Bike Sharing Demand

현승우

목차

- 1. 데이터 소개
- 2. 데이터 탐색 (EDA)
- 3. 모델 생성
- 4. 결론 및 아쉬운점
- 5. Q & A

데이터 소개

- 미국 자전거 공유 업체인 Capital Bikeshare의 렌트 정보와
- 워싱턴 DC의 날씨를 결합해서 만든 데이터

How Capital Bikeshare Works

Pick up a bike at one of hundreds of stations around the metro DC area. See bike availability on the System Map or mobile app.

Take as many short rides as you want while your pass is active. Passes and memberships include unlimited trips under 30 minutes.

End a ride by returning your bike to any station. Push your bike firmly into an empty dock and wait for the green light to make sure it's locked.

데이터 소개

Duration	Start date	End date	Start station number	Start station	End station number	End station	Bike number	Member type
3548	2011-01-01 0:01	2011-01-01 1:00	31620	5th & F St NW	31620	5th & F St NW	W00247	Member
346	2011-01-01 0:02	2011-01-01 0:08	31105	14th & Harvard St NW	31101	14th & V St NW	W00675	Casual
562	2011-01-01 0:06	2011-01-01 0:15	31400	Georgia & New Hampshire Ave NW	31104	Adams Mill & Columbia Rd NW	W00357	Member
434	2011-01-01 0:09	2011-01-01 0:16	31111	10th & U St NW	31503	Florida Ave & R St NW	W00970	Member
233	2011-01-01 0:28	2011-01-01 0:32	31104	Adams Mill & Columbia Rd NW	31106	Calvert & Biltmore St NW	W00346	Casual
158	2011-01-01 0:32	2011-01-01 0:35	31605	3rd & D St SE	31618	4th & East Capitol St NE	W01033	Member
560	2011-01-01 0:35	2011-01-01 0:45	31203	14th & Rhode Island Ave NW	31201	15th & P St NW	W00766	Member
503	2011-01-01 0:36	2011-01-01 0:45	31203	14th & Rhode Island Ave NW	31201	15th & P St NW	W00506	Member
449	2011-01-01 0:45	2011-01-01 0:53	31201	15th & P St NW	31202	14th & R St NW	W00506	Member

데이터 소개

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
10881	2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88

train shape: 10886, 12

test shape: 6493, 9

• test에서는 렌탈 수와 관련된 Casual, Registered, Count가 빠짐

Feature

Feature name	categorical	Description
Datetime	-	날짜 + 시간
	1	봄
Season	2	여름
Season	3	가을
	4	겨울
Holiday	0, 1	휴일 여부
Workingday	0, 1	일하는 날인지
	1	맑거나 구름이 조금 있음
Weather	2	안개 (구름)
weather	3	가벼운 눈과 비, 천둥
	4	심한 눈, 안개, 천둥

Feature

Feature name	categorical	Description
Temp	-	기온
Atemp	-	체감기온
Humidity	-	습도
Windspeed	_	바람의 세기
Casual	-	등록되지 않은 회원 수
Registered	_	등록된 회원 수
Count	-	자전거 렌탈 수

초기 설정

```
import pandas as pd
import seaborn as sns
import datetime
import statsmodels.api as sm
from statsmodels.graphics import utils
from sklearn.model_selection import KFold
%matplotlib inline
mpl.rc('figure', figsize=(8, 5))
mpl.rc('figure', dpi=100)
```

EDA

```
train.datetime = pd.to_datetime(train.datetime)
test.datetime = pd.to_datetime(test.datetime)
train['year'] = train.datetime.apply(lambda x: x.year)
test['year'] = test.datetime.apply(lambda x: x.year)
train['month'] = train.datetime.apply(lambda x: x.month)
test['month'] = test.datetime.apply(lambda x: x.month)
train['day'] = train.datetime.apply(lambda x: x.day)
test['day'] = test.datetime.apply(lambda x: x.day)
train['hour'] = train.datetime.apply(lambda x: x.hour)
test['hour'] = test.datetime.apply(lambda x: x.weekday)
train['weekday'] = train.datetime.apply(lambda x: x.weekday)
```

