

NP-полные задачи

Шовкопляс Григорий Алгоритмы и структуры данных Advanced

Proof by contradiction:

If P = NP

P-NP=0

P(1-N) = 0

P = 0 or N = 1

We know $P \neq 0$ and $N \neq 1$

Therefore P ≠ NP

Введение

Определения и мотивация

- Класс Р множество задач, которые решаются за полиномиальное время p(n).
 - n размер входа
 - p(n) для каждой задачи своё
- Задача разрешимости (decision problem) задача, с произвольными входными данными, и выходными в формате «Да»/«Нет». Например:
 - задача о гамильтоновом цикле
 - задача о связности графа
 - задача о вершинном покрытии размера не более k

Недетерминированная программа

```
## HAM(V,E)

for i = 1 to n

p[i] ← {v1, v2, ..., vn}

if check(p, E)

return 'Yes'

else

return 'No'
```

- В недетерминированной программе добавилась операция недетерминированного выбора:
 - в переменную записывается один элемент множества
 - присваивается тот элемент, который приведет к ответу «Да»

Определение NP

- Класс NP множество задач разрешимости, которые решаются за полиномиальное время p(n) с помощью недетерминированной программы
 - n размер входа
 - p(n) для каждой задачи своё

Определение NP

- Альтернативное определение NP:
 - **верификатор** программа, которая по входным данным и сертификату проверяет, что ответ на данные входные «Да»
 - сертификат данные полиномиального размера;
 - верификатор работает за полиномиальное время.
- Класс NP задачи, для которых можно построить сертификат и верификатор.

Эквивалентность определений

- Недетерм. программа → сертификат:
 - ответы на выборы: сертификат
 - проверка после выборов: верификатор
- Сертификат → недетерм. программа:
 - сгенерировать сертификат *с* недетерм. выбором
 - If verifier(c) return 'Yes' else return 'No'

Пример задачи из NP

- Есть ли в графе гамильтонов цикл?
- Сертификат: перестановка

```
HAM(V, E)
  for i = 1 to n
     p[i] \leftarrow \{v1, v2, ..., vn\}
   if \forall i: (p_i, p_{i+1}) \in E и (p_n, p_1) \in E
     return 'Yes'
  else
     return 'No'
```

NP-hard и NPcomplete

Сведение задачи А к задаче В

NP-hard и NP-complete

- Сведение A к B программа, которая по входу задачи A получает **эквивалентный** вход B
 - программа полиномиальна
 - записываем: $A \leq_p B$
 - означает, что задача В не проще задачи А.
- $A \in NPH$ (A NP-трудная), если $\forall X \in NP: X \leq_p A$
- $A \in NPC$ (A NP-полная), если:
 - $A \in NP$
 - $A \in NPH$
- Другими словами: $NPC = NP \cap NPH$

Мотивация

- Большинство оптимизационных задач NP-полны
- Понять, какие задачи сложные
 - научиться это доказывать
- Сложность сведения показывает, какие задачи сложнее интуитивно
- Научиться откладывать сложные задачи

Схема доказательства

- $A \in NPC$ (A NP-полная), если:
 - $A \in NP$
 - написать недетерм. программу
 - описать сертификат и верификатор
 - $A \in NPH$
 - доказать, что все задачи сводятся к А, сложно
 - найти $Y \in NPH: Y \leq_p A$
- (но) Хотя бы для одной задачи придется доказать, что к ней сводятся все.

Примеры NPполных задач

3SAT

- Задана булева формула в КНФ:
 - В скобке ровно три литерала (переменная или ее отрицание)
 - Можно ли удовлетворить?
- Задача 3SAT В NP:
 - Сертификат: значения $x_1, x_2, ... x_n$
 - Верификатор: вычисляет формулу
- Задача 3SAT В NPH: пока поверим в это

Задача о независимом множестве (IND)

- Задан неорграф и число k
 - **■** Существует ли $I \subset V$: $\forall vu \in E$: $v \notin I$ или $u \notin I$
 - $|I| \ge k$
- Сведем 3SAT к IND, по формуле построим граф
 - Что покажет, что IND не проще 3SAT
- Возьмем формулу, построим для нее граф
 - Каждую скобку преобразуем в треугольник
 - Соединим x_i и $\overline{x_i}$ ребрами
- n переменных и m скобок \rightarrow сделаем k = m, решим задачу IND

