PCT.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/55, 9/20, 1/21 C12N 15/78 // (C12N 1/21 C12R 1:38)

(11) International Publication Number:

WO 94/02617

(43) International Publication Date:

3 February 1994 (03.02.94)

(21) International Application Number:

PCT/EP93/01995

A2

(22) International Filing Date:

23 July 1993 (23.07.93)

(30) Priority data:

92202281.9 23 July 1992 (23.07.92)

EP

(34) Countries for which the regional or international application

was filed:

NL et al.

(71) Applicant (for all designated States except US): GIST-BRO-CADES N.V. [NL/NL]; Wateringseweg 1, P.O. Box 1, NL-2600 MA Delft (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COX, Maria, Mathilde, Josephina [NL/NL]; Coendersstraat 34, NL-2613 SN Delft (NL). GERRITSE, Gijsbert [NL/NL]; De Hoef 38, NL-2995 VT Heerjansdam (NL). QUAX, Wilhelmus, Johannes [NL/NL]; Jan van Galenlaan 8, NL-2253 VB Voorschoten (NL).

(74) Agents: MATULEWICZ, Emil, Rudolf, Antonius et al.; Gist-Brocades N.V., Patents and Trademarks Department, Wateringseweg 1, P.O. Box 1, NL-2600 MA Delft (NL).

(81) Designated States: FI, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: CLONING AND EXPRESSION OF A LIPASE MODULATOR GENE FROM PSEUDOMONAS PSEUDOAL-CALIGENES

(57) Abstract

The present invention discloses the cloning and expression of a lipase modulator gene obtained from a class I *Pseudomonas* species. The expression product of the modulator gene is found to give rise to a considerable increase in lipase production especially upon homologous expression. The present invention provides a method for isolating a class I lipase modulator gene, an isolated modulator gene and a class I *Pseudomonas* transformed with such a gene. Finally the present invention discloses a derivative of plasmid pJRD215 which is segregationally stable in *Pseudomonas*.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

WO 94/02617 PCT/EP93/01995

Cloning and expression of a lipase modulator gene from Pseudomonas pseudoalcaligenes

Technical field

The present invention describes the cloning and expression of a lipase gene in combination with a lipase modulator gene, both obtained from a class I Pseudomonas species, in an homologous class I Pseudomonas species.

Background of the invention

Lipases are enzymes capable of hydrolyzing lipids they are utilized in a wide range of applications such as fats and oil processing, detergents, diagnostic reagents etc.

Extracellular lipases (triacylglycerol acylhydrolases, E.C. 3.1.1.3) are produced by a wide variety of micro-20 organisms. Suitable microbial lipases have for example been disclosed in U.S. Patent No. 3,950,277, these lipases were obtained from such diverse microorganisms as Pseudomonas, Aspergillus, Pneumococcus, Staphylococcus, Mycobacterium tuberculosis, Mycotorula lipolytica and Sclerotinia.

It has turned out that especially Pseudomonas lipases have favourable characteristics for the desired applications. Pseudomonas species have therefore been extensively used for obtaining lipases. To increase lipase yield in fermentation several lipase genes have been cloned and expressed in both 30 homologous and heterologous host strains. Examples of the Pseudomonas species from which lipase gene cloning has been reported are; Pseudomonas cepacia (EP 331376), Pseudomonas glumae (EP 464922), Pseudomonas pseudoalcaligenes (EP 334462), <u>Pseudomonas fragi</u> (EP 318775).

During this work it has been found that a lipase modulator gene was necessary to obtain lipase expression in an heterologous host.

EP 331376 describes the cloning and expression of a lipase gene obtained from Pseudomonas cepacia in P. cepacia.

15

25

35

It was found that no expression could be obtained when a second gene located downstream of the lipase gene was deleted. This gene was therefore reported to be essential for lipase production.

5 EP 464922 reports the cloning and expression of a lipase gene together with a gene encoding a protein reported to have a lipase-specific stabilizing/translocation function. The genes are obtained from <u>Pseudomonas glumae</u> and expression is preferably in heterologous systems. The stabilising protein is reported to differ greatly from the gene described in EP 331376 and therefor assumed to have a different function. WO 91/00908 reports the expression in a heterologous host of the lipase gene and the lipase modulator gene obtained from <u>P. cepacia</u>.

15

25

35

Lipase modulator genes, are reported to be essential for obtaining lipase production, however for an extensively investigated representative of class I <u>Pseudomonas</u> species: <u>Pseudomonas fragi</u> such a gene was not found. Another class I <u>Pseudomonas</u> lipase gene was described in EP 334462. EP 334462 reports the cloning and expression of the lipase gene from <u>Pseudomonas pseudoalcaligenes</u> in <u>E</u>. coli it can be concluded that for heterologous lipase production the lipase modulator gene was not essential.

The classification of <u>Pseudomonas</u> species is based on DNA-rRNA and DNA-DNA hybridization studies as reported by Palleroni et al. (Palleroni et al. Int.J.Syst.Bacteriol. <u>23</u>: 333 (1973)).

A more extensive overview can be found in Bergey's Manual of Systematic Bacteriology (Vol.1. Section 4 160-161 (1984). Eds N.R. Krieg and J.G.Holt. Williams and Wilkins, Baltimore/London). This overview also reports that the classification is supported by morphological data and by 16S ribosomal RNA homology.

Generally a lipase modulator gene could not be detected in class I <u>Pseudomonas</u> species on the basis of homology with class 2 lipase modulator genes. Aoyama <u>et al</u>. FEBS Lett. <u>242</u>

20

30

35

36-40 (1988) report the absence of such a gene in P. fragi.
Recently a lipase modulator gene was reported (Ihara et al.
J. Ferm. Bioengin. 73 (1992) 337-342) for a Pseudomonas
species, which might belong to RNA homology group I, based on
DNA homology (shown in table 3 and 4 of the present
application). However, this gene was only used in E. coli and
therein shown to be essential for the Pseudomonas lipase gene
expression.

Summary of the invention

The present invention discloses a lipase modulator gene and the corresponding protein obtained from a class I Pseudomonas species.

The present invention also discloses <u>Pseudomonas</u> strains which have been transformed with a DNA sequence encoding a lipase and a sequence encoding a lipase modulator gene. These strains are preferably class I <u>Pseudomonas</u> strains and more preferably <u>Pseudomonas</u> pseudoalcaligenes strains.

The present invention further discloses a method for obtaining such transformed strains.

Furthermore the use of these strains for producing high amounts of lipase is disclosed.

The invention further discloses a vector derived from pJRD215 and which is segregationally stable in <u>Pseudomonas</u>. A method for obtaining such a vector is also disclosed.

Brief description of the drawings

Figure 1: Restriction map of plasmid P1A.

Symbols used are:

Km^r: gene encoding neomycin resistance of Tn5. lip: gene encoding M1 lipase.

Furthermore a number of restriction sites are indicated.

