SEQUENCE LISTING

<110>	Hanna, Michelle
<120>	Molecular Detection Systems Utilizing Reiterative Oligonucleotide Synthesis
<130>	2072.0010000
<140>	US 09/984,664
<141>	2001-10-30
<160>	17
<170>	PatentIn version 3.0
<210>	1
<211>	30
<212>	DNA
<213>	Artificial
<220>	
<223>	methylated DNA template
<220>	
<221>	misc_feature
<222>	(2)(2)
<223>	methylation
<220>	
<221>	misc_feature
<222>	(10)(10)

<223> methylation

30

```
<220>
 <221> misc_feature
  <222> (26)..(26)
  <223> methylation
  <400> 1
  ccgcccaaac gggtccggag cgactcgtca
  <210> 2
<211>
        30
  <212> DNA
 <213> Artificial
 <220>
 <223> deaminated methylated DNA
 <220>
 <221> misc_feature
 <222> (1)..(1)
  <223> n is uracil
 <220>
 <221> misc_feature
  <222> (4)..(6)
  <223> n is uracil
 <220>
 <221> misc_feature
 <222> (15)..(16)
  <223> n is uracil
  <220>
```

<221> misc_feature

```
<222> (21)..(21)
```

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

<220>

<221> misc feature

<222> (29)..(29)

<223> n is uracil

<400> 2 ncgnnnaaac gggtnnggaa ngantcgtna

<210> 3

<211> 30

<212> DNA

<213> Artificial

<220>

<223> deaminated unmethylated DNA

<220>

<221> misc_feature

<222> (1)..(2)

<223> n is uracil

<220>

<221> misc_feature

<222> (4)..(6)

<223> n is uracil

30

-4-

```
<220>
```

<221> misc_feature

<222> (10)..(10)

<223> n is uracil

<220>

<221> misc_feature

<222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (21)..(21)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

<220>

<221> misc_feature

<222> (26)..(26)

<223> n is uracil

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> 3

- <210>
- <211> 30
- <212> DNA
- <213> Artificial
- <220>
- <223> deaminated methylated DNA
- <220>
- <221> misc_feature
- <222> (1)..(1)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (2)..(2)
- <223> methylation
- <220>
- <221> misc_feature
- <222> (4)..(6)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (10)..(10)
- <223> methylation
- <220>
- <221> misc_feature
- <222> (15)..(16)

<223> n is uracil <220> <221> misc_feature <222> (24)..(24) <223> n is uracil <220> <221> misc_feature <222> (26)..(26) <223> n is uracil $\tilde{}$ <220> <221> misc_feature <222> (26)..(26) <223> methylation <220> <221> misc_feature <222> (29)..(29) <223> n is uracil <400> 4 ncgnnnaaac gggtnnggaa cgantngtna <210> 5 <211> 30 <212> DNA

<213> Artificial

<220>

30 <223> deaminated unmethylated DNA

- <220>
- <221> misc_feature
- <222> (1)..(2)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (4)..(6)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (10)..(10)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (15)..(16)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (21)..(21)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (24)..(24)
- <223> n is uracil
- <220>

```
<221> misc_feature
```

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> 5, nngnnnaagn gggtnnggaa ngantngtna

<210> 6

<211> 30

<212> DNA

<213> Artificial

<220>

<223> deaminated target DNA

<220>

<221> misc_feature

<222> (1)..(1)

<223> n is uracil

<220>

<221> misc_feature

<222> (1)..(1)

<223> methylation

<220>

<221> misc_feature

<222> (4)..(6)

30

<223> n is uracil

<220>

<221> misc_feature

<222> (9)..(9)

<223> methylation

<220>

<221> misc_feature

<222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (21)..(21)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

<220>

<221> misc_feature

<222> (25)..(25)

<223> methylation

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> ncgnnn	6 aaac gggtnnggag ngantcgtna	30
<210>	7	
<211>	23	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	target site probe	
<220>		
<221>	misc_feature	
<222>	(10)(23)	
<223>	n is any nucleotide of a, g, t or c	
<220>		
<221>	misc_feature	
<222>	(10)(23)	
<223>	nucleotide residues may be between 8 and 14 n's in length	
<400> taacga	7 atcn nnnnnnnnn nnn	23
<210>	8	
<211>	10	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	target site probe	
<400> gtttaa	8 acqa	10
-		
<210>	9	

