IoT erleben – openAAS als Basis für Industrie 4.0

Presenta	ation · October 2017	
CITATIONS	5	READS
0		499
2 author	rs, including:	
1	Florian Pethig	
	Fraunhofer Institute of Optronics, System Technologies and Image Exp	ploitation IOSB
	39 PUBLICATIONS 130 CITATIONS	
	SEE PROFILE	
Some of	the authors of this publication are also working on these related pro	jects:
Project	Intelligent Automation Technologies View project	
Project	Industrie 4.0 Communication View project	

IoT erleben – openAAS als Basis für Industrie 4.0

 VDI-Fachkonferenz "Intelligente Sensoren für Industrie
 4.0 – Herausforderungen und Technologie im Spannungsfeld von Cloud und RetroFit"

Baden-Baden, 18.10.2017

Johannes Kalhoff PHOENIX CONTACT GmbH & Co KG Flachsmarkstrasse 8 -28, 32825 Blomberg

M. Sc. Florian Pethig
Fraunhofer IOSB-INA
Institutsteil für industrielle Automation
Langenbruch 6, 32657 Lemgo
florian.pethig@iosb-ina.fraunhofer.de

Agenda

- Industrie 4.0
- Interoperable Kommunikation und die Verwaltungsschale
- Beispiel eines Demonstrators
- Fazit

Industrie 4.0

Industrie 4.0

Verwaltungsschale

Demonstrator

Flexibilität:

Automatisierte Produktion mit Losgröße 1

heute	in Zukunft
gleiche Produkte, langer Lebenszyklus	individuelle Produkte, kurzer Lebenszyklus
Produktionssysteme für Massenproduktion	häufige Rekonfiguration von Maschinen
Zentrale Prozesssteuerung (SPS)	dezentrale Steuerung durch Werkstücke
manuelle Konfiguration	automatische Konfiguration / Plug-and-Work

Industrie 4.0

Demonstrator

-azit

Effizienz

heute	in Zukunft
Material, Energie, Zeit einsparen	mehr Material, Energie, Zeit einsparen
manuelle Optimierung, oft HW-basiert	datengetriebene Optimierung, Big Data
Daten in Maschinen gekapselt	interoperable Maschinen, Daten verfügbar
Echtzeit-Ethernet und Feldbusse	Ethernet TSN, OPC UA, Verwaltungsschale

Industrie 3.0

[1] Plattform Industrie 4.0, "RAMI 4.0 – Eine Einführung", 2016

Industrie 4.0

- Industrie 4.0
 - Vernetzung von jeglichen Assets für höhere Effizienz und mehr Flexibilität
 - über alle Hierarchieebenen der Automatisierungspyramide...
 - ...und darüber hinaus
 - Smart Products
 - Connected World

[1] Plattform Industrie 4.0, "RAMI 4.0 – Eine Einführung", 2016

Stand der Technik

- Viele unterschiedliche Kommunikationslösungen
 - hoher Aufwand für Systemintegration
 - Zeitaufwand und Fehleranfälligkeit
- Interoperabilität ist Grundvoraussetzung für die Umsetzung von Industrie 4.0!

[2] Industrie 4.0-Kommunikation mit OPC UA – Leitfaden zur Einführung in den Mittelstand, 2017

Interoperabilität

- Vernetzung über mehrere Ebenen
 - Kommunikation (Wie?)
 - Information (Was?)
 - Semantische Interoperabilität (Sprache der Industrie 4.0)

[3] Bitkom e.V., Industrie 4.0 – Die Bedeutung von Interoperabilität im Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0), Leitfaden, 2017

Industrie 4.0-Standardisierung

- Industrie 4.0-Komponente =
 Asset + Verwaltungsschale
 (Asset Administration Shell, AAS)
 - Standardisierte Industrie 4.0-Kommunikationsschnittstelle
 - AAS zu AAS

Demonstrator

(physikalisches) Asset zu AAS

[5] Grafik Anna Salari, designed by freepik, Modell Verwaltungsschale, ZVEI SG Modelle und Standards

Industrie 4.0-Standardisierung

Fazit

100011

00110011000

INDUSTRIE 4.0

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik • GMA

GMA 7.20 – "Semantik und Interaktion von Industrie 4.0-Komponenten

openAAS

(open Asset Administration Shell)

Industrie 4.0-Standardisierung

Industrie 4.0 Standardisierung: DIN SPEC 91345

- Struktur der Verwaltungsschale
 - Header: Identifikation (URI, ISO 29002-5)
 - Body: Teilmodelle basierend auf existierenden Standards

[6] DIN SPEC 91345: Referenzarchitekturmodell Industrie 4.0 (RAMI4.0)

[7] IEC 62832: Reference model for representation of production facilities (Digital Factory)

openAAS: Struktur der Verwaltungsschale

[8] openAAS https://github.com/acplt/openAAS/

ecl@ss Beispiel

[9] ecl@ss Version 9.1, Online: http://www.eclass.eu/, Accessed 27.03.17

ecl@ss Beispiel

Property	02-BAE098 Max. torque	
short name	-	
Format	REAL_MEASURE	
Unit of measure	N⋅m	
Definition:	Greatest permissible mechanical torque which the motor can pass on at the drive shaft	
Values:		
-		

[9] ecl@ss Version 9.1, Online: http://www.eclass.eu/, Accessed 27.03.17

openAAS

ZVEI-Projekt "open Asset Administration Shell"

- Von der Idee zur Implementierung -

Ziel

 Unterstützung und Verbreitung des I40-Komponentenmodells durch die Bereitstellung einer allgemein diskutierbaren, demonstrierbaren und verifizierbaren Referenzlösung

openAAS

Die Referenzlösung dient dazu kurzfristig...

- den Standard zu stabilisieren und zu vervollständigen
- seine Anwendbarkeit zu demonstrieren und greifbar zu machen
- das grundlegende Konzepte durch Formalisierung methodisch zu sichern
- eine generische Basis für firmenspezifische Entwicklungen zur Verfügung zu stellen
- den Nutzen der Verwaltungsschale für die Praxis zu verdeutlichen

openAAS

Vom Szenario, z.B. "Value Based Services",

Über eine generische Referenzlösung ist eine Brücke zwischen dem vorliegenden Referenzmodell RAMI 4.0, der Industrie 4.0-Komponente und den Entwicklungen der Hersteller zu schaffen. Nutzer sind sowohl Anwender als auch Hersteller, die eigene Entwicklungen umsetzen und sich mit neuen Technologien vertraut machen und diese und ihren praktischen Nutzen erproben wollen.

... zur Verwaltungsschale

... in die Erprobung mit openAAS

[1] Plattform Industrie 4.0

- Erprobung und Weiterentwicklung von openAAS auf Basis des Demonstrators zur Hannover-Messe 2017
- Im genutzten Anwendungsszenario "Value-based Services" wird ein spontaner Anschluss eines zusätzlichen Sensors erforderlich

Umsetzung in Kooperation von Phoenix Contact und Fraunhofer IOSB-INA

Anwendungsszenario

Auswahl eines geeigneten Sensors

Anschluss des Sensors an Kommunikation Aufnahme und Bereitstellung angeforderter Information

Trennung des Sensors von der Kommunikation

[11] Basierend auf: Ulrich Löwen, openAAS Exhibit, Präsentation, 2017

[12] Labs Network Industrie 4.0

Smartphone mit QR-Code Scanner

openAAS-Laufzeitumgebung (Verwaltungsschalen)

Phoenix Contact AXC3050 mit Analogeingang

Fazit

- Interoperabilität ist die Grundvoraussetzung für Industrie 4.0-Szenarien
- Verwaltungsschale der Plattform Industrie 4.0 ist als I4.0-Schnittstelle geeignet
- Verwaltungsschale beinhaltet I4.0-Semantik, die z. B. die Realisierung eines digitalen Versteckschutzes für Sensorik ermöglicht
- Verwaltungsschale ist der "digitale Kitt" zwischen den Beteiligten und die Basis für die Umsetzung bestehender und neuer digitaler Geschäftsmodelle (J. Kalhoff)
- Phoenix Contact und Fraunhofer IOSB-INA verwenden openAAS zur
 - Umsetzung neuer Use-Cases in der Smart Factory OWL
 - Lösung von Herausforderungen in der Produktion und in ersten Produkten

