```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib as plt
   import seaborn as sns
   import matplotlib.pyplot as pl
   import math
```

```
In [2]: data=pd.read_csv("C:/Users/Admin/Downloads/titanic.csv")
```

Out[3]:

	pclass	survived	name	sex	age	sibsp	parch	fare	embarked
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0	0	0	211.3375	S
1	1	0	Allison, Miss. Helen Loraine	female	2.0	1	2	151.5500	S
2	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0	1	2	151.5500	S
3	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0	1	2	151.5500	S
4	1	1	Anderson, Mr. Harry	male	48.0	0	0	26.5500	S
5	1	0	Andrews, Mr. Thomas Jr	male	39.0	0	0	0.0000	S
6	1	1	Appleton, Mrs. Edward Dale (Charlotte Lamson)	female	53.0	2	0	51.4792	S
7	1	0	Astor, Col. John Jacob	male	47.0	1	0	227.5250	С
8	1	1	Astor, Mrs. John Jacob (Madeleine Talmadge Force)	female	18.0	1	0	227.5250	С
9	1	1	Aubart, Mme. Leontine Pauline	female	24.0	0	0	69.3000	С
10	1	1	Barber, Miss. Ellen "Nellie"	female	26.0	0	0	78.8500	S
11	1	0	Baumann, Mr. John D	male	NaN	0	0	25.9250	S
12	1	0	Baxter, Mr. Quigg Edmond	male	24.0	0	1	247.5208	С
13	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	247.5208	С
14	1	1	Bazzani, Miss. Albina	female	32.0	0	0	76.2917	С
15	1	0	Beattie, Mr. Thomson	male	36.0	0	0	75.2417	С
16	1	1	Beckwith, Mr. Richard Leonard	male	37.0	1	1	52.5542	S
17	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	52.5542	S
18	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	30.0000	С
19	1	1	Bidois, Miss. Rosalie	female	42.0	0	0	227.5250	С
20	1	1	Bird, Miss. Ellen	female	29.0	0	0	221.7792	S
21	1	0	Birnbaum, Mr. Jakob	male	25.0	0	0	26.0000	С
22	1	1	Bishop, Mr. Dickinson H	male	25.0	1	0	91.0792	С
23	1	1	Bishop, Mrs. Dickinson H (Helen Walton)	female	19.0	1	0	91.0792	С
24	1	1	Bissette, Miss. Amelia	female	35.0	0	0	135.6333	S
25	1	1	Bjornstrom-Steffansson, Mr. Mauritz Hakan	male	28.0	0	0	26.5500	S
26	1	0	Blackwell, Mr. Stephen Weart	male	45.0	0	0	35.5000	S
27	1	1	Blank, Mr. Henry	male	40.0	0	0	31.0000	С
28	1	1	Bonnell, Miss. Caroline	female	30.0	0	0	164.8667	S
29	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	26.5500	S
1227	3	0	Vander Planke, Miss. Augusta Maria	female	18.0	2	0	18.0000	S
1228	3	0	Vander Planke, Mr. Julius	male	31.0	3	0	18.0000	S
1229	3	0	Vander Planke, Mr. Leo Edmondus	male	16.0	2	0	18.0000	S

	pclass	survived	name	sex	age	sibsp	parch	fare	embarked
1230	3	0	Vander Planke, Mrs. Julius (Emelia Maria Vande	female	31.0	1	0	18.0000	S
1231	3	1	Vartanian, Mr. David	male	22.0	0	0	7.2250	С
1232	3	0	Vendel, Mr. Olof Edvin	male	20.0	0	0	7.8542	S
1233	3	0	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	7.8542	S
1234	3	0	Vovk, Mr. Janko	male	22.0	0	0	7.8958	S
1235	3	0	Waelens, Mr. Achille	male	22.0	0	0	9.0000	S
1236	3	0	Ware, Mr. Frederick	male	NaN	0	0	8.0500	S
1237	3	0	Warren, Mr. Charles William	male	NaN	0	0	7.5500	S
1238	3	0	Webber, Mr. James	male	NaN	0	0	8.0500	S
1239	3	0	Wenzel, Mr. Linhart	male	32.5	0	0	9.5000	S
1240	3	1	Whabee, Mrs. George Joseph (Shawneene Abi-Saab)	female	38.0	0	0	7.2292	С
1241	3	0	Widegren, Mr. Carl/Charles Peter	male	51.0	0	0	7.7500	S
1242	3	0	Wiklund, Mr. Jakob Alfred	male	18.0	1	0	6.4958	S
1243	3	0	Wiklund, Mr. Karl Johan	male	21.0	1	0	6.4958	S
1244	3	1	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	7.0000	S
1245	3	0	Willer, Mr. Aaron ("Abi Weller")	male	NaN	0	0	8.7125	S
1246	3	0	Willey, Mr. Edward	male	NaN	0	0	7.5500	S
1247	3	0	Williams, Mr. Howard Hugh "Harry"	male	NaN	0	0	8.0500	S
1248	3	0	Williams, Mr. Leslie	male	28.5	0	0	16.1000	S
1249	3	0	Windelov, Mr. Einar	male	21.0	0	0	7.2500	S
1250	3	0	Wirz, Mr. Albert	male	27.0	0	0	8.6625	S
1251	3	0	Wiseman, Mr. Phillippe	male	NaN	0	0	7.2500	S
1252	3	0	Wittevrongel, Mr. Camille	male	36.0	0	0	9.5000	S
1253	3	0	Yasbeck, Mr. Antoni	male	27.0	1	0	14.4542	С
1254	3	1	Yasbeck, Mrs. Antoni (Selini Alexander)	female	15.0	1	0	14.4542	С
1255	3	0	Youseff, Mr. Gerious	male	45.5	0	0	7.2250	С
1256	3	0	Yousif, Mr. Wazli	male	NaN	0	0	7.2250	С

1257 rows × 9 columns

In [4]: data.shape

Out[4]: (1257, 9)

In [5]: data.head()

