietic acid derivative in formula (I) supra where R_{I3} is COOCH₃. In this procedure, the abietic acid fraction and respective alcohol are dissolved in a suitable organic solvent such as hexane, and then heated in a water bath, preferably from about 95 to about 100°C for about 20 to about 60 minutes to generate the compound of formula (I) supra where R_{I3} is COOCH₃. Water is then added to form two separate layers, namely an aqueous layer and an organic layer, with the organic layer being separated and evaporated to dryness. The resulting acid ester is then purified by the HPLC procedure described supra.

Three main classes of resin acids, derived from the abietane, pimarane and isopimarane skeletons, were isolated from rosin. Formulas (II), (III) and (IV) illustrate these classes, shown as the fully saturated resin acid.

18 - ABIETANOIC ACID

35

10

1 18 - PIMARANOIC ACID

18 - ISOPIMARANOIC ACID

In formulas (II), (III) and (IV) <u>supra</u>, the dashed lines (----) denote positioning of the substituent groups below the plane and the flared lines denote positioning of the substituent groups above the plane. By the same token, the hollow or open circles on the ring structure denote positioning of the respective juncture below the plane, while the filled in circle denotes positioning of the

WO 92/18119 PCT/US92/03209

respective juncture abov the plane, in formulas (II), (III) and (IV). In other words, all conceivable isomers of abietic, isopimaric, and pimaric acids are encompassed by the resin acids of the present invention. By the same token, all isomers of any derivatives of these resin acids (where the R groups represent any of the other substituents noted in formula (I) supra) are encompassed by the present invention.

More particularly, the derivatives of abietic, isopimaric and pimaric acids can be prepared by procedures 10 conventionally available in the field. For example, an abietic acid derivative of formula (I) supra where Rio is CH₂OH, CH₂O(CH₂CCH₃OH)_xH, CH₂OCO(CH₂)₄COOC₂H₄OH, R_{13} is COOH, CH₂OH, CH₂O(CH₂CCH₃OH)_xH, CH₂OCO(CH₂)₄COOC₂H₄OH, and unsaturated bonding can be present between the no. 7 and no. 8 15 positions, the no. 8 and no. 14 positions, and the no. 14 and no. 13 positions on the ring structure, e.g., 12hydroxymethyldihydroabietic acid and the dihydro isomers thereof, can be prepared by the procedure outlined in Ind. Eng. Chem. Prod. Res. Develop. Vol. 9, No. 3 (1970): 304-20 310. An abietic acid derivative of formula (I) supra where R_{1} is H or =0, R_{12} is COOCH₃, and R_{13} is COOH or COOCH₃, and unsaturation is observed around the "C" ring, i.e. the "C" ring is aromatic, can be prepared by the procedure outlined in Synthetic Communications 6 (8): 559-561 (1976). 25 abietic acid derivative of formula (I) supra where R13 is COOH or COOCH3, R5 is H or CH2OH, R7 is H or CH2OH, R10 is H or CH,OH, and there are double bonds between the nos. 7 and 8 positions and between the nos. 13 and 14 positions on the 30 ring structure, can be prepared according to the procedure

described in <u>Ind. Eng. Chem. Prod. Res. Develop. Vol. 12</u>, No. 3 (1973): 241-245.

where R₁₃ is COOH or COOCH₃, R₁₀ is CH₂OH, and in which double bonds are present between the nos. 7 and 8 positions, and optionally between the nos. 9 and 11 positions on the ring structure, can be prepared according to the procedure described in <u>J. Org. Chem. 34 (1968)</u>: 1940-1942, while synthesis of this compound is also described in <u>J. Org. Chem. 32 (1967)</u>: 3758-3762; this latter reference also describes synthesis of an abietic acid derivative of formula (I) <u>supra</u> where R₁₃ is COOH or COOCH₃, R₁₀ is CH₂OH, CH₂OCOCH₃

Preparation of abietic acid derivatives of formula

(I) above where R₁₃ is COOH, COOCH₃ or CH₂OCOCH₃, R₅ is CH₂OH or CH₂OCOCH₃, R₁₀ is CH₂OCOCH₃, CH₂OH, CH₃ or H, and a double bond is present between the nos. 7 and 8 positions, and/or between the nos. 8 and 14 positions, and/or between the nos. 13 and 14 positions on the ring structure, is described in

20 J. Org. Chem. 32: 3763-3767 (1967). Synthesis of various dinitrile, diamine and diisocyanate derivatives of hydroxymethylabietanoic acid, namely the compound of formula (I) supra where R₁₃ is COOH, COOCH₃, COCl, CONH₂, CN, CH₂NH₂,

25 R₁₀ is CH₂OH, CH₂OCOCH₃, CH₂Cl, CH₂CN, CH₂COOH, CH₂COOCH₃, CH₂CH₂NH₂, CH₂CH₂NHCONHC₆H₅, CH₂CH₂NH₂·HOOCC₆H₃(NO₂)₂, CH₂CH₂NCO, or CH₂CH₂NHCONHC₆H₁₁ is set forth in <u>J. Chem. Eng. Data Vol. 16</u>, No. 13 (1971): 299-301.

 $CH_2NHCONHC_6H_5$, $CH_2NH_2 \cdot HO_2CC_6H_3$ (NO_2)₂, CH_2NCO or $CH_2NHCONHC_6H_{11}$, and

30

10

or CH₁, and R₁₁ is H or OH.

J. Org. Chem. Vol. 36, No. 26 (1971): 3899-3906 describes synthesis of abietic acid derivatives of formula (I) above where R₁₃ is COOH or COOCH₃, R₁₀ is H, COOH or COOCH₃, R₈, when present, is OH, and R₇ is =0, OCH₃ or OH.

