The Magnetic Field from Cylindrical Arc Coils and Magnets: A Compendium with New Analytic Solutions for Radial Magnetisation and Azimuthal Current

Matthew Forbes, Will Robertson, Anthony Zander

The University of Adelaide

Johan Paulides

Advanced Electromagnetics Group

Supplemental material. An online repository can be found at: https://github.com/AUMAG/mag-cylfield. The online repository may contain future updates. This document contains all analytic/integral formulations and explicit analytic solutions for the PM's (Section 1) and Coils (Section 2). Analytic solutions are compared to the original numeric integral to 8 decimal places. Comparison with FEA is given in the published article. For completeness, additional comparisons are given in Sections 3 and 4 for the Green's function

integrals and elliptic integral derivatives. Section 5 contains analytic force equations that were compared to semi-analytical field methods.

- If you are reading this in PDF format, note the code is truncated. There is a Mathematica notebook '.nb' file that contains full functionality and a package '.wl' file that contains the nomenclature. If you do not have a paid/trial version of Mathematica, this notebook can be opened in a free player (e.g Wolfram Player https://www.wolfram.com/player/) in order to view/copy the equations. There are also built-in or addon functions that can convert the equations to MATLAB, LATEX, Python, etc...
- The code below is not written to optimise computational speed, but to be readable, portable, and correct.
- For simplicity, the wrapper functions provided do not handle list inputs for ρ , φ , z.
- Similarly, algorithms for computing a partial sum of β , δ (η , ζ , ι) are omitted and functions take a direct input for the number of terms. The number of terms are identical between all series at one field point; therefore, we only evaluate the volume coil (Section 2.3) for P=150 terms to reduce computation time. Mathematica is holding these terms symbolically before converting to a numeric value, where there ends up being a large number of '0.' terms truncated to \$MachinePrecision. This is not an issue with an algorithm and adaptive convergence parameters.
- Mathematica uses complex numbers for the evaluation of ArcTan, ArcTanh,... and as such these return real numbers of the form a+0.i when converted to a numerical value using '//N'. As such we additionally use '//Chop' to remove numerical 0.i terms.
- We also use '//Chop' for the comparison of the analytic and numeric result, as dependent on the numeric procedure, we only expect accuracy to a certain precision.
- Function handles are called from 'ResultTable[]' to return either the cylindrical or Cartesian (on axis) field components at a particular point.
- 0.3 Geometry, 0.4 Constants, and 0.5 Field Points can be freely changed. Default values conform with those of the article cited in 0.1.

0.1 Citations for this work

M. Forbes, W.S.P Robertson, A.C. Zander, J.J.H. Paulides, "The Magnetic Field from Cylindrical Arc Coils and Magnets: A Compendium with New Analytic Solutions for Radial Magnetisation and Azimuthal Current"

@Article {Forbes2024,

author = {Forbes, M. and Robertson, W.S.P. and Zander, A.C. and Paulides, J.J.H},

```
journal = {Advanced Physics Research},
     title = {The Magnetic Field from Cylindrical Arc Coils and Magnets: A Compendium
with New Analytic Solutions for Radial Magnetisation and Azimuthal Current},
    doi = \{10.1002/apxr.202300136\},\
    publisher = {Wiley},
}
```

0.2 Variables and Functions

```
SetDirectory[NotebookDirectory[]];
In[1]:=
       << Nomenclature`
       << Carlson` (*Used for some backwards compatibility with a spec
       IntOptions = {WorkingPrecision→$MachinePrecision, AccuracyGoal→
```

0.3 Geometry

$$\ln[5]:= \rho' = \left\{\frac{3}{1000}, \frac{8}{1000}\right\}; \ \varphi' = \left\{-\frac{\pi}{6}, \frac{3\pi}{5}\right\}; \ z' = \left\{\frac{1}{1000}, \frac{5}{1000}\right\}; \ (*Definition of the property of$$

0.4 Constants

```
u0 = 4\pi * 10^{-7};
In[6]:=
         M = 955*10^3; (*A/m*)
         I\varphi = 20; (*A*)
         K\varphi = 4*10^4; (*A/m*)
         J\varphi = 1*10^6; (*A/m^2*)
         \varphi \approx \frac{\pi}{\epsilon}; (*Diametric magnetisation direction*)
         P = 150; (*Number of terms in partial sum*)
```

0.4 Field Points

Seven field points to test all equations in article.

```
In[13]:= \rho 1 = \frac{9}{1000}; \varphi 1 = \frac{5\pi}{24}; z 1 = \frac{31}{10000}; (*Standard*)

\rho 2 = \frac{7}{1000}; \varphi 2 = \varphi 1; z 2 = z 1; (*Inside magnet/coil*)

\rho 3 = 0; \varphi 3 = 0; z 3 = z'[[2]]; (*On magnet/coil axis*)

\rho 4 = \rho 1; \varphi 4 = \varphi'[[1]]; z 4 = z'[[2]]; (*Singular plane 1*)

\rho 5 = \rho'[[2]]; \varphi 5 = -\varphi 1; z 5 = z'[[2]]; (*Singular plane 2*)

\rho 6 = \rho'[[2]]; \varphi 6 = \varphi'[[1]]; z 6 = \frac{6}{1000}; (*Singular plane 3*)

\rho 7 = \frac{2}{1000}; \varphi 7 = \varphi 1; z 7 = z 1; (*Coil high field area*)
```

0.5 Results Format

```
\mathsf{MagCylField}[\mathsf{Md}_{\bullet},\mathsf{M}\rho_{\bullet},\mathsf{M}\varphi_{\bullet},\mathsf{Mz}_{\bullet},\varphi_{\bullet},P_{\bullet},\rho'_{\bullet},\rho_{\bullet},\varphi'_{\bullet},\varphi'_{\bullet},z'_{\bullet},z'_{\bullet}] :=
In[20]:=
                    Module[{},
                           If [Md \neq 0, (*Diametric*)
                                  ];
                           If [M \rho \neq 0, (*Radial*)]
                                  Result Table [M\rho, \varphi \Leftrightarrow, P, \rho', \rho, \varphi', \varphi, z', z, "M\rho", B\rho Ana, B\rho I
                           ];
                           If [M\varphi \neq \emptyset, (*Azimuthal*)]
                                  Result Table [M\varphi, \varphi \Leftrightarrow, P, \rho', \rho, \varphi', \varphi, z', z, "M\varphi", B\varphi Ana, B\varphi I
                           ];
                           If[Mz \neq 0, (*Azimuthal*)
                                  ResultTable [Mz, \varphi \not\sim, P, \rho', \rho, \varphi', \varphi, z', z, "Mz", BzAna, BzN
                           ];
                           Null
                    ]
             CoilDiscField[K_{,P_{,\rho',\rho',\rho',\rho',\varphi',\varphi',z',z'}] := ResultTable[K_{,0},
             CoilShellField [K_{,}, \rho'_{,}, \rho_{,}, \varphi'_{,}, \varphi_{,}, z'_{,}, z_{,}] := ResultTable [K, 0, \varphi]
             CoilCylField [J_,P_,\rho'_,\rho'_,\varphi'_,\varphi'_,\varphi'_,z'_,z] := ResultTable [J,0,1]
             ResultTable [M_{,\varphi}, \varphi_{,P_{,\rho'}}, P_{,\varphi'}, \varphi_{,\varphi'}, \varphi_{,z'}, z_{,mag_,anaFn_,numFn_}]
```

```
Module[{Bana,Bnum,Bcom,heading,tab},
          If [p == 0,
               Bana = N[anaFnAxis[M, \varphi \approx, \rho', \varphi', z', z], $MachinePreci
               Bnum = numFnAxis[M, \varphi \Leftrightarrow, \rho', \varphi', z', z];
               Bcom = Chop [Bana-Bnum, 10^{-8}];
               heading = {"Bx","By","Bz"} (*Axis, Cartesian*),
               Bana = N[anaFn[M, \varphi x, P, \rho', \rho, \varphi', \varphi, z', z],$MachinePre
               Bnum = numFn[M, \varphi \Leftrightarrow, \rho', \rho, \varphi', \varphi, z', z];
               Bcom = Chop[Bana-Bnum, 10^{-8}];
               heading = {"B\rho","B\phi","Bz"} (*Cylindrical*);
          ];
          tab = TableForm[{Bana,Bnum,Bcom}, TableHeadings -> {{"
          CellPrint@ExpressionCell[RawBoxes[ToBoxes[tab] /. (x :
ResultTableForce [M\_,Mp\_,\rho'\_,\rho\_,\varphi'\_,\varphi\_,z'\_,z\_,V\_,P\_,U\_,0\_,anaF
     Module[{Fana,Fnum,Fcom,heading,tab},
               Fana = N[anaFn[M,Mp,\rho',\rho,\varphi',\varphi,z',z,V,P,U,O],$Mach:
               Fnum = numFn[M,Mp,\rho',\rho,\varphi',\varphi,z',z];
               Fcom = Chop[Fana-Fnum, 10^{-8}];
               heading = {"Fx", "Fy", "Fz"};
          tab = TableForm[{Fana,Fnum,Fcom}, TableHeadings -> {{
          CellPrint@ExpressionCell[tab, "Output"]
```

0.6 Example field solutions

Evaluate the same magnet geometry, at the same field point, with equal magnetisation in the diametric, radial, azimuthal, and axial directions. Creates a table for each magnetisation direction and compares to 8 decimal places the analytic solution and numeric integral.

MagCylField[M,M,M,M, φ \$,P, ρ ', ρ 1, φ ', φ 1,z',z1] (*Note: This expression) In[•]:=

$M\perp$	Вр	$B\varphi$
Analytic	0.3588672233516815	0.01541822529046387
Numeric	0.3588672228056431	0.01541822528724981
Comparison 8dp	0	0
	_	
Mρ	Bρ	B arphi
Analytic	0.2448856704190372	-0.0003060260329494243
Numeric	0.2448856701063103	-0.00030602603308330
Comparison 8dp	0	0
M φ	Вр	$B\varphi$
$oxed{M}arphi$ Analytic	Βρ - 0.000 986646361453491	,
<u>'</u>	<u>'</u>	,
Analytic	-0.000986646361453491	3 -0.027353091874110
Analytic Numeric	-0.000986646361453491 -0.00098664636141892	3 -0.027353091874110 -0.027353091873834
Analytic Numeric	-0.000986646361453491 -0.00098664636141892	3 -0.027353091874110 -0.027353091873834
Analytic Numeric Comparison 8dp	-0.000986646361453491 -0.00098664636141892 0	3 -0.027353091874110 -0.027353091873834 0
Analytic Numeric Comparison 8dp	-0.000986646361453491 -0.00098664636141892 0 Bp	3 -0.027353091874110 -0.027353091873834 0 Βφ

0.7 Timed solutions

Altered tables to those in Section 0.5, including RepeatedTiming[] and an additional table to show computational efficiency.

```
\mathsf{MagCylFieldTimed} \, [\mathsf{Md}_{\mathsf{J}}\mathsf{M}\rho_{\mathsf{J}}\mathsf{M}\varphi_{\mathsf{J}}\mathsf{M}z_{\mathsf{J}}\varphi \not \bowtie_{\mathsf{J}}\mathsf{P}_{\mathsf{J}}\rho'_{\mathsf{J}}\rho_{\mathsf{J}}\varphi'_{\mathsf{J}}\varphi_{\mathsf{J}}z'_{\mathsf{J}}z'_{\mathsf{J}}z
In[ • ]:=
                   Module [{},
                          If [Md \neq 0, (*Diametric*)
                                 ResultTableTimed [Md, \varphi \Leftrightarrow P, P, \rho', \rho, \varphi', \varphi, z', z, "M \perp", BdAI
                          ];
                          If [M\rho \neq 0, (*Radial*)]
                                 ResultTableTimed [M\rho, \varphi \Leftrightarrow, P, \rho', \rho, \varphi', \varphi, z', z, "M\rho", B\rho Ar
                          ];
                          If [M\varphi \neq \emptyset, (*Azimuthal*)]
                                 ResultTableTimed [M\varphi, \varphi \Leftrightarrow, P, \rho', \rho, \varphi', \varphi, z', z, "M\varphi", B\varphiAr
                          ];
                          If [Mz \neq 0, (*Azimuthal*)]
                                 ResultTableTimed [Mz, \varphi \not \Rightarrow, P, \rho', \rho, \varphi', \varphi, z', z, "Mz", BzAn
                          ];
                          Null
            ResultTableTimed [M , \varphi \nearrow P , P , \varphi' , \varphi' , \varphi' , z' , z , mag , anaFn , r
                   Module {Bana, Bnum, Bcom, heading, tab, ta, ba, tn, bn, time},
                          If [p == 0,
                                 {ta,ba} = RepeatedTiming[
                                        Bana = N[anaFnAxis[M,\varphi \times, \rho', \phi', z', z], $MachineP
                                 {tn,bn} = RepeatedTiming[
                                        Bnum = numFnAxis[M, \varphi \Leftrightarrow, \rho', \varphi', z', z];];
                                 Bcom = Chop[Bana-Bnum, 10^{-8}];
                                 heading = {"Bx","By","Bz"} (*Axis, Cartesian*),
                                 {ta,ba} = RepeatedTiming[
                                        Bana = N[anaFn[M,\varphi \times,P,
ho',
ho,\varphi',\varphi,z',z],$Machir
                                 {tn,bn} = RepeatedTiming[
                                        \mathsf{Bnum} = \mathsf{numFn}[\mathsf{M}, \varphi \bowtie , \rho', \rho, \varphi', \varphi, z', z];];
                                 Bcom = Chop [Bana-Bnum, 10^{-8}];
                                 heading = {"B\rho","B\phi","Bz"} (*Cylindrical*);
                          ];
                          time = {ta,tn};
                          tab = TableForm[{Bana,Bnum,Bcom}, TableHeadings -> {{"
                          CellPrint@ExpressionCell[RawBoxes[ToBoxes[tab] /. (x :
```

MagCylFieldTimed [M,M,M,M, φ \$,P, ρ ', ρ 1, φ ', φ 1,z',z1] (*Note: This In[•]:=

M \perp	Bp	$B\varphi$
Analytic	0.3588672233516815	0.01541822529046387
Numeric	0.3588672228056431	0.01541822528724981
Comparison 8dp	0	0
	_	_
$M_{\mathcal{O}}$	B₽	B arphi
Analytic	0.2448856704190372	-0.0003060260329494243
Numeric	0.2448856701063103	-0.00030602603308330
Comparison 8dp	0	0
M arphi	B₽	Barphi
Analytic	-0.000986646361453491	3 -0.027353091874116
····	0.000000001000100101001	J 0.02/JJJJJIJI
Numeric	-0.00098664636141892	-0.027353091873834
· 1		
Numeric	-0.00098664636141892	-0.027353091873834
Numeric	-0.00098664636141892	-0.027353091873834
Numeric Comparison 8dp	-0.00098664636141892 0	-0.027353091873834 0
Numeric Comparison 8dp	-0.00098664636141892 0 B _P	- 0.027353091873834 0 B $arphi$

1.0 Permanent Magnets

1.1 Diametric Magnetisation

1.1.0 Equations

Analytic and Numeric function handles. Returns $B=\{B\rho,B\varphi,Bz\}$ or $B=\{Bx,By,Bz\}$ (on axis).

Magnetisation vector for field inside magnet. Returns $M=\{M\rho,M\varphi,Mz\}$.

$$\text{Md} [\varphi \not \approx_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolume}[\rho p_{+}, \rho_{+}, \varphi p_{+}, \varphi_{-}, z p_{-}, z_{-}] \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{+}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{+}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z p_{-}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z p_{-}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z p_{-}, z_{-}], 4\pi\{\text{Cos}\} \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z p_{-}, z_{-}], 2\pi[\text{Cos}] \\ \text{MdAxis}[\varphi \not \approx_{-}, \rho p_{-}, z p_{-}, z p_{-}, z p_{-}, z_{-}] := \text{If}[\text{InsideVolumeAxis}[\rho p_{+}, z p_{-}, z p$$

Special cases of the geometry for the analytic function handle. Replaces BdAna[] (Cylindrical) or BdAnaAxis[] (Cartesian, on axis).

