AD NUMBER

AD395706

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;
Administrative/Operational Use; Jan 1969.
Other requests shall be referred to AFRPL [RPOR/STINFO], Edwards AFB, CA 93523.

AUTHORITY

Air Force Rocket Propulsion ltr, 15 Mar 1971; Air Force Rocket Propulsion ltr, 5 Feb 1986

COMPORTING

COC-9C7-70 ACC

(UNCLASSIFIED TITLE)

AR PORTE BEIKABLE ROCKET ENGINE PROGRAM

MRI20-F-S

FIRST ANNUAL REPORT

R. R. ATTENTION

PAIT & WEIGHT APARAM DEFINE OF CHIED APARAM CONFRAMES TAXON DEFANCE ALSO DEVELOPMENT CHIER

AFET- (R-69-3-YGL)

GROUP 4

PATENT SECRECY NOTICE

Positions of this document contain subject individe covered by a U.S. Pating office society office affine tiscepties decurity requirements preselt. Parolims whall be in accordance with the posity as deposition on pace a and desicating position for lateus hat he subject to the penalthes prescription, by, title 38, E. C. (1988). Religions les and lus.

THE GOLDSTON CONTAINS BEPOCHSTON APPROVING THE DATIONAL SUPPLIES OF THE DISTRICT STATUS STATUS OF THE PERSONS OF THE SEPTIMENT LAW, THE E BY, IN ACCESSION OF THE SECTIONS TO AND THE CONTENTS OF ANY MARKET TO ANY UNSERTHORIZED PROPRIES OF EAST, MARKET TO ANY UNSERTHORIZED PROPRIES OF EAST,

ARE FOR CONCRETE PROPERTIES COMMANDED

EXPLANTS ARE INCOME.

"When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby income no responsibility not any obligation whatevever, and the fest that the Government may have formulated, furnished, or in any way supplied the cold drawings, specifications, or other data, is not to be regarded by limited content or other data, is not to be regarded by limited content or other person or other person or corporation, conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

This material contains information affecting the national defence of the United States within the meaning of the explorage laws. Title 18, U.S.C., Sec. 792 and 794, the trammission or the revelation of which in any manner to an unauthorized person is prohibited by law.

"In addition to security requirements which must be mot, this document is subject to special export controls and each transmitted to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPOR/STINFO), Edwards, California 93523."

unclassified/

PATENT SECRECY NOTICE

Material in this publication relating to LAMINATED CHAMBER COOLING MEANS AND A SLOT TUBE INJECTOR CONCEPT

reveals subject matter contained in U. S. Patent Application Serial No. 319,047 and 725,954 entitled "High Pressure Rocket and Cooling Means" and "Slot Tube Swirler Injector," respectively, which have been placed under Secrecy Orders issued by the Commissioner of Patents. These Secrecy Orders have been modified by a SECURITY REQUIREMENTS PERMIT.

A Secrecy Order prohibits publication or disclosure of the invention, or any material information with respect thereto. It is separate and distinct, and has nothing to do with the classification of Government contracts.

By statute, violation of a Secrecy Order is punishable by a fine not to exceed \$10,000 and/or imprisonment for not more than two years.

A SECURITY REQUIREMENTS PERMIT authorizes disclosure of the invention or any material information with respect thereto, to the extent set forth by the security requirements of the Government contract which imposes the highest security classification on the subject matter of the application, except that export is prohibited.

Disclosure of these inventions or any material information with respect thereto is prohibited except by written consent of the Commissioner of Patents or as authorized by the permits.

The foregoing does not in any way lessen responsibility for the security of the subject matter as imposed by any Government contract or the provisions of the existing laws relating to espionage and national security.

STATEMENT #2 CLASSIFIED

In addition to security requirements which must be not, this document is subject to by identification of the description of the

FORMAGE IN THE STATE OF THE STATES OF T

"This document contains information affecting the National Defense of the United States within the marking of the Espionage Laws, Title, 18, U.S. 2. Viet on the tent 784. Its transmission or the revelection of its contents in any manner to an unauthorized person is prohibited by law."

Page A

THE PARTIES

CONFIDENTIAL

(UNCLASSIFIED TITLE)

AIR FORCE REUSABLE ROCKET ENGINE PROGRAM XLR129-P-1 FIRST ANNUAL REPORT

GROUP 4 DECLASSIFIED AFTER 12 YEARS

PATENT SECRECY NOTICE

PORTIONS OF THIS LOCUMENT CONTAIN SUBJECT MATTER COVERED BY A U.S. PATENT OFFICE SECRECY ORDER WITH MODIFYING SECURITY REQUIREMENTS PERMIT: HANDLING SHALL BE IN ACCORDANCE WITH THE PERMIT AS DESCRIBED ON PAGE A AND INDICATED HEREIN, VIGLATORS MAY BE SUBJECT TO THE PENALTIES PREK, RIBED BY, TITLE 35, U. S. C. (1982), SECTIONS 182 AND 186.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18 U. S. C., SECTIONS 783 AND 784. ITS TRANSMISSION OF THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMISITED BY LAW.

CONFIDENTIAL

Printed in the United States of America

FOREWORD

This annual report describes the Air Force Reusable Rocket Engine Program XLR129-P-1 conducted during the period 6 November 1967 to 6 November 1968, and is submitted in accordance with the requirement of Contract FO4611-68-C-0002.

This effort is the second phase of the Air Force Cryogenic Rocket Engine Advanced Development Frogram, Project 2 of the Program Element 63048F.

This publication was prepared by the Pratt & Whitney Aircraft Florida Research and Development Center as report PWA FR-2972.

This report contains no classified information extracted from other classified documents.

Rocket Propulsion Laboratory personnel who have monitored specific areas of this program and who have made contributions to the program are as follows: Captain Robert E. Probst - Turbomachinery and Controls, Captain James Kephart and Captain Vernon Mahugh - Combustion Devices.

This Technical Report has been reviewed and is approved.

Ernie D. Braunschweig Captain, USAF Program Manager Air Force Rocket Propulsion Laboratory

UNCLASSIFIED ABSTRACT

The objective of this program is to demonstrate the performance and mechanical integrity of a 250,000-1b thrust reusable oxygen/hydrogen rocket engine designated the XLR129-P-1. The program, which is sponsored by the Air Force Rocket Propulsion Laboratory, is being accomplished at Pratt & Whitney Aircraft and consists of design, analysis, fabrication, and test of all the engine components and the complete demonstrator engine. This effort is the second phase of the Air Force Cryogenic Rocket Engine Advanced Development Program, Project 2 of Program Element 63048F. During the first year, experimental evaluation was conducted in the areas of a fixed fuel area preburner injector, hydrogen cooled roller bearings, compact pump inlets, lightweight nozzle fabrication techniques, and selected control valves. Under the fixed fuel area preburner injector evaluation, a new full-scale preburner injector was designed, fabricated, and tested that produced a uniform temperature profile suitable for use in the engine. Under the roller bearing durability tests, four bearing configurations surpassed the test duration goal at the design operating conditions. Under the pump inlet evaluation, an elbow type of inlet with turning vanes was selected for both the fuel and oxidizer turbopumps. Under the nozzle fabrication investigation, it was concluded that the internal corrugated type of construction was best for the two-position nozzle. Under the controls component tests, both a hoop shutoff seal and a cam-actuated shutoff seal have proven to be potentially feasible types of seals for use in the main chamber oxidizer valve, which is a butterfly valve. Also, pressure balance configurations of piston rings used in the preburner oxidizer valve have demonstrated acceptable wear leakage and actuator force characteristics. Under the Component Development Task, designs have been initiated for the preburner injector, main burner injector, main burner chamber, nozzles, transition case, fuel turbopump, oxidizer turbopump, fuel low-speed inducer, oxidizer lowspeed inducer, and the control components. The demonstrator engine design has also been started.

iii/iv

ENCLASSIFIED

CONTENTS

SECTION	P	AGE
	ILLUSTRATIONS	viŁ
	TABLES	1. i. i.
	LIST OF ABBREVIATIONS	ххх
I	INTRODUCTION	1
	A. Fixed Fuel Area Preburner Injector	
	Evaluation	3
	B. Roller Bearing Durability Tests	3
	C. Pump Inlet Evaluation	3
	D. Nozzle Fabrication Investigation	3
	E. Controls Component Tests	3
	F. Preburner Injector	4
	G. Main Burner Injector	4
	H. Nozzles	4
	I. Main Burner Chamber	4
		4
	J. Transition Case	
	K. Fuel Turbopump	4
	L. Oxidizer Turbopump	5 5
	M. Fuel Low-Speed Inducer	5
	N. Oxidizer Low-Speed Inducer	5
	O. Control System	5
	P. Engine Integration and Demonstration	5
	Q. Flight Engine	6
	R. Engineering Support	6
11	SUMMARY	7
III	CONCLUSIONS AND RECOMMENDATIONS	15
	A. Fixed Fuel Area Preburner Injector	
	Evaluation	15
	B. Roller Bearing Durability Tests	15
	C. Pump Inlet Evaluation	15
	D. Nozzle Fabrication Investigation	15
	E. Controls Component Tests	16
	F. Preburner Injector	17
	G. Main Burner Injector	17
	H. Nozzles	18
	I. Main Burner Chamber	18
	J. Transition Case	18
		18
		18
	L. Oxidizer Turbopump	
	M. Fuel Low-Speed Inducer	19
	N. Oxidizer Low-Speed Inducer	19
	O. Control System	19
	P. Engine Integration and Demonstration	21

CONTENTS (Continued)

SECTION		PAGE
IV	TASK 1.1 - SUPPORTING DATA AND ANALYSIS	23
	A. Fixed Fuel Area Preburner Injector	23
	B. Roller Bearing Durability Tests	87
	C. Pump Inlet Evaluation	151
	D. Nozzle Fabrication Investigation	173
	E. Controls Component Tests	215
v	TASK 1.2 - COMPONENT DEVELOPMENT	309
	A. Preburner Injector	309
	B. Main Burner Injector	319
	C. Nozzies	347
	D. Main Burner Chamber	361
	E. Transition Case	369
	F. Fuel Turbopump	397
	G. Oxidizer Turbopump	401
	H. Fuel Low-Speed Inducer	409
	I. Oxidizer Low-Speed Inducer	415
	J. Control System	419
٧I	TASK 1.3 - ENGINE INTEGRATION AND DEMONSTRATION	487
	A. Introduction	487
	B. Summary, Conclusions and Recommendations	487
	C. Cycle Analysis	487
	D. XLR129-P-1 Engine Description	493
	E. XLR129-P-1 Engine Arrangement Study	495
	F. XLR129-P-1 Engine Plumbing Study	499
	APPENDIX	505

INCLASSIFIED

CONFIDENTIAL

ILLUSTRATIONS

FIGURE		PAGE
1	Data From Prior Tangential Entry Oxidizer Element Testing	25
2	Integral Flow Block	26
3	Integral Flow Block With Optically Clear Lucite Adapter	27
4	Quick Change Flow Block	27
5	Pulse Chambers	28
6	Flow Calibrations for 0.095-Inch Tube	29
7	Flow Calibrations for 0.124-Inch Tube	29
8	Element Discharge Coefficient	30
9	Cone Angle vs Thrust for 0.124-Inch Element	31
10	Element Test Matrix Test Results	38
11	Preburner Rig Configuration	40
12	Original and Revised Oxidizer Domes	41
13	Preburner Injector Block Assembly	42
14	Cross Section of Fixed Fuel Area Preburner Injector	43
15	Plan View of E-8 Test Facility	44
16	Preburner Rig Control System	45
17	Preburner Rig Pulse Gun	45
18	Injector Face Prior to Test 1.01	51
19	Preburner Temperature Profile, Rig 35117-1, Test 1.01, 11-Inch Rake	51
20	Preburner Temperature Profile, Rig 35117-1, Test 1.01, 11-Inch Rake	52
21	Preburner Temperature Profile, Rig 35117-1, Test 2.01, 11-Inch Rake	53
22	Injector Face After Test 2.01	54
23	Injector Secondary Burned Area After Test 2.01	54
24	Face of Backup Injector Prior to Test 3.01	55
25	Preburner Temperature Profile With Primary-to- Total Oxidizer Flow Split Variation, Rig 35117-2, Test 3.01, 11-Inch Rake	56
26	Preburner Temperature Frofile, Rig 35117-2, Test 3.01, 11-Inch Rake	56

