

Art 5: Formal Languages

- Formal Representations
- Regular Expressions
- Grammar
- Automata

Let's start...

Chomsky Models

General Models (take a breath...)

Think about this [1]:

 What is the best model for PL?

Source

https://i2.wp.com/www.theoryofcomputation.co/wp-content/uploads/2018/09/Chomsky_Hierarchy.jpg

General Models (take a breath...)

Examples

Grammar	Languages	Model	Constrains	Example
Type-3	Recursively enumerable	Turing machine	$\gamma \rightarrow \alpha$	$L = \{ w \mid w \in TM \}$
Type-2	Context-sensitive	Linear-bounded machine	$\alpha A \beta \rightarrow \alpha \gamma \beta$	$L = \{a^n b^n c^n \mid n > 0\}$
Type-1	Context-free	Push-down automata	$A \rightarrow \alpha$	$L = \{a^n b^n \mid n > 0\}$
Type-0	Regular	Finite state automata	$A \rightarrow a \mid aB$	$L = \{a^n \mid n \ge 0\}$

Compilers – Art. 5

Formal Representations

Check the Examples

Language: Julius:

- You can see different elements such as comments, keywords, identifiers, methods, constants and separators.
- Most languages must define rules to recognize these elements (ex: <id,1>, etc.)
- Different strategies can be used.

```
# Julius Example (Volume of a sphere) #
main& {
  data {
    real PI%, r%, Vol%;
  code {
    PI\% = 3.14;
    input&(r%);
    Vol% = 4.0 / 3.0 * PI% * (r% * r% * r%);
    print&(Vol%);
```

Understanding the Kleene Theorem

Main Idea:

Theorem

The language that can be defined by any of these three methods

- 1. Regular Expressions (or Regular Grammar)
 - or
- 2. Transition graph (transition or state diagrams)

or

3. Finite Automaton (Finite State Machine)

The language that can be defined by:

- Regular Expressions (compact language);
- Regular Grammar (syntax production rules);
- 3. Finite Automaton (DFA / NFA);
- 4. Transition graph (transition / state diagrams);
- 5. Lambda calculus (math definition)

Understanding the Theorem

Model 1: Regular Expressions:

- Regular expressions are a convenient notation (or means or tools) for specifying certain simple (though possibly infinite) set of strings over some alphabet.
- 2. A regular expression is a shorthand equivalent to a regular grammar.

```
L(RE) = L(G)
```

```
Code
  var str = "EduCBA";
  var regEx = /^[A-Za-z]/;
  var res = "false";
  if(str.match(regEx)){
  res= "true";
                          Output:
  alert(res);
                          true
```

Understanding the Kleene Theorem

Model 2: Grammar:

- A finite set of terminal symbols (constants)
- A finite set of non-terminals (notations to define rules).
- 3. A finite set of productions.
- 4. A symbol to start a language.

```
<arithmetic variable identifier> → <letter> <opt letters or digits>

    Example: {a, b, c, ...,abc, abcdf, abc123...}

<opt letters or digits> \rightarrow <letters or digits> | \epsilon

    Example: {ε, a, b, c, ..., abc, abcdf, abc123...}

<letters or digits> → <letter or digit> | <letters or digits> <letter or digit>
    • Example: {a, b, c, ...,1, 2, 3, 1s, e2 ...1111, aaaaa,...}
<letter or digit> → <letter> | <digit>

    Example: {a, b, c, ..., 1, 2, 3 }

\langle \text{letter} \rangle \rightarrow \text{a} \mid \text{b} \mid ... \mid \text{z} \mid \text{A} \mid \text{B} \mid ... \mid \text{Z}

    Example: {a, b, c, ..., z, A,..., Z }

<digit> \rightarrow 0 \mid ... \mid 9
    Example: {0, 1, 2, 3, ..., 9}
```

Understanding the Kleene Theorem

Model 3: Automata:

- A regular expression can be used to construct a **Deterministic Finite Automaton (DFA)** which therefore can recognize strings (words) of the grammar, which is the purpose of the Scanner.
- The sets of strings defined by regular expression are termed regular sets.

