Math 462 Homework 4

Paul Hacking

February 19, 2013

- (1) Determine algebraic formulas $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for the following isometries T. (Here A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector.)
 - (a) Rotation about the point $\binom{3}{1}$ through angle $\pi/4$ counterclockwise.
 - (b) Reflection in the line y = 4.
 - (c) Reflection in the line y = x + 2 followed by a translation parallel to the line through distance $3\sqrt{2}$ in the direction of increasing x. (This is a glide reflection.)
- (2) Describe the following isometries of \mathbb{R}^2 geometrically.

(a)
$$R \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+2 \\ -x+3 \end{pmatrix}$$
.

(b)
$$S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y+4 \\ -x-3 \end{pmatrix}$$
.

- (3) For $T: \mathbb{R}^2 \to \mathbb{R}^2$ an isometry, the fixed locus of T is the set of points $\mathbf{x} \in \mathbb{R}^2$ such that $T(\mathbf{x}) = \mathbf{x}$. Describe the fixed locus for each type of isometry T (identity, rotation, translation, reflection, and glide reflection).
- (4) Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry of \mathbb{R}^2 given by rotation about a point P through angle θ counterclockwise. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry given by rotation about a point Q through angle θ clockwise.
 - (a) Show that the composition $S \circ R$ is a translation, i.e., $S(T(\mathbf{x})) = \mathbf{x} + \mathbf{b}$ for some vector $\mathbf{b} \in \mathbb{R}^2$.

- (b) Show that if the angle θ is small, then the translation vector **b** has length approximately $\theta \cdot d(P,Q)$ and is approximately perpendicular to the vector \overrightarrow{PQ} . (Here d(P,Q) denotes the distance from P to Q.) [This fact is sometimes useful when moving furniture.]
- (c) What happens for $\theta = \pi$?

[Hint: By choosing coordinates appropriately we can assume P is the origin and Q lies on the x-axis. Now compute by expressing R and S in the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector. For part (b) use the approximations $\cos(\theta) \simeq 1$ and $\sin(\theta) \simeq \theta$ for θ small.]

(5) Let T be the isometry of \mathbb{R}^3 given by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ x \\ z+1 \end{pmatrix}$. Describe T geometrically.

[Hint: This is type of an isometry of \mathbb{R}^3 we have not discussed earlier, but it is a composition of two simpler isometries (similar to the case of a glide reflection in \mathbb{R}^2).]

- (6) Consider the following isometries of \mathbb{R}^2 : R is rotation about the origin through angle θ counterclockwise, S is reflection in the x-axis, and T is translation by a vector $\mathbf{b} \in \mathbb{R}^2$. Describe the following compositions geometrically.
 - (a) $T \circ R \circ T^{-1}$.
 - (b) $T \circ S \circ T^{-1}$.
 - (c) $R \circ S \circ R^{-1}$.
 - (d) $S \circ R \circ S$.
- (7) Recall that we can identify \mathbb{R}^2 with the complex numbers \mathbb{C} via $(x,y) \mapsto z = x + iy$. From this point of view show that the isometries T of $\mathbb{R}^2 = \mathbb{C}$ are the maps given by $T(z) = e^{i\theta}z + c$ or $T(z) = e^{i\theta}\bar{z} + c$ for some $0 \le \theta < 2\pi$ and $c \in \mathbb{C}$. (Here \bar{z} denotes the complex conjugate of z given by $\bar{z} = x iy$ for z = x + iy, and $e^{i\theta} = \cos \theta + i \sin \theta$.) Describe the isometry T geometrically in terms of the data θ , c, and the choice of z or \bar{z} .