

Quiz #5

Monday, March 19 2018

Duration: 15 min
NAME:
Please write clearly and properly.
Explain your answers appropriately.

Problem	Grade
1	
Total	

Problem 1 (~ 10 points.).

True of False? No explanations required.

- (1) The point A(7, 9, 4) belongs to the plane whose equation is x y + z = 3.
- (2) Consider the two planes P and Q whose equations are respectively:

$$P: x - 2y + z + 1 = 0$$
 $Q: -2x + 4y - z - 3 = 0$.

These two planes are parallel.

(3) Consider the two planes P and Q whose equations are respectively:

$$P: -x + 2y + z + 1 = 0$$
 $Q: x + z = 0$.

These two planes are orthogonal.

- (4) The intersection of any two planes is a straight line.
- (5) Consider the surface with equation $x^2 y^3 + x 2y + 1 = 0$. This surface is a quadric.
- (6) Consider the quadric whose equation is $x^2 y^2 + z = 1$. This quadric passes through the origin.
- (7) The domain of definition of the function given by $f(x, y) = \sqrt{1 + x^2 + y^2}$ is the set $D = \{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ and } y \ge 0\}.$
- (8) The domain of definition of the function given by $f(x, y) = \frac{1}{1+x^2+y^2}$ is the set $D = \mathbb{R}^2$.
- (9) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = -4. The graph of f is a plane parallel to the xy-plane.
- (10) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = 2y 3x + 5. The graph of f is a plane that goes through the origin.