Дипломная работа

Криптография на основе функций хэширования: Подписи без состояния

Введение

Криптографический алгоритм	Воздействие квантового компьютера
AES	Нужен больший размер ключа
SHA-2, SHA-3	Нужен больший выход
RSA	Взломано
ECDSA, ECDH (Elliptic Curve Cryptography)	Взломано
DSA (Finite Field Cryptography)	Взломано

Схема ЭЦП в виде трёх алгоритмов:

- 1. Алгоритм генерации ключей Gen:
 - а. $\mathsf{B}\mathsf{X}\mathsf{O}\mathsf{Д} : 1^n$, где n- параметр безопасности.
 - b. Выход: Открытый ключ pk и личный ключ sk.
- 2. Алгоритм подписи Sign:
 - а. Вход: Сообщение m и личный ключ sk.
 - b. Выход: Подпись σ .
- 3. Алгоритм проверки подписи Verify:
 - а. Вход: Открытый ключ pk, сообщение m и подпи $\overline{\boldsymbol{\alpha}}$ ь .
 - b. Выход: Проверка успешна (true) или отклонена (false).

Классификация подписей на основе функций хэширования:

Деревья Меркля

Путь аутентификации дерева Меркля

HORS

SPHINCS

Программная реализация

15:49:52.202207 1.832s th_a 04abaaf771ed8d428e	functor.cpp:161	operator()] Push block: head 10, round 11.0, producer 1.2.19, transactions 0, id 0000000b53db568515c798
15:49:53.300929 1.099s th_a	application.cpp:494	handle_transaction] Got 1 transactions from network
15:49:54.046508 745579 th_a		operator()	Push block: head 11, round 12.0, producer 1.2.9, transactions 0, id 0000000c81d95320845b30f
81e6f87afa7edfa5f			
15:49:54.305080 258572 th_a	application.cpp:494	handle_transaction	Got 554 transactions from network
15:49:55.311926 1.007s th_a	application.cpp:494	handle_transaction] Got 790 transactions from network
15:49:56.091859 779933 th_a	functor.cpp:161	operator()] Push block: head 12, round 13.0, producer 1.2.9, transactions 1376, id 0000000d0249267ef5c5
78ba5efa5a54be87e969			
15:49:56.398248 306389 th_a	application.cpp:494	handle_transaction] Got 526 transactions from network
15:49:57.401084 1.003s th_a	application.cpp:494	handle_transaction] Got 436 transactions from network
15:49:58.358252 957168 th_a	functor.cpp:161	operator()] Push block: head 13, round 14.0, producer 1.2.21, transactions 1813, id 00000000e3bb0ceb8ad4
1a88be1063bb3e62971c4			
15:49:58.620480 262228 th_a		handle_transaction] Got 282 transactions from network
15:50:00.457556 1.837s th_a	functor.cpp:161	operator()] Push block: head 14, round 15.0, producer 1.2.8, transactions 591, id 0000000f1d3422a88a061
9b9bec52b4b1b6ad7b0			
15:50:02.376232 1.919s th_a	functor.cpp:161	operator()] Push block: head 15, round 16.0, producer 1.2.15, transactions 220, id 000000108a5ce6144dac
aa9ca03e4be981ca632c			

Пример работы блокчейна Bitshares

Модель транзакций Bitshares

block_number block_prefix expiration_time operations_vector extensions

signatures

Взаимодействие с Bitshares

- 1. Blockchain API используется для запроса блокчейн-данных(счета, активы, торговая история и так далее). Кроме того, данные хранятся в самом блокчейне (блоки, транзакции и так далее), объекты более высокого (например, счета, балансы и так далее) можно получить через полную базу данных узла.
- 2. Wallet API отдельный модуль взаимодействия с блокчейном, для удобство разработчиков и тестирование новых операций.

Одноранговый сетевой протокол Bitshares

Peer to peer

Результаты программной реализации

Таблица 1: Сравнение подписей

${f Algorithm}$	Key generation	Sign	Verify
SPHINCS-256	12.6 ms	236 ms	$2.73~\mathrm{ms}$
$SPHINCS^+$	$11.7 \mathrm{ms}$	196 ms	$2.3 \mathrm{\ ms}$
Gravity-SPHINCS	$10.3 \; \mathrm{ms}$	204 ms	$2.4 \mathrm{ms}$
ECDSA(P-256)	$0.924~\mathrm{ms}$	$0.553~\mathrm{ms}$	$0.478 \mathrm{\ ms}$

Заключение

В дипломной работе получены следующие результаты:

- 1. Подготовлен анализ публикаций по основам HBC (Hash-Based Cryptography).
- 2. Изучены современные алгоритмы электронно цифровых подписей на основе функций хэширования.
- 3. Реализованы ЭЦП на основе функций хэширования на языке Python.
- 4. Интегрированы в блокчейн архитектуру Bitshares.
- 5. Составлена таблица сравнения скорости алгоритмов подписей без состояния с подписью на эллиптических кривых ECDSA для подписания транзакции.