컴퓨터가 관리하는 데이터베이스는 계속적으로 변화하는 현실 세계를 표현

변수 보호 보호하기 위해 사용하는 도구 원부수를 표현하기 위해 사용하는 도구

GIOIS TE

데이터 : 현실세계 vs. 컴퓨터

데이터베이스: 현실세계 vs. 컴퓨터

데이터 모델(Data Model) - I

- □ 다음 사항들을 기술하기 위한 개념적 표현
 - □ 데이터
 - □ 데이터들 간의 관계
 - □ 데이터의 의미
 - □ 일관성 제약 조건
- □ 데이터 모델 : D = < S, O, C >
 - S: 데이터의 구조(Structure)
 - □ 정적 성질 (추상적 개념) <u>개체타입</u>과 이들 간의 <u>관계</u>를 명세
 - □ 0: 연산(Operations)
 - □ 동적 성질 개체 인스턴스를 처리하는 작업(데이터 조작)에 대한 명세
 - □ C: 제약 조건(Constraints)
 - □ 데이타의 논리적 제약 개체 인스턴스의 허용 조건
 - □ 데이타 조작의 한계를 표현한 규정

데이터 모델(Data Model) - II

관계형 데이터 모델

배을 내용

- 그 관계 대수
 - □일반 집합 연산
 - □순수 관계 대수 연산
 - □확장 관계 대수 연산
 - □ 데이터베이스의 수정
 - □뷰

관계 대수(Relational Algebra)

- □ 릴레이션을 처리하기 위한 연산의 집합
 - □ 릴레이션 : 투플의 집합
- □ 기본 연산
 - □ 일반 집합 연산:
 - □ 합집합, 교집합, 차집합, 카티션 프로덕트
 - □ 순수 관계 연산:
 - □ 실렉트, 프로젝트, 조인, 디비전
- 폐쇄성질 (closure property)
 - □ 피연산자와 연산 결과가 모두 릴레이션
 - □ 중첩(nested)된 수식의 표현이 가능

일반 집합 연산(1)

- □ 합집합 (union, U)
 - $\square R \cup S = \{ t \mid t \in R \lor t \in S \}$
 - $\square |R \cup S| \le |R| + |S|$
- □ 교집합 (intersect, ∩)
 - \square R \cap S = { t | t \in R \land t \in S }
 - $\square |R \cap S| \leq \min\{ |R|, |S| \}$
- □ 차집합 (difference,-)
 - \square R-S = { t | t \in R \land t \notin S }
 - $\square |R-S| \leq |R|$
- □ 카티션 프로덕트 (cartesian product,×)
 - □ R×S = { r·s | r∈R ∧ s∈S } : 접속(concatenation)
 - $\square |R \times S| = |R| \times |S|$
 - □ 차수(degree) = R의 차수 + S의 차수

일반 집합 연산(II)

- □ 합집합 연산
 - 표기법:r∪s
 - \square 정의 : $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$
 - □ r ∪ s가 가능하려면,
 - □ r과 s는 같은 항(애트리뷰트의 수가 같음)을 가져야 함
 - □ 애트리뷰트의 도메인은 양립할 수 있어야 함
 - □ 즉, r의 두번째 열은 s의 두번째 열의 것과 같은 유형의 값을 다룸
 - <u></u> 예

릴레이션 r

Α	В
α	1
α	2
β	1

릴레이션 s

5	Α	В
	α	2
	β	3

 $r \cup s$

Α	В
α	1
α	2
β	1
β	3

일반 집합 연산(III)

- □ 교집합 연산
 - 표기법: r ∩ s
 - □ 정의: $r \cap s = \{t \mid t \in r \text{ and } t \in s\}$
 - □ 가정:
 - □r과 s는 같은 항을 갖는다.
 - □r과 s의 애트리뷰트는 양립성이 있다.
 - □ 유의: r ∩ s = r (r s)
 - □ 예

릴레이션 r

Α	В
α	1
α	2
β	1

릴레이션 s

A	В
α	2
β	3

 $r \cap s$

Α	В
α	2

일반 집합 연산(IV)

- □ 차집합
 - □ 표기법:r-s
 - □ 정의: *r s* = {*t* | *t* ∈ *r* and *t* ∉ *s*}
 - □ r s가 가능하려면,
 - □ r과 s는 같은 항(애트리뷰트의 수가 같음)을 가져야 함
 - □ 애트리뷰트의 도메인은 양립할 수 있어야 함
 - □ 즉, r의 두번째 열은 s의 두번째 열의 것과 같은 유형의 값을 다룸
 - □ 예

