Compiler – 3–3. Push Down Automata –

JIEUNG KIM

jieungkim@yonsei.ac.kr

Where are we?

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Outlines

- Role of the syntax analysis (parser)
- Context free grammar
- Push down automata
- Top-down parsing
- Bottom-up parsing
- Simple LR
- More powerful LR parsers and other issues in parsers
- Syntactic error handler
- Parser generator

- Pushdown automata (PDA)
 - A Pushdown Automata (PDA) is ε-NFA with a stack
 - On a transition, PDA
 - Consumes an input symbol (or stays by ε-move)
 - Goes to a new state (or stays in the old state)
 - · Replaces the top of stack by any string
 - Does nothing
 - · Pops the stack, or
 - Pushes a string onto the stack

Formal definition

• PDA M = (Q, Σ , Γ , δ , q_0 , Z_0 , F) where

Q: a finite set of states

 Σ : a finite set of input symbols

Γ: a finite set of stack symbols

 $q_0 \subseteq Q$: a start state

 Z_0 ($\subseteq \Gamma$): stack start symbol

 $F \subseteq Q$: a finite set of final states

δ: transition function is defined as: Q X ($\Sigma \cup \{\epsilon\}$) X $\Gamma \rightarrow$ finite subsets of Q X $\Gamma *$

Transition functions

- Transition Function $\delta(q, a, x) = (q', \beta)$ where $q, q' \in Q$, $a \in \Sigma$, $x \in \Gamma$, $\beta \in \Gamma^*$
- Case 1: If $a \neq \varepsilon$ and $\beta \neq \varepsilon$, then replace x by β .

• Case 2: If $a \neq \epsilon$ and $\beta = \epsilon$, then x is popped.

• Case 3: If $a = \varepsilon$, then ε -move. (= head stays)

Configuration

• "Configuration" is defined as follows: (q, w, α) where q \in Q, w \in Σ^* , $\alpha \in \Gamma^*$

- If $w = \varepsilon$, then (q, ε, α) : read all w
- If $\alpha = \varepsilon$, then (q, w, ε) : stack is empty
- If $w = \varepsilon$ and $\alpha = \varepsilon$, then $(q, \varepsilon, \varepsilon)$: read all w, and stack is empty

- Move (⊢)
 - Move (⊢) is defined as follows:
 - If $\delta(q, a, x) = (q', \beta)$, then $(q, aw, x\alpha) \vdash (q', w, \beta\alpha)$ where $a \in \Sigma$, $w \in \Sigma^*$, $x \in \Gamma$, α , $\beta \in \Gamma^*$

Example

Consider the following PDA M

M = ({q₀, q₁, q₂, q₃}, {a, b}, {a}, δ, q₀, Z₀, {q₃})

$$\delta(q_0, a, Z_0) = (q_1, a Z_0)$$
: Push a
 $\delta(q_1, a, a) = (q_1, aa)$: Push a's
 $\delta(q_1, b, a) = (q_2, \epsilon)$: See first b and Pop a
 $\delta(q_2, b, a) = (q_2, \epsilon)$: Pop
 $\delta(q_2, \epsilon, Z_0) = (q_3, Z_0)$: Go to final state

- Consider w = aabb
 - $(q_0, aabb, Z_0) \vdash (q_1, abb, aZ_0) \vdash (q_1, bb, aaZ_0) \vdash (q_2, b, aZ_0) \vdash (q_2, \epsilon, Z_0) \vdash (q_f, \epsilon, Z_0)$
 - w = aabb is accepted
- Consider w = abb
 - $(q_0, abb, Z_0) \vdash (q_1, bb, aZ_0) \vdash (q_2, b, Z_0)$
 - w = abb is rejected
- Consider w = aab
 - $(q_0, aab, Z_0) \vdash (q_1, ab, aZ_0) \vdash (q_1, b, aaZ_0) \vdash (q_2, \epsilon, aZ_0)$
 - w = aab is rejected

- Deterministic PDA (DPDA)
 - PDA M = (Q, Σ , Γ , δ , q_0 , z, F) is **deterministic** if
 - $\delta(q, a, x)$ has at most one move for any $q \in Q$
 - (i.e., $\delta(q, a, x)$ is empty or has only one move)
 - If $\delta(q, a, x)$ is not empty for some $a \in \Sigma$, then $\delta(q, \epsilon, x)$ must be empty
 - Example
 - $\delta(q, a, x) = (p, aa), \delta(q, \epsilon, x) = (r, aa)$ is not DPDA

- Example Deterministic PDA (DPDA)
 - L = { wcw^R | $w \in \{a, b\}*$ } (where c is a center mark)

$$M = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\delta(q_0, a, Z_0) = (q_0, aZ_0)$$

 $\delta(q_0, b, Z_0) = (q_0, bZ_0)$
 $\delta(q_0, a, a) = (q_0, aa)$ Push
 $\delta(q_0, a, b) = (q_0, ab)$
 $\delta(q_0, b, a) = (q_0, ba)$
 $\delta(q_0, b, b) = (q_0, bb)$

Push a's or b's

----b, a, ba b, b, bb

a, Z_0 , aZ_0 b, Z_0 , bZ_0 a, a, aa a, b, ab

ba a, a, e

, bb b, ε

 $\delta(q_0, c, Z_0) = (q_1, Z_0)$

 $\delta(q_0, c, a) = (q_1, a)$ $\delta(q_0, c, b) = (q_1, b)$

Match and pop

Change state

Nondeterministic PDA

- Consider L = $\{ w \in \{a, b\} * \mid ww^{R} \}$
 - Guess that you are reading w, then stay in state 0 and push the input symbols onto the stack
 - Guess that you are in the middle of ww^R, then go to state 1
 - You are now reading the head of ww^R , then compare it to the top of the stack. If they match, pop the stack, and remain in state 1, and then go to sleep If they don't match
 - If the stack is empty, then go to state 2, and accept

