 Neka je p prava čija je jednačina p: x+y = 3∧y = 3. Napisati jedinični vektor prave p: p = (, ,) i koordinate tačke A prave p koja je najbliža koordinatnom početku O(0,0,0): A(, ,). Ako je f: V → W bijektivna linearna transformacija, tada: 1) f bijekcija 2) V i W su izomorfni 3) f(V) je potprostor od W 4) dim(V) ≤ dim(W) 5) dim(V) ≥ dim(W) Za svaku injektivnu linearnu transformaciju f: R → R i svako x, y ∈ R tačno je: 6) f(1) = 1 f(0) = 0 8) f(0) = 1 9) f(xy) = f(x)f(y) 10) f(xy) = x f(y) 11) f(-x) = -x f(λv) = f(λ) + f(v) za svako λ ∈ R, v ∈ R
• Zaokružiti vektorske prostore: 1) $(V, \mathbb{R}, +, \times)$, gde je V skup slobodnih vektora, $+$ je sabiranje slobodnih vektora, a \times je vektorski proizvod slobodnih vektora 2) $(V, \mathbb{R}, +, \cdot)$, gde je V skup slobodnih vektora, $+$ je sabiranje slobodnih vektora, a \cdot je skalarni proizvod slobodnih vektora 3) $(\mathcal{F}, \mathbb{R}, +, \cdot)$, gde je $\mathcal{F} = \{f \mid \mathbb{R} \to \mathbb{R}\}$, i za sve $\lambda \in \mathbb{R}$ i sve $f, g \in \mathcal{F}$ je $(\lambda f)(x) = \lambda f(x), x \in \mathbb{R}$ i $(f + g)(x) = f(x) + g(x), x \in \mathbb{R}$ 4) $(\mathcal{M}, \mathbb{R}, +, \cdot)$, gde je \mathcal{M} skup svih matrica 2×2 nad poljem \mathbb{R} , $+$ je sabiranje matrica, a \cdot je množenje matrica skalarom
\bullet U vektorskom prostoru $(\mathbb{R}^3,\mathbb{R},+,\cdot)$ navesti sve vektorske podprostore.
\bullet Linearna transformacija $f:\mathbb{R}^2\to\mathbb{R}^2, f(x,y)=(x-y,2x+ay)$ je izomorfizam akko $a\in___$
• Za svaku linearnu transformaciju $f: \mathbb{R} \to \mathbb{R}$ i svako $x, y, \lambda, v \in \mathbb{R}$ tačno je: 1) $x = 0 \Leftarrow f(x) = 0$ 2) $f(0) = 0$ 3) $f(2xy) = f(x)f(2y)$ 4) $f(xy) = x f(y)$ 5) $f(x) = ax + 1$ za neko $a \in \mathbb{R}$ 6) $f(2\lambda + v) = 2f(\lambda) + f(v)$

• Neka su $\mathbf{a_1} = (a_{11}, \dots, a_{n1}), \mathbf{a_2} = (a_{12}, \dots, a_{n2}), \dots, \mathbf{a_n} = (a_{1n}, \dots, a_{nn})$ vektori kolone matrice

je $\mathbf{a_i}^2$ skalarni proizvod vektora $\mathbf{a_i}$ sa samim sobom. Tada je:

• Postoji linearna transformacija $f: \mathbb{R}^3 \to \mathbb{R}^2$ za koju važi da je:

 \bullet Postoji linearna transformacija $f:\mathbb{R}^2 \to \mathbb{R}^3$ za koju važi da je:

3) bijektivna

3) bijektivna

2) bijektivna

vektorski prostor izomorfan prostoru V. Zakruži tačan odgovor DA NE

• Za svaki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi:

6) A je regularna 7) det $A \neq 0$ 8) ništa od prethodnog

f

2) injektivna

2) sirjektivna

prethodnog

macija f: 1) injektivna

formacija f: 1) sirjektivna

1) $\mathbf{a_1} = \dots \mathbf{a_n} = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$ 2) $\dim V = 0 \Leftrightarrow rang A = 0$ 3) $\dim V = 0 \Leftrightarrow \mathbf{a_1} = \dots \mathbf{a_n} = 0$ 4) $\dim V = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$ 5) $\operatorname{rang} A = 0 \Leftrightarrow \mathbf{a_1} = \dots \mathbf{a_n} = 0$ 6) $\operatorname{rang} A = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$

• Linearne transformacije $f: \mathbb{R}^2 \to \mathbb{R}^3$, $g: \mathbb{R}^2 \to \mathbb{R}$ i $h: \mathbb{R} \to \mathbb{R}$ su uvek oblika:

 $A = A_{nn} = [a_{i,j}]_{nn}$, neka je $V = \text{Lin}(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}) = \{\alpha_1 \mathbf{a_1} + \alpha_2 \mathbf{a_2} + \dots + \alpha_n \mathbf{a_n} | \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\}$ i neka

• Za svaki vektorski prostor V i svaku sirjektivnu linearna transformaciju $f:V\to V$ sledi da je transfor-

• Za svaki vektorski prostor V i svaku injektivnu linearna transformaciju $f:V\to V$ sledi da je trans-

• Za svaki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi: 1) f je injektivna 2) postaoji A^{-1} 3) n = m 4) f je sirjektivna 5) f je bijektivna 6) A je regularna 7) det $A \neq 0$ 8) ništa od

• Za **svaki** vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skupsvih rešenja je

2) bijektivna 3) izomorfizam

1) f je injektivna 2) postoji A^{-1} 3) n=m 4) f je sirjektivna 5) f je bijektivna

3) izomorfizam

h

4) ništa od prethodnog.

