### Algorithms and implementations for exponential decay models

MATMEK-4270

Prof. Mikael Mortensen, University of Oslo

### Hans Petter Langtangen 1962-2016



- 2011-2015 Editor-In-Chief SIAM J of Scientific Computing
- Author of 13 published books on scientific computing
- Professor of Mechanics, University of Oslo 1998
- Developed INF5620 (which became IN5270 and now MAT-MEK4270)
- Memorial page

### A little bit about myself

- Professor of mechanics (2019-)
- PhD in mathematical modelling of turbulent combustion
- Norwegian Defence Research Establishment (2007-2012)
- Computational Fluid Dynamics
- High Performance Computing
- Spectral methods



### Principal developer of Shenfun

High performance computing platform for solving PDEs by the spectral Galerkin method. Written in Python (Cython). https://github.com/spectralDNS/shenfun













#### MAT-MEK4270 in a nutshell

- Numerical methods for partial differential equations (PDEs)
- How to solve the equations, not why
- How do we solve a PDE in practice?
- How do we trust the answer?
- Is the numerical scheme stable? accurate? consistent?
- Focus on programming (github, python, testing code)
- IN5670 -> IN5270 -> MAT-MEK4270 Lots of old material

### **Syllabus**

#### ! Important stuff

- Lecture notes
- Presentations (including this one)
- Github organization MATMEK-4270



Also important stuff, but less so as I will try to put all really important stuff in the lecture notes

- Langtangen, Finite Difference Computing with exponential decay Chapters 1 and 2.
- Langtangen and Linge, Finite Difference Computing with PDEs Parts of chapters 1 and 2.
- Langtangen and Mardal, Introduction to Numerical Methods for Variational Problems

### Two major approaches Finite differences

$$rac{du(t)}{dt}pproxrac{u(t+\Delta t)-u(t)}{\Delta t}$$

- Approximate in points
- Uniform grid
- Taylor expansions

#### Variational methods

$$\int_{\Omega}u''vd\Omega=-\int_{\Omega}u'v'd\Omega+\int_{\Gamma}u'vd\Gamma$$

- Approximate weakly
- Finite element method
- Least squares method
- Galerkin method

We will use both approaches to first consider **function** approximations and then the approximation of equations.

### Required software skills

- Our software platform: Python, Jupyter notebooks
- Important Python packages: numpy, scipy, matplotlib, sympy, shenfun, ...
- Anaconda Python, conda environments

### Assumed/ideal background

- IN1900: Python programming, solution of ODEs
- Some experience with finite difference methods
- Some analytical and numerical knowledge of PDEs
- Much experience with calculus and linear algebra
- Much experience with programming of mathematical problems
- Experience with mathematical modeling with PDEs (from physics, mechanics, geophysics, or ...)

# Start-up example - exponential decay

### Exponential decay model

#### (i) ODE problem

$$u'=-au,\quad u(0)=I,\ t\in(0,T]$$

where a>0 is a constant and u(t) is the time-dependent solution.

- We study first a simple 1D ODE, because this will lead us to the building blocks that we need for solving PDEs!
- We can more easily study the concepts of stability, accuracy, convergence and consistency.

### What to learn in the start-up example

- How to think when constructing finite difference methods, with special focus on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint) schemes
- How to formulate a computational algorithm and translate it into Python code
- How to plot the solutions
- How to compute numerical errors and convergence rates
- How to analyse the numerical solution

### Finite difference methods

- The finite difference method is the simplest method for solving differential equations
- Satisfy the equations in discrete points, not continuously
- Fast to learn, derive, and implement
- A very useful tool to know, even if you aim at using the finite element or the finite volume method



## Topics in the first intro to the finite difference method

- How to think about finite difference discretization
- Key concepts:
  - mesh
  - mesh function
  - finite difference approximations
- The Forward Euler, Backward Euler, and Crank-Nicolson methods
- Finite difference operator notation
- How to derive an algorithm and implement it in Python
- How to test the implementation

# The steps in the finite difference method

Solving a differential equation by a finite difference method consists of four steps:

- 1. discretizing the domain,
- 2. fulfilling the equation at discrete time points,
- 3. replacing derivatives by finite differences,
- 4. solve the discretized problem. (Often with a recursive algorithm in 1D)

### Step 1: Discretizing the domain

The time domain  $\left[0,T\right]$  is represented by a *mesh*: a finite number of  $N_t+1$  points

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t-1} < t_{N_t} = T$$

- We seek the solution u at the mesh points:  $u(t_n), n=1,2,\ldots,N_t$ .
- Note:  $u^0$  is known as I.
- Notational short-form for the numerical approximation to  $u(t_n)$ :  $u^n$
- ullet In the differential equation: u(t) is the exact solution
- In the numerical method and implementation:  $u^n$  is the numerical approximation

### Step 1: Discretizing the domain

 $u^n$  is a mesh function, defined at the mesh points  $t_n$ ,  $n=0,\ldots,N_t$  only.



