STAT 153 sketch

Neo Lee

Proof of $\operatorname{null}(X)$ contains at least one non-zero vector η :

Since p > n, the column vectors are linear dependent. Denote (v_1, \dots, v_p) as the column vectors of X. Then, there are non trivial coefficients (c_1, \dots, c_p) such that

$$\sum_{i=1}^{p} c_i v_i = 0.$$

Hence, $\eta = (c_1, \dots, c_p)$ is a non-zero vector in null(X).

Proof of $\hat{\beta} = \tilde{\beta} + \eta$ is also a least squares solution for $\eta \in \text{null}(X)$:

Denote the prediction from $\tilde{\beta}$ as $\tilde{y} = X\tilde{\beta}$ with MSE = $y - \tilde{y}$. Then the prediction from $\hat{\beta}$

$$\hat{y} = X\hat{y} \tag{1}$$

$$=X(\tilde{y}+\eta)\tag{2}$$

$$= X\tilde{y} + X\eta \tag{3}$$

$$= \tilde{y} + X\eta \tag{4}$$

$$= \tilde{y}. \tag{5}$$

Therefore, they have the same MSE. Since $\hat{\beta}$ is a least squares solution, $\tilde{\beta} + \eta$ is also a least squares solution.