Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по второму заданию в рамках курса **«Суперкомпьютерное моделирование и технологии»**

Вариант 2

Выполнил: Эспиноса Себастиан, 608 группа

Математическая постановка задачи

Функция f(x, y, z)— непрерывна в ограниченной замкнутой области G⊂R3
Требуется вычислить определенный интеграл:

$$I = \iiint_G \frac{dxdydz}{(1+x+y+z)^3}$$

где область G ограничена поверхностями $x+y+z=1,\ x=0,\ y=0,\ z=0$

Численный метод решения задачи

Метод Монте-Карло для численного интегрирования представлен в [1].

Пусть область G ограниченна параллелепипедом: $\Pi: \begin{cases} a_1 \leqslant x \leqslant b_1 \\ a_2 \leqslant y \leqslant b_2 \\ a_3 \leqslant z \leqslant b_3 \end{cases}$

Рассмотрим функцию:
$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint\limits_G f(x, y, z) \ dxdydz = \iiint\limits_\Pi F(x, y, z) \ dxdydz$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \ldots$ — случайные точки, равномерно распределённые в П. Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i) \tag{1}$$

где $|\Pi|$ — объём параллелепипеда Π . $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

Аналитическое решение

$$\begin{split} & \mathrm{I} \! = \! \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz (1\!+\!x\!+\!y\!+\!z)^{-3} = \int_0^1 dx \int_0^{1-x} dy \left(-\tfrac{1}{2} (1+x+y+z)^{-2} \right) \Big|_0^{1-x-y} = \\ & = \int_0^1 dx \int_0^{1-x} dy \left(-\tfrac{1}{8} + \tfrac{1}{2} (1+x+y)^{-2} \right) = \int_0^1 dx \int_0^{1-x} \left(-\tfrac{1}{8} dy \right) + \tfrac{1}{2} \int_0^1 dx \left(-(1+x+y)^{-1} \right) \Big|_0^{1-x} = \\ & = -\tfrac{1}{8} \int_0^1 (1-x) dx + \tfrac{1}{2} \int_0^1 dx \left(-\tfrac{1}{2} + (1+x)^{-1} \right) = -\tfrac{1}{16} - \tfrac{1}{4} + \tfrac{1}{2} \ln(1+x) \Big|_0^1 = \\ & = -\tfrac{1}{16} - \tfrac{1}{4} + \tfrac{1}{2} \ln(2) \approx 0.0340735 \end{split}$$

Таблица 1.Таблица с результатами расчетов для системы Polus

Точность е	MPI	Время	Ускорени е	Ошибка
3.0*10^-5	1	2.33	1	2.09495e- 06
	4	1.21	1.92	9.08726e- 07
	16	0.34	6.85	1.24304e- 05
	32	0.16	14.56	2.45502e- 06
5.0*10^-6	1	146.54	1	4.56888e 2.33-06
	4	3.36	43.61	3.48744e- 06
	16	0.61	240.22	2.33806e- 07
	32	0.44	333.04	3.7752e-0 7

1.5*10^-6	1	233.64	1	2.79923e- 07
	4	40.21	5.81	7.17219e- 07
	16	0.64	365.06	2.33806e- 07
	32	0.43	543.34	3.7752e-0 7

Зависимость ускорения от числа процессов в Polus