To define the RE (as any expression notation) use operands and operations.

- The operands are alphabet symbols or strings defined by regular expressions (regular definitions).
- The standard operations are catenation (concatenation), union or alternation (|), and recursion or Kleene closure (*)
- Regular expressions use the metasymbols |, (,), {, } , [,], * , + (and others ?, ^) to define its operations.

Automata

Compilers – Art. 5

Lambda Calculus

Initial Concepts

Alonzo Church Idea

The lambda calculus (also written as λ -calculus, where lambda is the name of the Greek letter λ) was created by Alonzo Church in the early 1930s to study which functions are computable.

- In addition to being a concise yet powerful model in computability theory, the lambda calculus is also the simplest functional programming language.
- So much so that the lambda calculus looks like a "toy" language, even though it is (provably!) as powerful as any of the programming languages being used today, such as JavaScript, Java, C++, etc.

https://opendsa-server.cs.vt.edu/OpenDSA/Books/PL/html/Syntax.html

Lambda Calculus (1)

Model:

Abstraction for functions (no internal state is important).

We just have:

- Variables
- Functions (how to define/apply)

We do not have:

- Datatypes
- Controls

Several definitions are functions:

- Constants
- Operations
- Expressions.

Lambda Calculus (1)

Grammar (Lambda Calculus)

The basic operation of the **lambda calculus** is the application of expressions such as the lambda abstractions.

Example:

$$(\lambda x. (x+1))$$
 or $(\lambda x. + 1 x)$

- This is a definition of a function that adds 1 to an arbitrary number x.
- The expression $(\lambda x. x+1)$ represents the application of the function that adds 1 to x to the constant 2.
- Lambda calculus provides a reduction rules that permits 2 to be substituted for x in the lambda abstraction and removing the lambda producing the value:

$$(\lambda x. x+1) 2 \Rightarrow (2+1) \Rightarrow 3$$

Lambda Calculus (2)

Evaluating Lambda Calculus

Pure lambda calculus has no built-in functions. Let us evaluate the following expression -

```
(+ (* 5 6) (* 8 3))
```

Here, we can't start with '+' because it only operates on numbers. There are two reducible expressions: (* 5 6) and (* 8 3).

We can reduce either one first. For example -

```
(+ (* 5 6) (* 8 3))
(+ 30 (* 8 3))
(+ 30 24)
= 54
```

https://www.tutorialspoint.com/functional_programming/functional_programming_lambda_calculus.htm

Lambda Calculus (3)

β-reduction Rule

We need a reduction rule to handle \(\lambda \).

This is called β -reduction.

The formal parameter may be used several times -

$$(\lambda x \cdot + x \cdot x) \cdot 4$$

 $(+ \cdot 4 \cdot 4)$
= 8

When there are multiple terms, we can handle them as follows -

$$(\lambda x . (\lambda x . + (-x 1)) x 3) 9$$

The inner **x** belongs to the inner **λ** and the outer **x** belongs to the outer one.

$$(\lambda x \cdot + (-x \cdot 1)) \cdot 9 \cdot 3 + (-9 \cdot 1) \cdot 3 + 8 \cdot 3 = 11$$

https://www.tutorialspoint.com/functional_programming/functional_programming_lambda_calculus.htm

Practical Example: Boolean Logic (1)

Logical Interpretation:

- Basic values are used.
 - EX: TRUE / FALSE
- Functions:
 - TRUE = λx. λy . x
 - FALSE = λx. λy. y
 - **NOT** = λx.x FALSE TRUE
 - Example 1:
 - NOT TRUE =
 - λx.x FALSE TRUE TRUE =
 - (λx.λy.x) FALSE TRUE =
 - FALSE

More Logical functions:

- **AND** = $\lambda x. \lambda y. x y FALSE$
- OR = λx.λy. x TRUE y
- XOR = λx.λy. x (y FALSE TRUE) y
- **IMPLIES** = $\lambda x. \lambda y. x y TRUE$

Example 2:

- NOT FALSE=
- λx.x FALSE TRUE FALSE =
- (λx.λy.y) FALSE TRUE =
- TRUE

Complex expressions (ex: recursion – Haskell):

 $y = \lambda f.(\lambda x f(x x)) (\lambda x.f(x x))$

In Python (logical functions):

```
def true(x, y):
    return x
def false(x, y):
    return y
def logicalNot(x):
    return x(false, true)
def logicalAnd(x, y):
    return x(y, false)
def logicalOr(x, y):
    return x(true, y)
```

```
exp1 = logicalNot(false)
print(exp1)
>> <function true>

exp2 = logicalOr(true, false)
print(exp2.__name__)
>> <function true>
```


https://www.youtube.com/watch?v=eis11j_iGMs

In Go (logical functions):

```
=GO
```

```
package main
import "fmt"
const True = 1
const False = 0
type funcType func(x, y int) int
func TRUE(x, y int) int {
    return x
func FALSE(x, y int) int {
    return y
func callFunc(f funcType, x, y int) int {
    return f(x, y)
func callDefault(f funcType) int {
   return callFunc(f, True, False)
```

```
func NOT(x funcType) int {
    return callFunc(x, False, True)
func AND(x, y funcType) int {
   return callFunc(x, callDefault(y), callDefault(FALSE))
func OR(x, y funcType) int {
    return callFunc(x, callDefault(TRUE), callDefault(y))
func XOR(x, y funcType) int {
    return callFunc(x, callFunc(y, callDefault(FALSE),
callDefault(TRUE)), callDefault(y))
func IMP(x, y funcType) int {
    return callFunc(x, callDefault(y), callDefault(TRUE))
```

In Go:

```
func boolean() {
   var t, f funcType
   var T, F, n, a, o, x, i int
   fmt.Println("Constants ....")
   t = TRUE
   T = callDefault(t)
   fmt.Printf("TRUE: %d\n", T)
   f = FALSE
   F = callDefault(f)
   fmt.Printf("FALSE: %d\n", F)
   fmt.Println("Not ....")
   n = NOT(t)
   fmt.Printf("NOT TRUE: %d\n", n)
   n = NOT(f)
   fmt.Printf("NOT FALSE: %d\n", n)
   fmt.Println("And .....")
   a = AND(t, t)
   fmt.Printf("TRUE AND TRUE: %d\n", a)
   a = AND(t, f)
   fmt.Printf("TRUE AND FALSE: %d\n", a)
   a = AND(f, t)
   fmt.Printf("FALSE AND TRUE: %d\n", a)
   a = AND(f, f)
   fmt.Printf("FALSE AND FALSE: %d\n", a)
```

```
fmt.Println("Or ....")
  o = OR(t, t)
  fmt.Printf("TRUE OR TRUE: %d\n", o)
  o = OR(t, f)
  fmt.Printf("TRUE OR FALSE: %d\n", o)
  o = OR(f, t)
  fmt.Printf("FALSE OR TRUE: %d\n", o)
  o = OR(f, f)
  fmt.Printf("FALSE OR FALSE: %d\n", o)
  fmt.Println("Xor ....")
  x = XOR(t, t)
  fmt.Printf("TRUE XOR TRUE: %d\n", x)
  x = XOR(t, f)
  fmt.Printf("TRUE XOR FALSE: %d\n", x)
  x = XOR(f, t)
  fmt.Printf("FALSE XOR TRUE: %d\n", x)
  x = XOR(f, f)
  fmt.Printf("FALSE XOR FALSE: %d\n", x)
  fmt.Println("Imp .....")
  i = IMP(t, t)
  fmt.Printf("TRUE IMP TRUE: %d\n", i)
  i = IMP(t, f)
  fmt.Printf("TRUE IMP FALSE: %d\n", i)
  i = IMP(f, t)
  fmt.Printf("FALSE IMP TRUE: %d\n", i)
  i = IMP(f, f)
  fmt.Printf("FALSE IMP FALSE: %d\n", i)
```


Compilers – Art. 5

Thank you for your attention

