Assignment on Time Series Analysis & Forecasting

1. Below are the net sales in \$ million for Home Depot, Inc. and its subsidiaries from 2015 to 2024.

Table 1: Net sales of different years

Year	Net Sales (\$)	Year	Net Sales (\$)
2015	50,600	2020	156,700
2016	67,300	2021	201,400
2017	80,800	2022	227,300
2018	98,100	2023	256,300
2019	124,400	2024	280,900

Note: Add last three digits of your ID with Net Sales

- Determine the least square equation. Based on this information, what are the estimated sales for 2030?
- ii) Plot Net Sales and Trend Line

Solution:

Year	Net Sales (Y)	X	XY	XX	Yc
2015	50600001	-9	-455400036	81	32460003.97
2016	67300001	-7	-471100028	49	59553337.31
2017	80800001	-5	-404000020	25	86646670.65
2018	98100001	-3	-294300012	9	113740004
2019	124400001	-1	-124400004	1	140833337.3
2020	156700001	1	156700004	1	167926670.7
2021	201400001	3	604200012	9	195020004
2022	227300001	5	1136500020	25	222113337.4
2023	256300001	7	1794100028	49	249206670.7
2024	280900001	9	2528100036	81	276300004

Here, N=10;
$$\sum y=1543800040$$
; $\sum xy = 4470400000$; $\sum x^2 = 330$

We know,

$$a = \frac{\sum y}{N} = \frac{1543800040}{10} = \mathbf{154380004}$$

$$\mathbf{b} = \frac{\sum xy}{\sum x^2} = \frac{4470400000}{330} = \mathbf{13546666.67}$$

Trend equation:

Yc = a + bx

For 2030, x = 21

Then $Y_{2023} = 154380004 + 13546666.67 * 21 = 438860004.1$

2. It appears that the imports of carbon black have been increasing by about 10 percent annually.

Table 2: Amount of Carbon Block imported in different years.

Year	Imports of Carbon Block (thousands of tons)	Year	Imports of Carbon Block (thousands of tons)
2011	124	2018	2463
2012	175	2019	3358
2013	306	2020	4181
2014	524	2021	5388
2015	714	2022	8027
2016	1052	2023	10587
2017	1638	2024	13537

Note: Add last three digits of your ID with imports of Carbon Block

- i) Determine the logarithmic trend.
- ii) Find the annual rate of increase.
- iii) Estimate imports for the year 2030.

Solution:

Year	Imports of Carbon (Y)	X	XX	log(Y)	x log(y)	Log Yc	Yc
2011	124001	-13	169	5.093436	-66.2147	5.190542	155075.3
2012	175001	-11	121	5.243048	-57.6735	5.347631	222654.4
2013	306001	-9	81	5.485727	-49.3715	5.50472	319683.5
2014	524001	-7	49	5.719335	-40.0353	5.661809	458996.2
2015	714001	-5	25	5.853701	-29.2685	5.818898	659019.1
2016	1052001	-3	9	6.022017	-18.0661	5.975987	946208.5
2017	1638001	-1	1	6.214315	-6.21431	6.133076	1358550
2018	2463001	1	1	6.391465	6.391465	6.290165	1950584
2019	3358001	3	9	6.526081	19.57824	6.447253	2800615
2020	4181001	5	25	6.621281	33.1064	6.604342	4021077
2021	5388001	7	49	6.731428	47.12	6.761431	5773394
2022	8027001	9	81	6.904553	62.14098	6.91852	8289343
2023	10587001	11	121	7.024773	77.2725	7.075609	11901699
2024	13537001	13	169	7.131523	92.70979	7.232698	17088260

Here, N=14; $\sum logy = 86.9626823$; $\sum xlogy = 71.47543718$; $\sum x^2 = 910$

We know,

$$Log(a) = \frac{\sum logy}{N} = \frac{86.9626823}{14} = 6.211620164$$

$$Log(b) = \frac{\sum x log y}{\sum x^2} = \frac{4470400000}{910} = 0.078544436$$

