Programme de khôlle nº 18

Semaine du 10 Mars

Cours

• Chapitre 10 : Séries numériques

- Série convergente, série divergente.
- Si $\sum u_n$ converge alors $u_n \to 0$, série grossièrement divergente
- Exemple de série divergente : la série harmonique
- Somme de séries convergentes, produit par un réel
- Série absolument convergente
- Pour une série à termes positifs, $\sum u_n$ converge ssi la suite des sommes partielles est majorée.
- Théorèmes de comparaison pour les séries à termes positifs : si $u_n \leq v_n$ ou $u_n = o(v_n)$, si la s.t.g. v_n converge alors la s.t.g. u_n converge, si la s.t.g. u_n diverge alors la s.t.g. v_n diverge.
- Si (u_n) et (v_n) sont des suites de réels positifs, et si $u_n \sim v_n$, alors $\sum u_n$ et $\sum v_n$ sont de mêmes natures (toutes deux convergentes ou toutes deux divergentes).
- Séries de référence : série géométrique, série géométrique dérivée, série géométrique dérivée seconde, série de Riemann, série exponentielle
- Critère de d'Alembert, critère de Riemann
- Série double (à termes positifs) : $\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} a_{i,j} = \sum_{j=0}^{+\infty} \sum_{i=0}^{+\infty} a_{i,j}$ (éventuellement $= +\infty$).

• Chapitre 11: Espaces vectoriels

- \mathbb{R} -espaces vectoriels, structure d'espace vectoriel de \mathbb{R}^n , de $\mathbb{R}_n[X]$, de $\mathcal{M}_{n,m}(\mathbb{R})$ et de l'ensemble des fonctions d'une partie de \mathbb{R} dans \mathbb{R} .
- Sous-espaces vectoriels, s-e.v. engendrés par une famille de vecteurs, l'ensemble des solutions d'un systèmes linéaires homogènes à p inconnues est un sous-espace vectoriel de \mathbb{R}^p . L'intersection de 2 s-e.v. est un s-e.v.. Droites vectorielles. Les sous-espaces vectoriels de \mathbb{R}^2 sont $\{0\}$, les droites vectorielles, et \mathbb{R}^2 .
- Famille génératrice, famille libre, base. Théorème de la base incomplète, dimension. Décomposition unique d'un vecteur dans une base. Une famille libre d'un e.v. de dimension n a au plus n éléments avec égalité ssi c'est une base, une famille génératrice d'un e.v. de dimension n a au moins n éléments avec égalité ssi c'est une base. Si $F \subset E$ alors $\dim(F) \leq \dim(E)$ avec égalité ssi F = E.
- Base et dimension de $\mathbb{R}_n[X]$ et de $\mathcal{M}_{n,m}(\mathbb{R})$. Une famille de polynômes échelonnées en degré est libre.

Questions de cours et exercice

• Questions de cours

- Soient (u_n) et (v_n) deux suites à termes positifs et supposons que $\forall n \in \mathbb{N}, u_n \leq v_n$. Montrer que si $\sum v_n$ converge alors $\sum u_n$ converge et que si $\sum u_n$ diverge alors $\sum v_n$ diverge.
- Montrer qu'une série absolument convergente est convergente : $\sum |u_n|$ converge $\Rightarrow \sum u_n$ converge.
- Démontrer le critère de d'Alembert : (u_n) est une suite à termes strictement positifs et supposons que $\frac{u_{n+1}}{u_n} \to \ell \in [0, +\infty[$. Si $\ell < 1$ alors la série $\sum u_n$ converge, et si $\ell > 1$ alors la série $\sum u_n$ diverge
- Si $u_1, ..., u_p$ sont des vecteurs d'un \mathbb{R} -e.v. E alors $\mathrm{Vect}(u_1, ..., u_p) = \{\sum_{k=1}^p \lambda_k e_k \mid (\lambda_1, ..., \lambda_p) \in \mathbb{R}^p\}$ est un sous-espace vectoriel de E.
- L'ensemble des solutions d'un système homogène linéaire à coefficients réels à p inconnues est un sous-espace vectoriel de \mathbb{R}^p .

Remarques

- On note $\sum u_n$ pour désigner la série de terme général u_n .
- À part pour les séries géométriques, pour la série exponentielle, et pour la notion de convergence absolue, aucune théorie n'est faite sur les séries à termes de signe quelconques (théorèmes des séries alternées hors programme).