本科生期末试卷(九)

一、选择题(每小题 1 分, 共 15 分)

1	运算	算器的核心写	力能部件是	()	0				
	A	数据总线	В	ALU					
	С	状态条件署	 存器	D	通用寄	存器			
2	某 ^自)。	单片机字长 3	32 位,其7	存储容量	量为 4MB。	若按字	编址,'	它的寻址范	围是
	A	1M	B 4MB	C	4M	D	1MB		
3 R/W#,		SRAM 芯片, 片的管脚引				原和接地	也端外,	控制端有E	和
	A	20	B 28	С	30	D	32		
4	双站		斤以能进行	高速读	/写操作,	是因为	内采用() 。	
	A	高速芯片	В	新型器	8件				
	С	流水技术	D	两套标	目互独立的	的读写电	1路		
5 以外,	-	也址指令中 <i>为</i> 个数常需采		. , . ,	算术运算	,除地	址码指码	明的一个操	作数
	A	堆栈寻址方	方式	B <u>7</u>	2.即寻址2	方式			
	С	隐含寻址方	方式	D ji	可接寻址》	方式			
6	为研	角定下一条微	数指令的地	址,通'	常采用断	定方式,	其基本	思想是() 。
	A	用程序计数	女器 PC 来)	产生后组	迷微指令地	也址			
	В	用微程序计	十数器 μPC	来产生	后继微指	令地址			
控制产	C 生后	通过微指令 继微指令地	• • • • • •	字段由	设计者指	定或由	设计者	指定的判别	字段
	D	通过指令中	口指定一个	专门字	段来控制	产生后	继微指令	令地址	
7	微和	呈序控制器中	口,机器指	令与微	指令的关	:系是() 。		

	A	每一条机器指令由一条微指令来执行				
	В	每一条机器指令由一段用微指令编成的微程序来解释执行				
	С	一段机器指令组成的程序可由一条微指令来执行				
	D	一条微指令由若干条机器指令组成				
8	CPU	中跟踪指令后继地址的寄存器是()。				
	A	地址寄存器 B 程序计数器				
	С	指令寄存器 D 通用寄存器				
9	某等	序存器中的数值为指令码,只有 CPU 的()才能识别它。				
	A	指令译码器 B 判断程序				
	С	微指令 D 时序信号				
10	为	实现多级中断,保存现场信息最有效的方法是采用()。				
	A	通用寄存器 B 堆栈 C 主存 D 外存				
11 时间。	采	用 DMA 方式传送数据时,每传送一个数据,就要占用一个()的				
	A	指令周期 B 机器周期				
	С	存储周期 D 总线周期				
12 述中不		IEEE1394 串行标准接口与 SCSI 并行标准接口进行比较,指出下面陈的项是()。				
A	前	者数据传输率高				
В	前者数据传送的实时性好					
С	前者使用6芯电缆,体积小					
D	前者不具有热插拔能力					
13	下	面陈述中,不属于虚存机制要解决的问题项是()。				
A	调	度问题				

E	3 地址映射问题
(替换与更新问题
Ι	扩大物理主存的存储容量和字长
14	4 进程从运行状态转入就绪状态的可能原因是()。
A	A 被选中占有处理机时间
E	3 等待某一事件发生
(等待的事件已发生
Γ) 时间片已用完
15	5 安腾处理机的一组指令中,可以并行执行的指令是()。
A	A Id8 r1=[r3] B add r6=r8, r9
(SUB r3=r1, r4 D add r5=r3, r7
_,	填空题(每小题 2 分,共 20 分)
1 电路组	计算机系统的层次结构从下至上可分为五级,即微程序设计级(或逻辑级)、一般机器级、操作系统级、()级、()级。
2 者主 [§]	十进制数在计算机内有两种表示形式: ()形式和()形式。前要用在非数值计算的应用领域,后者用于直接完成十进制数的算术运算。
	一个定点数由符号位和数值域两部分组成。按小数点位置不同,定点数)和()两种表示方法。
	对存储器的要求是容量大、速度快、成本低,为了解决这三方面的矛盾, 机采用多级存储体系结构,即()、()、()。
5 举出 ³	高级的 DRAM 芯片增强了基本 DRAM 的功能,存取周期缩短至 20ns 以下。 三种高级 DRAM 芯片,它们是()、()。
	一个较完善的指令系统,应当有()、()、()、() 类指令。
	机器指令对四种类型的数据进行操作。这四种数据类型包括()型数()型数据、()型数据、()型数据。

- **8** CPU 中保存当前正在执行的指令的寄存器是(),指示下一条指令地址的寄存器是(),保存算术逻辑运算结果的寄存器是()和()。
 - 9 虚存系统中,通常采用页表保护、段表保护和键保护以实现()保护。
- 10 安腾体系结构采用分支推断技术,将传统的()分支结构转变为无分支的()代码,避免了错误预测分支而付出的代价。

三、简答题(每小题8分,共16分)

- 1 为什么在计算机系统中引入 DMA 方式来交换数据?若使用总线周期挪用方式, DMA 控制器占用总线进行数据交换期间, CPU 处于何种状态?
 - 2 简述磁表面存储器的读/写原理。

四、设计题(12分)

设 $A=a_na_{n-1}\cdots a_1a_0$ 是已知的(n+1)位的二进制原码,其中最高位为符号位,画出原码转换为补码的逻辑电路图(只画出最低 4 位)。

五、计算题(10分)

已知 cache 存储周期 40ns, 主存存储周期 200ns, cache/主存系统平均访问时间为 50ns, 求 cache 的命中率是多少?

六、分析题(12分)

己知浮点加法流水线由阶码比较、对阶、尾数相加、规格化四个流水段组成,每段所需的时间(包括缓冲寄存器时间)分别为 30ns、25ns、55ns、50ns。请画出该流水线的时空图,并计算加速比。

七、设计题(15分)

图 1 所示为传送(MOV,OP 码 IR_0IR_1O0)、加法(ADD,OP 码 IR_0IR_1O1)、取反(COM,OP 码 IR_0IR_110)、十进制加法(ADT,OP 码 IR_0IR_111)四条指令的微程序流程图,每一框表示一个 CPU 周期。其中 r_s , r_d 为 8 个通用寄存器 $R_0 \sim R_7$,每个 CPU 周期含 4 个时钟脉冲 $T_1 \sim T_4$ 。

- ① 设微指令的微命令字段为12位,判别字段和下址字段是多少位?
- ② 控制存储器 E²PROM 存储容量至少是多少?

- ③ 给每条微指令分配一个确定的微地址(二进制编码表示)。
- ④ 写出微地址转移逻辑表达式和转移逻辑图。
- ⑤ 画出微程序控制器结构图。