# What about a mesh function between the mesh points?

Can extend the mesh function to yield values between mesh points by *linear interpolation*:

$$u(t)pprox u^n+rac{u^{n+1}-u^n}{t_{n+1}-t_n}(t-t_n)$$



# Step 2: Fulfilling the equation at discrete time points

- ullet The ODE holds for all  $t\in(0,T]$  (infinite no of points)
- Idea: let the ODE be valid at the mesh points only (finite no of points)

$$u'(t_n) = -au(t_n), \quad n = 1, \ldots, N_t$$

# Step 3: Replacing derivatives by finite differences

Now it is time for the **finite difference** approximations of derivatives:



# Step 3: Replacing derivatives by finite differences

Inserting the finite difference approximation in

$$u'(t_n) = -au(t_n)$$

gives

$$rac{u^{n+1}-u^n}{t_{n+1}-t_n} = -au^n, \quad n=0,1,\dots,N_t-1$$

(Known as discrete equation, or discrete problem, or finite difference method/scheme)

# Step 4: Formulating a recursive algorithm

How can we actually compute the  $u^n$  values?

- ullet given  $u^0=I$
- ullet compute  $u^1$  from  $u^0$
- compute  $u^2$  from  $u^1$
- compute  $u^3$  from  $u^2$  (and so forth)

In general: we have  $u^n$  and seek  $u^{n+1}$ 

#### (i)

#### The Forward Euler scheme

Solve wrt  $u^{n+1}$  to get the computational formula:

$$u^{n+1} = u^n - a(t_{n+1} - t_n)u^n$$

### Let us apply the scheme by hand

Assume constant time spacing:  $\Delta t = t_{n+1} - t_n = \mathrm{const}$  such that  $u^{n+1} = u^n (1 - a \Delta t)$ 

$$egin{aligned} u^0 &= I, \ u^1 &= I(1-a\Delta t), \ u^2 &= I(1-a\Delta t)^2, \ dots &dots \ u^{N_t} &= I(1-a\Delta t)^{N_t} \end{aligned}$$

Ooops - we can find the numerical solution by hand (in this simple example)! No need for a computer (yet)...

### A backward difference

Here is another finite difference approximation to the derivative (backward difference):

$$u'(t_n)pprox rac{u^n-u^{n-1}}{t_n-t_{n-1}}$$



### The Backward Euler scheme

Inserting the finite difference approximation in  $u'(t_n)=-au(t_n)$  yields the Backward Euler (BE) scheme:

$$\frac{u^n - u^{n-1}}{t_n - t_{n-1}} = -au^n$$

Solve with respect to the unknown  $u^{n+1}$ :

$$u^{n+1} = rac{1}{1 + a(t_{n+1} - t_n)} u^n$$



#### Note

We use  $u^{n+1}$  as unknown and rename  $u^n \longrightarrow u^{n+1}$  and  $u^{n-1} \longrightarrow u^n$ 

### A centered difference

Centered differences are better approximations than forward or backward differences.



### The Crank-Nicolson scheme; ideas

Idea 1: let the ODE hold at  $t_{n+\frac{1}{2}}.$  With  $N_t+1$  points, that is  $N_t$  equations for  $n=0,1,\dots N_t-1$ 

$$u'(t_{n+rac{1}{2}}) = -au(t_{n+rac{1}{2}})$$

Idea 2: approximate  $u'(t_{n+\frac{1}{2}})$  by a centered difference

$$u'(t_{n+rac{1}{2}})pprox rac{u^{n+1}-u^n}{t_{n+1}-t_n}$$

**Problem:**  $u(t_{n+\frac{1}{2}})$  is not defined, only  $u^n=u(t_n)$  and  $u^{n+1}=u(t_{n+1})$ 

Solution (linear interpolation):

$$u(t_{n+rac{1}{2}})pproxrac{1}{2}(u^n+u^{n+1})$$

### The Crank-Nicolson scheme; result

Result:

$$rac{u^{n+1}-u^n}{t_{n+1}-t_n}=-arac{1}{2}(u^n+u^{n+1})$$

Solve wrt to  $u^{n+1}$ :

$$u^{n+1} = rac{1 - rac{1}{2} a(t_{n+1} - t_n)}{1 + rac{1}{2} a(t_{n+1} - t_n)} u^n$$

This is a Crank-Nicolson (CN) scheme or a midpoint or centered scheme.

