Database Design: Functional dependencies

CS315

Feb 2, 2015

1 / 39

Algorithm for Testing Lossless Joins

Input: Relation schema $R = \{A_1, A_2, \dots, A_n\}$, a set of functional dependencies F and a decomposition scheme $\rho = (R_1, R_2, \dots, R_k)$. *Output*: A decision whether ρ is a lossless join decomposition under F.

Lossless testing algorithm

- Construct a table with n columns and k rows. Column j corresponds to A_i and row i corresponds to relation R_i .
- If $A_i \in R_i$, put the symbol a_i in (i, j) position. Otherwise, put the symbol b_{ii} in (i, j) position.
- 3. repeat
- 4. **for** each dependency $X \rightarrow Y$ in F **do**
- 5. if there are two (or more) rows that agree in all the columns for the attributes of X
- 6. equate the symbols of those rows for the attributes of Y as follows: **if** one of the symbols is a_i , make the other to be a_i . **if** the symbols are b_{ii} , b_{li} , make them both
 - b_{ii} or b_{li} arbitrarily.
- 7. until there is no change to the table.
- **if** there is some row that is a_1, \ldots, a_k , then the join is lossless **else** it is lossy.

Example

- Consider the example schema Suppliers(S, A, I, P) with functional dependencies $S \rightarrow A$ and $SI \rightarrow P$.
- Initial table created is:

• Consider dependency $S \to A$. Equate a_2 with b_{12} . This gives

• Second row is all a's. Decomposition is lossless join.

Example 2

• $R = \{A, B, C, D, E\}$. Functional dependencies are

$$A \rightarrow C$$
 $DE \rightarrow C$ $B \rightarrow C$ $CE \rightarrow A$ $C \rightarrow D$

Decomposition $R_1 = AD$, $R_2 = AB$, $R_3 = BE$, $R_4 = CDE$, $R_5 = AE$.

Initial table:

	Α	В	C	D	Ε
$R_1(AD)$	a_1	b ₁₂	b ₁₃	<i>a</i> ₄	b ₁₅
$R_2(AB)$	a_1	a_2	b ₂₃ b ₃₃ a ₃	b_{24}	b_{25}
$R_3(BE)$	b_{31}	a_2	b_{33}	b_{34}	<i>a</i> ₅
$R_4(CDE)$	b_{41}	b_{42}	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅
$R_5(AE)$	a_1	b_{52}	b_{53}	b_{54}	a_5

• Apply $A \rightarrow C$. Rows 1,2 and 5 have a_1 in column A. So equate b_{13} , b_{23} and b_{53} to say b_{13} .

Example ...

$$A \rightarrow C$$
 $DE \rightarrow C$ $E \rightarrow A$ $C \rightarrow D$

	A	В	С	D	Ε
$R_1(AD)$	a_1	b ₁₂	b ₁₃	<i>a</i> ₄	b ₁₅
$R_2(AB)$	a_1	a_2	b_{13}	b_{24}	b_{25}
$R_3(BE)$	b ₃₁	a_2	<i>b</i> ₃₃ <i>a</i> ₃	b_{34}	a_5
$R_4(CDE)$	b ₄₁	b_{42}		a_4	a_5
$R_5(AE)$	a_1	b_{52}	b_{13}	b_{54}	<i>a</i> ₅

• Apply $B \to C$. Equate b_{13} and b_{33} .

Example

$$\begin{array}{cccc} A \rightarrow C & DE \rightarrow C \\ B \rightarrow C & CE \rightarrow A & C \rightarrow D \end{array}$$

	A	В	C	D	Ε
$R_1(AD)$	a ₁	b ₁₂	b ₁₃	<i>a</i> ₄	<i>b</i> ₁₅
$R_2(AB)$	a_1	a_2	b_{13}	b_{24}	b_{25}
$R_3(BE)$	b ₃₁	a_2	b_{13} a_3	b_{34}	<i>a</i> ₅
$R_4(CDE)$	b ₄₁	b_{42}	<i>a</i> ₃	<i>a</i> ₄	a ₅
$R_5(AE)$	a_1	b_{52}	b_{13}	b_{54}	<i>a</i> 5

• Apply $C \to D$. Rows 1,2,3 and 5 have b_{13} in column C. We equate the values a_4 , b_{24} , b_{34} and b_{54} to a_4 .

$$A \rightarrow C$$
 $DE \rightarrow C$ $E \rightarrow A$ $C \rightarrow D$

	A	В	C	D	Ε
$R_1(AD)$	<i>a</i> ₁	b ₁₂	b ₁₃	<i>a</i> ₄	b ₁₅
$R_2(AB)$	a_1	a_2	b_{13} b_{13} a_{3}	a_4	b_{25}
$R_3(BE)$	b ₃₁	a_2	b_{13}	a_4	a ₅
$R_4(CDE)$	b ₄₁	b_{42}	a_3	a_4	a ₅
$R_5(AE)$	a_1	b_{52}		a 4	a ₅

• Now apply $DE \rightarrow C$. Rows 4 and 5 are equal on DE columns. Equate a_3 with b_{53} .

