

### Model exam (Alg.)

#### [1] Complete :

a)  $\frac{3-x}{x+2} = \text{zero}$  if  $x = \dots$

b) The degree of the algebraic term  $6x^2y^3$  is .....

c) The additive inverse of the number  $\left| \frac{-3}{5} \right|$  is .....

d)  $-8X$  exceeds  $5X$  by .....

e)  $(12x^3 \div 4x) \times \dots = 6x^4$ .

#### [2] Choose the correct answer :

1)  $\frac{-2}{5} \times n = 1$  Then  $n = \dots$

a)  $\frac{5}{2}$

b)  $\frac{-5}{2}$

c)  $\frac{2}{5}$

d)  $\frac{-2}{5}$

2) The rational number ..... lies in half way between  $\frac{1}{2}$  and  $\frac{7}{8}$

a)  $\frac{11}{16}$

b)  $\frac{5}{8}$

c)  $\frac{3}{4}$

d)  $\frac{1}{2}$

3)  $\frac{3}{x+2}$  is a rational number then  $x \neq \dots$

a) zero

b) -3

c) 2

d) -2

4) Express  $\frac{4}{11}$  as a decimal .....

a) 0.36

b) 0.363

c) 0.36

d) 0.036

5) If  $\frac{x}{y} = \frac{2}{5}$  Then :  $5x - 2y = \dots$

a)  $\frac{2}{5}$

b)  $\frac{5}{2}$

c) 1

d) zero

#### [3] a) Add : $3x - 5y - 6$ and $3y + 2x + 5$

b) Use distributive property to find :  $\frac{5}{9} \times 11 + \frac{5}{9} \times 8 - \frac{5}{9}$

c) The length of a rectangle is  $5x$  cm and its width is  $3x$  cm . calculate its area .

[4] a) Subtract :  $6x^2 + 2x - 5$  from  $2x^2 - 3x + 4$

b) If  $a = \frac{3}{4}$  ,  $b = -\frac{1}{2}$  find the value of  $(a+b) \div (a-b)$

c) Find three rational numbers between  $\frac{1}{2}$  ,  $\frac{1}{3}$

# Exam ( 1 )

**Choose the correct answer**

|    |                                                                                                                                                  |                                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1  | <i>The algebraic term <math>7xy^3</math> whose degree is .....</i>                                                                               | ( 1 , 2 , 3 , 4 )                         |
| 2  | <i>If the area of a rectangle is <math>18x^3 \text{ cm}^2</math>. And its length = <math>6x^2 \text{ cm}</math>., then its width = ..... cm.</i> | ( $3x$ , $3x^2$ , $3x^5$ , 3 )            |
| 3  | <i>If <math>x^2 = 16</math> , <math>y^2 = 9</math> and <math>xy = 12</math> , then <math>(x - y)^2 = .....</math></i>                            | ( 49 , 165 , -1 , 1 )                     |
| 4  | <i>If <math>\frac{x+3}{x-7} = 0</math> , then the value of <math>x</math> is .....</i>                                                           | ( 3 , -7 , -3 , 7 )                       |
| 5  | <i>If <math>(x - 6)(x + 6) = x^2 + k</math> , then <math>k = .....</math></i>                                                                    | ( -10 , 36 , 10 , -36 )                   |
| 6  | <i>The highest common factor of the expression <math>3x^2y - 6x</math> is .....</i>                                                              | ( $3x$ , $6x$ , $3xy$ , $xy - 2$ )        |
| 7  | <i>If <math>5a = 45</math> , <math>a b = 1</math> , then <math>b = .....</math></i>                                                              | ( $\frac{1}{9}$ , 5 , $\frac{1}{5}$ , 9 ) |
| 8  | <i><math>(x^2+x) \div x = .....</math> Where <math>x \neq 0</math></i>                                                                           | ( zero , $x$ , $2x + 1$ , $x + 1$ )       |
| 9  | <i>the perimeter of the rectangle whose dimensions are <math>(2x + 1)</math> cm. and <math>(3 - 2x)</math> cm. is ..... cm</i>                   | ( $2x$ , 4 , $x$ , 8 )                    |
| 10 | <i><math>(-3x) \times (-5y) = .....</math></i>                                                                                                   | ( $-15xy$ , $-8xy$ , $8xy$ , $15xy$ )     |
| 11 | <i>The number <math>\frac{x+3}{x-7}</math> is rational number if <math>x \neq .....</math></i>                                                   |                                           |
| 12 | <i><math>12x^2y^3 \div 4xy = .....</math></i>                                                                                                    |                                           |
| 13 | <i>The multiplicative inverse of <math>1\frac{2}{3}</math> is .....</i>                                                                          |                                           |
| 14 | <i>If the order of the median of the values is fourteenth , then the number of these values is .....</i>                                         |                                           |
| 15 | <i><math>5x^2 + 15xy = 5x( .... + .... )</math></i>                                                                                              |                                           |

**Answer the following questions**

1 If  $x + y = 5$ , then the numerical value of  $x^2 + 2xy + y^2$

2 Divide :  $21x^2y + 9xy^2 - 12x^2y^3$  by  $3xy$  where ( $xy \neq 0$ )

3 Simplify :  $(x+2)^2 - 4x$ , then find the numerical value of the result when  $x = 1$

4 Subtract :  $-x^2 + y^2 - 3xy$  from  $x^2 - 2xy + 3y^2$

5 Factorize the expression by identifying the H.C.F :  $12x^2y^3 + 18xy^2$

6 Use the distribution property to find :  $\frac{5}{17} \times 10 + \frac{5}{17} \times 23 + \frac{5}{17}$

7 If the mode of the values  $a+2, a+1, a+3, a+2$  equals 12, then  $a = \dots$

## Exam ( 2 )

**Choose the correct answer**

|    |                                                                                                                                          |                                           |
|----|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1  | <i>The middle term in the expansion of <math>(2x - 5y)^2</math> is .....</i>                                                             | $( -10x^2y^2, 10x^2y^2, 20xy, -20xy )$    |
| 2  | <i>The degree of the algebraic expression : <math>3x^2 + 5xy^2 + 6y^2</math> is .....</i>                                                | <i>( zero , second , third , fourth )</i> |
| 3  | <i>The additive inverse of the number <math>\frac{1}{3}</math> is .....</i>                                                              | $( \frac{3}{10}, 0.3, 3, -0.3 )$          |
| 4  | <i>The base length of a triangle is <math>2x</math> cm. and its height is <math>6y</math> cm., then its area Is ..... cm<sup>2</sup></i> | $( 12xy, 8xy, 6xy, 4xy )$                 |
| 5  | <i>If <math>a \times \frac{b}{3} = \frac{a}{3}</math>, then <math>b =</math> .....</i>                                                   | $( \frac{a}{3}, 0, a, 1 )$                |
| 6  | $(15x^4 + 5x^3) \div 5x^3 =$ .....                                                                                                       | $( 3x^2 + x, 5x^2 + 1, 3x + 1, 4x^4 )$    |
| 7  | <i>The multiplicative inverse of <math>\left(\frac{1}{2}\right)^0</math> is .....</i>                                                    | $( 2, -2, 1, -1 )$                        |
| 8  | <i>If the arithmetic mean of 6 values is 12, then the sum of theses values = .....</i>                                                   | $( 2, 6, 18, 72 )$                        |
| 9  | $x + x + x =$ .....                                                                                                                      | $( 3x^3, 3x, x^3, x + 3 )$                |
| 10 | <i>the simplest form of the expression <math>(x - 4)(x + 4) + 16</math> is .....</i>                                                     | $( x^2 + 4, x^2 - 4, x^2, 4 )$            |
| 11 | <i>The rational number which hasn't a multiplicative inverse is .....</i>                                                                |                                           |
| 12 | <i>The remainder of subtracting <math>-7x^2</math> from <math>2x^2</math> is .....</i>                                                   |                                           |
| 13 | <i>The H.C.F of <math>12x^3 + 6x^2</math> is .....</i>                                                                                   |                                           |
| 14 | $9a^7b^4 =$ ..... $\times a^7b$                                                                                                          |                                           |
| 15 | <i>If <math>\frac{x}{y} = 1</math>, then <math>5x - 5y =</math> .....</i>                                                                |                                           |
| 16 | $100\% - \frac{1}{4} =$ .....                                                                                                            |                                           |

**Answer the following questions**

- 1 find three rational numbers between :  $\frac{3}{5}, \frac{1}{4}$
- 2 simplify to the simplest form :  $(x + 5)^2 + (x + 2)(x - 2)$
- 3 Use the distribution property to find :  $\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$
- 4 What is the decrease of :  $3y^2 - 2xy + x^2$  than  $3x^2 - 5xy + y^2$
- 5 Factorize by taking out the H.C.F :  $3x^2y - 6xy^2 + 9xy$
- 6 if the arithmetic mean of the values : 8, 7, 5, 6, 4,  $k + 5$  is 6 , find k
- 7 If  $x + 3$  is one factor of  $2x^2 + 3x - 9$ , find the other factor

### *Exam ( 3 )*

*Choose the correct answer*

|    |                                                                                                   |                                                                      |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1  | <i>..... Is a terminating decimal</i>                                                             | ( $\frac{7}{20}$ , $\frac{2}{11}$ , $\frac{7}{11}$ , $\frac{1}{3}$ ) |
| 2  | <i>If <math>(x+y)^2 = 26</math> and <math>x^2 + y^2 = 20</math>, then <math>xy =</math> .....</i> | ( 3 , 6 , 9 , 12 )                                                   |
| 3  | <i>The multiplicative inverse of the number ..... Is itself</i>                                   | ( -1 , 0 , 2 , 3 )                                                   |
| 4  | $12x^2 \div (-x) =$ .....                                                                         | ( $12x$ , $12$ , $-12x$ , $-12$ )                                    |
| 5  | <i>Half of <math>2^{100}</math> = .....</i>                                                       | ( $2^{98}$ , $2^{99}$ , $4^{100}$ , $2^{50}$ )                       |
| 6  | <i>the degree of the algebraic expression : <math>3x^2y^2 + 5x^2y - 2xy</math> is .....</i>       | ( second , third , fourth , fifth )                                  |
| 7  | <i>if half of a number is 30, then <math>\frac{3}{4}</math> of this number is .....</i>           | ( 48 , 42 , 40 , 45 )                                                |
| 8  | <i>if <math>x + y = 7</math>, then <math>5x + 5y =</math> .....</i>                               | ( 7 , 25 , 5 , 35 )                                                  |
| 9  | $(6x \div x) +$ ..... = 0 ( where $\neq 0$ )                                                      | ( $5x$ , $-5x$ , $6x$ , $-6$ )                                       |
| 10 | <i>If <math>(x - 3)(x + 3) = x^2 + K</math>, then <math>K =</math> .....</i>                      | ( -9 , 3 , 6 , 9 )                                                   |
| 11 | $5x^2 + 15xy = 5x( \dots + \dots )$                                                               |                                                                      |
| 12 | $\frac{4}{5} =$ ..... %                                                                           |                                                                      |
| 13 | $(3x + 2)(x - 4) = 3x^2 \dots - 8$                                                                |                                                                      |
| 14 | $(x - 7)(x + 7) =$ .....                                                                          |                                                                      |
| 15 | <i>The coefficient of the algebraic term <math>(-5xy^2)</math> is .....</i>                       |                                                                      |
| 16 | $(3x - y)(2x + 5y) = 6x^2 + 13xy \dots$                                                           |                                                                      |

**Answer the following questions**

- 1 If the median of the values  $a + 3$ ,  $a + 2$ ,  $a + 4$  is 8, find the value of  $a$
- 2 find a rational number lying at one third way between  $\frac{4}{7}$ ,  $1\frac{3}{4}$  from the side of the smaller number.
- 3 What is the increase of  $7x + 5y + z$  than  $2x + 6y + z$
- 4 Simplify to the simplest form:  $(5x - 6)^2 + 60x - 36$
- 5 Divide :  $6x^3 - 2x^2$  by  $2x$ ,  $x \neq 0$
- 6 find 2 rational numbers lying between :  $\frac{1}{2}$  and  $\frac{4}{3}$ , one of them is rational, the other is an integer
- prove that the number  $\frac{5}{12}$  lies between  $\frac{1}{3}$  and  $\frac{1}{2}$

## Exam ( 4 )

**Choose the correct answer**

|    |                                                                                                                                                                                                           |                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1  | <i>if <math>x + 2y = 5</math>, then <math>x + 2(3 + y) = \dots</math></i>                                                                                                                                 | ( 5 , 6 , 11 , 15 )                                                    |
| 2  | <i>if <math>\frac{ x }{5} = 3</math>, then <math>x = \dots</math></i>                                                                                                                                     | ( 5 , 10 , 15 , $\pm 15$ )                                             |
| 3  | $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{99}{100} = \dots$                                                                                                            | ( $\frac{1}{2}$ , $\frac{3}{4}$ , $\frac{99}{100}$ , $\frac{1}{100}$ ) |
| 4  | <i>If the arithmetic mean of the marks of 5 students is 20, then the sum of their marks is .....<br/>( 100 , 4 , 5 , 20 )</i>                                                                             |                                                                        |
| 5  | <i>if <math>\frac{5}{7} + \frac{x}{2} = \frac{25}{35}</math>, then <math>2x = \dots</math></i>                                                                                                            | ( 2 , $\frac{5}{7}$ , zero , $\frac{11}{2}$ )                          |
| 6  | $(15x^4 + 5x^3) \div 5x^3 = \dots$                                                                                                                                                                        | ( $3x^2 + x$ , $3x^2 + 1$ , $3x + 1$ , $4x^4$ )                        |
| 7  | <i>If 2b is the edge length of a cube, then its volume is .....<br/>( 8b , <math>2b^3</math> , <math>8b^3</math> , <math>6b^3</math> )</i>                                                                |                                                                        |
| 8  | <i>the additive inverse of the number <math>x + 2</math> is .....<br/>( <math>x - 2</math> , <math>-x - 2</math> , <math>2 - x</math> , 2 )</i>                                                           |                                                                        |
| 9  | <i>A rectangle, its length = <math>4x</math> cm. and its width = <math>3x</math> cm., then its area = .....<br/>( 7x , <math>12x</math> , <math>12x^2</math> , <math>14x</math> )</i>                     |                                                                        |
| 10 | <i>the multiplicative inverse of the number <math>3\frac{2}{5}</math> is .....<br/>( <math>-3\frac{2}{5}</math> , <math>3\frac{2}{5}</math> , <math>\frac{17}{5}</math> , <math>\frac{5}{17}</math> )</i> |                                                                        |
| 11 | <i>If <math>(2x + y)^2 = 4x^2 + kxy + y^2</math>, then <math>k = \dots</math></i>                                                                                                                         |                                                                        |
| 12 | <i>The degree of algebraic term <math>7^2 x y^2</math> is .....<br/>( 2 , 4 , 6 , 8 )</i>                                                                                                                 |                                                                        |
| 13 | <i>if <math>\frac{a}{b} = \frac{1}{2}</math>, then <math>2a - b = \dots</math></i>                                                                                                                        |                                                                        |
| 14 | <i>The number 1.25 in the form of <math>\frac{a}{b}</math> is .....<br/>( <math>\frac{1}{8}</math> , <math>\frac{5}{4}</math> , <math>\frac{125}{100}</math> , <math>\frac{125}{8}</math> )</i>           |                                                                        |
| 15 | $6x^2 y^3 \times \dots = 24x^4 y^6$                                                                                                                                                                       |                                                                        |
| 16 | $\mathbb{Q}^+ - \mathbb{Q}^- = \dots$                                                                                                                                                                     |                                                                        |

