Numerical problems of AM

1. A modulating signal $m(t)=10\cos(2\pi\times10^3t)$ is amplitude modulated with a carrier signal $c(t)=50\cos(2\pi\times10^5t)$. Find the modulation index, the carrier power, and the power required for transmitting AM wave.

$$\mu$$
=10/50=**0.2**
Pc=Ac²/2R = (50)²/2(1) = **1250 Watt**
 \Rightarrow Pt=Pc (1+ μ ²)/2 =1250 (1+(0.2)²)/2 = **1275 Watt**

2. The equation of amplitude wave is given by $s(t)=20[1+0.8cos(2\pi\times10^3t)]cos(4\pi\times10^5t)$. Find the carrier power, the total sideband power, and the band width of AM wave.

Given, the equation of Amplitude modulated wave is

$$s\left(t\right) = 20\left[1 + 0.8\cos\left(2\pi \times 10^{3}t\right)\right]\cos\left(4\pi \times 10^{5}t\right)$$

Re-write the above equation as

$$s\left(t
ight)=20\left[1+0.8\cos\left(2\pi imes10^3t
ight)
ight]\cos\left(2\pi imes2 imes10^5t
ight)$$

We know the equation of Amplitude modulated wave is

$$s(t) = A_c \left[1 + \mu \cos(2\pi f_m t)\right] \cos(2\pi f_c t)$$

By comparing the above two equations, we will get

Amplitude of carrier signal as $A_c=20 volts$

Modulation index as $\mu=0.8$

Frequency of modulating signal as $f_m=10^3 Hz=1 KHz$

Frequency of carrier signal as $f_c = 2 imes 10^5 Hz = 200 KHz$

The formula for Carrier power, P_c is

$$P_c = rac{{A_e}^2}{2R}$$

Assume $R=1\Omega$ and substitute A_c value in the above formula.

$$P_c = rac{(20)^2}{2(1)} = 200W$$

Therefore, the Carrier power, P_c is 200watts.

We know the formula for total side band power is

$$P_{SB}=rac{P_c\mu^2}{2}$$

Substitute P_c and μ values in the above formula.

$$P_{SB} = rac{200 imes (0.8)^2}{2} = 64W$$

Therefore, the total side band power is 64 watts.

We know the formula for bandwidth of AM wave is

$$BW = 2f_m$$

Substitute f_m value in the above formula.

$$BW = 2(1K) = 2KHz$$

Therefore, the bandwidth of AM wave is 2 KHz.

3. When the modulation percentage is 75%, an AM transmitter radiates 10KW Power. How much of this is carrier Power?

Solution: $P_t = 10 \text{ KW}$ and m=0.75

$$P_{1+}(total) = \begin{pmatrix} m^2 \\ 2 \end{pmatrix}_{Pc}$$

$$P_{c} = \begin{pmatrix} 10 \times 10^3 \\ 1 + 0.75^2 \\ 2 \end{pmatrix}$$

$$P_{c} = 7.8$$

$$\times 10^3 W$$

$$\therefore P_c = 7.8KW$$

4. An AM transmitter radiates 20KW. If the modulation Index is 0.7. Find the carrier Power.

Solution:
$$P_t = 20 \text{ KW}$$
 and $m=0.7$

We know that
$$P_{t \text{ (total)}} = \left(1 + \frac{m^2}{2}\right)_{Pc}$$

$$P_c = \frac{20 \times 10^3}{1 + \left[0.7^2\right]}$$

$$P_c = 16.064$$

$$P_{c} = 16.064KW$$

5. The total Power content of an AM signal is 1000W. Determine the power being transmitted at carrier frequency and at each side bands when modulation percentage is 100%.

Solution: $P_t = 1000 W$ and m=1

$$P_{t(total)} = \begin{bmatrix} 1 + \frac{m^2}{2} \\ 2 \end{bmatrix} P_c$$

$$P_c = \frac{1 \times 10^3}{1 + \frac{1}{2}}$$

$$P_c = 666.67W$$

$$P_{USB} = P_{\overline{LSB}} \begin{bmatrix} \frac{2}{m_4} \\ 1 \end{bmatrix} P_c$$

$$P_{USB} = P_{\overline{LSB}} \begin{bmatrix} \frac{2}{m_4} \\ 1 \end{bmatrix} P_c$$

$$P_{C} = 166.67W$$

6. A 500W, 100KHz carrier is modulated to a depth of 60% by modulating frequency of 1KHz. Calculate the total power transmitted. What are the sideband components of AM Wave?

