EES Ver. 10.835: #1867: For use by students and faculty, College of Engineering, University of Oklahoma, Stillwater, OK

{Problem 1}

humidity_relative=0.40 temp_dry=38[C] P=14.696*convert(psia, kPa)

enthalpy=**enthalpy**(*AirH2O*,*P*=P, *T*=temp_dry,*R*=humidity_relative) {Enthalpy: enthalpy = 81.17 kJ/kg} temp_wetBulb=**wetbulb**(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Wetbulb Temperature: temp_wetBulb = 26.27 C} temp_dewPoint=**dewpoint**(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Dewpoint Temperature: temp_dewPoint = 22.05 C}

volume_specific=volume(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Specific Volume: volume_specific = 0.9051 m^3/kg} humidity_specific=humrat(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Specific Humidity: humidity_specific = 0.01672}

SOLUTION

Unit Settings: SI C kPa kJ mass deg

enthalpy = 81.17 humidity_{specific} = 0.01672 temp_{dewPoint} = 22.05 temp_{wetBulb} = 26.27 humidityrelative = 0.4 P = 101.3 [kPa] tempdry = 38 [C] volumespecific = 0.9051

4 potential unit problems were detected.