Определение перспективного тарифа для телеком-компании

Оглавление

- Введение
 - Описание тарифов
 - Входные данные
 - Цели исследования
 - Ход исследования
- 1. Обзор данных
 - 1.1 Импорт библиотек и таблиц
 - 1.2 Предварительное знакомство с данными
 - Выводы
- 2. Предобработка данных
 - 2.1 Информация о звонках
 - 2.2 Информация об интернет-сессиях
 - 2.3 Информация о сообщениях
 - 2.4 Информация о пользователях
 - Выводы
- 3. Расчёты и дообогащение таблицы данными
 - 3.1 Звонки
 - 3.2 Сообщения
 - 3.3 Интернет трафик
 - 3.4 Выручка
 - Выводы
- 4. Исследовательский анализ данных
 - 4.1 Исследование времени разговора пользователей
 - 4.2 Исследование количества сообщений пользователей
 - 4.3 Исследование трафика пользователей
 - 4.4 Исследование выручки спользователей
 - Выводы
- 5. Проверка гипотез
 - 5.1 Выручка от пользователей тарифов «Ультра» и «Смарт»
 - 5.2 Выручка от пользователей из Москвы и других регионов
- 6. Общий вывод
 - 6.1 Обзор данных
 - 6.2 Предобработка данных
 - 6.3 Расчеты и дообогщение таблицы
 - 6.4 Исследовательский анализ данных
 - 6.5 Проверка гипотез

Введение -

Мы аналитики компании «Мегалайн» — федерального оператора сотовой связи. Клиентам предлагают два тарифных плана: «Смарт» и «Ультра» . Чтобы скорректировать рекламный бюджет, коммерческий департамент хочет понять, какой тариф приносит больше денег.

Нам предстоит сделать предварительный анализ тарифов на небольшой выборке клиентов. В нашем распоряжении данные 500 пользователей «Мегалайна»: кто они, откуда, каким тарифом пользуются, сколько звонков и сообщений каждый отправил за 2018 год. Нужно проанализировать поведение клиентов и сделать вывод — какой тариф лучше.

Описание тарифов

Тариф «Смарт» - ежемесячная плата: 550 рублей

Тип связи	Включено в тариф	Плата за превышение
Звонки	500 минут	3 руб. / минута
Сообщения	50 смс	3 руб. / смс
Интернет	15 Гб.	200 руб. / 1 Гб.

Тариф «Ультра» - ежемесячная плата: 1950 рублей

Тип связи	Включено в тариф	Плата за превышение		
Звонки	3000 минут	1 руб. / минута		
Сообщения	1000 смс	1 руб. / смс		
Интернет	30 Гб.	150 руб. / 1 Гб.		

Примечание

- «Мегалайн» всегда **округляет секунды до минут**, а **мегабайты до гигабайт**. Каждый звонок округляется отдельно: даже если он длился всего 1 секунду, будет засчитан как 1 минута.
- Для веб-трафика отдельные сессии не считаются. Вместо этого общая сумма за месяц округляется в бо́льшую сторону. Если абонент использует 1025 мегабайт в этом месяце, с него возьмут плату за 2 гигабайта. Примите, что неиспользованные за предыдущий месяц звонки, смс, интернет на следующий месяц не переносятся.

Входные данные -

Нам предоставили следующие таблицы:

- /datasets/calls.csv
- /datasets/internet.csv
- /datasets/messages.csv
- /datasets/tariffs.csv
- /datasets/users.csv

Таблица users (информация о пользователях):

- user_id уникальный идентификатор пользователя
- first name имя пользователя
- last_name фамилия пользователя
- age возраст пользователя (годы)
- reg date дата подключения тарифа (день, месяц, год)
- churn_date дата прекращения пользования тарифом (если значение пропущено, то тариф ещё действовал на момент выгрузки данных)
- city город проживания пользователя
- tariff название тарифного плана

Таблица calls (информация о звонках):

- id уникальный номер звонка
- call date дата звонка
- duration длительность звонка в минутах
- user id идентификатор пользователя, сделавшего звонок

Таблица messages (информация о сообщениях):

- id уникальный номер сообщения
- message_date дата сообщения
- user_id идентификатор пользователя, отправившего сообщение

Таблица internet (информация об интернет-сессиях):

- id уникальный номер сессии
- mb_used объём потраченного за сессию интернет-трафика (в мегабайтах)

- session date дата интернет-сессии
- user_id идентификатор пользователя

Таблица tariffs (информация о тарифах):

- tariff_name название тарифа
- rub monthly fee ежемесячная абонентская плата в рублях
- minutes_included количество минут разговора в месяц, включённых в абонентскую плату
- messages_included количество сообщений в месяц, включённых в абонентскую плату
- mb per month included объём интернет-трафика, включённого в абонентскую плату (в мегабайтах)
- rub_per_minute стоимость минуты разговора сверх тарифного пакета (например, если в тарифе 100 минут разговора в месяц, то со 101 минуты будет взиматься плата)
- rub per message стоимость отправки сообщения сверх тарифного пакета
- rub_per_gb стоимость дополнительного гигабайта интернет-трафика сверх тарифного пакета (1 гигабайт = 1024 мегабайта)

Цели исследования

Проанализировать

- поведение клиентов
- сделать вывод какой тариф прибыльнее

Проверить гипотезы:

- средняя выручка пользователей тарифов «Ультра» и «Смарт» различаются;
- средняя выручка пользователей из Москвы отличается от выручки пользователей из других регионов.

Дополнительно пояснить:

- как формулировалась нулевая и альтернативная гипотеза;
- какой критерий использовался для проверки гипотез и почему.

Ход исследования -

Обзор данных

Предобработка данных

- Приведене данных к нужным типам;
- Поиск и устранение ошибок в данных, если они есть.
- Требуется пояснить, какие ошибки были найдены и как исправленны.
- Примечание: в данных есть звонки с нулевой продолжительностью. Это не ошибка: нулями обозначены пропущенные звонки, поэтому их не нужно удалять.

Расчёты и дообогащение таблицы данными

Требуется посчитать для каждого пользователя:

- количество сделанных звонков и израсходованных минут разговора по месяцам;
- количество отправленных сообщений по месяцам;
- объем израсходованного интернет-трафика по месяцам;
- помесячную выручку с каждого пользователя (надо вычесть бесплатный лимит из суммарного количества звонков, сообщений и интернет-трафика; остаток умножить на значение из тарифного плана; прибавить абонентскую плату, соответствующую тарифному плану).

Исследовательский анализ данных

- Требуется описать поведение клиентов оператора, исходя из выборки.
- Сколько минут разговора, сколько сообщений и какой объём интернет-трафика требуется пользователям каждого тарифа в месяц?
- Посчитать среднее количество, дисперсию и стандартное отклонение.
- Построить гистограммы.
- Описать распределения.

1. Обзор данных

1.1 Импорт библиотек и таблиц 🔺

```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         import scipy.stats as st
         # для того чтобы код работал локально и на Практикуме применим конструкцию try-except
             df_calls = pd.read_csv('/datasets/calls.csv')
             df_internet = pd.read_csv('/datasets/internet.csv')
             df_messages = pd.read_csv('/datasets/messages.csv')
             df_tariffs = pd.read_csv('/datasets/tariffs.csv')
             df_users = pd.read_csv('/datasets/users.csv')
         except:
             df_calls = pd.read_csv('datasets/calls.csv')
             df_internet = pd.read_csv('datasets/internet.csv')
             df_messages = pd.read_csv('datasets/messages.csv')
             df_tariffs = pd.read_csv('datasets/tariffs.csv')
             df_users = pd.read_csv('datasets/users.csv')
```

Присвоим имена таблицам.

```
In [2]:

df_calls.name = 'Информация о звонках'

df_internet.name = 'Информация об интернет-сессиях'

df_messages.name = 'Информация о сообщениях'

df_tariffs.name = 'Информация о тарифах'

df_users.name = 'Информация о пользователях'
```

1.2 Предварительное знакомство с данными 🔺

Осмотрим каждую таблицу отдельно, и запишем необходимые доработки.