릴레이션 r

Α	В
α	1
α	2
β	1

릴레이션 s

Α	В
α	2
β	3

r - s

Α	В
α	1
β	1

일반 집합 연산(V)

- □ 카티젼곱 연산
 - □ 표기법:r×s
 - □ 정의: $r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$
 - □ r(R)과 s(S)의 애트리뷰트가 서로 다르다고 가정(즉, R介S = δ).
 - □ r(R)과 s(S)의 애트리뷰트가 서로 같다면, 재명명을 사용해야 함
 - □ 예

r×s

	_	_	
릴레	lo	셔	C
2 -			3

릴레이션 r	Α	В
	α	1
	β	2

С	ם	ш
α	10	+
β	10	+
β	20	-
γ	10	•

3.13

Α	В	C	D	Ε
α	1	α	10	+
α	1	β	10	+
α	1	β	20	-
α	1	γ	10	-
β	2	α	10	+
β	2	β	10	+
β	2	β	20	-
β	2	γ	10	-

순수 관계 연산(1)

□ 선택연산

- 표기법 : σ_P(r)
- □ 예제

릴레이션 r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{A=B\wedge D>5}$$
 (r)

Α	В	С	D
α	α	1	7
β	β	23	10

순수 관계 연산(11)

- □ 추출 연산
 - □ 표기법: ∏_{A1, A2, ..., Ak}(r)
 - □ 여기서 A₁, A₂는 애트리뷰트명이고 r은 릴레이션명
 - □ 결과는 명시하지 않은 열을 제외한 k 열의 릴레이션
 - □ 릴레이션은 집합이기 때문에 중복 행은 결과에서 제거
 - □ 예

릴레이션 r

Α	В	С
α	10	1
α	20	1
β	30	1
β	40	2

 $\Pi_{A, C}$ (r)

Α	С
α	1
α	1
β	1
β	2

→

Α	С
α	1
β	1
β	2

순수 관계 연산(III)

- □ 죠인 연산
 - \square 표기법 : $r \bowtie_{\theta}$ s (= Theta join), $r \bowtie_{N}$ s (= Natural join)
 - □ r과 s를 각각 스키마 R과 S상의 릴레이션이라 하면, 죠인 연산 결과는 r의 튜플 t₊과 s의 튜플 t₅의 각 쌍을 고려해 얻은 스키마 R ∪ S 상의 릴레이션이다.
 - □ t_r과 t_s가 R∕S의 애트리뷰트 각각에 같은 값을 가지면, 다음과 같이 튜플 t 가 결과에 추가된다.
 - □t는 r 상에 t_r로서 같은 값을 갖는다.
 - □t는 s상에 t_s로서 같은 값을 갖는다.
 - □ 예 : R = (A, B, C, D), S = (E, B, D) → 결과 스키마는 (A, B, C, D, E)
 - □ r ⋈ s는 다음과 같이 정의된다.

$$\Pi_{r.A, r.B, r.C, r.D, s.E}(\sigma_{r.B=s.B \land r.D=s.D}(r \times s))$$

순수 관계 연산(IV)

□ 죠인 연산(계속) - 예

릴레이션 r

Α	В	С	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	а
δ	2	β	b

릴레이션 s

В	D	Е
1	а	α
3	а	β
1	а	γ
2	b	δ
3	b	3

r⊳⊲s

Α	В	С	D	Е
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

순수 관계 연산(V)

□ 나누기 연산

- □ 표기법: r÷s
- □ "모두에 대한"이라는 구절을 내포한 질의에 적합하다.
- □ r과 s를 각각이 다음과 같은 스키마 R, S상의 릴레이션이라 하면,
 - $\square R = (A_1, ..., A_m, B_1, ..., B_n), S = (B_1, ..., B_n)$
 - □ r ÷ s의 결과는 스키마 R-S = (A₁, ..., A๓)상의 릴레이 션
 - $\square r \div s = \{t \mid t \in \Pi_{R-S}(r) \land \forall u \in s(tu \in r)\}$
- □ 예

릴레이션 r

Α	В
α	1
α	2
α	3
β	1
γ	1
δ	1
δ	3
δ	4
δ	6
3	1
ε	2

릴레이션 s B $r \div s$ A α

3.18

순수 관계 연산(V-1)

□ 나누기 연산 예

학과목(SC)

학번	과목번호
(SNO)	(CNO)
100	C413
100	E412
200	C123
300	C312
300	C324
300	C413
400	C312
400	C324
400	C413
400	E412
500	C312

