Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 _ Aula_06

Tema: Introdução à linguagem Verilog e simulação em Logisim

Simplificações de expressões lógicas e circuitos

Expressões lógicas e seus circuitos equivalentes podem ser, muitas vezes, simplificados. Entretanto, nem todas as expressões podem ser minimizadas e, caso o forem, nem sempre haverá uma única expressão mínima global.

Dentre os métodos para simplificações destacam-se:

- as aplicações de regras da álgebra de Boole, principalmente, as que envolvem tautologias, contradições, negações, absorções e distribuições.
- métodos tabulares:
- 1.) baseados em uma diferença (distância de Hamming = 1) ou (x.y + x.y')
 - mapa de Veitch-Karnaugh (poucas varíáveis)
 - Quine-McCluskey (muitas variáveis)
- 2.) baseados em diferenças (distância de Hamming = 2) ou (x.y + x'.y') ou (x'.y + x.y')
 - Reed-Müller
- 3.) inspeção visual da tabela e interpretação algorítmica
- métodos envolvendo representações por grafos (BDD's) ou redes de conexões.

Exemplo:

Dada a expressão lógica (x+y'+z).(x+y+z) é possível encontrar uma simplificação mediante aplicações de regras da álgebra de Boole.

- por distribuições:

$$(x+y'+z).x+(x+y'+z).y+(x+y'+z).z$$

= $(x.x+y'.x+z.x)+(x.y+y'.y+z.y)+(x.z+y'.z+z.z)$

- por identidades/contradições:

$$= (x.1+x.y'+x.z)+(x.y+0+y.z)+(x.z+y'.z+z)$$

- por distribuições/identidades

$$= x.(1+y'+z+y+z)]+z.(y+y'+1) = x.1 + z.1 = x+z$$

Resultado semelhante ao se considerar a diferença unitária, como nos métodos tabulares:

$$(x+y'+z).(x+y+z) = [(x+z)+y'].[(x+z)+y] = (x+z).(y'+y) = (x+z).1 = x+z$$

Se houver uma representação por grafo (BDD) também haverá simplificação:

Ao se reagrupar, nota-se que não há dependência de y, pois qualquer caminho leva a z:

Ao se reorganizar o grafo, considerando as importâncias de x e de z:

E, ao considerar que se houver x não haverá dependência de z:

Portanto, depende apenas de x, ou de forma homóloga a partir de z:

Atividades

Preparação

Como preparação para o início das atividades, recomendam-se

- a.) leitura prévia do resumo teórico, do detalhamento na apostila e referências recomendadas
- b.) estudo e testes dos exemplos
- c.) assistir aos seguintes vídeos:

https://www.youtube.com/watch?v=SvcTSNCB4zIhttps://www.youtube.com/watch?v=VkJ71Js3QDwhttps://www.youtube.com/watch?v=JUVeGaJkuDY

Orientação geral:

Atividades previstas como parte da avaliação

Apresentar todas as soluções em apenas um arquivo com formato texto (.txt).

As implementações e testes dos exemplos em Verilog (.v) fornecidos como pontos de partida, também fazem parte da atividade e deverão ter os códigos fontes entregues separadamente. As saídas de resultados, opcionalmente, poderão ser copiadas ao final do código, como comentários.

Atividades extras e opcionais

Outras formas de solução serão <u>opcionais</u>; não servirão para substituir as atividades a serem avaliadas. Se entregues, contarão apenas como atividades extras.

As execuções deverão, preferencialmente, serão testadas mediante uso de entradas e saídas padrões, cujos dados/resultados deverão ser armazenados em arquivos textos. Os resultados poderão ser anexados ao código, ao final, como comentários.

Os *layouts* de circuitos deverão ser entregues no formato (.circ), identificados internamente. Figuras exportadas pela ferramenta serão aceitas como arquivos para visualização, e **não** terão validade para fins de avaliação. Separar versões completas (a) e simplificadas (b).

Arquivos em formato (.pdf), fotos, cópias de tela ou soluções manuscritas também serão aceitos como recursos suplementares para visualização, e **não** terão validade para fins de avaliação.

