Non-homogeneous data: make it (more) Homogeneous

Normalization via z-score

Let's consider a simple dataset with examples that are drawn from two different groups

From the top graph: we can see that there is a constant linear relationship

- between target "dep" and feature "ind"
- both within groups and across groups

From the second and third rows, we see the distribution of features and targets

- has same shape between groups
- with different means

In [8]: _= sph.plot_segments(df_2means)

Given the simple linear relationship intra-group

- No harm would come from pooling
- Even though the pooled data comes from distinct groups

However: it the intra-group relationship was more complex (e.g., a curve)

• pooling would be less successful

So although this example may be over-simplified, we still try to make the distinct groups look similar.

Let's normalize each group

- for each variable (target and feature): turn values into z-scores
 - subtract variable mean, divide by variable standard deviation

You can now see that the two groups are

- congruent in the top joint plot
- have same distributions in the second and third rows

Non-homogeneous groups made homogeneous!

We can make the separation between groups less trivial by also having different standard deviations per group.

Here's what the data looks like

Pooled over time alternate method: normalization

Let's revisit our "pooled over time" dataset.

```
In [12]: sph = transform_helper.ShiftedPrice_Helper()
    series_over_time = sph.gen_data(m=30)

fig, ax = plt.subplots(1,1, figsize=(12,6))
    _= sph.plot_data(series_over_time, ax=ax)
```


We observed that the two groups have the same slope (Θ_1) but different intercepts (Θ_0)

$$\mathbf{y}_{(\mathrm{time}_0)} = \Theta_{(\mathrm{time}_0)} + \Theta_1 * \mathbf{x}$$

$$\mathbf{y}_{(ext{time}_1)} \;\; = \;\; \Theta_{(ext{time}_1)} + \Theta_1 * \mathbf{x}$$

We had previously addressed this by adding a missing feature

- distinct intercept per group
- by adding a "group indicator" feature

$$\mathbf{y} = \Theta_{(\mathrm{time}_0)} * \mathrm{Is}_0 + \Theta_{(\mathrm{time}_1)} * \mathrm{Is}_1 + \Theta_1 * \mathbf{x}$$

Which, after dropping one group indicator to avoid the Dummy Variable Trap gave us

$$\mathbf{y} = \Theta_0 + \Theta'_{(ext{time}_1)} * \mathrm{Is}_1 + \Theta_1 * \mathbf{x}$$

We show an alternate solution using a (trivial) standardization

Some simple algebra allows us to derive the intercept for Linear Regression in terms of the other features

$$\mathbf{y^{(i)}} = \Theta_0 + \Theta * \mathbf{x^{(i)}}$$
hypothesize linear relationship Θ is a vector of non-intercept features
$$\frac{1}{m} \sum_i \mathbf{y^{(i)}} = \frac{1}{m} \sum_i (\Theta_0 + \Theta * \mathbf{x^{(i)}})$$
sum over all examples, divide by no. o
$$\bar{\mathbf{y}} = \Theta_0 + \Theta * \bar{\mathbf{x}}$$
definition of average
$$\Theta_0 = \bar{\mathbf{y}} - \Theta * \bar{\mathbf{x}}$$
re-arrange terms

That is, the intercept

- is the average target
- less "average prediction"
 - the prediction (excluding intercept) at the average value of all features

Let's standardize the features ${\bf x}$ and target ${\bf y}$ in our original equations

giving us the equations

$$egin{array}{lll} & ilde{\mathbf{y}}_{(ext{time}_0)} & = & ilde{\Theta}_{(ext{time}_0)} + ilde{\Theta}_1 * ilde{\mathbf{x}} \ & ilde{\mathbf{y}}_{(ext{time}_1)} & = & ilde{\Theta}_{(ext{time}_1)} + ilde{\Theta}_1 * ilde{\mathbf{x}} \end{array}$$

where the \tilde{y} and \tilde{x} variables are the standardized forms of y and x

According to our algebra, when

- the average target
- and the average feature

are both 0: the intercept is 0.

Hence are two equations simplify to

$$egin{array}{lll} \mathbf{ ilde{y}}_{(ext{time}_0)} &=& 0 + ilde{\Theta}_1 * \mathbf{ ilde{x}} \ \\ \mathbf{ ilde{y}}_{(ext{time}_1)} &=& 0 + ilde{\Theta}_1 * \mathbf{ ilde{x}} \end{array}$$

That is, a single equation describes both groups

$$ilde{\mathbf{y}} = 0 + \tilde{\Theta}_1 * ilde{\mathbf{x}}$$

```
In [13]: fig, ax = plt.subplots(1,1, figsize=(12,6) )

demean_x0 = sph.x0 - sph.x0.mean()
demean_x1 = sph.x1 - sph.x1.mean()

_= ax.scatter(demean_x0, sph.y0 - sph.y0.mean(), label="$time_0$")
_= ax.scatter(demean_x1, sph.y1 - sph.y1.mean(), label="$time_1$")
_= ax.legend()
```


Now it looks like each group comes from the same distribution.

