AlterMundus

Alain Matthes

22 avril 2020 Documentation V.2.1c

http://altermundus.fr

<u>AlterMundus</u>

Tkz-Tab

Alain Matthes

tkz-tab.sty est un package pour créer à l'aide de TikZ des tableaux de signes et de variations le plus simplement possible. Il est dépendant de TikZ et fera partie d'une série de packages ayant comme point commun, la création de dessins utiles dans l'enseignement des mathématiques. La lecture de cette documentation va, je l'espère vous permettre d'apprécier la simplicité d'utilisation de TikZ et vous permettre de commencer à le pratiquer.

- 🕼 Je remercie **Till Tantau** pour nous permettre d'utiliser **TikZ**.
- $\textbf{\& } \textit{ Je remercie \textbf{Michel Bovani} pour nous permettre d'utiliser \textbf{fourier et utopia} avec \texttt{\& Mex}.$
- F Je remercie **Henri-Claude Dufresne** pour sa lecture approfondie de la documentation et ses propositions de correction.
- Je remercie également Jean-Côme Charpentier, Manuel Pégourié-Gonnard, Franck Pastor, Ulrike Fischer et Josselin Noirel pour les différentes idées et conseils qui m'ont permis de faire ce package, ainsi que Herbert Voß pour son document mathmode.pdf.

Table des matières 3

Table des matières

1	Init	tialisation d'un tableau : \tkzTabInit	4
	1.1	Définition	4
	1.2	Utilisation des arguments	4
		1.2.1 Tableau simple	4
		1.2.2 Ajout de lignes et de colonnes	5
		1.2.3 Tableau minimum	5
	1.3		5
		1.3.1 lgt: modification de la largeur de la première colonne	6
		1.3.2 espcl: modification de l'espacement entre deux valeurs	6
		1.3.3 deltacl: modification des espacements aux extrémités	6
		1.3.4 lw: épaisseur des lignes du tableau	6
		1.3.5 nocadre: suppression du cadre externe	6
		**	6
		1.3.7 help: Affiche la structure du tableau	7
2	0	ation disma de sisses . \therealine	8
2			
	2.1		8
	2.2		8
	2.3	I and the second	9
		,	9
		,	9
			10
	2.4		10
			10
	2.5	1	10
		y .	10
		•	11
	2.6	Utilisation des styles	11
		· ·	11
	2.7	1	11
			11
		2.7.2 Tableau de signes	12
		2.7.3 Signe d'une expression du second degré	12
3	Créa	ation d'une ligne de variations : \tkzTabVar	L3
	3.1	Définition	13
	3.2	Utilisation des symboles	6
	3.3		20
		3.3.1 color : modification de la couleur des flèches	20
		3.3.2 help: affiche la structure du tableau	21
	3.4		21
			21
			21
			22
			23
	3.5		24
	0.0		24
			24
		1 / 1 /	25
			25 25
		3.5.5 Zone interdite + double prolongement par continuité	25

Table des matières 4

	3.5.6 Exemple d'une fonction partiellement constante	
4	Création d'un tableau de variations : \tkzTab 2 4.1 Définition	7 7 7 8
5	Valeurs intermédiaires \tkzTabVal 2 5.1 Définition de \tkzTabVal 2 5.1.1 Ajout de valeurs intermédiaires 3 5.1.2 Ajout de valeurs intermédiaires avec une fonction non monotone 3 5.1.3 Ajout de valeurs intermédiaires avec un palier 3 5.1.4 Valeurs intermédiaires et plusieurs lignes de variations 3 5.2 Utilisation des options 3 5.2.1 draw: ajout d'une flèche vers la valeur ajoutée 3 5.2.2 remember: attribuer un nom à un point ou un node. 3	9 0 1 1 2
6	Ajout d'images \tkzTabIma et \tkzTabImaFrom 6.1 Définition de \tkzTabIma 6.1.1 Ajout de valeurs intermédiaires à partir d'un antécédent donné 6.1.2 Exemple avec plusieurs lignes de variations 6.1.3 Fonctions paramétrées 6.2 Définition de \tkzTabImaFrom 6.2.1 Utilisation d'un node défini par la macro \tkzTabInit 6.2.2 Utilisation d'un point défini par l'utilisateur avec remember 3. Ajout d'images \tkzTabIma 3. Ajout d'images \tkzTabIma 3. Ajout d'images \tkzTabIma 3. Ajout d'images \tkzTabIma 3. Ajout de \tkzTabIma 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 3. Ajout de valeurs intermédiaires à partir d'un antécédent donné 4. Ajout de valeurs intermédiaires à partir d'un antécédent donné 4. Ajout de valeurs intermédiaires à partir d'un antécédent donné 4. Ajout de valeurs intermédiaires à partir d'un antécédent donné 4. Ajout de valeurs intermédiaires à pa	4 5 6 7
7	Tangente horizontale : \tkzTabTan et \tkzTabTanFrom 3 7.1 Définition de \tkzTabTan 3 7.2 Utilisation des arguments 3 7.2.1 Palier 3 7.2.2 Tangente à l'extrémité d'un intervalle 4 7.3 Utilisation des options 4 7.3.1 pos : position de la valeur 4 7.3.2 Variations imbriquées 4 7.4 Définition de tkzTabTanFrom 4 7.5 Le nom est défini par le tableau 4 7.6 Le nom est donné par l'utilisateur avec l'option remember 4	9 9 0 1 1 2
8	Nombres dérivés : \tkzTabSlope 4. 8.1 Ajout de nombres dérivés	
9	Utilisation des styles 4 9.1 Définition de \tkzTabSetup 4 9.1.1 Utilisation de doubledistance et hcolor 4 9.1.2 Utilisation de fromcolor et tancolor 4 9.2 Utilisation de \tikzset pour modifier les styles 4 9.2.1 Utilisation de \tikzset et h style 4 9.2.2 Utilisation de \tikzset et h style 4 9.2.3 Utilisation de \tikzset et arrow style 4	6 6 7 9 9
	9.2.4 Utilisation de \tikzset et \tkzTabSetup	n.

Table des matières 5

Personnalisation des tableaux	51
10.1 help: option commune aux principales macros	51
10.1.1 help:option de \tkzTabInit	51
10.1.2 help:option de \tkzTabLine	52
I Galerie	52
11.1 Tableaux de signes	52
11.2 Variations de fonctions	52
11.2.1 Variation d'une fonction rationnelle	52
11.2.2 Variation d'une fonction irrationnelle	
11.3 Fonctions trigonométriques	54
11.3.1 Variation de la fonction tangente	54
11.3.2 Variation de la fonction cosinus	
11.4 Fonctions paramétrées et trigonométriques	
11.5 Baccalauréat Asie ES 1998	
11.6 Baccalauréat	
11.7 Baccalauréat Guyane ES 1998	
11.8 Exemple relatif à une question : problème de virgule	
11.9 Quelques tableaux classiques	
11.10 Utilisation de la macro \par	
11.11Exemple utilisant l'option help	
11.12Exemple modifiant la largeur d'une colonne	

1 Initialisation d'un tableau : \tkzTabInit

1.1 Définition

```
\label{local options} $$ \text{$\text{abinit}[\langle local options \rangle] } {\langle e(1)/h(1), \ldots, e(p)/h(p) \rangle} {\langle a(1), \ldots, a(n) \rangle } $$ $$
```

arguments	défaut	définition
liste1	no default	$\{\langle e(1)/h(1), \dots, e(p)/h(p)\rangle\}$
liste2	no default	$\{\langle a(1), \ldots, a(n) \rangle\}$

Les arguments obligatoires de cette macro sont deux listes dont les éléments sont séparés par des virgules. La première contient p éléments qui définissent p lignes dans le tableau. La seconde liste contient n éléments qui définissent n antécédents. À un antécédent correspond une colonne.

- Liste 1 : les éléments de la première liste sont des paires e(i)/h(i) où / est un séparateur entre d'une part, une expression e(1) et d'autre part, un nombre exprimé en centimètres. h(i) est pour tout i un nombre décimal qui fait référence à la hauteur en cm de la ligne qui contient l'expression e(i). Les nombres décimaux utilisent le point comme séparateur.
- Liste 2 : On ne peut pas utiliser les symboles «/» et «, » dans e(i) sauf si on les protège dans un groupe ¹.
 La protection de la virgule par une paire d'accolades {4,5} peut avantageusement être remplacée par une commande comme \numprint{4,5} ou encore \np{4,5}².

numprint

options	défaut	définition
espcl	2 cm	espacement entre deux valeurs
lgt	2 cm	largeur de la première colonne
deltacl	0.5 cm	marge avant le premier et le dernier antécédent
lw	0.4 pt	épaisseur des lignes du tableau
nocadre	false	par défaut, on encadre le tableau
color	false	booléen autorise la couleur ³
colorC	white	couleur de la première colonne
colorL	white	couleur de la première ligne
colorT	white	couleur de la partie centrale
colorV	white	couleur de la case de la variable
help	false	affiche les noms des points de construction

Le tableau ci-dessus décrit les options actuelles de la macro. Les trois premières sont essentielles pour l'esthétisme de votre tableau, ainsi que pour ses dimensions finales. Il reste cependant une possibilité car on peut encore jouer avec les options de l'environnement tikzpicture qui sont scale, xscale et yscale.

1.2 Utilisation des arguments

1.2.1 Tableau simple

Exemple:

 $^{3. \ \} expression\ entre\ accolades.$

 $^{4. \ \} Voir \ la \ documentation \ du \ package \ {\tt numprint}.$

 $^{5. \ \} Il\ est\ pr\'ef\'erable\ de\ charger\ le\ package\ \texttt{xcolor}\ avec\ des\ options\ comme\ \texttt{usenames}\ ou\ bien\ \texttt{dvipsnames}.$

 $<page-header> <page-header> \tikz \tkzTabInit{x /.8 , $f(x)$ /.8}{0 , $+\infty$};$

crée un tableau de deux lignes. La première ligne fait 0.8 cm de hauteur, ainsi que la seconde. La colonne de droite a pour bornes 0 et $+\infty$.

x	0	+∞
f(x)		

1.2.2 Ajout de lignes et de colonnes

La première liste permet d'obtenir trois lignes qui ont pour hauteur 1 cm. La seconde liste comporte trois antécédents qui déterminent deux intervalles (zones). Il sera possible de placer des filets verticaux sous ces antécédents.

				\begin{tikzpicture}
x	0	e	+∞	\tkzTabInit
				{\$x\$ /1,
£()				\$f(x)\$ /1,
f(x)				\$g(x)\$ /1}
				{\$Q\$,\$\E\$,\$+\infty\$}
g(x)				\end{tikzpicture}

Il est à noter l'utilisation de la macro \E 4

1.2.3 Tableau minimum

Le premier argument est /1, c'est l'argument minimum. L'argument est une liste avec comme séparateur le symbole /. Celui-ci est précédé d'un blanc ou d'un vide. La première case de la ligne sera vide. Le 1 signifie 1 cm car une dimension en cm est obligatoire pour donner la hauteur de la ligne. Le deuxième argument est constitué de deux éléments vides ou bien de deux blancs séparés par une virgule. Cet argument doit contenir au minimum deux éléments. Ces deux éléments sont les bornes d'un intervalle.

