```
import pandas as pd
import json
import csv
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
    /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWe
      import pandas.util.testing as tm
#json to csv
data = json.load(open("data.json"))
names = data["Health"]
data_file = open("data.csv", "w")
csv_writer = csv.writer(data_file)
print
csv_writer.writerow(names[0].keys())
for name in names:
    csv_writer.writerow(name.values())
data file.close()
df = pd.read csv("data.csv")
df
```

```
3
     48
                   214
                           108
                                        138
                                                F
4
                   195
                                        150
     54
                           122
                                                M
5
     39
                   339
                           170
                                        120
                                                M
                                                F
6
     45
                   237
                           170
                                        130
7
     54
                   208
                           142
                                        110
                                                M
8
     37
                   207
                           130
                                        140
                                                Μ
9
     48
                   284
                                                F
                           120
                                        120
                                                F
10
     37
                   211
                           142
                                        130
11
                            99
     58
                   164
                                        136
                                                M
12
     39
                   204
                           145
                                        120
                                                Μ
13
     49
                   234
                           140
                                        140
                                                M
14
                                                F
     42
                   211
                           137
                                        115
                                                F
15
     54
                   273
                           150
                                        120
16
     38
                   196
                           166
                                        110
                                                M
17
                                                F
     43
                   201
                           165
                                        120
18
     60
                   248
                           125
                                        100
                                                M
19
     36
                   267
                           160
                                        120
                                                M
20
     43
                   223
                                        100
                                                F
                           142
21
     44
                   184
                           142
                                        120
                                                M
22
     49
                   201
                                        124
                                                F
                            164
23
     44
                   288
                           150
                                        150
                                                M
24
     40
                   215
                           138
                                        130
                                                M
```

```
#cleaning
df.dropna()
#outliers
df.describe()
df = df.loc[df['Cholesterol'] < 270+((270-202.5)*1.5)]
df.describe()</pre>
```

|       | Age       | Cholesterol | MaxHR      | RestingBP  |
|-------|-----------|-------------|------------|------------|
| count | 34.000000 | 34.000000   | 34.000000  | 34.000000  |
| mean  | 45.676471 | 232.676471  | 140.235294 | 126.970588 |
| std   | 7.752695  | 42.419779   | 22.741044  | 14.072292  |
| min   | 32.000000 | 164.000000  | 87.000000  | 100.000000 |

#correlation
df.corr()

|             | Age       | Cholesterol | MaxHR     | RestingBP |
|-------------|-----------|-------------|-----------|-----------|
| Age         | 1.000000  | 0.095111    | -0.547935 | 0.054135  |
| Cholesterol | 0.095111  | 1.000000    | -0.131795 | -0.146915 |
| MaxHR       | -0.547935 | -0.131795   | 1.000000  | -0.121600 |
| RestingBP   | 0.054135  | -0.146915   | -0.121600 | 1.000000  |





#scatterplot
sns.regplot(x=df["Age"], y=df["MaxHR"])

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f300acaab90>



```
#density
```

```
fig = sns.kdeplot(df['Age'], shade=True, color="r")
fig = sns.kdeplot(df['MaxHR'], shade=True, color="g")
plt.show()
```



```
#OLS regression
XVar = df['Age']
YVar = df['MaxHR']
linearModel = sm.OLS(YVar, XVar)
results = linearModel.fit()
print(results.summary())
```

## OLS Regression Results

Dep. Variable: R-squared (uncentered): MaxHR Model: OLS Adj. R-squared (uncentered): Method: Least Squares F-statistic: Date: Tue, 07 Dec 2021 Prob (F-statistic): 8 Time: 22:09:08 Log-Likelihood: No. Observations: 34 AIC: Df Residuals: 33 BIC: Df Model: 1 Covariance Type: P>|t| coef std err t [0.025 0.9751

| Age            | 2.9435 | 0.150                                   | 19.659           | 0.000             | 2.639 | 3.248 |  |  |
|----------------|--------|-----------------------------------------|------------------|-------------------|-------|-------|--|--|
|                |        | :====================================== |                  |                   |       |       |  |  |
| Omnibus:       |        | 3.38                                    | 5 Durbin         | n-Watson:         |       | 2.489 |  |  |
| Prob(Omnibus): |        | 0.18                                    | 4 Jarque         | Jarque-Bera (JB): |       | 2.377 |  |  |
| Skew:          |        | -0.63                                   | -0.639 Prob(JB): |                   |       | 0.305 |  |  |
| Kurtosis:      |        | 3.21                                    | 6 Cond. No.      |                   |       | 1.00  |  |  |
|                |        |                                         |                  |                   |       |       |  |  |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

## #conclusions

- # Our null hypothesis is that x and y have no relation. Since the p-value is 0,
- # this means that we can reject the null hypothesis, so there is a relationship
- # between the x and y variables, age and max heart rate respectively.
- # The R-squared value of 0.921 also indicates that there is a strong correlation
- # between the two variables age and max heart rate