实验报告

杨凌林 PB17000083

实验报告

实验设备与环境

实验设备

编译环境

实验内容和要求

实验一 红黑树

实验二 区间树

实验方法和步骤

实验一红黑树

几点注意

实验二 区间树

几点注意

实验结果和分析

实验一 红黑树

实验截图

实验结果分析

实验二 区间树

实验截图

实验结果分析

实验总结

实验设备与环境

实验设备

系统版本	Windows 10 专业版
系统版本号	2004
计算机型号	Asus U4100U
处理器	Core i7-8550U

编译环境

IDE	CLion(2020.2.4)
环境	MinGW
编译器	gcc(9.2.0)
CMake	Bundled(3.17.3)

实验内容和要求

实验一 红黑树

实现红黑树的基本算法, 分别对整数 $n=20,\,40,\,60,\,80,\,100$, 随机生成 n 个互异的正整数作为 结点的关键字,向一棵初始为空的红黑树中依次插入 n 个节点,绘制**运行时间 - 问题规模**曲线,并将构 建好的红黑树的中序遍历序列写入文件。

随机删除红黑树中 n/4 个结点,统计删除操作所需时间,并绘制时间曲线图做分析。

实验二 区间树

实现区间树的基本算法,随机生成 30 个位于 [0,25] 或 [30,50] 的正整数区间,以这 30 个正整数区间的左端点作为关键字构建红黑树的节点,向一棵初始空的红黑树中依次插入这 30 个节点,然后随机选择其中 3 个区间进行删除。

实现区间树的插入、删除、遍历和查找算法,对随机生成的三个区间进行查找,判断是否与所创建 的区间树有重叠的区间。

实验方法和步骤

实验一 红黑树

src 文件夹中文件和函数的组织形式如下:

```
1
   main.c
 2
      int main()
 3
   RBT.h
       struct node // 定义红黑树节点类型
       struct RBT // 定义红黑树类型, 包含两个 node 指针 root 和 nil
 5
 6
       struct RBT create() // 创建一棵红黑树,并将其返回
       struct RBT LEFT_ROTATE(struct RBT T, struct node *x) // 对红黑树节点 x 做
 8
       struct RBT RIGHT_ROTATE(struct RBT T, struct node *x) // 对红黑树节点 x 做
   右旋
9
       struct RBT RB_INSERT_FIXUP(struct RBT T, struct node *z)
10
           // 红黑树插入新节点后, 沿节点 z 向上调整颜色
       struct RBT RB_INSERT(struct RBT T, struct node *z)
11
12
           // 向红黑树 T 插入新节点 z
13
       struct RBT insert(struct RBT T, int n)
           // 向红黑树插入关键字为 n 的新节点 (调用 RB_INSERT 实现)
14
15
       struct node *MINIMUM(struct RBT T, struct node *z)
          // 返回红黑树 T 中以 Z 为根节点子树中关键字最小的节点
16
17
       struct node *SUCCESSOR(struct RBT T, struct node *z)
18
           // 返回红黑树 T 中节点 Z 的后继节点
19
       struct RBT RB_DELETE_FIXUP(struct RBT T, struct node *x)
20
           // 红黑树删除节点后, 沿节点 x 向上调整颜色
21
       struct RBT RB_DELETE(struct RBT T, struct node *z)
22
           // 在红黑树 T 中删除节点 z
       struct node *find(struct RBT T, int n)
23
24
           // 返回红黑树 T 中关键字为 n 的节点指针, 若没有, 则返回 T.nil
25
       struct RBT delete(struct RBT T, int n)
          // 在红黑树 T 中删除关键字为 n 的节点
26
27
   walk.h
28
       void print_color(struct node *x, FILE *f)
29
           // 将节点 x 的颜色写入文件 f
```

```
void inorder_tree_walk(struct RBT T, struct node *x, FILE *f)

// 对红黑树 T 的以 x 为根节点子树做中序遍历,遍历结果写入文件 f

rand_num_generate.h

int *rand_num_generate(int n, int m)

// 生成 n 个互不相同的正整数,范围在 1 - m
```

几点注意

- main 函数制作了一个小型菜单,通过读入用户输入执行相应操作。用户输入 1 执行生成随机数;输入 2 执行插入删除操作;输入 0 退出程序;输入其他数则程序提示用户应该输入正确范围内的数字。
- 为了方便对红黑树做操作,在实验中定义了红黑树的节点类型 node 和红黑树类型 RBT ,而对红黑树 struct RBT T 的引用,是通过 T.root 和 T.nil 两个 node 指针类型实现。
- 红黑树节点颜色 color 定义为 int 类型, 1 代表当前节点为黑色, 0 代表红色
- 在中序遍历时, 为方便检查, 连同节点颜色、 size 一并输出。

