BILKENT UNIVERSITY

Department of Electrical and Electronics Engineering EEE102 Introduction to Digital Circuit Design MidTerm Exam I SOLUTION 8-03-2006

Duration 110 minutes

Q1. (20 points)

Draw a circuit, using NMOS and PMOS transistors, which implements the function F = A' + B' + CD'. Complements of the input variables are not available.

Solution: $F = A' + B' + CD' = [A \cdot B \cdot (C' + D)]'$

Q2. (20 points)

Find all minimal sums and all minimal products for

$$F = \sum_{A,B,C,D} (0,2,5,8,12) + d(3,7,10,11,14,15).$$

Which of the solutions you have found are equivalent, why? Equivalent means having the same truth table.

Solution:

In finding Fminsop we have made the following assignments to the don't cares:

3	7	10	11	14	15
0	1	1	0	1	0

In finding Fminpos we have made the following assignments to the don't cares:

1						ı
	3	7	10	11	14	15
	0	1	1	0	1	0

Thus in both cases the don't cares take the same values, and therefore the two solutions are equivalent.

Q3. (20 points)

Given the circuit below

- a) Find an expression for F.
- b) Write down the truth table of F given that the input combinations ABC = 000, ABC = 011, and ABC = 111 never occur.
- c) Find and draw a minimal 2-level NAND-NAND circuit which does the same job as the above drawn circuit for the input combinations which occur.

Solution:

a)
$$F = [(AB)'(AC)'(A'C')']' = AB + AC + A'C'$$

h)

_	n	α	-
Α	B	C	F
0	0	0	d
0	0	1	0
0	1	0	1
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	d

Q4. a) (10 points) The operator with symbol ** is defined as A**B=A'B'. Is this operator commutative, why? Is this operator associative, why?

b) (10 points) The statement $A \Rightarrow B$ (which reads as A implies B) is a function of A and B, with the truth table

A	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Consider the statement G: $A \Rightarrow B + C$, and also the statement H: $AB' \Rightarrow C$. Show that G=H.

Solution:

a) $A^{**}B=A'B'=B'A'=B^{**}A$ Therefore ** is commutative

$$A^{**}(B^{**}C) = A^{**}(B^{'}C^{'}) = A^{'}(B^{'}C^{'})' = A^{'}(B+C) = A^{'}B+A^{'}C$$

$$(A^{**}B)^{**}C = (A'B')^{**}C = (A'B')'C' = (A+B)C' = AC'+BC'$$

Thus $A^{**}(B^{**}C) \neq (A^{**}B)^{**}C$ and ** is not associative.

b) $A \Rightarrow B \equiv A' + B$ from the truth table.

Therefore $G: A \Rightarrow B + C \equiv A' + B + C$

and
$$H: AB' \Rightarrow C \equiv (AB')' + C = A' + B + C$$
.

Thus G = H.

Q5. (20 points)

An open drain NMOS transistor with pull up resistor R drives 10 various CMOS gates as shown below. The whole circuit operates from a supply of $V_{CC} = 5V$.

The CMOS family has the following specifications: For a supply of 5V

 $V_{IHmin} = 3.5 \text{ V}$ (Minimum voltage accepted as HIGH)

 $V_{ILmax} = 1.5 \text{ V}$ (Maximum voltage accepted as LOW)

 $I_{ILmax} = -1 \mu A$ (Maximum input current for LOW input)

 $I_{IHmax} = 1.5 \mu A$ (Maximum input current for HIGH input)

(Currents are defined as into the gate)

The ON and OFF resistances of the NMOS transistor are 100Ω and $100K\Omega$ respectively.

- a) Find the maximum value of R for a High Noise Margin of 0.5 volts.
- b) Find the minimum value of R for a Low Noise Margin of 0.5 volts.

Solution:

a)Output High case:

b) Output Low case:

$$R$$

$$I_{L} = 10\mu A$$

$$V_{out} = 1V$$

$$I_{2} = \frac{1}{100\Omega} = 10mA$$

$$I_{1} = 10mA - 10\mu A \approx 10mA$$

$$R = \frac{5-1}{10mA} = 400\Omega$$