### The unifying $\theta$ -rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formulated as one scheme with a varying parameter  $\theta$ :

$$rac{u^{n+1}-u^n}{t_{n+1}-t_n} = -a( heta u^{n+1} + (1- heta)u^n)$$

- $\theta = 0$ : Forward Euler
- $\theta = 1$ : Backward Euler
- $\theta = 1/2$ : Crank-Nicolson
- We may alternatively choose any  $heta \in [0,1]$ .

 $u^n$  is known, solve for  $u^{n+1}$ :

$$u^{n+1} = rac{1-(1- heta)a(t_{n+1}-t_n)}{1+ heta a(t_{n+1}-t_n)}u^n$$

### **Constant time step**

Very common assumption (not important, but exclusively used for simplicity hereafter): constant time step  $t_{n+1}-t_n\equiv \Delta t$ 

Summary of schemes for constant time step

$$egin{align} u^{n+1} &= (1-a\Delta t)u^n \quad ext{(FE)} \ u^{n+1} &= rac{1}{1+a\Delta t}u^n \quad ext{(BE)} \ u^{n+1} &= rac{1-rac{1}{2}a\Delta t}{1+rac{1}{2}a\Delta t}u^n \quad ext{(CN)} \ u^{n+1} &= rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}u^n \quad ext{($ heta$-rule)} \ \end{aligned}$$

### Implementation

### **Implementation**

Model:

$$u'(t)=-au(t),\quad t\in (0,T],\quad u(0)=I$$

Numerical method:

$$u^{n+1} = rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}u^n$$

for  $heta \in [0,1]$  . Note

- ullet heta=0 gives Forward Euler
- ullet heta=1 gives Backward Euler
- ullet heta=1/2 gives Crank-Nicolson

### Requirements of a program

- ullet Compute the numerical solution  $u^n$  ,  $n=1,2,\ldots,N_t$
- ullet Display the numerical and exact solution  $u_e(t)=e^{-at}$
- Bring evidence to a correct implementation (verification)
- Compare the numerical and the exact solution in a plot
- ullet Compute the error  $u_e(t_n)-u^n$
- If wanted, compute the convergence rate of the numerical scheme

### Algorithm

- ullet Store  $u^n$ ,  $n=0,1,\ldots,N_t$  in an array  $oldsymbol{u}$ .
- Algorithm:
  - initialize  $u^0$
  - for  $t=t_n, n=1,2,\ldots,N_t$ : compute  $u^n$  using the hetarule formula

### In Python

```
import numpy as np
 2 def solver(I, a, T, dt, theta):
     """Solve u'=-a*u, u(0)=I, for t in (0, T] with steps of dt."""
      Nt = int(T/dt) # no of time intervals
     T = Nt*dt
                # adjust T to fit time step dt
     u = np.zeros(Nt+1)  # array of u[n] values
     t = np.linspace(0, T, Nt+1) # time mesh
     u[0] = I
                # assign initial condition
     for n in range(0, Nt): # n=0,1,...,Nt-1
          u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
10
11
      return u, t
12
13 u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
14 # Write out a table of t and u values:
15 for i in range(len(t)):
16
      print(f't={t[i]:6.3f} u={u[i]:g}')
```

### In Python

```
import numpy as np
 2 def solver(I, a, T, dt, theta):
        """Solve u'=-a*u, u(0)=I, for t in (0, T] with steps of dt."""
       Nt = int(T/dt) # no of time intervals
      T = Nt*dt
                  # adjust T to fit time step dt
      u = np.zeros(Nt+1)  # array of u[n] values
      t = np.linspace(0, T, Nt+1) # time mesh
      u[0] = I
                   # assign initial condition
      for n in range(0, Nt): # n=0,1,...,Nt-1
           u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
 10
 11
        return u, t
 12
13 u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
14 # Write out a table of t and u values:
15 for i in range(len(t)):
 16
        print(f't=\{t[i]:6.3f\} u=\{u[i]:q\}'\}
t = 0.000 u = 1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05
```

# Challenge! Vectorize the code!



#### Vectorization

**Vectorization** refers to the process of converting iterative operations on individual elements of an array (or other data structures) into batch operations on entire arrays.

For example, you have three arrays

$$m{u} = (u_i)_{i=0}^N, m{v} = (v_i)_{i=0}^N, m{w} = (w_i)_{i=0}^N$$

Now compute

$$w_i = u_i \cdot v_i, \quad orall \, i = 0, 1, \dots, N$$

# Challenge! Vectorize the code!



#### Vectorization

**Vectorization** refers to the process of converting iterative operations on individual elements of an array (or other data structures) into batch operations on entire arrays.