15

20

25

35

Figure 2: Sequence of pJRD215 (derived from Davison et al.

Gene 51 275-280 (1987)). The boxes indicate the direct repeat. At this site a recombination event occured, resulting in plasmid P1A6 (shown in figure 3). The deletion was mapped by sequence analysis.

Figure 3: Restriction map of plasmid P1A6.

Symbols used are:

Kmr: gene encoding neomycin resistance of Tn5.

lip: gene encoding M1 lipase.

Due to the deletion plasmid PlAs is about 900 bp smaller than PlA, also several restriction sites are missing.

Figure 4: Construction and restriction map of plasmid P1B.
Plasmid pTMPv18A was described in EP 334462.

lip: gene encoding M1 lipase, location indicated by an arrow Tc^r: gene encoding tetracyclin resistance.

Plasmid pLAFR3 and derivatives harbour the replicon of RP4.

Figure 5: Restriction map of plasmid P24A28.

Symbols used are:

Km^r: gene encoding neomycin resistance of Tn5.

lip: gene encoding M1 lipase.

lim: gene encoding the M1 lipase modulator protein.

Figure 6: Restriction map of plasmid P24B.

lip: gene encoding M1 lipase, location indicated by an arrow

lim: gene encoding the M1 lipase modulator protein, location also indicated by an arrow.

Tcr: gene encoding tetracyclin resistance.

Figure 7: Construction of plasmid pBRint.

ampr: gene encoding ampicillin resistance.

tetr: gene encoding tetracyclin resistance.

Figure 8: Physical map of the integration locus in the chromosome of <u>Pseudomonas</u> <u>pseudoalcaligenes</u> M1.

lip: gene encoding M1 lipase, location indicated by an arrow

15

20

25

lim: gene encoding the M1 lipase modulator protein, location also indicated by an arrow.

tet': gene encoding tetracyclin resistance.

lip: indicating an inactivated M1 lipase gene.

5 Figure 9: Construction of plasmid pUBint.

Plasmid pBHA-M1 was described in EP 334462 figure 15.

Kmr: gene encoding neomycin resistance of pUB110.

P_{Hoe II}: HpaII promoter of plasmid pUB110.

: insert derived from Pseudomonas

<u>pseudoalcaligenes</u> M1, containing (part of) the lipase encoding sequence and part of the lipase modulator gene encoding sequence.

<u>Figure 10</u>: Physical map of the integration locus in the chromosome of <u>Pseudomonas pseudoalcaligenes</u>.

lip: gene encoding M1 lipase, location indicated by an arrow

lim: gene encoding the M1 lipase modulator protein, location also indicated by an arrow.

neo': gene encoding neomycin resistance of pUB110.

lim: indicating an inactivated M1 lipase modulator gene.

Detailed description of the invention

The recombinant DNA of the present invention is obtained by digestion of chromosomal DNA obtained from a strain of a <u>Pseudomonas</u> class I species. Representatives of class I <u>Pseudomonas</u> species are: <u>Pseudomonas alcaligenes</u>, <u>Pseudomonas pseudoalcaligenes</u>, <u>Pseudomonas stutzeri</u>, <u>Pseudomonas aeruginosa</u>, and <u>Pseudomonas mendocina</u>.

The chromosomal DNA is isolated using standard procedures as disclosed for example in Maniatis et al.

Molecular cloning, Cold Spring Harbor Press, 1982 and 1989. A suitable digest is made and the fragments are cloned in a vector which is subsequently used to transform an <u>E. coli</u>. Selection is made on the basis of the presence of the lipase gene this can be performed using hybridization if suitable

probes are available. Alternatively it is possible to use an expression vector in which case it becomes possible to select for the presence of the desired genes using a suitable assay such as halo formation when lipase is screened for.

5 Furthermore expression can also be monitored using immunological detection of the protein when suitable antibodies are available.

In the present invention a DNA library was obtained from Pseudomonas pseudoalcaligenes as a representative of 10 class I <u>Pseudomonads</u>. The gene encoding the lipase was localized on a 2.0 kb PvuII fragment. The procedure has been described in EP 334462. Briefly, the lipolytic enzyme from the supernatant of Pseudomonas pseudoalcaligenes M-1 (CBS 473.85) was purified. After gel electrophoresis and blotting on Immobilon transfer membrane the N-terminal sequence was determined. A suitable probe was prepared based on this sequence. This probe was used in Southern hybridization experiments against chromosomal DNA which was isolated from Pseudomonas pseudoalcaligenes and which had been 20 digested with several restriction enzymes. After size fractionation the fragments were cloned and again hybridized. A 2.0 kb PvuII fragment was found to contain the lipase gene. This fragment was sequenced and was also found to contain at least a part of a putative open reading frame.

This 2.0 kb fragment was cloned on an expression vector and the vector transformed to wild type <u>Pseudomonas</u> <u>pseudoalcaligenes</u> the resulting strain showed a 10-20 fold increase in lipase production.

A new expression vector was obtained containing the
complete open reading frame which was localized downstream of
the lipase gene on a 2.4 kb PvuII/BclI fragment the lipase
gene and the open reading frame are found in their natural
one operon sequence on this vector. Transformation of P.
pseudoalcaligenes with this vector showed a 30 fold increase
in lipase production over the expression vector containing
only the lipase gene. This indicates that the open reading
frame encodes a gene which modulates lipase expression.

20

The open reading frame was sequenced and found not to have a significant identity with the known class 2 lipase modulator genes, the identity was of the order of 30% at the amino acid level. The open reading frame also showed a 25 % 5 identity with the lipase gene itself.

Upon inactivation of this modulator gene in the chromosome no lipase was produced. Cloning of the gene on an expression vector in such a host restored the lipase production.

This gene can therefore be considered to be the class I type lipase modulator gene. The cloning and expression of this modulator gene in wild type Pseudomonas pseudoalcaligenes did not have any effect on lipase production. However, when extra copies of the lipase gene were introduced into the cell, lipase production was significantly increased by addition of the modulator gene. From these experiments it is evident that the modulator gene is not required in a 1:1 ratio as compared with the lipase gene.

The present invention discloses for the first time that a class I lipase modulator gene increases the lipase productivity in a homologous host cell. Furthermore, it is also conclusively shown that the gene is not required in a 1:1 ratio compared with the lipase gene.

The present invention discloses a method for obtaining 25 lipases comprising:

- cloning of a lipase gene and a lipase modulator gene obtained from a class I Pseudomonas species in a strain of an homologous Pseudomonas species,
- 30 culturing of the recombinant strain under conditions wherein the lipase is expressed,
 - isolating the lipase from the culture.

The host cells of the present invention and the source of the lipase modulator gene are preferably selected from the 35 class I <u>Pseudomonas</u> species, <u>Pseudomonas alcaligenes</u>, Pseudomonas pseudoalcaligenes, Pseudomonas stutzeri,

<u>Pseudomonas aeruginosa</u>, and <u>Pseudomonas mendocina</u>. Mutants of these strains can also be employed.

