IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

F . . =

IN RE APPLICATION OF: Takaaki IKEGAMI, et al.				GAU:
SERIAL NO: NEW APPLICATION			EXAMINER:	
FILED:	HEREWITH			
FOR:	THE SAME, ELECTROP	PHOTOGRAPHIC APPARAT AND ELECTROPHOTOGRA	US, ELECT	PHOTOGRAPHY METHOD USING TROPHOTOGRAPHIC APPARATUS OTOCONDUCTOR OUTERMOST
		REQUEST FOR PRICE	ORITY	
	ONER FOR PATENTS RIA, VIRGINIA 22313			
SIR:				
	efit of the filing date of U.S ns of 35 U.S.C. §120.	S. Application Serial Number	, filed	, is claimed pursuant to the
☐ Full bene §119(e) :	efit of the filing date(s) of I	J.S. Provisional Application(s) <u>Application No.</u>		pursuant to the provisions of 35 U.S.C. Filed
	its claim any right to priori sions of 35 U.S.C. §119, a		ations to w	hich they may be entitled pursuant to
In the matter	of the above-identified app	plication for patent, notice is he	ereby given	that the applicants claim as priority:
COUNTRY Japan		<u>APPLICATION NUMBER</u> 2002-276629		MONTH/DAY/YEAR September 24, 2002
	ies of the corresponding Cabmitted herewith	onvention Application(s)		
	be submitted prior to paymo	ent of the Final Fee		
	filed in prior application S			
□ were Rece	submitted to the Internatio	nal Bureau in PCT Application y the International Bureau in a		nner under PCT Rule 17.1(a) has been
☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and				
□ (B) A	application Serial No.(s)			
	are submitted herewith			
	will be submitted prior to	payment of the Final Fee		
			Respectfu	lly Submitted,
				SPIVAK, McCLELLAND, 2 NEUSTADT, P.C.
				Glm MGuun
Customer Number			Norman F	`. Oblon on No. 24,618
22850		•	C. Irvin McClelland	
Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)				stration manuer 21,124

日本国特許庁 JAPAN PATENT OFFICE

٠ ١ . ممسي

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 9月24日

出 願 番 号 Application Number:

特願2002-276629

[ST. 10/C]:

[J P 2 0 0 2 - 2 7 6 6 2 9]

出 願 人
Applicant(s):

株式会社リコー

2003年 8月21日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 0206751

【提出日】 平成14年 9月24日

【あて先】 特許庁長官殿

【国際特許分類】 G03G 5/05

G03G 5/147

G03G 15/00

【発明の名称】 電子写真感光体、及びそれを用いた電子写真方法、電子

写真装置、及び電子写真装置用プロセスカートリッジ、

電子写真感光体製造方法

【請求項の数】 22

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 池上 孝彰

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 島田 知幸

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 鈴木 康夫

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 田元 望

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 紙 英利

【特許出願人】

【識別番号】 000006747

【氏名又は名称】 株式会社リコー

【代表者】 桜井 正光

【代理人】

【識別番号】 100105681

【弁理士】

【氏名又は名称】 武井 秀彦

【先の出願に基づく優先権主張】

【出願番号】 特願2002-209997

【出願日】 平成14年 7月18日

【手数料の表示】

【納付方法】 予納

【予納台帳番号】 039653

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9808993

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電子写真感光体、及びそれを用いた電子写真方法、電子写真装置、及び電子写真装置用プロセスカートリッジ、電子写真感光体製造方法

【特許請求の範囲】

【請求項1】 導電性支持体上に形成された感光層の最表面層にフィラーを含有する電子写真感光体において、該電子写真感光体の最表面層に少なくとも酸価が10~400 (mgKOH/g) の有機化合物、及び下記一般式で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体。

【化1】

Ł

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を、Xは酸素原子、硫黄原子を表わす。nは $2\sim4$ の、k、l、mはそれぞれ $0\sim3$ の整数を表わす。)

【請求項2】 導電性支持体上に形成された感光層の最表面層にフィラーを含有する電子写真感光体において、該電子写真感光体の最表面層に少なくとも酸価が10~400 (mgKOH/g) の有機化合物、及び下記一般式で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体。

【化2】

(式中、R 1 、R 2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、R 1 、R 2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。R 3 、R 4 、R 5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を表わす。nは 2 0、k、l、mはそれぞれ 2 0 の整数を表わす。)

【請求項3】 導電性支持体上に形成された感光層の最表面層としてフィラー、電荷輸送物質を含有する保護層を形成した電子写真感光体において、該電子写真感光体の保護層に少なくとも酸価が10~400(mgKOH/g)の有機化合物、及び前記一般式(化1)、(化2)で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体。

【請求項4】 該最表面層用塗工液中に酸化防止剤を含有させることを特徴とする請求項1乃至3の何れか1に記載の電子写真感光体最表面層用塗工液の製造方法。

【請求項5】 前記酸化防止剤がハイドロキノン系化合物であることを特徴とする請求項4に記載の電子写真感光体最表面層用塗工液の製造方法。

【請求項6】 前記酸化防止剤がヒンダードアミン系化合物であることを特徴とする請求項4に記載の電子写真感光体最表面層用塗工液の製造方法。

【請求項7】 前記感光体の最表面層に含有される、酸価が $10\sim400$ (mgKOH/g)の有機化合物が、ポリカルボン酸であることを特徴とする電子写真感光体。

【請求項8】 前記感光体の最表面層に含有される酸価が10~400 (mg KOH/g) の有機化合物あるいはポリカルボン酸が、ポリエステル樹脂、アクリル樹脂のいずれか、あるいはそれらの構造を含む共重合体、もしくはそれら

の混合物であることを特徴とする電子写真感光体。

【請求項9】 前記感光体の最表面層に含有される酸価が10~400 (mg KOH/g) の有機化合物あるいはポリカルボン酸に、少なくとも1種の有機脂肪酸が混合されていることを特徴とする電子写真感光体。

【請求項10】 前記感光体の最表面層に含有されるフィラーが、少なくとも1種の無機顔料であることを特徴とする電子写真感光体。

【請求項11】 前記感光体の最表面層に含有される無機顔料が、少なくとも金属酸化物であることを特徴とする電子写真感光体。

【請求項12】 前記感光体の最表面層に含有される少なくとも1種の無機 顔料もしくは金属酸化物のpHが、5以上であることを特徴とする電子写真感光 体。

【請求項13】 前記感光体の最表面層に含有される少なくとも1種の無機 顔料もしくは金属酸化物の誘電率が、5以上であることを特徴とする電子写真感 光体。

【請求項14】 前記感光体の最表面層に含有されるフィラーの平均一次粒径が、 0.01μ m $\sim 0.5\mu$ mであることを特徴とする電子写真感光体。

【請求項15】 前記感光体の保護層に少なくとも1種の電荷輸送物質を含有することを特徴とする電子写真感光体。

【請求項16】 前記感光体の最表面層に含有される少なくとも1種の電荷輸送物質が、高分子電荷輸送物質であることを特徴とする電子写真感光体。

【請求項17】 前記感光体の最表面層に含有される結着樹脂が、ポリカーボネート樹脂もしくはポリアリレート樹脂のいずれか、あるいはそれらが混合されて含有することを特徴とする電子写真感光体。

【請求項18】 電子写真感光体に、少なくとも帯電、画像露光、現像、転写が繰り返し行なわれる電子写真方法において、該電子写真感光体が請求項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする電子写真方法

【請求項19】 電子写真感光体に、少なくとも帯電、画像露光、現像、転写を繰り返し行ない、かつ画像露光の際にはLDあるいはLED等によって感光

体上に静電潜像の書き込みが行なわれる、所謂デジタル方式の電子写真方法において、該電子写真感光体が請求項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする電子写真方法。

【請求項20】 少なくとも帯電手段、画像露光手段、現像手段、転写手段 および電子写真感光体を具備してなる電子写真装置であって、該電子写真感光体 が請求項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする 電子写真装置。

【請求項21】 少なくとも帯電手段、画像露光手段、現像手段、転写手段 および電子写真感光体を具備してなる電子写真装置において、画像露光手段にL DあるいはLED等を使用することによって感光体上に静電潜像の書き込みが行 なわれる、所謂デジタル方式の電子写真装置であって、該電子写真感光体が請求 項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする電子写 真装置。

【請求項22】 少なくとも電子写真感光体を具備してなる電子写真装置用プロセスカートリッジであって、該電子写真感光体が請求項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする電子写真装置用プロセスカートリッジ。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、高耐久性を有し、かつ高画質化を実現した電子写真感光体に関する。また、それらの感光体を使用した電子写真方法、電子写真装置、電子写真用プロセスカートリッジに関する。

[0002]

【従来の技術】

近年、電子写真方式を用いた情報処理システム機の発展には目覚ましいものがある。特に、情報をデジタル信号に変換して光によって情報記録を行なうレーザープリンターやデジタル複写機は、そのプリント品質、信頼性において向上が著しい。さらに、それらは高速化技術との融合によりフルカラー印刷が可能なレー

ザープリンターあるいはデジタル複写機へと応用されてきている。そのような背景から、要求される感光体の機能としては、高画質化と高耐久化を両立させることが特に重要な課題となっている。

[0003]

これらの電子写真方式のレーザープリンターやデジタル複写機等に使用される感光体としては、有機系の感光材料を用いたものが、コスト、生産性及び無公害性等の理由から一般に広く応用されている。有機系の電子写真感光体には、ポリビニルカルバゾール(PVK)に代表される光導電性樹脂、PVK-TNF(2、4、7-トリニトロフルオレノン)に代表される電荷移動錯体型、フタロシアニンーバインダーに代表される顔料分散型、そして電荷発生物質と電荷輸送物質とを組み合わせて用いる機能分離型の感光体などが知られている。

[0004]

機能分離型の感光体における静電潜像形成のメカニズムは、感光体を帯電した後光照射すると、光は電荷輸送層を通過し、電荷発生層中の電荷発生物質により吸収され電荷を生成する。それによって発生した電荷が電荷発生層及び電荷輸送層の界面で電荷輸送層に注入され、さらに電界によって電荷輸送層中を移動し、感光体の表面電荷を中和することにより静電潜像を形成するものである。

[0005]

しかし、有機系の感光体は、繰り返し使用によって膜削れが発生しやすく、感 光層の膜削れが進むと、感光体の帯電電位の低下や光感度の劣化、感光体表面の キズなどによる地汚れ、画像濃度低下あるいは画質劣化が促進される傾向が強く 、従来から感光体の耐摩耗性が大きな課題として挙げられていた。さらに、近年 では電子写真装置の高速化あるいは装置の小型化に伴う感光体の小径化によって 、感光体の高耐久化がより一層重要な課題となっている。

[0006]

感光体の高耐久化を実現する方法としては、感光体の最表面に保護層を設け、 その保護層に潤滑性を付与したり、硬化させたり、フィラーを含有させる方法が 広く知られている。特に、保護層にフィラーを含有させる方法は、感光体の高耐 久化に対して有効な方法の一つである。しかし、電気絶縁性の高いフィラーを含 有させた場合には、抵抗が高くなり、残留電位の上昇が顕著に見られる。これらの残留電位上昇は、フィラーが含有されていることによって引き起こされる抵抗の増加や電荷トラップサイトの増加による影響が大きい。一方、導電性フィラーを用いた場合には、抵抗が低下し、残留電位の上昇の影響が比較的小さいが、画像の輪郭がぼやける、所謂画像ボケが発生し、画像品質への影響が強く現れる。

[0007]

従って、従来技術では、絶縁性の高いフィラーは使用しにくく、比較的残留電位の影響が少ない絶縁性の低いフィラーを用い、それによって発生する画像ボケに対しては、感光体を加熱するドラムヒーターを搭載する手段が用いられている。感光体を加熱することによって画像ボケの発生は抑制できるものの、ドラムヒーターを搭載するには感光体の径が大きくなければならないため、電子写真装置の小型化に伴って、現在主流となりつつある小径感光体には適用できず、小径感光体の高耐久化が困難とされてきた。さらに、ドラムヒーターの搭載によって装置が大型にならざるを得ず、消費電力が顕著に増加する上、装置の立ち上げ時には多くの時間を要する等、多くの課題を残しているのが実状であった。

[0008]

一方、絶縁性の高いフィラーを用いた場合に多く見られる残留電位の増加は、電子写真装置内では明部電位が高いことにつながり、画像濃度や階調性の低下を招くことになる。それを補うためには暗部電位を高くする必要があるが、暗部電位を高くすると電界強度が高くなり、地肌汚れ等の画像欠陥を生じさせるだけでなく、感光体の寿命をも低下させることにつながる。

