### Introducing Qiskit Aer MPI Simulator

Jun Doi IBM Quantum, IBM Research – Tokyo doichan@jp.ibm.com

- Distributed parallel simulation for large number of qubits
  - Parallel simulation on HPC cluster (GPU or CPU)
  - > 30 qubits
  - Supports 'statevector', 'unitary' and 'density\_matrix' methods
- Multi-shots distribution over processes
  - Shots distribution for small number of qubits (GPU only)

# Running MPI Simulator

- · Run Python scripts through mpirun command
  - mpirun -np 4 python circuit.py
- Set 'blocking\_qubits' parameter to enable distribute large qubits
  - sim = AerSimulator(method='statevector', device='GPU', blocking\_qubits=20)
- Results are returned to each process
  - Read metadata to identify process ID
    - if result.to\_dict()['metadata']['mpi\_rank'] == 0:

IBM **Quantum** 

### Script Example for MPI Parallelization

```
from giskit import *
from giskit.circuit.library import *
from giskit.providers.aer import *
sim = AerSimulator(method='statevector', device='GPU', blocking qubits=20)
shots = 100
depth=10
qubits = 35
circuit = transpile(QuantumVolume(qubits, depth, seed=0),
          backend=sim,
          optimization level=0)
circuit.measure all()
result = execute(circuit,sim,shots=shots,seed_simulator=12345).result()
if result.to dict()['metadata']['mpi_rank'] == 0:
  print(sorted(result.to_dict()['results'][0]['data']['counts'].items(),key=lambda x:x[0]))
```

### Chunk Based Parallelization



## Cache Blocking Technique



# Chunk Swap Optimization





#### IBM **Quantum**



Base:w/o multi-chunk swaps

QCE20: Performance reported at QCE20

6x NVIDIA Tesla V100

IBM Power System AC922

Weak scaling, 30 qubits / node