CONFIDENTIAL

CONFIDENTIAL

FIGURE		PAGE
27	Preburner Temperature Profile, Rig 35117-2, Test 4.02, 11-Inch Rake	_* 57
28	Preburner Temperature Profile, Rig 35117-2, Test 12.01, 11-Inch Rake	59
29	Injector Face After Test 14.02	60
30	Characteristic Velocity Efficiency Based on Rig Pressures and Flow Rates	61
31	Characteristic Velocity Efficiency Based on Combustion Temperatures at the 7-Inch Rake	61
32	Characteristic Velocity Efficiency Based on Combustion Temperatures at the 11-Inch Rake	62
33	Oxidizer Injector Calibration	63
34	Secondary Effective Area vs Momentum Ratio	64
35	Primary-to-Total Flow Split vs Momentum Ratio	64
36	Primary Effective Area vs Momentum Ratio	65
37	Fuel Injector Effective Area	65
38	Flow Split Variation	67
39	Oxidizer Injector Percent Pressure Drop vs Percent Thrust	67
40	Primary Pressure Drop as a Percent of Chamber Pressure	68
41	Secondary Pressure Drop as a Percent of Chamber Pressure	68
42	Effect of Fuel Injection Temperature	70
43	Effect of Fuel Injector Pressure Drop	70
44	Fuel Temperature Effect on Amplitude	71
45	Fuel Temperature Effect on Frequency	72
46	Fuel Temperature Effect on Fuel Manifold Amplitude and Frequency	73
47	Preburner Injector Analog Stability Model	75
/y8	Oxidizer Vaporization Delay	75
49	Analog Simulation of Flow Split Variation	77
5 0	Analog Simulation of Fuel Temperature Variation	77
51	Predicted Volume Influence on Preburner Stability	78

MCLASSFIED

FIGURE		PAGE
52	Influence of Effective Areas on Preburner Stability	78
53	Predicted Frequency Response	79
54	Predicted Frequency Response	80
55	Oxidizer Element Slot Modifications for Water Flow Testing	82
56	Oxidizer Element Calibration for Injector Flow Tests	84
57	Effect of Momentum Ratio on Primary and Secondary Effective Area	85
58	Effect of Momentum Ratio on Fuel Effective Area	85
59	Roller Bearing Test Matrix	88
60	Roller Bearing Fatigue Life vs Radial Load (50,000 rpm)	94
61	Roller Bearing Test Rig Cutaway	96
62	250K Roller Bearing Configuration	97
63	Roller Configurations	97
64	B-13 Test Stand Schematic	99
65	Disassembly Condition of Reaction Bearing (S/N V-1) With Turbine End of Rollers Up (Build 22)	102
66	Disassembly Condition of Reaction Bearing (S/N V-1) With Rear End of Rollers Up (Build 22)	103
67	Disassembly Condition of Load Bearing (S/N V-2) With Turbine End of Rollers Up (Build 22)	103
68	Teardown Condition of Failed Roller (No. 4) and Cage from Load Bearing S/N W-2	105
69	Disassembly Condition of Load Bearing (S/N W-2) With Turbine End of Rollers Up (Build 24)	105
70	Disassembly Condition of Reaction Bearing (S/N W-1) With Rear End of Rollers Up (Build 24)	106
71	Inner Races of Bearings S/N X-1 and X-2 Following Test of Build 25A	107
72	Outer Race Failure in the Unloaded Zone of Load Bearing (S/N X-2) Following Test of Build 25A	108

FIGURE		PAGE
73	Rollers from Load Bearing (S/N X-2) Showing Impact Damage to Turbine End of Rollers (Build 25A)	108
74	Disassembly Condition of Reaction Bearing (S/N X-1) With Turbine End of Rollers Up (Build 25A)	109
75	Disassembly Condition of Reaction Bearing (S/N Y-1) Showing Skewed Position of Roller (Build 26)	110
76	Disassembly Condition of Reaction Bearing (S/N Y-1A) Showing Skewed Position of Roller (Build 27)	!11
77	Disassembly Condition of Reaction Bearing (S/N Y-1A) With Turbine End of Rollers Up (Build 27)	111
78	Disassembly Condition of Load Bearing (S/N Y-2) With Turbine End of Rollers Up (Build 27)	112
79	Disassembly Condition of Reaction Bearing (S/N Z-1) Roller No. 5 (Build 28)	113
80	Disassembly Condition of Reaction Bearing (S/N Z-1) With Turbine End of Rollers Up (Build 28)	113
81	Disassembly Condition of Load Bearing (S/N Z-2) With Turbine End of Rollers Up (Guild 28)	114
82	Disassembly Condition of Reaction Bearing (S/N AA-1) With Turbine End of Rollers Up (Build 29)	115
83	Disassembly Condition of Load Bearing (S/N AA-2) With Turbine End of Rollers Up (Build 29)	115
84	Disassembly Condition of Reaction Bearing (S/N X-1) With Rear End of Rollers Up (Build 30)	116
85	Disassembly Condition of Reaction Bearing (S/N X-1) With Turbine End of Rollers Up (Build 30)	117
86	Disassembly Condition of Load Bearing (S/N Z-2) With Rear End of Rollers Up (Build 30)	117

F IGURE		PAGE
87	Disassembly Condition of Load Bearing (S/N Z-2) With Turbine End of Rollers Up (Build 30)	.118
88	Rollers from Load Bearing (S/N BB-2) Showing Heav Scoring on Turbine End of Rollers (Build 3!).	119
89	Rollers from Load Bearing (S/N BB-2) Showing Reavy Scoring on Rear End of Rollers (Build 31)	119
90	Comparison of Post-Test Condition of a Typical Roller from Reaction Bearing (S/N BB-1) and Load Bearing (S/N BB-2) of Build 31	120
91	Cracked Outer Race from Reaction Bearing (S/N BB-1) of Build 31	120
92	Disassembly Condition of Load Bearing (S/N BB-2) With Turbine End of Rollers Up (Build 31)	121
93	Disassembly Condition of Reaction Bearing (S/N BB-1) With Turbine End of Rollers Up (Build 31)	121
94	View Showing Crack in Outer Race of Reaction Bearing S/N CC-1 (Build 32)	122
95	Disassembly Condition of Reaction Bearing (S/N CC-1) With Rear End of Rollers Up (Build 32)	124
96	Disassembly Condition of Load Bearing (S/N CC-2) With Rear End of Rollers Up (Build 32)	124
97	View Showing Crack in Outer Race of Reaction Bearing (Build 33)	126
98	View Showing Moderate Scuffing on Turbine End of Rollers from Reaction Bearing (Build 33)	127
99	View Showing Moderate Scuffing on Turbine End of Rollers from Load Bearing (Build 33)	127
100	Disassembly Condition of Reaction Bearing (S/N EE-1) With Rear End of Rollers Up (Build 36)	128
101	Disassembly Condition of Reaction Bearing (S/N EE-1) With Turbine End of Rollers Up (Build 36)	129
102	Disassembly Condition of Load Bearing (S/N EE-2) With Rear End of Rollers Up (Build 36)	129
103	Disassembly Condition of Load Bearing (S/N EE-2) With Turbine End Rollers Up (Build 36)	130
104	Reaction Bearing (S/N FF-1) Outer Race ID Showing Thermal Cracks (Build 38)	131
105	Load Bearing (S'N FF-2) Outer Race ID Showing Thermal Cracks (build 38)	132

FIGURE		PAGE
106	Condition of Load Bearing (S/N FF-2) Outer Race (Build 39)	133
107	Disassembly Condition of Reaction Bearing (S/N FF-1) With Turbine End of Rollers Up (Build 39)	134
108	Disassembly Condition of Load Bearing (S/N FF-2) With Turbine End of Rollers Up (Build 39)	134
109	View Showing Condition of Load Bearing Outer Race (S/N GG-2) After Test of Build 40	135
110	View Showing Condition of Load Bearing Rollers (S/N GG-2), Turbine End Up (Build 40)	136
111	View Showing Condition of Load Bearing Rollers (S/N GG-2), Rear End Up (Build 40)	136
112	View Showing Condition of Load Bearing Inn. Race (S/N GG-2) After Test of Build 40	137
113	View Showing Condition of Load Bearing Cage (S/N GG-2) After Test of Build 40	137
114	View Showing Overall Condition of Load Bearing (S/N GG-2), Rear End Up (Build 40)	138
115	View Showing Overall Condition of Load Bearing (S/N GG-2) Turbine End Up (Build 40)	138
116	View Showing Condition of Reaction Bearing Outer Race (S/N GG-1) After Test of Build 40	139
117	View Showing Overall Condition of Reaction Bearing (S/N GG-1), Turbine End Up (Build 40)	139
118	View Showing Skewed Position of Roller No. 7 in Reaction Bearing Cage (S/N HH-1) After Test of Build 41	141
119	View Showing Overall Condition of Reaction Bearing (S/N HH-1), Turbine End Up (Build 41)	141
120	View Showing Condition of Reaction Bearing Rollers (S/N HH-1), Turbine End Up (Build 41)	142
121	View Showing Condition of Reaction Bearing Inner Race (S/N HH-1) After Test of Build 41	142
122	View Showing Condition of Reaction Bearing Outer Race (S/N HH-1) After Test of Build 41	143
123	View Showing Overall Condition of Load Bearing (S/N HH-2), Turbine End Up (Build 41)	143

ILLUSTRATIONS (Continued)

FIGURE		PAGII
124	Enlarged View of ID of Outer Race Showing Numerous Thermal Cracks	145
125	View Showing Condition of Reaction Bearing Rollers (S/N JJ-1) With Rear End Up (Build 42)	145
126	View Showing Condition of Reaction Bearing Rollers (S/N JJ-1) With Turbine End Up (Build 42)	146
127	View Showing Condition of Load Bearing Rollers (S/N JJ-2) With Rear End Up (Build 42)	146
128	View Showing Condition of Load Bearing Rollers (S/N JJ-2) With Turbine End Up (Build 42)	147
129	View Showing Overall Condition of Reaction Bearing (S/N JJ-1) Turbine End Up (Build 42)	147
130	View Showing Overall Condition of Reaction Bearing (S/N JJ-1) Rear End Up (Build 42)	148
131	View Showing Overall Condition of Load Bearing (S/N JJ-2) Turbine End Up (Build 42)	148
132	View Showing Overall Condition of Load Bearing (S/N JJ-2) Rear End Up (Build 42)	149
133	Proposed Demonstrator Engine Showing Inlet Flow Distributors at the Fuel and Oxidizer Inlets (Circled Areas)	151
134	Candidate Inlets and Predicted Pressure Loss	152
135	Closed Loop Water Test Facility	154
136	Water Test Stand Schematic	154
137	Straight Inlet Test Installation	155
138	Short Radius Elbow With Turning Vanes Inlet Test Installation	156
139	Pancake Inlet Test Installation	156
140	Cavitation Damage on Lucite Viewing Section	157
141	Straight Inlet Test Section Pressure Tap Locations	159
142	Elbow Test Section Pressure Tap Locations	159
143	Pancake Test Section Pressure Tap Locations	160
144	Suction Specific Speed vs Unit Flow for Straight Inlet	160
145	Suction Specific Speed vs Unit Flow for Elbow Inlet	161

xiii

ILLUSTRATIONS (Continued)