Additionally, J. Org. Chem. Vol. 36, No. 22 (1971): 3271 -

3276 discloses the synthesis of abietic derivatives of formula (I) supra where R_{13} is COOH and double bonds are present between the nos. 8 and 14 positions on ring "C" and also between the no. 13 position on ring "C" and the no. 15

carbon atom. Lower life forms such as microbes can be utilized to synthesize several of the resin acid derivatives of formula (I) <u>supra</u>, as disclosed in <u>Acta Chemica Scandinavica B 33 (1979)</u>: 76-78, <u>Helvetica Chemica Acta - Vol. 65, Fasc. 5 (1982) - Nr-127</u>: 1343-1350, and <u>Helvetica</u>

15 Chimica Acta - Vol. 65, Fasc. 3 (1982) - Nr. 66: 661-670.

Mammals can also be utilized to synthesize several of the resin acid derivatives of formula (I) supra, as noted in Xenobiotica Vol. 16, No. 8 (1986): 753-767. Therefore, the synthesis of all the resin acids and derivatives thereof

20 listed in formula (I) supra is clearly well-known.

Preferably, the composition of the present invention comprises the compound of formula (I) <u>supra</u> wherein R₁ is H, R₂ is H, R₃ is H, R₄ is H, R₅ when present is H, R₆ when present is H, R₇ when present is H, R₈ when present is H or CH₃, R₉ when present, is H, R₁₀ when present is H, R₁₁ when present is H, R₁₂ is CH₃, R₁₃ is CH₃ or COOH, R₁₄ is H, CH₂ or CH₃, R₁₅ is H or CH₃, R₁₆ when present is H, R₁₇ is H, R₁₈ is H, R₁₉ is H, R₂₀ when present is H, and R₂₁ when present is H.

30

25

More specifically, the composition of the present 1 invention preferably comprises at least one compound selected from the group consisting of 18-abietanoic acid; 13 beta-abietan-18-oic acid; 8 alpha, 13 beta-abietan-18-oic acid; 9 beta, 13 beta-abietan-18-oic acid; 7-abieten-18-oic acid; 13 beta-abiet-7-en-18-oic acid; 8-abieten-18-oic acid; 13 beta-abiet-8-en-18-oic acid; 8(14)-abieten-18-oic acid; 13 beta-abiet-8(14)-en-18-oic acid; 13-abieten-18-oic acid; 8 alpha-abiet-13-en-18-oic acid; 13(15)-abieten-18-oic acid; 7, 13-abietadien-18-oic acid; 8, 13-abietadien-18-oic acid; 10 8, 12-abietadien-18-oic acid; 8,13(15)-abietadien-18-oic acid; 8(14), 13(15)-abietadien-18-oic acid; 13 beta-abieta-7,9(11)-dien-18-oic acid; 8(14), 12-abietadien-18-oic acid; 8,11,13-abietatrien-18-oic acid; 6,8,11,13-abietatetraen-18oic acid; 5 beta-abieta-8,11,13-trien-18-oic acid; 18-15 isopimaranoic acid; 8 alpha-isopimaran-18-oic acid; 7isopimaren-18-oic acid; 8-isopimaren-18-oic acid; 8(14)isopimaren-18-oic acid; 7,15-isopimaradien-18-oic acid; 8,15-isopimaradien-18-oic acid; 8(14),15-isopimaradien-18oic acid; 18-pimaranoic acid; 8 alpha-pimaran-18-oic acid; 20 8-pimaren-18-oic acid; 8(14)-pimaren-18-oic acid; 8,15pimaradien-18-oic acid; and 8(14),15-pimaradien-18-oic acid. More preferably, in the compound of formula (I) supra, Ro is not present, i.e., there is an unsaturated double bond extending from the no. 8 position on the fused 25 ring structure, while R₁₃ is COOH and R₁₄ is CH₂ or CH₃.

includes at least one of the following compounds: 8,15isopimaradiene-oic acid; 8,15-pimaradien-18-oic acid; 7,15-

other words, the composition of the present invention

30 isopimaradiene-18-oic acid; 13 beta-abieta 7,9(11)-dien-18-

WO 92/18119 PCT/US92/03209 -13-

oic acid; 5 beta-abi ta-8,11,13-trien-18-oic acid; 8,12abietadien-18-oic acid; 7,13-abietadien-18-oic acid, and 8(14), 13(15)-abietadi n-18-oic acid.

Non-toxic, pharmaceutically acceptable acid addition salts of these resin acids and derivatives thereof 5 can be prepared by conventional reactions with equivalent amounts of organic or inorganic solutions. Exemplary acid addition salts include hydrochloric, hydrobromic, sulfuric, benzenesulfonic, acetic acid, fumaric acid, oxalic acid, malic acid, citric acid, potassium hydroxide, and sodium 10 hydroxide salts of the abietic derivatives herein.

These resin acids and derivatives thereof and/or the pharmaceutically acceptable salts thereof are combined with a pharmaceutically acceptable carrier for administration to an individual. For example, the

15 derivatives can be combined with a suitable liquid carrier for parenteral administration, including water, alcohol, propylene glycol and to provide a suitable composition for application. Such compositions can be injected

intravenously, intraperitoneally, intramuscularly or applied topically. The compositions can also be formulated for oral administration in liquid or solid form. Suitable carriers for this administration route include water, alcohol, oil.

A particular aspect of this invention comprises a composition containing the resin acid or derivative and/or 25 salt in an "effective amount", i.e., an amount sufficient to bring about the desired anti-tumor or tumor treating effect. In this regard, the invention is also directed to a method of treating tumors which comprises administering an

effective amount of said abietic acid derivative. 30

35

WO 92/18119 PCT/US92/03209

1 A preferred concentration f the resin acid or derivative thereof and/or salt is from about 0.01 to about 0.50 mg/mg of carrier, more preferably from about 0.02 to about 0.30 mg/mg carrier and most preferably from about 0.05 to about 0.20 mg/mg carrier. A daily dosage of administration of the resin acid or derivative thereof and/or salt is preferably from about 100 to about 800 mg/kg individual, more preferably from about 200 to about 700 mg/kg individual and most preferably from about 300 to about 100 mg/kg individual.

