Search via Parallel Lévy Walks on \mathbb{Z}^2

Francesco d'Amore

Joint work with Andrea Clementi, George Giakkoupis, and Emanuele Natale

PODC 2021 University of Salerno Virtual Event 26-30 July 2021

What are Lévy walks?

Lévy walk (informal):

A Lévy walk is a random walk whose step-length density distribution is proportional to a power-law, namely, for each $d \in \mathbb{R}$, $f(d) \sim 1/d^{\alpha}$, for some $\alpha > 1$

Note: the speed of the walk is constant

Movement models and foraging theory

Lévy walks are used to model **movement patterns** [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Rhytidoponera mayri workers. Credit: Associate Professor Heloise Gibb, La Trobe University

Movement models and foraging theory

Lévy walks are used to model **movement patterns** [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Widely employed in the Foraging theory

Rhytidoponera mayri workers. Credit: Associate Professor Heloise Gibb, La Trobe University

Lévy walk optimality

Foraging theory

- distribution of food locations in \mathbb{R}^n
- uninformed walker searching for food

[Viswanathan et al., Nature 1999]: Lévy walk with exponent $\alpha=2$ is optimal in any dimension, with some assumptions

maximum expected food discovery rate

Lévy walk optimality

Foraging theory

- ullet distribution of food locations in \mathbb{R}^n
- uninformed walker searching for food

[Viswanathan et al., Nature 1999]: Lévy walk with exponent $\alpha=2$ is optimal in any dimension, with some assumptions

maximum expected food discovery rate

Other search problems

- a target in the bidimensional thorus T
- uninformed walker searching for it

[Guinard et Korman, Sciences Advances 2021]: (truncated) Lévy walk with exponent $\alpha=2$ is optimal—

as fast as possible

The Lévy flight foraging hypothesis

Formulation of an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

The Lévy flight foraging hypothesis

Formulation of an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

These hypothesis shaped much of subsequent research

The Lévy flight foraging hypothesis

Formulation of an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

These hypothesis shaped much of subsequent research

We focus on one search problem:

the ANTS problem

The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

- Setting: \bullet k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
 - time is synchronous and marked by a global clock
 - ullet one special node $\mathcal{P} \in \mathbb{Z}^2$, the *target*, placed by an adversary at unknown (Manhattan) distance \(\ell \) from the origin

The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

- Setting: \bullet k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
 - time is synchronous and marked by a global clock
 - one special node $\mathcal{P} \in \mathbb{Z}^2$, the target, placed by an adversary at unknown (Manhattan) distance ℓ from the origin

Task: find the target as fast as possible

A lower bound on the hitting time

[Feinerman et al., PODC 2012] shows the following:

Lemma: for any $k \ge 1$, and for any search algorithm \mathcal{A} , the hitting time to find \mathcal{P} is $\Omega\left(\ell^2/k + \ell\right)$ both with constant probability and in expectation

Proof:

A lower bound on the hitting time

[Feinerman et al., PODC 2012] shows the following:

Lemma: for any $k \ge 1$, and for any search algorithm \mathcal{A} , the hitting time to find \mathcal{P} is $\Omega\left(\ell^2/k + \ell\right)$ both with constant probability and in expectation

Proof:

- $|B_{\ell}((0,0))| = \ell^2$
- set $t = \ell^2/(4k)$
- within time 2t, at most $2kt = \ell^2/2$ nodes covered
- the adversary locates the target in the other half of the ball
- ullet probability at least 1/2 the treasure is not found within time $2t+\ell$
- ullet H= first hitting time for the treasure, then

$$\mathbb{E}\left[\mathsf{H}\right] \geq 2t \cdot \frac{1}{2} + \ell = \ell^2/(4k) + \ell.$$

area covered by the k agents

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

We focus on the case **no advice**, **no communication**

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

We focus on the case no advice, no communication

Their best algorithm in this case achieves expected hitting time

$$\mathcal{O}\left(\left(\ell^2/k+\ell\right)\log^{1+\epsilon}\ell\right)$$
,

for any fixed constant $\epsilon > 0$

```
Uniform algorithm proposed in [Feinerman et Korman, DC 2017] (idea) i fix a ball of some radius \ell_i ii agents go to random nodes in the ball iii agents perform a spiral search of length d_i around the chosen nodes iv agents return to the source node v increase \ell_i and d_i, and repeat (i)-(v)
```

