Algebraic Graph Theory HW

Author: 111652017, 廖修誼 (NYCU)

September, 2024

Abstract

這份題目是來自翁志文代數圖論 Algebraic Graph Theory 2024 fall 課程作業.

Contents

1	HW1_111652017 廖修誼	3
2	HW2_111652017 廖修誼	4

1 HW1_111652017 廖修誼

A collection $\{S_1, S_2, \ldots, S_t\}$ of subsets of S is called a partition if $S_i \neq \emptyset$, $S_i \cap S_j = \emptyset$, and $S_1 \cup S_2 \cup \cdots \cup S_t = S$, where $1 \leq i \neq j \leq t$. A digraph $\overrightarrow{\Gamma}$ is a pair (V, E) such that V is a finite set and E is a subset of $V \times V$. An element in E is called a directed edge of an arc. Sometimes, we use $E\overrightarrow{\Gamma}$ and $V\overrightarrow{\Gamma}$ to denote E and V respectively for referring their digraph $\overrightarrow{\Gamma}$. For $x, y \in V$, a walk in $\overrightarrow{\Gamma}$ from x to y is a sequence $x = x_0, x_1, \ldots, x_t = y$ such that $x_{i-1}x_i \in E$ for all $1 \leq i \leq t$.

- 1. Let $\overrightarrow{\Gamma}$ be a digraph with vertex set $V\overrightarrow{\Gamma}$ and directed edge set $E\overrightarrow{\Gamma}$. Prove the following two statements.
 - (a) If there exists a partition $\{X,Y\}$ of $V\overrightarrow{\Gamma}$ such that $xy \notin E\overrightarrow{\Gamma}$ for every pair $(x,y) \in X \times Y$, then $\overrightarrow{\Gamma}$ is not strongly connected.
 - (b) If $\overrightarrow{\Gamma}$ is not strongly connected then there exists a partition $\{X,Y\}$ of $V\overrightarrow{\Gamma}$ such that $xy \notin E\overrightarrow{\Gamma}$ for every pair $(x,y) \in X \times Y$.

Proof. (a) We prove this by the contradiction method. Suppose $\overrightarrow{\Gamma}$ is strongly connected. Take $x \in X$ and $y \in Y$. Since $\overrightarrow{\Gamma}$ is strongly connected, a walk $x = x_0 - x_1 - x_2 - \cdots - x_k = y$ exists. Let x_p be the first node that belongs to Y in the walk. Clearly, $p \neq 0$ and such p always exists. (because at least we can take p = k) Hence, $x_{p-1}x_p \in E\overrightarrow{\Gamma}$, where $x_{p-1} \in X$ and $x_p \in Y$. It contradicts our assumption. Therefore, $\overrightarrow{\Gamma}$ is not strongly connected. \square

Proof. (b) We provide an algorithm to create a partition $\{X,Y\}$.

Algorithm 1 Find a partition $\{X,Y\}$.

Input: A directed graph $\overrightarrow{\Gamma}$.

Output: A partition $\{X,Y\}$ of $V\overrightarrow{\Gamma}$ satisfies the condition that $xy \notin E\overrightarrow{\Gamma}$ for every pair $(x,y) \in X \times Y$.

- 1. Find strong connected component of $\overrightarrow{\Gamma}$, called C_1, C_2, \ldots, C_k .
- 2. Compress the graph $\overrightarrow{\Gamma}$ to \overrightarrow{G} with $V\overrightarrow{G} = \{v_1, v_2, \dots, v_k\}$.

And $E\overrightarrow{G} = \{(v_i, v_j) : \text{ there exists } pq \in E\overrightarrow{G} \text{ with } p \in C_i \text{ and } q \in C_j\}.$

3. Use the topology sort algorithm to sort \overrightarrow{G} .

Then we get an order $v_{p_1}, v_{p_2}, \dots, v_{p_k}$ with $\frac{\operatorname{indeg}(v_{p_1}) = 0}{\operatorname{outdeg}(v_{p_1})} = 0$.

4. Return $X = \{x : x \in C_{p_1}\}$ and $Y = V \overrightarrow{\Gamma} \setminus X$.

Note that by the definition of the strongly connected component which is a maximal subgraph where every pair of vertices is mutually reachable, \overrightarrow{G} is a directed acyclic graph (DAG). Therefore, we can apply the topology sort algorithm. Meanwhile, since $\operatorname{indeg}(v_{p_1}) = 0$, there is no any edge $xy \in E\overrightarrow{G}$. Hence, there is no any edge $xy \in E\overrightarrow{\Gamma}$ with $x \in X$ and $y \in Y$.

2 HW2_111652017 廖修誼

Let M be a nonnegative irreducible square matrix corresponding the graph G such that M^2 is reducible. Let G^2 be the graph corresponding the adjacency matrix M^2 .

Clearly, G is strongly connected, and G^2 is not strongly connected by the definition of irreducibility.

Lemma 1. Let a, b be vertices in G. If an even length walk exists from a to b in G, then a walk exists from a to b in G^2 .

Proof. By assumption, there exists an even length walk from a to b is $a = x_0 - x_1 - \cdots - x_n = b$, where n is an even integer. Notice that $x_k - x_{k+2}$ is an edge in G^2 for $k = 0, 1, \dots, n-2$. Thus, a walk $a = x_0 - x_2 - \dots - x_n = b$ exists.

Lemma 2. If C is an odd cycle in G, then C is strongly connected in G^2 , i.e., for any $u, v \in C$, there are paths from u to v and from v to u in G^2 .

Proof. Let $C = x_0 - x_1 - \dots - x_n - x_0$, where n is an even integer. By Lemma 1, there exists a walk $x_0 - x_2 - \dots - x_n - x_1 - x_3 - \dots - x_{n-1} - x_0$ in G^2 . Thus, each of the two points in C is strongly connected. Hence, C is strongly connected in G^2 .

Lemma 3. Let a be any vertex in G but not C. Then there exists a vertex b in C such that there exists a walk from a to b in G^2 .

Proof. Let a be a vertex in G but not C. Since G is strongly connected, a vertex b in G exists such that a walk $a = x_0 - x_1 - \cdots - x_n = b$ exists. If n is an even integer, by Lemma 1, we are done. If not, a vertex y exists connecting b in C. Thus, $a = x_0 - x_1 - \cdots - x_n = b - y$ is an even length walk from a to y. Thus, a walk exists from a to y in G^2 . By Lemma 2, a walk exists from y to y in y in y to y in y in

Lemma 4. Let a be any vertex in G but not C. Then there exists a vertex b in C such that there exists a walk from b to a in G^2 .

Proof. Similar to the above proof. Let a be a vertex in G but not C. Since G is strongly connected, a vertex b in G exists such that a walk $b = x_0 - x_1 - \cdots - x_n = a$ exists. If n is an even integer, by Lemma 1, we are done. If not, a vertex y exists connecting b in C. Thus, $y - b = x_0 - x_1 - \cdots - x_n = a$ is an even length walk from y to a. Thus, a walk exists from y to a in G^2 . By Lemma 2, a walk exists from b to b in b.

We return to prove this homework. The proof is done by using the method of contradiction.

Theorem 2.0.1. Prove that G is bipartite.

Proof. Suppose G is not bipartite. By the property of bipartite graphs, an odd cycle C exists in G. By Lemma 2, C is strongly connected in G^2 . Combining Lemma 3 and Lemma 4, we conclude that G^2 is strongly connected. It contradicts our assumption that G^2 is not strongly connected; thus, G is bipartite.