[AAL] Tablica mieszająca dokumentacja

1. Autorzy:

- -Rafał Lewanczyk
- -https://github.com/rafallewanczyk/AAL

2. Temat

W14, W21, W31

Analiza oraz implementacja tablicy mieszającej spełniającej następujące założenia:

- -W przypadku kolizji obliczamy nową lokalizację
- -Testy przeprowadzić dla: listy słów języka polskiego wygenerowanych z zadanych tekstów
- -Zastosować jedną funkcję mieszającą; dodatkowo przeprowadzić analizę dla enumeracji tablicy (wydobycia wszystkich elementów).

3. Założenia:

- -Program został napisany w języku Python
- -Dane testowe służące do przeprowadzenia analizy składają się z listy różnych polskich słów.

4. Opis funkcjonalności:

- -klasa *HashMap* zawiera implementacje tablicy mieszającej o adresowaniu otwartym. Udostępnia metody *add, delete, find, getall*
- -klasa *Generator* zawiera implementacje generatora. Generator czyta dane z pliku dostarczonego przez użytkownika lub wygenerowanego przez *wget* oraz usuwa z niego wszystkie słowa które zawierają znaki spoza polskiego alfabetu lub są zawarte w nawiasach <>. Zwraca listę słów.

5. Uruchomienie programu:

Opisane w readme.md

6. Rozwiązanie:

- -Zamiana klucza na wartość całkowitoliczbową została zrealizowana poprzez jej reprezentacje w systemie pozycyjnym o podstawie 380 (kod ASCII ostatniej polskiej litery). Aby uniknąć zbyt dużych wartości klucza już podczas zamiany obliczamy na bieżąco jego moduł K. W tym celu został zastosowany algorytm szybkiego potegowania modulo.
- -Tablica używa adresowania otwartego o funkcji haszującej danej wzorem $h(k,i)=(h\hat{\ }(k)\ +\ \frac{1}{2}i\ +\ \frac{1}{2}i^2)\ mod\ K,$ gdzie K jest rozmiarem tablicy, i jest liczbą kolizji
- -Jeśli komórka tablicy haszującej nie posiadała nigdy żadnej wartości przechowuje w niej wartość '1'. Po dodaniu klucza, komórka przechowuje klucz, natomiast po usunięciu klucza przechowuje wartość '2'. Wartości '1' i '2' są potrzebne aby móc wyszukiwać w tablicy po wystąpieniu kolizji oraz usunięcia.
- -Jeśli funkcja haszująca próbująca wstawić element do tablicy wykona pętlę, tablica odrzuci słowo oraz wyświetli komunikat "nie można dodać klucza {klucz}"
- -Tablica nie pozwala na dodanie duplikatu klucza

7. Analiza:

Szybkość działania tablicy mieszającej zależy od jej współczynnika wypełnienia $\alpha=rac{liczba\ elementów\ w\ tablicy}{wielkość\ tablicy}$. Analizę złożoności przeprowadziłem dla dwóch przypadków lphapprox 0.5 oraz lphapprox 1

$$q(n) = \frac{t(n)T(n_{medianaa})}{t(n_{mediana})T(n)}$$

Wstawianie elementu dla		
$\alpha \approx 0.5$. Szacuje O(1)		
n	t(n) [s*e-5]	q(n)
1000	4.60	0.92
5000	4.68	0.93
10000	4.58	0.91
50000	5.14	1.02
100000	5.03	1.00
500000	5.01	1.00
1000000	5.01	1.00
2000000	5.78	1.15
3000000	7.27	1.45

Wstawianie elementu dla		
$\alpha \approx 1$. Szacuje O(1)		
n	t(n)[s*e-5]	q(n)
1000	8.70	1.04
5000	7.00	0.83
10000	7.22	0.86
50000	8.24	0.98
100000	8.38	1.00
500000	8.26	0.98
1000000	8.16	0.97
2000000	6.72	0.80
3000000	6.58	0.78
		•

Enumeracja tablicy dla			
$\alpha \approx 0.5$. Szacuje O(n)			
n	t(n) [s]	q(n)	
1000	0.00	1.26	
5000	0.01	0.92	
10000	0.02	0.97	
50000	0.10	0.88	
100000	0.24	1.00	
500000	1.34	1.13	
1000000	2.40	1.01	
2000000	4.73	0.99	
3000000	7.02	0.98	

Enumeracja tablicy dla		
$\alpha \approx 1$. Szacuje O(n)		
n	t(n) [s]	q(n)
1000	0.00	1.42
5000	0.01	0.85
10000	0.02	0.75
50000	0.10	0.97
100000	0.21	1.00
500000	2.16	2.04
1000000	2.15	1.01
2000000	4.17	0.98
3000000	6.33	1.00

N wyszukań dla		
$\alpha \approx 0.5$. Szacuje O(n)		
n	t(n) [s]	q(n)
1000	0.04	0.91
5000	0.23	0.93
10000	0.46	0.93
50000	2.52	1.02
100000	4.95	1.00
500000	24.82	1.00
1000000	49.08	0.99
2000000	114.49	1.16
3000000	145.70	0.98

N wyszukań dla		
$\alpha \approx 1$. Szacuje O(n)		
n	t(n) [s]	q(n)
1000	0.05	0.77
5000	0.25	0.86
10000	0.50	0.85
50000	2.85	0.96
100000	5.94	1.00
500000	30.39	1.02
1000000	61.25	1.03
2000000	121.55	1.02
3000000	184.37	1.03

8. Wnioski:

Pomimo że w przypadku wykonania n wyszukań oraz enumeracji tablicy złożoność jest liniowa czasy tych operacji znacznie się różnią. Jest to spowodowane koniecznością obliczania wartości indeksu elementu w tablicy przy wyszukiwaniu co zwiększa czas wykonywania, ale nie zmienia klasy złożoności.

Enumeracja tablicy nie zależy od współczynnika zapełnienia α .

Jeżeli $\alpha < 1$ to oczekiwana liczba porównań podczas wstawiania lub wyszukiwania jest mniejsza niż $\frac{1}{1-\alpha}$