Wstęp do teorii mnogości

Stanisław Migórski

Spis treści

1	Pro	gram	2							
2	Literatura									
3	Zas	Zasady oceniania					asady oceniania			
4	Spó	jniki logiczne	3							
	4.1	Standardowe	3							
	4.2	Inne spójniki								
		Związki z OAK	4							
5	Rac	chunek funkcyjny	5							
	5.1	Funkcja zdaniowa	5							
	5.2	Kwantyfikatory								
	5.3	Prawa rachunku funkcyjnego								
6	Zbi	ory i działania na zbiorach	9							
	6.1	Pojęcia	9							
	6.2	Działania na zbiorach								
		Zbiory skończone	13							
7	Para uporządkowana 1									
	7.1	Para uporządkowana	14							
	7.2	Iloczyn kartezjański								
8	Relacje 1									
	8.1		17							
	8.2	Relacja równoważności								

1 Program

- 1. Dowody i elementy logiki.
- 2. Zbiory i działania na nich.
- 3. Relacje równoważności.
- 4. Funkcje.
- 5. Własności funkcji.
- 6. Zbiory równoliczne i nierównoliczne.
- 7. Relacje porządku.
- 8. Konstukcje liczbowe.
- 9. Lemat Kuratowskiego-Zorna.

2 Literatura

- 1. K. Kustowski, A. Mostowski, Teoria mnogości, PWN, 1994
- 2. H. Rosiowa, Wstęp do matematyki, PWN, 2004
- 3. W. Marek, J. Onyszkiewicz, Elementy logiki i teorii mnogości w zadaniach, PWN, 1996

3 Zasady oceniania

 $\mathbf{WTM:} \left\{ \begin{array}{l} \text{\'ewiczenia 30h, $\mathbf{2}$ obecności bez usprawiedliwienia.} \\ \text{wykład 30h.} \end{array} \right.$

Ocenia końcowa: 20% $\underline{\text{oceny}}$ z ćwiczeń + 80% $\underline{\text{oceny}}$ z egzaminu (I, II termin).

Pegaz: zestawy zadań: A, B - obowiązkowe. Dowody do oceny "DDO".

4 Spójniki logiczne

4.1 Standardowe

 \neg (negacja), \land (koniunkcja), \lor (alternatywa), \implies (implikacja), \iff (równoważność)

4.2 Inne spójniki

1. Alternatywa rozłączna α i β , oznaczamy $\alpha \oplus \beta$. Czytamy "... albo ..." lub "albo ..., albo ...".

α	β	$\alpha \oplus \beta$
0	0	0
0	1	1
1	0	1
1	1	0

$$(\alpha \oplus \beta) \iff (\neg \alpha \iff \beta) \iff (\alpha \iff \neg \beta) \iff (\neg (\alpha \iff \beta))$$

2. **Dyzjunkcja** (kreska Sheffera) α i β , oznaczamy $\alpha \mid \beta$. Czytamy "albo nie ..., albo nie .."

α	β	$\alpha \mid \beta$
0	0	1
0	1	1
1	0	1
1	1	0

$$(\alpha \mid \beta) \iff (\neg(\alpha \land \beta))$$

3. Binegacja (strzałka Pierce'a, funktor Łukasiewicza) α i β , oznaczamy $\alpha \downarrow \beta$.

Czytamy "ani ..., ani .."

α	β	$\alpha \downarrow \beta$
0	0	1
0	1	0
1	0	0
1	1	0

$$(\alpha \downarrow \beta) \iff (\neg \alpha \land \neg \beta)$$

4.3 Związki z OAK

Spójniki logiczne mają przyporządkowane bramki logiczne.

• NOT: $\alpha \longmapsto \neg \alpha \text{ (negacja)}$

• AND: $\alpha, \beta \longmapsto \alpha \wedge \beta$ (koniunkcja)

• NAND: $\alpha, \beta \longmapsto \neg(\alpha \land \beta)$ (dyzjunkcja)

• OR: $\alpha, \beta \longmapsto \alpha \vee \beta$ (alternatywa)

• NOR: $\alpha, \beta \longmapsto \neg(\alpha \lor \beta) \iff (\neg \alpha \land \neg \beta) \iff (\alpha \downarrow \beta)$ (binegacja)

• XNOR: $\alpha, \beta \longmapsto \neg(\alpha \oplus \beta)$ (negacja alternatywy rozłącznej)

5 Rachunek funkcyjny

5.1 Funkcja zdaniowa

Niech x_1, \ldots, x_n będą zbiorami.