FIGURE		PAGE
146	Suction Specific Speed vs Unit Flow for Pancake Inlet	161
147	Percent Noncavitating Head vs Net Positive Suction Head (Straight Inlet)	162
148	Percent Noncavitating Head vs Net Positive Suction Head (Straight Inlet)	162
149	Percent Noncavitating Head vs Net Positive Suction Head (Elbow Inlet)	163
150	Percent Noncavitating Head vs Net Positive Suction Head (Elbow Inlet)	163
151	Percent Noncavitating Head vs Net Positive Suction Head (Pancake Inlet)	164
152	Percent Noncavitating Head vs Net Positive Suction Head (Pancake Inlet)	164
153	Percent Noncavitating Head vs Suction Specific Speed (Straight Inlet)	165
154	Percent Noncavitating Head vs Suction Specific Speed (Straight Inlet)	165
155	Percent Noncavitating Head vs Suction Specific Speed (Elbow Inlet)	166
156	Percent Noncavitating Head vs Suction Specific Speed (Elbow Inlet)	166
157	Percent Noncavitating Head vs Suction Specific Speed (Pancake Inlet)	167
158	Percent Noncavitating Head vs Suction Specific Speed (Pancake Inlet)	167
159	Unit Head vs Unit Flow (Straight Inlet)	169
160	Unit Head vs Unit Flow (Elbow Inlet)	169
161	Unit Head vs Unit Flow (Pancake Inlet)	170
162	Comparison of Unit Head vs Unit Flow for All Inlets Tested	171
163	Inlet Line Wall Static Pressure Rise Because of Prerotation (Straight Inlet)	171
164	Velocity Profile at Inlet Housing Flange	172
165	Fluid Temperature vs Area Ratio	174
166	Heat Flux vs Area Ratio	174

UNCLASSIFIED

FIGURE		PAGE
167	Inside Film Coefficient vs Area Ratio	175
168	Coolant Passageway Area vs Area Ratio	175
169	Nozzle Configuration Comparison	180
170	Band Height vs Moment of Inertia for Several Configurations	181
171	Gather Forming Die	182
172	Corrugation Sample Panel	182
173	Integral Band Design Sample Panel	183
174	Hydrostatic Test Samples	184
175	Failed Hydrostatic Test Samples	185
176	Resistance Weld Examination Specimen	186
177	Resistance Weld Test Samples	187
178	Specimens After First Two Tests	188
179	Strain vs Cycle for Inconel 625 (AMS 5599)	190
180	Initial Thermal Fatigue Sample	190
181	ΔT Investigation With Air-Cooled Back	191
182	ΔT Investigation With Water-Cooled Back	192
183	ΔT Investigation With Air-Cooled Back and Insulated Weld Joint	192
184	ΔT Investigation With Water-Cooled Back and Insulated Weld Joint	193
185	Thermal Fatigue Sample With Cooling Fins	193
186	Thermal Fatigue Cycling Setup	194
187	Test Results of Flat Sample With Corrugations and Copper Fins	194
188	Cooling Fin Thickness Test Results	195
189	Test Results of 4-Inch Diameter Corrugated Can	196
190	Line Resistance Heating Using Proximity Effect	197
191	Line Heater Assembly	197
192	Line Heating Test Results	198
193	Thermal Fatigue Sample	198
194	Initial Test Temperatures	199
195	Visicorder Tape of Heating Cycle Tests	199

ME ASSITED

FIGURE		PAGE
196	Initial Thermal Fatigue Specimen and Enlarged View Showing Thermal Fatigue Fractures	200
197	Grack in 0.005-Inch Thick Inconel 625 (AMS 5599) Before Etching (500X Magnification)	201
198	Crack in 0.005-Inch Thick Inconel 625 (AMS 5599) After Etching (500X Magnification)	201
199	Specimen Being Tested at Final Conditions	204
200	Final Thermal Fatigue Specimen Configuration	204
201	Thermal Fatigue Specimen Final Assembly (Top View) .	205
202	Thermal Fatigue Specimen Final Assembly (Side View)	205
203	Thermal Fatigue Specimen Final Assembly (Bottom View)	206
204	ΔT vs Cycle Life for 0.005 Inch-Thick Corrugations	208
205	Photograph of Failed Corrugation With Crown Temperature at 2160°R	208
206	Photograph of Failed Corrugation With Crown Temperature at 1910°R	209
207	Thermal Fatigue of Inconel 625 (AMS 5599) Tube vs Corrugated Sheet	211
208	Main Chamber Oxidizer Valve	217
209	B-22 Cryogenic Static Cycle Test Stand	218
210	Main Chamber Oxidizer Valve Instrumentation Schematic (B-22 Stand)	218
211	Laminated Kapton Shutoff Seal	219
212	Laminated Kapton F-FEP Teflon Seal Leakage vs Actuation, Shutoff, and Pressure Cycles,	001
	Rig F-33466-9	221
213	Failed Portion of Disk Seal After Test	222
214	Disk Seal Axial Supporting Ring After Test	222
215	Hoop Shutoff Seal	223
216	Lip Seal Package	223
217	Hoop-Type Disk Seal Leakage vs Time, Rig F-35106-6.	224
218	Hoop-Type Disk Seal Leakage vs Actuation Cycles, Rig F-35106-6	225

ILLUSTRATIONS (Continued)

FIGURE		PAGE
219	Hoop-Type Disk Seal Leakage vs Total Cycles, Rig F-35106-6	226
220	Primary and Secondary Shaft Lip Seals and Static Seals Leakage vs Actuation Cycles, Rig F-35106-6	227
221	Hoop Seal Surface After Test, Rig F-35106-6	228
222	Shaft Disk Surface After Test, Rig F-35106-6	228
223	Shutoff Seal Prior to Test, Rig F-33466-10	229
224	Strap-Actuated Shutoff Seal	230
225	Strap-Actuated Disk Seal Leakage vs Time, Rig F-33466-10	231
226	Strap-Actuated Disk Seal Leakage vs Actuation Cycles, Rig F-33466-10	232
227	Primary Shaft Lip Seal Leakage vs Actuation Cycles, Rig F-33466-10	233
228	Static Seal Leakages vs Actuation Cycles, Rig F-33466-10	234
229	Glycol Contamination on Inlet Side of Disk, Rig F-33466-10 (Disk is 2.990 inches in	
**	Diameter)	235
230	Shutoff Seal After Endurance Test, Rig F-33466-10.	235
231	Shutoff Seal After Endurance Test, Rig F-33466-10.	236
232	Disk Seal Surface After Endurance Test, kig F-33466-10	236
233	Strap Actuated Disk Seal, Rig F-33466-10	237
234	Cam-Actuated Shutoff Seal, Rig F-35106-7	238
235	Cam-Actuated Disk Seal Leakage vs Time, Rig F-35106-7	239
236	Cam-Actuated Disk Seal Leakage vs Time, Rig F-35106-7	239
237	Primary Shaft Lip Seal Leakage vs Actuation Cycles, Rig F-35106-7	240
238	Static Seal Leakage vs Actuation Cycles, Rig F-35106-7	241
239	Disk Seal After Test, Rig F-35106-7	242
240	Area of Seal Element Failure	242
241	Shaft Disk Sealing Surface After Test, Rig F-35106-7	243

UNCLASSIFIED

FIGURE		PAGE
242	Adhesion Tests of Chromium and Chromium- Molybdenum Plating on Stainless Steel (AMS 5646)	245
243	Surface Characteristics of Chromium and Chromium-Molybdenum Plating on Stainless Steel (AMS 5646)	246
244	Surface Characteristic of Chromium and Chromium-Molybdenum Ultrasonic Plating on Stainless Steel (AMS 5646)	247
245	Chromium and Chromium-Molybdenum Plated Surfaces After 250 Hours of Salt Spray Testing	247
246	Coefficient of Friction Machine	248
247	Wear Characteristics of 0.0001-Inch Thick Chrome Plate (PWA 48)	251
248	Wear Characteristics of 0.001-Inch Thick Chrome Plate (PWA 48)	251
249	Wear Characteristics of 0.001-Inch Thick Chromium-Molybdenum	252
250	Piston Ring Installation Configuration and Pressure Distribution	252
251	Pressure Balance Piston Ring	254
252	Preburner Oxidizer Valve Rig	255
253	Schematic of Preburner Oxidizer Valve Rig Test Stand Installation	256
254	Piston Ring Leakage on Rig F-33469-7B	257
255	Pretest and Post-Test Condition of the Housing	257
256	Pretest and Post-Test Views of Housing Showing Piston Ring Wear Area	258
257	Pretest and Post-Test Condition of Sleeve Showing Wear from Upper Secondary Piston Ring	258
258	Pretest and Post-Test Condition of Upper Piston Ring	259
259	Pretest and Post-Test Condition of Lower Piston Ring	259
260	Closeup Views of Main Housing Wear	260
261	Unbalanced Piston Rings	261
262	Piston Ring Leakage on Rig F-33469-8	261
263	Pretest and Post-Test Condition of Housing, Rig F-33469-8	262

FIGURE		PAGŁ
264	Pretest and Post-Test Views of Housing Showing Piston Ring Wear Area, Rig F-33469-8	262
265	Pretest and Post-Test Condition of Sleeve Showing Wear from Upper Secondary Piston Ring, Rig F-33469-8	263
266	Pretest and Post-Test Condition of Upper Piston Ring, Rig F-33469-8	263
267	Pretest and Post-Test Condition of Lower Piston Ring, Rig F-33469-8	264
268	Piston Ring Leakages on Rig F-33458-7	264
269	Pretest and Post-Test Condition of Housing, Rig F-33458-7	265
270	Pretest and Post-Test Views of Housing Showing Piston Ring Wear Area, Rig F-33458-7	265
271	Pretest and Post-Test Condition of Sleeve Showing Wear from Upper Secondary Piston Ring, Rig F-33458-7	266
272	Pretest and Post-Test Condition of Upper Piston Ring, Rig F-33458-7	266
273	Pretest and Post-Test Condition of Lower Piston Ring, Rig F-33458-7	267
274	Rig F-33458-7 Actuation Force Requirements During Cycle Endurance	267
275	Piston Ring Leakage on Rig F-33458-8	269
276	Post-Test Condition of Housing, Rig F-33458-8	269
277	Post-Test View of Housing Showing Piston Ring Wear Area, Rig F-33458-3	270
278	Post-Test Condition of Sleeve Showing Wear from Upper Secondary Piston Ring, Rig F-33458-8	270
279	Post-Test Condition of Upper Piston Ring, Rig F-33458-3	271
280	Post-Test Condition of Lower Piston Ring, Rig F-33458-8	271
281	Rig F-33458-8 Actuation Force Requirements During Cycle Endurance	272
282	Translating Seal Test Rig Vent Shaft Seal Leakage vs Cycles	273

FIGURE		PAGE
283	Translating Seal Test Rig Primary Shaft Seal Leakage vs Cycles	274
284	Translating Seal Test Rig Leakage vs Inlet Pressure (Stationary Shaft)	275
285	Translating Seal Test Rig Leakage vs Inlet Pressure (Translating Shaft)	276
286	Translating Seal Test Rig Balance Piston Seal Leakage vs Cycles	277
287	Translating Seal Test Rig	278
288	Shaft Seal Package	279
289	Lip Seal Mold	280
290	Translating Seal Test Rig Leakage vs Cycles for Build 10B	282
291	Primary Shaft Lip Seal After Test of Build 10B	283
292	Vent Shaft Lip Seal After Test of Build 10B	283
293	Balance Piston Lip Seal After Test of Build 10B	284
294	Translating Seal Test Rig Leakage vs Cycles for Ruild 11	28 5
295	Primary Shaft Lip Seal After Test of Build 11	286
296	Vent Shaft Lip Seal After Test of Build 11	287
297	Balance Piston Lip Seal After Test of Build 11	287
298	Translating Seal Test Rig Leakage vs Cycles for Build 12	289
299	Primary Shaft Lip Seal After Test of Build 12	290
300	Vent Shaft Lip Seal After Test of Build 12	290
301	Balance Piston Lip Seal After Test of Build 12	291
302	Translating Seal Test Rig Leakage vs Cycles for Build 13	292
303	Primary Shaft Lip Seal After Test of Build 13	293
304	Vent Shaft Lip Seal After Test of Build 13	293
305	Balance Piston Lip Seal After Test of Build 13	294
306	Plumbing Schematic for Testing Build 14	295
307	Translating Seal Test Rig Leakage vs Crcles for Build 14	296
308	Primary Shaft Lip Seal After Test of Build 14	297

