KOROZE A STÁRNUTÍ MATERIÁLŮ

BARTONÍČEK, R.aj.: Koroze a protikorozní ochrana kovů, SNTL, 1966

DOLEŽEL, B.: Odolnost plastů a pryží, SNTL, 1981

TULKA, J.: Koroze a stárnutí materiálů, 1985

TULKA,J.: Povrchové úpravy materiálů, 2005

http://www.corrosion-doctors.org

DEGRADACE MATERIÁLŮ základní rozdělení

Prioritní: Chemicko-fyzikální vlivy prostředí

KOROZE A STÁRNUTÍ MATERIÁLŮ

Vědecko-technický i ekonomický problém

CORROSION ENGINEERING

Korozní inženýrství

Ztráty korozí v ČR odhad:

12 až 15 mld. Kč /ročně

KOROZE KOVŮ

kovový fond Česká republika

odhad plochy fondu

10 mld. m²

65 % ochrana povlaky

35 % nechráněný 3 - 4 mld. m²

KOROZE A STÁRNUTÍ MATERIÁLŮ vlivem prostředí

Chemická prostředí Atmosféra+ záření

KOROZE A STÁRNUTÍ MATERIÁLŮ

Koroze a stárnutí materiálů

Chemická koroze kovů v plynech

Přímá interakce kov-plyn (směs plynů)

a) Adsorpce plynu

b) tvorba oxidu (sulfidu aj.)

Možné typy porušení oxidové vrstvy

Termodynamické stavy kovů ve vodném prostředí

POURBAIX DIAGRAMY

- 3 základní oblasti:
- a) Oblast imunity
- b) Oblast pasivity
- c) Oblast koroze

Anodický děj:

oxidace kovu : Fe – 2 e \rightarrow Fe ²⁺

Katodický děj redukce :

vlevo : vznik bílé rzi v článku Zn(-) Fe (+)

$$\Delta$$
 E = -760 mV | -440 mV 320 mV
vpravo : tvorba rzi v článku Fe(-) ve spojení s Cu (+)
 Δ E = -440 mV | + 340 mV 780 mV (vodíková depolarizace)

Chování kovů v kontaktu s oceli

Porovnání hnacích sil Δ E korozních procesů

- a) spojení hliník zinek
- b) spojení měď zinek

Koroze kovů v atmosférickém prostředí

Charakteristické znaky: - zvláštní případ koroze ve vodném prostředí

- tenká vrstva elektrolytu na povrchu kovu
- proces probíhá s kyslíkovou depolarizací
- vznik výhradně tuhých produktů

Dlouhodobý proces rezivění oceli

Rychlost koroze $V_k = M \cdot T^{n_1} \cdot Z^{n_2}$

V_k .. korozní rychlost (mm/rok)

T .. Doba ovlhčení – až 5000 hodin / rok

Z .. Znečištění atmosféry

M, n1, n2 .. Konstanty

ROVNOMĚRNÁ KOROZE KOVŮ Uniform corrosion

Rovnoměrná koroze je charakterizovaná procesem probíhajícím na celé ploše korodujícího kovu nebo na převládající ploše.

Z hlediska rozsahu v průmyslové praxi je nejrozšířenější formou koroze.

BODOVÁ KOROZE - PITTING

LOKÁLNÍ KOROZE KOVŮ Local Corrosion

Koroze ve spoji

Koroze

vodního systému

ŠTĚRBINOVÁ KOROZE Crevice corrosion

lokální typ koroze

- Charakteristická pro stacionární mikroprostředí
- Hlavní příčiny:

kontakt dvou rozdílných kovů koncentrační diferenciace depolarizátoru

MEZIKRYSTALOVÁ KOROZE KOVŮ

lokální typ koroze

- Charakteristická pro slitiny
- Hlavní příčiny: selektivní rozpouštění jednoho kovu působení mechanických napětí

mezikrystalová koroze za napětí

SCC STRESS CORROSION CRACKING

KOROZE VLIVEM EROZE

Erosion Corrosion

Koroze kovu ve vodném prostředí je zvyšována mechanickým účinkem korozního média dvěmi způsoby:

- a) dochází k turbulenci média a iniciaci pittingové koroze
- b) Médium obsahuje tuhé částice mechanické narušení produktů.

KOROZE PLASTŮ

Interakce mezi polymerem a chemickým prostředím

Kyseliny – alkálie – roztoky solí
Ropné produkty
Organická rozpouštědla
Průmyslová hnojiva
Čisticí přípravky
Potraviny - Nápoje
Speciální prostředí

Koroze polystyrenu v organickém rozpouštědle

STÁRNUTÍ PLASTŮ v atmosférickém prostředí

vliv slunečního záření
vliv kyslíku
vliv ozónu
vliv vlhkosti
vliv prašného depozitu

$$R_1$$
 R_2 R_1 R_2 R_2 absorpce záření **Rozklad polymeru**

$$O_3$$
 + hv \rightarrow O_2 + O_3 - Oxidace polymeru

Fotooxidační stárnutí Ozónové stárnutí

Ochrana proti korozi

KOROZNÍ DIAGRAM KOV - PROSTŘEDÍ

Závislost proudové hustoty j na potenciálu E

- A anodická oxidace kovu (koroze)
- B katodická redukce depolarizátoru
- p výsledná polarizační křivka
- E míra hnací síly korozního procesu
- J míra rychlosti korozního procesu

REZIVĚNÍ

Klasická rez $voda + 0_2$

Černá rez

Modrá (zelená) rez voda + nedostatek O₂ voda + complex. látka

Oxidy - oxohydroxidy - hydroxidy - komplexy železa

Koroze a stárnutí materiálů

zkušební otázky

- 1. Uveďte vzájemnou souvislost tří úrovní pojetí koroze.
- 2. Nakreslete schéma korozního mikročlánku a popište základní dílčí děje korozního procesu ve vodném prostředí.
- 3. Vysvětlete rozdíl mezi korozí a stárnutím polymerních materiálů a uveďte základní činitele znehodnocování.
- 4. Schematicky nakreslete druhy forem koroze kovů a uveďte základní charakteristické znaky.
- 5. Popište základní charakteristické znaky atmosférické koroze kovů a napište vzorec výpočtu korozní rychlosti pro konstrukční ocel.
- 6. Nakreslete korozní diagram systému kov-korozní prostředí a proveďte rozbor základních charakteristik dílčích dějů a výsledného korozního procesu.