

Machine Learning for Security Professionals - Day 3

Unsupervised Learning: Clustering

Agenda for Today

- Measuring Distances
- Math free overview of clustering techniques
- Pipelines and pickles

Supervised ML Process

Unsupervised ML Process

Unsupervised Clustering Algorithm

- 1. Select Features
- 2. Calculate a distance measure
- 3. Apply a clustering algorithm
- 4. Validate?

	Malware events	
Dept1	6	
Dept2	1	
Dept3	8	

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

	Malware events	Phishing	Open Tickets
Dept1	6	6	3
Dept2	1	2	1
Dept3	8	1	9

Computing Distance

	Malware events	
Dept1	6	
Dept2	1	
Dept3	8	

Compare:

Dept1 to Dept2: | 6 - 8 | = 5

Dept2 to Dept3: | 1 - 8 | = 7

Dept1 to Dept3: | 6 - 8 | = 2

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Multiple Distance methods

- Euclidean
- Manhattan
- Maximum
- Canberra
- Binary
- Minkowski
- ... (to name a few)

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Euclidean very common and easy to understand

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Euclidean very common and easy to understand: $a^2 + b^2 = c^2$

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Manhattan also easy to comprehend: a + b

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Computing Distance

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Compare:

Dept1 to Dept2: $sqrt((6-1)^2 + (6-2)^2) = 6.4$

Dept2 to Dept3: ... = **7.1**

Dept1 to Dept3: ... = **5.4**

Euclidean Distance calculations

```
def dist(x,y):
    return np.sqrt(np.sum((x-y)**2))

> mat = np.array([[ 6,6,3 ], [1,2,1], [8,1,9]])
> dist(mat[0], mat[1])
6.7082039324993694

> dist(mat[1], mat[2])
10.677078252031311

> dist(mat[0], mat[2])
8.0622577482985491
```


	Malware events	Phishing	Open Tickets	
Dept1	6	6	3	67
Dept2	1	2	1	8.1
Dept3	8	1	9)10.7

Figure 19.

Clustering on breach data across industries

21B

Clustering...

Clustering...

Clustering...

K-Means

Before starting, pick the number of clusters, K

- 1. Pick K random centroids within data range
- 2. Assign each data point to the nearest centroid
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

Step 1: Pick 3 random centroids within data range

Step 2: Assign each data point to the nearest centroid (1)

Step 3: Move centroid to center of assigned points (1)

Step 2: Assign each data point to the nearest centroid (2)

Step 3: Move centroid to center of assigned points (2)

Step 2: Assign each data point to the nearest centroid (3)

Step 3: Move centroid to center of assigned points (3)

Step 2: Assign each data point to the nearest centroid (4)

Step 3: Move centroid to center of assigned points (4)

Step 2: Assign each data point to the nearest centroid (5)

Step 3: Move centroid to center of assigned points (5)

Step 3: Move centroid to center of assigned points (5)

K-Means: Got a problem with it?

Before starting, pick the number of clusters, K

- 1. Pick K random centroids within data range
- 2. Assign each data point to the nearest centroid
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

K-Means: Got a problem with it?

Before starting, pick the number of clusters, K Subjective

- 1. Pick K random centroids within data range Not Repeatable
- 2. Assign each data point to the nearest centroid Sensitive to Scale
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

How many clusters?

Random Start...

Random Start...

Random Start...

Which one is correct?

Which one is correct?

Pain of optimization...Being stuck at sub-optimal local minimum...

Initial guess matters!
Same outcome
cannot be guaranteed

K-Means in practice (Python version)

```
#Import from Scikit-learn
from sklearn.cluster import KMeans
```

kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

centroids = kmeans.cluster_centers_
labels = kmeans.labels f

The Dataset

sns.pairplot(<data>)

K-Means Clustering

```
kmeans = KMeans( n_clusters=2 )
kmeans.fit( <data> )
```


K-Means Clustering

sns.pairplot(<data>,hue="kmeans 2")

K-Means Clustering

```
sns.pairplot(<data>,x_vars="col_1",y_vars="col_2",hue="kmeans_2",size=6)
plt.scatter(<cluster_centers>,<col_2>, linewidths=3, marker='x', s=200,
c='black')
```


K-Means is affected by the scale of every feature.

