Министерство образования Республики Беларусь Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе №2(часть2) «Параметрический способ уравнивания нивелирных сетей» Вариант №17

Выполнил: ст.гр. 11405118

Авхутский Н.Г.

Проверил: старший преподаватель

Будо А.Ю.

Цель: выполнить уравнивание параметрическим способом сеть нивелирования IV класса. Вычислить уравненные высотные отметки, произвести обобщенную оценку точности полученных результатов, проверить наличие грубых ошибок в измерениях с помощью т-теста.

Исходные данные, использованные в ходе лабораторной работы, представлены в таблице 1.

Таблица 1 – Исходные данные

таолица т – пелодные данные							
ОТ	до	Номер хода	h, м S, км		Класс		
Rp1	Rp3	1	-2,847	0,4	Технический		
Rp1	Rp6	2	0,870	0,7	Технический		
Rp1	Rp7	3	-0,964	0,9	Технический		
Rp1	Rp8	4	0,022	0,4	Технический		
Rp2	Rp5	5	1,280	0,9	Технический		
Rp2	Rp6	6	1,967	0,7	Технический		
Rp2	Rp7	7	0,104	0,3	Технический		
Rp2	Rp8	8	1,069	0,4	Технический		
Rp3	Rp4	9	0,283	1	Технический		
Rp3	Rp6	10	3,738	0,5	Технический		
Rp3	Rp7	11	1,889	0,9	Технический		
Rp4	Rp6	12	3,410	0,2	Технический		
Rp4	Rp7	13	1,500	0,9	Технический		
Rp4	Rp8	14	2,527	0,7	Технический		
Rp5	Rp6	15	0,657	0,2	Технический		
Rp5	Rp8	16	-0,254	0,3 Технический			
Высотные отметки реперов Н, м							
H_{Rp1}	190	,996	H_{Rp2}	189,935			

Рисунок 1 – Схема нивелирной сети

УРАВНИВАНИЕ НИВЕЛИРНОЙ СЕТИ И ОПРЕДЕЛЕНИЕ УРАВНЕННЫХ ОТМЕТОК РЕПЕРОВ

Проанализируем нивелирную сеть, приведённую на рисунке 1.

- 1. В данной сети десять избыточных измерений r = N t = 16 6 = 10.
- 2. По числу избыточных измерений необходимо составить десять условных уравнения поправок.

Условные уравнения поправок будут иметь вид:

$$h_{2} - h_{10} - h_{1} - w_{1} = 0$$

$$h_{10} - h_{12} - h_{9} - w_{2} = 0$$

$$h_{9} + h_{13} - h_{11} - w_{3} = 0$$

$$h_{1} + h_{11} - h_{3} - w_{4} = 0$$

$$h_{8} - h_{4} + h_{3} - h_{7} - w_{5} = 0$$

$$h_{4} - h_{16} + h_{15} - h_{2} - w_{6} = 0$$

$$h_{5} + h_{16} - h_{8} - w_{7} = 0$$

$$h_{6} - h_{15} - h_{5} - w_{8} = 0$$

$$h_{14} - h_{16} + h_{15} - h_{12} - w_{9} = 0$$

$$h_{4} - h_{8} - (H_{Rn2} - H_{Rn1}) - w_{10} = 0$$
(1.1)

Создаём вектор невязок W

$$W = \begin{pmatrix} -0,021\\0,045\\-0,106\\0,006\\-0,021\\0,063\\-0,43\\0,030\\0,028\\0,014 \end{pmatrix}$$

Вычисляем допустимые невязки реперов по формуле(1.2) (для технического класса):

$$w_{\text{don}} = 30 \cdot \sqrt{L} \tag{1.2}$$

где L – длина хода, км.

$$w_{1\partial on} = 0,038 \text{M}$$

 $w_{2\partial on} = 0,046 \text{M}$
 $w_{3\partial on} = 0,050 \text{M}$
 $w_{4\partial on} = 0,044 \text{M}$
 $w_{5\partial on} = 0,042 \text{M}$
 $w_{6\partial on} = 0,038 \text{M}$
 $w_{7\partial on} = 0,038 \text{M}$
 $w_{8\partial on} = 0,040 \text{M}$
 $w_{9\partial on} = 0,035 \text{M}$
 $w_{10\partial on} = 0,027 \text{M}$

Все невязки допустимы, кроме 3, 6, 7.

