

Computação em Nuvem

Fernando Antonio Mota Trinta

Contextualização

Fonte: vcloudnews

Contextualização e mais dados

- 2,7 bilhões de usuários na internet
 - □ 5 bilhões de celulares no mundo
 - □ I bilhões de smartphone vendidos em 2013

90% dos dados no mundo hoje foram

produzidos nos últimos dois anos

E mais dados...

- Facebook
 - □ IB de usuários, I, I3 Trilhões de "likes", 219B de fotos e 140.3B de relacionamentos
- Youtube
 - I 00 horas de vídeos adicionado a cada minuto
- Yahoo!
 - □ + de 650M de usuários,I I B visitas a þáginas/mês
- Flick
 - \Box + de 5B de fotos

- Twitter
 - □ 80 TB e IB de tweets por dia
- Boeing
 - □ 640 TB gerados em um voo transatlântico
- Wal-Mart
 - □ 2,5 PB e I milhão de transações/hora
- LHC CERN
 - □ 15 Petabytes por ano

Comportamento

1990s 2010s

Dados x Informação

"Extracting Value from Chaos" - a informação mundial está dobrando a cada 2 anos - 1.8 zettabytes foram criados em 2011, crescendo mais que a lei de Moore.

Contextualização

- Grande quantidades de dados geram desafios
 - □ Armazenamento...
 - □ Processamento...
 - □ Análise...

- BigData & Data Analytics
 - □ ciência de examinar os dados brutos com a finalidade de tirar conclusões sobre essa informação...
 - □ Dados analisados são valiosos hoje

Exemplos

Linked in

Exemplos

Dengue Watch: Heat Map

observatóri@dadengue

Menções à dengue no Twitter no mês de fev/2011

Clique nos pontos do mapa para informações Cidades: 11 Tweets: 59 População: 1925450 Tx. Inc. Méd.: 1.5334e-04

Cidade	Pop.	Tweets	Tx.Inc
Betim	377547	14	1.8230e-04
Brumadinho	34013	1	1.4289e-04
Contagem	603048	22	1.7922e-04
Ibirite	159026	4	1.2110e-04
Itabira	109551	6	2.7305e-04
Itauna	85396	1	5.2124e-05
Joao Monlevade	73451	4	2.7146e-04
Matozinhos	32973	1	1.4765e-04
Ribeirao das Neves	296376	2	2.6665e-05
Sabara	126219	3	1.1399e-04
Santa Barbara	27850	1	1.7627e-04

Fonte: Alberto Laender

Campos de Aplicação

- Sistemas de Recomendação
- Processamento de Linguagem Natural
- Data Warehousing
- Pesquisa de Mercado

- Análise Financeira
- Máquinas de inferência
- Processamento de Vídeo/Imagens
- Análise de Logs

Campos de Aplicação

- Ciências da Saúde
- Gestão governamental

- Redes Sociais
- Telecomunicações

Como armazenar e processar este grande volume de dados?

Computação em Nuvem

"Grandes poderes trazem grandes responsabilidades!"

- O grande volume de dados demanda
 - ☐ Grande poder de processamento
 - □ Paralelizar e Distribuir tarefas
 - ☐ Facilidade de processamento

Computação em Nuvem

- Para tratar problemas de larga escala, idealmente não gostaríamos de se preocupar com:
 - □ Paralelização e distribuição automática
 - □ Tolerância a falhas
 - □ Escalonamento de I/O
 - Monitoramento de tarefas
- Então é necessário se adequar a um modo de facilitar o uso da nuvem para tarefas de manipulação de dados

Modelo de Programação para Nuvem

- Forma, abordagem ou maneira específica de como se programar, dentro do contexto de uma aplicação ou domínio
 - Abstrações adequadas
 - □ Eficiência
- Duas abordagens:
 - ☐ Estender um modelo existente
 - □ Propor um novo modelo

- Um modelo de programação e uma implementaçãoo associada para processamento e geração de grandes conjuntos de dados
 - □ Inspirado pelas primitivas map e reduce encontrados na Lisp e em outras linguagens funcionais
- Permite paralelizar grandes computações facilmente e usar re-execução como mecanismo para tolerância a falhas

