Storing and Processing Multi-dimensional Scientific Datasets

Alan Sussman

UMIACS & Department of Computer Science

http://www.cs.umd.edu/~als

Data Exploration and Analysis

- Large data collections emerge as important resources
 - Data collected from sensors and large-scale simulations
 - Multi-resolution, multi-scale, multi-dimensional
 - data elements often correspond to points in multi-dim attribute space
 - medical images, satellite data, hydrodynamics data, etc.
 - Terabytes to petabytes today
- Low-cost, high-performance, high-capacity commodity hardware
 - 5 PCs, 5 Terabytes of disk storage for << \$10,000

Large Data Collections

- Scientific data exploration and analysis
 - To identify trends or interesting phenomena
 - Only requires a portion of the data, accessed through spatial index
 - e.g., Quad-tree, R-tree
- Spatial (range) query often used to specify iterator
 - computation on data obtained from spatial query
 - computation aggregates data (MapReduce) resulting data product size significantly smaller than results of range query

Typical Query

Output grid onto which a projection is carried out

Specify portion of raw sensor data corresponding to some search criterion

Target example applications

Processing Remotely-Sensed Data

Pathology

Satellite Data Processing

Water Contamination Study

Multi-perspective volume reconstruction

Outline

- Active Data Repository
 - Overall architecture
 - Query planning
 - Query execution
 - Experimental Results
- DataCutter

Active Data Repository (ADR)

- An object-oriented framework (class library + runtime system) for building parallel databases of multi-dimensional datasets
 - enables integration of storage, retrieval and processing of multidimensional datasets on distributed memory parallel machines.
 - can store and process multiple datasets.
 - provides support and runtime system for common operations such as
 - data retrieval,
 - memory management,
 - scheduling of processing across a parallel machine.
 - customizable for application specific processing.

ADR Architecture

Active Data Repository (ADR)

- Dataset is collection of user-defined data chunks
 - a data chunk contains a set of data elements
 - multi-dim bounding box (MBR) for each chunk, used by spatial index
 - chunks declustered across disks to maximize aggregate I/O bandwidth
- Separate planning and execution phases for queries
 - Tile output if too large to fit entirely in memory
 - Plan each tile's I/O, data movement and computation
 - Identify all chunks of input that map to tile
 - Distribute processing for chunks among processors
 - All processors work on one tile at a time

Query Planning

- Index lookup
 - Select data chunks of interest
 - Compute mapping between input and output chunks
- Tiling
 - Partition output chunks so that each tile fits in memory
 - Use Hilbert curve to minimize total length of tile boundaries
- Workload partitioning
 - Each aggregation operation involves an input/output chunk pair
 - Want good load balance and low communication overhead

Query Execution

- Broadcast query plan to all processors
- For each output tile:
 - Initialization phase
 Read output chunks into memory, replicate if necessary
 - Reduction phase
 Read and process input chunks that map to current tile
 - Combine phase
 Combine partial results in replicated output chunks, if any
 - Output handling
 Compute final output values

ADR Processing Loop

```
O \leftarrow Output dataset, I \leftarrow Input dataset
A \leftarrow Accumulator (for intermediate results)
[S_I, S_O] \leftarrow Intersect(I, O, R_{query})
foreach o<sub>e</sub> in S<sub>O</sub> do
              read o<sub>e</sub>
              a_e \leftarrow Initialize(o_e)
foreach ie in S<sub>I</sub> do
              read i<sub>e</sub>
              S_A \leftarrow Map(i_e) \cap S_O
              foreach ae in SA do
                             a_e \leftarrow Aggregate(i_e, a_e)
foreach a<sub>e</sub> in S<sub>O</sub> do
               o_e \leftarrow Output(a_e)
              write o<sub>e</sub>
```


Query Execution Strategies

- Distributed Accumulator (DA)
 - Assign aggregation operation to owner of output chunk
- Fully Replicated Accumulator (FRA)
 - Assign aggregation operation to owner of input chunk
 - Requires *combine* phase
- Sparsely Replicated Accumulator (SRA)
 - similar to FRA, but only replicate output chunk when needed

Performance Evaluation

- 128-node IBM SP, with 256MB memory per node
- Datasets generated by Application Emulators
 - Satellite Data Processing (SAT) non-uniform mapping
 - Virtual Microscope (VM)

Арр	Input	Output	Fan-in	Fan-out (avg)	Comp (ms) t _{init} -t _{red} -t _{comb}
SAT	1.6-26GB	25MB	161-1307	4.6	1-40-20
VM	1.5-24GB	192MB	16-128	1.0	1-5-1

Query Execution Time (sec)

(Fixed input size)

Alan Sussman - 3/5/08

Summary of Experimental Results

- Communication volume
- DA may have computational load imbalance due to non-uniform mapping
- Relative performance depends on
 - Query characteristics (e.g., fan-in, fan-out)
 - Machine configurations (e.g., number of processors)
- No strategy always outperforms the others

