ΛΥΣΗ

α) Η συνάρτηση f είναι άρτια, διότι:

Για κάθε $x \in \mathbb{R}$, το $-x \in \mathbb{R}$ και ισχύει ότι $f(-x) = e^{|-x|} = e^{|x|} = f(x)$.

β) Αρκεί να αποδείξουμε ότι $f(x) \ge f(0)$ για κάθε $x \in \mathbb{R}$. Ισοδύναμα έχουμε ότι

$$e^{|x|} \ge e^0 \stackrel{e^x \uparrow}{\Longleftrightarrow} |x| \ge 0$$
,

η οποία ισχύει για κάθε $x \in \mathbb{R}$. Η ισότητα ισχύει μόνο όταν x = 0.

Επομένως, η f παρουσιάζει ελάχιστο στο x = 0 και η ελάχιστη τιμή της είναι η f(0) = 1.

$$y$$
) Av $x \ge 0$, τότε $|x| = x$ και $f(x) = e^x$.

Av
$$x < 0$$
, τότε $|x| = -x$ και $f(x) = e^{-x}$.

Έτσι προκύπτει η δίκλαδη συνάρτηση $f(x) = \begin{cases} e^{-x}, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, η οποία σύμφωνα με το ερώτημα α) είναι άρτια. Οπότε είναι συμμετρική ως προς τον άξονα y'y.

Επομένως, αποτελείται από την γραφική παράσταση της $h(x)=e^x$, $x\geq 0$ και την συμμετρική της h ως προς τον άξονα y'y για x<0.

Επιπλέον, από το ερώτημα β) γνωρίζουμε ότι η f παρουσιάζει ελάχιστο στο x=0 και η ελάχιστη τιμή της είναι η f(0)=1.

Επομένως η γραφική παράσταση της f δίνεται από το παρακάτω σχήμα:

δ) Έχουμε αποδείξει ότι $f(x) \geq 1$ για κάθε $x \in \mathbb{R}$, με την ισότητα να ισχύει μόνο όταν x=0.

Για την συνάρτηση $g(x)=\sigma vvx$, $x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ γνωρίζουμε ότι έχει μέγιστη τιμή το 1 στη θέση x=0. Επομένως, είναι $g(x)\leq 1\leq f(x)$ με την ισότητα να ισχύει μόνο για x=0. Ως εκ τούτου, οι γραφικές παραστάσεις των συναρτήσεων f και g έχουν μοναδικό κοινό σημείο το A(0,1).

Τα παραπάνω φαίνονται στο επόμενο σχήμα:

