Momento de Retroalimentación: Módulo 1 Construcción de un modelo estadístico base (Portafolio Implementación)

Descripción:

La contaminación por mercurio de peces en el agua dulce comestibles es una amenaza directa contra nuestra salud. Se llevó a cabo un estudio reciente en 53 lagos de Florida con el fin de examinar los factores que influían en el nivel de contaminación por mercurio. Las variables que se midieron se encuentran en mercurio.csv Descargar mercurio.csv y su descripción es la siguiente:

Alrededor de la principal pregunta de investigación que surge en este estudio: ¿Cuáles son los principales factores que influyen en el nivel de contaminación por mercurio en los peces de los lagos de Florida? pueden surgir preguntas paralelas que desglosan esta pregunta general:

- 1. ¿Hay evidencia para suponer que la concentración promedio de mercurio en los lagos es dañino para la salud humana? Considera que las normativas de referencia para evaluar los niveles máximos de Hg (Reglamento 34687-MAG y los reglamentos internacionales CE 1881/2006 y Codex Standard 193-1995) establecen que la concentración promedio de mercurio en productos de la pesca no debe superar los 0.5 mg de Hg/kg.
- 2. ¿Habrá diferencia significativa entre la concentración de mercurio por la edad de los peces?
- 3. Si el muestreo se realizó lanzando una red y analizando los peces que la red encontraba ¿Habrá influencia del número de peces encontrados en la concentración de mercurio en los peces?
- 4. ¿Las concentraciones de alcalinidad, clorofila, calcio en el agua del lago influyen en la concentración de mercurio de los peces?

Preparación de los datos

```
In [72]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   # from scipy.stats import norm
   import statsmodels.api as sm
   #from scipy import stats
   # plt.style.use('ggplot')
   from statsmodels.graphics.factorplots import interaction_plot
   import pingouin as pg
   import scipy.stats as stats
   import statsmodels.formula.api as sfm
```

```
In [2]: df = pd.read_csv("mercurio.csv")
```

In [3]: df

Out[3]:

	X1	X2	Х3	X4	X5	Х6	Х7	X8	Х9	X10	X11	X12
0	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43	1.53	1
1	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90	1.33	0
2	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06	0.04	0
3	4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84	0.44	0
4	5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50	1.33	1
5	6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	0.48	0.25	1
6	7	Cherry	5.2	5.4	2.8	3.4	0.48	10	0.30	0.72	0.45	1
7	8	Crescent	71.4	8.1	55.2	33.7	0.19	12	80.0	0.38	0.16	1
8	9	Deer Point	26.4	5.8	9.2	1.6	0.83	24	0.26	1.40	0.72	1
9	10	Dias	4.8	6.4	4.6	22.5	0.81	12	0.41	1.47	0.81	1
10	11	Dorr	6.6	5.4	2.7	14.9	0.71	12	0.52	0.86	0.71	1
11	12	Down	16.5	7.2	13.8	4.0	0.50	12	0.10	0.73	0.51	1
12	13	Eaton	25.4	7.2	25.2	11.6	0.49	7	0.26	1.01	0.54	1
13	14	East Tohopekaliga	7.1	5.8	5.2	5.8	1.16	43	0.50	2.03	1.00	1
14	15	Farm-13	128.0	7.6	86.5	71.1	0.05	11	0.04	0.11	0.05	0
15	16	George	83.7	8.2	66.5	78.6	0.15	10	0.12	0.18	0.15	1
16	17	Griffin	108.5	8.7	35.6	80.1	0.19	40	0.07	0.43	0.19	1
17	18	Harney	61.3	7.8	57.4	13.9	0.77	6	0.32	1.50	0.49	1
18	19	Hart	6.4	5.8	4.0	4.6	1.08	10	0.64	1.33	1.02	1
19	20	Hatchineha	31.0	6.7	15.0	17.0	0.98	6	0.67	1.44	0.70	1
20	21	lamonia	7.5	4.4	2.0	9.6	0.63	12	0.33	0.93	0.45	1
21	22	Istokpoga	17.3	6.7	10.7	9.5	0.56	12	0.37	0.94	0.59	1
22	23	Jackson	12.6	6.1	3.7	21.0	0.41	12	0.25	0.61	0.41	0
23	24	Josephine	7.0	6.9	6.3	32.1	0.73	12	0.33	2.04	0.81	1
24	25	Kingsley	10.5	5.5	6.3	1.6	0.34	10	0.25	0.62	0.42	1
25	26	Kissimmee	30.0	6.9	13.9	21.5	0.59	36	0.23	1.12	0.53	1
26	27	Lochloosa	55.4	7.3	15.9	24.7	0.34	10	0.17	0.52	0.31	1
27	28	Louisa	3.9	4.5	3.3	7.0	0.84	8	0.59	1.38	0.87	1
28	29	Miccasukee	5.5	4.8	1.7	14.8	0.50	11	0.31	0.84	0.50	0
29	30	Minneola	6.3	5.8	3.3	0.7	0.34	10	0.19	0.69	0.47	1
30	31	Monroe	67.0	7.8	58.6	43.8	0.28	10	0.16	0.59	0.25	1
31	32	Newmans	28.8	7.4	10.2	32.7	0.34	10	0.16	0.65	0.41	1
32	33	Ocean Pond	5.8	3.6	1.6	3.2	0.87	12	0.31	1.90	0.87	0
33	34	Ocheese Pond	4.5	4.4	1.1	3.2	0.56	13	0.25	1.02	0.56	0

