Agrégation Interne

Séries numériques et produits infinis

- I - Compléments sur les séries numériques

On dit qu'une série numérique $\sum u_n$ est commutativement convergente si, pour toute permutation σ de \mathbb{N} , la série $\sum u_{\sigma(n)}$ est convergente.

On rappelle que le produit de Cauchy (ou produit de convolution) de deux séries numériques $\sum u_n$ et $\sum v_n$, est la série de terme général $w_n = \sum_{k=0}^n u_k v_{n-k}$.

Étant donnée une suite numérique $(u_n)_{n\in\mathbb{N}}$, étudier le produit infini de terme général u_n revient à étudier la suite $(P_n)_{n>n_0}$ des produits partiels définie par :

$$\forall n \in \mathbb{N}, \ P_n = \prod_{k=n_0}^n u_k$$

On notera plus simplement $\prod u_n$ un tel produit et on parlera de produit infini.

On dit que le produit infini $\prod u_n$ est convergent si la suite de ses produits partiels $(P_n)_{n\in\mathbb{N}}$ est convergente.

Dans le cas contraire, on dit que le produit infini est divergent.

On dit que le produit infini $\prod u_n$ est strictement convergent s'il converge vers un réel ou un complexe non nul.

1. Soient σ une permutation σ de \mathbb{N} et $\sum u_n$ une série réelle absolument convergente.

Montrer que la série $\sum u_{\sigma(n)}$ converge absolument avec $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.

Cela justifie l'écriture $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une série absolument convergente.

- 2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite numérique indexée par (n,m) dans \mathbb{N}^2 .
 - (a) On suppose que la suite $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ est à valeurs réelles positives et que :
 - i. pour tout $n \in \mathbb{N}$, la série $\sum_{m \in \mathbb{N}} u_{n,m}$ est convergente de somme S_n ;
 - ii. la série $\sum S_n$ est convergente de somme S.

Montrer alors que :

- i. pour tout $m \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}} u_{n,m}$ est convergente de somme T_m ;
- ii. la série $\sum T_m$ est convergente avec :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

Dans ces conditions, on dit que la série double $\sum u_{n,m}$ est convergente et on note $\sum_{(n,m)\in\mathbb{N}^2} u_{n,m}$

la valeur commune de $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$ et $\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right)$.

On dit que la série double $\sum u_{n,m}$ (les $u_{n,m}$ étant réels ou complexes) est absolument convergente si la série double $\sum |u_{n,m}|$ est convergente.

1

- (b) On suppose que la série double $\sum u_{n,m}$ est absolument convergente. Montrer que :
 - i. pour tout $n \in \mathbb{N}$ [resp. pour tout $m \in \mathbb{N}$], la série $\sum_{m} u_{n,m}$ [resp. $\sum_{n} u_{n,m}$] est absolument convergente;
 - ii. en notant S_n [resp. T_m] la somme de cette série, la série $\sum S_n$ [resp. $\sum T_m$] est absolument convergente et on a $\sum_{n=0}^{+\infty} S_n = \sum_{m=0}^{+\infty} T_m$, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

Dans ces conditions, on note $\sum_{(n,m)\in\mathbb{N}^2} u_{n,m}$ la valeur commune de ces sommes.

(c) Calculer:

$$\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$$

(d) Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$ la suite double définie par :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ u_{n,m} = \begin{cases} 0 \text{ si } n = m \\ \frac{1}{n^2 - m^2} \text{ si } n \neq m \end{cases}$$

Montrer, en les calculant, que les sommes $\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m}\right)$ et $\sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m}\right)$ sont définies et différentes.

- 3. Soient $\sum u_n$ et $\sum v_n$ deux séries numériques non identiquement nulles et $\sum w_n$ leur produit de Cauchy.
 - (a) On suppose que les deux séries sont à termes positifs.
 - i. Montrer que si $\sum u_n$ et $\sum v_n$ sont convergentes, il en est alors de même de $\sum w_n$, puis que :

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

- ii. Montrer que si l'une des deux séries $\sum u_n$ ou $\sum v_n$ est divergente, il en est alors de même de $\sum w_n$ (l'égalité $\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$ est encore vérifiée dans ce cas avec $+\infty$ pour valeur commune).
- (b) Plus généralement, montrer que le produit de Cauchy de $r \geq 2$ séries numériques à termes positifs $\sum_{n \in \mathbb{N}} u_{k,n}$ convergentes est convergent et :

$$\left(\sum_{n=0}^{+\infty} u_{1,n}\right) \cdots \left(\sum_{n=0}^{+\infty} u_{r,n}\right) = \sum_{n=0}^{+\infty} \sum_{\substack{(\alpha_1, \dots, \alpha_r) \in \mathbb{N}^r \\ \alpha_1 + \dots + \alpha_r = n}} u_{1,\alpha_1} \cdots u_{r,\alpha_r}$$
$$= \sum_{(\alpha_1, \dots, \alpha_r) \in \mathbb{N}^r} u_{1,\alpha_1} \cdots u_{r,\alpha_r}$$

