In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]:

```
import warnings
import random
warnings.filterwarnings('ignore')
seed = 42
```

1. Data Import

In [3]:

```
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
```

2. Data Analysis

In [4]:

```
train.head()
```

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI

5 rows × 81 columns

In [5]:

test.head()

Out[5]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContou
0	1461	20	RH	80.0	11622	Pave	NaN	Reg	Lv
1	1462	20	RL	81.0	14267	Pave	NaN	IR1	Lv
2	1463	60	RL	74.0	13830	Pave	NaN	IR1	Lv
3	1464	60	RL	78.0	9978	Pave	NaN	IR1	Lv
4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS

5 rows × 80 columns

In [6]:

train.shape, test.shape

Out[6]:

((1460, 81), (1459, 80))

In [7]:

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	_
			object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45 46	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object

56	Fireplaces	1460 non-null	int64			
57	FireplaceQu	770 non-null	object			
58	GarageType	1379 non-null	object			
59	GarageYrBlt	1379 non-null	float64			
60	GarageFinish	1379 non-null	object			
61	GarageCars	1460 non-null	int64			
62	GarageArea	1460 non-null	int64			
63	GarageQual	1379 non-null	object			
64	GarageCond	1379 non-null	object			
65	PavedDrive	1460 non-null	object			
66	WoodDeckSF	1460 non-null	int64			
67	OpenPorchSF	1460 non-null	int64			
68	EnclosedPorch	1460 non-null	int64			
69	3SsnPorch	1460 non-null	int64			
70	ScreenPorch	1460 non-null	int64			
71	PoolArea	1460 non-null	int64			
72	PoolQC	7 non-null	object			
73	Fence	281 non-null	object			
74	MiscFeature	54 non-null	object			
75	MiscVal	1460 non-null	int64			
76	MoSold	1460 non-null	int64			
77	YrSold	1460 non-null	int64			
78	SaleType	1460 non-null	object			
79	SaleCondition	1460 non-null	object			
80	SalePrice	1460 non-null	int64			
ltyp	es: float64(3),	int64(35), object(43)				

dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB

In [8]:

test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 80 columns):

Data	columns (total	80 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1459 non-null	int64
	-		int64
1	MSSubClass	1459 non-null	
2	MSZoning	1455 non-null	object
3	LotFrontage	1232 non-null	float64
4	LotArea	1459 non-null	int64
5	Street	1459 non-null	object
6	Alley	107 non-null	object
7	LotShape	1459 non-null	object
8	LandContour	1459 non-null	object
9	Utilities	1457 non-null	object
			-
10	LotConfig	1459 non-null	object
11	LandSlope	1459 non-null	object
12	Neighborhood	1459 non-null	object
13	Condition1	1459 non-null	object
14	Condition2	1459 non-null	object
15	BldgType	1459 non-null	object
16	HouseStyle	1459 non-null	object
17	OverallQual	1459 non-null	int64
18	OverallCond	1459 non-null	int64
19	YearBuilt	1459 non-null	int64
20	YearRemodAdd	1459 non-null	int64
21	RoofStyle	1459 non-null	object
22	RoofMatl	1459 non-null	object
23	Exterior1st	1458 non-null	object
24	Exterior2nd	1458 non-null	object
25	MasVnrType	1443 non-null	object
26	MasVnrArea	1444 non-null	float64
27	ExterQual	1459 non-null	object
28	ExterCond	1459 non-null	object
29	Foundation	1459 non-null	object
30	BsmtQual	1415 non-null	
	•		object
31	BsmtCond	1414 non-null	object
32	BsmtExposure	1415 non-null	object
33	BsmtFinType1	1417 non-null	object
34	BsmtFinSF1	1458 non-null	float64
35	BsmtFinType2	1417 non-null	object
36	BsmtFinSF2	1458 non-null	float64
37	BsmtUnfSF	1458 non-null	float64
38	TotalBsmtSF	1458 non-null	float64
39	Heating	1459 non-null	object
40	HeatingQC	1459 non-null	object
	• •		_
41	CentralAir	1459 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1459 non-null	int64
44	2ndF1rSF	1459 non-null	int64
45	LowQualFinSF	1459 non-null	int64
46	GrLivArea	1459 non-null	int64
47	BsmtFullBath	1457 non-null	float64
48	BsmtHalfBath	1457 non-null	float64
49	FullBath	1459 non-null	int64
50	HalfBath	1459 non-null	int64
51	BedroomAbvGr	1459 non-null	int64
52	KitchenAbvGr	1459 non-null	int64
53	KitchenQual	1458 non-null	object
54	TotRmsAbvGrd	1459 non-null	int64
55	Functional	1457 non-null	object

```
56 Fireplaces
                   1459 non-null
                                  int64
 57
   FireplaceQu
                   729 non-null
                                  object
 58 GarageType
                                  object
                   1383 non-null
 59 GarageYrBlt
                   1381 non-null
                                  float64
                                  object
60 GarageFinish
                   1381 non-null
61 GarageCars
                                  float64
                   1458 non-null
62 GarageArea
                   1458 non-null
                                  float64
63 GarageQual
                  1381 non-null
                                  object
64 GarageCond
                  1381 non-null
                                  object
    PavedDrive
                  1459 non-null
                                  object
65
66 WoodDeckSF
                   1459 non-null
                                  int64
67 OpenPorchSF
                   1459 non-null
                                  int64
68 EnclosedPorch 1459 non-null
                                  int64
69 3SsnPorch
                   1459 non-null
                                  int64
70 ScreenPorch
                  1459 non-null
                                  int64
71 PoolArea
                                  int64
                 1459 non-null
72 PoolQC
                  3 non-null
                                  object
73
   Fence
                  290 non-null
                                  object
74 MiscFeature 51 non-null
                                  object
75 MiscVal
                  1459 non-null
                                  int64
76 MoSold
                  1459 non-null
                                  int64
77 YrSold
                  1459 non-null
                                  int64
                                  object
78 SaleType
                  1458 non-null
79 SaleCondition 1459 non-null
                                  object
dtypes: float64(11), int64(26), object(43)
memory usage: 912.0+ KB
```

In [9]:

```
init_nums = train.dtypes[train.dtypes!='object'].index
init_nums
```

Out[9]:

In [10]:

In [11]:

```
init_cats = train.dtypes[train.dtypes == 'object'].index
init_cats
```

Out[11]:

In [12]:

train[num_cols]

Out[12]:

	LotFrontage	LotArea	MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF	TotalBsmtSF
0	65.0	8450	196.0	706	0	150	856
1	80.0	9600	0.0	978	0	284	1262
2	68.0	11250	162.0	486	0	434	920
3	60.0	9550	0.0	216	0	540	756
4	84.0	14260	350.0	655	0	490	1145
1455	62.0	7917	0.0	0	0	953	953
1456	85.0	13175	119.0	790	163	589	1542
1457	66.0	9042	0.0	275	0	877	1152
1458	68.0	9717	0.0	49	1029	0	1078
1459	75.0	9937	0.0	830	290	136	1256

1460 rows × 19 columns

In [13]:

train[num_cols].isnull().sum()

Out[13]:

LotFrontage	259
LotArea	0
MasVnrArea	8
BsmtFinSF1	0
BsmtFinSF2	0
BsmtUnfSF	0
TotalBsmtSF	0
1stFlrSF	0
2ndFlrSF	0
LowQualFinSF	0
GrLivArea	0
GarageArea	0
WoodDeckSF	0
OpenPorchSF	0
EnclosedPorch	0
3SsnPorch	0
ScreenPorch	0
PoolArea	0
MiscVal	0
dtype: int64	

- LotFontage has almost 18% of missing data.
- MasVnrArea has 8 only 8 rows missing which can be managed easily.

In [14]:

```
train[num_cols].isin([0]).sum()
```

Out[14]:

LotFrontage	0
LotArea	0
MasVnrArea	861
BsmtFinSF1	467
BsmtFinSF2	1293
BsmtUnfSF	118
TotalBsmtSF	37
1stFlrSF	0
2ndFlrSF	829
LowQualFinSF	1434
GrLivArea	0
GarageArea	81
WoodDeckSF	761
OpenPorchSF	656
EnclosedPorch	1252
3SsnPorch	1436
ScreenPorch	1344
PoolArea	1453
MiscVal	1408
dtype: int64	

• BsmtFinSF2, LowQualFinSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, MiscVal has huge amount of rows filled with zeros.

In [15]:

```
cat_cols = list(init_cats)
```

In [16]:

cat_cols

```
Out[16]:
```

```
['MSZoning',
 'Street',
 'Alley',
 'LotShape',
 'LandContour',
 'Utilities',
 'LotConfig',
 'LandSlope',
 'Neighborhood',
 'Condition1',
 'Condition2',
 'BldgType',
 'HouseStyle',
 'RoofStyle',
 'RoofMatl',
 'Exterior1st',
 'Exterior2nd',
 'MasVnrType',
 'ExterQual',
 'ExterCond',
 'Foundation',
 'BsmtQual',
 'BsmtCond',
 'BsmtExposure',
 'BsmtFinType1',
 'BsmtFinType2',
 'Heating',
 'HeatingQC',
 'CentralAir',
 'Electrical',
 'KitchenQual',
 'Functional',
 'FireplaceQu',
 'GarageType',
 'GarageFinish',
 'GarageQual',
 'GarageCond',
 'PavedDrive',
 'PoolQC',
 'Fence',
 'MiscFeature',
 'SaleType',
 'SaleCondition']
```

In [17]:

train[cat_cols]

Out[17]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neigh
0	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
1	RL	Pave	NaN	Reg	LvI	AllPub	FR2	Gtl	
2	RL	Pave	NaN	IR1	LvI	AllPub	Inside	Gtl	
3	RL	Pave	NaN	IR1	Lvl	AllPub	Corner	Gtl	
4	RL	Pave	NaN	IR1	LvI	AllPub	FR2	Gtl	
1455	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
1456	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
1457	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
1458	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
1459	RL	Pave	NaN	Reg	Lvl	AllPub	Inside	Gtl	

1460 rows × 43 columns

In [18]:

<pre>train[cat_cols].isnull().sum()</pre>	

Out[18]:

MC7 :	•
MSZoning	0
Street	0
Alley	1369
LotShape	0
LandContour	0
Utilities	0
LotConfig	0
LandSlope	0
Neighborhood	0
Condition1	0
Condition2	0
BldgType	0
HouseStyle	0
	0
RoofStyle	
RoofMatl	0
Exterior1st	0
Exterior2nd	0
MasVnrType	8
ExterQual	0
ExterCond	0
Foundation	0
BsmtQual	37
BsmtCond	37
BsmtExposure	38
BsmtFinType1	37
BsmtFinType2	38
Heating	0
HeatingQC	0
CentralAir	0
Electrical	1
	0
KitchenQual	
Functional	0
FireplaceQu	690
GarageType	81
GarageFinish	81
GarageQual	81
GarageCond	81
PavedDrive	0
PoolQC	1453
Fence	1179
MiscFeature	1406
SaleType	0
SaleCondition	0
dtype: int64	J
acype, Incoa	

• Alley, FireplaceQu, PolQC, Fence, MiscFeature has significant number of missing values.

In [19]:

train[num_countable]

Out[19]:

	MSSubClass	OverallQual	OverallCond	BedroomAbvGr	KitchenAbvGr	TotRmsAbvGrd
0	60	7	5	3	1	8
1	20	6	8	3	1	6
2	60	7	5	3	1	6
3	70	7	5	3	1	7
4	60	8	5	4	1	9
	•••		•••			
1455	60	6	5	3	1	7
1456	20	6	6	3	1	7
1457	70	7	9	4	1	9
1458	20	5	6	2	1	5
1459	20	5	6	3	1	6

1460 rows × 12 columns

In [20]:

train[num_countable].isnull().sum()

Out[20]:

MSSubClass 0 OverallQual 0 OverallCond 0 BedroomAbvGr 0 KitchenAbvGr 0 ${\tt TotRmsAbvGrd}$ 0 Fireplaces 0 GarageCars 0 ${\sf BsmtFullBath}$ 0 BsmtHalfBath 0 FullBath 0 0 HalfBath dtype: int64

In [21]:

train[date_cols]

Out[21]:

	YearBuilt	YearRemodAdd	GarageYrBlt	MoSold	YrSold
0	2003	2003	2003.0	2	2008
1	1976	1976	1976.0	5	2007
2	2001	2002	2001.0	9	2008
3	1915	1970	1998.0	2	2006
4	2000	2000	2000.0	12	2008
1455	1999	2000	1999.0	8	2007
1456	1978	1988	1978.0	2	2010
1457	1941	2006	1941.0	5	2010
1458	1950	1996	1950.0	4	2010
1459	1965	1965	1965.0	6	2008

1460 rows × 5 columns

In [22]:

train[date_cols].isnull().sum()

Out[22]:

YearBuilt 0
YearRemodAdd 0
GarageYrBlt 81
MoSold 0
YrSold 0

dtype: int64

• GarageYrBlt has 81 rows of mising value, does that mean garage is not there?

Descriptive statistics of the numeric columns

In [23]:

train[num_cols].describe().T

Out[23]:

	count	mean	std	min	25%	50%	75%	ma
LotFrontage	1201.0	70.049958	24.284752	21.0	59.00	69.0	80.00	313.
LotArea	1460.0	10516.828082	9981.264932	1300.0	7553.50	9478.5	11601.50	215245.
MasVnrArea	1452.0	103.685262	181.066207	0.0	0.00	0.0	166.00	1600.
BsmtFinSF1	1460.0	443.639726	456.098091	0.0	0.00	383.5	712.25	5644.
BsmtFinSF2	1460.0	46.549315	161.319273	0.0	0.00	0.0	0.00	1474.
BsmtUnfSF	1460.0	567.240411	441.866955	0.0	223.00	477.5	808.00	2336.
TotalBsmtSF	1460.0	1057.429452	438.705324	0.0	795.75	991.5	1298.25	6110.
1stFlrSF	1460.0	1162.626712	386.587738	334.0	882.00	1087.0	1391.25	4692.
2ndFlrSF	1460.0	346.992466	436.528436	0.0	0.00	0.0	728.00	2065.
LowQualFinSF	1460.0	5.844521	48.623081	0.0	0.00	0.0	0.00	572.
GrLivArea	1460.0	1515.463699	525.480383	334.0	1129.50	1464.0	1776.75	5642.
GarageArea	1460.0	472.980137	213.804841	0.0	334.50	480.0	576.00	1418.
WoodDeckSF	1460.0	94.244521	125.338794	0.0	0.00	0.0	168.00	857.
OpenPorchSF	1460.0	46.660274	66.256028	0.0	0.00	25.0	68.00	547.
EnclosedPorch	1460.0	21.954110	61.119149	0.0	0.00	0.0	0.00	552.
3SsnPorch	1460.0	3.409589	29.317331	0.0	0.00	0.0	0.00	508.
ScreenPorch	1460.0	15.060959	55.757415	0.0	0.00	0.0	0.00	480.
PoolArea	1460.0	2.758904	40.177307	0.0	0.00	0.0	0.00	738.
MiscVal	1460.0	43.489041	496.123024	0.0	0.00	0.0	0.00	15500.
								_ \

Lets also have a glance of all the numeric columns and their dependencies on each other.

In [24]:

```
all_num_col = ['SalePrice'] + num_countable + num_cols + date_cols

plt.figure(figsize=(30, 16))
    corr = train[all_num_col].corr()
    sns.heatmap(corr, annot=True, cmap='Blues')
    plt.xticks(fontsize=15)
    plt.yticks(fontsize=15)
    plt.show()
```


Correlation exists between different features

High Correlation

- TotRmsAbvGrd vs GrLivArea 0.83
- GarageCars vs GarageArea 0.88
- 1stFirSF vs TotalBsmtSF 0.82
- GarageYrBlt vs YearBuilt 0.83

Moderate Correlation

- TotRomsAbvGrd vs BedroomAbvGr 0.68
- GrLivArea vs 2ndFlrSF 0.69
- BsmtFullBath vs BsmtFinSF1 0.65
- GarageYrBlt vs YearRemodAdd 0.64
- GrLivArea vs FullBath 0.63
- TotRmsAbvGrd vs 2ndFlrSF 0.62
- · 2ndFlrSF vs HalfBath 0.61
- · OverallQual vs GarageCars 0.6
- GrLivArea vs OverallQual 0.59
- GarageArea vs OverallQual 0.59
- YearRemodAdd vs YearBult 0.59
- 1stFlrSF vs GrLivArea 0.57
- FullBath vs OverallQual 0.55

- FullBath vs TotRmsAbvGrd 0.55
- TotalBsmtSF vs OverallQual 0.54

Decision

- GarageArea is sufficient to give information to give idea about Garage, hence GarageCars can be removed.
- GrLivArea can be used alone to denote living area. TotRmsAbvGrd can be removed and BedroomsAbvGr can be removed as well.
- If area of first floor depends on basement area then lets remove 1stFlrSF.

In [25]:

```
remove_cols = ['GarageCars', 'TotRmsAbvGrd', 'BedroomAbvGr', '1stFlrSF']
```

In [26]:

```
for col in remove_cols:
    if col in num_countable:
        num_countable.remove(col)
    if col in num_cols:
        num_cols.remove(col)
num_cols
```

Out[26]:

```
['LotFrontage',
 'LotArea',
 'MasVnrArea',
 'BsmtFinSF1',
 'BsmtFinSF2',
 'BsmtUnfSF',
 'TotalBsmtSF',
 '2ndFlrSF',
 'LowQualFinSF',
 'GrLivArea',
 'GarageArea',
 'WoodDeckSF',
 'OpenPorchSF',
 'EnclosedPorch',
 '3SsnPorch',
 'ScreenPorch',
 'PoolArea',
 'MiscVal']
```

In [27]:

```
num_countable
```

```
Out[27]:
```

```
['MSSubClass',
'OverallQual',
'OverallCond',
'KitchenAbvGr',
'Fireplaces',
'BsmtFullBath',
'BsmtHalfBath',
'FullBath',
'HalfBath']
```

Visualizing the target

In [28]:

```
#Plotting the target
fig, ax = plt.subplots(1, 2, figsize=(20, 8))
sns.scatterplot(y = 'SalePrice', x = train.index, data=train, ax=ax[0])
sns.histplot(x='SalePrice', data=train, kde=True, ax=ax[1])
fig.show()
```



```
In [29]:
```

```
def dist_plot(df, columns, kind='scatter', label='SalePrice', basis=None):
   plt.figure(figsize=(20, 16))
   for idx, column in enumerate(columns):
        f = plt.subplot(5, 4, idx+1)
        if kind == 'scatter':
            g = sns.scatterplot(x = column, y = label, data = df, hue=basis)
        elif (kind == 'histplot'):
            g = sns.histplot(x = column, data = df, hue=basis, kde=True)
        elif (kind =='boxplot'):
            g = sns.boxplot(x = column, data=df, hue=basis)
   plt.tight_layout()
def count_plot(df, columns, label='SalePrice', kind = 'countplot', basis=None):
   plt.figure(figsize=(24, 18))
   for idx, column in enumerate(columns):
        f = plt.subplot(6, 4, idx+1)
        if kind == 'countplot':
            g= sns.countplot(x = column, data = df, hue=basis)
        if kind == 'barplot':
            g= sns.barplot(x = column, y=label, data = df, hue=basis)
   plt.tight_layout()
```

Analyzing the numeric features

In [30]:

dist_plot(train, num_cols)

In [31]:

In [32]:

Observations - Numeric Features

- MiscVal has very few values and majority of them are zeros, do not see any specific relation with target as well. Need to decide whether we really require this column. At most, we can add a new column say 'HasSpecialFeature' and populate 0,1 while removing MiscVal.
- PoolArea same logic as MiscVal goes for PoolArea i.e., add column HasPool & remove PoolArea
- With similar logic, lets add 3 new columns HasEnclosedPorch, Has3SsnPorch, HasScreenPorch
- OpenPorchSF More than 600 rows contain zero, that means roughly 800 rows has value for OpenPorchSF. Maybe create a column 'HaveOpenPorch'with (0,1) values.
- Similar logic goes for 'WoodDeckSF' i.e., remove WoodDeckSF and create 'HasWoodDeck' with (0,1)
- GarageArea seems to have a linear relationship with the target. The zeros can be replaced with the median value. We will treat the outliers seperately.
- · Same logic goes for GrLivArea.
- Majority of the rows are zeros for LowQualFinSF, can we delete it?.
- 2ndFlrSF also has same thing i.e., huge number of values are zeros.
- Will keep BsmtUnfSF & TotalBsmtSF as is and treat the zeros in usual manner.
- For BsmtFinSF1, BsmtFinSF2 lets create a new column HasType1Finishing & HasType2Finishing columns
- · Lets do the same as previous for MasVnrArea.
- Keeping LotArea as is. Need to do further research.

Strategy

1. First we will delete the unwanted columns

2. Acordingly will add the new column set for the conditions discovered.

```
In [33]:
```

```
['GarageCars',
 'TotRmsAbvGrd',
 'BedroomAbvGr',
 '1stFlrSF',
 'MiscVal',
 'PoolArea',
 'EnclosedPorch',
 '3SsnPorch',
 'ScreenPorch',
 'OpenPorchSF',
 'WoodDeckSF',
 'LowQualFinSF',
 '2ndFlrSF',
 'BsmtFinSF1',
 'BsmtFinSF2',
 'MasVnrArea']
```

In [34]:

```
# new_col_rpl = {'MiscVal': 'HasSpecialFeature', 'PoolArea': 'HasPoolArea', 'EnclosedPorc
# '3SsnPorch': 'Has3SsnPorch', 'ScreenPorch': 'HasScreenPorch', 'OpenPorch'
# 'LowQualSF': 'HasLowQual', '2ndFlrSF': 'Has2ndFlr', 'BsmtFinSF1': 'HasTyp
# 'BsmtFinSF2': 'HasType2Finishing', 'MasVnrArea': 'HasMasVnrArea'}
```

Analyzing the countable features

```
In [35]:
```

```
num_countable
```

```
Out[35]:
```

```
['MSSubClass',
'OverallQual',
'OverallCond',
'KitchenAbvGr',
'Fireplaces',
'BsmtFullBath',
'BsmtHalfBath',
'FullBath',
'HalfBath']
```

In [36]:

In [37]:

Obesrvations - Countable Features

- Type of dwelling i.e., MSSubclass does not change SalePrice significantly.
- With OverallQual, SalePrice increases which is a general phenomena and evident here.
- Better the condition, more the price but average condition i.e., 5 has more price than (6, 7, 8) and their prices are almost almost same. Any reason?
- · More no. of kitchen does not gurantee more price.
- This is interesting, more fireplaces means more price. Although number of homes with more than 1 fireplaces is very less.
- More than 1 BsmtFullBath is rare. Can we do anything about it?
- Similar thing is observed for BsmtHalfBath. More than 0 is rare and doesn't effect the price that much.
- FullBath also has similar traits. Fullbath 0 and 3 is rare but has significant price impact though.
- · 1 Halfbath means more price.

Analyzing categorical features

In [38]:

```
train[cat_cols].isnull().sum()
```

Out[38]:

MSZoning	0
Street	0
Alley	1369
LotShape	0
LandContour	0
Utilities	0
LotConfig	0
LandSlope	0
Neighborhood	0
Condition1	0
Condition2	0
BldgType	0
HouseStyle	0
RoofStyle	0
RoofMat1	0
Exterior1st	0
Exterior2nd	0
MasVnrType	8
ExterQual	0
ExterCond	0
Foundation	0
BsmtQual	37
BsmtCond	37
BsmtExposure	38
BsmtFinType1	37
BsmtFinType2	38
Heating	0
HeatingQC	0
CentralAir	0
Electrical	1
KitchenQual	0
Functional	0
FireplaceQu	690
GarageType	81
GarageFinish	81
GarageQual	81
GarageCond	81
PavedDrive	0
PoolQC	1453
Fence	1179
MiscFeature	1406
SaleType	0
SaleCondition	0
dtype: int64	5
acype. Inco+	

In [39]:

In [40]:

Observations

- Alley: NA here means No alley access. Replace 'NA' with 'No Alley' then OneHot can be done for this
 column
- FirePlaceQu: NA means 'No fireplace'. Before deciding the encoding, maybe we need to analyze the dependency on target.
- PoolQC: Same as above.
- Fence: NA means no fence. OrdinalEncoding can be done.
- · MiscFeature: NA means no features. OneHotEncoding is apt.
- GarageType NA means no garage and as a result GarageFinish, GarageQual, GarageCond has NA values. Same like PoolQC.
- GarageQual and GarageCond are almost same. Deleting one of them.
- BsmtExposure, BsmtFinType1, BsmtFinType2: Ordinal encoding can be done but lets check the dependeny first.
- · BsmtQual Ordinal encoding
- BsmtCond Ordinal Encoding

In [41]:

```
remove_cols.append('GarageCond')
remove_cols
```

Out[41]:

```
['GarageCars',
 'TotRmsAbvGrd',
 'BedroomAbvGr',
 '1stFlrSF',
 'MiscVal',
 'PoolArea',
 'EnclosedPorch',
 '3SsnPorch',
 'ScreenPorch',
 'OpenPorchSF',
 'WoodDeckSF',
 'LowQualFinSF',
 '2ndFlrSF',
 'BsmtFinSF1',
 'BsmtFinSF2',
 'MasVnrArea',
 'GarageCond']
```

```
In [42]:
```

Out[42]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
0	1	60	RL	65.0	8450	Pave	No Alley	Reg	
1	2	20	RL	80.0	9600	Pave	No Alley	Reg	
2	3	60	RL	68.0	11250	Pave	No Alley	IR1	
3	4	70	RL	60.0	9550	Pave	No Alley	IR1	
4	5	60	RL	84.0	14260	Pave	No Alley	IR1	
1455	1456	60	RL	62.0	7917	Pave	No Alley	Reg	
1456	1457	20	RL	85.0	13175	Pave	No Alley	Reg	
1457	1458	70	RL	66.0	9042	Pave	No Alley	Reg	
1458	1459	20	RL	68.0	9717	Pave	No Alley	Reg	
1459	1460	20	RL	75.0	9937	Pave	No Alley	Reg	
1460 rows × 81 columns									

In [43]:

```
cat[cat_cols].isnull().sum()
```

Out[43]:

MSZoning 0 Street 0 Alley 0 LotShape 0 LandContour 0 Utilities 0 0 LotConfig LandSlope 0 Neighborhood 0 Condition1 0 Condition2 0 BldgType 0 0 HouseStyle RoofStyle 0 RoofMat1 0 Exterior1st 0 Exterior2nd 0 MasVnrType 0 ExterQual 0 ExterCond 0 Foundation 0 0 **BsmtQual BsmtCond** 0 0 BsmtExposure BsmtFinType1 0 BsmtFinType2 0 Heating 0 HeatingQC 0 CentralAir 0 Electrical 0 KitchenQual 0 Functional 0 FireplaceQu 0 GarageType 0 GarageFinish 0 0 GarageQual GarageCond 0 PavedDrive 0 PoolQC 0 0 Fence MiscFeature 0 SaleType 0 SaleCondition

In [44]:

dtype: int64

#Checking every categorical columns and their dependency on target

In [45]:

In [46]:

Observation

- · MSZoning: Lets make the categories as 'RL & 'Other' then one-hot encoding
- Street: Almost all type of roads are Paved. Maybe can be deleted.
- Alley catagories can be transformed as 'No Alley' and 'With Alley' then one-hot.
- LotShape: Make categories as 'Regular' and 'Irregular' then one hot.
- · LandContour: 'Lvl' & 'Other' then one hot
- · Utilities: Remove the column.
- · LotConfig: 'Inside' & 'Other'
- LandSlope: 'Gtl' & 'Other'
- · Neighbourhood: Lets analyze more
- Condition1: 'Norm', 'Feedr', 'Artery', 'Other'.
- Condition2: Lets check the dependency with condition1 and accordingly will decide.
- BldgType: One hot
- HouseStyle: Make the categories as 1Story, 2Story, 1.5Story and other
- RoofStyle: Gable, Hip, Other
- RoofMatl: Lets delete this column. Almost 95% is of a single category.
- · MasVnrType: On hot encoding.
- · ExternalQual: Lets do Ordinal encoding.
- · ExternalCond: Lets do Ordinal encoding.
- Foundation: PConc, CBlock, BrkTil and Other.

In [47]:

```
cat_cols
```

```
Out[47]:
```

```
['MSZoning',
 'Street',
 'Alley',
 'LotShape',
 'LandContour',
 'Utilities',
 'LotConfig',
 'LandSlope',
 'Neighborhood',
 'Condition1',
 'Condition2',
 'BldgType',
 'HouseStyle',
 'RoofStyle',
 'RoofMatl',
 'Exterior1st',
 'Exterior2nd',
 'MasVnrType',
 'ExterQual',
 'ExterCond',
 'Foundation',
 'BsmtQual',
 'BsmtCond',
 'BsmtExposure',
 'BsmtFinType1',
 'BsmtFinType2',
 'Heating',
 'HeatingQC',
 'CentralAir',
 'Electrical',
 'KitchenQual',
 'Functional',
 'FireplaceQu',
 'GarageType',
 'GarageFinish',
 'GarageQual',
 'GarageCond',
 'PavedDrive',
 'PoolQC',
 'Fence',
 'MiscFeature',
 'SaleType',
 'SaleCondition']
```

In [48]:

In [49]:

Observation

- · BsmtQual, BsmtCond: ordinal encoding
- · BsmtExposure: Ordinal encoding
- BsmtFinType1: Ordinal Enc
- BsmtFinType2: Ordinal Enc
- · Heating: Categories are 'GasA' and 'Other'; one hot
- HeatingQC: OrdinalCentralAir: one hot
- Electrical: 'SBrkr' and 'Other'; one hot
- KitchenQual: Ordinal
- Functional: 'Typ' & 'Other'; one hot
- FireplaceQu: ordinal
- GarageType: 'Attachd', 'Detachd' and 'Other'; one hot
- GarageFinish: one hot
- GarageQual: 'TA', 'Other'; one hot
- GarageCond can be deleted; seems same as the GarageQual.
- · PavedDrive: 'Y' and 'N'; ordinal
- PoolQC: 99% rows has only one valie, can be deleted.
- Fence: 'No Fence', 'Hasfence'; ordinal
- MiscFeature: 'Yes' and 'No'; ordinal
- SaleType: 'WD', 'New', 'COD', 'Other'; one hot
- SaleCondition: 'Normal', 'Not Normal'; ordinal

In [50]:

```
#Checking Neighbourhood column

df_nei = train.groupby(['Neighborhood']).aggregate({'SalePrice': ['mean', 'count']}).rese

df_nei.columns = ['Neighbor', 'Sale_Mean', 'Homes']

df_nei = df_nei.sort_values(by='Sale_Mean')

df_nei
```

Out[50]:

	Neighbor	Sale_Mean	Homes
10	MeadowV	98576.470588	17
9	IDOTRR	100123.783784	37
2	BrDale	104493.750000	16
3	BrkSide	124834.051724	58
7	Edwards	128219.700000	100
17	OldTown	128225.300885	113
19	Sawyer	136793.135135	74
1	Blueste	137500.000000	2
18	SWISU	142591.360000	25
13	NPkVill	142694.444444	9
12	NAmes	145847.080000	225
11	Mitchel	156270.122449	49
20	SawyerW	186555.796610	59
14	NWAmes	189050.068493	73
8	Gilbert	192854.506329	79
0	Blmngtn	194870.882353	17
5	CollgCr	197965.773333	150
6	Crawfor	210624.725490	51
4	ClearCr	212565.428571	28
21	Somerst	225379.837209	86
24	Veenker	238772.727273	11
23	Timber	242247.447368	38
22	StoneBr	310499.000000	25
16	NridgHt	316270.623377	77
15	NoRidge	335295.317073	41

In [51]:

```
#Can create probabilities of each neighbourhod

df_nei['NeighProba'] = df_nei['Homes']/train.shape[0]
df_nei
```

Out[51]:

	Neighbor	Sale_Mean	Homes	NeighProba
10	MeadowV	98576.470588	17	0.011644
9	IDOTRR	100123.783784	37	0.025342
2	BrDale	104493.750000	16	0.010959
3	BrkSide	124834.051724	58	0.039726
7	Edwards	128219.700000	100	0.068493
17	OldTown	128225.300885	113	0.077397
19	Sawyer	136793.135135	74	0.050685
1	Blueste	137500.000000	2	0.001370
18	SWISU	142591.360000	25	0.017123
13	NPkVill	142694.444444	9	0.006164
12	NAmes	145847.080000	225	0.154110
11	Mitchel	156270.122449	49	0.033562
20	SawyerW	186555.796610	59	0.040411
14	NWAmes	189050.068493	73	0.050000
8	Gilbert	192854.506329	79	0.054110
0	Blmngtn	194870.882353	17	0.011644
5	CollgCr	197965.773333	150	0.102740
6	Crawfor	210624.725490	51	0.034932
4	ClearCr	212565.428571	28	0.019178
21	Somerst	225379.837209	86	0.058904
24	Veenker	238772.727273	11	0.007534
23	Timber	242247.447368	38	0.026027
22	StoneBr	310499.000000	25	0.017123
16	NridgHt	316270.623377	77	0.052740
15	NoRidge	335295.317073	41	0.028082

In [52]:

```
df_cond = train.groupby(['Condition1', 'Condition2']).aggregate({'SalePrice': ['mean', 'c
df_cond.columns = ['Condition1', 'Condition2', 'Sale_Mean', 'Homes']

df_cond = df_cond.sort_values(by='Sale_Mean')
df_cond
```

Out[52]:

	Condition1	Condition2	Sale_Mean	Homes
3	Feedr	Feedr	85000.000000	1
7	Feedr	RRNn	96750.000000	2
0	Artery	Artery	106500.000000	2
16	RRNn	Feedr	128000.000000	1
13	RRAn	Feedr	128500.000000	4
1	Artery	Norm	132142.222222	45
6	Feedr	RRAn	136905.000000	1
12	RRAe	Norm	138400.000000	11
4	Feedr	Norm	143883.013158	76
8	Norm	Norm	184495.492063	1260
5	Feedr	RRAe	190000.000000	1
15	RRNe	Norm	190750.000000	2
14	RRAn	Norm	194559.636364	22
10	PosN	Norm	206985.294118	17
9	PosA	Norm	225875.000000	8
17	RRNn	Norm	233500.000000	4
11	PosN	PosN	284875.000000	2
2	Artery	PosA	325000.000000	1

In [53]:

```
#Can create probabilities of each neighbourhod

df_cond['CondProba'] = df_cond['Homes']/train.shape[0]
df_cond
```

Out[53]:

	Condition1	Condition2	Sale_Mean	Homes	CondProba
3	Feedr	Feedr	85000.000000	1	0.000685
7	Feedr	RRNn	96750.000000	2	0.001370
0	Artery	Artery	106500.000000	2	0.001370
16	RRNn	Feedr	128000.000000	1	0.000685
13	RRAn	Feedr	128500.000000	4	0.002740
1	Artery	Norm	132142.222222	45	0.030822
6	Feedr	RRAn	136905.000000	1	0.000685
12	RRAe	Norm	138400.000000	11	0.007534
4	Feedr	Norm	143883.013158	76	0.052055
8	Norm	Norm	184495.492063	1260	0.863014
5	Feedr	RRAe	190000.000000	1	0.000685
15	RRNe	Norm	190750.000000	2	0.001370
14	RRAn	Norm	194559.636364	22	0.015068
10	PosN	Norm	206985.294118	17	0.011644
9	PosA	Norm	225875.000000	8	0.005479
17	RRNn	Norm	233500.000000	4	0.002740
11	PosN	PosN	284875.000000	2	0.001370
2	Artery	PosA	325000.000000	1	0.000685

In []:

Analyzing date columns

In [54]:

```
date_cols
```

Out[54]:

```
['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'MoSold', 'YrSold']
```

In [55]:

```
#MoSold can be deleted citing very less dependency on SalePrice
#Instead of 'YearRemodAdd' we can add a new column as Remodified with (1/0)
#Add a column 'Building_Age' as the difference between YrSold and YearBuilt
```

In [56]:

In [57]:

```
for col in date_cols:
    remove_cols.append(col)

remove_cols
```

Out[57]:

```
['GarageCars',
 'TotRmsAbvGrd',
 'BedroomAbvGr',
 '1stFlrSF',
 'MiscVal',
 'PoolArea',
 'EnclosedPorch',
 '3SsnPorch',
 'ScreenPorch',
 'OpenPorchSF',
 'WoodDeckSF',
 'LowQualFinSF',
 '2ndFlrSF',
 'BsmtFinSF1',
 'BsmtFinSF2',
 'MasVnrArea',
 'GarageCond',
 'YearBuilt',
 'YearRemodAdd',
 'GarageYrBlt',
 'MoSold',
 'YrSold']
```

```
In [58]:
```

Out[58]:

```
['MSZoning',
 'LotShape',
 'LandContour',
 'LotConfig',
 'LandSlope',
 'BldgType',
 'HouseStyle',
 'RoofStyle',
 'MasVnrType',
 'Foundation',
 'Heating',
 'CentralAir',
 'Electrical',
 'Functional',
 'GarageType',
 'GarageFinish',
 'SaleType',
 'SaleCondition',
 'FireplaceQu',
 'ExterQual',
 'ExterCond',
 'BsmtQual',
 'BsmtCond',
 'BsmtExposure',
 'BsmtFinType1',
 'BsmtFinType2',
 'HeatingQC',
 'KitchenQual',
 'GarageQual',
 'PavedDrive',
 'Alley',
 'Exterior1st',
 'Exterior2nd']
```

To-do List

- 1. Remove outliers from the numeric features.
- 2. Treat missing values of the numerical columns.
- 3. Treat missing values of the countable and date columns.
- 4. Add new columns as per new col rpl
- 5. Transform NaN values as per trans nan cols
- 6. Perform step for date columns.
- 7. Add Proba columns
- 8. Remove unwanted columns.
- 9. Treat Missing values of the categorical columns
- 10. Perform Ordinal/Onehot encoding for categorical

3. Data Preprocessing

In [59]:

```
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
```

In [60]:

```
def treat_outliers(X, columns):
    new_X = X.copy()
    new_X[columns] = X[columns].fillna(value=0)

for column in columns:

    Q1 = np.percentile(new_X[column], 25.)
    Q2 = np.percentile(new_X[column], 50.)
    Q3 = np.percentile(new_X[column], 75.)

    IQR = (Q3 - Q1) * 1.5
    upper, lower = Q3 + IQR, Q1 - IQR

    new_X.loc[(new_X[column] > upper), column] = upper
    new_X.loc[(new_X[column] < lower), column] = lower

    return new_X</pre>
```

In [61]:

```
train_out = treat_outliers(train, num_cols)
dist_plot(train_out, num_cols, kind='boxplot')
```


In [62]:

```
y_train = train_out['SalePrice']
X_train = train_out.drop(['SalePrice'], axis=1)
```

In [63]:

In [64]:

```
cat_trans = CategoryTransformer()
cat_dt = cat_trans.transform(X_train[cat_cols])
cat_dt
```

Out[64]:

In [65]:

```
class DataFilter(BaseEstimator, TransformerMixin):
    def __init__(self):
        self.cols_to_remove = ['Id','GarageCars', 'TotRmsAbvGrd', 'BedroomAbvGr', '1stFlr
                                 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'OpenPorchSF'
                                '2ndFlrSF', 'BsmtFinSF1', 'BsmtFinSF2', 'MasVnrArea', 'Gar
'GarageYrBlt', 'MoSold', 'YrSold', 'Street', 'Utilities',
                                 'Neighborhood', 'Condition1', 'Condition2', 'MiscFeature',
        self.new_col_rpl = {'MiscVal': 'HasSpecialFeature', 'PoolArea': 'HasPool', 'Enclo
               '3SsnPorch': 'Has3SsnPorch', 'ScreenPorch': 'HasScreenPorch', 'OpenPorchSF'
               'LowQualFinSF': 'HasLowQualFin', '2ndFlrSF': 'Has2ndFlr', 'BsmtFinSF1': 'Ha
                'BsmtFinSF2': 'HasType2Finishing', 'MasVnrArea': 'HasMasVnrArea', 'YearRem
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        new_X = X.copy()
        for old, new in self.new_col_rpl.items():
            new_X[new] = new_X[old].apply(lambda x: 1 if x !=0 else 0)
        new_X['BuildingAge'] = new_X['YrSold'] - new_X['YearBuilt']
        probaSet = ['Neighborhood', 'Condition1', 'Condition2']
        for col in probaSet:
            probas = new_X[col].value_counts(normalize=True)
            prefix = col+'Proba'
            new_X[prefix] = new_X[col].apply(lambda x : probas[x])
        trans_X = new_X.drop(self.cols_to_remove, axis=1)
        return trans X.to numpy()
```

In [66]:

X_train

Out[66]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
0	1	60	RL	65.0	8450.0	Pave	NaN	Reg	
1	2	20	RL	80.0	9600.0	Pave	NaN	Reg	
2	3	60	RL	68.0	11250.0	Pave	NaN	IR1	
3	4	70	RL	60.0	9550.0	Pave	NaN	IR1	
4	5	60	RL	84.0	14260.0	Pave	NaN	IR1	
1455	1456	60	RL	62.0	7917.0	Pave	NaN	Reg	
1456	1457	20	RL	85.0	13175.0	Pave	NaN	Reg	
1457	1458	70	RL	66.0	9042.0	Pave	NaN	Reg	
1458	1459	20	RL	68.0	9717.0	Pave	NaN	Reg	
1459	1460	20	RL	75.0	9937.0	Pave	NaN	Reg	

1460 rows × 80 columns

In [68]:

all_cols = list(X_train.columns)

In [69]:

```
'Street',
'Utilities',
'Neighborhood',
'Condition1',
'Condition2',
'YearBuilt',
'YearRemodAdd',
'RoofMatl',
'MasVnrArea',
'BsmtFinSF1',
'BsmtFinSF2',
'1stFlrSF',
'2ndFlrSF'
'LowQualFinSF',
'BedroomAbvGr',
'TotRmsAbvGrd',
'GarageYrBlt',
'GarageCars',
'GarageCond',
'WoodDeckSF'
'OpenPorchSF',
'EnclosedPorch',
'3SsnPorch',
'ScreenPorch',
'PoolArea',
'PoolQC',
'Fence',
'MiscFeature',
'MiscVal',
'MoSold',
```

'YrSold']

```
In [70]:
```

```
dt = DataFilter()
trans_data = dt.transform(X_train[filter_cols])
trans_data
```

Out[70]:

```
array([[0.
                                           , ..., 0.10273973, 0.8630137 ,
                  , 0.
                               , 0.
        0.98972603],
                  , 0.
                                           , ..., 0.00753425, 0.05547945,
       [0.
                               , 0.
        0.98972603],
       [0.
                               , 0.
                                           , ..., 0.10273973, 0.8630137 ,
        0.98972603],
       . . . ,
                               , 0.
       [0.
                  , 0.
                                           , ..., 0.03493151, 0.8630137 ,
        0.98972603],
                  , 0.
                               , 0.
                                           , ..., 0.15410959, 0.8630137 ,
       [0.
        0.98972603],
       [0.
                  , 0.
                               , 0.
                                           , ..., 0.06849315, 0.8630137 ,
        0.98972603]])
```

In [71]:

```
len(trans_data[0])
```

Out[71]:

17

In [72]:

```
#Imputing Values
imp1 = SimpleImputer(strategy='median')
imp_num = imp1.fit_transform(X_train[num_cols])
imp_num
```

Out[72]:

```
array([[
           65., 8450.,
                          150.,
                                   856.,
                                          1710.,
                                                   548.],
                 9600.,
                                 1262.,
       [
           80.,
                          284.,
                                          1262.,
                                                   460.],
       [
           68., 11250.,
                          434.,
                                   920.,
                                          1786.,
                                                   608.],
                                  1152.,
           66.,
                 9042.,
                          877.,
                                          2340.,
                                                   252.],
       [
           68., 9717.,
                          0.,
                                  1078., 1078.,
                                                   240.],
                                 1256., 1256.,
           75.,
                9937.,
                          136.,
                                                   276.]])
```

```
In [73]:
imp2 = SimpleImputer(strategy='most frequent')
imp_countable = imp2.fit_transform(X_train[num_countable])
imp_countable
Out[73]:
array([[60, 7, 5, ...,
                          0, 2,
                                 1],
       [20, 6, 8, ...,
                          1, 2,
                                  0],
            7, 5, ...,
                          0,
                              2,
                                  1],
       [60,
       . . . ,
            7, 9, ..., 0, 2,
                                  0],
       [70,
       [20, 5, 6, ..., 0, 1,
                                  0],
       [20, 5, 6, ..., 0, 1,
                                  1]], dtype=int64)
In [ ]:
In [74]:
imp3 = SimpleImputer(strategy='most frequent')
imp_category = imp3.fit_transform(train_out[cat_cols])
imp_category
Out[74]:
array([['RL', 'Reg', 'Lvl', ..., 'Grvl', 'VinylSd', 'VinylSd'],
       ['RL', 'Reg', 'Lvl', ..., 'Grvl', 'MetalSd', 'MetalSd'],
       ['RL', 'IR1', 'Lvl', ..., 'Grvl', 'VinylSd', 'VinylSd'],
       ['RL', 'Reg', 'Lvl', ..., 'Grvl', 'CemntBd', 'CmentBd'],
       ['RL', 'Reg', 'Lvl', ..., 'Grvl', 'MetalSd', 'MetalSd'],
       ['RL', 'Reg', 'Lvl', ..., 'Grvl', 'HdBoard', 'HdBoard']],
      dtype=object)
In [75]:
#Encoding the applicable categorical columns
In [76]:
one hot = OneHotEncoder(drop='first', dtype='int')
hot enc = one hot.fit transform(train out[cat cols])
hot enc.toarray()
```

Out[76]:

```
In [77]:
```

```
#ordi = OrdinalEncoder()
```

In [78]:

```
#Creating Data Preparation Pipeline
num_pipeline = Pipeline([('imp1', SimpleImputer(strategy='median'))])
count_pipeline = Pipeline([('imp2', SimpleImputer(strategy='most_frequent'))])
data_filter_pipeline = Pipeline([('dt', DataFilter())])
cat_pipeline = Pipeline([('cat_dt', CategoryTransformer())])
# hot_enc_pl = Pipeline([('one_hot', OneHotEncoder(drop='first', dtype='int'))])
# ord_enc_pl = Pipeline([('ordi', OrdinalEncoder(dtype='int'))])
```

In [79]:

```
# data_pipeline = ColumnTransformer([('num', num_pipeline, num_cols),
#
                                    ('countable', count_pipeline, num_countable),
#
                                     ('filter', data_filter_pipeline, all_cols),
#
                                     ('cat', cat_pipeline, cat_cols),
#
                                     ('hot_enc', hot_enc_pl, hot_cols),
#
                                     ('ord_enc', ord_enc_pl, ord_cols)])
data_pipeline = ColumnTransformer([('num', num_pipeline, num_cols),
                                  ('countable', count_pipeline, num_countable),
                                   ('filter', data filter pipeline, filter cols),
                                  ('cat', cat_pipeline, cat_cols)])
data_pipeline
```

Out[79]:

```
ColumnTransformer(transformers=[('num',
                                  Pipeline(steps=[('imp1',
                                                   SimpleImputer(strategy
='median'))]),
                                  ['LotFrontage', 'LotArea', 'BsmtUnfSF',
                                   'TotalBsmtSF', 'GrLivArea', 'GarageAre
a']),
                                 ('countable',
                                  Pipeline(steps=[('imp2',
                                                   SimpleImputer(strategy
='most_frequent'))]),
                                  ['MSSubClass', 'OverallQual', 'OverallCon
d',
                                   'KitchenAbvGr', 'Fireplaces', 'BsmtFullB
ath',
                                   'BsmtHal...
                                   'LotConfig', 'LandSlope', 'BldgType',
                                   'HouseStyle', 'RoofStyle', 'MasVnrType',
                                   'Foundation', 'Heating', 'CentralAir',
                                   'Electrical', 'Functional', 'GarageTyp
e',
                                   'GarageFinish', 'SaleType', 'SaleConditi
on',
                                   'FireplaceQu', 'ExterQual', 'ExterCond',
                                   'BsmtQual', 'BsmtCond', 'BsmtExposure',
                                   'BsmtFinType1', 'BsmtFinType2', 'Heating
QC',
                                   'KitchenQual', 'GarageQual', 'PavedDriv
e', ...])])
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [80]:

```
data_prep = data_pipeline.fit_transform(X_train)
data_prep
```

Out[80]:

```
array([[6.500e+01, 8.450e+03, 1.500e+02, ..., 0.000e+00, 1.000e+00, 0.000e+00],
[8.000e+01, 9.600e+03, 2.840e+02, ..., 1.000e+00, 0.000e+00, 0.000e+00],
[6.800e+01, 1.125e+04, 4.340e+02, ..., 0.000e+00, 1.000e+00, 0.000e+00],
...,
[6.600e+01, 9.042e+03, 8.770e+02, ..., 0.000e+00, 0.000e+00, 1.000e+00],
[6.800e+01, 9.717e+03, 0.000e+00, ..., 1.000e+00, 0.000e+00, 0.000e+00],
[7.500e+01, 9.937e+03, 1.360e+02, ..., 0.000e+00, 0.000e+00, 0.000e+00]]
```

In [81]:

```
data_prep[2]
```

Out[81]:

```
array([6.80000000e+01, 1.12500000e+04, 4.34000000e+02, 9.20000000e+02,
      1.78600000e+03, 6.08000000e+02, 6.00000000e+01, 7.00000000e+00,
      5.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
      0.00000000e+00, 2.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
      1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
      1.00000000e+00, 0.00000000e+00, 1.0000000e+00, 1.00000000e+00,
      7.00000000e+00, 1.02739726e-01, 8.63013699e-01, 9.89726027e-01,
      1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
      0.0000000e+00, 0.0000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      1.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
       1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00,
      0.0000000e+00, 1.0000000e+00, 0.00000000e+00, 0.0000000e+00,
      0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
      0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
      0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00,
      0.00000000e+00, 1.00000000e+00, 0.0000000e+00, 0.00000000e+00,
      1.00000000e+00, 0.00000000e+00])
```

```
In [82]:
```

```
len(data_prep[0])
```

Out[82]:

126

3. Model Evaluation

In [83]:

```
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
```

In [84]:

```
from sklearn.linear_model import ElasticNet
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import VotingRegressor
from sklearn.ensemble import GradientBoostingRegressor
```

In [85]:

```
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
```

In [86]:

```
def model set():
   model_set = []
   model_set.append(('EN', ElasticNet()))
   model_set.append(('SV', SVR()))
   model_set.append(('RF', RandomForestRegressor()))
   model_set.append(('GB', GradientBoostingRegressor()))
   return model_set
def score_model(X, y, models, scale=None):
   estimators = []
   rmse = []
   r2 = []
   if scale == 'MinMax':
        scaling = MinMaxScaler()
        X = scaling.fit_transform(X)
   if scale == 'Standard':
        scaling = StandardScaler()
        X = scaling.fit_transform(X)
   for name, model in models:
        k = StratifiedKFold(n_splits=15, shuffle=True, random_state=seed)
        cv_rmse = cross_val_score(model, X, y, cv = k, scoring='neg_root_mean_squared_err
        cv_r2 = cross_val_score(model, X, y, cv = k, scoring='r2')
        cv_rmse = -(cv_rmse)
        estimators.append(model)
        rmse.append(cv_rmse.mean())
        r2.append(cv_r2.mean())
   score_matrix = list(zip(estimators, rmse, r2))
   df = pd.DataFrame(score matrix, columns = ['Estimator', 'Mean RMSE', 'Mean R Squarred']
    return df
```

Default performance of models

In [87]:

```
models = model_set()
score_model(data_prep, y_train, models)
```

Out[87]:

	Estimator	Mean RMSE	Mean R Squarred
0	ElasticNet()	32631.795283	0.821116
1	SVR()	80409.878127	-0.057101
2	RandomForestRegressor()	30407.885580	0.821581
3	GradientBoostingRegressor()	27829.950131	0.825367

Model performance with MinMax scaling

In [88]:

```
score_model(data_prep, y_train, models, scale='MinMax')
```

Out[88]:

	Estimator	Mean RMSE	Mean R Squarred
0	ElasticNet()	47117.542328	0.638871
1	SVR()	80384.066649	-0.056413
2	RandomForestRegressor()	29791.362381	0.820077
3	GradientBoostingRegressor()	27920.542734	0.828306

Model performance with Standard scaling

In [89]:

```
score_model(data_prep, y_train, models, scale='Standard')
```

Out[89]:

	Estimator	Mean RMSE	Mean R Squarred
0	ElasticNet()	32048.056066	0.824311
1	SVR()	80401.664265	-0.056879
2	RandomForestRegressor()	30008.906293	0.818411
3	GradientBoostingRegressor()	28015.771014	0.823266

With Standard scaler the R2 score is better

Also StandardScaler seems to give better R2

- · Promising Algorithms
 - Random Forest
 - Gradient Boosting
 - ElasticNet

4. Model Selection

In [90]:

```
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_predict
```

In [91]:

```
scale = StandardScaler()

X_scaled = scale.fit_transform(data_prep)
X_scaled
```

Out[91]:

In [92]:

```
promising_model_list = []

gb = GradientBoostingRegressor(random_state=seed)
promising_model_list.append(gb)

rf = RandomForestRegressor(random_state=seed)
promising_model_list.append(rf)

en = ElasticNet(random_state=seed)
promising_model_list.append(en)
```

In [93]:

```
param grid = [
    {
        'loss' : ['squared_error', 'huber', 'quantile'],
        'n_estimators': [100, 150, 200],
        'criterion': ['friedman_mse', 'squared_error'],
        'max_features': ['sqrt', 'log2'],
        'alpha': [None, 0.8, 0.1, 0.12]
    },
        'n estimators': [90, 100, 150, 200],
        'criterion': ['friedman_mse', 'squared_error', 'poisson'],
        'max_features': ['sqrt', 'log2'],
        'bootstrap': [True, False]
    },
        'alpha': [0.9, 1.0, 1.3, 1.7],
        'l1_ratio': [0.3, 0.5, 0.8],
        'selection': ['cyclic', 'random']
    }
]
model param map = dict(zip(promising model list, param grid))
model_param_map
```

Out[93]:

```
{GradientBoostingRegressor(random_state=42): {'loss': ['squared_error',
    'huber',
    'quantile'],
    'n_estimators': [100, 150, 200],
    'criterion': ['friedman_mse', 'squared_error'],
    'max_features': ['sqrt', 'log2'],
    'alpha': [None, 0.8, 0.1, 0.12]},
RandomForestRegressor(random_state=42): {'n_estimators': [90, 100, 150, 2 00],
    'criterion': ['friedman_mse', 'squared_error', 'poisson'],
    'max_features': ['sqrt', 'log2'],
    'bootstrap': [True, False]},
ElasticNet(random_state=42): {'alpha': [0.9, 1.0, 1.3, 1.7],
    'l1_ratio': [0.3, 0.5, 0.8],
    'selection': ['cyclic', 'random']}}
```

In [94]:

```
best_estimator_map = {}

for model, params in model_param_map.items():
    rand = RandomizedSearchCV(model, params, n_iter=5, scoring='neg_root_mean_squared_err
    rand.fit(X_scaled, y_train)
    best_estimator_map[rand.best_estimator_] = -(rand.best_score_)

best_estimator_map
```

Out[94]:

Lets create best estimators' set

Including Ensemble

In [95]:

```
best estimator set = []
best_gb = GradientBoostingRegressor(alpha=0.1, criterion='squared_error', loss='huber',
                           max features='sqrt', random state=42)
best_estimator_set.append(best_gb)
best_rf = RandomForestRegressor(criterion='friedman_mse', max_features='sqrt',
                       random state=42)
best_estimator_set.append(best_rf)
best_en = ElasticNet(alpha=0.9, l1_ratio=0.8, random_state=42)
best_estimator_set.append(best_en)
best_vr = VotingRegressor([('best_gb', GradientBoostingRegressor(alpha=0.1, criterion='sq
                        max_features='sqrt', random_state=42)),
                            ('best_rf', RandomForestRegressor(criterion='friedman_mse', m
                       random_state=42)),
                            ('best_rn', ElasticNet(alpha=0.9, l1_ratio=0.8, random_state=
best estimator set.append(best vr)
best_estimator_set
```

Out[95]:

```
[GradientBoostingRegressor(alpha=0.1, criterion='squared_error', loss='hub
er',
                           max_features='sqrt', random_state=42),
 RandomForestRegressor(criterion='friedman_mse', max_features='sqrt',
                       random_state=42),
 ElasticNet(alpha=0.9, l1_ratio=0.8, random_state=42),
VotingRegressor(estimators=[('best_gb',
                              GradientBoostingRegressor(alpha=0.1,
                                                          criterion='squared
error',
                                                          loss='huber',
                                                         max features='sqr
t',
                                                          random_state=42)),
                              ('best_rf',
                               RandomForestRegressor(criterion='friedman ms
e',
                                                     max features='sqrt',
                                                     random_state=42)),
                              ('best rn',
                               ElasticNet(alpha=0.9, l1_ratio=0.8,
                                          random state=42))])]
```

```
In [96]:
```

```
def get model(model):
    temp = str(model)
    end = temp.index('(')
    title = temp[0 : end]
    return title
def regression_score(X, y, models):
    model_list = []
    r2\_scores = []
    rmse_scores = []
    for model in models:
        k = StratifiedKFold(n_splits=15, shuffle=True, random_state=seed)
        y_pred = cross_val_predict(model, X, y, cv=k)
        model_list.append(get_model(model))
        mse = mean_squared_error(y, y_pred)
        rmse = round(np.sqrt(mse), 4)
        rmse_scores.append(rmse)
        r2 = round(r2_score(y, y_pred), 4)
        r2_scores.append(r2)
    mtx = list(zip(model_list, r2_scores, rmse_scores))
    df = pd.DataFrame(mtx, columns = ['Model', 'R Squared Error', 'RMSE'])
    return df
```

In [97]:

```
regression_score(X_scaled, y_train, best_estimator_set)
```

Out[97]:

	Model	R Squared Error	RMSE
0	GradientBoostingRegressor	0.8365	32109.8476
1	RandomForestRegressor	0.8424	31527.8043
2	ElasticNet	0.8391	31853.6822
3	VotingRegressor	0.8520	30550.9968

VotingRegressor gives a better R2 and RMSE value

5. Model Implementation

In [98]:

```
Out[98]:
Pipeline(steps=[('preproc',
                 ColumnTransformer(transformers=[('num',
                                                    Pipeline(steps=[('imp1',
                                                                      SimpleI
mputer(strategy='median'))]),
                                                    ['LotFrontage', 'LotAre
a',
                                                     'BsmtUnfSF', 'TotalBsmt
SF',
                                                     'GrLivArea', 'GarageAre
a']),
                                                   ('countable',
                                                    Pipeline(steps=[('imp2',
                                                                      SimpleI
mputer(strategy='most_frequent'))]),
                                                    ['MSSubClass', 'OverallQ
ual',
                                                     'OverallCond',
                                                     'KitchenAbvGr', 'Firepl
ac...
                 ('scale', StandardScaler()),
                 ('best_vr',
                 VotingRegressor(estimators=[('best_gb',
                                                GradientBoostingRegressor(al
pha=0.1,
                                                                           cr
iterion='squared_error',
                                                                           10
ss='huber',
                                                                           ma
x_features='sqrt',
                                                                           ra
ndom state=42)),
                                               ('best_rf',
                                                RandomForestRegressor(criter
ion='friedman mse',
                                                                       max_fe
atures='sqrt',
                                                                       random
_state=42)),
                                               ('best_rn',
                                                ElasticNet(alpha=0.9,
                                                           11 ratio=0.8,
                                                           random state=4
2))]))])
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [99]:

In [100]:

final_pipeline.fit(X_train, y_train)

```
Out[100]:
Pipeline(steps=[('preproc',
                 ColumnTransformer(transformers=[('num',
                                                    Pipeline(steps=[('imp1',
                                                                      SimpleI
mputer(strategy='median'))]),
                                                    ['LotFrontage', 'LotAre
a',
                                                     'BsmtUnfSF', 'TotalBsmt
SF',
                                                     'GrLivArea', 'GarageAre
a']),
                                                   ('countable',
                                                    Pipeline(steps=[('imp2',
                                                                      SimpleI
mputer(strategy='most_frequent'))]),
                                                    ['MSSubClass', 'OverallQ
ual',
                                                     'OverallCond',
                                                     'KitchenAbvGr', 'Firepl
ac...
                 ('scale', StandardScaler()),
                 ('best_vr',
                 VotingRegressor(estimators=[('best_gb',
                                                GradientBoostingRegressor(al
pha=0.1,
                                                                           cr
iterion='squared_error',
                                                                           10
ss='huber',
                                                                           ma
x_features='sqrt',
                                                                           ra
ndom state=42)),
                                               ('best_rf',
                                                RandomForestRegressor(criter
ion='friedman mse',
                                                                       max_fe
atures='sqrt',
                                                                       random
_state=42)),
                                               ('best_rn',
                                                ElasticNet(alpha=0.9,
                                                           l1 ratio=0.8,
                                                           random state=4
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

2))]))])

```
In [101]:
predictions = final_pipeline.predict(test)
predictions
Out[101]:
array([122118.40394472, 162889.99555077, 190684.1171349, ...,
       167847.48999469, 120096.08135343, 219893.72646442])
In [102]:
submission = pd.DataFrame({'Id': test['Id'], 'SalePrice': predictions})
submission.head(5)
Out[102]:
            SalePrice
     ld
  1461 122118.403945
1 1462 162889.995551
2 1463 190684.117135
3 1464 202518.297724
4 1465 191814.608543
In [103]:
filename = 'house_price_prediction.csv'
submission.to_csv(filename, index=False)
print('Saved file: ' + filename)
Saved file: house_price_prediction.csv
In [104]:
sub = pd.read_csv('house_price_prediction.csv')
sub.shape
Out[104]:
(1459, 2)
In [ ]:
```