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10	X11	X12
34	35	Okeechobee	119.1	7.9	38.4	16.1	0.17	12	0.07	0.30	0.16	1
35	36	Orange	25.4	7.1	8.8	45.2	0.18	13	0.09	0.29	0.16	1
36	37	Panasoffkee	106.5	6.8	90.7	16.5	0.19	13	0.05	0.37	0.23	1
37	38	Parker	53.0	8.4	45.6	152.4	0.04	4	0.04	0.06	0.04	0
38	39	Placid	8.5	7.0	2.5	12.8	0.49	12	0.31	0.63	0.56	1
39	40	Puzzle	87.6	7.5	85.5	20.1	1.10	10	0.79	1.41	0.89	1
40	41	Rodman	114.0	7.0	72.6	6.4	0.16	14	0.04	0.26	0.18	1
41	42	Rousseau	97.5	6.8	45.5	6.2	0.10	12	0.05	0.26	0.19	1
42	43	Sampson	11.8	5.9	24.2	1.6	0.48	10	0.27	1.05	0.44	1
43	44	Shipp	66.5	8.3	26.0	68.2	0.21	12	0.05	0.48	0.16	1
44	45	Talquin	16.0	6.7	41.2	24.1	0.86	12	0.36	1.40	0.67	1
45	46	Tarpon	5.0	6.2	23.6	9.6	0.52	12	0.31	0.95	0.55	1
46	51	Tohopekaliga	25.6	6.2	12.6	27.7	0.65	44	0.30	1.10	0.58	1
47	47	Trafford	81.5	8.9	20.5	9.6	0.27	6	0.04	0.40	0.27	0
48	48	Trout	1.2	4.3	2.1	6.4	0.94	10	0.59	1.24	0.98	1
49	49	Tsala Apopka	34.0	7.0	13.1	4.6	0.40	12	0.08	0.90	0.31	1
50	50	Weir	15.5	6.9	5.2	16.5	0.43	11	0.23	0.69	0.43	1
51	52	Wildcat	17.3	5.2	3.0	2.6	0.25	12	0.15	0.40	0.28	1
52	53	Yale	71.8	7.9	20.5	8.8	0.27	12	0.15	0.51	0.25	1

```
In [4]: columns = np.array(["id", "nombre", "alcalinidad", "PH", "calcio", "clorofila", "
In [5]: df.columns = columns
In [6]: df = df.set_index('id')
```

In [7]: df

Out[7]:

