PROJECT DESIGN PHASE-II

TECHNOLOGY STACK (ARCHITECTURE AND STACK)

PROJECT NAME:

TrafficTelligence: Advanced Traffic Volume Estimation With

Machine Learning

TECHNICAL ARCHITECTURE:

The project encompasses a systematic process, commencing with data collection and preparation, followed by exploratory data analysis and model building using various algorithms. Subsequent performance testing and hyperparameter tuning refine model accuracy. The final phase involves deploying the best model, integrating it into a web framework, and documenting the project comprehensively, including an explanatory video and step-by-step development procedure, underpinned by a technically sound architecture.

TABLE-1 COMPONENTS AND TECHNOLOGIES:

S.NO.	COMPONENT	DESCRIPTION	TECHNOLOGY
1.	USER INTERFACE	Users interact with the web	HTML, CSS, JavaScript,
		application by providing input	ReactJS, etc
		parameters, including area, date,	
		and time, to access traffic analysis.	
		The intuitive interface offers input	
		fields, dropdown menus, and	
		date/time pickers for easy data	
		entry. Once submitted, users receive	
		real-time traffic analysis, ensuring a	
		seamless and informative	
		experience.	
2.	DATA COLLECTION	The process begins with data	Python, Google Collab,
	AND PREPERATION	collection through a provided link,	Microsoft Excel

	1	1 2 3 3	Г.
		followed by the importation of	Libraries:
		essential libraries. It includes	-Pandas
		meticulous handling of missing	-Numpy
		values, date-time column	-Seaborn
		formatting, and a systematic	-Scikit Learn
		correlation assessment. This	
		professional workflow ensures the	
		prepared dataset's reliability for	
		insightful analysis.	
3.	DATA ANALYSIS	Commencing with univariate	Python Seaborn
		analysis, which employs distplot and	package
		countplot graphs to understand	
		individual feature characteristics.	
		This is followed by bivariate analysis,	
		which investigates relationships	
		between two features. Multivariate	
		analysis extracts inferences,	
		including linearity and feature	
		correlations, from the visual	
		representations, facilitating data-	
		driven insights and informed	
		decision-making in a rigorous and	
		professional manner.	
4.	MACHINE LEARNING	Robust ensemble of regression	Python Libraries:
	MODEL	techniques, featuring linear	-Scikit Learn
		regression for linear relationships,	-XGBoost
		decision tree regressor for nonlinear	
		patterns, random forest regressor	
		for enhanced accuracy, SVM for	
		complex data separation, and	
		XGBoost for gradient boosting. This	
		diverse array of models,	
		professionally trained, ensures	
		versatile and precise predictive	
		capabilities across a wide range of	
		data scenarios.	
5.	DATABASE	Local storage to house all datasets,	LOCAL
		providing a secure and efficient data	
		management solution. This local	
		storage system ensures data	
		integrity and accessibility within a	
		closed network.	
6.	INFRASTRUCTURE	Application on Local System:	
		-	

TABLE 2: APPLICATION CHARACTERSTICS

S.NO.	CHARACTERSTICS	DESCRIPTION	TECHNOLOGY
1.	AVAILABILITY	The system's availability is	
		conditional on its deployment.	
		Initially, it's confined to the source	

		computer, but upon deployment on	
		a server, it becomes accessible from	
		any networked device. This strategy	
		allows controlled development and	
		testing access before enabling	
		widespread availability across	
		diverse systems.	
2.	PERFORMANCE	Performance metrics indicate that	-
		the decision tree model achieves	
		69% accuracy, while the random	
		forest and XGBoost models exhibit	
		superior performance, with 80% and	
		79% accuracy, respectively. These	
		results reflect the effectiveness of	
		ensemble methods in enhancing	
		predictive capabilities and underline	
		the potential for improved decision-	
		making using these models.	
3.	SCALABLE	Methods like Random Forest and	-
	ARCHITECTURE	XGBoost are often considered	
		scalable, as they can efficiently	
		handle large datasets and take	
		advantage of parallel processing,	
		making them suitable for many	
		scenarios.	