Definicja. Funkcja zdaniowa

Funkcją (formą) zdaniową n zmiennych nazywamy wyrażenie (formulę) $\varphi(x_1, \ldots, x_n)$, w którym występuje n zmiennych x_1, \ldots, x_n , które zmienia się w zdanie logiczne, gdy za zmienne x_1, \ldots, x_n podstawimy nazwę dowolnego elementu ze zbiorów X_1, \ldots, X_n .

Definicja. Dziedzina funkcji zdaniowej

Dziedziną (zakresem zmienności) funkcji zdaniowej $\varphi(x_1, \ldots, x_n)$ nazywamy iloczyn kartezjański $x_1 \times \ldots \times x_n$ i zapisujemy $Z(\varphi) = x_1 \times \ldots \times x_n$.

Definicja.

Mówimy, że n-tka uporządkowona

 $(a_1,\ldots,a_n) \in X_1 \times \ldots \times X_n$ spełnia funkcję zdaniową $\varphi(x_1,\ldots,x_n)$, jeżeli zdanie $\varphi(a_1,\ldots,a_n)$ jest prawdziwe.

Definicja. Zbiór spełniania funkcji zdaniowej

Zbiór spełniania funkcji zdaniowej $\varphi(x_1,\ldots,x_n)$ określamy następująco:

$$S(\varphi) = \{(a_1, \dots, a_n) \in X_1 \times \dots \times X_n : \varphi(a_1, \dots, a_n) = 1\}$$

Funkcja zdaniowa $\varphi(x_1,\ldots,x_n)$ jest prawdziwa w zbiorze $X_1\times\ldots\times X_n$, jeżeli $S(\varphi)=X_1\times\ldots\times X_n$.

Twierdzenie.

Niech $\varphi(x_1 \times \ldots \times x_n)$, $\psi(x_1 \times \ldots \times x_n)$, $gdzie x_i \in X_i$, $i = 1, \ldots, n$ będą funkcjami zdaniowymi. Wtedy:

1)
$$S(\varphi \wedge \psi) = S(\varphi) \cap S(\psi)$$

2)
$$S(\varphi \lor \psi) = S(\varphi) \cup S(\psi)$$

3)
$$S(\neg \varphi) = (X_1 \times \ldots \times X_n) \setminus S(\varphi)$$

4)
$$S(\varphi \implies \psi) = ((X_1 \times \ldots \times X_n) \setminus S(\varphi)) \cup S(\psi)$$

$$\mathbf{5}) \ S(\varphi \iff \psi) = (S(\varphi) \cap S(\psi)) \cup (((X_1 \times \ldots \times X_n) \cap ((X_1 \times \ldots \times X_n) \setminus S(\psi))))$$

Definicja.

Funkcje zdaniowe $\varphi(x_1,\ldots,x_n)$ i $\psi(x_1,\ldots,x_n)$ nazywamy **równoważnymi** jeżeli

$$S(\varphi) = S(\psi).$$

Zapisujemy:

$$\varphi(x_1,\ldots,x_n) \equiv \psi(x_1,\ldots,x_n)$$

5.2 Kwantyfikatory

- ullet Kwantyfikator ogólny: \forall , \bigwedge (dla każdego)

5.3 Prawa rachunku funkcyjnego

Twierdzenie. Prawa de Morgana

$$\begin{cases} \neg(\exists x \in X : \varphi(x)) \iff \forall x \in X : \neg\varphi(x) \\ \neg(\forall x \in X : \varphi(x)) \iff \exists x \in X : \neg\varphi(x) \end{cases}$$

Twierdzenie. Prawo egzemplifikacji

$$(\forall x \in X : \varphi(x)) \implies (\exists x \in X : \varphi(x))$$

Twierdzenie. Prawo przestawiania kwantyfikatorów

$$(\forall x \in X, \forall y \in Y : \varphi(x, y)) \iff (\forall y \in Y, \forall x \in X : \varphi(x, y))$$

$$(\exists x \in X, \exists y \in Y : \varphi(x,y)) \iff (\exists y \in Y, \exists x \in X : \varphi(x,y))$$

$$(\exists x \in X, \forall y \in Y : \varphi(x,y)) \implies (\forall y \in Y, \exists x \in X : \varphi(x,y))$$

← nie zachodzi!!