The compositions of the present invention containing one or more of the resin acids or derivatives thereof herein are effective against a variety of tumors including L929 cells (ATCC # CCL 1: NCTC Clone 929, clone of strain L., connective tissue); S 180 cells (ATCC # TIB 66; Sarcoma 180, sarcoma swiss webster), Ehrlich sarcoma cells (ATCC # CCL 77: Strain E, Ehrlich-Lettre Ascites) and against other tumor cells including, non-small cell lung cancer, small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, and renal cancer cells. At the same time, these resin acids and derivatives thereof are selective against only tumor cells, i.e., they do not tend to attack normal cells. In this regard, the resin acids and derivatives are less toxic, e.g., than the compounds disclosed in Ref. Zh. Khim and Pharmaceutical Chemistry Journal cited supra.

The present invention will be described in greater detail by way of the following examples:

30

25

15

20

EXAMPLE 1

STEP (A)

OBTAINING MAJOR AND MINOR ACTIVE FRACTIONS OF ROSIN

4 mg. of rosin was chromatographed using a silica 5 HPLC column of 25 cm. length and 10 mm. internal diameter containing silica particles of about 5 microns in size. Fractions were collected, evaporated to dryness, and redissolved in $20\mu l$ of methanol, with the methanol extracts of the individual fractions each being mixed with 2ml of 10 culture medium containing L929 tumor cells. The ability of each fraction to inhibit tumor cell growth was measured according to an assay technique based on the one designed by Flick and Gifford in J. Immunol. Meth. 68 (1984): 167-175. Fig. 1 is a graph of the ability of these various rosin 15 fractions to inhibit growth of L929 tumor cells, also illustrating ultraviolet (UV) absorbance of each fraction. More specifically, Fig. 1 indicates two main peaks

More specifically, Fig. 1 indicates two main peaks of biological activity among the fractions against the L929 tumor cells. The fraction of largest activity (termed "major active fraction"), exhibits maximum UV absorbance at 254 nm. The fraction of next highest activity (termed "minor active fraction"), eluted from the HPLC column approximately three minutes after the major active fraction (the abscissa of the graph in Fig. 1 denotes the elution time from the HPLC column).

30

20

25

5

10

STEP (B)

PURIFYING MAJOR ACTIVE FRACTION OF ROSIN OBTAINED IN STEP (A)

The major active fraction of rosin obtained in Step (A) was then chromatographed by HPLC using an ODS1 reverse phase column of 25 mm. length and 4.6 mm. internal diameter containing carbon-coated silica particles. Fractions eluting through the reverse phase column at different times were collected, evaporated to dryness, and re-dissolved in 20 μ l of methanol, with the methanol extracts of the individual fractions each being mixed with 2 ml of culture medium containing L929 tumor cells. The inhibiting activity of each fraction was measured as in Step (A) above, with the results being presented in Fig. 2.

Fig. 2 indicates one peak of biological activity, coincident with maximum absorbance at 254 nm. The fraction exhibiting this peak was designated the "purified major active fraction".

20

25

30

15

STEP (C)

METHYL ESTERIFICATION OF PURIFIED MAJOR ACTIVE FRACTION FROM STEP (B)

5 mg. the purified major active fraction from Step (B) was added to 350 microliters of methanol in a tube followed by the addition of 0.3 ml hexane and 0.35 ml BF₃ reagent, the tube thereafter being sealed under nitrogen. The sealed tube was then incubated in boiling water for 40 minutes and cooled. 2 ml. hexane and 1 ml. water were added to the opened tube, the tube then being shaken for 2 minutes, then allowed to stand to create phase separation

into organic and aqueous layers. The organic (hexane) layer was removed and vaporated to dryness, and then re-dissolved in 200 μ l. of a solvent mixture of 1-5% dioxane and 1-5% methanol in hexane and subjected to HPLC in a silica column of 25 cm. length and 10 mm. internal diameter containing silica particles of about 5 microns in size. The solvent system was introduced into the silica column at a constant flow rate of 3 ml/min.

at the same time, the eluted fractions were
subjected to ultraviolet spectroscopy to analyze the
composition thereof. It was found that the fraction
composed of resin acid methyl esters eluted almost at the
void volume within the silica column, in other words almost
immediately. The non-esterified resin acids eluted at a
slower rate.

The isolated resin acid methyl ester fraction was collected, evaporated to dryness, re-dissolved in alcohol, and then subjected to gas chromatography/mass spectroscopy, with the analysis establishing the presence of methyl esters of a fraction constituted by the following resin acids in the following proportions in Table 1 below for the major active fraction (methyl esterification enabled identification of resin acids constituting the original fraction):

25

20

30

-18-

1	TABLE I				
•	Resin Acid In Purified Major Active Fraction	<pre>% Of Total Resin Acids In Major Active Fraction</pre>			
	8,15-isopimaradiene-18-oate	5.2			
5	8,15-pimaradien-18-oate	3.2			
	7,15-isopimaradien-18-oate	9.2			
	13β-abieta-7,9(11)-dien-18-oate)	2.2			
	5β -abieta-8,11,13-trien-18-oate)				
	8,12-abietadien-18-oate	1.1			
10	7,13-abietadien-18-oate	78.6			
	8(14).13(15)-abietadien-18-oate	0.5			

15

20

25

30

EXAMPLE 2

A technical grade abietic acid fraction was purified by normal phase HPLC, revers phase HPLC (ODS1) and methyl esterified in accordance with the procedure outlined in steps (A), (B) and (C) respectively of Example 1. Table 2 below lists the constituents and percentages in the purified abietic acid fraction that were identified by the methyl esterification:

TABLE 2

10	Resin Acid In Purified Abietic Acid Fraction	<pre>% Of Total Resin Acids In Abietic Acid Fraction</pre>
	8,15-isopimaradiene-18-oate	3.5
	7,15-isopimaradiene-18-oate	8.9
_	13 β -abieta-7,9(11)-dien-18-oate)	9.7
15	5β -abieta-8,11,13-trien-18-oate)	
	8,12-abietadien-18-oate	2.5
	7,13-abietadien-18-oate	72.5
	8(14),13(14)-abietadien-18-oate	1.8
20	unknown	1.1

