# A Gentle Introduction to Bayesian Estimation

Day 3: Algorithms and Checks

Sara van Erp s.j.vanerp@uu.nl





## Recap days 1-2

- Introduction: What is Bayesian analysis? What is a prior?
- How to obtain the posterior?
- Why use Bayes?
- WAMBS-checklist
  - Incl. convergence and prior-predictive checks

## Recap days 1-2

- Introduction: What is Bayesian analysis? What is a prior?
- How to obtain the posterior?
- Why use Bayes?
- WAMBS-checklist
  - Incl. convergence and prior-predictive checks

## Today

### Part 1: Software and algorithms

- Different ways to get the posterior
- What is going on (conceptually) under the hood?
- What should you, as user, be aware of?

#### Part 2: Predictive checks

- Posterior predictive checks: how can we check our model?
- Prior predictive checks



Part 1: Software and algorithms

## Why use Bayes?

- To include prior information
- More intuitive interpretation
- Technical reasons (estimate more complex models, use smaller samples, model identification)
- Full posterior distribution instead of a point estimate



## Advantages of the posterior distribution

If we want to estimate an indirect effect, we get automatic uncertainty estimates around functions of parameters.



Posterior distribution for the indirect effect *ab* 





## A note on summarizing the posterior





# Posterior point estimates



## Posterior point estimates



## Posterior credible intervals

Solid line = Equal tailed interval (ETI)

Dashed line = Highest density interval (HDI)



## Posterior credible intervals

Here, the 95% intervals are shown, but we could also compute the 90% intervals, or the 89% intervals... (https://easystats.github.io/bayestestR/articles/credible\_interval.html)

Solid line = Equal tailed interval (ETI)

Dashed line = Highest density interval (HDI)



# How to obtain the posterior distributions?

#### In addition:

- Program the conditional posteriors manually
- Closed software, e.g., SPSS, Mplus
- R-packages, e.g., brms, rstanarm, blavaan



nature > nature reviews methods primers > primers > article > table

### Table 2 A non-exhaustive summary of commonly used and open Bayesian software programs

From: Bayesian statistics and modelling

| Software package                             | Summary                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General-purpose Ba                           | yesian inference software                                                                                                                                                                                                                                                                                                                      |
| BUGS <sup>231,232</sup>                      | The original general-purpose Bayesian inference engine, in different incarnations. These use Gibbs and Metropolis sampling. Windows-based softwar (WinBUGS <sup>238</sup> ) this a user-specified model and a black-box MCMC algorithm. Developments include an open-source version (OpenBUGS <sup>238</sup> ) also available on Linux and Mac |
| JAGS <sup>235</sup>                          | An open-source variation of BUGS that can run cross-platform and can run from R via rjags <sup>236</sup>                                                                                                                                                                                                                                       |
| PyMC3 <sup>237</sup>                         | An open-source framework for Bayesian modelling and inference entirely within Python; includes Gibbs sampling and Hamiltonian Monte Carlo                                                                                                                                                                                                      |
| Stan <sup>98</sup>                           | An open-source, general-purpose Bayesian inference engine using Hamiltonian Monte Carlo; can be run from R, Python, Julia, MATLAB and Stata                                                                                                                                                                                                    |
| NIMBLE <sup>238</sup>                        | Generalization of the BUGS language in R; includes sequential Monte Carlo as well as MCMC. Open-source R package using BUGS/JAGS-model language to develop a model; different algorithms for model fitting including MCMC and sequential Monte Carlo approaches. Includes the ability to write novel algorithms                                |
| Programming langu                            | ages that can be used for Bayesian inference                                                                                                                                                                                                                                                                                                   |
| TensorFlow<br>Probability <sup>239,240</sup> | A Python library for probabilistic modelling built on Tensorflow <sup>203</sup> from Google                                                                                                                                                                                                                                                    |
| Pyro <sup>241</sup>                          | A probabilistic programming language built on Python and PyTorch <sup>204</sup>                                                                                                                                                                                                                                                                |
| Julia <sup>242</sup>                         | A general-purpose language for mathematical computation. In addition to Stan, numerous other probabilistic programming libraries are available for the Julia programming language, including Turing.jl <sup>243</sup> and Mamba.jl <sup>244</sup>                                                                                              |
| Specialized software                         | e doing Bayesian inference for particular classes of models                                                                                                                                                                                                                                                                                    |
| JASP <sup>245</sup>                          | A user-friendly. higher-level interface offering Bayesian analysis. Open source and relies on a collection of open-source R packages                                                                                                                                                                                                           |
| R-INLA <sup>230</sup>                        | An open-source R package for implementing INLA <sup>246</sup> . Fast inference in R for a certain set of hierarchical models using nested Laplace approximations                                                                                                                                                                               |
| GPstuff <sup>247</sup>                       | Fast approximate Bayesian inference for Gaussian processes using expectation propagation; runs in MATLAB, Octave and R                                                                                                                                                                                                                         |

MCMC, Markov chain Monte Carlo.