8 / 39

	Α	В	С	D	Ε
$R_1(AD)$	<i>a</i> ₁	b_{12}	<i>a</i> ₃	a ₄	b_{15}
$R_2(AB)$	a_1	b ₁₂ a ₂ a ₂ b ₄₂	a_3	a_4	b_{25}
$R_3(BE)$	b ₃₁	a_2	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅
$R_4(CDE)$	b_{41}	b_{42}	<i>a</i> ₃	a 4	<i>a</i> ₅
$R_5(AE)$	a_1	b_{52}	a ₃	<i>a</i> ₄	<i>a</i> ₅

• Now apply $CE \rightarrow A$. Rows 3, 4 and 5 are equal on CE columns. Equate a_1 with b_{31} and b_{41} .

9 / 39

$$A \rightarrow C$$
 $DE \rightarrow C$ $E \rightarrow A$ $C \rightarrow D$

	Α	В	C		Ε
$R_1(AD)$	a_1	b ₁₂ a ₂ a ₂ b ₄₂ b ₅₂	<i>a</i> ₃	a ₄	b ₁₅
$R_2(AB)$	a_1	a_2	a 3	a 4	b_{25}
$R_3(BE)$	a_1	a_2	a 3	a 4	<i>a</i> ₅
$R_4(CDE)$ $R_5(AE)$	a_1	b_{42}	a 3	a 4	<i>a</i> ₅
$R_5(AE)$	a_1	b_{52}	<i>a</i> ₃	<i>a</i> ₄	a_5

• Row 3 is a_1, a_2, \ldots, a_5 . Hence decomposition has a lossless join.

Proof of Correctness

- Suppose the final table produced by the algorithm does not have a row of a_1, a_2, \ldots, a_n .
- View the final table as a relation r on schema R. The rows are tuples, and a_i 's and b_{ij} 's are symbols in the domain of A_i .
- Relation r satisfies the functional dependencies in F because, whenever a violation is found, the algorithm modifies the table accordingly (by equating symbols).

Proof ...

- Claim: $r \neq m_{\rho}(r)$.
- For each $r_i(R)$, there is a tuple $t_i \in r$ such that $t_i[R_i]$ is all a's.
- So the join of $\pi_{R_i}(r)$'s contains the tuple with all a's.
- But $(a_1, \ldots, a_k) \notin r$. Hence $r \neq m_{\rho}(r)$.
- Hence the decomposition ρ is not a lossless join.

Proof of Converse

- Conversely, suppose that the final table has a row with all a's.
- Consider the query

$$\{(a_1,\ldots,a_n)\mid (\exists b_{11})\ldots(\exists b_{kn})(w_1\in r\wedge\ldots\wedge w_k\in r)$$

where w_i is the *i*th row of the initial table.

- View the table as shorthand for this query.
- Query defines m_{ρ} since $m_{\rho}(r)$ contains an arbitrary tuples a_1, \ldots, a_n iff for each i, r contains a tuple with a's in the attributes of R_i and arbitrary values in the other attributes.

$$\{a_1,\ldots,a_n\mid (\exists b_{11})\ldots(\exists b_{kn})(w_1\in r\wedge\ldots\wedge w_k\in r)\}$$

- Since we assume that any relation r to which the query can be applied satisfies the dependencies in F, hence
- hence the query is equivalent to a set of similar formulas with some of the a's and/or b's identified.
- The modifications made by the algorithm are such that the table is always a shorthand for some formula whose value on relation r is $m_{\rho}(r)$ whenever r satisfies F. This can be proved by induction on the number of symbols identified.
- Since the final table contains a row of all a's, the query for the final table is of the form

$$\{a_1,\ldots,a_n\mid r(a_1,\ldots,a_n)\wedge\ldots\}$$

- This is a subset of r. But it is also $m_{\rho}(r)$. Hence $m_{\rho}(r) \subset r$.
- Hence, whenever r satisfies F, $r=m_{\rho}(r)$, or, that the decomposition is lossless.