FIGURE		PAGE
309	Vent Shaft Lip Seal After Test of Build 14	298
310	Balance Piston Lip Seal After Test of Build 14	· 298
311	Coupling Configurations	301
312	Predicted Coupling Deflection at Seal vs Weight	301
313	Flange Test Rig	303
314	Locations of Strain Gage Rosettes	303
315	Magnetic Proximity Probe Locations Rig 35120-2	304
316	Finite Element Computer Program Predictions	305
317	Instrumentation Locations Rig 35120-3	306
318	Axial Deflection at ID of Flange Rig 35120-3	307
319	Comparison of Predicted and Measured Stresses on OD Wall Rig 35120-3	307
320	Propellant Flow Schematic	309
321	Nut Retained One-Piece Oxidizer Element	310
322	Cap Nut Retained Two-Piece Oxidizer Element	311
323	Faceplate Support Grating Concept	312
324	Transition Case Concept With Integral Injector Fuel Manifold	313
325	XLR129-P-1 Demonstrator Engine Preburner Injector	314
326	Preburner Injector Face Pattern	315
327	Secondary Oxidizer Flow Passages	316
328	XLR129-P-1 Preburner Igniter	317
329	Typical Main Burner Injector Cross Section	320
330	Main Burner Injector Concept No. 1	321
331	Main Burner Injector Concept No. 2	322
332	Main Burner Injector Concept No. 3	322
333	Main Burner Injector Concept No. 4	323
334	Main Burner Injector Concept No. 5	323
335	Main Burner Injector Concept No. 6	324
336	Main Burner Injector Concept No. 11	324
337	Main Burner Injector Concept No. 7	325
338	Main Burner Injector Concept No. 9	325
339	Main Burner Injector Concept No. 10	326
340	Main Burner Injector Concept No. 15	326

FIGURE		PAGE
341	Main Burner Injector Concept No. 14	327
342	Main Burner Injector Concept No. 13	328
343	Main Burner Injector Concept No. 8	330
344	Main Burner Injector Concept No. 12	331
345 (, ,)	Oxidizer Droplet Size	336
346	c* Efficiency vs Number of Elements and Fuel Slot ΔP	337
347	c* Efficiency vs Oxidizer AP 100% Thrust	337
348	Pressure Loss Inside a Long Single Tube Tapered	
	Spraybar	338
349	Hot Gas Flow Area vs Spraybar Tip Diameter	339
350	Hot Gas Flow Area vs Fuel Pressure Loss	340
351	c* Efficiency vs Contraction Ratio	340
352	Main Burner Igniter Concept No. 1	341
353	Main Burner Igniter Concept No. 2	342
354	Main Burner Igniter Concept No. 3	343
355	Main Burner Igniter Concept No. 4	344
356	Main Burner Igniter Concept No. 5	345
357	Main Burner Igniter Concept No. 6	345
358	XLR129-P-1 Demonstrator Engine Nozzle Assembly	348
359	Primary Nozzle	350
360	Two-Position Nozzle	351
361	Translating Mechanism	353
362	Main Burner Chamber Liner Cylindrical Schemes	362
363	Main Burner Chamber Liner Throat Schemes	362
364	Main Burner Chamber Liner Diverging Section	363
365	Orifice Schemes	363
366	96-Tube Design	364
367	Throat Region Manifolding (Scheme 1)	364
368	Alternative Throat Region Manifolding (Scheme 2)	365
369	Alternative Throat Region Manifolding (Scheme 3)	365
370	Wall Temperature Variations for Cylindrical Section	367

1	PAGE
	367
	368
• •	372
	373
• •	373
• • •	374
• • •	376
• • •	376
• • •	377
	378
• • •	378
• • •	379
	380
	381
	382
• •	384
	384
	389
• • •	389
	390
• • •	390
J	391
	392
es	393
	394
• • •	395
• • •	396
	398
8	es

CHELLSHED

FIGURE		PAGE
399	Preliminary XLR129-P-1 Fuel Turbine Coolant and Seal Arrangement	400
400	Oxidizer Turbopump Preliminary Design	402
401	Oxidizer Pump Maximum Radial Loading of Front	
	Bearing Vector Load Diagram	405
402	Ball Bearing Load Capacity	405
403	Oxidizer Pump Seal Package	407
404	Fuel Low-Speed Inducer Preliminary Design	410
405	Preliminary Fuel Low-Speed Inducer Liquid Thrust Piston (Scheme A)	412
406	Preliminary Fuel Low-Speed Inducer Gas Thrust Piston (Scheme B)	412
407	Preliminary Fuel Low-Speed Inducer Gas Thrust Piston (Scheme C)	413
408	Preliminary Fuel Low-Speed Inducer Liquid Thrust Piston (Scheme D)	413
409	Oxidizer Low-Speed Inducer Preliminary Design	416
410	Engine Control System Schematic	420
411	Internal Sleeve Valve (Out Flow) Candidate	424
412	External Sleeve Valve Candidate	424
413	Internal Sleeve Valve (Fixed Ports) Candidate	425
414	Internal Sleeve Valve (Movable Ports) Candidate	425
415	Sleeve Valve Diameter vs Stroke	426
416	Dynamic Force vs Thrust (Internal Sleeve Valve - Reverse Flow)	427
417	Dynamic Force vs Thrust (External Sleeve Valve)	427
418	Dynamic Force vs Thrust (Internal Sleeve Valve - Fixed Ports)	428
419	Dynamic Force vs Thrust (Internal Sleeve Valve - Movable Ports)	429
420	Dynamic Force Comparison of Sleeve Valve Candidates	429
421	Pintle Valve Candidate	430
422	Maximum Stroke vs Contour Angle (Pintle Valve)	431
423	Dynamic Force vs Thrust (Pintle Valve)	431
424	Inverted Pintle Valve Candidate	432
425	Throat Size Selection (Inverted Pintle)	432
	xxiv.	

FIGURE		PAGE
426	Parametric Sizing for Inverted Pintle	433
427	Butterfly Valve Candidate	434
428	Angular Position vs Throat Diameter (Butterfly Valve)	434
429	Dynamic Torque vs Thrust (Butterfly Valve)	435
430	Effective Area vs Angular Position (Butterfly Valve)	435
431	Area Error vs Angular Position (Butterfly Valve)	436
432	Preburner Fuel Valve Installation Schematic	436
433	Preburner Oxidizer Valve Layout	442
434	Preburner Oxidizer Valve Actuator Layout	442
435	Upper Piston Rings Analyzed	443
436	Lower Piston Rings Analyzed	443
437	Nomenclature Explanation and Definition	445
438	Balanced Piston Ring Test Rig	447
439	Valve Installation Schematic	447
440	Lower Secondary Piston Ring Inside Diameter Pre- and Post-Test	448
441	Upper Secondary Piston Ring Outside Diameter Pre- and Post-Test	449
442	Actuation Force vs Inlet Pressure	449
443	Main Chamber Oxidizer Valve Shutoff Seal Cross Section Rig F-33466-11	451
444	Main Chamber Oxidizer Valve Shutoff Seal Overall View Rig F-33466-11	451
445	Main Chamber Oxidizer Valve Shutoff Seal Element Rig F-33466-11	452
446	Revised Shaft Lip Seal Design	452
447	Cam-Actuated Shutoff Seal	453
448	Cam-Actuated Seal Parts Layout	453
449	Hoop Seal Leakage vs Percent of Test Goal, Rig F-33466-11	455
450	Seal Leakage vs Time, Rig F-33466-11	456
451	Seal Leakage vs Shaft Angle, Rig F-33466-11	457
452	Post-Test Leakage, Rig F-33466-11	457

CHESASSIFIED

FIGURE		PAGE
453	Hoop Seal Wear, Ris F-33466-11	458
454	Disk Seal Post-Test Condition, Rig F-33466-11	458
455	Water Calibration Results Rig F-33466-11	459
456	Hoop Seal Surface Condition, Post-Test, Rig F-33466-11	459
457	Hoop Seal Element Failure Rig F-33466-11	460
458	Possible Cavitation Damage to Hoop Seal, Rig F-33466-11	460
459	Post-Test Shaft Seal Surface, Rig F-33466-11	461
460	Post-Test Teardown of Main Chamber Oxidizer Valve Rig F-33466-11	461
461	Shutoff Seal Leakage vs Percent of Test Goal, Rig F-35106-8	463
462	Shutoff Seal Leakage vs Time, Rig F-35106-8	464
463	Shutoff Seal Leakage vs Shaft Position Rig F-35106-8	464
464	Shutoff Seal Leakage vs Test Shutoff Cycles Rig F-35106-8	465
465	Shutoff Seal Wear Rig F-35106-8	466
466	Seal Post-Test Condition Rig F-35106-8	466
467 O	Water Calibration Results Rig F-35106-8	467
468	Seal Element Damage After Water Calibration Rig F-35106-8	467
469	Damaged Seal Element Rig F-35106-8	468
470	Location of Seal Damage Area	468
471	Support Area Crack, Rig F-35106-8	469
472	Shaft Seal Surface Rig F-35106-8	469
473	Crack in Cam Drive Rig F-35106-8	470
474	Post-Test Parts Layout Rig F-35106-8	470
475	Ball Valve Sketch	471
476	Blade Valve Sketch	471
477	Poppet Valve Sketch	472
478	Pneumatic System Flow	474
479	Static Seal Rig Zero Deflection Flanges	476

EXCROSISES

ILLUSTRATIONS (Continued)

FIGURE		PAGE
480	Static Seal Rig 0.002 Deflection Flanges	478
481	Static Seal Rig Flange Weight vs Seal Point Deflection	479
482	Five-Inch Static Seal Rig	479
483	Seal Gland Rework Static Seal Test Rig	480
484	Static Seal Rig Deflection Compensation Schemes	482
485	Maximum Deflection vs Leg Length for Straight Cantilever Beam	483
486	Maximum Deflection vs Leg Length for Tapered Cantilever Beam	483
487	Minimum Thickness vs Leg Length for Straight Cantilever Beam	484
488	Minimum Thickness vs Leg Length for Tapered Cantilever Beam	484
489	Deflection Ratio (Tapered Leg to Straight Leg) vs Length	485
490	Maximum Deflection and Minimum Thickness for Flexible Seal Support	485
491	Operating Range for XLR129-P-1 Engine	493
492	XLR129-P-1 Engine Propellant Flow Schematic	494
493	Demonstrator Engine Components Arrangement With Canted Transition Case	497
494	Demonstrator Engine Components Arrangement With Co-planar Transition Case	498
495	Fuel Pump Bearing Concept	50 5
496	Growth from Hoop and Crowning	506
497	Chording	507
498	Hertz Deflection	507
499	Symmetrical Loading Notation	507
500	Unsymmetrical Loading Notation	508
501	Program Input	511
502	Sample Case Data	524

INCLASSIFIED

TABLES

TABLE		PAGE
1	Demonstrator Engine Characteristics	1
II	Element Dimensional Characteristics	25
III	Test Matrix	35
IV	Dimensional Characteristics of Elements Tested	35
V	Test Matrix Results	37
VI.	Summary of Measured Parameters During Preburner Injector Testing	47
IIV	Summary of Calculated Parameters During Preburner Injector Testing	49
VIII	Flow Rates for Tests 7.01 and 8.01	58
1X	Preburner Test Comparison	74
×	Phase Angle Comparison	78
XI	Injector Water Flow Test Results	81
XII	Nominal Test Conditions	83
XIII	Injector Area Change Per Momentum Ratio Change	86
VIX	Summary of Roller Bearing Tests	89
VX	End Wear Summary (Matrix Points 22 and 23')	123
XVI	Cavitation Test Data	157
XVII	Comparison of Material Candidates	176
XVIII	Properties of Inconel 625 (AMS 5599)	176
XIX	Configuration Study	178
XX	Resistance Weld Measurements	186
XXI	Preliminary Thermal Fatigue Cycling Test Results	203
XXII	Thermal Fatigue Cycling Test Results	212
XXIII	Taber Abraser Wear Testing of Chromium and Chromium-Molybdenum Alloy Electroplate	246
XX IV	Force Wear Tests	250
XXV	Data Recorded During Tests	256
XXVI	Summary of Test Results	281
XXVII	Injector Selection Criteria	334
XXVIII	Cycle Values of Influential Parameters	335