*Answer the following questions*

- 1** find the sum of:  $5x + 2y - 1$  and  $2x - 5y + 3$

**2** find The arithmetic mean of the values  $2 - a$ ,  $4$ ,  $1$ ,  $5$ ,  $3 + a$

**3** Find four rational numbers between zero and  $\frac{3}{5}$

**4** Find the value of  $K$  which makes the expression:  $x^2 + 5x + K$  divided by  $x + 2$

**5**  $1, 1, 2, 3, 5, 8, \dots \dots \quad (\text{in the same pattern})$

**6** if  $x + 5y = 6$ ,  $z = 2$ , find the numeral value of  $x + 5(y + z)$

**7** Find the area of shaded part

**Find the area of shaded part**



### Exam ( 5 )

**Choose the correct answer**

|    |                                                                                                                         |                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1  | <i>the multiplicative inverse of <math>0.\dot{4}</math> in the simplest form is .....</i>                               | ( $\frac{4}{9}$ , $\frac{9}{4}$ , $\frac{2}{5}$ , $\frac{5}{2}$ ) |
| 2  | <i>if <math>\frac{a}{7} &gt; \frac{b}{9}</math>, then <math>9a ..... 7b</math></i>                                      | ( $>$ , $<$ , $\leq$ , $=$ )                                      |
| 3  | <i>If <math>x = -1</math>, then the numerical value of the expression <math>(x + 1)^2</math> is .....</i>               | ( 0 , 1 , 2 , 3 )                                                 |
| 4  | <i>The necessary condition to make <math>\frac{7}{2x-10}</math> a rational number if <math>x \neq .....</math></i>      | ( -7 , 5 , -5 , 10 )                                              |
| 5  | <i>The degree of the algebraic term <math>(2y^2x)^2</math> is .....</i>                                                 | ( 3 , 4 , 5 , 6 )                                                 |
| 6  | <i>if <math>(x+2)(x-2) = x^2 + kx - 4</math>, then <math>k = .....</math></i>                                           | ( -4 , zero , 4 , 8 )                                             |
| 7  | <i>The length of a rectangle is <math>2x</math> cm. and its width is <math>y</math> cm., then its perimeter = .....</i> | ( $2xy$ , $3xy$ , $2x+y$ , $4x+2y$ )                              |
| 8  | $-3(y+3) = .....$                                                                                                       | ( $-3y+6$ , $-3y-9$ , $-3y-6$ , $-3y$ )                           |
| 9  | <i>if <math>2x = 10</math>, then <math>\frac{3}{5}x = .....</math></i>                                                  | ( 25 , 15 , 5 , 3 )                                               |
| 10 | <i>If <math>\frac{4}{6} = \frac{12}{x}</math>, then <math>x+2 = .....</math></i>                                        | ( 18 , 20 , 16 , 3 )                                              |
| 11 | <i>the arithmetic mean of the values 5, 4, 8, 3 and 10 is .....</i>                                                     |                                                                   |
| 12 | <i>If three times a number is 15, then fifths this number is .....</i>                                                  |                                                                   |
| 13 | <i>The additive identity element in <math>\mathbb{Q}</math> is .....</i>                                                |                                                                   |
| 14 | <i>The median of the values : 5, 9, 7, 4, 3, 8 is .....</i>                                                             |                                                                   |
| 15 | $2\frac{1}{5} \times ..... = 1$                                                                                         |                                                                   |
| 16 | <i>The result of subtracting <math>2x</math> from <math>-3x</math> is .....</i>                                         |                                                                   |

*Answer the following questions*

|   |                                                                                                          |
|---|----------------------------------------------------------------------------------------------------------|
| 1 | $1, 4, 9, 16, \dots, \dots$ (in the same pattern )                                                       |
| 2 | Divide : $14x^2y - 35xy^2 + 7xy$ by $7xy$                                                                |
| 3 | If the arithmetic mean of the numbers : $8, 7, 5, 9, 4, 3, k + 4$ is 6 , then find the value of $k$      |
| 4 | using the distributive property to find : $\frac{-3}{7} \times 8 + 5 \times \frac{-3}{7} + \frac{-3}{7}$ |
| 5 | If the area of a rectangle is $3x^2 + 7x + 2$ and its length is $3x + 1$ , find its width                |
| 6 | find : $(x + 2)^2 - 4(x + 1)$ , then find the numerical value of the result when $x = 2$                 |
| 7 | The greatest negative number is .....                                                                    |

### Exam ( 6 )

**Choose the correct answer**

|    |                                                                                                                                     |                                                          |
|----|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1  | <i>the rational number that lies half the way between <math>\frac{1}{2}</math>, <math>\frac{3}{4}</math> is .....</i>               | $( \frac{1}{4}, \frac{1}{5}, \frac{5}{8}, \frac{1}{6} )$ |
| 2  | <i>If <math>\frac{x}{y} = \frac{2}{3}</math>, then <math>\frac{3x}{2y} =</math> .....</i>                                           | $( \frac{1}{5}, \frac{3}{2}, \frac{9}{4}, 1 )$           |
| 3  | <i>the algebraic term : <math>3x y^m</math> is of the fifth degree , then <math>m =</math> .....</i>                                | $( 4, 5, 2, 3 )$                                         |
| 4  | <i>if <math>\frac{3}{a} &lt; \frac{3}{b}</math> , where <math>ab &gt; 0</math> , then <math>a</math> ..... <math>b</math></i>       | $( >, <, \leq, = )$                                      |
| 5  | <i>If 6, 5, 12 and <math>x</math> are proportional numbers then <math>x =</math> .....</i>                                          | $( 8, 10, 5, 7 )$                                        |
| 6  | <i>if the algebraic expression : <math>ax^3 + 4x^2 + 3x</math> is of the second degree , then <math>a =</math> .....</i>            | $( 1, 3, -2, \text{zero} )$                              |
| 7  | <i>If the arithmetic mean of the numbers : 5, 8, 7, <math>k</math>, 9, 3 is 6 , then <math>k =</math> .....</i>                     | $( 3, 4, 5, 6 )$                                         |
| 8  | $0.7 + 0.\dot{3} =$ .....                                                                                                           | $( 1, 3.7, 0.\dot{3}\dot{7}, 1\frac{1}{30} )$            |
| 9  | $(3a + 2b)^2 = 9a^2 +$ ..... $+ 4b^2$                                                                                               | $( 6ab, 12ab, 24ab, 36ab )$                              |
| 10 | $(-5x) + (-3x) - x =$ .....                                                                                                         | $( -9x, 9x, 8x, -8x )$                                   |
| 11 | $5x + 5y = 30$ , then $x + y =$ .....                                                                                               |                                                          |
| 12 | <i>If the arithmetic mean of the numbers : 8, 7, 5, 9, 4, 3, <math>k + 4</math> is 6 , then the value of <math>k =</math> .....</i> |                                                          |
| 13 | <i>The additive inverse of <math>\left(\frac{-3}{5}\right)^0</math> is .....</i>                                                    |                                                          |
| 14 | <i>the mode for the values : 2, 4, <math>k - 3</math> is 4 , then <math>k =</math> .....</i>                                        |                                                          |
| 15 | $(x - 5)(.....) = x^2 - 25$                                                                                                         |                                                          |
| 16 | <i>the number <math>\frac{x-4}{x+4}</math> is a rational number if <math>x</math> .....</i>                                         |                                                          |

**Answer the following questions**

1 Factorize by identifying the H.C.F :  $4x^3y^3 - 6x^2y^2 + 2xy$

2 Find three rational numbers between :  $\frac{1}{2}$  ,  $\frac{1}{3}$

3 12% of 500 kg. = ..... kg.

4 find the quotient of dividing :  $6x^2 + 13xy + 6y^2$  by  $2x + 3y$  ,  
 $(2x + 3y \neq 0)$

5 If the arithmetic mean of the values : 8 , k , 7 , 5 is 6 , find value of k

6 Use the properties of addition of rational numbers to find

$$\frac{5}{4} + \left(\frac{-13}{5}\right) + \left(\frac{-25}{4}\right) + \frac{28}{5}$$

7 If  $x = \frac{1}{2}$  ,  $y = \frac{-2}{3}$  ,  $z = 2$  , then find the value of  $\frac{y-z}{x}$

### Exam ( 7 )

**Choose the correct answer**

|    |                                                                                                |                                                            |
|----|------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1  | $\frac{y^5}{y^3} + y^2 = \dots$ , where $y \neq 0$                                             | ( $y^6$ , $y^5$ , $2y^2$ , $2y^3$ )                        |
| 2  | $ - \frac{3}{5}  = \dots$ zero                                                                 | ( $<$ , $=$ , $>$ , $\leq$ )                               |
| 3  | The rational $\frac{x}{-3}$ is positive if $x \dots$                                           | ( $< 0$ , $> 0$ , $\leq 0$ , $\geq 0$ )                    |
| 4  | Fifths the number $5^{10} = \dots$                                                             | ( $5^9$ , $5^5$ , $5^{11}$ , $3^9$ )                       |
| 5  | the rational number that lies on third of the way between 8 and 12 from the smaller is .....   | ( $8\frac{1}{3}$ , $9\frac{1}{3}$ , 10 , $10\frac{2}{3}$ ) |
| 6  | if $(x+4)(x-3) = x^2 + m - 12$ , then $m = \dots$                                              | ( $-x$ , $x$ , $-7x$ , $7x$ )                              |
| 7  | The decrease of $3x$ than $4x$ is .....                                                        | ( 1 , $x$ , $-1$ , $-x$ )                                  |
| 8  | The number of all rational numbers that exist between $\frac{2}{5}$ and $\frac{4}{5}$ is ..... | ( 1 , 2 , 3 , infinite number )                            |
| 9  | the degree of the absolute term is .....                                                       | ( 1 , 2 , 0 , 3 )                                          |
| 10 | the additive inverse of $x+2$ is .....                                                         | ( $x-2$ , $-x-2$ , $2-x$ , 2 )                             |
| 11 | The multiplicative identity element in $\mathbb{Q}$ is .....                                   |                                                            |
| 12 | if the mode for the values : 2 , 4 , $k-3$ is 4, then $k = \dots$                              |                                                            |
| 13 | If $x + \frac{3}{x} = 4 + \frac{3}{4}$ , then $x = \dots$                                      |                                                            |
| 14 | if $(x-y)(3x+2y) = 3x^2 + kxy - 2y^2$ , then $k = \dots$                                       |                                                            |
| 15 | The order of the median for the values : 4 , 8 , 7 , 5 , 3 is .....                            |                                                            |
| 16 | $a(a+b) - b(a+b) = (a+b) \times \dots$                                                         |                                                            |

*Answer the following questions*

1 if the ratio  $x : 25$  equals  $2 : 5$ , then  $x = \dots$

2 Add :  $2x - 6z + y, 3y + 2z - 5x$

3 Simplify :  $(a - 4)^2 + 8(a - 2)$

4 Factorize by taking H.C.F :  $9a^5 + 12a^4 - 3a^3$

5 Divide :  $x^2 + 6y + 5$  by  $x + y$  where ( $x + y \neq 0$ )

6  $\mathbb{Q}^+ \cap \mathbb{Q}^- = \dots$

7 Find the volume of opposite figure



### Exam ( 8 )

**Choose the correct answer**

|    |                                                                                                                                                   |                                                                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1  | <i>if <math>(x+y)^2 = 15</math>, <math>x^2 + y^2 = 7</math>, then <math>xy = \dots</math></i>                                                     | ( 8 , 22 , 6 , 4 )                                                |
| 2  | <i>the number of integers lying between <math>\frac{3}{5}</math>, <math>\frac{8}{7}</math> is .....</i>                                           | ( 0 , 1 , 2 , infinite number )                                   |
| 3  | $3x(2x+5y) = 6x^2 + \dots$                                                                                                                        | ( $6x^2$ , $15x^2$ , $15y^2$ , $15xy$ )                           |
| 4  | <i>if <math>\frac{2}{3}</math> lies at the middle of the way between <math>x</math> and <math>\frac{1}{2}</math>, then <math>x = \dots</math></i> | ( $\frac{1}{3}$ , $\frac{3}{4}$ , $\frac{5}{6}$ , $\frac{7}{8}$ ) |
| 5  | <i>the algebraic term : <math>2^3 x^4 y^2</math> is of the ..... degree</i>                                                                       | ( nineth , sixth , seventh , eighth )                             |
| 6  | <i>the arithmetic mean for the values : <math>3, 5-x, 7+x</math> is .....</i>                                                                     | ( 2 , 3 , 4 , 5 )                                                 |
| 7  | <i>if the mode of the values : <math>7, 5, 2x+3, 5, 7</math> is 5, then <math>x = \dots</math></i>                                                | ( 2 , -1 , 1 , -2 )                                               |
| 8  | <i>if <math>\frac{3}{7}x = 42</math>, then <math>\frac{5}{7}x = \dots</math></i>                                                                  | ( 70 , 45 , 30 , 10 )                                             |
| 9  | $3xy + 6x = \dots (y+2)$                                                                                                                          | ( 3 , $2x$ , $3x$ , $3y$ )                                        |
| 10 | <i>The additive inverse of the number <math> -\frac{2}{3} </math> is .....</i>                                                                    | ( $\frac{2}{3}$ , $\frac{3}{2}$ , $-\frac{2}{3}$ , 0 )            |
| 11 | <i>If <math>\frac{a}{b} = 60</math>, then <math>\frac{a}{3b} = \dots</math></i>                                                                   |                                                                   |
| 12 | <i>The multiplicative inverse of <math>-\frac{7}{5}</math> is .....</i>                                                                           |                                                                   |
| 13 | $7x(x+5y) = 7x^2 + \dots$                                                                                                                         |                                                                   |
| 14 | <i>The sum of five numbers is 30, then the arithmetic mean of these numbers is .....</i>                                                          |                                                                   |
| 15 | $(\frac{2}{3}x^2y) \times (\frac{3}{2}xy^2) = \dots$                                                                                              |                                                                   |
| 16 | $-\frac{4}{11} \times \dots = 1$                                                                                                                  |                                                                   |

*Answer the following questions*

1 *Divide :  $14x^3 - 28x^2 + 7x$  by  $7x$  ( where  $x \neq 0$  )*

---

---

2 *Add :  $2a + 3b - c$  and  $3a - 2b - 2c$*

---

---

3 *find  $(6x - 3y)(6x + 3y)$*

---

4 *find the quotient of :  $x^2 - 9x + 20$  by  $x - 4$  ( where  $x \neq 4$  )*

---

5 *the length of a rectangle is  $(2x + 5)$  and its width is  $(3x + 2)$ . Calculate its area*