实验二 区间树

src 文件夹中文件和函数的组织形式如下:

```
main.c
 2
       int main()
 3
   interval_tree.h
       int three_num_max(int a, int b, int c) //返回 a, b, c 三数中最大值
4
 5
       struct node // 区间树节点类型
       struct IT // 区间树类型,包含两个 node 指针 root 和 nil
 6
 7
       struct IT create() // 创建一棵区间树, 并将其返回
 8
       struct IT LEFT_ROTATE(struct IT T, struct node *x) // 对区间树节点 x 做左
9
       struct IT RIGHT_ROTATE(struct IT T, struct node *x) // 对区间树节点 x 做右
10
       struct IT IT_INSERT_FIXUP(struct IT T, struct node *z)
          // 区间树插入新节点后, 沿节点 z 向上调整颜色
11
       struct IT IT_INSERT(struct IT T, struct node *z)
12
           // 向区间树 T 插入新节点 Z
13
14
       struct IT insert(struct IT T, int n1, int n2)
           // 向区间树插入区间 [n1, n2] 的新节点 (调用 IT_INSERT 实现)
15
       struct node *MINIMUM(struct IT T, struct node *z)
16
           // 返回区间树 T 中以 Z 为根节点子树中关键字最小的节点
17
       struct node *SUCCESSOR(struct IT T, struct node *z)
18
19
           // 返回区间树 T 中节点 z 的后继节点
20
       struct IT IT_DELETE_FIXUP(struct IT T, struct node *x)
21
           // 区间树删除节点后, 沿节点 x 向上调整颜色
       struct IT IT_DELETE(struct IT T, struct node *z)
22
23
           // 在区间树 T 中删除节点 z
       struct node *find(struct IT T, int n1, int n2)
24
25
           // 返回区间树 T 中区间为 [n1, n2] 的节点指针, 若没有, 则返回 T.ni]
26
       struct IT delete(struct IT T, int n1, int n2)
27
           // 在区间树 T 中删除区间为 [n1, n2] 的节点
       int overlap_or_not(struct node *x, int n1, int n2)
28
           // 判断 x 区间是否和 [n1, n2] 重叠, 有重叠返回 1, 否则返回 0
29
30
       struct node *IT_search(struct IT T, int n1, int n2)
31
           // 返回与区间 [n1, n2] 有重叠的区间, 若不存在, 返回 T.nil
32
       void search(struct IT T, int n1, int n2, FILE *f)
           // 将与区间 [n1, n2] 有重叠的区间写入文件 f, 若不存在, 写入 NULL
33
34
   walk.h
```

```
void inorder_tree_walk(struct IT T, struct node *x, FILE *f)
35
          // 对区间树 T 的以 X 为根节点子树做中序遍历,遍历结果写入文件 f
36
37
   rand_int_generate.h
38
       int *rand_index_generate(int range, int n)
39
          // 从 [0, range-1] 中不重复生成 n 个整数
40
       int *rand_intnum_generate(int n)
41
          // 从实验要求中给定的区间范围内随机生成左端点不重复的 n 个区间
42
       void rand_int_generate(FILE *f)
          // 从实验要求中给定的区间范围内随机生成左端点不重复的 30 个区间, 写入文件 f (
43
    调用rand_intnum_generate)
       void rand_int_for_search_generate(int *data_search_low, int
44
   *data_search_high)
          // 生成三个区间, 存储在 data_search_low, data_search_high 中
45
          // 第一个区间位于 (25, 30) (i.e. [26, 29]) 中
46
          // 第二个区间位于 [0, 25] 中
47
          // 第三个区间位于 [30, 50] 中
48
```

几点注意

- 为了方便对区间树做操作,在实验中定义了区间树的节点类型 node 和区间树类型 IT ,而对 区间树 struct IT T 的引用,是通过 T.root 和 T.nil 两个 node 指针类型实现。
- 区间树节点关键字为区间左端点 low; 颜色 color 定义为 int 类型, 1 代表当前节点为黑色, 0 代表红色; max 为以该节点为根的子树中最大的右端点的值。

实验结果和分析

实验一 红黑树

实验截图

红黑树插入操作运行时间 time1.txt 和删除操作运行时间 time2.txt 文件结果截图如下:

实验结果分析

先分析插入操作,对实验运行时间做图 (time1 - n 图):

初看图像,可能会觉得 time1-n 是线性关系(理论复杂度为 $\mathcal{O}(n\log(n))$,因为一次插入操作复杂度为 $\mathcal{O}(\log m)$,m 为红黑树中节点个数,一共插入 n 个节点,复杂度为 $\mathcal{O}(n\log(n))$),但我们仍需做进一步分析。我们可以绘制 $time1/n\log(n)-n$ 图,如下所示:

可以看出,随着 n 的增大, time1/nlog(n) 趋于平缓,且收敛的速度很快,故我们可以判断插入操作的复杂度为 $\mathcal{O}(n\log(n))$,即插入一个节点操作的复杂度为 $\mathcal{O}(\log(n))$,这与理论复杂度是相吻合的。

再看删除操作,同样对实验运行时间做图 (time2 - n 图):

而删除操作的理论复杂度为 $\mathcal{O}(\log(n))$ (删除一个节点理论复杂度为 $\mathcal{O}\log(m)$,m 为红黑树当前节点个数,实验中共删除 n/4 个节点,理论复杂度为 $\mathcal{O}(n\log(n))$ 。绘制 $time2/n\log(n)$ - n 图,如下所示:

实验开始阶段,数据量较小,随着数据量 n 增大,可以看到 time2/n $\log(n)$ 趋于平缓,这就验证了理论复杂度 $\mathcal{O}(n\log(n))$ 是正确的,即删除一个节点的复杂度为 $\mathcal{O}(\log(n))$ 。

实验二 区间树

实验截图

实验结果均已输出到 output 文件夹中对应文件,这里仅对查找操作做展示:

a search.txt ×		
1	Three intervals to search:	
2	26 27	
3	6 7	
4	36 42	
5		
6	NULL	
7	4 15	
8	37 47	

可以看到程序能够正确运行给出相应结果。

实验结果分析

通过添加节点的 max 值,我们很容易对区间重叠查找问题得到性能较好的算法,而复杂度不会产生量级上的增大。

实验总结

通过对实验一的运行时间作图,我们可以验证红黑树节点插入删除的时间复杂度是正确的。

我们在实验一中,通过红黑树的构造,能够得到平衡度较好的二叉检索树;而实验二中,通过添加 节点的 max 值,对区间查找问题我们得到了性能较好的算法。

我们在以后的学习中应该合理运用数据结构的扩张,对于特定问题,添加合适的属性,能够简化对问题的处理,同时不会增大原数据结构的复杂度。