THE w-INTEGRAL CLOSURE OF INTEGRAL DOMAINS

GYU WHAN CHANG AND MUHAMMAD ZAFRULLAH

ABSTRACT. Let D be an integral domain with quotient field K, \bar{D} the integral closure of D, X an indeterminate over D, and $N_v = \{f \in D[X] | (A_f)_v = D\}$. Let w be the *-operation on D defined by $I_w = \{x \in K | \text{ there is a finitely generated ideal } A \text{ such that } A^{-1} = D \text{ and } xA \subseteq I\}$, and let $D^w = \{u \in K | uI_w \subseteq I_w \text{ for some nonzero finitely generated ideal } I \text{ of } D\}$. Then D^w , called the w-integral closure of D, is an integrally closed overring of D. In this paper, we show that $D^w = \bar{D}[X]_{N_v} \cap K$ and $D^w[X]_{N_v} = \bar{D}[X]_{N_v}$. Using this result, we give several w-integral closure analogs of the integral closure. We also study the w-integral closure of UMT-domains and strong Mori domains.

INTRODUCTION

Let D be an integral domain with quotient field K. An overring of D means a ring between D and K. It is well known that an element $u \in K$ is integral over D if and only if $uI \subseteq I$ for some nonzero finitely generated ideal I of D (cf. [22, Theorem 12]) and that u is almost integral over D if and only if there is a nonzero ideal I of D such that $uI \subseteq I$ (cf. [16, Lemma 3.1]). Recall that an element $u \in K$ is pseudo-integral over D if $uI_v \subseteq I_v$ for some nonzero finitely generated ideal I of D (see [7]). Recently, Wang introduced another type of integrality. As in [29], we say that an element $u \in K$ is w-integral over D if $uI_w \subseteq I_w$ for some nonzero finitely generated ideal I of D. Let $D^w = \{x \in K | x \text{ is } w\text{-integral over } D\}$. It is known that D^w is an integrally closed overring of D (see [29, §3] or Theorem 1.3); D^w is called the w-integral closure of D. If $D = D^w$, we say that D is w-integrally closed. It is clear that "u integral $\Rightarrow u$ w-integral $\Rightarrow u$ pseudo-integral $\Rightarrow u$ almost integral", and therefore $D \subseteq \bar{D} \subseteq D^w \subseteq \tilde{D} \subseteq D^*$, where \bar{D} (resp., D^w , \tilde{D} , D^*) is the integral closure (resp., w-integral closure, pseudo-integral closure, complete integral closure) of D. Moreover, D completely integrally closed \Rightarrow D pseudo-integrally closed \Rightarrow D w-integrally closed \Rightarrow D integrally closed; if D is a Noetherian domain, then $\bar{D} = D^w = D = D^*$; if D is an SM-domain, then $D^w = D = D^*$; and if D is a Mori domain, then $D = D^*$. (Definitions follow.)

To facilitate the reading of the introduction and of the paper, we first review basic facts on *-operations. Let $\mathcal{F}(D)$ be the set of nonzero fractional ideals of D. A mapping $*: \mathcal{F}(D) \to \mathcal{F}(D)$ is called a *-operation on D if * satisfies the following three conditions for all $0 \neq a \in K$ and all $I, J \in \mathcal{F}(D)$:

²⁰⁰⁰ Mathematics Subject Classification: 13A15, 13B99, 13G05.

Key Words and Phrases : w-integral closure D^w , $D[X]_{N_v(D)}$, UMT-domain, SM-domain, t-linked overring.

- (1) $D^* = D$ and $(aI)^* = aI^*$,
- (2) $I \subseteq I^*$, and if $I \subseteq J$, then $I^* \subseteq J^*$, and
- (3) $(I^*)^* = I^*$.

Given two fractional ideals $I, J \in \mathcal{F}(D)$, we have $(IJ)^* = (I^*J)^* = (I^*J^*)^*$. An $I \in \mathcal{F}(D)$ is called a *-ideal if $I^* = I$. A *-ideal $I \in \mathcal{F}(D)$ is of finite type if $I = (a_1, \ldots, a_n)^*$ for some $(0) \neq (a_1, \ldots, a_n) \subseteq I$. An $I \in \mathcal{F}(D)$ is said to be *-invertible if $(II^{-1})^* = D$. Let *-Max(D) denote the set of *-ideals of D maximal among proper integral *-ideals of D. A *-operation is said to be of finite character if $I^* = \bigcup J^*$, where J ranges over all nonzero finitely generated subideals of I. It is easily verified that if * is a finite character *-operation on D, then *-Max(D) $\neq \emptyset$ and every nonzero integral ideal is contained in a maximal *-ideal when D is not a field. The most famous *-operations are the so-called v-operation and t-operation. The v-operation is defined by $I_v = (I^{-1})^{-1}$, where $I^{-1} = (D:I) = \{x \in K | xI \subseteq I\}$ D}, whereas the t-operation is $I_t = \bigcup \{J_v | (0) \neq J \subseteq I \text{ is a finitely generated deal} \}$. The w-operation is a mapping $I \mapsto I_w = \{x \in K | Jx \subseteq I \text{ for some } J \in GV(D)\},$ where GV(D) is the set of finitely generated ideals J of D with $J^{-1}=D$. Clearly $I_w \subseteq I_t \subseteq I_v$ (and hence v-ideals are t-ideals and t-ideals are w-ideals). It is known that w-Max(D) = t-Max(D) and $I_w = \bigcap_{P \in t\text{-Max}(D)} ID_P = ID[X]_{N_v} \cap K$ ([1, Corollaries 2.13 and 2.17] and [12, Lemma 2.1(2)]). Recall that D is a Moridomain (resp., strong Mori domain (SM-domain)) if D satisfies the ascending chain condition on integral v-ideals (resp., w-ideals). Also, recall that D is a Prüfer v-multiplication domain (PVMD) if every finitely generated ideal $I \in \mathcal{F}(D)$ is tinvertible.

Let D be an integral domain. Throughout this paper, qf(D) denotes the quotient field of D; \bar{D} (resp., D^w , \tilde{D} , D^*) is the integral closure (resp., w-integral closure, pseudo-integral closure, complete integral closure) of D in qf(D); X is an indeterminate over D; D[X] is the polynomial ring over D; the *content* of a polynomial $f \in qf(D)[X]$, denoted by A_f , is the fractional ideal of D generated by the coefficients of f; and $N_v(D) = \{f \in D[X] | (A_f)_v = D\}$.

In Section 1, we show that D^w is t-linked over D; $D^w = \bar{D}[X]_{N_v(D)} \cap qf(D)$; and $\bar{D}[X]_{N_v(D)} = D^w[X]_{N_v(D)}$. Using these results, we give several w-integral closure analogs of the integral closure. We also construct an integral domain R such that $R \subseteq \bar{R} \subseteq R^w \subseteq \tilde{R} \subseteq R^*$. It is known that D is a UMT-domain if and only if $\bar{D}[X]_{N_v(D)}$ is a Prüfer domain [15, Theorem 2.5], if and only if D^w is a w_D -multiplication domain [29, Theorem 4.2]. (See Lemma 2.3 for the definition of the w_D -operation.) We prove in Section 2 that D is a UMT-domain if and only if D^w is a PVMD and t-Max $(D^w) = \{Q \in \operatorname{Spec}(D^w) | Q \cap D \in t$ -Max $(D)\}$, if and only if D^w is a PVMD and $D^w[X]_{N_v(D)} = D^w[X]_{N_v(D^w)}$, if and only if D^w is a PVMD and the pair D, D^w satisfies the property that for a prime ideal Q of D^w , $(Q \cap D)_t \subseteq D$ implies $Q_t \subseteq D^w$. Recall that if D is a Noetherian domain, then $\bar{D} = D^*$ and D^* is a Krull domain [26, Theorem 33.10]. In Section 3, we generalize this fact to SM-domains, i.e., we show that if D is an SM-domain, then $D^w = D^*$ and D^* is a Krull domain. We also prove that if D is a weakly (resp., an almost weakly) factorial SM-domain, then D^* is a factorial (resp., an almost factorial)

domain and that if D is a Noetherian domain with $\dim(D) = 1$, then D is a weakly (resp., an almost weakly) factorial domain if and only if each overring of D is a weakly (resp., an almost weakly) factorial domain.