---

---

6 *if  $\{1, 4, 3x\} = \{4, 12, 1\}$ , then  $x = \dots$*

---

7 *find the mean and the median for the following numbers  
7, 8, 2, 4 and 9*

---

---

### Exam ( 9 )

**Choose the correct answer**

|    |                                                                                                                  |                                                 |
|----|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1  | which of the following algebraic term is like the algebraic term<br>$2x^2y$ ?                                    | ( $2y^2x$ , $yx^2$ , $2x^2$ , $x^2y^2$ )        |
| 2  | $(4x^3y^2 - \dots) \div 4xy = x^2y - 2$ where $xy \neq 0$                                                        | ( $8x^2y$ , $8x^2y^2$ , $-8x$ , $8xy$ )         |
| 3  | the algebraic term: $5^3$ is of the ..... degree                                                                 | ( first , second , zero , fourth )              |
| 4  | the rational number $\frac{a}{b}$ is positive if .....                                                           | ( $ab > 0$ , $ab < 0$ , $a + b = 0$ , $a > b$ ) |
| 5  | $3x \times k = 12x^3$ , then $k = \dots$                                                                         | ( $2x^4$ , $6x^2$ , $4x^2$ , $4x$ )             |
| 6  | The increase of $6x$ than $-3x$ equals .....                                                                     | ( $2x$ , $9x$ , $3x$ , $-9x$ )                  |
| 7  | $(3x + 5)(x + 2) = 3x^2 + \dots + 10$                                                                            | ( $-7$ , $11x$ , $5x$ , $7x$ )                  |
| 8  | if the order of the median of a set of values is fourth and fifth,<br>then the number of these values is .....   | ( $10$ , $12$ , $11$ , $16$ )                   |
| 9  | if $x^2 = 1$ , $y^2 = 9$ , $xy = 3$ , then $(x - y)^2 = \dots$                                                   | ( $1$ , $2$ , $3$ , $4$ )                       |
| 10 | the coefficient of the algebraic term $-x^2y^2$ is .....                                                         | ( $1$ , $2$ , $-1$ , $3$ )                      |
| 11 | If the arithmetic mean of the values : $8$ , $k$ , $7$ , $5$ is $6$ , then $k = \dots$                           |                                                 |
| 12 | The additive identity element in $\mathbb{Q}$ is ..... , the multiplicative<br>identity in $\mathbb{Q}$ is ..... |                                                 |
| 13 | $\frac{-3}{5} + A = 0$ then $A = \dots$                                                                          |                                                 |
| 14 | If the term $3x^2y^{m+1}$ from the $6^{\text{th}}$ degree , then $m = \dots$                                     |                                                 |
| 15 | $-2a^2b \div 4ab = \dots$ ( $a \neq b \neq 0$ )                                                                  |                                                 |
| 16 | the multiplicative inverse of the number $3\frac{2}{5}$ is .....                                                 |                                                 |

## *Answer the following questions*

1 The most repeated value of a set of values is called .....

2 Divide :  $x^2 + 12x + 35$  by  $x + 5$  (where  $x \neq -5$ )

3 Factorize by identifying the H.C.F :  $3a(4a + 5b) - 2b(4a + 5b)$

4 Add :  $3x - 5y + 2 , 2x + 5y - 2$

5 Simplify to the simplest form:  $(x - 4)(x + 4) + 9$ , then calculate the numerical value of the result when  $x = 5$

6 if the arithmetic mean of :  $x - 1 , x , x + 1$  is 12 , find  $x$

7 the following table shows the marks of a class in maths exam :

| marks     | 5 | 6 | 7  | 8 | 9  | 10 |
|-----------|---|---|----|---|----|----|
| frequency | 6 | 5 | 12 | 7 | 10 | 4  |

find the mode mark

# Exam ( 10 )

**Choose the correct answer**

|    |                                                                                                                                                                                    |                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1  | <i>if <math>\frac{7}{4x}</math> is a rational number , then <math>x \neq \dots</math></i>                                                                                          | ( 4 , zero , -4 , -7 )                                                 |
| 2  | <i>if <math>x - y = 3</math> , <math>x + y = 7</math> , then <math>x^2 - y^2 = \dots</math></i>                                                                                    | ( 3 , 7 , 9 , 21 )                                                     |
| 3  | <i>the multiplicative inverse of <math>1\frac{2}{3}</math> is ..... ( <math>\frac{2}{3}</math> , <math>\frac{3}{2}</math> , 1 , <math>\frac{3}{5}</math> )</i>                     |                                                                        |
| 4  | <i>the number of integers lying between <math>\frac{7}{3}</math> , <math>\frac{11}{6}</math> is ..... ( zero , 1 , 2 , infinite number )</i>                                       |                                                                        |
| 5  | <i>The sum of the square two monomials <math>a</math> , <math>b</math> is ..... ( <math>a^2 + b^2</math> , <math>(a + b)^2</math> , <math>2(a + b)</math> , <math>2ab</math> )</i> |                                                                        |
| 6  | <i><math>\frac{7}{5} &gt; \dots</math></i>                                                                                                                                         | ( $\frac{14}{5}$ , $\frac{14}{10}$ , $\frac{5}{7}$ , $\frac{21}{15}$ ) |
| 7  | <i>if <math>\frac{2}{5}x = 10</math> , then <math>\frac{4}{5}x = \dots</math></i>                                                                                                  | ( 25 , 15 , 20 , 5 )                                                   |
| 8  | <i>the remainder of subtracting <math>-3a</math> from <math>2a</math> is ..... ( <math>5a</math> , <math>-5a</math> , <math>a</math> , <math>-a</math> )</i>                       |                                                                        |
| 9  | <i><math>25x^3 + 15x^2 + 35x = \dots</math> ( <math>5x^2 + 3x + 7</math> )</i>                                                                                                     | ( $5x^3$ , $5x^2$ , $5x$ , 5 )                                         |
| 10 | <i>if the mode of the values : 5 , 7 , <math>x + 4</math> , 5 , 9 is 7 , then <math>x = \dots</math></i>                                                                           | ( 4 , 5 , 3 , 2 )                                                      |
| 11 | <i>the order of the median for the values : 4 , 12 , 9 , 8 , 2 is ..... ( 4 , 12 , 9 , 8 , 2 )</i>                                                                                 |                                                                        |
| 12 | <i>The highest common factor of the expression : <math>21x^2 + 14x^3 - 7</math> is ..... ( 21 , 14 , 7 , 1 )</i>                                                                   |                                                                        |
| 13 | <i><math>12x^3y - 15xy^3 = 3xy(4x^2 - \dots)</math></i>                                                                                                                            |                                                                        |
| 14 | <i><math>\frac{3x}{5} + \frac{2x}{5} = \dots</math></i>                                                                                                                            |                                                                        |
| 15 | <i><math>(y - 1)(y^2 + y + 1) = \dots</math></i>                                                                                                                                   |                                                                        |
| 16 | <i>The number <math>y + 5</math> hasn't a multiplicative inverse , then <math>y = \dots</math></i>                                                                                 |                                                                        |

*Answer the following questions*

1 Simplify to the simplest form:  $\frac{6x^4y^2}{7} \times \frac{28xy^3}{3}$

2 find the quotient of :  $x^2 - 2x - 8$  by  $x - 4$  ( where  $x \neq 4$  )

3

4 subtract :  $4x^2 - 5x + 3$  from  $5x^2 + 4x - 3$

5 Divide  $21x^2y - 7xy + 35xy^3$  by  $7xy$  ( where  $xy \neq 0$  )

6  $\mathbb{Q} = \mathbb{Q}^+ \cup \dots \cup \mathbb{Q}^-$

7 the following table shows Ali's marks in 6 mathematics exams

| Month | Oct. | Nov. | Dec. | Feb. | Mar. | Apr. |
|-------|------|------|------|------|------|------|
| Mark  | 41   | 35   | 47   | 37   | 44   | 48   |

Find each of the median and the mean

# Exam ( 11 )

**Choose the correct answer**

|    |                                                                                                            |                                                                     |
|----|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1  | <i>The number <math>0.\dot{5}\dot{7}</math> as a rational number .....</i>                                 | ( $\frac{5}{9}$ , $\frac{19}{33}$ , $\frac{3}{7}$ , $\frac{2}{3}$ ) |
| 2  | <i>the square of the sum of the two monomial <math>a, b</math> is .....</i>                                | ( $a^2 + b^2$ , $(a+b)^2$ , $2(a+b)$ , $2ab$ )                      |
| 3  | <i>The smallest prime number is .....</i>                                                                  | ( 0 , 1 , 2 , 3 )                                                   |
| 4  | $\frac{x^2+2xy}{x} = \dots$ where $x \neq 0$                                                               | ( $x+2y$ , $x^3+2x^2y$ , $x^2+2xy$ , 2 )                            |
| 5  | <i>if <math>\frac{a}{b} = \frac{1}{2}</math> , then <math>2a - b = \dots</math></i>                        | ( 1 , 0 , 3 , -1 )                                                  |
| 6  | <i><math>7x</math> exceeds <math>-5x</math> by .....</i>                                                   | ( $12x$ , $2x$ , $-2x$ , $-2x^2$ )                                  |
| 7  | <i>if the arithmetic mean for the numbers : 3 , 5 , <math>x</math> is 4 , then <math>x = \dots</math></i>  | ( 3 , 4 , 5 , 6 )                                                   |
| 8  | <i>the median for the values : 4 , 8 , 3 , 5 , 7 is .....</i>                                              | ( 3 , 4 , 5 , 7 )                                                   |
| 9  | <i>The highest common factor of the expression : <math>5x^2 - 5x</math> is .....</i>                       |                                                                     |
| 10 | $\frac{x-9}{x-2} = 0$ , then $x = \dots$                                                                   | ( 9 , 2 , -9 , -2 )                                                 |
| 11 | <i>The additive inverse of <math>(-2)^3</math> is .....</i>                                                | ( 8 , -8 , 4 , 6 )                                                  |
| 12 | <i>If <math>\frac{a}{b} = 0</math> , then <math>3ab = \dots</math> ( such that <math>b \neq 0</math> )</i> | ( 3 , $3ab$ , 0 , 1 )                                               |
| 13 | <i>twice the number <math>2^{10}</math> = .....</i>                                                        | ( $2^{11}$ , $2^9$ , $4^{10}$ , $2^{20}$ )                          |
| 14 | <i>The additive inverse of <math>\left(\frac{-2}{3}\right)^2</math> is .....</i>                           |                                                                     |
| 15 | <i>the coefficient of the algebraic term <math>\frac{x^2 y}{3}</math> is .....</i>                         |                                                                     |
| 16 | <i>If <math>(x-7)(x+7) = x^2 - K</math> , then <math>K = \dots</math></i>                                  |                                                                     |

**Answer the following questions**

1 if the median of the values :  $x + 5$ ,  $x + 3$ ,  $x + 8$  is 9, find the value of  $x$

.....  
.....

2 Add :  $3x - 2y + 7$  and  $- 2x + 2y - 9$

.....  
.....

3 Use the distribution property to find :  $\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$

.....  
.....

4 If  $a = \frac{7}{4}$ ,  $b = -\frac{1}{2}$ , find the value of the expression  $(a - b) \div (a + b)$

.....  
.....

5 Simplify to the simplest form :  $(x + 2)^2 - (x + 2)(x - 2)$

.....  
.....

6 Divide :  $x^2 + 6x + 5$  by  $x + 5$  (where  $x \neq -5$ )

.....  
.....

7 the arithmetic mean of five values of sum 45 is .....

**1** Complete each of the following:

- 1) If  $\frac{3}{7} \times (x) = \frac{3}{7}$  then  $x = \dots$ .
- 2) The algebraic term  $2x^3y$  is of ..... degree.
- 3) The mode of the values 5, 3, 1, 3, 5, and 3 is ..... .
- 4)  $Zero \div (-12) = \dots$
- 5)  $\frac{1}{2} = \dots \% .$

**2** Choose the correct answer from the given ones:

- 1)  $(x - 1)(x^2 + x + 1) = \dots$ 
  - a)  $x^3 + 1$
  - b)  $x^3 - 1$
  - c)  $x^3 + 3$
  - d)  $x^2 + 2x$
- 2)  $0.57 = \dots \% .$ 
  - a)  $\frac{57}{100}$
  - b)  $\frac{75}{99}$
  - c)  $\frac{575}{1000}$
  - d)  $\frac{19}{33}$
- 3) The arithmetic mean of the numbers 3, zero, 4, 6 and 7 is ..... .
  - a) 4
  - b) 5
  - c) 6
  - d) 7
- 4) The median of the values 2, 6, 8, 4, and 10 is ..... .
  - a) 4
  - b) 5
  - c) 6
  - d) 8
- 5)  $|- \frac{7}{3}| = \dots$  zero.
  - a) >
  - b) =
  - c) <
  - d)  $\leq$

**3 (a)** Find the sum of :  $3x^2 + 2x + 5$  and  $2x^2 - 4x - 3$

- (b) Factorize by taking the H. C. F :  $5xy + 10xz$
- (c) Divide :  $9x^3y^2 - 3xy$  by  $3xy$  where  $x, y \neq 0$

**4 (a)** Use the distribution property to find the value of:

- $$\frac{5}{11} \times 9 + \frac{5}{11} \times 4 - \frac{5}{11} \times 2$$
- (b) Find three rational numbers lying between:  $\frac{1}{3}, \frac{1}{5}$
  - (c) Divide:  $x^2 - 5x + 6$  by  $(x - 3)$

**5** The following table shows the marks of Mona in mathematics in 5 months:

| month. | Sept. | Oct. | Nov. | Dec. | Jan. |
|--------|-------|------|------|------|------|
| Math.  | 30    | 40   | 35   | 42   | 50   |

(1) Represent the previous data by broken line graph.

(2) Find the difference between the greatest and smallest mark obtained by Mona.

**1 Choose the correct answer:**

- 1) The value of  $| -7 | + | -1 | = \dots$ 
  - a) -8
  - b) 6
  - c) 8
  - d) -6
- 2)  $0.57 = \dots$ 
  - a)  $\frac{57}{100}$
  - b)  $\frac{75}{99}$
  - c)  $\frac{575}{1000}$
  - d)  $\frac{19}{33}$
- 3) The algebraic term  $2ab^2$  is of ..... degree.
  - a) 1<sup>st</sup>
  - b) 2<sup>nd</sup>
  - c) 3<sup>rd</sup>
  - d) 4<sup>th</sup>
- 4) The median of the numbers: 2, 8, 5, 7, 6, is .....
  - a) 5
  - b) 7
  - c) 8
  - d) 6
- 5)  $\frac{2}{x-7} \in Q$  if  $x \neq \dots$ 
  - a) 7
  - b) 2
  - c) 0
  - d) -2

**2 Complete each of the following:**

- 1) The coefficient of  $4a^3b^2$  is .....
- 2) The multiplicative inverse of the rational number  $3\frac{1}{2}$  is .....
- 3) The mode of the values 3, 6, 3, 3, 6, 4, 3 is .....
- 4) The rational number lying at half way between  $\frac{1}{3}$  and  $\frac{3}{4}$  is .....
- 5) The arithmetic mean of the numbers: 2, 7, 6, 9, 16, 20 is .....

**3 (a) Factorize the following by taking H. C. F. :  $15x^3y^3 - 20x^2y^3 - 25xy$**

(b) Find the quotient of :  $\frac{16a^3b^2 - 24a^2b^2}{4a^2b}$  where  $ab \neq 0$

**4 (a) Using the properties of the rational numbers, find the value of:**

$$\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$$

(b) Find three rational numbers between:  $\frac{1}{2}$  and  $\frac{1}{3}$

(c) Simplify :  $(2a - 3)(2a + 3) + 7$ , then find the numerical value of the result when  $a = -1$

**5 (a) What is the increase of :  $x^2 - 5x - 1$  than  $3x^2 - 2x - 3$**

(b) Divide:  $x^2 - 8x + 12$  by  $(x - 6)$

(c) The following table shows the marks of Ali in 5 months:

|            |      |      |      |      |      |
|------------|------|------|------|------|------|
| The month. | Sep. | Oct. | Nov. | Dec. | Jan. |
| The mark.  | 30   | 40   | 35   | 45   | 50   |

Represent these data by broken line.

