

Floating Point

- Representing non-integer numbers
 - pi = 3.141592...
 - e = 2.71828...

 - $0.00000001 = 1.0 \times 10^{-9}$ $3155760000 = 3.15576 \times 10^{9}$

scientific notations

Scientific notation

- Single digit to the left of the decimal point
- Normalized number: 1-0 x 10-9
 - no leading zero
 - $^{\circ}$ 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰ are not normalized
- Binary number in scientific notation: $1.0_2 \times 2^{-1}$
- Floating point numbers
 - Numbers in which binary point is not fixed
 - No fixed number of digits before and after the point

Floating Point Representation

Negative exponent is too large to fit into the exponent field

 \mathcal{L}

Floating Point Representation

- Single precision: 32 bits
- Double precision: 64 bits
 - 11 bits for exponent, 52 bits for fraction
 - Range (in decimal): $2.0 \times 10^{-308} \sim 2.0 \times 10^{308}$
 - benefit: Increased precision from larger fraction bixs

12 X2

大 能 南方 别

- IEEE 754 floating point standard
 - Exponent 00000000, Fraction $0 \rightarrow 0$
 - E: 111111111, F: 0 → infinity
 - E: 1-254, F: anything → normal FP number
 - Consideration for sorting
 - MSB is used as a sign bit
 - Exponent comes before fraction part

准件是些兴

Floating Point Representation

•
$$X = 1.0 \times 2^{-1}$$

2			m> 0%	povents.	6	%。	J 623
Я	+ 121/ 3/15-	1					
	上至 \$P\$ (日本)	किंद्र सिस्पे	1-A 8	lad23h			
	11.00	01,45	1 / "				

															16	
0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	

•
$$Y = 1.0 \times 2^{+1}$$

										/					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1.248															

• In sorting, X looks larger than Y. +/এ 🎉

- Rearranging the exponent value range
 - 00000000 ~ 11111111
 most negative ~ most positive

IEEE uses a bias of 127 for single precision (1023 for double P)

21 2

IEEE 754 Floating-Point Format

- Encoding of the single precision floating-point numbers
 - Exponent: 0, Fraction $0 \rightarrow 0$
 - Exponent: 255, Fraction: $0 \rightarrow infinity$
 - Exponent: 1-254, Fraction: anything \rightarrow normal FP number
 - Exponent: 255, Fraction: Nonzero > NaN
 - NaN is a symbol for the result of invalid operations (e.g. 0/0).

Single	precision	Double	precision	Object represented		
Exponent	Fraction	Exponent	Fraction			
0	0	0	0	0		
0	Nonzero	0	Nonzero	± denormalized number		
1–254	Anything	1–2046	Anything	± floating-point number		
255	255 0		0	± infinity		
255 Nonzero		2047	Nonzero	NaN (Not a Number)		

(-1) X(1+fraction) X2.

-0.15 --3/4

$$\frac{-11}{2} = \frac{-0.11}{2}$$

$$\frac{\pi}{2} = \frac{1.1}{2}$$

$$\frac{\pi}{2} = \frac{1.1}{2}$$

$$\frac{\pi}{2} = \frac{1.1}{2}$$

1000 0001 1000 0001 1000 0001 as the present of the property of the property of the present of t

Floating Point Addition

- Consider:
 - $9.999_{10} \times 10^{1} + 1.610_{10} \times 10^{-1}$
 - Assume we can store only digits of significand.
- Steps
 - Align decimal points shift smaller exponent number

Roundoff

- $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- Add significands → ** ***
 - 9.999 + 0.016 = 10.015
 - Result: 10.015 x 10¹
- Normalize, check over/underfløw
 - □ 1.0015 x 10² 神 樂 子 ~
- Round it to 4 digits
 - -1.002×10^{2}

Binary FP Addition

$$-0.5_{10} + (-0.4375_{10})$$

•
$$0.5_{10} = 0.1_2 = 0.1 \times 2^0 = 1.000 \times 2^{-1}$$

•
$$0.4375_{10} = 7/16 = 7/2^4 = 111x2^{-4} = 1.110x2^{-2}$$

Align

•
$$1.000x2^{-1} - 1.110x2^{-2} = 1.000x2^{-1} - 0.110x2^{-1}$$

Add significands

•
$$1.000x2^{-1} - 0.111x2^{-1} = 0.001 \times 2^{-1}$$

- Normalize, check over/underflow
 - 1.0 x 2⁻⁴

- Round
 - No need

FP Adder Hardware

