

Increasing productivity amid stable nutrient regimes in Rhode Island Lakes and Reservoirs

NALMS 2019 Burlington VT

Jeff Hollister, Q Kellogg, Betty Kreakie, Stephen Shivers, Elizabeth Herron, Linda Green, Bryan Milstead, and Art Gold

Background

What drives changes in lake productivity?

- Nutrients
- Temperature

Paerl et al. 2016. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environ. Sci. Tehnol. 50:20. https://doi.org/10.1021/acs.est.6b02575

What drives changes in lake productivity?

- Nutrients
- Temperature

The management problem

- Desire to reduce and manage nutrient pollution
- Phosphorus Bans
- Nutrient Criteria
- Enacted piecemeal over last ~20 years
- Do the data show any change?

Image credit: http://www.pca.state.mn.us/

Image credit: Elizabeth Herron

Stasis in Northeast

 Oliver et al (2017) Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990. Global Change Biology. DOI: 10.1111/gcb.13810

But change at other scales

- Mathews et al (2018) Is Vermont losing its oligotrophic lakes?. LakeLine. 38-2.
- Rhode Island?

Figure 2. Linear mixed effects model showing the predicted changes in spring TP for individual lakes (solid colored lines, red = eutrophic, green = mesotrophic, blue = oligotrophic), and the overall predicted change in spring TP for each trophic category (solid black lines). Horizontal colored lines represent cut-offs between eutrophic and mesotrophic category (green), and between mesotrophic and oligotrophic category (blue).

Research Questions

- What about changes in Rhode Island lakes and reservoirs?
- What analysis will highlight changes from long term datasets?

Data

URI Watershed Watch

- Volunteer monitoring program
- Started in 1988 with 14 lakes
- Now
 - ~400 volunteers
 - 250+ sites
 - 120+ waterbodies
- Rigorous QA/QC
- Data used by RI DEM and US EPA

URI Watershed Watch: Lake Sampling

- May to October
- Weekly
 - Water Clarity
 - Temperature
- Every Other Week
 - Chlorophyll
 - Dissolved Oxygen
- 3 Times per Season
 - Nutrients
 - Alkalinity
 - pH
 - Bacteria

LAGOSNE: LAke multi-scaled GeOSpatial and temporal database

- Soranno et al (2017). LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. Gigascience, 6(12)
- Stachelek and Oliver (2017). LAGOSNE: Interface to the lake multi-scaled geospatial and temporal database. R package version 1.1.0. https://cran.r-project.org/package=LAGOSNE

• 17 States:

- CT, IL, IN, IA, ME, MA, MI, MN, MO, NH, NJ, NY, OH, PA, RI, VT, WI
- ~ 50,000 Lakes

Data preparation and analysis

URI Watershed Watch: Filtered for Trend Analysis

- Parameters:
 - Total Nitrogen, Total Phosphorus, N:P, Temperature, Chlorophyll
- Years:
 - 1993 to 2016
- Months:
 - May through October
- Depths:
 - <= 2 meters
- Sites:
 - At least 10 years of data
- Total of 69 Sites

LAGOSNE: Filtered for Trend Analysis

- Parameters: Total Nitrogen, Total Phosphorus, N:P,
 Chlorophyll
 - Temperature data not currently available
- Years: 1993 to 2016
- Months: May through October
- Depths: <= 2 meters
- Sites: At least 10 years of data
- Total of 1482 Sites

Analysis: Site-specific z-scores and yearly trends

- Similar to temperature anomalies used to look at global temperature change
- Calculate average yearly z-score
- Look for monotonic yearly trend
 - Slope of regression line

Results

Results: Nitrogen trends

- RI: Increasing but driven by low years in 1993 and 1994
 - Without those years slope = 0.01 and p-value = 0.06
- LAGOSNE: Static

Results: Phosphorus trends

• RI: Static

LAGOSNE: Static

Results: N:P trends

• RI: Static

• LAGOSNE: Static

Results: Chlorophyll trends

RI: Increasing

• LAGOSNE: Static

Results: Temperature trends

• RI: Increasing

• LAGOSNE: NA

Conclusions

Conclusions

In Rhode Island

- More chlorophyll
- More heat
- Nutrients not changing much

Within the Northeast

- Stasis
 - Our results concur with Oliver et al. (2017)

URI Watershed Watch

Volunteer monitoring data is indispensable for long-term monitoring

Thank you and Questions

Jeff Hollister

hollister.jeff@epa.gov 401 782 9655 @jhollist