1. w-integrality

Let $D \subseteq R$ be an extension of integral domains. Then R is said to be t-linked over D if, for each finitely generated ideal I of D, $I^{-1} = D$ implies $(IR)^{-1} = R$. Recall that if R is an overring of D, then R is t-linked over D if and only if, for each prime t-ideal Q of R, $(Q \cap D)_t \subseteq D$ [14, Proposition 2.1], if and only if $R = R[X]_{N_v(D)} \cap qf(R)$ [12, Lemma 3.2].

We begin this section with some characterizations of "t-linkedness", which are essential in the subsequent arguments.

Proposition 1.1. Let $D \subseteq R$ be an extension of integral domains.

- (1) The following statements are equivalent.
 - (a) R is t-linked over D.
 - (b) For each prime t-ideal Q of R with $Q \cap D \neq (0)$, $(Q \cap D)_t \subseteq D$.
 - (c) $R = R[X]_{N_v(D)} \cap qf(R)$, where X is an indeterminate over R.
- (2) If R is an overring of D, then R is t-linked over D if and only if R is defined by a family of overrings $\{R_{\alpha}\}$ such that each R_{α} contains D_{P} for some maximal t-ideal P of D.
- *Proof.* (1) (a) \Leftrightarrow (b) See [2, Proposition 2.1]. (a) \Leftrightarrow (c) See the proof of [12, Lemma 3.2].
- (2) (\Rightarrow) Recall that R is t-linked over D if and only if $R = \cap R_{D \setminus P}$, where P ranges over the prime t-ideals of D [14, Proposition 2.13]. Thus $\{R_{D \setminus P} | P \text{ is a prime } t\text{-ideal of } D\}$ is a desired family of overrings of R.
- (\Leftarrow) Suppose that R is defined by a family of overrings $\{R_{\alpha}\}$ such that each R_{α} contains D_P for some $P \in t\text{-Max}(D)$. Let A be a nonzero finitely generated ideal of D with $A^{-1} = D$. Then $A \nsubseteq P$, and hence $AD_P = D_P$ for all $P \in t\text{-Max}(D)$. So $D_P = AD_P \subseteq AR_{\alpha}$ for some $P \in t\text{-Max}(D)$. But this forces $1 \in AR_{\alpha}$ ensuring $AR_{\alpha} = R_{\alpha}$. Now, let * be the star operation on R induced by $\{R_{\alpha}\}$ [17, Theorem 32.5]. Then for A with the above description, we have $R = (AR)^* \subseteq (AR)_v \subseteq R$. Hence $(AR)_v = R$, and thus $(AR)^{-1} = R$.

Lemma 1.2. The w-integral closure D^w of D is t-linked over D.

Proof. Let K = qf(D), $N_v = N_v(D)$, and R an overring of D. Note that R is t-linked over D if and only if $R = R[X]_{N_v} \cap K$ (Proposition 1.1(1)); so it suffices to show that $D^w = D^w[X]_{N_v} \cap K$. Clearly $D^w \subseteq D^w[X]_{N_v} \cap K$. For the reverse containment, let $u = \frac{f}{g} \in D^w[X]_{N_v} \cap K$, where $g \in N_v$ and $f \in D^w[X]$. Let $f = a_0 + a_1 X + \cdots + a_n X^n \in D^w[X]$. Since each $a_i \in D^w$, there is a nonzero finitely generated ideal J_i of D such that $a_i(J_i)_w \subseteq (J_i)_w$. Let $I = J_1 \cdots J_n$. Then I is a nonzero finitely generated ideal such that $a_i I_w = (a_i J_i J_1 \cdots J_{i-1} J_{i+1} \cdots J_n)_w \subseteq (J_i J_1 \cdots J_{i-1} J_{i+1} \cdots J_n)_w = I_w$. So $A_f I_w \subseteq I_w$, and hence $uI_w = u((A_g)_w I)_w = I_w$.

 $u(A_gI)_w = (uA_gI)_w = (A_fI)_w = (A_fI_w)_w \subseteq (I_w)_w = I_w$ (note that $(A_g)_w = D$ since t-Max(D) = w-Max(D) [1, Corollary 2.17]). Therefore, $u \in D^w$.

Let D be a Noetherian domain. Then $\bar{D} = D^w = D^*$, and thus Lemma 1.2 gives another proof of the well-known fact that \bar{D} is t-linked over D [14, Corollary 2.3]. We next give the main result of this section, which is very useful for the study of w-integrality. This result also shows that D^w is the smallest integrally closed t-linked overring of D [14, Proposition 2.13(b)] and that \bar{D} is t-linked over D if and only if $\bar{D} = D^w$ (Proposition 1.1(1)).

Theorem 1.3. Let K be the quotient field of D and $N_v = \{f \in D[X] | (A_f)_v = D\}.$

- $(1) D^w = \bar{D}[X]_{N_v} \cap K = \bigcap_{P \in t\text{-}Max(D)} \bar{D}_{D \setminus P}.$
- (2) $D^w[X]_{N_v} = \bar{D}[X]_{N_v}$.

Proof. Note that $\bar{D}[X]_{N_v}$ is the integral closure of $D[X]_{N_v}$ since $\bar{D}[X]$ is the integral closure of D[X].

(1) (Proof of $D^w = \bar{D}[X]_{N_v} \cap K$.) Let $u \in D^w$. Then $uI_w \subseteq I_w$ for some nonzero finitely generated ideal I of $D \Rightarrow uID[X]_{N_v} = uI_wD[X]_{N_v} \subseteq I_wD[X]_{N_v} = ID[X]_{N_v}$ [12, Lemma 2.1(2)] $\Rightarrow u$ is integral over $D[X]_{N_v}$ [22, Theorem 12] $\Rightarrow u \in \bar{D}[X]_{N_v} \cap K$. So $D^w \subseteq \bar{D}[X]_{N_v} \cap K$. Note that $\bar{D} \subseteq D^w$ and D^w is t-linked over D (Lemma 1.2). Hence $D^w \subseteq \bar{D}[X]_{N_v} \cap K \subseteq D^w[X]_{N_v} \cap K = D^w$ (Proposition 1.1(1)), and thus $D^w = \bar{D}[X]_{N_v} \cap K$.

(Proof of $\bar{D}[X]_{N_v} \cap K = \cap_{P \in t\text{-}Max(D)} \bar{D}_{D \setminus P}$.) Let $R = \cap_{P \in t\text{-}Max(D)} \bar{D}_{D \setminus P}$. Then $\bar{D} \subseteq R$ and R is t-linked over D (Proposition 1.1(2)); so $\bar{D}[X]_{N_v} \cap K \subseteq R[X]_{N_v} \cap K = R$ (Proposition 1.1(1)). For the reverse containment, note that $\bar{D}[X]_{N_v} = \bigcap_{P \in t\text{-}Max(D)} (\bar{D}[X]_{N_v})_{(D[X]_{N_v} \setminus P[X]_{N_v})}$ since $\bar{D}[X]_{N_v}$ is integral over $D[X]_{N_v}$ and $Max(D[X]_{N_v}) = \{P[X]_{N_v} | P \in t\text{-}Max(D)\}$ [21, Proposition 2.1(2)]. Also, note that $(\bar{D}[X]_{N_v})_{(D[X]_{N_v} \setminus P[X]_{N_v})} = \bar{D}[X]_{D[X] \setminus P[X]} \supseteq \bar{D}_{D \setminus P}$ for all $P \in t\text{-}Max(D)$. Thus $\bar{D}[X]_{N_v} \cap K \supseteq \cap_{P \in t\text{-}Max(D)} \bar{D}_{D \setminus P} = R$.

