

## planetmath.org

Math for the people, by the people.

## the connection between Lie groups and Lie algebras

 ${\bf Canonical\ name} \quad {\bf The Connection Between Lie Groups And Lie Algebras}$ 

Date of creation 2013-03-22 13:20:56 Last modified on 2013-03-22 13:20:56

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 10

Author bwebste (988) Entry type Definition Classification msc 22E60 Given a finite dimensional Lie group G, it has an associated Lie algebra  $\mathfrak{g} = \text{Lie}(G)$ . The Lie algebra encodes a great deal of information about the Lie group. I've collected a few results on this topic:

**Theorem 1** (Existence) Let  $\mathfrak{g}$  be a finite dimensional Lie algebra over  $\mathbb{R}$  or  $\mathbb{C}$ . Then there exists a finite dimensional real or complex Lie group G with  $\text{Lie}(G) = \mathfrak{g}$ .

**Theorem 2** (Uniqueness) There is a unique connected simply-connected Lie group G with any given finite-dimensional Lie algebra. Every connected Lie group with this Lie algebra is a quotient  $G/\Gamma$  by a discrete central subgroup  $\Gamma$ .

Even more important, is the fact that the correspondence  $G \mapsto \mathfrak{g}$  is functorial: given a homomorphism  $\varphi : G \to H$  of Lie groups, there is natural homomorphism defined on Lie algebras  $\varphi_* : \mathfrak{g} \to \mathfrak{h}$ , which just the derivative of the map  $\varphi$  at the identity (since the Lie algebra is canonically identified with the tangent space at the identity).

There are analogous existence and uniqueness theorems for maps:

**Theorem 3** (Existence) Let  $\psi : \mathfrak{g} \to \mathfrak{h}$  be a homomorphism of Lie algebras. Then if G is the unique connected, simply-connected group with Lie algebra  $\mathfrak{g}$ , and H is any Lie group with Lie algebra  $\mathfrak{h}$ , there exists a homomorphism of Lie groups  $\varphi : G \to H$  with  $\varphi_* = \psi$ .

**Theorem 4** (Uniqueness) Let G be connected Lie group and H an arbitrary Lie group. Then if two maps  $\varphi, \varphi' : G \to H$  induce the same maps on Lie algebras, then they are equal.

Essentially, what these theorems tell us is the correspondence  $\mathfrak{g} \mapsto G$  from Lie algebras to simply-connected Lie groups is functorial, and right http://planetmath.org/AdjointFunctoradjoint to the functor  $H \mapsto \text{Lie}(H)$  from Lie groups to Lie algebras.