Назначим параметры

$$z_{1} = H_{Rp3}^{0} = H_{Rp1} + h_{1}$$

$$z_{2} = H_{Rp6}^{0} = H_{Rp1} + h_{2}$$

$$z_{3} = H_{Rp7}^{0} = H_{Rp1} + h_{3}$$

$$z_{4} = H_{Rp8}^{0} = H_{Rp1} + h_{4}$$

$$z_{5} = H_{Rp5}^{0} = H_{Rp2} + h_{5}$$

$$z_{6} = H_{Rp4}^{0} = H_{Rp1} + h_{1} + h_{9}$$

$$z_{1} = z_{2} = z_{3} = z_{4} = z_{5} = z_{6} = 0$$

где z – приближенное значение параметра.

Составим параметрические уравнения связи и вычислим приближенные значения измерений

$$\begin{array}{ll} h_1^0 = z_1 - H_{Rp1} & h_9^0 = z_6 - z_1 \\ h_2^0 = z_2 - H_{Rp1} & h_{10}^0 = z_2 - z_1 \\ h_3^0 = z_3 - H_{Rp1} & h_{11}^0 = z_3 - z_1 \\ h_4^0 = z_4 - H_{Rp1} & h_{12}^0 = z_2 - z_6 \\ h_5^0 = z_5 - H_{Rp2} & h_{13}^0 = z_3 - z_6 \\ h_6^0 = z_2 - H_{Rp2} & h_{14}^0 = z_4 - z_6 \\ h_7^0 = z_3 - H_{Rp2} & h_{15}^0 = z_2 - z_5 \\ h_8^0 = z_4 - H_{Rp2} & h_{16}^0 = z_4 - z_5 \end{array}$$

Найдем элементы вектора свободных членов по формуле:

$$l_n = (h_{_{BHY}} - h_{_{H3M}}) \tag{1.3}$$

№	$h_{выч}$, м	$h_{uзм}$, м	<i>l</i> , м
1	-190,996	-2,847	-188,149
2	-190,996	0,870	-191,866
3	-190,996	-0,964	-190,032
4	-190,996	0,022	-191,018
5	-189,935	1,280	-191,215
6	-189,935	1,967	-191,902
7	-189,935	0,104	-190,039
8	-189,935	1,069	-191,004
9	0	0,283	-0,283
10	0	3,738	-3,738
11	0	1,889	-1,889
12	0	3,410	-3,410
13	0	1,500	-1,500
14	0	2,527	-2,527
15	0	0,657	-0,657
16	0	-0,254	0,254

