

KNN

- While KNN can be used for regression tasks, its performance can be quite poor and less efficient than other algorithms, so we've decided not to exhibit its use for regression.
- However if you do want to use it for regression it is very easy to swap in the KNNRegressor model with scikit-learn.

KNN – Vs K mean

- You may have also heard of K means algorithm.
- K means is unrelated to KNN, be careful not to confuse the two due to their similar sounding names!

KNN

- ISLR Relevant Reading
 - Chapter 2
 - Formula 2.12 starts discussion on KNN for classification.

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

KNN

- K nearest neighbors is one of the simplest machine learning algorithms.
- It simply assigns a label to new data based on the distance between the old data and new data.
- Let's go through the intuition with an example use case...

- Sexing chicks is still a very manual process:
 en.wikipedia.org/wiki/Chick sexing
 - Let's imagine we gathered a dataset of baby chick heights and weights.
 - How could we train an algorithm to identify the sex of a new baby chick based on historical features?

Imagine a height and weight data set

HEIGHT

We historically know the sex of the chicks:

WEIGHT

HEIGHT

HEIGHT

How would we assign sex to a new point?

HEIGHT

• We intuitively "know" this is likely female.

HEIGHT

• Intuition comes from distance to points!

11

What about a less obvious point?

WEIGHT

HEIGHT

HEIGHT

• How many points to we consider?

WEIGHT

HEIGHT

• Let's imagine a situation like this:

• K=1

HEIGHT

15

• K=2

HEIGHT

WEIGHT

Jan-2024 Intro to ML

• K=3

HEIGHT

WEIGHT

HEIGHT

K=4 leads to a tie!

- Tie considerations and options:
 - Always choose an odd K.
 - In case of tie, simply reduce K by 1 until tie is broken.
 - Randomly break tie.
 - Choose nearest class point.

- What does Scikit-Learn do in case of tie?
 - Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and k, have identical distances but different labels, the results will depend on the ordering of the training data.

- What does Scikit-Learn do in case of tie?
 - In the case of ties, the answer will be the class that happens to appear first in the set of neighbors.
 - Results are ordered by distance, so it chooses the class of the closest point.

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and k, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

HEIGHT

K=4 leads to a tie!

23

HEIGHT

Choose closest K

K=5 causes a switch from previous K values.

K=5 causes a switch from previous K values.

26

How to choose best K value?

- We want a K value that minimizes error:
 - Error = 1 Accuracy
- Two methods:
 - Elbow method.
 - Cross validate a grid search of multiple K values and choose K that results in lowest error or highest accuracy.

KNN - Elbow Method

• Elbow method:

KNN - Elbow Method

Elbow method:

30

KNN - Elbow Method

- Cross validation only takes into account the K value with the lowest error rate across multiple folds.
- This could result in a more complex model (higher value of K).
- Consider the context of the problem to decide if larger K values are an issue.

KNN

- KNN Algorithm
 - Choose K value.
 - Sort feature vectors (N dimensional space) by distance metric.
 - Choose class based on K nearest feature vectors.

KNN – Distance Metrics

- KNN Considerations:
 - Distance Metric
 - Many ways to measure distance:
 - Minkowski
 - Euclidean
 - Manhattan
 - Chebyshev

KNN – Scaling Distance

- KNN Considerations:
 - Scaling for Distance
 - Features could have vastly different value ranges!

KNN – Scaling Distance

- KNN Considerations:
 - Scaling is necessary for KNN.

Scaled Feature 1

KNN – Scaling Distance

- While the KNN Algorithm is relatively simple, keep in mind the following considerations:
 - Choosing the optimal K value.
 - Scaling features.
 - Let's continue to explore how to perform KNN for classification!

KNN

• Let's See how we create the data model, LoR model and calculate the metrics using SKLearn

