Detecting Tumor Mutational Signatures with a CNN

Beth Baumann, Metis Final Project, Fall 2020

Types of single nucleotide variants (SNVs) and indels

Variant: Occurs in healthy human population

Mutation: Occurs in tumor, but not common in healthy population

What are Mutational Signatures?

Project Goals and Applications

Train a neural network to identify a tumor type from short aligned DNA sequences

Discover mutational signatures and insights about tumor types

Predict tumor origin of sequencing reads from liquid biopsy (if model well-developed with a high F1 score)

Generating synthetic but realistic 100bp exome sequencing read alignments

What signatures can a Convolutional Neural Network learn about?

SNVs in context

Learn variable lengths of context

Indels of any length

Learn variable indel length

Specific Mutations

Learn frequent specific mutation and hot spot sequences

Important Nearby Sequence

Ex. protein binding sites, microhomology domains

No: Structural and Copy Number Variants

Too long for this method

No: Mutational Load

Method only looks at mutations in isolation

Where is the CNN placing importance for classification?

ACGGAGAATTTATCCATCAGATTTTGCCGTGGAGATACTTTTTTGGCGAGAAAATGACTTCCAGTGATGTTGTAGCTGGATCCGATTAAGTATAGCTCCCC ACGAAGAATTTATTCATCAGATTTTGCCGTGGAGATACTTTTTGGCGAGAAAATGACTTCCAGTGATGTTGTAGCTGAATCCAATTAAGTATAGCTCCTC TTTCCTTTAGGCAGAGGTCTATGAACACCTTCAAGGGCTGGCGCTCTCCCATCCTTGGACAGTCCTCCACTGTCTGCCTCTTACTCATGGCCTCTGGGGA TTTTCTTTAGGCAGAGGTCTATGAACACCTTCAAGGGCTGGCGCTCTCCCATCCTTGGACAGTCCTCCACTGTCTGCCTTTTACTCATAACCTCTGGGGA CCTGTTCCACTAATTTTCCTGAGGCTAATTCCTCTTGGAGTTTC<mark>TGAA</mark>CTTTCAATGTTCGTTTTGCCTTTAAAAAAAXXXXXXXXXGAA<mark>AAAAAAAAAAA</mark>A CTTCTCCCCAGTATGAATTATCTTATGTTTAGTAAGGGCTGAAAGATGGTTAAAAGCTTTGCCACATTCTTCACATTTGTAGGTTTTCCCTCCAGTATGA CTTCTTTCCAGTATGAATTATCTTATGTTTAGTAAGGGCTGAAAAATGGTTAAAAGCTTTGCCACATTCTTCACATTTGTAGGGTTTTCCTCCAGTATGA rccatccgcaga<mark>gcag</mark>agcagtgggaggaga<mark>cgct</mark>atgacccccatcctcacagtcctgatctgtctcggtgagatttgaagagggagaagagcttcta CTTGGTCTAATTGTTCTCATCTGGAAAGACCCTCACCTTCATATCCCAATGTACTT<mark>ATTCCTTGGGAGTTTAGCCTT</mark>TGTGGAT<mark>GCTT</mark>CGTTATCA<mark>TCCA</mark> CTTGGTCTAATTGTTCTCATCTGGAAAGACCCTCACCTTCATATCCCAATGTACTT<mark>ATTCTTTTGGAAG</mark>TTTAGCTTTTGTGGATGCTT<mark>T</mark>GTTATCA<mark>TCTA</mark> AGACGTTAATCACGTTTCATGCATCTCCAATCATCATGTTCTAATCTGCCCTCCGGAGGAGGAACAGGTAAGGATTATCCCACCTGACGATACAGACXXX AGACGTTAATCACGTTTCATACATCTCCAATCATCATATCCTAATCTGTCCTC<mark>CAAAGAAA</mark>GAACAAGTAAGGATTATCCCACTTGACAATACAAGCAAA AGACGTTAATCACGTTTCATGCATCTCCAATCATCATGTTCTAATCTGCCCTCCGGAGGAGGACAGGTAAGGATTATCCCACCTGACGATACAGACXXX GCAGTGGCTGCA<mark>GGAAGTCACAGAAGGGCAGGACCTGAACGCTGTCTGCTTTT</mark>CTGGAATCCAAGATGCTGA<mark>GTGAAAGTGGACCCTGGGTGGGCCCGGC</mark> TCCATCCGCAGAGCAGGGCAGTGGGAGGAGACGCCATGACCCCCATCCTCAC<mark>GGTC</mark>CTGATCTGTCTGGGGGAGTTTGAAGAG<mark>GGAGGGGA</mark>GCTTCTAA rccatccgcagagcagagcagtgggagagaggctatgacccccatcctca<mark>cagt</mark>tctgatctgtctcggtgagatttgaagag<mark>ggagaag</mark>agcttcta

