

What is Azure IoT Hub?

A cloud service from Microsoft

Communication between devices and the cloud remotely

Scalable for small to large IoT solutions

Key Features

Real-World Applications of IoT Hub

To notify staff when stock is low

track customer movement

Use case – Smart City

Smart street lighting:

-Sensor detect movements

Smart parking systems:

-Help drivers find available parking spot

Security Considerations for IoT Devices

Device Authentication

Data Encryption

Real-Time Monitoring

Integrating IoT Hub into the Architecture

Questions?

SignalR Overview: What is SignalR?

- ASP.NET Core library to facilitate real-time web functions
 - Instant server-side code pushes content to connected clients
- Persistent connections between client and server
 - Real-time communication
 - Instantaneous updates
 - No more frequent and slow server polling

SignalR Use cases: Where can it be useful?

- Chat applications
- Live notifications
- Real-time dashboards and collaboration tools (Figma, PPT Online, etc..)
- Multiplayer games

SignalR: Key features and Benefits?

Automatic connection management

Real-time communication without constant polling

Support for Multiple Transports

Broacasting and Group Messaging

Cross-platform
Compatibility (any
platform that supports
web technologies like
Angular, JavaScript, .NET,
etc..)

WebSockets (perfomant)

Server-Sent Events (for less interactive scenarios)

Long Polling (fallback option)

SignalR Role in Real-Time Web Applications

Notifications

Live notifications -> IoT device state change

Live Updates

Real-time change on a web page without refreshing

Chat Functionality

Enables real-time, bi-directional communications for chat and messaging

SignalR's Integration with Azure and other technologies

- In Azure:
 - Can host SignalR
 - Benefits:
 - Reliable and available
 - Autoscaling
 - Global distribution
 - Azure SignalR Service
 - Benefits:
 - Easy integration
 - Offloads hosting: Handles the hosting for you

SignalR's How it integrates in Azure

- Azure IoT Hub
 - Arduino pushes real-time data to Azure IoT Hub
- Azure Functions
 - Process incoming data and push updates to client via SignalR
- Angular Web App (client-side receiver connected via SignalR)
 - Displays the updates in real-time
- Database
 - Settings and information stored here and updated

SignalR's Performance and scalability

Azure IoT Hub

Arduino pushes realtime data to Azure IoT Hub

Azure Functions

Process incoming data and push updates to client via SignalR

Angular Web App (client-side receiver connected via SignalR)

Displays the updates in real-time

Database

Settings and information stored here and updated

Case Studies and Real-World Applications (examples)

MICROSOFT TEAMS

STOCK MARKET DASHBOARDS

COLLABORATIVE TOOLS

ONLINE GAMING

ETC..

SignalR's Role in the **Context of This Project**

Real-Time updates for IoT Data

Streams the state of the IoT devices in real-time

Users receives instant feedback when performing an actions like turning lights on/off from the web page

User notifications

Notifies users of the current state of their IoT devices

Finally, how is SignalR integrated into this application?

- 1- The Arduino captures data from the IoT devices and sends it to the cloud
- 2- Azure functions will process the data and send relevant updates to connected clients through **SignalR**
- 3- SignalR pushes the real-time data updates and control messages (like turning the light on or off) to the Angular front-end
- 4- The client on the front-end Angular Web App interact with the app and send messages via SignalR to receive feedback in return

Overview

Act as the core for specific event-driven tasks in the architecture.

Seamless interaction with other Azure services ensures smooth data flows between components.

Reduce complexity by abstracting infrastructure management.

Key Features

Benefits

Common Use Cases

Reminders and notifications

Scheduled tasks and messages

File processing

★ Data streams processing

Running background backup tasks

Computing backend calculations

Lightweight Web APIs, proofs of concept, MVPs

Picture: Ggailey. (2024, 26 septembre). *Azure functions scenarios*. Microsoft Learn. https://learn.microsoft.com/en-us/azure/azure-functions/functions-scenarios?pivots=programming-language-csharp

Integration

Introduction to Azure Web App

What is Azure Web App?

PLATFORM SERVICE (PAAS) FOR DEPLOYING AND MANAGING WEB APPLICATIONS. MANAGES THE INFRASTRUCTURE

Key benefits

MULTI-LANGUAGE SUPPORT: COMPATIBLE WITH .NET, NODE.JS, JAVA, PHP, PYTHON, ETC.

SCALABILITY: AUTOMATIC SCALABILITY TO HANDLE VARIABLE TRAFFIC.

Key features

Continuous integration and continuous deployment (CI/CD).

Support for GitHub, Azure DevOps.

Security:

SSL certificate management, integration with Azure AD.

Monitoring:

Tools like Azure Monitor and Application Insights for performance diagnostics.

Use cases

Corporate websites.

REST APIs.

E-commerce applications.

SaaS applications.

MongoDB

Ait Oujkal Farouk

Overview of NoSQL Databases

Definition: Non-relational databases, also known as 'Not Only SQL.'

Characteristics: Schema flexibility, horizontal scaling, and distributed storage.

Types of NoSQL Databases: Document, Key-Value, Column-Family, Graph databases.

What is MongoDB?

STORES DATA IN JSON-LIKE FORMAT CALLED BSON.

DEVELOPED TO MANAGE HIGH-VOLUME DATA STORAGE.

MongoDB Features and Benefits

Schema Flexibility: Allows for evolving data structures.

Horizontal Scalability: Sharding support enables large-scale distribution.

High Performance: Optimized for read and write performance.

Data Redundancy: Supports replica sets for high availability.

Data Structure in MongoDB

Document Model: Data is stored in BSON documents.

Collections: Groups of documents, similar to tables in relational databases.

Hierarchical Data Structure: Supports embedded documents and arrays.

MongoDB in Real-World Applications

Big Data: Efficiently manages massive datasets.

Real-Time Analytics: Ideal for dynamic data processing.

Content Management: Flexible schema is suitable for multimedia and contentheavy apps.

Cloud Applications: Suits modern, distributed cloud architectures.

Performance, Scalability, and Security

Performance: Fast read/write speeds due to document-based storage.

Scalability: Horizontal scaling with sharding.

Security: Role-Based Access Control (RBAC), encryption, and access control mechanisms.

Role of MongoDB in the Smart Home Project

STORES DATA ABOUT LIGHTING CONFIGURATIONS

MAINTAINS THE STATUS OF EACH LIGHT (ON/OFF, BRIGHTNESS LEVEL, ETC.) IN REAL-TIME.

PROVIDES A SCALABLE, FLEXIBLE STORAGE SOLUTION SUITABLE FOR UNSTRUCTURED AND STRUCTURED DATA.

Integration of MongoDB with Other Architecture Components

- Backend Access: The backend server interacts with MongoDB to store and retrieve lighting states and settings.
- Data Flow: MongoDB serves as a central repository, allowing the web app to query and display real-time lighting status.
- IoT Device Updates: Receives and logs data from IoT sensors, which track the current state of the lighting.

