Imperial College

London

[E1.14 (Maths 2) 2012]

B.ENG. AND M.ENG. EXAMINATIONS 2012

PART I: MATHEMATICS 2 (ELECTRICAL AND INFORMATION SYSTEMS ENGINEERING)

Date Friday 8th June 2012 10.00 - 12.00

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO

Answer Question 1 and THREE of the remaining FIVE questions.

Answer Section A and Section B in different answerbooks.

Question 1 carries twice the marks of each of the other questions.

CALCULATORS MAY **NOT** BE USED.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of SIX questions. Ask the invigilator for a replacement if your copy is faulty.]

SECTION A

- (i) Find the angle between the vectors $\mathbf{a} = (1, 2, 3), \mathbf{b} = (2, 0, 4)$.
 - (ii) Find the value of the constant λ , such that

$$(y\cos x + \lambda\cos y) dx + (x\sin y + \sin x + y) dy$$

is the exact differential of a function f(x, y). Find the corresponding function f(x, y) subject to f(0, 1) = 0.

(iii) If the universal set Ω is the set of all positive integers less than or equal to 32 and

$$A = \{ N \in \Omega : 1 \le N \le 10 \}$$

$$B = \{ N \in \Omega : N \text{ even and } N \leq 20 \}$$

find:

(a)
$$\overline{A}$$
, (b) $\overline{A \cup B}$, (c) $\overline{A} \cap \overline{B}$, (d) $\overline{A \cap B}$.

(iv) If $V = \ln(x^2 + y^2)$, prove that

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0.$$

(v) For what values of k are the equations

$$x + y - k = 0$$

$$kx - 3u + 11 = 0$$

consistent?

(vi) By means of a 'truth' table show that $p \to q$ and $\overline{q} \to \overline{p}$ are equivalent.

Q1 CONTINUES ON THE NEXT PAGE

[E1.14 (Maths 2) 2012]

(vii) Define what is meant by an even and an odd function of x. A function of x, f(x), is periodic with period 2π and satisfies

$$f(x) = \begin{cases} -1, & -\pi < x < 0, \\ 1, & 0 < x < \pi. \end{cases}$$

Sketch the function and find its Fourier series.

(viii) Find the perpendicular distance from the origin to the plane through the points

- (ix) Obtain the Taylor series expansion of the function $f = \sin(xy)$ about the point $(x, y) = (1, \pi/3)$ neglecting terms of degree three and higher.
- (x) Find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 5 \\ 6 & 0 & 2 \end{pmatrix}$.

SECTION B

- 2. Find the dimensions of a rectangular box of maximum capacity given the box has no top and has surface area $108\mathrm{m}^2$.
- 3. The function f(x) is defined by

$$f(x) = \begin{cases} -x, & -\pi < x \le 0 \\ 0, & 0 < x < \pi \end{cases}$$

and $f(x+2\pi) = f(x)$.

- (i) Sketch the function in the range $-2\pi \le x \le 2\pi$.
- (ii) Show that the Fourier series of f(x) is

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\cos(2m+1)x}{(2m+1)^2} + \sum_{m=1}^{\infty} \frac{(-1)^n \sin nx}{n}$$

What does the Fourier series converge to at $x = \pm \pi$?

(iii) By suitable choice of x evaluate

(a)
$$\sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1}$$
.

(b)
$$\sum_{m=0}^{\infty} \frac{1}{(2m+1)^2} .$$

4. $u = x^n f(z)$ when f is any differentiable function of z = y/x and n is a constant.

(i) Show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$
. (1)

(ii) Hence show that
$$x \frac{\partial^2 u}{\partial x^2} + (x+y) \frac{\partial^2 u}{\partial x \partial y} + y \frac{p^2 u}{\partial y^2} = (n-1) \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$$
.

- Verify the result (ii) for $n=2, \ f(z)=z$. (iii)
- By writing (1) in the form (iv)

$$\left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\right) u = nu$$

or otherwise show also that

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n^2 u.$$

- 5. Find a unit vector in the same direction as the vector $\boldsymbol{a} = 4\boldsymbol{i} 2\boldsymbol{j} + 4\boldsymbol{k}$ and another unit vector in the same direction as $\mathbf{b} = -4\mathbf{i} + 3\mathbf{k}$.
 - (i) Show that the sum of these unit vectors bisects the angle between a and b.
 - (ii) Find a unit vector \hat{t} which is normal to a and b.
 - (iii) Finally find the volume of the parallelepiped whose edges correspond to the three unit vectors defined above.