[0009]

従来技術において残留電位上昇を抑制させる方法としては、保護層を光導電層とする方法(特公昭44-834号公報、特公昭43-16198号公報、特公昭49-10258号公報)が開示されている。しかし、保護層による光の吸収によって感光層へ到達する光量が減少するため、感光体の感度が低下する問題が生じ、その効果はわずかであった。

[0010]

それに対して、フィラーとして含有される金属あるいは金属酸化物の平均粒径

を 0.3μ m以下にすることによって(特開昭 5.7-3.0.8.4.6 号公報)、保護層が実質的に透明となり、残留電位蓄積を抑制する方法が開示されている。この方法は残留電位の増加を抑制する効果は認められるものの、その効果は不充分であり、課題を解決するには至っていないのが実状である。それは、フィラーを含有させた場合に引き起こされる残留電位の増加は、電荷発生効率よりもフィラーの存在による電荷トラップやフィラーの分散性に起因する可能性が高いことによる。フィラーの平均粒径が 0.3μ m以上であっても分散性を高めることによって透明性を得ることが可能であるし、平均粒径が 0.3μ m以下であってもフィラーがかなり凝集していれば膜の透明性は低下することになる。

[0011]

また、保護層にフィラーとともに電荷輸送物質を含有させる方法(特開平4-281461号公報)により、機械的強度を備えつつ、残留電位増加を抑制させる方法が開示されている。この保護層への電荷輸送物質の添加は、電荷の移動度を向上させるのに効果を発揮し、残留電位を減少させるのに有効な方法である。しかし、フィラーが含有されたことによって引き起こされた残留電位の著しい増加は、フィラーの存在に起因する抵抗の増加あるいは電荷トラップサイトの増加によるとすると、電荷の移動度を向上させて残留電位上昇を抑制させるには限界がある。従って、保護層の膜厚や、フィラーの含有量を少なくせざるを得ず、要求される耐久性を満足させるに至っていないのが実状であった。

[0012]

残留電位上昇を抑制する別の手段としては、保護層中にルイス酸等を添加する方法(特開昭53-133444号公報)、保護層に有機プロトン酸を添加する方法(特開昭55-157748号公報)、電子受容性物質を含有させる方法(特開平2-4275号公報)、酸価が5(mgKOH/g)以下のワックスを含有させる方法(特開2000-66434号公報)が開示されている。これらの方法は、保護層/電荷輸送層界面での電荷の注入性を向上させ、また保護層に低抵抗部分が形成されることにより、電荷が表面にまで到達しやすくなることに起因していると考えられている。この方法は、残留電位の低減効果が認められるが、それによって画像ボケを引き起こしやすくなり、画像への影響が顕著に現れる

副作用を有する。また、有機酸を添加した場合にはフィラーの分散性の低下を引き起こしやすくなるため、その効果は充分ではなく、課題の解決に至っていないのが実状である。

[0013]

高耐久化のためにフィラーを含有させた電子写真感光体において、高画質化を 実現するためには、前述の画像ボケの発生や残留電位上昇を抑制させるだけでな く、電荷が保護層中のフィラーによって進行を妨げられることなく、感光体の表 面まで電荷が直線的に到達することも重要である。それには保護層膜中のフィラ ーの分散性が大きく影響する。フィラーが凝集した状態では、電荷輸送層より保 護層へ注入された電荷が表面へ移動する際、フィラーによって進行が妨げられや すくなり、結果的にトナーにより形成されたドットが散った状態となって解像度 が大きく低下する。また、保護層を設けた場合に、フィラーによって書き込み光 が散乱され光透過性が低下する場合も、同様に解像度に大きな悪影響を与えるこ とになるが、この光透過性に与える影響もまたフィラーの分散性と密接に関係し ている。さらに、フィラーの分酸性は耐摩耗性に対しても大きく影響し、フィラ ーが強い凝集を起こし、分酸性に乏しい状態では耐摩耗性が大きく低下する。従 って、高耐久化のためにフィラーを含有させた保護層を形成した電子写真感光体 において、同時に高画質化を実現するためには、画像ボケの発生や残留電位上昇 を抑制させるだけでなく、保護層膜中のフィラーの分散性を高めることが重要で ある。

[0014]

しかし、それらを同時に解決できる有効な手段は見出されておらず、高耐久化のために感光体の最表面層にフィラーを含有させた場合、画像ボケや残留電位上昇の影響が強く現れ、高画質化に対する課題が今もなお残されているのが実状である。さらに、それらの影響を軽減させるために、ドラムヒーターを搭載する必要があることから、最も耐久性が必要とされる小径感光体の高耐久化が実現されておらず、それに伴い装置の小型化や消費電力の低減に対しても大きな障害となっているのが実状であった。

[0015]

【発明が解決しようとする課題】

従って、本発明の目的は、上記従来技術に鑑みて、高耐久性を有し、かつ残留電位上昇、あるいは画像ボケの発生による画像劣化を抑制し、長期間の繰り返し使用に対しても高画質画像が安定に得られる感光体を提供し、また、それらの感光体を用いることにより、感光体の交換が不要で、かつ高速印刷あるいは感光体の小径化に伴う装置の小型化を実現し、さらに繰り返し使用においても高画質画像が安定に得られる電子写真方法、電子写真装置、ならびに電子写真用プロセスカートリッジを提供することにある。

[0016]

【課題を解決しようとする手段】

電子写真感光体の高耐久化を実現するために、感光体の最表面層にフィラーを 含有させた保護層を形成することは有効であることが知られているが、残留電位 の上昇や画像ボケの発生等、画質劣化を引き起こす副作用を有する。本発明者ら は、鋭意検討を重ねた結果、保護層に絶縁性の高いフィラーを含有させることに よって画像ボケを抑制し、それによって引き起こされた残留電位上昇に対しては 、酸価が $10\sim400$ (mgKOH/g)の有機化合物を含有させることにより 抑制できることを見出した。残留電位の低減が可能となった要因として、一つに は酸価を有する材料が添加されたことが挙げられるが、他の要因としてはそれに よってフィラーの分散性が向上されたことが挙げられる。また、フィラーの分散 性の向上は、単に残留電位上昇を抑制する効果だけに留まらず、保護層の書き込 み光の透過率低下や画像濃度ムラの発生を防止することによって一層の高画質化 が実現でき、さらに耐摩耗性の向上や塗膜欠陥の発生を防止する等の多方面に渡 る効果をも併せ持っている。しかしながら、該有機化合物においては、その化学 構造に由来して、使用条件により生じるオゾンやNOxなどの酸化性ガスが吸着 しやすく、場合によっては、最表面の低抵抗化を招き、画像流れ等の問題を引き 起こす可能性があった。本発明者らは更に検討を進めた結果、下記一般式で表わ される化合物から選ばれる少なくとも一種を含有させることで、この酸化性ガス に対する課題を解決できることを見いだした。

[0017]

【化3】

$$\begin{pmatrix} \mathbb{R}^{3} \\ \mathbb{R}^{4} \end{pmatrix}_{k} \begin{pmatrix} \mathbb{R}^{4} \\ \mathbb{R}^{5} \end{pmatrix}_{m} \\ \mathbb{R}^{1} \\ \mathbb{R}^{1} \\ \mathbb{R}^{2} \end{pmatrix} \times \begin{pmatrix} \mathbb{R}^{4} \\ \mathbb{R}^{1} \\ \mathbb{R}^{2} \end{pmatrix}$$
 · · · (化 1)

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を、Xは酸素原子、硫黄原子を表わす。nは $2\sim4$ の、k、l、mはそれぞれ $0\sim3$ の整数を表わす。)

[0018]

【化4】

$$\begin{pmatrix} \mathbb{R}^{3} \end{pmatrix}_{k} \qquad \begin{pmatrix} \mathbb{R}^{4} \end{pmatrix}_{l} \qquad \begin{pmatrix} \mathbb{R}^{5} \end{pmatrix}_{m} \qquad \mathbb{R}^{1} \\ \begin{pmatrix} \mathbb{C}H_{2} \end{pmatrix}_{n} \stackrel{\mathbb{N}}{\mathbb{R}^{2}} \qquad \cdots \qquad (化 2)$$

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を表わす。nは $2\sim4$ の、k、1、mは $2\sim4$ の、k0、10、10 の整数を表わす。)

[0019]

その理由については、現時点では明らかになっていないが、塩基性の基として のベンゼン環に加えて構造内に含まれる置換アミノ基が酸化性ガスに対して有効 なラジカル物質生成抑制を行なっていることも関与しているものと推測される。 また、(化1)~(化2)で表わされる化合物は、電荷輸送能力も有しているた め、それ自身で電荷胆体のトラップとして働かず、添加に伴う残留電位上昇等の 電気的な特性劣化は殆どみられないものとなる。

しかし、後程説明される比較例 $1 \sim 5$ との効果上の著しい差異を含めて、正確な理由は未だ判明していない。

[0020]

しかしながら、一般式(化1)、(化2)で表わされる化合物においては、更に検討を進めた結果、その構造に由来し、本発明において他構成成分として含有される酸価が $10\sim400$ (mgKOH/g)の有機化合物との間で相互作用による塩を生成してしまい、塗工液の経時保存安定性に問題を有していることが判明した。

このことに鑑み、更に検討を進めた結果、本発明者らは、該塗工液中に特定の酸化防止剤を含有することにより、上記経時保存安定性の問題が解決できることを見いだした。

[0021]

以下の構成用件を満足することにより、高耐久性と高画質化の両立を可能とし、繰り返し使用に対しても高画質画像を安定に得られる電子写真感光体を提供し、また、繰り返し使用においても高画質画像を安定に得られる電子写真方法、電子写真装置、ならびに電子写真用プロセスカートリッジを提供することによって本発明を完成するに至った。

$[0\ 0\ 2\ 2]$

すなわち、上記課題は、本発明の(1)「導電性支持体上に形成された感光層の最表面層にフィラーを含有する電子写真感光体において、該電子写真感光体の最表面層に少なくとも酸価が $10\sim400$ (mgKOH/g)の有機化合物、及び下記一般式で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体:

[0023]

【化5】

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を、Xは酸素原子、硫黄原子を表わす。nは $2\sim4$ の、k、l、mはそれぞれ $0\sim3$ の整数を表わす。)」、(2)「導電性支持体上に形成された感光層の最表面層にフィラーを含有する電子写真感光体において、該電子写真感光体の最表面層に少なくとも酸価が $10\sim4$ 00 (mg KO H/g) の有機化合物、及び下記一般式で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体:

[0024]

【化6】

 を含有する保護層を形成した電子写真感光体において、該電子写真感光体の保護層に少なくとも酸価が10~400 (mgKOH/g) の有機化合物、及び前記一般式 (化1)、(化2)で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体」により達成される。

[0025]

また、上記課題は、本発明の(4)「該最表面層用塗工液中に酸化防止剤を含有させることを特徴とする前記第(1)項乃至第(3)項の何れか1に記載の電子写真感光体最表面層用塗工液の製造方法」、(5)「前記酸化防止剤がハイドロキノン系化合物であることを特徴とする前記第(4)項に記載の電子写真感光体最表面層用塗工液の製造方法」、(6)「前記酸化防止剤がヒンダードアミン系化合物であることを特徴とする前記第(4)項に記載の電子写真感光体最表面層用塗工液の製造方法」により達成される。

[0026]

また、上記課題は、本発明の (7) 「前記感光体の最表面層に含有される、酸 価が $10\sim400$ (mgKOH/g) の有機化合物が、ポリカルボン酸であるこ とを特徴とする電子写真感光体」、(8)「前記感光体の最表面層に含有される 酸価が10~400(mgKOH/g)の有機化合物あるいはポリカルボン酸が 、ポリエステル樹脂、アクリル樹脂のいずれか、あるいはそれらの構造を含む共 重合体、もしくはそれらの混合物であることを特徴とする電子写真感光体」、(9) 「前記感光体の最表面層に含有される酸価が10~400 (mgKOH/g) の有機化合物あるいはポリカルボン酸に、少なくとも 1 種の有機脂肪酸が混合 されていることを特徴とする電子写真感光体」、(10)「前記感光体の最表面 層に含有されるフィラーが、少なくとも1種の無機顔料であることを特徴とする 電子写真感光体」、(11)「前記感光体の最表面層に含有される無機顔料が、 少なくとも金属酸化物であることを特徴とする電子写真感光体」、(12)「前 記感光体の最表面層に含有される少なくとも1種の無機顔料もしくは金属酸化物 の p H が、 5 以上であることを特徴とする電子写真感光体」、(13)「前記感 光体の最表面層に含有される少なくとも 1 種の無機顔料もしくは金属酸化物の誘 電率が、5以上であることを特徴とする電子写真感光体」、(14)「前記感光 体の最表面層に含有されるフィラーの平均一次粒径が、 $0.01\mu m \sim 0.5\mu m$ であることを特徴とする電子写真感光体」、(15)「前記感光体の保護層に少なくとも1種の電荷輸送物質を含有することを特徴とする電子写真感光体」、

