Grafi

Anna Corazza

aa 2023/24

Dove studiare

► Sha'13, 11.1 - 11.3 inclusi

Sha'13 Clifford A. Shaffer, Data Structures & Algorithm Analysis in C++, (edition 3.2), 2013

https://people.cs.vt.edu/shaffer/
Book/C++3elatest.pdf

- ▶ Grafo $\mathbf{G} = (\mathbf{V}, \mathbf{E}); e \in \mathbf{E}, v_i, v_j \in \mathbf{V}, i \neq j : e = (v_i, v_j)$
- ▶ $0 \le |\mathbf{E}| \le |\mathbf{V}|^2 |\mathbf{V}|$:
 - ▶ grafo denso se |E| vicino all'estremo superiore
 - grafo sparso se vicino all'estremo inferiore.
- ► Grafo **orientato** se gli archi sono orientati $((v_i, v_i) \neq (v_i, v_i))$; non orientato altrimenti.
- Grafo etichettato se i vertici sono etichettati.
- Se esiste l'arco (v_i, v_j) , diciamo che v_i, v_j sono **adiacenti** (anche vicini) e che l'arco è **incidente** sui vertici v_i e v_i .
- Nei grafi pesati un peso (o costo) numerico viene associato ad ogni arco.

Richiami della terminologia

Cammini

- ▶ **Cammino**: sequenza di vertici $v_1, v_2, ..., v_n$ purché esistano tutti gli archi (v_i, v_{i+1}) .
- Un cammino si dice semplice se tutti i vertici che lo compongono sono distinti.
- La lunghezza di un cammino è data dal numero di archi che lo compongono.
- In un grafo non orientato, se il primo e l'ultimo vertice coincidono e la lunghezza è ≥ 3 si parla di ciclo.
- Se il grafo è orientato, la restrizione sulla lunghezza cade.
- Un ciclo si dice semplice se il cammino è semplice eccetto che per il vertice iniziale e finale.

Richiami della terminologia

Sottografi

- ▶ Dato un grafo G = (V, E)n sottografo $S = (V_S, E_S)$ con $V_S \subseteq V$ e $E_S \subseteq E$ tali che per ogni arco $(v_i, v_j) \in E_S : v_i, v_j \in V_S$.
- Un grafo non orientato si dice connesso se per ogni coppia di vertici esiste almeno un cammino che li congiunge.
- I sottografi connessi massimali (non c'è un altro sottografo connesso che li contiene) sono detti componenti connesse del grafo.
- Un grafo senza cicli è detto aciclico.
- ▶ DAG sta per Directed Acyclic Graph, ovvero grafo aciclico orientato.
- ▶ **Albero libero**: grafo non orientato connesso con $|\mathbf{E}| = |\mathbf{V} \mathbf{1}|$. Non può avere cicli (semplici).

Rappresentazione di un grafo

Matrice di adiacenza

Matrice di adiacenza:

- Matrice |V| x |V| di bit: 1 se esiste l'arco, 0 altrimenti.
- Per rappresentare matrici pesate, ogni elemento contiene un numero.
- ▶ In ogni caso, richiede spazio $\Theta(|\mathbf{V}|^2)$.

Lista di adiacenza:

- Vettore di |V| liste linkate (o altri contenitori più adeguati): la lista nella posizione *i*-esima contiene i vertici adiacenti a v_i (e in questo modo rappresenta gli archi).
- Una posizione nell'array e quindi una lista per ogni vertice (anche se non ha archi incidenti) e una posizione in una lista per ogni arco: richiede spazio Θ(|V| + E).
- Entrambe le rappresentazioni sono adatte sia a grafi orientati che a grafi non orientati.
- Un arco senza direzione è equivalente ai due archi con direzione corrispondenti.

Richieste in termini di spazio

- Quale delle due rappresentazioni conviene in termini di spazio richiesto dipende dal numero di archi e quindi da quanto è denso il grafo.
- ► La lista di adiacenza usa spazio solo per gli archi che effettivamente appaiono nel grafo, mentre la matrice di adiacenza richiede lo stesso spazio per tutti i potenziali archi, sia che ci siano che non ci siano.
- D'altra parte, la matrice di adiacenza non richiede spazio aggiuntivo per i puntatori.
- Più il grafo è denso, più conviene la matrice di adiacenza.
- Più il grafo è sparso, più conviene la lista di adiacenza.

