The geometry of human perception: RSA and multivariate models

Charles Zheng

Stanford University

November 15, 2015

(Joint work with Yuval Benjamini and Oluwasanmi Koyejo)

Overview

fMRI Background

- Nonparametric approaches: RSA
- Parametric approach: Multivariate linear model

Questions

- Defining the RSA null and alternative hypotheses
- Scientific interpretation of RSA results
- Sensitivity to preprocessing choices

Proposed Projects

- Distribution-induced distance
- Parametric RSA

Representation similarity analysis (RSA)

- Framework for studying how mental objects are represented in the brain, via brain activity (measured by fMRI, EEG) or behavior
- Compare different brain regions or imaging modalities within a single subject, or compare multiple subjects

A typical RSA experiment

An experiment which demonstrates which regions of the brain differentiate between faces and objects.

Step 1: Present the subject with visual stimuli: pictures of faces and houses. Record the subject's brain activity in the fMRI scanner.

A typical RSA experiment

Step 2a: Process the data, and represent the brain activity of the subject for the *i*th stimulus as a real vector y_i . Form matrix of distances between y_i and y_j , the representation distance matrix (RDM)

Step 2b: Assess statistical significance of distances to form similarity graph

A typical RSA experiment

Step 3: Compare similarity graphs between different brain regions.

Step 4: Draw scientific conclusions. (Step 5: Profit!!..?)

Details of RSA

- Core methodology presented by Kriegeskort et al (2008) and extended by others
- Suppose each of the stimuli have r repeats, the responses for stimulus i are y_i^1, \ldots, y_i^r , and the average over the repeats as \bar{y}_i
- The representation distance matrix is computed as

$$D_{ij}=d(\bar{y}_i,\bar{y}_k)$$

where d may be Euclidean distance or correlation distance

Details of RSA

- Now let D^A , D^B be *two* such distance matrices, e.g. two regions from same subject, or same region in two subjects
- Estimation. One can define a distance metric $\mathfrak d$ between distance matrices, e.g. the Spearman correlation between the entries of D^A and D^B , and estimate

$$\mathfrak{d}(D^A, D^B)$$

- Testing. One can test:
 - Independence of D^A , D^B
 - Equality $D^A = D^B$
 - Which of D^A , D^B is closer to a reference distance matrix D^0

Comparison to parametric approach

- RSA is a "nonparametric" approach, because stimuli are treated as discrete classes
- In contrast, one could consider presenting stimuli which are parameterized
- Example: present the subject with gratings of varying orientation.
 Orientation x is parameter

Example of parametric approach: natural images

- Kay et al (2008) parameterize natural images using Gabor filters
- Let x_i be the vector of 10000 Gabor filter coefficients for a natural image. Let y_i be the vector of 20000 individual voxel responses.
- Kay fits a model of the form

$$y_i = B^T x_i + \epsilon_i$$

where B is a 10000 x 20000 coefficient matrix, and ϵ_i is vector-valued noise with covariance Σ

Comparison of parametric and nonparametric approaches

Nonparametric: RSA

Pros	Cons
Compare across subjects, re-	Can't generalize to new stimuli
gions, modalities	

Parametric: Regression

Pros			Cons
Predictive	and	descriptive	Requires knowing featurization
power			a priori

See also Kriegeskorte and Bandettini (2007) "Analyzing for information..."

Defining the RSA null

- Consider the problem of testing equality $D^A = D^B$.
- Obviously, the matrices \hat{D}^A and \hat{D}^B computed from data will *not* be equal!
- We need to define the *population* parameters D^A , D^B in order to have a well-defined test

Possible definitions of population distance matrices

• Option 1: Let $\mu_i = \mathbf{E}[y_i]$ averaged over repetitions, then define the population parameter as

$$D_{ij} = d(\mu_i, \mu_j)$$

This option ignores noise

• Option 2: Define

$$D_{ij} = \mathbf{E}[d(y_i^1, y_j^1)]$$

where the average is over a single repetition. This option *includes the effect of noise* in the population parameter.

Defining the RSA null

- The most commonly used test in RSA is a test of *independence* D^A of D^B .
- This approach was suggested by Kriegeskorte (2008) and is well-established in ecological data analysis
- Implemented via Mantel and partial Mantel tests (which use permutation)
- However, how can we define the null hypothesis of "independence"??
 No matter how the population matrices D^A and D^B are defined, they are deterministic and hence it does not make sense to consider them dependent
- Perhaps you could test if the entry-wise correlation is zero??

Scientific interpretation of RSA results

A rejection of the independence null between D^A and D^B is taken to mean that outputs A and B are 'related.' For instance, D^A might be the response from a subject's brain region, and D^B is a 0-1 matrix reflecting a priori class membership. Rejection is taken to mean that the region A have differential activation depending on the classes represented D^B .

Scientific interpretation of RSA results

What does it mean if $D^A = D^B$? We can conclude that the means μ_i^A are related to the means μ_i^B by a scaling factor and orthogonal rotation:

$$\mu_i^A = kH\mu_i^B$$

where $H^T H = I$.

However, this lacks a natural scientific interpretation.