	nombre	alcalinidad	РН	calcio	clorofila	mercurio	npeces	minmercurio	maxmercurio e
id									
1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43
2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90
3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06
4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84
5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50
6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	0.48
7	Cherry	5.2	5.4	2.8	3.4	0.48	10	0.30	0.72
8	Crescent	71.4	8.1	55.2	33.7	0.19	12	0.08	0.38
9	Deer Point	26.4	5.8	9.2	1.6	0.83	24	0.26	1.40
10	Dias	4.8	6.4	4.6	22.5	0.81	12	0.41	1.47
11	Dorr	6.6	5.4	2.7	14.9	0.71	12	0.52	0.86
12	Down	16.5	7.2	13.8	4.0	0.50	12	0.10	0.73
13	Eaton	25.4	7.2	25.2	11.6	0.49	7	0.26	1.01
14	East Tohopekaliga	7.1	5.8	5.2	5.8	1.16	43	0.50	2.03
15	Farm-13	128.0	7.6	86.5	71.1	0.05	11	0.04	0.11
16	George	83.7	8.2	66.5	78.6	0.15	10	0.12	0.18
17	Griffin	108.5	8.7	35.6	80.1	0.19	40	0.07	0.43
18	Harney	61.3	7.8	57.4	13.9	0.77	6	0.32	1.50
19	Hart	6.4	5.8	4.0	4.6	1.08	10	0.64	1.33
20	Hatchineha	31.0	6.7	15.0	17.0	0.98	6	0.67	1.44
21	lamonia	7.5	4.4	2.0	9.6	0.63	12	0.33	0.93
22	Istokpoga	17.3	6.7	10.7	9.5	0.56	12	0.37	0.94
23	Jackson	12.6	6.1	3.7	21.0	0.41	12	0.25	0.61
24	Josephine	7.0	6.9	6.3	32.1	0.73	12	0.33	2.04
25	Kingsley	10.5	5.5	6.3	1.6	0.34	10	0.25	0.62
26	Kissimmee	30.0	6.9	13.9	21.5	0.59	36	0.23	1.12
27	Lochloosa	55.4	7.3	15.9	24.7	0.34	10	0.17	0.52
28	Louisa	3.9	4.5	3.3	7.0	0.84	8	0.59	1.38
29	Miccasukee	5.5	4.8	1.7	14.8	0.50	11	0.31	0.84
30	Minneola	6.3	5.8	3.3	0.7	0.34	10	0.19	0.69
31	Monroe	67.0	7.8	58.6	43.8	0.28	10	0.16	0.59
32	Newmans	28.8	7.4	10.2	32.7	0.34	10	0.16	0.65

	nombre	alcalinidad	PH	calcio	clorofila	mercurio	npeces	minmercurio	maxmercurio e
id									
33	Ocean Pond	5.8	3.6	1.6	3.2	0.87	12	0.31	1.90
34	Ocheese Pond	4.5	4.4	1.1	3.2	0.56	13	0.25	1.02
35	Okeechobee	119.1	7.9	38.4	16.1	0.17	12	0.07	0.30
36	Orange	25.4	7.1	8.8	45.2	0.18	13	0.09	0.29
37	Panasoffkee	106.5	6.8	90.7	16.5	0.19	13	0.05	0.37
38	Parker	53.0	8.4	45.6	152.4	0.04	4	0.04	0.06
39	Placid	8.5	7.0	2.5	12.8	0.49	12	0.31	0.63
40	Puzzle	87.6	7.5	85.5	20.1	1.10	10	0.79	1.41
41	Rodman	114.0	7.0	72.6	6.4	0.16	14	0.04	0.26
42	Rousseau	97.5	6.8	45.5	6.2	0.10	12	0.05	0.26
43	Sampson	11.8	5.9	24.2	1.6	0.48	10	0.27	1.05
44	Shipp	66.5	8.3	26.0	68.2	0.21	12	0.05	0.48
45	Talquin	16.0	6.7	41.2	24.1	0.86	12	0.36	1.40
46	Tarpon	5.0	6.2	23.6	9.6	0.52	12	0.31	0.95
51	Tohopekaliga	25.6	6.2	12.6	27.7	0.65	44	0.30	1.10
47	Trafford	81.5	8.9	20.5	9.6	0.27	6	0.04	0.40
48	Trout	1.2	4.3	2.1	6.4	0.94	10	0.59	1.24
49	Tsala Apopka	34.0	7.0	13.1	4.6	0.40	12	0.08	0.90
50	Weir	15.5	6.9	5.2	16.5	0.43	11	0.23	0.69
52	Wildcat	17.3	5.2	3.0	2.6	0.25	12	0.15	0.40
53	Yale	71.8	7.9	20.5	8.8	0.27	12	0.15	0.51

