

Blessing of dimensionality using low-dimensional data

Hong Ye Tan

Joint work with: Carola-Bibiane Schönlieb, Subhadip Mukherjee, Junqi Tang

arXiv:2408.06996

GSK.ai PhD Symposium

Background: Dimensionality

- **Dimensionality** = difficulty
- Canonical example: sampling
 - Complexity scales exponentially with dimension
 - tion, nearest neighbours,

- Optimisation, nearest neighbours, metric learning, data visualisation...
- The curse can be slightly lifted depending on additional constraints
 - Optimising non-convex function: exponential in dimension (random search)
 - Convex and bounded: linear (centre of gravity)
 - Convex and smooth: bounds using e.g. Lipschitz constant

Background: Manifolds

- Not all hope is lost!
- Manifold Hypothesis: Natural data is intrinsically low-dimensional.
 - Original motivation: statistical tools still work when we have high dimensions and relatively little data, when they are not supposed to
 - a.k.a. blessing of dimensionality, concentration of measure.
 - Then dimensionality reduction methods work and give us nice visualisations

Project goal

- Intuition: in lower dimensions, it should be easier to approximate, say,
 Lipschitz continuous functions with a simple class of functions.
- We want to determine how difficult it is to approximate a:
 - > Sufficiently useful class of functions
 - with a simple class of functions

Simple?

notion of statistical complexity

▲ Purely theoretical

Function class complexity

Maths

- Sobolev space $\mathcal{W}^{1,p}(M)$ L^p functions with L^p derivative
 - Infinite dimensional, pretty nasty
 - We need to approximate (a bounded version) with simpler functions

- "Pseudo-dimension"
 - Measure of statistical complexity

Definition 2.1. Let \mathcal{H} be a class of real-valued functions with domain \mathcal{X} . Let $X_n = \{x_1, ..., x_n\} \subset \mathcal{X}$, and consider a collection of reals $s_1, ..., s_n \subset \mathbb{R}^n$. When evaluated at each x_i , a function $h \in \mathcal{H}$ will lie on one side² of the corresponding x_i , i.e. $\operatorname{sign}(h(x_i) - s_i) = \pm 1$. The vector of such sides $(\operatorname{sign}(h(x_i) - s_i))_{i=1}^n$ is thus an element of $\{\pm 1\}^n$.

We say that \mathcal{H} P-shatters X_n if there exist reals $s_1, ..., s_n$ such that all possible sign combinations are obtained, i.e.,

$$\{(\text{sign}(h(x_i) - s_i))_i \mid h \in \mathcal{H}\} = \{\pm 1\}^n.$$

The pseudo-dimension $\dim_p(\mathcal{H})$ is the cardinality of the largest set that is P-shattered:

$$\dim_p(\mathcal{H}) = \sup \{ n \in \mathbb{N} \mid \exists \{x_1, ..., x_n\} \subset \mathcal{X} \text{ that is P-shattered by } \mathcal{H} \}. \tag{1}$$

British Coastline

- The British coastline
 - Very grainy around the edges
 - We need to measure this with a coarse set of tools: rulers
 - > See: coastline paradox
- How long your rulers are

Why statistical complexity? Sample complexity

Maths

 Low complexity lower sample complexity

The number of samples required to be within ϵ of the true risk with probability at least $1-\delta$ is bounded above by:

$$m_L(\epsilon,\delta) \leq rac{128}{\epsilon^2}igg(2\dim_P(\mathcal{H})\logigg(rac{34}{arepsilon}igg) + \logigg(rac{16}{\delta}igg)igg)$$

- Directly related to better generalisation
 - Simpler description is less prone to error

British Coastline

 Longer rulers, fewer points needed to measure the coast

A. Rae, https://www.statsmapsnpix.com/2016/08/how-long-is-coastline-of-great-britain.html

Approximation complexity

Maths

- Approximation with bounded pseudo-dimension functions
 - Given a maximum pseudo-dimension, the non-linear width of a function class ${\cal F}$ is the best approximation with such limited pseudo-dimension classes

Definition 2.4. Let \mathcal{F} be a normed space of functions. Given two subsets $F_1, F_2 \subset \mathcal{F}$, the (asymmetric) Hausdorff distance between the two subsets is the largest distance of an element of F_1 to its closest element in F_2 :

$$\operatorname{dist}(F_1, F_2; \mathcal{F}) = \sup_{f_1 \in F_1} \inf_{f_2 \in F_2} \|f_1 - f_2\|_{\mathcal{F}}. \tag{3}$$

For a subset $F \subset \mathcal{F}$, the nonlinear n-width is given by the optimal (asymmetric) Hausdorff distance between F and \mathcal{H}^n , infimized over classes \mathcal{H}^n in \mathcal{F} with $\dim_p(\mathcal{H}^n) \leq n$:

$$\rho_n(F, \mathcal{F}) = \inf_{\mathcal{H}^n} \operatorname{dist}(F, \mathcal{H}^n; \mathcal{F}) = \inf_{\mathcal{H}^n} \sup_{f \in F} \inf_{h \in \mathcal{H}^n} \|f - h\|_{\mathcal{F}}. \tag{4}$$

• Nonlinear width: approximation error Denoted ho_n , depends on max complexity n

British Coastline

Approximation with long rulers

Length: ~2800km

~3400km

Error from using long rulers

Main result

Standard assumptions

Theorem 3.1. Let (M, g) be a d-dimensional compact (separable) Riemannian manifold without boundary. From compactness, there exist real constants such that:

- 1. The Ricci curvature satisfies $Ric \ge -(d-1)K$, where K > 0;
- 2. inj(M) > 0 is the injectivity radius;

Moreover, for any $1 \le p, q \le +\infty$, the nonlinear width of $W^{1,p}(1)$ satisfies the lower bound for sufficiently large n:

$$\rho_n(W^{1,p}(1), L^q(M, \text{vol}_M)) \ge C(d, K, \text{vol}(M), p, q)(n + \log n)^{-1/d}.$$
(13)

In particular, the constant is independent of any latent dimension that (M, g) may be embedded in.

Proof is constructive

- Construct a particular subset of $\mathcal{W}^{1,p}(M)$ that is hard to approximate using low-complexity function classes
- Uses approximation theory, differential geometry, functional analysis

Classical comparison + interpretation

Us:
$$\rho_n(W^{1,p}(1;M),L^q)\gtrsim (n+\log n)^{-1/d} \qquad d \text{ dimensional manifold}$$
 Unavailable on Related to curvature
$$\rho_n(W^{k,p}(1;[0,1]^D),L^q)\gtrsim n^{-k/D} \qquad D \text{ dimensional hypercube}$$

- We lower bound the optimal approximation error in terms of the allowed statistical complexity n and the intrinsic dimension d
- As the statistical complexity increases, this error decreases
- The rate at which this error decreases is dependent only on the intrinsic dimension (and properties of the manifold)

Summary

- We demonstrate that function approximation is provably difficult, but only in the intrinsic dimension.
 - Increasing statistical complexity to approximate a function class yields slower rates as the dimension increases.
 - Our result is completely independent of any embedding dimensions
- **Implications**: Well-structured data is crucial for good training
- Open questions:
 - > Extensions to higher Sobolev derivatives (requires better manifold approximation) techniques)
 - Other manifold properties, e.g. reach, condition, that may have better bounds

