Generalizaciones del Teorema de Weierstrass

Teorema 1. Weierstrass clásico. Sea f una función continua del intervalo [a,b] en \mathbb{R} . Entonces f alcanza un máximo y un mínimo.

Objetivo de la clase: Encontrar condiciones necesarias y suficientes sobre un conjunto K de un espacio métrico (X,d) de modo tal que toda función continua alcance un máximo y un mínimo sobre K.

¿Por qué nos planteamos esto?

«Nada ocupa un lugar en el mundo que no pueda ser entendido como algún máximo o mínimo.»

L. Euler

Principio de mínima acción o Principio de Hamilton. Pensemos un sistema mecánico caracterizado por las coordenadas $q=q_1,...,q_s$. Por ejemplo la posición de s/3 puntos en el espacio. Este pricipio postula la existencia de una función

$$L(t, q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s),$$

que caracteriza al sistema en el siguiente sentido. Supongamos que en los instantes $t=t_1$ y $t=t_2$ tenemos determinadas las coordenadas $q, q(t_1)=q^1$ y $q(t_2)=q^2$. Entonces, entre t_1 y t_2 el sistema evolucionará de modo tal que la integral

$$S = \int_{t_1}^{t_2} L(t, q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s) dt$$

sea mínima.

Conjuntos Compactos

Recordemos algunas definiciones. Sea (X, d) un espacio métrico.

- ➤ Un conjunto $K \subset X$ se llamará compacto si todo cubrimiento por abiertos relativos de K tiene un subcubrimiento finito. Es decir, si $K = \bigcup_{\lambda \in \Lambda} G_{\lambda}$, con G_{λ} abierto en $K \ \forall \lambda$, entonces existe un conjunto finito $\Lambda_0 \subset \Lambda$ tal que $K = \bigcup_{\lambda \in \Lambda_0} G_{\lambda}$.
- > Un conjunto $K \subset X$ se llama precompacto si para cada $\epsilon > 0$ podemos cubrir K por un conjunto finito de bolas de radio ϵ y centro perteneciente a K.
- ➤ Un espacio métrico se dice completo si toda sucesión de Cauchy es convergente.

Teorema 2. Un conjunto K es compacto si, y solo si, es precompacto y completo.

La precompacidad es condición necesaria

Teorema 3. Sea (X, d) un espacio métrico $y K \subset X$. Supongamos que toda función continua, alcanza un máximo (y por ende un mínimo) sobre K, entonces K es precompacto.

Demostración. Supongamos K no precompacto.

Existe $\epsilon > 0$ tal que K no se puede cubrir por una cantidad finita de bolas de radio ϵ .

Elijamos $x_1 \in K$.

Como $B(x_1, \epsilon) \neq K$, tomemos $x_2 \in K - B(x_1, \epsilon)$.

De la misma forma elegimos $x_3 \in K - B(x_1, \epsilon) \cup B(x_2, \epsilon)$.

Continuamos de esta forma, producimos una sucesión x_n tal que

$$x_n \in K - B(x_1, \epsilon) \cup \cdots \cup B(x_{n-1}, \epsilon).$$

Consideremos $\delta = \epsilon/2$.

Tenemos que, para $i \neq j$, $B(x_i, \delta) \cap B(x_j, \delta) \neq \emptyset$ (**Ejercicio**)

$$B(x_3,\delta) \ B(x_6,\delta) \ B(x_9,\delta)$$
 $B(x_9,\delta) \ B(x_2,\delta) \ B(x_5,\delta) \ B(x_8,\delta) \ B(x_{10},\delta) \ B(x_{11},\delta) \ B(x_{12},\delta)$

Figura 1: Bolas $B(x_j, \delta)$

Ahora consideremos las funciones:

$$f_k(x) = \max\{\delta - d(x, x_k), 0\}$$

- 1. f_k es continua, pues es un máximo de funciones continuas.
- 2. f(x) = 0 si $x \notin B(x_k, \delta)$

3.
$$0 \le f_k \le \delta \ y \ f_k(x_k) = \delta$$
.

Definimos:

$$f(x) := \sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right) f_k(x).$$

Figura 2: Función f

f no alcanza un máximo, pues $0 \le f < \delta$ y $f(x_k) = \delta(1-\frac{1}{k}) \to \delta$ cuando $k \to \infty$.

