2018 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	A	В	D	C	D	В	A	A	C

II dalis

11	$\left(0;e^{\mathrm{e}}\right)\cup\left(e^{\mathrm{e}};\infty\right)$
	arba
	$x \neq e^{e}$ ir $x > 0$.
12.1	6.
12.2	60° arba $\frac{\pi}{3}$.
12.3	12.
13.1	7 ir 8; arba {7; 8}; arba 7; 8.
13.2	$2\frac{18}{21}$ arba $\frac{60}{21}$; arba $2\frac{6}{7}$; arba $\frac{20}{7}$.
14.1	54.
14.2	3.
15.1	2 arba $x=2$.
15.2	(1;5) arba $1 < x < 5$.
16.1	{3; 7; 9} arba 3; 7; 9.
16.2	4.

 $^{^{\}hbox{\scriptsize \mathbb{C}}}$ Nacionalinis egzaminų centras, 2018 m.

III dalis

Pastaba.

III dalyje pateiktas atsakymas be sprendimo vertinamas 0 taškų.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
17		3	
17.1		1	
	1,5 kg = 1500 g. $1500 \cdot \frac{6}{100} = 90$. Ats.: 90 g.	1	Už gautą teisingą atsakymą.
17.2	Then you	2	
17,42	I būdas		
	Tarkime, Rugilė įpylė x g vandens. Gauname lygtį $(250 + 5 + x) \cdot \frac{4}{100} = \frac{6}{100} \cdot 250$.	1	Už teisingai sudarytą lygtį.
	10.2 + 0.04x = 15, x = 120 g. Ats.: 120 g.	1	Už gautą teisingą atsakymą.
	II būdas		
	Cukraus koncentracija sumažėjo $\frac{6}{4}$ = 1,5 karto. Su citrinos sultimis ir vandeniu iš viso gėrimo dabar yra 250·1,5 = 375.	1	Už teisingai apskaičiuotą naują gėrimo masę.
	Rugilė įpylė vandens 375–250–5=120. <i>Ats.</i> : 120 g.	1	Už gautą teisingą atsakymą.
	III būdas		
	250 g "iTea" gėrimo yra 250 · $\frac{6}{100}$ = 15 g cukraus. Todėl naujo gėrimo yra 15: $\frac{4}{100}$ = 375 g.	1	Už teisingai apskaičiuotą naujo gėrimo masę.
	Vadinasi, Rugilė įpylė vandens 375–250–5=120. Ats.: 120 g.	1	Už gautą teisingą atsakymą.

2018 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

U žd.	Sprendimas ir atsakymas	Taškai	Vertinimas
18		4	
	I būdas		
	Tarkime, kad Irutė pokemonus gaudė <i>t</i> dienų.	1	Už bent vieną teisingai
	Sudarome lygčių sistemą		sudarytą lygtį.
	(4., 427		
	$\begin{cases} tx = 437, \end{cases}$		Už teisingai sudarytą
	$\int (t-1)(x+3) = 484.$	1	lygčių sistemą.
	(t-1)(x+3) = tx - x + 3t - 3 =		
	=437-x+3t-3=484,	1	Už teisingai sudarytą
	x = 3t - 50,	1	vieno kintamojo lygtį.
	(3t-50)t = 437.		
	$3t^2 - 50t - 437 = 0.$		
	,		
	$t_1 = -\frac{19}{3}$ netenkina sąlygų;		TTV
	3	1	Už gautą teisingą
	$t_2 = 23$, tenkina sąlygas.		atsakymą.
	x = 437 : 23 = 19.		
	Ats.: 19.		
	II būdas		
	Irutė gaudė pokemonus $\frac{437}{r}$ dienų. Birutė gaudė	1	Už bent vieną teisingą
	pokemonus $\frac{484}{x+3}$ dienų.	1	santykį.
	pokemonus x+3 x+3		
	427 404	1	Už teisingai sudarytą
	$\frac{437}{x} = \frac{484}{x+3} + 1.$	1	lygtį.
	XX+3		Už teisingą trupmeninės
	$x^2 + 50x - 1311 = 0.$	1	lygties pertvarkymą į
		1	kvadratinę.
	$x_1 = 19, x_2 = -69.$		
	$x_1 - 19, x_2 - 69.$	1	Už gautą teisingą
	Ats.: 19.		atsakymą.
	III būdas		
	Tarkime, kad Irutė pokemonus gaudė <i>t</i> dienų.	1	Už bent vieną teisingai
	Sudarome lygčių sistemą		sudarytą lygtį.
	$\int tx = 437,$		
	(t-1)(x+3) = 484.	1	Už teisingai sudarytą
		1	lygčių sistemą.
	Kadangi $437 = 19 \cdot 23$, o 19 ir 23 yra pirminiai		Už rastas galimas <i>t</i>
	skaičiai, todėl t gali įgyti reikšmes 1, 19, 23 ir 437.		reikšmes, naudojant
		1	skaičiaus išskaidymą
			pirminiais
			dauginamaisiais.
	Galimos sprendinių poros $(t;x)$ yra $(1;437)$, $(19;23)$,		
	(23;19) ir (437;1). Vienintelė pora, kuri tenkina		
	ygybe (t-1)(x+3) = 484, yra (23;19), todėl	1	Už gautą teisingą
	·	1	atsakymą.
	x = 19.		
	Ats.: 19.		

