

第14讲 实数集合与集合的基数

计算机系 黄民烈

Tel: 18901155050

Office: FIT 4-504

http://coai.cs.tsinghua.edu.cn/hml/

aihuang@tsinghua.edu.cn

课前思考

- ●有理数是离散的吗?
- 实数是离散的吗? 实数能不能有离散的表示?
- ●有理数和自然数本质一样吗?
- 有理数和实数有什么本质不同吗?

本章提纲

- 实数集合(整数、有理数、实数)
- 集合的等势
- ●有限集与无限集合
- 集合的基数
- 基数的算术运算
- 基数的比较
- 可数集合与连续统假设

定义12.1.1 (整数)对自然数集合N,令

$$Z_{+} = N - \{0\}$$

 $Z_{-} = \{\langle 0, n \rangle | n \in Z_{+} \}$
 $Z = Z_{+} \cup \{0\} \cup Z_{-}$

则称 Z_+ 的元素为正整数, Z_- 的元素为负整数,Z的元素为整数。

定义12.1.2 一个整数的相反数分别是

$$-n = \langle 0, n \rangle \stackrel{\text{def}}{=} n \in Z_+$$
,

$$-0=0,$$

$$-\langle 0,n\rangle=n\stackrel{\omega}{=}n\in Z_{+}$$
.

定义12.1.3 在集合Z上定义小于等于关系 \leq_z 为:

对任意的, $x,y \in Z$ 满足 $x \leq_z y$ 当且仅当

 $(x \in N \land y \in N \land x \leq_N y) \lor (x \in Z_- \land y \in N)$

 $\forall (x \in Z_- \land y \in Z_- \land -y \leq_N -x)$

在集合Z上定义小于关系 $<_Z$ 为,对任意的 $x,y \in Z$ 满足 $x <_Z y$ 当且仅当

$$(x \leq_Z y) \land (x \neq y)$$

定义12.1.4 (等价关系≅)对整数集合Z,令

$$Q_1 = Z \times (Z - \{0\}) = \{\langle a, b \rangle | a \in Z \land b \in Z - \{0\}\}$$

并称 Q_1 是Z上的因式的集合。对 $\langle a,b\rangle \in Q_1$,可以a/b用代替 $\langle a,b\rangle$ 。

在 Q_1 上定义关系为 \cong ,对任意的 $a/b \in Q_1$, $c/d \in Q_1$, $a/b \cong c/d$ 当且仅当 $a \cdot d = b \cdot c$

其中 $a \cdot d$ 是在Z上定义的乘法,=是Z上的相等关系。

定理12.1.1 Q_1 上的关系 \cong 是等价关系。

自反性

传递性

对称性

定义12.1.5(有理数集合) $Q = Q_1/\cong$,即**Q是集合Q**₁ **对等价关系** \cong **的商集**,则称**Q**的元素为有理数,一般用a/b表示**Q**中的元素[$\langle a,b\rangle_\cong$],并习惯上取a、b是互素的整数,且b > 0。

Q的元素是该等价关系的等价类,每个等价类对应一个 有理数。

定义12.1.6 在Q上定义等于关系 \leq_Q 为,对任意的 $a/b, c/d \in Q$,

$$a/b \leq_Q c/d$$
 当且仅当 $a \cdot d \leq_Z b \cdot c$ 。

总结: 如何定义有理数集合

- 定义整数集合Z
- 定义因子集合 $Q_1 = Z \times (Z \{0\})$
- $有理数集合为商集<math>Q_1/\cong$
 - ◆一个有理数对应一个等价类

定义12.1.7 (基本函数)如果 $f: N \rightarrow Q$ 满足条件,

- $(1) (\exists x) (x \in Q \land (\forall n) (n \in N \to |f(n)| < x))$
- (2) $(\exists n)(n \in N \land (\forall m)(\forall i)((m \in N \land i \in N \land n \leq m \land n \leq i \land m \leq i) \to (f(m) \leq f(i))))$ (当m, i足够大时,满足递增关系)

则*f*称是一个基本函数,或**有界非递减函数**。当*f*是一个基本函数时,则 函数值

$$f(0), f(1), f(2), \dots, f(n), \dots$$

称为一个基本序列,它有时写为

$$r_0, r_1, r_2, \dots, r_n, \dots$$

在以下定义与定理中,B表示所有基本函数的集合。BF(f)表示f是一个基本函数。

定理12.1.2 当 $f: N \rightarrow Q$ 取常数值时,f 是基本函数。即对任意的 $r \in Q$,

r, *r*, *r*, ...

