Ili

Aprendizagem 2023

Lab 4: kNN and Evaluation

Practical exercises

Consider the following data:

	input		output	
	У1	y 2	y 3	У4
X 1	1	1	Α	1.4
\mathbf{X}_2	2	1	В	0.5
X 3	2	3	В	2
\mathbf{X}_4	3	3	В	2.2
X 5	1	0	Α	0.7
\mathbf{x}_6	1	4	Α	1.2

- **1.** Assuming a k-nearest neighbor with k=3 applied within a leave-one-out schema:
 - a) Let y_3 be the output variable (*categoric*). Classify \mathbf{x}_1 when considering uniform weights and:
 - i. Euclidean (*l*2) distance (real input variables)
 - ii. Hamming distance (categorical input variables)
 - b) Let y_4 be the output variable (*numeric*). Considering cosine similarity, provide the mean regression estimate for \mathbf{x}_1 .
 - c) Consider a weighted-distance k-nearest neighbor with Euclidean (l2) distance, identify the:
 - i. weighted mode estimate of \mathbf{x}_1 for the y_3 outcome
 - ii. weighted mean estimate of \mathbf{x}_1 for the y_4 outcome
- **2.** Let x_i be the measurement on variable y_i for a given observation \mathbf{x} .

Given the learnt regression model $\hat{x}_4 = 1 - 0.8x_1 + 0.2x_2^2 + 0.2x_1x_2$:

- a) Compute the \boldsymbol{y}_4 regression estimates for the observations of the aforementioned dataset
- b) Compute the training Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
- c) Perform a residue analysis to assess the presence of systemic biases against y_1 and y_2
- 3. Consider the probabilistic outcome of a classifier for the given six observations to be

$$\mathbf{p}(y_3 = A \mid \mathbf{x}) = [p(y_3 = A \mid \mathbf{x}_1), ..., p(y_3 = A \mid \mathbf{x}_6)] = [0.45 \ 0.4 \ 0.3 \ 0.6 \ 0.8 \ 0.4]$$

- a) Draw the training ROC curve
- b) Compute the training AUC
- c) Would you change the default 0.5 probability threshold for this classifier in order to maximize training F1?

Programming quest

- Consider the accuracy estimates collected under a 5-fold CV for two predictive models M1 and M2, acc_{M1}=(0.7,0.5,0.55,0.55,0.6) and acc_{M2}=(0.75,0.6,0.6,0.65,0.55).
 Using scipy, assess whether the differences in predictive accuracy are statistically significant.
 Resource: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
- **4.** Consider the *housing* dataset available at https://web.ist.utl.pt/~rmch/dscience/data/housing.arff and the *Regression* notebook available at the course's webpage. Using a 10-fold cross-validation:
 - a) Assess the MAE of a kNN regressor for $k \in \{1,5,9\}$ (remaining parameters as default)
 - b) Compare the RMSE of the default kNN and decision tree regressors