Out[5]:

	pclass	survived	name	sex	age	sibsp	parch	fare	embarked
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0	0	0	211.3375	S
1	1	0	Allison, Miss. Helen Loraine	female	2.0	1	2	151.5500	S
2	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0	1	2	151.5500	S
3	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0	1	2	151.5500	S
4	1	1	Anderson, Mr. Harry	male	48.0	0	0	26.5500	S

In [6]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1257 entries, 0 to 1256 Data columns (total 9 columns): pclass 1257 non-null int64 survived 1257 non-null int64 name 1257 non-null object 1257 non-null object sex 996 non-null float64 age 1257 non-null int64 sibsp parch 1257 non-null int64 1257 non-null float64 fare 1257 non-null object embarked dtypes: float64(2), int64(4), object(3)

memory usage: 88.5+ KB

In [7]: data.describe()

Out[7]:

	pclass	survived	age	sibsp	parch	fare
count	1257.000000	1257.000000	996.000000	1257.000000	1257.000000	1257.000000
mean	2.310263	0.382657	29.070783	0.501989	0.377884	32.720896
std	0.831791	0.486229	12.819750	1.056616	0.863035	51.127788
min	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	2.000000	0.000000	21.000000	0.000000	0.000000	7.895800
50%	3.000000	0.000000	28.000000	0.000000	0.000000	14.400000
75%	3.000000	1.000000	37.000000	1.000000	0.000000	31.000000
max	3.000000	1.000000	60.000000	8.000000	9.000000	512.329200

```
In [8]:
         data.isnull().sum()
Out[8]: pclass
                        0
                        0
         survived
                        0
         name
                        0
         sex
         age
                      261
         sibsp
                        0
                        0
         parch
         fare
                        0
         embarked
                        0
         dtype: int64
```

In [9]: | import seaborn as sns

In [10]: sns.countplot(x="survived",data=data)

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x9b81780>

In [11]: sns.countplot(x="survived",hue="sex",data=data)

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0xb2da0f0>

In [12]: sns.countplot(x="survived",hue="pclass",data=data)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0xb0715c0>


```
In [13]: data.isnull().sum()
Out[13]: pclass    0
survived    0
```

name 0
sex 0
age 261
sibsp 0
parch 0
fare 0
embarked 0

dtype: int64

In [14]: sns.heatmap(data.isnull())

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0xb263470>

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1257 entries, 0 to 1256 Data columns (total 9 columns): pclass 1257 non-null int64 1257 non-null int64 survived 1257 non-null object name 1257 non-null object sex 996 non-null float64 age 1257 non-null int64 sibsp parch 1257 non-null int64 fare 1257 non-null float64 1257 non-null object embarked dtypes: float64(2), int64(4), object(3) memory usage: 88.5+ KB

In [15]:

data.info()

In [16]: f, ax=pl.subplots(figsize=(10,8))
 corr=data.corr()
 sns.heatmap(corr,mask=np.zeros_like(corr,dtype=np.bool),cmap=sns.diverging_palette(240,10,

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0xb40f898>


```
In [17]: data['age'].plot.hist()
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0xb51fb70>


```
In [18]: data['age'].fillna(data['age'].mean(),inplace=True)
In [19]: data.isnull().sum()
Out[19]: pclass
                      0
         survived
                      0
                      0
         name
         sex
         age
                      0
         sibsp
                      0
         parch
                      0
         fare
                      0
         embarked
         dtype: int64
```

In [20]: sns.heatmap(data.isnull())

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0xb511be0>

In [21]: data['fare'].plot.hist()

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0xb84e748>

In [22]: data['sibsp'].plot.hist()

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0xba530b8>

In [23]: data['parch'].plot.hist()

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0xbad4978>

In [24]: sns.boxplot(x="pclass",y="age",data=data)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0xbb9d0f0>

In [25]: sns.boxplot(x="age",data=data)

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0xbb3ecf8>

In [26]: data['age']=np.where(data['age']>52,51,data['age'])

In [27]: sns.boxplot(data['age'])

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0xbc84080>


