Selection of Appropriate Statistical Methods for data analysis

Basic conception

Choose method

Sample size

>> 1.1 type of data

>> 1.1 type of data-dummy variable

Ordinal	Score	Fail (<60)	Pass (60-75)	Good (75-85)	Excellent (>85)
	Code	1	2	3	4

nominal

Profession	Student	Farmer	Worker	Civil servant	Other	
Code	1	2	3	4	5	

In regression model, nominal variable should be transformed into dummy variable:

Set "other" as a reference, create four dummy variables (X1-X4)

	x1	x2	х3	х4
Student	1	0	0	0
Farmer	0	1	0	0
Worker	0	0	1	0
Civil servant	0	0	0	1
Other	0	0	0	0

>> 1.1 type of data-survival data

time-to-event data: combination of status (categorical) and time (continuous)

Follow-up of lung cancer patients

	(a)	(2)
Patient ID	(Survival)	(Survival)
	Status	Days
1	Alive	1455
2	Death	90
3	Alive	1390
4	Death	1129
5	Death	983

Neither x2 test mor t-test can use all the information

>> 1.2 distribution of data

a. Normal distribution

$$\longrightarrow X \sim N(\mu, \sigma^2)$$

>> 1.3 Study design

- ◆ Factor: are the variables (treatments) in the study that we believe will influence the results
- ◆level: are the "values" of that factor in an experiment

Example: antihypertensive drug

Group	
Experimental	Drug: 1 unit/d
	Drug: 3 unit/d
Control	Placebo

>> 1.3 Study design-completely random design

(1) Completely random design

>> 1.3 Study design-paired study

(2) Paired study

- (1) Measuring the same object at two different time points (Duplicate, Pre-Post Measurements);
- 2Different parts of the same object;
- (3) Measured the same object with two different methods.

>> 1.3 Study design-RBD

(3) randomized block design

>> 1.3 Study design-RMD

(4) Repeated measurement design

multiple measurements of each subject, extension of paired study

>> 1.3 Study design-factorial design

(5) Factorial design

multiple measurements of each subject, extension of paired study

2×2 factorial design

	Treatment B			
		Yes	No	1
Same and the	Yes	n, X _{AB}	n, \overline{X}_A	2n
Treatment A	No	n, \overline{X}_B	n, X	2n
		2n	2n	4n

Choose from common methods

These are general guidelines and should not be construed as hard and fast rules

>> 2.1 Factors Influencing Selection of Statistical Methods

>> 2.2 Descriptive

	Data				
Aim	Continuous Normal data	Ordinal, continuous skewed data	Nominal	Survival data	
Descriptive	Mean \pm SD	Median (IQR)	N (%)*	Life table, Kaplan- Meier survival curve	

^{*} proportion, rate, percent....

	Antihypertensive Treatment	Control	
Characteristics	(n = 2038)	(n = 2033)	
Age, mean (SD), y	62.1 (10.8)	61.8 (11.0)	age, continuous norma
Men, No. (%)	1317 (64.6)	1287 (63.3)	•
Fime from onset to randomization, nean (SD), h	15.3 (12.9)	14.9 (13.0)	data
Blood pressure at entry, nean (SD), mm Hg			
Systolic	166.7 (17.3)	165.6 (16.5)	
Diastolic	96.8 (10.8)	96.5 (11.4)	
Body mass index, mean (SD) ^a	24.9 (3.2)	25.0 (3.1)	
NIHSS score, median (IQR)b	4.0 (2.0-7.0)	4.0 (3.0-8.0)	NIHSS scale, ranked data
History of hypertension, No. (%)	1610 (79.0)	1599 (78.7)	in 100 source, ranned date
Current use of antihypertensive medications, No. (%)	1014 (49.8)	983 (48.4)	
Hyperlipidemia, No. (%)	137 (6.7)	140 (6.9)	
Diabetes mellitus, No. (%)	369 (18.1)	350 (17.2)	DM, categorical data
Coronary heart disease, No. (%)	216 (10.6)	228 (11.2)	Divi, categorical data
Current cigarette smoking, No. (%)	725 (35.6)	760 (37.4)	
Current alcohol drinking, No. (%)	614 (30.1)	639 (31.4)	
schemic stroke subtype, No. (%)c			
Thrombotic	1575 (77.3)	1595 (78.5)	
Embolic	99 (4.9)	103 (5.1)	
Lacunar	417 (20.5)	385 (18.9)	

Abbreviations: IQR, interquartile range; NIHSS, National Institutes of Healti Stroke Scale.

