General Facts

July 21, 2015

Contents

1	Algebra	2
2	Analysis 2.1 Basics 2.2 Functional Analysis 2.3 Fixed Point Theorems 2.4 Fredholm Theory 2.5 Sobolev Spaces	2 2 3 3 3
3	Topology	4
4	Algebraic Topology	4
5	Differential Topology	4
6	Riemannian Geometry 6.1 Hypersurfaces	4 4
7	Riemann Surfaces	4
0	8.1 Definitions	4
9	Symplectic Geometry9.1Basics9.2Examples9.3Lagrangian Submanifolds9.4Various Topics9.5 J -holomoprhic Curves9.6Compactness Results9.7Conjectures9.8Dynamics9.9Contact Geometry9.10Theorems9.11Homology Theories9.11.1Quantum Homology9.11.2Contact Homology9.11.3Cylindrical Contact Homology9.11.4Linearized Contact Homology9.11.5Embedded Contact Homology9.11.6Symplectic Homology9.11.7 S^1 -equivariant Symplectic Homology	5 5 5 7 7 8 8 8 9 9 9 9 9

9.11.8	Hamiltonian Floer Homology													9
9.11.9	Lagrangian Floer Homology .		 											9
9.11.10	Rabinowitz–Floer Homology		 											9
9.11.11	Knot-Contact Homology		 											9
9.11.12	2 Instanton–Floer Homology .		 											9
9.11.13	Khovanov Homology													9
9.11.14	Heegard-Floer Homology		 											9

1 Algebra

Definition 1 (Novikov Ring). The Novikov ring over a base field K is defined by

$$\Lambda_0 := \left\{ \sum_{i=0}^{\infty} a_i T^{\lambda_i} \middle| a_i \in \mathbb{K}, \lambda_i \in \mathbb{R}_{\geq 0}, \lim_{i \to \infty} \lambda_i = +\infty \right\}.$$

The Novikov field is the field of fractions of Λ_o , i.e.

$$\Lambda := \left\{ \sum_{i=0}^{\infty} a_i T^{\lambda_i} \middle| a_i \in \mathbb{K}, \lambda_i \in \mathbb{R}, \lim_{i \to \infty} \lambda_i = +\infty \right\}.$$

2 Analysis

2.1 Basics

Definition 2 (Equicontinuos Family). Let X be a compact Hausdorff space and C(X) denote the space of real-valued continuous funtions on X. A subset $F \subset C(X)$ is called *equicontinuous* if for every $x \in X$ and every $\epsilon > 0$ there exists a neighborhood U of x such that for all $y \in U$ and all $f \in F$ we have $|f(y) - f(x)| < \epsilon$.

Definition 3 (Pointwise Bounded Family). A set $F \subset C(X)$ of continous real-valued functions on some compact Hausdorff space X is *pointwise bounded* if for every $x \in X$ we have $\sup\{|f(x)| : f \in F\} < \infty$.

Theorem 1 (Arzéla–Ascoli). Let X be a compact Hausdorff space. Then $F \subset C(X)$ is relatively compact in the topology induced by uniform norm if and only if it is equicontinous and pointwise bounded.

Corollary 1. Consider a sequence of real-valued continuous functions $\{f_n\}_{n\in\mathbb{N}}$ defined on a closed and bounded interval [a,b] of the real line. There exists a subsequence of $\{f_n\}$ which converges uniformly if and only if this sequence is uniformly bounded and equicontinuous.

2.2 Functional Analysis

Definition 4 (Weak Topologies). Let X be a topological vector space. Then the *weak* topology on X is defined by $x_n \longrightarrow x$ if and only if $\phi(x_n) \longrightarrow \phi(x) \ \forall \phi \in X^*$, where X^* is the topological dual of X, i.e. the space of all continuous linear functionals on X. The *weak-* topology* on X^* is defined by $\phi_n \longrightarrow \phi$ if and only if $\phi_n(x) \longrightarrow \phi(x) \ \forall x \in X$.