```
In [28]: data['age']=np.where(data['age']<4,4,data['age'])</pre>
```

In [29]: sns.boxplot(data['age'])

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0xbc0c390>

In [30]: data

Out[30]:

	pclass	survived	name	sex	age	sibsp	parch	fare	embarked
0	1	1	Allen, Miss. Elisabeth Walton	female	29.000000	0	0	211.3375	S
1	1	0	Allison, Miss. Helen Loraine	female	4.000000	1	2	151.5500	S
2	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.000000	1	2	151.5500	S
3	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.000000	1	2	151.5500	S
4	1	1	Anderson, Mr. Harry	male	48.000000	0	0	26.5500	S
5	1	0	Andrews, Mr. Thomas Jr	male	39.000000	0	0	0.0000	S
6	1	1	Appleton, Mrs. Edward Dale (Charlotte Lamson)	female	51.000000	2	0	51.4792	S
7	1	0	Astor, Col. John Jacob	male	47.000000	1	0	227.5250	С
8	1	1	Astor, Mrs. John Jacob (Madeleine Talmadge Force)	female	18.000000	1	0	227.5250	С
9	1	1	Aubart, Mme. Leontine Pauline	female	24.000000	0	0	69.3000	С
10	1	1	Barber, Miss. Ellen "Nellie"	female	26.000000	0	0	78.8500	S
11	1	0	Baumann, Mr. John D	male	29.070783	0	0	25.9250	S
12	1	0	Baxter, Mr. Quigg Edmond	male	24.000000	0	1	247.5208	С
13	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.000000	0	1	247.5208	С
14	1	1	Bazzani, Miss. Albina	female	32.000000	0	0	76.2917	С
15	1	0	Beattie, Mr. Thomson	male	36.000000	0	0	75.2417	С
16	1	1	Beckwith, Mr. Richard Leonard	male	37.000000	1	1	52.5542	S
17	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.000000	1	1	52.5542	S
18	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	30.0000	С
19	1	1	Bidois, Miss. Rosalie	female	42.000000	0	0	227.5250	С
20	1	1	Bird, Miss. Ellen	female	29.000000	0	0	221.7792	S
21	1	0	Birnbaum, Mr. Jakob	male	25.000000	0	0	26.0000	С
22	1	1	Bishop, Mr. Dickinson H	male	25.000000	1	0	91.0792	С
23	1	1	Bishop, Mrs. Dickinson H (Helen Walton)	female	19.000000	1	0	91.0792	С
24	1	1	Bissette, Miss. Amelia	female	35.000000	0	0	135.6333	S
25	1	1	Bjornstrom-Steffansson, Mr. Mauritz Hakan	male	28.000000	0	0	26.5500	S
26	1	0	Blackwell, Mr. Stephen Weart	male	45.000000	0	0	35.5000	S
27	1	1	Blank, Mr. Henry	male	40.000000	0	0	31.0000	С
28	1	1	Bonnell, Miss. Caroline	female	30.000000	0	0	164.8667	S
29	1	1	Bonnell, Miss. Elizabeth	female	51.000000	0	0	26.5500	S
1227	3	0	Vander Planke, Miss. Augusta Maria	female	18.000000	2	0	18.0000	S

	pclass	survived	name	sex	age	sibsp	parch	fare	embarked
1228	3	0	Vander Planke, Mr. Julius	male	31.000000	3	0	18.0000	S
1229	3	0	Vander Planke, Mr. Leo Edmondus	male	16.000000	2	0	18.0000	S
1230	3	0	Vander Planke, Mrs. Julius (Emelia Maria Vande	female	31.000000	1	0	18.0000	S
1231	3	1	Vartanian, Mr. David	male	22.000000	0	0	7.2250	С
1232	3	0	Vendel, Mr. Olof Edvin	male	20.000000	0	0	7.8542	S
1233	3	0	Vestrom, Miss. Hulda Amanda Adolfina	female	14.000000	0	0	7.8542	S
1234	3	0	Vovk, Mr. Janko	male	22.000000	0	0	7.8958	S
1235	3	0	Waelens, Mr. Achille	male	22.000000	0	0	9.0000	S
1236	3	0	Ware, Mr. Frederick	male	29.070783	0	0	8.0500	S
1237	3	0	Warren, Mr. Charles William	male	29.070783	0	0	7.5500	S
1238	3	0	Webber, Mr. James	male	29.070783	0	0	8.0500	S
1239	3	0	Wenzel, Mr. Linhart	male	32.500000	0	0	9.5000	S
1240	3	1	Whabee, Mrs. George Joseph (Shawneene Abi-Saab)	female	38.000000	0	0	7.2292	С
1241	3	0	Widegren, Mr. Carl/Charles Peter	male	51.000000	0	0	7.7500	S
1242	3	0	Wiklund, Mr. Jakob Alfred	male	18.000000	1	0	6.4958	S
1243	3	0	Wiklund, Mr. Karl Johan	male	21.000000	1	0	6.4958	S
1244	3	1	Wilkes, Mrs. James (Ellen Needs)	female	47.000000	1	0	7.0000	S
1245	3	0	Willer, Mr. Aaron ("Abi Weller")	male	29.070783	0	0	8.7125	S
1246	3	0	Willey, Mr. Edward	male	29.070783	0	0	7.5500	S
1247	3	0	Williams, Mr. Howard Hugh "Harry"	male	29.070783	0	0	8.0500	S
1248	3	0	Williams, Mr. Leslie	male	28.500000	0	0	16.1000	S
1249	3	0	Windelov, Mr. Einar	male	21.000000	0	0	7.2500	S
1250	3	0	Wirz, Mr. Albert	male	27.000000	0	0	8.6625	S
1251	3	0	Wiseman, Mr. Phillippe	male	29.070783	0	0	7.2500	S
1252	3	0	Wittevrongel, Mr. Camille	male	36.000000	0	0	9.5000	S
1253	3	0	Yasbeck, Mr. Antoni	male	27.000000	1	0	14.4542	С
1254	3	1	Yasbeck, Mrs. Antoni (Selini Alexander)	female	15.000000	1	0	14.4542	С
1255	3	0	Youseff, Mr. Gerious	male	45.500000	0	0	7.2250	С
1256	3	0	Yousif, Mr. Wazli	male	29.070783	0	0	7.2250	С

1257 rows × 9 columns

Out[32]:

	pclass	survived	sex	age	sibsp	parch	fare	embarked
0	1	1	female	29.000000	0	0	211.3375	S
1	1	0	female	4.000000	1	2	151.5500	S
2	1	0	male	30.000000	1	2	151.5500	S
3	1	0	female	25.000000	1	2	151.5500	S
4	1	1	male	48.000000	0	0	26.5500	S
5	1	0	male	39.000000	0	0	0.0000	S
6	1	1	female	51.000000	2	0	51.4792	S
7	1	0	male	47.000000	1	0	227.5250	С
8	1	1	female	18.000000	1	0	227.5250	С
9	1	1	female	24.000000	0	0	69.3000	С
10	1	1	female	26.000000	0	0	78.8500	S
11	1	0	male	29.070783	0	0	25.9250	S
12	1	0	male	24.000000	0	1	247.5208	С
13	1	1	female	50.000000	0	1	247.5208	С
14	1	1	female	32.000000	0	0	76.2917	С
15	1	0	male	36.000000	0	0	75.2417	С
16	1	1	male	37.000000	1	1	52.5542	S
17	1	1	female	47.000000	1	1	52.5542	S
18	1	1	male	26.000000	0	0	30.0000	С
19	1	1	female	42.000000	0	0	227.5250	С
20	1	1	female	29.000000	0	0	221.7792	S
21	1	0	male	25.000000	0	0	26.0000	С
22	1	1	male	25.000000	1	0	91.0792	С
23	1	1	female	19.000000	1	0	91.0792	С
24	1	1	female	35.000000	0	0	135.6333	S
25	1	1	male	28.000000	0	0	26.5500	S
26	1	0	male	45.000000	0	0	35.5000	S
27	1	1	male	40.000000	0	0	31.0000	С
28	1	1	female	30.000000	0	0	164.8667	S
29	1	1	female	51.000000	0	0	26.5500	S
1227	3	0	female	18.000000	2	0	18.0000	S
1228	3	0	male	31.000000	3	0	18.0000	S
1229	3	0	male	16.000000	2	0	18.0000	S
1230	3	0	female	31.000000	1	0	18.0000	S
1231	3	1	male	22.000000	0	0	7.2250	С
1232	3	0	male	20.000000	0	0	7.8542	S

	pclass	survived	sex	age	sibsp	parch	fare	embarked
1233	3	0	female	14.000000	0	0	7.8542	S
1234	3	0	male	22.000000	0	0	7.8958	S
1235	3	0	male	22.000000	0	0	9.0000	S
1236	3	0	male	29.070783	0	0	8.0500	S
1237	3	0	male	29.070783	0	0	7.5500	S
1238	3	0	male	29.070783	0	0	8.0500	S
1239	3	0	male	32.500000	0	0	9.5000	S
1240	3	1	female	38.000000	0	0	7.2292	С
1241	3	0	male	51.000000	0	0	7.7500	S
1242	3	0	male	18.000000	1	0	6.4958	S
1243	3	0	male	21.000000	1	0	6.4958	S
1244	3	1	female	47.000000	1	0	7.0000	S
1245	3	0	male	29.070783	0	0	8.7125	S
1246	3	0	male	29.070783	0	0	7.5500	S
1247	3	0	male	29.070783	0	0	8.0500	S
1248	3	0	male	28.500000	0	0	16.1000	S
1249	3	0	male	21.000000	0	0	7.2500	S
1250	3	0	male	27.000000	0	0	8.6625	S
1251	3	0	male	29.070783	0	0	7.2500	S
1252	3	0	male	36.000000	0	0	9.5000	S
1253	3	0	male	27.000000	1	0	14.4542	С
1254	3	1	female	15.000000	1	0	14.4542	С
1255	3	0	male	45.500000	0	0	7.2250	С
1256	3	0	male	29.070783	0	0	7.2250	С

1257 rows × 8 columns

In [33]: sex_dum=data['sex']=pd.get_dummies(data['sex'],drop_first=True)

In [34]: sex_dum

male

Out[34]:

0	0
1	0
2	1
3	0
4	1
5	1
6	0
7	1
8	0
9	0
10	0
11	1
12	1
13	0
14	0
15	1
16	1
17	0
18	1
19	0
20	0
21	1
22	1
23	0
24	0
25	1
26	1
27	1
28	0
29	0
1227	0
1228	1
1229	1
1230	0
1231	1
1232	1

	male
1233	0
1234	1
1235	1
1236	1
1237	1
1238	1
1239	1
1240	0
1241	1
1242	1
1243	1
1244	0
1245	1
1246	1
1247	1
1248	1
1249	1
1250	1
1251	1
1252	1
1253	1
1254	0
1255	1
1256	1

1257 rows × 1 columns