MELASSIFE

TABLES (Continued)

TABLE		PAGE
XXXX	XLR129-P-1 Jackscrew Actuation Time Comparison	355
XXX	XLR129-P-1 Jackscrew Comparison, Supported	
	vs Unsupported	356
XXXI	XLR129-P-1 Jackscrew Comparison, Supported vs Unsupported	357
IIXXX	XLR129-P-1 Translation Mechanism Guide Comparison	358
IIIXXX	Comparison of Phase I (Contract AF04(611)-11401) and Current Design Schemes	368
VIXXX	250% Transition Case Weight Breakdown	374
XXXV	Cooled Duct vs Uncooled Duct Weight Study	377
IVXXX	Truncated Sphere Stress Data (400 psig Internal Pressure)	380
IIVXXX	Test Date Correlation	388
XXXVIII	Bearing Load Summary	404
XXX IX	Weight and Power	437
XL	Valve Rating Based on Single Inlets and Unbalanced Actuation Shafts	438
XLI	Valve Rating Based on Single Inlets and Balanced Actuation Shafts	439
XLII	Valve Rating Based on Double Inlets (where applicable) and Balanced Actuation Shafts	440
XLIII	Percentage Change from Unbalanced Ring	444
XLIV	Comparison of New and Tested Piston Rings	445
XLV	Nomenclature Definition	446
XLVI	Relative Development Ranking	473
XLVII	Applicable Commercial Seals	481
XLVIII	XLR129-P-1 Engine Characteristics	488
XLIX	XIR129-P-1 Engine Operating Requirements	489
L .	Plumbing Weight Summary	500
LI	Bending Capabilities for a Typical Line	503

EEL ASSETS

LIST OF ABBREVIATIONS AND SYMBOLS

Item	Definition
A	Effective area
Acd	Effective flow area
Ao	Overall area
A _B	Secondary area
A _S	Slot area
A _T	Tube area
BDC	Bottom dead center
c*	Characteristic velocity
d	Distance
Et	Modulus x thickness ³
FA	Axial force
F _C	Clamping force
F _R	Radial force
FS	Flow split
8	Gravitational constant
G _R	Radial pressure unbalance
h	Turbine inlet enthalpy or height
HA	Drag
HR	Radial friction
I	Inertia
Kc	Stress
L/D	Length-to-diameter ratio
M _G	Pressure moment due to pressure unbalance
M _H	Pressure moment due to friction
P	Static pressure
Y _c	Chamber pressure
Pr	Pressure x radius
P _H	High pressure
P_L	Low pressure
Q/A	Heat flux
Q/N	Unit flow
RA	Area reduction
R _T	Nozzle weight parameter

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

Item	Pefinition	
S	Suction specific speed	
t	Thickness	
T	Total temperature	
T _{fuel}	Total fuel temperature	
TDC	Top dead center	
UP	Unit pressure	
w _p	Primary flow	
w t	Total engine flow	
W/D	Slot width-to-orifice ratio	
ΔL	Length extension	
ΔP	Pressure differential	
ΔΤ	Temperature differential	
e	Nozzle area ratio	
η _c *	Characteristic exhaust veloc	ity efficiency

xxxi/xxxii

CONFIDENTIAL

SECTION I

(U) The Air Force XLR129-P-1 Reusable Rocket Engine Program is an Advanced Development Program that covers a 54-month period starting 6 November 1967 and ending 6 May 1972. The overall objective of this program is to demonstate the performance and mechanical integrity of a 250% oxygen/hydrogen reusable rocket engine having the characteristics outlined in Table I.

(C)(U) Table I. Demonstrator Engine Characteristics

Nominal Thrust	250,000-1b vacuum thrust with area ratio of 166:1 244,000-1b vacuum thrust with area ratio of 75:1 209,000-1b sea level thrust with area ratio of 35:
Minimum Delivered Specific Impulse Efficiency	96% of theoretical shifting $I_{\rm S}$ at nominal thrust: 94% of theoretical shifting $I_{\rm S}$ during throttling
Throttling Range	Continuous from 100 to 20% of nominal thrust over the mixture ratio range
Overall Mixture Ratio Range	Engine operation from 5.0:1 to 7.0:1
Rated Chamber Pressure	2740 psia
Engine Weight (with 75:1 nozzle)	3520 lb (with flight-type actuators and engine command unit) 3380 lb (less flight-type actuators and engine command unit)
Expansion Ratio	Two-position booster-type nozzle with area ratios of 35:1 and 75:1
Durability	10 hours time between overhauls, 100 reuses, 300 starts, 300 thermal cycles, 10,000 valve cycles
Single Continuous Run Buration	Capability from 10 seconds to 600 seconds
Engine Starts	Multiple restart at sea level or altitude
Thrust Vector Control	Amplitude: = 7 deg; Rate: 30 deg/sec; Acceleration: 30 rad/sec

CONFIDENTIAL

(C)(U) Table I. Demonstrator Engine Characteristics	cs (Continued)	nued)
---	----------------	-------

Control Capability ± 3% accuracy in thrust and mixture ratio at nominal thrust. Excursions from extreme to extreme in thrust and mixture ratio within 5 seconds.

Propellant Conditions

10₂: 16 ft NFSH from 1 atmosphere boiling temperature to 180°R

LH₂: 60 ft NPSH from 1 atmosphere boiling

temperature to 45°R

Environmental Conditions

Sea level to vacuum conditions Combined acceleration: 10 g's axial with 2 g's transverse, 6.5 g's axial with 3 g's transverse, 3 g's axial

with 6 g's transverse

Engine/Vehicle

The engine will receive no external power, with the exception of normal electrical power and 3000-psia helium from the vehicle

(U) The entire program consists of five major tasks and specific subtasks as follows:

Task 1.1 - Supporting Data and Analysis

Subtask 1.1.1 - Fixed Fuel Area Preburner Injector Evaluation

Subtask 1.1.2 - Roller Bearing Durability Tesas

Subtask 1.1.3 - Pump Inlet Evaluation

Subtask 1.1.4 - Nozzle Fabrication Investigation

Subtask 1.1.5 - Controls Component Tests

Task 1.2 - Component Development

Subtask 1.2.1 - Preburner Injector

Subtask 1.2.2 - Main Burner Injector

Subtask 1.2.3 - Nozzles

Subtask 1.2.4 - Main Burner Chamber

Subtask 1.2.5 - Transition Case

Subtask 1.2.6 - Fuel Turbopump

Subtask 1.2.7 - Oxidizer Turbopump

Subtask 1.2.8 - Fuel Low-Speed Inducer

Subtask 1.2.9 - Oxidizer Low-Speed Inducer

Subtask 1.2.10 - Control System

Task 1.3 - Engine Integration and Demonstration

Task 2.0 - Flight Engine

Task 3.0 - Engineering Support

A. FIXED FUEL AREA PREBURNER INJECTOR EVALUATION

(C) The Fixed Fuel Area Preburner Injector Evaluation subtask objective was to design, fabricate, and test a fixed fuel area preburner injector that will provide a temperature profile of less than 150°R peak-to-average at an average temperature of 2325°R operating satisfactorily on engine cycle injection pressure differences and propellant temperatures.

B. ROLLER BEARING DURABILITY TESTS

(C) The Roller Bearing Durability Tests subtask objective was to evaluate 55 x 96.5 mm roller bearings for use in the 250K fuel turbopump. Testing was conducted with liquid hydrogen cooling at a shaft speed of 48,000 rpm and with a 1700-1b radial load. Preliminary bearing tests, during Phase I, (Contract AF04(611)-11401) had indicated that it was feasible to operate a roller bring at these conditions, but that roller end wear and skewing could affect bearing durability. The current phase of this program investigates the effect of roller length-to-diameter ratio, roller crowning, internal fits, and roller-to-side rail clearance on roller and wear and bearing durability.

C. PUMP INLET EVALUATION

(U) The Pump Inlet Evaluation subtask objective was to obtain supporting data for the design of the inlet configuration to be used on the liquid hydrogen and liquid oxygen turbopumps. Because of engine packaging considerations, the proposed demonstrator engine has a flow distributor at the inlet to each main turbopump. The effect of an inlet flow distributor on the head-flow and suction characteristics of the inducer was investigated using water as the test fluid. These data were used to design a suitable pump inlet configuration within the demonstrator engine envelope.

D. NOZZLE FABRICATION INVESTIGATION

(!) The Nozzle Fabrication Investigation subtask objective was to provide additional data and information to support the subsequent design of the two-position nozzle. Sample nozzle panels were fabricated to evaluate manufacturing techniques and subjected to hydraulic stress and thermal cycling tests to determine the structural characteristics.

E. CONTROLS COMPONENT TESTS

(C) The Controls Component Tests subtask had several objectives. Tests were to be conducted on the main chamber oxidizer valve to evaluate four shutoff seals and shaft lipseals to meet the leakage goals established for the valve. Tests were also to be conducted on the preburner oxidizer valve to investigate various surface coatings for improved endurance and a pressure balanced piston ring design. Analytical and experimental investigations were to be conducted to formulate and improve a computer program model to provide a good stress and deflection analysis capability for the seal rigs to be designed under the component development phase of this program.

CANTECNIAL

F. PREBURNER INJECTOR

(C) The Preburner Injector subtask overall objectives are to design, build, and test a preburner injector that will provide a 150°R temperature profile at maximum operating conditions, acceptable start transients, and stable efficient combustion.

G. MAIN BURNER INJECTOR

(U) The Main Burner Injector subtask overall objectives are to design, build, and test a lightweight main burner injector that introduces, atomizes, and mixes liquid oxidizer with the hot fuel-rich turbine discharge (preburner combustion products) in such a manner that efficient and stable combustion results over the full operating range of thrust and mixture ratio.

H. NOZZLES

(U) The Nozzles subtask objectives are to provide a fixed regeneratively cooled nozzle and an extendable two-position nozzle skirt and translating mechanism for the demonstrator engine.

I. MAIN BURNER CHAMBER

(U) The Main Burner Chamber subtask overall objectives are to design, build, and demonstrate, through full-scale testing, performance and operational capability of a lightweight, durable thrust chamber for use in the demonstrator engine program over the specified throttling and mixture ratio ranges.

J. TRANSITION CASE

(C) The Transition Case subtask objective is to demonstrate the structural adequacy of the engine transition case when operating at an internal pressure of 4856 psia with internal combustion gas temperatures as high as 2325°R. This subtask will also verify the structural and cooling capability of the transition case cooling liner. Hot testing prior to full-scale demonstrator engine use will be done in three steps. The first step will be tests with the preburner to establish the temperature profile at the turbine inlet. The fuel turbopump will be mounted in the case for the second series of tests. These tests will demonstrate turbine performance at engine peak conditions. The third test series will be conducted in the staged combustion configuration to verify main burner injector, main burner chamber, and nozzle performance, and operation.

K. FUEL TURBOPUMP

(C) The Fuel Turbopump subtask objective is to demonstrate performance and operational capability for use in the demonstrator engine program. Preliminary analyses indicate that the turbopump must be capable of operating at a maximum speed of 48,000 rpm, a pressure rise of 5654 psid, and flow rate of 99.3 lb/sec at a mixture ratio of 5.0. In addition, the turbopump must demonstrate satisfactory starting and stable operation

over the engine operating range of 20 to 100% thrust and mixture ratio of 5.0 to 7.0. Life will be based on a 10-hour time between overhaul and 100 reuses (300 starts and 600 seconds maximum run duration). Bearing and seal life will be demonstrated by conducting 10-hour tests on ten sets of bearings and seals.

