IN THE UNITED STATES PATENT & TRADEMARK OFFICE

In re Application of von Deyn et al. Serial No. 09/091,300

January 08, 1998 as PCT international application Filed:

Priority: January 17, 1997

3-Heterocyclyl-substituted benzoyl derivatives For:

DECLARATION

l, Matthias Christian Witschel, a doctor of natural sciences, a citizen of the Federal Republic of Germany and residing at 81, Wittelsbachstrasse, 67061 Ludwigshafen, Germany, declare as follows:

I am a fully trained chemist, having studied chemistry at the University of Erlangen-Nuremberg, Germany, from 1985 to 1994;

I was awarded my doctor's degree by the University of Erlangen-Nuremberg in 1994; I was a post-doctoral fellow at the Stanford University from 1994 to 1995;

Since 1996, when I joined BASF Aktiengesellschaft of 67056 Ludwigshafen, Germany, I have been engaged in the synthesis of herbicides and herbicide screening;

I am one of the inventors of the invention disclosed and claimed in Application No. 09/091,300 and therefore I am familiar with the field to which the said application relates. I have studied the Office Action that has issued in this case and read the references cited therein.

In order to show the herbicidal action of the inventive 3-heterocyclyl-substituted benzoyl derivatives Laccording to application Serial No. 09/091,300 L carried out experiments as described in Application Ser. No. 09/091,300 (see page 159, line 16 to page 160, line 9). The plants used in these experiments belong to the following species:

von Deyn et al. US Ser. No.

page 2

Scientific name	Common name
Abutilon theophrasti	Velvetleaf
Alopecurus myosuroides	Blackgrass
Amaranthus retroflexus	Pigweed
Avena fatua	Wild oat
Chenopodium album	Lambsquarters
Echinochloa crus-galli	Barnyardgrass
Galium aparine	Catchweed
Ipomoea ssp.	Momingglory
Polygonum persicaria	Ladysthumb
Setarla faberi	Giant foxtall
Setarla viridis	Green foxtail
Sinapis alba	White mustard
Solanum nigrum	Black nightshade
Triticum aestivum	Winter wheat
Veronica ssp.	Speadwell
Zea mays	Com

<u>Table 1:</u> Herbicidal action of compound A of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha		250 g/ha
		Damage [%]	
Chenopodium album	100		100
Echinochloa crus-galll	90		90
Polygonum persicaria	100		98
Setaria viridis	100		98
Solanum nigrum	95		95

page 3

09/091,300

von Deyn et al. US Ser. No.

<u>Table 2:</u> Herbicidal action of compound B of the present invention at an application rate of 125 and 62.5 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	125 g/ha		62.5 g/ha
		Damage [%]	
Chenopodium album	100		100
Polygonum persicaria	100		100
Setaria faberi	85		85
Setaria viridis	98		95

<u>Table 3:</u> Herbicidal action of compound C of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha		250 g/ha
		Damage [%]	
Amaranthus retroflexus	95		95
Chenopodium album	98		98
lpomoea ssp.	100		95
Polygonum persicarla	98		98
Setaria faberi	95		95
Setaria viridis	100		100

Table 4: Herbicidal action of compound D of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
		Damage [%]
Chenopodium album	98	98
Ipomoea ssp.	100	95
Setaria faberi	95	95
Setaria virldis	100	100
Sinapis alba	98	98

Table 5; Herbicidal action of compound E of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
• •		Damage [%]
Chenopodlum album	95	95
Echinochloa crus-galll	90	90
Setaria vIrldIs	95	95
Setarla faberi	95	95

Table 6: Herbicidal action of compound F of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
, pp. 10-2-2-2		Damage [%]
Crop Plant		
Triticum aestivum	0	0
Unwanted Plants		
Chenopodium album	95	95
Echlnochloa crus-galli	90	90
Polygonum persicaria	95	95
Setaria faberi	90	90

