Zhihan Li DS_GA 1011 HW1 10/09/2018

Analysis of the Results for Bag of N-Gram Document Classification

The public github repo can be found at:

https://github.com/Evaaaaaaa/NLP_HW1/blob/master/ZHIHAN%20LI_HW1_NLP.ipynb

1. Methods

Under each of the recommended hyper-parameter categories, I have tested

- 1. Tokenization schemes of the dataset:
 - 1.1 Convert all words to lower cases and ignore punctuation.
 - 1.2 Pre-process by deleting line break '< br />' and parentheses.
 - 1.3 Remove web URLs using regular expression.
- 2. Model hyper-parameters:
 - 2.1 Unigram
 - 2.2 Bigram
 - 2.3 Trigram
 - 2.4 Quadrigram
 - 2.5 Vocabulary size
 - 2.6 Embedding size
- 3. Optimization hyper-parameters:
 - 3.1 SGD optimizer
 - 3.2 Adam optimizer
 - 3.3 Change learning rate
 - 3.4 Use linear annealing of learning rate with original learning rate to be 0.01

2. Result and Analysis

a. Accuracy Table

In the ablation study, I set all other variables to constant while allowing one to vary. The values for constant parameters I used are

Tokenization schemes = the combination of all three pre-processing methods

n for n-gram = 1

Vocabulary size = 10000

Embedding size = 100

Optimizer = Adam

Learning rate = linear annealing

The validation accuracy of each parameters with selected values is shown below:

Category	Comparable attribute	Validation Accuracy
Vary n for n-gram	N=1	64.515
	N=2	59.19
	N=3	60.3
	N=4	54.64
Vocabulary size	max_vocab_size = 1000	56.32
	max_vocab_size = 5000	62.8
	max_vocab_size = 10000	64.515
	max_vocab_size = 20000	69.65
Embedding size	emb_dim = 50	62.755
	emb_dim = 100	64.515
	emb_dim = 200	62.31
	emb_dim = 300	60.58
Optimizer	SGD	65.91
	Adam	64.515
Learning rate	learning_rate = 0.01	63.87
	learning_rate = 0.05	59.62
	learning_rate = 0.1	60.43
	Linear annealing	64.515

b. Training Curves

3. Discussion

Validation set samples:

3 correct: 8367_10.txt, 11778_3.txt, 9006_7.txt 3 incorrect: 42107_0.txt, 2582_2.txt, 12249_8.txt

4. conclusion

The best set of parameters I have found is:

Tokenization schemes: the combination of all three pre-processing methods

n for n-gram: n = 1

learning rate: Linear annealing

Vocabulary Size: 20000 Embedding Size: 100 Optimizer: SGD

The validation accuracy is 69.65

The test accuracy is 67.58