《生物试验设计》 第十一章 多元线性回归与多元相关分析

王超

广东药科大学

Email: wangchao@gdpu.edu.cn

2023-10-17

第十一章 多元线性回归与多元相关分 析

矩阵和矩阵计算

加法

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \pm \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & & & & \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \dots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \dots & a_{2m} \pm b_{2m} \\ \vdots & & & & \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \dots & a_{mn} \pm b_{mn} \end{bmatrix}$$

矩阵和矩阵计算

- 矩阵与数的乘法
 - 数 β 乘矩阵 A,就是将数 β 乘矩阵 A 中的每一个元素,记为 $A\beta$ 或 βA
- 矩阵与矩阵的乘法
 - 假设 $A=a_{m\times s}, B=b_{s\times n}$, 则 A 与 B 的乘积 C=AB 是这样的 矩阵
 - ① 行数与左矩阵 A 相同,列数与右矩阵 B 相同,即 $C=c_{m \times n}$
 - ② C 矩阵第 i 行第 j 列的元素 c_{ij} 由 A 的第 i 行元素与 B 的第 j 列元素 对应相乘,再取乘积之和

$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 1 \\ 2 & 1 & -5 \end{bmatrix}$$

一元与多元回归

- 因变量 y 在一个自变量 x 上的回归或相关,统称为一元回归或一元相关
- 在实际问题中,影响 y 的因素常常不只是一个,而是两个或两个以上
- 为了清楚了解因变量 y 和多个自变量 x 之间的关系,必须在一元 回归与相关分析的基础上,进行多元回归与多元相关分析(复回 归与复相关)

第一节 多元线性回归分析

基本方法:

以多元线性回归模型为基础,根据最小二乘法建立正规方程,求解得出多元线性回归方程,并对回归方程和偏回归系数进行检验,作出回归方程的区间估计。

第一节 多元线性回归分析 一、多元线性回归模型

- 多元线性回归
 - 具一个因变量 y 与两个或两个以上自变量 x,且各自变量均为一次项的回归。
- 设自变量 $x_1, x_2, x_3, \ldots, x_m$ 与因变量 y 皆呈线性关系,则一个 m 元线性回归的数学模型可以表示为:

$$y_i = \mu_y + \beta_{y1}(x_1 - \mu_{x_1}) + \beta_{y2}(x_2 - \mu_{x_2}) + \dots + \beta_{ym}(x_m - \mu_{x_m}) + \epsilon_i$$

- i 代表第 i 个样本
- $\mu_{x_1}, \mu_{x_2}, \ldots, \mu_{x_m}$ 依次为 y, x_1, x_2, \ldots, x_m 的总体平均数,其样本估计值为 $\bar{y}, \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_m$
- β_{y1} 为 x_2, x_3, \ldots, x_m 固定不变时, x_1 每变动一个单位 y 平均变动的相应单位数,称为 x_1 对 y 的偏回归系数,记作 β_1 ,样本估计值记作 b_1 ,余下类推
- ϵ_i 为随机误差,服从 $N(0,\sigma^2)$ 的正态分布, σ^2 为离回归方差

第一节 多元线性回归分析 一、多元线性回归模型

• 若令 $\alpha=\mu_y-\beta_1\mu_{x_1}-\beta_2\mu_{x_2}-\cdots-\beta_m\mu_{x_m}$,则多元线性回归的数学模型为:

$$y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

• 于是, 样本多元线性回归方程为:

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + \dots + b_m x_m$$

• 其中, a 为 α 的样本估计值, b 为 β 的样本估计值

$$a = \bar{y} - b_1 \bar{x}_1 - b_2 \bar{x}_2 - \dots - b_m \bar{x}_m$$

- 建立
 - 多元线性回归方程可根据最小二乘法建立
 - 也就是求以下方程最小值

$$min(Q) = \sum (y - \hat{y})^2$$

$$= \sum [y - \bar{y} - b_1(x_1 - \bar{x}_1) - b_2(x_2 - \bar{x}_2) - \dots - b_m(x_m - \bar{x}_m)]^2$$

