Predicting Link Directions via a Recursive Subgraph-based Ranking

(Oh no, yet another ranking...)

Fangjian Guo

Web Sciences Center

June 21st, 2012

Task

— Estimating the probability of links that are missing or unobserved in our data

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks *Methods*

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks Methods

Similarity-based index

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks Methods

- Similarity-based index
- Fitting a statistical model

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks Methods

- Similarity-based index
- Fitting a statistical model
- ..

Task

— Estimating the probability of links that are missing or unobserved in our data

Evaluation

— Hide & Check

Studied mainly for undirected networks Methods

- Similarity-based index
- Fitting a statistical model
- ...

Predicting link = predicting existence

But how to predict links for directed networks?

But how to predict links for directed networks?

Generally, two schemes:

But how to predict links for directed networks?

Generally, two schemes:

• Existence & direction simultaneously

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

Fitting a statistical graph model

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

 Fitting a statistical graph model
Clauset et al. Hierarchical structure and the prediction of missing links in networks, Nature (2008)

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

Fitting a statistical graph model
Clauset et al. Hierarchical structure and the prediction of missing links in networks,
Nature (2008)

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

 Fitting a statistical graph model
Clauset et al. Hierarchical structure and the prediction of missing links in networks, Nature (2008)

Matching local motifs

But how to predict links for directed networks?

Generally, two schemes:

- Existence & direction simultaneously
- 1. Existence → 2. direction if exist

Methods for the first scheme

 Fitting a statistical graph model
Clauset et al. Hierarchical structure and the prediction of missing links in networks, Nature (2008)

Matching local motifs
Qianming Zhang, unpublished

However, we choose the second scheme

However, we choose the second scheme

Suppose we know $(i_1,j_1),(i_2,j_2),\cdots,(i_n,j_n)$ are connected pairs, how to predict their directions?

However, we choose the second scheme

Suppose we know $(i_1,j_1),(i_2,j_2),\cdots,(i_n,j_n)$ are connected pairs, how to predict their directions?

Key assumption

However, we choose the second scheme

Suppose we know $(i_1,j_1),(i_2,j_2),\cdots,(i_n,j_n)$ are connected pairs, how to predict their directions?

Key assumption

The formation of a directed network is regulated by *an implicit ranking of nodes!*

However, we choose the second scheme

Suppose we know $(i_1, j_1), (i_2, j_2), \cdots, (i_n, j_n)$ are connected pairs, how to predict their directions?

Key assumption

The formation of a directed network is regulated by **an implicit ranking of nodes!**

Evidence

Evidence

• Comparatively only a few links are reciprocal.

Evidence

- Comparatively only a few links are reciprocal.
- Constructing maximum acyclic graph from directed networks

Evidence

- Comparatively only a few links are reciprocal.
- Constructing maximum acyclic graph from directed networks

 R_1 : 1 2 3 6 5 4

R₂: 1 3 2 5 6 4

Evidence

- Comparatively only a few links are reciprocal.
- Constructing maximum acyclic graph from directed networks

R₂: 1 3 2 5 6 4

• Even M. E. J. Newman thinks it so.

Evidence

- Comparatively only a few links are reciprocal.
- Constructing maximum acyclic graph from directed networks

R₁: 1 2 3 6 5 4 R₂: 1 3 2 5 6 4

• Even M. E. J. Newman thinks it so. Friendship networks and social status, Brian Ball and M. E. J. Newman, submitted.

Our method

Two steps

Our method

Two steps

 $oldsymbol{0}$ Rank all nodes in the network G/E_c (E_c refers to the links to be predicted)

Our method

Two steps

- **1** Rank all nodes in the network G/E_c (E_c refers to the links to be predicted)
- **2** Predict links in E_c by the rule:

Our method

Two steps

- $oldsymbol{0}$ Rank all nodes in the network G/E_c (E_c refers to the links to be predicted)
- 2 Predict links in E_c by the rule: $i \rightarrow j$, if R(i) > R(j)

Our method

Two steps

- **1** Rank all nodes in the network G/E_c (E_c refers to the links to be predicted)
- 2 Predict links in E_c by the rule: $i \to j$, if R(i) > R(j)

Evaluation

Our method

Two steps

- **1** Rank all nodes in the network G/E_c (E_c refers to the links to be predicted)
- 2 Predict links in E_c by the rule: $i \rightarrow j$, if R(i) > R(j)

Evaluation

Conformity

$$C = \frac{\|\{(i,j) \in E_c \mid R(i) > R(j), i \to j\}\|}{\|E_c\|}$$

Two ingredients

Two ingredients

Local indicator

Two ingredients

 $\mbox{\bf 1} \mbox{ Local indicator} \\ \mbox{ Degree difference } D^{\Delta} = D^{in} - D^{out}$

Two ingredients

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

7 / 11

Local indicator

- Local indicator
- 2 Hierarchical organization via subgraph extraction

- Local indicator
- 2 Hierarchical organization via subgraph extraction

- Local indicator
- 2 Hierarchical organization via subgraph extraction

$$\text{Leaders } V_L(\,\widetilde{V}) = \{j \in \, \widetilde{V} | \mathit{I}(j;\,\widetilde{V}) < \alpha \|\,\widetilde{V}\| \}$$

- Local indicator
- 2 Hierarchical organization via subgraph extraction

$$\begin{array}{l} \text{Leaders} \ V_L(\widetilde{\,V\!}) = \{j \in \ \widetilde{\!V\!}| I(j;\,\widetilde{\!V\!}) < \alpha \|\,\widetilde{\!V\!}\| \} \\ \text{Followers} \ V_C(\,\widetilde{\!V\!}) = \{j \in \ \widetilde{\!V\!}| I(j;\,\widetilde{\!V\!}) \geq \alpha \|\,\widetilde{\!V\!}\| \} \end{array}$$

- Local indicator
- 2 Hierarchical organization via subgraph extraction

Leaders
$$V_L(\widetilde{V}) = \{j \in \widetilde{V} | I(j; \widetilde{V}) < \alpha || \widetilde{V} || \}$$

Followers $V_C(\widetilde{V}) = \{j \in \widetilde{V} | I(j; \widetilde{V}) \ge \alpha || \widetilde{V} || \}$
Recursive ranking

$$R(i;\widetilde{V}) = \begin{cases} 1 & \|\widetilde{V}\| = 1 \\ R(i;V_L(\widetilde{V})) & \|\widetilde{V}\| \ge 1, i \in V_L(\widetilde{V}) \\ \|V_L(\widetilde{V})\| + R(i;V_C(\widetilde{V})) & \|\widetilde{V}\| \ge 1, i \notin V_L(\widetilde{V}), \end{cases}$$

Selecting α

Selecting α

9 / 11

Selecting α

We thus choose

$$\alpha = 0.6$$

Performance

Performance

• Predicting reciprocal links?

- Predicting reciprocal links?
- 2 A more solid rationale?

- Predicting reciprocal links?
- 2 A more solid rationale?
- 3 Link breaking problem?

- Predicting reciprocal links?
- 2 A more solid rationale?
- 3 Link breaking problem?

Thank you!

(Our paper can be downloaded at arXiv:1206.2199)