Twierdzenie. Prawo włączania i wyłączania kwantyfikatorów

$$\begin{cases} \forall x \in X : (\varphi(x) \lor \psi) \iff (\forall x \in X : \varphi(x)) \lor \psi \\ \exists x \in X : (\varphi(x) \lor \psi)? (\exists x \in X : \varphi(x)) \lor \psi \\ \dots \end{cases}$$

Twierdzenie. Prawo rodzielności kwantyfikatora ogólnego względem koniunkcji

$$\begin{cases} \forall x \in X : (\varphi(x) \land \psi(x)) \iff (\forall x \in X : \varphi(x)) \land (\forall x \in X : \psi(x)) \\ \forall x \in X : (\varphi(x) \lor \psi(x)) \iff (\forall x \in X : \varphi(x)) \lor (\forall x \in X : \psi(x)) \\ \dots \end{cases}$$

Przykład. Prawo rozdzielności kwantyfikatora ogólnego względem implikacji

$$(\forall x \in X : (\varphi(x) \implies \psi(x))) \implies ((\forall x \in X : \varphi(x)) \implies (\forall x \in X : \psi(x))$$

$$\iff nie \ zachodzi$$

Niech:

$$\varphi(x) = \{x \in \mathbb{R} : x < 0\}$$

$$\psi(x) = \{x \in \mathbb{R} : x + 1 > 0\}$$

$$X = \mathbb{R}$$

Wtedy:

$$\underbrace{(\forall x \in \mathbb{R} : (x < 0 \implies x + 1 > 0))}_{falsz} \iff \underbrace{((\forall x \in \mathbb{R} : x < 0)}_{falsz} \implies \underbrace{(\forall x \in \mathbb{R} : x + 1 > 0))}_{falsz}$$

falsz

Przykład. Prawo rodzielności kwantyfikatora szczególnego względem koniunkcji

$$(\exists x \in X : (\varphi(x) \land \psi(x))) \implies ((\exists x \in X : \varphi(x)) \land (\exists x \in X : \psi(x))$$

$$\iff nie \ zachodzi$$

Niech:

$$\begin{split} \varphi(x) &= \{2 \mid x: x \in \mathbb{N}\} parzyste \\ \psi(x) &= \{\neg 2 \mid x: x \in \mathbb{N}\} nieparzyste \\ X &= \mathbb{N} \end{split}$$

Wtedy:

$$\underbrace{(\exists x \in \mathbb{N} : (2 \mid x \land \neg 2 \mid x))}_{falsz} \xleftarrow{(\exists x \in \mathbb{N} : 2 \mid x)} \land \underbrace{(\exists x \in \mathbb{N} : \neg 2 \mid x))}_{prawda}$$

Uwaga:

1. Dla formy zdaniowej jednej zmiennej zachodzi:

$$(\forall x : P(x) \implies (\exists x \in X : P(x)))$$

2. Dla formy zdaniowej dwóch zmiennych zachodzi:

$$(\forall x, \forall y : P(x,y)) \iff (\forall y, \forall x : P(x,y))$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\exists x, \forall y : P(x,y)) \qquad (\exists y, \forall x : P(x,y))$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\forall y, \exists x : P(x,y)) \qquad (\forall x, \exists y : P(x,y))$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\exists y, \exists x : P(x,y)) \qquad (\exists x, \exists y : P(x,y))$$

6 Zbiory i działania na zbiorach

6.1 Pojęcia

• Pojęcie zbioru jest pojęciem pierwotnym.

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$$
 – zbiory liczbowe $\mathbb{N} = \{0, 1, 2, \ldots\}$ (Pezno) $\mathbb{N}_1 = \{1, 2, \ldots\}$

• Pojęcie "należenia do zbioru"

$$1 \in \mathbb{N}, (\neg(\sqrt{2} \in \mathbb{N})) \iff (\sqrt{2} \notin \mathbb{N})$$

Zasada równości zbiorów

$$A = B, tzn. \forall x : \underbrace{(x \in A \implies x \in B)}_{A \subset B} \land \underbrace{(x \in B \implies x \in A)}_{B \subset A}$$
$$A \subset B, wtw. \forall x : (x \in A \implies x \in B)$$

To znaczy, aby udowodnić, że $\mathbf{A} = \mathbf{B}$ dowodzimy

$$\forall x \left\{ \begin{array}{c} x \in A \implies x \in B \\ x \in B \implies x \in A \end{array} \right.$$

$$A \subset B \land B \subset A$$

• Oznaczamy

$$\{a,b\}$$
para uporządkowana
$$\{a\} \hspace{1cm} \text{singleton}$$

$$\{a,a\}=\{a\}$$

- Definiowanie zbiorów
 - 1. Wypisujemy elementy zbioru

2.
$$\mathbf{A} = \{ \mathbf{x} \in \mathbf{X} : \mathbf{W}(\mathbf{x}) \}$$

 $\operatorname{Par} = \{ x \in \mathbb{N} : 2 \mid x \}, \qquad \{ \underbrace{\{1, 2\}}_{\text{ieden element}} \} \neq \{1, 2\}$