25

30

5

10

15

20

25

EXAMPLE 3

In accordance with the procedure outlined in Canc. Res. 47: 3707-3711, female CD1 mice (obtained from Charl s River Laboratories) were inoculated intraperitoneally with 106 S 180 cells in 100 microliters of phosphate buffered saline (PBS). Controls received PBS only. Both tumor and control mice were divided into three groups of ten mice per group. Rosin and technical grade abietic acid were each dissolved in ethanol at a concentration of 200 mg/ml which was diluted with 10% newborn calf serum in PBS to a ratio of 1:20 to form respective suspensions. Untreated groups (both tumor and control mice) were inoculated intraperitoneally with 1 ml of vehicle alone while technical grade abietic acid treated groups (both tumor and control) were intraperitoneally inoculated with 1 ml (10 mg) of the rosin suspension and the technical grade abietic acid treated groups (both tumor and control) were intraperitoneally inoculated with 1 ml (10mg) of the technical grade abietic acid suspension, the doses being administered immediately, and thereafter on the third, sixth and ninth days. Data from animals which expired within two hours of any inoculation (at zero, three, six and nine days) were The survival rates of the various treated and untreated groups is plotted against time in Fig. 3 with mic surviving longer than ninety days being deemed cured of the original intraperitoneal tumor burden. Fig. 4 records animal weight (growth rate) over time of the tumor-free group, with n denoting the number of mice in each treated group in Figs. 3 and 4.

30

5

Technical grade abietic acid includes the various constituents of Tabl 2 <u>supra</u> as principal ingredients, in addition to other minor amounts of associated resin acids.

Fig. 3 illustrates a significant difference in survival between treated and untreated groups of mice. The only visible side effects were increased weight (Fig. 4) and a slight deterioration of the coat condition, notably in the technical grade abietic acid-treated group. The notation in Fig. 3 on p < 0.05 establishes that there was statistical significance between the untreated mice and the rosin or technical grade abietic acid treated mice (i.e., the treatment has some effect). It was ascertained upon sacrifice and dissection that the weight increase appeared due to increased deposition of adipose tissue. The asterisks in Fig. 4 denote that the difference between the asterisked group and the control group is statistically significant. These results clearly establish the anti-tumor effect of rosin and technical grade abietic acid.

20

15

25

30

EXAMPLE 4

Mice were treated in accordance with the procedure described in Example 3 above with the omission of the tumor-laden groups and the groups treated with rosin (i.e., tumor-free mice were treated with either the technical grade abietic acid or vehicle alone). On the twenty-third day after treatment was begun, mice from each group were sacrificed, bled, and the resulting six blood and six serum samples therefrom subjected to respective hematological and chemical analysis. On the twenty-fifth day after the start of treatment, three technical grade abietic acid-treated mice were subjected to necropsy and histological assessment of selected tissues. The survival rate of the treated mice is reported in Table 3, the hematological/chemical analysis is reported in Table 4 and the histological assessment is reported in Table 5 below.

TABLE 3

SURVIVAL OF MICE TREATED INTRAPERITONEALLY WITH ABIETIC ACID SUSPENSION (4 doses of 430 mg abietic acid/kg) or JUST PBS VEHICLE ALONE (CONTROL)

20

15

10

Group	Group Size (number of mice)	Survivors at 23 (number of mice)
Control	30	22*
Treated	30	21*

25 *p>0.05 (chi-squared test)

30

-23-

TABLE 4

BLOOD HEMATOLOGY AND CHEMISTRY OF MICE TREATED INTRAPERITONEALLY WITH ABIETIC ACID SUSPENSION (4 doses of 430 mg/kg) OR JUST VEHICLE ALONE (CONTROL)

5	<u>Parameter</u>	Observed Group Control	Mean +/-SEM (n) Treated	<u>Units</u>	Students t
	Red Blood Cell Count	8.84±0.16(6)	8.57±0.26(6)	10 ⁶ /ul	ns
10	White Blood Cell Count	3.53±0.25(6)	3.50±0.39(6)	10³/ul	ทร
	Hematocrit	48.0±0.86(6)	45.4±1.48(6)	ક	NS
	Hemoglobin (HB)	14.6±0.24(6)	13.9±0.37(6)	g/100ml	NS
15	Mean Cell Volume	54.3±0.87(6)	53.1±1.99(6)	fl	NS
	Mean Cell Hemoglobin	16.5±0.16(6)	16.3±0.27(6)	pg	ns .
20	Mean Corpuscular HB Conc.	30.4±0.54(6)	30.8±0.98(6)	g/100ml	ns
	Segmented Neutrophils	7.16±0.98(6)	5.33±1.45(6)	*	NS
	Band Neutrophils	0(6)	0(6)	&	NS
25	Lymphocytes	91.8±0.95(6)	93.3±1.69(6)	ક	NS
	Monocytes	1.0±0.63(6)	1.3±0.49(6)	*	NS
	Eosinophils	0(6)	0(6)	*	NS
	Basophils	0(6)	0(6)	*	NS
30	Nucleated RBC	0(6)	0(6)	/100 WB	c ns

TABLE 4 (CONTINUED)

BLOOD HEMATOLOGY AND CHEMISTRY OF MICE TREATED INTRAPERITONEALLY WITH ABIETIC ACID SUSPENSION (4 doses of 430 mg/kg) OR JUST VEHICLE ALONE (CONTROL)