是一个基本序列。

定理12.1.3 存在不是常值函数的基本函数。

定义12.1.8 对基本函数的集合B,定义B上的关系为 \cong ,

对任意的f, $g \in B$,

当且仅当

$$f \cong g$$

$$(\forall \varepsilon)((\varepsilon \in Q \land \varepsilon > 0) \to (\exists n)(n \in N \land (\forall m))$$

$$((m \in N \land n \leq m) \to |f(m) - g(m)| < \varepsilon)))$$

直观上说, $f \cong g$ 等价于f和g的序列的极限相同。

定理12.1.4 B上的关系≅是等价关系.

定理12.1.5 设 $f: N \rightarrow Q$ 和 $g: N \rightarrow Q$ 都是常值函数,且 $f \cong g$,则f = g。

定义12.1.9 (实数集) $\Diamond R = B/\cong$,即R是集合B对等价 关系 \cong 的商集,则称R的元素为实数,称R为实数集合。

R的每一个元素x对应了一个等价类[x]_至每个等价类是极限相同的基本函数集合若等价类中存在常值函数,则x为有理数;否则为无理数

定义12.1.9 (实数集) 令 $R = B/\cong$,即R是集合B对等价 关系 \cong 的商集,则称R的元素为实数,称R为实数集合。

无理数基本函数

$$\bullet \sqrt{2} = \sum_{n=0}^{\infty} {2n \choose n} \frac{1}{8^n}$$

$$\bullet \pi = \sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} (\frac{1}{2})^{n-1}$$

如何定义实数集合

- 1. 基本函数
- 2. 基本函数集合B上的等价关系≅
- 3. 每个等价类里是极限相同的基本函数
- 4. B和等价关系≅的商集: *R* =B/≅
- 5. 每个实数对应一个等价类
 - I. 有理数: 等价类中存在常函数
 - II. **无理数**:等价类中不存在常函数

定义12.1.10 在B上定义小于关系< $_{\rm B}$ 为,对任意的 f, $g \in B$, $f <_{\rm B} g$

当且仅当

$$(\exists \varepsilon)((\varepsilon \in Q \land 0 < \varepsilon) \land (\exists n)(n \in N \land (\forall m))))$$
$$((m \in N \land n \le m) \to g(m) - f(m) > \varepsilon))))$$

差别: 只在某个N之后大于关系才全部成立

定义12.1.11 在R上定义小于等于关系≤R和小于关系<R为,

对任意的 $f,g \in B$, 即对 $[f] \in R_{\cong}$ 和 $[g] \in R_{\cong}$,

$$[f]_{\cong} \leq_R [g]_{\cong}$$
 当且仅当 $f \leq_B g$,

$$[f]_{\cong} <_R [g]_{\cong}$$
 当且仅当 $f <_B g$ 。

【课前思考】

- 无限集合的基数应该如何定义?
- ●一个无限集合的子集真子集是否与原集合的基数相同?
- 实数集的基数是否与自然数集的基数相同?
- 怎样判断两个无限集合的基数是否相等,或谁多谁少?

【课前思考】

- 无限集合,所含的元素有无穷多个
- 基数如何定义?
- 怎样比较两个无限集合的大小?
- |N| = ? |Q| = ?
- |R| = ? $|R^+| = ?$
- |P(N)| = ?

部分=全体(Galileo悖论)

1638年著名天文学家Galileo提出下列问题:

$$N = \{0, 1, 2, 3, ..., n, ...\}$$

 $N^2 = \{0, 1, 4, 9, ..., n^2, ...\}$
哪个集合元素更多?

