I Étude de la résonance (⋆⋆)

Le circuit suivant est alimenté par une tension sinusoïdale $e(t) = E_0\sqrt{2}\cos(\omega t)$, avec $E_0 > 0$. On note $u(t) = U_0\sqrt{2}\cos(\omega t + \phi_u)$ la tension aux bornes de la résistance et $i(t) = I_0\sqrt{2}\cos(\omega t + \phi_i)$ le courant traversant la bobine.

On donne $R = 100 \Omega$, L = 10 mH et $C = 10 \mu\text{F}$.

1) La constante E_0 correspond-elle à l'amplitude ou à la valeur efficace du signal e(t). On justifiera la réponse en définissant ces deux termes.

A Étude de u(t)

2) On note $\underline{u}(t) = \underline{U_0}\sqrt{2}\exp(j\omega t)$ le complexe associé au signal u(t) tel que $u(t) = \text{Re}(\underline{u}(t))$. Montrer que $\underline{U_0}$ peut se mettre sous la forme :

$$\underline{U_0} = \frac{E_0 \times (jx)^2}{1 + jx/Q + (jx)^2}$$

où $x = \omega/\omega_0$ est la pulsation réduite, ω_0 la pulsation propre et Q le facteur de qualité. Exprimer les constantes ω_0 et Q en fonction de L, C et R.

- 3) Exprimer $U_0(x)$ en fonction de E_0 , x et Q.
- 4) Représenter le schéma électrique équivalent à basse fréquence et en déduire la limite de $U_0(x)$ à basse fréquence. Vérifier ce résultat à l'aide de la réponse à la question précédente. On donnera l'équivalent mathématique de $U_0(x)$ à basse fréquence.
- 5) Reprendre la question précédente pour les hautes fréquences.
- 6) Définir la notion de résonance. À partir de l'étude des limites, peut-on dire qu'il existe nécessairement une résonance de la tension u(t)?
- 7) Montrer qu'il existe une pulsation réduite de résonance x_r si et seulement si $Q > 1/\sqrt{2}$. Pour cela, on écrira $U_0(x)$ sous la forme $U_0(x) = \frac{E_0}{\sqrt{f(x)}}$, où f(x) est une fonction que l'on définira. En déduire l'expression de la pulsation de résonance ω_r en fonction de ω_0 et Q. Comparer ω_r à ω_0 .
- 8) Donner l'expression de U_0 pour x=1. Calculer le facteur de qualité.
- 9) Tracer l'allure de U_0 en fonction de x.
- 10) Exprimer la phase ϕ_u en fonction de x et Q. Faire l'étude des limites et tracer l'allure de ϕ_u en fonction de x

B Étude de i(t)

11) On note $\underline{i}(t) = \underline{I_0}\sqrt{2}\exp(j\omega t)$ le complexe associé au signal i(t) tel que $i(t) = \text{Re}(\underline{i}(t))$. Montrer que $\underline{I_0}$ peut se mettre sous la forme :

$$\underline{I_0} = \frac{I_{\text{max}}}{1 + jQ(x - 1/x)}$$

où $x = \omega/\omega_0$ est la pulsation réduite, ω_0 la pulsation propre et Q le facteur de qualité. Exprimer I_{max} en fonction de E_0 , L, C et R.

- 12) Justifier que l'expression de $I_{\rm max}$ obtenue est homogène.
- 13) Exprimer I_0 en fonction de I_{max} , x et Q. Faire l'étude des limites de la fonction $I_0(x)$. On précisera l'équivalent mathématique de $I_0(x)$ à haute et basse fréquences.
- 14) A partir de l'étude des limites, peut-on dire qu'il existe nécessairement une résonance de l'intensité i(t)?
- 15) Déterminer la pulsation réduite à la résonance.
- 16) Définir la bande passante $\Delta x = [x_1, x_2]$. Exprimer x_1 et x_2 en fonction de Q.
- 17) Tracer l'allure de I_0 en fonction de x. On placera la bande passante sur le graphique.
- 18) Exprimer la phase ϕ_i en fonction de x et Q. Faire l'étude des limites et tracer l'allure de ϕ_i en fonction de x. On placera la bande passante sur le graphique.

I Résonance

Le circuit ci-contre est constitué d'une source idéale de courant de c.e.m. $\eta(t)=\eta_0\cos(\omega t)$. Cette source alimente une association parallèle constituée d'un condensateur, d'une bobine et d'une résistance. La tension aux bornes de cette association est $u(t)=U_0\cos(\omega t+\phi)$. On note $U_0=U_0e^{j\phi}$ l'amplitude complexe de u(t).

A Étude de l'amplitude et de la phase

- 1) Exprimer l'impédance équivalente \underline{Z} du dipôle AB.
- 2) Montrer que l'amplitude complexe de la tension u se met sous la forme :

$$\frac{U_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad \text{avec } x = \omega/\omega_0$$

Exprimer Q et ω_0 en fonction de R, L et C. Comment s'appellent ces deux constantes?

- 3) Exprimer l'amplitude réelle U_0 de la tension u en fonction de R, η_0 , Q et x.
- 4) Y-a-t-il résonance en tension ? Si oui, préciser la valeur de x à la résonance. En déduire la valeur de ω à la résonance.
- 5) Comment définit-on la bande passante $\Delta \omega$? Montrer que $\Delta \omega = \omega_0/Q$.
- 6) Faire l'étude asymptotique de la fonction $U_0(x)$. Tracer l'allure de U_0 en fonction de x.
- 7) Exprimer la phase ϕ en fonction de Q et x. Préciser le domaine de variation de ϕ .
- 8) Faire l'étude asymptotique de la fonction $\phi(x)$. Tracer l'allure de ϕ en fonction de x.

