14.127 Behavioral Economics (Lecture 1)

Xavier Gabaix

February 5, 2003

1 Overview

- Instructor: Xavier Gabaix
- **Time** 4-6:45/7pm, with 10 minute break.
- Requirements: 3 problem sets and Term paper due September 15, 2004 (meet Xavier in May to talk about it)

2 Some Psychology of Decision Making

2.1 Prospect Theory (Kahneman-Tversky, Econometrica 79)

Consider gambles with two outcomes: x with probability p, and y with probability 1-p where $x \ge 0 \ge y$.

ullet Expected utility (EU) theory says that if you start with wealth W then the (EU) value of the gamble is

$$V = pu(W + x) + (1 - p)u(W + y)$$

• Prospect theory (PT) says that the (PT) value of the game is

$$V = \pi(p) u(x) + \pi(1-p) u(y)$$

where π is a probability weighing function. In standard theory π is linear.

ullet In prospect theory π is concave first and then convex, e.g.

$$\pi\left(p
ight) = rac{p^{eta}}{p^{eta} + (1-p)^{eta}}$$

for some $\beta \in (0,1)$. The figure gives $\pi(p)$ for $\beta = .8$

2.1.1 What does the introduction of the weighing function π mean?

- $\pi(p) > p$ for small p. Small probabilities are overweighted, too salient. E.g. people play a lottery. Empirically, poor people and less educated people are more likely to play lottery. Extreme risk aversion.
- $\pi(p) < p$ for p close to 1. Large probabilities are underweight.

In applications in economics $\pi(p) = p$ is often used except for lotteries and insurance

2.1.2 Utility function u

• We assume that u(x) is increasing in x, convex for loses, concave for gains, and first order concave at 0 that is

$$\lim_{x\to 0+} \frac{-u\left(-x\right)}{u\left(x\right)} = \lambda > 1$$

• A useful parametrization

$$u(x) = x^{\beta}$$
 for $x \ge 0$
 $u(x) = -\lambda |x|^{\beta}$ for $x \le 0$

• The graph of $u\left(x\right)$ for $\lambda=2$ and $\beta=.8$ is given below

2.1.3 Meaning - Fourfold pattern of risk aversion $oldsymbol{u}$

- Risk aversion in the domain of likely gains
- Risk seeking in the domain of unlikely gains
- Risk seeking in the domain of likely losses
- Risk aversion in the domain of unlikely losses

2.1.4 How robust are the results?

ullet Very robust: loss aversion at the reference point, $\lambda>1$

ullet Robust: convexity of u for x < 0

• Slightly robust: underweighting and overweighting of probabilities $\pi\left(p\right) \gtrless p$

2.1.5 In applications we often use a simplified PT (prospect theory):

$$\pi(p) = p$$

and

$$u(x) = x \text{ for } x \ge 0$$

$$u(x) = \lambda x \text{ for } x \leq 0$$

2.1.6 Second order risk aversion of EU

- Consider a gamble $x + \sigma$ and $x \sigma$ with 50 : 50 chances.
- Question: what risk premium π would people pay to avoid the small risk σ ?
- We will show that as $\sigma \to 0$ this premium is $O\left(\sigma^2\right)$. This is called second order risk aversion.
- In fact we will show that for twice continuously differentiable utilities:

$$\pi\left(\sigma\right)\cong\frac{
ho}{2}\sigma^{2},$$

where ρ is the curvature of u at 0 that is $\rho = -\frac{u''}{u'}$.

ullet The risk premium π makes the agent with utility function u indifferent between

$$u\left(x\right) \text{ and } \frac{1}{2}u\left(x+\sigma+\pi\left(\sigma\right)\right)+\frac{1}{2}u\left(x-\sigma+\pi\left(\sigma\right)\right)$$

ullet Assume that u is twice differentiable and take a look at the Taylor expansion of the above equality for small σ .

$$u(x) = u(x) + \frac{1}{2}u'(x) 2\pi(\sigma) + \frac{1}{4}u''(x) 2[\sigma^2 + \pi(\sigma)^2] + o(\sigma^2)$$

or

$$\pi(\sigma) = \frac{\rho}{2} \left[\sigma^2 + \pi(\sigma)^2 \right] + o(\sigma^2)$$

• Since $\pi(\sigma)$ is much smaller than σ , so the claimed approximation is true. Formally, conjecture the approximation, verify it, and use

the implicit function theorem to obtain uniqueness of the function $\boldsymbol{\pi}$ defined implicitly be the above approximate equation.

