WHAT TO DO WHEN SOME VALUES ARE MISSING

Statistics 407 ISU

OUTLINE

- Terminology
- Issues of missingness for multivariate data
- Plotting missings, and describing the distributions of missing vs not missing
- Imputation methods

1

BACKGROUND TERMS

- MCAR: probability that a value is missing does not depend on any other observed or unobserved value.
- MAR: probability that a value is missing depends only on the observed variables.
- MNAR: the reason for missing values depends on some unseen or unobserved information - very difficult analysis.

3

EXAMPLE

Deleting missings is not usually an option.

SUMMARY STATISTICS

Case	X_1	X_2	X_3	X_4	X_5
1	NA	20	1.8	6.4	-0.8
2	0.3	NA	1.6	5.3	-0.5
3	0.2	23	1.4	6.0	NA -0.3
4	0.5	21	1.5	NA	-0.3
5	0.1	21	NA	6.4	-0.5
6	0.4	22	1.6	5.6	-0.8
7		19	1.3	5.9	-0.4
8	0.5	20	1.5	6.1	-0.3
9	0.3	22	1.6	6.3	-0.5
10	0.4	21	1.4	5.9	-0.2
_			_		

Means can be calculated variable-wise.

Correlations can be calculated pairwise.

5

SHADOW MATRIX

Case	X_1 X_2 X_3 X_4 X_5
1	NA 20 1.8 6.4 -0.8
2	$0.3 \text{ NA } 1.6 \ 5.3 \ -0.5$
3	0.2 23 1.4 6.0 NA
4	$0.5 \ 21 \ 1.5 \ NA - 0.3$
5	$0.1 \ 21 \ NA \ 6.4 \ -0.5$
6	$0.4 \ 22 \ 1.6 \ 5.6 \ -0.8$
7	$0.3 \ 19 \ 1.3 \ 5.9 \ -0.4$
8	$0.5 \ 20 \ 1.5 \ 6.1 \ -0.3$
9	$0.3 \ 22 \ 1.6 \ 6.3 \ -0.5$
10	$0.4 \ 21 \ 1.4 \ 5.9 \ -0.2$

Case	X_1	X_2	X_3	X_4	X_5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	0	0	1
4	0	0	0	1	0
5	0	0	1	0	0
6	0	0	0	0	0
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0

EXAMPLE

Tropical Atmosphere-Ocean Array

Number of cases: 736

Number of variables: 8

Sea Surface Temp, Air Temp,

Humidity, UWind, VWind + Year,

Lat Long

OVERVIEW 1993 Normal

1997 El Nino

Variable	Nu	Number of		
	missing values			
	1993	1997		
sea surface temp	3	0		
air temp	4	77		
humidity	93	0		
uwind	0	0		
vwind	0	0		

R package: norm

No. of missings	199)3	1997		
on a case	No. of ca	ses %	No. of cases	%	
3	2	0.5	0	0	
2	2	0.5	0	0	
1	90	24.5	77	20.9	
0	274	74.5	291	79.1	

USING THE MARGINS

1997 El Nino

1993 Normal

Association between temperatures. Years separated. More missings on air temp than sea surface temp.

Missings on humidity only occur in 1993.

9

LIMITATION

lissings look ke clusters in gh-d plots, nd in parallel ordinates ey look like atliers at the ery bottom.

TRACKING MISSINGS USING THE SHADOW MATRIX

Missings on air temp have higher values on uwind than non-missings.

11

MISSING STRUCTURE

Missing values are NOT MCAR!

Imputation will need to use dependence of missing and not missing.

13

USING THE SHADOW MATRIX

Imputed values which disappeared can be revealed by brushing on the shadow matrix.

OTHER APPROACHES

- Model-based: For eg, fit a regression model where the variable with missing values is the response, and all other variables are explanatory variables. Use the model to predict missing response values. Repeat for all variables with missings.
- Nearest neighbors: Find the closest cases to the case with a missing value, and average the values of these cases to impute the missing.

15

MULTIPLE IMPUTATION

Missing values are imputed by simulating from a multivariate normal distribution, having mean vector and variance-covariance matrix equal to the sample quantities. Sampling multiple times allows for estimating statistics for the missing values.

SUMMARY

- Tabulate missings: by variable, by case
- Draw plots of missings, in the margins
- Calculate summary statistics using as much data as possible.
- Determine nature of missings: MAR, MCAR, MNAR
- Decide on a good way to impute missings, as simple as possible with out affecting results.

17

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.