ImpactDataViz 241 Final Project

```
# load packages
library(data.table)
library(foreign)
library(sandwich)
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(lmtest)
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
```

1. Parse the survey data into a data.table

```
d <- fread("data/final.csv")
#d <- fread("data/pilot.csv")

# covariates
setnames(d, 'Q3', 'state')
setnames(d, 'Q4', 'gender')
setnames(d, 'Q5', 'age')
setnames(d, 'Q6', 'ethnicity_multi')
setnames(d, 'Q7', 'political_party')
setnames(d, 'Q8', 'education')
setnames(d, 'Q9', 'covid_sick')
setnames(d, 'Q10', 'covid_hospitalized')
setnames(d, 'Q11', 'covid_died')</pre>
```

```
# duration of survey time
setnames(d, 'Duration (in seconds)', 'duration_of_survey')
# which block was active? (did the user see the treatment or
# control data viz)
setnames(d, 'Q15', 'treatment_viz_is_accurate')
setnames(d, 'Q17', 'control_viz_is_accurate')
# outcome questions about COVID attitudes
setnames(d, 'Q18', 'outcome_spread')
setnames(d, 'Q19', 'outcome_death')
# which block was active determines if
# subject received treatment data viz or control
# data viz
d[, treatment := ifelse(is.na(treatment_viz_is_accurate), 0, 1)]
d = d[!is.na(outcome_spread) & !is.na(outcome_death),]
# ethnicity allows for multiple choice
# for covariates, just grab the first one
ethnicity_single = rep(0,nrow(d))
i = 1
for (eth_entry in d[,ethnicity_multi]) {
  eth_tokens = unlist(strsplit(eth_entry, ","))
  ethnicity_single[i] = as.numeric(eth_tokens[1])
 i = i + 1
d[, ethnicity := ethnicity_single ]
# counts in control vs treatment
n_control = nrow(d[treatment == 0, ])
n_treatment = nrow(d[treatment == 1, ])
# Multiple plot function
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {</pre>
  library(grid)
  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)</pre>
  numPlots = length(plots)
  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
```

```
# Make the panel
  # ncol: Number of columns of plots
  # nrow: Number of rows needed, calculated from # of cols
  layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),</pre>
                   ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
  print(plots[[1]])
} else {
   # Set up the page
  grid.newpage()
  pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
  # Make each plot, in the correct location
  for (i in 1:numPlots) {
     \# Get the i,j matrix positions of the regions that contain this subplot
    matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))</pre>
    print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                     layout.pos.col = matchidx$col))
  }
}
```

2. EDA

2.1 Are the data visualizations in control and treatment considered accurate by subjects?

```
par(mfrow=c(1,2))
hist(d[, treatment_viz_is_accurate], col=rgb(1,0,0,0.5), xlim=c(1,2))
hist(d[, control_viz_is_accurate], col=rgb(0,0,1,0.5), xlim=c(1,2))
mtext("I trust that the information presented in the data visualization is accurate", side=1, outer=TRU.
```

stogram of d[, treatment_viz_is_acdistogram of d[, control_viz_is_accu

2.2 Check Time

```
par(mfrow=c(1,2))
hist(d[treatment == 0,duration_of_survey], col=rgb(0,0,1,0.5))
hist(d[treatment == 0,duration_of_survey], col=rgb(0,0,1,0.5))
```

gram of d[treatment == 0, duration_gram of d[t


```
mean(d[treatment == 0,duration_of_survey])
## [1] 153.1875

mean(d[treatment == 0,duration_of_survey])
## [1] 153.1875
```

3. Covariate balance

3.1 Compare distributions using violin plote

```
library('ggplot2')

options(repr.plot.width = 14, repr.plot.height = 8)

p1 = ggplot(d, aes(x=as.factor(treatment), y=gender, fill=as.factor(treatment))) +
    geom_violin()

p2 = ggplot(d, aes(x=as.factor(treatment), y=age, fill=as.factor(treatment))) +
    geom_violin()
```

```
p3 = ggplot(d, aes(x=as.factor(treatment), y=as.numeric(ethnicity), fill=as.factor(treatment))) +
    geom_violin()

p4 = ggplot(d, aes(x=as.factor(treatment), y=political_party, fill=as.factor(treatment))) +
    geom_violin()

p5 = ggplot(d, aes(x=as.factor(treatment), y=education, fill=as.factor(treatment))) +
    geom_violin()

p6 = ggplot(d, aes(x=as.factor(treatment), y=covid_sick, fill=as.factor(treatment))) +
    geom_violin()

p7 = ggplot(d, aes(x=as.factor(treatment), y=covid_hospitalized, fill=as.factor(treatment))) +
    geom_violin()

p8 = ggplot(d, aes(x=as.factor(treatment), y=covid_died, fill=as.factor(treatment))) +
    geom_violin()

multiplot(p1, p2, p3, p4, p5, p6, p7, p8, cols=2)
```


