

Algebraic Expressions and Identities Ex 6.3 Q17

To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

 $\begin{array}{l} \text{(2. 3xy)} \times (0.1x) \times (0.16) \\ = (2.3 \times 0.1 \times 0.16) \times (x \times x) \times y \\ = (2.3 \times 0.1 \times 0.16) \times (x^{1+1}) \times y \\ = 0.0368x^2y \end{aligned}$

Thus, the answer is $0.0368x^2y$.

Algebraic Expressions and Identities Ex 6.3 Q18

Answer:

We have to find the product of the expression in order to express it as a monomial.

To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

$$(3x) \times (4x) \times (-5x)$$
= $\{3 \times 4 \times (-5)\} \times (x \times x \times x)$
= $\{3 \times 4 \times (-5)\} \times (x^{1+1+1})$
= $-60x^3$

Substituting x = 1 in LHS, we get:

LHS =
$$(3x) \times (4x) \times (-5x)$$

= $(3 \times 1) \times (4 \times 1) \times (-5 \times 1)$
= -60

Putting x = 1 in RHS, we get:

$$RHS = -60x^3$$
$$= -60(1)^3$$
$$= -60 \times 1$$
$$= -60$$

: LHS = RHS for x = 1; therefore, the result is correct

Thus, the answer is $-60x^3$.

Algebraic Expressions and Identities Ex 6.3 Q19

Answer:

We have to find the product of the expression in order to express it as a monomial.

To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., $a^m \times a^n = a^{m+n}$.

We have:

$$(4x^{2}) \times (-3x) \times \left(\frac{4}{5}x^{3}\right)$$

$$= \left\{4 \times (-3) \times \frac{4}{5}\right\} \times \left(x^{2} \times x \times x^{3}\right)$$

$$= \left\{4 \times (-3) \times \frac{4}{5}\right\} \times \left(x^{2+1+3}\right)$$

$$= -\frac{48}{5}x^{6}$$

$$\therefore \left(4x^2\right) \times \left(-3x\right) \times \left(\frac{4}{5}x^3\right) = -\frac{48}{5}x^6$$

Substituting x = 1 in LHS, we get:

LHS =
$$(4x^2) \times (-3x) \times \left(\frac{4}{5}x^3\right)$$

= $\left(4 \times 1^2\right) \times \left(-3 \times 1\right) \times \left(\frac{4}{5} \times 1^3\right)$
= $4 \times (-3) \times \frac{4}{5}$
= $-\frac{48}{5}$

Putting x = 1 in RHS, we get:

RHS =
$$-\frac{48}{5} x^6$$

= $-\frac{48}{5} \times 1^6$
= $-\frac{48}{5}$

: LHS = RHS for x = 1; therefore, the result is correct

Thus, the answer is $-\frac{48}{5} x^6$.

********* END *******