```
In [35]: embarked_dum=data['embarked']=pd.get_dummies(data['embarked'],drop_first=True)
```

Out[36]:

	Q	s
0	0	1
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	0	1
7	0	0
8	0	0
9	0	0
10	0	1
11	0	1
12	0	0
13	0	0
14	0	0
15	0	0
16	0	1
17	0	1
18	0	0
19	0	0
20	0	1
21	0	0
22	0	0
23	0	0
24	0	1
25	0	1
26	0	1
27	0	0
28	0	1
29	0	1
1227	0	1
1228	0	1
1229	0	1
1230	0	1
1231	0	0
1232	0	1

```
Q S
1233 0 1
1234 0 1
1235 0 1
1236 0
1237 0
1238 0 1
1239 0 1
1240 0
1241 0 1
1242 0
1243 0
1244 0 1
1245 0 1
1246 0 1
1247 0 1
1248 0 1
1249 0 1
1250 0
1251 0 1
1252 0 1
1253 0 0
1254 0 0
1255 0 0
1256 0 0
```

1257 rows × 2 columns

```
In [37]: pclass_dum=data['pclass']=pd.get_dummies(data['pclass'],drop_first=True)
```

In [38]: pclass_dum

2 3

Out[38]:

0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0
16	0	0
17	0	0
18	0	0
19	0	0
20	0	0
21	0	0
22	0	0
23	0	0
24	0	0
25	0	0
26	0	0
27	0	0
28	0	0
29	0	0
1227	0	1
1228	0	1
1229	0	1
1230	0	1
1231	0	1
1232	0	1

```
2 3
1233 0 1
1234 0 1
1235 0
       1
1236 0
1237 0
1238 0
       1
1239 0
       1
1240 0
       1
1241 0 1
1242 0
       1
1243 0
1244 0 1
1245 0
1246 0 1
1247 0 1
1248 0 1
1249 0
       1
1250 0
1251 0
       1
1252 0
       1
1253 0
       1
1254 0 1
1255 0 1
1256 0 1
```

1257 rows × 2 columns