(2) Let $\frac{f}{g} \in D^w[X]_{N_v}$, where $f \in D^w[X]$ and $g \in N_v$. Note that g and powers of X are units of $D[X]_{N_v}$ and that the coefficients of f are integral over $D[X]_{N_v}$ (see the proof of (1)). Hence $\frac{f}{g}$ is integral over $D[X]_{N_v}$ [22, Theorem 13], and thus $\frac{f}{g} \in \bar{D}[X]_{N_v}$. The reverse containment is clear because $\bar{D} \subseteq D^w$.

As in [22, page 28], INC, GU, and LO denote Incomparable, Going up, and Lying over, respectively. It is well known that if $R \subseteq T$ are rings with T integral over R, then the pair R, T satisfies INC, GU, and LO [22, Theorem 44].

Corollary 1.4. (1) $(D^w)^w = D^w \text{ and } (\bar{D})^w = \bar{D}$.

- (2) If R is a t-linked overring of D, then $D^w \subseteq R^w$.
- (3) The pair D, D^w satisfies INC, GU, and LO for prime w-ideals of D.
- (4) D^w is the intersection of t-linked valuation overrings of D.

Proof. Let K = qf(D) and $N_v = N_v(D)$. Note that $D^w = \bar{D}[X]_{N_v} \cap K$; $D^w[X]_{N_v} = \bar{D}[X]_{N_v}$; and $\bar{D}[X]_{N_v}$ is the integral closure of $D[X]_{N_v}$ (Theorem 1.3).

(1) Since D^w and \bar{D} are integrally closed, $(D^w)^w = \overline{D^w}[X]_{N_v(D^w)} \cap K = D^w[X]_{N_v(\bar{D}^w)} \cap K = D^w$ and $(\bar{D})^w = \overline{\bar{D}}[X]_{N_v(\bar{D})} \cap K = \bar{D}[X]_{N_v(\bar{D})} \cap K = \bar{D}$.

- (2) Note that $\bar{D} \subseteq \bar{R}$ and $N_v \subseteq N_v(R)$; so $\bar{D}[X]_{N_v} \subseteq \bar{R}[X]_{N_v(R)}$. Thus $D^w = \bar{D}[X]_{N_v} \cap K \subseteq \bar{R}[X]_{N_v(R)} \cap K = R^w$.
- (3) (LO) Let P be a prime ideal of D such that $P_w \subsetneq D$. Then as $P_t \subsetneq D$ (cf. [1, Corollary 2.17]), we have $P[X] \cap N_v = \emptyset$; hence $P[X]_{N_v}$ is a proper prime ideal of $D[X]_{N_v}$. So by [22, Theorem 44], there is a prime ideal A of $D^w[X]_{N_v}$ lying over $P[X]_{N_v}$ since $D^w[X]_{N_v}$ is integral over $D[X]_{N_v}$. Thus $A \cap D^w$ is a prime ideal of D^w such that $(A \cap D^w) \cap D = P$.

The properties of (INC) and (GU) also follow directly from [22, Theorem 44], Lemma 1.2, and the fact that $D^w[X]_{N_v}$ is integral over $D[X]_{N_v}$.

(4) Note that $D^w[X]_{N_v}$ is the integral closure of $D[X]_{N_v}$; so $D^w[X]_{N_v}$ is the intersection of valuation overrings of $D[X]_{N_v}$ [17, Theorem 19.8]. Let $\{W_{\alpha}\}$ be the set of valuation overrings of $D[X]_{N_v}$, and let $V_{\alpha} = W_{\alpha} \cap K$. Then each V_{α} is a valuation overring of $D[X]_{N_v}$, and $D^w = D^w[X]_{N_v} \cap K = (\cap_{\alpha} W_{\alpha}) \cap K = (\nabla_{\alpha} X)_{N_v} \cap K = (\nabla_{\alpha} X)_{$

Remark 1.5. (1) Corollary 1.4(1) shows that D is integrally closed if and only if D is w-integrally closed.

- (2) Let D be an integral domain such that \bar{D} is not t-linked over D (see, for example, [13, Example 4.1]). Then $\bar{D} \subsetneq D^w$ (Lemma 1.2) and $(\bar{D})^w = \bar{D}$ (Corollary 1.4(1)); hence $(\bar{D})^w \subsetneq D^w$. Thus for Corollary 1.4(2), we need the assumption that R is t-linked over D.
 - (3) Corollary 1.4(3) is a special case of [29, Theorem 3.3].

Lemma 1.6. Let R be an overring of D and $\{X_{\alpha}\}$ a nonempty set of indeterminates over D. Then R is t-linked over D if and only if $R[\{X_{\alpha}\}]$ is t-linked over $D[\{X_{\alpha}\}]$.

Proof. This follows directly from the following fact: Let S be an integral domain, and let $\{X_{\beta}\}$ be a nonempty set of indeterminates over S. Let Q be a maximal t-ideal of $S[\{X_{\beta}\}]$. If $Q \cap S = (0)$, then $\operatorname{ht} Q = 1$ (see, for example, [12, the proof of Theorem 1.4]). If $Q \cap S \neq (0)$, then $Q = (Q \cap S)[\{X_{\beta}\}]$ and $Q \cap S$ is a maximal t-ideal of S [15, Proposition 2.2].

Let D be an integral domain such that \bar{D} is not t-linked over D. Then since $\bar{D}[\{X_{\alpha}\}]$ is the integral closure of $D[\{X_{\alpha}\}]$, by Lemma 1.6 the integral closure of $D[\{X_{\alpha}\}]$ is not t-linked over $D[\{X_{\alpha}\}]$. The following result is another nice property of w-integrality.

Proposition 1.7. Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D. Then $(D[\{X_{\alpha}\}])^w = D^w[\{X_{\alpha}\}]$

Proof. (\subseteq) Let t be an indeterminate over $D[\{X_{\alpha}\}]$, $S = N_v(D[\{X_{\alpha}\}])$, and $K(\{X_{\alpha}\}) = qf(D[\{X_{\alpha}\}])$. Then $(D[\{X_{\alpha}\}])^w = (\overline{D[\{X_{\alpha}\}]})[t]_S \cap K(\{X_{\alpha}\}) = (\overline{D}[\{X_{\alpha}\}])[t]_S \cap K(\{X_{\alpha}\}) \subseteq (D^w[\{X_{\alpha}\}])[t]_S \cap K(\{X_{\alpha}\}) = D^w[\{X_{\alpha}\}]$ by Proposition 1.1(1) and Lemma 1.6.

(\supseteq) Let $u \in D^w$. Then there is a nonzero finitely generated ideal J of D such that $uJ_w \subseteq J_w$. Now, since $J_w[\{X_\alpha\}] = (J[\{X_\alpha\}])_w$ (cf. [18, Proposition 4.3] for one indeterminate), we have $u \in (D[\{X_\alpha\}])^w$. So $D^w \subseteq (D[\{X_\alpha\}])^w$, and thus $D^w[\{X_\alpha\}] \subseteq (D[\{X_\alpha\}])^w$.

We end this section by using the D+M construction to construct an integral domain R such that $R \subsetneq \bar{R} \subsetneq R^w \subsetneq \tilde{R} \subsetneq R^*$.