<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	template strand	
<400> cttcta	9 tagt gtcacctaaa t	21
<210>	10	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	nontemplate strand	
<400> atttag	10 gtga cactatagaa g	21
<210>		
<211>	12	
<212>	DNA	
<213>	Artificial	
<220>		
	telomerase capture probe	
<400>	11	
	gggt ta	12
<210>	12	
<211>	30	
<212>	DNA	
<213\	Artificial	

```
<220>
<223> telomerase capture probe
<400> 12
gggttagggt tagggttagg gttagggtta
                                                                    30
<210> 13
<211> 24
<212> DNA
<213> Artificial
<220>
<223> telomerase capture probe
<400> 13
gggttagggt tagggttagg gtta
                                                                    24
<210> 14
<211> 24
<212> DNA
<213> Artificial
<220>
<223> complementary probe
<220>
<221> misc feature
<222> (1)..(1)
<223> n is uracil
<220>
<221> misc_feature
<222> (7)..(7)
<223> n is uracil
```

<220>

<221> misc_feature	
<222> (13)(13)	
<223> n is uracil	
<220>	
<221> misc_feature	
<222> (19)(19)	
<223> n is uracil	
<400> 14 naacccnaac ccnaacccna accc	24
nadocinado condecena dece	2.3
<210> 15	
<211> 3621	
<212> DNA	
<213> Homo sapiens	
<400> 15 atatactggg tctacaaggt ttaagtcaac cagggattga aatataa	ctt ttaaacagag 60
ctggattatc cagtaggcag attaagcatg tgcttaaggc atcagca	aag totgagcaat 120
ccatttttta aaacgtagta catgtttttg ataagcttaa aaagtag	tag tcacaggaaa 180
aattagaact tttacctcct tgcgcttgtt atactcttta gtgctgt	tta acttttcttt 240
gtaagtgagg gtggtggagg gtgcccataa tcttttcagg gagtaag	ttc ttcttggtct 300
ttctttcttt ctttcttct tttttcttg agaccaagtt tcgctct	tgt ctcccaggct 360
ggagtgcaat ggcgcgatct cggctcactg caacctccgc cttctcc	tgg gttcaagcga 420
ttctcctaca tcagcctccg agtagctggg attacaggca tgcgcca	cca agccccgcta 480
attttgtatt ttttagtaga gacagggttt cgccatgttg gtcaggc	ttg tctcgaactc 540
ctggcctcag gtgatccgcc tgtctcggcc tcccagaatg ctgggat	tat agacgtgagc 600
caccgcatcc ggactttcct tttatgtaat agtgataatt ctatcca	aag cattttttt 660
tttttttgag tcggagtctc attctgtcac ccaggctgga gggtggt	ggc gcgatctcgg 720
cttactgcaa cctctgcctc ccgggttcaa gcgattctcc tgcctca	gcc tcctgagtag 780
ctggaattac acacgtgcgc caccatggcc agctaatttt tgtattt	tta gtagagacgg 840
ggtgtcacca ttttggccaa gctggcctcg aactcctgac ctcaggt	gat ctgcccgcct 900

