

Jaeyoon Lee[†], Wonyeong Jung[†], Dongwhee Kim[†], Daero Kim^{*}, Junseung Lee[†], and Jungrae Kim[†]

2024.03.06

[†]Sungkyunkwan University, ^{*}Samsung Electronics

- . Introduction
- II. Background
- III. Agile-DRAM
- IV. Agile Mode Switching
 - ${
 m V}_{\cdot}$ Evaluation

1. DRAM in Data Centers

☑ One of the most expensive components

2x Intel Sapphire Rapids Server				
Component	Al Server			
CPU	\$	1,850		
8 GPU + 4 NVSwitch Baseboard	\$	-		
Memory	\$	3,930		
Storage	\$	1,536		
SmartNIC	\$	654		
Chassis (Case, backplanes, cabling)	\$	395		
Motherboard	\$	350		
Cooling (Heatsinks+fans)	\$	275		
Power Supply	\$	300		
Assembly and Test	\$	495		
Markup		689		
Total Cost	\$	10,474		
DRAM BOM %		37.5%		
NAND BOM %	14.7%			
Memory BOM %	52.2%			

<Bill Of Materials (BOM) of a data center server>

Source: https://www.semianalysis.com/p/ai-server-cost-analysis-memory-is

- Due to factors like
 - infrastructure over-provisioning
 - sub-optimal workload scheduling
 - fixed system configurations

Metric	Statistics of all jobs				
Wieditc	Median	Moon	Max	Std	
	Median	Mean	Wax	Dev	
	CPU Jobs				
Allocated nodes	1	6.51	1713	37.83	
Job duration (hours)	0.16	1.40	90.09	3.21	
CPU util (%)	35.0	39.98	100.0	34.60	
DRAM util (%)	13.29	22.79	98.62	23.65	

13% (median) utilization in supercomputers

<Resource utilization in Perlmutter supercomputer, Li+, "Analyzing resource utilization in an HPC system: a case study of NERSC's Perlmutter," High Performance Computing, 2023>

<Memory utilization in Google data centers,</p>
Tirmazi+, "Borg: the Next Generation," EuroSys'20>

- Share memory to reduce the costs
- But slows down the system due to higher latencies
 - memory pooling: >100ns
 - memory disaggregation: a few us

Instead, we explore an opportunity to trade under-utilized memory capacity to speed up applications.

- [. Introduction
- II. Background
- III. Agile-DRAM
- IV. Agile Mode Switching
- V. Evaluation

II • Open-bitline Structure

☑ For area efficiency

- Two MATs share a BitLine SenseAmplifier (BLSA)
 - Only one MAT is activated at a time
 - The other is precharged and provides VDD/2 as a reference voltage for sensing

- [. Introduction
- II. Background
- III. Agile-DRAM
- IV. Agile Mode Switching
- V. Evaluation

☑ A new DRAM architecture

■ To trade memory capacity for higher performance and lower energy

Support three modes Support three modes

- Max Capacity (MC)
- Low Latency (LL)
- Low Power (LP)

☑ Agile switching between the modes (~300ns transition time)

☑ With little hardware overheads

SUNG KYUNKWAN | SAL

III. DRAM Structure: Mirrored MAT

☑ A minimal change to DRAM structure

III. Modes

Operates like conventional DRAM to provide the full capacity

☑ Low-latency mode (LL)

Senses data more quickly, by storing complementary data

☑ Low-power mode (LP)

• Allows extended refresh intervals

III. Agile-DRAM Timing Parameters

☑ DRAM timing parameters

- LL (Low-latency): lower access latency (tRCD, tRAS)
- LP (Low-power): longer refresh interval (tREFI)

	Mode	tRCD (ns)	tRAS (ns)	tRP (ns)	tWR (ns)	tRFC (ns)	tREFI (µs)
Base	eline / Agile-MC	13.8	39.4	15.5	12.5	260	7.8
Agile- DRAM	LL	9.8	18.7	15.4	7.2	161	7.8
	LP	12.3	21.4	15.5	7.2	175	54.6

- [. Introduction
- II. Background
- III. Agile-DRAM
- IV. Agile Mode Switching
- V. Evaluation

☑ An Infrastructure-as-a-Service (laaS) server

☑ A VM starts in the LL mode

VM0 starts
Time

Mode LP LL

SUNGKYUNKWAN | SAL

IV. Agile Mode Switching Example

SUNG KYUN KWAN UNIVERSITY (SKKU)

IV. Agile Mode Switching Example

Mode Reg

Mode Reg

IV. Agile Mode Switching Example

☑ The first VM stops

IV. Agile Mode Switching Example

- Introduction
- II. Background
- III. Agile-DRAM
- IV. Agile Mode Switching
 - $m V_{\cdot}$ Evaluation