Trend equation:

logY = log(a) + log(b)x

For the year 2023, x= 25

logY = 6.211620164 + 0.078544436 * 25 = 8.175231

 $Y_{2030} = 149703193$

Annual rate of increase = $(e^b - 1) \times 100\%$

$$= (e^{0.0785}-1) \times 100\%$$

= 8.1663 %

3. The quarterly production of pine lumber, in millions of board feet, by Northwest lumber since 2018 is:

Table 3: Productions in different quarters of several years

Year	Quarter	Production	Year	Production	Sales	Year	Quarter	Production
2018	Winter	90	2021	Winter	201	2024	Winter	265
	Spring	85		Spring	142		Spring	185
	Summer	56		Summer	110		Summer	142
	Fall	102		Fall	274		Fall	333
2019	Winter	115	2022	Winter	251	2025	Winter	282
	Spring	89		Spring	165		Spring	175
	Summer	61		Summer	125		Summer	157
	Fall	110		Fall	305		Fall	350
2020	Winter	165	2023	Winter	241	2024	Winter	290
	Spring	110		Spring	158		Spring	201
	Summer	98		Summer	132		Summer	187
	Fall	248		Fall	299		Fall	400

Note: Add last three digits of your ID with number of Productions

- i) Develop a seasonal index for each quarter and interpret it.
- ii) Project the production for 2030 and also find the base year production.
- iii) Plot the original data, deseasonalize data, and interpret.

Solution:

Year	Winter(production)	Spring(production)	Summer(production)	Fall(production)	Mean
2018	90001	85001	56001	102001	83273
2019	115001	89001	61001	110001	93773
2020	165001	110001	98001	248001	155273
2021	201001	142001	110001	274001	181773
2022	251001	165001	125001	305001	211523
2023	241001	15800	132001	299001	207523
2024	265001	185001	142001	333001	231273
2025	282001	175001	157001	350001	241023
2026	290001	201001	187001	400001	269523

Seasonal Index calculation: Divide the seasonal value of each year with the mean of each year. Then we get,

Year	Winter(production)	Spring(production)	Summer(production)	Fall(production)
2018	1.081058686	1.021015215	0.67276308	1.225163018
2019	1.226611071	0.949345761	0.650752349	1.173290819

2020	1.06279263	0.708577795	0.631294559	1.597335016
2021	1.105901316	0.781320658	0.605276911	1.507501114
2022	1.186740922	0.78016575	0.591061019	1.442032309
2023	1.16142789	0.761472222	0.636184905	1.440914983
2024	1.145931432	0.80001989	0.614092436	1.439956242
2025	1.170108247	0.726167212	0.651485543	1.452238998
2026	1.076060299	0.745847293	0.693903674	1.484188733

Overall Seasonal Index:

Seasonal Index	Winter	Spring	Summer	Fall
SI	1.135181388	0.808214644	0.638534942	1.418069026
Sum of SI	4			

De-seasonalize data:

Year	Winter(production)	Spring(production)	Summer(production)	Fall(production)
2018	79302.74486	105198.5393	87736.78045	71945.01688
2019	101325.657	110147.7196	95567.20549	77586.4912
2020	145371.4813	136130.9162	153512.3508	174901.9233
2021	177084.4749	175724.3587	172305.3709	193236.7149
2022	221130.2992	204182.1454	195796.646	215097.4279
2023	212321.1343	195521.0799	206759.2411	210866.3221
2024	233463.13	228928.047	222420.0912	234842.588
2025	248438.7103	216555.0962	245911.3663	246830.7209
2026	255486.0422	248724.7682	292893.9166	282089.9355

Production in 2030:

For winter

$$y = 22625x - 5E + 07$$
; for $x = 2030$ we get production = 45928750

For spring,

$$y = 18312x-4E+07$$
; for $x = 2030$ we get production = 37173360

For summer,