Definicja. Zbiór potęgowy

Zbiorem potęgowym zbioru A nazywamy zbiór złożony ze wszystkich pozbiorów zbioru A, tzn. $\mathcal{P}(A) = \{X : X \subset A\}$

Zbiór potęgowy $\mathcal{P}(A)$ zbioru A.

$$\{\varnothing, A\} \subset \mathcal{P}(A) \longleftarrow$$

$$\mathcal{P}(\varnothing) = \{\varnothing\}$$

$$\mathcal{P}(\{1\}) = \{\varnothing, \{1\}\}$$

$$\mathcal{P}(\{1, 2\}) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\}$$

6.2 Działania na zbiorach

Definicja. Suma zbiorów

Sumą zbiorów A i B nazywamy zbiór złożony z tych i tylko z tych elementów, które należą do co najmniej jednego z tych zbiorów.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Twierdzenie.

 $\emph{Je\'zeli} \ \emph{A} \ \emph{i} \ \emph{B} \ \emph{sq} \ \emph{zbiorami}, \ \emph{to} \ \emph{wtedy} :$

1.
$$A \subset A \cup B$$
, $B \subset A \cup B$

$$\textit{2. } (A \subset C \land B \subset C) \implies A \cup B \subset C$$

Niech \mathcal{A} będzie rodziną zbiorów (tzn. zbiorami, którego elemantami są zbiory).

Definicja. Suma rodziny

Suma rodziny \mathcal{A} jest zbiorem złożonym z tych i tylko tych elementów, które należą do co najmniej jednego spośród zbiorów należących do rodziny \mathcal{A} , tzn. $x \in \bigcup \mathcal{A}$ wtw. $\exists A \in \mathcal{A} : x \in \mathcal{A}$

Jest uogólnienie pojęcia sumy zbiorów.

$$\bigcup\{A,B\} = A \cup B, \qquad \qquad \bigcup\{A,B,C\} = A \cup B \cup C$$

Twierdzenie.

Jeżeli A jest rodziną zbiorów, <u>to</u> wtedy

- 1. $\forall A : (A \in \mathcal{A} \implies A \subset \bigcup \mathcal{A})$
- 2. **Jeżeli** C jest zbiorem o następującej własności:

$$\forall A: (A \in \mathcal{A} \implies A \subset C)$$

To
$$\bigcup A \subset C$$

Definicja. Iloczyn zbiorów

Iloczynem zbiorów (przecięciem, częścią wspólną) A i B nazywamy zbiór złożony z tych i tylko z tych elementów, które należą jednocześnie do A i B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

Twierdzenie.

Jeżeli A i B są zbiorami, to

1.
$$A \cap B \subset A, A \cap B \subset B$$

2.
$$(C \subset A \land C \subset B) \implies C \subset A \cap B$$

Jeżeli $A \cap B = \emptyset$, to A i B nazywamy rozłącznymi.

Niech \mathcal{A} będzie niepustą rodziną zbiorów.

Definicja. Iloczyn rodziny

Iloczynem rodziny A nazywamy zbiór złożony z tych i tylko z tych elementów, które należą do każdego spośród zbiórów należących do rodziny A, tzn.

$$x \in \bigcap \mathcal{A} \iff \forall A \in \mathcal{A} : x \in A$$

Jest uogólnienie pojęcia iloczynu zbiorów.

$$\bigcap\{A,B\} = A \cap B, \qquad \bigcap\{A,B,C\} = A \cap B \cap C$$

Twierdzenie.

Jeżeli A jest niepustą rodziną zbiorów, <u>to</u> wtedy

- 1. $\forall A : (A \in \mathcal{A} \implies \bigcap \mathcal{A} \subset A)$
- 2. **Jeżeli** C jest zbiorem o następującej własności:

$$\forall A: (A \in \mathcal{A} \implies C \subset A)$$

To
$$C \subset \bigcap A$$

Definicja. Różnica zbiorów

Różnicą zbiorów A i B nazywamy zbiór złożony z tych i tylko z tych elementów, które należą do A i nie należą do B, tzn.

$$A \setminus B = \{x : x \in A \land \neg x \in B\} = \{x : x \in A \land x \not \in B\}$$

Twierdzenie.

