Trabalho de Fundamentos de Sistemas Digitais

Professor Fernando Gehm Moraes

Anderson R. P. Sprenger Patrícia B. de Lima

Especificação: 0

1. Pseudocódigo

Nesta primeira parte o código é inicializado com três vetores A, B e C com vetores possuindo cinco números pré-estabelecidos.

```
n = 5
vetor A = { 5 numeros aleatorios}
vetor B = { 5 numeros aleatorios}
vetor C = { 5 numeros aleatorios}
```

Logo em seguida é declarado três variáveis para armazenar a soma de cada um dos elementos dos três vetores.

```
somaA = inicializado com valor 0
somaB = inicializado com valor 0
somaC = inicializado com valor 0
```

Nesta iteração, o primeiro número do vetor é somado com o próximo elemento, repetindo sucessivamente até o final do vetor. Cada operação desta para cada vetor (A, B, C).

```
for (i = 0; i < n; i++) {
    somaA incrementa o valor do vetor A na posicao i
    somaB incrementa o valor do vetor B na posicao i
    somaC incrementa o valor do vetor C na posicao i
}</pre>
```

Para o cálculo das medias, e dividida a soma correspondente por n, e para encontrar a maior media são utilizados dois testes para verificar qual dentre os três possui a maior média que é então armazenada no registrador da media a.

```
if (mediaA < mediaB)
    mediaA = mediaB

if (mediaA < mediaC)
    mediaC = mediaA</pre>
```

Então, é criado um vetor D, armazenando todos os valores maiores que o maior valor médio encontrado. Para isto, são observados todos os elementos dos vetores A, B e C e cada elemento que seja maior que a média é armazenado no vetor, também é criado um contador K para armazenar o tamanho do vetor.

```
K = 0
for (i = 0; i < n; i++) {
    if (vetor[i] > maior media) {
        d[k+1] += [vetor[i]]
        k++
    }
}
```

Como resultado, são obtidos todos os elementos encontrados para o vetor D, que são maiores que a maior média obtida.

2. Tabela relacionando variáveis do pseudocódigo com os registradores da arquitetura MIPS

mediaA	\$t3
mediaB	\$t4
mediaC	\$t5
n	\$s0
soma	\$s1
*vetor[0]	\$s3
*d[0]	\$t7
k	\$t6

3. Exemplo da área de dados

```
.data
A: .word 710 200 550 390 700
B: .word 600 444 800 123 910
C: .word 347 300 710 190 610
n: .word 5
k: .word 0
D: .word 0
```

4. Telas capturadas do simulador MARS.

a. Área de dados antes de iniciar a execução

Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
{a} 710	200	550	390	700	{b} 600	444	800
123	910	{c} 347	300	710	190	610	n 5
0	0	0	0	0	0	0	0

b. Área de dados ao final da execução

Value	(+0) [a]	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
	710	200	550	390	700		444	800
	123	910	{C} 347	300	710	190	610	n 5
	K 7	{ d } 710	700	600	800	910	710	610

5. Telas capturadas do simulador MODELSIM

a. Carregamento dos dados na memória de dados

b. Cálculo das medias e leitura dos vetores

c. Final da simulação com gravação de memória de dados do vetor D