L. OXIDIZER TURBOPUMP

(C) The Oxidizer Turbopump subtask objective is to demonstrate performance and operational capability for use in the demonstrator engine program. Preliminary analyses indicate that the turbopump must be capable of operating at a maximum speed of 25,925 rpm, a maximum pressure rise of 6785 psi without recirculation, a maximum flow of 548 lb/sec. In addition, the turbopump must demonstrate satisfactory starting and stable operation over the engine operating range of 20 to 100% thrust and mixture ratio of 5.0 to 7.0. Life will be based on a 10-hour time between over-haul and 100 reuses (300 starts and 600 seconds maximum run duration). Bearing and seal life will be demonstrated by conducting ten 10-hour tests on ten sets of bearings and seals.

M. FUEL LOW-SPEED INDUCER

(C) The Fuel Low-Speed Inducer subtask objective is to demonstrate performance and operational capability for use in the demonstrator engine program. Life will be based on a 10-hour time between overhaul and 100 reuses (300 starts).

N. OXIDIZER LOW-SPEED INDUCER

(C) The Oxidizer Low-Speed Inducer subtask objective is to demonstrate performance and operational capability for use in the demonstrator engine program. Life will be based on a 10-hour time between overhaul and 100 reuses (300 starts)

O. CONTROL SYSTEM

(U) The Control System subtask overall objectives are to provide a dependable control system for demonstrator engine testing to meet the performance and operational objectives, and to provide assurance that flight control designs can be developed and ultimately implemented to meet the standards for a man-rated flight system.

P. ENGINE INTEGRATION AND DEMONSTRATION

(U) The Engine Integration and Demonstration task objectives are to conduct the hydrodynamic, thermodynamic, and mechanical analyses and design of the demonstrator engine assembly by integrating the component designs of Task 1.2; to fabricate engine assembly hardware and an engineering mockup; to assemble two complete demonstrator engines; and to test these engines to demonstrate the engine thrust, specific impulse, throttling range, mixture ratio range, chamber pressure, weight, expansion ratio, starting, control capability, and propellant conditions.

COFFENTAL

Q. FLIGHT ENGINE

(U) The Flight Engine task objective is to define the flight engine configuration that could result from an engineering development program based on the proposed engine concept. Detailed analytical and preliminary design studies will be conducted concurrently with the demonstration engine test program to define the configuration and capabilities of the flight engine.

R. ENGINEERING SUPPORT

(U) The Engineering Support task objective is to provide the engineering personnel required to accomplish the necessary management control of the design, fabrication, test, and data to support the engine demonstration program. This task includes the preparation of the Monthly Status Reports, the Component Design Handbook, the Program Plan, the Annual, Milestone, and Final Reports, the Program Reviews, and other special technical reports.

SECTION II

(C) Under the Fixed Fuel Area Preburner Injector Evaluation subtask, an injector was fabricated using an existing Phase I preburner injector body modified to allow incorporating 252 dual-orifice, tangential-swirl oxidizer, fixed concentric fuel area elements. This injector was tested to evaluate operation and temperature profile over the range of conditions equivalent to engine mixture ratios from 5.0 to 7.0, starting and thrust levels of 20% to 100%. The fixed area preburner injector must operate on cold gaseous hydrogen and liquid oxygen. The gaseous fuel allows throttling the fuel while still maintaining a suitable injection velocity because of the compressible fuel density change. On the liquid oxygen side, a dual-orifice principle was applied to a slot swirler element for providing suitable injection velocity over the throttle range for the essentially incompressible liquid oxygen. The slot swirler element was selected because of its very fine atomization and mechanical simplicity. Initial water flow tests of the liquid oxygen injection element were conducted to determine the element discharge coefficients, cone angle, and a measure of its stability using pulse testing. The originally selected element (0.095-inch inside diameter) had undesirable vortex instability characteristics at several flow levels. A model test program was then conducted to develop a stable oxidizer injection element, which has a 0.124-inch inside diameter. Fourteen full-scale preburner combustion tests were conducted with the fixed fuel area preburner. The preburner temperature profile was significantly improved over the results obtained with the variable area preburner injector tested under Contract AF04(511)-11401. A peak-to-average combustion temperature profile of 76°R in a radial plane was demonstrated at an average temperature of 2388°R. Damaged oxidizer elements in a section of the injector in line with the temperature rake in a second plane distorted the temperature profile causing a reduction in average temperature to 2325°R and a subsequent increase in measured peak-to-average temperature of 215°R. Four ignition tests were conducted to determine if the preburner would ignite with a secondary helium purge flow rate and the low engine starting tank head flow rate; successful ignition and sustained combustion occurred during all four tests. Four additional tests were programmed to simulate the engine start transients from the ignition flow rates to the 20% flow rate level. Purge timing during shutdowns was adjusted to study the best engine shutdown sequence. During testing of the preburner injector, low frequency combustion instability was encountered at thrust levels below 25% and several tests were programmed to obtain data on influential parameters. An analog model of the preburner injector, combustion chamber, and a portion of the test stand was constructed to determine the influence of various parameters on stability. Water flow tests of the injector assembly and single element test rigs were also made. It was concluded from the test data, where high pressure drop orifices had been installed in the facility lines, that the test facility line volumes were not the cause of the chugging. The analog model that duplicated the test results of frequency and amplitude fairly well indicated that the low secondary pressure drop and large secondary volume contributed significantly to the instability, and that reducing the liquid oxygen injector secondary volume would detune this cavity eliminating the instability.

(C) Under the Roller Bearing Durability Test subtask, 55 x 96.5 mm roller bearings were tested and evaluated for use in the 250K fuel turbopump. The proposed demonstrator fuel turbopump design has two 55 x 96.5 mm roller bearings, one located in front of the 1st-stage impeller and the other located between the 2nd-stage impeller and turbine. The fuel turbopump roller bearings operate at a maximum DN of about 2.65 million mm x rpm. These bearings operate in a liquid hydrogen environment that is provided by the propellant being pumped in the fuel turbopump. The roller bearing test rig that was used is essentially the same as the one used in Phase I, except for modifications to the load bearing mounting and to the drive turbine seal areas. This test rig has the capability of testing two bearings simultaneously at speeds up to 62,000 rpm with radial loads up to 2400 pounds. During the current program, which accumulated 85.1 hours of test time at 48,000 rpm, tests were conducted to evaluate the effects of roller length-to-diameter ratio, roller end-to-side rail clearance, internal clearance, and roller crowning on roller end wear and bearing durability. During all the tests, a 1700-1b radial load was applied to the load bearing resulting in an approximate 1445-1b radial load on the reaction bearing. Five bearing configurations surpassed the 10-hour goal test duration at the design operating conditions. Because of the limited scope of the bearing program and the many variables being evaluated, conclusions were necessarily made based on a single test of a particular bearing configuration unless abnormal test conditions indicated that a repeat test on a configuration was required. This technique was used to indicate the direction for subsequent tests in an effort to reduce the investigation to the more promising ar a. Based on the roller bearing tests to date, it appears that both roller end wear and skewing can be minimized or eliminated by increasing the negative diametral clearance required to maintain a load on the rollers on the unloaded side of the bearing, when the bearing is operating at design conditions. The most promising bearing configuration tested used stainless steel (AMS 5630) inner race and rollers; an outer race guided Armalon cage; a steel alloy (AMS 6265) outer race; single crown, L/D = 1.0 rollers with 0.020 inch roller endto-inner race side rail clearance and 0.0043 inch negative diametral internal clearance. It is recommended that bearings of this configuration be used in the fuel turbonump.

(C) Under the Pump Inlet Evaluation subtask, nine basic inlet configurations were evaluated by electrical analog studies. Two configurations were selected as a result of these electrical analog studies for evaluation on the water test loop. These were a short radius elbow with turning vanes and a pancake inlet without guide vanes. An elbow inlet with guide vanes was the best design analyzed from a head loss and velocity distribution standpoint, and was most suitable for the liquid oxygen pump because of the severe space limitations at the fuel pump and inlet. The pancake inlet without guide vanes that was a more flattened design and would satisfy the envelope requirements of the fuel pump was selected as the second candidate for evaluation on the water test loop. Three inlet configurations were then tested on the water loop using an existing 350K oxidizer pump inducer fabricated under Contract NAS8-20540. These were: (1) a straight inlet to establish baseline inducer performance, (2) a 112-degree elbow inlet with turning vanes, and (3) a 112-degree flattened "pancake" inlet. Suction characteristics of the 350K inducer

COM DEAL W

with the straight inlet compared favorably with predicted levels. Peak suction specific speed was near 25,000. Suction performence with the elbow inlet compared favorably with that of the straight inlet and with predicted suction performance levels. Maximum demonstrated suction specific speed was 24,000. Suction performance with the pancake inlet also compared favorably with that of the straight inlet and with predicted levels of suction performance. Maximum demonstrated suction specific speed was 23,500. Indicated noncavitated performance with the straight inlet was about 15% lower than determined during oxidizer pump tests under Contract NASS-20540 using liquid oxygen and liquid nitrogen as the pumped fluids. The noncavitated head coefficient versus flow coefficient slope was steeper with the elbow inlet and the head coefficients were higher at low flow coefficients than obtained with the straight inlet. The head coefficient flow coefficient characteristic with the pancake inlet was approximately the same level as with the straight inlet, but had a discontinuity between flow-to-speed ratios of 0.16 and 0.18. Higher noise levels emanate from the pancake inlet at low flow-to-speed ratios and also at high speeds indicating a possible structural problem. Large static pressure losses occur in the inlet section of both the elbow and pancake housings at low flow-to-speed ratios. These losses appear to be pump related and are accompanied by severe inlet pressure oscillations. The various inlet configurations were tested over the range of flow-to-speed ratios expected in the engine throttling range; however, maximum speed and flow rates were restricted by test stand limitations to about 40% of design. It is believed, however, that the test results can be extrapolated to design conditions.

(C) Under the Nozzle Fabrication Investigation subtask, the nozzle design and fabrication optimization studies were conducted and completed. To optimize the performance of an engine using a lightweight, two-position nozzle, it was necessary to design the nozzle to maintain the inner wall temperature as hot as possible. This level of temperature was controlled mainly by the material selection, material thickness, coolant flow rate, coolant velocity, and configuration geometry. A study of different heat exchangers was conducted. Several configurations were eliminated during this study, with only two candidates selected for further investigation. These were the corrugated inside and outside diameter configurations. Several configurations of the sheet metal support bands for the ringstiffened translating nozzle under hoop compression were studied. Sample panels of the more promising configurations were fabricated and tested. Twenty-one thermal fatigue tests were conducted on segments of the sample panels. The proposed panel (0.005-inch thick corrugated inner sheet with 0.010-inch thick outer sheet) could not complete the required minimum of 300 thermal cycles at the predicted nozzle temperatures; in fact, the average was 33 cycles. The nozzle hot wall temperature had to be decreased to 1760°R, which is 400 degrees below that desired, before 300-cycle fatigue life could be achieved. Increasing the thickness of the corrugated sheet to 0.010 inch allowed the hot wall temperature to be increased to 2010°R for 300 cycles of fatigue life, while causing only a 10% increase in the total nozzle weight.

(U) Under the Controls Component Tests subtask, tests conducted on four different shutoff seal configurations for the main chamber oxidizer valve resulted in the selection of two seals for continued development and a

shaft lip seal package capable of meeting the demonstrator engine leakage goals. Translating seal rig tests verified the acceptability of formed Kapton and Teflon lip seals for translating shaft applications. Pressure balanced beryllium copper (AMS 4650) piston ring scals were designed for the preburner oxidizer valve, and tests indicated that the required actuator forces were reduced. A precision chrome plating was also found to be satisfactory as a bearing surface for the beryllium copper piston ring seals. A design analysis of high pressure separable flange coupling requirements was also conducted. The analysis was computerized and a hydrostatic test rig design was completed for substantiation testing. A finite element computer program was also adapted for coupling deflection and stress analysis because it would provide a versatile design tool. Hydrostatic stress and deflection testing was completed on two configurations of a 6-inch diameter aluminum pipe coupling rig, and the finite element program was modified to provide acceptable prediction capability.