BdAna [
$$M_{-}, \varphi \nearrow_{-}, P_{-}, \rho p_{-}, \rho_{-}, \{0, 2\pi\}, \varphi_{-}, zp_{-}, z_{-}] := \frac{M \text{ u0}}{4\pi} \left(\sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n} \text{BdSu} \right)$$

BdAnaAxis [$M_{-}, \varphi \nearrow_{-}, \rho p_{-}, \{0, 2\pi\}, zp_{-}, z_{-}] := \frac{M \text{ u0}}{4\pi} \left(\sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n} \text{BdSu} \right)$

BdAna [$M_{-}, \varphi \nearrow_{-}, P_{-}, \{0, \rho p_{-}\}, \rho_{-}, \varphi p_{-}, \varphi_{-}, zp_{-}, z_{-}] := \frac{M \text{ u0}}{4\pi} \left(\sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n} \right)$

BdAna [$M_{-}, \varphi \nearrow_{-}, P_{-}, \{0, \rho p_{-}\}, \rho_{-}, \{0, 2\pi\}, \varphi_{-}, zp_{-}, z_{-}] := \frac{M \text{ u0}}{4\pi} \left(\sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n} \right)$

Integrands to be solved for BdNum[] (Cylindrical) and BdNumAxis[] (Cartesian, on axis).

```
\mathsf{BdIntegrand1}[\varphi \not \succsim, \rho p_, \rho_, \varphi p_, \varphi_, z p_, z] := \{\mathsf{BdI}\rho 1[\varphi \not \succsim, \rho p_, \rho_, \varphi p_, \varphi_, z p_, z]\}
In[ • ]:=
                                                          BdIntegrand2 [\varphi \approx , \rho p_, \rho_, \varphi p_, \varphi p_, z p_, z ] := {BdI\rho2 [\varphi \approx , \rho p_, \rho_, \varphi p_, \varphi p_, z p_,
                                                          \mathsf{BdI}\rho\mathsf{1}[\varphi \not \gtrsim_{\,\,}, \rho \mathsf{p}_{\,\,}, \rho_{\,\,}, \varphi \mathsf{p}_{\,\,}, \varphi \mathsf{p}_{\,\,}, \varphi \mathsf{p}_{\,\,}, z \mathsf{p}_{\,\,}, z \mathsf{p}_{\,\,}] := \rho \mathsf{p} \; \mathsf{Cos}[\varphi \not \gtrsim_{\,\,} - \varphi \mathsf{p}] \; (\rho - \rho \mathsf{p} \; \mathsf{Cos}[\varphi \not \gtrsim_{\,\,} - \varphi \mathsf{p}] 
                                                          \mathsf{BdI} \rho 2 [\varphi \not\sim_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \mathsf{Sin} [\varphi \not\sim_{-} \varphi p] (\rho - \rho p \mathsf{Cos} [\Phi [\varphi )])
                                                          \mathsf{BdI}\varphi\mathbf{1}[\varphi \not \simeq_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \rho p^2 \mathsf{Cos}[\varphi \not \simeq_{-} \varphi p] \mathsf{Sin}[\Phi[\varphi, \varphi]]
                                                          \operatorname{BdI}\varphi^2[\varphi \not\sim_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \rho \operatorname{Sin}[\varphi \not\sim_{-} \varphi p] \operatorname{Sin}[\Phi[\varphi, \varphi p_{-}, \varphi p
                                                          BdIz1[\varphi \Rightarrow , \rho p_{,} \rho_{,} \varphi p_{,} \varphi p_{,} \varphi p_{,} z p_{,} z] := \rho p Cos[\varphi \Rightarrow -\varphi p] Z[z, zp] G
                                                          \mathsf{BdIz2}[\varphi \not \sim , \rho p_, \rho_, \varphi p_, \varphi p_, \varphi p_, z p_, z] := \mathsf{Sin}[\varphi \not \sim - \varphi p] \mathsf{Z}[z, z p] \mathsf{G}[\rho, \rho]
                                                          BdIntegrandAxis1[\varphi \not \Rightarrow ,\rho p ,\varphi p ,z p ,z ] := {BdIAxisx1[\varphi \not \Rightarrow ,\rho p ,\varphi p ,
                                                          \mathsf{BdIntegrandAxis2} [\varphi \not \sim_{}, \rho p_{}, \varphi p_{}, z p_{}, z_{}] := \{ \mathsf{BdIAxisx2} [\varphi \not \sim_{}, \rho p_{}, \varphi p_{}, z p_{}, z_{}] \}
                                                          BdIAxisx1[\varphi \Rightarrow , \rho p_, \varphi p_, z p_, z_] := -\rho p^2 Cos[\varphi \Rightarrow -\varphi p] Cos[\varphi p] (Z[z)
                                                          BdIAxisx2[\varphi \not \sim , \rho p_, \varphi p_, z p_, z_] := -\rho p Sin[\varphi \not \sim -\varphi p] Cos[\varphi p](Z[z))
                                                          BdIAxisy1[\varphi \Rightarrow , \rho p , \varphi p , z p , z ] := -\rho p^2 \cos[\varphi \Rightarrow -\varphi p] \sin[\varphi p] (Z[z)
                                                          BdIAxisy2[\varphi \Rightarrow , \rho p , \varphi p , z p , z ] := -\rho p Sin[\varphi \Rightarrow -\varphi p] Sin[\varphi p](Z[z, z))
                                                          BdIAxisz2[\varphi \approx , \rho p_, \varphi p_, z p_, z_] := Z[z, z p] Sin[<math>\varphi \approx -\varphi p] (Z[z, z p]^2)
```

Summands for BdAna[] and BdAnaAxis[].

```
BdSummand [\varphi \Rightarrow , \rho p , \rho , \varphi p , \varphi , zp , z] := \{BdS \rho 1 [\varphi \Rightarrow , \rho p , \rho , \varphi p , \varphi , zp , z ] \}
In[ • ]:=
```

$$\begin{aligned} &\mathsf{BdS}\rho\mathbf{1}[\,\varphi\dot{\pi}_-,\rho p_-,\rho_-,\varphi p_-,\varphi_-,z p_-,z_-] \, := \, \frac{1}{\rho} \, \frac{\rho p \, Z[z,zp]}{\mathsf{R}[\rho,\rho\rho,z,zp]} \mathsf{Cos}\,[\,\varphi\dot{\pi}_-\varphi] \\ &\mathsf{BdS}\rho\mathbf{2}[\,\varphi\dot{\pi}_-,\rho p_-,\rho_-,\varphi p_-,\varphi_-,z p_-,z_-] \, := \, \frac{1}{\rho} \, \frac{\rho p \, Z[z,zp]}{\mathsf{R}[\rho,\rho\rho,z,zp]} \mathsf{Cos}\,[\,\varphi\dot{\pi}_-\varphi] \\ &\mathsf{BdS}\varphi\mathbf{1}[\,\varphi\dot{\pi}_-,\rho p_-,\rho_-,\varphi p_-,\varphi_-,z p_-,z_-] \, := \, \frac{2}{\rho} \, \rho p \, Z[z,zp] \, \frac{\mathsf{Sin}[\,\varphi\dot{\pi}_-\varphi]}{\mathsf{R}[\rho,\rho\rho,z,zp]} \\ &\mathsf{BdS}\varphi\mathbf{2}[\,\varphi\dot{\pi}_-,\rho p_-,\rho_-,\varphi p_-,\varphi_-,z p_-,z_-] \, := \, \mathsf{Which}[\,(\varphi p = \varphi + \pi) \, | \, (\varphi p = \varphi - \eta) \\ &\mathsf{BdS}z\mathbf{2}[\,\varphi\dot{\pi}_-,\rho p_-,\rho_-,\varphi p_-,\varphi_-,z p_-,z_-] \, := \, \frac{2}{\rho} \, \rho \mathsf{Cos}\,[\varphi\dot{\pi}_-\varphi] \, (\mathsf{EllipticF},\rho p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-] \, := \, \mathsf{BdS}z\mathbf{2}[\,\varphi\dot{\pi}_-,\rho p_-,\varphi p_-,\varphi p_-,z p_-,z_-] \, := \, \mathsf{BdS}z\mathbf{2}[\,\varphi\dot{\pi}_-,\rho p_-,\varphi p_-,\varphi p_-,z p_-,z_-] \, := \, \frac{\mathsf{Z}[z,zp] \, (2\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]}{\mathsf{R}[\varphi,\rho p_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \frac{\mathsf{Z}[z,zp] \, (2\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]}{\mathsf{R}[\varphi,\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \frac{\mathsf{Z}[z,zp] \, (-\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]}{\mathsf{R}[\varphi,\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \mathsf{BdS}\mathsf{AS}\varphi[\,\varphi\dot{\pi}_-,\rho p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-] \, := \, \mathsf{BdS}\mathsf{AS}\varphi[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \mathsf{A}[\mathsf{P}[\varphi,\varphi p_-,z,z p_-,z p_-,z_-]} \, \mathsf{BdS}\mathsf{AS}z[\,\varphi\dot{\pi}_-,\rho p_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \frac{\mathsf{A}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z p_-,z_-]}{\mathsf{R}[\varphi,\rho p_-,z,z p_-,z_-]} \, (\mathsf{EllipticD}[\,\mathsf{k}]) \, \mathsf{R}[\varphi,\rho p_-,z,z p_-,z_-]} \, := \, \mathsf{A}[\mathsf{P}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, \mathsf{CellipticD}[\,\mathsf{k}[\,\varphi]\,\mathsf{R}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \mathsf{A}[\mathsf{P}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, \mathsf{R}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, := \, \mathsf{A}[\mathsf{P}[\varphi]\,\mathsf{Cos}[\,\varphi\dot{\pi}_-,\varphi p_-,\varphi p_-,z p_-,z_-]} \, \mathsf{R}[\varphi]\,\mathsf{R}[$$

Singularities in the summands of BdAna[] or BdAnaAxis[].

```
BdSAxisx[\varphi \not\sim , \rho p_, \varphi p_, z p_, z p_] := 0
 BdSAxisy [\varphi \not\sim , \rho p_, \varphi p_, z p_, z p_] := 0
 BdSAxisz [\varphi \approx , \rho p , \varphi p , z p ] := (Log [\rho p] - 1) Sin [<math>\varphi \approx - \varphi p]
  (*Along the axis & axisymmetric*)
BdSAxisx[\varphi \gtrsim , \rho p_{,} \{0,2\pi\}, zp_{,} z_{,}] := \frac{\pi Z[z,zp] \cos[\varphi \gtrsim ]}{\sqrt{Z[z,zp]^{2}+\rho p^{2}}}
BdSAxisy[\varphi \approx , \rho p_{,} \{0,2\pi\}, zp_{,} z_{,}] := \frac{\pi Z[z,zp] Sin[\varphi \approx ]}{\sqrt{Z[z,zp]^{2}+\rho p^{2}}}
 BdSAxisz[\varphi \approx , \rho p , \{0, 2\pi\}, zp , z ] := 0
 BdSAxisx [\varphi \not\sim , \rho p_{,} \{0, 2\pi\}, zp_{,} zp_{,}] := 0
 BdSAxisy [\varphi \not\sim , \rho p_{,} \{0, 2\pi\}, zp_{,} zp_{,}] := 0
 BdSAxisz [\varphi \Rightarrow , \rho p , \{0, 2\pi\}, zp , zp \} := 0
  (*On the shell plane*)
 EllipticPiT[1,\phi,k] := EllipticFT[\phi,k]-1/(1-k) (EllipticET[\phi,
  (*On the shell plane & axisymmetric*)
 \begin{array}{l} \mathsf{BdSAS}\rho\left[\varphi \nearrow, \rho p_{\_}, \rho p_{\_}, \varphi_{\_}, z p_{\_}, z_{\_}\right] \ := \ 2 \frac{\mathsf{Z}[z, z p] \ \mathsf{Cos}\left[\varphi \nearrow - \varphi\right]}{\mathsf{R}\left[\rho p_{+}, \rho p_{+}, z_{+}, z p_{\_}\right]} \ \left(\mathsf{Elli} \right) \\ \mathsf{BdSAS}\varphi\left[\varphi \nearrow_{\_}, \rho p_{\_}, \rho p_{\_}, \varphi_{\_}, z p_{\_}, z_{\_}\right] \ := \ 4 \ \mathsf{Z}[z, z p] \frac{\mathsf{Sin}\left[\varphi \nearrow - \varphi\right]}{\mathsf{R}\left[\rho p_{+}, \rho p_{+}, z_{+}, z p_{\_}\right]} \\ \mathsf{Ellip}  \end{array} 
  (*On the section plane*)
 \mathsf{BdS}\rho 2 \left[ \varphi \not\sim_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi p_{-}, z p_{-}, z_{-} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{+}, z p_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, \rho p_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right] := -\mathsf{ArcTanh} \left[ \frac{\overline{\mathsf{R}} \left[ \rho_{+}, z_{-} \right]}{7 \left[ z_{-}, z_{-} \right]} \right]
 BdS\varphi 2 [\varphi \not \Rightarrow , \rho p_, \rho_, \varphi p_, \varphi p_, z p_, z_] := 0
  (*On the disc plane*)
 BdS\rho1[\varphi \approx , \rho p , \rho , \varphi p , \varphi , zp , zp ] := 0
 BdS\varphi 1[\varphi \not \supset , \rho , \rho , \varphi , \varphi , zp , zp ] := 0
 \mathsf{BdS}\varphi 2 \left[ \varphi \not \gtrsim_{\,}, \rho p_{\,}, \rho_{\,}, \varphi p_{\,}, \varphi p_{\,}, z p_{\,}, z p_{\,} \right] := 0
  (*On the axial line*)
 \mathsf{BdS} \rho \mathbf{1}[\varphi \not \sim_{-}, \rho p_{-}, \varphi p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \mathsf{Cos}[\varphi \not \sim_{-} \varphi p] \frac{\mathsf{Z}[z, z p]}{\mathsf{R}[\rho p_{+}, \rho p_{-}, z_{-}, z_{-}]}
 BdS\rho 2 [\varphi \not\sim , \rho p_, \rho p_, \varphi p_, \varphi p_, z p_, z_] := -Log[Abs[Z[z,zp]]]Sign[
 \mathsf{BdS}\varphi\mathbf{1}[\varphi \not\approx_{-}, \rho p_{-}, \varphi p_{-}, \varphi p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := 2 \, \mathsf{Sin}[\varphi \not\approx_{-}\varphi p] \frac{\mathsf{Z}[z, z]}{\mathsf{R}[\rho p_{+}, \rho p_{-}, z]}
 \mathsf{BdS}\varphi 2 \left[ \varphi \not \gtrsim_{,} \rho p_{,} \rho p_{,} \varphi p_{,} \varphi p_{,} z p_{,} z_{,} \right] := 0
  (*On the azimuthal line*)
 BdS\rho1[\varphi \not\sim , \rho p_, \rho p_, \varphi p_, \varphi_, z p_, z p_] := 0
```

```
\mathsf{BdS}\varphi\mathbf{1}[\varphi \not\gtrsim , \rho p_, \rho p_, \varphi p_, \varphi p_, z p_, z p_] := 0
BdS\varphi2[\varphi \not \Rightarrow , \rho p_, \rho p_, \varphi p_, \varphi p_, zp_, zp_] := 0
\mathsf{BdSz1}[\varphi \not \sim_{}, \rho p_{}, \varphi p_{}, \varphi p_{}, \varphi p_{}, \varphi p_{}, z p_{}] := \mathsf{Cos}[\varphi \not \sim_{} - \varphi] \quad (\mathsf{ArcTanh}[\mathsf{Sin}])
  (*On the radial line*)
\mathsf{BdS} \rho \mathsf{2} [\varphi \not \gtrsim , \rho \mathsf{p}_{,} \rho_{,} \varphi \mathsf{p}_{,} \varphi \mathsf{p}_{,} z \mathsf{p}_{,} z \mathsf{p}_{,}] := 0
BdS\varphi2[\varphi \not \gtrsim , \rho p_, \rho_, \varphi p_, \varphi p_, z p_, z p_] := 0
\mathsf{BdSz2}[\varphi \not\sim_{}, \rho p_{}, \rho_{}, \varphi p_{}, \varphi p_{}, z p_{}, z p_{}] := -\mathsf{Sign}[\overline{\varrho}[\rho, \rho p]] \mathsf{Log}[\mathsf{Abs}[\overline{\varrho}[\rho, \rho]] \mathsf{Log}[\mathsf{Abs}[\overline{\varrho}[\rho, \rho]]] \mathsf{Log}[\mathsf{Abs}[\rho, \rho]] \mathsf{Log}[\mathsf{Abs}[\rho,
```

1.1.1 Standard - Outside Magnet

In[•]:=

$M \perp$	B ho	Barphi
Analytic	0.3588672233516815	0.01541822529046387
Numeric	0.3588672228056431	0.01541822528724981
Comparison 8dp	0	0

1.1.2 Special Case a. - Inside Magnet

MagCylField [M, 0, 0, 0, $\varphi \approx 0$, 0, ρ' , $\rho = 0$, φ' , $\varphi = 0$, φ' , $\varphi' = 0$, φ' In[•]:=

M \perp	B <i>⊳</i>	Barphi
Analytic	0.6966643256463426	-0.1368270731830296
Numeric	0.6966643258557762	-0.13682707315087393
Comparison 8dp	0	0

1.1.3 Special Case b. - On Magnet Axis

In[•]:=

M \perp	Bx	Ву
Analytic	0.06907925427658275	0.05798271989375209
Numeric	0.0690792542700186	0.0579827199700861
Comparison 8dp	0	0

1.1.4 Special Case c. - Axisymmetric

In[•]:=

M \perp	B ho	Barphi
Analytic	0.3898898941670998	0.01766718672333797
Numeric	0.3898898941265560	0.01766718672565229
Comparison 8dp	0	0

1.1.5 Special Case d. - Solid

MagCylField[M,0,0,0, φ \$,0,{0, ρ '[[2]]}, ρ 1, φ ', φ 1,z',z1] In[•]:=

M \perp	B <i></i> ⊘	$B\varphi$
Analytic	0.3768042165296648	0.01650501972700407
Numeric	0.3768042159820810	0.01650501972378489
Comparison 8dp	0	0

1.1.6 Special Case e. - Axisymmetric & Solid

MagCylField[M,0,0,0, $\varphi \gtrsim$,0,{0, ρ' [[2]]}, ρ 1,{0,2 π }, φ 1,z',z1] In[•]:=

M \perp	Bρ	$B\varphi$
Analytic	0.4201134535501512	0.01963054065204408
Numeric	0.4201134535186059	0.01963054065431834
Comparison 8dp	0	0

1.1.7 Singularities b,c,f. - Singular plane 1

In[•]:=

M \perp	B <i></i> ⊘	$B\varphi$
Analytic	-0.05283942296707968	-0.10630808491530856
Numeric	-0.0528394229808127	-0.1063080843063326
Comparison 8dp	0	0

1.1.8 Singularities a,c,e. - Singular plane 2

MagCylField[M,0,0,0, φ \\$\,0, ρ ', ρ 5, φ ', φ 5,z',z5] In[•]:=

M \perp	B <i></i> ○	$B\varphi$
Analytic	-0.12706206084430823	-0.01442552150406100
Numeric	-0.1270620610434591	-0.0144255205837600
Comparison 8dp	0	0

1.1.9 Singularities a,b,d. - Singular plane 3

MagCylField[M,0,0,0, φ \\pi,0, ρ ', ρ 6, φ ', φ 6,z',z6] In[•]:=

M \perp	$B_{\mathcal{O}}$	$B\varphi$
Analytic	-0.08575035760538238	-0.08687164959114616
Numeric	-0.0857503575964678	-0.0868716487826758
Comparison 8dp	0	0

1.1.10 (not in article) - On Magnet Axis & Axisymmetric

NIntegrate struggles with Bz.