In a most preferred embodiment <u>Pseudomonas</u> <u>pseudoalcaligenes</u> is the host strain.

The lipase gene and the lipase modulator gene can be cloned on a replicable expression vector they can however also be inserted in the chromosome of the host strain. Optionally the chromosomal lipase gene and the lipase modulator gene can be inactivated before the cloned genes are introduced. This is especially important when the production of mutated lipase is performed. The presence of the wildtype gene would then give rise to a significant contamination of the product. The copy number of the gene can be regulated by the choice of the vector.

The lipase and the lipase modulator genes are found to act both in cis and in trans. They are also found to be in one operon. It is therefore preferable to clone the genes in one operon. It is also possible to clone the genes on two separate vectors thereby enabling independent regulation.

The present invention further discloses a method for obtaining a plasmid which is segregationally stable in Pseudomonas.

This method comprises:

- repeated dilution of the transformed <u>Pseudomonas</u> strain in medium without antibiotics,
- followed by incubation periods in the presence of antibiotics.

The invention discloses a segregationally stable derivative of pJRD215 herein called plA6. Sequence analysis shows that a fragment of 900 basepairs between two direct repeats has been deleted.

The following examples are meant to illustrate but not to limit the present invention.

15

20

Experimental

Colonies were grown on agar plates by using tributyrin (Merck) or castor oil as a substrate (described by Laurence 5 et al. Nature 191 (1967) 1264-1265).

Plates were incubated at 30°C during 48-72 hours.

The clear zones that appear indicate lipolytic activity. A linear relationship can be observed when the logarithm of the enzym concentration is plotted against the diameter of zone of intensification.

Colonies were also grown on agar slices containing a defined volume of agar medium. After growth, the full grown colony is placed on a plate containing tributyrin. After an incubation period of 24 hours a zone of intensification can be observed. The diameter of this zone shows a linear relation with the logarithm of the level of enzym produced by the colony. The latter was observed when determining the activity of the supernatant of the strains grown in a lab fermentor as described in EP 334462, example 10.

20 Strains and plasmids described in this patent application are listed in table A.

Table A

F						
5	Strains		Genotype	Reference		
	P.pseudoa	lcaligenes		CBS473.85		
	P.pseudoa	lcaligenes	R'M'	this patent		
10	P.pseudoa	lcaligenes	R'M'lip'	this patent		
	P.pseudoa	lcaligenes	R'M'lim'	this patent		
15	Plasmids		Genotype	Reference		
	pTZ18R		Apr, 2.9 kb, E.coli ori	Mead <u>et al</u> .		
20	pTMPv18A		Ap ^r , lip gene, 4.9 kb, E. coli _{ori}	EP 0334462		
	pTZ18B24		Ap ^r , lip gene, lim gene, 5.3 kb, E.coli ori	this patent		
25	pJRD215		Km ^r , RSF1010 ori, BHR, 10.2 kb, IncQ	Davison <u>et</u> <u>al</u> .		
	P1A	(Figure 1)	Km ^r , RSF1010 ori, BHR, lip gene, 12.2 kb, IncQ	EP 0334462		
30	PlA6	(Figure 3)	Km ^r , RSF1010 ori, BHR, lip gene, 0.9 kb dele- tion, 11.3 kb, IncQ	this patent		
35	pLAFR3		Tc ^r , RP4 ori, BHR, 22 kb, IncP	Stascawicz et al.		
	P1B	(Figure 4)	Tc ^r , RP4 _{ori} , BHR, 24 kb, lip gene, IncP	EP 0334462		
40	P24A28	(Figure 5)	Km ^r , RSF1010 ori, BHR, lip gene, lim gene, 0.9 kb deletion, 11.7 kb, Inc Q	this patent		
45	P24B2	(Figure 7)	Tc ^r , RP4 _{ori} , BHR, 24.4 kb, lip gene, lim gene, IncP	this patent		
50	pBR322		Apr, Tor, 4.4 kb E.coli ori	Bolivar <u>et</u> <u>al</u> .		
55	pBRint	(Figure 8)	Tc ^r , _ lip gene, 5.0 kb, E.coli ori	this patent		

<u>Table A</u> (continued)

	pUB110		Km ^r , 4.5 kb, Bacillus ori	Gryczan <u>et</u> <u>al</u> .
10	pUBint	(Figure 10)	Km ^r , 4.0 kb, _ lim gene Bacillus ori	this patent
15	pBHA-M1	(Figure 10)	Km ^r , Ap ^r , 9.5 kb, Bac ori E.coli ori	EP 0334462
	рвнм1	(Figure 10)	Km ^r , 5.5 kb, Bac ori lip gene	this patent

20

25

Examples

Example 1

200 Cloning of the lipase gene and the lipase modulator gene from Pseudomonas pseudoalcaligenes M1 in Pseudomonas pseudoalcaligenes M1

The lipase gene from <u>Pseudomonas pseudoalcaligenes M1</u>
35 was cloned in <u>E. coli</u> as described in patent application EP
334462. In order to achieve homologous gene expression the
SstI/<u>HindIII</u> lipase gene containing fragment of pTMPv18A (EP
334462: figure 11) was cloned into pJRD215 (Davison <u>et al</u>.
Gene <u>51</u> (1987) 275-280) <u>SstI</u> and <u>HindIII</u> restriction sites. A
40 restriction map of this plasmid, called P1A, is shown in
Figure 1.

A stable derivative of this plasmid P1A was isolated after repeated dilution in medium without antibiotics followed by incubation periods. Characterization of the

obtained derivative revealed that a deletion of about 900 basepairs had occured, as shown in Figure 2. Surprisingly this plasmid, named PlA6, was much more stable than plasmid PlA. A restriction map of plasmid PlA6 is shown in Figure 3. 5 The improved segregational stability is shown in Table 1:

Table 1

Strain Pseudomonas pseudo	Segre	gational stability								
alcaligenes M1 conaining plasmid	Day 1	Day 2	Day 3	Day 4						
PlA	83%	71%	5%	49						
P1A6	100%	100%	100%	1009						

20

25

30

Cells were grown in a 2xTY culture without antibiotics, at O.D.=1, about 108 cells were inoculated into 2xTY medium and grown for 24 hours (=day 1), the culture was then diluted a thousand times and incubation was prolonged for 24 hours (=day 2) and so on. Colonies were first grown on plates without antibiotics for 24 hours at 30°C. Subsequently the colonies were replica-plated to plates containing 10 mg/l neomycin.

The EcoRI/HindIII lipase gene containing fragment of pTMPv18A was cloned into pLAFR3 (Staskawicz et al., J. 35 Bacteriol. <u>169</u> (1987) 5789-5794) <u>Eco</u>RI and <u>Hin</u>DIII restriction sites. A restriction map of this plasmid, called P1B, is shown in Figure 4.

