DECISION TREE MOHAMMAD GHODDOSI

WHAT IS DECISION TREE

- Flowchart-like structure
 - Each internal node represents a test on an attribute
 - Each branch represents the outcome of the test
 - Each leaf node represents a class label

LEAF NODES

- Max depth
- Min Samples
- Output is most frequent class in leaf
- Output probability is proportion of most frequent class in leaf to others

EXAMPLE - BINARY

EXAMPLE - CATEGORICAL

EXAMPLE - CONTINUOUS

DECISION TREE - PROS AND CONS

- Pros:
 - Understandable rules
 - Low computation
 - Both continuous and categorical variables
 - Shows more important features
- Cons:
 - Not powerful in regression
 - computationally expensive to train

DECISION TREE FOR CLASSIFICATION

DECISION TREE FOR REGRESSION

CART ALGORITHM

- Split dataset into 2 subsets using a single feature k and threshold t_k
- Search for best (k, t_k) that produces the purest subsets.
- Do same algorithm recursively for subsets ...

PURITY

PURITY

- Entropy
- Average Entropy / Information
- Information Gain
- Gain ratio
- Gini Index

Entropy:
$$E(S) = -\sum_{i=0}^{C} p_i \log p_i$$

Information =
$$I(S, A) = \sum_{i} \frac{|S_i|}{S} \cdot E(S_i)$$

Gini:
$$G(S) = 1 - \sum_{i=0}^{C} p_i^2$$

Gini:
$$G(S, A) = \sum_{i} \frac{|S_i|}{S} \cdot G(S_i)$$

OVERFITTING AND PRUNING

- Pre-pruning
 - Stop growing a branch when information becomes unreliable
- Post-pruning
 - simplify tree after training by replacing some nodes with leafs
- Post-pruning preferred in practice

