

Sandu leérettségizett, és úgy döntött, hogy szenvedélyét követve édességárus lesz.

A moldovai Balti városnak N darab piaca van, amelyeket utcák kötnek össze. A teljes piactérnek érdekes szerkezete van. Minden piac elérhető bármely másikból utcák sorozatán keresztül, és pontosan N-1 utca van. Sandu jelenleg az 1. piacon tartózkodik. Másszóval a piactér szerkezete leírható egy gyökeres fa struktúrával, ahol az 1. piac a gyökér.

Továbbá minden i. piacnak van egy t_i keménységi szintje és egy l_i tanulási szintje. Kezdetben minden piac tanulási szintje 0, és Sandu képzettsége is 0.

Amikor Sandu meglátogatja az i. piacot, akkor a képzettsége l_i -vel nő. Sandu akkor jár sikerrel az i. piacon, ha a képzettsége legalább t_i (a piac keménységi szintje). Megjegyzés: Sandu képzettsége akkor növekszik, mihelyt belép egy adott piacra, függetlenül attól, hogy ott sikerrel jár vagy sem. Ez azt is jelenti, hogy a képzettsége nő, mielőtt bármit tesz az adott piacon.

Mivel Balti egy nagyon forgalmas város, a következő Q nap mindegyikén lesz egy-egy esemény. A j. napon a j. esemény fog megtörténni. Egy eseményt két $\mathbf{pozit}i\mathbf{v}$ egész számmal írunk le: u_j -vel és x_j -vel, ami azt jelenti, hogy a j. napon az u_j . piacon oktatás történik, így a piac tanulási szintje véglegesen x_j -vel megemelkedik. Másszóval: a j. esemény azt jelenti, hogy a j. napon a tanulási szint x_j -vel nő az u_j . piacon ($l_{u_i}:=l_{u_i}+x_j$).

Sandunak az a terve, hogy meglátogat néhány piacot, és ott cukorkákat árul. Minden nap kiválaszt egy k sorszámú piacot, és az első piac és a k. piac közötti úton lévő összes piacot meglátogatja, az 1-ből indulva a k-ban végezve. Sandu minél több piacon sikeres szeretne lenni. Az útját mindenképpen folytatja a k. piac felé, attól függetlenül, hogy útja közben sikeres volt-e vagy sem. Sandu minden nap az 1. piacról indul, és a képzettsége lenullázódik, azaz minden nap 0 képzettséggel indul útjára.

Minden egyes j. napra segíts Sandunak megtalálni a legtöbb olyan piacot, ahol sikerrel járhat, ha optimálisan választja ki a j. napi utolsó piac helyét.

Bemenet

A bemenet első sora két egész számot tartalmaz, N-t és Q-t ($1 \le N, Q \le 5 \cdot 10^5$).

A második sor N-1 darab egész számot tartalmaz, amelyek a piacok fa szerkezetét írják le: $p_2,...,p_N$, ami azt jelenti, hogy p_i és i között létezik él, és p_i az i közvetlen őse. Megjegyzés: mivel

az 1 a gyökér, ezért $p_1=-1$.

Továbbá minden i esetén teljesül az $1 \le p_i < i$ feltétel.

A harmadik sor N darab egész számot tartalmaz: t_1 , t_2 , ..., t_N ($0 \le t_i \le 10^9$) - az i. piac keménységi szintjét.

Ezután Q darab sor következik, amelyek a j. napon bekövetkező eseményeket jelölik.

A j. sor két egész számot tartalmaz, u_j -t és x_j -t, amelyek a j. nap eseményét írják le ($1 \le u_j \le N$, $1 \le x_j \le 10^9$).

Kimenet

A kimenet Q sorból álljon, a j. sorban a j. napra adott választ legyen.

Példák

Input	Output
125 1133167191011 126354652345 11 11 32 63 96	1 2 2 3 5
5 4 1 2 3 4 1 2 5 6 7 1 1 1 2 1 1 1 2	1 2 2 4
55 1111 12345 44 22 55 11	1 1 1 2 2

Az első példában a kezdeti fa így néz ki. A képen a pontok jobb oldalán lévő számok az adott piac tanulási szintjét, a pontok bal oldalán lévő számok pedig a megfelelő piac keménységi szintjét jelölik.

Az első napon a fa a következő módon változik és az egyik lehetséges optimális piac, ahová Sandu mehet, a 6., ezzel a maximális 1 választ kapva, mivel csak az 1. piac tanulási szintje legalább annyi, mint a keménységi szintje (1).

A második napon a válasz 2-re változik, mivel Sandu választhatja, hogy a 2. piacra megy: az 1. piacon 2 képzettséget kap, ami nagyobb vagy egyenlő az 1. és a 2. piac keménységi szintjénél is.

A harmadik napon a válasz nem, de a fa az alábbi módon változik:

A negyedik napon a válasz 3-ra változik, mivel ha Sandu az 1. piacról indul, akkor a képzettsége 2-re javul, ami azt jelenti, hogy az 1. piacon sikeres. Ezután a 6. piacra lép, ahol a képzettsége 5-re javul, vagyis a 6. piacon is sikeres. Ezután a 7. piacra lép, ahol nem jár sikerrel, majd a 8. piacra lép, ahol újra sikeres, mivel $5 \geq 5$.

Az utolsó napon a fa a következőképpen változik, és az optimális válasz 5, mivel Sandu a 12. piacra mehet, és az 1., 9., 10., 11., 12. piacokon is sikeres lesz.

Korlátok és pontozás

- $1 \le N, Q \le 5 \cdot 10^5$.
- $1 \leq p_i < i$ mindig teljesül.
- $0 \le t_i \le 10^9$ minden i-re ($1 \le i \le N$).
- $1 \leq u_j \leq N$ minden j-re ($1 \leq j \leq Q$).
- $1 \le x_j \le 10^9$ minden j-re ($1 \le j \le Q$).

A megoldásodat különböző tesztcsoportokon ellenőrzik, ahol minden tesztcsoportnak önálló pontértéke van. Minden tesztcsoport több tesztesetet tartalmaz. Egy tesztcsoport pontjainak megszerzéséhez a programodnak a tesztcsoport összes tesztesetét helyesen kell megoldania.

Tesztcsoport	Pontszám	Korlátok
1	7	$p_i = 1$ minden i -re ($1 < i \le N$) és $N, Q \le 2000$.
2	8	$N,Q \leq 2000$, és a fa: $p_i = i-1$ minden i -re
3	17	A fa $p_i = i-1$ minden i -re ($1 < i \le N$)
4	12	$N,Q \leq 2000$
5	21	$u_j=1$ minden eseményre
6	24	$N,Q \leq 10^5$
7	11	Nincsenek további korlátok.