# Lecture 6 Combinational Circuit Building Blocks

吳文中

## Tri-state-Buffer (3.8)

- Logic value Z, which is called the high-impedancestate.
- When e=0 the buffer is completely disconnected from the output f



## Transmission Gates (3.9)





(a) Circuit

(b) Truth table

$$s = 1$$
 $x \longrightarrow f = x$ 



(c) Equivalent circuit

(d) Graphical symbol

## A 2-to-1 Multiplexer (MUX)



(a) Graphical symbol



(b) Truth table



(c) Sum-of-products circuit



(d) Circuit with transmission gates

## A 4-to-1 Multiplexer

• 
$$f = \overline{s_1}\overline{s_0}w_0 + \overline{s_1}s_0w_1 + s_1\overline{s_0}w_2 + s_1s_0w_3$$



(a) Graphic symbol

| s <sub>1</sub> | <i>s</i> <sub>0</sub> | f                     |
|----------------|-----------------------|-----------------------|
| 0              | 0                     | w <sub>o</sub>        |
| 0              | 1                     | w <sub>1</sub>        |
| 1              | 0                     | $w_2$                 |
| 1              | 1                     | <i>w</i> <sub>3</sub> |

(b) Truth table



(d) Using 2-to-1 multiplexers to build a 4-to-1 multiplexer.

# A 16-to-1 Multiplexer



# Example 3.2 A 2x2 Crossbar Switch



(a) A 2x2 crossbar switch



(b) Implementation using multiplexers

# Synthesis of a Logic Function (XOR) using Multiplexers (LUT)

| <b>w</b> <sub>1</sub> | w <sub>2</sub> | f |
|-----------------------|----------------|---|
| 0                     | 0              | 0 |
| 0                     | 1              | 1 |
| 1                     | 0              | 1 |
| 1                     | 1              | 0 |
|                       |                |   |



(a) Implementation using a 4-to-1 multiplexer

| <b>w</b> <sub>1</sub> | w <sub>2</sub> | f   | w <sub>1</sub> | f                  |
|-----------------------|----------------|-----|----------------|--------------------|
| 0                     | 0              | 0   | <br>0          | w <sub>2</sub>     |
| 0                     | 1              | 1 ) | 1              | $\overline{w}_{2}$ |
| 1                     | 0              | 1 } | •              | "2                 |
| 1                     | 1              | 0   |                |                    |



(b) Modified truth table

(c) Circuit

# Implementation of the Three-input Majority Function using a 4-to-1 Multiplexer

| $w_1$ $w_2$ $w_3$                                                    | W <sub>1</sub> W                        | ,   f     |
|----------------------------------------------------------------------|-----------------------------------------|-----------|
| 0 0 0<br>0 0 1<br>0 1 0<br>0 1 1<br>1 0 0<br>1 0 1<br>1 1 0<br>1 1 1 | 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 | 0 0 0 0 0 |





# Tree-input XOR Implemented with 2-to-1 Multiplexer



# Tree-input XOR Implemented with 4-to-1 Multiplexer

| $w_1$ $w_2$ $w_3$ | f                |                  |
|-------------------|------------------|------------------|
| 0 0 0             | $0 \} w_3$       |                  |
| 0 0 1             | 1 ) 3            | w <sub>2</sub> — |
| 0 1 0             | $1 \} \bar{w}_3$ | $w_1$            |
| 0 1 1             | 0                | $w_3$            |
| 1 0 0             | $1 \} \bar{w}_3$ |                  |
| 1 0 1             | 0                |                  |
| 1 1 0             | $0 \}_{W_3}$     |                  |
| 1 1 1             | 1                |                  |
|                   |                  |                  |

(a) Truth table

(b) Circuit

# Implementation of the Three-input Majority Function using a 2-to-1 Multiplexer

• 
$$f = \overline{w_1}w_2w_3 + w_1\overline{w_2}w_3 + w_1w_2\overline{w_3} + w_1w_2w_3$$

$$= \overline{w_1}(w_2w_3) + w_1(\overline{w_2}w_3 + w_2\overline{w_3} + w_2w_3)$$

$$= \overline{w_1}(w_2w_3) + w_1(w_2 + w_3)$$

$$= \overline{w_1}(w_2w_3) + \overline{w_1}(w_2 + w_3)$$

$$= \overline{w_1}(w_2w_3) + \overline{w_1}(w_2w_3)$$

$$= \overline{w_1}(w_2w_3) + \overline{w_2}(w_3)$$

$$= \overline{w_1}(w_1w_2w_3) + \overline{w_2}(w_2w_3)$$

$$= \overline{w_1}(w_1w_2w_3) + \overline{w_2}(w_2w_3)$$

$$= \overline{w_1}(w_1w_2w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_2w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_2w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w_1}(w_1w_3) + \overline{w_2}(w_1w_3) + \overline{w_1}(w_2w_3)$$

