

Wireless IO Tool

Nhat Luan TRUONG

Thomas ZENNARO

Alexandre CROS

Louis CHAUVET

Michael EJIGU

Andy XU

Wireless IO Tool

- 1. Context
- 2. Project specifications
- 3. Hardware design
- 4. Software design
- 5. Progress

1. Context

Client

STERELA an Airbus subcontractor

Requirement

Make the ground test sequence wireless to reduce wiring costs, workforce and time

Expected outcome

A wireless proof of concept

2. Specifications

2. Specifications

Mardware: x86 machine Xbee radio module

OS: Ubuntu

Language: C/C++

3. Hardware design

Speed rate : 250Kbps (RF)

Reach: 60m indoor, 1200m outdoor

Output Power : 5dBm to 8dBm

Sensitivity: 100dBm Protocol: XBee 802.15.4

3. Hardware design

3. Hardware design

Which network architecture?

Zigbee:

- -Three types of nodes, cheaper
- -Smaller payload size
- -Potential for interoperability
- -Large code size

Digimesh:

- -One type of node, more flexible
- -Larger payload size
- -Proprietary
- -Small code size

3. Software design

Use case diagram

3. Software design

class diagram

3. Software design

Interactions diagram

4. Progress

Wireless IO Tool

Nhat Luan TRUONG

Thomas ZENNARO

Alexandre CROS

Louis CHAUVET

Michael EJIGU

Andy XU

