Problem

Show that if NP BPP, then NP = RP

Step-by-step solution

Step 1 of 2

As $RP \in NP$, it is sufficient to show $NP \subseteq RP$. It can be prove by showing that if $NP \subseteq BPP$, then $SAT \in RP$. Consider a formula ϕ with n variables x_1, x_2, \dots, x_n be the input. ϕ is satisfied iff \exists truth assignment for x_1, x_2, \dots, x_n so that $\phi(x_1, x_2, \dots, x_n) = 1$.

- Assume A be a BPP algorithm with error probability at most 2^{-k} for SAT, where $k = |\phi|$ is the length of formula ϕ . Such A exist because of the assumption that $SAT \in BPP$.
- First run A on ϕ . If A rejects, then reject, otherwise try to satisfy assignment for ϕ on variable at a time.
- Initialize x_1 to x_2 and then call x_3 to determine that if the formula resulting is satisfiable: if x_4 returns "accept" then permanently set x_1 to x_2 some set x_1 to x_2 similarly.
- If manage to construct a satisfying assignment at end then verify this assignment for ϕ . If $\phi(x_1,...,x_n)=1$, then accept; otherwise reject.
- Here is the analysis. If ϕ is unsatisfiable, then always reject either because A rejects in the process or do not arrive at a satisfying assignment at the end.

Comment

Step 2 of 2

On the other hand, suppose ϕ is satisfiable. Proceed to show that it accept with probability at least $\frac{1}{2}$.

- Invoke A a total of n+1 times. If ϕ is satisfiable and A returns "accept" each time only for an assignment for variable x_i which is part of a satisfying assignment, then end up with a satisfying assignment.
- Now show that the probability that at least one of the n+1 invocations returns "reject" for an assignment for variable x_i which is part of a satisfying $\frac{1}{2}$ assignment is at most $\frac{1}{2}$.
- The probability that an invocation of A returns does so is at most 2-k. So probability that encounter it is at most $\binom{(n+1)\cdot 2^{-k}}{2}$, which is at most because $n+1 \le k$.

Since both the algorithm A and the construction of satisfying assignment run in polynomial time, the whole procedure clearly runs in polynomial time. Hence, $SAT \in RP$ and therefore NP = RP.

Comment