ROOT SECTION FOR MOUNTING MOVING BLADE TO ROTOR

Publication number: JP6010606 (A)

Publication date:

1994-01-18

Inventor(s):

ROJIYAA UORUTAA HEINIGU +

Applicant(s):

WESTINGHOUSE ELECTRIC CORP +

Classification:

- international:

F01D5/30; F01D5/00; (IPC1-7): F01D5/30

- European: F01D5/30B

Application number: JP19930061913 19930322 Priority number(s): US19920856997 19920324

more >>

Abstract of JP 6010606 (A)

PURPOSE: To provide two-lug side-entry turbine blade root attachment that has an improved producibility while fraise is used in groove formation. CONSTITUTION: A blade root 10 has a center line CL, that is the common central line of groove, in the groove that has the configuration nearly as the same as the configuration of the blade root, an upper neck 20 formed symmetrically to the center line CL, and an upper lug 22 formed symmetrically to the center line CL below the upper neck 20. And, at least, a lower neck 24 formed symmetrically to the center line CL below the upper lug 22, and a lower lug 26 formed symmetrically to the center line CL below the lower neck 24 is provided. Each neck portions and each lug portions have special dimensional relations.

Data supplied from the espacenet database — Worldwide

(19)日本国特新庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-10606

(43)公開日 平成6年(1994)1月18日

(51)Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

F 0 1 D 5/30

7825-3G

審査請求 有 請求項の数1(全 8 頁)

(21)出願番号

特願平5-61913

(22)出願日

平成5年(1993)3月22日

(31)優先権主張番号 07/856997

(32)優先日

1992年3月24日

(33)優先権主張国

米国(US)

(71)出願人 590004419

ウエスチングハウス・エレクトリック・コ

ーポレイション

WESTINGHOUSE ELECTR

IC CORPORATION

アメリカ合衆国、ペンシルベニア州、ピッ

ツバーグ、ゲイトウェイ・センター(番地

なし)

(72)発明者 ロジャー・ウォルター・ヘイニグ

アメリカ合衆国、フロリダ州、ココア・ビ

ーチ、ヤット・ヘイブン 32

(74)代理人 弁理士 曾我 道照 (外6名)

(54)【発明の名称】 動翼をロータに取り付けるための根元部

(57)【要約】

【目的】 溝形成にフライス削りが用いられるときに改 良された製造性を有する、2つの出張り部のある側入型 のタービン動翼根元部を提供する。

【構成】 根元部10は、同根元部の形状に略々一致す る形状を有する溝内で該溝と共通の中心線CLを有し、 該中心線CLに対して対称的に形成された最上位のネッ ク部20と、該最上位のネック部20の下方に上記中心 線CLに対して対称的な形状に形成された最上位の出張 り部22と、該最上位の出張り部22の下方に上記中心 線CLに対して対称的な形状に形成された最下位のネッ ク部24と、該最下位のネック部24の下方に上記中心 線CLに対して対称的な形状に形成された最下位の出張 り部26とを少なくとも備え、各ネック部及び各出張り 部が特別な寸法関係にある。

1

【特許請求の範囲】

【請求項1】 ロータに形成されたある形状を有する溝内に、該溝と共通の中心線を有するように、動翼を取り付けるための、前記ロータの前記形状に実質的に対応する形状を有する根元部であって、

前記中心線に対して対称的な形状に形成された最上位の ネック部と、

前記最上位のネック部の下方に前記中心線に対して対称 的な形状に形成された最上位の出張り部であって、前記 中心線の各側に、始点及び終点によって長さが画定され 10 る平坦支承面b, と、該平坦支承面b, の前記始点と共存す る終点によって弧の長さが画定される半径R2のアール 付き丸み面siとを有しており、前記平坦支承面biは、始 点よりも終点の方が前記中心線から大きな水平方向距離 のところにある該始点及び該終点によって画定される前 記溝の対応する平坦支承面と面接触し、前記溝は、該溝 の前記平坦支承面の前記終点と共存する始点によって弧 の長さが画定される半径R3のアール付き丸み面を含 み、前記根元部の前記平坦支承面b」と前記溝の前記平坦 支承面との間の接触領域は、前記溝の前記平坦支承面の 20 前記始点から前記根元部の前記平坦支承面の前記終点ま での長さしに亙って延在している、前記最上位の出張り 部と、

