STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor: 10. Elektrotechnika, elektronika a telekomunikace

Automatický skleník podruhé

Petr Štourač

Brno 2020

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

AUTOMATICKÝ SKLENÍK PODRUHÉ

AUTOMATIC GREENHOUSE SECOND TIME

AUTOR Petr Štourač

ŠKOLA Střední průmyslová škola a Vyšší

odborná škola Brno, Sokolská,

příspěvková organizace

KRAJ Jihomoravský

ŠKOLITEL Mgr. Miroslav Burda

OBOR 10. Elektrotechnika, elektronika

a telekomunikace

\mathbf{P}_{1}	<u> </u>	և 1	12	×~		1
\mathbf{r}	"()	rıı	Н	SE	! T I	1

Prohlašuji, že svou práci na téma *Automatický skleník podruhé* jsem vypracoval/a samostatně pod vedením Mgr. Miroslava Burdy a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Dále prohlašuji, že tištěná i elektronická verze práce SOČ jsou shodné a nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a změně některých zákonů (autorský zákon) v platném změní.

V Brně dne:	
	Petr Štourač

Poděkování

Děkuji svému školiteli Mgr. Miroslavu Burdovi za obětavou pomoc, podnětné připomínky a nekonečnou trpělivost, kterou mi během práce poskytoval.

Tato práce byla provedena za finanční podpory Jihomoravského kraje.

Anotace

Zahradničení je dnes naprosto běžnou zájmovou činností. Mnoho lidí mající takovou zálibu je ovšem velmi časově vytížených. Kromě práce se musí starat mnohdy i o rodinu a na péči o rostliny jim často jednoduše nezbývá čas. Jedním z těchto lidí je i můj táta, který mě inspiroval k vytvoření ProtoPlantu - systému pro snadnou a levnou automatizaci skleníku.

Cílem práce je vytvořit univerzální a dostupný systém pro automatizaci skleníku, který by usnadnil péči o rostliny časově vytíženým lidem.

Klíčová slova

automatizace skleníku, ESP32, internet of things, ProtoPlant

Annotation

TBD

Keywords

greenhouse automation, ESP32, internet of things, ProtoPlant

Obsah

Ú	vod			8
1	Zm	ěny op	roti minulému roku	9
2	Koı	nkuren	ce	11
3	Har	dware		12
	3.1	Tištěn	lé spoje	. 12
		3.1.1	PPMB32 - Základní deska	. 12
		3.1.2	PPSB - Deska se senzory teploty a vlhkosti	. 15
	3.2	Hardy	varové verze ProtoPlantu a jejich odlišnosti	. 15
	3.3	Krabie	ce pro řídící elektroniku a jejich interiér	. 15
		3.3.1	Instalace elektroniky do krabic - tzv. StoryMount	. 15
		3.3.2	Těsnění	. 15
		3.3.3	Ochrana elektroniky před vlhkostí	. 15
		3.3.4	Ochrana před přehřátím	. 15
4	Sof	tware z	základní desky	16
	4.1	Sdílen	é knihovny	. 16
	4.2	Datov	é sběrnice	. 17
	4.3	Komu	nikace mezi jednotlivými moduly	. 17
	4.4	Bezdr	átová komunikace	. 17
5	Sof	tware o	dalších modulů	18

6	Funkce ProtoPlantu, aneb "Co to všechno umí?"		
Za	ávěr	20	
	Literatura	21	
	Seznam obrázků	21	
	Seznam tabulek	22	
	Seznam rovnic	23	

$\mathbf{\acute{U}vod}$

Zahradničení je dnes naprosto běžnou zájmovou činností. Mnoho lidí majících takovou zálibu je ovšem velmi časově vytížených. Kromě práce se musí starat mnohdy i o rodinu a na péči o rostliny jim často jednoduše nezbývá čas. Jedním z těchto lidí je i můj táta, který mě inspiroval k vytvoření ProtoPlantu - systému pro snadnou a levnou automatizaci skleníku.

Tato práce navazuje na moji činnost z minulého ročníku SOČ. Cílem původní práce bylo vytvořit univerzální a dostupný systém pro automatizaci skleníku, který by usnadnil péči o rostliny časově vytíženým lidem. Tehdy jsem vytvořil systém schopný automaticky řídit ventilaci a závlahu ve skleníku, případně spínat topné těleso. Systém jsem později nazval Proto-Plant. Systém byl tehdy v rannější fázi vývoje a byl zde velký prostor pro jeho vylepšení v mnoha ohledech. V tomto roce jsem se zaměřil na zdokonalování stávajících funkcí a implementaci nových.