1.3 Utilisation des options

Tout d'abord on peut modifier certaines dimensions concernant les colonnes. Voyons les valeurs par défaut.

1.3.1 lgt : modification de la largeur de la première colonne

Par défaut la largeur de cette première colonne est de 2 cm. L'unité est toujours le cm.

```
\text{\lambda} \text{
```

1.3.2 espcl : modification de l'espacement entre deux valeurs

1.3.3 deltacl : modification des espacements aux extrémités

1.3.4 lw : épaisseur des lignes du tableau

Ce n'est pas recommandé. Il est préférable que tous les traits d'un document aient la même épaisseur qui par défaut est de 0,4 pt.

1.3.5 nocadre : suppression du cadre externe

1.3.6 color : utilisation de la couleur dans un tableau

amsmath color est un booléen et indique que l'on veut utiliser la couleur. Pour cela, il faut donner les couleurs attribuées à la première ligne colorL, la première colonne colorC, à la case de la variable colorV et aux lignes colorT. Il est possible d'attribuer une couleur pour une ligne particulière.

tkzTabInit{[color]} signifie que le booléen color est à vrai.

\begin{tikzpicture}	
<pre>\tkzTabInit[color,</pre>	
colorT = yellow!20,	
colorC = orange!20,	
colorL = green!20,	
<pre>colorV = lightgray!20]</pre>	
{ /1 , /1}{ , }	
\end{tikzpicture}	

t	α	β	γ
а			
b			
с			
d			

1.3.7 help : Affiche la structure du tableau

Voir la section « personnalisation » (10).

2 Création d'une ligne de signes : \tkzTabLine

2.1 Définition

```
\text{tkzTabLine}[\langle \text{local options} \rangle] \{\langle \text{s}(1), \dots, \text{s}(2n-1) \rangle\}
```

n est le nombre d'éléments du second argument de tkzTabInit.

symbole de rang impair	définition
Z	place un trait en pointillés et un zéro centré
t	place un trait en pointillés centré
d	place une double barre centrée
\textvisiblespace	aucune action

symbole de rang pair	définition
h	zone interdite
+	le signe +
-	le signe -
\textvisiblespace	aucune action

\tkzTabLine accepte comme argument une liste constituée de symboles. Dans une utilisation normale, les symboles font partie de deux catégories; les symboles de rang impair et les symboles de rang pair. Cette distinction est due au fait que les symboles de rang impair sont en général des traits (filets) et ceux pour les places de rang pair sont en général des signes « + ou – ». Les symboles de rang impair agissent graphiquement, et permettent de tracer des filets verticaux. L'argument de \tkzTabLine en contient n si on suppose que le deuxième argument de \tkzTabInit possède n éléments (antécédents). Les symboles de rang pair permettent d'obtenir un signe « + ou – » ou bien une zone interdite (hachurée ou colorée). Chaque ligne de signes en contient n-1 et contiendra donc un total de 2n-1 éléments, c'est à dire 2n-2 virgules!

Les différents symboles "reconnus" sont donnés dans le tableau ci-dessus, mais vous devez savoir que l'on peut mettre pratiquement n'importe quoi. Cependant attention! la virgule (,) est le séparateur de liste aussi vous devez prendre des précautions pour introduire un nombre à virgule. Vous avez plusieurs possibilités :

- {4,5} on place le nombre entre des accolades.
- \numprint{4,5} ou encore \np{4,5}, ce qui nécessite de charger l'excellent package numprint numprint avec l'option np pour le raccourci.

options	défaut	définition
style help		style des traits verticaux affiche la structure d'une ligne de signes

Il est possible de changer localement le style des filets verticaux et il est possible d'avoir des renseignements sur la structure de la ligne.

2.2 Nombre d'arguments utilisés.

La syntaxe générale est :

Si on utilise n antécédents pour la première ligne alors il y aura n symboles de rang impair et n-1 symboles de rang pair, soit 2n-1 symboles.

Les principaux symboles utilisés sont : **z** pour un zéro placé sur un trait, **t** pour un trait correspondant à un zéro d'une autre ligne, **d** pour une valeur pour laquelle l'expression n'est pas définie.

Voyons une illustration simple : trois antécédents a_1 , a_2 , et a_3 permettront de mettre $2 \times 3 - 1 = 5$ symboles. Les 3 valeurs de la première ligne impliquent pour l'argument de \text{\textabLine} de posséder $2 \times 3 - 1 = 5$ éléments c'est-à-dire être une liste comportant 3 symboles de rang impair et 2 symboles de rang pair, soit un total de 5 symboles qui seront séparés par 4 virgules.

Pour obtenir cette ligne, il faut entrer

2.3 Emploi minimum

La deuxième ligne est vide mais l'argument \tkzTabLine doit comporter 4 virgules. C'est en effet une liste comportant $5 = 2 \times 3 - 1$ valeurs.

\tkzTabLine{,,,,} ou \tkzTabLine{ , , , , }


```
\begin{tikzpicture}
  \tkzTabInit[espcl=1.5]
     {$x$ / 1 ,$f(x)$ /1 }%
     {$v_1$ , $v_2$ , $v_3$ }%
  \tkzTabLine{ , , , , }
\end{tikzpicture}
```

2.3.1 t : ajout d'un trait

Cette option place un simple trait verticalement.


```
\begin{tikzpicture}
  \tkzTabInit[espcl=1.5]
    {$x$ / 1 ,$f(x)$ /1 }%
    {$v_1$ , $v_2$ , $v_3$ }%
  \tkzTabLine{ t, , t , ,t }
\end{tikzpicture}
```

2.3.2 z : ajout d'un zéro sur un trait vertical

x	v_1	v_2	v_3
f(x)	0	0	0

```
\begin{tikzpicture}
  \tkzTabInit[espcl=1.5]
    {$x$ / 1 ,$f(x)$ /1 }%
    {$v_1$ , $v_2$ , $v_3$ }%
  \tkzTabLine{ z, , z , ,z }
\end{tikzpicture}
```

2.3.3 d : double barre

On peut aussi avoir le cas d'une fonction non définie en 0 et en 2 mais s'annulant en 1. On place à chaque extrémité le symbole d.


```
\begin{tikzpicture}
  \tkzTabInit[espcl=1.5]%
    {$x$ / 1,$g(x)$ / 1}%
    {$0$,$1$,$2$}%
\tkzTabLine{d,+,0,-,d}
\end{tikzpicture}
```

On peut aussi avoir le cas d'une fonction admettant une dérivée à droite différente de la dérivée à gauche


```
\begin{tikzpicture}
  \tkzTabInit[lgt=1.5,espcl=1.75]%
      {$x$ / 1,$f'(x)$ / 1}%
      {$-\infty$,$0$,$+\infty$}%
  \tkzTabLine{,+,d,-,}
\end{tikzpicture}
```

2.4 Utilisation des symboles de rang pair

Pour un tableau de signe, en principe les symboles de rang pair mais il est possible de détourner l'emploi de base de cette macro. L'exemple suivant montre un cas classique d'une zone du tableau qui correspond à des valeurs interdites. par défaut avec le symbole h, la zone est grisée mais on peut hachurer cette zone si on préfère. Le dernier exemple montre comment détourner l'usage principal.

2.4.1 h : zone interdite

Une fonction peut ne pas être définie sur un intervalle, ici [1 ; 2]. La partie du tableau qui correspond à cet intervalle sera hachurée ou bien colorée (par défaut, la zone est grisée). Des options permettant de personnaliser seront offertes. Pour l'exemple suivant, il suffit de placer h entre les deux d qui correspondent aux valeurs interdites 1 et 2.


```
\begin{tikzpicture}
  \tkzTabInit[color,espcl=1.5]
  {$x$ / 1,$g(x)$ / 1}
  {$\$,$1$,$2$,$3$}%
  \tkzTabLine{z, +, d, h, d, -, t}
\end{tikzpicture}
```

2.5 Utilisation des options

2.5.1 t style : modification du style des traits verticaux


```
\begin{tikzpicture}
\tikzset{t style/.style = {style = dashed}}
\tkzTabInit[espcl=1.5]
     {$x$ / 1 ,$f(x)$ /1 }%
     {$v_1$ , $v_2$ , $v_3$ }%
\tkzTabLine{ t , , t , , t }
\end{tikzpicture}
```

x	$ u_1 $	v_2	v_3
f(x)	0	Ó	Ó

```
\tikzset{t style/.style = {style = densely dashed}}
\begin{tikzpicture}
  \tkzTabInit[espcl=1.5]
     {$x$ / 1 ,$f(x)$ /1 }%
     {$v_1$ , $v_2$ , $v_3$ }%
  \tkzTabLine{ z, , z , ,z }
\end{tikzpicture}
```

2.5.2 help : Affiche la structure du tableau

Voir la section « personnalisation » (10).

2.6 Utilisation des styles

2.6.1 h style : modification de la couleur d'une zone interdite

Si vous préférez hachurer une zone du tableau, alors il faut modifier un style.


```
\begin{tikzpicture}
  \tikzset{h style/.style = {fill=red!50}}
  \tkzTabInit[color,espcl=1.5]%
    {$x$ / 1,$g(x)$ / 1}%
    {$0$,$1$,$2$,$3$}%
  \tkzTabLine{z,+,d,h,d,-,t}
\end{tikzpicture}
```

Cette fois la zone est hachurée.

x	0		1	2		3
g(x)	0	+			_	

2.7 Exemples

2.7.1 Simplification d'une expression comportant une valeur absolue

x	$-\infty$		2		+∞
2-x		+	0	_	
2-x	2	2-x	0	x-2	

```
\begin{tikzpicture}
\tkzTabInit[lgt=2,espcl=1.75]%
   {$x$/1,$2-x$/1, $\vert 2-x \vert $/1}%
   {$-\infty$,$2$,$+\infty$}%
   \tkzTabLine{ , + , z , - , }
   \tkzTabLine{ , 2-x ,z, x-2, }
\end{tikzpicture}
```

2.7.2 Tableau de signes

x	0		1		2		e		+∞
$x^2 - 3x + 2$		+	0	_	0	+		+	
$(x - e) \ln x$		+	0	-		_	0	+	
$\frac{x^2 - 3x + 2}{(x - e) \ln x}$		+		+	0	_		+	

2.7.3 Signe d'une expression du second degré

Si
$$\Delta \ge 0$$
 on peut écrire $ax^2 + bx + c = a\left(x - \frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)\left(x - \frac{-b + \sqrt{b^2 - 4ac}}{2a}\right)$

x	$-\infty$		x_1		x_2		+∞
$\Delta > 0$ Le signe de $ax^2 + bx + c$		signe de	0	signe opposé de <i>a</i>	0	signe de	

Il faut noter l'emploi de la macro \genfrac 5.