• 문자열 형식인 datetime을 카테고리칼 변수로 만들어주는 코드

```
train.isnull().sum()
```

• null 변수는 없음

0	casual	0
0	registered	0
0	count	0
0	day	0
0	weekday	0
0	hour	0
0	year	0
0	month	0
0	dtype: int64	
	0 0	0 registered 0 count 0 day 0 weekday 0 hour 0 year 0 month

season과 year에 따른 count의 (boxplot)

day별 count수 (boxplot)

weekday별 count수 (boxplot)

hour별 count수 (boxplot)

• workingday 기준

hour별 count수 (boxplot)

• holiday 기준

- 위의 두 그래프로 working day일 때는 출퇴근 시간에 사람들의 자전거 이용이 많았고
- 일하지 않는 날에는 오후 시간대에 자전거 이용량이 많았다
- 또한 holiday와 그래프의 분포가 거의 비슷하고 holiday의 정보가 workingday와 weekday에 포함되므로
- holiday 변수를 OLS 모델에 포함시키지 않는다.

weather에 따른 count수 (countplot)

• 날씨가 제일 안좋은 날인 4번은 train 데이터에 1개 들어있음 (나중에 교차 검증 때 문제가 되었음)

temp와 count의 jointplot

• temp와 count는 0.4의 상관관계를 가짐

atemp와 count의 jointplot

• atemp와 count는 0.39의 상관관계를 가짐

atemp와 temp의 scatter plot

• atemp가 12.12인 195개의 데이터의 체감온도를 계산하여 넣음

체감온도 계산

 현재 사용하고 있는 체감온도 산출식은 2001년 8월 캐나다 토론토에서 열린 Joint Action Group for Temperature Indices(JAG/TI)회의에 서 발표된 것으로 미국과 캐나다 등 북아메리카 국가들을 중심으로 최근에 가장 널리 사용되고 있음

$$atemp = 13.12 + 0.625T - 11.37V^{0.16} + 0.3965V^{0.16}T$$

 $T: \mathrm{temp}\ (\mathrm{celcius})$

 $V: {
m windspeed} \ ({
m km/h})$

• 체감온도 산출법

atemp와 temp의 scatter plot

- atemp가 12.12인 데이터가 모두 바뀜
- 체감 온도와 기온의 상관관계가 0.99므로 atemp만 OLS 모델에 포함시 킨다.

바람세기

• 체감온도 계산법에 바람세기가 들어가므로 바람세기를 OLS 모델에 추가 하지 않는다.

습도의 distplot

• 0인 습도는 존재할 수 없다.

습도가 0인 데이터 처리

- 2011년 3월 10일 22개의 데이터가 0
- 3월 10일과 같은 날씨 3의 시간별 습도 평균을 각각 구하여 데이터에 넣어 주었다.

습도가 O인 데이터 처리

시간	원래 3월 10일의 습도 데이 터	별 평균 습도
0	0	82.821429
1	0	82.473684
2	0	84.156250
3	존재하지 않음	86.733333
4	존재하지 않음	86.083333
5	0	84.121212
6	0	83.642857
7	0	84.697674
8	0	83.378378
9	0	81.875000
10	0	80.718750
11	0	80.538462
12	0	78.448276
13	0	76.296296
14	0	76.529412
15	0	77.095238
16	0	79.125000
17	0	77.183673
18	0	75.723404
19	0	82.416667
20	0	82.447368
21	0	80.562500
22	0	85.181818
23	0	82.372093

처리 후 습도의 distplot

count의 distplot

• 분포가 왼쪽으로 치우쳐있어 log를 줘서 정규분포 형태에 가깝게 만들어 준다.

np.log1p(count)의 distplot

OLS.from_formula

변수 설명	변수
종속변수 Y	np.log1p(count)
독립변수 X1	C(season)
독립변수 X2	C(workingday)
독립변수 X3	scale(atemp)
독립변수 X4	scale(humidity)
독립변수 X5	C(weekday)
독립변수 X6	C(weather)
독립변수 X7	C(hour)
독립변수 X8	C(month)
독립변수 X9	C(year)
상수항 제거	+ 0

```
* model = sm.OLS.from_formula('np.log1p(count) ~ C(season) + C(workingday) + scale(atemp) + scale(humidity) + C(weekday) + C(weather) + C(hour) + C(month) + C(year) + 0', data=train)
```

OLS Summary

Dep. Variable: np.log1p(count) R-squared: 0.835 Model: 0LS Adj. R-squared: 0.834 Method: Least Squares F-statistic: 1163. Date: Wed, 12 Dec 2018 Prob (F-statistic): 0.00 Time: 19:26:57 Log-Likelihood: -9467.9No. Observations: 10886 AIC: 1.903e+04 Of Residuals: 10838 BIC: 1.938e+04 Of Model: Covariance Type: nonrobust

OLS Regression Results

Omnibus:	769.045	Durbin-Watson:	0.547
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1531.095
Skew:	-0.490	Prob(JB):	0.00
Kurtosis:	4.554	Cond. No.	7.62e+15

- 조건수가 7.62e + 15로 굉장히 높다.
- 수정.

season과 month의 상관관계

• 당연히 month가 있으면 season은 넣어줄 필요가 없다는 것을 생각하지 못했다.

	season	month
season	1.000000	0.971524
month	0.971524	1.000000

수정한 OLS

OLS Regression Results

=======================================										
Dep. Variable:	np.log1p(count)	R-squared:	0.834							
Model:	0LS	Adj. R-squared:	0.833							
Method:	Least Squares	F-statistic:	1159.							
Date:	Sat, 15 Dec 2018	Prob (F-statistic):	0.00							
Time:	17:17:06	Log-Likelihood:	-9482.1							
No. Observations:	10886	AIC:	1.906e+04							
Of Residuals:	10838	BIC:	1.941e+04							
Of Model:	47									
Covariance Type:	nonrobust									
Omnibus:	777.940	Durbin-Watson:	0.547							
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1547.143							
Skew:	-0.495	Prob(JB):	0.00							
Kurtosis:	4.559	Cond. No.	117.							
	4.000	cond. no.								

• 조건수가 117로 크게 줄었다.

계수 부분

							C/L \ [T . 1]	0.0044	0.000	15 710	0.000	0.000	0.500
	coef	std err	t	P> t	[0.025	0.975]	C(hour) [T.1]	-0.6044	0.038	-15.719	0.000	-0.680	-0.529
							C(hour) [T.2]	-1.1001	0.039	-28.503	0.000	-1.176	-1.024
C(workingday)[0]	3.0579	0.050	61.396	0.000	2.960	3.155	C(hour) [T.3] C(hour) [T.4]	-1.5941 -1.8621	0.039	-40.909 -47.991	0.000	-1.671 -1.938	-1.518 -1.786
C(workingday)[1]	3.0196	0.042	72.462	0.000	2.938	3.101	C(hour) [T.5]	-0.9009	0.039	-23.337	0.000	-0.977	-0.825
C(month)[T.2]	0.1648	0.028	5.919	0.000	0.110	0.219	C(hour) [T.6]	0.2789	0.039	7.231	0.000	0.203	0.354
C(month)[T.3]	0.2445	0.029	8.302	0.000	0.187	0.302	C(hour) [T.7]	1.2466	0.038	32.381	0.000	1.171	1.322
C(month)[T.4]	0.4458	0.031	14.248	0.000	0.384	0.507	0(11001)[111]	1.8713	0.038	48.688	0.000	1.796	1.947
C(month)[T.5]	0.6740	0.035	19.182	0.000	0.605		C(hour) [T.9]	1.5419	0.038	40.097	0.000	1.467	1.617
C(month)[T.6]	0.6272	0.039	16.018	0.000	0.550		C(hour) [T.10]	1.2190	0.039	31.589	0.000	1.143	1.295
C(month)[T.7]	0.5360	0.043	12.398	0.000	0.451	0.621		1.3369	0.039	34.404	0.000	1.261	1.413
C(month)[T.8]	0.5534	0.042	13.163	0.000	0.471	0.636		1.5242	0.039	38.928	0.000	1.447	1.601
C(month)[T.9]	0.6444	0.038	16.962	0.000	0.570	0.719	0.00	1.4976	0.039	37.943	0.000	1.420	1.575
C(month)[T.10]	0.7568	0.033	22.597	0.000	0.691	0.822	0.41 5.50 4.43	1.4151	0.040	35.647	0.000	1.337	1.493
C(month)[T.11]	0.7156	0.029	24.676	0.000	0.659	0.772	C(hour) [T.15]	1.4741	0.040	37.079	0.000	1.396	1.552
C(month)[T.12]	0.6741	0.029	23.340	0.000	0.618	0.731	C(hour) [T.16]	1.7344	0.040	43.746	0.000	1.657	1.812
C(weather) [T.2]	-0.0549	0.014	-3.990	0.000	-0.082	-0.028	C(hour) [T.17]	2.1461	0.039	54.419	0.000	2.069	2.223
C(weather) [T.3]	-0.5416	0.023	-23.474	0.000	-0.587	-0.496	C(hour) [T.18]	2.0618	0.039	52.580	0.000	1.985	2.139
C(weather) [T.4]	-0.0816	0.581	-0.140	0.888	-1.220	1.057	C(hour) [T.19]	1.7713	0.039	45.623	0.000	1.695	1.847
C(weekday) [T.1]	-0.0066	0.022	-0.305	0.760	-0.049	0.036	C(hour) [T.20]	1.4724	0.039	38.099	0.000	1.397	1.548
C(weekday)[T.1]	0.0062	0.021	0.288	0.773	-0.036	0.030	C(hour) [T.21]	1.2170	0.039	31.606	0.000	1.142	1.293
	0.0685		3.173	0.773	0.026		C(110u1)[1.22]	0.9753	0.038	25.373	0.000	0.900	1.051
C(weekday) [T.3]		0.022				0.111	C(hour) [T.23]	0.5832	0.038	15.182	0.000	0.508	0.658
C(weekday) [T.4]	0.1585	0.021	7.409	0.000	0.117	0.200	C(year)[T.2012]	0.4824	0.011	42.713	0.000	0.460	0.505
C(weekday) [T.5]	0.1312	0.037	3.571	0.000	0.059	0.203		0.2179	0.012	17.578	0.000	0.194	0.242
C(weekday) [T.6]	0.0240	0.037	0.654	0.513	-0.048	0.096	scale(humidity)	-0.0501	0.008	-6.626	0.000	-0.065	-0.035

교차 검증

- weather 4인 데이터가 1개 밖에 존재하지 않기 때문에
- 그 데이터가 test데이터에 들어갈 때 문제가 될 수 있다.
- 그렇기 때문에 행 번호 5631의 데이터를 삭제한 후 교차검증을 실시 하였다.

```
학습 R2 = 0.83266068, 검증 R2 = 0.72814599
학습 R2 = 0.83666127, 검증 R2 = 0.70220668
학습 R2 = 0.83532784, 검증 R2 = 0.72562044
학습 R2 = 0.83735682, 검증 R2 = 0.71543570
학습 R2 = 0.82934134, 검증 R2 = 0.74183288
```

결론 및 아쉬운 점

- R-square 결과 0.835가 나왔는데 더이상 올리지 못함
- 변수 간의 상관관계를 찾아내어 모델에 반영하지 못함
- VIF를 실행하지 않아 조건수를 내리지 못함 (season과 month의 상관관계를 간과 하였다)
- 대체 할 데이터의 filtering에 실수가 있던 점 (atemp 12.12)

감사합니다.