```
In [39]: data=pd.concat([data,sex_dum,embarked_dum,pclass_dum],axis=1)
```

In [40]: data

Out[40]:

	pclass	survived	sex	age	sibsp	parch	fare	embarked	male	Q	s	2	3
0	0	1	0	29.000000	0	0	211.3375	0	0	0	1	0	0
1	0	0	0	4.000000	1	2	151.5500	0	0	0	1	0	0
2	0	0	1	30.000000	1	2	151.5500	0	1	0	1	0	0
3	0	0	0	25.000000	1	2	151.5500	0	0	0	1	0	0
4	0	1	1	48.000000	0	0	26.5500	0	1	0	1	0	0
5	0	0	1	39.000000	0	0	0.0000	0	1	0	1	0	0
6	0	1	0	51.000000	2	0	51.4792	0	0	0	1	0	0
7	0	0	1	47.000000	1	0	227.5250	0	1	0	0	0	0
8	0	1	0	18.000000	1	0	227.5250	0	0	0	0	0	0
9	0	1	0	24.000000	0	0	69.3000	0	0	0	0	0	0
10	0	1	0	26.000000	0	0	78.8500	0	0	0	1	0	0
11	0	0	1	29.070783	0	0	25.9250	0	1	0	1	0	0
12	0	0	1	24.000000	0	1	247.5208	0	1	0	0	0	0
13	0	1	0	50.000000	0	1	247.5208	0	0	0	0	0	0
14	0	1	0	32.000000	0	0	76.2917	0	0	0	0	0	0
15	0	0	1	36.000000	0	0	75.2417	0	1	0	0	0	0
16	0	1	1	37.000000	1	1	52.5542	0	1	0	1	0	0
17	0	1	0	47.000000	1	1	52.5542	0	0	0	1	0	0
18	0	1	1	26.000000	0	0	30.0000	0	1	0	0	0	0
19	0	1	0	42.000000	0	0	227.5250	0	0	0	0	0	0
20	0	1	0	29.000000	0	0	221.7792	0	0	0	1	0	0
21	0	0	1	25.000000	0	0	26.0000	0	1	0	0	0	0
22	0	1	1	25.000000	1	0	91.0792	0	1	0	0	0	0
23	0	1	0	19.000000	1	0	91.0792	0	0	0	0	0	0
24	0	1	0	35.000000	0	0	135.6333	0	0	0	1	0	0
25	0	1	1	28.000000	0	0	26.5500	0	1	0	1	0	0
26	0	0	1	45.000000	0	0	35.5000	0	1	0	1	0	0
27	0	1	1	40.000000	0	0	31.0000	0	1	0	0	0	0
28	0	1	0	30.000000	0	0	164.8667	0	0	0	1	0	0
29	0	1	0	51.000000	0	0	26.5500	0	0	0	1	0	0
			•••										
1227	0	0	0	18.000000	2	0	18.0000	0	0	0	1	0	1
1228	0	0	1	31.000000	3	0	18.0000	0	1	0	1	0	1
1229	0	0	1	16.000000	2	0	18.0000	0	1	0	1	0	1
1230	0	0	0	31.000000	1	0	18.0000	0	0	0	1	0	1
1231	0	1	1	22.000000	0	0	7.2250	0	1	0	0	0	1
1232	0	0	1	20.000000	0	0	7.8542	0	1	0	1	0	1

	pclass	survived	sex	age	sibsp	parch	fare	embarked	male	Q	S	2	3
1233	0	0	0	14.000000	0	0	7.8542	0	0	0	1	0	1
1234	0	0	1	22.000000	0	0	7.8958	0	1	0	1	0	1
1235	0	0	1	22.000000	0	0	9.0000	0	1	0	1	0	1
1236	0	0	1	29.070783	0	0	8.0500	0	1	0	1	0	1
1237	0	0	1	29.070783	0	0	7.5500	0	1	0	1	0	1
1238	0	0	1	29.070783	0	0	8.0500	0	1	0	1	0	1
1239	0	0	1	32.500000	0	0	9.5000	0	1	0	1	0	1
1240	0	1	0	38.000000	0	0	7.2292	0	0	0	0	0	1
1241	0	0	1	51.000000	0	0	7.7500	0	1	0	1	0	1
1242	0	0	1	18.000000	1	0	6.4958	0	1	0	1	0	1
1243	0	0	1	21.000000	1	0	6.4958	0	1	0	1	0	1
1244	0	1	0	47.000000	1	0	7.0000	0	0	0	1	0	1
1245	0	0	1	29.070783	0	0	8.7125	0	1	0	1	0	1
1246	0	0	1	29.070783	0	0	7.5500	0	1	0	1	0	1
1247	0	0	1	29.070783	0	0	8.0500	0	1	0	1	0	1
1248	0	0	1	28.500000	0	0	16.1000	0	1	0	1	0	1
1249	0	0	1	21.000000	0	0	7.2500	0	1	0	1	0	1
1250	0	0	1	27.000000	0	0	8.6625	0	1	0	1	0	1
1251	0	0	1	29.070783	0	0	7.2500	0	1	0	1	0	1
1252	0	0	1	36.000000	0	0	9.5000	0	1	0	1	0	1
1253	0	0	1	27.000000	1	0	14.4542	0	1	0	0	0	1
1254	0	1	0	15.000000	1	0	14.4542	0	0	0	0	0	1
1255	0	0	1	45.500000	0	0	7.2250	0	1	0	0	0	1
1256	0	0	1	29.070783	0	0	7.2250	0	1	0	0	0	1

1257 rows × 13 columns

In [41]: data=data.drop(['sex','embarked','pclass'],axis=1)

In [42]: data

Out[42]:

	survived	age	sibsp	parch	fare	male	Q	s	2	3
0	1	29.000000	0	0	211.3375	0	0	1	0	0
1	0	4.000000	1	2	151.5500	0	0	1	0	0
2	0	30.000000	1	2	151.5500	1	0	1	0	0
3	0	25.000000	1	2	151.5500	0	0	1	0	0
4	1	48.000000	0	0	26.5500	1	0	1	0	0
5	0	39.000000	0	0	0.0000	1	0	1	0	0
6	1	51.000000	2	0	51.4792	0	0	1	0	0
7	0	47.000000	1	0	227.5250	1	0	0	0	0
8	1	18.000000	1	0	227.5250	0	0	0	0	0
9	1	24.000000	0	0	69.3000	0	0	0	0	0
10	1	26.000000	0	0	78.8500	0	0	1	0	0
11	0	29.070783	0	0	25.9250	1	0	1	0	0
12	0	24.000000	0	1	247.5208	1	0	0	0	0
13	1	50.000000	0	1	247.5208	0	0	0	0	0
14	1	32.000000	0	0	76.2917	0	0	0	0	0
15	0	36.000000	0	0	75.2417	1	0	0	0	0
16	1	37.000000	1	1	52.5542	1	0	1	0	0
17	1	47.000000	1	1	52.5542	0	0	1	0	0
18	1	26.000000	0	0	30.0000	1	0	0	0	0
19	1	42.000000	0	0	227.5250	0	0	0	0	0
20	1	29.000000	0	0	221.7792	0	0	1	0	0
21	0	25.000000	0	0	26.0000	1	0	0	0	0
22	1	25.000000	1	0	91.0792	1	0	0	0	0
23	1	19.000000	1	0	91.0792	0	0	0	0	0
24	1	35.000000	0	0	135.6333	0	0	1	0	0
25	1	28.000000	0	0	26.5500	1	0	1	0	0
26	0	45.000000	0	0	35.5000	1	0	1	0	0
27	1	40.000000	0	0	31.0000	1	0	0	0	0
28	1	30.000000	0	0	164.8667	0	0	1	0	0
29	1	51.000000	0	0	26.5500	0	0	1	0	0
1227	0	18.000000	2	0	18.0000	0	0	1	0	1
1228	0	31.000000	3	0	18.0000	1	0	1	0	1
1229	0	16.000000	2	0	18.0000	1	0	1	0	1
1230	0	31.000000	1	0	18.0000	0	0	1	0	1
1231	1	22.000000	0	0	7.2250	1	0	0	0	1
1232	0	20.000000	0	0	7.8542	1	0	1	0	1

	survived	age	sibsp	parch	fare	male	Q	S	2	3
1233	0	14.000000	0	0	7.8542	0	0	1	0	1
1234	0	22.000000	0	0	7.8958	1	0	1	0	1
1235	0	22.000000	0	0	9.0000	1	0	1	0	1
1236	0	29.070783	0	0	8.0500	1	0	1	0	1
1237	0	29.070783	0	0	7.5500	1	0	1	0	1
1238	0	29.070783	0	0	8.0500	1	0	1	0	1
1239	0	32.500000	0	0	9.5000	1	0	1	0	1
1240	1	38.000000	0	0	7.2292	0	0	0	0	1
1241	0	51.000000	0	0	7.7500	1	0	1	0	1
1242	0	18.000000	1	0	6.4958	1	0	1	0	1
1243	0	21.000000	1	0	6.4958	1	0	1	0	1
1244	1	47.000000	1	0	7.0000	0	0	1	0	1
1245	0	29.070783	0	0	8.7125	1	0	1	0	1
1246	0	29.070783	0	0	7.5500	1	0	1	0	1
1247	0	29.070783	0	0	8.0500	1	0	1	0	1
1248	0	28.500000	0	0	16.1000	1	0	1	0	1
1249	0	21.000000	0	0	7.2500	1	0	1	0	1
1250	0	27.000000	0	0	8.6625	1	0	1	0	1
1251	0	29.070783	0	0	7.2500	1	0	1	0	1
1252	0	36.000000	0	0	9.5000	1	0	1	0	1
1253	0	27.000000	1	0	14.4542	1	0	0	0	1
1254	1	15.000000	1	0	14.4542	0	0	0	0	1
1255	0	45.500000	0	0	7.2250	1	0	0	0	1
1256	0	29.070783	0	0	7.2250	1	0	0	0	1

1257 rows × 10 columns