- (U) Under the Freburner Injector Development subtask, the design of the preburner injector for the demonstrator engine was completed, based on the test results obtained from the Supporting Data and Analysis task. Design studies were conducted on fabrication techniques that would simplify the fabrication and parts replacement for the demonstrator engine preburner injector. It was decided to incorporate the brazed one piece element design in the demonstrator engine preburner injector because of the reduced cost and simplicity of this design. Investment casting and diffusion bonding techniques were considered as possible methods of fabricating the preburner injector. However, certain problems, such as the use of caustic contaminants to remove the casting core eliminated these techniques from consideration. Analysis on the thermal low cycle fatigue (LCF) life problem in the preburner injector Rigimeth faceplate showed that no plastic strain existed for the worst case and, therefore, the Rigimesh is not limited in thermal low cycle fatigue life.
- (U) Under the Main Burner Injector subtask, a design study was conducted to select the best design concept for the demonstrator engine. To ease fabrication difficulties and improve repairability, prime consideration was given to a multipiece injector design. It was proposed that the injector be built from pie-shaped segments or from individual spraybars brazed or welded into an oxidizer manifold. Design concepts using the single tapered tube spraybar with an increased flow area are superior in most respects to all other concepts, particularly in weight. It was also proposed that an investment cast injector, with the oxidizer injection elements simultaneously diffusion bonded in place, be considered. Casting the main burner injector in one single piece is presently beyond the stateof-the-art. Diffusion bonding the oxidizer injector elements into the cast spraybars is not impractical; nowever, considerable development would be required. Consideration was given to fuel faceplate support structure, structure-to-Rigimesh attachment, and facerlate assembly retention. A main burner igniter design study was conducted to analyze various concepts for integrating the main burner igniter into the engine transition case and main burner injector. This study included methods of adapting the igniter fabricated during Phase I (Contract Ar04(611) - 11401) as well as new concepts that could reduce the size and complexity of the igniter system.

COMPLEXIAL

- (C) Under the Nozzle subtask, designs of the primary nozzle and the twoposition nozzle were initiated. The nozzle assembly for the XLR129-P-1 demonstrator engine will consist of two fixed sections that form the primary nozzle and a translating lightweight section as the two-position nozzle. The primary nozzle attaches to the main burner chamber at an area ratio of 5.3 and extends to an area ratio of 35. A design study indicates that the primary regeneratively cooled nozzle is mechanically feasible. The two-position nozzle coolant passages are designed to pass the coolant at a rate that keeps the inner skin of the nozzle at a temperature as high as possible in the axial direction to absorb maximum energy in the flow stream. The skin temperature is limited in the inlet region to avoid low cycle fatigue over the required life of the engine. The outer skin of the two-position nozzle will have a high circumferential thermal gradient because of the corrugated flow passages and the fin-cooled weld flats. The thermal stresses imposed on the outer skin by the gradient will be taken out in hoop tension. The outer skin of the two-position nozzle will be smooth; and this has three advantages. The stiffening bands can have an uninterrupted bonding surface, the outer skin thickness is based on strength requirements and not thermal requirements, and the corrugation cannot be constricted by thermal expansion.
- (U) Under the Main Burner Chamber subtask, the design of this component was initiated. The main burner thrust chamber design is based on the copper wafer cooled thrust chamber demonstrated during Phase I (Contract AFO4(611) 11401). A study of the cooled water liner was conducted to provide a chamber liner that is not radially pressure loaded in the cylindrical portion and to reduce the bolt circle diameter of the main injector attachment flange for reduced weight. A number of main burner chamber liner configurations were studied for the most advantageous configuration. The selection of the best design was based on the following considerations; heat transfer and pressure drop, structural and mechanical integrity, and weight. Preliminary studies indicate that either a 32-tube or 96-tube design for providing coolant to the wafer liner coolant zones appears to be the most advantageous configuration. This is the configuration being analyzed in detail.
- (U) Under the Transition Case subtask, a design analysis was initiated to determine the basic design approach for the transition case, gas flow ducts, and coolant liners. A design concept of intersecting segmented spheres is being proposed for the transition case configuration. Because a sphere is inherently a more efficient pressure vessel than a cylinder or cone, this concept will provide the following advantages:
 - 1. Lighter construction because a thinner shell is required to resist pressure; material in tension not bending.
 - Easier construction because intersecting spheres provide circular intersections, where stiffening is required, instead of elliptical intersections for cylinders and cones, where even more stiffening would be required.
 - 3. A decreased bending stress at the flanges and other boundaries because of the radial load component.

Five intersecting sphere configurations were studied initially; namely, three co-planar component designs and two canted component designs. Hand calculations and computer programs were conducted on each of these designs to determine if they could perform under the predicted pressures and stresses. Two of these designs; namely, one canted version and one co-planar version were selected for further study and model testing. In addition, a truncated spherical model was selected that simulated construction and load conditions anticipated for the inner duct centerbody. The truncated spherical model was tested under pressure until the proportional limit of the material was reached at local areas. A review of these data indicates good correlation between the test result and the predicted results. A model, which simulated the intersection of the basic sphere and a sphere segment for the co-planar component design, was tested. The results of these tests show that the loads required to reach the proportional limit of each model was generally higher than predicted because of the biaxial stress field. There were instances where applied loads were limited to lower values than predicted, because of bending con entrations around the ring and shell intersections resulting from weld mismatch. A thrust structure model, representing the canted component design was also tested. These tests indicated that the load in the shell is lower than the predicted value, and that the rings take a greator portion of the load than the shell because the load was distributed along the stiffest path, which was the intersection of the thrust pad and the three component rings. Studies were conducted on the internal ducts of the transition case that showed the canted concept was lighter weight than the co-planar concept, and that the ducts should be cooled.

- (C) Under the Fuel Turbopump subtask, a preliminary design configuration has been initiated. The demonstrator engine requires that the fuel turbopump deliver liquid hydrogen at a flow rate of 99.3 lb/sec at a pressure of 5654 psia at its design point (mixture ratio of 5). The two-stage turbine must deliver approximately 49,872 horsepower to the pump and must operate at a minimum inlet temperature of 1986°R and at a maximum temperature of 2292°R at 100% thrust.
- (C) Under the Oxidizer Turbopump subtask, a preliminary design configuration has been initiated. The demonstrator engine requires that the oxidizer turbopump deliver liquid oxygen at a maximum flow rate of 548 lb/sec with a pressure rise of 4603 psid at its design point (mixture ratio of 7) and a maximum pressure rise of 5737 psid at a mixture ratio of 5. The pump design incorporates a valve system that recirculates approximately 20% of the oxidizer flow back to the pump inlet to limit the discharge pressure to 6000 psia. The turbine must operate at a minimum inlet temperature of 1986°R and a maximum inlet temperature of 2292°R at 100% thrust. Preliminary analysis indicates that the turbopump must be capable of operating at a maximum speed of 25,925 rpm.
- (C) Under the Fuel Low-Speed Inducer subtask, a preliminary design was completed. The demonstrator engine requires that the fuel low-speed inducer deliver hydrogen to the inlet of the fuel turbopump at a pressure level consistent with high speed operation of the fuel turbopump. The inducer must be capable of operating at a minimum NPSH of 60 ft over a

hydrogen inlet temperature range from 1 atmosphere boiling temperature to 45 °R. The inducer will be designed with a suction specific speed of 46,800 and a maximum pressure rise of 109 psid. The low-speed inducer will be lightweight, compact and capable of stable operation over the engine operating range.

- (C) Under the Oxidizer Low-Speed Inducer subtask, a preliminary design was completed. The demonstrator engine requires that the oxidizer low-speed inducer deliver oxygen to the inlet of the oxidizer turbopump at a pressure level consistent with high speed operation of the oxidizer turbopump. The inducer must be capable of operating at a minimum NPSH of 16 ft over an oxygen inlet temperature range from 1 atmosphere boiling temperature to 180°R. The inducer will be designed with a suction specific speed of 40,000 and a maximum prossure rise of 253 psid. The low-speed inducer will be lightweight, compact, and capable of stable operation over the engine operating range.
- (U) Under the Control Systems subtask, a control system analysis was conducted of the XLR129-P-1 rocket engine cycle to determine the required control points for satisfactory steady-state operation. The preburner oxidizer and fuel valves, the main chamber oxidizer valve, oxidizer pressure limit valve and exidizer low speed inducer turbine area actuator were selected to provide the necessary regulation. Additional endurance tests were conducted on the cam-actuated and hoop-type main chamber oxidizer valve shutoff seals. The hoop-type seal was selected for incorporation into the demonstrator engine valve design. An improved pressure balanced piston ring seal design for the preburner oxidizer valve was completed. Test rig actuator force tests with the new design rings in the existing valve confirmed the reduced load characteristics planned for the demonstrator engine valve design, which is in process. Design selection studies were conducted for the proburner fuel valve and propellant vent valves. An offset shaft, shaped disk with spherical sealing surface, butterfly type design was selected for the preburner fuel valve. A single-acting, normally closed, two-position, ball-type design with pneumatic actuator was selected for the propellant vent valves. The design layouts for these valves are in process. The finite element computer program was used to design an Incomel 718 (AMS 5663) nickel alloy. 0.902 inch deflection (at the seal), cantilevered flange, static seal test rig. The parts detail drawings are in process for the basic test rig and modifications to allow testing six face type static seals. Analog and digital program models of the engine steady-state design and offdesign performance characteristics are in process. These models will be forwarded to prospective control system vendors along with the engine command unit, transducers, and valve actuators purchase specification. The purchase specification is being drafted and will be issued early in the next period.
- (U) Under the Engine Integration and Demonstration subtask, a series of analytical studies were conducted to provide a balanced engine cycle that would fulfill the demonstrator engine requirements and characteristics. An engine arrangement study was conducted to determine the configuration of the transition case. An arrangement with the turbopumps and preburner in a common axial place (co-planar) and spaced 120 degrees apart was

selected. An engine plumbing study was also conducted to determine the plumbing configuration requirements, and to derive ground rules to govern material selection and fabrication. A fabrication feasibility study was conducted to define the configuration problem areas prior to initiating the major engine component design.

SECTION III CONCLUSIONS AND RECOMMENDATIONS

(U) Studies conducted during this report period resulted in the following conclusions and recommendations, which are listed for each of the major subtasks.

A. FIXED FUEL AREA PREBURNER INJECTOR EVALUATION

(C) 1. The 0.124-inch inside diameter element was selected for the fixed area preburner injector with slot areas to provide the required engine cycle injection pressure drops.

B. ROLLER BEARING DURABILITY TESTS

- (1) 1. Roller skewing, which accounted for most of the bearing failures during the current program, was not found to be related to roller end wear or roller end-to-side rail clearance if sufficient negative internal clearance was incorporated in the bearing.
- (U) 2. The increased length-to-diameter ratio, triple crown rollers did not demonstrate the anticipated improvement in resistance to roller skewing over L/D = 1.000 single grown rollers. The longer L/D rollers demonstrated more skewing tendency than the L/D = 1.0 rollers with the same internal clearance and side rail clearance.
- (U) 3. The most promising hearing configuration tested used stainless steel (AMS 5630) inner race and rollers; an outer race guide Armalon cage; a steel alloy (AMS 6265) outer race; single crown, L/D = 1.0 rollers with 0.020 inch roller endto-inner race side rail clearance and 0.0043 inch negative diametral internal clearance. It is recommended that bearings of this configuration be used in the fuel turbopump.

C. PUMP INLET EVALUATION

(U) 1. The elbow inlet appears to be superior to the pancake inlet and is recommended for both the fuel and liquid oxygen pumps elthough some slight modification to the inlet may be required to fit this configuration into the engine envelope on the fuel pump inlet.

D. NOZZLE FABRICATION INVESTIGATION

(U) 1. It was concluded that the material most suitable for constructing the two-position nozzle was Inconel 625 (AMS 5599), and that the internal corrugated design was the most feasible to fabricate. An important factor in this selection was that the design allowed the use of standard stiffener bands on the rooth power surface.

