Fallstudien der math. Modellbildung

Manuela Lambacher, Dominik Otto, Andreas Wiedemann $18.~\mathrm{M\ddot{a}rz}~2014$

Inhaltsverzeichnis

1		ttaker-Shannon Interpolation Theorem
	1.1	The Whittaker-Shannon Interpolation Theorem
	1.2	Proof of the Theorem
	1.3	Meaning, real-life applications and limitations
2	Das	Marchenko-Pastur-Gesetz
	2.1	Das Marchenko-Pastur-Gesetz
	2.2	Beweis des Marcenko-Pastur Gesetzes

1 Whittaker-Shannon Interpolation Theorem

1.1 The Whittaker-Shannon Interpolation Theorem

If $x \in L^2(\mathbb{R}^d)$ is a ω -bandlimited function, there exists a $\tau_0 > 0$ such that for all $\tau \in (0, \tau_0]$

$$x(t) = \sum_{k \in \mathbb{Z}^d} x(\tau k) \prod_{i=1}^d sinc\left(\frac{t_i - k_i \tau_i}{\tau_i}\right).$$

1.2 Proof of the Theorem

Define $\tau_0 = \frac{1}{\omega} := \left(\frac{1}{\omega_0}, \dots, \frac{1}{\omega_d}\right)$ and choose $\tau \in (0, \tau_0]$ arbitrarily. Besides denote $\Omega := \prod_{i=1}^d \left[-\frac{1}{2}\omega_i, \frac{1}{2}\omega_i\right]$ and $T := \prod_{i=1}^d \left[-\frac{1}{2\tau_i}, \frac{1}{2\tau_i}\right]$.

$$x \in L_w^2(\mathbb{R}^d) \Rightarrow \forall f \notin \Omega : \mathcal{F}(x)(f) = 0$$
 (1.1)

The consequence of this condition and of the linearity of $\mathcal{F}(x)$ is:

$$\forall f \in T, k \in \mathbb{Z}^d : \mathcal{F}(x)\left(f + \frac{k}{\tau}\right) = \mathcal{F}(x)(f) + \mathcal{F}(x)\underbrace{\left(\frac{k}{\tau}\right)}_{\notin \Omega} = \mathcal{F}(x)(f)$$

Thus the formula can be rewritten.

$$\forall f \in \Omega_{\omega} : \mathcal{F}(x)(f) = \sum_{k \in \mathbb{Z}^d} \mathcal{F}(x) \left(f + \frac{k}{\tau} \right)$$
 (1.2)

(1.1) and (1.2) allow us to say:

$$\mathcal{F}(x)(f) = \chi_T(f) \sum_{k \in \mathbb{Z}^d} \mathcal{F}(x) \left(f + \frac{k}{\tau} \right)$$

With the aid of the Poisson summation formula (Theorem 0.3) you can conclude:

$$\mathcal{F}(x)(f) = \chi_T(\tau f) \det(\tau) \sum_{n \in \mathbb{Z}^d} x(n\tau) e^{-2\pi i n\tau f}$$
(1.3)

Mit dieser Poissonschen Summenformel habe ich ziemliche Probleme: Macht unsere Notation im Skript da Sinn, bzw. wie soll das mit $k, n \in \mathbb{Z}^d$ fuktionieren?

1 Whittaker-Shannon Interpolation Theorem

Außerdem haben wir auch ganz andere Vorraussetzungen, als z.B. bei Wikipedia, da muss die Funktion u.a. in C^{∞} liegen!

Wir müssen auch klären, ob wir die Poisson-Regel überhaupt anwenden dürfen, die Stetigkeit, bzw. die beliebige diff'barkeit ergeben sich mir jetzt nicht so, laut dieser Bemerkung am Ende von Übung 3 geht es ja aber...

Und schließlich an Andi: Hast du die Formel richtig angewandt? Wo kommt das det τ her? Ich würde auch sagen, dass im Exponent kein Minus steht?

Das ist echt ein kack, aber bis auf diesen Schritt finde ichs ziemlich gut :) Bist du da selbst drauf gekommen oder hast du das iwo aus dem Internet? Falls letzteres, könntest du uns den Link schicken?