Změny oproti minulému roku

Na konci minulého roku byl ProtoPlant schopen automaticky regulovat teplotu otevíráním oken, případně spínáním topného tělesa, spínat čerpadla zavlažování, a sbírat data o vlhkosti a teplotě vzduchu. V tomto roce jsem se zaměřil primárně na přidávání funkcí dalších, sekundárně pak na vylepšování těch stávajících. Největšími změnami jsou:

- nádstavba softwaru pro implementaci vzdáleného ovládání a sledování
- kompletní přepsání softwaru do systému knihoven
- výroba a použití vlastních tištěných spojů
- implementace frameworku pro měření vlhkosti půdy na jednotlivých místech
- implementace podpory senzorů BME280 od Bosch sensortec

Dále jsem s pomocí testovací jednotky instalované ve zkušebním skleníku provedl dlouhodobý test, zaměřený na testování konzistence hodnot naměřených senzory a na spolehlivost ProtoPlantu jako celku. Výsledky byly uspokojující, až na několik poznatků, které jsem využil pro další vylepšování tohoto systému. Mezi tyto poznatky patří:

 fluktuace dat čtených ze senzorů DHT11 - v průběhu testu jsem tyto senzory nahradil přesnějšími DHT22 problém s operační pamětí - vyřešen implementací automatického restartu pro vyčištění mezipaměti po týdnu běhu

Další, spíše formální změnou je úprava licence. Nově je celý ProtoPlant kompletně open-source, včetně HW specifikací.

V průběhu tohoto roku jsem navrhnul několik DPS pro ProtoPlant. Jejich schémata vč. rozložení jsou dostupná na mém GitHubu v repozizáři ProtoPlant-HW.

Konkurence

Hardware

V této kapitole se zaměřím na detailní popis hardwaru ProtoPlantu.

3.1 Tištěné spoje

Všechny prototypy základních desek ProtoPlantu byly založeny na univerzálních tištěných spojích. Vzhledem k tomu, že jsem po stránce vzhledu i funkčnosti nebyl s takovýmto provedením spokojen, rozhodl jsem se nechat vyrobit vlastní tištěné spoje pro základní desku i senzorové moduly. Díky tomuto jsem se naučil návrhu tištěných spojů a tvorbě výrobních podkladů v programu Autodesk EAGLE.

3.1.1 PPMB32 - Základní deska

Základní deska je rozdělena do několika částí. Vzhledem k tomu, že umím pájet velmi dobře, rozhodl jsem se pro ruční osazení všech součástek, které byly doposud osazeny pouze na různých modulech připojených k základní desce, včetně procesoru ESP32-WROOM32D. Z důvodu přehlednosti jsem desku rozdělil do několika částí:

- Control (ESP32-WROOM32D a programátor)
- H-power (napájecí obvod a H-můstky)

- SIN (SensorIN piny pro připojení senzorů)
- POUT (PowerOUT výstup pro napájení dalších periferií)
- PanCon (PanelConnect piny pro připojení tlačítek a displaye na ovládacím panelu)

Samotná základní deska má dvě verze. Jejich rozdíly jsou vysvětleny níže. Obě verze desky jsou kromě sekce Control osazeny stejným hardwarem, tedy:

- 2x H-můstek VNH2SP30
- regulátory napětí 7805CV-DG od STMicroelectronics
- pinheady pro připojení senzorů, ovládacího panelu a dalších periferií
- svorkovnicemi pro připojení napájecích kabelů a silových výstupů

PPMB32-E Vzhledem k tomu, že je ProtoPlant veřejně dostupný, nebyl jsem si jist, zda by kompletní osazení takto velké desky zvládl i laik. Napadlo mě proto vytvořit i druhou desku, na které by byly osazeny dutinkové lišty pro vsazení vývojové ESP32 DevKitC. Odpadla by tedy nutnost kompletně osazovat sekci Control. Tuto verzi jsem nazval PPMB32-E (označení E od anglického slova Easy - jednoduchý).

PPMB32-F Kompletní, samostatná deska. Je přímo osazena procesorem ESP32-WROOM32D i programátorem. Vzhledem k nepoužití DevKitu C je má deska nižší profil, tudíž je možné ji umístit i do nižších prostor. Integrovaný programátor lze s pomocí jumperů odpojit a přes programovací piny připojit externí.

Sekce Control Jak již bylo zmíněno, tato část desky zahrnuje modul procesoru ESP32-WROOM32D a programovací obvod. Ten se skládá z převodníku USB-UART CP2102N, tranzistorů SS8050-G (sloužících pro reset procesoru), indikačních LED diod a mikro USB konektoru. Nachází se zde i jumper pro přepínání mezi externím programátorem a programátorem přímo na desce.

Sekce H-power V této části desky se nacházejí H-můstky VNH2SP30 společně s regulátory napětí 7805CV-DG (výstup 5VDC) a LM3940IT-3.3 (výstup 3,3VDC). Na verzi PPMB32-F je dále osazen AMS1117-3.3 pro napájení procesoru.

V dolní části desky se poté nacházejí dva integrované obvody VNH2SP30, z nichž jedno (VNH1) je určeno pro ovládání aktuátorů manipulujících s okny. VNH2 má několik režimů funkce, podle připojeného výstupu:

- disabled (výstupy jsou deaktivovány)
- pump (VNH je použito pro spínání čerpadla, případně stykače řídícího čerpadlo)
- heating (VNH je použito pro řízení topné spirály)

Napájení desky je rozděleno do tří okruhů. Okruh A z kterého je napájena řídící elektronika je dále rozdělen na dva subokruhy A1 a A2 s odlišným napětím (3,3 VDC a 5 VDC). Rozsah vstupního napětí pro tento okruh je 7,5 VDC až 18 VDC. Zbývající 2 okruhy jsou použity pro oddělené napájení jednotlivých výstupů. Jejich napájecí rozsahy jsou rozepsány v tabulce níže.

Parametr	Min.	Max.	Jednotka
Vstupní napětí	5,5	16	V
Výstupní napětí	-	16	V
Výstupní proud	-	30	A
Maximální kontinuální proud	-	14	A

Tabulka 3.1: Tabulka napájecích rozsahů napájecích větví VNH1 a VNH2

Sekce SIN Sekce s piny pro připojení jednotlivých senzorů. S výjimkou ochranných rezistorů je složena pouze z pinheadů. Jednotlivé piny jsou pro lepší přehlednost označeny přímo na desce a podrobněji popsány v jejím datasheetu.

Sekce POUT Piny pro připojení napájení dalších periferií, modulů, či senzorů. Je připojena k napájecímu okruhu A. Piny jsou rozděleny na části připojené k subokruhům A1 a A2 s napětím 3,3 a 5 VDC.

Sekce PanCon Dvanácti-pinový konektor PanCon slouží pro připojení kabelu od hlavního řídícího panelu. Samotný konektor má dva zemnící vývody, dva napájecí (1 x 5 V a 1 x 3,3 V), dva vývody sběrnice I²C a 6 vývodů pro připojení tlačítek a přepínačů. Přesnější zapojení je opět k dispozici v datasheetech jednotlivých desek.

3.1.2 PPSB - Deska se senzory teploty a vlhkosti

Deska osazená senzory pro měření vzdušné teploty (DS18B20) a vlhkosti (BME280).

DS18B20

- 3.2 Hardwarové verze ProtoPlantu a jejich odlišnosti
- 3.3 Krabice pro řídící elektroniku a jejich interiér
- 3.3.1 Instalace elektroniky do krabic tzv. StoryMount
- 3.3.2 Těsnění
- 3.3.3 Ochrana elektroniky před vlhkostí
- 3.3.4 Ochrana před přehřátím

Software základní desky

Tato kapitola se zaměřuje na software základní desky ProtoPlantu a detailně popisuje jeho funkci. Na software ostatních modulů se zaměřuje následující kapitola 5.

Blokové schéma funkce softwaru základní desky Schéma funkce softwaru základní desky je shrnuto blokovým diagramem XXX

4.1 Sdílené knihovny

Z důvodu usnadnění programování základní desky i ostatních rozšiřujících modulů jsem vytvořil několik sdílených knihoven. V nich je zahrnuto:

- konfigurace systému
- nastavení jednotlivých pinů dle standartního rozložení, vč. možnosti nastavení vlastního
- práce s displayem
- práce s tlačítky
- řízení H-můstků
- ovládání senzorů

Díky těmto knihovnám je většina zdrojového kódu uložena v nich. Koncový uživatel, který se rozhodne software modifikovat, poté pouze v hlavním programu definuje, které moduly spustit a do konfiguračního souboru zapíše nastavení daných modulů.

Konfigurace softwaru

4.2 Datové sběrnice

ProtoPlant primárně využívá dvě datové sběrnice:

- I^2C
- OneWire

Sběrnice I²C

Sběrnice OneWire 2

4.3 Komunikace mezi jednotlivými moduly

4.4 Bezdrátová komunikace

Software dalších modulů

Funkce ProtoPlantu, aneb "Co to všechno umí?"

Závěr

Seznam obrázků

Seznam tabulek

3.1~ Tabulka napájecích rozsahů napájecích větví VNH1 a VNH2 $\,$. $\,$ $\,$ $\,$ $\,$ 14

Seznam rovnic