Nonparametric Smoothing

Assignment Project Exam Help

https://powcoder.com

- Shootling with Parara Autson estimator oder

 Choosing Bandwidths
- Non-parametric density estimation
- Local linear regression
- Basis expansion methods

Curve Fitting

Assignment Project Exam Help

Try and produce methods that fit locally.

Local Fitting

Assignment Project Exam Help Binning:

- Divide t_1, \ldots, t_n into bins.
- https://poweoder.com

Produce locally constant \hat{g} . Not very pretty.

Use the average of a moving window centered at t:

Add WeChat powcoder

Or weight by distance from t.

Nadaraya-Watson Estimator

Assignment, $\Pr_{g(t,h)} = \Pr_{\sum_{i=1}^{h} K(\frac{t_i-t}{h})} \times \text{Assignment}$

- K((t+t)/h) Weights each v. by distance of t. from t
 Denominator ensures that weights sum to 1 at each t.
- Bandwidth h spreads weight closer or further from t.

```
\text{NW} = \underset{\text{return}}{\text{And}} \text{id}(\text{W}, \text{ewhat powed}) \\ \text{hat powed} \\ \text{dhorm}(\text{TI-t}, \text{sd=bw}) \\ \text{dhorm}(\text{TI-t}, \text{
```

Larger h implies that points further away have influence on curve.

Bias-Variance Trade-off

Need to think about choosing h; what do we want to achieve?

Assignment Project Exam Help

By adding and subtracting
$$E\hat{g}(t,h)$$
 we can write
$$\underbrace{ \text{POWCOGET.COM}}_{E\left[\hat{g}(t,h)-g(t)\right]^2 = \left[E\hat{g}(t,h)-g(t)\right]^2 + E\left[\hat{g}(t,h)-E\hat{g}(t,h)\right]^2}_{= \text{bias}^2 + \text{variance}}$$

Intuitive Carger Weachtalas proportion of the Language Proportion of the La

This is generally referred to as a trade-off; want to balance these two.

Example: Vancouver Precipitation

Assignment Project Exam Help https://powcoder.com

- Add WeChat powcoder
- Small h: relies on points close to t: low bias, but high variance.
- Large h: spreads weight across many observations: smaller variance, higher bias.
- Finding an ideal compromise is difficult.

Choosing A Bandwidth

Assignment Project Exame Help

interval.

We can to think who is the at (pu w/au or less for predicting a new data point (t_{new}, y_{new}).

We will approximate this via cross-validation.

Cross Validation

Assignment, Project Exam Help

- Remove (t_i, y_i) from the data.
- Estimate $\hat{g}^{-i}(t,h)$ from the remaining data.
 Little S(t,h) POWCOGET.COM

The cross-validated score is

Add We Chat powcoder

Treats each i as a "new" observation. Choose h to minimize OCV(h).

Cross Validation

Leave each point out in turn and try to predict it

CVs[i] = CV(hs[i], TT, Y)

```
ssignment Project Exam Help
  err = rep(0,length(Y)) # Prediction Errors
  for(i in 1:length(err)){
  https://powcoder.com
  return( sum(err^2) )
we'll Add whee Chaty powcoder
hs = 1:20
for(j in 1:length(hs)){
```

Calculating Cross Validation Efficiently

■ Leaving one point out at a time is computationally expensive.

Assignment Project Exam Help

where \mathbf{y} is the vector of observations and $\hat{\mathbf{y}}$ predicted values https://powcoder.com $[S(h)]_{ij} = \frac{\sum_{k=1}^{n} K(\frac{t_i - t_k}{h})}{\sum_{k=1}^{n} K(\frac{t_i - t_k}{h})}$

$$[S(h)]_{ij} = \frac{K(h)}{\sum_{k=1}^{n} K(\frac{t_i - t_k}{h})}$$

- SAddul We Chartve por Wcoder

$$OCV(h) = \sum_{i=1}^{n} \frac{(y_i - \hat{g}(t_i, h))^2}{(1 - [S(h)]_{ii})^2}$$

This identity means that we can calculate OCV(h) as efficiently as ŷ.

In Code

```
hs = 1:20  # Bandwidths

OCV = 0*hs  # OCV scores
```

Assignment Project Exam Help

Add WeChat powcoder

Generalized Cross Validation

OCV tends to under-smooth and has some mathematically undesirable properties.

Assignment-Project-Exam Help

Add WeChat powcoder

Undersmoothing

GCV and OCV generally produce curves that are rougher than is visually appealing.

Assignment Project Exam Help

One suggested change is a little extra penalty in GCV :

 $\begin{array}{c} \text{GCV2[i] = sum((Y-hatY)^2)/sum((1-1.4*diag(Sh))^2)} \\ \text{$https://pow.coder.com} \end{array}$

Extensions 1: Kernel Density Estimation (Rizzo Ch 10) If $X_1, ..., X_n \sim f(\cdot)$ but we don't know f.

Assignment Project Exam Help

 $\begin{array}{c} \text{https://powcoder.com} \\ \text{https://powcoder.com} \end{array}$

Using 20 points at random for ease of illustration.

Alternative Kernels

Examples here use the normal density; but any symmetric bump

Assignment Project Exam Help

Epanechnikov kernel often favored for theoretical reasons.

Bandwidth h

Bandwidth controls the "wigglyness" of the estimate.

Assignment Project Exam Help

Intuitively: smaller h makes estimate more sensitive to data \Rightarrow higher variance.

It works better with all the data

faithful\$eruptions

Asymptotics Sketch (details unimportant)

We will look at the expected error between $\hat{f}(x)$ and f(x).

Assignment Project Exam Help
$$E(\hat{f}(x) - f(x))^2 = E(\hat{f}(x) - E\hat{f}(x))^2 + (E\hat{f}(x) - F(x))^2$$

which divides total error into variance and bias. It is natural to think of $h \to 0$ as $n \to \infty$, but how quickly?

We will use change of variables:

$$E_{X_i} \frac{1}{h} K \left(\frac{dd}{h} \right) = \int_{h}^{\infty} \int_{h}^{\infty} \frac{dd}{h} \int_{h$$

by setting u = (y - x)/h or y = x + hu.

Bias

We observe that because each $K((X_i - x)/h)$ are i.i.d:

Assignment Project Exam Help

bias "spreads out" f:

https://po/weoder.com

We take two terms of a Taylor expansion of f(x + hu) about h

$$\textit{E} \hat{f}(x) \textbf{A} \textit{d} du) \textbf{W} x \textbf{e} \textbf{C} \textbf{what} \frac{1}{2} \textbf{powcoder}$$

$$= f(x) + hf'(x) \int uK(u)du + \frac{1}{2}h^2 \int K(u)u^2f''(x + hu^*)du$$

$$= f(x) + o(h^2)$$

so bias decreases at rate h^2 . Need to trade this off with variance.

Variance

Variance of $\hat{f}(x) = \frac{1}{n} \sum K((X_i - x)/h)/h$ is

Assignment Project Exam Help

https://powcoder.com
$$= \frac{1}{n} \left(\frac{1}{h} \frac{K}{h} \left(\frac{X_i - x}{h} \right)^2 - \left(\frac{E}{h} \frac{1}{h} \frac{K}{h} \left(\frac{X_i - x}{h} \right)^2 \right) - \left(\frac{E}{h} \frac{1}{h} \frac{K}{h} \left(\frac{X_i - x}{h} \right)^2 \right) + \frac{1}{n} \left(\frac{1}{h} \frac{1}{h} \frac{1}{h} \frac{K}{h} \left(\frac{y - x}{h} \right)^2 f(y) dy - \left(\int K(u) f(x + hu) du \right)^2 \right) + \frac{1}{n} \left(\frac{1}{h} \frac{1}{h} \frac{1}{h} \frac{K}{h} \left(\frac{y - x}{h} \right)^2 f(y) dy - \left(\frac{1}{h} \frac{1}{h}$$

increases at rate 1/h for a fixed n.

Trade Off

We can do calculus with order notation by looking at

Assignment
$$=\frac{f(\hat{f}(x)-f(x))^2}{nh} + (f(x)+Bh^2-f(x))^2 + \frac{f(\hat{f}(x)-f(x))^2}{hh} + (f(x)+Bh^2-f(x))^2$$

https://pdwcoder.com

Add We Pat powcoder

or plugging this back into MSE

$$E(\hat{f}(x) - f(x))^2 = O(n^{-4/5}).$$

Notice that this is slower than the $O(n^{-1})$ rate we usually get for squared error of parameter estimates.

Extensions 2: Local Linear Regression

Re-thinking Nadaraya-Watson; the locally-weighted mean solves

Assignment Project Exam Help

But we don't have to restrict to a "constant" model.

Local Imear Pegression POWCOGER.COM

$$(\hat{\beta}_{0}(A), \hat{\beta}_{1}(t)) = \sum_{i=1}^{n} (v_{i} - \beta_{0} - \beta_{1}(t_{i} - t))^{2} K \begin{pmatrix} t_{i} - t \\ \mathbf{er} \end{pmatrix}$$

has better statistical properties, especially at edge of data and if you want to take derivatives.

Predict $\hat{\beta}_0(t)$ but we can also get a slope from $\hat{\beta}_1(t)$ Local weighting can be applied to any model in this way.

R Packages

(see Lab for examples, but) a number of packages provide local Assignment Project Exam Help

- Tocpol
 - choice of kernels

degree 1 through 10 (include regression on t^2 , t^3 etc.) Like String for WCOGET. COM

- KernSmooth
 - only Gaussian kernels

A all of low strength of the hat powcoder

locfit (not as clearly documented, but does multivariate local polynomials)

Generally, require evaluation points to be specified beforehand.

Basis Expansions

Alternative, to local methods, we can use regression approaches.

Assignment Project Exam Help $y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + \dots + \epsilon_i$

Or if there is curvature:

Which we will write as

Add WeChat powcoder
$$y_i = \sum_{i=1}^{c_j} c_j \phi_j(t_i) + \epsilon_i = g(t_i) + \epsilon_i$$

or more compactly

$$g(t) = \mathbf{c}^T \Phi(t)$$

Assignment ilestroyeour Exam Help

- Splines are polynomial segments joined end-to-end
- Segments are constrained to be smooth at the join
- hetens: whip he we had ere. aloms
- The order m (order = degree+1) of the polynomial segments and
- the definite the powcoder
- **Bsplines** are a particularly useful means of incorporating the constraints.

The package splines will be used for this.

Vancouver precipitation with knots at months.

Splines of order 1

Assignment Project Exam Help

Same as dividing data into bins and and use mean in each bin.

Vancouver precipitation with knots at months.

Splines of order 2

Vancouver precipitation with knots at months.

Splines of order 3

Vancouver precipitation with knots at months.

Splines of order 4

Vancouver precipitation with knots at months.

Splines of order 5

Vancouver precipitation with knots at months.

Splines of order 6

Least-Squares

We have observations

Assignment Project Exam Help

and we want to estimate

Minima de de la marca dela marca della mar

$$SSE = \sum_{i=1}^{n} (y_i - g(t_i))^2 = \sum_{i=1}^{n} (y_i - \mathbf{c}^T \Phi(t_i))^2$$

This is just linear regression!

The splines Package

To define a B-spline you need

ssignment, Project Exam Help

On knots

- grd-1 knots on each end are boundary points
 philes Der ord into knot Coolings Crown are something the soundary points edges.
- Can spread these out like regular knots, or pile up at the end pertend WeChat powcoder

splineDesign gives values of basis functions

```
library(splines)
knots = c(rep(0,3),months,rep(365,3))
                                       # Order 4 splines -
bvals = splineDesign(x=TT,knots=knots,ord=4)
```

Linear Regression on Basis Functions

Assignment y P, wo just Exam Help

$$SSE(\mathbf{c}) = (\mathbf{y} - \mathbf{\Phi}\mathbf{c})^T(\mathbf{y} - \mathbf{\Phi}\mathbf{c})$$

• hetepsin//poworder the own least squares estimate

Add WeChat powcoder

Then we have the estimate

$$\hat{g}(t) = \Phi(t)\hat{c} = \Phi(t) \left(\mathbf{\Phi}^T\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T\mathbf{y}$$

Penalization

- Using splines, or other basis expansion, bias/variance trade-off
- Assi is in terms of numbe Pod order of basis functions. Help bis is usually difficult to work with, and estimates have high variability.
 - Instead, we add a penalty to squared error: $\frac{\text{https://powcoder.com}}{\text{PENSSE}(\lambda)} = \sum_{i=1}^{n} (y_i g(t_i))^2 + \lambda \int (g''(t))^2 dt$

Add WeChat powcoder

- Fit to data + penalty for roughness.
- $\int g''(t)^2 dt = 0$ if g(t) = a + bt, but large if g is "wiggly"
- lacksquare λ governs trade-off between the two.
- Use more knots that needed (one each data point if possible) and then control variance with λ .

Penalty Matrices

Observe that

Assignment Project Exam Help $= \int \sum \sum c_i c_j \phi_i''(t) \phi_j''(t) dt$

 $\underset{\text{for } P_{ij} = \int \Phi_i''(t)\Phi_i''(t)}{\text{three odden.com}}$

We will approximate

(see numerical integration next) can write this as

$$P = \delta \mathbf{\Phi}''^T \mathbf{\Phi}''$$

splineDesign allows you to specify derive for derivatives.

OCV and GCV

Assignment Project Exam Help $PENSSE(\lambda) = \sum_{(y_i - \Phi(t_i)c)^2 + \lambda c^T P c} Help$

• https://poweoder.com

$$\hat{\mathbf{c}} = \left(\mathbf{\Phi}^{T}\mathbf{\Phi} + \lambda P\right)^{-1}\mathbf{\Phi}^{T}\mathbf{y}$$

$$\mathbf{Add} \quad \mathbf{WeChat} \quad \mathbf{powcoder}$$

$$\hat{\mathbf{y}} = \mathbf{\Phi} \left(\mathbf{\Phi}^{T}\mathbf{\Phi} + \lambda P\right)^{-1}\mathbf{\Phi}^{T}\mathbf{y} = S(\lambda)\mathbf{y}$$

■ Same formulae for OCV and GCV for λ .

Fitting Vancouver

lambda = exp(-1:20)

Now loop over values of lambda

```
knots = c( rep(0,3),0:365,rep(365,3) ) # Knot every day
bvals = splineDesign(knots=knots,x=TT) # Order 4 is default
```

Assignment Project Exam Help

```
ocv = https://powcoder.com
Yhats = matrix(0,365,length(lambda))
Yhat = Slam%*%Y
 OCV[i] = mean((Y-Yhat)^2/(1-diag(Slam))^2)
 GCV[i] = sum((Y-Yhat)^2)/sum((1-diag(Slam))^2)
 Yhats[,i] = Yhat
```

38 / 42

Fitting Vancouver

A Comparison

Broader Uses

Splines (and other bases) allow non-parametric terms to be

Assignmentartal roject with xiam feltelp

https://powcoder.com

- Just represent $g(x_{2i}) = \Phi(x_{2i})c$ and add c to coefficients.
- Works in generalized linear models, non-linear models, many of the last weeks. We chat powcoder
 Many basis systems other than B-splines. Most noticeably
- Many basis systems other than B-splines. Most noticeably Fourier bases

$$1, \cos(\omega t), \sin(\omega t), \cos(2\omega t), \sin(2\omega t), \cos(3\omega t), \dots$$

and wavelets.

Summary

Sugnment Project Exam Help Weight points to account for those that are closest to t.

- Requires whole model to change with t.

Relatively expensive, computation llv.

- Basis expansions
 - Represent non-parametric effect via a set of basis functions.
 - Add renalization to obtain smoothness woulder
 - Harder to demonstrate mathematical/statistical properties.

In both cases, smoothing parameters (h, λ) must be chosen by cross validation or other methods.