該最上位の出張り部の下方に前記中心線に対して対称的 な形状に形成された最下位のネック部と、

該最下位のネック部の下方に前記中心線に対して対称的 な形状に形成された最下位の出張り部であって、該中心 線の各側に、始点及び終点によって長さが画定される平 坦支承面b2と、該平坦支承面b2の前記始点と共存する終 点によって弧の長さが画定される半径R6のアール付き 30 丸み面s2とを有しており、前記平坦支承面b2は、始点よ りも終点の方が前記中心線から大きな水平方向距離のと ころにある該始点及び該終点によって画定される前記溝 の対応する平坦支承面と面接触し、前記溝は、始点と該 溝の前記平坦支承面の前記終点と共存する終点とによっ て弧の長さが画定される半径R7のアール付き丸み面を 含み、前記根元部の前記平坦支承面bz と前記溝の前記平 坦支承面との間の接触領域は、前記溝の前記平坦支承面 の前記始点から前記根元部の前記平坦支承面の前記終点 までの長さ12に亙って延在している、前記最下位の出張 40 り部と、

を備え、前記長さ L_2 対 L_1 の比は約0.76であり、前記半径R3 対R2 の比は約1.0であり、前記半径R7 対 R6 の比は約1.55 である、動翼をロータに取り付けるための根元部。

【発明の詳細な説明】

[0001]

【発明の背景】本発明は蒸気タービン動翼に関し、特に、機械加工された溝の中に組み付けられる比較的小さな動翼と共に用いられる2つの出張り部を有する側入型 50

のタービン動翼取付構造に関するものである。

【0002】タービン動翼はタービンロータに種々の方法で取り付けられ得る。1つの公知構造としては、樅の木状の側入型の根元部の使用である。この根元部の名前は、最下位から最上位にかけて大きさが全般的に増大する少なくとも2つの出張り部を採用しているという事実に由来している。

2

【0003】この基本的な樅の木状根元部形態は、複数の潜在的な荷重路を有しており、該荷重路に結果的に生ずる応力の大きさは、根元部とそれに対応する溝との間の初期的な嵌合の精度に依存する。これ等の応力は、高サイクル疲労、低サイクル疲労及び応力腐食割れのような潜在的な破損メカニズムに対して特に関係している。

【0004】樅の木状の根元部を有する動翼は、該根元部における振動の中立軸線がタービンロータの軸線に略々平行する重要な振動モードの影響を特性的に受け易い。かかる振動性の挙動のため、樅の木状根元部の複数の最上位のランド部は、根元部全体の剛性と荷重支持能力の大きな部分を提供する。この理由のために、これ等の最上位のランド部がタービン運転中に緊密な接触状態となっていることが特に重要である。製造公差は、この緊密な接触状態が最上位のランド部表面で生ずると同時に、動翼締め付け構造全体に亙ってピーク応力を最小化クすることを確保すべく選択されなければならない。

【0005】これ等の目的を達成するために、樅の木状の根元部は、タービンが停止状態にあるときに下方のランド部上に非常に小さな間隙を与える中間公差寸法(me diantolerance dimentions)でしばしば設計される。この中間下方ランド部の間隙の大きさは公差自体の関数である。所定の樅の木状根元部設計と適用のために、より大きな公差はより大きな中間下方ランド部間隙を要求して、最上位ランド部がタービン運転中に緊密な接触状態となっていることを確保する。

【0006】ある特性は、製造公差の偏差の大きさを増大する傾向がある。かかる特性の1つは、密接して隣合う列において、列毎に異なるロータ径、根元部構造又は動翼数を用いることである。これ等の特徴のいずれもが構の製造方法としてブローチ削りの採用を阻み、その代わりに、本質的により精度の落ちるフライス盤による方法の採用を要求する。関連する特性は下方出張り部の幅である。幅が大きくなるとフライスに与える荷重が増大し、その切削路の精度を減ずる。