Now we want to prove that $\mathcal{F}\left(\prod_{j=1}^{d} sinc\left(\frac{t_{j}-n\tau_{j}}{\tau_{j}}\right)\right)(f) = \det(\tau)\chi_{T}(\tau f)e^{-2\pi in\tau f}$.

$$\mathcal{F}^{-1}\left(\det(\tau)\chi_{T}(\tau f)e^{-2\pi in\tau f}\right) = \int_{\mathbb{R}^{d}} \det(\tau)\chi_{T}(\tau f)e^{-2\pi in\tau f}e^{2\pi ift}df$$

$$= \int_{\mathbb{R}^{d}} \det(\tau)\chi_{T}(\tau f)e^{2\pi if(t-n\tau)}df$$

$$= \int_{-\frac{1}{2\tau_{1}}}^{\frac{1}{2\tau_{1}}} \cdots \int_{-\frac{1}{2\tau_{d}}}^{\frac{1}{2\tau_{d}}} \prod_{j=1}^{d} \tau_{j}e^{2\pi if_{j}(t_{j}-n\tau_{j})}df_{1} \dots df_{d}$$

$$= \prod_{j=1}^{d} \int_{-\frac{1}{2\tau_{j}}}^{\frac{1}{2\tau_{j}}} \tau_{j}e^{2\pi if_{j}(t_{j}-n\tau_{j})}df_{j}$$

$$= \prod_{j=1}^{d} \left[\frac{\tau_{j}}{2\pi i(t_{j}-n\tau_{j})}e^{2\pi if_{j}(t_{j}-n\tau_{j})} \right]_{f_{j}=-\frac{1}{2\tau_{1}}}^{\frac{1}{2\tau_{1}}}$$

$$= \prod_{j=1}^{d} \frac{\tau_{j}}{2\pi i(t_{j}-n\tau_{j})} \left(e^{\pi i\frac{t_{j}-n\tau_{j}}{\tau_{j}}} - e^{-\pi i\frac{t_{j}-n\tau_{j}}{\tau_{j}}}\right)$$

$$= \prod_{j=1}^{d} sinc\left(\frac{t_{j}-n\tau_{j}}{\tau_{j}}\right)$$

tabelle Hence formula (1.3) is:

$$\mathcal{F}(x)(f) = \sum_{n \in \mathbb{Z}^d} x(n\tau) \mathcal{F}\left(\prod_{j=1}^d sinc\left(\frac{t_j - n\tau_j}{\tau_j}\right)\right)(f)$$

Through applying the inverse transform on both sides, the theorem is proved.

1 Whittaker-Shannon Interpolation Theorem

$$x(t) = \mathcal{F}^{-1}(\mathcal{F}(x))(t) = \mathcal{F}^{-1}\left(\sum_{n \in \mathbb{Z}^d} x(n\tau)\mathcal{F}\left(\prod_{j=1}^d sinc\left(\frac{t_j - n\tau_j}{\tau_j}\right)\right)\right)$$
$$= \sum_{n \in \mathbb{Z}^d} x(n\tau) \prod_{j=1}^d sinc\left(\frac{t_j - n\tau_j}{\tau_j}\right)$$

1.3 Meaning, real-life applications and limitations

2 Das Marchenko-Pastur-Gesetz

2.1 Das Marchenko-Pastur-Gesetz

Sei Y_N eine $N \times M(N)$ -Matrix mit unabhängigen zentrierten Einträgen mit Varianz 1,

$$\sup_{j,k,N} \mathbb{E}\left[|Y_N(j,k)|^q\right] = C_q < \infty \qquad \forall q \in \mathbb{N}$$

und $M(N) \in \mathbb{N}$ so, dass

$$\lim_{N \to \infty} \frac{M(N)}{N} = \alpha \in [1, \infty).$$

Sei weiterhin die Wishart-Matrix gegeben als

$$W_N = \frac{1}{N} Y_N Y_N^T,$$

und habe die empirische Eigenwertverteilung

$$L_N = \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j}$$

und das Zustandsdichtemaß $\overline{L_N}=\mathbb{E}[L_N].$ Dann gilt die Konvergenz

$$\overline{L_N} \xrightarrow{\mathrm{w}} f_{\alpha}(x)dx \quad (N \to \infty)$$

im Raum der Wahrscheinlichkeitsmaße auf \mathbb{R} , wobei

$$f_{\alpha}(x) = \frac{1}{2\pi x} \sqrt{(x - (1 - \sqrt{\alpha})_{+}^{2} ((1 + \sqrt{\alpha})_{+}^{2})^{2})}$$