Для того чтобы не писать каждый раз по несколько одинаковых строк кода, напишем небольшую функцию:

```
In [3]:
    def research(df):
        display(df.name, df)
        print(df.info())
        display(df.describe())
        print('Количество явных дубликатов:', df.duplicated().sum())
```

Информация о звонках

```
In [4]:
    research(df_calls)
```

'Информация о звонках'

	id	call_date	duration	user_id	
0	1000_0	2018-07-25	0.00	1000	
1	1000_1	2018-08-17	0.00	1000	
2	1000_2	2018-06-11	2.85	1000	
3	1000_3	2018-09-21	13.80	1000	
4	1000_4	2018-12-15	5.18	1000	
202602	1499_215	2018-12-26	0.76	1499	
202603	1499_216	2018-10-18	18.83	1499	
202604	2604 1499_217	2018-11-10	10.81	1499	
202605	1499_218	2018-10-06	4.27	1499	

id call_date duration user_id 202606 1499_219 2018-12-14 19.62 1499

202607 rows × 4 columns

	duration	user_id
count	202607.000000	202607.000000
mean	6.755887	1253.940619
std	5.843365	144.722751
min	0.000000	1000.000000
25%	1.300000	1126.000000
50%	6.000000	1260.000000
75%	10.700000	1379.000000
max	38.000000	1499.000000

Количество явных дубликатов: 0

Доработки для df_calls:

- call_date дата записана как текст, требуется сконвертировать в DateTime
- duration требуется сконверитировать из float64 в int с округлением вверх, так как время звонка округляется до минут.

Информация об интернет-сессиях

In [5]:

research(df_internet)

'Информация об интернет-сессиях'

	Unnamed: 0	id	mb_used	session_date	user_id
0	0	1000_0	112.95	2018-11-25	1000
1	1	1000_1	1052.81	2018-09-07	1000
2	2	1000_2	1197.26	2018-06-25	1000
3	3	1000_3	550.27	2018-08-22	1000
4	4	1000_4	302.56	2018-09-24	1000
149391	149391	1499_152	318.90	2018-10-03	1499
149392	149392	1499_153	490.13	2018-12-14	1499
149393	149393	1499_154	0.00	2018-10-27	1499
149394	149394	1499_155	1246.32	2018-11-26	1499
149395	149395	1499_156	544.37	2018-10-26	1499

149396 rows × 5 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149396 entries, 0 to 149395
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	149396 non-null	int64
1	id	149396 non-null	object
2	mb_used	149396 non-null	float64

3 session_date 149396 non-null object 4 user_id 149396 non-null int64 dtypes: float64(1), int64(2), object(2) memory usage: 5.7+ MB None

	Unnamed: 0	mb_used	user_id
count	149396.000000	149396.000000	149396.000000
mean	74697.500000	370.192426	1252.099842
std	43127.054745	278.300951	144.050823
min	0.000000	0.000000	1000.000000
25%	37348.750000	138.187500	1130.000000
50%	74697.500000	348.015000	1251.000000
75%	112046.250000	559.552500	1380.000000
max	149395.000000	1724.830000	1499.000000

Количество явных дубликатов: 0

Доработки для df_internet:

- Unnamed: 0 паразитный столбец с индексами, требуется удалить
- session_date дата записана как текст, требуется сконвертировать в DateTime

Информация о сообщениях

In [6]:

research(df_messages)

'Информация о сообщениях'

	id	message_date	user_id
0	1000_0	2018-06-27	1000
1	1000_1	2018-10-08	1000
2	1000_2	2018-08-04	1000
3	1000_3	2018-06-16	1000
4	1000_4	2018-12-05	1000
123031	1499_179	2018-12-12	1499
123032	1499_180	2018-09-28	1499
123033	1499_181	2018-09-27	1499
123034	1499_182	2018-11-15	1499
123035	1499_183	2018-11-16	1499

123036 rows × 3 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 123036 entries, 0 to 123035
Data columns (total 3 columns):

Column Non-Null Count Dtype

0 id 123036 non-null object
1 message_date 123036 non-null object
2 user_id 123036 non-null int64

dtypes: int64(1), object(2)
memory usage: 2.8+ MB

None

 count
 123036.000000

 mean
 1256.989410

 std
 143.523967

 min
 1000.000000

 25%
 1134.000000

user_id 50% 1271.000000 75% 1381.000000 max 1499.000000

Количество явных дубликатов: 0

Доработки для df_messages:

• message_date - дата записана как текст, требуется сконвертировать в DateTime

Информация о тарифах

In [7]:

research(df_tariffs)

'Информация о тарифах'

	messages_included	$mb_per_month_included$	$minutes_included$	rub_monthly_fee	rub_per_gb	rub_per_message	rub_per_minute	tariff
0	50	15360	500	550	200	3	3	
1	1000	30720	3000	1950	150	1	1	

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	messages_included	2 non-null	int64
1	<pre>mb_per_month_included</pre>	2 non-null	int64
2	<pre>minutes_included</pre>	2 non-null	int64
3	rub_monthly_fee	2 non-null	int64
4	rub_per_gb	2 non-null	int64
5	rub_per_message	2 non-null	int64
6	rub_per_minute	2 non-null	int64
7	tariff_name	2 non-null	object

dtypes: int64(7), object(1)
memory usage: 256.0+ bytes

None

	messages_included	mb_per_month_included	minutes_included	rub_monthly_fee	rub_per_gb	rub_per_message	rub_per_minute
count	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
mean	525.000000	23040.000000	1750.000000	1250.000000	175.000000	2.000000	2.000000
std	671.751442	10861.160159	1767.766953	989.949494	35.355339	1.414214	1.414214
min	50.000000	15360.000000	500.000000	550.000000	150.000000	1.000000	1.000000
25%	287.500000	19200.000000	1125.000000	900.000000	162.500000	1.500000	1.500000
50%	525.000000	23040.000000	1750.000000	1250.000000	175.000000	2.000000	2.000000
75%	762.500000	26880.000000	2375.000000	1600.000000	187.500000	2.500000	2.500000
max	1000.000000	30720.000000	3000.000000	1950.000000	200.000000	3.000000	3.000000

Количество явных дубликатов: 0

Тут все в порядке, доработок не требуется.

Информация о пользователях

In [8]:

research(df_users)

'Информация о пользователях'

	user_id	age	churn_date	city	first_name	last_name	reg_date	tariff
0	1000	52	NaN	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
1	1001	41	NaN	Москва	Иван	Ежов	2018-11-01	smart
2	1002	59	NaN	Стерлитамак	Евгений	Абрамович	2018-06-17	smart
3	1003	23	NaN	Москва	Белла	Белякова	2018-08-17	ultra
4	1004	68	NaN	Новокузнецк	Татьяна	Авдеенко	2018-05-14	ultra

	user_id	age	churn_date	city	first_name	last_name	reg_date	tariff
495	1495	65	NaN	Иркутск	Авксентий	Фокин	2018-08-28	ultra
496	1496	36	NaN	Вологда	Трифон	Блохин	2018-01-27	smart
497	1497	32	NaN	Челябинск	Каролина	Агеева	2018-10-09	smart
498	1498	68	2018-10-25	Владикавказ	Всеволод	Акимчин	2018-07-19	smart
499	1499	35	NaN	Пермь	Гектор	Корнилов	2018-09-27	smart

500 rows × 8 columns

	user_id	age
count	500.000000	500.00000
mean	1249.500000	46.58800
std	144.481833	16.66763
min	1000.000000	18.00000
25%	1124.750000	32.00000
50%	1249.500000	46.00000
75%	1374.250000	62.00000
max	1499.000000	75.00000

Количество явных дубликатов: 0

Проверим текстовые поля на неявные дубликаты.

```
city 76
first_name 246
last_name 419
tariff 2
city 76
first_name 246
last_name 416
tariff 2
```

Видно что количество уменьшилось только в поле last_name. Скорей всего это некритично для нас, только проверим все ли user_id уникальны.

```
In [10]: len(df_users.user_id.unique())
```

Out[10]: 500

500 из 500 уникальны. Все в порядке, неявные дубликаты в поле last name не помешают в нашем исследовании.