과목1(C1)

과목번호 (CNO) C413

SC ÷ C1

학번 (SNO) 100 300 400 과목2(C2)

과목번호 (CNO) C312 C413

SC ÷ C2

학번 (SNO) 300 400 과목3(C3)

과목번호 (CNO) C312 C413 E412

 $SC \div C3$

학번 (SNO) 400

순수 관계 연산(VI)

- □ 재명명 연산
 - □ 이름을 줄 수 있도록 하여 관계 대수 표현식의 결과를 참조하도록 함
 - □ 하나 이상의 이름으로 릴레이션을 참조하도록 함
 - \Box 예1: $\rho_{x}(E)$ 이름 x로 표현식 E를 돌려줌
 - $lue{}$ 예2: 관계형 대수 표현식 E가 n항이면, $ho_{X (A1, A2, ..., An)}(E)$
 - □ 이름 x하에 A₁, A₂, ...,Aո으로 재명명 된 애트리뷰트를 가진 표현식 E의 결과를 돌려줌

순수 관계 연산(VI-1)

□ 재명명 연산 예

Account-number	Branch-name	balance
101	Downtown	500
102	Perryridge	400
201	Brighton	900
215	Mianus	700
217	Brighton	750
222	Redwood	700
305	Round hill	350

□ 은행에서 가장 큰 잔고를 찾아라.

 $\Pi_{balance}(account) - \Pi_{account.balance}(\sigma_{account.balance} < d.balance(account X <math>\rho_d(account)))$

순수 관계 연산(VII)

- □ 배정 연산
 - □ 배정 연산(←)은 복잡한 질의를 편리하게 표현하는 방법을 제공
 - □ 질의를 일련의 배정 연산과 질의의 결과 값이 출력되는 표현식으로 구성된 순차 프로그램으로 작성
 - □ 배정은 항상 임시 릴레이션 변수로 작성되어야 함
 - □ 예 : r ÷ s는 다음과 같이 작성한다.

$$temp1 \leftarrow \Pi_{R-S}(r)$$

$$temp2 \leftarrow \Pi_{R-S}((temp1 \times s) - \Pi_{R-S,S}(r))$$

- □←의 오른쪽 결과가 ←의 왼쪽의 릴레이션 변수에 배정
- □연속 표현식내에 변수를 사용할 수 있음

순수 관계 연산(VIII)

□ 복합연산(예, _{σA=C}(r × s))

 $r \times s$

 \Box (r × s)

릴레이션 s

릴레이션 r В α

β 2

С	D	Е
α	10	+
β	10	+
β	20	-
γ	10	-

\Box $\sigma_{A=C}(r \times s)$

Α	В	С	D	Ш
α	1	α	10	+
β	2	β	10	+
β	2	β	20	-

Α	В	С	D	Е
α	1	α	10	+
α	1	β	10	+
α	1	β	20	-
α	1	γ	10	-
β	2	α	10	+
β	2	β	10	+
β	2	β	20	-
β	2	γ	10	-

배을 내용

- □ 관계 대수
 - □일반 집합 연산

- □ 데이터베이스의 수정
- □뷰

확장 관계 대수 연산(1)

- □ 일반화 추출 연산
 - □ 추출 리스트에 산술 함수를 사용 하도록 함으로써 추출 연산을 확장

$$\Pi_{F1, F2, ..., Fn}(E)$$

- □ E는 관계형 대수 표현식이다.
- \Box F_1 , F_2 , ..., F_n 각각은 E의 스키마 내에 상수와 애트리뷰트를 내포하고 있는 산술 표현식이다.
- □ 주어진 릴레이션 credit-info(customer-name, limit, credit-balance) 에 대해 각 개인이 얼마까지 사용할 수 있는지를 찾아라.

Π customer-name, limit – credit-balance (credit-info)

확장 관계 대수 연산(11)

- □ 외부 조인(I)
 - □ 정보의 손실을 피하기 위한 조인 연산의 확장
 - 조인을 계산하고 다른 릴레이션의 튜플과 부합하지 않는 어떤 릴레이션의 튜 플들을 조인의 결과에 추가
 - □ 널 값을 사용
 - □ 널은 알려지지 않은 값이나 존재하지 않는 값을 의미
 - □ 널을 내포한 모든 비교는 정의에 의해 거짓

확장 관계 대수 연산(III)

□ 외부 조인 예제(I)

□ loan 릴레이션

branch-name	loan-number	amount
Downtown	L-170	3000
Redwood	L-230	4000
Perryridge	L-260	1700