Si $\Delta = 0$ alors on peut écrire $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$

^{5. \}genfrac est une macro du package amsmath

x	-∞		$\frac{-b}{2a}$		+∞
$\Delta = 0$ Le signe de $ax^2 + bx + c$		signe de a	0	signe de	

Si
$$\Delta < 0$$
 alors $ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$

x	-∞ +∞
$\Delta < 0$ Le signe de $ax^2 + bx + c$	signe de a

```
\begin{tikzpicture}
  \tkzTabInit[color,lgt=5,espcl=5]%
  {$x$/.8,$\Delta<0$\\ Le signe de\\ $ax^2+bx+c$/2}%
  {$-\infty$,$+\infty$}%
  \tkzTabLine{ , \genfrac{}{}{0pt}{0}{\text{signe de}}{ a}, }
\end{tikzpicture}</pre>
```

3 Création d'une ligne de variations : \tkzTabVar

3.1 Définition

```
\label{eq:local_options} $$ \text{vec el}(i) = s(i) / e(i) \text{ ou bien el}(i) = s(i) / eg(i) / ed(i). $$
```

s(i) est une série de symboles à choisir dans le tableau ci-dessous. eg(i) et ed(i) sont des expressions mathématiques qui se placent à gauche et à droite des filets verticaux. e(i) est une expression centrée sur un filet.

s(i) - +	Position des expressions		el(i)		
		Position des expressions			
+	expression unique et centrée e	en bas eg=ed	_	le	
	expression unique et centrée e	en haut eg=ed	+	1e	
R	rien, on passe à l'expression su	iivante	R	(/)	
-C	prolongement par continuité o	en bas, centrée	-C	1 e	
+C	prolongement par continuité o	en haut, centrée	+C	le	
-H	expression en bas et centrée p	uis zone interdite	-H	1e	
+H	expression en haut et centrée	puis zone interdite	+H	1e	
+D	discontinuité, expression en h	aut à gauche	+D	le	
-D	discontinuité, expression en b	as à gauche	-D	le	
D+	discontinuité, expression en h	aut et à droite	D+	1e	
D-	discontinuité, expression en b	as et droite	D-	le	
+DH	discontinuité à gauche et en h	aut puis zone interdite	+DH	<i> e</i>	
-DH	discontinuité à gauche et en b		-DH	<i> e</i>	
+CH	prolongement par continuité puis zone interdite $+CH$ /e				
-CH	idem mais expression en bas et à gauche $-CH$ /e				
Groupe 2	avec deux signes				
+ <i>D</i> -	discontinuité,	deux expressions	+D-	leg/e	
-D+	discontinuité,	qui sont	-D+	/eg/e	
+D+	discontinuité, soit	à gauche ,soit à droite	+D+	/eg/e	
-D-	discontinuité, s	oit en haut, soit en bas	-D-	/eg/e	
+CD+	prolongement par continuité à	à gauche et	+CD+	/eg/e	
-CD-	deu	ıx expressions qui sont	-CD-	leg/e	
+CD-	soit	à gauche ,soit à droite	+CD-	/eg/e	
-CD+	s	oit en haut, soit en bas	-CD+	leg/e	
+DC+	prolongement par continuité à	à droite et	+DC+	leg/e	
-DC-		ıx expressions qui sont	-DC-	leg/e	
+DC-		à gauche ,soit à droite	+DC-	leg/e	
-DC+		oit en haut, soit en bas	-DC+	leg/e	
+V+	comme une discontinuité mai		+V+	leg/e	
-V-		ıx expressions qui sont	-V-	leg/e	
+V-		à gauche ,soit à droite	+V-	leg/e	
-V+		oit en haut, soit en bas	-V+	leg/e	
П	laisse la place vide dans certai	ns cas			

La macro \tkzTabVar nécessite un argument qui est une liste. Cette liste contient n éléments correspondant aux n antécédents de la première ligne. Chaque élément donne la position d'une ou de deux expressions par rapport à la ligne avec un signe + (en haut) ou bien un signe - (en bas). Ces expressions sont, soit des images, soit des limites.

```
Les éléments el (i) ont pour forme : soit { s(i)/e(i)} ou bien { s(i)/e(i)/e(i)}, soit { s(i)/e(i)/e(i)}.
```

La première forme correspond aux symboles qui ne possèdent qu'un signe + ou - et qui placent une seule expression; la seconde correspond aux symboles qui possèdent deux signes et qui placent deux expressions. Les expressions sont des valeurs prises à gauche eg(i) ou bien à droite ed(i) par la fonction ou encore des limites mais les expressions peuvent être vides. Un signe + ou - à gauche (resp. à droite) des symboles correspond à eg(i) (resp. à ed(i)).

options	défaut	définition
color	black	couleur des flèches
help	affiche la structure d'une ligne de variations	

Un schéma étant parfois plus simple qu'un long discours ...

Pour les besoins de certains tableaux, j'ai employé les macros suivantes :


```
\begin{tikzpicture} $$ \text{TabInit}[lgt=2,espcl=3]{$x$/1,$f'(x)$/1,$f(x)$/3}% $$ ,$1$,$2$,$+\infty$}% $$ \text{TabLine}\{t,-,d,-,z,+,\}% $$ \text{TabVar}{+/\va , -D+/\vb/\vc,-/\vd , +D/\ve}% $$ end{tikzpicture}
```

Commentaires : Les signes + et – permettent de positionner une extrémité de la flèche en haut ou en bas de la ligne. Ensuite, en présence d'un seul signe, une seule expression est nécessaire. La position par rapport à la

colonne est donnée par la position du signe par rapport aux autres symboles (voir +D). -D+ nécessite deux expressions.

3.2 Utilisation des symboles

 $\{+/\va , -C / \vb\}$

$$\{+C / va , -C / vb\}$$

{ D+ $\$ \\va , $-\$ \vb}

 $\{-/\va , +/\vb\}$

{-/\va , -/\vb}

 $\{-/\va , +C / \vb \}$

 $\{-C /\va , +C /\vb\}$

{ D- $\$, + $\$ \\vb}

 $\{+/\va$, -D / \vb

 $\{D+ / va , -D / vb \}$

{+/ \va , -/ \vb , +/ \vc}

{- /\va , R , +/\vc}

 $\{D-/\va , +DH/\vbo/ , \}$

 $\{-/\va , +D / \vb \}$

 ${D- /\va , +D /\vb}$

 $\{+/ \ va ,-C/ \ vb , +/ \ vc/ \}$

{- /\va , R , +/\vc}

{D-/\va , -DH/\va/\vb , D+/}

{D-/\va , +D-/\vbo/\vbt , +D/\vc}

 $\{+/\va , -D- / \vbo/\vbt , +/\vc\}$

 ${D-/\va, +DC-/\vbo/\vbt, +D/\vc}$

 ${D-/\va} , +CD-/\vbo/\vbt , +D/\vc}$

 $\{+/\va, -DC+ /\vbo/\vbt, - /\vc\}$

{D-/\va , +D-/\vbo/\vbt , +D/\vc} $\label{eq:defD-}$

 ${+ /\va,-DC- /\vbo/\vbt,+ /\vc}$

 $\{D+/\volume{vbo}/\volume{vbt}, +D/\volume{vc}\}$

 ${D-/\va} , +CD-/\vbo/\vbt ,+D/\vc}$

{D- /\va, -DC- /\vbo/\vbt,+D/\vc}

 $\{+/\va$, -CH /\vbo/\vbt , D+/}

{+ /\va , -CH/\vb, //}

 $\{+/\volume{vbt}, -V-/\volume{vbt}, +/\volume{vc}$

 $\{+/ \ va ,-V+ / \ vbo/ \ vbt ,-/ \ vc\}$

 $\{+/ \ va ,+V- /\ vbo/ \ vbt , -/\ vc\}$

 ${-/ \va, +V+ / \vbo/\vbt, -/\vc}$

 $\{-/ \va ,+H/\vb,-/\vc, +/ \vd\}$

 $\{+/ \forall a ,-H/\forall b,-/\forall c, +/ \forall d\}$

{-/ \va , +/\vb , -DH/\vc , -/\vd , +/ \ve}

 $\{D-/ \va , +DH/\vb/ , D-/\vc , +/\vd , +D/\ve\}$

Commentaires

- on peut employer la syntaxe suivante dans pratiquement tous les cas s(i)/.../... mais alors il faut bien positionner les expressions;
- l'argument vide est employé parfois à la fin d'une ligne mais dans ce cas aucune flèche n'est tracée;
- C+ et C- n'existent pas. +C et -C suffisent car les expressions sont centrées;
- D+ et D- existent .

3.3 Utilisation des options

3.3.1 color : modification de la couleur des flèches

Il est possible de personnaliser le tableau à l'aide de styles.

x	0	+∞
Signe de $\frac{1}{x}$		+
Variation de ln	$-\infty$	+∞

3.3.2 help: affiche la structure du tableau

Voir le chapitre personnalisation (10)

3.4 Utilisation des styles

3.4.1 Modification de la couleur d'une zone interdite

Si vous préférez hachurer une zone du tableau, alors il faut modifier un style.

Par défaut, h style est défini ainsi:

```
\tikzset{h style/.style = {fill=gray,opacity=0.4}}
```

Une autre définition peut être :

\tikzset{h style/.style = {fill=red!50}}}


```
\begin{tikzpicture}
\tikzset{h style/.style = {fill=red!50}}
\tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
\tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / }
\end{tikzpicture}
```

3.4.2 h style Zone interdite hachurée

\tikzset{h style/.style = {pattern=north west lines}}

Ce code permet d'hachurer la zone


```
\begin{tikzpicture}
\tikzset{h style/.style = {pattern=north west lines}}
\tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$\0$,$1$,$2$,$3$}%
\tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $\0$ / }
\end{tikzpicture}
```

3.4.3 arrow style style des flèches.

Le style des flèches est arrow style et il est défini ainsi:

On limite l'approche des nodes par les arrows. Voici une modification possible du style

La couleur et l'approche des flèches sont modifiées.

3.4.4 node style Style des nodes

Par défaut, Le style des nodes est node style et il est défini ainsi :

Si on veut apporter des modifications mais conserver une partie de ce style, on peut agir ainsi :

```
\tikzset{node style/.append style = {draw,circle,fill=red!40,opacity=.4}}
```

Par défaut les nodes sont des rectangles non tracés, ils deviennent des disques

3.5 Quelques exemples

3.5.1 Fonction inverse

Étude de la fonction inverse $i: x \mapsto \frac{1}{x} \operatorname{sur}] - \infty$; $0[\cup]0$; $+\infty[$

3.5.2 Fonction avec des paliers, emploi du symbole ${\color{blue}R}$

Il est possible avec R de passer plusieurs valeurs.

