N2 - Drug Pressure Plan

Callum Malcolm

2023-05-18

Day-2 - Friday 19-05-2023

1. Seed Feeders Note: Add 2ml of 4.8x10⁴ feeder cells / mL cell suspension to each well of 9x 6-well plates

Day 0 - Satuday 20-05-2023

- 1. Count N2-Barcode cells and dilute cell suspension to $5x10^5$ cells/ml
- 2. Add 1mL of cell suspension/well

Note: Thermofisher indicates that 1.2×10^6 cells in a 6 well plate is "confluent" and recommends seeding density of 0.3×10^6 . Seeding 0.5×10^6 means that after 2 days if dividing normally cells should be close to confluent while adding in extra cells to support those in higher concentrations of drug.

- 3. Make $1\mu M$ working stock of each drug
 - Doxorubicin: $1\mu L$ 10mM stock in 10mL media
 - Methotrexate: 1μ L 10mM stock in 10mL media
 - Vincristine: 333.33μ L 30mM stock in 10mL media

Plate Maps

Doxorubicin Dilutions Note: Drug will be diluted by 1/2 when added to well Doxorubicin Working Stock (WS) = 1μ M

Drug	Drug ID	Dilution volume	Media Volume	Dil 1[Drug]	[Final Drug]
DMSO	DMSO	$1~\mu\mathrm{L}$	$9999 \mu L$	0	0
Doxorubicin	Dox 1	$600 \ \mu L \ (from WS)$	$9700~\mu\mathrm{L}$	$600\mathrm{nm}$	$300\mathrm{nm}$
Doxorubicin	Dox 2	$5000 \ \mu L \ (from Dox 1)$	$5000~\mu\mathrm{L}$	$300\mathrm{nm}$	$150\mathrm{nm}$
Doxorubicin	Dox 3	$5000~\mu L \text{ (from Dox 2)}$	$5000~\mu\mathrm{L}$	$150\mathrm{nm}$	$75\mathrm{nm}$
Doxorubicin	Dox 4	$5000 \ \mu L \ (from Dox 3)$	$5000~\mu\mathrm{L}$	$75\mathrm{nm}$	$37.5\mathrm{nm}$
Doxorubicin	Dox 5	$5000 \ \mu L \ (from Dox 4)$	$5000~\mu\mathrm{L}$	$37.5\mathrm{nm}$	$18.75\mathrm{nm}$

Doxorubicin Plates

Dox Plate 1

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
A2	$5x10^{5}$	$1 \mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
A3	$5x10^{5}$	$1 \mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
B1	$5x10^{5}$	$1 \mathrm{mL}$	Dox 1	$1 \mathrm{mL}$	$300\mathrm{nm}$
B2	$5x10^{5}$	$1 \mathrm{mL}$	Dox 1	$1 \mathrm{mL}$	$300\mathrm{nm}$
В3	$5x10^{5}$	1 mL	Dox 1	$1 \mathrm{mL}$	$300\mathrm{nm}$

Dox Plate 2

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Dox 2	$1 \mathrm{mL}$	150nm
A2	$5x10^{5}$	$1 \mathrm{mL}$	Dox 2	$1 \mathrm{mL}$	$150\mathrm{nm}$
A3	$5x10^{5}$	$1 \mathrm{mL}$	Dox 2	$1 \mathrm{mL}$	$150\mathrm{nm}$
B1	$5x10^{5}$	1 mL	Dox 3	$1 \mathrm{mL}$	$75\mathrm{nm}$
B2	$5x10^{5}$	1 mL	Dox 3	$1 \mathrm{mL}$	$75\mathrm{nm}$
В3	$5x10^{5}$	$1 \mathrm{mL}$	Dox 3	$1 \mathrm{mL}$	$75\mathrm{nm}$

Dox Plate 3

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Dox 4	$1 \mathrm{mL}$	37.5nm
A2	$5x10^{5}$	$1 \mathrm{mL}$	Dox 4	$1 \mathrm{mL}$	$37.5\mathrm{nm}$
A3	$5x10^{5}$	$1 \mathrm{mL}$	Dox 4	$1 \mathrm{mL}$	$37.5\mathrm{nm}$
B1	$5x10^{5}$	$1 \mathrm{mL}$	Dox 5	$1 \mathrm{mL}$	$18.75\mathrm{nm}$
B2	$5x10^{5}$	$1 \mathrm{mL}$	Dox 5	$1 \mathrm{mL}$	$18.75\mathrm{nm}$
В3	$5x10^{5}$	$1~\mathrm{mL}$	Dox 5	$1 \mathrm{mL}$	18.75nm

Methotrexate Dilutions Note: Drug will be diluted by 1/2 when added to well Methotrexate Working Stock = $1\mu M$

