

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра «Системы обработки информации и управления»

Отчет по лабораторной работе № 3 по дисциплине «Технология машинного обучения»

Выполнил: студент группы ИУ5-63Б Кузнецов В.А. подпись, дата

Проверил: Гапанюк Ю.Е. подпись, дата

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 5. Произведите подбор гиперпараметра К с использованием GridSearchCV и RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Используйте не менее двух стратегий кросс-валидации.
- 6. Сравните метрики качества исходной и оптимальной моделей.

Текст программы:

Основные характеристики датасета

sepal length - длина наружной доли околоцветника sepal width - ширина наружной доли околоцветника petal length - длина внутренней доли околоцветника petal width - ширина внутренней доли околоцветника target - тип ирисов (Iris setosa, Iris virginica, Iris versicolor)

Импорт библиотек

```
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV, KFold, LeaveOneOut, StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
RANDOM_STATE=125
```

Подготовка

data.head()

₹	se	pal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0.0
	1	4.9	3.0	1.4	0.2	0.0
	2	4.7	3.2	1.3	0.2	0.0
	3	4.6	3.1	1.5	0.2	0.0
	4	5.0	3.6	1.4	0.2	0.0

data.isnull().sum()

sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
target 0
dtype: int64

data.describe()

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333	1.000000
	std	0.828066	0.435866	1.765298	0.762238	0.819232
	min	4.300000	2.000000	1.000000	0.100000	0.000000
	25%	5.100000	2.800000	1.600000	0.300000	0.000000
	50%	5.800000	3.000000	4.350000	1.300000	1.000000
	75%	6.400000	3.300000	5.100000	1.800000	2.000000
	max	7.900000	4.400000	6.900000	2.500000	2.000000

```
from sklearn.preprocessing import MinMaxScaler
mmScaler = MinMaxScaler()
scaled_data = mmScaler.fit_transform(data)
scaled_data = pd.DataFrame(scaled_data, columns=data.columns)
scaled_data['target'] = data['target']
scaled_data.describe()
```

_		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	count	150.000000	150.000000	150.000000	150.000000	150.000000
1	mean	0.428704	0.440556	0.467458	0.458056	1.000000
	std	0.230018	0.181611	0.299203	0.317599	0.819232
	min	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.222222	0.333333	0.101695	0.083333	0.000000
	50%	0.416667	0.416667	0.567797	0.500000	1.000000
	75%	0.583333	0.541667	0.694915	0.708333	2.000000
	max	1.000000	1.000000	1.000000	1.000000	2.000000

data = scaled_data

Пропусков в датасете нет.

Категориальный признак уже закодирован.

Разделение на выборки

```
X = data.iloc[:, :-1]
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=RANDOM_STATE)
```

Обучение с константным К

```
knn = KNeighborsClassifier(n_neighbors=K)
knn.fit(X_train, y_train)
\overline{\mathbf{x}}
               KNeighborsClassifier
      KNeighborsClassifier(n_neighbors=4)
y_pred = knn.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
→ Accuracy: 1.0
confusion_matrix(y_test, y_pred)
\Rightarrow array([[16, 0, 0], [0, 15, 0], [0, 0, 14]])
print(classification_report(y_test, y_pred))
\rightarrow
                     precision
                                 recall f1-score support
               0.0
                          1.00
                                     1.00
                                                1.00
                          1.00
                                     1.00
                                                1.00
               1.0
               2.0
                          1.00
                                     1.00
                                                1.00
```

1.00

1.00

accuracy

macro avg

weighted avg

1.00

1.00

1.00

1.00

1.00

16

15

14

45

45

45

Подбор гиперпараметра К

```
param_grid = {'n_neighbors': np.arange(1, 31)}
skf = StratifiedKFold(n_splits=5, random_state=RANDOM_STATE, shuffle=True)
grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=skf, scoring='accuracy')
grid_search.fit(X, y)
                 GridSearchCV
      ▶ estimator: KNeighborsClassifier
           ▶ KNeighborsClassifier
print("Лучший peзyльтат GridSearchCV: {:.3f} c K={}".format(grid\_search.best\_score\_, grid\_search.best\_params\_['n\_neighbors']))
→ Лучший результат GridSearchCV: 0.973 с K=6
loo = LeaveOneOut()
random search = RandomizedSearchCV(KNeighborsClassifier(), param grid, n iter=20, cv=loo, scoring='accuracy', random state=RANDOM STATE'
random_search.fit(X, y)
              RandomizedSearchCV
      ▶ estimator: KNeighborsClassifier
            ▶ KNeighborsClassifier
print("Лучший результат RandomizedSearchCV: {:.3f} c K={}".format(random_search.best_score_, random_search.best_params_['n_neighbors'])
→ Лучший результат RandomizedSearchCV: 0.967 с K=7
```

Сравнение

Исходная модель была обучена на 70% датасета со случайно выбраным K=4 и показала точность 0.9(5).

Для второй модели коэффициент подбирался при помощи кросс-валидации **StratifiedKFold** для сохранения соотношения классов и **GridSearchCV**. Был подобран K=5 с точностью 0.973. Был подобран более оптимальный коэффициент, и получена более высокая точность.

Для 3 модели использовалась кросс-валидация **LeaveOneOut** с **RandomizedSearchCv** для компенсации большого времени выполнения. Получена точность 0.98 при K=19. Разница в точности с предыдующими моделями мала и может быть снова объяснена оценкой точности. Также возможно, LOO обеспечила максимальное использование данных, что при малом размере датасета (150 строк) привело к лучшему результату