Problem 1

Let V be a vector space and suppose $\{W_i\}$ is a family of subspaces of V.

(i) Show that $\bigcap_{i \in I} W_i$ is the largest subspace of V contained in every W_i .

Proof: We will show that (a) $\bigcap_{i \in I} W_i$ is a subspace of V, and (b) there is is no larger subspace of V contained within every W_i .

- (a) Let $v_i, v_j \in \bigcap_{i \in I} W_i$, $\alpha, \beta \in \mathbb{F}$. We want to show that $\alpha v_i + \beta v_j \in \bigcap_{i \in I} W_i$. Since $v_i \in \bigcap_{i \in I} W_i$, $v_i \in W_i$ for some W_i , and $v_j \in W_j$ for some W_j . Additionally, WLOG, $v_j \in W_i$, as both v_i and v_j are contained within their intersection. Therefore, $\alpha v_i + \beta v_i \in W_i$, so $\alpha v_i + \beta v_i \in \bigcap_{i \in I} W_i$.
- (b) Suppose there is a subspace U of V such that every W_i is contained in U, and $U \supset \bigcap_{i \in I} W_i$.
- (ii) Show that

$$\sum_{i \in I} W_i := \left\{ \sum_{i \in F} w_i \mid w_i \in W_i, \ F \subseteq I \text{ finite} \right\}$$

is the smallest subspace containing each W_i .

Problem 2

Let V be a vector space and suppose $S \subseteq V$ is any subset. Show that

$$span(S) = \bigcap \{W \mid S \subseteq W, \ W \subseteq V \text{ subspace}\}\$$

Deduce that span(S) is the smallest subspace of V containing S.

Proof: Let W be a subspace containing S. Since W is a subspace, every linear combination of every element of S is inside W, as every element of S is an element of S. Therefore, for *every* subspace S such that $S \subseteq W$, any linear combination of every element in S is also in S thus, S = S such that S = S is also in S thus, S = S such that S = S such that

From this, we can see that span(S) can be no smaller than any subspace containing S, meaning span(S) is the smallest subspace of V containing S.

Problem 3

Let V be a vector space with subspaces $W_i \subseteq V$ for i = 1, 2. If $W_1 \cup W_2 \subseteq V$ is a subspace, show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Problem 4

Let V be a vector space over \mathbb{F} and suppose $W \subseteq V$ is a subspace.

(i) Show that the quotient space $V/W = \{[v]_W \mid v \in V\}$ is a vector space with operations

$$[u]_W + [v]_W := [u + v]_W$$
$$\alpha[v]_W := [\alpha v]_W$$

(ii) Show that $\|\cdot\|$ is a norm on V. Show that

$$||[v]_W||_{V/} := \inf_{w \in W} ||v - w||$$

is a seminorm on V/W.

Problem 5

Show that the quantity

$$||f||_1 := \int_0^1 |f(t)| dt$$

defines a norm on C([0,1]) with $||f||_1 \le ||f||_u$. Are $||\cdot||_1$ and $||\cdot||_u$ equivalent norms?

Non-Negativity: Since $|f(t)| \ge 0$ for $t \in [0,1]$ by the definition of absolute value, it is the case that $\int_0^1 |f(t)| dt \ge 0$.

Positive Definite: Clearly, $\|0\|_1 = 0$. Additionally, since f is continuous, |f| is continuous, and since $|f(t)| \ge 0$ for $t \in [0, 1]$, it must be the case that $\int_0^1 |f(t)| dt = 0$ only when f = 0.

Absolute Homogeneity: Let $\alpha \in \mathbb{R}$

$$\|\alpha f\|_1 = \int_0^1 |\alpha f(t)| dt$$

$$= \int_0^1 |\alpha| |f(t)| dt$$

$$= |\alpha| \int_0^1 |f(t)| dt$$

$$= |\alpha| \|f\|_1$$

Triangle Inequality:

$$||f + g||_1 = \int_0^1 |f(t) + g(t)| dt$$

$$\leq \int_0^1 (|f(t)| + |g(t)|) dt$$

$$= \int_0^1 |f(t)| dt + \int_0^1 |g(t)| dt$$

$$= ||f||_1 + ||g||_1$$

Problem 6

Show that all the *p*-norms, $\|\cdot\|_p$ $(1 \le p \le \infty)$ on \mathbb{F}^n are equivalent. Also, show that if $1 \le p \le q \le \infty$, then $\ell_p \subseteq \ell_q$.

Problem 7

Let $\mathbb{M}_{m,n}(\mathbb{C})$ denote the linear space of all $m \times n$ matrices with coefficients from \mathbb{C} . For $a \in \mathbb{M}_{m,n}(\mathbb{C})$, set

$$||a||_{\text{op}} := \sup_{\xi \in \mathcal{B}^n_{\ell_2}} ||a\xi||_{\ell_2^m}.$$

Show that $\|\cdot\|_{\text{op}}$ is a norm on $\mathbb{M}_{m,n}(\mathbb{C})$. This is the operator norm.

Problem 9

Given any function $f:[0,1]\to\mathbb{C}$, we define

$$N(f) := \sup_{x \neq y, x, y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|}$$

and

$$||f||_{\Lambda} := |f(0)| + N(f).$$

Moreover, set

$$\Lambda[0,1] := \{ f : [0,1] \to \mathbb{C} \mid ||f||_{\Lambda} < \infty \}$$

(i) Show that $\Lambda[0,1]$ is precisely the set of Lipschitz continuous functions on [0,1].

Proof: Let $f \in \Lambda[0,1]$. Then, $||f||_{\Lambda} = c$ for some finite c. Then, for $x, y \in [0,1]$

$$\frac{|f(x) - f(y)|}{|x - y|} \le N(f)$$
$$\le ||f||_{\Lambda}$$
$$= c.$$

So,

$$|f(x) - f(y)| \le c|x - y|,$$

which defines a Lipschitz continuous function.

(ii) Verify that $\Lambda[0,1]$ is a vector space with norm $||f||_{\Lambda}$, which is the Lipschitz norm.

Proof of Vector Space: Let $f, g \in \Lambda[0, 1]$. Then, f and g are Lipschitz continuous. Let $\alpha \in \mathbb{C}$. Then,

$$|(\alpha f)(x) - (\alpha f)(y)| = |\alpha||f(x) - f(y)|$$

$$\leq |alpha|c|x - y|$$

$$= h|x - y|,$$

and

$$|(f+g)(x) - (f+g)(y)| = |f(x) - f(y) + g(x) - g(y)|$$

$$\leq |f(x) - f(y)| + |g(x) - g(y)|$$

$$\leq c|x - y| + d|x - y|$$

$$= \ell|x - y|,$$

meaning that $\Lambda[0,1]$ is closed under addition and scalar multiplication.

Proof of Norm:

Non-Negativity: Since, for any f, $|f(0)| \ge 0$, and $||f||_{\Lambda} \ge |f(0)|$, it must be the case that $||f||_{\Lambda} \ge 0$. **Positive Definiteness:**

$$||f||_{\Lambda} = 0$$

$$|f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|} = 0,$$

meaning that for $x, y \in [0, 1]$ and $x \neq y$

$$f(x) = f(y)$$

and

$$f(0) = 0$$

so $f = \mathbb{O}_f$. Additionally, if $f = \mathbb{O}_f$, then $||f||_{\Lambda} = 0$ since |f(0)| = 0 and f(x) = f(y) = 0 for all $x, y \in [0, 1]$.

Absolute Homogeneity: Let $\alpha \in \mathbb{C}$.

$$\|\alpha f\| = |\alpha f(0)| + N(\alpha f)$$

$$= |\alpha||f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|\alpha f(x) - \alpha f(y)|}{|x - y|}$$

$$= |\alpha| \left(|f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|} \right)$$

$$= |\alpha||f||_{\Lambda}$$

Triangle Inequality: Let $f, g \in \Lambda[0, 1]$. Then,

$$||f + g|| = |f(0) + g(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) + g(x) - (f(y) + g(y))|}{|x - y|}$$

$$\leq \left(|f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|}\right) + \left(|g(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|g(x) - g(y)|}{|x - y|}\right)$$

$$= ||f||_{\Lambda} + ||g||_{\Lambda}$$

Therefore, $\Lambda[0,1]$ is a normed vector space with $\|\cdot\|_{\Lambda}$ as the Lipschitz norm.

(iii) Show that $||f||_u \leq ||f||_{\Lambda}$ for every $f: [0,1] \to \mathbb{R}$.

Problem 10

Let p be a seminorm on a vector space V.

(i) Show that $N_p := \{ w \in V \mid p(w) = 0 \}$ is a subspace of V.

Proof: Let $v, w \in N_p$. Then, p(v) = 0 and p(w) = 0. Since p is a seminorm, for $\alpha, \beta \in \mathbb{F}$, we have:

$$p(\alpha v + \beta w) \le p(\alpha v) + p(\beta w)$$

$$= |\alpha|p(v) + |\beta|p(w)$$

$$= 0.$$

Since p is definitionally non-negative, $p(\alpha v + \beta w) = 0$. Therefore, N_p is a vector space.

(ii) We form the quotient vector space V/N_p . Show that

$$||[v]_{N_p}||_p := p(v)$$

defines a norm on V/N_p .

(iii) If $(E, \|\cdot\|)$ is a normed space and $T: V \to E$ is a linear map, show that $p(v) := \|T(v)\|$ is a seminorm on V. In this case, what is N_p .