MATH50003 Numerical Analysis

IV.1 Fourier Expansions

Part IV: Approximation Theory

Introduce more sophisticated mathematical tools for much higher accuracy computations.

Part IV

Approximation Theory

- 1. Fourier Expansions and approximating Fourier coefficients
- 2. Discrete Fourier Transforms and interpolation
- 3. Orthogonal Polynomials and basic properties
- 4. Classical Orthogonal Polynomials with special structure
- 5. Gaussian Quadrature for high-accuracy integration

IV.1.1 Basics of Fourier series

Expanding functions in trigonometric polynomials

Definition 31 (Fourier). A function f has a Fourier expansion if

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ik\theta}$$

where

$$\hat{f}_k := \langle e^{ik\theta}, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{-ik\theta} f(\theta) d\theta$$

Definition 32 (Fourier-Taylor).

Definition 33 (absolute convergent). We write $\hat{f} \in \ell^1$ if it is absolutely convergent, or in otherwords, the 1-norm of \hat{f} is bounded:

$$\|\hat{\boldsymbol{f}}\|_1 := \sum_{k=-\infty}^{\infty} |\hat{f}_k| < \infty.$$

Theorem 9 (Fourier series equivalence). If $f, g : \mathbb{T} \to \mathbb{C}$ are continuous and $\hat{f}_k = \hat{g}_k$ for all $k \in \mathbb{Z}$ then f = g.

Proof See Körner 2022 (Theorem 2.4). ■

Theorem 10 (Absolute converging Fourier series). If $\hat{f} \in \ell^1$ then

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ik\theta},$$

which converges uniformly.

Lemma 6 (differentiability and absolutely convergence). If $f : \mathbb{R} \to \mathbb{C}$ and f' are periodic and f'' is uniformly bounded, then $\hat{\mathbf{f}} \in \ell^1$.

IV.1.2 Trapezium rule and discrete Fourier coefficients Using the Trapezium rule to approximate coefficients has nice structure

Definition 34 (Periodic Trapezium Rule).

Lemma 7 (Discrete orthogonality). We have:

$$\sum_{j=0}^{n-1} e^{ik\theta_j} = \begin{cases} n & k = \dots, -2n, -n, 0, n, 2n, \dots \\ 0 & otherwise \end{cases}$$

IV.1.3 Convergence of Approximate Fourier coefficients Using Trapezium rule leads to a convergent approximation

Definition 35 (Discrete Fourier coefficients). Define the Trapezium rule approximation to the Fourier coefficients by:

$$\hat{f}_k^n := \Sigma_n[e^{-ik\theta}f(\theta)] = \frac{1}{n} \sum_{j=0}^{n-1} e^{-ik\theta_j} f(\theta_j)$$

Theorem 11 (discrete Fourier coefficients). If $\hat{f} \in \ell^1$ (absolutely convergent Fourier coefficients) then

$$\hat{f}_k^n = \dots + \hat{f}_{k-2n} + \hat{f}_{k-n} + \hat{f}_k + \hat{f}_{k+n} + \hat{f}_{k+2n} + \dots$$

Example 26 (Taylor coefficients via Geometric series).

Theorem 12 (Approximate Fourier-Taylor expansions converge). If $0 = \hat{f}_{-1} = \hat{f}_{-2} = \cdots$ and \hat{f} is absolutely convergent then

$$f_n(\theta) = \sum_{k=0}^{n-1} \hat{f}_k^n e^{ik\theta}$$

converges uniformly to $f(\theta)$.

$$f(\theta) = \frac{2}{2 - e^{i\theta}}$$

$$f(\theta) = \frac{2}{2 - e^{i\theta}}$$

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

Corollary 2 (aliasing). For all $p \in \mathbb{Z}$, $\hat{f}_k^n = \hat{f}_{k+pn}^n$.

Consider $f_{-m:m}(\theta) := \sum_{k=-m} \hat{f}_k^n e^{\mathrm{i}k\theta}$ where n=2m+1.

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

$$f(\theta) = \frac{2}{25\cos(\theta - 1)^2 + 1}$$

