Перестановочные критерии для множественной проверки гипотез

Грабовой Андрей

Московский физико-технический институт

Москва, 2019г

Литература

- P. H. Westfall, J. F. Troendle Multiple Testing with Minimal Assumptions. // Biometrical Journal, 2008.
- M. R. Peritz, K. R. Gabriel On closed testing procedure with special reference to ordered analysis of variance. // Biometrika, 1976.
- F. Bretz, T. Hothorn, P. Westfall Multiple Comparisons Using R. Taylor and Francis Group, 2011. 200 p.

Таблица: Обозначение

	True H ₀	True H ₁	All
Reject	V	S	R
Non-Reject	U	T	m – R
All	m_0	$m-m_0$	m

FWER:

$$FWER = P(V \ge 1)$$

Хотим контролировать FWER:

$$FWER \leq \alpha$$

Задано множество гипотез:

$$\mathcal{H} = \{H_{\mathcal{I}} | \mathcal{I} \subset \mathcal{S}\}, \quad \mathcal{S} = \{1, \cdots, m\}, \quad H_{\mathcal{I}} = \cap_{i \in \mathcal{I}} H_i$$

Max-t test:

$$t_{\textit{max}} = \max_{i \in \mathcal{I}} \{t_i\}, \quad \textit{H}_{\mathcal{I}} \text{ is rejected } \Leftrightarrow \textit{P}\left(t_{\textit{max}} \geq c | \textit{H}_{\mathcal{I}}\right) \leq \alpha$$

Условие на контроль FWER:

 $H \in \mathcal{H}$ is rejected $\Leftrightarrow H_*$ is rejected $\forall H_* \subset H$

Рис.: Пример проверки множественной гипотезы из трех простых гипотез.

Получаем проверку $O(2^m)$ гипотез.

Уменьшаем с $O(2^m)$ до O(m).

Предположения:

- Используем t_{max} статистику
- следующие распределение равны

$$\max_{i \in \mathcal{I}} \{t_i\} | H_{\mathcal{I}}, \quad \max_{i \in \mathcal{I}} \{t_i\} | H_{\mathcal{S}}$$

Рассмотрим реализации $\{t_i\}_{i=1}^m$ для $\{H_i\}_{i=1}^m$, тогда:

$$p_{\mathcal{I}} = P\left(\max_{i \in \mathcal{I}} T_i \ge \max_{i \in \mathcal{I}} t_i | H_{\mathcal{I}}\right), \quad H_{\mathcal{I}} \text{ is rejected } \Leftrightarrow p_{\mathcal{I}} \le \alpha$$

1. By closure,

reject
$$H_1$$
 if $\max_{I:I\supseteq\{1\}} P\left(\max_{i\in I} > T_i \ge \max_{i\in I} t_i | H_I\right) \le \alpha$.

But if $I \supseteq \{1\}$, then $\max_{i \in I} t_i = t_1$, hence the rule is

reject
$$H_1$$
 if $\max_{I: I\supseteq\{1\}} P\left(\max_{i\in I} |T_i| \ge t_1 | H_I\right) \le \alpha$.

Using subset pivotality (B), the rule becomes

$$\operatorname{reject} H_1 \text{ if } \max_{I:\, I\supseteq \{1\}} P\Big(\max_{i\in I} \ T_i \ge t_1 \, | \, H_{\{1,\dots,m\}}\Big) \le \alpha \, .$$

Use of the "Max" statistic (A) implies

$$P\Big(\max_{i\in I}T_i\geq t_1\,|\,H_{\{1,\dots,m\}}\big)\leq P\Big(\max_{i\in J}\,\,T_i\geq t_1\,|\,H_{\{1,\dots,m\}}\Big)\quad\text{for}\quad I\subseteq J\,.$$

Hence, by subset pivotality and by use of the "Max" statistic, the rule by which we reject H_1 simplifies to this:

reject
$$H_1$$
 if $P\left(\max_{i \in \{1,...,m\}} T_i \ge t_1 \,|\, H_{\{1,...,m\}}\right) \le \alpha$.

2. Again by closure and subset pivotality,

reject
$$H_2$$
 if $\max_{I: I \supseteq \{2\}} P\left(\max_{i \in I} T_i \ge \max_{i \in I} t_i | H_{\{1,\dots,m\}}\right) \le \alpha$.

If $I \supseteq \{1\}$, then $\max_{i \in I} t_i = t_1$; else $\max_{i \in I} t_i = t_2$. Partitioning the set $\{I : I \supseteq \{2\}\}$ into two sets,

$$S_1 = \{I : I \supseteq \{1, 2\}\}, \qquad S_2 = \{I : I \supseteq \{2\}, 1 \notin I\},$$

we require

$$P\Big(\max_{i\in I} T_i \ge t_1 | H_{\{1,\dots,m\}}\Big) \le \alpha \quad \text{for all} \quad I \in S_1$$

and

$$P\Big(\max_{i\in I}T_i\geq t_2\,|\,H_{\{1,\ldots,m\}}\Big)\leq lpha\quad ext{for all}\quad I\in S_2\,.$$

Since we are using the "Max" statistic, these conditions are equivalent to the following rejection rule: reject H_2 if

$$P\left(\max_{i\in\{1,\ldots,m\}}T_i\geq t_1\,|\,H_{\{1,\ldots,m\}}\right)\leq\alpha$$

and

$$P\Big(\max_{i\in\{2,\ldots,m\}}T_i\geq t_2\,|\,H_{\{1,\ldots,m\}}\Big)\leq\alpha\,.$$

j.: Continuing in this fashion, the rule is reject H_j if

$$P\left(\max_{i\in\{1,\ldots,m\}}T_i\geq t_1\mid H_{\{1,\ldots,m\}}\right)\leq \alpha$$

and

$$P\left(\max_{i\in\{2,\dots,m\}}T_i\geq t_2\,|\,H_{\{1,\dots,m\}}\right)\leq\alpha$$

and

. .

and

$$P\left(\max_{i\in\{j,\ldots,m\}}T_i\geq t_j\,|\,\,!H_{\{1,\ldots,m\}}\right)\leq\alpha\,.$$

At step j the rule is equivalently stated in terms of p-values for the composite hypotheses as

reject
$$H_j$$
 if $\max_{i < i} p_{\{i,\dots,m\}} \le \alpha$;

hence the rule reduces to

reject
$$H_i$$
 if $\tilde{p}_i \leq \alpha$,

where

$$\tilde{p}_j := \max_{i \leq j} \ p_{\{i,\dots,m\}}$$