For k-means clustering, features must be scaled to the same ranges of values to contribute "equally" to the euclidean distance calculation.

Each row is transformed per-column by:

- Subtracting from the element in each row the mean for each feature (column) and then taking this value and
- Dividing by that feature's (column's) standard deviation.


```
# center and scale the data
scaler = StandardScaler()

raw_data_scaled = scaler.fit_transform( <data> )

data_scaled = pd.DataFrame( raw_data_scaled, columns=features )
```



```
# K-means on scaled data
km = KMeans( n_clusters=2 )
km.fit( <scaled_data> )
```


More Clusters

```
km3 = KMeans(n_clusters=3)
km3.fit(scaled_data)
```


Outlier Detection

```
clf = svm.OneClassSVM( tol=0.001, nu=0.1)
clf.fit(X)
target_pred_outliers=clf.predict(X)
```

Delete n% of "outlier data", here ~10%

The Silhouette Coefficient is a common metric for evaluating clustering "performance" in situations when the "true" cluster assignments are not known.

b = mean distance to next nearest cluster

a = mean distance to other points in cluster

silhouette_coeff = (b - a) / max(a,b)


```
k_range = range(2,16)
scores = []
for k in k_range:
    km_ss = KMeans(n_clusters=k, random_state=1)
    km_ss.fit(iris_data_scaled)
    scores.append(silhouette_score(<data>,
km_ss.labels_))
```


from yellowbrick.cluster import KElbowVisualizer
visualizer = KElbowVisualizer(KMeans(), k=(4,12))

```
visualizer.fit(X)
visualizer.poof()
```



```
from yellowbrick.cluster import SilhouetteVisualizer
model = MiniBatchKMeans(6)
visualizer = SilhouetteVisualizer(model)
```

```
visualizer.fit(X)
visualizer.poof()
```


DBSCAN stands for **D**ensity-**B**ased **S**patial **C**lustering of **A**pplications with **N**oise.

Whereas K-means does not care about the density of data, DBSCAN does, under the assumption that regions of high density in your data should be treated as clusters.

DBSCAN does not allow you to specify how many clusters you want. Instead, you specify 2 parameters:

- **c (epsilon)**: This is the maximum distance between two points to allow them to be neighbors
- min_samples: The number of neighbors a given point is allowed to have to be able to be part of a cluster

Any points that don't satisfy the criteria of being close enough to other points are labeled outliers and all fall into a single "cluster" (their cluster label by default is -1).

DBSCAN works as follows:

- 1. Choose an arbitrary starting point in your dataset that has not been seen.
- 2. Retrieve this point's ϵ -neighborhood (all points that are within a distance ϵ from it), and if it contains at least *min_samples, a cluster is started.
- 3. Otherwise, the point is labeled as an outlier (-1). Note: This point might later be found in a sufficiently sized ε -environment of a different point and hence be made part of a cluster.
- 4. If a point is found to be a dense part of a cluster, its ϵ -neighborhood is also part of that cluster. All points that are found within the ϵ -neighborhood are added, as is their own ϵ -neighborhood when they are also dense.
- 5. Continue until the density-connected cluster is completely found.
- 6. Find a new unvisited point to process and repeat.


```
db = DBSCAN(eps=1, min_samples=3)
db.fit(<scaled_data>)
```


data_no_names['dbscan_eps1_mpts3'] = ["cluster_" + str(label) for label in db.labels_]
sns.pairplot(data_no_names, hue="dbscan_eps1_mpts3")

db2 = DBSCAN(eps=1, min_samples=10)
db2.fit(data_scaled)

db2 = DBSCAN(eps=2, min_samples=3)

db2.fit(iris_data_scaled)

db2 = DBSCAN(eps=0.6, min_samples=3)

db2.fit(iris_data_scaled)

In Class Exercise

Please take 30 minutes and complete

Worksheet 6: Clustering

Questions?