【0007】また、動翼、根元部及び溝のある特性は製造公差の偏差の寸法的影響を増大する傾向がある。これ等は小さな絶対的サイズと、加えられる比較的低い安定荷重とを含む。

【0008】動翼のある特性は、根元部のその対応する 構内への不精密な嵌合により、悪い結果を生ずる可能性 を増大する傾向がある。かかる特性のうちの重要な1つ は、振動の最下位モードが脱調して、それ等が共振状態 3

となることが許容される設計である。低いモードは、動 翼における何れの所よりも根元部に最大の高サイクル疲 労応力を生じ易い。脱調した動翼は、一般的に、同一タ ービンにおける他の動翼に比べてサイズが小さい。

【0009】遠心荷重が加わった際にゼロ間隙(面対面の接触)が出張り部即ち尖ったランド部で生じなければならないことを留意して、許容され得る最大及び最小の間隙で根元部及び溝の輪郭を決定することは非常に難しい。2つの出張り部を有する側入型のタービン動翼のためには、その2つの出張り部に対応して2つのみのラン10ド部がある(対称面でもある根元部中心線の両側に配置された左右のランド部であり、各出張り部に2つ、合計4つのランド部がある。)。

【0010】従って、多くの時間及び労力が蒸気タービン或はガスタービン用の各動翼取付構造の設計にとられる。側入型のタービン動翼根元部を設計する先行技術に係る方法の一例としては米国特許第4,692,976号明細書に示されている。その米国特許には、動翼根元部に作用する遠心荷重及び曲げ荷重に帰因する著しく低減された応力集中で、計測し得る2つの出張り部(又は舌20状部)を有する側入型のタービン動翼を製造する方法が開示されている。その動翼の設計は全応力集中点における応力を均等化している。動翼取付構造の製作に要求される精度の結果として、動翼の根元部及び溝の表面は、それ等の各半径の長さと、各半径についての旋回中心の位置と、各湾曲部の始点及び終点と、2つの出張り部のそれぞれに関連したランド部(又は平坦部)の長さとによって画定される。

【0011】米国特許第4,824,328号明細書には、違う種類のタービン動翼取付構造が開示されており、動翼の根元部及び溝の輪郭は特殊な関係によって画定されている。

【0012】 溝製作がフライス削りによって行われる必要があるときの製造公差の偏差の大きさを低減するタービン動翼に対する必要性が依然として存在している。また、特に高サイクル疲労及び応力腐食割れに関して、製造公差の偏差の悪い結果を低減するタービン動翼取付構造に対する必要性が引き続き存る。

[0013]

【発明の概要】従って、本発明の目的は、予想される公 40 差の偏差の大きさを低減するように、フライス削りを使用して溝を形成するときの製造性を改良する、2 つの出張り部を有する側入型タービン動翼取付構造を提供することである。

【0014】本発明の他の目的は、動翼径方向位置の組立公差に対するより小さな影響と全ての嵌合状態下における著しくより低められた出張り部の応力と共に、根元部及び溝の製造公差に対するより小さな影響を有する、2つの出張り部がある側入型のタービン動翼取付構造を提供することである。

