BACCALAURÉAT GÉNÉRAL

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2023

NUMÉRIQUE ET SCIENCES INFORMATIQUES

Jour 1

Durée de l'épreuve : 3 heures 30

L'usage de la calculatrice n'est pas autorisé.

Le sujet comporte **10** pages numérotées de **1/10** à **10/10**. Dès que le sujet vous est remis, assurez-vous qu'il est complet.

Le candidat traite les 3 exercices proposés

Le document réponse, pages 8/10 à 10/10, est à rendre obligatoirement et dans son intégralité avec la copie.

23-NSIJ1NC1 Page : 1/10

Exercice 1 (4 points)

Dans cet exercice, on utilise le langage SQL (Structured Query Language).

Une radio locale cherche à organiser les informations concernant la musique qu'elle diffuse à l'antenne. Elle fait appel à une société lui proposant un site web utilisant un système de gestion de base de données.

1) Jusque-là, les informations étaient stockées sur une feuille tableur à laquelle chacun des programmateurs musicaux de la radio avait accès sur le réseau local de la station.

1	Titre	Nom de l'album	Format	Genre	Artiste	Compositeurs	Durée en ms
2	Paranoid	Tribute	MPEG audio file	Metal	Ozzy Osbourne	A. F. Iommi, W. Ward, T. Butler, J. Osbourne	176352
5	New Rhumba	Miles Ahead	MPEG audio file	Jazz	Miles Davis	A. Jamal	276871
6	Astronomy	Garage Inc. (Disc 1)	MPEG audio file	Metal	Metallica	A.Bouchard/J.Bouchard/S.Pearlman	397531
7	Hard To Handle	Live [Disc 2]	MPEG audio file	Blues	The Black Crowes	A.Isbell/A.Jones/O.Redding	206994
8	Fanfare for the Commo	A Copland Celebration	Protected AAC aud	Classical	Aaron Copland & Lond	Aaron Copland	198064
9	OAM's Blues	Worlds	AAC audio file	Jazz	Aaron Goldberg	Aaron Goldberg	266936
13	Let There Be Rock	Let There Be Rock	MPEG audio file	Rock	AC/DC	AC/DC	366654
18	Shock Me	Greatest Kiss	MPEG audio file	Rock	Kiss	Ace Frehley	227291
19	Cold Gin	Greatest Kiss	MPEG audio file	Rock	Kiss	Ace Frehley	262243
23	Yahweh	How To Dismantle An	MPEG audio file	Rock	U2	Adam Clayton, Bono, Larry Mullen & The Edge	262034
24	Vertigo	How To Dismantle An	MPEG audio file	Rock	U2	Adam Clayton, Bono, Larry Mullen & The Edge	194612
46	Machine Men	Chemical Wedding	MPEG audio file	Metal	Bruce Dickinson	Adrian Smith	341655
51	2 Minutes To Midnight	Rock In Rio [CD1]	MPEG audio file	Metal	Iron Maiden	Adrian Smith/Bruce Dickinson	386821
58	The Evil That Men Do	Rock In Rio [CD2]	MPEG audio file	Metal	Iron Maiden	Adrian Smith/Bruce Dickinson/Steve Harris	280737
66	Gangland	The Number of The Be	MPEG audio file	Metal	Iron Maiden	Adrian Smith/Clive Burr/Steve Harris	228440
73	The Evil That Men Do	Seventh Son of a Seve	MPEG audio file	Metal	Iron Maiden	Adrian Smith; Bruce Dickinson; Steve Harris	273998
76	Too Many Tears	Into The Light	MPEG audio file	Rock	David Coverdale	Adrian Vanderberg/David Coverdale	359497

Citer le nom d'un système de gestion de base de données.

2) La société propose alors à la radio locale d'utiliser le schéma relationnel suivant pour créer la base de données.

```
Artiste (artisteId, artiste)
Format (formatId, format)
Genre (genreId, genre )
Album (albumId, titrealbum, #artisteId)
Titre (titreId, titre, #albumId, #formatId, #genreId, compositeurs, duree)
```

Les clés primaires sont soulignées et les clés étrangères sont précédées du caractère #.

- a. Indiquer un attribut de la table Album.
- b. **Expliquer** en quoi la présence d'une clé primaire est indispensable dans une relation.
- c. **Expliquer** le rôle de la clé étrangère albumId dans la table Titre.

23-NSIJ1NC1 Page : 2/10

d. À partir de l'extrait de la feuille tableur de la question 1 et des extraits de tables ci-dessous, **indiquer** sans justification **sur le document réponse**, les valeurs des attributs permettant de compléter l'extrait de la table Titre proposé.

Extrait table Format

formatId	format
1	'MPEG audio file'

Extrait table Genre

genreId	genre
2	'Metal'

Extrait table Album

albumId	titrealbum	#artisteId
127	'Tribute'	56

Extrait table Artiste

artisteId	artiste				
56	'Ozzy Osbourne'				

3) Les Black Eyed Peas ont sorti un nouvel album 'Translation' en 2020. Un des programmateurs musicaux de la radio voudrait saisir ce nouvel album dans la base de données.

