Normalization of T2W-MRI Prostate Images using Rician a priori

Guillaume Lemaître a,b, Mojdeh Rastgooa,b, Joan Massich a, Joan C. Vilanova b, Paul M. Walker a, Jordi Freixenet a, Anke Meyer-Baese a, Fabrice Mériaudeau a, and Robert Martí a

aLE2I UMR6306, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, 12 rue de la Fonderie, 71200 Le Creusot, France; bViCOROB, Universitat de Girona, Campus Montilivi, Edifici P4, 17071 Girona, Spain;

ABSTRACT

Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-MRI prostate images. In this paper, we propose a method based on a Rician a priori in order to normalize T2W-MRI prostate images. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient Probability Density Function (PDF)s in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.

Keywords: Prostate cancer, T2W MRI, Normalisation, pre-processing, computer-aided diagnosis

1. DESCRIPTION

Prostate Cancer (CaP) has been reported the second most frequently diagnosed cancer of men accounting for 13.6%.¹ In United States, aside from skin cancer, CaP was considered to be the most commonly diagnosed cancer among men, implying that approximately 1 in 6 men will be diagnosed with CaP during their lifetime. The American cancer society also reported an estimated 233,000 new cases of prostate cancer in 2014.² To address these dramatic issues, more systematic screenings are organized through Prostate-Specific Antigen (PSA) test with further Transrectal Ultrasound biopsy if necessary. However, these tests are unreliable or invasive and that is why further investigations using Magnetic Resonance Imaging (MRI)-Computer-Aided Diagnosis (CAD) are motivated. In the past decades, several CAD systems have been proposed in order to assist the radiologists with their diagnosis. These systems are usually designed as a sequential process consisting of four stages: preprocessing, segmentation, registration and classification. As a pre-processing steps, image normalization is an important step of the chain. Normalization is a highly crucial step to overcome the inter-patient intensity variations occurring, enforce the repeatability, and achieve a robust classification.³ However, little attention has been dedicated to the problem of normalization of T2W-MRI prostate images.³ Artan et al.^{4,5} and Ozer et al.^{6,7} proposed to normalize the T2W-MRI images by computing the standard score (i.e., z-score) of the Peripheral Zone (PZ) pixels such as:

$$I_s(x) = \frac{I_r(x) - \mu_{PZ}}{\sigma_{PZ}}, \forall x \in PZ$$
 (1)

Where, $I_s(x)$ and $I_r(x)$ are the standardized and the raw signal intensity, respectively, and μ_{PZ} and σ_{PZ} are the mean and standard deviation of the PZ signal intensity. This transformation enforces the image Probability Density Function (PDF) to have a zero mean and a unit standard deviation. Ly et al.⁸ used the method proposed

Further author information: (Send correspondence to G.L) G.L.: E-mail: guillaume.lemaitre@udg.edu

^CDepartment of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306, US

Figure 1: Visual evaluation of the goodness of fitting using Rician and Gaussian distribution.

by Nyul et al. For a given patient, some specific landmarks (i.e., median and different percentiles) of the current PDF match the same landmarks learned during a training phase from several patients. Viswanath et al. 10 used a variant of the previous method by segmenting first the image and keeping only the largest region to build the PDF. In this paper, we propose a method based on a Rician a priori in order to normalize T2W-MRI prostate images. We emphasize the use of a Rician distribution before to present the methodology allowing to normalize the images. Both qualitative and quantitative results are given and compared with the previous stated methods.

2. METHODOLOGY

As stated in Sect. 1, proper normalization of the MRI data during pre-processing is a key problem that has been addressed using parametric and non-parametric strategies. We believe that normalizing MRI data using a parametric model based on a Rician distribution would improve the results for the parametric case. Expecting this improvement by changing the data model from the widely used Gaussian distribution to Rician distribution is reasonable. Indeed, Bernstein et al. 11 state that MRI data theoretically follows a Rayleigh distribution for a low Signal-to-Noise Ratio (SNR) scenarios while it appears closer to a Gaussian distribution when the SNR increases. Figure 1 shows the intensity spectrum for some MRI prostate data as well as the fitted Gaussian and Rician distributions. A qualitative assessment of the underlying distribution is performed by overlying the fitted distribution, while quantitative results of the fitting are given in terms of Root Mean Square. It can be highlighted that the Rician model better fits the data than the Gaussian model.

The normalization is carried out as: (i) Fit a Rician model to each prostate PDF using Least Squares minimization; (ii) Compute the mean (see Eq. (2)) and variance (see Eq. (3)) of the Rician model; (iii) Normalize the entire data using the z-score similarly as in Eq. $(1)^*$.

$$\sigma\sqrt{\pi/2} \ L_{1/2}(-\nu^2/2\sigma^2) \tag{2}$$

$$\sigma\sqrt{\pi/2} L_{1/2}(-\nu^2/2\sigma^2)$$

$$2\sigma^2 + \nu^2 - \frac{\pi\sigma^2}{2} L_{1/2}^2 \left(\frac{-\nu^2}{2\sigma^2}\right)$$
(2)

3. CONTRIBUTION

We propose to tackle the problem of T2W-MRI prostate image normalization by using the Rician distribution instead of widely used Gaussian distribution. This choice is justified in Sect. 2 by analyzing the shape the PDFs in the prostate images. Furthermore, we provide a novel manner to assess quantitatively the alignment of the PDFs independently of the distribution assumed.