□ borrower 릴레이션

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

확장 관계 대수 연산(IV)

□ 외부 조인 예제(II)

□ loan ⋈ borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith

□ loan → borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null

확장 관계 대수 연산(V)

□ 외부 조인 예제(Ⅲ)

□ loan **□** borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
null	L-155	null	Hayes

□ loan □ borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

확장 관계 대수 연산(VI)

- i . 세미 조인 (Semijoin, ⋉)
- □ R(X), S(Y)의 조인 애트리뷰트를 $Z=X \cap Y$ 라 하면 R \bowtie S = R \bowtie N($\Pi_Z(S)$) = $\Pi_X(R \bowtie$ NS)
 - □ S와 자연조인을 할 수 있는 R의 투플

- □ 특징
 - \square R \bowtie S \neq S \bowtie R
 - $\square R \bowtie_{N} S = (R \bowtie S) \bowtie_{N} S = (S \bowtie R) \bowtie_{N} R$
 - 처리해야 될 데이타의 양이 다름

확장 관계 대수 연산(VII)

확장 관계 대수 연산(VI)

□ 집성 함수

□ 집성 연산자 分는 값의 모임을 취해 하나의 값을 결과로 돌려준다.

avg: 평균 값

min: 최소 값

max: 최대 값

sum: 합계

count: 값의 개수

G₁, G₂, ..., G_n
$$\bigcap_{F_1 A_1, F_2 A_2, ..., F_n A_n}$$
 (E)

- □ E는 관계형 대수 표현식
- □ G₁, G₂, ..., G_n 은 그룹핑할 애트리뷰트 리스트
- □ F₁는 집성 함수
- □A;는 애트리뷰트명

확장 관계 대수 연산(VII)

□ 집성 함수 예(I)

릴레이션 r

Α	В	С
α	α	7
α	β	7
β	β	3
β	β	10

sum_c(r)

sum-C 27

확장 관계 대수 연산(VIII)

- □ 집성 함수 예(II)
 - □ 릴레이션 account를 branch-name으로 그룹핑한다.

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch-name $\int_{\text{sum balance}} (\text{account})$

branch-name	sum-balance
Perryridge	1300
Brighton	1500
Redwood	700

배을 내용

- □ 관계 대수
 - □일반 집합 연산
 - □순수 관계 대수 연산
 - □확장 관계 대수 연산
- □ 데이터베이스의 수정
 - □ 뷰

데이터베이스 수정(1)

- □ 데이터베이스의 내용은 다음 연산을 사용해 수정
 - □ 삭제
 - □ 삽입
 - □갱신
- □ 이들 모든 연산은 배정 연산자를 사용해 표현

데이터베이스 수정(II)

- □ 삭제
 - □ 삭제 요청은 질의와 유사하게 표현되나, 사용자에게 튜플을 출력하는 대신에, 선택한 튜플들이 데이터베이스에서 제거
 - □ 튜플을 통째로 삭제할 수 있지, 특정 애트리뷰트의 값 만을 삭제할 수는 없음
 - □ 삭제는 관계형 대수로 다음과 같이 표현

 $r \leftarrow r - E$

여기서 r은 릴레이션이고, E는 관계형 대수 질의

데이터베이스 수정(III)

□ 삭제 예

□ Perryridge 지점의 모든 계좌 레코드를 삭제하라.

```
account \leftarrow account - \sigma_{branch-name = "Perryridge"} (account)
```

□ 0부터 50 사이의 금액을 가진 모든 대출 레코드를 삭제하라.

```
loan \leftarrow loan - \sigma_{amount \ge 0 \ and \ amount \le 50} (loan)
```

□ Needham에 위치한 지점의 모든 계좌를 삭제하라.

```
r_1 \leftarrow \sigma_{branch-city} = "Needham" (account \bowtie branch)
r_2 \leftarrow \Pi_{branch-name, account-number, balance}(r_1)
r_3 \leftarrow \Pi_{customer-name, account-number}(r_2 \bowtie depositor)
account \leftarrow account - r_2
depositor \leftarrow depositor - r_3
```

데이터베이스 수정(IV)

- □ 삽입
 - □ 릴레이션에 데이터를 삽입하려면
 - □ 삽입될 튜플을 지정
 - □ 결과가 삽입될 튜플의 집합인 질의를 작성
 - □ 관계형 대수에서, 삽입은 다음과 같이 표현

$$r \leftarrow r \cup E$$

여기서 r은 릴레이션이고, E는 관계형 대수 표현식

□ 단일 튜플의 삽입은 *E*를 하나의 튜플을 내포한 상수 릴레이션이 되도록하여 표현

데이터베이스 수정(V)

