Tese de Church-Turing e MT Universal

Prof. Rafael S. Durelli

rafael.durelli@dcc.ufla.br

Departamento de Ciências da Computação

Universidade Federal de Lavras

Origem do termo algoritmo

- Utilizado por um matemático árabe (Abu Ja'far Muhammad ibn Musa al-Khwarizmi) que viveu no século IX
 - Em um livro, apresentou um conjunto de regras para resolver equações lineares e quadráticas
- Os limites de algoritmos têm sido foco de estudos mais a partir do século XX
 - Transformação de strings
 - Sistemas de Post (Post, 1936)
 - Sistemas Markov (Markov, 1961)
 - Avaliação de funções
 - Funções parciais e u-recursivas (Gödel, 1931; Kleene, 1936)
 - Cálculo lambda (Church, 1941)
 - Máquinas de computação abstrata
 - Máquinas de registradores (Shepherson, 1963)
 - · Máquinas de Turing
 - Linguagens de Programação
 - Programas While (Kfoury et al., 1982)

Origem do termo algoritmo

Noção intuitiva de algoritmo: é um conjunto finito de instruções que podem ser executadas mecanicamente em tempo finito para resolver algum problema. Com dados de entrada apropriados ao problema, o algoritmo tem que parar e produzir a resposta correta.

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Programas while

- É o uso de linguagens de programação mínimas
 - Compostas apenas de comandos de
 - atribuição,
 - Condicionais e
 - Repetição

Máquinas de Turing

- É uma escolha padrão na análise da computabilidade, mas outros 'sistemas' poderiam ser escolhidos
- A computabilidade é uma característica do problema e não do sistema de verificação

A Tese de Church-Turing valida essa intuição

Máquinas de Turing

Regras de Gramáticas irrestritas

Máquinas de Turing

Funções μ -recursivas

 Como esses sistemas são equivalentes, acredita-se que eles definem os limites da computação algorítmica

 De acordo com a tese de Church-Turing, se um cálculo puder ser feito de forma automatizada por um dado método, num número finito de passos — então também pode ser feito por uma máquina de Turing.

Tese de Church-Turing (1936):

"Qualquer função de teoria dos números é computável por um algoritmo se, e somente se, for computável por uma Máquina de Turing."

Para problemas de decisão:

 Há um procedimento efetivo (algoritmo) para resolver um problema de decisão se, e somente se, há uma máquina de Turing que pára para todas as cadeias de entrada e que resolve o problema

Solução parcial para um problema de decisão

 Uma solução parcial não é necessariamente completa, mas que retorne a resposta sim para qualquer instância do problema que deva ser positiva. Se a resposta for não, a máquina pode responder não ou falhar na produção da resposta

Para problemas de Reconhecimento

 Um problema de decisão é parcialmente resolvível se, e somente se, há uma máquina de Turing que aceita precisamente instâncias do problema cujas respostas sejam sim

- Mesmo que a máquina de Turing seja utilizada para a computação de funções (abordagem funcional), o retorno da computação pode ser um '1' ou '0' na fita, ao final da computação, para problemas de decisão.
- Isso aumenta a formulação da tese de Church-Turing em termos de funções computáveis

- Para computação de função
- Uma função f é efetivamente computável se, e somente se, há uma máquina de Turing que computa f

Aqui vem a visitação da Tese de Church Turing depois da definição das funções μ-recursivas

- Não é uma formulação matemática
 - Não pode ser provada
 - Necessitaria de uma definição formal de algoritmo
- Para 'desacreditar' a tese seria necessário um procedimento que pudesse ser computável e para o qual não se conseguisse construir uma máquina de Turing
- A equivalência entre a MT e os outros sistemas algorítmicos e a falta de um contra-exemplo são fortes evidências de que a tese se mantém

- A prova pela Tese de Church-Turing é um atalho frequentemente utilizado na decisão da existência de um algoritmo de decisão.
 - Ao invés de construir uma máquina de Turing, explicitamente, define-se um procedimento efetivo que resolva o problema
 - A tese garante que se pode construir uma MT que resolva o problema
 - Algumas máquinas de Turing são muito complexas...