Afirmación si $x^* \in K$ existe un $\eta = \eta(x^*) > 0$ tal que para $d(x,x^*) < \eta$

$$|f(x) - f(x^*)| \le d(x, x^*).$$
 (1)

Por lo tanto f es continua.

Demostremos (1).

Sea $x^* \in K$.

- 1. Si $\exists k \text{ con } x^* \in B(x_k, \delta)$ Ejercicio
- 2. Supongamos $x^* \notin B(x_k, \delta), \forall k$.

Sea
$$\delta > \eta > 0$$
.

Supongamos que $d(x, x^*) < \eta$.

a) Si $x \notin B(x_k, \delta)$, $\forall k$, entonces

$$f(x) = f(x^*) = 0.$$

Por ende (1) es cierta.

b) Si $\exists k \text{ con } x \in B(x_k, \delta)$, entonces

$$\delta \le d(x_k, x^*) \le d(x_k, x) + d(x, x^*).$$

Entonces

$$|f(x) - f(x^*)| = f(x)$$

$$= \left(1 - \frac{1}{k}\right) \left(\delta - d(x, x_k)\right)$$

$$< d(x^*, x).$$

La completitud es necesaria

Teorema 4. Sea (X, d) un espacio métrico $y K \subset X$. Supongamos que toda función continua, alcanza un máximo (y por ende un mínimo) sobre K, entonces K es completo.

Demostración. Supongamos K no completo. Sea $\{a_n\}$ una sucesión de Cauchy en K que no converge.

Definamos

$$f(x) := \lim_{n \to \infty} d(x, a_n).$$

Afirmación: El límite anterior existe.

Se prueba así. La desigualdad

$$|d(x,x_n) - d(x,x_m)| \le d(x_n,x_m),$$

implica que la sucesión $d(x, x_n)$ es de Cauchy en \mathbb{R} .

Como \mathbb{R} es completo, la sucesión $d(x, x_n)$ es convergente.

Veamos que f es continua y de hecho Lipschitz.

$$|f(x) - f(y)| = |\lim_{n \to \infty} d(x, x_n) - \lim_{n \to \infty} d(y, x_n)|$$
$$= \lim_{n \to \infty} |d(x, x_n) - d(y, x_n)|$$
$$\leq d(x, y).$$

Veamos que f no alcanza un mínimo.

Si $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que

$$d(x_n, x_m) < \epsilon$$
 para $n, m > N$.

Haciendo $m \to \infty$ obtenemos

$$f(x_n) = \lim_{m \to \infty} d(x_n, x_m) \le \epsilon.$$

Esto implica que

$$\inf_{x \in K} f(x) = 0.$$

Pero, para $x \in K$ tenemos que $f(x) \neq 0$, de lo contrario $\{a_n\}$ convergería. Así f no tiene mínimo.

Compacto es necesario y suficiente

Teorema 5. Sea K un subconjunto compacto de X. Toda función continua alcanza un máximo (o un mínimo) sobre K si, y sólo si, K es compacto.

Demostración. Sólo falta la suficiencia.

Supongamos K compacto.

Sólo probaremos que f alcanza un máximo, aplicando este resultado a -f demostramos que f alcanza un mínimo.

Supongamos que f no alcanza un máximo.

Para cada $y \in f(K)$ definimos el conjunto

$$G_y := f^{-1}((-\infty, y)) = \{x \in K : f(x) < y\}.$$

Figura 3: Conjuntos G_y

- ightharpoonup Los conjuntos G_y son abiertos relativos a K, pues f es continua.
- $ightharpoonup \{G_y\}_{y\in f(K)}$ es un cubrimiento de K. Sea $x\in K$.

x no es un punto de máximo $\Rightarrow \exists z \in K$ tal que

Esto implica que $x \in G_{f(z)}$.

ightharpoonup Si $y_1 < y_2 \Rightarrow G_{y_1} \subset G_{y_2}$

K es compacto \Rightarrow existe un subconjunto finito $\{y_1,...,y_n\}\subset f(K)$ tal que

$$K = G_{y_1} \cup \dots \cup G_{y_n}. \tag{2}$$

Sea $y^* = \max\{y_1, ..., y_n\}.$

Se tiene que $y^* \in f(K)$.

Por la igualdad (2),

$$\forall x \in K : f(x) < y^*.$$

Lo que es una contradicción.