CS 228 : Logic in Computer Science

Krishna. S

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

The condition that requires visiting final states infinitely often becomes vacuous when there are no final states. As a result, any infinite sequence of states (i.e., any infinite run) satisfies the acceptance condition

Word View (On the board)

a must hold continuously for a period of time, but eventually, a point will be reached where a becomes false, and simultaneously, b becomes true. The formula is only true if this transition happens at some point in the future.

Think of it as a machine is running till task completes.

- $w = \{a\}\{a,b\}\{\}\dots,$
- $\varphi = a \, \mathsf{U}(\neg a \land b)$ Doubt, Why neg b and neg phi not included?
- ▶ Subformulae of $\varphi = \{a, \neg a, b, \neg a \land b, \varphi\}$
- ▶ Parse trees to compute all subformulae

Closure of φ , $cl(\varphi)$

- ▶ $cl(\varphi)$ =all subformulae of φ and their negations, identifying $\neg \neg \psi$ to be ψ .
- ▶ Example for $\varphi = a U(\neg a \land b)$
- $cl(\varphi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi\}$

Elementary Sets

Let φ be an LTL formula. Then $B \subseteq cl(\varphi)$ is elementary provided:

- ▶ *B* is maximally consistent : for all $\varphi_1 \wedge \varphi_2, \psi \in cl(\varphi)$,
 - lacksquare $\varphi_1 \wedge \varphi_2 \in B \Leftrightarrow \varphi_1 \in B \wedge \varphi_2 \in B$ if conjunct belongs to set then individual cl. belong to set.
 - $m \psi \in B \Leftrightarrow
 eg \psi
 otin B$ a cl. and its negation can't be in the set simultaneously.
 - $true \in cl(\varphi) \Rightarrow true \in B$
- ▶ *B* is locally consistent wrt U. That is, for all $\varphi_1 \cup \varphi_2 \in cl(\varphi)$,
 - $\varphi_2 \in B \Rightarrow \varphi_1 \cup \varphi_2 \in B$ if post until is in set, then whole formula is in set.
 - $\varphi_1 \cup \varphi_2 \in B, \varphi_2 \notin B \Rightarrow \varphi_1 \in B$ if post until is not in set, then pre until has to be in set given until formula is in set.
- ▶ B is elementary : B is maximally and locally consistent
- ▶ Given a $B \subseteq cl(\varphi)$, how can you check if B is elementary?

Let
$$\varphi = a U(\neg a \wedge b)$$

 $B_1 = \{a, b, \neg a \land b, \varphi\}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- \triangleright $B_2 = {\neg a, b, \varphi}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- ▶ $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$ No, not locally consistent for U
- $B_4 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- ▶ $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$ No, not locally consistent for U
- ▶ $B_4 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}$ Yes, elementary But it does not contain neg a and neg b, i.e. conjunct.

LTL φ to GNBA G_{φ}

- States of G_φ are elementary sets B_i
- For a word $w = A_0 A_1 A_2 \dots$ the sequence of states $\sigma = B_0 B_1 B_2 \dots$ will be a run for w
- lacktriangledown σ will be accepting iff $m{w} \models arphi$ iff $arphi \in B_0$ Word makes the formula true iff the formula is from set.
- ▶ In general, a run B_iB_{i+1} ... for A_iA_{i+1} ... is accepting iff A_iA_{i+1} ... $\models \psi$ for all $\psi \in B_i$.

- ▶ Let $\varphi = \bigcirc a$. assume next a.
- ▶ Subformulae of φ : $\{a, \bigcirc a\}$. Let $A = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$.
- Possibilities at each state
 - ► {*a*, *Oa*}

 - \triangleright { $a, \neg \bigcirc a$ }
- ▶ Our initial state(s) must guarantee truth of $\bigcirc a$. Thus, initial states: $\{a, \bigcirc a\}$ and $\{\neg a, \bigcirc a\}$

{ a, ○a}

 $\{a, \neg \bigcirc a\}$

{¬*a*, *○a*}

 $\{\neg a, \neg \bigcirc a\}$

$$\rightarrow \boxed{\{\neg a, \bigcirc a\}}$$

- Claim: Runs from a state labelled set B indeed satisfy B
- No good states. All words having a run from a start state are accepted.
- ▶ Automaton for $\neg \bigcirc a$ same, except for the start states.

- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : $\{a, b, a \cup b\}$. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- Possibilities at each state
 - {a, ¬b, a Ub}
 - \triangleright { $\neg a, b, a \cup b$ }
 - ▶ {a, b, a Ub}
 - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
 - $\blacktriangleright \{\neg a, \neg b, \neg (a \cup b)\}$
- Our initial state(s) must guarantee truth of $a \cup b$. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 $\rightarrow \{a, b, a \cup b\}$

LTL to GNBA : Accepting States

$$\rightarrow \overline{\{a,b,a\,\mathsf{U}b\}}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

Construct GNBA for $\neg(a \cup b)$.

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- Possibilities at each state
 - $\{a, c, \psi, \varphi\}$
 - $\blacktriangleright \ \{\neg \textit{a}, \textit{c}, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\qquad \qquad \bullet \quad \{ \neg a, \neg c, \psi, \varphi \}$
 - $\{\neg a, \neg c, \neg \psi, \neg \varphi\}$

$$\longrightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow \left[\{ \neg a, c, \psi, \varphi \} \right]$$

$$\{ {\it a}, \neg {\it c}, \neg \psi, \neg \varphi \}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\rightarrow \boxed{\{a, \neg c, \neg \psi, \varphi\}}$$

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = a U \psi$
- ▶ $F_1 = \{B \mid \psi \in B \to c \in B\}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\rightarrow$$
 $\{a, c, \psi, \varphi\} \in F_1, F_2$

$$|\{\neg a, \neg c, \psi, \varphi\} \in F_2|$$
 \longleftarrow

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{\neg a, c, \psi, \varphi\} \in F_1, F_2$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_1$

▶ Given φ , build $Cl(\varphi)$, the set of all subformulae of φ and their negations

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \cup \psi_2 \in B$
 - $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),
```

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in CI(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),
```

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in \mathit{Cl}(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$
- ▶ Prove that $L(\varphi) = L(A_{\varphi})$

• States of A_{φ} are subsets of $CI(\varphi)$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\omega}$: Number of states in $A_{\omega} \leq |\varphi|.2^{|\varphi|}$
- ▶ There is no LTL formula φ for the language

$$L = \{A_0A_1A_2 \cdots \mid a \in A_{2i}, i \geqslant 0\}$$

Complexity of LTL Modelchecking

- ▶ Given φ , $A_{\neg \varphi}$ has $\leq 2^{|\varphi|}$ states (to be proved)
- ▶ $TS \otimes A_{\neg \varphi}$ has $\leq |TS|.2^{|\varphi|}$ states
- ▶ Persistence checking : Checking $\Box \Diamond \eta$ on $TS \otimes A_{\neg \varphi}$ takes time linear in $\eta.|TS \otimes A_{\neg \varphi}|$

The hamiltonian path problem is polynomially reducible to the complement of the LTL modelchecking problem.

- Given graph G = (V, E) synthesize in polynomial time a TS and an LTL formula φ
- ▶ Show that *G* has a HP iff $TS \nvDash \varphi$

The hamiltonian path problem is polynomially reducible to the complement of the LTL modelchecking problem.

- Given graph G = (V, E) synthesize in polynomial time a TS and an LTL formula φ
- ▶ Show that *G* has a HP iff $TS \nvDash \varphi$
- ► TS is the graph itself, with one new node added, say b such all vertices of G have an edge to b, and b has a self loop. Let the label of a node in the TS be the name of the vertex.
- ▶ Write an LTL formula to capture absence of a HP in G. Assume $V = \{v_1, \dots, v_n\}$.
- ▶ The formula $\varphi = \neg \psi$ where ψ is

$$(\lozenge v_1 \land \Box (v_1 \rightarrow \bigcirc \Box \neg v_1)) \land \ldots (\lozenge v_n \land \Box (v_n \rightarrow \bigcirc \Box \neg v_n))$$

▶ Show that *G* has a HP iff $TS \nvDash \varphi$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

▶ Let π be the path in *TS* such that $\pi \models \psi$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_i, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_{i_1}v_{i_2}\ldots v_{i_n}b^{\omega}$, $i_1,\ldots,i_n\in\{1,2,\ldots,n\}$, $i_i\neq i_k$.
- ▶ So *G* has the HP $v_{i_1}v_{i_2}...v_{i_n}$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ▶ The converse is similar : a HP in G extends to a path $\pi = v_{i_1}v_{i_2}\dots v_{i_n}b^{\omega}$ in TS. Clearly, $\pi \models \psi$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ► The converse is similar : a HP in G extends to a path $\pi = v_{i_1} v_{i_2} \dots v_{i_n} b^{\omega}$ in TS. Clearly, $\pi \models \psi$.
- ▶ So LTL model checking is co-NP hard as HP is NP-complete.
- Actual complexity of LTL model checking: PSPACE-complete. For this, show that given a LBTM M and a word w, construct in poly time a TS and an LTL formula φ such that M accepts w iff $TS \models \varphi$.