New Results in Bounded-Suboptimal Search

Maximilian Fickert¹ and Tianyi Gu² and Wheeler Ruml²

Introduction

Heuristic Search
Problem Settings
Overview
Bounded Suboptimal
New Algorithms
Results

Conclusions

heuristic search: a planning approach

Introduction

■ Heuristic Search

■ Problem Settings

■ Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

Introduction

■ Heuristic Search

■ Problem Settings

■ Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

heuristic search:

 $\{ \text{states, actions} \} \to \{ V, E \}$ planning problem \to find a path from s_{init} to $\{ s_{goal} \}$ guide graph search by a heuristic estimate of cost-to-goal

Introduction

■ Heuristic Search

- Problem Settings
- Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

heuristic search:

 $\{ \text{states, actions} \} \rightarrow \{ V, E \}$ planning problem \rightarrow find a path from s_{init} to $\{ s_{goal} \}$ guide graph search by a heuristic estimate of cost-to-goal

Introduction

Heuristic Search
Problem Settings
Overview
Bounded Suboptimal
New Algorithms
Results

Conclusions

A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^*$, there can be many such nodes f

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Introduction

Heuristic Search

■ Problem Settings

■ Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^*$,

there can be many such nodes¹

What if we don't have time?

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Alternatives to Optimal Search: Problem Settings

Introduction

■ Heuristic Search

■ Problem Settings

Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

optimal: minimize solution cost expand every node with $f < C^*$

greedy: minimize solving time

anytime: incrementally converge to optimal

bounded-suboptimal: minimize time subject to relative cost bound (factor of optimal)

bounded-cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

utility-based: minimize function of cost and time

Alternatives to Optimal Search: Problem Settings

Introduction

■ Heuristic Search

■ Problem Settings

Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

optimal: minimize solution cost

expand every node with $f < C^*$

greedy: minimize solving time

anytime: incrementally converge to optimal

bounded-suboptimal: minimize time subject to relative cost

bound (factor of optimal)

bounded-cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

utility function: minimize utility function of cost and time

Overview

Introduction

- Heuristic Search
- Problem Settings
- Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

- Introduction
- Bounded-Suboptimal Search

EES

DPS

XES

New Algorithms

DXES

RoundRobin

- Results
- Conclusions

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- DPS
- XES

New Algorithms

Results

Conclusions

Bounded-Suboptimal Search

Bounded-Suboptimal Search: The Problem Setting

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Bounded-Suboptimal Search: The Problem Setting

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Objective: Find a plan with cost at most ωC^* as fast as possible.

Introduction

Bounded Suboptimal

■ Problem Setting

EES

- DPS
- XES

New Algorithms

Results

Conclusions

Three source of heuristic information:

h: a lower bound on cost-to-go

$$f(n) = g(n) + h(n)$$

traditional A* lower bound

 \hat{h} : an estimate of cost-to-go

$$\hat{f} = g(n) + \hat{h}(n)$$

unbiased estimates can be more informed

 \vec{d} : an estimate of distance-to-go

nearest goal is the easiest to find

Introduction

Bounded Suboptimal

■ Problem Setting

EES

■ DPS

■ XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost

 $best_{\hat{f}}$: open node giving estimated optimal cost

 $best_{\hat{d}}$: estimated $\omega-$ suboptimal node with minimum \hat{d}

Introduction

Bounded Suboptimal

■ Problem Setting

EES

■ DPS

XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost

 $best_{\hat{f}}$: open node giving estimated optimal cost

 $best_{\hat{d}}$: estimated $\omega-$ suboptimal node with minimum \hat{d}

node to expand next:

- 1. pursue the nearest goal estimated to lie within the bound
- 2.
- 3.

in other words:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2.
- 3.

Introduction

Bounded Suboptimal

■ Problem Setting

EES

■ DPS

■ XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost

 $best_{\hat{f}}$: open node giving estimated optimal cost

 $best_{\hat{d}}$: estimated $\omega-$ suboptimal node with minimum \hat{d}

node to expand next:

- 1. pursue the nearest goal estimated to lie within the bound
- 2. pursue the estimated optimal solution

3.

in other words:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$

3.

Introduction

Bounded Suboptimal

■ Problem Setting

EES

■ DPS

XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost

 $best_{\hat{f}}$: open node giving estimated optimal cost

 $best_{\hat{d}}$: estimated $\omega-$ suboptimal node with minimum \hat{d}

node to expand next:

- 1. pursue the nearest goal estimated to lie within the bound
- 2. pursue the estimated optimal solution
- 3. raise the lower bound on optimal solution cost

in other words:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

Introduction

Bounded Suboptimal

■ Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

Other EES variants:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$?
- 3. else $best_f$

see paper for more details.

