Lösungen zu Übungsblatt 2.

Aufgabe 1 (10 Punkte). Bestimmen Sie, ob die folgenden Relationen reflexiv, symmetrisch und/oder transitiv sind.

- (i) $R_1 = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a \text{ teilt } b\}$
- (ii) $R_2 = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a \cdot b \text{ ist eine Quadratzahl.}\}$
- (iii) $R_3 = \{((a,b),(c,d)) \in \mathbb{N}^2 \times \mathbb{N}^2 \mid (a < c) \lor (c = a \land b < d)\}$

Hinweis: Eine Relation heißt Äquivalenzrelation, falls diese reflexiv, transitiv und symmetrisch ist.

Lösung zu Aufgabe 1. Für die Definition einer reflexiven, symmetrischen und transitiven Relation erhielten die Studierenden (1 Punkt).

- Lösung zu Aufgabe (i) (3 Punkte). Die Relation R_1 ist **reflexiv** (1 Punkt), denn: Für jedes $a \in \mathbb{N}$ gilt a|a (a teilt a), also $(a,a) \in R_1$. Die Relation ist **nicht symmetrisch** (1 Punkt), denn: Zum Beispiel gilt 2|4 aber $4 \not| 2$, also $(2,4) \in R_1$ aber $(4,2) \notin R_1$. Die Relation ist **transitiv** (1 Punkt), denn: Gilt $(a,b),(b,c) \in R_1$, also a|b und b|c, so ist also $b=k\cdot a$ und $c=l\cdot b$. Dann ist $c=k\cdot l\cdot a$ und somit auch a|c, sprich $(a,c) \in R_1$.
- Lösung zu Aufgabe (ii) (3 Punkte). Die Relation R_2 ist **reflexiv** (1 Punkt), denn: Für jedes $a \in N$ ist $a \cdot a = a^2$ eine Quadratzahl, also $(a, a) \in R_2$. Die Relation ist **symmetrisch** (1 Punkt), denn: Ist $(a, b) \in R_2$, also $a \cdot b$ eine Quadratzahl, so auch $b \cdot a = a \cdot b$, also $(b, a) \in R_2$. Die Relation ist **nicht transitiv** (1 Punkt), denn: Zum Beispiel liegen $(1, 0), (0, 2) \in R_2$, da $1 \cdot 0 = 0^2$ und $0 \cdot 2 = 0^2$ Quadratzahlen sind, aber $1 \cdot 2 = 2$ ist keine Quadratzahl und so $(1, 2) \notin R_2$. (Schließen wir die 0 aus den natürlichen Zahlen aus, so wäre R_2 jedoch transitiv.)
- Lösung zu Aufgabe (iii) (3 Punkte). Die Relation R_3 ist **nicht reflexiv** (1 Punkt), denn: Zum Beispiel ist $(0,0) \in \mathbb{N}^2$, aber $((0,0),(0,0)) \notin R_3$, da $0 \not< 0$. Die Relation ist **nicht symmetrisch** (1 Punkt), denn: Zum Beispiel ist $((0,0),(1,1)) \in R_3$, da 0 < 1 gilt, jedoch ist $((1,1),(0,0)) \notin R_3$, da $1 \not< 0$. Die Relation ist **transitiv** (1 Punkt), denn: $\operatorname{Ist}((a,b),(c,d)) \in R_3$ und $((c,d),(e,f)) \in R_3$, so tritt einer der folgenden Fälle ein:
 - (i) Es gilt a < c. Außerdem ist c = e oder c < e, also in jedem Fall a < e und somit $((a,b),(e,f)) \in R_3$.
 - (ii) Es gilt a = c und b < d. Außerdem gilt entweder c < e, also a < e, oder es gilt c = e und d < f, also a = e und b < f. Es folgt also ebenfalls $((a, b), (e, f)) \in R_3$.

In jedem Fall gilt also $((a,b),(e,f)) \in R_3$, somit ist Transitivität gezeigt.