História

- Originalmente desenvolvido pela Google
 - □ Jeffrey Dean e Sanjay Ghemawat
 - MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and Implementation (December 2004)
- Usado no Search Engine para tratar a quantidade de dados a serem processados

Idéia Geral

- Divida uma tarefa que deve processar um grande conjunto de dados em partes
- Cada parte deve ser responsável por uma parte pequena do conjunto
- Cada parte é independente
- Após o término do processamento das partes individuais, junte os resultados das partes

■ MAP:

- □ Toma-se uma tarefa complexa ou custosa
- □ Quebra tal tarefa em sub-problemas menores
- □ Delega a resolução desta tarefas a nós distribuídos

■ REDUCE:

- □ Coleta as respostas dos nós distribuídos
- Agrega tais respostas em uma saída que representa a solução do problema complexo

Apache Hadoop

- Inspirado em iniciativas da Google
 - □ BigTable e Map/Reduce
- Criado por Doug Cutting
 - □ Criador do Lucene

Hadoop

Um framework open-source de propósito geral, orientado a processamento em lote/offline, de uso intensivo de dados (I/O intensive) utilizado para criação de aplicações que processem uma grande quantidade de dados.

O que seria grande?

- 25K máquinas
- Dezenas de clusters
- 3 Pb de dados
- 10000 jobs/semana

Quem usa mais

O Hadoop não é...

- ... Um banco de dados relacional
- ... Um sistema online de processamento de transações
- ... Um sistema de armazenamento estruturado de qualquer tipo

Hadoop x Relacional

Hadoop	Relacional
Pares de chave/valor	Tabelas
Informa-se como processar dados	Informa-se como se deseja obter os dados (SQL)
Offline/Lote	Online/Tempo Real
Escalabilidade Horizontal	Escalabilidade Vertical

Hadoop

- Componentes principais
 - □ Um sistema distribuído de arquivos
 - Haddop Distributed File System (HDFS)
 - □ Um sistema de Map/Reduce

٧

HDFS

- Dados são replicados e distribuídos em vários nós
 - □ Fator de replicação: 3
- Projetado para arquivos grandes
 - □ Terabytes
- Orientado a blocos
- Comandos a lá linux
 - \square Is, cp, mv, rm, etc

NameNode

File Block Mappings:

/user/aaron/data1.txt - 1, 2, 3 /user/aaron/data2.txt - 4, 5 /user/andrew/data3.txt - 6, 7

DataNode(s)

Coisas Boas

- Tolerância a falhas
 - □ Sistema ativo mesmo no caso de falha de alguns nós
- Self-Healing
 - □ Auto balanceamento dos arquivos
- Escalável
 - □ Adição de novos nós do cluster

.

Coisas Boas

- Código Aberto
 - □ Comunidade ativa
 - □ Apoio de grandes coorporações
- Economia
 - □ Software livre
 - □ Uso de máquinas convencionais
- Separação da Lógica de Negócios
 - □ Trabalho duro fica com o Hadoop

Coisas não tão boas

- Único nó mestre
 - □ Ponto crítico de falha
- Paralelização de aplicações
 - □ Problemas não paralelizáveis
 - □ Processamento de arquivos pequenos
 - Muito processamento & poucos dados

- Base na programação funcional
 - Manipulação de dados (tipicamente listas)
 - □ Funções que transformam dados
- Modelo de Programação proposto pelo Google
 - □ Duas funções básicas: MAP e REDUCE

Map/Reduce

- **■** *MAP*:
 - □ Toma-se uma tarefa complexa ou custosa
 - □ Quebra tal tarefa em sub-problemas menores
 - □ Delega a resolução desta tarefas a nós distribuídos (workers)
- REDUCE:
 - □ Coleta as respostas dos workers
 - □ Agrega tais respostas em uma saída que representa a solução do problema complexo

Apache Hadoop

- Divide arquivos
 - □ Em geral, blocos de 64Mb
- Usa pares de chave/valor
- Mappers
 - □ filtram e transformam o dado de entrada
- Reducers
 - □ Agregam a saída dos mappers

Importante premissa

- MOVE-SE CÓDIGO, NÃO DADOS
 - □ Arquivos são grandes, código não
 - □ Rede é um gargalo