Jeżeli $A \wedge B$ są zbiorami, to

1.
$$A \setminus B \subset A, (A \setminus B) \cap B = \emptyset$$

$$2. \ C \subset A, C \cap B \neq \varnothing) \implies C \subset A \setminus B$$

Definicja. Dopełnienie zbioru

Dopełnieniem (uzupełnieniem) zbioru A w zbiorze S nazywamy zbiór $S \setminus A$, piszemy

$$A' = S \setminus A = \setminus A$$

Definicja. Różnica symetryczna

Różnicą symetryczną zbiorów A i B nazywamy zbiór zdefiniowany:

$$A \triangle B = A \div B = (A \setminus B) \cup (B \setminus A)$$
$$x \in A \div B \iff x \in A \setminus B \lor x \in B \setminus A$$
$$A \div B = \varnothing \iff A = B$$

6.3 Zbiory skończone

Definicja. Zbiór skończony

Zbiór A nazywamy zbiorem skończonym jeżeli A zawiera m różnych elementów, gdzie $m \in \{0, 1, 2, \ldots\}$.

Oznaczamy: n(A) - liczba elementów skończonego zbioru

$$A = |A| = \bar{\bar{A}} = \#A$$

Własności.

Jeżeli A, B, C są zbiorami skończonymi, to

1. $A \cup B$, $A \cap B$ są zbiorami skończonymi, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

Jeżeli A i B są rozłączne, to $n(A \cup B) = n(A) + n(B)$.

- 2. Zbiór A jest podzbiorem skończonego zbioru E. Wtedy n(A') = n(E) n(A).
- 3. $n(A \setminus B) = n(A) n(A \cap B)$.
- 4. $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C) n(B \cap C) + n(A \cap B \cap C)$.
- 5. $n(\mathcal{P}(A)) = 2^{n(A)}$.

7 Para uporządkowana

7.1 Para uporządkowana

Definicja. Para uporządkowana (Kuratowski)

Para uporządkowaną elementów a i b nazywamy $(a,b) = \{\{a\}, \{a,b\}\}.$

Twierdzenie.

Dla każdego a, b, c, d zachodzi

$$\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\} \iff a = c \land b = d$$
$$(a, b) = (c, d)$$

Dowód.

- ← oczywiste
- ==>
 - 1. Jeżeli a=b, to $\{\{a\},\{a,b\}\}=\{\{a\}\}$ $(\{a,a\}=\{a\})$ oraz $\{c,d\}\in\{\{a\}\}.$ Wtedy c=d=a. Zatem a=b=c=d.
 - 2. Jeżeli $a \neq b$, to $\{c\} \in \{\{a\}, \{a, b\}\}$. Ponieważ $a \neq b$, to $\{c\} \notin \{a, b\}$. Wtedy $\{c\} = \{a\}$, tzn. $\underline{a = c}$. Z drugiej strony, $\{a, b\} \in \{\{c\}, \{c, d\}\}$. Ponieważ $a \neq b$, to $\{a, b\} = \{c, d\}$ oraz $\underline{b = d}$.

7.2 Iloczyn kartezjański

Definicja. Iloczyn kartezjański

Iloczyn kartezjański zbiorów A i B to zbiór, do którego należą wszystkie pary uporządkowane (a,b), gdzie $a \in A$, $b \in B$.

$$A \times B = \{x : \exists a \in A, \exists b \in B, x = (a, b)\}$$

Piszemy $A^2 = A \times A$

Uogólnienie na trójki uporządkowane:

$$(a, b, c) = ((a, b), c)$$

 $A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n), a_i \in A_i : \forall i = 1, \ldots, n\} = \times_{i=1}^n A_i$

$$A\times (B\cap C) = (A\times B)\cap (A\times C)$$

$$\subset$$

$$\supset$$

Dowód.

- "C"
 Pokażemy, że $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
 Niech $(x,y) \in A \times (B \cap C)$. Wtedy $x \in A \wedge y \in B \cap C$.
 Zatem $x \in A \wedge (y \in B \wedge y \in C)$.
 Mamy $(x \in A \wedge y \in B) \wedge (x \in A \wedge y \in C)$.
 Stąd $(x,y) \in A \times B$ i $(x,y) \in A \times C$.
 Zachodzi $(x,y) \in (A \times B) \cap (A \times C)$.
- "⊃" Pokażemy, że $(A \times B) \cap (A \times C) \subset A \times (B \cap C)$. Niech $(x,y) \in (A \times B) \cap (A \times C)$. Stąd $(x,y) \in A \times B \wedge (x,y) \in A \times C$. Wtedy $(x \in A \wedge y \in B) \wedge (x \in A \wedge y \in C)$. Otrzymujemy $x \in A \wedge (y \in B \wedge y \in C)$, tzn. $x \in A \wedge y \in B \cap C$. Ostatecznie $(x,y) \in A \times (A \cap C)$
- Ponieważ \subset i \supset to

$$A \times (B \cap C) \iff (A \times B) \cap (A \times C)$$

$$(A \setminus B) \times C) = (A \times C) \setminus (A \times C)$$

Dowód.

