Package 'Immunotherapy.Design'

May 1, 2019

Title Study design for immunotherapy clinical trials	
Version 1.0.0	
Date 2019-05-01	
Author Zhenzhen Xu <zhenzhen.xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov></bin.zhu@nih.gov></zhenzhen.xu@fda.hhs.gov>	
Description Estimate hazard rates and baseline hazards using an EM algorithm.	
Maintainer Bill Wheeler <wheelerb@imsweb.com></wheelerb@imsweb.com>	
Depends survival, msm	
License GPL-2	
NeedsCompilation yes	
recuse on phase yes	
D tonies decumented.	
R topics documented:	
Immunotherapy.Design-package	
data	
generate_data	
getHazard	
N.Pembedded.P	
Pembedded.EM.NP	
Pembedded.EM.P	
Pembedded.ReRandomizationTest.NP	
Pembedded.ReRandomizationTest.P	
Pow.Pembedded.NP	1
Pow.Pembedded.P	1
Index	1
	Ī
Immunotherapy.Design-package	
Study design for immunotherapy clinical trials	
Study design for infination crapy entitled it tills	

Description

Estimate hazard rates and baseline hazards using an EM algorithm

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

2 generate_data

data

Data for examples

Description

Data for examples.

Details

A data frame used in the examples.

Examples

```
data(data, package="Immunotherapy.Design")
# Display some of the data
data[1:5, ]
```

generate_data

Simulated data

Description

Generate simulated data

Usage

Arguments

nmax	Sample size
rand_ratio	Allocation ratio

effect_p Proportion of responders in the treatment arm

enroll_rate Enrollment rate in subjects per month
lambda1 Baseline hazard in terms of months

HR Hazard ratio

tau Total study durationt1 Delayed duration

getHazard 3

Value

A data frame with columns:

Name	Description
id	id variable
trt	treatment allocation: 1 = treatment arm
_	

Z patient's response status
tau total study duration
enroll_time patients' enrollment times
time_to_event
event_status censoring indicator
X observational time

X observational time t1 delayed duration

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

Examples

```
data <- generate_data()
data[1:5, ]</pre>
```

getHazard

Compute initial estimates for the baseline hazard

Description

Calls the coxph function to compute initial estimates for the baseline hazard

Usage

```
getHazard(time, treatment, event_status)
```

Arguments

time Vector of times.

treatment Binary vector of treatments (1=subject received treatment).

event_status Binary vector of event status (1=subject experienced an event).

Value

Vector of baseline hazards ordered by the event times.

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

Pembedded.EM.NP

4 N.Pembedded.P

Examples

```
data(data, package="Immunotherapy.Design")
lambda0 <- getHazard(data[, "X"], data[, "trt"], data[, "event_status"])
lambda0[1:10]</pre>
```

N.Pembedded.P

Sample Size

Description

Compute the sample size for a given power for the parametric model

Usage

Arguments

power The desired power. The default is 0.8.

rand_ratio Allocation ratio

effect_p Proportion of responders in the treatment arm

enroll_rate Enrollment rate in subjects per month
lambda1 Baseline hazard in terms of months

HR Hazard ratio

tau Total study durationt1 Delayed duration

maxiter Maximum number of iterations in the EM algorithm. The default is 1000.

stopTol Stopping tolerance in the EM algorithm. The default is 1e-4.

alpha Significance level. The default is 0.05.

num_rand Number of replications in the re-randomization test. The default is 1000.

nsim Number of simulations in computing power. The default is 1000.

min.N Lower bound for the sample size. The default is 100.

max.N Upper bound for the sample size. The default is 700.

tol.power Stopping tolerance for the power. The default is 0.01.

tol.N Stopping tolerance for the sample size. The default is 1.

print 0 or 1 to print information. The default is 1.

Details

This uses a bisection method to estimate the sample size. At each iteration, the estimated power power_est is computed using Pow.Pembedded.P for a given sample size holding all other parameters fixed. The algorithm terminates when abs(power - power_est) <= tol.power or when the length of the estimated interval containing the sample size is less than or equal to tol.N.

Pembedded.EM.NP 5

Value

A list containing the sample size and power.

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

Pow.Pembedded.P

Pembedded.EM.NP EM algorithm

Description

Non-parametric EM algorithm

Usage

Arguments

data	Data frame or matrix containing a time-to-event variable (time.var), a treatment variable (trt.var), and a censoring variable (status.var).
time.var	Time-to-event variable name in data. The default is "X".
trt.var	Binary treatment variable name in data coded as 0 for controls and 1 for subjects that received treatment.
status.var	Name of the binary censoring variable in data coded as 0 for censored subjects and 1 for subjects that experienced an event.
effect_p	Proportion of responders. The default is 0.6.
t1	Delayed duration. The default is 1.
lambda0	NULL or vector of initial estimates for the baseline hazards corrsponding to the ordered event times. The default is NULL and will be computed from getHazard.
probResponder	NULL or vector of initial probabilities of a subject being a responder. The default is NULL so that the initial probability is 0.5 for treated subjects and 0 for controls.
stopTol	Stopping tolerance. The default is 1e-4.
maxiter	Maximum number of iterations. The default is 10000.
print	0-2 to print information. Larger values will print more information. The default is 0 .

