

Global United Technology Services Co., Ltd.

Report No.: GTS201609000216E01

FCC Report (WIFI)

Applicant: Akyumen Technologies Corp.

Address of Applicant: 7401 Wiles Road, Suite 123, Coral Spring, Florida, United

States

Equipment Under Test (EUT)

Product Name: Tablet Projector

Model No.: FALCON 2W

Trade mark: Akyumen

FCC ID: 2ADLDFALCON2W

Applicable standards: FCC CFR Title 47 Part 15.247:2016

Date of sample receipt: October 17, 2016

Date of Test: October 18-24, 2016

Date of report issued: October 26, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	October 26, 2016	Original

Prepared By:	Bolward.Pan	Date:	October 26, 2016
	Project Engineer		
Check By:	Andy was	Date:	October 26, 2016
	Reviewer		

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4		SUMMARY	
		MEASUREMENT UNCERTAINTY	
5	GENI	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
		Test mode	
		DESCRIPTION OF SUPPORT UNITS	
		TEST FACILITY	
		TEST LOCATION	
6	TEST	INSTRUMENTS LIST	8
7	TEST	RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
		CONDUCTED EMISSIONS	
		CONDUCTED PEAK OUTPUT POWER	
		CHANNEL BANDWIDTH	
	-	POWER SPECTRAL DENSITY	
	7.6 7.6.1	BAND EDGES	
	7.6.1 7.6.2		
		Spurious Emission	
	7.7.1		
8		SETUP PHOTO	
a		CONSTRUCTIONAL DETAILS	12
•			

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)	
AC Power Line Conducted 0.15MHz ~ 30MHz ± 3.45dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.	

5 General Information

5.1 Client Information

Applicant:	Akyumen Technologies Corp.		
Address of Applicant:	7401 Wiles Road, Suite 123, Coral Spring, Florida, United States		
Manufacturer/ Factory:	Akyumen Technologies Corp.		
Address of	7401 Wiles Road, Suite 123, Coral Spring, Florida, United States		
Manufacturer/ Factory:			

5.2 General Description of EUT

Product Name:	Tablet Projector
Model No.:	FALCON 2W
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral antenna
Antenna gain:	1.5dBi
Power supply:	Adapter Model No.: CGSW-05003000 Input: AC 100-240V, 50/60Hz, 0. 5A Output: DC 5.0V, 3A or DC 3.7V 2*3400mAh Li-ion Battery

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel					Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode	Transmitting mode	Keep the EUT in continuously transmitting mode
--	-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

	,		
Mode	802.11b	802.11g	802.11n(HT20)
Data rate	1Mbps	6Mbps	6.5Mbps

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 29 2016	June. 28 2017		
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June. 29 2016	June. 28 2017		
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 29 2016	June. 28 2017		
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 29 2016	June. 28 2017		
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 29 2016	June. 28 2017		
8	RF Amplifier	HP	8347A	GTS204	June. 29 2016	June. 28 2017		
9	RF Amplifier	HP	8349B	GTS206	June. 29 2016	June. 28 2017		
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 29 2016	June. 28 2017		
11	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 29 2016	June. 28 2017		
12	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 29 2016	June. 28 2017		
13	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
14	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017		
15	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017		
16	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017		

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017	

General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June. 29 2016	June. 28 2017	

Project No.: GTS201609000216

Page 8 of 49

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 1.5dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Limit (dRu\/)				
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test setup:	* Decreases with the logarithm	n of the frequency.			
	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 LINE

Job No. : 0216 Test mode : WiFi mode Test Engineer: Boy

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1	0.184	48.72	0.42	0.13	49.27		-15.01	
2	0.184	27.39	0.42	0.13	27.94			Average
3	0.253	44.92	0.44	0.11	45.47		-16.17	•
4	0.253	27.74	0.44	0.11	28. 29	51.64	-23.35	Average
5	0.804	40.06	0.27	0.13	40.46	56.00	-15.54	QP
6	0.804	18.58	0.27	0.13	18.98	46.00	-27.02	Average
7	1.043	39.89	0.25	0.13	40.27	56.00	-15.73	QP
8	1.043	20.67	0.25	0.13	21.05	46.00	-24.95	Average
9	1.374	40.08	0.23	0.13	40.44	56.00	-15.56	QP -
10	1.374	19.44	0.23	0.13	19.80	46.00	-26.20	Average
11	4.926	40.54	0.21	0.15	40.90		-15.10	
12	4.926	24.08	0.21	0.15	24.44			Average