Clássico Exemplo

- Word Count
 - □ Contar o número de ocorrência de uma palavra em um arquivo

Fernando Antonio Mota Trinta Ian Gabriel Braga Trinta Ivana Régia Braga

Мар

(K1,V1)

- (0, "Fernando Antonio Mota Trinta")
- (29, "Ian Gabriel Braga Trinta")
- (53, "Ivana Régia Braga")

Map

list(K2,V2)

- **■** ("Fernando", 1)
- (" Antonio", 1)
- **■** (" Mota ", 1)
- **■** (" Trinta ", 1)
- (" lan ", 1)
- **■** (" *Gabriel* ", 1)
- (" Braga ", 1)
- **■** (" Trinta ", 1)
- (" Ivana ", 1)

- (" Régia ", 1)
- (" Braga ", 1)

Reduce

(K2, list(V2))

- ("Fernando", 1)
- (" Antonio", 1)
- **■** (" Mota ", 1)
- **■** (" Trinta ", (1,1))
- (" lan ", 1)
- (" Gabriel ", 1)
- (" Braga ", (1,1))
- **■** (" Ivana ", 1)
- (" Régia ", 1)

Reduce

list(V3,K3)

- **■** ("Fernando", 1)
- (" Antonio", 1)
- **■** (" Mota ", 1)
- (" Trinta ", 2)
- (" lan ", 1)
- **■** (" *Gabriel* ", 1)
- (" Braga ", 2)
- **■** (" Ivana ", 1)
- (" Régia ", 1)


```
public class SimpleWordCount
  extends Configured implements Tool {
  public static class MapClass
    extends Mapper<Object, Text, Text, IntWritable> {
  public static class Reduce
    extends Reducer<Text, IntWritable, Text, IntWritable> {
  public int run(String[] args) throws Exception { ... }
  public static void main(String[] args) { ... }
```



```
public static class MapClass
  extends Mapper<Object, Text, Text, IntWritable> {
  private static final IntWritable ONE = new IntWritable(1L);
  private Text word = new Text();
  @Override
  protected void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    StringTokenizer st = new StringTokenizer(value.toString());
    while (st.hasMoreTokens()) {
      word.set(st.nextToken());
      context.write(word, ONE);
```



```
public static class Reduce
  extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable count = new IntWritable();
  @Override
  protected void reduce(Text key, Iterable<IntWritable> values,
                        Context context)
    throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable value : values) {
      sum += value.get();
    count.set(sum);
    context.write(key, count);
```

```
public int run(String[] args) throws Exception {
 Configuration conf = getConf();
 Job job = new Job(conf, "Counting Words");
 job.setJarByClass(SimpleWordCount.class);
 job.setMapperClass(MapClass.class);
 job.setReducerClass(Reduce.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
  FileInputFormat.setInputPaths(job, new Path(args[0]));
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
  return job.waitForCompletion(true) ? 0 : 1;
```


Input Data

Input data is distributed to nodes

Each map task works on a "split" of data

Mapper outputs intermediate data

Data exchange between nodes in a "shuffle" process

Intermediate data of the same key go to the same reducer

Reducer output is stored

Particionamento

- Decisão de quais chaves vão para qual reducer
- Mundo ideal
 - □ Distribuição uniforme entre reducers
- Evitar a sobrecarga de um único reducer

Melhorando desempenho

- Combinando localmente
- Reduzir o processo de agregação nos mappers
 - ☐ Aka "Local Reduce"

	Dado	# pares k/v agregados
Sem combinação	("Maria", I)	1000
Com combinação	("Maria", 1000)	1

Arquitetura Hadoop

NameNode

- Gerente do HDFS
 - □ Gerencia os DataNodes
- Ponto central de falha
- Não deve armazenar dados ou rodar processos

NameNode 'localhost:9000'

Started: Tue Sep 07 16:58:53 EDT 2010

Version: 0.20.1, r810220

Compiled: Tue Sep 1 20:55:56 UTC 2009 by oom Upgrades: There are no upgrades in progress.