2

(c) On suppose que les deux séries numériques $\sum u_n$ et $\sum v_n$ sont absolument convergentes. Montrer que le produit de Cauchy $\sum w_n$ est absolument convergent avec :

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

- (d) Montrer que le produit de Cauchy de la série convergente $\sum \frac{(-1)^n}{\sqrt{n+1}}$ par elle même est divergent.
- 4. On se propose de montrer de manière élémentaire la divergence de la série $\sum \frac{1}{p_n}$.
 - (a) Justifier le fait que la série $\sum \frac{1}{p_n}$ est de même nature que la série $\sum \ln \left(1 \frac{1}{p_n}\right)$.
 - (b) En désignant par $(u_n)_{n>1}$ la suite définie par :

$$\forall n \ge 1, \ u_n = \frac{1}{\prod_{k=1}^{n} \left(1 - \frac{1}{p_k}\right)}$$

montrer que :

$$\left(\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty\right) \Leftrightarrow \left(\lim_{n \to +\infty} u_n = +\infty\right)$$

(c) En désignant, pour tout entier $n \in \mathbb{N}^*$, par E_n l'ensemble des entiers naturels non nuls et différents de 1 qui ont tous leurs diviseurs premiers dans $\mathcal{P}_n = \{p_1, \cdots, p_n\}$, montrer que :

$$\forall n \in \mathbb{N}^*, \ u_n = 1 + \sum_{j \in E_n} \frac{1}{j}$$

en déduire que :

$$\forall n \in \mathbb{N}^*, \ u_n \ge \sum_{j=1}^{p_n} \frac{1}{j}$$

et conclure.

- 5. Montrer que si le produit infini $\prod u_n$ est strictement convergent, la suite $(u_n)_{n\in\mathbb{N}}$ converge alors vers 1.
- 6. Montrer que le produit infini $\prod \left(1 + \frac{(-1)^n}{\sqrt{n+1}}\right)$ est convergent et calculer sa valeur.
- 7. Soit $(v_n)_{n\in\mathbb{N}}$ une suite de réels positifs ou nuls. Montrer que le produit infini $\prod (1+v_n)$ est strictement convergent si, et seulement si, la série $\sum v_n$ est convergente.
- 8. Soit $(v_n)_{n\in\mathbb{N}}$ est une suite de réels positifs tous différents de 1. Montrer que si $\lim_{n\to+\infty}v_n=0$, le produit infini $\prod (1-v_n)$ est alors convergent de limite nulle si la série $\sum v_n$ diverge et de limite non nulle si cette série converge.
- 9. Soit $\alpha > 1$ un réel.
 - (a) Montrer que le produit infini $\prod \frac{1}{1 \frac{1}{p_{\alpha}^{\alpha}}}$ est convergent.
 - (b) Montrer que:

$$\prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{p_n^{\alpha}}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

(formule d'Euler).

10. La formule d'Euler peut aussi se montrer en utilisant des arguments « probabilistes ». L'ensemble \mathbb{N}^* est muni munit de la tribu $\mathcal{P}(\mathbb{N}^*)$.

On rappelle que la fonction dzéta de Riemann est définie par :

$$\forall \alpha > 1, \ \zeta\left(\alpha\right) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

(a) Montrer que l'on définit une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ en posant :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}\left(\left\{n\right\}\right) = \frac{1}{\zeta\left(\alpha\right)} \frac{1}{n^{\alpha}}$$

(b) Montrer que:

$$\forall p \in \mathbb{N}^*, \ \mathbb{P}\left(p\mathbb{N}^*\right) = \frac{1}{p^{\alpha}}$$

où on a noté $p\mathbb{N}^*$ l'ensemble de tous les multiples positifs de p.