Spazio richiesto

Esempio

- Supponiamo di aver bisogno di:
 - due byte per l'indice dei vertici
 - quattro byte per un puntatore
 - due byte per il peso associato ad ogni arco

$$4|V| + 2 \cdot 6|E| = 92$$
 byte

$$4|V| + 6|E| = 56$$
 byte

Tempo richiesto

- Ovviamente dipende dall'algoritmo.
- Tuttavia molti algoritmi scorrono i nodi adiacenti al nodo considerato.
- Questa operazione risulta immediata con le liste di adiacenza (basta accedere alla lista corrispondente al nodo sotto esame),
- Mentre con la matrice di adiacenza occorre scorrere tutte le posizioni relative a ciascuno dei |V| vertici.
- Si ottiene quindi un costo di $\Theta(|\mathbf{V}|^2)$ con la matrice di adiacenza invece che $\Theta(|\mathbf{V}| + |\mathbf{E}|)$ con la lista di adiacenza.
- Se il grafo è sparso il vantaggio può essere considerevole.
- Se invece il grafo è denso il numero di archi viene ad essere simile a |V|².

Implementazione

Classe astratta Graph

- ▶ I vertici verranno indicati da valori interi in $[0, |\mathbf{V}| 1]$.
- Ovviamente in generale avremo dell'informazione associata ad ogni vertice, ma questa viene memorizzata altrove, a cura dell'utente.
- Quindi l'implementazione del grafo non farà uso di template.
- Supporremo che il grafo possa essere pesato.
- In quel caso, il metodo weight prende in ingresso due vertici e restituisce il peso dell'arco ad essi associato.

Implementazione

Metodi accessori

- In genere gli algoritmi prevedono di visitare i nodi adiacenti al nodo dato.
- Daremo supporto a questa necessità con due funzioni:
 - first (v) restituisce il primo vertice adiacente al nodo v
 - next (v,n) restituisce il vertice adiacente a v immediatamente dopo n nella lista dei nodi adiacenti; n = |V| a fine lista.

```
for (w=G->first(v); w < G->n(); w=G->next(v,w))
```

► Le visite del grafo fanno spesso uso di marcatori per i nodi: offriremo supporto a tale operazione.

Visite del grafo

- Come per gli alberi, anche per i grafi esistono delle visite (traversals) standard.
- Ogni vertice viene visitato una ed una sola volta.
- Come per gli alberi, già conoscete (ma richiamiamo) l'implementazione ricorsiva, ma andremo a definire degli iteratori.
- Per cominciare la visita si sceglie un vertice di partenza.

Marcatori

- Due problemi principali:
 - grafo non connesso: non è possibile raggiungere tutti i vertici da quello scelto per partire;
 - presenza di cicli, che possono portare, se non controllati, a loop infiniti.
- Entrambi i problemi possono venir risolti con dei marcatori sui vertici (un bit per vertice):
 - 1. cicli: evito di visitare vertici già visitati;
 - grafo non connesso: alla fine controllo per vedere se ci sono vertici ancora non visitati (se ci sono, riparto con la visita da uno di questi).

Implementazione della visita

Funziona sia coi grafi orientati che con quelli non orientati.

```
void graphTraverse(Graph* G) {
  int v;
  for (v=0; v<G->n(); v++)
    // Initialize mark bits
    G->setMark(v, UNVISITED);
  for (v=0; v<G->n(); v++)
    if (G->getMark(v) == UNVISITED)
        doTraverse(G, v);
}
```

Dove **doTraverse()** può implementare una visita in ampiezza o in profondità.

Rappresentazione del grafo

Liste di adiacenza

Vertici	Adiacenti
Α	C,E
В	C,F
С	A,B,D,F
D	C,F
E	A,F
F	B,E

- Breath-first search (BFS).
- Prima di procedere visiti tutti i vertici collegati al vertice corrente.
- Struttura di supporto: coda.

```
void BFS(Graph* G, int start, Queue<int>* Q) {
   int v, w;
  Q->enqueue(start);
      Initialize Q
  G->setMark(start, VISITED);
  while (Q->length() != 0) { // Process all vertices on Q
     v = Q - > dequeue():
     PreVisit(G, v); // Take appropriate action
     for (w=G->first(v); w<G->n(); w = G->next(v,w))
        if (G->getMark(w) == UNVISITED) {
           G->setMark(w, VISITED);
           Q->enqueue(w):
```

Marcatura nodi

Coda	Azioni	Mark
Α	BFS(A),mEe(A)	Α
CE	deq(A), pr(A,C), mEe(C)	С
	pr (A,E) , mEe(E)	E
EBDF	deq(C), pr(C,A), pr(C,B),	В
	mEe(B), pr(C,D), mEe(D),	D
	pr (C,F) , mEe(F)	F
BDF	deq(E), pr(E,A), pr(E,F)	
DF	deq(B), pr(B,C), pr(B,F)	
F	deq(D), pr(D,C), pr(D,F)	
	deq(F), pr(F,B), pr(F,C),	
	pr(F,D)	
	end	

pr sta per *process* mEe sta per *marca e elabora*

Albero di ricerca

Coda	Azioni
Α	BFS(A),mEe(A)
CE	deq(A), pr (A,C) , mEe(C)
	pr (A,E) , mEe(E)
EBDF	deq(C), pr(C,A), pr(C,B),
	mEe(B), pr(C,D), mEe(D),
	pr (C,F) , mEe(F)
BDF	deq(E), pr(E,A), pr(E,F)
DF	deq(B), pr(B,C), pr(B,F)
F	deq(D), pr(D,C), pr(D,F)
	deq(F), pr(F,B), pr(F,C),
	pr(F,D)
	end

Simulazione

Coda	Azioni	Out
Α	BFS(A),mEe(A)	
CE	deq(A), pr (A,C) , mEe(C)	Α
	pr (A,E) , mEe(E)	
EBDF	deq(C), pr(C,A), pr(C,B),	С
	mEe(B), pr(C,D), mEe(D),	
	pr (C,F) , mEe(F)	
BDF	deq(E), pr(E,A), pr(E,F)	Е
DF	deq(B), pr(B,C), pr(B,F)	В
F	deq(D), pr(D,C), pr(D,F)	D
	deq(F), pr(F,B), pr(F,C),	F
	pr(F,D)	
	end	

pr sta per *process* mEe sta per *marca e elabora*

Dal punto di vista degli iteratori (esterni)

Coda	Azioni
Α	enq(A)
CE	deq(A), enq(C), enq(E)
EBDF	deq(C), enq(B), enq(D), enq(F)
BDF	deq(E)
DF	deq(B)
F	deq(D)
	deq(F)
	end

- ▶ Ricorsiva: ogni volta che si visita un vertice v si visitano anche i suoi vicini non ancora visitati.
- Iteratori:
 - si inseriscono in uno stack tutti gli archi che escono da v;
 - per trovare il prossimo vertice da visitare, si estrae e segue un arco dallo stack.
- L'effetto è di seguire un ramo nel grafo fino alla sua conclusione prima di risalire le biforcazioni.
- Si costruisce così un albero di ricerca in profondità.
- Vale sia per i grafi orientati che per quelli non orientati.

Implementazione ricorsiva della ricerca in profondità

```
void DFS(Graph* G, int v) { // Depth first search
  PreVisit(G, v); // Take appropriate action
  G->setMark(v, VISITED);
  for (int w=G->first(v); w<G->n(); w =
     G->next(v,w))
   if (G->getMark(w) == UNVISITED)
     DFS(G, w);
  PostVisit(G, v); // Take appropriate action
}
```

Previsit Elaborazioni da fare sul nodo prima della visita. Postvisit Elaborazioni da fare sul nodo dopo la visita.

Grafo non orientato

Stack	Azioni
A	DFS(A)
A C	m(A), pr(A,C), DFS(C)
A C B	m(C), $pr(C,A)$, $pr(C,B)$, DFS(B)
A C B F	m(B), $pr(B,C)$, $pr(B,F)$, $DFS(F)$
A C B F D	m(F), $pr(F,B)$, $pr(F,C)$, $pr(F,D)$,
	DFS(D)
A C B F	m(D), $pr(D,C)$, $pr(D,F)$, $pop(D)$
A C B F E	pr (F,E) ,DFS(E)
A C B F	m(E),pr(E,A),pr(E,F),pop(E)
A C B	pop(F)
A C	pop(B)
A	pr(C,E), pr(C,F),pop(C)
	pr(A,E), $pop(A)$
	end

Tipi di arco

Tipi di arco:

Nell'albero di ricerca se il secondo vertice non è ancora stato visitato quando scopro l'arco.

All'indietro se il secondo vertice già appartiene all'albero di ricerca (ovvero è marcato come visitato): in altre parole, è un antenato.

In avanti se il secondo vertice è un discendente nell'albero di ricerca.

Se il grafo è orientato, la presenza di archi all'indietro segnala la presenza di un ciclo.

albero di ricerca

V	Adj
Α	C,E
В	C,F
С	A,B,D,F
D	C,F
Ε	A,F
F	B,E

Stack Α A C A C B ACBF ACBFD ACBF ACBFE | A C B F ACB A C Α

Azioni DFS(A) m(A), pr(A,C), DFS(C) m(C), pr(C,A), pr(C,B), DFS(B) m(B), pr(B,C), pr(B,F), DFS(F)m(F), pr(F,B), pr(F,C), pr(F,D), DFS(D) m(D), pr(D,C), pr(D,F), pop(D)pr(F,E),DFS(E)m(E),pr(E,A),pr(E,F),pop(E)pop(F) pop(B) pr(C,E), pr(C,F),pop(C)pr(A,E), pop(A)end

Implementazione iterativa

```
void DFS() {
 init(stack, visitedVertices, adjIterators);
 for(int v=vertices.first(); vertices.hasMore();
                         v=vertices.Next())
   if(!v.isVisited())
    PreVisit(v);
     stack.push(v);
    while(!stack.isEmpty())
      v = stack.top();
      v.markVisited();
      while(adjIterators[v].hasNext() and
         (w = adjIterators[v].Next()).isVisited())
           // do nothing;
      if(!w.isVisited())
        PreVisit (w);
         stack.push(w);
      else
         stack.pop();
         PostVisit(v);
                                    4 D > 4 B > 4 B > 4 B > 9 Q P
```

Pre-order

Stack	Azioni	Out
A	push(A)	Α
AC	m(A), pr (A,C) , push(C)	С
ACB	m(C), $pr(C,A)$, $pr(C,B)$, $push(B)$	В
ACBF	m(B), $pr(B,C)$, $pr(B,F)$, $push(F)$	F
ACBFD	m(F), $pr(F,B)$, $pr(F,C)$, $pr(F,D)$,	
	push(D)	D
ACBF	m(D), $pr(D,C)$, $pr(D,F)$, $pop(D)$	
ACBFE	pr (F,E) ,push(E)	Ε
ACBF	m(E),pr(E,A),pr(E,F),pop(E)	
ACB	pop(F)	
A C	pop(B)	
A	pr(C,E), pr(C,F),pop(C)	
	pr(A,E), pop(A)	
	end	

Post-order

Stack	Azioni	Out
A	push(A)	
AC	m(A), pr(A,C), push(C)	
ACB	m(C), $pr(C,A)$, $pr(C,B)$, $push(B)$	
A C B F	m(B), $pr(B,C)$, $pr(B,F)$, $push(F)$	
A C B F D	m(F), $pr(F,B)$, $pr(F,C)$, $pr(F,D)$,	
	push(D)	
A C B F	m(D), $pr(D,C)$, $pr(D,F)$, $pop(D)$	D
A C B F E	pr (F,E) ,push(E)	
A C B F	m(E),pr(E,A),pr(E,F),pop(E)	Е
A C B	pop(F)	F
A C	pop(B)	В
A	pr(C,E), pr(C,F),pop(C)	С
	pr(A,E), $pop(A)$	Α
	end	

Grafo orientato

Grafo orientato

Liste di adiacenza

Vertici	Adiacenti
Α	В
В	A,C,E,H
С	F
D	G
Е	D,H
F	
G	D,H
Н	1
1	F

Ordinamento topologico

- Organizzazione di task in un DAG.
- Arco significa che il vertice sorgente deve precedere quello destinazione.
- Si ottiene tramite DFS sul grafo con:
 - PreVisit nulla
 PostVisit stampa il nodo
- Si ottiene un ordinamento topologico rovesciato.
- Non importa da quale nodo si parte, basta che sia garantito che tutti i nodi vengono visitati.

