#### Data-driven Intelligent Systems

# Lecture 22 Mining Structure from Graphs II



http://www.informatik.uni-hamburg.de/WTM/

#### Overview

- Spectral Clustering
- Semantic Networks
- Bayesian Belief Networks

# **Spectral Clustering**



Ng, Jordan, Weiss. On Spectral Clustering: Analysis and an algorithm. NIPS, 2001

# **Spectral Clustering**



### Spectral Clustering Idea I/II

- Information about the distances between any two data points will be needed
  - ightarrow similarity (affinity) matrix  $A \in R^{n \times n}$  where n = number of data points
    - Affinities A<sub>ij</sub> large, if data points i and j nearby
  - A<sub>ij</sub> ≈ 0, if i and j far apart (in different clusters)
  - $A_{ij} = A_{ji}$  i.e. A is symmetric
    - → Eigenvectors orthogonal (for unequal eigenvalues)

# Spectral Clustering Idea II/II

- Uses spectrum (all eigenvalues) of affinity matrix  $A \in \mathbb{R}^{n \times n}$  (n = number of data points)
- Mapping to  $R^k$  reduces dimensionality  $(k = number \ of \ clusters; \ k << n)$
- It will turn out: mapped to eigenvectors in  $R^k$ , data will form tight clusters at 90° w.r.t each other
- Ng, Jordan, Weiss (2001) model one of many variations

- Given a set of points  $S = \{s_1, ..., s_n\} \in R^l$
- Aim: compute direct k—way partitioning
  - (NOT: generate two clusters, then recurse to generate more)
  - Most parts of the spectral clustering algorithm do not need k to be specified
     (just: k ≤ n)

- Form the affinity matrix  $A \in R^{nxn}$
- Define  $A_{ij}=e^{-||s_i-s_j||^2/2\sigma^2}$  if i 
  eq j else  $A_{ii}=0$ 
  - Scaling parameter  $\sigma$  chosen by user
  - Actual data values get lost only proximities count!
- Only for normalisation, define D a diagonal matrix whose (i,i) element is the sum of A's row i
  - $D_{ii}$  is large for elements i that have many large  $A_{ij}$  (i.e. many neighbours)

- Normalized affinity matrix:  $L = D^{-1/2}AD^{-1/2}$
- Find  $x_1, x_2, ..., x_k$ , the k eigenvectors of L that belong to the k largest eigenvalues
  - these eigenvectors show to directions of largest, 2<sup>nd</sup>-largest, ..., k<sup>th</sup>-largest covariance
- These form the k columns of the new matrix X
  - $\rightarrow$  dimension reduces from  $n^x n$  to  $n^x k$

data



OR



normalized affinity matrix *L* 



only for display: *L* made block-diagonal by sorting data points

matrix X



First three eigenvectors k=3

Each row of X represents
one data point

→ points cluster at coordinate axes in 3D space

# Ex.: Eigenvectors to a block-diagonal Matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \boxed{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \boxed{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

← Eigenvector!

data



OR



normalized affinity matrix *L* 



only for display: *L* made block-diagonal by sorting data points

matrix X



First three eigenvectors k=3

Each row of X represents
one data point

→ points cluster at coordinate axes in 3D space

- For normalisation, from X form the matrix  $Y \in R^{nxk}$ 
  - Renormalize each of X's rows (it has n rows) to have unit length

$$Y_{ij} = X_{ij} / (\sum_{j} X_{ij}^{2})^{1/2}$$

- Treat each row of Y as a point in  $R^k$ 
  - all points will lie on a unit sphere around the origin
  - they will form clusters at ~90° to each other

- Cluster into k clusters, e.g. via k-means
- Final cluster assignment
  - Assign point  $S_i$  to cluster j iff row i of Y was assigned to cluster j

# **Spectral Clustering** *k*=2 rows of Y

#### Results

# Comparison: k-Means (directly on the data)



# Spectral Clustering: Choice of $\sigma$

$$A_{ij}=e^{-(s_i-s_j)^2/2\sigma^2}$$
  $i
eq j$  "closer" vertices get larger weight

- search over σ
  - pick the value that after clustering Y's rows yields the tightest (smallest distortion) clusters
- Affinity metrics for connected graphs:
  - $A_{ij} = 1$ , if nodes *i* and *j* are connected, else  $A_{ij} = 0$
  - or: a function of geodesic distance

# Spectral Clustering: Choice of k

Is the Davies-Bouldin index a good measure for these kinds of clusters?



