

Groundhog: In-Pipe Robot With Screw Drive Mechanism

Team 20

Yichi Ma, Adith Sundram, Albert Wen

Introduction

This project explores the potential application of screw drive, a rotor powered by a single actuator, in an in-pipe robot design. A novel design of the screw drive allows a gripper unit to be installed in front of the screw drive. A prototype robot is fabricated and validated. Due to the use of a single driving actuator, the mechanism can be miniaturized, allowing broader range of applications.

Screw Drive

Our screw drive consists of three passive wheels in contact with the inner pipe wall, mounted on a ring gear that rotates about the robots center axis.
 The wheels are positioned at an angle of 10 degrees offset from the front face of the robot - when the rotor spins, the wheels track a helical, "screw" motion that drives the entire system forward.
 The screw drive is driven by an off-centered gear powered by the DC motor installed in the stator.

Gripper

• The gripper is installed in front of the rotating screw drive. The gripper is cable actuated, which is controlled by a servo motor in the main body - the off-centered design of the screw drive facilitates this setup, as the gripper cable is passed through the center of the screw drive and a slot cut in the bore shaft.

Materials + Process

- Laser cutter
 - Plywood with ½" thickness
 - Efficient prototyping technique to design planar parts
- Ultimaker 3D Printer
 - PLA materials
 - Delivers more complex geometry
 - Efficiency in making quick edits

References

T. Nishimura, A. Kakogawa and S. Ma, "Pathway selection mechanism of a screw drive in-pipe robot in T-branches," 2012 IEEE International Conference on Automation Science and Engineering (CASE), 2012.

Design and Parts

- (1) Gripper: end effector of the robot
- 2) Cable Guide: bore shaft used as a guide for gripper cable
- 3) Tilted Wheels: passive wheels positioned tilted to drive
- 4) Passive Gear: gear to increase stability of the screw drive
- 5 Active Gear: gear to provide rotations of the screw drive
- 6) Screw Drive Motor: the only motor used to drive forward
- 7) Passive Main Body Wheels: wheels holding the body in pipe
- 8 Main Body: chassis houses the motor and servo motor

Conclusion + Future Improvement

- The robot can conquer straight pipe using one driving motor
- Brainstorm different designs and think about how
 Geometric-tolerancing come into play
- Operate in a variable-diameter pipe
 - Add spring system to the legs
- Add linear actuators in the legs for a larger diameter pipe
- Achieve steering ability
 - Add a rotational degree of freedom for the screw drive
- Navigate through T branches and elbows
- Enhance gripping ability
 - Gripper should be able to rotate and perform difficult gripping task