$$= \overline{w_1}(w_1w_3) + \overline{w_2}(w_1w_3)$$

$$= \overline{w$$

(b) Truth table

## Shannon's Expansion Theorem

• Any Boolean function  $f(w_1, ..., w_n)$  can be written in the form

$$f(w_1, w_2, \dots, w_n)$$

$$= \overline{w_1} \cdot f(0, w_2, \dots, w_n) + w_1 \cdot f(1, w_2, \dots, w_n)$$

$$= \overline{w_1} \cdot f_{\overline{w_1}} + w_1 \cdot f_{w_1}$$

• In general, if the expansion is done with respect to variable  $w_i$ , then  $f_{w_i}$  denotes

$$f(w_1,\dots,w_{i-1}\,,1,w_{i+1},\dots,w_n) \text{ ,and}$$
 
$$f=\overline{w_i}\cdot f_{\overline{w_i}}+w_i\cdot f_{w_i}$$

#### **Code and Code Word**

- A set of *n*-bit strings in which different bit strings represent different numbers or other things is called a code.
- A particular combination of n bit-values is called a code word.
- A code that uses n-bit strings need not contain 2<sup>n</sup> valid code words.

## **Decimal Codes**

| Decimal<br>Digit | BCD<br>8421 | 2421 | Excess-3 | 8, 4, -2, -1 |
|------------------|-------------|------|----------|--------------|
| 0                | 0000        | 0000 | 0011     | 0000         |
| 1                | 0001        | 0001 | 0100     | 0111         |
| 2                | 0010        | 0010 | 0101     | 0110         |
| 3                | 0011        | 0011 | 0110     | 0101         |
| 4                | 0100        | 0100 | 0111     | 0100         |
| 5                | 0101        | 1011 | 1000     | 1011         |
| 6                | 0110        | 1100 | 1001     | 1010         |
| 7                | 0111        | 1101 | 1010     | 1001         |
| 8                | 1000        | 1110 | 1011     | 1000         |
| 9                | 1001        | 1111 | 1100     | 1111         |
|                  | 1010        | 0101 | 0000     | 0001         |
| Unused           | 1011        | 0110 | 0001     | 0010         |
| bit              | 1100        | 0111 | 0010     | 0011         |
| combi-           | 1101        | 1000 | 1101     | 1100         |
| nations          | 1110        | 1001 | 1110     | 1101         |
|                  | 1111        | 1010 | 1111     | 1110         |

## **Gray Code**

- Advantage: only one it in the code group chages in going from one number to the next.
- Gray code generation:

http://en.wikipedia.org/wiki/Gray\_code



(a) Binary Code for Positions 0 through 7

(b) Gray Code for Positions 0 through 7

### **Error Correction and Detection Codes**

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even.
   Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.

### **Error-Correcting and Multiple-Error-Detecting Codes**

- An example can correct single errors and detect multiple errors.
  - With minimum distance 2c+1 can correct errors that affect up to c bits.
  - If a codes' minimum distance is 2c+d+1, it can be used to correct up to c bits error and detect up to d error bits.



### Hamming Code

- In 1950, R.W. hamming described a general method for constructing codes with a minimum distance of 3, now called hamming codes.
  - A  $(2^{i}-1)$ -bit code with /check bits and  $2^{i}-1$  /information bits.
  - Any bit position whose number is power of 2 is a check bit, and the remaining positions are information bits.
  - Each check bit is grouped with a subset of the information bits as specified by a parity-check matrix.
  - e.g. 0101 011 should be 0001 011



### **Generation of Parity Bits**



$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

**Codeword:** 

0001 011

0101 101

1111 **111** 

#### **Error Detection**

Correct codeword: 0001 011; 0101 101

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 &$$

#### 1-bit Error Correction

• 0001 011  $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$   $\rightarrow$  0101 011

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 6$$
Bit position: 7 6 5 34 2 1

Nonzero number indicates the error bit position.

#### 2-bit Error Detection

• 0001 011  $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0100 011$ 

 Nonzero number indicates the error occurs, but can't be corrected back.

