Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2021 Subject Code:3170507 Date:17/12/2021

Subject Name: Computer Aided Process Synthesis

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- **Q.1** (a) Explain interior network and auxiliary network with a diagram.

03

(b) Write a short note on environmental factors in process design.

04

07

(c) Determine the minimum utility target for following stream data using temperature interval method:

Stream	$T^{in}(K)$	$T^{out}(K)$	$mC_p (kW/K)$
H_1	650	370	10
H_2	590	370	20
C_1	410	650	15
C_2	353	500	13

Take $\Delta T_{min} = 10 \text{ K}$.

Q.2 (a) What is Gantt chart? Explain the importance of Gantt chart.

03 04

- (b) A given batch plant produces one single product for which stage 1 requires 8 hours/batch; stage 2, 4 hours/batch and stage 3, 7 hours/batch. If zero wait transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours?
- (c) Discuss the pinch design approach for minimum utility requirements.

07

OR

(c) For the heat exchanger network synthesis (HENS) problem, the following stream information is available:

Stream	t ⁱⁿ (°C)	tout (°C)	FC _p kW/°C
C_1	60	180	3
C_2	30	100	2
H_1	180	40	2
H_2	150	40	4

Draw HCC and find out pinch point for $\Delta T_{min} = 10$ °C.

Q.3 (a) Discuss the engineering ethics briefly.

03

(b) Discuss in detail the phase separation of reactor effluent.

04 07

(c) Explain the concept of multi effect distillation as possibility of energy integration.

OR

- Q.3 (a) Briefly explain safety considerations and design approaches towards safe 03 chemical plant.
 - **(b)** Describe the use of grand composite curve to select utility.

04 07

(c) Explain the heat integration in distillation column using heat pumping, vapor recompression and reboiler flashing.

Q.4	(a)	Draw the possible separation	n sequences	s for 4 numb	er of products.	03
	(b)	Explain reactor design for co	omplex con	figurations.	_	04
	(c)	With neat sketch explain po	•	· ·	owers between hot and co	ld 07
		composite curves.				
			()R		
Q.4	(a)	Define with example: cycle	time, make	span, flow	shop plant.	03
	(b)	Explain in detail common in		=	= =	04
	(c)	Write a short note on thresh temperature for heat exchange	hold appro	ach tempera		ch 07
Q.5	(a)	Explain node and saddle poi	nt in residu	ie curve maj	o.	03
	(b)	Explain in brief general step	s in produc	et and proces	ss design.	04
	(c)	Given the processing time f cycle time for manufacturin wait policy, ii) no intermed storage policy.	g one batc	h of A and	one batch of B using i) ze	ro
			Proc	essing Time	e (hr)	
			Stage 1	Stage 2	Stage 3	
		A	6	4	3	
		В	3	2)R	2	
0.5	()	D 4	`		1	0.2
Q.5	(a)	Draw the superstructure for				03
	(b)	Explain marginal vapor flov		w how it wil	ll be useful for predicting the	ne 04
		best sequence of distillation	columns.			
	(c)	Write a short note on Geometric concepts for reactor attainable region.				07

Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2022

Subject Code:3170507	Date:14/06/2022

Subject Name: Computer Aided Process Synthesis

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Briefly describe computer programs useful in process design.
 - (b) Describe the use of grand composite curve to select utility. 04
 - (c) Explain Step by step Procedure for Construction of attainable region for **07** Reactor design.
- Q.2 (a) Explain separation sequencing for Solid-Fluid systems. 03
 - (b) Differentiate Flow shop plant and Job shop plant. 04
 - (c) Describe the environmental factors in process design. 07

OR

- (c) Explain the positioning of heat pump with reference to pinch temperature. 07
- Q.3 (a) Draw the superstructure for one cold stream and two hot streams.
 - (b) Explain the generalized rules for stream splitting on both sides of the pinch to satisfy MER requirements.
 - (c) The following five streams are to be cooled or heated. Find out pinch point 07 and construct the Grand Composite Curve. Here $\Delta T_{min} = 10^{\circ}$ C

STREAM	IN (°C)	OUT(°C)	M _{cp} (kW/°C)
H1	159	77	228.5
H2	267	88	20.4
Н3	343	90	53.8
C1	26	127	93.3
C2	118	265	196.1

OR

03

03

04

- Q.3 (a) Derive the equation for construction of residue curve.
 - (b) Describe any four environmental factors to be considered in process design. 04
 - (c) For $\Delta Tmin = 20^{\circ}C$, find out pinch point and construct the Hohmann 07 composite curve. Find out sink (Qhmin) and source (Qcmin).

STREAM	IN(°C)	OUT(°C)	M _{cp} (kW/°C)
H1	180	40	2
H2	150	40	4
C1	60	180	3
C2	30	105	2.6

- **Q.4** (a) Describe the criteria for selection of separation methods.
 - **(b)** Discuss the concept of multi effect distillation as possibility of energy integration.

03

03

04

Given the processing times for two products A and B, determine makespan and cycle 07 time for manufacturing one batch of A and one of B using (a) Zero wait policy (b) No intermediate storage policy (c) Unlimited intermediate storage policy.

Product	Stage-1	Stage-2	Stage-3
A	6 hrs	4 hrs	3 hrs
В	3 hrs	2 hrs	2 hrs

OR

- Explain the 'process creation' step briefly in product and process design. 0.4
 - Define span and cycle time for batch processes. Explain various policies with 04 example
 - What is Gantt chart? Draw Gantt chart recipe AABC for zero wait transfer, No 07 (c) intermediate storage transfer and unlimited storage transfer policies from following processing times.

Product	Stage-1	Stage-2	Stage-3
A	5 hrs	4 hrs	3 hrs
В	3 hrs	1 hrs	3 hrs
С	4 hrs	3 hrs	2 hrs

- Q.5 What are the safety considerations in Process Design? (a)
 - Explain the concept of stream matching in Heat Exchanger Network. **(b)**
 - (c) Use the marginal vapour rate (MV) method to determine a sequence for the 07 separation of light hydrocarbons. Give rank to various sequences.

Separation	MV (kmol/hr)	Separation	MV (kmol/hr)
A/B	0	B/CD	227
A/BC	163	AB/CD	435
A/BCD	340	C/D	0
B/C	0	BC/D	385
AB/C	231	ABC/D	613

OR

- "No heat passes across the pinch" Justify the Statement. Q.5 (a)
- 03 04

- Explain The Role of Computers in Process Design. **(b)**
- Find the best distillation based separation sequence if the following data hold for 07 (c) marginal vapour flows. The components behave relatively ideally.

Separation	A	В	C	D	E
A/B	-	-	100	1	1
B/C	1	-	-	1	1
C/D	1	100	-	-	1
D/E	1	1	100		
