MS321 Algebra, tutorial 7

1. Determine all the homomorphisms fro \mathbf{Z}_{15} to \mathbf{Z}_{18} .

Proceed as in the example in class. Let $f: \mathbb{Z}_{15} \to \mathbb{Z}_{18}$ be a homomorphism. We saw that f is determined by f(1) since \mathbb{Z}_{15} is cyclic with generator 1 and f is a homomorphism. However, in \mathbb{Z}_{18} ,

$$0 = f(0) = f(15) = (15)f(1).$$

This means (15)f(1) = (18)k in \mathbb{Z} . Dividing by the gcd of 15 and 18 gives 5f(1) = 6k. Thus 5f(1) is a multiple of 6 and hence, f(1) is a multiple of 6, by Q5 of tutorial 3. Hence $f(1) \in \{6, 12, 0\}$ giving 3 homomorphisms.

2. The group \mathbb{Z}_{30}^* has 8 elements. There is a possibility it is isomorphic to one of \mathbb{Z}_8 or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Show that is not isomorphic to either.

 $\mathbb{Z}_{30}^* = \{1, 7, 11, 13, 17, 19, 23, 29\}$. Consider the cyclic subgroup generated by 7.

$$\langle 7 \rangle = \{7, 19, 13, 1\}$$

 $(7^2 = 49 = 30 + 19, 7^3 = 7(19) = 133 = 4(30) + 13,$

 $7^4 = 7(13) = 91 = 3(30) + 1$) Since 7 has order 4, \mathbb{Z}_{30}^* cannot be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, which has no elements of order 4. To exclude the cyclic group we show that \mathbb{Z}_{30}^* has no elements of order 8. We know that 1 has order 1 and 29 = 30 - 1 has order 2. From the $\langle 7 \rangle$ computation we see that 7 has order 4, but also that 19 has order 2 and 13 has order 4. However, 23 = 30 - 7 so that $23^4 = (30 - 7)^4 = 7^4$ up to multiples of 30. Thus $23^4 = 1$. Similarly, $17^4 = 1$ and $11^2 = 1$. That's them all! No elements of order 8.

3. Recall that for $\sigma = (i_1, i_2, \dots, i_k)$ a k-cycle in S_n and $\tau \in S_n$,

$$\tau \circ \sigma \circ \tau^{-1} = (\tau(i_1), \tau(i_2), \dots, \tau(i_k)).$$

Apply this to the case $\sigma = (i, i+1)$ and $\tau = (i+1, j)$ for j > i+1 to get a new proof of the result in Q1 of Tutorial 2.

$$\tau \sigma \tau^{-1} = (i, j)$$

4. Suppose G is a group and define the set

$$Z(G) = \{ x \in G \mid xg = gx \text{ for all } g \in G \},$$

that is, the subset of G consisting of those elements which commute with all elements of G. Show that Z(G) is a subgroup of G. Show that Z(G) is normal in G.

- (a) The element $e \in Z(G)$ since, for all $g \in G$, ge = g and eg = g so that eg = ge.
- (b) Suppose $x, y \in Z(G)$ and let $g \in G$. Then

$$(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy),$$

where the second equality follows from $y \in Z(G)$ and the fourth equality follows from $x \in Z(G)$. Thus $xy \in Z(G)$.

(c) Suppose $x \in Z(G)$ and let $g \in G$. Then

$$x^{-1}g = (g^{-1}x)^{-1} = (xg^{-1})^{-1} = gx^{-1},$$

where the second equality follows from $x \in Z(G)$. Thus $x^{-1} \in Z(G)$. Finally, if $x \in Z(G)$ and $g \in G$, then $g^{-1}xg = g^{-1}gx = x \in Z(G)$, so that Z(G) is normal in G.