Álgebra Universal e Categorias

Exame de recurso (13 de junho de 2018) - Proposta de resolução — duração: 2h30 _____

1. (a) Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo. Mostre que se S_1 é um subuniverso de \mathcal{A} e S_2 é um subuniverso de \mathcal{B} , então $S_1\times S_2$ é um subuniverso da álgebra $\mathcal{A}\times\mathcal{B}$.

Seja S_1 um subuniverso de \mathcal{A} . Então

- (i) $S_1 \subseteq A$;
- (ii) para qualquer símbolo de operação n-ário f, $n \in \mathbb{N}_0$, e para quaisquer $x_1, \dots x_n \in S_1$, $f^{\mathcal{A}}(x_1, \dots x_n) \in S_1$.

Seja S_2 um subuniverso de \mathcal{B} . Então

- (iii) $S_2 \subseteq B$;
- (iv) para qualquer símbolo de operação n-ário f, $n \in \mathbb{N}_0$, e para quaisquer $y_1, \ldots y_n \in S_2$, $f^{\mathcal{B}}(y_1, \ldots y_n) \in S_2$.

Pretende-se mostrar que $S_1 \times S_2$ é um subuniverso de $\mathcal{A} \times \mathcal{B}$. De facto:

- (v) por (i) e (iii), tem-se $S_1 \times S_2 \subseteq A \times B$;
- (vi) para qualquer símbolo de operação n-ário $f, n \in \mathbb{N}_0$, e para quaisquer $(x_1, y_1), \ldots, (x_n, y_n) \in S_1 \times S_2$, $f^{\mathcal{A} \times \mathcal{B}}((x_1, y_1), \ldots, (x_n, y_n)) \in S_1 \times S_2$. Com efeito, como $(x_1, y_1), \ldots, (x_n, y_n) \in S_1 \times S_2$, tem-se $x_1, \ldots, x_n \in S_1$ e $y_1, \ldots, y_n \in S_2$. Logo, por (ii) e (iv), tem-se $f^{\mathcal{A}}(x_1, \ldots, x_n) \in S_1$ e $f^{\mathcal{B}}(y_1, \ldots, y_n) \in S_2$. Assim,

$$f^{\mathcal{A} \times \mathcal{B}}((x_1, y_1), \dots, (x_n, y_n)) = (f^{\mathcal{A}}(x_1, \dots, x_n), f^{\mathcal{B}}(y_1, \dots, y_n)) \in S_1 \times S_2.$$

De (v) e (vi) conclui-se que $S_1 \times S_2$ é um subuniverso de $\mathcal{A} \times \mathcal{B}$.

(b) Sejam $\mathcal{A}=(\{a,b,c\};f^{\mathcal{A}})$ e $\mathcal{B}=(\{0,1\};f^{\mathcal{B}})$ as álgebras de tipo (1) tais que $f^{\mathcal{A}}$ e $f^{\mathcal{B}}$ são as operações definidas por

$$\begin{array}{c|ccccc} x & a & b & c \\ \hline f^{\mathcal{A}}(x) & a & b & a \end{array} \qquad \begin{array}{c|ccccc} x & 0 & 1 \\ \hline f^{\mathcal{B}}(x) & 1 & 0 \end{array}.$$

Determine $Sg^{\mathcal{A}}(\{c\})$ e $Sg^{\mathcal{B}}(\{0\})$. Diga se $Sg^{\mathcal{A}}(\{c\}) \times Sg^{\mathcal{B}}(\{0\}) = Sg^{\mathcal{A} \times \mathcal{B}}(\{(c,0)\})$.

Dada uma álgebra $\mathcal{C}=(C;F)$ e um conjunto $X\subseteq C$, representa-se por $Sg^{\mathcal{C}}(X)$ o menor subuniverso de \mathcal{C} que contém X, isto é, $Sg^{\mathcal{C}}(X)$ é o menor subconjunto de C que contém X e é fechado para as operações de \mathcal{C} (o que significa que, para qualquer símbolo de operação n-ário f e para quaisquer $x_1,\ldots,x_n\in Sg^{\mathcal{C}}(X)$, $f^{\mathcal{C}}(x_1,\ldots,x_n)\in Sg^{\mathcal{C}}(X)$).