6. (i) Use Mathematical Induction to show that

$$1 + 2 + 3 + \ldots + N = \frac{1}{2} N.(N+1)$$
,

for any natural number N.

(ii) Let A, B and C be the following propositions:

A: it is raining;

B: the sun is shining;

C: there are clouds in the sky.

- (a) Translate the following English sentences into logical expressions:
 - i If it is raining then there are clouds in the sky;
 - ii If there are no clouds in the sky then the sun is shining.
- (b) Translate the following logical expressions into English sentences:

i
$$(A \cap B) \rightarrow C$$
;

ii
$$\overline{A} \to (B \cup C)$$
.

(iii) State the truth table for $(A \to B) \cup (B \to A)$, $(A \to B) \cap (B \to A)$ and $(A \leftrightarrow B)$.

Which two of these three logical expressions are equivalent?

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EE (
uestion 1	TOPIC	Marks & seen/unseen
arts	a) By defention of det product a.b = 12/15/000 = a, b, +a, b, +a, b,	1
	1a1= \frac{1}{2} +3 = \sqrt{14}, \left = \sqrt{4} +16 = \sqrt{20}	1
	4. 2 = 2 + 0 + 12 = 514 520 Coo	
	$\theta = \omega^{-1}\sqrt{\frac{2}{10}}$.	
	Exact 4 2 (year + day) = 2 (2sing + sinz +y)	1
	Exact of $\frac{\partial}{\partial y}(y\cos x + \lambda\cos y) = \frac{\partial}{\partial x}(a\sin y + \sin x + y)$ is $\cos x - \lambda \sin y = \sin y + \cos x$	1
	1	
	$\frac{\chi}{2} = y \cos x + \lambda \cos y \Rightarrow f = y \cos x - x \cos y + A(y)$	
	lan It = san + x Eny = x San y I some + 3	
	$A = y^2/2 + Constant$	
	$f(0,1)=0 \implies constant = -1/2$	
	f = ysux - xcog +1 (y2-1)	. 1
	Setter's initials	Page nu

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
uestion 7	TOPIC	Marks & seen/unseen
	$(n \in N, 11 \in N \in 32\frac{1}{2}, b) \{ (1,13,15,17,19,21,22,23,24,25,25,26,26,30,31,52) \}$ $(\bar{A} \land \bar{B}) = \{ 11,13,15,17,19,20,21,22,23,24,25,26,26,26,26,26,26,26,26,26,26,26,26,26,$	1
	$ \frac{1}{AB} = \left\{ 1,3,5,7,9,11,13,15,17,19, 20,21,22,23,24,25,25,25,25,26,20,30,31,32 \right\} $	1
d.	$\frac{\partial V}{\partial x} = \frac{2n}{n^2 + y^2} \qquad \frac{\partial^2 V}{\partial x^2} = \frac{(a^2 + y^2)^2 - 2x \cdot 2x}{(a^2 + y^2)^2}$	2
	$= \frac{2(y'-x')}{(x^2+y')^2}$ Similary $\frac{3y}{y^2} = \frac{2(x'-y'')}{(x^2+y'')^2}$	1
	アンカンカン =0.	1
٤.	Regum $\begin{vmatrix} 1 & 1 & -1 \\ k & -3 & 11 \\ 2 & 4 & -8 \end{vmatrix} = 0$ $\begin{vmatrix} -3 & 11 \\ 4 & -8 \end{vmatrix} = -\begin{vmatrix} 1 & 11 \\ 2 & -8 \end{vmatrix} = -4 \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} = 6$	1
	$-4k^{2}+2k+2=0$ $k=1,-1/2$	
	Sotter's initials Checker's initials	Page nui

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EE1(2)
Question	TOPIC	Marks & seen/unseen
Parts f	P 9 P 9 P 9 9 9 9 P T T F F T F F T F F T F F	Incula for each of
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Colema 3
9	lung f(2) = f(-2), and of f(2) = f(-2).	
	-411 -311 -211 -11 C H 2H 37 401	
	$f = \sum_{i=1}^{n} f(x) \sin x dx = \sum_{i=1}^{n} \left[-\frac{1}{n} \cos nx \right]_{0}^{H}$ $= \frac{2}{n} \left[(1 - (H)^{n}) \right] = \frac{4}{n\pi} \int_{0}^{n}$ $= 0, 1$	ods
	$= \frac{2}{n\pi} \left(1 - (-1) \right) = n\pi$ $= 0, 1$ $= \frac{2}{n\pi} \left(2n - 1 \right) \times \frac{2n}{2n - 1}$	ev
	$\pi \subset 2n-1$	
	Setter's initials	Page num

