VConstruct: Filling Gaps in Chl-a Data Using a Variational Autoencoder

Chlorophyll-a measurements

- "Essential Climate Variable"
- Useful for measuring phytoplankton
- Measured through satellites (i.e Sentinel-3 or Modis)
- Useful for tracking harmful algae blooms

Missing Data - Clouds

- Chl-a measurements based off visible light
- Commonly obstructed by clouds or lost due to other factors

Missing Data

- Satellite's don't pass over daily
- Sentinel-3 revisit time <2 days

Data INterpolating Empirical Orthogonal Functions (DINEOF)

- Most commonly used
- Accurate
- Slow (10 minutes)

VConstruct

- Based off a Conditional
 Variational Autoencoder
- Fast (~8 ms once trained)
- Comparable accuracy
- Able to generate a range of potential reconstructions
- Atemporal

Results

DINEOF RMSE = .0826R² = .5436

VConstruct RMSE = .091 $R^2 = .4389$

Results

DINEOF RMSE = .1684 $R^2 = .8064$

VConstruct RMSE = .1748 $R^2 = .7908$

Future Work

- Improve accuracy
- In-situ testing
- Geographic testing
- SAR Data
- Other datasets