Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 08.04.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 19

Pomiary stałej grawitacji G (ważenie Ziemi)

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów	3
	3.1 Tabele pomiarowe	
	3.2 Wyznaczanie położeń środkowych	
	3.3 Wyznaczanie okresu drgań	
	3.4 Wyznaczanie stałej grawitacji	5
	3.5 Wyznaczanie masy Ziemi	5
4	Ocena niepewności pomiaru	5
	4.1 Niepewność Δb	5
	4.2 Niepewność T	
	4.3 Niepewność G	
5	Wnioski	7
6	Wykresy	8

1 Wstęp teoretyczny

Siła grawitacji

Siłę grawitacji F dla dwóch ciał o masach m_1 i m_2 oddalonych o r można wyrazić wzorem:

$$F = G \frac{m_1 m_2}{r^2} \tag{1}$$

gdzie:

 \bullet G - stała grawitacji

Metoda wagi skręceń Cavendisha

Metoda wagi skręceń Cavendisha jest jedną z metod wyznaczania stałej grawitacji G. Waga skręceń składa się z dwóch ciężarków o masie m zawieszonych na obu końcach pręta, który jest zawieszony na cienkiej sprężystej nici będącej osią obrotu. W pobliżu tych kulek umieszcza się dwa duże ciężkie kulki o masie M. Wówczas siła grawitacji działająca na kulki m wywołuje skręcenie nici aż do momentu, w którym siła grawitacji zrównoważy siłę sprężystości nici.

Mierząc okres drgań układu oraz odległość między wychyleniami masy m względem położenia równowagi w dwóch różnych ustawieniach masy M można wyznaczyć stałą grawitacji G ze wzoru:

$$G = \frac{\pi^2 r^2 d\Delta b}{MT^2 L} \tag{2}$$

gdzie:

- L=0.86 m odległość zwierciadła od ekranu
- r = 0.047 m odległość między środkami mas M i m
- d = 0.05 m odległość małej kulki od osi obrotu
- M = 1.5 kg masa dużej kulki
- T okres drgań układu (wyznaczony w doświadczeniu)
- \bullet Δb Różnica między wychyleniami masy m względem położenia równowagi w dwóch różnych ustawieniach masy M (wyznaczona w doświadczeniu)

Wstęp teoretyczny opracowano na podstawie materiałów pomocniczych do ćwiczenia [2].

2 Opis doświadczenia

- 1. Obserwacja poczatkowego położenia plamki świetlnej na skali.
- 2. Ustawienie dużych kul w pierwszym skrajnym położeniu (wykonywane przez prowadzącego).
- 3. Rejestrowanie położenia plamki na skali co 30 sekund przez około 30 minut.
- 4. Przesunięcie dużych kul do drugiego skrajnego położenia (wykonywane przez prowadzącego).
- 5. Powtórne rejestrowanie położenia plamki co 30 sekund przez około 30 minut.
- 6. Sporządzenie wykresów ruchu wahadła dla obu ustawień kul.

- 7. Wyznaczenie maksimów i minimów oscylacji wahadła.
- 8. Obliczenie położenia środków wahań dla obu ustawień kul.
- 9. Wyznaczenie różnicy położeń środków wahań Δb .
- 10. Obliczenie stałej grawitacji G na podstawie uzyskanych pomiarów.
- 11. Oszacowanie masy Ziemi przy użyciu wyznaczonej wartości G.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

lp	Czas [t] w min	Położenie plamki 1	
1	00:00:00	10	30
2	00:00:30	5	35
3	00:01:00	5	45
4	00:01:30	5	55
5	00:02:00	5	60
6	00:02:30	10	70
7	00:03:00	15	80
8	00:03:30	20	75
9	00:04:00	25	60
10	00:04:30	30	50
11	00:05:00	40	35
12	00:05:30	40	30
13	00:06:00	45	25
14	00:06:30	45	25
15	00:07:00	45	30
16	00:07:30	40	40
17	00:08:00	40	45
18	00:08:30	35	55
19	00:09:00	30	70
20	00:09:30	25	80
21	00:10:00	20	80
22	00:10:30	20	75
23	00:11:00	15	70
24	00:11:30	15	65
25	00:12:00	15	60
26	00:12:30	20	55
27	00:13:00	20	55
28	00:13:30	20	50
29	00:14:00	25	50
30	00:14:30	30	50
31	00:15:00	30	55
32	00:15:30	35	55
33	00:16:00	35	60
34	00:16:30	35	65
35	00:17:00	40	70
36	00:17:30	35	70
37	00:18:00	35	75
38	00:18:30	35	75
39	00:19:00	30	75
40	00:19:30	30	75