4

【0015】これ等の目的及び他の目的を達成するため に、本発明は、ロータに形成されたある形状を有する溝 内に、該溝と共通の中心線を有するように、動翼を取り 付けるための、前記ロータの前記形状に実質的に対応す る形状を有する根元部であって、前記中心線に対して対 称的な形状に形成された最上位のネック部と、前記最上 位のネック部の下方に前記中心線に対して対称的な形状 に形成された最上位の出張り部であって、前記中心線の 各側に、始点及び終点によって長さが画定される平坦支 承面bi と、該平坦支承面bi の前記始点と共存する終点に よって弧の長さが画定される半径R2のアール付き丸み 面siとを有しており、前記平坦支承面biは、始点よりも 終点の方が前記中心線から大きな水平方向距離のところ にある該始点及び該終点によって画定される前記溝の対 応する平坦支承面と面接触し、前記溝は、該溝の前記平 坦支承面の前記終点と共存する始点によって弧の長さが 画定される半径R3のアール付き丸み面を含み、前記根 元部の前記平坦支承面b₁と前記溝の前記平坦支承面との 間の接触領域は、前記溝の前記平坦支承面の前記始点か ら前記根元部の前記平坦支承面の前記終点までの長さし に亙って延在している、前記最上位の出張り部と、該最 上位の出張り部の下方に前記中心線に対して対称的な形 状に形成された最下位のネック部と、該最下位のネック 部の下方に前記中心線に対して対称的な形状に形成され た最下位の出張り部であって、該中心線の各側に、始点 及び終点によって長さが画定される平坦支承面かと、該 平坦支承面b₂の前記始点と共存する終点によって弧の長 さが画定される半径R6のアール付き丸み面szとを有し ており、前記平坦支承面№は、始点よりも終点の方が前 記中心線から大きな水平方向距離のところにある該始点 及び該終点によって画定される前記溝の対応する平坦支 承面と面接触し、前記溝は、始点と該溝の前記平坦支承 面の前記終点と共存する終点とによって弧の長さが画定 される半径R7のアール付き丸み面を含み、前記根元部 の前記平坦支承面12と前記溝の前記平坦支承面との間の 接触領域は、前記溝の前記平坦支承面の前記始点から前 記根元部の前記平坦支承面の前記終点までの長さしに亙 って延在している、前記最下位の出張り部と、を備え、 前記長さし対しの比は約0.76であり、前記半径R3 対R2の比は約1.0であり、前記半径R7対R6の比 は約1.55である、根元部を提供している。

【0016】実施態様では、最上位のネック部の幅をWi、最下位のネック部の幅をWiをすると、幅wi対幅wiの比は約0.69であり、半径R2対幅wiの比は約0.15であり、半径R3対幅wiの比は約0.15であり、半径R6対幅wiの比は約0.08であり、半径R7対wiの比は約0.12であり、長さLi対幅wiの比は約0.13であり、長さLi対幅wiの比は約0.13であり、長さLi対幅wiの比は約0.10である。

[0017]

【実施例】図において、タービン動翼9はプラットフォ

Ò

ーム部12から下方へ延びる根元部10と、該プラットフォーム部12から上方へ延びる翼状部14とを含む。本発明の焦点が根元部10であるので、この翼状部14は実質的に取り除かれている。根元部の輪郭は図1に略々示されており、該根元部輪郭は、図2に示されるようにタービンのロータ18に形成された側入型の溝である対応溝16の輪郭に略々一致している。

【0018】図1に示されるように、根元部10は、上記プラットフォーム部12から下方へ延びている最上位のネック部20と、該最上位のネック部から下方へ延び10ている最上位の出張り部22と、該最上位の出張り部22から下方へ延びている最下位のネック部24と、該最下位のネック部24から下方へ延びている最下位の出張り部26とを有する。

【0019】根元部10の輪郭は、該根元部10の表面 上に点P1~P16を配置する座標点系によって画定さ* *れる。この表面は根元部中心線CLの両側において同等であり、 $点P1\sim P16$ は座標点での符号を除けば根元部の左側でも同等である。

【0020】上記表面における複数の湾曲部については、半径 $R1\sim R8$ が複数の湾曲表面を構成するために用いられる。各半径 $R1\sim R8$ は、それぞれの旋回中心 $C1\sim C8$ を有し、そこから該当する半径が対応する表面まで延びている。

【0021】下記の表1は、半径 $R1\sim R8$ の寸法又は長さと共に(長さをインチで表す表1における半径についての寸法は本発明の好適な実施例であるが、本発明の実施には該寸法を縮小又は拡大して使用できる)、点 $P1\sim P16$ と旋回中心 $C1\sim C8$ との配置を座標点形式で詳細に示す。

[0022]