 No! It compares distances of points to mean versus distances between means (in this example, means are all same!)

Use *eigengap* heuristic to find the optimal *k*:

- Sort the eigenvalues (spectrum) of the normalized affinity matrix, and plot them according to that order
- Search for steps in that function: k is good if the k<sup>th</sup> eigenvalue is large and eigenvalue k+1 drops off a lot



#### Overview

- Spectral Clustering
- Semantic Networks
- Bayesian Belief Networks

#### Semantic Networks

Graphical representation of concepts and relations:



- labeled nodes (vertices) = concepts
- directed labeled links (edges) = binary relations

- Where is the semantics?
  - Are there any types of nodes and types of links that are valid in general, independent of a particular domain?
  - Is there any structuring rule which is valid in general, independent of a particular domain?
  - Are there generally valid inference procedures to derive knowledge which is not explicitly stated?

#### Basic Relations in Semantic Networks



#### Concepts and Individuals

Nodes of a Semantic Network describe concepts and individuals.

A concept denotes a **set of objects**.

An individual denotes a single object.



 $C_1$  IS-A  $C_2$ o INSTANCE C specifies that C<sub>1</sub> is a subset of C<sub>2</sub>

o INSTANCE C specifies that o is a member of C



A node may represent both, an individual or a concept. Example:

Max likes a Porsche.

Max bought a Porsche
at the car dealer.

#### Inferences in Semantic Networks



Leg

Has-part

**INSTANCE** 

Person

john

c INSTANCE C<sub>2</sub>

 $C_2 \operatorname{Rel} C_3 \Rightarrow \operatorname{c} \operatorname{Rel} C_3$ 

### Special Semantics for Special Relations

Special relations may support special inferences.

#### Examples:

Above(a, b)  $\land$  Above(b, c)  $\Rightarrow$  Above(a, c) Has-part(a, b)  $\land$  Has-Part(b, c)  $\Rightarrow$  Has-Part(a, c) Left(a, b)  $\Rightarrow$  Right(b, a)



- The rules for inferences may change from domain to domain, hence they must be explicitly stated.
  - ⇒ "axiomatizing a domain"
- Spatial reasoning, temporal reasoning are disciplines dealing with axiomatizations of spatial, part-of- and temporal relationships.

#### N-ary Relations in Semantic Networks

- Semantic Networks allow the representation of binary relations.
- Any N-ary relation can be represented by multiple binary relations
- Example:



Between(Left, Middle, Right)



#### Attribute-Object-Value Triplets

In knowledge representation- and programming languages, a Semantic Network can be represented by a set of triplets:



The accident example:

```
(is-a traffic-accident accident)
(instance traffic-accident-4711 traffic-accident)
(driver traffic-accident-4711 Max-Meier)
(location traffic-accident-4711 Siemersplatz)
(date traffic-accident-4711 13.2.12)
(vehicle traffic-accident-4711 HH-PK-479)
```

#### Matching Relational Structures

Accident

 Semantic Networks applications often involve matching one network against another



#### Semantic Network (SN) Queries

- A SN query is a description of desired query responses in terms of a SN using an extended concept language.
- Typical concept language extensions:

x individual variable

X concept variable

{a, b, c} set of individuals

<= 2012 predicate over a concrete domain individual

#### **Matching rules:**

A query Q matches a database D, if there is an *injective* mapping of all nodes and links in Q to nodes and links in D such that the corresponding nodes and links are compatible.



### Object Classification by Relational Matching



- For matching:
- exploit INSTANCE and ISA inheritance
- Class descriptions must be given in terms of sufficient conditions
- → Graphs are classified by query matching

#### Semantic Networks – Summary

- Complex problems can be expressed by graphs
- Intuitive graphical knowledge representation
- Classification and information retrieval by query matching
- Semantics of relations is well-defined for ISA and INSTANCE, but not clearly defined in general
- Need for domain-specific inference rules ("axiomatizing")
- Relations between relations cannot be expressed
- Generally, useful functions require additional formalisms such as rule-based inferences and new techniques from machine learning and automatic access, tagging, retrieval, pattern matching

#### Overview

- Spectral Clustering
- Semantic Networks
- Bayesian Belief Networks

#### Probabilistic Graphical Models

- Modelling of observations and their relationships
- Until now: semantic networks
- Reasoning over properties inherited from other instance(s)
  - is-a, has-a relationships

But how certain are we about the resulting statements?