As described in EP 334462, we also cloned BclI fragments of <u>Pseudomonas</u> <u>pseudoalcaligenes</u> Ml in <u>E</u>. <u>coli</u>. One of these clones, a 1.7 kb BC1I fragment, appeared to contain the 3' region of the lipase gene and 1.2 kb of the downstream sequence. In order to investigate whether class I Pseudomonas

species also contain lipase modulator genes, both fragments (the 1.7 kb BclI and the SstI/HindIII (2.0 kb) lipase gene containing fragment of pTMPv18A) were combined in one expression cassette, resulting in clone pTZ18B24 (figure not shown). An internal PvuI/EcoRI fragment was exchanged with Pseudomonas expression cassette P1A6 resulting in expression cassette P24A26. A restriction map of this plasmid is shown in Figure 5. The DNA sequence of the entire insert is shown in the Sequence Listing and contains two open reading frames one encoding the lipase gene and the other encoding a putative lipase modulator gene hereafter described as lipase modulator gene.

The EcoRI/HindIII lipase and modulator gene containing fragment of pTZ18B2.4 was also cloned into pLAFR3 EcoRI and HinDIII restriction sites, resulting in plasmid P24B2. The restriction map of this plasmid is shown in Figure 6.

All expression cassettes were introduced into <u>Pseu-domonas pseudoalcaligenes M1</u> using electroporation (Wirth <u>et al</u>. Mol. Gen. Gen. <u>216</u> (1989) 175-177).

Example 2

25 Chromosomal inactivation of both lipase and modulator gene of Pseudomonas pseudoalcaligenes

Suicidal integration plasmids, which are unable to replicate in <u>Pseudomonas pseudoalcaligenes</u> but able to replicate in other microorganism, were used to inactivate the lipase gene and the lipase modulator gene in the chromosome of <u>Pseudomonas pseudoalcaligenes</u> M1.

Inactivation of the lipase gene

An internal <u>PvuI-PstI</u> fragment of the lipase gene was cloned on suicide plasmid pBR322 (Bolivar <u>et al</u>. Gene <u>2</u> (1977) 95-113), able to replicate in <u>E</u>. <u>coli</u>, wherein the 38 N-terminal and the 49 C-terminal aminoacids of the lipase

coding sequence are missing (hereafter described as pBRint).

Detailed information about the construction of pBRint, derived from pBR322 and pTMPv18A (described EP 334462), is 5 shown in Figure 7. Pseudomonas pseudoalcaligenes M1 R'M' (restriction negative, modification positive) was transformed with pBRint. Several tetracycline resistent (5 mg/l) colonies were selected. They were all lipase negative, demonstrated in lacking a clearing-zone on castor oil (0.5%) agar plates and in a diminished clearing-zone on tributyrin (2%) agar plates. Pseudomonas pseudoalcaligenes M1 R'M' itself gives rise to a clear halo on both types of agar plates. Southern analysis of two independent lipase negative electroporants revealed that the integration was established through a single cross-over event. As a result of this event the situation in the chromo-15 some of Pseudomonas pseudoalcaligenes undergoes changes, outlined in Figure 8.

Inactivation of the lipase modulator gene

The internal EcoRV-PvuII fragment of the lipase modulator gene was cloned on suicide plasmid pUB110 (Gryczan et al. J. Bacteriol. 134 (1978) 318-329), able to replicate in almost all Bacillus species, wherein the 94 N-terminal and 107 C-terminal amino acids of the lipase modulator coding sequence are missing (hereafter described as pUBint).

Detailed information about the construction of pUBint, derived from pBHA-M1 (described in EP 334462), is shown in Figure 9.

Pseudomonas pseudoalcaligenes M1 R'M' was transformed
with pUBint. Several neomycin resistent (10 mg/l) colonies
were selected. They were lipase negative, demonstrated in
lacking a clearing-zone on castor oil (0.5%) agar plates and
in a diminished clearing-zone on tributyrin (2%) agar plates.
Southern analysis of three independent lipase negative electroporants revealed that the integration was established
through a single cross-over event. As a result of this event

the situation in the chromosome of <u>Pseudomonas</u> <u>pseudoalcali-</u> <u>genes</u> undergoes changes, outlined in Figure 10.

Complementation

Complementation studies were performed with low copy number plasmids P1B, containing only the complete lipase gene and P24B2, containing both the complete lipase gene and modulator gene, and high copy number plasmids, P1A6 containing only the complete lipase gene and P24A26 containing both the complete lipase and modulator gene. The results of the complementation study are shown in Table 2. From these experiments it can be concluded that both the lipase and the lipase modulator gene, need to be intact for the total complementation of the lipase activity of both the lipase gene and lipase modulator gene inactivated strains.

Example 3

20 <u>Lipase expression of transformed Pseudomonas pseudoalcali</u>genes **M1**

The lipase gene was expressed in heterologous host organisms (as described in EP 334462). However lipase expression levels were extremely low compared with the levels obtained in <u>Pseudomonas pseudoalcaligenes</u> M1. Therefor homologous gene expression was further developed.

The transformants were tested for their lipase production both on agar plates containing tributyrin and/or castor oil and after fermentation in olive oil based media as described by Odera et al. J. Ferment. Technol. 64 (1986) 363-371.

Results are shown in Table 2.

35 The improvement achieved by the introduction of multiple copies of the lipase gene expression cassette is 20

fold compared with the level of lipase produced by the parent strain, <u>Pseudomonas pseudoalcaligenes</u> M1.

However the expression level can be further improved by cloning the lipase modulator gene in the expression cassette as well.

From these data it can be concluded that the lipase modulator gene is not necessary in a 1:1 ratio but does become a limiting factor when lipase expression is increased over 20-fold.

Although the lipase modulator gene is necessary for lipase production the chromosomal copy of the gene is sufficient to allow an increase of 2000%. Only at this point introduction of additional modulation gene copies will result in higher lipase production.

It is unknown yet what the exact function of this gene might be, but our data suggest a chaperone like function, whereas only very low levels of the gene product seem to be sufficient for the secretion of large amounts of lipase.

Table 2

5		·	
	alcaligenes M1 St	ry of Transformed Ps rains Containing the and the Lipase Mod	Ml Lipase Gene or
10	Broad host range vector	Strain Genotype	Lipase productivity in %
	-	м1	100
15	P1A6	M1	2000
	P1B	Ml	400
20	P24A26	Ml	3000
	P24B2	мі	400
	-	M1:R'M' *	≈ 50 .
25	-	M1:R'M'lip' *	≈0
	P1A6	M1:R'M'lip' *	≈20
30	P1B	M1:R'M'lip' *	≈10
	P24A26	M1:R'M'lip' *	≈1500
	P24B2	M1:R'M'lip' *	≈200
35	_	M1:R'M'lim' *	≈0
	PlA6	M1:R'M'lim *	≈20
40	P1B	M1:R'M'lim' *	≈10
	Ρ24Α2δ	M1:R'M'lim' *	≈1500
	P24B2	M1:R'M'lim' *	≈200

The growth rate of these strains is decreased probably due to a pleiotropic mutation

ē

Example 4

Homology comparison of the lipase gene and lipase modulator gene with other lipase and lipase modulator genes

Lipase and lipase modulator gene sequences were compared using computer analysis. In order to determine homology with uncharacterized lipase genes, we used a molecular enzyme screening assay, as described in EP 334462.