- (") 2. It was also concluded that stiffener bands of the "dunce hat" design would be used for the optimum lightweight configuration.
- (U) 3. The progressive die forming process produced good corrugation detail with minimum elongation and was selected for final fabrication. Resistance seam welding the assembly provided the easiest and most reliable construction method and produced high quality stiffener bands, as substantiated by the samples fabricated and the hydrostatic tests performed.
- (U) 4. The 0.010- to 0.010-inch thick nozzle configuration using the internal corrugation design is recommended for the two-position nozzle design.

E. CONTROLS COMPONENT TESTS

- 1. Main Chamber Oxidizer Valve
- (U) 1. The silver-plated hoop scal and the cam-actuated scal designs were considered to be acceptable shutoff scals for continued development for the canted shaft butterfly valve.
- (U) 2. The strap-actuated and looseleaf shutoff seals did not appear to warrant further effort.
- (U) 3. Laminated Kapton F lip seals met the leakage and durability goals and were recommended for this application.
- (U) 4. It was recommended that development of the hoop seal be continued to improve manufacturing methods and cleaning capability.
- (U) 5. It was recommended that development of the cam-actuated scal be continued to improve durability.
- 2. Preburner Oxidizer Valve
- (U) 1. Precision chrome coating was selected for the preburner oxidizer valve application because the plating techniques are sufficiently developed. The application of molybdenum-chromium will require further coordination with an outside vendor or in-house plating shop to produce consistent results. Further development of molybdenum-chromium was recommended for extremely high load applications where the wear characteristics of precision chrome is not acceptable.
- (U) 2. The pressure balanced piston rings provided acceptable wear and leakage characteristics and a reduction in actuation force as compared to the unbalanced rings; however, further force reduction is desirable to minimize the actuator power requirements.

- (!) 3. A lip seal was not recommended for the balance piston because of the high leakage encountered.
- (U) 4. Reduction of the seal package size of the preburner oxidizer valve is possible by eliminating one shaft seal and changing the seal configuration to a Kapton-Teflon lip seal. A laminate configuration of KKTTK was recommended for application at the primary and vent shaft seal locations.

3. Static Seals

- (U) 1. Supporting data for a satisfactory seal rig design was accomplished during this report period. The finite element computer program, as adapted to coupling analysis, will be satisfactory for optimization of coupling flanges.
- (U) 2. It was recommended that static seal test rigs be designed for the minimum deflection consistent with the demonstrator engine weight goals. The finite element computer program should be used to analyze all demonstrator engine flanges to limit deflection to the values selected for the static seal test rigs. Both axial and radial type static seals should be procured and tested in the rigs designed under the component development phase of this program.

F. PREBURNER INJECTOR

(U) 1. The design of the preburner injector for the XLR129-P-1 demonstrator engine was completed. A dual-orifice tangential-entry oxidizer, fixed area fuel injector was selected. Selection of this injector concept was based on test results obtained under the Supporting Data and Analysis task.

G. MAIN BURNER INJECTOR

- (U) 1. The single tapered tube spraybar is the concept recommended for the demonstrator engine main burner injector.
- (U) 2. It was concluded that a straight single tube spraybar, which could either be cast or machined from a forging, is desirable. This type of spraybar is slightly heavier than an angled type of single tube spraybar design.
- (U) 3. The existing Phase I (Contract AF04(611)-11401) igniter hardware cannot be used in the demonstrator engine transition case and injector without modification.

UNCLASSIFIED

H. NOZZLES

- (U) 1. The recommended primary nozzle design has a single pass heat exchanger at the inlet end and a double pass heat exchanger at the exit end.
- (U) 2. It is recommended that the two-position nozzle be constructed using the internal corrugated, smooth outer skin type of structure.

I. MAIN BURNER CHAMBER

(U) 1. Structures and heat transfer studies of conceptual design configurations are in process. The final design selection will be made after completion of these studies.

J. TRANSITION CASE

(U) 1. It was concluded that for the overall transition case design, the co-planar transition case offers the best solutions regarding the inner duct design, cooling, thrust load handling, assembly, and manufacturing.

K. FUEL TURBOPUMP

- (U) It was concluded that the preliminary design configuration of the fuel turbopump should incorporate the following features:
 - 1. Integral high-speed axial-flow inducer
 - 2. Two-stage pump with centrifugal impellers, axial entry and double discharge
 - 3. Double acting hydrostatic thrust balance piston
 - 4. Full-admission, axial-flow, two-stage, pressure-compounded turbine with cooled disks and uncooled airfoils
 - 5. Two antifriction roller bearings.

L. OXIDIZER TURBOPUMP

- (U) It was concluded that the preliminary design configurations of the oxidizer turbopump should incorporate the following features:
 - 1. Integral high-speed, axial-flow inducer
 - Single-stage shrouded impeller with axial entry and double discharge
 - 3. Single-acting hydrostatic thrust balance piston

ENCLASSIFIED

- 4. Full-admission, axial-flow, two-stage pressure turbine with cooled disks and uncooled airfoils
- 5. Two antifriction ball bearings.

M. FUEL LOW-SPEED INDUCER

- (U) It was concluded that the preliminary design configuration of the fuel low-speed inducer should incorporate the following features:
 - 1. Helical axial flow inducer
 - 2. Single acting hydrostatic thrust balance piston
 - 3. Two-stage, axial-flow, partial-admission impulse turbine
 - 4. Two antifriction ball bearings.

N. OXIDIZER LOW-SPEED INDUCER

(U) The preliminary design configuration for the oxidizer low-speed inducer was initiated. However, a complete hydraulic analysis of the inducer has not yet been performed, but it is anticipated that a helical axial flow inducer will be incorporated. It was concluded that a thrust balance piston is required. The drive turbine will be a single-stage, radial inflow design. A variable-area turbine is an ideal approach to provide variable pressure drop to meet the power requirements of the inducer over the entire operating range of the engine.

O. CONTROL SYSTEM

- (U) Engine cycle studies indicate that control components will be required at five points in the demonstrator engine: preburner fuel and oxidizer supply lines, main burner oxidizer supply line, oxidizer low-speed inducer turbine inlet area, and oxidizer pump recirculation line. It is recommended that valve designs for these locations be completed for incorporation into the demonstrator engine.
- 1. Main Chamber Oxidizer Valve
- (U) 1. The silver plated hoop-type shutoff seal provided the most consistent extended endurance test results, met all of the test goals, and was still serviceable at the end of the test.
- (U) 2. The cam-actuated shutoff seal ambient temperature leakage was less than that of the hoop seal, but the cryogenic temperature leakage was greater and the seal element was not as durable as that of the hoop seal.
- (U) 3. Laminated Kapton/FEP Teflon lip seals continue to be recommended for the valve shaft seals.

UNCLASSIFIED

UNCLASSIFIED

- (U) 4. It is recommended that the silver plated hoop seal be incorporated in the main chamber oxidizer valve design for the demonstrator engine.
- (U) 5. It is recommended that development of the cam-actuated seal (as a back-up to the hoop seal) be discontinued.
- 2. Preburner Oxidizer Valve
- (U) 1. Precision chrome coating has acceptable wear characteristics and has been selected for the preburner oxidizer valve housing and sleeve. Further development of molybdenum-chromium plating is recommended for extremely high load applications where the wear characteristics of precision chrome is not acceptable.
- (U) 2. Balanced piston rings will provide acceptable wear characteristics and satisfactory actuation force levels, and are recommended for the demonstrator engine valve.
- (U) 3. A shaft lip seal laminate configuration of KKTTK is recommended for application at the primary and vent shaft seal locations.
- 3. Preburner Fuel Valve
- (U) 1. The valve selection study completed for this control point requirement resulted in selection of a modified butterfly type valve for this application. Completion of the selected valve design, parts procurement and testing are recommended for the next period.
- 4. Oxidizer Pressure Limit Valve
- (U) 1. A recirculation valve for the oxidizer turbopump will be required to limit the oxidizer turbopump discharge pressure. The valve will only be required to operate near maximum thrust and minimum mixture ratio. A scheduled valve position as a function of thrust and mixture ratio is the recommended control mode.
- (U) 2. Completion of a selection study and valve design for the demonstrator engine is recommended.
- 5. Oxidizer Low-Speed Inducer Actuator
- (U) 1. Analysis of the specific requirements for this control system component will not be possible until the low-speed inducer turbine design concept is firm. The actuator requirements and design type selection for the demonstrator engine will be accomplished at that time.

UNCLASSIFIED

UNCLASSIFIED

6. Static Seals

- (U) 1. Supporting data for satisfactory seal rig design was completed during this period. The finite element computer program, as adapted to coupling analysis, will be satisfactory for optimizing coupling flange designs.
- (U) 2. The finite element analysis showed that the cantilevered flange type coupling with 0.002-inch deflection is the most desirable configuration for a static seal rig from the standpoints of envelope and weight. Six face-type static seals were found to have deflection and sealing capability to meet the engine design goals according to the manufacturers.
- (U) 3. A finite element analysis of the Battelle Memorial Institute coupling design for the use of AFRPL Bobbin seal indicated that it had moderate deflection at the seal, and was excessively bulky and heavy.
- (U) 4. It is recommended that six face-type seals be tested in the 0.002-inch deflection cantilevered flange seal rig. A seal rig capable of meeting the engine weight and envelope requirements should be designed for the AFRPL Bobbin seal.

P. ENGINE INTEGRATION AND DEMONSTRATION

- (U) 1. An engine cycle balance, designated cycle No. 6, has been developed that meets the demonstrator engine requirements and characteristics. This cycle will be the basis for the design of the XLR129-P-1 engine.
- (U) 2. Either the canted or co-planar transition case designs can be reasonably packaged and no significant advantage is obtained from one design over the other. Selection of the transition case, therefore, should be based on component structural requirements.
- (U) 3. The calculated head loss values used in the engine cycle balance are representative of the engine plumbing system.
- (U) 4. The material that appears most desirable for use in the plumbing lines is Inconel 718 (AMS 5589) because of its high strength and elongation. The use of castings for the plumbing lines is a possibility, however, castings generally have a lower fatigue and yield strength than wrought alloys along with lower elongations. The use of bent tubes for the plumbing lines is another possibility. All of the vendors contacted have had extensive experience in similar lower pressure aerospace plumbing.

UNCLASSIFIED

SUPPLEMENTARY

INFORMATION

Pratt & Whitney Aircraft

DIVISION OF UNITED AIRCRAFT COMPORATION

March 27, 1969

In reply please refer to: MFS:RPSmh:Cont. Adm.

Major Ernie D. Braunschweig, RPREB Air Force Rocket Propulsion Laboratory Edwards, California 93523

Dear Major Braunschweig:

Per our letter, MFS:RPSmh:Cont. Adm., dated February 17, 1969, we transmitted PWA FR-2972, Air Force Reusable Rocket Engine Program XLR129-P-1, First Annual Report, AFRPL-TR-69-3, dated January 1969.

Subsequent to the transmittal of the subject report, the security classification of two paragraphs was found to be inaccurately designated. Please make the following ink corrections to all copies of the report, so that readers will be properly advised.

(a) Change the classification of Paragraph No. 3 of Part B on Page 15 in Volume 1 from Unclassified (U) to Confidential (C).

(b) Change the classification of the 3rd Paragraph on Page 494 in Volume III from Confidential (C) to Unclassified (U).

Very truly yours,

UNITED AIRCRAFT CORPORATION
Pratt & Whitney Aircraft Division

Manple

M. F. Samples
Senior Contract Administrator
Florida Research and Development Center

cc: All recipients of PWA FR-2972

Directorate of Materiel
Procurement Division
Edwards AFB, Calif. 93523
Attn: FTMKR-2 (Mr. R. Andrade)

Naval Plant Branch Representative Office Pratt & Whitney Aircraft, FRDC West Palm Beach, Florida 33402

FLORIDA RESEARCH AND DEVELOPMENT CENTER WEST PALM BEACH, FLORIDA

Sinata