Fundamentals of GIS

An Introduction to Projections

Learning Objectives

At the end of this lesson, you should be able to:

- Describe what projections and coordinate systems are
- Identify the main types of projection
- Select appropriate projections for GIS data
- Use projections with your GIS data

Coordinate Systems and Map Projections

1. Distances must have units (55m, 41m)

2. A Fixed Reference Point = Datum All projections have a coordinate system

Geographic Coordinate System

References locations on the earth with spherical coordinates

Has a datum, angular unit of measure, and a central meridian

Projected Coordinate System

Cartesian coordinates

Latitude of origin

Central meridian

NOT all coordinate systems are projected

Geographic Coordinate Systems

A 3-D spherical surface to define locations on the earth

Angular unit of measure

A prime meridian

Datum (based on a spheroid)

Points referenced by latitude and longitude

Projected Coordinate System

Defined on a flat, 2-D surface

Has constant lengths, angles, and areas across two dimensions

Based on a geographic coordinate system (based on a spheroid)

Locations identified by x,y coordinates on a grid

Distortions

Trade Offs from 3D Sphere to 2D Map

Map Projections distort at least one of the following:

- Shape
- Area
- Distance
- Direction

Different projections are good for different applications

- Conformal preserve local shape
- Equal Area preserve area of displayed features
- Equidistant preserve distances between certain points

Equirectangular

Equal, constant distances between parallels and meridians

Usually how data stored in a GCS is displayed by default

 $Image\ from\ Wikimedia\ Commons.\ CC-BY-SA\ 3.0\ Strebe.$ $https://commons.wikimedia.org/wiki/File: Equirectnagular_projection_SW.jpg$

Mercator

Angles preserved

Good for navigation

Optimized for calculation speed

Standard for Web Mapping

Image from Wikimedia Commons. CC-BY-SA 3.0 Strebe. https://commons.wikimedia.org/wiki/File:Mercator_projection_SW.jpg

Mollweide

Relative areas preserved

Shape distorted

Image from Wikimedia Commons. By user Strebe. https://commons.wikimedia.org/wiki/File:Mollweide_projection_SW.jpg

Universal Transverse Mercator

Developed by US ACE, 1940

60 North and South Zones

- Each zone spans 6° of longitude
- Origin of each zone is central meridian and equator
- False Eastings and Northings to eliminate negative coordinates

Universal Transverse Mercator

Conformal Shape

- Accurate representation of small shapes
- Minimal distortion of larger shapes within zone

Area

· Minimal distortion within each zone

Direction

· Local angles are true

Distance

• Scale is consistent along central meridian

Review

Projections and Coordinate Systems

Differentiating Between Projections and Coordinate Systems

Common Projections

Viewing Different Projections in ArcGIS