From this work it was concluded that <u>Pseudomonas</u>
species belonging to the same RNA homology group as <u>P</u>.

<u>pseudoalcaligenes</u> show a rather strong homology, whereas
Pseudomonas species belonging to a different RNA homology
group (Palleroni, 1973) and other bacterial species show no
hybridization at all. A correlation between both methods was
well established, which makes it possible to determine
homology with uncharacterized lipase genes.

Sequence comparison of the lipase gene

The sequences of several <u>Pseudomonas</u> lipase genes have

been published. Computer analysis of these sequences compared
with the <u>Pseudomonas pseudoalcaligenes</u> M1 reveals an identity
of 81% for <u>P. aeruginosa</u> (EP 334462), also 81% for a
Pseudomonas species (Ihara <u>et al</u>. J. Biol. Chem. <u>266</u> (1991)
18135-18140), 56% for <u>P. fragi</u> (Aoyama <u>et al</u>., FEBS Lett. <u>242</u>
25 (1988) 36-40, Kugimiya <u>et al</u>., Biochem. Biophys. Res. Commun.
141 (1986) 185-190), all three probably belonging to RNA
homology group I, 52% for <u>P. cepacia</u> (Jorgensen <u>et al</u>., J.
Bacteriol. <u>173</u> (1991) 559-567) and 59% for <u>P. glumae</u> (PCT
91/00910), both belonging to RNA homology group II (Table
30 III) and no homology at all with the lipase gene from <u>S</u>.
hyicus (Götz <u>et al</u>., NAR <u>13</u> (1985) 5895-5906).

These data are consistent with the hybridization data, described in EP 334462, where no hybridization can be found for P. fraqi, P. cepacia (not shown), P. glumae (or P. gladioli), S. hyicus DNA, whereas a proper hybridization signal is obtained from P. aeruginosa DNA. Results are shown in Table 3.

Sequence comparison of the lipase modulator gene

Lipase modulator genes have only been described for Pseudomonas species belonging to RNA homology group II. The lipase modulator gene for P. cepacia (both in EP 331376 and 5 by Jorgensen et al., J. Bacteriol. <u>173</u> (1991) 559-567) and the lipase modulator gene of P. glumae (PCT 91/00910) was described. Recently the lipase modulator gene sequence was described (Ihara et al., J. Ferm. Bioeng. 73 (1992) 337-342) of a <u>Pseudomonas</u> species, which might belong to <u>Pseudomonas</u> 10 RNA homology group I, based on sequence homology. Results are shown in Table 4.

Table 3

No.	Strain	1	2	3	4	5	6
1	P.pseudoalcalig	100	71	70	40	38	41
2	P. aeruginosa	81	100	100	37	41	36
3	P. species	81	100	100	40	38	41
4	P. cepacia	52	41	53	100	33	78
5	P. fragi	56	51	56	46	100	34
6	P. glumae	59	41	59	82	52	100

Table 3 percentage identity of different Pseudomonas lipases. The lower part of the table shows a nucleic acid sequence comparison. The upper part shows an amino acid sequence comparison.

Table 4

No.	Strain	1	2	3	4	5	6	
1	P. pseudoalcali	100	nd	56	33	nd	33	
2	P. aeruginosa	nd	100	nd	nd	nd	nd	
3	P. species	62	nd	100	32	nd	32	
4	P. cepacia	51	nd	53	100	nd	58	
5	P. fragi	nd	nd	nd	nd	100	nd	
6	P. glumae	51	nd	53	71	nd	100	

40

Table 4 percentage identity between different <u>Pseudomonas</u> lipase modulator genes. The lower part of the table shows a nucleic acid sequence comparison. The upper part shows an amino acid sequence comparison.

25 nd => for these species no lipase modulator gene was described.

From these data it can be concluded that the lipase modulator genes seem to be less conserved than the lipase genes itself.

It was established that the degree of homology which was found could even be coincidental. An amino acid homology of 25% was found when the lipase sequence of P. pseudoalcaligenes M1 was compared to the lipase modulator sequence of P. pseudoalcaligenes M1, indicating that the observed sequence homology between lipase modulator genes belonging to different RNA homology groups is rather low.

Furthermore Ihara <u>et al</u>. seem to be the first describing the necessity of a modulator gene for <u>Pseudomonas</u> species derived from RNA homology group I in heterologous organisms. For both <u>P</u>. <u>fragi</u> and <u>P</u>. <u>pseudoalcaligenes</u> M1

lipase expression in E. coli didn't seem to depend upon the presence of such a modulating gene.

Based on the very low levels of homology it is rather surprising to be dealing with a gene with a comparable function.

Although the modulator gene, derived from P.

pseudoalcaligenes M1, does not seem to be necessary for gene expression in E. coli, it is necessary for levels of lipase gene expression in P. pseudoalcaligenes M1 above 20-fold.

This has not been observed before.

