STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared
Distributions

and Test

Two-Way Tables and Test

STA13: Elementary Statistics

Lecture 21 Book sections 8.3-8.4

Dmitriy Izyumin

March 09 2018

- Suppose $Z_1, Z_2, \dots Z_k$ are independent random variables, each distributed N(0, 1).
 - ▶ Z_1^2 has the Chi squared distribution with 1 degree of freedom.
 - ▶ $Z_1^2 + Z_2^2$ has the Chi squared distribution with 2 degrees of freedom.
 - ▶ $Z_1^2 + Z_2^2 + \cdots + Z_k^2$ has the Chi squared distribution with k degrees of freedom.

Chi Squared Pdf

STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared Distributions

One-Way Tables and Test

- We write χ_k^2 to denote a chi squared distribution with k degrees of freedom.
- ▶ Shape depends on the degrees of freedom.
- ▶ Not symmetric.
- Negative values are not possible.

Chi Squared Table

Degrees of Freedom	X ² .995	X.990	X ² 975	X ² 950	X ² .900	
1	.0000393	.0001571	.0009821	.0039321	.0157908	
2	.0100251	.0201007	.0506356	.102587	.210720	
3	.0717212	.114832	.215795	.351846	.584375	
4	.206990	.297110	.484419	.710721	1.063623	
5	.411740	.554300	.831211	1.145476	1.61031	
6	.675727	.872085	1.237347	1.63539	2.20413	

lable V (continued)							
Degrees of Freedom	X ² .100	$\chi^{2}_{.050}$	X ² .025	X ² .010	X ² .005		
1	2.70554	3.84146	5.02389	6.63490	7.87944		
2	4.60517	5.99147	7.37776	9.21034	10.5966		
3	6.25139	7.81473	9.34840	11.3449	12.8381		
4	7.77944	9.48773	11.1433	13.2767	14.8602		
5	9.23635	11.0705	12.8325	15.0863	16.7496		
6	10.6446	12.5916	14.4494	16.8119	18.5476		

STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared Distributions

One-Way Tables and Test

- ▶ Find the row for the correct degrees of freedom.
- Setup is similar to the t table.
- ▶ Will need to bracket your test stastic between numbers in the table to approximate the p-value.

Properties of the Multinomial Experiment

- The experiment consists of n identical trials.
- There are k possible outcomes to each trial. These outcomes are sometimes called classes, categories, or cells.
- 3. The probabilities of the k outcomes, denoted by p_1, p_2, \ldots, p_k , where $p_1 + p_2 + \cdots + p_k = 1$, remain the same from trial to trial.
- 4. The trials are independent.
- 5. The random variables of interest are the cell counts n_1, n_2, \ldots, n_k of the number of observations that fall into each of the k categories.

- ► Suppose we have *n* observations of one qualitative variable with *k* categories.
 - Voters' preferred presidential candidate (with more than 2 options).
 - Fovorite color of Skittles.
 - Income / tax bracket.
- The goal is to test if our guess about the proportions of each category is correct.

- $ightharpoonup H_0$ needs to specify hypothesized values for each of k probabilities. (These have to add up to 1).
- Example:

 H_0 : all probabilities are equal (implies that $p_{i,0} = 1/k$ for each category)

Example:

$$H_0: p_1 = 0.5, p_2 = 0.2, p_3 = 0.3.$$

One-Way Tables and Test

- ► *H_A* states that at least one of the true proportions is not equal to the hypothesized value.
- Does not mean that ALL of the hypothesized values are wrong.
- Not ALL of the hypothesized values are right.

and Test

The test statistic is

$$\chi^2 = \sum_{i=1}^k \left(\frac{(n_i - E_i)^2}{E_i} \right)$$

- 1. For each category $(i = 1, \dots, k)$
 - Find the observed count n;
 - Find the expected count $E_i = np_{i,0}$
 - ► Compute $\frac{(n_i E_i)^2}{E_i}$
- 2. Add up the results from each category.

