MTH 231 LEC 15
Summation things for sets - Ü {K} = {1} u{2}.u{n} = {1,2,3,n}
$- \bigwedge_{k=1}^{N} \{K\} = \{1\} \land \{2\} \land \land \{n\} = \{\} = \emptyset$ $Ex: \bigwedge_{k=1}^{N} [-K, K] = [-1, 1] [] \text{ 1s a range, not set.}$
Adding Some Logic.
$- \times \in \bigcup_{k=1}^{\infty} A_{k} : \iff \times \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $ $+ \text{the } A_{k} \text{ is in at least one of } $
- XE AK: \ X IS IN EVERY SINGLE AK;
$- \bigvee_{K=1}^{\infty} A_K = A, \forall A_2 \vee \dots +o \otimes \bigvee_{K=0}^{\infty} [-K, K] = \mathbb{R}$ $- \bigwedge_{K=1}^{\infty} A_K = A, \land A_2 \wedge \dots +o \otimes \bigvee_{K=0}^{\infty} \{K\} = \mathbb{N}$ $ 2 - tuple 1s an ordered pair.$
Ex Proof In-type is a usual type.
]] Direct Proof] Suppose $x \in \mathcal{O}[-K,K]$] then, $\exists K > 0$ such that $x \in [-K,K]$
1) Thus, x is a R such that - REASING
3) Then $\mathcal{O}[-K,K] \subseteq \mathbb{R}$ 4] Then $K = [-1x]^7$ Then $x \in [-1x]^7, [-1x]^7$ I Direct Proof Since $[-1x]^7, [-1x]^7$ Suppose $x \in \mathbb{R}$ Integer, $K \ge 0$, $N \in \mathbb{R}$
1 1 00 E 1 X 7 1 10

3 N/A

$3: R = \bigcup_{k=0}^{\infty} [-K, K]$				
Object Sym Ord? Multiplicity				
· Object	Sym	Oro:	waters,	
+ SET	3-3	7	2	
<i>multiset</i>	₹.3m	7	Y	
Tuples	()	Y	Y	
+n-Tuple	(n-ob)	Y	Y	
2 7200	1(a,b)	Y	1 4	

of Therefore, RE LEFK, K)

Hote: ordered Pairs, and tupies use same Notation so read context.

(artesian Product
- (.P. of A,B is "AxB"
= A cross B
= AxB := {(x,y) | x = A, y = B}

Ex: IR x IR = x - y plane,
a 150 = C

N-fold Cartesian Product

-A, $\times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) | x_i \in A_i \}$ $\in \times : \{1\} \times \{a, b\} \times \{5\}$ $= \{(1, a, b), (1, b, 5)\}$

NEXT BAGE

PM I

- Principle of Mathematical Induction

Ex: What if we want to prove
that $\forall n P(n)$ is five where $Dom(P) = M = \{0,1...\infty\}$ Basically what you do:

I show P(0) is true

I prove that $\forall n (P(n) \rightarrow P(n+1))$ I that generalizes to the whole set.

-Proof template

] PMI | PMI means Proof By Mathematical Induction]Base Case: Show P(0) true, Manually 3] Suppop IH: Induction Hypothesis: Suppose P(n)=T

4 Show that P(n+1) follows from supposing P(n)
5] Conclude with a fancy ending like:
": Yn (P(n)) 15 True Boom!"