## Different programs, different algorithms

#### **Exact algorithms**

- Simulate from the actual posterior distribution (hopefully)
- Assess convergence to ensure a good representation of the posterior
- Can be slow
- E.g., Gibbs, HMC

#### **Approximate algorithms**

- Approximate the posterior distribution with a different, comparable distribution and optimize this distribution
- Assess convergence to ensure the approximation is close enough
- Fast and scalable
- E.g., variational inference, INLA

## A cautionary note on approximate algorithms





# Markov Chain Monte Carlo (MCMC) sampling

A class of algorithms to sample from the posterior distribution.

Markov Chain = each state depends only on the previous state

Monte Carlo = repeated sampling

Some examples: Random Walk Metropolis-Hastings, Gibbs sampling, Hamiltonian Monte Carlo.



## The idea behind MCMC

Bayes' rule: 
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

With  $p(y) = \int p(y|\theta)p(\theta)d\theta$ 

Or (for the regression model):

$$p(\beta_1, \beta_2, \beta_3, \sigma^2 | y) = \frac{p(y | \beta_1, \beta_2, \beta_3, \sigma^2) p(\beta_1, \beta_2, \beta_3, \sigma^2)}{p(y)}$$

With  $p(y) = \int \int \int \int p(y|\beta_1,\beta_2,\beta_3,\sigma^2) p(\beta_1,\beta_2,\beta_3,\sigma^2) d\beta_1 d\beta_2 d\beta_3 d\sigma^2$ 

## Metropolis-Hastings (MH)



Random walk version is "simplest" MCMC algorithm.

We use some (arbitrary) proposal density to sample from and either accept or reject a new draw.

## Metropolis-Hastings (MH)

Step 1: Sample from a proposal density (e.g., normal distribution)

Step 2: Propose a new draw from a normal distribution centered around the value from 1, with some SD (stepsize)

Step 3: Calculate r = value unnormalized posterior current iteration/unnormalized posterior previous iteration

Step 4: Decision: if  $r > u \sim U(0, 1)$  accept draw, otherwise reject

Disadvantage: can be slow (especially if rejection probability is high)

## Metropolis-Hastings (MH)



Random walk version is "simplest" MCMC algorithm.

We use some (arbitrary) proposal density to sample from and either accept or reject a new draw.

Gibbs sampling is actually a special case of MH with an acceptance probability of 1.

- Advantage: no risk of rejecting many proposals
- Disadvantage: requires derivation of conditional posteriors

## Gibbs sampler (see day 1)

- 1. Assign starting values
- 2. Sample  $\beta_1$  from conditional distribution
- 3. Sample  $\beta_2$  from conditional distribution
- 4. Sample  $\beta_3$  from conditional distribution
- 5. Sample  $\sigma^2$  from conditional distribution
- 6. Go to step 2 and repeat



## Gibbs sampler: Conditional posteriors

Instead of sampling from the difficult  $p(\beta_1, \beta_2, \beta_3, \sigma^2 | y)$  we use the conditional posteriors:

$$Post(\beta_1|\beta_2,\beta_3,\sigma^2,data) \sim Prior(\beta_1) \times likelihood$$
  
 $Post(\beta_2|\beta_1,\beta_3,\sigma^2,data) \sim Prior(\beta_2) \times likelihood$   
 $Post(\beta_3|\beta_1,\beta_2,\sigma^2,data) \sim Prior(\beta_3) \times likelihood$   
 $Post(\sigma^2|\beta_1,\beta_2,\beta_3,data) \sim Prior(\sigma^2) \times likelihood$ 

These conditional posteriors can be derived when conjugate priors are used.

## Hamiltonian Monte Carlo (HMC)

- Another special case of Metropolis-Hastings
- Stan uses the No-U-Turn-Sampler (NUTS), an extension to HMC

Remember the proposal for a next step in MH? HMC uses information from the target distribution (the posterior) to inform the proposal.

- Advantage: lower autocorrelation (but can take longer per iteration)
- Disadvantage: requires the derivatives (discrete parameters not possible)

## Interactive demo



Interactive gallery of various MCMC algorithms:

http://chi-feng.github.io/mcmc-demo/

## So, what should I know?

- Traditionally, software relied on Gibbs sampling (e.g., JAGS, Mplus)
- Stan and R-packages using Stan rely on Hamiltonian Monte Carlo (HMC)
- Both are special cases of Metropolis-Hastings
- Generally, HMC exhibits less autocorrelation, so less iterations needed
- HMC offers more convergence diagnostics, but cannot sample discrete parameters.

Simple models will generally run

Potential solutions more complex, non-converging models:

- Change sampler settings
- Change the prior
- Change the model



- 1. Traceplots should look like fat caterpillars
- 2. Rhat should be close to 1
- 3. Effective sample size should be large enough (e.g., 400 with 4 chains)
- 4. No low BFMI warning
- 5. No divergent transitions

"Max. treedepth" exceeded is an efficiency concern.



- 1. Traceplots should look like fat caterpillars
- 2. Rhat should be close to 1
- 3. Effective sample size should be large enough (e.g., 400 with 4 chains)
- 4. No low BFMI warning
- 5. No divergent transitions

Potential solution 1-4: increase number of iterations



## Divergent transitions in Stan



- Important, but difficult topic
- See the Markdown for a brms example (<a href="https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence\_checks.html">https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence\_checks.html</a>)
- See: <a href="https://mc-stan.org/misc/warnings.html">https://mc-stan.org/misc/warnings.html</a> for a general overview



# Part 2: Predictive checks



## Why check your model?

All models are simplifications -> Do we capture the characteristics we care about?

Important consideration: What is the purpose of our model?

Note: "Model" includes the prior, likelihood, included explanatory variables, hierarchical considerations, etc..

## Posterior predictive checks



Data generated from the model should resemble the observed data.

Specifically: generate data from the joint posterior predictive distribution and compare.

Suppose we have measured the IQ of 20 people. We assume  $x \sim N(\mu, \sigma)$  and specify a prior for  $\mu$  and  $\sigma$ . We sample  $\mu$  and  $\sigma$  from the posterior distribution and then generate replicated data sets based on these values.

## Posterior predictive checks



Suppose we have 100 replicated data sets from the posterior predictive distribution. How do we compare them to the observed data?

- Graphical comparisons

## Graphical posterior predictive checks



### Posterior predictive checks



Suppose we have 100 replicated data sets from the posterior predictive distribution. How do we compare them to the observed data?

- Graphical comparisons
- Numerical comparisons

General: convenient to define a test statistic or discrepancy measure

#### Test statistics

- Capture the aspects of the data we want to check
- Problem specific
- Some software offers general test statistics, e.g., likelihood ratio test statistic for SEM
- Examples: mean, standard deviation, distributional asymmetry, autocorrelation, etc.. (see BDA Ch6 for examples).

### Posterior predictive p-values (ppp)

- We can directly compare the test statistic of the observed and replicated data sets, or compute a posterior predictive p-value.
- Provides a general summary of the lack of fit
- Interpretation: we want a ppp around 0.50, extreme values indicate a lack of fit

#### **Important caveats**

- We are not trying to reject or accept a model, so not concerned with type 1 error rates
- Ppp's are not necessarily uniformly distributed

# An example: Predicting math performance

See the Markdown file

(<a href="https://utrechtuniversity.github.io/BayesianEstimation/co">https://utrechtuniversity.github.io/BayesianEstimation/co</a> ntent/wednesday/convergence checks.html)

We will use linear regression to predict the math grade of 395 Portugese students in secondary school.

Outcome: Math grade at third period (0-20)

*Predictors:* sex, weekly time spent studying, additional math class, whether the student wants to take higher education.



### Basic posterior predictive checks





### Basic posterior predictive checks



# Custom posterior predictive checks

#### Replicated data from a normal model with vertical line showing the observed percentage



## Custom posterior predictive checks



# Improving the model: hurdle Poisson



### Improving the model: hurdle Poisson

#### Replicated data from a hurdle Poisson model with vertical line showing the observed percentage



#### Recap

- Posterior predictive checks can provide useful visual and numerical diagnostics of model fit
- Standard posterior predictive checks are available
- Custom posterior predictive checks might be more suitable
- Consider carefully which aspects your model should represent well

### Prior predictive checks

The same idea can be used to see if our priors make sense.

Generate data from the *prior* predictive distribution.

If priors lead to generated data that makes no sense, you might want to revisit them.

#### Recap

#### Part 1: Software and algorithms

- Different ways to get the posterior
- What is going on (conceptually) under the hood?
- What should you, as user, be aware of?

#### Part 2: Predictive checks

- Posterior predictive checks: how can we check our model?
- Prior predictive checks



Questions?