IMMERSION, SUBMERSION ET BASE INCOMPLÈTE

www.h-k.fr/publications/objectif-agregation

Cette note propose une démonstration de la forme réduite d'une immersion et d'une submersion. Cette démonstration met en avant un théorème d'algèbre linéaire : le théorème de la base incomplète (voir [2, 9.2.2.2] et [1, théorème 4.4]). Les propositions 2 et 6 sont en quelque sorte les versions \mathscr{C}^1 de ce théorème d'algèbre linéaire. Nous remarquerons, en comparant le cas de la submersion et de l'immersion, que ces théorèmes sont en fait « duaux » l'un de l'autre (l'application du théorème de la base incomplète se fait dans un cas dans \mathbb{R}^n et dans l'autre dans $(\mathbb{R}^n)^*$).

Submersion.

Définition 1 – Submersion. Soient $n, p \in \mathbb{N}^*$, U un ouvert de \mathbb{R}^n , $a \in U$ et $f = (f_1, \dots, f_p) : U \to \mathbb{R}^p$ une application de classe \mathscr{C}^1 . On dit que f est une submersion en a si $\mathrm{d}f(a)$ est surjective.

La proposition 2 montre qu'il existe, à un difféomorphisme près à la source, une unique submersion : la surjection canonique de \mathbb{R}^n dans \mathbb{R}^p .

Proposition 2 – Forme réduite d'une submersion. Soient $n, p \in \mathbb{N}^*$, U un ouvert de \mathbb{R}^n , $a \in U$ et une application $f = (f_1, \ldots, f_p) : U \to \mathbb{R}^p$ de classe \mathscr{C}^1 . On suppose que f est une submersion en a. Il existe un \mathscr{C}^1 -difféomorphisme φ d'un voisinage ouvert de a dans un ouvert de a tel que a0 que a1 soit l'application

$$g:(x_1,\ldots,x_n)\longmapsto(x_1,\ldots,x_p)$$
.

Preuve. Le théorème du rang (voir [1, 4.13]) et la surjectivité de df(a) assurent l'inégalité $n \ge p$.

Par ailleurs, pour $i \in [1, p]$, on note $df_i(a)$ la différentielle de f_i en a. La surjectivité de df(a) est équivalente à la liberté de la famille $df_i(a)$. On peut donc, grâce au **théorème de la base incomplète**, considérer des formes linéaires $(\varphi_{p+1}, \ldots, \varphi_n)$ telles que $(df_1(a), \ldots, df_p(a), \varphi_{p+1}, \ldots, \varphi_n)$ soit une base de $(\mathbb{R}^n)^*$.

On définit alors φ par

$$\forall v \in V, \qquad \varphi(v) = (f_1(v), \dots, f_p(v), \varphi_{p+1}(v), \dots, \varphi_n(v)).$$

Comme les φ_i sont linéaires, φ est de classe \mathscr{C}^1 et on a $d\varphi(a) = (df_1(a), \dots, df_p(a), \varphi_{p+1}, \dots, \varphi_n)$. L'application linéaire $d\varphi(a)$ est donc bijective et le **théorème d'inversion locale** (voir [1, 1.2.1]) assure que φ est un \mathscr{C}^1 -difféomorphisme d'un voisinage ouvert de a dans un ouvert de \mathbb{R}^n . Puisqu'on a bien sûr $f = g \circ \varphi$, la proposition est démontrée.

Remarque 3 – Autres démonstrations. La démonstration proposée ci-dessus met en avant le rôle du théorème de la base incomplète (appliqué dans l'espace $(\mathbb{R}^n)^*$ des formes linéaires de \mathbb{R}^n). Il peut être intéressant de chercher dans les autres preuves (par exemple dans l'exercice 72 de [3]) où est caché le théorème de la base incomplète. Pour l'exercice 72 de [3], il est appliqué dans sa version forte : celle avec la famille libre $\mathscr L$ et la famille génératrice $\mathscr G$ contenant $\mathscr L$.

Remarque 4 – Une autre formulation. Grâce à la définition suivante, la proposition 2 (ou une forme un tout petit peu plus faible) peut s'énoncer de façon très similaire à celui du théorème de la base incomplète.

Soit V un ouvert de \mathbb{R}^n et $a \in V$. Pour $i \in [1, n]$, on considère $f_i : V \to \mathbb{R}$ une application de classe \mathcal{C}^1 . On dit que l'application $f = (f_1, \ldots, f_n)$ est un système de coordonnées locales ou un changement de coordonnées locales en a, s'il existe un voisinage V' de a tel que f soit un \mathcal{C}^1 -difféomorphisme. Le théorème d'inversion locale assure que f est un système de coordonnées locales en a si et seulement si l'application linéaire $df(a) : \mathbb{R}^n \to \mathbb{R}^n$ est inversible.

Le proposition de forme réduite des submersions peut alors s'énoncer : si (f_1, \ldots, f_p) est une submersion en a, on peut compléter la famille (f_1, \ldots, f_p) en un système de coordonnées locales (f_1, \ldots, f_n) en a.

Immersion.

Définition 5 – Immersion. Soient $n, p \in \mathbb{N}^*$, U un ouvert de \mathbb{R}^n , $a \in U$ et $f = (f_1, \dots, f_p) : U \to \mathbb{R}^p$ une application de classe \mathscr{C}^1 . On dit que f est une *immersion en a* si $\mathrm{d} f(a)$ est injective.

