Problema 1

Definição

Seja G um grafo com $V(G) = \{v_1, \ldots, v_n\}$ tal que $d(v_i) \ge d(v_{i+1})$ para $i = 1, \ldots, n-1$. Dizemos $d = (d(v_1), \ldots, d(v_n))$ é a **sequência de graus** de G.

Prove o seguinte resultado (indução em ???).

Teorema. Seja $d=(d_1,\ldots,d_n)$ uma sequência não-crescente de inteiros não-negativos. Então existe um grafo **sem laços** cuja sequência de graus é d se, e somente se, $\sum_{i=1}^n d_i$ é par e $d_1 \leq \sum_{i=2}^n d_i$.

Por exemplo, existe um grafo sem laços com sequência de graus d = (7, 6, 3, 1, 1) ou d = (6, 2, 2, 2).

Por outro lado, não existe grafo sem laços com sequência de graus d=(5,2,2,2) ou d=(10,3,2,2,1).

Se d é a sequência de graus de algum grafo sem laços, então $\sum_{i=1}^n d_i$ é par e $d_1 \leq \sum_{i=2}^n d_i$.

(\Rightarrow) Seja G um grafo sem laços com sequência de graus $d=(d_1,\ldots,d_n)$. Suponha que $V(G)=\{v_1,\ldots,v_n\}$ e que $d(v_i)=d_i$ para $i=1,\ldots,n$.

Obviamente $\sum_{i=1}^{n} d_i$ é par.

Além disso, como não há laços em v_1 , cada aresta com um extremo em v_1 deve ter o outro extremo em $V(G)-\{v_1\}=\{v_2,\ldots,v_n\}$. Cada uma destas arestas contribui com uma unidade para os graus dos demais vértices. Portanto, $d_1 \leq \sum_{i=2}^n d_i$.

Se $d=(d_1,\ldots,d_n)$ é uma sequência não-crescente de inteiros não-negativos tal que $\sum_{i=1}^n d_i$ é par e $d_1 \leq \sum_{i=2}^n d_i$, então d é a sequência de graus de algum grafo sem laços.

(\Leftarrow) A prova é por indução em $k = (\sum_{i=1}^{n} d_i)$. (!!)

Caso base. k = 0. Neste caso, basta tomar G como o grafo vazio com n vértices.

Hipótese de indução. Suponha que k>0 e que se $d'=(d'_1,\ldots,d'_n)$ é uma sequência não-crescente de inteiros não-negativos tal que $\sum_{i=1}^n d'_i$ é par, $d'_1 \leq \sum_{i=2}^n d'_i$ e $k'=(\sum_{i=1}^n d'_i) < k$, então d' é a sequência de graus de algum grafo sem laços.

Note que d_1 e $\sum_{i=2}^n d_i$ têm a mesma paridade pois $\sum_{i=1}^n d_i$ é par.

Como $d_1 \leq \sum_{i=2}^n d_i$, segue que $d_1 = \sum_{i=2}^n d_i$ ou $d_1 \leq \sum_{i=2}^n d_i - 2$.

Suponha primeiro que $d_1 = \sum_{i=2}^n d_i = d_2 + d_3 + \cdots + d_n$. Há apenas um grafo com esta sequência de graus. Qual?

Tome $V(G) = \{v_1, v_2, \dots, v_n\}$. Para $i = 2, 3, \dots, n$, ligue v_1 a v_i através de d_i arestas paralelas. Claramente, G não tem laços e sua sequência de graus é d.

Hipótese de indução. Suponha que k>0 e que se $d'=(d'_1,\ldots,d'_n)$ é uma sequência não-crescente de inteiros não-negativos tal que $\sum_{i=1}^n d'_i$ é par, $d'_1 \leq \sum_{i=2}^n d'_i$ e $k'=(\sum_{i=1}^n d'_i) < k$, então d' é a sequência de graus de algum grafo sem laços.

Suponha agora que $d_1 \leq \sum_{i=2}^n d_i - 2$.

Seja ℓ o maior índice tal que $d_{\ell} > 0$. Assim, $d = (d_1, \dots, d_{\ell}, 0, \dots, 0)$. Note que $\ell \geq 2$.

Seja
$$d'=(d_1,\ldots,d_{\ell-2},d_{\ell-1}-1,d_{\ell}-1,0,\ldots,0).$$

Claramente d' é não-crescente, $\sum_{i=1}^n d_i'$ é par, $d_1' \leq \sum_{i=2}^n d_i'$ (certo?) e $k' = \sum_{i=1}^n d_i' = k-2$.

Por HI existe um grafo sem laços G' com sequência de graus

$$d' = (d_1, \ldots, d_{\ell-2}, d_{\ell-1} - 1, d_{\ell} - 1, 0, \ldots, 0).$$

Sejam u e v os vértices de G' com graus $d_{\ell-1}-1$ e $d_{\ell}-1$, respectivamente.

Seja $G=G^\prime+uv$. Claramente G não tem laços e d é sua sequência de graus.

- Provavelmente é possível provar por indução em n, mas é necessário tomar cuidado em como definir a nova sequência $d'=(d'_1,\ldots,d'_{n-1})$. Além disso, verificar se d' satisfaz a propriedade $d'_1 \leq \sum_{i=2}^{n-1} d'_i$ pode ser mais complicado.
- A prova apresentada pode ser vista como usando indução no número de arestas, embora estritamente falando não existam arestas a ser removidas (temos apenas a sequência d e não o grafo).

Problema 2

Prove o seguinte resultado.

Seja T uma árvore com $n(T) \ge 2$ tal que todo vértice adjacente a uma folha tem grau pelo menos três. Prove que T possui duas folhas adjacentes a um mesmo vértice.

Seja P um **caminho máximo** em T. Seja v um dos extremos de P e seja u o vértice vizinho de v em P.

Como u tem grau pelo menos três, u tem um vizinho w em V(T) - V(P). Como P é máximo, w tem que ser uma folha. O resultado segue.

Problema 3

Prove por indução no número de arestas a parte "difícil" do Teorema de König.

Teorema, König(1936). Um grafo G é bipartido se, e somente se, G não contém ciclos ímpares.

Seja G um grafo que não contém ciclos ímpares. A prova é por indução em m=m(G)=|E(G)|.

Caso base: m = 0. O resultado é trivial.

Hipótese de indução. Suponha que m>0 e que todo grafo G' que não contém ciclos ímpares com m(G')< m seja bipartido.

Seja $e = uv \in E(G)$ e seja G' = G - e. Claramente G' não contém ciclos ímpares. Pela HI G' admite uma bipartição (X, Y).

Temos dois casos a considerar: u e v pertencem a mesma componente de G-e ou não.

Caso 1: $u \in V$ pertencem a mesma componente H de G - e.

Se u e v pertencem a partes distintas de (X, Y), então claramente (X, Y) é uma bipartição de G e o resultado segue.

Suponha então que u e v pertencem a mesma parte. Seja P um caminho de u a v em H. Claramente P é par. Portanto P+e é um ciclo ímpar, uma contradição.

Caso 2: $u \in V$ pertencem a componentes distintos, digamos $H_1 \in H_2$.

Se u e v têm as mesmas cores (isto é, um pertence a X e o outro a Y), então claramente (X, Y) é uma bipartição de G e o resultado segue.

Caso 2: $u \in V$ pertencem a componentes distintos, digamos $H_1 \in H_2$.

Suponha então que u e v têm cores distintas (isto é, ambos pertencem a X ou a Y). Permute as cores dos vértices da componente H_2 . I.e., sejam

$$X' = (X - V(H_2)) \cup (Y \cap V(H_2)) e$$

$$Y' = (Y - V(H_2)) \cup (X \cap V(H_2)).$$

Claramente (X', Y') é uma bipartição de G e o resultado segue.