ขนสินค้าข้ามแม่น้ำ

1second 128MB

แม่น้ำแห่งหนึ่ง มีท่าเรือข้ามฟากที่ฝั่งซ้าย N ท่า มีท่าเรือข้ามฟากที่ฝั่งขวา M ท่า (1 <= N <= 50,000; 1 <= M <= 50,000) ท่าเรือแต่ละฝั่งจะมีหมายเลขไล่เรียงกันไปตามลำดับจากต้นแม่น้ำไปยังปลายแม่น้ำ (กล่าวคือท่าเรือฝั่งซ้ายจะมีหมายเลข 1 ถึง N และ ท่าเรือฝั่งขวาจะมีหมายเลข 1 ถึง M) การขนสินค้าข้ามแม่น้ำจะกระทำผ่านทางเรือข้ามฟาก

เรือข้ามฟากทุกลำ (ชื่อก็บอกว่า "ข้ามฟาก") จะวิ่งระหว่างท่าเรือฝั่งซ้ายและฝั่งขวาเท่านั้น จะไม่วิ่งไปมาระหว่างท่าเรือ ที่อยู่ฟากเดียวกันเอง เพื่อสืบหาต้นตอการขนอุปกรณ์ใฮเทคหนีภาษีข้ามชาติ คุณต้องการทราบว่าจะมีวิธีที่ขนสินค้าข้ามจากฝั่ง ซ้ายไปยังฝั่งขวาโดยใช้เรือข้ามฝากได้กี่แบบโดยที่สินค้าข้ามแม่น้ำไม่เกิน K ครั้ง (1 <= K <= 10) กล่าวคือ ถ้าเรายอมให้ สินค้าข้ามแม่น้ำไม่เกิน 3 ครั้ง สินค้าอาจจะข้ามจากฝั่งซ้ายออกจากท่าเรือหนึ่งไปยังท่าเรือทางฝั่งขวา จากนั้นข้ามกลับมาฝั่ง ซ้ายที่อีกท่าเรือหนึ่งแล้วค่อยข้ามกลับไปยังอีกท่าเรือหนึ่งในฝั่งขวา เป็นต้น

เพื่อการคำนวณดังกล่าว คุณได้ให้สายสืบไปหาว่าจะมีเรือวิ่งระหว่างคู่ของท่าฝั่งซ้ายและฝั่งขวาอย่างไรบ้าง สายสืบของ คุณกลับมาพร้อมด้วยข้อมูลดังนี้:

- ระหว่างท่าเรือข้ามฟากฝั่งซ้ายและฝั่งขวาบางคู่ก็ทะเลาะกันทำให้จะไม่มีเรือวิ่งระหว่างท่าเรือคู่ดังกล่าว จำนวนของคู่ ของท่าเรือที่ทะเลาะกันคือ L คู่ (0 <= L <= 100,000) สายสืบจะระบุคู่ของท่าเรือที่ทะเลาะกันให้กับคุณ
- 2. ท่าเรือที่ i ทางฝั่งซ้าย จะมีเรือวิ่งออกไปท่าเรือทางฝั่งขวาจำนวน A_i สาย (0 <= A_i <= 50,000) โดยเริ่มจาก ท่าเรือฝั่งขวาที่ B_i , B_i + 1, ... ไปเรื่อย ๆ โดยจะเว้นไม่มีเรือวิ่งไปยังท่าเรือฝั่งขวาที่ทะเลาะกับท่าเรือฝั่งซ้ายที่ i ไว้ จนครบ A_i สาย รับประกันว่าท่าเรือที่ i จะไม่ทะเลาะกับท่าเรือที่ B_i
- 3. ท่าเรือที่ j ทางฝั่งขวา จะมีเรือวิ่งออกไปท่าเรือทางฝั่งซ้ายจำนวน C_j สาย ($0 <= C_j <= 50,000$) โดยเริ่มจาก ท่าเรือฝั่งซ้ายที่ D_j , $D_j + 1$, ... ไปเรื่อย ๆ โดยจะเว้นไม่มีเรือวิ่งไปยังท่าเรือฝั่งซ้ายที่ทะเลาะกับท่าเรือฝั่งขวาที่ j ไว้ จนครบ C_j สาย รับประกันว่าท่าเรือที่ j จะไม่ทะเลาะกับท่าเรือที่ C_j

จากข้อมูลดังกล่าว ให้คุณคำนวณหาวิธีที่สามารถขนของข้ามแม่น้ำจากฝั่งซ้ายไปยังฝั่งขวา ให้ตอบคำตอบ modulo 30011

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็มสี่จำนวน N, M, K, และ L จากนั้นอีก L บรรทัดระบุข้อมูลคู่ของท่าเรือที่ทะเลาะกัน กล่าวคือ บรรทัดที่ 1+p สำหรับ 1 <= p <= L จะระบุจำนวนเต็มสองจำนวน X และ Y เพื่อแสดงว่าท่าเรือที่ X ทางฝั่งซ้ายทะเลาะกับ ท่าเรือที่ Y ท่าฝั่งขวา

อีก N บรรทัดถัดมา ระบุข้อมูลของท่าเรือฝั่งซ้าย กล่าวคือ บรรทัดที่ 1+L+i สำหรับ 1<=i<=N จะระบุจำนวนเต็มสอง จำนวนคือ A: และ B:

อีก M บรรทัดจะระบุข้อมูลของท่านเรือฝั่งขวา กล่าวคือ บรรทัดที่ 1+L+N+j สำหรับ 1<=j<=M จะระบุจำนวนเต็ม สองจำนวนคือ $\mathbf{C}_{\!_{\! j}}$ และ $\mathbf{D}_{\!_{\! j}}$

ข้อมูลส่งออก

มีหนึ่งบรรทัด เป็นจำนวนวิธีที่เป็นไปได้ modulo ด้วย 30011

ปัญหาย่อย

ปัญหาย่อย 1 (20%): L = 0, $A_i \leftarrow 10$, $C_i \leftarrow 10$.

ปัญหาย่อย 2 (20%): L = 0

ปัญหาย่อย 3 (60%): ไม่มีเงื่อนไขใด ๆ เพิ่มจากโจทย์

ตัวอย่าง

Input	Output
5 5 3 0 2 1 2 2 2 3 2 4 1 5 2 1 2 2 2 3 2 4 1 5	37

Input	Output
5 5 3 1	59
3 4	
2 1	
2 2	
2 3	
2 4	
1 5	
2 1	
2 2	
2 3	
2 4	
5 1	