## Distance-3 and Distance-4 Hamming Code

| Minimum-distar   | nce-3 code                  | Minimum-distance-4 code |             |  |
|------------------|-----------------------------|-------------------------|-------------|--|
| Information Bits | nformation Bits Parity Bits |                         | Parity Bits |  |
| 0000             | 000                         | 0000                    | 0000        |  |
| 0001             | 011                         | 0001                    | 0111        |  |
| 0010             | 101                         | 0010                    | 1011        |  |
| 0011             | 110                         | 0011                    | 1100        |  |
| 0100             | 110                         | 0100                    | 1101        |  |
| 0101             | 101                         | 0101                    | 1010        |  |
| 0110             | 011                         | 0110                    | 0110        |  |
| 0111             | 000                         | 0111                    | 0001        |  |
| 1000             | 111                         | 1000                    | 1110        |  |
| 1001             | 100                         | 1001                    | 1001        |  |
| 1010             | 010                         | 1010                    | 0101        |  |
| 1011             | 001                         | 1011                    | 0010        |  |
| 1100             | 001                         | 1100                    | 0011        |  |
| 1101             | 010                         | 1101                    | 0100        |  |
| 1110             | 100                         | 1110                    | 1000        |  |
| 1111             | 111                         | 1111                    | 1111        |  |

## Cyclic-redundancy-check (CRC) Codes

- Appends a few (typically 16 or 32) bits to the end of the bit string for a message and sends out the extended string.
- The receiver then performs a computation which would yield 0 if no bits of the message had been in error; if the result is not 0, then the receiver knows that there has been an error in one or more bits.
- Let M be the message we wish to send, m bits long. Let C be a divisor string, c bits long. C will be fixed (say hardwired into a serial I/O chip), while M (and m) will vary. We must have that:
  - m > c-1
  - c > 1
  - The first and last bits in C are 1s.

## **CRC Polynomial and Arithmetic**

• 1101 means  $x^3 + x^2 + 1$ ; 1011 means  $x^3 + x + 1$ 

• 
$$(x^{3} + x^{2} + 1) \times (x^{3} + x + 1)$$
  
=  $(x^{6} + x^{5} + x^{3}) + (x^{4} + x^{3} + x) + (x^{3} + x^{2} + 1)$   
=  $x^{6} + x^{5} + x^{4} + 3 \times x^{3} + x^{2} + x + 1$   
=  $x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1 \pmod{2}$ 

- The polynomial arithmetic is the same as ordinary arithmetic except all carriers are ignored.
- There are only four cases for each bit position: 0+0=0;0+1=1;1+0=1;1+1=0 (no carry)
- The operation is the same as XOR. How about subtraction?
- Is 1010 > 1001?
- 1001 = 1010 + 0011; 1001=1010 0011

| X               | 1011  |
|-----------------|-------|
|                 | 1101  |
| •               | 1101x |
| 00              | 000xx |
| 110             | )1xxx |
| 11 <sup>4</sup> | 11111 |

1101

## Cyclic-redundancy-check (CRC) Algorithm

- The CRC field will consist of a string R,
   c-1 bits long. Here is how to generate
   R, and send the message:
  - 1. Append *c*-1 0s to the right end of M.
     These are placeholders for where the CRC will go. Call this extended string M'.
  - 2. Divide M' by C, using mod-2 arithmetic.
     Call the remainder R. Since we are dividing by a c-bit quantity, R will be c-1 bits long.
  - 3. Replace the c-1 appended 0s in M' by R.
     Call this new string W.
  - 4. Send W to the receiver.

e.g. say C = 1011 and
 M = 1001101. Then we divide as follows:

$$\begin{array}{r}
1010011\\
1011 \overline{\smash)1001101000}\\
\underline{1011}\\
1010\\
\underline{1011}\\
1100\\
\underline{1011}\\
1110\\
\underline{1011}\\
1011
\end{array}$$

#### 1-out-of-*n* Code

 An *n*-bit code in which valid code words only have one bit equal to 1 and the rest of the bits equal to 0.

• Inverted 1-out-n code, only 1 bit 1 and the rest of the





#### *m*-out-of-*n* Code

- Generalization of the 1-out-of-*n* code
  - m bits equal to 1 and the rest of the bits equal to 0.
- The total number of code words is given by binomial coefficient  $\binom{n}{m} = \frac{n!}{m! \cdot (n-m)!}$

- 8B10B code used in Gigabit Ethernet standard.
  - 10 bits to represent 256 valid code words, or 8 bits worth of data.

### Decoder

- n-bit binary codes (n inputs) decoded into 2<sup>n</sup> 1-out-of-n codes (one-hot encoding, 2<sup>n</sup> outputs).
- The output of a binary decoder are one-hot encoded.