**1 Choose the correct answer:**

- 1) The rational number which lies between  $\frac{1}{3}$  and  $\frac{2}{5}$  is = .....  
 a)  $\frac{5}{15}$       b)  $\frac{7}{15}$       c)  $\frac{11}{30}$       d)  $\frac{13}{30}$
- 2)  $\frac{9}{x-2} \in Q$  if  $x \neq$  .....  
 a) 9      b) 2      c) 0      d) -2
- 3) The median of the values: 3, 7, 2, 9, 5 and 11 is .....  
 a) 5      b) 6      c) 7      d) 12
- 4) If  $x + \frac{3}{x} = 7 + \frac{3}{7}$  then  $x =$  .....  
 a)  $\frac{1}{7}$       b)  $\frac{4}{7}$       c) 1      d) 7
- 5)  $|- \frac{3}{2}|$  ..... zero.  
 a) >      b) <      c) =      d)  $\leq$

**2 Complete each of the following:**

- 1) The coefficient of  $5x^3y$  is ..... .
- 2) The mode of the numbers 5, 8, 9, 11, 5 is ..... .
- 3) The multiplicative inverse of the rational number  $2\frac{1}{5}$  is ..... .
- 4) The Arithmetic mean of the values 14, 18, 17 and 15 is ..... .
- 5)  $|-6| - |3| =$  ..... .

**3 a) Use the distributive property to calculate:**

$$\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$$

(b) **Divide:**  $(60x^6 - 48x^{10} - 12x^3)$  by  $(-12x^3)$

**4 a) Factorize by taking the H.C.F.**  $12x^2y - 6xy^2$

(b) **Reduce to the simplest form:**  $(3x-2)^2 - (x+2)(x-2)$

(c) **Divide:**  $3x^2 - x - 2$  by  $(x - 1)$

**5 a) Add:**  $3a - 2b + C$  and  $2a + 3b - 5C$

(b) **from the following table:**

| Mark.               | 5 | 6 | 7 | 8 | 9 | 10 |
|---------------------|---|---|---|---|---|----|
| No. of pupils freq. | 3 | 5 | 7 | 9 | 4 | 2  |

1- Represent the data by bar charts.

2- Find the mode mark.

**1 Choose the correct answer:**

- 1)  $\frac{5}{x+1}$  is The rational number if  $x \neq \dots$  ..... {O , 5 , 1 , - 1}
- 2)  $(3x + 2)(x + 7) = 3x^2 + \dots + 14$  { 23x , 19x , 21x , 2x }
- 3) The mode of the values: 4, 3, 8, 1, 8 , 3 and 3 is ..... { 1 , 8 , 3 , 4 }
- 4)  $(4a^2 + 2a) \div 2a = \dots$  { 2a +1 , 2a , 2a - 1 , 1 }
- 5) the number  $0.\dot{5}\dot{7}$  as a rational number in the simplest form is .....
- {  $\frac{5}{9}$  ,  $\frac{19}{33}$  ,  $\frac{3}{7}$  ,  $\frac{2}{3}$  }

**2 Complete:**

- 1) The degree of the term  $5x^2y$  is ..... and its coefficient is .....
- 2) The arithm. mean of the these numbers 2, 5, 8, 9, 14, 28 is .....
- 3)  $x(a+1) - y(a+1) = (a+1)(\dots - \dots)$  .
- 4) The median of these numbers 12, 13, 8, 2, 10 is .....
- 5) The multiplicative inverse of the rational number  $1\frac{2}{3}$  is .....

**3 a) Add:**  $5x^2 + y^2 - 3xy$  and  $x^2 - 2xy + 3y^2$

(b) **Subtract:**  $5a - 3b + 6c$  from  $2b + a - 5c$

(c) **Factorize by identifying the H.C.F:**  $15a^3b^2 + 6a^2b - 3ab$

**4 a)** If  $x = \frac{1}{2}$  ,  $y = -3$  and  $z = \frac{-3}{4}$

Find in the simplest form the numerical value of:  $(x \div z) \times y$

(b) Using the property of distribution to get the result of

$$\frac{2}{3} \times \frac{4}{7} + \frac{2}{3} \times \frac{5}{7} - \frac{2}{3}$$

(c) **Divide:**  $x^2 - 5x + 6$  by  $(3 - x)$

**5 a) Simplify:**  $(2x+1)^2 + (1-2x)(1+2x)$

(b) **This frequency table shows the weight of 30 primary school pupils:**

|                  |    |    |    |    |    |    |    |    |
|------------------|----|----|----|----|----|----|----|----|
| KG.              | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| Number of pupils | 5  | 8  | 5  | 3  | 5  | 6  | 4  | 4  |

a) Draw a bar chart for the frequency table data.

b) Identify and write the mode weight of the primary school pupils.

**1 Question one : Choose the correct answer:**

- 1) If  $\frac{x}{y} = 1$  then  $2x - 2y = \dots$  {4 , 2 , 1 , 0}
- 2) The degree of  $-5x^2y^3z$  is ..... {2 , 3 , 5 , 6}
- 3) The order of median of 7 values is ..... {3 , 4 , 5 , 6}
- 4)  $| -5 | - | 4 | = \dots$  {-1, 1, -9, 9}
- 5) The number between  $\frac{2}{3}, \frac{3}{5}$  is ..... { $\frac{30}{45}, \frac{29}{45}, \frac{18}{30}, \frac{20}{30}$ }

**2 Question two : Complete:**

- 1) The most repeated value is .....
- 2) The number 1.25 in the form of  $\frac{a}{b}$  is .....
- 3) Subtracting  $-5xy$  from  $-3xy = \dots$
- 4)  $(x + 3)^2 = x^2 + \dots + 9$  .
- 5) The sum of 5 values if their mean is 5 is .....

**3 Question three:**

- (a) Find the value of  $(2x - 3)(2x + 3) + 9$
- (b) Use an arrow to represent the number  $\frac{7}{9}$  on the number line.
- (c) Find the value of k that makes the expression:  
 $x^3 + x^2 + 2x + k$  divisible by  $(x - 3)$

**4 Question four:**

- a) **Divide:**  $9x^2y + 12xy^2 - 15x^2y^2$  by  $-3xy$  where  $x, y \neq 0$
- b) Find the value of  $(-\frac{3}{7}) \times \frac{5}{6} - \frac{5}{6} \times (-\frac{3}{7})$

**5 Question five :**

- (a) **Factorize the following by taking H. C. F.:**  $15x^3y^3 - 20x^2y^3 - 25x^3y^2$
- (b) Ashraf recorded the length of his bus journeys to school for 3 weeks. He wrote time to the nearest minute.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 15 | 17 | 16 | 17 | 15 | 13 | 22 | 16 | 14 | 25 | 17 | 16 | 18 | 16 | 18 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

- a) Identify the median time.
- b) Identify the mode time.
- c) Calculate the mean time.

**Answer the following questions:**

**1 Choose the correct answer from the given ones:**

- 1) The additive inverse of the number  $(-2)^3 = \dots$ 
  - (a) 8
  - (b) -8
  - (c) 4
  - (d) 6
- 2)  $(x^{-2})^3 = \dots$   $x \neq 0$ 
  - (a)  $x^{-5}$
  - (b)  $x$
  - (c)  $x^{-6}$
  - (d)  $x^6$
- 3) The probability of the impossible event =  $\dots$ 
  - (a) 1
  - (b)  $\phi$
  - (c) -1
  - (d) zero
- 4) Half the number  $2^{10}$  is  $\dots$ 
  - (a)  $2^9$
  - (b)  $2^5$
  - (c)  $2^{11}$
  - (d)  $2^{20}$
- 5)  $0.0000073 = \dots$ 
  - (a)  $7.3 \times 10^6$
  - (b)  $7.3 \times 10^{-6}$
  - (c)  $7.3 \times 10^5$
  - (d)  $7.3 \times 10^{-5}$

**2 Complete the following:**

- 1)  $\sqrt{16 + 9} = \dots$
- 2) 2, 7, 12, 17, ..... (in the same pattern)
- 3)  $(\frac{-2}{3})^6 \div (\frac{2}{3})^4 = \dots$
- 4) If  $3x = 12$  then  $2x = \dots$
- 5) A fair die is rolled once, then the probability of getting an odd number equals ....

**3 Find each of the following:**

- (a)  $(\frac{2}{5})^2 \times \sqrt{\frac{25}{4}} \times (1\frac{3}{4})^0$
- (b) Determine 3 ordered pairs satisfying the relation  $y = 2x + 1$ , then graph them.
- (c) Divide:  $6x^2 - 13x + 6$  by  $(3x - 2)$ .

**4 (a) Find the solution set of each of the following in Q:**

$$1) 2x - 1 = 7 \quad 2) 3x + 4 \geq 10$$

$$(b) \text{ Simplify: } \frac{(7)^3 \times (-7)^4}{(7)^5}$$

$$(5) (a) \text{ If } x = \frac{2}{3}, y = \frac{-3}{4}, z = 2$$

**Find** the numerical value of  $x^2 y^2 + 2z$

- b) A box contains 3 red balls, 5 yellow balls and 2 black balls. A ball is drawn randomly, find the probability that the drawn ball is.
  - (a) yellow ball.
  - (b) not black ball.
  - (c) red ball

**1 Choose the correct answer:**

1)  $0.\dot{7} = \dots$

a)  $\frac{7}{10}$

b)  $\frac{7}{9}$

c)  $\frac{7}{100}$

d)  $\frac{7}{99}$

2) The multiplicative inverse of the number  $\frac{1}{2}$  is  $\dots$

a) 1

b) -2

c) 2

d) 5

3) If  $(x - 3)(x + 3) = x^2 - k$  then  $k = \dots$

a) 9

b) 6

c) -9

d) -6

4) The median of values 9 , 7 , 10 is  $\dots$

a) 7

b) 10

c) 9

d) 3

5)  $| -3 | + 3 = \dots$

a) zero

b) 6

c) -6

d) 33

**2 Complete each of following:**

1)  $x^4 \times x^2 = \dots$

2) The degree of the algebraic expression  $5x^2 + 4 = \dots$

3)  $(2x + 5)^2 = 4x^2 + \dots + 25$

4) The rational number which is between  $\frac{4}{11}, \frac{6}{11}$  is  $\dots$

5) If  $a + b = 5$  then  $3a + 3b = \dots$

**3 a) Add:**  $2x - 5y + 6z$  to  $3x + 5y - 2z$

(b) **Divide:**  $8b^3 + 12b^2 - 4b$  by  $4b$

**4 a)** Using distributive property, find the value of  $\frac{5}{13} \times 8 + \frac{5}{13} \times 5$

(b) Factorize by taking the H. C. F :  $9x^2 - 27x$

(c) **Divide:**  $x^3 + x^2 + 2x - 16$  by  $(x - 2)$

**5 a)** Find three rational numbers lying between:  $\frac{1}{3}, \frac{1}{2}$

(b) **The following table shows the frequency of marks of 33 students:**

|           |   |    |   |   |   |    |
|-----------|---|----|---|---|---|----|
| Marks     | 5 | 6  | 7 | 8 | 9 | 10 |
| Frequency | 4 | 10 | 8 | 6 | 3 | 2  |

1) Represent it with column.

2) Find the mode.

## ① Complete:

- 1) The degree of  $7x^3y$  is .....
  - 2) The multiplicative inverse of the rational number  $3\frac{1}{2}$  is .....
  - 3) The mode of the values (17, 10, 12, 17, 10 and x) is 10, then x = .....
  - 4)  $(2x + 3)(..... + 4) = 6x^2 + ..... + 12$
  - 5)  $\frac{-7}{x-3} \in Q$ , then x ≠ .....

## 2 Choose the correct answer:

- 1) The Arithm. mean of the values 11, 20, 22, 15, 22 is .....  
(a) 18                    b) 15                    c) 22                    d) 90

2)  $|5 - 7| + 2 = \dots$ .  
(a) -2                    b) 4                    c) 0                    d) 2

3) The number which lies at half way between  $\frac{1}{2}$  and  $\frac{7}{8}$  is .....  
(a)  $\frac{11}{16}$                 b)  $\frac{11}{8}$                     c)  $\frac{11}{4}$                     d)  $\frac{11}{32}$

4) The median of the numbers 6, 2, 8, 0, 3 and 5 is .....  
(a) 3                    b) 4                    c) 6                    d) 5

5) The increase of  $(2x - 5)$  than  $(x - 2)$  = .....  
(a)  $3x - 7$                 b)  $x - 3$                     c)  $3 - x$                     d)  $2x^2 + 10$

### ③ Use the distributive property to find:

- (a)  $\frac{7}{13} \times 11 + \frac{7}{13} \times 9 - \frac{7}{13} \times 7$

(b) Add  $x^2 + 5x - 5$  and  $-4x^2 + 5x + 2$

and find the value of the result when  $x = 2$  and  $y = 1$

(c) Divide:  $x^3 + 2x^2 - 1$  by  $(x + 1)$

## 4 Divide:

- (a)  $\frac{16x^3y - 12x^4 + 4x}{4x}$  where  $x \neq 0$   
 (b) Find three rational numbers lying between:  $\frac{1}{3}, \frac{1}{2}$

## 5 Factorize by taking H.C.F :

- (a)  $4x^2 + 2x + 16$  x<sup>4</sup>  
(b) Simplify  $(x - 5)(x + 5)$ .  
(c) The following table shows the marks of Heba in 5 months.

| The month. | Sep. | Oct. | Nov. | Dec. | Jan. |
|------------|------|------|------|------|------|
| The mark.  | 30   | 40   | 35   | 45   | 50   |

Represent these data by broken line.

**1 Complete the following:**

- (a) The mode of the values 23, 33, 23, 33, 23, 21 is .....
- (b)  $(x - 2y)^2 = \dots$
- (c) The multiplicative inverse of  $(\frac{1}{3} - \frac{1}{2})$  is .....
- (d) The degree of the expression  $(2xy^2 - 5xy^3 + 4xy)$  is .....
- (e) If the Arithm. mean of 10 values is 54.5, then the sum of these values = .....

**2 Choose the correct answer:**

- (a)  $|3 - 8| + 3 = \dots$  {-2 , 8 , -8 , 2}
- (b) The number which lies at half the way between  $\frac{1}{2}$  and  $\frac{7}{8}$  is ..  $\{\frac{11}{16}, \frac{11}{8}, \frac{11}{4}, \frac{11}{32}\}$
- (c)  $0.\dot{5}\dot{7} = \dots$   $\{\frac{57}{100}, \frac{75}{99}, \frac{575}{1000}, \frac{19}{33}\}$
- (d) The median of the numbers 23 , 33 , 13 , 32 , 22 , 31 is ..... {22 , 23 , 27 , 32}
- (e) If  $(x - 7)(x + 7) = x^2 + a$ , then  $a = \dots$  {14 , -14 , 49 , -49}

**3 (a) Use the properties of multiplication and addition to find the value of:**

$$\frac{8}{13} \times 11 + \frac{8}{13} \times 9 - \frac{8}{13} \times 7$$

$$(b) \text{Find three rational number lies between } \frac{3}{4} \text{ and } \frac{2}{3}$$

$$(4) (a) \text{Subtract } 5x^2 + y^2 - 3xy \text{ from } x^2 - 2xy + 3y^2$$

$$(b) \text{Factorize by taking out the H.C.F } 12x^5y^2 - 15x^3y^2 + 3y^2$$

$$(c) \text{Divide: } x^2 + 10x + 24 \text{ by } (x + 4)$$

$$(5) (a) \text{Divide: } (18x^3y - 12x^2y^2 + 6xy) \text{ by } 6xy?$$

(b) The table shows scores for a class on a 10 points math test.

|           |   |    |   |   |   |    |
|-----------|---|----|---|---|---|----|
| Scores    | 5 | 6  | 7 | 8 | 9 | 10 |
| Frequency | 4 | 10 | 8 | 6 | 3 | 2  |

Find

- The number of students whose score less than 8 ?
- the median of the score ?
- the mode of the score?