4. Estimate ATE

```
estimate_ate <- function(dt, outcome, treatment, treat_val) {
    ## This takes a data.table, the name of the outcome variable, and the name
    ## of the treatment indicator.

    g <- dt[ , .(group_mean = mean(get(outcome))), keyby = .(get(treatment))]
    ate <- g[ , diff(group_mean)]

    return(ate)
}

ri <-function(num=10000){

res <- NA
for (i in 1:num) {
    res[i] <- d[ , .(group_mean = mean(views)), keyby = .(sample(success))][ , diff(group_mean)]
}

return (res)
}</pre>
```

4.1 Estimate the ATE for the outcome on how concerned subject is about COVID-19 continued spread

```
g <- d[ , .(group_mean = mean(outcome_spread)), keyby = .(treatment)]</pre>
      treatment group_mean
## 1:
              0
                 3.132812
## 2:
              1
                  3.473282
ate_spread <- g[ , diff(group_mean)]</pre>
ate_spread
## [1] 0.3404699
res <- NA
for (i in 1:10000) {
    res[i] <- d[ , .(group_mean = mean(outcome_spread)), keyby = .(sample(treatment))][ , diff(group_me
dist_sharp_null <- res
hist(dist_sharp_null)
abline(v=ate_spread, lwd=3, col='blue')
abline(v=abs(ate_spread), lwd=3, col='blue')
```

Histogram of dist_sharp_null


```
p_value_one_tailed <- mean(dist_sharp_null >= ate_spread)
p_value_one_tailed

## [1] 0.0015

p_value_two_tailed <- mean(abs(dist_sharp_null) >= abs(ate_spread))
p_value_two_tailed

## [1] 0.0021
```

4.2 Estimate the ATE for the outcome on emotional reaction to COVID-19 deaths in US

[1] 0.258051

```
res <- NA
for (i in 1:10000) {
    res[i] <- d[ , .(group_mean = mean(outcome_death)), keyby = .(sample(treatment))][ , diff(group_mean)
}
dist_sharp_null <- res
hist(dist_sharp_null)
abline(v=ate_death, lwd=3, col='blue')
abline(v=ate_death*-1, lwd=3, col='blue')</pre>
```

Histogram of dist_sharp_null


```
p_value_one_tailed <- mean(dist_sharp_null >= ate_death)
p_value_one_tailed

## [1] 0.0018

p_value_two_tailed <- mean(abs(dist_sharp_null) >= abs(ate_death))
p_value_two_tailed
```

[1] 0.003

5. Linear Regression

5.1 Perform linear regression on concern over COVID-19 spread outcome

##				
##		Dependent variable:		
## ##		outcome_spread		
## ##		(1)	(2)	
## ## treat		0.340***	0.339***	
## ##		(0.107)	(0.104)	
	ctor(gender)2		-0.063	
## ##			(0.102)	
	ctor(gender)3		0.886*	
## ##			(0.508)	
	ctor(gender)4		0.646	
## ##			(0.795)	
	ctor(age)2		0.323	
## ##			(0.347)	
	ctor(age)3		0.295	
## ##			(0.344)	
	ctor(age)4		0.181	
## ##			(0.362)	
	ctor(age)5		0.370	
## ##			(0.364)	
	ctor(age)6		0.393	
## ##			(0.425)	
	ctor(age)7		1.156**	
## ##			(0.494)	
##				