Example 1.8. Let D be an integral domain with quotient field K such that \overline{D} is not t-linked over D (see [13, Example 4.1] for such an integral domain), and let $K \subsetneq F$ be an algebraic field extension. Let V be a 2-dimensional valuation domain of the form F(t) + M, where t is an indeterminate over F. Finally, let R = D + M and D_1 the integral closure of D in F. Then

- (1) $\bar{R} = D_1 + M$ and $\tilde{R} = V$.
- (2) D_1 is not t-linked over D; so $D_1 + M$ is not t-linked over R.
- $(3) \ \bar{R} \subsetneq R^w \subseteq F + M \subsetneq V.$
- (4) $V \subsetneq R^*$.

Therefore, $R \subsetneq \bar{R} \subsetneq R^w \subsetneq \tilde{R} \subsetneq R^*$.

- *Proof.* (1) See [9, Theorem 2.1(b)] for $\bar{R} = D_1 + M$ (note that F is algebraically closed in F(t)) and [7, Proposition 1.8(ii)] for $\tilde{R} = V$.
- (2) Suppose that D_1 is t-linked over D. Then $D_1[X]_{N_v(D)} \cap F = D_1$ (Proposition 1.1(1)), and hence $D^w = \bar{D}[X]_{N_v(D)} \cap K \subseteq D_1[X]_{N_v(D)} \cap K = (D_1[X]_{N_v(D)} \cap F) \cap K = D_1 \cap K = \bar{D}$ (Theorem 1.3). So $D^w = \bar{D}$, which is contrary to the fact that $\bar{D} \subsetneq D^w$ (Lemma 1.2). Therefore, D_1 is not t-linked over D.

Recall that if I is a nonzero ideal of D (resp., D_1), then $(I+M)_t = I_t + M$ (cf. [8, Proposition 2.4]); so P is a maximal t-ideal of D (resp., D_1) if and only if P+M is a maximal t-ideal of D+M (resp., D_1+M). Since D_1 is not t-linked over D, there is a prime t-ideal Q of D_1 such that $(Q \cap D)_t = D$ (Proposition 1.1(1)). Hence Q+M is a prime t-ideal of D_1+M such that $((Q+M)\cap R)_t = ((Q\cap D)+M)_t = (Q\cap D)_t + M = D + M = R$. Thus D_1+M is not t-linked over R.

- (3) Since $\bar{R} = D_1 + M$ by (1) and \bar{R} is not t-linked over R by (2), we have $\bar{R} \subsetneq R^w$ by Lemma 1.2. Note that F + M is quasi-local with maximal ideal M and M is a t-ideal of R [8, Proposition 2.1(3)]; so F + M is t-linked over R. Therefore, $R^w = \bar{R}[X]_{N_v(R)} \cap qf(R) \subseteq (F + M)[X]_{N_v(R)} \cap qf(R) = F + M \subsetneq V$ by Theorem 1.3 and Proposition 1.1(1).
- (4) Since M is an ideal of V, $VM \subseteq M$, and hence $V \subseteq R^*$. Let $a,b \in M$ such that $(0) \neq \sqrt{bV} \subsetneq \sqrt{aV} = M$. Then for each positive integer n, there is an $x_n \in V$ such that $b = a^n x_n$. Since $a^n \notin \sqrt{bV}$ and \sqrt{bV} is a prime ideal of V, we have that $x_n \in \sqrt{bV} \subseteq M \subseteq R$. Hence $\frac{1}{a}$ is almost integral over R, and $\frac{1}{a} \in R^* \setminus V$. Therefore, $V \subsetneq R^*$

2. The w-integral closure of umt-domains

Let $D \subseteq R$ be an extension of integral domains. Then D is said to be tlinked under R if whenever $0 \neq a_1, \ldots, a_n \in D$ with $((a_1, \ldots, a_n)R)_v = R$, then $((a_1,\ldots,a_n)D)_v=D$. The concept of "t-linked under" was introduced by Anderson and Zafrullah [5] when R is an overring of D. It is easy to see that D is t-linked under R if and only if $N_v(R) \cap D[X] \subseteq N_v(D)$, if and only if $(PR)_t \subseteq R$ for each prime t-ideal P of D. Recall that R is t-linked over D if and only if $(Q \cap D)_t \subseteq D$ for each prime t-ideal Q of R with $Q \cap D \neq (0)$ (Proposition 1.1(1)), and note that "t-linked under" sounds like the converse of the notion of "t-linked over". So it is natural to ask if D t-linked under R is equivalent to the following condition;

(#) for each prime ideal Q of R with $Q \cap D \neq (0)$, $(Q \cap D)_t \subseteq D$ implies $Q_t \subseteq R$.

However, there is no relationship between "t-linked under" and the property (#). For example, let $P=2\mathbb{Z}$, and let $R=\mathbb{Z}_P$. Then the pair \mathbb{Z} , R satisfies (#), but \mathbb{Z} is not t-linked under R (note that $(3\mathbb{Z}R)_t=R$ and $(3\mathbb{Z})_t\subsetneq\mathbb{Z}$). Let D be a two-dimensional local Noetherian domain with maximal ideal P such that $P_t=P$ and \bar{D} has a height-one prime ideal lying over P. Then D is t-linked under \bar{D} , but the pair D, \bar{D} does not satisfy (#). However, as we shall see in the sequel, the property (#) does play an important role. We next give an explicit example (for more details of this example, see [6, Remark 2.7(b)] and [20, Example 28]).

Example 2.1. Let X, Y be indeterminates over \mathbb{C} and $S = \mathbb{C}[X, Y]$. Let $T_1 \subseteq \mathbb{C}(X, Y)$ be a DVR with maximal ideal P such that $T_1 = \mathbb{C} + P$ with $(X, Y)S \subseteq P$, and let $T_2 = \mathbb{C}[X, Y]_{(X-1,Y)}$. Then $T = T_1 \cap T_2$ is a two-dimensional Noetherian factorial domain with exactly two maximal ideals, $M = P \cap T$ and $N = (X - 1, Y)_{(X-1,Y)} \cap T$, where ht M = 1 and ht N = 2. Note that $T = \mathbb{C} + M$, and let $R = \mathbb{C} + (M \cap N)$. Then R is a two-dimensional local Noetherian domain with maximal ideal $M \cap N$ and $\overline{R} = T$.

Let $D = \mathbb{R} + (M \cap N)$. Then D is a Noetherian domain [11, Theorem 4] (since $[\mathbb{C} : \mathbb{R}] = 2 < \infty$), $\operatorname{ht}(M \cap N) = 2$, and $(M \cap N)_t \subsetneq D$. It is clear that R is integral over D and qf(D) = qf(R); so D is local (cf. [22, Theorem 44]) and $T = \overline{D}$ [17, Corollary 9.5] because $T = \overline{R}$. Since $\operatorname{ht} M = 1$, $M_t = M$ in T, and thus $((M \cap N)T)_t \subseteq M_t = M \subsetneq T$. Therefore, D is t-linked under T. But the pair D, T does not satisfy (#) since $N \cap D = M \cap N$ is a prime t-ideal of D, but $N_t = T$ (note that T is a UFD and $\operatorname{ht} N = 2$).

An extension $D \subseteq R$ of integral domains is called a *root extension* if, for each $x \in R$, there is a positive integer n = n(x) such that $x^n \in D$. It is well known that D is an almost GCD-domain if and only if \bar{D} is an almost GCD-domain, $D \subseteq \bar{D}$ is a root extension, and D is t-linked under \bar{D} [5, Theorem 5.9]. (Recall that D is an almost GCD-domain if for $0 \neq x, y \in D$, there exists a positive integer n = n(x, y) such that $x^n D \cap y^n D$ is principal.)

