IPEIT AU: 2021/2022

Devoir de Maison: Topologie sur les EVN

Classe SM 6

-Partie (I) Complétude des EVN-

Soit $(E, \|.\|)$ un \mathbb{K} -espace vectoriel normé et soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

.(1) Montrer que si $(u_n)_n$ est convergente, alors elle vérifie la propriété (SC) suivante:

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \text{tq} \quad \forall n, p \in \mathbb{N}, \quad n > p \ge n_0 \Rightarrow ||u_n - u_p|| \le \varepsilon.$$
 (SC)

- .(2) Montrer que si $(U_n)_n$ vérifie (SC) et si elle possède une sous suite convergente, alors elle est convergente.
- .(3) Montrer que si $(u_n)_n$ vérifie (SC), alors elle est bornée.
- .(4) Déduire alors que si de plus E est de dimension finie et si $(u_n)_n$ vérifie (SC), alors $(u_n)_n$ est convergente.

On dispose alors de cette équivalence en dimension finie:

$$(u_n)_n$$
 est convergente $\Leftrightarrow (u_n)_n$ vérifie (SC) (\mathcal{P}) .

NB: On note qu'il existe aussi des espaces vectoriels normés de dimension infinie sur les quels l'équivalence (\mathcal{P}) est vérifiée. Tout espace vectoriel normé vérifiant l'équivalence (\mathcal{P}) est appelé espace **Complet**.

- .(5) Montrer que si $(E, \|.\|)$ est un ev
n complet, alors tout sev fermé de E est complet.
- .(6) caractérisation par les séries absolument convergentes:

On se propose dans ce qui suit de prouver l'équivalence suivante:

Un evn E est complet ⇔ Toute série absolument convergente dans E est convergente.

- .(a) Montrer le sens direct en considérant la somme partielle de cette série.
- .(b) Pour le sens indirect, notons $\left(E,\|.\|\right)$ un evn sur lequel toute série absolument convergente est convergente. Montrons qu'il est complet. Soit $\left(u_n\right)_{n\in\mathbb{N}}$ une suite d'éléments de E vérifiant (SC). On construit une suite d'indices $\left(n_k\right)_{k\in\mathbb{N}}$ par $n_0=1$ et

$$\forall k \ge 1, \quad n_k = \inf \{ n > n_{k-1}, \quad \text{tq} \quad \forall p, q \ge n, \quad \|u_p - u_q\| \le 2^{-k} \}.$$

- .(i) Montrer que cette suite d'indices est bien définie.
- .(ii) Montrer que la série $\sum_{n-k>0} \left(u_{n_k} u_{n_{k+1}}\right)$ converge absolument.
- .(iii) Conclure.
- (7). Soit $(E, \|.\|)$ un evn complet et soit $f: E \to E$ une contraction sur E. Montrer que f possède un unique point fixe dans E. On se servira de la suite récurrente $(x_n)_{n\in\mathbb{N}}$ définie par:

$$x_0 \in E$$
 donné et $x_{n+1} = f(x_n)$.

-Partie (II)-

Application: Une classe particulière de fonctions continues 2π -périodiques sur \mathbb{R}

-(I) On commence par présenter l'une des applications fondamentales de la complétude, il s'agit du

Lemme de Baire:

Soit $(E, \|.\|)$ un evn complet, alors la propriété suivante est réalisée

• (\mathcal{Q}) : Si $(\mathcal{A}_n)_{n\in\mathbb{N}^*}$ est une suite **d'ouverts non vides denses** dans E, alors $\bigcap_{n\in\mathbb{N}^*} \mathcal{A}_n$ est dense dans E.

En effet, notons $G = \bigcap_{n \in \mathbb{N}^*} \mathcal{A}_n$. On montre que G rencontre toute boule ouverte de E donc également tout ouvert de E. Soit \mathcal{O} un ouvert non vide de E, et soit $x_0 \in \mathcal{O}$, donc $\exists r_0 > 0$ tel que $B(x_0, r_0) \subset \mathcal{O}$.

(1) Montrer qu'il existe $x_1 \in E$ et $r_1 > 0$ tel que $Bf(x_1, r_1) \subset B(x_0, r_0) \cap A_1$. r_1 peut être choisi tel que $r_1 < \frac{r_0}{2}$.

On construit ainsi une suite $(x_n)_n$ d'éléments de E et une suite $(r_n)_n$ de nombres réels strictement positifs vérifiant $Bf(x_{n+1},r_{n+1})\subset B(x_n,r_n)\cap \mathcal{A}_{n+1}$ et $r_{n+1}<\frac{r_n}{2}$.

