

Authors: MyungJae Shin (Presenter) and Joongheon Kim

School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

Emails: mjshin.cau@gmail.com, joongheon@gmail.com

Sites: github.com/170928, https://sites.google.com/site/joongheonkim/

Reinforcement Learning

Goal: Learn policies High-dimensional & raw observations

Input: expert behavior generated by expert π_E

$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^N \sim \pi_E$$

Goal: learn cost function or policy

$$RL(R) = arg \min_{\pi} \mathbb{E}_{\pi} [R(s, a)] - H(\pi)$$

$$\max_{R} \left(\min_{\pi} \mathbb{E}_{\pi} \left[R(s, a) \right] - H(\pi) \right) - \mathbb{E}_{\pi_{E}} [R(s, a)]$$

$$\max_{R} -\psi(R) + \left(\min_{\pi} \mathbb{E}_{\pi} \left[R(s, a) \right] - H(\pi) \right) - \mathbb{E}_{\pi_{E}}[R(s, a)]$$

[Theorem]

 ψ regularized inverse reinforcement learning implicitly, seeks a policy whose occupancy measure is close to the expert's, as measured by ψ^*

- Typical IRL finds a cost function such that the expert policy is uniquely optimal
- IRL as a procedure that tries to induce a policy that matches the expert's occupancy measure (generative model)

Generative Adversarial Imitation Learning (GAIL), NIPS 2016

Use this regularizer
$$\psi_{GA}(R) = \begin{cases} \mathbb{E}_{\pi_E} [g(R(s,a))] & \text{if } R < 0 \\ +\infty & \text{otherwise} \end{cases}$$

Generative Adversarial Networks, <u>Ian J. Goodfellow</u>, NIPS 2014

Generative Adversarial Imitation Learning (GAIL), NIPS 2016

Generative Adversarial Imitation Learning (GAIL), NIPS 2016

Based on the output of the discriminator (Generative Adversarial Networks, <u>Ian J. Goodfellow</u>, 2014), we could know the difference between the distribution of expert data and that of agent.

minimize
$$\mathbb{E}_{\pi}[\log(D(s,a)] + \mathbb{E}_{\pi_E}[\log(1-D(s,a))]$$

D(s, a): Probability between 0 and 1

The probability that the input data sample is the expert data sample

Challenge

A lot of interaction with the environment is required to optimize the policy through GAIL framework

$$f'(x) = \frac{df}{dx}$$

$$f'(a) = \frac{f(a+h) - f(a)}{h}$$

IJCNN

Number of expert trajectories in the dataset

Thank You