• We can pool the observations from the two groups

Normalization by uncovering the hidden relationship

Consider the following multi-group data (our multiple geography pooling of data)

- house price as a function of size
- in different geographies

In [14]: fig_rp

Out[14]:

There is clearly a linear relationship intra-group, but the slope differs between groups (local currencies).

$$\begin{array}{lll} \mathbf{y}_g & = & \Theta_{0,g} + \Theta_{1,g} * \mathbf{x} & \text{Equation for group } g \\ \\ & g \in \{\text{USD}, \text{HKD}, \text{RMB}\} \\ \\ & \text{Separate parameter vectors } \Theta_g \text{ per group} \end{array}$$

The apparent diversity in the target may obscure a simple relationship that is common to all groups

Notice that the "units" of the target ${f y}$ differ for each group

• different currencies

Let's transform the targets to a common unit

- by applying an exchange rate β_g to convert currency g into a common currency (USD)

$$ilde{\mathbf{y}}_g = rac{\mathbf{y}_g}{eta_g}$$

Let's re-denominate the target in a common unit.

ullet Let the target of example i in group g be

$$\mathbf{y}_g^{(\mathbf{i})}$$

- Change the units in which $\mathbf{y}_g^{(\mathbf{i})}$ is expressed
- Into a common unit
- $\bullet\;$ Via an "exchange rate" equal to the slope of group g

$$eta_g$$

• yielding

$$ilde{\mathbf{y}}_g^{(\mathbf{i})} = rac{\mathbf{y}_g^{(\mathbf{i})}}{eta_g}$$

Here's the re-denominated plot

```
In [15]: # Relative price levels
    rel_price = rph.relative_price()

# Normalize the price of each series by the relative price
    series_normalized = [ series[i]/(1,rel_price[i]) for i in range(len(series))]

fig_rp_norm, ax_rp_norm = plt.subplots(1,1, figsize=(12,6))
    _= rph.plot_data(series_normalized, ax=ax_rp_norm, labels=labels, xlabel="Area",
    ylabel="Price (USD)")

# plt.close(fig_rp_norm)
```


The three groups are now homogeneous!

$$rac{\mathbf{y}_g}{eta_g} = rac{\Theta_{0,g}}{eta_g} + rac{\Theta_{1,g}}{eta_g} * \mathbf{x} \quad ext{divide by exchange rate}$$

$$\mathbf{y} \hspace{1.5cm} = \hspace{.5cm} \Theta_0 + \Theta_1 * \mathbf{x}$$

Apparantly:

$$rac{\Theta_{j,g}}{eta_g} = \Theta_j$$

We have argued that Transformations should be well motivated.

In this case

- the "buying power" of one unit of each currency is different
- by re-denominating in a common currency
- we discover that the relationship is in "buying power" and not "local currency"

We have used "common currency" as a proxy for "buying power".

But there may be better alternative

- "number of months of salary"
 - Interpretation: each additional increment is Size is worth some number of "months of salary"
 - Compensates for differences in salary levels across geographies
- "number of MacDonald's hamburgers"
 - Compensates for differences in price level of a common commodity

It is up to you, the Data Scientist, to propose (and verify) which units reveal the true relationship.

This conversion into common units is a type of *scaling* transformation.

- the common relationship only becomes apparent when the target (or some features) are placed on a common scale
- often see this when target/features are scaled by their standard deviation
 - re-denominate in terms of number of standard deviations
 - e.g., returns of two equities are both normal but with different volatilities

Normalization: creating the correct units

There is a similar need for "re-denomination" that arises in a different context

- when the raw feature
- does not express the key semantics as well as a re-denominated feature

The Geron book has a more sophisticated example of <u>predicting house Price from features (external/handson-ml2/02 end to end machine learning project.ipynb#Experimenting-with-Attribute-Combinations)</u>

• a lot more features

```
In [16]: housing.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 20640 entries, 0 to 20639
         Data columns (total 10 columns):
         longitude
                               20640 non-null float64
         latitude
                               20640 non-null float64
         housing_median_age
                               20640 non-null float64
         total rooms
                               20640 non-null float64
         total_bedrooms
                               20433 non-null float64
         population
                               20640 non-null float64
         households
                               20640 non-null float64
         median income
                               20640 non-null float64
         median house value
                               20640 non-null float64
         ocean_proximity
                               20640 non-null object
         dtypes: float64(9), object(1)
         memory usage: 1.6+ MB
```

In terms of predictive value, there are some features

- total_rooms, total_bedrooms that are not predictive because their units are not informative
- both features will have greater magnitude in a multi-family house than a single family house

A more meaningful feature can be synthesized by normalizing by the number of families

```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
```

That is:

- the normalized variable has units "per household"
- that is more predictive of price than the raw feature

```
In [17]: print("Done")
Done
```