RESOLUCIÓN DEL PRIMER PARCIAL

Ejercicio 1. Calcular el cardinal de los siguientes conjuntos:

a) $\{f: \mathbb{N} \to \mathcal{P}(\mathbb{N}): f(n) \cup \{n\} = \mathbb{N} \quad \forall n \in \mathbb{N}\}$

b) $\{f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}): f(A) \cup A = \mathbb{N} \quad \forall A \subset \mathbb{N}\}$

Solución. a) Sea

$$B = \{ f : \mathbb{N} \to \mathcal{P}(\mathbb{N}) : f(n) \cup \{n\} = \mathbb{N} \quad \forall n \in \mathbb{N} \}.$$

Para cada $n \in \mathbb{N}$, como $f(n) \cup \{n\} = \mathbb{N}$, tenemos que $f(n) = \mathbb{N}$ o $f(n) = \mathbb{N} \setminus \{n\}$. Por lo tanto para cada n tenemos dos posibilidades, por lo que B tiene 2^{\aleph_0} elementos. Para formalizar esta idea consideramos $\phi : \{0,1\}^{\mathbb{N}} \to B$ dada por

$$\phi((a_k)_{k\in\mathbb{N}})(n) = \begin{cases} \mathbb{N} & \text{si } a_n = 1\\ \mathbb{N} \setminus \{n\} & \text{si } a_n = 0. \end{cases}$$

La función $\psi: B \to \{0,1\}^{\mathbb{N}}$ dada por

$$\psi(f)_n = \begin{cases} 1 & \text{si } f(n) = \mathbb{N} \\ 0 & \text{si } f(n) = \mathbb{N} \setminus \{n\} \end{cases}$$

es la inversa de ϕ . Por lo tanto ϕ es biyectiva y entonces $\#B = \#\{0,1\}^{\mathbb{N}} = 2^{\aleph_0}$.

b) Sea

$$C = \{ f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) : \quad f(A) \cup A = \mathbb{N} \quad \forall A \subset \mathbb{N} \}.$$

Como $C \subset \mathcal{P}(\mathbb{N})^{\mathcal{P}(\mathbb{N})}$, tenemos $\#C \leq \#\mathcal{P}(\mathbb{N})^{\mathcal{P}(\mathbb{N})} = c^c = 2^c$. Veamos que vale la igualdad.

Para cada A, tenemos varias posibilidades para que valga $f(A) \cup A = \mathbb{N}$. Entre ellas, podemos tomar $f(A) = \mathbb{N}$ o $f(A) = A^c$. Estas son distintas, salvo para $A = \emptyset$, en este caso tenemos $f(\emptyset) = \mathbb{N}$. Entonces para cada elemento de $\mathcal{P}_{\neq\emptyset}(\mathbb{N})$ tenemos dos posibilidades, por lo que el conjunto C tiene al menos $2^{\#\mathcal{P}_{\neq\emptyset}(\mathbb{N})} = 2^c$ elementos. Para formalizar esto último, consideramos $\phi: \{0,1\}^{\mathcal{P}_{\neq\emptyset}(\mathbb{N})} \to C$ dada por

$$\phi((a_i)_{i \in \mathcal{P}_{\neq \emptyset}(\mathbb{N})})(A) = \begin{cases} \mathbb{N} & \text{si } A = \emptyset \\ \mathbb{N} & \text{si } a_A = 1 \\ A^c & \text{si } a_A = 0. \end{cases}$$

Veamos que es inyectiva. Si $(a_i)_{i\in\mathcal{P}_{\neq\emptyset}(\mathbb{N})} \neq (b_i)_{i\in\mathcal{P}_{\neq\emptyset}(\mathbb{N})}$, existe $i\in\mathcal{P}_{\neq\emptyset}(\mathbb{N})$ tal que $a_i\neq b_i$. Luego $\phi((a_i)_{i\in\mathcal{P}_{\neq\emptyset}(\mathbb{N})})(i)\neq\phi((b_i)_{i\in\mathcal{P}_{\neq\emptyset}(\mathbb{N})})(i)$. Por lo tanto ϕ es inyectiva y entonces $\#C\geq \#\{0,1\}^{\mathcal{P}_{\neq\emptyset}(\mathbb{N})}=2^c$.

