Comp 410/510

Computer Graphics Spring 2023

Geometry & Transformations

Basic Elements

- Geometry is the study of spatial properties of objects and their relationships in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- We want a minimum set of elements from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

How to represent points?

- Until now we have been able to work with geometric entities without explicitly using any frame of reference or a coordinate system
- Need frame(s) of reference to relate points and objects in our physical world
- Given coordinates of a point, we can't really know where the point is without a reference system

Frames of reference (in graphics)

- What is the transformation between camera and world frames in the above example?
- What is the representation of point **P** in world and camera frames?
- In world coordinates: (1,0,0)
- In camera coordinates: ?

Change of frames

Transformation between camera and world frames: Rotation + Translation

- The representation of point **P**:

Modelview transform

- In world coordinates: (1,0,0)

- In camera coordinates: (10,1,0)

Transformations

To understand transformations, we need to understand

- what a coordinate system is
- what a frame of reference is
- how to change a coordinate system or a frame of reference
- what homogeneous coordinate representation is

Coordinate Systems

- Consider a basis: $v_1, v_2, ..., v_n$ (*n* vectors)
- An *n*-dimensional vector can then be written as a linear combination of these basis vectors: $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n$
- The list of scalars $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is the representation of v with respect to the given basis
- We can write the representation as a column array of scalars:

$$\boldsymbol{\alpha} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^{\mathrm{T}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example

- Vector: $v = 2v_1 + 3v_2 4v_3$
- Its coordinate representation: $\alpha = [2\ 3\ -4]^T$

- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing geometry using the world basis but later the system needs a representation in terms of the camera (or eye) basis

Vectors in Coordinate Systems

• Which placement is correct for a vector v?

• Both are equivalent because vectors have no fixed location

Frames of Reference

- We can represent vectors in coordinate systems
- But coordinate system is insufficient to represent points
- We can add a single point, the origin, to the basis vectors so as to form a frame of reference

Representation in a Frame

- A frame of reference is determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$
- Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3$$
$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3$$

• They appear to have similar representations:

$$P \rightarrow [\alpha_1 \alpha_2 \alpha_3]^T$$
 $v \rightarrow [\alpha_1 \alpha_2 \alpha_3]^T$

which confuses the point with the vector.

· A vector has no position, but a point has!

vector: can place anywhere

A Single Representation

Thus we write

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1 \alpha_2 \alpha_3 0] [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{P}_0]^{\mathrm{T}}$$
 where we define $\mathbf{P} = \mathbf{P}_0 + \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1 \alpha_2 \alpha_3 1] [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{P}_0]^{\mathrm{T}}$ $0 \cdot \mathbf{P} = \mathbf{0}$ and $1 \cdot \mathbf{P} = \mathbf{P}$

And we obtain the four-dimensional homogeneous coordinate representation:

 $v \rightarrow [\alpha_1 \alpha_2 \alpha_3 0]^T$: for vectors

 $P \rightarrow [\alpha_1 \alpha_2 \alpha_3 1]^T$: for points

Homogeneous Coordinates

The general form of four dimensional homogeneous coordinates is

$$[x y z w]^T$$

We return to a three dimensional point (for $w \neq 0$) by perspective division

$$x \leftarrow x/w$$

$$y \leftarrow y/w$$

$$z \leftarrow z/w$$

If w = 0, the representation is that of a vector.

Homogeneous Coordinates & Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented by matrix multiplications with 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - Orthographic projection maintains w=0 for vectors and w=1 for points; but for perspective projection, we will need a perspective division

Change of frames

Transformation between camera and world frames: Rotation + Translation

- The representation of point **P**:

Modelview transform

- In world coordinates: (1,0,0)

- In camera coordinates: (10,1,0)

Change of Coordinate Systems

 All standard transformations (such as rotation, translation) in computer graphics are actually change of coordinate systems (or frames or reference).

