SPACE SYSTEMS ENGINEERING

PROPERTIES OF VOLUMES AND HOMOGENEOUS OBJECTS

Mass Moment of Inertia

$$I_{(x \text{ axis})} = I_{xx} = \int_m (y^2 + z^2) dm,$$
 $I_{(y \text{ axis})} = I_{yy} = \int_m (x^2 + z^2) dm,$
 $I_{(z \text{ axis})} = I_{zz} = \int_m (x^2 + y^2) dm,$
 $I_{xy} = \int_m xy dm, \qquad I_{yz} = \int_m yz dm,$
 $I_{zx} = \int_m zx dm.$

Parallel Axis Theorems

$$I_{(x \text{ axis})} = 0,$$
 $I_{(y \text{ axis})} = I_{(z \text{ axis})} = \frac{1}{3}ml^2,$ $I_{xy} = I_{yz} = I_{zx} = 0.$ $I_{(x' \text{ axis})} = 0,$ $I_{(y' \text{ axis})} = I_{(z' \text{ axis})} = \frac{1}{12}ml^2,$ $I_{x'y'} = I_{y'z'} = I_{z'x'} = 0.$

$$I_{(x' \text{ axis})} = I_{(y' \text{ axis})} = \frac{1}{4} m R^2, \qquad I_{(z' \text{ axis})} = \frac{1}{2} m R^2,$$
 $I_{xy} = I_{yz} = I_{zx} = 0.$

$$\begin{split} I_{(x \text{ axis})} &= \frac{1}{3}mh^2, \qquad I_{(y \text{ axis})} = \frac{1}{3}mb^2, \qquad I_{(z \text{ axis})} = \frac{1}{3}m(b^2 + h^2), \\ I_{xy} &= \frac{1}{4}mbh, \qquad I_{yz} = I_{zx} = 0. \\ I_{(x' \text{ axis})} &= \frac{1}{12}mh^2, \qquad I_{(y' \text{ axis})} = \frac{1}{12}mb^2, \qquad I_{(z' \text{ axis})} = \frac{1}{12}m(b^2 + h^2), \\ I_{x'y'} &= I_{y'z'} = I_{z'x'} = 0. \end{split}$$

SPACE SYSTEMS ENGINEERING

PROPERTIES OF VOLUMES AND HOMOGENEOUS OBJECTS

$$I_{(x \text{ axis})} = \frac{m}{A} I_x^A, \qquad I_{(y \text{ axis})} = \frac{m}{A} I_y^A, \qquad I_{(z \text{ axis})} = I_{(x \text{ axis})} + I_{(y \text{ axis})},$$

$$I_{xy} = \frac{m}{A} I_{xy}^A, \qquad I_{yz} = I_{zx} = 0.$$

(The superscripts A denote moments of inertia of the plate's cross-sectional area A.)

Volume =
$$abc$$
.
 $I_{(x' \text{ axis})} = \frac{1}{12}m(a^2 + b^2), \qquad I_{(y' \text{ axis})} = \frac{1}{12}m(a^2 + c^2),$
 $I_{(z' \text{ axis})} = \frac{1}{12}m(b^2 + c^2), \qquad I_{x'y'} = I_{y'z'} = I_{z'x'} = 0.$

Volume =
$$\pi R^2 l$$
.
 $I_{(x \text{ axis})} = I_{(y \text{ axis})} = m \left(\frac{1}{3}l^2 + \frac{1}{4}R^2\right)$, $z_{\text{ axis}} = \frac{1}{2}mR^2$,
 $I_{xy} = I_{yz} = I_{zx} = 0$.
 $I_{(x' \text{ axis})} = I_{(y' \text{ axis})} = m \left(\frac{1}{12}l^2 + \frac{1}{4}R^2\right)$, $I_{(z' \text{ axis})} = \frac{1}{2}mR^2$,
 $I_{x'y'} = I_{y'z'} = I_{z'x'} = 0$.

Volume =
$$\frac{1}{3}\pi R^2 h$$
.
 $I_{(x \text{ axis})} = I_{(y \text{ axis})} = m \left(\frac{3}{5}h^2 + \frac{3}{20}R^2\right)$, $I_{(z \text{ axis})} = \frac{3}{10}mR^2$, $I_{xy} = I_{yz} = I_{zx} = 0$.
 $I_{(x' \text{ axis})} = I_{(y' \text{ axis})} = m \left(\frac{3}{80}h^2 + \frac{3}{20}R^2\right)$, $I_{(z' \text{ axis})} = \frac{3}{10}mR^2$. $I_{x'y'} = I_{y'z'} = I_{z'x'} = 0$.

Volume =
$$\frac{4}{3}\pi R^3$$
.
 $I_{(x' \text{ axis})} = I_{(y' \text{ axis})} = I_{(z' \text{ axis})} = \frac{2}{5}mR^2$,
 $I_{x'y'} = I_{y'z'} = I_{z'x'} = 0$.