Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе №4 по дисциплине "Интервальный анализ"

Линейная регрессия

Выполнил студент: Кромачев Максим

группа: 5030102/10201

Проверил: доцент Баженов Александр Николаевич

Содержание

1	Постановка задачи	2
2	Теоретическое обоснование	2
	2.1 Бокс-плот Тьюки	2
	2.2 Интервальная мода	3
	2.3 Интервальная медиана Крейновича	3
	2.3 Интервальная медиана Крейновича	3
3		3
	3.1 Описание алгоритма	4
4	Результаты	4
	4.1 Оценки	4
	4.2 Графики	5
5	Заключение	6
6	Литература	7

1 Постановка задачи

Дан измеритель, на вход которого поступает калибровочный сигнал - набор постоянных напряжений

$$X = \{x_i\}_{i=1}^{100}$$

а данные на выходе - набор интервальных данных

$$Y = \{y_k\}_{k=1}^{100}$$
, rad $y = \frac{1}{2^N}B$, $N = 14$

Файлы данных хранятся в бинарном формате и считывается в соответствии со следующим преобразованием:

$$V = Code/16384 - 0.5$$

Необходимо оценить значения β_0 и β_1 - параметров линейной регрессии

$$y = \beta_0 + \beta_1 * x$$

Оценки значений Y:

- внутренняя (in) интервал между первым и третьим квартилем
- внешняя (ех) границы бокс-плота

Требуется:

- Решить ИСЛАУ (1) для внутренних и внешних оценок y
- Построить множество решений β_0 , β_1
- Построить коридор совместных зависимостей, используя пример https://github.com/szhilin/octave-interval-examples/blob/master/SteamGenerator.ipynb

2 Теоретическое обоснование

2.1 Бокс-плот Тьюки

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей. Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов - края статистически значимой выборки (без выброса). Длину «усов» определяют разность первого квартиля и полутора межквартальных расстояний и сумма третьего квартиля и полутора межквартальных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$

где X_1 - нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 - третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков. Выбросами считаются величины , такие что:

$$\begin{cases} x < X_1^T \\ x > X_2^T \end{cases}$$

2.2 Интервальная мода

Пусть имеется интервальная выборка

 $X = \{x_i\}$ Сформируем массив интервалов z из концов интервалов X.

Для каждого интервала z_i подсчитываем число μ_i интервалов из выборки X_i , включающих z_i . Максимальные $\mu_i = \max \mu$ достигаются для индексного множества К. Тогда можно найти интервальную моду как мультиинтервал

mode
$$X = \bigcup_{k \in K} z_k$$

2.3 Интервальная медиана Крейновича

Пусть дана выборка $X=x_i$. Пусть $\underline{c}=\underline{x_i}, \ \overline{c}=\overline{x_i}$ — конфигурация точек, составленные, соответственно, из левых и правых концов интервалов из X. Медиана Крейновича med_KX интервальной выборки X — это интервал $med_K=[med_c, med_{\overline{c}}].$

2.4 Интервальная медиана Пролубникова

Зададим отношения порядка на алгебре R. Говорят, что неравенство $a \leq b$ выполняется

- 1. в сильном смысле, если $\forall a \in R \ \forall b \in R : \overline{a} \leq \underline{b}$
- 2. в слабом смысле, если $\exists a \in R \ \exists b \in R : \underline{a} \leq \overline{b}$
- 3. в $\forall \exists$ -смысле, если $\forall a \in R \ \exists b \in R : \underline{a} \leq \underline{b}$
- 4. в $\exists \forall$ -смысле, если $\exists a \in R \ \forall b \in R : \overline{a} \leq \overline{b}$
- 5. в центральном смысле, если $\frac{\overline{a}+\underline{a}}{2} \leq \frac{\overline{b}+\underline{b}}{2}$

Для элементов выборки X можно определить линейный порядок, используя любое из пяти вышеуказанных отношений порядка на R. То есть, если $i \neq j$, то либо $x_i \leq x_j$, либо $x_i \geq x_j$ для любого из этих отношений порядка.

Медиана Пролубникова med_PX выборки X — это интервал x_m , для которого половина интервалов из X лежит слева, а половина — справа.

В ситуации, когда имеются два элемента подинтервала x_m и x_{m+1} , расположенных посередине вариационного ряда, $x_m \neq x_{m+1}$ медиана может быть определена естественным обобщением взятия полусуммы точечных значений, расположенных посередине ряда из точечных значений, в случае интервальной выборки взятие полусуммы интервалов x_m и x_{m+1} :

$$med_P X = \frac{x_m + x_{m+1}}{2}.$$

3 Описание работы

Лабораторная работа выполнена на языке программирования Python в среде разработки VSCode. В ходе работы были использованы следующие библиотеки: numpy, scipy, intervalpy и matplotlib. GitHub репозиторий: https://github.com/kromachmax/Intervalka.git

