title here

Felipe B. Pinto 61387 – MIEQB

21 de junho de 2024

Conteúdo

Τ	IIIIIodução	_	Τ	NSIAGE	0
2	Planejamento das colunas	3	2	FSTAGE	9
3	Planejamento das Simulações .	4	3	NREFLUX	10
II	Simulações	6	4	FSTAGE.2	11
			5	FSTAGE-2	13

1 Introdução

Pretende-se planejar um processo de destilação adaptado ao fluxo de uma mistura de Benzeno (C_6H_6), Tolueno (C_7H_8) e Cumeno (C_9H_{12}) em duas etapas.

Figura 1: Flowsheet

Composição do Feed (F)

Composto	Fração molar
Benzeno	0.4
Tolueno	0.3
Cumeno	0.3

Tabela 1: Composição do Feed (F) em fração molar de cada composto

Objetivos

Composto	Stream	Reculperação
Cumeno	R	95%
Tolueno	D	95%
Tolueno	R2	99%
Benzeno	D2	99%

Tabela 2: Objetivos de reculperação de cada composto nos streams

Reculperação Mede a fração de fluxo molar de saída comparado com entrada da coluna, para D e R é F, para D2 e R2 é D

Os modelos devem minimizar os gastos de construção e manutenção, onde o primeiro esta relacionado com o numero de colunas e o segundo a energia gasta para manter a coluna funcionando, que por si se relaciona com o numero de refluxo da coluna.

Modelos encontrados

B1				B2			
Modelo	NSTAGES	FSTAGE	RR	Modelo	NSTAGES	FSTAGE	RR
1	8	6	3.299	1	17	8	2.623
2	9	7	2.069	2	18	9	2.251
3	10	7	1.634	3	19	9	2.019
4	11	8	1.432	4	20	10	1.833
5	12	8	1.317				

Tabela 3: Melhores modelos para resolução do problema

Qualquer combinação dos modelos B1 e B2 é uma resposta ao problema, mais a frente será estudado as combinações (1,1),(1,4),(5,1) e (5,4) para prever as caracteristicas energéticas de todas as combinações possíveis.

NSTAGES Numero de Pratos

FSTAGE Prato de entrada

RR Numero de Refluxo

Planejamento das colunas

Composto	Temperatura (°C)
Benzeno	80.1
Tolueno	110.6
Cumeno	152

Tabela 4: Temperatura de ebulição dos compostos

Coluna B1

Nessa coluna pretende-se separar o Cumeno da mistura, por ser o composto menos volátil pela maior temperatura de ebulição, ele ira sair pelo reculperado (R) da primeira coluna (B1), dessa forma o caldal molar desse stream (R) deve ser 30% do caldal de entrada (F), implicando que o caldal molar do destilado (D) seja 70% do de entrada (F).

Coluna B2

Pretendendo separar o Benzeno do tolueno, pelo benzendo ser mais volátil este sairá pelo destilado (D2) e o tolueno pelo resíduo (R2), dessa forma, comparando com o caldal de entrada, deve sair 40% no destilado (D2) e 30% no resíduo (R2)

Stream	D	R	D2	R2
Fração de Fluxo molar	70%	30%	40%	30%

Tabela 5: Fração de fluxo molar de cada stream de saída das colunas comparado com o de entrada (F)

3 Planejamento das Simulações

Decidimos iniciar as simulações com algumas condições iniciais:

- · Caldal feed (F): 100 kmol/h
- Feed de entrada B1 e B2: ao meio da coluna
- Numero de refluxo B1 e B2: 2
- · Pressão da coluna: 1 bar
- · Pressão do Feed: 1.1 bar

Procedimento Tomamos a seguinte sequencia de simulações.

- 1. NSTAGE: onde se processará a coluna B1 variando o numero de pratos, selecionando um range dos melhores.
- 2. FSTAGE: Variando o prato de entrada da coluna B1 e selecionando o melhor.
- 3. NREFLUX: se varia o numero de refluxo selecionando o melhor.
- 4. FSTAGE-2: Onde se varia novamente o prato de entrada para se confirmar com o numero de refluxo, selecionando o melhor.
- 5. NSTAGE-B2: Mesmo que NSTAGE para o B2
- 6. FSTAGE-B2: Mesmo que FSTAGE para o B2
- 7. NREFLUX-B2: Mesmo que NREFLUX para o B2
- 8. FFLOW: Onde se varia o caldal de entrada para estudar os gastos energéticos

Cada ponto mantem os melhores parametros do ponto anterior

Exemplo: em FSTAGE se simula para diferentes entradas as colunas com o numero de pratos encontrados em NSTAGE que é o ponto anterior

3.1 Erro

Ao decorrer das simulações será avaliado os dados medindo o erro deles, essa função é util para poder avaliar modelos com multiplos parametros como para a coluna B1 precisamos optimizar a reculperação do tolueno e do cumeno para 95% no destilado (D) e resíduo (R) respectivamente, somando esses erros temos um valor que mede o quanto bom é o modelo englobando ambos os parâmetros.