- ●一方面, N²⊆N, 因为2, 3, 5等均不在N²中;
- 另一方面,对于N中的每个元素n在N²中都有一个元素 n²与之对应。
- 当时它不仅困惑了Galileo,也使许多数学家束手无策。

哲学之问

● 无穷到底能不能比较?

部分=全体(Galileo悖论)

● 1874-1894年间,Cantor圆满地解决了Galileo悖论。

基本思想: "一一对应"

$$A = \{a, b, c, d\}$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad f: A \rightarrow n \quad n = \{0, 1, 2, \dots n-1\}$$

结论: N与N² 之间存在着一一对应(双射)

$$|N| = |N^2|$$
 等势

12.2 集合的等势

定义12.2.1 (集合的等势)

对集合A和B,如果存在从A到B的双射函数,就称A和B等势,记作 $A \approx B$;

如果不存在从A到B的双射函数,就称A和B不等势,记作¬ $A \approx B$

●例1: N≈Z。 因为存在双射函数

$$f: N \to Z, f(n) = \begin{cases} -\frac{1+n}{2} & \text{sin是奇数} \\ \frac{n}{2} & \text{sin是偶数} \end{cases}$$

● 例2: R≈R+, 其中R+是正实数集合。

因为存在双射函数

$$f \colon R \to R^+, \quad f(x) = e^x$$

所以R≈R+

例6: (0,1)≈R。

构造双射函数 f: (0,1)→R,

己知
$$\operatorname{tg}(\mathbf{x})$$
: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R$

设
$$f(x) = tg(ax + b)$$

$$f(1) = tg(a+b), a = \pi$$

代入
$$f(x) = tg \frac{\pi(2x-1)}{2}$$

● 例7: [0,1]≈(0,1), 构造双射函数

 $f:[0,1]\to(0,1),$

$$f(x) = \begin{cases} \frac{1}{4} & \exists x = 0 \\ \frac{1}{2} & \exists x = 1 \\ \frac{x}{4} & \exists x = 2^{-n}, n = 1,2,3, \dots \\ x & \exists x$$
 對 立 值

当 $x = 2^{-n}$ 时,多乘一个 1/4

12.2 集合的等势

● 定理12.2.1 对任意的集合A,有

$$P(A) \approx A_2$$

$$A_2 = \{f | f : A \to \{0,1\}\}$$

先进行有限集合的分析:如何构造幂集合?

● 证明: 因为2 = {0,1}, 所以 A_2 是所有函数 $f:A \rightarrow \{0,1\}$ 组成的集合。构造函数 $H: P(A) \rightarrow A_2$,

对于任意B $\in P(A)$, $H(B) = \chi_B(x)$: $A \rightarrow \{0,1\}$ 。 其中 $\chi_B(x)$ 是以A为全集时B的特征函数。

$\chi_{\rm B}: {\rm A} \rightarrow \{0,1\},$

1. 证H是单射的; $\chi_{\mathbf{B}}(x) = \begin{cases} 1 & x \in \mathbf{B} \\ 0 & x \notin \mathbf{B} \end{cases}$

设 B_1 , $B_2 \in P(A)$ 且 $B_1 \neq B_2$, 则 $H(B_1) = \chi_{B_1} \neq \chi_{B_2} = H(B_2)$, 所以, H是单射的。

2. 证H是满射的;

对任意的g \in A₂, g: A \rightarrow {0,1}, 令 B = { $x \mid x \in$ A \land g(x) = 1}, 则 B \subseteq A,即存在 B \in P(A), 且H(B) = g(x) 。所以, H是满射的.

12.2 集合的等势

定理12.2.2 对任意的集合 $A \setminus B$ 和C,

- $(1) A \approx A$
- (2) 若 $A \approx B$,则 $B \approx A$,
- (3) 若 $A \approx B \perp B \approx C$,则 $A \approx C$ 。

该定理表明,等势具有自反性,对称性和传递性。

是否是等价关系?