3.5.3 Zone interdite


```
\begin{tikzpicture}
\tkzTabInit[lgt=1,espcl=2]{\$x\$ /1, \$f\$ /2}{\$\\$,\$1\$,\$2\$,\$3\$}%
\tkzTabVar{+/ \$1\$ / ,-DH/ \$-\infty\$ / ,D+/ / \$+\infty\$, -/ \$2\$ / \}
\end{tikzpicture}
```

3.5.4 Zone interdite + prolongement par continuité


```
\begin{tikzpicture}
\tkzTabInit[lgt=1,espcl=2]{\$x\$ /1, \$f\$ /2}{\$\\$,\$1\$,\$2\$,\$3\$}%
\tkzTabVar\{+/ \$1\$ / ,-CH/ \$-2\$ /, D+/ / \$+\\infty\$,-/ \$2\$ / \}
\end\{tikzpicture\}
```

3.5.5 Zone interdite + double prolongement par continuité


```
\begin{tikzpicture}
\tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$\0,$1$,$2$,$3$}%
\tkzTabVar{+/ $1$ /, -CH/ $-2$ /, +C/ $5$, -/ $\0,$ / }
\end{tikzpicture}
```

3.5.6 Exemple d'une fonction partiellement constante

Utilisation de l'option nocadre qui supprime le cadre extérieur, sinon on peut constater que l'on peut mettre pratiquement ce que l'on veut avec la macro \signe.

3.5.7 Double variations


```
\begin{tikzpicture}
\tkzTabInit[espcl=6]
    {$x$ /1, $f''{x}$ /1,$f'(x)$ /2, $f(x)$ /2}%
    {$0$ , $1$ , $+\infty$ }%
\tkzTabLine{d,+,z,-, }%
\tkzTabVar {D-/    /$1$,+/ $\E$ /,-/ $0$ /}%
\tkzTabVar {D-/    /$-\infty$ ,R/ $0$ /, +/ $+8$ /}
\end{tikzpicture}
```

4 Création d'un tableau de variations : \tkzTab

4.1 Définition

arguments	défaut	définition
liste1		$\{\langle e(1)/h(1), \ldots, e(p)/h(p)\rangle\} \text{ première colonne}$
liste2	no default	$\{\langle a(1),,a(n)\rangle\}$ antécédents de la première ligne
liste3	no default	$\{\langle s(1),,s(2n-1)\rangle\}$ symboles de la ligne de signes
liste4	no default	$\{\langle s(1)/eg(1)/ed(1),,s(q)/eg(q)/ed(q)\rangle\}$ variations

La macro \tkzTab est un raccourci pour enchaîner \tkzTabInit, \tkzTabLine et \tkzTabVar. Les options sont identiques à celles de \tkzTabInit. Ces tableaux ne concernent que les tableaux à trois lignes pour la variable, le signe de la dérivée et les variations de la fonction.

4.2 Exemple 1

Étude de la fonction $f: x \longrightarrow x^2 \text{ sur } [-5; 7]$

4.3 Exemple 2

Étude de la fonction $f: x \mapsto x \ln x \text{ sur }]0; +\infty]$

4.4 Exemple 3

Étude de la fonction $f: x \mapsto \sqrt{x^2 - 1} \operatorname{sur}] - \infty; -1] \cup [1; +\infty[$

4.5 Exemple 4

Étude de la fonction $f: t \longrightarrow \frac{t^2}{t^2-1}$ sur $[0; +\infty[$


```
\begin{tikzpicture}
  \tkzTab{ $t$ / 1, Signe de\\ $f'(t)$ / 2, Variation de \\$f$ / 2}%
      { $0$, $1$, $+\infty$}
      { z , - , d , - , }
      { +/$0$ , -D+/$-\infty$/$+\infty$, -/ $1$ }%
\end{tikzpicture}
```

5 Valeurs intermédiaires \tkzTabVal

Cette macro permet de placer une valeur sur une flèche de la ligne des variations. Elle doit être employée juste après la commande \tkzTabVar définissant la ligne de variations sur laquelle on souhaite placer les valeurs intermédiaires. On ne peut placer une valeur que dans un intervalle où la fonction est monotone. Cette macro permet d'afficher une nouvelle valeur (intermédiaire) dans la première ligne.

5.1 Définition de \tkzTabVal

\tkzTabVal[\local options\range] {D\(\text{option}\) {Fin}{Position}{Ant\(\text{option}\) {Image}				
arguments	défaut	définition		
Début	no default	rang de l'origine de la flèche		
Fin	no default	rang de l'extrémité de la flèche		
Position	no default	nombre décimal entre 0 et 1		
Antécédent	no default	valeur de l'antécédent si nécessaire		
Image	no default	valeur de l'image si nécessaire		

Ceci mérite quelques commentaires: Il s'agit de savoir sur quelle flèche, on va positionner l'image. Début et Fin sont les rangs des valeurs qui déterminent les extrémités de la flèche. Antécédent Image sont les valeurs que l'on veut placer. Position est un nombre qui est obligatoirement compris entre 0 et 1. C'est une abscisse en prenant comme origine Début et comme extrémité Fin.

options	défaut	définition
draw	true	dessin d'une flèche entre l'antécédent et son image
remember	lastval	définit un node personnalisé

Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option draw. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option remember.

5.1.1 Ajout de valeurs intermédiaires

Le premier exemple montre des valeurs remarquables pour la fonction ln. Il s'agit de mettre en évidence des valeurs importantes pour la fonction. La fonction est monotone entre les valeurs de rang 1 (0) et 2 ($+\infty$), ainsi les deux premiers arguments sont 1 et 2. Les coefficients utilisés pour Position sont des nombres décimaux ici 0.33 et 0.66. Les antécédents n'étaient pas présents dans la première ligne aussi leurs valeurs sont passées dans les arguments.

 $\t xTabVal{1}{2}{0.33}{1}{0} \\ tkzTabVal{1}{2}{0.66}{E}{1}$

5.1.2 Ajout de valeurs intermédiaires avec une fonction non monotone

On ne peut utiliser la macro que sur un intervalle où la fonction est monotone, ici il y a trois valeurs 0, e et $+\infty$. La fonction est monotone entre les deux premières c'est à dire entre les valeurs de rang 1 et 2 ainsi qu'entre les deux dernières de rang 2 et 3.

5.1.3 Ajout de valeurs intermédiaires avec un palier

Il ne faut pas s'arrêter au deuxième antécédent. La fonction est monotone mais admet un palier. L'option R permet d'éviter qu'une flèche s'arrête pour \sqrt{e} . La flèche va donc de la valeur de rang 1 à la valeur de rang 3. Le code est donc :

5.1.4 Valeurs intermédiaires et plusieurs lignes de variations

Les variations de f et f' sont représentées. Pour f la valeur 1 n'est pas utilisée, on passe donc du rang 1 au rang 3.

5.2 Utilisation des options

5.2.1 draw : ajout d'une flèche vers la valeur ajoutée

L'option a déjà été utilisée dans les exemples précédents, en voici un autre.


```
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=10]{$x$
                              /1,
              Signe\\ de \frac{1}{x}$ /2,
              Variation\\ de $\ln$
                             /3}
              $Ø$
                       , $+\infty$ }%
\tkzTabLine
              {d,+
                               }%
\tx2TabVal[draw]{1}{2}{0.3}{$1$}{$0$}\%
\tkzTabVal[draw]{1}{2}{\(\delta.64\)}{\$2,7$\}{\$<\$}\%
\t \TabVal[draw]{1}{2}{0.7}{$\E$}{$1$}%
\end{tikzpicture}
```

5.2.2 remember : attribuer un nom à un point ou un node.

Cette option permet d'utiliser \tkzTabImaFrom mais il est possible de récupérer les noms des nodes et de les traiter avec par exemple du code de TikZ.

```
\draw[opacity=0.4,fill=red!20] (vb) circle(3ex);
\draw[opacity=0.4,fill=blue!20] (vc) circle(3ex);
```


Il faut remarquer que b et c sont des valeurs intermédiaires car le tableau a été défini avec a, d et e.

6 Ajout d'images \tkzTabIma et \tkzTabImaFrom

Ces macros permettent de placer une valeur sur une flèche de la ligne des variations. On ne peut placer une valeur que dans un intervalle où la fonction est monotone, de plus l'image est celle d'un antécédent déjà défini dans la première ligne. La première macro est \tkzTabIma.

6.1 Définition de \tkzTabIma

$\label{local-options} $$ \txTabIma[\langle local options \rangle] {D\'ebut}_{Fin}_{Position}_{Ant\'ec\'edent}_{Image} $$$				
arguments	défaut	définition		
Début	no default	rang de l'origine de la flèche		
Fin	no default	rang de l'extrémité de la flèche		
Position	no default	rang de l'antécédent correspondant à l'image		
Image	no default	valeur de l'image si nécessaire		

Ceci mérite quelques commentaires : Il s'agit de savoir sur quelle flèche, on va positionner l'image. Début et Fin sont les rangs des valeurs qui déterminent les extrémités de la flèche. Image est la valeur que l'on veut placer. Position est un nombre entier qui est le rang de l'antécédent.

options	défaut	définition
draw	true	dessin d'une flèche entre l'antécédent et son image
remember	lastval	définit un node personnalisé

Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option draw. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option remember.

6.1.1 Ajout de valeurs intermédiaires à partir d'un antécédent donné

Il y a plusieurs possibilités mais la suivante est préférable. L'antécédent est de rang 2. La fonction est monotone entre les valeurs de rang 1 et 3. Voici comment faire apparaître l'image par f de \sqrt{e} .


```
\begin{tikzpicture}
\tkzTabInit[espcl=6]%
   {$x$/1,$f'(x)$/1, $f(x)$/2}{$0$,$\sqrt\E$,$+\infty$}%
\tkzTabLine{d,+,0,+,}%
\tkzTabVar{D- /$-\infty$, R / ,+ / $0$}%
\tkzTabIma{1}{3}{2}{-5}
\end{tikzpicture}
```

Une autre possibilité est d'utiliser la macro \tkzTabImaFrom ainsi que les nodes créés pour construire le tableau; voir la section « personnalisation » (10) et la fin de ce chapitre.

6.1.2 Exemple avec plusieurs lignes de variations


```
\begin{tikzpicture}
  \tkzTabInit[espcl=4]
                          /1,
    { $x$
                 /1,
      $f''(x)$
                           /2,
/2,
      $f'$
      Signe de\ \f'(x)$
      $f$
                            /3}%
    { $0$ , $1$ , $\alpha$,$+\infty$ }%
  \label{line def} $$ \txTabLine {d , + , z , - , , - }% $$
  \tkzTabVar
     {- / $1$
      + /
     R/
     - / $-\infty$ }
  \tkzTabIma[draw]{2}{4}{3}{$\%$}
   % ou bien \tx_{abVal[draw]{2}{4}{0.5}{}{0} obsolète}
      \t x TabLine { , + ,          , + , z , - } %
  \tkzTabVar
    {- / $-\infty$ ,
    R /
     + / $1$ ,
                }
     - / $0$
  \tkzTabIma[draw]{1}{3}{2}{$\%$}
\end{tikzpicture}
```

6.1.3 Fonctions paramétrées

Fonctions paramétrées

t	-∞ -4 -	-1 0	2 +∞
Signe de $x'(t)$	- 0 +	+ 0 -	-
Variations de x	1 +∞	0 -∞ -∞	+∞
Variations de y	$+\infty$ $\frac{32}{3}$ $-\infty$	+∞ 0	+∞ 16 3
Signe de $y'(t)$	$-\frac{-64}{9}$ -	- 0 +	<u>14</u> +

```
\begin{tikzpicture}
\tkzTabInit[ lgt=4, deltacl=1, espcl=2]%
  {$t$
                                 /1,
  Signe de\\ $x'(t)$
                                 /1.5,
  Variations de\\ $x$
                                 /3,
   Variations de\\ $y$
                                 /3,
  Signe de\\ $y'(t)$
                                /1.5}
  { -\frac{1}{3}, $-4, $-1$, $\$, $2$, $+\infty$}%
\tkzTabLine { , - , z , + , d , + , z , - , d , - , }
\t {+/$1$ , -/$ \frac{8}{9}$ ,+D-/$+\inf y$/$-\inf y$ ,}
             +/0, -D+ /0-\infty$/ 0+\infty$ , -/01$ / }
\txTabVar {+/$+\infty$, R/,-D+/$-\infty$/$+\infty$,
             -/$ ,R / , +/$+\infty$ }
\tkzTabIma{1}{3}{2}{$\frac{32}{3}$}
\t X = 16}{3}
\label{line} $$ \txTabLine{ , - , \frac{-64}{9} , - , d , - , z , + , \frac{44}{9} , + , } $$
\end{tikzpicture}
```

6.2 Définition de \tkzTabImaFrom

Cette macro ressemble à la précédente mais elle permet de placer une image relativement à une autre image ou relativement à un point quelconque du tableau auquel on a attribué un nom.

