

RD-R173 772

MICROCOMPUTER-CONTROLLED LANGMUIR-BLODGETT DIPPING
THROUGH(U) WISCONSIN UNIV-MADISON DEPT OF CHEMISTRY
H VAN RYSWIJK ET AL. 01 SEP 85 UNIS/DC/TR-86/1

1/1

UNCLASSIFIED

N00014-85-K-0631

F/G 7/4

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A173 772

Unclassified

(5)

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION NA		1b. RESTRICTIVE MARKINGS NA	
2a. SECURITY CLASSIFICATION AUTHORITY NA		3 DISTRIBUTION/AVAILABILITY OF REPORT Distribution Unlimited; Approved for Public Release	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE NA			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) UWIS/DC/TR-86/1		5. MONITORING ORGANIZATION REPORT NUMBER(S) NA	
6a. NAME OF PERFORMING ORGANIZATION Chemistry Department University of Wisc.-Madison	6b. OFFICE SYMBOL (If applicable) NA	7a. NAME OF MONITORING ORGANIZ ONR	
6c. ADDRESS (City, State, and ZIP Code) 1101 University Avenue Madison, WI 53706		7b. ADDRESS (City, State, and ZIP Code) 800 N. Quincy Street Arlington, VA 22217	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION		8b. OFFICE SYMBOL (If applicable) NA	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract N00014-85-K-0631
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO	PROJECT NO
		TASK R&T NO	Code 4134003
		WORK UNIT ACCESSION NO	
11. TITLE (Include Security Classification) Microcomputer-Controlled Langmuir-Blodgett Dipping Trough			
12. PERSONAL AUTHOR(S) Hal Van Ryswyk, Joann M. Eisenhart, Nils Blom, and Arthur B. Ellis			
13a. TYPE OF REPORT Technical	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 9/1/85	15. PAGE COUNT 20
16. SUPPLEMENTARY NOTATION Prepared for publication in the Review of Scientific Instruments			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Langmuir-Blodgett films	
FIELD	GROUP	SUB-GROUP	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) <p>The lack of an inexpensive, commercial Langmuir-Blodgett film-deposition trough prompted us to build our own for the deposition of fatty-acid salts and tailor-made photochemically active agents upon a number of substrates. The films are characterized by their pressure-area isotherms, which are recorded by monitoring the film's surface pressure while compressing the surface area. Dipping requires slow immersion and removal of a substrate while continuously maintaining a preset surface pressure. Both of these tasks can be accomplished under microcomputer control.</p> <p>The software, run on an Apple II, is written in FORTH, allowing full, interactive control of dipping. The Apple controls a dc stepping motor, which compresses the film surface, while simultaneously monitoring a Cahn microbalance which reports surface pressure on a Wilhelmy plate. Pressure-area isotherms, standardized in molecular units of square angstroms, are displayed on the Apple screen and can also be stored or plotted. The deposition - see reverse side -</p>			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Distribution Unlimited	
22a. NAME OF RESPONSIBLE INDIVIDUAL Arthur B. Ellis		22b. TELEPHONE (Include Area Code) (608) 262-0421	22c. OFFICE SYMBOL

Abstract continued

) substrate is mounted on a dipping arm driven by an ac motor. When dipping a sample, the Apple maintains the optimal surface pressure (as read from the isotherm), $0-100(\pm 0.1)$ dyne cm^{-1} , throughout the deposition process, allowing multilayer structures to be built automatically. The dipping rate is variable, allowing for slow deposition of initial layers and proceeding to faster deposition for subsequent layers. Finally, the Apple monitors the change in film area during dipping, to ensure full film uptake.

OFFICE OF NAVAL RESEARCH

Contract N00014-85-K-0631

R&T Code 4134003

Technical Report No. UWIS/DC/TR-86/1

Microcomputer-Controlled Langmuir-Blodgett Dipping Trough

by

Hal Van Ryswyk, Joann M. Eisenhart, Nils Blom, and Arthur
B. Ellis*

Prepared for Publication in
Review of Scientific Instruments

University of Wisconsin
Department of Chemistry
Madison, Wisconsin 53706

September 10, 1986

Reproduction in whole or in part is permitted for any
purpose of the United States Government

This document has been approved for public release and
sale; its distribution is unlimited.

*To whom all correspondence should be addressed

Accession For	<input checked="" type="checkbox"/>
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unauthorized	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By	<input type="checkbox"/>
Distribution	<input type="checkbox"/>
Availability Codes	<input type="checkbox"/>
Avail and/or Special	<input type="checkbox"/>

A1

The trough used for the remaining film studies was milled from a solid piece of teflon, approximately 2 x 12 x 12 inches. The final dimensions of the trough are given in Figure 4.13, as is a schematic of the trough design. The trough was encased in aluminum to prevent distortion of the teflon. Sweeping arms and a compression arm were cut from excess teflon, and encased in aluminum metal to prevent warping. Figure 4.14 shows an expanded view of the final trough setup, including structure dimensions. The compression arm was connected to a stepping motor (Hurst Model #AS-30) to allow forward and reverse motion. A schematic of the dipping

Figure 4.13. Schematic of Langmuir trough. Inner trough dimensions are 7" x 10 1/2" x 1/2 ". Dipping well is 3/4" from one end and 2 1/4" from either side; its dimensions are 2 1/2" x 1" and it extends 1/2" below the trough floor. The entire trough is encased in 1/4" thick aluminum plate metal.

Figure 4.14. Schematic of trough setup. Floors are made of 1/2" thick aluminum plate metal. The bottom floor has dimensions of 12" x 16"; other floors are shown to scale, relative to the bottom floor, in the drawing. Support posts, shown as dashed lines in the drawing, are constructed from 3/4" diameter aluminum rods. The second floor is 3 1/2" above the bottom floor; the third floor is 15 1/2" above the bott loor. Components of the setup, labelled in the diagram, are: (a) Bottom (motor) floor; (b) Motor block, consisting of stepping motor (not shown) and guiding mechanism for compression arm. The turn screw has 20 turns/inch; (c) Second (trough) floor; (d) Aluminum encased trough; (e) Compression arm which mates to posts on guiding mechanism; (f) Third (balance) floor; (g) Cahn Model 27 automatic electrobalance with external control unit (not shown). A hole is drilled in the third floor metal to allow suspension of the Wilhelmy plate below the balance. The entire setup is encased in a plexiglass case to prevent air drafts and contamination from dust.

arm is shown in Figure 4.15. This arm was connected to a continuous, reversible motor (Japanese Servo Co., Model # RH2T6P4 connected to a Japanese Servo Co. gearbox Model #6H60) to allow immersion and removal of substrates from the water surface.

Surface pressures were measured using a platinum Wilhelmy plate (obtained from Cahn Instruments); plate dimensions are 2 cm x 1 cm x ~0.005 cm. The Wilhelmy plate was flamed clean before each use and was suspended from a Cahn Model 27 automatic electrobalance, which maintained the plate at a constant immersion depth throughout the experiments. The electrobalance and both motors were interfaced to an Apple IIe computer. In this manner, computer control was available for every step in the deposition process and for obtaining π -A curves. The computer program for running the trough was written in Forth, and is reproduced in Appendix I. Appendix 2 shows a schematic of the interface between the motors, the electrobalance, and the computer.

Figure 4.15. Schematic of dipping arm. The entire unit stands 14" tall. Square plates, shown in the drawing, are constructed from 1/2" thick aluminum plate metal and are 2 3/8" along each side. Posts, shown as lines in the drawing, are constructed from 1/4" diameter aluminum rods. Components of the dipping arm, labelled in the drawing, are:

- (a) Continuous, reversible motor;
- (b) Gearbox;
- (c) Turn screw (20 turns/inch);
- (d) Limit switches, attached to aluminum blocks mounted on aluminum rod. The limit switches can be positioned through use of set screws in the aluminum block;
- (e) Microscope slide holder.