(c) Montrer que:

$$\mathbb{P}\left(\bigcap_{n=1}^{+\infty} \left(\mathbb{N}^* \setminus p_n \mathbb{N}^*\right)\right) = \frac{1}{\zeta\left(\alpha\right)}$$

(d) En déduire que :

$$\forall \alpha > 1, \ \prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{p_n^{\alpha}}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

- (e) Montrer que $\lim_{\alpha \to 1^+} \zeta(\alpha) = +\infty$ et déduire de la question précédente que $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$.
- 11. On se propose de montrer que, pour tout réel $x \in [-\pi, \pi]$, on a :

$$\sin(x) = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$$

- (a) Montrer que, pour tout réel $x \in \mathbb{R} \setminus \pi\mathbb{Z}$, le produit infini $\prod \left(1 \frac{x^2}{n^2\pi^2}\right)$ converge strictement.
- (b) Montrer que, pour tout entier naturel n, il existe un polynôme P_n de degré n tel que $\sin((2n+1)x) = \sin(x) P_n(\sin^2(x))$ pour tout réel x. On vérifiera que le coefficient dominant de P_n est $\alpha_n = (-1)^n 4^n$ et que $P_n(0) = 2n + 1$.
- (c) Déterminer les racines du polynôme P_n , pour $n \geq 1$.
- (d) Montrer que, pour tout réel $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et tout entier $n \geq 1$, on a :

$$\sin((2n+1)x) = (2n+1)\sin(x)\prod_{k=1}^{n} \left(1 - \frac{\sin^{2}(x)}{\sin^{2}(\frac{k\pi}{2n+1})}\right)$$
$$= (2n+1)\tan(x)\cos^{2n+1}(x)\prod_{k=1}^{n} \left(1 - \frac{\tan^{2}(x)}{\tan^{2}(\frac{k\pi}{2n+1})}\right)$$

(e) Montrer que pour $0 < x < y < \frac{\pi}{2}$, on a :

$$0 < \frac{\tan(x)}{\tan(y)} < \frac{x}{y} < \frac{\sin(x)}{\sin(y)}$$

4

- (f) Montrer que $\lim_{n \to +\infty} \cos^n \left(\frac{x}{n}\right) = 1$ pour tout réel $x \in]0, \pi[$.
- (g) Conclure.

- II - Un théorème de Cesàro

Pour tout entier $n \geq 2$, on note :

$$I_n = \{1, 2, \cdots, n\}$$

et \mathcal{D}_n l'ensemble de tous les diviseurs strictement positifs de n.

On note $\mathbb{R}^{\mathbb{N}^*}$ l'ensemble des suites définies sur \mathbb{N}^* et à valeurs réelles.

Le produit de convolution (de Dirichlet) de deux suites réelles u, v de $\mathbb{R}^{\mathbb{N}^*}$ est la suite u * v définie par :

 $\forall n \in \mathbb{N}^*, (u * v)(n) = \sum_{d \in \mathcal{D}_n} u(d) v\left(\frac{n}{d}\right)$

En notant $n = \prod_{i=1}^r p_i^{\alpha_i}$ la décomposition en facteurs premiers d'un entier $n \geq 2$ où $r \geq 1$, les p_i sont premiers deux à deux distincts et les α_i entiers naturels non nuls, on définit la fonction μ de Möbius par :

$$\forall n \in \mathbb{N}^*, \ \mu(n) = \begin{cases} 1 \text{ si } n = 1\\ (-1)^r \text{ si } n = \prod_{i=1}^r p_i \text{ (i. e. } n \text{ est sans facteurs carrés)}\\ 0 \text{ sinon} \end{cases}$$

La fonction indicatrice d'Euler est la fonction qui associe à tout entier naturel non nul n, le nombre $\varphi(n)$ d'entiers compris entre 1 et n qui sont premiers avec n (pour n = 1, on a $\varphi(1) = 1$).

1. Pour tout entier $n \in \mathbb{N}^*$ et tout $d \in \mathcal{D}_n$, on note :

$$S_d = \{k \in \{1, \cdots, n\} \mid k \land n = d\}$$

- (a) Montrer que les S_d , pour d décrivant \mathcal{D}_n , forment une partition de I_n et que, pour tout $d \in \mathcal{D}_n$, on a card $(S_d) = \varphi\left(\frac{n}{d}\right)$.
- (b) En déduire que :

$$\forall n \in \mathbb{N}^*, \ n = \sum_{d \in \mathcal{D}_n} \varphi(d)$$

(formule de Möbius).

2. Montrer que l'ensemble $\mathbb{R}^{\mathbb{N}^*}$ des suites définies sur \mathbb{N}^* et à valeurs réelles, muni des lois + et *, est un anneau commutatif unitaire.

On notera e l'élément unité.