5	<u>Parameter</u>	Observed Group Control	Mean +/-SEM (n) Treated	<u>Units</u> S	Students t
	Platelets RBC Morphology	Adequate(6/6) Normal (6/6)	Adequate(6/6) Normal (6/6)	•	
	Glucose	162±5.8(5)	152±6.7(6)	mg/100ml	NS
10	BUN	14.6±0.51(5)	16.0±0.89(6)	mg/100ml	NS
	Creatinine	0.40±0.03(6)	0.38±0.02(6)	mg/100ml	ns
	Total Protein	5.54±0.10(5)	5.43±0.10(6)	g/100ml	ns
	Albumin	3.84±0.04(5)	3.61±0.11(6)	g/100ml	p<0.05*
15	Calcium	7.32±0.21(5)	7.90±0.36(6)	mg/100ml	ns
	Inorganic Phosphorus	8.24±0.17(5)	9.83±0.41(6)	mg/100ml	p<0.05
20	Alkaline Phosphatase	121±11.7(5)	149±14.6(6)	U/1	NS
	AST (SGOT)	303±29.7(5)	341±44.9(5)	U/1	ns
	ALT (SGPT)	74.0±6.9(5)	66.8±3.9(5)	U/1	ns
	LDH	1329±129(5)	1496±127(5)	U/1	ns
25	Cholesterol	110±5.2(5)	119±6.0(5)	mg/100ml	ns
	Total Bilirubin	0.36±0.019(5)	0.38±0.017(5)	mg/100ml	NS
	Amylase	4988±366(5)	5704±170(5)	U/1	NS
30	Sodium	138.0±1.3(5)	141.3±0.99(6)	meq/1	NS

TABLE 4 (CONTINUED)

BLOOD HEMATOLOGY AND CHEMISTRY OF MICE TREATED INTRAPERITONEALLY WITH ABIETIC ACID SUSPENSION (4 doses of 430 mg/kg) OR JUST VEHICLE ALONE (CONTROL)

5	<u>Parameter</u>	Observed Group Control	Mean ÷/-SEM (n) Treated	<u>Units</u>	Students t
	Chloride	87.4±2.36(5)	88.0±0.97(6)	meq/1	NS
	Globulin	1.70±0.11(5)	1.82±0.031(6)	g/100ml	NS
10	Albumin/ Globulin Ratio	2.30±0.154(5)	2.00±0.078(6)		NS
	BUN/Creatinine Ratio	374±33.0(5)	421±26.9(6)		NS

15 *Mann - Whitney ranking test (corrected for ties).

20

25

30

TABLE 5

HISTOLOGICAL ASSESSMENT OF MICE TREATED
INTRAPERITONEALLY WITH 4 DOSES OF 430 MG/KG OF ABIETIC
ACID SUSPENSION

5	Mouse No:	1	2	<u>3</u>
	Gross necropsy			
10	Heart Lung Liver Spleen Kidney Eyes Other	A B - - CD	E - B -	- - B - -
15	Histological assessment Heart Liver Spleen Kidney Stomach Lung Pancreas	- G H - I	- Ј Н -	- H K

20 Legend

- = No significant findings.
- A = Liver: The liver adjacent to the spleen had a slightly pale firm area.
- B = Spleen: The splenic capsule had a mottled opaque blue appearance.
 - C = Stomach: The serosal surface appeared to have some diverticula, but no diverticula were observed once the stomach was opened.
- D = Small intestine: The small intestine was adhered to the peritoneum.

- 1 E = Lung: The right cranial lobe had a dark red wedge shaped focus which disappeared onc the lung was inflated with formalin.
 - F = Pancreas: The pancreas appeared to be slightly enlarged.

- G = Liver: The hepatic capsule was mildly thickened with fibrous tissue and a modicum of mononuclear cells and neutrophils. Rare small foci of several neutrophils with or without several mononuclear cells were in the parenchyma. A modicum of neutrophils was also surrounding one bile duct.
- H = Spleen: The splenic capsule was mildly thickened with fibrous tissue and moderate numbers of mononuclear cells and neutrophils and less amounts of eosinophils. Neutrophils and eosinophils were also present in the parenchyma beneath the capsule. There was also mild lymphoid hyperplasia.
- 15 I = Stomach: There was a relatively small focus of fibrous tissue and rare eosinophils on the serosa of the stomach. Several foci of fibrous tissue with mononuclear cells, neutrophils and eosinophils were in the abdominal fat in close proximity to the stomach. A modicum of neutrophils was also in a neighboring abdominal lymph node.
- J = Liver: There were rare small foci of several mononuclear cells and a few neutrophils in the parenchyma.
 - K = Kidney: Cortical cyst.
- L = Pancreas: There was a modest amount of fibrous tissue with a few mononuclear cells and neutrophils adjacent to the pancreas.

30

Final Diagnosis

- Mild multifocal chronic-active perisplenitis. (Mic Nos. 1,2 & 3)
- 2. Mild multifocal chronic-active perihepatitis. (MouseNo. 1)
 - 3. Minimal to mild multifocal chronic-active peritonitis. (Mice Nos. 1 & 2).

Toxicity

- the perisplenitis, perihepatitis and peritonitis were likely secondary to irritation from the test compound. In addition, the presence of the eosinophils in the lesions might be indicative of a possible hypersensitivity (allergic) response.
- The data in Table 3 indicate no detectable difference in frequency of unexpected deaths between the two groups of mice while the Table 4 data show no detectable difference between these two groups of mice except for a minor reduction in albumin and a minor increment in inorganic phosphorous in the abietic acid treated mice. In
 - inorganic phosphorous in the abietic acid treated mice. In particular, white blood cell count and platelet assessment remained unchanged by treatment with abietic acid. The data in Table 5 shows that there was no conclusive histological evidence of toxicity. The observed perisplenitis,
- perihepatitis and peritonitis were probably due to secondary irritation from the injected substances.

Table 3 indicates that the intraperitoneal administration of vehicle alone also resulted in a mortality rate of approximately 27%. Most of the deaths for both technical grade abietic acid-treated mice and just the

vehicle-treated mic occurred after the fourth inj ction. This mortality rate is therefore possibly due to the alcoholic content of the vehicle itself. Nevertheless, there is clearly no demonstrable difference in the mortality rate between the control and treated groups of mice establishing that the dose of 430 mg/kg of technical grade abietic acid (administered four times) exhibits no detectable lethal effect over this documented time period. In contrast, the alkylating resin acid derivatives of Table I of the Pharmaceutical Chemistry Journal publication cited above, when administered intraperitoneally in starch paste, exhibited an LD₅₀ ranging from 30-500 mg/kg, giving a median value of 250 mg/kg. It is therefore clear that technical grade abietic acid has significantly lower acute intraperitoneal toxicity than the alkylating derivatives resin acids disclosed in the Pharmaceutical Chemistry Journal publication.

