МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

23.05.2018 г. – Вариант 1

МОДУЛ 1

Време за работа – 90 минути

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

Задача 1. Кое от посочените числа НЕ е цяло?

A)
$$(0,5)^{-2}$$

Б)
$$(-32)^{\frac{1}{5}}$$

B)
$$(-32)^{\frac{1}{5}}$$
 B) $(-8)^{\frac{1}{3}}$

$$\Gamma$$
) $64^{\frac{1}{4}}$

Задача 2. При a < b < 2a изразът $\sqrt[3]{\left(a-b\right)^3} + \sqrt{\left(a-b\right)^2} + 2\left|b-2a\right|$ е тъждествено равен на:

A)
$$6a - 4b$$

b)
$$2b-4a$$

$$\Gamma$$
) $4a-2b$

Задача 3. При $x \neq \pm 1$ изразът $\frac{x+1}{x^2-1} - \frac{x}{x-1}$ е тъждествено равен на:

B)
$$\frac{1}{x-1}$$

$$\Gamma) \; \frac{1}{x^2 - 1}$$

Задача 4. Кое от изброените числа НЕ е решение на уравнението

$$(x-1)(x-3)(x-5)+(5-x)(x-3)(x-1)(x+1)=0$$
?

Задача 5. Стойността на израза $3^{\frac{4}{3}} - 3^{\frac{4}{3}} . 3^{\frac{2}{3}} - 3^{\frac{8}{3}} : 3^{\frac{4}{3}}$ e:

b)
$$-3$$

Задача 6. Реалните корени на уравнението $-2x^4 - x^2 + 1 = 0$ са:

A)
$$\pm 1$$
; $\pm \frac{\sqrt{2}}{2}$ **B)** $\pm \frac{\sqrt{2}}{2}$

b)
$$\pm \frac{\sqrt{2}}{2}$$

$$\Gamma$$
) 1; $\frac{\sqrt{2}}{2}$

Задача 7. Ако x_1 и x_2 са корени на уравнението $4x^2 - 7x + 1 = 0$, то кое от твърденията НЕ е вярно?

A)
$$x_1 x_2 = -\frac{1}{4}$$

Б)
$$x_1 x_2 > 0$$

B)
$$x_1 + x_2 > 0$$

A)
$$x_1 x_2 = -\frac{1}{4}$$
 B) $x_1 + x_2 > 0$ **B)** $x_1 + x_2 > 0$

Задача 8. Изразът $M = (\sin \alpha + \cos \alpha)^2 + (\sin \alpha - \cos \alpha)^2$ е тъждествено равен на:

b)
$$2\sin 2\alpha$$

$$\Gamma$$
) -1

Задача 9. В $\triangle ABC$ е построена права, успоредна на AC, която пресича страните AB и BC съответно в точки P и Q. Ако BQ:QP=5:4 и $BC=15\,$ cm, намерете дължината на страната AC.

Задача 10. Окръжностите k(O; r = 3) и $k_1(O_1; r_1 = 4)$ се допират външно. През точката О е построена допирателна OT към k_1 . Лицето на $\triangle OO_1T$ е:

A)
$$3\sqrt{10}$$

B)
$$2\sqrt{33}$$

$$\Gamma$$
) $4\sqrt{33}$

Задача 11. На кой интервал принадлежи абсцисата на върха на параболата $y = \frac{1}{2}x^2 + x - 6$?

A)
$$(-\infty; -2)$$

b)
$$\left(-\infty;-1\right)$$

A)
$$(-\infty; -2)$$
 B) $(-6,75; -2)$ Γ) $(-1;1,5)$

$$\Gamma$$
) $(-1;1,5)$

Задача 12. Дадена е числова редица с общ член $a_n = \frac{n-1}{n+3}, \forall n \in \mathbb{N}$. Стойността на a_4 . a_8 e:

A)
$$\frac{3}{11}$$

b)
$$\frac{5}{11}$$

B)
$$\frac{3}{7}$$

$$\Gamma$$
) $\frac{45}{77}$

Задача 13. Разликата на аритметична прогресия е $\frac{1}{2}$. Намерете 22-рия член на редицата, ако вторият ѝ член е 2.

