

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Basado en el material original de Jordán Pascual Espada

v 1.4.2 Septiembre 2022

Sensores y actuadores

Actuadores

Actuadores I

- Actuador: dispositivo capaz de transformar energía (eléctrica, hidráulica, neumática) en un proceso
 - Ejemplo: motores, bombas de aire, ventiladores, luces, encender/apagar herramientas, etc.
 - o Aplicaciones en: industria, robótica, medicina, transporte, casas, ciudades, etc.
- Estos dispositivos se conectan a una fuente de alimentación eléctrica (placa de Arduino 5V)
 - A veces necesitan de una fuente externa de mayor potencia
- o Dependiendo del tipo se manejan de diferentes formas
 - Pin de escritura en el actuador
 - o Algunos pueden también enviar información al Arduino
 - Relés u otros componentes como drivers/controladores
 - Algunos drivers/controladores vienen en formato Shield

Actuadores II

- Existen **cientos de tipos de actuadores** diferentes compatibles con Arduino y de coste razonable
- Hay varias características importantes relativos a un actuador
 - Alimentación 3.3V, 5V, 9V, etc.
 - Algunos necesitan un sistema de potencia propio: algunos motores
 - o Pines de conexión que utiliza (número y tipo de entradas / salidas)
 - Analógico, digital, o digital PWM (simular salida analógica)
 - N° de pines necesarios para conectarlo
 - Dimensiones
 - o Para embeberlo en alguna estructura
 - o Modo de funcionamiento/especificación
 - Que recibe, en que rango, tipo de movimientos, etc.
 - Librerías
 - Para facilitar su programación (Arduino, de terceros, C/C++, etc.)
 - Shields, drivers, otras interfaces hardware/software, etc.

Motores de corriente continua

- Motor que va en un sentido u otro y no se controla velocidad ni aceleración
- Se conectan a los polos positivo y negativo
 - A la placa Arduino
 - o Tal vez también a una fuente externa (depende del voltaje)
- o En función de la polaridad giran a un lado u otro
- o Dependiendo del voltaje giran a más o menos velocidad

Mini motor DC 3V-6V

Motor para rueda

Drivers

- Permiten (no siempre todas ellas a la vez: y/o)
 - Gestionar varios motores
 - A veces, usar **menos pines**
 - Cambiar polaridades sin tocar el circuito
 - o Conectar potencia adicional si el Arduino no la admite
 - Ahorrar tiempo de desarrollo/montaje
- Utilizar un Motor Driver
 - Ejemplo: L298n, L9110s, etc.
- Se conecta al driver
 - Los motores (normalmente admiten varios motores)
 - La fuente de alimentación
 - Placa Arduino, batería de 12V, etc.
 - Salidas digitales para controlar los motores
- Salidas digitales
 - o 2 pines
 - Para detener, y giro horario o antihorario
 - o (Opcional) 1 pin PWM
 - Si se quiere especificar la velocidad de giro

L9110s

L298n

16

17

18 19

20

/* Giro horario */
digitalWrite (IN1, HIGH);
digitalWrite (IN2, LOW);

/* Giro antihorario */
digitalWrite (IN1, LOW);

/* Detenido */
digitalWrite (IN1, LOW);

digitalWrite (IN2, LOW);

digitalWrite (IN2, HIGH);

23

/* 0-255 velocidad PWM */
analogWrite(ENB,55);

Relés

- Es un interruptor controlado por un circuito eléctrico
 - Encender/apagar programáticamente un componente
 - Motores (Girar y parar), electrodomésticos/herramientas (encender/apagar)
 - o Manejar grandes corrientes/potencias usando una mucho más pequeña
 - o 220v de entrada o más al relé-> electrodoméstico, desde un Arduino de 5v
- Varios modelos de Relé
 - o 1 − N, canales
- Podemos abrir / cerrar el paso de corriente
 - Controlado con 1 salida digital
 - Enciende / apaga el motor

```
/* Encender */
digitalWrite (RELE1, HIGH);
/* Apagar */
digitalWrite (RELE1, LOW);
```


Servomotores

- o Similar a los motores de corriente continua
 - o Pero permite controlar con precisión la rotación/ángulo/aceleración
- o Capacidad de ubicarse en cualquier posición
 - Dentro de su rango: 180°, 270°, 360°, etc.
- o Capacidad de mantener la posición
- o Permiten controlar la orientación de giro / posición / velocidad
 - Mediante un pin digital PWM
 - Suelen tener una librería que gestiona todo
- Velocidad e inercia más baja que los motores tradicionales

Micro servo 180°

Servo de rotación continua

Calibración: servo 360° rotación continua

- Algunos actuadores como los Servos 360° requieren calibración
- Si en el estado parado (write(90)) no se detiene... entonces hay que calibrarlo
 - Si hace ruido significa que se quiere mover pero no tiene potencia suficiente
- Girar el tornillo hasta que se detenga
 - En ocasiones pierden la calibración solos (por el uso)