2018 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

U žd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		4	
19.1		1	
	Taip. / Gali. Pavyzdžiui, skaičiai 6, 7 ir 8 sudaro aritmetinę progresiją, o jų suma lygi 21.	1	Už teisingą atsakymą ir jo pagrindimą.

Pastabos:

- Mokinys 19.1 dalyje gali pateikti ir kitas aritmetines sekas, kurių narių suma lygi 21. Pavyzdžiui, 1, 2, 3, 4, 5, 6 arba 5, 7, 9, arba 4, 7, 10 ir pan.
- Mokinys gali seką pateikti ir pasakydamas, kam lygus pirmas narys, kiek seka turi narių ir koks yra aritmetinės sekos vardiklis. Pavyzdžiui: $a_1 = 1$, d = 1, n = 6 arba $a_1 = 6$, d = 1, n = 3 ir pan.

• Jei mokinys užrašė "6 + 7 + 8 = 21", jam skiriamas 1 taškas.

	si mokinys užrašė "6 + 7 + 8 = 21", jam skiriamas 1 tašk		,
9.2		3	
	I būdas. Tarkime, pirmasis aritmetinės sekos narys yra a_1 , o skirtumas d yra teigiamas. Tuomet $a_1 + a_2 + + a_n = a_1 + (a_1 + d) + + (a_1 + (n-1)d) \ge 1 + 2 + + n$.	1	Už teisingai gautą mažiausią galimą <i>n</i> teigiamos aritmetinės sekos narių sumą.
	$1+2++n=\frac{(n+1)n}{2}<1009,$	1	Už teisingai sudarytą nelygybę.
	$n < \frac{-1 + \sqrt{8073}}{2} \approx 44,4.$ Ats.: 44.	1	Už gautą teisingą atsakymą.
	II būdas. Tarkime, pirmasis aritmetinės sekos narys yra a_1 , o skirtumas d yra teigiamas. Tuomet $S_n = \frac{a_1 + a_n}{2} \cdot n, \ a_n = a_1 + (n-1)d,$ $a_1 \ge 1 \text{ ir } d \ge 1, \text{ nes seką sudaro natūralieji skaičiai, todėl}$ $S_n = \frac{a_1 + a_n}{2} \cdot n \le \frac{(n+1)n}{2},$	1	Už teisingai gautą mažiausią galimą <i>n</i> teigiamos aritmetinės sekos narių sumą.
	$\frac{(n+1)n}{2} < 1009,$	1	Už teisingai sudarytą nelygybę.
	$n < \frac{-1 + \sqrt{8073}}{2} \approx 44,4.$ Ats.: 44.	1	Už gautą teisingą atsakymą.

Pastaba.

