### **Grade 10 Science**

Chemical Reactions
Class 2

### **Covalent Molecules**

- Covalent Molecules a pure substance formed from two or more non-metals
  - Ex: H<sub>2</sub>O, N<sub>2</sub>O (anaesthesia), NO<sub>2</sub> (smog)





#### **Covalent Bonds**

- Covalent bond the bond between nonmetals
  - Share electrons because neither has a strong enough attraction for the other's electrons
- Diatomic Molecules molecules that consist of two atoms joined with a single covalent bond
  - Ex: I<sub>2</sub> Br<sub>2</sub> Cl<sub>2</sub> F<sub>2</sub> O<sub>2</sub> N<sub>2</sub> H<sub>2</sub>(I Bring Clay For Our New House)



# **Naming Covalent Molecules**

- Name CO<sub>2</sub>
  - 1. Write the name of the elements.

Carbon Oxygen

2. Add a prefix to represent the number of atoms.

Carbon dioxygen

3. Change the ending to -ide.

Carbon dioxide

| Number | Prefix   |
|--------|----------|
| 1      | Mon(o)-  |
| 2      | Di-      |
| 3      | Tri-     |
| 4      | Tetr(a)- |
| 5      | Pent(a)- |
| 6      | Hex(a)-  |
| 7      | Hept(a)- |
| 8      | Oct(a)-  |
| 9      | Non(a)-  |
| 10     | Dec(a)-  |

# **Writing Molecular Formulas**

- Write the molecular formula for sulfur dioxide
  - 1. Write the element symbol.

S O

2. Add subscripts to the symbol for the prefix.

$$S_1 O_2 = SO_2$$

3. Do not simplify covalent compounds.





#### Name the following:

- a) CO
- b) PF<sub>5</sub>
- c) N<sub>2</sub>O

#### Write the chemical formula:

- d) Sulfur tetroxide
- e) Dinitrogen tetroxide
- f) Carbon disulfide

### **Summary**



#### Law of Conservation of Mass

- In any given reaction, the total mass of the reactants equals the total mass of the products
- Atoms cannot be created or destroyed



#### **Chemical Reactions**

|                    | Reactants     | yields        | Products                  |
|--------------------|---------------|---------------|---------------------------|
| Word equation:     | iron + sulfur | $\rightarrow$ | iron(II) sulfide + energy |
| Chemical equation: | Fe + S        | $\rightarrow$ | FeS + energy              |

- Chemical reactions creates a chemical change
- Reactants the materials used up
- Products the materials made

# **State Symbols**

 State symbols are often written behind the chemical formula to indicate the state of the substance

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s) + energy$$

| State symbol | Meaning                      |
|--------------|------------------------------|
| (s)          | solid                        |
| (1)          | liquid                       |
| (g)          | gaseous                      |
| (aq)         | aqueous (dissolved in water) |



## **Balancing Equations**

Skeleton Question:  $H_2 + Cl_2 \rightarrow HCl$ 

Number of Atoms: 2H + 2CI + 1H + 1CI

Add Coefficients:  $H_2 + Cl_2 \rightarrow 2HCl$ 

#### \*Coefficients vs. Subscripts

- Coefficients give the ratio of reactants and products in a reaction
- Subscripts give the ratio of elements in a chemical formula and cannot change in a reaction





Balance the following chemical reactions:

a) 
$$K_2O \rightarrow K + O_2$$

b) 
$$\underline{\quad}$$
 KCIO<sub>3</sub>  $\rightarrow$   $\underline{\quad}$  KCI +  $\underline{\quad}$  O<sub>2</sub>

c) 
$$\_AICI_3 + \_Na_2CO_3 \rightarrow \_AI_2(CO_3)_3 + \_NaCI$$

d) \_\_NaOH + \_\_H<sub>2</sub>SO<sub>4</sub> 
$$\rightarrow$$
 \_\_Na<sub>2</sub>SO<sub>4</sub> + \_\_H<sub>2</sub>O

e) 
$$N_2O_5 \rightarrow N_2O_4 + O_2$$



# Checkpoint



#### Write the balanced chemical reaction of:

- a) Magnesium with oxygen
- b) Methane (CH<sub>4</sub>) burns in oxygen to produce carbon dioxide and water
- Zinc metal reacts in silver nitrate solution to produce zinc nitrate and silver metal

