

Time Series and Sequence Learning

Stationarity, Empirical ACF

Fredrik Lindsten, Linköping University

Stationary time series

Def. A stochastic process $\{y_t\}_{t\geq 1}$ is said to be **strictly stationary** if, for all t_1, \ldots, t_n and all $h \geq 0$

$$p(y_{t_1}, \ldots, y_{t_n}) = p(y_{t_1+h}, \ldots, y_{t_n+h}).$$

Stationary time series

Def. A stochastic process $\{y_t\}_{t\geq 1}$ is said to be **strictly stationary** if, for all t_1, \ldots, t_n and all $h \geq 0$

$$p(y_{t_1}, \ldots, y_{t_n}) = p(y_{t_1+h}, \ldots, y_{t_n+h}).$$

Def. A stochastic process $\{y_t\}_{t\geq 1}$ is said to be (weakly) stationary if, for all t,

- 1. $Var(y_t) < \infty$,
- 2. $\mu(t) = \text{const.}$
- 3. The autocovariance function depends only on the time lag,

$$\gamma(t, t+h) =: \gamma(h)$$
 for all h .

ex) A first-order AR model $y_t = ay_{t-1} + \varepsilon_t$ is (weakly) stationary iff

1. |a| < 1 \leftarrow key requirement!

2.
$$\mu$$
(1) = 0 and γ (1,1) = $\frac{\sigma_{\varepsilon}^2}{1-a^2}$

ex) A first-order AR model $y_t = ay_{t-1} + \varepsilon_t$ is (weakly) stationary iff

1.
$$|a| < 1$$
 \leftarrow key requirement!

2.
$$\mu(1) = 0$$
 and $\gamma(1, 1) = \frac{\sigma_{\varepsilon}^2}{1 - a^2}$

N.B. If the second requirement is not fulfilled, the process will still converge to stationarity for large *t*.

ex) For a first-order AR model $y_t = ay_{t-1} + \varepsilon_t$ with

$$y_1 \sim \mathcal{N}\left(0, \frac{\sigma_{\varepsilon}^2}{1-\alpha^2}\right), \qquad \qquad \varepsilon_t \overset{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right),$$

all marginal distributions are Gaussian.

If |a| < 1, then the process is strictly stationary.

If $|a| \ge 1$, then the variance of the process grows without bound at a rate which is

- Linear if |a| = 1,
- Exponential if |a| > 1.

Such a process is said to be unstable!

Consider *n* observed values y_1, \ldots, y_n of a time series

Consider *n* observed values $y_1, ..., y_n$ of a time series — assuming that the time series is stationary, we can estimate $\gamma(h)$ as,

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-n} (y_{t+h} - \widehat{\mu})(y_t - \widehat{\mu})$$

where
$$\widehat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y_t$$
.

Consider n observed values y_1, \ldots, y_n of a time series — assuming that the time series is stationary, we can estimate $\gamma(h)$ as,

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-n} (y_{t+h} - \widehat{\mu})(y_t - \widehat{\mu})$$

where $\widehat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y_t$.

For a stationary process, tha ACF is given by

$$\rho(h) := \rho(t, t+h) = \frac{\gamma(h)}{\gamma(0)}.$$

Consider n observed values y_1, \ldots, y_n of a time series — assuming that the time series is stationary, we can estimate $\gamma(h)$ as,

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-n} (y_{t+h} - \widehat{\mu})(y_t - \widehat{\mu})$$

where $\widehat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y_t$.

For a stationary process, tha ACF is given by

$$\rho(h) := \rho(t, t+h) = \frac{\gamma(h)}{\gamma(0)}.$$

It can be estimated as

$$\widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)}.$$

Recall, for a stationary process, tha ACF is given by $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$.

Recall, for a stationary process, tha ACF is given by $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$.

Recall, for a stationary process, tha ACF is given by $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$.

Recall, for a stationary process, tha ACF is given by $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$.

Recall, for a stationary process, tha ACF is given by $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$.