Assim, considerando a álgebra \mathcal{A} e $X = \{c\}$, tem-se:

- $\{c\} \subseteq Sg^{\mathcal{A}}(\{c\});$
- $f^{\mathcal{A}}(c) = a \in Sg^{\mathcal{A}}(X)$ (pois $c \in Sg^{\mathcal{A}}(\{c\})$ e $Sg^{\mathcal{A}}(\{c\})$ é fechado para a operação $f^{\mathcal{A}}$);
- $f^{\mathcal{A}}(a) = a \in Sg^{\mathcal{A}}(X)$ (pois $a \in Sg^{\mathcal{A}}(\{c\})$ e $Sg^{\mathcal{A}}(\{c\})$ é fechado para a operação $f^{\mathcal{A}}$).

Logo $\{a,c\} \subseteq Sg^{\mathcal{A}}(\{c\}).$

A respeito de $\{a,c\}$ verifica-se que este conjunto contém $\{c\}$ e é um subuniverso de \mathcal{A} (pois é fechado para as operações de \mathcal{A}). Então, como $Sg^{\mathcal{A}}(\{c\})$ é o menor subuniverso de \mathcal{A} que contém $\{c\}$, tem-se $Sg^{\mathcal{A}}(\{c\}) \subseteq \{a,c\}$ e, portanto, $Sg^{\mathcal{A}}(\{c\}) = \{a,c\}$.

De modo análogo determina-se $Sg^{\mathcal{B}}(\{0\})$. Uma vez que $Sg^{\mathcal{B}}(\{0\})$ é o menor subuniverso de \mathcal{B} que contém $\{0\}$, tem-se:

- $\{0\} \subseteq Sg^{\mathcal{B}}(\{0\});$
- $f^{\mathcal{B}}(0) = 1 \in Sg^{\mathcal{B}}(\{0\})$ (pois $0 \in Sg^{\mathcal{B}}(\{0\})$ e $Sg^{\mathcal{B}}(\{0\})$ é fechado para a operação $f^{\mathcal{B}}$);
- $f^{\mathcal{B}}(1) = 0 \in Sg^{\mathcal{B}}(\{0\})$ (pois $1 \in Sg^{\mathcal{B}}(\{0\})$ e $Sg^{\mathcal{B}}(\{0\})$ é fechado para a operação $f^{\mathcal{B}}$).

Logo $\{0,1\} \subseteq Sq^{\mathcal{B}}(\{0\}).$

O conjunto $\{0,1\}$ contém $\{0\}$ e é um subuniverso de \mathcal{B} (pois é fechado para as operações de \mathcal{B}). Então, como $Sg^{\mathcal{B}}(\{0\})$ é o menor subuniverso de \mathcal{B} que contém $\{0\}$, conclui-se que $Sg^{\mathcal{B}}(\{0\}) = \{0,1\}$.

Logo
$$Sg^{\mathcal{A}}(\{c\}) \times Sg^{\mathcal{B}}(\{0\}) = \{a, c\} \times \{0, 1\} = \{(a, 0), (c, 0), (a, 0), (a, 1)\}.$$

Uma vez que $Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$ é o menor subuniverso de $\mathcal{A}\times\mathcal{B}$ que contém $\{(c,0)\}$, tem-se:

- $-\{(c,0)\}\subseteq Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\});$
- $-f^{\mathcal{A}\times\mathcal{B}}(c,0)=(f^{\mathcal{A}}(c),f^{\mathcal{B}}(0))=(a,1)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\}) \text{ (pois } (c,0)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})\text{ e } Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})\text{ e }$
- $-f^{\mathcal{A}\times\mathcal{B}}(a,1)=(f^{\mathcal{A}}(a),f^{\mathcal{B}}(1))=(a,0)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\}) \text{ (pois } (a,1)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})\text{ e } Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})\text{ e }$
- $f^{\mathcal{A}\times\mathcal{B}}(a,0)=(f^{\mathcal{A}}(a),f^{\mathcal{B}}(1))=(a,1)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$ (pois $(a,0)\in Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$ e $Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$ e fechado para a operação $f^{\mathcal{A}\times\mathcal{B}}$).

Por conseguinte, $\{(c,0),(a,1),(a,0)\}\subseteq Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$. O conjunto $\{(c,0),(a,1),(a,0)\}$ contém $\{(c,0)\}$ e é fechado para as operações de $\mathcal{A}\times\mathcal{B}$. Uma vez que $Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})$ é o menor subuniverso de $\mathcal{A}\times\mathcal{B}$ que contem $\{(c,0)\}$, vem que $Sg^{\mathcal{A}\times\mathcal{B}}(\{(c,0)\})=\{(c,0),(a,1),(a,0)\}$.

Então
$$Sg^{\mathcal{A}}(\{c\}) \times Sg^{\mathcal{B}}(\{0\}) \neq Sg^{\mathcal{A} \times \mathcal{B}}(\{(c,0)\})$$

- 2. Sejam $\mathcal{A}=(\mathbb{Z};*^{\mathcal{A}})$ e $\mathcal{B}=(\mathbb{Z};*^{\mathcal{B}})$ as álgebras de tipo (2), onde $*^{\mathcal{A}}$ representa a adição usual em \mathbb{Z} e $*^{\mathcal{B}}$ é a operação definida por $x*^{\mathcal{B}}y=x+y-5$, para quaisquer $x,y\in\mathbb{Z}$. Seja $\alpha:\mathbb{Z}\to\mathbb{Z}$ a aplicação definida por $\alpha(x)=x+5$, para todo $x\in\mathbb{Z}$.
 - (a) Mostre que α é um epimorfismo de \mathcal{A} em \mathcal{B} .

A aplicação α é um homomorfismo de \mathcal{A} em \mathcal{B} , uma vez que é compatível com o símbolo de operação *. De facto, para quaisquer $x,y\in\mathbb{Z}$,

$$\alpha(x *^{\mathcal{A}} y) = \alpha(x+y) = (x+y) + 5 = (x+5) + (y+5) - 5 = \alpha(x) + \alpha(y) - 5 = \alpha(x) *^{\mathcal{B}} \alpha(y).$$

A aplicação α também é sobrejetiva, pois, para todo $y \in \mathbb{Z}$, existe $x = y - 5 \in \mathbb{Z}$ tal que $\alpha(x) = y$. Uma vez que α é um homomorfismo sobrejetivo, então α é um epimorfismo.

(b) Justifique que o epimorfismo canónico $\pi_{\ker \alpha}$ de \mathcal{A} em $\mathcal{A}/\ker \alpha$, definido por

$$\begin{array}{ccc} \pi_{\ker\alpha}: \mathbb{Z} & \to & \mathbb{Z}/\ker\alpha \\ x & \mapsto & [x]_{\ker\alpha} \end{array}$$

é uma aplicação injetiva.

Para quaisquer $x, y \in \mathbb{Z}$,

$$\pi_{\ker \alpha}(x) = \pi_{\ker \alpha}(y) \quad \Rightarrow \quad [x]_{\ker \alpha} = [y]_{\ker \alpha}$$
$$\Rightarrow \quad \alpha(x) = \alpha(y)$$
$$\Rightarrow \quad x + 5 = y + 5$$
$$\Rightarrow \quad x = y$$

Logo α é injetiva.

(c) Conclua que $A \cong A/\ker \alpha$ e $B \cong A/\ker \alpha$.

Da alínea anterior segue que $\pi_{\ker \alpha}$ é um isomorfismo de \mathcal{A} em $\mathcal{A}/\ker_{\alpha}$. Logo $\mathcal{A} \cong \mathcal{A}/\ker \alpha$. Da alínea (a) e pelo Teorema do Homomorfismo, conclui-se que $\mathcal{A}/\ker \alpha \cong \mathcal{B}$.

