Algebra 1A, lista 6.

Konwersatorium 28.11.2016, ćwiczenia 29.11.2016.

Na kartkówce 29.11 obowiązuje: lista 5 oraz zadania oznaczone literami S lub K z listy 6.

- 0S. Materiał teoretyczny: Opis grup małych rzędów (do rzędu 8 włącznie). Automorfizmy grup. Automorfizmy wewnętrzne grup. Grupa Aut(G) automorfizmów grupy G. Centrum grupy Z(G): definicja, własności. Grupa Inn(G) automorfizmów wewnętrznych grupy G, związek z centrum grupy Z(G). Relacja sprzężenia w grupie G. Opis relacji sprzężenia w przypadku grup permutacji.
- 1K. Czy istnieje monomorfizm grup $f: G \to H$? Jesli tak, wskazać przykład i wyznaczyć obraz. (wsk: taki monomorfizm istnieje wtedy i tylko wtedy, gdy istnieje podgrupa S < H izomorficzna z grupą G).
 - (a) $G = \mathbb{Z}_6, \ H = \mathbb{Z}_{24},$
 - (b) $G = \mathbb{Z}_{10}, \ H = \mathbb{Z},$
 - (c) $G = \mathbb{Z}_6$, $H = \mathbb{Z}_{100}$,
 - (d) $G = \mathbb{Z}_{15}, H = S_8,$
 - (e) $G = (\mathbb{Q}, +), H = (\mathbb{Z}, +),$
 - (f) $G = (\mathbb{R}, +), H = (\mathbb{Q}, +),$
 - (g) $G = S_3$, $H = \mathbb{Z}_9 \oplus \mathbb{Z}_{18}$,
 - (h) $G = D_4$, $H = S_8$.
- 2K. Rozważamy grupy G, H oraz dzielnik normalny $K \triangleleft G$. W każdym z poniższych przypadków udowodnić, że $G/K \cong H$ (wsk: wskazać odpowiedni epimorfizm $f: G \to H$ i skorzystać z zasadniczego twierdzenia o homomorfizmie grup).
- (a) $G = (\mathbb{Z}_{20}, +_{20}), K = \{0, 4, 8, 16\}, H = (\mathbb{Z}_5, +_5).$
- (b) $G = (\mathbb{C}^*, \cdot), K = S = \{z \in \mathbb{C} : |z| = 1\}, H = (\mathbb{R}^*, \cdot).$
- (c) $G = (\mathbb{R}, +), K = 2\pi \mathbb{Z}, H = S$ (z punktu (b)),
- (d) $G = (\mathbb{R}, +), K = \mathbb{Z}, H = S,$
- (e) $G = (\mathbb{R}^2, +), K = Lin\{(1, 2)\}, H = (\mathbb{R}, +).$
 - 3. (a)S Wypisać wszystkie generatory grupy $(\mathbb{Z}_{10}, +_{10})$
- (b) Załóżmy, że f jest automorfizmem grupy ($\mathbb{Z}_{10}, +_{10}$). Udowodnić, że f(1) jest generatorem grupy \mathbb{Z}_{10} .
- (c) Wyznaczyć wszystkie automorfizmy grupy \mathbb{Z}_{10} . Tworzą one grupę $Aut(\mathbb{Z}_{10})$, z działaniem składania.
- (d) Sporządzić tabelkę działania grupy $Aut(\mathbb{Z}_{10})$. Czy ta grupa jest abelowa ? cykliczna ? Z którą z poznanych dotąd grup jest ona izomorficzna ?
 - 4K. (a) Udowodnić (wprost z definicji), że Z(G) jest podgrupą grupy G.
 - (b) Sprawdzić bezpośrednio z definicji, że Z(G) jest dzielnikiem normalnym w G.
 - 5.* Czy następujące pary grup są izomorficzne?
 - (a) (\mathbb{R}^*, \cdot) i $(\mathbb{R}, +)$.
 - (b) (\mathbb{Q}^+,\cdot) i $(\mathbb{Q},+)$.
 - 6S Grupa przekształceń afinicznych prostej to zbiór funkcji $\mathbb{R} \to \mathbb{R}$:

$$A = \{ax + b : a, b \in \mathbb{R}, a \neq 0\}.$$

- (a) Sprawdzić, że A jest grupą względem złożenia funkcji.
- (b) Sprawdzić, że grupa A jest izomorficzna z grupą macierzy postaci $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, $a, b \in \mathbb{R}$, $a \neq 0$, z mnożeniem macierzy.
- 7. Czy grupa S_3 jest izomorficzna z produktem $G \times H$ dla pewnych nietrywialnych grup G i H? (wsk: równoważnie: czy grupa S_3 jest produktem wewnętrznym jakichś swoich nietrywialnych podgrup G i H? Jakie podgrupy ma grupa S_3 ?)
- 8. Załóżmy, że $f:G\to H$ jest epimorfizmem grup, $S< H,\ g\in G,\ h\in H$ i f(g)=h.
 - (a) Załóżmy, że G jest abelowa. Udowodnić, że H jest abelowa.
 - (b) Załóżmy, że G jest cykliczna. Udowodnić, że H jest cykliczna.
 - (c)S Sprawdzić, że $f^{-1}[S]$ jest podgrupą grupy G.
 - (d)S Udowodnić, że $f(g^{-1}) = h^{-1}$.
- 9. Załóżmy, że Gjest grupą, $H_1,H_2 < G$ oraz $|H_1| = |H_2| = p$ jest liczbą pierwszą.
 - (a) Wykazać, że $H_1 \cap H_2 = \{e\}$ lub $H_1 = H_2$.
- (b) Udowodnić, że jeśli $H_1 \cap H_2 = \{e\}$, to $|G| \ge p^2$. (wsk: udowodnić, że jeśli $h_1, h'_1 \in H_1, h_2, h'_2 \in H_2$ i $h_1 h_2 = h'_1 h'_2$, to $h_1 = h'_1$ i $h_2 = h'_2$.)
- 10. (a)S Wypisać wszystkie permutacje τ w grupie S_5 sprzężone z permutacją $\sigma = (1, 2)(3, 4, 5)$. Za każdym razem wskazać permutację f taką, że $\tau = j_f(\sigma)$.
- (b) Znaleźć zbiór wszystkich permutacji w S_5 , które komutują z permutacją σ (wsk: permutacja τ komutuje z $\sigma \iff \tau \sigma \tau^{-1} = \sigma$).
 - (c) Udowodnić, że zbiór z punktu (b) jest podgrupą grupy S_5 .
- 11. W dowolnej grupie G udowodnić, że dla danego $a \in G$ zbiór $C(a) = \{g \in G : ag = ga\}$ jest podgrupą grupy G, zwaną centralizatorem elementu a w grupie G.
- 12. Załóżmy, że grupa G ma jedyną podgrupę H rzędu 25. Udowodnić, że $H \triangleleft G$. (wsk: dla $g \in G, gHg^{-1} = j_q[H]$ jest podgrupą grupy G izomorficzną z H).