Econ 711 – Fall 2020 – Problem Set 4 – Solutions

Question 1. Choice rules from preferences

Let X be a choice set and \succeq a complete and transitive preference relation on X. Show that the choice rule induced by \succeq ,

$$C(A, \succsim) = \{x \in A : x \succsim y \ \forall y \in A\}$$

must satisfy the Weak Axiom of Revealed Preference (WARP).

We want to show that if $x, y \in A \cap B$, with $x \in C(A, \succeq)$ and $y \in C(B, \succeq)$, then $x \in C(B, \succeq)$ and $y \in C(A, \succeq)$. To show $x \in C(B, \succeq)$:

- If $x \in C(A, \succeq)$ and $y \in A$, then by definition of $C(\cdot, \succeq)$, $x \succeq y$
- If $y \in C(B, \succeq)$, then $y \succeq z$ for every $z \in B$
- By transitivity, $x \succsim y$ and $y \succsim z$ implies $x \succsim z$ for every $z \in B$ (including y)
- Since in addition we know $x \in B$, this implies $x \in C(B, \succeq)$.

Similarly, for $y \in C(A, \succeq)$:

• Similarly, if $y \in C(B, \succeq)$ and $x \in B$, then $y \succeq x$; if $x \in C(A, \succeq)$, then $x \succeq z$ for every $z \in A$, so by transitivity, $y \succeq z$ for every $z \in A$, and therefore (since $y \in A$) $y \in C(A, \succeq)$.

Question 2. Preferences from choice rules

Let X be a choice set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ a nonempty choice rule. Show that if C satisfies WARP, then the preference relation \succeq_C defined on X by

```
x \succsim_C y if and only if there exists a set A \subseteq X such that x, y \in A and x \in C(A)
```

is complete and transitive, and that the choice rule it induces, $C(\cdot, \succsim_C)$, is equal to C.

For completeness, note that since C is nonempty, for any $x, y \in X$, $C(\{x, y\}) \neq \emptyset$, and therefore either $x \in C(\{x, y\})$ or $y \in C(\{x, y\})$ (or both). In the first case, that establishes that $x \succsim_C y$; in the second case, $y \succsim_C x$; thus, at least one of these must be true, so preferences are complete.

For transitivity, suppose that $x \succeq_C y$ and $y \succeq_C z$; we want to show that $x \succeq_C z$, meaning we need to find a set D containing x and z such that $x \in C(D)$. Let $D = \{x, y, z\}$. Since C is non-empty, C(D) must contain either x, y, or z (or more than one of them). Consider these three cases:

- If C(D) contains x, our proof is done D would be a set containing x and z with $x \in C(D)$, proving $x \succsim_C z$.
- Suppose C(D) contains y. Let A be a set containing x and y with $x \in C(A)$; since $x \succsim_C y$, we know such a set must exist. So x and y are both in D and both in A, with $y \in C(D)$ and $x \in C(A)$. Since C satisfies WARP, this implies $x \in C(D)$, which proves $x \succsim_C z$.

• Finally, suppose C(D) contains z. Let B be a set containing y and z with $y \in C(B)$, which must exist because $y \succsim_C z$. y and z are both in D and B, with $y \in C(B)$ and $z \in C(D)$; by WARP, $y \in C(D)$. We showed in the last step that if $y \in C(D)$ then $x \in C(D)$ as well; so $x \in C(D)$, proving $x \succsim_C z$.

Finally, we need to show that for any set A, $C(A, \succsim_C) = C(A)$, meaning $x \in C(A, \succsim_C)$ implies $x \in C(A)$ and vice versa:

- First, fix $A \subseteq X$, and pick $x \in C(A)$; we'll show $x \in C(A, \succsim_C)$. For any other $z \in A$, A is a set containing x and z with $x \in C(A)$, so $x \succsim_C z$; so $x \succsim_C z$ for every $z \in A$, implying $x \in C(A, \succsim_C)$.
- Second, fix $A \subseteq X$, and pick $x \in C(A, \succsim_C)$; we'll show $x \in C(A)$. We know C(A) is nonempty, so pick $y \in C(A)$. If y = x, we're done. If not, we know $x \in C(A, \succsim_C)$, so by definition, $x \succsim_C z$ for every $z \in A$, meaning $x \succsim_C y$, meaning there exists a set B with $x, y \in B$ and $x \in C(B)$; since x and y are both in A and B, with $x \in C(B)$ and $y \in C(A)$, WARP implies $x \in C(A)$.