Neutral:

Site

: Shielded room : FCC PART15 CLASSB QP LISN-2016 NEUTRAL Condition

Job No. Test mode : 0216 : WiFi mode Test Engineer: Boy

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.183	48. 22	0.41	0.13	48.76		-15.57	-
2 3	0.183 0.259	26.85 44.42	0. 41 0. 42	0.13 0.11	27.39 44.95		-26.94 -16.52	Average
	0. 259	27. 24	0.42	0.11	27.77			Average
4 5	0.914	39.21	0.22	0.13	39.56		-16.44	
6	0.914	22.40	0.22	0.13	22.75			Average
7	1.172	39.86	0.21	0.13	40.20		-15.80	
8	1.172	23. 25	0.21	0.13	23.59	46.00	-22.41	Average
9	1.374	40.31	0.21	0.13	40.65	56.00	-15.35	QP
10	1.374	22.12	0.21	0.13	22.46	46.00	-23.54	Average
11	26.418	44.86	0.39	0.23	45.48	60.00	-14.52	QP
12	26.418	31.46	0.39	0.23	32.08	50.00	-17.92	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v03r05		
Limit:	30dBm		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH	Р	Peak Output Power (dBm)			Result
1631 011	802.11b	802.11g	802.11n(HT20)	Limit(dBm)	Nesuit
Lowest	14.16	9.03	7.57		
Middle	14.61	10.17	8.86	30.00	Pass
Highest	15.56	10.90	9.60		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v03r05		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH	C	Channel Bandwidth (N	ЛHz)	Limit(KHz)	Result
	802.11b	802.11g	802.11n(HT20)	Lilliit(IXI IZ)	Result
Lowest	7.553	15.733	16.612		
Middle	7.415	15.744	16.351	>500	Pass
Highest	7.882	15.732	17.310		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v03r05	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Test CH	Powe	er Spectral Density (dBm)	Limit(dBm/3kHz)	Result
1631 011	802.11b	802.11g	802.11n(HT20)	Limit(dbin/3ki12)	Nesuit
Lowest	4.50	-3.38	-4.34		
Middle	4.34	-2.16	-3.06	8.00	Pass
Highest	5.43	-1.31	-2.30		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v03r05			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	· ·			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

7.6.2 Radiated Emission Me	emoa									
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20	ANSI C63.10:2013								
Test Frequency Range:			ested, only	the worst b	and's (2310MHz to					
Toot site:	2500MHz) data									
Test site:	Measurement D		DDW	\/D\A/	\					
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	_	RMS 1MHz 3MHz Average								
Limit:	Freque	ency L	_imit (dBuV/		Value					
	Above 1	GHz	54.0		Average					
_			74.0	0	Peak					
Test setup:	EUT 3m 4 Turn v 1.5m A	m N N N	Antenna T Horn Anter Spectrum Analyzer Amplifie	nna						
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-rece Specified Ba 6. If the emission the limit specified ba the EUT where the test of the EUT where the test of the Toda makes the tes	t a 3 meter came position of the set 3 meters a ch was mounted the many distribution of the many distribution and the many	ber. The tall highest race way from the don the top of the top of the tall from one neximum value zations of the tall from 0 decreased of the tall to the tall tall tall tall tall tall tall tal	ble was rotadiation. The interferer of a variable of the field one antenna was arrangulats from 1 rigrees to 360 ak Detect Full discounting the emission of the emission of the mode was atopped and the emission of the emiss	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than and the peak values sions that did not using peak, quasi-					
Test Instruments:	Refer to section									
Test mode:	Refer to section	5.3 for details								
Test results:	Pass									

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode:		80	2.11b		Test channel:			Lowest	
Peak value									
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m	Loss	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
2390.00	52.15	27.59	5.38	34.0	1	51.11	74.00	-22.89	Horizontal
2400.00	61.33	27.58	5.39	34.0	1	60.29	74.00	-13.71	Horizontal
2390.00	53.86	27.59	5.38	34.0	1	52.82	74.00	-21.18	Vertical
2400.00	63.26	27.58	5.39	34.0	1	62.22	74.00	-11.78	Vertical
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m	r Loss	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	Limit	Polarization
2390.00	38.76	27.59	5.38	34.0	1	37.72	54.00	-16.28	Horizontal
2400.00	47.11	27.58	5.39	34.0	1	46.07	54.00	-7.93	Horizontal
2390.00	40.62	27.59	5.38	34.0	1	39.58	54.00	-14.42	Vertical
2400.00	48.28	27.58	5.39	34.0	1	47.24	54.00	-6.76	Vertical
Test mode:		80	2.11b		Tes	st channel:		Highest	
Peak value									
1				1					1

I can value	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	53.02	27.53	5.47	33.92	52.10	74.00	-21.90	Horizontal
2500.00	48.68	27.55	5.49	29.93	51.79	74.00	-22.21	Horizontal
2483.50	55.38	27.53	5.47	33.92	54.46	74.00	-19.54	Vertical
2500.00	51.29	27.55	5.49	29.93	54.40	74.00	-19.60	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.20	27.53	5.47	33.92	38.28	54.00	-15.72	Horizontal
2500.00	35.21	27.55	5.49	29.93	38.32	54.00	-15.68	Horizontal
2483.50	41.20	27.53	5.47	33.92	40.28	54.00	-13.72	Vertical
2500.00	37.11	27.55	5.49	29.93	40.22	54.00	-13.78	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

802.11g

Test mode:

Report No.: GTS201609000216E01

Lowest

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.33	27.59	5.38	34.01	49.29	74.00	-24.71	Horizontal
2400.00	58.91	27.58	5.39	34.01	57.87	74.00	-16.13	Horizontal
2390.00	51.92	27.59	5.38	34.01	50.88	74.00	-23.12	Vertical
2400.00	60.35	27.58	5.39	34.01	59.31	74.00	-14.69	Vertical
Average va	lue:			•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.47	27.59	5.38	34.01	36.43	54.00	-17.57	Horizontal
2400.00	45.63	27.58	5.39	34.01	44.59	54.00	-9.41	Horizontal
2390.00	39.19	27.59	5.38	34.01	38.15	54.00	-15.85	Vertical
2400.00	46.65	27.58	5.39	34.01	45.61	54.00	-8.39	Vertical
					•			
Test mode:		802.1	1g	Tes	st channel:	F	lighest	
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.43	27.53	5.47	33.92	49.51	74.00	-24.49	Horizontal
2500.00	46.67	27.55	5.49	29.93	49.78	74.00	-24.22	Horizontal
2483.50	52.42	27.53	5.47	33.92	51.50	74.00	-22.50	Vertical
2500.00	48.94	27.55	5.49	29.93	52.05	74.00	-21.95	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.64	27.53	5.47	33.92	36.72	54.00	-17.28	Horizontal
2500.00	33.99	27.55	5.49	29.93	37.10	54.00	-16.90	Horizontal
2483.50	39.47	27.53	5.47	33.92	38.55	54.00	-15.45	Vertical
2500.00 Remark:	35.82	27.55	5.49	29.93	38.93	54.00	-15.07	Vertical

Test channel:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Test mode:

Report No.: GTS201609000216E01

Lowest

			` ,					
Peak value:	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.75	27.59	5.38	34.01	49.71	74.00	-24.29	Horizontal
2400.00	59.46	27.58	5.39	34.01	58.42	74.00	-15.58	Horizontal
2390.00	52.37	27.59	5.38	34.01	51.33	74.00	-22.67	Vertical
2400.00	61.01	27.58	5.39	34.01	59.97	74.00	-14.03	Vertical
Average va	lue:				•			•
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.77	27.59	5.38	34.01	36.73	54.00	-17.27	Horizontal
2400.00	45.96	27.58	5.39	34.01	44.92	54.00	-9.08	Horizontal
2390.00	39.52	27.59	5.38	34.01	38.48	54.00	-15.52	Vertical
2400.00	47.02	27.58	5.39	34.01	45.98	54.00	-8.02	Vertical
				•	•			
Test mode:		802.1	1n(HT20)	Te	st channel:	H	lighest	
Peak value:	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.02	27.53	5.47	33.92	50.10	74.00	-23.90	Horizontal
2500.00	47.13	27.55	5.49	29.93	50.24	74.00	-23.76	Horizontal
2483.50	53.09	27.53	5.47	33.92	52.17	74.00	-21.83	Vertical
2500.00	49.47	27.55	5.49	29.93	52.58	74.00	-21.42	Vertical
Average va	lue:				_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.00	27.53	5.47	33.92	37.08	54.00	-16.92	Horizontal
2500.00	34.27	27.55	5.49	29.93	37.38	54.00	-16.62	Horizontal
2483.50	39.86	27.53	5.47	33.92	38.94	54.00	-15.06	Vertical
2500.00	36.12	27.55	5.49	29.93	39.23	54.00	-14.77	Vertical
Remark:								