```
In [43]: x=data.drop(['survived'],axis=1)
```

```
In [44]: y=data.survived
```

```
In [45]: from sklearn import preprocessing
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.model selection import train test split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import cohen kappa score as kappa
         from sklearn.metrics import confusion matrix
         from sklearn import metrics
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
In [46]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=10)
In [47]: from sklearn.linear_model import LinearRegression
In [48]:
          classifier=(LogisticRegression())
             #fitting training data to the model
In [49]: | classifier.fit(x_train,y_train)
Out[49]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='warn',
                   n_jobs=None, penalty='12', random_state=None, solver='warn',
                   tol=0.0001, verbose=0, warm_start=False)
In [50]: y_pred=classifier.predict(x_test)
```

```
In [51]:
         print(list(zip(y_test,y_pred)))
         [(1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0),
         (0, 0), (0, 1), (0, 1), (0, 0), (0, 1), (1, 1), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0),
         (0, 0), (1, 0), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (1, 0),
         (0, 1), (1, 0), (0, 1), (1, 1), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0),
         (0, 0), (0, 0), (1, 0), (1, 1), (1, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0),
         (0, 1), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (1, 1), (1, 1),
         (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (1, 1), (1, 1),
         (1, 1), (0, 0), (0, 0), (0, 1), (1, 1), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 0), (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (1, 1), (0, 1), (1, 1), (0, 0),
         (0, 0), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 1),
         (0, 0), (1, 1), (0, 1), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (0, 1), (1, 1), (0, 0),
         (1, 1), (0, 0), (1, 1), (0, 1), (1, 1), (0, 0), (0, 0), (1, 0), (1, 1), (1, 1), (1, 1),
         (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 1), (1, 1), (1, 1),
         (1, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (1, 1), (0, 1),
         (1, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (0, 0),
         (1, 1), (1, 1), (1, 1), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0),
         (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 1), (0, 0),
         (1, 1), (1, 1), (1, 0), (1, 1), (0, 0), (0, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0),
         (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (1, 1), (1, 1), (0, 1), (1, 0),
         (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0),
         (0, 0), (0, 0), (0, 0), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (1, 0), (1, 1),
         (1, 1), (0, 0), (1, 1), (0, 0), (1, 0), (0, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 1),
         (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
         (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (1, 1),
         (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 1), (0, 0),
         (0, 0), (0, 1), (0, 0), (0, 1), (1, 1), (0, 0), (1, 1), (1, 1), (0, 1), (1, 0), (1, 0),
         (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (1, 1),
         (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 1), (1, 1), (1, 1), (0, 0),
         (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1),
         (1, 0), (1, 1), (0, 0), (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 1),
         (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 1), (0, 0), (1, 1),
         (1, 1), (1, 0), (0, 0), (0, 1), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0),
         (0, 0), (0, 0), (1, 0), (0, 0)]
In [52]:
         from sklearn.metrics import confusion_matrix,accuracy_score
In [53]:
         confusion_matrix=confusion_matrix(y_test,y_pred)
In [54]:
         print(confusion_matrix)
         [[202 35]
          [ 36 105]]
         accuracy_score=accuracy_score(y_test,y_pred)
In [56]:
         print("Accuracy of the model:",accuracy_score)
         Accuracy of the model: 0.8121693121693122
In [57]: from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
In [58]: cfm=confusion_matrix(y_test,y_pred)
```