(16) 「前記感光体の最表面層に含有される少なくとも1種の電荷輸送物質が、高分子電荷輸送物質であることを特徴とする電子写真感光体」、(17)「前記感光体の最表面層に含有される結着樹脂が、ポリカーボネート樹脂もしくはポリアリレート樹脂のいずれか、あるいはそれらが混合されて含有することを特徴とする電子写真感光体」により達成される。

[0027]

また、上記課題は、本発明の(18)「電子写真感光体に、少なくとも帯電、画像露光、現像、転写が繰り返し行なわれる電子写真方法において、該電子写真感光体が前記第(1)項乃至第(17)項の何れか1に記載の電子写真感光体であることを特徴とする電子写真方法」、(19)「電子写真感光体に、少なくとも帯電、画像露光、現像、転写を繰り返し行ない、かつ画像露光の際にはLDあるいはLED等によって感光体上に静電潜像の書き込みが行なわれる、所謂デジタル方式の電子写真方法において、該電子写真感光体が前記第(1)項乃至第(17)項の何れか1に記載の電子写真感光体であることを特徴とする電子写真方法|により達成される。

[0028]

また、上記課題は、本発明の(20)「少なくとも帯電手段、画像露光手段、現像手段、転写手段および電子写真感光体を具備してなる電子写真装置であって、該電子写真感光体が前記第(1)項乃至第(17)項の何れか1に記載の電子写真感光体であることを特徴とする電子写真装置」、(21)「少なくとも帯電手段、画像露光手段、現像手段、転写手段および電子写真感光体を具備してなる電子写真装置において、画像露光手段にLDあるいはLED等を使用することによって感光体上に静電潜像の書き込みが行なわれる、所謂デジタル方式の電子写真装置であって、該電子写真感光体が前記第(1)項乃至第(17)項の何れか1に記載の電子写真感光体であることを特徴とする電子写真装置」により達成される。

[0029]

さらにまた、上記課題は、本発明の(22)「少なくとも電子写真感光体を具備してなる電子写真装置用プロセスカートリッジであって、該電子写真感光体が請求項1乃至17の何れか1に記載の電子写真感光体であることを特徴とする電子写真装置用プロセスカートリッジ」により達成される。

[0030]

電子写真感光体の保護層にフィラーが含有された高耐久性を有する電子写真感光体は、副作用として画像ボケの発生、残留電位上昇、解像度の低下等、画質への影響が避けられず、高耐久化と高画質化を両立させることは困難とされてきた。これは、画像ボケの発生を抑制するには抵抗が高いほうが、残留電位上昇を抑制するには抵抗が低いほうが適していることから、双方でトレードオフの関係になっていることが問題の解決を困難にしている。

$\{0031\}$

しかし、本発明者らの検討により、残留電位や画質に与える影響はフィラーの物性だけでなく、フィラーの分散性に大きく起因していることが確認された。すなわち、フィラーが脱凝集され、分散性が良好である場合には、保護層に注入された電荷が表面まで到達しやすくなるため、残留電位の上昇を抑制できるだけでなく、トナーにより形成されるドット再現性がより忠実となり高解像度の画像を得ることが可能となる。一方、フィラーが極度な凝集状態にある場合には、電荷はフィラーによって進行が妨げられ、電荷移動の直進性が低下することによって解像度が低下するだけでなく、電荷がトラップされやすくなり、結果的に残留電位を増加させる。

[0032]

フィラーの凝集は、有機溶媒やバインダー樹脂等との親和性が低い無機(親水性)フィラーの方が起こり易い。本発明において見出された酸価が10~400 (mgKOH/g) の有機化合物を添加することによって、無機フィラーと有機溶剤やバインダー樹脂等との親和性を高めることが可能となり、結果的にフィラーの分散性を高める効果を有する。また、酸の添加によって高くなりすぎた膜の抵抗を適度に低減させる効果をも有する。これらの相乗効果によって、感光体の

残留電位を低減できるだけでなく、フィラーの分散性が向上したことにより、トナーにより形成されたドットの散りが少なくなり、より忠実なドット再現が可能な高画質画像を得ることが可能となる。

[0033]

さらに、フィラーの分散性の向上は、最表面層の光透過性の向上や画像濃度ムラの抑制等、高画質化に与える効果が非常に多い上に、耐摩耗性の向上や塗膜欠陥の抑制等の多くの利点を有する。加えて、フィラーが経時で凝集することなく、高安定かつ長寿命な保護層形成用塗工液を得ることができ、結果として高耐久化と高画質化を両立する電子写真感光体を長期に渡って安定に得ることが可能となる。

[0034]

以下、本発明に用いられる電子写真感光体を図面に沿って説明する。

図1は、本発明の電子写真感光体を表わす断面図であり、導電性支持体(31)上に、電荷発生物質と電荷輸送物質を主成分とする感光層(33)が設けられている。フィラーを含有させる場合には、感光層表面に含有されてなる。

図2は、導電性支持体(31)上に、電荷発生物質を主成分とする電荷発生層(35)と、電荷輸送物質を主成分とする電荷輸送層(37)とが、積層された構成をとっている。フィラーを含有させる場合には、電荷輸送層の表面に含有されてなる。

図3は、導電性支持体(31)上に、電荷発生物質と電荷輸送物質を主成分と する感光層(33)が設けられ、更に感光層表面に保護層(39)が設けられて なる。この場合、保護層(39)にはフィラーが含有されてなる。

図4は、導電性支持体(31)上に、電荷発生物質を主成分とする電荷発生層(35)と電荷輸送物質を主成分とする電荷輸送層(37)とが積層された構成をとっており、更に電荷輸送層上に保護層(39)が設けられてなる。この場合、保護層(39)にはフィラーが含有されてなる。

図5は、導電性支持体(31)上に、電荷輸送物質を主成分とする電荷輸送層(37)と電荷発生物質を主成分とする電荷発生層(35)とが積層された構成をとっており、更に電荷発生層上に保護層(39)が設けられてなる。この場合

、保護層(39)にはフィラーが含有されてなる。

[0035]

導電性支持体(3 1)としては、体積抵抗 10^{10} $\Omega \cdot c$ m以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、特開昭 52-36016 号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体(3 1)として用いることができる。

[0036]

この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したもの についても、本発明の導電性支持体(31)として用いることができる。この導 電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム 、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化ス ズ、ITOなどの金属酸化物粉体などが挙げられる。また、同時に用いられる結 着樹脂には、ポリスチレン、スチレンーアクリロニトリル共重合体、スチレンー ブタジエン共重合体、スチレンー無水マレイン酸共重合体、ポリエステル、ポリ 塩化ビニル、塩化ビニルー酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニ リデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロ ース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマー ル、ポリビニルトルエン、ポリーNービニルカルバゾール、アクリル樹脂、シリ コーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、ア ルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。 このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、 テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分 散して塗布することにより設けることができる。

[0037]

さらに、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体(31)として良好に用いることができる。

[0038]

次に、感光層について説明する。感光層は単層でも積層でもよいが、説明の都合上、先ず電荷発生層(35)と電荷輸送層(37)で構成される場合から述べる。

電荷発生層(35)は、電荷発生物質を主成分とする層である。電荷発生層(35)には、公知の電荷発生物質を用いることが可能であり、その代表として、モノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン系顔料、キノン系縮合多環化合物、スクアリック酸系染料、他のフタロシアニン系顔料、ナフタロシアニン系顔料、アズレニウム塩系染料等が挙げられ用いられる。これら電荷発生物質は単独でも、2種以上混合してもかまわない。

[0039]

電荷発生層(35)は、電荷発生物質を必要に応じて結着樹脂とともに適当な 溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、 これを導電性支持体上に塗布し、乾燥することにより形成される。

[0040]

必要に応じて電荷発生層(35)に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリーNービニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニルー酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。結着樹脂の量は、電荷発生物質10

○重量部に対し0~500重量部、好ましくは10~300重量部が適当である。結着樹脂の添加は、分散前あるいは分散後どちらでも構わない。

[0041]

ここで用いられる溶剤としては、イソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられるが、特にケトン系溶媒、エステル系溶媒、エーテル系溶媒が良好に使用される。これらは単独で用いても2種以上混合して用いてもよい。

[0042]

電荷発生層(35)は、電荷発生物質、溶媒及び結着樹脂を主成分とするが、 その中には、増感剤、分散剤、界面活性剤、シリコーンオイル等のいかなる添加 剤が含まれていても良い。

塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズ ルコート、スピナーコート、リングコート等の方法を用いることができる。

電荷発生層(35)の膜厚は、 $0.01\sim5~\mu$ m程度が適当であり、好ましくは $0.1\sim2~\mu$ mである。

[0043]

電荷輸送層(37)は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ない し分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、 必要により単独あるいは2種以上の可塑剤、レベリング剤、酸化防止剤等を添加 することもできる。

[0044]

電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。

電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2, 4, 7-トリニトロー9-フルオレノン、2, 4, 5, 7-テトラニトロー9-フルオレノン、2, 4, 5, 7-テトラニトロキサントン、2, 4, 8-トリニトロチオキサントン、2, 6, 8-トリニトロー4 H-インデノ $\begin{bmatrix}1, 2-b\end{bmatrix}$ チオフェン-4-オン、1, 3, 7-

トリニトロジベンゾチオフェン-5,5-ジオキサイド、ベンゾキノン誘導体等 の電子受容性物質が挙げられる。

[0045]

正孔輸送物質としては、ポリーNービニルカルバゾールおよびその誘導体、ポリー γ ーカルバゾリルエチルグルタメートおよびその誘導体、ピレンーホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、 α ーフェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、リアリールメタン誘導体、ヒドラゾン誘導体、インデン誘導体、アタジェン誘導体、ピレン誘導体、ヒドラゾン誘導体、エナミン誘導体、アタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等、その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。

[0046]

結着樹脂としては、ポリスチレン、スチレンーアクリロニトリル共重合体、スチレンーブタジエン共重合体、スチレンー無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニルー酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリーNービニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。

[0047]

電荷輸送物質の量は結着樹脂 100 重量部に対し、20~300 重量部、好ましくは 40~150 重量部が適当である。また、電荷輸送層の膜厚は解像度・応答性の点から、 25μ m以下とすることが好ましい。下限値に関しては、使用するシステム(特に帯電電位等)に異なるが、 5μ m以上が好ましい。

[0048]

ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。これらは単独で使用しても2種以上混合して使用しても良い。

[0049]

更に、電荷輸送層が感光体の最表面層になる場合には、少なくとも電荷輸送層の表面部位には、耐摩耗性を向上させる目的でフィラー材料を添加することもできる。有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、aーカーボン粉末等が挙げられ、無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、アルミナ、酸化ジルコニウム、酸化インジウム、酸化アンチモン、酸化ビスマス、酸化カルシウム、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、フッ化錫、フッ化カルシウム、フッ化アルミニウム等の金属フッ化物、チタン酸カリウム、窒化硼素などの無機材料が挙げられる。これらのフィラーの中で、フィラーの硬度の点から無機材料を用いることが耐摩耗性の向上に対し有利である。

[0050]

さらに、画像ボケが発生しにくいフィラーとしては、電気絶縁性が高いフィラーが好ましく、フィラーのpHが5以上を示すものやフィラーの誘電率が5以上を示すものが特に有効であり、酸化チタン、アルミナ、酸化亜鉛、酸化ジルコニウム等が特に有効に使用できる。また、pHが5以上のフィラーあるいは誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種類以上混合したりして用いることも可能である。また、これらのフィラーの中でも高い絶縁性を有し、熱安定性が高い上に、耐摩耗性が高い六方細密構造であるα型アルミナは、画像ボケの抑制や耐摩耗性の向上の点から特に有用である。

[0051]

