Lab 6

To Demonstrate the Working of Binary Subtractor

Note: You may draw all the logic diagrams with hand and paste the pictures here or on logicly software with your name, roll number & section mentioned in your workspace. Make sure that all of your connections are clearly visible and distinguishable.

Tasks

1. Construct a logic circuit for half and full subtractor with the help of truth table/Boolean expression. Also write the Boolean expression for output(s).

Half Subtractor

a) Truth Table

A	В	Difference	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

b) Boolean Expression (Simplified)

Difference:

$$D = A X - OR B = A \bigoplus B$$

Borrow:

$$B = NOT A AND B = A'.B$$

c) Logic Diagram

d) Software Simulation (Show here your results for each combination that gives a high output)

Full Subtractor

a) Truth Table

A	В	Borrow in	Difference	Borrow out
0	0	0	0	0
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0
0	0	1	1	1
1	0	1	0	0
0	1	1	0	1
1	1	1	1	1

b) Boolean Expression (Simplified)

Difference:

$$D = (A X-OR B) XOR B_{IN} = (A \bigoplus B) \bigoplus B_{IN}$$

Borrow:

 $B_{OUT} = (NOT \ A \ AND \ B) \ OR \ \{NOT \ (A \ X-OR \ B)\} \ B_{IN} = A'.B + \{(A \ \bigoplus \ B)\}'B_{IN} = A'.B + \{(A \ \bigoplus \ B)\}'B_$

c) Logic Diagram

d) Software Simulation (Show here your results for each combination that gives a high output)

- 2. A full subtractor can be implemented using 2-half subtractors. Demonstrate the logic diagram for the said circuit. Simulate your circuit for the verification of results.
 - a) Logic Diagram of Full Subtractor using 2-Half Subtractor

b) Software Simulation (Show here your results for each combination that gives a high output)

