Логика и алгоритмы

Задачи семинаров 4-5

ТЕОРЕМА 0.1 (Цермело). Для любого множества X существует отношение $<\subset X \times X$, которое является полным порядком на X.

ТЕОРЕМА 0.2 (лемма Цорна). Пусть (P, <) — частично упорядоченное множество, в котором всякая цепь имеет верхнюю грань. Тогда (P, <) содержит максимальный элемент.

- 1. Докажите, что всякое бесконечное множество имеет счетное подмножество.
- 2. Докажите, что если A бесконечное множество, B не более чем счетное (т.е. конечное или счетное) множество, то $A \cup B \sim A$.
- 3. Выведите аксиому выбора из леммы Цорна и из теоремы Цермело (в теории множеств Цермело-Френкеля без аксиомы выбора).
- 4. С помощью леммы Цорна докажите, что всякая цепь в частично упорядоченном множестве содержится в максимальной (по включению).
- 5. Докажите, что любой частичный порядок на множестве X можно продолжить до линейного. (Отношение R_2 продолжает R_1 , если $R_1 \subset R_2$.)
- 6. Докажите теорему Гамеля о том, что в любом векторном пространстве существует базис.
- 7. Проверьте, что все базисы имеют одинаковую мощность.
- 8. Какую мощность будет иметь базис в случае векторного пространства \mathbb{R} над полем \mathbb{Q} ?
- 9. Докажите, что существует функция $f: \mathbb{R} \to \mathbb{R}$ отличная от линейной и удовлетворяющая тождеству f(x+y) = f(x) + f(y) для всех $x, y \in \mathbb{R}$. Может ли такая функция иметь предел в точке x = 0?
- 10. Докажите, что между \mathbb{R} и \mathbb{C} существует биекция, сохраняющая операцию сложения, то есть аддитивные группы (\mathbb{C} , +) и (\mathbb{R} , +) изоморфны. (Вместо \mathbb{C} можно взять аддитивную группу n-мерного векторного пространства \mathbb{R}^n .)
- 11. Докажите, что существует подмножество \mathbb{R}^2 , которое пересекается с каждой прямой на плоскости ровно по двум точкам.

Onp X Korento, even Dedekund; X Komenno, ecim 7 = y = x x ~ y JUEN X~n D-KOKELHOGED X Koherio =>xD-Koherio → => => =× ×~y IN ~ Nufaq y=x\{b} ~x

$$(10,11)$$
 \times , y $(0,1)$ \times , y $(0,1)$ \times , y $(0,1)$ \times $(0,1)$ \times

$$\sum_{n} k_{n} = \sum_{n} \sum_{n} k_{n}$$

$$\sim n + 1 = \{0, ..., n\}$$

$$a_{n+1} = \min \left(\frac{2}{2} \setminus \{a_0, ..., a_n\} \right)$$

$$\begin{cases} f(0) = \min 2 \\ f(n) = \min (2 \setminus f[n]) \end{cases}$$

$$f: N \rightarrow Z$$

$$\begin{cases} f(0) = \min Z \\ f(n) = \min (Z \setminus f[n]) \end{cases} \qquad \begin{cases} f(n) = \min Z \\ f(n) = \min Z \end{cases}$$

$$\begin{cases} f(n) = \min Z \\ f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) =$$

$$q = q(n)$$

$$q(x) \qquad q \neq 0, \text{ het min}$$

$$q(x) \qquad q \neq 0, \text{ het min}$$

$$q(x) \qquad q(x) \qquad q(x$$

METOR 4 NJ

Qo EX

anti

Onp X Korento, even Dedekund; X Komenno, ecim 7 = y = x x ~ y JUEN X~n D-KOKELHOGED X Koherio =>xD-Koherio → => => =× ×~y IN ~ Nufaq y=x\{b} ~x

$$(10,11)$$
 \times , y $(0,1)$ \times , y $(0,1)$ \times , y $(0,1)$ \times $(0,1)$ \times

$$\sum_{n} k_{n} = \sum_{n} \sum_{n} k_{n}$$

$$\sim n + 1 = \{0, ..., n\}$$

$$a_{n+1} = \min \left(\frac{2}{2} \setminus \{a_0, ..., a_n\} \right)$$

$$\begin{cases} f(0) = \min 2 \\ f(n) = \min (2 \setminus f[n]) \end{cases}$$

$$f: N \rightarrow Z$$

$$\begin{cases} f(0) = \min Z \\ f(n) = \min (Z \setminus f[n]) \end{cases} \qquad \begin{cases} f(n) = \min Z \\ f(n) = \min Z \end{cases}$$

$$\begin{cases} f(n) = \min Z \\ f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad \begin{cases} f(n) = \min Z \end{cases} \qquad f(n) =$$

$$q = q(n)$$

$$q(x) \qquad q \neq 0, \text{ het min}$$

$$q(x) \qquad q \neq 0, \text{ het min}$$

$$q(x) \qquad q(x) \qquad q(x$$

METOR 4 NJ

$$f: \mathcal{F}_0(x) \to X$$

$$g(n) = f(X \setminus g[n])$$