• "⊂"

Niech
$$(x,y) \in (A \setminus B) \times C \iff ((x \in A \setminus B) \land (y \in C))$$

 $\iff ((x \in A \land x \notin B) \land (y \in C))$
 $\iff ((x \in A \land \neg x \in B) \land (y \in C)).$

• "¬"

$$\begin{split} \text{Niech } (x,y) \in (A \times C) \setminus (B \times C) &\iff \\ &\iff ((x,y) \in A \times C) \wedge ((x,y) \notin B \times C) \\ &\iff (x \in A \wedge y \in C) \wedge (\neg (x,y) \in B \times C) \\ &\iff (x \in A \wedge y \in C) \wedge \neg (x \in B \wedge y \in C) \\ &\iff (x \in A \wedge y \in C) \wedge (\neg (x \in B) \wedge \neg (y \in C)) \end{split}$$

• Oznaczamy

$$\left\{ \begin{array}{ll} p:x\in A\\ q:x\in B\\ r:y\in C \end{array} \right.$$

8 Relacje

8.1 Relacje

Definicja. Relacja

Relacją R w zbiorze $X \times Y$ nazywamy dowolny podzbiór $R \subset X \times Y$, R nazywamy relacją binarną.

Definicja.

Niech R będzie relacją w zbiorze X tzn. $R \subset X \times X$,

1. R nazywamy zwrotną wtw.

$$\forall x \in X : xRx$$

2. R nazywamy przeciwzwrotną wtw.

$$\forall x \in X : \neg x R x$$

3. R nazywamy symetryczną wtw.

$$\forall x, y \in X : (xRy \implies yRx)$$

4. R nazywamy przeciwsymetryczną (asymetryczną) wtw.

$$\forall x,y \in X : (xRy \implies \neg(yRx))$$

5. R nazywamy słabo antysymetryczną wtw.

$$\forall x,y \in X: (xRy \land yRx \implies x = y))$$

6. R nazywamy przechodnią wtw.

$$\forall x, y, z \in X : (xRy \land yRz \implies xRz)$$

7. R nazywamy **spójną** wtw.

$$\forall x,y \in X: (\underbrace{xRy \lor yRx}_{x \ i \ y \ sq. porównywalne} \lor x=y)$$

$$Niech \ R \subset \mathbb{R} \times \mathbb{R}$$
$$xRy \iff x \leqslant |y|, \forall x, y \in \mathbb{R}.$$

1. R zwrotna?

$$\forall x \in \mathbb{R} : x \leqslant |x|$$

TAK

2. R przeciwzwrotna?

$$\forall x \in \mathbb{R} : \neg x \leqslant |x|$$

NIE, np.
$$x = 1$$

3. R symetryczna?

$$\forall x, y \in \mathbb{R} : (x \leqslant |y| \implies y \leqslant |x|)$$
NIE, np. $x = 0, y = 1$

4. R przeciwsymetryczna?

$$\forall x, y \in \mathbb{R} : (x \le |y| \implies \neg y \le |x|)$$
NIE, np. $x = y = 0$

5. R słabo antysymetrczyna?

$$\forall x, y \in \mathbb{R} : (x \leqslant |y| \land y \leqslant |x| \implies x = y)$$

NIE, np.
$$x = 2, y = -2$$

6. R przechodnia?

$$\forall x, y, z \in \mathbb{R} : (x \le |y| \land y \le |z| \implies x \le |z|)$$

NIE, np. $x = 3, y = -5, z = 2$

7. R spójna?

$$\forall x,y \in \mathbb{R} : (x \leqslant |y| \lor y \leqslant |x| \lor x = y)$$
 TAK, ponieważ $\forall x,y \in \mathbb{R} : (x = y \lor x < y \lor y < x)$

oraz
$$\forall w \in \mathbb{R} : w \leq |w|$$

zatem $\forall x, y \in \mathbb{R} : (x < |y| \lor y < |x| \lor x = y)$
stąd R spójna

R jest zwrotna i spójna.

$$Niech \ R \subset \mathbb{Z} \times \mathbb{Z}$$
$$xRy \iff 3 \mid (x-y), \forall x, y \in \mathbb{Z}.$$

1. R zwrotna?

$$\forall x \in \mathbb{Z} : 3 \mid (x - x)$$

TAK

2. R przeciwzwrotna?

$$\forall x \in \mathbb{Z} : \neg (3 \mid (x - x))$$

NIE, np.
$$x = 0$$

3. R symetryczna?

$$\forall x, y \in \mathbb{Z} : (3 \mid (x - y) \implies 3 \mid (y - x))$$

TAK: Niech $xRy \iff \exists k \in \mathbb{Z} : x - y = 3k$, wtedy $\exists l = k \in \mathbb{Z}$ takie, że y - x = 3l. Stad yRx.

