FORMULÁRIO - SÉRIES

- Critério de Divergência: Se $\lim_{n\to\infty} a_n \neq 0$ então $\sum_{n=1}^{\infty} a_n$ é divergente.
- 1º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Suponhamos que, a partir de certa ordem, $a_n \leq b_n$. Tem-se:
 - \rightarrow Se $\sum_{n=1}^{\infty} b_n$ converge então $\sum_{n=1}^{\infty} a_n$ também é convergente e $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$.
 - \rightarrow Se $\sum_{n=1}^{\infty} a_n$ diverge então $\sum_{n=1}^{\infty} b_n$ também é divergente.
- 2º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Se a partir de certa ordem, $b_n > 0$ e $\lim_{n \to +\infty} \frac{a_n}{b_n} = L \in \mathbb{R}^+$, então, se $L \neq 0, +\infty$ as séries são da mesma natureza.
- Critério da Razão: Seja $\sum_{n=1}^{\infty} u_n$ uma série de termos não nulos e suponha-se que

$$\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$$

- Se $\rho < 1$, a série é convergente.
- Se $\rho > 1$, a série é divergente.
- Se $\rho = 1$, o critério é inconclusivo.
- Critério da Razão ou de D'Alembert para convergência absoluta Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não nulos e suponha-se que

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$

- Se $\rho < 1$, a série é absolutamente convergente.
- Se $\rho>1,$ a série é divergente.
- Se $\rho = 1$, o critério é inconclusivo.
- \bullet Desenvolvimento de uma função em série de Taylor em torno de x = a

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

• Fórmula de Taylor com Resto

$$f(x) = P_n(x) + R_n(x)$$

Sendo

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

е

$$\lim_{n \to \infty} R_n(x) = 0$$