### **Cloud Fundamentals**

Cloud-based technologies allow organizations to access computing, storage, software, and servers through the internet. This shifts the technological component of the organization to a cloud provider such as AWS, Azure, or Google Cloud.

### **Cloud Services**

#### Software as a Service (SaaS)

SaaS allows users to access applications and databases. Cloud providers manage the infrastructure while users store data on the cloud provider's servers.

Example: A user accesses Gmail, Google Drive, and Google Docs through Google Workspace without needing to install any software.

### Platform as a Service (PaaS)

This enables an organization to remotely access development tools and services used to deliver applications through a subscription.

Example: A developer builds an application on Heroku without worrying about setting up servers or databases, as Heroku provides the necessary development tools and services.

### Infrastructure as a Service (laaS)

Provides virtualized computing resources over the internet. The provider hosts hardware, software, and storage components, while users pay for these resources flexibly, typically based on demand.

Example: A company rents AWS EC2 virtual instances to host its servers. The company installs the OS and applications, while AWS provides the virtualized hardware.



# **Types of Cloud**

Cloud computing has different classifications based on the deployment method of service models.

#### **Private Cloud**

Also known as internal, corporate, or enterprise cloud, a private cloud is hosted on a private platform. It gives organizations more control over their data but can be more expensive due to infrastructure, maintenance, and management costs.

Example: A bank uses its own infrastructure to host critical systems like customer databases, ensuring full control over the data.

#### **Public Cloud**

Hosted by a service provider in an external facility. Users pay a monthly or annual subscription to access services. This option reduces infrastructure, maintenance, and management costs for the organization, but it also means less control over data.

Example: A startup uses Google Cloud services to store data and run applications, reducing infrastructure and maintenance costs.

### **Hybrid Cloud**

Combines both private and public cloud, offering data control alongside the scalability of public cloud services.

Example: An online store stores confidential customer information on its private cloud but uses Microsoft Azure to scale during promotions or high-demand seasons.

## **Community Cloud**

A collaborative effort where multiple organizations share and use the same platform, tailored to meet the needs of a specific sector like healthcare or energy.

Example: Several universities share a community cloud to store scientific research, optimizing resources and ensuring collaborative access.

# **Major Threats**

Cloud computing is vulnerable to many threats that affect physical networks in any company. However, there are also unique threats, including:

#### **Data Breach**

Occurs when an unauthorized entity accesses protected confidential data.

### **Cloud Misconfiguration**

Happens when cloud computing resources are improperly configured, making them vulnerable to attacks. Common examples include open storage permissions, unencrypted exposed databases, and lack of proper access control policies.

### **Poor Cloud Security Architecture Strategy**

Since different cloud models have various security responsibilities, misunderstandings or improper implementation of cloud security architecture can lead to vulnerabilities.

### **Shared Account Credentials**

This occurs when user accounts or access privileges are not well protected and are hijacked by attackers. This poses a significant security threat if the account has high-level privileges.

#### **Insider Threat**

Happens when an employee, contractor, or business partner compromises cloud service either maliciously or inadvertently.

# **Cloud Infrastructure Security**

### **Company Security Policies**

Well-defined company security policies and user training are effective ways to manage unknown applications.

### Microsegmentation

Leverages virtual network topologies to run multiple, smaller, isolated networks without additional hardware costs. This technique enables more granular control of traffic security and workflows within the cloud.

### **Layered Security**

Each cloud resource can be protected at multiple levels, such as:

- Hardware Layer: Use of secure devices in data centers.
- Infrastructure Layer: Proper configuration of virtual networks, firewalls, and VPNs.
- Platform Layer: Implementation of access controls for database services and runtime environments.
- Application Layer: Use of version control and software security testing mechanisms.

# **Cloud Application Security**

### **Code Signing**

Demonstrates that a piece of software is authentic. Executables designed for installation and execution on a device are digitally signed to validate the author's identity and ensure the software code has not been altered since signing.

#### **Secure Cookies**

Protects stored information from unauthorized access. Web developers should use cookies with HTTPS to secure them and prevent transmission over unencrypted HTTP.

#### **Version Control**

Prevents accidental changes made by authorized users. It ensures that two users cannot update the same object—like files, database records, or transactions—at exactly the same time.

# **Cloud Data Security**

### Cryptography

Encryption encodes data so that unauthorized people cannot easily read it. Unencrypted data is called plaintext, while the encrypted version is ciphertext.

There are two classes of encryption:

- Symmetric Encryption Algorithms: Use the same pre-shared key for encryption and decryption. They have a fixed block size of 128 bits with key sizes of 128, 192, or 256 bits.
- Asymmetric Encryption Algorithms: Use different keys for encryption and decryption. These
  include Rivest-Shamir-Adleman (RSA), Diffie-Hellman, ElGamal, and Elliptic Curve

Cryptography (ECC).

### Hashing

Hashing ensures data integrity by taking binary data and producing a fixed-length representation called a hash value. These functions are one-way and used to verify data integrity and authentication.

Cryptographic hash functions have the following properties:

- Input can be of any length.
- Output has a fixed length.
- The hash function is one-way and irreversible.
- Two different input values almost never produce the same hash.
   The hash family includes:
- SHA-224 (224 bits)
- SHA-256 (256 bits)
- SHA-384 (384 bits)
- SHA-512 (512 bits)

### **Cloud Encryption Implementation**

- In Transit: Uses TLS 1.2 or 1.3 to secure communication between client and server.
- At Rest: Automatic encryption of databases and storage using cloud provider-managed keys.
- In Use: Emerging techniques like homomorphic encryption (performs calculations directly on encrypted data without decrypting it, ensuring data privacy even during processing; while promising, it still faces performance challenges).