Test channel:

802.11n(HT20)

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Radiated Emission Method

7.7.1 Radiated Emission M Test Requirement:	FCC Part15 C Se	ection 15.209									
Test Method:		ANSI C63.10:2013									
Test Frequency Range:	30MHz to 25GHz										
Test site:	Measurement Dis										
Receiver setup:	Frequency	Detector	RBW	VBW	Value						
. toodiv di dotapi	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak						
		Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average									
	Above 1GHz	Above 1GHz RMS 1MHz 3MHz Ave									
Limit:	Frequen		Limit (dBuV/		Value						
	30MHz-88	-	40.0		Quasi-peak						
		88MHz-216MHz 43.50 Quasi-peak									
		216MHz-960MHz 46.00 Quasi-peak									
		960MHz-1GHz 54.00 Quasi-peak									
			54.0	0	Average						
	Above 10	GHz ├─	74.0	0	Peak						
	80cm Metal Full Sol	dered Ground Pla	ne Spect / Rece	rum Analyzer siver							
	30MHz ~ 1GHz	;<		ntenna√ 4m >v							
	< 80cm >	Tum	Table↔		350						

	T
	Above 1GHz
	Tum Table* < lm 4m >** Tum Table Preamplifier* Prea
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. The emission levels of the frequencies which below 30MHz are very lower than the limit were not show in test report.