However, the above algorithm is not that natural

Uniform algorithm proposed in [Feinerman et Korman, DC 2017] (idea) i fix a ball of some radius ℓ_i

- ii agents go to random nodes in the ball
- iii agents perform a spiral search of length d_i around the chosen nodes
- iv agents return to the source node
- v increase ℓ_i and d_i , and repeat (i)-(v)

However, the above algorithm is not that natural

[Feinerman et Korman, DC 2017] proposes a more natural algorithm, the Harmonic search algorithm (HSA)

- uses power-law jump length distribution
- worsens performance, but increases probability: for any fixed constants $0 < \delta$, $\epsilon < 1$, with probability $1 - \epsilon$ the hitting time is

$$\mathcal{O}\left(\ell^{2+\delta}/k+\ell\right)$$

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(iii) we show how the Lévy walks can be employed to give a natural, almost-optimal solution to the ANTS problem (no advice, no communication)

(i) DEFINITION OF DISCRETE LÉVY WALK

(ii) ANALYSIS OF THE PARALLEL HITTING TIME

(iii) ALGORITHM FOR THE ANTS PROBLEM

Defining the discrete Lévy walk

Two choices to make:

- define the jump-length distribution
- define a notion of approximating a line-segment

Jump length distribution

- d = 0 with probability 1/2
- $d \ge 1$ with probability c_{α}/d^{α}

Approximation of a line-segment

Discrete Lévy walk

Let $\alpha > 1$ be a real constant

Lévy walk: the agent

- a) chooses a distance $d\in\mathbb{N}$ as follows: d=0 w.p. 1/2, and $d\geq 1$ w.p. c_{α}/d^{α}
- b) chooses a destination u.a.r. among those at distance d
- c) walks along an approximating path for d steps, one edge at a time, crossing d nodes
- d) repeats the procedure

(i) DEFINITION OF DISCRETE LÉVY WALK

(ii) ANALYSIS OF THE PARALLEL HITTING TIME

(iii) ALGORITHM FOR THE ANTS PROBLEM

Known facts about the continuous Lévy walk

- $1 < \alpha \le 2$ ballistic diffusion (fig.s A and B)
- $2 < \alpha < 3$ super diffusion (fig. C)
- $3 \le \alpha$ normal diffusion (fig. D)

15

Other known facts

Expected jump-length

- $1 < \alpha \le 2$: $\int_1^\infty x^{-\alpha+1} dx = \infty$
- $2 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Jump-length second moment

- $1 < \alpha \le 3$: $\int_1^\infty x^{-\alpha+2} dx = \infty$
- $3 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Other known facts

Expected jump-length

- $1 < \alpha \le 2$: $\int_1^\infty x^{-\alpha+1} dx = \infty$
- $2 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Jump-length second moment

- $1 < \alpha \le 3$: $\int_1^\infty x^{-\alpha+2} dx = \infty$
- $3 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

The secret lies in the range $2 < \alpha < 3...$

Three ranges for k and ℓ

Recall: ℓ target distance, k number of agents

Three different possible settings:

1. close target: $\ell \leq k/\mathsf{polylog}(k)$

2. far target: $k/\operatorname{polylog}(k) \leq \ell \leq \exp\left(k^{\Theta(1)}\right)$

3. very far target: $\exp(k^{\Theta(1)}) \le \ell$

Close target: $\ell \leq k/\text{polylog}(k)$

Best strategy = ballistic walks: any α in (1,2]

Close target: $\ell \le k/\text{polylog}(k)$

Best strategy = ballistic walks: any α in (1,2]

With high probability in ℓ , the hitting time is

$$\mathcal{O}\left(\ell\mathsf{polylog}\left(\ell\right)\right)$$

Close target:
$$\ell \leq k/\text{polylog}(k)$$

Best strategy = ballistic walks: any α in (1,2]

With high probability in ℓ , the hitting time is

$$\mathcal{O}\left(\ell\mathsf{polylog}\left(\ell\right)\right)$$

Recall: an event E depending on a parameter ℓ holds with high probability in ℓ if $\mathbb{P}(E) \geq 1 - \ell^{-\Theta(1)}$

Vey far target: $\exp\left(k^{\Theta(1)}\right) \leq \ell$

More problematic interval...