Задача 14. Стойността на израза $\sin \frac{3\pi}{2} - \sin \frac{\pi}{2}$ е равна на стойността на: **B)** $2\sin\frac{\pi}{2}$ **B)** $2\sin\frac{3\pi}{2}$ **C)** $2\sin\frac{3\pi}{4} - 2\sin\frac{3\pi}{2}$ A) $\sin \pi$ Задача 15. Ако от група ученици могат да се изберат двама по 45 начина, то колко ученици има в тази група? **A)** 90 **Б)** 30 **B)** 20 **Г)** 10 Задача 16. Към статистическия ред 2, 5, 7, 9, 17 е добавено ново число така, че двата реда да имат една и съща средноаритметична стойност. Медианата на новия ред е: **A)** 7 **B)** 8 **b**) 7.5 Γ) 8.5 Задача 17. В $\triangle ABC$ страната $AB = 2\sqrt{2}$ cm, а дължината на радиуса на описаната около него окръжност е $R = 2 \,\mathrm{cm}$. Градусната мярка на $\angle ACB$, ако той е най-големият ъгъл в триъгълника, е: **A)** 45° **Б)** 90° **B)** 120° **Γ**) 135° Задача 18. В успоредник дължините на по-малката страна и на по-малкия диагонал са

съответно равни на 8cm и 6cm, а ъгълът между тях е 60°. Дължината на другия диагонал на успоредника е равна на:

A)
$$4\sqrt{5}$$
 cm

B)
$$6\sqrt{3}$$
 cm

Задача 19. Дължините на диагоналите на четириъгълник са $\sqrt{3}-1~{\rm cm}$ и $2\sqrt{2}~{\rm cm}$, а ъгълът между тях е 105°. Лицето на четириъгълника е:

A)
$$\frac{1}{2}$$
 cm²

$$\Gamma$$
) 2cm²

Задача 20. Равнобедрен трапец с остър ъгъл 30° е описан около окръжност. Ако височината му е равна на 10 см, то дължината на голямата основа е:

A)
$$40-10\sqrt{3}$$
 cm

Б)
$$20-10\sqrt{3}$$
 cm

$$\Gamma$$
) 20+10 $\sqrt{3}$ cm

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

23.05.2018 г. - Вариант 1

МОДУЛ 2

Време за работа – 150 минути

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

Задача 21. Пресметнете стойността на израза $\frac{\sqrt{8+2\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}{\sqrt{5}-\sqrt{3}}$.

Задача 22. Намерете най-голямата стойност на функцията $f(x) = x^2 - 7x + 6$ в интервала [1; 5].

Задача 23. Намерете произведението от първия и третия член на числова редица с положителни членове, за която $a_1^2+a_1-6=0$ и $a_n=2a_{n-1}-1, \ \forall n\in\mathbb{N},\ n\geq 2$.

Задача 24. От всички трицифрени числа, записани с различни четни цифри, чийто сбор е 12, е избрано едно число. Определете каква е вероятността това число да се дели на 15.

Задача 25. Периметърът на равнобедрен триъгълник е 18 cm. Основата му е с 3 cm поголяма от бедрото. Намерете дължината на радиуса на описаната около триъгълника окръжност.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

Задача 26. Намерете най-голямото цяло отрицателно число и най-малкото цяло положително число, които са решения на неравенството $\frac{2-x}{x^2-x-2} \le \frac{2-x}{x^2+x-2}$.

Задача 27. Решете уравнението $x^2 + x + \sqrt{x^2 + x + 1} = 1$.

Задача 28. Дължините на страните на триъгълник, измерени в сантиметри, са последователни естествени числа.

- а) Намерете дължините на страните и лицето на триъгълника, ако той е правоъгълен.
- б) Намерете дължините на страните и лицето на триъгълника, ако той е тъпоъгълен.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°−α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ 1-\cos\alpha &= 2\sin^2\frac{\alpha}{2} & 1+\cos\alpha &= 2\cos^2\frac{\alpha}{2} \\ \sin\alpha\sin\beta &= \frac{1}{2}(\cos(\alpha-\beta) - \cos(\alpha+\beta)) & \cos\alpha\cos\beta &= \frac{1}{2}(\cos(\alpha-\beta) + \cos(\alpha+\beta)) \\ \sin^2\alpha &= \cos^2\alpha - \sin^2\alpha - \cos^2\alpha -$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

