ЛАБОРАТОРНАЯ РАБОТА 38

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ СОБИРАЮЩЕЙ ЛИНЗЫ

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	

<u>Цель работы</u>: определить фокусное расстояние тонкой собирающей линзы различными способами.

Описание установки

Схема установки изображена на рисунке. На оптической скамье 1 размещен осветитель 2, который включается в цепь ~220 В через трансформатор, а также экран 4. Предметом является черный прямоугольник на матовом стекле 3. Между экраном и осветителем устанавливается из-

меряемая линза 5 в держателе или две линзы 5 и 6, образующие оптическую систему. Осветитель и линзы устанавливают на одной высоте с центром экрана.

Порядок выполнения работы

- 1. Установить экран на расстоянии L~80-100 см от предмета 3. Перемещая держатель 5 с линзой по оптической скамье, получить чёткое изображение предмета на экране.
- 2. Измерить расстояния a от предмета до линзы и b от линзы до экрана. По формуле $f = \frac{ab}{a+b}$ вычислить фокусное расстояние линзы f_1 .
- 3. Измерить штангенциркулем или линейкой размеры сторон предмета (черного прямоугольника) на матовом стекле 3 и его изображения на экране: соответственно x_1 и x_2 (по горизонтали); y_1 и y_2 (по вертикали). Вычислить величину фокусного расстояния линзы по формулам

$$f_2 = \frac{x_2 a}{x_1 + x_2}$$
, $f_3 = \frac{y_2 a}{y_1 + y_2}$.

- 4. Измерения пп.2-4 провести для N=3 различных положений линзы 5 на скамье, не меняя расстояния L между осветителем и экраном. Результаты измерений и вычислений занести в таблицу 1.
 - 5. По формулам $\langle f \rangle = \frac{1}{3} \sum f_i$, $\Delta f = \sqrt{\frac{1}{N(N-1)} \cdot \sum (\Delta f_i)^2}$, где $\Delta f_i = f_i \langle f \rangle$ вычислить и зане-

сти в таблицу 1 среднее значение фокусных расстояний и погрешности их измерения.

Таблица 1.

№ пп	а, см	<i>b</i> , см	<i>x</i> ₁ , cm	<i>y</i> ₁ , cm	<i>x</i> ₂ , cm	<i>y</i> ₂ , cm	f_1 , cm	f_2 , cm	f_3 , cm
1									
2									
3									
$\langle f_1 \rangle \pm \Delta$	$\Delta f_1 =$	±	СМ	$\langle f_2 \rangle \pm \Delta$	$f_2 = \pm$	см	$\langle f_3 \rangle \pm \Delta$	$f_3 = \pm$	СМ

- 6. Определить фокусное расстояние f собирающей линзы по методу Бесселя, установив экран на расстоянии $L \ge 60$ см от осветителя. Перемещая держатель с линзой 5 между осветителем и экраном, найти два таких положения линзы, при которых на экране видно чёткое изображение предмета (одно увеличенное, другое уменьшенное).
 - 7. Измерить расстояние z между этими положениями и рассчитать величину f по формуле

$$f = \frac{L^2 - z^2}{4L} \, .$$

Измерения и вычисления провести для N=3 различных положений L.

8. Вычислить среднее значение $\langle f \rangle = \frac{1}{3} \sum f_i$

и погрешность
$$\Delta f = \sqrt{\frac{1}{N(N-1)} \cdot \sum (\Delta f_i)^2}$$
, где

$\Delta f_i = f_i - \langle f \rangle$. Результаты занести в	таблицу 2.
--	------------------------	------------

Таблица 2.						
№ пп	L, cm	z, cm	<i>f</i> , cm			
1						
2						
3						

 $\langle f \rangle \pm \Delta f =$

 \pm

см

Контрольные вопросы к лабораторной работе № 38

- 1. Что такое фокальная плоскость, главная плоскость, главная и побочная оптическая ось, главные фокусы, оптический центр тонкой линзы?
- 2. Почему левое и правое фокусные расстояния тонкой линзы одинаковы?
- 3. Сделайте построение действительного и мнимого изображения в тонкой собирающей линзе. В каком случае изображение будет действительным, а в каком мнимым? В каком случае оно увеличено, а в каком уменьшено?
- 4. Как осуществляется построение изображения в рассеивающей линзе? Сделайте такое построение. В каких случаях и почему фокусное расстояние тонкой линзы положительно, а в каких отрицательно.
- 5. Как вычислить коэффициент линейного увеличения тонкой линзы?
- 6. Что такое оптическая сила линзы и в чем она измеряется?
- 7. Как с помощью формулы тонкой линзы можно рассчитать её фокусное расстояние? Каким образом можно определить это расстояние, зная радиусы кривизны поверхностей линзы и показатель преломления её материала?
- 8. Как определить фокусное расстояние системы из двух линз? из трёх линз? Как изменится это расстояние, если систему линз поместить в воду?
- 9. Докажите, что оптическая сила системы собирающих линз может быть меньше суммы оптических сил её линз?
- 10. Объясните методы определения фокусного расстояния линзы, используемые в работе. Объясните метод Бесселя.
- 11. Рассчитайте величину фокусного расстояния и коэффициент увеличения $k=y_2/y_1$ системы двух линз. Расстояния a от предмета до первой линзы и x от первой до второй линзы, а также фокусные расстояния f_1 и f_2 линз взять по указанию преподавателя.
- y_1 F_2 y_2 y_2
- 12. Две одинаковые тонкие собирающие линзы с фокусными расстояниями $f=20~{\rm cm}$ и общей осью находятся на расстоянии $x=90~{\rm cm}$. Предмет П находится на расстоянии $a=60~{\rm cm}$ перед первой линзой. На каком расстоянии l от предмета П надо установить экран Э, чтобы получить на нём чёткое, не перевёрнутое изображение предмета? Чему равен коэффициент увеличения этой системы?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Ландсберг Г.С. Оптика. М: ФИЗМАТЛИТ, 2003. §§77,78
- 2. Лагун И.М., Колмаков Ю.Н. Физика, изд. ТулГУ. 2023, стр.131-134