TD/TP: surfaces paramétriques

Exercice 1:

- ⇒ Faire une fonction qui trace une surface cylindrique :
 - o en entrée : une courbe de Bézier et une droite ;
 - \circ en sortie : un ensemble de courbes iso-paramétriques, le nombre de ces courbes doit être paramétrable en u et v;
 - tracer cet ensemble de courbes iso-paramétriques pour représenter la surface cylindrique.

Exercice 2:

- ⇒ Faire une fonction qui trace une surface réglée :
 - o en entrée : deux courbes de Bézier;
 - \circ en sortie : un ensemble de courbes iso-paramétriques, le nombre de ces courbes doit être paramétrable en u et v;
 - tracer cet ensemble de courbes iso-paramétriques pour représenter la surface réglée.

Exercice 3:

- ⇒ Faire une fonction qui trace une surface de Béziers par l'algorithme de Casteljau
 - signature : Point[] BezierSurfaceByCasteljau(Point[] TabControlPointU, long
 nbControlPointU, long nbU, Point[] TabControlPointV, long nbControlPointV, long
 nbV);
 - tester votre fonction en affichant les étapes intermédiaires de la construction des points. (A RENDRE au plus tard le 20/02/2017 car noté)
 - tracer un ensemble de courbe reliant les points pour représenter la surface de Bézier.