MagCylField[M,0,0,0, ϕ \\pi,0, ρ ', ρ 3,{0,2 π }, ϕ 3,z',z3]// Quiet In[•]:=

M \perp	Bx	Ву
Analytic	0.0916633480745974	0.05292185868569116
Numeric	0.0916633480754929	0.0529218586946682
Comparison 8dp	0	0

1.1.11 (not in article) - Axisymmetric & Singular plane 3

MagCylField[M,0,0,0, φ \\pi,0, ρ ', ρ 6,{0,2 π }, φ 6,z',z6]// Quiet In[•]:=

M \perp	B ρ	$B\varphi$
Analytic	-0.006033024943461395	-0.0860251960360698
Numeric	-0.00603302493568282	-0.0860251960250795
Comparison 8dp	0	0

1.2 Radial Magnetisation

1.2.0 Equations

Analytic and Numeric function handles. Returns $B=\{B\rho,B\varphi,Bz\}$ or $B=\{Bx,By,Bz\}$ (on axis).

Boana [M_,
$$\varphi \not >_{,} P_{,} \rho p_{,} \rho_{,} \rho_{,}$$

Special cases of the geometry for the analytic function handle. Replaces $B\rho Ana[]$ (Cylindrical) or B ρ AnaAxis[] (Cartesian, on axis).

$$In[\bullet]:= B\rho Ana[M_, \varphi x__, P_, \rho p_, \rho_, \{0, 2\pi\}, \varphi_, z p_, z_] := \frac{M}{4\pi} \sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n}$$

$$B\rho AnaAxis[M_, \varphi x__, \rho p_, \{0, 2\pi\}, z p_, z_] := \frac{M}{4\pi} \frac{u0}{2} \sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n} B\rho Sum$$

Integrands to be solved for B ρ Num[] (Cylindrical) and B ρ NumAxis[] (Cartesian, on axis).

```
In[ • ]:=
                \mathsf{B}\rho\mathsf{Integrand1}[\rho p_{,\rho}, \varphi_{,\varphi}p_{,\varphi}, zp_{,z}] := \{\mathsf{B}\rho\mathsf{I}\rho\mathsf{1}[\rho p_{,\rho}, \varphi p_{,\varphi}, zp_{,z}]\}
                \mathsf{B}\rho\mathsf{Integrand2}[\rho p\_, \rho\_, \varphi p\_, \varphi\_, zp\_, z\_] := \{\mathsf{B}\rho\mathsf{I}\rho\mathsf{2}[\rho p, \rho\_, \varphi p\_, \varphi\_, zp\_, z]\}
                \mathsf{B}\rho\mathsf{I}\rho\mathsf{1}[\rho\mathsf{p},\rho,\varphi,\varphi\mathsf{p},\varphi,z\mathsf{p},z] := -\mathsf{Z}[z,z\mathsf{p}] \quad \rho\mathsf{p} \; \mathsf{Cos}\left[\Phi[\varphi,\varphi\mathsf{p}]\right] \; \mathsf{G}[\rho\mathsf{p},\varphi\mathsf{p}] 
                \mathsf{B}\rho\mathsf{I}\varphi\mathsf{2}[\rho\mathsf{p},\rho,\varphi\mathsf{p},\varphi\mathsf{p},\varphi\mathsf{p},z\mathsf{p},z] := (\rho-\rho\mathsf{p}\;\mathsf{Cos}[\Phi[\varphi,\varphi\mathsf{p}]])\;\mathsf{G}[\rho,\rho\mathsf{p},\varphi]
                \mathsf{B}\rho\mathsf{Iz}\ [\rho p_{,\rho},\rho_{,\varphi},\varphi p_{,\varphi},z p_{,z}]\ :=\ \rho p\ (-\rho p+\rho\ \mathsf{Cos}[\Phi[\varphi,\varphi p]])\ \mathsf{G}[\rho,\rho]
                B_{\rho}IntegrandAxis1[\rho_p, \varphi_p, z_p, z_p] := {B_{\rho}IAxisx1[\rho_p, \varphi_p, z_p, z], B_{\rho}
                B\rhoIntegrandAxis2[\rho p_{,\varphi}p_{,zp_{,z}}] := {B\rhoIAxisx2[\rho p_{,\varphi}p_{,zp_{,z}}], B\rho
                \mathsf{B}\rho\mathsf{IAxisx1}[\rho p_{,\varphi}p_{,zp_{,z}}] := -\mathsf{Z}[z,zp] \rho \mathsf{Cos}[\varphi p] (\mathsf{Z}[z,zp]^2 + \rho p^2)
                \mathsf{B}\rho\mathsf{IAxisx2}[\rho p\_,\varphi p\_,z p\_,z\_] := \rho p \mathsf{Sin}[\varphi p] (\mathsf{Z}[z,z p]^2 + \rho p^2)^{-3/2}
                \mathsf{B}\rho\mathsf{IAxisy1}[\rho p_{,\varphi}p_{,zp_{,z}}] := -\mathsf{Z}[z,zp] \rho \mathsf{Sin}[\varphi p] (\mathsf{Z}[z,zp]^2 + \rho p^2)
                \mathsf{B}\rho\mathsf{IAxisy2}[\rho p\_,\varphi p\_,zp\_,z\_] := -\rho p \; \mathsf{Cos}[\varphi p] \left(\mathsf{Z}[z,zp]^2 + \rho p^2\right)^{-3/2}
                B\rhoIAxisz [\rho p_{,\varphi}p_{,zp_{,z}}p_{,z}] := -\rho p^{2}(Z[z,zp]^{2}+\rho p^{2})^{-3/2}
```

Summands for B ρ Ana[] and B ρ AnaAxis[].

$$B_{\rho} Summand [P_{,\rho}$$

Singularities in the summands of $B\rho Ana[]$ or $B\rho AnaAxis[]$.

```
(*Along the axis*)
```

```
B_{\rho}SAxisx[\rho p, \rho p, z p, z p] := 0
B_{\rho}SAxisy[\rho_p, \varphi_p, z_p, z_p] := 0
B \rho SAxisz[\rho p, \varphi p, z p, z p] := -\varphi p Log[\rho p]
(*Along the axis & axisymmetric*)
B_{\rho}SAxisx[\rho p_{-}, \{0, 2\pi\}, zp_{-}, z_{-}] := 0
B_{\rho}SAxisy[\rho p, \{0,2\pi\}, zp, z] := 0
B\rho SAxisz[\rho p_{,}\{0,2\pi\},zp_{,}z_{]} := B\rho SAxisz[\rho p_{,}2\pi,zp_{,}z_{]}
B_{\rho}SAxisx[\rho p, \{0,2\pi\}, zp, zp] := 0
B_{\rho}SAxisy[\rho_{p}, \{0, 2\pi\}, zp_{p}] := 0
B\rho SAxisz[\rho p_{,}\{0,2\pi\},zp_{,}zp_{]} := B\rho SAxisz[\rho p_{,}2\pi,zp_{,}zp_{]}
(*Solid*)
\mathsf{B}\rho\mathsf{S}\rho\mathsf{1}[0,\rho_{-},\varphi p_{-},\varphi_{-},zp_{-},z_{-}] := -\frac{\mathsf{L}[\rho,z,zp]}{\rho}\mathsf{ArcTan}\Big[\frac{\rho \; \mathsf{Sin}[\Phi[\varphi,\varphi p]}{\mathsf{Z}[z,zp]}\Big]
\mathsf{B}\rho\mathsf{S}\rho\mathsf{1}\left[0,\rho_{-},\varphi p_{-},\varphi_{-},z p_{-},z p_{-}\right] := 0
(*Solid & axisymmetric*)
\mathsf{B}\rho\mathsf{SAS}\rho\left[0,\rho_{-},\varphi_{-},zp_{-},z_{-}\right]:=0
(*On the shell plane*)
EllipticPiT[1, \phi, k] := EllipticFT[\phi, k] -1/(1-k) (EllipticET[\phi,
(*On the shell plane & axisymmetric*)
\mathsf{B} \rho \mathsf{S} \mathsf{A} \mathsf{S} \rho \left[ \rho p_{,\rho_{,\rho_{,}}} \varphi_{,zp_{,zp_{,}}} z p_{,zp_{,zp_{,zp_{,}}}} \right] := 0
(*On the section plane*)
B\rho S\rho 2[\rho p_{\rho}, \rho_{\rho}, \varphi p_{\rho}, \varphi p_{\rho}, z p_{\rho}] := 0
(*On the disc plane*)
B_{\rho}S_{\rho}1[\rho p, \rho, \varphi p, \varphi, zp, zp] := 0
(*On the axial line*)
B \rho S \rho 2 [\rho p_{\rho}, \rho p_{\rho}, \varphi p_{\rho}, z p_{\rho}, z p_{\rho}] := 0
B \rho S \varphi 2 [\rho p_{\rho}, \rho p_{\rho}, \varphi p_{\rho}, z p_{\rho}] := -Log[Abs[Z[z, z p]]] Sign[Z[z, z p_{\rho}]]
(*On the azimuthal line*)
\mathsf{B}\rho\mathsf{S}\rho\mathsf{1}[\rho\mathsf{p},\rho\mathsf{p},\varphi\mathsf{p},\varphi\mathsf{p},z\mathsf{p},z\mathsf{p}] := 0
B \rho S \rho 2 [\rho p, \rho p, \varphi p, \varphi z p, z p] := 0
B \rho S \varphi 2 [\rho p_, \rho p_, \varphi p_, \varphi_, z p_, z p_] := 0
EllipticFT[\phi_{-},1]:=Sin[\phi]CarlsonRC[1,Cos[\phi]<sup>2</sup>]
(*On the radial line*)
```

```
B\rho S\rho 1[\rho p_{\rho}, \rho_{\rho}, \varphi p_{\rho}, \varphi p_{\rho}, z p_{\rho}] := 0
B \rho S \varphi 2 [\rho p_, \rho_, \varphi p_, \varphi p_, z p_, z p_] := 0
```

1.2.1 Standard - Outside Magnet

MagCylField[0,M,0,0,0,150, ρ' , ρ 1, φ' , φ 1,z',z1] In[•]:=

$M_{\mathcal{O}}$	B <i>⊳</i>	$B\varphi$
Analytic	0.2448856704190372	-0.0003060260329494243
Numeric	0.2448856701063103	-0.00030602603308330
Comparison 8dp	0	0

1.2.2 Special Case a. - Inside Magnet

MagCylField[0,M,0,0,0,200, ρ' , ρ 2, φ' , φ 2,z',z2] In[•]:=

$M_{\mathcal{O}}$	B P	$B\varphi$
Analytic	0.5489154592264350	-0.00006130244558783496
Numeric	0.5489154591261374	-0.00006130244558542
Comparison 8dp	0	0

1.2.3 Special Case b. - On Magnet Axis

MagCylField[0,M,0,0,0,0, ρ' , ρ 3, φ' , φ 3,z',z3] In[•]:=

$M_\mathcal{O}$	Bx	Ву
Analytic	0.1344445158028215	0.10887102224775870
Numeric	0.1344445157685432	0.1088710222296142
Comparison 8dp	0	0

1.2.4 Special Case c. - Axisymmetric

NIntegrate struggles with B φ .

MagCylField[0,M,0,0,0,150, ρ' , ρ 1,{0,2 π }, φ 1,z',z1] //Quiet In[•]:=

$M\wp$	B <i></i>	${\sf B} arphi$	Bz
Analytic	0.2112280841430892	0	0.009309586
Numeric	0.2112280841851579	$0. imes 10^{-18}$	0.009309577
Comparison 8dp	0	0	0

1.2.5 Special Case d. - Solid

MagCylField[0,M,0,0,0,150, $\{0,\rho'[[2]]\},\rho1,\phi',\phi1,z',z1]$ In[•]:=

$M_{\mathcal{O}}$	$B_{\mathcal{O}}$	Barphi
Analytic	0.2572853367868567	-0.0004488894971618596
Numeric	0.2572853369280047	-0.00044888949695013
Comparison 8dp	0	0

1.2.6 Special Case e. - Axisymmetric & Solid

NIntegrate struggles with $B\varphi$.

MagCylField $[0,M,0,0,0,150,\{0,\rho'[[2]]\},\rho 1,\{0,2\pi\},\varphi 1,z',z 1]/Qu$ In[•]:=

$M_{\mathcal{O}}$	B \wp	$\mathbf{B}\varphi$	Bz
Analytic	0.2161116638799649	0	0.009469936
Numeric	0.2161116637943994	$ exttt{0.} imes exttt{10}^{-17}$	0.009469926
Comparison 8dp	0	0	0

1.2.7 Singularities b,c,f. - Singular plane 1

MagCylField[0,M,0,0,0,600, ρ' , ρ 4, φ' , φ 4,z',z4] In[•]:=

$M\wp$	B ρ	$B\varphi$
Analytic	0.04575438476808203	-0.10541986120998000
Numeric	0.04575438476471416	-0.1054198612281754
Comparison 8dp	0	0

1.2.8 Singularities a,c,e. - Singular plane 2

MagCylField[0,M,0,0,0,500, ρ' , ρ 5, φ' , φ 5,z',z5] In[•]:=

$M_{\mathcal{O}}$	B ρ	$B\varphi$
Analytic	-0.06364161691744196	-0.09932523777628700
Numeric	-0.0636416167461836	-0.0993252378337986
Comparison 8dp	0	0

1.2.9 Singularities a,b,d. - Singular plane 3

MagCylField [0,M,0,0,0,650, ρ' , ρ 6, φ' , ϕ 6,z',z6] In[•]:=

Mp	$B_{\mathcal{O}}$	$B\varphi$
Analytic	-0.06633792348273685	-0.07011471596517585
Numeric	-0.0663379233926231	-0.0701147160567020
Comparison 8dp	0	0

1.2.10 (not in article) - On Magnet Axis & Axisymmetric

MagCylField[0,M,0,0,0,0, ρ' , ρ 3,{0,2 π }, φ 3,z',z3] In[•]:=

$M_{\mathcal{O}}$	Bx	Ву	Bz
Analytic	0	0	-0.31
Numeric	$1.169847043839314 \times 10^{-21}$	$0. imes 10^{-17}$	-0.314
Comparison 8dp	0	0	0

1.2.11 (not in article) - Axisymmetric & Singular plane 1

MagCylField[0,M,0,0,0,650, ρ' , ρ 4,{0,2 π }, φ 4,z',z4]//Quiet In[•]:=

$M_{\mathcal{O}}$	B <i>O</i>	$\mathbf{B} arphi$	Bz
Analytic	0.08202777975183896	0	0.16752550
Numeric	0.0820277797271617	$0. imes 10^{-18}$	0.16752549
Comparison 8dp	l a	0	0

1.3 Azimuthal Magnetisation

1.3.0 Equations

Analytic and Numeric function handles. Returns $B = \{B\rho, B\varphi, Bz\}$ or $B = \{Bx, By, Bz\}$ (on axis).

$$B\varphi \text{Ana}[M_{_}, \varphi \not \sim_{_}, P_{_}, \rho p_{_}, \varphi p_{_}, \varphi p_{_}, z p_{_}, z] := \frac{M}{4\pi} \frac{u\theta}{\left(\sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q} B\varphi S\right)}{\frac{M}{4\pi} \left(\sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q} B\varphi S\right)}$$

$$B\varphi \text{Num}[M_{_}, \varphi \not \sim_{_}, \rho p_{_}, \varphi p_{_}, \varphi p_{_}, z p_{_}, z_{_}] := \frac{M}{4\pi} \frac{u\theta}{\left(\sum_{q=1}^{2} (-1)^{q} NIntegrat\right)}{\frac{M}{4\pi} \left(\sum_{q=1}^{2} (-1)^{q} NIntegrat\right)}$$

$$+ M\varphi [\rho p_{,} \rho_{,} \varphi p_{,} \varphi p_{,} \varphi p_{,} \varphi p_{,} z p_{_}, z_{_}] := \frac{M}{4\pi} \frac{u\theta}{\left(\sum_{q=1}^{2} (-1)^{q} NIntegrate\right)}{\frac{M}{4\pi} \left(\sum_{q=1}^{2} (-1)^{q} NIntegrate\right)}$$

Magnetisation vector for field inside magnet. Returns $M=\{M\rho,M\varphi,Mz\}$.

$$In[\circ]:= \mathsf{M}\varphi[\rho p_{,\rho},\rho_{,\varphi}p_{,\varphi},\varphi p_{,z}p_{,z}] := \mathsf{If}[\mathsf{InsideVolume}[\rho p_{,\rho},\rho_{,\varphi}p_{,\varphi},zp_{,z}], 4$$

Special cases of the geometry for the analytic function handle. Replaces $B\varphi$ Ana[] (Cylindrical) or B φ AnaAxis[] (Cartesian, on axis).