\tkzTabIma	$\verb \tkzTabImaFrom[\langle local options \rangle]{D\'ebut}{Fin}{From}{Image} $				
arguments	défaut	définition			
Début	no default	rang de l'origine de la flèche			
Fin	no default	rang de l'extrémité de la flèche			
From	no default	nom d'un point			
Image	no default	valeur de l'image			

Comme pour \tkzTabVal, Début et Fin sont les rangs des valeurs qui déterminent les extrémités de la flèche. Image est la valeur que l'on veut placer. From est le nom du node qui correspond à l'antécédent.

options	défaut	définition
draw	true	dessin d'une flèche entre l'antécédent et son image
remember	lastval	définit un node personnalisé

Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option draw. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option remember.

6.2.1 Utilisation d'un node défini par la macro \tkzTabInit

Il s'agit ici de N21. C'est un node, plus exactement un point situé sous la seconde valeur \sqrt{e} et sur le premier filet horizontal sous cette valeur. Voir le chapitre personnalisation et en particulier l'option help qui permet

d'afficher différents points de construction.


```
\begin{tikzpicture}
\tkzTabInit[espcl=6]%
    {$x$/1,$f'(x)$/1, $f(x)$/3}{$\%$,$\sqrt\E$,$+\infty$}%
    \tkzTabLine{d,+,\0,+,}%
    \tkzTabVar{D-/ $-\infty$, R/ , +/$\%$ }
    \tkzTabImaFrom[draw] {1}{3}{N21}{-5}
    \draw[opacity=\0.4,fill=red!3\0] (N21) circle(3ex);
    \draw[fill=red] (N21) circle(2pt);
    \node[above right= 12pt,red](txt) at (N21) {$N21$};
    \end{tikzpicture}
```

6.2.2 Utilisation d'un point défini par l'utilisateur avec remember

7 Tangente horizontale : \tkzTabTan et \tkzTabTanFrom

7.1 Définition de \tkzTabTan

_ \	\tkzTabTan	[$\langle local option \rangle$]	$[ns]$ {Début}{Fin}{Position}{Image}
 a	arguments	défaut	définition
	Début Fin	no default no default	rang de l'origine de la flèche rang de l'extrémité de la flèche
-	Position Image	no default no default	rang de l'antécédent valeur de l'image

Il s'agit de savoir sur quelle flèche, on va positionner la tangente. **Début** et **Fin** sont les rangs des valeurs qui déterminent les extrémités de la flèche. **Position** est le rang de la valeur qui correspond à la tangente. **Image** est la valeur que l'on peut joindre à la tangente (ordonnée du point de contact).

options	défaut	définition
pos	below	position de la valeur

Il existe une option **pos** qui permet de positionner cette valeur sous la tangente.

7.2 Utilisation des arguments

7.2.1 Palier

La flèche débute pour la valeur initiale 0 donc de rang 1 et se termine pour $+\infty$, valeur de rang 3. La tangente est ici en x = 1 soit la valeur de rang 2.


```
\begin{tikzpicture}
\tkzTab[espcl=6]{$x$/1,$f'(x)$ /1, $f$/3}%
{$\dagger*, $1$, $+\infty$}%
{d, +, \dagger*, +, \dagger*, +, \dagger*, +, \dagger*, +, \dagger*, +, \dagger*, +/ $+\infty$}%
\tkzTabTan{1}{3}{2}{\scriptsize $2$}
\end{tikzpicture}
```

7.2.2 Tangente à l'extrémité d'un intervalle

Dans l'exemple ci-dessous, la flèche débute pour la valeur initiale 0 donc de rang 1 et se termine pour 1, valeur de rang 2. La tangente est ici en x=1 soit la valeur de rang 2. Il faut remarquer que la macro \texttabTan s'applique à la ligne de variations qui la précède.

La valeur 0 de l'image de 1 par f n'est pas indiquée dans \tkzTabVar. Elle serait sous les flèches représentant la tangente, aussi elle est passée comme argument de \tkzTabTan avec l'option pos=below.


```
\begin{tikzpicture}
\tkzTabInit[espcl=6]{\$x\$ /1,\$f'(x)\$/1,\$f\$/2}{\$\\$,\$1\$,\$+\infty\$}%
\tkzTabLine{\t , + , z , - , }%
\tkzTabVar{-/ \$-1\$ , +/ , -/\$-\infty\$ }
\tkzTabTan[pos=below]{1}{2}{2}{\$\\$\\$}
\end{tikzpicture}
```

7.3 Utilisation des options

7.3.1 pos : position de la valeur

7.3.2 Variations imbriquées


```
\begin{tikzpicture}
  \tkzTabInit[espcl=3]
  {$x$
            /1,
   $f''(x)$ /1,
    $f'$ /3,
     $f$
             /3}%
  $\ , \alpha\ , 1\ , \theta\ , \theta\
  \tkzTabLine {d , +, , + , z , - , , - }% \tkzTabVar {-/ $-1$ / , R/ ,+/ , R/ , -/ $-\infty$ }
  \texttt{\tkzTabIma[draw]{1}{3}{2}{\emptyset}}
  \t TabIma[draw]{3}{5}{4}{\emptyset}
  \t TabTan[pos]{1}{3}{3}{$2$}
  \txTabVar\{+/ $+\infty$ , -/ , R/,+/ , -/ $0$ }
  \tkzTabTan[]{1}{2}{2}{$1$}
  \txTabTan[pos=below]{2}{4}{4}{\$2}
\end{tikzpicture}
```

7.4 Définition de tkzTabTanFrom

\tkzTabTan	From[{local o	options)]{Début}{Fin}{Posit	ion}{Image}
			_
arguments	défaut	définition	
Début	no default	rang de l'origine de la flèche	_
Fin	no default	rang de l'extrémité de la flèche	
Position	no default	nom d'un point	
Image	no default	valeur de l'image	
	•	nom d'un point ou d'un node.	
000000000000000000000000000000000000000		on de la valeur	
pos t			

7.5 Le nom est défini par le tableau

Le nom du node qui correspond à α est ici N21 (antécédent de rang 2, premier filet sous la valeur.)

7.6 Le nom est donné par l'utilisateur avec l'option remember


```
\begin{tikzpicture}
\tkzTabInit[ espcl=4]
{ $x$ /1,
$f''(x)$ /1,
  $f'$ /2,
  Signe de f'(x) /2,
  $f$ /3}
{ 0\ , 1\ , \alpha\ , +\
\tkzTabLine \{d,+,\emptyset,-,,-\}%
\tkzTabVar
{-/ $1$
+/
R/
-/ $-\infty$ }%
\text{tkzTabTan[pos,remember=v1]}\{1\}\{2\}\{2\}\{\$2\$\}\%
\text{tkzTabVal[remember=v2]}{2}{4}{0.5}{}{0}
\t x = { ,, +,, z,- }
\tkzTabVar
{-/ \$-\infty\$} ,
R/
+/
-/ $0$
\t xTabImaFrom[]{1}{3}{v1}{0}%
\t xTabImaFrom[]{3}{4}{v2}{}%
\t TabTanFrom[pos=below]{3}{4}{v2}{$1$}
\end{tikzpicture}
```

8 Nombres dérivés : \tkzTabSlope

\+kzTahGlonoJI istol

(tkZ1abS10	pefriscel	
arguments	défaut	définition
Liste	no default	i/eg(i)/ed(i)

i est compris entre 1 et n, n étant le nombre de valeurs de la première ligne. Cette macro permet de personnaliser les signes d'une fonction dérivée en indiquant par exemples des limites, les valeurs d'une dérivée à droite, à gauche. i est le rang de l'antécédent qui correspond à la valeur de la dérivée, eg et ed sont les expressions que l'on veut placer soit à gauche et soit à droite.

8.1 Ajout de nombres dérivés

Étude de la fonction $f: x \longrightarrow \sqrt{x(x-1)^2}$ sur [0; 4]

9 Utilisation des styles

9.1 Définition de \tkzTabSetup

 $Le \ plus \ simple \ est \ d'utiliser \ la \ macro \ \verb|\tkzTabSetup|. Celle-ci \ permet \ de \ modifier \ les \ styles \ principaux.$

\tkzTabSetup[\langle local options\rangle]
--

arguments	défaut	définition
doubledistance	1pt	écart double barre
doublecolor	white	couleur centrale dans la double barre
lw	0.4pt	épaisseur d'un trait
color	black	couleur d'un trait
tstyle	dotted	style des traits verticaux
tcolor	black	couleur des traits verticaux
tanarrowstyle	latex'	style d'une flèche pour une tangente
tanstyle	->	style d'une tangente
tancolor	black	couleur d'une tangente
tanwidth	0.4pt	épaisseur d'une tangente
fromarrowstyle	latex'	style d'une flèche antécédent -> image
fromstyle	->	style antécédent -> image
fromcolor	black	couleur antécédent -> image
fromwidth	0.4pt	épaisseur antécédent -> image
hcolor	gray	couleur d'une zone interdite
hopacity	0.4	transparence de la couleur d'une zone interdite
crosslines	false	booléen true hachure la zone interdite
arrowcolor	black	couleur d'une flèche de variation
arrowstyle	latex'	style d'une flèche de variation
arrowlinewidth	Q.4pt	épaisseur d'une flèche de variation

Cette macro s'utilise dès le début. Les épaisseurs sont en générale donnée en pt, la valeur par défaut est la plus fréquente.