Sensitivity to preprocessing choices

Even given the same raw data, there are a variety of choices for representing the response vectors y_i

- Volumetric (voxels) vs surface-based coordinates
- Voxel size and centering
- Smoothing
- Image registration
- Representation of data via function basis

The resulting distance matrix D_{ij} depends on the above choices

Distribution-induced distance

A new definition for the representation dissimilarity matrix which:

- Allows more natural interpretation of the null $D^A = D^B$
- Is nearly invariant to smoothing, registration, use of function bases
- Downside: may be harder to estimate

Distribution-induced distance: motivation

Consider two stimuli x_1 and x_2 to be *distant* if the *response distributions* are statistically distant, or *close* if their response distributions overlap

Note that the definition not only depends on the difference in *means* but also depends on the *noise distribution*.

Distribution-induced distance: definition

- Let \mathcal{F}_x denote the distribution of the reponse y conditional on the stimulus x
- Define the dissimilarity matrix

$$D_{ij} = \mathbb{D}(\mathcal{F}_{x_i}; \mathcal{F}_{x_j})$$

where $\mathbb D$ is a measure of distance or divergence between probability measures.

• Example: if y is conditionally multivariate normal, with covariance Σ not depending on x, then

$$D_{ij} = \frac{1}{2} (\mathbf{E}[y|x_i] - \mathbf{E}[y|x_j])^T \Sigma^{-1} (\mathbf{E}[y|x_i] - \mathbf{E}[y|x_j])$$

for either $\mathbb{D} = \mathsf{KL}$ divergence or Hellinger distance

Distribution-induced distance: properties

• Invariance under bijections: Let $\tilde{y} = \psi(y)$ for some bijection ψ . Then if $\mathcal{F}_x^{\tilde{y}}$ denotes the conditional distribution of \tilde{y} given x, we have

$$\mathbb{D}(\mathcal{F}_{\scriptscriptstyle X}^{\scriptscriptstyle y},\mathcal{F}_{\scriptscriptstyle X'}^{\scriptscriptstyle y})=\mathbb{D}(\mathcal{F}_{\scriptscriptstyle X}^{ ilde{y}},\mathcal{F}_{\scriptscriptstyle X'}^{ ilde{y}})$$

for any f-divergence \mathbb{D} .

• Near-invariance under sampling. Suppose the 'true' brain activity is represented by a random process f, and let \mathcal{F}_x denote its conditional distribution given x. Define the vector y as the values of linear functionals $\Lambda_1, \ldots, \Lambda_q$ evaluated on f. This corresponds to taking y based on binning the signal f or taking coefficients of f from a function basis. Then, supposing Λ_1, \ldots is 'dense'

$$\lim_{q\to\infty}\mathbb{D}(\mathcal{F}_{x}^{y},\mathcal{F}_{x'}^{y})=\mathbb{D}(\mathcal{F}_{x}^{f},\mathcal{F}_{x'}^{f}).$$

Distribution-induced distance: consequences

[Not yet proved! A conjecture..]

Invariance under bijections means that if we conclude $D^A=D^B$, then we have y^A and y^B "almost isomorphic" in the sense that we can find maps $\psi^{A\to B}$ and $\psi^{B\to A}$ such that

$$y^A|x \stackrel{D}{=} \psi^{A \to B}(y^B)|x$$

$$y^B|x \stackrel{D}{=} \psi^{B \to A}(y^B)|x$$

This is a much more general condition than equivalence up to rotation, and can possibly be related to scientific mechanisms

Distribution-induced distance: consequences

Near-invariance under sampling means that the population distances D_{ij} are robust to choices in coordinates, smoothing, etc, supposing that sufficiently many dimensions are used.

This is because any choice of extracting the vector y from the 3-dimensional function-valued signal amounts to a choice of linear functionals $\Lambda_1, \ldots, \Lambda_q$. For example:

• Voxels + smoothing: each coordinate of y_i takes the form

$$y_i = \int \phi(z-c_i)f(z)fz$$

where ϕ is a gaussian kernel, c_i is the center of the *i*th voxel and f(z) is the "true signal"

• Function basis:

$$y_i = \int \phi_i(z) f(z) fz$$

where $\{\phi_1, \dots, \phi_q\}$ is the function basis.

Parametric RSA

- Combine the parametric approach of multivariate regression with RSA
- Model:

$$y \sim N(B^T x, \Sigma)$$

The distribution-induced metric is therefore

$$D(x_i, x_j) = (x_i - x_j)^T B \Sigma^{-1} B^T (x_i - x_j)$$

Parametric RSA

$$y \sim N(B^T x, \Sigma)$$
$$D(x_i, x_j) = (x_i - x_j)^T B \Sigma^{-1} B^T (x_i - x_j)$$

• Since all information about the distance is captured by the matrix $M = B\Sigma^{-1}B^T$, instead of testing

$$D^A = D^B$$

we can test

$$M^A = M^B$$

- We can compare two datasets with non-overlapping stimuli
- The approach is scalable in the number of distinct stimuli, since the size of M^A , M^B only depend on the number of *features* rather than the number of stimuli

References

- Kriegeskorte, N. (2008). Representational similarity analysis connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience
- Kriegeskorte, N., & Bandettini, P. (2007). Analyzing for information, not activation, to exploit high-resolution fMRI. NeuroImage, 38(4), 649662. doi:10.1016/j.neuroimage.2007.02.022
- Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008).
 Identifying natural images from human brain activity. Nature, 452(March), 352355. doi:10.1038/nature06713
- Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336344. doi:10.1111/2041-210x.12018
- Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 13481355. doi:10.1038/nn.3470