**Answer the following questions:**

**1 Choose the correct answer:**

- (a) If  $\frac{7}{a-4}$  rational number then  $a \neq \dots \dots \dots$  {7 or 4 or -4 or zero}
- (b)  $| -5 | + 5 = \dots \dots \dots$  {zero or 10 or 55 or 25}
- (c) The mode of the numbers 6, 8, 8, 5, 6, 8 and 7 is  $\dots \dots \dots$  {5 or 6 or 7 or 8}
- (d) If  $\frac{x}{y} = 1$ , then  $2x - 2y = \dots \dots \dots$  {zero or 1 or 2 or -4}
- (e) Write the number 0.18 in the form of  $\frac{a}{b} = \dots \dots \dots$   
 $\{\frac{18}{10} \text{ or } \frac{2}{11} \text{ or } \frac{18}{100} \text{ or } \frac{99}{18}\}$

**2 Complete:**

- (a)  $(\frac{-2}{3})^0 + 4 = \dots \dots \dots$
- (b) The additive inverse of the number  $(\frac{-3}{5})$  is  $\dots \dots \dots$
- (c) The median of the values 7, 4, 5, 2 and 9 is  $\dots \dots \dots$
- (d) The degree of the algebraic term  $-7$  is  $\dots \dots \dots$
- (e) If  $\frac{2}{3}x = 1$  then  $x = \dots \dots \dots$

**3 (a) Factorize by identifying the H.C.F**  $15a^3b^4 + 6a^5b^2 - 3a^2b^2$

- (b) Find the rational number in half-way between the numbers  $\frac{1}{3}$  and  $\frac{4}{5}$ .
- (c) **Divide:**  $(64x^3 - 32x^2 + 8x)$  by  $8x$

**4 (a) Add:**  $-7a - 5b + 9c$  and  $2c - 4a + 3b$

- (b) Find the total area of the cube its volume  $27 \text{ cm}^3$ .
- (c) if  $A = \frac{3}{4}$  and  $B = \frac{-5}{2}$  Then find the value of  $\frac{A-B}{A+B}$

**5 (a) Find the mean of the values** 2, 5, 8, 9, 14 and 28

- (b) **Divide:**  $x^4 - 16$  by  $(x^2 + 4)$

- (c) The table shows scores for a classroom a 10 point math test.

|           |   |   |    |   |   |    |
|-----------|---|---|----|---|---|----|
| Scores    | 4 | 5 | 7  | 8 | 9 | 10 |
| Frequency | 6 | 5 | 13 | 7 | 4 | 2  |

1) Represent these data by broken line graph.

2) what is the mode of the score.

**1 Choose the correct answer:**

- 1) The value of  $| -7 | + | -1 | = \dots = (-8, 6, 8, -6)$
- 2)  $(35x^5 + 7x^2) \div 7x^2 = \dots (5x^3 + x, 5x^3 + 1, 5x^7 + 1, 5x^3)$
- 3) The algebraic term  $2ab^2$  is of .... degree  $(1^{\text{st}}, 2^{\text{nd}}, 3^{\text{rd}}, 4^{\text{th}})$
- 4) The median of the numbers: 2, 8, 5, 7, 6 is .....  $(5, 7, 8, 6)$
- 5) The mean of the number: 2, 7, 6, 9, 16, 20 is .....  $(6, 10, 9, 11)$

**2 Complete:**

- 1-  $(x + 3)(x - 3) = x^2 - \dots$
- 2- The multiplicative inverse of the number  $\frac{-2}{3}$  is .....  
3-  $3a^2 \times -2a^3 = \dots$
- 4- The mode of the values 4, 8, 6, 4, 4, 8 is .....  
5- The rational number in half way between  $\frac{3}{5}, \frac{4}{5}$  is .....

**3 (a) Subtract:**  $5x^2 + y^2 - 3xy$  from  $x^2 - 2xy + 3y^2$ **(b) Divide:**  $14x^3 - 21x^2 + 7x$  by  $7x$  where  $x \neq 0$ **(c) Add:**  $2x - 7y + z$  and  $5z + 6y - 2x$ **4 (a) Use the destructive property to find:**

$$\frac{8}{13} \times 11 + \frac{8}{13} \times 9 - \frac{8}{13} \times 7$$

**(b) Simplify:**  $(x + 3)(x + 5)$ **(c) if  $a + b = 3$  then  $5a + 5b = \dots$** **5 (a) Find:**  $\frac{3}{5} \div \frac{9}{15}$ **(b) Divide:**  $x^2 - x - 72$  by  $(x - 9)$ **(c) Represent these data by using broken line:**

|           |     |     |     |     |     |
|-----------|-----|-----|-----|-----|-----|
| The month | Sep | Oct | Nov | Dec | Jan |
| The mark  | 30  | 40  | 35  | 45  | 50  |

**Answer the following questions:**

**1 Choose the correct answer in brackets:**

- 1) If  $|x| = 9$ , then  $x = \dots$ 
  - (a) -9
  - (b)  $\pm 9$
  - (c) 3
  - (d) 9
- 2)  $(5)^{-1} = \dots$ 
  - (a) -5
  - (b)  $-\frac{1}{5}$
  - (c)  $\frac{1}{5}$
  - (d) 5
- 3) The mean of the values 2, 5, 8, and 9 is  $\dots$ 
  - (a) 6
  - (b) 18
  - (c) 9
  - (d) 11
- 4) The ordered pair  $\dots$  satisfies the relation:  $y = x + 2$ 
  - (a) (1, 3)
  - (b) (3, 2)
  - (c) (1, 2)
  - (d) (-2, 4)
- 5) The multiplicative inverse of the number  $\dots$  is itself
  - (a) -1
  - (b) 0
  - (c) 2
  - (d) 3

**2 Complete each of the following:**

- (a)  $(x + 5)(x + \dots) = x^2 + \dots + 15$
- (b) The standard form of the number 290000 is  $\dots$
- (c)  $(20 - 1)(20 + 1) = 400 - \dots$
- (d) If  $x < y, z < 0$ , then  $xz \dots yz$
- (e) If the age of Ahmed now is  $x$  years, then his age after four years =  $\dots$  years

**3 Find the solution set of each of the following:**

(a)  $x + 13 = 14, x \in \mathbb{Q}$

(b)  $1 \leq x - 5, x \in \mathbb{Q}$

**4** (a) Simplify and find the value of:  $x \sqrt{\frac{81}{16}} \times (\frac{2}{3})^3 \times (\frac{5}{7})^0$

(b) Use the distribution property to find the value of:  $\frac{7}{15} \times 4 + \frac{7}{15} \times 11$

(c) Find the value of  $k$  that makes the expression:

$6x^3 - 13x^2 - 13x + k$  is divisible by  $(3x - 5)$

**5** (a) The following table shows the distribution of marks for 30 students in an Exam.

| Marks     | 4 | 5 | 7 | 8 | 9 | 10 | Sum |
|-----------|---|---|---|---|---|----|-----|
| Frequency | 6 | 7 | 3 | 7 | 4 | 3  | 30  |

Represent the data by a broken line.

(b) 6 cards numbered from 1 to 6. One card is selected randomly.

Write the sample space, then find the probability of each of the following events:

- 1) A = getting a prime number.
- 2) B = getting a number smaller than 3.

**1 Complete:**

- (a) The multiplicative identity element in Q is = .....
- (b)  $| -2\frac{1}{2} | - | 2\frac{1}{2} | = .....$
- (c) The degree of the algebraic term  $5x^2y^2$  is .....
- (d) If  $a + 2b = 5$ ,  $c = 2$  then the value of  $a + 2(b+c) = .....$
- (e) The mode for the numbers 6, 2, 5, 4, 6, 3 is = .....

**2 Choose the correct answer:**

- (a)  $3x^2 \times 4x^2 = .....$  (7x ,  $7x^2$ ,  $12x^4$ ,  $12x^2$ )
- (b)  $0.57 = .....$  ( $\frac{57}{100}$  ,  $\frac{75}{1000}$  ,  $\frac{57}{999}$  ,  $\frac{19}{33}$ )
- (c) If  $(x - 6)(x + 6) = x^2 + k$ . Then  $k = .....$  (36, -36, 12, -12)
- (d)  $\frac{5}{x-2} \in Q$  If  $x \neq .....$  (7, 2, 0, -2)
- (e) The area of rectangle of length 3 xy and width 2 y is .....  
(5 xy ,  $6x^2y$ ,  $6xy^2$  ,  $10xy$ )

**3 (a) Add:**  $(5x + 2y - 1)$  and  $(2x - 5y - 3)$

(b) Use the distribution property to find:  $6 \times \frac{5}{17} + 10 \times \frac{5}{17} + \frac{5}{17}$

(c) Find the value of k that makes the expression:

$x^3 - 3x^2 - 25x + k$  is divisible by  $(x^2 + 4x + 3)$

**4** (a) Find the quotient of:  $\frac{24a^3 + 9a^2 - 3a}{3a}$  , (  $a \neq 0$  )

(b) Find two rational numbers between  $\frac{1}{3}$  and  $\frac{3}{4}$

**5** (a) If  $x = \frac{2}{3}$  ,  $y = \frac{-3}{4}$  ,  $z = 2$  find the numerical value of:  $xy \div z$

(b) The following table shows the marks of Ahmed in mathematics in 5 months:

| Month. | Sep. | Oct. | Nov. | Dec. | Jan. |
|--------|------|------|------|------|------|
| Marks. | 30   | 40   | 35   | 45   | 50   |

Calculate Ahmed's mean marks in 5 months.

**1 Complete:**

- (a) The degree of algebraic term ( $5x^2y$ ) is .....
- (b)  $\frac{2}{8} + \frac{-5}{8} = \dots$
- (c) The mean of 2, 5, 8, 9, is .....
- (d)  $(x - 5)(x + 5) = \dots$
- (e) If  $|y| = 10$ , then  $y = \dots$  or .....

**2 Choose the correct answer:**

- (a) The median of the numbers 8, 17, 4, 6 and 10 is ..... (11, 10, 6, 8)
- (b)  $-15ab^4 \div 5ab^3 = \dots$  Where  $ab \neq 0$  (3b, -3b, -3ab, 3ab)
- (c) The mode of the numbers 2, 5, 7, 6, 4 and 6 is ..... (5, 6, 7, 2)
- (d) 0.5 in the form  $\frac{a}{b}$  is = .....  $(\frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9})$
- (e) The number that has no multiplicative inverse is ..... (1, -1, 0, 2)

**3 (a) using distributive property to find the value of:**

$$\frac{-3}{7} \times 8 + 5 \times \frac{-3}{7} + \frac{-3}{7}$$

(b) Add:  $3y^2 + 2xy - 5$  to  $-2x^2 - 3xy + 3$

(c) **Divide:**  $3x^2 - 4y - 20$  by  $(y + 2)$

**4** (a) If  $a = \frac{3}{4}$ ,  $b = \frac{-5}{2}$  Find in the simplest form the numerical value of:  $\frac{a - b}{a + b}$

(b) Factorize by identifying the H.C.F:  $12a^2b + 18a^3b^2$

**5** (a) Simplify :  $(x - z)^2 - 4$

(b) The following table shows the marks of Ali in 5 months:

| The month. | Sep. | Oct. | Nov. | Dec. | Jan. |
|------------|------|------|------|------|------|
| The marks. | 30   | 40   | 35   | 45   | 50   |

Represent these data by broken line.

**1 Choose the correct answer:**

1)  $x^3 \times x^2 = \dots$

a)  $x^6$       b)  $x$       c)  $x^3$       d)  $x^5$

2) If  $\frac{x}{y} = \frac{2}{3}$  then  $\frac{3x}{2y} = \dots$

a)  $\frac{1}{3}$       b)  $\frac{2}{3}$       c) 1      d)  $\frac{3}{2}$

3) Express  $\frac{5}{11}$  as a decimal

a) 0.45      b) 0.454      c) 0.45      d) 0.045

4) The Algebraic term  $2x^3$  has ..... factors

a) 2      b) 3      c) 4      d) 5

5) The mean of these numbers 7, 4, 9, 2, 8 is .....

a) 5      b) 4      c) 8      d) 6

**2 Complete:**

(a) The mode of these numbers 4, 5, 3, 4, 6, 5, 4 is .....

(b)  $18 a^2 \div 3 a = \dots$

(c)  $\frac{3}{5} \times \frac{2}{7} = \dots$

(d) The median of these numbers 28, 31, 34, 36, 41 is .....

(e)  $\frac{3}{7} \times \dots = 1$

**3 (a) Simplify:**  $(4x + 1)(2x + 3)$

(b) Factorize by identifying the H.C.F  $4m^2(2x+y) - 3m(2x+y) - 7(2x+y)$

**4** (a) Identify and write five rational numbers between  $\frac{3}{5}, \frac{4}{5}$

(b) Find the sum of  $(3x - 2y + 5)$  and  $(x + 2y - 2)$

(c) **Divide:**  $5x - x^2 + 6$  by  $(x - 6)$

**5** (a) If water flows through a pipe at the rate of  $2 \frac{1}{2}$  litres per minute, how many minutes will it take to fill three 20-litre containers?

(b) The frequency table shows the weights of 40 pupils.

|                  |    |    |    |    |
|------------------|----|----|----|----|
| Weights (kg)     | 30 | 35 | 40 | 45 |
| Number of pupils | 8  | 9  | 13 | 10 |

Draw a bar chart for the frequency table data.

**Answer the following questions:**

**1 Choose the correct answer:**

- 1) If :  $(x + 5)(x - 5) = x^2 + k$ , then  $k = \dots$ 
  - a) 5
  - b) -5
  - c) 10
  - d) -25
- 2) The mode of 4, 5, 10, 4 and 7 is .....
  - a) 5
  - b) 10
  - c) 4
  - d) 7
- 3) If:  $\frac{x}{y} = \frac{2}{3}$ , then  $\frac{3x}{2y} = \dots$ 
  - a)  $\frac{1}{3}$
  - b)  $\frac{2}{3}$
  - c)  $\frac{3}{2}$
  - d) 1
- 4) The rational number that lies at half way between:  $\frac{1}{3}$  and  $\frac{5}{6}$  is .....
  - a)  $\frac{2}{3}$
  - b)  $\frac{7}{12}$
  - c)  $\frac{1}{2}$
  - d)  $\frac{2}{7}$
- 5)  $(4x - 3)(x - 4) = \dots$ 
  - a)  $4x^2 - 19x - 12$
  - b)  $4x^2 - 7$
  - c)  $4x^2 - 12$
  - d)  $4x^2 - 19x + 12$

**2 Complete each of the following:**

- 1) The number which it's additive inverse is itself is .....
- 2) If:  $\frac{3}{5} \times x = 1$ , then  $x = \dots$
- 3) The degree of  $4x^3y^4$  is .....
- 4) The additive inverse of  $\frac{1}{|-5|}$  is .....
- 5) If the mean of :  $x - 3, x, x + 3$  is 6, then the value of  $x$  is .....