Составим параметрические уравнения поправок

$$\begin{cases} v_1 = a_{11} \cdot z_1 + a_{12} \cdot z_2 + a_{13} \cdot z_3 + a_{14} \cdot z_4 + a_{15} \cdot z_5 + a_{16} \cdot z_6 + l_1 \\ v_2 = a_{21} \cdot z_1 + a_{22} \cdot z_2 + a_{23} \cdot z_3 + a_{24} \cdot z_4 + a_{24} \cdot z_5 + a_{24} \cdot z_6 + l_2 \\ v_3 = a_{31} \cdot z_1 + a_{32} \cdot z_2 + a_{33} \cdot z_3 + a_{34} \cdot z_4 + a_{34} \cdot z_5 + a_{34} \cdot z_6 + l_3 \\ v_4 = a_{41} \cdot z_1 + a_{42} \cdot z_2 + a_{43} \cdot z_3 + a_{44} \cdot z_4 + a_{44} \cdot z_5 + a_{44} \cdot z_6 + l_4 \\ v_5 = a_{51} \cdot z_1 + a_{52} \cdot z_2 + a_{53} \cdot z_3 + a_{54} \cdot z_4 + a_{54} \cdot z_5 + a_{54} \cdot z_6 + l_5 \\ v_6 = a_{61} \cdot z_1 + a_{62} \cdot z_2 + a_{63} \cdot z_3 + a_{64} \cdot z_4 + a_{64} \cdot z_5 + a_{64} \cdot z_6 + l_6 \\ v_7 = a_{71} \cdot z_1 + a_{72} \cdot z_2 + a_{73} \cdot z_3 + a_{74} \cdot z_4 + a_{74} \cdot z_5 + a_{74} \cdot z_6 + l_7 \\ v_8 = a_{81} \cdot z_1 + a_{82} \cdot z_2 + a_{83} \cdot z_3 + a_{84} \cdot z_4 + a_{84} \cdot z_5 + a_{84} \cdot z_6 + l_8 \\ v_9 = a_{91} \cdot z_1 + a_{92} \cdot z_2 + a_{93} \cdot z_3 + a_{94} \cdot z_4 + a_{94} \cdot z_5 + a_{94} \cdot z_6 + l_9 \\ v_{10} = a_{101} \cdot z_1 + a_{102} \cdot z_2 + a_{103} \cdot z_3 + a_{104} \cdot z_4 + a_{104} \cdot z_5 + a_{104} \cdot z_6 + l_{10} \\ v_{11} = a_{111} \cdot z_1 + a_{112} \cdot z_2 + a_{113} \cdot z_3 + a_{114} \cdot z_4 + a_{114} \cdot z_5 + a_{114} \cdot z_6 + l_{11} \\ v_{12} = a_{121} \cdot z_1 + a_{122} \cdot z_2 + a_{123} \cdot z_3 + a_{124} \cdot z_4 + a_{124} \cdot z_5 + a_{124} \cdot z_6 + l_{12} \\ v_{13} = a_{131} \cdot z_1 + a_{132} \cdot z_2 + a_{133} \cdot z_3 + a_{134} \cdot z_4 + a_{134} \cdot z_5 + a_{134} \cdot z_6 + l_{13} \\ v_{14} = a_{141} \cdot z_1 + a_{142} \cdot z_2 + a_{133} \cdot z_3 + a_{144} \cdot z_4 + a_{144} \cdot z_5 + a_{144} \cdot z_6 + l_{14} \\ v_{15} = a_{151} \cdot z_1 + a_{152} \cdot z_2 + a_{153} \cdot z_3 + a_{154} \cdot z_4 + a_{154} \cdot z_5 + a_{154} \cdot z_6 + l_{15} \\ v_{16} = a_{161} \cdot z_1 + a_{162} \cdot z_2 + a_{163} \cdot z_3 + a_{164} \cdot z_4 + a_{164} \cdot z_5 + a_{164} \cdot z_6 + l_{16} \\ v_{16} = a_{161} \cdot z_1 + a_{162} \cdot z_2 + a_{163} \cdot z_3 + a_{164} \cdot z_4 + a_{164} \cdot z_5 + a_{164} \cdot z_6 + l_{16} \\ v_{16} = a_{161} \cdot z_1 + a_{162} \cdot z_2 + a_{163} \cdot z_3 + a_{164} \cdot z_4 + a_{164} \cdot z_5 + a_{164} \cdot z_6 + l_{16} \\ v_{16} = a_{161} \cdot z_1 + a_{162} \cdot z_2 + a_{163} \cdot z_3 + a_{164} \cdot z_4 + a_{164} \cdot z_5 + a_{164} \cdot$$

Создадим матрицу коэффициентов параметрических уравнений поправок A Для составления матрицы A используем формулу переноса ошибок

$$F = f(a,b)$$

$$m_F^2 = \left(\frac{\partial F}{\partial a}\right)^2 \cdot m_a^2 + \left(\frac{\partial F}{\partial b}\right)^2 \cdot m_b^2$$

