1 Bounding maxima

Theorem 1.1 (Kolmogorov's Maximal Inequality). $(X_i)_{i=1}^n$ independent, $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 < \infty$. $S_m = \sum_{i=1}^m X_i$. $S_n^+ = \max_{1 \le m \le n} |S_m|$ Then $P(S_n^+ \ge x) \le \frac{\mathbb{E}S_n^2}{x^2}$, x > 0.

The proof uses a general trick related to martingales of considering stopping times.

Proof. Fix x. Event $\{S_n^+ \ge x\} = \bigcup_{k=1}^n A_k$ where $A_k = \{|S_k| \ge x, |S_i| < x, \text{ all } 1 \le i \le k\}$. Note (S_k, A_k) independent of $S_n - S_k$.

Notice $S_n = S_k + (S_n - S_k)$ so we can write

$$\mathbb{E}S_n^2 \ge \sum_{k=1}^n \mathbb{E}[S_n 1_{A_k}] \tag{1.1}$$

$$=\sum_{k=1}^{n}\left(\mathbb{E}(S_k^2 1_{A_k}) + 2\mathbb{E}(\underbrace{S_k 1_{A_k}(S_n - S_k)}_{\mathbb{E}(S_n - S_k) = 0}) + \underbrace{\mathbb{E}((S_n - S_k)^2 1_{A_k}}_{\geq 0}\right)$$
(1.2)

$$\geq \sum_{k=1}^{n} \mathbb{E}(S_k^2 \mathbf{1}_{A_k}) \tag{1.3}$$

$$\geq \sum_{k=1}^{n} \mathbb{E}(x^2 1_{A_k}) \tag{1.4}$$

$$= x^2 P(\bigcup_{k=1}^n A_k) (1.5)$$

$$= x^2 P(|S_n^+| \ge x) \tag{1.6}$$

where we have used independence of $S_k 1_{A_k}$ and $(S_n - S_k)$ in $\ref{eq:special}$, and $|S_k| \ge x$ on A_k in $\ref{eq:special}$??.

2 Almost sure convergence

" $\sum_{i=1}^{\infty} x_i$ converges" means $\lim_{n\to\infty} \sum_{i=1}^{n} x_i$ exists and is finite. This is equivalent to the Cauchy criterion:

$$\sup_{n \ge K} \left| \sum_{i=K+1}^{n} x_i \right| \to 0 \text{ as } K \to \infty$$
 (2.1)

Thus, $\sum_{i=1}^{\infty} X_i$ converges a.s. means

$$P(\omega: \lim_{N \to \infty} \sum_{i=1}^{N} X_i(\omega) \text{ exists, finite}) = 1$$
 (2.2)

Theorem 2.1. (X_i) independent, $\mathbb{E}X_i = 0$, $\sigma_i^2 = Var|X_i| < \infty$. If $\sum_{i=1}^{\infty} \sigma_i^2 < \infty$, then $\sum_{i=1}^{\infty} X_i$ converges a.s.

Comment:

$$\operatorname{Var}(\sum_{i}^{n} X_{i}) = \sum_{i=1}^{n} \sigma_{i}^{2}$$
(2.3)

$$\operatorname{Var} \sum_{i=1}^{\infty} = \sum_{i=1}^{\infty} \sigma_i^2 \le \infty(*)$$
 (2.4)

$$\implies \sum_{i=1}^{\infty} X_i \text{ is finite a.s.}$$
 (2.5)

Exercise: Given theorem, show (*)

Proof. Define $M_k = \sup_{n \ge k} \left| \sum_{i=k+1}^n X_i \right|$. By Cauchy criterion, suffices to show $M_k \stackrel{\text{a.s.}}{\to} 0$ as $k \to \infty$.

$$P\left(\sup_{k < n \le N} \left| \sum_{i=k+1}^{n} X_i \right| \ge \epsilon \right) \le \epsilon^{-2} \operatorname{Var}\left(\sum_{i=k+1}^{N} X_i\right)$$
 (2.6)

$$= \epsilon^{-2} \sum_{i=k+1}^{N} \operatorname{Var}(X_i)$$
 (2.7)

(2.8)

As $N \to \infty$

$$P(M_k > \epsilon) \le \epsilon^{-2} \sum_{i=1}^{\infty} \sigma_i^2$$
 (2.9)

$$P(w_k > \epsilon) \le P(M_k > \epsilon/2) \le 4\epsilon^{-2} \sum_{i=1}^{\infty} \sigma_i^2$$
 (2.10)

where $w_k = \sup_{n_1 > n_1 > k} \left| \sum_{i=n_1+1}^{n_2} X_i \right|$. Note $M_k \le w_k \le 2M_k$ and $w_k \downarrow$ as $k \uparrow$. As $k \to \infty$, $w_k \downarrow_{\text{a.s.}} w_\infty$

$$P(w_{\infty} > \epsilon) = 0 \tag{2.11}$$

$$\implies w_{\infty} \stackrel{\text{a.s.}}{=} 0$$
 (2.12)

$$\implies w_k \downarrow_{\text{a.s.}} 0$$
 (2.13)

$$\implies M_k \stackrel{\text{a.s.}}{\to} 0 \tag{2.14}$$

Lemma 2.2 (Kronecker). $(x_n) \in \mathbb{R}^{\omega}$. $S_n = \sum_{i=1}^n x_i$. $0 < a_n \uparrow \infty$ as $n \uparrow \infty$. If $\sum_i \frac{x_i}{a_i}$ converges, then $\frac{s_n}{a_n} \to 0$.

Proof. Exercise.

Corollary 2.3. (X_i) independent, $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 < \infty$. If $0 < a_n \uparrow \infty$ as $n \uparrow \infty$ and if $\sum_n \frac{\mathbb{E}X_n^2}{a_n^2} < \infty$, then $\frac{S_n}{a_n} \to 0$ a.s..

Proof. Previous theorem implies $\sum_{n} \frac{X_n}{a_n}$ converges a.s.. Lemma implies $\frac{S_n}{a_n} \stackrel{\text{a.s.}}{\to} 0$.

Specialization: Suppose also $\mathbb{E}X_n^2 \sim cn^{2\alpha}$, $\alpha > 0$. Take $a_n^2 = n^{1+2\alpha+\epsilon}$ ($\epsilon > 0$ small). Then corrolary implies $\frac{S_n}{n^{1/2+\alpha+\epsilon}} \stackrel{\text{a.s.}}{\to} 0$ TODO: Check the 1/2.

Specialization: Suppose $\sup_n \mathbb{E} X_n^2 < \infty$. Take $a_n^2 = n(\log n)^{1+2\epsilon}$. The corollary implies $\frac{S_n}{\sqrt{n(\log n)^{1+\epsilon}}} \stackrel{\text{a.s.}}{\to} 0$.

Implicitly from CLT: If (X_i) i.i.d., then

$$\frac{S_n}{\sqrt{n}} \stackrel{\text{a.s.}}{\to} 0 \tag{2.15}$$

Law of iterated log.

Theorem 2.4 (Strong Law of Large Numbers (SLLN)). Let (X_i) iid with $\mathbb{E}|X_i| < \infty$, $S_n := \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \stackrel{a.s.}{\to} \mathbb{E} X$ as $n \to \infty$.

Proof. Truncate, center, apply corollary $(Z \ge 0)$. $\mathbb{E} Z^k = \int_0^\infty k z^{k-1} P(Z \ge z) dz \approx \int_0^\infty x^k f(x) dx$ (Truncate): Define $Y_k = X_k 1_{|X_k| \le k}$, so Y_k are no longer iid. However

$$\sum_{k} P(Y_k \neq X_k) = \sum_{k=1}^{\infty} P(|X| > k) \le \int_{0}^{\infty} P(|x| > x) dx = \mathbb{E}|X| \le \infty$$
 (2.16)

By Borel Cantelli 1, $P(Y_k = X_k \text{ e.v.}) = 1$. Thus, suffices to prove $\frac{1}{n} \sum_{k=1}^n Y_k \stackrel{\text{a.s.}}{\to} \mathbb{E} X$. (Center): Define $X'_k = Y_k - \mathbb{E} Y_k$. Claim:

$$\sum_{k} \frac{\operatorname{Var}(X_{k}')}{k^{2}} < \infty \tag{2.17}$$

To show the claim:

$$\mathbb{E}Y_k^2 = \int_0^\infty 2y P(|Y_k| > y) dy \tag{2.18}$$

$$= \int_0^\infty 2y P(k \ge |X_k| \ge y) 1_{y \le k} dy$$
 (2.19)

$$\leq \int_0^\infty 2y P(|X_k| \geq y) 1_{y \leq k} dy \tag{2.20}$$

$$\sum_{k} \frac{\operatorname{Var} X_n'}{k^2} \le \sum_{k} \frac{\mathbb{E} Y_k^2}{k^2} \tag{2.21}$$

$$\leq \sum_{k} \frac{1}{k^2} \int_0^\infty 2y P(|X| \geq y) 1_{y \leq k} dy \tag{2.22}$$

$$= \int_0^\infty \left(\underbrace{\sum_k \frac{1}{k^2} 1_{y \le k}}_{G(y)} 2y \right) P(|X| \ge y) dy \tag{2.23}$$

Claim: $G(y) \le 4$ for all $0 < y < \infty$. True for $y \le 1$. Take y > 1

$$\frac{1}{k^2} \le \int_{k-1}^k \frac{1}{x^2} dx \tag{2.24}$$

$$\sum_{k} \frac{1}{k^2} 1_{y \le k} = \sum_{k \ge \lceil y \rceil} \frac{1}{k^2} \le \int_{\lceil y \rceil - 1}^{\infty} \frac{1}{x^2} dx = \frac{1}{\lceil y \rceil - 1}$$
 (2.25)

$$\implies G(y) \le \frac{2y}{\lceil y \rceil - 1} \le 4 \tag{2.26}$$

Hence

$$\sum_{k} \frac{\operatorname{Var} X_{n}'}{k^{2}} \le 4 \int_{0}^{\infty} P(|X| > y) dy = 4\mathbb{E}|X|$$
(2.27)

Apply corollary to X'_n

$$\frac{1}{n} \sum_{i=1}^{n} X_i' \stackrel{\text{a.s.}}{\to} 0 \tag{2.28}$$

$$\frac{1}{n} \sum_{i}^{n} (Y_i - \mathbb{E}Y_i) \stackrel{\text{a.s.}}{\to} 0 \tag{2.29}$$

Note $\mathbb{E}Y_i = \mathbb{E}X1_{|X| \leq ?} \to \mathbb{E}X$ by dominated convergence, so

$$\frac{1}{n} \sum_{i}^{n} (\mathbb{E}Y_i - \mathbb{E}X) \stackrel{\text{a.s.}}{\to} 0 \tag{2.30}$$

Adding ?? with ?? yields

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbb{E}X) \stackrel{\text{a.s.}}{\to} 0 \tag{2.31}$$

$$\frac{1}{n} \sum_{i}^{n} (Y_{i} - \mathbb{E}X) \stackrel{\text{a.s.}}{\to} 0$$

$$\frac{1}{n} \sum_{i}^{n} Y_{i} \stackrel{\text{a.s.}}{\to} \mathbb{E}X$$
(2.31)