Vey far target:
$$\exp(k^{\Theta(1)}) \le \ell$$

More problematic interval...

Best strategy = diffusive walks: any α in $[3, +\infty)$ (brownian-like behavior)

With probability 1, the walks will eventually find the target

Vey far target: $\exp(k^{\Theta(1)}) \le \ell$

More problematic interval...

Best strategy = diffusive walks: any α in $[3, +\infty)$ (brownian-like behavior)

With probability 1, the walks will eventually find the target

If $\alpha=3-\epsilon$, with high probability the target is not found 19 - 3

Far target: $k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$

Best strategy: ... it depends!

Far target:
$$k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$$

Best strategy: ... it depends!

Fix $\alpha^* = 3 - \log k / \log \ell$: super-diffusive range

Far target:
$$k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$$

Best strategy: ... it depends!

Fix $\alpha^* = 3 - \log k / \log \ell$: super-diffusive range

The followings hold w.h.p. in ℓ

• if $\alpha = \alpha^* + \mathcal{O}(\log \log \ell / \log \ell)$, the hitting time is

$$\mathcal{O}\left(\left(\ell^2/k+\ell\right)\operatorname{polylog}\left(\ell\right)\right)$$

• if $\alpha = \alpha^* + \epsilon$, the hitting time is

$$\Omega\left(\left(\ell^2/k+\ell\right)\ell^c\right),\,$$

for some constant c > 0

20 - 3

• if $\alpha = \alpha^* - \epsilon$ the hitting time is *infinite*

How can we find α^* ?

Our contributions

(i) DEFINITION OF DISCRETE LÉVY WALK

(ii) ANALYSIS OF THE PARALLEL HITTING TIME

(iii) ALGORITHM FOR THE ANTS PROBLEM

How can we find α^* ?

How can we find α^* ?

We don't have to!

Algorithm: each agent u samples u.a.r. a real number $\alpha_u \in (2,3)$. Then, it performs a discrete Lévy walk with exponent α_u

How can we find α^* ?

We don't have to!

Algorithm: each agent u samples u.a.r. a real number $\alpha_u \in (2,3)$. Then, it performs a discrete Lévy walk with exponent α_u

If $\ell \leq \exp\left(k^{\Theta(1)}\right)$, the hitting time is $\mathcal{O}\left(\left(\ell^2/k + \ell\right) \operatorname{polylog}\left(\ell\right)\right)$ w.h.p.

The idea behind the algorithm

Fix some $\epsilon = \mathcal{O}(\log \log \ell / \log \ell)$

We use: $\ell < \exp\left(k^{\Theta(1)}\right)$ ($\iff k \ge \operatorname{polylog}\left(\ell\right)$) + Chernoff bound \Longrightarrow at least $\Theta\left(\epsilon k\right)$ agents choose an exponent in the range $(\alpha^{\star} - \epsilon, \alpha^{\star} + \epsilon)$ w.h.p.

 $\Theta\left(\epsilon k\right)$ agents are sufficient to ensure high probability to find the target fast enough

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- ullet show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem
 - very natural and time-homogeneus random process
 - improves the HSA (just polylog factor worse than optimum, not polynomial)
 - does not improve their optimal solution

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- ullet show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem
 - very natural and time-homogeneus random process
 - improves the HSA (just polylog factor worse than optimum, not polynomial)
 - does not improve their optimal solution
- ullet argue the non (universal) optimality of exponent lpha=2

Questions?

THANK YOU FOR YOUR ATTENTION