Integrands to be solved for B φ Num[] (Cylindrical) and B φ NumAxis[] (Cartesian, on axis).

```
B\varphiIntegrand [\rho p_{,\rho}, \varphi_{,\varphi}, \varphi_{,z}, \varphi_{,z}] := \{B\varphiI\rho [\rho p_{,\rho}, \varphi_{,\varphi}, \varphi_{,z}, \varphi_{,z}], [P]
In[ • ]:=
                    \mathsf{B}\varphi\mathsf{I}\rho\left[\rho\mathsf{p},\rho,\varphi,\varphi\mathsf{p},\varphi,z\mathsf{p},z\mathsf{p}\right] := (\rho-\rho\mathsf{p}\;\mathsf{Cos}\left[\Phi\left[\varphi,\varphi\mathsf{p}\right]\right])\;\mathsf{G}\left[\rho,\rho\mathsf{p},\varphi,\varphi\right]
                    \mathsf{B}\varphi\mathsf{I}\varphi[\rho p_{\rho},\rho_{\rho},\varphi p_{\rho},\varphi_{\rho},zp_{\rho}]:=\rho p \;\mathsf{Sin}[\Phi[\varphi,\varphi p]]\;\mathsf{G}[\rho_{\rho},\rho_{\rho},\varphi_{\rho},\varphi_{\rho},z]
                    \mathsf{B}\varphi\mathsf{I}\mathsf{z}[\rho p,\rho,\varphi,\varphi p,\varphi,z,zp]^3:=\mathsf{Z}[z,zp]\;\mathsf{G}[\rho,\rho p,\varphi,\varphi p,z,zp]^3
                    B\varphiIntegrandAxis[\rho p_{,\varphi}p_{,zp_{,z}}] := {B\varphiIAxisx[\rho p_{,\varphi}p_{,zp_{,z}}], B\varphiI
                    \mathsf{B}\varphi\mathsf{IAxisx}[\rho p_{,\varphi}p_{,zp_{,z}}] := -\rho p \mathsf{Cos}[\varphi p] (\mathsf{Z}[z,zp]^2 + \rho p^2)^{-3/2}
                    \mathsf{B}\varphi\mathsf{IAxisy}[\rho_p, \varphi_p, z_p, z_1] := -\rho \mathsf{Sin}[\varphi_p] (\mathsf{Z}[z, z_p]^2 + \rho^2)^{-3/2}
                    \mathsf{B}\varphi\mathsf{IAxisz}[\rho p_{,\varphi}p_{,zp_{,z}}] := \mathsf{Z}[z,zp] \left(\mathsf{Z}[z,zp]^2 + \rho p^2\right)^{-3/2}
```

Summands for B φ Ana[] and B φ AnaAxis[].

Singularities in the summands of B φ Ana[] or B φ AnaAxis[].

```
(*Along the axis*)
In[ • ]:=
         B\varphi SAxisx[\rho p, \varphi p, z p, z p] := 0
         B\varphi SAxisy[\rho p_, \varphi p_, zp_, zp_] := 0
         B\varphi SAxisz[\rho p_, \varphi p_, zp_, zp_] := Log[\rho p]
          (*On the section plane*)
         (*On the disc plane*)
         (*On the axial line*)
         \mathsf{B}\varphi\mathsf{S}\rho[\rho p_{\rho},\rho p_{\rho},\varphi p_{\rho},z p_{\rho}] := -\mathsf{Log}[\mathsf{Abs}[\mathsf{Z}[z,zp]]]\mathsf{Sign}[\mathsf{Z}[z,z]
         \mathsf{B}\varphi\mathsf{S}\varphi\left[\rho p_{},\rho p_{},\varphi p_{},\varphi p_{},z p_{},z p_{}\right]:=0
          (*On the azimuthal line*)
         \mathsf{B}\varphi\mathsf{S}\rho\left[\rho p_{,\rho}p_{,\rho}p_{,\varphi}p_{,\varphi}p_{,z}p_{,z}p_{,z}p_{,z}\right] := 0
         B\varphi S\varphi [\rho p_{,\rho}p_{,\rho}p_{,\varphi}p_{,\varphi},zp_{,zp}] := 0
          (*On the radial line*)
         B\varphi S\varphi [\rho p_{\rho}, \rho_{\rho}, \varphi p_{\rho}, \varphi p_{\rho}, z p_{\rho}, z p_{\rho}] := 0
```

1.3.1 Standard - Outside Magnet

MagCylField[0,0,M,0,0,0, ρ' , ρ 1, φ' , φ 1,z',z1] In[•]:=

${\sf M} arphi$	B <i>○</i>	Barphi
Analytic	-0.0009866463614534913	-0.027353091874110
Numeric	-0.00098664636141892	-0.027353091873834
Comparison 8dp	l 0	0

1.3.2 Special Case a. - Inside Magnet

MagCylField[0,0,M,0,0,0, ρ' , ρ 2, ϕ' , ϕ 2,z',z2] In[•]:=

M arphi	B ₽	$\mathbf{B}arphi$
Analytic	-0.0012124488065541426	1.1527249218186003
Numeric	-0.00121244880652350	1.15272492181848386
Comparison 8dp	0	0

1.3.3 Special Case b. - On Magnet Axis

MagCylField[0,0,M,0,0,0, ρ' , ρ 3, ϕ' , ϕ 3,z',z3] In[•]:=

M arphi	Bx	Ву
Analytic	0.06928254939210094	-0.08555682324180471
Numeric	0.06928254938118138	-0.08555682322832017
Comparison 8dp	0	0

1.3.4 Special Case c. - Axisymmetric

MagCylField[0,0,M,0,0,0, ρ' , ρ 1,{0,2 π }, φ 1,z',z1] In[•]:=

${\sf M} \varphi$	B ρ	$B\varphi$	Bz
Analytic	0	0	0
Numeric	$0. \times 10^{-18}$	$0. imes10^{-18}$	$0. imes 10^{-19}$
Comparison 8dp	l	0	0

1.3.5 Special Case d. - Solid

MagCylField[0,0,M,0,0,0, $\{0,\rho'[[2]]\},\rho1,\phi',\phi1,z',z1]$ In[•]:=

${\sf M} arphi$	$B\wp$	$B\varphi$
Analytic	-0.0012549369978166019	-0.032409293950822
Numeric	-0.00125493699761732	-0.032409293951492
Comparison 8dp	0	0

1.3.6 Special Case e. - Axisymmetric & Solid

MagCylField[0,0,M,0,0,0, $\{0,\rho'[[2]]\},\rho$ 1, $\{0,2\pi\},\phi$ 1,z',z1] In[•]:=

M arphi	B ρ	$\mathbf{B}\varphi$	Bz
Analytic	0	0	0
Numeric	$0. imes 10^{-17}$	$0. imes10^{-18}$	$0. imes 10^{-19}$
Comparison 8dp	0	0	0

1.3.7 Singularities b,c,f. - Singular plane 1

MagCylField[0,0,M,0,0,0, ρ' , ρ 4, ϕ' , ϕ 4,z',z4] In[•]:=

${\sf M} arphi$	B ρ	$B\varphi$
Analytic	-0.1305570199440887	-0.002611825775922538
Numeric	-0.1305570199604018	-0.002611825775599110
Comparison 8dp	0	0

1.3.8 Singularities a,c,e. - Singular plane 2

MagCylField[0,0,M,0,0,0, ρ' , ρ 5, φ' , φ 5,z',z5] In[•]:=

M φ	B ₽	Barphi
Analytic	-0.1306098964594674	0.10456601136784070
Numeric	-0.1306098965151097	0.1045660111848111
Comparison 8dp	0	0

1.3.9 Singularities a,b,d. - Singular plane 3

MagCylField[0,0,M,0,0,0, ρ' , ρ 6, φ' , φ 6,z',z6] In[•]:=

${\sf M} arphi$	B _P	$B\varphi$
Analytic	-0.07776878671122339	-0.00309965018727580
Numeric	-0.0777687868094261	-0.00309965014995547
Comparison 8dp	0	0

1.3.10 (not in article) - On Magnet Axis & Axisymmetric

$$ln[\bullet]:=$$
 MagCylField[0,0,M,0,0,0, ρ' , ρ 3,{0,2 π }, φ 3,z',z3]

$\mathbf{M}\varphi$	Bx	Ву	Bz
Analytic	0	0	0
Numeric	$0. imes 10^{-17}$	0	$0. imes10^{-18}$
Comparison 8dp	0	0	0

1.4 Axial Magnetisation

1.4.0 Equations

Analytic and Numeric function handles. Returns $B = \{B\rho, B\varphi, Bz\}$ or $B = \{Bx, By, Bz\}$ (on axis).

BzAna [M_,
$$\varphi \Rightarrow_{-}, P_{-}, \rho p_{-}, \varphi_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \frac{M}{4\pi} \frac{u\theta}{2} \sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q}$$

BzAnaAxis [M_, $\varphi \Rightarrow_{-}, \rho p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{M}{4\pi} \frac{u\theta}{2} \sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q}$

BzNum [M_, $\varphi \Rightarrow_{-}, \rho p_{-}, \varphi p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{M}{4\pi} \frac{u\theta}{4\pi} \left(\sum_{m=1}^{2} (-1)^{m} \text{ NIntegrate } [1, 1]^{m} \right)$

BzNumAxis [M_, $\varphi \Rightarrow_{-}, \rho p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{M}{4\pi} \frac{u\theta}{4\pi} \left(\sum_{m=1}^{2} (-1)^{m} \text{ NIntegrate } [1, 1]^{m} \right)$

Special cases of the geometry for the analytic function handle. Replaces BzAna[] (Cylindrical) or BzAnaAxis[] (Cartesian, on axis).

BzAna [M_,
$$\varphi \approx_-$$
, P_, ρp_- , ρ_- , $\{0, 2\pi\}$, φ_- , zp_- , z_-] := $\frac{M}{4\pi} \frac{u0}{2\pi} \sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n}$
BzAnaAxis [M_, $\varphi \approx_-$, ρp_- , $\{0, 2\pi\}$, zp_- , z_-] := $\frac{M}{4\pi} \frac{u0}{2\pi} \sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n}$ BzSum
BzAna [M_, $\varphi \approx_-$, P_, $\{0, \rho p_-\}$, ρ_- , φp_- , φp_- , z_- , z_-] := $\frac{M}{4\pi} \frac{u0}{2\pi} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n+q}$
BzAna [M_, $\varphi \approx_-$, P_, $\{0, \rho p_-\}$, ρ_- , $\{0, 2\pi\}$, φ_- , zp_- , z_-] := $\frac{M}{4\pi} \frac{u0}{2\pi} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n+q}$

Integrands to be solved for BzNum[] (Cylindrical) and BzNumAxis[] (Cartesian, on axis).

```
BzIntegrand1[\rho p, \rho, \varphi p, \varphi, z p, z] := \{BzI\rho 1[\rho p, \rho, \varphi p, \varphi, z p, z],
In[ • ]:=
                                                  \mathsf{BzI} \rho \mathsf{1}[\rho p_{,\rho}, \rho_{,\varphi}, \varphi p_{,\varphi}, z p_{,z}] := \rho \mathsf{p} \mathsf{Cos}[\Phi[\varphi, \varphi p]] \mathsf{Z}[z, z p] \mathsf{G}[\rho, \rho]
                                                  \mathsf{BzI} \rho \mathsf{2} [\rho \mathsf{p}_{,\rho}, \varphi_{,\varphi}, \varphi_{,zp}, z_{,z}] := \mathsf{Sin} [\Phi[\varphi, \varphi_{,\varphi}]] \mathsf{Z}[z, zp] \mathsf{G}[\rho, \rho_{,\varphi}]
                                                  \mathsf{BzI}\varphi 1[\rho p_{\rho}, \rho_{\rho}, \varphi p_{\rho}, \varphi_{\rho}, z p_{\rho}, z] := -\rho p \mathsf{Sin}[\Phi[\varphi, \varphi p]] \mathsf{Z}[z, z p] \mathsf{G}[\rho, \varphi]
                                                  \mathsf{BzI}\varphi\mathsf{2}[\rho p_{,\rho},\rho_{,\varphi}p_{,\varphi},zp_{,z}] := \mathsf{Z}[z,zp]\mathsf{Cos}[\Phi[\varphi,\varphi p]] \mathsf{G}[\rho,\rho p,\varphi,
                                                  \mathbf{BzIz1}[\rho p_{,\rho}, \varphi p_{,\varphi}, \varphi p_{,z}] := \rho p_{,\varphi}(\rho - \rho_{,\varphi}(\nabla p_{,\varphi}(\nabla 
                                                   \mathsf{BzIz2}[\rho p_{,\rho_{,\varphi}}, \varphi p_{,\varphi_{,z}}, z p_{,z}] := -\rho \ \mathsf{Sin}[\Phi[\varphi, \varphi p]] \ \mathsf{G}[\rho, \rho p_{,\varphi}, \varphi p_{,z}]
                                                  BzIntegrandAxis1[\rho p, \varphi p, z p, z p] := {BzIAxisx1[\rho p, \varphi p, z p, z p], Bz
                                                  BzIntegrandAxis2[\rho p, \varphi p, z p, z p] := {BzIAxisx2[\rho p, \varphi p, z p, z p], Bz
                                                  BzIAxisx1[\rho p_{,\varphi}p_{,zp_{,z}}] := \rho p Z[z,zp] Cos[\varphi p] (Z[z,zp]^{2} + \rho p^{2})
                                                  \mathsf{BzIAxisx2}[\rho p_{,\varphi}p_{,zp_{,z}}] := -\mathsf{Z}[z,zp] \, \mathsf{Sin}[\varphi p] \, \big(\mathsf{Z}[z,zp]^2 + \rho p^2\big)^{-3/2}
                                                  \mathsf{BzIAxisy1}[\rho_{p}, \varphi_{p}, z_{p}, z_{p}] := \rho_{p} \mathsf{Z}[z, z_{p}] \mathsf{Sin}[\varphi_{p}] (\mathsf{Z}[z, z_{p}]^{2} + \rho_{p}^{2})
                                                  BzIAxisy2[\rho p_{,\varphi}p_{,zp_{,z}}] := Z[z,zp] \cos[\varphi p] (Z[z,zp]^{2} + \rho p^{2})^{-3/2}
                                                  BzIAxisz[\rho p_{,\varphi}p_{,zp_{,z}}] := \rho p^{2} (Z[z,zp]^{2} + \rho p^{2})^{-3/2}
```

Summands for BzAna[] and BzAnaAxis[].

```
In[ • ]:=
                                                                              BzSummand [\rho p, \rho, \varphi p, \varphi, z p, z] := \{BzS\rho 1[\rho p, \rho, \varphi p, \varphi, z p, z] + E
                                                                               \mathsf{BzSummand1}[\rho p_{,\rho_{,}} \varphi_{,\varphi_{,}} \varphi_{,\varphi_{,}} zp_{,z}] := \{\mathsf{BzS} \rho \mathsf{1}[\rho p_{,\rho_{,}} \varphi_{,\varphi_{,}} zp_{,z}], \mathsf{E}\}
                                                                               \mathsf{BzSummand2} \, [\, \rho p_{}, \rho_{}, \varphi p_{}, \varphi p
                                                                              \mathsf{BzS} \rho \mathsf{2} \left[ \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-} \right] := \mathsf{Log} \left[ \rho p_{-} \rho \mathsf{Cos} \left[ \Phi \left[ \varphi_{-}, \varphi p_{-} \right] \right] + \mathsf{G} \left[ \rho_{-}, \rho_{-}, \varphi_{-}, \varphi_{-
                                                                              BzSummandAxis [\rho p_{,\varphi}p_{,zp_{,z}}] := {BzSAxisx[\rho p_{,\varphi}p_{,zp_{,z}}], BzSAxi
                                                                             \mathsf{BzSAxisx}[\rho p_{,} \varphi p_{,} z p_{,} z_{,}] := \mathsf{Sin}[\varphi p] \left( \frac{\rho p}{\sqrt{\mathsf{Z}[z_{,} z p]^{2} + \rho p^{2}}} - \mathsf{ArcTanh}[z_{,} p_{,} p_{
                                                                             BzSAxisy[\rho p_{,\varphi}p_{,zp_{,z}}] := -\cos[\varphi p] \left(\frac{\rho p}{\sqrt{7[z_{,z}n]^{2}+\rho p^{2}}}-ArcTanh\right[
                                                                             Bzsaxisz[\rho p_{,\varphi}p_{,zp_{,z}}] := -\frac{Z[z,zp] \varphi p}{\sqrt{Z[z,zp]^2 + \rho p^2}}
                                                                              \mathsf{BzSummandAS} \, [\rho p_{,} \rho_{,} \varphi_{,} z p_{,} z_{]} \, := \, \{ \mathsf{BzSAS} \rho \, [\rho p_{,} \rho_{,} \varphi_{,} z p_{,} z_{]} \,, \, \, \mathsf{BzSAS} \varphi \}
                                                                             \mathsf{BzSAS}\rho\left[\rho p_{,\rho_{,\rho_{,z}}}, \varphi_{,zp_{,z}}\right] := \frac{-4 \rho p}{\mathsf{R}\left[\rho_{,\rho p_{,z}}, z_{p_{,z}}\right]} \quad \left(\mathsf{EllipticK}\left[\mathsf{k}\left[\rho_{,\rho p_{,z}}, z_{p_{,z}}\right]\right]\right)
                                                                              \mathsf{BzSAS}\varphi\left[\rho p_{,\rho_{,\rho_{,}}}\varphi_{,zp_{,z}}\right] := 0
```