Error mede em porcentagem a distancia do parametro do objetivo

Error(Objetivo, Valor) =
$$\left| 1 - \frac{\text{Valor}}{\text{Objetivo}} \right|$$

Error(0.95, 0.958) $\cong 8.421 \, \text{E}^{-3}$

II – Simulações

1 NSTAGE

Se variou manualmente no Aspen a coluna B1 com diferentes numeros de pratos, a sequencia de uma forma lógica, começamos com 32, e fomos dividindo por 2 até encontrar valores mnores que o pedido, nesse caso foi em 8 pratos, então subiu de 2 em 2 até 16, isso foi feito para poder construir a curva onde se pode ver o vale com menores erros.

Simulação	NSTAGE	Reculperaç	Reculperação		
Simulação	NOTAGE	Tolueno	Cumeno	- Error(.95)	
1	32	100.00%	100.00%	$1.192\mathrm{E}^{-1}$	
2	16	99.26%	99.26%	$1.554\mathrm{E}^{-2}$	
3	8	89.39%	89.29%	$1.698\mathrm{E}^{-2}$	
4	10	94.27%	94.25%	$7.362~{ m E}^{-2}$	
5	12	95.82%	95.79%	$8.978\mathrm{E}^{-2}$	
6	14	98.50%	98.50%	$1.052\mathrm{E}^{-1}$	

Tabela 6: Variação do numero de pratos da coluna B1

Figura 2: Variação do numero de pratos da coluna B1

Foram selecionados de $8 \rightarrow 12$ (incluindo valores impares) como o numero de pratos para continuar o estudo, valores menores foram selecionados para considerar quantidades menores de pratos.

Algo a se notar é que os valores escolhidos são altamente dependentes do numero de refluxo inicial ultilizado, perchance teriamos usado 1 ou 5 como numero de refluxo, teriamos visto o vale orbitando ao redor de $14 \rightarrow 16$ ou $4 \rightarrow 5$ respectivamente, como decidimos 2 como um valor proximo do esperado, continuamos as simulações de acordo.

2 FSTAGE

Usando a análise de sensibilidade S1-FSTAGE, se variou a entrada do feed do meio da coluna até o práto anterior ao ultimo.

Aqui o erro medimos em referencia a 1 por querermos a melhor configuração possível, o ajuste para 95% será feito no passo seguinte.

FSTAGE	Error(1)				
FSTAGE	8	9	10	11	12
4	$2.132\mathrm{E}^{-1}$	$1.982~\mathrm{E}^{-1}$	$1.899\mathrm{E}^{-1}$	$1.855\mathrm{E}^{-1}$	$1.834~{ m E}^{-1}$
5	$1.556\mathrm{E}^{-1}$	$1.308\mathrm{E}^{-1}$	$1.148\mathrm{E}^{-1}$	$1.049~{\rm E}^{-1}$	$9.929\mathrm{E}^{-2}$
6	$1.377\mathrm{E}^{-1}$	$1.056\mathrm{E}^{-1}$	$8.387\mathrm{E}^{-2}$	$6.929\mathrm{E}^{-2}$	$5.979\mathrm{E}^{-2}$
7	$1.445\mathrm{E}^{-1}$	$1.018\mathrm{E}^{-1}$	$7.421\mathrm{E}^{-2}$	$5.589\mathrm{E}^{-2}$	$4.359\mathrm{E}^{-2}$
8		$1.177\mathrm{E}^{-1}$	$7.831\mathrm{E}^{-2}$	$5.415\mathrm{E}^{-2}$	$3.872\mathrm{E}^{-2}$
9			$1.009\mathrm{E}^{-1}$	$6.323\mathrm{E}^{-2}$	$4.130\mathrm{E}^{-2}$
10				$9.111\mathrm{E}^{-2}$	$5.391\mathrm{E}^{-2}$
11					$8.578\mathrm{E}^{-2}$

Tabela 7: Variação do prato de entrada da coluna B1 para diferentes numeros de pratos

Figura 3: Variação do prato de entrada da coluna B1 para diferentes numeros de pratos

3

В1

Aqui realizamos a análise de sensibilidade S2-NREFLUX variando o numero de refluxo de $0.5 \rightarrow 5.0$ em intervalos de 0.1 para cada configuração encontrada até agora.

Em seguida realizamos a anaíse do design specks DS-1 tentando optimizar porem percebemos alguma inconsistencia nos valores e decidimos realizar uma segunda análise de sensibilidade com uma precisão maior para encontrar os melhores valores.

A segunda análise de sensibilidade, continua usando o S2-NREFLUX porem variando com a precisão de 0.001 indo do menor valor econtrado na análise de sensibilidade anteriror \pm 0.05 caso o melhor resultado esteja em alguma dessas extremidades realizar para os numeros de refluxo até o próximo valor ja simu-

Exemplo: Melhor valor encontrado foi 2.000, varia $1.95 \rightarrow 2.05$ variando 0.001 se melhor valor for em 2.05, simular $2.051 \rightarrow 2.099$

NSTAGES	RR	Reculperaça Tolueno	ão Cumeno	Error				
Design Spec	Design Specs DS-1							
8	3.222	95.051 %	94.936 %	$1.211\mathrm{E}^{-3}$				
9	2.010	95.026%	94.847%	$1.884~{\rm E}^{-3}$				
10	1.629	95.067%	94.972%	$1.001~{\rm E}^{-3}$				
11	1.426	95.070%	94.952%	$1.244~{ m E}^{-3}$				
12	1.314	95.028%	94.967%	$6.425\mathrm{E}^{-4}$				
Best values								
8	3.299	95.109 %	94.997%	$1.177\mathrm{E}^{-3}$				
9	2.069	95.168%	94.998%	$1.786~{ m E}^{-3}$				
10	1.634	95.091%	94.996%	$9.925 \mathrm{E}^{-4}$				
11	1.432	95.112%	94.995%	$1.228~{ m E}^{-3}$				
12	1.317	95.054%	94.993%	$6.379{\rm E}^{-4}$				

coluna B1

 $\cdot 10^{-5}$ $\cdot 10^{-5}$

nos refluxo para separar e vice-versa.

3 2.5

Figura 6: Relação inversa entre numero de pratos e refluxo

lizmente não foi ultilizada nesse estudo: 1. Simular $0.5 \rightarrow 5.0$ em variação de 0.1

Se pode tirar uma sequencia mais optimizada para análise de dados que infe-

- 2. Simular intervalo melhor valor $\pm~0.1$ em variação de 0.01
- 3. Simular próximo intervalo de melhor valor anterior \pm 0.01 em variação de 0.001

Esse processo gera o menor numero de dados para atingir mesmo objetivo e pode ser repetido para atingir maiores precisões. Comparando com o processo ante-

rior, esse gera 10 dados cada etapa a partir da segunda, enquanto o processo anterior gera de 100 a 200, porem exige uma etapa a mais de simulação. Pela inconsistencia do DS-1 decidimos abandonar esses dados para fulturas

simulações, usando a análise de sensibilidade como o métodod mais confiável.

4 FSTAGE.2

Conferindo a melhor entrada do feed a análise de sensibilidade foi rodada novamente agora com os valores optimos de refluxo

FSTAGE	Error(1)				
FSIAGE	8	9	10	11	12
4	$1.376\mathrm{E}^{-1}$	$1.906\mathrm{E}^{-1}$	$2.454~{\rm E}^{-1}$	$2.869\mathrm{E}^{-1}$	$3.175\mathrm{E}^{-1}$
5	$1.070 \mathrm{E}^{-1}$	$1.257\mathrm{E}^{-1}$	$1.557\mathrm{E}^{-1}$	$1.858\mathrm{E}^{-1}$	$2.120\mathrm{E}^{-1}$
6	$9.894\mathrm{E}^{-2}$	$1.018\mathrm{E}^{-1}$	$1.138\mathrm{E}^{-1}$	$1.303\mathrm{E}^{-1}$	$1.486\mathrm{E}^{-1}$
7	$1.039\mathrm{E}^{-1}$	$9.835\mathrm{E}^{-2}$	$9.913\mathrm{E}^{-2}$	$1.044~{ m E}^{-1}$	$1.136\mathrm{E}^{-1}$
8	$1.298\mathrm{E}^{-1}$	$1.137 \mathrm{E}^{-1}$	$1.035\mathrm{E}^{-1}$	$9.893\mathrm{E}^{-2}$	$9.954\mathrm{E}^{-2}$
9			$1.309\mathrm{E}^{-1}$	$1.119\mathrm{E}^{-1}$	$1.025\mathrm{E}^{-1}$
10				$1.491\mathrm{E}^{-1}$	$1.231\mathrm{E}^{-1}$
11					$1.661~{\rm E}^{-1}$

Tabela 9: Variação do prato de entrada da coluna B1 para diferentes numeros de pratos com numero de refluxo óptimo

Figura 7: Variação do prato de entrada da coluna B1 para diferentes numeros de pratos com numero de refluxo óptimo

5 NSTAGE-B2

Da mesma forma que a primeira coluna se variou manualmente o numero de pratos da coluna B2 com o numero de refluxo fixo em 2.

Simulação	NSTAGE -	Reculperaç	Reculperação		
	NSTAGE -	Tolueno	Cumeno	- Error(.99)	
1	32	99.812%	99.993%	$1.823\mathrm{E}^{-2}$	
2	16	97.950%	98.662%	$1.402~{ m E}^{-2}$	
3	20	99.201%	99.556%	$7.644~{ m E}^{-3}$	
4	18	98.719%	99.212%	$4.977{\rm E}^{-3}$	

Tabela 10: Variação do numero de pratos da coluna B2

Figura 8: Variação do numero de pratos da coluna B2

Foram selecionados de $17 \rightarrow 20$ como o numero de pratos a serem estudados para a coluna B2