ADR queries vs. Other Approaches

- Similar to out-of-core reductions (more general MapReduce)
 - Commutative & associative
 - Most reduction optimization techniques target in-core data
 - Out-of-core techniques require data redistribution
- Similar to relational group-by queries
 - Distributive & algebraic [Gray96]
 - spatial-join + group-by
 - For ADR, output data items and extents known prior to processing Alan Sussman - 3/5/08

```
double x[max_nodes],
    y[max_nodes];
integer ia[max_edges],
    ib[max_edges];
for (i=0; i<max_edges; i++)
    x[ia[i]] += y[ib[i]];
```

```
Select Dept, AVG(Salary)
From Employee
Group By Dept
```

Outline

- Active Data Repository
- DataCutter
 - Architecture
 - Filter-stream programming
 - Group Instances
 - Transparent copies

Distributed Grid Environment

Heterogeneous Shared Resources:

- Host level: machine, CPUs, memory, disk storage
- Network connectivity

Many Remote Datasets:

- Inexpensive archival storage
- Islands of useful data
- Too large for replication

DataCutter

Target same classes of applications as ADR

Indexing Service

- Multi-level hierarchical indexes based on spatial indexing methods – e.g., R-trees
 - Relies on underlying multi-dimensional space
 - User can add new indexing methods

Filtering Service

- Distributed C++ (and Java) *component* framework
- Transparent tuning and adaptation for heterogeneity
- Filters implemented as threads 1 process per host

Filter-Stream Programming (FSP)

Purpose: Specialized components for processing data

based on Active Disks research [Acharya, Uysal, Saltz: ASPLOS'98],

macro-dataflow, functional parallelism

filters – logical unit of computation

- high level tasks
- init,process,finalize interface
- streams how filters communicate
 - unidirectional buffer pipes
 - uses fixed size buffers (min, good)
- users specify filter connectivity and filter-level characteristics

FSP: Abstractions

Filter Group

- logical collection of filters to use together
- application starts filter group instances

Unit-of-work cycle

- "work" is application defined (ex.: a query)
- work is appended to running instances
- init(), process(), finalize() called for each uow
- process() returns { EndOfWork | EndOfFilter }
- allows for adaptivity

Optimization Techniques

Mapping filters to hosts

allow components to execute concurrently

Multiple filter group instances

allow work to be processed concurrently

Transparent copies

 keep pipeline full by avoiding filter processing imbalance and use write policies to deal with dynamic buffer distribution

Application memory tuning

minimize resource usage to allow for copies

Optimization - Group Instances

Match # instances to environment (CPU capacity, network)

Transparent Copies

- replicate filters within an instance (intra-work)
- write policy to distribute work buffers to copies
 - shared queue within host
 - across hosts round robin (RR), weighted RR (WRR), demand-driven (DD), user-defined (UD)
- single stream illusion, UOW_i < UOW_{i+1}
- state consistency problems addressed by a merge step

Runtime Pipeline Balancing

Use local information:

- queue size, send time / receiver acks
- Adjust number of transparent copies
- Demand based dataflow (choice of consumer)
 - Within a host perfect shared queue among copies
 - Across hosts
 - Round Robin (RR)
 - Weighted Round Robin (WRR)
 - Demand-Driven (DD) sliding window (buffer consumption rate)
 - User-defined

Experiment – Isosurface Rendering

- Isosurface rendering on Red/Blue Linux cluster at Maryland
 - Red 16 2-processor PII-450, 256MB, 18GB SCSI disk
 - Blue 12 2-processor PIII-550, 1GB, 2-8GB SCSI disk + 1 8-processor PIII-550, 4GB, 2-18GB SCSI disk
 - Connected via Gigabit Ethernet
- UT Austin ParSSim chemical species transport simulation
 - Single time step 3D visualization, read all data for 1 time step
- Two implementations of Raster filter z-buffer and active pixels

Sample Isosurface Visualization

$$V = 0.35$$

V = 0.7

Experimental setup

Experiment to follow combines R and E filters, since that showed best performance in experiments not shown

Active Pixel vs. Z-Buffer

Configuration: RE-Ra-M

Only Red nodes used – each one runs 1 RE, 1 or 2 RA, and one node runs M

Heterogeneous Nodes

Active Pixel algorithm on 8-processor Blue node + Red data nodes Blue node runs 7 Ra or ERa copies and M, Red nodes each run 1 of each except M

Summary of Results

- Placement matters
 - Heterogeneity of shared resources, data volume
- More instances and transparent copies
 - Balance applications for heterogeneity
- No static choice will work
 - Runtime heterogeneity and dynamic shared resources

DataCutter as a Grid Service

Acknowledgments

- Students
 - Chialin Chang ADR
 - Michael Beynon, Renato Ferreira DataCutter
- Other faculty and postdocs (now at Ohio State)
 - Joel Saltz
 - Tahsin Kurc
 - Umit Catalyurek