4. R przeciwsymetryczna?

$$\forall x, y \in \mathbb{Z} : (3 \mid (x - y) \implies \neg (3 \mid (y - x)))$$

NIE, np.
$$x = 6, y = 3$$

5. R słabo antysymetrczyna?

$$\forall x, y \in \mathbb{Z} : (3 \mid (x - y) \land 3 \mid (y - x) \implies x = y)$$

NIE, np.
$$x = 6, y = 3$$

6. R przechodnia?

$$\forall x,y,z\in\mathbb{Z}: (3\mid (x-y)\land 3\mid (y-z) \implies 3\mid (x-z))$$

$$\mathbf{TAK}: \text{ Niech } 3\mid (x-y)\land 3\mid (y-z).$$

$$\text{Stad } x-y=3k, k\in\mathbb{Z}$$

$$y-z=3l, l\in\mathbb{Z}.$$

$$\text{Zatem } x-y+y-z=3k+3l$$

$$x-z=3(k+l).$$

$$\text{ Niech } m=k+l, m\in\mathbb{Z}, \text{ bo wtedy}$$

$$x-z=3m, \text{ tzn. } 3\mid (x-z).$$

7. R spójna?

$$\forall x,y \in \mathbb{Z} : (3 \mid (x-y) \lor 3 \mid (y-x) \lor x = y)$$
 NIE, np. $x = 2, y = 1$, bo $(2 \neq 1 \land \neg (3 \mid 1) \land \neg (3(-1)))$

R jest zwrotna, symetryczna oraz przechodnia.

Definicja. Relacja n-argumentowa, binarna, pusta, pełna

Niech X_1, \ldots, X_n będą zbiorami. Każdy podziór $R \subset X_1 \times \ldots \times X_n$ nazywamy relacją n-argumentową.

Jeżeli n=2, to $R \subset X_1 \times X_2$ nazywamy relacją binarną.

 $Je\dot{z}eli~R=\varnothing~to~R~nazywamy~relacją~pustą.$

Jeżeli $R = X_1 \times ... \times X_n$, to R nazywamy relacją pełną.

Definicja. Dziedzina relacji

Dziedziną relacji $R \subset X \times Y$ nazywamy

$$D(R) = \{x \in X : \exists y \in Y : (x, y) \in R\} \subset X$$

Definicja. Przeciwdziedzina relacji

Przeciwdziedziną relacji $R \subset X \times Y$ nazywamy

$$D^*(R) = \{ y \in Y : \exists x \in X : (x, y) \in R \} \subset Y$$

8.2 Relacja równoważności

Definicja. Relacja równoważności

Relację $R \subset X \times X$ nazywamy <u>relacją równoważności</u> wtw. R jest **zwrotna**, **symetryczna i przechodnia**. Relacją $R = \emptyset$ jest relacją równoważności.

Definicja. Klasa abstrakcji

Niech $R \subset X \times X$ relacja równoważności, $X \neq \emptyset, x \in X$.

<u>Klasą abstrakcji</u> (klasą równoważności) elementu x (względem relacji R) nazywamy $[x]_R = \{y \in X : xRy\} \subset X$.

Definicja. Zbiór ilorazowy

 $\frac{Zbiorem\ ilorazowym}{abstrakcji.}\ zbioru\ X\ przez\ relację\ R\ nazywamy\ zbiór\ wszystkich\ klas$

$$X/R = \{[x]_R : x \in X\} \subset X$$

Niech
$$X = \{1, 2, \dots, 16\}, R \subset X \times X, xRy \iff 4 \mid (x^2 - y^2), \forall x, y \in X.$$

Wyznaczyć zbiór ilorazowy X/R.

