Math 725 – Advanced Linear Algebra Paul Carmody Assignment #9 – Due 11/15/23

- 1. Let T be an operator on a finite dimensional inner product space.
- a) Show that range(T^*) is equal to the orthogonal complement of null(T).

For $v \in \text{null}(T)$ we have $\langle Tv, w \rangle = 0$ for all $w \in W$. And $\langle Tv, w \rangle = \langle v, T^*w \rangle = 0$. Which means that T^*w must be orthogonal to v for all w, hence range(T) is orthogonal to all $v \in \text{null}(T)$.

b) Assume that T is invertible. Prove that T^* is also invertible and $(T^*)^{-1} = (T^{-1})^*$.

$$I = I^*$$

$$TT^{-1} = (TT^{-1})^*$$

$$= (T^{-1})^*T^*$$

$$(TT^{-1})^{-1} = ((T^{-1})^*T^*)^{-1}$$

$$I = (T^*)^{-1}((T^{-1})^*)^{-1}$$

$$(T^{-1})^* = (T^*)^{-1}$$

2. Let $V = \mathcal{M}_{n \times n}(\mathbb{C})$ with the inner product $\langle A, B \rangle = \operatorname{tr}(AB^*)$. Let P be a fixed invertible matrix in V, and let T_P be the linear operator on V defined by $T_P(A) = P^{-1}AP$. Find the adjoint of T_P .

$$\langle T_P(A), A \rangle = \operatorname{tr}(P^{-1}APA^*) = \operatorname{tr}(AP^{-1}A^*P) = \langle A, T_P(A^*) \rangle$$

 $T_P^*A = T_P(A^*)$

We can commute P and P^{-1} because they are invertible.

- **3.** Let V be a finite dimensional inner product space and let W be a subspace of V. Then $V = W \oplus W^{\perp}$ where W^{\perp} is the orthogonal complement of W in V. In this case every vector $v \in V$ can be written as v = w + u where $w \in W$ and $u \in W^{\perp}$ are unique vectors. We define a linear operator $U: V \mapsto V$ by U(v) = w u where v = w + u is the unique decomposition.
- a) Prove that U is both self-adjoint and unitary. [Hint: diagonalize U].

Since V is a finite dimensional inner product space, there exists an orthonormal basis B. Also, W is U-invariant, i.e., $x \in W$, $\langle U(v), x \rangle = \langle w - u, x \rangle = \langle w, x \rangle - \langle u, x \rangle = \langle w, x \rangle$. Then

$$[U]_B^B = \left(\begin{array}{cc} U|_W & 0\\ 0 & U|_{W^{\perp}} \end{array}\right)$$

We can see that $||U|_W(w)|| = ||w||$ which means that $U|_W$ is unitary and $||U|_{W^{\perp}}(u)|| = ||u||$ which means that $U|_{W^{\perp}}$ is also unitary, thus $[U]_B^B$ is also unitary. Let x = a + b where $a \in W$ and $b \in W^{\perp}$. Then,

$$\langle U(v), x \rangle = \langle w - u, x \rangle$$

$$= \langle w, x \rangle - \langle u, x \rangle$$

$$= \langle w, a \rangle + \langle w, b \rangle - \langle u, a \rangle - \langle u, b \rangle$$
since $\langle u, a \rangle = \langle w, b \rangle = 0$

$$\langle U(v), x \rangle = \langle w, a \rangle - \langle w, b \rangle + \langle u, a \rangle - \langle u, b \rangle$$

$$= \langle w + u, a - b \rangle$$

$$= \langle v, U(x) \rangle$$

hence self-adjoint.

b) Prove that, conversely, if an operator on V is both self-adjoint and unitary, it has to be as U induced by some subspace W. [Hint: what are the eigenvalues of this operator?].

Let λ be an eigenvalue for U and x be the eigenvector associated with λ . $U(x) = \lambda x$. Since U is unitary we have

$$U(x)|| = ||x||$$
$$= ||\lambda x||$$
$$= |\lambda| ||x||$$

since $\lambda \in \mathbb{R}$, λ is 1 or -1. Since, U is self-adjoint, the eigenvectors of distinct eigenvalues are orthogonal to each other. Thus, the eigenspace for $\lambda_1 = 1$ will be orthogonal to the eigenspace for $\lambda_{-1} = -1$. Let W be the eigenspace for λ_1 then W^{\perp} will be the eigenspace for λ_{-1} . Thus, we must have $U|_W(v) = v$ and $U|_{W^{\perp}}(v) = -v$ and $U = U_W \oplus U_{W^{\perp}}$ or U(v) = w - u when $w \in W$ and $u \in W^{\perp}$.