В нашем случае дифференцируем параметрические уравнения связи по каждому параметру. Например, третья строка матрицы А рассчитывается следующим образом:

$$h_{10} = z_2 - z_1$$

$$m_{h_3}^2 = \left(\frac{\partial f}{\partial z_1}\right)^2 \cdot m_{z_1}^2 + \left(\frac{\partial f}{\partial z_2}\right)^2 \cdot m_{z_2}^2 + \left(\frac{\partial f}{\partial z_3}\right)^2 \cdot m_{z_3}^2 + \left(\frac{\partial f}{\partial z_4}\right)^2 \cdot m_{z_4}^2 + \left(\frac{\partial f}{\partial z_5}\right)^2 \cdot m_{z_5}^2 + \left(\frac{\partial f}{\partial z_6}\right)^2 \cdot m_{z_6}^2$$

$$= (-1)^2 \cdot m_{z_1}^2 + 1^2 \cdot m_{z_2}^2 + 1^2 \cdot m_{z_3}^2 + 0^2 \cdot m_{z_4}^2 + 0^2 \cdot m_{z_5}^2 + 0^2 \cdot m_{z_6}^2$$

$$-1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$$

Создадим диагональную матрицу весов P Где вес рассчитывается по формуле:

$$P = \left(\frac{1}{\sigma_0 \cdot \sqrt{L}}\right)^2 \tag{1.4}$$

где L – длина хода, км.

Контрольные суммы S находим по формуле:

$$S_n = a_{n1} + a_{n2} + a_{n3} + a_{n4} + a_{n5} + a_{n6} + l_n$$
 (1.5)

Таблица 2 – Контрольные суммы S

$N_{\underline{0}}$	S	$N_{\underline{0}}$	S
1	-187,149	9	-0,283
2	-190,866	10	-3,738
3	-189,032	11	-1,889
4	-190,018	12	-3,410
5	-190,215	13	-1,500
6	-190,902	14	-2,527
7	-189,039	15	-0,657
8	-190,004	16	0,254

Составим матрицу коэффициентов нормальных уравнений N и найдем ее элементы. Матрица коэффициентов нормальных уравнений N имеет вид:

	a_1	a_2]	a_3]	a_4]	1]	S]	С
[pa ₁	N ₁₁	N ₁₂	N ₁₃	N ₁₄	B_1	S_1	C_1
[pa ₂	N_{21}	N_{22}	N_{23}	N_{24}	\mathbf{B}_2	S_2	\mathbf{C}_2
[pa ₃	N_{31}	N_{32}	N_{33}	N ₃₄	\mathbf{B}_3	S_3	\mathbb{C}_3
[pa ₄	N ₄₁	N ₄₂	N ₄₃	N ₄₄	B_4	S_4	C ₄

Расчёт матрицы коэффициентов нормальных уравнений N в матричном виде

$$N = A^T \cdot P \cdot A \tag{1.6}$$

Расчёт матрицы свободных членов нормальных уравнений В в матричном виде

$$B = A^T \cdot P \cdot l \tag{1.7}$$

Таблица 3 – Коэффициенты нормальных уравнений

	a_1]	a_2]	a ₃]	a ₄]	a ₅]	a ₆]	1]	S]	C]
[pa ₁	7346	-2222	-1235	0	0	-1111	-511683	-187,149	-187,149
[pa ₂	-2222	16508	0	0	-5556	-5556	-640057	-190,866	-190,866
[pa 3	-1235	0	7407	0	0	-1235	-942640	-189,032	-189,032
[pa 4	0	0	0	10847	-3704	-1587	-1064243	-190,018	-190,018
[pa ₅	0	-5556	0	-3704	10494	0	-233359	-190,215	-190,215
[pa 6	-1111	-5556	-1235	-1587	0	9489	24493	-190,902	-190,902