3.1 Описание алгоритма

Каждый из 8 файлов содержит 100 фреймов, каждый из которых включает 1024 массива, состоящих из 8 двухбайтовых значений. В результате обработки этих данных было сформировано $1024 \times 8 = 8192$ ИСЛАУ, представленных в следующем виде:

$$\begin{pmatrix} [\mathbf{x}_1, \, x_1] & [1, 1] \\ \vdots & \vdots \\ [\mathbf{x}_8, \, x_8] & [1, 1] \end{pmatrix} \times \begin{pmatrix} \beta_1 \\ \beta_0 \end{pmatrix} = \begin{pmatrix} \widehat{y_{1i}} \\ \vdots \\ \widehat{y_{8i}} \end{pmatrix}$$

- ј порядковый номер файла, $j \in \overline{1,8}$
- і номер пикселя внутри файла, $i \in \overline{1,8192}$
- x_i вольтаж, определяемый по первой цифре названия файла
- \bullet $\widehat{y_{ji}}$ оценка значения, соответствующее каждому пикселю, по всем 100 фреймам
- β_0 и β_1 искомые параметры линейной регрессии.

Каждая система линейных алгебраических уравнений была решена с использованием метода Дж. Рона [1], реализованном в библиотеке intervalpy. В результате были получены два множества интервалов оценок: $B_0 = \{\beta_0\}_{i=1}^{8192}$ и $B_1 = \{\beta_1\}_{i=1}^{8192}$

Оценка каждого из параметров линейной регрессии будем производить следующим образом:

- 1. $\widehat{\beta}_0 = med_K B_0$, $\widehat{\beta}_1 = med_K B_1$
- $2. \ \widehat{\beta_0} = med_P B_0, \ \widehat{\beta_1} = med_P B_1$
- 3. $\widehat{\beta_0} = \text{mode}B_0, \ \widehat{\beta_1} = \text{mode}B_1$

Таким образом, конечные значения $\widehat{\beta}_0$ и $\widehat{\beta}_1$ служат наиболее вероятными оценками параметров регрессии, что позволяет более точно анализировать зависимость между переменными в исследуемых данных.

4 Результаты

4.1 Оценки

В ходе лабораторной работы для внутренней оценки были получены следующие результаты:

- $\bigcap_{i=1}^{8192}, \, \beta_{0,i} = \emptyset$
- $\bigcap_{i=1}^{8192} \beta_{1,i} = \emptyset$
- $med_KB_0=[8029.18,\ 8190.85]$ и $med_KB_1=[12857.0,\ 13289.5]$ для внутренней оценки медианой Крейновича
- $med_PB_0=[8023.65,\ 8195.88]$ и $med_PB_1=[12879.9,\ 13280.5]$ для внутренней оценки медианой Пролубникова

 \bullet mode $B_0 = [8083.32, 8083.33], [8086.78, 8086.80] и mode<math>B_1 = [13070.5, 13072.5]$ для внутренней оценки модой.

Для внешней оценки были получены следующие результаты:

- $\bullet \ \bigcap_{i=1}^{8192} \beta_{0,i} = \emptyset$
- $\bullet \bigcap_{i=1}^{8192} \beta_{1,i} = \emptyset$
- $med_KB_0=[7780.52,\ 8430.21]$ и $med_KB_1=[12193.0,\ 13950.3]$ для внутренней оценки медианой Крейновича
- $med_PB_0=[7765.31,\ 8454.22]$ и $med_PB_1=[12279.1,\ 13881.3]$ для внутренней оценки медианой Пролубникова
- ullet mode $B_0=[7927.51,\ 8224.58]$ и mode $B_1=[13097.9,\ 13573.8]$ для внутренней оценки модой.

4.2 Графики

Рис. 1: Коридор совместных зависимостей для внутренней оценки медианой Крейновича

Рис. 2: Коридор совместных зависимостей для внешней оценки медианой Крейновича.

Рис. 3: Коридор совместных зависимостей для внутренней оценки медианой Пролубникова

Рис. 5: Коридор совместных зависимостей для внутренней оценки модой

Рис. 4: Коридор совместных зависимостей для внешней оценки медианой Пролубникова

Рис. 6: Коридор совместных зависимостей для внешней оценки модой

5 Заключение

В процессе выполнения лабораторной работы была разработана методика для оценки параметров линейной регрессии на основе интервальных данных. Основные достижения включают:

- Создан алгоритм для вычисления внутренних и внешних оценок параметров линейной регрессии, что позволяет учитывать неопределённость в исходных данных
- Получены интервальные оценки параметров β_0 и β_1 , которые демонстрируют диапазон возможных значений параметров регрессии.
- Построены коридоры совместных зависимостей, визуализирующие интервальные решения и способствующие анализу устойчивости модели

Полученные результаты свидетельствуют о том, что предложенный подход обеспечивает более точное моделирование зависимостей в данных, принимая во внимание возможные вариации и ошибки. Это особенно актуально в тех областях, где точность измерений может изменяться, и требуется надежная оценка параметров модели.

6 Литература

- 1. А.Н.Баженов. Интервальный анализ. Основы теории и учебные примеры. СПБПУ. 2020.
- 2. J. Rohn «Enclosing solutions of overdetermined systems of linear interval equations», Reliable Computing 2 (1996), 167-171.