Browse the filesystem Namenode Logs

Cluster Summary

786 files and directories, 390 blocks = 1176 total. Heap Size is 81.06 MB / 995.88 MB (8%)

Configured Capacity : 465.44 GB
DFS Used : 1.67 GB
Non DFS Used : 201.38 GB
DFS Remaining : 262.39 GB
DFS Used% : 0.36 %
DFS Remaining% : 56.37 %
Live Nodes : 1
Dead Nodes : 0

NameNode Storage:

Storage Directory	Туре	State
/data/hadoop-pseudo/dfs/name	IMAGE_AND_EDITS	Active

DataNode

- Armazena os blocos de arquivos
- Não armazena arquivos contíguos
- Informa dados do bloco ao NameNode
- Recebe tarefas do NameNode

Secondary NameNode

- Snapshot do NameNode
- Não é um servidor automático em caso de falhas
 - □ Apenas minimiza o tempo de queda/perda de dados em caso de falha do NameNode

JobTracker

- Particiona as tarefas através do HDFS
- Rastreia as tarefas map/reduce
 - □ Reexecuta tarefas em diferentes nós em caso de falha

localhost Hadoop Map/Reduce Administration

State: RUNNING

Started: Tue Sep 07 16:58:58 EDT 2010

Version: 0.20.1, r810220

Compiled: Tue Sep 1 20:55:56 UTC 2009 by oom Identifier: 201009071658

Cluster Summary (Heap Size is 81.06 MB/995.88 MB)

Maps	Reduces	Total Submissions	Nodes	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/Node	Blacklisted Nodes
0	0	26	1	2	2	4.00	<u>0</u>

Scheduling Information

Queue Name	Scheduling Information					
default	N/A					

Filter (Jobid, Priority, User, Name)

Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200' in all fields

Running Jobs

Jobid	Priority	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed	Job Scheduling Information
job_201009071658_0034	NORMAL	sleberkn	CitationHistogram	0.00%	1	0	0.00%	1	0	NA

Completed Jobs

Jobid	Priority	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed	Job Scheduling Information
job_201009071658_0001	NORMAL	sleberkn	com.nearinfinity.hadoop.wordcount.SimpleWordCount	100.00%	10	10	100.00%	1	1	NA
job_201009071658_0003	NORMAL	sleberkn	BetterWordCount	100.00%	10	10	100.00%	1	ī	NA
job 201009071658 0005	NORMAL	sleberkn	BetterWordCount	100.00%	10	10	100.00%	1	1	NA

Task Tracker

- Rastreia tarefas de map & reduce individualmente
- Relata o progresso de uma tarefa ao JobTracker

Hadoop map task list for job 201009071658 0035 on localhost

All Tasks

Task	Complete	Status	Start Time	Finish Time	Errors	Cou
task 201009071658 0035 m 000000	100.00%	65300 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/WarAndPeace.txt	7-Sep-2010 22:56:08	7-Sep-2010 22:56:20 (12sec)		11
task 201009071658 0035 m 000001	100.00%	54500 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/TheCountOfMonteCristo.txt	7-Sep-2010 22:56:08	7-Sep-2010 22:56:17 (9sec)		11
task 201009071658 0035 m 000002	100.00%	33000 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/Ulysses.txt	7-Sep-2010 22:56:17	7-Sep-2010 22:56:26 (9sec)		11
task 201009071658 0035 m 000003	100.00%	22100 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/MobyDick.txt	7-Sep-2010 22:56:20	7-Sep-2010 22:56:29 (9sec)		10
task 201009071658 0035 m 000004	100.00%	16600 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/Dracula.txt	7-Sep-2010 22:56:26	7-Sep-2010 22:56:32 (6sec)		10
task 201009071658 0035 m 000005	100.00%	11700 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/AdventuresOfHuckleberryFinn.txt	7-Sep-2010 22:56:29	7-Sep-2010 22:56:35 (6sec)		10
task 201009071658 0035 m 000006	100.00%	13000 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/AdventuresOfSherlockHolmes.txt	7-Sep-2010 22:56:32	7-Sep-2010 22:56:38 (6sec)		10
task 201009071658 0035 m 000007	100.00%	3600 lines processed from: hdfs://localhost:9000/user/sleberkn /wordcount/input/TheTimeMachine.txt	7-Sep-2010 22:56:35	7-Sep-2010 22:56:38 (3sec)		10
task 201009071658 0035 m 000008	0.00%		7-Sep-2010 22:56:38			0
task 201009071658 0035 m 000009	0.00%		7-Sep-2010 22:56:38			Q