Singularities in the summands of BzAna[] or BzAnaAxis[].

```
In[ • ]:=
         (*Along the axis*)
          BzSAxisx[\rho p, \varphi p, z p, z p] := Sin[\varphi p] (1-Log[\rho p])
          \mathsf{BzSAxisy}[\rho p\_, \varphi p\_, z p\_, z p\_] := \mathsf{Cos}[\varphi p](\mathsf{Log}[\rho] - 1)
          (*Along the axis & axisymmetric*)
          BzSAxisx[\rho p_{}, \{0, 2\pi\}, zp_{}, z_{}] := 0
          BzSAxisy [\rho p_{-}, {0,2\pi},zp_{-},z_{-}] := 0
          \mathsf{BzSAxisz}[\rho p_{}, \{0, 2\pi\}, zp_{}, z_{}] := \mathsf{BzSAxisz}[\rho p_{}, 2\pi, zp_{}, z_{}]
          BzSAxisx[\rho p, \{0, 2\pi\}, zp, zp] := 0
          BzSAxisy[\rho p, {0,2\pi},zp,zp] := 0
          BzSAxisz[\rho p_{}, \{0, 2\pi\}, zp_{}, zp_{}] := 0
          (*On the shell plane*)
          BzSz1[\rho p_{,\rho}p_{,\phi}p_{,\phi}p_{,z}p_{,z}] := \frac{Z[z,zp]}{\sqrt{Z[z,zp]^2 + 4 \rho p^2}} - EllipticFT[c]
          (*On the shell plane & axisymmetric *)
          BzSASz[\rho p_{,\rho}p_{,\rho}p_{,z}p_{,z}] := \frac{-2 Z[z,zp]}{R[\rho p_{,\rho}p_{,z}p_{,z}]} EllipticK[k[\rho p_{,\rho}p_{,z}p_{,z}p_{,z}]
          (*On the section plane*)
          (*On the axial line*)
          BzSz2[\rho p_{,\rho}p_{,\varphi}p_{,\varphi}p_{,z}p_{,z}] := 0
          (*On the azimuthal line*)
          EllipticFT[\phi_{,1}]:=Sin[\phi]CarlsonRC[1,Cos[\phi]<sup>2</sup>]
          (*On the radial line*)
          BzS\varphi2[\rho p_{\rho}, \rho_{\rho}, \varphi p_{\rho}, z p_{\rho}, z p_{\rho}] := -Sign[\overline{\varrho}[\rho, \rho]] Log[Abs[\overline{\varrho}[\rho, \rho]]
```

1.4.1 Standard - Outside Magnet

```
MagCylField [0,0,0,M,0,0,\rho',\rho 1,\phi',\phi 1,z',z 1]
In[ • ]:=
```

Mz	B <i></i> ○	B $arphi$
Analytic	0.01242509986271859	-0.000013932989338266
Numeric	0.01242509986169668	-0.000013932989338192
Comparison 8dp	l a	0

1.4.2 Special Case a. - Inside Magnet

MagCylField[0,0,0,M,0,0, ρ' , ρ 2, φ' , φ 2,z',z2] In[•]:=

Mz	B ρ	$B\varphi$
Analytic	0.01266084849525560	-0.0000326942506932249
Numeric	0.01266084849536185	- 0.000032694250693417 :
Comparison 8dp	0	0

1.4.3 Special Case b. - On Magnet Axis

MagCylField[0,0,0,M,0,0, ρ' , ρ 3, φ' , φ 3,z',z3] In[•]:=

Mz	Bx	Ву
Analytic	-0.07272021717981136	-0.05888767076268449
Numeric	-0.0727202171871756	-0.05888767076910802
Comparison 8dp	0	0

1.4.4 Special Case c. - Axisymmetric

NIntegrate struggles with B φ .

MagCylField[0,0,0,M,0,0, ρ' , ρ 1,{0,2 π }, φ 1,z',z1]//Quiet In[•]:=

Mz	Вр	$B\varphi$	Bz
Analytic	0.01292302651525148	0	-0.257900
Numeric	0.01292302651543708	$4. imes10^{-18}$	-0.2579000
Comparison 8dp	0	0	0

1.4.5 Special Case d. - Solid

In[•]:= MagCylField[0,0,0,M,0,0, $\{0,\rho'[[2]]\},\rho 1,\phi',\phi 1,z',z 1$]

Mz	B <i>○</i>	Barphi
Analytic	0.01276677951668406	-0.000014939286576437
Numeric	0.01276677951565720	-0.0000149392865761592
Comparison 8dp	0	0

1.4.6 Special Case e. - Axisymmetric & Solid

NIntegrate struggles with $B\varphi$.

MagCylField[0,0,0,M,0,0, $\{0,\rho'[[2]]\},\rho$ 1, $\{0,2\pi\},\varphi$ 1,z',z1]//Quie In[•]:=

Mz	B <i></i> ○	$\mathbf{B}arphi$	Bz
Analytic	0.01344895620667155	0	- 0. 273343:
Numeric	0.01344895620688026	$4. imes10^{-18}$	- 0.273343 :
Comparison 8dp	0	0	0

1.4.7 Singularities b,c,f. - Singular plane 1

MagCylField[0,0,0,M,0,0, ρ' , ρ 4, φ' , φ 4,z',z4] In[•]:=

Mz	$B \wp$	Barphi
Analytic	0.1131007576718941	-0.05950872524189693
Numeric	0.1131007576909566	-0.0595087255655965
Comparison 8dp	0	0

1.4.8 Singularities a,c,e. - Singular plane 2

MagCylField[0,0,0,M,0,0, ρ' , ρ 5, φ' , φ 5,z',z5] In[•]:=

Mz	$B_{\mathcal{O}}$	Barphi
Analytic	0.08547085115221370	-0.1011947666062023
Numeric	0.0854708511544623	-0.1011947665760598
Comparison 8dp	0	0

1.4.9 Singularities a,b,d. - Singular plane 3

MagCylField[0,0,0,M,0,0, ρ' , ρ 6, φ' , φ 6,z',z6] In[•]:=

Mz	Bρ	Barphi
Analytic	0.1286619619883900	-0.1107623052135217
Numeric	0.1286619619891644	-0.1107623051291430
Comparison 8dp	0	0

1.4.10 (not in article) - On Magnet Axis & Axisymmetric

MagCylField $[0,0,0,M,0,0,\rho',\rho 3,\{0,2\pi\},\varphi 3,z',z 3]$ In[•]:=

Mz	Bx	Ву	Bz
Analytic	0	0	-0.2
Numeric	$-1.157683990029317 \times 10^{-21}$	$0. imes10^{-18}$	-0.2
Comparison 8dp	0	0	0

1.4.11 (not in article) - Axisymmetric & Singular plane 3

MagCylField[0,0,0,M,0,0, ρ' , ρ 6,{0,2 π }, φ 6,z',z6]//Quiet In[•]:=

Mz	Bρ	${\sf B} arphi$	Bz
Analytic	0.2610520993114831	0	0.111399396
Numeric	0.2610520991272603	$0. imes 10^{-18}$	0.111399396
Comparison 8dp	0	0	0

2.0 Coils with Azimuthal Current Density

Integrands to be solved for B{i,k,s,c}Num[] (Cylindrical) and B{i,k,s,c}NumAxis[] (Cartesian, on axis). Common between filament, disc, shell, volume.

```
BcIntegrand [\rho p_{,\rho}, \varphi_{,\varphi}, \varphi_{,zp_{,z}}] := \{BcI_{\rho}[\rho p_{,\rho}, \varphi p_{,\varphi}, z p_{,z}], E
In[ • ]:=
                                                       \mathsf{BcI}_{\rho}\left[\rho p_{,\rho},\rho_{,\varphi},\varphi p_{,zp},z_{-}\right] := \rho p \; \mathsf{Cos}\left[\Phi\left[\varphi,\varphi p\right]\right] \; \mathsf{Z}\left[z,z p\right] \; \mathsf{G}\left[\rho,\rho p\right]
                                                       \mathsf{BcI}\varphi[\rho p_{,\rho}, \rho_{,\varphi}, \varphi p_{,zp}, z_{]} := -\rho \mathsf{Sin}[\Phi[\varphi, \varphi p]] \mathsf{Z}[z, zp] \mathsf{G}[\rho, \rho]
                                                       BCIz[\rho p, \rho, \varphi p, \varphi, z p, z] := \rho p(\rho - \rho Cos[\Phi[\varphi, \varphi p]]) G[\rho, \zeta]
                                                       BcIntegrandAxis [\rho p_{,\varphi}p_{,zp_{,z}}] := \{BcIAxisx [\rho p_{,\varphi}p_{,zp_{,z}}], BcIAxisx [\rho p_{,\varphi}p_{,z}], BcIAxi
                                                       \mathsf{BcIAxisx}[\rho p\_, \varphi p\_, z p\_, z\_] := \rho p \ \mathsf{Z}[z, z p] \ \mathsf{Cos}[\varphi p] \left(\mathsf{Z}[z, z p]^2 + \rho p^2\right)^{-1}
                                                       BclAxisy[\rho p_{,\varphi}p_{,zp_{,z}}] := \rho Z[z,zp] Sin[\varphi p] (Z[z,zp]^{2} + \rho p^{2})^{-1}
                                                       BcIAxisz [\rho p_{,\varphi}p_{,zp_{,z}}] := \rho p^{2} (Z[z,zp]^{2} + \rho p^{2})^{-3/2}
```

2.1 Filament

2.1.0 Equations

Analytic and Numeric function handles. Returns $B=\{B\rho,B\varphi,Bz\}$ or $B=\{Bx,By,Bz\}$ (on axis).

BiAna
$$[I_{-}, \varphi \nearrow_{-}, \rho_{-}, \rho_{-}, \varphi_{-}, \varphi_{-}, \varphi_{-}, z_{-}] := \frac{I \quad u0}{4\pi} \sum_{q=1}^{2} (-1)^{q} \text{ BiSumma}$$

BiAnaAxis $[I_{-}, \varphi \nearrow_{-}, \rho_{-}, \varphi_{-}, z_{-}, z_{-}] := \frac{I \quad u0}{4\pi} \sum_{q=1}^{2} (-1)^{q} \text{ BiSummandAxi}$

BiNum $[I_{-}, \varphi \nearrow_{-}, \rho_{-}, \varphi_{-}, \varphi_{-}, z_{-}, z_{-}] := \frac{I \quad u0}{4\pi} \text{ NIntegrate}[BcIntegrate]$

BiNumAxis $[I_{-}, \varphi \nearrow_{-}, \rho_{-}, \varphi_{-}, \varphi_{-}, z_{-}, z_{-}] := \frac{I \quad u0}{4\pi} \text{ NIntegrate}[BcIntegrate]$

Special cases of the geometry for the analytic function handle. Replaces BiAna[] (Cylindrical) or BiAnaAxis[] (Cartesian, on axis).

BiAna
$$[I_{-}, \varphi \stackrel{\wedge}{\sim}_{-}, P_{-}, \rho p_{-}, \rho_{-}, \{0, 2\pi\}, \varphi_{-}, zp_{-}, z_{-}] := \frac{I \quad u0}{4\pi}$$
 BiSummandAS

BiAnaAxis $[I_{-}, \varphi \stackrel{\wedge}{\sim}_{-}, \rho p_{-}, \{0, 2\pi\}, zp_{-}, z_{-}] := \frac{I \quad u0}{4\pi}$ BiSummandAxis $[\rho p_{-}, \rho p_{-}, \{0, 2\pi\}, zp_{-}, z_{-}] := \frac{I \quad u0}{4\pi}$

Summands for BiAna[] and BiAnaAxis[].

BiSummand
$$[\rho p_{,\rho}, \varphi_{,\rho}, \varphi_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}] := \{BiS\rho[\rho p_{,\rho}, \varphi p_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}], BiSSP_{,\rho}, \rho_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}] := \frac{Z[z,zp]}{\rho} \left(\frac{1}{R[\rho,\rho p_{,\rho},z,zp]} \left(Ellipticle BiS\varphi[\rho p_{,\rho}, \rho_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := -\frac{Z[z,zp]}{\rho} G[\rho,\rho p_{,\rho}, \varphi p_{,\rho}, z_{,\rho}] \right)$$

BiSz $[\rho p_{,\rho}, \rho_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := -\frac{1}{R[\rho,\rho,\rho,z,zp]} \left(EllipticFT[\phi[\varphi, \varphi p_{,\rho}, \varphi p_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}], BiSAxiSISX[\rho p_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}] := \frac{Z[z,zp]}{(Z[z,zp]^2 + \rho p^2)^{3/2}} \left(\frac{Z[z,zp]^2 + \rho p^2}{(Z[z,zp]^2 + \rho p^2)^{3/2}} \right)$

BiSAxiSz $[\rho p_{,\rho}, \varphi p_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := \frac{Z[z,zp]}{\rho} \left(\frac{P[\rho,\rho,\rho,\varphi,z,zp]^2}{(Z[z,zp]^2 + \rho p^2)^{3/2}} \right)$

BiSAxiSz $[\rho p_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := \frac{2}{\rho} \frac{Z[z,zp]}{R[\rho p_{,\rho}, \rho_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]^2}$

BiSAS $[\rho p_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := \frac{2}{R[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]} \left(\frac{T[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]^2}{R[\rho,\rho,\rho,z,zp]^2} \right)$

BiSAS $[\rho p_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := \frac{2}{R[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]} \left(\frac{T[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]^2}{R[\rho,\rho,\rho,z,zp]^2} \right)$

BiSAS $[\rho p_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, z_{p_{,\rho}}, z_{p_{,\rho}}] := \frac{2}{R[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]} \left(\frac{T[\rho,\rho p_{,\rho}, z_{,\rho}, z_{p_{,\rho}}]^2}{R[\rho,\rho,\rho,z,zp]^2} \right)$

Singularities in the summands of BiAna[] or BiAnaAxis[].

```
(*Along the axis & axisymmetric*)
In[ • ]:=
             BiSAxisx[\rho p, {0,2\pi}, zp, z] := 0
             BiSAxisy [\rho p_{-}, {0, 2\pi}, zp_{-}, z_{-}] := 0
             BiSAxisz [\rho p_{,}\{0,2\pi\},zp_{,}z_{]} := BiSAxisz [\rho p_{,}2\pi,zp_{,}z_{]}
             (*On the azimuthal line*)
             BiS\varphi[\rho p_,\rho p_,\varphi p_,\varphi p_,z p_,z p_] := 0
             \operatorname{BiSz}\left[\rho p_{,}\rho p_{,}\varphi p_{,}\varphi p_{,}zp_{,}zp_{,}zp_{,}\right] := -\operatorname{Sign}\left[\Phi\left[\varphi,\varphi p\right]\right] \frac{\operatorname{ArcTanh}\left[\operatorname{Sin}\left[\phi\right]\right]}{2}
```

2.1.1 Standard - Outside Coil Radii

CoilFilamentField[$I\varphi, \rho', \rho 1, \varphi', \varphi 1, z', z 1$] In[•]:=

$\mathbf{I}\varphi$	B <i></i> ○	$\mathbf{B}\varphi$
Analytic	0.001372714157642409	1.698760127815627×10
Numeric	0.001372714157642415	$1.698760127815627 \times 10$
Comparison 8dp	0	0

2.1.2 Special Case a. - Inside Coil Radii

CoilFilamentField[$I\varphi, \rho', \rho 2, \varphi', \varphi 2, z', z 2$] In[•]:=

$\mathbf{I}\varphi$	$B \rho$	B φ
Analytic	0.001534719063283769	2.418938548515046 × 10
Numeric	0.001534719063283777	$2.418938548515046 \times 10$
Comparison 8dp	0	0

2.1.3 Special Case b. - On Coil Axis

CoilFilamentField[$I\varphi, \rho', \rho 3, \varphi', \varphi 3, z', z 3$] In[•]:=