Exploración de los Datos

```
In [8]: df.describe()
```

Out[8]:

	alcalinidad	PH	calcio	clorofila	mercurio	npeces	minmercurio	maxmercı
count	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000
mean	37.530189	6.590566	22.201887	23.116981	0.527170	13.056604	0.279811	0.874
std	38.203527	1.288449	24.932574	30.816321	0.341036	8.560677	0.226406	0.522
min	1.200000	3.600000	1.100000	0.700000	0.040000	4.000000	0.040000	0.060
25%	6.600000	5.800000	3.300000	4.600000	0.270000	10.000000	0.090000	0.480
50%	19.600000	6.800000	12.600000	12.800000	0.480000	12.000000	0.250000	0.840
75%	66.500000	7.400000	35.600000	24.700000	0.770000	12.000000	0.330000	1.330
max	128.000000	9.100000	90.700000	152.400000	1.330000	44.000000	0.920000	2.040

→

```
In [9]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 53 entries, 1 to 53
Data columns (total 11 columns):
```

```
#
   Column
                 Non-Null Count
                                 Dtype
    ----
                 _____
0
   nombre
                 53 non-null
                                 object
1
   alcalinidad 53 non-null
                                 float64
                 53 non-null
                                 float64
2
3
   calcio
                 53 non-null
                                 float64
4
                 53 non-null
                                 float64
   clorofila
5
   mercurio
                 53 non-null
                                 float64
                 53 non-null
                                 int64
6
   npeces
7
   minmercurio 53 non-null
                                 float64
8
   maxmercurio 53 non-null
                                 float64
9
   estimacion
                 53 non-null
                                 float64
10
   edad
                 53 non-null
                                 int64
```

dtypes: float64(8), int64(2), object(1)

memory usage: 5.0+ KB

```
In [10]: """sigma = df.alcalinidad.std()
    mu = df.alcalinidad.mean()
    domain = np.linspace(df.alcalinidad.min(), df.alcalinidad.max())"""
```

```
In [11]: # plt.plot(domain, norm.pdf(domain, mu, sigma))
    plt.hist(df.alcalinidad, edgecolor = "black", alpha = 0.5, density = True)
    plt.show()
```



```
In [13]: df.hist(figsize = (15,15))
Out[13]: array([[<AxesSubplot:title={'center':'alcalinidad'}>,
                     <AxesSubplot:title={'center':'PH'}>,
                     <AxesSubplot:title={'center':'calcio'}>],
                    [<AxesSubplot:title={'center':'clorofila'}>,
                     <AxesSubplot:title={'center':'mercurio'}>,
                     <AxesSubplot:title={'center':'npeces'}>],
                    [<AxesSubplot:title={'center':'minmercurio'}>,
                     <AxesSubplot:title={'center':'maxmercurio'}>,
                     <AxesSubplot:title={'center':'estimacion'}>],
                    [<AxesSubplot:title={'center':'edad'}>, <AxesSubplot:>,
                     <AxesSubplot:>]], dtype=object)
                         alcalinidad
                                                                                             calcio
                                                                                25
             20
                                               12
                                                                                20
                                               10
             15
                                                                                15
             10
                                                                                10
                                                                                 5
                   20
                       40
                           60
                              80
                                  100
                                     120
                                                                                        20
                                                                                             40
                                                                                                  60
                                                                                                        80
                          clorofila
                                                           mercurio
                                                                                             npeces
             30 -
                                                                                25
                                               10
             25
                                                                                20
             20
                                                                                15
             15
                                                                                10
             10
                                               2
                       50
                           75
                              100
                                                0.00
                                                         0.50
                                                             0.75
                                                                  1.00
                        minmercurio
                                                                                            estimacion
                                                                                10
            15.0
                                                                                 8
            12.5
            10.0
             7.5
             5.0
             2.5
             0.0
                    0.2
                                                      0.5
                                                            1.0
                                                                                     0.25 0.50 0.75 1.00 1.25
                                                                  1.5
                           edad
             40
             30
             20
             10
```

0.0

0.2

In [14]: plt.hist(df.estimacion, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

In [15]: plt.hist(df.calcio, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

In [16]: df.corr()

