Query enumeration & Nowhere-dense graphs

Alexandre Vigny

January 06, 2017

Outline

- Introduction
- What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Introduction, Query evaluation

- Query q
- Database D
- Compute q(D)

small huge

gigantic

Examples :

query q

database *D*

solutions q(D)

$$q(x,y) := \exists z (B(x) \land E(x,z) \land \neg E(y,z))$$

$$\begin{cases} (1,2) \ (1,3) \ (1,4) \\ (1,6) \ (1,7) \ \cdots \\ (3,1) \ (3,2) \ (3,4) \\ (3,6) \ (3,7) \ \cdots \\ \cdots \end{cases}$$

Remarks

- ullet Databases = relational structures pprox coloured graphs
- Query are implicitly FO queries
- The arity of q is r. q(D) can blow up to $|D|^r$
 - ▶ To big to be computed.
 - ▶ The size of the out put does not reflect the difficulty of the task.

Outline

- Introduction
- 2 What is query enumeration?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Enumeration

• What is query enumeration ?

Input : Database : \mathbf{D} & Query : q

Goal: output solutions one by one

$$\overline{a}_1 \longrightarrow \overline{a}_2 \longrightarrow \overline{a}_3 \longrightarrow \ldots \longrightarrow \overline{a}_m$$

- Why?
 - Not all results at the same time
 - Only few solutions are needed
 - ▶ Applications for other task ? (Streaming, ...)

The delay

Definition

The delay is the maximal time between to consecutive output.

The delay can depends on :

- 1) The size of the query
- 2) The size of the database
- 3) The number of solutions that have already been outputed

We will focus on Constant delay:

The delay only depends on the size of the query.

In data complexity O(f(|q|)) = O(1)

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- Our results
- Conclusion

Linear preprocessing and constant delay

Definition

The preprocessing is the time needed to compute the first solution.

STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(|q|) \cdot n \rightsquigarrow O(n)$

• STEP 2 : Enumeration

Enumerate the solutions : Index $I \longrightarrow \overline{x_1} \ , \ \overline{x_2} \ , \ \overline{x_3} \ , \ \overline{x_4} \ , \ \cdots$

Delay: $O(f(|q|)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing $(CD \circ Lin)$

Properties

- The first solution is computed in time O(||D||)
- The last solution is computed in time O(||D|| + |q(D)|)
- Some possible improvements :
 - Lexicographical enumeration
 - ▶ Start the enumeration at a given tuple

```
Input:
```

```
- Database D:=\langle\{1,\cdots,n\};E\rangle \|D\|=|E| (E\subseteq D\times D)
- Query q(x, y) := \neg E(x, y)
        (1,1)
        (1,2)
        (1,6)
         (i,j)
       (i, j+1)
       (i,j+3)
```

(n,n)

Input:

- Database
$$D:=\left\langle\{1,\cdots,n\};E\right\rangle$$
 $\|D\|=|E|$ $(E\subseteq D\times D)$

- Query
$$q(x, y) := \neg E(x, y)$$

D Index
$$\begin{array}{cccc}
(1,1) & (1,1) \\
(1,2) & (1,2) \\
\hline
(1,6) & \vdots \\
(2,3) & \vdots \\
\vdots & \vdots \\
(i,j) & (i,j) \\
(i,j+1) & (i,j+1) \\
(i,j+3) & (i,j+3) \\
\vdots & \vdots \\
(n,n) & (n,n) \longrightarrow \text{NULL}
\end{array}$$

Input:

- Database
$$D:=\ \left\langle \{1,\cdots,n\};E\right
angle \qquad \|D\|=|E| \quad (E\subseteq D\times D)$$

- Query $q(x, y) := \neg E(x, y)$

Input:

- Database $D:=\ \left\langle \{1,\cdots,n\};E\right
 angle \ \ \|D\|=|E|\ \ (E\subseteq D\times D)$
- Query $q(x,y) := \exists z \ E(x,z) \land E(z,y)$

Not in $CD \circ Lin$.

Unless the $n \times n$ boolean matrix multiplication is doable in time $O(n^2)$.

Restricted databases or/and queries

Example: Graphs with bounded degree.

Example 2a

C a class of graph with bounded degree d.

Input:

- Graph G := (V, E) a graph of C.
- Query $q(x,y) := \exists z \ E(x,z) \land E(z,y)$.

Then the algorithm becomes easy:

- Preprocessing : We can compute the list of all solutions ! Because for each $a \in V$, $|N_2^G(a)| \le d^2$.
- Enumeration : We just have to read the list.

This can be generalized for every FO queries.¹

¹Seese'96, Durand, Grandjean'07, Segoufin, Kazana'11

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- Bounded expansion and local bounded expansion
- Our results
- Conclusion

Other problems

For **FO** queries over a class C of databases.

Model-Checking : Is this true ? O(n)

Counting : How many solutions ? O(n)

Check : Is this tuple a solution ? $O(n) \rightarrow O(1)$

Evaluation : Compute the entire set O(n+m)

Other problems

For **FO** queries over a class C of databases.

Model-Checking : Is this true ? O(n)

Counting : How many solutions ? O(n)

Check : Is this tuple a solution ? O(n) o O(1)

Evaluation : Compute the entire set O(n+m)

Restrictions are needed

Constant-delay Enumeration ⇒ Linear Model-Checking

Under some complexity hypothesis, the Model-Checking is not doable in polynomial time.¹

Restricted databases or/and queries

Bonded degree, planar · · · MSO, quantifier free · · · ·

Nowhere-dense First Order

Hereditary classes of graphs and FO queries

Hereditary classes of graphs and FO queries

Hereditary classes of graphs and FO queries

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Definitions bounded expansion

There are many equivalent definitions:

Winning strategies, asymptotic ratio edges/vertices, good ordering...

Definition: Bounded expansion

 \mathcal{C} has bounded expansion if and only if for all $k \in \mathbb{N}$, there is a $N_k \in \mathbb{N}$, such that for all $G \in \mathcal{C}$, G admit a k-tree width colouring using N_k colors.

tree-width colouring

Definition : k-tree width colouring with N colors

G is *k*-tree width coloured if and only if it is coloured (with less than *N* colors) and for all $H \subseteq G$, if *H* use less than *k* colours, then tree-width(H) $\leq k$

4-tree widh colouring with 5 colors

tree-width colouring

Definition : k-tree width colouring with N colors

G is k-tree width coloured if and only if it is coloured (with less than N colors) and for all $H \subseteq G$, if H use less than k colours, then tree-width(H) $\leq k$

Example: graph with bounded tree width

If G has tree width t, then for every k, we chose $N_k := t + 1$.

Tree-width t = 3

Example: graph with bounded tree width

If G has tree width t, then for every k, we chose $N_k := t + 1$.

Tree-width t = 3

Colouring using $N_k = t + 1 = 4$ colors

Example: graph with bounded tree width

If G has tree width t, then for every k, we chose $N_k := t + 1$.

Example: graph with bounded degree

If G has degree d, then for every k, we chose $N_k := d^k$.

Algorithm: for all $a \in G$, chose a color **not used** in is k neighbourhood. We now chose I a subset of k-1 colors. H = G[I].

Example: graph with bounded degree

If G has degree d, then for every k, we chose $N_k := d^k$.

Algorithm: for all $a \in G$, chose a color **not used** in is k neighbourhood. We now chose I a subset of k-1 colors. H = G[I].

a) There is no path of length k in H.

proof: If there is such path, then atleast two nodes must have the same color, but they are to close!

Example: graph with bounded degree

If G has degree d, then for every k, we chose $N_k := d^k$.

Algorithm: for all $a \in G$, chose a color **not used** in is k neighbourhood. We now chose I a subset of k-1 colors. H = G[I].

- a) There is no path of length k in H.
 - *proof:* If there is such path, then atleast two nodes must have the same color, but they are to close!
- b) Every connected component in H have less than k elements.

proof: Let a and b be in the same component. By a), $\operatorname{dist}^H(a,b) < k$. Hence $\operatorname{col}(a) \neq \operatorname{col}(b)$. And we have chosen only k-1 colors.

Results

Theorem (Dvorak et al. '11))

Model-checking for **FO** queries can be answered in time O(|G|)

Theorem (Kazana, Segoufin '13))

Enumeration for **FO** queries is doable with constant delay after linear preprocessing.

Stronger result : After a linear preprocessing, given any tuple \overline{a} , the smallest solution $\overline{b} \geq \overline{a}$ is computable in constant time.

Theorem (Kazana, Segoufin '13))

Counting for **FO** queries is doable in time O(|G|)

Definition local bounded expansion

Definition : Class of *r*-neighbourhoods

Let $\mathcal C$ be a class of graphs, $r \in \mathbb N$. $\mathcal C_r := \{H \mid \exists G \in \mathcal C \ \exists a \in G \ H \subseteq N_r^G(a)\}$

Definition: Local bounded expansion

Let C be a class of graphs, C has locally bounded expansion if and only if for all integer r, C_r has bounded expansion.

The expansion of a neighbourhood only depends on it's radius.

Some properties

Let $\mathcal C$ be a class of graph with local bounded expansion.

The number of edges is pseudo-linear.

$$orall e > 0, \; \exists N_\epsilon \in \mathbb{N}, \; \forall G \in \mathcal{C}, \; |G| > N_\epsilon \Longrightarrow \mathrm{edge}(G) \in O(|G|^{1+\epsilon})$$
 $n \ll n \log(n) \ll n \log^i(n) \ll \mathrm{pseudo-linear} \ll n \sqrt{n}$ "Pseudo linear $\approx n \log^i(n)$ " "Pseudo constant $\approx \log^i(n)$ "

Other properties

For every integer k every graph G can be k-tree width coloured using a pseudo-constant number of colors.

Theorem (Grohe et al. 2014)

The model-checking for nowhere-dense classes of graphs is pseudo-linear.

We are aiming at pseudo-linear preprocessing but still constant delay.

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Our results

Theorem (Segoufin, V. '17)

Over classes of graphs with local bounded expansion, every **FO** queries can be enumerate with constant delay after a pseudo-linear preprocessing.

Theorem (Segoufin, V. '17)

Over classes of graphs with local bounded expansion, the counting problem for **FO** queries is pseudo-linear.

Tools

- Gaifman theorem.
- Neighbourhood cover.¹
- Enumeration for graphs with Bounded expansion.
- Short-cut pointers dedicated to the enumeration.

¹Grohe et al. '14

Sketch of proof (1/4): Gaifman theorem

Theorem (Gaifman)

Every first order query is a combination of sentences and local queries.

$$q(x,y) := q_1(x) \land q_2(y) \land \operatorname{dist}(x,y) > 2r$$

Where q_1 and q_2 are r-local queries.

$$G \models q_1(a) \Longleftrightarrow N_r^G(a) \models q_1(a)$$

Sketch of proof (2/4): Neighbourhood cover

Algorithm:

 $L:=\emptyset$, for all $a\in G$ if $\left(N_r^G(a)\models q_1(a)\right)$ then add a in L Total time $O(n^2)$

Sketch of proof (2/4): Neighbourhood cover

Algorithm:

$$L:=\emptyset$$
, for all $a\in G$ if $\left(N_r^G(a)\models q_1(a)
ight)$ then add a in L Total time $O(n^2)$

A neighbourhood cover is a set of "representative" neighbourhood.

 $T:=U_1,\ldots,U_{\omega}$ with the following properties:

- $\forall a \in G, \exists U_{\lambda} \in T, N_r(a) \subseteq U_{\lambda}$
- $\forall U_{\lambda} \in \mathcal{T}, \exists a \in \mathcal{G}, \ U_{\lambda} \subseteq \mathcal{N}_{2r}(a)$ (The bags have bounded expansion !)
- $\forall a \in G$, $|\{\lambda \leq \omega \mid a \in U_{\lambda}\}|$ is psendo-constant

Sketch of proof (2/4): Neighbourhood cover

Algorithm:

$$L:=\emptyset$$
, for all $a\in G$ if $\left(N_r^G(a)\models q_1(a)
ight)$ then add a in L Total time $O(n^2)$

A neighbourhood cover is a set of "representative" neighbourhood.

 $T:=U_1,\ldots,U_{\omega}$ with the following properties:

- $\forall a \in G, \exists U_{\lambda} \in T, N_r(a) \subseteq U_{\lambda}$
- $\forall U_{\lambda} \in \mathcal{T}, \exists a \in \mathcal{G}, \ U_{\lambda} \subseteq \mathcal{N}_{2r}(a)$ (The bags have bounded expansion !)
- $\forall a \in G$, $|\{\lambda \leq \omega \mid a \in U_{\lambda}\}|$ is psendo-constant

Algorithm:

$$L:=\emptyset$$
, for all $\lambda\leq\omega$ for all $a\in U_\lambda$ if $\left(U_\lambda\models q_1(a)\right)$ then add a in L Total time pseudo linear.

Local queries can now be considered as unary predicate.

Only remains the distance !

Sketch of proof (3/4): Using bounded expansion

$$P_{\lambda} := \{ a \in G \mid N_{2r}(a) \subseteq U_{\lambda} \}$$

2 kind of solutions

close enough

exemple: (a,b)

 $x \in P_{\lambda} \land y \in U_{\lambda}$

Studied locally (within U_{λ})

far enough

exemple : (a,b')

 $x \in P_{\lambda} \land y \not\in U_{\lambda}$

No need to check the distance

Let $a \in q_1(G)$, let λ such that $a \in P_{\lambda}$ we want to enumerate :

- $\{b \in q_2(G) \mid b \in U_{\lambda}\}$ Easy using the enumeration procedure within U_{λ} .
- { $b \in q_2(G) \mid b \notin U_{\lambda}$ } Here we need something else.

Let $a \in q_1(G)$, let λ such that $a \in P_{\lambda}$ we want to enumerate :

- $\{b \in q_2(G) \mid b \in U_{\lambda}\}$ Easy using the enumeration procedure within U_{λ} .
- $\{b \in q_2(G) \mid b \notin U_{\lambda}\}$ Here we need something else.

$$NEXT(b,\lambda) := \min\{b' \in q_2(G) \mid b' \geq b \land b' \notin U_{\lambda}\}$$

Let $a \in q_1(G)$, let λ such that $a \in P_{\lambda}$ we want to enumerate :

- $\{b \in q_2(G) \mid b \in U_{\lambda}\}$ Easy using the enumeration procedure within U_{λ} .
- $\{b \in q_2(G) \mid b \not\in U_{\lambda}\}$ Here we need something else.

$$NEXT(b,\lambda) := \min\{b' \in q_2(G) \mid b' \geq b \land b' \notin U_{\lambda}\}$$

For all λ with $b_{max} \in U_{\lambda}$, we have $NEXT(b_{max}, \lambda) = NULL$

Let $a \in q_1(G)$, let λ such that $a \in P_{\lambda}$ we want to enumerate :

- $\{b \in q_2(G) \mid b \in U_{\lambda}\}$ Easy using the enumeration procedure within U_{λ} .
- $\{b \in q_2(G) \mid b \notin U_{\lambda}\}$ Here we need something else.

$$NEXT(b,\lambda) := \min\{b' \in q_2(G) \mid b' \geq b \land b' \notin U_{\lambda}\}$$

For all
$$\lambda$$
 with $b_{max} \in U_{\lambda}$, we have $NEXT(b_{max}, \lambda) = NULL$ $NEXT(b_i, \lambda) \in \{b_{i+1}, NEXT_{\lambda}(b_{i+1})\}$

Let $a \in q_1(G)$, let λ such that $a \in P_{\lambda}$ we want to enumerate :

- $\{b \in q_2(G) \mid b \in U_{\lambda}\}$ Easy using the enumeration procedure within U_{λ} .
- $\{b \in q_2(G) \mid b \not\in U_{\lambda}\}$ Here we need something else.

$$NEXT(b,\lambda) := \min\{b' \in q_2(G) \mid b' \geq b \land b' \notin U_{\lambda}\}$$

For all λ with $b_{max} \in U_{\lambda}$, we have $NEXT(b_{max}, \lambda) = NULL$ $NEXT(b_i, \lambda) \in \{b_{i+1}, NEXT_{\lambda}(b_{i+1})\}$

We are given two nodes (a, b), with $a \in q_1(G)$ and $b \in q_2(G)$. We want to either confirm that (a, b) is a solution and output it, or compute the next solution.

We are given two nodes (a, b), with $a \in q_1(G)$ and $b \in q_2(G)$. We want to either confirm that (a, b) is a solution and output it, or compute the next solution.

- First case : $a \in P_{\lambda}, \ b \notin U_{\lambda}$ for some λ . Therefore $G \models q(a,b)$ and we can output it.

We are given two nodes (a, b), with $a \in q_1(G)$ and $b \in q_2(G)$. We want to either confirm that (a, b) is a solution and output it, or compute the next solution.

- First case : $a \in P_{\lambda}, \ b \notin U_{\lambda}$ for some λ . Therefore $G \models q(a,b)$ and we can output it.
- Second case : $a \in P_{\lambda}, b \in U_{\lambda}$ for some λ .
 - ▶ Let $b_1 = \min\{y \in U_\lambda \mid \operatorname{dist}(a,y) > 2r \land y \geq b \land y \in q_2(G)\}$. From Segoufin-Kazana algorithm, we can compute b_1 , that is the smallest solution within U_λ .
 - ▶ Let $b_2 = NEXT(b, \lambda)$, that is the next solution outside of U_{λ} .

Let $b' = \min(b_1, b_2)$. We can output (a, b') that is the next solution.

Outline

- Introduction
- 2 What is query enumeration ?
- Constant-Delay
- 4 Structural restrictions
- 5 Bounded expansion and local bounded expansion
- 6 Our results
- Conclusion

Future work

Generalize the Nowhere-Dense case.

Enumeration with update.
 What happens if a small change occurs after the preprocessing?

Thank you!

Any Question?