${\tt I} \varphi$	Bx	Ву
Analytic	0.0001297864403851998	0.000105098987149150
Numeric	0.0001297864403851998	0.000105098987149150
Comparison 8dp	0	0

2.1.4 Special Case c. - Axisymmetric

CoilFilamentField[$I\varphi, \rho', \rho 1, \{0, 2\pi\}, \varphi 1, z', z 1$] In[•]:=

${\tt I} \varphi$	B <i></i> ⊘	$B\varphi$
Analytic	0.001360094620733514	0
Numeric	0.001360094620733503	$5.564487148325225 \times 10$
Comparison 8dp	0	0

2.1.5 Singularities b,c,f. - Singular plane 1

CoilFilamentField[$I\varphi, \rho', \rho 4, \varphi', \varphi 4, z', z 4$] In[•]:=

${\tt I} \varphi$	B ρ	$B\varphi$
Analytic	0.0003770114716661066	0.000161290993598380
Numeric	0.0003770114716661066	0.000161290993598380
Comparison 8dp	0	0

2.1.6 Singularities a,c,e. - Singular plane 2

CoilFilamentField[$I\varphi, \rho', \rho 5, \varphi', \varphi 5, z', z 5$] In[•]:=

${\tt I} \varphi$	$B_{\mathcal{O}}$	$\mathbf{B}arphi$
Analytic	0.0002938289080965867	0.000178549973576697
Numeric	0.0002938289080965867	0.000178549973576697
Comparison 8dp	0	0

2.1.7 Singularities a,b,d. - Singular plane 3

CoilFilamentField[$I\varphi, \rho', \rho 6, \varphi', \varphi 6, z', z 6$] In[•]:=

$\mathbf{I}\varphi$	$B\wp$	$B\varphi$
Analytic	0.0003156861113994550	0.000170644523112100
Numeric	0.0003156861113994550	0.000170644523112100
Comparison 8dp	0	0

2.1.8 - On Coil Axis & Axisymmetric

CoilFilamentField[$I\varphi, \rho', \rho 3, \{0, 2\pi\}, \varphi 3, z', z 3$] In[•]:=

${\tt I} \varphi$	Bx	Ву
Analytic	0	0
Numeric	$5.363823723160991 \times 10^{-43}$	-2.42279089650352
Comparison 8dp	0	0

2.2 Disc

2.2.0 Equations

Analytic and Numeric function handles. Returns $B = \{B\rho, B\varphi, Bz\}$ or $B = \{Bx, By, Bz\}$ (on axis).

$$BkAna[K_{_}, \varphi \nearrow_{_}, P_{_}, \rho p_{_}, \varphi_{_}, \varphi p_{_}, \varphi_{_}, zp_{_}, z_{_}] := \frac{K \quad u0}{4\pi} \sum_{m=1}^{2} \sum_{q=1}^{2} (-1)^{m+q} \quad BkS$$

$$BkAnaAxis[K_{_}, \varphi \nearrow_{_}, \rho p_{_}, \varphi p_{_}, zp_{_}, z_{_}] := \frac{K \quad u0}{4\pi} \sum_{m=1}^{2} \sum_{q=1}^{2} (-1)^{m+q} \quad BkSumman$$

$$BkNum[K_{_}, \varphi \nearrow_{_}, \rho p_{_}, \varphi p_{_}, \varphi p_{_}, zp_{_}, z_{_}] := \frac{K \quad u0}{4\pi} \quad NIntegrate[BcIntegrate]$$

$$BkNumAxis[K_{_}, \varphi \nearrow_{_}, \rho p_{_}, \varphi p_{_}, zp_{_}, z_{_}] := \frac{K \quad u0}{4\pi} \quad NIntegrate[BcIntegrate]$$

Special cases of the geometry for the analytic function handle. Replaces BkAna[] (Cylindrical) or BkAnaAxis[] (Cartesian, on axis).

BkAna [
$$K_{-}, \varphi_{\times_{-}}, P_{-}, \rho_{-}, \rho_{-}, \{0, 2\pi\}, \varphi_{-}, zp_{-}, z_{-}] := \frac{K \text{ u0}}{4\pi} \sum_{m=1}^{2} (-1)^m \text{ BkS}$$

BkAnaAxis [$K_{-}, \varphi_{\times_{-}}, \rho_{-}, \{0, 2\pi\}, zp_{-}, z_{-}] := \frac{K \text{ u0}}{4\pi} \sum_{m=1}^{2} (-1)^m \text{ BkSumman}$

Summands for BkAna[] and BkAnaAxis[].

$$\begin{aligned} &\text{BkSummand} \left[P_{,,\rho p_{,,\rho_{,,\rho_{,,\rho_{,,z}}}}, \varphi_{,zp_{,z}}\right] := \left\{\text{BkS}\rho\left[\rho p_{,\rho_{,\rho_{,\rho_{,\rho_{,z}}}}, \varphi_{,zp_{,z}}\right]}\right. \\ &\text{BkS}\rho\left[\rho p_{,\rho_{,,\rho_{,\rho_{,\gamma}}}, \varphi_{,zp_{,z}}}, \varphi_{,zp_{,z}}\right] := \frac{2}{\rho} \frac{\rho p}{R\left[\rho_{,\rho\rho_{,z},zp_{,z}}\right]} \left(\text{EllipticFT}\left[\phi\left[\varphi\right]\right]\right) \\ &\text{BkS}\varphi\left[\rho p_{,\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,zp_{,z}}}, \varphi_{,zp_{,z}}\right] := -\frac{Z\left[z,zp\right]}{\rho} - \log\left[\rho p_{-\rho_{,\rho_{,\rho_{,\gamma}}}} \cos\left[\varphi\right]\right] \\ &\text{BkSz}\left[P_{,\rho\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,zp_{,z}}}, \varphi_{,zp_{,z}}\right] := \frac{2}{R\left[\rho_{,\rho\rho_{,z,zp_{,z}}}} \text{EllipticFT}\left[\phi\left[\varphi\right]\right]\right] \\ &\text{BkSaxisx}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{p_{,\gamma}}, \varphi_{p_{,\gamma}}, \varphi_{p_{,\gamma}}\right] := -\sin\left[\varphi p\right] \frac{Z\left[z,zp\right]}{\sqrt{Z\left[z,zp\right]^{2} + \rho p^{2}}} \\ &\text{BkSaxisy}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{p_{,\gamma}}, \varphi_{p_{,\gamma}}, \varphi_{p_{,\gamma}}\right] := -\phi p \frac{\rho p}{\sqrt{Z\left[z,zp\right]^{2} + \rho p^{2}}} - \operatorname{ArcTanh}\left[\frac{\rho p}{\sqrt{Z\left[z,zp\right]^{2} + \rho p^{2}}} - \operatorname{ArcTanh}\left[\frac{\rho p}{\sqrt{Z\left[z,zp\right]^{2} + \rho p^{2}}}\right] \\ &\text{BkSaxisz}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, \varphi_{,\gamma}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right] := -\phi p \frac{\rho p}{R\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]} \left(\operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\rho_{,\gamma}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right) \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\rho_{,\rho_{,\gamma}}}, z_{p_{,\gamma}}}\right]} \operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right] \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\rho_{,\rho_{,\gamma}}}, z_{p_{,\gamma}}}\right]} \operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right] \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\rho_{,\rho_{,\gamma}}}, z_{p_{,\gamma}}}\right]} \operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right] \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\rho_{,\gamma}}, z_{,\gamma}, z_{p_{,\gamma}}\right]} \operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right]} \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\rho_{,\gamma}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\rho_{,\gamma}}, z_{p_{,\gamma}}\right]} \operatorname{EllipticK}\left[k\left[\rho_{,\rho_{,\rho_{,\gamma}}}, \varphi_{,\gamma}, z_{p_{,\gamma}}\right]\right] \\ &\text{BkSasp}\left[\rho p_{,\rho_{,\gamma}}, \varphi_{,\gamma}, z_{p_{,\gamma}}, z_{p_{,\gamma}}\right] := -\frac{4}{\rho} \frac{\rho p}{R\left[\rho_{,\gamma}}, z_{p_{,\gamma}}\right]} \operatorname{EllipticK}\left[$$

Singularities in the summands of BkAna[] or BkAnaAxis[].

```
(*Along the axis*)
In[ • ]:=
           BkSAxisx[\rho p, \phi p, z p, z p] := 0
           BkSAxisy [\rho p_, \varphi p_, z p_, z p_] := 0
           BkSAxisz [\rho p, \varphi p, z p, z p] := \varphi p Log [\rho p]
           (*Along the axis & axisymmetric*)
           BkSAxisx[\rho p_{-}, \{0, 2\pi\}, zp_{-}, z_{-}\} := 0
           BkSAxisy [\rho p_{-}, {0,2\pi},z p_{-},z_{-}] := 0
           BkSAxisz [\rho p, {0,2\pi},z p,z] := BkSAxisz [\rho p,2\pi,z p,z]
           (*Solid*)
           \mathsf{BkS}\rho\left[\emptyset,\rho_{-},\varphi p_{-},\varphi_{-},z p_{-},z_{-}\right] := \frac{\mathsf{L}\left[\rho,z,z p\right]}{\rho}\mathsf{ArcTan}\left[\frac{\rho \ \mathsf{Sin}\left[\Phi\left[\varphi,\varphi p\right]\right]}{\mathsf{Z}\left[z,z p\right]}\right]
           BkS\rho [0,\rho_{,}\varphi p_{,}\varphi_{,}zp_{,}zp_{]} := 0
           (*Solid & axisymmetric*)
           BkSAS\rho[0,\rho_,\varphi_,zp_,z_] := 0
           (*On the disc plane*)
           BkSφ[\rho p, \rho, \rho p, \varphi p, zp, zp] := 0
           (*On the disc plane & axisymmetric*)
           \mathsf{BkSAS}\rho \left[ \rho p_{}, \rho_{}, \varphi_{}, zp_{}, zp_{} \right] := 0
           (*On the azimuthal line*)
           EllipticFT[\phi_{-},1]:=Sin[\phi]CarlsonRC[1,Cos[\phi]<sup>2</sup>]
           \mathsf{BkS}\varphi\left[\rho p_{,\rho}p_{,\varphi}p_{,\varphi}p_{,\varphi}p_{,zp},zp_{,zp}\right] := 0
           (*On the radial line*)
```

2.2.1 Standard - Outside Coil Radii

CoilDiscField[$K\varphi$, 100, ρ' , ρ 1, φ' , φ 1, z', z1] In[•]:=

$\mathbf{K}arphi$	B _P	$B\varphi$
Analytic	0.004550646471690198	0.0000148626186701828
Numeric	0.004550646471947809	0.0000148626186706586
Comparison 8dp	0	0

2.2.2 Special Case a. - Inside Coil Radii

CoilDiscField[$K\varphi$,150, ρ' , ρ 2, φ' , φ 2,z',z2] In[•]:=

$\mathbf{K}\varphi$	B ρ	$B\varphi$
Analytic	0.01013923265250101	0.00002505900107230787
Numeric	0.01013923264982671	0.00002505900107113981
Comparison 8dp	0	0

2.2.3 Special Case b. - On Coil Axis

CoilDiscField[$K\varphi$, \emptyset , ρ' , ρ 3, φ' , φ 3,z',z3] In[•]:=

Karphi	Bx	Ву
Analytic	0.002047652044440496	0.001658155931127027
Numeric	0.002047652043569552	0.001658155930824412
Comparison 8dp	0	0

2.2.4 Special Case c. - Axisymmetric

NIntegrate struggles with B φ .

CoilDiscField[$K\varphi$,100, ρ' , ρ 1, $\{0,2\pi\}$, φ 1,z',z1]//Quiet In[•]:=

$\mathbf{K}\varphi$	B ρ	$B\varphi$
Analytic	0.004412345974681498	0
Numeric	0.004412345973088094	$-$ 1.410421035147059 \times 1
Comparison 8dp	0	0

2.2.5 Special Case d. - Solid

In[•]:= CoilDiscField[$K\varphi$,100,{0, ρ' [[2]]}, ρ 1, φ' , φ 1,z',z1]

Karphi	$B\wp$	Barphi
Analytic	0.004710462151164272	0.0000176001368614488
Numeric	0.004710462152513212	0.0000176001368615878
Comparison 8dp	0	0

2.2.6 Special Case e. - Axisymmetric & Solid

NIntegrate struggles with $B\varphi$.

CoilDiscField[$K\varphi$,100,{0, ρ' [[2]]}, ρ 1,{0,2 π }, φ 1,z',z1]//Quiet In[•]:=

Karphi	B ρ	$B\varphi$
Analytic	0.004518329230250307	0
Numeric	0.004518329227550135	$-2.233301434601139 \times 1$
Comparison 8dp	0	0

2.2.7 Singularities b,c,f. - Singular plane 1

CoilDiscField[$K\varphi$,50, ρ' , ρ 4, φ' , φ 4,z',z4] In[•]:=

K arphi	$B\wp$	$\mathbf{B}arphi$
Analytic	0.001807018177682073	0.001052865287292513
Numeric	0.001807018177554557	0.001052865287213675
Comparison 8dp	0	0

2.2.8 Singularities a,c,e. - Singular plane 2

CoilDiscField[$K\varphi$,50, ρ' , ρ 5, φ' , φ 5,z',z5] In[•]:=

$K\varphi$	$B_\mathcal{O}$	Barphi
Analytic	0.001714110762320366	0.001310352196154153
Numeric	0.001714110761827329	0.001310352196075857
Comparison 8dp	0	0

2.2.9 Singularities a,b,d. - Singular plane 3

CoilDiscField[$K\varphi$,50, ρ' , ρ 6, φ' , φ 6,z',z6] In[•]:=

K arphi	B <i></i> ○	$B\varphi$
Analytic	0.001871178367543343	0.001277701647764240
Numeric	0.001871178367547036	0.001277701647679863
Comparison 8dp	0	0

2.2.10 - On Coil Axis & Axisymmetric

CoilDiscField[$K\varphi$,0, ρ' , ρ 3,{0,2 π }, φ 3,z',z3] In[•]:=

$\mathbf{K}\varphi$	Bx	Ву
Analytic	0	0
Numeric	$4.899882906133252 \times 10^{-23}$	-9.27052056626888
Comparison 8dp	0	0

2.2.11 (not in article) - Axisymmetric & Singular plane 3

CoilDiscField[$K\varphi$,100, ρ' , ρ 6, $\{0,2\pi\}$, φ 6,z',z6] //Quiet In[•]:=

K arphi	B ρ	$B\varphi$
Analytic	0.003488669562401596	0
Numeric	0.003488669563036198	$4.824185584218220 \times 10$
Comparison 8dp	0	0

2.3 Shell

2.3.0 Equations

Analytic and Numeric function handles. Returns $B = \{B\rho, B\varphi, Bz\}$ or $B = \{Bx, By, Bz\}$ (on axis).

BsAna
$$[K_{-}, \varphi \nearrow_{-}, \rho_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, zp_{-}, z_{-}] := \frac{K}{4\pi} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n+q}$$
 BsS

BsAnaAxis $[K_{-}, \varphi \nearrow_{-}, \rho p_{-}, \varphi p_{-}, zp_{-}, z_{-}] := \frac{K}{4\pi} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{n+q}$ BsSummand

BsNum $[K_{-}, \varphi \nearrow_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi p_{-}, zp_{-}, z_{-}] := \frac{K}{4\pi}$ NIntegrate [BcIntegrate]

BsNumAxis $[K_{-}, \varphi \nearrow_{-}, \rho p_{-}, \varphi p_{-}, zp_{-}, z_{-}] := \frac{K}{4\pi}$ NIntegrate [BcIntegrate]

Special cases of the geometry for the analytic function handle. Replaces BsAna[] (Cylindrical) or BsAnaAxis[] (Cartesian, on axis).

BsAna[
$$K_{-}, \varphi \Rightarrow_{-}, P_{-}, \rho p_{-}, \rho_{-}, \{0, 2\pi\}, \varphi_{-}, z p_{-}, z_{-}] := \frac{K \cdot u0}{4\pi} \sum_{n=1}^{2} (-1)^{n} \text{ BsS}$$

BsAnaAxis[$K_{-}, \varphi \Rightarrow_{-}, \rho p_{-}, \{0, 2\pi\}, z p_{-}, z_{-}] := \frac{K \cdot u0}{4\pi} \sum_{n=1}^{2} (-1)^{n} \text{ BsSumman}$

Summands for BsAna[] and BsAnaAxis[].