SEQUENCE LISTING

```
(1) INFORMATION FOR SEQ ID NO:1:
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2417 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Pseudomonas pseudoalcaligenes
 - (B) STRAIN: M1
 - (C) INDIVIDUAL ISOLATE: CBS 473.85
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 270..1211
- (ix) FEATURE:
 - (A) NAME/KEY: sig_peptide
 - (B) LOCATION: 270..341
- (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 342..1208
 - (C) IDENTIFICATION METHOD: experimental
 - (D) OTHER INFORMATION: /codon_start= 271
 /function= "triglyceride hydrolysis"
 /product= "lipase M1"
 /evidence= EXPERIMENTAL
 /gene= "lip"
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1264..2298
 - (D) OTHER INFORMATION: /codon_start= 1264
 /function= "Lipase modulator"
 /gene= "lim"

- 23 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GTAC	CCCT	GG C	TGGC	AGGC	G GC	AGCC	AGGC	ccc	ACAG	GGG	GAGT	CGAG	AA A	CGCT	CCTGT		60
TCCC	CTCG	GT A	ACAT	CCCC	T AG	GTAA	TAGC	AGA	GCCC	TTG	CCGG	CGCT	GG C	TTTC	GTCAC	,	120
AAAC	GCCC	GT T	TAGA	GCCT	T TG	TTCT	AATC	CAC	ccce	TTC	CTGG	CYĊY	GA T	CCTG	CCCCA		180
CEGA	GCCT	GC T	GAAG	TACC	G GC	cccc	GAAG	CGC	CGGA	TGG	CTGG	ATGC	AA G	GATG	GATCA	:	240
GTGC	CCAA	CC C	TTCG	CTCG	A GA	.GCAA								CTG Leu		;	293
GCC Ala	CTC Leu -15	TGC Cys	ATC Ile	GGC	AGC Ser	AGT Ser -10	CTG Leu	CTG Leu	CTG Leu	TCC Ser	GGC Gly -5	CCA Pro	GCC Ala	GAA Glu	GCC Ala	;	341
GGC Gly 1																;	389
CTG Leu	ACC Thr	CAC His	GGC Gly 20	ATG Met	CTC Leu	GGC	TTC Phe	GAC Asp 25	AGC Ser	ATC Ile	CTC Leu	GGC	GTC Val 30	GAC Asp	TAĆ Tyr		437
														GTC Val			485
ATC Ile	ACC Thr 50	GAA Glu	GTC Val	AGC Ser	CAG Gln	CTC Leu 55	AAC Asn	ACC Thr	TCC Ser	GAG Glu	CTG Leu 60	CGC Arg	GEC	GAG Glu	GAG Glu		533
														GCC			581
										Pro				TAC Tyr 95			629
GCC Ala	GCC Ala	Val	Arg	Pro	Asp	CTG Leu	Val	Ala	Ser	Val	Thr	Ser	Val	GGC	GCC Ala		677
CCG Pro	CAC His	AAG Lys 115	Gly	TCG Ser	GAC Asp	ACC Thr	GCC Ala 120	Asp	TTC Phe	ATC Ile	CGC	CAG Gln 125	ATC	CCC	CCG Pro		725
GGC	TCG Ser 130	Ala	GGT Gly	GAG Glu	GCG Ala	ATA Ile 135	GTC Val	GCC Ala	GGC	ATC	GTC Val 140	Asn	GGC	CTG Leu	GGC	,	773

GCG Ala 145	CTG Leu															821
GCC Ala	CTG Leu				Glu											869
AAC Asn	GCC Ala															917
	TAC Tyr															965
	CTG Leu 210	Thr														1013
	CTG Leu															1061
	CAC His															1109
	GAG Glu															1157
	GTC Val									-						1205
CTC Leu	TGA0 290	CCAT	rgg /	ATCG	GGC	CC AC	cesso	ccc	AT(ittt1	rccc	CCG	CGA	STC 1	regee	1263
	AAC Asn															1311
	GCC Ala															1359
	GCG Ala															1407

CAG CGA ACC CTC GAC GAC GCA CCT GCA GCA CCG CCC CTG GCT GCC GAA Gin Arg Thr Leu Asp Asp Ala Pro Ala Ala Pro Pro Leu Ala Ala Glu 50 55	1455
ATC GCG CCC CTG CCA CCC TCC TTC GCC GGA ACC CAG GTG GAT GGC CAG Ile Ala Pro Leu Pro Pro Ser Phe Ala Gly Thr Gln Val Asp Gly Gln 65 70 75 80	1503
TTC CGC CTC GAT GCG GCA GGC AAC CTG CTG ATC GAA CGG GAT ATC CGG Phe Arg Leu Asp Ala Ala Gly Asn Leu Leu Ile Glu Arg Asp Ile Arg 85 90 95	1551
CGC ATC TTC GAC TAC TTC CTC AGC GCC TAT GGC GAG GAC AGC CTC AAG Arg Ile Phe Asp Tyr Phe Leu Ser Ala Tyr Gly Glu Asp Ser Leu Lys 100 105 110	i 1599
GCC ACC ATC GAG CGT CTG CAG GCC TAT GTC CGC AGC CAG CTC GAC GAG Ala Thr Ile Glu Arg Leu Gln Ala Tyr Val Arg Ser Gln Leu Asp Gli 115 120 125	3 1647 J
CCG GCC GAA AGC CAG GCC CTG GCG CTG CTG GAG CAG TAC CTG GAG TAC Pro Ala Glu Ser Gln Ala Leu Ala Leu Leu Glu Gln Tyr Leu Glu Ty 130 140	c 1695 r
AAG CGC CAA CTG GTG CAA CTG GAG AAG GAC CTG CCG CAG ATG GCC AG Lys Arg Gln Leu Val Gln Leu Glu Lys Asp Leu Pro Gln Met Ala Se 145 150 155	c 1743 r 0
CTG GAT GCC CTG CGT CAG CGC GAG CAG GCG GTG CAG AAC CTG CGT GC Leu Asp Ala Leu Arg Gln Arg Glu Gln Ala Val Gln Asn Leu Arg Al 165 170 175	1791 .a
AGC CTG TTC AGC GTC GAA GCG CAC CAG GCC TTC TTC GCC GAG GAA G Ser Leu Phe Ser Val Glu Ala His Gln Ala Phe Phe Ala Glu Glu G 180 185 190	1839 Lu
GCC TAC AAC GGC TTC ACC CTG CAG CGC CTG GCG ATC CGT CAC GAC C Ala Tyr Asn Gly Phe Thr Leu Gln Arg Leu Ala Ile Arg His Asp G 195 200 205	AG 1887 ln
ACG CTG GAC GAC CAG CAG AAG GCC GAG GCG CTC GAC CGC CTG CGT G Thr Leu Asp Asp Gin Gin Lys Ala Giu Aia Leu Asp Arg Leu Arg A 210 215 220	1935 11a
AGC CTG CCG GAA GAG CTA CAG GCA TTG CTG GCC CCG CAG CTG CAG	SCC 1983 Na 240
GAG CTG CGC CAG CAG ACC GCA GCC CTG CAG GCC CAG GGC GCC AGT (Glu Leu Arg Gln Gln Thr Ala Ala Leu Gln Ala Gln Gly Ala Ser 245 250 255	GCC 2031 Ala

GCA Ala	CAG Gln	ATC Ile	CAG Gln 260	CAG Gln	CTG Leu	CGC	CTG Leu	CAA Gln 265	CTG Leu	GTC Val	GGC	GCC Ala	GAG Glu 270	Ala	ACC Thr	2079