Jei parašoma 1+2+3+...+43+44=990 ir 1+2+3+...+43+44+45=1035 (arba $\frac{1+44}{2}\cdot 44=990$ ir $\frac{1+45}{2}\cdot 45=1035$), todėl n=44, skiriami visi taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas Pagrindine sesija
20	·	4	
	Tarkime, kad kubo kraštinės ilgis yra $a(m)$, tada $AC_1 = \sqrt{3}a$, $CE = \frac{1}{3}a$ ir $C_1E = \frac{2}{3}a$.	1	Už teisingai apskaičiuotą AC_1 ilgį.
	Tarkime, tiesė, kuri eina per C_1 , ir yra lygiagreti su atkarpa BE , kerta atkarpą BB_1 taške F .	1	Už teisingai apskaičiuotą <i>BE</i> ilgį.
	$C_1 F = BE = \sqrt{BC^2 + CE^2} = \sqrt{\frac{10}{9}} a.$ $AF = \sqrt{AB^2 + BF^2} = \sqrt{AB^2 + C_1 E^2} = \sqrt{\frac{13}{9}} a.$	1	Už teisingai apskaičiuotą sudaryto trikampio trečios kraštinės ilgį.
	Pagal kosinusų teoremą $AF^{2} = AC_{1}^{2} + C_{1}F^{2} - 2\cos \angle AC_{1}F \cdot AC_{1} \cdot C_{1}F.$ Vadinasi, $\cos \angle AC_{1}F = \frac{AC_{1}^{2} + C_{1}F^{2} - AF^{2}}{2AC_{1} \cdot C_{1}F} = \frac{2\sqrt{2}}{\sqrt{15}} = \frac{2\sqrt{30}}{15}.$ Ats.: $\arccos \frac{2\sqrt{30}}{15}$.	1	Už teisingai gautą kampo reikšmę.
	II būdas A B C E C A Ivedame trimatę koordinčių sistemą. Tarkime, trys kraštinės eina per koordinačių ašis, o taško A koordinatės yra (0; 0; 0).	1	Už įvestą koordinačių sistemą.
	Pasirenkame koordinačių sistemą, kurioje kubo kraštinės ilgis lygus 1. Tada $\overrightarrow{AC_1} = (1; 1; 1)$, o $\overrightarrow{BE} = \left(1; 0; \frac{1}{3}\right).$	1	Už teisingai apskaičiuotas vektorių koordinates.

2018 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKC	IJA Pagrindir	16 cociia

Tarkime, α yra ieškomas kampas. Tada $\cos \alpha = \frac{\overrightarrow{AC} \cdot \overrightarrow{BE}}{ \overrightarrow{AC} \cdot \overrightarrow{BE} }$. $\overrightarrow{AC_1} \cdot \overrightarrow{BE} = 1 \cdot 1 + 1 \cdot 0 + 1 \cdot \frac{1}{3} = \frac{4}{3},$ $ \overrightarrow{AC_1} = \sqrt{3}, \text{ o } \overrightarrow{BE} = \sqrt{\frac{10}{9}} = \frac{\sqrt{10}}{3}.$	1	Už teisingai apskaičiuotą vektorių skaliarinę sandaugą ir vektorių ilgius.
$\cos \alpha = \frac{\frac{4}{3}}{\sqrt{3} \cdot \frac{\sqrt{10}}{3}} = \frac{4}{\sqrt{30}} = \frac{2\sqrt{30}}{15},$ $\alpha = \arccos \frac{2\sqrt{30}}{15}.$ $Ats.: \arccos \frac{2\sqrt{30}}{15}.$	1	Už teisingai gautą atsakymą.

Pastaba.

