1集合测验(难题)

高一(6) 班 邵亦成 26 号

2021年09月08日

- 1. 设 [m] 表示不超过实数 m 的最大整数,则集合 $\{x \in \mathbb{R} | 9x^2 30 [x] + 20 = 0\}$ 中所有元素的和为? .
 - (a) 思路:
 - i. 限定 [x] 的范围 ([x] 是有限个,方便求解).
 - ii. 代入原式进行求解.
 - (b) 解答:

将 $[x] \le x$ 代入原方程得:

$$9x^2 + 20 = 30[x] \le 30x.$$

解不等式,得 $x \in \left[\frac{5-\sqrt{5}}{3}, \frac{5+\sqrt{5}}{3}\right]$. $\frac{5-\sqrt{5}}{3} \approx 0.92, \frac{5+\sqrt{5}}{3} \approx 2.41 \Rightarrow [x] \in \{0,1,2\}.$ 分类讨论:

 $1^{\circ} [x] = 0 \Rightarrow x \in [0,1)$ 代入得:

$$9x^2 + 20 = 0$$

无实数解.

 2° $[x] = 1 \Rightarrow x \in [1,2)$ 代入得:

$$9x^2 - 10 = 0$$

解得
$$x_1 = \sqrt{\frac{10}{9}}, x_2 = -\sqrt{\frac{10}{9}}.$$

 $\therefore x \in [1, 2) \therefore x = \sqrt{\frac{10}{9}}.$

 3° $[x] = 2 \Rightarrow x \in [2,3)$ 代入得:

$$9x^2 - 40 = 0$$

解得
$$x_1 = \sqrt{\frac{40}{9}}, x_2 = -\sqrt{\frac{40}{9}}$$

 $\therefore x \in [2,3) \therefore x = \sqrt{\frac{40}{9}}.$

综上所述, $x=\sqrt{\frac{10}{9}}$ 或 $x=\sqrt{\frac{40}{9}}$, $\sum x=\sqrt{10}$.

2. 设 S 为有限集合, $A_1,A_2,\cdots A_{2019}$ 为 S 的子集,|X| 表示集合 X 中元素的个数.已知对每个正整数 $i\in [1,2019]$ 都有 $|A_i|\geq \frac{1}{5}|S|$. 若对于任意集合 S 总是存在 $x\in S$ 在至少 k 个集合 A_i 中出现,则 k 的 最大值是多少? 并加以证明.

 $k_{\rm max} = 404.$

下证: $k_{\text{max}} \geq 404$.

定义元素 t 在 S 的子集 A_i 出现的次数为 f_t $(t \in S, i \in [1,2019] \cap \mathbb{Z})$. 易证

$$\sum_{t \in S} f_t = \sum_{i=1}^{2019} |A_i| \ge \frac{2019}{5} |S| = 403.8|S|.$$

于是

$$\exists t \in S : f_t \ge \lceil 403.8 \rceil = 404.$$

于是 $k_{\text{max}} \ge 404$.

下证: $k \ngeq 405$.

构造

$$S = \{1, 2, 3, 4, 5\},$$

$$A_1 = A_2 = \cdots A_{404} = \{1\},$$

$$A_{405} = A_{406} = \cdots A_{808} = \{2\},$$

$$A_{809} = A_{810} = \cdots A_{1212} = \{3\},$$

$$A_{1213} = A_{1214} = \cdots A_{1616} = \{4\},$$

$$A_{1617} = A_{1618} = \cdots A_{2019} = \{5\}.$$

此时, k = 404.

综上所述, $404 \le k_{\text{max}} < 405$, $k_{\text{max}} = 404$.