$S = \lambda \bar{X}$	S - throughput
	λ - in packets per second
$\bar{X} = \bar{L}/C$	\overline{X} be average pacekt transmission time (srednje trajanje prostiranja signala)
$\bar{X} = 1/\mu$	\overline{L} be the average packet length in bits C in bits per second be the channel transmission rate
$\rho = \frac{D}{D+H} S$	Channel utilization is defined as the fraction of time a channel is busy transmitting packets. D is the number of data bits in the packet and <i>H</i> is the
$\rho = \lambda M \overline{X} = S$	number of overhead bits in the packet.
ρ < 1	Uvjet stabilnosti sustava!
$p = \lambda/C$	Vjerojatnost p da je određeni bit zadnji u paketu
$ au_{propagacije} = (duljina linka)/V$	Propagacija - srednje vrijeme trajanja slanja paketa
$\hat{T} = T/\bar{X}$	Normalized average transfer delay is defined as the average time from the arrival of the last bit of a packet into the sending station of a network until the last bit of this packet is delivered through the network to its receiving station. T be average transfer delay
	AN
	Virtual transmission time
$t_v = m[1 + a(1 + 2e)]$ $S = \rho = \lambda m = \bar{X}\lambda = \frac{1}{t_v} * m$ $m = \bar{X}$	Prometna opterećenost
$a = \frac{\tau_{propagacija}}{\bar{X}}$	
$\bar{L} = \frac{duljina\ linka*C}{V*a}$	Prosječna duljina okvira
FDMA	
$T = M \bar{X} + \frac{\rho M \bar{X}}{2(1-\rho)}$	T be average transfer delay, is equal to the sum of the packet transmission time and the average queueing delay at the station.
$\rho = \lambda M \bar{X}$	Channel utilization
$S = M \lambda \vec{X}$	Throughput

$$T = M \overline{X} + \frac{M \overline{X} S}{2(1 - S)}$$
 jer je
$$S = \rho$$

$$T = \frac{M \overline{X}}{2} \left[\frac{2 - S}{1 - S} \right]$$

$$\hat{T} = M + \frac{MS}{2(1-S)} = \frac{M(2-S)}{2(1-S)}$$
 Normalized average transfer

TDMA / STDM

The length of a frame is $M \bar{X}$ seconds.

$$T = \frac{M \overline{X}}{2} + \frac{M S \overline{X}}{2(1-S)} + \overline{X} = \frac{M \overline{X}}{2(1-S)} + \overline{X}$$

The **average transfer delay** T is the sum of the average synchronization delay, the average waiting time W in the buffer, and the packet transmission

$$T = \overline{X} \left[\frac{M}{2} + \frac{MS}{2(1-S)} + 1 \right]$$
 time.

$M \bar{X}/2$	Average slot synchronization delay is one-half of the frame time.	
$W = \frac{\rho M \bar{X}}{2(1-\rho)}$		
$S = \rho$	Avarage delay in the buffer	
$W = \frac{S M \bar{X}}{2(1-S)}$		
$\hat{T} = \frac{M}{2(1-S)} + 1$	Normalized transfer delay	
$\hat{T}_{FDMA} = \hat{T}_{TDMA} + \frac{M}{2} - 1$	$\hat{T}_{FDMA} \geq \hat{T}_{TDMA}$	
CDMA		

$T = \frac{\rho M \overline{X}}{2(1 - \rho)} + M \overline{X}$ $\rho = \lambda M \overline{X} = S$ $T = \frac{SM \overline{X}}{2(1 - S)} + M \overline{X}$	Average packet transfer delay can be written as the sum of the mean waiting time in the queue and the mean effective packet transmission time.	
$\hat{T} = \frac{SM}{2(1-S)} + M$	Normalized transfer delay	
$\hat{T}_{CDMA} = \hat{T}_{TDMA} + \frac{M}{2} - 1$	$\hat{T}_{CDMA} \geq \hat{T}_{TDMA}$	
CENTRAL CONTROL ACCESS METHODS		
$T = \overline{X} + \frac{\rho}{2(1-\rho)} \overline{X}$ $\rho = \lambda M \overline{X} = S$ $T = \overline{X} + \frac{S}{2(1-S)} \overline{X}$	Average transfer delay	
$\lambda \bar{X}$	Prometno opterećenje po svakoj stanici	
$\hat{T} = 1 + \frac{S}{2(1-S)} = \frac{2-S}{2(1-S)}$ Normalized transfer delay		
POLLING NETWORKS (Roll-call Polling)		
$t_{\epsilon} = \sum_{i=1}^{N} w_i + \sum_{i=1}^{N} t_i$	 t_c be cycle time (scan time) w_i be station walk time t_i be station transmission time, time required to transmit packets on the line (vrijeme slanja poruke po svakoj stanici) 	
$\bar{t}_{\epsilon} = \sum_{i=1}^{N} \overline{w}_{i} + \sum_{i=1}^{N} \bar{t}_{i}$ $= L + \sum_{i=1}^{N} \bar{t}_{i}$	Average scan time L be total walk time of the complete polling system. ρ be total traffic intensity.	

