1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

FIND-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x

For each attribute constraint ai in h

If the constraint a_i is satisfied by \boldsymbol{x}

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

Training Examples:

E	xample	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1		Sunny	Warm	Normal	Strong	Warm	Same	Yes
2		Sunny	Warm	High	Strong	Warm	Same	Yes
3		Rainy	Cold	High	Strong	Warm	Change	No
4		Sunny	Warm	High	Strong	Cool	Change	Yes

```
Program:
```

```
import csv
num attributes = 6
a = []
print("\n The Given Training Data Set \n")
with open('enjoysport.csv', 'r') as csvfile:
    reader = csv.reader(csvfile)
    for row in reader:
        a.append (row)
        print(row)
print("\n The initial value of hypothesis: ")
hypothesis = ['0'] * num attributes
print(hypothesis)
for j in range(0, num attributes):
        hypothesis[j] = a[0][j];
print("\n Find S: Finding a Maximally Specific Hypothesis\n")
for i in range (0, len(a)):
    if a[i][num attributes] == 'yes':
            for j in range(0, num attributes):
                if a[i][j]!=hypothesis[j]:
                    hypothesis[j]='?'
                else :
                    hypothesis[j]= a[i][j]
    print(" For Training instance No:{0} the hypothesis is
".format(i), hypothesis)
print("\n The Maximally Specific Hypothesis for a given Training
Examples :\n")
print(hypothesis)
```

Data Set:

sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

Output:

```
The Given Training Data Set
['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes']
['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes']
['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no']
['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']
The initial value of hypothesis:
['0', '0', '0', '0', '0', '0']
Find S: Finding a Maximally Specific Hypothesis
For Training Example No:0 the hypothesis is
['sunny', 'warm', 'normal', 'strong', 'warm', 'same']
For Training Example No:1 the hypothesis is
['sunny', 'warm', '?', 'strong', 'warm', 'same']
For Training Example No:2 the hypothesis is
'sunny', 'warm', '?', 'strong', 'warm', 'same']
For Training Example No: 3 the hypothesis is
'sunny', 'warm', '?', 'strong', '?', '?']
The Maximally Specific Hypothesis for a given Training Examples:
['sunny', 'warm', '?', 'strong', '?', '?']
```