$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{3n^2 + 1}$$

Does it absolutely converge? Does it converge? [5]

2. Consider the sequence $(a_n) \in \mathbb{R}^N$. It satisfies limsup $|a_n|^{\gamma_n} < 1$ What can you say about $\lim_{n \to \infty} a_n$? [5]

Submit by 7:35 PM

Solutions:

1.
$$\left\{\frac{n}{3n^2+1}\right\}$$
 is decreasing

$$\frac{n}{3n^2+1} > \frac{n+1}{3(n+1)^2+1}$$

(=)
$$3n(n+1)^{2}+y(7) 3n^{2}(n+1) + y(+1)$$

$$(=) 3n(n^{2}+2n+1) > 3n^{3}+3n^{2}+1$$

$$(\Rightarrow 3n^2 + 3n > 1 (\Rightarrow 3n(n+1) > 1) \text{ which is trivially true.}$$

$$\lim_{n\to\infty}\frac{n}{3n^2+1}=0.$$

By alternating Series test, $\sum \frac{(-1)^n n}{3n^2+1}$ converges.

$$\frac{k}{\sum_{n=1}^{\infty} \frac{n}{3n^{2}+1}} > \sum_{n=1}^{\infty} \frac{n+1}{3(n+1)^{2}} = \sum_{n=2}^{\infty} \frac{1}{3n}$$
RHK diviges as $k \to \infty \Rightarrow lin(LHE) = \infty$.

2 limsup
$$|a_n|^{\gamma_n} < 1$$

Rootfest $\sum a_n \in \mathbb{R}$
 \Rightarrow lin $a_n = 0$