Analiza seria 3

Bartosz Kucypera, bk439964

5 maja 2023

Zadanie 1

$$f_n: [1,\infty] \to \mathbb{R}, f_n(x) = n(\sqrt[n]{x} - 1) \text{ dla } n \in \mathbb{N}$$

Zbieżność punktowa

$$\lim_{n \to \infty} n(\sqrt[n]{x} - 1) = \ln(x) \lim_{n \to \infty} \frac{x^{\frac{1}{n}} - 1}{\frac{\ln(x)}{n}} = \ln(x) \lim_{n \to \infty} \frac{\exp(\frac{\ln(x)}{n}) - \exp(0)}{\frac{\ln(x)}{n}} = \ln(x) \lim_{n \to \infty} \frac{\exp(h) - \exp(0)}{h} = \ln(x)$$

Czyli (f_n) punktowy zbieżny do ln.

Zbieżność jednostajna

Niech $x_n = n^n$. Zauważmy, że:

$$|n(\sqrt[n]{x_n} - 1) - f_n(x_n)| = |n(n-1) - n\ln(n)| = |n(n-1 - \ln(n))|$$

Oczywiście $\lim_{n\to\infty} |n(n-1\ln(n))| = \infty$, więc ciąg (f_n) nie spełnia jednostajnego warunku Cauchy'ego.

Zbieżność niemal jednostajna

Zauważmy, że skoro $\sqrt[n]{x}$ są rosnące na $[1,\infty]$ to funkcje f_n też.

Teraz, dla dowolnego $R \in \mathbb{R}, R > 1$, funkcje f_n na przedziałach postaci [1, R] są rosnącę, oraz ciąg (f_n) jest punktowo zbieżny do funckji ciągłej, czyli f_n spełnia założenia drugiego twierdzenia Diniego. Ciag (f_n) zbiega niemal jednostajnie do ln.