

CENTRE FOR ARTIFICIAL INTELLIGENCE AND

MACHINE LEARNING

A Centre of Excellence of OU Under RUSA 2.0, MHRD, Govt. of India
OSMANIA UNIVERSITY

Problem statement:

Video-Based Violence Detection System

This project uses a deep learning architecture combining MobileNetV2 for spatial feature extraction and LSTMs for temporal sequence analysis. Preprocessed video frames are passed through MobileNetV2 within a TimeDistributed layer to extract features, followed by LSTMs to model temporal dependencies. Dense layers classify actions as normal or violent. The system includes real-time inference and a Telegram bot for alert notifications. Training incorporates early stopping and model checkpoints, achieving robust performance.

ARCHITECTURE

Training and validation: Model built using LSTM layers on extracted frame features for sequence analysis. Hyperparameters: Adam Optimizer: with a learning rate of 1e-3. Binary Cross Entropy Loss function(for binary classification).

T. Soumya 100521729084

N. Anusha

100521729082

Evaluation Metrics: Confusion Matrix to illustrate classification accuracy. Classification Report with precision, recall, and F1-score.

——— 47s 3s/step					15/15
support	f1-score	recall	precision		
169	0.99	1.00	0.98	0	
308	0.99	0.99	1.00	1	
477	0.99			accuracy	ac
477	0.99	0.99	0.99	acro avg	mac
477	0.99	0.99	0.99	hted avg	weight

Results: The model achieves high accuracy in detecting violence from video clips the Telegram bot successfully delivers alerts.

Conclusion: The project successfully implements a deep learning-based system to detect violent activities in videos using MobileNetV2 and LSTM, achieving high accuracy in classification. Integration with a Telegram bot enables real-time alerts, making it practical for surveillance applications

Introduction: Surveillance has become a critical aspect of maintaining safety in public spaces, schools, and workplaces.

Traditional monitoring methods are manual and often inefficient in real-time scenarios.

By combining MobileNetV2 and LSTM, the system can accurately classify activities as "Normal" or "Violence."

To ensure timely intervention, a Telegram bot sends instant alerts with relevant details and evidence to authorities.

Dataset: SmartCity CCTV Violence Detection Dataset (SCVD) used. Train and Test folders with three classes: Normal, Violence, and Weaponized.

Sample videos per category visualized for understanding.

Preprocessing and Cleaning:

Extracting a subset of frames (15 frames) per video, due to computational constraints.
Resizing each frame to a uniform size of 128x128 pixels.