Proposition 2.2. Let R be an overring of D.

- (1) If $R \subseteq D^w$ and the pair D, R satisfies (#), then D is t-linked under R.
- (2) If R is a root extension of D, then D is t-linked under R if and only if the pair D, R satisfies (#).

- *Proof.* (1) Let P be a prime t-ideal of D. Then P is a prime w-ideal of D, and hence there is a prime ideal Q of R such that $Q \cap D = P$ (cf. Corollary 1.4(3)); so $Q_t \subseteq R$ by assumption. Hence $(PR)_t \subseteq Q_t \subseteq R$, and thus D is t-linked under R.
- (2) Assume that D is t-linked under R, and let Q be a nonzero prime ideal of R such that $(Q \cap D)_t \subsetneq D$. If $Q_t = R$, then there are some $0 \neq x_1, \ldots, x_k \in Q$ such that $((x_1, \ldots, x_k)R)_v = R$. Also, since $D \subseteq R$ is a root extension, there is a positive integer n such that $x_i^n \in D$. Clearly $((x_1^n, \ldots, x_k^n)R)_v = R$, and hence $((x_1^n, \ldots, x_k^n)D)_v = D$ by assumption; so $(Q \cap D)_t = D$, a contradiction. Thus $Q_t \subsetneq R$. The converse is an immediate consequence of (1) because $R \subseteq \bar{D} \subseteq D^w$.

Lemma 2.3. Let R be a t-linked overring of D and K the quotient field of D. Then the mapping $I \mapsto I_{w_D} = IR[X]_{N_v(D)} \cap K$ is a finite character *-operation on R.

Proof. Let $0 \neq a \in K$ and let I, J be nonzero fractional ideals of R. First, note that $R = R[X]_{N_v(D)} \cap K$ (Proposition 1.1(1)) and $(aI)_{w_D} = aIR[X]_{N_v(D)} \cap K = a(IR[X]_{N_v(D)} \cap K) = aI_{w_D}$; so I_{w_D} is a nonzero fractional ideal of R and $(aI)_{w_D} = aI_{w_D}$. It is clear that $I \subseteq I_{w_D}$; if $I \subseteq J$, then $I_{w_D} \subseteq J_{w_D}$; and $(I_{w_D})_{w_D} = I_{w_D}$. Hence w_D is a *-operation on R. Next, to show that w_D is of finite character, let $\{J_{\alpha}\}$ be the set of nonzero finitely generated subideals of I. Then $I = \bigcup_{\alpha} J_{\alpha}$ and

$$I_{w_D} = IR[X]_{N_v(D)} \cap K = (\cup_{\alpha} J_{\alpha})R[X]_{N_v(D)} \cap K$$
$$= (\cup_{\alpha} (J_{\alpha}R[X]_{N_v(D)})) \cap K = \cup_{\alpha} (J_{\alpha}R[X]_{N_v(D)} \cap K)$$
$$= \cup_{\alpha} (J_{\alpha})_{w_D}.$$

Thus the w_D -operation is a finite character *-operation on R.

Let R be a t-linked overring of D, and let I be a nonzero fractional ideal of R. Then $I_{w_D} = IR[X]_{N_v(D)} \cap qf(R) \subseteq IR[X]_{N_v(R)} \cap qf(R) = I_w$ [12, Lemma 2.1(2)] since $N_v(D) \subseteq N_v(R)$. Moreover, if R = D, then $I_{w_D} = I_w$.

Lemma 2.4. The following statements are equivalent for an integral domain D.

- (1) The pair D, D^w satisfies (#).
- $(2) \ t\operatorname{-Max}(D^w) = \{Q \in \operatorname{Spec}(D^w) | Q \cap D \in \operatorname{t-Max}(D)\}.$
- (3) $D^w[X]_{N_v(D)} = D^w[X]_{N_v(D^w)}$.
- $(4) t-Max(D^w) = w_D-Max(D^w).$
- Proof. (1) \Rightarrow (2) First, note that for each prime t-ideal Q of D^w , $(Q \cap D)_t \subsetneq D$ (Proposition 1.1(1)) since D^w is t-linked over D (Lemma 1.2). Thus if $Q \cap D \in t$ -Max(D), then $Q \in t$ -Max (D^w) by Corollary 1.4(3). For the reverse containment, assume that Q is a maximal t-ideal of D^w , and let $P \in t$ -Max(D) containing $Q \cap D$. By Corollary 1.4(3), there is a prime ideal Q' of D^w such that $Q \subseteq Q'$ and $Q' \cap D = P$. So Q = Q' since $Q'_t \subsetneq D^w$ by (1) and Q is a maximal t-ideal. Thus $Q \cap D = P$.
- (2) \Rightarrow (3) For easy reference, we first recall that for any integral domain R, $\operatorname{Max}(R[X]_{N_v(R)}) = \{P[X]_{N_v(R)} | P \in t\operatorname{-Max}(R)\}$ [21, Proposition 2.1]. Let A be a maximal ideal of $D^w[X]_{N_v(D)}$, and let $Q = A \cap D^w$. Then there is a maximal t-ideal

P of D such that $A \cap (D[X]_{N_v(D)}) = P[X]_{N_v(D)}$ [22, Theorem 44] since $D^w[X]_{N_v(D)}$ is integral over $D[X]_{N_v(D)}$ (Theorem 1.3(2)). It is clear that $A \cap D = Q \cap D = P$. Hence $Q[X]_{N_v(D)} \cap D[X]_{N_v(D)} = P[X]_{N_v(D)}$, and thus $A = Q[X]_{N_v(D)}$ [22, Theorem 44]. This implies that $\operatorname{Max}(D^w[X]_{N_v(D)}) = \{Q[X]_{N_v(D)}|Q \in t\operatorname{-Max}(D^w)\}$ by (2). Therefore,

$$\begin{split} D^w[X]_{N_v(D)} &= & \cap_{Q \in t\text{-}\mathrm{Max}(D^w)} (D^w[X]_{N_v(D)})_{(Q[X]_{N_v(D)})} \\ &= & \cap_{Q \in t\text{-}\mathrm{Max}(D^w)} (D^w[X])_{Q[X]} \\ &= & \cap_{Q \in t\text{-}\mathrm{Max}(D^w)} (D^w[X]_{N_v(D^w)})_{(Q[X]_{N_v(D^w)})} = D^w[X]_{N_v(D^w)}. \end{split}$$

