```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Exploring Data

In [5]: data = pd.read_csv('/content/water_potability.csv')
 data

Out[5]:		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_
	0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.
	1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.
	2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.
	•••	•••			•••			
	3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.
	3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.
	3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.
	3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.
	3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.

3276 rows × 10 columns

data.head() In [21]: Out[21]: ph **Hardness** Solids **Chloramines Sulfate** Conductivity Organic_cark NaN 204.890455 20791.318981 7.300212 368.516441 564.308654 10.379 **1** 3.716080 129.422921 18630.057858 6.635246 NaN 592.885359 15.180 **2** 8.099124 224.236259 19909.541732 9.275884 418.606213 16.868 NaN **3** 8.316766 214.373394 22018.417441 8.059332 356.886136 363.266516 18.436 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 11.5587

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3114 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64

dtypes: float64(9), int64(1)
memory usage: 256.1 KB

In [15]: data.describe().T

Out[15]:

	count	mean	std	min	25%	50%
ph	2785.0	7.080795	1.594320	0.000000	6.093092	7.036752
Hardness	3276.0	196.369496	32.879761	47.432000	176.850538	196.967627
Solids	3276.0	22014.092526	8768.570828	320.942611	15666.690297	20927.833607
Chloramines	3276.0	7.122277	1.583085	0.352000	6.127421	7.130299
Sulfate	2495.0	333.775777	41.416840	129.000000	307.699498	333.073546
Conductivity	3276.0	426.205111	80.824064	181.483754	365.734414	421.884968
Organic_carbon	3276.0	14.284970	3.308162	2.200000	12.065801	14.21833{
Trihalomethanes	3114.0	66.396293	16.175008	0.738000	55.844536	66.62248!
Turbidity	3276.0	3.966786	0.780382	1.450000	3.439711	3.955028
Potability	3276.0	0.390110	0.487849	0.000000	0.000000	0.000000

Pre-processing

In [9]: #percentage of missing values in the dataset
 data.isna().mean() * 100

```
Out[9]: ph
                             14.987790
         Hardness
                              0.000000
          Solids
                              0.000000
          Chloramines
                              0.000000
          Sulfate
                             23.840049
          Conductivity
                              0.000000
         Organic_carbon
                              0.000000
          Trihalomethanes
                              4.945055
          Turbidity
                              0.000000
         Potability
                              0.000000
         dtype: float64
In [17]: #checks missing values in the dataset and gives the sum
         data.isnull().sum()
Out[17]: ph
                             491
         Hardness
                               0
          Solids
                               0
         Chloramines
                               0
          Sulfate
                             781
          Conductivity
                               0
         Organic_carbon
                               0
          Trihalomethanes
                             162
         Turbidity
                               0
         Potability
                               0
         dtype: int64
In [22]: #eliminates missing values
         data = data.dropna()
         data.isnull().sum()
Out[22]: ph
                             0
         Hardness
                             0
          Solids
                             0
         Chloramines
                             0
          Sulfate
          Conductivity
         Organic_carbon
          Trihalomethanes
          Turbidity
                             0
          Potability
          dtype: int64
```

Plots

```
In [23]: def histplot(var): #define a histogram plot that containts a var argument, that var
    plt.figure(figsize = (6,3))
    sns.histplot(data = data, x = data[var], hue = data.Potability)
    plt.xlabel(var)
    plt.ylabel("count")
    plt.show()

numeric_vars = ["ph","Hardness","Solids","Chloramines","Sulfate","Conductivity","Or
for n in numeric_vars: #Loops every numeric_vars in the array to create a histogram
```

#generates every histoplot on every numeric_vars that affect potability

Correlation

In [25]: corr = data.corr()
corr

Out[25]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Or
ph	1.000000	0.108948	-0.087615	-0.024768	0.010524	0.014128	
Hardness	0.108948	1.000000	-0.053269	-0.022685	-0.108521	0.011731	
Solids	-0.087615	-0.053269	1.000000	-0.051789	-0.162769	-0.005198	
Chloramines	-0.024768	-0.022685	-0.051789	1.000000	0.006254	-0.028277	
Sulfate	0.010524	-0.108521	-0.162769	0.006254	1.000000	-0.016192	
Conductivity	0.014128	0.011731	-0.005198	-0.028277	-0.016192	1.000000	
Organic_carbon	0.028375	0.013224	-0.005484	-0.023808	0.026776	0.015647	
Trihalomethanes	0.018278	-0.015400	-0.015668	0.014990	-0.023347	0.004888	
Turbidity	-0.035849	-0.034831	0.019409	0.013137	-0.009934	0.012495	
Potability	0.014530	-0.001505	0.040674	0.020784	-0.015303	-0.015496	

```
In [55]: plt.figure(figsize = (10,10))
sns.heatmap(corr, cmap='PiYG', vmin=-1, vmax=1, annot=True,)
```

Out[55]: <Axes: >