さらに、これらのフィラーは少なくとも一種の表面処理剤で表面処理させるこ

とが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラー の分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の 発牛、さらには耐塵耗件の低下をも引き起こすため、高耐久化あるいは高画質化 を妨げる大きな問題に発展する可能性がある。表面処理剤としては、従来用いら れている表面処理剤すべてを使用することができるが、フィラーの絶縁性を維持 できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニ ウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、 あるいはこれらとシランカップリング剤との混合処理や、Al2〇3、Ti〇2 、Zr02、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合 処理がフィラーの分散性及び画像ボケの点からより好ましい。シランカップリン グ剤による処理は、画像ボケの影響が強くなるが、上記の表面処理剤とシランカ ップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。 表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3~ 30wt%が適しており、5~20wt%がより好ましい。表面処理量がこれよ りも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい 上昇を引き起こす。

[0052]

これらのフィラーが含有されることによって、高耐久化の実現と同時に、画像ボケを回避することが可能となるが、残留電位上昇の影響が増加することになる。この残留電位上昇を抑制するためには、酸価が10~400(mgKOH/g)の有機化合物を添加させることによって実現される。酸価とは、1g中に含まれる遊離脂肪酸を中和するのに要する水酸化カリウムのミリグラム数で定義される。これらの酸価が10~400(mgKOH/g)の有機化合物としては、一般に知られている有機脂肪酸や高酸価樹脂等、酸価が10~400(mgKOH/g)の有機化合物であればすべて使用することができる。しかし、非常に低分子の有機酸やアクセプター等はフィラーの分散性を大幅に低下させてしまう可能性があるため、残留電位低減効果が充分に発揮されなくなる場合がある。従って、感光体の残留電位を低減させ、かつフィラーの分散性を高めるためには低分子量ポリマーや樹脂、共重合体等、さらにはそれらを混合させて使用することが好

ましい。それらの有機化合物の構造としては、立体障害が少ないリニアの構造を有することがより好ましい。分散性を向上させるためにはフィラーとバインダー樹脂との双方に親和性を持たせることが必要であり、立体障害が大きな材料は、それらの親和性が低下することにより、分散性が低下し、前述のような多くの問題を発生させることにつながる。ポリカルボン酸としては、カルボン酸をポリマーあるいはコポリマー中に含む構造を有する化合物であって、ポリエステル樹脂、アクリル樹脂、アクリル酸やメタクリル酸を用いた共重合体、スチレンアクリル共重合体等、カルボン酸を含む有機化合物あるいはその誘導体はすべて使用することが可能である。また、これらの材料は2種以上混合して用いることが可能であり、かつ有用である。場合によっては、これらの材料と有機脂肪酸とを混合させることによって、フィラーの分酸性あるいはそれに伴う残留電位の低減効果が高まることがある。

[0053]

これらの酸価が10~400(mgKOH/g)の有機化合物の添加量としては、含有されるフィラーに対して0.01wt%~50wt%、好ましくは0.1wt%~20wt%であるが、必要最小量に設定することがより好ましい。添加量を必要以上に多くすると、画像ボケの影響が現れることがあり、添加量が少なすぎると残留電位の低減効果が充分に発揮されなくなる。また、有機化合物の酸価としては、10~400mgKOH/gが好ましく、より好ましくは30~200mgKOH/gが適している。酸価が必要以上に高いと抵抗が下がりすぎて画像ボケの影響が大きくなり、酸価が低すぎると添加量を多くする必要が生じる上、残留電位の低減効果が不充分となる。また、材料の酸価は前記添加量とのバランスにより決めることが必要である。ただし、材料の酸価は残留電位低減効果に直接影響するものではなく、用いる有機化合物の構造あるいは分子量、フィラーの分散性等によって大きく影響される。

[0054]

また、これらの酸価が10~400 (mgKOH/g)の有機化合物は、電荷輸送層にフィラーが含有されない場合に対しても残留電位低減効果を狙って添加することが可能である。添加量は、添加する材料の酸価によるが、バインダー樹

脂に対して0.01wt%~50wt%、好ましくは0.1wt%~20wt%が好ましい。ポリカルボン酸の添加によって残留電位の低減効果だけでなく、フィルミングが抑制されたり、膜の接着性が向上したりする場合もあり、有効かつ有用である。しかし、必要以上に添加すると、画像ボケが発生したり、耐摩耗性が低下したりする場合がある。

[0055]

前記フィラー材料は、少なくとも有機溶剤、酸価が10~400(mgKOH/g)の有機化合物等とともにボールミル、アトライター、サンドミル、超音波などの従来方法を用いて分散することができる。この中でも、フィラーと酸価が10~400(mgKOH/g)の有機化合物との接触効率を高くすることができ、外界からの不純物の混入が少ないボールミルによる分散が分散性の点からより好ましい。使用されるメディアの材質については、従来使用されているジルコニア、アルミナ、メノウ等すべてのメディアを使用することができるが、フィラーの分散性及び残留電位低減効果の点から特にアルミナを使用することがより好ましい。ジルコニアは分散時のメディアの摩耗量が大きく、それらの混入によって残留電位が著しく増加する。さらに、その摩耗粉の混入によって分散性が大きく低下し、フィラーの沈降性が促進される。一方、メディアにアルミナを使用した場合には、分散時にメディアは摩耗されるものの、摩耗量は低く抑えられる上に、混入した摩耗粉が残留電位に与える影響が非常に小さい。また、摩耗粉が混入しても分酸性に対して悪影響が少ない。従って、分散に使用するメディアにはアルミナを使用することがより好ましい。

[0056]

酸価が10~400 (mg KOH/g) の有機化合物は、フィラーや有機溶剤とともに分散前より添加することによって、塗工液中のフィラーの凝集、さらにはフィラーの沈降性を抑制し、フィラーの分散性が著しく向上することから、分散前より添加することが好ましい。一方、バインダー樹脂や電荷輸送物質は、分散前に添加することも可能であるが、その場合分散性が若干低下する場合が見られる。従って、バインダー樹脂や電荷輸送物質は、有機溶剤に溶解された状態で分散後に添加することが好ましい。

[0057]

また、フィラーの平均一次粒径は、 $0.01\sim0.5\mu$ mであることが保護層の光透過率や耐摩耗性の点から好ましい。フィラーの平均一次粒径が 0.01μ m以下の場合は、耐摩耗性の低下、分散性の低下等を引き起こし、 0.5μ m以上の場合には、フィラーの沈降性が促進されたり、トナーのフィルミングが発生したりする可能性がある。

[0058]

しかしながら、該有機化合物においては、その化学構造に由来して、使用条件により生じるオゾンやNOxなどの酸化性ガスが吸着しやすく、場合によっては、最表面の低抵抗化を招き、画像流れ等の問題を引き起こす可能性があった。この問題を解決するためには、一般式(化1)、(化2)で表わされる化合物を含有させることによって実現される。

[0059]

【化7】

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を、Xは酸素原子、硫黄原子を表わす。nは $2\sim4$ の、k、l、mはそれぞれ $0\sim3$ の整数を表わす。)

[0060]

ページ: 26/

【化8】

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を表わす。nは $2\sim4$ の、k、l、mは $2\sim4$ の、k、l、mは $2\sim4$ の、k

[0061]

これら一般式の説明にある、アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、及びウンデカニル基などを挙げることができる。また、芳香環基としてはベンゼン、ナフタレン、アントラセン、及びピレンなど芳香族炭化水素環の1 価 ~ 6 価の芳香族炭化水素基、並びにピリジン、キノリン、チオフェン、フラン、オキサゾール、オキサジアゾール、カルバゾールなど芳香族複素環の1 価 ~ 6 価の芳香族複素環基が挙げられる。また、これらの置換基としては、上記アルキル基の具体例で挙げたもの、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基、またはフッ素原子、塩素原子、臭素原子、ヨウ素原子のハロゲン原子、及び芳香環基などが挙げられる。更に、R 1 、R 2 が互いに結合し窒素原子を含む複素環基の具体例としてはピロリジニル基、ピペリジニル基、ピロリニル基等が挙げられる。その他、共同で窒素原子を含む複素環基としては、Nーメチルカルバゾール、Nーフェニルカルバゾール、インドール、キノリンの芳香族複素環基などを挙げることができる。

以下に一般式(化1)、(化2)の好ましい例を挙げる。但し、本発明は、これらの化合物に限定されるものではない。

[0062]

【表1-1】

$$\left(\begin{array}{c} R^{3} \\ \\ \\ Ar' \end{array} \right)_{k} \left(\begin{array}{c} R^{4} \\ \\ \\ \\ \\ \end{array} \right)_{l} \left(\begin{array}{c} R^{5} \\ \\ \\ \\ \\ \end{array} \right)_{m} X \left(CH_{2} \right)_{n} N_{R^{2}}^{l}$$

化合物N	化学構造式
٠.	
1 - 1	N-()-0-()
1-2	H ₃ C
	H ₃ C
1 – 3	H ₃ C
1 – 4	N-()-0-()-0-()-0-()-0-()-0-()-0-()-0-()-
1 - 5	H ₃ C

[0063]

【表1-2】

1 - 6	H ₃ C
	H ₃ C—()
	N-()-()-()-()-()-()-()-()-()-()
	н₃с—✓
) /
1 7	H ₃ C
1 – 7	
:	<u>_</u>
1 – 8	нзс /
	() N-
	N—\s_s_
!	
i	\/
	H ₃ C′
1 - 9	
	N-(
	<u> </u>
1-10	H ₃ CO—
	N-CH ₃
	<u>_</u>
1 - 1 1	H ₉ C
	N- N- 0-
1-12	H ₃ C CH ₃
İ	
i 	(_)
1-13	H ₃ C
	N-()-0-/
:	
	,2,

[0064]

【表 2-1】

2-1	H ₂ C N-\N
2-2	H ₃ C ' H ₃ C ' N - N - N - N - N - N - N - N - N - N -
2-3	H ₃ C
2-4	
2-5	H ₃ C
2-6	H ₃ C N N
2-7	H ₃ C H ₃ C H ₃ C
2-8	H ₃ C CH ₃ N N

[0065]

【表2-2】

[0066]

一般式(化 1)、(化 2)で表わされる化合物の添加量は、バインダー樹脂に対して 0.01 w 1.00 w

この一般式(化1)、(化2)で表わされる化合物を酸価が10~400(mgKOH/g)の有機化合物と併用する構成において、塗工液の保存を必要とする場合には、相互作用による塩の生成を抑制するために、特定の酸化防止剤を含有させる必要がある。この塩の生成は、塗工液の変色を引き起こすだけではなく、製造された電子写真感光体において、残留電位の上昇等の不具合を引き起こす

[0067]

本発明に使用できる酸化防止剤としては、後述される一般の酸化防止剤が使用できるが、(c) ハイドロキノン系、及び(f) ヒンダードアミン系の化合物が特に効果的である。但し、ここで用いられる酸化防止剤は、後述の目的と異なり、あくまでも一般式(化1)、(化2) で表わされる化合物の塗工液中での保護のために利用される。このため、これらの酸化防止剤は、一般式(化1)、(化2)

2)で表わされる化合物を含有させる前の工程で塗工液に含有させておくことが好ましく、添加量としては、含有される酸価が $10\sim400\ (mgKOH/g)$ の有機化合物に対して、 $0.1\sim200wt\%$ で充分な塗工液経時保存安定性を発揮できる。

[0068]

電荷輸送層には電荷輸送物質としての機能とバインダー樹脂としての機能を持った高分子電荷輸送物質も良好に使用される。これらの高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、一般式(I)~(X)式で表わされる高分子電荷輸送物質が良好に用いられる。これらを以下に例示し、具体例を示す。

[0069]

【化9】

式中、R₁, R₂, R₃はそれぞれ独立して置換もしくは無置換のアルキル基 又はハロゲン原子、R₄は水素原子又は置換もしくは無置換のアルキル基、R₅, R₆は置換もしくは無置換のアリール基、o, p, qはそれぞれ独立して0~4の整数、k, jは組成を表わし、0. $1 \le k \le 1$ 、 $0 \le j \le 0$. 9、nは繰り返し単位数を表わし5~5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表わされる2価基を表わす。

[0070]

【化10】

$$(R_{101})_{||}$$
 $(R_{102})_{||}$ $(R_{102})_{||}$

式中、R₁₀₁, R₁₀₂は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表わす。 1、mは $0\sim4$ の整数、Yは単結合、炭素原子数 $1\sim12$ の直鎖状、分岐状もしくは環状のアルキレン基、-O-, -S-, -SO-, $-SO_2-$, -CO-, -CO-O-Z-O-CO- (式中Zは脂肪族の2 価基を表わす。) または、

[0071]

【化11】

(式中、aは $1\sim20$ の整数、bは $1\sim2000$ の整数、 R_{103} , R_{104} は置換または無置換のアルキル基又はアリール基を表わす。)を表わす。ここで、 R_{101} と R_{102} , R_{103} と R_{104} は、それぞれ同一でも異なってもよい