Un programmateur exécute la requête : **SELECT** * **FROM** Artiste ;

- a. Le nombre de résultats apparaît trop important pour être lisible.
 Modifier cette requête pour n'afficher que le groupe Black Eyed Peas.
- b. Le groupe est bien enregistré dans la base de données.
 Écrire une requête permettant d'afficher tous les albums du groupe Black Eyed Peas déjà présents dans la base de données.

La requête doit permettre d'obtenir un résultat semblable au tableau ci-dessous.

albumId	titrealbum	artisteId	Artiste
348	Elephunk	169	Black Eyed Peas
349	Monkey Business	169	Black Eyed Peas

- c. Écrire une requête pour ajouter le nouvel album 'Translation' qui aura 2500 pour albumld.
- **4)** Un programmateur de la radio cherche à obtenir tous les titres auxquels a collaboré Adrian Smith.
 - a. En se référant à l'extrait de la feuille tableur de la question 1, **indiquer** le nom d'un titre d'Adrian Smith qui n'apparaît pas dans le résultat de la requête suivante :

SELECT titre **FROM** Titre **WHERE** compositeurs = 'Adrian Smith';

b. **Expliquer** pourquoi cette requête n'est pas suffisante pour obtenir tous les titres auxquels a collaboré Adrian Smith.

23-NSIJ1NC1 Page: 3/10

Exercice 2 (4 points)

On considère une donnée binaire émise par un émetteur. La transmission d'informations peut subir différentes perturbations dues à des interférences entre signaux électromagnétiques, à des imperfections du système électronique, etc. Celles-ci sont susceptibles de provoquer des erreurs dans la transmission des données.

Il est donc nécessaire de pouvoir détecter et corriger ces erreurs de transmission.

Une des techniques utilisées est d'adjoindre au signal un bit de parité. L'émetteur calcule la valeur de la parité puis transmet cette valeur dans la trame, selon la règle suivante :

- le bit de parité vaut 0 si la somme des bits de données est un nombre pair ;
- le bit de parité vaut 1 si la somme des bits de données est un nombre impair.

Pour un nombre écrit en binaire 1001001, la somme de ses bits est de 3. Sa parité est donc 1. Le signal transmis sera 10010011.

Après réception de la donnée, le récepteur calcule le bit de parité et le compare à celui de l'émetteur contenu dans la trame. Un signal dont le bit de parité est modifié a forcément subi une altération.

- 1) a. **Indiquer** les bits de parité associés aux représentations binaires des deux entiers naturels 9 et 16 écrits en base 10.
 - b. Les détections d'erreurs utilisant un unique bit de parité sont cependant perfectibles. **Proposer** deux exemples d'erreurs n'étant pas détectables par cette technique.
- 2) Écrire en langage Python une fonction calcul_parite prenant en paramètre une liste Liste_bits constituée d'entiers valant 0 ou 1 et retournant l'entier 1 ou 0 correspondant à son bit de parité.

```
Exemple:>>> Liste_bits = [0, 1, 0, 0, 1, 0, 0, 1]
>>> calcul_parite(Liste_bits)
1
```

3) L'utilisation du codage de Hamming permet d'obtenir une technique de détection d'erreurs plus performante que celle étudiée précédemment.

On s'intéresse au code qui consiste à joindre trois bits de parité [p₁, p₂, p₃] à quatre bits de données [d₁, d₂, d₃, d₄]. Ce qui donne un message codé sur sept bits.

Les trois bits de parité sont définis ainsi :

- p₁ est le bit de parité des trois bits de données d₁, d₂, d₄;
- p2 est le bit de parité des trois bits de données d1, d3, d4;
- p₃ est le bit de parité des trois bits de données d₂, d₃, d₄.

Le message encodé que l'on transmet s'écrit alors comme suit : [p₁, p₂, d₁, p₃, d₂, d₃, d₄].

a. **Justifier** que le codage en binaire de Hamming de la donnée binaire [1, 0, 0, 1] est [0, 0, 1, 1, 0, 0, 1].

23-NSIJ1NC1 Page : 4/10

b. **Écrire** en langage Python une fonction codage_hamming prenant en argument une liste de quatre bits valant 0 ou 1 et retournant une liste de sept bits contenant le message encodé selon le codage de Hamming. Cette fonction utilisera la fonction calcul_parite définie à la question 2

```
Par exemple: >>> donnees = [1, 0, 0, 1]
>>> codage_hamming(donnees)
[0, 0, 1, 1, 0, 0, 1]
```

- **4)** Après le codage de Hamming de quatre bits de données, on obtient une liste M de sept bits [p₁, p₂, d₁, p₃, d₂, d₃, d₄]. La technique proposée pour détecter des erreurs consiste à évaluer trois bits de contrôle de parité [c₁, c₂, c₃] :
 - c₁ est le bit de parité de l'ensemble [p₃, d₂, d₃, d₄] ;
 - c₂ est le bit de parité de l'ensemble [p₂, d₁, d₃, d₄] ;
 - c₃ est le bit de parité de l'ensemble [p₁, d₁, d₂, d₄].
 - a. Soit la liste M = [0, 0, 1, 1, 0, 0, 1]. Lors de la transmission de cette liste, une erreur survient sur le troisième bit : le bit d_1 passe à 0. **Justifier**, en calculant les bits de contrôle de parité, que $[c_1, c_2, c_3] = [0, 1, 1]$.
 - b. Le tableau suivant indique les bits altérés correspondant aux différentes valeurs de [c₁, c₂, c₃].

