

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Ingeniería en Informática

Mg. Susana Vanlesberg: Profesor Titular Dr. Mario Silber: Profesor Adjunto Dra. Andrea Bergesio: Jefe de Trabajos Prácticos A.I.A. Juan Pablo Taulamet: Auxiliar de Primera

:: GUÍA 6 :: | PARTE II

ESTADISTICA INFERENCIAL

:: RESPUESTAS ::

:: 2014 ::

Ejercicio 1

 $IC_{95\%} = (765.69, 794.31)$

Ejercicio 2

 $IC_{95\%} = (0.057, 0.343)$

Ejercicio 3

Suponiendo que las muestras provienen de poblaciones normales, el intervalo del 95 % de confianza para el cociente de los desvíos estándares resulta $IC_{95\%} = (0.524, 2.324)$. Luego, suponiendo igualdad de varianzas, el intervalo para la diferencia de las medias según el método $IC_{95\%} = (-1.045, 8.379)$ muestra que el tiempo medio de montaje con el nuevo método no es mejor que utilizando el método estándar.

Ejercicio 4

Entre 16 y 20.

Ejercicio 5

 $IC_{99\%} = (-0.064, 0.289)$

Ejercicio 6

 $IC_{95\%} = (-2, 10; 22, 5)$

Ejercicio 7

Intervalo del 95 % de confianza para el desvío estándar del porcentaje de titanio: $IC_{95\%} = (0.3127, 0.4645)$, suponiendo que la variable porcentaje de titanio presente tiene distribución normal.

Ejercicio 8

- (a) $IC_{90\%} = (0.0033, 0.0086)$
- (b) $IC_{95\%} = (0.0028, 0.0091)$

Ejercicio 9

Intervalo del 95 % de confianza para el tiempo medio de procesamiento: $IC_{95\%} = (202.36, 237.63)$. En base a dicho intervalo, se aconsejará la modificación de los algoritmos.

Ejercicio 10

Intervalo del 95 % de confianza para el cociente de las varianzas de volumen para ambas máquinas: $IC_{95\%} = (0.3509, 5.6777)$. Luego, suponiendo igualdad de varianzas, $IC_{95\%} = (-0.0163, 0.0363)$. En base a este intervalo, no es posible contradecir la afirmación del miembro de personal de ingeniería.