Finalmente concluimos que $\#C = 2^c$.

Ejercicio 2. Decidir si los siguientes espacios son completos.

a) El espacio \mathbb{R}^2 dotado de la métrica dada por

$$d((x,y),(z,w)) = \begin{cases} 1 & \text{si } x \neq z \\ \min\{1,|y-w|\} & \text{si } x = z. \end{cases}$$

b) El espacio C[0,1] dotado de la métrica dada por

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| \, dx.$$

Solución. a) Veamos que el espacio es completo. Sea $(x_n, y_n)_{n \in \mathbb{N}}$ de Cauchy, veamos que converge.

Sea N tal que $d((x_n, y_n), (x_m, y_m)) < 1$ para todo $n, m \ge N$. Como la distancia es menor a 1, en particular no es 1 por lo que los puntos deben coincidir en la primera coordenada. Esto es $x_n = x_N$ para todo $n \ge N$.

Dado $\varepsilon > 0$ tomamos n_0 tal que $d((x_n, y_n), (x_m, y_m)) < \min\{1, \varepsilon\}$ para todo $n, m \ge n_0$. Al igual que antes tenemos que los puntos coinciden en la primer coordenada y por lo tanto $d((x_n, y_n), (x_m, y_m)) = \min\{1, |y_n - y_m|\}$. Además $\min\{1, |y_n - y_m|\} < \min\{1, \varepsilon\} < 1$, por lo que $\min\{1, |y_n - y_m|\} = |y_n - y_m|$. Concluimos que $|y_n - y_m| < \varepsilon$ para todo $n, m \ge n_0$. Hemos probado que $(y_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ es de Cauchy. Por lo que existe $y \in \mathbb{R}$ tal que $y_n \to y$. Es fácil ver que $(x_n, y_n) \to (x_N, y)$.

b) Veamos que el espacio no es completo. Consideremos $f_n \in \mathcal{C}[0,1]$ dada por

$$f_n(x) = \begin{cases} 0 & \text{si } x \le \frac{1}{2} - \frac{1}{2n} \\ \frac{1}{2} + (x - \frac{1}{2})n & \text{si } \frac{1}{2} - \frac{1}{2n} \le x \le \frac{1}{2} + \frac{1}{2n} \\ 1 & \text{si } \frac{1}{2} + \frac{1}{2n} \le x. \end{cases}$$

Tenemos

$$d_1(f_n, f_m) = \int_0^1 |f_n(x) - f_m(x)| dx$$

$$= \int_0^{\frac{1}{2}} |f_n(x) - f_m(x)| dx + \int_{\frac{1}{2}}^1 |f_n(x) - f_m(x)| dx$$

$$\leq \int_0^{\frac{1}{2}} |f_n(x)| + |f_m(x)| dx + \int_{\frac{1}{2}}^1 |f_n(x) - 1| + |1 - f_m(x)| dx$$

$$\leq \frac{1}{4n} + \frac{1}{4m} + \frac{1}{4n} + \frac{1}{4m} \leq \frac{1}{n_0}$$

para $m, n \ge n_0$. Por lo que la sucesión es de Cauchy.

Supongamos, por el absurdo, que $f_n \to f$ para alguna $f \in \mathcal{C}[0,1]$.

Veamos que f(x)=0 para todo $x\in(0,\frac{1}{2})$. Supongamos que no, entonces existe $x_0\in(0,\frac{1}{2})$ tal que $f(x_0)\neq 0$. Luego, como $|f(x_0)|>0$ existe $\delta>0$ tal que $0< x_0-\delta< x_0+\delta<\frac{1}{2}$ y $|f(x)|>\frac{|f(x_0)|}{2}$ para todo $x\in(x_0-\delta,x_0+\delta)$. Tomemos $n_0\in\mathbb{N}$ tal que $x_0+\delta<\frac{1}{2}-\frac{1}{2n_0}$ y por lo tanto $f_n(x)=0$ para todo $x\in(x_0-\delta,x_0+\delta)$ para todo $n\geq n_0$. Luego

$$d_1(f_n, f) = \int_0^1 |f_n(x) - f(x)| \, dx \ge \int_{x_0 - \delta}^{x_0 + \delta} |f_n(x) - f(x)| \, dx \ge 2\delta \frac{|f(x_0)|}{2}$$

lo que es absurdo pues $f_n \to f$. Entonces f(x) = 0 para todo $x \in (0, \frac{1}{2})$.