Measurement Data

■ 30MHz~1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
57.39	36.90	14.85	0.84	29.94	22.65	40.00	-17.35	Vertical
136.46	45.63	10.45	1.48	29.48	28.08	43.50	-15.42	Vertical
147.40	54.92	10.24	1.55	29.42	37.29	43.50	-6.21	Vertical
190.41	50.29	12.56	1.79	29.23	35.41	43.50	-8.09	Vertical
375.94	36.30	16.56	2.75	29.61	26.00	46.00	-20.00	Vertical
801.79	40.15	22.06	4.46	29.20	37.47	46.00	-8.53	Vertical
57.39	38.03	14.85	0.84	29.94	23.78	40.00	-16.22	Horizontal
145.86	51.96	10.23	1.54	29.43	34.30	43.50	-9.20	Horizontal
192.42	48.81	12.56	1.80	29.23	33.94	43.50	-9.56	Horizontal
257.42	45.95	14.06	2.16	29.70	32.47	46.00	-13.53	Horizontal
379.91	44.48	16.59	2.76	29.59	34.24	46.00	-11.76	Horizontal
798.98	38.36	22.06	4.45	29.20	35.67	46.00	-10.33	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	41.35	31.79	8.62	32.10	49.66	74.00	-24.34	Vertical
7236.00	34.89	36.19	11.68	31.97	50.79	74.00	-23.21	Vertical
9648.00	33.19	38.07	14.16	31.56	53.86	74.00	-20.14	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.85	31.79	8.62	32.10	48.16	74.00	-25.84	Horizontal
7236.00	34.55	36.19	11.68	31.97	50.45	74.00	-23.55	Horizontal
9648.00	32.73	38.07	14.16	31.56	53.40	74.00	-20.60	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.35	31.79	8.62	32.10	38.66	54.00	-15.34	Vertical
7236.00	23.73	36.19	11.68	31.97	39.63	54.00	-14.37	Vertical
9648.00	23.52	38.07	14.16	31.56	44.19	54.00	-9.81	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	29.34	31.79	8.62	32.10	37.65	54.00	-16.35	Horizontal
7236.00	23.12	36.19	11.68	31.97	39.02	54.00	-14.98	Horizontal
9648.00	22.46	38.07	14.16	31.56	43.13	54.00	-10.87	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	40.22	31.85	8.66	32.12	48.61	74.00	-25.39	Vertical
7311.00	34.84	36.37	11.71	31.91	51.01	74.00	-22.99	Vertical
9748.00	34.13	38.27	14.25	31.56	55.09	74.00	-18.91	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	40.57	31.85	8.66	32.12	48.96	74.00	-25.04	Horizontal
7311.00	33.41	36.37	11.71	31.91	49.58	74.00	-24.42	Horizontal
9748.00	33.99	38.27	14.25	31.56	54.95	74.00	-19.05	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:		•	•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	31.01	31.85	8.66	32.12	39.40	54.00	-14.60	Vertical
7311.00	23.14	36.37	11.71	31.91	39.31	54.00	-14.69	Vertical
9748.00	23.36	38.27	14.25	31.56	44.32	54.00	-9.68	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.63	31.85	8.66	32.12	39.02	54.00	-14.98	Horizontal
7311.00	22.49	36.37	11.71	31.91	38.66	54.00	-15.34	Horizontal
9748.00	23.69	38.27	14.25	31.56	44.65	54.00	-9.35	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	46.38	31.90	8.70	32.15	54.83	74.00	-19.17	Vertical
7386.00	35.92	36.49	11.76	31.83	52.34	74.00	-21.66	Vertical
9848.00	37.71	38.62	14.31	31.77	58.87	74.00	-15.13	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	45.45	31.90	8.70	32.15	53.90	74.00	-20.10	Horizontal
7386.00	34.70	36.49	11.76	31.83	51.12	74.00	-22.88	Horizontal
9848.00	33.83	38.62	14.31	31.77	54.99	74.00	-19.01	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	37.18	31.90	8.70	32.15	45.63	54.00	-8.37	Vertical
7386.00	25.80	36.49	11.76	31.83	42.22	54.00	-11.78	Vertical
9848.00	26.18	38.62	14.31	31.77	47.34	54.00	-6.66	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	35.74	31.90	8.70	32.15	44.19	54.00	-9.81	Horizontal
7386.00	24.06	36.49	11.76	31.83	40.48	54.00	-13.52	Horizontal
9848.00	23.06	38.62	14.31	31.77	44.22	54.00	-9.78	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.08	31.79	8.62	32.10	48.39	74.00	-25.61	Vertical
7236.00	34.09	36.19	11.68	31.97	49.99	74.00	-24.01	Vertical
9648.00	32.62	38.07	14.16	31.56	53.29	74.00	-20.71	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.79	31.79	8.62	32.10	47.10	74.00	-26.90	Horizontal
7236.00	33.85	36.19	11.68	31.97	49.75	74.00	-24.25	Horizontal
9648.00	32.20	38.07	14.16	31.56	52.87	74.00	-21.13	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.18	31.79	8.62	32.10	37.49	54.00	-16.51	Vertical
7236.00	22.96	36.19	11.68	31.97	38.86	54.00	-15.14	Vertical
9648.00	22.97	38.07	14.16	31.56	43.64	54.00	-10.36	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.33	31.79	8.62	32.10	36.64	54.00	-17.36	Horizontal
7236.00	22.44	36.19	11.68	31.97	38.34	54.00	-15.66	Horizontal
9648.00	21.96	38.07	14.16	31.56	42.63	54.00	-11.37	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:	802.11g		Test channel:		Middle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.18	31.85	8.66	32.12	47.57	74.00	-26.43	Vertical
7311.00	34.18	36.37	11.71	31.91	50.35	74.00	-23.65	Vertical
9748.00	33.65	38.27	14.25	31.56	54.61	74.00	-19.39	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.68	31.85	8.66	32.12	48.07	74.00	-25.93	Horizontal
