Introduction to GWAS

Description of Datasets

Christian Werner

(Computer biologist and quantitative geneticist) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio

(Computer biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

Outline

- 1. Continuous phenotypes: rice dataset
- 2. Binary phenotype: dogs dataset

Continuous phenotypes: plant height (PH)

RESEARCH ARTICLE

Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions

Filippo Biscarini¹*, Paolo Cozzi², Laura Casella¹", Paolo Riccardi¹, Alessandra Vattari¹, Gabriele Orașen³, Rosaria Perrini³, Gianni Tacconi⁴, Alessandro Tondelli⁴, Chiara Biselli³, Luigi Cattivelli⁴, Jennifer Spindel⁵, Susan McCouch⁵, Pamela Abbruscato¹, Giampiero Valé^{3,4}, Pietro Piffanelli¹, Raffaella Greco¹

1 PTP Science Park, 26900 Lodi, Italy, 2 IBBA-CNR, Lodi, Italy, 3 CREA-Council for Agricultural Research and Economics, Rice Research Unit, 13100 Vercelli, Italy, 4 CREA-Council for Agricultural Research and Economics, Genomics Research Centre, 29017 Fiorenzuola d'Arda (Piacenza), Italy, 5 Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY, United States of America

Continuous phenotypes: plant height (PH)

- genotype data from GBS
- ~ 400 rice accessions from
 5 sub-populations:
 - temperate japonica
 - tropical japonica
 - indica
 - aus
 - aromatica

Continuous phenotypes: plant height (PH)

- blue = tropical japonica
- yellow = temperate japonica
- green = aus
- pink = aromatic
- red = indica

Continuous phenotypes: plant height (PH)

12 chromosomes

No correction for population structure

Continuous phenotypes: plant height (PH)

12 chromosomes

Correction for population structure

Continuous phenotypes: plant height (PH)

12 chromosomes

Correction for population structure

We take chromosomes 1, 2, 6 and 7

Binary phenotype: **cleft lip** (presence/absence)

RESEARCH ARTICLE

Genome-Wide Association Studies in Dogs and Humans Identify *ADAMTS20* as a Risk Variant for Cleft Lip and Palate

Zena T. Wolf^{1,e}, Harrison A. Brand^{2,3,ena}, John R. Shaffer^{3,e}, Elizabeth J. Leslie², Boaz Arzi⁴, Cali E. Willet⁵, Timothy C. Cox^{6,7,8}, Toby McHenry², Nicole Narayan⁹, Eleanor Feingold³, Xioajing Wang^{2nb}, Saundra Sliskovic¹, Nili Karmi¹, Noa Safra¹, Carla Sanchez², Frederic W. B. Deleyiannis¹⁰, Jeffrey C. Murray¹¹, Claire M. Wade⁵, Mary L. Marazita^{2,12‡}*, Danika L. Bannasch^{1‡}*

Binary phenotype: **cleft lip** (presence/absence)

- Nova Scotia Duck Tolling Retriever (NSDTR)
- 125 dogs:
 - 13 cases
 - 112 controls

Binary phenotype: **cleft lip** (presence/absence)

- Nova Scotia Duck Tolling Retriever (NSDTR)
- 125 dogs:
 - 13 cases
 - 112 controls

Binary phenotype: cleft lip (presence/absence)

39 chromosomes

Strong signal of association on chromosome 27

Binary phenotype: cleft lip (presence/absence)

39 chromosomes

Strong signal of association on chromosome 27

We take chromosomes 25, 26, 27, 28 and 29