Decomposition into two fragments

Lemma

If $\rho=(R_1,R_2)$ is a decomposition of R and F is the set of functional dependencies that hold on R, then, ρ is a lossless decomposition iff $(R_1\cap R_2)\to R_2-R_1$ or $(R_1\cap R_2)\to R_1-R_2$ holds in F^+ .

• Consider the initial table used by the algorithm. Let $|R_1 \cap R_2| = s$, $|R_1 - R_2| = t$ and $|R_2 - R_1| = u$.

' -			1			1	_	F	_	_
row	for R_1	a_1	a_2	 a_s	a_{s+1}		a_{s+t}	b_{s+t+1}		b_{s+t+u}
row	for R_2	a_1	a_2	 a_s	b_{s+1}		b_{s+t}	a_{s+t+1}		a_{s+t+u}

		R_1 ($\cap R_2$		F	$R_1 - R$	2	F	$R_2 - R$	2
row for R_1										
row for R_2	a_1	a_2		a_s	b_{s+1}		b_{s+t}	a_{s+t+1}		a_{s+t+u}
Step 1:										

- Prove by induction on the number of symbols identified by algorithm that if some b_j corresponding to attribute A_j is equated with a_j , then, $A_j \in (R_1 \cap R_2)^+$.
- Base Case: Straightforward.
- Induction Case: Again, strightforward.

		R_1 ($\cap R_2$		F	$R_1 - R$	2	Į F	$R_2 - R$	1
row for R_1	a_1	a ₂		as	a_{s+1}		a_{s+t}	$b_{1,s+t+1}$		$b_{1,s+t+u}$
row for R_2	a_1	a_2		a_s	$b_{2,s+1}$		$b_{2,s+t}$	a_{s+t+1}		a_{s+t+u}
Step 2:										

- Suppose $(R_1 \cap R_2) \to Y$ has a proof from F using Armstrong's Axioms.
- Then, using an induction on the number of steps in this proof, show that any b_j 's in the columns corresponding to Y's are changed to a_j 's.

Combining Steps 1 and 2:

- Thus, the row corresponding to R_1 is all a's iff $(R_2 R_1) \subset (R_1 \cap R_2)^+$.
- Similarly, the row corresponding to R_2 is all a's iff $(R_1 R_2) \subset (R_1 \cap R_2)^+$.
- The lemma now follows.

Example

Example 1.

- R = ABC. $F = \{A \to B\}$.
- Consider $\rho = (AB, AC)$.
- Since, $AB \cap AC = A$ and B = AB AC, and $A \rightarrow B$, hence,
- decomposition is lossless under *F*.

Example 2.

- $R = ABC, F = \{A \to B\}.$
- Consider $\rho = (AB, BC)$.
- So $AB \cap BC = B$ and $B^+ = B$.
- So B does not determine either A (which is AB BC) or C (which is BC AB).
- Hence decomposition is not lossless.

$$\frac{\pi_{B,C}(R):}{\frac{B}{b} \frac{C}{c_1}}$$

$$\frac{b}{c_2}$$

$$\begin{array}{c|cccc}
\pi_{AB}(R) \bowtie \pi_{BC}(R) \\
\hline
A & B & C \\
\hline
a_1 & b & c_1 \\
a_1 & b & c_2 \\
a_2 & b & c_1 \\
a_2 & b & c_2
\end{array}$$

Decompositions that preserve Dependencies

- Decompositions should be lossless: so that the original relation can be recovered from its projections.
- Let R be a schema and $\rho = (R_1, \dots, R_k)$ be a decomposition and F be the set of functional dependencies.
- The *projection* of F onto a set $Z \subset R$ is the set of all dependencies $X \to Y$ in F^+ such that $XY \subset Z$. Denoted as

$$\pi_{Z}(F) = \{X \to Y \in F^{+} \mid XY \subset Z\}$$

 $m{\bullet}$ ρ is said to be dependency preserving if

$$\left(\bigcup_{i=1}^k \pi_{R_i}(F)\right)$$
 logically implies F

or

$$F \subset \left(\bigcup_{i=1}^k \pi_{R_i}(F)\right)^+$$

Why dependency preservation is useful?

- Dependencies in F are statements about integrity constraints on legal instances of the relation.
- If ρ has the loss join decomposition property, but is not dependency preserving, then,
- each update (insert, modify, delete) to one of the R_i 's would require a join to check that the functional dependencies are satisfied.

However.

- Lossless join decomposition property is absolutely crucial.
- 2 Dependency preservation is desirable. If decomposition is not dependency preserving, then it increases the runtime overhead to check dependencies by having to compute joins.

