УНИВЕРСИТЕТСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Решение задачи линейного программирования графическим методом

Принцип оптимальности в планировании и управлении

- Принцип оптимальности предполагает следующее:
 - наличие определённых ресурсов
 - наличие определённых технологических возможностей
 - цель хозяйственной деятельности
 - извлечение прибыли
 - удовлетворение потребностей
 - предотвращение угрозы
 - накопление знаний
 - и т.д.
- Суть принципа:
 - планировать хозяйственную деятельность таким образом, чтобы при имеющихся ресурсах и технологиях *не существовало* способа достичь цели в большей степени, чем это предусматривает план
- В полной мере этот принцип может быть реализован только с помощью экономико-математических моделей

Оптимизационная задача

Оптимизационная задача - это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

$$U=f(X) \rightarrow max, X \in W$$

f(X) — целевая функция

Х – вектор переменных

W – область допустимых значений переменных.

Оптимизационная задача является *неразрешимой*, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.

Задачи линейного программирования

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

"п

$$f(X) = \sum_{j=1}^{n} c_j x_j \to \max(\min);$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \quad i \in I, \quad I \subseteq M = \{1, 2, ...m\};$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i \in M;$$

$$x_j \ge 0, j \in J, J \subseteq N = \{1, 2, ..., n\}.$$

При этом система линейных уравнений и неравенств определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией, или критерием оптимальности

Каноническая форма ЗЛП

$$f(X) = \sum_{j=1}^{n} c_j \cdot x_j \to \min;$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = \overline{1, m};$$

$$b_i \ge 0;$$

$$x_j \ge 0, j = \overline{1, n},$$

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду

- 1. если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
- 2. если в ограничениях правая часть отрицательна, то следует умножить это ограничение на —1;
- 3. если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
- 4. если некоторая переменная не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:

$$x_k = x'_k - x_\ell, \qquad x'_k \ge 0, x_\ell \ge 0.$$

Пример

Приведение к канонической форме задачи линейного программирования:

$$\min L = 2x_1 + x_2 - x_3;$$

$$2x_2 - x_3 \le 5;$$

$$x_1 + x_2 - x_3 \ge -1;$$

$$2x_1 - x_2 \le -3;$$

$$x_1 \le 0, x_2 \ge 0, x_3 \ge 0.$$

Задача для самостоятельного решения

$$F = -2x_1 + x_2 + 5x_3 \rightarrow \max,$$

$$\begin{cases} 4x_1 + 2x_2 + 5x_3 \leqslant 12, \\ 6x_1 - 3x_2 + 4x_3 = 18, \\ 3x_1 + 3x_2 - 2x_3 \geqslant 16, \end{cases}$$

$$x_1, x_2, x_3 \geqslant 0.$$

Построение экономико-математических моделей задач линейного программирования

Определение оптимального ассортимента продукции.

Предприятие изготавливает два вида продукции — П1 и П2, которая поступает в оптовую продажу. Для производства продукции используются два вида сырья — А и В. Максимально возможные запасы сырья в сутки составляют 9 и 13 единиц соответственно. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице. Опыт работы показал, что суточный спрос на продукцию П1 никогда не превышает спроса на продукцию П2 более чем на 1 ед. Кроме того, известно, что спрос на продукцию П2 никогда не превышает 2 ед. в сутки. Оптовые цены единицы продукции равны: 3 д. е. — для П1 и 4 д. е. для П2.

Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным? Расход сырья продукции

Сырье	Расход сырья на 1 ед. продукции		Запас сырья, ед.
	Π_1	Π_2	
A B	2 3	3 2	9 13

Процесс построения математической модели

- 1. Для определения каких величин должна быть построена модель, т. е. как идентифицировать переменные данной задачи?
- 2. Какие ограничения должны быть наложены на переменные, чтобы выполнялись условия, характерные для моделируемой системы?
- 3. В чем состоит цель задачи, для достижения которой из всех допустимых значений переменных нужно выбрать те, которые будут соответствовать оптимальному (наилучшему) решению задачи?

