Poděkování: Velký dík patří Lubošovi Pickovi a Mirkovi Zelenému. Vetšina znění vět a definic je převzata z jejich souborů/poznámek.

15. Křivkový a plošný integrál

Motivace: Délka křivky, obsah plochy, váha nehomogenního drátu, váha nehomogenní desky

15.1. Hausdorffovy míry

Motivace: Lebesgueova míra je matematickým vyjádřením intuitivního pojmu objem (v dimenzi 3) nebo povrch (v dimenzi 2). Podobně chceme matematicky vyjádřit pojem délky nebo povrchu v dimenzi 3.

Značení: Symbolem λ^n budeme značit n-dimenzionální Lebesgueovu míru na \mathbf{R}^n . Symbolem λ^n budeme značit n-dimenzionální vnější Lebesgueovu míru na \mathbf{R}^n .

Značení: Pro k > 0 označme

(15.1)
$$\alpha_k = \frac{\pi^{k/2}}{\Gamma(\frac{k}{2} + 1)},$$

kde

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx, \quad s > 0.$$

V přednášce z teorie míry a integrálu se dokazuje, že pro koule v \mathbf{R}^n platí

$$\lambda^n(B(x,r)) = \alpha_n r^n.$$

Definice. Nechť $k, n \in \mathbb{N}$ a $k \le n$. Pro $A \subset \mathbb{R}^n$ a $\delta > 0$ položme

$$\mathcal{H}_{\delta}^{k}(A) = \inf \Big\{ \sum_{j=1}^{\infty} \alpha_{k} (\frac{1}{2} \operatorname{diam} A_{j})^{k}; \ A \subset \bigcup_{j=1}^{\infty} A_{j}, \ \operatorname{diam} A_{j} \leq \delta \Big\}.$$

Definujme

$$\mathcal{H}^k(A) = \sup_{\delta > 0} \mathcal{H}^k_{\delta}(A).$$

Množinové funkci \mathcal{H}^k_{δ} se říká k-rozměrný Hausdorffův δ -obsah, \mathcal{H}^k se nazývá k-rozměrná Hausdorffova (vnější) míra. Oprávněnost termínu "Hausdorffova vnější míra" ukážeme později. V geometrické teorii míry je zvykem používat pojem "míra" ve smyslu "vnější míra", proto v literatuře najdeme termín "Hausdorffova míra" používaný i pro Hausdorffovu vnější míru. Koeficient α_k je volen tak, abychom v \mathbf{R}^n dostali $\mathcal{H}^n = \lambda^n$, pro k necelé je jeho význam jen estetický.

Poznámky: 1. Funkce $\delta \mapsto \mathcal{H}^k_{\delta}(A)$ je zřejmě nerostoucí, a proto existuje limita $\lim_{\delta \to 0_+} \mathcal{H}^k_{\delta}(A)$, která se rovná $\mathcal{H}^k(A)$.

2. V definici $\mathcal{H}_{\delta}^{k}(A)$ můžeme pokrývat jen uzavřenými množinami a dostaneme stejnou hodnotu $\mathcal{H}_{\delta}^{k}(A)$. Pokrytí $\{A_{j}\}$ množiny A totiž můžeme nahradit pokrytím $\{\overline{A_{j}}\}$, neboť uzávěr množiny nezvětšuje diametr. Také můžeme pokrývat jen otevřenými množinami, neboť diametr množiny

$$\bigcup_{x \in A} B(x, \varepsilon)$$

je jen nejvýš o 2ε větší, než průměr A.

Věta L 15.1 (vnější míra). Nechť $k, n \in \mathbb{N}$ a $k \leq n$. Potom množinové funkce \mathcal{H}^k_{δ} a \mathcal{H}^k jsou vnější míry na \mathbb{R}^n .

Definice. Nechť (P,ϱ) je metrický prostor. Řekneme, že množiny $A,B\subset P$ jsou vzdálené, jestliže

$$\inf\{\rho(x,y); x \in A, y \in B\} > 0.$$

Řekneme, že vnější míra γ na P je **metrická**, jestliže pro každé dvě vzdálené množiny $A, B \subset P$ platí $\gamma(A \cup B) \geq \gamma(A) + \gamma(B)$. (Opačná nerovnost je splněna pro každou vnější míru.)

Připomeň: Množina $A \subset P$ je měřitelná vůči vnější míře γ na P právě tehdy, když

$$\gamma(T) > \gamma(T \cap A) + \gamma(T \setminus A)$$
 pro všechny $T \subset P$.

Věta L 15.2 (měřitelnost borelovských množin). Nechť γ je metrická vnější míra na metrickém prostoru (P, ρ) . Potom je každá borelovská podmnožina P γ -měřitelná.

Důkaz je v Thm 36.4 z Lukeš, Malý: Measure and integral.

Konec 1. přednášky 19.2.

Věta L 15.3 (metričnost Hausdorffovy míry). Nechť $k, n \in \mathbb{N}$ a $k \leq n$. Potom \mathcal{H}^k je metrická vnější míra na \mathbb{R}^n . Navíc \mathcal{H}^k je translačně invariantní.

Důsledek: Každá borelovská množina $A \subset \mathbf{R}^n$ je \mathcal{H}^k -měřitelná.

Značení: Termín k-rozměrná Hausdorffova míra by se měl používat (a budeme používat) pro množinovou funkci, která každé \mathcal{H}^k -měřitelně množině $A \subset P$ přiřadí $\mathcal{H}^k(A)$ a na ostatních množinách není definovaná. Nechť $A \subset \mathbf{R}^n$ je \mathcal{H}^k -měřitelná množina a $f: A \to \mathbf{R}$ je \mathcal{H}^k -měřitelná funkce. Potom symbol

$$\int_{A} f \, d\mathcal{H}^{k}$$

budeme používat pro integrál f podle Hausdorffovy míry, ačkoli, striktně vzato, Hausdorffova míra by se měla značit jinak než vnější Hausdorffova míra (podobně jako rozlišujeme λ^n a λ^n).

Věta L 15.4 (regularita Hausdorffovy míry). Nechť $k, n \in \mathbb{N}, k \leq n \ a \ A \subset \mathbb{R}^n$. Potom existuje borelovská množina $B \subset \mathbb{R}^n$ taková, že $A \subset B$ a $\mathcal{H}^k(A) = \mathcal{H}^k(B)$.

Příklad: Nechť $k, n \in \mathbb{N}$ a $k \leq n$. Potom

$$0 < \mathcal{H}^k([0,1)^k \times \{0\}^{n-k}) < \infty.$$

Lze ukázat, že díky naší volbě α_k platí $\mathcal{H}^k([0,1)^k \times \{0\}^{n-k}) = 1$. To není snadné, ale budeme to používat v důkazu následující věty.

Konec 2. přednášky 20.2.

Věta T 15.5 (souvislost Hausdorffovy a Lebesgueovy míry). *Nechť* $n \in \mathbb{N}$ a $A \subset \mathbb{R}^n$. *Potom* $\mathcal{H}^n(A) = \lambda^n(A)$.

V důkazu budeme používat teorii Dynkinových systémů z teorie míry:

Věta 12.4 z TMI (o jednoznačnosti). Nechť \mathcal{F} je systém podmnožin X uzavřený na konečné průniky. Nechť ν a μ jsou míry na $\sigma(\mathcal{F})$, které se shodují na \mathcal{F} . Jestliže existují $X_k \in \mathcal{F}$ tak, že $\mu(X_k) < \infty$ a $\bigcup_{k \in \mathbb{N}} X_k = X$, pak $\mu = \nu$ na $\sigma(\mathcal{F})$.

Definice. Nechť $\beta > 0$. Zobrazení $f: \mathbf{R}^n \to \mathbf{R}^m$ nazveme β -lipschitzovské, pokud

pro všechna
$$x, y \in \mathbf{R}^n$$
 platí $|f(x) - f(y)| \le \beta |x - y|$.

Zobrazení fnazýváme $lipschitzovské, pokud existuje <math display="inline">\beta>0$ tak, že f je $\beta\text{-lipschitzovské}.$

Přiklady: 1. Nechť $f \in C^1(\mathbf{R})$. Pak f je lipschitzovská na [0,1].

- 2. f(x) = |x| je 1-lipschitzovská
- 3. $f(x) = \sqrt{x}$ není lipschitzovská na [0, 1].

Věta L 15.6 (vlastnosti Hausdorffovy míry).

(a) Nechť $k, n \in \mathbb{N}, k \leq n, A \subset \mathbb{R}^k$ a $I: \mathbb{R}^k \to \mathbb{R}^n$ je izometrie. Potom

$$\mathcal{H}^k(I(A)) = \lambda^k(A).$$

(b) Nechť $k, m, n \in \mathbb{N}, k \leq n, k \leq m, A \subset \mathbb{R}^n$ a $f \colon \mathbb{R}^n \to \mathbb{R}^m$ je β -lipschitzovské. Potom

$$\mathcal{H}^k(f(A)) \leq \beta^k \mathcal{H}^k(A).$$

(c) Nechť $k_1, k_2, n \in \mathbb{N}$, $k_1 < k_2 \le n$ a $A \subset P$. Jestliže $\mathcal{H}^{k_1}(A) < \infty$, potom $\mathcal{H}^{k_2}(A) = 0$.

Konec 3. přednášky 26.2.

Věta L 15.7 (první lemma - area formule). Nechť $k, n \in \mathbb{N}, k \leq n, \ a \ L \colon \mathbf{R}^k \to \mathbf{R}^n$ je prosté lineární zobrazení. Potom pro každou λ^k -měřitelnou množinu $A \subset \mathbf{R}^k$ platí

$$\mathcal{H}^k(L(A)) = \sqrt{\det L^T L} \cdot \lambda^k(A).$$

Značení: Nechť $k,n\in \mathbf{N}, k\leq n,$ a $L\colon \mathbf{R}^k\to \mathbf{R}^n$ je lineární zobrazení. Budeme značit vol $L=\sqrt{\det L^TL}$.

Poznámka: Symbol vol je zvolen podle anglického slova *volume*, které znamená objem. Matice L^TL se nazývá Gramova matice. Podle Lemmatu 15.7 platí $\mathcal{H}^k(L([0,1]^k)) = \operatorname{vol} L$, takže číslo vol L vyjadřuje k-dimenzionální objem rovnoběžnostěnu $L([0,1]^k)$. Je-li $\varphi \in \mathcal{C}^1(G)$, pak je zobrazení $t \mapsto \operatorname{vol} \varphi'(t)$ spojité na množině G.

Definice. Nechť $k, n \in \mathbb{N}, k \leq n, G \subset \mathbb{R}^k$ je otevřená množina a $\varphi \colon G \to \mathbb{R}^n$. Řekneme, že φ je regulární na G, jestliže je třídy \mathcal{C}^1 na G a $\varphi'(x)$ je prosté pro každé $x \in G$.

Věta L 15.8 (druhé lemma - area formule -BD). Nechť $k, n \in \mathbb{N}, k \leq n, G \subset \mathbb{R}^k$ je otevřená množina, $\varphi \colon G \to \mathbb{R}^n$ je prosté regulární zobrazení, $x \in G$ a $\beta > 1$. Potom existuje okolí V bodu x takové, že

- (a) zobrazení $y \mapsto \varphi(\varphi'(x)^{-1}(y))$ je β -lipschitzovské na $\varphi'(x)(V)$,
- (b) zobrazení $z \mapsto \varphi'(x)(\varphi^{-1}(z))$ je β -lipschitzovské na $\varphi(V)$.

Konec 4. přednášky 27.2.

Věta T 15.9 (třetí lemma - area formule). Nechť $k, n \in \mathbb{N}, k \leq n, G \subset \mathbb{R}^k$ je otevřená množina, $\varphi \colon G \to \mathbb{R}^n$ je prosté regulární zobrazení, $x \in G$ a $\alpha > 1$. Potom existuje okolí V bodu x takové, že pro každou λ^k -měřitelnou $E \subset V$ platí

$$\alpha^{-1} \int_E \operatorname{vol} \varphi'(t) \, d\lambda^k(t) \leq \mathcal{H}^k(\varphi(E)) \leq \alpha \int_E \operatorname{vol} \varphi'(t) \, d\lambda^k(t).$$

Věta T 15.10 (area formule). Nechť $k, n \in \mathbb{N}, k \leq n, G \subset \mathbb{R}^k$ je otevřená množina, $\varphi \colon G \to \mathbb{R}^n$ je prosté regulární zobrazení a $f \colon \varphi(G) \to \mathbb{R}$ je borelovská. Potom platí

$$\int_{\varphi(G)} f(x) d\mathcal{H}^k(x) = \int_G f(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t),$$

pokud integrál na pravé straně konverguje.

Konec 5. přednášky 5.3.

Přiklady: 1. Spočtěte obsah plochy

$$S := \left\{ [x, y, z] \in \mathbf{R}^3 : \ x^2 + y^2 \le 1, \ z = x^2 + y^2 \right\}.$$

2. Nechť $f \in C^1(\mathbf{R})$. Spočtěte délku křivky

$$K:=\Big\{[x,y]\in {\bf R}^2:\ x\in [0,1],\ y=f(x)\Big\}.$$

3. Nechť $f \in C^1((a,b)) \cap C([a,b])$ je kladná. Spočtěte obsah rotační plochy

$$P:=\Big\{[x,y,z]\in {\bf R}^3:\ x\in [a,b],\ z^2+y^2=f(x)\Big\}.$$

Definice. Nechť $c: [a, b] \to \mathbb{R}^n$ je regulární křivka. Nechť f je funkce z \mathbb{R}^n do \mathbb{R} . **Křivkový integrál prvního druhu** $\int_c f \, ds$ definujeme předpisem

$$\int_a^b f(c(t)) \cdot ||c'(t)|| dt,$$

pokud tento integrál konverguje.

Definice. Nechť $k, n \in \mathbb{N}, k \leq n, G \subset \mathbb{R}^k$ je otevřená, $\varphi \colon G \to \mathbb{R}^n$ je zobrazení třídy \mathcal{C}^1 a f je funkce z \mathbb{R}^n do \mathbb{R} . Plošný integrál prvního druhu $\int_{\mathbb{R}^n} f dS$ definujeme předpisem

$$\int_{G} f(\varphi(t)) \cdot \operatorname{vol} \varphi'(t) dt,$$

pokud tento integrál konverguje.

Poznámka: Fyzikální význam křivkového integrálu prvního druhu je délka (pro $f\equiv 1$) respektive váha nehomogenního drátu.

Fyzikální význam plošného integrálu prvního druhu pro k=2 je obsah (pro $f\equiv 1$) respektive váha nehomogenní desky.

Poznámka: Z Věty 15.10 plyne, že tento integrál nezávisí na parametrizaci.

15.2. Křivky, plochy a jejich orientace

Definice. Nechť $k, n \in \mathbb{N}, k \leq n$. Řekneme, že neprázdná množina $M \subset \mathbb{R}^n$ je k-plocha, jestliže pro každé $x \in M$ existuje otevřená množina $G \subset \mathbb{R}^k$ a regulární homeomorfismus $\varphi \colon G \to \mathbb{R}^n$ takový, že $x \in \varphi(G) \subset M$ a $\varphi(G)$ je otevřená v M.

Příklady: (a) Množina $\{0\} \times (0,1)^2$ je 2-plocha v \mathbb{R}^3 ,

- (b) je-li $n\in \mathbf{N},\; n\geq 2,$ pak $\{x\in \mathbf{R}^n,\; \|x\|=1\}$ je (n-1)-plocha v $\mathbf{R}^n,$
- (c) je-li $n, k \in \mathbb{N}, k < n, H \subset \mathbb{R}^n$ otevřená, $F : H \to \mathbb{R}^{n-k}$ je třídy C^1 , rank F'(x) = n k pro každé $x \in H$ a $M = \{x \in H; F(x) = 0\}$ je neprázdná, pak M je k-plocha v \mathbb{R}^n .

Definice. Nechť $k, n \in \mathbf{R}^n, k \leq n, M$ je k-plocha a $x \in M$. Pak vektor $v \in \mathbf{R}^n$ nazveme **tečným** vektorem k ploše M v bodě x, jestliže existuje otevřený interval I, a spojité zobrazení $c: I \to M$ a $t_0 \in I$ takové, že $c(t_0) = x$ a $c'(t_0) = v$.

Množinu všech tečných vektorů k ploše M v bodě x nazýváme **tečným prostorem** k ploše M v bodě x a značíme $T_x(M)$.

Věta L 15.11 (popis tečného prostoru - důkaz jen část). $Necht \, k, n \in \mathbb{N}, k \leq n, \, M \subset \mathbf{R}^n \, je \, k$ -plocha $a, x \in M$

- (a) Potom $T_x(M)$ je k-dimenzionální vektorový prostor.
- (b) Necht $G \subset \mathbf{R}^k$ je otevřená množina, $a \in G$ a $\varphi \colon G \to \mathbf{R}^n$ je regulární homeomorfismus takový, že $x = \varphi(a) \in \varphi(G) \subset M$ a $\varphi(G)$ je otevřená v M. Potom $\varphi'(a)(\mathbf{R}^k) = T_x(M)$.

Přiklad: 1. Spočtěte tečný prostor k ploše

$$M := \{ [x, y, z] \in \mathbf{R}^3 : \ x^2 + y^2 + z^2 = 1 \}.$$

Definice. Nechť $n \in \mathbb{N}, n \geq 2, M \subset \mathbb{R}^n$ je (n-1)-plocha a $x \in M$. Řekneme, že $v \in \mathbb{R}^n$ je **normálový vektor** k ploše M v bodě x, jestliže $v \in T_x(M)^{\perp}$.

Definice. Nechť $n \in \mathbb{N}, n \geq 2, u^1, \dots, u^{n-1} \in \mathbb{R}^n$. Pak definujeme **vektorový součin** vektorů u^1, \ldots, u^{n-1} předpisem

$$u^1 \times \dots \times u^{n-1} = (\det([e^i, u^1, \dots, u^{n-1}])_{i=1}^n \in \mathbf{R}^n.$$

Věta L 15.12 (vlastnosti vektorového součinu). *Nechť* $n \in \mathbb{N}, n \geq 2, \ a \ u^1, \dots, u^{n-1} \in \mathbb{R}^n$.

(a) Pro každé $v \in \mathbf{R}^n$ platí

$$\langle v, u^1 \times \dots \times u^{n-1} \rangle = \det[v, u^1, \dots, u^{n-1}].$$

- (b) Vektory u^1, \ldots, u^{n-1} jsou lineárně závislé právě tehdy, $k dyž u^1 \times \cdots \times u^{n-1} = o$.
- (c) Pro každé $i \in \{1, \dots, n-1\}$ platí $\langle u^i, u^1 \times \dots \times u^{n-1} \rangle = 0$.
- (d) $Plati ||u^1 \times \cdots \times u^{n-1}|| = vol[u^1, \dots, u^{n-1}].$

Konec 6. přednášky 6.3.

Poznámka: Nechť $M \subset \mathbf{R}^n$ je (n-1)-plocha, $x \in M$, $G \subset \mathbf{R}^n$ a φ je příslušný regulární homeomorfismus $\varphi \colon G \to \mathbf{R}^n$ splující $\varphi(a) = x \in \varphi(G) \subset M$. Potom

$$\nu(x) = \frac{\frac{\partial \varphi}{\partial x_1}(\varphi^{-1}(x)) \times \dots \times \frac{\partial \varphi}{\partial x_{n-1}}(\varphi^{-1}(x))}{\|\frac{\partial \varphi}{\partial x_1}(\varphi^{-1}(x)) \times \dots \times \frac{\partial \varphi}{\partial x_{n-1}}(\varphi^{-1}(x))\|},$$

kde $\frac{\partial \varphi}{\partial x_i}(t) = (\frac{\partial \varphi_1}{\partial x_i}(t), \dots, \frac{\partial \varphi_n}{\partial x_i}(t))$, je jednotkový normálový vektor k ploše M. Zobrazení ν je spojité na jisté otevřené množině v M obsahující x.

Definice. Nechť $n \in \mathbb{N}, n > 1$, a $M \subset \mathbb{R}^n$ je (n-1)-plocha. **Orientací** M rozumíme spojité zobrazení $\nu \colon M \to \mathbf{R}^n$ takové, že $\nu(x) \in T_x(M)^{\perp}$ a $\|\nu(x)\| = 1$ pro každé $x \in M$.

Příklady: a) Pro plochu $M = \{0\} \times (0,1)^2$ určete $\nu(x), x \in M$.

- b) Pro plochu $M = \mathbb{S}_2$ určete $\nu(x), x \in M$.
- c) Möbiova páska.

Věta T 15.13 (o (n-1)-ploše - důkaz jen část). Nechť $n \in \mathbb{N}, n \geq 2, \ \Omega \subset \mathbb{R}^n$ je otevřená a $z \in \partial \Omega$. Nechť je splněna podmínka

(R) existuje okolí U bodu z a **rozhraničující** funkce $h: U \to \mathbf{R}$ taková, že $h \in \mathcal{C}^1(U), \nabla h(z) \neq o$ $a\ U\cap\Omega=\{x\in U;h(x)<0\}.$

Potom existuje okolí $V \subset U$ bodu z takové, že $V \cap \partial \Omega$ je (n-1)-plocha. Vektor $\nu_{\Omega}(z) = \frac{\nabla h(z)}{\|\nabla h(z)\|}$ je jednotkový normálový vektor v bodě z k $V \cap \partial \Omega$ a nezávisí na volbě rozhraničující funkce h.

Definice. Nechť $n \in \mathbb{N}, n \geq 2, \Omega \subset \mathbb{R}^n$ je otevřená a $z \in \partial \Omega$. Řekneme, že bod z je **regulárním bo**dem hranice Ω , pokud je splněna podmínka (R) z Lemmatu 15.13. Vektor $\nu_{\Omega}(z)$ nazýváme vnějším jednotkovým normálovým vektorem k Ω v bodě z. Množinu všech regulárních bodů hranice Ω značíme $\partial^* \Omega$.

Důsledek: Nechť $n \in \mathbb{N}$, $n \geq 2$, a $\Omega \subset \mathbb{R}^n$ je neprázdná omezená otevřená množina. Pokud $\partial^* \Omega \neq \emptyset$, pak $\partial^*\Omega$ je (n-1)-plocha orientovaná normálovým polem ν_{Ω} .

15.3. Gaussova věta

Definice. Nechť $a, b \in \mathbf{R}, a < b$.

- (a) Řekneme, že zobrazení $c: [a, b] \to \mathbb{R}^n$ je (parametrická) křivka, jestliže je spojité.
- (b) Řekneme, že parametrická křivka $c: [a, b] \to \mathbf{R}^n$ je skoro regulární, pokud existuje dělení $\{t_i\}_{i=0}^p$ intervalu [a,b] takové, že
 - c je třídy C^1 na (t_{i-1}, t_i) , $i = 1, \ldots, p$, $\forall t \in [a, b] \setminus \{t_0, \ldots, t_p\} \colon c'(t) \neq 0$.

Definice. Nechť $c: [a,b] \to \mathbb{R}^n$ je skoro regulární křivka. Nechť f je vektorové pole z \mathbb{R}^n do \mathbb{R}^n . Křivkový integrál druhého druhu $\int_{c} f \cdot dc$ definujeme předpisem

$$\int_{a}^{b} \langle f(c(t)), c'(t) \rangle dt,$$

pokud tento integrál konverguje. Občas ho značime $\int_{c} f \ dc$.

Definice. Nechť $M \subset \mathbf{R}^n$ je (n-1)-plocha orientovaná normálovým polem ν a $f: M \to \mathbf{R}^n$. Tok vektorového pole f orientovanou plochou (M, ν) definujeme jako

$$\int_{M} \langle f(y), \nu(y) \rangle d\mathcal{H}^{n-1}(y),$$

pokud integrál konverguje.

Definice. Nechť $n \in \mathbb{N}$, $G \subset \mathbb{R}^{n-1}$ je otevřená, $\varphi \colon G \to \mathbb{R}^n$ je zobrazení třídy \mathcal{C}^1 a f je vektorové pole z \mathbb{R}^n do \mathbb{R}^n . Plošný integrál druhého druhu $\int_{\mathbb{R}^n} f \cdot d\varphi$ definujeme předpisem

$$\int_{G} \left\langle f(\varphi(t)), \frac{\partial \varphi}{\partial t_{1}}(t) \times \cdots \times \frac{\partial \varphi}{\partial t_{n-1}}(t) \right\rangle dt,$$

pokud tento integrál konverguje.

Poznámka: Podle area formule je tento integrál roven toku příslušného vektorového pole:

$$\int_{G} \left\langle f(\varphi(t)), \frac{\partial \varphi}{\partial t_{1}}(t) \times \dots \times \frac{\partial \varphi}{\partial t_{n-1}}(t) \right\rangle dt =
= \int_{G} \left\langle f(\varphi(t)), \frac{\frac{\partial \varphi}{\partial t_{1}}(t) \times \dots \times \frac{\partial \varphi}{\partial t_{n-1}}(t)}{\left\| \frac{\partial \varphi}{\partial t_{1}}(t) \times \dots \times \frac{\partial \varphi}{\partial t_{n-1}}(t) \right\|} \right\rangle \left\| \frac{\partial \varphi}{\partial t_{1}}(t) \times \dots \times \frac{\partial \varphi}{\partial t_{n-1}}(t) \right\| dt
= \int_{\varphi(G)} \left\langle f(y), \nu(y) \right\rangle d\mathcal{H}^{n-1}(y)$$

Nezávisí tedy na parametrizaci dané plochy.

Poznámka: Fyzikálně si plošný integrál druhého druhu můžeme představit jako tok vektorového pole plochou, například kolik vzduchu proteče skrz φ za jednotku času, pokud známe předpis na tok vzduchu f.

Příklad: Spočtěte plošný integrál druhého druhu z f(x,y,z) = [x,2y,3z] přes jednotkovou sféru v \mathbf{R}^3 .

Konec 7. přednášky 12.3.

Definice. Nechť $U \subset \mathbf{R}^n$ je otevřená množina a $f: U \to \mathbf{R}^n$ je zobrazení třídy \mathcal{C}^1 . Pro $x \in U$ definujeme divergenci vektorového pole f v bodě $x \in U$ předpisem

$$\operatorname{div} f(x) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}(x).$$

Věta L 15.14 (Gaussova věta o divergenci). Nechť $n \in \mathbb{N}, n > 1, \ \Omega \subset \mathbb{R}^n$ je omezená otevřená neprázdná množina, $\mathcal{H}^{n-1}(\partial\Omega) < \infty$, $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial^*\Omega) = 0$ a f je vektorové pole z \mathbf{R}^n do \mathbf{R}^n , které je třídy C^1 na otevřené množině obsahující $\overline{\Omega}$. Pak platí

$$\int_{\partial\Omega} \langle f(y), \nu_{\Omega}(y) \rangle d\mathcal{H}^{n-1}(y) = \int_{\Omega} \operatorname{div} f(x) d\lambda^{n}(x).$$

Příklad: 1. Tok vzduchu plochou $\partial\Omega$ za jednotku času je roven změně váhy vzduchu uvnitř Ω .

- 2. Spočtěte plošný integrál druhého druhu z f(x, y, z) = [x, 2y, 3z] přes jednotkovou sféru v \mathbb{R}^3 .
- 3. Archimédova věta.

Věta T 15.15 (rozklad jednotky). Nechť $n \in \mathbb{N}$ a $\varepsilon > 0$. Pak existují funkce $\omega_j : \mathbb{R}^n \to \mathbb{R}, j \in \mathbb{N}$, takové, že pro každé $j \in \mathbf{N}$ platí

- (a) ω_i je nezáporná,
- (b) ω_j je třídy $\mathcal{C}^1(\mathbf{R}^n)$
- (c) diam supp $\omega_j < \varepsilon$,
- (d) $\sum_{j=1}^{\infty} \omega_j = 1$, (e) $pro \ každ\acute{e} \ x \in \mathbf{R}^n \ existuje \ okolí \ U \subset \mathbf{R}^n \ bodu \ x \ takov\acute{e}, \ že \ množina \{j \in \mathbf{N}; \operatorname{supp} \omega_j \cap U \neq \emptyset\}$

Věta L 15.16 (popis oblasti). Nechť $n \in \mathbb{N}, n \geq 2, \ \Omega \subset \mathbb{R}^n$ je otevřená množina, $z \in \partial \Omega$ je regulární bod hranice Ω a $\nu_{\Omega}(z)_n > 0$. Potom existuje otevřená množina $W \subset \mathbf{R}^{n-1}$ obsahující bod $[z_1,\ldots,z_{n-1}]$, otevřená množina $H\subset\mathbf{R}$ obsahující bod z_n a funkce $\varphi\colon W\to H$ taková, že $\varphi\in\mathcal{C}^1(W)$

$$\{x \in \mathbf{R}^n; \ x_n < \varphi(x_1, \dots, x_{n-1})\} \cap (W \times H) = \Omega \cap (W \times H).$$

Konec 8. přednášky 13.3.

Věta L 15.17 (lineární isometrie to nezkazí - BD). Nechť Ω a f jsou jako ve Větě 15.14 a $S: \mathbf{R}^n \to \mathbf{R}^n$ je lineární isometrie. Potom pro každý regulární bod z hranice Ω je bod S(z) regulárním bodem hranice $S(\Omega)$ a platí $\nu_{S(\Omega)}(S(z)) = S(\nu_{\Omega}(z))$. Dále platí

$$\int_{\Omega} \operatorname{div} f(x) d\lambda^{n}(x) = \int_{S(\Omega)} \operatorname{div}(S \circ f \circ S^{-1})(\tilde{x}) d\lambda^{n}(\tilde{x}),$$

$$\int_{\partial \Omega} \langle f(y), \nu_{\Omega}(y) \rangle d\mathcal{H}^{n-1}(y)$$

$$= \int_{\partial S(\Omega)} \langle S \circ f \circ S^{-1}(\tilde{y}), \nu_{S(\Omega)}(\tilde{y}) \rangle d\mathcal{H}^{n-1}(\tilde{y}).$$

Věta T 15.18 (jádro pudla). Nechť $\Omega \subset \mathbf{R}^n$ je otevřená omezená množina a $z \in \partial^*\Omega \cup \Omega$. Potom existuje otevřená množina $U \subset \mathbf{R}^n$ obsahující z taková, že pro každé vektorové pole f z \mathbf{R}^n do \mathbf{R}^n , které je třídy \mathcal{C}^1 na otevřené množině obsahující $\overline{\Omega}$ a supp $f \subset U$, platí

$$\int_{\partial\Omega} \langle f(y), \nu_{\Omega}(y) \rangle d\mathcal{H}^{n-1}(y) = \int_{\Omega} \operatorname{div} f(x) d\lambda^{n}(x).$$

Konec 9. přednášky 19.3.

Věta L 15.19 (zbavíme se neregulárních bodů). Nechť Ω a f jsou jako ve Větě 15.14 a supp $f \cap (\partial \Omega \setminus \partial^* \Omega) = \emptyset$. Potom

$$\int_{\partial\Omega} \langle f(y), \nu_{\Omega}(y) \rangle d\mathcal{H}^{n-1}(y) = \int_{\Omega} \operatorname{div} f(x) d\lambda^{n}(x).$$

Věta T 15.20 (aproximace to nezkazí). Nechť $n \in \mathbb{N}, n \geq 2, N \subset \mathbb{R}^n$ je kompaktní a $\mathcal{H}^{n-1}(N) = 0$. Potom existují \mathcal{C}^1 funkce $v_m : \mathbb{R}^n \to [0,1], m \in \mathbb{N}$, takové, že platí:

- (a) $v_m \to \chi_{\mathbf{R}^n \setminus N}$,
- (b) $\int \|\nabla v_m(x)\| d\lambda^n(x) \to 0$,
- (c) pro každé $m \in \mathbf{N}$ existuje otevřená množina $G_m \subset \mathbf{R}^n$ obsahující N taková, že $v_m|_{G_m} = 0$.

Konec 10. přednášky 20.3.

15.4. Greenova a Stokesova věta - bez důkazu

Definice. Nechť $\Omega \subset \mathbf{R}^n$ je množina, $f \colon \Omega \to \mathbf{R}^n$ je vektorové pole a $u \colon \Omega \to \mathbf{R}$. řekneme, že u je **potenciál** pole f na Ω , jestliže pro každé $x \in \Omega$ platí $\nabla u(x) = f(x)$. Vektorové pole, které má potenciál, nazýváme **potenciální**.

Věta L 15.21 (věta o potenciálu). Nechť $\Omega \subset \mathbf{R}^n$ je otevřená množina, $c : [a,b] \to \Omega$ je skoro regulární křivka a $f : \Omega \to \mathbf{R}^n$ je spojité potenciální vektorové pole s potenciálem u. Pak

$$\int_{c} f \ dc = \int_{c} \nabla u \ dc = u(c(b)) - u(c(a)).$$

Příklad: Spočtěte

$$\int_C y \ dx + x \ dy$$
, kde C je křivka

začínající v [-1,2] a končící v [2,3].

Definice. (a) Nechť $U \subset \mathbf{R}^2$ je otevřená množina a $f: U \to \mathbf{R}^2$ je zobrazení třídy \mathcal{C}^1 . Pro $x \in U$ definujeme **rotaci** vektorového pole f v bodě $x \in U$ předpisem

$$\operatorname{rot} f(x) = \frac{\partial f_2}{\partial x_1}(x) - \frac{\partial f_1}{\partial x_2}(x).$$

(b) Nechť $U \subset \mathbf{R}^3$ je otevřená množina a $f \colon U \to \mathbf{R}^3$ je zobrazení třídy \mathcal{C}^1 . Pro $x \in U$ definujeme **rotaci** vektorového pole f v bodě $x \in U$ předpisem

$$\operatorname{rot} f(x) = \left(\frac{\partial f_3}{\partial x_2}(x) - \frac{\partial f_2}{\partial x_3}(x), \frac{\partial f_1}{\partial x_3}(x) - \frac{\partial f_3}{\partial x_1}(x), \frac{\partial f_2}{\partial x_1}(x) - \frac{\partial f_1}{\partial x_2}(x)\right).$$

Věta T 15.22 (Greenova). Nechť $\Omega \subset \mathbf{R}^2$ je omezená otevřená neprázdná množina, $\mathcal{H}^1(\partial\Omega) < \infty$, $\mathcal{H}^1(\partial\Omega \setminus \partial^*\Omega) = 0$ a f je vektorové pole z \mathbf{R}^2 do \mathbf{R}^2 , které je třídy \mathcal{C}^1 na otevřené množině obsahující $\overline{\Omega}$. Nechť $\tau_{\Omega} : \partial^*\Omega \to \mathbf{R}^2$ je tečné vektorové pole k $\partial^*\Omega$ definované předpisem $\tau_{\Omega}(y) = O\nu_{\Omega}(y)$ (kde O je otočení o $\frac{\pi}{2}$). Pak platí

$$\int_{\partial\Omega} \langle f(y), \tau_{\Omega}(y) \rangle d\mathcal{H}^{1}(y) = \int_{\Omega} \operatorname{rot} f(x) d\lambda^{2}(x).$$

Příklad: Pomocí Greenovy věty spočtěte

$$\int_C -x^2 y \, dx + xy^2 \, dy, \text{ kde } C = \{x^2 + y^2 = 1\}$$

je kladně orientovaná.

Definice. Nechť $G \subset \mathbf{R}^3$ je 2-plocha orientovaná normálovým polem ν , $\Omega \subset G$ je relativně otevřená v G a $\overline{\Omega} \setminus \Omega \subset G$. Řekneme, že $z \in \partial_G \Omega$ je **regulárním** bodem hranice Ω vzhledem ke G, jestliže existuje okolí U bodu z a funkce $h \colon U \to \mathbf{R}$ třídy C^1 taková, že $\nu(z) \times \nabla h(z) \neq 0$ a $\{x \in G \cap U; h(x) < 0\} = \Omega \cap U$. V takovém bodě definujeme

$$\tau_{\Omega,\nu}(z) = \frac{\nu(z) \times \nabla h(z)}{\|\nu(z) \times \nabla h(z)\|}.$$

Poznámka: Definice $\tau_{\Omega,\nu}(z)$ je korektní, neboť lze ukázat nezávislost na rozhraničující funkci.

Definice. Nechť $M \subset \mathbf{R}^n$ je 1-plocha. **Orientací** M rozumíme spojité zobrazení $\tau \colon M \to \mathbf{R}^n$ takové, že $\tau(x) \in T_x(M)$ a $\|\tau(x)\| = 1$.

Věta T 15.23 (o regulárních bodech). Nechť G, ν a Ω jsou jako v předchozí definici. Označme $\partial_G^* \Omega$ množinu všech regulárních bodů hranice Ω vzhledem ke G. Potom je $\partial_G^* \Omega$ 1-plocha a $\tau_{\Omega,\nu}$ je orientace $\partial_G^* \Omega$.

Věta T 15.24 (Stokesova). Nechť G, ν a Ω jsou jako v předchozí definici. Předpokládejme dále, že Ω je omezená, $\mathcal{H}^1(\partial_G\Omega) < \infty$ a $\mathcal{H}^1(\partial_G\Omega \setminus \partial_G^*\Omega) = 0$. Nechť vektorové pole f z \mathbf{R}^3 do \mathbf{R}^3 je třídy \mathcal{C}^1 na otevřené množině obsahující $\overline{\Omega}$. Potom

$$\int_{\partial_{\Omega}\Omega} \langle f(y), \tau_{\Omega,\nu}(y) \rangle d\mathcal{H}^{1}(y) = \int_{\Omega} \langle \operatorname{rot} f(x), \nu(x) \rangle d\mathcal{H}^{2}(x).$$

Příklad: Pomocí Stokesovy věty spočtěte

$$\int_C (y-z) dx + (z-x) dy + (x-y) dz, \text{ kde } C = \{x^2 + y^2 = 1, x+z = 1\}$$

je elipsa kladně orientovaná vůči vektoru [1,0,1].

Konec 11. přednášky 26.3.

16. Absolutně spojité funkce a funkce s konečnou variací

Všechny integrály v této kapitole jsou Lebesgueovy.

Motivace: 1. Pro které funkce platí $\int_a^b f'(x) dx = f(b) - f(a)$?

- 2. Pro které funkce platí per partes?
- 3. Nechť $h \in L^1(\mathbf{R})$. Můžeme něco říct o funkci $H(x) = \int_a^x h(t) dt$?

16.1. Derivace monotonní funkce

Definice. Nechť J je systém intervalů v \mathbf{R} a $A \subset \mathbf{R}$. Řekneme, že J pokrývá A ve Vitaliově smyslu, jestliže

$$\forall \varepsilon > 0 \ \forall x \in A \ \exists I \in J : \ (x \in I) \ \mathrm{a} \ (|I| < \varepsilon).$$

Věta T 16.1 (Vitali). Nechť $A \subset \mathbf{R}$ je množina, $\lambda^*(A) < \infty$, a nechť J pokrývá A uzavřenými intervaly ve Vitaliově smyslu. Pak pro každé $\varepsilon > 0$ existuje konečná množina $\{I_1, \ldots, I_n\} \subset J$ disjunktních intervalů tak, že

$$\lambda^* \left(A \setminus \bigcup_{j=1}^n I_j \right) < \varepsilon.$$

Definice. Nechť $x \in (a,b)$ a $f:(a,b) \to \mathbf{R}$. Definujme limes superior a limes inferior jako

$$\limsup_{h \to 0} f(x+h) = \lim_{h \to 0} \sup_{y \in (x-h,x+h) \backslash \{x\}} f(y) \text{ a } \liminf_{h \to 0} f(x+h) = \lim_{h \to 0} \inf_{y \in (x-h,x+h) \backslash \{x\}} f(y)$$

Poznámka: Analogicky jako pro posloupnosti platí věta:

$$\exists \lim_{h \to 0} f(x) \Leftrightarrow \limsup_{h \to 0} f(x+h) = \liminf_{h \to 0} f(x+h).$$

Definice. Nechť I je interval, x je vnitřní bod I a $f: I \to \mathbf{R}$ je funkce. Definijeme horní a dolní derivaci funkce f v bodě x následovně:

$$\begin{split} \overline{D}f(x) &= \limsup_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ (horní derivace)}, \\ \underline{D}f(x) &= \liminf_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ (dolní derivace)}. \end{split}$$

Poznámka: a) Každá monotónní funkce z R do R má nejvýše spočetně mnoho bodů nespojitosti. b) Každá monotónní funkce z R do R má nejvýše spočetně mnoho bodů intervalů konstantnosti.

Věta L 16.2 (míra vzoru a obrazu - BD). Nechť $I \subset \mathbf{R}$ je interval, Nechť $f \colon I \to \mathbf{R}$ je neklesající funkce, $M \subset I$ a c > 0.

- (a) Je-li $\overline{D}f(x) > c$ na M, potom $\lambda(f(M)) \geq c\lambda(M)$.
- (b) Je-li Df(x) < c na M, potom $\lambda(f(M)) < c\lambda(M)$.

Konec 12. přednášky 27.3.

Věta L 16.3 (derivace monotónní funkce). Nechť $I \subset \mathbf{R}$ je interval a $f: I \to \mathbf{R}$ je monotónní funkce. Potom v skoro každém bodě $x \in I$ existuje f'(x).

Věta L 16.4 (integrál derivace monotónní funkce). Nechť $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ je neklesající funkce a $M \subset [a,b]$ je měřitelná množina. Nechť v každém bodě $x \in M$ existuje vlastní f'(x). Potom f' je lebesgueovsky integrovatelná na M, f(M) je měřitelná a platí

$$\int_{M} f'(x) \, dx = \lambda(f(M)).$$

Konec 13. přednášky 2.4.

16.2. Funkce s konečnou variací

Definice. Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval a nechť $f:[a,b] \to \mathbf{R}$. Definujme veličiny

- $V^+(f; a, b) := \sup_D \left\{ \sum_{i=1}^n (f(x_i) f(x_{i-1}))^+ \right\}$ (kladná variace), $V^-(f; a, b) := \sup_D \left\{ \sum_{i=1}^n (f(x_i) f(x_{i-1}))^- \right\}$ (záporná variace), $V(f; a, b) := \sup_D \left\{ \sum_{i=1}^n |f(x_i) f(x_{i-1})| \right\}$ (totální variace),

kde supremum bereme přes všechna dělení $D = \{x_i\}_{i=0}^n$ intervalu [a, b] tvaru $a = x_0 < \cdots < x_n = b$. Dále zaveme značení

$$V_f^+(x) = V^+(f; a, x),$$

 $V_f^-(x) = V^-(f; a, x),$
 $V_f(x) = V(f; a, x).$

Řekneme, že funkce f má na intervalu $I \subset \mathbf{R}$ omezenou variaci, jestliže $V(f;a,b) < \infty$. Množinu všech funkcí s omezenou variací na intervalu [a, b] značíme BV([a, b]).

Příklad: Mezi třídami BV([a, b]) a C([a, b]) není vztah. Funkce $x \sin \frac{1}{x^2}$ dodefinovaná nulou v nule je spojitá, ale nemá konečnou variaci na [0,1]. Charakteristická funkce intervalu [0,1] má konečnou variaci, ale není spojitá na [-1, 1].

Poznámka: Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval. Pak třída $\mathrm{BV}([a,b])$ je lineární prostor.

Poznámky: Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval a nechť $f:[a,b] \to \mathbf{R}$. Potom

- (a) je-li f neklesající na [a,b], pak $V(f;a,b)=V^+(f;a,b)=f(b)-f(a)$, tedy f má konečnou variaci na [a, b].
 - (b) $V(f; a, b) \ge |f(a) f(b)|$;
 - (c) je-li $a = x_0 < \cdots < x_n = b$, pak $V(f; a, b) = \sum_{i=1}^n V(f; x_{i-1}, x_i)$;

Věta L 16.5 (vztah omezené variace a monotonie). Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval a nechť $f:[a,b]\to\mathbf{R}$.

- (a) Má-li f omezenou variaci na [a,b], potom $V_f(x) = V_f^+(x) + V_f^-(x)$ a $f(x) f(a) = V_f^+(x) V_f^-(x)$ $V_f^-(x)$.
- (b) $f \in BV(a,b)$ právě tehdy, když existují neklesající funkce $u, v : [a,b] \to \mathbf{R}$ takové, že f = v u

Věta L 16.6 (vlastnosti funkcí s omezenou variací). Nechť $f \in BV([a,b])$. Potom f je omezená, má jen spočetně mnoho bodů nespojitosti, v každém bodě má limitu zleva a zprava a skoro všude má vlastní derivaci.

Definice. Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval a nechť $f:[a,b] \to \mathbf{R}$. Řekneme, že f je absolutně spojitá na [a,b], jestliže pro každé $\varepsilon > 0$ existuje $\delta > 0$, takové, že pro každý systém po dvou disjunktních intervalů $\{(a_j,b_j)\}_{j=1}^n$, $(a_j,b_j) \subset [a,b]$, $j=1,\ldots,n$, splňující

$$\sum_{j=1}^{n} (b_j - a_j) < \delta, \text{ platí } \sum_{j=1}^{n} |f(b_j) - f(a_j)| < \varepsilon.$$

Množinu všech absolutně spojitých funkcí na intervalu [a, b] značíme AC([a, b]).

Poznámky: (a) AC([a, b]) je lineární prostor.

(b) Platí $f \in \text{Lip}([a,b]) \Rightarrow f \in \text{AC}([a,b]) \Rightarrow f \in \text{BV}([a,b]) \cap C([a,b])$, žádnou z implikací nelze obrátit.

Konec 14. přednášky 3.4.

Věta L 16.7 (variace absolutně spojité funkce). Nechť $[a,b] \subset \mathbf{R}$ je uzavřený interval a nechť $f:[a,b] \to \mathbf{R}$. Pak $f \in \mathrm{AC}([a,b])$ právě tehdy, když pro každé $\varepsilon > 0$ existuje $\delta > 0$, takové, že pro každý systém po dvou disjunktních intervalů $\{(a_j,b_j)\}_{j=1}^n$, $(a_j,b_j) \subset [a,b]$, $j=1,\ldots,n$, splňující

$$\sum_{j=1}^{n} (b_j - a_j) < \delta, \ plati \sum_{j=1}^{n} V(f; a_j, b_j) < \varepsilon.$$

Důsledek: Nechť f je absolutně spojitá funkce na [a,b]. Potom funkce V_f^+ , V_f^- a V_f jsou také absolutně spojité.

Věta L 16.8 (Luzinova N vlastnost). Nechť $f \in AC([a,b])$ a $N \subset [a,b]$, $\lambda(N) = 0$. Potom

$$\lambda(f(N)) = 0.$$

Věta L 16.9 (integrál derivace absolutně spojité funkce). Nechť $f \in AC([a,b])$. Potom $f' \in L^1([a,b])$

(16.1)
$$f(b) - f(a) = \int_{a}^{b} f'(x) dx.$$

Věta L 16.10 (neurčitý Lebesgueův integrál). Nechť $\theta \in L^1([a,b])$ a f je neurčitý Lebesgueův integrál θ , tj. existuje konstanta C tak, že

(16.2)
$$f(x) = \int_{a}^{x} \theta(t) dt + C, \qquad x \in [a, b].$$

Potom f je absolutně spojitá a $f' = \theta$ s.v.

Důsledek: Funkce $f:[a,b]\to \mathbf{R}$ je absolutně spojitá, právě když je neurčitým Lebesgueovým integrálem Lebesgueův nějaké funkce $\theta\in L^1([a,b])$.

Konec 15. přednášky 9.4.

Věta L 16.11 (integrace per partes pro absolutně spojité funkce). Nechť $f, g \in AC([a, b])$. Potom

$$\int_a^b f'g = [fg]_a^b - \int_a^b fg'$$

Příklady: Cantorova stupňovitá funkce je protipříklad na všechno:

- 1) Existuje spojitá funkce $f \in BV(0,1) \setminus AC(0,1)$.
- 2) Existuje spojitá neklesající funkce taková, že f'(x) = 0 s.v., ale f(1) > f(0).
- 3) Existuje spojitá funkce a $N \subset [0,1]$ tak, že |N| = 0, ale |f(N)| > 0.
- 4) Existuje spojitá funkce a $A \subset [0,1]$ měřitelná tak, že f(A) není měřitelná.
- 5) Existuje spojitá funkce a $N \subset [0,1]$ tak, že |N| = 0, ale $|f^{-1}(N)| > 0$.
- 6) Existuje spojitá funkce a $A \subset [0,1]$ měřitelná tak, že $f^{-1}(A)$ není měřitelná.

17. Fourierovy řady

17.1. Základní pojmy

Značení: Symbolem $\mathcal{P}_{2\pi}$ značíme množinu všech lokálně integrovatelných 2π -periodických funkcí na \mathbf{R} .

Definice. Nechť $a_k, k \in \mathbb{N} \cup \{0\}$ a $b_k, k \in \mathbb{N}$, jsou posloupnosti reálných čísel. Pak řadu funkcí

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right), \quad x \in \mathbf{R},$$

nazýváme trigonometrickou řadou. Je-li navíc $n \in \mathbb{N}$, pak funkci

$$\frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right), \quad x \in \mathbf{R},$$

nazýváme trigonometrickým polynomem stupně n.

Definice. Množinu funkcí $\mathcal{T} = \{1, \cos x, \sin x, \cos(2x), \sin(2x), \dots\}$ nazýváme trigonometrickým systémem.

Poznámka: Trigonometrický systém je ortogonální v následujícím smyslu (viz Věta 11.11): pro každé dvě různé funkce $f,g\in\mathcal{T}$ platí

$$\int_0^{2\pi} f(x)g(x) \, dx = 0.$$

Dále platí

$$\int_0^{2\pi} 1 \cdot 1 \, dx = 2\pi, \qquad \int_0^{2\pi} (\cos(kx))^2 \, dx = \int_0^{2\pi} (\sin(kx))^2 \, dx = \pi, \qquad k \in \mathbf{N}.$$

Věta L 17.1 (Fourierovy vzorce). Nechť $\{a_k\}_{k=0}^{\infty}$ a $\{b_k\}_{k=1}^{\infty}$ jsou posloupnosti reálných čísel a řada

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

konverguje stejnoměrně k funkci f na R. Potom

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) \, dx, \quad k \in \mathbf{N} \cup \{0\},$$
$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) \, dx, \quad k \in \mathbf{N}.$$

Definice. Nechť $f \in \mathcal{P}_{2\pi}$. Pak posloupnosti reálných čísel $\{a_k\}_{k=0}^{\infty}$ a $\{b_k\}_{k=1}^{\infty}$, definované předpisy

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) \, dx, \quad k \in \mathbf{N} \cup \{0\},$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) \, dx, \quad k \in \mathbf{N},$$

nazýváme Fourierovými koeficienty funkce f. Trigonometrickou řadu

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)), \quad x \in \mathbf{R},$$

nazýváme Fourierovou řadou funkce f. Vztah mezi funkcí f a její Fourierovou řadou Sf značíme symbolem $f \sim Sf$. Pro $n \in \mathbb{N} \cup \{0\}$ dále definujeme *částečný součet Fourierovy řady* funkce f předpisem

$$S_n f(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx)), \quad x \in \mathbf{R}.$$

Důsledek Vět 11.10 a 11.12: Nechť $f \in L^2(0, 2\pi)$ a a_k, b_k jsou Fourierovy koeficienty f. Pak platí

$$f(x) = S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

ve smyslu rovnosti rovnosti L^2 funkcí. Tedy v příslušném metrickém prostoru platí

$$f(x) = \frac{a_0}{2} + \lim_{n \to \infty} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) = \frac{a_0}{2} + \lim_{n \to \infty} \sum_{k=1}^{n} S_n f(x).$$

Navíc platí Parsevalova rovnost

$$\int_0^{2\pi} |f(x)|^2 dx = \pi \frac{a_0^2}{2} + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2).$$

Motivace: Nechť $f \in P_{2\pi}$. Platí $f(x) = S_f(x)$ pro všechna x, nebo alespoň pro s.v. x? Neplatí dokonce $S_n f(x) \rightrightarrows f(x)$?

Poznámky: (a) Konvence $\frac{a_0}{2}$ je zavedena proto, abychom měli stejný vzorec pro a_k v případě k=0 i v případech $k \in \mathbf{N}$.

(b) V definici $\{a_k\}$ a $\{b_k\}$ lze integrovat přes libovolný interval délky 2π , tedy

$$a_k = \frac{1}{\pi} \int_{\alpha}^{\alpha + 2\pi} f(x) \cos(kx) dx, \quad k \in \mathbf{N} \cup \{0\},$$
$$b_k = \frac{1}{\pi} \int_{\alpha}^{\alpha + 2\pi} f(x) \sin(kx) dx, \quad k \in \mathbf{N},$$

pro jakékoli $\alpha \in \mathbf{R}$. Nejčastěji se používá $\alpha = 0$ nebo $\alpha = -\pi$.

- (c) Symbol $f \sim Sf$ označuje pouze fakt, že řada stojící vpravo je Fourierovou řadou funkce stojící vlevo. Nevypovídá nic o případné konvergenci řady Sf (stejnoměrné ani bodové). Nelze jej zaměovat za symbol f = Sf, který by znamenal, že řada vpravo bodově konverguje a jejím bodovým součtem je funkce f.
 - (d) Fourierovy řady lze definovat pro funkce s libovolnou periodou $\ell > 0$. řada má pak tvar

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(\frac{k2\pi x}{\ell}) + b_k \sin(\frac{k2\pi x}{\ell}) \right), \quad x \in \mathbf{R},$$

a vzorce pro koeficienty mají odpovídající tvar.

Konec 16. přednášky 10.4.

Poznámka: Je-li $f \in \mathcal{P}_{2\pi}$ sudá, potom $b_k = 0, k \in \mathbb{N}$, a

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(kx) dx, \quad k \in \mathbf{N} \cup \{0\}.$$

Je-li f lichá, potom $a_k = 0, k \in \mathbb{N} \cup \{0\}$, a

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(kx) dx, \quad k \in \mathbf{N}.$$

Trigonometrickou řadu

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx), \quad x \in \mathbf{R},$$

nazýváme cosinovou řadou a trigonometrickou řadu

$$\sum_{k=1}^{\infty} b_k \sin(kx), \quad x \in \mathbf{R},$$

nazýváme sinovou řadou.

Příklad: Necht $f(x) = x^2$ pro $x \in [-\pi, \pi)$ a necht $f \in \mathcal{P}_{2\pi}$. Potom

$$f(x) \sim \frac{\pi^2}{3} + 4\sum_{k=1}^{\infty} \frac{(-1)^k \cos(kx)}{k^2}, \quad x \in \mathbf{R}.$$

Kdybychom věděli, že řada Sf konverguje k funkci f (alespo bodově), získali bychom po dosazení postupně x=0 a $x=\pi$ vzorce

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12} \quad \text{a} \quad \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

17.2. Bodová konvergence Fourierových řad

Definice. Nechť $n \in \mathbb{N} \cup \{0\}$. Potom funkci

$$D_n(x) = \frac{1}{2} + \cos(x) + \cos(2x) + \dots + \cos(nx), \quad x \in \mathbf{R},$$

nazýváme Dirichletovým jádrem

Poznámky: [vlastnosti D_n] Nechť $n \in \mathbb{N} \cup \{0\}$. Potom

- (a) D_n je sudá spojitá 2π -periodická funkce splující $D_n(0) = n + \frac{1}{2}$,
- (b) platí

$$D_n(x) = \frac{\sin((n + \frac{1}{2})x)}{2\sin(\frac{x}{2})}, \quad x \in \mathbf{R}, \ x \neq 2k\pi, \ k \in \mathbf{Z},$$

(c) platí

$$\int_{-\pi}^{\pi} D_n(x) \, dx = \pi.$$

Věta L 17.2 (o částečných součtech Fourierovy řady). Nechť $f \in \mathcal{P}_{2\pi}$ a $n \in \mathbb{N} \cup \{0\}$. Potom pro $ka\check{z}d\acute{e}\ x\in\mathbf{R}\ plat\acute{i}$

$$S_n f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+y) D_n(y) \, dy = \frac{1}{\pi} \int_{0}^{\pi} (f(x+y) + f(x-y)) D_n(y) \, dy.$$

Definice. Jednoduchou funkcí nazýváme každou funkci tvaru

$$s(x) = \sum_{j=1}^{J} \alpha_j \chi_{E_j}(x), \qquad x \in \mathbf{R},$$

kde $J \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_J \in \mathbb{R} \setminus \{0\}$ a E_1, \ldots, E_J jsou měřitelné podmnožiny \mathbb{R} splující $\lambda(E_i) < \infty$ pro každé $j \in \{1, \dots, J\}$.

Poznámka: Množina všech jednoduchých funkcí je hustá v prostoru L^1 .

Věta T 17.3 (Riemannovo-Lebesgueovo lemma). Necht $(a,b) \subset \mathbf{R}$ je omezený interval a necht $f \in L^1(a,b)$. Potom

$$\lim_{t \to \infty} \int_a^b f(x) \cos(tx) \, dx = 0 \quad \text{a} \quad \lim_{t \to \infty} \int_a^b f(x) \sin(tx) \, dx = 0.$$

Důsledek: Jsou-li posloupnosti $\{a_n\}_{n=0}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ Fourierovými koeficienty nějaké funkce $f \in \mathcal{P}_{2\pi}$, pak $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0.$

Konec 17. přednášky 16.4

Příklad: Dokažte, že

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2},$$

je-li integrál Newtonův.

Věta L 17.4 (Riemannova věta o lokalizaci). Nechť $f \in \mathcal{P}_{2\pi}$, $x \in \mathbf{R}$ a $s \in \mathbf{R}$. Potom Sf(x) = správě tehdy, když existuje $\delta \in (0, \pi)$ takové, že

$$\lim_{n \to \infty} \int_0^{\delta} (f(x+t) + f(x-t) - 2s) D_n(t) dt = 0.$$

Poznámka: Z Riemannovy věty o lokalizaci plyne, že konvergence Fourierovy řady funkce f v bodě x závisí pouze na hodnotách funkce f na libovolně malém prstencovém okolí bodu x.

Značení: Nechť $x \in \mathbf{R}$ a f je reálná funkce definovaná na nějakém okolí bodu x. Značíme f(x+) $\lim_{t\to x_+} f(t)$ a $f(x-) = \lim_{t\to x_-} f(t)$, pokud tyto limity existují.

Věta L 17.5 (Diniovo kritérium). Nechť $f \in \mathcal{P}_{2\pi}$ a nechť $x \in \mathbf{R}$. Nechť existují vlastní limity f(x+)a f(x-) a nechť dále existují vlastní limity

$$\lim_{t \to 0_+} \frac{f(x+t) - f(x+)}{t} \qquad \text{a} \qquad \lim_{t \to 0_+} \frac{f(x-t) - f(x-)}{t}.$$

Potom řada Sf konverguje v bodě x a platí

$$Sf(x) = \frac{f(x+) + f(x-)}{2}.$$

Speciálně, má-li funkce f konečné jednostranné derivace v bodě x, potom Sf(x) = f(x).

Věta T 17.6 (Jordanovo–Dirichletovo kritérium). Nechť $f \in \mathcal{P}_{2\pi}$ a nechť $f \in BV([0, 2\pi])$. Potom (a) pro každé $x \in [0, 2\pi]$ konverguje Fourierova řada Sf(x) a platí

$$Sf(x) = \frac{f(x+) + f(x-)}{2};$$

(b) je-li funkce f navíc spojitá na $(a,b) \subset [0,2\pi]$, potom

$$S_n f \stackrel{\text{loc}}{\Longrightarrow} f$$
 na $[a, b]$.

Poznámka: Je-li funkce $f \in \mathcal{P}_{2\pi}$ po částech monotónní na (a,b) nebo po částech třídy \mathcal{C}^1 na (a,b), pak pro každé $x \in (a, b)$ platí

$$Sf(x)=rac{f(x+)+f(x-)}{2}.$$
17.3. Stejnoměrná konvergence - Fejérova věta

Definice. Nechť $\{a_n\}_{n=0}^{\infty}$ je posloupnost reálných čísel. Řekneme, že a_n konverguje k $a\in\mathbf{R}$ v Cesarově smyslu, pokud pro posloupnost

$$\sigma_n = \frac{a_0 + a_1 + \ldots + a_n}{n+1} \text{ konverguje k } a.$$

Poznámka: Zřejmě

$$a_n \to a \Longrightarrow a_n \to a$$
 v Cesarově smyslu,

ale opačná implikace neplatí. Například $(-1)^n$ konverguje Cesarovsky k nule, ale nekonverguje. Konec 18. přednášky 17.4.

Definice. Nechť $n \in \mathbb{N} \cup \{0\}$. Potom funkci

$$K_n(x) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(x), \quad x \in \mathbf{R},$$

nazýváme Fejérovým jádrem.

Poznámky: Nechť $n \in \mathbb{N} \cup \{0\}$. Potom

- (a) K_n je sudá spojitá 2π -periodická funkce, splující $K_n(0) = \frac{n+1}{2}$,
- (b) platí

$$\int_{-\pi}^{\pi} K_n(x) \, dx = \pi,$$

(c) platí

$$K_n(x) = \frac{1}{2(n+1)} \left(\frac{\sin((n+1)\frac{x}{2})}{\sin(\frac{x}{2})} \right)^2, \quad x \in \mathbf{R}, \ x \neq 2k\pi, \ k \in \mathbf{Z}.$$

Poznámka: Fejérovo jádro má některé lepší vlastnosti než Dirichletovo jádro. Například je nezáporné a navíc spluje $K_n \stackrel{\text{loc}}{\Rightarrow} 0$ na $(0, 2\pi)$. To neplatí pro Dirichletovo jádro, neboť například $D_n(\pi) = \frac{(-1)^n}{2}$.

Definice. Nechť $f \in \mathcal{P}_{2\pi}$, $x \in \mathbf{R}$ a nechť $n \in \mathbf{N} \cup \{0\}$. Pak výraz

$$\sigma_n f(x) = \frac{1}{n+1} \sum_{k=0}^n S_k f(x), \quad x \in \mathbf{R},$$

nazýváme n-tým částečným Fejérovým součtem funkce f.

Poznámka: Nechť $f \in \mathcal{P}_{2\pi}$, $x \in \mathbf{R}$ a nechť $n \in \mathbf{N} \cup \{0\}$. Potom

$$\sigma_n f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) K_n(t) dt = \frac{1}{\pi} \int_{0}^{\pi} (f(x+t) + f(x-t)) K_n(t) dt.$$

Věta T 17.7 (Fejérova). Nechť $f \in \mathcal{P}_{2\pi}$.

(a) Jestliže pro nějaké $x \in \mathbf{R}$ existují vlastní limity f(x+) a f(x-), potom

$$\lim_{n \to \infty} \sigma_n f(x) = \frac{f(x+) + f(x-)}{2}.$$

(b) Je-li funkce f spojitá na nějakém intervalu $(a,b) \subset \mathbf{R}$, potom

$$\sigma_n f \stackrel{\text{loc}}{\Rightarrow} f$$
 na (a, b) .

Poznámka: Nechť $f \in \mathcal{P}_{2\pi}$, $x \in \mathbf{R}$ a nechť existují vlastní limity f(x+) a f(x-). Fejérova věta ukazuje, že jediným možným kandidátem na Sf(x) je hodnota $\frac{f(x+)+f(x-)}{2}$ (tedy f(x), je-li f spojitá v x).

Věta L 17.8 (Weierstrassova - trigonometrická verze). Nechť $f \in \mathcal{P}_{2\pi}$ je spojitá na R. Nechť $\varepsilon > 0$. Potom existuje trigonometrický polynom $T \in \mathcal{T}$ splující

$$||f - T||_{\mathcal{C}(\mathbb{R})} < \varepsilon.$$

Důsledek (Weierstrass): Nechť $f \in C([a,b])$ a $\varepsilon > 0$. Potom existuje polynom $P \in \mathcal{P}$ splující

$$||f - P||_{\mathcal{C}([a,b])} < \varepsilon.$$

Konec 19. přednášky 23.4.

Věta L 17.9 (Fourierovy koeficienty určují funkci). Nechť $f, g \in \mathcal{P}_{2\pi}$ mají stejné Fourierovy koeficienty. Potom f = g skoro všude.

Důsledek: Z předchozí věty snadno plyne Věta T 11.12. o maximalitě trigonometrických funkcí. Tedy trigonometrické funkce skutečně tvoří bázi prostoru $L^2(0, 2\pi)$ jak jsme potřebovali u Hilbertových prostorů.

Věta T 17.10 (Hardy-BD). Nechť $\{a_n\}_{n=0}^{\infty}$ je posloupnost reálných čísel splňující $|na_n| \leq K$ pro $K \in \mathbf{R}$. Pokud $\sum_{n=0}^{\infty} a_n$ konverguje k s v Cesarově smyslu, pak $\sum_{n=0}^{\infty} a_n = s$.

Věta L 17.11 (o Fourierových koeficientech BV funkce). Nechť $f \in \mathcal{P}_{2\pi}$ a nechť $f \in BV([0, 2\pi])$. Pak existuje $K \in \mathbf{R}$, že pro Fourierovy koeficienty f platí

$$|ka_k| \leq K \ a \ |kb_k| \leq K.$$

Důsledek: Z předchozích dvou vět a Fejérovy věty nyní již snadno dostáváme Jordan-Dirichletovo kritérium.

Konec 20. přednášky 24.4.