简单形式:

$$min(Q) = \sum (Y - b_1 X_1 - b_2 X_2 - \dots - b_m X_m)^2$$

其中

$$\begin{cases} Y = y - \bar{y} \\ X_1 = x_1 - \bar{x}_1 \\ \dots \\ X_m = x_m - \bar{x}_m \end{cases}$$

• 求自变量和因变量关系的最小二乘法

$$min(Q) = \sum_{1}^{n} (y - \hat{y})^2 = \sum_{1}^{n} (y - a - bx)^2$$

● 根据极值定理,对 a 和 b 分别求导:

$$\frac{\partial Q}{\partial a} = -2\sum(y - a - bx) = 0, \frac{\partial Q}{\partial b} = -2\sum(y - a - bx)x = 0$$

• 整理得到:

$$\begin{cases} a = \bar{y} - b\bar{x} \\ b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} \end{cases}$$

使 b₁, b₂, ..., bm 的偏微分方程皆等于 0, 就有

$$\begin{cases} \frac{\partial Q}{\partial b_1} = -2\sum (Y - b_1 X 1 - b_2 X_2 - \dots - b_m X_m) X_1 = 0\\ \frac{\partial Q}{\partial b_2} = -2\sum (Y - b_1 X 1 - b_2 X_2 - \dots - b_m X_m) X_2 = 0\\ \vdots\\ \frac{\partial Q}{\partial b_m} = -2\sum (Y - b_1 X 1 - b_2 X_2 - \dots - b_m X_m) X_m = 0 \end{cases}$$

• 整理后得到

$$\begin{cases} b_1 \sum X_1^2 + b_2 \sum X_1 X_2 + \dots + b_m \sum X_1 X_m = \sum X_1 Y \\ b_1 \sum X_1 X_2 + b_2 \sum X_2^2 + \dots + b_m \sum X_2 X_m = \sum X_2 Y \\ \vdots \\ b_1 \sum X_1 X_m + b_2 \sum X_2 X_m + \dots + b_m \sum X_m^2 = \sum X_m Y \end{cases}$$

- 因为 $X = x \bar{x}$,所以可以表示为 $\sum X_1^2 = SS_1, \sum X_m^2 = SS_m, \sum X_1X_m = SP_{1m}$
- 得到如下方程组

建立

$$\begin{cases} b_1 S S_1 + b_2 S P_{12} + \dots + b_m S P_{1m} = S P_{1y} \\ b_1 S P_{12} + b_2 S S_2 + \dots + b_m S P_{2m} = S P_{2y} \\ \vdots \\ b_1 S P_{1m} + b_2 S P_{2m} + \dots + b_m S S_m = S P_{my} \end{cases}$$

- 该线性方程组可以用消元法去解, 也可以用矩阵方法求解
- 矩阵方式解方程更加容易

• 以上线性方程组的矩阵形式表示为

$$\begin{bmatrix} SS_1 & SP_{12} & \dots & SP_{1m} \\ SP_{12} & SS_2 & \dots & SP_{2m} \\ \vdots & & & & \\ SP_{1m} & SP_{2m} & \dots & SS_m \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} SP_{1y} \\ SP_{2y} \\ \vdots \\ SP_{my} \end{bmatrix}$$

- 系数矩阵用 A 表示,可以通过计算得出
- 未知元矩阵用 b 表示,是多元回归方程的偏回归系统组成
- 常数矩阵用 K 表示

• 以上矩阵可简写为

$$Ab = K$$

■ 因为 AA⁻¹ = I, 是单位矩阵, 所以

$$A^{-1} \times Ab = b = A^{-1} \times K$$

• 那么

$$b = A^{-1}K$$

- 求解逆矩阵的方法:
 - 初等变换法
 - 伴随矩阵法
 - 表解法

• 初等变换法

建立

- ullet 写出增广矩阵 A|E,即矩阵 A 右侧放置一个同阶的单位矩阵,得到新的矩阵
 - 交换矩阵的某两行(列)
 - 以数 k ≠ 0 乘以矩阵的某一行(列)
 - 把矩阵的某一行(列)的 k 倍加到另一行(列)

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & -2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

• 初等变换法

$$A = \begin{bmatrix} 3 & 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & -2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & -2 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 4 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & -10 & -2 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 10 & 0 & 40 & 10 & -10 & 0 \\ 0 & 10 & 10 & 0 & 0 & 10 \\ 0 & 0 & -10 & -2 & 3 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 10 & 0 & 0 & 2 & 2 & 0 \\ 0 & 10 & 0 & -2 & 3 & 10 \\ 0 & 0 & 10 & 2 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0.2 & 0.2 & 0 \\ 0 & 1 & 0 & -0.2 & 0.3 & 1 \\ 0 & 0 & 1 & 0.2 & -0.3 & 0 \end{bmatrix}$$

• 伴随矩阵法

建立

- 伴随矩阵
 - 将矩阵 A 的元素 a_{ij} 所在第 i 行,第 j 列元素划去后,剩余各元素按原来的排列顺序组成的 n-1 阶矩阵所确定的行列式称为元素 a_{ij} 的余子式,记为 M_{ij}
 - 元素 a_{ij} 的代数余子式 A_{ij} 为 $A_{ij} = (-1)^{i+j} M_{ij}$
 - ullet 矩阵 A 各元素的代数余子式 A_{ij} 所构成的新矩阵转置后称为伴随矩阵
- 余子式矩阵
 - 不使用在本行与本列的元素
 - 计算剩下来的值的行列式
 - 把行列式的结果放进一个新的矩阵——余子式矩阵

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

• 伴随矩阵法

$$\begin{bmatrix} \mathbf{3} & \mathbf{0} & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \sim 0 \times 1 - (-2) \times 1 = 2$$

$$\begin{bmatrix} \mathbf{3} & \mathbf{0} & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} \sim 2 \times 1 - (-2) \times 0 = 2$$

$$\begin{bmatrix} \mathbf{3} & \mathbf{0} & 2 \\ 2 & 0 & -2 \\ \mathbf{0} & \mathbf{1} & 1 \end{bmatrix} \sim \begin{vmatrix} 3 & 2 \\ 2 & -2 \end{vmatrix} \sim 3 \times (-2) - 2 \times 2 = -10$$

• 伴随矩阵法

行列式的计算

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

• 伴随矩阵法

余子式矩阵

$$\begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix}$$

代数余子式矩阵: a_{ij} 余子式的值乘以 $(-1)^{i+j}$ 就是 a_{ij} 的代数余子式的值

$$\begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix} \sim \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \xrightarrow{(-1)^{i+j}} \begin{bmatrix} 2 & -2 & 2 \\ 2 & 3 & -3 \\ 0 & 10 & 0 \end{bmatrix}$$

$$\xrightarrow{transpose} \begin{bmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{bmatrix}$$

• 伴随矩阵法

• 伴随矩阵除以原始矩阵行列式, 得到逆矩阵

$$\begin{vmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{vmatrix} = 10$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.2 & 0 \\ -0.2 & 0.3 & 1 \\ 0.2 & -0.3 & 0 \end{bmatrix}$$

建立

R DEMO

- 求算偏回归系数建立多元线性回归方程
 - 解出系数矩阵 A 的逆矩阵
 - 由 A⁻¹ 求出 b_i 和 a

建立

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} SS_1 & SP_{12} & \dots & SP_{1m} \\ SP_{12} & SS_2 & \dots & SP_{2m} \\ \vdots & & & & \\ SP_{1m} & SP_{2m} & \dots & SS_m \end{bmatrix}^{-1} \times \begin{bmatrix} SP_{1y} \\ SP_{2y} \\ \vdots \\ SP_{my} \end{bmatrix}$$

