Міністерство освіти і науки України

Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

3 лабораторної роботи №1

3 дисципліни: «Моделювання комп'ютерних систем»

На тему: «Інсталяція та ознайомлення з середовищем розробки Xilinx ISE. Ознайомлення зі стендом Elbert V2 – Spartan 3A FPGA»

Варіант 23

Виконав

студент групи КІ-201

Равчак В.А.

Прийняв:

Козак Н. Б.

Мета роботи:

Інсталювати та ознайомитися з середовищем розробки Xilinx ISE. Ознайомитися зі стендом Elbert V2 – Spartan 3A FPGA.

Етапи роботи:

- 1. Інсталяція Xilinx ISE та додавання ліцензії. Побудова дешифратора (згідно варіанту) за допомогою ISE WebPACKTM
- 2. Schematic Capture та моделювання його роботи за допомогою симулятора ISim.
- 3. Генерування Віт файала та тестування за допомогою стенда Elbert V2 Spartan 3A FPGA.

Варіант виконання роботи:

Таблиця вхідних та вихідних даних (варіант 23)

in_1	in_0	out_0	out_1	out_2	out_3	out_4	out_5
0	0	1	1	0	0	1	0
0	1	0	1	0	0	0	0
1	0	0	0	1	0	1	1
1	1	1	0	0	1	1	1

Мінімізація формул вихідних сигналів:

OUT_0

OUT_1

Map

Б В Ā 1 1

A 0 0

Map Layout

 \overline{B} B

 \overline{A} 0 1

A 2 3

Groups

y = A'

OUT_2

Map

 $\begin{array}{ccc} & \overline{B} & B \\ \overline{A} & 0 & 0 \end{array}$

A 1 0

Map Layout

 $\frac{\overline{B}}{A} \frac{B}{0} 1$

A 2 3

Groups

(2) A.B

y = AB'

OUT_3

Map

 $\begin{array}{ccc} \overline{B} & B \\ \overline{A} & 0 & 0 \\ A & 0 & 1 \end{array}$

Map Layout

 $\begin{array}{ccc} \overline{B} & B \\ \overline{A} & 0 & 1 \\ A & 2 & 3 \end{array}$

Groups

y = AB

OUT_4

Map

 $\begin{array}{cccc} & \overline{B} & B \\ \overline{A} & 1 & 0 \\ A & 1 & 1 \end{array}$

Map Layout

 $\begin{array}{ccc} \overline{B} & B \\ \overline{A} & 0 & 1 \\ A & 2 & 3 \end{array}$

Groups

(0,2) B (2,3) A

y = B' + A

OUT_5

Map

 $\begin{array}{ccc} \overline{B} & B \\ \overline{A} & 0 & 0 \\ A & 1 & 1 \end{array}$

Map Layout

 $\begin{array}{ccc} \overline{B} & B \\ \overline{A} & 0 & 1 \\ A & 2 & 3 \end{array}$

Groups

(2,3) A

y = A

Схема реалізована згідно варіанту:

Порівняння сигналів:

in_1	in_0	out_0	out_1	out_2	out_3	out_4	out_5
0	1	0	1	0	0	0	0

in_1	in_0	out_0	out_1	out_2	out_3	out_4	out_5
1	1	1	0	0	1	1	1

Висновок: в ході виконання даної лабораторної роботи я ознайомився з середовищем розробки Xilinx ISE. В ньому я розробив схему, згідно з таблицею істинності для мого варіанту. Я протестував усі можливі комбінації вхідних сигналів в ISim та порівняв вихідні сигнали з таблицею істиності.