[0072]

【化12】

式中、R7, R8は置換もしくは無置換のアリール基、Ar1, Ar2, Ar3は同一あるいは異なるアリレン基を表わす。X, k, jおよび n は、式(I)

の場合と同じである。

[0073]

【化13】

$$\begin{array}{c|c}
 & O \\
 & O \\
 & C \\$$

式中、R $_9$,R $_{10}$ は置換もしくは無置換のアリール基、A $_{10}$ A $_{10}$ A $_{10}$ C $_{10}$ に $_{10}$ C $_{1$

[0074]

【化14】

$$\begin{array}{c|c}
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O \\$$

式中、R $_{11}$,R $_{12}$ は置換もしくは無置換のアリール基、Ar $_{7}$,Ar $_{8}$,Ar $_{9}$ は同一あるいは異なるアリレン基、pは $_{1}$ ~ $_{5}$ の整数を表わす。 $_{8}$ X, k, j および n は、式 (I) の場合と同じである。

[0075]

【化15】

式中、R $_{13}$, R $_{14}$ は置換もしくは無置換のアリール基、Ar $_{10}$, Ar $_{11}$ 1, Ar $_{12}$ は同一あるいは異なるアリレン基、X $_{11}$, X $_{2}$ は置換もしくは無置

[0076]

【化16】

式中、R₁₅, R₁₆, R₁₇, R₁₈は置換もしくは無置換のアリール基、A_{r13}, A_{r14}, A_{r15}, A_{r16}は同一あるいは異なるアリレン基、Y₁, Y₂, Y₃は単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わし同一であっても異なってもよい。X, k, j およびn は、式(I)の場合と同じである。

[0077]

【化17】

$$\begin{array}{c|c}
 & O - Ar_{18} & Ar_{19} - O - \overset{\circ}{C} & \\
 & Ar_{17} & \\
 & C + $

式中、R $_1$ 9,R $_2$ 0 は水素原子、置換もしくは無置換のアリール基を表わし、R $_1$ 9 と R $_2$ 0 は環を形成していてもよい。A r $_1$ 7,A r $_1$ 8,A r $_1$ 9 は同一あるいは異なるアリレン基を表わす。X,k,j および n は、式(I)の場合と同じである。

[0078]

【化18】

式中、R $_2$ 1 は置換もしくは無置換のアリール基、A r $_2$ 0, A r $_2$ 1, A r $_2$ 2, A r $_2$ 3 は同一あるいは異なるアリレン基を表わす。 X, k, j および n は、式(I)の場合と同じである。

[0079]

【化19】

式中、R $_2$ $_2$, R $_2$ $_3$, R $_2$ $_4$, R $_2$ $_5$ は置換もしくは無置換のアリール基、A $_1$ $_2$ $_4$, A $_1$ $_2$ $_5$, A $_1$ $_2$ $_6$, A $_1$ $_2$ $_7$, A $_1$ $_2$ $_8$ は同一あるいは又は異なるアリレン基を表わす。X, k, j および n は、式(I)の場合と同じである。

[0080]

【化20】

式中、R $_2$ $_6$, R $_2$ $_7$ は置換もしくは無置換のアリール基、A r $_2$ $_9$, A r $_3$ $_1$ は同一あるいは異なるアリレン基を表わす。 $_{\rm X}$ $_{\rm K}$ $_{\rm I}$ $_{$

[0081]

以上のようにして得られた塗工液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等、従来の 塗工方法を用いることができる。感光層表面にフィラーを含有する場合には、感 光層全体にフィラーを含有させることができるが、電荷輸送層の最表面側が最もフィラー濃度が高く、支持体側が低くなるようにフィラー濃度傾斜を設けたり、電荷輸送層を複数層にして、支持体側から表面側に向かい、フィラー濃度が順次高くしたりするような構成にすることが好ましい。

[0082]

次に、感光層が単層構成 (33) の場合について述べる。上述した電荷発生物質を結着樹脂中に分散した感光体が使用できる。感光層は、電荷発生物質および電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。また、必要により可塑剤やレベリング剤、酸化防止剤等を添加することもできる。

[0083]

結着樹脂としては、先に電荷輸送層(37)で挙げた結着樹脂のほかに、電荷発生層(35)で挙げた結着樹脂を混合して用いてもよい。もちろん、先に挙げた高分子電荷輸送物質も良好に使用できる。結着樹脂100重量部に対する電荷発生物質の量は $5\sim4$ 0重量部が好ましく、電荷輸送物質の量は $0\sim1$ 90重量部が好ましく、さらに好ましくは $50\sim1$ 50重量部である。感光層は、電荷発生物質、結着樹脂を電荷輸送物質とともにテトラヒドロフラン、ジオキサン、ジクロロエタン、シクロヘキサン等の溶媒を用いて分散機等で分散した塗工液を、浸漬塗工法やスプレーコート、ビードコート、リングコートなどで塗工して形成できる。感光層の膜厚は、 $5\sim2$ 5 μ m程度が適当である。

[0084]

感光層が最表面層になるような構成においては、耐摩耗性向上のため、少なくとも感光層表面にフィラーを含有することが有効である。この場合は、電荷輸送層(37)に使用されるフィラーをすべて使用することが可能である。この場合にも、電荷輸送層の場合と同様に、感光層全体にフィラー含有することもできるが、フィラー濃度勾配を設けるか、複数層の感光層の構成とし、フィラー濃度を順次変えた構成にすることは有効な手段である。

[0085]

本発明の感光体においては、導電性支持体(31)と感光層との間に下引き層

を設けることができる。下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッドーメラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。

[0086]

これらの下引き層は、前述の感光層の如く適当な溶媒及び塗工法を用いて形成することができる。更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、A12O3を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO2、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。下引き層の膜厚は $O\sim5~\mu$ mが適当である。

[0087]

本発明の感光体においては、感光層保護の目的で、保護層(39)が感光層の上に設けられることがある。保護層(39)に使用される材料としてはABS樹脂、ACS樹脂、オレフィンービニルモノマー共重合体、塩素化ポリエーテル、アリール樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエチレン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、ポリアリレート、AS樹脂、ブタジエンースチレン共重合体、ポリウレタン、ポリ塩化ビ

ニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。フィラーの分散性、残留電位、塗膜欠陥の点から、特にポリカーボネートあるいはポリアリレートが有効かつ有用である。

[0088]

また、感光体の保護層には、耐摩耗性を向上する目的でフィラー材料を添加される。ここで用いられるフィラー材料は、電荷輸送層(37)に含有されるフィラー材料をすべて使用することができる。その中でも、無機顔料が耐摩耗性の点から好ましく、特にpHが5以上あるいは誘電率が5以上の金属酸化物は画像ボケの抑制効果が高いことからより好ましい。このような絶縁性フィラーとして、酸化チタン、アルミナ、酸化亜鉛、酸化ジルコニウム等が挙げられる。これらのpHが5以上のフィラーや誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種以上混合したりして用いることも可能である。これらのフィラー材料の中で、特に有用に用いられるフィラーとしては、α型アルミナが挙げられる。これは、絶縁性や熱安定性が高く、硬度が高いことから耐摩耗性に優れており、さらに凝集しにくい等の理由から特に有用である。

[0089]

また、これらのフィラーは少なくとも1種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。表面処理剤については、電荷輸送層(37)に適用されるものはすべて使用することが可能である。表面処理剤を単独で使用することはもちろん、2種以上混合させて処理することも可能である。表面処理量については、電荷輸送層(37)で適用される量を用いることができる。

[0090]

添加される酸価が10~400 (mgKOH/g) の有機化合物としては、電荷輸送層 (37) において記載された化合物をすべて使用することができる。ポリカルボン酸としては、少なくともカルボン酸を含有する有機化合物あるいはその誘導体はすべて使用することが可能であり、ポリエステル樹脂、アクリル樹脂

、アクリル樹脂やメタクリル樹脂を用いた共重合体、スチレンアクリル共重合体 等がより有用である。直鎖有機脂肪酸を単独あるいはポリカルボン酸と混合させ ることも可能であり、そうすることでフィラーの分散性を高める効果が増加する 場合がある。

[0091]

これらの酸価が10~400(mgKOH/g)の有機化合物の添加量としては、含有されるフィラーに対して0.01~50wt%、好ましくは0.1~20wt%であるが、必要最小量に設定することがより好ましい。添加量を必要以上に多くすると、画像ボケの影響が現れることがあり、添加量が少なすぎると残留電位の低減効果が認められなくなる。また、有機化合物の酸価としては、10~400mgKOH/g、好ましくは30~200mgKOH/gであるが、これは前記添加量とのバランスにより決めることが必要である。これよりも酸価が高い場合には、画像ボケが発生しやすくなる場合があり、酸価が低い場合には残留電位の低減効果が少なくなり、添加量を増加しても充分な効果が得られない場合がある。ただし、材料の酸価は残留電位低減効果に直接影響するものではなく、用いる有機化合物の構造あるいは分子量、フィラーの分散性等によって大きく影響される。

[0092]

耐酸化性ガス向上のために含有される一般式(化1)、(化2)で表わされる 化合物としては、電荷輸送層(37)において記載されたものが適用できる。

[0093]

用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなど、電荷輸送層(37)で使用されるすべての溶剤を使用することができる。但し、分散時には粘度が高い溶剤が好ましいが、塗工時には揮発性が高い溶剤が好ましい。これらの条件を満たす溶剤がない場合には、各々の物性を有する溶剤を2種以上混合させて使用することが可能であり、フィラーの分散性や残留電位に対して大きな効果を有する場合がある。

[0094]

また、保護層に電荷輸送層(37)で挙げた低分子電荷輸送物質あるいは高分子電荷輸送物質を添加することは、残留電位の低減及び画質向上に対して有効かつ有用である。

[0095]

前記フィラー材料は、少なくとも有機溶剤、酸価が10~400(mgKOH/g)の有機化合物等とともにボールミル、アトライター、サンドミル、超音波などの従来方法を用いて分散することができる。この中でも、フィラーと酸価が10~400(mgKOH/g)の有機化合物との接触効率を高くすることができ、外界からの不純物の混入が少ないボールミルによる分散が分散性の点からより好ましい。使用されるメディアの材質については、従来使用されているジルコニア、アルミナ、メノウ等すべてのメディアを使用することができるが、フィラーの分散性及び残留電位低減効果の点から特にアルミナを使用することがより好ましい。ジルコニアは分散時のメディアの摩耗量が大きく、それらの混入によって残留電位が著しく増加する。さらに、その摩耗粉の混入によって分散性が大きく低下し、フィラーの沈降性が促進される。一方、メディアにアルミナを使用した場合には、分散時に摩耗されるものの、摩耗量は低く抑えられる上に、混入した摩耗粉が残留電位に与える影響が非常に小さい。また、摩耗粉が混入しても分酸性に対して悪影響が少ない。従って、分散に使用するメディアにはアルミナを使用することがより好ましい。

[0096]

酸価が10~400(mgKOH/g)の有機化合物は、フィラーや有機溶剤とともに分散前より添加することによって、塗工液中のフィラーの凝集、さらにはフィラーの沈降性を抑制し、フィラーの分散性が著しく向上することから、分散前より添加することがより好ましい。一方、バインダー樹脂や電荷輸送物質は、分散前に添加することも可能であるが、その場合分散性が若干低下する場合が見られる。従って、バインダー樹脂や電荷輸送物質は、有機溶剤に溶解された状態で分散後に添加することが好ましい。

[0097]

また、フィラーの平均一次粒径は、 $0.01\sim0.5\mu$ mであることが保護層

の光透過率や耐摩耗性の点から好ましい。フィラーの平均一次粒径が 0.01μ m以下の場合は、耐摩耗性の低下、分散性の低下等を引き起こし、 0.5μ m以上の場合には、フィラーの沈降性が促進されたり、トナーのフィルミングが発生したりする可能性がある。

[0098]

保護層の形成法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の従来方法を用いることができるが、特に塗膜の均一性の面からスプレーコートがより好ましい。さらに、保護層の必要膜厚を一度で塗工し、保護層を形成することも可能であるが、2回以上重ねて塗工し、保護層を多層にする方が膜中におけるフィラーの均一性の面からより好ましい。そうすることによって、残留電位の低減、解像度の向上、及び耐摩耗性の向上に対しより一層の効果が得られる。なお、保護層の厚さは0.1~10μm程度が適当である。本発明において、酸価が10~400(mgKOH/g)の有機化合物を添加することによって、残留電位が大幅に低減させることが可能となり、それによって保護層の膜厚を自由に設定することが可能である。しかし、保護層膜厚が著しく増加すると、画質が若干劣化する傾向が認められるため、必要最小限度の膜厚に設定することが好ましい。