9.1.1 Utilisation de doubledistance et hcolor

x	$-\infty$ $-\sqrt{2}$ -1	$1 \sqrt{2} 2 +\infty$
$x^2 - 3x + 2$	+ + +	0 0 +
$\ln(x^2-1)$	+ 0 -	- 0 + +
E(x)	+ 0 -	+ 0 - 0 +

```
\tkzTabInit[lgt=2,espcl=1]
{\sx\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt\{2\}\sqrt
```

9.1.2 Utilisation de fromcolor et tancolor


```
\begin{tikzpicture}
\tkzTabSetup[fromcolor
                             = red, tancolor
                                                    = blue,,backgroundcolor=fondpaille,%
            color=Maroon]
\tkzTabInit[espcl=4]
                 /1, $f''(x)$
                                  /1, $f'$
                                                /3, $f$
                                                              /4}%
   { $x$
   $Ø$
              , $1$ , $\alpha$,$+\infty$ }%
\tkzTabLine {d
                       z , - ,
                                     , - }%
\tkzTabVar
  {- / $1$
                /, +/
                                 /, R/
                                                 /, - / $-\infty$ /}
\t \t 2{4}{0.5}{}{0}
\tkzTabIma[draw]{2}{4}{3}{$\%$}
\t TabTan[pos]{1}{2}{2}{$2$}
\tkzTabVar
   {- / \$-\infty\$ , R / , + / \$1\$ , - / \$0\$}
 \tkzTabIma[draw]{1}{3}{2}{$\%$}
\end{tikzpicture}
```

9.2 Utilisation de \tikzset pour modifier les styles

Voici la liste des styles qui sont utilisés et leurs définitions.

```
node style
                 style des nodes utilisé pour les valeurs placées dans le tableau
                 valeur située en bas et à gauche d'un trait vertical
low left
                 valeur située en bas et à droite d'un trait vertical
low right
                 valeur située en haut et à gauche d'un trait vertical
hight left
                 valeur située en haut et à droite d'un trait vertical
hight right
                 valeur située en bas d'un trait vertical
low
                 valeur située en haut d'un trait vertical
hight
on double
                 couleur du fond sous une double barre
tan style
                 style pour une tangente
                 style pour les flèches des variations
arrow style
                 style pour la ligne allant d'un antécédent à une image
from style
                 style pour une zone interdite
h style
double style
                 style pour une double barre
                 style pour un trait vertical
t style
```

Les valeurs par défaut utilisées sont les suivantes :

```
\def\tkzTabDefaultWritingColor{black}
\def\tkzTabDefaultBackgroundColor{white}
\def\tkzTabDefaultLineWidth{0.4pt}
\def\tkzTabDefaultArrowStyle{latex'}
\def\tkzTabDefaultSep{2pt}
```

les principaux styles par défaut sont :

```
\tikzset{node style/.style = {inner sep
                                          = \tkzTabDefaultSep,
                              outer sep = \tkzTabDefaultSep,
                              fill
                                             \tkzTabDefaultBackgroundColor}}
\tikzset{tan style/.style
                                          = \tkzTabDefaultArrowStyle,
                           = {>
                               ->,
                                          = \tkzTabDefaultBackgroundColor}}
                              color
\tikzset{arrow style/.style = {\tkzTabDefaultWritingColor,
                              ->,
                              >
                                           = \tkzTabDefaultArrowStyle,
                                           = \tkzTabDefaultSep,
                              shorten >
                                           = \tkzTabDefaultSep}}
                              shorten <
\tikzset{from style/.style
                            = {shorten > = \tkzTabDefaultSep,
                               shorten < = \tkzTabDefaultSep,</pre>
                               line width = \tkzTabDefaultLineWidth,
                               >
                                           = \tkzTabDefaultArrowStyle,
                               ->,
                                           = \tkzTabDefaultWritingColor,
                               draw
                               dotted}}
\tikzset{t style/.style = {style = dotted,
                          draw = \tkzTabDefaultWritingColor}}
\tikzset{h style/.style = {pattern
                                        = north west lines,
                          pattern color = \tkzTabDefaultWritingColor}}
\tikzset{on double/.style = {fill
                                        = \tkzTabDefaultBackgroundColor}}
\tikzset{double style/.append style = {%
        draw
                        = \tkzTabDefaultWritingColor,
        double
                        = \tkzTabDefaultBackgroundColor}}
```

Les couleurs de fond pour les différentes sont définies par les styles :

```
\tikzset{fondC/.style={fill = \tkzTabDefaultBackgroundColor}}
\tikzset{fondL/.style={fill = \tkzTabDefaultBackgroundColor}}
\tikzset{fondT/.style={fill = \tkzTabDefaultBackgroundColor}}
\tikzset{fondV/.style={fill = \tkzTabDefaultBackgroundColor}}
```

Enfin les approches des valeurs par les flèches sont :

```
\tikzset{low left/.style = {above left = \tkzTabDefaultSep}}
\tikzset{low right/.style = {above right = \tkzTabDefaultSep}}
\tikzset{high right/.style = {below right = \tkzTabDefaultSep}}
\tikzset{high left/.style = {below left = \tkzTabDefaultSep}}
\tikzset{low/.style = {above = \tkzTabDefaultSep}}
\tikzset{high/.style = {below = \tkzTabDefaultSep}}
```

9.2.1 Utilisation de \tikzset et h style

х	0]	1 2	2 3	
g(x)	0	+		-	

9.2.2 Utilisation de \tikzset et h style

x	0		1	2		3
g(x)	0	+			_	

9.2.3 Utilisation de \tikzset et arrow style


```
%\newcommand*{\E}{\ensuremath{\mathrm{e}}}
\begin{tikzpicture}

\tikzset{arrow style/.append style = {red,shorten >=6pt,shorten <=6pt}}
\tkzTabInit[espcl=5]{$x$ /1, $\ln x +1$ /1.5, $x \ln x$ /2}%

{$0$, $1/\E$, $+\infty$}%
\tkzTabLine{d,-,z,+,}
\tkzTabVar%
{ D+/ / $0$, %
-/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}}/,%
+/ $+\infty$ / }%
\end{tikzpicture}</pre>
```

9.2.4 Utilisation de \tikzset et \tkzTabSetup

On remarquera la dernière utilisation de \tkzTabSetup qui remet les valeurs par défaut.


```
% \newcommand*{\va}{\colorbox{red!50}}
                                    {\scriptscriptstyle V_a\$}
% \newcommand*{\vb}{\colorbox{blue!50}}
                                   {$\scriptscriptstyle V_b$}}
% \newcommand*{\vc}{\colorbox{gray!50}} {$\scriptscriptstyle V_c$}}
% \newcommand*{\vd}{\colorbox{magenta!50}{$\scriptscriptstyle V_d$}}
% \newcommand*{\ve}{\colorbox{orange!50}} {$\scriptscriptstyle V_e$}}
\begin{tikzpicture}
\tkzTabSetup[fromcolor
                         = red.
          fromstyle
                        = dashed,
          fromwidth
                        = 1pt,
          fromarrowstyle = stealth',
          arrowcolor
                        = green ]
 \label{light} $$ $$ \prod_{i=1}^{s} { x$/.7,$f''(x)$/.7,$f'$/3,$f$/3 } %
           , $d$
                            ,$e$}
                            ,z }
 \tkzTabLine{ z,+
                    ,z,-
 \tkzTabVar {-/\va ,+/\vd
                            , -/ \ve}
 \tikzset{from style/.append style = {draw
                                           = blue}}
 \txTabVar{-/$-\infty$ ,R/ , +/ $+\infty$}
 \tkzTabSetup
 \t TabVal[draw]{1}{3}{0.5}{}{$0$}
 \draw[opacity=0.5,fill=red!40] (vb) circle(2ex);
 \draw[opacity=0.5,fill=blue!40] (vc) circle(2ex);
\end{tikzpicture}
```

10 Personnalisation des tableaux

10.1 help: option commune aux principales macros

10.1.1 help : option de \tkzTabInit

Cette option permet de connaître la structure d'un tableau. deltacl=1 permet d'espacer un peu les points et les labels


```
\begin{tikzpicture}
\tkzTabInit[deltacl=1,espcl=8,help]%
{\$x\$/1,Signe\\ de \dfrac\{1\}\x\$\/1.5\/1.5,Variation\\ de \ln\$/2\}%
{\\$0\$,\$+\infty\$\}%
\end\{tikzpicture\}
```

10.1.2 help : option de \tkzTabLine

Afin de mieux voir les labels il est préférable de pas employer l'option help en même temps sur toutes les macros.

11 Galerie

11.1 Tableaux de signes

L'exemple suivant provient de la documentation de l'excellent tablor.sty.

x	-∞		$\frac{3}{2}$		5	+∞
Signe de -2 + 3		+	0	_		_
Signe de $-x + 5$		+		+	0	_
Signe de $(-2x + 3)(-x + 5)$		+	0	_	0	+

11.2 Variations de fonctions

11.2.1 Variation d'une fonction rationnelle

Cet exemple a été cité dans la documentation du package tabvar

Étude de la fonction $f: x \longmapsto \frac{x^3+2}{2x} \operatorname{sur}] - \infty$; $+\infty$ [

x	$-\infty$ $-\sqrt[3]{2}$) 1 +0	×
f'(x)	_	- 0 +	
f	+\infty 0 \\ -\infty	$+\infty$ $+\infty$ $\frac{3}{2}$	××

```
\begin{tikzpicture}
  \tkzTabInit[]
  {$x$ /1, $f'(x)$ /1,$f$ /3}
  {$-\infty$, $0$, $1$, $+\infty$}
  \tkzTabLine{,-,d,-,z,+,}
  \tkzTabVar{+/$+\infty$, -D+/$-\infty$ / $+\infty$, -/$\frac{3}{2}$, +/$+\infty$}
  \tkzTabVal{1}{2}{0.4}{$ -\sqrt[3]{2}$}{$0$}
  \end{tikzpicture}
```

11.2.2 Variation d'une fonction irrationnelle

Autre exemple cité dans la documentation du package tabvar

Étude de la fonction
$$f: x \longmapsto \sqrt{\frac{x-1}{x+1}} \text{ sur }] - \infty \, ; \, -1[\cup]1 \, ; \, +\infty[$$


```
\begin{tikzpicture}
  \tkzTabInit[]
  {$x$ /1, $f'(x)$ /1,$f$ /3}
  {$-\infty$, $-1$, $1$, $+\infty$}

\tkzTabLine{,+,d,h,d,+, }

\tkzTabSlope{ 3/ /+\infty}

\tkzTabVar{-/$1$, +DH/$+\infty$, -/$\(\)$, +/$1$}

\end{tikzpicture}
```

Un prolongement par continuité pourrait être : f(x) = 0 sur [-1; 1] alors le tableau deviendrait

x	-∞ -	-1	1 +0	0
f'(x)	+	0	+∞ +	
f	+∞	0	0	

```
\begin{tikzpicture}
  \tkzTabInit[]
  {$x$ /1, $f'(x)$ /1,$f$ /3}
  {$-\infty$, $-1$, $1$, $+\infty$}

\tkzTabLine{,+,d,0,d,+, }

\tkzTabSlope{ 3/ /+\infty}

\tkzTabVar{-/$1$, +D-/$+\infty$/$0$, -/$0$, +/$1$}

\end{tikzpicture}
```