Solution:
$$P_c = 500$$
 W, $f_c = 100$ KHz, $m = 60\% = .6$ and $f_m = 1$ KHz
We know that

$$P_{t (total)} = \begin{bmatrix} m^2 \\ 1 + \end{bmatrix} P_c : = P_{t (total)} \begin{bmatrix} 1 + 0.6 \\ 2 \end{bmatrix} 500$$

$$\therefore P_{t (total)} = 590W$$

$$\therefore f_{USB} = f_{c} + f_{m}$$

$$\therefore f_{LSR} = f_c - f_m$$

$$\therefore f_{USB} = 101 \text{ KHz}$$

$$\therefore f_{LSR} = 99 \text{ KHz}$$

7. A400W, 1MHz carrier is amplitude-modulated with a sinusoidal signal 0f 2500Hz. The depth of modulation is 75%. Calculate the sideband frequencies, bandwidth, and power in sidebands and the total power in modulated wave.

Solution: $P_c = 400$ W, $f_c = 1$ MHz, m = 75% = .75 and $f_m = 2.5$ KHz We know that

$$\therefore f_{USB} = f_c + f_m \qquad \qquad \therefore f_{LSB} = f_c - f_m \therefore BW = 2f_m$$

$$\therefore f_{USB} = 1002.5 \text{ KHz} \qquad \therefore f_{LSB} = 997.5 \text{ KHz} \qquad \therefore BW = 2 \times 2.5 \text{ KHz} = 5 \text{ KHz}$$

$$P_{t (total)} = \begin{bmatrix} m^2 \\ 1 + \end{bmatrix} P_c$$

$$\therefore P_{t (total)} = \begin{bmatrix} 1 + \frac{0.75^2}{2} \end{bmatrix}_{400}$$

$$\therefore P_{t (total)} = 512.5 W$$

$$P_{USB} = P_{\overline{L}SB} \quad \left[\frac{2}{m_4} \right] P_c \quad P_{USB} = P_{LSB} = \left[0.75^2 \right]_{400} = 56.25W$$

8. A Carrier of 750 W,1MHz is amplitude modulated by sinusoidal signal of 2 KHz to a depth of 50%. Calculate Bandwidth, Power in side band and total power transmitted.

Solution: $P_c = 750 \text{ W}$, $f_c = 1 \text{ MHz}$, $m = 50\% = .5 \text{ and } f_m = 2 \text{ KHz}$ We know that

$$P_{USB} = P_{\overline{L}SB} \quad \left[\begin{array}{cc} \frac{2}{m_1} & P_c \\ \end{array}\right] P_c \quad P_{USB} = P_{LSB} = \left[\begin{array}{cc} 0.52 \\ 4.55 \end{array}\right] = 46.875W$$

9. Calculate the percentage power saving when one side band and carrier is suppressed in an AM signal with modulation index equal to 1.

Solution: m = 1

$$P_{t (total)} = \left(1 + \frac{1}{2} \frac{m^2}{2}\right) P_c = \frac{3}{2} P_c$$

$$P_{\text{suppresse}} = P_c + P_{LSB}$$

$$P_{\text{suppresse}} = P_c + P_c$$

$$P_{\text{suppressed}} = P_c + P_c$$

$$P_{\text{total}} = P_c$$

10. Calculate the percentage power saving when one side band and carrier is suppressed in an AM signal if percentage of modulation is 50%.

Solution: m = 0.5

We know that

$$P_{t (total)} = \left(1 + \frac{m^2}{2}\right) P_c = \frac{9}{8} P_c$$

$$P_{\text{suppresse}} = P_c + P_{LSB}$$

$$\therefore P_{\text{suppresse}} = P_c + \left(\frac{m^2}{10}\right) \qquad \therefore P_{\text{suppressed}} = P_c + \left(\frac{1}{10}\right) + \frac{17}{c^7} = \frac{17}{16}$$

Amount of power saved = $\frac{P_{\text{suppressed}}}{P_{\text{total}}}$

Amount of power saved =
$$\frac{9 P_c}{18 P_c}$$
 = $\frac{9 \times 16}{8 \times 17}$ = 0.944 = 94.4%

- 11. A Sinusoidal carrier frequency of 1.2MHz is amplitude modulated by a sinusoidal voltage of frequency 20KHz resulting in maximum and minimum modulated carrier amplitude of 110V & 90V respectively. Calculate
 - I. frequency of lower and upper side bands
 - II. unmodulated carrier amplitude
 - **III.** Modulation index
 - IV. Amplitude of each side band.