2.1.7 First order risk aversion of PT

- Consider same gamble as for EU.
- We will show that in PT, as $\sigma \to 0$, the risk premium π is of the order of σ when reference wealth x=0. This is called the *first order risk aversion*.
- Let's compute π for $u(x) = x^{\alpha}$ for $x \ge 0$ and $u(x) = -\lambda |x|^{\alpha}$ for $x \le 0$.
- The premium π at x=0 satisfies

$$0 = \frac{1}{2} (\sigma + \pi (\sigma))^{\alpha} + \frac{1}{2} (-\lambda) |-\sigma + \pi (\sigma)|^{\alpha}$$

or

$$\pi\left(\sigma
ight)=rac{\lambda^{rac{1}{lpha}}-1}{\lambda^{rac{1}{lpha}}+1}\sigma=k\sigma$$

where k is defined appropriately.

2.1.8 Calibration 1

 \bullet Take $u\left(c\right)=\frac{c^{1-\gamma}}{1-\gamma}$, i.e. a constant elasticity of substitution, CES, utility

• Gamble 1

\$50,000 with probability 1/2 \$100,000 with probability 1/2

• Gamble 2. \$x for sure.

• Typical x that makes people indifferent belongs to (60k, 75k) (though some people are risk loving and ask for higher x.

ullet Note the relation between x and the elasticity of substitution γ :

Right γ seems to be between 1 and 10.

ullet Evidence on financial markets calls for γ bigger than 10. This is the equity premium puzzle.

2.1.9 Calibration 2

• Gamble 1

\$10.5 with probability 1/2 \$-10 with probability 1/2

- Gamble 2. Get \$0 for sure.
- If someone prefers Gamble 2, she or he satisfies

$$u(w) > \frac{1}{2}u(w + \pi - \sigma) + \frac{1}{2}u(w + \pi + \sigma).$$

Here, $\pi = \$.5$ and $\sigma = \$10.25$. We know that in EU

$$\pi < \pi^* \left(\sigma \right) = \frac{\rho}{2} \sigma^2$$

And thus with CES utility

$$\frac{2W\pi}{\sigma^2} < \gamma$$

forces large γ as the wealth W is larger than 10^5 easily.

2.1.10 Calibration Conclusions

• In PT we have $\pi^* = k\sigma$. For $\gamma = 2$, and $\sigma = \$.25$ the risk premium is $\pi^* = k\sigma = \$.5$ while in EU $\pi^* = \$.001$.

ullet If we want to fit an EU parameter γ to a PT agent we get

$$\hat{\gamma} = \frac{2kW}{\sigma}$$

and this explodes as $\sigma \rightarrow 0$.

ullet If someone is averse to 50-50 lose \$100/gain g for all wealth levels then he or she will turn down 50-50 lose $L/{
m gain}~G$ in the table

L ackslash g	\$101	\$105	\$110	\$125
\$400	\$400	\$420	\$550	\$1,250
\$800	\$800	\$1,050	\$2,090	∞
\$1000	\$1,010	\$1,570	∞	∞
\$2000	\$2,320	∞	∞	∞
\$10,000	∞	∞	∞	∞

2.2 What does it mean?

• EU is still good for modelling.

• Even behavioral economist stick to it when they are not interested in risk taking behavior, but in fairness for example.

• The reason is that EU is nice, simple, and parsimonious.

2.2.1 Two extensions of PT

ullet Both outcomes, x and y, are positive, 0 < x < y. Then,

$$V = v(y) + \pi(p)(v(x) - v(y)).$$

Why not $V = \pi(p) v(x) + \pi(1-p) v(y)$? Because it becomes self-contradictory when x = y and we stick to K-T calibration that puts $\pi(.5) < .5$.

• Continuous gambles, distribution f(x) EU gives:

$$V = \int_{-\infty}^{+\infty} u(x) f(x) dx$$

PT gives:

$$V = \int_0^{+\infty} u(x) f(x) \pi' (P(g \ge x)) dx$$
$$+ \int_{-\infty}^0 u(x) f(x) \pi' (P(g \le x)) dx$$