3. Caractériser les éléments inversibles de l'anneau $(\mathbb{R}^{\mathbb{N}^*}, +, *)$.

4.

(a) En notant ω la suite constante égale à 1 (i. e. ω (n) = 1 pour tout $n \in \mathbb{N}^*$), montrer que $\mu * \omega = e$, c'est-à-dire que :

$$\forall n \ge 1, \ \sum_{d \in \mathcal{D}_n} \mu(d) = \begin{cases} 1 \text{ si } n = 1 \\ 0 \text{ si } n \ge 2 \end{cases}$$

(b) Montrer que si u, v dans $\mathbb{R}^{\mathbb{N}^*}$ sont telles que :

$$\forall n \in \mathbb{N}^*, \ u\left(n\right) = \sum_{d \in \mathcal{D}_n} v\left(d\right)$$

on a alors:

$$\forall n \in \mathbb{N}^*, \ v(n) = \sum_{d \in \mathcal{D}_n} \mu(d) u\left(\frac{n}{d}\right)$$

(formule d'inversion de Möbius).

5. Montrer que :

$$\forall n \in \mathbb{N}^*, \varphi(n) = \sum_{d \in \mathcal{D}_n} \mu(d) \frac{n}{d}$$

6. Montrer que si u, v dans $\mathbb{R}^{\mathbb{N}^*}$ sont telles que :

$$\forall n \in \mathbb{N}^*, \ u\left(n\right) = \sum_{d \in \mathcal{D}_n} v\left(d\right)$$

on a alors:

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u(k) = \sum_{d=1}^n \left[\frac{n}{d}\right] v(d)$$

7. Montrer que:

$$\forall n \in \mathbb{N}^*, \ \sum_{d=1}^n \mu(d) \left[\frac{n}{d}\right] = 1$$

8. Montrer que:

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^{n} \varphi\left(k\right) = \frac{1}{2} \left(\sum_{d=1}^{n} \mu\left(d\right) \left[\frac{n}{d}\right]^2 + 1\right)$$

9. Pour tout entier $n \geq 2$, on note r_n la probabilité pour que deux entiers a, b compris entre 1 et n soient premiers entre eux.

Montrer que:

$$\forall n \ge 2, \ r_n = \frac{1}{n^2} \left(2 \sum_{k=1}^n \varphi(k) - 1 \right) = \frac{1}{n^2} \sum_{d=1}^n \mu(d) \left[\frac{n}{d} \right]^2$$

- 10. Pour u, v dans $\mathbb{R}^{\mathbb{N}^*}$, le produit de Dirichlet des deux séries numériques $\sum u(n)$ et $\sum v(n)$ est la série $\sum u * v(n)$.
 - (a) On suppose que les suites u et v sont à valeurs réelles positives. Montrer que si les séries $\sum u(n)$ et $\sum v(n)$ sont convergentes, il en est alors de même de $\sum u * v(n)$ et on a :

$$\sum_{n=0}^{+\infty} u * v (n) = \left(\sum_{n=0}^{+\infty} u (n)\right) \left(\sum_{n=0}^{+\infty} v (n)\right)$$

(b) Montrer que si les séries $\sum u(n)$ et $\sum v(n)$ sont absolument convergentes, il en est alors de même de $\sum u * v(n)$ et on a :

$$\sum_{n=0}^{+\infty} u * v(n) = \left(\sum_{n=0}^{+\infty} u(n)\right) \left(\sum_{n=0}^{+\infty} v(n)\right)$$

- 11. À toute suite $u \in \mathbb{R}^{\mathbb{N}^*}$ on associe la série de fonctions $\sum \frac{u(n)}{n^x}$. On dit que cette série de fonctions est la série de Dirichlet associée à u.
 - (a) Soient u, v dans $\mathbb{R}^{\mathbb{N}^*}$. Montrer que si les séries de Dirichlet respectivement associées à u et v convergent absolument en un point x, alors la série de Dirichlet associée à u*v converge absolument en x et on a :

$$\left(\sum_{n=1}^{+\infty} \frac{u\left(n\right)}{n^x}\right) \left(\sum_{n=1}^{+\infty} \frac{v\left(n\right)}{n^x}\right) = \sum_{n=1}^{+\infty} \frac{u * v\left(n\right)}{n^x}$$

(b) Montrer que:

$$\sum_{n=1}^{+\infty} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}$$

(c) En déduire que $\lim_{n\to +\infty} r_n = \frac{6}{\pi^2}$ (théorème de Cesàro).