Доработки для df users:

- churn date дата записана как текст, требуется сконвертировать в DateTime
- reg_date дата записана как текст, требуется сконвертировать в DateTime

Выводы -

В трех разных таблицах df_calls , df_messages , df_internet встречается столбец с одинаковым именем id , более того, в каждой из таблиц он содержит очень похожую информацию. Переименуем заголовки этих столбцов, чтобы потом не было проблем при сшивании таблиц.

df calls

- id уникальный номер звонка, переименуем в call_id
- call_date Дата записана как текст, требуется сконвертировать в DateTime
- duration требуется сконверитировать из float64 в int с округлением вверх, так как время звонка округляется до минут.

df internet

- id уникальный номер сессии, переименуем в session id
- Unnamed: 0 Паразитный столбец с индексами, требуется удалить
- session_date Дата записана как текст, требуется сконвертировать в DateTime

df_messages

- id уникальный номер сообщения, переименуем в message_id
- message_date дата записана как текст, требуется сконвертировать в DateTime

df tariffs

• действий не требуется

df users

- churn_date дата записана как текст, требуется сконвертировать в DateTime
- reg date дата записана как текст, требуется сконвертировать в DateTime

Явных дубликатов ни в одной из таблиц не обнаружено. Все заголовки используют хороший стиль написания и не содержат пробелов, переименовывать их не нужно.

На первый взгляд, данных в предоставленных нам таблиц, достаточно для решения нашей задачи. Приступим к предобработке.

2. Предобработка данных

2.1 Информация о звонках

```
In [11]: # переименуем столбец id в call_id
    df_calls.rename(columns={'id': 'call_id'}, inplace=True)

# приведем дату к нужному типу
    df_calls['call_date'] = pd.to_datetime(df_calls['call_date'], format='%Y-%m-%d')

# время звонков округлим до целого вверх и поменяем тип данных с float на int
    df_calls['duration'] = df_calls['duration'].apply(np.ceil) # применим функцию округления из библиотеки питру
    df_calls['duration'] = df_calls['duration'].astype(int)
```

Выполнено, теперь проверим что все в порядке:

```
In [12]:
          print(df_calls.info())
          print(df_calls['duration'].head())
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 202607 entries, 0 to 202606
         Data columns (total 4 columns):
          # Column Non-Null Count
                         _____
          0 call_id 202607 non-null object
          1 call_date 202607 non-null datetime64[ns]
             duration 202607 non-null int32 user_id 202607 non-null int64
                         202607 non-null int64
         dtypes: datetime64[ns](1), int32(1), int64(1), object(1)
         memory usage: 5.4+ MB
         a
               a
         1
               0
         2
               3
         3
              14
              6
         Name: duration, dtype: int32
          • тип данных в порядке
          • столбец переименован
          • время звонка целочисленное и округлено вверх
```

2.2 Информация об интернет-сессиях -

```
In [13]: # nepeumeHyem cmon6ue id & session_id
    df_internet.rename(columns={'id': 'session_id'}, inplace=True)

# npuBedem damy κ HyжHoMy muny
    df_internet['session_date'] = pd.to_datetime(df_internet['session_date'], format='%Y-%m-%d')

# ydanum napasumHый cmon6eu методом drop
    df_internet.drop('Unnamed: 0', axis=1, inplace=True)
```

Проверяем, что все отработало:

- тип данных в порядке
- столбец переименован
- паразитный столбец удален

2.3 Информация о сообщениях -

```
In [15]: # переименуем столбце id в message_id
    df_messages.rename(columns={'id': 'message_id'}, inplace=True)
# приведем дату к нужному типу
    df_messages['message_date'] = pd.to_datetime(df_messages['message_date'], format='%Y-%m-%d')
```

Проверяем, что все отработало:

```
df_messages.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 123036 entries, 0 to 123035
Data columns (total 3 columns):

# Column Non-Null Count Dtype
--- ----- 0 message_id 123036 non-null object
1 message_date 123036 non-null datetime64[ns]
2 user_id 123036 non-null int64
dtypes: datetime64[ns](1), int64(1), object(1)
memory usage: 2.8+ MB

• ТИП ДАННЫХ В ПОРЯДКЕ
```

2.4 Информация о пользователях -

```
# npuBedem damy k нужному muny
df_users['churn_date'] = pd.to_datetime(df_users['churn_date'], format='%Y-%m-%d')
df_users['reg_date'] = pd.to_datetime(df_users['reg_date'], format='%Y-%m-%d')
```

Проверяем, что все отработало:

• столбец переименован

• тип данных в порядке

Выводы -

Была проведена следующая работа по предобработке данных:

df_calls

- id переименовано в call_id
- call_date дата преобразована из текста в DateTime
- duration значение округлено до целовго вверх, произведена конвертация из float64 в int

df_internet

- id переименовано в session_id
- Unnamed: 0 удален
- session_date дата преобразована из текста в DateTime

df_messages

- id переименовано в message_id
- message_date дата преобразована из текста в DateTime

df tariffs

• действий не потребовалось

df_users

- churn_date дата преобразована из текста в DateTime
- reg_date дата преобразована из текста в DateTime

3. Расчёты и дообогащение таблицы данными

3.1 Звонки ▲

Требуется посчитать для каждого пользователя количество сделанных звонков и израсходованных минут разговора по месяцам.

```
In [19]:
          # первым делом вычленим из даты значения года и месяца с помощью метода DatetimeIndex
          # и запишем эти значения в одноименные столбцы
          df_calls['year'] = pd.DatetimeIndex(df_calls['call_date']).year
          df_calls['month'] = pd.DatetimeIndex(df_calls['call_date']).month
In [20]:
          # создадим новую таблицу df calls details, куда запишем сводную информацию по месяцам
          df_calls_details = (
              df_calls.query('duration != 0') # с помощью запроса query уберем нулевые значения duration,
                                              # так как это пропущенные звонки, а не совершенные.
                                              # иначе у нас посчитается неверное количество совершенных звонков
              .pivot_table(
                  index=['user_id', 'year', 'month'], # индексы это связка из: user_id, year и топтh
                  values='duration', # значения это время звонка в минутах
                  aggfunc=['sum', 'count']) # посчитаем сразу сумму и количество
          )
In [21]:
          # проверим
          df_calls_details
                                 sum
                                        count
```

Out[21]:

duration duration

user_id	year	month		
1000	2018	5	159	17
		6	172	28
		7	340	41
		8	408	42
		9	466	46
•••	•••	•••		
1498	2018	10	247	30
1499	2018	9	70	8
		10	449	44
		11	612	62
		12	492	56

3168 rows × 2 columns

Таблица содержит все необходимые нам данные, осталось только немного причесать ее:

```
In [22]:
          # из за того что мы применили сразу две функции на расчетный столбец
          # образовался мультииндекс, избавимся от него
          # так как мультииндекс представляет из себя кортеж из двух значений
          # расклеим его с помощью функции тар, в качестве аргумента передадим ей метод '_'.join
          # которая разберет наш кортеж на элементы и соединит значения с помощью '_' в одну строку
          df_calls_details.columns = df_calls_details.columns.map('_'.join)
          # nepeumeнуем столбец count_duration в более понятный call_cnt - это количество наших звонков
          df_calls_details.columns = df_calls_details.columns.str.replace('count_duration', 'call_cnt')
          # сбросим индекс, чтобы значения из сгруппированных столбцов раскопировались по всем строкам
```

```
# с такой таблицей в дальнейшем будет удобнее работать df_calls_details = df_calls_details.reset_index()
```

In [23]: # посмотрим что вышло df_calls_details

Out[23]:

Out[24]

	user_id	year	month	sum_duration	call_cnt
0	1000	2018	5	159	17
1	1000	2018	6	172	28
2	1000	2018	7	340	41
3	1000	2018	8	408	42
4	1000	2018	9	466	46
3163	1498	2018	10	247	30
3164	1499	2018	9	70	8
3165	1499	2018	10	449	44
3166	1499	2018	11	612	62
3167	1499	2018	12	492	56

3168 rows × 5 columns

Красота да и только!