3. Seja $\mathcal{A}=(A,f^{\mathcal{A}})$ a álgebra de tipo (1), onde $A=\{0,1,2,3\}$ e $f^{\mathcal{A}}:\{0,1,2,3\}\to\{0,1,2,3\}$ é a operação definida por

Sejam $\theta_1 = \Theta(1,3)$ e $\theta_2 = \Theta(0,1) \vee \Theta(2,3)$.

(a) Considere a álgebra $\mathcal{A}/\theta_1 = (A/\theta_1; f^{\mathcal{A}/\theta_1})$. Para cada $[x]_{\theta_1} \in A/\theta_1$, determine $f^{\mathcal{A}/\theta_1}([x]_{\theta_1})$.

Por definição, $\Theta(1,3)$ é a menor congruência em $\mathcal A$ que contém $\{(1,3)\}$. Então, como $(1,3)\in\Theta(1,3)$ é uma relação de equivalência e $\Theta(1,3)$ satisfaz a propriedade de substituição, tem-se

- (i) $\triangle_A \subseteq \Theta(1,3)$ (pois $\Theta(1,3)$ é reflexiva);
- (ii) $(1,3) \in \Theta(1,3)$ (por definição de $\Theta(1,3)$);
- (iii) $(3,1) \in \Theta(1,3)$ (por (ii) e porque $\Theta(1,3)$ é simétrica);
- (iv) $(f^{\mathcal{A}}(1), f^{\mathcal{A}}(3)) = (0, 2) \in \Theta(1, 3)$ (por (ii) e porque $\Theta(1, 3)$ satisfaz a propriedade de substituição);
- (v) $(2,0) \in \Theta(1,3)$ (por (iv) e porque $\Theta(1,3)$ é simétrica);
- (vi) $(f^A(0), f^A(2)) = (0, 2) \in \Theta(1, 3)$ (por (iv) e porque $\Theta(1, 3)$ satisfaz a propriedade de substituição);

(vii) $(f^{\mathcal{A}}(2), f^{\mathcal{A}}(0)) = (2, 0) \in \Theta(1, 3)$ (por (v) e porque $\Theta(1, 3)$ satisfaz a propriedade de substituição).

Assim, $\triangle_A \cup \{(1,3),(3,1),(0,2),(2,0)\} \subseteq \Theta(1,3)$. Uma vez que $\triangle_A \cup \{(1,3),(3,1),(0,2),(2,0)\}$ é uma congruência em \mathcal{A} que contém $\{(1,3)\}$ e $\Theta(1,3)$ é a menor congruência em \mathcal{A} que contém $\{(1,3)\}$, então $\Theta(1,3) = \triangle_A \cup \{(1,3),(3,1),(0,2),(2,0)\}$.

Como $\theta_1 = \triangle_A \cup \{(1,3),(3,1),(0,2),(2,0)\}$, tem-se $A/\theta_1 = \{[1]_{\theta_1},[0]_{\theta_1}\}$ e, por definição de $f^{\mathcal{A}/\theta_1}$, $f^{\mathcal{A}/\theta_1}([1]_{\theta_1}) = [f^{\mathcal{A}}(1)]_{\theta_1} = [0]_{\theta_1}$ e $f^{\mathcal{A}/\theta_1}([0]_{\theta_1}) = [f^{\mathcal{A}}(0)]_{\theta_1} = [0]_{\theta_1}$.

(b) Sabendo que $\mathcal{A} \cong \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_2$ e que um dos seguintes diagramas de Hasse representa o reticulado $\mathrm{Con}\mathcal{A}$, diga qual dos reticulados de congruências R_1 , R_2 ou R_3 é o reticulado $\mathrm{Con}\mathcal{A}$. Justifique.

