M328K: Homework 6

Katherine Ho

October 22, 2024

1. (a) For n > 1, let $a_1, a_2, \ldots, a_{\phi(n)}$ be the positive integers less than n that are relatively prime to n. Show that

$$a_1 + a_2 + \dots + a_{\phi(n)} = \frac{1}{2}n\phi(n).$$

(Hint: $gcd(a, n) = 1 \iff gcd(n - a, n) = 1$)

Proof. For each integer a_i coprime to n, $n-a_i$ is also coprime to n because $\gcd(a,n)=1\iff\gcd(n-a,n)=1$. We can pair these integers as so: $(a_1,n-a_1),(a_2,n-a_2),\ldots$. Since there are $\phi(n)$ such integers a_i , there are $\frac{\phi(n)}{2}$ such pairs.

Then, we know the sum of each pair is

$$a_i + (n - a_i) = n$$

So for all pairs, we have

$$a_1 + (n - a_1) + a_2 + (n - a_2) + \dots + a_{\frac{\phi(n)}{2}} + (n - a_{\frac{\phi(n)}{2}}) = n \cdot \frac{\phi(n)}{2}$$

This is equivalent to

$$a_1 + a_2 + \dots + a_{\phi(n)} = \frac{1}{2}n\phi(n)$$

(b) If $p \ge 5$ is prime, show that the product of the $\phi(p-1)$ primitive roots of p is congruent to 1 modulo p. (Hint: If a is a primitive root of p, then a^k is a primitive root of p iff $\gcd(k, p-1) = 1$. Now use part (a).)

Proof. Let g be a primitive root of p. The primitive roots of p are the powers g^k where $1 \le k \le p-1$ and $\gcd(k,p-1)=1$. The product P of all the primitive roots of p is:

$$P = g^{k_1} \cdot g^{k_1} \dots g^{k_{\phi(p-1)}}$$

By the properties of exponents, this is equivalent to

$$P = q^{k_1 + k_2 + \dots + k_{\phi(p-1)}}$$

From part (a), we can substitute:

$$P = a^{\frac{1}{2}(p-1)\phi(p-1)}$$

Then, since g is a primitive root of p, we know that $g^{p-1} \equiv 1 \pmod{p}$. So, we can reduce the exponent $\pmod{p-1}$:

$$P \equiv g^{\frac{1}{2}(p-1)\phi(p-1) \pmod{p-1}} \pmod{p}$$

We can see that the exponent is a multiple of p-1. So, we can say:

$$P \equiv 1 \pmod{p}$$

Thus the product of the $\phi(p-1)$ primitive roots of p is congruent to 1 (mod p).

 $3^1 \equiv 3 \pmod{17}$

2. (a) Compute the table of indices modulo 17 relative to the primitive root 3.

Proof. First, compute all powers of 3 (mod 17).

$$3^2 \equiv 9 \pmod{17}$$
 $3^3 \equiv 10 \pmod{17}$
 $3^4 \equiv 13 \pmod{17}$
 $3^5 \equiv 5 \pmod{17}$
 $3^6 \equiv 15 \pmod{17}$
 $3^7 \equiv 11 \pmod{17}$
 $3^8 \equiv 16 \pmod{17}$
 $3^9 \equiv 14 \pmod{17}$
 $3^{10} \equiv 8 \pmod{17}$
 $3^{11} \equiv 7 \pmod{17}$
 $3^{12} \equiv 4 \pmod{17}$

 $3^{13} \equiv 12 \pmod{17}$ $3^{14} \equiv 2 \pmod{17}$ $3^{15} \equiv 6 \pmod{17}$

 $3^{16} \equiv 1 \pmod{17}$

We can use these values to create the table of indices:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ind_3a	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Use the table to solve the following congruences:

(b) $x^{12} \equiv 13 \pmod{17}$

Proof. We can first take the index of both sides of the congruence.

$$\operatorname{ind}(x^{12}) \equiv \operatorname{ind}(13) \pmod{16}$$

 $12\operatorname{ind}(x) \equiv 4 \pmod{16}$
 $3\operatorname{ind}(x) \equiv 1 \pmod{4}$

Then, find the multiplicative inverse of 3 (mod 4):

$$3x \equiv 1 \pmod{4}$$

$$3x - 4y = 1$$

$$4 = 3(1) + 1$$

$$1 = 4(1) - 3(1)$$

$$1 = 3(-1) - 4(-1)$$

We have $x \equiv -1 \equiv 3 \pmod{4}$. So $3^{-1} \pmod{4} = 3$. We can multiply both sides of the previous congruence by this value:

$$ind(x) \equiv 3 \pmod{4}$$

There are 4 solutions since we previously divided by a gcd of 4.

$$ind(x) \equiv 3, 7, 11, 15 \pmod{16}$$

$$x \equiv 10, 11, 7, 6 \pmod{17}$$

(c) $9x^8 \equiv 8 \pmod{17}$

Proof. We can first take the index of both sides of the congruence.