Atividade: Simplificação de circuitos

01.) Funções lógicas podem ser simplificadas diretamente do mapa de Veitch-Karnaugh:

			Е			
			z'	Z		
		xy∖z	0	1		
Α	x'	00	(0)	(1)	y'	D
	χ'	01	(2)	(3)	У	С
	Х	11	(6)	(7)	_ у	
В	Х	10	(4)	(5)	у'	D

$$A = x' \cdot f(z)$$

$$B = x \cdot f(z)$$

$$C = y \cdot f(z)$$

$$D = y' \cdot f(z)$$

$$E = f(x,y)$$

Exemplo:

Dado o mapa de Veitch-Karnaugh abaixo, determinar a função simplificada equivalente.

			Е			
			z'	Z		
		xy∖z	0	1		
Α	x'	00	(0)	1 ⁽¹⁾	у'	D
	x'	01	1 ⁽²⁾	1 ⁽³⁾	У	С
	Х	11	(6)	(7)	у	
В	Х	10	1 ⁽⁴⁾	(5)	у'	D

$$f(x,y,z) = \sum m(1,2,3,4) = x' \cdot y' \cdot z + x' \cdot y \cdot z' + x' \cdot y \cdot z + x \cdot y' \cdot z'$$

$$f(x,y,z) = \sum m(1,2,3,4) = x' \cdot z + x' \cdot y + x \cdot y' \cdot z'$$

Montar o mapa de Veitch-Karnaugh e simplificar as funções lógicas abaixo e verificar pelas respectivas tabelas-verdades implementadas em Verilog e/ou Logisim:

a)
$$f(x,y,z) = \sum m(1, 5, 7)$$

b)
$$f(x,y,z) = \sum m(2, 3, 6)$$

c)
$$f(x,y,z) = \sum m(2, 4, 6, 7)$$

d)
$$f(x,y,z) = \sum m(1, 2, 3, 6)$$

e)
$$f(x,y,z) = \sum m(0, 2, 5, 7)$$

02.) O mapa de Veitch-Karnaugh também serve para simplificar produtos de somas (MAXTERMOS):

			Е			
			Z	Z'		
		xy∖z	0	1		
Α	X	00	(0)	(1)	Υ	D
	X	01	(2)	(3)	Y'	С
	X'	11	(6)	(7)	Y'	
В	X'	10	(4)	(5)	Υ	D

$$A = X + F(Z)$$

$$\mathsf{B} = \mathsf{X}' + \mathsf{F}(\mathsf{Z})$$

$$C = Y' + F(Z)$$

$$\mathsf{D}=\mathsf{Y}'+\mathsf{F}(\mathsf{Z})$$

$$E = F(X,Y)$$

Exemplo:

Dado o mapa de Veitch-Karnaugh abaixo, determinar o produto das somas (PoS) simplificado.

			Е			
			Z	Z'		
		XY∖Z	0	1		
Α	X	00	0 (0)	1 ⁽¹⁾	Υ	D
	Χ	01	1 ⁽²⁾	1 ⁽³⁾	Υ'	С
	X'	11	0 (6)	0 (7)	Y'	
В	Χ'	10	1 ⁽⁴⁾	0 ⁽⁵⁾	Υ	D

$$F(X,Y,Z) = \Pi M(0,5,6,7) = (X+Y+Z) \cdot (X'+Y+Z') \cdot (X'+Y'+Z) \cdot (X'+Y'+Z')$$

$$F(X,Y,Z) = \Pi M(0,5,6,7) = (X+Y+Z) \cdot (X'+Z') \cdot (X'+Y')$$

Montar o mapa de Veitch-Karnaugh e simplificar as funções lógicas abaixo por MAXTERMOS e verificar pelas respectivas tabelas-verdades implementadas em Verilog e/ou Logisim:

a)
$$F(X,Y,Z) = \mathbf{T} M(4,6,7)$$

b)
$$F(X,Y,Z) = \mathbf{T} M (1, 5, 7)$$

c)
$$F(X,Y,Z) = \Pi M(1, 2, 3, 5)$$

d)
$$F(X,Y,Z) = \Pi M(0, 3, 4, 7)$$

e)
$$F(X,Y,Z) = \Pi M(1, 2, 6, 7)$$

03.) Se o número de variáveis aumentar, o mapa deve ser modificado ligeiramente, a fim de que as vizinhanças mantenham apenas uma diferença entre elas.