Out[16]:

	alcalinidad	PH	calcio	clorofila	mercurio	npeces	minmercurio	maxn
alcalinidad	1.000000	0.719166	0.832604	0.477531	-0.593897	0.010291	-0.525357	-0
PH	0.719166	1.000000	0.577133	0.608483	-0.575400	-0.018606	-0.541965	- 0
calcio	0.832604	0.577133	1.000000	0.409914	-0.400680	-0.089379	-0.332476	- 0
clorofila	0.477531	0.608483	0.409914	1.000000	-0.491375	-0.011820	-0.400459	-0
mercurio	-0.593897	-0.575400	-0.400680	-0.491375	1.000000	0.079034	0.927205	О
npeces	0.010291	-0.018606	-0.089379	-0.011820	0.079034	1.000000	-0.081653	О
minmercurio	-0.525357	-0.541965	-0.332476	-0.400459	0.927205	-0.081653	1.000000	О
maxmercurio	-0.604796	-0.551815	-0.407917	-0.484972	0.915864	0.161092	0.765353	1
estimacion	-0.627958	-0.612849	-0.464409	-0.506442	0.959215	0.025800	0.919089	О
edad	-0 094939	0.038000	-0 002111	-0 283002	0 108739	0.207956	0 100662	0

```
In [17]: # clf = clf.select_dtypes(include=['float64','int'])
    corr = df.corr(method = 'pearson')
    f, ax = plt.subplots(figsize=(12, 10))
    mask = np.triu(np.ones_like(corr, dtype=bool))
    cmap = sns.diverging_palette(230, 20, as_cmap=True)
    sns.heatmap(corr, annot=True, mask = mask, cmap=cmap)
    plt.show()
```



```
In [18]: plt.hist(df.clorofila, edgecolor = "black", alpha = 0.5, density = True)
    plt.show()
```



```
In [19]: x = df['mercurio']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[19]: <matplotlib.collections.PathCollection at 0x28fd330eeb0>


```
In [20]: x = df['PH']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[20]: <matplotlib.collections.PathCollection at 0x28fd392f700>


```
In [21]: x = df['calcio']
y = df['alcalinidad']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[21]: <matplotlib.collections.PathCollection at 0x28fd3a85040>


```
In [22]: x = df['estimacion']
y = df['mercurio']
fig,ax = plt.subplots()
ax.scatter(x,y)
```

Out[22]: <matplotlib.collections.PathCollection at 0x28fd3ae8370>

In [23]: plt.hist(df.mercurio, edgecolor = "black", alpha = 0.5, density = True)
 plt.show()

Moda

Distribuciones

```
In [25]: #datos = datos[(datos.age > 15) & (datos.male ==0)]
    mercurio = df['mercurio']
    alcalinidad = df['alcalinidad']
    PH = df['PH']
    calcio = df['calcio']
    npeces = df['npeces']
```



```
# Histograma + curva normal teórica
# Valores de la media (mu) y desviación típica (sigma) de los datos
mu, sigma = stats.norm.fit(alcalinidad)
# Valores teóricos de la normal en el rango observado
x hat = np.linspace(min(alcalinidad), max(alcalinidad), num=100)
y_hat = stats.norm.pdf(x_hat, mu, sigma)
# Gráfico
fig, ax = plt.subplots(figsize=(7,4))
ax.plot(x_hat, y_hat, linewidth=2, label='normal')
ax.hist(x=alcalinidad, density=True, bins=30, color="#3182bd", alpha=0.5)
ax.plot(alcalinidad, np.full like(alcalinidad, -0.01), '|k', markeredgewidth=1)
ax.set_title('Distribución alcalinidad')
ax.set_xlabel('alcalinidad')
ax.set_ylabel('Densidad de probabilidad')
ax.legend();
```


ANOVA

QQplots

```
In [31]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          mercurio,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2,
              = ax
          ax
       ax.set_title('Gráfico Q-Q del mercurio', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [32]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          alcalinidad,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2,
              = ax
          ax
       ax.set_title('Gráfico Q-Q del alcalinidad', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [33]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          PH,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2,
              = ax
          ax
       ax.set_title('Gráfico Q-Q del PH', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [34]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          calcio,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2,
              = ax
          ax
       ax.set_title('Gráfico Q-Q del calcio', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```



```
In [35]: # Gráfico Q-Q
       fig, ax = plt.subplots(figsize=(7,4))
       sm.qqplot(
          npeces,
          fit
              = True,
          line = 'q',
          alpha = 0.4,
          lw
              = 2,
              = ax
          ax
       ax.set_title('Gráfico Q-Q del npeces', fontsize = 10,
                 fontweight = "bold")
       ax.tick_params(labelsize = 7)
```


Análisis de Hipótesis

```
In [36]: print('Kursotis:', stats.kurtosis(mercurio))
print('Skewness:', stats.skew(mercurio))
```