- Make inference under uncertainty
- Stochastics helps us with that
- Probabilistic Graphical Model can be directed or undirected

# **Bayes Theorem**

Two stochastic events, H and D:



$$P(H,D) = P(D | H) \cdot P(H)$$

$$= P(H | D) \cdot P(D)$$

$$P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)}$$



#### Bayesian Belief Network

also known as probabilistic, or *Bayesian network*. Components:

- 1. A directed acyclic graph (called a structure)
  - models causal influence relationships
  - represents dependencies among the variables

allows class conditional independencies between subsets of

variables



- Nodes: random variables
- Links: dependency
- X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- Has no loops/cycles
- 2. A set of conditional probability tables (CPTs)
  - gives a specification of joint probability distribution

#### "Conditional Independence"

S and H are both influenced by W

If S is observed to be true, it is more likely that W is true,



- If W is known (true or false), then S and H are independent
  - → S and H are conditionally independent given W

### "Explaining away"

- D and W are independent
- both increase the likelihood of H to be true



Hulk causes accident

- If H is observed, it is more likely that D or/and W are true
- If also D is observed to be true, then likelihood of W being true reduces again
  - → it is "explained away"

#### A Bayesian Network and Some of Its CPTs



**CPT: Conditional Probability Tables** 

| Fire  | Smoke | P(S F) |
|-------|-------|--------|
| True  | True  | .9     |
| False | True  | .01    |

| Fire  | Tampering | Alarm | P(A F,T) |
|-------|-----------|-------|----------|
| True  | True      | True  | .5       |
| True  | False     | True  | .99      |
| False | True      | True  | .85      |
| False | False     | True  | .0001    |

CPT shows the conditional probability for each possible combination of its parents

#### A Bayesian Network and Some of Its CPTs



The joint probability P(S,F,A,L,R,T) is over  $O(2^6)$  states.

It would require (too) many observations to quantify the probabilities of all combinations.

Bayes network: can compute the joint probability, while knowing only the conditional probabilities.

Savings arise due to missing links that denote no direct dependencies.

Derivation of the probability of a particular combination of values of *X*, from CPT:

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(x_i))$$

#### A Bayesian Network and Some of Its CPTs



has  $O(2^6)$  combinations P(S,F,A,L,R,T)

product rule

= P(T) P(S,F,A,L,R|T)

F and S are independent of T

= P(T) P(S,F,T) P(A,L,R|S,F,T)

product rule / depend on S

A,L,R don't

= P(T) P(F) P(S|F) P(A,L,R|F,T)

L and R are conditionally

independent of F and T given A = P(T) P(F) P(S|F) P(A|F,T) P(L,R|A,F,T)

L and R are

independent given A

= P(T) P(F) P(S|F) P(A|F,T) P(L|A) P(R|A)

has  $O(2^2)$  combinations only

#### Types of Reasoning in Bayesian Networks

#### Diagnostic

 From symptoms to causes, e.g., doctor infers diseases from symptoms. Reasoning occurs in opposite direction to network arcs.

#### Predictive

 Reasoning from new information about causes to new beliefs about effects, follows the directions of the networks arcs.

#### Inter-causal (explaining away)

 Mutual causes of a common effect. Initially, causes may be independent. But if a common effect is observed and we learn that one cause is true, then the other is less likely.

#### Conditional Independence

Mutual effects of a common cause. If one
effect is observed, the cause and hence the
other effect is more likely. If we know the
cause, then the effects become independent.







#### How Are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure
  - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
  - Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
    - E.g.,  $S \leftarrow F \rightarrow A \leftarrow T$ , path  $S \rightarrow A$  is blocked once we know  $F \rightarrow A$
  - HMM (Hidden Markov Model): often used to model dynamic systems whose states are not observable, yet their outputs are
- Synthesis from other specifications
  - E.g., from a formal system design: block diagrams & info flow
- Learning from data
  - E.g., from medical records or student admission record
  - Learn parameters given its structure or learn both structure and params
  - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

#### **Training Bayesian Networks**

- Scenario 1: Given the network structure and all variables observable:
  - → compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden:
  - → gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
    - Weights are initialized to random probability values
    - At each iteration, it moves towards what appears to be the best solution at the moment
    - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable:
  - → search through the model space to *reconstruct network topology*

#### Summary

- Spectral clustering
  - for graphs, or for any points with distances in between
- Semantic networks
  - Graphical models for knowledge representation
  - Domains need axiomatizing
- Probabilistic reasoning
  - Bayesian Belief Networks efficiently compute joint probabilities
  - benefit from direct independencies among the variables