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EE1(2)
Question /	TOPIC	Marks & seen/unseen
Parts	Let == (2,2,3) -(4),1) = (1,1,2)	
hi	b = (113,4) - (111,1) = (0,2,3)	4
	Normal to plan 4 // a 1 = (-1, -3, 2)	1
	- Equator g plan 4	
	(= - (1/1)).(-1)-3,2) =0	
	-x-3y+2z=-2	
	$u = \frac{2 + 3y - 2z}{\sqrt{14}} = \frac{2}{\sqrt{14}}$	
	2	
	:. Austeno from angu = $\frac{1}{\sqrt{14}}$	7
i	f2 = y cony, at (1/17/8) = 1/2.	2
	$f_{2x} = f_{2}^{2} \sin xy$, at $(1/\pi/3) = -\pi \sqrt{3}$. $f_{2x} = f_{2}^{2} \sin xy$, at $(1/\pi/3) = \frac{1}{18} - \pi \sqrt{3}$. $f_{2y} = \cos xy - xy \sin xy$, at $(1/\pi/3) = \frac{1}{2} - \frac{\pi}{6}$. $f_{2y} = -x^{2} \sin xy$, at $(1/\pi/3) = -1/3$.	
	- Neglecting tros g Culic and	7
	Sinxy = \frac{13}{2} + \frac{1}{6}(2-1) + \frac{1}{2}(y-\frac{17}{3}) - \frac{17}{36} \frac{1}{36}(2-1)	{ 2
	+ (1/2 - 17/6 53) (22-1) (5-17/3) - 53 (4-17/3)2)
	Setter's initials . 1/4 Checker's initials	Page num

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EE 1 (2)
Question 1	TOPIC	Marks & seen/unseen
Parts	$ A = \begin{vmatrix} 123 \\ 415 \end{vmatrix} = 2 - 2(-22) + 3(-6)$ $ A = \begin{vmatrix} 415 \\ 602 \end{vmatrix} = 28$ $ A_{11} A_{12} A_{13} $ $ A_{21} A_{23} $ $ A_{31} A_{32} A_{33} $	
	Link $A_{11} = 2$, $A_{12} = 22$, $A_{13} = -6$ $A_{21} = -4$, $A_{22} = -16$, $A_{23} = 12$ $A_{31} = 7$, $A_{32} = 7$, $A_{33} = -7$ $A_{31} = 7$, $A_{32} = 7$, $A_{33} = -7$ $A_{31} = 7$, $A_{32} = 7$, $A_{33} = -7$	2
	$A^{-1} = \frac{1}{28} \begin{pmatrix} 2 & -4 & 7 \\ 22 & -16 & 7 \\ -6 & 12 & -7 \end{pmatrix}$	
×		
	Settor's initials Checker's initials	Page no

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course (2)
Question 2.	TOPIC	Marks &
Parts	If dimensions of box an x, y, 2 in region maximum ay xyz solyat lo	
	$n_{y} + 2x^{2} + 2y^{2} = 108$ (1) Auxillary function is $\phi = xy^{2} + \lambda(xy + 2x^{2} + 2y^{2}) - \lambda.108$	2
		2
	$0 = 2z + \lambda(2+2z) = 0$	2
	$Q_{z} = xy + \lambda(2z+2y) = 0 $ $Now solm (1), (2), (3), (4)$ $Now solm (1), (2), (3), (4)$ $3xyz + \lambda(2xy + 4xz + 4yz)$ $(2)(2)(2)(3) + (2)(4) = 9is$ $3xyz + \lambda(2xy + 4xz + 4yz)$	9=0
	$(2)^{(2)} (3)^{(2)} (2)^$	
2	· 108 \ \ \ \frac{1}{2} \text{Xy} = 0 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-
	$ \frac{1 - 2 (y + 2z) = 0}{72} $ $ 1 - 4 (z + 2z) = 0 $ $ \frac{1}{72} $	
	$1 - \frac{2}{2}(2x+2y) = 0$	4
	$\frac{y^2}{36} - \frac{22}{36} = 0 \Rightarrow 2 = 9 $	
	$1 - \frac{4^{2}}{18} = 0 \implies \frac{4^{2}}{1} = 18$ $1 - \frac{4^{2}}{1/2} = 0 \implies \frac{4^{2}}{1} = 36, \ \frac{4}{9} = 6$	2

