MTH206M (2024-25, ODD SEMESTER) PROBLEM SET 2

- 1. Show that if A is a non-null real matrix then so is AA^{T} .
- 2. Let A be a real $m \times n$ matrix. Show that each diagonal element of AA^T is non-negative. If the i-th diagonal element of AA^T is 0, show that the i-th rows of A and AA^T are null and the i-th column of AA^T is null.
- 3. Let *A* be an $n \times n$ matrix such that CAC^T is symmetric for all matrices *C* of order $m \times n$ where *m* is a fixed positive integer \geq 2. Show that *A* is symmetric.
- 4. Do there exist square matrices A and B of the same order such that AB BA = I? Why?
- 5. Prove or disprove the following statements:
 - (a) Given any non-null (column) vector x, there exists a (column) vector y such that $y^Tx = 1$.
 - (b) If x and y are (column) vectors, then each column of xy^T is a scalar multiple of x.
 - (c) Let x and y are non-null (column) vectors such that $y^Tx = 0$. Then $z^Tx = 0$ implies z is a scalar multiple of y.
- 6. Show that for an upper triangular matrix, the rank is not less than the number of non-zero diagonal elements.
- 7. Let *A* be a square matrix and $B = \frac{1}{2}(A + A^T)$. Prove the following.
 - (a) *B* is symmetric.
 - (b) $x^T B x = x^T A x$ for all $n \times l$ vectors x.

- (c) If *C* is a symmetric matrix such that $x^TCx = x^TAx$ for all *x*, then C = B.
- 8. (a) If A is an $m \times n$ matrix and if $Ax_1 = 0, Ax_2 = 0, ..., Ax_n = 0$, for some basis $\{x_1, ..., x_n\}$ of \mathbb{R}^n , show that A = 0.
 - (b) If A is an $n \times n$ matrix and if $Ax_1 = x_1, Ax_2 = x_2, ..., Ax_n = x_n$, for some basis $\{x_1, ..., x_n\}$ of \mathbb{R}^n , show that $A = I_n$.
- 9. (a) If $y^T A x = 0$ for all A and if $x \neq 0$, prove that y = 0. (b) If $y^T A x = 0$ for all A and if $y \neq 0$, prove that x = 0.
- 10. Let A be an $m \times n$ matrix of rank r. Determine the possible values for the rank of the matrix obtained by (i) changing exactly one element and (ii) changing two elements.
- 11. Show that an $m \times n$ matrix A has rank at most 1 iff $A = xy^T$ for some column vectors x and y. Show further that $\rho(A) = 1$ iff both x and y are non-null.
- 12. Prove or disprove: If $A_{m \times n}$ has rank m and $B_{n \times m}$ has rank m, then AB has an inverse.
- 13. If *A* is a square matrix such that $3A^4 4A^3 + 2A + 5I = 0$, prove that *A* has an inverse.
- 14. Let A and B be $n \times n$ matrices such that AB is diagonal with non-zero diagonal entries. Show that in general, A and B may not commute but if the diagonal entries of AB are all equal then A and B commute.
- 15. A square matrix is said to be idempotent if $A^2 = A$. Show that if a matrix A is non-singular and idempotent then A = I.
- 16. If *A* and *B* commute and *B* is non-singular then show that *A* and B^- also commute.
- 17. Prove or disprove: $\rho(ABC) \leq \rho(AC)$.
- 18. If *A* and *B* have the same number of rows then show that C(A : B) = C(A) + C(B).
- 19. Prove that $\mathcal{N}(A) \subseteq \mathcal{N}(B)$ iff $\mathcal{R}(A) \supseteq \mathcal{R}(A)$. Also, show that null space of a matrix A is not altered if you premultiply A with a non-singular matrix.
- 20. For a square matrix A of order n, prove that

(a)
$$\mathcal{N}(A) \subseteq \mathcal{C}(I_n - A)$$
 and

- (b) $C(A) + C(I_n A) = \mathbb{R}^n$.
- 21. (a) If *A* and *B* are two matrices of the same number of rows then show that C([A:B]) = C(A) + C(B).
 - (b) If *A* and *B* are two matrices of the same number of columns then show that $\mathcal{R}(C) = \mathcal{R}(A) + \mathcal{R}(B)$ and $\mathcal{N}(C) = \mathcal{N}(A) \cap \mathcal{N}(B)$ where

$$C = \left[\frac{A}{B} \right]$$

- 22. (a) If A and B are two matrices of the same number of rows then show that $\rho[A:B] = \rho(A)$ iff B = AC for some matrix C.
 - (b) If A and B are two matrices of the same number of columns then show that $\rho(C) = \rho(A)$ iff B = DA for some matrix D where

$$C = \left[\frac{A}{B} \right]$$

- 23. For $n \times n$ matrices A and B, show that the rank of $\begin{bmatrix} A & I_n \\ \hline I_n & B \end{bmatrix}$ is n iff $B = A^{-1}$.
- 24. Prove that $\mathcal{N}(A) \subseteq \mathcal{N}(B)$ iff $\mathcal{R}(B) \subseteq \mathcal{R}(B)$. Deduce that null space does not change if we pre-multiply by a non-singular (inverse exists) matrix.
- 25. Show that $\rho(AB) = \rho(A)$ when *B* is non-singular.
- 26. Prove that $\rho(PAQ) = \rho(A)$ iff $\rho(A) = \rho(PA) = \rho(AQ)$.
- 27. Show that $C(A) \subseteq C(B)$ iff $C(RAX) \subseteq C(RBY)$ where R, X, and Y are non-singular matrices.
- 28. If (P, Q) is a rank-factorization of A, show that $(PT, T^{-1}Q)$ is a rank-factorization of A for all non-singular T and that every rank-factorization of A is of this form.
- 29. Show that $Q_1 = Q_2$ if (P, Q_1) and (P, Q_2) are rank-factorizations of A and $P_1 = P_2$ if (P_1, Q) and (P_2, Q) are rank-factorizations of A.

- 30. Show that a matrix *A* is of rank 1 iff $A = xy^T$ for some non-null column vectors *x* and *y*.
- 31. Let (P,Q) be a rank-factorization of a non-null square matrix A. Show that $A=A^2$ iff QP=I and that $\rho(A)=\rho(A^2)$ iff QP is non-singular.