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

Problem:

■ EES does not consider the uncertainty of its estimates (brittle)

State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)

Best first search on "potential":

$$potential = \frac{budget - cost\text{-so-far}}{cost\text{-to-go}}$$

State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- DPS
- XES

New Algorithms

Results

Conclusions

Best first search on "potential":

$$potential = \frac{budget - cost\text{-so-far}}{cost\text{-to-go}}$$

in other words:

$$ud(n) = \frac{\omega \cdot f_{min} - g(n)}{h(n)}$$

State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- DPS
- XES

New Algorithms

Results

Conclusions

Best first search on "potential":

$$potential = \frac{budget - cost\text{-so-far}}{cost\text{-to-go}}$$

in other words:

$$ud(n) = \frac{\omega \cdot f_{min} - g(n)}{h(n)}$$

does not explicitly optimize search time

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- DPS
- XES

New Algorithms

Results

Conclusions

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- DPS
- XES

New Algorithms

Results

Conclusions

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n) penalize nodes distant to goal

p(n): the probability of finding a solution within the bound advantage nodes likely to have solution within bound

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- **■** DPS
- XES

New Algorithms

Results

Conclusions

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n) penalize nodes distant to goal

p(n): the probability of finding a solution within the bound advantage nodes likely to have solution within bound estimated by:

Introduction

Bounded Suboptimal

- Problem Setting
- **■** EES
- **■** DPS
- XES

New Algorithms

Results

Conclusions

Best first search on expected search effort:

estimated by:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n) penalize nodes distant to goal p(n): the probability of finding a solution within the bound advantage nodes likely to have solution within bound

Can we adapt XES to bounded-suboptimal setting?

Introduction

Bounded Suboptimal

New Algorithms

■ DXES

■ RoundRobin

Results

Conclusions

New Algorithms

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Conclusions

Results

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n) p(n): the probability of finding a solution within the

bound, estimated by:

Introduction

Bounded Suboptimal

New Algorithms

■ RoundRobin

Results

Conclusions

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)

p(n): the probability of finding a solution within the bound, estimated by:

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Conclusions

Results

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)

p(n): the probability of finding a solution within the estimated bound, estimated by:

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Conclusions

Results

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)

p(n): the probability of finding a solution within the estimated bound, estimated by:

Results

Conclusions

Best first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)

p(n): the probability of finding a solution within the estimated bound, estimated by:

hard to estimate when raising the bound is useful!

Our Approach: 2/2 A Round-Robin Scheme

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Replace EES selection rule with Round-Robin:

focal list: sorted by d(EES) or ud(DPS) or xe(DXES)

open list: sorted by \hat{f}

cleanup list: sorted by f

focal and open condition: $f(n) < \omega \cdot f_{min}$

Simple but works well!

Introduction

Bounded Suboptimal

New Algorithms

Results

- **■** Experiments
- Planning
- Search

Conclusions

Results

Experiments

Introduction

Bounded Suboptimal

New Algorithms

Results

Experiments

Planning
Search

Conclusions

Planning Domains:

- Implementation in Fast Downward
- Benchmarks:

IPC optimal tracks (48 domains)

Search Domains:

■ Sliding-Tile Puzzle, Vaccum World, Pancake, Racetrack

IPC Coverage ($\omega = 1.5$)

Introduction
Bounded Suboptimal
New Algorithms
Results
■ Experiments
■ Planning
■ Search
Conclusions

Coverage	**	EES	DPS	DXES	RR-DPS	RR-d	RR-DXES
Sum (1652) Normalized(%)	995 58.7	967 57.0	1012 60.0	894 51.5	982 57.9	1025 60.7	1052 62.5
Expansions	569	558	472	31.3	665	383	371

 \rightarrow RR-DXES and RR-d perform best overall.

Search Domains

Introduction

Bounded Suboptimal

New Algorithms

Results

Experiments

Planning

Search

Conclusions

Search Domains

Introduction

Bounded Suboptimal

New Algorithms

Results

Experiments

Planning

Search

Conclusions

Search Domains

Introduction

Bounded Suboptimal

New Algorithms

Results

Experiments

Planning

Search

Conclusions

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

■ Summary

Conclusions

Summary

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Summary

What to do for bounded-suboptimal search:

- Weighted-A* is the first thing to try
- **Round-Robin on** d, \hat{f} , f is the next to try
- Round-Robin on xe, \hat{f} , f perfom well in some domains

Summary

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

■ Summary

What to do for bounded-suboptimal search:

- Weighted-A* is the first thing to try
- **Round-Robin on** d, \hat{f} , f is the next to try
- **Round-Robin on** xe, \hat{f} , f perfom well in some domains

Still unresolved:

- When to raise bound, and when to pursue solution?
- How to best use belief distribution in bounded-suboptmal search?

Questions?

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Questions

■ Questions?