Solution:
$$f_c = 1.2$$
 MHz, $E_{max} = 110$ V, $E_{min} = 90$ V and $f_m = 20$ KHz
We know that

$$\therefore f_{USB} = f_c + f_m \qquad \therefore f_{LSB} = f_c - f_m$$

$$\therefore f_{USB} = 1220 \text{ KHz} \qquad \therefore f_{LSB} = 1180 \text{ KHz}$$

$$E_c = \frac{E_{\text{max}} + E_{\text{min}}}{2} = (110 + 90)/2 \quad E_c = 100V$$

We also know that

$$E_m = \frac{E_{\text{max}} E_{\text{min}}}{2}$$

$$E_m = (110-90)/2 = 10$$

$$m = \frac{E_{\text{max}} - E}{E_{\text{max}} + E_{\text{min}}} : m = \frac{110 + 90}{110 + 90}$$

$$m = 0.1$$

12. An audio frequency signal 10 $\sin(2\pi \times 500t)$ is used to amplitude modulate a carrier of 50 sin(2π×10⁵t).Calculate

I. frequency of side bands IV. Transmission efficiency

II. Bandwidth

V. Total power delivered to a load of 600Ω .

III. Modulation index

Solution: $f_m = 500 \text{ Hz}$, $E_m = 10V$, $f_c = 100 \text{ KHz}$ and $E_c = 50V$.

We know that

$$\therefore f_{USB} = f_c + f_m \qquad \therefore f_{LSB} = f_c - f_m \qquad \therefore BW = 2f_m$$

$$f_{LSB} = f_c - f_m$$

$$\therefore BW = 2 f_m$$

$$\therefore f_{USB} = 100.5 \text{ KHz} \qquad \therefore f_{LSB} = 99.5 \text{ KHz} \qquad \therefore BW = 2 \times 500 \text{Hz} = 1 \text{KHz}$$

$$\therefore f_{LSR} = 99.5 \text{ KHz}$$

$$\therefore BW = 2 \times 500Hz = 1KHz$$

We also know that

$$m = \frac{E_m}{E_c^m} 50 \ m = \frac{10}{m} \ m = 0.2 = 50\%$$

also carrier power
$$P_c = \frac{E^2}{2 \times c_R} P_c = \frac{2500}{2 \times 600} = 2.08$$
and total power $P_t = \begin{pmatrix} m^2 \\ 2 \end{pmatrix} P_c \therefore P_t = \frac{2}{2 \times 125}$

eff. $\frac{m^2}{2 \times 0.2^2}$

eff. $\frac{m^2}{2 \times 0.2^2}$

Transmission Efficiency

eff. = 0.196 = 1.96%

Self Study

- 1. An AM voltage signal consists of a carrier wave $100\cos(2\pi \times 10^6 t)$ and a DSB-SC signal ($20\cos6.28t + 50\cos12.56t$) $\cos(2\pi \times 10^6 t)$,
- (a) Draw the spectrum of the modulated message;
- (b) Determine the carrier power, sideband power and the total power of the modulated signal.
- 2. An AM transmitter has a carrier power of 30W. The message signal is a sinusoidal signal and the percentage of modulation is 85%, i.e. m = 0.85. Calculate:
- (a) the total power; and
 - (b) the power in one sideband.

- 3. For DSB-SC modulation, $m(t) = 4 + 2\cos(2\pi \times 10^3 t)$, carrier wave $x_c(t) = 8\cos(2\pi \times 10^6 t)$
- (a) Draw the frequency domain representation of m(t), $x_c(t)$ and the modulation output x(t);
- (b) Draw the block diagram of the demodulation system diagram, if low pass filter is used in the demodulator, what is the minimum bandwidth required to fully recover the signal?
- (c) What is the frequency and time domain representation of the demodulation output?