□ 삽입 예

□ 데이터베이스에 Smith가 Perryridge 지점에 1,200불의 계좌 A-973을 가지고 있다는 정보를 삽입하라.

```
account \leftarrow account \cup {"Perryridge", A-973, 1200} depositor \leftarrow depositor \cup {"Smith", A-973}
```

□ Perryridge 지점의 모든 대출 고객에게 200불의 저축 예금 계좌를 제공하고자 한다. 대출 번호를 새로운 저축 계좌의 계좌 번호로 하자.

```
\mathbf{r}_1 \leftarrow (\sigma_{branch-name = "Perryridge"} (borrower \bowtie loan))
account \leftarrow account \cup \Pi_{branch-name, loan-number, 200}(r_1)
depositor \leftarrow depositor \cup \Pi_{customer-name, loan-number}(r_1)
```

데이터베이스 수정(VI)

- □갱신
 - □ 튜플 내의 모든 값을 바꾸지 않고 일부 값을 변경하는 기법
 - □ 일반화 추출 연산자를 사용

$$\mathbf{r} \leftarrow \Pi_{F_1, F_2, \dots, F_n}(\mathbf{r})$$

- □ 각 F;는 i번째 애트리뷰트가 갱신되지 않거나 갱신될 r의 i번째 애트리뷰트이다.
- □ F_i는 애트리뷰트에 새로운 값을 주는 상수와 r의 애트리뷰트만을 내포하는 표현식이다.

데이터베이스 수정(VII)

- □ 갱신 예
 - □ 모든 잔고에 5%의 이자를 지급하라.

 $account \leftarrow \Pi_{BN, AN, BAL\leftarrow BAL*1.05}$ (account)

- □ 여기서 BAL, BN 및 AN은 각각 balance, branch-name 및 account-number를 나타 낸다.
- □ 10,000불을 초과하는 잔고에는 6%의 이자를 지급하고 그 외의 잔고에는 5%의 이자를 지급하라.

account $\leftarrow \Pi_{BN, AN, BAL \leftarrow BAL*1.06} (\sigma_{BAL > 10000} (account))$

 $\cup \Pi_{BN, AN, BAL \leftarrow BAL*1.05}(\sigma_{BAL \leq 10000}(account))$

배을 내용

- □ 관계 대수
 - □일반 집합 연산
 - □순수 관계 대수 연산
 - □확장 관계 대수 연산

- □ 어떤 경우에도, 모든 사용자가 전체 논리 모델을 보는 것이 바람직 하지 않음
 - □ 전체 논리 모델
 - □ 데이터베이스에 저장된 모든 실제 릴레이션
- □ 고객의 대출 번호는 알 필요가 있으나 대출 금액을 알 필요가 없는 개인을 고려해 보자. 이 사람은 다음과 같이 관계형 대수로 기술된 릴레이션을 보아야만 한다.
 - Π_{customer-name, loan-number}(borrower ⋈ loan)
- □ 개념적 모델의 일부는 아니지만 사용자에게 "가상 릴레이션"으로 보이는 릴레이션을 뷰라 한다

□ 뷰의 정의

create view vas < 질의 표현식 >

- □ 여기서 < 질의 표현식 >은 관계형 대수 질의 표현식
- □ 뷰명은 /로 표현
- □ 일단 뷰가 정의되면, 뷰를 생성하는 가상 릴레이션을 참조하는데 뷰명이 사용될 수 있음

□ 뷰 정의는 질의 표현식을 평가함으로써 새로운 릴레이션을 생성 하는 것과는 다르게 뷰를 사용하는 질의내에 대치될 표현식을 저 장

□ 뷰의 예

□ 지점과 고객으로 구성된 뷰(뷰명 : *all-customer*)를 고려해 보자.

create view *all-customer* as

 $\Pi_{branch-name, \ customer-name}$ (depositor \bowtie account)

 $\cup \Pi_{branch-name, customer-name}$ (borrower \bowtie loan)

□ Perryridge 지점의 모든 고객은 다음과 같이 찾을 수 있다.

 $\Pi_{customer-name}$ ($\sigma_{branch-name} = "Perryridge"$ (all-customer))

요약

- □관계 대수
 - □일반 집합 연산
 - □순수 관계 대수 연산
 - □확장 관계 대수 연산
- □ 데이터베이스의 수정
- □ 뷰

다음 배울 내용: 관계형 데이터베이스 설계