Осталось подтянуть данные о пользователях по столбцу user_id , смерджим две таблицы:

In [24]: df_calls_details.merge(df_users, on='user_id', how='left')

: _		user_id	year	month	sum_duration	call_cnt	age	churn_date	city	first_name	last_name	reg_date	tariff
	0	1000	2018	5	159	17	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	1	1000	2018	6	172	28	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	2	1000	2018	7	340	41	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	3	1000	2018	8	408	42	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	4	1000	2018	9	466	46	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
3	3163	1498	2018	10	247	30	68	2018-10-25	Владикавказ	Всеволод	Акимчин	2018-07-19	smart
3	3164	1499	2018	9	70	8	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
3	3165	1499	2018	10	449	44	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
3	166	1499	2018	11	612	62	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
3	3167	1499	2018	12	492	56	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart

3168 rows × 12 columns

Готово! Необходимая нам информация живет в столбцах:

- sum_duration суммарное количество минут израсходованное за месяц
- call_cnt суммарное количество звонков совершенных за месяц

3.2 Сообщения -

Требуется посчитать для каждого пользователя количество отправленных сообщений по месяцам.

```
In [25]:
# дообогощаем исходную таблицу данными по году и месяцу
df_messages['year'] = pd.DatetimeIndex(df_messages['message_date']).year
df_messages['month'] = pd.DatetimeIndex(df_messages['message_date']).month
```

In [26]: # создадим новую таблицу df_messages_details, куда запишем сводную информацию по месяцам

```
df_messages_details = (
    df_messages
    .pivot_table(
        index=['user_id', 'year', 'month'],
        values='message_id',
        aggfunc='count') # посчитаем количество сообщений
    .reset_index() # сбросим индекс, чтобы раскопировать значения из сгруппированных столбцов
)

# переименуем столбец message_id в более понятный messages_cnt - это количество сообщений
df_messages_details.columns = df_messages_details.columns.str.replace('message_id', 'messages_cnt')
```

In [27]:

df_messages_details

Out[27]:

	user_id	year	month	messages_cnt
0	1000	2018	5	22
1	1000	2018	6	60
2	1000	2018	7	75
3	1000	2018	8	81
4	1000	2018	9	57
•••				
2712	1498	2018	10	42
2713	1499	2018	9	11
2714	1499	2018	10	48
2715	1499	2018	11	59
2716	1499	2018	12	66

2717 rows × 4 columns

Осталось подтянуть данные о пользователях по столбцу user_id , смерджим две таблицы:

```
In [28]:
    df_messages_details.merge(df_users, on='user_id', how='left')
```

Out[28]:

	user_id	year	month	messages_cnt	age	churn_date	city	first_name	last_name	reg_date	tariff
0	1000	2018	5	22	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
1	1000	2018	6	60	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
2	1000	2018	7	75	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
3	1000	2018	8	81	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
4	1000	2018	9	57	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
•••											
2712	1498	2018	10	42	68	2018-10-25	Владикавказ	Всеволод	Акимчин	2018-07-19	smart
2713	1499	2018	9	11	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
2714	1499	2018	10	48	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
2715	1499	2018	11	59	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
2716	1499	2018	12	66	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart

2717 rows × 11 columns

Готово! Необходимая нам информация живет в столбце:

• messages_cnt - суммарное количество сообщений за месяц

3.3 Интернет трафик 🔺

Требуется посчитать для каждого пользователя объем израсходованного интернет-трафика по месяцам.

```
df_internet['month'] = pd.DatetimeIndex(df_internet['session_date']).month

In [30]: # создадим новую таблицу df_internet_details, куда запишем сводную информацию по месяцам

df_internet_details = (
    df_internet
    .pivot_table(
        index=['user_id', 'year', 'month'],
        values='mb_used',
        aggfunc='sum') # посчитаем сумму трафика за месяц
    .reset_index() # сбросим индекс, чтобы раскопировать значения из сгруппированных столбцов
)
```

df_internet['year'] = pd.DatetimeIndex(df_internet['session_date']).year

In [31]: df_internet_details

Out[31]:

	user_id	year	month	mb_used
0	1000	2018	5	2253.49
1	1000	2018	6	23233.77
2	1000	2018	7	14003.64
3	1000	2018	8	14055.93
4	1000	2018	9	14568.91
•••				
3198	1498	2018	10	20579.36
3199	1499	2018	9	1845.75
3200	1499	2018	10	17788.51
3201	1499	2018	11	17963.31
3202	1499	2018	12	13055.58

3203 rows × 4 columns

Данные посчитаны верно. Осталось округлить значения кратно 1 гб. наверх.

Логика следующая:

- получаем остаток от деления на значение, кратно которому требуется округлить
- если надо округлить вниз, пишем положительное значение
- если надо округлить вверх, пишем отрицательное значение
- вычитаем из исходного значения остаток от деления
- в зависимости от того был остаток положительный или отрицательный получаем округление либо вверх либо вниз

Формула: x = x - x % int

Пример:

```
x = 26.8

y = 26.8

x % -10 = -3.2

y % 10 = 6.8

x = x - x % -10 = 30

y = y - y % 10 = 20
```

```
In [32]: # применим новыей метод на практике

df_internet_details['mb_used'] -= df_internet_details['mb_used'] % -1024
```

```
In [33]: # создаем новый столбец gb_used, для этого просто делим на 1024 получившееся значение в mb_used

df_internet_details['gb_used'] = df_internet_details['mb_used'] / 1024
```

In [34]: df_internet_details

Out[34]:

	user_id	year	month	mb_used	gb_used
0	1000	2018	5	3072.0	3.0
1	1000	2018	6	23552.0	23.0
2	1000	2018	7	14336.0	14.0
3	1000	2018	8	14336.0	14.0
4	1000	2018	9	15360.0	15.0
3198	1498	2018	10	21504.0	21.0
3199	1499	2018	9	2048.0	2.0
3200	1499	2018	10	18432.0	18.0
3201	1499	2018	11	18432.0	18.0
3202	1499	2018	12	13312.0	13.0

3203 rows × 5 columns

Необходимые рассчеты получены, осталось смерджить таблицы.

In [35]:

df_internet_details.merge(df_users, on='user_id', how='left')

Out[35]:

		user_id	year	month	mb_used	gb_used	age	churn_date	city	first_name	last_name	reg_date	tariff
	0	1000	2018	5	3072.0	3.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	1	1000	2018	6	23552.0	23.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	2	1000	2018	7	14336.0	14.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	3	1000	2018	8	14336.0	14.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
	4	1000	2018	9	15360.0	15.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
31	98	1498	2018	10	21504.0	21.0	68	2018-10-25	Владикавказ	Всеволод	Акимчин	2018-07-19	smart
31	99	1499	2018	9	2048.0	2.0	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
32	00	1499	2018	10	18432.0	18.0	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
32	01	1499	2018	11	18432.0	18.0	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart
32	02	1499	2018	12	13312.0	13.0	35	NaT	Пермь	Гектор	Корнилов	2018-09-27	smart

3203 rows × 12 columns

Готово! Необходимая нам информация живет в столбцах:

- mb_used суммарное количество мегабайт израсходованное за месяц, с округлением наверх до 1024 Мб.
- gb_used суммарное количество гигабайт израсходованных за месяц, с округлением наверх до 1 Гб.

3.4 Выручка 🔺

Требуется посчитать помесячную выручку с каждого пользователя

- надо вычесть бесплатный лимит из суммарного количества звонков, сообщений и интернет-трафика
- остаток умножить на значение из тарифного плана
- прибавить абонентскую плату, соответствующую тарифному плану

Для начала сделаем большую таблицу, содержащую все необходимубю для нас информацию.

