PS #6 NAME: Justyce Countryman DUE: March 10

Writing Exercises. Type up your solutions to #1 using LATEX. Start by going to the course webpage and downloading the .tex file for this assignment; pop that .tex file into your favorite latex editor (probably Overleaf.com) and type your responses just after the corresponding problem in the .tex file.

1. Let $m, b \in \mathbb{R}$ with $m \neq 0$. Prove that $h : \mathbb{R} \to \mathbb{R}$ defined by h(x) = mx + b is injective.

Proof. Suppose $h(x_1) = h(x_2)$. By definition of h, we have $mx_1 + b = mx_2 + b$. Then, subtracting b from both sides gives $mx_1 = mx_2$. Finally, dividing by m, where $m \neq 0$ gives $x_1 = x_2$. Therefore, h is injective.

Additional Exercises. Complete the next problems, #2-#3. You need not typeset your answers, unless you want to. Staple your answers to your write-up for the Writing Exercise and turn in one homework with your name on the front, at the top.

- 2. Find sets A and B that demonstrate $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$. You must calculate the unions and power sets, and explain why the sets you found actually have different $\mathcal{P}(A \cup B)$ and $\mathcal{P}(A) \cup \mathcal{P}(B)$.
- 3. Fix this proof. Justifications and steps are missing all over the place. Some things are just wrong. Please, before I die from the heart palpitations induced by reading the assignment, fix this proof.

Proposition 1. The function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by f(x,y) = (2x + y, x - y) is an injection.

Proof. For each (a,b) and (c,d) in $\mathbb{R} \times \mathbb{R}$, if (a,b) = (c,d) then

$$(2a + b, a - b) = (2c + d, c - d).$$

We will use systems of equations to prove that a = c and b = d.

$$2a + b = 2c + d$$

 $a - b = c - d$
 $3a = 3c$ by adding the two equations together
 $a = c$

Since a = c, we see that (2c + b, c - b) = (2c + d, c - d). So b = d. Therefore we have proved that the function f is one-to-one.

- 4. Let $A = \{\pi, \eta, \lambda\}$ and $B = \{6, 7\}$.
 - (a) Define, if possible, a function $f: A \to B$ so that f is surjective.
 - (b) Define, if possible, a function $g: A \to B$ so that g is not surjective.
 - (c) Define, if possible, a function $h: B \to A$ so that h is surjective.

- (d) Define, if possible, a function $k:A\to B$ so that k is injective.
- (e) Define, if possible, a function $m:A\to B$ so that m is not injective.
- (f) Define, is possible, a function $n:B\to A$ so that n is injective.

If any of the above are not possible, use 1-2 sentences to explain why.

Pure mathematics is, in its way, the poetry of logical ideas. – Albert Einstein