Теорема об общем решении однородного линейного ОДУ с постоянными коэффициентами в случае простых корней характеристического уравнения

Пусть характеристическое уравнение имеет простые корни $\lambda_1...\lambda_n,\,\lambda\in\mathbb{C}.$ Тогда:

- 1) \forall функция вида (*): $y = \sum_{j=1}^{n} C_j e^{\lambda_j x}$ (C_j постоянная) является решением ОДУ.
- 2) Всякое решение ОДУ можно записать в виде (*).

Доказательство

1)

Пусть C – постоянная, $y = \sum_{j=1}^{n} C_j e^{\lambda_j x}$. Проверим, что y является решением ОДУ. Проверим вначале, что $\forall j = 1..n \ e^{\lambda_i x}$ есть решение.

Имеем:

$$l(D)e^{\lambda_{j}x} = \sum_{k=0}^{n} a_{n-k}D^{k}(e^{\lambda_{j}x}) = \sum_{k=0}^{n} a_{n-k}(e^{\lambda_{j}x})^{(k)} = \sum_{k=0}^{n} a_{n-k}\lambda_{j}^{k}e^{\lambda_{j}x} = e^{\lambda_{j}x}\sum_{k=0}^{n} a_{n-k}\lambda_{j}^{k} = e^{\lambda_{j}x}(a_{0}\lambda_{j}^{n} + a_{1}\lambda_{j}^{n-1} + \dots + a_{n}) = e^{\lambda_{j}x}l(\lambda_{j}) = 0$$

$$\forall j = 1... \ l(D)e^{\lambda_{j}x} = 0, \text{ т.е. } e^{\lambda_{j}x} - \text{ решение ОДУ}.$$

$$(1)$$

 $\sqrt{J} = 1...n \ \ell(D)e^{-J} = 0$, i.e. e^{-J} periodic $O_{Z}(\theta)$.

По утверждению о линейности множества решений ОДУ получаем, что всякая функция вида (*) является решением ОДУ.

2)

Разложим характеристическое уравнение на множители:

$$l(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$$
(2)

Все λ_i различные, поэтому для линейного дифференциального оператора l(D) можно написать:

$$l(D) = (D - \lambda_1)(D - \lambda_2)...(D - \lambda_{n-1})(D - \lambda_n)$$
(3)

Обозначим за $l_1(D)$ выражение $(D - \lambda_1)(D - \lambda_2)...(D - \lambda_{n-1})$. Исходное уравнение можно представить так:

$$l_1(D)(D - \lambda_n)y = 0 \tag{4}$$

Обозначим: $z=(D-\lambda_n)$, т.е. $z=y'-\lambda_n y$. Далее рассматриваем уравнение (**): $l_1(D)z=0$

Доказываем по индукции.

При n=1:

$$y' - \lambda_1 y = 0 \tag{5}$$

$$y = C_1 e^{\lambda_1 x} \tag{6}$$

Утверждение верно. Теперь предположим, что оно верно для n-1, $n \ge 2$. Это, в частности, означает, что решение z уравнения (**) записывается в виде:

$$z = \sum_{j=1}^{n-1} A_j e^{\lambda_j x} \tag{7}$$

$$y' - \lambda_n y = \sum_{j=1}^{n-1} A_j e^{\lambda_j x} \Rightarrow y = C_n e^{\lambda_n x} + \sum_{j=1}^{n-1} C_j e^{\lambda_j x}$$
 (8)

(т.к. $\lambda_n \neq \lambda_j$, j = 1..n - 1, нет резонанса)

$$y = \sum_{j=1}^{n} C_{j} e^{\lambda_{j} x}$$
 – это вид (*).

Доказано.