9.3 习题

张志聪

2024年12月2日

9.3.1

• $(a) \Rightarrow (b)$

对任意 $\epsilon > 0$,由(a)f 在 x_0 处沿着 E 收敛于 L 可知,都存在 $\delta > 0$ 使得 f 被限制在集合 $\{x \in E: |x-x_0| < \delta\}$ 上时,f 是 ϵ — 接近于 L 的,即 $|f(x)-L| \leq \epsilon$ 。

由于 $(a_n)_{n=0}^{\infty}$ 收敛于 x_0 , 那么存在正整数 N, 使得

$$|a_n - x_0| \le \frac{1}{2}\delta$$

对 $n \ge N$ 均成立。又因为此时 $a_n \in \{x \in E : |x - x_0| < \delta\}$,所以

$$|f(a_n) - L| \le \epsilon$$

由 ϵ 的任意性, 可得 $f((a_n))_{n=0}^{\infty}$ 收敛于 L。

• $(b) \Rightarrow (a)$

反证法, 假设(a)不成立, 即对某一个 $\epsilon_0 > 0$ 不存在 $\delta > 0$ 使得

$$|f(x) - L| \le \epsilon_0$$

对所有满足 $|x-x_0| < \delta$ 对 $x \in E$ 均成立。

那么,对于任意的正整数 n,设 X_n 表示集合

$$X_n := \{x : |f(x) - L| > \epsilon_0, |x - x_0| < 1/n\}$$

是非空集合 (其中 $|x-x_0|<1/n$ 由 x_0 是附着点保证, $|f(x)-L|>\epsilon_0$ 由假设 (a) 不成立保证)。

利用选择公理,能够找到一个序列 $(a_n)_{n=0}^{\infty}$ 使得 $a_n \in X_n$ 对所有的 $n \geq 1$ 均成立(特别的, a_0 可以任选 E 中的一个元素)。于是这里构 造的序列 $(a_n)_{n=0}^{\infty}$ 收敛于 x_0 ,由题设(b)可知,序列 $f((a_n))_{n=0}^{\infty}$ 收敛于 L,即存在正整数 N,使得

$$|f(a_n) - L| \le \epsilon_0$$

对 $n \geq N$ 均成立。因为 $a_n \in X_n$ 所以 $|f(a_n) - L| > \epsilon_0$,存在矛盾。