Для этого:

- создадим новую переменную df_all_data
- последовательно смерджим туда таблицы df_messages_details, df_calls_details, df_internet_details, df_users, df_tariffs

- в качестве ключей мы будем использовать связку из столбцов user_id , year , month чтобы получить уникальные записи по каждому пользователю за каждый месяц
- в качестве метода объединения будем использовать how='outer', чтобы таблицы обогатились данными друг друга, на случай если например человек не пользовался в какой-то месяц смс или интернетом.
- для того чтобы итоговая таблица не получилась слишком огромная из таблицы df_users мы возьмем только информацию о тарифе
- информацию о пользователях и тарифе пришьем методом how='left', так как оттуда нам нужна информация только об имеющихся ключах.

```
In [36]:
          df_all_data = df_messages_details.merge(
              df_calls_details,
              on=['user_id', 'year', 'month'], # клеим по связке user_id + year + month
              how='outer'
          ).merge(
              df_internet_details,
              on=['user_id', 'year', 'month'], # клеим по связке user_id + year + month
              how='outer'
          ).merge(
              df_users[['user_id', 'tariff']],
              on='user_id', # клеим только по user_id, отсюда нам нужна только информация о тарифе
              how='left'
          ).merge(
              df_tariffs,
              left_on='tariff', # так как имена столбцов различаются указываем
              right_on='tariff_name', # для левой и правой таблицы названия столбцов вручную
              how='left'
          )
```

```
In [37]: # Проверим что все номрально склеилось

df_all_data.head()
```

Out[37]:		user_id	year	month	messages_cnt	sum_duration	call_cnt	mb_used	gb_used	tariff	$messages_included$	$mb_per_month_included$
	0	1000	2018	5	22.0	159.0	17.0	3072.0	3.0	ultra	1000	30720
	1	1000	2018	6	60.0	172.0	28.0	23552.0	23.0	ultra	1000	30720
	2	1000	2018	7	75.0	340.0	41.0	14336.0	14.0	ultra	1000	30720
	3	1000	2018	8	81.0	408.0	42.0	14336.0	14.0	ultra	1000	30720
	4	1000	2018	9	57.0	466.0	46.0	15360.0	15.0	ultra	1000	30720
	4											>

Удача!

Напишем функцию, которая будет проходить по строкам и вычислять прибыль с каждого пользователя.

Механизм подсчета суммы следующий:

```
если: (лимит - израсходованно) < 0 то: модуль(лимит - израсходованно) * тариф иначе: 0
```

Формула: abs(included - used) * tarif if included - used < 0 else 0

Не забудем разделить мегабайты на 1024, для корректного подсчета

```
def revenue_calc(row):
    trafic_calc = (
        abs(row['mb_per_month_included'] - row['mb_used'])/1024 * row['rub_per_gb']
        if row['mb_per_month_included'] - row['mb_used'] < 0 else 0
)

duration_calc = (
        abs(row['minutes_included'] - row['sum_duration']) * row['rub_per_minute']
        if row['minutes_included'] - row['sum_duration'] < 0 else 0
)

messages_calc = (</pre>
```

```
abs(row['messages_included'] - row['messages_cnt']) * row['rub_per_message']
                    if row['messages\_included'] - row['messages\_cnt'] < 0 else 0
               )
           # осталось найти сумму и вернуть ее в виде значения
               full_calc = row['rub_monthly_fee'] + trafic_calc + duration_calc + messages_calc
                return full_calc
In [39]:
           # запустим нашу функцию по строкам
           df_all_data['revenue'] = df_all_data.apply(revenue_calc, axis=1)
In [40]:
           # Проверим что функция отработала корректно
           df_all_data.sample(10)
Out[40]:
                user_id year month messages_cnt sum_duration call_cnt mb_used gb_used tariff messages_included
                                                                                                                     mb_per_month_includ
          2040
                   1385 2018
                                   2
                                                           277.0
                                              90.0
                                                                     36.0
                                                                           32768.0
                                                                                       32.0
                                                                                             ultra
                                                                                                               1000
                   1143 2018
          2866
                                  12
                                              NaN
                                                           813.0
                                                                    0.08
                                                                           23552.0
                                                                                       23.0
                                                                                             ultra
                                                                                                               1000
                                                                                                                                     307
          1362
                   1266 2018
                                  11
                                              43.0
                                                           376.0
                                                                    40.0
                                                                           16384.0
                                                                                       16.0 smart
                                                                                                                 50
                                                                                                                                     153
          2097
                   1394 2018
                                   4
                                               6.0
                                                           439.0
                                                                    49.0
                                                                            7168.0
                                                                                        7.0 smart
                                                                                                                 50
                                                                                                                                     153
          2667
                   1490 2018
                                   9
                                              48.0
                                                           322.0
                                                                    31.0
                                                                           15360.0
                                                                                                                 50
                                                                                                                                     153
                                                                                       15.0 smart
          3177
                   1456 2018
                                  10
                                              NaN
                                                           889.0
                                                                     98.0
                                                                           22528.0
                                                                                       22.0 smart
                                                                                                                 50
                                                                                                                                     153
                   1367 2018
                                                                                             ultra
                                                                                                               1000
          3114
                                  10
                                              NaN
                                                           558.0
                                                                    56.0
                                                                           23552.0
                                                                                       23.0
                                                                                                                                     307
```

Все данные подсчитаны верно.

1373 2018

1477 2018

1272 2018

4

9

12

48.0

55.0

61.0

1940

2592

1398

Out[41]:

```
In [41]: # Теперь можно посмотреть сколько каждый пользователь потратил помесячно

df_all_data[['user_id', 'year', 'month', 'revenue']].merge(df_users, on='user_id', how='left')
```

NaN

81.0

38.0

20480.0

19456.0

24576.0

20.0

19.0

24.0

smart

smart

ultra

50

1000

153

153

307

NaN

751.0

343.0

	user_id	year	month	revenue	age	churn_date	city	first_name	last_name	reg_date	tariff
0	1000	2018	5	1950.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
1	1000	2018	6	1950.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
2	1000	2018	7	1950.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
3	1000	2018	8	1950.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
4	1000	2018	9	1950.0	52	NaT	Краснодар	Рафаил	Верещагин	2018-05-25	ultra
3209	1494	2018	10	1150.0	62	NaT	Омск	Ренат	Андропов	2018-08-17	smart
3210	1494	2018	11	1150.0	62	NaT	Омск	Ренат	Андропов	2018-08-17	smart
3211	1494	2018	12	1150.0	62	NaT	Омск	Ренат	Андропов	2018-08-17	smart
3212	1240	2018	2	1950.0	30	NaT	Воронеж	Зинаида	Шарова	2018-02-27	ultra
3213	1476	2018	4	1950.0	50	NaT	Москва	Валентина	Семенова	2018-04-30	ultra

3214 rows × 11 columns

Готово! Необходимая нам информация живет в столбце:

• revenue - суммарная выручка в руб. с пользователя за месяц, с учетом ежемесячной платы, а так же оплаты по тарифам сверх бесплатных квот

Выводы -

В ходе обогащения исходных данных были созданы новые таблицы:

- **df_calls_details** содержит сводную информацию о времени звонков и их количестве по месяцам, минуты округлены до целых вверх за каждый звонок.
- df_messages_details содержит сводную информацию о сообщениях по месяцам
- **df_internet_details** содержит сводную информацию о интернет трафике по месяцам, трафик округлен до 1 гб вверх за каждый месяц.
- df_all_data информация о звонках, сообщениях и трафике по месяцам с подсчетом выручки.
 - user id id ползователя
 - year отчетный год
 - month отчетный месяц
 - messages cnt количество сообщений
 - sum_duration суммарное время разговора в месяц
 - call_cnt соличество звонков в месяц
 - mb_used трафик в мегабайтах использованный за месяц (округлен до 1 гб. наверх)
 - gb_used трафик в гигабайтах использованный за месяц (округлен до 1 гб. наверх)
 - tariff тарифный план
 - messages_included количество сообщений включенных в тарифный план
 - mb_per_month_included количество трафика включенных в тарифный план в мегабайтах
 - minutes included количество минут включенных в тарифный план
 - rub_monthly_fee абонентская плата в месяц
 - rub_per_gb стоимость 1 гигабайта трафика в руб. при превышении бесплатной квоты
 - rub_per_message стоимость 1 сообщения в руб. при превышении бесплатной кывоты
 - rub_per_minute стоимость 1 минуты разговора в руб. при превышении бесплатной квоты
 - tariff_name тарифный план
 - revenue суммарная выручка с каждого клиента за месяц, учитывая бесплатные квоты и стоимость тарифа

4. Исследовательский анализ данных

4.1 Исследование времени разговора пользователей 🔺

Для того, чтобы было нагляднее в каждом из исследований:

- в легенду добавим бесплатную квоту на каждый из тарифов.
- так же будем учитывать цвета для каждого из тарифов, для облегчения визуального сопоставления:
 - Оранжевый для Ultra
 - Зеленый для Smart

Первым посмотрим количество истраченных минут по месяцам.

```
In [42]:
          plt.figure(figsize=(10, 4), dpi=150)
          plt.plot(
              df_all_data.query('tariff == "ultra"') # запросом срезаем данные только по тарифу ultra
              .pivot_table(index='month', values='sum_duration', aggfunc='mean'), # делаем сводную по среднему времени
              label='Тариф Ultra - квота 3000 минут',
              color='orange')
              df_all_data.query('tariff == "smart"') # запросом срезаем данные только по тарифу smart
              .pivot_table(index='month', values='sum_duration', aggfunc='mean'), # делаем сводную по среднему времени
              label='Тариф Smart - квота 500 минут',
              color='green')
          plt.ylabel('Среднее количество минут')
          plt.xlabel('Месяц')
          plt.legend()
          plt.grid()
          plt.title('Среднее количество израсходованных минут по месяцам')
          plt.show()
```

Среднее количество израсходованных минут по месяцам

Пользователи тарифа Ultra в среднем пользуются голосовой связью больше чем пользователи тарифа Smart . Однако если смотреть данные пропорционально абонентской плате, то разница получается далеко не в 4 раза и среднему времени очень далеко до своего лимита бесплатных минут.

Пользователи тарифа Smart наоборот по среднему времени разговора в плотную приближаются к совему лимиту. Это говорит о том, что они используют бесплатные квоты более эффективно.

Так же мы видим плавный подъем активности на двух тарифах в течение года. Сложно сказать, с чем это связано.

Построим гистограммы, чтобы оценить распределение.

```
In [43]:
    plt.figure(figsize=(10, 4), dpi=150)

df_all_data.query('tariff == "ultra"')['sum_duration'].hist(
        label='Tapuф Ultra - квота 3000 минут',
        bins=30,
        color='orange')

plt.ylabel('Количество значений')
plt.xlabel('Количество минут')
plt.legend()
plt.title('Количество израсходованных минут на тарифе Ultra')

plt.show()
```


Видно, что ни один пользователь тарифа Ultra не исчерпал свой лимит звонков. Это говорит о том, что на тарифе предоставляется чрезмерная квота бесплатных звонков. Оснвной пул расхода лежит в отрезке 250-900 минут, пользователи крайне редко наговаривают больше.

Распределение немного смещено вправо. Это говорит нам о том, что пользователей, которые активно ползуются голосовой связью сильно меньше, чем тех кто наговоривает менее 1000 минут в месяц.

```
In [44]:
    plt.figure(figsize=(10, 4), dpi=150)

    df_all_data.query('tariff == "smart"')['sum_duration'].hist(
        label='Tapuф Smart - квота 500 минут',
        bins=30,
        color='green')

    plt.ylabel('Количество значений')
    plt.xlabel('Количество минут')
    plt.legend()
    plt.title('Количество израсходованных минут на тарифе Smart')

plt.show()
```


По гистограмме видно, что основная часть пользователей тарифа Smart выговаривают свою бесплатную квоту, часто влезая в тарифицируюмую зону звонков.

Распределение достаточно сильно смещено вправо. Это говорит нам о том, что количество пользователей, которые готовы оплачивать тарифицируемые звонки и активно пользоваться голосовой связью значительно меньше тех, кто старается удержаться в бесплатной квоте.

Теперь найдем среднее, стандартное отклонение и дисперсию наших звоков:

```
In [45]:

# информацию о среднем, стандартном отклонении и дисперсии ищем следующим образом:

# с помощью логической индексации сразаем данные по нужному тарифу

# выбираем интересующий нас столбец

# считаем по нему интересующие значения, с помощью функций: .mean() np.std() np.var() coombemcmbehho.

print('Информация о длительности голосовой связи \n')

print(f'Стариф Ultra:')

print(f'Стариф Ultra:')

print(f'Старифенее значение: {df_all_data[df_all_data["tariff"] == "ultra"]["sum_duration"].mean():.0f}')

print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "ultra"]["sum_duration"]):.0f}')

print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "smart"]["sum_duration"].mean():.0f}')

print(f'Стариф Smart:')

print(f'Стариф Smart:')

print(f'Старифенее значение: {df_all_data[df_all_data["tariff"] == "smart"]["sum_duration"].mean():.0f}')

print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "smart"]["sum_duration"]):.0f}')

print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "smart"]["sum_duration"]):.0f}')
```

Информация о длительности голосовой связи

Тариф Ultra: Среднее значение: 548 Стандартное отклонение: 305 Дисперсия: 93240 Тариф Smart: Среднее значение: 419 Стандартное отклонение: 189 Дисперсия: 35702

Информация о длительности голосовой связи (минут)

Тариф	Среднее	Ст. отклонение	Дисперсия
Ultra	548	305	93240
Smart	419	189	35702

4.2 Исследование количества сообщений пользователей 🔺

```
In [46]:
          plt.figure(figsize=(10, 4), dpi=150)
          plt.plot(
              df_all_data.query('tariff == "ultra"')
              .pivot_table(index='month', values='messages_cnt', aggfunc='mean'),
              label='Тариф Ultra - квота 1000 сообщений',
              color='orange')
          plt.plot(
              df_all_data.query('tariff == "smart"')
              .pivot_table(index='month', values='messages_cnt', aggfunc='mean'),
              label='Тариф Smart - квота 50 сообщений',
              color='green')
          plt.ylabel('Среднее количество сообщений')
          plt.xlabel('Mecsu')
          plt.legend()
          plt.grid()
          plt.title('Среднее количество отправленных сообщений по месяцам')
          plt.show()
```


Видно, что на тарифе Ultra сообщениями пользуются в среднем в 2 раза активнее чем на тарифе Smart , однако до своей квоты в 1000 сообщений им очень далеко.

Так же видно, что на тарифе Ultra активность пользователей в течение года равномерно растет, а на тарифе Smart остается примерно на том же уровне.

```
In [47]:
    plt.figure(figsize=(10, 4), dpi=150)

    df_all_data.query('tariff == "ultra"')['messages_cnt'].hist(
        label='Tapuф Ultra - квота 1000 сообщений',
        bins=20,
        color='orange')

    plt.ylabel('Количество значений')
    plt.xlabel('Количество сообщений')
    plt.legend()
    plt.title('Количество отправленных сообщений на тарифе Ultra')
```


Распределение сильно смещено вправо, это говорит о том что большая часть пользователей крайне мало пользуются сообщениями. Бесплатная квота в 1000 сообщений как минимум в 5 раз перекрывает потребность пользователей в этом виде связи на тарифе Ultra

```
In [48]:
    plt.figure(figsize=(10, 4), dpi=150)

    df_all_data.query('tariff == "smart"')['messages_cnt'].hist(
        label='Tapuф Smart - квота 50 сообщений',
        bins=20,
        color='green')

    plt.ylabel('Количество значений')
    plt.xlabel('Количество сообщений')
    plt.legend()
    plt.title('Количество отправленных сообщений на тарифе Smart')

    plt.show()
```


По распределению видно, что пользователи достаточно часто преодолевают свой бесплатный лимит в 50 сообщений, переходя на тарифицируемые сообщения. Однако большая часть пользователей старается держаться в бесплатной квоте.

