Computing Galois groups of Fano problems

Fano Problems

A Fano problem is the problem of enumerating linear spaces of a fixed dimension on a complete intersection.

- Let $X_F \subseteq \mathbb{P}^n$ be the complete intersection defined by homogeneous polynomials $F = (f_1, \ldots, f_s)$ with deg $f_i = d_i$. Write $d_{\bullet} = (d_1, \ldots, d_s)$.
- The Fano scheme $V_r(X_F)$ is the subscheme of $\mathbb{G}(r,\mathbb{P}^n)$ of r-planes that lie on X_F .
- When $V_r(X_F)$ is finite, this is a Fano problem of type (r, n, d_{\bullet}) .

Figure: 27 lines on a cubic surface

Theorem (Debarre/Manivel)

The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when $n - s - 2r \ge 0$ and

$$(r+1)(n-r)-\sum_{i=1}^s\binom{d_i+r}{r}=0.$$

r	n	d•	$N(r, n, d_{\bullet})$
1	4	(2, 2)	16
1	3	(3)	27
2	6	(2, 2)	64
3	8	(2, 2)	256
1	7	(2, 2, 2, 2)	512
1	6	(2,2,3)	720

Figure: All Fano problems with ≤ 1000 solutions

Galois groups of Fano problems

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of homogeneous forms $F=(f_1,\ldots,f_s)$ in n+1 variables of degrees $d_{\bullet}=(d_1,\ldots,d_s)$. Consider the incidence correspondence.

$$\Gamma_{(r,n,d_{\bullet})} = \{ (F,\ell) \in \mathbb{C}^{(r,n,d_{\bullet})} \times \mathbb{G}(r,\mathbb{P}^{n}) : \ell \in V_{r}(X_{F}) \}$$

$$\pi_{(r,n,d_{\bullet})}$$

$$\mathbb{C}^{(r,n,d_{\bullet})}$$

$$\mathbb{G}(r,\mathbb{P}^{n})$$

The Galois group, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem determined by (r, n, d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.

• $\mathcal{G}_{(r,n,d_{\bullet})}$ is a Galois group in the algebraic sense.

Theorem (Jordan, Harris, Hashimoto, Kadets)

The following is known:

- [J],[Har] $\mathcal{G}_{(1,3,(3))} = E_6$.
- [Has,K] $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$.
- [Has,K] All other $\mathcal{G}_{(r,n,d_{\bullet})}$ contain the alternating group.

Finding a simple transposition

Find $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ such that $V_r(X_F)$ is one point of multiplicity 2 and $N(r,n,d_{\bullet})-2$ smooth points.

- Show $V_r(X_F)$ contains a point of multiplicity 2 by exact computation.
- Show there are $N(r, n, d_{\bullet}) 2$ smooth points by numerical certification.

Choose F by presecribing a subscheme of $V_r(X_F)$.

- Fix an r-plane $\ell \in \mathbb{G}(r,\mathbb{P}^n)$ and a tangent vector $v \in T_\ell \mathbb{G}(r,\mathbb{P}^n)$.
- Choose general F so that $\ell \in V_r(X_F)$ and $v \in T_\ell V_r(X_F)$.

When ℓ and v are chosen exactly, F can be chosen exactly as well.

- [Shub] simple double points are isolated.
- The remaining $N(r, n, d_{\bullet}) 2$ solutions can be enumerated and isolated by certification.
 - lacksquare α -theory
- interval arithmetic

Results and timings

The reported timings for verifying the simple double point and certifying the remaining solutions is given below. (alphaCertified,HomotopyContinuation.jl)

r	n	d _•	$N(r, n, d_{\bullet})$	alCer(h)	HomCo (s)
1	7	(2,2,2,2)	512	2.66	.61
1	6	(2,2,3)	720	2.88	.87
2	8	(2, 2, 2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2)	20480	_	15.44
1	9	(2,2,2,2,3)	27648	_	25.97
2	10	(2,2,2,2)	32768	_	36.67
1	8	(2,2,3,3)	37584	_	38.23
1	8	(2,2,2,4)	47104	_	111.88

Theorem (Y.)

The Fano problems with $d_{\bullet} \neq (3), (2, 2)$ and less than 50,000 solutions have full symmetric Galois group.

Data for these systems and code verifying the data is available at

github.com/tjyahl/FanoGaloisGroups