系统生物学作业

生信 2001 张子栋 2020317210101

5.1 等时间计时 假设一个 SIM 由调节因子 X 调控,X 激活下游基因 Z_i , i = 1, ..., n, 其阈值分别 为 K_i 。在 t = 0 时刻,开始以一个固定的速率 β 生成 X。设计阈值是的基因在相等的区间内一个接一个地被激活(利用逻辑输入函数)。

解:

在 t=0 时刻,X 开始以固定速率 β 生成,设 X 的降解/稀释作用速率为 α ,则 X 浓度随时间变化函数为:

$$X(t) = rac{eta}{lpha} ig(1 - e^{-lpha t}ig)$$

设所需间隔时间为 Δt , 则:

第一个下游基因 Z_1 被激活的阈值为:

$$K_1 = X(\Delta t) = rac{eta}{lpha} \Big(1 - e^{-lpha \Delta t} \Big)$$

第二个下游基因 Z_2 被激活的阈值为:

$$K_2 = X(2\Delta t) = rac{eta}{lpha} \Big(1 - e^{-2lpha \Delta t} \Big)$$

第 i 个下游基因的激活阈值为:

$$K_i = X(i \cdot \Delta t) = rac{eta}{lpha} \Big(1 - e^{-lpha i \Delta t} \Big) \qquad i = 1, 2, \dots, n$$

5.6 双扇的动力学 假设在一个双扇中,激活剂 X_1 和 X_2 调节基因 Z_1 和 Z_2 。 X_1 的输入信号 S_{x1} 在 t=0 时出现,在 t=D 时小时。 X_2 的输入信号 S_{x2} 在 $t=\frac{D}{2}$ 时出现,在 t=2D 时消失。给定 Z_1 和 Z_2 的输入函数分别是逻辑 AND 和逻辑 OR,用图形表示 Z_1 和 Z_2 的启动子活性的动力学特征。

 Z_1 是逻辑 AND,随时间变化函数为:

$$egin{cases} 0 & t < rac{1}{2}D \ rac{eta_1}{lpha_1}ig(1-e^{-lpha_1t}ig) & rac{1}{2}D < t < D \ rac{eta_1}{lpha_1}e^{-lpha_1t} & t > D \end{cases}$$

 Z_2 是逻辑 OR,随时间变化函数为:

$$\begin{cases} \frac{\beta_2}{\alpha_2} \left(1 - e^{-\alpha_2 t} \right) & t < 2D \\ \frac{\beta_2}{\alpha_2} e^{-\alpha_2 t} & t > 2D \end{cases}$$