Table 4 shows that there is little significant difference between the technical grade abietic acid-treated 20 group and the control group with respect to blood hematology and chemistry. There is no demonstrable effect on white blood cell count or platelet status, even after four doses which each exceeded the LD50 of alkylating agents derived from resin acids as disclosed in the Pharmaceutical 25 Chemistry Journal publication. Alkylating agents as a class of anti-tumor compounds are known to affect rapidly proliferating normal tissue resulting in lowered white blood cells and platelet counts. The white cell count nadir for most alkylating agents is between 7 and 21 days and is often used as the defining limit of clinical treatment (Cline and 30

Haskell, "Drugs Used in Cancer Chemotherapy" Third dition, W.B. Saunders Co. (1980), pages 31-44).

Table 5 shows that histological valuation of three animals treated with technical grade abietic acid revealed no evidence of toxicity but only minor secondary irritations. Therefore, technical grade abietic acid has significantly lower toxicity than alkylating agents from resin acids as disclosed in The Pharmaceutical Chemistry Journal publication when administered intraperitoneally.

10

15

20

25

30

1 WHAT IS CLAIMED IS:

1. A pharmaceutical composition comprising a compound of the following formula:

wherein R₁ is H or OH,

 R_2 is H, OH or OCOOH,

20 R_3 is H, OCH₃ or CH(COOCH₃)₂,

R4, when present, is H or OCH3,

 R_5 , when present, is H, =0, CH_2OH or CH_2OCOCH_3 ,

 R_6 , when present, is H, OH, CHO or CHS₂,

R₇, when present, is H, =0, Cl, OH, OCH₃, COOH, OCOOH, CH₂OH or CH₂OCOCH₃,

 R_8 , when present, is H/or OH,

R9, when present, is H or CH3,

30

25

1	R ₁₀ , when present, is H, Cl, CH ₃ , CH ₂ Cl, CH ₂ CN,
•	CH_2OH , $COOCH_3$, CH_2COOH , $CH_2CH_2NH_2$, CH_2OCOCH_3 ,
	CH ₂ CH ₂ NCO, CH ₂ COOCH ₃ , CH ₂ CH ₂ NHCONHC ₆ H ₅ ,
	$CH_2O(CH_2CCH_3OH)_xH$ where x is a positive
5	integer, CH ₂ CH ₂ NHCONHC ₆ H ₁₁ , CH ₂ OCO(CH ₂) ₄ COOC ₂ H ₄ OH
	or CH ₂ CH ₂ NH ₂ ·HOOC ₆ H ₃ (NO ₂) ₂ ,
	R_{11} , when present, is H or OH,
	R_{12} is H, CH_3 or $COOCH_3$,
	R_{13} is CN, CH ₃ , COCl, COOH, CONH ₂ , COCH ₃ , CH ₂ OH,
10	CH ₂ NH ₂ , COOCH ₃ , CH ₂ NCO, CH ₂ OCOOH, CH ₂ OCOCH ₃ ,
	$CH_{2}O(CHCHO)_{x}H$ where x is a positive integer,
	CH ₂ NHCONHC ₆ H ₅ , CH ₂ NHCONHC ₆ H ₁₁ , CH ₂ O
	(CH2CCH3HO)xH where x is a positive integer,
	$CH_2NH_2 \cdot HOOCC_6H_3(NO_2)_2$ or
15	$CH_2OCO(CH_2)_4COOC_2H_4OH$,
	R_{14} is H, CH_3 , CH_2 , $COOH$, CH_2OH or $COOCH_3$,
	R ₁₅ is H, OH, OCOOH, H,
	R_{16} , when present, is $^{\prime}$ CH $_{3}$ or CH $_{2}$ OH,
20	R ₁₇ is H or OH,
20	R ₁₈ is H, OH or OCOOH,
	R ₁₉ is H, OCH ₃ or CH(COOCH ₃) ₂ ,
	R_{20} , when present, is $H_1 = 0$, CH_2OH or CH_2OCOCH_3 ,
	and R_{21} , when present, is H or CH_3 ,
25	and the pharmaceutically acceptable salts thereof
	together with a pharmaceutically acceptable carrier
	therefor.
	CHET ETOT •

- 2. The composition of Claim 1, wherein

 R₁ = H; R₂ = H; R₃ = H; R₄ = H; R₅ when present = H; R₆ when present = H; R₇ when present = H; R₈ when present = H or CH₃;

 R₉ when present = H; R₁₀ when present = H; R₁₁ when present =

 5 H; R₁₂ = CH₃; R₁₃ is CH₃ or COOH; R₁₄ is H, CH₂ or CH₃; R₁₅ = H or CH₃, R₁₆ when present = H; R₁₇ =H; R₁₈ = H; R₁₉ = H; R₂₀ when present = H; and R₂₁ when present = H.
- 3. The composition of Claim 2, wherein said compound is at least one member selected from the group 10 consisting of 18-abietanoic acid; 13 beta-abietan-18-oic acid; 8 alpha, 13 beta-abietan-18-oic acid; 9 beta, 13 betaabietan-18-oic acid; 7-abieten-18-oic acid; 13 beta-abiet-7en-18-oic acid; 8-abieten-18-oic acid; 13 beta-abiet-8-en-18-oic acid; 8(14)-abieten-18-oic acid; 13 beta-abiet-8(14)-15 en-18-oic acid; 13-abieten-18-oic acid; 8 alpha-abiet-13-en-18-oic acid; 13(15)-abieten-18-oic acid; 7, 13-abietadien-18-oic acid; 8, 13-abietadien-18-oic acid; 8, 12-abietadien-18-oic acid; 8,13(15)-abietadien-18-oic acid; 8(14), 13(15)abietadien-18-oic acid; 13 beta-abieta-7,9(11)-dien-18-oic 20 acid; 8(14), 12-abietadien-18-oic acid; 8,11,13-abietatrien-18-oic acid; 6,8,11,13-abietatetraen-18-oic acid; 5 betaabieta-8,11,13-trien-18-oic acid; 18-isopimaranoic acid; 8 alpha-isopimaran-18-oic acid; 7-isopimaren-18-oic acid; 8isopimaren-18-oic acid; 8(14)-isopimaren-18-oic acid; 7,15-25 isopimaradien-18-oic acid; 8,15-isopimaradien-18-oic acid; 8(14),15-isopimaradien-18-oic acid; 18-pimaranoic acid; 8 alpha-pimaran-18-oic acid; 8-pimaren-18-oic acid; 8(14)pimaren-18-oic acid; 8,15-pimaradien-18-oic acid; and 8(14),15-pimaradien-18-oic acid.