Remark 1. The weak-* topology on X^* is weaker than the weak topology on X^* , because in general $X \longrightarrow X^{**}$ is an injective linear map and the weak-* topology is defined as the coarsest topology such that the image of X in X^{**} still consists of continuous maps $X^* \longrightarrow \mathbb{R}$.

Theorem 2 (Open Mapping Theorem). Let X and Y be Banach (or Fréchet) spaces and $A: X \longrightarrow Y$ a surjective continuous linear operator. Then A is an open map.

Theorem 3 (Bounded Inverse Theorem). If $A: X \longrightarrow Y$ is a bijective continuous linear operator between the Banach spaces X and Y, then the inverse operator $A^{-1}: Y \longrightarrow X$ is continuous as well.

Theorem 4 (Closed Graph Theorem). If $A: X \longrightarrow Y$ is a linear operator between the Banach spaces X and Y, and if for every sequence (x_n) in X with $x_n \longrightarrow 0$ and $Ax_n \longrightarrow 0$ it follows that y = 0, then A is continuous.

Definition 5 (Fréchet Space). A topological vector space X is called a *Fréchet* space if and only if it satisfies one of the following equivalent triples of conditions:

- 1. X is locally convex, its topology can be induced by a translation invariant metric and it is a complete metric space.
- 2. X is a Hausdorff space, its topology may be induced by a countable family of semi-norms and it is complete with respect to the family of semi-norms.

Definition 6 (Baire Space). A *Baire space* is a topological space with the property that for each countable collection of open dense sets their intersection is also dense.

Theorem 5 (Baire Category Theorem). 1. Every complete metric space is Baire.

- 2. Every locally compact Hausdorff space is Baire.
- 3. A non-empty complete metric space is not the countable union of nowhere-dense closed sets.

Definition 7 (Comeagre or Residual Set).

Definition 8 (Compact Operator).

2.3 Fixed Point Theorems

Theorem 6 (Brouwer Fixed Point Theorem). Every continuous function from a convex compact subset K of a Euclidean space to K itself has a fixed point.

Theorem 7 (Schauder Fixed Point Theorem). Every continuous function from a convex compact subest K of a Banach space to K itself has a fixed point.

Definition 9 (Contraction Mapping). Let (X,d) be a metric space. Then a map $T: X \longrightarrow X$ is called a contraction mapping on X if there exists a $q \in [0,1]$ such that $d(T(x),T(y)) \leq qd(x,y)$ for all $x,y \in X$.

Theorem 8 (Banach Fixed Point Theorem). Let (X, d) be an non-empty complete metric space with a contraction mapping $T: X \longrightarrow X$. Then T admits a unique fixed-point $x^* \in X$. Furthermore, x^* can be found as follows: start with an arbitrary element $x_0 \in X$ and define a sequence $\{x_n\}$ by $x_{n+1} = T(x_{n-1})$, then $x_n \longrightarrow x^*$.

Definition 10 (Lefschetz Number). Let $f: X \longrightarrow X$ be a continuous map from a compact triangulizable space X to itself. Define the Lefschetz number Λ_f by

$$\Lambda_f := \sum_{k \ge k} (-1)^k \operatorname{Tr}(f_*|_{H_k(X,\mathbb{Q})})$$

Theorem 9 (Lefschetz Fixed Point Theorem). If $\Lambda_f \neq 0$ then f has at least one fixed point. Furthermore, if you denote by i(f,x) the index of the fixed point x and if f has only finitely many fixed points, then

$$\sum_{x \in \text{Fix}(f)} i(f, x) = \Lambda_f.$$

2.4 Fredholm Theory

Definition 11 (Fredholm Operator).

Proposition 1 (Properties of Fredholm Operators).

Theorem 10 (Elliptic Regularity).

2.5 Sobolev Spaces

Definition 12 (Sobolev Spaces).

Theorem 11 (Sobolev Embedding Theorems).

3 Topology

Remark 2. A topology τ_1 is called weaker or coarser than τ_2 if τ_1 contains less open sets than τ_2 . If $\tau_2 \subset \tau_1$ then τ_1 is called stronger or finer. This means that if a sequence converges in one topology then it also converges in every weaker topology as there are less open sets to test the condition on.

4 Algebraic Topology

Theorem 12 (Alexander Duality).

5 Differential Topology

Definition 13 (Ruled 4-Manifold). A manifold M of dimension 4 is called *ruled* if it is a S^2 -bundle over a closed Riemann surface.

Definition 14 (Fibered Knot). A knot $K \subset S^3$ is called *fibered* if there exists a S^1 -family F_t with $t \in S^1$ of Seifert surfaces for K such that $F_s \cap F_t = K$ for all $s \neq t$.

Proposition 2. A knot is fibered if and only if it is the binding of some open book decomposition of S^3 . **Definition 15** (Heegard Splittings and Diagrams).

6 Riemannian Geometry

6.1 Hypersurfaces

Definition 16 (Shape operator or Weingarten map). Let $S \subset \mathbb{R}^n$ be a smooth hypersurface in Euclidean n-space. Then the *shape operator* or *Weingarten map* S_p is defined by

$$\langle S_p(v), w \rangle = \langle d\nu(v), w \rangle$$

for all $v, w \in T_p S$, where $\nu : S \longrightarrow S^{n-1}$ is the Gauss map, i.e. it is given by $\nu(p) = N_p$, where N_p is a normal vector to S at p.

6.2 Hyperbolic Geometry

Definition 17 (Geodesic lamination). A geodesic lamination on a complete hyperbolic surface S is a closed subset of S foliated by complete simple geodesics.

Definition 18 (Transversal measures on laminations). A transversal measure on a lamination λ is a measure on the collection of arcs on S transversal to λ which is invariant under isotopies of S preserving λ . A measured lamination is a pair of a lamination and a transversal measure.

Remark 3. Let \widetilde{S}_{∞} be the boundary at infinity of \mathbb{H}^2 . Then $\mathcal{GL}(S)$ denotes the subset of closed subsets of $\widetilde{S}_{\infty} \times \widetilde{S}_{\infty} / \sim$ parametrizing geodesics (and thus laminations) with the Hausdorff topology. It is compact. A geodesic lamination is called *minimal* if every leaf is dense. See [?].

7 Riemann Surfaces

8 Fibre Bundles

8.1 Definitions

8.2 Existence

Lemma 1 (Ehresmann's lemma). Let M and N be smooth manifolds and $f: M \longrightarrow N$ a smooth map. If f is a proper surjective submersion then f is a locally trivial fibration.

9 Symplectic Geometry

9.1 Basics

Definition 19 (Hamiltonian Diffeomorphism). A Hamiltonian diffeomorphism $\Psi \in \text{Ham}(M, \omega)$ of a symplectic manifold is a time-one map of a time-dependent Hamiltonian flow.

9.2 Examples

9.3 Lagrangian Submanifolds

Definition 20 (Properties of Lagrangians). Let $L \subset (M, \omega)$ be a Lagrangian submanifold. We call L

- monotone, if there exists a $\tau > 0$ such that $\omega = \tau \mu$, where $\omega : \pi_2(M, L) \longrightarrow \mathbb{R}$ is the symplectic form as a map on $\pi_2(M, L)$ and $\mu : \pi_2(M, L) \longrightarrow \mathbb{Z}$ is the Maslov index,
- exact, if $\omega = d\lambda$ is exact and if $[\lambda|_L] = 0 \in H^1(L)$,
- displacable, if there exists $\Psi \in \operatorname{Ham}(M,\omega)$ such that $\Psi(L) \cap L = \emptyset$,
- semi-monotone, if.

Definition 21 (Lagrangian Cobordism). Let (M, ω) be a symplectic manifold, denote by $\pi : \mathbb{R}^2 \times M \longrightarrow \mathbb{R}^2$ the projection and equip \mathbb{R}^2 with the standard symplectic structure. A Lagrangian cobordism $V: (L'_j) \leadsto (L_i)$ between two families of closed Lagrangian submanifolds $(L_i)_{1 \le i \le k_-}$ and $(L'_j)_{1 \le j \le k_+}$ is a Lagrangian embedding $V \subset [0,1] \times \mathbb{R} \times M$ such that for some $\epsilon > 0$ we have

$$V \cap \pi^{-1}([0, \epsilon) \times \mathbb{R}) = \coprod_{i} ([0, \epsilon) \times \{i\}) \times L_{i}$$
$$V \cap \pi^{-1}([1 - \epsilon, 1) \times \mathbb{R}) = \coprod_{j} ([1 - \epsilon, 1) \times \{j\}) \times L'_{j}$$

Definition 22 (Fukaya Category). Let (M,ω) be a symplectic manifold with $2c_1(TM) = 0$. The objects of the compact Fukaya category $\mathcal{F}(M,\omega)$ are compact, closed, oriented, spin Lagrangian submanifolds $L \subset M$ such that $[\omega]|_{\pi_2(M,L)} = 0$ and vanishing Maslov class $\mu_L = 0 \in H^1(L,\mathbb{Z})$ together with the choice of a spin structure and a graded lift of L.

For every pair of objects (L, L') we choose perturbation data $H_{L,L'} \in C^{\infty}([0,1] \times M, \mathbb{R})$ and $J_{L,L'} \in C^{\infty}([0,1], \mathcal{J}(M,\omega))$ and for all tuples of objects (L_0,\ldots,L_k) and all moduli spaces of discs we choose consistent perturbation data (H,J) compatible with the choices made for the pairs of objects (L_i,L_j) such that we have transversality for alle moduli spaces of perturbed J-holomorphic discs.

We set $\hom(L, L') := CF(L, L'; H_{L,L'}, J_{L,L'})$ and the differential μ^1 and composition μ^2 and higher operations μ^k are given by counts of perturbed J-holomorphic discs with boundary on the k arguments. This makes $\mathcal{F}(M, \omega)$ a Λ -linear, \mathbb{Z} -graded, non-unital (but cohomologically unital) A_{∞} -category.

Definition 23 (Lagrangian Suspension Construction).

Definition 24 (Lagrangian Surgery).

Definition 25 (Symplectic Folding).

Definition 26 (Lagrangian Correspondence).

 $\label{eq:correspondences} \textit{Example 1 (Lagrangian Correspondences)}.$

9.4 Various Topics

Definition 27 (Symplectic and Stein Cobordism, [?]). A contact 3-manifold (M_1, ξ_1) is symplectically (resp. Stein) cobordant to (M_2, ξ_2) if there exists a symplectic (resp. Stein) 4-manifold (X, ω) with $\partial X = M_2 - M_1$ and a vector field V defined on a neighborhood of $M_1 \cup M_2 \subset X$ for which $\mathcal{L}_V \omega = \omega, V \cap M_1 \cup M_2$ and the normal orientation of $M_1 \cup M_2$ agrees with V.

Remark 4. Symplectic and Stein cobordisms are not a symmetric relation, see [?].

Definition 28 (Weinstein manifold). A Weinstein manifold is a tuple (V, ω, X, ϕ) , where (V, ω) is a symplectic manifold, $\phi: V \longrightarrow \mathbb{R}$ is an exhausting Morse funtion and X is a complete Liouville vector field which is gradient-like for ϕ .

Remark 5. A function $\phi: V \longrightarrow \mathbb{R}$ is called *exhausting* if it is proper and bounded from below.

Definition 29 (Stein manifold). The following statements are equivalent for a non-compact complex manifold (V, J):

- 1. (V, J) admits a proper holomorphic embedding into some \mathbb{C}^N
- 2. V admits an exhausting J-convex function $\phi: V \longrightarrow \mathbb{R}$
- 3. V is holomorphically convex, $\forall x \in V \exists f_1, \dots, f_n : V \longrightarrow \mathbb{C}$ holomorphic such that they form a holomorphic coordinate system at x and $\forall x \neq y \in V \exists f : V \longrightarrow \mathbb{C}$ holomorphic s.t. $f(x) \neq f(y)$.

Any complex manifold satisfying one (and thus all) of the above is called a Stein manifold.

Definition 30 (Liouville Domain). Let (M, θ) be a compact manifold with boundary and $\theta \in \Omega^1(M)$ with $d\theta$ symplectic and $\theta = r\alpha$ close to the boundary, where we identify a neighborhood of the boundary with $[1 - \epsilon, 1] \times \partial M$, r is the coordinate in the first factor and α is a contact form on the boundary. Such a $(M\theta)$ is called a *Liouville domain*.

Definition 31 (Open Book Decomposition). An open book (K, θ) of a manifold V^{2n+1} consists of a submanifold $K \subset V$ of codimension 2 with trivial normal bundle and a fibration $\theta : V \setminus K \longrightarrow S^1$ which on a neighborhood $K \times D^2$ of $K \times \{0\}$ is given by the angle coordinate on D^2 .

Definition 32. A contact structure ξ on a manifold V^{2n+1} is *supported* by an open book (K, θ) if there exists a contact form such that $\xi = \ker \alpha$ and if

- 1. α induces a contact form on K,
- 2. d α induces a symplectic form on each fibre F of θ and
- 3. orientation of K induced by α equals the orientation of K as the boundary of $(F, d\alpha)$.

Remark 6. K is called the binding, \overline{F}^V is called the page.

Theorem 13 (Giroux). Every contact manifold is supported by by an open book whose fibres are Weinstein.

Theorem 14 (Giroux Correspondence). If M is a closed oriented 3-manifold there is a one-to-one correspondence between

 $\{\text{oriented contact structures on } M \text{ up to isotopy}\}$

and

{open book decompositions of M up to positive stabilization}.

Definition 33 (Positive Stabilization).

Definition 34 (Lefschetz Fibration). Let (V, ω) be a symplectic manifold. A topological Lefschetz fibration is a tuple $(A, \{x_{\alpha}\}, f)$, where $A \subset V$ is a codimension-2 symplectic submanifold, $x_{\alpha} \in V \setminus A$ are finitely many points in V and $f: V \setminus A \longrightarrow S^2$ is a submersion on $V \setminus (A \cup \{x_{\alpha}\})$ and $f(x_{\alpha}) \neq f(x_{\beta})$ for all $\alpha \neq \beta$ which satisfy the following:

- 1. at each $a \in A$ there exist local compatible complex coordinates z_i such that A is locally defined by $z_1 = z_2 = 0$ and f is given locally by $(z_1, \ldots, z_n) \longmapsto \frac{z_1}{z_2} \in \mathbb{C}P^1 \cong S^2$ and
- 2. at a point x_{α} there exist local compatible complex coordinates z_i such that f is given locally by $(z_1, \ldots, z_n) \longmapsto f(x_{\alpha}) + z_1^2 + \cdots + z_n^2$.

Remark 7. A system of local complex coordinates (z_1, \ldots, z_n) on a compact symplectic manifold of dimension 2n is called compatible if ω is in those coordinates a positive form of type (1,1) at the origin.

Definition 35 (Thimbles or Vanishing Spheres).

Theorem 15 (Lefschetz). Suppose (V, ω) is a compact symplectic manifold such that $[\omega] \in H^2(V; \mathbb{Z})$. For a sufficiently large integer $k \in \mathbb{N}$ there is a topological Lefschetz pencil on V whose fibres are symplectic (outside the singularities) and homologous to k times the Poincaré dual of $[\omega]$.

Theorem 16 (Lefschetz Hyperplane Theorem). 1. If $M \subset \mathbb{C}^N$ is a non-singular affine algebraic variety with real dimension 2k then $H_i(M;\mathbb{Z}) \cong 0$ for i > k.

2.

Definition 36 (Symplectically Aspherical). A symplectic manifold (M, ω) is called *symplectically aspherical* if for any smooth map $f: S^2 \longrightarrow M$ one has $\int_{S^2} f^*M = 0$ or equivalently $\omega|_{\pi_2(M)} = 0$ or $[\omega]|_{\operatorname{im}(\operatorname{hur}_2)} = 0$, where hur_2 denotes the Hurewicz homomorphism $\pi_2(M) \longrightarrow H_2(M)$.

Definition 37 (Stable Hamiltonian Structure).

Remark 8. Relations of stable Hamiltonian structures to other things

Definition 38 (Dehn Twist).

Definition 39 (Asymptotic Operators).

9.5 *J*-holomoprhic Curves

Definition 40 (Properties of *J*-holomorphic Curves). A *J*-holomorphic curve $u: \Sigma \longrightarrow X$ is called

- (i) simple
- (ii) somewhere injective
- (iii) multiply covered

Remark 9. Relation between properties.

Theorem 17 (Micaleff-White).

Example 2 (Lantern Example).

Theorem 18 (Automatic Transversality).

9.6 Compactness Results

Theorem 19 (Compactness of Morse Gradient Flow Lines).

Theorem 20 (Gromov Compactness).

Theorem 21 (SFT Compactness).

9.7 Conjectures

Conjecture 1 (Conley's Conjecture). A Hamiltonian diffeomorphism of a suitable (e.g. surface, torus, closed symplectically aspherical or cotangent bundle) symplectic manifold has infinitely many simple periodic points.

Conjecture 2 (Weinstein Conjecture). If M is a closed oriented odd-dimensional manifold with a contact form λ then the associated Reeb vector field has a closed orbit.

Conjecture 3 (Arnold Conjecture). A Hamiltonian diffeomorphism on a symplectic manifold M has at least as many fixed points as the minimal number of critical points of a Morse function on M.

Conjecture 4 (Arnold-Givental Conjecture).

9.8 Dynamics

Definition 41 (Types of Orbits). A periodic orbit $\gamma: S^1 \longrightarrow M$ of a flow ϕ_t is called

- nondegenerate, if the linearized flow after one period on a transversal space $\Psi: V \longrightarrow V$ (with $V \subset T_p M$ such that $V \pitchfork \mathbb{R} \frac{\mathrm{d}}{\mathrm{d}t}_{|_{t=0}} \phi_t(p)$) has no eigenvalue equal to 1, or equivalently $\det(\Psi \mathrm{id}) \neq 0$,
- elliptic, if every eigenvalue of Ψ is in the unit circle,
- hyperbolic, if every eigenvalue of Ψ has norm different from 1,
- (un-)stable, if every eigenvalue of Ψ has norm (bigger) smaller than 1.

Definition 42 (Hofer's Metric). Let (m, ω) be a connected symplectic manifold without boundary. Denote by $\operatorname{Ham}^c(M, \omega)$ all Hamiltonian diffeomorphisms with compact support. Given a path $\{\phi_t\}_{0 \leq t \leq 1} \subset \operatorname{Ham}^c(M, \omega)$ and a family of Hamiltonian functions $\{H_t\}$ generating this flow we define

$$\mathcal{L}(\{\phi_t\}) := \int_0^1 \left(\sup_{z \in M} H_t(z) - \inf_{z \in M} H_t(z) \right) dt.$$

Define the *Hofer metric* on $\operatorname{Ham}^c(M,\omega)$ by

$$\rho(\phi, \psi) := \inf_{\substack{\{\phi_t\} \subset \operatorname{Ham}^c(M, \omega) \\ \phi_0 = \phi, \phi_1 = \psi}} \mathcal{L}(\{\phi_t\}).$$

Definition 43 (Bad Orbits).

Definition 44 (Conley-Zehnder Index).

Proposition 3 (Properties of Conley–Zehnder Index).

9.9 Contact Geometry

Definition 45 (Contact Embedding).

Definition 46 (Symplectic and Stein Fillings).

9.10 Theorems

Theorem 22 (Floer-McDuff-Eliashberg).

- 9.11 Homology Theories
- 9.11.1 Quantum Homology
- 9.11.2 Contact Homology
- 9.11.3 Cylindrical Contact Homology
- 9.11.4 Linearized Contact Homology
- 9.11.5 Embedded Contact Homology
- 9.11.6 Symplectic Homology
- 9.11.7 S^1 -equivariant Symplectic Homology
- 9.11.8 Hamiltonian Floer Homology
- 9.11.9 Lagrangian Floer Homology
- 9.11.10 Rabinowitz-Floer Homology
- 9.11.11 Knot-Contact Homology
- 9.11.12 Instanton-Floer Homology
- 9.11.13 Khovanov Homology
- 9.11.14 Heegard–Floer Homology