Transiently Multicellular Marine Bacteria as Self-Patterning Collectives

Thomas C. Day, Eesha Rangani, Daniel Osorio, Julia Schwartzman

Department of Marine and Environmental Biology, University of Southern California

Poster Number: 7291

Overview

- Far from being well-mixed, marine ecosystems are often patchy (for marine heterotrophs)
- Patchiness shapes ecological dynamics:
- Competition for resources
- Interactions with other species and phage
- Successive immigration and emigration events
- Life in a patchy landscape can be life at high cell density

- A prevalent consequence of life in a patch: Cells stick to each other
- As cells interact, they form transiently multicellular groups
- Emergent multicellular states can tip the scales of microbial ecology

How does the feedback between cell interactions and emergent multicellular states shape the ecology of a patchy marine environment?

Our experimental model

- Vibrio splendidus: a heterotrophic Gram-negative bacteria
- Forms groups in the presence of alginate polysaccharides
- Is common and widespread in coastal oceans
- Has many closely related strains and species • There is rampant horizontal gene transfer among heterotrophic

Blue: Staining cell DNA with Syto-9 (488nm ex. 510 em.) Yellow: Staining lipids with Nile Red (560 ex. 630 em.)

Left: Phylogeny of *Vibrio*, using marker gene *hsp60*. Inset: Two particular strains of *Vibrio splendidus* are highlighted. Both clump in the presence of alginate polysaccharides, with different cell and

If I'm not here at my poster but you want to talk more, is what I look like) or online: Personal website https://thomas-c-day.github.io/

come find me in person (here daythoma@usc.edu

Red: Mobile

Exploring physical development within aggregates

What does group development look like? How do cell-level traits propagate to the group level, and vice versa?

> Cell-level properties Group-level properties $r(t), \psi(t), \ell(t) \longleftrightarrow \phi(t), S(t), \lambda(t)$

Left: measurements of group packing fraction. Middle: an example Delaunay triangulation to estimate the neighbors of each cell in the aggregate (one shown in red, neighbors in blue). Right: a histogram of the number of neighbors for one aggregate.

Cells sort and become phenotypically heterogeneous

Blue: Immobile be necessary to achieve the experimentally-observed spatial pattern.

In simulation, mobile cells are not easily retained in the interior, unlike

empirical observations. This indicates that some cellular feedback may

Merging of separate groups

What sets the encounter rate of groups in a patchy marine environment? How often will groups merge and interact?

The future:

How do we square ecological predictions in the context of spatially-dependent interactions?

What properties of marine microbial communities can be scaffolded by physical interactions?

Can we understand how cell-level and group-level properties of transiently multicellular organisms are connected?

How do we combine physical and metabolic approaches to interrogating group structure?

