Euler Equations and Money Market Interest Rates: A Challenge for Monetary Policy Models

Matthew B. Canzoneri, Robert E. Cumby, and Behzad T. Diba Presented by Pearl Li

September 23, 2015

Overview

- Questions
- Background
- Data
- Empirical Analysis
 - Model
 - Utility Specifications
- Results
- Thesis Connection

Questions

- How do the interest rates implied by the consumption Euler equation compare to observed historical interest rates?
- Is the spread between these two rates correlated with the stance of monetary policy?

Background

- Consumption Euler equation expresses intertemporal first-order condition
- Typical form $u'(C_t) = \beta(1 + r_t)E_tu'(C_{t+1})$
- Equivalently, $\frac{\beta E_t u'(C_{t+1})}{u'(C_t)} = \frac{1}{1+r_t}$ (i.e. MRS = MRT)
- Households delay consumption when interest rates are high
- Assumption of nearly all standard macroeconomic models

Data

- U.S. data from 1966-2004 (source unknown)
- Quarterly time series for:
 - 1. Money market interest rates
 - 2. Per capita consumption
 - 3. Inflation (log change in the deflator for nondurables and services consumption)
 - 4. Journal of Commerce industrial materials commodity price index
 - 5. Per capita real disposable income
 - 6. Federal funds rate
 - 7. Per capita real nonconsumption GDP

- Compute implied interest rates under 5 utility specifications
- Regress spread (model rate observed rate) on 2 measures of monetary policy
- Estimate VAR of variables 2-7 on previous slide

$$Y_t = A_0 + A_1 Y_{t-1} + \nu_t$$

• Compute response of model rate to monetary policy shock under 2 sets of preferences and compare to impulse response of FFR

Model

Representative agent maximizes lifetime utility

$$u_t = \sum_{s=1}^{\infty} \beta^{s-t} E_t u(C_s, Z_s)$$

where Z_s is the habit or reference level of consumption in period s

• Real interest rate r_t given by

$$\frac{1}{1+r_t} = \frac{\beta E_t u'(c_{t+1})}{u'(c_t)}$$

Utility Specifications

- 1. Standard, additively separable, constant relative risk aversion (CRRA): $u(C_t) = \frac{1}{1-\alpha} C_t^{1-\alpha}$
- 2. Fuhrer (2000): utility depends on ratio $\frac{C_t}{C_{t-1}^{\gamma}}$
- 3. Christiano, Eichenbaum, & Evans (2005): utility depends on difference $C_t bC_{t-1}$
- 4. Abel (1990, 1999): utility depends on $\frac{C_t}{Z_t}$, where reference level Z_t is aggregate consumption last period (external)
- 5. Campbell & Cochrane (1999): utility depends on $C_t Z_t$, where Z_t is again external

• Compute implied interest rates under 5 utility specifications

Computed Implied Rates

				Christiano-		
				Eichenbaum-		Campbell-
	Observed	CRRA	Fuhrer	Evans	Abel	Cochrane
Mean	2.32	7.08	5.66	2.10	8.34	2.20
Std Dev	2.39	1.66	31.25	7.39	26.55	1.64
Correlation		-0.37	-0.07	-0.09	-0.36	-0.37

- Interest rates implied by Euler equation negatively correlated with observed historical rates
- Negative correlation robust to specification of different utility functions
- Effect is weaker for preferences that imply the Euler equation is extremely volatile

Figure 1: Real Interest Rates Ex Post and CRRA Euler Equation

Figure 2: Real Interest Rates Ex Post and Fuhrer Euler Equation

Figure 3: Real Interest Rates Ex Post and C-E-E Euler Equation

Figure 4B: Real Interest Rates Ex Post and Abel Model

Figure 5: Real Interest Rates Ex Post and Campbell-Cochrane Model

- Compute implied interest rates under 5 utility specifications
- Regress spread (model rate observed rate) on 2 measures of monetary policy

Response of Interest Rate Spreads to Monetary Policy (standard errors in parentheses)

			Christiano-		
			Eichenbaum-		Campbell-
	CRRA	Fuhrer	Evans	Abel	Cochrane
FFR	-0.482	-1.215	-0.586	-1.714	-0.482
	(0.064)	(0.825)	(0.214)	(0.103)	(0.062)
S-Ratio	0.062	0.263	0.079	0.346	0.015
	(0.015)	(0.214)	(0.052)	(0.103)	(0.015)

- S-ratio $= \frac{\text{non-borrowed reserves} + \text{extended credit}}{\text{total reserves}}$
- Expansionary monetary policy (lower FFR, higher S-ratio) associated with significantly greater spreads

- Compute implied interest rates under 5 utility specifications
- Regress spread (model rate observed rate) on 2 measures of monetary policy
- Estimate VAR of variables 2-7 on previous slide

$$Y_t = A_0 + A_1 Y_{t-1} + \nu_t$$

• Compute response of model rate to monetary policy shock under 2 sets of preferences and compare to impulse response of FFR

Impulse Response Functions for Federal Funds Rate Shock

- Euler equation rates and FFR move in opposite directions
- Monetary tightening (raising FFR) decreases expected consumption growth, which is associated with decreasing real interest rates

Thesis Connection

- Want to test DSGE microfoundations, including consumption Euler equation
- Rather than estimating system evolution with time series, will use closed-form solution of small-scale model