COMP 472: Artificial Intelligence Machine Learning pert #2 Decision Trees video #4

Russell & Norvig: Sections 19.3

Today

- Introduction to ML
- 2. Naive Bayes Classification
 - Application to Spam Filtering
- Decision Trees YOU ARE HERE!
- 4. (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Guess Who?

Decision Trees

- Simplest, but most successful form of learning algorithm
- Very well-know algorithm is ID3 (Quinlan, 1987) and its successor C4.5
- 1. Rank features based on how good they are to indicate the
- 2. Put the most discriminating feature as a node (as a question) of a tree. Training
- 3. Split the examples so that those with different values for the chosen feature are in a different set
- Repeat the same process with the nest most discriminating feature

Example 1

Info on last year's students to determine if a student will get an 'A' this year

		Featur		Output f(X)		
Student	'A' last <u>fl</u> year?	Black hair? +2	Works ★3	Drinks?	'A' this year?	
X1: Richard	Yes	Yes	No	Yes	No .	
X2: Alan	Yes	Yes	Yes	No	Yes	
X3: Alison	No	No	Yes	No	No	
X4: Jeff	No	Yes	No	Yes	No	
X5: Gail	Yes	No	Yes	Yes	Yes	
X6: Simon	No	Yes	Yes	Yes	No	

Example 1

A random decision tree that

fits the dataset with 100%.

Output = No

100/.

Output = Yes

100/.

some data set ap ple vious selide									
		Output f(X)							
Student	'A' last Black year?F) hair?		Works hard? 🔧	Drinks ?	'A' this year?				
Richard	Yes	Yes	No	Yes	→ No .				
Alan	Yes	Yes	>Yes	No	yes,				
Alison	No	No	Yes	No	No				
Jeff	No -	Yes	No	Yes	20				
Gail	Yes	No	Yes	Yes	Yes				
Simon	70	Yes	Yes	Yes	No				

of the training set with 100% accuracy. but the features are chosen at raindom so there might be a shorter DT

Example 2: The Restaurant

- Goal: learn whether one should wait for a table
- Attributes
 - 1. Alternate: another suitable restaurant nearby
 - 2. Bar: comfortable bar for waiting
 - 3. Fri/Sat: true on Fridays and Saturdays
 - 4. Hungry: whether one is hungry
 - 5. Patrons: how many people are present (none, some, full)
 - 6. Price: price range (\$, \$\$, \$\$\$)
 - 7. Raining: raining outside
 - 8. Reservation: reservation made
 - 9. Type: kind of restaurant (French, Italian, Thai, Burger)
 - 10. WaitEstimate: estimated wait by host (0-10 mins, 10-30, 30-60, >60)

10 of

Example 2: The Restaurant

Training data:

	I raining data:											- Plan
	Example		-			At	tributes	}	3.9			Target
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Ţ	Some	\$\$\$	F	Т	French	0–10	1-
	X_2	Т	F	F	T	Full	\$	F	F	Thai	30–60	(F)
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	
.	X_4	Т	F	Т	T	Full	\$	F	F	Thai	10-30	
NO	$X_{1} \cap X_{2} \cap X_{3}$	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	T (Some	\$\$	Т	Т	Italian	0-10	
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	
	X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
	X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30–60	T

A First Decision Tree

But is it the best decision tree we can build?

Ockham's Razor

It is vain to do more than can be done with less... Entities should not be multiplied beyond necessity.
[Ockham, 1324]

- In other words... always favor the simplest answer that correctly fits the training data
- i.e. the smallest tree on average
- This type of assumption is called inductive bias
 - inductive bias = making a choice beyond what the training instances contain

Which Tree is Best?

A Better Decision Tree

- 4 tests instead of 9
- 11 branches instead of 21

Choosing the Next Feature

- The key problem is choosing which feature to split a given set of examples
- Different measures have been proposed
- ID3 uses Maximum Information-Gain
 - i.e. we choose the feature that has the largest information gain
 - we expect this feature to result in the smallest tree on average
 - based on information theory

Essential Information Theory

- Developed by Shannon in the 40s
- Shannon developed the notion of entropy (aka information content) of a random variable (RV)
- Entropy measures how "predictable" a RV is
 - If you already have a good idea about the answer (e.g. 90/10 split)
 - → low entropy // sure thing
 - □ If you have no idea about the answer (e.g. 50/50 split)
 - → high entropy // Total choop

