Digital Signal Processing for Music

Part 22: Dynamics Processing

Andrew Beck

Intro

>> Basic Principle:

- >> Apply time-variant audio gain
- >> Gain depends on signal properties or external factors

>> Applications

- >> Avoid clipping (unknown input level)
- >> Suppress noise
- >> Adjust playback level (playlist)
- >> Decrease dynamic range (environmental noise)
- >> Increase loudness / energy (commericals)
- >> Adjust (recording) level

Effects

- >> (Noise) Gate
 - >> Suppression of low levels in pauses
- >> Compressor
 - >> Reduction of the dynamic range
- >> Expander
 - >> Expansion of the dynamic range
- >> Limiter
 - >> Limitation of maximum gain
- >> AGC (Automatic Gain Control)
 - >> Slow adaptation of recording/playback gain

Overview

Computation of g(i) usually depends on

- 1. Input signal level
- 2. Properties & characteristics of the dynamics processor
- 3. Time-based control mechanism

Level Detection

- >> Typical measures
 - >> Peak:

Physical measure of maximum amplitude

>> RMS:

Physical measure of power level

- >> Loudness Model:

 Models of loudness perception (dBA, Zwicker, BS.1770)
- >> Level Computation

$$v_{ ext{dB}}(i) = 20 \cdot \log_{10} \left(rac{v(i)}{v_0}
ight)$$

>> v_0 : Reference constant (O dB point)

Digital: $v_0=1\Rightarrow \mathrm{dBFS}$

>> Scaling factor: $1dB \approx JNDL$

Perceptual Loudness

Equal sized steps on the decibel scale not perceived as equal-sized loudness steps

Perceptual loudness depends on

- >> Frequency
- >> Cochlear Resolution
- >> Masking Effects

Level Detection: Root Mean Square

$$v_{
m RMS}(n) = \sqrt{rac{1}{\mathcal{K}} \sum_{i=i_{
m s}(n)}^{i_{
m e}(n)} x(i)^2}$$

RMS: Sample-by-Sample Processing

>> Reduce computational complexity

$$egin{aligned} v_{
m RMS}^2(n) &= rac{x(i_{
m e}(n))^2 - x(i_{
m s}(n-1))^2}{\mathcal{K}} + v_{
m RMS}^2(n-1) \ v_{
m RMS}(n) &= \sqrt{v_{
m RMS}^2(n)} \end{aligned}$$

>> Single Pole approximation (no buffering)

$$egin{aligned} v_{ ext{tmp}}(i) &= lpha \cdot v_{ ext{tmp}}(i-1) + (1-lpha) \cdot x(i)^2 \ v_{ ext{RMS}}^*(i) &= \sqrt{v_{ ext{tmp}}(i)} \end{aligned}$$

Level Detection: Weighted RMS

- >> A, B, C weighting
- **>>** RLB (BS.1770)
- **>>** ...

Peak Detection: PPM (Peak Program Meter)

Attack State (where
$$|x(i)| > v_{ ext{PPM}}(i-1) \Rightarrow \lambda = 0)$$

$$egin{aligned} v_{ ext{PPM}}(i) &= lpha_{ ext{AT}} \cdot ig(|x(i)| - v_{ ext{PPM}}(i-1)ig) + v_{ ext{PPM}}(i-1) \ &= lpha_{ ext{AT}} \cdot |x(i)| + (1-lpha_{ ext{AT}}) \cdot v_{ ext{PPM}}(i-1) \end{aligned}$$

PPM Visualization

Response Curve: Limiter

Param LT = -9 dB

Response Curve: Compressor

Param CT = -9 dB

► 0:00 / 0:20 **→**

Response Curve: Expander

Param ET = -6 dB

Response Curve: Noise Gate

Param NT = -12 dB:

Compressor: Mathematical Description

Logarithmic description, nonlinear part

Mathematical Description: Limiter vs Compressor

Logarithmic description, nonlinear part

>> Limiter

$$egin{aligned} R &= \infty \ Y &= LT \ g &= LT - X \end{aligned}$$

>> Compressor

$$egin{aligned} R > 1 \ Y &= rac{1}{R}(X-CT) + CT \ g &= \left(1-rac{1}{R}
ight) \cdot (CT-X) \end{aligned}$$

Mathematical Description: Expander vs Gate

Logarithmic description, nonlinear part

>> Expander

$$R < 1$$
 $Y = rac{1}{R}(X - ET) + ET$ $g = \left(1 - rac{1}{R}
ight) \cdot (ET - X)$

>> Gate

$$R=0 \ Y=-\infty \ g=-\infty$$

Smoothing: Attack and Release

- $\sim \alpha_{AT}$: Attack constant
- \Rightarrow α_{RT} : Release constant

$$g(n) = \alpha \cdot (f(n) - g(n-1)) + g(n-1)$$

= $\alpha f(n) + (1 - \alpha) \cdot g(n-1)$

Gain Visualization: Compressor + Expander

Audio Examples

- Expander: 0:00 / 0:20

Variants, I

- >> Attack & release constant selection
 - >> Depending on "abruptness" of change
- >> Hold Time
 - >> Before release, hold gain constant (avoid pumping with low frequency signals)
- >> Oversampling
 - >> High time resolution for peak detection

Variants, II

>> Stereo Link

- >>> Consider both channels (avoid level-dependent changes of stereo image)
 - >> One master channel (left or right)
 - >> Mean of both channels
 - >> Channel with higher level (max)

>> Soft Knee

- >>> Smooth crossover from linear area to compressed area
- >>> Potentially noticeable with very short attack times, high compression ratios

Variants, III

>> Side Chain

>> Choose different input signal for level control ("ducking")

>> Look-ahead

- >> Introduce higher delay in signal path
 - >> Shift gain modification in time
 - >> Combine "future" measurement with current

>> Multi-Band Compression

- >> Apply one compressor to each frequency band
- >> Advantages:
 - >> Avoid pumping: varying level in one band (e.g. bass drum) does not influence gain of other bands
 - >> Maximize power, overall loudness

Parameter Ranges

- >> Threshold: -120 ... 0 dB
- **>> Ratio**: 0.05 ... 20 (Limiter: ∞
- **>> Attack**: 0 ... 10 ms
- **>> Release**: 20 ... 300 ms
- >> Hold: 0 ... 10 ms
- >> Stereo-Link: On / Off
- >> Oversampling: 1 ... 8
- >> **Look-Ahead**: 0 ... 500 ms

Dynamic Range Target

						DR14 &<	DR13	DR12	DR11	DR10	DR9	DR8	DR7	DR6	DR5	DR4	red: over-compressed = unpleasant yellow = transition area green: dynamic and pleasant
Goa	Electro	Trance	Disco	House	Techno												sample-based music, electronic music with primarily synthetic generated sounds
Hardrock	Blues	НірНор	R'n B	Rock	Pop											0 - 5	Pop, Rock, Mainstream "radio music" with acoustic sound fractions
Relax	Chillout	Classic	Country	Folk	Jazz												primarily acoustic music: jazz, folk, country, classic, music for relaxation

Dynamic Range DB

Summary

Dynamics processing systems are:

- >>> Time Variant:

 Gain changes over time
- >>> Signal adaptive:

 Gain depends on (input) signal
- >> Sometimes **non-linear**:

 At very short attack times (limiting)