Espacio Proyectivo

E espacio vectorial; din (E) = 1711. El espacio projectivo n-dinensional P(E) sobre E se entiende como el conjunto cuyos puntos son los rectos vectoriales o direcciones en E. (E* = E/(0))

Relación de equivalencia v~w (=> v = 2w, 2 eR*

Projectión cociente: $\pi: E^* \to P(E)$, $\pi(v) = EvJ$ Observación: Si $u \in E$ en subespecie verdorial con dim u = k+1, P(u) en un subconjunto de P(E)Notación: $P(R^{mil}) = P^m$

Variedad Prajectiva: Un subconjunto X E P(E) u ma variedad projectiva si et conjunto

 $\hat{X} := \pi^{-1}(X) \cup \{\vec{o}\}$ en un suberfacio vectorial de E, o equivalentemente, $X = \pi(\hat{X}^*)$ por un suberfacio vectorial \hat{X} de E, dende como riempre $\hat{X}^* = \hat{X} \setminus \{\vec{o}\}$.

Una unicadad projectiva x_i predu definir como el espacio projectivo anociado a un subespacio vectorial \hat{X} de E dim $\hat{X} = d$ $\hat{X} = d$ vectorial x de E dim X = dim x-1. 5. dim x = 0 (punto projectivo), dim X=1 (Recta projectiva), dim X = 2 (plono projectivo dim X = dim (P(F))-1 =) hiperplano proyectiva. Proposición: Sea (Xx: x E 1 f una familia de variedade projectivas >) 1 Xx = 0 o una v. projec. de Par Definición: 5 CPCE) subconjunto no vació exbiticació Mamanos VCSI a la vaciedad projectiva món pequisa de PCE) qui contiene a S: V(S) = \(\int \times \times \) \(\int \times \) \(\int \times \times \) \(\int \times \ Proposición: Si S CP(F) en un subconjunto no vacio entoncen vcs) = 2(11'(5)) Definition: Kil puntos, X={p,=[vi],...,pkin=[vkil]} son projectivamente independientes si dim v(x) = K, que equivale à que dim v(x) = d((v,...,vk1) = K+1

Definición: X, Y variedada projectivas de P(E), la variedad suma de X e y se denda por X x y y se define por X x y = V (X V Y). Se veifica que X V y = x + x i) X, Y C P(E) variedades projectives, dim (XVY) = dim (X) + dim (Y) - dim (XnY) ii) V(SUT) = V(S) V V(T) iti) Pardon purlon p. q EP(E) para una minica reda projectiva: V ((p.94) = pv q
iv) Dos rector projectivas dististas Ry 5 en P(E) (plano projectiva) se cartas en un purlo. Si dim (PCET) >2, entoncer Ry 5 policion sex disjuntar Définición don coordenador homogéneon de en punto peP(E) en labore B= que, vn3 de E re definer como pe={ LVB: LCIR* 3, renolo v analquier vector de (IRNI)* lal que v=1-(p). dugo, si (xo, xo) ser la condenadar de v en B, lan de p on p = (xo:...:xo) salvo), por la que también puede ser pg = (1 xo:..:1xn) Pofinición: Biy Be son bases de E, la matrico de cambin de base en P(E) de Bi a B2 qua coordenada homogónicas se define como M(Idper, B1, B2) = µ·M(Ide, B1, B2) ∀µ E/R. Un pento p∈ P(E)

= Una projectividad en bijectividad () j inconstinna, en cuyo cono g' también en proj con g-1 = g-1. Se les dice hemografias. - Todo espacio projectivo P(E) a dimensional en homográfica IP^n - Si X en variedad projectiva y $j: P(E) \rightarrow P(E)$ una projectividad j(x) en ena vaviedad projectiva de P(E). P(E) en homográfica a P(E') via j. Definición: f: P(E) -> P(E) projectividad, By B' son bonos de Ey E' respectivamente de modris
de fen By B' se outine como: M(f.B.B'):= M(f,B,B') Salvo escalaren no sulos Tearema: Sean P(E), P(E') espacion projectiva con dim P(E) = n = m = dim P(E') y sean [p...p.] c P(E), {pi,...pi} c P(E') sintemon ou punton projectivamente independienten. Entoncen existe una projectividad f: P(E) → P(E') tol que f(pi) = pi i = 0,...n i f no en visica! Yrin=m, fer homoografia. Corolavio: Todo i gual que en el tecrema ontevia, solo que abora consdurama la juntos qEP(E), q'EP(E') tales que fre, pr, 93, {pi, ..., p', q'} no contengan ota juntos prejectivamente