La proposition 6 montre qu'il existe, à un difféomorphisme près au but, une unique immersion : l'injection canonique de \mathbb{R}^n dans \mathbb{R}^p .

Proposition 6 – Forme réduite d'une immersion. Soient $n, p \in \mathbb{N}^*$, U un ouvert de \mathbb{R}^n , $a \in \mathbb{U}$ et une application $f = (f_1, \ldots, f_p) : \mathbb{U} \to \mathbb{R}^p$ de classe \mathscr{C}^1 . On suppose que f est une immersion en a. Il existe un \mathscr{C}^1 -difféomorphisme φ^{-1} d'un voisinage ouvert de f(a) dans un ouvert de f(a) tel que f(a) soit l'application

$$g:(x_1,\ldots,x_n)\longmapsto (x_1,\ldots,x_n,0,\ldots,0)$$
.

Preuve. Le **théorème du rang** et l'injectivité de df(a) assurent l'inégalité $p \ge n$.

Par ailleurs, on note $(\varepsilon_1, \ldots, \varepsilon_n)$ la base canonique de \mathbb{R}^n et, pour $i \in [1, n]$, on pose

$$v_i = \mathrm{d}f(a)(\varepsilon_i) = \frac{\partial f}{\partial x_i}(a) \in \mathbb{R}^p$$

l'image du i^e vecteur de la base canonique par l'application df(a). Or, l'injectivité de df(a) est équivalente à la liberté de la famille (v_1, \ldots, v_n) . On peut donc, grâce au **théorème de la base incomplète**, considérer des vecteurs (v_{n+1}, \ldots, v_p) tels que (v_1, \ldots, v_p) soit une base de \mathbb{R}^p .

On définit alors φ par

$$\forall x = ((x_1, \dots, x_n), (x_{n+1}, \dots, x_p)) \in U \times \mathbb{R}^{p-n}, \qquad \varphi(x_1, \dots, x_p) = f(x_1, \dots, x_n) + x_{n+1}v_{n+1} + \dots + x_pv_p$$

et on pose $a'=(a,0,\ldots,0)$. L'application φ est de classe \mathscr{C}^1 (les p dérivées partielles existent et sont continues) et on a

$$d\varphi(a') = \left(\frac{\partial \varphi}{\partial x_1}(a'), \dots, \frac{\partial \varphi}{\partial x_p}(a')\right) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a), v_{n+1}, \dots, v_p\right) = (v_1, \dots, v_p).$$

L'application linéaire $d\varphi(a')$ est donc bijective. Le **théorème d'inversion locale** assure alors que φ est un \mathscr{C}^1 -difféomorphisme d'un voisinage ouvert de a' dans \mathbb{R}^p dans un voisinage ouvert de $\varphi(a') = f(a)$. De plus, on a bien sûr $f = \varphi \circ g$.

Remarque 7 – Autres démonstrations. La démonstration proposée ci-dessus met en avant le rôle du théorème de la base incomplète appliqué dans l'espace \mathbb{R}^n . Comme pour le cas de la submersion, il peut être intéressant de chercher dans les autres preuves (par exemple dans l'exercice 73 de [3]) où est caché le théorème de la base incomplète. Dans l'exercice 73 de [3], il est appliqué dans sa version forte : celle avec la famille libre \mathcal{L} et la famille génératrice \mathcal{L} contenant \mathcal{L} .

Remarques.

Remarque 8 – Régularité. Soit $r \in \mathbb{N}^* \cup \{\infty\}$. Les démonstrations proposées ici montrent immédiatement que si f est de classe \mathscr{C}^r alors φ est de classe \mathscr{C}^r .

Remarque 9 – Lien avec le théorème du rang constant. La caractérisation du rang par les mineurs extraits (voir [1, 4.1.5] et [2, 11.1.2.3]) montre que df(x) reste surjective (resp. injective) pour tout x dans un voisinage de a si f est une submersion (resp. une immersion) en a. En particulier, df(x) est de rang constant égal à $\inf(n,p)$ dans un voisinage de a. Le théorème du rang constant (voir l'exercice 74 de [3]) s'applique donc et il fournit un difféomorphisme φ en a et un difféomorphisme ψ en f(a) tel que

$$\psi \circ f \circ \varphi : (x_1, \dots, x_n) \longmapsto (x_1, \dots, x_p)$$

respectivement

$$\psi \circ f \circ \varphi : (x_1, \dots, x_n) \longmapsto (x_1, \dots, x_n, 0, \dots, 0).$$

On obtient donc un résultat un peu plus faible puisqu'on fait appel à deux difféomorphismes un à la source et un au but. C'est tout à fait normal : le théorème du rang constant à des hypothèses plus faibles que celui de forme réduite des immersions et des submersions et fournit donc un résultat plus faible.

Références

- [1] V. Beck, J. Malick et G. Peyré, Objectif Agrégation, Deuxième édition (2005), H&K.
- [2] E. Ramis, C. Deschamps et J. Odoux, Cours de Mathématiques tome 1, Algèbre, Réédition (1998), Dunod.
- [3] F. Rouvière, Petit guide de calcul différentiel à l'usage de la licence et de l'agrégation, Deuxième édition (2003), Cassini.