Value

A list containing the objects:

6 Pembedded.EM.P

Name Description

converged TRUE if EM algorithm converged logHR estimated log(hazard ratio)

baseline matrix of event times and baseline hazards

probResponder estimated probability of a subject being a responder

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

```
getHazard, Pembedded.EM.P
```

Examples

```
data(data, package="Immunotherapy.Design")
ret <- Pembedded.EM.NP(data)
ret$logHR</pre>
```

Pembedded.EM.P

 $EM\ algorithm$

Description

Parametric EM algorithm

Usage

Arguments

data	Data frame or matrix containing a time-to-event variable (time.var), a treatment variable (trt.var), and a censoring variable (status.var).
time.var	Observational time variable name in data (months). The default is "X".
trt.var	Binary treatment assignment indicator name in data coded as 0 for controls and 1 for treated subjects.
status.var	Name of the binary censoring variable in data coded as 0 for censored subjects and 1 for subjects that experienced an event.
effect_p	Proportion of responders among the treated subjects. The default is 0.6.
t1	Delayed duration. The default is 1 (month).
probResponder	NULL or vector of initial probabilities of a treated subject being a responder. The default is NULL so that the initial probability is 0.5 for treated subjects.
stopTol	Stopping tolerance. The default is 1e-5.
maxiter	Maximum number of iterations. The default is 10000.
print	0-2 to print information. Larger values will print more information. The default is 0.

Value

A list containing the objects:

Name Description

converged TRUE if EM algorithm converged

lambda estimated hazard rate baseline estimated baseline hazard

probResponder estimated probability of a treated subject being a responder

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

Pembedded.EM.NP

Examples

```
data(data, package="Immunotherapy.Design")
ret <- Pembedded.EM.P(data)
ret$lambda</pre>
```

Pembedded.ReRandomizationTest.NP

Randomization test

Description

Compute a randomization test p-value where test statistic is calculated based on a non-parametric model.

Usage

```
Pembedded.ReRandomizationTest.NP(data, time.var="X", trt.var="trt", status.var="event_status", effect_p=0.6, t1=1, stopTol=1e-4, maxiter=10000, print=0, num_rand=100)
```

Arguments

data	Data frame or matrix containing a time-to-event variable (time.var), a treatment variable (trt.var), and a censoring variable (status.var).
time.var	Observational time variable name in data.
trt.var	Name of treatment assignment indicator in data coded as 0 for control subjects and 1 for treated subjects.
status.var	Name of the binary censoring variable in data coded as 0 for censored subjects and 1 for subjects that experienced an event.
effect_p	Proportion of responders among the treated subjects. The default is 0.6.
t1	Delayed duration. The default is 1 (month).
stopTol	Stopping tolerance in the EM algorithm. The default is 1e-4.

maxiter Maximum number of iterations in the EM algorithm. The default is 10000.

print 0-2 to print information. Larger values will print more information. The default

is 0.

num_rand The number of replications in the re-randomization test. The default is 100.

Details

In each randomization, the treatment label is resampled and then the EM algorithm is called. The final p-value is based on all re-randomizations in which the EM algorithm converged.

Value

A list containing the objects:

Name Description

p.val.rerand re-randomization test p-value

baseline matrix of event times and baseline hazards from observed data

logHR log(hazard ratio) from observed data

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

Pembedded.ReRandomizationTest.P

Examples

```
data(data, package="Immunotherapy.Design")
set.seed(1)
# Will take a few minutes to complete
#ret <- Pembedded.ReRandomizationTest.NP(data)</pre>
```

 ${\tt Pembedded.ReRandomizationTest.P}$

Randomization test

Description

Compute a randomization test p-value where test statisitic is calculated based on a parametric model.

Usage

```
Pembedded.ReRandomizationTest.P(data, time.var="X", trt.var="trt", status.var="event_status", effect_p=0.6, t1=1, stopTol=1e-5, maxiter=10000, print=0, num_rand=10000)
```

Arguments

data	Data frame or matrix containing a time-to-event variable (time.var), a treatment variable (trt.var), and a censoring variable (status.var).
time.var	Observational variable name in data.
trt.var	Name of treatment assignment indicator in data coded as 0 for control subjects and 1 for treated subjects.
status.var	Name of the binary censoring variable in data coded as 0 for censored subjects and 1 for subjects that experienced an event.
effect_p	Proportion of responders among the treated subjects. The default is 0.6.
t1	Delayed duration. The default is 1 (month).
stopTol	Stopping tolerance in the EM algorithm. The default is 1e-5.
maxiter	Maximum number of iterations in the EM algorithm. The default is 10000.
print	0-2 to print information. Larger values will print more information. The default is 0 .
num_rand	The number of replications in the re-randomization test. The default is 10000.

