CS2222 Project Presentation **EEG and SNNs**

12/06/21

Agenda

- Motivating (biologically plausible) SNN
- Dynamics, learning and data
- Code-gen neural simulators

Goal: Attempt to answer practitioner/developer question 'how is code-generation used in neuroscience?'

Is cognition computation? If so, how does brain represent information?

Neural networks and 'brain-inspired' models

- Aristotle → Descartes → Kant → McCulloch-Pitts → Hodgin-Huxley → (Heidegger)
 - We've inherited a program of rationalizing/formalizing operation of mind
- Spiking neural networks bridge connectionist and dynamical theories

Why study spikes? Two disparate reasons

- 1. **Neuromorphic promise**: low-energy, parallel, async event-driven computation
 - Useful in robotics and embedded systems
 - Still gains to be made optimizing neural simulators on Von Neumann hardware
- 2. **Scientific inquiry**: biologically plausible models of neurons
 - Iterating on neurocognitive biomimicry (build better neural models for better performance)
 - Seeking adaptive complex systems description of brain

(dynamics, learning, data)

Some challenges with SNNs

Some challenges: dynamics

- Consider a single neuron
 - What quantities exist in this system (e.g. voltage)?
- Use <u>canonical neural model</u> approach
 - Different families of models for different neurons (w/ biological or aux variables)
- E.g. classes of excitability behaviour
 - Class 1 integrator: low frequency activation
 - Input current increase ~ spikes
 - Class 2 resonator: specific-frequency activation
 - Insensitive to input current increase

Figure 8.10: Dynamical system $\dot{y} = g(y)$ is a canonical model for the family $\{f_1, f_2, f_3, f_4\}$ of neural models $\dot{x} = f(x)$ because each such model can be transformed into the form $\dot{y} = g(y)$ by the piecewise continuous change of variables h_i .

E.g. Izhikevich model

- Izhikevich (2003) DEs for a single neuron
 - v: membrane potential, u: membrane recovery
 - These are abstractions of the neurophysiology of observed cell behaviours

$$rac{dv}{dt}=0.04v^2+5v+140-u+I$$
 $rac{du}{dt}=a\left\{bv-u
ight\}$ if $v\geq 30mV,$ Then $v\leftarrow c,u\leftarrow u+d$

$$I_{i} = \left(\sum_{j \in N_{i}} w_{ij} \frac{dv_{j}}{dt} + \frac{dW_{ij}}{dt} v_{j}\right) \left(1 - tanh\left(\sum_{j \in N_{i}} w_{ij} v_{j}\right)^{2}\right) + \frac{d\theta_{i}}{dt}, \tag{5}$$

Some challenges: learning

- How will our network learn parameters? Need something unsupervised
 - Backprop popularized ANNs, but biological neurons can't backpropagate error gradients...
- Synaptic plasticity: strength between neurons change in response to stimuli
 - Hebbian learning: 'cells that fire together wire together'
 - Spike-time-dependent plasticity: if pre- and post-synaptic firing is short then strengthen

Some challenges: data

- Three classes over recall task: {resting state, word recall, image recall}
- Many ways to record a brain (e.g. PET, CT, MEG, MRI, ...)

Some challenges: data

- Three classes over recall task: {resting state, word recall, image recall}
- Many ways to record a brain (e.g. PET, CT, MEG, MRI, ...)
 - EEG
 - Measures electrical activity on surface of head
 - Many channels of continuous, non-smooth signal

Some challenges: data

- Three classes over recall task: {resting state, word recall, image recall}
- Many ways to record a brain (e.g. PET, CT, MEG, MRI, ...)
 - o EEG
 - Measures electrical activity on surface of head
 - Many channels of continuous, non-smooth signal
 - o fMRI
 - Measures blood flow (metabolic function where neuronal activity present)

We have the ingredients for an inverse problem,

I.e. seeking (model of) neural process generating EEG data

Our experiment and data

- Want to model EEG data using populations of neurons
- Need software to model neurons, consider...
 - At what spatial scale?
 - 'Highly specific/descriptive neuronal models' vs 'large-scale brain network'
 - Bottom-up or top-down approach? How abstract?
 - 'Functionalist view of the brain' vs '(neuro)constructivist'?
- ...so we used <u>Brian</u>
 - Uses code-gen to transform descriptions of neural models into system of ODEs

Code generation and neural simulators

	Models	Platforms	Techniques
Brian (2.1)	Point and multicompartmental neurons; plastic and static synapse models	CPUs; GPUs via GeNN	AST transformations; Symbolic model analysis; Code optimization
GeNN (2.2)	Models that can be defined by timestep update code snippet; mostly point neurons and synapses with local update rules	GPUs and CPUs	Direct code generation by a C++ program
Myriad (2.3)	Compartmental neurons; arbitrary synapse models	CPUs; GPUs	Custom object models; AST transformations
NESTML (2.4)	Point neurons	CPUs via NEST	Custom grammar definitions; AST transformations; model equation analysis
NeuroML/LEMS (2.5)	Point and multicompartmental neurons; plastic and static synapse models	CPUs via NEURON and Brian; SBML	Procedural generation; template-based generation; semantic model construction
NineML (2.6)	Models defined by a hybrid dynamical system; mostly point neurons and synapses with local update rules	CPUs via NEURON, NEST and PyNN	symbolic analysis; template-based generation
NEURON/NMODL (2.7)	Point and multicompartmental neurons; plastic and static synapse models; linear circuits; reaction-diffusion; extracellular fields; spike and gap junction coupled networks	CPUs; GPUs via CoreNEURON	Custom grammar; parse tree transformations; GUI Forms
SpineML (2.8)	Models defined by a timestep update code snippet; mostly point neurons and synapses with local update rules; generic inputs support compartments and non-spiking components	CPU via BRAHMS and PyNN; GPU via GeNN and Neuorkernel	XSLT code templates and libSpineML
SpiNNaker (2.9)	Common point neuron models with either static of plastic synapses	SpiNNaker	Hand crafted modular source code, loaded through a complex mapping process from a graph representation
TVB-HPC (2.10)	Neural mass models	CPUs; GPUs	AST transformations

Brian: code-gen for neural simulator

- 1. User specifies models (neuronal models, synapses connections, learning rule) in Python
- 2. Code generated for expensive operations from Brian templates
 - a. Equation strings translated into ODE solving code
- 3. Simulation loop runs, executing fast code when needed
 - a. Memory is shared between Python and code, no copying required

Brian: code-gen for neural simulator

- 1. User specifies models (neuronal models, synapses connections, learning rule) in Python
- 2. Code generated for expensive operations from Brian templates
 - a. Equation strings translated into ODE solving code
- 3. Simulation loop runs, executing fast code when needed
 - a. Memory is shared between Python and code, no copying required
 - Pro: practitioner's model becomes optimized simulation code that can be modified as needed
 - E.g. Change learning rules easily between runs
- Con: code-objects limited to available templates for substitution, limits the forms of models
 - E.g. Not all neural models come in differential form

So we take neural descriptions and generate code, how does the code run?

Brian: what is actually happening on device?

- Every solid arrow in (a) is an operation to/from memory (state/weight matrix)
 - o E.g. update state values, update weight matrix, reset values on spike
- Use performance profiler to ask:
 - "Which steps (1-10) are the biggest bottleneck for the simulation loop?"

Experiment

- Encode EEG data into spike trains using BSA
- Use spike train as pre-synapse for neural population of Izhikevich neurons
- Train synapse weights using STDP
- Ask, what's taking the longest?

Profiling

- Synaptic steps (i.e. learning) takes the most (simulation) time
- Integrating ODEs takes much less time, adding neurons costs more

Thanks and good luck

Appendix slides

Doborjeh mindfulness paper

- Idea: train SNNs from EEG data before and after mindfulness training
 - Non-depressed (ND), depressed before but not after (D-), depressed before and after (D+)
 - Two networks (T1, T2) per subject, compare network weights (i.e. connectivity)
- **Result**: differences in regional activations for different subject conditions
- So what?: can use models to predict efficacy of mindfulness training

What does the data training look like?

- Resting state EEG mapped to a brain atlas
 - o (a): non-depressed, ND
 - o (b): depressed mindfulness responsive, D-
 - o (c): depressed mindfulness non-responsive, D+
- Found regional differences between subjects when comparing before/after mindfulness training

What kind of differences?

 Different subject groups had different levels of spike transmission between regions

What about the D+ group?

- Different bandwidths responded differently to mindfulness training
 - o (a) Delta, (b) Theta, (c) Alpha, (d) Beta
 - Histogram of connection weights by value shows (c,d) bandwidths spread out, (b) shifted

Plausibility and computational constraints