[0099]

本発明の感光体においては、感光層と保護層との間に中間層を設けることも可能である。中間層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。中間層の形成法としては、前述のごとく一般に用いられる塗布法が採用される。なお、中間層の厚さは $0.05\sim2\mu$ m程度が適当である。

[0100]

本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留電位の 上昇を防止する目的で、電荷発生層、電荷輸送層、下引き層、保護層、中間層等 の各層に酸化防止剤、可塑剤、滑剤、紫外線吸収剤、低分子電荷輸送物質および レベリング剤を添加することが出来る。これらの化合物の代表的な材料を以下に 記す。

[0101]

各層に添加できる酸化防止剤として、例えば下記のものが挙げられるがこれら に限定されるものではない。

- (a) フェノール系化合物
- 2, 6 \dot{y} \dot{y}

[0102]

(b) パラフェニレンジアミン類

N-7 x=2 y=1
[0103]

- (c) ハイドロキノン類

2-t-x0 チルハイドロキノン、2-(2-x0 タデセニル) - 5-x5 ナルハイドロキノンなど。

[0104]

(d) 有機硫黄化合物類

ジラウリル-3, 3'-チオジプロピオネート、ジステアリル-3, 3'-チオジプロピオネート、ジテトラデシル-3, 3'-チオジプロピオネートなど。

[0105]

(e) 有機燐化合物類

トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4-ジブチルフェノキシ)ホスフィンなど。

[0106]

各層に添加できる可塑剤として、例えば下記のものが挙げられるがこれらに限 定されるものではない。

(a) リン酸エステル系可塑剤

リン酸トリフェニル、リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル、リン酸トリクロルエチル、リン酸クレジルジフェニル、リン酸トリブチル、リン酸トリー2-エチルヘキシル、リン酸トリフェニルなど。

[0107]

(b) フタル酸エステル系可塑剤

フタル酸ジメチル、フタル酸ジエチル、フタル酸ジイソブチル、フタル酸ジブチル、フタル酸ジへプチル、フタル酸ジー2-エチルヘキシル、フタル酸ジイソオクチル、フタル酸ジーn-オクチル、フタル酸ジノニル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジトリデシル、フタル酸ジシクロヘキシル、フタル酸ブチルベンジル、フタル酸ブチルラウリル、フタル酸メチルオレイル、フタル酸オクチルデシル、フマル酸ジブチル、フマル酸ジオクチルなど。

[0108]

(c) 芳香族カルボン酸エステル系可塑剤

トリメリット酸トリオクチル、トリメリット酸トリーnーオクチル、オキシ安 息香酸オクチルなど。

[0109]

(d) 脂肪族二塩基酸エステル系可塑剤

アジピン酸ジブチル、アジピン酸ジーn-ヘキシル、アジピン酸ジー2-エチルヘキシル、アジピン酸ジーn-オクチル、アジピン酸デカプリル、アゼライン酸ジー2-エチルヘキシル、セバシン酸ジメチル、セバシン酸ジエチル、セバシン酸ジブチル、セバシン酸ジーn-オクチル、セバシン酸ジー2-エチルヘキシル、セバシン酸ジー1-オクチル、セバシン酸ジー1-オクチル、セバシン酸ジー1-オクチル、アジピン酸ジー1-オクチル、アトラヒドロフタル酸ジー1-オクチルなど。

[0110]

(e) 脂肪酸エステル誘導体

オレイン酸ブチル、グリセリンモノオレイン酸エステル、アセチルリシノール酸メチル、ペンタエリスリトールエステル、ジペンタエリスリトールへキサエステル、トリアセチン、トリブチリンなど。

$[0\ 1\ 1\ 1\]$

(f) オキシ酸エステル系可塑剤

アセチルリシノール酸メチル、アセチルリシノール酸ブチル、ブチルフタリル ブチルグリコレート、アセチルクエン酸トリブチルなど。

[0112]

(g) エポキシ可塑剤

エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ブチル、エポキシステアリン酸デシル、エポキシステアリン酸オクチル、エポキシステアリン酸ベンジル、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジデシルなど。

[0113]

(h) 二価アルコールエステル系可塑剤

ジエチレングリコールジベンゾエート、トリエチレングリコールジー2-エチ

ルブチラートなど。

[0114]

(i) 含塩素可塑剤

塩素化パラフィン、塩素化ジフェニル、塩素化脂肪酸メチル、メトキシ塩素化脂肪酸メチルなど。

[0115]

(i) ポリエステル系可塑剤

ポリプロピレンアジペート、ポリプロピレンセバケート、ポリエステル、アセチル化ポリエステルなど。

[0116]

(k) スルホン酸誘導体

p-トルエンスルホンアミド、o-トルエンスルホンアミド、p-トルエンスルホンエチルアミド、o-トルエンスルホンエチルアミド、トルエンスルホン- N-エチルアミド、p-トルエンスルホン- N-シクロヘキシルアミドなど。

[0117]

(1) クエン酸誘導体

クエン酸トリエチル、アセチルクエン酸トリエチル、クエン酸トリブチル、アセチルクエン酸トリブチル、アセチルクエン酸トリー2-エチルヘキシル、アセチルクエン酸-n-オクチルデシルなど。

[0118]

(m) その他

ターフェニル、部分水添ターフェニル、ショウノウ、2-ニトロジフェニル、 ジノニルナフタリン、アビエチン酸メチルなど。

[0119]

各層に添加できる滑剤としては、例えば下記のものが挙げられるがこれらに限 定されるものではない。

(a) 炭化水素系化合物

流動パラフィン、パラフィンワックス、マイクロワックス、低重合ポリエチレンなど。

[0120]

(b) 脂肪酸系化合物

ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、アラキジン酸、 ベヘン酸など。

[0121]

(c) 脂肪酸アミド系化合物

ステアリルアミド、パルミチルアミド、オレインアミド、メチレンビスステアロアミド、エチレンビスステアロアミドなど。

[0122]

(d) エステル系化合物

脂肪酸の低級アルコールエステル、脂肪酸の多価アルコールエステル、脂肪酸ポリグリコールエステルなど。

[0123]

(e) アルコール系化合物

セチルアルコール、ステアリルアルコール、エチレングリコール、ポリエチレングリコール、ポリグリセロールなど。

[0124]

(f) 金属石けん

ステアリン酸鉛、ステアリン酸カドミウム、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなど。

[0125]

(g) 天然ワックス

カルナウバロウ、カンデリラロウ、蜜ロウ、鯨ロウ、イボタロウ、モンタンロウなど。

[0126]

(h) その他

シリコーン化合物、フッ素化合物など。

[0127]

各層に添加できる紫外線吸収剤として、例えば下記のものが挙げられるがこれ

らに限定されるものではない。

(a) ベンゾフェノン系

2-ビドロキシベンゾフェノン、2, 4-ジビドロキシベンゾフェノン、2, 2', 4-トリビドロキシベンゾフェノン、2, 2', 4, 4'-テトラビドロキシベンゾフェノン、2, 2'-ジビドロキシ4-メトキシベンゾフェノンなど。

[0128]

(b) サルシレート系

フェニルサルシレート、2, 4ジーtーブチルフェニル3, 5ージーtーブチル4ヒドロキシベンゾエートなど。

[0129]

(c) ベンゾトリアゾール系

(2'-ヒドロキシフェニル) ベンゾトリアゾール、(2'-ヒドロキシ5'-メチルフェニル) ベンゾトリアゾール、(2'-ヒドロキシ5'-メチルフェニル) ベンゾトリアゾール、(2'-ヒドロキシ3'-ターシャリブチル5'-メチルフェニル) 5-クロロベンゾトリアゾール

[0130]

(d) シアノアクリレート系

エチルー2ーシアノー3, 3ージフェニルアクリレート、メチル2ーカルボメトキシ3 (パラメトキシ) アクリレートなど。

[0131]

(e) クエンチャー(金属錯塩系)

ニッケル(2, 2'チオビス(4-t-オクチル)フェノレート)ノルマルブチルアミン、ニッケルジブチルジチオカルバメート、ニッケルジブチルジチオカルバメート、コバルトジシクロヘキシルジチオホスフェートなど。

[0132]

(f) HALS (ヒンダードアミン)

シ〕エチル] -4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル) プロピオニルオキシ] -2, 2, 6, 6-テトラメチルピリジン、<math>8-ベンジル-7, 7, 9, 9-テトラメチル-3-オクチル-1, 3, 8-トリアザスピロ[4,5] ウンデカン-2, <math>4-ジオン、4-ベンゾイルオキシ-2, 2, 6, 6-テトラメチルピペリジンなど。

[0133]

次に、図面を用いて本発明の電子写真方法ならびに電子写真装置を詳しく説明 する。

図6は、本発明の電子写真プロセス及び電子写真装置を説明するための概略図であり、下記のような例も本発明の範疇に属するものである。

図6において、感光体(1)は少なくとも感光層が設けられ、最表面層にフィラーを含有してなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。帯電チャージャー(3)、転写前チャージャー(7)、転写チャージャー(10)、分離チャージャー(11)、クリーニング前チャージャー(13)には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラ等が用いられ、公知の手段がすべて使用可能である。

転写手段には、一般に上記の帯電器が使用できるが、図に示されるように転写 チャージャーと分離チャージャーを併用したものが効果的である。

[0134]

また、画像露光部(5)、除電ランプ(2)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。

[0135]

光源等は、図6に示される工程の他に光照射を併用した転写工程、除電工程、

クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光 が照射される。

[0136]

さて、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(9)に転写されるが、全部が転写されるわけではなく、感光体(1)上に残存するトナーも生ずる。このようなトナーは、ファーブラシ(14)およびブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。

[0137]

電子写真感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。

かかる現像手段には、公知の方法が適用されるし、また、除電手段にも公知の 方法が用いられる。

[0138]

図7には、本発明による電子写真プロセスの別の例を示す。感光体(21)は少なくとも感光層を有し、さらに最表面層にフィラーを含有しており、駆動ローラ(22a)、(22b)により駆動され、帯電器(23)による帯電、光源(24)による像露光、現像(図示せず)、帯電器(25)を用いる転写、光源(26)によるクリーニング前露光、ブラシ(27)によるクリーニング、光源(28)による除電が繰返し行なわれる。図7においては、感光体(21)(勿論この場合は支持体が透光性である)に支持体側よりクリーニング前露光の光照射が行なわれる。

[0139]

以上の図示した電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。例えば、図7において支持体側よりクリーニング前露光を行なっているが、これは感光層側から行なってもよい

ページ: 50/

し、また、像露光、除電光の照射を支持体側から行なってもよい。

一方、光照射工程は、像露光、クリーニング前露光、除電露光が図示されているが、他に転写前露光、像露光のプレ露光、およびその他公知の光照射工程を設けて、感光体に光照射を行なうこともできる。

[0140]

以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に 固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内 に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電 手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段を含んだ1 つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、 一般的な例として、図8に示すものが挙げられる。感光体(16)は、導電性支 持体上に、少なくとも感光層を有し、かつ最表面層にフィラーを含有してなる。

[0141]

【実施例】

以下、本発明について実施例を挙げて説明するが、本発明が実施例により制約 を受けるものではない。なお、部はすべて重量部である。

[0142]

(実施例1)

アルミニウムシリンダー上に下記組成の下引き層塗工液、電荷発生層塗工液、 および電荷輸送層塗工液を、浸漬塗工によって順次塗布、乾燥し、 $3.5 \mu m o$ 下引き層、 $0.2 \mu m o$ 電荷発生層、 $23 \mu m o$ 電荷輸送層を形成した。

◎下引き層塗工液

二酸化チタン粉末	4	0	0部
メラミン樹脂		6	5 部
アルキッド樹脂	1	2	0 部
2 ーブタノン	4	0	0 部

◎電荷発生層塗工液

下記構造のビスアゾ顔料

[0143]

12部

【化21】

ポリビニルブチラール

5部

2 ーブタノン

200部

シクロヘキサノン

400部

◎電荷輸送層塗工液

ポリカーボネート (Zポリカ、帝人化成製)

10部

下記構造式の電荷輸送物質

10部

[0144]

【化22】

テトラヒドロフラン

100部

[0145]

電荷輸送層上にさらに、下記組成の保護層をスプレー塗工によって約 4 μ mの保護層を形成し、電子写真感光体 1 を作製した。

◎保護層塗工液

アルミナ (平均一次粒径: 0. 3 μm、住友化学工業製)

