Problema de Otimização do Carregamento de um Avião de Carga

Suponha que avião de carga, Cargonov NA-225 deve transportar cargas em seus três compartimentos, Dianteiro (D), Central (C) e Traseiro (T), que têm as seguintes capacidades volumétricas e de peso:

Compartimento	Capacidade de peso (Kg)	Capacidade volumétrica (m³)
Dianteiro (D)	77500	450
Central (C)	115000	545
Traseiro (T)	57500	305

Há 4 tipos de cargas a serem transportadas no depósito do aeroporto. Cada carga tem um peso total e o correspondente volume por peso. Para cada unidade (Kg) transportada há um valor de lucro recebido pela empresa transportadora. Para montar o carregamento do avião, qualquer combinação de cargas pode ser colocada nos compartimentos, respeitando-se as capacidades volumétricas e de peso mostradas na tabela anterior. As cargas restantes ficarão acumuladas para os próximos voos.

Carga	Peso (Kg)	Volume (m ³ /1000 Kg)	Lucro (\$/Kg)
Carga 1	66000	7,75	0,82
Carga 2	55000	10,60	1,15
Carga 3	85000	8,36	0,92
Carga 4	40000	6,30	0,75

Objetivo #1: determinar quais cargas devem ser colocadas em cada compartimento, de modo a maximizar o lucro obtido com o transporte. Informar o resultado em uma matriz {Carga X Compartimento}, bem como o lucro total.

Objetivo #2: repetir o problema acima com os mesmos dados, porém considerando a necessidade de manter o equilíbrio em voo. Para tanto, a soma dos pesos carregados nos compartimentos D e T devem ser iguais ao peso carregado no compartimento C, com uma tolerância máxima de ±5%. Observe que esta nova restrição implica em uma grande epistasia no problema e a solução para contornar esta dificuldade é modificar a maneira com que as variáveis são codificadas.