# **Types of Chemical Reactions**

• Synthesis – 2 reactants → 1 product



Decomposition – 1 reactant → 2 products



# **Types of Chemical Reactions**

- Synthesis
- Decomposition
- Single Displacement
- Double Displacement
- Combustion
- Neutralization

## **Applications of Decomposition**

- Airbags
  - Contain Sodium Azide (NaN<sub>3</sub>)
  - During an accident, electricity triggers the decomposition of Sodium Azide to produce Nitrogen gas and Sodium metal

 $2NaN_3 \rightarrow 3N_2(g) + 2Na(s)$ 



## **Types of Reactions**

Single Displacement - A + BC → AC + B



Double Displacement – AB + CD → AD + CB







- Precipitate a solid formed from the reaction of two solutions
- Many double displacement reactions form a precipitate

Pb(NO<sub>3</sub>)<sub>2</sub> (aq) + 2KI(aq) 
$$\rightarrow$$
  
PbI<sub>2</sub>(s) + 2KNO<sub>3</sub>(aq)

# **Combustion of Hydrocarbons**

- Complete Combustion occurs when there is enough oxygen to form CO<sub>2</sub>, water and energy
   Ex: CH<sub>4</sub> + 2O<sub>2</sub> → CO<sub>2</sub> + 2H<sub>2</sub>O + energy
- Incomplete Combustion occurs where oxygen supply is limited to form CO<sub>2</sub>, CO, carbon soot, water and energy

$$- Ex: C_4H_{10} + 5O_2 \rightarrow 2CO_2 + 5H_2O + CO + C + energy$$

## **Dangers of Carbon Monoxide**

- Carbon monoxide displaces oxygen in the blood and deprives the heart, brain, and other vital organs of oxygen
- Carbon monoxide is colourless, odourless, and tasteless
- Symptoms of Carbon monoxide poisoning:
  - Headache
  - Fatigue
  - Dizziness
  - Drowsiness



#### **POTENTIAL DANGER ZONES**



#### Carbon Monoxide: Silent Killer

- On Oct. 24, 1993, Robert Latimer killed his 13year old daughter Tracy by placing her in the family truck and piping the exhaust fumes containing carbon monoxide into it
- Tracy had a severe form of cerebral palsy and suffered considerable pain
  - Father killed her to relieve her of her pain
- Triggered debates around health ethics and euthanasia

### **Other Forms of Combustion**



Combustion of Hydrogen

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + energy$$

 Hydrogen is the fuel; derived from the reverse reaction





- $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(g) + energy$ 
  - Red phosphorus is on the striking strip of a matchbox; heat ignites the chemicals in the head of the match





Balance the following combustion reactions:

- a) Propane (C<sub>3</sub>H<sub>8</sub>)
- b) Ethene (C<sub>2</sub>H<sub>4</sub>)
- c) Octane (C<sub>8</sub>H<sub>18</sub>)

#### **Corrosion**

- Corrosion the breakdown of a metal due to chemical reactions with its environment
- Benefits of Corrosion:
  - Ex:  ${\rm Al_2O_3}$  is a hard substance that prevents the underlying aluminum metal from corroding
  - Ex: Patina the green coating that forms when copper is exposed to air

#### Disadvantages of Corrosion:

- Rust (Fe<sub>2</sub>O<sub>3</sub>) corrosion of iron when exposed to water and oxygen
  - Rust is porous and flakes off allowing further corrosion to occur until the underlying metal is completely corroded
  - Salt speeds up the process





### **Preventing Corrosion**





- Protective Coatings cover the metal with paint, chrome or plastic coating
- Corrosion-Resistant Materials use plastic or alloys (stainless steel – iron, carbon, nickel and chromium)
- Galvanizing steel coated with a thin layer of zinc; zinc corrodes and forms a protective oxide layer





Balance and classify the following reactions:

a) 
$$\_Al + \_CuCl_2 \rightarrow \_AlCl_3 + \_Cu$$

b) 
$$_{H_2O} \rightarrow _{H_2} + _{O_2}$$

c) 
$$\_Cu + \_Cl_2 \rightarrow \_CuCl$$

d) 
$$\_SrCl_2 + \_Al_2O_3 \rightarrow \_SrO + \_AlCl_3$$

e) 
$$\_C_6H_{14} + \_O_2 \rightarrow \_CO_2 + \_H_2O$$