lp	Czas [t] w min	Położenie plamki 1	Położenie plamki 2
41	00:20:00	25	75
42	00:20:30	20	70
43	00:21:00	20	70
44	00:21:30	20	65
45	00:22:00	20	65
46	00:22:30	20	60
47	00:23:00	20	60
48	00:23:30	20	60
49	00:24:00	25	55
50	00:24:30	25	55
51	00:25:00	25	55
52	00:25:30	30	60
53	00:26:00	30	60
54	00:26:30	30	65
55	00:27:00	30	65
56	00:27:30	35	65
57	00:28:00	30	70
58	00:28:30	30	70
59	00:29:00	30	70
60	00:29:30	30	70
61	00:30:00	25	70

3.2 Wyznaczanie położeń środkowych

Położenia środkowe zostały wyznaczone przez dopasowanie funkcji:

$$y(t) = y_0 + Ae^{-\lambda t}\cos(\omega t + \phi)$$

do danych pomiarowych metodą najmniejszych kwadratów (kod GitHub: [1], dopasowane funkcje zostały wykreślone na wykresie 1). Odpowiednio dla pierwszego i drugiego ustawienia kul otrzymano:

$$y_{01} = 27,17 \text{ mm}$$

 $y_{02} = 63,75 \text{ mm}$

Następnie obliczono położenia środkowe dla obu ustawień kul na podstawie wzoru:

$$\Delta b = y_{02} - y_{01} = 63,75 \text{ mm} - 27,17 \text{ mm} = 37,65 \text{ mm}$$

3.3 Wyznaczanie okresu drgań

Okres dragań został wyznaczony jako średnia arytmetyczna okresów drgań dla obu ustawień kul, które zostały odczytane z parametrów dopasowanych funkcji. Odpowiednio dla pierwszego i drugiego ustawienia kul otrzymano:

$$T_1 = 634,494 \text{ s}$$

 $T_2 = 626,726 \text{ s}$

Średnia arytmetyczna tych okresów wynosi:

$$T = \frac{T_1 + T_2}{2} = 630,610 \text{ s}$$

3.4 Wyznaczanie stałej grawitacji

Stałą grawitacji wyznaczono korzystając ze wzoru:

$$G = \frac{\pi^2 r^2 d\Delta b}{MT^2 L}$$

Podstawiając wartości liczbowe:

$$G = \frac{\pi^2 \cdot (0.047)^2 \cdot 0.05 \cdot 0.03765 \cdot 10^{-3}}{1.5 \cdot (630.610)^2 \cdot 0.086}$$
$$= 8.00089 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$$

3.5 Wyznaczanie masy Ziemi

Siła grawitacji F działająca na masę m na powierzchni Ziemi wynosi:

$$F = G \frac{mM_Z}{R_Z^2} \tag{3}$$

gdzie M_Z to masa Ziemi, R_Z to promień Ziemi.

Siła z jaką Ziemia przyciąga masę m wynosi:

$$F = mg (4)$$

Stąd porównując wzory (3) i (4) otrzymujemy:

$$mg = G \frac{mM_Z}{R_Z^2} \Rightarrow$$

$$M_Z = \frac{gR_Z^2}{G}$$

Podstawiając wartości liczbowe:

$$M_Z = \frac{9.81 \cdot (6.38 \cdot 10^6)^2}{8.00089 \cdot 10^{-11}}$$
$$= 4.99 \cdot 10^{24} \text{ kg}$$

4 Ocena niepewności pomiaru

4.1 Niepewność Δb

Niepewność wzorcowania dla każdego z pomiarów b_1, b_2, b_3 wynosi:

$$\Delta b_x = 0,005 \text{ mm}$$

Niepewność położenia środka wahań (dla obu ustawień) została obliczona na podstawie wzoru:

$$b_{0x} = \frac{b_1}{4} + \frac{b_2}{2} + \frac{b_3}{4}$$

stąd maksymalna niepewność Δb_{0x} wynosi:

$$\Delta b_{0x} = \frac{1}{4} \Delta b_x + \frac{1}{2} \Delta b_x + \frac{1}{4} \Delta b_x = \Delta b_x$$

