Recurrence Relations - a VERY popular exam topic

$$u_n = 2n^2 + 3$$

This is an example of a position-to-term sequence, because each term is based on the position n.

$$u_{n+1} = 2u_n + 4$$

$$u_1 = 3$$

$$3,10,24,52$$

But a term might be defined based on previous terms.

If u_n refers to the current term, u_{n+1} refers to the next term.

So the example in words says "the next term is twice the previous term + 4"

We need the first term because the recurrence relation alone is not enough to know what number the sequence starts at.

This is known as a term-to-term sequence, or more formally as a **recurrence relation**, as the sequence 'recursively' refers to itself.

Important Note: With recurrence relation questions, the <u>the sequence will likely not be</u> <u>arithmetic nor geometric</u>. So your previous u_n and S_n formulae do not apply.

Edexcel C1 May 2013 (R)

6. A sequence $x_1, x_2, x_3, ...$ is defined by

$$x_1 = 1,$$

 $x_{n+1} = (x_n)^2 - kx_n, \qquad n \ge 1,$

where k is a constant.

(a) Find an expression for x_2 in terms of k. $\sum_{k=1}^{\infty} -k \sum_{k=1}^{\infty} -k$

(b) Show that
$$x_3 = 1 - 3k + 2k^2$$
.
$$x_3 = x_2^2 - k x_2$$

$$= (1 - k)^2 - k (1 - k)$$

$$= 1 - 2k + k^2 - k + k^2$$
(2)

Given also that $x_3 = 1$,

- (c) calculate the value of k.
- (d) Hence find the value of $\sum_{n=1}^{100} x_n$.

$$1 - 3k + 2k^{7}$$

$$6 = 2k^{2} - 3k$$
(3)

$$0 = k(2k-3)$$

$$k = 0 \text{ or } k = \frac{3}{2}$$
(3)

$$2c_{1} = 1$$

$$x_{2} = 1 - \frac{3}{2} < -\frac{1}{2}$$

$$x_{3} = 1$$

$$2c_{1} = 1$$

$$x_{4} = (1 + -\frac{1}{2}) + (1 + -\frac{1}{2}) + (1 + -\frac{1}{2}) + \dots + (1 + -\frac{1}{2})$$

$$= \frac{1}{2} \times 5b = \frac{50}{2} = \frac{25}{2}$$

 $x_3 = 1 - 3k + 2k^2$

Edexcel C1 May 2013 (R)

A sequence $x_1, x_2, x_3, ...$ is defined by

$$x_1 = 1,$$

 $x_{n+1} = (x_n)^2 - kx_n, \qquad n \ge 1,$

where k is a constant.

(a) Find an expression for x_2 in terms of k.

$$x_2 = (x_1)^2 - kx_1 = 1 - k$$
 (1)

(b) Show that
$$x_3 = 1 - 3k + 2k^2$$
.
$$x_3 = (x_2)^2 - kx_2$$

$$= (1 - k)^2 - k(1 - k)$$

$$= 1 - 3k + 2k^2$$
(2)

Given also that $x_3 = 1$,

- (c) calculate the value of k.
- (d) Hence find the value of $\sum_{n=0}^{100} x_n$.

$$k = \frac{3}{2} \tag{3}$$

(3)

$$= 1 + \left(-\frac{1}{2}\right) + 1 + \left(-\frac{1}{2}\right) + \cdots$$
$$= 50 \times \left(1 - \frac{1}{2}\right) = 25$$

3. A sequence of numbers $a_1, a_2, a_3,...$ is defined by

$$a_1 = 3$$

$$a_{n+1} = \frac{a_n - 3}{a_n - 2}, \qquad n \in \mathbb{N}$$

(a) Find $\sum_{r=1}^{100} a_r$

(b) Hence find
$$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r$$

$$a_1 = 3$$

$$a_2 = \frac{3-3}{3-2} = \frac{0}{1} = 6$$

$$\alpha_3 = \frac{0-3}{6-2} = \frac{3}{2}$$

$$a_4 = \frac{3}{2} - 3 = 3$$

$$a_5 = 0$$

$$\sum_{r=1}^{100} a_r = (3 + 0 + \frac{3}{2}) + (3 + 0 + \frac{3}{2})$$

$$a_6 = \frac{3}{2}$$

$$+ ... + 3$$

(3)

(1)

$$= 33(3+0+\frac{3}{2})+3$$

$$= 151.5$$

$$b) \sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = 151.5 + 33(3 + \frac{3}{2})$$

$$= 360$$

Question	Scheme	Marks	AOs
3 (a)	$a_1 = 3$, $a_2 = 0$, $a_3 = 1.5$, $a_4 = 3$	M1	1.1b
	$\sum_{r=1}^{100} a_r = 33(4.5) + 3$	M1	2.2a
	= 151.5	A1	1.1b
		(3)	
(b)	$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)(151.5) - 3 = 300$	B1ft	2.2a
		(1)	
		(4 n	narks)

15. A sequence of numbers a_1, a_2, a_3, \dots is defined by

$$a_{n+1} = k - \frac{3k}{a_n} \qquad n \in \mathbb{Z}^+$$

where k is a constant.

a b c a b c a b c

The sequence is periodic of order 3

Given that $a_2 = 2$

(a) show that $k^2 + k - 12 = 0$

(3)

Given that $a_1 \neq a_2$

(b) find the value of $\sum_{r=1}^{121} a_r$

(4)

$$a_{2} = 2 \qquad a_{3} = k - \frac{3h}{2} \qquad a_{4} = k - \frac{3h}{-\frac{1}{2}} \qquad a_{5} = k - \frac{3h}{k+6} = 2$$

$$= -\frac{k}{2}$$

$$= k - \frac{3}{-\frac{1}{2}} \qquad 2 = k - \frac{3h}{k+6}$$

$$= k+6 \qquad 2(h+6) = h(h+6) - 3h$$

$$2k + 12 = k^{2} + 6k - 3k$$

 $0 = k^{2} + k - 12$
 $k = 3 \quad k = -4$

$$fh=3$$
 $a_1=2$ $a_3=-\frac{3}{2}$ $a_4=9$ $a_5=2$

$$f h = -4$$
 $a_2 = 2$
 $a_3 = -\frac{4}{2} = 2$
 $a_{4} = 2$
 $a_5 = 2$
 $a_{1} = 2$
 $a_{1} = 2$
 $a_{1} = 4$

$$\sum_{r=1}^{121} a_r = (q + 2 - \frac{3}{2}) + (q + 2 - \frac{3}{2}) + q \dots + q$$

$$= 40 (q + 2 - \frac{3}{2}) + q$$

$$= 389$$

Question	Scheme	Marks	AOs
15	$a_{n+1} = k - \frac{3k}{a_n}, n \in \mathbb{Z}^+; k \text{ is a constant}$		
	Sequence a_1 , a_2 , a_3 , where $a_2 = 2$ is periodic of order 3		
(a)	$a_3 = k - \frac{3k}{2} = -\frac{1}{2}k$; $a_4 = k - \frac{3k}{(-\frac{1}{2}k)} = k + 6$	M1	1.1b
	$\{a_5 = a_2 \implies\} \ a_5 = k - \frac{3k}{k+6} = 2$	M1	3.1a
	$\Rightarrow k(k+6) - 3k = 2(k+6) \Rightarrow k^2 + 6k - 3k = 2k + 12$ $\Rightarrow k^2 + k - 12 = 0 *$	A1*	2.1
		(3)	
(b)	$(k+4)(k-3) = 0 \Rightarrow k = -4, 3$	M1	3.1a
	$k = 3$; $\{a_2 = 2,\}$ $a_3 = -\frac{3}{2}$, $a_4 = 9$ $\{k = -4; \{a_2 = 2,\} \ a_3 = 2 \ \{ \Rightarrow a_4 = 2, \ a_1 = 2 \ ; \text{ so reject as } a_1 = a_2 \} \}$	A1	1.1b
	Note: $k = 3$; $a_1 = 9$, $a_2 = 2$, $a_3 = -\frac{3}{2}$, $a_4 = 9$, etc.		
	$\sum_{r=1}^{121} a_r = 40 \left(2 - \frac{3}{2} + 9 \right) + 9$	M1	2.2a
	= 40(9.5) + 9 = 380 + 9 = 389	A1	1.1b
		(4)	
		(7)	marks)

(7 marks)

8. (i) Find the value of

$$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r$$

(ii) Show that

$$\sum_{n=1}^{48} \log_5 \left(\frac{n+2}{n+1} \right) = 2$$

(3)

8i)
$$\sum_{r=4}^{\infty} 20 \times (\frac{1}{2})^r = 20 \times (\frac{1}{2})^{\frac{1}{4}} + 20 \times (\frac{1}{2})^{\frac{1}{5}} + 20 \times (\frac{1}{2})^{\frac{1}{6}}$$

$$= \frac{5}{4} + \frac{5}{8} + \frac{5}{16} + \dots \qquad S_{\infty} = \frac{a}{1-r}$$

$$= \frac{5/4}{1-\frac{1}{2}} = \frac{5}{2}$$

$$r = \frac{1}{2}$$

8ii)
$$\frac{48}{5} \log_5 \left(\frac{n+2}{n+1} \right) = \log_5 \frac{3}{2} + \log_5 \frac{4}{3} + \log_5 \frac{5}{4} + \dots + \log_5 \frac{49}{48} + \log_5 \frac{50}{49}$$

$$= \log_5 \left(\frac{2 \times 4 \times 8 \times \dots \times 49 \times 50}{2 \times 3 \times 4 \times \dots \times 48 \times 49} \right) = \log_5 \left(\frac{50}{2} \right)$$

$$= \log_5 25$$

$$= 2$$

Question 8 (Total 6 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(<u>i</u>)	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r$	M1	This mark is given for a method to find the sum to infinity of a GP
	$= \sum_{r=1}^{\infty} 20 \times \left(\frac{1}{2}\right)^r - (10 + 5 + 2.5)$		
	$=\frac{10}{1-\frac{1}{2}}-(10+5+2.5)$	M1	This mark is given for a method to use a correct sum formula with a correct first term
	= 2.5	Al	This mark is given for a correct value for the sum
(ii)	$\sum_{n=1}^{48} \log_5 \left(\frac{n+2}{n+1} \right)$	M1	This mark is given for writing out at least four terms of the sum, including the first two and the last two
	$= \log_5 \frac{50}{49} + \log_5 \frac{49}{48} + \dots + \log_5 \frac{4}{3} + \log_5 \frac{4}{3}$	$\frac{3}{2}$	
	$= \log_5 \frac{3 \times 4 \times \times 48 \times 49 \times 50}{2 \times 3 \times 4 \times \times 48 \times 49} = \log_5 \frac{50}{2}$	M1	This mark is given for using the rules of logs and cancelling terms
	= 2	A1	This mark is given for a full proof to show the expression is equal to 2 as required

Edexcel C1 Jan 2012

4. A sequence $x_{1}, x_{2}, x_{3}, \dots$ is defined by

$$x_1 = 1$$
,

$$x_{n+1} = ax_n + 5, \qquad n \ge 1,$$

where a is a constant.

(a) Write down an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 + 5a + 5$.

(2)

Given that $x_3 = 41$

(c) find the possible values of a.

(3)

a)
$$x_1 = ax_1 + 5 = \underbrace{a+5}$$

b)
$$x_3 = \alpha_{2}x_{2} + 5 = \alpha(\alpha + 5) + 5 = \alpha^{2} + 5\alpha + 8$$

 $41 = \alpha^{2} + 5\alpha + 5$
 $6 = \alpha^{2} + 5\alpha - 36$
 $\alpha = 4$ or $\alpha = -9$

Edexcel C1 Jan 2012

4. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$x_1 = 1$$
,

$$x_{n+1} = ax_n + 5, \qquad n \ge 1,$$

where a is a constant.

(a) Write down an expression for x_2 in terms of a.

$$x_2 = a + 5$$

(b) Show that $x_3 = a^2 + 5a + 5$.

$$x_3 = a(a+5) + 5 = \cdots$$

(2)

(1)

Given that $x_3 = 41$

(c) find the possible values of a.

$$a^{2} + 5a + 5 = 41$$

$$a^{2} + 5a - 36 = 0$$

$$(a + 9)(a - 4) = 0$$

$$a = -9 \text{ or } 4$$
(3)