Change of Coordinate Systems

ullet Consider two representations of the same vector $oldsymbol{x}$ with respect to two different bases. The representations are

$$\boldsymbol{\alpha} = [\alpha_1 \ \alpha_2 \ \alpha_3]^T$$

 $\boldsymbol{\beta} = [\beta_1 \ \beta_2 \ \beta_3]^T$

where

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \boldsymbol{\alpha}^{\mathrm{T}} \left[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \right]^{\mathrm{T}}$$
$$= \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta_3 \mathbf{u}_3 = \boldsymbol{\beta}^{\mathrm{T}} \left[\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \right]^{\mathrm{T}}$$

Representing the second basis in terms of the first

Each of the basis vectors, u_1 , u_2 , u_3 , is a vector that can be represented in terms of the first basis:

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$$

$$u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$$

$$u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$$

Matrix Form

These coefficients define a 3 x 3 matrix

$$m{A} = egin{bmatrix} m{\gamma}_{11} & m{\gamma}_{12} & m{\gamma}_{13} \ m{\gamma}_{21} & m{\gamma}_{22} & m{\gamma}_{23} \ m{\gamma}_{31} & m{\gamma}_{32} & m{\gamma}_{33} \end{bmatrix}$$

and the representations in these coordinate systems are then related by

$$\alpha = A^{\mathrm{T}} \beta = M \beta$$

The World and Camera Frames

- When we work with representations, we work with points, vectors and scalars
- Changes in frame of reference are then defined by 4x4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually entities are represented in the camera frame by changing the world representation using the model-view matrix
- ullet So the change of frame of reference from world to camera is represented by a model-view matrix M
- Initially these frames are the same (M = I)

Recap: Change of frames

- Transformation from world to camera: Rotation + Translation

Modelview transform M

- The representation of point P:
- In world frame: (1,0,0,1)
- In camera frame: (10,1,0,1)

$$(10, 1, 0, 1)^{\mathrm{T}} = M_{4x4} \cdot (1, 0, 0, 1)^{\mathrm{T}}$$

Change of Frames

- Use homogeneous coordinates
- Consider two frames:

$$(P_0, v_1, v_2, v_3)$$

 (Q_0, u_1, u_2, u_3)

• Any point or vector is represented differently in each frame

One Frame in Terms of the Other

Express one frame in terms of the other:

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$$

$$Q_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + P_{0}$$

We can define a 4 x 4 matrix representing a change of frames

$$m{A} = egin{bmatrix} m{\gamma}_{11} & m{\gamma}_{12} & m{\gamma}_{13} & 0 \ m{\gamma}_{21} & m{\gamma}_{22} & m{\gamma}_{23} & 0 \ m{\gamma}_{31} & m{\gamma}_{32} & m{\gamma}_{33} & 0 \ m{\gamma}_{41} & m{\gamma}_{42} & m{\gamma}_{43} & 1 \end{bmatrix}$$

Working with Representations

A point or vector can then be represented in any of the two frames using homogeneous coordinates:

$$\boldsymbol{\alpha} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]^T$$
 in the first frame $\boldsymbol{\beta} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]^T$ in the second frame

where $\alpha_4 = \beta_4 = 1$ for points and $\alpha_4 = \beta_4 = 0$ for vectors.

The matrix $M = A^{T}$ is 4x4 and specifies an affine transformation in homogeneous coordinates

$$\boldsymbol{\alpha} = \boldsymbol{M} \boldsymbol{\beta} \qquad \boldsymbol{M} = \begin{bmatrix} \gamma_{11} & \gamma_{21} & \gamma_{31} & \gamma_{41} \\ \gamma_{12} & \gamma_{22} & \gamma_{32} & \gamma_{42} \\ \gamma_{13} & \gamma_{23} & \gamma_{33} & \gamma_{43} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Affine Transformations

- Every affine transformation is equivalent to a change of frames
- Every affine transformation preserves lines
- An affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed.