2.2 Beweis des Marcenko-Pastur Gesetzes

Zuerst bringen wir $N^{l+1}\langle \overline{L_N}, x^l \rangle$ in eine Form, die eine weitergehende Untersuchung ermöglicht:

$$N^{l+1}\langle \overline{L_N}, x^l \rangle = N^{l+1} \cdot \int x^l \overline{L_N}(dx) = N^{l+1} \cdot \frac{1}{N} \cdot \mathbb{E}[tr(W_N^l)] = N^l \sum_{j_1, \dots, j_l=1}^N \mathbb{E} \left[\prod_{p=1}^l W_{j_p, j_{p+1}} \right]$$

$$= N^l \sum_{j_1, \dots, j_l=1}^N \mathbb{E} \left[\prod_{p=1}^l \frac{1}{N} \sum_{k=1}^{M(N)} Y_N(j_p, k) \cdot Y_N(j_{p+1}, k) \right]$$

$$= \sum_{j_1, \dots, j_l=1}^N \mathbb{E} \left[\left(\sum_{k=1}^M \sum_{j_1, \dots, j_l=1}^M \sum_{j_1, \dots, j_l=1}^M Y_N(j_1, k) \cdot Y_N(j_2, k) \right) \cdot \left(\prod_{p=2}^l \sum_{k=1}^M Y_N(j_p, k) \cdot Y_N(j_{p+1}, k) \right) \right]$$

$$= \sum_{j_1, \dots, j_l=1}^N \mathbb{E} \left[\prod_{p=2}^l \sum_{k_1, k_2=1}^M Y_N(j_1, k_1) \cdot Y_N(j_2, k_1) \cdot Y_N(j_p, k_2) \cdot Y_N(j_{p+1}, k_2) \right]$$

$$= \dots$$

$$= \sum_{j_1, \dots, j_l=1}^N \sum_{k_1, \dots, k_l=1}^M \mathbb{E}[Y_N(j_1, k_1) Y_N(j_2, k_1) Y_N(j_2, k_2) Y_N(j_3, k_2) \dots Y_N(j_l, k_l) Y_N(j_1, k_l) \right]$$

$$= \sum_{r_1, r_2=1}^l \sum_{j_2, \dots, j_l=1}^M \mathbb{E}[Y_N(j, K)]$$

wobei

$$J = (j_1, j_2, j_2, ..., j_l, j_l, j_1), K = (k_1, k_1, ..., k_l, k_l),$$

 $v : \mathbb{N}^{2l} \to \mathbb{N}, \ v(X) := \text{Anzahl der verschiedenen Indizes in X}$

Die einzelnen Summanden können also als Eulergraphen auf r_1+r_2 Knoten und 2l Kanten interpretiert werden. Damit ergeben sich die drei Fälle (setze $r=r_1+r_2$)

• r < l + 1

$$\mathbb{E}[Y_N(J,k)] \le \prod_{n=1}^l \left(\sup_{j,k,N} \mathbb{E}\left[|Y_N(j,k)|^l \right] \right)^{\frac{1}{l}}$$

$$= \prod_{n=1}^l C_l^{\frac{1}{l}} = C_l$$
(2.2)

Außerdem gilt:

$$\#\{J: v(J) = r_1\} \le \binom{N}{r_1} r_1^l \le N^{r_1} r_1^l \tag{2.3}$$

$$\#\{K: v(K) = r_2\} \le \binom{M(N)}{r_2} r_2^l \le M(N)^{r_2} r_2^l$$
 (2.4)

Somit ergibt sich aus (2.2) - (2.4):

$$\frac{1}{N^{l+1}} \sum_{\substack{J: v(J) = r_1 \\ K: v(K) = r_2}} \mathbb{E}[Y_N(J, K)] < C_l(l+1)^l \frac{N^{r_1} M(N)^{r_2}}{N^{l+1}} \xrightarrow{N \to \infty} 0$$
 (2.5)