 Δb zostało obliczone na podstawie wzoru:

$$\Delta b = b_{02} - b_{01}$$

stąd maksymalna niepewność $\Delta(\Delta b)$ wynosi:

$$\Delta(\Delta b) = |1 \cdot \Delta b_{02}| + |(-1) \cdot \Delta b_{01}| = \Delta b_{02} + \Delta b_{01} = 2\Delta b_x$$

= 0,010 mm

4.2 Niepewność T

Niepewność przyrządu pomiarowego wynosi $\Delta t_p=0.01$ s, a niepewność eksperymentatora $\Delta t_e=1.0$ s. Całkowita niepewność pomiaru czasu wynosi:

$$\Delta t = \Delta t_p + \Delta t_e = 1.01 \text{ s}$$

Okres został obliczony jako różnica między dwoma pomiarami czasu, stąd jego niepewność wynosi:

$$\Delta T = 2 \cdot \Delta t = 2.02 \text{ s}$$

4.3 Niepewność G

Niepewność pomiaru stałej grawitacji wyznaczamy korzystając ze wzoru (18) z instrukcji ONP:

$$\Delta y = \sum_{k=1}^{K} \left| \frac{\partial f}{\partial x_k} \Delta x_k \right|$$

Podstawiając wzór na stałą grawitacji:

$$G = \frac{\pi^2 r^2 d\Delta b}{MT^2 L}$$

Wyznaczamy odpowiednie pochodne cząstkowe:

$$\frac{\partial G}{\partial \Delta b} = \frac{\pi^2 r^2 d}{M T^2 L} = \frac{G}{\Delta b}$$

$$\frac{\partial G}{\partial \Delta T} = \frac{-2\pi^2 r^2 d}{M T^3 L} = \frac{-2G}{T}$$

Uwzględniając największy wpływ niepewności wyznaczenia Δb oraz okresu drgań T,otrzymujemy:

$$\Delta G = \left| \frac{-2G}{T} \Delta T \right| + \left| \frac{G}{\Delta b} \Delta (\Delta b) \right|$$

Podstawiając wartości liczbowe:

$$\Delta G = |\frac{-2 \cdot 8,00089 \cdot 10^{-11}}{630,610} \cdot 2,02| + |\frac{8,00089 \cdot 10^{-11}}{0,03765} \cdot 0,010 \cdot 10^{-3}| = 0,053 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$$

5 Wnioski

- 1. Obliczona wartość stałej grawitacji wynosi $8{,}001 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg·s}^2}$ z niepewnością maksymalną $0{,}053 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg·s}^2}$. Rzeczywista wartość stałej grawitacji wynosi $6{,}67 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg·s}^2}$, co nie mieści się w przedziale niepewności.
- 2. Obliczona wartość masy Ziemi wynosi $4{,}99\cdot10^{24}$ kg. Rzeczywista wartość masy Ziemi wynosi $5{,}98\cdot10^{24}$ kg.
- 3. Główne źródła niepewności w pomiarze to:
 - Wpływ czynników zewnętrznych (drgania podłoża, ruchy powietrza), które mogły zaburzać ruch wahadła pomimo osłony szklanej.
 - Trudności w precyzyjnym odczytaniu położenia plamki na skali (przyjęto niepewność 0,050 mm).
- 4. Otrzymane wyniki potwierdzają słuszność prawa powszechnego ciążenia Newtona.

6 Wykresy

Rysunek 1: Wykres zależności wychylenia od czasu (źródło: opracowanie własne)

Literatura

- [1] Piotr Durniat. Damped oscillation regression model. https://github.com/piotrdurniat/damped-oscillation-regression.
- [2] Instytut Fizyki Doświadczalnej UWr. Materiały pomocnicze do ćwiczenia nr 19. https://wfa.uwr.edu.pl/wp-content/uploads/sites/216/2024/04/Mech.19_wstep.pdf, 2024. Materiały pomocnicze do ćwiczenia nr 19, I Pracownia Fizyczna.