Kursotis: -0.5392793261283986
Skewness: 0.615985316604268

```
In [37]: print('Kursotis:', stats.kurtosis(alcalinidad))
        print('Skewness:', stats.skew(alcalinidad))
        Kursotis: -0.3723123427917301
        Skewness: 0.995971540190347
In [38]: print('Kursotis:', stats.kurtosis(PH))
        print('Skewness:', stats.skew(PH))
        Kursotis: -0.5316990819046379
        Skewness: -0.25300371445201947
In [39]: print('Kursotis:', stats.kurtosis(calcio))
        print('Skewness:', stats.skew(calcio))
        Kursotis: 0.7533350422627985
        Skewness: 1.3423994221171138
In [40]: print('Kursotis:', stats.kurtosis(npeces))
        print('Skewness:', stats.skew(npeces))
        Kursotis: 6.358775112078357
        Skewness: 2.655682430492345
       ##
In [41]: # Shapiro-Wilk test
        # -----
        shapiro test = stats.shapiro(mercurio)
        shapiro_test
Out[41]: ShapiroResult(statistic=0.9421269297599792, pvalue=0.012508947402238846)
In [42]: # Shapiro-Wilk test
        shapiro test = stats.shapiro(alcalinidad)
        shapiro_test
Out[42]: ShapiroResult(statistic=0.8203012943267822, pvalue=1.5374524764411035e-06)
In [43]: # Shapiro-Wilk test
        # ------
        shapiro test = stats.shapiro(PH)
        shapiro_test
Out[43]: ShapiroResult(statistic=0.9809678196907043, pvalue=0.5551783442497253)
```

```
In [44]: # Shapiro-Wilk test
       shapiro test = stats.shapiro(calcio)
       shapiro test
Out[44]: ShapiroResult(statistic=0.7913432121276855, pvalue=3.090418942974793e-07)
In [45]: # Shapiro-Wilk test
       shapiro test = stats.shapiro(npeces)
       shapiro_test
Out[45]: ShapiroResult(statistic=0.5829699039459229, pvalue=4.9876252433689316e-11)
In [46]: # D'Agostino's K-squared test
       k2, p_value = stats.normaltest(mercurio)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 4.220529123327874, p-value = 0.1212058957577724
In [47]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(alcalinidad)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 8.45127698441738, p-value = 0.014615999527870203
In [48]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(calcio)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 15.16551242729508, p-value = 0.0005091559447168802
In [49]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(npeces)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 47.47518669393924, p-value = 4.9078829412583656e-11
In [50]: # D'Agostino's K-squared test
       k2, p value = stats.normaltest(PH)
       print(f"Estadístico = {k2}, p-value = {p value}")
       Estadístico = 1.1920185572316295, p-value = 0.5510061663930924
       De acuerdo a los análisis realizados, en las variables de alcalinidad y calcio se rechaza la
```

De acuerdo a los análisis realizados, en las variables de alcalinidad y calcio se rechaza la normalidad.

```
In [51]: df.boxplot(column=['alcalinidad', 'PH', 'calcio', 'mercurio', 'npeces'])
```

Out[51]: <AxesSubplot:>


```
In [52]: df.boxplot(column='PH')
```

Out[52]: <AxesSubplot:>


```
In [53]: df.boxplot(column='calcio')
```

Out[53]: <AxesSubplot:>


```
In [54]: df.boxplot(column='mercurio')
```

Out[54]: <AxesSubplot:>


```
In [55]: df.boxplot(column='npeces')
```

Out[55]: <AxesSubplot:>

La variable con valores atípicos notables es npeces.

```
In [56]: df.groupby('mercurio').size()
Out[56]: mercurio
           0.04
                    2
           0.05
                    1
           0.10
                    1
           0.15
                    1
           0.16
                    1
           0.17
                    1
          0.18
                    1
           0.19
                    3
          0.21
                    1
          0.25
                    1
           0.27
                    3
          0.28
                    1
                    4
          0.34
          0.40
                    1
          0.41
                    1
           0.43
                    1
           0.44
                    1
                    2
           0.48
          0.49
                    2
                    2
          0.50
          0.52
                    1
                    2
           0.56
           0.59
                    1
          0.63
                    1
          0.65
                    1
          0.71
                    1
          0.73
                    1
           0.77
                    1
           0.81
                    1
          0.83
                    1
          0.84
                    1
          0.86
                    1
          0.87
                    1
           0.94
                    1
           0.98
                    1
           1.08
                    1
          1.10
                    1
           1.16
                    1
          1.20
                    1
          1.23
                    1
           1.33
                    1
           dtype: int64
           fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.boxplot(x="alcalinidad", y="mercurio", data=df, ax=ax)
```

fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.boxplot(x="alcalinidad", y="mercurio", data=df, ax=ax) sns.swarmplot(x="alcalinidad", y="mercurio", data=df, color='black', alpha = 0.5, ax=ax);

```
In [57]: fvalue, pvalue = stats.f_oneway(df['alcalinidad'], df['PH'], df['calcio'], df['ng
```

```
In [58]: print(fvalue, pvalue)
          17.701446360772287 2.847726889143591e-10
In [59]: fvalue, pvalue = stats.f oneway(df['npeces'], df['mercurio'])
In [60]: print(fvalue, pvalue)
          113.35321181638591 2.416358468853054e-18
In [61]: fvalue, pvalue = stats.f_oneway(df['alcalinidad'], df['mercurio'])
In [62]: print(fvalue, pvalue)
          49.717429234590995 2.0203527876566043e-10
          El p-value es menor a 0.05 por lo que se rechaza la hipótesis nula.
          Regression
In [63]: df.drop(['estimacion', 'nombre'], axis=1, inplace=True)
In [64]: X = df.iloc[:,df.columns != 'mercurio']
          y = df.mercurio
In [65]: from sklearn.model selection import train test split
          from sklearn.linear_model import LogisticRegression
          from sklearn import preprocessing
          from sklearn.metrics import accuracy score, classification report, confusion matr
In [66]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random]
In [70]: df.head()
Out[70]:
              alcalinidad PH calcio clorofila mercurio npeces minmercurio maxmercurio edad
           id
           1
                    5.9 6.1
                               3.0
                                       0.7
                                               1.23
                                                         5
                                                                  0.85
                                                                               1.43
                                                                                       1
           2
                    3.5 5.1
                               1.9
                                       3.2
                                               1.33
                                                         7
                                                                  0.92
                                                                               1.90
                                                                                       0
           3
                                                                               0.06
                  116.0 9.1
                              44.1
                                     128.3
                                               0.04
                                                         6
                                                                  0.04
                                                                                       0
                                                                               0.84
           4
                   39.4 6.9
                              16.4
                                       3.5
                                               0.44
                                                        12
                                                                  0.13
                                                                                       0
                    2.5 4.6
                                                                  0.69
           5
                               2.9
                                       1.8
                                               1.20
                                                        12
                                                                               1.50
                                                                                       1
```


In [90]: lm.summary()

Out[90]:

OLS Regression Results

Dep. Variable:	mercurio	R-squared:	0.464
Model:	OLS	Adj. R-squared:	0.395
Method:	Least Squares	F-statistic:	6.650
Date:	Sat, 17 Sep 2022	Prob (F-statistic):	4.12e-05
Time:	16:21:54	Log-Likelihood:	-1.1337
No. Observations:	53	AIC:	16.27
Df Residuals:	46	BIC:	30.06
Df Model:	6		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	0.9289	0.270	3.444	0.001	0.386	1.472	
alcalinidad	-0.0060	0.002	-2.784	0.008	-0.010	-0.002	
PH	-0.0391	0.049	-0.798	0.429	-0.138	0.059	
calcio	0.0048	0.003	1.728	0.091	-0.001	0.010	
clorofila	-0.0026	0.002	-1.564	0.125	-0.006	0.001	
npeces	0.0048	0.005	1.054	0.297	-0.004	0.014	
edad	-0.0348	0.108	-0.321	0.750	-0.253	0.184	

 Omnibus:
 6.335
 Durbin-Watson:
 1.468

 Prob(Omnibus):
 0.042
 Jarque-Bera (JB):
 5.988

 Skew:
 0.823
 Prob(JB):
 0.0501

 Kurtosis:
 3.042
 Cond. No.
 518.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

El valor R-squared de 0.46 por lo que se explica el 46% del modelo. Además, las variables obtuvieron un p-value menor a 0.05, por lo que se encuentran en la zona de aceptación, con valores negativos en algunos casos que afectan negativamente la concentración del mercurio.

In []: