Predicting Student Success Using Logistic Regression

This notebook explores whether demographic attributes (gender, age, region, disability) can predict whether a student will pass or fail. The data is drawn from the Open University Learning Analytics Dataset (OULAD) and focuses on logistic regression classification using scikit-learn.

Project Objective

To test whether we can predict academic success (pass/fail) using demographic features available at the start of a course — and assess the predictive power of logistic regression models.

Dataset Overview

- Source: Public dataset from OULAD on Kaggle
- Tables used:
 - studentInfo: student demographics and final outcomes
- Key Features:
 - o gender
 - o age_band
 - o region
 - o disability
 - final_result (target, filtered to Pass or Fail)

Methodology

- 1. Data extraction from SOLite database
- 2. Data cleaning and encoding of categorical variables
- 3. Logistic regression model using:
 - Basic features (unweighted)
 - Balanced class weights to address target imbalance
- 4. Performance evaluation via:
 - Confusion matrix
 - Classification report (precision, recall, F1)

Key Findings

- Without class balancing, the model predicted "Pass" almost exclusively.
- After applying class_weight='balanced', the model identified:
 - ~56% of failing students (recall)
 - ~64% overall accuracy
- **Demographics alone are weak predictors**, suggesting the need for behavioral/academic data to improve model performance.
 - This helps, though, to support the fairness of academic work across demographics. We can infer that there does not seem to be disparate impact.

Next Steps

- Add behavioral predictors like:
 - Assessment scores
 - VLE interaction time
- Compare logistic regression to:
 - Decision trees
 - Random forests
- Tune thresholds and visualize precision-recall tradeoffs

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from ipywidgets import interact, Dropdown
sns.set(style="whitegrid", palette="muted", font_scale=1.1)
conn = sqlite3.connect("open_university.db")
modules = pd.read_sql_query("SELECT DISTINCT code_module FROM studentInfo;", conn)
modules_list = sorted(modules['code_module'].tolist())
modules_list
→ ['AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'FFF', 'GGG']
def plot_module_scores(selected_module):
    query = f"""
    SELECT
        si.age_band,
        ROUND(AVG(sa.score), 2) AS avg_score
```

```
FROM studentInfo si
    JOIN studentAssessment sa ON si.id_student = sa.id_student
    WHERE si.code_module = '{selected_module}'
    GROUP BY si.age band
    ORDER BY si.age_band;
    df = pd.read_sql_query(query, conn)
    plt.figure(figsize=(8, 5))
    sns.barplot(
        data=df,
        x="age_band",
        y="avg score",
        hue="age_band",
                                # Assign hue to suppress warning
        palette="crest",
        legend=False
                                # Hide redundant legend
             )
    plt.ylim(0, 100)
    plt.xticks(rotation=0)
    plt.tight_layout()
    plt.show()
interact(plot_module_scores, selected_module=Dropdown(options=modules_list, description="Moc
→ interactive(children=(Dropdown(description='Module:', options=('AAA', 'BBB', 'CCC',
     'DDD', 'FFF', 'FFF', 'GGG'
import statsmodels.api as sm
query = """
SELECT
    si.gender,
    si.age_band,
    AVG(sa.score) AS avg_score
FROM studentInfo si
JOIN studentAssessment sa ON si.id_student = sa.id_student
WHERE sa.score IS NOT NULL
GROUP BY si.id_student;
11 11 11
df = pd.read_sql_query(query, conn)
conn.close()
# One-hot encode gender and age band
df_encoded = pd.get_dummies(df, columns=["gender", "age_band"], drop_first=True)
# Features and outcome
X = df_encoded.drop("avg_score", axis=1)
```

```
y = df_encoded["avg_score"]
X = sm.add_constant(X)

X = X.astype(float)
y = y.astype(float)

# Fit model
model = sm.OLS(y, X).fit()
print(model.summary())
```

$\overline{\Rightarrow}$

OLS Regression Results

Dep. Variable:		avg_score	R-squared:		0.005	
Model:	OLS		Adj. R-squared:		0.005	
Method:	Least Squares		F-statistic:		40.28	
Date:	Wed, 18 Jun 2025		<pre>Prob (F-statistic):</pre>		5.91e-26	
Time:	10:26:29		Log-Likelihood:		-97136.	
No. Observations:	23351		AIC:		1.943e+05	
Df Residuals:	23347		BIC:		1.943e+05	
Df Model:		3				
Covariance Type:		nonrobust				
==========	coef	std err	-====== t	P> t	======== [0.025	0.975]
const	72.3368	0.164	440.347	0.000	72.015	72.659
gender_M	0.1385	0.204	0.680	0.497	-0.261	0.538
age_band_35-55	2.3370	0.222	10.535	0.000	1.902	2.772
age_band_55<=	4.5241	1.237	3.657	0.000	2.099	6.949
Omnibus:		5110.201	======================================		1.988	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		11815.804	
Skew:		-1.238	Prob(JB):		0.00	
Kurtosis:		5.453	Cond. No.		14.6	
==========	=======	=======		=======	========	=====

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split

```
conn = sqlite3.connect("open_university.db")
query = """
SELECT
    si.gender,
    si.age_band,
    si.region,
    si.disability,
    si.final result
FROM studentInfo si
WHERE si.final_result IN ('Pass', 'Fail')
df = pd.read_sql_query(query, conn)
conn.close()
df['final_result'] = df['final_result'].map({'Pass': 1, 'Fail': 0})
df_encoded = pd.get_dummies(df, columns=["gender", "age_band", "region", "disability"], dror
X = df_encoded.drop("final_result", axis=1)
y = df_encoded["final_result"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
model = LogisticRegression(class_weight='balanced', max_iter=1000)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
report = classification_report(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["Fail", "Pass"])
disp.plot(cmap="Blues")
plt.title("Confusion Matrix: Logistic Regression (Pass/Fail Prediction)")
plt.tight_layout()
plt.show()
report
```

