FETAL HEALTH CLASSIFICATION

(Bachelor Thesis optimization)

BY: NOOR KHARISMAWAN AKBAR

PROJECT BACKGROUND

PROBLEM STATEMENT

In this work, we use machine learning to **predict fetal health** to prevent maternal and child deaths.

GOAL & OBJECTIVE

Classify the health of a fetus as Normal, Suspect or Pathological using CTG data

DATASET

Fetal_health.csv

https://www.kaggle.com/datasets/andrewmvd/fetal-healthclassification/download?datasetVersionNumber=1

MODEL EVALUATION

R^2(coefficient of determination)

WORKING FLOW

- 1 EDA
 - -Visualization every column
 - -Visualization group by fetal_health
- 2 DATA CLEANING
 - -Detecting n.a. values
 - -Detecting null values

Values	Sum
n.a.	0
Null	0

- 3 MODEL BUILDING
 - -Handling imbalanced data

fetal_health	1.0	2.0	3.0
Before	1,655	295	176
After	1,655	1,655	1,655

-Train-Test Split

fetal_health	Train	Test
Ratio	80%	20%
Shape	(3972, 21)	(993, 21)

-Normalization -> Using StandardScaler

-Cross-Validation

Values	Sum
Sampling	StratifiedKFold
N_splits	3
N_jobs	2

- 4 MACHINE LEARNING MODEL
 - Gradient Boosting Machine (GBM)
 - K-nearest neighbors (KNN)
 - Logistic Regression (LR)
 - Random Forest (RF)
 - Support Vector Machine (SVM)
- 5 SAVING MODEL

Using pickel

DATASET INSIGHT

Rows	Columns	Data Type
2126	22	float64

fetal_health	Sum
1.0	Normal
2.0	Suspect
3.0	Pathological

Number of samples of each class (before oversampling) 1600 1400

2.0

3.0

1200

800

600

400

200

1.0

- 0.5

DATASET INSIGHT

fetal_health

fetal_health	1.000000
prolongued_decelerations	0.484859
abnormal_short_term_variability	0.471191
percentage_of_time_with_abnormal_long_term_variability	0.426146
accelerations	0.364066
histogram_mode	0.250412
histogram_mean	0.226985
mean_value_of_long_term_variability	0.226797
histogram_variance	0.206630
histogram_median	0.205033
uterine_contractions	0.204894

Top 3 columns that has highest correlation with fetal_health:

- prolongued_decelerations
- abnormal_short_term_variability
- percentage_of_time_with_abnormal_long_term_variability

MACHINE LEARNING MODELLING

Models	Training Score	Testing Score	Error
K-nearest neighbors	99.95%	97.28%	2.67%
Random Forest	99.95%	96.88%	3.07%
Gradient Boosting classifier	99.95%	95.97%	3.98%
Support Vector Machine	99.85%	98.59%	1.26%
Logistic Regression	85.88%	84.49%	1.38%

There are 3 models that have the largest training scores, namely: K-nearest neighbors, Random Forest, and Gradient Boosting classifier with a value of 99.95%. Of the three models, the K-nearest neighbors model has the largest testing score with a value of 97.28% which produces the smallest error with a value of 2.67%. This shows that the K-nearest neighbors is the most suitable model to predict this fetal_health.csv dataset.

HYPERPARAMETER TUNING

Models	Testing Score Before Tuning	Testing Score Before Tuning	Diff	
Support Vector Machine	92.85%	98.59%	5.74%	
K-nearest neighbors	94.36%	97.28%	2.92%	✓
Gradient Boosting classifier	94.46%	95.97%	1.51%	✓
Random Forest	97.08%	96.88%	-0.02%	
Logistic Regression	85.80%	84.49%	-1.30%	

Hyperparameter tuning was successfully performed on 3 models, namely **Support Vector Machine**, **K-nearest neighbors**, **and Gradient Boosting Classifier**. where the three models experienced an increase in testing scores of **1-6%**. For the Random Forest & Logistic Regression model, the Testing Score has decreased. This can be caused because the default parameters still perform better than the parameters in the state for tuning.

BEST MODEL: KNN

1 MACHINE LEARNING MODEL
K-nearest Neighbors (KNN)

2 PERFORMANCE ACCURACY

• Train data: 99.95%

• Test data: 97.28%

• Error margin: 2.67%

HYPERPARAMETER LIST

• 'leaf_size': [1, 2, 3, 4, 5, 6, 7, 8, 9],

'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9],

• 'p': [<u>1</u>, 2]

4 TUNNING RESULT

• Test data (before): 94.36%

• Test data (after): 97.28%

• Differences: 2.92%

Confusion Matrix for Testing Model (K-nearest neighbors)

CONCLUSION

BEST MODEL

K-nearest neighbors, with:

Train data: 99.95%Test data: 97.28%Error margin: 2.67%

Success tuning for **Support Vector Machine**, **K-nearest neighbors**, **and Gradient Boosting Classifier** with increase 1-6%

RECOMMENDATION

- Building a model using **feature selection** to select column that only have high correlation with target (fetal_health).
- Find the best parameter for Random Forest that can increase the accuracy of tuned score

THANK YOU