PMID: 24240777

2.3 inferential

	Data				
Aim	Continuous Normal data	Ordinal, continuous skewed data	Nominal	Survival data	
Compared with hypothetical value	One sample t-test	One sample Wilcoxon signed rank test	Chi-square goodness-of-fit test	Kaplan-Meier survival curve	

>> 2.3 inferential

	Data					
Aim, Design	Continuous Normal data	Ordinal, continuous skewed data	Nominal	Survival data		
Compare between Two unpaired groups	Independent samples t- test	Mann Whitney U test/Wilcoxon rank sum test	Chi-square test [¥]	Log-rank test		
Compare between Two paired groups (paired design)	Paired t-test	Related samples Wilcoxon signed-rank test	McNemar's test*	Conditional proportional hazards regression		

^Yn<40 or E<1, use Fisher's exact test

^{*}McNemar's test is only suitable for 2X2 contingency table

Variables	Total (N = 387)	Albumin < 35 g/L (N = 54)	Albumin \geq 35 g/L (N=333)	P-value
Age (years)	387	63.83 ± 10.94	62.16 ± 10.37	0.276
Sex				0.002
Male sex	241	44 (81.5)	197 (59.2)	
Female sex	146	10 (18.5)	136 (40.8)	
Smoking				0.005
Never smoker	183	15 (27.8)	168 (50.5)	
Former smoker	102	17 (31.5)	85 (25.5)	
Current smoker	102	22 (40.7)	80 (24.0)	
BMI (kg/m²)	387	21.70 ± 2.83	22.81 ± 3.41	0.024
Tumor type				0.852
AC	259	35 (64.8)	224 (67.3)	
unknown Cancer stage 0.8- In the stage of		T	P <0.001	0.170

Survival time (month)

Post-diagnostic C-reactive protein and albumin predict survival in Chinese patients with non-small cell lung cancer: a prospective cohort study. Yang JR, Xu JY, Chen GC, Yu N, Yang J, Zeng DX, Gu MJ, Li DP, Zhang YS, Qin LQ.

- Continuous variables were expressed as the means with the standard deviation, and were compared using the Student's t test. The Chi-Square or Mann-Whitney U test was used to compare the categorical variables, which was presented as the number and percentage of patients.
- Survival analysis was performed using the Kaplan-Meier method, and the differences were assessed using the Log-Rank test.

>> 2.3 inferential

	Data Control of the C				
Aim, Design	Continuous Normal data	Ordinal, continuous skewed data	Nominal	Survival data	
≥3 unpaired groups (i.e., CRD)	One way ANOVA\$	Kruskal-Wallis test	Chi-square test	Log-rank test cox proportional hazards regression	
≥3 Related groups (i.e., RBD)	ANOVA for RBD*	Friedman test	Cochrane Q test	Conditional Cox proportional hazards regression	

^{*}Repeated measures ANOVA

\$ ANOVA for factorial design

Repeated measures logistic regression仅限二分类变量。

If reject H0, post hoc analysis

Increased Growth Differentiation Factor 15 Is **Associated** with **Unfavorable Clinical Outcomes** of **Acute Ischemic Stroke**.

Table 1. Characteristics of participants according to categories of serum GDF-15.a							
		GDF-15, ng/L					
Characteristics	Total	<1200	1200-1800	>1800	P value		
Number of subjects, n (%)	3066	1979 (64.54)	635 (20.71)	452 (14.74)			
Demographics							
Age, years	62.3 ± 10.8	59.3 ± 10.0	66.7 ± 9.6	69.7 ± 10.3	< 0.001		
Male, n (%)	1966 (64.12)	1270 (64.17)	405 (63.78)	291 (64.38)	0.994		
Current cigarette smoking	1124 (36.66)	741 (37.44)	221 (34.80)	162 (35.84)	0.330		
Current alcohol drinking	958 (31.25)	686 (34.66)	165 (25.98)	107 (23.67)	< 0.001		

Baseline characteristics were compared among these 3 groups using ANOVA or Chisquare test, when appropriate.