Atendendo a que |A|=4, $|A/\theta_1|=2$ e $A\cong A/\theta_1\times A/\theta_2$, tem-se $|A/\theta_2|=2$. Logo a álgebra $\mathcal A$ é um produto de álgebras não triviais e, portanto, a álgebra $\mathcal A$ não é diretamente indecomponível. Uma álgebra é diretamente indecomponível se e só as suas únicas congruências fator são a congruência trivial e a congruência universal. Então, como $\mathcal A$ não é diretamente indecomponível, a álgebra $\mathcal A$ tem congruências fator para além das congruências Δ_A e ∇_A . Uma congruência $\theta\in\mathrm{Con}\mathcal A$ diz-se uma congruência fator se existe $\theta'\in\mathrm{Con}\mathcal A$ tal que: $\theta\cap\theta'=\Delta_A$, $\theta\vee\theta'=\nabla_A$ e $\theta\circ\theta'=\theta'\circ\theta$. Uma vez que nos reticulados R_1 e R_2 as únicas congruências fator são a congruência trivial e a congruência universal, conclui-se que o reticulado $\mathrm{Con}\mathcal A$ é representado pelo diagrama R_3 .

4. Considere os operadores de classes de álgebras H, P e S. Mostre que, para qualquer classe de álgebras K, $HSP(\mathbf{K}) = HSPS(\mathbf{K})$. Conclua que $V(\mathbf{K}) = V(S(\mathbf{K}))$.

Para qualquer operador $O \in \{H, P, S\}$ e para quaisquer classes de álgebras K e K', verifica-se que:

- $\mathbf{K} \subseteq O(\mathbf{K})$.

 R_1

- $\mathbf{K} \subset \mathbf{K}' \Rightarrow O(\mathbf{K}) \subset O(\mathbf{K}')$.

Assim, para qualquer classe de álgebras \mathbf{K} , tem-se $\mathbf{K} \subseteq S(\mathbf{K})$, donde $P(\mathbf{K}) \subseteq PS(\mathbf{K})$, $SP(\mathbf{K}) \subseteq SPS(\mathbf{K})$, $HSP(\mathbf{K}) \subseteq HSPS(\mathbf{K})$. Para qualquer classe \mathbf{K} de álgebras, também se tem

$$\begin{array}{ccc} HSPS(\mathbf{K}) & \subseteq & HSSP(\mathbf{K}) & (\mathsf{pois}\ PS \leq SP) \\ & = & HSP(\mathbf{K}) & (\mathsf{pois}\ S^2 = S). \end{array}$$

Logo $HSP(\mathbf{K}) = HSPS(\mathbf{K})$.

Pelo Teorema de Tarski tem-se $HSP(\mathbf{K}) = V(\mathbf{K})$, para qualquer classe de álgebras \mathbf{K} . Logo $V(\mathbf{K}) = HSP(\mathbf{K}) = HSP(\mathbf{K}) = V(S(\mathbf{K}))$.

5. Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Para quaisquer categorias C e D, para qualquer C-morfismo f e para qualquer D-morfismo g, se f e g são monomorfismos, então (f,g) é um monomorfismo de $C \times D$.

A afirmação é verdadeira.

Se $f: A \to B$ um é monomorfismo de C, então, para quaisquer C-morfismos $i, j: C \to A$,

$$f \circ i = f \circ j \Rightarrow i = j$$
.

Se $g:D\to E$ é um monomorfismo de $\mathbf D$, então, para quaisquer $\mathbf D$ -morfismos $p,q:F\to D$,

$$g \circ p = g \circ q \Rightarrow p = q$$
.

Sendo f um morfismo de \mathbf{C} e g um morfismo de \mathbf{D} , então $(f,g):(A,D)\to(B,E)$ é um morfismo de $\mathbf{C}\times\mathbf{D}$. Além disso, para quaisquer morfismos $(i,p):(C,F)\to(A,D)$ e $(j,q):(C,F)\to(A,D)$ da categoria $\mathbf{C}\times\mathbf{D}$, tem-se

$$\begin{array}{ll} (f,g)\circ (i,p)=(f,g)\circ (j,q) & \Rightarrow & (f\circ i,g\circ p)=(f\circ j,g\circ q)\\ & \Rightarrow & f\circ i=f\circ j \text{ e } g\circ p=g\circ q\\ & \Rightarrow & i=j \text{ e } p=q\\ & \Rightarrow & (i,p)=(j,q). \end{array} \tag{pois } f \text{ e } g \text{ s\~ao monomorfismos)}$$

Logo (f,g) é um monomorfismo de $\mathbf{C} \times \mathbf{D}$.

6. Sejam S e T objetos de uma categoria ${\bf C}$. Mostre que se S e T são objetos terminais, então S e T são isomorfos.

Sejam S e T objetos terminais de ${\bf C}$. Uma vez que T é um objeto terminal, então existe um, e um só, morfismo $f:S\to T$. Como S é um objeto terminal, existe um, e um só, morfismo $g:T\to S$. Logo $g\circ f:S\to S$ e $f\circ g:T\to T$ são morfismos de ${\bf C}$. Atendendo a que $id_S:S\to S$ é um morfismo de ${\bf C}$, os morfismos id_S e $g\circ f$ são elementos de $\hom(S,S)$ e $\lVert \hom(S,S)\rVert = 1$, conclui-se que $g\circ f=id_S$. De modo análogo, conclui-se que $f\circ g=id_T$. Logo f é invertível à direita e à esquerda e, portanto, f é um isomorfismo. Por conseguinte, S e S0 e S1 são objetos isomorfos.

7. Na categoria Set, considere o conjunto $\mathbb Z$ dos números inteiros, o conjunto $\mathbb R$ dos números reais, o produto cartesiano $\mathbb Z \times \mathbb R = \{(z,r) \,|\, z \in \mathbb Z, r \in \mathbb R\}$ e as funções p e q a seguir definidas

$$\begin{aligned} p: \mathbb{Z} \times \mathbb{R} &\to \mathbb{Z}, \quad p(z,r) = z + 2, \ \forall (z,r) \in \mathbb{Z} \times \mathbb{R}, \\ q: \mathbb{Z} \times \mathbb{R} &\to \mathbb{R}, \quad q(z,r) = r + 3, \ \forall (z,r) \in \mathbb{Z} \times \mathbb{R}. \end{aligned}$$

Mostre que o par $(\mathbb{Z} \times \mathbb{R}, (p,q))$ é um produto de \mathbb{Z} e \mathbb{R} .

O par $(\mathbb{Z} \times \mathbb{R}, (p,q))$ é um produto de \mathbb{Z} e \mathbb{R} se:

- (i) p é uma função de $\mathbb{Z} \times \mathbb{R}$ em \mathbb{Z} ;
- (ii) q é uma função de $\mathbb{Z} \times \mathbb{R}$ em \mathbb{R} ;
- (iii) para qualquer conjunto X e para quaisquer funções $f:X\to\mathbb{Z}$ e $g:X\to\mathbb{R}$, existe uma, e uma só, função $u:X\to\mathbb{Z}\times\mathbb{R}$ tal que $p\circ u=f$ e $q\circ u=q$.

Atendendo a que as condições (i) e (ii) são satisfeitas, resta provar (iii).

Se X é um conjunto e $f:X\to\mathbb{Z}$ e $g:X\to\mathbb{R}$ são funções, então a correspondência a seguir definida

$$u: X \rightarrow \mathbb{Z} \times \mathbb{R}$$

 $x \mapsto (f(x) - 2, g(x) - 3)$

é uma função. Facilmente, verifica-se que $p\circ u=f$ e $q\circ u=q$. De facto, as funções $p\circ u$ e f têm o mesmo domínio e codomínio e, para qualquer $x\in\mathbb{Z}$,

$$p \circ u(x) = p((f(x) - 2, g(x) - 3)) = (f(x) - 2) + 2 = f(x).$$

Logo $p \circ u = f$. De modo semelhante prova-se que $q \circ u = g$. A função u é a única função que satisfaz as igualdades indicadas em (iii). Com efeito, se

$$v: X \rightarrow \mathbb{Z} \times \mathbb{R}$$

 $x \mapsto (v_1(x), v_2(x))$

é uma função tal que $p \circ v = f$ e $q \circ v = q$, então, para qualquer $x \in X$, $v_1(x) + 2 = f(x)$ e $v_2(x) + 3 = g(x)$, donde segue que $v_1(x) = f(x) - 2$ e $v_2(x) = g(x) - 3$ e, portanto, $u(x) = (f(x) - 2, g(x) - 3) = (v_1(x), v_2(x)) = v(x)$; logo u = v.

Desta forma, fica provado que o par $(\mathbb{Z} \times \mathbb{R}, (p,q))$ é um produto de \mathbb{Z} e \mathbb{R} .

8. Sejam C uma categoria, A, B, I objetos de C e $f,g:A\to B$ e $i:B\to I$ morfismos de C. Mostre que se (I,(i,i)) é uma soma amalgamada de (f,g), então (I,i) é um coigualizador de f e g.

Admitamos que (I,(i,i)) é uma soma amalgamada de (f,g). Então

(i)
$$i \circ f = i \circ g$$
;

(ii) para qualquer objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f',g':B\to X$ tais que $f'\circ f=g'\circ g$, existe um, e um só, morfismo $u:I\to X$ tal que $u\circ i=f'$ e $u\circ i=g'$.

Pretendemos mostrar que (I,i) é um coignalizador de f e g, ou seja, que:

- (iii) $i \circ f = i \circ g$;
- (iv) para qualquer objeto Y de ${\bf C}$ e para qualquer ${\bf C}$ -morfismo $h':B\to Y$ tal que $h'\circ f=h'\circ g$, existe um, e um só, morfismo $v:I\to Y$ tal que $v\circ i=f'$.

Ora, a partir de (i) é imediato (iii). Além disso, se Y é um objeto de \mathbf{C} e $h': B \to Y$ é um \mathbf{C} -morfismo tal que $h' \circ f = h' \circ g$, então existem X = Y e f' = h' e g' = h' tais que $f' \circ f = g' \circ g$. Logo, por (ii), existe $v: I \to Y$ tal que $v \circ i = f' = h'$ (e $v \circ i = g' = h'$).

Desta forma, fica provado que (I,i) é um coigualizador de f e g.

9. Sejam C e D categorias, $F: C \to D$ um funtor e $f: A \to B$ e $g: B \to A$ morfismos de C. Mostre que se F é fiel, então F(f) é um inverso esquerdo de F(g) se e só se f é um inverso esquerdo de g.

Admitamos que F é um funtor fiel. Então, para quaisquer C-morfismos $p, q: X \to Y$,

$$F(f) = F(g) \Rightarrow f = g.$$

Suponhamos que $F(f):F(A)\to F(B)$ é um inverso esquerdo de $F(g):F(B)\to F(A)$. Então $F(f)\circ F(g)=id_{F(A)}$, donde segue que $F(f\circ g)=F(id_A)$, pois F é um funtor, e, por conseguinte, $f\circ g=id_A$, uma vez que F é fiel. Logo f é um inverso esquerdo de g.

Reciprocamente, admitamos que f é um inverso esquerdo de g; então $f \circ g = id_A$. Logo $F(f \circ g) = F(id_A)$, donde $F(f) \circ F(g) = id_{F(A)}$, pois F é funtor. Assim, F(f) é um inverso esquerdo de F(g).

 $\textbf{Cotação:} \ 1.(1.5+1.5); \ 2.(1.5+1.25+0.75); \ 3.(1.5+0.75); \ 4.(1.25); \ 5.(2.0); \ 6.(2.0); \ 7.(2.0); \ 8.(2.0); \ 9.(2.0).$