Example

- Consider schema R(City, Street, Pincode) written as R(C, S, P).
- Functional dependencies Fare:

$$C, S \rightarrow P$$
 $P \rightarrow C$

- Consider decomposition CSP into CP and SP.
- This is lossless since, $CP \cap SP = P$ and $P \rightarrow C$, and C = CP SP.
- This is not dependency preserving, since,

 - **1** Hence $CS \rightarrow P$ is lost.

Example

S	P
100 M.G. Road	400001
100 M.G. Road	400002

С	Р
Bombay	400001
Bombay	400002

• The dependency $CS \rightarrow P$ is violated.

C	S	Р
Bombay	100 M.G. Road	400001
Bombay	100 M.G. Road	400002

Testing Preservation of Dependencies

- We now see an algorithm with the following input and output.
- Input: A decomposition $\rho = (R_1, \dots, R_k)$ and a set of functional dependencies F.
- *Output*: A decision whether ρ preserves F.

Method

• Let *G* be the union of the functional dependencies projected on the fragments that is

$$G = \bigcup_{i=1}^k \pi_{R_i}(F)$$

- Test whether *G covers F*, or equivalently,
- for every $X \to Y$ in F, $Y \subset X_G^+$.
- The key is to compute X^+ without having G available explicitly.
- Trick: Repeatedly close X with respect to the projections of F on each of the R_i's.

Algorithm for testing dependency preservation

- Let R_i be one of the fragments.
- Given a subset $Z \subset R$, an R_i -operation on Z w.r.t. F is to replace Z by

$$Z:=Z\cup ((Z\cap R_i)^+\cap R_i)$$

where the closure is taken with respect to F.

• An R_i -operation adjoins to Z those attributes $A \in R_i$ such that $Z \cap R_i \to A$ holds in F^+ .

Computing X_G^+

Now we compute X_G^+ as follows.

- Start with X.
- ② Run through each of the R_i 's and perform an R_i -operation on X.
- **3** If at some pass, none of the R_i -operations change X, then we terminate.
- The resulting set is X^+ .

Algorithm for computing X_G^+

- 1. Z = X
- 2. **while** changes to Z occur
- 3. **for** i = 1 to k **do**
- 4. $Z = Z \cup ((Z \cap R_i)^+ \cap R_i)$

Algorithm for testing dependency preservation.

- 1. **for** each dependency $X \rightarrow Y$ in F **do**
- 2. compute X_G^+ using above algorithm.
- 3. if $Y \not\subset X_G^+$ return no
- 4. return yes

Example

• R = (A, B, C, D). Dependencies

$$A \rightarrow B$$

$$B \rightarrow C$$

$$C \rightarrow D$$

$$D \rightarrow A$$

Decomposition

$$\{AB, BC, CD\}$$

- Is it dependency preserving?
- At first sight it seems that the dependency $D \to A$ is lost but this is not true. Compute $\{D\}_G^+$, where $G = (\pi_{AB}(F) \cup \pi_{BC}(F) \cup \pi_{CD}(F))$.

R = (A, B, C, D). Dependencies

$$A \rightarrow B$$
 $B \rightarrow C$

$$C \rightarrow D$$

 $D \rightarrow A$

Decomposition $\{AB, BC, CD\}$

- **1** Initially $Z = \{D\}$.
- 2 AB-operation on Z. This is $D \cup ((D \cap AB)^+ \cap AB) = D \cup \phi = D$.
- **3** BC-operation on Z gives D (since $Z \cap BC = \phi$).
- CD-operation on Z gives

$$Z = D \cup (D^+ \cap CD) = D \cup (ABCD \cap CD) = CD$$

- **6** AB-operation on Z gives no change since $CD \cap AB = \phi$.
- \odot BC-operation on Z gives

$$Z = CD \cup ((CD)^+ \cap (BC)) = CD \cup (ABCD \cap BC) = BCD$$

- CD operation gives no change.
- **8** AB-operation gives Z = ABCD.
- \bigcirc Hence $D \rightarrow A$ is preserved.