Motores paso a paso (Steppers)

- o Dispositivos electromecánicos que **convierten un impuso eléctricos recibido en desplazamientos angulares**
- El impulso eléctrico indica los pasos (grados) que debe moverse
- Se consigue más precisión de posicionamiento
- Se indica el paso mediante entradas digitales
- Se suelen manejar con librerías
 - Suelen ser bastante sencillas
- Los podemos ver en
 - Impresoras 3D
 - Actuadores lineales que necesiten precisión

Motor Nema 17 12V- 36V

Motor Paso a Paso 5V + Driver ULN2003

Otros actuadores eléctricos

• Gran parte de ellos se basan en motores o en principios similares

Bomba de aire

Bomba de agua

Actuador lineal

Sensores

Sensores I

- Es un dispositivo capaz de **detectar magnitudes físicas o químicas y transformarlas en variables eléctricas**
 - o Ejemplos: temperatura, nivel de agua, humedad, presión, etc.
 - o Aplicaciones en: industria, robótica, medicina, transporte, casa, etc.
- o La señal o señales emitidas por el sensor las captamos mediante una o varias entradas
 - Digitales: true/false, high/low, 0/1
 - o Vibración, distancia, movimiento, ...
 - Analógicas: 0-1023
 - Temperatura, humedad, fotorresistor, ...
- Algunos sensores son configurables, o **necesitan** algún tipo de **información para funcionar**, en este caso reciben la información de una o varias salidas
 - Ultrasonidos

Sensores II

- Existen cientos de tipos de sensores diferentes compatibles con Arduino y de coste razonable
- Hay varias **características** importantes relativos a un sensor
 - o Alimentación 3.3V, 5V, 9V, 12V, etc.
 - Algunos necesitan un sistema de potencia propio: CO2
 - o Pines de conexión que utiliza (número y tipo de entradas / salidas)
 - Analógico o digital
 - N° de pines necesarios para conectarlo
 - Dimensiones
 - o Para embeberlo en alguna estructura
 - o Modo de funcionamiento/especificación
 - Que valores retorna, en que rango, con que frecuencia, etc.
 - Librerías
 - Para facilitar su programación (Arduino, de terceros, C/C++, etc.)
 - Shields

Sensores de ambiente

Presión barométrica

Calidad de aire: NH3, CO2, Humo...

Detector de llamas/fuego

Partículas de polvo

Movimiento / presencia e Imagen y sonido

Movimiento / presencia

Ultrasonidos: distancia

o Imagen y sonido

Infrarrojo de barrera

Receptor y emisor Laser

Sensor Infrarrojos pasivo (PIR): movimiento

Cámara Infrarroja

Sonido

Movimiento de objetos

Brújula

Acelerómetro (X,Y,Z)

Vibración

Inclinación

Giroscopio

Líquido

Turbiedad Falta de transparencia

Humedad en tierra

рН

Otros

Color

Color blanco / negro: Sigue líneas

Peso

Aire: alcohol, etanol

Nivel de corriente

Efecto Hall (Campo eléctrico)

Detector de metal

Pulso cardiaco

Medicina

- https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
- o Posición de paciente
 - Cinta con acelerómetros
- Temperatura corporal
- Presión sanguínea
- Pulso y oxigeno en sangre
- Flujo de respiración
- Electrocardiograma
- Electromiografía
 - Músculos y neuronas
- Sensor de respuesta galvánica
 - Resistencia eléctrica en la piel
- Glucómetro

e-Health Kit V2.0

Tipos de entradas en los sensores

- o Desde el punto de vista de la conexión y la programación
 - Sensor de luz analógico BQ (1 salida)
 - Sensor ultrasónico de distancia SR04 (1 salida / 1 entrada)
 - Trigger (LOW | HIGH) y Echo
 - Sensor de detección de color TCS230 (1 salida / 4 entradas)
 - **0** ...

- Existen diferentes modelos de sensores similares a estos
 - Diferentes características técnicas
 - Ej. rango de valores a medir
 - o Diferente mecanismo de conexión
 - Diferente programación
 - o Diferente margen de error, etc.

Calibración

- Muchos modelos se pueden y/o deben calibrar
 - Devuelven unos valores u otros
 - Sensibilidad: hace que «salten/toleren» hasta X valor límite
 Luz/vibración deseada/permitida, ...
 - o Detectan solo sí alguno ocurre o no...
 - o Configurar: valor 0, precisión, tiempos de actualización, etc.
 - Tasa de refresco de datos
- Un **precalentamiento** en los sensores de gases
 - Un tiempo encendidos la primera vez (48h)
 - Sucesivas veces 3 minutos de precalentamiento
- Calibración con sustancias calibradoras
 - Sustancia que tiene exactamente un valor
 PH, gases, líquidos, etc.