4. Prove that T is normal if and only if $T = U_1 + iU_2$ where U_1 and U_2 are self-adjoint which commute.

Suppose there exists V_1, V_2 such that $T = V_1 + iV_2$ then

$$T + T = (U_1 + iU_2) - (V_1 + iV_2)$$
$$= (U_1 - V_1) + i(U_2 - V_2)$$
$$U_1 = V_1 \text{ and } U_2 = V_2$$

since T is normal, U_1 and U_2 are self-adjoint. And,

$$U_{1} = \frac{1}{2}(T + T^{*}), U_{1}^{*} = U_{1}$$

$$U_{2} = \frac{1}{2}(T - T^{*}), U_{2}^{*} = U_{2}$$

$$U_{1}U_{2} = \left(\frac{1}{2}(T + T^{*})\right)\left(\frac{1}{2}(T - T^{*})\right)$$

$$T \text{ is normal and commutes with } T^{*}$$

$$= \left(\frac{1}{2}(T - T^{*})\right)\left(\frac{1}{2}(T + T^{*})\right)$$

$$= U_{2}U_{1}$$

5. Let T be a normal operator on a finite dimensional complex inner product space. Show that there exists a polynomial f with complex coefficients such that $T^* = f(T)$. [Hint: diagonalize T].

Since T is normal, $T=Q^*\Lambda Q$ where Q is orthonormal and made up of column vectors of eigenvectors and Λ is diagonal filled with eigenvalues of T. Then we can see that for any term $f(x)=x^n$ then $f(T)=T^n=(Q^*\Lambda Q)(Q^*\Lambda Q)\cdots(Q^*\Lambda Q)$, n times. Since $QQ^*=I$ we can see that $T^n=Q^*\Lambda^nQ$. All polynomials are made up of these terms, and we can factor out Q,Q^* from each we have $f(T)=Q^*f(\Lambda)Q$ for any polynomials f. The adjoint, $T^*=(Q^*\Lambda Q)^*=Q^*\Lambda^*Q$. Thus, we are now looking for a solution to $\Lambda^*=f(\Lambda)$. Both Λ and Λ^* are diagonal and filled with the same eigenvalues. It sems life f(x)=x.

6. Suppose T is a self-adjoint operator on a complex inner product space V of finite dimension. Let $\lambda \in \mathbb{C}$, and $\epsilon > 0$. Suppose there exists $v \in V$ such that ||v|| = 1 and $||Tv - \lambda v|| < \epsilon$. Prove that T has an eigenvalue μ such that $|\lambda - \mu| < \epsilon$.

$$T = Q^* \Lambda Q$$
$$||Tv - \lambda v|| = ||Q^* \Lambda Q v - \lambda v||$$
$$= ||Q^* \Lambda Q - \lambda|| |v|$$
$$= ||Q^* \Lambda Q - \lambda||$$
$$< \epsilon$$

there must exist an eigenvalue μ such that $|\mu - \lambda| < \epsilon$

Extra Questions

These extra questions will help you go through the proof of the following theorem.

- **Theorem 1.** Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be an invertible matrix. Then there exists a unique lower triangular matrix L with positive diagonal elements such that LA is unitary.
- 1. Let $\alpha_1, \ldots, \alpha_n$ be the rows of A and let β_1, \ldots, β_n be an orthogonal basis obtained by the Gram-Schmidt procedure. Recall that this means $\operatorname{span}(\alpha_1, \ldots, \alpha_j) = \operatorname{span}(\beta_1, \ldots, \beta_j)$ for each $j = 1, \ldots, n$. Show that $\beta_j = \alpha_j \sum_{i < j} c_{ij} \alpha_i$ for each $j = 1, \ldots, n$ and some scalars c_{ij} . [Hint: how does Gram-Schmidt work? Review.]
- **2.** Let U be the matrix whose ith row is $\beta_i/||\beta_i||$. Clearly, U is unitary. Construct the matrix L as in the statement of the theorem such that LA = U.
- 3. Now you will prove the uniqueness of L. Suppose L_1 and L_2 are two lower triangular matrices with positive diagonals such that L_1A and L_2A are both unitary. First prove that $(L_1A)(L_2A)^{-1} = L_1L_2^{-1}$ is lower triangular and unitary. Conclude that $(L_1L_2^{-1})^* = (L_1L_2^{-1})^{-1}$ and hence $L_1L_2^{-1}$ is simultaneouly upper triangular and lower triangular. Hence $L_1L_2^{-1}$ is a diagonal matrix with positive diagonal entries. Finally, using the fact $L_1L_2^{-1}$ is also unitary and hence has eigenvalues with absolute value one, argue that $L_1L_2^{-1} = I$.
- **4.** As a corollary, prove that for every complex invertible matrix A there exists a unique lower triangular matrix N with positive diagonals and a unique unitary matrix U such that A = NU.