/*Usando el modulo 0 de PWM con una frecuencia de reloj del sistema de 50,000,000 Hz

* junto con el generador 1 habilitar alguno de los pwm's asociados y obtener un PWM

cuya frecuencia sea de 10KHz

Desde http://uaqedvirtual.uaq.mx/campusvirtual/ingenieria/mod/assign/view.php?id=67876

1.RCGCPWM RELOJ PWM PAG 354 HABILITAR MODULO 0

2. RCGCGPIO HABILITAR RELOJ DEL PUERTO B1 GPIO

M0 PWM2	58	PB4 (4)	0	TTL	Motion Control Module 0 PWM 2. This signal is
					controlled by Module 0 PWM Generator 1.

MODULO 0 GENERADOR 1 SE UTILIZA EL PIN MOPWM2, LOCALIZADO EN EL PIN PB4

R1 GPIO Port B Run Mode Clock Gating Control

Value Description

- 0 GPIO Port B is disabled.
- Enable and provide a clock to GPIO Port B in Run mode

Ocupo el puerto b, en alto el bit 1

3. RCC Modo de configuración del reloj, sí sí pones en alto el bit usepwmdiv para dividir la señal de reloj Y para decirle entre cuanto quieres dividirlo usas el bit pwmdiv, se va a dividir entre 2

Description

Туре

Poner en alto el usepwmdiv (1<< 20) Y poner 0x0 en mascara al pwmdiv

4.AFSEL

QUEREMOS UNA FUNCIÓN ALTERNA EN EL PIN PB4, O SEA EL PIN NUMERO 4

4. PCTL

IO Pin	Analog	Digital Function (GPIOPCTL PMCx Bit Field Encoding) ^a											
	Pin	Function	1	2	3	4	5	6	7	8	9	14	15
PA0	17		UORx		-	-	-	-		CANIRX			
PAl	18	-	UOTx	-	-	-	-	-	-	CANITX	-	-	-
PA2	19		-	SSIOC1k	-	-		-		-		-	
PA3	20	-	-	SSIOFss	-	-	-	-	-	-	-	-	
PA4	21	-	-	SSIORx	-	-	-	-	-	-	-	-	
PA5	22	-	-	SSIOTx	-	-	-	-	-	-	-	-	-
PA6	23		-		I2C1SCL	-	M1PWM2	-	-	-	-	-	-
PA7	24	-	-		I2C1SDA	-	M1PWM3	-	-	-	-	-	-
PB0	45	USBOID	UlRx	-	-	-	-	-	T2CCP0	-	-	-	-
PB1	46	USBOVBUS	UlTx	-	-	-	-	-	T2CCP1	-	-	-	-
PB2	47	-	-	-	I2C0SCL	-	-	-	T3CCP0	-	-	-	
PB3	48	-	-	-	I2C0SDA	-	-	-	T3CCP1	-	-	-	
PB4	58	AIN10	-	SSI2C1k		M0PWM2		-	T1CCP0	CANORX			

DEL PINPB4 OCUPO LA FUNCION DIGITAL 4

REGISTRO PCTL

Quiero un 4 en binario en el PMC4 Y A LA HORA DE PONERLO EN EL VISUAL DEBO ESCRIBIRLO EN HEXADECIMAL, TOMANDO CADA 4 BITS COMO 1 VALOR

0x0000

Bit/Field	Name	Туре	Reset	Description
31:28	PMC7	RW	-	Port Mux Control 7 This field controls the configuration for GPIO pin 7.
27:24	PMC6	RW		Port Mux Control 6 This field controls the configuration for GPIO pin 6.
23:20	PMC5	RW	-	Port Mux Control 5
19:16	PMC4	RW		This field controls the configuration for GPIO pin 5. Port Mux Control 4 This field controls the configuration for GPIO pin 4.

1 BYTE = 8 BITS

4 EN BINARIO = 0100 = 4 EN HEXADECIMAL 0 0 0 0 4 0 0 0 = 0x00004000 Pero debo ponerle una máscara porque no tieene valores por default

0xFFFF0FFF y ya luego el valor que quiero

GPIODEN

DECIRLE AL PIN QUE VA A SER DIGITAL, DEL PIN 4

ESCRIBIR EL 8C = 1000 1100

El 11 en actload = 0x03

ACTLOAD

Action for Counter=LOAD

This field specifies the action to be taken when the counter matches the value in the **PWMnLOAD** register.

Value Description

0x0 Do nothing.

0x1 Invert pwmA

0x2 Drive pwmA Low.