10

15

- 4. The composition of Claim 2, wh rein R_6 is not present, there being unsaturation pr sent at the n . 8 position on the fused ring structure between rings B and C, R_{13} = COOH, and R_{14} = CH₂ or CH₃.
 - 5. The composition of Claim 4, wherein said compound is at least one member selected from the group consisting of 8,15-isopimaradiene-oic acid; 8,15-pimaradien-18-oic acid; 7,15-isopimaradiene-18-oic acid; 13 beta-abieta 7,9(11)-dien-18-oic acid; 5 beta-abieta-8,11,13-trien-18-oic acid; 8,12-abietadien-18-oic acid; 7,13-abietadien-18-oic acid, and 8(14), 13(15)-abietadien-18-oic acid.
 - 6. The composition of Claim 1 wherein the compound is present at a level of from about 0.01 to about 0.30 mg/mg carrier.
 - 7. The composition of Claim 6 wherein the compound is present at a level of from about 0.02 to about 0.30 mg/mg carrier.
 - 8. The composition of Claim 7 wherein the compound is present at a level of from about 0.05 to about 0.20 mg/mg carrier.
 - 9. A method for treating a tumor comprising administering to an individual, a tumor-treating effective amount of at least one compound of the formula:

25
$$R_{10} R_{9} R_{16}$$

$$R_{15} R_{15}$$

$$R_{17} R_{1} R_{15}$$

$$R_{18} R_{12}$$

$$R_{19} R_{15}$$

$$R_{18} R_{15}$$

$$R_{18} R_{15}$$

$$R_{18} R_{15}$$

$$R_{18} R_{15}$$

1	wher in	R ₁ is H or OH,				
		R ₂ is H, OH or OCOOH,				
		R_3 is H, OCH ₃ or CH(COOCH ₃) ₂ ,				
		R4, when present, is H or OCH3,				
5	** ** :	R ₅ , when present, is H, =0, CH ₂ OH or CH ₂ OCOCH ₃ ,				
		R_6 , when present, is H, OH, CHO or CHS_2 ,				
		R_7 , when present, is $H_7 = 0$, $C1$, OH_7 , OCH_3 , $COOH_7$				
		OCOOH, CH2OH or CH2OCOCH3,				
		R_8 , when present, is H/or^3OH ,				
10		R_9 , when present, is H or CH_3 ,				
		R_{10} , when present, is H, Cl, CH_3 , CH_2Cl , CH_2CN ,				
		CH_2OH , $COOCH_3$, CH_2COOH , $CH_2CH_2NH_2$, CH_2OCOCH_3 ,				
		CH ₂ CH ₂ NCO, CH ₂ COOCH ₃ , CH ₂ CH ₂ NHCONHC ₆ H ₅ ,				
		CH ₂ O(CH ₂ CCH ₃ OH) _x H where x is a positive				
15		integer, $CH_2CH_2NHCONHC_6H_{11}$, $CH_2OCO(CH_2)_4COOC_2H_4OH$				
		or $CH_2CH_2NH_2 \cdot HOOC_6H_3(NO_2)_2$,				
		R_{11} , when present, is H or OH,				
		R ₁₂ is H, CH ₃ or COOCH ₃ ,				
20		R_{13} is CN, CH ₃ , COCl, COOH, CONH ₂ , COCH ₃ , CH ₂ OH,				
20		CH ₂ NH ₂ , COOCH ₃ , CH ₂ NCO, CH ₂ OCOOH, CH ₂ OCOCH ₃ ,				
		CH ₂ O(CHCHO) _x H where x is a positive integer,				
		CH ₂ NHCONHC ₆ H ₅ , CH ₂ NHCONHC ₆ H ₁₁ , CH ₂ O				
		(CH ₂ CCH ₃ HO) _x H where x is a positive integer,				
25		$CH_2NH_2 \cdot HOOCC_6H_3(NO_2)_2$ or $CH_2OCO(CH_2)_4COOC_2H_4OH$,				
		R ₁₄ is H, CH ₃ , CH ₂ , COOH, CH ₂ OH or COOCH ₃ ,				
		R ₁₅ is H, OH, OCOOH, H,				
		R ₁₆ , when present, is/CH ₃ or CH ₂ OH,				
		R ₁₇ is H or OH,				
30		R ₁₈ is H, OH or OCOOH,				
		R_{19} is H, OCH ₃ or CH(COOCH ₃) ₂ ,				

10

15

20

25

30

1 R_{20} , when present, is $H_1 = 0$, CH_2OH or CH_2OCOCH_3 , and

 R_{21} , when present, is H or CH_3 , and the pharmaceutically acceptable salts thereof. 10. The method of Claim 9, wherein

 $R_1 = H$; $R_2 = H$; $R_3 = H$; $R_4 = H$; R_5 when present = H; R_6 when present = H; R_7 when present = H; R_8 when present = H or CH_3 ; R_9 when present = H; R_{10} when present = H; R_{11} when present = H; $R_{12} = CH_3$; R_{13} is CH_3 or COOH; R_{14} is H, CH_2 or CH_3 ; $R_{15} = H$ or CH_3 ; R_{16} when present = H; $R_{17} = H$; $R_{18} = H$; $R_{19} = H$; R_{20} when present = H; and R_{21} when present = H.

