20BDS0146 VENNELA G

DATA VISUALIZATION & PRESENTATION LAB

LAB SLOT: L31+L32

LAB ASSIGNMENT 1

DATE: 30-01-2023

Ex.No.1

TITLE OF EXPERIMENT: Acquiring and plotting data

1. AIM: Load the in-build dataset from R and draw various basic plot in R using grid (Horizontal bar plot, Vertical bar plot, box plot, multiple box plot, plot with point a line etc.,)

CODE:

```
install.packages("lattice")
install.packages("ggplot2")
library(lattice)
library(ggplot2)
data("airquality")
View(airquality)
summary(airquality)
str(airquality)
par(mfrow=c(3,3),las=1,bg="white")
barplot(airquality$Ozone,xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146',col='blue',horiz=T)
barplot(airquality$Ozone,xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146',col='brown')
```

boxplot(airquality\$Ozone,xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146',col='blue')

boxplot(Wind~Month,data=airquality,xlab='Month',ylab='Wind speed',main='20BDS0146',col='skyblue')

plot(airquality\$Ozone,type='p',xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146',col='orange')

plot(airquality\$Ozone,type='l',xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146',col='grey')

plot(airquality\$Ozone,type='b',xlab='Ozone concentration',ylab='No of Instances',main='20BDS0146')

hist(airquality\$Solar.R,main="20BDS0146",xlab='Solar Radiation',col='red')

dev.off()

We have loaded the in-build dataset airquality from R and have drawn various basic plots in R using grid (Horizontal bar plot, Vertical bar plot, box plot, multiple box plot, plot with point a line etc.,). We have estimated the Ozone concentration in the city and various parameters related to Ozone concentration.

2. AIM: Load in-build dataset mtcars and visualize data using visualization library ggplot

CODE:

mtcars

```
str(mtcars)
mtcars$cyl
#Visualization using libraries
install.packages("lattice")
install.packages("ggplot2")#grammar of graphics plot- 2nd version
library(lattice)
library(ggplot2)
#using factor
str(mtcars)#data entries .. means total 32 entries
View(mtcars)
factor(mtcars$gear,levels=c(3,4,5),labels=c('3Gear','4Gear','5Gear'))#to
find unique numbers present in a column
#using ggplot and plot analog
plot(mtcars$wt,mtcars$mpg,main='20BDS0146')
ggplot(data=mtcars,aes(x=wt,y=mpg))+geom_point()+ggtitle("20BDS0
146")
#geometricpoint specifies scatter plot
ggplot(data=mtcars,aes(x=wt,y=mpg),main='20BDS0146')+geom_line()
+xlab('Weight')+ylab('Mileage')+ggtitle("20BDS0146")
ggplot(data=mtcars,aes(x=wt,y=mpg,color=as.factor(gear)),main='20BD
S0146')+geom_line()+xlab('Weight')+ylab('Mileage')+ggtitle("20BDS01
46")
```

ggplot(data=mtcars,aes(x=wt,y=mpg,color=as.factor(cyl)),main='20BDS 0146')+geom_line()+xlab('Weight')+ylab('Mileage')+ggtitle("20BDS0146")

ggplot(data=mtcars,aes(x=wt,y=mpg,color=as.factor(cyl),size=qsec),mai n='20BDS0146')+geom_point()+xlab('Weight')+ylab('Mileage')+ggtitle("20BDS0146")

#colordisplays different colours for different unique cylinders #size qsec means if size more qsec more and if size less then qsec less

ggplot(data=mtcars,aes(x=wt,y=mpg,shape=as.factor(cyl),color=as.factor(cyl),size=qsec))+geom_point()+xlab('Weight')+ylab('Mileage')+ggtitle ("20BDS0146")

```
Console Terminal × Background Jobs ×

R 4.2.2 · ~/ ~

# ... with 1,694 more rows

# i Use `print(n = ...)` to see more rows

> factor(mtcars$gear,levels=c(3,4,5),labels=c('3Gear','4Gear','5Gear'))#to find u
nique numbers present in a column

[1] 4Gear 4Gear 4Gear 3Gear 3Gear 3Gear 4Gear 4Gear 4Gear 4Gear 3Gear

[13] 3Gear 3Gear 3Gear 3Gear 4Gear 4Gear 4Gear 3Gear

[25] 3Gear 4Gear 5Gear 5Gear 5Gear 5Gear 5Gear 4Gear

Levels: 3Gear 4Gear 5Gear
```


We have loaded in-build dataset mtcars and visualized data using visualization library ggplot and we have visualized Weight and Mileage using various plots like scatter plots, etc with many features

Ex.No.2

TITLE OF EXPERIMENT: Statistical Analysis – Univariate, Bivariate, Multivariate – plotting and coloring for maps

1. AIM: Load the gapminder dataset and perform statistical analysis using tidyverse and dplyr libraries

CODE:

```
install.packages('gapminder')
install.packages('tidyr')
install.packages('dplyr')
install.packages('ggplot2')
library('gapminder')
View(gapminder)
library('tidyr')
library('dplyr')
library('ggplot2')
#extract continent asia
gapminder%>% filter(continent=='Asia')
#extract year 1957
gapminder%>% filter(year==1957)
#extract year as 2002 and country china
```

```
gapminder%>% filter(year==2002 & country=="China")
#sort lifeExp in desc order
gapminder%>%arrange(desc(lifeExp))
#year 1957 and pop in desc order
gapminder%>% filter(year==1957)%>% arrange(desc(pop))
#lifeExp in months
gapminder%>%mutate(lifeExp*12)
gapminder%>%mutate(lifeExpInMonths=lifeExp*12)
#gapminder_1952
gapminder_1952<-gapminder%>%filter(year==1952)
View(gapminder_1952)
#VISUALIZE scatter plot for pop and gdpPercap for gapminder_1952
ggplot(data=gapminder_1952,aes(x=pop,y=gdpPercap,color=continent))
+geom_point()+scale_x_log10()+scale_y_log10()+ggtitle("20BDS0146"
#scale_x is used to expand data in x axis
#color is used to give color to continent, its in 8 bit color range in form
of VIBGYOR
#SCATTER plot pop and lifexp group by continent based on population
size
ggplot(data=gapminder_1952,aes(x=pop,y=lifeExp,color=continent,size
=gdpPercap))+geom_point()+scale_x_log10()+ggtitle("20BDS0146")
#sub graph-splits graph by continent using facet_wrap function
```

```
ggplot(data=gapminder_1952,aes(x=pop,y=lifeExp,color=continent))+g
eom_point()+scale_x_log10()+facet_wrap(~continent)+ggtitle("20BDS0
146")
#sub graph for entire data structure:gapminder
ggplot(data=gapminder,aes(x=pop,y=gdpPercap,color=continent))+geo
m_point()+scale_x_log10()+scale_y_log10()+ggtitle("20BDS0146")
ggplot(data=gapminder,aes(x=pop,y=lifeExp,color=continent,size=gdpP
ercap))+geom_point()+scale_x_log10()+ggtitle("20BDS0146")
ggplot(data=gapminder,aes(x=pop,y=lifeExp,color=continent))+geom_p
oint()+scale_x_log10()+facet_wrap(~year)+ggtitle("20BDS0146")
ggplot(data=gapminder,aes(x=pop,y=lifeExp,color=continent))+geom_p
oint()+scale_x_log10()+facet_wrap(~continent)+ggtitle("20BDS0146")
#Summarize -median lifeExp,DS: GAPMINDER
gapminder%>%summarize(medianLIfeExp=median(lifeExp))
#1957, median-lifeExp,max-gdpPercap
gapminder%>% filter(year==1957)%>% summarize(medianLIfeEXp=me
dian(lifeExp),maxgdpPercap=max(gdpPercap))
#group by year, median lifeExp
#store in object by_year
by year<-
gapminder%>%group_by(year)%>%summarize(MedianLifeExp=media
n(lifeExp))
#Visualize year Vs MedianLifeExp:#by_year
ggplot(data=by_year,aes(x=year,y=MedianLifeExp))+geom_point()+ex
pand_limits(y=0)+ggtitle("20BDS0146")
#summarize median gdpPercap
```

#by year and continent and save in by_year_continent

by_year_continent<-

gapminder%>%group_by(year,continent)%>%summarize(MedianGdpP
ercap=median(gdpPercap))

#VIsualize year vs medianGdp

#Line plot

ggplot(data=by_year_continent,aes(x=year,y=MedianGdpPercap))+geo
m_line()+ggtitle("20BDS0146")

ggplot(data=by_year_continent,aes(x=year,y=MedianGdpPercap,color= continent))+geom_line()+ggtitle("20BDS0146")

```
Console Terminal × Background Jobs ×
 R 4.2.2 · ~/
 > gapminder%>%filter(year==1957)%>%arrange(desc(pop))
 # A tibble: 142 \times 6
                       continent year lifeExp <fct> <int> <db1>
                                                             pop gdpPercap
     country
                                               50.5 637408000
                                   <u>1</u>957
  1 China
                        Asia
                                                                         576.
                                               40.2 409<u>000</u>000
69.5 171<u>984</u>000
                                                                        590.
  2 India
                        Asia
                                     1957
  3 United States Americas
                                     <u>1</u>957
                                                                      <u>14</u>847.
                       Asia
                                     <u>1</u>957
                                                                     <u>4</u>318.
  4 Japan
                                               65.5
                                                       91563009
  5 Indonesia
                        Asia
                                     <u>1</u>957
                                               39.9
                                                       90124000
                                     <u>1</u>957
                                               69.1
                                                       71<u>019</u>069
  6 Germany Europe
                                    1957 53.3 65<u>551</u>171
1957 70.4 51<u>430</u>000
1957 39.3 51<u>365</u>468
1957 67.8 49<u>182</u>000
                                                                       <u>2</u>487.
  7 Brazil
                       Americas
  8 United Kingdom Europe
                                                                    <u>11</u>283.
  9 Bangladesh Asia
LO Italy Europe
                                                                        662
10 Italy Europe <u>1</u>95/ 0,.0 # ... with 132 more rows # i Use `print(n = ...)` to see more rows
                                                                     <u>6</u>249.
 > gapminder%>%mutate(lifeExpInMonths=lifeExp*12)
 # A tibble: 1,704 \times 7
                                                 pop gdpPercap lifeExpInMonths
    country
                continent year lifeExp
    <fct>
                 <fct> <int> <db1>
                                               <int>
                                                         <db1>
                                                                              <db1>
779.
                                                                               346
                                                            821.
                                                                               364.
                                                            853.
                                                                               384.
                                                            836.
                                                                               408.
                                                            740.
                                                                              433.
                                                            786.
                                                                              461.
                                                           978.
                                                                              478.
                                                           852.
                                                                              490.
                                                         852.
649.
635.
                                                                              500.
                                                                               501.
 # ... with 1,694 more rows
# i Use `print(n = ...)` to see more rows
```


We have loaded the gapminder dataset and perform statistical analysis using tidyverse and dplyr libraries and plotted various graphs to understand different aspects of the gapminder dataset.

2. AIM: Using RClolorBrewer visualize mpg data.

CODE:

install.packages("gridExtra")
set.seed(123)

//to set values in this range

```
x < -rnorm(30)
y < -rnorm(30)
//rnorm to normalize 30 values in range x--1 to 1
//rnorm to normalize 30 values in range y--1 to 2
//rep(1:3) means reptitive 1 2 3
//pch 19 means shaded circle
//pch 25 means inverted triangle
//pch range[1-25]
plot(x,y,col=rep(1:3,each=3),pch=15,main="20BDS0146")
//legend box to represent details of colors used
legend("bottomright",legend=paste("Group",1:3),col=1:3,pch=15,bty="n
")
rep(1:3,each=3)
paste("Group",1:3)
library(RColorBrewer)
library(ggplot2)
#Color Visualization using RColorBrewer
View(mpg)
//to display in form of grid,all graphs in one page
//density plot using geom_density
//fill()to fill color
//alpha to give transparency in R
//gridExtra to arrange in form of grid similar to par
```

```
library(gridExtra)

//scale fill brewer used to provide similar colors to all values
differentiating with light and dark

p1=p2=p3=p4=ggplot(data=mpg,aes(x=cty))+geom_density(aes(fill=fac
tor(cyl),alpha=0.5))+labs(title="XXXX",X="City
Mileage",fill="#cylinder")+scale_fill_brewer(palette="Set1")+ggtitle("2
0BDS0146")

grid.arrange(p1,p2,p3,p4,nrow=2)

//total 234 cylinders
str(mpg)
factor(mpg$cyl)

//factor gives values distinct 4,5,6,8
```

We have used RColorBrewer to visualize mpg data and also we used scale_fill_brewer() to explore features of RColorBrewer.

3. AIM: Load USArrests in-build dataset and correlate in the maps with anyone fields. Display the maps using colormapping.

CODE:

```
install.packages("viridisLite")
library(viridis)
install.packages("maps")
install.packages("dplyr")
library(dplyr)
library(maps)
#Preparing dataset
View(USArrests)
arrests<-USArrests
```

```
//rownames to lower case
tolower(rownames(USArrests))
arrests$region=tolower(rownames(USArrests))
View(arrests)//new row added of region names
states_map<-map_data("state")</pre>
//all data to represent US map
View(map_data("state"))
//combine two arrests and map_data state using left join as region is
common
arrest_map=merge(states_map,arrests,by="region")
View(arrest_map)
#Create the map
ggplot(data=arrest_map,aes(x=long,y=lat,group=group))+geom_polygo
n(aes(fill=Assault),color="white")+scale fill viridis c(option="D",direc
tion=-1)+ggtitle("20BDS0146")
//color white splits colors
```


We have loaded USArrests in-build dataset and correlated in the maps with lat, long fields, etc. And also displayed the map using colormapping.