# Deep Learning für Zeitreihen

Session 8 (Dienstag 15:15 - 17:00)



# Deep Learning für Zeitreihen

- Recurrent Neural Networks (RNN)
- LSTMs
- Bsp: Stromverbrauch vorhersagen mit mehreren Inputmerkmalen

#### **Neuronale Netze**







# Recurrent neural network (RNN)

- RNNs sind eine Klasse von künstlichen neuronalen Netzen
- Verbindungen zwischen den Knoten bilden eine zeitlichen Abfolge
- Dadurch können sie ein zeitlich dynamisches Verhalten zeigen



Traditional neural network

Music generation



Sentiment classification

Name entity recognition



Machine translation

Welche Arten von Problemen haben wir bisher kennengelernt?

- Ein-Schritt Vorhersage
- Mehr-Schritt Vorhersage
- Clustering
- Klassifikation



# Vanishing/exploding gradient

- Verschwindende und explodierende Gradienten häufig in RNNs
- Grund : schwierig, langfristige Abhängigkeiten zu erfassen, da der multiplikative Gradient mit der Anzahl der Schichten exponentiell ab- oder zunehmen kann
- Um das Problem zu lösen: Gates, die in der Regel einen genau definierten Zweck haben.



# **Gates**

| Type of gate              | Role                             | Used in   |
|---------------------------|----------------------------------|-----------|
| Update gate $\Gamma_u$    | How much past should matter now? | GRU, LSTM |
| Relevance gate $\Gamma_r$ | Drop previous information?       | GRU, LSTM |
| Forget gate $\Gamma_f$    | Erase a cell or not?             | LSTM      |
| Output gate $\Gamma_o$    | How much to reveal of a cell?    | LSTM      |

### **LSTM**



## **LSTM**



# Umsetzung

|                              | Keras                                            | PyTorch                          | TensorFlow                       |
|------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|
| Architecture                 | Simple, concise, readable                        | Complex, less readable           | Not easy to use                  |
| Datasets                     | Smaller datasets                                 | Large datasets, high performance | Large datasets, high performance |
| Debugging                    | Simple network, so debugging is not often needed | Good debugging capabilities      | Difficult to conduct debugging   |
| Does It Have Trained Models? | Yes                                              | Yes                              | Yes                              |
| Popularity                   | Most popular                                     | Third most popular               | Second most popular              |
| Speed                        | Slow, low performance                            | Fast, high-performance           | Fast, high-performance           |
| Written In                   | Python                                           | Lua                              | C++, CUDA, Python                |
|                              |                                                  |                                  |                                  |



Ab ins Jupyter Notebook

# Inhalte - Was haben wir gemacht?

#### Tag 1

- 1. Einführung in Zeitreihendaten in Python
- 2. Zeitreihen und ihre Merkmale visualisieren
- 3. Zeitreihen vorhersagen (Statistik I): Exponentielle Glättung und Holt-Winters
- 4. Zeitreihen vorhersagen (Statistik II): ARIMA-Modelle

#### Tag 2

- 5. Einblick in andere Zeitreihenmodelle
- Machine Learning für Zeitreihen: Überblick, Vorbereitung und Klassifikation
- 7. Machine Learning für Zeitreihen: Clustering
- 8. Deep Learning für Zeitreihen (Einblick)





Feedback