- r > l+1Nach Lemma aus der Vorlesung exisitert eine einfache, echte Kante und somit $\mathbb{E}[Y_N(J,K)]=0$, da die Matrixeinträge unabhängig sind.
- r = l + 1Es tragen also nur die Graphen auf l + 1 verschiedenen Knoten zu $\lim_{N \to \infty} \langle \overline{L_N}, x^l \rangle$ bei. Diese Graphen haben die Struktur eines Doppelbaumes

Diese Doppelbaumstruktur lässt sich wie folgt nutzen:

Wähle für einen Doppelbaum r Knoten aus den k-Knoten und l+1-r Knoten aus den j-Knoten. Dann folgt:

$$\sum_{J,K:v(J)+v(K)=l+1} \mathbb{E}[Y_N(J,K)] = \sum_{r=1}^l \binom{N}{l+1-r} (l+1-r)! \binom{M(N)}{r} r! \\ \cdot \#\{\text{Doppelb\"{a}ume mit } l+1-r \ j\text{-Knoten und } r \ k\text{-Knoten}\}$$
 (2.6)

Ein Doppelbaum mit r k-Knoten und (l+1-r) j-Knoten kann wie folgt als Catalan-Pfad der Länge l interpretiert werden:

Wähle als Wurzel des Baumes einen j-Knoten und gliedere den Baum in Ebenen, wobei die Wurzel in der 0.Ebene liegt. (Die k-Knoten liegen also in ungeraden Ebenen, die j-Knoten in geradenen Ebenen) Verweise jede Kante mit einer Richtung, sodass bei jeder Doppelkante eine Kante von dem Knoten wegführt und eine zu ihm hinführt. Durchlaufe den Baum mit Hilfe der Tiefensuche und nummeriere die Kanten in der Reihenfolge, wie sie bei der Tiefensuche durchlaufen werden. Konstruiere den Catalan-Pfad wie folgt:

- Wird ein Knoten zum ersten Mal erreicht: (+1)
- Kehrt man zu einem bereits besuchten Knoten zurück :(-1)

Da der Baum durch Tiefensuche durchlaufen wird, gibt die Entfernung eines Knotens zur Wurzel die Anzahl der nötigen Schritte wieder, die benötigt werden, um ihn zum ersten Mal zu erreichen. Da die j-Knoten in den geraden Ebenen und die k-Knoten in den ungeraden Ebenen liegen, ergibt sich, dass sich die j-Knoten stets auf den geraden Niveaus und die k-Knoten stets auf den ungeraden Niveaus des Catalan-Pfades befinden. Die Abbildung von den Doppelbäumen auf die Catalanpfade ist eine Bijektion, da:

- Da der Graph eulersch ist, ist $\sum_{i=1}^{2l} = 0$; Der Graph ist immer über 0, ansonsten würde es ein m geben, sodass $\sum_{i=1}^{2m-1} s^i = -1$, $\sum_{i=1}^{2m} s^i = 0$, $s_{2m-1} = -1$. Also könnten wir einen Doppelbaum mit Knoten 1,2,...2m konstruieren, und da $s_{2m-1} = -1$ ist, würde eine Kante von diesem Knoten zurück zu einem der ersten 2m Knoten gehen, was dem Aufbau eines Doppelbaums widersprechen würde. Insgesamt haben wir also einen Catalanpfad konstruiert.
- Surjektivität: Starte bei der Wurzel. Füge für jede Aufstiegskante einen Knoten in die nächst höhere Ebene und eine Kante als Verbindung hinzu. Füge für jede Abstiegskante eine Kante in die nächst niedriegere Ebene hinzu, bis die Doppelbaumstruktur vollständig ist. (Sollen wir das noch in Formeln übersetzen oder reicht das so?)
- Injektivität analog zur Übung (bzw muss man das unbedingt nochmal zeigen?)