V. Single-Core Performance

- **25.8%** (max.)
- **14.3**% (memory-intensive geomean)
- 6.9% (total geomean)

- Ramulator
- Single-core
- DDR4-2400R, 4Gb,
- Benchmarks: SPEC CPU2006

☑ LL's speed-up over the baseline (or MC)

- **17.0%** (max.)
- 7.3% (total geomean)

- Gem5, Ramulator
- 4-core
- DDR4-2400R, 4Gb,
- Benchmarks: SPEC CPU2006
- ✓ Low: Low memory intensity mix
- ✓ Mid: Medium memory intensity mix
- ✓ High: High memory intensity mix

□ baseline ■ Agile (Low Power Mode) ■ Agile (Low Latency Mode)

V. Evaluation DRAM Energy Consumption

☑ LL's reduction over the baseline (or MC)

- **22.4%** (max.)
- **15.5**% (memory-intensive geomean)
- 9.0% (total geomean)

- DRAMPower
- Single-core
- DDR4-2400R, 4Gb,
- Benchmarks: SPEC CPU2006

□ baseline ■ Agile (Low Power Mode) ■ Agile (Low Latency Mode)

☑ Reduced standby power (LP)

- IDD5 (refresh current): 31.6%
- IDD6 (self-refresh current): 85.7%

Summary

Memory under-utilization

☑ Idea: Agile-DRAM

 Trade memory capacity for higher performance and lower energy with little hardware overheads

■ performance (6.9%), energy (9.0%), chip size (≈0%)

Thank you Q&A SUNCKYUNKWAN S SAL

V. Evaluation Hardware Overheads

☑ Negligible overhead

- an additional area of 75um² (about 30 NAND2 gates)
 - can be easily accommodated in unused space on a ~100mm² DRAM die

SUNG KYUNKWAN | 🛞 🚍

V. Simulation Configuration

Simulation configuration Simulation

- single-core
- multi-core (4 core)

Processor	1 or 4 core(s), 4GHz, 4-wide issue, 16 MSHRs per core
LLC	64B cacheline, 8-way associative, 8MB total capacity (2MB/core with 4 cores)
DRAM Controller	FR-FCFS-Cap scheduling, 64-entry read/write request queue
DRAM	1 channel, 1 rank, DDR4-2400R, 4Gb ×8 chip
Benchmarks	23 benchmarks from SPEC CPU2006 [4]

☐ Comparison of Agile-DRAM with prior works

table provides a comparison detailing the pros and cons of each work

	DRAM Type	MAX Speedup(%)	Agile Switching	Capacity Reduced(%)	Chip Size Penalty(%)
Improving DRAM latency [5]	DDR3 -1066	21	No	0	3
Tiered-Latency DRAM [6]	DDR3 -1600	8.9	Yes	0	3.15
CLR-DRAM [1]	DDR4 -2400	59.8	No	0-50	3.2
Agile-DRAM (LL)	DDR4 -2400	25.8	Yes	0-50	0

V. Evaluation Hardware Overheads

Synthesis setup Synthesis setup

- compiler: synopsys design compiler
- logic libraries: synopsys 32nm lvt
- corner: ss
- pvt (32nm, 0.75V, 125'C)

☑ Agile mode switching

☑ Modification in row decoder

- modifies the global row decoder
- allows paired sub-arrays to be selected and activated in parallel during lowlatency or low-power modes

References

- [1] H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. G. Ya glikc, I, L. Orosa, J. Park, and O. Mutlu, "Clr-dram: A low-cost dram architecture enabling dynamic capacity-latency trade-off," in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 666–679
- [2] Y. Kim, W. Yang, and O. Mutlu, "Ramulator: A fast and extensible dram simulator," IEEE Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2015.
- [3] K. Chandrasekar, C.Weis, Y. Li, B. Akesson, N.Wehn, and K. Goossens, "Drampower: Open-source dram power & energy estimation tool," URL: http://www. drampower. info, vol. 22, 2012.
- [4] J. L. Henning, "Spec cpu2006 benchmark descriptions," pp. 1–17, 2006.

References

[5] S.-L. Lu, Y.-C. Lin, and C.-L. Yang, "Improving dram latency with dynamic asymmetric subarray," in Proceedings of the 48th International Symposium on Microarchitecture, ser. MICRO-48. New York, NY, USA: Association for Computing Machinery, 2015, p. 255–266. [Online]. Available: https://doi.org/10.1145/2830772.2830827

[6] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, "Tiered-latency dram: A low latency and low cost dram architecture," in 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2013, pp. 615–626