Распределение сильно смещено вправо, что говорит о низкой популярности использования сообщений у пользователей.

```
In [49]:
    print('Информация о количестве сообщений \n')
    print('Тариф Ultra:')
    print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "ultra"]["messages_cnt"].mean():.0f}')
```

```
print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "ultra"]["messages_cnt"]):.0f}')
print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "ultra"]["messages_cnt"]):.0f}')

print()
print('Тариф Smart:')
print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "smart"]["messages_cnt"].mean():.0f}')
print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "smart"]["messages_cnt"]):.0f}')
print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "smart"]["messages_cnt"]):.0f}')
print()
```

Информация о количестве сообщений

Тариф Ultra:
Среднее значение: 61
Стандартное отклонение: 46
Дисперсия: 2107
Тариф Smart:
Среднее значение: 39
Стандартное отклонение: 27
Дисперсия: 717

Количество сообщений

Тариф	Среднее	Ст. отклонение	Дисперсия
Ultra	61	46	2107
Smart	39	27	717

4.3 Исследование трафика пользователей 🔺

```
In [50]:
          plt.figure(figsize=(10, 4), dpi=150)
          plt.plot(
              df_all_data.query('tariff == "ultra"')
              .pivot_table(index='month', values='gb_used', aggfunc='mean'),
              label='Тариф Ultra - квота 30 Гб.',
              color='orange')
          plt.plot(
              df_all_data.query('tariff == "smart"')
              .pivot_table(index='month', values='gb_used', aggfunc='mean'),
              label='Тариф Smart - квота 15 Гб.',
              color='green')
          plt.ylabel('Среднее количество гигабайт')
          plt.xlabel('Месяц')
          plt.legend()
          plt.grid()
          plt.title('Среднее значение израсходованного трафика по месяцам')
          plt.show()
```

Среднее значение израсходованного трафика по месяцам

Пользователи тарифа Ultra активнее пользоуются интернетом, чем пользователи тарифа Smart. При этом пользователи тарифа Ultra в основном держатся в своей бесплатной квоте трафика, а вот пользователям Smart наоборот, чаще нехватает квоты в 15 Гб. и они платят за дополнительный трафик.

```
In [51]:

plt.figure(figsize=(10, 4), dpi=150)

df_all_data.query('tariff == "ultra"')['gb_used'].hist(
    label='Tapuф Ultra - квота 30 Гб.',
    bins=15,
    color='orange')

plt.ylabel('Количество значений')
plt.xlabel('Количество тигабайт')
plt.legend()
plt.title('Количество израсходованного трафика на тарифе Ultra')

plt.show()
```


Данные распределены нормально, это говорит нам о том, что в среднем все пользователи активно пользуются интернетом. Небольшое смещение означает, что пользователи стараются держаться в бесплатной квоте и лишь небольшая часть вылезает за тарифицируемую зону.

```
In [52]: plt.figure(figsize=(10, 4), dpi=150)

df_all_data.query('tariff == "smart"')['gb_used'].hist(
    label='Тариф Smart - квота 15 Гб.',
    bins=15,
    color='green')

plt.ylabel('Количество значений')
```


Данные распределены нормально, это означает что в среднем все пользователи активно пользуются интернетом. Так же мы видим, что в большинстве случаев пользователям нехватает бесплатфной квоты в 15 Гб. и они оплачивают дополнительный трафик по тарифу.

```
In [53]: print('Информация о количестве трафика в Гб. \n')

print('Тариф Ultra:')
print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "ultra"]["gb_used"].mean():.0f}')
print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "ultra"]["gb_used"]):.0f}')
print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "ultra"]["gb_used"]):.0f}')

print()
print('Тариф Smart:')
print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "smart"]["gb_used"].mean():.0f}')
print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "smart"]["gb_used"]):.0f}')
print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "smart"]["gb_used"]):.0f}')
print()
```

Информация о количестве трафика в Гб.

Тариф Ultra: Среднее значение: 20 Стандартное отклонение: 10 Дисперсия: 94 Тариф Smart:

Среднее значение: 16 Стандартное отклонение: 6

Дисперсия: 33

Количество трафика в Гб.

Тариф	Среднее	Ст. отклонение	Дисперсия
Ultra	20	10	94
Smart	16	6	33

4.4 Исследование выручки спользователей 🔺

```
plt.figure(figsize=(10, 4), dpi=150)

plt.plot(
    df_all_data.query('tariff == "ultra"')
    .pivot_table(index='month', values='revenue', aggfunc='mean'),
```

```
label='Тариф Ultra - абонентская плата 1950 руб.',
color='orange')

plt.plot(
    df_all_data.query('tariff == "smart"')
    .pivot_table(index='month', values='revenue', aggfunc='mean'),
    label='Тариф Smart - абонентская плата 550 руб.',
    color='green')

plt.ylabel('Средняя сумма выручки, руб.')
plt.xlabel('Месяц')
plt.legend()
plt.grid()
plt.title('Средняя выручка с пользователей по месяцам')

plt.show()
```


На графике видно, что выручка от пользователей тарифа Ultra сильно превышает выручку от пользователей тарифа Smart

Для компании выгодней как можно большее количество пользователей переводить на подобный тариф, с высокой абонентской платой.

```
plt.figure(figsize=(10, 4), dpi=150)

df_all_data.query('tariff == "ultra"')['revenue'].hist(
    label='Тариф Ultra - абонентская плата 1950 руб.',
    bins=30,
    color='orange')

plt.ylabel('Количество значений')
plt.xlabel('Сумма выручки, руб.')
plt.legend()
plt.title('Выручка с пользователей на тарифе Ultra')

plt.show()
```

Выручка с пользователей на тарифе Ultra

На гистограмме видно, что подавляющей части пользователей хватает бесплатных квот выделенных в тарифе Ultra . Также из предыдущих гистограм мы помним, что пользователи тарифа Ultra ни разу не вылезали за бесплатный лимит по звонкам и сообщениям. Следовательно все тарифицируемые переплаты только за интернет.

```
In [56]:

plt.figure(figsize=(10, 4), dpi=150)

df_all_data.query('tariff == "smart"')['revenue'].hist(
    label='Тариф Smart - абонентская плата 550 руб.',
    bins=30,
    color='green')

plt.ylabel('Количество значений')
plt.xlabel('Сумма выручки, руб.')
plt.legend()
plt.title('Выручка с пользователей на тарифе Smart')

plt.show()
```


По гистограмме видно, что несмотря на то, что ощутимая часть пользователей пользуется тарифом Smart в бесплатной квроде, все же большая часть пользователе вылезает за лимиты и оплачивает связь по тарифам.

Возможно тем пользователям, которые выходят за 2000 руб. в мес. стоило бы предложить тариф Ultra

```
In [57]: print('Информация о сумме выручки в руб. \n')
    print('Тариф Ultra:')
    print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "ultra"]["revenue"].mean():.0f}')
    print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "ultra"]["revenue"]):.0f}')
    print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "ultra"]["revenue"]):.0f}')
```

```
print()
print('Тариф Smart:')
print(f'Среднее значение: {df_all_data[df_all_data["tariff"] == "smart"]["revenue"].mean():.0f}')
print(f'Стандартное отклонение: {np.std(df_all_data[df_all_data["tariff"] == "smart"]["revenue"]):.0f}')
print(f'Дисперсия: {np.var(df_all_data[df_all_data["tariff"] == "smart"]["revenue"]):.0f}')
print()
```

Информация о сумме выручки в руб.

Тариф Ultra:

Среднее значение: 2070 Стандартное отклонение: 376

Дисперсия: 141373

Тариф Smart:

Среднее значение: 1290 Стандартное отклонение: 818

Дисперсия: 669485

Сумма выручки в руб.

Тариф	Среднее	Ст. отклонение	Дисперсия
Ultra	2070	376	141373
Smart	1290	818	669485

Выводы 4

- Тариф Ultra в среднем приносит больше прибыли для компании с одного пользователя. Было бы выгодно перевести на этот тариф как можно больше пользоватей компании.
- Наиболее активно пользователи используют интернет, это основной источник дохода при превышении лимитов на обоих тарифах.
- Менее активно пользуются звонками. На тарифе Ultra пользователи не вылезают за квоты вообще. На тарифе Smart превышают квоты незначительная часть пользователей.
- Совсем низкой популярностью пользуются сообщения. На тарифе Ultra бесплатные квоты не превышаются. На тарифе Smart лишь небольшая часть пользователей превышает квоты.

