

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

ANÁLISE DE ONDAS NÃO SENOIDAIS - LÂMPADAS (CARGAS NÃO LINEARES)

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Dezembro / 2019

Sumário

1	Objetivos							
2 Introdução teórica								
3	Preparação							
	3.1	Mater	iais e ferramentas	3				
	3.2	Monta	agem	4				
		3.2.1	Lâmpadas (Cargas não lineares)	4				
		3.2.2	Medições em ambiente com $f \neq 60Hz$	5				
4	Dac	los Ex	perimentais	6				
		4.0.1	Lâmpadas (Cargas não lineares)	6				
		4.0.2	Medições em ambiente com $f \neq 60Hz$	7				
5	Ana	álise so	obre segurança	8				
6	Ana	álise e	discussão	8				
		6.0.1	Análise da forma de onda das lâmpadas com distorção harmônica	8				
		6.0.2	Comparação do valor RMS obtido com o experimental	9				
		6.0.3	Espectro harmônico da corrente	9				
		6.0.4	Sobre a Distorção Harmônica Total (DHT)	9				
7	Sim	ıulação	computacional	11				
8	Cor	nclusõe	25	12				

1 Objetivos

Pretende-se verificar experimentalmente conceitos teóricos de sinais não senoidais, obtendo os coeficientes da série de Fourier pelo método analítico e usando uma rotina computacional (como Matlab, Python). Aqui também é investigada a determinação do valor eficazes (rms) da tensão e corrente, bem como as potências associadas das formas de onda não senoidais.

2 Introdução teórica

Ondas não senoidais na rede são bastante comuns e surgem da presença de cargas não-lineares na rede (proporção tensão e corrente não é constante). Alguns exemplos de cargas geradoras de correntes harmônicas são geradores e motores CA, transformadores, lâmpadas de descarga, retificadores/motores CC controlados, inversores/motores de indução, ciclo-conversores/motores síncronos, cargas de aquecimento controladas por tiristores, reguladores de tensão a núcleo saturado, computadores etc [1].

Na Figura 1 observa-se uma característica importante para ondas com distorção harmônica. A corrente fundamental vai da fonte para a carga, enquanto que as de ordem harmônica vão da carga para a fonte (sentido oposto). Além disso, a Figura 2 ilustra como é feita a análise da onda não senoidal, por meio da descrição em séries de Fourier, para assim poder construir seu espectro de frequências.

Figura 1: Figura ilustrativa de harmônicos na rede [1].

Figura 2: Descrição em série de Fourier e análise espectro de frequências [1].

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60 Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 *Lâmpadas:* Foram utilizadas lâmpadas LED e incandescente, para investigar o carácter não linear dessas cargas e seu efeuto na rede.
- 6 **Reostato:** Carga resistiva para evitar dano na lâmpada LED. Foi setado para 10Ω .
- 7 **Reator:** Para a segunda montagem utilizou-se um indutor na carga de 166 mH.

3.2 Montagem

3.2.1 Lâmpadas (Cargas não lineares)

A montagem realizada observa-se na Figura 3, na qual são empregados medidores de tensão e de corrente digitais (Kron Mult-K Série 2). A configuração usada no medidor Kron foi TL = 0000 (3 ϕ com Neutro - Carga Desequilibrada) e valor para a resistência medida foi de $R=10.1\Omega$ e foi aplicada uma tensão de fase $V_F=V_{AN}$ que variou de 10 a 100V. Lembrando que as lâmpadas a LED ou fluorescente compacta normalmente acendem após certo valor de tensão.

Figura 3: Montagem realizada para verificação de espectro para cargas não-lineares.

3.2.2 Medições em ambiente com $f \neq 60Hz$

Como na Figura 4, nessa etapa é utilizado um retificador de onda completa para representar uma onda não-senoidal. O intuito dessa montagem é medir as grandezas de tensão e corrente nos terminais da carga utilizando-se de distintos medidores, inclusive não True RMS, para assim intuir a importância da utilização de equipamento de medição True RMS.

Figura 4: Montagem para experimento de ambiente com $f \neq 60Hz$.