## A 2-to-4 Decoder

| En              | w <sub>1</sub> | <i>w</i> <sub>0</sub> | <i>y</i> <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> |  |
|-----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 1               | 0              | 0                     | 1                     | 0                     | 0                     | 0                     |  |
| 1               | 0              | 1                     | 0                     | 1                     | 0                     | 0                     |  |
| 1               | 1              | 0                     | 0                     | 0                     | 1                     | 0                     |  |
| 1               | 1              | 1                     | 0                     | 0                     | 0                     | 1                     |  |
| 0               | X              | X                     | 0                     | 0                     | 0                     | 0                     |  |
| (a) Truth table |                |                       |                       |                       |                       |                       |  |







## A 3-to-8 Decoder using Two 2-to-4 Decoders





## A 4-to-1 Multiplexer Built using a Decoder.



## A 4-to-1 Mux built using a Decoder and Tristate Buffers



## Demultiplexer (DEMUX)

- A 1-to-n demultiplexer performs the opposite function of a n-to-1 multiplexer.
- A n-to-2<sup>n</sup> decoder can be used as a 1-to-n demultiplexer, with En as the data input, decoder input as select inputs, and decoder outputs as data output.

• Ex. Implement a 1-to-4 decoder using a 2-to-4 decoder.

| In | So                    | $S_1$                 | $O_o$                 | 01                    | $O_2$                 | $O_3$                 |
|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| En | <i>w</i> <sub>1</sub> | <i>w</i> <sub>0</sub> | <i>y</i> <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> |
| 1  | 0                     | 0                     | 1                     | 0                     | 0                     | 0                     |
| 1  | 0                     | 1                     | 0                     | 1                     | 0                     | 0                     |
| 1  | 1                     | 0                     | 0                     | 0                     | 1                     | 0                     |
| 1  | 1                     | 1                     | 0                     | 0                     | 0                     | 1                     |
| 0  | X                     | X                     | 0                     | 0                     | 0                     | 0                     |

Ex 6.11 Memory Address Decoder



# **Binary Encoders**



| <i>w</i> <sub>3</sub> | <i>w</i> <sub>2</sub> | <i>w</i> <sub>1</sub> | w <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>0</sub> |
|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|
| 0                     | 0                     | 0                     | 1              | 0                     | 0                     |
| 0                     | 0                     | 1                     | 0              | 0                     | 1                     |
| 0                     | 1                     | 0                     | 0              | 1                     | 0                     |
| 1                     | 0                     | 0                     | 0              | 1                     | 1                     |



## **Priority Encoders**

$$\bullet i_0 = \overline{w_3 w_2 w_1} w_0$$

$$\bullet i_1 = \overline{w_3 w_2} w_1$$

$$\bullet i_2 = \overline{w_3}w_2$$

•
$$i_3 = w_3$$

$$\bullet y_0 = i_1 + i_3$$

• 
$$y_1 = i_2 + i_3$$

$$\bullet z = i_0 + i_1 + i_2 + i_3$$

| W <sub>3</sub> | $W_2$ | W <sub>1</sub> | W <sub>0</sub> | <i>y</i> <sub>1</sub> | <i>y</i> <sub>0</sub> | Z |
|----------------|-------|----------------|----------------|-----------------------|-----------------------|---|
| 0              | 0     | 0              | 0              | d                     | d                     | 0 |
| 0              | 0     | 0              | 1              | 0                     | 0                     | 1 |
| 0              | 0     | 1              | X              | 0                     | 1                     | 1 |
| 0              | 1     | X              | X              | 1                     | 0                     | 1 |
| 1              | X     | X              | X              | 1                     | 1                     | 1 |

# **BCD-to-7 Segment Display Code Coverter**



| W <sub>3</sub> | <b>w</b> <sub>2</sub> | <i>W</i> <sub>1</sub> | $W_0$ | а | b | С | d | е | f | g |
|----------------|-----------------------|-----------------------|-------|---|---|---|---|---|---|---|
| 0              | 0                     | 0                     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0              | 0                     | 0                     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0              | 0                     | 1                     | 0     | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0              | 0                     | 1                     | 1     | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0              | 1                     | 0                     | 0     | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0              | 1                     | 0                     | 1     | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0              | 1                     | 1                     | 0     | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0              | 1                     | 1                     | 1     | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1              | 0                     | 0                     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1              | 0                     | 0                     | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 |

## **Arithmetic Comparison Circuits**

- Define  $A = a_3 a_2 a_1 a_0$  and  $B = b_3 b_2 b_1 b_0$
- Define  $i_k = \overline{a_k \oplus b_k}$
- The comparator's output  $AeqB = i_3i_2i_1i_0$
- $\bullet AgtB = a_3\overline{b_3} + i_3a_2\overline{b_2} + i_3i_2a_1\overline{b_1} + i_3i_2i_1a_0\overline{b_0}$
- $\bullet AltB = \overline{AeqB + AgtB}$