1 Приведение механических величин к валу двигателя

Задание.

- 1) Выписать паспортные данные электродвигателя.
- 2) Привести механические величины электропривода к валу двигателя.
- 3) Рассчитать статические характеристики электропривода.
- 2 вариант, 4 задание.

Исходные данные для 2 варианта, 4 задания представлены в таблице 1. Таблица 1- Исходные данные

Тип ДПТ НВ	U _н , В	Рн, кВт	n _н , об/мин	I _н , А	m, кг	Д, м	α
П-61	220	11	1500	59,5	200	0,3	0,88
$r_{\scriptscriptstyle \rm H}+r_{\scriptscriptstyle m Д\Pi},$	гпар, Ом	N, шт	2а, шт	ω _{пар} , шт	Ф, мВб	I _{н.возб.} ,	${ m J}_{{ m {\tiny AB}}},$
Ом	1 пар, От	11, 1111	20, 111	∞пар, шт	¥, mbo	A	кг∙м ²
0,187	133	496	2	1800	8,2	1,25	0,56

Где:

 $U_{\mbox{\tiny H}}$ — номинальное напряжение питания, B.

Р_н – номинальная мощность, Вт.

 n_{H} — номинальная частота вращения, об/мин.

 $I_{\mbox{\tiny H}}$ – номинальный ток, A.

α – степень ослабления потока возбуждения.

N – число активных проводников якоря, шт.

2а – число параллельных ветвей якоря, шт.

 $\omega_{\text{пар}}$ – число витков полюса параллельной обмотки, шт.

 Φ – полезный магнитный поток полюса, мВб.

 $I_{\text{н.воз6}}$ – номинальный ток возбуждения параллельной обмотки, A.

 $J_{\text{дв}}$ – момент инерции якоря двигателя, кг·м².

Решение.

Для 2 варианта имеем следующую кинематическую схему привода, представленную на рисунке 1. В таблице 2 – информация о шестернях.

Таблица 2 – Данные шестерён

№ шестерни	1	2	
Число зубьев, z	24	275	
Момент			
инерции, кг·м²	0,1	1,5	

Рисунок 1 – Кинематическая схема привода

Статический момент, приведенный к валу двигателя:

$$\mathbf{M}_{c} = \frac{9.81 \cdot \mathbf{m} \cdot \mathbf{\Pi}_{6}}{2} \cdot \frac{\mathbf{z}_{1}}{\mathbf{z}_{2}},$$

$$M_c = \frac{9,81 \cdot 200 \cdot 0,3}{2} \cdot \frac{24}{275} = 25,684 \text{ (H} \cdot \text{m)}.$$

Моментом потерь от холостого хода двигателя пренебрегаем.

Момент инерции привода, приведенный к валу двигателя:

$$\begin{split} \mathbf{J} &= \mathbf{J}_{_{\mathrm{I}}} + \mathbf{J}_{_{1}} + \left[\mathbf{J}_{_{2}} + \frac{\mathbf{m} \cdot \boldsymbol{\upmu}_{_{6}}^{2}}{4} \right] \cdot \left[\frac{\mathbf{z}_{_{1}}}{\mathbf{z}_{_{2}}} \right]^{2}, \\ \mathbf{J} &= 0,56 + 0,1 + \left[1,5 + \frac{200 \cdot 0,09}{4} \right] \cdot 7,6 \cdot 10^{-3} = 0,7056 \text{ (kg} \cdot \text{m}^{2}\text{)}. \end{split}$$