

NOOOOO!!!!! YOU CANT BOIL WATER WITHOUT A NORMAL FUEL SOURCE!!! YOURE DESTROYING THE NATURAL ORDER!!!! YOU NEED MY COAL FIRED STOVERINO NOOOOOO

haha solar cooker go brrrr

Team 3-06: Jacob Smilg and Daniel Park

Question

Design - What is the ideal pot material and smallest mirror diameter for a parabolic solar cooker to raise the temperature of two liters of water from 20°C to boiling in 5 minutes?

- Specifically useful for people who live in areas without access to traditional fuels
- Could give indications of how to optimize existing designs without access to physical tools

Model

Parameters:

- Himalayas, solar noon, Jan 1, high wind
- Difficult but realistic conditions
- Copper, Aluminum, and 304 Stainless Steel Pot

$$\frac{dQ}{dt} = elA \ (\underline{\textit{flow of radiation from sun to the mirrors/pot}})$$

$$\frac{dQ}{dt} = \frac{kA}{d\Delta T}$$
 (flow of conduction from pot to the water)

$$\frac{dQ}{dt} = hA(T_{air} - T_{pot})$$
 (flow of convection from pot to the air)

Results

- Aluminum is the best material for our application (highest conductivity!)
- Mirror diameter of 1 meter is sufficient to boil water in < 5 minutes

Interpretation

- Our results directly answer our question: an aluminum pot can boil water in 5 minutes with a 1 meter diameter mirror
- A good solution to our problem, but very location specific
- Possible limitations to take in account other independent variables
 - Location
 - Time of year
 - Time of day
- Accounting for more parameters would make our information about specific boiling times and diameters more accurate.

Resources

Miro Board Link: https://miro.com/app/board/o9Jkg0-7nE=/

Copper and Aluminum Properties: https://www.periodic-table.org

304 Stainless Steel properties: https://www.aksteel.com/sites/default/files/2018-01/304304L201706 1.pdf

Intro to Thermal Packet: https://olin.instructure.com/courses/138/files/10240/

Solar Insulation Calculator: https://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation

Mount Everest Temperature Data:

https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/mount-everest_nepal_1283416

Water Boiling Point vs. Altitude: https://www.engineeringtoolbox.com/boiling-points-water-altitude-d 1344.html