4 Dados Experimentais

4.0.1 Lâmpadas (Cargas não lineares)

Do experimento para análise de tensão e corrente em cargas não lineares temses do dados comtemplados na Tabela 1 obtidos com o medidor Kron. Já na Tabela 2 estão os valores de tensão obtidos com o multímetro True RMS.

Tabela 1: Dados experimentais para o experimento com lâmpadas como carga.

V_F (V)	Fase	V_F (V)	I_L	P (W)	Q (VAr)	S (VA)	FP	DTT (%)	DTI (%)
10.0	A	10,47	0	0	0	0	0	4,73	0
10,0	В	10,67	0,112	1,182	1,156	1,194	0,991	4,09	9,08
20.0	A	20,35	0	0	0	0	0	3,36	0
20,0	В	20,86	0,14	2,907	0,287	2,92	0,995	3,36	6,51
30,0	A	30,84	0	0	0	0	0	2,97	0
30,0	В	31,14	0,164	5,09	0,422	5,118	0,996	2,52	5,94
40,0	A	40,06	0	0	0	0	0	2,85	0
40,0	В	40.64	0,181	7,388	0,555	7,426	0,997	2,63	5,05
50,0	A	50,02	0,127	5,037	3,862	6,338	0,792	2,820	31,29
50,0	В	50,15	0,203	10,15	0,715	10,19	0,998	2,58	4,390
60,0	A	60,01	0,135	5,99	5,436	8,086	0,744	2,56	39,20
00,0	В	60,32	0,223	13,45	0,853	13,45	0,998	2,59	4,340
70,0	A	70,12	0,143	7,097	7,069	10,03	0,704	2,7	46,75
70,0	В	70,09	0,241	16,88	1,030	16,93	0,998	2,62	3,46
80,0	A	80,23	0,148	8,048	8,603	11,75	0,680	2,74	53,49
00,0	В	79,82	0,258	20,60	1,202	20,77	0,998	2,53	3,370
90,0	A	90,32	0,144	8,764	9,454	12,79	0,679	2,51	60,16
90,0	В	89,80	0,275	24,67	1,374	24,65	0,998	2,5	3,17
100,0	A	100,0	0,141	9,478	10,22	13,81	0,680	2,67	66,94
100,0	В	100,1	0,291	29,21	1,540	29,14	0,999	2,33	2,92

Ademais, ainda será verificado o comportamento da rede por meio de um osciloscópio sobre os terminais do resistor de 10Ω . É importante que a garra esteja em 10x e o GND não seja conectado, no caso da existência do terra no plug da tomada. Do osciloscópio será possível salvar em um *pendrive* a forma de onda

(vetor $v \times t$ - arquivo de imagem e tabela numérica) para extrair a corrente que circula na lâmpada.

Tabela 2: Tensões True RMS para a fase A (LED) e fase B (Incandescente)

	V_A (V)	V_B (V)
10V	10,49	10,62
20V	20,59	20,99
30V	31,13	30,80
40V	40,60	40,47
50V	49,62	51,00
60V	60,4	61,9
70V	69,5	71,1
80V	80,3	81,7
90V	90,65	90,99
100V	100,0	101,2

4.0.2 Medições em ambiente com $f \neq 60Hz$

Da montagem da Figura 4 pode-se retirar dados com o osciloscópio, tanto de imagem conforme a Figura 5, quanto de CSV, no qual são discretizados os dados de tensão obtidos numa determinada frequência de amostragem F_S . Como o arquivo CSV obtido é demasiadamente extenso não será mostrado aqui.

Figura 5: Dado de imagem retirado do osciloscópio.

5 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [2]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

6 Análise e discussão

6.0.1 Análise da forma de onda das lâmpadas com distorção harmônica

No ambiente MATLAB, foi possível recriar a forma de onda com distorções harmônicas por meio do arquivo CSV obtido do osciloscópio, como mostrado da Figura 6.

Figura 6: Reconstrução da forma de onda via MATLAB.

6.0.2 Comparação do valor RMS obtido com o experimental

6.0.3 Espectro harmônico da corrente

Ainda é possível o espectro de frequência do sinal de corrente sobre o resistor acoplado ao LED, como visto na Figura 7.