Singularities in the summands of BsAna[] or BsAnaAxis[].

$$In[*]:= (*Along the axis*) \\ BsSAxisx[\rho_p, \varphi p_, z p_, z p_] := Sin[\varphi p] \\ BsSAxisy[\rho_p, \varphi p_, z p_, z p_] := -Cos[\varphi p] \\ BsSAxisz[\rho_p, \varphi p_, z p_, z p_] := 0 \\ (*Along the axis & axisymmetric*) \\ BsSAxisx[\rho_p, \{0, 2\pi\}, z p_, z_] := 0 \\ BsSAxisy[\rho_p, \{0, 2\pi\}, z p_, z_] := 0 \\ BsSAxisz[\rho_p, \{0, 2\pi\}, z p_, z_] := 0 \\ BsSAxisz[\rho_p, \{0, 2\pi\}, z p_, z p_] := 0 \\ BsSAxisy[\rho_p, \{0, 2\pi\}, z p_, z p_] := 0 \\ BsSAxisy[\rho_p, \{0, 2\pi\}, z p_, z p_] := 0 \\ (*On the shell plane*) \\ BsSZ[\rho_p, \rho_p, \varphi_p, \varphi_p, \varphi_p, z p_, z_] := \frac{Z[z, z p]}{\sqrt{Z[z, z p]^2 + 4 \rho p^2}} EllipticFT[\phi] \\ (*On the shell plane & axisymmetric*) \\ BsSASz[\rho_p, \rho_p, \varphi_p, \varphi_p, z p_, z_] := \frac{-2 Z[z, z p]}{R[\rho_p, \rho_p, z p, z]} EllipticK[k[\rho_p, \rho_p, \rho_p, z p_, z]] \\ (*On the azimuthal line*) \\ EllipticFT[\phi_, 1] := Sin[\phi] CarlsonRC[1, Cos[\phi]^2]$$

2.3.1 Standard - Outside Coil Radii

CoilShellField [$K\varphi, \rho', \rho 1, \varphi', \varphi 1, z', z 1$] In[•]:=

$\mathbf{K}\varphi$	$B \rho$	$B\varphi$
Analytic	0.0005681218241650236	6.511476224250626×1
Numeric	0.0005681218241220527	$6.511476224270352 \times 1$
Comparison 8dp	0	0

2.3.2 Special Case a. - Inside Coil Radii

CoilShellField [$K\varphi, \rho', \rho 2, \varphi', \varphi 2, z', z 2$] In[•]:=

$\mathbf{K}\varphi$	B ρ	Barphi
Analytic	0.0006356826497196410	9.28724216507752×10
Numeric	0.0006356826497240293	$9.28724216509253 \times 10$
Comparison 8dp	0	0

2.3.3 Special Case b. - On Coil Axis

CoilShellField[$K\varphi, \rho', \rho 3, \varphi', \varphi 3, z', z 3$] In[•]:=

K arphi	Bx	Ву
Analytic	0.0006127684497726228	0.000496210106671526
Numeric	0.0006127684497739614	0.000496210106669590
Comparison 8dp	l	0

2.3.4 Special Case c. - Axisymmetric

NIntegrate struggles with $B\varphi$.

CoilShellField[$K\varphi, \rho', \rho 1, \{0, 2\pi\}, \varphi 1, z', z 1$]//Quiet In[•]:=

$\mathbf{K} \varphi$	 B ρ	$B\varphi$
Analytic	0.0005633070662480231	0
Numeric	0.0005633070662567649	$1.600183994864209 \times 1$
Comparison 8dp	0	0

2.3.5 Singularities b,c,f. - Singular plane 1

CoilShellField[$K\varphi, \rho', \rho 4, \varphi', \varphi 4, z', z 4$] In[•]:=

$\mathbf{K}\varphi$	Bp	Barphi
Analytic	0.005009379856705172	0.001167520097808665
Numeric	0.005009379857527716	0.001167520098129617
Comparison 8dp	0	0

2.3.6 Singularities a,c,e. - Singular plane 2

CoilShellField[$K\varphi, \rho', \rho 5, \varphi', \varphi 5, z', z 5$] In[•]:=

$K \varphi$	$B\wp$	Barphi
Analytic	0.003220598895996764	0.001286646043698470
Numeric	0.003220598896130437	0.001286646044934483
Comparison 8dp	0	0

2.3.7 Singularities a,b,d. - Singular plane 3

CoilShellField[$K\varphi, \rho', \rho 6, \varphi', \varphi 6, z', z 6$] In[•]:=

$\mathbf{K}\varphi$	$B\wp$	Barphi
Analytic	0.005908193994816346	0.001609408420570709
Numeric	0.005908193994780027	0.001609408421723598
Comparison 8dp	0	0

2.3.8 - On Coil Axis & Axisymmetric

CoilShellField[$K\varphi, \rho', \rho 3, \{0, 2\pi\}, \varphi 3, z', z 3$] In[•]:=

$\mathbf{K}\varphi$	Bx	Ву
Analytic	0	0
Numeric	$1.533582990691132 \times 10^{-23}$	-1.54808226452014
Comparison 8dp	0	0

2.3.9 (not in article) - Axisymmetric & Singular plane 3

CoilShellField[$K\varphi, \rho', \rho 6, \{0, 2\pi\}, \varphi 6, z', z 6$] //Quiet In[•]:=

$K \varphi$	$B_{\mathcal{O}}$	Barphi
Analytic	0.01169236924966334	0
Numeric	0.01169236924174034	$1.874673356262654 \times 10^{-}$
Comparison 8dp	0	0

2.3 Volume

2.2.0 Equations

Analytic and Numeric function handles. Returns $B = \{B\rho, B\varphi, Bz\}$ or $B = \{Bx, By, Bz\}$ (on axis).

BcAna[
$$J_{-}, \varphi \nearrow_{-}, \rho_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \frac{J u \theta}{4\pi} \sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q}$$

BcAnaAxis[$J_{-}, \varphi \nearrow_{-}, \rho p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{J u \theta}{4\pi} \sum_{m=1}^{2} \sum_{n=1}^{2} \sum_{q=1}^{2} (-1)^{m+n+q}$

BcSur

BcNum[$J_{-}, \varphi \nearrow_{-}, \rho p_{-}, \varphi p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{J u \theta}{4\pi}$

NIntegrate[BcIntegrate]

BcNumAxis[$J_{-}, \varphi \nearrow_{-}, \rho p_{-}, \varphi p_{-}, z p_{-}, z_{-}] := \frac{J u \theta}{4\pi}$

NIntegrate[BcIntegrate]

Special cases of the geometry for the analytic function handle. Replaces BcAna[] (Cylindrical) or BcAnaAxis[] (Cartesian, on axis).

BcAna[
$$J_{,\varphi}$$
, $\rho_{,\rho}$, $\rho_{,\rho}$, $\rho_{,\rho}$, $\rho_{,\rho}$, $\rho_{,\rho}$, $\rho_{,zp}$,

Summands for BcAna[] and BcAnaAxis[].

$$\begin{aligned} &\text{BcSummand} \left[P_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \left\{\text{BcSp}\left[P_{+}, \rho p_{+}, \rho, \varphi_{+}, \varphi_{+}, z p_{+}, z\right] \right. \\ &\text{BcSp}\left[P_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \frac{1}{2} \left(\text{R}\left[\rho_{+}, \rho p_{+}, z_{+}, z p_{-}\right] \frac{4}{3} \left(\text{EllipticFT}\right] \right. \\ &\text{BcSp}\left[\rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \frac{1}{2\rho} \left(\left(\rho p_{-}\rho\right) \text{Cos}\left[\Phi\left[\varphi_{+}, \varphi p_{-}\right]\right]\right) \text{G}\left[\rho_{+}, \varphi_{-}, \varphi_{-}, \varphi_{-}, \varphi_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \left\{\text{BcSAxisx}\left[\rho p_{+}, \varphi_{-}, z p_{-}, z_{-}\right] + \frac{1}{2} \text{Sign}\left[Z\left[z_{+}, \varphi_{-}, \varphi_{-}, \varphi_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \left\{\text{BcSAxisx}\left[\rho p_{+}, \varphi_{-}, \varphi_{-}, z p_{-}, z_{-}\right] + \text{BcSAxisx}\left[\rho p_{+}, \varphi_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := -\cos\left[\varphi p_{+}\right] \sqrt{Z\left[z_{+}, z p_{+}\right]^{2} + \rho p_{+}^{2}} \\ &\text{BcSAxisz}\left[\rho p_{-}, \varphi p_{-}, z p_{-}, z_{-}\right] := -\varphi p_{+} Z\left[z_{+}, z p_{+}\right] \sqrt{Z\left[z_{+}, z p_{+}\right]^{2} + \rho p_{+}^{2}} \\ &\text{BcSAxisz}\left[\rho p_{-}, \varphi p_{-}, \rho_{-}, \rho_{-}, \rho_{-}, z p_{-}, z_{-}\right] := \left\{\text{BcSAS}\rho\left[P_{+}, \rho p_{+}, \rho_{+}, \rho_{+}, \varphi_{+}, z p_{+}, z_{-}\right] \right\} \\ &\text{BcSAS}\rho\left[P_{-}, \rho p_{-}, \rho_{-}, \rho_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := \theta \\ &\text{BcSAS}\left[\rho p_{-}, \rho_{-}, \rho_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := 2\pi \left(\alpha 3\left[\rho_{+}, \rho_{+}, z_{-}, z p_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}, z p_{-}, z_{-}, z_{-}\right] \right] \right) \\ &\text{BcSAS}\left[\rho p_{-}, \rho_{-}, \rho_{-}, \varphi_{-}, z p_{-}, z_{-}\right] := 2\pi \left(\alpha 3\left[\rho_{+}, \rho_{+}, z_{-}, z p_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}, z p_{-}, z_{-}\right] \right] \right) \\ &\text{BcSAS}\left[\rho p_{-}, \rho_{-}, \rho_{-}, \rho_{-}, z_{-}, z p_{-}, z_{-}\right] := 2\pi \left(\alpha 3\left[\rho_{+}, \rho_{+}, z_{-}, z p_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}, z p_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}\right] + \frac{1}{2}\rho p_{+} \text{Sign}\left[Z\left[z_{-}\right] + \frac{1}{2}\rho p_{+} \text{S$$

Singularities in the summands of BcAna[] or BcAnaAxis[].

```
(*Along the axis*)
In[ • ]:=
             BcSAxisz[\rho p_, \varphi p_, z p_, z p_] := 0
              (*Along the axis & axisymmetric*)
             BcSAxisx[\rho p_{}, \{0, 2\pi\}, zp_{}, z_{}] := 0
             BcSAxisy [\rho p_{,}\{0,2\pi\},zp_{,}z_{,}] := 0
             \mathsf{BcSAxisz} [\rho p_{,} \{0,2\pi\}, zp_{,}z_{]} := \mathsf{BcSAxisz} [\rho p_{,}2\pi, zp_{,}z]
              (*On the azimuthal line*)
             EllipticFT[\phi_{-},1]:=Sin[\phi]CarlsonRC[1,Cos[\phi]<sup>2</sup>]
              (*On the radial line*)
             BCS\varphi [\rho p_{,\rho}, \rho_{,\varphi}, \varphi p_{,\varphi}, zp_{,z}p_{,z}p_{,z}] := (*-\frac{Abs [\bar{\varrho}[\rho,\rho p]] \bar{\varrho}[\rho,\rho p]}{2 \rho} *) - \frac{Abs [\bar{\varrho}[\rho,\rho p]] \bar{\varrho}[\rho,\rho p]}{2 \rho} *
```

2.4.1 Standard - Outside Coil

NIntegrate struggles with $B\varphi$.

CoilCylField[J φ ,P, ρ' , ρ 7, φ' , φ 7,z',z7]//Quiet In[•]:=

$\mathbf{J}\varphi$	B ρ	$\mathbf{B}\varphi$
Analytic	0.00002947429112029849	3.524997169679487×
Numeric	0.00002947429112124344	$3.524997225520252 \times$
Comparison 8dp	0	0

2.4.2 Special Case b. - Axisymmetric

NIntegrate struggles with B φ .

CoilCylField $[J\varphi,P,\rho',\rho7,\{0,2\pi\},\varphi7,z',z7]$ //Quiet In[•]:=

$J\varphi$	 B ρ	$B\varphi$
Analytic	0.00002069362960441219	0
Numeric	0.00002464071192591216	1.021109903288754>
Comparison 8dp	$-3.94708232149997 \times 10^{-6}$	0

2.4.3 Special Case a. - On Coil Axis

CoilCylField[$J\varphi$,0, ρ' , ρ 3, φ' , φ 3,z',z3] In[•]:=

J arphi	Bx	Ву
Analytic	0.0001531921124431557	0.000124052526667881
Numeric	0.0001531921124201073	0.000124052526648201
Comparison 8dp	0	0

2.4.4 Special Case a,b - On Coil Axis & Axisymmetric

CoilCylField[$J\varphi$,0, ρ' , ρ 3,{0,2 π }, φ 3,z',z3] In[•]:=

J arphi	Bx	Ву
Analytic	0	0
Numeric	$3.712049951100202 \times 10^{-24}$	-4.91073503290807
Comparison 8dp	0	0

2.4.5 Singularities b,c,f. - Singular plane 1

CoilCylField[$J\varphi$,P, ρ' , ρ 4, φ' , φ 4,z',z4] In[•]:=

$\ensuremath{J} arphi$	Bp	Barphi
Analytic	0.0001841132305583547	0.00007498203826667
Numeric	0.0001860126163046093	0.00007498203826589
Comparison 8dp	$-1.8993857462547 \times 10^{-6}$	0

2.4.6 Singularities a,c,e. - Singular plane 2

CoilCylField[$J\varphi$,P, ρ' , ρ 5, φ' , φ 5,z',z5] In[•]:=

J arphi	$B_{\mathcal{O}}$	$B\varphi$
Analytic	0.0001886679203860053	0.000100097314481322
Numeric	0.0001834555924935078	0.000100097314452573
Comparison 8dp	$5.2123278924976 \times 10^{-6}$	0

2.4.7 Singularities a,b,d. - Singular plane 3

J arphi	$B\rho$	$B\varphi$
Analytic	0.0003035211228690777	0.00012732924070133
Numeric	0.0003070881388353115	0.00012732924064067
Comparison 8dp	$-3.5670159662338 \times 10^{-6}$	0

3.0 Green's Function Integrals

This section is simply a comparison of the integral transforms, discussed in part 3 of the article.

3.0.0 Integrals and Analytic Solutions

```
Compare [P, \rho', \rho, \varphi', \varphi, z', z], [P, \rho, \varphi, \varphi', \varphi, z', z]
In[ • ]:=
                                                                                     Module[{Bana1,Bana2,Bnum,heading},
                                                                                                                   Bnum = numFn[\rho', \rho, \varphi', \varphi, z', z];
                                                                                                                  Bana1 = N[anaFn1[P,\rho',\rho,\varphi',\varphi,z',z],$MachinePrecision]
                                                                                                                   Bana2=N[anaFn2[P, \rho', \rho, \varphi', \varphi, z', z],$MachinePrecision];
                                                                                                                  If [anaFn2==0, Bana2=None];
                                                                                                                  TableForm[{Bnum,Bana1,Bana2}, TableHeadings -> {{"Nume
                                                         (*Azimuthal integral*)
                                                       \mathsf{Gd}\varphi\mathsf{p}[\rho\mathsf{p},\rho_{,}\rho_{,}\varphi\mathsf{p},\varphi_{,}z\mathsf{p},z_{]}:=\mathsf{NIntegrate}[\mathsf{G}[\rho,\rho\mathsf{p},\varphi,\mathsf{d}\varphi\mathsf{p},z,z_{p}],\{
                                                      \mathsf{Gd}\varphi\mathsf{p1}[P_{-},\rho p_{-},\rho_{-},\varphi p_{-},\varphi_{-},zp_{-},z_{-}] := -\frac{2}{\mathsf{R}[\rho_{+},\rho p_{+},z_{+},zp_{-}]} \sum_{i=1}^{2} (-1)^{q} \; \mathsf{Ellip}
                                                      \mathsf{Gd}\varphi\mathsf{p2}[P_{\mathtt{J}},\rho\mathsf{p}_{\mathtt{J}},\rho_{\mathtt{J}},\varphi\mathsf{p}_{\mathtt{J}},\varphi\mathsf{p}_{\mathtt{J}},z\mathsf{p}_{\mathtt{J}},z_{\mathtt{J}}] := -\frac{2}{\mathsf{R}[\rho_{\mathtt{J}},\rho\mathsf{p}_{\mathtt{J}}z_{\mathtt{J}},z\mathsf{p}]} \sum_{q=1}^{2} (-1)^{q} \mathsf{Ellip}
                                                         (*Radial integral*)
                                                       Gd\rho p[\rho p, \rho, \varphi, \varphi p, zp, z] := NIntegrate[G[\rho, d\rho p, \varphi, \varphi p, z, zp], \varphi
                                                       \mathsf{Gd} \rho \mathsf{p} \mathsf{1} [P_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi_{-}, z p_{-}, z_{-}] := \sum_{i=1}^{2} (-1)^{m} (\alpha \mathsf{1} [\rho_{-}, \rho p_{-}] [m]), z, z p_{-}
                                                         (*Axial integral*)
                                                       \operatorname{\mathsf{Gdzp}}[\wp p_{,\wp},\wp_{,\varphi},\varphi p_{,zp_{,z}}] := \operatorname{\mathsf{NIntegrate}}[\mathsf{G}[\wp,\wp p,\varphi,\varphi p,z,\mathsf{dzp}], \{
                                                       \mathsf{Gdzp1}[P_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_{,\mathcal{P}_{,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal{P}_,\mathcal
```