Die betrachteten Doppelbäume haben s.o. ein kombinatorisches Gewicht von

$$\binom{N}{l+1-r}(l+1-r)!\binom{M(N)}{r}r! \tag{2.7}$$

Für N hinreichend groß ist dies genähert $N^{l+1-r}M(N)^r$. Damit folgt:

$$\frac{1}{N^{l+1}}N^{l+1-r}M(N)^r = \left(\frac{M(N)}{N}\right)^r \to \alpha^r \tag{2.8}$$

und damit:

$$\beta_{l} := \lim_{N \to \infty} \langle \overline{L_{N}}, x^{l} \rangle$$

$$= \lim_{N \to \infty} \sum_{J,K:v(J)+v(K)=l+1} \frac{1}{N^{l+1}} \mathbb{E}[Y_{N}(J, K)] = \sum_{r=1}^{l} \alpha^{r} \left(2l-2 \atop 2r-2 \right) C_{l-r}$$

$$= \sum_{r=1}^{l} \sum_{p_{r} \in C_{l}} \alpha^{r} = \sum_{p \in C_{l}} \alpha^{r}$$

$$(2.9)$$

wobei $r = \#\{\text{Abstiege von ungeraden auf gerade Niveaus in } C_l\}$, und p_r Catalan-Pfad mit r entsprechenden Abstiegen.

An Manu: kannst du diese Formel für β_l genauer erklären? Ich verstehe nicht wirklich, was du da machst...

Mach ich. Also ich hab lang nicht verstanden, was das Kombinatorik-zeug vorne dran mit den Catalanpfaden zu tun hat. Du hattest glaub ich C_l als Anzahl der Catalanpfade. Beim Überlegen für (10) dem nächsten Punkt hab ich mir dann die Formel für die Pfade gebaut, die im Grunde nur auf deiner Konstruktion basiert (und von der bist du ja hoffentlich überzeugt:))

→Also wir brauchen die Anzahl der Catalanpfade, durch die wir unsere Doppelbäume beschreiben, weil's eine Bijektion ist. Nur haben wir andere Catalanpfade als die normalen:)

Die Catalanpfade, die wir in der Vorlesung gebaut haben, mit der Anzahl C_l (Catalanzahlen), sind dadurch definiert, dass du bei jedem Schritt + oder - 1 gehst, und das nichtüberkreuzend.

Bei unseren Catalanpfaden hast du aber noch deine "Flachstücke"mit 0 eingebaut! Und zwar 2r von denen. Also wie viele gibts von denen für ein bestimmtes r? Nach Konstruktion mit einem Knoten, sagen wir mal den j1, als Wurzel, sind der erste und letzte Schritt in dem Pfad auf jeden Fall flach, also 0. Da gibt's keine andere Möglichkeit. Von den restlichen 2l-2 Schritten im Pfad sind noch 2r-2 flach, die suchen wir als erstes raus.

Das macht dann die
$$\binom{2l-2}{2r-2}$$
.

Bleiben uns noch 2l-2-(2r-2) Schritte übrig, die mit +/-1 zu belegen sind. Und zwar nichtüberkreuzend. Was das gleiche ist wie wenn du einen l-r-langen Catalanpfad bauen willst, weil du die 2r Flachstücke einfach mal ignorierst, die ändern ja nichts. Daher kommt das C_{l-r} . Und wir haben die Anzahl!

Über r aufsummieren, damit wir alle Fälle mit r Knoten aus M(N), Rest aus N, haben. Das übrige Kombinatorik-zeug ist ja α^r , und schon steht die Formel da

Die Formel für die Anzahl der Catlanpfade ist ganz praktisch für (10), für β selber brauchen wir sie ja erst mal nicht, deshalb wieder umcshreiben in $\sum_r \alpha^r \# \{ \text{Catalanpfade mit 2r Flachstücke} \}$. Wenn du sie mal die Anzahl nimmst, kannst auch über alle 2r-Catalanpfade aufsummieren, das hoch r ändert sich ja nicht. Und dann = $\sum_{r=1}^{l} \sum_{p_r \in C_l} \alpha^r = \sum_{p \in C_l} \alpha^r$.

kurze Erklärung der Schritte schreib ich auch noch irgendwann oben rein.

-> Danke für die Erklärung, davon sollten wir einiges in die spätere Endfassung ausfnehmen, damit die Formeln klarer werden! Was ich vllt hätte hinschreiben sollen ist, dass es bei mir beim vorletzten = hakt, also da, wo du die p_r einführst...