Для задачи.

фирме требуется определить объемы производства каждого вида продукции в тоннах, максимизирующие доход в д. е. от реализации продукции, с учетом ограничений на спрос и расход исходных продуктов.

Для построения математической модели остается только идентифицировать переменные и представить цель и ограничения в виде математических функций этих переменных.

Переменные:

х1 единиц продукции П1 и

х2 единиц продукции П2.

Задача об ассортименте

$$2x_1 + 3x_2 \le 9;$$

$$3x_1 + 2x_2 \le 13;$$

$$x_1 - x_2 \le 1;$$

$$x_2 \le 2;$$

$$x_1 \ge 0;$$

$$x_2 \ge 0.$$

$$F = 3x_1 + 4x_2.$$

Рассмотренная задача относится к разряду типовых задач оптимизации производственной программы предприятия. В качестве критериев оптимальности в этих задачах могут быть также использованы: прибыль, себестоимость, номенклатура производимой продукции и затраты станочного времени.

Задача

7.1. Автотранспортному предприятию (АТП) необходимо освободить из-под груза складские помещения клиента. Вывоз груза следует осуществить в два рейса колоннами автомобилей. Условия перевозки требуют, чтобы в составе каждой колонны, предназначенной для вывоза груза в первый район, было 8 автомобилей ЗИЛ-131 и 8 автомобилей ЗИЛ-130; в колоннах второго рейса 8 автомобилей ЗИЛ-130 и 16 — МАЗ-500. Каждая из колонн может сделать за сутки одинаковое количество поездок. Парк подвижного состава АТП состоит из 32 автомобилей ЗИЛ-131 грузоподъемностью 3 т, 48 автомобилей ЗИЛ-130 грузоподъемностью 4 т, 48 автомобилей МАЗ-500 грузоподъемностью 7,5 т.

Определите количество колонн, которое нужно направить в каждый район, чтобы перевезти наибольшее количество груза.

Графическое решение задачи линейного программирования

Графический способ решения задач линейного программирования целесообразно использовать для:

- ✓ решения задач с двумя переменными, когда ограничения выражены неравенствами;
- ✓ решения задач со многими переменными при условии, что в их канонической записи содержится не более двух свободных переменных.

целевая функция:

$$Z_{\max} = c_1 x_1 + c_2 x_2;$$

ограничения:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1; \\ a_{21}x_1 + a_{22}x_2 \le b_2; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 \le b_m; \\ x_1 \ge 0; x_2 \ge 0. \end{cases}$$

Каждое из неравенств системы ограничений задачи геометрически определяет полуплоскость соответственно с граничными прямыми.

 $a_{i1}x_1 + a_{i2}x_2 = b_i$; $(i = \overline{1,m})$; $x_1 = 0$; $x_2 = 0$.

В том случае, если система неравенств совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей — выпуклое, то областью допустимых решений является выпуклое множество, которое называется многоугольником решений. Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки равенств.

Областью допустимых решений системы неравенств

- выпуклый многоугольник;
- выпуклая многоугольная неограниченная область;
- пустая область;
- луч;
- отрезок;
- единственная точка

Графическое решение

- Целевая функция определяет на плоскости семейство параллельных прямых, каждой из которых соответствует определенное значение Z.
- Вектор C = (c1; c2) с координатами c1 и c2, перпендикулярный этим прямым, указывает направление наискорейшего возрастания Z, а противоположный вектор направление убывания Z.
- Если в одной и той же системе координат изобразить область допустимых решений системы неравенств и семейство параллельных прямых, то задача определения максимума функции Z сведется к нахождению в допустимой области точки, через которую проходит прямая из семейства Z = const, и которая соответствует наибольшему значению параметра Z. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение.