- Um dos principais avanços na computação, em meados da década de 40, foi o desenvolvimento do modelo de computação com programa armazenado
 - Arquitetura de Von Neumann
 - Programa armazenado no mesmo espaço de memória em que os dados serão manipulados
 - Antes, computadores eram criados para executar apenas uma tarefa, variando apenas a entrada
- Um ciclo de computação nesse modelo de computação é a busca de uma instrução em memória e sua execução

• Um ciclo de computação nesse modelo de computação é a buse de uma instrução em memória e sua execução

- As máquinas de Turing até agora são como os primeiros computadores, feitas para executar apenas uma tarefa
- Mas podemos arquitetar uma MT que siga o conceito de programa armazenado: Máquina de Turing Universal
- Utilizada para simular as computações de uma máquina de Turing qualquer

 A entrada de uma MTU é uma representação de uma máquina de Turing M e a cadeia w a ser processada por M

- Primeiro passo na construção de uma MTU: definir a cadeia de representação de uma máquina de Turing M
 - Dado que podemos codificar qualquer símbolo com o uso de cadeias sobre {0,1}, escolhemos máquina de Turing com esse mesmo alfabeto de entrada ({0,1}) e alfabeto da fita como {0,1,B}
 - Os estados de M são tidos como $\{q_0, q_1, ..., q_n\}$, sendo q_0 o estado inicial

- M é definida por sua função de transição
- Uma transição tem a forma

$$\delta(q_i, x) = [q_j, y, d]$$

- Em que q_i e $q_j \in Q$; $x, y \in \Gamma$; e $d \in \{L, R\}$
- Codificamos os elementos de M, utilizando strings de 1's

• M é	Símbolo	Codificação	
• Ilm:	Símbolo 0	1	
Ullia	1	11	
	В	111	
• E	q_0	1	
• Cod de 1	q_1	11	ings
de 1			
T	q_n	1 ⁿ⁺¹	
	L	1	
~	R	11	

- Seja en(z) a codificação do símbolo z, a transição $\delta(q_i,x)=[q_j,y,d]$ é codificada como: $en(q_i)0en(x)0en(q_j)0en(y)0en(d)$
- Os 0's separam os componentes da transição
- A representação de M é feita codificando-se suas transições
- Dois 0's consecutivos separam transições diferentes
- O início e fim de uma representação utiliza três 0's consecutivos

Transition	Encoding	
$\delta(q_0, B) = [q_1, B, R]$	101110110111011	
$\delta(q_1, 0) = [q_0, 0, L]$	1101010101	
$\delta(q_1, 1) = [q_2, 1, R]$	110110111011011	
$\delta(q_2, 1) = [q_0, 1, L]$	1110110101101	

1	Transition	Encoding
ł	$\delta(q_0, B) = [q_1, B, R]$	101110110111011
	$\delta(q_1, 0) = [q_0, 0, L]$	1101010101
1	$\delta(q_1, 1) = [q_2, 1, R]$	110110111011011
l	$\delta(q_2, 1) = [q_0, 1, L]$	1110110101101

•

Descreva o que uma máquina de Turing deve fazer para verificar se uma determina entrada $u \in \{0,1\} *$ codifica corretamente uma máquina de Turing determinística

Descreva o que uma máquina de Turing deve fazer para verificar se uma determina entrada $u \in \{0,1\} * \text{codifica corretamente uma máquina de Turing determinística}$

- Iniciar e terminar com 000
- Verificar um conjunto de instruções separada por 00
 - Padrão en(q_i)0en(x)0en(q_i)0en(y)0en(d)
- Se combinação de estado e símbolo de entrada em cada transição for distinto: máquina determinística

Vamos criar uma máquina de Turing *U* com 3 fitas:

- A fita 1 inicia a com entrada, que tem uma cadeia na forma R(M)w
- A computação de *M* é simulada na fita 3

U tem as seguintes ações:

- 1. Se a entrada não tem a forma R(M)w, U move para a direita indefinidamente
- 2. w é escrita no início da fita 3 e sua cabeça retorna para o início
- Um 1 é escrito na fita 2, representando o estado inicial q₀
- 4. Uma transição de M é simulada na fita 3. A transição de M é determinada pelo símbolo lido na fita 3 e o estado codificado na fita 2

- Uma transição de M é simulada na fita 3. A transição de M é determinada pelo símbolo lido na fita 3 e o estado codificado na fita 2. Seja x o símbolo lido na fita 3 e q_i o estado codificado na fita 2:
 - A fita 1 é lida em busca de uma transição que tenha o primeiro componente equivalente a en(q,) e en(x). Caso não haja essa transição, U pára e rejeita a entrada
 - Se a fita 1 contém uma transição en(q;)0en(x)0en(q;)0en(y)0en(d), então i. en(q;) é substituído por en(q;) na fita 2 i. O símbolo y é escrito na fita 3

 - A cabeça da fita 3 é movida na direção especificada por d
- A computação continua com o passo 4, para simular a próxima transição de M

Referências

- Sudkamp, T. A. (2006). Languages and machines: an introduction to the theory of computer science. 3rd Edition.
 - Capítulo 11: Decision Problems and the Church-Turing Thesis

Teorema

• A linguagem $L_H = \{R(M)w \mid M \text{ } pára \text{ } com \text{ } w\}$ é recursivamente enumerável

Prova:

A máquina universal U aceita cadeias da forma R(M)w, em que R(M) é a representação de M e M pára com a entrada w. Para todas outras cadeias de entrada, a computação de U não pára. Então a linguagem de U é L_H

Teorema

• A linguagem $L_H = \{R(M)w \mid M \text{ } p\'{a}ra \text{ } com \text{ } w\}$ é recursivamente enumerável

- L_H é conhecida como a linguagem do Problema da Parada.
- Uma cadeia está em L_H se é a combinação de uma representação de uma máquina de Turing e uma cadeia w, tal que M pára quando executa sobre w

Problema: parar na n-ésima transição

Entrada: M, w e inteiro n

Saída: *sim*, caso a computação de *M*, lendo *w*, pára exatamente após *n* transições; *não*, caso contrário.

Parar na n-ésima transição

Solução: simular a computação de M com w e contar a quantidade de transições

- Utilizamos uma U' adicionando uma quarta fita a U
 - Na fita 4, será armazenada a contagem de transições simuladas por U'
- A entrada u desse problema é representada por $R(M)w0001^{n+1}$

Parar na n-ésima transição

- 1. Se u não terminar com 0001^{n+1} , U' pára e rejeita u
- A cadeia 1ⁿ é escrita na fita 4 e 0001ⁿ⁺¹ é apagado do final de u na fita 1. A cabeça da fita 4 volta para o início
- 3. Se a cadeia restante na fita 1 não tem a forma R(M)w, U' pára e rejeita a entrada
- 4. A cadeia w é copiada para a fita 3 e a codificação de q_0 é escrita na fita 2
- 5. A estratégia de *U* é utilizada: a fita 1 é lida em busca de uma transição que tenha o símbolo *x* lido da fita 3 e estado *q*_i, codificado na fita 2

Parar na n-ésima transição

- 5. A estratégia de *U* é utilizada: a fita 1 é lida em busca de uma transição que tenha o símbolo *x* lido da fita 3 e estado q_i, codificado na fita 2
 - a) Se não houver transição para q_i e x e um 1 for lido na fita 4, então U' pára e rejeita a entrada
 - b) Se não houver transição para q_i e x e um B é lido na fita 4, então U' pára e aceita a entrada
 - c) Se houver transição para q e x e um B é lido na fita 4, então U' pára e rejeita a entrada
 - d) Se houver transição para q e x e um 1 é lido na fita 4, então a transição é simulada nas fitas 2 e 3 e a cabeça da fita 4 é movida uma célula para a direita
- A computação continua com o passo 5, para a próxima transição de M