Корректность сведения

- $|I| \leq m$
- $\exists I: |I| = m$
 - назначаем 1 переменным из I, остальным что получится
 - каждая скобка удовлетворилась
 - противоречий нет, в I нет обратных друг другу
- Обратно, если $\exists \{x_1, x_2 ... x_n\}$, удовлетворяющее формулу
 - в каждой скобке есть хотя бы одна 1
 - возьмем по одной вершине из скобки в I
 - I образует независимое множество
- Сведение полиномиально

Доказательство NPC

- Показали, что IND в NPH
- Осталось показать, что IND в NP
 - Сертификат: независимое множество
 - Верификатор: проверка, что вершины сертификата не соединены

Задача о вершинном покрытии

- Задан неорграф и число k
 - **■** Существует ли С $\subset V$: $\forall vu \in E$: $v \in C$ или $u \in C$
 - $|C| \le k$
- Сведем IND к VertexCover
 - Дополнение независимого множества есть вершинное покрытие
 - G' = G, k' = |V| k
- $\exists I: |I| \le k \iff \exists C: |C| \le |V| k = k'$

Задача о максимальной клике

- Задан неорграф и число k
 - Существует ли $C \subset V$: $\forall v \in C$ и $u \in C$: $vu \in E$
 - $|C| \ge k$
- $V' = V, E' = \overline{E}$

SAT

SAT

- Задана булева формула в КНФ из п переменных
 - удовлетворима ли она?
- Покажем $SAT \leq_p 3SAT$
- По КНФ формуле надо построить 3-КНФ формулу
- Если в скобке 1 или 2 литерала, то очевидно, иначе:
 - Преобразуем $a = (x_1 \lor \overline{x_5} \lor \overline{x_2} \lor x_3 \lor x_4)$
 - $\blacksquare B b = (x_1 \lor \overline{x_5} \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor x_3 \lor x_4)$
- Если а удовлетворимо, то b удовлетворимо:
 - $y_1 = \overline{x_1} \wedge x_5$
 - $y_2 = \overline{x_1} \wedge x_5 \wedge x_2$

Доказательство сведения

- Преобразуем $a = (x_1 \lor \overline{x_5} \lor \overline{x_2} \lor x_3 \lor x_4)$
- $\bullet \quad \mathsf{B} \ b = (x_1 \vee \overline{x_5} \vee y_1) \wedge (\overline{y_1} \vee \overline{x_2} \vee y_2) \wedge (\overline{y_2} \vee x_3 \vee x_4)$
- Если а неудовлетворимо, то b неудовлетворимо:
 - Все литералы а равны 0
 - Переменных у меньше, чем скобок
 - Каждую скобку в b не удовлетворить

- Задан неорграф
 - Можно ли раскрасить его в 3 цвета
 - $color(v) \leftarrow \{1, 2, 3\} \ \forall \ vu \in E : color(v) \neq color(u)$
- 3COLOR B NP
 - Сертификат: раскраска
 - Верификатор: аналогично предыдущим
- Покажем $3SAT \leq_p 3COLOR$

- По 3-КНФ формуле построим граф:
 - Сделаем «Палетку»: треугольник Т, F, N
 - Соединим x_i и $\overline{x_i}$ ребрами
 - Проведем из всех у ребра в N
 - Для каждой скобки С_j заведем два треугольника
 - Если y в C_j проведем ребро
 - Из всех «выходов» C_i проведем ребра в F и N

Доказательство сведения

- Если формула разрешима → Есть раскраска
- Если есть раскраска → Формула разрешима

Гамильтонов цикл в ориентированном графе*

Гамильтонов цикл

- Дан ориентированный граф G = (V, E)
 - Есть ли в нем гамильтонов цикл?
- HAM B NP
 - Доказали ранее
- Покажем $3SAT \leq_p HAM$

Гамильтонов цикл

а) подграф для вершин

в) подграф для скобки

Для более подробных картинок смотрите видео-лекции

Сумма подмножества

Сумма подмножества

- Дано множество S из n целых чисел и число s
 - Можно ли выбрать $S' \subset S$, что $\sum_{x \in S'} x = s$?
- SSP B NP
 - Сертификат: подмножество
 - Верификатор: вычислить сумму и сравнить с s
- Покажем $3SAT \leq_p SSP$

Сумма подмножества

- По 3-КНФ формуле построим множество из 2(n+m) чисел:
 - В каждом числе n + m цифр (n переменных, <math>m скобок)
 - Для каждой переменной заведем два числа
 - $v_i 1$ в разряде номера переменной и в разрядах тех, скобок, где переменная входит без отрицания
 - $w_i 1$ в разряде номера переменной и в разрядах тех, скобок, где переменная входит с отрицанием
 - Для каждой скобки заведем два числа: с 1 и 2 в разряде этой скобки
 - s = 1111...11144..4

Почему есть хотя бы одна NP-полная задача?

