

Prof. Robinson Alves

O que veremos?

- Conceitos
- Inserção
- Remoção
- Balanceamento
- Código Java de AVL

- As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações básicas (inserção, remoção e busca)
- Árvores binárias de pesquisa degeneradas tornam as operações básicas lentas O(n)

- Árvore binária completamente balanceada
 - Ocorre quando a árvore está cheia ou quase cheia com o nível n-1 completo

 Uma árvore binária completa leva um tempo na ordem de O(log n) para operações de inserção, remoção e pesquisa. O que é, sem dúvida, muito bom

- Árvore binária completamente balanceada
 - Após uma inserção ou remoção a árvore pode deixar de ser completa. A solução seria aplicar um algoritmo que tornasse a árvore novamente completa, porém o custo para realizar está operação seria de O(n)

- Árvore binária completamente balanceada
 - Percebe-se que todos os nós tiveram sua posição na estrutura alterados
 - Na maioria dos casos, utiliza-se árvores quase balanceadas

Critérios para definir balanceamento

- Vários são os critérios (métodos) para definir balanceamento. Alguns são:
 - Restrições imposta na diferença das alturas das subárvores de cada nó. Ex. AVL
 - Todos os nós folhas no mesmo nível

- Foram introduzidas por Adel`son-Vel´skii e landis em 1962
- São baseadas em árvore binárias de pesquisa
- A medida em que as operações de inserção e remoção são efetuadas a árvore é balanceada

Definição:

– Uma árvore binária T é dita AVL quando, para qualquer nó v de T, a diferença entre a altura das subárvores esquerda h_e(v) e direita h_d(v) é no máximo em módulo igual a 1.

OBS.: se uma árvore T é dita AVL, então todas as suas subárvores também são AVL

- Balanceamento de um nó
 - O fator de balanceamento:
 - É dado pela altura da subárvores da esquerda $h_e(v)$ menos a altura da subárvore da direita $h_d(v)$.

$$FB(v)=h_{e}(v)-h_{d}(v)$$

- Nós balanceados
 - São aqueles onde os valores de FB são -1, 0 ou 1
 - FB(v):
 - +1: subárvore esquerda mais alta que a direita
 - 0: subárvore esquerda igual a direita
 - -1: subárvore direita mais alta do que a esquerda

- Nós desregulados ou desbalanceados
 - São aqueles onde os valores de FB são diferentes de -1, 0 ou 1
 - FB(v):
 - >1: subárvore esquerda está desbalanceando o nó v
 - <-1: subárvore direita está desbalanceando o nó v

Exemplos

- Dizer se a árvore é AVL
- Verificar quais as possíveis posições para a inserção de elementos e em quais posições de inserção, a árvore é AVL

Exercício2

- Colocar o balanceamento de cada nó
- Dizer se a árvore é AVL
- Verificar quais as possíveis posições para a inserção de elementos e em quais posições de inserção, a árvore é AVL

 Verificando a ocorrência do desbalanceamento de um nó

- Verificando a ocorrência do desbalanceamento de um nó
 - –Quando Ocorre?
 - Se um nó tem FB(v)=0 e é feita uma inserção no lado direito, o FB=-1, ou seja, subtrai uma unidade (na remoção é invertido)

- Verificando a ocorrência do desbalanceamento de um nó
 - -Quando Ocorre?
 - Se um nó tem FB(v)=0 e é feita uma inserção no lado esquerdo, o FB=1, ou seja, soma uma unidade(na remoção é invertido)

Resumo

	ArvEsq	ArvDir
Inserção	+1	-1
Remoção	-1	+1

Atualização do FB dos antecessores

	ArvEsq	ArvDir	Critério(atualiza FB antecessor e aplica regra abaixo)
Inserção	+1	-1	Se FB(Vantecessor)==0 pare
Remoção	-1	+1	Se FB(Vantecessor)!=0 pare

- Rebalanceando nós desregulados
 - Quando uma inserção ou remoção realizada em um nó altera o balanceamento da árvore, é necessário efetuar uma transformação na árvore, tal que:
 - O percurso em ordem fique inalterado em relação a árvore desbalanceada. Isto é, a árvore continua a ser uma árvore binária de pesquisa
 - A árvore transformada saiu de um estado de desbalanceamento para um estado de balanceamento

- Rotações
 - Operação que altera o balanceamento de uma árvore T, mantendo a seqüência de percurso em-ordem

- Rotações
 - Tipos de rotações
 - Esquerda Simples
 - Direita Simples
 - Esquerda Dupla
 - Direita Dupla

Rotação Esquerda Simples (RES)

Percurso em ordem: 6, 8 e 9

Percurso em ordem: 6, 8 e 9

Após a rotação a esquerda a árvore ficou balanceada e o percurso em-ordem permanece o mesmo

 Exemplo Rotação Esquerda Simples

- Passos para efetuar a RES
 - Guarde a subárvore direita

Passos para efetuar a RES

 Troque a subárvore guardada pela subárvore esquerda da árvore

guardada

- Passos para efetuar a RES
 - Ponha na subárvore esquerda da subárvore guardada a árvore restante
 - verifique o balanceamento

- Rotação Simples a Direita(RSD)
 - A rotação a direita simples é simétrica a rotação esquerda simples
 - Os quatro passos realizados na rotação esquerda simples se aplicam da mesma forma à rotação direita simples

- Rotação Simples a Direita(RSD)
 - -Exemplo

- Rotação Dupla a Esquerda(RDE)
 - -Passos:
 - Efetua-se uma rotação simples direita na subárvore direita do nó desbalanceado
 - Realiza-se uma rotação simples esquerda no nó desbalanceado

- Rotação Dupla a Esquerda(RDE)
 - -Exemplo:

- Rotação Dupla a Direita(RDD)
 - -É simétrica a rotação esquerda dupla
 - Efetuar uma rotação simples esquerda na subárvore esquerda do nó desbalanceado
 - Realizar uma rotação simples direita no nó desregulado

- Rotação Dupla a Direita(RDD)
 - -Exemplo:

- Quando fazer Rotações
 - Quando uma árvore ou subárvore tem um fator de balanceamento FB=2, deve-se fazer uma rotação a direita

- Quando fazer Rotações
 - Quando uma árvore ou subárvore tem um fator de balanceamento FB=-2, deve-se fazer uma rotação a esquerda

- Quando fazer Rotações
 - –Quando uma árvore ou subárvore tem um fator de balanceamento FB=2 e sua subárvore esquerda tem um FB>=0, faz-se uma rotação direita simples. Caso o FB<0 na subárvore esquerda do nó desregulado uma rotação dupla direita é necessária.

• EX.:

- Quando fazer Rotações
 - –Quando uma árvore ou subárvore tem um fator de balanceamento FB=-2 e sua subárvore direita tem um FB<=0, faz-se uma rotação esquerda simples. Caso o FB>0 na subárvore direita do nó desbalanceado uma rotação dupla esquerda é necessária.

- Atualizando FB após rotações
 - Após alguma rotação os fatores de balanceamento dos nós A e B sofrem alterações.

- Atualizando FB após rotações
 - Rotação Esquerda

```
FB_B_novo= FB_B + 1 - min(FB_A, 0);
FB_A_novo= FB_A + 1 + max(FB_B_novo, 0);
```


- Atualizando FB após rotações
 - Rotação Direita

```
FB_B_novo= FB_B - 1 - max(FB_A, 0);
FB_A_novo= FB_A - 1 + min(FB_B_novo, 0);
```

- -Referência:
 - Balance factor changes after local rotations in AVL tree
 - https://cs.stackexchange.com/questions/ 48861/balance-factor-changes-afterlocal-rotations-in-ayl-tree

- Inserção de elementos
 - Procedimentos: percorrer a árvore até o ponto de inserção (usando a operação de busca)
 - Inserir o novo elemento
 - Balancear a árvore (quando necessário fazer rotações)

- Exemplo
 - –Inserir na árvore AVL abaixo os seguintes elementos: 3,33,11 e 9

- Exemplo
 - –Inserir na árvore AVL inicialmente vazia os seguintes elementos: 10,20,30,40,50,25,60,70,80 e 90

- Exemplo
 - –Inserir na árvore AVL inicialmente vazia os seguintes elementos: 10,20,30,40,50,25,60,70,80 e 90

- Remoção de Elementos
 - -Procedimentos
 - Percorrer a árvore até o nó a ser removido (usando a operação de busca)
 - Retirar o elemento (igual a árvore binária de pesquisa)
 - Balancear a árvore (quando necessário fazer rotação)

• Exemplo: remover 22,31,12,7 e 20

Ex2: remover:
 40,25,50,10,35,30,20,70 e 60

Dúvidas

