T. Quistgaan

Signals

Diffusion of Water Isotopes

Data

Volcanic Horizor

Back Diffusion

Analysis

Peak Detection
Random
Gaps/Missing Dat
Linear Timescale

Outlook

Laki to Tambora

Pattern Recognition in High Resolution Volcanic and Isotopic Signals

Thea Quistgaard¹

¹University of Copenhagen

February 9, 2021

Outline of talk

T. Quistgaar

Readying the Signals

Diffusion of Wat Isotopes Data

Volcanic Horizo

Continue Analysis

Peak Detection
Random
Gaps/Missing Data
Linear Timescale

Outlook

Readying the Signals
 Diffusion of Water Isotopes
 Data
 Volcanic Horizons

Back Diffusion

2 Continued Analysis
 Peak Detection
 Random Gaps/Missing Data
 Linear Timescale

Table of Contents

T. Quistga

eadying the gnals

Diffusion of Water Isotopes

Data Volcanic Horizon

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing Dat Linear Timescale

Outloo

Readying the SignalsDiffusion of Water Isotopes

Data Volcanic Horizons Back Diffusion

2 Continued Analysis

Peak Detection
Random Gaps/Missing Data
Linear Timescale

Diffusion in Firn

Diffusion of Water Isotopes

Fick's 2nd law:

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

$$\delta_{\mathsf{meas}}(z) = S(z)[\delta_{\mathsf{init}}(z) * \mathcal{G}(z)]$$
 (2)

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

$$S(z) = e^{\int_0^z \dot{\epsilon_z}(z')dz'},$$
 the thinning function (4)

Diffusion in Firn

Diffusion of Water

Fick's 2nd law:

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

with steady state solution

$$\delta_{\mathsf{meas}}(z) = S(z)[\delta_{\mathsf{init}}(z) * \mathcal{G}(z)] \tag{2}$$

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

$$S(z) = e^{\int_0^z \dot{c_z}(z')dz'},$$
 the thinning function (4)

Diffusion in Firn

T. Quistgaa

Readying th Signals

Diffusion of Water Isotopes

Isotopes

Volcanic Horizo

Back Diffusion

Analysis

Random Gaps/Missing Da

Linear Timescale

• Fick's 2nd law:

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

with steady state solution

$$\delta_{\text{meas}}(z) = S(z)[\delta_{\text{init}}(z) * \mathcal{G}(z)] \tag{2}$$

where $\delta_{\rm meas}(z)$ is the measured signal, $\delta_{\rm init}(z)$ is the initial isotopic signal

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

and

$$S(z) = e^{\int_0^z \dot{c_z}(z')dz'},$$
 the thinning function (4)

Diffusion in Firn

Diffusion of Water

Fick's 2nd law:

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

$$\delta_{\mathsf{meas}}(z) = S(z)[\delta_{\mathsf{init}}(z) * \mathcal{G}(z)] \tag{2}$$

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

$$S(z) = e^{\int_0^z \dot{\epsilon_z}(z')dz'},$$
 the thinning function (4)

Diffusion in Firn

T. Quistgaa

• Fick's 2nd law:

Readying the

Diffusion of Water Isotopes

Isotopes

Volcanic Horizon

Back Diffusion

Analysis
Peak Detection

Random Gaps/Missing Da

Outloo

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

with steady state solution

$$\delta_{\mathsf{meas}}(z) = S(z)[\delta_{\mathsf{init}}(z) * \mathcal{G}(z)] \tag{2}$$

where $\delta_{\rm meas}(z)$ is the measured signal, $\delta_{\rm init}(z)$ is the initial isotopic signal

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

and

$$S(z) = e^{\int_0^z \dot{\epsilon_z}(z')dz'},$$
 the thinning function (4)

Diffusion in Firn

Fick's 2nd law:

$$\frac{\partial \delta}{\partial t} = D(t) \frac{\partial^2 \delta}{\partial z^2} - \dot{\epsilon}_z(t) z \frac{\partial \delta}{\partial z} \tag{1}$$

$$\delta_{\mathsf{meas}}(z) = S(z)[\delta_{\mathsf{init}}(z) * \mathcal{G}(z)] \tag{2}$$

$$\mathcal{G}(z) = \frac{1}{\sigma(z)\sqrt{2\pi}}e^{-\frac{z^2}{2\sigma(z)^2}}, \quad \text{a Gaussian filter,} \quad (3)$$

$$S(z) = e^{\int_0^z \dot{\epsilon_z}(z')dz'},$$
 the thinning function (4)

Diffusion of Water

Laki to Tambora

Table of Contents

Readying th

nals

Diffusion of Wa sotopes

Data

Volcanic Horizon Back Diffusion

Continu Analysis

Peak Detection
Random
Gaps/Missing Da

Outlook

• Readying the Signals

Diffusion of Water Isotopes

Data

Volcanic Horizons
Back Diffusion

2 Continued Analysis

Peak Detection
Random Gaps/Missing Data
Linear Timescale

Laki to Tambora

Example Data: Site A

Readying the

Diffusion of Wa

Data

Back Diffusion

Analysis
Peak Detection

Random Gaps/Missing Da

Outlook

Figure: Example data from Alphabet Core drilled at site A near Crête.

Laki to Tambora

Quistgaard

Readying th Signals

Diffusion of Wa Isotopes

Data

Volcanic Horizo

Continued Analysis

Random
Gaps/Missing Dat

O....I.- -

Unevenly Sampled Data: Spline Interpolation

Figure: Example data from Alphabet Core drilled at site A near Crête. Shows zoom in of data from Laki to Tambora along with spline interpolated data.

Laki to Tambor<u>a</u> Site A

Readying th

Diffusion of Wa Isotopes

Data

Back Diffusion

Analysis
Peak Detection

Random
Gaps/Missing Da

Outlook

Figure: Site A, raw and cubic spline interpolated data.

Laki to Tambora Site G

Readving th

Diffusion of Wat

Isotopes Data

Volcanic Horizo Back Diffusion

Analysis
Peak Detection

Random Gaps/Missing Da

Outlook

Figure: Site G, raw and cubic spline interpolated data.

Laki to Tambora

Site A: Density and Diffusion Profiles

eadving the

iffusion of Wat

Isotopes Data

Volcanic Horizon Back Diffusion

Analysis
Peak Detection

Random Gaps/Missing Dat Linear Timescale

- (a) Density-depth profiles based on analytical Herron-Langway model. Black is empirical data, blue is purely analytical fit and orange is fudged analytical fit
- (b) Modeled diffusion length profile based on empirically computed density profile. Black dashed lines indicate ice depth corresponding to date Laki and Tambora eruptions.

Laki to Tambora

. Quistgaard

Signals

Isotopes

Data Volcanic Horizo

Continued

Peak Detectio

Random Gaps/Missing Da Linear Timescale

Outlook

Site G: Density and Diffusion Profiles

- (a) Density-depth profiles based on analytical Herron-Langway model. Black is empirical data, blue is purely analytical fit and orange is fudged analytical fit
- (b) Modelled diffusion length profile based on empirically computed density profile. Black dashed lines indicate ice depth corresponding to date Laki and Tambora eruptions.

Laki to

Tambora

Volcanic Horizons

Table of Contents

Readying the Signals

Volcanic Horizons

Back Diffusion

2 Continued Analysis

Volcanic Horizons

Laki to Tambora

T. Quistgaa

Readying th Signals

Diffusion of Wat Isotopes

Volcanic Horizons

Back Diffusion

Peak Detection
Random
Gaps/Missing Dat

O. Al- -

Laki and Tambora

- Electrical Conductivity Measurements (ECM)
- (Dielectric Profiling (DEP))

Table of Contents

Readying th

Readying the Signals

Diffusion of Water Isotopes

Data

Volcanic Horizons

Back Diffusion

Analysis Peak Detecti

Back Diffusion

Random Gaps/Missing Da

O....I.- - I.

2 Continued Analysis

Peak Detection
Random Gaps/Missing Data
Linear Timescale

Spectral Analysis with DCT

Readying the

Signals

Isotopes Data

Volcanic Horizon

Back Diffusion

Continue

Analysis
Peak Detect

Random Gaps/Missing [

Linear Timescal

· · · ·

$$P_{\rm tot} = P_{\rm signal} + |\hat{\eta}|^2$$

$$|\hat{\eta}|^2 = \frac{\sigma_{\eta}^2 \Delta}{|1 - a_1 e^{-ik\Delta}|^2}$$

$$P_{\rm signal} = P_0 e^{-k^2 \sigma^2}$$

Spectral Analysis with DCT

Readying th

Diffusion of Water Isotopes Data

Volcanic Horiz

Back Diffusion

Analysis

Peak Detection

Linear Timescale

O....I - -1

$$P_{\mathsf{tot}} = P_{\mathsf{signal}} + |\hat{\eta}|^2$$

$$|\hat{\eta}|^2 = \frac{\sigma_{\eta}^2 \Delta}{|1 - a_1 e^{-ik\Delta}|^2}$$

$$P_{\rm signal} = P_0 e^{-k^2 \sigma^2}$$

Spectral Analysis with DCT

Readying the

Diffusion of Water

Volcanic Horiz

Back Diffusion

Analysis

Random
Gans/Missing

Linear Timescale

$$P_{\mathsf{tot}} = P_{\mathsf{signal}} + |\hat{\eta}|^2$$

$$|\hat{\eta}|^2 = \frac{\sigma_{\eta}^2 \Delta}{|1 - a_1 e^{-ik\Delta}|^2}$$

$$P_{\mathsf{signal}} = P_0 e^{-k^2 \sigma^2}$$

Readying the Signals

000000000000000

Laki to Tambora

Spectral Analysis with DCT

Back Diffusion

$$P_{\mathsf{tot}} = P_{\mathsf{signal}} + |\hat{\eta}|^2$$

$$|\hat{\eta}|^2 = \frac{\sigma_{\eta}^2 \Delta}{|1 - a_1 e^{-ik\Delta}|^2}$$

$$P_{\mathsf{signal}} = P_0 e^{-k^2 \sigma^2}$$

Spectral Analysis with DCT

Readying the

Diffusion of Wate Isotopes

Volcanic Horizo

Back Diffusion

Buck Billusion

Analysis

Peak Detecti

Linear Timescale

Outlool

$$P_{\rm tot} = P_{\rm signal} + |\hat{\eta}|^2$$

$$|\hat{\eta}|^2 = \frac{\sigma_{\eta}^2 \Delta}{|1 - a_1 e^{-ik\Delta}|^2}$$

$$P_{\rm signal} = P_0 e^{-k^2 {\color{black}\sigma^2 \over }}$$

Diffusion Lengths and Transfer Functions

Readying th

Signals
Diffusion of Wate

Isotopes

Volcanic Horizo

Back Diffusion

Dack Dillusion

Analysis

Poak Dotocti

D .

Gaps/Missing

Linear Timesca

$$\hat{\delta}_{\text{meas}} = \hat{\delta}_{\text{init}} \cdot \hat{M} \Leftrightarrow \hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{M}^{-1} \tag{5}$$

Add an optimal Wiener filter to enhance signal and minimize noise:

$$\hat{F} = \frac{P_{\text{signal}}}{P_{\text{signal}} + |\hat{\eta}|^2} \tag{6}$$

$$\hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{F} \cdot \hat{M}^{-1} = \hat{\delta}_{\text{meas}} \cdot \hat{R} \tag{7}$$

T. Quistgaard

Readying the Signals

Diffusion of Wate Isotopes

Data

Back Diffusion

Analysis

Peak Detecti

Random

Gaps/Missing Da Linear Timescale

Outloo

Diffusion Lengths and Transfer Functions

$$\hat{\delta}_{\text{meas}} = \hat{\delta}_{\text{init}} \cdot \hat{M} \Leftrightarrow \hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{M}^{-1}$$
 (5)

Add an optimal Wiener filter to enhance signal and minimize noise:

$$\hat{F} = \frac{P_{\text{signal}}}{P_{\text{signal}} + |\hat{\eta}|^2} \tag{6}$$

$$\hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{F} \cdot \hat{M}^{-1} = \hat{\delta}_{\text{meas}} \cdot \hat{R}$$
 (7)

T. Quistgaard

Readying th Signals

Diffusion of Water Isotopes

Data

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing D

Outloo

Diffusion Lengths and Transfer Functions

$$\hat{\delta}_{\text{meas}} = \hat{\delta}_{\text{init}} \cdot \hat{M} \Leftrightarrow \hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{M}^{-1}$$
 (5)

Add an optimal Wiener filter to enhance signal and minimize noise:

$$\hat{F} = \frac{P_{\text{signal}}}{P_{\text{signal}} + |\hat{\eta}|^2} \tag{6}$$

$$\hat{\delta}_{\mathsf{init}} = \hat{\delta}_{\mathsf{meas}} \cdot \hat{F} \cdot \hat{M}^{-1} = \hat{\delta}_{\mathsf{meas}} \cdot \hat{R} \tag{7}$$

T. Quistgaa

Readying th

Diffusion of Water Isotopes

Data

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing E

Outloo

Diffusion Lengths and Transfer Functions

$$\hat{\delta}_{\text{meas}} = \hat{\delta}_{\text{init}} \cdot \hat{M} \Leftrightarrow \hat{\delta}_{\text{init}} = \hat{\delta}_{\text{meas}} \cdot \hat{M}^{-1} \tag{5}$$

Add an optimal Wiener filter to enhance signal and minimize noise:

$$\hat{F} = \frac{P_{\text{signal}}}{P_{\text{signal}} + |\hat{\eta}|^2} \tag{6}$$

$$\hat{\delta}_{\mathsf{init}} = \hat{\delta}_{\mathsf{meas}} \cdot \hat{F} \cdot \hat{M}^{-1} = \hat{\delta}_{\mathsf{meas}} \cdot \hat{R} \tag{7}$$

Filtering

T. Quistgaard

Readying th Signals

Isotopes
Data

Volcanic Horiz

Back Diffusion

Analysis

Random Gaps/Missing Da

Outlool

Figure: Frequency filters: The optimal filter found from the PSD (blue), the transfer function (orange), the inverse of the transfer function (green) and the combined signal restoration filter (red).

Laki to Tambora

Table of Contents

Readying th

ator

Diffusion of Wate Isotopes

Volcanic Horizo

Back Diffusion

Analysi

Peak Detection

Random Gaps/Missing Da

Outlook

• Readying the Signals

Diffusion of Water Isotopes

Data

Volcanic Horizons

Back Diffusion

2 Continued Analysis

Peak Detection

Random Gaps/Missing Data

Laki to Tambora

Peak Detection

Readving th

Signals

Isotopes
Data

Volcanic Horizo

Continuo

Analysis

Peak Detection

Random Gaps/Missing Da

- SciPy.signal.find_peaks
- N = 32 years btw Tambora and Laki Eruptions
- Best diffusion length estimate algorithm
- Interpolations and resampling

Laki to Tambora

Peak Detection

. .

Signals

Diffusion of Water

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing Da

- SciPy.signal.find_peaks
- N = 32 years btw Tambora and Laki Eruptions
- Best diffusion length estimate algorithm
- Interpolations and resampling

Laki to Tambora

Peak Detection

Readying t

Signals
Diffusion of Wat

Isotopes Data

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing Da

- SciPy.signal.find_peaks
- N = 32 years btw Tambora and Laki Eruptions
- Best diffusion length estimate algorithm
- Interpolations and resampling

Laki to Tambora

Peak Detection

Readying t

Diffusion of Water Isotopes

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing Da

Dutlook

- SciPy.signal.find_peaks
- N = 32 years btw Tambora and Laki Eruptions
- Best diffusion length estimate algorithm
- Interpolations and resampling

Laki to Tambora

Diffusion Length Estimate Algorithm

r. Quistguare

Signals

Isotopes

Data

Volcanic Horizo

Continue

Peak Detection

Random Gaps/Missing I

Figure: Flowchart of method for diffusion length computation, preliminary analysis steps.

Laki to Tambora

Diffusion Length Estimate Algorithm

T. Quistgaard

Readying th Signals

Diffusion of Wate Isotopes

Volcanic Horizon

Back Diffusion

Analysis

Peak Detection

Random
Gaps/Missing D

Figure: Flowchart of method for diffusion length computation, decision chart.

Diffusion Length V. Peaks - No Limit

Readying th

Diffusion of Wate Isotopes

Data Volcanic Horizon

Rack Diffusion

Analysis

Peak Detection

Random Gaps/Missing D

Figure: Diffusion length used in back diffusion versus counted number of peaks in data series for all cores.

Diffusion Length V. Peaks - No Limit

.....

Signals

Diffusion of Wate

Isotopes Data

Volcanic Horizo Back Diffusion

Analysis

Peak Detection

Gaps/Missing I

 $\label{eq:figure:Zoom-in} \textit{Figure: Zoom-in around N} = 32 \; \textit{peaks and corresponding diffusion length used in back diffusion}.$

Peak Detection

Laki to Tambora

Cubic Spline Interpolation: Before Deconvolution

Readying th

Diffusion of Wate

Volcanic Horizo Back Diffusion

Continue Analysis

Peak Detection

Random Gaps/Missing Da

Outlook

Figure: Cubic spline resampling of raw data.

Peak Detection

Laki to Tambora

Resampling size V. Diffusion Length Estimate

T. Quistgaa

Readying th Signals

Diffusion of Water Isotopes

Volcanic Horizo

Back Diffusion

Analysis Peak Detection

Random Gaps/Missing Da

Outlook

Figure: Resampling size versus diffusion length estimate_to_result; in N = 32 peaks. \equiv \mid = \checkmark 0 \triangleleft 0

Peak Detection

Laki to Tambora

Cubic Spline Interpolation: After Deconvolution

Readying the

Diffusion of Wate

Volcanic Horizo

Continued

Analysis

Peak Detection

Gaps/Missing I

Outloo

Figure: Deconvoluted data with resampling of 1 and 9 cm intervals after deconvolution, but before peak

Resampling size V. Diffusion Length Estimate

_ .. .

Signals

Isotopes
Data

Volcanic Horizo Back Diffusion

Analysis

Peak Detection

Gaps/Missing Da Linear Timescale

Outlook

Figure: Resampling size after deconvolution versus diffusion length estimate to result in N = 32 peaks. \sim 0 0

Site A: Theoretical V. Estimated Diffusion Length

Readying th Signals

Diffusion of Water Isotopes Data

Volcanic Horizo Back Diffusion

Analysis

Peak Detection

Gaps/Missing Da

Figure: Data and back diffused signal, using theoretically predicted diffusion lengths and diffusion length estimated through analysis, Site A.

Site G: Theoretical V. Estimated Diffusion Length

Readying th Signals

Diffusion of Wate Isotopes Data

Volcanic Horizo Back Diffusion

Analysis

Peak Detection

Gaps/Missing Da

Figure: Data and back diffused signal, using theoretically predicted diffusion lengths and diffusion length estimated through analysis, Site G.

Diffusion Lengths, All Cores

Readying the Signals

Diffusion of Water Isotopes Data

Volcanic Horizon

Back Diffusion

Analysis

Peak Detection Random

Gaps/Missing Dat Linear Timescale

	Crete	Site A	Site B	Site E	Site G
σ_{Theo}^{min} [cm]	7.28	6.52	6.43	7.50	7.66
σ_{Theo}^{max} [cm]	7.49	6.70	6.61	7.76	7.88
σ_{est} [cm]	6.02	6.14	3.27 (N = 32)	5.95	8.46
			5.85 (N = 33)		

Table of Contents

. .

adying th gnals

Diffusion of Wat Isotopes

Volcanic Horizo

Back Diffusion

Analysis

Peak Detection

Random Gaps/Missing Data

Linear Timesca

Outlook

Readying the Signals

Diffusion of Water Isotopes

Data

Volcanic Horizons

Back Diffusion

2 Continued Analysis

Peak Detection

Random Gaps/Missing Data

Linear Timescale

Laki to Tambora

Linear Interpolation, 50 and 100 cm gaps

T. Quistgaa

Readying th

Diffusion of Wate Isotopes

Volcanic Horizo

Continue

Analysis

Random Gaps/Missing Data

Linear Timesca

O...blool

Laki to Tambora

Linear Interpolation, 50 and 100 cm gaps

T. Quistgaar

Readying th Signals

Diffusion of Wate Isotopes

Volcanic Horizo

Continue

Analysis

Peak Detect

Random

Gaps/Missing Data

Linear Timesca

Laki to Tambora

Cubic Spline Interpolation

T. Quistgaaı

Readying th Signals

Diffusion of Wate Isotopes

Volcanic Horizo

Continue

Allalysis

Random Gaps/Missing Data

1:---- T:----

0.....

Laki to Tambora

Cubic Spline Interpolation

i. Quistguard

Readying th Signals

Diffusion of Water Isotopes

Volcanic Horizo

Back Diffusion

Continue

D--!- D-+--

Random

Gaps/Missing Data

Linear Timesc

Table of Contents

Readying th

Readying the Signals

Diffusion of Water Isotopes

Data

Volcanic Horizons

Back Diffusion

Peak Detectio

Kandom Gaps/Missing Data Linear Timescale

Jutlook

2 Continued Analysis

Peak Detection
Random Gaps/Missing Data

Linear Timescale

Linear Timescale

Laki to Tambora

Crete

T. Quistgaard

Readying th Signals

Diffusion of Wate Isotopes

Volcanic Horizo

Continue

Peak Detecti

Gaps/Missing Da Linear Timescale

Figure: Data series on nonlinear and linearized timescales, Crete.

Site A

T. Quistgaar

Readying the Signals

Diffusion of Water Isotopes

Volcanic Horizo

Continue

Analysis
Peak Detect

Gaps/Missing Da

Figure: Data series on nonlinear and linearized timescales, Site A.

Site G

T. Quistgaar

Readying th Signals

Diffusion of Wat Isotopes Data

Volcanic Horizo

Continued

Analysis
Peak Detect

Random Gaps/Missing Da Linear Timescale

Figure: Data series on nonlinear and linearized timescales, Site G.

Further Work

I. Quistgaai

Readying th Signals

Diffusion of Wat Isotopes Data

Volcanic Horizo

Continued

Analysis Peak Detection

Random Gaps/Missing Data Linear Timescale

- Peaks and troughs
- Accumulation seasonality
- ECM data back diffusion
- Missing data reconstruction
- Peak/cycle detection through standardization and classification

Thank you!

I. Quistgaai

Readying the Signals

Diffusion of Wate Isotopes

Data

Back Diffusion

Continue

Peak Detection

Random Gaps/Missing D

Outlook

Any questions?

Actual Total Diffusion

Γ. Quistgaar

Total diffusion in ice and firn

$$\sigma_{\rm tot}(z)^2 = [S(z)\sigma_{\rm firm}(z)]^2 + \sigma_{\rm ice}(z)^2 \tag{8} \label{eq:sigma}$$

Giving an actual measured diffusion length at z_i of

$$\sigma(z_i)^2 = \sigma_{\mathsf{firn}}(z_i)^2 S(z_i) + \sigma_{\mathsf{ice}}(z_i)^2 + \sigma_{\mathsf{dis}}(z_i)^2$$
 (9)

with

$$\sigma_{\mathsf{dis}}(z_i)^2 = \frac{2\Delta(z_i)^2}{\pi^2} \ln\left(\frac{\pi}{2}\right) \tag{10}$$

Actual Total Diffusion

Γ. Quistgaard

Total diffusion in ice and firn

$$\sigma_{\mathsf{tot}}(z)^2 = [S(z)\sigma_{\mathsf{firn}}(z)]^2 + \sigma_{\mathsf{ice}}(z)^2 \tag{8}$$

Giving an actual measured diffusion length at z_i of

$$\sigma(z_i)^2 = \sigma_{\mathsf{firn}}(z_i)^2 S(z_i) + \sigma_{\mathsf{ice}}(z_i)^2 + \sigma_{\mathsf{dis}}(z_i)^2 \tag{9}$$

with

$$\sigma_{\mathsf{dis}}(z_i)^2 = \frac{2\Delta(z_i)^2}{\pi^2} \ln\left(\frac{\pi}{2}\right) \tag{10}$$

Laki and Tambora

Γ. Quistgaard

- Electrical Conductivity Measurements (ECM)
- Dielectric Profiling (DEP)

