Department of Mathematics Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 08

- 1. What happens if we apply Gram-Schmidt procedure on a linearly dependent set?
- 2. Let <, > be any inner product on \mathbb{R}^n . Show that < x,y >= x^tAy for all vectors $x,y \in \mathbb{R}^n$ where A is the symmetric $n \times n$ matrix whose (i,j) th entry is < e_i,e_j >, the vector e_i being the standard basis vectors of \mathbb{R}^n .
- 3. Use Gram-Schmidt process to transform each of the following into an orthonormal basis; (a) $\{(1,1,1),(1,0,1),(0,1,2)\}$ for \mathbb{R}^3 with dot product. (b) Same set as in (i) but using the inner product defined by $\langle (x,y,z),(x',y',z') \rangle = xx' + 2yy' + 3zz'$.
- 4. Describe all 2×2 orthogonal matrices. Prove that action of any orthogonal matrix on a vector $v \in \mathbb{R}^2$, is either a rotation or a reflection about a line.
- 5. Let $\mathbb{R}_3(x)$ be a vector space of all polynomials of degree at most 3. Then check that $\langle p(x), q(x) \rangle = \int_{-1}^1 p(x)q(x)dx$ is an inner product on $\mathbb{R}_3(x)$. By considering the basis $\{1, x, x^2, x^3\}$ of $\mathbb{R}_3(x)$, find an orthonormal basis for $\mathbb{R}_3(x)$.
- 6. Let *A* be an orthogonal matrices. Then show that ||Av|| = ||v|| for all $v \in \mathbb{R}^n$.
- 7. Let *A* and *B* be two $n \times n$ orthogonal matrices. Prove that *AB* and *BA* are both orthogonal matrices.
- 8. Prove that a upper triangular matrices is orthogonal if and only if it is identity matrices.
- 9. The rows of an orthogonal matrices of size $n \times n$ forms a basis for \mathbb{R}^n .
- 10. Determine an orthonormal basis of \mathbb{R}^4 containing the vectors $\frac{1}{2}(1,1,1,1)$ and $\frac{1}{2}(1,-1,-1,1)$.
- 11. Let *V* be a real inner product space and $\{v_1, \ldots, v_m\}$ be a basis of *V*. Prove that there exist exactly 2^m orthonormal basis $\{e_1, \ldots, e_m\}$ of *V* such that span $\{v_1, \ldots, v_j\} = \text{span}\{e_1, \ldots, e_j\}$.
- 12. Let V be a vector space with orthonormal basis $\{e_1, dos, e_n\}$. Prove that

$$||v|| = |\langle v, e_1 \rangle| + \cdots + |\langle v, e_n \rangle|.$$