### Regular (scalar) implementation:

```
1 N = 1000
2 u = np.random.random(N)
3 v = np.random.random(N)
4 w = np.zeros(N)
5
6 for i in range(N):
7  w[i] = u[i] * v[i]
```

### Vectorized:

```
1 w[:] = u * v
```

Numpy is heavily vectorized! So much so that mult, add, div, etc are vectorized by default!

# Challenge! Vectorize the code!



#### **Vectorization**

**Vectorization** refers to the process of converting iterative operations on individual elements of an array (or other data structures) into batch operations on entire arrays.



#### **Vectorization warning**

Pretty much all the code you will see and get access to in this course will be vectorized!

# Vectorizing the decay solver

Get rid of the for-loop!

How? Difficult because it is a **recursive** update and not regular **elementwise** multiplication. But remember

$$egin{aligned} A &= (1 - (1 - heta) a \Delta t)/(1 + heta \Delta t a) \ & u^1 = A u^0, \ & u^2 = A u^1, \ & dots \ & u^{N_t} = A u^{N_t - 1} \end{aligned}$$

## Vectorized code

### Can be implemented as

```
1 u[0] = I  # assign initial condition
2 u[1:] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
3 u[:] = np.cumprod(u)
```

## Why vectorization?

- Python for-loops are slow!
- Python for-loops usually requires more lines of code.

```
def f0(u, I, theta, a, dt):
       u[0] = I
    u[1:] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
       u[:] = np.cumprod(u)
       return u
   def f1(u, I, theta, a, dt):
      u[0] = I
     for n in range(0, len(u)-1):
           u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
10
11
       return u
12
13 I, a, T, dt, theta = 1, 2, 8, 0.8, 1
14 u, t = solver(I, a, T, dt, theta)
15
16 assert np.allclose(f0(u.copy(), I, theta, a, dt),
                      f1(u.copy(), I, theta, a, dt))
17
```

Lets try some timings!

## Why vectorization? Timings

```
def f0(u, I, theta, a, dt):
    u[0] = I
    u[1:] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
    u[:] = np.cumprod(u)

def f1(u, I, theta, a, dt):
    u[0] = I
    u[0] = I
    for n in range(0, len(u)-1):
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
```

### Lets try some timings:

```
1 %timeit -q -o -n 1000 f0(u, I, theta, a, dt) 

<TimeitResult : 1.91 \mus ± 608 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)> 

1 %timeit -q -o -n 1000 f1(u, I, theta, a, dt) 

<TimeitResult : 2.18 \mus ± 46.1 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)>
```

Hmm. Not really what's expected. Why? Because the array **u** is really short! Lets try a longer array

```
1 print(f"Length of u = {u.shape[0]}")
Length of u = 11
```

# Longer array timings

```
1 dt = dt/10
  2 u, t = solver(I, a, T, dt, theta)
  3 print(f"Length of u = {u.shape[0]}")
Length of u = 101
  1 %timeit -q -o -n 100 f0(u, I, theta, a, dt)
<TimeitResult : 3.8 \mus ± 692 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)>
  1 %timeit -q -o -n 100 f1(u, I, theta, a, dt)
<TimeitResult : 20.6 \mus ± 412 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)>
Even longer array:
  1 dt = dt/10
  2 u, t = solver(I, a, T, dt, theta)
  3 print(f"Length of u = {u.shape[0]}")
Length of u = 1001
  1 %timeit -q -o -n 100 f0(u, I, theta, a, dt)
<TimeitResult: 6.03 \mus \pm 2.82 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)>
  1 %timeit -q -o -n 100 f1(u, I, theta, a, dt)
<TimeitResult : 209 \mus ± 5.2 \mus per loop (mean ± std. dev. of 7 runs, 100 loops each)>
```

Vectorized code takes the same time! Only overhead costs, not the actual computation.

