F-singularities

Let **k** be an algebraically closed field of characteristic p > 0. Let X be a projective variety over **k**. Let F denote the relative Frobenius morphism on X.

Definition 1. We say that X is F-finite if $F: X \to X^{(p)}$ is finite.

Definition 2. We say that X is globally F-split if $\mathcal{O}_X \to F_*^e \mathcal{O}_X$ splits as \mathcal{O}_X -modules for some $e \geq 0$. This is equivalent to for every $e \in \mathbb{Z}_{>0}$, $\mathcal{O}_X \to F_*^e \mathcal{O}_X$ splits as \mathcal{O}_X -modules.

Definition 3. Fix $\phi: F_*^e L \to \mathcal{O}_X$ a splitting of $\mathcal{O}_X \to F_*^e \mathcal{O}_X$. Define $\phi^n: F_*^{ne} L^{1+p^e+\cdots+p^{(n-1)e}} \to \mathcal{O}_X$ by induction:

$$\phi^n := \phi \circ F_*^e(\phi^{n-1}).$$

Theorem 4. Above ϕ^n will be stable. That is, $\operatorname{Im} \phi^n = \operatorname{Im} \phi^{n+1}$ for all $n \gg 0$.

Definition 5. Let $\sigma(X,\phi) := \operatorname{Im} \phi^n$. We say that (X,ϕ) is F-pure if $\sigma(X,\phi) = \mathcal{O}_X$.

Proposition 6. There is a bijection between

{effective Q-divisor Δ such that $(p^e - 1)(K_X + \Delta)$ is Cartier}/ \sim

and

{line bundles \mathcal{L} and $\phi: F_*^e \mathcal{L} \to \mathcal{O}_X$ }.

Proof. We have

$$F_X^e \mathcal{O}_X((1-p^e)K_X) \to \mathcal{O}_X$$

given by $F^e\mathcal{O}_X(K_X) \to \mathcal{O}_X(K_X)$ and reflexivity of $\mathcal{O}_X(K_X)$. Since Δ is effective, we have

$$F^e(\mathcal{O}_X((1-p^e)(K_X+\Delta))) \to F^e\mathcal{O}_X((1-p^e)(K_X)) \to \mathcal{O}_X.$$

The another direction is by Grothendieck's duality

$$\mathcal{H}om_{\mathcal{O}_X}(F^e\mathcal{L},\mathcal{O}_X)\cong F^e_*(\mathcal{L}^{-1}\otimes\mathcal{O}_X((1-p^e)K_X)).$$

Definition 7. Let $\phi_{e,\Delta}: F_*^e(\mathcal{O}_X((1-p^e)(K_X+\Delta))) \to \mathcal{O}_X$ be the morphism corresponding to the effective \mathbb{Q} -divisor Δ .

We say that (X, Δ) is F-pure if $(X, \phi_{e,\Delta})$ is F-pure.

We say that (X, Δ) is globally F-split if for every Weil divisor $D \geq 0$, $\mathcal{O}_X \to F_*^e(\mathcal{O}_X(\lceil (p^e-1)\Delta \rceil + D))$ admits a splitting for some $e \geq 0$.

Date: July 29, 2025, Author: Tianle Yang, My Homepage

We say that (X, Δ) is strongly F-split if for every Weil divisor $D \geq 0$, $\mathcal{O}_X \to F^e_*(\mathcal{O}_X(\lceil (p^e-1)\Delta \rceil + D))$ admits a local splitting for some $e \geq 0$.

Definition 8.

Definition 9. $S^0(X, \sigma(X, \Delta) \otimes \mathcal{M})$

Proposition 10. Let X be a globally F-split projective variety. Then we have

- (a) suppose that $H^i(X, \mathcal{L}^n) = 0$ for all i > 0 and all $n \gg 0$, then $H^i(X, \mathcal{L}) = 0$ for all i > 0;
- (b) for every ample divisor A on X, we have $H^i(X, \mathcal{O}_X(A)) = 0$ for all i > 0;
- (c) suppose that X is Cohen-Macaulay and A-ample, then $H^i(X, \mathcal{O}_X(-A)) = 0$ for all $i < \dim X$;
- (d) suppose that X is normal and A-ample, then $H^i(X, \omega_X(A)) = 0$ for all i > 0.