			Е			F		
			w'	w'	W	W		
		xy\wz	00	01	11	10		
Α	X'	00	(0)	(1)	(3)	(2)	y'	D
	x'	01	(4)	(5)	(7)	(6)	У	С
	Х	11	(12)	(13)	(15)	(14)	_ у	
В	Х	10	(8)	(9)	(11)	(10)	у'	D
			z'	Z	Z	z'		
			Н	G		Н		

Exemplo:

Dado o mapa de Veitch-Karnaugh abaixo, determinar a função simplificada equivalente.

			Е			F		
			w'	w'	W	W		
		xy\wz	00	01	11	10		
Α	x'	00	0 (0)	1 ⁽¹⁾	0 (3)	1 ⁽²⁾	у'	D
	X'	01	0 ⁽⁴⁾	0 ⁽⁵⁾	1 ⁽⁷⁾	1 ⁽⁶⁾	у	С
-	Х	11	1 ⁽¹²⁾	0 ⁽¹³⁾	0 ⁽¹⁵⁾	1 ⁽¹⁴⁾	_ у	
В	Х	10	0 ⁽⁸⁾	1 ⁽⁹⁾	0 ⁽¹¹⁾	0 ⁽¹⁰⁾	у'	D
			z'	Z	Z	z'		-
			Н	G		Н		

$$\begin{split} f\left(x,y,w,z\right) &= \sum m \; (\; 1,\; 2,\; 6,\; 7,\; 9,\; 12,\; 14\;) \\ &= x' \cdot y' \cdot w' \cdot z \; + \; x' \cdot y' \cdot w \cdot z' \; + \; x' \cdot y \cdot w \cdot z' \; + \; x \cdot y' \cdot w' \cdot z \; + \; x \cdot y \cdot w' \cdot z' \; + \; x \cdot y \cdot w \cdot z' \; + \; x' \cdot y \cdot w \cdot z' \; + \;$$

$$f(x,y,w,z) = x' \cdot w \cdot z' + x' \cdot y \cdot w + y' \cdot w' \cdot z + x \cdot y \cdot z'$$

Construir os mapas de Veitch-Karnaugh e simplificar as funções lógicas abaixo e verificar pelas respectivas tabelas-verdades implementadas em Verilog e/ou Logisim:

a)
$$f(x,y,w,z) = \sum m(1, 2, 6, 7, 10, 11)$$

b)
$$f(x,y,w,z) = \sum m(0, 2, 3, 5, 8, 9, 13)$$

c)
$$f(x,y,w,z) = \sum m(0, 1, 2, 4, 7, 8, 11, 15)$$

d)
$$f(x,y,w,z) = \sum m(2, 4, 5, 7, 10, 12, 14)$$

e)
$$f(x,y,w,z) = \sum m(0, 1, 2, 6, 8, 9, 12, 15)$$

04.) O mapa de Veitch-Karnaugh também serve para simplificar produtos de somas (MAXTERMOS):

		E				F		
			W	W	W'	W'		
		$XY\WZ$	00	01	11	10		
Α	Х	00	(0)	(1)	(3)	(2)	Υ	D
	Χ	01	(4)	(5)	(7)	(6)	Υ'	С
	X'	11	(12)	(13)	(15)	(14)	Y'	
В	X'	10	(8)	(9)	(11)	(10)	Υ	D
			Z	Z'	Z'	Z		-
			Н	G		Н		

$$A = X + F(W,Z) & E = G(X,Y) + W & (A,B) = F(W,Z) \\ B = X' + F(W,Z) & F = G(X,Y) + W' & (C,D) = F(W,Z) \\ C = Y' + F(W,Z) & G = G(X,Y) + Z' & (E,F) = G(X,Y) \\ D = Y + F(W,Z) & H = G(X,Y) + Z & (G,H) = G(X,Y) \\ \end{cases}$$

Exemplo:

Dado o mapa de Veitch-Karnaugh abaixo, determinar o produto de somas (PoS) simplificado.

