EE1002 Tutorial 7

(Questions from the Textbook by Alexander & Sadiku, 7th edition Problems 4.27, 4.47, & 4.54)

1. Apply source transformation to find v_x in the following circuit:

2. Obtain the Thevenin and Norton equivalent circuits of the following circuit with respect to terminals *a* and *b*.

[Hint: You may use KCL to determine $V_{Th} = V_{ab} = v_x$. When R_{th} is found, only the independent voltage source should be killed. After killing the independent voltage source, apply a 1A current source across terminals a and b and find the corresponding v_x . R_{th} is then given by voltage/current = $v_x/1$.]

3. Find the Thevenin equivalent between terminals a-b of the circuit in the following figure:

[Hint: Formulate an equation of I_0 and V_x from the left loop, and then formulate a second equation of I_0 and V_x from the right loop. Finally, solve the two equations to find $V_{th} = V_x$. To find R_{th} , insert a 1-V source at terminals a-b and kill the 3-V independent source. Find the current flowing through this 1-V source and then $R_{th} = \text{voltage/current} = 1/\text{current}$.]

Answers:

1.
$$v_x = -48V$$
.

2.
$$V_{\text{Th}} = 1.1905 \text{ V}, R_{\text{Th}} = 0.4762 \Omega, \text{ and } I_{\text{N}} = 2.5 \text{ A}.$$

3. $V_{\text{Th}} = 2 \text{ V}, R_{\text{Th}} = -16.67 \Omega \text{ (negative value means delivering power to the terminals } a-b)$