4. The figure below shows an amplitude modulator. Assuming sinusoidal carrier $x_c(t)$ and sinusoidal message signal m(t),

i.e.,
$$x_c(t) = A_c \cos \omega_c t$$
, $m(t) = A_m \cos \omega_m t$

The modulated signal x(t) can be written as

$$x(t) = A_c[1 + (A_m/A_c)\cos\omega_m t]\cos\omega_c t$$

- (a) For $A_m = A_c$, calculate the modulation index;
- (b) Determine the fraction of total transmitted power concentrated in the modulation sideband for (1) $A_m = A_c$; (2) $A_m = A_c/2$; (3) $A_m = aA_c$, where |a| < 1;

5. To prove that the following system can be used for AM signal demodulation and the bandwidth of the low-pass filter must be $2W_m$, where W_m is the highest frequency of the message signal.

- 6. The following figure shows the output of a conventional amplitude modulator.
- (1) What is the mathematical expression of x(t)?
- (2) Calculate the modulation index;
- (3) What is the amplitude of the sideband? What is the amplitude of the unmodulated carrier?
- (4) Draw a two sided frequency domain representation of x(t);
- (5) What is the ratio of power in the sidebands to the total power?

1. (a)
$$s_{AM}(t) = 100\cos(2\pi \times 10^6 t) + (20\cos6.28t + 50\cos12.56t)\cos(2\pi \times 10^6 t)$$

 $S_{AM}(\omega) = 100\pi[\delta(\omega + 2\pi \times 10^6) + \delta(\omega - 2\pi \times 10^6)] + 25\pi[\delta(\omega - 2\pi \times 10^6 + 12.56) + \delta(\omega - 2\pi \times 10^6 - 12.56) + \delta(\omega + 2\pi \times 10^6 + 12.56) + \delta(\omega + 2\pi \times 10^6 - 12.56)] + 10\pi[\delta(\omega - 2\pi \times 10^6 + 6.28) + \delta(\omega - 2\pi \times 10^6 - 6.28) + \delta(\omega + 2\pi \times 10^6 - 6.28)]$

(b)
$$P_c = 5 \times 10^3$$
, $P_s = (20^2 + 50^2) / 4 = 2900 / 4 = 725$, $P_t = 5725$ (when a resistor of 1Ω is assumed the unit of power is W)

2. (a)
$$P_t = P_c(1 + m^2/2) = 30 (1 + 0.852/2) = 40.8W$$

 P_s (double sideband) = $P_t - P_c = 40.8 - 30 = 10.8W$
 P_s (single sideband) = $P_s / 2 = 10.8 / 2 = 5.4W$

3. (a)
$$m(t) = 4 + 2\cos(2\pi \times 10^{3}t)$$
, $M(\omega) = 8\pi\delta(\omega) + 2\pi[\delta(\omega + 2\pi \times 10^{3}) + \delta(\omega - 2\pi \times 10^{3})]$ $x_{c}(t) = 8\cos(2\pi \times 10^{6}t)$ $X_{c}(\omega) = 8\pi[\delta(\omega + 2\pi \times 10^{6}) + \delta(\omega - 2\pi \times 10^{6})]$ $x(t) = m(t)xc(t) = 32\cos(2\pi \times 10^{6}t) + 16\cos(2\pi \times 10^{3}t)\cos(2\pi \times 10^{6}t)$ $X(\omega) = 32\pi[\delta(\omega + 2\pi \times 10^{6}) + \delta(\omega - 2\pi \times 10^{6})] + 8\pi[\delta(\omega + 2\pi \times 10^{6} - 2\pi \times 10^{3}) + \delta(\omega + 2\pi \times 10^{6} + 2\pi \times 10^{3}) + \delta(\omega - 2\pi \times 10^{6} - 2\pi \times 10^{3}) + \delta(\omega - 2\pi \times 10^{6})]$ $x(t) = \frac{M(\omega)}{(2\pi)}$ $x(t) = \frac{M(\omega$