## ##	as.factor(ethnicity)2	0.195 (0.219)
##		(0.213)
	as.factor(ethnicity)3	-0.087
##	, ,,,	(0.170)
##		
##	as.factor(ethnicity)4	0.230
##		(0.233)
##		
	as.factor(ethnicity)5	-0.471
##		(0.508)
##	f+(-+1ii+)C	0 F10 min
##	as.factor(ethnicity)6	-2.519*** (0.799)
##		(0.199)
	as.factor(ethnicity)7	0.715
##	,,,	(0.824)
##		
##	as.factor(political_party)2	0.675***
##		(0.126)
##		
	as.factor(political_party)3	0.357**
##		(0.149)
##	as factor(relitical rentu)/	-0.222
##	as.factor(political_party)4	(0.324)
##		(0.024)
##	as.factor(education)2	-0.050
##		(0.494)
##		
##	as.factor(education)3	0.194
##		(0.483)
##	ft(-1t) A	0.017
##	as.factor(education)4	0.017 (0.492)
##		(0.432)
	as.factor(education)5	0.188
##		(0.477)
##		
##	as.factor(education)6	0.337
##		(0.492)
##	2	
	as.factor(education)7	-0.166
##		(0.906)
	as.factor(education)8	0.502
##	ab.lactor(catcation)	(0.569)
##		(,
##	as.factor(covid_sick)2	-0.200
##		(0.121)
##		
##	as.factor(covid_hospitalized)2	-0.166
##		(0.165)
##		

```
## as.factor(covid_died)2
                                           0.092
##
                                          (0.181)
##
## Constant
                          3.133***
                                          2.450***
##
                           (0.076)
                                          (0.634)
##
## ------
                           259
## Observations
                                           259
## R2
                           0.038
                                           0.314
                           0.034
## Adjusted R2
                                           0.227
                   0.858 (df = 257) 0.768 (df = 229)
## Residual Std. Error
## F Statistic
                    10.183*** (df = 1; 257) 3.614*** (df = 29; 229)
## Note:
                                  *p<0.1; **p<0.05; ***p<0.01
```

5.2 Perform linear regression on reaction to COVID-19 deaths outcome

```
##
##
                                Dependent variable:
                       _____
##
                                  outcome_death
                             (1)
##
                                              (2)
## treatment
                            0.258***
                                           0.250***
##
                            (0.084)
                                             (0.085)
##
## as.factor(gender)2
                                              0.050
##
                                             (0.084)
##
## as.factor(gender)3
                                              0.573
                                             (0.415)
##
## as.factor(gender)4
                                              0.437
##
                                             (0.649)
##
## as.factor(age)2
                                             -0.371
                                             (0.283)
##
```

##		
##	as.factor(age)3	-0.323
##		(0.281)
##		
	as.factor(age)4	-0.345
## ##		(0.296)
	as.factor(age)5	-0.258
##	ab.120002 (ago)0	(0.297)
##		
##	as.factor(age)6	-0.279
##		(0.348)
##	forton()7	0.170
## ##	as.factor(age)7	0.170 (0.404)
##		(0.404)
##	as.factor(ethnicity)2	0.041
##	·	(0.179)
##		
##	as.factor(ethnicity)3	-0.103
## ##		(0.139)
##	as.factor(ethnicity)4	-0.019
##	ab.120002 (001112020g), 1	(0.190)
##		
##	as.factor(ethnicity)5	-0.261
##		(0.415)
## ##	as.factor(ethnicity)6	-1.667**
##	as.ractor(etimicity)o	(0.653)
##		(0.000)
##	as.factor(ethnicity)7	0.374
##		(0.674)
##		0.540
## ##	as.factor(political_party)2	0.543*** (0.103)
##		(0.103)
	as.factor(political_party)3	0.340***
##		(0.122)
##		
##	as.factor(political_party)4	-0.107
## ##		(0.265)
	as.factor(education)2	0.233
##		(0.404)
##		
	as.factor(education)3	0.216
##		(0.395)
## ##	as.factor(education)4	0.135
##	ab.140001 (oddodo101) 1	(0.402)
##		, . ,
##	as.factor(education)5	0.088
##		(0.390)

##			
##	as.factor(education)6		0.263
##			(0.402)
##			
##	as.factor(education)7		-0.475
##			(0.741)
##			
	as.factor(education)8		0.290
##			(0.465)
##	f+(id -i-l-)0		-0.102
##	as.factor(covid_sick)2		(0.099)
##			(0.099)
	as.factor(covid_hospitalized)2		-0.084
##	us.:uc.or (oc.:uop::ou.:uc.,		(0.135)
##			
##	as.factor(covid_died)2		0.067
##			(0.148)
##			
	Constant	2.398***	2.327***
##		(0.059)	(0.518)
##			
	Observations	259	259
	R2	0.036	0.252
	Adjusted R2	0.032	0.157
	Residual Std. Error	0.672 (df = 257)	
##	F Statistic		2.657*** (df = 29; 229)
##		=======================================	
##	Note: *p<0.1; **p<0.05; ***p<0.0		