4. EXPERIMENTS

The experiments are conducted on a subset of public multi-parametric MRI prostate dataset available at http://visor.udg.edu/i2cvb/. This dataset was acquired from a cohort of patients with higher-than-normal level of PSA. The acquisition was performed using a 3T whole body MRI scanner (Siemens Magnetom Trio TIM, Erlangen, Germany) using sequences to obtain T2W-MRI. Aside of the MRI examinations, these patients also

^{*}An alternative normalization method would be included in the final manuscript similarly to inverse transform sampling.

Figure 2: Qualitative evaluation by visual inspection of the alignment of the PDFs for the full prostate and the CaP.

underwent a guided-biopsy. Finally, the dataset was composed of a total of 20 patients of which 18 patients had biopsy proven CaP and 2 patients were "healthy" with negative biopsies. In this study, our subset consists of 17 patients with CaP. The prostate organ as well as the prostate zones (i.e., PZ, Central Gland) and CaP were manually segmented by an experienced radiologist.

5. RESULTS

5.1 Qualitative

Figure 2 depicts the alignment of the different PDFs using the different methods implemented. All the methods seem to address the problem of the PDF alignment of the full prostate data. However, the Rician normalization seems to outperform the other methods when focusing solely on the CaP data. The PDF computed in this specific area is more skewed from its original shape in the case of the linear normalization by parts than with the two other normalization strategies.

5.2 Quantitative

A spectral evaluation is performed by decomposing the set of normalized PDFs using PCA under the assumption that they are linearly dependent. Intuitively, the eigenvalues of the PCA decomposition are correlated with the alignment of the different PDFs. Thus, in the case of a perfect alignment of the PDFs, the first eigenvalue is much greater than the remaining since that the first eigenvector encodes all the information. In the contrary, in the case of a misalignment of the PDFs, more eigenvectors are needed to encode the information synonymous with larger eigenvalues. Thus, we propose to use the cumulative sum of the normalized eigenvalues as well as the Area Under this Curve (AUC), as depicted in Fig. 3. Rician normalization outperforms the other methods with an AUC of 0.9974 and 0.9824 considering the full prostate and CaP, respectively.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose to normalize the T2W-MRI prostate images based on a Rician *a priori*. An extensive comparison was conducted showing that the Rician normalization outperforms the Gaussian and linear normalization by parts for T2W-MRI prostate images normalization.

Note. This work has not been submitted for publication or presentation elsewhere

Figure 3: Spectral evaluation using PCA decomposition: (a) evaluation considering the full prostate, (b) evaluation considering only the CaP.

REFERENCES

- 1. J. Ferlay and et al., "Estimates of worldwide burden of cancer in 2008: Globocan 2008," *International journal of cancer* **127**(12), pp. 2893–2917, 2010.
- 2. A. C. Society, "Cancer facts & figures 2014," 2014.
- 3. G. Lemaître and et al., "Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: A review," Computers in Biology and Medicine 60, pp. 8 31, 2015.
- 4. Y. Artan and et al., "Prostate cancer localization with multispectral mri using cost-sensitive support vector machines and conditional random fields," *Image Processing, IEEE Trans. on* **19**(9), pp. 2444–2455, 2010.
- 5. Y. Artan and et al., "Prostate cancer segmentation with multispectral mri using cost-sensitive conditional random fields," in *Biomedical Imaging: From Nano to Macro*, 2009. ISBI'09. IEEE International Symposium on, pp. 278–281, IEEE, 2009.
- 6. S. Ozer and et al., "Prostate cancer localization with multispectral mri based on relevance vector machines," in *Biomedical Imaging: From Nano to Macro*, 2009. ISBI'09. IEEE Int. Symp. on, pp. 73–76, IEEE, 2009.
- 7. S. Ozer and et al., "Supervised and unsupervised methods for prostate cancer segmentation with multispectral mri," *Medical physics* **37**(4), pp. 1873–1883, 2010.
- 8. D. Lv and et al., "Computerized characterization of prostate cancer by fractal analysis in mr images," *Journal of magnetic resonance imaging* **30**(1), pp. 161–168, 2009.
- 9. L. G. Nyúl and et al., "New variants of a method of mri scale standardization," *Medical Imaging, IEEE Trans. on* **19**(2), pp. 143–150, 2000.
- 10. S. E. Viswanath and et al., "Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo t2-weighted mr imagery," *Journal of Magnetic Resonance Imaging* **36**(1), pp. 213–224, 2012.
- 11. M. A. Bernstein and et al., "Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phasecorrected real reconstruction," *Medical Physics* **16**(5), pp. 813–817, 1989.
- 12. G. Lemaitre and et al., "A boosting approach for prostate cancer detection using multi-parametric mri," in *The International Conference on Quality Control by Artificial Vision 2015*, pp. 95340A–95340A, International Society for Optics and Photonics, 2015.