【表1】

			半径画定					
点	Х	Y	半径	寸法	中心	X	Y	
P1	.30028914	+.10880000	R1	. 2375	C1	.46247420	08469995	
P2	.22700906	03367714						
Р3	.22432500	05404933	R2	.0855	C2	.28926380	06260509	
P4	. 26158409	12196909						
P5	.31579521	14724616	R3	.0617	C3	.28972134	20318613	
P6	. 34985551	21697817						
P7	.34177111	25217557	R4	.1697	C4	.17637779	21418688	
P8	.31085514	31769501						
P9	.19697976	48564145	R5	.1979	C5	.35380398	58635010	
P10	.15759953	56049994						
P11	.15503058	57999842	R6	.0341	C6	.18883842	58445265	
P12	.17442806	61535818						
P13	.21519182	63436514	R7	.0478	C7	.19499197	67768726	
P14	.24157890	68838766						
P15	.23478727	71804376	R8	.1625	C8	.07639123	68186685	
P16	.11639122	83916685						

【0023】最上位のネック部20は、中心点C2のX座標から半径R2を差し引いて2倍することによって画定される幅w(図4)を有する。

【0024】最上位の出張り部22は、根元部中心線C Lを中心として対称的に形成され且つ該中心線CLの各 側には平坦支承面b,を有し、該平坦支承面の長さは始点 50

P4及び終点P5によって画定されている。終点P5は、始点P4より、根元部中心線CLからより大きな水平距離の所にある。この平坦支承面b,は溝16での対応する平坦支承面b,(図2における点P4及びP5を参照)に対して、溝の点P4から根元部の点P5まで延びる長さL,に亙って面接触している。

10

7

【0025】アール付きの根元部丸み面siは根元部の始点P3及び終点P4によって画定され、該終点P4は根元部支承面biにおける始点P4と共存している。このアール付き根元部丸み面siは、根元部の旋回中心C2から引き出された該根元部の半径R2によって画定される。

【0026】アール付き溝丸み面s, 'は溝における始点 P5及び終点 P6によって画定され、該始点 P5は溝平 坦支承面b, 'の終点 P5と共存している。このアール付き溝丸み面S, 'は、溝の旋回中心 C3から引き出された 該溝の半径 R3によって画定される。

【0027】同様にして、最下位のネック部24は、根元部の中心点C6に関する座標から該根元部の半径R6を差し引いて2倍することによって画定される幅w2(図4)を有する。

【0028】最下位の出張り部26は、根元部中心線CLを中心として対称的に形成され且つ該中心線の各側には平坦支承面bを有し、該平坦支承面の長さは始点P12及び終点P13によって画定されている。終点P13は、始点P12より、根元部中心線CLからより大きな水平距離の所にある。この平坦支承面bは溝16での対20応する平坦支承面b2(図2における点P12及びP13を参照)に対して、溝の点P12から根元部の点P13まで延びる長さL2に亙って面接触している。

【0029】アール付き根元部丸み面 s_2 は根元部の始点 P11及び終点 P12によって画定され、該終点 P12 は平坦な根元部支承面 b_2 における始点 P12 と共存している。アール付き根元部丸み面 s_2 は、根元部の旋回中心 C6から引き出された該根元部の半径 R6によって画定されている。

【0030】アール付き構丸み面 s_2 'は溝の始点P13及び終点P14によって画定され、該始点P13は溝平坦支承面 b_2 'の終点P13と共存している。このアール付き溝丸み面 s_2 'は、溝の旋回中心C7から引き出された該溝の半径R7によって画定されている。

【0031】先行するパラグラフに記載された寸法の全ては、根元部及び溝にとっての最大材料状態に近い名目上の寸法である。製造公差は、ロータが等温静止状態にあるときに根元部の平坦支承面 b_2 と溝の対応する平坦支承面 b_2 との間に0.01651mm (0.00065in)の中央値間隙を設定するように定められる。

【0032】本発明に従えば、溝における最下位のネック部24の幅w₂は、溝用のフライス刃物の剛性を増大するように半径R7及び接触長さし₂を犠牲にして増大させられ、それによって、溝接触面の位置の間における厳密な寸法的関係の制御を改良するようにしている。更に半径R3は増大させられ、決して完全ではない嵌合条件下、溝近辺におけるロータ内に存在するピーク応力を減ずるようにしている。相対寸法は比で表現することがで