Jetzt mit richtiger Defintion von p_r klarer?

Die Erklärung muss man ein bisschen Anpassen, aber ich denke, dass die Rechnungen im Wesentlichen gleich bleiben oder?

Mit
$$\beta_0 := 1, \gamma_0 := 1$$
 und

$$\gamma_l := \sum_{p \in C_l} \alpha^{l-r} \qquad (l \ge 1)$$

gelten die Relationen

$$\beta_l = \alpha \gamma_l = \alpha \sum_{r=0}^{l-1} \beta_r \gamma_{l-1-r}$$
 (2.10)

für alle $l \geq 1$:

(l-r) ist dabei die Anzahl der Abstiegskanten von geraden auf ungerade Niveaus im Catalan-Pfad.)

•

$$\alpha \gamma_{l} = \sum_{p \in C_{l}} \alpha^{l+1-r},$$

$$\beta_{l} - \alpha \gamma_{l} = \sum_{r=1}^{l} \alpha^{r} \begin{pmatrix} 2l-2\\2r-2 \end{pmatrix} C_{l-r} - \sum_{r=1}^{l} \alpha^{l+1-r} \begin{pmatrix} 2l-2\\2l-2r \end{pmatrix} C_{r-1}$$

$$= \sum_{\text{Symmetrie Binom.}} \sum_{r=1}^{l} \begin{pmatrix} 2l-2\\2l-2r \end{pmatrix} \left(C_{l-r}\alpha^{r} - C_{r-1}\alpha^{l+1-r} \right)$$

$$\stackrel{!}{=} 0$$

$$(2.11)$$

Für die einzelnen Summenglieder folgt:

Ist l gerade, dann heben sich folglich alle Summenglieder weg und die Summe ist 0, ist l ungerade, bleibt nur das (l+1)/2-te Summenglied übrig:

$$\begin{split} & \begin{pmatrix} 2l-2 \\ l+1-2 \end{pmatrix} \left(C_{l-\frac{l+1}{2}} \alpha^{\frac{l+1}{2}} - C_{\frac{l+1}{2}-1} \alpha^{l+1-\frac{l+1}{2}} \right) \\ & = \begin{pmatrix} 2l-2 \\ l-1 \end{pmatrix} \left(C_{\frac{l-1}{2}} \alpha^{\frac{l+1}{2}} - C_{\frac{l-1}{2}} \alpha^{\frac{l+1}{2}} \right) = 0 \end{split}$$

Damit gilt der erste Teil von (2.10)

• Dritter Versuch. :)

Betrachte die Position im Pfad, an der zum ersten Mal die 0 erreicht wird. Diese ist immer gerade, da die 0 genau dann erreicht wird, wenn man im zugehörigen Doppelbaum zur Wurzel zurückkehrt. Sei also $2j, j \in \{1, ..., l\}$, diese Position. Teile nun den Pfad in einen vorderen Teil P_1 der Länge 2j und einen hinteren Teil P_2 der Länge 2l-2j. In dem erzeugenden Baum entspricht P_1 dem äußersten Teilbaum, P_2 dem restlichen Baum. P_2 ist also ein beliebeiger Catalan-Pfad. P_1 hat die besondere Struktur, dass die 0 erst an letzter Position erreicht wird, die erste und letzte Kante sind somit als Auftsiegs- bzw. Abstiegskante festgelegt und können für die kombinatorische Analyse vernächlässigt werden. Löscht man diese

beiden Kanten und subtrahiert 1 von allen Elementen von P_1 erhält man einen neuen Pfad \tilde{P}_1 , der ein beliebiger Catalan-Pfad der Länge 2j-2 ist.

Die geraden/ungeraden Niveaus im ursprünglichen Pfad sind in \tilde{P}_1 ungerade/gerade (Durch die Verschiebung um 1 nach unten). r und l-r haben sich also genau vertauscht! Damit ergibt sich aus den Definition für β_l und γ_l die Formel:

$$\beta_{l} = \alpha \sum_{j=1}^{l-1} \gamma_{j-1} \beta_{l-j} = \alpha \sum_{j=0}^{l} \gamma_{j} \beta_{l-j-1}$$

$$= \alpha \sum_{k=0}^{l} \beta_{k} \gamma_{l-1-k}$$

$$(2.12)$$

Das zusätzliche α wird in der Formel durch das Löschen der Abwärtskante in P_1 hervorgerufen.