Figura 7: Espectro da forma de onda via MATLAB.

6.0.4 Sobre a Distorção Harmônica Total (DHT)

A distorção harmônica em um sistema de potência pode provocar diversos problemas, como analisado em [3]. Por isso, é regulamentado um valor máximo admissível em uma instalação elétrica. Abaixo são descritos alguns deles:

- Excitação de correntes ou tensões ressonantes entre indutâncias e capacitâncias.
 Casos típicos: associações de capacitores com transformadores, cabos com blindagem, capacitores associados com motores, capacitores operando com reatores, dispositivos de correção de fator de potência, etc.
- Aparecimento de vibrações e ruído.
 Casos típicos: ferrorressonância em transformadoresb e reatores, motores de indução ressonando com a compensação capacitiva, etc.

3. Sobreaquecimento de núcleos ferromagnéticos.

Casos típicos: aumento de perdas por histerese e correntes parasitas em núcleos de motores, geradores, transformadores, reatores, relés, etc.

4. Sobreaquecimento de capacitores.

Caso típico: ressonância de capacitores shunt, provocando sobretensão e perdas excessivas no dielétrico. Risco de explosão do capacitor por falta de dissipação do calor gerado internamente.

5. Erro de medição de grandezas elétricas.

Casos típicos: medidores de energia com disco de indução, medidores de valor eficaz baseados no valor de pico ou valor médio, etc.

6. Erro de controle de conversores.

Casos típicos: detectores de sincronismo e comparadores de nível, usados como referência para gerar pulsos de controle em chaves eletrônicas;

7. Erro de atuação da proteção.

Casos típicos: relés eletromagnéticos atracando devido à contribuição das harmônicas, relés eletrônicos e digitais com erro de calibração na presença de distorções, etc.

8. Sobrecorrente de neutro.

Casos típicos: circuitos com lâmpadas de descarga com reatores ferromagnéticos ou circuitos retificadores monofásicos podem provocar correntes de neutro maiores que as de linha, devido às harmônicas de sequência zero.

9. Interferências e ruídos eletromagnéticos.

Casos típicos: fontes chaveadas, inversores de frequência, pontes retificadoras, sistemas de acionamento controlados eletronicamente, etc.

7 Simulação computacional

A simulação computacional foi mostrada no decorrer da sessão de Análise e Discussões em 6 e o código correspondente à análise realizada á mostrado abaixo.

```
clc; % nao limpar os dados!
 % Tratamento de dados
  array = table2array(table);
  h = figure ('Name', 'Dados Recebidos');
  plot(array(:,1), array(:,2));
  title ('Sinal sobre o resistor acoplado ao LED');
  xlabel('$t$','Interpreter','LaTex','FontSize',16);
  ylabel('$V_{LED}$ (V)', 'Interpreter', 'LaTex', 'FontSize', 16);
  % saveas(h, 'Sinal_IN.png');
12
  espectro = fft(array(:, 2));
14
  g = figure ('Name', 'Espectro do Sinal Recebido');
  stem(abs(espectro));
  title ('Espectro da corrente sobre o resistor');
17
  xlabel('$t$','Interpreter','LaTex','FontSize',16);
  ylabel('$V_{LED}$ (V)', 'Interpreter', 'LaTex', 'FontSize', 16);
19
  xlim ([0 120]);
20
  saveas(g, 'Espectro_IN .png');
```

8 Conclusões

Equipamentos não lineares são bastante comuns na rede, e interferem por meio do aparecimento de harmônicos na rede.

Referências

- [1] P. H. O. Rezende, "Ondas Não Senoidais", 2018.
- [2] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.
- [3] S.M.Deckmann e J. A. Pomilio, "Distorção harmônica: causas, efeitos, soluções e normas", Avaliação da Qualidade da Energia Elétrica, DSE FEEC UNI-CAMP, 2019. Disponível em: http://www.dsce.fee.unicamp.br/~antenor/pdffiles/qualidade/a5.pdf. Acesso em: dez. 2019.