Tai, kad uždavinys išspręstas ne iki galo, t. y. gauta $\cos \alpha = \frac{2\sqrt{30}}{15}$ reikšmė, bet α neapskaičiuotas arba apskaičiuotas apytiksliai, šioje vietoje nelaikoma kritine klaida ir vis tiek skiriamas ketvirtasis taškas.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		5	
21.1		1	
	$f(2) = \frac{2^2 \log_2 2 - \log_2 2}{2 - 1} = 4 - 1 = 3.$ Ats.: 3.	1	Už gautą teisingą atsakymą.
21.2	11101. 5.	2	
	I būdas.		
	Pirmiausia suprastiname reiškinį		
	$\frac{x^2 \log_2 x - \log_2 x}{x - 1} = (x + 1) \log_2 x.$ $f'(x) = \log_2 x + \frac{(x + 1)}{x \ln 2};$	1	Už teisingai apskaičiuotą funkcijos išvestinę.
	$x \ln 2$		
	$f'(4) = \log_2 4 + \frac{(4+1)}{4\ln 2} = 2 + \frac{5}{4\ln 2}.$ $Ats.: 2 + \frac{5}{4\ln 2}.$	1	Už gautą teisingą atsakymą.
	4 ln 2		
	II būdas. $f'(x) = \frac{\left(2x\log_2 x + \frac{x^2}{x\ln 2} - \frac{1}{x\ln 2}\right)(x-1) - x^2\log_2 x + \log_2 x}{(x-1)^2};$	1	Už teisingai apskaičiuotą funkcijos išvestinę.
	$f'(4) = \frac{\left(2 \cdot 4 \log_2 4 + \frac{4^2}{4 \ln 2} - \frac{1}{4 \ln 2}\right) (4-1) - 4^2 \log_2 4 + \log_2 4}{(4-1)^2};$ $f'(4) = 2 + \frac{5}{4 \ln 2}.$ $Ats.: 2 + \frac{5}{4 \ln 2}.$	1	Už gautą teisingą atsakymą.
21.3		2	
	$f'(x) = \log_2 x + \frac{(x+1)}{x \ln 2} > 0$, nes abu dèmenys intervale [2;8] yra teigiami.	1	Už tai, kad parašė, jog funkcijos išvestinė yra teigiama duotame intervale.
	Didėjančioji funkcija didžiausią reikšmę įgyja intervalo dešiniajame gale. $f(8) = (8+1)\log_2 8 = 27$. <i>Ats.</i> : 27.	1	Už gautą teisingą atsakymą.

Pastabos:

- 21.3 dalyje esančios nelygybės $\log_2 x + \frac{(x+1)}{x \ln 2} > 0$ nepagrindimas yra rimtas, bet ne kritinis trūkumas, todėl skiriamas 1 taškas (pirmasis).
- Jei 21.3 dalyje tik apskaičiuota funkcijos reikšmė intervalo gale ir parašytas atsakymas, skiriamas 1 taškas (antrasis).
- Jei 21.3 dalyje parodyta, kad kritiniai taškai nepriklauso intervalui [2; 8], apskaičiuota funkcijos reikšmė intervalo galuose ir parašytas teisingas atsakymas, skiriami visi taškai.
- Jeigu geometriškai ar kaip kitaip parodoma, kad lygtis f'(x) = 0 intervale [2; 8] sprendinių neturi, t. y. tokio tipo kritinių taškų nėra ir kritinis taškas x = 0 nepriklauso intervalui [2; 8], taip pat apskaičiuojamos funkcijos reikšmės intervalo galuose bei gaunamas teisingas atsakymas, skiriami visi taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		6	
22.1		3	
	ABCD – pagrindas, tarkime, BH – aukštinė iš B į AD . 2AB = AB + CD = BC + AD = = 6+18, nes keturkampis $ABCD$ yra apibrėžtas apie apskritimą. AB = 12.	1	Už teisingai panaudotą apibrėžto keturkampio savybę.
	$2R = BH = \sqrt{144 - 36} = 6\sqrt{3}.$	1	Už teisingai apskaičiuotą trapecijos aukštinės (apskritimo skersmens) ilgį.
	$S_{\rm skr} = \pi R^2 = 27\pi,$ $S_{ABCD} = 12 \cdot 6\sqrt{3} = 72\sqrt{3}.$ Ats.: 27π ir $72\sqrt{3}$.	1	Už apskaičiuotus abu plotus.
22.2		3	
	$V_{\text{k\bar{u}g}} = \frac{1}{3} h S_{\text{skr}} \text{ in } V_{\text{piram}} = \frac{1}{3} h S_{ABCD},$	1	Už kūgio ir piramidės tūrių išraišką per pagrindo plotą ir aukštinės ilgį.
	$\frac{V_{\text{kūg}}}{V_{\text{piram}}} = \frac{\frac{1}{3}hS_{\text{skr}}}{\frac{1}{3}hS_{ABCD}} = \frac{S_{\text{skr}}}{S_{ABCD}},$	1	Už teisingą suprastinimą, po kurio lieka lygybė $\frac{V_{\rm k\bar{u}g}}{V_{\rm piram}} = \frac{S_{\rm skr}}{S_{ABCD}}.$
	$\frac{V_{\text{kūg}}}{14} = \frac{27\pi}{72\sqrt{3}},$ $V_{\text{kūg}} = \frac{7\sqrt{3}\pi}{4}.$ $Ats.: \frac{7\sqrt{3}\pi}{4}.$	1	Už gautą teisingą atsakymą.

Pastaba.

Jeigu 22.1 uždavinio mokinys neišsprendė ar jį išsprendė neteisingai, tai spręsdamas 22.2 uždavinį jis turi laikyti, kad pagrindų plotai yra duoti. Todėl mokinys gali juos įvardyti bet kokiais skaičiais ar raidėmis.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		6	
23.1		2	
	$f'(x) = 3x^2 - 12x + 8,$ f'(3) = -1.	1	Už teisingai gautą f išvestinės reikšmę taške x_0 .
	f(3) = 3, y = f(3) + f'(3)(x - 3) = = 3 - (x - 3) = -x + 6. Ats.: $k = -1$; $b = 6$.	1	Už gautą teisingą atsakymą.

Pastaba. Jei mokinys atsakymą pateikė pavidalu y = -x + 6, tai jam skiriami visi numatyti taškai.

	Pastaba. Jei mokinys atsakymą pateikė pavidalu $y = -x + 6$, tai jam skiriami visi numatyti taškai.				
23.2		4			
	$x^{3} - 6x^{2} + 8x + 6 = -x + 6,$ $x^{3} - 6x^{2} + 9x = 0,$ $x(x^{2} - 6x + 9) = 0,$ $x = 0, x = 3.$	1	Už teisingai nustatytus integravimo rėžius.		
	$S = \int_0^3 (x^3 - 6x^2 + 8x + 6 - (-x + 6))dx =$	1	Už teisingai užrašytą plot apibrėžtiniu integralu.		
	$\int_0^3 (x^3 - 6x^2 + 9x) dx = \left(\frac{x^4}{4} - 2x^3 + \frac{9}{2}x^2 \right) \Big _0^3$	1	Už teisingai rastą pirmykštę funkciją.		
	$S = \frac{3^4}{4} - 2 \cdot 3^3 + \frac{9}{2} \cdot 3^2 = 6,75.$ Ats.: 6,75.	1	Už gautą teisingą atsakymą.		

Pastaba.

Akivaizdus sprendimo trūkumas (neįrodyta, kad kitų susikirtimo taškų tarp dviejų kreivių nėra), kai mokinys integravimo rėžius nustatė iš brėžinio, šiuo atveju nelaikomas kritine klaida, todėl jam skiriamas pirmas taškas.

2018 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA	Dogwindinė sosiio
2016 M. MATEMATIKOS VALSTIDINIO DRANDOS EGZAMINO UZDUOTIES VERTINIMO INSTRUKCIJA	Pagrindinė sesija

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		6	
24.1		1	
	$n = C_{12}^8 = 495.$ Ats.: 495.	1	Už gautą teisingą visų galimų bandymo baigčių skaičių.
	a. Jei mokinys gavo atsakymą, atsižvelgdamas į automobi skiriamas numatytas taškas.	lių stovėji	mo tvarką, t. y. 19958400,
24.2	Skirtainus rumutytus tuskus.	2	
	Įvykiui palankių baigčių skaičius $m = 5$.	1	Už teisingą įvykiui palankių baigčių skaičių.
	P(įvykio) = $\frac{m}{n} = \frac{5}{495} = \frac{1}{99}$. Ats.: $\frac{1}{99}$.	1	Už teisingai panaudotą klasikinės tikimybės formulę ir gautą atsakymą.
	a. Jei mokinys atsižvelgė į automobilių stovėjimo tvarką i ni visi taškai.	r gavo teis	ingą atsakymą, tai jam
24.3		3	
	Nagrinėjame priešingą įvykį. Ieškome, keliais būdais galime laisvas vietas sudėlioti tarp automobilių. 9 tarpai tarp mašinų (įskaitant ir galus), 4 laisvos vietos.	1	Už tai, kad nurodė, jog ieškos priešingo įvykio tikimybę.
	$m = C_9^4 = 126.$	1	Už teisingą priešingam įvykiui palankių baigčių skaičių.
	P(įvykio) = $1 - \frac{m}{n} = \frac{369}{495} = \frac{41}{55}$. Ats.: $\frac{41}{55}$.	1	Už gautą teisingą atsakymą.