- $(3) \Rightarrow (1)$ Let $Q \in \operatorname{Spec}(D^w)$ such that $(Q \cap D)_t \subsetneq D$. Then $Q[X] \cap N_v(D) = \emptyset$, and hence $Q[X] \cap N_v(D^w) = \emptyset$ by (3). Thus $Q_t \subsetneq D^w$.
- (1) \Rightarrow (4) Since D^w is t-linked over D (Lemma 1.2), w_D is a finite character *-operation on D^w (Lemma 2.3), and hence every maximal t-ideal of D^w is a w_D -ideal. So it suffices to show that if Q is a maximal w_D -ideal, then $Q_t \subsetneq D^w$. Let $Q \in w_D$ -Max (D^w) . Then $Q[X]_{N_v(D)} \subsetneq D^w[X]_{N_v(D)}$ since $Q = Q[X]_{N_v(D)} \cap qf(D)$; so $(Q \cap D)[X]_{N_v(D)} \subsetneq D[X]_{N_v(D)}$. Hence $(Q \cap D)_t \subsetneq D$ (cf. [21, Proposition 2.1]), and thus $Q_t \subsetneq D^w$ by (1).
- $(4) \Rightarrow (1)$ Let Q be a prime ideal of D^w such that $(Q \cap D)_t \subsetneq D$. Then $Q[X] \cap N_v(D) = \emptyset$, and hence $Q_{w_D} = Q[X]_{N_v(D)} \cap qf(D) = Q \subsetneq D^w$. Thus $Q_t \subsetneq D^w$ by (4).
- **Remark 2.5.** (1) Let $t\text{-}\dim(D) = 1$. If Q is a prime ideal of D^w such that $(Q \cap D)_t \subsetneq D$, then $\operatorname{ht}(Q \cap D) = 1$, and hence $\operatorname{ht}Q = 1$ by Corollary 1.4(3). Hence the pair D, D^w satisfies (#), and thus D is $t\text{-}\operatorname{linked}$ under D^w (Proposition 2.2). (Recall that the $t\text{-}\operatorname{dimension}$ of D, denoted by $t\text{-}\operatorname{dim}(D)$, is the length of the longest chain of prime $t\text{-}\operatorname{ideals}$ of D.)
- (2) The proof of Lemma 2.4 shows that Lemma 2.4 holds for any t-linked overring R of D with $R \subseteq D^w$.
- (3) t-Max $(D^w) \supseteq \{Q \in \text{Spec}(D^w) | Q \cap D \in t$ -Max $(D)\}$ by the proof of $(1) \Rightarrow (2)$ of Lemma 2.4.

Let * be a *-operation on D. We say that D is a *-multiplication domain if every nonzero finitely generated ideal I of D is *-invertible, i.e., $(II^{-1})^* = D$. In particular, if * = t, then a *-multiplication domain is called a Prüfer v-multiplication domain (PVMD). It is clear that if * is of finite character, then a *-multiplication domain is a PVMD. Recall that D is a UMT-domain if every upper to zero in D[X] is a maximal t-ideal. It is well known that D is an integrally closed UMT-domain if and only if D is a PVMD [19, Proposition 3.2]. However, the integral closure of a UMT-domain need not be a PVMD (see [23, Proposition 2.7]). Furthermore, \bar{D} being a PVMD does not imply that D is a UMT-domain. For example, let D be a Noetherian domain with t-dim $(D) \geq 2$. Then \bar{D} is a PVMD, but D is not a UMT-domain (see Remark 2.7). We next give some new characterizations of UMT-domains.

Theorem 2.6. The following statements are equivalent for an integral domain D.

- (1) D is a UMT-domain.
- (2) $\bar{D}[X]_{N_v(D)}$ is a Prüfer domain.
- (3) D^w is a w_D -multiplication domain.
- (4) D^w is a PVMD and the pair D, D^w satisfies (#).
- (5) D^w is a PVMD and t-Max $(D^w) = \{Q \in Spec(D^w) | Q \cap D \in t$ -Max $(D)\}$.
- (6) D^w is a PVMD and $D^w[X]_{N_v(D)} = D^w[X]_{N_v(D^w)}$.
- (7) D^w is a PVMD and t-Max(D^w) = w_D -Max(D^w).
- (8) Each t-linked overring of D is a UMT-domain.

Proof. Let $N_v = N_v(D)$ and K = qf(D). Note that $D^w[X]_{N_v} = \bar{D}[X]_{N_v}$ is the integral closure of $D[X]_{N_v}$ (Theorem 1.3) and D^w is t-linked over D (Lemma 1.2).

- $(1) \Leftrightarrow (2)$ This follows directly from [15, Theorem 2.5].
- (1) \Leftrightarrow (3) It is easy to see that $I_{w_D} = \{x \in K | xJ \subseteq I \text{ for a nonzero finitely generated ideal } J \text{ of } D \text{ with } J^{-1} = D\}$ for each nonzero fractional ideal I of D^w . Thus this is [29, Theorem 4.2].
- $(2) \Rightarrow (4)$ Since $N_v(D) \subseteq N_v(D^w)$ (Lemma 1.2), $D^w[X]_{N_v(D^w)}$ is an overring of $D^w[X]_{N_v}$, and hence $D^w[X]_{N_v(D^w)}$ is a Prüfer domain [17, Theorem 26.1]. Thus D^w is a PVMD [21, Theorem 3.7].

Let Q be a prime ideal of D^w with $(Q \cap D)_t \subsetneq D$, and let $P \in t\text{-Max}(D)$ containing $(Q \cap D)_t$. Let Q' be a prime ideal of D^w such that $Q \subseteq Q'$ and $Q' \cap D = P$ (cf. Corollary 1.4(3)). If $Q'_t \subsetneq D^w$, then $Q_t \subsetneq D^w$. So we may assume that $Q \cap D = P$. Note that $P[X] \cap N_v = \emptyset$ and $Q[X] \cap D[X] = P[X]$; hence $Q[X] \cap N_v = \emptyset$ and $Q[X]_{N_v}$ is a proper prime ideal of $D^w[X]_{N_v}$. By (2), $(D^w[X]_{N_v})_{Q[X]_{N_v}} = D^w[X]_{Q[X]}$, and thus $D^w_Q = D^w[X]_{Q[X]} \cap K$, is a valuation domain [17, Theorem 19.16]. Thus Q_Q is a t-ideal of D^w_Q , and so $Q = Q_Q \cap D^w$ is a t-ideal of D^w [21, Lemma 3.17].

- $(4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7)$ See Lemma 2.4.
- $(6) \Rightarrow (2)$ This is an immediate consequence of [21, Theorem 3.7].
- $(1) \Rightarrow (8)$ Let R be a t-linked overring of D. Then $D^w \subseteq R^w$ by Corollary 1.4(2); so $R^w[X]_{N_v}$ is an overring of $D^w[X]_{N_v}$. Thus by the equivalence of (1) and (2), D is a UMT-domain $\Rightarrow D^w[X]_{N_v}$ is a Prüfer domain $\Rightarrow R^w[X]_{N_v}$, and hence $R^w[X]_{N_v(R)}$, is a Prüfer domain [17, Theorem 26.1] $\Rightarrow R$ is a UMT-domain.
 - $(8) \Rightarrow (1)$ This is clear.

Remark 2.7. (1) Let D be a Noetherian domain with t-dim $(D) \ge 2$. Then \overline{D} is t-linked over D and \overline{D} is a Krull domain [16, Theorem 4.3(a)] (and hence PVMD), but D is not a UMT-domain [19, Theorem 3.7]. For an explicit example, let $R = \mathbb{C}[X,Y,Z,W]/(XY-ZW) = \mathbb{C}+M$, where M=(X,Y,Z,W)/(XY-ZW), and let $D=\mathbb{R}+M$. Then D is a Noetherian domain and t-dim(D)=3 (see [6, Example 3.8(2)]). For another example, let K be a field, and let $D=K[Y,XY,X^2,X^3]$. Then D is a Noetherian domain with t-dim $(D) \ge 2$ (see [29, § 6. Example]).

(2) It may be important to note that if D is a UMT-domain, then \tilde{D} is a PVMD. Here is a question. Is it true that D is a UMT-domain if and only if \tilde{D} is a PVMD and the pair D, \tilde{D} satisfies (#).

Let Λ be a nonempty set of prime t-ideals of D. Then $\cap_{P \in \Lambda} D_P$ is called a *subintersection* of D. The notion of subintersection was known only for Krull domains, and then extended to arbitrary integral domains by Mott and Zafrullah ([25]). Let R be an overring of D. It is well known that if D is a PVMD, then R is t-linked over D if and only if R is a subintersection of D [21, Theorem 3.8]. We next generalize this result to a UMT-domain.

Corollary 2.8. Let D be a UMT-domain, and let R be an integrally closed overring of D. Then R is t-linked over D if and only if R is a subintersection of D^w .