Details

In each randomization, the treatment label is resampled and then the EM algorithm is called. The final p-value is based on all randomizations in which the EM algorithm converged.

Value

A list containing the objects:

Name	Description
p.val.rerand	re-randomization test p-value
baseline	estimated baseline hazard from observed data
lambda	estimated hazard rate from observed data

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

Pembedded.ReRandomizationTest.NP

Examples

```
data(data, package="Immunotherapy.Design")
set.seed(1)
ret <- Pembedded.ReRandomizationTest.P(data)
ret$p.val.rerand</pre>
```

10 Pow.Pembedded.NP

Description

Compute the power for the non-parametric model

Usage

```
Pow.Pembedded.NP(nmax=500, rand_ratio=0.5, effect_p=0.6, enroll_rate=380*0.25/6, lambda1=0.117, HR=0.5, tau=12*5, t1=1, maxiter=1000, stopTol=1e-4, alpha=0.05, num_rand=1000, nsim=1000, print=0)
```

Arguments

nmax	Sample size
rand_ratio	Probability of assignment to treatment arm
effect_p	Proportion of responders in the treatment arm
enroll_rate	Enrollment rate in subjects per month
lambda1	Baseline hazard in terms of months
HR	Hazard ratio
tau	Total study duration
t1	Delayed duration in months
maxiter	Maximum number of iterations in the EM algorithm. The default is 10000.
stopTol	Stopping tolerance in the EM algorithm. The default is 1e-4.
alpha	Significance level. The default is 0.05.
num_rand	The number of replications in the re-randomization test. The default is 1000.
nsim	The number of simulations. The default is 1000.
print	0 or 1 to print information. The default is 0.

Details

For each simulation, a simulated data set is created from the <code>generate_data</code> function and then an estimated p-value is computed by calling <code>Pembedded.ReRandomizationTest.NP</code>. The power is calculated as the proportion of iterations whose estimated p-value was less than or equal to alpha.

Value

A list containing the power and the number of simulated datasets used in the calculation.

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu

bin.zhu@nih.gov>

See Also

Pow.Pembedded.P

Pow.Pembedded.P

Description

Compute the power for the parametric model

Usage

```
Pow.Pembedded.P(nmax=500, rand_ratio=0.5, effect_p=0.6, enroll_rate=380*0.25/6, lambda1=0.117, HR=0.5, tau=12*5, t1=1, maxiter=1000, stopTol=1e-4, alpha=0.05, num_rand=1000, nsim=1000, print=0)
```

Arguments

nmax	Sample size
rand_ratio	Probability of assignment to treatment arm
effect_p	Proportion of responders in the treatment arm
enroll_rate	Enrollment rate in subjects per month
lambda1	Baseline hazard in terms of months
HR	Hazard ratio
tau	Total study duration
t1	Delayed duration in months
maxiter	Maximum number of iterations in the EM algorithm. The default is 10000.
stopTol	Stopping tolerance in the EM algorithm. The default is 1e-4.
alpha	Significance level. The default is 0.05.
num_rand	The number of replications in the re-randomization test. The default is 1000.
nsim	The number of simulations. The default is 1000.
print	0 or 1 to print information. The default is 0.

Details

For each simulation, a simulated data set is created from the <code>generate_data</code> function and then an estimated p-value is computed by calling <code>Pembedded.ReRandomizationTest.P</code>. The power is calculated as the proportion of iterations whose estimated p-value was less than or equal to alpha.

Value

A list containing the power and the number of simulated datasets used in the calculation.

Author(s)

Zhenzhen Xu <Zhenzhen.Xu@fda.hhs.gov> and Bin Zhu <bin.zhu@nih.gov>

See Also

N.Pembedded.P

Index

```
*Topic EM, survival
    getHazard, 3
    Pembedded.EM.NP, 5
    Pembedded.EM.P, 6
    Pembedded.ReRandomizationTest.NP,
    Pembedded.ReRandomizationTest.P, 8
*Topic data, survival
    generate_data, 2
*Topic data
    data, 2
*Topic package
    Immunotherapy.Design-package, 1
*Topic power, EM, survival
    N.Pembedded.P, 4
    Pow.Pembedded.NP, 10
    Pow.Pembedded.P, 11
data, 2
generate_data, 2, 10, 11
getHazard, 3, 5, 6
Immunotherapy.Design
        (Immunotherapy.Design-package),
Immunotherapy.Design-package, 1
N. Pembedded. P, 4, 11
Pembedded.EM.NP, 3, 5, 7
Pembedded.EM.P, 6, 6
Pembedded.ReRandomizationTest.NP, 7, 9,
Pembedded.ReRandomizationTest.P, 8, 8,
        11
Pow.Pembedded.NP, 10
Pow.Pembedded.P, 4, 5, 10, 11
```