Circuit-SAT

- Задана булева схема
- Удовлетворима ли она?

Circuit-SAT

- Покажем Circuit $SAT \leq_p SAT$
- По схеме надо построить формулу
- Для каждой вершины заведем переменную x_v

0	$(\overline{x_v})$
1	(x_v)
$v = \neg a$	$(x_v \vee x_a) \wedge (\overline{x_v} \vee \overline{x_a})$
$v = a \wedge b$	$(\overline{x_a} \vee \overline{x_b} \vee x_v) \wedge (x_a \vee \overline{x_v}) \wedge (x_b \vee \overline{x_v})$
$v = a \lor b$	$(x_a \lor x_b \lor \overline{x_v}) \land (x_v \lor \overline{x_a}) \land (x_v \lor \overline{x_b})$

NP полнота Circuit-SAT

- Неформально покажем идею, как любую задачу $A \in NP$ свести к Circuit-SAT
 - существуют сертификат и верификатор для А
 - по входу задачи А, надо получить схему
 - вход известный набор бит:
 - превращаем в вершины 0 и 1
 - сертификат неизвестный набор бит:
 - превращаем в переменные
 - верификатор программа, программа → схема
 - существует сертификат, который принимается верификатором ⇔ схема удовлетворима

Приближенные алгоритмы: зачем?

Определения

- Задача (дискретной) оптимизации найти объект, который минимизирует/максимизирует целевую функцию. Например:
 - задача о мин. вершинном покрытии
 - задача о макс. паросочетании
 - задача о рюкзаке
 - задача коммивояжера
- $\alpha(n)$ -приближенный алгоритм находит решение оптимизационной задачи, которое отличается от оптимального не более, чем в $\alpha(n)$ раз
 - n размер входа
 - $\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \alpha(n), C^* \text{опт., C} \text{найденное}$
 - алгоритм полиномиален от n

Мотивация

- Не умеем решать NP-полные задачи за полином
- Хочется получать хорошие решения опт. задач
- $\alpha(n)$ –метрика сложности задачи
- Полезно в других подходах к решениям этих задач
- Но! Приближённые алгоритмы не единственный способ решать NP-полные опт. задачи.

Еще определения

- Полиномиальная схема аппроксимации алгоритм, которому на вход подается еще и параметр $\varepsilon > 0$, который описывает, насколько точный ответ нужно найти:
 - для фиксированного ε , схема является

 $(1+\varepsilon)$ -приближенным алгоритмом

- время работы зависит также от ε
- время работы полиномиально от \mathbf{n} , но не от ε
- English: PTAS (polynomial-time approximation scheme)

Вершинное покрытие

Задача о вершинном покрытии

- Задан неорграф G = (V, E)
 - Существует ли С $\subset V$: $\forall vu \in E$: $v \in С$ или $u \in C$
 - $|C| \rightarrow min$

Задача о вершинном покрытии

Решение

```
Vertex-Cover(V, E)
  C = \emptyset
  while E \neq \emptyset
     Выбрать любое ребро vu \in E
     Удалить из графа вершины v и u,
     а также все ребра с концами в v или u
  C = C \cup \{v, u\}
  return C
```

- Пусть А множество выбранных ребер
- у ребер в А нет общих концов.
- C_0 оптимальное вершинное покрытие.
- $|C_0| \ge |A|$
 - чтобы покрыть ребра из A нужно $\geq |A|$ вершин
- |C| = 2|A|
- Значит, $C \leq 2|C_0|$.
- Предложенный алгоритм 2-оптимальный (2-приближённый).

- Задан взвешенный неорграф G = (V, E, w)
 - $n = |V|, w(u, w) \ge 0$
 - Найти перестановку $p_1, p_2, ... p_n$
 - $p_i \in V, p_i \neq p_j$ при $i \neq j$
 - $w(p_n, p_1) + \sum_{i=1}^{n-1} w(p_i, p_{i+1}) \to min$
 - English: TSP (Travelling Salesman Problem)
 - Две вариации:
 - С условием неравенства треугольника
 - Без условия неравенства треугольника

- Есть неравенство треугольника
 - Построим минимальное остовное дерево
 - Обойдем обходом в глубину остовное дерево
 - Выпишем вершины в порядке посещения
 - Оставим только первые вхождения вершин

- H^* оптимальный цикл, H найденный цикл
- T мин. остовное дерево
 - Заметим, что $2w(T) \ge w(H)$
 - в обходе каждое ребро пройдено два раза; 2w(T)
 - в цикле пропускали вершины + неравенство треуг.
 - Убрать ребро из цикла → остовное дерево
 - $w(T) \leq w(H^*)$
 - Из чего следует: $w(H) \le 2w(T) \le 2w(H^*)$
- Алгоритм 2-оптимальный

А если неравенства треугольника нет?