11.3 Fonctions trigonométriques

Fonctions trigonométriques

11.3.1 Variation de la fonction tangente

Fonction tangente Étude de la fonction $f: x \mapsto \tan x \operatorname{sur} [0; \pi]$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
Signe de f'(x)		+		+	
Variations de f	0	l	+∞	-∞	0

11.3.2 Variation de la fonction cosinus

Fonction cosinus Étude de la fonction $f: x \longrightarrow \cos x \operatorname{sur} [-\pi; +\pi]$

x	0	$\frac{\pi}{2}$	π
Signe de f'(x)		+	
Variations de f	1	0	-1

11.4 Fonctions paramétrées et trigonométriques

Fonctions paramétrées Fonctions trigonométriques

Étude sur
$$\left[0; \frac{\pi}{2}\right]$$

$$\begin{cases} x(t) = \cos(3t) \\ y(t) = \sin(4t) \end{cases}$$

t	0	$\frac{\pi}{8}$	$\frac{\pi}{3}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
Signe de $x'(t)$	0	$-3\sin\left(\frac{3\pi}{8}\right)$	- 0	+ $3\sin\left(\frac{\pi}{8}\right)$ +	3
Variations de x	1	$\cos\left(\frac{3\pi}{8}\right)$	-1	$-\cos\left(\frac{\pi}{8}\right)$	0
Variations de y	0	1	$\frac{-\sqrt{3}}{2}$	-1	0
Signe de $y'(t)$	4	+ 0	2	- 0 +	4

```
\begin{tikzpicture}
\ttxTabInit[ lgt=3 , espcl=3]\%
  {$t$
                                   /1,
  Signe de\\
                  $x'(t)$
                                   /1.5,
  Variations de\\ $x$
                                   /3,
   Variations de\\ $y$
                                   /3,
                   $y'(t)$
  Signe de\\
                                   /1.5}
           {$\\dagger{\pi}{8}\$
                                              , $\frac{\pi}{3}$ ,
             \frac{3\pi}{8}\ , \frac{\pi}{2}\ }%
\label{line} $$ z , -,-3\simeq \left(\frac{3\pi}{8}\right) , -, z , + ,% $$
 \tkzTabVar { +/$1$ , R/
                          , -/$-1$/ , R/
                                             , +/$@$ }
  \txTabIma{1}{3}{2}{$\cos\eft(\frac{3\pi}{8}\right)}
 \t X TabIma{3}{5}{4}{$-\cos\eft(\frac{\pi c{\pi i}{8}\right)}}
   \tkzTabVar { -/$\dagger{0}$, +/$1$, R/
                                      , -/$-1$ , +/$@$ }
 \t X2TabIma{2}{4}{3}{$\t -\sqrt{3}}{2}$
 \t x = \{4, +, z, -, -2, -, z, +, 4\}
\end{tikzpicture}
```

11.5 Baccalauréat Asie ES 1998

Une petite astuce, en principe **z** est le symbole à mettre dans la liste pour obtenir un zéro centré sur un trait en pointillés. Si on veut que le zéro soit sans le trait , il suffit de remplacer **z** par **Q**. Celui-ci n'est pas un symbole reconnu, il est donc traiter comme une chaîne normale.

Soit f la fonction de variable réelle x, définie sur \mathbf{R} par :

$$f(x) = e^x(e^x + a) + b$$

où a et b sont deux constantes réelles.

Les renseignements connus sur f sont donnés dans le tableau de variation ci-dessous.

x	-∞	0	+∞
Signe de $f'(x)$		0	
Variations de f	-3		

- 1. Calculer f'(x) en fonction de a (f' désigne la fonction dérivée de f).
- 2. a) déterminer a et b en vous aidant des informations contenues dans le tableau ci-dessus.
 - b) Calculer f(0) et calculer la limite de f en $+\infty$.
 - c) Compléter, après l'avoir reproduit, le tableau de variations de *f*.
- 3. Résoudre dans R l'équation

$$e^{x}(e^{x}-2)-3=0$$

(on pourra pose $X = e^x$).

4. Résoudre dans **R** les inéquations :

$$e^x(e^x - 2) - 3 \ge -4$$

$$e^x(e^x - 2) - 3 \le 0$$

(On utilisera le tableau de variations donné ci-dessus et en particulier les informations obtenues en 2.b)

```
Soit f la fonction de variable réelle x, définie sur \mathcal{R} par :
    f(x)=E^x(E^x+a)+b
\]
où $a$ et $b$ sont deux constantes réelles.
Les renseignements connus sur $f$ sont donnés dans le tableau de variation ci-dessous.
\medskip
\begin{center}
  \begin{tikzpicture}
  \label{lgt=3,espcl=4} $$x$/1,Signe de $f'(x)$ /1,Variations de $f$ /2}%
  {\$-\infty\$,\$\emptyset\$,\$+\infty\$}%
  {,, z ,,}%
   {+/
          $-3$
    -/
    +/
                }
  \end{tikzpicture}
\end{center}
\medskip
\begin{enumerate}
    \item Calculer $f'(x)$ en fonction de $a$ ($f'$ désigne la fonction dérivée de $f$).
    \item \begin{enumerate}
           \item déterminer $a$ et $b$ en vous aidant des informations contenues dans le
            tableau ci-dessus.
           \item Calculer $f(0)$ et calculer la limite de $f$ en $+\infty$.
```

Tkz-Tab AlterMundus

\item Compléter, après l'avoir reproduit, le tableau de variations de \$f\$.

```
\end{enumerate}
\item Résoudre dans $\mathbf{R}$ 1'équation
\[
   \E^x(\E^x-2)-3=0\)
\]
(on pourra pose $X=\E^x$).
\item Résoudre dans $\mathbf{R}$ les inéquations :
\[
   \E^x(\E^x-2)-3\geq -4
\]
\[
   \E^x(\E^x-2)-3 \leq 0\]
\]
(On utilisera le tableau de variations donné ci-dessus et en particulier les informations obtenues en 2.b)
\end{enumerate}
```

11.6 Baccalauréat

On considère la fonction f définie sur] $-\infty$; 0[:

$$f(x) = ax + b + \ln(-2x)$$

où a et b sont deux réels donnés.

- 1. Calculer f'(x) en fonction de a et b.
- 2. Le tableau ci-dessous représente les variations d'une fonction particulière f.

x	-∞		$\frac{-1}{2}$		0
Signe de $f'(x)$		+	0	-	
Variations de f			2		•

- a) En utilisant les données du tableau déterminer les valeurs a et b qui caractérisent cette fonction.
- b) Pour cette fonction particulière f, déterminer $\lim_{x \to 0} f(x)$.
- c) Montrer que, dans l'intervalle $\left[\frac{-1}{2}; 0,01\right]$, l'équation f(x)=0 admet une solution unique. En donner une valeur approchée à 10^{-3} près.

```
On considère la fonction $f$ définie sur $]-\infty~;~0[$ :
\[
   f(x)=ax+b+\ln(-2x)
\]
où $a$ et $b$ sont deux réels donnés.
\begin{enumerate}
\item Calculer $f'(x)$ en fonction de $a$ et $b$.
```

\item Le tableau ci-dessous représente les variations d'une fonction particulière \$f\$.

```
\medskip
\begin{center}
 \begin{tikzpicture}
 \tkzTab[]%
 {x$/1.25,Signe de\ \ f'(x)$/1.5, Variations\ de $f$/1.5}%
 { -\inf ty\$, \$dfrac{-1}{2}\$, \$0\$}
 {,+,$0$,-,}%
 {-//,
 +/$2$/,
  -//}
  \end{tikzpicture}
\end{center}
\medskip
\begin{enumerate}
\item En utilisant les données du tableau déterminer les valeurs $a$ et $b$ qui caractérisent
cette fonction.
\item Pour cette fonction particulière $f$, déterminer
        \displaystyle \sum_{x \in \mathbb{Z}} \{x \cdot x \in \mathbb{Z}^{2} \} 
\item Montrer que, dans l'intervalle \beta = \frac{-1}{2}, -0,01Big]$, l'équation f(x)=0$
admet une solution unique. En donner une valeur approchée à 10^{-3} près.
\end{enumerate}
\end{enumerate}
```

11.7 Baccalauréat Guyane ES 1998

C'est cet exemple qui m'a obligé à penser aux commandes du style +V+. Sans doute, voulait-on ne pas influencer les élèves avec la vision d'une double barre (trop souvent associée à la présence d'une asymptote).

Le sujet:

On considère une fonction f de la variable x, dont on donne le tableau de variations :

x	-∞	$\frac{-1}{2}$		1	+∞
Signe de $f'(x)$	_	0	+	-	
Variations de <i>f</i>	1	$\frac{-1}{3}$	+	∞ +∞	1

On appelle (C) la courbe représentative de f dans un repère Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ (unités graphiques 2 cm sur chaque axe)

Première partie

En interprétant le tableau donné ci-dessus :

- 1. Préciser l'ensemble de définition de *f*.
- 2. Placer dans le repère $(O; \vec{i}; \vec{j})$:

- a) l'asymptote horizontale (D);
- b) l'asymptote verticale (D');
- c) le point *A* où la tangente à (C) est horizontale.

Seconde partie

On donne maintenant l'expression de f:

$$f(x) = 1 + \frac{4}{(x-1)} + \frac{3}{(x-1)^2}$$

1. Résoudre les équations f(x) = 0 et f(x) = 1.

\item Résoudre les équations f(x)=0 et f(x)=1.

2. Au moyen de votre calculatrice, remplir le tableau suivant (recopier ce tableau sur votre copie).

x	-1	-0,75	0,5	2	3	4
f(x)						

On considère une fonction \$f\$ de la variable \$x\$, dont on donne le tableau de variations : \begin{center} \begin{tikzpicture} \tkzTab[]% ${x$/1.25,Signe de\ \ f'(x)$/1.5, Variations\ de f/2.5}$ ${ -\frac{-1}{2}, 1, $+\inf y}$ {,-,\$0\$,+, ,-,} +/ \$1\$, $-/\$ dfrac {-1}{3}$$, $+V+/ $+ \inf y$ /$+ \inf y$, <math>-/\$1$$ } \end{tikzpicture} \end{center} \vspace{6pt} On appelle (C) la courbe représentative de \$f\$ dans un repère. Le plan est muni d'un repère% orthonormal \$(0;\vec{\imath};\vec{\jmath})\$ (unités graphiques 2 cm sur chaque axe)% \textbf{Première partie} En interprétant le tableau donné ci-dessus :% \begin{enumerate} \item Préciser l'ensemble de définition de \$f\$. \begin{enumerate} \item l'asymptote horizontale (D); \item l'asymptote verticale (D'); \item le point \$A\$ où la tangente à (C) est horizontale. \end{enumerate} \end{enumerate} \textbf{Seconde partie} On donne maintenant l'expression de \$f\$: $f(x)=1 + \frac{4}{(x-1)}$ $+ \frac{3}{(x-1)^2}$ \begin{enumerate}

11.8 Exemple relatif à une question: problème de virgule

Il suffit pour régler ce genre de problème d'utiliser le package numprint. La macro \np permet d'afficher correctement 1,5.

