DEVOIR SURVEILLÉ n°3

Durée: 4 heures

L'usage de calculatrices est interdit

AVERTISSEMENT

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, **la clarté et la précision** des raisonnements entreront pour une **part importante** dans **l'appréciation des copies**. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Problème I: Racines carrées d'une matrice

On commence par définir deux notions étudiées dans ce problème.

Définition

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une **racine carrée** d'une matrice $B \in \mathcal{M}_n(\mathbb{R})$ si $A^2 = B$.

Attention : on n'utilisera PAS les notations $B^{\frac{1}{2}}$ ou \sqrt{B} .

Définition

Une matrice symétrique $S \in \mathscr{S}_n(\mathbb{R})$ est dite **symétrique positive** si toutes ses valeurs propres sont positives.

Partie I

Pour tout $a \in \mathbb{R}$, on note $M_a \in \mathcal{M}_3(\mathbb{R})$ la matrice définie par :

$$M_a = \begin{pmatrix} 1 & 1 - 4a & -1 + 4a \\ -3a & -1 + 2a & 2 + a \\ -3a & -2 - a & 3 + 4a \end{pmatrix}.$$

On note f_a l'endomorphisme de \mathbb{R}^3 canoniquement associé à M_a .

- 1. Dans cette question on suppose que a = 1.
 - (a) Écrire la matrice M_1 et déterminer son polynôme caractéristique.

- (b) Montrer que M_1 est diagonalisable et déterminer $P \in GL_3(\mathbb{R})$ et $D \in \mathcal{M}_3(\mathbb{R})$ diagonale telles que $M_1 = PDP^{-1}$.
- (c) Déterminer une matrice $\Delta \in \mathcal{M}_3(\mathbb{R})$ racine carrée de D.
- (d) En déduire une racine carrée de M_1 . On exprimera cette racine carrée en fonction de P, P^{-1} et Δ sans chercher à calculer P^{-1} .
- (e) Soit $\theta \in \mathbb{R}$. Calculer $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}^2$.
- (f) En déduire que la matrice $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ possède une infinité de racines carrées.
- (g) En déduire que la matrice M_1 possède une infinité de racines carrées.
- 2. Dans cette question on suppose que a = 0. On pose $N = M_0 I_3$.
 - (a) Calculer N^2 .
 - (b) En déduire l'existence de réels α et β tels que $\alpha I_3 + \beta N$ soit une racine carrée de M_0 .
- 3. Dans cette question, on suppose a = -1/3.
 - (a) Écrire la matrice $M_{-1/3}$ et déterminer son polynôme caractéristique.
 - (b) Déterminer les espaces propres de $M_{-1/3}$. La matrice $M_{-1/3}$ est-elle diagonalisable?
 - (c) Résoudre l'équation matricielle $M_{-1/3}X = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.
 - (d) Déterminer une base (e_1, e_2, e_3) de \mathbb{R}^3 dans laquelle la matrice de $f_{-1/3}$ soit : $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (e) Déterminer les matrices commutant avec U c'est-à-dire les matrice $V \in \mathcal{M}_3(\mathbb{R})$ telles que UV = VU.
 - (f) En déduire que U ne possède pas de racine carrée dans $\mathcal{M}_3(\mathbb{R})$.
 - (g) La matrice $M_{-1/3}$ possède-t-elle une racine carrée dans $\mathcal{M}_3(\mathbb{R})$?
- 4. On revient au cas général $a \in \mathbb{R}$.
 - (a) Déterminer suivant la valeur de $a \in \mathbb{R}$, le rang de $M_a (1+3a)I_3$.
 - (b) Quelle valeur propre a-t-on mis en évidence? Expliquez.
 - (c) Préciser la dimension du sous-espace propre associé, en distinguant les cas a=0, a=1 et $a \notin \{0,1\}$.
 - (d) Montrer que $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ est un vecteur propre de M_a . Quelle valeur propre avons-nous mis en évidence?
 - (e) Calculer $\text{Tr}(M_a)$ et déterminer le spectre de M_a .
 - (f) Montrer que M_a est trigonalisable sur $\mathscr{M}_n(\mathbb{R})$ pour tout a.
 - (g) Déterminer l'ensemble des valeurs de a pour lesquelles M_a est diagonalisable.

Partie II : racine carrée d'une matrice symétrique positives

Dans toute cette partie on fixe une matrice symétrique positive S.

On admet le résultat suivant.

Théorème

Toute matrice symétrique à coefficients réels est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ au moyen d'une matrice de passage $P \in GL_n(\mathbb{R})$.