き、w₂ 対w₁ の比は約0.69、根元部のR2対w₁ は約0.15、溝のR3対w₁ の比は約0.15、根元部のR6対w₁ の比は約0.08、溝のR7対w₁ の比は0.1 2、L₁ 対w₁ の比は約0.13、L₂ 対w₁ の比は0.10である

【0033】平坦支承面bi及びbiの両方は横断面に対して25°である。更に、図1及び図2における複数の基準点を定量化するための座標系の決定において、根元部中心線CLはY軸をも形成し、X軸は平坦支承面biによるY軸の交差よって決定される。図1に示されるように、上方の2つの平坦支承面biを含む各平面はY軸と点Oで交差し、その点でY軸に直交して引き出された線がX軸である。

【0034】図4は根元部10の相対的な各種の寸法を示している。最上位のネック部20の幅 w_1 と最下位のネック部24の幅 w_2 の比は、約0.69である。更に、根元部10は好ましくは約0.948in(24.08mm)の高さhを有する。幅 w_2 は約0.3095in(7.861mm)であり、幅 w_1 は約0.4475in(11.367mm)である。 w_2 対hの比は約0.33であり、 w_1 対hの比は約0.47である。対応する溝の種々の部分の間の関係は、これ等2つの間の密接な公差により、略々同一となっている。

【0035】平坦支承面であるb,及びb,'の間とb,及びb,'の間とのそれぞれにおける接触長さ或は接触領域L,及びL,は、図,5に示されるように平坦支承面に平行して測定される。図5は溝内に嵌合された根元部を示し、以下の表2に示されるように、溝の各種の寸法は根元部の各種の寸法と非常に接近している。

[0036]

【表2】

40

	9						10
						半径画定	
点	X	Y	半径	寸法	中心	X	Y
P1	.30122907	+.10280000	R1	. 2325	C1	.46247420	06469995
P2	.23196622	03433025					
Р3	. 22859738	05989998	R2	.0605	C2	.28857903	06780261
P4	. 26301227	12263500					
P5	.31676360	14769789	R3	. 0867	C3	.28857678	20814927
P6	. 35358406	22308059	·				
P7	. 34684422	25329486	R4	.1747	C4	.17637779	21418688
Р8	. 31481735	32074475].				
P9	.19987712	47007463	R5	. 1929	C5	.35273912	58773354
P10	.16149185	56253649					
P11	.15847147	58546135	R6	. 0291	C6	.18732214	58926246
P12	.17502475	61563639				· 	
P13	.21616022	63481867	R7	.0528	C7	.19384741	68267039
P14	.24530744	69449009					
P15	.24009975	71716306	R8	.1675	C8	.07685060	67966686
P16	.07685080	84716686					
	l	<u> </u>	J.,				*·····

【図面の簡単な説明】

【図1】 本発明に係るタービン動翼における根元部の 30輪郭を示す側面図である。

【図2】 図1の根元部が嵌合している溝の輪郭を示す側面図である。

【図3】 図2の溝の他の側面図である。

【図4】 根元部の各種の寸法が示された、図1の根元部の他の側面図である。

【図5】 名目上の根元部対溝の支承面接触を示す側面 図である。

【符号の説明】

9…タービン動翼、10…根元部、16…溝、20…最 40

上位のネック部、22…最上位の出張り部、24…最下位のネック部、26…最下位の出張り部、CL…中心線、bi…最上位の出張り部における平坦な根元部支承面、bi、…平坦な根元部支承面b1に対応する平坦な溝支承面、si…最上位の出張り部におけるアール付き根元部丸み面、si、…アール付き丸み面siに対応するアール付き溝丸み面、bi、…平坦な根元部支承面biに対応する平坦な根元部支承面、bi、…平坦な根元部支承面bi、に対応する平坦な視元部支承面、si、…平坦な根元部支承面bi、に対応する平坦な根元部大多面。si、…平坦な根元部大多面に対応するアール付き根元部丸み面、si、…アール付き根元部丸み面に対応するアール付き溝丸み面。

【図5】