(一) 多元线性回归方程的估计标准误

- 建立多元线性回归方程时,由于实际观测值 y 与多元回归方程的 点估计值 \hat{y} 存在差异,其差值的平方和称为多元回归方程的离回 归平方和 Q_y
- Q_y 的自由度 df = n (m+1) = n m 1
- 多元回归方程的估计标准误

$$s_y = \sqrt{\frac{Q_y}{n - m - 1}}$$

(一) 多元线性回归方程的估计标准误

• 多元回归中的 y 的离均差平方和可以分解为离回归平方和与回归平方和:

$$\begin{cases} SS_y = Q_y + U_y \\ U_y = b_1 SP_{1y} + b_2 SP_{2y} + \dots + b_m SP_{my} \end{cases}$$

- Q 代表误差因素引起的平方和、也叫残差平方和
- ullet U 代表由 x 变异引起 y 变异的平方和,也叫回归平方和

(二) 多元线性回归方程的假设检验

假设:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_m = 0$$

$$H_A: \beta_1, \beta_2, \dots, \beta_m \neq 0$$

F 检验
$$(df_1 = m, df_2 = n - m - 1)$$

$$F = \frac{\frac{U_y}{m}}{\frac{Q_y}{n - m - 1}}$$

(二) 多元线性回归方程的假设检验

- 应注意两个问题:
 - 多元线性回归关系显著不排斥有更合理的多元非线性回归方程存在
 - 多元线性回归显著不排斥其中存在着与因变量 y 无线性关系的自变量
- 因此:
 - 有必要对各个偏回归系数逐个进行假设检验 $H_A: \beta_1, \beta_2, \ldots, \beta_m \neq 0$
 - 只有当多元回归方程的偏回归系数均达到显著,多元回归的 F 值才 有确定的意义

(三)偏回归系数的假设检验

- 偏回归系数的假设检验是分别计算各偏回归系数 b_i 来自 $\beta_i=0$ 的 总体的概率
- 假设

$$H_0: \beta_i = 0$$
$$H_A: \beta_i \neq 0$$

ullet 偏回归系数的假设检验方法有 t 检验和 F 检验两种

(三) 偏回归系数的假设检验

- t 检验
 - 偏回归系数 b_i 的标准误为

$$s_{b_i} = s_y \sqrt{c_{ii}}$$

• 由于 $\frac{b_i-\beta_i}{s_{b_i}}$ 符合 $\mathrm{d}f=n-m-1$ 的 t 分布,所以在 $\beta_i=0$ 的假设下,由

$$t = \frac{b_i}{s_{b_i}}$$

可知 b_i 抽自 β_i 的总体的概率

(三) 偏回归系数的假设检验

- F 检验
 - ullet 对于 U_y 来说,其中的每一个组成 U_i 称为 y 在 x_i 上的偏回归平方和

$$U_i = \frac{b_i^2}{c_i i}$$

 \bullet U_i 是因为添入 x_i 后增加的回归部分平方和,具有 1 个自由度

$$F = \frac{U_i}{\frac{Q_y}{n - m - 1}}$$

可知 b_i 抽自 $\beta_i = 0$ 的总体的概率

(三) 偏回归系数的假设检验

- 值得注意的两个问题:
 - **•** 由于对各偏回归系数的 F 检验中分子自由度均为 1,故其平方根值等于相应的 t 值的绝对值

$$\sqrt{F} = \sqrt{\frac{U}{\frac{Q_y}{n-m-1}}} = \sqrt{\frac{b_i^2/c_{ii}}{s_y^2}} = \sqrt{\frac{b_i^2}{s_{b_i}^2}} = |t|$$

- - 在m 元线性回归中,如果各自变量间没有相关,即 $r_{ij}=0$,则 $U_{y}=\sum_{i=1}^{m}U_{i}$
- 如果各自变量间存在不同程度的相关,即 $r_{ij} \neq 0$,则 $U_y \neq \sum_{i=1}^m U_i$

第一节 多元线性回归分析 思考题

建立 m 元线性回归方程, 须设定自变量 x_1, x_2, \ldots, x_m 与因变量 y 皆成 \dots (思考题)

- A、可直线化的非线性关系
- B、线性关系
- C、倒数函数关系
- D、指数函数关系

第二节 多元相关分析 一、多元相关分析

- 多元相关是 m 个自变量和因变量的总相关
- 多元相关系数表示多个自变量与因变量总的密切程度的量值,以 R_y 表示
- 由于 m 个自变量对 y 的回归平方和为 U_y , U_y 占 y 平方和 SS_y 的比例越大,表明 y 和 m 个自变量的总相关越密切,因此定义 R_y 为

$$R_y = \sqrt{\frac{U_y}{SS_y}}$$

- 以上公式表示多元相关系数为多元回归平方和与总变异平方和之 比的平方根
- 取值区间为 [0,1]

第二节 多元相关分析 一、多元相关分析

- 多元相关系数的假设检验是用 F 检验,不能用 t 检验
- 检验的假设

$$H_0: \rho = 0$$
$$H_A: \rho \neq 0$$

F 值为

$$F = \frac{\mathrm{d}f_2 R^2}{\mathrm{d}f_1 (1 - R^2)}, \mathrm{d}f_1 = m, \mathrm{d}f_2 = n - m - 1$$

- 多元相关系数的显著性与多元回归方程的显著性一致,也就是说 R_y 显著,多元回归方程必显著
- ullet 多元相关系数的平方称为决定系数,是多元回归平方占 y 的总变异平方和的比率

- 生物学研究中,任何两个变量间的相关经常受到其他变量的影响
- 为消除这些影响,使两个变量间的相关关系得到真实的反映,必 须排除其他变量影响的情况下进行两个变量间的分析
- 排除其他变量影响下的两个变量间的相关分析称为偏相关分析
- 其他变量保持一定、表示指定的两个变量之间相关密切程度的量值称为偏相关系数

- (一) 偏相关系数的一般解法
 - 计算由简单相关系数构成的相关矩阵 R
 - 求其逆矩阵 R⁻¹
 - 计算偏相关系数 r_{ij}

(一) 偏相关系数的一般解法

$$R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ r_{21} & r_{22} & \dots & r_{2m} \\ \vdots & & & & \\ r_{m1} & r_{m2} & \dots & r_{mm} \end{bmatrix} \xrightarrow{transpose}$$

$$R^{-1} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & & & & \\ c_{m1} & c_{m2} & \dots & c_{mm} \end{bmatrix}$$

$$r_{ij} = \frac{c_{ij}}{\sqrt{c_{ii}c_{ij}}}$$

(二) 偏相关系数的假设检验

- 偏相关系数的假设检验可以用 t 检验
- 检验的假设

$$H_0: \rho_{ij} = 0$$

$$H_A: \rho_{ij} \neq 0$$

t 值为

$$t = \frac{r_{ij}}{\sqrt{1 - r_{ij}^2}} \sqrt{n - m - 1}$$

(三) 偏相关与简单相关的区别

- 简单相关系数没有排除其他变量的影响,其中混有其他变量的效应
 - 当其他变量与简单相关系数正相关时,混有正效应,简单相关系数会高于偏相关系数
 - 当其他变量与简单相关系数负相关时,混有负效应,简单相关系数 会低于偏相关系数
- 偏相关系数与简单相关系数相比,能排除假象,反映变量间真实的相关密切程度
- 对于多变量资料,必须采用多元相关分析