GCA Ala	CGC Arg	CTG Leu 275	GAA Glu	GCG Ala	CTG Leu	GAC Asp	CAG Gln 280	CAG Gln	CGC	CAG Gin	CAG Gln	TGG Trp 285	CGC	CAG Gln	CGC . Arg	2127
CTC Leu	GCC Ala 290	GAC Asp	TAC Tyr	CGT Arg	CGG Arg	GAA Glu 295	AAG Lys	GCC	AGG Arg	GTG Val	CTG Leu 300	GCC Ala	AAC Asn	GAC Asp	GGC	2175
CTG Leu 305	AGC Ser	GAA Glu	AGT Ser	GAC Asp	AAG Lys 310	CAG Gln	GCA Ala	GCA Ala	ATT	GCC Ala 315	GAA Glu	CTG Leu	GCC	GCG Ala	CAG Gln 320	2223
CGC Arg	TTC Phe	GAC Asp	GAC Asp	AAC Asn 325	SAG Glu	CGC	CTG	CGC	CTG Leu 330	Glu	GCG	GCC	GAA Glu	CAG Gln 335	Leu	2271
			CGG Arg 340	Glu						AAA	AAGG	CCCG	CT T	TCGC	GGGCC	2325
TTT	TCTC	GGT	GCAA	CCGT	CT C	AGCC	GGCG	A TG	CGGC	GATO	CAG	CGAC	AGC	TTGC	CGGCGC	2385
CCT	CGAC	CAT	CAGO	GCCG	ica c	TGAT	CCCC	G GG	ì							2417

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 313 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Met Asn Asn Lys Lys Thr Leu Leu Ala Leu Cys Ile Gly Ser Ser Leu Leu Leu Ser Gly Pro Ala Glu Ala Gly Leu Phe Gly Ser Thr Gly Tyr Thr Lys Thr Lys Tyr Pro Ile Val Leu Thr His Gly Met Leu Gly Phe Asp Ser Ile Leu Gly Val Asp Tyr Trp Tyr Gly Ile Pro Ser Ser Leu Arg Ser Asp Gly Ala Ser Val Tyr Ile Thr Glu Val Ser Gln Leu Asn Thr Ser Glu Leu Arg Gly Glu Glu Leu Leu Glu Gln Val Glu Glu Ile 65 Ala Ala Ile Ser Gly Lys Gly Lys Val Asn Leu Val Gly His Ser His Gly Gly Pro Thr Val Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Val Ala Ser Val Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Ile Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Ile Val Ala Gly Ile Val Asn Gly Leu Gly Ala Leu Ile Asn Phe Leu Ser Gly Ser Ser Ser Thr Ser Pro Gln Asn Ala Leu Gly Ala Leu Glu Ser Leu 155 Asn Ser Glu Gly Ala Ala Ala Phe Asn Ala Lys Tyr Pro Gln Gly Ile

Pro Thr Ser Ala Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser

Tyr Tyr Ser Trp Ser Gly Thr Ser Pro Leu Thr Asn Val Leu Asp Val

Ser Asp Leu Leu Gly Ala Ser Ser Leu Thr Phe Asp Glu Pro Asn

SUBSTITUTE SHEET

225

230

210

185

220

- 28 -

Asp Gly Leu Val Gly Arg Cys Ser Ser His Leu Gly Lys Val Ile Arg 235 240 245

Asp Asp Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Thr Phe Gly 250 255 260

Leu Thr Ser Leu Phe Glu Thr Asp Pro Val Thr Val Tyr Arg Gln Gln 265 270 275 280

Ala Asn Arg Leu Lys Leu Ala Gly Leu 285

INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Asn Lys Ala Leu Leu Leu Ala Val Pro Leu Leu Ile Gly Ala Gly
1 5 10 15

Ile Ala Val Thr Leu Ala Leu Asn Pro Leu Thr Pro Ala Pro Ser Pro 20 25 30

Ala Ala Leu Ser Thr Ala Pro Gly Val Pro Leu Pro Ser Pro Ala Val 35 40 45

Gln Arg Thr Leu Asp Asp Ala Pro Ala Ala Pro Pro Leu Ala Ala Glu 50 55 60

Ile Ala Pro Leu Pro Pro Ser Phe Ala Gly Thr Gln Val Asp Gly Gln 65 70 75 80

Phe Arg Leu Asp Ala Ala Gly Asn Leu Leu Ile Glu Arg Asp Ile Arg 85 90 95

Arg Ile Phe Asp Tyr Phe Leu Ser Ala Tyr Gly Glu Asp Ser Leu Lys 100 105 110

Ala Thr Ile Glu Arg Leu Gln Ala Tyr Val Arg Ser Gln Leu Asp Glu 115 120 125

Pro Ala Glu Ser Gln Ala Leu Ala Leu Leu Glu Gln Tyr Leu Glu Tyr
130 135 140

Lys Arg Gln Leu Val Gln Leu Glu Lys Asp Leu Pro Gln Met Ala Ser 145 150 155 160

Leu Asp Ala Leu Arg Gln Arg Glu Gln Ala Val Gln Asn Leu Arg Ala 165 170 175 - 29 -

Ser Leu Phe Ser Val Glu Ala His Gln Ala Phe Phe Ala Glu Glu Glu 190 180 Ala Tyr Asn Gly Phe Thr Leu Gln Arg Leu Ala Ile Arg His Asp Gln 200 Thr Leu Asp Asp Gln Gln Lys Ala Glu Ala Leu Asp Arg Leu Arg Ala Ser Leu Pro Glu Glu Leu Gln Ala Leu Leu Ala Pro Gln Leu Gln Ala 230 Glu Leu Arg Gln Gln Thr Ala Ala Leu Gln Ala Gln Gly Ala Ser Ala Ala Gin Ile Gin Gin Leu Arg Leu Gin Leu Val Gly Ala Giu Ala Thr Ala Arg Leu Glu Ala Leu Asp Gln Gln Arg Gln Gln Trp Arg Gln Arg 285 Leu Ala Asp Tyr Arg Arg Glu Lys Ala Arg Val Leu Ala Asn Asp Gly Leu Ser Glu Ser Asp Lys Gln Ala Ala Ile Ala Glu Leu Ala Ala Gln 310 Arg Phe Asp Asp Asn Glu Arg Leu Arg Leu Glu Ala Ala Glu Gln Leu 325 330 Ala Gln Ser Arg Glu Glu Lys Pro 340

<u>Claims</u>

- 1. A method for obtaining lipases comprising:
- cloning of a lipase gene and a lipase modulator gene obtained from a class I <u>Pseudomonas</u> species in a homologous <u>Pseudomonas</u> species,
 - culturing of the recombinant strain under conditions wherein the lipase gene is expressed,
 - isolating the lipase from the culture.

10

- 2. The method according to claim 1, wherein the class I Pseudomonas species is selected from the group consisting of: Pseudomonas alcaligenes, Pseudomonas pseudoalcaligenes, Pseudomonas stutzeri, Pseudomonas aeruginosa, and Pseudomonas mendocina, or mutants thereof.