	Pas de bit altéré	p₁ altéré	p ₂ altéré	d₁ altéré	p ₃ altéré	d ₂ altéré	d₃ altéré	d ₄ altéré
[C1, C2, C3]	[0, 0, 0]	[0, 0, 1]	[0, 1, 0]	[0, 1, 1]	[1, 0, 0]	[1, 0, 1]	?	?

Indiquer sur la copie les triplets correspondant à d₃ altéré et d₄ altéré.

c. **Indiquer** en quoi cette technique utilisant le code de Hamming est plus performante que celle utilisant le bit de parité.

23-NSIJ1NC1 Page : 5/10

Exercice 3 (4 points)

1) On considère un réseau domestique schématisé ci-dessous.

- a. **Expliciter** ce qu'est une adresse MAC (Media Access Control) ou adresse physique.
- b. Indiquer l'adresse IP (Internet Protocol) de la passerelle par défaut du téléphone.
- c. **Lister** le ou les équipements qui apparaîtront dans la table ARP (Adress Resolution Protocol) du téléphone lorsqu'il établira la communication avec internet. La table ARP donne la correspondance entre les adresses IP et les adresses MAC d'un réseau local.
- 2) On modélise la topologie d'un réseau par un schéma où chaque sommet correspond à un routeur implémentant le protocole RIP (Routing Information Protocol). Le protocole RIP permet de construire les tables de routage des différents routeurs, en indiquant pour chaque routeur, la distance (en nombre de sauts) qui le sépare d'un autre routeur.

Dasno ette question, on utilisera le Réseau 1 ci-dessus. On se place au niveau du routeur A.

- a. **Indiquer deux routes** qui permettent d'atteindre le routeur D et leur nombre de sauts.
- b. **Compléter sur le document réponse** le tableau des routes et des nombres de sauts respectifs établis par chacun des routeurs pour rejoindre le routeur D.
- c. **Compléter sur le document réponse**, la table de routage complète du routeur B. On suppose que, maintenant, dans le réseau 1, le routeur A tombe en panne.
- d. **Indiquer** alors les étapes principales qui se déroulent lors de la gestion de cette panne.
- e. Compléter, sur le document réponse, la nouvelle table de routage du routeur B.

23-NSIJ1NC1 Page : 6/10

3) On analyse maintenant une nouvelle topologie du réseau appelé Réseau 2. Chaque sommet représente un routeur et la pondération des arêtes correspond aux coûts des liaisons entre les deux routeurs reliés. Le protocole OSPF (Open Shortest Path First) est ainsi utilisé.

On considère que les routeurs ont effectué assez d'échanges afin d'obtenir toutes les relations.

- a. Indiquer la route entre les routeurs G et E avec le protocole RIP.
- b. **Indiquer** la route entre les routeurs G et E avec le protocole OSPF.
- c. Indiquer ce qui est optimisé dans le protocole OSPF par rapport au protocole RIP.
- d. **Compléter, sur le document réponse**, la table de routage complète avec le protocole OSPF du routeur B.

23-NSIJ1NC1 Page : 7/10

DOCUMENT RÉPONSE À RENDRE OBLIGATOIREMENT ET DANS SON INTÉGRALITE AVEC LA COPIE

Exercice 1. Question 2) d.

Indiquer sans justification les valeurs des attributs permettant de compléter l'extrait de la table Titre proposé ci-dessous.

titreId	titre	#albumId	#formatId	#genreId	compositeurs	duree
2	'Paranoïd'					

Exercice 3. Question 2) b.

Compléter le tableau des routes et des métriques respectives établies par chacun des routeurs pour rejoindre le routeur D.

Routeur	Destination	Passerelle à utiliser	Nombre de sauts
А		С	2
В			
С			
Е	D		
F			
G			

23-NSIJ1NC1 Page : 8/10

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

Exercice 3. Question 2) c.

Compléter la table de routage complète du routeur B selon le protocole RIP.

Routeur	Destination	Passerelle à utiliser	Nombre de sauts
	А		
	С		
В	D		
Б	Е		
	F		
	G		

Exercice 3. Question 2) e.

Compléter la nouvelle table de routage du routeur B après re-convergence suite à la panne du routeur A.

Routeur	Destination	Passerelle à utiliser	Nombre de sauts
	С	G	
	С	E	
Б	D		
В	Е		
	F		
	G		

23-NSIJ1NC1 Page : 9/10

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM: (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

Exercice 4. Question 3) d.

Compléter la table de routage complète du routeur B après convergence selon le protocole OSPF.

Destination	Passerelle à utiliser	Métrique
А		
С		
D		
E		
F		
G		
Н		

23-NSIJ1NC1 Page : 10/10

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM: (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2