Especiales: sensor ultrasónico de distancia SR04

o Calulo de la distancia

- A partir del tiempo calculamos la distancia
- El ultrasonido se mueve a 0,034 cm/microsegundo
 - **Vsonido**: 343,2 m/s -> 343 m/s * 100cm/m * 1s/1000000 ms = 0,03432 cm/ms

o Dividimos entre 2: 0,01716

```
21  long tiempoRespuesta = pulseIn(pinEcho, HIGH);
22  long distancia= int(0.017*tiempoRespuesta);
```

o Dependiendo del ángulo y del objeto a veces la onda no rebota como esperamos

Interfaz de usuario: sensores y actuadores

Componentes de interfaz de usuario

- o Permiten la comunicación entre la persona y el dispositivo
- Encontramos componentes de muchos tipos

Joystick

Pantalla LCD

Mando IR

Teclado

o Utilizan las entradas y salidas de la placa para realizar la comunicación

Pantallas y sonido

Pantallas TFT Táctil

Pantalla de tinta electrónica

MicroVGA

Conexiones

- Algunos componentes pueden requerir muchas salidas
 - Ej: pantallas
 - En ese caso se suelen utilizar un modulo Interfaz (I2C/IIC/TWI) + Librerías
 - Permite usar menos pines para controlarlo
 - Interfaz maestro-esclavo
 - Es «plug-and-play»

10 conexiones

I2C – Conector de periféricos 4 conexiones

4 conexiones

Mecanismos de entrada

Botón

Potenciómetro

Botón táctil

Mando IR

Game Pad

Joystick

Teclado / ratón PS2

Teclado de membrana

Calibración software: Joystick XY + Botón Pulsador

- Se conecta
 - 5V, GND
 - Eje X y Eje Y: vrX (a un pin analógico), vrY (a un pin analógico)
 - Es un balancín con dos potenciómetros
 - Botón: SW (a un pin digital)
 - Es un botón (**Requiere una resistencia** para el correcto funcionamiento)
- Sistema de coordenadas
 - ¿Reposo en (500, 500)?
 - El reposo puede variar entre 450-550, depende del Joystick

	(X, Y)	(X, Y)	(X, Y)
(X, Y)	0, 0	500, 0	1024, 0
(X, Y)	0, 500	500, 500 (Reposo)	1024, 500
(X, Y)	0, 1024	500, 1024	1024, 1024

Accesorios extra: Joystick XY + Botón Pulsador II

- Viene en una placa integrado
 - o Pero **necesita una resistencia** para usar su botón
- Se puede utilizar
 - Una resistencia externa (recomendado)
 - o Utilizar una resistencia que tiene el Arduino incorporada

Join at vevox.app

Or search Vevox in the app store

ID: 183-409-206

¿Cuáles son sensores?

√ 1. Detección de vibraciones

97.67%

- 2. Motor de rotación continua 0%
- 3. Relé 0%
- 4. LED
 - 2.33%

√ 5. Sensor de ultrasonidos

100%

6. Ninguno de los anteriores 0%

(% = Percentage of Voters)

¿Cuáles son actuadores?

Un relé permite:

Join: vevox.app ID: 183-409-206,

¿Qué motores NO permiten fijar la posición en un determinado ángulo?

1. Motor de rotación continua

71.11%

2. Stepper

3. Servomotor

4. Ninguno de los anteriores

Un driver puede permitir...

✓ 1. Gestionar varios motores

93.02%
2. Sustituir al Arduino
2.33%

✓ 3. Usar menos pines
83.72%

✓ 4. No tener que modificar el circuito en ciertas circunstancias (cambiar giro)
90.7%

✓ 5. Ahorrar tiempo de montaje/desarrollo
(% = Percentage of Voters)

Marca las declaraciones que sean verdaderas:

 Los sensores y actuadores vienen siempre regulados, solo que con el tiempo hay que ajustarlo

13.33%

2. El sensor de ultrasonidos permite detectar sonidos 8.89%

3. Siempre tiene que haber una resistencia antes del botón para evitar cortocircuitos

55.56%

- 4. El joystick comienza siempre por defecto en 500, 500 exactamente
- 5. Ninguna de las anteriores

15.56%

Join: vevox.app ID: 183-409-206,8

Leaderboard

Position	Participants	Score
=1	UO276803, uo282790	6/6
=3	UO265373, UO277189, UO277878, UO282394	5/6
=7	UO 277172, UO259893, UO269745, UO269855, UO276244, UO276264, UO276396, UO276818, UO277084, UO277418, UO278290, UO281956, UO285267, uo271447, uo271723, uo277955	4/6
=23	UO269450, UO269727, UO270762, UO276220, UO276406, UO277303, UO277414, UO277653, UO277891, UO278968, UO282834, UO284163, UO285176, Uo276341, Uo278485, Uo283204, uo281860	3/6
=40	UO269871, UO271432, UO276967, UO282337, Uo277346 Uo277346	2/6
=45	UO282337, UO283055	1/6
47	UO246711	0/6

Total Participants: 47

Average Score:3,4

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Basado en el material original de Jordán Pascual Espada

v 1.4.2 Septiembre 2022

Sensores y actuadores