- .(2) Déduire que la série $\sum_{n\geq 0} ||x_{n+1} x_n||$ est convergente.
- .(3) Déduire alors que $G \cap \mathcal{O}$ est différent du vide et conclure.
- -(II) On considère maintenant deux evn (E, ||.||) et (F, ||.||). On rappelle que si T est une application linéaire continue de E dans F, alors sa norme subordonnée est définie par

$$|||T||| = \sup_{x \in B_f(0,1)} ||T(x)||_F = \sup_{x \in S(0,1)} ||T(x)||_F.$$

On suppose que E est complet, E vérifie donc la propriété (\mathcal{Q}). On admet que cette propriété entraı̂ne le résultat suivant: (The uniform Boundedness Principle)

Soit I une famille quelconque, et soit $\left(Ti\right)_{i\in I}$ une famille d'applications linéaires continues de E dans F, alors, on a deux alternatives:

. Soit $\left\{\||Ti\||, i\in I\right\}$ est borné. . Soit $\exists x\in E$ tel que $\sup_{i\in I}\|Ti(x)\|_F=_+\infty$.

Dans tout ce qui suit, on considère l'evn $\left(\mathcal{B}(\mathbb{R},\mathbb{C}),\|.\|_{\infty}\right)$ et on admet qu'il est complet. Soit $E=\mathcal{C}_{2\pi}$ l'evn des fonctions continues 2π -périodiques sur \mathbb{R} à valeurs dans \mathbb{C} muni de la norme infinie; $\forall f\in E, \quad \|f\|_{\infty}=\sup_{t\in\mathbb{R}}|f(t)|=\sup_{t\in[-\pi,\pi]}|f(t)|.$

(1) En se servant de la question (5) de la partie (I), montrer que E est complet.

Pour tout $f \in E$ et pour tous $k \in \mathbb{Z}$, et $n \in \mathbb{N}^*$ on pose:

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt, \qquad T_n(f) = \sum_{k=-n}^{n} c_k(f).$$

2

- .(2) Montrer que $\forall n \in \mathbb{N}^*$, T_n est une forme linéaire sur E.
- .(3) Montrer que la fonction $\psi: t \mapsto \frac{\sin\left((n+\frac{1}{2})t\right)}{\sin\left(\frac{t}{2}\right)}$ est prolongeable par continuité sur $[-\pi,\pi]$.
- .(4) Montrer que $\forall n \in \mathbb{N}^*$, et $\forall t \in [-\pi, \pi]$

$$D_n(t) := \sum_{k=-n}^n e^{ikt} = \psi(t).$$

.(5) Déduire que pour tout $n \in \mathbb{N}^*$ et pour tout $f \in B_f(0,1)$ de E:

$$|T_n(f)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt.$$

.(6) Déduire que pour tout $n \in \mathbb{N}^*$, T_n est une forme linéaire continue sur E et que

$$|||T_n||| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt.$$

.(7) Pour tout $n \in \mathbb{N}^*$, r > 0 et $t \in [-\pi, \pi]$, on pose

$$f_r(t) = \frac{D_n(t)}{|D_n(t)| + r}.$$

- .(a) Vérifier que D_n est 2π -périodique et déduire que $f_r \in E$.
- .(b) Montrer que $\lim_{r\to 0^+} |T_n(f_r)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt$.
- .(c) Conclure alors que

$$\forall n \in \mathbb{N}^*, \quad |||T_n||| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| D_n(t) \right| dt.$$

- .(8) (a) Montrer par comparaison avec une série que $\int_0^{+\infty} \frac{|\sin(y)|}{y} dy$ diverge. .(b) En considérant une propriété de concavité de la fonction sin, montrer que $\forall n \in \mathbb{N}^*$,

$$|||T_n||| \ge \frac{2}{\pi} \int_0^{(n+\frac{1}{2})\pi} \frac{|\sin(y)|}{y} dy.$$

- .(c) Déduire que: $\sup_{n \in \mathbb{N}^*} |||T_n||| = +\infty$.
- .(8) Conclure en considérant la question (1), qu'il existe une fonction $f_* \in E$ telle que

$$\sup_{n\in\mathbb{N}^*}|T_n(f_*)|=+\infty.$$

Conclusion: Si on pose, $S_n(f)(x) = \sum_{k=-\infty}^n c_k(f)e^{ikx}$ pour tous $n \in \mathbb{N}, x \in \mathbb{R}$ et $f \in E$. On a donc $T_n(f) = S_n(f)(0)$, la suite de fonctions $(S_n)_n$ est appelée somme partielle de la série de Fourier de f, cette série est donnée par $\sum_{n\in\mathbb{Z}}c_n(f)e^{inx}$. Le résultat \circledast prouve que la somme partielle de la série de Fourier de f_* en 0 ne converge pas vers $f_*(0)$ et donc f_* ne peut pas être somme de sa série de Fourier. f_* fait donc partie d'une classe de fonctions continues et 2π -périodiques qui ne sont pas somme de leur séries de Fourier pour la convergence simple.