2 部

例示化合物 1-1で表わされる化合物

0.5部

不飽和ポリカルボン酸ポリマー溶液

(酸価180mgKOH/g、BYKケミー製) 0.02部

下記構造式の電荷輸送物質

3.5部

[0146]

【化23】

ポリカーボネート(乙ポリカ、帝人化成製)

6 部

テトラヒドロフラン

220部

シクロヘキサノン

80部

[0147]

(実施例2)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更し た以外は、すべて実施例1と同様にして、電子写真感光体2を作製した。

不飽和ポリカルボン酸ポリマー

(酸価365mgKOH/g、BYKケミー製) 0.02部

[0 1 4 8]

(実施例3)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更し た以外は、すべて実施例1と同様にして、電子写真感光体3を作製した。

ポリエステル樹脂(酸価35mgKOH/g)

0.2部

[0149]

(実施例4)

ページ: 53/

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体4を作製した。

ポリエステル樹脂(酸価50mgKOH/g)

0.2部

[0150]

(実施例5)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体5を作製した。

アクリル樹脂 (酸価 6 5 m g K O H / g)

0.1部

[0 1 5 1]

(実施例6)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体6を作製した。

アクリル酸/ヒドロキシエチルメタクリレート共重合体

(酸価50mgKOH/g)

0.1部

[0152]

(実施例7)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体7を作製した。

マレイン酸モノアルキル/スチレン/ブチルアクリレート

(酸価50mgKOH/g)

0.1部

 $[0\ 1\ 5\ 3\]$

(実施例8)

実施例1において、保護層に含有されるポリカルボン酸を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体8を作製した。

スチレンアクリル共重合体

(酸価200mgKOH/g)

0.1部

[0154]

(実施例9)

実施例1において、保護層に含有されるポリカルボン酸の添加量を下記の添加

ページ: 54/

量に変更した以外は、すべて実施例1と同様にして、電子写真感光体9を作製し た。

不飽和ポリカルボン酸ポリマー溶液

(酸価365mgKOH/g、BYKケミー製) 0.002部

[0155]

(実施例10)

実施例5において、保護層に含有されるアクリル樹脂の添加量を下記の添加量 に変更した以外は、すべて実施例5と同様にして、電子写真感光体10を作製し た。

アクリル樹脂(酸価65mgKOH/g)

0.5部

[0156]

(実施例11)

実施例1において、保護層に含有されるフィラーを下記の材料に変更した以外 は、すべて実施例1と同様にして電子写真感光体11を作製した。

酸化チタン(平均一次粒径0.3μm、石原産業製)

2 部

[0157]

(実施例12)

実施例1において、保護層に含有されるフィラーを下記の材料に変更した以外 は、すべて実施例1と同様にして電子写真感光体12を作製した。

シランカップリング処理酸化チタン

(平均一次粒径0. 0 1 5 μ m、処理量 2 0 %)

2 部

[0158]

(実施例13)

実施例1において、保護層に含有されるフィラーを下記の材料に変更した以外 は、すべて実施例1と同様にして、電子写真感光体13を作製した。

シリカ (平均粒径 0. 0 1 5 μ m、信越シリコーン製)

2 部

[0159]

(実施例14)

実施例1において、保護層に含有される電荷輸送物質及びバインダー樹脂を下

記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体14 を作製した。

下記構造式の高分子電荷輸送物質

20部

[0160]

[1k, 2 4]

(実施例15)

実施例1において、保護層に含有されるバインダー樹脂を下記の材料に変更した以外は、すべて実施例1と同様にして、電子写真感光体15を作製した。

ポリアリレート樹脂(Uポリマー、ユニチカ製)

10部

[0162]

(実施例16)

実施例1において、電荷発生層塗工液、電荷輸送層塗工液及び保護層塗工液を 下記のものに変更した以外は、実施例1と同様にして、電子写真感光体16を作 製した。

電荷発生層塗工液

図9のXDスペクトルを有するチタニルフタロシアニン8部ポリビニルブチラール5部2-ブタノン400部

◎電荷輸送層塗工液

ページ: 56/

C型ポリカーボネート

10部

下記構造式の電荷輸送物質

8部

[0163]

【化25】

トルエン

70部

◎保護層塗工液

アルミナ処理酸化チタン

(平均一次粒径0.035μm、テイカ製)

1.5部

例示化合物 1-1 で表わされる化合物

0.5部

メタクリル酸/メチルメタクリレート共重合体

(酸価50mgKOH/g)

0.5部

C型ポリカーボネート (帝人化成製)

5.5部

下記構造式の電荷輸送物質

4 部

[0164]

【化26】

テトラヒドロフラン

250部

シクロヘキサノン

50部

[0165]

(比較例1)

ページ: 57/

実施例1において、保護層形成用塗工液を下記の組成に変更した以外は、すべて実施例1と同様にして、電子写真感光体17を作製した。

◎保護層塗工液

アルミナ (平均一次粒径: 0. 3 μ m、住友化学工業製)

2部

例示化合物 1-1で表わされる化合物

0.5部

下記構造式の電荷輸送物質

4部

[0166]

【化27】

ポリカーボネート(乙ポリカ、帝人化成製)

6部

テトラヒドロフラン

220部

シクロヘキサノン

80部

[0167]

(比較例2)

実施例3において、保護層形成用塗工液を下記の組成に変更した以外は、すべて実施例3と同様にして、電子写真感光体18を作製した。

◎保護層塗工液

アルミナ (平均一次粒径:0.3 μm、住友化学工業製)

2 部

例示化合物 1-1 で表わされる化合物

0.5部

ポリエステル樹脂 (酸価 7 m g K O H / g)

0. 2部

下記構造式の電荷輸送物質

4 部

[0168]

ページ: 58/

【化28】

ポリカーボネート(Zポリカ、帝人化成製)

6 部

テトラヒドロフラン

220部

シクロヘキサノン

80部

[0169]

(比較例3)

実施例1において、保護層形成用塗工液を下記の組成に変更した以外は、すべ て実施例1と同様にして、電子写真感光体19を作製した。

◎保護層塗工液

アルミナ (平均一次粒径:0.3 μm、住友化学工業製)

2部

不飽和ポリカルボン酸ポリマー溶液

(酸価180mgKOH/g、BYKケミー製) 0.02部

下記構造式の電荷輸送物質

4 部

[0170]

【化29】

ページ: 59/

ポリカーボネート (Zポリカ、帝人化成製)

6 部

テトラヒドロフラン

220部

シクロヘキサノン

80部

[0171]

(実施例17)

実施例1において、保護層に含有された例示化合物1-1で表わされる化合物 を例示化合物1-4の化合物に変更した以外は、すべて実施例1と同様にして、 電子写真感光体20を作製した。

[0172]

(実施例18)

実施例1において、保護層に含有された例示化合物1-1で表わされる化合物を例示化合物1-8化合物に変更した以外は、すべて実施例1と同様にして、電子写真感光体21を作製した。

[0173]

(実施例19)

実施例 1 において、保護層塗工液に含まれる例示化合物 1-1 で表わされる化合物を例示化合物 1-1 0 化合物に変更した以外はすべて同様にして、電子写真感光体 2 2 を作製した。

[0174]

(実施例20)

実施例1において、保護層塗工液に含まれる例示化合物1-1で表わされる化合物を例示化合物2-2に変更した以外はすべて同様にして、電子写真感光体23を作製した。

[0175]

(実施例21)

実施例20において、保護層に含有されるポリカルボン酸を実施例2のものに 変更した以外は、すべて同様にして、電子写真感光体24を作製した。

[0176]

(実施例22)

ページ: 60/

実施例20において、保護層に含有されるポリカルボン酸を実施例3のものに変更した以外は、すべて同様にして、電子写真感光体25を作製した。

[0177]

(実施例23)

実施例20において、保護層に含有されるポリカルボン酸を実施例4のものに変更した以外は、すべて同様にして、電子写真感光体26を作製した。

[0178]

(実施例24)

実施例20において、保護層に含有されるポリカルボン酸を実施例5のものに変更した以外は、すべて同様にして、電子写真感光体27を作製した。

[0179]

(実施例25)

実施例20において、保護層に含有されるポリカルボン酸を実施例6のものに変更した以外は、すべて同様にして、電子写真感光体28を作製した。

[0180]

(実施例26)

実施例20において、保護層に含有されるポリカルボン酸を実施例7のものに変更した以外は、すべて同様にして、電子写真感光体29を作製した。

[0181]

(実施例27)

実施例20において、保護層に含有されるポリカルボン酸を実施例8のものに 変更した以外は、すべて同様にして、電子写真感光体30を作製した。

[0182]

(実施例28)

実施例20において、保護層に含有されるポリカルボン酸の添加量を実施例9の添加量に変更した以外は、すべて同様にして、電子写真感光体31を作製した

[0183]

(実施例29)

実施例20において、保護層に含有されるアクリル樹脂の添加量を実施例10 の添加量に変更した以外は、すべて同様にして、電子写真感光体32を作製した

[0184]

(実施例30)

実施例20において、保護層に含有されるフィラーを実施例11のものに変更 した以外は、すべて同様にして電子写真感光体33を作製した。

[0185]

(実施例31)

実施例20において、保護層に含有されるフィラーを実施例12のものに変更 した以外は、すべて同様にして電子写真感光体34を作製した。

[0186]

(実施例32)

実施例20において、保護層に含有されるフィラーを実施例13のものに変更 した以外は、すべて同様にして、電子写真感光体35を作製した。

[0187]

(実施例33)

実施例20において、保護層に含有される電荷輸送物質及びバインダー樹脂を 実施例14のものに変更した以外は、すべて同様にして、電子写真感光体36を 作製した。

[0188]

(実施例34)

実施例20において、保護層に含有されるバインダー樹脂を実施例15のものに変更した以外は、すべて同様にして、電子写真感光体37を作製した。

[0189]

(実施例35)

実施例20において、電荷発生層塗工液、電荷輸送層塗工液を実施例16のものに変更し、かつ保護層塗工液を下記の組成に変更した以外は、すべて同様にして、電子写真感光体38を作製した。

◎保護層塗工液

アルミナ処理酸化チタン

(平均一次粒径0.035μm、テイカ製)

1.5部

例示化合物2-2で表わされる化合物

0.5部

メタクリル酸/メチルメタクリレート共重合体

(酸価50mgKOH/g)

0.5部

C型ポリカーボネート(帝人化成製)

5.5部

下記構造式の電荷輸送物質

4 部

[0190]

【化30】

テトラヒドロフラン

250部

シクロヘキサノン

50部

[0191]

(比較例4)

実施例20において、保護層形成用塗工液を下記の組成に変更した以外は、すべて同様にして、電子写真感光体39を作製した(酸価が10~400 (mgKOH/g)の有機化合物が無添加)。

◎保護層塗工液

アルミナ (平均一次粒径: 0. 3 μ m、住友化学工業製)

2部

例示化合物2-2で表わされる化合物

0.5部

下記構造式の電荷輸送物質

4 部

[0192]

6 部

【化31】

ポリカーボネート (Zポリカ、帝人化成製) テトラヒドロフラン 220部

シクロヘキサノン 80部

[0193]

(比較例5)

実施例22において、保護層形成用塗工液を下記の組成に変更した以外は、す べて同様にして、電子写真感光体40を作製した(含有有機化合物の酸価が10 (mgKOH/g) 未満)。

◎保護層塗工液

アルミナ (平均一次粒径: 0. 3 μm、住友化学工業製) 2 部 0.5部 例示化合物 2-2で表わされる化合物 ポリエステル樹脂 (酸価 7 m g K O H / g) 0. 2部 下記構造式の電荷輸送物質 4 部

[0194]

【化32】

ポリカーボネート (Zポリカ、帝人化成製)6部テトラヒドロフラン2 2 0部シクロヘキサノン8 0部

[0195]

(実施例36)

実施例20において、保護層に含有された例示化合物2-2で表わされる化合物を例示化合物2-8の化合物に変更した以外は、すべて同様にして、電子写真感光体41を作製した。

[0196]

以上のように作製した電子写真感光体1~41を、電子写真プロセス用カートリッジに装着し、帯電方式をコロナ帯電方式(スコロトロン型)、画像露光光源を655nmの半導体レーザーを用いたリコー製imagio MF2200改造機にて暗部電位900(-V)に設定した後、連続してトータル5万枚の印刷を行ない、その際初期画像及び5万枚印刷後の画像について評価を行なった。また、初期及び5万枚印刷後の明部電位を測定した。さらに、初期及び5万枚印刷後の
順厚差より摩耗量の評価を行なった。

[0197]

