ECE2-Colle 20

30/03/22

1 Cours

1.1 Fonctions numériques de deux variables réelles

Voir le programme précédent.

1.2 Convergence et approximation

Loi faible des grands nombres: inégalité de Markov, inégalité de Bienaymé-Tchebychev, loi faible des grands nombres.

Convergence en loi : une suite de v.a.r $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une v.a.r X si en tout réel x où F_X est continue on a : $\lim_{n\to+\infty} F_{X_n}(x) = F_X(x)$. Critère de convergence pour les suites de v.a.r à valeurs dans \mathbb{Z} qui converge vers une v.a.r à valeurs dans \mathbb{Z} . Convergence des $\mathscr{B}\left(n,\frac{\lambda}{n}\right)$ vers une $\mathscr{P}(\lambda)$. Théorème central limite et conséquence. Exemples d'approximation : approximation des lois de Poisson, approximation des lois binomiales.

2 Méthodes à maîtriser

- 1. Savoir étudier une fonction de deux variables : caractère C^1 ou C^2 , calcul des dérivées partielles, détermination et nature des points critiques.
- 2. Savoir utiliser les inégalités de Markov et de Bienaymé-Tchebychev.
- 3. Savoir montrer qu'une suite de variables aléatoires converge en loi.
- 4. Savoir montrer qu'une suite de variables aléatoires discrètes à valeurs dans \mathbb{Z} converge en loi vers une variable aléatoire discrète à valeurs dans \mathbb{Z} .

3 Questions de cours

- Définitions : convergence en loi.
- Théorèmes : inégalité de Markov, inégalité de Bienaymé-Tchebychev, loi faible des grands nombres, théorème central limite.