При нахождении решения возможны случаи

Оптимум функции Z достижим в точке А

Оптимум функции Z достигается в любой точке [AB]

Алгоритм решения задачи линейного программирования графическим способом

- 1. Построить прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки равенств.
- 2. Найти полуплоскости, определяемые каждым из ограничений задачи.
- 3. Определить многоугольник решений.
- 4. Построить вектор $\overline{\overline{C}}=(c_1;c_2)$.
- 5. Построить прямую $Z = c_1 x_1 + c_2 x_2 = 0$, проходящую через начало координат и перпендикулярную вектору С
- 6. Передвигать прямую $Z = c_1x_1 + c_2x_2$ в направлении вектора C, в результате чего либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность функции сверху на множестве планов.
- 7. Определить координаты точки максимума функции и вычислить значение целевой функции в этой точке.

Пример 1

Пусть неравенство имеет вид $2x_1 + x_2 \le 2$ Получим уравнение вида $2x_1 + x_2 = 2$.

Пример 2

Пусть дана система неравенств

$$\begin{cases} x_1 + 4x_2 \le 14; \\ 3x_1 + 4x_2 \le 18; \\ 6x_1 + 2x_2 \le 27; \\ x_1 \ge 0; x_2 \ge 0. \end{cases}$$

Решение задачи об ассортименте продукции геометрическим способом.

$$2x_1 + 3x_2 \le 9;$$
 $2x_1 + 3x_2 = 9$ $(L_1);$ $3x_1 + 2x_2 \le 13;$ $3x_1 + 2x_2 = 13$ $(L_2);$ $x_1 - x_2 \le 1;$ $x_1 - x_2 = 1$ $(L_3);$ $x_1 \ge 0;$ $x_1 \ge 0;$ $x_2 \ge 0.$

Пример 2

Пусть дана система неравенств

$$\begin{cases} x_1 + 4x_2 \le 14; \\ 3x_1 + 4x_2 \le 18; \\ 6x_1 + 2x_2 \le 27; \\ x_1 \ge 0; x_2 \ge 0. \end{cases}$$
 $F = x_1 + x_2 \rightarrow \max.$

Задачи для самостоятельного решения

1. Привести к каноническому виду

$$F = 2x_1 - 5x_2 - 3x_3 \rightarrow \min,$$

$$\begin{cases}
-x_1 + x_2 + x_3 \geqslant 4, \\
2x_1 - x_2 + x_3 \leqslant 16, \\
3x_1 + x_2 + x_3 \geqslant 18, \\
x_1, x_2, x_3 \geqslant 0.
\end{cases}$$

3. Решить графически

$$W = 3x_1 + 0.5x_2 \rightarrow \text{max};$$

$$\begin{cases} x_1 \le 2; \\ x_2 \ge 1.8; \\ 2x_1 + 5x_2 \ge 12. \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

e.kovaleva@mgutm.ru

Литература

Основные источники

- Половников Виктор Антонович Экономико-математические методы и модели: компьютерное моделирование: Учебное пособие / И.В. Орлова, В.А. Половников. 3-е изд., перераб. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2019. 389 с.: 60х90 1/16. (п) ISBN 978-5-9558-0208-4 http://znanium.com/catalog/product/424033
- Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учеб. пособие. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2018. 432 с: ил.

Дополнительные источники

- Математическое и имитационное моделирование: учеб. пособие / А.И. Безруков, О.Н. Алексенцева. — М.: ИНФРА-М, 2017. — 227 с. + Доп. материалы, http://znanium.com/catalog/product/811122
- Моделирование систем управления с применением Matlab: Учебное пособие / Тимохин А.Н., Румянцев Ю.Д; Под ред. А.Н.Тимохина М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-010185-9 http://znanium.com/catalog/product/590240
- Интернет-ресурсы
- http://window.edu.ru
- http:// edu.ru
- http://Fcior.edu.ru