De manera análoga podemos probar que f(x) = 1 para todo $x \in (\frac{1}{2}, 1)$. Pero esto es absurdo pues f es continua en $\frac{1}{2}$.

Ejercicio 3.

- a) Sean d y d' dos métricas definidas en X. Probar que son equivalentes:
 - i) Para toda sucesión $(x_n)_{n\geq 1}$ en X se tiene: $x_n\to x$ en $(X,d)\iff x_n\to x$ en (X,d').
 - ii) Para todo $U \subseteq X$: U es abierto en $(X, d) \iff U$ es abierto en (X, d').
- b) Consideramos en ℓ^{∞} las siguientes métricas

$$d_{\infty}((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}}) = \sup_{n\in\mathbb{N}} |a_n - b_n| \quad \text{y} \quad d((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}}) = \sup_{n\in\mathbb{N}} \frac{|a_n - b_n|}{n}.$$

Sea $id: (\ell^{\infty}, d_{\infty}) \to (\ell^{\infty}, d)$. ¿Es continua? ¿Y su inversa?

Solución. a) Veamos que $i) \implies ii$). Sea U abierto en (X, d). Queremos ver que U es abierto en (X, d'). La otra implicación es análoga.

Supongamos que no. Si U no es abierto en (X,d'), existe $x \in U$ tal que para todo r > 0, tenemos $B_r^{d'}(x) \not\subset U$. Luego para todo $n \in \mathbb{N}$ existe $x_n \in B_{\frac{1}{n}}^{d'}(x) \cap U^c$. Entonces $x_n \to x$ en (X,d'). Pero por otra parte $x_n \not\in U$ para todo $n \in \mathbb{N}$ por lo que $x_n \not\to x$ en (X,d). Lo que contradice i).

Veamos que $ii) \implies i$). Sea $(x_n)_{n\geq 1}$ tal que $x_n \to x$ en (X,d). Queremos ver que $x_n \to x$ en (X,d'). La otra implicación es análoga.

Sea $\varepsilon > 0$, sabemos que $B_{\varepsilon}^{d'}(x)$ es abierto en (X,d') y por lo tanto en (X,d). Luego existe δ tal que $B_{\delta}^{d}(x) \subset B_{\varepsilon}^{d'}(x)$. Como $x_n \to x$ en (X,d), existe n_0 tal que $x_n \in B_{\delta}^{d}(x)$ para todo $n \ge n_0$. Y por lo tanto $x_n \in B_{\varepsilon}^{d'}(x)$ para todo $n \ge n_0$. Hemos probado que $x_n \to x$ en (X,d').

b) Si $x_n \to x$ en $(\ell^{\infty}, d_{\infty})$ luego $x_n \to x$ en (ℓ^{∞}, d) pues $d \leq d_{\infty}$. Por lo que id es continua.

Veamos que su inversa no lo es. Sea e^k la sucesión cuyo termino k-ésimo es 1 y el resto son 0. Luego $e^k \to 0$ en (ℓ^{∞}, d) pues

$$d(e^k, 0) = \sup_{n \in \mathbb{N}} \frac{|e_n^k - 0|}{n} = \frac{1}{k}.$$

Pero

$$d_{\infty}(e^k, 0) = \sup_{n \in \mathbb{N}} |e_n^k - 0| = 1,$$

por lo que $e^k \not\to 0$ en $(\ell^{\infty}, d_{\infty})$. Entonces la inversa no es continua.

Ejercicio 4. Sea X un espacio métrico. Sea

$$C = \{(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} : (x_n)_{n \in \mathbb{N}} \text{ es convergente}\}.$$

Consideramos en C la distancia d_{∞} . Probar que X es separable si y solo si C es separable.