cggcttccca	aagtgctggg	attacaggtg	tgagccaccg	cgtcctgctc	caaagcattt	960
tctttctatg	cctcaaaaca	agattgcaag	ccagtcctca	aagcggataa	ttcaagagct	1020
aacaggtatt	agcttaggat	gtgtggcact	gttcttaagg	cttatatgta	ttaatacatc	1080
atttaaactc	acaacaaccc	ctataaagca	gggggcactc	atattccctt	cccctttat	1140
aattacgaaa	aatgcaaggt	attttcagta	ggaaagagaa	atgtgagaag	tgtgaaggag	1200
acaggacagt	atttgaagct	ggtctttgga	tcactgtgca	actctgcttc	tagaacactg	1260
agcacttttt	ctggtctagg	aattatgact	ttgagaatgg	agtccgtcct	tccaatgact	1320
ccctccccat	tttcctatct	gcctacaggc	agaattctcc	cccgtccgta	ttaaataaac	1380
ctcatctttt	cagagtctgc	tcttatacca	ggcaatgtac	acgtctgaga	aacccttgcc	1440
ccagacagcc	gttttacacg	caggagggga	aggggagggg	aaggagagag	cagtccgact	1500
ctccaaaagg	aatcctttga	actagggttt	ctgacttagt	gaaccccgcg	ctcctgaaaa	1560
tcaagggttg	agggggtagg	gggacacttt	ctagtcgtac	aggtgatttc	gattctcggt	1620
ggggctctca	caactaggaa	agaatagttt	tgctttttct	tatgattaaa	agaagaagcc	1680
atactttccc	tatgacacca	aacaccccga	ttcaatttgg	cagttaggaa	ggttgtatcg	1740
cggaggaagg	aaacggggcg	ggggcggatt	tctttttaac	agagtgaacg	cactcaaaca	1800
cgcctttgct	ggcaggcggg	ggagcgcggc	tgggagcagg	gaggccggag	ggcggtgtgg	1860
ggggcaggtg	gggaggagcc	cagtcctcct	tccttgccaa	cgctggctct	ggcgagggct	1920
gcttccggct	ggtgcccccg	ggggagaccc	aacctggggc	gacttcaggg	gtgccacatt	1980
cgctaagtgc	tcggagttaa	tagcacctcc	tccgagcact	cgctcacggc	gtccccttgc	2040
ctggaaagat	accgcggtcc	ctccagagga	tttgagggac	agggtcggag	ggggctcttc	2100
cgccagcacc	ggaggaagaa	agaggagggg	ctggctggtc	accagagggt	ggggcggacc	2160
gcgtgcgctc	ggcggctgcg	gagagggga	gagcaggcag	cgggcggcgg	ggagcagcat	2220
ggagccggcg	gcggggagca	gcatggagcc	ttcggctgac	tggctggcca	cggccgcggc	2280
ccggggtcgg	gtagaggagg	tgcgggcgct	gctggaggcg	ggggcgctgc	ccaacgcacc	2340
gaatagttac	ggtcggaggc	cgatccaggt	gggtagaggg	tctgcagcgg	gagcagggga	2400
tggcgggcga	ctctggagga	cgaagtttgc	aggggaattg	gaatcaggta	gcgcttcgat	2460
tctccggaaa	aaggggaggc	ttcctgggga	gttttcagaa	ggggtttgta	atcacagacc	2520
tcctcctggc	gacgccctgg	gggcttggga	agccaaggaa	gaggaatgag	gagccacgcg	2580
cgtacagatc	tctcgaatgc	tgagaagatc	tgaagggggg	aacatatttg	tattagatgg	2640
aagtatgctc	tttatcagat	acaaaattta	cgaacgtttg	ggataaaaag	ggagtcttaa	2700
a. gaaatgtaa	gatgtgctgg	gactacttag	cctccaattc	acagatacct	ggatggagct	2760

tatctttctt	actaggaggg	attatcagtg	gaaatctgtg	gtgtatgttg	gaataaatat	2820
cgaatataaa	ttttgatcga	aattattcag	aagcggccgg	gcgcggtgcc	tcacgccttg	2880
taatcccttc	actttgggag	atcaaggcgg	ggggaatcac	ctgaggtcgg	gagttcgaga	2940
ccagcctggc	caacaggtga	aacctcgcct	ctactaaaaa	tacaaaaagt	agccgggggt	3000
ggtggcaggc	gcctgtaatc	ccagctactc	gggaggttga	ggcaggagaa	tcgcttgaac	3060
ccgggaggct	gaggttgtag	tgaacagcga	gatggagcca	cttcactcca	gcctgggtga	3120
cagagtgaga	ctttgtcgaa	agaaagaaag	agagaaagag	agagagaaaa	attattcaga	3180
agcaactaca	tattgtgttt	atttttaact	gagtagggca	aataaatata	tgtttgctgt	3240
aggaacttag	gaaataatga	gccacattca	tgtgatcatt	ccagaggtaa	tatgtagtta	3300
ccattttggg	aatatctgct	aacatttttg	ctcttttact	atctttagct	tacttgatat	3360
agtttatttg	tgataagagt	tttcaattcc	tcatttttga	acagaggtgt	ttctcctctc	3420
cctactcctg	ttttgtgagg	gagttagggg	aggatttaaa	agtaattaat	acatgggtaa	3480
cttagcatct	ctaaaatttt	gccaacagct	tgaacccggg	agtttggctt	tgtagtccta	3540
caatatctta	gaagagacct	tatttgttta	aaaacaaaaa	ggaaaaagaa	aagtggatag	3600
ttttgacaat	ttttaatgga	g				3621

<210> 16

<211> 64

<212> DNA

<213> Artificial

<220>

<223> capture probe

<400> 16 atatactggg tctacaaggt ttaagtcaac cagggattga aatataactt ttaaacagag 60 ctgg 64

<210> 17

<211> 30

<212> DNA

<213> Artificial

<223> unmethylated DNA template <400> 17 ccgcccaaac gggtccggag cgactcgtca

30