4) ništa od prethodnog

4) izomorfizam

4) izomorfizam

1) sirjektivna

1) injektivna

5) ništa od prethodnog

5) ništa od prethodnog.

• Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su **nekolinearni** ako i samo ako: **1**) $\vec{a} \times \vec{b} \neq 0$ **2**) $\vec{a} \cdot \vec{b} = 0$ **3**) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ **4**) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \leq 2$ **5**) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 2$ **6**) \vec{a} i \vec{b} su zavisni **7**) $(\exists \lambda \in \mathbb{R}) \vec{a} \neq \lambda \vec{b}$ **8**) $(\forall \lambda \in \mathbb{R}) \vec{a} \neq \lambda \vec{b}$ **9**) $(\forall \lambda \in \mathbb{R}) (\vec{a} \neq \lambda \vec{b} \wedge \lambda \vec{a} \neq \vec{b})$ **10)** $\vec{a} \parallel \vec{b}$ **11)** $(\forall \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \land \alpha^2 + \beta^2 = 0$ **12)** $(\forall \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \Rightarrow \alpha^2 + \beta^2 = 0$. • Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ su **nekomplanarni** ako i samo ako:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$ 4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$ 5) $(\forall \alpha, \beta, \gamma \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \land \alpha^2 + \beta^2 + \gamma^2 = 0$ 6) $(\vec{a}, \vec{b}, \vec{c})$ je zavisna 7) $(\forall \alpha, \beta, \gamma \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 0$ 8) $\vec{a}(\vec{b} \times \vec{c}) = 0$ 9) $(\exists \alpha, \beta \in \mathbb{R}) \vec{a} = \alpha \vec{b} + \beta \vec{c}$. • Neka je $f: V \to \{\alpha \vec{i} \mid \alpha \in \mathbb{R}\}$, gde je V skup svih slobodnih vektora, definisana sa $f(\vec{x}) = (\vec{i}\vec{x})\vec{i}$. Tada je f: 3) sirjektivna 4) bijektivna 5) izomorfizam 1) linearna transformacija 2) injektivna • Izračunati bar jedan nenula vektor \vec{n} koji je normalan i na vektor $\vec{i} - \vec{j}$ i na vektor $\vec{i} - \vec{k}$. $\vec{n} =$ • U vektorskom prostoru ($\mathbb{R}^3, \mathbb{R}, +, \cdot$) navesti po jedan primer vektorskog podprostora koji je redom dimenzije 0,1,2 i 3. Primer navesti jednačinom ili geometrijskim opisom. • Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su kolinearni ako : 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 2$ 5) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ 6) \vec{a} i \vec{b} su nezavisni 7) $(\exists \lambda \in \mathbb{R})$ $\vec{a} = \lambda \vec{b}$ 8) $\vec{a} \parallel \vec{b}$ 9) $(\exists \lambda \in \mathbb{R})$ $(\vec{a} = \lambda \vec{b} \vee \lambda \vec{a} = \vec{b})$ **10)** $(\exists \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \land \alpha^2 + \beta^2 \neq 0$ • Ako su $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ kolinearni, tada važi: 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2$ 5) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ 6) \vec{a} i \vec{b} su zavisni 7) $(\exists \lambda \in \mathbb{R})$ $\vec{a} = \lambda \vec{b}$ 8) $\vec{a} \parallel \vec{b}$ 9) $(\exists \lambda \in \mathbb{R})$ $(\vec{a} = \lambda \vec{b} \vee \lambda \vec{a} = \vec{b})$ **10)** $(\exists \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \land \alpha^2 + \beta^2 \neq 0$ • Ako je f(xy) = f(x)f(y), tada $f: \mathbb{R} \to \mathbb{R}$ 1) jeste linearna transformacija 2) nije linearna transformacija 3) može a ne mora biti linearna transformacija 4) jeste linearna transformacija ako je $f(\alpha x) = \alpha f(x)$ • Ako je $f: V \to W$ izomorfizam, tada je: 1) postoji f^{-1} 2) V i W su izomorfii 3) V = W4) za svaku nezavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je nezavisna u W5) za svaku zavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je zavisna u W• Napisati analitičke izraze za funkcije $f, g, h, s, t, u, v : \mathbb{R}^2 \to \mathbb{R}^2$, čije su geometrijske interpretacije redom: Osna simetrija u odnosu na x-osu: f(x,y) = 0Osna simetrija u odnosu na y-osu: g(x,y) = 0Osna simetrija u odnosu na pravu y = -x: h(x, y) = 0Osna simetrija u odnosu na y = x: s(x, y) = 0Centralna simetrija u odnosu na koordinatni početak: t(x,y) = 0Rotacija za 90° oko koordinatnog početka: u(x, y) = 0Projekcija na x-osu: v(x,y) = 0Od navedenih funkcija linearne transformacije su: , izomorfizmi su: