This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-140933

(43)公閒日 平成7年(1995)6月2日

(51) Int. Cl. 6

識別記号

庁内整理番号

FI

技術表示箇所

G 0 9 G 3/36

G 0 2 F 1/133

550

審査請求 未請求 請求項の数4 OL(全 9 頁)

(21)出願番号

特願平5-286650

(22)出願日

平成5年 (1993) 11月16日

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(72)発明者 丸下 裕

大阪府守口市京阪本通2丁目5番5号 三洋

甭機株式会社内

(74)代理人 弁理士 目次 誠 (外1名)

(54) (発明の名称) 液晶表示装置の駆動方法

(57) 【要約】

【目的】 アクティブマトリックス型液晶表示装置にお いて、垂直解像度を低下させることなく、動画解像度を 高め、高品位の画像を得ることを可能とする駆動方法を 提供する。

アクティブマトリックス型液晶表示パネル1 【構成】 1を駆動するに際し、リセット信号をフレーム期間内の 任意の周期でゲートドライバ5A, 5Bに供給し、少な くとも1行の薄膜トランジスタへのゲート倡号をハイレ ベルとして薄膜トランジスタをオン状態とし、同時にリ セット信号または任意の一定電圧レベルのリセットデー タ信号を印加することにより、オン状態とされている薄 膜トランジスタに接続されている画案の表示をリフレッ シュする液晶表示装置の駆動方法。

1

【特許請求の範囲】

【請求項1】 液晶よりなる各画素にスイッチング素子として薄膜トランジスタを接続してなり、前記薄膜トランジスタのゲート電極を走査線に接続し、ソースまたはドレイン電極をデータ線に接続してなるアクティブマトリックス型液晶表示装置のインタレース方式の駆動方法において、

フレーム周期内の任意の周期で、薄膜トランジスタへの ゲート信号をハイレベルとしてオン状態とするととも に、同時にオン状態とされた前記薄膜トランジスタにデ ータ線からリセット信号または所定電圧レベルの信号を 印加することを特徴とする、液晶表示装置の駆動方法。

(請求項2) 前記任意の周期がフレーム周期である、 請求項1に記載の液晶表示装置の駆動方法。

【請求項3】 液晶よりなる各画素にスイッチング案子として薄膜トランジスタを接続してなり、前記薄膜トランジスタのゲート電極を走査線に接続し、ソースまたはドレイン電極をデータ線に接続してなるアクティブマトリックス型液晶表示装置のインタレース方式の駆動方法において、

フィールド周期で一走査線おきの薄膜トランジスタへの ゲート信号をハイレベルとし、前記一走査線おきのすべ ての薄膜トランジスタをオン状態とするとともに、同時 にオン状態とされた薄膜トランジスタにデータ線よりリ セット信号または所定電圧レベルの信号を印加すること を特徴とする、液晶表示装置の駆動方法。

【請求項4】 液晶よりなる各画素にスイッチング素子として薄膜トランジスタを接続してなり、前記薄膜トランジスタのゲート電極を走査線に接続し、ソースまたはドレイン電極をデータ線に接続してなるアクティブマトリックス型液晶表示装置のインタレース方式の駆動方法において、

水平走査期間周期で、少なくとも一走査線前及び/または一走査線後の表示データをリセットするように、薄膜トランジスタへのゲート信号をハイレベルとし、該薄膜トランジスタをオン状態とするとともに、同時にオン状態にされた薄膜トランジスタに前記データ線からリセット信号または所定電圧レベルの信号を印加することを特徴とする、液晶表示装置の駆動方法。

【発明の詳細な説明】

[0001]

(産業上の利用分野) 本発明は、アクティブマトリックス型の液晶表示装置の駆動方法に関し、特に、インタレース方式の駆動方法において、ある一定期間毎に表示をリフレッシュするステップを備えた液晶表示装置の駆動方法に関する。

[0002]

【従来の技術】図6は、従来より周知の一般的なアクティブマトリックス型液晶表示装置の等価回路を示す図である。

2

【0003】この液晶表示装置では、画素1がn×m (n, mは整数)のマトリックス状に配置されており、各画素にスイッチング素子としての薄膜トランジスタ (以下、TFT)2が接続されている。なお、図6において、3は対向電極を、4は補助蓄積容量を示す。

【0004】マトリックス状に配置されているTFTのゲート電極は、走査線X、~X。に接続されており、該走査線X、~X。はゲートドライバ5に接続されている。ゲートドライバ5は、シフトレジスタ及び出力バッファーを有し、必要に応じてさらにラッチを有する。

【0005】他方、各TFTのドレイン電極に、データ 線Y: ~Y。が接続されている。データ線Y: ~Y 。は、ドレインドライバ6に接続されている。ドレイン ドライバ6は、シフトレジスタ、サンブルホールド回路 及び出力バッファーを有する。

(0006)上記液晶表示装置は、通常、線順次駆動と称されている方法で駆動される。すなわち、ゲートドライバ5から何れかの走査線にハイレベルのゲート信号を与え、横1行の走査線上のすべてのTFT2を同時にオン状態とし、その状態でオン状態とされたTFT2に、ドレインドライバ6から所定のデータ(信号電圧)を書き込むことにより駆動されている。

【0007】上記液晶表示装置の駆動原理を、以下においてより詳細に説明する。

(1)まず、ゲートドライバ5により、データ線X。~ X。に順次ゲートパルス電圧を印加し、行毎に各行に接続されたTFT2をオン状態とする。

【0008】(2)列側では、ドレインドライバ6から 所定の周期でサンプリングされた信号電圧が、ラインメ 30 モリにホールドされている。

(3) ゲートパルス電圧の印加に同期させて(実際はゲート遅延を考慮し位相をシフトさせている)、信号電圧を上記ラインメモリからデータ線Y」 ~Y。に供給する。

【0009】(4) ラインメモリからデータ線に供給された信号は、ゲートパルス電圧が印加された走査線上にある画案、すなわち、選択された走査線とデータ線との交点にある画案のみに書き込まれる。

【0010】(5) 画素には電気容量が設けられてお 40 り、信号電圧は、この容量に蓄積される。この容量は、 画素電極と対向電極3と液晶材料とで構成されるが、図 6に示されているように、この液晶の静電容量と並列に 補助蓄積容量4を設けることが多い。

【0011】(6)ゲートバルス電圧が次の走査線に移ると、画案TFT2は電気的にオフ状態とされ、データ線と画案電極とが切り離される。従って、画案に蓄積された電荷は、次のフレームにおいてゲートバルス電圧が印加されるまで保持され、液晶に対向電極電位と画案電極電位との間の電圧が印加され続け、液晶が準スタティック駆動されることになる。

【0012】図7は、上記ゲートドライバの回路構成を示す図である。この回路は単純なシフトレジスタであり、インバータ及びクロックドインバータで構成されている。この回路により、図8に示すように、クロック信号CKに応じたシフト動作を繰り返すことにより、各行毎に各行に接続されたTFT2が順次オン状態とされる。

【0013】図9は、ドレインドライバ6を説明するための回路図である。この回路は、シフトレジスタ6aと、サンブルホールド回路6bと、出力バァッファー6cとを有する。

【0014】ドレインドライバ6の動作は、図10に示すように、シフトレジスタ6aの出力(図ではS.R.out1~m)であるサンブリングパルスで入力信号(ビデオ信号)をサンブリングし、サンプリングしたデータをサンブルホールドコンデンサに蓄える。このサンブルホールド動作を、1ライン分繰り返した後、ゲートドライバ5の動作タイミングに同期した出力イネーブル信号により、一斉に1データ線分のデータが液晶表示パネルに供給される。

 $\{0015\}$

(発明が解決しようとする課題) 上記液晶表示装置をインタレース駆動する場合、動画の解像度が低下するという問題があった。

【0016】陰極線管(CRT)では、蛍光体に電子線を照射することにより発光させているため、その残光特性は約2m秒程度であり、前フィールドの像が消去される。これに対し、上記液晶表示装置では、TFT2がオフ状態とされた後も、液晶に電圧が印加され続け、液晶の透過光がほとんど時間変化しない。すなわち、液晶がメモリ機能を有するがために、前フィールドの像が残り、これが助画の解像度を低下させる原因となっていた。

[0017] すなわち、奇数フィールドに書き込まれた 画像が偶数フィールド時にも表示されたままの状態となり、1フィールドの時間内に奇数フィールド及び偶数フィールドの画像が同時に表示されることになり、1フィールド内で移動する画像すなわち動画を表示した場合には、残像現象により解像度が低下せざるを得なかった。特に、ハイビジョン仕様では、水平走査周波数が33.75kHz,フィールド周波数が60Hzであり、NTSC方式(水平走査周波数が15.74kHz、フィールド周波数が59.94Hz)に比べて、より高速で水平走査されるため、上記残像現象がより問題となっている。

【0018】ハイビジョン仕様を例にとり、上記解像度の低下現象をより具体的に説明する。HD液晶表示装置の垂直方向の画素数を1024(すなわち、n=1024)とした場合、図11(a)及び(b)に示すように、インタレース駆動では、まず奇数フィールドで走査

4

線を1,3,5,7,…1021,1023の順に走査し、次に偶数フィールドにおいて走査線を2,4,6,8,…1022,1024の順に走査する。従って、図12に示すように、同一水平ラインすなわち走査線の走査は、1フレーム毎(1/30秒)に行われるため、画素へのデータの書き込み時間は1/30秒となる。このため、前フィールドの画像が、次のフィールド期間中残像現象として保持されるので、1/30秒以内に移動する助画の解像度が低下する。

2 【0019】これに対し、本来走査すべき走査線と同一のタイミングで残像を保持している隣接ラインも走査する2ライン同時駆動法が提案されている。この方式では、図14及び図15に示すように、画素へのデータ書き込み周期は、従来のフレーム周期(1/30秒)から1/2のフィールド周期(1/60秒)となるため、前フィールドの画像が次のフィールドには現れることがなくなる。

【0020】しかしながら、2ライン同時駆動法では、 残像現象は解消し得るものの、2本のラインに同じデー 20 夕を書き込むことになるため、静止画でも垂直解像度の 低下を招くことになる。よって、図15に示すように、 フィールド毎に同時走査する2ラインの組み合わせを替 える可変ベア方式が提案されている。

(0021) この方式では、図13(a), (b)に示すように、奇数フィールドにおいて図13(a)の1, 1, 3, 3,…1023, 1023の順に2ラインずつ 走査され、かつ偶数フィールドにおいても、図13

(b) に示すように2, 2, 4, 4, …1022, 10 22, 1024のように2ラインずつ同時に走査される 30 が、インタレース駆動時と比較すると、延直解像度の低 下は避けられなかった。

【0022】本発明の目的は、上述した従来の液晶表示 装置の駆動法の欠点を解消し、垂直解像度を低下させる ことなく、さらに動画の残像現象をなくし、助画解像度 を向上させ、高品位の画像を得ることを可能とする駆動 法を提供することにある。

[0023]

【課題を解決するための手段】本発明は、上記課題を解 決すべく成されたものであり、インタレース方式におい 40 て、ある一定期間ごとに表示をリフレッシュすなわちイ ニシャライズすることを特徴とするものである。

【0024】すなわち、液晶表示装置の駆動に際し、フレーム周期よりも短い期間内の任意の周期で、例えばフレーム周期、フィールド周期または上記条件を満たす任意の周期で、1行のすべてのTFTのゲート信号をハイレベルとし、1行すべてのTFTをオン状態とし、同時に列電極にリセット信号または一定レベルの信号電圧を印加し、表示をリフレッシュ(イニシャライズ)することを特徴とする。

ⅳ 【0025】すなわち、請求項1に記載の発明は、液晶

よりなる各絵素にスイッチング素子として薄膜トランジスタを接続してなり、前記薄膜トランジスタのゲート電極を走査線に接続し、ソースまたはドレイン電極をデータ線に接続してなるアクティブマトリックス型液晶表示装置のインタレース方式の駆動方法において、フレーム周期内の任意の周期で、1行のすべての薄膜トランジスタへのゲート信号をハイレベルとしてオン状態とするとともに、同時にオン状態とされた前記薄膜トランジスタにデータ線からリセット信号または所定電圧レベルの信号を印加することを特徴とする、液晶表示装置の駆動方法である。

【0026】上記フレーム周期内の期間であってかつ任意の周期とは、上述したように、例えば請求項2に記載のようにフレーム周期としてもよく、あるいは請求項3に記載のようにフィールド周期としてもよく、さらに請求項4に記載のように水平走査期間周期としてもよい。

【0027】フィールド周期で表示をリフレッシュする場合には、請求項3に記載のように一走査線おきのTFTのゲート信号をハイレベルとし、一走査線おきのすべてのTFTをオン状態とし、同時にオン状態とされたTFTにデータ線からリセット信号または所定電圧レベルの信号を印加する。

【0028】また、水平走査期間周期で表示をリフレッシュする場合には、少なくとも一走査線前及び/または一走査線後の表示データをリセットするように、TFTへのゲート信号をハイレベルとし、TFTをオン状態とするとともに、同時にオン状態にされたTFTにデータ線からリセット信号または所定電圧レベルの電圧を印加する。

(00291

【作用】請求項1~4の記載の発明では、フレーム周期内の任意の周期、例えばフレーム周期、フィールド周期または水平走査期間周期で、所定のTFTがオン状態とされ、オン状態とされたTFTにリセット信号または所定電圧レベルの信号が印加され、表示がリフレッシュされる。従って、前フィールドの画像が上記リセット信号または所定電圧レベルの信号により消去されることになる。よって、垂直像度を低下させることなく、助画時の残像現象をなくすことができる。

[0030]

(実施例の説明) 図1は、本発明の一実施例により駆動されるアクティブマトリックス型の液晶表示装置を説明するためのブロック図である。液晶表示パネル11上には、図6に示した液晶表示装置と同様に、n×mのマトリックス状に画素が配置されており、かつ各画素にスイッチング案子としてのTFTが接続されている。そして、ゲートドライバ5A,5Bには、n本の走査線が接続されており、各走査線にその行の画素に接続されたTFTのゲート電極が接続されている。同様に、ドレインドライバ6A,6Bには、n本のデータ線が接続されて

おり、各データ線には、その列のTFTのドレイン電極 が接続されている。

【0031】上記ゲートドライバ5A, 5B及びドレインドライバ6A, 6Bは、前述した従来より公知のゲートドライバ5及びドレインドライバ6と同様に構成されている。

(0032) 本実施例の駆動方法は、図1のブロック図において、任意の周期及びタイミングで発生するリセット信号によりゲートドライバ5A,5Bの特定の出力を10 ハイレベルとし、選択された行のすべてのTFTをオン状態とするとともに、一定レベルの電圧信号すなわちリセットデータ信号をドレインドライバ6A,6Bから液晶表示パネル11に供給する。すなわち、リセット信号及びリセットデータ信号を上記のように供給するために、ビデオ信号入力端とゲートドライバ5A,5B及びドレインドライバ6A,6B間に、インバータ12及びスイッチング素子13~16を接続した切り換え回路を有することに特徴を有し、その他の回路構成は従来より公知のアクティブマトリックス型の液晶表示装置と同様20である。

(0033) 上記切り換え回路では、ビデオ信号入力端に、スイッチング素子13, 15が接続されている。スイッチング素子13, 15がオン状態とされた場合には、ビデオ信号がドレインドライバ6A, 6Bに与えられる。

(0034)他方、リセット信号が供給されると、該リセット信号により、スイッチング素子13及び15が非導通状態とされ、ビデオ信号が遮断される。同時に、リセット信号がゲートドライバ5A,5B及びドレインド30ライバ6A,6Bに与えられるとともに、スイッチング素子14,16が導通状態とされ、一定電圧レベルのリセットデータ信号がドレインドライバ6A,6Bに与えられる。

【0035】次に、本発明の第1の実施例として、上記切り換え回路を有する回路構成において、HDTV映像 信号をインタレース方式で駆動する場合につき説明する。本実施例では、上記リセット信号がフィールド周期毎に与えられ、フィールド周期毎に表示がリフレッシュされる。

60 【0036】図2を参照して、入力ビデオ信号の垂直帰線に設定したリセット信号により、奇数ラインまたは偶数ラインのゲートドライバの出力をすべてハイ状態とし、1ラインおきの走査線に接続されたすべてのTFTをオン状態とする。この場合、リセットデータ信号がドレインドライバ6A,6Bに供給されるため、データ線よりリセットデータ信号に応じた電圧がオン状態にされたTFTに与えられ、表示がイニシャライズされる。

(0037) この場合、リセットデータ信号の電圧レベルを選択することにより、白表示、中間調表示または黒 50 表示の何れかの状態に表示をイニシャライズすることが

6

8

できるが、何れにしても、前に書き込まれていた表示データをクリアするのに十分なリセットデータ信号が与えられることが必要である。従って、本発明における一定電圧レベルの信号とは、上記のように前に書き込まれた表示データをクリアし得る電圧レベルの信号をいう。

【0038】前に昔き込まれた表示データがクリアさせることにより、次のフィールドの表示と前のフィールドの表示が同時に表示されることがなくなる。従って、CRTによる表示の場合と同様に、動画時の残像現象をなくすことができ、動画解像度を高めることができる。

【0039】しかも、2ライン同時駆動法では、2ラインに同じデータを書き込んでいたため、垂直解像度の低下を招いていたが、本実施例では、2ラインに同じデータを書き込まないため、垂直解像度の低下も生じ難い。

【0040】上記実施例では、フィールド周期毎に表示をリフレッシュしていたが、前フィールドのデータを一斉に消去する方法以外に、1ライン毎に新しいデータを書き込む直前にリセットする方法が考えられる。また、1ライン毎ではなく数ライン毎にリセットしてもよい。このような第2~第4の実施例を、図3~図5を参照して説明する。

【0041】図3は、フレーム周期で表示をリセットする第2の実施例を示す。すなわち、リセット信号Aをフレーム切り替わり時に供給し、それによって奇数ライン及び偶数ラインのすべての表示を垂直帰線期間でリフレッシュするものである。

【0042】また、図4に示す第3の実施例では、正規の表示データを書き込む直前のタイミングで1ライン前の表示をリセットする。すなわち、各走査線G1~G1024をオン状態とする直前にリセット信号を供給し、1ライン前の表示をリセットする。例えば、走査線G2がオン状態とされて書き込まれる直前に、1ライン前すなわち走査線G1に接続されている画素の表示がリセットされる。従って、各走査線G1~G1024に正規の表示データが書き込まれる際には、常に表示がリセットされているため、上記第1の実施例の場合と同様に助画の残存現象をなくすことができ、かつ垂直解像度の低下も引き起こさない。

【0043】図5の第4の実施例では、同じく正規の表示データを書き込む直前のタイミングで、1ライン前の走査線及び1ライン後の走査線の表示をリセットする。なお、図5において、Wは、該当の走査線をハイレベルとし、該走査線の行のTFTをオン状態とし、該走査線に接続されたTFTよりデータを書き込みタイミングを示す。またRは、上記リセット信号を供給し、リセットデータ信号を与えてRで示されるタイミングで該当の走査線に接続されている画素の表示をリフレッシュするタイミングを示す。

【0044】例えば、省数フィールド期間内において、 走査線G3に接続されているすべてのTFTをオン状態 とするゲート信号を与えるタイミングの直前に、1ライン前の走査線G2及び1ライン後の走査線G4に上記リセット信号を与え、1ライン前の走査線G2及び1ライン後の走査線G4の接続された画素の表示をリフレッシュする。従って、偶数フィールド期間において、走査線G2及びG4に接続されているTFTをオン状態とし、オン状態とされたTFTにデータ信号を加えて書き込む際には、前の表示が確実にクリアされている。よって、第1の実施例と同様に、前フィールドの画像が確実に消10去されるため、動画時の残存現象をなくし、助画解像度を高めることができ、さらに垂直解像度の低下も生じ難い。

【0045】図5を参照して説明した実施例では、ある 走査線に接続されている画素に正規の表示データをひき 込む直前に、1ライン前の走査線及び1ライン後の走査 線に接続されている画素の表示をリセットしていたが、 3本以上の走査線に接続されている画素の表示を同時に リセットしてもよい。

【0046】また、上記各実施例は、HDTV仕様を前20 提としたが、NTSC方式で映像を表示する場合においても、上記と同様にして、垂直解像度を低下させることなく、動画解像度を高めることができる。

[0047]

【発明の効果】本発明によれば、フレーム周期内の任意の周期、例えば請求項2に記載のようにフレーム周期で、請求項3に記載のようにフィールド周期で、請求項4に記載のように水平走査期間周期で、少なくとも正規の表示データを書き込む行の走査線の前後の走査線に接続されている画素の表示をリフレッシュすることができる。よって、延直解像度を低下させることなく、動画時の残像現象をなくし、動画解像度を高めることができる。

[0048] よって、特に動画解像度に優れた高品位の 画像を得ることが可能となる。

【図面の簡単な説明】

【図1】本発明の実施例の駆動方法により駆動される液 品表示装置の回路構成を示すブロック図。

【図2】第1の実施例において表示をリセットするタイ ミングを示すタイミングチャート図。

(図3) 本発明の第2の実施例において表示をリセット するタイミングを説明するためのタイミングチャート 図。

【図4】本発明の第3の実施例において表示をリセット するタイミングを説明するためのタイミングチャート 図。

【図5】本発明の第4の実施例において表示をリセット するタイミングを説明するためのタイミングチャート 図。

【図6】従来のアクティブマトリックス型液晶表示装置 50 の等価回路を示す図。 }

【図7】ゲートドライバの回路構成を説明するための回 路図。

【図8】ゲートドライバの動作を説明するためのタイミングチャート図。

【図9】 ドレインドライバの回路構成を説明するための回路図。

(図10) ドレインドライバの動作を説明するためのタイミングチャート図。

【図11】 (a) 及び(b) は、インタレース方式の走査方法を説明するための図であり、(a) は奇数フィールドにおける走査を、(b) は個数フィールドにおける走査を示す図である。

【図12】インタレース方式における液晶への電圧印加 状態を説明するための図。 【図13】(a)及び(b)は、2ライン同時駆動方式 を説明するための模式図であり、a)は偶数フィールド 時、(b)は奇数フィールド時の走査方法を示す図。

10

【図14】2ライン同時駆動方式における液晶印加電圧 状態を説明するための図。

【図15】インタレース方式及び2ライン可変ペア同時 走査方式の駆動方法のタイミングチャートを示す図。 【符号の説明】

5A, 5B…ゲートドライバ

10 6A, 6B…ドレインドライバ

11…液晶表示パネル

12…インバータ

13~16スイッチング案子

[図1]

[図7]

(図2)

【図3】

[図11]

1024 AB71-AF

【図4】

【図12】

[図5]

	賞益フィールド	美女フィールド	
61			
		W	
63			
	IR		
65 —	ΠΉ		
66	INR		
	nw_		
GB	rus	nw_	
	лм	nre	
610			
V~			

[図13]

【図6】

図14]

(図9)

[図10]

[図15]

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07140933 A

(43) Date of publication of application: 02.06.95

(51) Int. Cl

G09G 3/36 G02F 1/133

(21) Application number: 05286650

(22) Date of filing: 16.11.93

(71) Applicant

SANYO ELECTRIC CO LTD

(72) Inventor:

MARUSHITA YUTAKA

(54) METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PURPOSE: To provide a driving method capable of enhancing animation resolution and providing a high dignity image without lowering vertical resolution in an active matrix liquid crystal display device.

CONSTITUTION: This method is the driving method for the liquid crystal display device constituted so that when the active matrix liquid crystal display device 11 is driven, a reset signal is supplied to gate drivers 5A, 5B at an optional period in a frame interval, and a gate signal to at least one row thin film transistor is made a high level, and the thin film transistor is made on state, and simultaneously impressing the reset signal or a reset data signal with an optional fixed voltage level, the display of a pixel connected to the thin film transistor made on state is refreshed.

COPYRIGHT: (C)1995,JPO

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-140933

(43) Date of publication of application: 02.06.1995

(51)int.CI.

G09G 3/36

G02F 1/133

(21)Application number : **05-286650**

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

16.11.1993

(72)Inventor: MARUSHITA YUTAKA

(54) METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PURPOSE: To provide a driving method capable of enhancing animation resolution and providing a high dignity image without lowering vertical resolution in an active matrix liquid crystal display device.

CONSTITUTION: This method is the driving method for the liquid crystal display device constituted so that when the active matrix liquid crystal display device 11 is driven, a reset signal is supplied to gate drivers 5A, 5B at an optional period in a frame interval, and a gate signal to at least one row thin film transistor is made a high level, and the thin film transistor is made on state, and simultaneously impressing the reset signal or a reset data signal with an optional fixed voltage level, the display of a pixel connected to the thin film transistor made on state is refreshed.

LEGAL STATUS

[Date of request for examination]

12.05.1998

[Date of sending the examiner's decision of rejection]

28.11.2000

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] Especially this invention relates to the drive method of the liquid crystal display equipped with the step refreshed for a display for every fixed period of a certain in the drive method of an interlace method about the drive method of an active matrix type liquid crystal display.

[0002]

[Description of the Prior Art] <u>Drawing 6</u> is drawing showing the equal circuit of a well-known common active matrix type liquid crystal display from before.

[0003] In this liquid crystal display, the pixel 1 is arranged in the shape of [of nxm (n and m are an integer)] a matrix, and TFT (following, TFT) 2 as a switching element is connected to each pixel. In addition, in <u>drawing 6</u>, 3 shows a counterelectrode and 4 shows an auxiliary storage capacitance.

[0004] the gate electrode of TFT arranged in the shape of a matrix -- scanning-line X1 -Xn it connects -- having -- **** -- this -- scanning-line X1 -Xn It connects with the gate driver 5. A gate driver 5 has a shift register and an output buffer, and has a latch further if needed.

[0005] On the other hand, it is data-line Y1 -Ym to the drain electrode of each TFT. It connects. Data-line Y1 -Ym It connects with the drain driver 6. The drain driver 6 has a shift register, a sample hold circuit, and an output buffer. [0006] The above-mentioned liquid crystal display is usually driven by the method called the line sequential drive. That is, it is driving by writing predetermined data (signal level) in TFT2 which gave the high-level gate signal to which the scanning line from the gate driver 5, made the ON state simultaneously all TFT2 on the scanning line beside one line, and was made into the ON state in the state from the drain driver 6.

[0007] The drive principle of the above-mentioned liquid crystal display is explained more below at a detail.

(1) It is data-line X1 -Xm by the gate driver 5 first. Gate pulse voltage is impressed one by one, and let TFT2 connected to each line for every line be an ON state.

[0008] (2) In the train side, the signal level sampled with the predetermined period from the drain driver 6 is held by line memory.

(3) Make it synchronize with impression of gate pulse voltage (in consideration of a gate delay, the phase is shifted in practice), and it is data-line Y1-Ym from the above-mentioned line memory about a signal level. It supplies.

[0009] (4) The signal supplied to the data line from line memory is written in the pixel on the scanning line to which gate pulse voltage was impressed, i.e., the pixel on the intersection of the selected scanning line and the selected data line.

[0010] (5) Electric capacity is prepared in the pixel and a signal level is accumulated at this capacity. Although this capacity consists of a pixel electrode, a counterelectrode 3, and liquid crystal material, it forms the auxiliary storage capacitance 4 in the electrostatic capacity of this liquid crystal, and parallel in many cases as shown in drawing 6.

[0011] (6) If gate pulse voltage moves to the following scanning line, a pixel TFT 2 will be electrically made into an OFF state, and the data line and a pixel electrode will be separated. Therefore, the charge accumulated at the pixel will be held until gate pulse voltage is impressed in the following frame, the voltage between counterelectrode potential and pixel electrode potential will continue being impressed to liquid crystal, and the semi-static drive of the liquid crystal will be carried out.

[0012] <u>Drawing 7</u> is drawing showing the circuitry of the above-mentioned gate driver. This circuit is a simple shift register and consists of an inverter and a clocked inverter. Let TFT2 connected to each line for every line be an ON state one by one by repeating shift operation according to clock signal creatine kinase by this circuit, as shown in <u>drawing 8</u>. [0013] <u>Drawing 9</u> is a circuit diagram for explaining the drain driver 6. This circuit has shift register 6a, sample hold circuit 6b, and output BAAFFA 6c.

[0014] As shown in <u>drawing 10</u>, by the sampling pulse which is the output (drawing S.R. out1-m) of shift register 6a, operation of the drain driver 6 samples an input signal (video signal), and stores the sampled data in a sample hold capacitor. After repeating this sample hold operation by one line, the data for 1 data line are supplied all at once to a liquid crystal display panel by the output enable signals which synchronized with the timing of a gate driver 5 of operation.

[0015]

[Problem(s) to be Solved by the Invention] When the interlace drive of the above-mentioned liquid crystal display was carried out, there was a problem that the resolution of an animation fell.

[0016] since the fluorescent substance is made to emit light by irradiating an electron ray in a cathode-ray tube (CRT) -the decay characteristic -- about 2 -- it is about m seconds and the image of the front field is eliminated On the other hand,
in the above-mentioned liquid crystal display, after TFT2 is made into an OFF state, voltage continues being impressed to
liquid crystal and the transmitted light of liquid crystal hardly carries out time change. That is, the image of the front field
remained harder [which has a memory], and liquid crystal had become the cause by which this reduced the resolution of
an animation.

[0017] That is, when the picture written in the odd number field changed into a state [being displayed also at the time of the even number field], the picture of the odd number field and the even number field would be simultaneously displayed on within a time [of the 1 field] and it was displayed, the picture, i.e., the animation, which moves in 1 field, resolution could not but fall according to the after-image phenomenon. Especially, by Hi-Vision specification, a horizontal scanning frequency is 33.75kHz, field frequency is 60Hz, and since a horizontal scanning is carried out more at high speed compared with an NTSC color TV system (a horizontal scanning frequency is 15.74kHz and field frequency is 59.94Hz), the above-mentioned after-image phenomenon poses a problem more.

[0018] Hi-Vision specification is taken for an example and the fall phenomenon of the above-mentioned resolution is explained more concretely. when the number of pixels of the perpendicular direction of HD liquid crystal display is set to 1024 (namely, n= 1024), it is shown in <u>drawing 11</u> (a) and (b) -- as -- an interlace drive -- first -- the odd number field -- the scanning line -- 1, 3, 5, 7, and -- the order of 1021 and 1023 -- scanning -- a degree -- the even number field -- setting -- the scanning line -- 2, 4, 6, 8, and -- it scans in order of 1022 and 1024 Therefore, since the scan of the same level line, i.e., the scanning line, is performed for every (1 / 30 seconds) frame as shown in <u>drawing 12</u>, the write-in time of the data to a pixel becomes 1 / 30 seconds. For this reason, since the picture of the front field is held as a following after-image phenomenon in a field period, the resolution of the animation which moves within 1 / 30 seconds falls.

[0019] On the other hand, the two-line simultaneous driving method which also scans the contiguity line which holds the after-image to the same timing as the scanning line which should originally be scanned is proposed. By this method, as shown in <u>drawing 14</u> and <u>drawing 15</u>, since the data write-in period to a pixel turns into a field period (1 / 60 seconds) of 1/2 from the conventional frame period (1 / 30 seconds), it is lost that the picture of the front field appears of it in the next field.

[0020] However, by the two-line simultaneous driving method, although it can cancel, in order that an after-image phenomenon may write in the same data as two lines, a still picture will also cause the fall of a vertical definition. Therefore, as shown in <u>drawing 15</u>, the adjustable pair method which changes the combination of two lines which carries out simultaneous scanning for every field is proposed.

[0021] Two lines is scanned at a time in order of 1023 and 1023, and it also sets in the even number field. this method shows to <u>drawing 13</u> (a) and (b) -- as -- the odd number field -- setting -- 1, 1, 3 and 3 of <u>drawing 13</u> (a), and -- Although two lines was simultaneously scanned at a time like 2, 2, 4, 4, --1022, and 1022 and 1024 as shown in <u>drawing 13</u> (b), the fall of a vertical definition was not avoided as compared with the time of an interlace drive.

[0022] Without canceling the fault of the method of driving the conventional liquid crystal display mentioned above, and reducing a vertical definition, the purpose of this invention abolishes the after-image phenomenon of an animation further, raises animation resolution, and is to offer the driving method which makes it possible to acquire a high-definition picture.

[0023]

[Means for Solving the Problem] this invention is characterized by accomplishing that the above-mentioned technical problem should be solved, setting to an interlace method, and refreshing namely, initializing a display for every fixed period of a certain.

[0024] That is, on the occasion of the drive of a liquid crystal display, it is the arbitrary periods within a period shorter than a frame period, for example, the gate signal of all TFT of one line is made high-level the arbitrary periods which fulfill a frame period, a field period, or the above-mentioned conditions, TFT of all one lines is made into an ON state, the signal level of a reset signal or fixed level is simultaneously impressed to a train electrode, and it is characterized by refreshing a display (initialization).

[0025] Namely, invention according to claim 1 comes to connect TFT with each picture element which consists of liquid crystal as a switching element. In the drive method of the interlace method of the active matrix type liquid crystal display which connects the gate electrode of the aforementioned TFT to the scanning line, and comes to connect the source or a drain electrode with the data line the arbitrary periods in a frame period While considering as an ON state, using the gate signal to all the TFT of one line as high-level, it is the drive method of a liquid crystal display characterized by impressing a reset signal or the signal of a predetermined voltage level to the aforementioned TFT simultaneously made into the ON state from the data line.

[0026] it mentioned above with the arbitrary periods which are the periods in the above-mentioned frame period -- as -- for example, -- being according to claim 2 -- like -- as a frame period -- good -- or -- being according to claim 3 -- like -- as a field period -- good -- further -- being according to claim 4 -- it is [like] good also as a horizontal scanning period period

[0027] In refreshing a display a field period, it impresses a reset signal or the signal of a predetermined voltage level to TFT according to claim 3 which made high-level the gate signal of TFT of every other scanning line like, made the ON state all TFT of every other scanning line, and was simultaneously made into the ON state from the data line.

[0028] Moreover, while making the gate signal to TFT high-level and making TFT into an ON state so that the indicative data in front of the 1 scanning line and/or after the 1 scanning line may be reset at least in refreshing a display a horizontal scanning period period, the voltage of a reset signal or a predetermined voltage level is impressed to TFT simultaneously made into the ON state from the data line.

[0029]

[Function] In invention of a publication of a claim 1-4, a reset signal or the signal of a predetermined voltage level is impressed to TFT by which predetermined TFT was made the ON state and made the ON state with the arbitrary periods, for example, the frame period, field period, or horizontal scanning period period in a frame period, and a display is refreshed. Therefore, the picture of the front field will be eliminated by the above-mentioned reset signal or the signal of a predetermined voltage level. Therefore, the after-image phenomenon at the time of an animation can be abolished, without reducing the degree of perpendicular image.

[Example] <u>Drawing 1</u> is a block diagram for explaining the active matrix type liquid crystal display driven according to one example of this invention. Like the liquid crystal display shown in <u>drawing 6</u> on the liquid crystal display panel 11, the pixel is arranged in the shape of [of nxm] a matrix, and TFT as a switching element is connected to each pixel. And the gate electrode of TFT which the n scanning lines are connected and was connected to each scanning line at the pixel of the line is connected to gate drivers 5A and 5B. Similarly, the n data lines are connected to the drain drivers 6A and 6B, and the drain electrode of TFT of the train is connected to each data line.

[0031] The above-mentioned gate drivers 5A and 5B and the drain drivers 6A and 6B are constituted like the gate driver 5 better known than the former mentioned above and the drain driver 6.

[0032] In the block diagram of drawing 1, the drive method of this example supplies to the liquid crystal display panel 11 from the drain drivers 6A and 6B while it makes high-level the specific output of gate drivers 5A and 5B by the reset signal generated to arbitrary periods and timing and makes all TFT of the selected line an ON state, the voltage signal, i.e., the reset data signal, of fixed level. That is, in order to supply a reset signal and a reset data signal as mentioned above, it has the feature in the thing which connected an inverter 12 and switching elements 13-16 between a video signal input edge, gate drivers 5A and 5B and drain driver 6A, and 6B and for which it switches and has a circuit, and other circuitry is the same as that of an active matrix type liquid crystal display better known than before.