Proof. (\Rightarrow) Let $N_v = N_v(D)$ and K = qf(D). Note that D^w is the smallest integrally closed t-linked overring of D by Proposition 1.1(1) and Theorem 1.3. So if R is t-linked over D, then $D^w \subseteq R$, and hence $R[X]_{N_v}$ is an overring of $D^w[X]_{N_v}$. However, since $D^w[X]_{N_v}$ is a Prüfer domain (Theorem 2.6), $R[X]_{N_v}$ is a subintersection of $D^w[X]_{N_v}$ [17, Theorem 26.1]. Note that if Q is a prime ideal of $D^w[X]_{N_v}$, then $Q = P[X]_{N_v}$ for some prime t-ideal P of D^w by Theorem 2.6 and [21, Theorem 3.14]. Thus $R = R[X]_{N_v} \cap K = (\bigcap_{P \in \Lambda} (D^w[X]_{N_v})_{P[X]_{N_v}}) \cap K = \bigcap_{P \in \Lambda} ((D^w[X])_{P[X]} \cap K) = \bigcap_{P \in \Lambda} (D^w)_P$, where Λ is a set of prime t-ideals of D^w . (\Leftarrow) Let S be a multiplicative subset of D^w . Then $(D^w)_S$ is t-linked over D. For if Q is a prime t-ideal of $(D^w)_S$, then $Q \cap D^w$ is a t-ideal of D^w [21, Lemma 3.17], and hence $(Q \cap D)_t = ((Q \cap D^w) \cap D)_t \subseteq D$ (Proposition 1.1(1) and Lemma 1.2). Thus the result follows directly from [14, Proposition 2.2(b)].

3. THE COMPLETE INTEGRAL CLOSURE OF SM-DOMAINS

An integral domain D is called a *Strong Mori domain* (SM-domain) if D satisfies the ascending chain condition on integral w-ideals; equivalently, each w-ideal of D is of finite type. It is known that D is an SM-domain if and only if D_P is Noetherian for all $P \in t$ -Max(D) and each nonzero nonunit of D is contained in only a finite number of maximal t-ideals of D [30, Theorem 1.9], if and only if $D[X]_{N_v(D)}$ is a Noetherian domain [12, Theorem 2.2].

The class group Cl(D) of D is the group of t-invertible fractional t-ideals of D under t-multiplication modulo its subgroup of principal fractional ideals. It is well known that a Krull domain D is factorial if and only if Cl(D) = 0 [16, Proposition 6.1]. Following [27], we call a Krull domain D an almost factorial domain if Cl(D) is torsion. Recall that D is a weakly factorial domain (WFD) if every nonzero nonunit of D can be written as a finite product of primary elements, while D is an almost weakly factorial domain (AWFD) if, for each nonunit $0 \neq x \in D$, there is a positive integer n = n(x) such that x^n is a finite product of primary elements. It is well known that D is a WFD (resp., AWFD) if and only if D is a weakly Krull domain and Cl(D) = 0 [4, Theorem](resp., Cl(D) is torsion [3, Theorem 3.4]). (Recall that D is a weakly Krull domain if t-dim(D) = 1 and the intersection $D = \bigcap_{P \in t\text{-Max}(D)} D_P$ has finite character.)

The Mori-Nagata theorem states that the (complete) integral closure of a Noetherian domain is a Krull domain [26, Theorem 33.10]. We next show that this holds for SM-domains.

Theorem 3.1. (cf. [30, Theorem 3.5]) If D is an SM-domain, then $D^w = \tilde{D} = D^*$ and D^* is a Krull domain. In particular, if D is integrally closed, then D is a Krull domain.

Proof. Let $N_v = N_v(D)$, and recall that $\bar{D}[X]_{N_v} \cap qf(D) = D^w$ (Theorem 1.3), $D[X]_{N_v}$ is a Noetherian domain [12, Theorem 2.2], and $\bar{D}[X]_{N_v}$ is the integral closure (hence complete integral closure) of $D[X]_{N_v}$. If $x \in qf(D)$ is almost integral over D, then x is almost integral over $D[X]_{N_v}$; so $x \in \bar{D}[X]_{N_v} \cap qf(D) = D^w$. Hence $D^* \subseteq D^w$, and thus $D^w = \tilde{D} = D^*$ because $D^w \subseteq \tilde{D} \subseteq D^*$. Moreover, since $\bar{D}[X]_{N_v}$ is a Krull domain [26, Theorem 33.10], $D^w = \bar{D}[X]_{N_v} \cap qf(D)$ is a Krull domain [16, Proposition 1.2]. The "in particular" statement follows because $D = \bar{D} = (\bar{D})^w = D^w$ (Corollary 1.4(1)).

It is well known that a Noetherian domain D is a UMT-domain if and only if $t\text{-}\dim(D) = 1$ [19, Theorem 3.7]. We next generalize this result to SM-domains.

Corollary 3.2. Let D be an SM-domain which is not a field. Then the following statements are equivalent.

- (1) D is a UMT-domain.
- (2) The pair D, D^* satisfies (#).
- $(3) t-Max(D^*) = \{Q \in Spec(D^*) | Q \cap D \in t-Max(D)\}.$
- (4) $D^*[X]_{N_n(D)} = D^*[X]_{N_n(D^*)}$.
- (5) $t\operatorname{-Max}(D^*) = w_D\operatorname{-Max}(D^*).$
- (6) t-dim(D) = 1.
- (7) Each t-linked overring of D is an SM-domain.
- (8) Each overring of $D[X]_{N_n(D)}$ is a Noetherian domain.

Proof. Note that $D^w = D^*$ (Theorem 3.1) since D is an SM-domain.

- (1) \Leftrightarrow (2) This follows directly from Theorem 2.6 because D^* is a Krull domain (hence a PVMD) (Theorem 3.1).
 - $(2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$ See Lemma 2.4 and Remark 2.5(2).
- (2) \Rightarrow (6) Let P be a maximal t-ideal of D, and let Q be a prime ideal of D^* such that $Q \cap D = P$ and htQ = htP (cf. Corollary 1.4(3)). By (2), $Q_t \subsetneq D^*$, and hence htQ = 1 because D^* is a Krull domain (Theorem 3.1). Thus htP = 1.
- (6) \Rightarrow (1) Recall that $D[X]_{N_v(D)}$ is a one-dimensional Noetherian domain [12, Theorem 2.2 and Corollary 2.4] and $\operatorname{Max}(D[X]_{N_v(D)}) = \{P[X]_{N_v(D)} | P \in t\operatorname{-Max}(D)\}$ [21, Proposition 2.1]. Hence every prime ideal of $D[X]_{N_v(D)}$ is extended from D, and thus D is a UMT-domain [19, Theorem 3.1].

$$(6) \Leftrightarrow (7) \Leftrightarrow (8) \text{ See } [12, \text{Corollary } 3.5].$$

Recall from [24, Theorem] that if D is a weakly factorial SM-domain, then each t-linked overring of D is a weakly factorial SM-domain. In [6, Theorem 3.5], we showed that if D is an almost weakly factorial Noetherian domain, then each integrally closed t-linked overring of D is almost factorial.

Theorem 3.3. (cf. [6, Theorem 3.5] for Noetherian domains) Let D be an almost weakly factorial SM-domain. Then every t-linked overring of D is an almost weakly factorial SM-domain.

Proof. Let R be a t-linked overring of D. Then R is an SM-domain with t-dim(R) = 1 ([24, Lemma 2] or Corollary 3.2) since t-dim(D) = 1. So we need only show that Cl(D) is torsion [3, Theorem 3.4]. We shall complete the proof by showing that if I is a t-invertible integral t-ideal of R, then there is a positive integer n = n(I) such that $(I^n)_t$ is principal.

