McMaster University, Department of Mathematics

Univariate linear discrete-time

model
$$x(t + 1) = Rx(t)$$

fixed points $x* = 0$, if $R \ne 1$,
otherwise $x*$ can be any number
stability $x* = 0$ stable if $|R| < 1$
solution $x(t) = R^t x(0)$

Univariate affine discrete-time

model
$$x(t+1) = a + bx(t)$$

fixed points $x* = \frac{a}{1-b}$, if $b \neq 1$,
 $x*$ is any real if $b = 1$, $a = 0$,
otherwise $x*$ doesn't exist
stability $x*$ stable if $|b| < 1$
solution $x(t) = b^t x(0) + (1 - b^t) \frac{a}{1-b}$,
or $x(t) = x(0) + at$, if $b = 1$

Univariate nonlinear discrete-time

Steve Walker

what to know

model
$$x(t + 1) = f(x(t))$$

fixed points $x* = f(x*)$, no general sol'n
stability $x*$ stable if $|f'(x*)| < 1$
solution use a computer

Bivariate linear discrete-time

model
$$\begin{bmatrix} x(t+1) \\ y(t+1) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 fixed points $\begin{bmatrix} x \star \\ y \star \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, if $\tau \neq \Delta + 1$, otherwise $\begin{bmatrix} x \star \\ y \star \end{bmatrix}$ any vector in a $(2-r)$ -dimensional space stability $\begin{bmatrix} x \star \\ y \star \end{bmatrix}$ is stable if $|\tau| < \Delta + 1$ and $\Delta < 1$ solution See general multivariate affine case below notation $\tau = a + d$, $\Delta = ad - bc$

Multivariate affine discrete-time model
$$\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}$$
 fixed points $\mathbf{x} \star = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$, if $r = n$, otherwise $\mathbf{x} \star$ can be any vector in an $(n-r)$ -dimensional space spanned by the \mathbf{v}_i associated with $\lambda_i = 1$ stability $\mathbf{x} \star$ is stable if $|\lambda_i| < 1 \ \forall i$ solution If the \mathbf{v}_i are linearly independent, $\mathbf{x}(t) = \sum_i \phi_i \lambda_i^t \mathbf{v}_i + (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$, otherwise use a computer

notation
$$\mathbf{v}_i$$
 and λ_i the *i*th eigenvector and eigenvalue of \mathbf{A} .

 ϕ_i are components of $\mathbf{V}^{-1}(\mathbf{x}(0) - (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b})$ if it exists, where \mathbf{V} has the \mathbf{v}_i as

columns n and r are the size and rank of I - A, for identity matrix, 1.

Multivariate nonlinear discrete-time

Steve Walker

what to know

model
$$\mathbf{x}(t+1) = \mathbf{f}(\mathbf{x}(t))$$

fixed points $\mathbf{x} \star = \mathbf{f}(\mathbf{x} \star)$, no general sol'n
stability $\mathbf{x} \star$ stable if $|\lambda_i| < 1 \ \forall i$
solution use a computer

notation λ_i is the *i*th eigenvalue of the Jaccobian matrix of partial derivatives of f(x) with respect to **x** at **x**★

McMaster University, Department of Mathematics