**3 (a) Simplify:**  $(2a - 3b)^2 - 3(2a - b)(2a + b)$ , then find the numerical value of the result if  $a = -1$  and  $b = -2$

(b) Use the distributive property to find the value of:  $\frac{3}{13} \times 4 - \frac{3}{13} \times 3 - \frac{3}{13}$

**(c) Divide:**  $8x^2 - 7x - 18$  by  $(x - 2)$

**4 (a)** Factorize :  $12x^3 - 6x^2 + 3x$

**(b)** Multiply :  $(2x + 5) \times (2x - 5)$

**(c) Divide:**  $27x^2y^4 - 15x^3y^3 + 9x^2y^2$  by  $3x^2y^2$  where  $xy \neq 0$

**5 (a)** If :  $a = \frac{-1}{3}$ ,  $b = \frac{3}{2}$ ,  $c = 2$  find:  $a + b - c$ .

**(b)** The table shows the scores of one class in math quiz of maximum 10 scores:

|           |   |   |   |   |   |    |
|-----------|---|---|---|---|---|----|
| Marks     | 5 | 6 | 7 | 8 | 9 | 10 |
| Frequency | 2 | 7 | 6 | 4 | 4 | 3  |

Represent the data using bar line graph.

## Fayoum 17

Fayoum East Directorate - Islamic Language School- Nafessa El-Hussary

**Answer the following questions:**

**1 Choose the correct answer:**

- 1)  $\frac{3}{4} = \dots\dots\dots\% \quad$ 
  - a) 25
  - b) 50
  - c) 75
  - d) 100
- 2)  $(-8y^5) \times (-7y^4) = \dots\dots\dots \quad$ 
  - a)  $-15y$
  - b)  $56y^9$
  - c)  $-56y^9$
  - d)  $56y$
- 3) The median of the numbers 3, 8, 6, 6, 10, 2 is  $\dots\dots\dots$ 
  - a) 6
  - b) 7
  - c) 8
  - d) 10
- 4) If:  $\frac{5}{x-3} \in Q$  then  $x \neq \dots\dots\dots$ 
  - a) 5
  - b) 7
  - c) 2
  - d) 3
- 5)  $(x^2 + x) \div x = \dots\dots\dots$  where  $x \neq 0$ 
  - a) 0
  - b) x
  - c)  $2x + 1$
  - d)  $x + 1$

**2 Complete the following:**

- a) The additive inverse of zero is  $\dots\dots\dots$
- 2) the mode of the values 3, 6, 19, 10, 13, 6, 19, 21, 6 is  $\dots\dots\dots$
- 3)  $(x+2)(x+3) = x^2 + \dots\dots\dots + 6$
- 4)  $| -5 | - | -2 | = \dots\dots\dots$
- 5) The mean of 2, 5, 8, 9 is  $\dots\dots\dots$

**3 (a)** Find three rational numbers lying between  $\frac{1}{3}$  and  $\frac{3}{2}$ :

**(b) Subtract:**  $3x - 5y + 2z$  from  $y - 4z + 3x$

**(c) Divide:** Find the value of k that makes the expression:

$x^3 + x^2 + 2x + k$  is divisible by  $(x - 1)$

**4 (a) factorize by taking out H.C.F:**  $10x^2y^2 - 5x^2y$

**(b)** Use the distributive property to find:  $\frac{8}{13} \times 11 + \frac{8}{13} \times 9 - \frac{8}{13} \times 7$

**5 (a)** find the quotient of dividing:  $6x^3 - 12x^2 + 24x$  by  $6x$  where  $x \neq 0$ .

(b) The following table shows the marks of Mohammed in math in 5 months:

| Month. | Sep. | Oct. | Nov. | Dec. | Jan. |
|--------|------|------|------|------|------|
| Marks. | 45   | 35   | 45   | 40   | 50   |

Represent the previous data by broken line graph.

**Answer the following questions:**

**1 Complete each of the following:**

1)  $\frac{3}{7} \times \dots = 1$

2)  $(x+5)(x+\dots) = x^2 + \dots + 15$

3) The mean of these numbers 2, 5, 8 and 9 is .....

4)  $\frac{2}{5} < \dots < \frac{3}{5}$

5) The algebraic expression  $4x^3 - xy + 5$  is of the ..... degree.

**2 Choose the correct answer:**

a) By using calculator  $0.\dot{5}\dot{8}\dot{1} = \dots$   $(\frac{32}{55}, \frac{581}{1000}, \frac{581}{100}, 5\frac{81}{100})$

b) The algebraic term  $2x^3$  has ..... factors.  $(2, 3, 4, 5)$

c) The mode of the numbers 3, 6, 10, 13, 19, 21, 19 is .....  $(21, 19, 13, 10)$

d) If  $x = \frac{4}{3}$  then  $(x-2)(x+2)$  equal .....  $(\frac{4}{9}, \frac{12}{9}, \frac{10}{9}, -\frac{20}{9})$

e) The cube of the sum of A and B is .....  $(A^3 + B^3, (A+B)^3, A^3 B^3, 3A + 3B)$

**3 (a) Without using calculator find the value of:**

$$\frac{4}{9} \times 11 + \frac{4}{9} \times 16$$

(b) What is the increase of  $x^2 - 5x - 1$  than  $3x^2 + 2x - 3$

**4 (a)** Find the rational number in half way between  $\frac{3}{8}$  and  $\frac{4}{9}$

(b) Simplify:  $2x(x+5) + x(6-x)$  then calculate the numerical value when  $x = 2$

(c) **Divide:**  $4x^2 - 10x + 12$  by  $(2x - 4)$

**5 (a)** Find the quotient of:  $\frac{60x^6 - 48x^{10} - 12x^3}{12x^3}$

(b) Scores in a frequency distribution are arranged in order.

|           |   |   |   |   |   |    |    |    |
|-----------|---|---|---|---|---|----|----|----|
| score     | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| frequency | 2 | 7 | 6 | 4 | 4 | 3  | 2  | 1  |

1- Find the median of the scores.

2- Find the mode of the scores.

**1 Choose the correct answer:**

1)  $(x^2 + x) \div x = \dots$  (0, x,  $2x + 1$ ,  $x + 1$ )

2) The mean of these numbers 2, 5, 8, 9 is ..... (6, 8, 9, 11)

3)  $3a^4b \times 5a^2b^2 \times 2a^3 = \dots$  ( $60a^{11}b^3$ ,  $30a^2b^2$ ,  $30a^9b^3$ )

4) The rational number 0.57 in simplest form is .....  
 $(\frac{57}{100}, \frac{75}{99}, \frac{575}{1000}, \frac{19}{33})$

5) If  $a \times \frac{b}{2} = \frac{a}{2}$ , then  $b = \dots$  ( $\frac{a}{2}$ , 0, a, 1)

**2 Complete:**

1)  $(x + 5)(x + \dots) = x^2 + \dots + 15$

2)  $0 \div (-14) = \dots$

3) If  $|x| = 7$   $x = \dots$  or  $\dots$

4) The mode of these numbers 3, 6, 10, 19, 19, 21 is .....

5) The multiplicative inverse of  $\frac{2}{3}$  is .....

**3 (a) Write the product:**  $(x + 4)(3x + 2)$ 

(b) If  $x = \frac{3}{2}$ ,  $y = \frac{1}{4}$ ,  $z = -2$  then find the numerical value of  $x - y \div z$

(c) **Divide:**  $10x^2 - 70x + 120$  by  $(5x - 15)$

**4 (a) Find the quotient:**  $\frac{16a^3b^2 - 24a^2b^2}{4a^2}$ 

(b) Simplify:  $3x - 5y - x + 2y$ .

**5 (a) Find the sum:**  $(3x - 2y + 5)$  and  $(x + 2y - 2)$ 

(b) **Subtract:**  $2x + 6y - 7$  from  $3x - 5y + 2$

**Answer the following questions:**

**1 Choose the correct answer:**

1) The mode of 4, 5, 10, 4 and 7 is .....

- a) 5      b) 10      c) 4      d) 7

2) The degree of the Algebraic term  $2 \times y$  is ..... degree

- a) first      b) second      c) third      d) fourth

3) The value of  $| -7 | + | 1 | =$  .....

- a) -8      b) 8      c) 6      d) -6

4) If  $x = 2$  then  $3x =$  .....

- a) 6      b) 4      c) 5      d) 9

5) If  $|k| = 7$ , then  $k$  .....

- a) 7      b)  $\pm 7$       c) -7      d) otherwise

**2 Complete each of the following:**

a) The multiplicative inverse of  $\frac{1}{3}$  is .....

2) The mean of the values 3, 4, 5 and 6 is .....

3)  $(2x - 3)(3x + 5) = 6x^2 +$  ..... -15

4) The coefficient of  $-3x^2y$  is .....

5)  $\frac{1}{x-3} \in Q$ , then  $x \neq$

**3 (a) Divide:**  $(64x^5 - 48x^3 + 8x^2)$  by  $8x^2$  where  $x \neq 0$

(b) use the distributive  $\frac{8}{13} \times 11 + \frac{8}{13} \times 9 - \frac{8}{13} \times 7$

(c) **Divide:**  $x^3 - 25x$  by  $(x + 5)$

**4 (a)** find three rational numbers between  $\frac{3}{2}$  and  $\frac{1}{3}$

(b) Subtract:  $x + x^2 - 5$  from  $2x^2 + x - 5$  then the value of result when  $x = s$

**5 (a)** The following table shows the weights of 25 pupils of first prep

|               |    |    |    |    |    |    |    |
|---------------|----|----|----|----|----|----|----|
| Weight in kg  | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
| No. of pupils | 1  | 3  | 4  | 8  | 4  | 3  | 2  |

Represent this data using the bar line graph, then find the mode.

**1-Complete the following**

- ✓ 1) The number  $\frac{4-x}{x-3} = 0$  if  $x = \underline{\hspace{2cm}}$
- ✓ 2) The additive inverse of the number  $\left(-\frac{2}{7}\right)^{\text{zero}}$  is  $\underline{\hspace{2cm}}$
- ✓ 3) If the mode of the values 12, 7,  $x+1$ , 7, 12 is 7, then  $x = \underline{\hspace{2cm}}$
- ✓ 4) The coefficient of the algebraic term  $\frac{1}{2}x^3yz^2$  is  $\underline{\hspace{2cm}}$
- ✓ 5)  $(2x + 3)^2 = \underline{\hspace{2cm}}$

**2-Choose the correct answer from the given ones**

- 1-  $(a^2 - a) \div a = \underline{\hspace{2cm}} (a \neq 0)$   
 a.  $a^2$       b.  $a$       c.  $a^2 + 1$       d.  $a - 1$
- ✓ 2-  $\overbrace{(4x - 3)(x - 4)}^{\text{www.exam-eg.com}} = \underline{\hspace{2cm}}$   
 a.  $x^2 - 19x - 12$       b.  $4x^2 - 7$   
 c.  $4x^2 - 12$       d.  $4x^2 - 19x + 12$
- ✓ 3- Express  $\frac{5}{11}$  as a decimal  $\underline{\hspace{2cm}}$   
 a. 0.45      b. 0.454      c. 0.4̄5      d. 0.04̄5
- ✓ 4- The result of subtracting  $2a^2$  from  $-2a^2$  is  $\underline{\hspace{2cm}}$   
 a. zero      b.  $a^2$       c.  $4a^2$       d.  $-4a^2$
- ✓ 5- The median of the values : 4, 8, 3 is  $\underline{\hspace{2cm}}$   
 a. 3      b. 4      c. 5      d. 8
- ✓ 6-  $\left| \frac{-5}{3} \right| \underline{\hspace{2cm}}$  zero.  
 a.  $<$       b.  $>$       c.  $=$       d.  $\leq$

3-a) Using the distribution property, find the value of the following in the simplest form  $\frac{4}{5} \times 13 - \frac{4}{5} \times 22 + \frac{4}{5} \times 9$

b) Subtract  $2a - 3b - 3$  from  $5a - 5b + 1$

4-a) Divide:  $x^2 + 6x + 5$  by  $x + 5$  (where  $x \neq -5$ )

b) Simplify:  $(3x + 2y)(3x - 2y) + 4y^2$

c) Find the mean and the median of the values: 31, 25, 32, 24 and 13

5-

a) Write three rational numbers lying between:  $\frac{4}{5}$  and  $\frac{2}{3}$

b) Factorize using H C F  $18X^2Y^3 + 6X^3Y^2 - 3X^2Y^2$

c) If  $a^2 + b^2 = 34$ , and  $ab = 15$ , then find the value of  $(a - b)^2$



First Term Exam 2020  
For First Preparatory grade

The Exam in Two Papers

1

**Answer the Following questions:**

**(1) Choose the correct answer:**

- 1) The degree of the algebraic term  $3x^4y$  is .....  
(a) second      (b) third      (c) fourth      (d) fifth
- 2) The mode of the values : 2, 3, 12, 22, 3, 24 is .....  
(a) 2      (b) 3      (c) 4      (d) 5
- 3) If  $\frac{x}{y} = 1$ , then  $5x - 5y =$  .....  
(a) 5      (b) 1      (c) zero      (d)  $4x$
- 4) The number  $\frac{x-5}{x+7}$  is a rational number if  $x \neq$  .....  
(a) 5      (b) -5      (c) 7      (d) -7
- 5) The additive inverse of the number  $(-\frac{1}{3})^0$  is .....  
(a) 3      (b) -3      (c) -1      (d)  $\frac{1}{3}$
- 6) The number which lies between  $\frac{7}{11}$  and  $\frac{7}{20}$  is .....  
(a)  $\frac{7}{10}$       (b)  $\frac{-7}{11}$       (c)  $\frac{7}{15}$       (d)  $\frac{7}{22}$

**(2) Complete the following:**

- 1) If  $\frac{x-9}{x-7} = 0$ , Then  $X =$  .....
- 2) If  $\frac{a}{b} = \frac{4}{7}$ , Then  $7a - 4b =$  .....
- 3)  $0.74 - 4\% =$  .....
- 4) The rational number which hasn't a multiplicative inverse is .....
- 5) The median of the numbers : 4, 7, 2, 9, 5, 16 is .....

(3) a) Use the properties to find the result of :

$$\frac{8}{11} \times 5 + \frac{8}{11} \times 7 - \frac{8}{11}$$

b) Find the quotient of :  $20a^3b^2 + 15a^2b^3 + 5ab$  by  $5ab$   
 ( where  $ab \neq 0$  )

(4) a) add :  $2x - 7y + Z$  ,  $5z - 2x + 8y$

b) Simplify the following expression to its simplest form :

$$(x - 2)^2 - (x + 3)(x - 3) + 5(2x + 1)$$

(5) a) Factorize by identifying the H.C.F :

$$12x^3y^4 + 8x^2y^4 - 20x^4y^4$$

b) Find the perimeter of  $\Delta ABC$  if the arithmetic mean of its side lengths equals 9 cm

For the questions (Choose) only the first answer will be taken into account.  
النحوتة الأولى فقط - لغات

Question (1) Choose the correct answer:

- a) The additive identity in the set of integer numbers is...  
{zero , 1 , -1 } .
- b) If the mean of 4, 5, X is 6 then X=...  
{4 , 5 , 6 } .
- c) The number:  $\frac{\text{zero}}{-2} \dots N$  .  
{ $\emptyset$  ,  $\epsilon$  ,  $\mathbb{C}$  ,  $\mathbb{Q}$ } .
- d) The additive invers for the excepration  $2x-3y$  is...  
{ $-2x-3y$  ,  $2x+3y$  ,  $3y-2x$  ,  $-3y+2x$ } .
- e) the smallest prim number is {zero , 1 , 2 , 3 } .
- f) If  $\frac{x+4}{x-3}$  is rational number then x ≠ .....  
{3 , -3 , 4 , -4 } .