```
In [59]:
         print(cfm)
         [[202 35]
          [ 36 105]]
In [60]:
         print("classification_report:")
         classification_report:
In [61]:
         print(classification_report(y_test,y_pred))
                       precision
                                     recall f1-score
                                                        support
                    0
                             0.85
                                       0.85
                                                 0.85
                                                            237
                    1
                             0.75
                                       0.74
                                                 0.75
                                                            141
            micro avg
                             0.81
                                       0.81
                                                 0.81
                                                            378
                             0.80
                                       0.80
                                                 0.80
                                                            378
            macro avg
         weighted avg
                             0.81
                                       0.81
                                                 0.81
                                                            378
In [62]:
         acc=accuracy_score(y_test,y_pred)
In [63]:
         print('acc',acc)
         acc 0.8121693121693122
         from sklearn.ensemble import RandomForestClassifier
In [64]:
In [65]:
         model_RandomForest=RandomForestClassifier(501)
         model_RandomForest.fit(x_train,y_train)
In [66]:
Out[66]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators=501, n_jobs=None,
                     oob_score=False, random_state=None, verbose=0,
                     warm_start=False)
         y_pred=model_RandomForest.predict(x_test)
In [67]:
In [68]:
         from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
In [69]:
         print(confusion_matrix(y_test,y_pred))
         [[195 42]
          [ 44 97]]
In [70]:
         print(accuracy_score(y_test,y_pred))
         0.7724867724867724
```

```
In [71]:
         print(classification_report(y_test,y_pred))
                       precision
                                     recall f1-score
                                                        support
                    0
                            0.82
                                       0.82
                                                 0.82
                                                            237
                    1
                            0.70
                                       0.69
                                                 0.69
                                                            141
            micro avg
                            0.77
                                       0.77
                                                 0.77
                                                            378
                            0.76
                                       0.76
                                                 0.76
                                                            378
            macro avg
         weighted avg
                            0.77
                                       0.77
                                                 0.77
                                                            378
In [72]:
         print('acc',acc)
         acc 0.8121693121693122
In [73]:
         from sklearn.tree import DecisionTreeClassifier
In [74]:
         model_DecisionTree=DecisionTreeClassifier()
In [75]:
         model_DecisionTree.fit(x_train,y_train)
Out[75]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best')
```

y_pred=model_DecisionTree.predict(x_test)

In [76]:

```
[(1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 1), (0, 1), (0, 0), (0, 0), (1, 1),
         (0, 0), (0, 1), (0, 1), (0, 0), (0, 1), (1, 1), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0),
         (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (1, 0),
         (0, 0), (1, 0), (0, 1), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 0), (0, 0), (1, 1), (1, 1), (1, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 1), (1, 1), (1, 0), (0, 0), (0, 1), (0, 0), (1, 1), (1, 1), (0, 1), (1, 1), (1, 1),
         (1, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (1, 1), (1, 0),
         (1, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 0), (1, 1), (0, 0), (1, 0), (1, 1), (0, 0), (0, 0), (1, 0), (0, 1), (1, 1), (0, 0),
         (0, 0), (1, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 1),
         (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (0, 1), (1, 1), (0, 1),
         (1, 1), (0, 0), (1, 0), (0, 1), (1, 1), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (1, 1),
         (0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 1), (1, 1), (1, 1),
         (1, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (1, 1), (0, 1),
         (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 1), (1, 1), (0, 0),
         (1, 1), (1, 0), (1, 1), (0, 0), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (1, 1), (0, 0),
         (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (1, 0),
         (1, 1), (0, 1), (1, 1), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0),
         (1, 1), (1, 1), (1, 0), (1, 1), (0, 0), (0, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0),
         (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (1, 0), (1, 1), (0, 1), (1, 0),
         (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 1),
         (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (0, 1), (1, 0), (1, 0), (1, 0), (1, 0),
         (1, 1), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 1), (1, 0), (0, 1), (0, 0),
         (0, 0), (1, 0), (0, 0), (0, 1), (0, 1), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
         (0, 1), (1, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 1), (1, 1), (1, 1),
         (0, 1), (0, 0), (1, 0), (0, 0), (0, 1), (0, 0), (0, 1), (1, 0), (0, 0), (0, 1), (0, 0),
         (0, 1), (0, 1), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (1, 1), (0, 1), (1, 0), (1, 1),
         (0, 0), (0, 0), (0, 1), (1, 0), (0, 1), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (1, 1),
         (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0),
         (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1),
         (1, 0), (1, 1), (0, 0), (1, 1), (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 0),
         (1, 1), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0),
         (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 1), (0, 0), (1, 1),
         (1, 1), (1, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0), (0, 1), (0, 1),
         (0, 1), (0, 0), (1, 0), (0, 0)]
         from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
In [79]:
         #confusion matrix
         print(confusion_matrix(y_test,y_pred))
         [[187
                50]
          [ 44 97]]
         print(accuracy_score(y_test,y_pred))
```

print(list(zip(y_test,y_pred)))

0.7513227513227513

In [77]:

```
In [81]:
         print(classification_report(y_test,y_pred))
                                     recall f1-score
                        precision
                                                        support
                    0
                             0.81
                                       0.79
                                                 0.80
                                                            237
                    1
                             0.66
                                       0.69
                                                 0.67
                                                            141
                                                            378
            micro avg
                             0.75
                                       0.75
                                                 0.75
                                                            378
            macro avg
                             0.73
                                       0.74
                                                 0.74
         weighted avg
                             0.75
                                       0.75
                                                 0.75
                                                            378
In [82]:
         from sklearn import tree
         with open("model_DecisionTree.txt","w")as f:
In [83]:
             f=tree.export_graphviz(model_DecisionTree,out_file=f)
In [84]:
         #http://www.webgraphviz.com
         #qo to C drive->Users->Admin->open model DecisionTree(txt doc)->copy and paste the text on
         #DecisionTree will be formed
         from sklearn.ensemble import RandomForestClassifier
In [85]:
In [86]:
         model RandomForest=RandomForestClassifier(501)
         model_RandomForest.fit(x_train,y_train)
In [87]:
Out[87]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators=501, n_jobs=None,
                     oob_score=False, random_state=None, verbose=0,
                     warm_start=False)
In [88]:
         y_pred=model_RandomForest.predict(x_test)
         from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
In [89]:
In [90]:
         print(confusion_matrix(y_test,y_pred))
         [[194 43]
          [ 44 97]]
In [91]:
         print(accuracy_score(y_test,y_pred))
```

0.7698412698412699