5. Проверка гипотез

5.1 Выручка от пользователей тарифов «Ультра» и «Смарт» 🔺

Требуется проверить, различается ли средняя выручка пользователей тарифов Ultra и Smart.

Нам требуется проверить гипотезу о равенстве средних двух генеральных совокупностей, эти совокупности представляют собой выручку с тарифов Ultra и Smart.

Для этого используем метод scipy.stats.ttest_ind(), так как выборки у нас разного размера, параметр equal_var установим в положение: False . Теперь сформируем нулевую и альтернативную гипотезы. Нулевая гипотеза всегда формируется так, чтобы использовался знак равенства, отсюда получаем:

- Гипотеза H_o Выручка тарифов Smart равна выручке тарифов Ultra
- Гипотеза Н₁ Выручка тарифов Smart и Ultra отличается

Первым делом получим выборки из нашего датасета

```
ultra_array = df_all_data.query('tariff == "ultra"')['revenue']
smart_array = df_all_data.query('tariff == "smart"')['revenue']
```

Проверим гипотезу

```
In [59]: alpha = 0.01 # установим пороговое значение в 1%

results = st.ttest_ind(
    ultra_array,
    smart_array,
    equal_var=False)
```

```
print('p-значение:', results.pvalue)

if results.pvalue < alpha:
    print("Отвергаем нулевую гипотезу")

else:
    print("Не получилось отвергнуть нулевую гипотезу")</pre>
```

р-значение: 4.2606313931076085e-250 Отвергаем нулевую гипотезу

р-значение слишком мало, поэтому мы отвергаем нулевую гипотезу. Следовательно мы можем предсказать, что в генеральной совокупности выручка с тарифов Ultra и Smart отличается.

5.2 Выручка от пользователей из Москвы и других регионов

Требуется проверить отличается ли средняя выручка пользователей из Москвы от выручки пользователей из Других регионов .

Нам требуется проверить гипотезу о равенстве средних двух генеральных совокупностей, эти совокупности представляют собой выручку с пользователей из Москвы и выручку с Других регионов .

Для этого используем метод scipy.stats.ttest_ind(), так как выборки у нас разного размера, параметр equal_var установим в положение: False . Теперь сформируем нулевую и альтернативную гипотезы. Нулевая гипотеза всегда формируется так, чтобы использовался знак равенства, отсюда получаем:

- Гипотеза Но Выручка пользователей из Москвы равна выручке пользователей из Других регионов
- Гипотеза Н₁ Выручка пользователей из Москвы отличается от выручки пользователей из Других регионов

Для начала получим необходимые срезы данных

```
In [60]:

moscow_array = (
    df_all_data[['user_id', 'revenue']].merge(df_users, on='user_id', how='left') # мерджим онформацию о регионе
    .query('city == "Mockba"')['revenue'] # делаем срез по Москве и оставлем массив с данными о выручке
)

not_moscow_array = (
    df_all_data[['user_id', 'revenue']].merge(df_users, on='user_id', how='left')
    .query('city != "Mockba"')['revenue'] # делаем срез по остальным регионам и оставлем массив с данными о выручк
)
```

Проверим гипотезу

```
In [61]:

alpha = 0.01 # установим пороговое значение в 1%

results = st.ttest_ind(
    moscow_array,
    not_moscow_array,
    equal_var=False)

print('p-значение:', results.pvalue)

if results.pvalue < alpha:
    print("Отвергаем нулевую гипотезу")

else:
    print("Не получилось отвергнуть нулевую гипотезу")
```

р-значение: 0.5257376663729298 Не получилось отвергнуть нулевую гипотезу

У нас не получилось отвергнуть нулевую гипотезу, по всей видимости, в генеральной совокупности выручка пользователей из Москвы и других регионов примерно равна.

6. Общий вывод

6.1 Обзор данных 🔺

При предварительном обзоре данных выяснилось, что предоставленные данные достаточно чистые, и требуют лишь небольших доработок в виде смены типов и пары манипуляций со столбцами.

Явных дубликатов ни в одной из таблиц не обнаружено. Все заголовки используют хороший стиль написания и не содержат пробелов, переименовывать их не нужно.

Данных в предоставленных таблицах оказалось достаточно для решения нашей задачи.

6.2 Предобработка данных 🔺

Была проведена следующая работа по предобработке данных:

df calls

- id переименовано в call_id
- call date дата преобразована из текста в DateTime
- duration значение округлено до целовго вверх, произведена конвертация из float64 в int

df internet

- id переименовано в session id
- Unnamed: 0 удален
- session_date дата преобразована из текста в DateTime

df_messages

- id переименовано в message_id
- message date дата преобразована из текста в DateTime

df tariffs

• действий не потребовалось

df users

- churn date дата преобразована из текста в DateTime
- reg date дата преобразована из текста в DateTime

6.3 Расчеты и дообогщение таблицы

В ходе обогащения исходных данных были созданы новые таблицы:

- **df_calls_details** содержит сводную информацию о времени звонков и их количестве по месяцам, минуты округлены до целых вверх за каждый звонок.
- df messages details содержит сводную информацию о сообщениях по месяцам
- **df_internet_details** содержит сводную информацию о интернет трафике по месяцам, трафик округлен до 1 гб вверх за каждый месяц.
- df all data информация о звонках, сообщениях и трафике по месяцам с подсчетом выручки.
 - user_id id ползователя
 - year отчетный год
 - month отчетный месяц
 - messages_cnt количество сообщений
 - sum_duration суммарное время разговора в месяц
 - call_cnt соличество звонков в месяц
 - mb_used трафик в мегабайтах использованный за месяц (округлен до 1 гб. наверх)
 - gb_used трафик в гигабайтах использованный за месяц (округлен до 1 гб. наверх)
 - tariff тарифный план
 - messages_included количество сообщений включенных в тарифный план
 - mb_per_month_included количество трафика включенных в тарифный план в мегабайтах
 - minutes_included количество минут включенных в тарифный план
 - rub_monthly_fee абонентская плата в месяц
 - rub_per_gb стоимость 1 гигабайта трафика в руб. при превышении бесплатной квоты
 - rub_per_message стоимость 1 сообщения в руб. при превышении бесплатной кывоты
 - rub_per_minute стоимость 1 минуты разговора в руб. при превышении бесплатной квоты
 - tariff_name тарифный план
 - revenue суммарная выручка с каждого клиента за месяц, учитывая бесплатные квоты и стоимость тарифа

- Тариф Ultra в среднем приносит больше прибыли для компании с одного пользователя. Было бы выгодно перевести на этот тариф как можно больше пользоватей компании.
- Наиболее активно пользователи используют интернет, это основной источник дохода при превышении лимитов на обоих тарифах.
- Менее активно пользуются звонками. На тарифе Ultra пользователи не вылезают за квоты вообще. На тарифе Smart превышают квоты незначительная часть пользователей.
- Совсем низкой популярностью пользуются сообщения. На тарифе Ultra бесплатные квоты не превышаются. На тарифе Smart лишь небольшая часть пользователей превышает квоты.

6.5 Проверка гипотез 🔺

Нам требовалось проверить две гипотезы:

- 1. Средняя выручка пользователей тарифов Ultra и Smart различается
- 2. Средняя выручка пользователей из Москвы отличается от выручки пользователей из Других регионов.

1) Мы сформировали нулевую и альтернативную гипотезу для первой задачи:

- Гипотеза H_o Выручка тарифов Smart равна выручке тарифов Ultra
- Гипотеза Н₁ Выручка тарифов Smart и Ultra отличается

В итоге нулевая гипотеза была отвергнута. p-значение оказалось слишком мало. Следовательно мы можем предсказать, что в генеральной совокупности выручка с тарифов Ultra и Smart отличается.

2) Для второй задачи были сформулированы следующие гипотезы:

- Гипотеза Но Выручка пользователей из Москвы равна выручке пользователей из Других регионов
- Гипотеза Н₁ Выручка пользователей из Москвы отличается от выручки пользователей из Других регионов

У нас не получилось отвергнуть нулевую гипотезу, по всей видимости, в генеральной совокупности выручка пользователей из Москвы и других регионов примерно равна.