Aufgabe 2 (Mächtigkeit der Potenzmenge - 10 Punkte). Zeigen Sie: Ist A eine endliche Menge mit n Elementen, so gilt,

- (i) dass die Anzahl der Teilmengen gleich 2^n ist,
- (ii) dass die Anzahl echter Teilmengen gleich $2^n 1$ ist.

Die Mächtigkeit einer endlichen Menge X bezeichnet die Anzahl der Elemente von X und wird durch |X| oder #X notiert.

Lösung zu Aufgabe 2. Dies folgt aus dem Beweis von Proposition 1.45 von Pottmeyer und der Tatsache, dass nicht jede echte Teilmenge gleich A ist. Sei A eine endliche Menge mit n Elementen. Sei $2^A = \{B, B \subseteq A\}$ die Potenzmenge von A. Wir werden durch Induktion beweisen, dass

$$|2^A| = 2^n.$$

• Für k = 0 ist $A = \emptyset$ und $|2^A| = |\{\emptyset\}| = 1 = 2^0$.

- Inductionvoraussetzung: Es gelte $|2^A| = 2^n$ für alle Mengen A mit n Elementen, wobei $n \in \mathbb{N}$ beliebig, aber fest ist.
- Induktionsschritt: Seien A eine Menge mit |A| = n + 1 und $a \in A$ beliebig. Die Abbildung

$$\{B \subseteq A, \ a \in B\} \to 2^{A \setminus \{a\}}$$
$$B \mapsto B \setminus \{a\}$$

ist bijektiv. Es gilt also

$$|\{B \subseteq A, a \in B\}| \to |2^{A \setminus \{a\}}|.$$

Weiter ist $|A \setminus \{a\}| + |\{a\}| = n + 1$, also $|A \setminus \{a\}| = n$. Damit erhalten wir

$$|2^{A}| = |\{B \subseteq A, \ a \notin B\} \cup \{B \subseteq A, \ a \in B\}|$$
$$= |2^{A \setminus \{a\}}| + |\{B \subseteq A, \ a \in B\}|$$
$$= 2^{n} + 2^{n} = 2 \times 2^{n} = 2^{n+1}.$$

Aufgabe 3 (10 Punkte). Geben Sie jeweils eine Bijektion von A nach B an, um dadurch zu zeigen, dass die beiden Mengen die gleiche Mächtigkeit besitzen.

- (i) $A = \{1, 2, 3\}, \text{ und } B = \{a, b, c\}$
- (ii) $A = \mathbb{N}$, und B die Menge der geraden natürlichen Zahlen
- (iii) A die Menge der geraden ganzen Zahlen, B die Menge der ungeraden ganzen Zahlen
- (iv) A die Menge der durch k teilbaren Zahlen, B die Menge der durch m teilbaren Zahlen $(k, m \in \mathbb{N} \setminus \{0\})$
- (v) $A = \mathbb{N}$, und $B = \mathbb{Z}$

Lösung zu Aufgabe 3. • Zum Beispiel die Funktion $f: A \to B$, definiert durch f(1) = a, f(2) = b, f(3) = c (2 Punkte).

- Zum Beispiel die Funktion $f: A \to B$, definiert durch f(n) = 2n (2 Punkte).
- Zum Beispiel die Funktion $f: A \to B$, definiert durch f(n) = n + 1 (2 Punkte).
- Nach Definition sind die Mengen A und B gegeben durch

$$A = \{l \cdot k, l \in \mathbb{Z}\}, \qquad B = \{l \cdot m, l \in \mathbb{Z}\}.$$

Die Funktion $f: A \to B$, definiert durch $f(a) = \frac{am}{k}$ ist eine Bijektion (2 Punkte).

