Discrete Elastic Rod Simulation of Shoelace Knots and Strength

Esther Gérard, Evelyn Kim, Noah Shamsai

Motivation

Chisnall, R. (2021). An Analytical Review of Figure Eight Loops and Bowlines as Harness Tie-in and Anchoring Knots . Uluslararası Dağcılık ve Tırmanış Dergisi , 4 (2) , 43-59 . DOI: 10.36415/dagcilik.993072

Chem. Soc. Rev., 2022,51, 7779-7809

Background

Topological classification of knots

Vishal P. Patil et al. "Topological Mechanics of Knots and Tangles". In: Science 367 (2020).

Mechanical study of n-foil knots

M Khalid Jawed et al. "Untangling the Mechanics and Topology in the Frictional Response of Long Overhand Elastic Knots". In: American Physical Society 115 (2015), p. 118302.

Implementation

```
Algorithm 1 Discrete Elastic Rods
Require: \mathbf{q}(t_i), \dot{\mathbf{q}}(t_i)
                                                                                                    \triangleright DOFs and velocities at t = t_i
Require: (\mathbf{a}_1^k(t_i), \mathbf{a}_2^k(t_i), \mathbf{t}^k(t_i))
                                                                                                            \triangleright Reference frame at t = t_i
Require: free_index
                                                                                                               ▷ Index of the free DOFs
Ensure: \mathbf{q}(t_{i+1}), \dot{\mathbf{q}}(t_{i+1})
                                                                                                \triangleright DOFs and velocities at t = t_{i+1}
Ensure: (\mathbf{a}_{1}^{k}(t_{i+1}), \mathbf{a}_{2}^{k}(t_{i+1}), \mathbf{t}^{k}(t_{i+1}))
                                                                                                        \triangleright Reference frame at t = t_{i+1}
 1: function DISCRETE_ELASTIC_RODS( \mathbf{q}, \dot{\mathbf{q}}(t_j), \left(\mathbf{a}_1^k(t_j), \mathbf{a}_2^k(t_j), \mathbf{t}^k(t_j)\right))
             Guess: \mathbf{q}^{(1)}(t_{j+1}) \leftarrow \mathbf{q}(t_j)
             n \leftarrow 1
             while error > tolerance do
  4:
                    Compute reference frame (\mathbf{a}_1^k(t_{j+1}), \mathbf{a}_2^k(t_{j+1}), \mathbf{t}^k(t_{j+1}))^{(n)} using \mathbf{q}^{(n)}(t_{j+1})
 5:
                    Compute reference twist \Delta m_{k \text{ ref}}^{(n)} (k = 2, ..., N-1)
 6:
                    Compute material frame (\mathbf{m}_1^k(t_{i+1}), \mathbf{m}_2^k(t_{i+1}), \mathbf{t}^k(t_{i+1}))^{(n)}
 7:
                    Compute f and J
 9:
                    f_{\text{free}} \leftarrow f \text{ (free\_index)}
                   J_{free} \leftarrow J (free_index, free_index)
10:
                    \Delta \mathbf{q}_{\text{free}} \leftarrow \mathbb{J}_{\text{free}} \backslash \mathbf{f}_{\text{free}}
11:
                    \mathbf{q}^{(n+1)} (free_index) \leftarrow \mathbf{q}^{(n)} (free_index) -\Delta \mathbf{q}_{\text{free}} \triangleright \text{Update free DOFs}
12:
                    error \leftarrow sum (abs (f_{free}))
13:
14:
                    n \leftarrow n + 1
             end while
15:
             \mathbf{q}(t_{j+1}) \leftarrow \mathbf{q}^{(n)}(t_{j+1})
            \mathbf{q}(t_{i+1}) \leftarrow \frac{\mathbf{q}(t_{i+1}) - \mathbf{q}(t_i)}{\Delta t}
             \left(\mathbf{a}_{1}^{k}(t_{j+1}), \mathbf{a}_{2}^{k}(t_{j+1}), \mathbf{t}^{k}(t_{j+1})\right) \leftarrow \left(\mathbf{a}_{1}^{k}(t_{j+1}), \mathbf{a}_{2}^{k}(t_{j+1}), \mathbf{t}^{k}(t_{j+1})\right)^{(n)}
            return \mathbf{q}(t_{j+1}), \dot{\mathbf{q}}(t_{j+1}), \left(\mathbf{a}_1^k(t_{j+1}), \mathbf{a}_2^k(t_{j+1}), \mathbf{t}^k(t_{j+1})\right)
20: end function
```

Discrete Elastic Rods (DER) algorithm with Implicit model

Tying the knot -> Untying the knot

$$f_i \equiv \frac{m_i}{\Delta t} \left[\frac{q_i(t_{j+1}) - q_i(t_j)}{\Delta t} - \dot{q}_i(t_j) \right] + \frac{\partial E_{\text{elastic}}}{\partial q_i} - f_i^{\text{ext}} = 0, \tag{7.1}$$

$$\mathbb{J}_{ij} = \frac{\partial f_i}{\partial q_j} = \mathbb{J}_{ij}^{\text{inertia}} + \mathbb{J}_{ij}^{\text{elastic}} + \mathbb{J}_{ij}^{\text{ext}}, \tag{7.2}$$

Desired Results

- Successful realistic simulation of reef knot tying & untying
- Implementation in C++
- Plots of
 - Shoelace stiffness vs. knot strength
 - Shoelace friction vs. knot strength

Thank you! Questions?