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{21} & \gamma_{31} & \gamma_{41} \\ \gamma_{12} & \gamma_{22} & \gamma_{32} & \gamma_{42} \\ \gamma_{13} & \gamma_{23} & \gamma_{33} & \gamma_{43} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Moving the World Frame

If objects are on both sides of z = 0 (hence the default view volume),

- we should move (translate) objects,
- or equivalently, move the world frame with respect to camera frame

Moving the World Frame

Change of frames:

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3} = 1v_{1} + 0v_{2} + 0v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3} = 0v_{1} + 1v_{2} + 0v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3} = 0v_{1} + 0v_{2} + 1v_{3}$$

$$\mathbf{Q}_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + \mathbf{P}_{0} = 0v_{1} + 0v_{2} - dv_{3} + \mathbf{P}_{0}$$

The 4x4 matrix representing the change of frames:

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{21} & \gamma_{31} & \gamma_{41} \\ \gamma_{12} & \gamma_{22} & \gamma_{32} & \gamma_{42} \\ \gamma_{13} & \gamma_{23} & \gamma_{33} & \gamma_{43} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Modelview Transformation

- Modelview transformation is equivalent to change of frames of reference.
- The given example is for translation:

Objectives

- Introduce standard transformations:
 - Rotations
 - Translation
 - Scaling
 - Shear
- Derive their homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

Rotation around x, y and z axes

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{R}_{\mathcal{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation

$$T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We will next derive these matrices...

Concatenation

- We can form arbitrary affine transformation matrices by multiplying rotation, translation, and scaling matrices
- Since the same transformation is applied to many vertices, the cost of forming a matrix M=ABC only once is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that the matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

Rotation, Translation, Scaling

Create an identity matrix:

```
mat4 m = Identity();
```

You need to implement this general rotation function yourself, not defined in mat.h header file.

```
mat.h includes RotateX(),
RotateY() and RotateZ() functions
```

Multiply on the right:

```
mat4 r = Rotate(theta, vx, vy, vz)
m = m*r;

theta specifies angle in degrees (counter-clockwise)
  (vx, vy, vz) defines axis of rotation
```

Do the same with translation and scaling:

```
mat4 s = Scale(sx, sy, sz)
mat4 t = Translate(dx, dy, dz);
m = m*s*t;
```

General Transformations

• A transformation maps points to other points and/or vectors to other vectors:

Affine Transformations

- Line preserving property
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in graphics is that we need only transform the endpoints of line segments and let implementation draw the line segment between the transformed endpoints

$$m{M} = egin{bmatrix} m{\gamma}_{11} & m{\gamma}_{21} & m{\gamma}_{31} & m{\gamma}_{41} \ m{\gamma}_{12} & m{\gamma}_{22} & m{\gamma}_{32} & m{\gamma}_{42} \ m{\gamma}_{13} & m{\gamma}_{23} & m{\gamma}_{33} & m{\gamma}_{43} \ m{0} & m{0} & m{0} & m{1} \end{bmatrix}$$

Pipeline Implementation

Translation

• Move (translate, displace) a point to a new location

- Displacement is determined by a vector *d*
 - 3 degrees of freedom
 - p' = p + d

Translation

object

Translation of an object: Every point of the object is displaced by the same vector

Translation using Homogeneous Coordinates

Consider the homogeneous coordinate representation in some frame:

$$\mathbf{p} = [x y z 1]^{\mathrm{T}}$$

$$\mathbf{p'} = [x' y' z' 1]^{\mathrm{T}}$$

$$\mathbf{d} = [d_x d_y d_z 0]^{\mathrm{T}}$$

Hence
$$p' = p + d$$
 or $x' = x + d_x$ $y' = y + d_y$ $z' = z + d_z$ $1 = 1 + 0$

