Assignment 3

1

1.A

Longest duration

For this counter example assume that we are scheduling tasks

Task ID	Start Time	End Time	Duration
1	1	4	3
2	1	3	2
3	3	5	2

If tasks are scheduled by longest duration only task 1 would be scheduled where as by using earliest finish time both tasks 2, and 3 can be scheduled

Lowest task ID

Task ID	Start Time	End Time	Duration
1	1	4	3
2	1	3	2
3	3	5	2

If tasks are scheduled by lowest task ID only task 1 would be scheduled where as by using earliest finish time both tasks 2, and 3 can be scheduled

Latest finish time

Task ID	Start Time	End Time	Duration
1	1	4	3
2	1	2	1
3	2	3	1

If tasks are scheduled by latest finish time only task 1 would be scheduled where as by using earliest finish time both tasks 2, and 3 can be scheduled

Assume that Q is the optimal solution (fitting the most amount of tasks possible) and \hat{Q} is is the latest start time approach

In the first step: if the **greedy** choice is made (latest start time) the optimal solution is still possible as the start time for the task chosen in this step is \geq the start time for all other tasks.

This choice reduces the problem to a smaller task scheduling problem from Start -> T1_start instead of Start -> End. Continuing with further steps leads to the optimal solution.

Inductive Hypothesis: Assume that for a problem of size k, the greedy strategy yields an optimal solution.

Inductive Step: Prove that the hypothesis holds for the problem of size k + 1.

If the greedy choice is made for the first task, the problem size reduces to k. By the inductive hypothesis, the greedy strategy yields an optimal solution for the remaining k tasks. Hence, the greedy strategy yields an optimal solution for the problem of size k+1.

1.C

Counter example:

Suppose we have three activities with their start times, finish times, and costs as follows:

Task ID	Start Time	End Time	Cost
1	1	3	2
2	4	6	2
3	2	5	1

By utilizing the greedy choice of earliest finish time we would get:

with a total cost of 4 while the optimal solution would be:

With a total cost of 1

... By counter example the greedy choice of earliest finish time will not yield an optimal solution for this new problem

YPPTPQTPYYTPTQPAYPT

2A

In the string VPPTPQTPYYTPTQPAYPT there are 19 characters and each character is encoded with 8bits in ASCII therefore 152 bits are needed to encode this string.

2.B

1. Find the frequency of each character in the string

Letter	Frequency
Υ	4
Р	7
Т	5
Q	2
А	1

2. Sort the characters in increasing order of frequency

Letter	Frequency
А	1
Q	2
Υ	4
Т	5
Р	7

3. Build a Huffman tree from the frequency data

4. Traverse the Huffman tree and build the encodings for each character found in the input file

Letter	Encoding
Р	0
Т	10
Υ	111
Q	1101
Α	1100

- 6. Output the codeword

2.C

2.D

ABCDABCDABCDABCD

In the above string since there are only four characters and they all have the same frequency the codeword for all characters is two bits long.

Item #	Weight	Value	Density V/W
1	3	15	5
2	6	24	4
3	4	12	3
4	2	16	8

3.A

Using the following algorithm:

	Capacity	0	1	2	3	4	5	6	7	8
Items										
0		0	0	0	0	0	0	0	0	0
1		0	0	0	15	15	15	15	15	15
2		0	0	0	15	15	15	24	24	24
3		0	0	0	15	15	15	24	27	27
4		0	0	16	16	16	31	31	31	40

the optimal solution would be 40

3.B

For a bag with capacity 8 a greedy algorithm that uses the **density** as its greedy choice would yield items [4, 1] as its choices the knapsack ends up with a value of 31 and a weight of 5/8 where as the

optimum solution would choose items [2, 4] and have a value of 41 and a weight of 8/8.

3.C

When solving the fractional knapsack problem the greedy algorithm would output:

items	Total weight	Value	Percentage	total
4	2/8	16	1	16
1	5/8	15	1	31
2	8/8	12	0.5	43

The result is 43 which is the optimum solution

4

4.A

$$[1, 5, 2, 6, 3]$$

1 + (5 x 2) + (6 x 3) = 29

4.B

A Naive solution to this problem would be to go through all possible outcomes for a sequence of numbers and return the version that had the highest value.

For a sequence of length n for each pair of contiguous integers, we have 2 choices: we can either insert an addition operation or a multiplication operation. Therefore the time complexity for this problem would be $O(2^n)$

4.C

A counter example to a greedy approach would be:

In the greedy approach the outcome would be:

$$1 + (2 \times 3) + 4 = 11$$

Where as the optimum solution is:

$$(1 \times 2) + (3 \times 4) = 14$$

4.D

$$V[j] = \begin{cases} 0 & \text{if } j = 0 \\ x_1 & \text{if } j = 1 \\ \max(V[j-1] + V[j], V[j-2] + V[j-1] \times V[j]) & \text{if } j \geq 2 \end{cases}$$

4.E

```
def max_product_sum(X):
ln = len(X)
V = [0]*ln
V[0] = X[0]
V[1] = max(X[0] + X[1], X[0] * X[1])
for j in range(2, ln):
    V[j] = max(V[j-1] + X[j], V[j-2] + X[j-1] * X[j])
return V[ln-1]
```

The running time for this algorithm is O(n)