23.05.2018 г. - Вариант 1

Ключ с верните отговори

№	Отговор	Брой точки
1	Γ	2
2	Γ	2
3	Б	2
4	A	2
5	A	2
6	Б	2
7	A	2
8	В	3
9	В	3
10	В	2
11	Б	3
12	A	3
13	A	3
14	В	3
15	Γ	2
16	Б	3
17	Γ	3
18	Γ	3
19	Б	2
20	Γ	3
21	2	4
22	f(1) = 0	4
23	10	4

24	$P = \frac{1}{5}$	4
25	$R = \frac{25}{6} = 4\frac{1}{6}$ cm	4
26	Най-голямото цяло отрицателно число е (-3), най-малкото цяло положително число е 3.	10
27	$x_1 = 0, x_2 = -1$	10
28	a) 3 cm, 4 cm, 5 cm и $S = 6$ cm ² ; б) 2 cm, 3 cm, 4 cm и $S = \frac{3\sqrt{15}}{4}$ cm ² .	10

Задача 26. Критерии за оценяване и точки по критериите, съпътстващи решението

Разлагане на знаменателите и получаване на $x^2 - x - 2 = (x - 2)(x + 1)$ и	д 2 точки	
$x^{2} + x - 2 = (x-1)(x+2)$.		
Определяне на ДС $x \neq \pm 1$, $x \neq \pm 2$.	1 точка	
Извършване на тъждествени преобразувания	4 точки	
$\frac{(2-x)(x^2+x-2)-(2-x)(x^2-x-2)}{(x^2-x-2)(x^2+x-2)} \le 0 $ (1 точка)		
$\frac{(2-x)(x^2+x-2-x^2+x+2)}{(x+1)(x-1)(x+2)(x-2)} \le 0 \Leftrightarrow \frac{2x(2-x)}{(x+1)(x-1)(x+2)(x-2)} \le 0 \tag{1 точка}$		
$\Leftrightarrow \frac{2x(x-2)}{(x+1)(x-1)(x+2)(x-2)} \ge 0 $ (1 точка)		
$\Rightarrow 2x(x+1)(x-1)(x+2) \ge 0, x \ne \pm 1, x \ne \pm 2$ (1 точка)		
Намиране интервалите на решения $x \in (-\infty; -2) \cup (-1; 0] \cup (1; 2) \cup (2; +\infty)$.		
Определяне на най-голямото цяло отрицателно число (-3) в множеството от		
решения и на най-малкото цяло положително число 3.		

Задача 27. Решение.

1-ви начин: Полагаме $t=x^2+x$ и получаваме $\sqrt{t+1}=1-t \Rightarrow t+1=1-2t+t^2 \Leftrightarrow t^2-3t=0$ с решения $t_1=0,\,t_2=3$. С проверка установяваме, че само $t_1=0$ е решение. Решаваме уравнението $x^2+x=0$ и получаваме $x_1=0,\,x_2=-1$.

2-ри начин: Полагаме $u=\sqrt{x^2+x+1}, u>0$ и получаваме $u^2+u-2=0$. От корените на това уравнение само $u_1=1, u_1>0$, а $u_2=-2, u_2<0$ отпада. Решаваме уравнението $\sqrt{x^2+x+1}=1 \Leftrightarrow x^2+x+1=1 \Leftrightarrow x^2+x=0$. Окончателно $x_1=0, x_2=-1$.

Критерии за оценяване и точки по критериите, съпътстващи решението

1-ви начин:

За полагане $t = x^2 + x$ или подобно полагане.	1 точка
За записване на уравнението във вида $\sqrt{t+1} = 1 - t$.	1 точка
За правилно повдигане на квадрат и достигане до $t^2 - 3t = 0$.	2 точки
За намиране на корените му $t_1 = 0$, $t_2 = 3$.	2 точки
За направена проверка, определени ДС за t или работа по теоремата за еквивалентни преобразувания , което води до верни изводи за корена $t_1=0$.	2 точки
За решаване на уравнението $x^2 + x = 0$ и намиране $x_1 = 0$, $x_2 = -1$.	2 точки

2-ри начин:

За направено полагане от вида $u = \sqrt{x^2 + x + 1}, u > 0$.	2 точки
За достигане до уравнението $u^2 + u - 2 = 0$.	2 точки
За определяне на корените му $u_1 = 1, u_2 = -2$.	2 точки
За решаване на уравнението $\sqrt{x^2 + x + 1} = 1$.	3 точки
(1 точка за повдигане на квадрат и 2 точки за решаване на полученото	
уравнение)	
За установяване на липса на решения на уравнението $\sqrt{x^2 + x + 1} = -2$ или	1 точка
отхвърляне на $u_2 = -2$.	

Задача 28. *Решение.* а) Да означим страните на триъгълника с x, x+1, x+2, $x \in \mathbb{N}$. От Питагорова теорема получаваме $(x+1)^2 + x^2 = (x+2)^2 \Leftrightarrow x^2 - 2x - 3 = 0$. Корените му са $x_1 = 3$, $x_2 = -1$. Коренът $x_2 = -1$ отпада и намираме дължините на страните -3 cm, 4 cm, 5 cm; $S = \frac{3.4}{2} = 6$ cm 2 .

б) Отново да означим страните на триъгълника с $x, x+1, x+2, x \in \mathbb{N}$.

Ако с φ означим тъпия ъгъл на триъгълника, то от косинусова теорема получаваме

$$\cos \varphi = \frac{x^2 + \left(x + 1\right)^2 - \left(x + 2\right)^2}{2x(x + 1)}$$
 . Тъй като $\cos \varphi < 0$, то $\frac{x^2 - 2x - 3}{2x(x + 1)} < 0$

$$\Leftrightarrow \frac{(x-3)(x+1)}{2x(x+1)} < 0 \Rightarrow x(x-3) < 0.$$

Решенията са $x \in (0;3)$. Естествените числа в интервала са x=1 и x=2.

При x = 1 триъгълник с дължини на страните 1 сm, 2 cm, 3 cm не съществува.

При x = 2 триъгълника съществува и намираме дължините на страните му -2 cm, 3 cm, 4 cm.

Тогава
$$\cos \varphi = -\frac{1}{4}$$
, $\sin \varphi = \frac{\sqrt{15}}{4}$ и $S = \frac{ab \sin \varphi}{2} = \frac{2.3}{2} \cdot \frac{\sqrt{15}}{4} = \frac{3\sqrt{15}}{4} \operatorname{cm}^2$.

Критерии за оценяване и точки по критериите, съпътстващи решението

а) За въвеждане на неизвестно (x , $x+1$, $x+2$, $x \in \mathbb{N}$) или друго.	0,5 точки
За прилагане на Питагорова теорема $(x+1)^2 + x^2 = (x+2)^2$.	0,5 точки
За решаване на уравнението и намиране $x_1 = 3$, $x_2 = -1$.	1 точка
За определяне дължините на страните 3 см, 4 см, 5 см.	0,5 точки
За намиране $S = \frac{3.4}{2} = 6 \text{ cm}^2$.	0,5 точки
б) За въвеждане на неизвестно (x , $x+1$, $x+2$, $x \in \mathbb{N}$) или друго.	0,5 точки
За прилагане на косинусова теорема и получаване на	1 точка
неравенството $\frac{x^2 + (x+1)^2 - (x+2)^2}{2x(x+1)} < 0$ или друго условие за тъпоъгълен	
триъгълник.	
За намиране $x \in (0;3)$.	1 точка
За определяне, че при $x = 1$ триъгълник със страни 1 cm, 2 cm, 3 cm не	1 точка
съществува.	
За окончателно определяне $x = 2$.	1 точка
За намиране дължините на страните 2 cm, 3 cm, 4 cm.	0,5 точки
За намиране на $\cos \varphi = -\frac{1}{4}$, $\sin \varphi = \frac{\sqrt{15}}{4}$.	1 точка
За намиране на $S = \frac{ab\sin\varphi}{2} = \frac{2.3}{2} \cdot \frac{\sqrt{15}}{4} = \frac{3\sqrt{15}}{4} \text{ cm}^2$	1 точка
(За намиране на лицето по Хероновата формула без използване на ъгъл – 2	
точки)	