Note that this expression is in four dimensions, thus point = vector + point

Translation Matrix

We can express translation using a 4x4 matrix T in homogeneous coordinates:

$$T = T (d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then p' = Tp translates p to p'

$$p = [x \ y \ z \ 1]^{T}$$

 $p' = [x' \ y' \ z' \ 1]^{T}$

$$\begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + dx \\ y + dy \\ z + dz \\ 1 \end{bmatrix}$$

Translation Matrix

We can express translation using a 4x4 matrix T in homogeneous coordinates:

$$T = T (d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then p' = Tp translates p to p'

$$\mathbf{p} = [x \ y \ z \ 1]^{\mathrm{T}}$$
$$\mathbf{p'} = [x' \ y' \ z' \ 1]^{\mathrm{T}}$$

The 4x4 form is better for implementation because

- all affine transformations can be expressed in terms of matrices and,
- multiple transformations can be concatenated together by multiplication

Rotation (2D)

- Consider rotation about the origin by θ degrees
 - radius remains the same, angle increases by θ

Rotation about the z axis

- Rotation about z—axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions on a plane of constant z

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$
$$z' = z$$

$$p' = R_z(\theta) p$$

$$R_z(\theta)$$

- or in homogeneous coordinates
$$\mathbf{p'} = \mathbf{R}_z(\theta) \mathbf{p} \qquad \mathbf{R}_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same arguments with rotation about z axis
 - For rotation about x-axis, x is unchanged
 - For rotation about y-axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\chi}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (with fixed point of origin)

$$x' = s_x x$$
$$y' = s_y y$$
$$z' = s_z z$$

$$p' = Sp$$

$$S = S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to scaling with negative factors

original

$$s_x = 1$$
$$s_y = -1$$

Inverse Transformations

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ $\mathbf{R}^{-1}(\theta) = \mathbf{R}^{\mathrm{T}}(\theta)$
 - Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying rotation, translation, and scaling matrices
- Since the same transformation is applied to many vertices, the cost of forming a matrix M=ABC only once is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that the matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

Rotation around a Fixed Point other than the Origin

M = ?

Rotation around a Fixed Point other than the Origin

- 1. Move fixed point to origin (along with the cube)
- 2. Rotate
- 3. Move fixed point back

But how to compose $R(\theta)$ if rotation is around an arbitrary axis?

$$M = T(p_f) R(\theta) T(-p_f)$$

Rotation Around the Origin & an Arbitrary Axis

A rotation by θ about an arbitrary axis and the origin can always be decomposed into a concatenation of rotations about x, y, and z axes:

$$\mathbf{R}(\theta) = \mathbf{R}_z(\theta_z) \, \mathbf{R}_y(\theta_y) \, \mathbf{R}_x(\theta_x)$$

 θ_x , θ_y , θ_z are called Euler angles.

- Note that rotations do not commute.
- We could use rotations in another order but with different angles, to get the same effect.

Would need to compute the corresponding Euler angles; instead we'll use the formulation in the next slide to get the most general rotation

General Rotation around an Arbitrary Axis and Point

$$M = T(p_f) R(\theta) T(-p_f)$$

$$M = T(p_f) R_x(-\theta_x) R_y(-\theta_y) R_z(\theta) R_y(\theta_y) R_x(\theta_x) T(-p_f)$$

figure 4.57 Direction angles.

Figure 4.58 Computation of the *x* rotation.

Figure 4.59 Computation of the *y* rotation.

Remark: Capability of rotation about two axes is sufficient to get any desired orientation.