	EXAMINATION QUESTIONS/SOLI		EE I
			(2)
Question 2	TOPIC		Marks & seen/unseen
Parts	: 2=6,y=6,2=3	timb leng	2
	From physical considerations follows us a maximum.		
			2

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EE I
		(2)
Question 3	TOPIC	Marks & seen/unseen
Parts		2
a)	-2ū -ū 0 ti 2u	7
b)	Let f(a) = 1Ac + ZAn Genz + ZBn Sunx	
	$A_0 = \iint_{\Pi} f(a) da = \iint_{\Pi} -2 dx = -\iint_{\Pi} \frac{1}{2} \int_{-\pi}^{2\pi} dx$	2
	$A = \frac{1}{n} \left(-2 \right) \cos n \pi d \pi = \frac{1}{n} \left\{ \frac{1}{n} - x \sin n \pi \right\}$	
	= -1 [con270 +] = -1	4
	$= \frac{1}{n^{2}\pi} \left(1 - (-1)^{n} \right) = \frac{-2}{n^{2}\pi} , nodd$ $= \frac{1}{n^{2}\pi} \left(1 - (-1)^{n} \right) = \frac{-2}{n^{2}\pi} , nodd$	
	$B_n = \frac{1}{n} \int (-x) A_n x dx = \frac{1}{n} \left[\frac{n \omega n x}{n} - \frac{1}{n^2} s \omega x n \right]$	6 4
	$= (-1)^{n}/n$	
	-: f= 1/4 - 2 \(\frac{C_0(2n+1)_2}{m=0} \) \(\frac{C_0(2n+1)_2}{(2m+1)^2} \) \(\frac{C_0(2n+1)_2}{m} \)	/
	Setter's initials Checker's initials	Page num

2 -	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
	EXAMINATION QUESTIONS/SOLUTIONS 2011 2012	EE
Question	TOPIC	Marks & seen/unseen
Parts	$f(\frac{1}{1}\pi) = \frac{1}{2} \left(\frac{1}{2n} + \frac{1}{4n} + \frac{1}{4n} + \frac{1}{4n} + \frac{1}{4n} \right) = \frac{1}{4n}$ Now put $2 = \frac{1}{4n} = \frac{1}{2n} = \frac{1}{4n} + \frac{1}{4n} = \frac$	4
	and $\overline{U}_{m=0} = \overline{U}_{m=0} = \overline{U}_{m=0}$ $\overline{U}_{m=0} = \overline{U}_{m=0} = \overline{U}_{m=0}$	3
	Setter's initials **Checker's initials	Page numi

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EEI (2)
Question	TOPIC	Marks &
Parts	$u = \chi^{n} f(z) = \frac{\lambda_{1}}{\lambda_{2}} = n\chi^{n-1} f(z) + \chi^{n} f'(z) \frac{\lambda_{2}}{\lambda_{2}}$ $= n\chi^{n-1} f(z) + \chi^{n} f'(z) \left(-\frac{1}{2} \int_{z_{1}}^{z_{2}} dz\right)$	2
	$\frac{2}{2} = 2^4 f(2) \frac{1}{2} = \pi^4 f(2) f(2)$	2
	$-2 \frac{2}{\lambda} + y \frac{2}{\lambda} = n2^n f(2) + x^n f(3) \left\{ x \left(-\frac{1}{2} \right) + \frac{1}{2} \right\}$ $-2 \frac{2}{\lambda} + y \frac{2}{\lambda} = n4$ $-2 \frac{2}{\lambda} + y \frac{2}{\lambda} = n4$ (1)	2
(:;)	$\frac{\partial}{\partial x}g(1)g(2)$ $\frac{\partial}{\partial x} + 2\pi \frac{\partial}{\partial x} + 3\pi \frac{\partial}{\partial x} = \pi \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x} + 2\pi \frac{\partial}{\partial x} + 3\pi \frac{\partial}{\partial x} = \pi \frac{\partial}{\partial x}$	1
	If of (1) gus x $\frac{\partial u}{\partial y^{2x}}$ $\frac{\partial u}{\partial y}$ $\frac{\partial u}{\partial y^{2}}$ Add the equates to give required result. Special Can $n=2$, $f=2$. y $u=x^{2}(5/2)=xy$	2
(ici)	Mx= y, (4y = x) (2x=0) (4yy =0) (1xy =1)	2
(10)	RHS = (24/2cts) = x19	2

	2 2 45 34 +22 32 + 224 324 + 42 324 = 2 24 +5 34 +22 324 + 224 324 + 322 =	
	상당하다 하고 어머니는 이 부장이 병원으로 하는 이 사람이 나는 것	n74 /
	$=h^2u$	
ts	: 2 (3m +x 22 +y 22 } +y (2 2 4 + 2 +y 2 1)	2
4		Marks & seen/unseen
estion	TOPIC	
		(2)
	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
est	tion -	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EET
		(2)
4		
Question	TOPIC	Marks &
35		seen/unseen
Parts	$a = (4, -2, 4) / \sqrt{16 + 4 + 16}$	2
	=(7/3,-1/3,7/3)	0
	1	7
*	b = (-4,0,3)/J16+9	
	$= (-4/5,0)^{3}/5)$ $M = \hat{a} + \hat{b} = \frac{1}{15}(-2, -5, 19) \hat{a}(\hat{a} + \hat{b}) = \hat{t}\hat{a}\hat{b} $ $M = \hat{a} + \hat{b} = \frac{1}{15}(-2, -5, 19) \hat{b}(\hat{a} + \hat{b}) = \hat{t}\hat{a}\hat{b} $	
	u = à +6 = 11-2, -5, 19) a(a+6)=110	2
E.	15 (15 = 39 = 13 = 14 600)	2
	$u \cdot q = \frac{1}{45} \left(-4 + 5 + 38 \right) = \frac{39}{45} - \frac{13}{15} = \frac{14}{15} = \frac{14}{15} = \frac{13}{15} = \frac{14}{15} = \frac{1}{15} =$	2
	4-6 = 15 (8+57) = 13 = 14/402	1
	. c.0, = c.02 se u bunch 2, b.	1
	1 1 1 1 1 K	
(ii)	Now let $t = \frac{1}{2} \int_{-4}^{2} \left \frac{1}{2} \right = $	2
)
	$=\frac{1}{15}(-3, -4, -4)$	2 -
	se &= 1 (-3, -14, -4)	1
	$\sqrt{22}$	2///
(iii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3/1/
	1721 \[\sqrt{221} \]	
	or $= \sqrt{\frac{221}{225}} = \sqrt{\frac{221}{15}}$ $k = \sqrt{\frac{5}{12217}} \stackrel{?}{a} \stackrel{?}{b} = \sqrt{\frac{221}{15}}$	
	$\hat{k} = \frac{15}{\sqrt{2217}} \hat{a}_{15} \hat{b}_{15} = \frac{15}{15}$	
	=> 1=\frac{15}{24!} \tag{7}	
	Setter's initials Au - Checker's initials	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EEI (2)
Question	TOPIC	Marks & seen/unseen
Parts 6.	a Furt set $N = 1$ to gen $1 = \frac{1}{2}(1H)$ between the se proposition holos for $N = 1$.	2
	Now assume the for $N=n$ so that $1+2+3+\cdots+n=\frac{n}{2}(n+1)$	2
	But $(1+2+3+n)+n+1$ Is luefa gu by $\frac{n}{2}(n+1)+n+1$ $= \frac{(n+1)(n+2)}{2}$	4
	which is to angular proposition with Norplained by not. Here sur be- proposition from for H=1 it is for for all No.	2
	all N.	
	Setter's initials ////////////////////////////////////	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EET (2)
Question 6	TOPIC	Marks & seen/unseen
Parts		
	$I(i)$ $A \rightarrow C$	Est.
	(ii)	1
	I(i) If it is raining and the sun is shining, then there are clouds in	1
	the shy	
	(ii) If it is not raining, then	i i • 1
	the sun is shining or thore are clouds in the shy.	, '\
C	A B A->B 3-2A (A->B)a (B->A) A A B B B B->A	221
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	for the last three Columns
	F T T T T T T T T T T T T T T T T T T T	
	(A > B) n (B > A) is equivalent to A > B.	Page number
	Setter's initials Checker's initials CP CP CP	S/4