- Предположим: $\exists \alpha$ -приближённый алгоритм
- Решим задачу о гамильтоновом цикле за полином
- В G = (V, E) надо найти гамильтонов цикл
 - $\bullet G' = \{V, E' = V \times V, w\}$
 - w(vu) = 1, если $vu \in E$
 - $w(vu) = \alpha |V| + 1$, если $vu \notin E$
- G гамильтонов $\Rightarrow w(H^*) = |V|$
- Алгоритм найдет H, что $w(H) \le \alpha w(H^*) \le \alpha |V|$
- G гамильтонов $\Leftrightarrow w(H) \leq \alpha |V|$

- Альтернативный алгоритм
 - Построим минимальное остовное дерево Т
 - Найти паросочетание минимальной стоимости М на множестве вершин Т с нечетными степенями
 - Добавить ребра М к Т и получить Эйлеров граф
 - Найти Эйлеров обход в новом графе
 - Построить Гамильтонов цикл, посещая вершины графа G в том порядке, в котором они встречаются Эйлеровом обходе

- H^* оптимальный цикл, H найденный цикл,
- M паросочентание, T минимальное остновное дерево
- $w(M) \leq \frac{1}{2}w(H^*)$
- $w(H) \le w(T) + w(M) \le w(H^*) + \frac{1}{2}w(H^*) = \frac{3}{2}w(H^*)$
- Алгоритм $\frac{3}{2}$ оптимальный

Покрытие множествами

Покрытие множества

- Дано множество U, а также n его подмножеств $U_i \subset U$
 - $\bigcup_{i=1}^n U_i = U$
- Найти С ⊂ {1, 2, 3 ... n}
 - $\bigcup_{i \in C} U_i = U$
 - $|C| \rightarrow min$
- English: Set Cover

Задача о вершинном покрытии

Решение

```
Set-Cover([U_i])
   C = \emptyset
   while \exists U_i \neq \emptyset
      Выбрать x: |U_x| \to max
      T = U_x
      for i = 1 to n
        U_i = U_i \backslash T
      C = C \cup \{T\}
   return C
```

- Множества, которые выбирал алгоритм $A_1, A_2 ... A_k$
- $x \in A_i \setminus (A_1 \cup A_2 \cup \cdots \cup A_{i-1})$
- $c_{\chi} = \frac{1}{|A_i \setminus (A_1 \cup A_2 \cup \dots \cup A_{i-1})|}$
- $A_1^*, A_2^*, \dots, A_{k^*}^*$ оптимальный ответ
- $\sum_{x \in U} c_x \le \sum_{i=1}^{k^*} \sum_{x \in A_i^*} c_x$
 - Каждое слагаемое из левой части, хотя бы один раз есть в правой

- Лемма: $\sum_{x \in X} c_x \le \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{|X|}$
- $|X| = r, X = \{x_1, x_2, ... x_r\}$
- x_i пронумерованы в порядке удаления
 - x_1 последний удаленный, x_r первый
- Докажем: $c_{x_i} \leq \frac{1}{i}$
- На текущей итерации $X = \{x_1, x_2, ... x_j\}$ и на ней удаляется x_j
 - $|T| \ge j$ (выбираем жадно)
 - $c_{x_i} = \frac{1}{|T|} \le \frac{1}{i}, c_{x_{i-1}} = \frac{1}{|T|} \le \frac{1}{i} \le \frac{1}{i-1}...$
- T.o. $\sum_{x \in X} c_x \le \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{r}$

- По лемме: $\sum_{x \in A_i^*} c_x \le \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{|A_i^*|} = H(|A_i^*|) \le H(|U|)$
- $\sum_{i=1}^{k^*} \sum_{x \in A_i^*} c_x \le H(|U|) \times k^* \le (\ln|U| + 1) \times k^*$
- $k = \sum_{x \in U} c_x \le \sum_{i=1}^{k^*} \sum_{x \in A_i^*} c_x \le (\ln|U| + 1) \times k^*$
- Алгоритм $(\ln |U| + 1)$ -оптимален

Bce!