 $-\mathbf{W}_{m}$

 W_{m}

$$\begin{array}{lll} \text{(b)} W_m = 2\pi \times 10^3 \ rad & \text{or} \ f_m = 1 kHz \\ \text{(c)} & y(t) = x(t) x_c(t) = [4 + 2 cos(2\pi \times 10^3 t)] \ [8 cos(2\pi \times 10^6 t)]2 \\ & = [4 + 2 cos(2\pi \times 10^3 t)] \times 32[1 + cos(4\pi \times 10^6 t)] \\ & = 128 + 64 cos(2\pi \times 10^3 t) + 128 cos(4\pi \times 10^6 t) + \\ 64 cos(2\pi \times 10^3 t) cos(4\pi \times 10^6 t) \\ & = 128 + 64 cos(2\pi \times 10^3 t) + 128 cos(4\pi \times 10^6 t) \\ & + 32[cos(4\pi \times 10^6 t + 2\pi \times 10^3 t) + cos(4\pi \times 10^6 t) \\ & + 32[cos(4\pi \times 10^6 t + 2\pi \times 10^3 t) + cos(4\pi \times 10^6 t)] \\ \text{After LPF,} & z(t) = 128 + 64 cos(2\pi \times 10^3 t) \\ & Z(\omega) = 256\pi\delta(\omega) + 64\pi[\delta(\omega + 2\pi \times 10^3) \\ & + \delta(\omega - 2\pi \times 10^3)] \end{array}$$

- 4. (a) $m = A_m/A_c = 1$
 - (b) Carrier power $P_c = A_c^2 / 2$, Sideband power $P_s = m^2 A_c^2 / 4$

Total power $P_t = A_c^2/2 + m^2 A_c^2/4$, $\eta = P_s/P_t = m^2/(m^2 + 2)$

- (1) m = 1, $\eta = 1/3$
- (2) $m = \frac{1}{2}$, $\eta = \frac{1}{9}$
- (3) m = a, $\eta = a^2 / (a^2 + 2)$
- 5. $s_{AM}(t) = [A + m(t)] cos\omega_c t$, $s_{AM}^2(t) = [A + m(t)]^2 cos2\omega_c t$ The output of LPF = $[A + m(t)]^2 / 2$, $s_d(t) = \frac{A + m(t)}{\sqrt{2}}$ If $m(t) = A_m cos\omega_m t$, the highest frequency is ω_m ; then $m^2(t) = A_m^2 (1 + cos2\omega_m t)/2$, the highest frequency is $2\omega_m$. thus the bandwidth of the low pass filter must be $2W_m$

6. (1)
$$x(t) = A(1 + m \cos \omega_m t) \cos \omega_c t$$
,
 $|x(t)|_{max} = 1$, $|x(t)|_{min} = 0.4$,
i.e. $A(1 + m) = 1$, $A(1 - m) = 0.4$
 $\Rightarrow m = (1 - 0.4) / (1 + 0.4) = 0.429$, $A = 1 / (1 + m) = 0.7$
 $\Rightarrow x(t) = 0.7(1 + 0.429 \cos \omega_m t) \cos \omega_c t$

$$(2) m = 0.429$$

(3) Sideband amplitude:

$$A_{\rm m}$$
 / 2 = mA / 2 = (0.7)(0.429) / 2 = 0.15
Unmodulated carrier amplitude:
A = 0.7

(5)
$$A_m = (1 - 0.4) / 2 = 0.3$$

Sideband power: $P_s = A_m^2/4 = 0.0225$ Total power: $P_t = P_s + A^2/2 = 0.0225 + (0.7)^2/2 = 0.0225$ +0.245 = 0.2675

Ratio = 0.0225 / 0.2675 = 8.4%

Assignment:

- 1. The modulating signal m(t) is recovered from the DSBSC signal $s(t)=m(t)Cos(\omega_c t)$ by multiplying s(t) by a locally generated carrier $c'(t)=Cos(\omega_c t+\boldsymbol{\phi})$, where $\omega_c=2\pi f_c$, is the angular carrier frequency. The product of s(t) c'(t) is passed through a LPF which rejects the double frequency signal. Determine the maximum allowable value for the phase angle if the recovered signal is to be 95% of the maximum possible output. If the modulating signal is band limited to 10kHz, determine the minimum value of carrier frequency for which m(t) can be recovered by filtering.
- 2. A received single-tone sinusoidal modulated SSBSC signal $Cos\{(\omega_c + \omega_m)t\}$ has a normalized power of 0.5 watt. The signal is to be detected by carrier re-insertion technique. Find the amplitude of the carrier to be reinserted so that the power in the recovered signal at the demodulator output is 90% of the normalized power. The DC component can be neglected and $\omega_c = 2\pi f_c$ and $\omega_m = 2\pi f_m$.

Note: workout example (3.44 and 3.48) of Analog Communication System (Seventh edition 2016) by Dr. Sanjay Sharma

Thank You.