Drug	Drug ID	Dilution volume	Media Volume	Dil 1[Drug]	[Final Drug]
DMSO	DMSO	$1~\mu { m L}$	$9999 \mu L$	0	0
Methotrexate	Meth 1	$200 \ \mu L \ (from WS)$	$9800~\mu L$	$200\mathrm{nm}$	$100\mathrm{nm}$
Methotrexate	Meth 2	$5000 \ \mu L \ (from Meth 1)$	$5000~\mu\mathrm{L}$	$100\mathrm{nm}$	$50\mathrm{nm}$
Methotrexate	Meth 3	$5000 \ \mu L \ (from Meth 2)$	$5000~\mu\mathrm{L}$	$40\mathrm{nm}$	$20\mathrm{nm}$
Methotrexate	Meth 4	$5000 \ \mu L \ (from Meth 3)$	$5000~\mu\mathrm{L}$	$20\mathrm{nm}$	$10\mathrm{nm}$
Methotrexate	Meth 5	$5000~\mu L \text{ (from Meth 4)}$	$5000~\mu\mathrm{L}$	$10\mathrm{nm}$	$5\mathrm{nm}$

Methotrexate Plates

Meth Plate 1

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
A2	$5x10^{5}$	$1 \mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
A3	$5x10^{5}$	$1 \mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
B1	$5x10^{5}$	$1 \mathrm{mL}$	Meth 1	$1 \mathrm{mL}$	$100\mathrm{nm}$
B2	$5x10^{5}$	$1 \mathrm{mL}$	Meth 1	$1 \mathrm{mL}$	$100\mathrm{nm}$
В3	$5x10^{5}$	1 mL	Meth 1	$1 \mathrm{mL}$	100nm

Meth Plate 2

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Meth 2	$1 \mathrm{mL}$	$50\mathrm{nm}$
A2	$5x10^{5}$	$1 \mathrm{mL}$	Meth 2	$1 \mathrm{mL}$	$50\mathrm{nm}$
A3	$5x10^{5}$	$1 \mathrm{mL}$	Meth 2	$1 \mathrm{mL}$	$50\mathrm{nm}$
B1	$5x10^{5}$	$1 \mathrm{mL}$	Meth 3	$1 \mathrm{mL}$	$20\mathrm{nm}$
B2	$5x10^{5}$	1 mL	Meth 3	$1 \mathrm{mL}$	$20\mathrm{nm}$
В3	$5x10^{5}$	$1 \mathrm{mL}$	Meth 3	$1 \mathrm{mL}$	$20\mathrm{nm}$

Meth Plate 3

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Meth 4	$1 \mathrm{mL}$	10nm
A2	$5x10^{5}$	$1 \mathrm{mL}$	Meth 4	$1 \mathrm{mL}$	$10\mathrm{nm}$
A3	$5x10^{5}$	$1 \mathrm{mL}$	Meth 4	$1 \mathrm{mL}$	$10\mathrm{nm}$
B1	$5x10^{5}$	1 mL	Meth 5	$1 \mathrm{mL}$	$5\mathrm{nm}$
B2	$5x10^{5}$	1 mL	Meth 5	$1 \mathrm{mL}$	$5\mathrm{nm}$
B3	$5x10^{5}$	1 mL	Meth 5	$1 \mathrm{mL}$	$5\mathrm{nm}$

Vincristine Dilutions Note: Drug will be diluted by 1/2 when added to well Vincristine Working Stock = $1\mu M$

Drug	Drug ID	Dilution Volume	Media Volume	Dil 1[Drug]	[Final Drug]
DMSO	DMSO	$1~\mu { m L}$	$9999 \mu L$	0	0
Vincristine	Vin 1	$8 \mu L \text{ (from WS)}$	$9992~\mu L$	$8\mathrm{nm}$	$4\mathrm{nm}$
Vincristine	Vin 2	$5000 \ \mu L \ (from \ Vin \ 1)$	$5000~\mu\mathrm{L}$	$4\mathrm{nm}$	$2\mathrm{nm}$
Vincristine	Vin 3	$5000 \ \mu L \ (from \ Vin \ 2)$	$5000~\mu\mathrm{L}$	$2\mathrm{nm}$	$1\mathrm{nm}$
Vincristine	Vin 4	$5000 \ \mu L \ (from \ Vin \ 3)$	$5000~\mu\mathrm{L}$	$1\mathrm{nm}$	$0.5\mathrm{nm}$
Vincristine	Vin 5	$5000~\mu\mathrm{L}~(\mathrm{from~Vin~4})$	$5000~\mu\mathrm{L}$	$0.5\mathrm{nm}$	$0.25\mathrm{nm}$

Vincristine Plates

Vin Plate 1

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	DMSO	$1 \mathrm{mL}$	0
A2	$5x10^{5}$	1 mL	DMSO	$1 \mathrm{mL}$	0
A3	$5x10^{5}$	1 mL	DMSO	$1 \mathrm{mL}$	0
B1	$5x10^{5}$	$1 \mathrm{mL}$	Vin 1	$1 \mathrm{mL}$	$4\mathrm{nm}$
B2	$5x10^{5}$	$1 \mathrm{mL}$	Vin 1	$1 \mathrm{mL}$	$4\mathrm{nm}$
В3	$5x10^{5}$	$1~\mathrm{mL}$	Vin 1	$1 \mathrm{mL}$	$4\mathrm{nm}$