Beweis von Formel (12)

$$\begin{split} Q_n := & \alpha^{-1-n/2} \int_{\mathbb{R}} f_{\alpha}(x) x (x - \alpha - 1)^n \, \mathrm{d}x \\ &= \frac{1}{2\pi} \alpha^{-1-n/2} \int_{(1-\sqrt{\alpha})^2}^{(1+\sqrt{\alpha})^2} \sqrt{(x - (1-\sqrt{\alpha})^2)((1+\sqrt{\alpha})^2 - x)} (x - \alpha - 1)^n \, \mathrm{d}x \\ &= \frac{1}{2\pi} \alpha^{-1-n/2} \int_{(1-\sqrt{\alpha})^2}^{(1+\sqrt{\alpha})^2} \sqrt{-\alpha^2 + 2\alpha x + 2\alpha - x^2 + 2x - 1} (x - \alpha - 1)^n \, \mathrm{d}x \\ &= \frac{y + \alpha + 1}{2\pi} \frac{1}{2\pi} \alpha^{-1-n/2} \int_{-2\sqrt{\alpha}}^{2\sqrt{\alpha}} \sqrt{4\alpha - y^2} y^n \, \mathrm{d}y \\ &\stackrel{y = 2\sqrt{\alpha}z}{=} \frac{1}{2\pi} \alpha^{-1-n/2} \cdot 2^n \alpha^{n/2} \cdot 4\sqrt{\alpha} \int_{-1}^1 \sqrt{1 - z^2} z^n \, \mathrm{d}z = \frac{2}{\pi} \cdot 2^n \int_{-1}^1 \sqrt{1 - z^2} z^n \, \mathrm{d}z \\ &\stackrel{\text{Übung 1}}{=} \sigma(z^n) = \begin{cases} 0, & n \text{ ungerade} \\ C_{\frac{n}{\alpha}}, & n \text{ gerade} \end{cases} \end{split}$$

(Falls wir noch Platz füllen müssen, können wir hier die Rechnung aus der Übung auch wiederholen;)) Bei den "Verständnis-Fragen" habe ich jedoch etwas Probleme: f_{α} ist für x=0 gar nicht definiert? Durch die Rechnung ergibt sich aber der Bezug zu $\sigma(x)$, wo man dann doch beim Halbkreisgesetz wäre.

Zur Eindeutigkeit von f_{α} sind diese "verallgemeinerten Momente" ein Problem. Habt ihr in der großen W-Theorie Vorlesung dazu was gemacht?

Finde nichts zu verallgemeinerten Momenten. Müssen wir am Dienstag fragen.

Ann: Theorem der Vorlesung auch für verallgemeinerte Momente anwendbar: f eind. bestimmt wenn $Q_n < \infty$ (folgt aus (12)) und $\sum_{n=0}^{\infty} Q_n \frac{z^n}{n!}$ positiven Konvergenzradius besitzt.

$$\sum_{n=0}^{\infty} Q_n \frac{z^n}{n!} = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}$$

wobei

$$a_n = \begin{cases} 0, & n \text{ ungerade} \\ \frac{C_{\frac{n}{2}}}{n!} = ((\frac{k}{2} + 1)! \frac{k}{2}!)^{-1}, & n \text{ gerade} \end{cases}$$

Wurzelkriterium für Konvergenzradius:

$$\left(\frac{k}{2}+1\right)!\frac{k}{2}! \ge 1 \Rightarrow |a_n| \le 1 \Rightarrow$$

$$r = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} > 1$$

Beweis von Formel (14)

$$R_n = \lim_{N \to \infty} \alpha^{-1 - n/2} \int_{\mathbb{R}} \overline{L_N}(dx) x (x - \alpha - 1)^n$$
 (2.13)

Anwendung des binomischen Lehrsatzes ergibt:

$$R_n = \alpha^{-1-n/2} \lim_{N \to \infty} \int_{\mathbb{R}} \overline{L_N}(dx) x \sum_{k=0}^n \binom{n}{k} x^{n-k} (-\alpha - 1)^k$$
$$= \alpha^{-1-n/2} \lim_{N \to \infty} \langle \overline{L_N}, \sum_{k=0}^n \binom{n}{k} x^{n+1-k} (-\alpha - 1)^k \rangle$$
$$= \alpha^{-1-n/2} \sum_{k=0}^n \binom{n}{k} (-\alpha - 1)^k \beta_{n+1-k}$$

wegen $\beta_l = \lim_{N \to \infty} \langle \overline{L_N}, x^l \rangle$ und der Linearität des Integrals.

