Parallel Matrix Multiplication

Parallel Matrix Multiplication

- Computing C=A*B
- Using basic algorithms
 - $-N^{3}$
- Variables
 - Data layout
 - Topology of machine
 - Scheduling communications

Multiple Algorithms

- Divide the computation and data on the rows of the product matrix C
 - Each process holds n/p rows of A, entire B, and calculate n/p rows of C
 - Communications?
 - Scalable?

SUMMA Algorithm

- SUMMA = Scalable Universal Matrix Multiply
- Simple and easy to generalize
- Presentation from van de Geijn and Watts
 - www.netlib.org/lapack/lawns/lawn96.ps
 - Similar ideas appeared many times
- Used in practice in PBLAS = Parallel BLAS
 - www.netlib.org/lapack/lawns/lawn100.ps

Standard Algorithm

- standard matrix multiplication is computed using a sequence of inner product computations
- Assuming all Ci,j are initialized to 0, the outer-product is

```
for i = 0 to n-1 do

for j = 0 to n-1 do

{

C_{i,j} = 0

for k = 0 to n-1 do

C_{i,j} = C_{i,j} + A_{i,k} \times B_{k,j}

}
```

Outer-Product Algorithm

Assuming all Ci,j are initialized to 0, the outer-product is

for
$$k = 0$$
 to n-1 do
for $i = 0$ to n-1 do
for $j = 0$ to n-1 do

$$C_{i,j} = C_{i,j} + A_{i,k} \times B_{k,j}$$

- This outer-product leads to a simple and elegant parallelization on a torus of processors.
- At each step k, all C_{i,j} are updated

Matrix Multiplication on a Grid

- Assume $p = q^2$ processors.
- Assume the matrix is n×n and that q divides n.
- The matrices are stored on the square qxq grid processors
- If m = n/q, each process holds a m×m block of each matrix.
- Technically, processor $P_{i,j}$ for $0 \le i,j < q$ holds matrix blocks $A_{i,j}$, $B_{i,j}$, and $C_{i,j}$.
- This is illustrated on the next slide.

FIGURE 5.2: 2-D block distribution of an $n \times n$ matrix (n = 24) on a unidirectional grid/torus of p processors $(p = 4^2 = 16)$.

For k=0 to q-1

for all I = 1 to p_r ... in parallel owner of A(I,k) broadcasts it to whole processor row for all J = 1 to p_c ... in parallel owner of B(k,J) broadcasts it to whole processor col

owner of B(k,J) broadcasts it to whole processor column

Receive A(I,k) into Acol

Receive B(k,J) into Brow

C(myrow, mycol) = C(myrow, mycol) + Acol * Brow

Outer-Product Algorithm

 This algorithm can be summarized in terms of matrix blocks and matrix multiplications as

$$\begin{aligned} & \text{for } k = 0 \text{ to } q - 1 \text{ do} \\ & \text{for } i = 0 \text{ to } q - 1 \text{ do} \\ & \text{for } j = 0 \text{ to } q - 1 \text{ do} \\ & & \widehat{C_{i,j}} \leftarrow \widehat{C_{i,j}} + \widehat{A_{i,k}} \times \widehat{B_{k,j}} \end{aligned}$$

- Next we consider executing this algorithm on a torus of p = q² processors.
- Processor P_{i,j} holds block C_{i,j} and updates it each step.
- To perform Step k, $P_{i,j}$ needs blocks $A_{i,k} \& B_{k,j}$.
- At Step k=j, P_{i,j} already holds block A_{i,j}.
- For all other steps, P_{i,i} must obtain A_{i,k} from P_{i,k}.

Outer-Product Algorithm

- This is true for all processors $P_{i,j}$ with $j \neq k$.
- Note this means that at step k, processor P_{i,k} must broadcast its block of matrix A to all processors P_{i,j} on its row.
 - This is true for all rows i, as well.
- Similarly, blocks of matrix B must be broadcast at step k by $P_{k,i}$ to all processors on column— and for all j.
- The resulting communication pattern is shown on the next slide.

Matrix B

FIGURE 5.3: Communications of blocks of matrices A and B at step k = 1 of the outer-product matrix multiplication algorithm on a 4×4 torus of processors.

Algorithm 1 matmul function implementation if row and col communicators are used. Your program should have the exact structure. Pay close attention to how MPLBcast is called. You will need to implement a matmulAdd function.

```
Input: myrank, proc_grid_sz, block_sz, myA, myB, myC
```

```
Output: none
```

- 1: double **buffA, **buffB
- 2: $buffA = alloc_2d_double(block_sz, block_sz)$
- 3: $buffB = alloc_2d_double(block_sz, block_sz)$
- 4: create grid comm and get coordinates {Follow cartesian example}
- 5: create row comm
- 6: create col comm
- 7: for $k \leftarrow 0$ to $proc_grid_sz 1$ do
- 8: **if** coordinates[1] = k **then**
- 9: copy items of myA to buffA
- 10: end if
- 11: MPI_Bcast(*buffA, block_sz*block_sz, MPI_DOUBLE, k, row_comm){*buffA specifies the starting memory location of the matrix buffA.}

```
if coordinates[0] = k then
12:
       copy items of myB to buffB
13:
     end if
14:
     MPI_Bcast(*buffB, block_sz*block_sz, MPI_DOUBLE, k, col_comm)
15:
     if coordinates[0] = k \&\& coordinates[1] = k then
16:
        matmulAdd(myC, myA, myB, block_sz)
17:
     else if coordinates[0] = k then
18:
        matmulAdd(myC, buffA, myB, block_sz)
19:
     else if coordinates[1] = k then
20:
        matmulAdd(myC, myA, buffB, block_sz)
21:
     else
22:
       matmulAdd(myC, buffA, buffB, block_sz)
23:
     end if
24:
25: end for
```

Outer Product Algorithm Steps

- Statement 1 declares the square blocks of the three matrices stored by each processor.
 - The matrix C is assumed to be initialized to zero
 - Arrays A & B contain sub-matrices in PEs in Fig 5.2
- Statements 2&3 declare two helper buffers used by PEs
- The q steps of program occur in lines 7-25
- In statements 8-11, all q processors in column k broadcast (in parallel) their block of A to the processors in each of their rows.
- Statements 12-15 implement similar broadcasts of blocks of matrix B along processor columns.

Outer Product Algorithm Steps (cont)

Comments:

- When preceding broadcasts are complete, each PE holds all the needed blocks.
- Each processor will multiply a block of A by a block of B and adds the result to the block of C, for which it is responsible.
- The algorithm uses the notation MatrixMultiplyAdd() for PE matrix block operations of $C_{i,j} \leftarrow C_{i,j} + A_{i,k}B_{k,j}$.
- In lines 16-17, if the PE is on both row k & column k, then it can just multiply the two blocks of A and B that it holds.
- Lines 18-19: If the PE is on row k but not on column k, then it will multiply the block of A that it receives with the block of B that it holds.

Outer Product Algorithm Steps (cont)

- Lines 20-21: Similarly, if a PE is on column k but not row k, then it multiplies the block of A it holds with the block of B it just received.
- Lines 22-23 (General Case): If a PE is neither on row k or column k, then it will multiply the block of A it receives with the block of B that it receives.

Generalization of Matrix Multiply:

 By allotting rectangular blocks of Matrix A and B to processors, the preceding algorithm can be adapted to work for non-square matrix products.