Problem (Problem 1): Let $a_1, \ldots, a_n \in \mathbb{R}$. Suppose that for each $i \in \{1, \ldots, n\}$, we are given $m_i \ge 0$ and m+1 numbers $b_{i0}, \ldots, b_{im_i} \in \mathbb{R}$. Use the Chinese Remainder Theorem to show that there exists a polynomial $f(x) \in \mathbb{R}[x]$ such that

$$f(a_i) = b_{i0}$$

$$f'(a_i) = b_{i1}$$

$$\vdots$$

$$f^{(m_i)} = b_{im_i}.$$

Solution: We observe that if we take

$$f(x) = q_{01}(x)(x - a_1) + b_{10},$$

then

$$f'(x) = q_{01}(x) + q'_{01}(x)(x - a_1),$$

so that

$$f'(a_1) = q_{01}(a_1)$$

and

$$f'(x) = q_{11}(x)(x - a_1) + b_{11}$$

meaning

$$f(x) = (q_{11}(x)(x - a_1) + b_{11})(x - a_1) + b_{10}.$$

Inductively, we thus get the system of congruences

$$\begin{split} f(x) &\equiv b_{10} + b_{11}(x - a_1) + \dots + b_{1m_1}(x - a_1)^{m_1 - 1} \bmod (x - a_1)^{m_1} \\ &\equiv b_{20} + b_{21}(x - a_2) + \dots + b_{2m_2}(x - a_2)^{m_2 - 1} \bmod (x - a_2)^{m_2} \\ &\vdots \\ &\equiv b_{n0} + b_{n1}(x - a_n) + \dots + b_{nm_n}(x - a_n)^{m_n - 1} \bmod (x - a_n)^{m_n}. \end{split}$$

Since the family of ideals $\{((x-a_1)^{m_1}), \dots, ((x-a_n)^{m_n})\}$ are pairwise coprime, the Chinese Remainder Theorem implies that some $f(x) \in \mathbb{R}[x]$ satisfies this system of congruences.

Problem (Problem 4):

- (a) Let R, S be commutative rings with 1, and let $f: R \to S$ be a ring homomorphism such that $f(1_R) = 1_S$. Show that for any prime ideal $P \subseteq S$, the preimage $f^{-1}(P)$ is a prime ideal of R.
- (b) Give an example of a ring homomorphism $f: R \to S$ with $f(1_R) = 1_S$ and a maximal ideal $M \subseteq S$ such that $f^{-1}(M)$ is not a maximal ideal of R.

Solution:

- (a)
- (b) Let $R = \mathbb{Z}$ and $S = \mathbb{Q}$, with $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ being the natural inclusion. Since \mathbb{Q} is a field, the only maximal ideal of \mathbb{Q} is $\{0\}$, but $\{0\} = f^{-1}(\{0\})$ is not maximal in \mathbb{Z} since there are other proper ideals in \mathbb{Z} .