Limites et continuité

Si $\lim_{x \to +\infty} f(x) = \ell$, la droite d'équation $y = \ell$ est une asymptote horizontale à la courbe de f en $+\infty$ ou $-\infty$

Asymptote verticale

Si $\lim f(x) = \pm \infty$, la droite d'équation x = a est une asymptote verticale à la courbe de f

Opérations sur les limites $\lim f$ 0 0 ℓ ℓ ∞ ∞ ∞ ℓ ℓ 0 0 $\lim g$ $\lim(f+g)$ ℓ ℓ ∞/FI ∞ ∞ ∞ ∞ $\lim(f \times g)$ FΙ FΙ 0 0 ∞ ∞ $\lim(f \div g)$ ∞ 0 ∞ 0 FI

$\ell \neq 0$, règle des signes pour les résultats « ∞ »

Théorèmes de comparaison

f,g,h sont trois functions. Si, pour tout $x \in [a,+\infty[$:

$$\ \, \Leftrightarrow \, f(x) \leq g(x) \text{ et } \lim_{x \to +\infty} f(x) = +\infty \Rightarrow \lim_{x \to +\infty} g(x) = +\infty$$

$$\Rightarrow \ f(x) \leq g(x) \ \text{et} \lim_{x \to +\infty} g(x) = -\infty \Rightarrow \lim_{x \to +\infty} f(x) = -\infty$$

$$\Leftrightarrow \text{ th\'eor\`eme des gendarmes}: f(x) \leq g(x) \leq h(x) \text{ et} \\ \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = \ell \Rightarrow \lim_{x \to +\infty} g(x) = \ell$$

Limites particulières

$$\lim_{x \to -\infty} x e^x = 0 \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \lim_{x \to 0+} x \ln(x) = 0 \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \qquad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Fonctions composées

$$x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))$$

$$g \circ f$$

$$\text{Si} \begin{cases} \lim_{x \to a} f(x) = \ell \\ \lim_{X \to \ell} g(X) = L \end{cases}$$

$$\text{alors } \lim_{x \to a} g(f(x)) = L$$

Théorème des valeurs intermédiaires

Si f est une fonction continue sur un intervalle [a; b] alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution $\alpha \in [a; b]$

Si de plus f est strictement monotone, α est unique