Kaplan-Meier survival curves, log-rank tests, and Cox proportional hazards models were used to evaluate the associations between these 3 groups and the cumulative incidence of death, cardiovascular events, and stroke recurrence.

2.3 inferential

Aim	Data				
	Continuous Normal data	Ordinal, continuous skewed data	Nominal	Survival data	
Degree of linear relationship between two variables	Pearson correlation	Spearman correlation	Association analyses ^{&}		

[&] Phi coefficient and Kappa.

Scatter plot at first!

>> 2.3 inferential

	Data type of Outcome				
Aim	Continuous Normal data	Nominal		Survival data	
Predict 1 outcome variable by 1 independent variable	Simple linear regression	Nonparametric regression	(conditional) Logistic regression	Cox proportional hazards regression	
Predict 1 outcome variable by ≥1 independent variable	Multiple linear regression; analysis of covariance		(conditional) Multiple logistic regression	Cox proportional hazards regression	

Technically, assumptions of normality concern the errors rather than the dependent variable itself!

Many of these models produce estimates that are robust to violation of the assumption of normality, particularly in large samples.

Variables		Model 1		Model 2		Model 3	
	N	HR (95% CI)	P-trend	HR (95% CI)	P-trend	HR (95% CI)	P-trend
Multivariate anal	ysis for C	RP and albumin			_		_
CRP (mg/L)			< 0.001		0.001		0.003
< 5.61	134	1		1		1	
5.61-8.58	124	1.61 (0.83-3.10)		1.59 (0.82-3.09)		1.56 (0.80-3.04)	
>8.58	129	3.32 (1.73-6.40)		2.84 (1.46-5.49)		2.64 (1.35-5.16)	
Albumin (g/L)			0.006		0.002		0.011
<35	54	1		1		1	
≥35	333	0.51 (0.31-0.82)		0.45 (0.27-0.74)		0.50 (0.29-0.85)	
Multivariate anal	ysis for C	RP/Alb ratio					
CRP/Alb ratio			< 0.001		< 0.001		< 0.001
< 0.14	148	1		1		1	
0.14-0.22	110	2.30 (1.18-4.49)		2.16 (1.10-4.28)		2.19 (1.11-4.34)	
>0.22	129	5.16 (2.73-9.78)		4.68 (2.45-8.95)		4.14 (2.15-7.98)	

Table 3. COX proportional hazards regression overall model of CRP, albumin and CRP/Alb ratio. Alb, albumin; HR, hazard ratio; CI, confidence interval; CRP, C-reactive protein; Model 1 includes age at baseline interview, sex, body mass index, family history of cancer, patient history of chronic obstructive pulmonary disease, smoking status and drinking habit. Model 2: model 1 plus tumor type, cancer stage and treatment. Model 3: model 2 plus history of chronic liver disease and white blood cell count.

 Hazard ratios (HR) and 95% confidence intervals (CI) of NSCLC death were estimated using the Cox proportional hazards regression model.

Post-diagnostic C-reactive protein and albumin predict survival in Chinese patients with non-small cell lung cancer: a prospective cohort study

>> 2.3 inferential

If there are 2+ outcome variables, and the outcome variables are normal or interval data,
Then you can consider of one-way MANOVA,
multivariate multiple linear regression, factor analysis and canonical correlation

>> 3.1 Small sample size

For small sample size (average ≤15 observations per group), normality testing
methods are less sensitive about non-normality and there is chance to detect normality
despite having non-normal data. It is recommended that when sample size is small,
only on highly normally distributed data, parametric method should be used otherwise
corresponding nonparametric methods should be preferred.

>> 3.2 sufficient sample size

Similarly on sufficient or large sample size (average >15 observations per group), most of the statistical methods are highly sensitive about non-normality and there is chance to wrongly detect non-normality, despite having normal data. It is recommended that when sample size is sufficient, only on highly non-normal data, nonparametric method should be used otherwise corresponding parametric methods should be preferred.

THANKS YOU

Together We Will Do A Great Job!