Dartmouth Conference: The Founding Fathers of AI

athaniel Rochester

Entropy

- Let X be a discrete RV with i possible outcomes x_i
- Entropy (or information content) of X

$$H(X) = \sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

measures:

- the amount of information in a RV
- average uncertainty of a RV
- ullet average length of a message needed to transmit an outcome x_i of that RV when encoded optimally over a binary channel
- measured in bits

Entropy of a Coin Toss

$$H(X) = -\sum_{x_i \in X} p(x_i) \log_2 p(x_i)$$

Entropy (or information content)

policy "here of the tall"

 $H(fair coin toss) = -\sum_{x_i \in X} p(x_i) \log_2 p(x_i) = H(\frac{1}{2}, \frac{1}{2})$

 $= -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \left(\frac{1}{2}\log_2\frac{1}{2}\right) = 1 \text{ bit}$

entropy of a fair coin toss (the RV) with 2 possible outcomes, each with a probability of 1/2

a RV with only 2 outcomes x_1 and x_2 will have $1 \ge H(X) \ge 0$ // sure Thing

-1/total chaos

Example: The Coin Toss

■ Fair coin:
$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) = -\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}\right) = 1 \text{ bit}$$

Rigged coin:
$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) = -\left(\frac{99}{100} \log_2 \frac{99}{100} + \frac{1}{100} \log_2 \frac{1}{100}\right) = 0.08 \text{ bits}$$

fair coin -> high entropy

rigged coin -> low entropy

P(head)

So what?

Training data:

Jor each peolice much when the strip will reduce the swill compute how will reduce the survey of the class

Example		\wedge			At	tributes	108	ll.x	02		T	arget	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	V	Vait	
$\nearrow X_1$	Т	F	F!	Τ	Some	\$\$\$	F	Т	French	0-10	V	T.	2
$\nearrow X_2$	Т	F /	F	T	Full	\$	F	F	Thai	30-60		F.	a
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10		T -	
X_4	T	F	T	†	Full	\$	F	F/	Thai	10-30		T.	
X_5	Т	F	T	Ħ	Full	\$\$\$	F	T/	French	>60		F.	
X_6	F	Т	F	T\	Some	\$\$	Т	/ T	Italian	0-10		T,	
X_7	F	Т	F	F\\	None	\$	Т	/ F	Burger	0-10		F·	
X_8	F	F	F	T \	Some	\$\$	Т /	Т	Thai	0-10		T	
X_9	F	Т	T	F	Full	\$	т/	F	Burger	>60		F	
X_{10}	Т	Т	T	Т	Full	\$\$\$	F/	Т	Italian	10-30		F.	
X_{11}	F	F	F	F	None	\$	l ₹	F	Thai	0-10		F.	
X_{12}	T	T	\T/	Т	Full	\$	/F	F	Burger	30–60		T'	

source: Norvig (2003)

18

Information Gain

information gain

- measure the entropy reduction of a RV, once a piece of information is known
- used to measure the "discriminating power" of an attribute A given a data set 5
- Let $\sqrt{\text{alues}(A)}$ = the set of values that attribute A can take
- Let S_v = the set of examples in the data set which have value v for attribute A (for each value v from Values(A))

 // See S | S

information gain (or entropy reduction)

$$gain(S, A) = H(S) - H(S|A)$$

$$= H(S) - \sum_{v \in values(A)} S_v \times H(S_v)$$

Some Intuition H(output) = 1 1/ total chaos

Size	Color	Shape	Output							
Big	Red	Circle	(
Small	Red	Circle	+							
Small	Red	Square								
Big	Blue	Circle								

- Size is the least discriminating attribute (i.e. smallest information gain)
- Shape and color are the most discriminating attributes (i.e. highest information gain)

A Small Example (1) Lt's try F2 = color

Size	Color	Shape	Output	
Big (Red	Circle	(+) ∞,	
Small	Red	Circle		
Smah	Red	Square	A Z.	$/\!$
Big /	Blue	Cirele		
12			B	

 $Values(Color) = \{red, blue\}$

$$| (5) | = -\frac{2 \log_2 2}{4 \log_2 4} = 1 / to to 1$$

gain(S, Color) = H(S) -
$$\sum_{v \in values(Color)} \frac{|S_v|}{|S|} \times H(S_v)$$
not knowing anything

for/each v of Values(Color),

H(S|Color=red) = H(
$$\frac{2}{3}$$
) = -($\frac{2}{3}$ log₂ $\frac{2}{3}$ + $\frac{1}{3}$ log₂ $\frac{1}{3}$) = 0.918)