Ordinamento topologico

Implementazione ricorsiva

```
void topsort(Graph* G) {
   for (int i=0; i<G->n(); i++) // Initialize Mark array
     G->setMark(i, UNVISITED);
   for (i=0; i<G->n(); i++) // Process all vertices
      if (G->getMark(i) == UNVISITED)
        tophelp(G, i); // Call recursive helper function
void tophelp(Graph* G, int v) { // Process vertex v
  G->setMark(v, VISITED);
   for (int w=G->first(v); w<G->n(); w=G->next(v,w))
      if (G->getMark(w) == UNVISITED)
        tophelp(G, w);
   printout (v); // PostVisit for Vertex v
```


Ordinamento topologico

Con l'appoggio di una coda

- Per ogni vertice: ogni arco entrante corrisponde ad un prerequisito.
- Se il grafo ha uno o più cicli, non ci sono soluzioni.
- Implementazione con una coda
- Scorri tutti gli archi e conti per ogni vertice il numero di archi entranti.
- Inserisci nella coda tutti i nodi che non hanno archi entranti.
- Per ogni nodo che estrai dalla coda:
 - lo stampi;
 - scorri i vertici adiacenti e decrementi di uno il relativo conteggio;
 - se ci sono conteggi che sono passati da 1 a 0, li aggiungi alla coda.
- Se la coda si svuota prima di stampare tutti i vertici, allora il problema non ha soluzione (ci sono dei cicli).

Implementazione

- Per ogni vertice, numero di archi entramti.
- ► In coda se == 0. Per ogni nodo in coda:
 - stampi;
 - decrementi di uno il conteggio dei vertici adiacenti;
 - aggiungi alla coda se conteggio nullo.

```
void topsort(Graph* G, Queue<int>* Q) {
   int Count[G->n()];
   for (int v=0; v<G->n(); v++) Count[v] = 0; // Initialize
   for (int v=0; v<G->n(); v++) // Process every edge
      for (int w=G->first(v); w<G->n(); w=G->next(v,w))
        Count[w]++; // Add to v's prereq count
   for (int v=0; v<G->n(); v++) // Initialize queue
      if (Count[v] == 0) // Vertex has no prerequisites
        Q->enqueue(v):
  while (Q->length() != 0) { // Process the vertices
     v = Q - > dequeue();
      printout (v); // PreVisit for "v"
      for (int w=G->first(v); w<G->n(); w = G->next(v,w)) {
        Count[w]--; // One less prerequisite
         if (Count[w] == 0) // This vertex is now free
           Q->enqueue(w);
      }}}
```

Ordinamento topologico

Esempio: con l'appoggio di una coda

V	Adj	Α	В	D	С	F	G	Е	1
A	B, D, E	0	-						
В	C, F	1	0						
С	E	1	1	0					
D	G, H	1	0						
Е	Н	2	1	1	1	0			
F	H, I	1	1	0					
G	H	1	1	1	0				
Н		4	4	4	3	3	2	1	0
		1	1	1	1	1	0		
	Coda	٧							

Coda	V	
Α	Α	
B, D	В	
D, C, F,	D	
C, F, G	С	
F, G, E	F	
G, E, I	G	
E, I	Ε	
I, H	I	
Н	Н	

Iteratori online e offline

- L'ordine di visita può essere precomputato una volta per tutte quando inizializzo l'iteratore.
- In questo caso, l'ordine viene salvato e poi non si fa che scorrerlo.

Componenti Fortemente Connesse (CFC)

- Dato un grafo orientato G = (V, E), un sottoinsieme massimale C di V: per ogni coppia di vertici u, v ∈ C, v è raggiungibile da u e viceversa.
- Vogliamo trovare tutte le CFC in un grafo orientato.
- ▶ Grafo trasposto: $G^T = (V, E^T)$: $E^T = \{(u, v) : (v, u) \in E\}$
- Due DFS:
 - una sul grafo originale per trovare l'ordinamento post-order rovesciato
 - 2. una sul grafo trasposto, per trovare le CFC
- Il grafo originale e il suo trasposto hanno esattamente le stess CFC, visto che non faccio che rovesciare la direzione di tutti gli archi

Costruzione del grafo trasposto

- Trasposta della matrice di adiacenza.
- Per costruire la lista di adiacenza a partire da analoga rappresentazione:
 - 1. Costruisco l'elenco dei vertici per il grafo trasposto.
 - 2. Scorro la lista di adiacenza del grafo originale e per ogni edge, inserisco la versione rovesciata nel grafo trasposto.
- In questo caso, nel costruire l'elenco dei vertici per il grafo trasposto seguo l'ordine prodotto dalla visita post-order del grafo originale, ma dopo averlo rovesciato.
- Quindi associo ad ogni vertice il tempo di chiusura e poi li scorro per tempo di chiusura descrescente.
- Ogni volta che la DFS sul grafo rovesciato svuota lo stack, produco una CFC.

Grafo orientato

Liste di adiacenza

Vertici	Adiacenti
Α	В
В	C,D
С	Α
D	E
E	D
F	E,H
G	F,C,I
Н	G
I	G

Ricerca CFC

Secondo passo

Gra	fo originale			
٧	Adj	Stack	V	CC
Α	В	F		
В	C,D	F, G		
С	Α	F, G, H		
D	E	F, G	Н	
Ε	D	F, G, I		
F	E,H	F, G	- 1	
G	F,C,I	į F	G	
Н	G	$\mid \epsilon$	F	H,I,G,F
- 1	G	A		
Gra	fo trasposto	A, C		
F	G	A, C, B		
Н	F	A, C	В	
G	H,I	A	С	
- 1	G	$\mid \epsilon$	Α	C, B, A
Α	С	D		
В	Α	D, E		
D	B,E	D	Ε	
Ε	F,D	$\mid \epsilon$	D	D,E
С	G,B			

E da un vertice diverso?

t	Stack	٧
0	D	
1	D, E	
2	D	Ε
3	$\mid \epsilon$	D
4	G	
5	G, F	
6	G, F, H	
7	G, F	Н
8	G	F
9	G, C	
10	G, C, A	
11	G, C, A, B	
12	G, C, A	В
13	G, C	Α
14	G	С
15	G, I	
16	G	- 1
17	ϵ	G

Da un vertice diverso

Secondo passo

Gra	fo originale			
٧	Adj	Stack	V	CC
D	E	G		
G	F,C,I	G, H		
Ε	D	G, H, F		
Α	В	G, H	F	
С	Α	G	Н	
- 1	G	G, I		
F	E,H	G	- 1	
Н	G	$\mid \epsilon$	G	F,H,I,G
В	C,D	C		
Gra	fo trasposto	C, B		
G	H,I	C, B, A		
- 1	G	C, B	Α	
С	G,B	C	В	
Α	С	$\mid \epsilon$	С	A, B, C
В	Α	D		
F	G	D, E		
Н	F	D	Ε	
D	B,E	$\mid \epsilon$	D	D,E
F	FD			

Grafi orientati pesati

- Un peso (in generale un numero reale) associato ad ogni arco: può essere positivo, negativo o nullo.
- Rappresentazione con matrice di adiacenza: i pesi come elementi della matrice.
- Rappresentazione a lista di adiacenza: il peso associato ad ogni vertice adiacente nell'elenco.
- I pesi sono additivi: il peso di un cammino è dato dalla somma dei pesi degli archi coinvolti.
- ► E se il problema richiede di fare la moltiplicazione tra i pesi dei singoli archi?
- Esempio tipico: grafo probabilistico, in cui i pesi sono probabilità:
 - valori in [0, 1];
 - la somma delle probabilità associate agli archi uscenti da un vertice deve essere 1.

Grafi orientati probabilistici

- La probabilità di un cammino è data dal prodotto delle probabilità degli archi coinvolti.
- E quindi? si passa ai logaritmi, trasformando i prodotti in somme.
- ▶ II logaritmo di un numero in [0, 1] cade in $[-\infty, 0]$.
- Il logaritmo è una funzione monotona.
- Problema tipico: trovare il cammino più probabile.
- Quindi il cammino che massimizza (il logaritmo del)la probabilità,
- ...o che minimizza il logaritmo della probabilità moltiplicata per -1.
- ► E quindi possiamo andare ad applicare gli algoritmi che vedremo.

Problema del cammino più breve

► Sia dato un cammino (path) $p = \langle v_0, v_1, \dots, v_k \rangle$,

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Definizione: costo del cammino più breve (shortest path) tra u e v:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{se c'è un cammino da } u \text{ a } v \\ \infty & \text{altrimenti} \end{cases}$$

- ▶ Il cammino più breve tra u e v è un qualsiasi cammino p da u a v che abbia peso $w(p) = \delta(u, v)$.
- ► Il cammino più breve a **sorgente singola** (single-source) fissa *s*, ovvere l'inizio del cammino mentre lascia libero *v*.

Eventuali problemi coi pesi negativi

- Se il grafo contiene cicli di costo negativo che sono raggiungibili dalla sorgente, il problema del cammino più breve non è ben definito:
 - per qualunque cammino che posso ipotizzare come più breve, basta aggiungere un ciclo e ne trovo uno più breve.
- ▶ In questo caso, $\delta(u, v) = -\infty$.
- ▶ Se ci sono nodi x non raggiungibili da s, $\delta(s,x) = \infty$
- Anche nel caso in cui tra i nodi non raggiungibili da s ci sia un ciclo a costo negativo, la funzione δ resta uguale a ∞ , perché comunque non sono raggiungibili.

Inizializzazione dei costi

Sorgente singola

- Associamo il costo del cammino della radice fin lì ad ogni nodo.
- Non basta trovare il costo del cammino, dobbiamo anche essere in grado di ricostruire il cammino stesso.
- Conserviamo il predecessore per ogni nodo.
- ▶ Per ∞, https://en.cppreference.com/w/cpp/ types/numeric_limits

```
MAXCOST = std::numeric_limits<cost_type>::max()
InitSingleSource(G,s) {
  for(int v=G->firstVertex();
    G->hasMoreVertices(); v=G->nextVertex(v)) {
    v.cost = MAXCOST;
    v.pred = NULL;
  }
  s.cost = 0;
```

Rilassamento

- Operazione che considera se raggiungendo il vertice v passando da u posso abbassare il costo di v.
- ▶ Ipotizziamo grafo pesato, quindi di avere un peso $w(\cdot, \cdot)$.

```
Relax(u,v,w) {
  if(v.cost > u.cost+w(u,v)) {
    v.cost = u.cost+w(u,v);
    v.pred = u;
    return TRUE;
  }
  return FALSE;
}
```

Bellman-Ford

- Risolve il problema senza porre restrizioni sui valori dei pesi.
- Se ci sono cicli a costo negativo, l'algoritmo lo indica restituendo FALSE.

```
InitSingleSource(G,s);
for(int i=1; i<G.vertexNum; i++)
  foreach((u,v) in G.edges)
    Relax(u,v,w);
// Controllo se ci sono cicli a costo negativo
foreach((u,v) in G.edges)
  if(v.cost > u.cost + w(u,v))
    return FALSE;
return TRUE;
```

Grafo orientato

Bellman-Ford

Vertici	Adiacenti
Α	B (3), D (2)
В	C (-2)
С	A (2), D (2)
D	F (1)
E	A (-3), D (4), C (-3)
F	E (2)

Grafo orientato con cicli a costo negativo Bellman-Ford

Vertici	Adiacenti
Α	B (3), D (2)
В	C (-2)
С	A (2), D (2)
D	F (-3)
E	A (-3), D (4), C (-3)
F	E (2)

min-priority queue

- Struttura dati per un insieme di elementi con una chiave associata ad ogni elemento.
- Operazioni supportate:

Insert Minimum ExtractMinimum DecreaseKey

- Interessante il caso in cui l'operazione ExtractMinimum è monotona:
 - quando viene applicata più volte, la chiave estratta è via via crescente
- Per l'algoritmo di Dijkstra è particolarmente importante che l'operazione di DecreaseKey sia implementata in modo efficiente.
- Si può fare con chiavi intere positive in un intervallo predefinito.

Dijkstra

- Richiede che tutti i pesi siano non negativi.
- Si appoggia su due strutture dati:
 - L'insieme S dei vertici per cui il cammino a costo minimo dalla radice è già stato calcolato.
 - Una coda Q di priorità minima Q per i vertici rimanenti con come chiave il costo (l'ipotesi corrente di costo – non può mai aumentare)

```
InitSingleSource(G,s);
S{};
Q{};
foreach(v in G.vertices) Q.insert(v);
while(Q.hasMore()){
  u = Q.extractMin();
  S.add(u);
  foreach(v in u.adj())
   if(Relax(u,v,w))
     Q.DecreaseKey(v,v.cost)
```

Grafo orientato

Dijkstra

Vertici	Adiacenti
Α	B (3), D (2)
В	C (2)
С	A (2), D (2)
D	F (1)
E	A (3), D (4), C (3)
F	E (2)