- 3. The method according to claim 1, wherein the class I <u>Pseudomonas</u> species is <u>Pseudomonas</u> pseudoalcaligenes or mutants thereof.

20

- 4. The method of any one of the previous claims wherein the class I <u>Pseudomonas</u> species host strain is lipase and/or lipase modulator deficient.
- 25 5. A method for increasing the lipase production of class I <u>Pseudomonas</u> strains comprising the cloning and expression of both a class I lipase and lipase modulator gene in the host cell.
- 30 6. A class I <u>Pseudomonas</u> strain transformed with a lipase and a lipase modulator gene obtained from the homologous strain.
- 7. A <u>Pseudomonas</u> strain transformed with a vector containing a lipase gene wherein said strain is characterized in that the amount of lipase produced is at least 15-fold higher than in the untransformed strain.

- 8. A <u>Pseudomonas</u> strain according to claim 7 wherein the strain is additionally transformed with a lipase modulator gene.
- 9. A <u>Pseudomonas</u> strain according to claim 7 or 8 selected from the class I <u>Pseudomonas</u> and wherein the strain is transformed with a homologous lipase and/or lipase modulator gene.
- 10. A derivative of pJRD215 which is segregationally stable in Pseudomonas.
- 11. A method for obtaining a segregationally stable derivative of pJRD215 comprising:
 - repeated dilution of the transformed <u>Pseudomonas</u> strain in medium without antibiotics
 - followed by incubation periods in the presence of antibiotics.

1/12

FIGURE 2 A

TACTITICCAG GCCTTCCCAA CCTTACCAGA GGGGGCCCCA GCTGGCAATT CCGGTTCGCT TGCTGTCGAT AAAACGGCCC AGTCTAGCTA TCGCCATSTA 1300 COTOCICAGO CACGATAGOO GOGOTGOOTO GTOCTGOAGT TOATTOAGGG CACOGAGAG GTOGGTOTTG ACAAAAAGAA COGGGOGOO CTGOGOTGAC 1000 AGCCGGAACA CGCCGGCATC AGAGCAGCCG ATTGTCTGTT GTGCCGAGTC ATAGCCGAAT AGCCTCTCCA CCCAAGCGAC CGGAGAACCT GCGTGCAATC 1100 CATCITICITY ANICATICGA AAGGATICGTC ATCITICAT TIGATCAGAT GITGATICGC TICGCCATICA GATICITIGGC GCCAAGAAAG CCATICGATT 1200 CTSCAGITICE GGGCCATGGA TGCGCGGATA GCGGCTGCTG GITICCTGGA TGCCGACGGA TITGCACTGC CGGTAGAACT CCGCGAGGTC GTCCAGCGTC 100 AGGCAGCAGC TGAACCAACT CGCGAGGGGA TVGAGCCCGG GGTGGGGGAA GAACTCCAGC ATGAGATCCC CGCGCTGGAG GATCATCCAG CCGCGTCCC 200 GGAAAACGAT TCCGAAGCCC AACCTTTCAT AGAAGGCGGC GGTGGAATCG AAATCTCGTG ATG3CAGGTT GGGCGTCGCT TGGTCGGTCA TITCGCCTCG 300 AGGCGAACCC CAGAGTCCCG CTCAGAAGAA CTCGTCAAGA AGGCGATAGA AGGCGATGCG CTGCGAATCG GGAGCGGCGA TACCGTAAAG CACGAGGAAG 400 ATCCAGAAAA GCGGCCATTT TCCACCATGA TATTCGGCAA GCAGGCATCG CCATGGGTCA CGACGAGATC CTCGCCGTCG GGCATGCGCG CCTTGAGCCT 600 GGCGAACAGI ICGCITGCG CGAGCCCCIG AIGCICITICG ICCAGAICAI CCIGAICGAC AAGACCGGCI ICCAICCGAG IACGIGCICG CICGAIGCGA 700 TETTICECTI GETGETCEAA TGGGCAGGTA GCCGGATCAA GCGTATGCAG CCGCCGCATT GCATCAGCCA TGATGGATAC TTTCTCGGCA GGAGCAAGGT 800 GAGATGACAG GAGATCCTGC CCGGCACTT CGCCCAATAG CAGCCAGTCC CTTCCCGCTT CAGTGACAAC GTCGAGCACA GCTGCGCAAG GAACGCCCGT 900 CGGTCAGCCC ATTCGCCGCC AAGCTCTTCA GCAATATCAC GGGTAGCCAA CGCTATGTCC TGATAGCGGT CCGCCACACC CAGCCGGCCA CAGTCGATGA 500 AstII

CANTENTICE ANACENTEET CATCENTIET CITICATICAT GEATTACGEG TITACCEGGG CECEGEATG CATATGATET TANGGECTAG GTETAGAGTE 2200 GCGGTAGTTT ATCACAGTTA AATTGCTAAG GCAGTCAGGC ACCGTGTATG AAATCTAACA ATGCGCTCAT CGTCATCCTC GGCACCGTCA CCCTGGATGC 2500 TGACCCAGGT ATCGTATTAA TYGATCTGCA TCAACTTAAC GTAAAAACAA CTYCAGACAA TACAAAATCAG CGACACTGAA TACGGGGCAA CCTCATGTCC 1900 TITAAATAAA AACATTAAGT TATGACGAAG AAGAACGGAA ACGCCTTAAA CCGGAAAAIT TTCATAAATA GCGAAAAACC GCGAGGTCGC GGCCCGTAA 1700 CCTGTCGGAI CACCGGAAAG GACCCGTAAA GTGATAATGA TTATCATCTA CATATCACAA CGTGCGTGGA GGCCATCAAA CCACGTCAAA TAATCAATTA 1808 CCCCCCCCC CTGCAGGTCG ACGGATCCCC GGGTACCATA AGTAGAAGCA GCAACCCAAG TAGCTTTACC AGCATCCGGT TCAACCAGCA TAGTAAGAAT 2000 GACTEGETTY CIACGTETTE CECTTECTTY AGCAGECETY GEGECETGAG TECTTGEGE AGEGTGAAGE TAGETTGGET GEAGGGGGGG GGGGGAACT 1500 AGCCCACTGC AAGCTACCTG CITICICITI GCGCITGCGI ITICCCITGI CCAGAIAGCC CAGIAGCTGA CAITCATCG GGGTCAGCAC CGITICIGCG 1400 CTTACTGGAC ATCGCCAGTT CTTCGAACAG TGCGCCAACT ACCAGCTCT TCTGCAGTTC ATTCAGGGCA [CCGGAGAACG TGGGGCAAT CCATCTTGTT]

AluIBpaI ApaI** NsiINdeI** StuI** XbaI** XbaI** TITIGITITIGA CGCCATTAGC GIACGIAACA ATCCTCGTTA AAGGACAAGG ACCTGAGCGG AAGTGTATCG IACAGTAGAGC GGAGIAIAGI AGIAIAGTCT ATAGTEEGIG GAATTATTAT ATTTATETEC GACGATATIC TEATEAGGIGA AATECAGGIG AATTETEATG TITGACAGIT TATEATGGAT AAGETITAAT HindIII BamHI SneBI SalI

:IGURE 2 B

TGTAGGCATA GGCTTGGTTA TGCCGGTACT GCCGGGCCTC TTGCGGGAT

SUBSTITUTE SHEET

FIGURE 8

10/12

PCT/EP93/01995

11/12

FIGURE 9 B

WO 94/02617

FIGURE 10

THIS PAGE BLANK (USPTO)