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its vertices to

Scale

Orient (Rotate)

Locate (Translate)

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x-axis

$$x' = x + y \cot \theta$$
$$y' = y$$
$$z' = z$$

$$H(\theta) = egin{bmatrix} 1 & \cot \theta & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

 θ determines amount of shear

Objectives

- Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling
- Introduce OpenGL transformation matrices
 - Model-view
 - Projection (Later)

Pre-OpenGL Matrices

- In OpenGL, matrices were part of the state
- Multiple types
 - Model-View (GL MODELVIEW)
 - Projection (GL PROJECTION)
 -
- Single set of functions for manipulation
- Select which to manipulate by
 - glMatrixMode(GL MODELVIEW);
 - glMatrixMode(GL PROJECTION);
- All removed as of OpenGL 3.1

Modelview Matrix

- Modelview matrix *M* is a 4x4 homogeneous coordinate matrix
- Defined usually in the application as part of the state
- Applied (in the shader) to all vertices that pass down the pipeline

Rotation about a Fixed Point

$$M = T^{-1}RT$$

- Involves at least three 4x4 matrix multiplications
 - (may also need to compose *R*)
- Built only once (possibly in the application)
- Note that the last matrix operation specified (the rightmost) is the first transformation which effects vertices.

Rotation, Translation, Scaling

Create an identity matrix:

```
mat4 m = Identity();
```

You need to implement this general rotation function yourself; not defined in mat.h header file.

mat.h includes RotateX(), RotateY()
and RotateZ() functions

Multiply on the right (whenever a transformation is needed):

```
mat4 r = Rotate(theta, vx, vy, vz)
m = m*r;

theta specifies angle in degrees (counter-clockwise)
  (vx, vy, vz) defines axis of rotation
```

Do the same with translation and scaling:

```
mat4 s = Scale(sx, sy, sz)
mat4 t = Translate(dx, dy, dz);
m = m*s*t;
```

Example

• Rotation about z-axis by 30 degrees around a fixed point of (1.0, 2.0, 3.0)

```
m = Translate(1.0, 2.0, 3.0) * you can use RotateZ(30)
Rotate(30.0, 0.0, 0.0, 1.0) *
Translate(-1.0, -2.0, -3.0);
```

• Remember that last matrix specified in the program is the first applied

Rotation around a Fixed Point other than the Origin

- 1. Move fixed point to origin
- 2. Rotate
- 3. Move fixed point back

$$M = T(p_f) R(\theta) T(-p_f)$$

Order of Transformations

Translate(5.0, 0.0, 0.0)*
Rotate(45.0, 0.0, 0.0, 1.0)

Rotate(45.0, 0.0, 0.0, 1.0) * Translate(5.0, 0.0, 0.0)

Thinking of Transformations

You can think of transformations in two different ways:

Think in terms of a local world coordinate system; first rotate then translate.

Rotate(45.0, 0.0, 0.0, 1.0)*
Translate(5.0, 0.0, 0.0)

Think in terms of a grand, fixed, camera coordinate system; first translate then rotate.

Manipulating Model-View Matrix

An example modified code fragment for rotation around fixed camera frame axes: (from display of the spin cube program):

Note that here theta[0], theta[1], and theta[2] are incremental rotation angles, and that the associated callback function sets one of them to a nonzero value depending on which axis to rotate:

```
void update()
{
  theta[0] = theta[1] = theta[2] = 0.0;
  theta[axis] = 2.0;
}
```

Where to form matrices? Application or Shader

- We can form modelview matrix in application and send to shader and let shader do the rotation
- Or, we could send the angle and axis to the shader and let the shader form the modelview matrix and then do the rotation

Modelview

```
void display( void )
{
....
    model_view = RotateX( Theta[Xaxis])*
        RotateY( Theta[Yaxis] )*
        RotateZ( Theta[Zaxis] )* model_view;

    glUniformMatrix4fv( ModelView, 1, GL_TRUE, model_view );
....
Application code
}
```

Using Model-View and Projection Matrices

- In OpenGL, the model-view matrix is used
 - to build and manipulate models of objects
 - to position the camera
 - can be done by rotations and translations but is often easier to use a LookAt() function such as the one in mat.h
- The projection matrix is used to define the view volume and to select the projection type
- Although these matrices are no longer part of the OpenGL state, we usually create them in our own applications
- Next lecture we will see how to create projection matrices