Vin Plate 2

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Vin 2	$1 \mathrm{mL}$	$2\mathrm{nm}$
A2	$5x10^{5}$	$1 \mathrm{mL}$	Vin 2	$1 \mathrm{mL}$	$2\mathrm{nm}$
A3	$5x10^{5}$	1 mL	Vin 2	$1 \mathrm{mL}$	$2\mathrm{nm}$
B1	$5x10^{5}$	$1 \mathrm{\ mL}$	Vin 3	$1 \mathrm{mL}$	$1\mathrm{nm}$
B2	$5x10^{5}$	1 mL	Vin 3	$1 \mathrm{mL}$	$1\mathrm{nm}$
B3	$5x10^{5}$	$1~\mathrm{mL}$	Vin 3	$1 \mathrm{mL}$	$1\mathrm{nm}$

Vin Plate 3

Well ID	Well Cell Count	Well volume	Drug	Drug Volume	[Final Drug]
A1	$5x10^{5}$	$1~\mathrm{mL}$	Vin 4	$1 \mathrm{mL}$	$0.5\mathrm{nm}$
A2	$5x10^{5}$	$1 \mathrm{mL}$	Vin 4	$1 \mathrm{mL}$	$0.5\mathrm{nm}$
A3	$5x10^{5}$	1 mL	Vin 4	$1 \mathrm{mL}$	$0.5\mathrm{nm}$
B1	$5x10^{5}$	1 mL	Vin 5	$1 \mathrm{mL}$	$0.25\mathrm{nm}$
B2	$5x10^{5}$	1 mL	Vin 5	$1 \mathrm{mL}$	$0.25\mathrm{nm}$
В3	$5x10^{5}$	$1~\mathrm{mL}$	Vin 5	$1 \mathrm{mL}$	$0.25\mathrm{nm}$

Day 2 - Monday 22-05-2023

- 1. Visually check cells for viability
- 2. Count wells which are growing and split back if overconfluent $(>1.0 \times 10^6 \text{ cells})$
- 3. Replenish drug media

- Collect and spin down supernatant

 Note Add associated drug media to wells while supernatant is being spun down as cells are still attached
 to fooders.
- Resuspend in associated drug media **Note** Repeat drug dilutions from Day 0 except do not make Dil 1 2x [final]

Day 3 - Tuesday 23-05-2023

- 1. Seed 9x 6-well feeders
- 2. Seeding density: Add 2ml of $4.8x10^4$ feeder cells / mL cell suspension to each well

Day 4 - Wednesday 24-05-2023

Collection Day 1

- 1. Homogenize each well thoroughly
- 2. Take 1/2 of cell suspension for RNA extraction
 - a. Spin down for 5 min at $250 \times g$
 - b. Snap freeze in liquid nitrogen
- 3. Reseed remaining 1/2 of cell suspension
 - a. Count cell suspension
 - b. Reseed 0.5×10^6 cells/well (or remaining amount if less than 500K)

Day 6 - Friday 26-05-2023

- 1. Visually check cells for viability
- 2. Count wells which are growing and split back if overconfluent (>1.0x 10^6 cells)
- 3. Replenish drug media
- Collect and spin down supernatant
 - **Note:** Add associated drug media to wells while supernatant is being spun down as cells are still attached to feeders
- Resuspend in associated drug media

 Note Repeat drug dilutions from Day 0 except do not make Dil 1 2x [final]

Day 7 - Saturday 27-05-2023

Note: This can be done Friday 1. Seed 9x 6-well feeders 2. Seeding density: Add 2ml of $4.8x10^4$ feeder cells / mL cell suspension to each well

Day 8 - Sunday 28-05-2023

Collection Day 1

- 1. Homogenize each well thoroughly
- 2. Take 1/2 of cell suspension for RNA extraction
 - a. Spin down for 5 min at 250 x g

- b. Snap freeze in liquid nitrogen
- 3. Reseed remaining 1/2 of cell suspension
 - a. Count cell suspension
 - b. Reseed 0.5×10^6 cells/well (or remaining amount if less than 500K)

Day 10 - Tuesday 30-05-2023

- 1. Visually check cells for viability
- 2. Count wells which are growing and split back if overconfluent $(>1.0 \times 10^6 \text{ cells})$
- 3. Replenish drug media
- Collect and spin down supernatant

Note: Add associated drug media to wells while supernatant is being spun down as cells are still attached to feeders

• Resuspend in associated drug media

Note: Repeat drug dilutions from Day 0 except do not make Dil 1 2x [final]

Day 12 - Thursday 1-06-2023

- 1. Homogenize each well thoroughly
- 2. Collect entire cell suspension for RNA extraction
 - a. Spin down for 5 min at $250 \times g$
 - b. Snap freeze in liquid nitrogen