Thus, $C(A) = C(A, \succsim_C)$, or \succsim_C induces the choice rule $C(\cdot)$.

Question 3. Choice over finite sets

Let X be a finite set, and \succeq a complete and transitive preference relation on X.

(a) Show that the induced choice rule $C(\cdot, \succeq)$ is nonempty – that $C(A, \succeq) \neq \emptyset$ if $A \neq \emptyset$.

We want to show that if $A \neq \emptyset$, then $C(A, \succeq) \neq \emptyset$; and we'll show this by induction on |A|, the number of elements in A. When |A| = 1, $A = \{x\}$; by completeness, $x \succeq x$, and therefore $x \succeq y$ for every $y \in A$, so $x \in C(A)$, proving the "base case".

So suppose we know that $C(\cdot, \succeq)$ is nonempty on all sets with k or fewer elements, and let |A| = k+1. Pick some element $z \in A$, and let $B = A - \{z\}$. Note that |B| = k, and therefore we know $C(B, \succeq) \neq \emptyset$; choose $x \in C(B, \succeq)$. We know $x \succeq y$ for every $y \in B$.

By completeness, either $x \succeq z$ or $z \succeq x$. If $x \succeq z$, then $x \succeq y$ for every $y \in A$, and therefore $x \in C(A, \succeq)$. If $z \succeq x$, then by transitivity, $z \succeq y$ for every $y \in B$, and therefore $z \succeq y$ for every $y \in A$, and therefore $z \in C(A, \succeq)$. So either way, $C(A, \succeq)$ is nonempty, proving the inductive step.

(b) Show that a utility representation exists.

We'll prove a slightly stronger result: that complete, transitive preferences over a finite set X can be represented by a utility function whose range is $\{1, 2, 3, ..., |X|\}$. We will prove this by induction on the size of the set X. If |X| = 1, then $X = \{x\}$, and defining u(x) = 1 allows us to represent the preferences $x \succeq x$ (since u(x) = u(x)).

So suppose we know that complete, transitive preferences over a set of size k or less can be represented by a utility function with range $\{1, 2, ..., k\}$. Let X be a set of size k + 1. We just

proved in part (a) that $C(X, \succeq)$ is nonempty, which means that $Y = X - C(X, \succeq)$ is a set with at most k elements. By our inductive assumption, \succeq has a utility representation on Y with range $\{1, 2, \ldots, k\}$; let v be such a utility function. Now define a new function u on X by

$$u(x) = \begin{cases} k+1 & \text{if } x \in C(X, \succeq) \\ v(x) & \text{otherwise} \end{cases}$$

We need to show that $u(\cdot)$ represents the preferences \succeq , meaning $u(x) \ge u(y)$ if and only if $x \succeq y$.

First, suppose $x \gtrsim y$; we'll show this implies $u(x) \ge u(y)$

- We'll consider three cases: $y \in C(X, \succeq)$, $x \in C(X, \succeq)$, and $x, y \notin C(X, \succeq)$.
- If $y \in C(X, \succeq)$, then $y \succeq z$ for every $z \in X$; since $x \succeq y$, by transitivity, $x \succeq z$ for every $z \in X$, so $x \in C(X, \succeq)$. In this case, u(x) = u(y) = k + 1, so $u(x) \ge u(y)$.
- If $x \in C(X, \succeq)$, then u(x) = k + 1; since $u(y) \le k + 1$, $u(x) \ge u(y)$.
- Finally, if $x, y \notin C(X, \succeq)$, then u(x) = v(x) and u(y) = v(y). Since $v(\cdot)$ represents the preferences \succeq and $x \succeq y$, $v(x) \ge v(y)$, and therefore $u(x) \ge u(y)$.

Thus, $x \succeq y$ implies $u(x) \ge u(y)$. Now suppose $u(x) \ge u(y)$; we'll show this implies $x \succeq y$.

- If u(x) = k + 1, then $x \in C(X, \succeq)$, meaning $x \succeq z$ for every $z \in x$, meaning $x \succeq y$.
- If u(x) < k+1, then $u(y) \le u(x) < k+1$ as well, so u(x) = v(x) and u(y) = v(y). Since $v(\cdot)$ represents preferences \succeq , $v(x) \ge v(y)$ implies $x \succeq y$.

Thus, $u(x) \ge u(y)$ implies $x \succeq y$.

So $u(x) \ge u(y)$ if and only if $x \succsim y$; so the utility function $u(\cdot)$ represents the preferences \succsim .