```
print(classification_report(y_test,y_pred))
In [92]:
                                     recall f1-score
                        precision
                                                        support
                    0
                             0.82
                                       0.82
                                                 0.82
                                                             237
                    1
                             0.69
                                                 0.69
                                       0.69
                                                             141
                                                             378
            micro avg
                             0.77
                                       0.77
                                                 0.77
            macro avg
                             0.75
                                       0.75
                                                 0.75
                                                             378
         weighted avg
                             0.77
                                       0.77
                                                 0.77
                                                             378
In [93]:
         from sklearn.ensemble import ExtraTreesClassifier
         model=(ExtraTreesClassifier(10))
         model=model.fit(x_train,y_train)
         y_pred=model.predict(x_test)
         #confusion matrix
         from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
         confusion_matrix=confusion_matrix(y_test,y_pred)
         print(confusion_matrix)
         print(accuracy_score(y_test,y_pred))
         print(classification_report(y_test,y_pred))
         [[203 34]
          [ 47 94]]
         0.7857142857142857
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.81
                                       0.86
                                                 0.83
                                                             237
                    1
                             0.73
                                       0.67
                                                 0.70
                                                             141
                                                 0.79
                                                             378
            micro avg
                             0.79
                                       0.79
            macro avg
                             0.77
                                       0.76
                                                 0.77
                                                             378
         weighted avg
                             0.78
                                       0.79
                                                 0.78
                                                             378
In [94]:
         from sklearn.ensemble import GradientBoostingClassifier
         model_GradientBoosting=(GradientBoostingClassifier())
         model_GradientBoosting.fit(x_train,y_train)
         y_pred=model_GradientBoosting.predict(x_test)
         #confusion matrix
         from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
         confusion_matrix=confusion_matrix(y_test,y_pred)
         print(confusion_matrix)
         print(accuracy_score(y_test,y_pred))
         print(classification_report(y_test,y_pred))
         [[210 27]
          [ 43 98]]
         0.8148148148148148
                                     recall f1-score
                        precision
                                                        support
                    0
                                       0.89
                                                 0.86
                                                             237
                             0.83
                    1
                             0.78
                                       0.70
                                                 0.74
                                                             141
                             0.81
                                       0.81
                                                 0.81
                                                             378
            micro avg
            macro avg
                             0.81
                                       0.79
                                                 0.80
                                                             378
         weighted avg
                             0.81
                                       0.81
                                                 0.81
                                                             378
```

```
In [96]:
         from sklearn import svm
         svc_model=svm.SVC(kernel='rbf',C=1.0,gamma=0.1)
         svc_model.fit(x_train,y_train)
Out[96]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
           max_iter=-1, probability=False, random_state=None, shrinking=True,
           tol=0.001, verbose=False)
In [98]:
         y_pred=svc_model.predict(x_test)
         print(list(zip(y_test,y_pred)))
         [(1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (1, 0),
         (0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 1), (0, 0),
         (0, 0), (1, 0), (0, 1), (0, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0),
         (0, 0), (1, 0), (0, 1), (1, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 0), (0, 1), (1, 1), (1, 1), (1, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (0, 0), (1, 0), (1, 1), (0, 0), (0, 1), (0, 0), (1, 1), (1, 1), (0, 0), (1, 1), (1, 0),
         (1, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 0),
         (1, 1), (0, 1), (0, 0), (0, 1), (1, 1), (1, 1), (1, 0), (0, 0), (0, 1), (0, 0), (1, 0),
         (0, 0), (1, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 0), (1, 1), (0, 1), (1, 0), (0, 0),
         (0, 0), (1, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 1),
         (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (1, 1), (0, 0),
         (1, 1), (0, 0), (1, 0), (0, 1), (1, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (1, 0),
         (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (0, 1), (1, 0), (0, 0), (0, 0), (1, 0), (1, 0),
         (1, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (1, 1), (0, 0),
         (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), (1, 0), (1, 0), (1, 1), (0, 0),
         (1, 0), (1, 0), (1, 1), (0, 0), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (1, 0), (0, 0),
         (0, 0), (0, 0), (0, 1), (0, 0), (0, 1), (0, 0), (0, 0), (0, 1), (0, 0), (0, 0), (1, 0),
         (1, 1), (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0),
         (1, 1), (1, 1), (1, 0), (1, 1), (0, 0), (0, 0), (0, 1), (1, 1), (0, 0), (0, 0), (0, 1),
         (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (1, 1), (1, 0), (1, 0), (0, 0), (1, 0),
         (0, 0), (1, 0), (1, 1), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 1),
         (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (0, 1), (0, 1), (1, 0), (1, 1), (1, 0), (1, 0),
         (1, 1), (0, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0),
         (0, 1), (1, 0), (0, 1), (0, 1), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
         (0, 1), (1, 1), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 0), (1, 0),
         (0, 1), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 1), (0, 0),
         (0, 1), (0, 0), (0, 0), (0, 1), (1, 1), (0, 0), (1, 1), (1, 0), (0, 1), (1, 0), (1, 0),
         (0, 0), (0, 0), (0, 1), (1, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 0), (1, 0),
         (1, 0), (0, 0), (0, 0), (1, 1), (0, 0), (1, 1), (0, 0), (0, 1), (1, 1), (1, 1), (0, 1),
         (0, 0), (0, 1), (0, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1),
         (1, 0), (1, 0), (0, 0), (1, 1), (0, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1),
         (1, 0), (0, 1), (1, 0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0),
         (0, 0), (0, 0), (1, 1), (1, 1), (0, 0), (1, 1), (1, 0), (0, 0), (0, 0), (0, 0), (1, 1),
         (1, 1), (1, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 0), (1, 1), (0, 1), (0, 1), (0, 0),
         (0, 1), (0, 0), (1, 1), (0, 0)
In [99]:
         from sklearn .metrics import confusion_matrix,accuracy_score
         confusion_matrix=confusion_matrix(y_test,y_pred)
         print(confusion_matrix)
         accuracy_score=accuracy_score(y_test,y_pred)
         print("Accuracy of the model:",accuracy_score)
         [[190 47]
          [ 72 69]]
```

Accuracy of the model: 0.6851851851851852

In []:			
TII [].			