MATH 355 HOMEWORK 3

I welcome questions and comments at nicholas.rouse@rice.edu.

Problem 1

W is not a subspace of $M_{2\times 2}$. It in fact satisfies none of the three axioms for a subspace. The zero vector in $M_{2\times 2}$ is

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

which does not belong to W. Moreover, W is not closed under addition:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix},$$

but the matrix on the right hand side does not belong to W even though both matrices on the left hand side of the equals sign do. Finally W is not closed under scalar multiplication:

$$2 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}.$$

Remark. To prove something is not a subspace, it suffices to show that it does not satisfy only one of the axioms for a subspace. We include all the ways that W fails to be a subspace for completeness.

Problem 2

U is not a subspace of $M_{2\times 2}$. It is closed under addition and contains the zero vector, but it is not closed under scalar multiplication. The matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

belongs to U as $1+1=2 \ge 0$, but multiplying by -1 we obtain

$$-1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

which is not in *U* as (-1) + (-1) = -2 < 0.

Problem 3

Part a.

$$\begin{pmatrix} 2 & -1 \\ 4 & 6 \end{pmatrix}^t = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix}.$$

Part b. V is a subspace of $M_{2\times 2}$. The zero vector belongs to V:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}^t + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Next note that V is closed under scalar multiplication. Indeed for $\alpha \in \mathbf{R}$ and $A \in M_{2\times 2}$, we have $(\alpha \cdot A)^t = \alpha \cdot A^t$. To see this let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then

$$\left(\alpha \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)^t = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix}^t = \begin{pmatrix} \alpha a & \alpha c \\ \alpha b & \alpha d \end{pmatrix} = \alpha \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \alpha \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}^t = \alpha \cdot A^t.$$

Date: September 20, 2017.

Now we can easily prove that V is closed under scalar multiplication. Let $A \in V$ and $\alpha \in \mathbf{R}$. Then $\alpha \cdot A + (\alpha \cdot A)^t = \alpha \cdot A + \alpha \cdot A^t = \alpha \cdot (A + A^t) = \alpha \cdot 0 = 0$. Thus if $A \in V$, then $\alpha \cdot A \in V$. Finally, we prove a proposition that will let us prove that V is closed under addition.

Proposition. For $A, B \in M_{2\times 2}$, we have $(A+B)^t = A^t + B^t$.

Proof. We write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

Then

$$(A+B)^{t} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix}^{t}$$

$$= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}^{t}$$

$$= \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix}$$

$$= \begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} e & g \\ f & h \end{pmatrix}$$

$$= A^{t} + B^{t}.$$

Now let $A, B \in V$. Then $(A + B) + (A + B)^t = A + B + A^t + B^t = (A + A^t) + (B + B^t) = 0 + 0 = 0$. Thus $(A + B) \in V$, and we've proved that it is a subspace.

Problem 4

We first observe that

$$\operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\} = \left\{ a \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} + b \cdot \begin{pmatrix} -1\\1\\1 \end{pmatrix} \mid a, b \in \mathbf{R} \right\} = \left\{ \begin{pmatrix} a\\a\\a \end{pmatrix} + \begin{pmatrix} -b\\b\\b \end{pmatrix} \mid a, b \in \mathbf{R} \right\} = \left\{ \begin{pmatrix} a-b\\a+b\\a+b \end{pmatrix} \mid a, b \in \mathbf{R} \right\}.$$

Now suppose $\alpha \in \mathbf{R}$ is such that

$$\begin{pmatrix} 2+\alpha \\ 3+\alpha \\ 4+2\alpha \end{pmatrix} \in \left\{ \begin{pmatrix} a-b \\ a+b \\ a+b \end{pmatrix} \middle| a,b \in \mathbf{R} \right\}.$$

Then we must have $a, b \in \mathbf{R}$ such that

$$\begin{pmatrix} 2+\alpha\\ 3+\alpha\\ 4+2\alpha \end{pmatrix} = \begin{pmatrix} a-b\\ a+b\\ a+b \end{pmatrix}.$$

Hence we must have $3 + \alpha = 4 + 2\alpha$, so $\alpha = -1$ is the only possible value. However it remains to show that when we plug in $\alpha = -1$ we actually get something in the span. In particular we need to find $a, b \in \mathbf{R}$ such that

$$\begin{pmatrix} 1\\2\\2 \end{pmatrix} = \begin{pmatrix} a-b\\a+b\\a+b \end{pmatrix}.$$

So we need

$$a - b = 1$$
$$a + b = 2.$$

Solving this linear system, we obtain a = 3/2 and b = 1/2. So we conclude that only $\alpha = -1$ works.