Null Distribution

STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared Distributions

One-Way Tables and Test

- If H₀ is true, then the test statistic is distributed Chi squared with k − 1 degrees of freedom.
- ▶ Here k is the number of categories.
- Use this distribution to find p-values.

A Test of a Hypothesis about Multinomial Probabilities: One-Way Table

$$H_0$$
: $p_1 = p_{1,0}$, $p_2 = p_{2,0}$, ..., $p_k = p_{k,0}$

where $p_{1,0}, p_{2,0}, \ldots, p_{k,0}$ represent the hypothesized values of the multinomial probabilities

Ha: At least one of the multinomial probabilities does not equal its hypothesized value

Test statistic:
$$\chi^2 = \sum \frac{[n_l - E_l]^2}{E_l}$$

where $E_t = np_{t,0}$ is the **expected cell count**—that is, the expected number of outcomes of type i, assuming that H_0 is true. The total sample size is n.

Rejection region:
$$\chi^2 > \chi_\alpha^2$$
, where χ_α^2 has $(k-1)$ df

One Way Conditions

STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared
Distributions

One-Way Tables and Test

Conditions Required for a Valid χ^2 Test: One-Way Table

- A multinomial experiment has been conducted. This is generally satisfied by taking a random sample from the population of interest.
- The sample size n will be large enough so that, for every cell, the expected cell count E(n_t) will be equal to 5 or more.*

- Suppose we have n observations of two qualitative variables.
 - Age range and political party affiliation
 - Religious affiliation and marital status
- The goal is to see if the two variables are independent.

- Suppose we have n observations of two qualitative variables.
 - Age range and political party affiliation
 - Religious affiliation and marital status
- The goal is to see if the two variables are independent.

Data Set: MARREL

Table 8.10 Survey Results (Observed Counts), Example 8.6							
		Religious Affiliation					
		Α	В	С	D	None	Totals
Marital Status	Divorced Married, never divorced	39 172	19 61	12 44	28 70	18 37	116 384
	Totals	211	80	56	98	55	500

- Also known as a contingency table.
- r rows and c columns.
- may or may not show row/column totals (this one does).

- ► H₀ states that the two categorical variables are independent. (These have to add up to 1).
- Example:

 H_0 : Age range and party affiliation are independent.

Example:

 H_0 : Religious affiliation and marital status are independent.

independent (are dependent).

Example:

 H_0 : Age range and party affiliation are dependent.

► H_A states that the two categorical variables are not

Example:

 H_0 : Religious affiliation and marital status are not independent.

The test statistic is

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \left(\frac{(n_{ij} - E_{ij})^2}{E_{ij}} \right)$$

- 1. For each cell (row i, column j)
 - $ightharpoonup R_i$ is the total for row i, and C_j is the total for column j
 - Find the observed count n_{ij}
 - Find the expected count $E_{ij} = R_i C_j / n$
 - Compute $\frac{(n_{ij}-E_{ij})^2}{E_{ij}}$
- 2. Add up the results from each cell.

- ▶ If H_0 is true, then the test statistic is distributed Chi squared with (r-1)(c-1) degrees of freedom.
- ► Here r is the number of rows and c is the number of columns in the table.
- ▶ Use this distribution to find p-values.

General Form of a Two-Way (Contingency) Table Analysis: A Test for Independence

 H_0 : The two classifications are independent

 H_a : The two classifications are dependent

Test statistic:
$$\chi^2 = \sum \frac{[n_{ij} - \hat{E}_{ij}]^2}{\hat{E}_{ij}}$$

where
$$\hat{E}_{ij} = \frac{R_i C_j}{n}$$

Rejection region: $\chi^2 > \chi^2_{\alpha}$, where χ^2_{α} has (r-1)(c-1) df

Two Way Conditions

STA13: Elementary Statistics

Dmitriy Izyumin

Chi Squared Distributions

ne-Way Table nd Test

Conditions Required for a Valid χ^2 Test: Contingency Tables

- The n observed counts are a random sample from the population of interest. We may then consider this to be a multinomial experiment with r × c possible outcomes.
- The sample size n will be large enough so that, for every cell, the expected count Ê(n_{ij}) will be equal to 5 or more.