Correctness Proof: Outline

- Recall $G = (\bigcup_{i=1}^{k} \pi_{R_i}(F))^+$.
- Each time an attribute is added to Z, we are using a dependency of G.
- So if the algorithm says "yes", it must be correct.
- Conversely, suppose $X \to Y$ is in G^+ .
- Then, there is a sequence of steps of the closure algorithm (covered earlier) to take the closure of X with respect to G, we eventually include all the attributes of Y.
- Each of these steps involves the application of a dependency in G, and so is a dependency in $\pi_{R_i}(F)$ for some R_i .
- Suppose $U \to V$ be one such dependency.
- By induction on the number of steps of the closure algorithm, we can show that eventually U becomes a subset of Z and then on the next pass, the R_i -operation will add V to Z (if they are not there already)

Dependency Preserving Decomposition into 3NF

- We now give an algorithm to obtain a dependency preserving decomposition that is in 3NF.
- *Input*: Relation scheme *R* and set of functional dependencies *F* that forms a minimal cover (also called canonical cover).
- Output: A dependency-preserving decomposition of R such that each relation scheme is in 3NF with respect to the projection of F onto the scheme.
- For initial simplicity, assume that all *RHS* of dependencies in *F* are of the form $X \to A$, where, *A* is a single attribute.

Dependency Preserving decomposition

Algorithm:

- If there are any attributes not involved in any dependency of *F*, create a relation schema with these attributes.
- If one of the dependencies of *F* involves all the attributes of *R*, then output *R* and terminate.
- Otherwise, for each dependency of the form $X \to A$, create a fragment with schema XA.
- If there are multiple dependencies $X \to A_1, X \to A_2, \ldots, X \to A_n$ in F, then, combine these into the schema $XA_1A_2 \ldots A_n$ instead of XA_i , $i = 1, 2 \ldots, n$.

Example

Schema is CTHRSG, where, C = course, T = teacher, H = hour, R = room, S = student and G = grade.

$$F =$$

$$C \rightarrow T$$

$$HR \rightarrow C$$

$$HT \rightarrow R$$

$$CS \rightarrow G$$

$$HS \rightarrow R$$

- F is a minimal cover.
- Dependency preserving decomposition is therefore

 This is also a lossless decomposition, since HS is the only key.

Correctness Proof

- Since the projected dependencies $\bigcup_{i=1}^k \pi_{R_i}(F)$ covers F, dependencies are preserved.
- Suppose $Y \to B$ is in the minimal cover and results in the fragment YB.
- We have to show that $R_i = YB$ is in 3NF.
- Suppose $X \to A$ is a dependency logically implied by F and holding on $R_i = YB$ such that it violates 3NF.
- Then, either X is not a superkey for YB or A is not prime.
- We know that $XA \subset YB$.

Correctness Proof

- What do we know? YB is a fragment with $Y \rightarrow B$ being in minimal cover.
- $X \to A$ is logically implied by F and $AX \subset YB$ and X is not a superkey and Y is not prime in YB.
- Two cases: Case (i) A = B, Case (2) $A \neq B$.
- Case 1: A = B. So X ⊂ Y and X → B. By minimality of cover X = Y, otherwise, Y X would be left-extraneous or redundant in the minimal cover (contradiction).
- Case 2: $A \neq B$. Since Y is a superkey for YB, there is a subset $Z \subset Y$ that is a key for YB.
 - \bullet $A \in Y$ and $A \notin Z$ since A is non-prime.
 - ② Then, $Z \to B$ can replace $Y \to B$, contradicting minimality of the cover.

Lossless join, dependency preserving decompositions into 3NF

- Previous algorithm did not give guarantees about the decomposition being lossless.
- Following method finds a decomposition that is lossless join and dependency preserving and is in 3NF.

Method:

- Let ρ be the 3NF decomposition of R constructed by the previous algorithm.
- Let X be a key for R.
- **3** Return $\rho \cup \{X\}$.

Proof of Correctness

- X is in 3NF. Suppose $Y \to A$ be a non-trivial dependency that holds in F and $YA \subset X$.
- Then, $X \{A\}$ is a key for X and hence for R, contradicting that X is a key.
- Hence there cannot be any non-trivial dependencies in X.

Correctness Proof contd.

- ullet To show that ho has a lossless join property, apply the tabular test.
- We will show that the row corresponding to X becomes all a's.
- Proof is by induction on the order of the attributes A_1, A_2, \ldots, A_k in which the attributes of R-X are added to X^+ by the algorithm for computing the closure.
- By induction on i that the column corresponding to A_i for the row X is set to a_i .
- Basis: i = 0. Then, all columns corresponding to attributes of X are set to a's.

Correctness Proof

- Assume the result for i-1.
- Then, A_i is added to X^+ due to some given functional dependency $Y \to A_i$ where

$$Y\subseteq X\cup\{A_1,\ldots,A_{i-1}\}$$

- Now, YA_i is in ρ and the rows of YA_i and X agree on Y they are all a's after the columns of X-row for $A_1, \ldots A_{i-1}$ are made a's (induction).
- Thus, in this step of the tabular algorithm, these rows are made to agree on A_i .
- Since the YA_i row has a_i , so must the X-row.