[0033] Switching elements 13 and 15 are connected to the video signal input edge in the above-mentioned switch circuit. A video signal is given to the drain drivers 6A and 6B when switching elements 13 and 15 are made into an ON state. [0034] On the other hand, if a reset signal is supplied, switching elements 13 and 15 will be made non-switch-on by this reset signal, and a video signal will be intercepted. Simultaneously, while a reset signal is given to gate drivers 5A and 5B and the drain drivers 6A and 6B, switching elements 14 and 16 are made into switch-on, and the reset data signal of a fixed voltage level is given to the drain drivers 6A and 6B.

[0035] Next, as the 1st example of this invention, in the circuitry which has the above-mentioned switch circuit, when driving a HDTV video signal by the interlace method, it explains per. In this example, the above-mentioned reset signal is given for every field period, and a display is refreshed for every field period.

[0036] With reference to drawing 2, by the reset signal set as the vertical retrace line of an input video signal, all the outputs of the gate driver of odd lines or even lines are made into a high state, and let all TFT connected to the scanning line in every other line be ON states. In this case, since a reset data signal is supplied to the drain drivers 6A and 6B, the voltage according to the reset data signal is given to TFT made into the ON state from the data line, and a display is

initialized.

[9037] In this case, although a display can be initialized in which state of a white display, a halftone display, or a black display by choosing the voltage level of a reset data signal, it is required to give sufficient reset data signal to clear anyway the indicative data currently written in before. Therefore, the signal of the fixed voltage level in this invention means the signal of the voltage level which can clear the indicative data written in before as mentioned above.

[0038] When the indicative data written in before makes it clear, it is lost that the display of the next field and the display of the front field are displayed simultaneously. Therefore, like the case of the display by CRT, the after-image phenomenon at the time of an animation can be abolished, and animation resolution can be raised.

[0039] And in this example, since the same data as two lines were written in, although the fall of a vertical definition was caused by the two-line simultaneous driving method, in order not to write in the same data as two lines, it is hard to produce the fall of a vertical definition.

[0040] In the above-mentioned example, although the display was refreshed for every field period, how to reset, just before writing in new data for every line in addition to the method of eliminating the data of the front field all at once can be considered. Moreover, you may reset every [every line and] several lines. Such the 2nd - the 4th example are explained with reference to drawing 3 - drawing 5.

[0041] <u>Drawing 3</u> shows the 2nd example which resets a display by the frame period. That is, reset-signal A is supplied at the time of a frame change rate, and all displays of odd lines and even lines are refreshed in a vertical-retrace-line period by it.

[0042] Moreover, in the 3rd example shown in <u>drawing 4</u>, the display before one line is reset to timing just before writing in a regular indicative data. That is, just before making each scanning lines G1-G1024 into an ON state, a reset signal is supplied, and the display before one line is reset. For example, the display of the pixel connected to before [G1] one line (i.e., the scanning line) just before it is written in the scanning line G2 being used as an ON state is reset. Therefore, since the display is always reset in case a regular indicative data is written in each scanning lines G1-G1024, the residual phenomenon of an animation can be abolished like the case where it is the 1st example of the above, and the fall of a vertical definition is not caused, either.

[0043] In the 4th example of drawing 5, the display of the scanning line in front of one line and the scanning line after one line is reset to timing just before writing in the same regular indicative data. In addition, in drawing 5, W makes the scanning line of relevance high-level, makes TFT of the line of this scanning line an ON state, from TFT connected to this scanning line, writes in data and shows timing. Moreover, R supplies the above-mentioned reset signal and shows the timing refreshed for the display of the pixel connected to the scanning line of relevance to the timing which gives a reset data signal and is shown by R.

[0044] For example, the above-mentioned reset signal is given to the scanning line G2 in front of one line, and the scanning line G4 after one line just before the timing which gives the gate signal which makes an ON state all TFT connected to scanning-line G3 within the odd number field period, and the display of the pixel to which the scanning line G2 in front of one line and the scanning line G4 after one line were connected is refreshed. Therefore, in the even number field period, in case a data signal is added and written in TFT which made the ON state TFT connected to the scanning lines G2 and G4, and was made into the ON state, the pre-display is cleared certainly. Therefore, like the 1st example, since the picture of the front field is eliminated certainly, the residual phenomenon at the time of an animation can be abolished, animation resolution can be raised, and it is further hard to produce the fall of a vertical definition.

[0045] Although the display of the pixel connected to the scanning line in front of one line and the scanning line after one line just before writing a regular indicative data in the pixel connected to a certain scanning line was reset in the example explained with reference to drawing 5, you may reset simultaneously the display of the pixel connected to the three or more scanning lines.

[0046] Moreover, although it was premised on HDTV specification, each above-mentioned example can raise animation resolution like the above, without reducing a vertical definition, when displaying an image by the NTSC color TV system.

[0047]

[Effect of the Invention] According to this invention, like a publication to the arbitrary periods 2 in a frame period, for example, a claim, the display of the pixel connected to the scanning line before and behind the scanning line of the line according to claim 4 which writes in a regular indicative data at least a horizontal scanning period period like the field period like according to claim 3 can be refreshed, therefore the picture of the front field can be offered by the frame period. Therefore, without reducing a vertical definition, the after-image phenomenon at the time of an animation can be abolished, and animation resolution can be raised.

[0048] Therefore, it becomes possible to acquire the high-definition picture excellent in especially animation resolution.

[Translation done.]