●由定理可知

$$N \approx N \times N \approx Z \approx Q$$

且

$$R \approx R^+ \approx (0,1) \approx [0,1]$$

12.2 集合的等势

定理12.2.3 康托定理(1890)

- (1) $\neg (N \approx R)$
- (2) 对任意的集合 $A, \neg (A \approx P(A))$

证明: (1) 只要证明 $\neg N \approx [0,1]$ 即可。

- 为此只要证明对任何函数 $f: \mathbb{N} \to [0,1]$,都存在 $x \in [0,1]$,使 $x \notin ran(f)$,即任何函数 $f: \mathbb{N} \to [0,1]$ 都不是双射的。
- 反证:假设存在一个双射函数 $f:N\to[0,1]$ 则[0,1]中的元素必与N中的元素一一对应,那么[0,1]中的元素必可排列成如下的形式:

$$ran(f) = [0,1] = \{x_1, x_2, ..., x_i, ...\}$$

 \bullet 设每个 x_i 的小数形式是

$$0. a_{i1}a_{i2} \dots a_{ij} \dots, \exists a_{ij} \in \{0,1,\dots,9\}$$

● 对任意一个 $f:N\rightarrow[0,1]$,顺序列出 f 值

$$f(0) = x_1 = 0.a_{11}a_{12}a_{13}a_{14} \cdots$$

$$f(1) = x_2 = 0.a_{21}a_{22}a_{23}a_{24} \cdots$$

$$f(2) = x_3 = 0.a_{31}a_{32}a_{33}a_{34} \cdots$$

$$f(3) = x_4 = 0.a_{41}a_{42}a_{43}a_{44} \cdots$$

$$\cdots$$

$$f(n-1) = x_n = 0.a_{n1}a_{n2}a_{n3}a_{n4} \cdots$$

● 依假设,任一[0,1]中的实数均应出现在上表中的某一行

关键:如何找出一个[0,1]区间的小数,

并证明该小数不在上表中出现。

Cantor 提出按对角线构造一个新的小数 x*

$$x^* = 0. a_{11}^* a_{22}^* a_{33}^* \dots a_{ii}^* \dots$$

使得 $a_{ii}^* \neq a_{ii} (i = 1,2,...,n,...)$

显然 $x^* \in [0,1]$, 然而 x^* 又不在上表中。

 $: x^*$ 与上表中的任一 x_i 至少总有一位数字相异。

于是 x^* ∉ ran(f), 即f不可能是满射。

故不存在双射函数 $f: N \rightarrow [0,1]$ 。

(2) 对任意的集合 $A, \neg (A \approx P(A))$

对任意的函数 $g:A \rightarrow P(A)$, 构造集合

 $B = \{ x | x \in A \land x \notin g(x) \}$ (g(x)是函数值,是A的子集)

- 显然, $B\subseteq A$, $B\in P(A)$ 。 对任意的 $x\in A$,有 $x\in B \Leftrightarrow x\notin g(x)$,则 $B\neq g(x)$ 。
- 所以B∉ran(g), 但B∈P(A),
- 所以g不是满射的。当然也不是双射的。
- 不存在双射函数 $g:A \rightarrow P(A)$ 。

$$P(A) = {\Phi, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}$$

$$g(x) = \{3\},$$
 满足B = $\{x | x \in A \land x \notin g(x)\}$

$$B \neq g(x)$$
, $B \notin ran(g)$, $g : A \rightarrow P(A)$,

总之,不管给出的函数g为何种情形,均可按此法构造集合B,

B是P(A)中的元素,但不在g的值域中。所以g不是满射的。

Cantor定理及其理论意义

- Cantor 首次对无穷集合从定性与定量两方面进行了 深入的研究
- ●Cantor定理揭示:
 - ◆N与R是有本质区别的
 - ◆并非所有的无穷集合的基数都是相同的
- ●著名的证明方法 Cantor Diagonal Method 已成为数学与计算机科学中证明"否定性结论"的强有力工具