Die Rekursionsformel sträubt sich noch ein bisschen, drei Summenformeln oder mehr ineinander verschachtelt, aber es sollte hoffentlich irgendwann aus der Darstellung von R_n und (10) folgen.

$$R_m = Q_m$$
:

Dazu zeigen wir, dass $R_0 = Q_0$ und $R_1 = Q_1$, sowie dass die weiteren Folgenglieder von Q_m durch die gleiche Rekursionsformel gebildet werden können. Daraus folgt $R_m = Q_m \ \forall m$

Beweis:

$$\beta_1 = \alpha \beta_0 \gamma_0 = \alpha$$

$$\beta_2 = \alpha \beta_0 \gamma_1 + \alpha \beta_1 \gamma_0 = \alpha \gamma_1 + \alpha \beta_1 = \beta_1 + \alpha \beta_1$$

$$R_0 = \lim_{N \to \infty} \alpha^{-1} \int_{\mathbb{R}} \overline{L_N}(dx) x = \frac{\beta_1}{\alpha} = 1$$

$$R_1 = \alpha^{\frac{3}{2}} \lim_{N \to \infty} \int_{\mathbb{R}} \overline{L_N}(dx) (x^2 - (\alpha + 1)x) = \alpha^{\frac{3}{2}} (\beta_2 - (\alpha + 1)\beta_1) = 0$$

$$Q_0 = C_0 = 1, \quad Q_1 = 0$$

Rekursion für Q_m :

m ungerade:
$$\sum_{n=0}^{m} Q_{m-n}Q_n = Q_0 \underbrace{Q_m}_{=0} + \underbrace{Q_1}_{=0} Q_{n-1} + \dots = 0 = Q_{m+2}$$
m gerade:
$$Q_{m+2} = C_{\frac{m}{2}+1} = \sum_{k=0}^{\frac{m}{2}} C_k C_{\frac{m}{2}-k} = \sum_{k=0}^{\frac{m}{2}} Q_{2k} Q_{m-2k} = \sum_{n=0}^{m} Q_n Q_{m-n}$$

wobei der letzte Schritt aus $Q_n Q_{m-n} = 0$ für n = 2k + 1 folgt.

Bleibt zu zeigen, dass damit $\overline{L_N} \stackrel{w}{\to} f_{\alpha}(x) dx \ (N \to \infty)$.

Unter der Annahme, dass diese seltsamen "verallgemeinerten Momente genauso wie die normalen Momente verwendet werden können, können wir das Theorem aus der Vorlesung anwenden, um von der Konvergenz der Momente auf die schwache Konvergenz der W-maße zu kommen.

Voraussetzungen: 1. f_{α} ist durch Q_n eindeutig bestimmt, s.o. erfüllt; 2.

$$\alpha^{-1-n/2} \int_{\mathbb{R}} \overline{L_N}(dx) x (x - \alpha - 1)^n = \alpha^{-1-n/2} \sum_{k=0}^n \binom{n}{k} (-\alpha - 1)^k \langle \overline{L_N}, x^{n+1-k} \rangle$$
$$= \alpha^{-1-n/2} \sum_{k=0}^n \binom{n}{k} (-\alpha - 1)^k \mathbb{E}\left[\frac{1}{N} tr(W_N^{n+1-k})\right] < \infty \ \forall N, n \in \mathbb{N}_0$$

wegen $\sup_{j,k,N} \mathbb{E}[|Y_N(j,k)|^q] < \infty$

(...okay sicher bin ich mir bei dem Ganzen nicht aber das hier ist alles mehr so als Idee aufzufassen)

 \Rightarrow Theorem (Woche 2, Seite 3 rechts) \Rightarrow schwache Konvergenz