\usepackage[french]{babel}
\usepackage[np]{numprint}

x	$-\infty$ $+\infty$	
<i>x</i> –1,5		

```
\begin{tikzpicture}[scale=1]
\tkzTabInit[lgt=6,espcl=7]
{$x$/0.75,

$x\np{-1.5}$/0.75}
{$-\infty$,$+\infty$}
\end{tikzpicture}
```

11.9 Quelques tableaux classiques

Tableau 1 (ln):


```
\begin{tikzpicture}
\tkzTabInit[espcl=6] {\$x\$/1,\$\ln(x)\$/2} {\$\$,\$+\infty\$}
\tkzTabLine{d,+,}
\tkzTabVar{D-/\$-\infty\$,+/\$+\infty\$,}
\tkzTabVal{1}{2}{\0.4}{1}{\0}
\tkzTabVal{1}{2}{\0.67}{\$\E\$}{1}
\end{tikzpicture}
```

Tableau 2 (racine):


```
\label{likelike} $$ \left[ \frac{1}{2x}, -\frac{1}{x} \right] = \left[ \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \frac{x}{2} \right] $$ \left[ \frac{1}{2x}, \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \frac{x}{2} \right] $$ \left[ \frac{1}{2x}, \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \frac{x}{2} \right] $$ \left[ \frac{x}{2}, \frac{x}
```

Tableau 3 (inverse):


```
\begin{tikzpicture} $$ \left[ \frac{1}{x^2}, -\frac{1}{x^2}, \frac{1}{x^2} \right] \\ x^2}, x^2},
```

Tableau 4 (
$$f(x) = \frac{x^2 + 4}{x}$$
):


```
\begin{tikzpicture} $$ \left(x^{1},f'(x)\right)/1,\left(f(x)\right)/2\right(-\inf_{x\in\mathbb{N}},\left(-2\right),\left(0\right),2,\left(+\inf_{x\in\mathbb{N}}\right) $$ \tkzTabLine{,+,z,-,d,-,z,+,} $$ \tkzTabVar{-/(-\inf_{x\in\mathbb{N}},+/-4,-D+/$-\inf_{x\in\mathbb{N}},-/4,+/(+\inf_{x\in\mathbb{N}})} $$ \end{tikzpicture}
```

Tableau 5 (cos):


```
\begin{tikzpicture}
\tkzTabInit{$x$/1,$-\sin(x)$/1,$\cos(x)$/2}{$\\0,$\pi$,$2\pi$}
\tkzTabLine{z,-,z,+,z}
\tkzTabVar{+/$1$,-/$-1$,+/$1$}
\tkzTabVal{1}{2}{\\0.5}{$\dfrac{\pi}{2}$}{\\0}
\tkzTabVal{2}{3}{\\0.5}{$\dfrac{3\pi}{2}$}{\\0}
\end{tikzpicture}
```

11.10 Utilisation de la macro \par

Et bien c'est impossible. La meilleure solution est d'utiliser la macro \parbox sinon l'emploi de \endgraf définit par \let\endgraf = \par peut faire l'affaire.

x	0	1
f(x)	u(x) $v(x)$	

```
\begin{tikzpicture} \\ \tkzTabInit {$x$ / 1 ,$f(x)$ /1}% \\ {$0$,$1$} \\ \tkzTabLine{,\\parbox{3cm}{$u(x)$\\ $v(x)$},} \\ \end{tikzpicture}
```

11.11 Exemple utilisant l'option help


```
\begin{tikzpicture}
\tikzset{arrow style/.style = {black,
>->
          = latex',thick ,
shorten > = 5pt,
shorten < = 5pt}}
\tkzTabInit[color, colorT = red!20, colorC = yellow!20,
colorL = cyan!40, colorV = lightgray!20, espcl=3]
     {\$x\$ /1, \$f'\\$ /1,\$f\\$ /2, \$f\$ /2}
     { -\inf y } , $\emptyset , +\inf y }
\t \
\label{limit} $$ \text{TabVar}_{+/$+\infty} \ , \ -/$-2$ \ , \ +/$+\infty$}
\tkzTabVal[draw]{1}{2}{.6}{$x_1$}{$\%}
\tkzTabVal[draw]{2}{3}{.4}{$x_2$}{$0$}
\begin{scope}[>->,line width=1pt,>=stealth]
\draw ([above=6pt]N14) to [bend left=45] ([left=1pt]N);
\draw ([right=3pt]N) to [bend left=45] ([above=6pt]N24) ;
\draw ([above right=6pt]N24)to [bend right=40] ([below left=6pt]N33);
\end{scope}
\end{tikzpicture}
```

11.12 Exemple modifiant la largeur d'une colonne

Cette modification n'est pas prévue. Une astuce consiste à intoduire des colonnes vides.


```
\begin{tikzpicture}
   \tikzset{t style/.style = {style = densely dashed}}
   \tkzTabInit[lgt=4, espcl = 1.2, lw = 0.5pt, deltacl=0]
   { / 0.7 , $x(x^2-5x+4)$ / 1}{ ,$0$, $1$, ,$4$,}
   \tkzTabLine{,-,t,+,t,,-,t, +,}
   \draw[fill=black] (N21) circle(2pt);
   \draw[fill=black] (N31) circle(2pt);
   \draw[fill=black] (N51) circle(2pt);
   \draw[fill=black] (N51) circle(2pt);
   \draw[->=stealth, line width=1.5pt] (N11) -> (N61.east) node[right=2pt] {$x$};
   \end{tikzpicture}
```

```
Index
Baccalauréat, 56, 58, 59
\E, 5
Functions
    Fonction cosinus, 55
    Fonction tangente, 54
    Fonctions paramétrées, 36, 55
    Fonctions trigonométriques, 54,55
\genfrac, 12
hachures, 11
nombres dérivés, 44
np{4,5},4,8
\displaystyle \sum_{4,5}, 4, 8
Package
    amsmath, 6
    numprint, 4, 8
prolongement par continuité, 25
\signe, 25
Tableau minimum, 5
\tikzset, 47, 49, 50
\tkzTab, 27
\tkzTab: arguments
    liste1,27
    liste2,27
    liste3,27
    liste4, 27
\text{\tkzTabIma}, 34
\tkzTabIma: arguments
    Début, 34
    Fin, 34
    Image, 34
    Position, 34
\tkzTabIma: options
    draw, 34
    remember, 34
\tkzTabImaFrom, 33, 35, 37
\tkzTabImaFrom: arguments
    Début, 37
    Fin, 37
    From, 37
    Image, 37
\tkzTabImaFrom: options
    draw, 37, 38
    remember, 37, 39
\tkzTabImaFrom[\langlelocal options\rangle] {D\(\delta\) | Fin\{From\{Image\}, 37
```

 $\label{local options} $$ \times {\rm Cocal options} \ {\rm Cocal opt$

Index 69

```
\tkzTabInit, 8, 27
\t X
\tkzTabinit: arguments
    liste1, 4
    liste2, 4
\tkzTabInit: options
    color, 6
    deltacl, 6
    espcl, 6
    \mathtt{help}, 7
    lgt,6
    lw, 6
    nocadre, 6
\tkzTabinit: options
    {\tt colorC,4}
    colorL, 4
    {\tt colorT,4}
    colorV, 4
    {\tt color}, 4
    deltacl, 4
    {\tt espcl}, 4
    help, 4
    lgt, 4
    {\tt lw}, 4
    nocadre, 4
\txTabinit[(local options)]{(e(1)/h(1),...,e(p)/h(p))}{(a(1),...,a(n))}, 4
\text{\txzTabLine}, 8, 9, 27
\tkzTabLine: arguments
    +,8
     -, 8
    \textvisiblespace, 8
    d, 8
    h, 8
    t,8
    z, 8
\tkzTabLine: options
    help, 8, 11
    style,8
\tkzTabLine: styles
    h style, 11
    t style, 10
\text{tkzTabLine}[\langle \text{local options} \rangle] \{\langle \text{s(1)}, \dots, \text{s(2n-1)} \rangle\}, 8
\tkzTabSetup, 46, 50
\tkzTabSetup: arguments
    arrowcolor, 46
    arrowlinewidth, 46
    arrowstyle, 46
    color, 46
    crosslines, 46
    doublecolor, 46
    {\tt double distance,}\, 46
    fromarrowstyle, 46
    {\tt fromcolor} \ {\tt ,} \, 46
```

Index 70

```
fromstyle, 46
    {\tt fromwidth}\ {\tt ,46}
    {\tt hcolor} , 46
    hopacity, 46
    lw, 46
    tanarrowstyle, 46
    tancolor, 46
    tanstyle, 46
    tanwidth, 46
    tcolor, 46
    tstyle, 46
\tkzTabSetup[\langlelocal options\rangle], 46
\tkzTabSlope{Liste}, 44
\tkzTabSlope, 44
\tkzTabSlope: arguments
    Liste, 44
\tkzTabTan, 39, 40
\tkzTabTan: arguments
    Début, 39
    Fin, 39
    Image, 39
    Position, 39
\tkzTabTan: options
    pos, 39, 42
\tkzTabTanFrom, 42
\tkzTabTanFrom: arguments
    Début, 42
    Fin, 42
    Image, 42
    Position, 42
\t TabTanFrom[(local options)]{Début}{Fin}{Position}{Image}, 42
\t TabTan[(local options)]{Début}{Fin}{Position}{Image}, 39
\tkzTabVal, 29, 37
\tkzTabVal: arguments
    Antécédent, 29
    Début, 29
    Fin, 29
    Image, 29
    Position, 29
\tkzTabVal: options
    draw, 29, 31, 32, 35
    remember, 29, 33
\t TabVal[(local options)] {Début}{Fin}{Position}{Antécédent}{Image}, 29
\tkzTabVar, 13, 14, 27, 29, 40
\tkzTabVar: arguments
    +C, 14
    +CD+, 14
    +CD-, 14
    +CH, 14
    +D+, 14
    +D-, 14
    +DC+, 14
    +DC-, 14
```

Index 71

```
+DH, 14
     +D , 14
     +H, 14
     +V+, 14
     +V-, 14
     + ,14
     −C, 14
     -CD+, 14
     -CD-, 14
     −CH, 14
     -D+, 14
     -D-, 14
     -DC+, 14
     -DC-, 14
     −DH, 14
     -D , 14
     −H, 14
     -V+, 14
     -V-, 14
     - , 14
      D+ , 14
      D{\hspace{-0.1em}-\hspace{0.1em}} , 14
      R , 14
\tkzTabVar: options
     {\tt color}, 15
     help, 15, 21
\tkzTabVar: styles
     arrow, 22
     {\tt h \ style, 21}
     node style, 23
\tkzTabvar: styles
     h style, 21
\texttt{\tkzTabVar[\langle local options \rangle] \{\langle el(1), ..., el(n) \rangle\}, 13}
\label{local options} $$ \time 1 \ \langle liste1\rangle = (liste2) {\langle liste3\rangle } {\langle liste4\rangle }, 27 $$
valeurs interdites, 10
zone interdite, 11, 25
```