0x3 Drive pwmA High.

El 2 en actcmpad significa

ACTCMPAD

0x0

Action for Comparator A Down

This field specifies the action to be taken when the counter matches comparator A while counting down.

0x0 Do nothing.

0x1 Invert pwmA.

0x2 Drive pwmA Low.

0x3 Drive pwmA High.

25000000/10000=2500 **el25MHz, es porque el valor inicial era 50MHz pero se dividio entre 2 pero 0 cuenta entonces el valor es 2499

Usaremos el 20%, pero escribimos el restante o sea el 80% Doty es el 20%, cuanto lo quieres es opcional El 20% de 2499 es 500 El 80% es

Pwm0 enable, debo poner en alto el pwm2en

2 PWM2EN RW MnPWM2 Output Enable

Value Description

- The Mn PWM2 signal has a zero value.
- The generated pwm1A' signal is passed to the MnPWM2 pin.

Experimento 2

Table 20-1. PWM Signals (64LQFP)

Pin Name	Pin Number	Pin Mux / Pin Assignment	Pin Type	Buffer Type ^a	Description	
M0FAULT0	30 53 63	PF2 (4) PD6 (4) PD2 (4)	I	TTL	Motion Control Module 0 PWM Fault 0.	
M0 PWM0	1	PB6 (4)	0	TTL	Motion Control Module 0 PWM 0. This signal is controlled by Module 0 PWM Generator 0.	
M0PWM1	4	PB7 (4)	0	TTL	Motion Control Module 0 PWM 1. This signal i controlled by Module 0 PWM Generator 0.	
M0PWM2	58	PB4 (4)	0	TTL	Motion Control Module 0 PWM 2. This signal controlled by Module 0 PWM Generator 1.	
M0PWM3	57	PB5 (4)	0	TTL	Motion Control Module 0 PWM 3. This signal is controlled by Module 0 PWM Generator 1.	
M0PWM4	59	PE4 (4)	0	TTL	Motion Control Module 0 PWM 4. This signal is controlled by Module 0 PWM Generator 2.	
M0PWM5	60	PE5 (4)	0	TTL	Motion Control Module 0 PWM 5. This signal is controlled by Module 0 PWM Generator 2.	
M0PWM6	16 61	PC4 (4) PD0 (4)	0	TTL	Motion Control Module 0 PWM 6. This signal is controlled by Module 0 PWM Generator 3.	
M0PWM7	15 62	PC5 (4) PD1 (4)	0	TTL	Motion Control Module 0 PWM 7. This signal is controlled by Module 0 PWM Generator 3.	
M1FAULT0	5	PF4 (5)	ı	TTL	Motion Control Module 1 PWM Fault 0.	

El servo trabaja a 4.3 a Tierra a +5 y ka de en medio al pwm

10000000/50=200,000 **el10MHZ, es porque el valor inicial era 20MHz pero se dividio entre 2 p $_{
m t}^{
m co}$ 0 cuenta entonces el valor es 2499

Todo el carril de +5

200000 * 20% = 40000

PWMn Load (PWMnLOAD)

PWM0 base: 0x4002.8000 PWM1 base: 0x4002.9000 Offset 0x050 Type RW, reset 0x0000.0000

Bit/Field	Name	Type	Reset	Description
31:16	reserved	RO	0x0000	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:0	LOAD	RW	0x0000	Counter Load Value
				The counter load value.

2^^16 = 65000 , y nos dio un valor de 50000 entonces si me alcanza

Las tierras si se comparten Los positivos de los servos van a un carril en común, y se conectan el +5 del arduino y a un carril en comun

Los positivos de las res van alimentarse con la tiva Y la tierra se debe poner en comun coon la del servo

Ciclo de trabajo es de 1-2ms del servo Como la practica me pide a 50hz La tiva trabaja a 20MHz, pero el pwm va a trabajar a 50Hz, debo hacer una división,

20MHz/8 (el 8 es de lo que se podia dividir del adc)= 2500000 es mi nuevo reloj debo dividirlo entre los 50Hz, 50 000

Entonces si cabe
Ciclo de trabajo es de 1-2ms del servo, entonces
1/50Hz = 0.02 = 20ms nuestro ciclo de trabajo
Nuestros 20ms
Debo sacar la carga para que nos de ,de 1-2ms

20ms == 50000 2ms = 5000 1 ms = 2500

Mi nuevo cero es el 1 y un ms son 2500 +

El adc funciona de 0-4095

= El valor de carga- ciclo de trabajo calculado