• Zum Beispiel die Funktion $f: \mathbb{N} \to \mathbb{Z}$, definiert durch $f(n) = -\frac{n}{2}$, für gerade $n \in \mathbb{N}$ und $f(n) = \frac{n+1}{2}$, für ungerade $n \in \mathbb{N}$ (2 Punkte).

Aufgabe 4 (10 Punkte). Bestimmen Sie alle Äquivalenzklassen der Relation

$$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid 5 | (a - b) \}.$$

Zeigen Sie, dass der Schnitt zweier verschiedener Äquivalenzklassen leer ist.

Lösung zu Aufgabe 4. Zwei Zahlen (a, b) liegen in einer Äquivalenzklasse wenn $(a, b) \in R$, also wenn a - b durch 5 teilbar ist. Es muss also gelten,

$$a-b=5\cdot k$$
, bzw. $a=b+5\cdot k$ für ein $k\in\mathbb{Z}$.

Man kann jede Zahl $z \in Z$ schreiben als z = 5l + r für ein $l \in \mathbb{Z}$ und ein $r \in \{0, 1, 2, 3, 4\}$, wobei r bei der Rest der ganzzahligen Division durch 5 mit Rest ist. Zwei Zahlen $z_1 = 5l_1 + r$, $z_2 = 5l_2 + r$ mit gleichem Rest haben Differenz $z_1 - z_2 = 5(l_1 - l_2)$, also liegt $(z_1, z_2) \in R$, bzw. z_1 und z_2 in einer

Äquivalenzklasse. Für zwei Zahlen mit unterschiedlichem Rest, ist die Differenz nicht durch 5 teilbar, also liegen solche nicht in einer Restklasse. Es gibt demnach die fünf Restklassen (5 Punkte):

```
[0] = \{5k + 0, k \in \mathbb{Z}\} = \{\dots, -15, -10, -5, 0, 5, 10, 15, \dots\}
[1] = \{5k + 1, k \in \mathbb{Z}\} = \{\dots, -14, -9, -4, 1, 6, 11, 16, \dots\}
[2] = \{5k + 2, k \in \mathbb{Z}\} = \{\dots, -13, -8, -3, 2, 7, 12, 17, \dots\}
[3] = \{5k + 3, k \in \mathbb{Z}\} = \{\dots, -12, -7, -2, 3, 8, 13, 18, \dots\}
[4] = \{5k + 4, k \in \mathbb{Z}\} = \{\dots, -11, -6, -1, 4, 9, 14, 19, \dots\}
```

Wir sehen, dass der Schnitt zweier Äquivalenzklassen leer ist, da jede Zahl einen eindeutigen Rest bei der Division durch 5 lässt, und damit nur in einer Äquivalenzklasse auftaucht.

Wir können auch zeigen, dass dies für jede Äquivalenzrelation gelten muss: Sei $R \subset X \times X$ ist eine Äquivalenzrelation, $A \subset X$ die Äquivalenzklasse von $a \in X$ und $B \subset X$ die Äquivalenzklasse von $b \in X$. Angenommen $A \cap B \neq \emptyset$. Dann gibt es also ein $x \in A \cap B$. Da $x \in A$ in der Äquivalenzklasse von a ist, gilt also $(a,x) \in R$. Genauso ist $x \in B$, also $(b,x) \in R$. Da R symmetrisch ist, gilt also auch $(x,b) \in R$. Da R transitiv ist, ist folglich $(a,b) \in R$ und somit b in der Äquivalenzklasse von $a,b \in A$. Dann gilt aber für jedes $b' \in B$, dass $(b,b') \in B$ und da $(a,b) \in R$ durch Transitivität dann auch $(a,b') \in R$. sprich $b' \in A$. Folglich ist also $B \subset A$ und die beiden Äquivalenzklassen sind gleich. Tauschen wir die Rollen von A und B, so folgt mit dem selben Argument, dass auch $B \subset A$, also A = B.

Folglich gibt es keine zwei verschiedenen Äquivalenzklassen mit nicht-leerem Schnitt (5 Punkte).