§4. 区域

- □ 1. 区域的概念
- □ 2. 简单曲线(或 Jordan 曲线)
- □ 3. 单连通域与多连通域

1. 区域的概念

•邻域

复平面上以 z_0 为中心,任意 $\delta > 0$ 为半径 的圆 $|z-z_0| < \delta$ 或 $0 < |z-z_0| < \delta$ 内部的点

的集合称为点 z_0 的 δ (去心) 邻域。

$$\ddot{U}_{(z_0,\delta)}^{(U^{\circ}(z_0,\delta))} = \{ z | |z-z_0| < \delta \}$$

$$(U^{\circ}(z_0,\delta) = \{ z | 0 < |z-z_0| < \delta \})$$

设G是一平面上点集

内点 对任意 z_0 属于G,若存在 $U(z_0,\delta)$,使该

邻

域内的所有点都属于G,则称云。是G的内

开集 若 G 内的每一点都是 内点,则称 G 是开集。

区域 设 D 是一个开集,且 D 是连通的,称D 是一个区域。

连通是指 D中任意两点均可用完全 属于 D的折线连接.

边界与边界点 已知点 P 不属于 D ,若点 P 的任何 邻域中都包含 D 中的点及不属于 D 的点,则称 P 是 D 的边界点; D 的所有边界点组成 D 的边界。

•闭区域 区域 D 与它的边界一起构成闭区域,记为D.

有界区域与无界区域

若存在 R>0, 对任意 $z\in D$, 均有

 $z \in G = \{z \mid |z| < R\}$,则 D 是有界区域;否则无界。

$$|z-z_0| < r$$

表示以 za 为圆点,以 r 为半径的圆内所有的点.

 $Rez = \alpha$, $Imz = \beta$ 表示分别平行于y轴和x轴的直线.

Rez > 0表示右半复平面,

Im z < 0表示下半复平面.

 $r_1 < |z-z_0| < r_2$ 表示一个圆环,而且是有界的.

它的边界由两个圆周 $|z-z_0|=r_2, |z-z_0|=r_1$ 组成,

如果在其中去掉一个或几个点,它仍然是区域,

只是边界增加了一个或几个点.

2. 简单曲线(或Jardan曲

线) 平面上一条连续曲线可表示为:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} (a \le t \le b), 实变函数 x(t), y(t) \in C[a,b]$$

z(t) = x(t) + iy(t) $a \le t \le b$;

则曲线方程可记为:z=z(t) , $a \le t \le b$ 若x'(t)、 $y'(t) \in C[a,b]$ 且 $[x'(t)]^2 + [y'(t)]^2 \ne 0$ 则称该曲线为光滑的.

有限条光滑曲线相连接构成一条分段光滑曲线。

重点 设连续曲线 C: z=z(t) , $a \le t \le b$, 对于 $t_1 \in (a, b)$, $t_2 \in [a, b]$, 当 $t_1 \ne t_2$ 时,若 $z(t_1)=z(t_2)$, 称 $z(t_1)$ 为曲线 C 的重点。

定义 称没有重点的连续曲线 C 为简单曲线或 Jardan 曲线;若简单曲线 C 满足

z(a)=z(b) 时,则称此曲线 C 是简单闭曲线或

Jordan 曲线。 z(a)=z(b)

 $z(t_1) = z(t_2)$

不是简单闭曲线

简单闭曲线

简单闭曲线的性质

任一条简单闭曲线 C: z=z(t), $t\in[a,b]$, 把复平面唯一地分成三个互不相交的部分:一个是有界区域,称为 C 的内部;一个是无界区域,称为 C 的外部:还有一个是它们的公共边界。

3. 单连通域与多连通域

定义 复平面上的一个区域 B

,

如果 B 内的任何简单闭曲线的 内部总在 B 内,就称 B 为单连

通

d· 非单连诵 d 称为多连诵d

例如 |z| < R (R > 0) 是单连通的; $0 \le r < |z| \le R$ 是多连通的。

作业习题一

```
P21
   2
    3(1,2,3,4)
    4 (1, 3, 5, 7)
    9 (1, 3, 4)
   10 (1, 3, 5)
```


§5. 复变函数

- □ 1. 复变函数的定义
- □ 2. 映射的概念
- □ 3. 反函数或逆映射

1. 复变函数的定义—与实变函数定义相类似

 $rec{c}{c}$ 设G是一个复数z = x + iy的非空集合,存在法则 f,使得 $\forall z \in G$,就有一个或几个w = u + iv与之对应,则称复变数w是复变数z的函数(简称复变函数)记作 w = f(z).

今后无特别声明,所讨论的函数均为单值函数。

G-f(z)的定义集合,常常是平面区域(定义域)

$$G^* = \{w | w = f(z), z \in G\}$$
 — 函数值集合

$$z = x + iy \Leftrightarrow (x, y); w = u + iv \Leftrightarrow (u, v)$$

$$\therefore w = f(z) = f(x + iy)$$
$$= u(x, y) + iv(x, y)$$

故
$$u = u(x, y)$$
 $v = v(x, y)$

$$w = f(z) = u + iv \Leftrightarrow u = u(x, y) \quad v = v(x, y)$$

例 1
$$w = z^2$$
 令 $z = x + iy$ $w = u + iv$

则
$$w = (u + iv) = (x + iy)^2 = x^2 - y^2 + 2xyi$$

$$\therefore w = z^2 \iff u = x^2 - y^2 \quad v = 2xy$$

例 2若已知
$$f(z) = x \left(1 + \frac{1}{x^2 + y^2}\right) + iy \left(1 - \frac{1}{x^2 + y^2}\right)$$

将 f(z)表示成 z 的函数.

设
$$z = x + iy$$
,则 $x = \frac{1}{2}(z + \overline{z}), y = \frac{1}{2i}(z - \overline{z})$

$$f(z) = z + \frac{1}{z}$$

2. 映射的概念 —

——复变函数的几何意义

在几何上, w=f(z) 可以看作:

 $z \in G(z$ 平面) $\xrightarrow{w=f(z)} w \in G^*(w$ 平面)的映射(变换).

定义域

函数值集合

称业为之的象点(映象),而之称为业的原象。

•复变函数的几何意义是一个映射(变换)

□ 在复变函数中用两个复平面上点集之间的 对应关系来表达两对变量 *u* , *v* 与 *x* , *y* 之间的对应关系,以便在研究和理解复变 函数问题时,可借助于几何直观.

□以下不再区分函数与映射(变换)。

例 3 研究 $w = \overline{z}$ 所构成的映射.

解 设 $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$

 $\therefore \bar{z} = re^{-i\theta} \quad -$ 关于实轴对称的一个映射

▶见图 1-1~1-2

例 4 研究 $w = e^{i\alpha}z(\alpha$ 实常数)所构成的映射.

解 设 $z = re^{i\theta}$ ∴ $w = e^{i\alpha}z = e^{i\alpha}re^{i\theta} = re^{i(\alpha+\theta)}$

 $w = u + iv = (\cos \alpha + i \sin \alpha)(x + iy)$

 $= (x\cos\alpha - y\sin\alpha) + i(x\sin\alpha + y\sin\alpha) \quad \mathbb{P},$

 $\begin{cases} u = x \cos \alpha - y \sin \alpha \\ v = x \sin \alpha + y \sin \alpha \end{cases}$ — 旋转变换 (映射) 见图 2

例 5 研究 $w = z^2$ 所构成的映射.

3. 反函数或逆映射

例 设 $z=w^2$ 则称 $w=\sqrt{z}$ 为 $z=w^2$ 的反函数或逆映射 $w=\sqrt{z}=\sqrt{|z|}e^{\frac{\theta+2k\pi}{2}}$ (k=0,1) . 为多值函数 ,2 支 .

定义 设 w = f(z) 的定义集合为 G, 函数值集合为 G* $z \in G \xrightarrow{w = f(z)} w \in G^*$

 $- \uparrow (或几个)z \in G \leftarrow_{z=\varphi(w)} w \in G^*$

则称 $z=\varphi(w)$ 为 w=f(z) 的反函数(逆映射).

显然有 $w = f[\varphi(w)] \ \forall w \in G^*$

当函数(映射)w = f(z)和其反函数(逆映射) $z = \varphi(w)$ 都是单值的,则称函数(映射)w = f(z)是一一的。也称集合 G与集合 G^* 是一一对应的。

例 已知映射 $w=z^3$,求区域 $0<\arg z<\frac{\pi}{3}$ 在平面 w 上的象。

例 已知映射 $w = \frac{1}{z}$,判断:z平面上的曲线 $x^2 + y^2 = 1$ 被

映射成 w平面上怎样的曲线?

(教材 P15-17 例 4、例 5 请同学们自学!)

§6 复变函数的极限与连续性

- □ 1. 函数的极限
- □ 2. 运算性质
- □ 3. 函数的连续性

1. 函数的极限

定义 设 $w = f(z), z \in U^{\circ}(z_0, \rho),$ 若存在数A, $\forall \varepsilon > 0$,

 $\exists \delta (\epsilon), \exists 0 < |z-z_0| < \delta$ 时,有 $|f(z)-A| < \epsilon$, $(0<\delta \leq \rho)$

则称A为 f(z)当 $z \rightarrow z_0$ 时的极限,记作 $\lim_{z \to a} f(z) = A$

或当 $z \to z_0$ 时, $f(z) \to A$

几何意义:

当变点Z一旦进 入表的充分小去 心邻域时,它的象 点 f(z) 就落入 A 的 一个预先给定的 uε邻域中

- □ (1) 意义中 z 的方式是任意的. 与一元实变函数相比较要求更高.
 - (2) A 是复数.
 - (3) 若 f(z) 在 z_0 处有极限, 其极限是唯一的.

2. 运算性质

复变函数极限与其实部和虚部极限的关系:

定理1

设
$$f(z) = u(x, y) + iv(x, y)$$
 $z = x + iy$ $z_0 = x_0 + iy_0$

$$\lim_{z \to z_0} f(z) = A = u_0 + iv_0 \Leftrightarrow \lim_{\substack{(x,y) \to (x_0,y_0) \\ (x,y) \to (x_0,y_0)}} u(x,y) = u_0$$

定理2

若
$$\lim_{z \to z_0} f(z) = A$$
 $\lim_{z \to z_0} g(z) = B, 则$

$$\lim_{z \to z_0} \left[f(z) \pm g(z) \right] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = A \pm B$$

$$\lim_{z \to z_0} f(z)g(z) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z) = AB$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} \left(\lim_{z \to z_0} g(z) \neq 0 \right) = \frac{A}{B}$$

□ 以上定理用极限定义证!

例 1证明 $w = x^2 + y + i(x + y^2)$ 在平面上处处有极限.

 $x^2 + y, x + y^2$ 在平面上处处有极限

例 2 求 $f(z) = \frac{z}{z} + \frac{z}{z}$ 在 $z \to 0$ 时的极限.

 $\therefore f(z) = \frac{2(x^2 - y^2)}{x^2 + y^2} \mathbf{t}(0,0)$ 处极限不存在.

例 3 证明 $f(z) = \frac{\text{Re } z}{|z|}$ 在 $z \to 0$ 时的极限不存在.

3. 函数的连续性

定义 若 $\lim_{z \to z_0} f(z) = f(z_0)$,则称 f(z)在 z_0 处连续;若在区域 D内处处连续,则称 f(z)在 D内连续;若 z、 $z_0 \in C$,且 $\lim_{z \to z_0} f(z) = f(z_0)$,则称 f(z) 在曲线 C上点 z_0 处连续.

定理 3 设
$$f(z) = u(x, y) + iv(x, y)$$

在 $z_0 = x_0 + iy_0$ 处连续

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} u(x,y) = u(x_0,y_0)$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} v(x,y) = v(x_0,y_0)$$

例 4 证明 $f(z)=\arg z$ 在原点及负实轴上不连续证明 (1): $f(z)=\arg z$ 在原点没有定义,故不连续。

$$(2)$$
在负实轴上
$$\forall P(x,0)(x<0)$$

$$\therefore \lim_{y\to 0^+} \arg z = \pi$$

$$\lim_{y\to 0^-}\arg z=-\pi$$

∴arg z在负实轴 上不连续。

定理 4 连续函数的和、差、积、商 (分母不为 0) 仍为连续函数; 连续函数的复合函数仍为连续函数。

由以上讨论⇒

$$P(z) = a_0 + a_1 z + \dots + a_n z^n$$
在整个复平面内是连续的;

$$R(z) = \frac{P(z)}{Q(z)}$$
在复平面内除分母为0点外处处连续.

有界性:

设曲线C为闭曲线或端点包括在内的曲线段 若f(z)在C上连续 \Rightarrow 3M > 0,在曲线上恒有 $|f(z)| \leq M$

作业习题一