Top Skin Tumor-associated sequences

C to T change is known common UV-related mutation

		Avg		Avg Importance
Reference	Altered	Importance	#	. x #
стссстсс	стттсттт	273.136314	6	1638.817886
сттссттссттт	сттсттттт	302.177643	4	1208.710571
ттсс	тттс	83.493270	13	1085.412514
сттс	СТТТ	91.110146	11	1002.211605
тстссттт	тсттттт	161.271838	5	806.359192
тттстттс	тттттт	168.812729	4	675.250916
стсс	сттт	132.571730	5	662.858650
ccggccgg	CCAACCAA	218.585027	3	655.755081
AAATGGGA	AAATAAGA	160.861458	4	643.445831
тттссстс	ттттстс	159.043461	4	636.173843

11.00

Top Lung Tumor-associated Sequences

G to T change is known mutation from benzo(a)pyrene in tobacco

Reference	Altered I	Avg mportance	#	Avg Importance x #
GGGG	GTGG	44.803573	8	358.428585
GGTCGGTCCGTG	GGTAGGTAACTG	159.669815	2	319.339630
GGTG	дтта	38.266541	8	306.132324
GGCCCCAT	GGCCAAAT	89.676956	3	269.030869
TCCCTCCCCAGGTCAT	TCCATCCAAAGGTCAT	126.131210	2	252.262421
GCCTGCCTCGGCCACCCGCG	GCCTGCCTAAGCCACCAGCG	124.771141	2	249.542282
ACGATGATGAGGCCCAGGATCTGT	ACGATGATGAGTCCCATTATGTGT	117.515015	2	235.030029
AGCCAGCCCGAG	AGCCAGCCAGAG	78.167747	3	234.503242
CCTCCCTCCCACTTGCGCTGGGTG	CCTCCCTCCAACTTGAGCTGGGAG	112.450432	2	224.900864
AGAGAGAGGGGCTCACCTGCCGGC	AGAGAGAGTGGCTCACATGCCGGC	110.537506	2	221.075012

Top Renal Clear Cell Carcinoma-associated Sequences

Insertions and deletions are reported to be most common in this cancer

Reference	Altered	Avg mportance	#	Avg Importance x #_
	AAAAAAA	38.893335	13	505.613358
	AAAA	17.492642	23	402.330760
	AAGAAAGAAGAA	37.159491	9	334.435417
CTACCTACCACCACTACCACTAATAG	CTACCTACTACTACCACTATAATAATAATAATAATAATAA	128.056763	2	256.113525
	AAGA	12.586613	19	239.145653
AGATAGATGA	AGAAAGAAGAAAGAAAGAAAGAAAA	107.190369	2	214.380737
AATCAG	AATAATGAATGCACATCATG	102.416496	2	204.832993
CCCTTATCTATCTCCCAG	CCCTTATCTATCTATCTATCTATATATCCCAG	101.835312	2	203.670624
	TATA	9.229853	22	203.056776
CACAGCTTTTTT	CACAGCTTTTTGAATTAAGTTTGAATTAAGTCTAATGTATTAATGTATTTTT	101.356491	2	202.712982

Applying Model to Lung Cancer Patient cell-free DNA (cfDNA)

Take-Aways and Future Directions

Some tumor types are more distinguishable than others

Skin cancer is very identifiable and breast cancer is not

Generating synthetic reads was a useful alternative

> No real patient DNA used for training

CNN can learn mutational signatures

CNN recapitulated some known signatures and the data may contain new insights

Model can be used with real sequencing data

Real sequences can be format as input and classified

For intratumor

Train model to predict by patient for finer grain signature learning

Top portion of table from Alexandrov, L.B., Kim, J., Haradhvala, N.J. et al. Nature 578, 94–101 (2020).

Instructions for use

In order to use this template, you must credit <u>Slidesgo</u> and <u>Freepik</u> in your final presentation and include links to both websites.

You are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

For more information about editing slides, please read our FAQs or visit Slidesgo School: https://slidesgo.com/faqs and https://slidesgo.com/slidesgo-school

Infographics

You can add and edit some **infographics** to your presentation to present your data in a visual way.

- Choose your favourite infographic and insert it in your presentation using Ctrl C
 + Ctrl V or Cmd C + Cmd V in Mac.
- Select one of the parts and ungroup it by right-clicking and choosing "Ungroup".
- Change the color by clicking on the paint bucket.
- Then resize the element by clicking and dragging one of the square-shaped points of its bounding box (the cursor should look like a double-headed arrow).
 Remember to hold Shift while dragging to keep the proportions.
- Group the elements again by selecting them, right-clicking and choosing "Group".
- Repeat the steps above with the other parts and when you're done editing, copy the end result and paste it into your presentation.
- Remember to choose the "Keep source formatting" option so that it keeps the design. For more info, please visit Slidesgo School.