【表3-1】

E 以 人 人	\$11 49		E ETHENRIES		
感光体	初期	-/4 m ss	5万枚印刷後		phylic S
No.	明部電位	画像品質	明部電位	画像品質	摩耗量
	(-V)		(-V)		(μm)
1	110	良好	135	良好	0.49
2	105	良好	135	良好	0. 51
3	155	良好	205	良好	0.50
4	1 3 5	良好	200	良好	0. 51
5	140	良好	185	良好	0.50
6	110	良好	155	良好	0. 51
7	110	良好	150	良好	0.50
8	200	良好	285	画像濃度低下中	0. 56
9	120	良好	150	良好	0. 54
10	1 2 5	良好	175	良好	0. 55
11	1 3 0	良好	170	良好	0.56
12	120	良好	155	良好	0.70
13	110	良好	150	良好	0.79
14	110	良好	155	良好	0. 53
15	130	良好	170	良好	0.48
16	120	良好	165	良好	0. 44
1 7	260	画像濃度低	385	画像濃度低下大、	1. 02
(比1)		下小		判別不可	
18	240	画像濃度低	350	画像濃度低下大、	0. 93
(比2)		下小		判別不可	
19	1 2 0	良好	150	解像度低下大	0. 50
(比3)					
20	115	良好	140	良好	0. 50

[0198]

【表3-2】

感光体	初期		5万枚印刷後		
No.	明部電位	画像品質	明部電位	画像品質	摩耗量
	(-V)		(-V)		(μm)
2 2	110	良好	1 4 5	良好	0.50
2 3	115	良好	140	良好	0. 49
2 4	110	良好	150	良好	0.50
2 5	160	良好	210	良好	0.49
2 6	140	良好	200	良好	0. 52
2 7	145	良好	190	良好	0. 51
2 8	120	良好	165	良好	0. 52
2 9	115	良好	155	良好	0.50
3 0	200	良好	295	画像濃度低下小	0. 52
3 1	125	良好	160	良好	0. 52
3 2	125	良好	180	良好	0. 59
3 3	1 3 5	良好	180	良好	0. 57
3 4	125	良好	165	良好	0.72
3 5	115	良好	160	良好	0.79
3 6	115	良好	160	良好	0. 52
3 7	1 3 5	良好	170	良好	0.49
3 8	1 3 0	良好	170	良好	0.44
3 9	2 7 5	画像濃度低	405	画像濃度低下大、	1. 03
(比4)				判別不可	
4 0	2 4 5	画像濃度低	360	画像濃度低下大、	0.93
(比5)				判別不可	
4 1	120	良好	1 4 5	良好	0. 51

[0199]

表3の評価結果より、感光体の最表面層に酸価が10~400(mgKOH/g)の有機化合物を添加することによって、明部電位を大幅に低減することが可能となった。さらに、5万枚印刷後においても明部電位上昇は少なく、一般式(化1)、(化2)で表わされる化合物を添加した感光体では高画質画像が安定に得られることが確認された。また、それと同時に摩耗量についても抑制されており、耐摩耗性が大幅に向上していることが確認された。一方、酸価が10~400(mgKOH/g)の有機化合物が無添加の感光体や酸価が10(mgKOH/g)以下の感光体は、明部電位が初期から非常に高く、画像濃度の低下や解像度の低下を引き起こしており、5万枚印刷後では階調性が著しく低下したことによって画像の判別が不可能であった。さらに、これらの感光体は、印刷後の摩耗量が著しく増加しており、耐摩耗性の低下が顕著に見られた。

[0200]

また、電子写真感光体 1、 $19 \sim 23$ 、 41 についてを 50 p p m の窒素酸化物ガス濃度に調整されたデシケータ中に 4 日間放置し、前後における画像(解像度)評価を行なった。

[0201]

【表 4 】

感光体No.	初期画像品質	放置後画像品質		
	解像度(本/mm)	解像度(本/mm)		
1	8. 0	8. 0		
19 (比3)	8. 0	2. 8		
2 0	8. 0	8. 0		
2 1	8. 0	8. 0		
2 2	8. 0	8. 0		
2 3	8. 0	8. 0		
4 1	8. 0	8. 0		

[0202]

表4の評価結果より、感光体の最表面に一般式(化1)、(化2)で表わされ

ページ: 68/

る化合物を含有させることによって、酸化性ガスに対する耐性が大幅に向上する ことがわかる。

[0203]

(実施例37)

下記の組成の電子写真感光体保護層形成用塗工液Bを作製した。

◎保護層塗工液

アルミナ (平均一次粒径: 0.3 μm、住友化学工業製)

2部

例示化合物 1-1で表わされる化合物

0.5部

不飽和ポリカルボン酸ポリマー溶液

(酸価180mgKOH/g、BYKケミー製)

0.02部

下記構造式の電荷輸送物質

3.5部

[0204]

【化33】

ポリカーボネート (Zポリカ、帝人化成製)

6 部

下記構造式のハイドロキノン系化合物

0.005部

[0205]

【化34】

ページ: 69/

テトラヒドロフラン

220部

シクロヘキサノン

80部

[0206]

(実施例38)

実施例37において、電子写真感光体保護層形成用塗工液Bに含まれるハイドロキノン系化合物を下記構造式のヒンダードアミン系化合物に変更した以外は、同様にして電子写真感光体保護層形成用塗工液Cを作製した。

[0207]

【化35】

(実施例39)

実施例37において、電子写真感光体保護層形成用塗工液Bに含まれるハイドロキノン系化合物を下記構造式の有機硫黄系化合物に変更した以外は、同様にして電子写真感光体保護層形成用塗工液Dを作製した。

[0209]

【化36】

[0210]

(実施例40)

実施例37において、電子写真感光体保護層形成用塗工液Bに含まれるハイド

ロキノン系化合物を下記構造式のヒンダードフェノール系化合物に変更した以外 は、同様にして電子写真感光体保護層形成用塗工液 E を作製した。

【化37】

$$(CH_3)_3C$$
 CH_3
 CH_3

[0212]

(実施例41)

実施例37において、電子写真感光体保護層形成用塗工液Bに含まれるハイドロキノン系化合物を下記構造式の有機燐系化合物に変更した以外は、同様にして電子写真感光体保護層形成用塗工液Fを作製した。

【化38】

[0214]

(実施例42~46)

実施例37~41において、電子写真感光体保護層形成用塗工液B~Fに含まれる例示化合物1-1で表わされる化合物を例示化合物2-2に変更した以外は、すべて同様にして電子写真感光体保護層形成用塗工液H~Lを作製した。

[0215]

以上のようにして作製された実施例1 (電子写真感光体保護層形成用塗工液A

)、実施例20(電子写真感光体保護層形成用塗工液G)、実施例37~46に おける電子写真感光体保護層形成用塗工液B~Lについて、室温環境下、暗所に て1週間静置保存し、塗工液の分光吸収特性変化を確認した。

[0216]

【表 5】

	6 6 5 n mにおける吸光度変化率
塗工液A	1. 21
塗工液B	1. 01
塗工液 C	1. 02
塗工液D	1. 10
塗工液E	1. 11
塗工液 F	1. 12
塗工液G	1. 22
塗工液H	1. 02
塗工液 I	1. 04
<u>塗工液</u> J	1. 11
塗工液K	1. 13
塗工液 L	1. 15

[0217]

【数1】

(吸光度変化率) = (保存後における塗工液の吸光度) / (塗工液作製直後の吸光度)

[0218]

表5の結果により、酸化防止剤を添加することによって、塩の生成が抑制され、電子写真感光体保護層形成用塗工液の保存安定性が大幅に向上し、特にハイドロキノン系化合物、及びヒンダードアミン系化合物において、その改善効果が顕著であることがわかる。

[0219]

【発明の効果】

以上、詳細かつ具体的な説明から明らかなように、本発明により、高耐久化のために感光体の最表面層にフィラーを含有させ、それによって発生しやすくなる画像ボケは、フィラーに絶縁性の高いフィラーを使用することによって回避した。さらに、それによって顕著に起こる残留電位上昇に対しては、酸価が10~400(mgKOH/g)の有機化合物を含有させることによって、抑制できることを見出した。酸価が10~400(mgKOH/g)の有機化合物の添加効果は、残留電位の抑制だけに留まらず、フィラーの分散性を向上させ、同時に沈降抑制効果が得られたことにより、膜の透明性が向上し画像濃度ムラのない高解像度を有する画像を得ることが可能となった。同時に一般式(化1)~(化2で表わされる化合物を含有することにより、酸化性ガスなどに対する環境耐性が大幅に向上し、さらに、耐摩耗性の向上や塗膜欠陥の抑制が実現された上、塗工液の高寿命化が実現されたことにより、高耐久性を有し、かつ高解像度の画質が得られる感光体を安定に得ることが可能となった。本発明によって、電子写真感光体の高耐久化と高画質化の両立が実現され、高画質画像が長期に渡って安定に得られる電子写真感光体が提供されるという極めて優れた効果を奏するものである。

【図面の簡単な説明】

【図1】

本発明に用いられる電子写真感光体の層構成を表わした図である。

【図2】

本発明に用いられる別の電子写真感光体の層構成を表わした図である。

【図3】

本発明に用いられる別の電子写真感光体の層構成を表わした図である。

【図4】

本発明に用いられる別の電子写真感光体の層構成を表わした図である。

【図5】

本発明に用いられる別の電子写真感光体の層構成を表わした図である。

【図6】

本発明の電子写真プロセス及び電子写真装置を説明するための図である。

【図7】

本発明の別の電子写真をプロセス及び電子写真装置を説明するための図である

0

【図8】

本発明の電子写真装置用プロセスカートリッジを説明するための図である。

【図9】

実施例16で用いたチタニルフタロシアニンのXDスペクトルを表わした図である。

【符号の説明】

- 1 感光体
- 2 除電ランプ
- 3 帯電チャージャー
- 4 イレーサ
- 5 画像露光部
- 6 現像ユニット
- 7 転写前チャージャー
- 8 レジストローラ
- 9 転写紙
- 10 転写チャージャー
- 11 分離チャージャー
- 12 分離爪
- 13 クリーニング前チャージャー
- 14 ファーブラシ
- 15 ブレード
- 16 感光体
- 17 帯電チャージャ
- 18 クリーニングブラシ
- 19 画像露光部
- 2 1 感光体

ページ: 74/E

- 22a 駆動ローラ
- 22b 駆動ローラ
- 23 帯電ローラ
- 24 像露光源
- 25 転写チャージャ
- 26 クリーニング前露光
- 27 クリーニングブラシ
- 28 除電光源
- 3 1 導電性支持体
- 3 3 感光層
- 35 電荷発生層
- 37 電荷輸送層
- 3 9 保護層

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

[図5]

【図6】

【図7】

【図8】

【要約】

【課題】 高耐久性を有し、かつ残留電位上昇、あるいは画像ボケの発生による 画像劣化を抑制し、長期間の繰り返し使用に対しても高画質画像が安定に得られ る感光体を提供し、また、それらの感光体を用いることにより、感光体の交換が 不要で、かつ高速印刷あるいは感光体の小径化に伴う装置の小型化を実現し、さ らに繰り返し使用においても高画質画像が安定に得られる電子写真方法、電子写 真装置、ならびに電子写真用プロセスカートリッジを提供すること。

【解決手段】 導電性支持体上に形成された感光層の最表面層にフィラーを含有する電子写真感光体において、該電子写真感光体の最表面層に少なくとも酸価が 10~400 (mgKOH/g) の有機化合物、及び下記一般式で表わされる化合物から選ばれる少なくとも一種を含有することを特徴とする電子写真感光体。

【化1】

(式中、 R^1 、 R^2 は、置換もしくは無置換のアルキル基、芳香族炭化水素環基を表わし、同一でも異なっていてもよい。また、 R^1 、 R^2 は互いに結合し窒素原子を含む置換もしくは無置換の複素環基を形成してもよい。 R^3 、 R^4 、 R^5 は置換もしくは無置換のアルキル基、アルコキシ基、もしくはハロゲン原子を表わす。Arは置換もしくは無置換の芳香族炭化水素環基、芳香族複素環基を、Xは酸素原子、硫黄原子を表わす。nは $2\sim4$ の、k、l、mはそれぞれ $0\sim3$ の整数を表わす。)

【選択図】 図1

特願2002-276629

出願人履歴情報

識別番号

[000006747]

1. 変更年月日 [変更理由]

1990年 8月24日 新規登録

住 所 氏 名 東京都大田区中馬込1丁目3番6号株式会社リコー

2. 変更年月日 [変更理由] 住 所

2002年 5月17日

住所変更

東京都大田区中馬込1丁目3番6号

氏 名 株式会社リコー