.
$$H(S|Color = blue) = H(1,0) = (\frac{1}{1}log_2\frac{1}{1}) = 0$$
 | Sure thing

$$gain(Color) = H(S) - H(S|Color) = 1 - 0.6885 = 0.3115$$

Note: by definition,

1 time out of 4 we have

3 times out of 4 we have a

A Small Example (2)

F3

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$

H(S|Shape) =
$$\frac{3}{4}$$
(0.918) + $\frac{1}{4}$ (0) = 0.6885
gain(Shape) = H(S) - H(S|Shape) = 1 - 0.6885 (0.3115

A Small Example (3)

Fl

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$

$$H(S|Size) = \frac{2}{4}(1) + \frac{2}{4}(1)$$

gain(Size) = $H(S) - H(S|Size) = 1-1=0$

A Small Example (4)

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-

 So first separate according to either <u>color</u> or <u>shape</u> (root of the tree)

A Small Example (4)

all instances in

blue

Color

	Let's	assume	we	pick	Col	or t	for t	the	root
--	-------	--------	----	------	-----	------	-------	-----	------

	Size	Color	Shape	Output
()	Big	Red -	Circle >	+
	Small	Red -	Circle /	+
L	Small	Red *	Square -	-)
	Big	Blue	Circle	-

$$\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}$$

for each v of Values(Size)

$$H(S_2 | Size = big) = H(\frac{1}{1}, \frac{0}{1}) = 0$$

$$H(S_2 | Size = small) = H(\frac{1}{2}, \frac{1}{2}) = 1$$

$$H(S_2 | Size) = \frac{1}{3}(0) + \frac{2}{3}(1)$$

$$gain(Size) = H(S_2) - H(S_2 | Size)$$

$$H(S_2 | Shape = circle) = H(\frac{2}{2}, \frac{0}{2}) = 0$$

$$H(S_2 | Shape = square) = H_1 \left(\frac{0}{1}, \frac{1}{1} \right) = 0$$

H(S2 | Shape)

 $gain(Shape) = H(S_2) - H(S_2 | Shape)$

Back to the Restaurant Pich juso sain

Training data:

	-					5.77				$\overline{}$	
Example			\ —	-	— At	ttributes	3				Target
	(Alt)	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	(Est)	Wait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0-10	T
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	T
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	T
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30–60	4

source: Norvig (2003)

The Restaurant Example

$$gain(alt) = ... \quad gain(bar) = ... \quad gain(fri) = ... \quad gain(hun) = ...$$

$$gain(pat) = 1 - \left(\frac{2}{12} \times H\left(\frac{0}{2}, \frac{2}{2}\right) + \frac{4}{12} \times H\left(\frac{0}{4}, \frac{4}{4}\right) + \frac{6}{12} \times H\left(\frac{2}{6}, \frac{4}{6}\right)\right)$$

$$= 1 - \left(\frac{2}{12} \times - \left(\frac{0}{2} \log_2 \frac{0}{2} + \frac{2}{2} \log_2 \frac{2}{2}\right) + \frac{4}{12} \times - \left(\frac{0}{4} \log_2 \frac{0}{4} + \frac{4}{4} \log_2 \frac{4}{4}\right) + ...\right) \approx 0.541 \text{bits}$$

$$gain(price) = ... \quad gain(rain) = ... \quad gain(res) = ...$$

$$gain(type) = 1 - \left(\frac{2}{12} \times H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{2}{12} \times H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{4}{12} \times H\left(\frac{2}{4}, \frac{2}{4}\right) + \frac{4}{12} \times H\left(\frac{2}{4}, \frac{2}{4}\right) = 0 \text{ bits}$$

$$gain(est) = ...$$

- Attribute pat (Patron) has the highest gain, so root of the tree should be attribute Patrons
- do recursively for subtrees

Decision Boundaries of Decision Trees

Decision Boundaries of Decision Trees

Decision Boundaries of Decision Trees

Decision Boundaries of Decision Trees Feature 2/2/t1 Feature 1 Feature 1/2/t2 0 Feature 2 Feature 2/2/t3

Applications of Decision Trees

- One of the most widely used learning methods in practice
 - Fast
 - Simple
 - Traceable (<-- very important!)</p>

Today

- Introduction to ML
- Naïve Bayes Classification
 - Application to Spam Filtering
- Decision Trees
- (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Up Next

Introduction to ML Vaive Bayes Classification Application to Spam Filtering Decision Trees Evaluation

- Unsupervised Learning()
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks