Chapter 7: Relational Database Design. Part 1.

1. Pitfalls in Relational Database Design

- Relational database design requires that we find a "good" collection of relation schemas. A bad design may lead to
 - . Repetition of Information.
 - . Inability to represent certain information.
- . Design Goals:
 - . Avoid redundant data
 - . Ensure that relationships among attributes are represented
 - Facilitate the checking of updates for violation of database integrity constraints.

Example

. Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

branch-name	branch-city	assets	customer-name	loan-	amount
				number	
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Problems:

- . Redundancy:
 - . Data for *branch-name*, *branch-city*, *assets* are repeated for each loan that a branch makes
 - . Wastes space
 - . Complicates updating, introducing possibility of inconsistency of *assets* value
- Null values
 - . Cannot store information about a branch if no loans exist
 - . Can use null values, but they are difficult to handle.

2. Decomposition

. Decompose the relation schema *Lending-schema* into:

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

All attributes of an original schema (R) must appear in the decomposition (R_1 , R_2):

$$R = R_1 \cup R_2$$

Lossless-join decomposition.

For all possible relations r on schema R

$$r = \prod_{R1} (r) |\mathbf{x}| \prod_{R2} (r)$$

3. A Lossy Decomposition. Example.

Problem: How to distinguish?

4. Goal — Devise a Theory for the Following

- . Decide whether a particular relation *R* is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - . each relation is in good form
 - . the decomposition is a lossless-join decomposition

5. Review: domain.

Domain is atomic if its elements are considered to be indivisible units

- . Examples of non-atomic domains: set of names, composite attributes
- . In relational schema all domains are usually assumed to be atomic

6. First Normal Form

A relational schema R is in **first normal form** if the domains of all attributes of R are atomic

We assume all relations are in first normal form

If a relational schema is in first normal form, can we say that it is a "good" scheme. No. Let's go on.

7. Functional Dependencies

- . We'll build our theory on functional dependencies.
- Functional Dependency is a constraint that requires that the value for a certain set of attributes determines uniquely the value for another set of attributes.

A functional dependency is a generalization of the notion of a key.

8. Review: keys.

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - . for no $\alpha \subseteq K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name, amount).

We expect this set of functional dependencies to **hold** (be satisfied):

loan-number \rightarrow amount

loan-number $\rightarrow branch$ -name

but would not expect the following to hold:

loan-number $\rightarrow customer$ -name

9. Use of Functional Dependencies

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - ▶ If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.
 - specify constraints on the set of legal relations
 - ▶ We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.

Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances. For example, a specific instance of *Loan-schema* may, by chance, satisfy

loan-number \rightarrow customer-name

10. Functional Dependencies (Cont.)

- A functional dependency is **trivial** if it is satisfied by all instances of a relation
 - E.g..
 - customer-name, loan-number $\rightarrow customer$ -name
 - *customer-name* → *customer-name*

In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

11. Closure of a Set of Functional Dependencies

- Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - E.g. If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the *closure* of F by \mathbf{F}^+ .
- We can find all of F⁺ by applying Armstrong's Axioms:

 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity) if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- These rules are
 - **sound** (generate only functional dependencies that actually hold)

complete (generate all functional dependencies that hold).

Example

$$R = (A, B, C, G, H, I)$$

$$F = \{ A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}$$

some members of F^+

- $A \to H$
 - ▶ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
- $AG \rightarrow I$
 - ▶ by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
- $CG \rightarrow HI$
 - ▶ from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule" can be inferred from definition of functional dependencies, or:
 - (1) augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$,
 - (2) augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then
 - (3) transitivity.

12. Closure of Functional Dependencies (Cont.)

- We can further simplify manual computation of F^+ by using the following additional rules.
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - . If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition)
 - . If $\alpha \to \beta$ holds and $\gamma \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

13. Look back at our goal: lossless-join decomposition (#4 and #2).

All attributes of an original schema (R) must appear in the decomposition (R_1 , R_2):

$$R = R_1 \cup R_2$$

. Lossless-join decomposition.

For all possible relations r on schema R

$$r = \prod_{R1} (r) |\mathbf{x}| \prod_{R2} (r)$$

14. How do we know that decomposition is a lossless join?

- . A decomposition of R into R_1 and R_2 is lossless join if and only if
- at least one of the following dependencies is in F^+ :

$$R_1 \cap R_2 \to R_1$$
$$R_1 \cap R_2 \to R_2$$

Example: Lossless join.

Decompose the relation schema *Lending-schema* into: Branch-schema = (branch-name, branch-city, assets) Loan-info-schema = (customer-name, loan-number, branch-name, amount)

Example: A Lossy Decomposition (Kim example)

Decompose the relation schema Employee-schema=(employee_id, employee_name, telephone_number, start_date) into:

Employee-id-schema = (employee_id, employee_name)

Employee-info-schema = (employee_name, telephone_number, start_date)