Расчёт вектора высот H в матричном виде

$$H = -N^{-1} \cdot B$$

$$H = \begin{pmatrix} 188,157 \\ 191,893 \\ 190,030 \\ 191,003 \\ 191,241 \\ 188,483 \end{pmatrix}$$

$$(1.8)$$

Далее вычисляем уравненные превышения

$$\begin{array}{lll} h_{1}^{yp} = H_{Rp3} - H_{Rp1} & h_{9}^{yp} = H_{Rp4} - H_{Rp3} \\ h_{2}^{yp} = H_{Rp6} - H_{Rp1} & h_{10}^{yp} = H_{Rp6} - H_{Rp3} \\ h_{3}^{yp} = H_{Rp7} - H_{Rp1} & h_{11}^{yp} = H_{Rp7} - H_{Rp3} \\ h_{4}^{yp} = H_{Rp8} - H_{Rp1} & h_{12}^{yp} = H_{Rp6} - H_{Rp4} \\ h_{5}^{yp} = H_{Rp5} - H_{Rp2} & h_{13}^{yp} = H_{Rp7} - H_{Rp4} \\ h_{6}^{yp} = H_{Rp6} - H_{Rp2} & h_{14}^{yp} = H_{Rp8} - H_{Rp4} \\ h_{7}^{yp} = H_{Rp7} - H_{Rp2} & h_{15}^{yp} = H_{Rp6} - H_{Rp5} \\ h_{8}^{yp} = H_{Rp8} - H_{Rp2} & h_{16}^{yp} = H_{Rp8} - H_{Rp5} \end{array}$$

Вычисляем уравненные поправки

$$v_{n} = h_{n}^{yp} - h_{n}$$

$$\begin{pmatrix} -2,839 \\ 0,897 \\ -0,966 \\ 0,007 \\ 1,306 \\ 1,958 \\ 0,095 \\ 1,068 \\ 0,326 \\ 3,736 \\ 1,873 \\ 3,410 \\ 1,547 \\ 2,520 \\ 0,652 \\ -0,238 \end{pmatrix} M \qquad v = \begin{pmatrix} 0,0082 \\ 0,0272 \\ -0,0023 \\ -0,0154 \\ 0,0259 \\ -0,0088 \\ -0,0093 \\ -0,0014 \\ 0,0428 \\ -0,0020 \\ -0,0165 \\ 0,0003 \\ 0,0467 \\ -0,0073 \\ -0,0047 \\ 0,0157 \end{pmatrix} M$$

Далее по уравненным превышениям рассчитаем невязки.

$$w_{1} = h_{2} - h_{10} - h_{11} = 0$$

$$w_{2} = h_{10} - h_{12} - h_{9} = 0$$

$$w_{3} = h_{9} + h_{13} - h_{11} = 0$$

$$w_{4} = h_{1} + h_{11} - h_{3} = 0$$

$$w_{5} = h_{8} - h_{4} + h_{3} - h_{7} = 0$$

$$w_{6} = h_{4} - h_{16} + h_{15} - h_{2} = 0$$

$$w_{7} = h_{5} + h_{16} - h_{8} = 0$$

$$w_{8} = h_{6} - h_{15} - h_{5} = 0$$

$$w_{9} = h_{14} - h_{16} + h_{15} - h_{12} = 0$$

$$w_{10} = h_{4} - h_{8} - (H_{Rp2} - H_{Rp1}) = 0$$

Все невязки равны 0.

ОЦЕНКА ТОЧНОСТИ ПАРАМЕТРИЧЕСКОГО СПОСОБА УРАВНИВАНИЯ

Рассчитаем ковариационную матрицу уравненных превышений

$$Q_{vp}^h = A \cdot N^{-1} \cdot A^T \tag{1.10}$$

Рассчитаем ковариационную матрицу уравненных отметок реперов

$$Q_{vp}^{H} = N^{-1} \tag{1.11}$$

$$Q_{yp}^{H} = \begin{pmatrix} 0,00017 & 0,00006 & 0,00004 & 0,00002 & 0,00004 & 0,00006 \\ 0,00006 & 0,00013 & 0,00002 & 0,00004 & 0,00008 & 0,00009 \\ 0,00004 & 0,00002 & 0,00015 & 0,00001 & 0,00002 & 0,00004 \\ 0,00002 & 0,00004 & 0,00001 & 0,00012 & 0,00006 & 0,00005 \\ 0,00004 & 0,00008 & 0,00002 & 0,00006 & 0,00016 & 0,00006 \\ 0,00006 & 0,00009 & 0,00004 & 0,00005 & 0,00006 & 0,00018 \end{pmatrix}$$