Question (2) Complete each of the following:

- a) The number that lies half the distances  $\frac{1}{2}, \frac{3}{4}$  is.....
- b) The order of the median for values: 4, 12, 9, 8, 2 is.....
- c) If the number:  $y+5$  haven't multiplicative invers then  $y=$ ....
- d) the remainder of subtraction  $2x-1$  from..... =  $2x$
- f) If the mode for values 2, 4, k-3, is 4 then k=....

question 3)

- a) Factorize by H.C.F.  $10x^3-5x^2$
- b) Simplify  $(a-4)^2 + 8(a-2)$
- c) Add:  $2x^2-5x+3$  ,  $4x-x^2-2$

question 4)

- a) Find three rational numbers between  $\frac{3}{5}, \frac{1}{4}$

- b) Use the distributive to find:  $\frac{-5}{2} \times 4 + \frac{-5}{2} \times 3 + \frac{5}{2}$
- c) if  $X = \frac{3}{2}$ ,  $Y = \frac{-5}{4}$  find in the simplest form the value of:  
 $X^2 - 2XY$  (show steps)

**Question 5)** a) divided:  $(X^2 - 5X + 6)$  by  $(X - 2)$ ;  $x \neq 2$   
c) Find the mean and the median of: 4, 6, 12, 3, 9, 8  
(show steps)

Finished , With our best wishes

Mid-Year Exam (2019 – 2020)

1) Choose the correct answer:

a) The volume of the cuboid



is .....

- (1)  $6.5X$       (2)  $9X^3$       (3)  $4.5X^3$

b) If  $\frac{X-5}{X-7} = 0$ , then  $X = \dots$

- (1) 5.5      (2) 7.5      (3) 4.5

c)  $(X^2 + X) \div X = \dots$

- (1) 0      (2)  $2X + 1$       (3)  $X + 1$

d) The median of the values 7, 4, 6, 5 is .....

- (1) 6      (2) 7.5      (3) 4

e) If  $\frac{X}{3} - 4 = 6$ , then  $\frac{X}{3} + \frac{2}{3} = \dots$

- (1)  $\frac{32}{3}$       (2) 10      (3) 1

f) The number  $\frac{5}{3} > \dots$

- (1)  $\frac{10}{6}$       (2)  $\frac{3}{5}$       (3)  $\frac{10}{3}$

2) Complete:

a) If  $\frac{a}{b} = \frac{1}{2}$ , then  $2\frac{a}{b} = \dots$

b) The algebraic term  $3^2XY^3$  whose degree is .....

c) If the mode of the values: 7, 5,  $X + 4$ , 7 is 7, then  $X = \dots$

d) The rational number which hasn't multiplicative inverse is .....

e)  $(50 + 1)(50 - 1) = 2500 - \dots = \dots$

3) A) Use the distribution property to find the value of:

$$\frac{-3}{7} \times 8 + 5 \times \frac{-3}{7} + \left( \frac{-3}{7} \right)$$

B) Write the product:

$$(2X - 5Y)(2X + 5Y)$$

4) A) Subtract:

$$-a^2 - 5ab + 4b^2 \text{ from } 3a^2 - 2ab - 2b^2$$

B) If the arithmetic mean of the numbers 3, 5, X is 4

Find the value of X

5) A) Factorize by identifying the H.C.F:

$$15a^3b^4 + 6a^5b^3 - 3a^2b^2$$

B) If  $X = \frac{-1}{3}$ ,  $Y = \frac{3}{4}$ ,  $Z = 3$

Find the numeral value of:  $XY \div Z$

**Question (1) Choose the correct answer :**

- (1) The algebraic term  $8x^2y^2$  whose degree ..... ( 2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup>, 5<sup>th</sup> )
- (2) If the number  $\frac{9}{x-6}$  is rational number then  $x \neq \dots$  ( 9, -3, 6, 0 )
- (3) The median of the values: 7, 3, 5, 4, 9 is ..... ( 3, 4, 5, 7 )
- (4) The number  $2x$  is greater than  $-5x$  by ..... ( 7,  $7x$ ,  $-3x$ ,  $-5x$  )
- (5) If the mode of: 7, 5,  $x+3$ , 4 and 7 is 7 then  $x = \dots$  ( 1, 2, 3, 4 )
- (6) If  $(x-2)(x+2) = x^2 + k$  then  $k = \dots$  ( 8, -8, 4, -4 )

**Question (2) Complete the following :**

- (1)  $9y^3 - 3y^3 = \dots$
- (2) If  $x = \frac{5}{9}$ ,  $y = \frac{3}{7}$  then  $xy = \dots$
- (3) The arithmetic mean of values 3, 5, 4, 7, 1 and 6 = .....
- (4)  $\frac{4}{5} = \dots \%$
- (5)  $| -7 | - | -9 | = \dots$

**Question (3)**

[1] Use the distribution property to find the value of:  $\frac{6}{8} + \frac{6}{8} \times 12 + \frac{6}{8} \times 3$

[2] Add:  $2Y + 5X - 1$ ,  $2X - 7 - 5Y$

**Question (4)**

[1] Divide:  $30B^2 + 45B^3 + 5B$  by  $5B$  where  $B \neq 0$  then find the numerical value of the result when  $B = -1$

[2] Find three rational numbers lying between:  $\frac{1}{2}$  and  $\frac{1}{3}$

**Question (5)**

[1] (a) Simplify to the simplest form:  $(2X - 3)(2X + 3)$

(b) Factorize by taking the H.C.F:  $5Y^3 + 15Y^2 - 10Y$

[2] The following table shows the distribution of marks in a test for 6 months :

| The month       | Oct | Nov | Dec | Jun | Feb | March |
|-----------------|-----|-----|-----|-----|-----|-------|
| No, of students | 7   | 8   | 10  | 9   | 5   | 3     |

Find the ~~mode~~ of these marks  
mean

Good Luck

## امتحان الصف الأول الإعدادي الفصل الدراسي الأول

عام ٢٠١٩

(الحادي عشر والثانية عشر) (منتصف)

ال الزمن : \_\_\_\_\_

Answer the following questions:①-Choose the correct answer from those given :

- 1)  $ab \times 2a^2b = \dots$  (  $2a^3b^2$  ,  $-2a^2b$  ,  $ab^4$  ,  $-3ab$  )
- 2) If the mode for the following set of values 7 , 5 ,  $y+3$  , 5 and 7 is 7 , then  $y = \dots$  ( 3 , 4 , 5 , 7 )
- 3) The rational number that lies in half way between  $\frac{1}{3}$  and  $\frac{5}{9}$  is ..... (  $\frac{2}{3}$  ,  $\frac{3}{4}$  ,  $\frac{4}{9}$  ,  $\frac{5}{27}$  )
- 4) If the order of the median of a set of values is the fourth , then the number of these values equals ..... ( 3 , 5 , 7 , 9 )
- 5) If  $2x = 10$  , then  $\frac{3}{5}x = \dots$  ( 25 , 15 , 5 , 3 )
- 6) The algebraic term  $7xy$  is of ..... Degree ( first , second , third , fourth )

②-Complete each of the following :

- 1)  $3xy + 6x = \dots (y + 2)$
- 2)  $25\% - \left| \frac{-1}{5} \right| = \dots$
- 3)  $\frac{-4}{11} \times \dots = 1$
- 4) If the sum of 5 numbers is 30 , then the arithmetic mean for these numbers = ...
- 5) The number  $\frac{4}{x}$  is a rational number if  $x \neq \dots$

③- A) Subtract  $2x + 6y - 7$  from  $2x - 5y + 2$ B) Divide :  $14x^3 - 28x^2 + 7x$  by  $7x$  where  $x \neq \text{zero}$ ④- A) Use the distribution property to find the value of :  $\frac{2}{7} \times 9 + \frac{2}{7} \times 6 - \frac{2}{7}$ B) The length of a rectangle is  $(2x + 5)$  cm and its width is  $(3x + 2)$  cm

Calculate its area.

⑤- A) Find the median for the values 3 , 5 , 12 , 11 , 8 , 10

B) If  $x = \frac{-1}{3}$  ,  $y = \frac{3}{4}$  ,  $z = -3$  Find in simplest form the numerical value of each of the following :

1)  $yz + \frac{1}{4}$

2)  $xy + yz$

( انتهت الأسئلة )

First term exam for 1<sup>st</sup> prep. 2019/2020

Answer the following questions :

Q1 : Choose the correct answer :-

- 1)  $0.7 + 0.\overline{3} = \dots$  (1 , 3.7 , 0.37 ,  $1\frac{1}{30}$ )
- 2) If  $\Delta + \square = 20$  ,  $\Delta + \Delta + \square = 35$  , then  $\Delta = \dots$  (15 , 20 , 5 , 10)
- 3) The mode for the values 1 , 3 , 7 , 3 , 6 , 7 and 3 is ..... (1 , 3 , 6 , 7)
- 4) The algebraic term  $6x^3y^2$  is of ..... degree . (third , fourth , fifth , sixth)
- 5) If  $\frac{2}{5}x = 10$  , then  $\frac{3}{5}x = \dots$  (25 , 15 , 20 , 5)
- 6) The arithmetic mean of the set of values : 1 , 6 , 4 , 8 , 6 is ... (25 , 5 , 6 , 8)

Q2 : Complete The following :-

- 1)  $7x^3y^2 \times \underline{\quad} = 21x^3y^5$
- 2) The rational number half a way between  $\frac{3}{5}$  ,  $\frac{4}{5}$  is .....
- 3) If the order of the median of a set of values is the fourteenth , then the number of these values equals .....
- 4) 1 , 1 , 2 , 3 , 5 , 8 , ..... (in the same pattern)
- 5) The multiplicative inverse of the rational number  $-\frac{2}{3}$  is .....  $-\frac{3}{2}$

Q3 : a) Use the distribution property to find the value of :

$$\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7}$$

b) Divide :  $14x^2y - 35xy^2 + 7xy$  by  $7xy$  where  $x \neq 0$  and  $y \neq 0$

Q4 : a) Subtract :  $5x^2 + y^2 - 3xy + 1$  from  $6x^2 - 2xy + 3y^2$

b) Find three rational numbers that lie between  $\frac{1}{2}$  and  $\frac{1}{3}$

Q5 : a) Simplify to the simplest form :  $(2x - 3)(2x + 3) + 7$  , and calculate the numerical value of the result when  $x = -1$

b) The following table shows the marks of Gehad in one Maths test in 6 months :

| The Month | October | November | December | February | March | April |
|-----------|---------|----------|----------|----------|-------|-------|
| The Mark  | 41      | 35       | 47       | 37       | 44    | 48    |

Find : (a) The median for the previous marks .  
(b) The mean for the previous marks .

Answer the following questions(1) Choose the correct answer :

(a) The mode of the values 6, 8, 6, 1, 1, 9, 8, 2, 8 is ....

( 1, 6, 8, 9 ) ✓

(b)  $x^3y \times xy^2 = \dots$  (  $x^3y^2$ ,  $3x^3y^4$ ,  $x^4y^3$ ,  $x^3y^3$  )(c) the multiplicative inverses of  $\left| \frac{-7}{8} \right|$  is ..... (  $\frac{-7}{8}$ ,  $\frac{8}{7}$ ,  $\frac{-7}{8}$ ,  $\frac{-8}{7}$  )(d) The degree of the expression  $(x^3 + 2xy + 3y^2x^2)$  is the

.....degree

( 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup> ) ✓

(e)  $(-5x) + (-3x) - x = \dots$  ( -9x, 9x, 8x, -8x )(f)  $(3a + 2b)^2 = 9a^2 + \dots + 4b^2$  ( 6ab, 12ab, 24ab, 36ab )(2) Complete the following :

(a) The arithmetic mean of the values 22, 18, 15, 25 and 30

is ... ? ✓

(b)  $-\frac{1}{4} + \dots = 0$

(c)  $(x + 4)(x - 4) = x^2 - \dots$  ✓

(d) The median of the values 23, 16, 12, 28, 21, 32, 9 is 21.

(e)  $7x(x + 5y) = 7x^2 + \dots$  ✓ 21, 16, 12, 23, 32  
28

(3) (a) By using the distribution property find :

$$\frac{5}{9} \times \frac{2}{7} + \frac{5}{9} \times \frac{1}{7} + \frac{5}{9} \times \frac{4}{7}$$
 ✓

(b) Subtract  $5x^2 + 2x - 1$  from  $8x^2 - 3x + 7$ 

3x<sup>2</sup> - 5x + 8 ✓

(4) (a) If  $a = \frac{1}{2}$ ,  $b = -\frac{2}{3}$ ,  $c = 3$ , Find the value of

$c^2 - 6ab$  ✓

(b) Simplify to the simplest form  $(5x - 6)^2 + 60x - 36$ 

25x<sup>2</sup> ✓

(5) (a) Divide :  $x^2 + 12x + 35$  by  $x + 5$  ( where  $x \neq -5$  )

(b) The following table shows the marks of 50 students

| Marks     | 4 | 6  | 9  | 12 | 15 | 18 |
|-----------|---|----|----|----|----|----|
| Frequency | 6 | 13 | 16 | 7  | 5  | 3  |

Find the mode of these marks



**[Q1] Choose the correct answer from those given:**

- (1) If  $\frac{5}{x+2}$  is a rational number then  $x \neq \dots$ 
  - a) -2
  - b) zero
  - c) 2
  - d) 5
- (2)  $(-3X) \times (-5Y) = \dots$ 
  - a)  $-15xy$
  - b)  $-8xy$
  - c)  $8xy$
  - d)  $15xy$
- (3) The mode of the values:  $4, 5, 4, 3, 7, 5, 4$  is  $\dots$ 
  - a) 3
  - b) 4
  - c) 5
  - d) 7
- (4) The algebraic term  $6x^3y^2$  is of  $\dots$  degree
  - a) third
  - b) fourth
  - c) fifth
  - d) sixth
- (5) The arithmetic mean for the values  $3, 5 - X, 7 + X$  is  $\dots$ 
  - a) 2
  - b) 3
  - c) 4
  - d) 5
- (6) If  $\frac{2}{5}x = 10$  then  $\frac{3}{5}x = \dots$ 
  - a) 25
  - b) 20
  - c) 15
  - d) 5

**[Q2] Complete each of the following:**

- 1) The multiplicative inverse of the number  $(\frac{-9}{8})^{\text{zero}}$  is  $\dots$
- 2) The number that lies half way between  $\frac{1}{2}$  and  $\frac{5}{8}$  is  $\dots$
- 3) If  $\triangle + \square = 20$ ,  $\triangle + \underline{\triangle} + \underline{\square} = 35$  then  $\square = \dots$
- 4) If the order of the median of a set of values is the fifth, then the number of these values is  $\dots$
- 5)  $1, 1, 2, 3, 5, 8, \dots$  (in the same pattern)

**[Q3] [A] Simplify:  $(X-3)(X+3)+9$**

Then calculate its numerical value when  $x = 5$

**[B] If  $X = \frac{1}{2}$ ,  $Y = \frac{-2}{3}$ ,  $Z = 2$ , Find the value of  $\frac{y-z}{x}$**

**[Q4] [A] Use the distribution property to find the value of:**

$$\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$$

**[B] ① Add  $5X+2Y-1$  and  $2X-5Y+3$**

② Factorize by identifying the H.C.F:

$$3a(a-2b) - 6b(a-2b)$$

Then find the value of the result when  $(a-2b) = | -\frac{1}{3} |$

**[Q5] [A] Divide  $2X^2 + 5XY + 2Y^2$  by  $2X + Y$**

Where  $2x + y \neq 0$

**[B] The following table shows Omar's marks in 6 mathematics examination:**

| Month | Oct. | Nov. | Dec. | Feb. | Mar. | Apr. |
|-------|------|------|------|------|------|------|
| Mark  | 41   | 35   | 47   | 37   | 44   | 48   |

Find each of the median mark and the mean mark.