method 11. The of Claim 10, wherein said compound is at least one member selected from the group consisting of 18-abietanoic acid; 13 beta-abietan-18-oic acid: 8 alpha, 13 beta-abieten-18-oic acid; 9 beta, 13 betaabietan-18-oic acid; 7-abieten-18-oic acid; 13 beta-abiet-7en-18-oic acid; 8-abietan-18-oic acid; 13 beta-abiet-8-en-18-oic acid; 8(14)-abieten-18-oic acid; 13 beta-abiet-8(14)en-18-oic acid; 13-abieten-18-oic acid; 8 alpha-abiet-13-en-18-oic acid; 13(15)-abieten-18-oic acid; 7, 13-abietadien-18-oic acid; 8, 13-abietadien-18-oic acid; 8, 12-abietadien-18-oic acid; 8,13(15)-abietadien-18-oic acid; 8(14), 13(15)abietadien-18-oic acid; 13 beta-abieta-7,9(11)-dien-18-oic acid; 8(14), 12-abietadien-18-oic acid; 8,11,13-abietatrien-18-oic acid; 6,8,11,13-abietatetraen-18-oic acid; 5 betaabieta-8,11,13-trien-18-oic acid; 18-isopimaranoic acid; 8 alpha-isopimaran-18-oic acid; 7-isopimaren-18-oic acid; 8isopimaren-18-oic acid; 8(14)-isopimaren-18-oic acid; 7,15isopimaradien-18-oic acid; 8,15-isopimaradien-18-oic acid;

- 8(14),15-isopimaradien-18-oic acid; 18-pimaranoic acid; 8 alpha-pimaran-18-oic acid; 8-pimaren-18-oic acid; 8(14)-pimaren-18-oic acid; 8,15-pimaradien-18-oic acid; and 8(14),15-pimaradien-18-oic acid.
- 12. The method of Claim 11, wherein R_6 is not present, there being unsaturation present at the no. 8 position on the fused ring structure between rings B and C, $R_{13} = \text{COOH}$, and $R_{14} = \text{CH}_2$ or CH_3 .
- 13. The method of Claim 12, wherein said
 10 compound is at least one member selected from the group
 consisting of 8,15-isopimaradien-18-oic acid; 8,15pimaradien-18-oic acid; 7,15-isopimaradiene-18-oic acid; 13
 beta-abieta 7,9(11)-dien-18-oic acid; 5 beta-abieta-8,11,13trien-18-oic acid; 8,12-abietadien-18-oic acid; 7,13-
- 15 abietadien-18-oic acid, and 8(14), 13(15)-abietadien-18-oic acid.
 - 14. The method of Claim 9, wherein the compound is administered at a daily dosage of about 100 to about 800 mg/kg individual.
- 20 15. The method of Claim 14, wherein the compound is administered at a daily dosage of about 200 to about 700 mg/kg individual.
- 16. The method of Claim 15, wherein the compound is administered at a daily dosage of about 300 to about 600 mg/kg individual.
 - 17. The method of Claim 9, wherein the compound is effective against tumors selected from the group consisting of non-small cell lung cancer, small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer and renal cancer.

	-38-						
1	18. The method of Claim 9, wherein said compound						
	is effective against tumors selected from the group						
	consisting of L929 cells, S180 cells, and Ehrlich sarcoma						
	cells.						
5	19. The composition of Claim 5, wherein said						
	compound is 7,13-abietadien-18-oic acid.						
	20. The method of Claim 13, wherein said compoun						
	is 7,13-abietadien-18-oic acid.						

15

20

25

30

2/4

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/03209

A. CLASSIFICATION OF SUBJECT MATTER I IPC(5) :Please See Extra Sheet.	
IPC(5) :Please See Extra Sheet. US CL :Please See Extra Sheet.	
According to Internati nal Patent Classification (IPC) or to b	th national classification and IPC
B. FIELDS SEARCHED	
Minimum documentation searched (classification system follows)	•
U.S. : 514/508,519,521,529,533,534,538,541,557,561,5 654,659,676,677,680,691,695,706,716,719,729,732,753,75	55,765,766
Documentation searched other than minimum documentation to	the extent that such documents are included in the fields searched
Electronic data base consulted during the international search	(name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where	appropriate, of the relevant passages Relevant to claim No.
X A/, TIANPEI ET AL, PHARMACOLOGICA ACTION OF ABIETIC ACID, J. OF TRADITIC 118, 1985 ENTIRE REFERENCE	AL STUDY OF ANTITHROMBOTIC 1-8 AND 19 DNAL CHINESE MEDICINE, S(2); 115-
Further documents are listed in the continuation of Box	C. See patent family annex.
Special categories of cited documents: A document defining the general state of the art which is not considered.	T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the
to be part of particular relevance	principle of theory underlying the invention
'E' carlier document published on or after the international filing date L' document which may throw doubte on rejective of international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance: the claimed invention cannot be
O* document referring to an oral disclosure, use, exhibition or other means	combined to involve an inventive step when the document is combined with one or more other such documents, such combination
P* document published prior to the international filing date but later than the priority date claimed	being obvious to a person skilled in the art *&' document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the 140-000 tional search report
30 JULY 1992	\$ 6 SEP 1932
Name and mailing address of the ISA/ Commissioner of Patents and Trademarks	Auth rized officer,
Box PCT Washington, D.C. 20231	JEROME D. GOLDBERG
Facsimile No. NOT APPLICABLE	Telephone No. (703) 308-4606

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/03209

A.	CLASSIFICATION	OF	SUBJECT	MAT	TER:
T	C (C).				

A61K 31/215; 31/275; 31/235; 31/24; 31/19; 31/195/; 31/17; 31/135; 31/13; 31/12; 31/115; 31/095; 31/075; 31/045; 31/05; 31/03; 31/025; 31/015

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

514/508,519,521,529,533,534,538,541,557,561,562,564,569,595,596,654,659,676,677,680,691,695,706,716,719,729,732,753,755,765,766

Form PCT/ISA/210 (extra sheet)(July 1992)*