

GATK Best Practices for Variant Discovery

Mapping

Finding where reads belong in the genome

Data Pre-processing for Variant Discovery

Step 1: Map the reads produced by the sequencer to the reference

Goal: align the sample genome to the reference genome

...But we don't have the whole sample in one piece.

So we have to map each little bit one by one

Complication: mismatches, indels, duplicated regions...

Paired-end sequencing helps a lot

Output format: Sequence/Binary Alignment Map (SAM/BAM)

HEADER containing metadata (sequence dictionary, read group definitions etc) **RECORDS** containing structured read information (1 line per read record)

Added mapping info summarizes position, quality, and structure for each read

Special Note #1

THE UNMAPPED BAM WORKFLOW

Regular FASTQ -> BAM workflow

! Adding Readgroup metadata requires additional step or injection of metadata into BWA command

Unmapped BAM -> BAM workflow

Special Note #2

RNASEQ MAPPING

Special handling for RNAseq splice junctions

Mapping RNAseq data with STAR v2

- Highest sensitivity for both SNPs and indels among all programs tested
- 2-pass approach described in
 - Pär G Engström et al. "Systematic evaluation of spliced alignment programs for RNA-seq data". *Nature Methods, 2013* (see Suppl. text p. 43 for detailed protocol)
 - First pass identifies splice junctions (SJ)
 - Use the SJ to guide the second round of alignment

Split'N'Trim

1. Split reads with Ns in the CIGAR string

2. Trim overhangs

Data Pre-processing for Variant Discovery