Problem 5

The vectors are linearly independent. Suppose we have $\alpha, \beta, \gamma \in \mathbf{R}$ such that

$$\alpha \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \gamma \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Then we have the linear system

$$2\alpha+\beta-\gamma=0$$

$$3\alpha+\beta+\gamma=0$$

$$4\alpha + \beta + \gamma = 0.$$

Subtracting the second equation from the third we obtain $\alpha = 0$. Then we have

$$\beta - \gamma = 0$$

$$\beta + \gamma = 0.$$

Adding these two equations we find $2\beta = 0$, hence $\beta = 0$, and then we have $\gamma = 0$. Then the set is linearly independent.

Problem 6

The vectors are not linearly independent:

$$1 \cdot \begin{pmatrix} -7 \\ -6 \\ -13 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Problem 7

There are (infinitely) many bases for \mathbb{R}^3 . Two are $\{\vec{e_1}, \vec{e_2}, \vec{e_2} + \vec{e_3}\}$ and $\{-\vec{e_1}, \vec{e_2}, \vec{e_3}\}$.

Problem 8

Part a. This is true. Suppose $S \subset T \subset V$. Then recall that

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{m} \lambda_i s_i \mid m \in \mathbf{N}, \lambda_i \in \mathbf{R}, s_i \in S \right\}.$$

If we have $S \subset T$, then each $s_i \in S$ in fact is an element of T, so every linear combination of elements of S (i.e. an element of span(S)) is also a linear combination of elements of T.

Part b. This is false. Let $S = \{\vec{e_1}\}$ and $T = \{\vec{e_2}\}$ where $\vec{e_1}$ and $\vec{e_2}$ are the standard basis vectors for \mathbf{R}^2 . Then $S \cup T = \{\vec{e_1}, \vec{e_2}\}$, so $\mathrm{span}(S \cup T) = \mathbf{R}^2$. However, $\mathrm{span}(S) = \{\alpha \cdot \vec{e_1} | \alpha \in \mathbf{R}\}$, and $\mathrm{span}(S) = \{\beta \cdot \vec{e_1} | \beta \in \mathbf{R}\}$. Hence $\mathrm{span}(S) \cup \mathrm{span}(T) = \{\gamma \cdot \vec{e_i} | \gamma \in \mathbf{R} \text{ and } i = 1 \text{ or } 2\}$. Then in particular the vector $e_1 + e_2$ is not in $\mathrm{span}(S) \cup \mathrm{span}(T)$.

Part c. This is also false. Again let $\vec{e_1}$ and $\vec{e_2}$ be the standard basis vectors for \mathbf{R}^2 . Now let $S = \{\vec{e_1}, \vec{e_2}\}$ and $T = \{\vec{e_1}, \vec{e_1} + \vec{e_2}\}$. Note that S and T are both bases for \mathbf{R}^2 , so $\mathrm{span}(S) = \mathrm{span}(T) = \mathrm{span}(S) \cap \mathrm{span}(T) = \mathbf{R}^2$. However, $S \cap T = \{\vec{e_1}\}$, so $\mathrm{span}(S \cap T) = \{\alpha \cdot \vec{e_1} \mid \alpha \in \mathbf{R}\} \neq \mathbf{R}^2$. For example $\vec{e_2}$ does not belong to $\mathrm{span}(S \cap T)$.

Problem 9

The thing to keep in mind is that vector subspaces (other than all of \mathbb{R}^2 and the zero subspace) of \mathbb{R}^2 look exactly like a single line through the origin.

Part a. This one is a subspace.

Part b. This line doesn't pass through the origin, so it doesn't contain the zero vector of \mathbb{R}^2 , so it's not a subspace.

Part c. This isn't even a line and also doesn't contain the origin. To see the problem with not being a line, try adding two points that happen to lie on the circle and see whether the sum is also on the circle.

Part d. This is also not a subspace. It is the union of two subspaces. The problem is that if you add a point on one line to a point from the other line, you (usually) won't land on one of the lines. To be a bit more precise, imagine these lines were the lines y = x and y = -x, so then (1,1) is on the first line and (-1,1) on the other. However their sum (0,2) is not on either line. (cf. Problem 8, Part b)

Part e. This one is not a subspace. The problem here is that you can scale vectors inside subspaces. Imagine that the corners of this rectangle are (1,0), (0,1), (-1,0), and (0,-1), then $2 \cdot (1,0) = (2,0)$ is not in the shaded region.