ELL784: ASSIGNMENT 1 Report(BACKGROUND SUBTRACTION)

1. Parameters:

- 1. Learning rate (alpha):
- 2. % of gaussians to be in background(B):
- 3. For non-matching pixels:
 - a. Updated weights
 - b. Updated varianceFor least probable gaussians.

2. Experimentation:

Cases	Learning	rate	% of gaussians		
	(alpha):		to	be	in
			background(B):		
1	0.01		0.3		
2	0.1		0.3		
3	0.01		0.75		
4	0.1		0.75		

3. Observations:

 Case 1: Less adaptive model i.e. static objects are taking longer duration to come into background model with good boundary observed between moving objects and static objects.

- Case 2: Good adaptiveness of the model, approximate unimodal background is obtained with a good boundary observed between moving objects and static objects.
- Case 3: Less adaptive model with noisy boundary where only outline of the moving object is part of foreground.
- Case 4: Better adaptiveness of the model with noisy boundary where most of the moving object becomes part of background.

4. Inference:

- Impact of Learning rate:
 Having a small learning rate results to a good background model as the model parameters will update at a lesser rate.
 Hence, influence of the new incoming data is minimized.

 Therefore, a good foreground model will be obtained.
- Impact of B: Having a high B will result in noisy foreground model as most of the moving object will become part of background model.