Czy R jest relacją równoważności?

$$\begin{cases} \text{R zwrotna}, \forall x \in X : 4 \mid 10 \\ \text{R symetryczna}, \forall x, y \in X : (4 \mid (x^2 - y^2) \implies 4 \mid (y^2 - x^2)) \\ \text{R przechodnia}, \forall x, y, z \in X : (4 \mid (x^2 - y^2) \land 4 \mid (y^2 - z^2) \implies 4 \mid (x^2 - z^2)) \end{cases}$$

 \dots dowód \dots

Co to jest $[x]_R$? $x \in X$.

$$[x]_{R} = \{ y \in X : xRy \}$$

$$= \{ y \in X : 4 \mid (x^{2} - y^{2}) \}$$

$$= \{ y \in X : \exists k \in \mathbb{Z} : x^{2} - y^{2} = 4k \}$$

$$4 \mid (x^{2} - y^{2}) \iff x^{2} - y^{2} = 4k, k \in \mathbb{Z}$$

np.
$$[1]_R = \{y \in X : y^2 = 1 + 4k, k \in \mathbb{Z}\} = \{1, 3, 5, \ldots\}$$

 $[2]_R = \{y \in X : y^2 = 4 + 4k, k \in \mathbb{Z}\} = y^2 = 4(1 + k) = \{2, 4, \ldots\}$
 $[3]_R = \{y \in X : y^2 = 9 + 4k, k \in \mathbb{Z}\} = [1]_R$
 $[4]_R = [2]_R$
:

Dwie klasy abstrakcji. $[1]_R = A_1, [2]_R = A_2.$ Zbiór ilorazowy $X/R = \{[x]_R : x \in X\} = \{A_1, A_2\}$

Lemat.

Niech $X \neq \varnothing, R \subset X \times X$ relacja równoważności. Wtedy

$$xRy \iff [x]_R = [y]_R, \forall x, y \in X$$

Dowód.

- " \Longrightarrow " Niech $x, y \in X$, takie że xRy.
 - Pokażemy, że $[x]_R \subset [y]_R$. Niech $a \in [x]_R$. Wtedy \underline{aRx} . Ponieważ równocześnie \underline{xRy} , to wtedy \underline{aRy} (z przechodniości R). Zatem aRy, więc $a \in [y]_R$. Stąd $[x]_R \subset [y]_R$.
 - Pokażemy, że $[y]_R \subset [x]_R$. Niech $b \in [y]_R$. Wtedy \underline{bRx} (lub yRb, R symetryczne). Ponieważ równocześnie \underline{xRy} i \underline{yRb} , więc \underline{xRb} (lub bRx, z przechodniości R). Stąd $b \in [x]_R$. Stąd $[y]_R \subset [x]_R$.

Wniosek: $[x]_R = [y]_R$

• " \Leftarrow "
Niech $x, y \in X$, takie że $[x]_R = [y]_R$.
Czy xRy?

R zwrotna: xRx. Zatem $x \in [x]_R \stackrel{\mathsf{zat}}{=} [y]_R$. Więc $x \in [y]_R$. Stąd xRy.

Definicja. Podział zbioru

Niech $X \neq \emptyset$, P rodzina podzbioru zbioru $X.(P \subset \mathcal{P}(x))$ Rodzinę P nazywamy podziałem zbioru X, jeżeli

- $\forall A \in P, A \neq \emptyset$
- $\forall A, B \in P : (A \neq B \implies A \cap B \neq \emptyset)$
- $\bullet \ \bigcup P = X$

 ${\it To \ znaczy \ P \ jest \ rodziną \ zbiorów \ nieparzystych, \ parami \ rozłącznych \ i \ jej \ sumą jest \ cały \ zbiór \ X.}$

Zbiory rodziny P nazywamy blokami.

Uwaga. Jeżeli $X \neq \emptyset$, to podział $P = \{\{a\} : a \in X\}$ jest "najdrobniejszy", a $P = \{X\}$ (jednoelementowy) zawiera tylko jeden blok.

Twierdzenie. Zasada abstakcji

Niech $X \neq \emptyset$. Wtedy:

- 1. Jeżeli $R \subset X \times X$ jest <u>relacją równoważności</u> to wtedy zbiór ilorazowy X/R jest podzbiorem X.
- 2. Jeżeli P jest podzbiorem zbioru X, to wtedy relacja:

$$\begin{cases} R \subset X \times X \\ xRy \iff \underbrace{\exists C \in P : (x \in C \land y \in C)}_{\text{"relacja pozostawania } w \ tym \ samym \ zbiorze"} \end{cases}$$

jest relacją równoważności w X.

Przykład.

Czy suma i różnica dwóch relacji równoważności jest relacją równoważności?

Nie.
$$X = \{1, 2, 3\}$$

są relacjami równoważności
$$\begin{cases} R = \{(1,1),(2,2),(3,3),(1,2),(2,1)\} \\ S = \{(1,1),(2,2),(3,3),(1,3),(3,1)\} \end{cases}$$

Natomiast

$$R \cup S = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$$
$$R \setminus S = \{(1,2), (2,1)\}$$

ponieważ $(2,1), (1,3) \in R \cup S$, ale $(2,3) \notin R \cup S$.