Clase 7: capacidad y condensadores

Repaso de conductores:

Hipótesis:

sus cargas pueden moverse libremente

Propiedades:

- \overline{E} = 0 en el interior del conductor (V = cte en el volumen y en la superficie)
- \overline{E} es perpendicular a la superficie del conductor
- $\overline{E} = \sigma / \epsilon_0$ \hat{n} cerca de la superficie
- Toda la carga neta está en la superficie exterior
- $|\overline{E}|$ es mayor en regiones "más angostas" (o puntas) del conductor

Capacitores (condensadores)

Un capacitor es un sistema de 2 conductores que pueden almacenar energía eléctrica en un campo eléctrico.

Sistema de M conductores: relación entre cargas y potenciales

Condición electrostática (ya se acomodaron todas las cargas)

Los conductores están caracterizados por sus potenciales V_l sus cargas totales Q_l , sus σ_l y sus superficies S_l .

Ahora dividimos las superficies en
$$N$$
 elementos dS_i . Cada pedacito tiene $q_i = \sigma_l(\overline{r_i}) dS_i$.

$$V(\overline{r_i}) = \sum_{\substack{j=1\\j\neq i}}^{N} k_j q_j \qquad (i = 1, ..., N) \qquad con \quad p_{ij} \equiv \frac{k}{|\overline{r_i} - \overline{r_j}|} \neq 0$$

$$\Rightarrow q_k = \sum_{\substack{j=1\\j\neq k}}^{N} b_{kj} V(\overline{r_j}) \qquad (\kappa = 1, ..., N)$$

Sistema de M conductores: relación entre cargas y potenciales

$$Q_l = \sum_{m=1}^{M} C_{lm} V_m \qquad con \qquad l = 1, ..., M$$

Sistema de M conductores: relación entre cargas y potenciales

$$Q_{l} = \sum_{m=1}^{M} C_{lm} V_{m} \qquad con \quad \overline{l} = 1, ..., M.$$

$$Q_{l} = \sum_{m=1}^{M} C_{lm} V_{m} \qquad \overline{V}_{l} \qquad \overline$$

Los C_{lm} son los coeficientes de la matriz capacidad y dependen solamente de la geometría de la configuración. A los C_{ll} se los llama coeficientes de <u>capacidad</u> y a los C_{lm} coeficientes de <u>inducción</u>. Los $C_{ll} > 0$ mientras que los $C_{lm} < 0$. Además $C_{lm} = C_{ml}$.

<u>Problema 7 (a):</u> M = 1

E(1) = Q

$$V = [E]m$$

$$V = Nm$$

$$\Rightarrow KQ \left[-\frac{1}{r}\right]_{R}^{\infty} = V(R) \Rightarrow \frac{KQ}{R} = V(R) \Rightarrow \frac{Q}{V(A)} = \frac{R}{K} \Rightarrow$$

$$\Rightarrow R = \frac{1}{4\pi \cdot 8,85} = \frac{\cancel{R} \cdot Nm^2}{V \cdot C^2} = 9 \times 10^3 \frac{\cancel{Nm}}{\cancel{Nm} \cdot 4} \Rightarrow R = 9 \text{mm}$$

Para estas configuraciones vale que $C_{11}=-C_{12}$. Esto es lo que define al capacitor.

(Cu + C21) V2 = 0

$$Q = Q_1 = C_{11}(V_1 - V_2)$$

 $Q = C \left(V_{\nu} - V_{\nu} \right)$

Problemas 7 (b): M = 2

$$C = \frac{Q^{QL}}{V_L - V_Z}$$

$$\int_{\alpha}^{b} E dr = -\int_{V(a) = V_L}^{V(b) = V_Z} V(b) = V_Z$$

$$V(a) = V_L$$

$$V(a) = V_L$$

$$V(b) = V_L$$

$$V(a) = V_L$$

$$V(b) = V_L$$

$$C = \frac{ab}{x(b)a}$$

$$b(1-\frac{a}{b})$$

Sib
$$\rightarrow \infty \Rightarrow C = 0 = 4\pi \epsilon_0 \alpha$$