			E			F		
			W	W	W'	W'		
		XY\WZ	00	01	11	10		
Α	X	00	1 ⁽⁰⁾	1 ⁽¹⁾	1 ⁽³⁾	1 ⁽²⁾	Υ	D
	X	01	1 ⁽⁴⁾	0 ⁽⁵⁾	0 ⁽⁷⁾	1 ⁽⁶⁾	Υ'	С
	Χ'	11	1 ⁽¹²⁾	0 ⁽¹³⁾	0 ⁽¹⁵⁾	1 ⁽¹⁴⁾	Υ'	
В	X'	10	0 ⁽⁸⁾	1 ⁽⁹⁾	1 ⁽¹¹⁾	O ⁽¹⁰⁾	Y	D
			Z	Z'	Z'	Z		-
			Н	G		Н		

$$\begin{split} F\left(X,Y,W,Z\right) &= \Pi \ M \ (\ 5,\ 7,\ 8,\ 10,\ 13,\ 15\) \\ &= (X+Y'+W+Z')\bullet (X+Y'+W'+Z')\bullet (X'+Y'+W+Z')\bullet (X'+Y+W'+Z')\bullet (X'+Y+Z')\bullet (X'+Z')\bullet (X'$$

Com
$$(5, 7)$$
: $(X + Y' + Z')$ (G) Com $(8,10)$: $(X' + Y + Z)$ (H) Com $(13,15)$: $(X' + Y' + Z')$ (G) Com $(5,7,13,15)$: $(Y' + Z')$ (C)

$$\mathsf{F}\;(\mathsf{X},\mathsf{Y},\mathsf{W},\mathsf{Z})=(\mathsf{Y}^{\prime}\mathsf{+}\mathsf{Z}^{\prime})\bullet(\mathsf{X}^{\prime}\mathsf{+}\mathsf{Y}\mathsf{+}\mathsf{Z})$$

Construir os mapas de Veitch-Karnaugh e simplificar as funções lógicas abaixo por MAXTERMOS e verificar pelas respectivas tabelas-verdades implementadas em Verilog e/ou Logisim:

a)
$$F(X,Y,W,Z) = \Pi M(2, 5, 7, 13)$$

b)
$$F(X,Y,W,Z) = \Pi M(4, 8, 9, 10, 12)$$

c)
$$F(X,Y,W,Z) = TTM(4, 8, 12, 13, 15)$$

d)
$$F(X,Y,W,Z) = \mathbf{T} M(1, 2, 5, 7, 13, 15)$$

e)
$$F(X,Y,W,Z) = \mathbf{T} M(4,5,6,7,14,15)$$

05.) Identificar a equação característica do circuito lógicos abaixo e simplifica-la pelo mapa de Veitch-Karnaugh usando mintermos. Descrever e simular o circuito simplificado em Verilog e Logisim.

06.) Identificar as equações características dos circuitos lógicos abaixo e simplifica-las pelo mapa de Veitch-Karnaugh usando MAXTERMOS. Descrever e simular o circuito simplificado em Verilog e Logisim.

Extras

07.) Dada a expressão em Verilog abaixo, verificar se há simplificação e montar o circuito equivalente:

```
module FXYZ (output S1, input X, input Y, input Z); assign s1 = ( X \mid \sim Y \mid \sim Z ) & (\sim X \mid Y \mid Z) & ( X \mid \sim Y \mid Z ); endmodule // FXYZ
```

08.) Dada a expressão em Verilog abaixo, verificar se há simplificação e montar o circuito equivalente:

```
module fwxyz (output s1, input w, input x, input y, input z); assign s1 = (w & x & y & z) | (w & ~x & ~y & ~z) | (w & x & ~y & ~z) | (~w & ~x & y & ~z); endmodule // fwxyz
```