Let $X^1(D)$ and $X^1(R)$ be the sets of height-one prime ideals of D and R, respectively. Let $\Lambda = \{P \in X^1(D) | P = Q \cap D \text{ for some } Q \in X^1(R) \text{ with } I \subseteq Q\}$ and $\Lambda_1 = \{Q \in X^1(R) | Q \cap D \in \Lambda\}$. Since R is an SM-domain with t-dim(R) = 1, the number of height-one prime ideals of R containing I is finite. Hence Λ , and thus Λ_1 , is finite. So if we set $S = R \setminus (\bigcup_{Q \in \Lambda_1} Q)$, then R_S is a semilocal Noetherian domain with dim $(R_S) = 1$ (cf. [17, Proposition 4.8]). Note that since I is t-invertible, IR_S is invertible, and so $IR_S = xR_S$ for some $x \in R$ [17, Proposition 7.4]. Hence $I = \bigcap_{Q \in X^1(R)} IR_Q = R \cap IR_S = R \cap xR_S$ [21, Proposition 2.8(3)]. Now, since D is an AWFD, there is a positive integer n = n(x) such that $x^n = \frac{a}{b}$, where $a, b \in D$ are products of primary elements of D. Since $\frac{a}{b} \in R_S$, we may assume that $a, b \notin P$ for all $P \in X^1(D) \setminus \Lambda$ (and hence $a, b \notin Q$ for all $Q \in X^1(R) \setminus \Lambda_1$). Also, since $I^n(T_S) = I^n(T_S) = I^n(T$

The proof of Theorem 3.3 gives another proof of [24, Theorem].

Corollary 3.4. ([24, Theorem]) Every t-linked overring of a weakly factorial SM-domain is a weakly factorial SM-domain.

Corollary 3.5. Let D be a weakly (resp., an almost weakly) factorial SM-domain. Then each integrally closed t-linked overring of D is a factorial (resp., an almost factorial) domain. In particular, D^* is a factorial (resp., an almost factorial) domain.

Proof. Let R be an integrally closed t-linked overring of D. Then R is an integrally closed SM-domain (Corollary 3.2), and hence R is a Krull domain (Theorem 3.1). Note that R is a WFD by Corollary 3.4 (resp., AWFD by Theorem 3.3); so Cl(R) = 0 [4, Theorem] (resp., Cl(R) is torsion [3, Theorem 3.4]). Thus R is factorial (resp., almost factorial). The "in particular" statement follows because D^* is a Krull domain, $D^w = D^*$ (Theorem 3.1), and D^w is t-linked over D (Lemma 1.2).

Corollary 3.6. Let D be an SM-domain with t-dim(D) = 1, and let R be a t-linked overring of D.

- (1) If Cl(D) = 0, then Cl(R) = 0.
- (2) If Cl(D) is torsion, then Cl(R) is torsion.

Proof. Recall that if A is an SM-domain with t-dim(A) = 1, then A is a weakly Krull domain; hence A is a weakly (resp., an almost weakly) factorial domain if and only if Cl(A) = 0 (resp., Cl(A) is torsion). Thus the results follow directly from Theorem 3.3 and Corollary 3.4.

Corollary 3.7. Let D be a Noetherian domain with dim(D) = 1. Then the following statements are equivalent.

- (1) D is a weakly (resp., an almost weakly) factorial domain.
- (2) Each overring of D is a weakly (resp., an almost weakly) factorial domain.
- (3) If R is an overring of D, then Cl(R) = 0 (resp., Cl(R) is torsion).

Proof. Note that each overring of D is t-linked over D since $\dim(D) = 1$ and that a Noetherian domain is an SM-domain; so $(1) \Rightarrow (2)$ is an immediate consequence of Corollary 3.4 (resp., Theorem 3.3). $(2) \Rightarrow (1)$ is clear because D is an overring of D itself. $(2) \Leftrightarrow (3)$ follows from [4, Theorem](resp., [3, Theorem 3.4]).

Let $N_v = N_v(D)$. Then $\operatorname{Max}(D[X]_{N_v}) = \{P[X]_{N_v} | P \in t\operatorname{-Max}(D)\}$ [21, Proposition 2.1] and $Cl(D[X]_{N_v}) = 0$ [21, Theorems 2.4 and 2.14]. So $D[X]_{N_v}$ is a WFD if and only if D is a weakly Krull UMT-domain. Moreover, D is an SM-domain with $t\operatorname{-dim}(D) = 1$ if and only if $D[X]_{N_v}$ is a one-dimensional weakly factorial Noetherian domain [12, Theorem 2.2 and Corollary 2.4].

References

- [1] D.D. Anderson and S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28(2000), 2461-2475.
- [2] D.D. Anderson, E. Houston, and M. Zafrullah, t-linked extension, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra 86(1993), 109-124.
- [3] D.D. Anderson, J. Mott, and M. Zafrullah, Finite character representations for integral domains, Bollettino U.M.I. (7) 6-B (1992), 613-630.
- [4] D.D. Anderson and M. Zafrullah, Weakly factorial domains and group of divisibility, Proc. Amer. Math. Soc. 109(1990), 907-913.
- [5] D.D. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra 142(1991), 285-309.
- [6] D.F. Anderson, G.W. Chang, and J. Park, Generalized weakly factorial domains, Houston J. Math. 29(2003), 1-13.
- [7] D.F. Anderson, E. Houston, and M. Zafrullah, *Pseudo-integrality*, Canad. Math. Bull. 34(1991), 15-22.
- [8] D.F. Anderson and A. Ryckaert, The class group of D+M, J. Pure Appl. Algebra 52(1988), 199-212.
- [9] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M, Mischigan Math. J. 20(1973), 79-95.
- [10] A. Bouvier and M. Zafrullah, On some class group of an integral domain, Bull. Soc. Math. Grece 29(1988), 45-59.
- [11] J. Brewer and E. Rutter, D+M constructions with general overrings, Michigan Math. J. 23(1976), 33-42.
- [12] G.W. Chang, Strong Mori domains and the ring $D[X]_{N_v}$, J. Pure Appl. Algebra 197(2005), 293-304.
- [13] D. Dobbs, E. Houston, T. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20(1992), 1463-1488.
- [14] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17(1989), 2835-2852.
- [15] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26(1998), 1017-1039.
- [16] R. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
- [17] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [18] J. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18(1980), 37-44.
- [19] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17(1989), 1955-1969.

- [20] H.C. Hutchins, Examples of Commutative Rings, Polygonal Publishing House, Passaic, New Jersey, 1981.
- [21] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123(1989), 151-170.
- [22] I. Kaplansky, Commutative rings, Revised Ed., Univ. of Chicago, Chicago, 1974.
- [23] H. Kim and Y.S. Kim, Some remarks on pseudo-Krull domain, preprint.
- [24] M. Martin and M. Zafrullah, t-linked overrings of Noetherian weakly factorial domains, Proc. Amer. Math. Soc. 115(1992), 601-604.
- [25] J. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math. 35(1981), 1-26
- [26] M. Nagata, Local Rings, Interscience, New York, 1962.
- [27] U. Storch, Fastfaktorielle Ringe, Schr. Math. Inst. Univ. Münster. Heft 36, 1972.
- $[28]\,$ F. Wang, w-dimension of domains, Comm. Algebra 27(1999), 2267-2276.
- [29] F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao Kexue Ban 27(2004), 1-9.
- [30] F. Wang and R.L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135(1999), 155-165.

(Chang) Department of Mathematics, University of Incheon, Incheon 402-749, Korea. $E\text{-}mail\ address$: whan@incheon.ac.kr

(ZAFRULLAH) 57 COLGATE STREET, POCATELLO, ID 83201, USA E-mail address: mzafrullah@usa.net