Nurse Care Activity Recognition Based on Machine Learning Techniques Using Accelerometer Data

Team: MoonShot_bd

Mohammad Sabik Irbaz¹, Abir Azad¹, Tanjila Alam Sathi¹, Lutfun Nahar Lota¹

¹Department of Computer Science and Engineering, Islamic University of Technology, Gazipur, Dhaka, Bangladesh

Introduction

Activity Recognition

Recognizing the actions and goals from a series of observations based on sensor data

- Predicting Movements
- Human Behavior Analysis
- Health Monitoring
- Elderly Care Service
- Smart Home

Introduction (cont'd)

Nurse Care Activity Recognition

- Automate documentation process
- Increase efficiency in care activities

Second Nurse Care Activity Recognition Challenge

- Lab accelerometer data (2 subjects)
- Field accelerometer data (6 subjects)
- 12 distinctive labeled activity
- Attached in right arm using armband
- Sampling rate: 60 Hz

Second Nurse Care Activity Recognition Challenge

- Lab accelerometer data (2 subjects)
- Field accelerometer data (6 subjects)
- 12 distinctive labeled activity
- Attached in right arm using armband
- Sampling rate: 60 Hz

Figure (1): Collecting Accelerometer data using Smartphone

Second Nurse Care Activity Recognition Challenge (cont'd)

Principal Category	Activity Name	Label in Dataset	Activity Name
		1	Guide (from the front)
A	Help in Mobility	2	Partial assistance
		3	Walker
		4	Wheelchair
		5	All assistance
D	Assistance in Transfer	6	Partial assistance (from the front)
В		7	Partial assistance (from the side)
		8	Partial assistance (from the back)
		9	To Supine position
	Position Change	9	To Right Lying position
С		10	To Left Lying position
		11	Lower Body Lifting
		12	Horizontal Movement

Table (2): Different Labeled Activities in the Dataset

Challenges

- Imbalanced data
- Irregular sampling rate
- Missing labels
- Dissimilarities between Lab data and Field data

Methodology

Figure (3): Overview of the methodology

Preprocessing

- Integrating Lab and Field data
- Handling irrelevant data
- Normalizing the data

- Overlapping Sliding Window
- Frame size: 60
- Hop size: 10

- Overlapping Sliding Window
- Frame size: 60
- Hop size: 10

Figure (4): Overlapping Sliding Window

- Overlapping Sliding Window
- Frame size: 60
- Hop size: 10

Figure (4): Overlapping Sliding Window

- Overlapping Sliding Window
- Frame size: 60
- Hop size: 10

Figure (4): Overlapping Sliding Window

- Overlapping Sliding Window
- Frame size: 60
- Hop size: 10

Figure (4): Overlapping Sliding Window

Feature Extraction

We have chosen these five features empirically for extracting summarizing features from each window

- Mean
- Median
- Mode
- Standard Deviation
- Variance

Recognition Algorithm

We experimented with-

- ✓ Naïve Bayes
- ✓ SVM
- **✓ KNN**
- ✓ Random Forest
- ✓ Multilayer Perceptron

Result Analysis

- KNN outperformed all other algorithm achieving 75% accuracy
- Multilayer Perceptron achieved 73%
- > Random Forest got around 70% accuracy

Classification method

Figure (5): Accuracy in different algorithms

Figure (6): User wise data distribution

Classifier (Accuracy)	Lab	Data	Field Data (Users)						
	1	19	4	7	8	18	38	51	
K Nearest Neighbor	56%	71%	39%	41%	6%	85%	1%	1%	
Random Forest	62%	59%	43%	27%	13%	73%	10%	7%	
Naive Bayes	12%	15%	14%	16%	3%	51%	1%	1%	
Multilayer Perceptron	62%	71%	40%	41%	6%	86%	1%	1%	

Figure (7): User wise accuracy

Classifier (Accuracy)	Lab Data		Field Data (Users)						
	1	19	4	7	8	18	38	51	
K Nearest Neighbor	56%	71%	39%	41%	6%	85%	1%	1%	
Random Forest	62%	59%	43%	27%	13%	73%	10%	7%	
Naive Bayes	12%	15%	14%	16%	3%	51%	1%	1%	
Multilayer Perceptron	62%	71%	40%	41%	6%	86%	1%	1%	

Figure (7): User wise accuracy

Classifier (Accuracy)	Lab	Data	Field Data (Users)						
	1	19	4	7	8	18	38	51	
K Nearest Neighbor	56%	71%	39%	41%	6%	85%	1%	1%	
Random Forest	62%	59%	43%	27%	13%	73%	10%	7%	
Naive Bayes	12%	15%	14%	16%	3%	51%	1%	1%	
Multilayer Perceptron	62%	71%	40%	41%	6%	86%	1%	1%	

Figure (7): User wise accuracy

Figure (8): Activity wise data distribution

Figure (8): Activity wise data distribution

Figure (9): Confusion Matrix for Random Forest

Conclusion and Future Work

Conclusion and Future Work

 Traditional Machine Learning algorithms can also be viable in complex activity recognition problems!

Conclusion and Future Work

- Traditional Machine Learning algorithms can also be viable in complex activity recognition problems!
- We wish to explore further possibilities in our future work
 - Feature Selection
 - Handling Imbalanced Data

Thank You

Any Questions?