NPDA vs DPDA

- A language accepted by Nondeterministic PDA is called CFL
 - Examples: $L = \{ww^R\}, L = \{a^nb^{2n}\}$ $\cup \{a^{2n}b^n\}$
- A language accepted by DPDA is called Deterministic CFL (DCFL)
 - Examples: $L = \{wcw^R\}, L = \{a^nb^{2n}\}$
- PDA is inherently nondeterministic, and NPDA is more powerful than DPDA
- There are CFL's that can not be accepted by DPDA
 - Examples: $L = \{ww^R\}, L = \{a^nb^{2n}\}\$ $\cup \{a^{2n}b^n\}$

CFL: PDA

(Example: $a^nb^{2n} \cup a^{2n}b^n$, ww^R)

Regular: FA

(Example: a*b*)

DCFL: DPDA

(Example: anbn, wcw?)

- Power of DPDA
 - Most parsers (in practice) work as DPDA
 - Most programming languages can be described by DCFL
 - There are useful deterministic CFG's
 - Simple (s), LL, LR grammars
 - Every language accepted by DPDA has an unambiguous CFG
 - I.e., Every DCFL is unambiguous

- Equivalence of PDA and CFG
 - A language is generated by a CFG iff it is accepted by a PDA

Questions?

- PDA accepted by a final state
 - An PDA M_f accepts a string $w = a_1 a_2 \cdots a_n$ by a *final state* if there is path that
 - Begins at a start state
 - Ends at a final state
 - Has a sequence of labels a₁a₂···a_n

Stack contents are whatever path: $a_1a_2\cdots a_n$ final state start state

- PDA accepted by an empty stack
 - An PDA M_{ϵ} accepts a string $w = a_1 a_2 \cdots a_n$ by an *empty stack* if there is path that
 - Begins at a start state
 - Ends at any state
 - Has a sequence of labels a₁a₂···a_n
 - Stack must be empty finally

- Context free language
 - A language accepted by PDA M_f by final state
 - $L(M_f) = \{ w \in \Sigma^* | (q_0, w, Z_0) \vdash (p, \epsilon, \alpha) \text{ for } p \in F \}$
 - L(M_f) is called "Context Free Language"
 - Example: $L(M) = \{a^nb^n \mid n \ge 1\}$
 - A language accepted by PDA M_ε by *empty stack*
 - $L(M_{\epsilon}) = \{ w \in \Sigma^* | (q_0, w, Z_0) \vdash (p, \epsilon, \epsilon) \text{ for } p \in Q \}$
 - L(M_E) is also called "Context Free Language"
 - PDA $M_f = PDA M_{\epsilon}$

- Examples: construct PDA for the following languages:
 - $L = \{a^{2n}b^n \mid n \ge 0\}$
 - $L = \{a^nb^{2n} \mid n \ge 0\}$
 - $L = \{a^m b^n \mid m > n, m, n \ge 0\}$
 - $L = \{a^m b^n \mid m \neq n, m, n \geq 0\}$
 - $L = \{a^m b^m c^n \mid m, n \ge 0\}$
 - $L = \{a^{m+n}b^mc^n \mid m, n \ge 0\}$
 - $L = \{a^m b^n c^n d^m \mid m, n \ge 0\}$
 - $L = \{w \in \{a, b\}^* \mid w \text{ is not a palindrome.} \}$
 - L = {w \in {a, b}* | NUMBER_a(w) = NUMBER_b(w)}

- Convert CFG into PDA
 - Given CFG G, we construct a PDA that simulates leftmost derivations
 - Let $xA\beta \Rightarrow x\alpha\beta$. Then, PDA
 - Consumes input x by placing $A\beta$ on the stack, and then,
 - It pops A and pushes α by ϵ -move
 - PDA goes non-deterministically from $(q, y, A\beta)$ to $(q, y, \alpha\beta)$
 - Let G = (V, T, S, P) be a CFG, then we construct PDA M = ({q}, T, T \cup V, δ , S, q) as follows:
 - If A $\rightarrow \alpha \in P$, then $\delta(q, \epsilon, A) = (q, \alpha)$ (= Replace A by α in stack by ϵ -move.)
 - $\delta(q, X, X) = (q, \epsilon)$ for all $X \in T$ (= If top symbol X is matched with input symbol X, erase it)
 - L(G) = {w | S \Rightarrow w and w \in T*} iff L(M) = {w \in S*| (q, w, S) \vdash (q, ϵ , ϵ)}

Example – convert CFG into PDA

w = a + a * a

Leftmost Derivation

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T$$

\Rightarrow a + T * F \Rightarrow a + F * F \Rightarrow a + a * a

PMA M = ({q}, {*, +, (,), a}, V
$$\cup$$
 T, δ , E, q) δ (q, ϵ , E) = {(q, E + T), (q, T)} δ (q, ϵ , T) = (q, T * F), (q, F)} δ (q, ϵ , F) = (q, (E)), (q, a)} δ (q, X, X) = {(q, ϵ)} for all X \in T

PDA M: Simulate leftmost derivation.

(q, a+a*a, E) \(\) (q, a+a*a, E+T) \(\) (q, a+a*a, T+T) \(\) (q, a+a*a, F+T) \(\) (q, a+a*a, a+T) \(\) (q, a*a, T) \(\) (q, a*a, T*F)

$$\vdash$$
 (q, a*a, F*F) \vdash (q, a*a, a*F) \vdash (q, *a, *F)

$$\vdash (q, a, F) \vdash (q, a, a) \vdash (q, \varepsilon, \varepsilon)$$

Questions?