СКП единицы веса

$$\mu = \sqrt{\frac{V^T \cdot P \cdot V}{N - t}} \tag{1.12}$$

$$V^T \cdot P \cdot V = 9,499$$
$$\mu = 0,975$$

СКП превышений

$$\begin{pmatrix} m_{h_1} \\ m_{h_2} \\ m_{h_3} \\ m_{h_4} \\ m_{h_5} \\ m_{h_6} \\ m_{h_7} \\ m_{h_8} \\ m_{h_9} \\ m_{h_{10}} \\ m_{h_{11}} \\ m_{h_{12}} \\ m_{h_{13}} \\ m_{h_{14}} \\ m_{h_{15}} \\ m_{h_{16}} \end{pmatrix} = \mu \cdot \begin{pmatrix} \sqrt{Q_{yp13}^h} \\ \sqrt{Q_{yp44}^h} \\ \sqrt{Q_{yp55}^h} \\ \sqrt{Q_{yp44}^h} \\ \sqrt{Q_{yp55}^h} \\ \sqrt{Q_{yp66}^h} \\ \sqrt{Q_{yp77}^h} \\ \sqrt{Q_{yp77}^h} \\ \sqrt{Q_{yp88}^h} \\ \sqrt{Q_{yp1010}^h} \\ \sqrt{Q_{yp1010}^h} \\ \sqrt{Q_{yp1010}^h} \\ \sqrt{Q_{yp1111}^h} \\ \sqrt{Q_{yp1212}^h} \\ \sqrt{Q_{yp1313}^h} \\ \sqrt{Q_{yp1313}^h} \\ \sqrt{Q_{yp1414}^h} \\ \sqrt{Q_{yp1515}^h} \\$$

СКП реперов

ПОИСК ГРУБЫХ ОШИБОК В ИЗМЕРЕНИЯХ

Для того, чтобы найти грубые ошибки в измерениях, используем апостериорный метод, а конкретнее τ – тест. Он заключается в сравнении нормативных поправок с коэффициентом τ .

Для начала для оценки теоретического значения стандарта определяем величину χ^2 для нижнего интервала и для верхнего.

И получили соответственно 3,247 и 20,483.

Найдем нормативные поправки по формуле:

$$S_{V_i} = \frac{|V_i|}{\mu \cdot \sqrt{Q_{V_i}}} \tag{1.13}$$

где V_i – i-тая поправка;

 $Q_{Vi}-i$ -ый элемент ковариационной матрицы поправок.

Ковариационной матрица поправок вычисляется следующим образом:

$$Q_V = P^{-1} - Q_{yp}^h (1.14)$$

Матрица нормативных поправок:

$$S_{V} = \begin{pmatrix} 0,607\\1,242\\0,092\\1,021\\1,043\\0,402\\0,865\\0,092\\1,689\\0,125\\0,709\\0,035\\2,021\\0,365\\0,650\\1,492 \end{pmatrix}$$

Коэффициент τ вычисляется по формуле:

$$\tau = \frac{t \cdot \sqrt{r}}{\sqrt{r - 1 + t^2}} \tag{1.15}$$

где r – число степеней свободы;

t — коэффициент Стьюдента (с вероятностью $P\!\!=\!\!0,\!95$). $\tau=2,410$.

После проведения сравнения нормативных поправок с коэффициентом τ с учетом следующего условия: $S_{Vi} \leq \tau$, было выявлено отсутствие грубых ошибок в исходных измерениях, так как условие выполнялось.

Вывод: В данной работе было выполнено уравнивание параметрическим способом нивелирной сети IV класса, вычислены уравненные высотные отметки. Произведена обобщенная оценка точности полученных результатов и проверено наличие грубых ошибок с помощью τ -теста, который не выявил грубых ошибок в измерениях.