## Plot the solution

```
import matplotlib.pyplot as plt
I, a, T, dt, theta = 1, 2, 8, 0.8, 1
u, t = solver(I, a, T, dt, theta)
fig = plt.figure(figsize=(6, 4))
ax = fig.gca()
ax.plot(t, u)
```



## Plot the solution

Add legends, titles, exact solution, etc. Make the plot nice:-)

```
1  u_exact = lambda t, I, a: I*np.exp(-a*t)
2  I, a, T = 1., 2., 8.
3  u, t = solver(I=I, a=a, T=T, dt=0.8, theta=1)
4  te = np.linspace(0, T, 1000)
5  ue = u_exact(te, I, a)
6  fig = plt.figure(figsize=(6, 4))
7  plt.plot(t, u, 'bs-', te, ue, 'r')
8  plt.title('Decay')
9  plt.legend(['numerical', 'exact'])
10  plt.xlabel('Time'), plt.ylabel('u(t)');
```



# Plotly is a very good alternative

```
import plotly.express as px
pfig = px.line(x=t, y=u, labels={'x': 'Time', 'y': 'u(t)'},
width=600, height=400, title='Decay',
template="simple_white")
pfig.show()
```



# Verifying the implementation

- Verification = bring evidence that the program works
- Find suitable test problems
- Make function for each test problem
- Later: put the verification tests in a professional testing framework

# Comparison with exact numerical solution



#### What is exact?

There is a difference between exact numerical solution and exact solution!

Repeated use of the  $\theta$ -rule gives exact numerical solution:

$$u^{0} = I, \ u^{1} = Au^{0} = AI \ u^{n} = A^{n}u^{n-1} = A^{n}I$$

Exact solution on the other hand:

$$u(t) = \exp(-at), \quad u(t_n) = \exp(-at_n)$$

# Making a test based on an exact numerical solution

The exact discrete solution is

$$u^n = IA^n$$

Test if your solver gives

$$\max_n |u^n - IA^n| < \epsilon \sim 10^{-15}$$

for a few precalculated steps.



Tip

Make sure you understand what n in  $u^n$  and in  $A^n$  means! n is not used as a power in  $u^n$ , but it is a power in  $A^n$ !

## Run a few numerical steps by hand

Use a calculator ( $I=0.1, \theta=0.8, \Delta t=0.8$ ):

$$A\equivrac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}=0.298245614035$$
  $u^1=AI=0.0298245614035,$   $u^2=Au^1=0.00889504462912,$   $u^3=Au^2=0.00265290804728$ 

# The test based on exact numerical solution

```
def test_solver_three_steps(solver):
       """Compare three steps with known manual computations."""
       theta = 0.8
       a = 2
       I = 0.1
       dt = 0.8
       u_by_hand = np.array([I,
                             0.0298245614035,
                             0.00889504462912.
10
                             0.00265290804728])
11
12
       Nt = 3 # number of time steps
       u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
      tol = 1E-14 # tolerance for comparing floats
14
       diff = abs(u - u by hand).max()
16
       success = diff < tol
17
       assert success, diff
18
19 test_solver_three_steps(solver)
```



#### Note

We do not use the **exact** solution because the numerical solution will not equal the exact!

# Quantifying the error Computing the norm of the error

- $e^n = u^n u_e(t_n)$  is a mesh function
- Usually we want one number for the error
- Use a norm of  $e^n$

Norms of a function f(t):

$$||f||_{L^2} = \left(\int_0^T f(t)^2 dt
ight)^{1/2} \ ||f||_{L^1} = \int_0^T |f(t)| dt \ ||f||_{L^\infty} = \max_{t \in [0,T]} |f(t)|$$

## Norms of mesh functions

- Problem:  $f^n = f(t_n)$  is a **mesh function** and hence not defined for all t. How to integrate  $f^n$ ?
- Idea: Apply a numerical integration rule, using only the mesh points of the mesh function.

The Trapezoidal rule:

$$||f^n|| = \left( \Delta t \left( rac{1}{2} (f^0)^2 + rac{1}{2} (f^{N_t})^2 + \sum_{n=1}^{N_t-1} (f^n)^2 
ight) 
ight)^{1/2}$$

Common simplification yields the  $\ell^2$  norm of a mesh function:

$$||f^n||_{\ell^2} = \left(\Delta t \sum_{n=0}^{N_t} (f^n)^2
ight)^{1/2}$$

## Norms - notice!

- ullet The *continuous* norms use capital  $L^2, L^1, L^\infty$
- The *discrete* norm uses lowercase  $\ell^2, \ell^1, \ell^\infty$

## Implementation of the error norm

$$E = ||e^n||_{\ell^2} = \sqrt{\Delta t \sum_{n=0}^{N_t} (e^n)^2}$$

## Python with vectorization:

```
1 u_exact = lambda t, I, a: I*np.exp(-a*t)
2 I, a, T, dt, theta = 1., 2., 8., 0.8, 1
3 u, t = solver(I, a, T, dt, theta)
4 en = u_exact(t, I, a) - u
5 E = np.sqrt(dt*np.sum(en**2))
6 print(f'Errornorm = {E}')
```

Errornorm = 0.1953976935916231