$$\operatorname{ind}(9x^8) \equiv \operatorname{ind}(8) \pmod{16}$$

$$\operatorname{ind}(9) + \operatorname{ind}(x^8) \equiv 10 \pmod{16}$$

$$2 + 8\operatorname{ind}(x) \equiv 10 \pmod{16}$$

$$8\operatorname{ind}(x) \equiv 8 \pmod{16}$$

$$\operatorname{ind}(x) \equiv 1 \pmod{2}$$

$$\operatorname{ind}(x) \equiv 1, 3, 5, 7, 9, 11, 13, 15 \pmod{16}$$

$$x \equiv 3, 10, 5, 11, 14, 7, 12, 6 \pmod{17}$$

(d) $7^x \equiv 7 \pmod{17}$

Proof. Since 17 is prime, the multiplicative group of integers $\pmod{17}$ has order 16. So the exponents x and 1 are congruent $\pmod{16}$.

$$x \equiv 1 \pmod{16}$$

So,

$$x = 1 + 16y$$

for some $y \in \mathbb{Z}$.

The smallest solution is x = 1. So, x = 1 satisfies the congruence.

3. Determine whether the congruences $x^{14} \equiv 3 \pmod{23}$ and $x^{14} \equiv 5 \pmod{23}$ are solvable.

Proof.
$$x^{14} \equiv 3 \pmod{23}$$
 is not solvable. $x^{14} \equiv 5 \pmod{23}$ is solvable.

- 4. In this problem, we will establish the existence of primitive roots for odd prime powers. Throughout, let p be an odd prime. Prove the following assertions.
 - (a) If g is a primitive root of p such that $g^{p-1} \not\equiv 1 \pmod{p^2}$, then g is a primitive root of p^2 .

Proof. Let d be the order of $g \pmod{p^2}$. We know

$$g^d \equiv 1 \pmod{p^2}$$

This implies

$$p^{2} \mid g^{d} - 1$$
$$p \mid g^{d} - 1$$
$$g^{d} \equiv 1 \pmod{p}$$

Since p is prime, either $d \mid p-1$ or $d \mid p(p-1)$. If $d \mid p-1$, then since $p-1 \mid d$ we have d=p-1. However this can't be true given $g^{p-1} \not\equiv 1 \pmod{p^2}$. So, $d \mid p(p-1)$. Thus g is a primitive root $\pmod{p^2}$.

(b) If g is a primitive root of p, then either g or g + p (or both) is a primitive root of p^2 .

Proof. If g is a primitive root of p, then the order of $g \pmod{p^2}$ is either p-1 or p(p-1). If g has order p, then g+p will be a primitive root of p^2 .

(c) If g is a primitive root of p^2 , then for each positive integer $k \geq 2$,

$$g^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}.$$

(Hint: Argue by induction on k. For the induction step, assume it holds for k and show that $g^{p^{k-2}(p-1)} = 1 + ap^{k-1}$, for some $a \in \mathbb{Z}$, where $p \nmid a$. Finish by raising both sides to the pth power and then reduce mod p^{k+1} .)

Proof. This holds for k=2.

IH: Assume this is true for some $k \geq 2$. Since $gcd(g, p^{k-1}) = gcd(g, p^k) = 1$, Euler's Theorem states:

$$g^{p^{k-2}(p-1)} = g^{\phi(p^k-1)} \equiv 1 \pmod{p^{k-1}}$$

There exists an $a \in \mathbb{Z}$ such that

$$g^{p^{k-2}(p-1)} = 1 + ap^{k-1}$$

Raising both sides to the pth power, we get

$$g^{p^{k-1}(p-1)} = (1 + ap^{k-1})^p \equiv 1 + ap^k \pmod{p^{k+1}}$$

Since a is not divisible by p, we have

$$g^{p^{k-1}(p-1)} \not\equiv 1 \pmod{p^{k+1}}$$

Thus proving the induction step.

(d) If p is an odd prime and $k \ge 1$, then there exists a primitive root for p^k . In fact, there exists an integer g that is a primitive root for all positive powers of p.

Proof. Let g be a primitive root of p and $g^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}$. Let n be the order of $g \pmod{p^k}$. n divides $\phi(p^k) = p^{k-1}(p-1)$.

Since $g^n \equiv 1 \pmod{p^k}$ implies $g^n \equiv 1 \pmod{p}$, we have $p-1 \mid n$. Then, $n = p^m(p-1)$ where $0 \le m \le k-1$. If $n \ne p^{k-1}(p-1)$, then $p^{k-2}(p-1)$ would be divisible by n and we would have

$$g^{p^{k-2}(p-1)} \equiv 1 \pmod{p^k}$$

However this contradicts how we set g above. Therefore, $n=p^m(p-1)$ and g is a primitive root for p^k .