$\bar{t}_{\epsilon} = L / \left(1 - \sum_{i=1}^{N} \rho_{i} \right)$ $= L/(1 - \rho)$	
$\overline{m}_i = (\overline{\ell} + \ell')/C$	Average frame lenght (srednje vrijeme slanja paketa na link) in units of time. C be capacity of the channel, in bps. I be average lenght of packet, I' the number of overhead bits.
$\lambda_i \ \bar{t}_c$	Average number of packets (N) waiting to be transmitted when station <i>i</i> is polled.
$\bar{t}_i = \lambda_i \bar{t}_\epsilon \overline{m}_i = \rho_i \bar{t}_\epsilon$	t_i be station transmission time
$\rho_i \equiv \lambda_i \overline{m}_i$ $\rho \equiv \sum_{i=1}^{N} \rho_i = \sum_{i=1}^{N} \lambda_i \overline{m}_i$	Traffic intensity due to station <i>i</i> .
$L = \sum_{i=1}^{N} \overline{w}_{i}$	Total system walk time
$E(D) = \frac{\bar{t}_{\epsilon}}{2} \left(1 - \frac{\rho}{N} \right) + \frac{N\lambda \overline{m^2}}{2(1 - \rho)}$ $= \frac{L}{2} \frac{(1 - \rho/N)}{(1 - \rho)} + \frac{N\lambda \overline{m^2}}{2(1 - \rho)}$ $\rho = N\lambda \overline{m},$ $\overline{m^2} = 2(\overline{m})^2$ $E(D) = \frac{\bar{t}_{\epsilon}}{2} (1 - \rho/N) + \frac{\rho \overline{m}}{(1 - \rho)}$	Average access delay is the average time a apcket must wait at a station from the time it first arrives until the time transmission begins.
$L = Nt_P + Nt_S + \tau'$	The walk time is due to the polling- message transmission time, the necessary station synchronization time (latency time) and propagation delay.

$\tau' = \frac{\tau}{2} \left(1 + N \right)$	Total propagation delay for entire N-station system
$\tau = (2 * duljina linka)/V$	τ be round trip propagation delay
$t_p = L(duljina\ poruke\ prozivanja)/R$	Poruka prozivanja
$\frac{\rho \overline{m}}{(1-\rho)}$	Wait time
POLLING NETWO	RKS (Hub Polling)
au' = au	Propagation time = round-trip delay (delay through a complete cycle)
$L_{\text{hub}} = \tau + Nt_S$	Total walk time
FT	XX
Point-to-point	Za N korisnika koji su udajeni L od centrale potrebno je 2N primopredajnika a ukupna duljina niti je NL .
Aktivna optička mreža	Ukupna duljina niti <i>L</i> , primopredajnici su na <i>2N+2</i> .
Pasivna optička mreža PON	Ukupna duljina niti <i>L</i> i broj primopredajnika <i>(N+1)</i> .
$\eta = 1 - \frac{N \cdot T_g}{T_{C \text{max}}}$ $\eta = \frac{T_c - NT_g}{T_c}$ $L_{1G} = R_{1G} * T_c$	Iskoristivost <i>upstream</i> kanala T _g be guard time (zaštita vremena između transmisija) T _{Cmax} be implicitno maksimalno trajanje ciklusa
$L_{UK} = R(T_C - NT_g)$ $L_{BEuk} = L_{uk} - \sum_{iG} L_{iG}$	$\begin{split} N_{BE} &= N-1 \\ L_{BE} &= L_{BEuk}/N_{BE} \end{split}$
10*log ₁₀ (<i>mW</i>) [<i>dBm</i>] 10 ^{dB/10} [<i>W</i>]	W -> dBm
L J	dB -> W
Power margin = ONU (izlazna snaga laserske diode) [dBm] - OLT (osjetljivost fotodetektora) [dBm] = [dB]	
M, system margin	3.0 - 4.8 <i>dB</i>