FRONT OF BOX

A & B = 36-pin Centronics, female chassis mount
DIP CONTROL = $1\text{k}\Omega$ variable resistor

BACK OF BOX

CONNECTION SCHEME*

J	B	37-D
J1	19	5
	20	6
	21	7
	22	8
	23	9
	24	10
	25	11
	26	12
	8	
	7	
	6	28 GND
	5	29 Decimal wiper
	4	
	3	
	2	
	1	
J2	27	13
	28	14
	29	3 rd digit
	30	15
	31	16
	32	17
	33	18
	34	4 th digit
	16	19
	15	20
	14	
	15	28 GND
	13	
	12	
	11	
	10	

* J= John Bell Engineering, Inc., 32-line digital I/O interface card for Apple II computer

B= 36-pin Centronics connector, designated as B on the front of the box

37-D= 37-D subminiature pin

CONNECTION SCHEME (cont.) *

	J	I	A	37-D or 16 DIP
J3	1	19	21	
	2	20	4	Ixxxx
	3	21	3	Ixxx.x
	4	22	2	Ixx.xx
	5	23	1	Ixxx.x
	6	24		
	7	25		
	8	26		
	9	8		
	10	7		
	11	6		
	12	5		
	13	4		
	14	3		
	15	2		
	16	1		
J4	1	27	6	dip dir. I=down O=up
	2	28	7	dip I=off O=on
	3	29	8	arm dir. I=in 2=out
	4	30	9	pulse
	5	31		
	6	32		
	7	33		
	8	34		
	9	16		
	10	15		GND
	11	14		GND
	12	13		
	13	12		
	14	11		
	15	10		
	16	9		

* J= John Bell Engineering Inc., 32-line digital I/O
Interface card for Apple II computer

A= 36-pin Centronics connector, designated as A on
the front of the box

37-D = 37-D subminiature pin

16 DIP= 16 pin dual in-line package

14 PIN = 14 Pin wire wrap socket!
 RELAY = Pole & Brumfield relay # 2022
 16 DIP = 16-pin dual inline package
 1 MΩ variable resistor

CONTROL BOX

Note: R1-2 & T1-2 may be replaced by isolated, TTL compatible solid-state relays.

SCR# 0
\ LANGMUIR-BLODGETT DIPPING ROUTINES
\ H. VAN RYSYK, 31 MAY 85
\ Revised 2 APR 86

\ c/o Prof. A.B. Ellis
\ Department of Chemistry
\ University of Wisconsin-Madison
\ 1101 University Avenue
\ Madison, WI 53706

\ This program coded in
\ Micromotion Masterforth V0.0
\ 12077 Wilshire Blvd, #506
\ Los Angeles, CA 90025
\ (213) 821-4340

SCR# 2
\ CONSTANTS, VARIABLES, STRINGS, BUFFERS, AND TABLES
50432 CONSTANT SWITCH 49152 CONSTANT KEYBOARD
49168 CONSTANT STROBE 40 CONSTANT BUFSIZE
454E0 FCONSTANT MFCONST 101.6E0 FCONSTANT AFNORM
FVARIABLE PCVRT FVARIABLE CPLATE
FVARIABLE TARGET FVARIABLE WTCLEAN
2VARIABLE NUM1 2VARIABLE NUM2
2VARIABLE PO 2VARIABLE POSIT
2VARIABLE INC VARIABLE FALLOFF
VARIABLE WAIT-TIME VARIABLE TREND
CREATE BUF BUFSIZE ALLOT CREATE BUF2 BUFSIZE ALLOT
CREATE EL 2 ALLOT 13 EL C! : ENDLINE EL 1 ;

\ TABLES
CREATE DIGITS (I/O PORT TABLE FOR JOHN BELL CARD)
50433 , 50560 , 50561 ,

SCR# 4
\ I/O
: HALT (HALTS T- AND DIP ARM)
255 SWITCH C! ;

: UP (MOVE DIP ARM UP)
HALT 252 SWITCH C! ;

: DOWN (MOVE DIP ARM DOWN)
HALT 253 SWITCH C! ;

: PULSE (JOGS T-ARM ONE PULSE)
SWITCH DUP C@ 8 XOR SWAP OVER OVER C! SWAP B XOR SWAP
3 0 DO LOOP (WAIT) C! ;

: FLIP SWITCH DUP C@ 4 XOR SWAP C! (FLIPS DIP DIR.) ;

SCR# 1
0 \ BRINGING THE SYSTEM UP...
1 \ BOOT DISK MUST ALREADY HAVE HIRES & FLOATING POINT ROUTINE
2 \ IN PLACE--YOU MAY FORGET XTWO & COSTBL TO SAVE MEMORY SPACE
3
4 FORTH-83
5 GRAPHICS ALSO
6 2 18 THRU
7
8
9
10
11
12
13
14
15

SCR# 3
0 \ I/O
1 : READSCALE (READS CAHN, --- FP)
2 DIGITS @ C@ 1 AND (READ MS-BIT)
3 3 1 DO
4 100 + I 2# DIGITS + @ C@ DUP 240 AND 16 / 10 * SWAP
5 >R + R) 15 AND +
6 LOOP (INT CAHN READING ON STK)
7 S>D FLDAT DIGITS @ C@ 30 AND (FIND DECIMAL PLACE)
8 DUP 14 = IF DROP 10
9 ELSE DUP 22 = IF DROP 100
10 ELSE 26 = IF 1000
11 ELSE 10000
12 THEN THEN THEN S>D FLOAT F/ ;
13
14 : FINISHED (FLAG FOR DIP ARM LIMIT EXCEEDED, --- F)
15 SWITCH C@ 128 AND IF -1 ELSE 0 THEN ;

SCR# 5
0 \ CONVERSION
1 : VECTOR (FP MG --- DN PULSES) FABS PCVRT F@ F@ FIX ;
2
3 : DMM (DN MM --- DN PULSES) FLOAT MFCONST F@ INT ;
4
5 : DYNETOMG (CONVERTS PRESSURE IN DYNE/CM TO WEIGHT IN MG'S)
6 (FP --- FP) CPLATE F@ F/ FNEMGATE WTCLEAN F@ F+ ;
7
8 : MGTODYNE (CONVERTS WEIGHT IN MG'S TO PRESSURE IN DYNES/CM)
9 (FP --- FP) FNEMGATE WTCLEAN F@ F+ CPLATE F@ F+ ;
10
11 : READLN CR BUF BUFSIZE EXPECT BUF BUF2 SPAN @ CPACK ;
12
13 : GETFP (--- FP) READLN BUF2 DUP DUP C@ 1+ OVER C! DUP
14 C@ + 32 SWAP C! (ADD SPACE) FNUMBER FDUP DO= SWAP 0= AND
15 ABORT" USE SCIENTIFIC NOTATION " ;

SCR# 6
 \ CONVERSION & I/O MACROS
 : MM S>D DMM (INTEGER MM TO DN PULSES) ;
 : AREA-OUT (DN PULSES --- FP MM^2)
 FLOAT AFNORM F# MFCONST F/ ;
 : WAIT (TIMING LOOP) 8000 0 DO LOOP ;
 : GETDN READLN BUF2 COUNT VAL DROP (-- DN) ;
 : POSITION (SETS ARM POSITION VARIABLE)
 CR ." ARM POSITION (IN INTEGER MM'S) " GETDN
 DMM POSIT 2! CR ;
 : SHOWSCALE (DISPLAY CURRENT CAHN READING)
 READSCALE 4 9 F.R ;

SCR# 8
 \ T-ARM & DIPPING ARM MACROS
 \ T-ARM MOVEMENT (FP --- DN)
 : EQUALIZE (EQ'S TO FP, LEAVES DN PULSES TRAVELED)
 READSCALE F- FDUP DO= SWAP 0= AND IF FDROP 0 S>D
 ELSE FDUP FOK IF VECTOR 2DUP COMPRESS DNEGATE
 ELSE VECTOR 2DUP EXPAND THEN
 THEN ;
 : DIP
 BEGIN TARGET F@ EQUALIZE DABS 20. DK WAIT UNTIL 0 S>D
 DOWN BEGIN FINISHED NOT UNTIL DOWN
 BEGIN TARGET F@ EQUALIZE D+ WAIT FINISHED UNTIL
 HALT ." DELTA AREA = " AREA-OUT
 3 6 F.R ." MM^2" ;

SCR# 10
 : CLEANWATER (SETS CLEAN WATER WEIGHT VARIABLE)
 CR ." WEIGHT FROM CLEAN SURFACE (IN MG'S SCI NOT)? " GETFP WTCLEAN F! CR ;
 : DEPOSIT
 CR ." DESIRED SURFACE PRESSURE IN SCI. NOT. (DYNES/CM)? "
 GETFP DYNETONG TARGET F! CR
 ." NUMBER OF COMPLETE CYCLES (INTEGER)? " GETDN DROP
 1+ HOME 1 DO I . ." DIP DOWN, " DIP WAIT UP WAIT
 BEGIN FINISHED NOT UNTIL HALT CR ." UP, "
 UNDIP WAIT DOWN WAIT BEGIN
 FINISHED NOT UNTIL HALT CR
 LOOP 3 0 DO 7 EMIT LOOP ." DONE!" CR ;

SCR# 7
 0 \ T-ARM MOVEMENT (DN ---)
 1 : EXPAND (MOVE T-ARM OUT DN PULSES)
 2 2DUP POSIT 2@ D+ 2DUP NUM2 2@
 3 DK IF POSIT 2!
 4 ELSE 2DROP 2DROP
 5 ." RANGE EXCEEDED. " ABORT THEN
 6 BEGIN 2DUP DO= NOT WHILE FINISHED IF HALT THEN
 7 PULSE 1 S>D D- REPEAT 2DROP ;
 8
 9 : COMPRESS (MOVE T-ARM IN DN PULSES)
 10 FLOP (SELECT DIRECTION)
 11 2DUP POSIT 2@ 2SWAP D- NUM1 2@ D- 0< SWAP DROP IF 2DROP
 12 ." RANGE EXCEEDED." ABORT ELSE 2DUP POSIT 2@ 2SWAP D- POSIT 2
 13 THEN BEGIN 2DUP DO= NOT WHILE FINISHED IF HALT FLOP THEN
 14 PULSE 1 S>D D- REPEAT
 15 FLOP 2DROP ;

SCR# 9
 0
 1 : UNDIP
 2 BEGIN TARGET F@ EQUALIZE DABS 20. DK WAIT UNTIL 0 S>D
 3 UP BEGIN FINISHED NOT UNTIL UP
 4 BEGIN TARGET F@
 5 EQUALIZE D+ WAIT
 6 FINISHED UNTIL
 7 HALT ." DELTA AREA = " AREA-OUT
 8 3 6 F.R ." MM^2" ;
 9
 10
 11
 12
 13
 14
 15

SCR# 11
 0 \ DATA TRANSFERAL PRIMITIVES
 1 : ARRAY (# OF CELLS, CELL BYTES ---) (N --- ^ELEMENT)
 2 CREATE DUP , * ALLOT
 3 DOES> DUP @ ROT * + 2+ ; 150 6 ARRAY PRESSURE
 4
 5 \ GRAPHICS
 6 : PLOT-INIT HGR 0 2000 10000 10000 VIEWPORT-SET
 7 HOME 0 20 AT 0 0 14000 750 WINDOW-SET
 8 0 750 MOVETO 0 0 LINETO 14000 0 LINETO
 9 8 0 DO 1 100 + DUP 0 SWAP MOVETO
 10 DUP 468 SWAP LINETO 50 + DUP 0 SWAP MOVETO
 11 234 SWAP LINETO LOOP ;
 12
 13 : PLOT-IT (PLOTS PINJ VS. POSIT, N ---)
 14 POSIT 2@ AREA-OUT FIX 6200. D- DROP
 15 SWAP PRESSURE F@ 1E1 F# FIX DROP PLOT ;

SCR# 12

\ PRIMITIVES

: KEYCHECK KEYBOARD C@ 128 > DUP IF 0 STROBE C! THEN (-- F) ;
: (PA) 9 S>D BEGIN 1. D+ 2OVER COMPRESS
WAIT-TIME @ 0 DO WAIT LOOP READSCALE MGTODYNE
FDUP ? PICK DUP >R PRESSURE F! R> PLOT-IT
4 PICK 1- PRESSURE F@ F@
IF FALLOFF DUP @ 1+ SWAP ! ELSE 0 FALLOFF ! THEN
POSIT 2@ NUM1 2@ 2OVER 2OVER DC >R D= R> OR
FALLOFF @ TREND @ = OR KEYCHECK OR UNTIL ;

: WRITEOUT (FP ---)
5 (E.R) PUTFILE ENDLINE PUTFILE ;

SCR# 14

\ RECORD PRESSURE-AREA CURVES

: PA (--- N , WHERE N IS THE T-ARM INCREMENT)
HOME . " P-A CURVES..." CR CR
. " INCREMENT (INT MM'S)? " GETDN DMM 2DUP INC 2!
PLOT-INIT POSIT 2@ PO 2!
10 0 DO 2DUP COMPRESS WAIT-TIME @ 0 DO WAIT LOOP
(LET SCALE SETTLE) READSCALE MGTODYNE
I PRESSURE F! I PLOT-IT LOOP
. " PRESS ANY KEY TO STOP." CR
0 FALLOFF ! (PA) FLOAT 0 PRESSURE F! CR
STORE? IF DNEGATE STOREDATA ELSE 2DROP THEN TX ;

SCR# 16

\ MACRO MOVES

: WHERE? (REPORTS TENSION ARM POSITION)
POSIT 2@ FLOAT MFCONST F/ 1 4 F.R ." MM." ;

: TOP (MOVE DIP ARM TO TOP OF RANGE, THEN OFFSET)
FINISHED NOT IF UP BEGIN FINISHED UNTIL HALT WAIT
DOWN BEGIN FINISHED NOT UNTIL HALT THEN ;

: BOTTOM (AS WITH TOP...)
FINISHED NOT IF DOWN BEGIN FINISHED UNTIL HALT WAIT
UP BEGIN FINISHED NOT UNTIL HALT THEN ;

SCR# 13

0 \ DATA STORAGE
1 : STORE? (QUERRY, --- F) CR ." DO YOU WANT TO SAVE THIS RUN?"
2 READLN BUF2 1+ C@ DUP ASCII Y = >R ASCII y = R> OR ;
3
4 : STOREDATA (DN --- , WHERE N IS THE T-ARM INCREMENT)
5 CR ." FILE NAME? " READLN 2 DR@ BUF2 COUNT TEXT MAKE IS OUTPL
6 ." DATA TRANSFER IN PROGRESS..." CR
7 0 PRESSURE F@ 2E0 F@ WRITEOUT
8 P0 2@ 0 PRESSURE F@ FIX DROP
9 1+ 1 DO
10 2DUP AREA-OUT WRITEOUT
11 2OVER D+
12 1 PRESSURE F@ WRITEOUT
13 LOOP OUTPUT CLOSE 2DROP 2DROP ;
14
15

SCR# 15

0 \ PA'S, CONT.
1 : PA-REVERSE (REVERSES PA CURVE, ---) POSIT 2@ PO 2!
2 HOME 0 20 AT GR ." P-A REVERSE..."
3 0 PRESSURE F@ FIX DROP 1+ 1 DO
4 INC 2@ EXPAND WAIT-TIME @ 0 DO WAIT LOOP
5 READSCALE MGTODYNE I PRESSURE F! I PLOT-IT
6 LOOP
7 STORE? IF INC 2@ STOREDATA THEN TX ;
8
9
10
11
12
13
14
15

SCR# 17

0 \ SYSTEM REPORTS

1 : STATUS HOME
2 ." TRANSVERSE ARM IS AT " WHERE? CR
3 ." WEIGHT FROM CLEAN SURFACE IS " WTCLEAN F@ F. ." MG." CR
4 ." TREND IS " TREND @ .." POINTS." CR
5 ." WAIT-TIME IS " WAIT-TIME @ .." SEC." CR
6 SWITCH C@ DUP 3 AND 0 = IF ." DIPPING ARM UP."
7 ELSE 2 AND 0 = IF ." DIPPING ARM DOWN."
8 ELSE ." DIPPING ARM AT REST." THEN THEN CR CR ;
9
10
11
12
13
14
15

\ INITIALIZATION
: STARTUP BOCOL
127 SWITCH 2+ C! 255 SWITCH C!
30418, NUM1 2! 89438, NUM2 2! (ABSOLUTE PULSE #'S)
10E0 PCVRT F! 0.491E0 CPLATE F!
3 TREND ! 6 WAIT-TIME !
, " TURN BOX ON... " CR CR
CLEANWATER
POSITION ;

Dictionary of Terms

Position enters the correct the position of the arm into the computer.

Where? tells where the computer thinks the compression arm is. (Position is read from leading teflon edge of the arm, towards the dipping well.)

Cleanwater inputs changes in the surface pressure of the clean, film free, water surface.

Up moves the dipping arm up (Must be stopped with the **Halt** command) Use carefully!

Down moves arm down (Must be stopped with the **Halt** command) Use carefully!

Halt stops the motion of the dipping arm in the up or down mode.

Top moves the dipping arm to top of the range and then offsets.

Bottom moves the dipping arm to the bottom of the range and then offsets.

Status lists the status of the system.

transverse arm	(in motion or at rest)
wieght from clean surface	###
trend is	#
wait-tim	#
dipping arm	(in motion up/down or at rest)

X MM Compress (or) Expand will move the compression arm the desired mm's.

PA will measure the Pi-A curve. It will ask for intervals- 1mm is best to get accurate results. Program stops after recording three consecutive points where the surface pressure decreased.

Pa-Reverse runs a backward Pi-A curve to examine the extent of collapse and hysteresis. Unfortunately, there is often transfer of film to the plate which prevents a real measurement of the surface pressure on the reverse.

Storedata stores the PA curve if the program should be unwilling to let you do so automatically.

Deposit will deposit films on the slide. It will ask for pressure of transfer and for the number of dipping cycles desired. It is best to have the surface pressure close to that desired for dipping to prevent the computer from over stepping the condensed phase. There are times when the deposit cycle believes it has made several dips when in reality it has only done one. This can be seen in the area changes listed for each dip. (An area change of 0 would indicate no dip was made.) Also, changes in the dipping arm contacts are possible to vary the time for the cycles. Greater separation of the contacts gives longer times to allow the film to dry, closer distances give shorter times so each dip accomplished faster.

Dip is a sub command of Deposit and brings the slide down while maintaining the constant surface pressure given in the deposit command.

Undip is a sub command of the deposit routine. It brings the slide up while maintaining the constant surface pressure given in the deposit command. This is particularly useful if the switch fails, as it often does on the slow first dip.

XEN MGTODYNE F. converts the scale measurement of mg to the surface pressure in dynes. The number must be in scientific notation 147=1.47E2=147E0 either of the last two are acceptable.

XEN DYNETOMG F. converts the surface pressure in dynes to a force in mg readable from the scale. Again, this must be in scientific notation.

Variables that are variable!

In order to see these, type "status" which will respond with the present value for each of these (not Cplate):

Trend is the number of consecutive points which have decreasing surface pressures which the PA curve uses as the signal for collapse of the film. Not as important now that the PA can be stopped from the key-board after the first six points.

Wait-time is the time the computer waits between 1mm steps. This allows variation of the compression rate (approx. 3A2/molecule/minute).

Cplate is the inverse of the perimeter of the Wilhelmy plate, needed only with a new plate.

To Change a Variable: # VariableName !(CR) integer
VariableName F!(CR) floating pt. number

2 - 86