Poznámka: Obecně připouštíme komplexní funkce reálné proměnné. Protože pro každé $z \in \mathbb{C}$ platí vzorce

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 a $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$,

je možné přepsat trigonometrický polynom

$$\frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

ve tvaru

$$c_0 + \sum_{k=1}^{n} (c_k e^{ikx} + c_{-k} e^{-ikx}).$$

K dané komplexní funkci $f \in \mathcal{P}_{2\pi}$ pak dostaneme komplexní Fourierovu řadu

$$Sf(x) = c_0 + \sum_{k=1}^{\infty} (c_k e^{ikx} + c_{-k} e^{-ikx}),$$

kde

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx, \ k \in \mathbf{Z}.$$

17.4. Fourierova transformace

Motivace: Je těžší vyřešit diferenciální rovnici

$$y'' - y = e^{-x^2},$$

nebo nalézt funkci z splňující

$$-x^2z(x) - z(x) = e^{-x^2}?$$

Definice. Nechť $f \in L^1(\mathbf{R})$. Pak Fourierova transformace f je definována jako

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

a inverzní Fourierova transformace f je definována jako

$$\check{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx.$$

Příklad: Spočtěte Fourierovu transformaci funkce $\chi_{[-a,a]}(x)$.

Poznámka: a) Pro $f \in L^2(\mathbf{R})$ platí $\check{f} = \check{f}$ ve smyslu rovnosti L^2 funkcí.

b) Platí, že existuje-li vlastní f'(x), pak $\hat{f}(x) = f(x)$.

Přiklad: Spočtěte inverzní Fourierovu transformaci k funkci z prvního příkladu.

Připomeň: Nechť $f, g \in L^1(\mathbf{R})$. Pak konvoluce funkcí f a g je definována jako

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y) \ g(y) \ dy.$$

Věta L 17.12 (Fourierova transformace konvoluce). Nechť $f, g \in L^1(\mathbf{R})$. Pak

$$(\hat{f} * g)(\omega) = \sqrt{2\pi} \hat{f}(\omega) \ \hat{g}(\omega).$$

Poznámka: Analogicky předchozí větě lze ukázat, že

$$\sqrt{2\pi}(\check{f}q)(x) = \check{f} * \check{q}(x)$$

Věta L 17.13 (Fourierova transformace derivace). Nechť $f \in L^1(\mathbf{R})$, f a f' jsou spojité na \mathbf{R} , $\lim_{|x| \to \infty} f(x) = 0$ a $f' \in L^1(\mathbf{R})$. Pak

$$\hat{f}'(\omega) = i\omega \hat{f}(x).$$

Přiklad: Vyřešte diferenciální rovnici

$$y'' - y = e^{-x^2}.$$

Přiklad: Ukažte, že

$$\frac{\sqrt{2\pi}}{2}e^{-|x|} = \frac{1}{1+\omega^2}.$$

18. Metrické prostory III

18.1. Separabilní metrické prostory

Definice. Metrický prostor (P, ϱ) se nazývá *separabilní*, jestliže existuje spočetná množina $A \subset P$, která jeho hustá v P.

Přiklady: (a) \mathbf{R} , \mathbf{R}^n jsou separabilní,

- (ii) $(C([0,1]), \sup)$ je separabilní,
- (iii) $\ell^p := \{\{x_n\}_{n=1}^{\infty}: \sum_{n=1}^{\infty} |x_n|^p < \infty\}$ je separabilní pro $1 \le p < \infty$,
- (iv) $L^2(0,1)$ je separabilní.

Konec 21. přednášky 30.4.

Věta L 18.1 (nutná podmínka separability). Nechť (P, ϱ) je metrický prostor. Nechť existují nespočetná množina A a $\delta > 0$ taková, že pro každá $x, y \in A$, $x \neq y$, platí $\varrho(x, y) \geq \delta$. Potom P není separabilní.

Příklady: (i) $\ell^{\infty} = \{\{x_n\}_{n=1}^{\infty}, x_n \in \mathbf{R}, n \in \mathbf{N}, \sup_{n \in \mathbf{N}} |x_n| < \infty\}$ není separabilní, (ii) $(C((0,1)), \sup)$ není separabilní.

Definice. Nechť (P, ϱ) je metrický prostor a \mathcal{B} je nějaký systém otevřených podmnožin P. Řekneme, že \mathcal{B} je báze otevřených množin (P, ϱ) , jestliže pro každou otevřenou množinu $G \subset P$ existuje $\mathcal{B}^* \subset \mathcal{B}$ taková, že $\bigcup \mathcal{B}^* = G$.

Věta L 18.2 (charakterizace separabilních prostorů). *Metrický prostor je separabilní právě tehdy, když v něm existuje spočetná báze otevřených množin.*

Důsledek: Podprostor separabilního prostoru je separabilní.

18.2. Souvislé a obloukově souvislé množiny

Definice. Nechť (P,ϱ) je metrický prostor. Řekneme, že $A\subset P$ je obojetná, jestliže je zároveň otevřená i uzavřená.

Příklady: (a) V každém metrickém prostoru (P, ρ) jsou množiny \emptyset a P obojetné.

- (b) V metrickém prostoru $[0,1] \cup (2,3)$ jsou množiny [0,1] i (2,3) obojetné.
- (c) Každá podmnožina diskrétního prostoru je obojetná.

Definice. Řekneme, že metrický prostor (P,ϱ) je souvislý, jestliže není sjednocením dvou disjunktních neprázdných otevřených množin. Řekneme, že množina $A \subset P$ je souvislá, jestliže je metrický prostor (A,ϱ) souvislý.

Konec 22. přednášky 7.5.

Příklady: (a) V každém metrickém prostoru jsou prázdná množina a každá jednobodová množina souvislé.

- (b) $([0,1] \cup (2,3), |.|)$ není souvislý.
- (c) $(\mathbf{R}, |.|)$ je souvislý.
- (d) libovolný interval v **R** je souvislý.

Věta L 18.3 (charakterizace souvislých prostorů). Nechť (P, ϱ) je metrický prostor. Pak jsou následující čtyři výroky ekvivalentní:

- (i) P není souvislý;
- (ii) existují dvě uzavřené neprázdné disjunktní množiny F_1, F_2 takové, že $P = F_1 \cup F_2$;
- (iii) existuje obojetná množina $H \subset P$, která je navíc neprázdná a různá od P;

Věta T 18.4 (vlastnosti souvislých prostorů). Necht (P, ϱ) je metrický prostor.

- a) Nechť (Q, σ) je metrický prostor a $f: P \to Q$ je spojité. Nechť $A \subset P$ je souvislá množina, pak f(A) je souvislá v Q.
 - b) Nechť $A \subset P$ je souvislá a $A \subset B \subset \overline{A}$. Pak B je souvislá. Speciálně \overline{A} je souvislá.
- c) Nechť I je neprázdná množina a $\{A_{\alpha}\}_{{\alpha}\in I}$ jsou souvislé podmnožiny P. Nechť každé dvě množiny A_{α} , A_{β} , $\alpha,\beta\in I$, se protínají. Potom $A:=\bigcup_{{\alpha}\in I}A_{\alpha}$ je souvislá.

Důsledek: Nechť f je spojité zobrazení intervalu I do metrického prostoru. Potom f(I) je souvislá množina

Příklad: Nechť

$$A = \{(x, y) \in \mathbf{R}^2 : y = \sqrt{1 - x^2} \},$$

$$B = \{(x, y) \in \mathbf{R}^2 : y = -\sqrt{1 - x^2} \}.$$

Potom A, B jsou souvislé (spojitý obraz intervalu), ale $A \cap B$ není souvislá.

Definice. Řekneme, že množina A je komponenta P, jestliže A je maximální souvislá podmnožina P.

Věta L 18.5 (charakterizace komponent). Nechť (P, ϱ) je neprázdný metrický prostor. Potom

- (a) komponenty P jsou neprázdné a uzavřené,
- (b) každý bod P je obsažen v některé komponentě,
- (c) komponenty jsou navzájem disjunktní.

Definice. Řekneme, že metrický prostor (P, ϱ) je $k\check{r}ivkov\check{e}$ souvislý, jestliže pro každé $x, y \in P$ existuje spojité zobrazení $\gamma \colon [0,1] \to (P,\varrho)$ takové, že $\gamma(0) = x$ a $\gamma(1) = y$. Řekneme, že množina $A \subset P$ je $k\check{r}ivkov\check{e}$ souvislá, jestliže je metrický prostor (A,ϱ) křivkově souvislý.

Konec 23. přednášky 21.5.

Věta L 18.6 (souvislost souvislosti s křivkovou souvislostí). *Každý křivkově souvislá množina v metrickém prostoru je souvislá*.

Příklady: (a) Graf spojité funkce na intervalu je křivkově souvislý.

- (b) $(\mathbf{R}^n, |.|)$ je křivkově souvislý.
- (c) $(C([0,1]), \sup)$ je křivkově souvislý.
- (d) Podmnožina prostoru \mathbb{R}^2 definovaná jako graf funkce

$$f(x) = \begin{cases} 0 & \text{pro } x \in (-\infty, 0] \\ \sin \frac{1}{x} & \text{pro } x \in (0, \infty), \end{cases}$$

je příkladem souvislého metrického prostoru, který není křivkově souvislý.

Poznámka: (a) Spojitý obraz křivkově souvislého metrického prostoru je křivkově souvislý.

- (b) Uzávěr křivkově souvislé množiny nemusí být křivkově souvislý.
- (c) Sjednocení křivkově souvislých množin s neprázdným průnikem je křivkově souvislá množina.

Věta T 18.7 (struktura otevřených podmnožin **R**). Je-li $G \subset \mathbf{R}$ otevřená, pak existuje spočetný disjunktní systém otevřených intervalů \mathcal{I} takový, že $G = \bigcup_{I \in \mathcal{I}} I$.

Věta L 18.8 (vztah kompaktnosti a separability). Nechť (P, ϱ) je kompaktní metrický prostor. Pak P je separabilní.

Konec 24. přednášky 22.5.