Ainsi, si S est symétrique positive alors il existe $P \in GL_n(\mathbb{R})$ et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+$ tels que :

$$P^{-1}SP = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix} \text{ i.e. } S = PDP^{-1} \text{ avec } D = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}.$$

- 1. Déterminer une matrice diagonale Δ telle que $\Delta^2 = D$ et en déduire une matrice dont le carré est égal à S. On donnera la réponse en fonction de Δ de P et P^{-1} .
- 2. Notons T une matrice symétrique positive vérifiant $T^2 = S$.
 - (a) Montrer que si $\lambda \in Sp(T)$ alors $\lambda^2 \in Sp(S)$.
 - (b) Quelle inclusion peut-on en déduire entre les espaces $E_{\lambda}(T)$ et $E_{\lambda^2}(S)$?
 - (c) En utilisant la diagonalisabilité de S et T, justifier que S et T ont les mêmes espaces propres.
 - (d) En déduire que $C = P^{-1}TP$ est diagonale.
 - (e) Résoudre l'équation $C^2 = D$ et en déduire l'expression de T.

Problème II : Quelques équations différentielles

Partie I - Une équation différentielle

On considère dans cette partie l'équation différentielle

$$x^2y'' + axy' + by = 0, (2)$$

où a et b sont des constantes réelles.

- 1. Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de l'équation (2) sur $I =]0, +\infty[$? Et sur $J =]-\infty, 0[$?
- 2. Montrer que si y est une solution de (2) sur I, alors $g = y \circ \exp$ est une solution sur \mathbb{R} de l'équation différentielle linéaire à coefficients constants :

$$u'' + (a-1)u' + bu = 0. (3)$$

- 3. Réciproquement, soit $t \mapsto g(t)$ une solution de (3) sur \mathbb{R} . Montrer que la fonction $g \circ \ln$ est solution de (2) sur I.
- 4. Donner les solutions à valeurs réelles de l'équation (3) dans le cas où a=3 et b=1 et dans le cas où a=1 et b=4. En déduire, dans chacun des cas, les solutions à valeurs réelles de l'équation (2) sur l'intervalle I.

Partie II - Une équation de Bessel

On se propose dans cette partie d'étudier l'équation différentielle :

$$x^2y'' + xy' + x^2y = 0. (4)$$

1. Rappeler la définition du rayon de convergence d'une série entière.

Série entière dont la somme est solution de (4).

On suppose qu'il existe une série entière $\sum_{k\geq 0} c_k x^k$, avec $c_0=1$, de rayon de convergence R non nul et dont la fonction somme J_0 est solution de (4) sur]-R,R[.

2. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$\begin{cases} c_{2k+1} = 0 \\ c_{2k} = \frac{(-1)^k}{4^k (k!)^2}. \end{cases}$$

- 3. Déterminer le rayon de convergence de la série entière $\sum_{k>0} c_k x^k$.
- 4. Soient r > 0 et f une autre solution de (4) sur]0, r[. Montrer que si (J_0, f) est liée dans l'espace vectoriel des fonctions de classe C^2 sur]0, r[, alors f est bornée au voisinage de 0.

Inverse d'une série entière non nulle en 0.

Soit $\sum_{k\geq 0} \alpha_k x^k$ une série entière de rayon de convergence $R_{\alpha} > 0$ telle que $\alpha_0 = 1$. L'objectif de ce paragraphe est de montrer l'existence et l'unicité d'une série entière $\sum_{k\geq 0} \beta_k x^k$ de rayon de convergence $R_{\beta} > 0$ telle que pour tout x appartenant aux domaines de convergence des deux séries :

$$\left(\sum_{k=0}^{+\infty} \alpha_k x^k\right) \left(\sum_{k=0}^{+\infty} \beta_k x^k\right) = 1.$$

5. Montrer que si $\sum_{k\geq 0} \beta_k x^k$ est solution , alors la suite $(\beta_k)_{k\in\mathbb{N}}$ satisfait aux relations suivantes :

$$\begin{cases} \beta_0 = 1 \\ \forall n \in \mathbb{N}^*, \quad \sum_{k=0}^n \alpha_k \beta_{n-k} = 0. \end{cases}$$
 (5)

- 6. Soit r un réel tel que $0 < r < R_{\alpha}$. Montrer qu'il existe un réel M > 0 tel que $\forall k \in \mathbb{N} : |\alpha_k| \leq \frac{M}{r^k}$.
- 7. Montrer que (5) admet une unique solution $(\beta_k)_{k\in\mathbb{N}}$ et que, pour tout $k\in\mathbb{N}^*$:

$$|\beta_k| \le \frac{M(M+1)^{k-1}}{r^k}.$$

On pourra raisonner par récurrence.

8. Que peut-on dire du rayon de convergence $R_{\beta} > 0$ de la série entière $\sum_{k>0} \beta_k x^k$?