KOCAELİ ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAZILIM LABORATUVARI II, 2019-2020 Bahar PROJE 3

PROJE TESLÍM TARÍHÍ: 01.06.2020

Amaç: Proje gerçekleştirimi ile beraber öğrencilerin algoritma çözümleme yapısını anlaması ve çözüm sağlayabilmesi amaçlanmaktadır.

Programlama Dili: C# veya Java dili kullanılarak, Masaüstü uygulaması olarak geliştirilecektir (Web veya Mobil uygulama <u>istenmemektedir</u>).

HAVUZ PROBLEMİ

Şekil 1. Örnek Görsel

Bu projede, literatürde azami akış (maximum flow) olarak geçen ve düğümler (nodes) arasında akış kapasiteleri belirli bir şekildeki (graph) bir başlangıçtan bir hedefe en fazla akışın sağlandığı problemleri çözmeniz beklenmektedir. Devamında ise akışın sistemden **geçmemesi** için literatürde min-cut olarak geçen yöntemi uygulamanız beklenmektedir.

Buradaki düğümler muslukları/vanaları, düğümler arasındaki kenarlar (edges) ise musluklar arasındaki boru hatlarının kapasitesini belirtsin. Her bir kenar, kenarın izin verebileceği maksimum akış limiti olan ayrı bir kapasiteye sahiptir.

Amacımız A düğümünden F düğüme (daha fazla ya da az miktarda düğüm olabilir değerler örnek olarak verilmiştir) azami miktarda akış sağlayabilmektir.

Bu projeyi görsel olarak bir GUİ ortamında -Masaüstü uygulaması olarak- (Web veya Mobil uygulama <u>istenmemektedir</u>) göstermeniz beklenmektedir.

1. İsterler

Arayüz üzerinden kullanıcıdan,

- Musluk sayısı (node/düğüm),
- Musluk arasında bağlantı bilgisini veren boru hattı (edge/kenar)
- Ve boru hatlarının kapasiteleri alınacaktır.

Alınan bilgilere göre bir **graf yapısı dinamik** olarak gösteren bir arayüz hazırlamanız beklenmektedir.

Projenizin çalışma adımları:

- 1. Kullanıcı havuzu doldurmaya başlayacak olan, başlangıç düğümünü seçecektir.
- 2. Geliştirdiğiniz algoritma havuzu maksimum kapasitede dolduracak yolu bulacaktır. Görsel olarak bunu göstermeniz beklenmektedir.
- 3. Daha sonraki aşamada ise musluktan havuza su akmaması için kesilmesi gereken en az sayıda kenar tespiti yapılacaktır. Kesilmesi gereken kenarların hangi noktalar arasında olduğu da yazılmalıdır.

2. Ödev Teslimi

- Rapor IEEE formatında (önceki yıllarda verilen formatta) 4 sayfa, akış diyagramı veya yalancı kod içeren, özet, giriş, yöntem, deneysel sonuçlar, sonuç ve kaynakça bölümünden oluşmalıdır. Raporda kullanılan algoritma açıklanmalı, algoritmanın karmaşık analizi yapılmalı (Big O complexity analysis) ve algoritmanın kaba kodu yazılmalıdır.
- Dersin takibi projenin teslimi dahil edestek.kocaeli.edu.tr sistemi üzerinden yapılacaktır. edestek.kocaeli.edu.tr sitesinde belirtilen tarihten sonra getirilen projeler kabul edilmeyecektir.
- Proje ile ilgili sorular edestek.kocaeli.edu.tr sitesindeki forum üzerinden Arş. Gör. Fulya Akdeniz veya Arş. Gör. Seda Kul'a sorulabilir.