MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove a formula for the determinant of a principal minor of the distance matrix of a weighted tree.

Contents

1.	Introduction	1
2.	Background	2
3.	Proofs	2
4.	Examples	2
Acl	knowledgements	2
Ref	ferences	2

1. Introduction

Suppose T is a tree with n vertices and m=n-1 edges. let D denote the distance matrix of T. In [3], Graham and Pollak proved that

(1)
$$\det(D) = (-1)^{n-1} 2^{n-2} (n-1).$$

graham-hoffman-hosoya [2],

Special case: Γ is a metric tree.

thm:max-capacity

Theorem 1. Suppose G is a finite (weighted?) tree, and $A \subset V(G)$ is a subset of vertices. Then

eq:max-capacity

(2)
$$\det D[A] = \frac{1}{4}\ell(\Gamma)\left(\sum_{\mathcal{T}} w(T)\right) - \frac{1}{4}\left(\sum_{\mathcal{F}^*} \mu_{can}(F_{2,*})^2 w(F_2)\right).$$

where $\mathcal{T}(G/A)$ denotes the set of A-rooted spanning forests of G, F_2 varies over all (A,*)-rooted spanning forests of G, $F_{2,*}$ denotes the *-component of F_2 , and

(3)
$$\mu_{can}(F_{2,*}) = \sum_{x \in V(F_{2,*})} 2 - \deg(x).$$

In other words, μ_{can} denotes the canonical measure on Γ .

Theorem 2 (Monotonicity of principal minors). Suppose G = (V, E) is a finite, weighted tree with distance matrix D. If $A, B \subset V$ are vertex subsets with $A \subset B$, then

$$\left| \frac{\det D[A]}{\cot D[A]} \right| \le \left| \frac{\det D[B]}{\cot D[B]} \right|.$$

Date: v1, April 23, 2022 (Preliminary draft, not for circulation).

2

1.1. Previous work.

Theorem 3 ([I]). Let T be a tree with m+1 vertices and m edges. Let D be the distance matrix of T, and L the Laplacian matrix. Let $S \subset V(T)$ be a subset of vertices of T. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[V \setminus S].$$

1.2. **Notation.** Γ a compact metric graph

G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 (G,ℓ) a combinatorial model for a metric graph, where

 $\ell: E(G) \to \mathbb{R}_{>0}$ is a length function on edges of G

 $\mathcal{C}(\Gamma)$ continuous \mathbb{R} -valued functions on Γ

 $Meas(\Gamma)$ signed Borel measures on Γ

 $Meas_{>0}(\Gamma)$ positive Borel measures on Γ

2. Background

3. Proofs

4. Examples

Example 4. Suppose Γ is a tripod with lengths a,b,c and corresponding leaf vertices u,v,w.

Let $A = \{u, v, w\}$. Then

$$D[A] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[A] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

ACKNOWLEDGEMENTS

The authors would like to thank ...

References

bapat-sivasubramanian graham-hoffman-hosoya

- [1] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. *Linear Algebra Appl.*, 435(6):1479–1489, 2011.
- [2] R. L. Graham, A. J. Hoffman, and H. Hosoya. On the distance matrix of a directed graph. J. Graph Theory, 1(1):85–88, 1977.
- [3] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50:2495-2519, 1971.

graham-pollak