Table 7: Herbicidal action of compound G of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
• •		Damage [%]
Crop Plant		
Zea mays	0	0
Unwanted Plants		
Chenopodium album	100	100
Echinochloa crus-galli	90	90
Polygonum persicaria	98	90
Solanum nigrum	[*] 95	95

Table 8: Herbicidal action of compound H of the present invention at an application rate of 125 and 62.5 g/ha of active ingredient (post emergence treatment in greenhouse)

125 g/ha	62.5 g/ha
	Damage [%]
95	95
100	100
100	100
98	98
98	98
	95 100 100 98

Table 9: Herbicldal action of compound I of the present Invention at an application rate of 125 and 62.5 g/ha of active Ingredient (post emergence treatment in greenhouse)

Application rate	125 g/ha	62.5 g/ha
		Damage [%]
Chenopodium album	100	100
Polygonum persicana	100	100
Setaria viridis	95	90
Sinapis alba	98	95
Veronica ssp.	95	95

Table 10: Herbicidal action of compound J of the present invention at an application rate of 125 and 62.5 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	125 g/ha	62.5 g/ha
T. F		Damage [%]
Amaranthus retroflexus	100	100
Avena fatua	95	90
Chenopodium album	98	98
Polygonum persicaria	100	100
Sinapis alba	98	98
Ulliupio uiou		

Table 11: Herbicidal action of compound K of the present invention at an application rate of 125 and 62.5 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	125 g/ha	62.5 g/ha
• •		Damage [%]
Chenopodium album	100	100
Ipomoea ssp.	95	90
Polygonum persicaria	100	100
Setaria virldis	90	90
Solanum nigrum	90	90

Table 12: Herbicidal action of compound L of the present invention at an application rate of 500 and 250 g/ha of active Ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
- F		Damage [%]
Abutilon theophrasti	95	95
Chenopodium album	100	100
lpomoea ssp.	100	100
Setaria viridis	95	95
Sinapls alba	98	98

Table 13: Herbicidal action of compound M of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
, ,		Damage [%]
Chenopodium album	100	100
Polygonum persicaria	100	100
Setaria faberl	95	95
Sinapis alba	100	100
Solanum nigrum	98	98

Table 14: Herbicidal action of compound N of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate 500 g/ha 250	g/ha
Damage [%]	
Chenopodium album 100 100	
Gallum aparine 95 95	
Polygonum persicaria 100 100	•
Setaria vindis 95 90	1
Solanum nigrum 100 98	

Table15: Herbicidal action of compound O of the present invention at an application rate of 500 and 250 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	500 g/ha	250 g/ha
• •		Damage [%]
Alopecurus myosuroides	95	95
Amaranthus retroflexus	100	100
Polygonum persicaria	100	100
Setaria viridis	100	98
Veronica ssp.	100	100

page 10

09/091.300

Table 16: Herbicldal action of compound P of the present invention at an application rate of 250 and 125 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	250 g/ha	125 g/ha
	İ	Damage [%]
Chenopodium album	100	100
Ipomoea ssp.	90	90
Polygonum persicaria	100	98
Setaria faberi	90	85

<u>Table 17:</u> Herbicidal action of compound Q of the present invention at an application rate of 250 and 125 g/ha of active ingredient (post emergence treatment in greenhouse)

Application rate	250 g/ha	125 g/ha
· F1		Damage [%]
Chenopodium album	100	100
Polygonum persicaria	95	95
Setana faberi	85	85
Solanum nigrum	95	90

The tables 1 to 17 clearly demonstrate that the compounds according to application Serial No. 09/091,300 are suitable for controlling unwanted plants.

25-OKT-1999 20:52

BASF AG ZDX/P C6

page 11

+49 621 6048821 S.33/33 von Deyn et al. US Ser. No.

09/091,300

I further declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signed at 67056 Ludwigshafen, Germany, this 21 day of October, 1999.

Makes Whele

Signature of Declarant