B Expérience

Pour tracer les graphiques U_0 et ϕ en fonction de ω , il faut pouvoir observer simultanément le courant $\eta(t)$ et la tension u(t). On ajoute une résistance r en série avec le générateur de courant afin de visualiser le courant $\eta(t)$ par l'intermédiaire de la tension $u_r(t)$. On propose le montage ci-contre.

- 9) Le montage proposé est-il valable? Si oui, à quelle condition?
- 10) Quelle tension visualise-t-on sur la voie A? sur la voie B? Que faut-il faire pour visualiser $\eta(t)$ et u(t)?

La figure suivante montre une acquisition des tensions u_r et u faite pour une pulsation ω donnée. Le calibre est de 1 V sur les deux voies.

- 11) La tension u est-elle en avance ou en retard par rapport au courant η ?
- 12) Déterminer la valeur de la phase ϕ de la tension u par rapport au courant η . On donnera sa valeur en degré.
- 13) Que vaut l'amplitude U_0 de la tension u?
- 14) Définir mathématiquement la valeur efficace s_{eff} d'un signal s(t) périodique de période T.
- 15) Soit un signal s(t) sinusoïdal de période T, d'amplitude S_0 et de phase à l'origine nulle. Exprimer sa valeur efficace s_{eff} en fonction de S_0 . On étblira cette relation.
- 16) En déduire la valeur efficace de la tension u(t). On donne $\sqrt{2} = 1,4$.

I | Entrée en résonance d'une suspension (\star)

On considère le cas d'un véhicule de masse m roulant à la vitesse (horizontale) v_0 sur une route de profil harmonique $y(x) = a\sin(kx)$ avec $x = v_0t$. On posera par la suite $\omega = kv_0$.

Le véhicule est relié aux roues par une suspension, modélisée par un ressort de longueur à vide l_0 , et de raideur k. De plus, on prendre en compte une force de frottement fluide exercée par l'air ambiant sur le véhicule d'expression $\overrightarrow{f} = -\lambda v_y \overrightarrow{e}_y$.

Dans toute la suite, on notera y(t) l'abscisse du véhicule et $y_s(t)$, l'abscisse du sol.

- 1) Effectuer un bilan des force verticales exercées sur le véhicule
- 2) En déduire l'équation du mouvement pour l'inconnue y sous sa forme canonique.

On cherche à obtenir une solution particulière $y_p(t)$ de cette équation sous la forme $y_p(t) = y_h(t) + y_c$ avec $y_h = Y \cos(\omega t + \phi)$, une fonction harmonique, associée à la partie harmonique du second membre et y_c , une fonction constante, associée à la partie constante du second membre.

- 3) De quelle équation y_c est-elle solution? Exprimer alors y_c en fonction des données du problème.
- 4) De quelle équation y_h est-elle solution? On pose alors $\underline{y}_h(t) = \underline{Y}_c e^{j\omega t}$ tel que $y_h(t) = \text{Re}(\underline{y}_h(t))$. Déduire de ce qui précède l'expression de \underline{Y}_c en fonction de λ, k, m, ω et a.

On pose $\omega_0 = \sqrt{k/m}$ la pulsation propre du système et $Q = \sqrt{mk}/\lambda$, son facteur de qualité

- 5) Vers quelle limite tend l'amplitude Y de $y_h(t)$ en basse fréquence? De même, donner un équivalent de cette amplitude en haute fréquence. Exprimer ensuite cette amplitude pour $\omega = \omega_0 = \sqrt{k/m}$ en fonction de a et de Q. En déduire la courbe de Y en fonction de ω pour différentes valeurs du facteur de qualité (par exemple 0.5; 1; 2)
- 6) La résonance est-elle obtenue pour toute les valeurs possible du facteur de qualité ? S'agit-il du même type de résonance que celle obtenue pour l'intensité d'un circuit RLC ?
- 7) (**) Déterminer précisément, et par le calcul, à partir de quelle valeur notée Q_c la résonance apparaît. Cette dernière se caractérise par l'apparition d'un maximum local dans la courbe $Y(\omega)$.

I | Circuit RLC en RSF

On dispose de deux circuits A et B ci-dessous, qui sont alimentés par un GBF de f.e.m. $e(t) = E_0 \cos(\omega t)$ (avec E_0 une constante positive) et de résistance interne R_g .

Figure 11.1: Montage A

Figure 11.2: Montage B

On donne les graphiques de l'évolution de l'amplitude I_0 en ampère de l'intensité i(t), ainsi que celle de l'amplitude U_0 en volt de la tension u(t) en fonction de la fréquence f.

1) Pour chaque graphique, déterminer quelle est la courbe correspondant au montage A et celle au montage B. Déterminer les valeurs de E_0 , R, R_g , L et C.

I Détermination d'une inductance $(\star \star \star)$

On réalise le montage représenté ci-contre, et on constate sur l'oscilloscope que pour une fréquence $f_0=180\,\mathrm{Hz}$, les signaux recueillis sur les voies X et Y sont en phase.

 $Donn\acute{e}s: R = 100\,\Omega$ et $C = 10\,\mu\text{F}$.

1) En déduire l'expression puis la valeur de l'inductance L de la bobine.