LEBANESE AMERICAN UNIVERSITY

School of Arts and Science

Department of Computer Science and Mathematics

CSC 310: Algorithms and Data Structures

Lab VIII

Important Note: Input should be read from a file named "graph.in" for all the probles.

Problem 1

Given an undirected graph G (V, E), where V is the set of vertices and E is the set of edges, you are required to print the degree of each vertex.

<u>Input</u>

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, output the degree of each vertex in the graph (as in the below sample).

Sample Input		Sample Output
2		0: 2
5	5	1: 2
0	1	2: 2
0	2	3: 3
1	3	4: 1
2	3	
3	4	0: 2
5	5	1: 3
0	1	2: 3
0	2	3: 1
1	2	4: 1
1	3	
2	4	

Given an undirected graph G = (V, E), where V is the set of vertices and E is the set of edges, you are required to print the vertices of the graph using BFS starting with the vertex of highest index

<u>Input</u>

The first line is an integer *T* representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, list the vertices of the graph via a BFS traversal.

Sample Input		Sample Output
2		42031
5	5	4 2 0 1 3
0	1	
0	2	
1	3	
2	3	
3	4	
5	5	
0	1	
0	2	
1	2	
1	3	
2	4	

Problem 3

Given an undirected graph G = (V, E), you are required to print the vertices of G using DFS starting with the vertex of index zero.

<u>Input</u>

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, print the vertices according to a DFS traversal.

Sample Input		Sample Output
2		1023
4	3	0 1 2 3
0	1	
1	2	
1	3	
4	6	
0	1	
0	2	
0	3	
1	2	
1	3	
2	3	

Problem 4

Given an undirected graph G = (V, E), print the connected components in the G.

<u>Input</u>

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, print each of the connected components on a separate line as shown in the below sample.

Sample Input	Sample Output
2	0:012

5	4	1: 3 4
0	1	0: 0 1 2
0	2	1:34
1	2	2: 5 6 7 8
3	4	
9	8	
0	1	
0	2	
1	2	
3	4	
5	6	
5	7	
6	8	
7	8	

Given a directed graph G (V, E), where V is the set of vertices and E is the set of edges, you are required to check if G is bipartite. A graph is bipartite if the graph can be colored using only 2 colors such that no adjacent vertices have the same color.

Input

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, output "bipartite" if the graph is bipartite and "not bipartite" otherwise.

le Input	Sample Output
	bipartite
5	not bipartite
1	
2	
0	
3	
1	
	1 2 0

- 5 5
- 0 1
- 0 2
- 2 4
- 3 2
- 4 3

Given an undirected graph G (V, E), where V is the set of vertices and E is the set of edges, you are required to check if the graph has a cycle.

<u>Input</u>

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, output "cycle" if the graph has a cycle and "no cycle" otherwise.

Sample Input		Sample Output	
2			no cycle
5	3		cycle
0	4		
1	2		
2	3		
7	6		
0	1		
0	2		
0	3		
1	4		
2	5		
3	6		

Given an undirected graph G (V, E), where V is the set of vertices and E is the set of edges, you are required to check if the graph has a cycle of length greater than 4.

<u>Input</u>

The first line is an integer T representing the number of test cases.

Each test case is made up of two integers n and m representing the number of vertices and edges respectively. Then m lines follow, each containing two integers u and v which are the endpoints of edge uv.

Output

For each test case, output "yes" if the graph has a cycle of length > 4, and "no" otherwise.

Sample Input		Sample Output
2		no
5	3	yes
0	4	
1	2	
2	3	
5	7	
0	1	
0	2	
0	3	
0	4	
1	3	
3	4	
4	2	