Solución. Veamos que si X es separable, entonces C lo es. Sea $D \subset X$ denso contable. Consideramos

$$\tilde{D} = \{(x_n)_{n \in \mathbb{N}} \in D^{\mathbb{N}} : x_n = x_{n_0} \text{ para todo } n \geq n_0 \text{ para algún } n_0 \in \mathbb{N}\}.$$

Definimos

$$D_k = \{(x_n)_{n \in \mathbb{N}} \in D^{\mathbb{N}} : x_n = x_k \text{ para todo } n \ge k\},$$

es fácil ver que este conjunto es contable y por lo tanto

$$\tilde{D} = \bigcup_{k \in \mathbb{N}} D_k$$

también lo es.

Nos resta probar que \tilde{D} es denso. Sea $x=(x_n)_{n\in\mathbb{N}}\in C$ y $\varepsilon>0$, veamos que existe $a=(a_n)_{n\in\mathbb{N}}$ en $\tilde{D}\cap B_{\varepsilon}(x)$. Sea $y\in X$ tal que $x_n\to y$. Sabemos que existe n_0 tal que $d(x_n,y)<\frac{\varepsilon}{4}$ para todo $n\geq n_0$. Tomemos $a_n\in D$ tal que $d(a_n,x_n)<\frac{\varepsilon}{4}$ para $n\leq n_0$. Y definimos $a_n=a_{n_0}$ para $n>n_0$, por lo que $a\in \tilde{D}$. Luego, para $n>n_0$, tenemos

$$d(a_n, x_n) = d(a_{n_0}, x_n) \le d(a_{n_0}, x_{n_0}) + d(x_{n_0}, y) + d(y, x_n) < 3\frac{\varepsilon}{4}$$

Entonces $\sup_{n\in\mathbb{N}} |a_n - x_n| < \varepsilon$ como queríamos.

Ahora veamos que si C es separable, entonces X lo es. Sea $\tilde{D} \subset C$ denso contable. Consideramos $D = \{d_1\}_{d \in \tilde{D}}$ el conjunto de las primeras coordenadas de las sucesiones en \tilde{D} . Es claro que es contable, veamos que es denso. Sea $x \in X$, consideremos la sucesión constante $(x)_{n \in \mathbb{N}} \in C$. Como \tilde{D} es denso, dado $\varepsilon > 0$, existe $a \in \tilde{D}$ tal que

$$\sup_{n\in\mathbb{N}}|a_n-x|<\varepsilon,$$

luego $|a_1 - x| < \varepsilon$. Lo que prueba que D es denso en X.

Ejercicio 5. Sea $(f_n)_{n\geq 1}$ una sucesión de homeomorfismos de \mathbb{R} en \mathbb{R} y sea $F\subseteq \mathbb{R}$ cerrado tal que $F\cap \mathbb{Q}$ es finito. Probar que existe $x\in \mathbb{R}$ tal que $x\notin f_n(F), \forall n\geq 1$.

Solución. Si probamos que $f_n(F)$ es nunca denso para todo $n \in \mathbb{N}$, por el Teorema de Baire

$$\left(\bigcup_{n\in\mathbb{N}}f_n(F)\right)^{\mathrm{o}}=\emptyset.$$

En particular la unión no es todo el espacio, lo que prueba que hay un punto que no está en $f_n(F)$ para ningún $n \in \mathbb{N}$.

Nos resta ver que $f_n(F)$ es nunca denso para todo $n \in \mathbb{N}$. Como F es cerrado y f_n es homemorfismo, resulta que $f_n(F)$ es cerrado. Veamos que $f_n(F)^{\circ} = \emptyset$, supongamos que no. Si $x \in f_n(F)^{\circ}$, existe $\delta > 0$ tal que $B_{\delta}(x) \subset f_n(F)$. Luego, $f_n^{-1}(B_{\delta}(x)) \subset F$. Como $f_n^{-1}(B_{\delta}(x))$ es abierto, existen infinitos números en $f_n^{-1}(B_{\delta}(x)) \cap \mathbb{Q}$. Y por lo tanto existen infinitos números en $F \cap \mathbb{Q}$. Hemos llegado a un absurdo, por lo que $f_n(F)^{\circ} = \emptyset$ como queríamos.