Department of Computer Science

EE-2003 – Computer Organization and Assembly Language SPRING 2024

Instructor Name: Aatira Anum Ahmad Email address: aatira.anum@lhr.nu.edu.pk

Office Location/Number: Room No 44, 1st Floor, New Building, Near Gate 2

Office Hours: Friday 11:00 am -1:00 pm

Course Information

Program: BS Credit Hours: 3 Type: Core

Pre-requisites (if any): DLD

Program Learning Outcomes:

PLO#	PLO Name	Description
2	Knowledge for Solving	Apply knowledge of computing
	Computing Problems	fundamentals, knowledge of a
		computing specialization, and
		mathematics, science, and domain
		knowledge appropriate for the
		computing specialization to the
		abstraction and conceptualization of
		computing models from defined
		problems and requirements.
3	Program Analysis	Identify, formulate, research
		literature, and solve complex
		computing problems reaching
		substantiated conclusions using
		fundamental principles of
		mathematics, computing sciences,
		and relevant domain disciplines.
4	Design/Development of	Design and evaluate solutions for
	Solutions	complex computing problems, and
		design and evaluate systems,
		components, or processes that meet
		specified needs with appropriate
		consideration for public health and
		safety, cultural, societal, and
		environmental considerations.

Course Learning Outcomes:

Course Learning Outcomes (CLOs)		PLO Mapping
	Level	
1. Demonstrate the basic concepts of computer	C2	2
organization including CPU, memories, and		
input/output and explain their purposes and		
interactions.		
2. Describe the working of important x86 assembly	C2	2
primitives, including arithmetic, branching, bit		
manipulation, addressing modes and interrupt		
handling.		
3. Apply the knowledge of Intel x86 architecture to		4
develop moderately complex and well-modularized		
assembly programs.		
4. Analyze the performance enhancement of a	C4	3
processor via cache and pipelining features.		

Course Textbook

- Assembly Language Programming Lecture Notes by Bilal Hashmi.
- Assembly Language for x86 Processors Seventh Edition Kip R. Irvine
- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings (WS)
- David A. Patterson, John L. Hennessy, Computer Organization and Design: The hardware/software interface, 4th Edition

Tentative Lecture Plan

Week	Topics to be covered		
1	Introduction to Assembly Language		
2	Addressing Modes		
3	Branching		
4	Bit Manipulations		
5	Subroutines		
Midterm 1			
6	Display Memory		
7	String Instructions		
8	Software Interrupts		
9	Real Time Interrupts and Hardware Interfacing		
10	Multitasking (Optional)		
Midterm 2			
11-14	Computer Architecture, Pipelining, Cache, Performance		

(Tentative) Grading Criteria

1.	Quizzes	10
2.	Midterms	30
3.	Final	45
4.	Assignments/Project	15

Grading Scheme: Absolute

Course Policies

- 1. Quizzes may be un-announced.
- 2. No makeup for missed quiz or assignment.
- 3. 80% attendance
- 4. 50% passing marks

Academic Integrity

- Plagiarism and Cheating against academic integrity. Both parties involved in such cases will face strict penalty (negative marking, F grade, DC)
- CODE/ ASSIGNMENT SHARING is strictly prohibited.
- Keep in mind that by sharing your code/assignment you are not helping anyone rather hindering the learning process or the other person.
- No excuse will be entertained if your work is stolen or lost. To avoid such incidents
 - Keep backup of your code on safe online storage, such as Google Drive, Dropbox or One drive.
 - Do not leave your work on university lab computer, transfer your work to online storage and delete from the university lab computer (empty recycle bin as well)

Course Policies

- 1. Announcements related to different aspects of this course (e.g., lectures, quizzes, exams, etc.) may be posted on SLATE (http://slate.nu.edu.pk/portal) and google classroom. Students are expected to view the announcements section of SLATE and google classroom regularly.
- 2. All students are expected to attend all lectures from beginning to end. Partial or full absence from a lecture without a valid reason may hamper chances for securing good grades. University's attendance requirements must be met in order to appear in the final exam.
- 3. Quizzes may be announced or unannounced. A quiz will usually be about 5 15 minutes long and it may be given anytime during the lecture. Students missing a quiz will NOT be given a make-up quiz.
- 4. Students can contest their grades on quizzes and assignments ONLY within a week of the release of grades. Exams will be available for review according to university policies.
- 5. Students are expected to demonstrate the highest degree of moral and ethical conduct. Any student caught cheating, copying, plagiarizing, or using any other unfair means will be strictly dealt-with in accordance with university policies.