7311.00	32.83	36.37	11.71	31.91	49.00	74.00	-25.00	Horizontal
9748.00	33.55	38.27	14.25	31.56	54.51	74.00	-19.49	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.04	31.85	8.66	32.12	38.43	54.00	-15.57	Vertical
7311.00	22.50	36.37	11.71	31.91	38.67	54.00	-15.33	Vertical
9748.00	22.91	38.27	14.25	31.56	43.87	54.00	-10.13	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.80	31.85	8.66	32.12	38.19	54.00	-15.81	Horizontal
7311.00	21.93	36.37	11.71	31.91	38.10	54.00	-15.90	Horizontal
9748.00	23.27	38.27	14.25	31.56	44.23	54.00	-9.77	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:	802.11g		Test channel:		Highest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.58	31.90	8.70	32.15	53.03	74.00	-20.97	Vertical
7386.00	34.78	36.49	11.76	31.83	51.20	74.00	-22.80	Vertical
9848.00	36.89	38.62	14.31	31.77	58.05	74.00	-15.95	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.93	31.90	8.70	32.15	52.38	74.00	-21.62	Horizontal
7386.00	33.70	36.49	11.76	31.83	50.12	74.00	-23.88	Horizontal
9848.00	33.07	38.62	14.31	31.77	54.23	74.00	-19.77	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.52	31.90	8.70	32.15	43.97	54.00	-10.03	Vertical
7386.00	24.70	36.49	11.76	31.83	41.12	54.00	-12.88	Vertical
9848.00	25.40	38.62	14.31	31.77	46.56	54.00	-7.44	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.31	31.90	8.70	32.15	42.76	54.00	-11.24	Horizontal
7386.00	23.09	36.49	11.76	31.83	39.51	54.00	-14.49	Horizontal
9848.00	22.34	38.62	14.31	31.77	43.50	54.00	-10.50	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:	est mode: 802.11n(HT20)		IT20)	Test channel:		Lowest		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.37	31.79	8.62	32.10	48.68	74.00	-25.32	Vertical
7236.00	34.27	36.19	11.68	31.97	50.17	74.00	-23.83	Vertical
9648.00	32.75	38.07	14.16	31.56	53.42	74.00	-20.58	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.03	31.79	8.62	32.10	47.34	74.00	-26.66	Horizontal
7236.00	34.01	36.19	11.68	31.97	49.91	74.00	-24.09	Horizontal
9648.00	32.33	38.07	14.16	31.56	53.00	74.00	-21.00	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.45	31.79	8.62	32.10	37.76	54.00	-16.24	Vertical
7236.00	23.13	36.19	11.68	31.97	39.03	54.00	-14.97	Vertical
9648.00	23.09	38.07	14.16	31.56	43.76	54.00	-10.24	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.56	31.79	8.62	32.10	36.87	54.00	-17.13	Horizontal
7236.00	22.59	36.19	11.68	31.97	38.49	54.00	-15.51	Horizontal
9648.00	22.07	38.07	14.16	31.56	42.74	54.00	-11.26	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT20)		Test channel:		Middle		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.41	31.85	8.66	32.12	47.80	74.00	-26.20	Vertical
7311.00	34.33	36.37	11.71	31.91	50.50	74.00	-23.50	Vertical
9748.00	33.76	38.27	14.25	31.56	54.72	74.00	-19.28	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.88	31.85	8.66	32.12	48.27	74.00	-25.73	Horizontal
7311.00	32.97	36.37	11.71	31.91	49.14	74.00	-24.86	Horizontal
9748.00	33.65	38.27	14.25	31.56	54.61	74.00	-19.39	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.26	31.85	8.66	32.12	38.65	54.00	-15.35	Vertical
7311.00	22.65	36.37	11.71	31.91	38.82	54.00	-15.18	Vertical
9748.00	23.01	38.27	14.25	31.56	43.97	54.00	-10.03	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.99	31.85	8.66	32.12	38.38	54.00	-15.62	Horizontal
7311.00	22.05	36.37	11.71	31.91	38.22	54.00	-15.78	Horizontal
9748.00	23.36	38.27	14.25	31.56	44.32	54.00	-9.68	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:	Test mode: 802.11		1n(HT20) Test		channel: High		est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.99	31.90	8.70	32.15	53.44	74.00	-20.56	Vertical
7386.00	35.04	36.49	11.76	31.83	51.46	74.00	-22.54	Vertical
9848.00	37.08	38.62	14.31	31.77	58.24	74.00	-15.76	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.28	31.90	8.70	32.15	52.73	74.00	-21.27	Horizontal
7386.00	33.93	36.49	11.76	31.83	50.35	74.00	-23.65	Horizontal
9848.00	33.25	38.62	14.31	31.77	54.41	74.00	-19.59	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:				-			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.90	31.90	8.70	32.15	44.35	54.00	-9.65	Vertical
7386.00	24.95	36.49	11.76	31.83	41.37	54.00	-12.63	Vertical
9848.00	25.58	38.62	14.31	31.77	46.74	54.00	-7.26	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.64	31.90	8.70	32.15	43.09	54.00	-10.91	Horizontal
7386.00	23.32	36.49	11.76	31.83	39.74	54.00	-14.26	Horizontal
9848.00	22.50	38.62	14.31	31.77	43.66	54.00	-10.34	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Radiated Emissions

Conducted Emissions

9 EUT Constructional Details

Project No.: GTS201609000216

Page 43 of 49

-----End-----