ISA	RA	1ère	année
juin	200	6	

Pascale NEYRAN

Nom: Note sur 20:	Prénom:
	STATISTIQUE (durée 2 heures)

Une calculatrice collège est autorisée. Les tables statistiques distribuées au début de l'épreuve sont à rendre aux surveillant(e)s. Répondre sur la feuille du sujet.

Le devoir est noté sur 45 points (barème entre parenthèses).

Exercice I (2 points)

Pour les 4 situations suivantes, quel est le type de la variable statistique X?

Vous avez le choix entre :

- a) qualitative nominale
- b) qualitative ordinale

- c) quantitative discrète
- d) quantitative continue

variable statistique X:	9	h		14
répartition dans les pays d'Europe de coopératives agricoles	a	D	-	u
nombre de formations suivies par 50 biologistes				-
niveau d'adaptation de 100 cadres aux nouvelles technologies				H
chiffre d'affaires de 50 laboratoires pharmaceutiques				

Exercice II (2 points)

Proposition	Vraie	Fourse
Si X et Y sont 2 variables reliées par la relation : $Y = bX + a$	Viale	Fausse
alors: $s(y) = b^2 s(x)$		
$SCE = \sum n_j x_j^2 - \overline{x}^2$		
Le coefficient de variation = $\frac{s(x)}{me} \times 100$		
Troisième quartile et soixantième centile sont différents		

Exercice III (11 points)

Lors d'une étude biologique portant sur une certaine espèce de mollusques, on a mesuré le taux de protéines de 177 individus appartenant à cette espèce. Dans le tableau suivant les taux de protéines sont donnés en mg.

* * * *

taux de protéines	nombre d'individus		
[0;2[10		
[2;3[15		
[3;4[15		
[4;6[42		
[6;7[30		
[7;8[20		
[8;10[30		
[10;13[15		

1) Déterminer au centième, les paramètres suivants :

Moyenne	
Classe modale	
C ₂₀	
Q ₍₁₎	
médiane	
SCE	
coefficient de variation	

2) Cette série est-elle symétrique?

On nous précise que : $\sum n_i(x_i - \overline{x})^3 = 400,50$.

3) Déterminer au centième le coefficient d'aplatissement de Fisher. Que peut-on en conclure ?

On nous précise que : $\sum n_i(x_i - \overline{x})^4 = 24743,26$.

4) Quelle devrait être la valeur du premier effectif théorique si on voulait vérifier que cette distribution est conforme à celle d'une loi normale ?

Exercice IV (5 points)

Pour suivre le comportement des 18-25 ans en matière de téléphonie mobile, un institut de sondage a constitué un panel.

Une étude récente réalisée sur une population très importante donne la répartition réelle des dépenses en euros de la population des 18-25 ans :

Dépenses	0 à 12	12 à 25	25 à 35	35 à 45	45 à 60	60 à 100
% population	11 %	14 %	28 %	22 %	12 %	13 %

L'échantillon, constitué de 200 jeunes donne la répartition suivante

Dépenses	0 à 12	12 à 25	25 à 35	35 à 45	45 à 60	60 à 100
Effectifs échantillon	18	29	53	47	26	27

On veut savoir si l'échantillon constitué des 200 jeunes est représentatif de la population .

Exercice V (11 points)

Les parties A, B, C et D sont indépendantes.

L'atelier de fabrication de piquets métalliques d'une société a une capacité de production de 100 000 unités par jour.

Partie A – CONTROLE DE LONGUEURS

Soit X la longueur d'un piquet. On suppose que la variable aléatoire X suit une loi normale de moyenne 150 cm et d'écart type 3 cm.

- 1) Un piquet est rejeté si sa longueur est supérieure à 157 cm ou inférieure à 143 cm. Quelle est la probabilité qu'un piquet pris au hasard dans la production de l'atelier soit rejeté?
- 2) A quel intervalle centré sur la moyenne peut-on s'attendre pour la longueur d'un piquet avec une probabilité de 0,90 ? (on donnera le résultat arrondi au millimètre près)

Partie B - PANNES DE MACHINES

La production est assurée par 100 machines qui ont chacune une probabilité de 2 % de tomber en panne un jour donné. Soit Y le nombre de machines en panne un jour donné.

- 1) Déterminer la loi de Y.
- 2) Calculer les probabilités suivantes :
 - a) Avoir 99 machines en état de marche.
 - b) Avoir entre 2 et 5 machines en panne (bornes incluses).

Partie C - SATISFACTION CLIENT

Un client reçoit un lot de 400 piquets. Il ne peut utiliser un piquet que si sa longueur est comprise entre 147 cm et 153 cm. On sait que 68 % des piquets satisfont à cette exigence. On appelle Z le nombre de piquets du lot utilisables par ce client.

- 1) Quelle est la loi de Z?
- 2) Par quelle loi peut-on l'approcher ? Justifier.
- 3) Calculer les probabilités suivantes :
 - a) Avoir moins de 285 piquets utilisables.
 - b) Avoir au plus 120 piquets non utilisables.

Partie D - ETUDE DE LA QUALITE

On étudie la présence de bulles de gaz dans la masse métallique d'un piquet. On a pu établir que le nombre de bulles de gaz observées dans une barre suit une loi de Poisson de paramètre 0,7.

On appelle M la variable aléatoire mesurant le nombre de bulles de gaz dans un lot de 280 barres.

- 1) Quelle est la loi suivie par M?
- 2) En utilisant une approximation justifiée, quelle est la probabilité d'avoir un nombre de bulles de gaz strictement inférieur à 200 ?

Exercice VI (8 points)

On étudie la relation entre 2 variables quantitatives X et Y. On dispose de 24 couples de valeurs :

relevé N°	Х	У	X ²	y ²	ху
1	-6	775	36	600625	-4650
2	-5	808	25	652864	-4040
3	-4	784	16	614656	-3136
4	-3	785	9	616225	-2355
7.77	111	7.77	111	133	111
9990	111	90897	3.53	333	111
100	111	, iii _u	111	y 333	111
21	14	690	196	476100	9660
22	15	670	225	448900	10050
23	17	628	289	394384	10676
24	18	611	324	373321	10998
somme	134	17808	1944	13279664	91417

Les résultats seront donnés avec 4 chiffres après la virgule.

1) Calculez la covariance et le coefficient de détermination.

2) Déterminer l'équation de la droite de régression de Y en fonction de X

3) Quel est le coefficient de corrélation?

4) L'évaluation des résidus a donné les résultats suivants :

N° mesure	Y estimé	Résidus	Résidus standardisés
1	819,60	44,60	1,957
2			
3	806,20	22,20	0,974
4	799,50	14,50	0,636
133	1919	100	0.1
333	223	19.1	332
333	333	TIT	SEE
21	685,62	-4,38	-0,192
22	678,92	8,92	0,391
23	665,52	37,52	1,647
24	658,82	47,82	2,099
SCE	53666,44	12461,56	

- a) Calculer l'écart type des résidus ?
- b) Compléter la deuxième ligne en détaillant ci dessous vos calculs:

c) Expliquer pourquoi la dernière observation peut être considérée comme une donnée "out" ?

Exercice VII (6 points)

Une enquête effectuée auprès de 150 coopératives agricoles a permis d'étudier l'arrivée dans le temps des usagers de ces coopératives.

Pendant une unité de temps, soit une heure, on a noté :

nombre d'usagers arrivés	0	1	2	3	4	5	6
nombre de coopératives	37	46	39	19	5	3	1

Montrer que la distribution observée suit une loi de Poisson de paramètre 1,5. On prendra un risque de 5 %.