Name: _

Answer the questions on the exam and not on a separate sheet of paper. No work is necessary for the Sometimes/Always/Never questions. For all other questions, please circle your answers and justify your work for full credit. There are 10 questions for a total of 100 points.

Sometimes/Always/Never: Read the statement and decide whether the statement is sometimes true, always true, or never true. No work is necessary.

- 1. (5 points) Suppose that D is a bounded closed region in \mathbb{R}^2 and f(x,y) is continuous on D. The integral $\iint_D f(x,y) \ dA$ is the area of the region D. A. Sometimes B. Always C. Never
- 2. (5 points) Let D_1 and D_2 be two solids bounded between the planes z = 0 and z = 1. For any $c \in [0,1]$, let $S_1(c)$ and $S_2(c)$ be the slices obtained by cutting the solids D_1 and D_2 , respectively, with the plane z = c. If $S_1(c)$ and $S_2(c)$ have the same area for all $c \in [0,1]$, then D_1 and D_2 have the same volume.
 - A. Sometimes B. Always C. Never
- ____ 3. (5 points) Let W be the top half of the unit sphere centered at the origin. The integral $\iiint_W (z^2 z) dV$ is positive.
 - A. Sometimes B. Always C. Never
 - 4. (5 points) The Jacobian of the transformation $x = u^2 + v^2$ and $y = -u^2 + v^2$ is given by $4u^2 + 4v^2$.
 - A. Sometimes B. Always C. Never
- 5. (5 points) The vector function $r(s,t) = \langle s^3, t^3, 1 s^3 t^3 \rangle$ is a parameterization of the plane x + y + z = 1.
 - A. Sometimes B. Always C. Never

Math 243 Exam 3

Short Answer: Justify your answers for full credit.

6. (a) (7 points) Consider the integral $\int_0^2 \int_x^2 \sin(y^2) dy dx$. Draw the region of integration on the graph below.

(b) (8 points) Setup, but do not integrate, the integral in part (a) using the form $\iint_R f(x,y) dxdy$.

- 7. (15 points) In this problem we wish to find the volume under the paraboloid $z=x^2+y^2$ and above the annulus in the xy-plane $4 \le x^2+y^2 \le 16$.
 - (a) Sketch the region of integration on the graph provided;
 - (b) Use polar coordinates to find the volume.

8. (15 points) Consider the iterated integral

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \ dz \ dy \ dx.$$

(a) Describe the region of integration (what is the geometric object?).

(b) Convert this integral to a different coordinate system. Do not integrate.

Math 243 Exam 3

9. (15 points) Using the chemical process known as Ipulledthisoutmyass, scientists are able to model the density of organisms in a circular petri dish. This density is given by the equation $P(x,y) = y^2 + x^2 + 1$, where x and y are the rectangular coordinates assuming the center of the dish is the origin. Estimate how many organisms are on the top half of a 4 inch diameter petri dish.

- 10. (15 points) Let D' be the region defined by the ellipse $\frac{x^2}{7} + \frac{y^2}{3} = 1$.
 - (a) What change of variables would you use to convert D' to the unit disk D?

(b) Find the area of the ellipse D'.