(*Radial surface integral*) $\mathsf{Gd} \rho \mathsf{pd} \varphi \mathsf{p1} [P_{,\rho} \rho_{,\rho}, \rho_{,\rho}, \varphi_{,\rho}, \varphi_{,\rho}, z_{,\rho}] := \sum_{n=1}^{2} \sum_{j=1}^{2} (-1)^{m+q} (\varphi p [[q]] \times \alpha \mathsf{1}$ $\mathsf{Gd} \rho \mathsf{pd} \varphi \mathsf{p2} \left[P_{,} \rho p_{,} \rho_{,} \varphi_{,} \varphi_{,} \varphi_{,} z p_{,} z_{,} z_{,} \right] := \sum_{m=1}^{2} \sum_{i=1}^{2} (-1)^{m+q} \left(\varphi p \left[\left[q \right] \right] \times \alpha \mathsf{1} \right)$ (*Axial surface integral*) $\mathsf{Gdzpd}\varphi\mathsf{p}[\rho\mathsf{p},\rho_,\varphi_,\varphi\mathsf{p},\varphi_,\mathsf{zp},z_]:=\mathsf{NIntegrate}[\mathsf{G}[\rho,\rho,\varphi,\varphi,\mathsf{d}\varphi\mathsf{p},z,\mathsf{dz}]$ $\mathsf{Gdzpd}\varphi\mathsf{p1}[P_{-}, \rho_{-}, \rho_{-}, \varphi_{-}, \varphi_{-}, \varphi_{-}, z_{-}] := -\frac{1}{2} \sum_{n=1}^{2} \sum_{n=1}^{2} (-1)^{n+q} \mathsf{Sign}[\mathsf{Z}[z], \varphi_{-}, \varphi_{-}$ (*Volume integral*) $\mathsf{Gd} \rho \mathsf{pd} \varphi \mathsf{pdzp1} [P_{-}, \rho p_{-}, \rho_{-}, \varphi p_{-}, \varphi p_{-}, z_{-}] := \sum_{n=1}^{2} \sum_{n=1}^{2} \sum_{n=1}^{2} (-1)^{m+n+q} \left(\varphi p \left[\left[\frac{1}{2} \right] \right] \right)$ $\mathsf{Gd} \rho \mathsf{pd} \varphi \mathsf{pdzp2} [P_{,} \rho p_{,} \rho_{,} \varphi p_{,} \varphi p_{,} \varphi_{,} z p_{,} z_{,}] := \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} (-1)^{m+n+q} \left(\varphi p \left[\left[\frac{1}{n} \right] \right] \right)^{m+n+q} \left(\varphi p \left[\frac{1}{n} \right] \right)^{m+$

3.0.1 Azimuthal Integral

Compare $[0, \rho'[[2]], \rho 1, \varphi', \varphi 1, z'[[1]], z 1, Gd\varphi p, Gd\varphi p 1, Gd\varphi p 2]$ In[•]:=

Out[•]//TableForm=

Numeric 520.8982064725782 Analytic Form 1 520.8982064725861 Analytic Form 2 520.8982064725861

3.0.2 Radial Integral

Compare $[P, \rho', \rho 1, \phi']$ [[1]], $\phi 1, z'$ [[1]], $z 1, Gd \rho p, Gd \rho p 1, 0$] In[•]:=

Out[•]//TableForm=

10.5607377420756752 Numeric Analytic Form 1 | 0.5607377421188464 Analytic Form 2 None

3.0.3 Axial Integral

In[•]:= Compare [200, ρ' [[2]], ρ 1, φ' [[1]], φ 1, z', z1, Gdzp, Gdzp1, θ]

Out[•]//TableForm=

Numeric 10.4187967839218372 Analytic Form 1 0.4187978710349870 Analytic Form 2 None

3.0.4 Radial Surface Integral

In[•]:= Compare $[P, \rho', \rho 1, \varphi', \varphi 1, z']$ [1], z1, $Gd\rho pd\varphi p$, $Gd\rho pd\varphi p1$, $Gd\rho pd\varphi p2$]

Out[•]//TableForm=

Numeric 2.133688224453506 Analytic Form 1 2.133677478713198 Analytic Form 2 2.133688203712503

3.0.5 Axial Surface Integral

Compare [250, ρ' [[2]], ρ 1, φ' , φ 1, z', z1, $Gdzpd\varphi p$, $Gdzpd\varphi p$ 1, $Gdzpd\varphi p$ 2] In[•]:=

Out[•]//TableForm=

2.536820273844129 Analytic Form 1 2.530666999720498 Analytic Form 2 2.536092152698103

3.0.6 Volume Integral

Compare [100, ρ' , ρ 1, φ' , φ 1,z',z1, $Gd\rho pd\varphi pdzp$, $Gd\rho pd\varphi pdzp$ 1, $Gd\rho pd\varphi pdz$ In[•]:=

Out[•]//TableForm=

Numeric 0.00927987090388250 Analytic Form 1 0.00926414493132398 Analytic Form 2 0.00927635460527792

4.0 Magnetic field derivates

This section has the example derivatives given in part 6.2 of the article. Integrals with respect to t are not true for all $\varphi'(\phi)$.

4.0.0 Derivatives and Analytic Solutions

```
Compare2 [\rho'_,\rho_,\varphi'_,\varphi_,z'_,z_,numFn1_,numFn2_,anaFn_] :=
   Module[{Bana,Bnum1,Bnum2,heading},
      Bnum1 = N[numFn1[\rho', \rho, \phi', \phi, z', z], MachinePrecision];
      Bnum2 = N[numFn2[\rho', \rho, \phi', \phi, z', z], MachinePrecision];
      Bana = N[anaFn[\rho',\rho,\varphi',\varphi,z',z],$MachinePrecision];
      If [numFn2==0, Bnum2=None];
      TableForm[{Bnum1,Bnum2,Bana}, TableHeadings -> {{"Nume
(*Elliptic integral of the first kind*)
\mathsf{d}\varphi\mathsf{eFn}\left[\varphi p_{-},\varphi_{-},\varphi p_{-},\varphi_{-},zp_{-},z_{-}\right] := \sum_{i=1}^{2} (-1)^{q} \left(\mathsf{D}\left[\mathsf{EllipticF}\left[\phi\left[\mathsf{d}\varphi,\varphi p\right[\mathsf{d}\varphi\right]\right]\right)\right)
(*Elliptic integral of the second kind*)
```

$$\begin{aligned} &\operatorname{d}\rho\text{eEt}\left[\rho p_{_},\rho_{_},\varphi p_{_},\varphi_{_},zp_{_},z_{_}\right] \ := \ \sum_{q=1}^{2} (-1)^{q} \ \operatorname{NIntegrate}\left[-\frac{2 \ \rho p \left(Z\left[z,zp\right]^{2} - \rho^{2} + \rho p^{2}\right)^{2}}{R\left[\rho_{,}\rho p_{,}z_{,}zp_{_}\right]} \right] \\ &\operatorname{d}\rho\text{eEa}\left[\rho p_{_},\rho_{_},\varphi p_{_},\varphi_{_},zp_{_},z_{_}\right] \ := \ \sum_{q=1}^{2} (-1)^{q} \frac{-2 \ \rho p \left(Z\left[z,zp\right]^{2} - \rho^{2} + \rho p^{2}\right)^{2}}{R\left[\rho_{_},\rho p_{_},z_{,}zp_{_}\right]^{4}} \\ &\left(\star\text{Elliptic integral of the third kind}\star\right) \\ &\operatorname{d}\rho\text{ePn}\left[\rho p_{_},\rho_{_},\varphi p_{_},\varphi_{_},zp_{_},z_{_}\right] \ := \ \sum_{q=1}^{2} (-1)^{q} \left(D\left[\text{EllipticPi}\left[\kappa\left[d\rho_{_},\rho p_{_}\right]\right]\right] \\ &\operatorname{d}\rho\text{ePt}\left[\rho p_{_},\rho_{_},\varphi p_{_},\varphi_{_},zp_{_},z_{_}\right] \ := \ \sum_{q=1}^{2} (-1)^{q} \left(\frac{1}{2 \ \rho} - \frac{1}{\overline{\varrho}\left[\rho_{_},\rho p_{_}\right]} - \frac{\varrho\left[\rho_{_},\rho_{_}\right]}{R\left[\rho_{_},\rho p_{_}\right]} \\ &\operatorname{d}\rho\text{ePa}\left[\rho p_{_},\rho_{_},\varphi_{_},zp_{_},z_{_}\right] \ := \ \left(D\left[\text{BetaRegularized}\left[zs\left[d\rho_{_},\rho p_{_},z_{_}\right]\right] \\ &\operatorname{d}\rho\text{ePa}\left[\rho_{_},\rho p_{_},\rho_{_},a_{_},b_{_},zp_{_},z_{_}\right] \ := \ \frac{-2\rho}{B\text{eta}\left[a,b\right]}T\left[\rho_{_},\rho p_{_},z_{_},z_{_}\right]^{2}S\left[\rho_{_},\rho_{_}\right] \end{aligned}$$

4.0.1 $\frac{\partial}{\partial c}$ Elliptic integral of the first kind

$$In[\circ]:= \quad \text{Compare2}\left[\rho'[[2]],\rho\mathbf{1},\left\{\frac{\pi}{4},4\frac{\pi}{3}\right\},\varphi\mathbf{1},\mathbf{z'}[[1]],\mathbf{z1},\mathsf{d\rhoeFn},\mathsf{d\rhoeFt},\mathsf{d\rhoeFa}\right]$$

Out[•]//TableForm=

Numeric Form 1 | 69.52930154354390 Numeric Form 2 69.52930154354402 Analytic Form 69.52930154354390

4.0.2 $\frac{\partial}{\partial a}$ Elliptic integral of the first kind

$$In[\bullet]:= \quad \mathsf{Compare2}\left[\rho'[[2]],\rho\mathbf{1},\left\{\frac{\pi}{4},4\frac{\pi}{3}\right\},\varphi\mathbf{1},\mathsf{z'}[[1]],\mathsf{z1},\mathsf{d}\varphi\mathsf{eFn},\emptyset,\mathsf{d}\varphi\mathsf{eFa}\right]$$

Out[•]//TableForm=

Numeric Form $1 \mid -2.813617119399465$ Numeric Form 2 None Analytic Form | -2.813617119399465

4.0.3
$$\frac{\partial}{\partial z}$$
 Elliptic integral of the first kind

In[
$$\phi$$
]:= Compare2 $\left[\rho'[[2]], \rho 1, \left\{\frac{\pi}{4}, 4\frac{\pi}{3}\right\}, \varphi 1, z'[[1]], z 1, dzeFn, dzeFt, dzeFa\right]$

Out[•]//TableForm=

Numeric Form 1 | 208.7535820767244 Numeric Form 2 208.7535820767247 Analytic Form | 208.7535820767244

4.0.4 $\frac{\partial}{\partial a}$ Elliptic integral of the second kind

$$In[\bullet]:= \quad \mathsf{Compare2}\left[\rho'\left[[2]\right], \rho\mathbf{1}, \left\{\frac{\pi}{4}, 4\frac{\pi}{3}\right\}, \varphi\mathbf{1}, \mathsf{z'}\left[[1]\right], \mathsf{z1}, \mathsf{d}\rho\mathsf{eEn}, \mathsf{d}\rho\mathsf{eEt}, \mathsf{d}\rho\mathsf{eEa}\right]$$

Out[•]//TableForm=

Numeric Form 1 | -4.561890931702129 Numeric Form 2 | -4.561890931702118 Analytic Form | -4.561890931702129

4.0.5 $\frac{\partial}{\partial a}$ Elliptic integral of the third kind

$$In[\circ]:= \quad \text{Compare2}\left[\rho'[[2]],\rho\mathbf{1},\left\{\frac{\pi}{4},4\frac{\pi}{3}\right\},\varphi\mathbf{1},\mathbf{z'}[[1]],\mathbf{z1},\mathsf{d}\rho\mathsf{ePn},\mathsf{d}\rho\mathsf{ePt},\mathsf{d}\rho\mathsf{ePa}\right]$$

Out[•]//TableForm=

Numeric Form 1 | 25513.98100004374 Numeric Form 2 25513.98100004376 Analytic Form 25513.98100004374

4.0.6 $\frac{\partial}{\partial a}$ Regularised beta function

Out[•]//TableForm=

Numeric | -124.787 Analytic Form 1 | -124.787 Analytic Form 2 None

5.0 Forces between Axially Magnetised Permanent **Magnets**

5.0.0 Equations

Analytic and Numeric function handles. Returns $F = \{Fx, Fy, Fz\}$.

$$\begin{aligned} &\text{FzAna} \left[\textit{M}_{_}, \textit{Mp}_{_}, \textit{Op}_{_}, \textit{p}_{_}, \textit{Qp}_{_}, \textit{p}_{_}, \textit{zp}_{_}, \textit{z}_{_}, \textit{V}_{_}, \textit{P}_{_}, \textit{U}_{_}, \textit{O}_{_} \right] := \frac{\textit{M} \; \textit{Mp} \; \textit{u0}}{4\pi} \; \sum_{m=1}^{2} \\ &\text{FzNum} \left[\textit{M}_{_}, \textit{Mp}_{_}, \textit{Op}_{_}, \textit{p}_{_}, \textit{pp}_{_}, \textit{p}_{_}, \textit{zp}_{_}, \textit{z}_{_} \right] := \frac{\textit{M} \; \textit{Mp} \; \textit{u0}}{4\pi} \left(\sum_{np=1}^{2} (-1)^{np} \; \text{NInte} \right) \\ &\sum_{m=1}^{2} \sum_{np=1}^{2} (-1)^{m+np} \\ &+ \sum_{m=1}^{2} \sum_{np=1}^{2} (-1)^{m+np} \\ &+ \sum_{q=1}^{2} \sum_{np=1}^{2} (-1)^{m+np} \\ &+ \sum_{q=1}^{2} \sum_{np=1}^{2} (-1)^{q+np} \\ &+ \sum_{q=1}^{2} \sum_{np=1}^{2} (-1)^{q+np} \end{aligned}$$

Special cases of the geometry for the analytic function handle. Replaces FzAna[] or FzNum[].

In[51]:= FzAna [
$$M_{-}$$
, Mp_{-} , ρ_{-} , ρ_{-} , ρ_{-} , $\{0,2\pi\}$

Integrands to be solved for FzNum[].

FzIntegrandAS [
$$\rho p_{,} \rho_{,} \varphi p_{,} \varphi p_{,} \varphi p_{,} z p_{,} z_{,}] := -\rho p_{,} Z[z,zp] \cos[\varphi - \varphi p_{,} z]$$

FzIntegrand1[$\rho p_{,} \rho_{,} \varphi p_{,} \varphi p_{,} z p_{,} z_{,}] := \{-\rho p_{,} Z[z,zp]\cos[\varphi]G[\rho_{,} \varphi p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp]\cos[\varphi]G[\rho_{,} \varphi p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp]\cos[\varphi]G[\rho_{,} \varphi p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp]\sin[\varphi]G[\rho_{,} \varphi p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp]\sin[\varphi]G[\rho_{,} \varphi p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z p_{,} z_{,}\} := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,} z p_{,} z p_{,} z p_{,} z_{,}] := \{\rho p_{,} Z[z,zp] \rho_{,} z p_{,} z p_{,$

Summands and ancillary functions for FzAna[].

$$\begin{split} &\text{FzSummand} [\rho p_{,} \rho_{,} \varphi p_{,} \varphi_{,} z p_{,} z_{,} v_{,} \rho_{,} v_{,} \rho_{,} v_{,} \rho_{,} v_{,} \rho_{,} \rho_{,$$

Singularities in the summands of FzAna[].

In[48]:= (*On the shell plane & axisymmetric*)

FzSummandAS [
$$\rho p_{,} \rho p_{,} z p_{,} z p_{,} z_{,}] := -\frac{Z[z, zp] \rho p^{2}}{R[\rho p_{,} \rho p_{,} z_{,} zp]}$$
 EllipticD[k[$\rho p_{,} \rho p_{,} z_{,} z p_{,} z_{,} z_{,}$

5.0.1 An axisymmetric force

Hollow rings.

$$ln[49]:=$$
 ResultTableForce $[800*10^3, -955*10^3, \{5*10^{-3}, 10*10^{-3}\}, \{5*10^{-3}, 8*10^{-3}, 10*10^{-3}\}, \{5*10^{-$

	Fx	Fy	Fz
Analytic	0	0	17.43010334628681
Numeric	0	0	17.43010333790363
Comparison 8dp	0	0	0

Solid rings (m-summations removed).

In [54]:= Result Table Force
$$[800*10^3, -955*10^3, \{0,10*10^{-3}\}, \{0,8*10^{-3}\}, \{0,2\pi)$$

	Fx	Fy	Fz
Analytic	0	0	21.90252744226638
Numeric	0	0	21.90252744338770
Comparison 8dp	0	0	0

5.0.2 A non-axisymmetric force

The partial sum is computed without an algorithm, and a low number of terms have been chosen.

In[
$$\circ$$
]:= ResultTableForce $\left[800*10^3, -955*10^3, \left\{5*10^{-3}, 10*10^{-3}\right\}, \left\{5*10^{-3}, 8*10^{-3}\right\}\right]$

	Fx	Fy
Analytic	-0.1737413964903685	0.1709873453068254
Numeric	-0.173396819398153	0.171120681310334
Comparison 8dp	-0.000344577092216	-0.000133336003508