**End of the questions**

35, 37, 41, 44, 47, 48

### First Term Exam 2019 / 2020

**Answer the following question**

( The exam in two papers)

الورقة الأولى

((Allowed to use a calculator ))

#### **Q1 :Choose the correct answer :**

- 1) The arithmetic mean of values : 3 , 5 , X , 8 , 5 is 6 then X = .....  
 a) 5      b) 6      c) 8      d) 9
- 2) The number of Integers lying between  $\frac{7}{4}$  ,  $\frac{11}{8}$  is .....  
 a) Zero      b) 1      c) 2      d) infinite number.
- 3) The necessary condition to make  $\frac{X-5}{X-3} = \text{Zero}$  is .....  
 a) X = 5      b) X = 3      c) X ≠ 3      d) X = - 5
- 4) ( a<sup>2</sup> + a ) ÷ a = ..... Where a ≠ 0  
 a) a      b) a + 1      c) a<sup>2</sup>      d) a<sup>2</sup> + 1
- 5 ) If the median for the values: 11 , 18 , 7 , 10 , 21 is .....  
 a) 7      b) 10      c) 11      d) 21
- 6 ) The smallest fraction of the following is .....  
 a)  $\frac{1}{2}$       b)  $\frac{5}{11}$       c)  $\frac{2}{3}$       d)  $\frac{3}{7}$

#### **Q2: Complete each of the following :**

- 1)  $\frac{9}{20} = \dots\dots\dots\dots\%$
- 2) If ( X + y ) ( 2 X + y ) = 2 X<sup>2</sup> + k X y + y<sup>2</sup> , then k = .....
- 3) If the mode of the values: 15 , 9 , X + 1 , 9 , 15 is 9 , then X = .....
- 4) 1 , 4 , 9 , 16 , 25 , ..... , ..... ( In the same pattern)
- 5) The additive inverse of (  $\frac{-3}{5}$  )<sup>zero</sup> = .....

**Q3** a) Use the distribution property to find the value of

$$\frac{7}{12} \times \frac{23}{45} + \frac{17}{12} \times \frac{23}{45} - 2 \times \frac{23}{45}$$

b ) Subtract:  $7X + 5y + z$  from  $6y + 2X + z$

**Q4** a) Simplify :  $(2a - 3)(2a + 3) + 7$ , then find the numerical value of the result when  $a = -1$

b) Find three rational numbers between:  $\frac{2}{3}$  and  $\frac{3}{4}$

**Q5** a) Divide:  $X^2 - 6X + 8$  by  $X - 2$  (where  $X \neq 2$ )

b) The following table shows the marks of Ghad in one Maths test In 6 months.

| The month | Oct. | Nov. | Dec. | Feb. | Match | April |
|-----------|------|------|------|------|-------|-------|
| The mark  | 41   | 35   | 47   | 37   | 44    | 48    |

Find : the arithmetic mean for previous marks .

انتهت الاسئلة  
With my Best wishes

Educational  
Directorate  
shiben elkom  
Supervisor of :Math

1<sup>st</sup> term  
exam  
Geometry

1<sup>st</sup> prep.  
school  
Time :  
2hours

2019-2020

الهندسة والقياس - الصف الاول الاعدادي - لغات

Question (1) Choose the correct answer:

a) If  $m(\angle A) = 130^\circ$  then  $m(\angle A)$  reflex =.....

{  $130^\circ$  ,  $50^\circ$  ,  $285^\circ$  ,  $230^\circ$  }

b) If triangle ABC  $\cong$  triangle XYZ then  $\overline{AC} \cong$  .....

{  $\overline{AB}$  ,  $\overline{XY}$  ,  $\overline{YZ}$  ,  $\overline{XZ}$  }

c) Two adjacent angles are supplement then two outer side .....

{ Perpendicular , congruent , skew, on the same straight line }

d) If the perimeter of square 24cm its area.....

{  $8\text{cm}^2$  ,  $9\text{cm}^2$  ,  $3\text{cm}^2$  ,  $36\text{cm}^2$  }

d) In the opposite figure number of rectangles=.....



{ 4 , 6 , 8 , 10 }

, L // N then two straight line M and N are.....

{ Perpendicular , parallel , intersection , congruent }

Question 2 complete:-

a) two triangles are congruent if two sides and ... included angle ... congruent with corresponding from the other triangle

b) if a straight line cut two straight lines and two corresponding angles are equal in measure then two straight line are... Parallel

c) the measure of angle  $50^\circ$  complement angle  $40^\circ$  .....

d) Two angles are congruent if... equal in value in which case

e) the perimeter of the opposite figure = 25 cm





Answer the following:

(1) Complete each of the following:

- 1) If the rational number  $\frac{x-1}{x+5} = 0$ , then  $x = \dots$
- 2) The mean of the values: 2, 3, 2, 6 and 7 is .....
- 3) The rational number which lies half way between  $\frac{1}{5}$  and  $\frac{2}{3}$  is .....
- 4)  $(2x^3 + x) \div x = \dots$  (where  $x \neq$  zero)
- 5) The algebra term  $3x^3y^2$  whose degree is .....

(2) Choose the correct answer:

- 1) The H.C.F. of  $9x^2 + 3x$  is .....  
a)  $9x$       b)  $3x$       c)  $3x^2$       d)  $x$
- 2) If  $\frac{3}{x-5}$  is a rational number, then  $x \neq \dots$   
a) 2      b) 3      c) -5      d) 5
- 3) The remainder of subtraction  $-2x$  from  $5x$  is .....  
a)  $3x$       b)  $-10x$       c)  $7x$       d)  $-7x$
- 4) The expression  $3x^2y^1 - 6x$  whose degree is .....  
a) 1      b) 2      c) 3      d) 4
- 5) The mode of the values: 4, 5, 4, 3, 7, 5, 4 is .....  
a) 3      b) 4      c) 5      d) 7

6)  $0.\overline{27}$  in the form of  $\frac{a}{b}$  is .....

a)  $\frac{27}{100}$

b)  $\frac{27}{90}$

c)  $\frac{27}{11}$

d)  $\frac{3}{11}$

(3) A) Find the number that lies one third of the way between  $\frac{1}{4}$  and  $\frac{7}{8}$  from the side of the smaller one.

B) Use the distribution property to find the value of :

$$\frac{7}{13} \times 6 + \frac{7}{13} \times 8 - \frac{7}{13}$$

(4) A) Add:  $2X^2 - XY + 5$  to  $3X^2 + 2XY - 3$

B) Find the quotient of :  $X^2 - 5X + 6$  by  $X - 3$  (where  $X \neq 3$ )

C) Multiply:  $(x - 2)(x + 2)$ , then find the numerical value of the expression when  $x = 3$ .

D) If the arithmetic mean of :  $x - 1$ ,  $x$ ,  $x + 1$  is 12, then find

**WITH OUR BEST WISHES,**

Sally

Cairo Governorate  
El Nozha Ed. Zone  
Math. Inspection

first term exam  
2017 - 2018

Subject : Algebra  
Form : 1<sup>st</sup> prep  
Time : 2 hr

Answer the following questions :

Question (1): Choose the correct answer :

- 1) The mode of the values 4, 5, 4, 3, 7, 4 is .... [ 3, 4, 5, 7 ]
- 2) The result of subtracting  $-2x$  from  $3x$  is .... [ 5x,  $-5x$ ,  $-x$ ,  $x$  ]
- 3) The median of 2, 5, 6, 7, 9, 11, 14, 16, 21 is .... [ 7, 9, 11, 16 ]
- 4) The algebraic term  $-4xy^3$  is of .... [ third, fourth, sixth, second ]
- 5) The multiplicative inverse of  $(\frac{2}{3})^0$  is .... [ \frac{3}{2},  $-\frac{2}{3}$ , 0, 1 ]
- 6)  $| -5 | - | 2 | = \dots$  [ 3, -3, 7, -7 ]

Question (2): Complete the following :

- 1) If the arithmetic mean of the values 8, 7, 5,  $k+4$  is 6 then  $k = \underline{2}$ .
- 2) If  $\frac{x-5}{x-7} = 0$ , then  $x = \underline{5}$ .
- 3) The additive inverse of  $(-5)^2$  is  $\underline{-25}$ .
- 4)  $\frac{3}{5} + \frac{7}{10} + (-\frac{1}{2}) = \underline{\frac{4}{5}}$
- 5)  $3 \times \underline{\frac{1}{3}} = 1$

Question (3) :

- a) Using the distributive property find :  $\frac{6}{7} \times 2 + \frac{6}{7} \times 4 + \frac{6}{7}$ .
- b) find :  $(2x - 3y)(3x + 7y)$   $\cancel{(x^2 - 21y^2)}$

Question (4) :

- a) Divide  $(x^3y - 4x^2y^2 + 6xy)$  by  $(x^2y)$ .
- b) Find three rational numbers lies between  $\frac{1}{2}, \frac{1}{3}$ .  $\frac{11}{60}, \frac{12}{60}, \frac{23}{60}$   
(يكتب الأسئلة في الصفحة الثانية)

**Question (5) :**

a) Add :  $2x - 7y + z$  ,  $5z + 6y - 2x$ .

b) The following table shows the marks of a student in exams in 6 months

| Months | Oct. | Nov. | Dec. | Feb | March. | April. |
|--------|------|------|------|-----|--------|--------|
| Marks  | 30   | 45   | 35   | 40  | 35     | 50     |

Find the arithmetic mean of these marks .

Good Luck

### First term Exam

Answer the following question

#### Question one : Choose the correct answer from those given

- a) The algebraic term  $6x^3y^2$  is of ..... Degree .  
1) third      2) fourth      3) fifth      4) sixth
- b) If  $0.18 + 30\%$   
1) +12      2) 0.15      3) 48%      4) 45%
- c) The mode of the value 7, 5, x + 4, 5, 7 is 5, then x = .....  
1) 4      2) 5      3) 7      4) 1
- d) The remainder of subtracting  $-7x$  from  $9x$   
1)  $16x$       2)  $2x$       3)  $-2x$       4) Zero
- e) The rational number that lies on third of the way between 8 and 12 from the smaller.  
1)  $8 \frac{1}{3}$       2) 10      3)  $9 \frac{1}{3}$       4)  $10 \frac{2}{3}$

if  $(2x - 3)(x + 5) = 2x^2 - 15$

- 1)  $-7x$       2)  $+7x$       3)  $-13x$       4)  $+13x$

#### Question two : complete

- a)  $5x^2 + 15xy - 5x(\dots + \dots)$
- b)  $(x - 3)(\dots + \dots) = x^2 - 9$
- c) The number  $\frac{4}{x}$  is a rational number if  $x \neq \dots$
- d)  $24x^4y^6 - 6x^2y^2x = \dots$
- e)  $2 \frac{1}{3}x \dots = 1$

#### Question Three :

- a) Simplify the simplest form  $(2x - 3)(2x + 3) + 7$  and calculate the numerical value of the result when  $x = 1$

- b) Use the distribution property find the value :

$$\frac{3}{7} \times 2 + \frac{3}{7} \times 6 - \frac{3}{7} = ?$$



#### Question four:

Divide  $2x^2 + 13x + 15$  by  $x + 5$

$$2x^2 + 13x + 15$$

b) Factorize by identifying the H.C.F  $12a^2b + 18a^3b^2$

$$6ab(2a + 3b)$$

#### Question five:

The following table shows Gehad's marks of mathematics in 6 months

| Month | October | November | December | February | March |
|-------|---------|----------|----------|----------|-------|
| Marks | 30      | 35       | 42       | 37       | 44    |

and :

a) The median for the previous marks .

b) The mean for the previous marks .

Good Luck

$$12a^2b + 18a^3b^2$$

$$6a^2b$$

$$= 2 + 3ab$$

Answer the Following questions:

Q(1) Choose the correct answer from those given :(1) If  $\frac{5}{x+2}$  is a rational number, then  $x \neq \dots$ 

- (a) -2      (b) 0      (c) 2      (d) 5

(2) The algebraic term :  $2x^3$  is of the ..... Degree.

- (a) second      (b) third      (c) fourth      (d) fifth

(3) The median of the values :  $5, 7, 13, 11, 3, 9$  is .....

- (a) 5      (b) 7      (c) 9      (d) 11

(4) The value of number 5 in the number 0.2457 is .....

- (a)  $\frac{5}{10}$       (b)  $\frac{5}{100}$       (c)  $\frac{5}{1000}$       (d)  $\frac{5}{10000}$

(5) If  $(x-7)(x+7) = x^2 + m$ , then  $m = \dots$ 

- (a) 0      (b) 14      (c) 49      (d) -49

(6) The number of rational numbers lying between  $\frac{1}{5}, \frac{3}{5}$  is .....

- (a) 1      (b) 2      (c) 3      (d) infinite number

Q(2) Complete the following :(1) If  $\frac{3}{4} + x = 0$  then  $x = \dots$ 

$$\begin{array}{r} 2457 \\ \hline 10000 \\ \hline 5 \end{array}$$

(2) 7.1 kilogram =  $\dots$  gram(3) The remainder of subtracting -3A from 2A is  $\dots$  A(4) If the mode of the values 8, 9, K+2, 6 is 8 then K =  $\dots$ (5)  $(10y^5 - 2y^2) \div 2y^2 = \dots$  (where  $y \neq 0$ )Q(3)(a) Add :  $2x + 3y - 3$  and  $5x - 2y + 1$ (b) Using the distribution property, find :  $\frac{5}{12}x \cdot 7 + \frac{5}{12}x \cdot 6 - \frac{5}{12}x \cdot (-1) = \dots$ Q(4) (a) Reduce to the simplest form :  $(x+2)^2 - 4x$  then find the numerical value of the result when  $x = 3$ (b) Factorize by identifying the highest common factor :  $5y^3 + 35xy^2$ Q(5) (a) Find the quotient of :  $x^2 + 7x + 10$  by  $x + 5$  (where  $x \neq -5$ )

(b) The following table shows the marks of a student in maths :

| Month | October | November | December | February | March | April |
|-------|---------|----------|----------|----------|-------|-------|
| Mark  | 25      | 25       | 29       | 25       | 28    | 30    |

Find: (1) The mode mark

(2) The arithmetic mean of these marks

25

النهاية

$$\begin{array}{r} 25 + 25 + 29 + 25 + 28 + 30 \\ \hline 6 \end{array}$$