dependienten. Existe una sinica homografia f: P(E) = P(E') (al que Definición: Sea A C E, podemen definir: e: A -> P(E) c(V) = TT(V) con TI: E -> P(E) la aplicación projección da aplicación e en conocida como el embelomiento canénico el espacio a la A en al espacio projectivo P(E) Proposició: e: A -> PCE) satisface los siguientes propiedados: ii) An = P(E)/e(A) is un higaplans proyective cas An ill) 5 = 4+5. suberpacio effor de A. Xs = V(e(S)) = P(E) Xs = d(s) = d(fu)) + S, en particular S = Xs n A y dim Xs = 5 X5/A00 = ecs) y Soo = X5 MA00 Definición: PCE) = projectivización de A como hipeytono afin de E. An Ehiperplano del infinito ralativo al hiperplano afin A en E 5 = A suberjació afin, X; = projectivización de 5 relativa al hiperfloro afin A de E.

Son = variedod out infinite de S relativa al hipaplano afin A en E. Grobano: A hipuplono afin de E. Ry S suberpación afinen de A:

i) Si ROS # \$, XROXS = XROS, en particular (ROS) = ROON 500 ii) Si Rn 1 = p , XRn X5 = Roon Soo iii) XRV Xs = X SVR, en porticular (RVS) 00 = R00 V 500 Corolavo: S, T SA subapación ofinen: a) Sparable a T => SmcTmcAm e) 5 y T paralela => Sos = Tos CAO Cordain: Don rector Rys en A distinton son paralllon i y solo si sun projectivizacionen Xs y Xa relativas a A se cortan en un punto del hiperplano del infisito Apo. Para calcular la projectivización de un ruberpació en términos de ecuacións implicitos: Sea E un esp. vectorial con dim (E) = 1+1 y A = E un hiperplane afir. Sea R un risdema de referencia de A con oxigen é o e A y bone B = {e1, ..., e n } en ñ.

Proposición: R: fee, By. 5 subespació afis (A-K) dimensional de A con ce. implicitor
$(I) = \begin{cases} \alpha_{i1} x_{i1} + \dots + \alpha_{in} x_{in} = b_{i1} \\ \alpha_{k,i} x_{i1} + \dots + \alpha_{k,in} x_{in} = b_{i1} \end{cases}$
entence la remacione implicitar de XI en coordenador homogénear respecto de B jan: (I) = {-be xo + a y x + ···· + a y n x = o} (I) = {-by xo + a x y x + ···· + a x n x = o}
$(T) = \int -b_1 x_0 + \alpha_{1,1} x_1 + \dots + \alpha_{n,n} x_n = 0$
(-bxx0 + axxx xx1 + axxx = 0
이러 사는 그들면 나는 이를 가는 생일이 하는데 이렇게 이렇게 하는데 이렇게 되었다. 이렇게 되었다. 이를 보는데 그렇게 되었다. 그렇게 되었다. 그렇게 하는데 이렇게 되었다. 그렇게 이렇게 하는데 이렇게 되었다. 그렇게 이렇게 하는데 이렇게 되었다. 그렇게 이렇게 하는데 그렇게 되었다. 그렇게 이렇게 되었다. 그렇게 이렇게 되었다. 그렇게 그렇게 되었다. 그렇게 그렇게 되었다. 그렇게 그렇게 그렇게 되었다. 그렇게 그렇게 되었다. 그렇게
$\frac{1}{2} \left(\frac{1}{2} \right) = \begin{cases} \frac{1}{2} $
$(\alpha_{K,1}\chi_1+\cdots+\alpha_{K,n}\chi_0=0$
Nota: Para la ejeccicia será conveniente tener siente en mede la conexió entre el alia
Nota: Para la ejacicia será conveniente tener simple en mente la conexión entre el afin endidiano IR, el proyectivo IP, y el hiperplano all infinita: R^ => P^1/Ros (x1,,xn) -> (1: X1::Xn) P^1/Ros => R^ (x0:X1::Xn) -> (x1/Xn) (x1/Xn)
R^ => P^ \ R_0 (x,, x_0) \ -> (1: x,: x_0)
180 = 100 (x0: x1:xn) = (x1 xn)

ii) j= fg jora alguna a | cidad g: Λι → Δ2

iii) H(j, B̃, B̃₂) = μÃ, à = (10) ε Aff (IR) y μεIR* Credais: g: R° -) R" una aplicación afin injectiva (con n EM) con expresión matricial en los referencios conónicos de R° y RM: M(g, Ro, Ro) = (10) da projectivización fg: 1P° -> 1P° viene representada en las bonon comónicas de 1R° y 1R° 1° por la matrit: