

Advanced Text Analysis for Business (IDS-566)

Lecture 5 Feb 23, 2018

Course Overview

- Instructor
 - Ehsan M. Ardehaly PhD, ehsan@uic.edu
 - Office hours: 4:45 5:45 pm F, BLC L270
 - Teacher assistant: 4:00 5:00 pm W, BLC L270
- Objectives:
 - Text mining
 - Applications for business decisions
 - Study of machine learning concepts
 - Design and implementation of text mining approaches

Assignments-2

• Grade: 20%

Sentiment analysis

• Due date: 2/25/2018

- Submission:
 - Notebook (code + analysis) → PDF
 - Word document with code as an appendix → PDF

Agenda

Artificial Neural Network

• Layers, activation, SGD

Multi-Layer Perceptron:

Word embedding

Deep learning:

• Dropout, Batch normalization

Examples:

Keras

Binary vs. Multi-class logistic regression

Sigmoid vs. softmax

• Sigmoid (binary class):

•
$$P(y = 1|x) = \frac{1}{1 + e^{-x.\theta}}$$

• Softmax (multi-class):

$$P(y_i = k | x) = \frac{\exp(x \cdot \theta^{(k)})}{\sum_{j=1}^{m} \exp(x \cdot \theta^{(j)})}$$

Training logistic regression

- Creating the cost function:
 - Negative log likelihood

•
$$J(\theta) = -l(\theta)$$

- Find θ which minimizes the cost function:
 - $\theta = \underset{\theta}{\operatorname{Argmin}} J(\theta)$

Binary vs multi-class cost function

- Binary:
 - Negative log likelihood → Binary cross-entropy

- Multi-class:
 - Negative log likelihood → Categorical cross-entropy

Gradient descent algorithm

- An iterative algorithm
- Finding the minimum of a cost function:
- Starts with a random initialization.
- Takes step to the negative of the gradient.

Artificial Neural Network (ANN)

- Hidden layer:
 - Input: the output of last layer
 - Multiple cells
 - Apply multiple functions (per cell) → Activation function
 - Output: the next layer

Hidden layer

2 layers MLP (binary)

2 layers MLP (multi-class)

Activation functions

- Middle layers:
 - Linear (not recommended)
 - Sigmoid
 - Relu (recommended)
 - Tanh
- Output layer:
 - Sigmoid (for binary)
 - Softmax (for multi-class)

Rectifier linear unit (relu)

• relu(x) = max(0, x)

Tangent Hyperbolic

$$\bullet \ tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• $tanh(x) = 2\sigma(2x) - 1$

2 layer MLP (with relu)

3 layer MLP (with tanh)

Optimization

Cost function:

- Binary cross-entropy (binary)
- Categorical cross-entropy (multi-class)

Batch gradient descent:

 Stochastic Gradient Descent (SGD) GD vs. SGD

Advanced optimizers (for batch)

- SGD with learning rate decay
 - Sensitive to the learning rate
- Adam:
 - Not sensitive to the learning rate
 - often converges very fast
- RMSprop:
 - Not sensitive to the learning rate

Batch example - 1

- 100K instances with 2K features for 5 categories classification:
 - Shapes: X: 100000 x 2000, y: 100000
- Batch size: 1000
- Shuffle the data
- Create 100 batches:
 - Batch shapes: Shapes: X: 1000 x 2000, y: 1000

Batch example - 2

- 100K instances with 2K features for 5 categories classification:
 - Shapes: X: (100000, 2000), y: (100000,)
- Batch size: 8000
- Shuffle the data
- Create 13 batches:
 - Batch shapes: X: (8000, 2000), y: (8000,)
 - Last batch shapes: X: (4000, 2000), y: (4000,)

Training the network

https://en.wikipedia.org/wiki/Feedforward_neural_network

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Deep learning

- A neural network with many layers
- Very complex networks
- Training is computation intensive

Training on Nvidia GPUs

- Using Cuda cores
- Packages:
 - Tensorflow
 - Mxnet
 - Pytorch
 - Caffe

47X Higher Throughput than CPU Server on Deep Learning Inference

Workload: ResNet-50 | CPU: 1X Xeon E5-2690v4 @ 2.6GHz | GPU: add 1X NVIDIA® Tesla® P100 or V100

Regularization layers

- To reduce variance
- Different behavior in the training and the testing time
 - Dropout
 - Batch Normalization

(a) Standard Neural Net

(b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava, JMLR, 2014

Batch Normalization

- Using a moving average to find the mean and the average of batch.
- Change the output of the layer to a zero mean vector with unit variance.
- Moving average updates only at the training time.

Model weights

- Each layer may have multiple parameters.
- Dense layers have two parameters:
 - Coefficient vector per cell (Coefficient matrix).
 - Bias per cell (bias vector)
 - $l(z) = \tanh(z \cdot \omega + b)$

Word embedding

- Language modeling
- Feature learning
- Words → vector (in low dimension)

Word2vect

- A MLP model
- Each word is mapped to the weights of the first layer.
 - First layer weight: # words × # cells
- We can use these vectors in different classification task.

One hot encoding

- Multi-class classification
- Labels: [0, 1, 2, 1, 0]
- One hot encoding:

$$\bullet \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}$$